Mathematics Internal Assessment:

An Investigation into The Trapezoidal Rule for Numerical Integration: Determine Its Level of Accuracy

Pages:20

Introduction:

Definite integrals have wide applications in many areas. While some definite integrals can be evaluated using fundamental theorem of calculus, others require numerical methods or series expansion to evaluate. Such integrals include $\int_a^b e^{x^2} dx$, $\int_a^b \pi \cdot (1 + \sin^2 x)^2 dx$, $\int_a^b \frac{\sin x}{x} dx$, etc.

Trapezoidal rule is a numerical method used in definite integral evaluation. Compared with upper and lower rectangle methods, it converges quicker. Although series expansion converges quicker than the trapezoid rule, but to write a function as an infinite series involves differentiation that becomes harder to proceed as the order increases.

It always amuses me that as partition intervals increase, trapezoid rule approximations are more accurate. I am interested in how the accuracy of the results are determined. Since existing formula only gives an error bound, in this investigation, I aim to find the common trend of trapezoidal rule approximation error with number of partition intervals. The comparisons are investigated using functions with known closed-form antiderivatives. The results of trapezoidal rule of different partition intervals on a given domain is compared with the results obtained using fundamental theorem of calculus. The trend of error is identified, proved and then used to calculate definite integrals without closed-form antiderivatives with attention to the significant figures.

Trapezoid method and error bound formula:

Trapezoidal rule method is stated as follows: Given $\int_a^b f(x)dx$, [a,b] is first partitioned into n subintervals. The width of each interval is $h = \frac{b-a}{n}$.

Each subinterval is then approximated by the trapezoid with height h, base $f(a_{i-1})$ and $f(a_i)$, the area is:

$$S_i = \frac{1}{2}h(f(a_{i-1}) + f(a_i))$$

The error for each interval is:

$$E_{Ti} = \int_{a_{i-1}}^{a_i} f(x) dx - S_i$$

Figure 1 shows [a, b] partitioned into 4 subintervals.

Figure 1. Interval [a, b] with 4 subintervals

Then, for [a, b] partitioned into n subintervals,

$$a_n = b$$

$$a_0 = a$$

$$\sum_{i=1}^{i=n} S_i = \frac{1}{2}h(f(a_0) + f(a_1)) + \frac{1}{2}h(f(a_1) + f(a_2)) + \frac{1}{2}h(f(a_2) + f(a_3)) + \cdots$$

$$+ \frac{1}{2}h(f(a_{n-1}) + f(a_n))$$

$$= h \times (\frac{1}{2}f(a_0) + f(a_1) + f(a_2) + \cdots + f(a_{n-1}) + \frac{1}{2}f(a_n))$$

The error for trapezoidal rule is:

$$E_T = \int_a^b f(x)dx - h \times (\frac{1}{2}f(a_0) + f(a_1) + f(a_2) + \dots + f(a_{n-1}) + \frac{1}{2}f(a_n))$$

The error bound for trapezoidal rule in [a, b] is¹

$$|E_T| \le \frac{M \cdot (b-a) \cdot h^2}{12} = \frac{M \cdot (b-a)^3}{12 \cdot n^2}$$

where M is the maximum of f''(x) on [a, b].

However, the value of M depends on f''(x) and the interval [a,b] and it varies significantly. For example, let $f(x) = e^{x^2}$, so $f''(x) = 2e^{x^2} + 4x^2e^{x^2}$. Different evaluation intervals give error bounds with significantly different orders of magnitude. Thus, I would like to find the common trend of trapezoidal rule approximation errors with number of partition intervals.

Section 7.7 Deriving the Trapezoidal Rule Error. math.ucsd.edu/~ebender/20B/77_Trap.pdf. Accessed 18th, Feb., 2021.

Comparison:

As the error bound formula suggests, for a given definite integral, increasing the partition intervals n will reduce error bound by n^2 .

Figure 2. A portion of an interval with *n* partitions

Figure 3. A portion of an interval with 2n partitions

As figure 2 shows, when n is increased, such as the subinterval BD is further divided into BF and FD, the errors (from the area of arch AC to area of arch AE and arch EC) decrease significantly. The increase in accuracy is related to the decrease in the error. If one feature of the function can be used to reflect the change of n on the errors, then this relationship can be modelled to find the common trend.

Since the decrease in the error is largely due to the decrease in the area of the arch, to quantify this change, in every subinterval, length of FG can be used to reflect the change of n on the errors. FG is the difference between the function value at H and y-coordinate of AE's midpoint.

$$FG = HF - HG$$
Let $FG = d$

$$d_i = f(a_{i-1}) + 0.5 \cdot (f(a_i) - f(a_{i-1})) - f(a_{i-1} + 0.5 \cdot h)$$

$$= 0.5 \cdot (f(a_i) + f(a_{i-1})) - f(a_{i-1} + 0.5 \cdot h)$$

For a total of n subintervals, the average value of d_i can be used to reflect the change of n on the errors:

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{i=n} d_i$$

The common trend:

Several basic functions with known closed-form antiderivative are used to find the trend using MATLAB programs. They are listed below:

1.
$$f(x) = e^{k \cdot x}$$

$$\int f(x) dx = \frac{1}{k} \cdot e^{k \cdot x}$$

2.
$$f(x) = cos(k \cdot x)$$

$$\int f(x)dx = \frac{1}{k} \cdot sin(k \cdot x)$$

3.
$$f(x) = x^k$$

$$\int f(x)dx = \frac{1}{k+1} \cdot x^{k+1}$$

where k = 1,2,3,4,5,6 and partition intervals $n = 10,10^2, 10^3, 10^4, 10^5, 10^6$

Steps for finding trend of trapezoidal rule error and \overline{d} as *n* changes in MATLAB:

- 1. Calculate definite integrals of basic functions using fundamental theorem of calculus.
- 2. For a given *n*, trapezoidal rule is used to approximate the definite integral.
- 3. Calculate the error E_T between 2 results.
- 4. Calculate \overline{d} .
- 5. Calculate $\frac{E_T}{\overline{d}}$.

