Lineare Algebra Vektorräume

Reinhold Hübl

Wintersemester 2020/21

Wir betrachten einen beliebigen Körper K.

Definition

Ein K-**Vektorraum** ist eine nichtleere Menge V zusammen mit einer Addition

$$'+':V\times V\longrightarrow V,\quad (\overrightarrow{V},\overrightarrow{w})\longmapsto \overrightarrow{V}+\overrightarrow{w}$$

und einer Skalarmultiplikation

$$'\cdot': K\times V\longrightarrow V, \quad (r,\overrightarrow{V})\longmapsto r\cdot\overrightarrow{V}$$

so dass für \overrightarrow{u} , \overrightarrow{v} und \overrightarrow{w} in V und Skalare r und s in K gilt:

Wir betrachten einen beliebigen Körper K.

Definition

Ein K-**Vektorraum** ist eine nichtleere Menge V zusammen mit einer Addition

$$'+': V \times V \longrightarrow V, \quad (\overrightarrow{v}, \overrightarrow{w}) \longmapsto \overrightarrow{v} + \overrightarrow{w}$$

und einer Skalarmultiplikation

$$'\cdot': K\times V\longrightarrow V, \quad (r,\overrightarrow{v})\longmapsto r\cdot\overrightarrow{v}$$

so dass für \overrightarrow{u} , \overrightarrow{v} und \overrightarrow{w} in V und Skalare r und s in K gilt:

Definition

$$V1: (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$$

$$V2: \overrightarrow{V} + \overrightarrow{W} = \overrightarrow{W} + \overrightarrow{V}$$

$$V3$$
: Es existiert ein Element $\overrightarrow{0} \in V$

$$\mathsf{mit}\ \overrightarrow{\nu} + \overrightarrow{0} = \overrightarrow{\nu}$$

$$V4: Zu jedem \overrightarrow{V} \in V$$
 existiert ein_

$$-\overrightarrow{v} \in V \text{ mit } \overrightarrow{v} + (-\overrightarrow{v}) = \overrightarrow{0}$$

$$V5: (r \cdot s) \cdot \overrightarrow{V} = r \cdot (s \cdot \overrightarrow{V})$$

$$V6: \quad \overrightarrow{r} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{r} \cdot \overrightarrow{v} + \overrightarrow{r} \cdot \overrightarrow{w}$$

$$V7: (r+s) \cdot \overrightarrow{V} = r \cdot \overrightarrow{V} + s \cdot \overrightarrow{V}$$

(Kommutativgesetz)

(neutrales Element der Addition)

(inverses Element der Addition)

- (2. Assoziativgesetz)
- (1. Distributivgesetz)
- (2. Distributivgesetz) (neutrales Element

der Multiplikation)

Die ersten vier Bedingungen besagen, dass (V, +) eine kommutative Gruppe ist.

Die letzten vier Bedingungen sind Anforderungen an die Skalarmultiplikation.

Die ersten vier Bedingungen besagen, dass (V, +) eine kommutative Gruppe ist.

Die letzten vier Bedingungen sind Anforderungen an die Skalarmultiplikation.

Beispiel

Wir betrachten $K = \mathbb{R}$ und $V = \mathbb{R}^n$ zusammen mit der komponentenweisen Addition

$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v_1 + w_1 \\ \vdots \\ v_n + w_n \end{pmatrix}$$

und der komponentenweisen Skalarmultiplikation

Beispiel

Wir betrachten $K = \mathbb{R}$ und $V = \mathbb{R}^n$ zusammen mit der komponentenweisen Addition

$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v_1 + w_1 \\ \vdots \\ v_n + w_n \end{pmatrix}$$

und der komponentenweisen Skalarmultiplikation

$$r \cdot \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} r \cdot v_1 \\ \vdots \\ r \cdot v_n \end{pmatrix}$$

Beispiel

Wir betrachten $K = \mathbb{R}$ und $V = \mathbb{R}^n$ zusammen mit der komponentenweisen Addition

$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v_1 + w_1 \\ \vdots \\ v_n + w_n \end{pmatrix}$$

und der komponentenweisen Skalarmultiplikation

$$r \cdot \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} r \cdot v_1 \\ \vdots \\ r \cdot v_n \end{pmatrix}$$

Dann ist \mathbb{R}^n ein \mathbb{R} -Vektorraum.

