

Algoritma Analizinde Yaklaşımlar —

Teorik Analiz

 Zaman verimliliği, girdi boyutunun bir fonksiyonu olarak temel işlemin tekrar sayısı belirlenerek analiz edilir.

Kaba Analiz

- Bir giriş verisi seçilir
- Zaman birimi veya yürütülen temel işlem adımlarının sayısı seçilir.
- Deneysel verilerle analiz yapılır.

- Algoritmanın işlevini yerine getirebilmesi için kabul edilen işlemlerden kaç adet yürütülmesi gerektiğini gösteren matematiksel bir ifadedir.
- İşlem olarak karşılaştırma sayısı, çevrim sayısı, aritmetik işlem sayısı kabul edilir
- T(n) hesaplanırken hangi işleme göre hesaplandığı bildirilmelidir

Problemler Temel İşlemler

Problem	Giriş verisi	Temel işlemler	
n elemanlı bir dizide eleman arama	Dizinin eleman sayısı. n	Elemanları karşılaştırma	
İki matrisin çarpımı	Matris boyutu veya toplam eleman sayısı	İki sayının çarpımı	
İnteger bir sayının asal olup olmadığının kontrolü	N sayısının dijit sayısı (ikili gösterilim)	Bölme	
Graf problemi	Düğüm / Kenar sayısı	Düğüm ve kenarların gezilmesi	

T(n)

- $T(n) = 2n^2 2n + 5$ olabilir.
- n, ifadenin bağımsız değişkenidir ve temel işlem sayısına bağlıdır.

$$T(n) = 1$$
 sabit
 $T(n) = \log n$ logaritmik
 $T(n) = n$ lineer
 $T(n) = n^2$ karesel

Örnek

```
float BulOrta (float A[], int n)
    float ortalama, toplam=0; → toplam=0
                                                1 işlem
    int k;
                                                1 işlem
                                     k=0
                                                (n+1) işlem
    for (k=0; k< n; k++)
                                     k++
                                                n işlem
        toplam=toplam + A[k];
                                     toplama=1
    ortalama = toplam/n;
                                                2 işlem (2n)
                                     atama=1
    return ortalama;
                                     bölme=1
                                                 2 işlem
        atama=1 1 işlem
                                     atama=1
```

$$T(n)=1+1+(n+1)+n+2n+2+1=4n+6$$

 $T(n)=4n+6$

Örnek

```
float BulEnkucuk (float A[ ])
    float enkucuk; int k; atama
                                            1 işlem
    enkucuk=A[0];
                                            1 işlem
                                            n işlem
    for (k=1; k<n; k++)
                                            n-1 işlem
        if (A[k] < enkucuk)
                               karşılaştırma1 işlem
            enkucuk=A[k];
                                              (n-1)
    return enkucuk;
                                 Bu işlemin kaç kez
                                 yürütüleceği belli değil,
         atama=1 1 işlem
                                   kötü durumda n-1
```

$$T(n)=1+1+n+(n-1)+(n-1)+(n-1)+1$$

 $T(n)=4n$

Örnek

```
public static int[] selectionsort(int[] A, int n)
    int tmp;
    int min;
    for (int i = 0; i < n-1; i++)
        min = i; II
        for (int j=i ; j < n ; j++) | | | |
                                                                            Toplam
                                                   Tekrar
                                            İşlem
             if (A[j] < A[min]){ IV
                                                                            2n
                                            1,1,1
                                                    1,n,n-1
                 min = j; \bigvee
                                                   n-1
                                                                            n-1
                                       Ш
                                            1,1,1
                                                   n-1, (n-1)n/2+1, (n-1)n/2
                                                                            n^2-1
        tmp = A[i];
                                       IV
                                                   (n-1)n/2
                                                                            (n-1)n/2
        A[i] = A[min]; VI
                                                   (n-1)n/2
                                                                            (n-1)n/2
        A[min] = tmp;
                                            1,1,1
                                       VI
                                                    1,1,1
    return A; VII
                                       VII
                                                           2n^2+2n+2
```

Örnek

for (i=0; i\longrightarrow 1+(n+1) +n = 2n + 2
for (j=0; j\longrightarrow (1+(m+1) + m) * n = (2m + 2)n
C[i][j] = A[i][j] + B[i][j];
$$\longrightarrow$$
 (2 * m * n)

4mn + 4n + 2

m ve n eşit alırsak $T(n) = 4n^2 + 4n + 2$

- Algoritmaları karşılaştırabilmek için bir algoritmanın zorluk derecesi ölçümüne "Computational Complexity" denir.
- Computational complexity bir algoritmanın gerçekleştirilmesi için gereken maliyeti veya çabayı ifade eder. Maliyet veya çaba zaman (time) ve kullanılan alan (space) ile ifade edilir.
- Karmaşıklıktaki amaç, gerçek zaman ve bellek büyüklüğü bilgisi değil, veri kümesi büyüdüğünde maliyet bilgisinin değişimidir.