Sample calculation:

1.
$$\int_a^b e^{k \cdot x} dx$$

Let
$$a = 0, b = 3$$
 and $b - a = 3$:

Table 1. Several computed values for k=1

	k = 1								
n	E_T	\overline{d}	$\frac{E_T}{\overline{d}}$						
10	0.142927274	0.07143687	2.000749398						
10^2	0.001431394	0.000715694	2.0000075						
10^{3}	1.43142E-05	7.15708E-06	2.000000072						
10^{4}	1.43142E-07	7.15708E-08	2.000000766						
10^{5}	1.43156E-09	7.15708E-10	2.000199572						
10 ⁶	1.37241E-11	7.15626E-12	1.917780695						

The ratio of $\frac{E_T}{\overline{d}}$ is around 2 for k = 1. other k values are computed on table 2.

Table 2. Computed values of $\frac{E_T}{\overline{d}}$ for different values of n and k

E	\mathcal{I}_T	k							
$\overline{\overline{d}}$		1	2	3	4	5	6		
	10	2.000749398	2.002990386	2.00670151	2.011847545	2.018380265	2.026239491		
	10^2	2.0000075	2.000029999	2.000067495	2.000119985	2.000187462	2.000269922		
	10^{3}	2.000000072	2.0000003	2.000000675	2.0000012	2.000001875	2.0000027		
n	10^{4}	2.000000766	1.999999928	2.000000005	1.999999996	1.999999999	2.000000024		
	10^{5}	2.000199572	1.999970271	2.000007327	1.999996418	1.999998653	2.000002645		
	10 ⁶	1.917780695	2.003471981	2.000440777	1.999639601	2.001984801	1.999328293		

From table 2, all ratios are around 2, which equals $\frac{2}{3}(b-a)$. Other functions with different (b-a) ranges are calculated similarly in MATLAB as the sample listed above. Likewise, the ratios $\frac{E_T}{\overline{a}}$ for different n and k are all around the same figure for a chosen function and a chosen interval. The results are listed in table 3. It is generated from table 2, 4, 5 and table 11, 13 in the appendices.

Table 3. Computed values and ratios for different functions

Functions	$\frac{E_T}{\overline{d}}$	а	b	b-a	$\frac{\frac{E_T}{\overline{d}}}{b-a}$
$f(x) = x^k$	1.333	3.00	5.00	2.00	0.6667
$f(x) = e^{k \cdot x}$	2.000	0.0	3.00	3.00	0.6667
$\int (\mathcal{M})^{-c}$	10.00	5.0	20.0	15.0	0.6667
	0.267	0.1	0.500	0.400	0.6675
$f(x) = \cos(k \cdot x)$	0.174	0.0	$\frac{\pi}{12} \approx 0.262$	0.262	0.6646

From table 3, $\frac{E_T}{\overline{d}}$ are around 0.667, which is $\frac{2}{3}$. This suggests a possible relationship between \overline{d} and E_T :

$$E_T \approx \frac{2}{3}(b-a) \cdot \overline{d}$$

Caution:

Table 4. Results for $\int_a^b e^{k \cdot x} dx$ when a = 0.1 and b = 0.5

E	\overline{G}_T			k	;		
$\frac{E_T}{\overline{d}}$		1	2	3	4	5	6
	10	0.266668444	0.266673777	0.266682665	0.266695105	0.266711095	0.266730634
	10^2	0.266666684	0.266666738	0.266666827	0.266666951	0.266667111	0.266667307
	10^{3}	0.26666668	0.26666664	0.26666667	0.26666668	0.266666671	0.266666673
n	10^{4}	0.266684162	0.266664853	0.266667152	0.266666918	0.266666667	0.266666434
	10^{5}	0.267532107	0.266148844	0.266808376	0.266774476	0.266713967	0.266706029
	10 ⁶	-0.191981221	0.197286349	0.302519247	0.262635796	0.236267646	0.270401919

Table 5. Results for $\int_a^b e^{k \cdot x} dx$ when a = 5 and b = 20

	E_T			k	Į.		
	$\overline{\overline{d}}$	1	2	3	4	5	6
	10	10.09190133	10.34697589	10.71337656	11.1302732	11.54725271	11.93257444
	10^2	10.00093731	10.00374699	10.00842227	10.01495193	10.02332034	10.03350755
10	10^{3}	10.00000937	10.0000375	10.00008437	10.00015	10.00023436	10.00033748
n	10^{4}	10.00000012	10.00000037	10.00000085	10.0000015	10.00000235	10.00000338
	10^{5}	10.00000963	9.999989808	9.999998143	9.999997422	9.999997341	9.999998327
	10 ⁶	9.98867081	10.00054901	9.999891065	10.0002318	9.999840316	10.00004637

When $n <= 10^5$, the ratios of $\frac{E_T}{d}$ are consistent. However, as partition increases, h and d decreases. When $n = 10^6$, for some evaluation intervals, such as in table 5, the ratios are not consistent with those obtained when $n <= 10^5$. this is due to limitations in the computing power. In computer programs, the calculations are carried within a certain accuracy level. For my program, it is 15 significant figures. So, the rounding errors in computer programs would make some results incorrect when $n = 10^6$. For larger partition interval [a, b] and function values, the ratio is also consistent when $n = 10^6$. As a result, in general, when using trapezoidal rule to approximate the definite integrals, the partition intervals can take to be 10^5 .

