第二章一维随机变量及其分布

第一节 随机变量

第二节 离散型随机变量及其分布

第三节 随机变量的分布函数

第四节 连续型随机变量及其分布

第五节 随机变量函数的分布

教学计划: 4次课-12学时

问题的提出

在很多实际问题中,需要研究随机变量间存在的函数关系, 也就是研究他们在概率分布上的关系.

例如: 已知圆轴截面直径 X 的概率分布, 即 $f_X(x)$

截面面积
$$Y = \pi \left(\frac{X}{2}\right)^2 = \frac{\pi X^2}{4}$$

求Y的概率分布,即 $f_Y(y)$

研究问题: 已知随机变量 X 及概率分布,

要求 Y = g(X) 的概率分布.

第二章 一维随机变量及其分布

第五节 随机变量函数的分布

- **一**随机变量的函数的定义
 - 离散型随机变量的函数的分布
 - 连续型随机变量的函数的分布

一. 随机变量的函数的定义

定义:设g(x)是定义在随机变量X的一切可能取值x的集合上的函数,如果对于X的每一个可能取值x,有另一个随机变量Y的相应取值y=g(x)与之对应,则称Y为X的函数,记为Y=g(X).

本节的任务: 根据 X 的分布,求出Y = g(X) 的分布。 (这个问题无论在实际中还是在理论上都是重要)

第二章 一维随机变量及其分布

第五节 随机变量函数的分布

- ✓ 随机变量的函数的定义
- **离**散型随机变量的函数的分布
 - 连续型随机变量的函数的分布

二. 离散型随机变量的函数的分布

若 X 是离散型随机变量,则 Y = g(X) 也是一个离散型随机变量,则 Y = g(X) 的分布律可由 X 的分布律直接求出.

例1. 已知 X 的概率分布为:

X	5	10
$oldsymbol{P}_k$	<u>1</u>	2
	3	3

求: Y = 2X 的概率分布(分布律).

求: Y = 2X的概率分布(分布律).

解:

X	5	10
P_k	$\frac{1}{3}$	$\frac{2}{3}$

Y	10	20	
X	5	10	
P_{k}	1_	<u>2</u>	
ĸ	$\overline{3}$	3	

$$P(Y = 10) = P(X = 5) = \frac{1}{3}$$

$$P(Y = 20) = P(X = 10) = \frac{2}{3}$$

从而得Y = 2X的分布律为:

Y	10	20
P_k	<u>1</u>	2
K	3	3

例2. 已知X的概率分布为:

	0						
P_{k}	1/12	1/6	1/3	1/12	2/9	1/9	

求: $Y = (X - 2)^2$ 的概率分布(分布律)

解:

Y	4	1	0	1	4	9	
X	0	1	2	3	4	5	
P_k	1/12	1/6	1/3	1/12	2/9	1/9	

解:

$$(Y = 4) = (X = 0) \cup (X = 4)$$

$$P(Y = 4) = P(X = 0) + P(X = 4) = \frac{1}{12} + \frac{2}{9} = \frac{11}{36}$$

$$P(Y = 1) = P(X = 1) + P(X = 3) = \frac{1}{6} + \frac{1}{12} = \frac{1}{4}$$

$$P(Y=0) = P(X=2) = \frac{1}{3}$$

$$P(Y = 9) = P(X = 5) = \frac{1}{9}$$

$oldsymbol{Y}$	0	1	4	9
P	1	1	11	1
P_{k}	3	4	36	9

归纳:

若X 是离散型随机变量,X 的分布律为

X	$\boldsymbol{x_1}$	$x_2 \cdots x_n \cdots$
P_k	$p_{\scriptscriptstyle 1}$	$p_2 \cdots p_n \cdots$

则 Y = g(X) 的分布律为:

Y	$g(x_1)$	$g(x_2)$	• • •	$g(x_n)$.	• •
P_{k}	p_{1}	p_2	• • •	\boldsymbol{p}_n	• • •

注意:如果 $g(x_k)$ 中有一些是相同的,则应把它们作适当并项即可.

