Example: Predicted weight for someone who is 65 inches tall?

Height	Weight	
60	84	
62	95	
64	140	
66	155	
68	119	
70	175	
72	145	
74	197	
76	150	

Example:

Height	Weight		
60	84		
62	95		
64	140		
66	155		
68	119		
70	175		
72	145		
74	197		
76	150		

Height Weight data:

$$\sum X = 612$$

 $\sum X^2 = 41856$
 $\sum (XY) = 86880$
 $n = 9$

$$\overline{X} = 68$$

$$b = 5$$

 $a = -200$

$$\Sigma Y = 1260$$

 $\Sigma Y^2 = 186826$

$$\overline{Y} = 140$$

$$\hat{Y} = -200 + 5X$$

R² predicts the amount of variance in Y explained by the regression line

- We saw this in ANOVA where R² gave 'precision' of model (ie. Ability of model to explain variation)
- The coefficient of determination
- Sometimes written as r²
- Square of the correlation coefficient, r

$$R^2 = \frac{SS_{regression}}{SS_{Total}}$$

Regression Overview

Prediction confidence:

Predicted mean age

Predicted specific age

Prediction confidence:

The purpose of regression is to **predict**. There are two types of prediction:

- 1. \overline{Y} for a given X
- 2. Single Y for a given X

Both of the above will generate \ensuremath{Y} with the same value but the prediction of a single Y point will have a lower precision

Regression Overview

Caution! Do not extrapolate beyond the range of the data

No reason to believe that the relationship between Y and X remains linear beyond the given range

Why we don't extrapolate: Measurements taken over the course of an individual's life:

Age	Weight (lbs)	Time to run one mile	Bench Press (lbs)
2	30		
5	46		
10	75		
12	84	5:40	
14	114	5:05	
16	136	4:40	160
18	143	4:35	180
20	155	4:30	

Regression Assumption Violations

Example: Measurements taken over the course of an individual's life:

Regression Assumption Violations

Example: Measurements taken over the course of an individual's life:

This means that a 93 year old man weights ~700 lbs! (and can benchpress half a tonne and running a mile takes him -5 minutes)