Solving Linear Systems

§3.5 Vector and Matrix Norms

MA385/MA530 – Numerical Analysis 1 November 2019

<<< Annotated Slides >>>

All computer implementations of algorithms that involve floating-point numbers (roughly, finite decimal approximations of real numbers) contain errors due to round-off error.

It transpires that computer implementations of LU-factorization, and related methods, lead to these round-off errors being greatly magnified: this phenomenon is the main focus of this final section of the course.

You might remember from earlier sections of the course that we had to assume functions where well-behaved in the sense that

$$\frac{|f(x) - f(y)|}{|x - y|} \le L,$$

for some number L, so that our numerical schemes (e.g., fixed point iteration, Euler's method, etc) would work. If a function doesn't satisfy a condition like this, we say it is "ill-conditioned".

One of the consequences is that a small error in the inputs gives a large error in the outputs.

We'd like to be able to express similar ideas about matrices: that A(u-v)=Au-Av is not too "large" compared to u-v. To do this we used the notion of a "norm" to describing the relatives sizes of the vectors \boldsymbol{u} and $A\boldsymbol{u}$.

When we want to consider the size of a real number, without regard to sign, we use the *absolute value*. Important properties of this function are:

- 1. $|x| \ge 0$ for all x.
- 2. |x| = 0 if and only if x = 0.
- $3. |\lambda x| = |\lambda||x|.$
- 4. $|x+y| \le |x| + |y|$ (triangle inequality).

This notion can be extended to vectors and matrices.

Definition 3.18 (Vector norm)

Let \mathbb{R}^n be all the vectors of length n of real numbers. The function $\|\cdot\|$ is called a **norm** of \mathbb{R}^n if, for all $u,v\in\mathbb{R}^n$

- 2. ||v|| = 0 if and only if v = 0. Let $\mathbf{v} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_n \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_n \end{pmatrix}$
- 3. $\|\lambda v\| = |\lambda| \|v\|$ for any $\lambda \in \mathbb{R}$,
- 4. $||u+v|| \le ||u|| + ||v||$ (triangle inequality).

Norms on vectors in \mathbb{R}^n quantify the *size* of the vector. But there are different ways of doing this...

Definition 3.19 (The 1-, 2-, and ∞ -norms)

Let $v \in \mathbb{R}^n$: $v = (v_1, v_2, \dots, v_{n-1}, v_n)^T$.

- (i) The 1-norm (a.k.a. the *Taxi cab* norm) is $||v||_1 = \sum_{i=1}^n |v_i|$.
- (ii) The 2-norm (a.k.a. the Euclidean norm) $\|v\|_2 = \left(\sum_{i=1}^n v_i^2\right)^{1/2}$. Note, if v is a vector in \mathbb{R}^n , then

$$\mathbf{v}^T \mathbf{v} = v_1^2 + v_2^2 + \dots + v_n^2 = \|\mathbf{v}\|_2^2.$$

(iii) The ∞ -norm (a.k.a. the max-norm) $||v||_{\infty} = \max_{i=1}^{n} |v_i|$.

Example:
$$v = (-2, 4, -4)$$
 $||v||_1 = 2 + 4 + 4 = 10$ $||v||_2 = \sqrt{4 + 16 + 16} = \sqrt{36} = 6$ $||v||_{\infty} = 4$

It is easy to show that $\|\cdot\|_1$ and $\|\cdot\|_\infty$ are norms (see Exercise). And it is not hard to show that $\|\cdot\|_2$ satisfies conditions (1), (2) and (3) of Definition 3.18.

It takes a little bit of effort to show that $\|\cdot\|_2$ satisfies the triangle inequality; details are given in Section 3.5.9 of the notes.

Matrix Norms (60/76)

Definition 3.20

Given any norm $\|\cdot\|$ on \mathbb{R}^n , there is a subordinate matrix norm on $\mathbb{R}^{n \times n}$ defined by $\|A\| = \max_{v \in \mathbb{N}} \frac{\|Av\|}{\|v\|}, \qquad \text{norm}$ (7)

where $A \in \mathbb{R}^{n \times n}$ and $\mathbb{R}^n_\star \neq \mathbb{R}^n/\{\mathbf{0}\}$

You might wonder why we define a matrix norm like this. The reason is that we like to think of A as an operator on \mathbb{R}^n : if $v \in \mathbb{R}^n$ then $Av \in \mathbb{R}^n$. So rather than the norm giving us information about the "size" of the entries of a matrix, it tells us how much the matrix can change the size of a vector.

It is not obvious from the above definition how to calculate the norm of a given matrix. We'll see that

- The ∞ -norm of a matrix is also the largest absolute-value row sum.
- The 1-norm of a matrix is also the largest absolute-value column sum.
- The 2-norm of the matrix A is the square root of the largest eigenvalue of A^TA .

Theorem 3.21

For any $A \in \mathbb{R}^{n \times n}$ the subordinate matrix norm associated with $\|\cdot\|_{\infty}$ on \mathbb{R}^n can be computed by

$$||A||_{\infty} = \max_{i=1,\dots,n} \sum_{j=1}^{n} |a_{ij}|.$$

$$|(Av)_{i}^{\bullet}| = |\sum_{j=1}^{n} \alpha_{ij} v_{i}| \leq$$

$$\leq K \geq |\alpha_{ij}|$$

So $||Av||_{\infty} \leq K \quad \text{mysc} \geq |\alpha_{ij}|$.

$$K = ||V||_{\infty} := \max_{i=1,\dots,n} ||V_{i}||_{\infty} . Then$$

$$||(A_{i})||_{i} = ||\sum_{j=1}^{n} \alpha_{i,j} V_{j}||_{\infty} ||\sum_{j=1}^{n} ||\alpha_{i,j}|| ||V_{j}||_{\infty} ||\nabla_{j}||_{\infty} ||\nabla_{j}||_$$

Theorem 3.21

For any $A\in\mathbb{R}^{n\times n}$ the subordinate matrix norm associated with $\|\cdot\|_\infty$ on \mathbb{R}^n can be computed by

$$||A||_{\infty} = \max_{i=1,\dots,n} \sum_{i=1}^{n} |a_{ij}|.$$

continued

Oivide by K to set

II A v lloo

most

I laid for all
$$v \in IR^n$$
.

To finish, suppose that row or is the row of A with largest sum, I.e., mox $\sum |a_{ij}| = \sum |a_{\alpha ij}|$ Let u be the vector $v_i = \sum_{j=1}^{n} |a_{\alpha ij}| = \sum_{j=1}^{n} |a_{$

Theorem 3.21

For any $A\in\mathbb{R}^{n\times n}$ the subordinate matrix norm associated with $\|\cdot\|_\infty$ on \mathbb{R}^n can be computed by

$$||A||_{\infty} = \max_{i=1,\dots,n} \sum_{j=1}^{n} |a_{ij}|.$$

Then, for this
$$v$$

$$||Av||_{\infty} = \sum_{j=1}^{n} |a_{\infty j}| = \max_{i} \sum_{j} |a_{ij}|$$

Since, for this v,

$$\| v \|_{\infty} = 1$$

we get the desired result.

A similar result holds for the 1-norm, the proof of which is left as an exercise.

Theorem 3.22

$$||A||_1 = \max_{j=1,\dots,n} \sum_{i=1}^{n} |a_{i,j}|.$$
 (8)

Computing the 2-norm of a matrix is a little harder that computing the 1- or ∞ -norms. However, later we'll need estimates not just for ||A||, but also $||A^{-1}||$. And, unlike the 1- and ∞ -norms, we can estimate $||A^{-1}||_2$ without explicitly forming A^{-1} .

We begin by recalling some important facts about eigenvalues and eigenvectors.