Beispiel

Wir betrachten $K = \mathbb{R}$ und $V = \mathbb{R}^n$ zusammen mit der komponentenweisen Addition

$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v_1 + w_1 \\ \vdots \\ v_n + w_n \end{pmatrix}$$

und der komponentenweisen Skalarmultiplikation

$$r \cdot \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} r \cdot v_1 \\ \vdots \\ r \cdot v_n \end{pmatrix}$$

Dann ist \mathbb{R}^n ein \mathbb{R} -Vektorraum.

Beispiel

Der Nullvektor

$$\overrightarrow{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

ist dabei das neutrale Element der Addition.

Der negative Vektor $-\overrightarrow{v}$ zu einem n-dimensionalen reellen Vektor ist gegeben durch

$$-\overrightarrow{V} = \begin{pmatrix} -v_1 \\ \vdots \\ -v_n \end{pmatrix}$$

Beispiel

Der Nullvektor

$$\overrightarrow{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

ist dabei das neutrale Element der Addition.

Der negative Vektor $-\overrightarrow{v}$ zu einem *n*-dimensionalen reellen Vektor ist gegeben durch

$$-\overrightarrow{v} = \begin{pmatrix} -v_1 \\ \vdots \\ -v_n \end{pmatrix}$$

Beispiel

Das n-fache kartesische Produkt von \mathbb{C} , also die Menge

$$\mathbb{C}^n := \left\{ \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \mid z_i \in \mathbb{C} \right\}$$

zusammen mit der komponentenweisen Addition und der komponentenweisen Skalarmultiplikation

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} + \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} = \begin{pmatrix} y_1 + z_1 \\ \vdots \\ y_n + z_n \end{pmatrix}, \quad a \cdot \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} = \begin{pmatrix} a \cdot z_1 \\ \vdots \\ a \cdot z_n \end{pmatrix}$$

 $(a, y_i, z_i \in \mathbb{C})$ ist ein \mathbb{C} -Vektorraum.

Übung

Bestimmen Sie

$$\begin{pmatrix} 1\\2\\3\\5 \end{pmatrix} + \begin{pmatrix} 3\\-3\\4\\2 \end{pmatrix}$$

Übung

Bestimmen Sie

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \end{pmatrix} + \begin{pmatrix} 3 \\ -3 \\ 4 \\ 2 \end{pmatrix}$$

Lösung:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \end{pmatrix} + \begin{pmatrix} 3 \\ -3 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 7 \\ 7 \end{pmatrix}$$

Übung

Bestimmen Sie

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \end{pmatrix} + \begin{pmatrix} 3 \\ -3 \\ 4 \\ 2 \end{pmatrix}$$

Lösung:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \end{pmatrix} + \begin{pmatrix} 3 \\ -3 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 7 \\ 7 \end{pmatrix}$$

Beispiel

Die Zahlenebene \mathbb{R}^2 ist ein \mathbb{R} -Vektorraum, der Vektorraum der ebenen Vektoren, die durch Pfeile in der Ebenen dargestellt werden.

Beispie

Der Raum \mathbb{R}^3 ist ein \mathbb{R} -Vektorraum, der Vektorraum der räumlichen Vektoren, die durch Pfeile im Raum dargestellt werden.

Beispiel

Die Zahlenebene \mathbb{R}^2 ist ein \mathbb{R} -Vektorraum, der Vektorraum der ebenen Vektoren, die durch Pfeile in der Ebenen dargestellt werden.

Beispiel

Der Raum \mathbb{R}^3 ist ein \mathbb{R} -Vektorraum, der Vektorraum der räumlichen Vektoren, die durch Pfeile im Raum dargestellt werden.

Beispiel

Das n-fache kartesische Produkt von \mathbb{F}_2 , also die Menge

$$\mathbb{F}_2^n := \left\{ \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \mid a_i \in \mathbb{C} \right\}$$

zusammen mit komponentenweiser Addition und Skalarmultiplikation ist ein \mathbb{F}_2 -Vektorraum.

Bei \mathbb{F}_2^n handelt es sich um die n-Tupel binärer Zahlen, die sich komplett auflisten lassen. So gilt etwa

$$\mathbb{F}_2^2 := \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$$

Beispiel

Das n-fache kartesische Produkt von \mathbb{F}_2 , also die Menge

$$\mathbb{F}_2^n := \left\{ \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \mid a_i \in \mathbb{C} \right\}$$

zusammen mit komponentenweiser Addition und Skalarmultiplikation ist ein \mathbb{F}_2 -Vektorraum.

Bei \mathbb{F}_2^n handelt es sich um die n-Tupel binärer Zahlen, die sich komplett auflisten lassen. So gilt etwa

$$\mathbb{F}_2^2 := \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$$

Insbesondere ist also \mathbb{F}_2^n eine endliche Menge mit $|\mathbb{F}_2^n|=2^n$.

Beispiel

Das n-fache kartesische Produkt von \mathbb{F}_2 , also die Menge

$$\mathbb{F}_2^n := \left\{ \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \mid a_i \in \mathbb{C} \right\}$$

zusammen mit komponentenweiser Addition und Skalarmultiplikation ist ein \mathbb{F}_2 -Vektorraum.

Bei \mathbb{F}_2^n handelt es sich um die n–Tupel binärer Zahlen, die sich komplett auflisten lassen. So gilt etwa

$$\mathbb{F}_2^2 := \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$$

Insbesondere ist also \mathbb{F}_2^n eine endliche Menge mit $|\mathbb{F}_2^n|=2^n$.

Beispiel

Wir betrachten die Menge

$$V = \mathrm{Abb}(\mathbb{N}, \mathbb{R}) = \{f : \mathbb{N} \longrightarrow \mathbb{R} \text{ Abbildung } \}$$

aller Abbildungen von $\mathbb N$ nach $\mathbb R$. Für $f,g\in V$ definieren wir f+g durch

$$(f+g)(n) = f(n) + g(n)$$
 für alle $n \in N$

Beispiel

Wir betrachten die Menge

$$V = \mathrm{Abb}(\mathbb{N}, \mathbb{R}) = \{f : \mathbb{N} \longrightarrow \mathbb{R} \text{ Abbildung } \}$$

aller Abbildungen von $\mathbb N$ nach $\mathbb R$. Für $f,g\in V$ definieren wir f+g durch

$$(f+g)(n) = f(n) + g(n)$$
 für alle $n \in N$

Für $f \in V$ und $r \in \mathbb{R}$ definieren wir $r \cdot f$ durch

$$(r \cdot f)(n) = r \cdot f(n)$$
 für alle $n \in N$

Dann ist V ein \mathbb{R} -Vektorraum.

Beispiel

Wir betrachten die Menge

$$V = Abb(\mathbb{N}, \mathbb{R}) = \{f : \mathbb{N} \longrightarrow \mathbb{R} \text{ Abbildung } \}$$

aller Abbildungen von \mathbb{N} nach \mathbb{R} . Für $f,g\in V$ definieren wir f+g durch

$$(f+g)(n)=f(n)+g(n)$$
 für alle $n\in N$

Für $f \in V$ und $r \in \mathbb{R}$ definieren wir $r \cdot f$ durch

$$(r \cdot f)(n) = r \cdot f(n)$$
 für alle $n \in N$

Dann ist V ein \mathbb{R} -Vektorraum.

In dieser Situation schreibt man häufig f_n für f(n) und $(f_n)_{n\in\mathbb{N}}$ für f und nennt ein Element $(f_n)_{n\in\mathbb{N}}$ eine **reelle Zahlenfolge**. Der Raum V heißt auch Vektorraum der Folgen.

Beispiel

Wir betrachten die Menge

$$V = Abb(\mathbb{N}, \mathbb{R}) = \{f : \mathbb{N} \longrightarrow \mathbb{R} \text{ Abbildung } \}$$

aller Abbildungen von \mathbb{N} nach \mathbb{R} . Für $f,g\in V$ definieren wir f+g durch

$$(f+g)(n) = f(n) + g(n)$$
 für alle $n \in N$

Für $f \in V$ und $r \in \mathbb{R}$ definieren wir $r \cdot f$ durch

$$(r \cdot f)(n) = r \cdot f(n)$$
 für alle $n \in N$

Dann ist V ein \mathbb{R} -Vektorraum.

In dieser Situation schreibt man häufig f_n für f(n) und $(f_n)_{n\in\mathbb{N}}$ für f und nennt ein Element $(f_n)_{n\in\mathbb{N}}$ eine **reelle Zahlenfolge**. Der Raum V heißt auch Vektorraum der Folgen.

Beispiel

Wir betrachten ein Intervall $I \subseteq \mathbb{R}$ und die Menge

$$V = Abb(I, \mathbb{R}) = \{f : I \longrightarrow \mathbb{R} \text{ Abbildung } \}$$

aller Abbildungen von I nach \mathbb{R} . Für $f,g\in V$ definieren wir f+g durch

$$(f+g)(x) = f(x) + g(x)$$
 für alle $x \in I$

Beispiel

Wir betrachten ein Intervall $I \subseteq \mathbb{R}$ und die Menge

$$V = Abb(I, \mathbb{R}) = \{f : I \longrightarrow \mathbb{R} \text{ Abbildung } \}$$

aller Abbildungen von I nach \mathbb{R} . Für $f,g\in V$ definieren wir f+g durch

$$(f+g)(x) = f(x) + g(x)$$
 für alle $x \in I$

Für $f \in V$ und $r \in \mathbb{R}$ definieren wir $r \cdot f$ durch

$$(r \cdot f)(x) = r \cdot f(x)$$
 für alle $x \in I$

Dann ist V ein \mathbb{R} -Vektorraum, der Vektorraum der reellwertigen Abbildungen auf I.

