

15

20

25

USE OF DOCOSAHEXAENOIC ACID AND ARACHIDONIC ACID ENHANCING THE GROWTH OF PRETERM INFANTS FIELD OF INVENTION

The present invention concerns enhancing the growth of preterm infants involving administration of infant formula containing a combination of docosahexaenoic and arachidonic acid.

BACKGROUND OF THE INVENTION

The long chain polyunsaturated fatty acids (LC PUFA) have been shown to be important in infant development. Particularly, arachidonic acid (ARA) and docosahexaenoic acid (DHA) are LC PUFA that are of special interest in infant nutrition because they are found in high concentrations in the brain (Sastry PS, Lipids of nervous tissue: composition and metabolism. Progress Lipid Res 1985;24:69-176) and the retina (Fliesler SJ and Anderson RE. Chemistry and metabolism of lipids in the vertebrate retina. Progress Lipid Res 1983;22:79-131). ARA (20:4n-6) and DHA (22:6n-3) are derived from the parent essential fatty acids linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3) through alternate desaturation and elongation and accumulate rapidly in fetal neural tissue during the last months of gestation and the first months of postnatal life (Makrides M, Neuman MA, Byard RW, Simmer K, Gibson RA. Fatty composition of the brain, retina and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr 1994;60:189-94).

Unlike term infants, preterm infants do not fully benefit from the maternal and placental LC PUFA supply during the last trimester of pregnancy. Even though preterm infants are capable of synthesizing both DHA and ARA from their 18 carbon precursors (Carnielli VP, Wattimena DJL, Luijendijk IHT, Boerlage A, Degenhart HJ, Sauer PJJ. The very low birth weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediat Res 1996;40:169-174), it remains unclear whether the rate of synthesis is

30

adequate to meet the optimal needs for central nervous system accretion in the absence of a dietary supply of these fatty acids. Preterm infants are dependent on their own dietary supply of linoleic and α-linolenic acids through either human milk, which also contains small but significant amounts of ARA and DHA or through commercially available artificial formulas, none of which in the United States contain ARA end DHA.

It has been demonstrated in recent studies (Hoffman DR and Uauy R. Essentiality of dietary ω -3 fatty acids for premature infants: Plasma and red blood cell fatty acid composition. Lipids 1992;27:886-95) that the fatty acid composition of red blood cell membrane lipids in infants receiving formulas supplemented with DHA (0.35% of total fatty acids) was similar to human milk-fed infants. In the same study, Birch (Birch DG, Birch EE, Hoffman DR Uauy RD. Retinal development in very-low-birth-weight infants fed diets differing in Omega-3 fatty acids. Investigation Ophthalmology Visual Science 1992;33:2365-76) found that retinal function improved with the provision of a dietary supply of DHA in very low birth weight infants.

The first year growth of preterm infants fed standard formula compared to marine oil LC PUFA supplemented formula was studied by Carlson et al. (Carlson SE, Cooke, RJ, Werkman SH, Tolley EA. First year growth of preterm infants fed standard compared to marine oil n-3 supplemented formula Lipids 1992:27:901-907). The experimental formulas provided 0.2% of total fatty acids as DHA and also provided 0.3% as EPA (20:5n-3). This EPA concentration is higher than found in human milk while the DHA level is similar to human milk. Beginning at 40 weeks from conception, marine oil supplemented infants compared to controls had significantly lower weight, length, and head circumference. From this study, Carlson (Carlson SE, Werkman SH, Peeles JM, Gooke RJ, Tolley EA. Arachidonic acid status correlates with first year growth in preterm infants. Proc Natl Acad Sci USA 1993;90:1073-77) hypothesized

10

15

20

30

that dietary ARA could improve first year growth of preterm infants, in the context of restoring growth to the level of control formula containing no LC PUFA.

In another study (Montalto, FB, et al., Pediatric Research, Vol 39, page 316A, abstract no. 1878) it was shown that male infants fed marine oil supplemented formula (containing DHA but essentially no ARA) had, by 4 to 6 months, lower head circumference, length, weight and fat free mass than standard formula fed infants. A third study also showed decreased weight at 9 and 12 months corrected age in preterm infants fed marine oil supplemented formula (with LC PUFA) to 2 months corrected age compared with control formula containing no LC PUFA (Carlson SE, et al., Am. J. Clin. Nutr., 63 pp 687-97, 1996).

The prior art has demonstrated that infants with altered tissue LC PUFA levels, resulting from a lack of LC PUFA in their diets, may be at risk for neurological problems, may also have reduced scores on cognitive tests, and may have lower retinal development than human milk-fed infants. Worldwide regulatory organizations such as the WHO/FAO Expert Committee on Fats and Oils in Human Nutrition have recommended that LC PUFA be included in preterm infant formula. These recommendations have been made despite the negative effects observed of DHA supplements on growth. There has been no demonstration in the literature that ARA and DHA, particularly when added to infant formula, enhances the growth of infants above that demonstrated by control formulas not containing ARA and DHA.

25 **SUMMARY OF THE INVENTION**

It has unexpectedly been discovered that preterm infants receiving infant formula supplemented with both DHA and ARA demonstrate enhanced growth. The present invention is directed to enhancing the growth of preterm infants comprising administering to said infants a growth enhancing amount of DHA and ARA.

5

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

As reported in a review of preterm infant growth by Carlson, SE, (The Jrnl of Pediatrics, vol 125, pp 533-8, 1994) "After adjusting for postconceptional age, preterm infants show a decline (rather than a catch-up) in the normalized weight from approximately 2 to 4 months past expected term."

Several prior art studies have documented the value of administering DHA to infants. However, when DHA, either as the primary LC PUFA or combined with EPA, is administered to preterm infants, said infants suffer from decreased growth. It has been suggested that ARA may be beneficial to growth; however, heretofore the growth effects of administering both DHA and ARA to preterm infants have been unknown. It has been surprisingly discovered that administering the combination of ARA and DHA results in enhanced growth of infants relative to infants fed DHA alone. It has also been discovered that preterm infants administered an infant formula containing ARA and DHA exhibit enhanced growth relative to preterm infants fed control formula without DHA and ARA, such as those formulas currently used in modern nurseries. It has further been discovered that practice of the method of the invention results in growth of preterm infants catching up in an unexpected short time to a reference group of normal term breast fed infants.

The time to achieve growth similar or equivalent to normal term breast fed infants by practice of the method of the invention is less than 9 months corrected age, preferably less than 6 months corrected age, more preferably less than 4 months corrected age, even more preferably less than 2 months corrected age, and most preferably no greater than term corrected age.

The method of the invention requires a combination of DHA and ARA. The weight ratio weight of ARA:DHA can be about 1:2 to about 5:1, preferably about 1:1 to about 3:1, and more preferably about 2:1.

5

10

15

20

25

30

In the method of the invention the combination of DHA and ARA is preferably administered as part of an infant formula. The infant formula for use in the present invention is preferably nutritionally complete and typically contains suitable types and amounts of lipid, carbohydrate, protein, vitamins and minerals. The amount of lipid or fat typically can vary from about 3 to about 7 g/100 kcal. The amount of protein typically can vary from about 1 to about 5 g/100 kcal. The amount of carbohydrate typically can vary from about 8 to about 12 g/100 kcal. Protein sources can be any used in the art, e.g., nonfat milk, whey protein, casein, soy protein, hydrolyzed protein, amino acids, and the like. Carbohydrate sources can be any used in the art, e.g., lactose, glucose, corn syrup solids, maltodextrins, sucrose, starch, rice syrup solids, and the like. Lipid sources can be any used in the art, e.g., vegetable oils such as palm oil, soybean oil, palmolein, coconut oil, medium chain triglyceride oil, high oleic sunflower oil, high oleic safflower oil, and the like. Conveniently, commercially available infant formula can be used. For example, Enfamil®, Enfamil® Premature Formula, Enfamil® with Iron, Lactofree®, Nutramigen®, Pregestimil®, ProSobee® (available from Mead Johnson & Company, Evansville, Indiana, U.S.A.), Similac®, Isomil®, Alimentum®, Neocare®, and Similac® Special Care (available from Ross Laboratories, Columbus, Ohio, U.S.A.), may be supplemented with suitable levels of ARA and DHA at the proper ratios and used in practice of the method of the invention.

The form of administration of the DHA and ARA in the method of the invention is not critical, as long as a growth enhancing amount is administered. Most conveniently, the DHA and ARA are supplemented into infant formula which is then fed to the infants. Alternatively, the DHA and ARA can be administered as a supplement not integral to the formula feeding, for example, as oil drops, sachets, in combination with other nutrient supplements such as vitamins, and the like.

10

15

20

25

30

The growth enhancing amount of DHA is typically about 2.5 mg/kg of body weight/day to about 60 mg/kg of body weight/day, preferably about 6 mg/kg of body weight/day to about 40 mg/kg of body weight/day, more preferably about 12 mg/kg body weight/day to about 30 mg/kg body weight/day, and even more preferably about 18 mg/kg of body weight/day to about 24 mg/kg of body weight/day.

The growth enhancing amount of ARA is typically about 5 mg/kg of body weight/day to about 120 mg/kg of body weight/day, preferably about 12 mg/kg of body weight/day to about 80 mg/kg of body weight/day, more preferably about 24 mg/kg body weight/day to about 60 mg/kg body weight/day, and even more preferably about 36 mg/kg of body weight/day to about 48 mg/kg body weight/day.

The amount of DHA in infant formulas for use in the present invention typically varies from about 2 mg/100 kilocalories (kcal) to about 50 mg/100 kcal, preferably about 5 mg/100 kcal to about 33 mg/100 kcal, more preferably about 10 mg/100 kcal to about 25 mg/100 kcal, and even more preferably about 15 mg/100 kcal to about 20 mg/100 kcal.

The amount of ARA in infant formula for use in the present invention typically varies from about 4 mg/100 kcal to about 100 mg/100 kcal, preferably about 10 mg/100 kcal to about 67 mg/100 kcal, more preferably about 20 mg/100 kcal to about 50 mg/100 kcal, and even more preferably about 30 mg/100 kcal to about 40 mg/100 kcal.

The infant formula supplemented with oils containing DHA and ARA for use in the present invention can be made using standard techniques known in the art. For example, replacing an equivalent amount of an oil normally present, e. g., high oleic sunflower oil.

The source of the ARA and DHA can be any source known in the art such as fish oil, single cell oil, egg yolk lipid, brain lipid, and the like.

The DHA and ARA can be in natural form, provided that the remainder of the LC PUFA source does not result in any substantial deleterious effect

on the infant. Alternatively, the DHA and ARA can be used in refined form. It is preferred that the LC PUFA used in the invention contain little or no EPA. For example, it is preferred that the infant formulas used herein contain less than about 20 mg/100 kcal EPA; preferably less than about 10 mg/100 kcal EPA; more preferably less than about 5 mg/100 kcal EPA; and most preferably substantially no EPA.

Preferred sources of DHA and ARA are single cell oils as taught in U.S. patent nos. 5,374,657, 5,550,156, and 5,397,591, the disclosures of which are incorporated herein by reference in their entirety.

The following examples are to illustrate the invention but should not be interpreted as a limitation thereon.

EXAMPLES

ı

CLINICAL STUDY DESIGN

15 1. INTRODUCTION

This study is a double-blind, randomized, controlled parallel design, prospective trial of premature infant formulas containing microalgae and fungi-derived oils which contain a part of their constituents arachidonic acid and docosahexaenoic acid. Formula feeding subjects will be randomized into one of 3 feeding groups:

- premature formula plus DHA (about 0.13% of energy)
 and ARA (about 0.26% of energy)
- premature formula plus DHA (about 0.13% of energy)
- premature formula WITHOUT DHA and ARA

The products have the same nutrient composition (see Appendix A) and differ only in the level of DHA and ARA. The products will be blinded. The present order of formula has no relationship to randomization.

Normal, term, breast fed infants will be enrolled to provide a normal visual acuity reference.

Fifty evaluable subjects will be completed in each group.

30

5

10

20

25

Premature infants will remain on study formulas after reaching 90 kcal/kg/d for a minimum of 28 days or until hospital discharge whichever is longer. After 28 days or discharge, whichever is longer, all premature infants will receive Enfamil or Enfalac with Iron. If medically indicated, ProSobee, Lactofree, Alactamil, Nutramigen, or Pregestimil may be used in place of Enfamil or Enfalac with Iron. Term infants will receive at least 85% of their nutrition from breast milk. Primary measures of effectiveness will include visual acuity and red blood cell membrane fatty acid profiles (i.e. DHA and ARA levels). The measure of safety will be growth and adverse experience reports.

2. SUBJECTS

2.1 SOURCE AND CHARACTERIZATION OF STUDY GROUP

Acceptable preterm subjects will be relatively healthy premature infants taking preterm formula. Anticipated hospitalization should be sufficient to allow for 28 days of enteral intake \geq 90 kcal/kg/d and \geq 85% study formula intake. All races and both sexes will be eligible for the study.

2.2. INCLUSION CRITERIA

Preterm infants:

20

5

10

15

- Birth weight ≥ 900 g
- Formula feeding at time of study enrollment
- Anticipate enteral intake of ≥90 kcal/kg/day for ≥ 28 days before discharge home
- Informed consent obtained
- 25 Term Infants:
 - 38 to 42 weeks gestation
 - Committed to breast feeding
 - Informed Consent obtained

2.3 EXCLUSION CRITERIA

30 Preterm infants:

5

10

15

25

• ≥ 1500 g at birth

Preterm and Term Infants:

- History of underlying disease or congenital malformation which in the opinion of the investigator is likely to interfere with the evaluation of the subject
- More than 24 days between birth and full oral feeds (≥ 90 kcal/kg/d)
- Small (<10th percentile) for gestational age at birth (SGA)
- Necrotizing enterocolitis as diagnosed by the physician
- Other gastrointestinal disease
- Impaired visual or ocular status at birth

2.4 CONCOMITANT MEDICATIONS, HOSPITALIZATIONS, ILLNESSES

- No medication which may affect FPL response may be used within 3 days of measurement.
- No evidence of viral of bacterial infection during FPL testing:
- No medications known to affect lipid metabolism (e.g., heparin at therapeutic levels)

3. STUDY PRODUCT INFORMATION

20 **3.1 FORMULATIONS**

Nutrient composition is included as Appendix A.

4. STUDY PROCEDURES

4.2.1 ENROLLMENT

Enrollment will take place over a 6 month period. Ideally, sufficient subjects will be enrolled so that 10 subjects in each group complete the study at each site for the multi-center trial. A total of 50 infants per formula group will complete this trial.

- 4.2.2 SCHEDULE OF EVENTS (SEE FLOW CHART, SECTION °.4)
- 30 **4.2.2.1 RECRUITMENT**

Mothers of eligible, healthy, preterm formula fed infants and term, breastfed infants will be contacted, the study explained to them, and if they are agreeable, written informed consent obtained.

Term infants may be enrolled anytime from birth until or during the 48 week visit.

4.2.2.2 RANDOMIZATION

Recruited formula fed subjects will be randomized into study groups. Randomization can occur anytime after enteral feeds reach 50 kcal/kg/day until commencement of full enteral feeds (i.e., ≥90 kcal/kg/day).

4.2.2.3 FEEDING

All premature infants will receive their assigned study formula after informed consent has been granted and enteral feeds are at least 50 kcal/kg/day. The infant will remain on study formula 28 days after reaching 90 kcal/kg/d or until hospital discharge, whichever is longer. Oral feeding amount, strength and rate will advance as appropriate for the clinical management of the infant.

All parents will be instructed not to feed solid foods during the study. The parents will be instructed that the study formula or breast milk is to serve as the sole source of food from enrollment to study end.

4.2.2.4 BASELINE DATA COLLECTION

The following data will be collected by the Investigator at the time of enrollment and randomization on the case report forms:

- Informed consent of parent obtained.
- Post conceptual age.
- That the subject is a premature infant, with Birth weight ≥900 gm and ≥1500 gm or a normal term infant between 38 and 42 weeks gestational age.
- That the preterm subject is receiving infant formula or term infant is committed to breast feeding.