Definition 3.23

Let $A \in \mathbb{R}^{n \times n}$. We call $\lambda \in \mathbb{C}$ an eigenvalue of A if there is a non-zero vector $oldsymbol{x} \in \mathbb{C}^n$ such that

$$A\mathbf{x} = \lambda \mathbf{x}.$$

We call any such x an eigenvector basaciated with A. associated

- (i) If A is a real symmetric matrix (i.e., $A = A^T$), its eigenvalues and eigenvectors are all real-valued.
- (ii) If λ is an eigenvalue of A, the $1/\lambda$ is an eigenvalue of A^{-1} .
- (iii) If x is an eigenvector associated with the eigenvalue λ then so too is ηx for any non-zero scalar η .
- (iv) An eigenvector may be normalised as $\|\boldsymbol{x}\|_2^2 = \boldsymbol{x}^T \boldsymbol{x} = 1$.

if
$$Ax = \lambda x$$
.
Then $A^{-1}Ax = A^{-1}\lambda x$
 $I = \lambda A^{-1}$
 $I = \lambda A^{-1}x =$

(v) There are n eigenvectors $\lambda_1, \lambda_n, \ldots, \lambda_n$ associated with the real symmetric matrix A. Let $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(n)}$ be the associated normalised eigenvectors. Then the eigenvectors are linearly independent and so form a basis for \mathbb{R}^n . That is, any vector $v \in \mathbb{R}^n$ can be written as a linear combination:

$$\boldsymbol{v} = \sum_{i=1}^n \alpha_i \boldsymbol{x}^{(i)}.$$

(vi) Furthermore, these eigenvectors are *orthogonal* and *orthonormal*:

$$(x^{(i)})^T x^{(j)} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Here is a useful consequence of (v) and (vi), which we will use repeatedly.

If we write
$$v \in \mathbb{R}^n$$
 as
$$V = \alpha_1 x^{(1)} + \alpha_2 x^{(2)} + \cdots + \alpha_n x^{(n)}$$

then
$$VTV = \left(\sum_{i=1}^{n} \alpha_{i} x^{(i)}\right)^{T} \left(\sum_{i=1}^{n} \alpha_{i} x^{(i)}\right)^{T} \left(\sum_{i=1}^{n} \alpha_{i} x^{(i)}\right)^{T} \left(\sum_{i=1}^{n} \alpha_{i} x^{(i)}\right)^{T} x^{(i)} = \begin{cases} 1 & i = i \\ 0 & i \neq j \end{cases}$$

$$= \sum_{i=1}^{n} \alpha_{i}^{2} \qquad \text{since } \left(x^{(i)}\right)^{T} x^{(i)} = \begin{cases} 1 & i = i \\ 0 & i \neq j \end{cases}.$$

(Recall
$$v^Tv := \sum_{i=1}^{n} v_i^2$$

The singular values of a matrix A are the square roots of the eigenvalues of A^TA . They play a very important role in matrix analysis and in areas of applied linear algebra, such as image and text processing. Our interest here is in their relationship to $\|A\|_2$.

But first we'll study a theorem about certain matrices (so called, "normal matrices").

Computing
$$\|A\|_2$$

Eigenvalues (69/76)

Theorem 3.24

For any matrix A, the eigenvalues of A^TA are real and non-negative.

Proof. Let
$$B = A^T A$$
. Since $B^T = (A^T A)^T$

=
$$(A^{T}(A^{T})^{T}) = B$$
, B is symplifie.

So, if
$$Bx = \lambda x$$
 then $\lambda \in IR$.

Next
$$x^T B x = x^t A A x = (Ax^3 (Ax) = 1)$$

Thun, if $Bx = \lambda x$, $x^T B x = \lambda x^T x = \lambda ||x||_2^2$
But, thus, $\lambda = \frac{\|Ax\|_2^2}{\|x\|_2^2} > 0$.

So, if
$$B \times = \lambda \times \epsilon$$
 then $\lambda \in \mathbb{R}$.
Next $x^T B \times = x^T A^T A \times = (Ax)^T (Ax) = \|A \times\|_2^2$

Part of the above proof involved showing that, if $(A^TA)x = \lambda x$, then

$$\sqrt{\lambda} = \frac{\|A\boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2}.$$

This at the very least tells us that

$$||A||_2 := \max_{\boldsymbol{x} \in \mathbb{R}^n_{\star}} \frac{||A\boldsymbol{x}||_2}{||\boldsymbol{x}||_2} \ge \max_{i=1,\dots,n} \sqrt{\lambda_i}.$$