Asimptotik Karmaşıklık

- Algoritmalarda t (süre) ve n (giriş boyutu)
 arasındaki ilişki çoğu zaman çok karmaşıktır.
- Fonksiyon içerisindeki önemsiz kısımlar ve katsayılar atılarak basitleştirilir ve gerçek fonksiyona göre yaklaşık bir değer bulunur.
- Elde edilen bu yeni etkinlik ölçümüne
 "Asymptotic Complexity" denir.
- Genellikle girişin büyümesine bağlı olarak fonksiyonun büyümesinde en büyük etkiye sahip olan parametre alınır.

Asimptotik Karmaşıklık

- Bilgisayar biliminde, girdinin boyutu büyüdükçe, bir algoritmanın bir sorunu ne kadar hızlı çözebileceğini anlamak isteriz.
 - Aynı problemi çözmek için iki farklı algoritmanın verimliliğini karşılaştırabiliriz
 - Girdi büyüdükçe belirli bir algoritmayı kullanmanın pratik olup olmadığını da belirleyebiliriz

44

Asimptotik Karmaşıklık

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2 ⁿ	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^{5}$	10^{8}	10^{12}		
10 ⁵	17	10^{5}	$1.7 \cdot 10^{6}$	10^{10}	10^{15}		
106	20	10^{6}	$2.0 \cdot 10^{7}$	10^{12}	10^{18}		

Asimptotik Analiz

- Amaç: detaylardan kurtularak çalışma süresi analizini basitleştirmek
- Sayılar için "rounding" işlemi: $1,000,001 \approx 1,000,000$
- Fonksiyonlar için "rounding" işlemi: $3n^2 \approx n^2$
- Niteliğini belirlemek (Capturing the essence): belirlenen limit içerisinde girişin boyutuna göre algoritmanın çalışma süresinin nasıl arttığının bulunması

44

Asimptotik Analiz Türleri

- Worst case (en kötü): Algoritma çalışmasının en fazla sürede gerçekleştiği analiz türüdür.
- En kötü durum, çalışmazamanında bir üst sınırdır ve o algoritma için verilendurumdan "daha uzun sürmeyeceği" garantisi verir.
- Bazı algoritmalar için en kötü durum oldukça sık rastlanır.
- Arama algoritmasında, aranan öğe genellikle dizide olmaz, dolayısıyla döngü N kez çalışır.

Asimptotik Analiz Türleri

- Best case (en iyi): Algoritmanın en kısa sürede ve en az adımda çalıştığı giriş durumu olan analiz türüdür. Çalışma zamanında bir alt sınırdır.
- Average case (ortalama): Algoritmanın ortalama sürede ve ortalama adımda çalıştığı giriş durumu olan analiz türüdür.

Asimptotik Analiz Türleri

- Bir algoritmanın genelde EN KÖTÜ durumdaki çalışma zamanına bakılır. Neden?
 - En kötü durum çalışma zamanında bir üst sınırdır ve o algoritma için verilen durumdan daha uzun sürmeyeceği garantisi verir.
 - Ortalama çalışma zamanı genellikle en kötü çalışma zamanı kadardır. Arama algoritması için hem ortalama hem de en kötü çalışma zamanı doğrusal fonksiyondur.

Asimptotik Analiz Türleri

- Bir problemi çözmek için A ve B şeklinde iki algoritma verildiğini düşünelim.
- Giriş boyutu N için aşağıda A ve B algoritmalarının çalışma zamanı T_A ve T_B fonksiyonları verilmiştir.

Hangi algoritmayı seçersiniz?