Proof of $E_T \approx \frac{2}{3}(b-a) \cdot \overline{d}$:

The error formula: ²

From introduction of trapezoid method,

$$E_{Ti+1} = \int_{x_i}^{x_{i+1}} f(x) dx - S_{i+1}$$

$$\therefore \int_{x_i}^{x_{i+1}} f(x) dx = S_{i+1} + E_{T_{i+1}}$$

The integral for one subinterval is $\int_{x_i}^{x_{i+1}} f(x)dx$, using integration by parts it can be written as:

$$\int_{x_{i}}^{x_{i}+1} f(x)dx
= \int_{0}^{h} f(t+x_{i})dt
= \left[(t+A)f(t+x_{i}) \right]_{0}^{h} - \int_{0}^{h} (t+A)f'(t+x_{i})dt
= \left[(t+A)f(t+x_{i}) \right]_{0}^{h} - \left[\left(\frac{(t+A)^{2}}{2} + B \right) f'(t+x_{i}) \right]_{0}^{h} + \int_{0}^{h} \left(\frac{(t+A)^{2}}{2} + B \right) f''(t+x_{i})dt$$

A and B are arbitrary constants. To express $\int_{x_i}^{x_i+1} f(x) dx = S_{i+1} + E_{T_{i+1}}$, A and B can take specific values so that:

$$[(t+A)f(t+x_i)]_0^h = S_{i+1}$$
 and $[(t+A)^2/2 + B)f'(t+x_i)]_0^h = 0$

Since $S_{i+1} = \frac{h}{2} \cdot (f(x_{i+1}) + f(x_i))$ and

$$\left[(t+A)f\left(t+x_{i}\right) \right]_{0}^{h} = (h+A)f\left(h+x_{i}\right) - A \cdot f\left(x_{i}\right) = (h+A)f\left(x_{i+1}\right) - A \cdot f\left(x_{i}\right)$$

Let $A = -\frac{h}{2}$, $\left[(t+A)f(t+x_i) \right]_0^h$ is the area for the trapezoid.

² Section 7.7 Deriving the Trapezoidal Rule Error. math.ucsd.edu/~ebender/20B/77_Trap.pdf. Accessed 18th, Feb., 2021.

$$= \left(\frac{(h - \frac{h}{2})^2}{2} + B\right) f'(x_{i+1}) - \left(\frac{(-\frac{h}{2})^2}{2} + B\right) f'(x_i)$$

$$= \left(\frac{h^2}{8} + B\right) f'(x_{i+1}) - \left(\frac{h^2}{8} + B\right) f'(x_i)$$

$$\therefore \text{Let } B = -\frac{h^2}{8}, \text{ so that } \left[\left(\frac{(t + A)^2}{2} + B\right) f'(t + x_i)\right]_0^h = 0$$

$$\therefore \int_{x_i}^{x_i + 1} f(x) dx = \int_0^h f(t + x_i) dt = \left[(t - \frac{h}{2}) f(t + x_i)\right]_0^h + \int_0^h \left(\frac{(t + A)^2}{2} - \frac{h^2}{8}\right) f''(t + x_i) dt$$

The error E_T when interval [a,b] is partitioned into n intervals is:

$$E_{T} = E_{T_{1}} + E_{T_{2}} + \dots + E_{T_{n}}$$

$$= \int_{0}^{h} \left(\frac{(t - \frac{h}{2})^{2}}{2} - \frac{h^{2}}{8} \right) f''(t + x_{0}) dt + \dots + \int_{0}^{h} \left(\frac{(t - \frac{h}{2})^{2}}{2} - \frac{h^{2}}{8} \right) f''(t + x_{n-1}) dt$$

$$= \int_{0}^{h} \left(\frac{(t - \frac{h}{2})^{2}}{2} - \frac{h^{2}}{8} \right) (f''(t + x_{0}) + \dots + f''(t + x_{n-1})) dt$$

Likewise, when the interval is cut into 2n intervals, $h' = \frac{h}{2}$, the error E_T is:

$$E_{T}' = E_{T_{1}}' + E_{T_{2}}' + \dots + E_{T_{2n}}'$$

$$= \int_{0}^{\frac{h}{2}} \left(\frac{(t - \frac{0.5 \cdot h}{2})^{2}}{2} - \frac{(0.5 \cdot h)^{2}}{8} \right) \left(f'' \left(t + x'_{0} \right) + \dots + f'' \left(t + x'_{2n-1} \right) \right) dt$$

Ratio of
$$\frac{E_T}{E_T}$$
:

 $A_{Trapezoid}$ represents the value of definite integral approximated using n trapezoid partitions. $A'_{Trapezoid}$ represents the value of definite integral approximated using 2n trapezoid partitions.

Table 6: related subscripts i when interval [a,b] is partitioned from n pieces to 2n pieces

$2n$ partitions (x'_i)	0	1	2	3	4	5	6	 2 <i>n</i> -3	2 <i>n</i> -2	2 <i>n</i> -1	2 <i>n</i>
n partitions (x_i)	0		1		2		3		<i>n</i> -1		n

 x_i represents x-coordinate when definite integral is approximated using n trapezoid partitions. x'_i represents x-coordinate when definite integral is approximated using 2n trapezoid partitions.

To make following statements more concise,

let
$$H_1 = \left(\frac{(t - \frac{h}{2})^2}{2} - \frac{h^2}{8}\right)$$
 and $H_2 = \left(\frac{(t - \frac{0.5 \cdot h}{2})^2}{2} - \frac{(0.5 \cdot h)^2}{8}\right)$:

 E_T is spit into 2 integrals from 0 to $\frac{h}{2}$ and $\frac{h}{2}$ to h. This would help link E_T to E_T :

$$\begin{split} E_T &= \int_0^h H_1\Big(f^{''}\big(t+x_0\big) + f^{''}\big(t+x_1\big) + \dots + f^{''}\big(t+x_{n-2}\big) + f^{''}\big(t+x_{n-1}\big)\Big)dt \\ &= \int_0^{\frac{h}{2}} H_1\Big(f^{''}\big(t+x_0\big) + f^{''}\big(t+x_1\big) + \dots + f^{''}\big(t+x_{n-1}\big)\Big)dt + \\ &\int_{\frac{h}{2}}^h H_1\Big(f^{''}\big(t+x_0\big) + f^{''}\big(t+x_1\big) + \dots + f^{''}\big(t+x_{n-1}\big)\Big)dt \\ &= \int_0^{\frac{h}{2}} H_1dt \cdot \int_0^{\frac{h}{2}} \Big(f^{''}\big(t+x_0\big) + f^{''}\big(t+x_1\big) + \dots + f^{''}\big(t+x_{n-1}\big)\Big)dt + \\ &\int_{\frac{h}{2}}^h H_1dt \cdot \int_{\frac{h}{2}}^h \Big(f^{''}\big(t+x_0\big) + f^{''}\big(t+x_1\big) + \dots + f^{''}\big(t+x_{n-1}\big)\Big)dt \end{split}$$

According to table 4, some subscripts represent the same value, e.g., x-coordinate of x_2 for n partitions is the same with x_4 for 2n partitions.

Graph 1. illustration of relationship between coordinates

Graph 1 shows part of partition between interval [a,b], it can be seen that

$$\int_{\frac{h}{2}}^{h} f''(t+x_i)dt = \int_{0}^{\frac{h}{2}} f''(t+x'_{2i+1})dt$$

Convert the above subscripts for n partitions into subscripts for 2n partitions, we get:

$$E_{T} = \int_{0}^{\frac{h}{2}} H_{1} dt \cdot \int_{0}^{\frac{h}{2}} \left(f''(t + x'_{0}) + f''(t + x'_{2}) + \dots + f''(t + x'_{2n-2}) \right) dt + \int_{\frac{h}{2}}^{\frac{h}{2}} H_{1} dt \cdot \int_{0}^{\frac{h}{2}} \left(f''(t + x'_{1}) + f''(t + x'_{3}) + \dots + f''(t + x'_{2n-1}) \right) dt$$

Let

$$F_{1} = \int_{0}^{\frac{h}{2}} \left(f''(t + x'_{0}) + f''(t + x'_{2}) + \dots + f''(t + x'_{2n-2}) + f''(t + x'_{1}) + f''(t + x'_{3}) + \dots + f''(t + x'_{2n-1}) \right) dt$$

$$F_{2} = \int_{0}^{\frac{h}{2}} \left(f''(t + x'_{1}) + f''(t + x'_{3}) + \dots + f''(t + x'_{2n-1}) \right) dt$$

$$F_{3} = \int_{0}^{\frac{h}{2}} \left(f''(t + x'_{0}) + f''(t + x'_{2}) + \dots + f''(t + x'_{2n-2}) \right) dt$$

$$\therefore F_{1} = F_{3} + F_{2}$$

Since F_2 involves half of the integration terms in F_1 alternatively,

$$\therefore F_2 \approx \frac{F_1}{2}$$

This is shown in graph 2. Although this is only an approximation, however, in real evaluations, as partition intervals increase, the difference between $f''(t+x'_n)$ and

 $f''(t+x'_{n+1})$ will decrease, so this approximation can be used in later statements.