练习1

已知X的概率分布为:

X	-2	-1	0	1	3	
P_{k}	1/5	1/6	1/5	1/15	11/30	

求: $Y = X^2$ 的概率分布(分布律)

解:

Y	4	1	0	1	9	
X	-2	-1	0	1	3	
P_k	1/5	1/6	1/5	1/15	11/30	

练习1

$$Y = X^2$$

解:

Y	4	1	0	1	9	
X	-2	-1	0	1	3	
P_k	1/5	1/6	1/5	1/15	5 11/30	

$$(Y = 1) = (X = -1) \cup (X = 1)$$

$$P(Y=1) = P(X=-1) + P(X=1) = \frac{1}{6} + \frac{1}{15} = \frac{7}{30}$$

<u> </u>	0	1	4	9	
P_k	1/5	7/30	1/5	11/30	

$$\sum_{k=1}^4 p_k = 1$$

第二章 一维随机变量及其分布

第五节 随机变量函数的分布

- ✓ 随机变量的函数的定义
- ✔ 离散型随机变量的函数的分布
- **—** 连续型随机变量的函数的分布

三. 连续型随机变量的函数的分布

问题:已知Y=g(X)和 $f_X(x)$,求 $f_Y(y)$

分布函数法: $(1) 求 F_Y(y)$ $(2) F'_Y(y) = f_Y(y)$

$$(2) F_Y'(y) = f_Y(y)$$

复习

分布函数: $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$

概率计算:
$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t) dt = F(x_2) - F(x_1)$$

概率密度性质: F'(x) = f(x)

高数求导:
$$Z(x) = \int_{p(x)}^{g(x)} z(t) dt \Rightarrow Z'(x) = z[g(x)] g'(x) - z[p(x)] p'(x)$$

	_
9	
7	

正态分布

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

N	$(\mu,$	σ^2	
T V	$(\mu,$	•	

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$-\infty < x < \infty$$

分布函数

$$F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

$$-\infty < x < \infty$$

概率计算

$$P(a \le X \le b) = \int_{x_1}^{x_2} f(t) dt = F(x_2) - F(x_1)$$

一	
4	

正态分布

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

	$N(\mu, \sigma^2)$	N(0,1)
概率密度	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $-\infty < x < \infty$	$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ $-\infty < x < \infty$
分布函数	$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$ $-\infty < x < \infty$	$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$ 查表 $-\infty < x < \infty$
		旦仪
概率计算	$F(x) = P(X \le x) = P(\frac{X - \mu}{\sigma} \le x)$ $P(a \le X \le h) = P(\frac{a - \mu}{\sigma} \le \frac{X - \mu}{\sigma} \le x)$	$\leq \frac{x - \mu}{\sigma} = \Phi\left(\frac{x - \mu}{\sigma}\right)$ $= \frac{\mu}{\sigma} \leq \frac{b - \mu}{\sigma} = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$
	σ	σ σ σ σ σ

例3. 设X服从区间(0,2)上的均匀分布.

求: $Y = X^2$ 的概率密度 $f_Y(y)$

$$f_X(x) = \begin{cases} \frac{1}{2} & 0 < x < 2 \\ 0 & 其它 \end{cases}$$

解: 分布函数法 (1) 求 $F_{Y}(y)$

(2)
$$F_{Y}'(y) = f_{Y}(y)$$

$$F_X(x) = P(X \le x)$$

(1) 求 $F_{Y}(y)$

: X 的取值在(0,2)内, : Y 的取值在(0,4)内

当 y < 0 时,

$$F_Y(y) = P(Y \le y) = P(\Phi) = 0$$

求分布函数:

- 1)分布函数定义在Y轴上;
- 2) 用Y的取值分区间;
- 3) 分区间求分布函数值。

求:
$$Y = X^2$$
 的概率密度 f_Y

$$f_X(x) = \begin{cases} \frac{1}{2} & 0 < x < 2 \\ 0 & 其它 \end{cases}$$

$$F_{Y}(y) = \begin{cases} 0 & y < 0 \\ \frac{1}{2}\sqrt{y} & 0 \le y < 4 \\ 1 & 4 \le y \end{cases}$$

