GLIMMER

Use the command line version of Glimmer to analyze CDSs in a partial sequence from Spiroplasma helicoides strain TABS-2, whose genome was submitted to GenBank on August 23, 2016 (file: sheliprt.fasta). The training set will be the full genome of S. helicoides strain TABS-2 (file: sheli.fasta).

Command to run: ./run_glimmer.sh

FGENESB

Use FGENESB to identify CDSs in the partial sequence from S. helicoides strain TABS-2 (file: sheliprt.fasta). Use 'bacterial generic' as the training set.

\leftarrow \rightarrow \mathbf{C} \blacktriangle Not secure \mid softberry.com/cgi-bin/programs/gfindb/fgenesb.pl								
Prediction Time: Tue Seq name: Length of Number of Number of N 1 2 3 4	of poed for the sequence of th	otenti 1 00 plasma nce - cted g cripti p Co pai 1 2 1	al genes :00:00 2 helicoi 5500 bp enes - 9	in m 005 des s	icrobial train TABS operons -	genomes -2, partial	sequence End 991 1141 1365 1978 2463	Score 117 144 73 381 231
7	5 Op 5 Op 5 Op 6 Tu	1 2 3 1	•	+ + + +	CDS CDS CDS	2585 - 4010 - 4703 - 4880 -	4003 4678 4768 5143	998 423 72 169

1. How many CDSs are listed?

There are 9 CDSs listed

2. How many mRNAs are predicted to code for those CDSs?

There are 6 mRNAs predicted

SPLIGN

Use SPLIGN to find the mRNA and CDS coordinates in the genomic DNA.

- a. mRNA locations: 614~896, 18114~18260, 19414~21651
- b. **CDS locations:** 18134~18260, 19414~21107

mRNA locations:

Segment 2, the first CDS location:

Beginning of segment 3, start of 2nd CDS location:

End of segment 3, end of 2nd CDS location:

