Calcolo delle Probabilità

Simone Lidonnici

18 aprile 2024

Indice

1	Mo	dello probabilistico
	1.1	Spazio degli eventi elementari
	1.2	Algebra degli eventi
	1.3	Probabilità
		1.3.1 Conseguenze degli assiomi
	1.4	Costruire la probabilità
	1.5	Esempio finale

1

Modello probabilistico

Un modello probabilistico è formato da 3 elementi:

 \bullet Spazio degli eventi elementari: Ω

ullet Algebra degli eventi: ${\cal A}$

• Probabilità: P

1.1 Spazio degli eventi elementari

Lo spazio degli eventi elementari o spazio campionario contiene tutti i possibili risultati dell'esperimento e si indica con Ω .

 $|\Omega|$ = cardinalità dell'insieme, cioè numero di risultati possibili dell'esperimento.

Esempi:

Lancio di una moneta: $\Omega = \{T, C\}$ Lancio di un dado: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Compleanni di 25 persone: $\Omega = \{(\omega_1, \omega_2, ..., \omega_{25}) | \omega \in [1, 365] \}$

1.2 Algebra degli eventi

L'algebra degli eventi è una domanda binaria (con risposta solo vero o falso) sull'esito dell'esperimento. L'evento è un sottoinsieme di Ω e si indica con una lettera maiuscola, cioè $A, B, C \subseteq \Omega$. L'insieme di tutti gli eventi si indica con \mathcal{A} .

Operazioni tra eventi

Dati $A, B \subseteq \Omega$ eventi:

- $A \cup B = \{ \omega \in \Omega | \omega \in A \lor \omega \in B \}$
- $\bullet \ A\cap B=\{\omega\in\Omega|\omega\in A\wedge\omega\in B\}$
- A^C (complementare di A) = $\{\omega \in \Omega | \omega \notin A\}$

Esempi:

Lancio di una moneta: $\mathcal{A} = \{\emptyset, \{T\}, \{C\}, \{T, C\}\}$ Lancio di un dado a 3 faccie: $\mathcal{A} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

1.3 Probabilità

Funzione probabilità

La **probabilità** è una funzione che associa ad ogni evento $A \in \mathcal{A}$ un numero $p \in [0, 1]$ che indica la probabilità di verificarsi dell'evento.

$$\mathbb{P}:\mathcal{A} \to [\prime,\infty]$$

La funzione P deve seguire delle condizioni:

- $\mathbb{P}(\emptyset) = 0$
- $\mathbb{P}(\Omega) = 1 = \mathbb{P}(A) + \mathbb{P}(A^C)$
- \bullet \mathbb{P} è una funzione additiva

1.3.1 Conseguenze degli assiomi

Se $A, B \in \mathcal{A}$ sono eventi disgiunti allora $A \cap B = \emptyset$ e $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ Se $A, B \in \mathcal{A}$ sono eventi non disgiunti allora $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$ P è una funzione monotona rispetto all'inclusione di insiemi, cioè se $A \subseteq B \implies \mathbb{P}(A) \leq \mathbb{P}(B)$

1.4 Costruire la probabilità

Costruzione di \mathbb{P}

Dato uno spazio degli eventi Ω , scelgo \mathcal{A} algebra di tutti i sottoinsiemi di Ω :

$$|\Omega| = n \implies |\mathcal{A}| = 2^n$$

Per costruire P basta conoscere la probabilità degli eventi elementari. Sia:

$$p: \Omega \to [0,1] | \sum_{\omega \in \Omega} p(\omega) = 1$$

Definisco:

$$P: \mathcal{A} \to [0,1]|P(A) = \sum_{\omega \in A} p(\omega)$$

 $p(w) = P(\{\omega\}) \text{ con } \omega \in \Omega$

Se la probabilità degli eventi elementari è uniforme allora:

$$p(\omega) = \text{cost.} = \frac{1}{|\Omega|}$$

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|}$$

Esempio:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$p(1) = p(2) = p(3) = 0.1$$

 $p(4) = p(5) = 0.2$
 $p(6) = 0.3$
 $P({3,4}) = 0.1 + 0.2$

1.5 Esempio finale