解:
$$(1) 求 F_{y}(y)$$

$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f_X(t) dt = F_X(x_2) - F_X(x_1)$$

当
$$y < 0$$
 时, $F_Y(y) = P(Y \le y) = 0$

$$0$$
 y 4

当
$$0 \le y < 4$$
 时有, $(Y \le y) = (-\infty < Y \le 0) \cup (0 < Y \le y)$

$$F_{Y}(y) = P(Y \le y) = P(0 < Y \le y) = P(X^{2} \le y) = P(-\sqrt{y} \le X \le \sqrt{y})$$

$$= \int_{-\sqrt{y}}^{\sqrt{y}} f_{X}(x) dx = \int_{-\sqrt{y}}^{0} f_{X}(x) dx + \int_{0}^{\sqrt{y}} f_{X}(x) dx = \frac{1}{2} \sqrt{y}$$

当
$$y \ge 4$$
 时,

$$\exists y \ge 4 \text{ Hz}, F_Y(y) = P(Y \le y) = P\{(Y \in (-\infty, 0]) \cup (Y \in (0, 4)) \cup (Y \in [4, y])\} = P\{Y \in (0, 4)\} = 1$$

求: $Y = X^2$ 的概率密度 $f_Y(y)$

$$f_X(x) = \begin{cases} \frac{1}{2} & 0 < x < 2 \\ 0 & 其它 \end{cases}$$

解: 分布函数法

$$f_X(x) = \begin{cases} \frac{1}{2} & 0 < x < 2 \\ 0 & 其它 \end{cases}$$

$$F_Y(y) = \begin{cases} 0 & y < 0 \\ \frac{1}{2}\sqrt{y} & 0 \le y < 4 \\ 1 & 4 \le y \end{cases}$$

(2)
$$f_Y(y) = F_Y'(y) = \begin{cases} \frac{1}{4\sqrt{y}}, & 0 < y < 4 \\ 0, & \sharp \dot{\Xi} \end{cases}$$
 $(\sqrt{y})' = \frac{1}{2\sqrt{y}}$

类似: 设连续型随机变量X的概率密度为 $f_X(x)$ $(-\infty, +\infty)$

求
$$Y = X^2$$
 的概率 $\{P\{x_1 < X \le x_2\} = F_X(x_2) - F_X(x_1) = \int_{x_1}^{x_2} f_X(t) dt$

解:
$$(1) 求 F_{\gamma}(y)$$
 $\therefore x \in (-\infty, +\infty)$ $\therefore y \in (0, +\infty)$

当
$$y < 0$$
 时, $F_Y(y) = P(Y \le y) = P(\Phi) = 0$

当
$$y \ge 0$$
 时, $F_Y(y) = P(Y \le y) = P(X^2 \le y)$

$$\begin{array}{c|c}
y & 0 \\
\hline
0 & y
\end{array}$$

$$= P(-\sqrt{y} \le X \le \sqrt{y}) \stackrel{1}{=} \int_{-\sqrt{y}}^{\sqrt{y}} f_X(x) dx$$

(2)
$$f_Y(y) = F_Y'(y) = \frac{1}{2\sqrt{y}} f_X(\sqrt{y}) - \frac{-1}{2\sqrt{y}} f_X(-\sqrt{y})$$
 $y > 0$

$$(Y \le y) = (-\infty < Y \le 0) \bigcup (0 < Y \le y)$$

类似: 设连续型随机变量X的概率密度为 $f_X(x)$ $(-\infty, +\infty)$

求
$$Y = X^2$$
 的概率 $\{P\{x_1 < X \le x_2\} = F_X(x_2) - F_X(x_1) = \int_{x_1}^{x_2} f_X(t) dt$

解:
$$(1) 求 F_{\gamma}(y)$$
 $\therefore x \in (-\infty, +\infty)$ $\therefore y \in (0, +\infty)$

$$= P(-\sqrt{y} \le X \le \sqrt{y}) \stackrel{2}{=} F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

