COGS 17 Week 2

SPRING 2024, A03

WELCOME TO COGS 17

About Me

- Jason Chen
- MS student in Data Science
- BS in Cognitive Science ML & Neurobiology @ UCSD
- Student researcher in Computational Neural DNA Dynamics Lab
- Email: xic007@ucsd.edu
- Office Hours: Mon 5pm 6pm over zoom

FEEL FREE TO REACH OUT IF YOU HAVE ANY QUESTIONS!

slido

What's your major?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

slido

Why do you choose this course?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

slido

How are you feeling about this course so far?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

Section philosophy

- Attendance is not required
- Review terms & topics covered in lectures
- Problem sets to help review
- Section materials will be uploaded to GitHub

Problem Set for Today

Link:

https://docs.google.com/document/d/1whYJuFl7Fflh6MJwatadJ04U3cjBmfpsVsM1AdFZ7DQ/edit?usp=sharing

Planar Views of the Brain

Frontal or coronal plane

Coronal Plane -- From the **FRONT**

Sagittal plane

Sagittal Plane -- From the **SIDE**

Horizontal plane

Horizontal Plane -- From the **ABOVE**

Lateral Vs MEdial

Medial: <u>toward midline</u>, away from the sides

Lateral: <u>toward the sides</u>, away from the midline

Dorsal vs ventral

Dorsal: <u>toward the back of the body</u>, for the human head, toward the top

Ventral: <u>toward the stomach</u>, for the human head, toward the bottom

Ipsilateral vs Contralateral

Ipsilateral -- Connection on the **SAME** side of the nervous system

Contralateral -- Connection on the **OPPOSITE** side of the nervous system

Support Structures: The Meninges

- Dura mater -- Thick outer layer, immediately under bone
- Arachnoid mater -- Spider-web like, filled with cerebrospinal fluid (CSF), absorbs shock
- Pia mater -- Conforms to brain
 & spine surface, includes blood vessels

Modified from Prentice Hall: Martini/ Timmons 1997

Ventricles

Hollow, interconnected cavities in brain, produce Cerebrospinal Fluid (CSF).

Blood-Brain Barrier

Brain

- Strictly control chemical contents of the brain
- Protects brain from infections
- Only small, uncharged particles and fat-soluble molecules can passively cross barrier
- Astrocyte (a kind of glia cell) helps to create barrier

Medulla Oblongata

Controls VITAL
 REFLEXES, including
 breathing, heart rate,
 vomiting, coughing, etc.

Pons

- Latin for "bridge"
- Carry sensory/motor info to/from the head (relay information)
- Include reticular formation and Raphe System

Cerebellum

- Guide movements
- Critical in timing actions
- Also important in relevant shifting of attention

Tectum

- Means "roof"
- Consists of Superior Colliculus (for visual motion) and Inferior Colliculus (for auditory motion)
- Part of <u>sensory</u> pathways to the brain

Tegmentum

- Means "covering" or "rug"
- Major **MOTOR** pathways
- Part of Reticular Formation for arousal
- Includes Red Nucleus & Substantia
 Nigra

Thalamus

- Primary source of input to Cerebral Cortex
- Also includes intrinsic neurons for information processing within thalamus

Hypothalamus

- Controls endocrine systems via affect of pituitary gland
- Oversees "4 Fs" -- Feeding, Fighting, Fleeing, & Sex, and also temperature & clock

Hippocampus

- Important in forming new memories
- Also active in spatial mapping

Amygdala

- Important for emotional expression
- Also important in interpreting emotion in others

Cingulate Gyrus

- Interacts with cortex & other limbic structures to access good/bad
- +/- evaluations

Olfactory Bulb

- Receives inputs from olfactory (smell) receptors
- Can exchange with the rest of limbic system responsible for emotional-memory-evoking capacity of smell

Basal Ganglia

- Involved in the control of movement, especially
 PLANNED SEQUENTIAL behaviors
- Involved in task setting
- Degeneration of this area may cause Parkinson's Disease

Basal Forebrain

- Includes key structures for attention, especially arousal if cortex
- Main source of ACh

 (Acetylcholine, excitatory neural transmitter) and
 GABA
 (Gamma-Aminobutyric Acid, inhibitory neural transmitter).
- Involved sleep/arousal cycles, arousal of Broca's

Cerebral Cortex

- Frontal lobe -- Motor cortex, language production, strategy
- Parietal lobe -- Higher somatosensory processing and spatial mapping
- Temporal lobe -- Higher visual, audition, emotion & language comprehension
- Occipital lobe -- Visual processing

Corpus Callosum

- Connects the two hemispheres of the Cerebral Cortex
- Let both side of the brain communicate and send signals to each other
- Part of "White matter", the connection between "the little grey cells"

The Spinal Cord

- 31 Segments, each segment has:
- 1 pair **AFFERENT** Dorsal Root nerves that carry sensory info from body to brain
- 1 pair **EFFERENT** Ventral Root nerves that carry motor info to muscles and glands

Bell-Magendie Law

- Sensory info enters dorsal horn via dorsal roots
- Motor info exits ventral horn via ventral roots
- For sense organs and muscles in the head, cranial nerves serve this function
- "In the door and out the vent"

Central Nervous System (CNS)

- Brain & spinal cord
- Surrounded by bones and meninges

Peripheral Nervous System (PNS)

- Somatic Nervous System: interactions with EXTERNAL environments
- Autonomic Nervous System: regulates INTERNAL environments
- Also includes cranial nerves, which involves in autonomic nervous system and somatic nervous system

Somatic Nervous System

- 31 pairs of spinal nerves, 12 pairs of cranial nerves
- Spinal: sensory mainly FROM body surface & feedback from skeletal muscles; Motor mainly TO skeletal muscles
- Cranial: sensory & feedback FROM some organs (e.g. heart, lungs); Motor CONTROL of eye movement, facial expression, chew & swallow, speech, neck muscles, some organs

Autonomic Nervous System

- Receives information from organs, send motor commands to control them
- Motor component has 2 divisions: sympathetic nervous system and parasympathetic nervous system

Sympathetic Nervous System

- "Fight or Flight" -- autonomic physiological reaction that triggers acute stress response that will prepare the body for fight, or flee
- Examples: Increase heart rate, hinder sexual arousal, dilate pupils, etc.
- Most reflexive, but sometimes can be influenced by cognition (e.g. Voodoo death)

Parasympathetic Nervous System

- "Rest & Digest" -- the opposite of "fight and flight", to CALM DOWN
- Examples: Decrease heart rate, facilitate sexual arousal, constrict pupils, etc.
- Parasympathetic rebound: the strong given by parasympathetic nervous system, after a radical sympathetic response
- Examples: Fainting, Ulcers

Questions?

Office Hours: Mon 5-6 pm

To get the section slides: https://github.com/JasonC1217/COGS17-A03-Sp24

OR:

