1. (3 pts for each) Answer True or False for the following statements. Give short explanations for your answers.

(a) $L: \mathbb{R}^2 \to \mathbb{R}^2$ with $L(x) = (x_1 + x_2, x_1 - x_2)^T$ for $x = (x_1, x_2)^T$ is a linear transformation.

(b) Vectors $\{(1,0,0)^T, (0,-2,0)^T, (1,2,-1)^T\}$ are linear independent.

(c) The angle between vectors $(1,2,-3)^T$ and $(2,-1,1)^T$ is 90°.

False.
$$(1,2,-3)$$
 $\binom{2}{-1}$ = $2+(-2)-3=-3+0$
So they are not perpendicultar.

(d) Rank of a
$$\begin{pmatrix} 1 & -2 \\ 2 & 3 \\ 2 & 4 \end{pmatrix}$$
 is 2.

(1 2) $\begin{pmatrix} 1 & 2 \\ 2 & 5 \\ 2 & 4 \end{pmatrix}$ $\begin{pmatrix} 2 & 2R_1 \\ R_3 - 2R_1 \\ 0 & 0 \end{pmatrix}$ has rank 2 (True)

(e) Let A be a 4×3 matrix. If nullity (A) = 1, then rank (A) = 3.

2. (7.5 pts for each) (a) Whether $\{(1,1,-2)^T, (2,2,-1)^T, (3,-1,2)^T\}$ forms a basis for \mathbb{R}^3 . Show all your work.

We just need to check if they are L. I by solving

$$\begin{pmatrix}
1 & 2 & 3 & | O \\
2 & -1 & | O \\
-2 & -1 & 2 & | O
\end{pmatrix}$$

$$\begin{matrix}
R_1 - R_1 \\
R_2 + R_2 \\
R_3 + R_4
\end{matrix}$$

$$\begin{matrix}
1 & 2 & 3 & | O \\
R_4 + R_2 \\
R_1
\end{matrix}$$

$$\begin{matrix}
1 & 2 & 3 & | O \\
0 & 0 & 4 & | O
\end{matrix}$$

$$\begin{matrix}
R_2 - R_1 \\
-2 & -1 & 2 & | O \\
R_4 + R_2 \\
R_4
\end{matrix}$$

$$\begin{matrix}
R_4 + R_1 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_2 - R_1 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_2 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_2 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & 8 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & | O
\end{matrix}$$

$$\begin{matrix}
R_4 + R_4 \\
O & 3 & |$$

• (b) Whether $\{2x^2-x-1,x^2-1,x-1\}$ forms a basis of P_3 . Show all your work.

Check linear in dependence by sething up

$$c_1(2x^2-x-1)+c_2(x^2-1)+c_3(x-1)=0$$
 $2c_1x^2-c_1x-c_1+c_2x^2-c_2+c_3x-c_3=0$
 $2c_1x^2-c_1x-c_1+c_2x^2-c_2+c_3x-c_3=0$
 $2c_1x^2-c_1x-c_1+c_2x^2-c_2+c_3x-c_3=0$
 $2c_1x^2-c_1x-c_1+c_2x^2-c_3+c_3+c_3=0$
 $c_1+c_2+c_3=0$
 $c_1+c_2+c_3$

Linear Rependence. So they do not form a bassof P.

3. (5 pts for each) Given
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \\ 3 & 4 & 7 & 10 \end{pmatrix}$$
.

(a) Find a basis for the null space
$$N(A)$$
:

(b) $R_3 - 2R_1$

(c) $R_3 - 2R_2$

(d) $R_3 - 2R_2$

(e) $R_3 - 2R_2$

(f) $R_3 - 2R_2$

(g) $R_3 - 2R_2$

(b) Find a basis for the row space.

A bags of row space is
$$3(1,0,1,2),(0,-1,-1,-1)$$
}

(c) Find a basis for the column space.

A basis
$$P$$
 f column space is $\left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\}$

(d) Find nullity
$$(A)$$
 and rank (A) .

