Höhere Analysis Nils Witt

Borel-Mengen auf dem \mathbb{R}^n .

Wintersemester 2020

Seien hier stets X, X_1 und X_2 nichtleere Mengen.

Lemma 1. Sei Y eine nichtleere Menge und $f: X \to Y$ eine Abbildung. Sei $\mathscr E$ eine σ -Algebra auf X und $\mathscr F$ eine σ -Algebra auf Y. Dann sind

$$f^{-1}(\mathscr{F}) = \{ f^{-1}(F) : F \in \mathscr{F} \}, \quad f_*(\mathscr{E}) = \{ B \subset Y : f^{-1}(B) \in \mathscr{E} \}$$

 σ -Algebren.

Beweis. (a) Es ist $f^{-1}(\emptyset) = \emptyset$, also $\emptyset \in f^{-1}(\mathscr{F})$. Jedes $A \in f^{-1}(\mathscr{F})$ können wir als $A = f^{-1}(F)$ für ein $F \in \mathscr{F}$ schreiben. Dann ist direkt klar, dass

$$A^{c} = (f^{-1}(F))^{c} = f^{-1}(F^{c})$$

wegen $F^c \in \mathscr{F}$ auch $A^c \in f^{-1}(\mathscr{F})$ ist. Seien noch $A_n \in f^{-1}(\mathscr{F})$ für $n \in \mathbb{N}$, so existieren $F_n \in \mathscr{F}$ mit $f^{-1}(F_n) = A_n$ für alle $n \in \mathbb{N}$. Folglich ist

$$\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} f^{-1}(F_n) = f^{-1}(\bigcup_{n\in\mathbb{N}} F_n)$$

und daher wegen $\bigcup_{n\in\mathbb{N}} F_n \in \mathscr{F}$ auch $\bigcup_{n\in\mathbb{N}} A_n \in f^{-1}(\mathscr{F})$.

(b) Da $\emptyset \in \mathscr{E}$ und $f^{-1}(\emptyset) = \emptyset$, ist auch $\emptyset \in f_*(\mathscr{E})$. Sei $A \in f_*(\mathscr{E})$, dann gilt

$$f^{-1}(A^c) = f^{-1}(A)^c$$

und wegen $f^{-1}(A) \in \mathcal{E}$, ist auch $f^{-1}(A)^c \in \mathcal{E}$, also ist $A^c \in f_*(\mathcal{E})$. Seien $A_n \in f_*(\mathcal{E})$ für $n \in \mathbb{N}$. Dann ist

$$f^{-1}(\bigcup_{n\in\mathbb{N}}A_n)=\bigcup_{n\in\mathbb{N}}f^{-1}(A_n)$$

und da $f^{-1}(A_n) \in \mathcal{E}, \ \forall n \in \mathbb{N}, \text{ ist auch } \bigcup_{n \in \mathbb{N}} f^{-1}(A_n) \in \mathcal{E}.$

Höhere Analysis Nils Witt

Definition 1 (Borelsche σ -Algebra und topolgischer Raum). Sei (X, \mathfrak{T}) ein topolgischer Raum. Das heißt $\mathfrak{T} \subset \mathfrak{P}(X)$ mit den Eigenschaften

- $(1) X, \emptyset \in \mathfrak{T}$
- (2) Für $A, B \in \mathfrak{T}$ gilt $A \cap B \in \mathfrak{T}$
- (3) Sei $I \neq \emptyset$ eine beliebige nichtleere Indexmenge und $A_i \in \mathfrak{T}$, dann ist $\bigcup_{i \in I} A_i \in \mathfrak{T}$.

Wir nennen $\sigma(\mathfrak{T}) = \mathcal{B}(X)$ die Borel- σ -Algebra auf X.

Seien (X_j, \mathscr{A}_j) für j=1,2 messbare Räume. Wir definieren die Produkt- σ -Algebra wie folgt

$$\mathscr{A}_1 \otimes \mathscr{A}_2 := \sigma(\{A \times B : A \in \mathscr{A}_1, B \in \mathscr{A}_2\})$$

Ferner bezeichnen wir mit

$$\mathscr{A}_1 \boxtimes \mathscr{A}_2 := \{ A \times B : A \in \mathscr{A}_1, B \in \mathscr{A}_2 \}$$

die Menge der kartesischen Produkte. Das nächste Lemma war das eigentliche Ziel, das ich dir zeigen wollte. Es ist eine Verallgemeinerung davon, dass $\mathscr{B}(\mathbb{R}) \times \mathscr{B}(\mathbb{R}) = \sigma(\{A_1 \times A_2 : A_1, A_2 \subset \mathbb{R} \text{ offen}\})$. Dass sich also die Produkt- σ -Algebra von den kartesischen Produkten von Erzeugern erzeugen lässt. Also bei uns war es, dass die Produkt- σ -Algebra die kleinste σ -Algebra ist, die alle kartesischen Produkte enthält und falls es Erzeuger gibt, liefert uns das nachfolgende Lemma, dass die Produkt- σ -Algebra aus den kartesischen Produkten der Erzeuger erzeugt wird.