(2)
$$f_Y(y) = F_Y'(y) = \frac{1}{2\sqrt{y}} f_X(\sqrt{y}) - \frac{-1}{2\sqrt{y}} f_X(-\sqrt{y})$$
 $y > 0$

$$f_{Y}(y) = \begin{cases} \frac{1}{2\sqrt{y}} [f_{X}(\sqrt{y}) + f_{X}(-\sqrt{y})] & y > 0 \\ 0 & y \le 0 \end{cases}$$

$$F'_{X}(x) = f_{X}(x)$$

 $\Phi'(x) = \varphi(x)$

例4. 设随机变量
$$X \sim N(\mu, \sigma^2)$$
 $\frac{X - \mu}{\sigma} \sim N(0, 1)$

求: Y = a + bX 的概率密度 (分布函数法) $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

(1)
$$F_{Y}(y) = P(Y \le y) = P(a + bX \le y) = P(X \le \frac{y - a}{b})$$

$$= P(\frac{X - \mu}{\sigma} \le \frac{y - a - b\mu}{b\sigma}) = \Phi(\frac{y - (a + b\mu)}{b\sigma})$$

(2)
$$f_{Y}(y) = F'_{Y}(y)$$

$$= \frac{1}{-b\sigma} \varphi(\frac{y - (a + b\mu)}{b\sigma}) = \frac{1}{-b\sigma\sqrt{2\pi}} e^{-\frac{[y - (a + b\mu)]^{2}}{2(b\sigma)^{2}}}$$

$$f_{Y}(y) = \frac{1}{|b|\sigma\sqrt{2\pi}}e^{-\frac{[y-(a+b\mu)]^{2}}{2(b\sigma)^{2}}}$$

′求分布函数:

- 分布函数定义在Y轴上;
- 2) 用Y的取值分区间;
- 3) 分区间求分布函数值。

例4. 设随机变量
$$X \sim N(\mu, \sigma^2)$$

求:
$$Y = a + bX$$
 的概率密度

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

解:

$$f_{Y}(y) = \frac{1}{|b|\sigma\sqrt{2\pi}}e^{-\frac{[y-(a+b\mu)]^{2}}{2(b\sigma)^{2}}}$$

得到:
$$Y = a + bX \sim N(a + b\mu, \sigma^2 b^2)$$

结论: 正态分布的线性函数仍服从正态分布。

练习2

求随机变量Y的概率密度 $f_{Y}(y)$

$$Y = 3X + 1$$
, $f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & 其它 \end{cases}$

解:分布函数法

: X 的取值在(0,1)内, : Y 的取值在(1,4)内

当 $1 \le y < 4$ 时,

$$F_X'(x) = f_X(x)$$

$$P\{X \le x\} = F_X(x)$$

(1)
$$F_Y(y) = P\{Y \le y\} = P\{3X + 1 \le y\} = P\{X \le \frac{y-1}{3}\} = F_X(\frac{y-1}{3})$$

$$F_{Y}(y) = P\{Y \le y\} = \begin{cases} 0 & y < 1 \\ 1 & y \ge 4 \end{cases} \qquad \stackrel{2}{=} \int_{-\infty}^{\frac{y-1}{3}} f_{X}(x) \, \mathrm{d}x = \int_{0}^{\frac{y-1}{3}} 1 \, \mathrm{d}x = \frac{y-1}{3}$$

 $1 \le y < 4$

$$(2) f_{Y}(y) = F'_{Y}(y) = f_{X}(\frac{y-1}{3}) \cdot \frac{1}{3} = 1 \cdot \frac{1}{3}, \ 0 < \frac{y-1}{3} < 1$$

$$f_{Y}(y) = \begin{cases} 1/3 & 1 < y < 4 \\ 0 & \ddagger 它 \end{cases}$$
即Y服从(1,4)上的均匀分

即Y服从(1,4)上的均匀分布

求分布函数:

- 1)分布函数定义在Y轴上;
- 2) 用Y的取值分区间;
- 3) 分区间求分布函数值。

练习3

求随机变量Y的概率密度 $f_{y}(y)$

$$Y = 3 - X$$
, $f_X(x) =$
$$\begin{cases} \frac{3}{2}x^2 & -1 < x < 1 \\ 0 &$$
 其它

$F_{X}'(x) = f_{X}(x)$

$$F_X(x) = P\{X \le x\}$$

解: X的取值在(-1,1)内, Y的取值在(2,4)内

当
$$2 \le y < 4$$
 时,

$$= 1 - P\{X \le 3 - y\} = 1 - F_X(3 - y)$$

(1)
$$F_Y(y) = P\{Y \le y\} = P\{3 - X \le y\} = P\{X \ge 3 - y\}$$

$$F_{Y}(y) = I\{I \le y\} - I\{3 - X \le y\} - I\{X \ge 3 - y\}$$

$$F_{Y}(y) = P\{Y \le y\} = \begin{cases} 0 & y < 2 \\ 1 & y \ge 4 \end{cases} = \begin{cases} \int_{3-y}^{\infty} f_{X}(x) dx = 3/2 \int_{3-y}^{1} x^{2} dx \\ = 1/2 x^{3} \Big|_{3-y}^{1} = 1/2 [1 - (3 - y)^{3}] \end{cases}$$

(2)
$$f_Y(y) = F_Y'(y) = -f_X(3-y) \cdot (-1)$$

= $\frac{3}{2}(3-y)^2, -1 < 3 - y < 1$

$$f_{Y}(y) = \begin{cases} \frac{3}{2}(3-y)^{2} & 2 < y < 4 \\ 0 & \sharp \dot{\Xi} \end{cases}$$

求分布函数:

- 1)分布函数定义在Y轴上;
- 2) 用Y的取值分区间:
- 3) 分区间求分布函数值。

第二章 一维随机变量及其分布

第五节 随机变量函数的分布

- ✓ 随机变量的函数的定义
- ✔ 离散型随机变量的函数的分布
- ✓ 连续型随机变量的函数的分布

第二章一维随机变量及其分布

第一节 随机变量

第二节 离散型随机变量及其分布

第三节 随机变量的分布函数

第四节 连续型随机变量及其分布

第五节 随机变量函数的分布

第二章小结

计算 $P(x_1 < X \le x_2)$ 的方法

离散型: 分布律 分布函数 \longrightarrow $P(x_1 < X \leq x_2)$ $P(x_1 < X \le x_2) = \sum p_k = F(x_2) - F(x_1)$ 随机 f 连续型: 概率密度 分布函数 → $f(x_1 < X \le x_2)$ 变量 非离散型: $\begin{cases} P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t) dt = F(x_2) - F(x_1) \\ - \triangle$ 公本派数 $\longrightarrow P(x_1 < X)$ 分布函数 $\longrightarrow P(x_1 < X \le x_2)$ $P(x_1 < X \le x_2) = F(x_2) - F(x_1)$ 概率密度 分布律 $X \sim (0,1)$ $X \sim U(a,b)$ $X \sim B(n, p)$ $X \sim E(\theta)$ $X \sim P(\lambda)$ $X \sim N(\mu, \sigma^2)$

小结	随机变量		
	离散型随机变量	连续型随机变量	
	1) $(0-1)$ 分布 $P(X = k) = p^{k} (1-p)^{1-k}$ $k = 0,1$	1) $U(a,b)$ $f(x) = \begin{cases} 1/(b-a), & a < x < 0 \end{cases}$ 其它	
重要分布	2) $B(n,p)$ $P(X=k) = C_n^k p^k (1-p)^{n-k}$ $k = 0,1, \dots n$	2) $E(\theta)$ ★ $f(x) = \begin{cases} 1/\theta e^{-x/\theta}, & x > 0 \\ 0, & \sharp \dot{\Sigma} \end{cases}$	
	3) $P(\lambda)$ $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ $k = 0, 1, 2 \cdots$	3) $N(\mu, \sigma^2) \bigstar$ $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	
函数的分布 $Y = g(X)$	X 的分布律 $\longrightarrow Y$ 的分布律	$f_X(x) \to f_Y(y) = F_Y'(y)$	

Y = g(X)

