UNIVERSITÀ DEGLI STUDI DI MILANO

FACOLTÀ DI SCIENZE E TECNOLOGIE

Corso di Laurea magistrale in Informatica

IL TITOLO DELLA TESI

Relatore: Relatore 1 Correlatore: Correlatore 1

> Tesi di Laurea di: Lorenzo D'Alessandro Matr. Nr. 939416

ANNO ACCADEMICO 2020-2021

Dedica

Ringraziamenti

Questa sezione, facoltativa, contiene i ringraziamenti.

Indice

Ri	ingraziamenti	ii
Indice		iii
1	Introduzione 1.1 I contenuti	1 1 1
2	Stato dell'arte	2
3	Classificatore	3
4	Datasets	4
5	Risultati	5
6	Conclusioni 6.1 Conclusioni	6 6
Bi	ibliografia	7

Introduzione

Introduzione...

1.1 I contenuti

Spiegazione problema...

1.2 Organizzazione della tesi

Organizzazione tesi...

Capitolo 2
Stato dell'arte

Classificatore

I recommender system della famiglia collaborative filtering utilizzano le informazioni su users e items per raccomandare gli items a users simili... Il numero di users e items è fisso, questo è vero sia per matrix factorization che lavora su una matrice con un numero di righe pari al numero di users e un numero di colonne pari al numero di items, sia per i modelli neurali che utilizzano dei vettori di embedding con dimensione decisa a tempo di compilazione. Aggiungere un nuovo user/item significa ricompilare il modello ed eseguire nuovamente la fase di training. Questo non è un problema in un ambiente desktop in cui dei server aggiornano giornalmente le preferenze di ogni utente. Diverso è il caso in cui si vuole eseguire il training del recommender system direttamente sul dispositivo mobile, ed è quindi impensabile eseguire il training ogni volta che si incontra un nuovo user/item

Il modello proposto in questa tesi è una rete feed-forward fully-connected, un modello di rete neurale molto comune. Questa rete è composta da n layers che contengono x neuroni. Ogni neurone è connesso a tutti i neuroni del livello successivo e non esistono cicli nel grafo [1]

Datasets

Capitolo 5 Risultati

Conclusioni

6.1 Conclusioni

Conclusioni...

6.2 Sviluppi futuri

Sviluppi futuri...

Bibliografia

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016. http://www.deeplearningbook.org.