ACADEMIC YEAR 2021/22 SEMESTER 2

EE2003 SEMICONDUCTOR FUNDAMENTALS

TUTORIAL 2

Electronics Configuration, Crystal Structure (Lectures 2, 3, 4 [slides #28-39])

Question 1

Schematically show the number of electrons in the various subshells of a Carbon (C) atom with the electronic configuration of $1s^22s^22p^2$ and a mass number of 12. Indicate how many protons and neutrons are in the nucleus. Is this atom chemically reactive? Explain your reason.

Question 2

(a) Label the following planes using the correct notation for a cubic lattice of unite cell edge length *a* (shown within the unit cell).

(b) On the following sets of axes, (i) sketch the [011] direction, and (ii) a (111) plane (for a cubic system with primitive vectors **a**, **b**, and **c**).

(c) The following planes (shown within the first quadrant for 0 < x, y, z < a only, with the dotted lines for reference only) are all from the what one set of *equivalent* planes? Use the correct notation.

Question 3

Calculate the surface density of atoms on (111), (110) and (100) planes for the following crystal structure: (a) simple cubic, (b) body-centered cubic, and (c) face-centered cubic. Assume the lattice constant is \boldsymbol{a} . For each crystal structure, identify the plane with the highest surface density of atoms.

Question 4

Assume that each atom is a hard sphere with the surface of each atom in contact with the surface of its nearest neighbor. Determine the percentage of total unit cell volume that is occupied in a (a) simple cubic lattice, (b) face-centered cubic lattice, and (c) body-centered cubic lattice.

[52.4%, 74%, 68%]

ACADEMIC YEAR 2021/22 SEMESTER 2

EE2003 SEMICONDUCTOR FUNDAMENTALS

TUTORIAL 3

Si/GaAs Crystal Structure, Energy Bands (Lectures 4 [slides #40-53], 5, 6)

Question 1

For the unit cell of the silicon crystal with lattice constant of 5.43 Å,

- a) determine the number of atoms in the unit cell,
- b) calculate the shortest distance between any two atoms,
- c) calculate the volume density of silicon atoms (number of atoms/cm³) in the crystal

[8, 2.35 Å, 5.0×10²² atoms/cm⁻³]

Question 2

Refer to Figure 2.7 (the diamond structure for Si) of your lecture notes.

- (a) The surface of a Si wafer is a (100) plane. Sketch the placement of Si atoms on the surface of the wafer.
- (b) Determine the number of atoms per cm² at the surface of the wafer. Take Si lattice constant as 5.43Å.
- (c) Repeat parts (a) and (b), this time taking the surface of the Si wafer to be a (110) plane.

Question 3

Considering the *E-k* diagram in Fig. 2.1 for Si and GaAs:

- (a) Which material appears to have the lowest electron effective mass in the conduction band?
- (b) Which of these would you expect to produce photons (light) more efficiently through electron-hole recombination?
- (c) Consistent with your answer to part (b), what would you expect the energy of the emitted photons to be? What would be their wavelength in μ m? You can use $E_g(Si) = 1.11 \text{ eV}$, and $E_g(GaAs) = 1.43 \text{ eV}$.

Fig. 2.1 Energy band structure of (a) GaAs and (b)

Question 4

Fig. 2.2 shows the parabolic E versus K curve in the valence band for a hole in two semiconductor materials A and B.

- (i) Determine the relative effective mass (m*/m0) of the hole in valence band A.
- (ii) Is the hole effective mass in the valence band B heavier or lighter? Justify your answer.

Fig. 2.2: E versus K curve in the valence band for a hole in two semiconductor materials A and B

ACADEMIC YEAR 2021/22 SEMESTER 2

EE2003

SEMICONDUCTOR FUNDAMENTALS

TUTORIAL 4

Donor & acceptor impurities, Thermal equilibrium (Lectures 7, 8, 9, 10, 11)

Question 1

Refer to the bonding model of GaAs in Fig. 3.1.

- (a) Draw the bonding model for GaAs depicting the removal of the shaded Ga and As atoms. (*Hint: Ga and As take their bonding electrons with them when they are removed from the lattice*).
- (b) Redraw the bonding model for GaAs showing the insertion of Si atoms into the missing Ga and As atom sites.
- (c) Is the GaAs *p* or *n*-type when Si atoms replace the Ga atoms? Explain.
- (d) Is the GaAs *p* or *n*-type when Si atoms replace the As atoms? Explain.

Fig. 3.1: The 2D bonding model for GaAs.

Question 2

Assuming that the electrons in a particular material follow the Fermi-Dirac distribution function,

a) show that the probability of finding a hole with energy *E* is given by

$$\frac{1}{1 + \exp[(E_F - E)/k_B T]}$$

b) calculate the temperature at which there is a 1% probability that a state 0.30 eV below the Fermi energy level will contain a hole,

[757 K]

Question 3

Consider the two energy levels E_1 and E_2 with $E_1 > E_2$ and an energy separation of 1.12 eV. Assume that the Fermi level E_F is in between the two levels and that T = 300 K. If $E_1 - E_F = 0.30$ eV, determine the probability that an energy state at $E = E_1$ is occupied by an electron and the probability that an energy state at $E = E_2$ is empty.