30

5

10

15

20

25

30

- Anticipated preterm infant enteral intake of ≥90
 kcal/kg/day for ≥28 days prior to discharge home.
- That the subject has no history of underlying disease, inborn error of metabolism, or congenital malformation which in the opinion of the Investigator is likely to interfere with the evaluation of the study formulas.
- That the subject is not small (<l0th percentile) for gestational age at birth.
- That the subject does not have necrotizing enterocolitis as diagnosed by a physician.
- That the subject does not have a gastrointestinal disease.
- No more than 24 days between birth and full enteral feeds (i.e., ≥90 kcal/kg/day).
- That the subject did not have impaired visual or ocular status at birth.
- Birth date, sex, race.
- Birth weight, length and head circumference

4.2.2.5 INVESTIGATOR PERIODIC DATA COLLECTION

"During hospitalization, preterm subjects will have their weight recorded daily while they are receiving study formula. Length and head circumference will be recorded weekly, along with an additional weight measurement. For a given subject, the same scale should be used for the weekly weight measurement."

"Weight, length, and head circumference will also be recorded at the 40, 48, and 57 week post conceptual age visit (preterm) and 56 and 119 days of age visit (term)."

4.2.2.6 BLOOD DRAW

When preterm infant enrolls in the study and again at

5

15

20

25

30

termination of study formula (i.e., hospital discharge or 28 days after reaching 90 kcal/kg/d of study product), the Investigator will ascertain that the infant is essentially solely formula fed. If this criteria is met, 1.2 ml/blood will be drawn for blood lipids. The sample will be processed as described in Appendix B.

An attempt will also be made to draw a similar blood sample at the 48 weeks PCA visit when visual acuity is measured in both term and preterm infants.

4.2.2.7 VISUAL ACUITY BY FORCED CHOICE 10 PREFERENTIAL LOOKING (FPL) AT 48 AND 57 WEEKS ± 4 DAYS POST-CONCEPTUAL AGE

When the infant is 48 and 57 weeks \pm 4 days post-conceptual age, trained persons at each study site will follow the Teller Acuity Card Procedure for the measurement of visual acuity of all study subjects. It is essential that only persons who are trained in the FPL procedure for determining visual acuity do the testing. If necessary, training of responsible persons and documentation of completion of successful training will be done at Children's Hospital Medical Center Ophthalmology Department in Seattle, Washington, according to the procedure attached as Appendix C.

If the infant cannot complete the procedure at 48 or 57 weeks \pm 4 days postconceptual age (i.e., too fussy, too sleepy, too inattentive) the test should be repeated within 7 days.

4.2.2.8 INTERIM EVALUATION

At preterm infant hospital discharge or 28 days after reaching 90 kcal/kg/d of study formula feeding, whichever is longer, the Investigator will fill out an "Interim Evaluation" form. After reviewing the subject's records and discussion with the parents and staff, the Investigator will indicate:

Whether or not the subject completed at least 28 days of

15

20

25

30

study formula intake ≥ 90 kcal/kg/d and both blood samples obtained

- If the study was not completed, and reason
- Whether or not the subject received steroids (glucorticoids)
- Investigator's evaluation of the study formula

The first and last dates study material was taken will be recorded.

4.2.2.9 FINAL EVALUATION

At the final study visit (57 weeks postconceptual age) or
earlier if the subject drops out, the Investigator will fill out a "Final
Evaluation" Case Report Form. After reviewing the subject's records and
discussion with the parents, the Investigator will indicate whether the
subject:

- (1) Completed feeding regiment and all study parameters(i.e., anthropometrics and visual acuity measured).
 - (2) Did not complete feeding regimen.
 - (3) Not completed and reason.

4.3 CLINICAL OBSERVATIONS

4.3.1 PHYSICAL EXAMINATIONS

Subjects will have weight, length and head circumferences recorded at birth, weekly while hospitalized, then at 40, 48, and 57 weeks \pm 4 days postconceptual age.

Body weight will be measured using an electronic balance or a double beam balance accurate to 10 g or ½ oz with non-detachable weights. During hospitalization, if more than one such balance is employed in the practice, either one balance should be designated the study balance and all study weights will be carried out on that balance for a particular subject, or the balances will be checked and certified to register the same weight throughout the range of weights expected.

Outpatient weights will be obtained on a calibrated office scale.

5

10

15

20

Documentation indicating balance calibration of the outpatient balance carried out within 12 months of study initiation will be supplied to the Sponsor.

Length will be measured with the infant in recumbent position with the help of two examiners and a suitable measuring apparatus. One person holds the subject's head in contact with a fixed vertical headboard and a second person holds the subject's feet, toes pointing directly upward and, also applying gentle traction. The baby is measured from the headboard to the soles of the feet with a non-stretching tape measure.

Head circumference will be measured, employing a flexible, non-stretchable cloth or vinyl tape.

4.3.2 VISUAL ACUITY BY FORCED CHOICE PREFERENTIAL LOOKING (FPL)

Visual acuity will be determined at 48 and 57 weeks \pm 4 days postconceptual age according to procedures outlined in Appendix C.

4.3.3 LABORATORY TESTS

Blood will be drawn from preterm infants by heel prick or venipuncture when study formula is begun and terminated. An attempt will be made to draw blood at 48 weeks \pm 4 days PCA from both term and preterm infants. Procedures for handling the blood are described in Appendix B.

Birth Enteral Termination Visit 1 Visit 2 Visit 3 Visit 1 Visit 4 40 wks ± 4	FLOW CHAN PRETERM PRETERM Visit 2 Visit 3 Visit 4 Visit 6 Vi								TERM	
Birth Enteral Termination Vial 1 Vial 2 Vial 3 Vial 4 As whe ± 4d As	Birth Enteral Termination Visit 1 Visit 2 Visit 3 Visit 4 Visit 4 Visit 5 Vi	. 4 FLOW CHART		PRET	ERM					Visit 3
Intake > 50 Formula 1 Post	intake > 50 Formula 1 PCN Intake Physical		-	Termination	Visit 1 40 wks ± 4d	Visit 2 48 wks ± 4d PCA	Visit 3 57 wks ± 4d PCA	. Visit 1 40 wke ± 4d PCA	VISI Z 48 wks ± 4d PCA	57 wke ± 4d PCA
Physical Physical	Physical	ス リ ン リ	Intake >50 kcal/kg/d	Formula †	S. C.					
Se	Physical	Jomizalion	>	-						
Physical	Physical	ndormizarion	>	\\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	>	>	>			>
Physical	See	ntamil w/iron		>				>	Physical	
ity ent (when the subject discontinues or completes) (when the subject discontinues or completes) institute (when the subject discontinues or completes) institute (when the subject discontinues or completes) institute (when the subject discontinues or completes)	ity v v v v v v v v v v v v v	uman Milk		ā	nvsical				1	>
lerence \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	reference V V* V V V V V V V V V V V V V V V V				,	>	>	>	>	
lerence \(\frac{\lambda^*}{\lambda^*} \frac{\lambda^*}{\	lerence V Acuity Ac		>	>	}	>	>	>	>	<u>}</u>
lerence Acuity Acuit	lerence Acuity Acuit	Veigni	>	>	. >	>	>	>	>	>
Inference	Inference	engili	>	>					>	
In (when the subject discontinues or completes)	nt (when the subject discontinues or completes)	Circumference	1	>		>	1		>	> .
nt (when the subject discontinues or completes)	In (when the subject discontinues or completes)	Blood Draw	<u>}</u>			>	· •			-
rim (when the subject discontinues or completes) sessment (when the subject discontinues or completes) sessment (sessment) sessment (when they occur.)	im essment (when the subject discontinues or completes) lessment (when the subject discontinues or completes) sessment (sessment) se	Visual Acuity		 	<u> </u>	>	>		>	>
Assessment Assess	Assessment Assessment Assessment Assessment Medical problems related to or affecting formula consumption will be recorded when they occur. Recorded daily and weekly during hospitalization. At hospital discharge or 28 days of study formula intake (after reaching 90 kcal/kg/d), whichever is later.	Illnesses		-						·
		Interim		>		completes)	1	th nehw)	18 subject discontinu	ses or completes)
		Assessinem		(when the subje	ect disconinues			1		
		Final Assessment	1		vadi nother they	ocair.		··		
			s related to or affecting form	ula consumption will be tion.	recorded witers and 90 kcal/kg/d), whi	Ichever is later.				

5. CRITERIA FOR RESPONSE

Criteria for response will depend upon the following:

- Visual Acuity better than the control formula.
- Visual Acuity comparable to breastfed term infant.
- Red Blood Cell phosphatidyl ethanolamine DHA and ARA weight % greater than formula control group.
- Growth as measured by weight achieved at 48 and 57 weeks postconceptual age comparable to formula control group.

10 **6. STATISTICS**

6.1 RANDOMIZATION

If the subject meets the inclusion and exclusion criteria, randomization to one of three formula groups will take place. The randomization schedule will be provided by Mead Johnson Research Center. A separate randomization schedule will be provided for males and females.

6.2 SAMPLE SIZE

The primary parameter of interest is visual acuity as measured by the Forced Choice Preferential Looking (FPL). The minimal clinically relevant difference was determined to be 0.5 octave. A consultant in the field of visual acuity estimated the standard deviation to be 0.5 octave. This value was increased to .7 octave in case more variability was experienced in this study. Thirty-two subjects per group are needed to attain 80% power when testing at an alpha level of 0.05.

A sample size estimate of 50 per group was determined to achieve α + 0.05, β + 0.20, for weight of infants receiving study oil being greater than 400 gm below control at 48 weeks postconceptual age or 500 g below control at 57 weeks postconceptual age with a standard deviation of 800 g. It was therefore determined that 50 subjects per group will be used in the study.

30

20

15

5

6.3 **ANALYTICAL PLAN**

Visual acuity data will be recorded in cycles per cm. These values will be converted to cycles per degree using the following formula: cycles/degree = 38 x cycles/cm

5

10

A log transformation will be applied to the data prior to analysis. Analysis of variance techniques will be used to assess feeding regimen group differences in visual acuity. If the overall F test for feeding regimen is significant at an alpha level of 0.05, pairwise comparisons will be made at an alpha level of 0.05. If no significant differences are detected, then a post-study power analysis will be performed to demonstrate that the study had adequate power to detect the minimal clinically relevant difference.

15

Analysis of variance will be used to assess feeding regimen differences in phosphatidyl choline DHA and ARA levels and in phosphatidyl ethanolamine DHA and ARA levels at each time point. If the overall F test is significant at an alpha level of 0.05, then pairwise comparisons will be made at an alpha level of 0.05.

20

Analysis of variance will be used to assess feeding regiment differences in weight at 48 and 57 weeks postconceptual age. The statistical model will include terms for feeding regimen, study center, sex and all two-way interactions. Non-significant interactions will be removed from the final statistical model. Two one-sided tests will be performed comparing each experimental formula (EC) with the control formula (CF).

25

The hypothesis to be tested is as follows:

 $H_0 = Weight (CF) \leq Weight (EF)$.

The alternative hypothesis is as follows:

H₁ = Weight (CF) > Weight (EF).

30

If H₀ is rejected and the mean weight of the control formula exceeds that of the experimental formula by more than 400 mg at 48

5

10

15

weeks postconceptual age or by 500 g at 57 weeks postconceptual age then the conclusion is that the experimental formula does not exceed that of the experimental formula by more than 400 g at 48 weeks postconceptual age or by 500 mg at 57 weeks postconceptual age then the conclusion is that the experimental formula does provide adequate growth. If H₀ is not rejected then a post-study power analysis will be performed to demonstrate that the study had adequate power to detect the above mentioned clinically relevant differences. If adequate power is achieved then the conclusion is that the experimental formula does provide adequate growth.

Fisher's exact test will be used to compare the proportion of subjects in each group with illness/symptoms of concern during the study. The analysis will be performed for each type of illness/symptom reported, with classification of investigator terms into similar terminology made as necessary.

5

APPENDIX A NUTRIENT COMPOSITION OF FORMULAS

All study formulas are 24 kcal/fl oz and are identical in composition to marketed Enfamil Premature Formula except for the study oils employed. These oils are described in the protocol.

	STUDY FORMULAS	
NUTRIENT	AMOUNT/100 kcal	ENFAMIL WITH Fe
Protein g	3	2.2
Fat, g	5.1	5.6
Carbohydrate, g	11.1	10.3
Vitamin A IU	1250	310
Vitamin D IU	270	63
Vitamin E IU	6.3	.2
Vitamin K mcg	8	8
Thiamine, mcg	200	78
Riboflavin, mcg	300	150
Vitamin B ₆ , mcg	150	63
Vitamin B _{12,} mcg	0.25	0.23
Niacin, mcg	4000	1250
Folic Acid, mcg	35	15.6
Pantothenate, mcg	1200	470
Biotin, mcg	4	2.3
Vitamin C, mg	20	8.1
Choline, mg	12	15.6
Inositol, mg	17	4.7
Calcium, mg	165	78
~Phosphorus,-mg-	83.	53
Magnesium, mg	6.3	7.8
Iron, mg	1.8	0.5
Zinc, mg	1.5	0.78

	STUDY FORMULAS	
NUTRIENT	AMOUNT/100 kcal	ENFAMIL WITH Fe
Manganese, mcg	6.3	15.6
Copper, mcg	125	94
lodine, mcg	25	6
Sodium mg (mEq)	39 (1.7)	27 (1.17)
Potassium mg(Meq)	103 (2.6)	108 (2.8)
Chloride mg (Meq)	85 (2.4)	63 (1.77)

II FINAL STUDY REPORT

Study Design:

10

5

This double-blind, parallel-group study (project 3338) was carried out in 16 neonatal centers (study numbers 9698-9709, 9712, 9723, 9743, and 9746) in North America. Three premature infant feedings were compared. Each had the same composition except for the incorporation of fungal and/or micro algal oils up to about 3% of the fat blend to provide the experimental levels of docosahexaenoic acid (DHA) and arachidonic acid (ARA). The control formula (C, Enfamil® Premature Formula) contained no DHA or ARA, the DHA formula (D) contained about 0.15% of energy as DHA (0.34% of fat), and the DHA+ARA formula (DA) contained about 0.14% of energy as DHA (0.33% of fat) and 0.27% of energy as ARA (0.60% of fat). The formulas were fed to 284 randomized infants weighing 846 to 1560 grams at birth for at least 28 days. Upon completion of study formula intake, they were given routine infant formula and followed through 4 months gestationally corrected age. A group of 90 exclusively human milk fed term infants were enrolled and followed to 4 months of age as a reference group (H).

20

15

Study Objective and Statistical Analysis:

The primary objective of this study was to establish the safety of

feeding D or DA to preterm infants during their initial hospitalization as measured 1) by growth, acceptance and tolerance while consuming the formula for at least 1 month and 2) by close monitoring and observation for a 4 to 5 month follow-up period (4-5 times the treatment period) while consuming unsupplemented routine term infant formula. The primary growth parameter selected was weight with evaluation of the proposition that weight on test formula was greater than or equal to weight on control formula. The one sided statistical test for an adverse effect on growth maximized the power to detect a difference should one be present. A two-sided test was used for all other parameters. A p-value of less than 0.05 was used to establish significance.

Secondary objectives of the study were 1) to evaluate the impact of fatty acid levels in erythrocyte phospholipids at the end of study feeding and 2) to determine if any effect on mean visual acuity greater than half an octave could be demonstrated at 2 and 4 months corrected age.

Results:

5

10

15

20

25

30

Six infants were just outside the weight parameters and five infants just older than the less than 24 days chronological age parameter for enrollment in the study. In each case, judgement by the clinical or medical monitor was made to include them in the study prior to enrollment based on their homogeneity with other study infants in all other particulars, e.g., state of health, type of medical complications, and weight for gestational age. All these infants were included in the analysis of the study results.

The formula groups were comparable at enrollment (See table 1).

Post-conceptual age, weight, length, and head circumference at enrollment did not differ among the groups.

All groups experienced comparable final study status (See table 2).

Drop outs did not differ among the formula fed groups during hospitalization. There also were no differences in drop outs among the four groups at study completion.

Both formulas D and DA provide adequate growth when compared to formula C (See table 3, figure 1, and Appendix 1). Weight gain during hospitalization was no less on D or DA than on C, 33.3, 34.7, and 30.7 g/day, respectively. Furthermore, no less weight was achieved on D or DA than on C at 40, 48, and 57 weeks post-conceptual age (See table 4, figure 2, and Appendix 1); statistical power was greater than 0.89 to detect a clinically relevant decrease.