Beispiel

Wir betrachten ein Intervall $I \subseteq \mathbb{R}$ und die Menge

$$V = Abb(I, \mathbb{R}) = \{f : I \longrightarrow \mathbb{R} \text{ Abbildung } \}$$

aller Abbildungen von I nach \mathbb{R} . Für $f,g \in V$ definieren wir f+g durch

$$(f+g)(x) = f(x) + g(x)$$
 für alle $x \in I$

Für $f \in V$ und $r \in \mathbb{R}$ definieren wir $r \cdot f$ durch

$$(r \cdot f)(x) = r \cdot f(x)$$
 für alle $x \in I$

Dann ist V ein \mathbb{R} -Vektorraum, der Vektorraum der reellwertigen Abbildungen auf 1.

Fordern wir zusätzlich, dass die Abbildungen stetig, differenzierbar,

Beispiel

Wir betrachten ein Intervall $I \subseteq \mathbb{R}$ und die Menge

$$V = Abb(I, \mathbb{R}) = \{f : I \longrightarrow \mathbb{R} \text{ Abbildung } \}$$

aller Abbildungen von I nach \mathbb{R} . Für $f,g \in V$ definieren wir f+g durch

$$(f+g)(x) = f(x) + g(x)$$
 für alle $x \in I$

Für $f \in V$ und $r \in \mathbb{R}$ definieren wir $r \cdot f$ durch

$$(r \cdot f)(x) = r \cdot f(x)$$
 für alle $x \in I$

Dann ist V ein \mathbb{R} -Vektorraum, der Vektorraum der reellwertigen Abbildungen auf 1.

Fordern wir zusätzlich, dass die Abbildungen stetig, differenzierbar, beliebig oft differenzierbar sind, so erhalten wir ebenfalls Vektorräume.

Definition

Ist V ein K-Vektorraum und ist $U \subseteq V$ eine Teilmenge, so heißt U Untervektorraum von V wenn gilt:

Bemerkung

Definition

Ist V ein K-Vektorraum und ist $U \subseteq V$ eine Teilmenge, so heißt U Untervektorraum von V wenn gilt:

- $0 U \neq \emptyset.$
- 2 Sind \overrightarrow{V} , $\overrightarrow{w} \in U$ so ist auch $\overrightarrow{V} + \overrightarrow{w} \in U$.

Bemerkung

Definition

Ist V ein K-Vektorraum und ist $U \subseteq V$ eine Teilmenge, so heißt U Untervektorraum von V wenn gilt:

- $\mathbf{0}$ $U \neq \emptyset$.
- ② Sind \overrightarrow{v} , $\overrightarrow{w} \in U$ so ist auch $\overrightarrow{v} + \overrightarrow{w} \in U$.
- 3 Ist $\overrightarrow{V} \in U$ und ist $\kappa \in K$ ein Skalar, so ist auch $\kappa \cdot \overrightarrow{V} \in U$.

Bemerkung

Definition

Ist V ein K-Vektorraum und ist $U \subseteq V$ eine Teilmenge, so heißt U Untervektorraum von V wenn gilt:

- $\mathbf{0}$ $U \neq \emptyset$.
- ② Sind \overrightarrow{v} , $\overrightarrow{w} \in U$ so ist auch $\overrightarrow{v} + \overrightarrow{w} \in U$.
- **3** Ist $\overrightarrow{v} \in U$ und ist $\kappa \in K$ ein Skalar, so ist auch $\kappa \cdot \overrightarrow{v} \in U$.

Bemerkung

Beispiel

Die Menge

$$U = \left\{ \begin{pmatrix} 2t \\ 0 \end{pmatrix} \mid t \in \mathbb{R}
ight\} \subseteq \mathbb{R}^2$$

ist ein Untervektorraum von \mathbb{R}^2 .

Übung

Überprüfen Sie, ob die Menge

$$U = \left\{ \begin{pmatrix} -2t \\ 2 \end{pmatrix} \mid t \in \mathbb{R} \right\} \subseteq \mathbb{R}^2$$

ein Untervektorraum von \mathbb{R}^2 ist.