Graph 2. illustration of $F_2 \approx \frac{F_1}{2}$

$$\therefore E_T = \int_0^{\frac{h}{2}} H_1 dt \cdot F_3 + \int_{\frac{h}{2}}^h H_1 dt \cdot F_2$$

Relate E_T to E_T ':

$$\begin{split} E_T &= \int_0^{\frac{h}{2}} H_1 dt \cdot F_3 + (\int_0^{\frac{h}{2}} H_1 dt \cdot F_2 - \int_0^{\frac{h}{2}} H_1 dt \cdot F_2) + \int_{\frac{h}{2}}^{h} H_1 dt \cdot F_2 \\ &= \int_0^{\frac{h}{2}} H_1 dt \cdot (F_3 + F_2) - \int_0^{\frac{h}{2}} H_1 dt \cdot F_2 + \int_{\frac{h}{2}}^{h} H_1 dt \cdot F_2 \end{split}$$

And

$$E_{T}' = \int_{0}^{\frac{h}{2}} H_{2}(f''(t+x'_{0}) + f''(t+x'_{1}) + \dots + f''(t+x'_{2n-2}) + f''(t+x'_{2n-1}))dt = \int_{0}^{\frac{h}{2}} H_{2} \cdot F_{1}(t+x'_{2n-2}) + f''(t+x'_{2n-2}) + f''(t+x'_{$$

The integral values involved are:

$$\int_{0}^{\frac{h}{2}} H_{1} dt = \frac{1}{8} \cdot \int_{0}^{\frac{h}{2}} \left(4(t - \frac{h}{2})^{2} - h^{2} \right) dt = \int_{0}^{\frac{h}{2}} \frac{1}{8} \cdot (4 \cdot t^{2} - 4 \cdot t \cdot h) dt$$

$$= \frac{1}{8} \cdot \left(\frac{4}{3} \cdot t^{3} - 2 \cdot t^{2} \cdot h \right) \Big|_{0}^{\frac{h}{2}} = \frac{1}{8} \cdot \left(\frac{h^{3}}{6} - \frac{h^{3}}{2} \right) = -\frac{h^{3}}{24}$$

$$\int_{\frac{h}{2}}^{h} H_{1} dt = \frac{1}{8} \cdot \int_{\frac{h}{2}}^{h} \left(4(t - \frac{h}{2})^{2} - h^{2} \right) dt$$

$$= \frac{1}{8} \cdot \left(\frac{4}{3} \cdot t^{3} - 2 \cdot t^{2} \cdot h \right) \Big|_{\frac{h}{2}}^{h} = \frac{1}{8} \cdot \left(\frac{4h^{3}}{3} - 2h^{3} \right) = -\frac{h^{3}}{24}$$

$$\int_{0}^{\frac{h}{2}} H_{2} dt = \frac{1}{8} \cdot \int_{0}^{\frac{h}{2}} \left(4(t - \frac{h}{4})^{2} - (\frac{h}{2})^{2} \right) dt = \int_{0}^{\frac{h}{2}} \frac{1}{8} \cdot (4 \cdot t^{2} - 2 \cdot t \cdot h) dt$$

$$= \frac{1}{8} \cdot \left(\frac{4}{3} \cdot t^{3} - t^{2} \cdot h \right) \Big|_{0}^{\frac{h}{2}} = \frac{1}{8} \cdot \left(\frac{h^{3}}{6} - \frac{h^{3}}{4} \right) = -\frac{h^{3}}{06}$$

So,

$$\begin{split} \frac{E_{T}}{E_{T}'} &= \frac{\int_{0}^{\frac{h}{2}} H_{1} dt \cdot F_{1} - \int_{0}^{\frac{h}{2}} H_{1} dt \cdot F_{2} + \int_{\frac{h}{2}}^{h} H_{1} dt \cdot F_{2}}{\int_{0}^{\frac{h}{2}} H_{2} dt \cdot F_{1}} \\ &= \frac{\int_{0}^{\frac{h}{2}} H_{1} dt \cdot F_{1}}{\int_{0}^{\frac{h}{2}} H_{2} dt \cdot F_{1}} + \frac{-\int_{0}^{\frac{h}{2}} H_{1} dt \cdot F_{2} + \int_{\frac{h}{2}}^{h} H_{1} dt \cdot F_{2}}{\int_{0}^{\frac{h}{2}} H_{2} dt \cdot F_{1}} \\ &\approx 4 + \frac{-\int_{0}^{\frac{h}{2}} H_{1} dt \cdot \frac{F_{1}}{2} + \int_{\frac{h}{2}}^{h} H_{1} dt \cdot \frac{F_{1}}{2}}{\int_{0}^{\frac{h}{2}} H_{2} dt \cdot F_{1}} \end{split}$$

 \approx is used here since $F_2 \approx \frac{F_1}{2}$

$$=4+\frac{-\int_{0}^{\frac{h}{2}}H_{1}dt+\int_{\frac{h}{2}}^{h}H_{1}dt}{2\int_{0}^{\frac{h}{2}}H_{2}dt}=4+\frac{\frac{h^{3}}{24}-\frac{h^{3}}{24}}{2\cdot(-\frac{h^{3}}{96})}=4$$

As a result, when the partitions are increased from n to 2n pieces, the error decreases by a factor of 4.

$$\therefore \frac{E_T}{E_T} \approx 4$$

Proving the relationship:

In following equations, a_i represents x-coordinate with n trapezoid partitions. a'_i represents x-coordinate with 2n trapezoid partitions.