Post-hoc analysis reveals that infants on DA grew faster than infants receiving C and D (See table 5 and figure 1). This enhanced growth provided faster "premature infant catch-up" compared to C and D. Weight achieved by the DA group (3198 g) was higher than C (3075 g) and D (3051 g) at 40 weeks post-conceptual age but had not fully caught up to the term birth weight (3438 g) of group H (See table 4 and figure 2). This catch up trend continued through 48 to 57 weeks by which time the mean weight of group DA did not differ from group H while groups C and D remained significantly lower.

Length was not different among the formula groups either during hospitalization or the follow-up period, although the ordered sequence of mean lengths was the same as for the weights (See table 7 and figure 3). This is likely at least partially due to length being a less sensitive parameter of growth than weight. For the same reason, the mean lengths of group H infants were higher than that of all the premature infant groups at 40, 48 and 57 weeks post-conceptual age indicating slower catch up in this parameter.

25

30

5

10

15

20

Head circumference is the least sensitive parameter of growth and was not different among any of the four groups at any time measured except at 40 weeks postconceptual age (See table 8 and figure 4). At this time, as expected, the birth head circumference of group H was smaller than the formula fed premature infants possibly due to molding of labor and to insufficient time for adjustment to the extrauterine environment.

10

15

20

25

30

Visual acuity has reportedly been enhanced in studies where DHA supplemented formulas were fed to premature infants both in the hospital and continuing after discharge. In this study, visual acuity was measured about 3 months and then about 5 months after stopping study formula to determine whether a residual beneficial effect of at least half an octave might be observed. Although no difference in visual acuity was found among the formula groups at these times (See table 8 and figure 5), the acuity card method used, the length of study formula feeding, and/or the length of time not on study formula at the time of measurement may have precluded its detection. However, at 57 weeks post-conceptual age, the breast fed term infant group did have statistically higher visual acuity scores than the test formula groups. But even these differences were at most only 0.33 octave and were clinically insignificant (See figure 6). It is important to note that the breast fed infants continued to receive DHA and ARA during the 3-5 month follow-up period while the formula fed groups did not. Thus, this minor difference in performance was not unexpected based on previous study findings and on developmental differences between term and preterm infants even at the same gestational age.

Individual fatty acid levels were determined in the phosphatidylcholine and phosphatidylethanolamine fractions of red blood cells before formula feeding, at the conclusion of test formula feeding, and at 48 weeks post-conceptual age (See tables 9 and 10). The premature infant groups were comparable at the beginning of test formula feeding. At the conclusion of test formula feeding, individual fatty acid levels varied among the groups. DHA and ARA were statistically significantly higher in the respectively supplemented groups. Other fatty acid levels reflected the impact of the supplementation. No clinically significant alterations in fatty acid levels or metabolism were identified. After discontinuing study-formula and consuming a diet without DHA or ARA for about 3 months, no differences in fatty acid levels among formula fed groups were detectable,

10

15

20

25

30

except for phosphatidylethanolamine levels of 18:2 (range 8.9-9.3%) and DHA (range 3.2-4.1%) which differences were not identified as being clinically significant. However, the breast fed group shows statistically significant differences in 13 fatty acid levels compared to the formula fed infants. These differences are undoubtedly due to the differences in fatty acid composition of human milk and the term formulas including the lack of DHA and ARA in the latter.

Preterm infant complications were similar in all groups (See table 11). Over 80% of all infants were opthamologically examined and over 90% had ultrasound evaluation of their heads. Specifically, the incidence and severity of retinopathy of prematurity (ROP or retrolental fibroplasia/RLF) and the incidence of intraventricular hemorrhage or its complications did not differ among formula groups. No feeding group related complications were identified.

Serious adverse experiences did not differ (p = 0.93) among the formula groups and were in the range of those expected in a premature infant population while on study formula: 6% in group C, 5% in group D, and 6% in group DA (See table 12). After the experimental formula phase, serious adverse experiences still did not differ among the preterm groups (See table 13): 13% in group C, 15% in group D, and 15% in group DA. However, the term infant breast fed group had significantly fewer serious adverse experiences (1%, p = 0.002) as expected. Two infants reportedly suffered sudden infant death syndrome (SIDS), one in group C and one in group D; there was no significant difference in this complication among all four groups.

Conclusions:

We conclude that feeding 0.13% of calories as DHA from micro algal oil and feeding 0.13% of calories as DHA from micro algal oil plus 0.26% of calories as ARA from fungal oil in the matrix of premature infant formula to premature infants during the period of their initial hospitalization

prior to 40 weeks post conceptual age is safe. These micro algal and fungal oil supplements do not result in any adverse effect on growth, clinical complications, or untoward events. Furthermore, this study reveals that growth benefits accrue to premature infants fed Enfamil Premature Formula supplemented with DHA and ARA from these sources compared to unsupplemented formula or formula supplemented with only DHA. No measurable benefit on visual acuity was identified when infants were tested at about 3 and 5 months after the supplemented formula was discontinued (2 and 4 months corrected age). However, providing human milk levels of intake of long chain polyunsaturated acids are warranted because they are critical to brain development and foster enhanced catchup growth during this early development period.

Table I
Birth Statistics of Premature Subjects

	n	Mean (std)	Range	p-value
Post-Conceptual Age (Weeks) Control DHA DHA+ARA	62 66 66	29.5 (1.7) 30.0 (1.4) 29.7 (1.7)	25 - 33 26 - 32 26 - 34	0.076
Birth Weight (g) Control DHA DHA+ARA	62 66 66	1233.1 (176.6) 1272.8 (168.1) 1278.9 (177.6)	846 - 1560 900 - 1545 910 - 1535	0.25
Birth Length (cm) Control DHA DHA+ARA	60 66 66	38.4 (2.3) 38.6 (2.2) 38.7 (2.3)	34 - 43.75 33 - 43.5 33 - 44	0.62
Birth Head Circumference (cm) Control DHA DHA+ARA	61 64 65	26.9 (1.5) 27.3 (2.1) 27.2 (1.6)	23.5 - 30.5 22 - 37 23.5 - 30	0.53

Table 2 Summary of Final Study Status

		Re	gimen		
	Control	DHA	DHA+ARA	HM	p-value
Immediate dropout, study formula never consumed		2	2	IIIVI	
Study Formula Phase *		j		 	
Completed Discontinued	52 (84%) 10 (16%)	59 (89%) 7 (11%)	62 (94%) 4 (6%)		0.20
Reason discontinued]	
>96 cumulative hours NPO <28 days of intake >= 90 kcal/kg/day Complications unrelated to study	3 3	I 3			
formula NEC or other GI disease Formula intolerance	I	1	1		
Parents request Not off oxygen prior to discharge Protocol violation	2	2	1 1		
Term Formula Phase **			· · ·		
Completed	45 (87%)	47 (80%)	53 (85%)	77 (86%)	0.74
Discontinued	7 (13%)	12 (20%)	9 (15%)	13 (14%)	

<sup>The CRFs for 9709-003 (DHA) and 9743-304 (DHA) were marked discontinued because the subjects met the study formula intake criteria for only 27 days. These subjects are counted completed here because subjects at other sites with similar intakes were marked completed.
Based on subjects who completed the Study Formula phase. During the Term Formula phase, subjects were fed marketed formula. Switching to a different marketed formula did not result in termination from the Term Formula phase.</sup>

v Dooket:

Attorney Docket: 19400/09003 (MJ729)

Table 3

	Gender-by-Regimen	p-value 0.87
	Gender	
hase	Study 0-value	0.00
tudy formula p	Comparison p∙value*	0.967
Weight Growth Rate During Study Formula Phase	Comparison	Control vs DHA Control vs DHA+ARA
Veigh	S m	222
	Least Square Mean	30.7 33.3 34.7
	c	99 98
= + =	Regimen	Control DKA DIIA+ARA

* One-sided test of the null hypothesis: Test Hean >= Control Hean

Attorney Docket: 19400/09003 (MJ729)

Table 4

Weeks Post-Conceptual

Gender-by-Regimen p-value 0.29 0.33 Gender p-value 0.45 0.29 0.13 Study p-value 0.59 0.58 0.58 Comparison p-value⁴ Weight at 40, 48, and 57 Weeks Post-Conceptual Age 0.388 0.931 0.000 0.001 0.000 0.360 0.995 0.000 0.114 0.000 0.371 0.940 0.005 0.278 0.014 Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA HM vs Control Control vs DHA
Control vs DHA+ARA
HM vs DHA
HM vs DHA+BRA
HM vs Control Control vs DHA Control vs DHA+ARA HM VS DHA HM VS DHA+ARA IIM VS CONTFO Comparison Standard Error 94.6 97.3 93.0 85.9 139.5 137.6 127.9 126.7 67.9 66.8 62.9 60.6 Least Square 6045.4 5987.2 6312.9 6405.0 4711.0 4663.8 5039.1 5181.5 3075.3 3051.4 3198.2 3437.7 53 28 22 22 22 Control DHA DIIA+ARA IIM Control DHA DIIA+ARA IIH Control DilA DilA+ARA HM Regimen

* One-sided test of the null hypothesis: Test Mean >= Control Mean

Table 5
Post-hoc Analysis of Weight

Time	Comparison	Two-sided p-value
Weight Gain During Study Formula Phase	C vs. DHA C vs. DHA+ARA DHA vs. DHA+ARA	0.067 0.004 0.30
Weight at 40 Weeks pca	C vs. DHA C vs. DHA+ARA DHA vs. DHA+ARA HM vs. DHA HM vs. DHA+ARA HM vs. C	0.78 0.14 0.074 <0.001 0.002 <0.001
Weight at 48 Weeks pca	C vs. DHA C vs. DHA+ARA DHA vs. DHA+ARA HM vs. DHA HM vs. DHA+ARA HM vs. C	0.72 0.011 0.004 <0.001 0.23 <0.001
Weight at 57 Weeks pca	C vs. DHA C vs. DHA+ARA DHA vs. DHA+ARA HM vs. DHA HM vs. DHA+ARA HM vs. C	0.74 0.12 0.057 0.010 0.56 0.028

Table 6 Length at 40, 48, and 57 Weeks Post-Conceptual Age

Weeks t-Conceptual Age	Regimen	c :	Least Square Mean	Standard Error	Regimen p·value	Pairwise Comparison	Pairwise p-value	Study p-value	Gender p-value	Gender-by-Regimen p-value
07	Control DIIA DHA+ARA HM	52 54 58 89	7.87 7.89 7.99 7.99	7.00	0.000	Control vs DHA+ARA Control vs DHA+ARA HN vs DHA HN vs DHA+ARA Control vs IIH DIIA vs DIIA+ARA	0.242 0.233 0.000 0.000 0.000	0.03	0.88	0.63
48	Control DIIA DIIA+ARA IIM	53 57 81	54.7 54.6 55.5 57.4	E.00 E.00 E.00	0.00	Control vs DHA Control vs DHA+ARA HN vs DHA+ARA IIM vs DIM+ARA Control vs HH DHA vs DIM+ARA	0.824 0.079 0.000 0.000 0.000	0.00	0.14	0.52
25	Control DHA+ARA	45 54 54 54	60.7 60.5 61.3 62.4	7.7.E.E.	0.000	Control vs DHA Control vs DHA+ARA IIH vs DHA HH vs DIIA+ARA Control vs HH DHA vs DIIA+ARA	0.615 0.236 0.000 0.006 0.000	0.00	0.05	0.84

Table 7 Head Circumference at 40, 48, and 57 Weeks Post-Conceptual Age

Pairwise Study Gender Gender p-value p-value F	ИНА 0.931 0.91 ИНА+АКА 0.900 0.000 КА 0.000 НН 0.000 ARA 0.829	0.00 1.00	0.64 0.00 0.85
Pairwise Comparison	Control vs DHA*ARA Control vs DHA*ARA HH vs DHA HH vs DHA*ARA Control vs HM DHA vs DHA*ARA		
Regimen p·value	00.00	0.983	0.689
Standard Error	0.2	0.2	0.5 0.7 0.5 0.5
Least Square Hean	35.4 35.4 35.5 34.5	39.1 39.0 39.0 39.0	41.9
ć	51 53 85 85	52 51 56 81	23.65
	Control Dina Dina Mina	Control DHA DHA+ARA	Control DHA DIIA+ARA
Weeks Post-Conceptual	Age	87	57

rable o Visual Acuity at 48 and 57 Weeks Post-Conceptual Age

Study p-value	0.000	0.000
Pairwise p-value		0.697 0.071 0.042 0.000 0.113
Pairwise Comparison		Control vs DHA Control vs DHA+ARA HH vs DHA HM vs DHA+ARA Control vs HH DHA vs DHA+ARA
Regimen p-value	0.950	0.004
Standard Error (octaves)	0.10 0.10 0.09 0.09	0.08 0.09 0.07 0.00
Least Square Hean (log base2 cycles/deg)	0.78 0.65 0.78 0.81	1.79 1.75 1.61 1.94
Geometric mean (cycles/deg)	1.72 1.80 1.72 1.75	3.47 3.37 3.06 3.85
c	51 57 81	46 47 77
Regimen	Control DIIA DIIA+ARA IIH	Control DHA DHA+ARA HM
Weeks Post-Conceptual Age	89	25

Table 9 Red Blood Cell Phosphatidylcholine Fatty Acids

Pairwise p-value									0.196 0.010 0.176
Pairwise Comparison									Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA
Regimen p·value	0.762	0.559	0.165	0.884	0.441	0.243	0.679	0.830	0.034
Kedian	0.036 0.030 0.031	0.599 0.686 0.656	0.021 0.016 0.018	36.594 35.578 35.987	0.845 0.976 0.931	11.468 11.201 11.174	17.308 16.935 16.988	18.952 19.603 18.824	0.116 0.130 0.134
Standard Error	0.019 0.013 0.009	0.036 0.031 0.031	0.009	0.540 0.462 0.445	0.049 0.050 0.064	0.243 0.238 0.192	0.298 0.391 0.271	0.525 0.505 0.466	0.008
Arithmetic Kean	0.081 0.066 0.057	0.623 0.663 0.661	0.045 0.026 0.035	36.706 36.363 36.877	0.940 0.981 1.094	11.660 11.402 11.016	17.053 17.219 17.256	18.614 18.631 18.573	0.120 0.136 0.150
, c	52 58 61	52 58 61	52 58 61	52 · 58 · 61	52 58 61	52 58 61	52 58 61	52 58 61	52 58 61
Regimen	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA
Fatty Acid	12:0	14:0	14:1	16:0	16:1	18:0	18:1	18:2	18:3n6
•= = = = =	nitiation	nitiation	nitiation	itierie in in itie	nitiation	nitiation	nitiation	nitiation	nitlation
Тіме	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study form Initiation

		Pairwise Pairwise Comparison p-value									
		Regimen Pairı p-value Compa	279.0	0.234	0.723	0.290	0.673	0.507	0.819	0.155	0.911
	Fatty Acids	Re Median p⁻	0.224 0 0.236 0.188	0.246 0.246 0.216	0.262 0 0.281 0.269	0.000 0.017 0.008	0.632 0.640 0.614	2.096 2.296 2.135	8.124 7.876 8.207	0.105 (0.130 0.139	0.298 0.302 0.329
Table 9	tidyl choline	Standard Error	0.050 0.035 0.037	0.033	0.020 0.015 0.011	0.003	0.025 0.025 0.021	0.098 0.080 0.074	0.262 0.347 0.310	0.010	0.057 0.015 0.015
Га	Red Blood Cell Phosphatidylcholine Fatty Acids	Arithmetic Mean	0.399 0.337 0.310	0.315 0.257 0.233	0.287	0.017 0.025 0.017	0.632 0.628 0.602	2.144 2.208 2.218	7.657 8.164 8.090	0.106 0.127 0.126	0.351 0.322 0.321
	B100d	c	52 58 61								
	Red	Regimen	Control DKA DHA+ARA	Control DHA DHA+ARA							
		Fatty Acid	20:0	18:303	20:1	18:4	20:2n6	20:3n6	20:4n6	22:1	20:5n3
==	- TE - TE	·- <u>2</u>	Study form Unitiation	Study Form Initiation							
		Time	Form 1	Form	Form L	Form	Form	For a first	Form	E = .	= -g= =
			Study								