Übung

Überprüfen Sie, ob die Menge

$$U = \left\{ \begin{pmatrix} -2t \\ 2 \end{pmatrix} \mid t \in \mathbb{R} \right\} \subseteq \mathbb{R}^2$$

ein Untervektorraum von \mathbb{R}^2 ist.

Lösung:

U ist kein Untervektorraum von \mathbb{R}^2 .

Übung

Überprüfen Sie, ob die Menge

$$U = \left\{ \begin{pmatrix} -2t \\ 2 \end{pmatrix} \mid t \in \mathbb{R} \right\} \subseteq \mathbb{R}^2$$

ein Untervektorraum von \mathbb{R}^2 ist.

Lösung:

U ist kein Untervektorraum von \mathbb{R}^2 .

Der \mathbb{R}^n

Der vielleicht wichtigste Vektorraum in der Anwendung ist der \mathbb{R}^n , der n-dimensionale reelle Raum. Die Vektorraumoperationen sind in diesem Fall sehr einfach zu beschreiben.

Der \mathbb{R}^n

Der vielleicht wichtigste Vektorraum in der Anwendung ist der \mathbb{R}^n , der n-dimensionale reelle Raum. Die Vektorraumoperationen sind in diesem Fall sehr einfach zu beschreiben.

Definition

Ein Vektor

$$\overrightarrow{V} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$$

heißt n-dimensionaler reeller Vektor, die Größe

$$|\overrightarrow{v}|| = \sqrt{v_1^2 + \cdots + v_n^2}$$

heißt **Länge** des Vektors \overrightarrow{V} .

Der \mathbb{R}^n

Der vielleicht wichtigste Vektorraum in der Anwendung ist der \mathbb{R}^n , der n-dimensionale reelle Raum. Die Vektorraumoperationen sind in diesem Fall sehr einfach zu beschreiben.

Definition

Ein Vektor

$$\overrightarrow{V} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$$

heißt *n*-dimensionaler reeller Vektor, die Größe

$$|\overrightarrow{v}|| = \sqrt{v_1^2 + \cdots v_n^2}$$

heißt **Länge** des Vektors \overrightarrow{v} .

Definition

Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m} \in \mathbb{R}^n$ heißen **linear abhängig**, wenn es reelle Zahlen r_1, r_2, \dots, r_m gibt, von denen mindestens eine von Null verschieden ist, mit

$$r_1 \cdot \overrightarrow{v_1} + r_2 \cdot \overrightarrow{v_2} + \cdots + r_m \cdot \overrightarrow{v_m} = \overrightarrow{0}$$

Andernfalls heißen sie linear unabhängig.

Definition

Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m} \in \mathbb{R}^n$ heißen **linear abhängig**, wenn es reelle Zahlen r_1, r_2, \dots, r_m gibt, von denen mindestens eine von Null verschieden ist, mit

$$r_1 \cdot \overrightarrow{v_1} + r_2 \cdot \overrightarrow{v_2} + \cdots + r_m \cdot \overrightarrow{v_m} = \overrightarrow{0}$$

Andernfalls heißen sie linear unabhängig.

Bemerkung

Die Bedingung für lineare Unabhängigkeit kann auch so formuliert werden:

Definition

Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \ldots, \overrightarrow{v_m} \in \mathbb{R}^n$ heißen **linear abhängig**, wenn es reelle Zahlen r_1, r_2, \ldots, r_m gibt, von denen mindestens eine von Null verschieden ist, mit

$$r_1 \cdot \overrightarrow{v_1} + r_2 \cdot \overrightarrow{v_2} + \cdots + r_m \cdot \overrightarrow{v_m} = \overrightarrow{0}$$

Andernfalls heißen sie linear unabhängig.

Bemerkung

Die Bedingung für lineare Unabhängigkeit kann auch so formuliert werden:

Sind r_1, r_2, \ldots, r_m reelle Zahlen mit

$$r_1 \cdot \overrightarrow{v_1} + r_2 \cdot \overrightarrow{v_2} + \cdots + r_m \cdot \overrightarrow{v_m} = \overrightarrow{0}$$

so muss schon gelten: $r_1 = r_2 = \cdots = r_m = 0$.

Definition

Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \ldots, \overrightarrow{v_m} \in \mathbb{R}^n$ heißen **linear abhängig**, wenn es reelle Zahlen r_1, r_2, \ldots, r_m gibt, von denen mindestens eine von Null verschieden ist, mit

$$r_1 \cdot \overrightarrow{v_1} + r_2 \cdot \overrightarrow{v_2} + \cdots + r_m \cdot \overrightarrow{v_m} = \overrightarrow{0}$$

Andernfalls heißen sie linear unabhängig.