$$\begin{split} \overline{d} &= \frac{1}{n} \sum_{i=1}^{|s|} d_i \\ &\because d_i = 0.5 \cdot (f(a_i) + f(a_{i-1})) - f(a_{i-1} + 0.5 \cdot h) \\ &\because \overline{d} = \frac{1}{n} \cdot \sum_{i=0}^{|s|} (0.5 \cdot (f(a_{i+1}) + f(a_i)) - f(a_i + 0.5 \cdot h)) \\ &= \frac{1}{n} [(0.5 \cdot f(a_0) + f(a_1) + f(a_2) + \dots + f(a_{n-1}) + 0.5 \cdot f(a_n)) - \sum_{i=0}^{|s|} f(a_i + 0.5 \cdot h)] \\ &\because A_{Trapezoid} = h \times (\frac{1}{2} f(a_0) + f(a_1) + f(a_2) + \dots + f(a_{n-1}) + \frac{1}{2} f(a_n)) \\ &\because \overline{d} = \frac{1}{n} \cdot \frac{A_{Trapezoid}}{h} - \frac{1}{n} (f(a_0 + \frac{h}{2}) + f(a_1 + \frac{h}{2}) + \dots + f(a_{n-1} + \frac{h}{2})) \end{split}$$
The terms $f(a_0 + \frac{h}{2}) + f(a_1 + \frac{h}{2}) + \dots + f(a_{n-1} + \frac{h}{2})$ can be linked to $A'_{Trapezoid}$:
$$A'_{Trapezoid} = h \times (\frac{1}{2} f(a'_0) + f(a'_1) + f(a'_2) + \dots + f(a'_{2n-1}) + \frac{1}{2} f(a'_{2n}))$$

$$&\because f(a_0 + \frac{h}{2}) + f(a_2 + \frac{h}{2}) + \dots + f(a_{n-1} + \frac{h}{2}) = f(a'_1) + f(a'_3) + \dots + f(a'_{2n-1})$$

$$&\because \overline{d} = \frac{1}{n} \cdot \frac{A_{Trapezoid}}{h} - \frac{2}{2n} (f(a'_1) + f(a'_3) + \dots + f(a'_{2n-1}) + 0.5 \cdot f(a_0) + f(a_1) + \dots + f(a_{n-1}) + 0.5 \cdot f(a_n))$$

$$&= \frac{1}{n} \cdot \frac{A_{Trapezoid}}{h} - \frac{2}{2n} (f(a'_1) + f(a'_3) + \dots + f(a'_{2n-1}) + 0.5 \cdot f(a'_0) + f(a'_2) + \dots + f(a'_{n-1}) + 0.5 \cdot f(a_n))$$

$$&= \frac{2}{n} \cdot \frac{A_{Trapezoid}}{h} - \frac{2}{2n} \cdot \frac{A'_{Trapezoid}}{0.5 \cdot h} = 2 \cdot (\frac{A_{Trapezoid}}{nh} - \frac{A'_{Trapezoid}}{2n \cdot 0.5 \cdot h})$$

$$\overline{d} \cdot (b-a) = 2 \cdot \left(\frac{A_{Trapezoid}}{nh} - \frac{A'_{Trapezoid}}{nh}\right) \cdot (b-a) = 2 \cdot \left(A_{Trapezoid} - A'_{Trapezoid}\right)$$

$$= 2 \cdot \left(\int_{a}^{b} f(x)dx - A'_{Trapezoid} - \left(\int_{a}^{b} f(x)dx\right) - A_{Trapezoid}\right)$$

$$= 2 \cdot \left(E'_{T} - E_{T}\right)$$

$$\therefore \frac{E_{T}}{E_{T}} \approx 4$$

$$\therefore \overline{d} \cdot (b-a) = 2 \cdot \left(\frac{1}{4}E_{T} - E_{T}\right) = 2 \cdot \left(-\frac{3}{4}E_{T}\right)$$

$$\overline{d} \cdot (b-a) = 2 \cdot \left(-\frac{3}{4}E_{T}\right)$$

$$\frac{2}{3} \cdot \overline{d} \cdot (b-a) = -E_{T}$$

Application of $E_T \approx \frac{2}{3}(b-a) \cdot \overline{d}$:

From the previous results, general steps to use trapezoidal rule is listed below:

- For a given number of partitions, trapezoidal rule is used to approximate the definite integral.
- 2. Calculate \overline{d} .
- 3. Calculate E_T using $E_T = -\frac{2}{3}(b-a) \cdot \overline{d}$
- 4. Repeat steps 1-3 for n = 10 to $n = 10^5 \text{ or } 10^6$.
- 5. Using results of E_T to approximate definite integral to a certain order of magnitude. Compare the last 2 rows of results to give the final evaluation.

Examples:

$$\int_a^b e^{x^2} dx$$

Figure 4. Graph of the function

Case 1: Let a = 5, b = 9:

Table 6. Computed values for different values of n

n	Trapezoidal approximation	Value corrected for error
10	3.01747913548866E+34	1.12016167742544E+34
10^{2}	8.77816694270312E+33	8.42062668040462E+33
10 ³	8.4234583898377E+33	8.41984415383871E+33
10^{4}	8.41988022063325E+33	8.41984407433742E+33
10 ⁵	8.41984443579289E+33	8.41984407432946E+33
10 ⁶	8.41984407794411E+33	8.4198440743295E+33

Compare the last 2 rows, the result is correct to 13 figures, $8.419844074329 \times 10^{33}$.

The formula $E_T = -\frac{2}{3}(b-a) \cdot \overline{d}$ gives a more accurate approximation for the result than with the error bound formula.