Pairwise p-value

Table 9

	Pairwise Comparison						
Red Blood Cell Phosphatidylcholine fatty Acids	Regimen p-value	0.331	0.665	0.923	0.199	0.885	0.858
	Median	0.423 0.481 0.425	0.075 0.084 0.096	0.232 0.239 0.256	0.000	0.203 0.195 0.193	1.000 1.034 0.970
	Standard Error	0.144 0.030 0.021	0.054 0.019 0.056	0.020 0.017 0.018	0.000	0.019 0.013 0.010	0.051 0.053 0.050
	Arithmetic Mean	0.578 0.493 0.443	0.208 0.115 0.180	0.266 0.259 0.265	0.000	0.213 0.215 0.203	0.984 1.075 1.006
	c	52 58 61	52 58 61	52 58 61	52 58 61	52 58 61	52 58 61
	Regimen	Control DHA DHA+ARA	Control OHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA
	Fatty Acid	22:4n6	24:1	22:5n6	22:4n3	22:5n 3	22:6n3
T	े के का म्	itiation	ritiation	nitiation	nitiation	nitiation	Initiation
	- i	Study form Initiation					

Attorney Docket: 19400/09003 (MJ729)

Pairwise p-value 0.118 0.003 0.152 0.600 0.005 0.001 Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA Pairwise Comparison 0.686 0.527 Regimen p-value 0.001 0.013 0.886 0.843 0.834 0.155 0.767 Red Blood Cell Phosphatidylcholine fatty Acids 14.291 13.998 14.218 21.506 22.517 20.662 0.074 0.076 0.066 14.197 13.867 14.108 34.798 34.841 33.890 0.526 0.475 0.472 0.033 0.015 0.018 0.806 0.783 0.758 0.035 0.031 0.032 0.006 0.009 0.013 0.340 0.457 0.337 Standard Error 0.277 0.272 0.380 0.026 0.042 0.029 0.261 0.237 0.253 0.039 0.035 0.036 0.008 0.009 0.007 0.512 0.595 0.584 0.026 0.042 0.012 Table 9 Arithmetic 21.673 22.045 19.899 0.080 0.088 0.087 13.972 14.065 14.341 0.047 0.036 0.036 35.837 35.560 35.069 2882 52 53 Control DHA DHA+ARA Control DHA DHA+ARA Control DHA DHA+ARA Control DHA DHA+ARA DHA DHA+ARA Control DHA DHA+ARA Control DHA DHA+ARA Control DHA DHA+ARA Control DHA+ARA Regimen 18:3n6 18:2 fatty Acid 18:0 18:1 16:0 16:1 14:0 14:1 12:0 Study Form Termination Study form Termination

Attorney Docket: 19400/09003 (MJ729)

Pairwise p-value 0.503 0.068 0.011 Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA Pairwise Comparison Regimen p-value 0.208 0.000 0.424 0.149 0.672 0.051 0.031 0.00 0.946 Red Blood Cell Phosphatidylcholine Fatty Acids 0.302 0.283 0.283 0.015 0.018 0.008 0.910 0.873 0.821 6.029 5.892 8.891 0.125 0.114 0.104 0.189 0.233 0.169 0.392 0.281 0.251 0.283 0.285 0.256 2.091 2.043 1.904 Median 0.240 0.220 0.255 0.010 0.009 0.011 0.022 0.012 0.014 0.014 0.013 0.013 0.026 0.023 0.022 0.073 0.070 0.064 0.050 0.020 0.030 0.009 0.004 0.003 0.002 2.032 2.017 1.908 6.046 5.774 8.465 0.893 0.880 0.824 0.022 0.022 0.014 28 23 58 83 2882 Control DHA DHA+ARA Control DHA DHA+ARA Control DHA DHA+ARA Control DHA DHA+ARA DHA DHA+ARA Control DHA DHA+ARA Regimen Control DHA DHA+ARA Control DHA DHA+ARA Control DHA DHA+ARA Control 20:5n3 20:2n6 20:3n6 18:3n3 20:406 fatty Acid 22:1 20:02 18:4 20:1 Study Form Termination T ime

	Pairwise	p-value	-						0.005	0.895	0.000							000	0.000				
			Comparison						AND NO DEA	Control vs DHA+ARA	DHA VS DHA+ARA						*		Control vs DHA+ARA	Control vs City	משא לפ לשנו		
		Regimen	p-value	0.003			0.303			0.006			0.359			0.221			000.0				
	tty Acids		Hedian	001 0	0.426	0.487	0.062	0.086	, , ,	0.163	0.133	0.100	0.000	0.00	0.000	0 289	0.260	0.255			1.259		
6	tchotine fa		Standard	5	0.048	0.027	010	0.036	0.040	710 0	0.01	0.009	100.0	0.00	0.005		0.019	0.013	•	0.072	0.065	•	
Table 9	Phosphatidylcholine fatty Acids		Arithmetic	Mean	0.484	0.489	· · · · · ·	0.127	0.177		0.181	177		0.001	0.001	700.0	0.306	0.293	0.503	0.895	1.380	1.244	
	7	יססם רבי	A	c		2,50	29	53	% 5	ý	53	99	26	53	29	29		2,3			5,5		
		Red B		Regimen	-	Control	DHA+ARA	Control	DHA	DHA+ARA	Confrol	DHA	DHA+ARA	4	Control	DHA+ARA			DHA+ARA		Control		
					Fatty		55:4nb		ì	1:42		,	22:5nb			22:413			22:5n3			22:603	
									rmination			rmination			. cmination	el minor		Linstion	Study Form Termination			Study form Termination	
<u> </u>			-		1 ime	Termination	Study Form		. torm Termination	Study rolling			Study Form I Study		==	Study Form leiming.			Study Form			Study Form	

		Pairwise p-value				0.527 0.593 0.000 0.000 0.906	0.524 0.467 0.000 0.006 0.000
		Pairwise Comparison				Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM	CONTROL VS DIAACARA. CONTROL VS DHAARA. IIN VS DHA HN VS DHAARA CONTROL VS HN DHA VS DHAARA
	Acids	Regimen p-value	0.729	0.943	0.448	00000	00000
	ine fatty	Median	0.026 0.016 0.021 0.020	0.331 0.324 0.328 0.335	0.013 0.011 0.015 0.020	34.319 34.473 34.165 32.228	0.338 0.352 0.368 0.473
Table 9	Red Blood Cell Phosphatidylcholine Fatty Acids	Standard Error	0.005 0.006 0.004 0.016	0.039 0.032 0.024 0.026	0.006 0.007 0.006 0.003	0.577 0.689 0.506 0.506	0.043 0.023 0.024 0.020
	ood Cell Phos	Arithmetic Mean	0.032 0.028 0.026 0.059	0.402 0.353 0.353 0.381	0.025 0.026 0.026 0.024	34.627 35.272 34.802 33.037	0.435 0.380 0.395 0.507
	Red Bl	c	37 32 38 56	37 32 38 36 56	37 32 38 56	32 38 38 56	37 38 38 56
		Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HH	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
		Fatty Acid	12:0	14:0	14:1	16:0	16:1
· v ====		· · · · · · · · · · ·	== \d =====:	4 3	PCA	PCA	PCA
		T i me	48 Weeks	48 Weeks PCA	48 Veeks	To Control of the con	48 Heeks PCA

		Pairwise p-value	0.760 0.889 0.000 0.000 0.000 0.661		0.840 0.527 0.000 0.000 0.000 0.685	0.950 0.774 0.004 0.001 0.003	
		Pairwise Comparison	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA		Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM	Control vs DHA Control vs DHA+ARA HH vs DHA HN vs DHA+ARA Control vs HH DHA vs DHA+ARA	
	Acids	Regimen p·value	0.000	0.256	0.000	0.005	0.785
	ine fatty	Median	12.759 12.786 12.793 14.729	18.636 18.492 18.227 18.727	23.552 23.717 23.839 18.482	0.061 0.067 0.062 0.039	0.197 0.206 0.172 0.215
Table 9	sphatidylchol	Standard Error	0.313 0.249 0.235 0.287	0.453 0.429 0.289 0.305	0.518 0.516 0.422 0.344	0.008 0.005 0.006 0.004	0.075 0.061 0.061 0.044
	Red Blood Cell Phosphatidylcholine fatty Acids	Arithmetic Mean	13.016 12.944 12.804 14.583	17.894 17.766 17.850 18.662	23.469 23.538 23.738 18.650	0.071 0.069 0.069 0.042	0.348 0.339 0.304 0.409
	Red 81	c	37 38 56	37 38 56	37 38 38 56	28.33.33	32 38 38 56
		Regimen	Control DHA DHA+ARA HH	Control DHA DHA+ARA HM	Control DHA DHA*ARA ·	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
		Fatty Acid	18:0	18:1	18:2	18:3n6	20:0
		Time -	48 Veeks PCA	48 Yeeks PCA	48 Weeks PCA	SQ. SQ. SQ. SQ. PCA	48 Veeks PCA

		Pairwise p-value	0.812 0.918 0.001 0.002 0.001	0.579 0.588 0.001 0.001 0.974	0.822 0.161 0.039 0.001 0.054	·	0.610 0.735 0.000 0.000 0.000
		Pairwise Comparison	Control vs DIIA Control vs DHA+ARA HH vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA+ARA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA+ARA HH vs DHA HH vs DHA HH vs DHA+ARA Control vs HH DHA vs DHA+ARA		Control vs DHA+ARA Control vs DHA+ARA HH vs DHA+ARA Control vs HH DHA vs DHA+ARA
	Acids	Regimen p-value	0.001	0.000	0.010	0.629	0.000
	line Fatty	Median	0.182 0.182 0.190 0.120	0.420 0.435 0.375 0.309	0.000 0.000 0.000 0.015	0.537 0.543 0.550 0.531	1.741 1.684 1.717 2.166
Table 9	sphatidylcho	Standard Error	0.019 0.015 0.010 0.022	0.019 0.025 0.016 0.014	0.005 0.004 0.002 0.004	0.023 0.032 0.053 0.014	0.086 0.073 0.090 0.086
	Red Blood Cell Phosphatidylcholine Fatty Acids	Arithmetic Mean	0.222 0.211 0.203 0.182	0.418 0.406 0.382 0.311	0.018 0.016 0.007 0.024	0.543 0.557 0.536 0.560	1.709 1.702 1.844 2.265
	Red 81	c	37 32 38 56	37 32 38 56	37 32 38 56	32 38 56	32 38 56
		Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA KH	Control DHA OHA+ARA HH	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
		Fatty	18:343	20:1	18:4	20:2n6	20:3n6
B 5 1	w desired	===== e	48 Heeks PCA	48 Weeks PCA	48 Weeks PCA	48 PCA	48 Heeks PCA
		_	48 H	ለ 8ን	87	87	89

ocket:

Attorney Docket: 19400/09003 (MJ729)

Pairwise p-value 0.633 0.086 0.000 0.000 0.000 0.508 0.805 0.000 0.000 0.000 0.337 0.247 0.000 0.000 0.000 Control vs DHA
Control vs DHA+ARA
HH vs DHA
HH vs DHA+ARA
Control vs HH
DHA vs DHA+ARA Control vs DHA
Control vs DHA+ARA
HH vs DHA
HH vs DHA+ARA
Control vs HM
DHA vs DHA+ARA Control vs DHA+ARA HM VS DHA HM VS DHA+ARA Control VS HM DHA VS DHA+ARA Control vs DHA Comparison Pairwise Regimen p-value 0.000 0.000 0.244 0.000 999.0 Red Blood Cell Phosphatidylcholine Fatty Acids 0.112 0.116 0.108 0.079 0.131 0.118 0.105 0.104 0.077 0.083 0.078 0.123 0.373 0.417 0.384 0.377 4.736 4.199 4.746 7.666 Hedian Standard Error 0.070 0.062 0.055 0.020 0.059 0.029 0.054 0.052 0.015 0.006 0.009 0.009 Table 9 0.255 0.196 0.185 0.250 0.036 0.014 0.024 0.030 Arithmetic 0.247 0.210 0.179 0.115 0.426 0.382 0.440 0.406 0.102 0.084 0.099 0.138 0.166 0.116 0.131 0.160 4.738 4.475 4.550 7.408 Mean 28832 28832 32 33 38 32 28 32 37 38 38 56 C Control DHA DHA+ARA HM Control DHA DHA+ARA HM Control DHA DHA+ARA HM Control DHA DHA+ARA HM Regimen Control DHA DHA+ARA HM 22:4n6 20:5n3 20:4n6 Fatty Acid 24:1 22:1 48 Weeks PCA l ime

		Pairwise p-value	0.505 0.647 0.000 0.001 0.000 0.270		0.598 0.759 0.000 0.000 0.000	0.111 0.052 0.000 0.000 0.000
		Pairkise Comparison	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA		Control vs DHA Control vs DHA+ARA HN vs DHA HN vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA+ARA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DIA vs DHA+ARA
	Acids	Regimen p-value	0.00	1.000	0.000	0.000
	ine fatty	Median	0.212 0.186 0.198 0.265	0.000	0.260 0.251 0.256 0.314	0.569 0.676 0.663 1.333
Table 9	sphatidylchol	Standard Error	0.016 0.012 0.022 0.016	0.000 0.000 0.000 0.000	0.029 0.017 0.026 0.018	0.047 0.048 0.043 0.081
	Red Blood Cell Phosphatidylcholine Fatty Acids	Arithmetic Mean	0.210 0.189 0.231 0.264	0.000	0.286 0.253 0.268 0.339	0.595 0.685 0.662 1.475
	Red Bi	c	37 38 38 56	32 38 36 56	37 38 38 56	32 38 56
		Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
		fatty	22:5n6	22:4n3	22:5n3	22:6n3
			PCA	PCA	P.C.A	, PCA
			48 Heeks PCA	48 Weeks S PCA	48 Weeks Second of the second	48 PCA
			n 87	1 87	87	87

	Pairwise Pairwise Comparison p-value									Control vs DHA 0.373 Control vs DHA+ARA 0.013 DHA vs DHA+ARA 0.101
	Pair Compa						•			Control vs DHA Control vs DHA DHA vs DHA+ARA
cids	Regimen p-value	975.0	0.792	0.181	0.967	0.337	0.142	0.412	0.773	0.040
ne Fatty A	Median	0.022 0.033 0.039	0.220 0.206 0.246	0.032 0.028 0.050	17.945 19.295 19.035	0.698 0.746 0.837	8.469 8.308 7.904	16.698 16.308 16.001	6.682 6.346 5.682	0.145 0.152 0.169
ylethanolami	Standard Error	0.015 0.013 0.010	0.038 0.025 0.021	0.015 0.012 0.009	0.736 0.622 0.451	0.035 0.034 0.035	0.329 0.227 0.215	0.301 0.326 0.375	0.253 0.280 0.294	0.018 0.019 0.016
Red Blood Cell Phosphatidylethanolamine Fatty Acids	Arithmetic Mean	0.069 0.075 0.063	0.307 0.278 0.277	0.080 0.061 0.062	20.021 19.847 19.796	0.731 0.769 0.836	8.857 8.434 8.201	16.450 16.208 16.415	6.615 6.336 6.175	0.165 0.190 0.192
ood Ce	c	52 57 61	52 57 61	52 57 61	52 57 61	52 57 61	52 57 61	52 57 61	52 57 61	52 57 61
Red B	Regimen	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DKA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA
	fatty Acid	12:0	14:0	14:1	16:0	16:1	18:0	18:1	18:2	18:3n6
> = ===	=== d	i tiation	nitiation	nitiation	nitiation	Initiation	Initiation	Initiation	Initiation	Initiation
	T.	Study form Initiation	Study Form Initiation	Study Form Initiation	Study form Unitiation	Study form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation

===					Table 10	\$ 10				
			Red B1	ood Ce	Red Blood Cell Phosphatidylethanolamine Fatty Acids	/tethanolami	ine fatty A	cids		
Time .	·	Fatty	Regimen	.	Arithmetic Mean	Standard Error	Nedian	Regimen p-value	Pairwise Comparison	Pairwise p-value
Study form Initiation	iation	20:0	Control DHA DHA+ARA	52 57 61	0.372 0.314 0.259	0.043 0.030 0.024	0.291 0.244 0.186	0.151		
Study Form Initiation	iation	18:3n3	Control DHA DHA+ARA	52 57 61	0.305 0.269 0.257	0.023 0.018 0.016	0.261 0.249 0.225	0.641		
Study Form Initiation	iation	20:1	Control DHA DHA+ARA	52 57 61	0.573 0.615 0.571	0.036 0.034 0.027	0.517 0.555 0.544	0.395		
Study Form Initiation	iation	18:4	Control DHA DHA+ARA	52 57 61	0.025 0.031 0.030	0.005 0.004 0.007	0.000 0.025 0.021	0.371		
Study form Initiation	iation	20:2n6	Control DHA DHA+ARA	52 57 61	0.479	0.023 0.024 0.028	0.480 0.437 0.427	0.706		
Study Form Initiation	iation	20:3n6	Control DHA DHA+ARA	52 57 61	1.843 1.965 1.973	0.072 0.077 0.064	1.829 1.820 1.911	0.099		
Study Form Initiation	iation	20:4n6	Control DHA DHA+ARA	52 57 61	25.817 26.475 26.747	0.618 0.611 0.645	26.820 27.376 27.708	0.353		
Study Form Initiation	iation	22:1	Control DHA DHA+ARA	52 24 61 61	0.150 0.167 0.168	0.017 0.015 0.017	0.138 0.151 0.141	0.572		
Study Form Initiation	iation	20:5n3	Control DHA DHA+ARA	52 57 61	0.378 0.384 0.366	0.024 0.024 0.022	0.357 0.370 0.335	766.0		

					igei	able 10				
			Red B1	ood Ce	Red Blood Cell Phosphatidylethanolamine Fatty Acids	ylethanolami	ne fatty A	cids		
1	Time	Fatty Acid	Regimen	c	Arithmetic Mean	Standard Error	Hedian	Regimen p-value	Pairwise Comparison	Pairwise p-value
Study Form	Study Form Initiation	22:4n6	Control DHA DHA+ARA	52 57 61	7.290 7.431 7.456	0.182 0.186 0.167	7.402 7.638 7.270	0.875		
Study Form	Study Form Initiation	24:1	Control DHA DHA+ARA	52 57 61	0.100 0.059 0.072	0.028 0.009 0.010	0.041 0.031 0.047	0.068		
Study Form	Study Form Initiation	22:5n6	Control DHA DHA+ARA	52 57 61	1.757 1.809 1.851	0.083 0.070 0.075	1.782 1.857 1.775	0.555		
Study For	Study Form Initiation	22:4n3	Control DHA DHA+ARA	52 57 61	0.001 0.001 0.005	0.001 0.001 0.002	0.000	0.257		
Study For	Study Form Initiation	22:5n 3	Cantrol DHA DHA+ARA	52 57 61	1.496	0.109 0.109 0.097	1.308 0.988 1.041	0.195		
Study For	Study Form Initiation	22:6n3	Control DHA DHA+ARA	52 57. 61	6.119 6.444 6.407	0.200 0.185 0.220	6.381 6.468 6.579	0.375	·	

Pairwise p-value 0.130 0.006 0.219 0.908 0.000 0.000 Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA Control vs DHA
Control vs DHA+ARA
DHA vs DHA+ARA Pairwise Comparison Regimen p-value 0.000 0.160 0.630 0.782 0.592 0.560 0.024 0.333 0.604 Red Blood Cell Phosphatidylethanolamine Fatty Acids 9.406 8.818 8.697 Median 0.041 0.000 0.043 0.476 0.509 0.555 14.695 14.927 14.499 17.617 17.556 17.568 0.033 0.036 0.035 Standard Error 0.012 0.017 0.018 0.034 0.045 0.049 0.266 0.208 0.242 0.437 0.299 0.330 0.192 0.207 0.141 0.018 0.019 0.012 0.031 0.039 0.030 0.673 0.614 0.467 0.020 0.013 0.011 Table 10 0.511 0.579 0.618 14.763 15.177 14.814 9.614 9.173 8.961 19.326 19.062 18.357 0.086 0.066 0.066 0.093 0.093 0.067 55 58 58 28 23 Control DHA DHA+ARA Control DHA DHA+ARA DHA DHA+ARA Control DKA DHA+ARA Control DHA DHA+ARA Control DHA DHA+ARA Control DHA DHA+ARA Regimen Control DHA DHA+ARA **DHA+ARA** Control Control 18:306 18:2 18:0 Fatty Acid 16:0 16:1 18:1 12:0 14:1 14:0 Study form Termination Study Form Termination

Pairwise p-value

Table 10

Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA Pairwise Comparison Regimen p-value 0.000 0.000 0.108 0.068 0.203 0.229 0.134 0.164 Red Blood Cell Phosphatidylethanolamine Fatty Acids 2.073 2.206 1.992 25.132 24.038 27.372 0.018 0.019 0.000 0.029 0.030 0.026 0.527 0.520 0.437 0.019 0.016 0.012 0.017 0.016 0.015 0.044 0.037 0.029 Arithmetic Mean 2.253 2.295 2.066 24.279 23.464 26.760 0.754 0.774 0.654 0.553 0.579 0.507 0.042 0.026 0.022 Control DHA DHA+ARA Control DHA DHA+ARA Control DHA. DHA+ARA Control DHA DHA+ARA DHA DHA+ARA Control DHA DHA+ARA Control Control DilA DilA+ARA Regimen DHA+ARA 20:5n3 20:3n6 20:4n6 20:2n6 18:3n3 Fatty Acid 22:1 18:4 20:02 Study Form Termination Study Form Termination

0.119 0.000 0.000 0.286 0.000 0.000

		Pairwise p-value	0.025 0.461 0.002		0.003 0.255 0.050		0.004 0.002 0.943	0.000
		Pairwise Comparison	Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA		Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA		Control vs DHA Control vs DHA+ARA DIA vs DIIA+ARA	Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA
	;ids	Regimen p-value	0.007	0.294	0.010	0.137	0.003	0.000
	ne fatty Ac	Median	7.656 6.885 7.635	0.038 0.042 0.041	1.213	0.000	2.839 2.400 2.269	4.815 7.043 6.498
10	lethanolamin	Standard Error	0.208 0.154 0.155	0.023	0.064 0.034 0.040	0.000	0.110 0.091 0.069	0.151 0.183 0.150
Table 10	Red Blood Cell Phosphatidylethanolamine Fatty Acids	Arithmetic Mean	7.309 7.135 7.592	0.092 0.056 0.062	1.231	0.000	2.694 2.334 2.237	4.798 6.762 6.389
	ood Cel	ć	53 58	28 55 53	53 58	ន្តន	53 58 58	22 22 23
	Red B	Regimen	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DKA DHA+ARA
		Fatty Acid	22:4n6	24:1	22:5n6	22:4n3	22:5n3	22:6n3
T. 18	4 = 4 -	I. Be	Study Form Termination	Study Form Termination	Study Form Termination	Study Form Termination	Study form lermination	Study Form Termination

		Pairwise p-value					0.601 0.524 0.000 0.000 0.001 0.928
		Pairwise Comparison					Control vs Dila Control vs Dha+ara HM vs Dha HM vs Dha+ara Control vs HM Dha vs Dha+ara
	ty Acids	Regimen p·value	0.587	0.598	0.092	0.177	0.000
	olamine Fat	Median	0.024 0.019 0.018 0.023	0.169 0.162 0.188 0.210	0.037 0.000 0.044 0.021	16.314 15.692 16.997 17.607	0.349 0.336 0.376 0.562
Table 10	ıat i dylethan	Standard Error	0.019 0.016 0.014 0.011	0.030 0.041 0.025 0.016	0.017 0.017 0.019 0.011	0.595 0.729 0.538 0.395	0.050 0.035 0.022 0.027
	Red Blood Cell Phosphatidylethanolamine Fatty Acids	Arithmetic Mean	0.053 0.054 0.047 0.045	0.243 0.251 0.235 0.230	0.080 0.055 0.078 0.053	17.319 17.101 17.225 18.138	0.440 0.390 0.390
	led Bloo	c	37 32 38 56	37 32 38 56	37 32 38 56	37 38 56	37 32 38 56
	&	Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
		Fatty Acid	. 12:0	14:0	14:1	16:0	16:1
	= e e.,		PC S	S S S	s PCA	ks.PCA	48 VER
		T ime	48 Heeksi PCA	48 Heeks PCA	V Veek	S P C P C P C P C P C P C P C P C P C P	2

·					Table 10				
h ar			Red Blo	Red Blood Cell Phosphatidylethanolamine Fatty Acids	hatidylethan	olamine fa	tty Acids		
e E	fatty Acid	Regimen	=	Arithmetic Mean	Standard Error	Median	Regimen p-value	Pairwise Comparison	Pairwise p-value
48 Heeks PCA	18:0	Control DHA DHA+ARA HN	28 33 32 32 32 32 32 32 32 32 32 32 32 32	7.935 7.962 7.443 8.754	0.327 0.293 0.270 0.230	7.174 7.552 7.173 8.409	0.000	Control vs DHA Control vs DHA+ARA HW vs DHA HW vs DHA+ARA Control vs HM DHA vs DHA+ARA	0.347 0.483 0.020 0.000 0.001 0.108
48 Weeks PCA	18:1	Control DHA DHA+ARA HN	32 38 58 58	19.438 19.066 19.302 18.469	0.368 0.421 0.332 0.278	19.410 19.534 19.433 18.141	0.038	Control vs DHA Control vs DHA+ARA HH vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	0.401 0.234 0.067 0.118 0.005
48 Veeks	18:2	Control DHA DHA+ARA HM	37 38 38 56	9.328 8.867 9.257 6.291	0.261 0.210 0.216 0.193	9.267 8.696 8.840 6.027	0.000	Control vs DHA Control vs DHA+ARA HN vs DHA IIM vs DHA+ARA Control vs HM DHA vs DHA+ARA	0.024 0.187 0.000 0.000 0.900 0.318
48. Veeks PCA	18:3n6	Control DHA DHA+ARA HN	37 38 38 56	0.198 0.219 0.188 0.129	0.020 0.031 0.021 0.012	0.182 0.171 0.158 0.112	0.050	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	0.879 0.590 0.029 0.061 0.014
48 Weeks PCA	20:0	Control DHA DHA+ARA HM	228 33	0.263 0.262 0.212 0.295	0.058 0.042 0.037 0.031	0.146 0.145 0.125 0.240	0.728		

		Pairwise p-value	0.559 0.848 0.008 0.002 0.001	0.339 0.512 0.000 0.000 0.000		0.543 0.532 0.000 0.000 0.000	0.896 0.935 0.015 0.006 0.007
		Pairwise Comparison	Control vs DHA Control vs DHA+ARA HH vs DHA HH vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA+ARA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DIIA vs DHA+ARA		Control vs DHA+ARA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA HN vs DHA HN vs DHA+ARA Control vs HM DHA vs DHA+ARA
	, Acids	Regimen p-value	0.001	0.000	0.057	0.000	0.012
	amine Fatt)	Hedian	0.225 0.262 0.245 0.169	0.648 0.782 0.738 0.492	0.003 0.000 0.000 0.019	0.698 0.684 0.689 0.412	1.999 2.045 2.132 1.637
Table 10	Red Blood Cell Phosphatidylethanolamine Fatty Acids	Standard	0.025 0.017 0.015 0.020	0.031 0.032 0.188 0.024	0.005 0.005 0.006 0.006	0.035 0.026 0.032 0.016	0.099 0.100 0.114 0.053
-	Cell Phosphi	Arithmetic Hean	0.291 0.270 0.265 0.226	0.715 0.772 0.936 0.533	0.017 0.017 0.023 0.027	0.672 0.668 0.715 0.444	2.138 2.165 2.172 1.715
٠	B 6 00d	. A	32 38 56	37 32 38 56	37 38 38 56	37 32 38 56	37 32 38 56
	a		Regimen Control DHA DHA+ARA	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HH	. Control DHA DHA+ARA HM
	,		Acid 18:3n3	20:1	18:4	20:2n6	20:306
			PCA .	PCA	s PCA	S PCA	48 Weeks PCA
			Time 48 Weeks PCA	48 Weeks PCA	48 Heeks PCA	48 Weeks PCA	99 H 87

•		Pairwise p-value				0.612 0.416 0.000 0.013 0.001	
		Pairwise Comparison				Control vs DHA Control vs DHA+ARA HH vs DHA+ARA Control vs HH Control vs HH	
	ty Acids	Regimen p·value	0.950	0.121	0.497	0.001	0.943
	olamine fat	Median	24.774 25.206 25.122 25.189	0.172 0.188 0.133 0.134	0.368 0.377 0.347 0.360	8.761 9.132 8.472 7.618	0.035 0.034 0.036 0.027
Table 10	atidylethan	Standard Error	0.536 0.491 0.429 0.384	0.016 0.022 0.022 0.013	0.026 0.015 0.011 0.016	0.267 0.250 0.188 0.203	0.016 0.009 0.008 0.016
	Red Blood Cell Phosphatidylethanolamine Fatty Acids	Arithmetic Mean	24.508 24.428 24.788 24.625	0.168 0.189 0.154 0.148	0.362 0.369 0.347 0.384	8.580 8.791 8.576 7.727	0.067 0.046 0.066 0.062
	ed Blo	c	37 38 56	37 38 38 56	37 38 38 56	37 38 38 56	28 33 28 28 28
	_	Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HH	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
		fatty Acid	20:4n6	22:1	20:5n3	22:4n6	24:1.
ي.مو. م		e e como	P C P	PCA	PCA	PCA	PCA
		Time	48 Heeks	48 Weeks PCA	S P C P C P C P C P C P C P C P C P C P	48 Heeks PCA	48 Ueeks

Pairwise p-value

0.977 0.997 0.000 0.000 0.000

Control vs DHA+ARA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA Control vs DHA
Control vs DHA+ARA
HH vs DHA
HN vs DHA+ARA
Control vs HH
DHA vs DHA+ARA Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA Pairwise Comparison Regimen p-value Red Blood Cell Phosphatidylethanolamine Fatty Acids 0.000 1.000 0.000 0.000 1.414 1.359 1.889 0.000 0.000 0.000 0.000 3.013 4.079 3.721 7.341 Hedian 2.681 2.630 2.443 1.978 Standard Error Table 10 0.000 0.066 0.057 0.054 0.056 0.092 0.086 0.066 0.065 0.159 0.177 0.134 0.201 Arithmetic Mean 0.000 0.000 0.000 0.001 2.567 2.561 2.436 1.942 3.196 4.143 3.801 7.283 1.401 1.353 1.364 1.883 28 32 32 2833 28 32 32 32 32 32 Control DHA DHA+ARA HM Control DHA DHA+ARA HN Control DHA DHA+ARA HM Control DHA DHA+ARA HM Regimen 22:6n3 22:5n6 22:413 22:5n3 Fatty Acid 48 Weeks PCA 48 Weeks PCA 48 Weeks PCA 48 Weeks PCA

0.884 0.148 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

Table 11
Preterm Infant Complications

	·	Regimen		p-value*
·	Control	DHA	DHA+ARA	
Retinopathy of Prematurity Test Results Absent I II Present, but not graded	34 (76%) 8 (18%) 2 (4%) 1 (2%)	44 (76%) 11 (19%) 2 (3%) 1 (2%)	41 (79%) 6 (12%) 4 (8%) 1 (2%)	0.91
Ultrasound Examination for Intraventricular Hemorrhage None Stage 1 Stage 2 Stage 3 Stage 4 Questionable	47 (81%) 6 (10%) 3 (5%) 1 (2%) 1 (2%)	52 (84%) 9 (15%) 1 (2%)	49 (80%) 7 (11%) 2 (3%) 1 (2%) 2 (3%)	0.78
Posthemorrhagic Hydrocephalus developed? No Yes	61 (98%) 1 (2%)	65 (98%) 1 (2%)	64 (97%) 2 (3%)	1.00

^{*}The statistical test was based on a dichotomous response: present or absent.