Bemerkung

Die Bedingung für lineare Unabhängigkeit kann auch so formuliert werden: Sind r_1, r_2, \ldots, r_m reelle Zahlen mit

$$r_1 \cdot \overrightarrow{v_1} + r_2 \cdot \overrightarrow{v_2} + \cdots + r_m \cdot \overrightarrow{v_m} = \overrightarrow{0}$$

so muss schon gelten: $r_1 = r_2 = \cdots = r_m = 0$.

4 D > 4 A > 4 E > 4 E > E 990

Beispiel

Die Vektoren

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 2 \\ -3 \\ 2 \end{pmatrix}, \qquad \overrightarrow{v_2} = \begin{pmatrix} -2 \\ -4 \\ 6 \\ -4 \end{pmatrix}$$

sind linear abhängig.

Beispiel

Die Vektoren

$$\overrightarrow{v_1} = egin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \qquad \overrightarrow{v_2} = egin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

sind linear unabhängig

Übung

Untersuchen Sie, ob die Vektoren

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}, \quad \overrightarrow{v_3} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

linear unabhängig sind.

Übung

Untersuchen Sie, ob die Vektoren

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}, \quad \overrightarrow{v_3} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

linear unabhängig sind.

Lösung

Die Vektoren sind linear abhängig, denn

$$\overrightarrow{v_1} + \overrightarrow{v_2} - 5 \cdot \overrightarrow{v_3} = \overrightarrow{0}$$

Übung

Untersuchen Sie, ob die Vektoren

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}, \quad \overrightarrow{v_3} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

linear unabhängig sind.

Lösung:

Die Vektoren sind linear abhängig, denn

$$\overrightarrow{v_1} + \overrightarrow{v_2} - 5 \cdot \overrightarrow{v_3} = \overrightarrow{0}$$

Regel

Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ sind schon dann linear abhängig, wenn eine der foglenden Bedingungen erfüllt ist.

•
$$\overrightarrow{v_k} = \overrightarrow{0}$$
 für ein k.

Regel

Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ sind schon dann linear abhängig, wenn eine der foglenden Bedingungen erfüllt ist.

- $\overrightarrow{v_k} = \overrightarrow{0}$ für ein k.
- $\overrightarrow{v_k} = \overrightarrow{v_l}$ für ein $k \neq l$.

Regel

Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ sind schon dann linear abhängig, wenn eine der foglenden Bedingungen erfüllt ist.

- $\overrightarrow{v_k} = \overrightarrow{0}$ für ein k.
- $\overrightarrow{v_k} = \overrightarrow{v_l}$ für ein $k \neq l$.

Das sind aber nur hinreichende Bedingung. In der Regel kann lineare Abhängigkeit nicht so einfach erkannt werden.

Regel

Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ sind schon dann linear abhängig, wenn eine der foglenden Bedingungen erfüllt ist.

- $\overrightarrow{v_k} = \overrightarrow{0}$ für ein k.
- $\overrightarrow{v_k} = \overrightarrow{v_l}$ für ein $k \neq l$.

Das sind aber nur hinreichende Bedingung. In der Regel kann lineare Abhängigkeit nicht so einfach erkannt werden.

Bemerkung

Ein einzelner Vektor $\overrightarrow{v} \in \mathbb{R}^n$ ist genau dann linear abhängig, wenn $\overrightarrow{v} = \overrightarrow{0}$. Entsprechend ist er genau dann linear unabhängig, wenn $\overrightarrow{v} \neq \overrightarrow{0}$

Bemerkung

Ein einzelner Vektor $\overrightarrow{v} \in \mathbb{R}^n$ ist genau dann linear abhängig, wenn $\overrightarrow{v} = \overrightarrow{0}$. Entsprechend ist er genau dann linear unabhängig, wenn $\overrightarrow{v} \neq \overrightarrow{0}$.

Bemerkung

Zwei Vektoren \overrightarrow{V} und \overrightarrow{w} sind genau dann linear abhängig, wenn einer von beiden ein Vielfaches des anderen ist.

Bemerkung

Ein einzelner Vektor $\overrightarrow{v} \in \mathbb{R}^n$ ist genau dann linear abhängig, wenn $\overrightarrow{v} = \overrightarrow{0}$. Entsprechend ist er genau dann linear unabhängig, wenn $\overrightarrow{v} \neq \overrightarrow{0}$.