44

Asimptotik Analiz Türleri

N büyüdüğü zaman A ve B nin çalışma zamanı:

Asimptotik Notasyon

- Asimptotik notasyon, eleman sayısı n'nin sonsuza gitmesi durumunda algoritmanın, benzer işi yapan algoritmalarla karşılaştırmak için kullanılır.
- Eleman sayısının küçük olduğu durumlar mümkün olabilir fakat bu birçok uygulama için gecerli degildir.
- Verilen iki algoritmanin çalışma zamanı T1(N) ve
 T2(N) fonksiyonları şeklinde gosterilir.
- Hangisinin daha iyi olduğunu belirlemek için bir yol belirlememiz gerekiyor.
 - Big-O (Big 0): Asimptotik üst sınır
 - Big Ω (Big Omega): Asimptotik alt sınır
 - Big θ (Big Teta): Asimptotik alt ve üst sınır

f(x), bir algoritmanın fonksiyon şeklindeki gösterimi ise karmaşıklık O(f(x)), $\Omega(f(x))$, ... şeklinde gösterilir.

Big-O ifadesi

Asymptotic upper bound

■ Tanım: f ve g, tamsayı kümesinden veya reel sayı kümesinden reel sayılara tanımlanmış olsun.

$$\mathbb{Z} + \rightarrow \mathbb{R}$$

- f(n) = O(g(n)), eğer sabit bir C ve n_0 değerleri için $f(n) \le c g(n)$ bütün $n > n_0$ değerleri için doğruysa
- f(n) ve g(n) pozitif değere sahip fonksiyonlardır.

Big-O ifadesi

Asymptotic upper bound

Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$ Since when x > 1, $x < x^2$ and $1 < x^2$

$$0 \le x^2 + 2x + 1 \le x^2 + 2x^2 + x^2 = 4x^2$$

Can take C = 4 and k = 1 as witnesses to show that f(x) is $O(x^2)$

Alternatively, when x > 2, we have $2x \le x^2$ and $1 < x^2$. Hence, $0 \le x^2 + 2x + 1 \le x^2 + x^2 + x^2 = 3x^2$ when x > 2.

• Can take C = 3 and k = 2 as witnesses instead.

Big-O

ifadesi

Asymptotic upper bound

O-ifadesi için genellikle en basit formül kullanılır.
 Örnek:

$$3n^2+2n+5 = O(n^2)$$

 Aşağıdaki örneklerde doğrudur ancak genellikle kullanılmazlar.

$$3n^2+2n+5 = O(3n^2+2n+5)$$

 $3n^2+2n+5 = O(n^2+n)$
 $3n^2+2n+5 = O(3n^2)$

Big-Ω ifadesi

Asymptotic lower bound

- $f(n) = \Omega(g(n))$, eğer sabit bir c ve n_0 değeri için c.g(n) \leq f(n) bütün n \geq n₀ değerleri için doğruysa
- Best-case çalışma süresi veya lower bound tanımlamasında kullanılır.

Big-Ω ifadesi

Asymptotic lower bound

- Basit kural: Küçük dereceden terimler ve sabitler atılır.
- 50 n log n ifadesi O(n log n) şeklinde gösterilir.
- 7*n* 3 ifadesi *O*(*n*)
- $8n^2 \log n + 5n^2 + n$ ifadesi O($n^2 \log n$) şeklinde ifade edilir.

Big- θ ifadesi

Asymptotic tight bound

- $f(n) = \theta(g(n))$, eğer sabit c_1 , c_2 , ve n_0 , değerleri için
- $c_1 g(n) \le f(n) \le c_2 g(n)$ bütün $n \ge n_0$ değerleri için
- doğruysa.

Asiptotik Analiz

 Birçok algoritma birden fazla alt programdan oluşabilir.

$$\begin{cases}
1 \to O(n^{c}) \\
f2 \to O(n^{d})
\end{cases} \quad \max(O(n^{c}), O(n^{d})) \to O(n^{d})$$

$$1 < c < d \text{ ise}$$

$$f1 \to O(\log n) \\
f2 \to O(n)
\end{cases} \quad \max(O(\log n), O(n)) \to O(n)$$

$$f1 \to O(2^{n}) \\
f2 \to O(n)
\end{cases} \quad \max(O(2^{n}), O(n)) \to O(2^{n})$$

$$f1 \to O(n^{2}) \\
f2 \to O(n^{2})
\end{cases} \quad \Rightarrow O(n^{2})$$