With a bit more work, we can show that if $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ are the the eigenvalues of $B = A^T A$, then

$$||A||_2 = \sqrt{\lambda_n}.$$

Computing
$$||A||_2$$

Eigenvalues (71/76) Theorem 3.25

Let $A \subseteq \mathbb{R}^{n \times n}$. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, be the eigenvalues of

$$\|A\|_2 = \max_{i=1,...,n} \sqrt{\lambda_i} = \sqrt{\lambda_n},$$

Let
$$\beta x^{(i)} = \lambda_i x^{(i)}$$
 for $i = 1, ..., N$. For any

$$\xi \mid \beta x^{(i)} = \lambda_i x^{(i)} \quad \text{for } i = 1, \dots, N$$

VEIRⁿ, we can write
$$v = \sum_{i=1}^{n} \alpha_i x^{(i)}$$

VEIRⁿ, we can write
$$v = \sum_{i=1}^{n} \alpha_i x^{(i)}$$
Then $A^T A_{ij} = \sum_{i=1}^{n} \alpha_i x^{(i)} = \sum_{i=1}^{n} \alpha_i x^{(i)}$

VEIRⁿ, we can write
$$v = \sum_{i=1}^{n} \alpha_i x^{(i)}$$

Then $A^T A v = \sum_{i=1}^{n} \alpha_i B x^{(i)} = \sum_{i=1}^{n} \alpha_i \lambda_i x^{(i)}$

Thun 2 $V^T A^T A U = V^T \left(\sum_{i=1}^{N} \alpha_i \lambda_i x^{(i)} \right) = \sum_{i=1}^{N} \lambda_i \alpha_i^2 \leq \lambda_n \|v\|_2^2$

Finished Here Thu 21 Nov

Exercises (73/76)

Exercise 3.12 (\star)

Show that, for any vector $x \in \mathbb{R}^n$, $\|x\|_{\infty} \leq \|x\|_2$ and $\|x\|_2^2 \leq \|x\|_1 \|x\|_{\infty}$. For each of these inequalities, give an example for which the equality holds. Deduce that $\|x\|_{\infty} \leq \|x\|_2 \leq \|x\|_1$.

Exercise 3.13

Show that if $x \in \mathbb{R}^n$, then $\|x\|_1 \le n \|x\|_{\infty}$ and that $\|x\|_2 \le \sqrt{n} \|x\|_{\infty}$.

Exercise 3.14

Show that, for any subordinate matrix norm on $\mathbb{R}^{n\times n}$, the norm of the identity matrix is 1.

Exercises (74/76)

Exercise 3.15 (\star)

Prove that

$$||A||_1 = \max_{j=1,\dots,n} \sum_{i=1}^{n} |a_{i,j}|.$$

Hint: Suppose that

$$\sum_{i=1}^{n} |a_{ij}| \le C, \qquad j = 1, 2, \dots n,$$

show that for any vector $x \in \mathbb{R}^n$

$$\sum_{i=1}^n |(A\boldsymbol{x})_i| \le C \|\boldsymbol{x}\|_1.$$

Now find a vector x such that $\sum_{i=1}^n |(Ax)_i| = C\|x\|_1$. Now deduce the result.

First we need

Lemma 1 (Cauchy-Schwarz)

$$|\sum_{i=1}^n u_i v_i| \le \|\boldsymbol{u}\|_2 \|\boldsymbol{v}\|_2, \qquad \forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n.$$

The proof can be found in any textbook on analysis.

Now can now apply Cauchy-Schwarz it to show that

$$\|\boldsymbol{u} + \boldsymbol{v}\|_2 \le \|\boldsymbol{u}\|_2 + \|\boldsymbol{v}\|_2.$$

(PTO).

This is because

$$\begin{split} \|u+v\|_2^2 &= (u+v)^T(u+v) \\ &= u^Tu + 2u^Tv + v^Tv \\ &\leq u^Tu + 2|u^Tv| + v^Tv \quad \text{(by the triangle-inequality)} \\ &\leq u^Tu + 2\|u\|\|v\| + v^Tv \quad \text{(by Cauchy-Schwarz)} \\ &= (\|u\| + \|v\|)^2. \end{split}$$

It follows directly that

Corollary 2

 $\|\cdot\|_2$ is a norm.