Bemerkung

Zwei Vektoren \overrightarrow{v} und \overrightarrow{w} sind genau dann linear abhängig, wenn einer von beiden ein Vielfaches des anderen ist.

Beispiel

Die n-dimensionalen Vektoren

$$\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \overrightarrow{e_n} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

im \mathbb{R}^n sind linear unabhängig.

Beispiel

Die Menge $V = \{\overrightarrow{0}\} \subseteq \mathbb{R}^4$ ist ein Untervektorraum.

Beispiel

Die Menge

$$V = \left\{ \begin{pmatrix} t \\ 2t \end{pmatrix} \mid t \in \mathbb{R} \right\} \subseteq \mathbb{R}^2$$

ist ein Untervektorraum.

Beispiel

Die Menge $V = \{\overrightarrow{0}\} \subseteq \mathbb{R}^4$ ist ein Untervektorraum.

Beispiel

Die Menge

$$V = \left\{ \begin{pmatrix} t \\ 2t \end{pmatrix} \mid t \in \mathbb{R}
ight\} \subseteq \mathbb{R}^2$$

ist ein Untervektorraum.

Beispiel

Die Menge

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x + y + z = 0 \right\} \subseteq \mathbb{R}^3$$

ist ein Untervektorraum.

Beispiel

Die Menge $V = \{\overrightarrow{0}\} \subseteq \mathbb{R}^4$ ist ein Untervektorraum.

Beispiel

Die Menge

$$V = \left\{ \begin{pmatrix} t \\ 2t \end{pmatrix} \mid t \in \mathbb{R}
ight\} \subseteq \mathbb{R}^2$$

ist ein Untervektorraum.

Beispiel

Die Menge

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x + y + z = 0 \right\} \subseteq \mathbb{R}^3$$

ist ein Untervektorraum.

Übung

Überprüfen Sie, ob die Menge

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x^2 + y^2 + z^2 = 0 \right\} \subseteq \mathbb{R}^3$$

ein Untervektorraum ist.

Übung

Überprüfen Sie, ob die Menge

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x^2 + y^2 + z^2 = 0 \right\} \subseteq \mathbb{R}^3$$

ein Untervektorraum ist.

Lösung:

V ist kein Untervektroraum.

Übung

Überprüfen Sie, ob die Menge

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x^2 + y^2 + z^2 = 0 \right\} \subseteq \mathbb{R}^3$$

ein Untervektorraum ist.

Lösung:

V ist kein Untervektroraum.

Betrachte eine Untervektorraum $V \subseteq \mathbb{R}^n$.

Definition

Die Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ heißen **Erzeugendensystem** von V, wenn gilt:

Betrachte eine Untervektorraum $V \subseteq \mathbb{R}^n$.

Definition

Die Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ heißen **Erzeugendensystem** von V, wenn gilt:

Betrachte eine Untervektorraum $V \subseteq \mathbb{R}^n$.

Definition

Die Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ heißen **Erzeugendensystem** von V, wenn gilt:

- 2 Zu jedem $\overrightarrow{w} \in V$ gibt es Skalare r_1, r_2, \ldots, r_m mit

$$\overrightarrow{w} = r_1 \cdot \overrightarrow{v_1} + r_2 \cdot \overrightarrow{v_2} + \ldots + r_m \cdot \overrightarrow{v_m}$$

Wir sagen in diesem Fall auch, $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ erzeugen V.

Betrachte eine Untervektorraum $V \subseteq \mathbb{R}^n$.

Definition

Die Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ heißen **Erzeugendensystem** von V, wenn gilt:

- 2 Zu jedem $\overrightarrow{w} \in V$ gibt es Skalare r_1, r_2, \dots, r_m mit

$$\overrightarrow{w} = r_1 \cdot \overrightarrow{v_1} + r_2 \cdot \overrightarrow{v_2} + \ldots + r_m \cdot \overrightarrow{v_m}$$

Wir sagen in diesem Fall auch, $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ erzeugen V.

Beispiel

Die Vektoren

$$\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \overrightarrow{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

erzeugen $V=\mathbb{R}^3$

Beispiel

Die Vektoren

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \overrightarrow{v_3} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},, \quad \overrightarrow{v_4} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

erzeugen $V = \mathbb{R}^3$. Erzeugendensysteme sind also nicht eindeutig und können aus unterschiedlich vielen Vektoren bestehen.

Beispiel

Die Vektoren

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \overrightarrow{v_3} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},, \quad \overrightarrow{v_4} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

erzeugen $V = \mathbb{R}^3$. Erzeugendensysteme sind also nicht eindeutig und können aus unterschiedlich vielen Vektoren bestehen.