[9.2×10⁻⁶, 1.73×10⁻¹⁴]

Question 4

Consider a silicon crystal doped with boron atoms to a concentration of 5×10^{17} cm⁻³ at 300 K,

- a) determine the majority and minority carrier concentrations,
- b) determine the position of the Fermi energy level inside the bandgap.

Take n_i to be 1.5×10¹⁰ cm⁻³.

 $[5 \times 10^{17} \text{ cm}^{-3}, 450 \text{ cm}^{-3}, 0.448 \text{ eV below } E_i]$

Question 5

Consider a germanium sample at 350 K which has been doped with donor impurities to a concentration of 6.0×10^{13} cm⁻³. Taking the intrinsic carrier concentration as 2×10^{13} cm⁻³,

- a) calculate the thermal equilibrium electron and hole concentrations.
- b) determine the position of the Fermi energy level inside the bandgap.

 $[6.6\times10^{13} \text{ cm}^{-3}, 6.05\times10^{12} \text{ cm}^{-3}, 0.031 \text{ eV above } E_i]$

Question 6

A hypothetical semiconductor has an intrinsic carrier concentration of 1.0×10^{10} cm⁻³ at 300K, it has conduction and valence band effective densities of states N_c and N_v , both equal to 10^{19} cm⁻³.

- (a) What is the band gap E_q ?
- (b) If the semiconductor is doped with $N_d = 1.0 \times 10^{16}$ donors/cm³, what are the equilibrium electron and hole concentrations at 300K?
- (c) If the same piece of semiconductor, already having $N_d = 1.0 \times 10^{16}$ donors/cm³, is now doped with $N_a = 2 \times 10^{16}$ acceptors/cm³, what are the new equilibrium electron and hole concentrations at 300K?
- (d) Consistent with your answer to part (c), what is the Fermi level position with respect to the intrinsic Fermi level, $E_F E_i$?

ACADEMIC YEAR 2021/22 SEMESTER 2

EE2003 SEMICONDUCTOR FUNDAMENTALS

TUTORIAL 5

Carrier Transport (Lectures 12, 13)

Question 1

Under equilibrium conditions at room temperature, a certain region of a Si device of length *L* has non-uniform acceptor doping as follows:

$$p(x) \approx N_A(x) = n_i \exp((a-x)/b) \dots 0 \le x \le L$$

where $a = 1.8 \mu m$, $b = 0.1 \mu m$, and $L = 0.8 \mu m$.

- (a) Draw the energy band diagram for the $0 \le x \le L$ region by showing E_c , E_f , E_i , and E_v on your diagram given the bandgap of silicon is 1.12eV. Explain your steps.
- (b) Make a sketch of the electric field (ξ) inside the region as a function of position and compute the value of ξ at x = L/2.

Question 2

A pure silicon sample maintained at room temperature has an intrinsic carrier concentration of 1.5×10^{10} cm⁻³. It is first doped with donors of concentration 2×10^{14} cm⁻³, followed by acceptors of concentration 4×10^{14} cm⁻³. Assuming that the carrier mobilities are $\mu_n = 1350$ cm²/Vs and $\mu_p = 480$ cm²/Vs,

- a) calculate the majority and minority carrier concentrations,
- b) what is the resistivity of the pure sample, prior to the two types of dopings?
- c) how will the resistivity change after the dopings?

$$[2\times10^{14} \text{ cm}^{-3}, 1.125\times10^{6} \text{ cm}^{-3}, 2.\times10^{5} \Omega\text{-cm}, 65 \Omega\text{-cm}]$$

Question 3

The electron concentration in silicon at 300K is given by

$$n(x) = 10^{16} \exp\left(-\frac{x}{a}\right) \text{ cm}^{-3}$$

where $a=18~\mu m$ and x is valid for $0 \le x \le 25~\mu m$. The electron diffusion coefficient is 25 cm²/s and the electron mobility is 960 cm²/Vs. The total electron current density through the semiconductor is constant and equal to $-40~A/cm^2$. The electron current has both diffusion and drift current components. Determine the electric field as a function of x which must exist in the semiconductor.

 $[14.5 - 26.0 \exp(x/18) \text{ V/cm}]$

Question 4

A silicon sample is doped such that electron concentration varies linearly across the sample, which is 0.5 μ m thick. Donor concentration varies from 0 (at x = 0) to 10^{16} cm⁻³ (at x = 0.5 μ m).

- (a) Write equations for total electron and hole concentrations as a function of distance x.
- (b) Determine electron and hole diffusion current densities if the diffusion coefficients are $D_n = 30 \text{ cm}^2/\text{V.s}$, and $D_p = 12 \text{ cm}^2/\text{V.s}$, respectively.
- (c) At $x = 0.5 \mu m$, determine the hole diffusion current density and the position of Fermi level E_F with respect to conduction band edge E_C . Assume temperature = 300K.