Table 12
Serious Adverse Events Reported During Study Formula Phase

		Regimen		
Event	Control	DHA	DHA+ARA	p-value
Any Event	4 (6%)	3 (5%)	4 (6%)	0.93
Other Respiratory Conditions of Fetus and Newborn	2 (3%)	0	0	0.10
Other Infection Specific to the Perinatal Period	1 (2%)	0	0	0.32
Intraventricular Hemorrhage	0	0	1 (2%)	1.00
Other Specified Perinatal Disorders of Digestive System	0	1 (2%)	0	1.00
Convulsions in Newborn	1 (2%)	0	0	0.32
Feeding Problems in Newborn	0	1 (2%)	1 (2%)	1.00
Hernia	0	0	1 (2%)	1.00
Other	0	1 (2%)	1 (2%)	1.00

Table 13
Serious Adverse Events Reported During the Term Formula Phase

		Reg	gimen		
Event	Control	DHA	DHA + ARA	HIM	p-value
Any Event	7 (13%)	9 (15%)	9 (15%)	1 (1%)	0.002 C vs D 0.79 C vs D+A 0.79 D vs D+A 1.00 C vs HM 0.006 D vs HM 0.001 D+A vs HM 0.001
Infectious Colitis, Enteritis, and Gastroenteritis	0	0	1 (2%)	0	0.67
Croup	0	0	1 (2%)	0	0.67
Bronchopneumonia, Organism Unspecified	2 (4%)	3 (5%)	6 (10%)	0	0.013 C vs D 1.00 C vs D+A 0.27 D vs D+A 0.49 C vs HM 0.15 D vs HM 0.064 D+A vs HM 0.004
Asthma, Unspecified	1 (2%)	0	0	0	0.21
Esophageal Reflux	0	1 (2%)	.2 (3%)	0	0.23
Dyspepsia and Other Stomach Function Disorder	0	0	0	1 (1%)	1.0
Other Respiratory Conditions of Fetus and Newborn	1 (2%)	1 (2%)	3 (5%)	0	0.11
Convulsions	1 (2%)	0	0	0 .	0.21
Sudden Infant Death Syndrome	1 (2%)	1(2%)	0.	0 :	0.34
lernia ernia	2 (4%)	2 (3%)	0	0	0.11
other	-0	~3~ (45%)	-2 (-3.%)	.,0	0.063

Appendix 1

Listing of Weights Included in the Statistical Analyses

6610 56.7 4965 57.6 7135 56.9 6110 58.4 6014 57.1 7470 57.3 5030 56.9 6922 57.3 3895 4840 3064 3575 3688 3745 40.1 3070 3070 3590 3620 3170 2520 3731 Growth Rate g/day 34.1 33.8 23.9 56.9 43.3 36.2 31.5 41.7 34.2 28.9 54.4 36.1 Ng t 9 Wgt 8 2045 Hgt7 1760 37.3 Vgt6 2340 34.6 2955 2425 35.7 1945 1659 1933 2012 36.3 2318 35.9 1870 34.1 1647 1378 2045 2375 1920 1437 2075 1494 34.4 1251 32.7 1851 2040 34.6 1705 1230 1205 1261 32.0 1855 32.6 1298 33.4 1775 975.0 32.3 1480 1475 31.7 1412 1785 1185 31.0 1600 34.4 1810 32.1 1181 1450 32.6 958.0 30.7 Veight (g) Age (weeks pca) Weight (g) Age (weeks pca) Veight (g) Age (weeks pca) pca) Weight (g) Age (weeks pca) pca) Weight (g) Age (weeks pca) pca) Veight (g) Age (weeks pca) Weight (g) Age (weeks pca) Weight (g) Age (weeks pca) pca) Veight (g) Age (weeks p Weight (g) Age (weeks | Veight (g) Age (weeks p Weight (g) Age (weeks | Variable 9702-0302 9703-0308 9704-0303 9703-0302 9703-0304 9701-0303 9080-6696 9050-6696 9700-0301 9701-0304 9699-0302 9698-0304 9698-0301 Control Control Control Gender Hale Hale Male Kale Hale Hale Hale Hale Hate Hale Hale Hale

four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Gender

Male

Hale

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Hale

Hale

Hale

Male

Hale

Hale

Male

Regimen Control	subject 9704-0305 9705-0302		Listing of Weights Included in the Statistical Analyses Well Wet2 Wet3 Wet4 Wet5 Wet6 Wet7 1315 1475 1640 1860 30.9 32.0 33.0 34.1 1280 1389 1588 1786 2240 33.0 34.0 35.0 36.0 37.4	of Weight Hgt2 1475 32.0 1389 34.0	s Includ 1640 33.0 1588 35.0	led in the Wgt4 1860 34.1 1786 36.0 36.0	e Statist Hgt5 H 37.4	tical Ana Wgtó I		Hg t 8	Ид 16 г.	Growth Rate g/day 23.7 30.9	Mgt_40 2540 39.6 39.7	491 - 48 4936 47.4 5816 57.7	491_57 5646 56.4 7490 56.7
Control	9706-0302	Age (weeks pca) Weight (9) Age (weeks pca)	31.3 1645 35.7	32.3 1865 36.6	2130 37.7	24.8 2435 38.7						37.1	2800	48.7	56.7
Control	9706-0303	Height (g) Age (weeks pca) Height (g)	1875 33.7 1655 32.9	1984 34.7 1734 33.1	2135 35.6 2005 34.0	2185 36.4 2495 35.4	2465 37.3					22.2	3050 41.0 3835 40.6	4550 48.6 5155 48.0	56.9 56.9 6090 56.3
10 0 10 10 10 10 10 10 10 10 10 10 10 10		Weight (g) Age (weeks pca)	,	1820 32.9	2215 34.4 1850	2450 35.4 2195	2460 35.7 2310		•		•	32.8	2930 40.1 2530	3795	5185 56.6 6530
Control	9707-0303	veight (g) Age (weeks pca) Veight (g) Age (weeks pca)	1413 33.1 1046 30.9	34.1 1442 32.7	35.1 1644 33.7	36.6 1910 34.9	37.1					30.7	39.7 39.9 36.9	46.0	1.76
Control	9708-0303	Weight (g) Age (weeks pca) Weight (g) Age (weeks pca)	1730 32.7 1090 29.9	1960 33.7 1440 31.7	2205 34.7 1660 32.7	2520 35.7 1910 33.7	2040 34.3					30.8	3845 39.9	5470 48.1 5700 48.0	57.0 6775 56.7
Control	9712-0301*			1221 31.7 1345 34.1	1245 31.9 1456 35.1	1291 32.0 1670 36.1	1294 32.1 1835 37.1	1330 32.3 1985 38.1	1369	1402 32.6	1433	26.1	2160	3300	3980

Hale

Hale

Hale

Male

Appendix 1

		_															
				Listing	of Veigh	ts Inclu	ded in t	Listing of Weights Included in the Statistical Analyses	tical An	alyses							
		-	*									J	Growth Rate				
	Regimen	Subject	Variable	Wgt1	Wgt2	Vgt3	Wgt4	Ngt5	Ngté	Wgt7	Wgt8	Wgt9.	g/day	N9t 4.0	Ngt_48	Ngt_57	
Mate		9743-0301	Veight (g) Age (weeks pca)	1520	1570 35.0	1670 36.0	1720						10.0	2260	4535 50.0		
На e	Control	9746-0301	Weight (9) Age (weeks pca)	2065	2465 38.9	2760 39.7	3085	3085					48.9	3085 40.6	4795	6695 57.6	
Hate	DIIA	9698-0302	Veight (9) Age (weeks pca)	1640	1860 36.1	3170 39.9							47.5	3170 39.9	. 5206 47.9	7036 57.1	
Hale	DIIA	9698-0306	Veight (g) Age (weeks pca)	1620	1830	2090	2575						28.3	2575 40.0	48.0	6022 57.0	
Hale	DIIA	9699-0301	Weight (g) Age (weeks pca)	1018 31.3	1207 ⁻ 32.3	1360 33.3	1617 34.3						27.9	3121 39.9	5192 48.0	6752 57.9	
Hate	DIIA	9699-0303	Weight (g) Age (weeks pca)	1258	1435	1631 34.4	1882 35.4	2724 36:4					48.3	2724 40.1	4341	5674 57.0	
Hale	YHQ .	2020-6696	Veight (g) Age (weeks pca)	1182	1358	1484	1666 37.7						22.5	1986 40.0	3206 48.0	4511 57.0	
Male	VIIO	9700-0303	Veight (g) Age (weeks pca)	1830	1980 34.4	2450 35.9	3045					•	45.4	3585 39.6	5420 47.4	7035 56.7	
Male	DHA	9701-0301	Weight (g) Age (weeks pca)	1098 29.6	1234 30.6	1365 31.6	1689 33.4	1902	2019 35.6	2104 36.4	2276 37.4	2288 38.6	20.4	2805	3405	4660 57.0	
Male	DIIA	9701-0305	Weight (g) Age (weeks pcm)	1621	1829	1880 33.7	2253	2582 35.7					34.7	3660			
Male	OHA	9703-0303	ueight (g) Age (weeks pca)	1775 33.3	2030 34.1	2285 35.1	2595 36.0	2780 37.1	-				38.2	3080 39.9	3940	. 6.260 56.9	
Hale	DIIA	9020-2026		1725 33.4	1870 34.0	2180 35.0							41.7				
Male	Y E E E	9703-0307		1525	1725 33.7	2020 34.9	2390 36.0						37.6	3120 40.7	4410	. 2600 56.9	

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix i

		-				1										
		****	_	Listing of Weights Included in the Statistical Analyses	f Veight:	s Includ	ed in the	Statis	tical Ana	lyses						
	٠.		•				•					_	Growth Rate			
				1	11917	Uot 3	Nats.	Vgt5	Ngt6	Vgt7	Hgtß	Wgt9	3/day	Ngt 40	Ngt_48	Wgt_57
Gender	Gender Regimen	Subject	Variable	136M	3.5)		, ,					29.3	2880	3900	4300
Hale	DHA	\$204-0304	Weight (9)	1380	1570 33.1	1730 34.1	1960 35.0	35.9						40.3	48.3	57.3
-	¥ H C	9704-0306	Weight (9)	1320	1370	1550	1760	2020	2170 35.9		~		55.6		3750	4800
3 2 2			Age (weeks pca) Weight (9)	1380	1446	1616	1843	2330					30.8	2370 39.6	4170	5787 56.4
Hale	¥ D		Age (weeks pca)	1490	1770	1980	2240						36.7	3291 39.6		
Hale	DIIA	6705-0507	Age (weeks pca)	31.1	32.1	33.1	0.45						8	3335	5265	0069
Kale	DHA	9706-0304	Velght (9) Age (weeks pca)	1490	1655 33.7	1915	2260 36.0							40.0	48.1	57.3
Hale	DIfA	9020-9026	Veight (g) Age (veeks pca)	1604	1908	2160							0.7,	41.4	47.6	56.9
Hale	DIIA	9707-0001	Weight (9)	1305	1429 32.0								· · · · · · · · · · · · · · · · · · ·			
<u> </u>	4	9207-0304	Height (9)	1555	1740	1990	2400 35.4	2570 36.0					36.9	3280 39.9	5115 48.0	6755. 57.6
1916	. \$	9707-0306	Age (weeks pro)		2040	2260 38.1	3050	3050					43.2	3050	5100 48.6	7150 57.6
Hale	AHO AHO	9707-0307*			1675 32.6	1699 32.7	1732	1778 33.0	1811	1858 33.3	1882	1938 33.6	39.6	į		
Male	DIIA	9707-1308	Height (9) Age (Weeks pca)		2045	3004	39.3						36.7	39.3	4450	57.7
Male	OIIA	9707-2308	Weight (g) Age (weeks pca)	1651	1923	2850 39.3	2850 39.3	٠					35.6	39.3	47.3	57.7
Male	DHA	9708-0302		1485	1740 34.3	2500 37.0							!	45.9		57.3

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

	V9t_48 L	\$080 6750 47.4 56.4		5200 7300 48.1 57.1	4680 5860 48.6 57.6	\$500 48.6	5840 50.6		6007 7937 47.6 57.3		4256 5050 48.7 57.6		5055 6600 46.7 56.7	5200
	Ngt_40	3150 39.4		3160	3040 39.6	3100			3553	.2355 40.3	2610	3255 39.7	3240	3960
Growth		44.4	7.1	30.5	33.9	31.1	32.2	20.9	. 32.0	29.8	17.2	40.7	48.9	41.4
	Ngt9					•								
	Wgt8						•	•						60 P
	Ngt7													3228
	91611												•	5 3072
	Wgt5	2800 36.7		2550 37.6			2440 36.4					2735	5.6	2756
	Ngré	2400 35.4		2160	1945 34.5		2375 36.0		2120		1490	36.9	5 2835 5 37.7	2460
	Hgt3	2000		1985 35.0	1695 33.5	2100	2160 35.0				_	2235	s 2045 s 35.6	5522 1
	Wgt2	1740	1520 35.4	1800			1880 34.0		1690 32.4			1880	1686 34.6	7 2037
'	Wgt1	1490	1470		-		1530							
	Variable	Weight (g) Age (weeks pca)		Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	Weight (9) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	
	Subject	9709-0301	9709-0304	9712-0304	9712-0306	9743-0303	9743-0304	9698-0305	9698-0308	9699-0304	9050-6696	DIIA+ARA 9700-0302	9701-0302	9701-0306
	Regimen	DHA	DIIA	VIIO.	DIIA	DIIA	VIIO	DHA+ARA	DIIA+ARA	DIIA+ARA	DIIA+ARA	DIIA+ARA	DIIA+ARA	===
•														

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Meights included in the Statistical Analyses

													Growth			
Gender	Regimen	Subject	Variable	Vgt1	Ng t 2	. Wgt3	N914	Hgt5	Wgt6	Wgt7	WgtB	Ngt9	g/day	40 TBM	48 Tem	49t_57
Hale	DHA+ARA	9701-0307	Weight (9) Age (weeks pca)	1397	1710 34.3	1919 35.1	2932 38.4			•		-	42.5	3772 70.9	5930 48.6	7475 57.4
Male	DIIA+ARA	9702-0301	Weight (g) Age (weeks pca)	1670 32.0	1865 33.0	2160 34.0	2660 36.0	•					36.0	3780 40.6	5250 47.6	
. Male	DHA+ARA	9702-0303	Weight (g) Age (weeks pca)	1650 32.9	1905	36.4							40.7	3500 40.0	5160 48.0	6520 56.4
Hale	DHA+ARA	9703-0301	Veight (9) Age (weeks pca)	1255	1460	31.3	2055 32.3	2415					42.3	4320 40.4	6020 47.4	6720 56.6
Hale	DIIA+ARA	9703-0305	Weight (g) Age (weeks pca)	1440	1635	1830	2115 35.0	2390	2590 36.9				34.1	3170	4330	5630 56.7
Hale.	DIIA+ARA	DIIA+ARA 9704-0301	Veight (g) Age (weeks pca)	1110	1270	1490	1740 33.4	2050					35.1	3220 39.9	2.72	7050
Наве	DHA+ARA	9704-0302	Weight (g) Age (weeks pca)	1080	1230	1370	1520 34.9	1680 36.0	1840 36.9			•	22.2	0.05 40.0	6540 48.1	8050 57.4
Hale	DIIA+ARA	9705-0301	Weight (g) Age (weeks pca)	1300 32.7	1440	1620 34.7	1870 35.7	,					. 27.0	2979	4400	5873 58.0
Hale	DHA+ARA	9705-0306	Weight (g) Age (weeks pca)	1320	1490	1700	2020	2300 35.9					32.7	3631 39.9	6.77 47.9	6809 56.9
Male	DIIA+ARA	9705-0307	Weight (g) Age (weeks pca)	1480 34.4	1650 35.4	1810 36.1	2240 37.4						36.4	3007	5589	6596 56.7
Male	DIIA+ARA	9706-0305	Veight (g) Age (weeks pca)	1330	1455	1660	1930 36.6		٠	•			31.4	2695	4820 48.1	6225 58.1
Hale	DIIA+ARA	9706-0307	Weight (g) Age (weeks pca)	1355	1585 33.0	1825	2270 35.1						0.04	3585 40.4	5955 49.1	6925 57.6
Hale	DHA+ARA	9706-0309	Veight (g) Age (weeks pca)	1620	1910 35.3	2150 36.0							40.3	3460 40.9	5255 48.7	5775 57.4

Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

		3	4950 6285 47.9 56.9		\$170 6725 47.9 56.3	4835			4570 5520 47.7 57:1	3500 5010 47.4 56.4	4350 5510 48.6 57.6	5986 58.9	5497 6582 48,3 · 56,9	5220 6355 48.1 57.0	2447 6454
		Mgt_40	3395		3585 39.7				2630 39.7	2520	3030 39.6	3104 40.3	3518 40.0	3177	3858
	Growth Rate		41.5	37.4	44.8	38.0	55.6	48.6	35.6	20.9	34.1	28.4			
		8 Wgt9											· .		
		, Wgt8													
		Wgt7													
		Ng t 6			٠.						5 4			•	
		WgtS		2770 37.7			ř				2300				
		Vgt4	2720 36.6	2505 36.7	3195	2420 35.7			2160 37.4		2010 34.5	2214 36.9			
		Vgt3	2280 35.3	2245	2140 34.7	2200 34.7			1900 36.4	1450 33.4	1785 33.5	1961			
•		Wgt 2	1980	1990	1828 33.7	1880 33.7	2180 35.9	1810	1655	1210 32.3	1505 32.5	1728 34.9			
		Vgt1	1553	1755	1620 32.7	1640	1680 34.6	1470 32.6		1180	1325	1630		. •	
		Variable	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (9) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (9) Age (weeks pca)	Weight (g) Age (weeks pca)		Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	-		•
		Subject	9707-0301	9707-0305	9707-0310	9708-0301	9708-0304	9709-0303	9709-0305	9712-0303	9712-0305	9723-0301	9698-0601	9698-0602	
-		Regimen	DHA+ARA	DIIA+ARA	DHA+ARA	DHA+ARA	DHA+ARA	DIIA+ARA	DHA+ARA	DHA+ARA	DIIA+ARA	DIIA+ARA	=	 ¥	-
		Gender	Hale	Hale	Male .	Hale	Hate	Hale	Hale	Male	Hale	Hale	Male	Hale	

		the state of the s
-		7
ž		•
Appendix		7
ਭੂ		7
•		7
		•
	•	1
		=
		,
		••

		- (()										-	Rate			
Gender	Regimen	Subject	Variable	Wgt1	Wgt2	Wgt3	Ngt 4	HgtS	Wgt6	Wgt7	Wg t 8	Ngto.	g/day	05_16H	Mgt_48	Ngt_57
Male	 E	5090-8696	:	· · · · ·		٠.			*					4355	5092 48.0	6383 57.0
Male	= = = = E	5090-8696												3433	4979 48.1	6426 57.1
Male	· E	9699-0501						•						3915 40.0	6639	7775 57.4
Male	= - = £	2050-6696									•			3802 40.0	5787	7178 57.4
Hale	 E	9701-0601												3317	5555 47.9	7070 56.4
Hale	¥	9701-0602												3487 40.0	5833 47.3	8070 58.3
Hale	 E	9701-0603	,											3232 40.0	5°25 7'25	5855 56.4
Male	= ·=·	9701-0604		-										3600	5215 47.9	6285 56.9
Hale	= = = = E	9701-0605												3402 40.0	5275 47.6	7210 57.6
Male	<u> </u>	9701-0606					•							3090 40.0	4485 47.7	5445 56.7
Hale	¥	9702-0601								-				3480 40.0	5780 48.6	6530 56.6
Hale	¥	9702-0602	•											3165	5060	6660 57.1
Male	= -	9703-0502		· .		•	,							2670 40.0	5420 48.3	7220 57.1

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

	·		٠		γb	Appendix 1									
	. = . =		Listing	Listing of Weights Included in the Statistical Analyses	nioul sin	ded in t	he Stati	stical A	nalyses						
			1461	Caco	797	4364	Wgt5	Wgt6	Ngt7	Wgt8	49t9	Growth Rate g/day	Ngt_40	Ngt_48	Wgt_57
Regimen	Subject	Variable		i i		•							4100	0729	8330
	9703-0503												40.0	47.4	56.4
													3435	0009	7930
	9703-0504		·										0.04	- C C C	1.70
	9704-0502												3285 40.0	\$220 48.1	6560 56.6
===	050-7020												3400	\$200 48.7	6725
E :	1090-5020						·						3200	5617 48.3	6752 57.3
<u> </u>	9705-0602												3860	6227 48.0	
= = =	9706-0601			•									3152	5105 49.0	6545 57.0
	9706-0602												3557	5175 47.4	73.15 57.72
==	2090-9020									•			3192	5070	6970 56.7
 E	7090-9020												3461	4225	5525 57.1
<u> </u>	3070-9026	, v			-								3870	6220	7660
	9090-9020	, <u> </u>	·					•					4315	5975	6720 56.6
¥			: :										3263	4730	5825
포 포	9707-0601	-												į	:

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

		Analyses
		isting of Weights Included in the Statistical Analyses
-		the
•		Ξ.
vhheid .		Included
		Veights
		ţ
		istina

		_				-							Cario				
Gender	Regimen	Subject	Variable	Wgt1	Wgt2	Wgt3	.536M	VgtS	N ₉ t6	Vgt7	Wgt 8	Ngt9	g/day	Ngt_40	Ngt 48	Wgt_57	
Hale	Ξ	9707-0602												3206 40.0	4515 48.1	6220 57.7	
Hale	₹	9707-0603					٠.							4256	0.87	8810 57.0	
Hale	<u>-</u> -	9707-0604				•								3419	5460 48.0	6130 56.7	
Male	E	9707-0605												3433 40.0			
Hale	. E .	9707-0606												3603	5825 48.4		
Hale	* = = =\.	9707-0607		. ·										3569	5410 47.9	6870 56.9	
Male	E	9707-0608												3348	5135	6370 57.0	
Male	E	9707-0609						,						3348			
Maie	· ¥	9708-0601											•	3064	5220 47.6	6595 56.4	
Male	· = · = · = ·	9708-0602												4085			
Hale	E	9708-0603		•				•	. •					3319	5135 48.4	6327 57.1	
Hale	* = = = \F	9708-0604												3291 40.0			
Маје	= = = . F	9708-0605												3796 40.0			

				Listing of Weights Included in the Statistical Analyses	of Weigh	ts Inclu	ded in th	ne Stati	stical A	nalyses						
Gender	Regioen	Subject	Variable	Wgt1	Wgt2	Ngt3	Ngt4	WgtS	Ngt6	Ngt7	Иgtв	Ngr9	Growth Rate g/day	Ngt_40	Ngt_48	Wgt_57
Male	· ·	•				•	•							4050 40.0	4645	5405 57.1
Male	Ξ	9708-0607												3333	6°25 707	5180 56.7
Male	 ₹	9709-0505						•						3400		
Female	Control	*£000-8696	Weight (g) Age (weeks pca)	1020	1050 31.3	1070	1080	1080	1060 31.9	1080 32.0	1070 32.1		5.6			
Female	Control	1000-6696	Weight (g) Age (weeks pca)	1464 32.7	1672 33.7	1862 34.7	2000 35.7	2145					24.1	2610 39.7	4369	5220 56.9
Female	Control	1 9699-0003	Veight (g) Age (weeks pca)	1473	1629 35.0	1860 36.0	2497 38.0						37.3	2780	4596 48.0	5816 57.0
female	Control	1 9701-0003	Weight (9) Age (weeks pca)	1480 34.6	1633 35.6	1903 36.6	1975 37.3	2292 38.6					29.1	2675 40.6	4165 48.6	5200 55.6
Female	Control	10 9701-0005	Weight (g) Age (weeks pca)	1174 30.7	1366	1555 32.7	1745	1976 34.7		·			28.3	3175 39.7	5140 48.4	6280 56.4
Female	Control	1 9701-0008	Weight (g) Age (weeks pca)	1391	1569	1898 36.4	2198 37.3	2406 37.9				,	41.1	2980	4.72	5815
Female	Control	1 9701-0011	Veight (g) Age (нееks pca)	1050	1254	1492	1756	2044 34.4					36.6	2870 39.7	4420	5505
female	Control	1 9702-0002	Veight (g) Age (weeks pca)	1222 31.7	1371 32.7	1570	1750 35.1	1995 36.0	2390 37.1				29.4	3380	47.6	
Female	Control	1 9702-0004	Weight (g) Age (weeks pca)	1454	1555	1840 33.1	2530 36.0						31.6	39.9	5160 47.7	6900 56.7
Female		Control 9702-0010	Weight (g) Age (weeks pca)	1775 34.0	2065	2410 36.0	2645 37.0						42.2	3060 39.9	4820	97.75 57.6

. Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Analyses
Statistical
the
Ξ.
Included
Weights
ō
Listing

				•									Growth			
Gender	Regimen	Subject	Variable	Wgt 1	Wgt2	Wgt3	Ngt4	NgtS	Wgt6	Ngt7	WgtB	Vgt9	g/day	Ngt_40	4gt_48	Wgt_57
Female	Control	9703-0002	Weight (g) Age (weeks pca)	1170 29.1	1250 30.4	1390	1570 32.4	1825 33.4	2130 34.3				56.4	3210 39.6	4750	
Female	Control	5000-£026	Weight (g) Age (weeks pca)	1420	1590 32.3	1765 33.3	1900 33.9	2220 35.3					29.5	2610 37.3	4330 46.0	5640 55.0
Female	Control	9703-0008	Weight (g) Age (weeks pca)	1495	1715 34.0	2095 35.0	2445 36.0	2685 36.6					48.3	3360	47.7	6410 56.1
female	Control	9705-0004	Weight (g) Age (weeks pca)	1120	1290	1490	1660 34.0						28.3	2722 39.7	4085	5646
f emale	Control	9706-0003	Weight (g) Age (weeks pca)	1515	1673 36.3	1965 37.1	2330 38.3						37.9			
female	Control	9706-0005	Weight (g) Age (weeks pca)	1485	1610 33.7	1805	2150 36.0						31.7	2740 40.0	4165	5305
female	Control	6000-9026	Weight (g) Age (weeks pca)	1525	1620	1960							31.6	3640 40.3	5495	7225 53.4
Female	Control	9706-0010	Weight (g) Age (weeks pca)	1905	2185 35.0			•					56.0	3655 40.0	5390	56.7
Female	Control	9706-0013	Veight (g) Age (weeks pca)	1185 31.6	1270 32.4	1585	1810 34.6						31.1	2680 40.1	3800	
Female	Control	9706-0016	Weight (g) Age (weeks pca)	1510	1765	1935							32.6	3320	4535	5297
Female	Control	9707-0003	Weight (g) Age (weeks pca)	1465 32.0	1505	1655 33.6	2010	2325 36.4	38.3				30.2	3110 40.1	4125	4995
Female	Control	9000-2026	Weight (9) Age (weeks pca)	1866 34.6	3430 40.0	3430							41.2	3430	5385	7250 57.3
Female	Control	1 9707-1006		1815	3330	3330							39.9	3330	6.87	6920 57.3

Listing of Weights Included in the Statistical Analyses

· .													Growth Rate	,		
eg i fi	Regimen	Subject	Variable	Wgt1	V9t2	Ngt3	436H	Ng t S	Wgt6	Vgt7	WgtB	Vgt9	g/day	Ngt_40	Mgr_48	Wgt_S7
Control		9708-0001	Veight (g) Age (weeks pca)	1410	1600 34.4	1850 35.4	2050 36.9						27.2	2910 40.6	4734 48.4	
Contro	=	9708-0003	Veight (g) Age (weeks pca)	940.0 30.0	970.0 31.0								4.3			
Control		9708-0008	Velght (g) Age (weeks pca)	1380	1605 33.7	1860	2180		٠				33.1	2582 39.3	4110	5361 57.1
Control		9709-0002	Weight (g) Age (weeks pca)	1980 32.7	2225 33.7	2400 34.7							30.0			
Female Control		\$000-6026	Weight (g) Age (weeks pca)	1175	1425	1665 34.6	1945 35.6	2200 36.3					32.3	2975 39.6	4700	5900 56.7
female Cont	Control	9712-0005	Weight (g) Age (weeks pca)	972.0	1145	1290	1490 32.1	1695 33.1					25.6	2930	4450	5880 57.1
Con	Control	9712-0006	Weight (g) Age (weeks pca)	1203	1358	1585	1790						28.4	3030 39.7	4560 48.0	6230 57.0
Con	Control	9743-0003	Weight (g) Age (weeks pca)	1300	1520	1740	1890 35.1						24.0	•	4000	5160 57.4
Female Con	Control	1000-9526	Veight (g) Age (weeks pca)		1740	34.6	2320 35.6	2625 36.6					42.7	3170 39.7	4145	5192
AHO AHO		9698-0004	Weight (9) Age (weeks pca)		1650 31.1	1890	2140 33.1		•				34.7	3787	4795	6291 57.0
20	= =: « : -	9000-8696	Veight (g) Age (weeks pca)		1240 31.7	1420 32.7	1720 33.7		•				28.7			•
female DIIA	«	6000-8696		1205 30.3	1310	1520	1630 33.1	2020 34.9					25.9	2891 40.0	3979 48.0	5121 57.0
female DiA	≪.	9698-0307			2110 35.7	2450 37.6							29.7	3135	5185 47.4	56.4

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

. Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

						Appe	Appendix 1		160	. 000					•	
		=	<u> </u>	Listing of Weights Included in the Statistical Analyses	Weights	Include	ed in the	e Statist	ical An	317565						
			.										Growth			
		and the same of			6401	Vot3	Ngr4	Vgr5 1	Mgt 6	Vgc7	Wgt8	Mgt9	g/day	Ngt 40	Mgt_48	Wgt_57
Gender R	Regimen	Subject	variable			977		2380					36.9	3177	5787	2093
	VIIO	9699-0002	Weight (9)	1313	1477 33.9	34.9	35.9	36.9						39.7	1.1.	200.
		=======================================	_	1580	1820	2050	2295	2500					34.5	3210 40.1	48.1	6300 57.1
Female (DIIA	000-00/6	Age (weeks pca)	32.4	33.4	?		. 3636					34.2	2910	4325	\$625
Female	ė) lik	9701-0001	Weight (9)	1300	1356 34.0	1586 35.0	1924 36.0	36.6		-			Č	39.6	48.0	57.0
	-	9701-0004	Weight (9)	1108	1261	1441	1671	1897 34.7					4.87	39.7	48.4	56.4
female	<u> </u>		Age (weeks post)	7291	1928	2151	2311	2685	2685 39.6				30.1	2685 39.6		
Female	DHA	9701-0012	Age (weeks pca)	34.9	35.9	. se. v	2.						37.2	2970	4605	5140
Female	DIIA	9701-0014	Weight (g)	1422	1631 34.9	1858 35.9	2455 37.9						ž.	39.9	47.7	6.95
	* = = = = = = = = = = = = = = = = = = =	9702-0001	Weight (9)	1780	2115	2390	3000						9.75	40.0	49.6	57.0
l ewar c			Age (Weeks pro)	1850	2002	2650	0592						27.3	2650 39.6	4450	\$050 \$6.4
Female	OH A	9205-0006	Age (weeks pca)	35.4	36.1	39.0	54.0						29.6			
Female	DIIA	9702-0007	ueight (g) Age (weeks pca)	1285	1459 32.1	1780 33.6	34.4	34.9	٠				2.	075£	5920	7820
Female	DIIA	9702-0008		1605	1930	3540 39.6	39.6			. ,			S 25	39.6	47.6	50.10
Female	DHAI	9703-0003		1255	1355 35.1	1535	1845 37.1	2150 38.1						39.4	48.0	56.1
Female	=== 0	9203-0004		1170	1340	1550 34.3	1795 35.3						34.6	39.4	48.1	57.1
female	===¥:_	9703-0009		1570	1830 34.3	2095 35.1	2395 36.3	2655 37.9	•					7.07	48.4	58.0

Growth Rate g/day Wgt9 Wgt8 Listing of Weights Included in the Statistical Analyses Ngt7 Ngt6 WgtS Vgt4