作业

授课内容	习题二
2.2 离散型随机变量及其分布律	2(1),3分布律, 6,7二项分布, 12,泊松分布
2.3 随机变量的分布函数	17(1)(2), 19
2.4 连续型随机变量概率密度	20,21,23,概率密度, 24指数分布,26,27,29正态分布
2.5 随机变量函数的分布	33离散, 34(1), 35(1)(2)(3)连续
	L

设随机变量X的分布律为P(X=1)=P(X=2)=1/2,

在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2)

- (1) 求Y的分布函数 $F_{y}(y)$;
- **(2)**求 EY。

在给定
$$X=1$$
的条件下, $Y \sim U(0,1)$ $f_1(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & 其它 \end{cases}$

在给定
$$X$$
=2的条件下, $Y \sim U(0,2)$ $f_2(x) = \begin{cases} 1/2 & 0 < x < 2 \\ 0 &$ 其它

14, 11分

$$X$$
的分布律为 $P(X=1) = P(X=2) = 1/2$,

在给定X=1的条件下, $Y \sim U(0,1)$

在给定X=2的条件下, $Y \sim U(0,2)$

(1)求Y的分布函数 $F_{Y}(y)$;

$$f_1(x) = \begin{cases} 1/2 & 0 < x < 1 \\ 0 & \text{#} \end{aligned}$$

解:
$$F_Y(y) = P(Y \le y)$$
 全概率公式

$$= P(X=1)P(Y \le y | X=1) + P(X=2)P(Y \le y | X=2)$$

当
$$y \le 0$$
 时, $F_Y(y) = P(Y \le y) = 0$

$$0$$
 y 1 2

当 $0 \le y < 1$ 时,

$$P(Y \le y | X = 1) = \int_{-\infty}^{y} f_1(y) dy = \int_{-\infty}^{0} 0 dy + \int_{0}^{y} 1 dy = y$$

$$P(Y \le y | X = 2) = \int_{-\infty}^{y} f_2(y) dy = \int_{-\infty}^{0} 0 dy + \int_{0}^{y} \frac{1}{2} dy = \frac{1}{2} y$$

$$F_Y(y) = P(Y \le y) = \frac{1}{2} \cdot y + \frac{1}{2} \cdot \frac{1}{2} y = \frac{3}{4} y$$

$$X$$
的分布律为 $P(X=1) = P(X=2) = 1/2$,

在给定X=1的条件下, $Y \sim U(0,1)$

在给定X=2的条件下, $Y \sim U(0,2)$

(1) 求Y的分布函数 $F_{Y}(y)$;

$$f_{2}(x) = \begin{cases} 1/2 & 0 < x < 2 \\ \boxed{0} & 0 < x < 1 \end{cases}$$

$$f_{1}(x) = \begin{bmatrix} 0 & \text{其它} \end{cases}$$

解:
$$F_Y(y) = P(Y \le y)$$

$$= P(X=1)P(Y \le y | X=1) + P(X=2)P(Y \le y | X=2)$$

当 $1 \le y < 2$ 时,

$$0 \quad 1 \quad y \quad 2$$

$$P(Y \le y | X = 1) = \int_{-\infty}^{y} f_1(y) dy = \int_{-\infty}^{0} 0 dy + \int_{0}^{1} 1 dy + \int_{1}^{y} 0 dy = 1$$

$$P(Y \le y | X = 2) = \int_{-\infty}^{y} f_2(y) dy = \int_{-\infty}^{0} 0 dy + \int_{0}^{y} \frac{1}{2} dy = \frac{1}{2} y$$

$$F_Y(y) = P(Y \le y) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{1}{2} y = \frac{1}{2} + \frac{1}{4} y$$

$$X$$
的分布律为 $P(X=1) = P(X=2) = 1/2$,

在给定X=1的条件下, $Y \sim U(0,1)$

在给定X=2的条件下, $Y \sim U(0,2)$

(1)求Y的分布函数 $F_{Y}(y)$;