4. (a) (5 pts) State the Rank-Nullity Theorem.
let A be an mxn malix. I hen we have
Let A be an mxn mallix Then we have rank(A) + nullily (A) = n
(b) (5 pts) Given an 5×7 matrix A with rank(A) = 5. How many solutions are there for $A^T y = 0$.
ranklik
(AT) = 0
rankint) + nullily (AT) = 5 mullity (AT) = 0 mullity (AT) = 0 ATy = 0 has a unique solution
A y = O mas or wing - 20 min
(c) (5 pts) Given an 5×7 matrix A with rank(A) = 5 and let b be any vector in \mathbb{R}^5 . Explain
why the system $Ax = 0$ is consistent and has infinitely many solutions.
As rank (A) = 5, after using Garssian eliminoche
method we have
(1) 공연 경기 이번 1. 19 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1 - 2 - +
\sim \sim
Therein no Zero row, non zeros
So Ax=b à consistent. Moreover 2 face
Nullity (A)=2 means we have 2 face
Thus has in hingle by many
variables. Thus Ax=1s has in him tely many
Solutions.
20. < [25] [25] [25] [25] [25] [25] [25] [25]

5. Define
$$L: P_3 \to P_3$$
 by

$$L(p) = 2p - xp'$$
 for any $p \in P_3$.

(a) (10 pts) Verify that L is a linear transformation.

$$L(\alpha p + \beta q) = 2(\alpha p + \beta q) - \chi(\alpha p + \beta q)$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p - \chi(\alpha p + \beta q) - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p - \chi(\alpha p + \beta q) - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p - \chi(\alpha p + \beta q) - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + 2\beta q - \chi(\alpha p + \beta q) + \beta(2q - \chi(q))$$

$$= 2\alpha p + \beta(2q - \chi(q)) + \beta(2q - \chi(q))$$

$$= 2\alpha p + \beta(2q - \chi(q)) + \beta(2q - \chi(q))$$

$$= 2\alpha p + \beta(2q - \chi(q)) + \beta(2q - \chi(q))$$

$$= 2\alpha p + \beta(2q - \chi(q)) + \beta(2q - \chi(q))$$

$$= 2\alpha p + \beta(2q - \chi(q)) + \beta(2q - \chi(q))$$

$$= 2\alpha p + \beta(2q - \chi(q)) + \beta(2q - \chi(q))$$

$$= 2\alpha p + \beta(2q - \chi(q)) + \beta(2q - \chi(q))$$

$$= 2\alpha p + \beta(2q - \chi(q)) + \beta(2q - \chi(q))$$

$$= 2\alpha p + \beta(2q - \chi(q)) + \beta(2q - \chi(q))$$

$$= 2\alpha p + \beta(2q - \chi(q)) + \beta(2q - \chi(q))$$

$$= \beta(2q - \chi(q)) + \beta(2q - \chi(q))$$

$$=$$

(b) (5 pts) Determine Ker L and its dimension.

Solve
$$ke(p) = 0$$
. Pick $p(x) = a \times^2 + b \times + c$

$$L(p) = 2a \times^2 + 2b \times + 2c - x(2a \times + b)$$

$$L(p) = b \times + 2c = 0 \Rightarrow b = 0 \text{ and } c \times c$$

$$= b \times + 2c = span \S \times 2\S$$

$$\Rightarrow b = a \times^2 \Rightarrow kec L = span \S \times 2\S$$

$$dim(kec L) = 1$$

c) (5 pts) Determine the range of L and its dimension.

Varge (L) =
$$\frac{3}{5}b \times +2c$$
 | $\frac{1}{5}b$, $c \in \mathbb{R}$ }

= $\frac{3}{5}pan 3 \times 2$ }

I dime (range L) = $\frac{2}{5}$

(c) (5 pts) By using the standard basis
$$E = \{x^2, x, 1\}$$
, find the matrix representation of L .

$$(L(p))E = \begin{pmatrix} 0 \\ b \\ 2c \end{pmatrix} \text{ and } (p)_E = \begin{pmatrix} \frac{9}{2} \\ \frac{9}{2} \end{pmatrix} . So$$

$$L(p) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} (p)_E$$

All to detained to a construction of the const

S C & Spring & word