													אפופ			
· John	0 eo ineo	Subject	Variable	Wgt1	Vgt2	Wgt3	Ngr4	Wgt5	Vgt6 1	Ngt7	Wgt8	Wgt9 g	g/day	Ngt_40	Ngt_48	Vgt_57
Female	DHA	•	Veight (g) Age (weeks pca)	1440	1670 34.6	1740 35.0							30.5	3100	5830 48.0	8630 57.0
f emal·e	DHA	9704-0005	Weight (9) Age (weeks pca)	1050 29.7	1310 30.9		1700 32.7	1890 33.7					30.0	3360 39.6	4860 48.0	6100 57.0
Female	DIIA	9705-0001	Weight (g) Age (weeks pca)	1220 32.7	1370 33.6		1880 35.7	2098 36.7					31.9	3092 40.1	4795 48.1	5986 57.1
Female	DHA	9706-0006	Height (g) Age (Heeks pca)	1270	1405	1630	1930 36.0						31.7	2705 40.0	4145	5320
female	DIIA	8000-9026	Weight (g) Age (weeks pca)		1188 34.6		1485 36.4						23.0	2120 39.9		
f emale	DHA	9706-0012	. Weight (g) Age (weeks pca)		1830		2280 34.6						32.5	3530 40.1	4790	
Female	DHA	9706-0014	Veight (g) Age (weeks pca)		1170		1560	1804 35.3					26.2	3295 40.6	5,00 49.4	7675 58,0
Female	DHA	9707-0004	Weight (g) Age (weeks pca)		1771 35.0								38.1	3045	4595 48.0	5765 57.0
Female	DIIA	9707-0308	y Weight (g) Age (weeks pca)	2005	3440	3440							42.2	34.0	4800	6360
Female	DIIA	9000-8026	Yeight (g) Age (weeks pca)		1665 33.6	1955	2280 35.6	2485 36.6					38.1			
female	DIIA	9708-0006	Veight (g) Age (weeks pca)		1775 34.7	2110	2380 37.0						39.5	3010 40.1	4620 48.1	6530 57.0
femake	DHA	9709-0001	Veight (g) Age (weeks pca)		1490	1755 32.0	1970 33.0	2250 34.0	2520 35.0	•			33.8	3500		
Female	OHA	9709-0003	•		1725 35.4	2015 36.4	2155						30.5	2580	4080 47.7	5420 57.1

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

Gender R	Regimen	Subject	Variable	Wgt1	Wgt2	Wg t 3	Hgr4		Wgt6	Wgt7	Vgt 8	Vgt9	Growth Rate g/day	Ngt 40	Wgr_48	Wgt_57
	DHA	9712-0001	Weight (g) Age (weeks pca)	987.0 30.0	1120	1270 32.0	1470 33.0	1685 34.0					54.9	2940 40.1	3980	5250 57.1
female D	DIIA A	9712-0002	Veight (9) Age (weeks pca)	1060	1230 33.7	1430							56.4			
Female, C	DIIA	9712-0007	Weight (g) Age (weeks pca)	1082 32.7	1230	1440 34.7	1650 35.7					•	27.3	2425 39.7	4250	5340 56.9
female [E E E	1000-2726	Veight (g) Age (weeks pca)	1000	1170	1470 34.4	1800 35.7	1930 36.1					33.5		4140	57.3 57.3
Female	DIIA	9743-0002	Ueight (g) Age (weeks pca)	1380 32.1	1570 33.3	1845 34.1	1975 35.1						7.62		4240 48.4	5160 57.4
Female	DIRA+ARA	DIIA+ARA 9698-0001	Veight (g) Age (weeks pca)		1690	33.6	2380						37.1	3530	534B 47.7	6582 56.7
Fenale	DHA+ARA	9698-0002	Weight (g) Age (weeks pca)		1870	2130 34.6	2260 35.7					,	31.8	3241		
Female	DIIA	7000-6696	Veight (g) Age (weeks pca)	985.0 31.0	1122 32.0	1283 33.0	1536 34.0	1788 35.0					. 28.9	3177	5107 48.3	6979 57.3
Female	DIIA+ARA	5000-6696	Weight (g) Age (weeks pca)		1542 32.9	1688 33.9	2000	2330					35.1	620 60.0	6752 48.0	8341 57.0
female	DIIA+ARA	9700-0002	Weight (g) Age (weeks pca)	1315	1525	1885	2035	2220 34.1	2480 35.6				31.9	3340	4930	6420 57.1
Female	DHA+ARA	1 9701-0002	Weight (g) Age (weeks pca)		1609	1887 35.4	2210 36.4	2420 37.4					37.8	2930	5115 48.4	6525 56.4
Female	DIIA+ARA	A 9701-0006	ueight (g) Age (weeks pca)		1859	2113	2456 35.3	2728 36.1					38.3	3600	.5045	6270 57.3
Female	DIIA+ARA	A 9701-0007	Weight (g) Age (weeks pca)	1469	1427	1590	1982 36.7	2227 37.7				,	29.B	2680 39.9	4935	6955

four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix

Listing of Weight's Included in the Statistical Analyses

	Vgr_57		5550 57.4	7500 56.9	5340	6410 57.6	5420 57.3	6650 56.7	5850	6800 57.3	6640 57.0	6894 56.9	5050 57.0	7655 56.7
	Mgt_48	5545	4545 48.7	6220 48.4	4300	4680	4250 48.1	5400 48.1	4190	5150 48.0	2400 48.0	5107 48.4	48.0	6550 48.6
	Ngt _40	3500 41.1		4190	3025	2905 39.9	3030	3600	2850 40.0	3110	0°07	3376 39.9	2600 40.4	4100
Growth Rate	g/day	34.6	35.6	39.9	29.9	6.07	28.9	49.1	27.4	26.7	30.0	49.8	22.1	34.5
•	Vgt9												1380	
	Wgt8												1350	
	Ngt7									2070 34.9			1265 33.0	
	Ngt6	2759 37.7							2240 36.6	1780 33.9			1310 32.7	
	Wgt5	2433 36.1		2400 34.1	2710 38.0	2655 37.3	1955 35.3		2030 35.7	1570 32.9			1310 32.4	
	Ng C 4	2234 35.3		2155	2525 37.0	2595 37.0	1680 34.3	2680 37.0	1880 35.0	1370		2920 37.7	1280 32.1	2060 34.9
	Ngt3	1978 34.4		1820 32.1	2300	2230 36.0	1450 33.1	2560	1620 34.0	1200		2500 36.6	1185 31.7	1685 33.7
	Wgt2	1703 33.4	2019 33.7	1488 31.1	2060 35.0	2000 35.0	1255 32.1	35.0	1495	1090 30.0	1840 33.4	2260 35.7	1120	1515 32.9
	Wgt1	1488 32.3	1841 33.0	1293 30.1	1895 34.0	1725 34.0	31.3	1865 34.0	1390 32.0	0.62	1690	1760 34.4	1075	1290
	Variable	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	Veight (g) Age (мееks pca)	Ueight (g) Age (weeks pca)	. Veight (g) Age (weeks pca)	Height (g) Age (weeks pca)	Veight (9) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (9) Age (weeks pca)	Weight (g) Age (weeks pca)
	Subject	9701-0010	9701-0013	9702-0003	9702-0005	9702-0009	9703-0001	9000-2026	9703-0007	9704-0002	.9704-0003	9705-0003	*S000-S026	9706-0001
=	ie				DIIA+AR	DHA+ARA	DHA+ARA	DIIA+ARA	DHA+ARA	DIIA+ARA	DHA+ARA	DIIA+ARA	DHA+ARA	DHA+ARA
	Regimen	DHA+ARA	DIIA+ARA	DIIA+ARA	DIIA+	DHA	DHA							
	Gender	f emal e	Female	.Female`	Female	Female	female	Female	Female	Female	Female	f emal e	Female	f emal e

Appendix 1

		<u>-</u> .		•,													
		÷. =.		_	Listing of Weights Included in the Statistical Analyses	f Veigh	s Includ	led in th	e Statis	tical Ar	nalyses					•	
		÷'											·	Growth			
Jepop	Regimen		Subject	Variable	Vgt 1	Wgt2	Wgt3	Mgt4	Hgt5	Ngté	Ngt7	Vg t 8	Ngt9.	g/day	Ngt_40	87 16M	Wgt_57
Female	DHA+ARA		~	Weight (g) Age (weeks pca)	1395	1710 33.0	1684 33.9	2275 35.4		set				34.8	2845 40.3	6.87 48.9	5550 57.3
Female	DIIA+ARA		9706-0004	Weight (g) Age (weeks pca)	1550	1705 37.6	2050 38.7			•				36.1	2645	4225	4935 58.0
Female	DIIA+ARA		9706-0007	Veight (g) Age (weeks pca)	1235	1490	1820 35.7	1930 36.4	,					34.3	2505		
Female	DHA	DIIA+ARA	9706-0011	Veight (g) Age (weeks pca)	1900	2105 35.0								41.0	3430	5175	6140 56.7
Female	DIIA	DIIA+ARA	9706-0015	Veight (g) Age (weeks pca)	1670 34.6	1975 35.6	2210 36.4							41.6	3005	7.87 48.4	5810 57.6
Female	DIIA	DIIA+ARA	9706-0017	Weight (g) . Age (weeks pca)	1465	1700	1895	2170						33.4			
female		DHATARA	9707-0002	Weight (g) Age (weeks pca)	34.3	2240 36.0	2385 36.9	2610 37.9						33.2			
Female		DIIA+ARA	9708-0002	Weight (g) Age (weeks pca)	1535 33.0	1700	1980 35.0	2200 36.0						. 32.5	2724 38.1	4645	6315 55.4
Fenale		DIIA+ARA	9708-0005	Weight (9) Age (weeks pca)	1125	1345 33.4	1610 34.4	1980						40.4	3121	5855	7875 57.4
Female		DIIA+ARA	9708-0007	Veight (g) Age (weeks pca)	1200	1440	1680 33.3	1975 34.3						36.6			
Female		DHA+ARA	7000-6026	Weight (g) Age (weeks pca)	1350	1560	1885 34.6	2250 35.6	2475					37.0	3295 39.7	5250 48.4	6685 56.7
Feniale		DIIA+ARA	9712-0003	Weight (g) Age (weeks pca)	1283 32.0	1410	1590 34.0	1850 35.0	2010 36.0					27.1	2580 40.0	4130	\$640 \$7.5
Female		DHA+ARA	9712-0004	ueight (g) Age (weeks pca)	1575 33.0	1780	1890	2080 35.6	2530					29.7	3220 40.3	4920 48.1	57.1

. Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

	5, ≠ 30. <u>−</u>				,			•					Growth Rate			٠
Gender	Gender Regimen	Subject	Variable	Vgt1	Ngt2	Ngt3	Ngt4	MgtS	Vgt6	Ngt7	Иgt8	Wgt9	g/day	Mgt 40	Mgt_48	Wgt_57
Female	DIIA+ARA	9712-0008	Weight (g) Age (weeks pca)	1590	1780 35.0	1990 35.8	2475						37.2	2960	4470	5760 57.1
Female	OHA+ARA	9746-0002	Veight (9) Age (weeks pca)	1249	1429	1597 34.7	1814	2110 36.7					30.1	2680 39.9	4010 46.9	5362 56.9
Female	¥	1050-8696												3546	4880	
f ema i e	 E	9698-0502				٠					•			3518 40.0	5972	
Female	<u> </u>	9698-0503	٠.											3390	4213	5319
Fernale	 E	9698-0504			• 0									3383	5234 48.7	6667 57.9
female		9698-0505					•		mà.					3646	4638	\$653 \$7.0
female	Ī	1090-6696											-	2582 40.0	4766	5731 57.0
f ema l e	<u> </u>	9699-0602												4284	4823	5986 57.0
Female	<u> </u>	1090-6696												3716 40.0	4482 47.7	5674 56.7
female		7090-6696												3660 40.0	4738	6355 57.0
Female	Ξ	5090-6696	•		·		•		-					3433	5617 48.4	7603
fеmale	₹-	9701-0501												3884	5630	6450

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

6630 56.7 6800 57.1 4530 6270 57.4 5320 57.0 7600 57.7 4940 57.4 5860 57.0 6360 57.1 5310 6040 48.9 5540 47.7 5390 48.0 4210 4050 5020 48.1 3430 3302 40.0 2658 40.0 2895 40.0 3401 40.0 3141 40.0 3762 2718 40.0 2927 4085 Growth Rate 9/day Ngc9 Vgt8 Vgt7 Vgt6: Wgt5 Vgt4 ¥gc3 Ng t 2 Wgtl Variable 9702-0505 9702-0508 9703-0501 9702-0507 9702-0502 9702-0503 9702-0506 9703-0505 9701-0503 9701-0504 9702-0504 9701-0502 9702-0501 Subject Regimen 王 포 ፷ Fenjale female Fernale Female Female Female Female Female Female Fenale Gender Female female female

four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Growth Rate g/day

Wgt9

WgrB

Vgt7

Wgt6

WgtS

Ngt4

Wgt3

Wgt2

Wgt1

Variable

Subject 9703-0506

Gender Regimen

퐆

9703-0507

₹

Female

9704-0501

풒

female

Listing of Weights Included in the Statistical Analyses

Appendix 1

5880 57.4

4700

5702 57.1

48.1

3120

7348 57.3

4080 40.0 6645 58.1

5000 48.3

3396 40.0 \$525 \$7.6

4315

3041

6770 56.6

5515 47.9

4653

7080 57.1

5500 48.0

3419

7675 56.9

5785 47.9

3773

3716 40.0 6890 57.6

3688

5950 57.4

9708-0502

₹

Female

9708-0501

female

9707-0505

王

Female

9707-0503

Female

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

9706-0501

₹

female .

9705-.0502

Female

9705-0501

Female

9707-0501

Ξ

Female

9707-0502

Ξ

Female

9706-0502

₹

Female

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Analys
cains of Weights Included in the Statistical Analys
÷
2.
Included
Hoinhee
ţ

Gender	Regimen	ne.	Subject	Variable	:	Wgt1	Ngt2	Wgt3	hat4	WgtS	Wgt6	Wgt7	NgtB	Vgt9	Growth Rate g/day	Wgt_40	Hgt_48	Ngt_57
Female	¥		9708-0503													2977	5165 48.1	7040 57.4
Female	F 100 00 10. 10		9708-0504		•											3864 40.0	5660 48.4	6705 57.4
Female	¥.		9708-0505							•						3831	5800	7435
Female	<u>.</u> .		9709-0501					ē								3550		
Fernale	· • = = = ;		9709-0502	٠.	•										•	3715 40.0	5205 48.0	6100 56.9
Fenale	Ī	-	9709-0503													3195 40.0		
Fernale	Ī		9709-0504				•									3190 40.0	4590	
Female	E		9050-6026													3505	4500	5910 57.1

Appendix 1

Listing of Weights Included in the Statistical Analyses

		٠.	5.6	-
Growth Rate 8 g/day	26.1	39.6	8	0 22.1 9.
Watt	•			1670 34.9
Wgt17	•			1680 34.7
Ngt9 Ngt10 Ngt11 Ngt12 Ngt13 Ngt14 Ngt15 Ngt16 Ngt17 Ngt18	,			1640 34.6
Wgt 15	•			1585 34.4
19t14	ŕ			1565 34.3
Jgt13				1515 34.1
4gt12 1	ı	2075 34.0		1510 34.0
Jgt11 (1465 33.0	2030 33.9		1450 33.9
Jet 10 1	1448 32.9	1994 33.7		1440 33.7
1 616N	1433 32.7	1938 33.6		1380
Ng t 8	1402 32.6	1882 33.4	1070 32.1	1350 33.3
V91.7	1369	1858 33.3	1080 32.0	1265 33.0
Vaté	1330 32.3	1811 33.1	1060 31.9	1310 32.7
VatS	1294 32.1	1778 33.0	1080 31.7	1310 32.4
Nor.	1291 32.0	1732 32.9	1080 31.6	1280 32.1
Uat 3	1245 31.9	1699 32.7	1070 31.4	31.7
Uat?	1245 1221 31.6 31.7	1675	1050 31.3	1120 31.4
1	1245 31.6	1649 32.4	1020 31.1	1075
	pca)	pca)	pca)	pca)
-	Variable Weight (g) Age (weeks pca)	9707-0307 Veight (g) Age (weeks pca)	Veight (9) Age (weeks pca)	Weight (g) Age (weeks pca)
:	Vari Vari Veig Age	7 Veig Age	3 Veig Age	5 Veig Age
	JB JECT	020-20	000-86	000-50
	en St	6	96 10	RA 97
	Regim Cont	DIIA	Contr	DIIA A
	Gender Regimen SUBJECT Variable Hale Control 9712-0301 Weight (9) Age (weeks	Наве	female Control 9698-0003 Weight (9)	Female DIIA ARA 9705-0005 Weight (g)