Lemma 2. Seien $\mathscr{S}_j \in \mathfrak{P}(X_j)$ Systeme von Teilmengen mit $X_j \in \mathscr{S}_j$ für j = 1, 2. So gilt

$$\sigma(\mathscr{S}_1) \otimes \sigma(\mathscr{S}_2) = \sigma(\mathscr{S}_1 \boxtimes \mathscr{S}_2)$$

Beweis. Wir definieren $\mathscr{A}_j = \sigma(\mathscr{S}_j)$ für j = 1, 2. Es gilt $\sigma(\mathscr{S}_1 \boxtimes \mathscr{S}_2) \subset \sigma(\mathscr{S}_1) \otimes \sigma(\mathscr{S}_2)$, denn sei $S_1 \times S_2 \in \mathscr{S}_1 \boxtimes \mathscr{S}_2$, dann gilt insbesondere, dass $S_1 \in \sigma(\mathscr{S}_1) = \mathscr{A}_1$ und $S_2 \in \sigma(\mathscr{S}_2) = \mathscr{A}_2$, also ist $S_1 \times S_2 \in \{A \times B : A \in \mathscr{A}_1, B \in \mathscr{A}_2\}$ und daher nach Definition $S_1 \times S_2 \in \sigma(\{A \times B : A \in \mathscr{A}_1, B \in \mathscr{A}_2\}) = \mathscr{A}_1 \otimes \mathscr{A}_2$.

Da $\mathscr{A}_1\otimes\mathscr{A}_2$ eine σ -Algebra ist, die $\mathscr{S}_1\boxtimes\mathscr{S}_2$ enthält, folgt die Behauptung. Noch die andere Inklusion. Wir definieren die σ -Algebren

$$\widetilde{\mathscr{A}}_j := (\operatorname{pr}_j)_* (\sigma(\mathscr{S}_1 \boxtimes \mathscr{S}_2))$$

wobei pr_j die Projektion von $X_1 \times X_2$ auf den Raum X_j meint, für j = 1, 2. Nun gilt nach Voraussetzung, dass $X_j \in \mathscr{S}_j$ für j = 1, 2. Wir zeigen, dass $\mathscr{A}_j \subset \widetilde{\mathscr{A}}_j$ für j = 1, 2. Sei nun j = 1 und sei $S_1 \in \mathscr{S}_1$ beliebig, dann ist

$$\operatorname{pr}_{1}^{-1}(S_{1}) = S_{1} \times X_{2} \in \mathscr{S}_{1} \boxtimes \mathscr{S}_{2} \subset \sigma(\mathscr{S}_{1} \boxtimes \mathscr{S}_{2})$$

weil $S_1 \in \mathcal{S}_1$ und $X_2 \in \mathcal{S}_2$. Nach Definition ist

$$\mathscr{A}_1 = (\operatorname{pr}_1)_*(\sigma(\mathscr{S}_1 \boxtimes \mathscr{S}_2)) = \{ A \in X_1 \times X_2 : \operatorname{pr}_1^{-1}(A) \in \sigma(\mathscr{S} \boxtimes \mathscr{S}_2) \}$$

Höhere Analysis Nils Witt

Daher ist also $S_1 \in (\operatorname{pr}_1)_*(\sigma(\mathscr{S}_1 \boxtimes \mathscr{S}_2)) = \widetilde{\mathscr{A}}_1$. Also ist $\widetilde{\mathscr{A}}_1$ eine σ -Algebra auf X_1 , die \mathscr{S}_1 enthält, also ist $\sigma(\mathscr{S}_1) = \mathscr{A}_1 \subset \widetilde{\mathscr{A}}_1$. Analog für j = 2. Daher haben wir, dass $\mathscr{A}_j \subset \widetilde{\mathscr{A}}_j$ für j = 1, 2.

Sei nun $A_1 \times A_2 \in \sigma(\mathscr{S}_1) \boxtimes \sigma(\mathscr{S}_2) = \mathscr{A}_1 \boxtimes \mathscr{A}_2$. Dann gilt

$$A_1 \times X_2 = (\operatorname{pr}_1)^{-1}(A_1) \in \sigma(\mathscr{S}_1 \boxtimes \mathscr{S}_2)$$

$$X_1 \times A_2 = (\operatorname{pr}_2)^{-1}(A_2) \in \sigma(\mathscr{S}_1 \boxtimes \mathscr{S}_2)$$

weil gilt, dass $\sigma(\mathscr{S}_1) = \mathscr{A}_1 \subset \widetilde{\mathscr{A}}_1 = (\operatorname{pr}_1)_*(\sigma(\mathscr{S}_1 \boxtimes \mathscr{S}_2))$ das bedeutet nach Definition nichts anderes, als, dass für alle $M_1 \in \sigma(\mathscr{S}_1) = \mathscr{A}_1$ gilt, dass $\operatorname{pr}_1^{-1}(M_1) \in \sigma(\mathscr{S} \boxtimes \mathscr{S}_2)$. Aus analogen Gründen sieht man dann die zweite Zeile ein.

Nun bemerkt man noch, dass $A_1 \times A_2 = (A_1 \times X_2) \cap (X_1 \times A_2)$. Ferner gilt, dass $A_1 \times X_2, X_1 \times A_2 \in \sigma(\mathscr{S}_1 \boxtimes \mathscr{S}_2)$, da die rechte Menge eine σ -Algebra ist, gilt auch, dass $A_1 \times A_2 \in \sigma(\mathscr{S}_1 \boxtimes \mathscr{S}_2)$. Daher gilt, dass $\mathscr{A}_1 \boxtimes \mathscr{A}_2 \subset \sigma(\mathscr{S}_1 \boxtimes \mathscr{S}_2)$. Also gilt

$$\mathscr{A}_1 \otimes \mathscr{A}_2 = \sigma(\mathscr{A}_1 \boxtimes \mathscr{A}_2) \subset \sigma(\mathscr{S}_1 \boxtimes \mathscr{S}_2)$$

was zu zeigen war.