$$f_1(x) = \begin{cases} 1/2 & 0 < x < 1 \\ 0 & 其它 \end{cases}$$

$$\mathbf{M}: F_{\mathbf{Y}}(\mathbf{y}) = P(\mathbf{Y} \leq \mathbf{y})$$

$$= P(X=1)P(Y \le y | X=1) + P(X=2)P(Y \le y | X=2)$$

当 $y \ge 2$ 时,

$$0 \quad 1 \quad 2 \quad y$$

$$P(Y \le y | X = 1) = \int_{-\infty}^{y} f_1(y) dy = \int_{-\infty}^{0} 0 dy + \int_{0}^{1} 1 dy + \int_{1}^{y} 0 dy = 1$$

$$P(Y \le y | X = 2) = \int_{-\infty}^{y} f_2(y) dy = \int_{-\infty}^{0} 0 dy + \int_{0}^{2} \frac{1}{2} dy + \int_{2}^{y} 0 dy = 1$$

$$F_Y(y) = P(Y \le y) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 1$$

设随机变量X的分布律为P(X=1)=P(X=2)=1/2,

在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2)

(1) 求Y的分布函数 $F_{Y}(y)$;

解:
$$F_Y(y) = P(Y \le y)$$

= $P(X = 1)P(Y \le y | X = 1) + P(X = 2)P(Y \le y | X = 2)$

$$F_{Y}(y) = \begin{cases} 0, & y < 0 \\ \frac{3}{4}y, & 0 \le y < 1 \\ \frac{1}{2} + \frac{1}{4}y, & 1 \le y < 2 \\ 1, & y \ge 2 \end{cases}$$

设随机变量X的分布律为P(X=1)=P(X=2)=1/2,

在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2)

(2)求 EY。

解:

$$f_{Y}(y) = F'_{Y}(y) =$$

$$\begin{cases} 3/4, & 0 \le y < 1 \\ 1/4, & 1 \le y < 2 \\ 0, & 其他 \end{cases}$$

$$F_{Y}(y) = \begin{cases} 0, & y < 0 \\ \frac{3}{4}y, & 0 \le y < 1 \\ \frac{1}{2} + \frac{1}{4}y, & 1 \le y < 2 \\ 1, & y \ge 2 \end{cases}$$

$$EY = \int_{-\infty}^{+\infty} y f_Y(y) dy = \int_0^1 \frac{3}{4} y dy + \int_1^2 \frac{1}{4} y dy$$
$$= \frac{3}{4} \cdot \frac{y^2}{2} \Big|_0^1 + \frac{1}{4} \cdot \frac{y^2}{2} \Big|_1^2 = \frac{3}{4}$$

例5. 设随机变量 X 在 (0,1)上服从均匀分布, $f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{其它} \end{cases}$ 求: $Y = -2 \ln X$ 的概率密度.

解: 因为在 (0,1)上, 函数 lnx < 0 故, y = -2lnx > 0

当
$$y < 0$$
 时, $F_Y(y) = P(Y \le y) = 0$
当 $y \ge 0$ 时, $F_Y(y) = P(Y \le y) = P(-2\ln X \le y)$

$$= P(\ln X \ge -\frac{y}{2}) = P(X \ge e^{-\frac{y}{2}})$$
由于 $\ln x$ 单调上升,所以
$$= 1 - P(X \le e^{-\frac{y}{2}})$$

$$= 1 - \int_{-\infty}^{e^{-\frac{y}{2}}} f_X(x) dx \qquad (0 < e^{-\frac{y}{2}} < 1)$$

例5. 设随机变量 X 在 (0,1)上服从均匀分布, $f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{其它} \end{cases}$ 求: $Y = -2 \ln X$ 的概率密度.

解: 因为在 (0,1)上, 函数 lnx < 0 故, y = -2lnx > 0

当
$$y < 0$$
时, $F_Y(y) = P(Y \le y) = 0$

当
$$y \ge 0$$
 时, $F_Y(y) = P(Y \le y)$

$$=1-\int_0^{e^{-\frac{y}{2}}}f_X(x)dx \qquad (0< e^{-\frac{y}{2}}<1)$$

$$f_Y(y) = F_Y'(y) = -f_X(e^{-\frac{y}{2}}) \cdot e^{-\frac{y}{2}}(-\frac{1}{2}) = \frac{1}{2}e^{-\frac{y}{2}}$$
 $y \ge 0$

$$=\begin{cases} \frac{1}{2}e^{-\frac{y}{2}}, & y \ge 0 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

即 服 服 参 数 为 2 的 指 数 分 布.

例5. 设随机变量 X 在 (0,1)上服从均匀分布, $f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{其它} \end{cases}$ 求: $Y = -2 \ln X$ 的概率密度.

解: 因为在 (0,1)上, 函数 lnx < 0 故, y = -2lnx > 0

当
$$y < 0$$
时, $F_Y(y) = P(Y \le y) = 0$

当
$$y \ge 0$$
 时, $F_Y(y) = P(Y \le y)$

$$=1-\int_{0}^{e^{-\frac{y}{2}}}f_{X}(x)dx \qquad (0< e^{-\frac{y}{2}}<1)$$

$$=1-e^{-\frac{y}{2}}$$

$$f_{Y}(y) = F'_{Y}(y) = \begin{cases} \frac{1}{2}e^{-\frac{y}{2}}, & y \ge 0 \\ 0, & 其它 \end{cases}$$

例6 设随机变量
$$X$$
 服从参数为 $1/2$ 的指数分
$$f_Y(y) = \begin{cases} 1, & y \in (0,1) \\ 0, & \text{其它} \end{cases}$$

 $f_X(x) = \begin{cases} 2e^{-2x}, & x > 0 \\ 0, & x \le 0 \end{cases}$

证明: $Y = 1 - e^{-2X}$ 在区间(0,1)上服从均匀分布.

解:

$$x > 0$$
 : $e^{2x} > 1$: $0 < \frac{1}{e^{2x}} < 1$

$$\therefore 0 < 1 - e^{-2x} < 1$$
 $\therefore 0 < y < 1$

$$F_Y(y) = P\{Y \le y\}$$

例6 设随机变量
$$X$$
 服从参数为 $1/2$ 的指数分
$$f_Y(y) = \begin{cases} 1, & y \in (0,1) \\ 0, & \text{其它} \end{cases}$$

证明:
$$Y = 1 - e^{-2X}$$
 在区间(0,1)上服从均匀分布.

解:

当
$$y \le 0$$
时, $F_Y(y) = P\{Y \le y\} = 0$

$$f_X(x) = \begin{cases} 2e^{-2x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

$$F_Y(y) = P\{Y \le y\} = P\{1 - e^{-2X} \le y\}$$

$$= P\{e^{-2X} \ge 1 - y\} = P\{-2X \ge \ln(1 - y)\}$$

$$= P\{X \le -\frac{1}{2}\ln(1-y)\} = \int_{-\infty}^{-\frac{1}{2}\ln(1-y)} f_X(x) dx$$

当
$$y \ge 1$$
时, $F_Y(y) = P\{Y \le y\} = P\{0 < Y < 1\} = 1$

例6 设随机变量
$$X$$
 服从参数为 $1/2$ 的指数分
$$f_Y(y) = \begin{cases} 1, & y \in (0,1) \\ 0, & \text{其它} \end{cases}$$

证明: $Y = 1 - e^{-2X}$ 在区间(0,1)上服从均匀分布.

解:
$$0 < y < 1$$

$$f_X(x) = \begin{cases} 2e^{-2x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

当
$$y \le 0$$
时,
$$F_Y(y) = P\{Y \le y\} = 0$$

$$-\frac{1}{2}\ln(1-y) > 0$$

当
$$y \in (0,1)$$
时, $F_Y(y) = P\{Y \le y\} = \int_{-\infty}^{-\frac{1}{2}\ln(1-y)} f_X(x) dx$

当
$$y \ge 1$$
时, $F_Y(y) = P\{Y \le y\} = 1$

当
$$y \in (0,1)$$
时, $f_Y(y) = F_Y'(y) = f_X[-\frac{1}{2}\ln(1-y)][\frac{1}{2(1-y)}]$
$$= 2e^{-2[-\frac{1}{2}\ln(1-y)]}[\frac{1}{2(1-y)}] = 1$$

当
$$y \notin (0,1)$$
时, $f_Y(y) = F_Y'(y) = 0$