Evaluate
$$\int_a^b e^{x^2} dx$$
 using $|E_T| \le \frac{M \cdot (b-a) \cdot h^2}{12}$ for $a = 5, b = 9, n = 6$

$$\therefore f(x) = e^{x^2}$$

$$\therefore f''(x) = 2e^{x^2} + 4x^2e^{x^2}$$

$$|E_T| \le \frac{M \cdot (b-a) \cdot h^2}{12} = \frac{(2e^{9^2} + 4 \times (9^2) \times e^{9^2}) \cdot 5 \cdot (\frac{4}{10^6})^2}{12}$$

$$= 2.618601198 \times 10^{26}$$

Since f(x) is above the *x-axis* and concave up, take into consideration for the error bound:

$$f(x) \approx 8.41984407794411 \times 10^{33} - 2.618601198 \times 10^{26}$$

= 8.4198438 × 10³³

The result is correct to 8.41984×10^{33} , 6 figures, taken 10^6 partitions. It is much less accurate than the result calculated using previous method.

Case 2: Let
$$a = 1, b = 2$$
:

Table 7 . Computed values for different values of n

n	Trapezoidal approximation	Value corrected for error
10	15.1667841486261	14.9901395460705
10 ²	14.9917505872659	14.9899760360926
10 ³	14.9899937659298	14.9899760196017
10 ⁴	14.9899761970634	14.9899760196001
10^{5}	14.9899760213746	14.9899760196

Compare the last 2 rows, the result is correct to 12 figures, 14.9899760196.

Likewise, this result is much more accurate than that calculated using error bound formula.

$$|E_T| \le \frac{M \cdot (b-a) \cdot h^2}{12} = \frac{(2e^{2^2} + 4 \times (2^2) \times e^{2^2}) \cdot 1 \cdot (\frac{1}{10^6})^2}{12}$$

= 8.189722505 × 10⁻⁹

$$f(x) \approx 14.9899760213746 - 8.189722505 \times 10^{-9} = 14.98997601$$

The result is correct to 14.9899760, 9 figures, taken 10⁵ partitions.

$$\int_{a}^{b} \frac{\sin x}{x} dx$$

Figure 5. Graph of the function

Case 1: Let a = 1, b = 2:

Table 8. Computed values for different values of n

n	Trapezoidal approximation	Value corrected for error
10	0.659218040541651	0.659329908514041
10 ²	0.65932878785888	0.65932990643572
10 ³	0.659329895249754	0.659329906435512
10 ⁴	0.659329906323654	0.659329906435511
10^{5}	0.659329906434394	0.659329906435513

Compare the last 2 rows, the result is correct to 13 figures, 0.6593299064355.

Case 2: Let $a = 0.1, b = \pi$:

Table 9. Computed values for different values of n

n	Trapezoidal approximation	Value corrected for error
10	1.74979408696729	1.75199290280498
10 ²	1.75197061818439	1.75199259090534
10 ³	1.75199237114853	1.75199259087419
10 ⁴	1.75199258867694	1.75199259087419
10^{5}	1.75199259085225	1.75199259087422

Compare the last 2 rows, the result is correct to 13 figures, 1.751992590874.

Conclusion:

In this investigation, I formulated and justified the relationship between the trapezoidal rule error and the difference \overline{d} on the midpoint of the interval. That is:

$$E_T = -\frac{2}{3}(b-a) \cdot \overline{d}$$

Compared with the error bound formula, the above equation can calculate the error directly to a greater precision as showed using same number of partition intervals. The minus sign also indicates whether the trapezoidal result is smaller than or greater than the actual result. This also can be applied to calculators and numerical integration programs to calculate the integrals to a certain precision. One weakness of my equation is that the calculation involves the calculation of \overline{d} , which has more computation steps than the error bound formula. This weakness would not be significant when partition intervals are small. Computers can carry out billions of computations in one second. However, the weakness will be significant when partition intervals increase.

Although the error can be reduced by making \overline{d} smaller using more partition intervals, cautions is still needed. This is because present computers carry out calculations to a certain precision. So, there is a limit to the precision of the error depending on the computing power. This is actually a limit to the precision of all the numerical methods. Also, the relationship between the number of intervals and precision of the equation can be further explored.

Another point to note is that the approximation of $F_2 \approx \frac{F_1}{2}$ to justify the equation above. This needs further justification beyond the level of this investigation.

Works Cited

Calculus: Graphical, Numerical, Algebraic, by Ross L. Finney, 5th ed., Pearson Prentice Hall, 2016, pp. 314–319.

Section 7.7 Deriving the Trapezoidal Rule Error.

 $math.ucsd.edu/\!\!\sim\!\!ebender/20B/77_Trap.pdf.\ Accessed\ 18^{th},\ Feb.,\ 2021.$

Appendices:

1. MATLAB code:

1.1: Example of finding the trend:

```
format long e
filename='E:\exp0-3.xlsx';
a=double(0);
b=double(3);
h=double(0.0);
k=double(0.0);
sl=double(0.0);
err=double(0.0);
%para=6;
time=6;
aaa=zeros(10,20); %absolute value
bbb=zeros(10,20); %difference
ddd=zeros(10,20);
eee=zeros(10,20);
fff=zeros(10,20);
ggg=zeros(10,20);
aa=double(aaa);
bb=double(bbb);
dd=double(ddd);
ee=double(eee);
ff=double(fff);
gg=double(ggg);
for para=1:time
tv=double(1./para.*(exp(b*para)-exp(a*para)));
disp(tv);
for i =1:7
   k=10.^{i};
   h = (b-a)./k;
```

```
ss=double(0.0);
   cc=double(0.0);
   for j=1:(k+1)
      evalue=double(exp(para.*(a+(j-1).*h)));
      ss=ss+evalue.*h;
      if j<(k+1)</pre>
          sl=(exp(para.*(a+j.*h))-evalue)./h;
          err=evalue+0.5*h*sl;
          cc=cc+err-exp(para.*(a+(j-1).*h+0.5.*h)); %sum of vertical
difference
       end
   end
   ss=ss-(exp(a*para)+exp(b*para)).*0.5.*h;
   %%ss=ss*h;
   aa(i,para)=ss;
   %%disp(ss);
   bb(i,para)=ss-tv;
   ee(i,para)=log10(bb(i,para));
   dd(i,para)=cc./k;
   ff(i,para) = log10(dd(i,para));
   gg(i,para)=bb(i,para)./dd(i,para);
end;
end;
xlswrite(filename,bb,1);
xlswrite(filename, dd, 2);
xlswrite(filename, ee, 3);
xlswrite(filename, ff, 4);
xlswrite(filename,gg,5);
xlswrite(filename, aa, 6);
```

1.2: Example of application of the trend:

```
format long g
filename='E:\testexp4.xlsx';
a=1;
b=2;
h=0;
k=0;
sl=0;
aa=zeros(10,1); %absolute value
bb=zeros(10,1); %difference
dd=zeros(10,1);
ee=zeros(10,1);
for i =1:5
   k=10.^i;
   h = (b-a)./k;
   ss=0;
   cc=0;
   for j=1:(k+1)
       evalue=\exp((a+(j-1).*h).^2);
       ss=ss+evalue.*h;
       if j<(k+1)</pre>
          sl=(exp((a+j.*h).^2)-evalue)./h;
          err=evalue+h*0.5*sl;
          cc=cc+err-exp((a+(j-1).*h+0.5.*h).^2);
       end
   end
   ss=ss-(exp(a.^2)+exp(b.^2)).*0.5.*h;
   %%ss=ss*h;
   aa(i,1) = ss;
   %%disp(ss);
   %bb(i,1)=tv-ss;
   dd(i,1)=cc./k;
   bb(i,1)=dd(i,1)*(b-a)*(2/3);
   ee(i,1) = aa(i,1) - bb(i,1);
end;
xlswrite(filename,aa,1);
xlswrite(filename, bb, 2);
xlswrite(filename, dd, 3);
xlswrite(filename, ee, 4);
```

2. <u>Table of values:</u>

2.1 Function:

$$f(x) = cos(k \cdot x)$$

Let
$$a = 0$$
, $b = \frac{\pi}{12}$:

Table 10. Several computed values for k=2

	k=2							
n	E_T	\overline{d}	$\frac{E_T}{\overline{d}}$					
10	-5.71184E-05	-0.000327268	0.174530931					
10^2	-5.71158E-07	-3.27249E-06	0.174532905					
10^{3}	-5.71158E-09	-3.27249E-08	0.174532927					
10 ⁴	-5.71157E-11	-3.27249E-10	0.17453264					
10 ⁵	-5.69239E-13	-3.27249E-12	0.173946928					
10 ⁶	-1.6126E-14	-3.27272E-14	0.492739219					

Table 11. Computed values of $\frac{E_T}{\overline{d}}$ for different values of n and k

	E_T	k								
$\frac{E_T}{\overline{d}}$		1	2	3	4	5	6			
	10	0.174532427	0.174530931	0.174528439	0.17452495	0.174520463	0.174514978			
	10^2	0.17453292	0.174532905	0.17453288	0.174532845	0.174532801	0.174532746			
	10^{3}	0.174532929	0.174532927	0.174532924	0.174532924	0.174532924	0.174532923			
n	10^{4}	0.174539797	0.17453264	0.174533116	0.174532677	0.174532688	0.174533347			
	10^{5}	0.178334171	0.173946928	0.174458069	0.174739592	0.174539014	0.174560473			
	10^{6}	0.432527907	0.492739219	0.122736128	0.210056168	0.131348176	0.189685802			

2.2 Function:

$$f(x) = x^k$$

When k = 1, f(x) = x, so E_T is 0.

Let a = 3, b = 5:

Table 12. Several computed values for k=2

k=3								
n	E_T	\overline{d}	$\frac{E_T}{\overline{d}}$					
10	1.30656	0.12	1.333333333					
10 ²	0.013066656	0.0012	1.333333333					
10^3	0.000130667	1.2E-05	1.333333336					
10^{4}	1.30667E-06	1.2E-07	1.333336488					
10^{5}	1.30693E-08	1.20001E-09	1.332373855					
10 ⁶	1.32786E-10	1.19932E-11	1.338953121					

Table 13. Computed values of $\frac{E_T}{\overline{a}}$ for different values of n and k

E_T		k						
$\overline{\overline{d}}$		1	2	3	4	5	6	
n	10	0	1.333333333	1.33333333	1.33336055	1.33341179	1.333484527	
	10 ²	0	1.333333333	1.33333333	1.33333361	1.33333412	1.333334845	
	10^{3}	0	1.333333317	1.33333334	1.33333334	1.33333335	1.333333347	
	104	0	1.333340507	1.33333649	1.33333498	1.33333452	1.333334183	
	10^{5}	0	1.332953463	1.33237386	1.33359566	1.33344547	1.333102775	
	10 ⁶	0	2.603490777	1.33895312	1.35548721	1.2676491	1.277765952	