Algorithmisches Beweisen LAB

Luc Spachmann

FSU Jena

30.05.2022

Ziele

- Implementierung von SAT-Lösern
 - 2-SAT
 - Hornformeln
 - DPLL
 - CDCL
 - watched literals
 - clause learning
 - decision heuristics
 - restart strategy

CDCL Pseudocode

```
Eingabe: KNF \varphi
 1. decision-level \leftarrow 0
 2: while Es existieren nicht belegte Variablen do
           decision-level++
 3:
          decide()
 4:
           C_{\text{conflict}} \leftarrow \text{propagate()}
 5:
          while C_{\text{conflict}} is not null do
 6:
                if decision-level= 0 then return UNSAT
 7:
                end if
 8:
                C_{\text{learned}} \leftarrow \text{analyze-conflict}(C_{\text{conflict}})
 9:
                \varphi \leftarrow \varphi \land C_{\text{learned}}
10:
                backtrack(C_{learned})
11:
                C_{\text{conflict}} \leftarrow \text{propagate}()
12:
          end while
13:
           apply-restart-policy()
14:
```

Watched Literals

- Verbessertes Verfahren für Unit-Propagation
- Bei Konfliktsuche sind nur Unit-Klauseln relevant
- Klausel ist Unit, wenn
 - ein Literal ist nicht belegt und
 - alle anderen Literale sind falsch
- Neue Idee: Genügt, zwei Literale pro Klausel zu betrachten
- Folgende Invariante muss immer gelten:
 - Entweder beide angeschauten Literale sind nicht belegt,
 - oder mindestens eins der beiden ist erfüllt.
- Wichtig: Falls beide Literale belegt sind, und eins ist falsch:
 Dessen decision-level darf nicht niedriger sein als das erfüllte.

Ideen zur Implementierung

- Liste aller angeschauten Klauseln pro Literal
- Queue aller belegter und nicht bearbeiteter Variablen
- Bei Belegung einer Variable:
 - Betrachtung aller angeschauten Klauseln für das negierte Literal
 - Sicherstellen, dass invariante gilt
 - Falls Klausel Unit wird, hinzufügen des Literals in Queue
- Sollte Invariante nicht mehr erfüllbar sein: Konflikt!

Beispiel

$$(\overline{x_1} \lor x_2 \lor \overline{\neg x_3}) \land (\overline{x_1} \lor \overline{\neg x_2}) \land (\overline{\neg x_1} \lor \overline{\neg x_3}),$$
 {}

Entscheidung: $x_3 \mapsto 1$

$$(\overline{x_1} \lor x_2 \lor \neg \overline{x_3}) \land (\overline{x_1} \lor \neg \overline{x_2}) \land (\neg \overline{x_1} \lor \neg \overline{x_3}), \quad \{x_3\}$$

$$(\overline{x_1} \lor \overline{x_2} \lor \neg x_3) \land (\overline{x_1} \lor \neg \overline{x_2}) \land (\neg \overline{x_1} \lor \neg \overline{x_3}), \quad \{\neg x_1\}$$

$$(\overline{x_1} \lor \overline{x_2} \lor \neg x_3) \land (\overline{x_1} \lor \neg \overline{x_2}) \land (\neg \overline{x_1} \lor \neg \overline{x_3}), \quad \{\neg x_1\}$$

$$(\overline{x_1} \lor \overline{x_2} \lor \neg x_3) \land (\overline{x_1} \lor \neg \overline{x_2}) \land (\neg \overline{x_1} \lor \neg \overline{x_3}), \quad \{x_2, \neg x_2\}$$

Widerspruch!

Aufgabe: CDCL

- Implementierung der Watched Literals
- Vergleichen Sie die Performance mit einfacher propagation
- Ausgabe einiger Statistiken:
 - Zeit
 - Speicherbedarf
 - Anzahl Unit Propagations
 - Anzahl Entscheidungen
 - Anzahl Konflikte
 - etc.