Beispiel

Die Untervektorraum

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x + y + z = 0 \right\} \subseteq \mathbb{R}^3$$

von \mathbb{R}^3 wird erzeugt von den Vektoren

$$\overrightarrow{v_1} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Übung

Untersuchen Sie, ob

$$V = \left\{ \begin{pmatrix} 2r + 3s \\ r - s \\ r + s \end{pmatrix} \mid r, s \in \mathbb{R} \right\} \subseteq \mathbb{R}^3$$

ein Untervektorraum ist und bestimmen Sie gegebenenfalls ein Erzeugendensystem von V.

Übung

Untersuchen Sie, ob

$$V = \left\{ \begin{pmatrix} 2r + 3s \\ r - s \\ r + s \end{pmatrix} \mid r, s \in \mathbb{R} \right\} \subseteq \mathbb{R}^3$$

ein Untervektorraum ist und bestimmen Sie gegebenenfalls ein Erzeugendensystem von V.

Lösung

V ist ein Untervektorraum von \mathbb{R}^3 und wird erzeugt von

$$\overrightarrow{v_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$

Ubung

Untersuchen Sie, ob

$$V = \left\{ \begin{pmatrix} 2r + 3s \\ r - s \\ r + s \end{pmatrix} \mid r, s \in \mathbb{R} \right\} \subseteq \mathbb{R}^3$$

ein Untervektorraum ist und bestimmen Sie gegebenenfalls ein Erzeugendensystem von V.

Lösung:

V ist ein Untervektorraum von \mathbb{R}^3 und wird erzeugt von

$$\overrightarrow{v_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$

Für Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m} \in \mathbb{R}^n$ setze

$$U = \{ \overrightarrow{v} \in \mathbb{R}^n \mid \exists r_1, \dots, r_m \in \mathbb{R} \text{ mit } \overrightarrow{v} = r_1 \cdot \overrightarrow{v_1} + \dots + r_m \cdot \overrightarrow{v_m} \}$$

Satz

U ist ein Untervektorraum von \mathbb{R}^n .

Für Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m} \in \mathbb{R}^n$ setze

$$U = \{ \overrightarrow{v} \in \mathbb{R}^n \mid \exists r_1, \dots, r_m \in \mathbb{R} \text{ mit } \overrightarrow{v} = r_1 \cdot \overrightarrow{v_1} + \dots + r_m \cdot \overrightarrow{v_m} \}$$

Satz

U ist ein Untervektorraum von \mathbb{R}^n .

U heißt das **Erzeugnis** von $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ oder der von $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ aufgespannte Unterraum von \mathbb{R}^n

Für Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m} \in \mathbb{R}^n$ setze

$$U = \{ \overrightarrow{v} \in \mathbb{R}^n \mid \exists r_1, \dots, r_m \in \mathbb{R} \text{ mit } \overrightarrow{v} = r_1 \cdot \overrightarrow{v_1} + \dots + r_m \cdot \overrightarrow{v_m} \}$$

Satz

U ist ein Untervektorraum von \mathbb{R}^n .

U heißt das **Erzeugnis** von $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ oder der von $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}$ aufgespannte Unterraum von \mathbb{R}^n

Wir betrachten wieder einen Untervektorraum $V \subseteq \mathbb{R}^n$

Definitior

Die Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m} \in V$ heißen **Basis** von V, wenn sie ein Erzeugendensystem von V bilden, und wenn sie linear unabhängig sind.

Wir betrachten wieder einen Untervektorraum $V \subseteq \mathbb{R}^n$

Definition

Die Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m} \in V$ heißen **Basis** von V, wenn sie ein Erzeugendensystem von V bilden, und wenn sie linear unabhängig sind.

Beispiel

Die Vektoren

$$\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \overrightarrow{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

bilden eine Basis von $V = \mathbb{R}^3$

Wir betrachten wieder einen Untervektorraum $V \subseteq \mathbb{R}^n$

Definition

Die Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m} \in V$ heißen **Basis** von V, wenn sie ein Erzeugendensystem von V bilden, und wenn sie linear unabhängig sind.

Beispiel

Die Vektoren

$$\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \overrightarrow{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

bilden eine Basis von $V = \mathbb{R}^3$

Beispiel

Wir betrachten den Untervektorraum

$$V = \left\{ \begin{pmatrix} 2r + 3s \\ r - s \\ r + s \end{pmatrix} \mid r, s \in \mathbb{R} \right\} \subseteq \mathbb{R}^3$$

Dann bilden

$$\overrightarrow{v_1} = \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} 3\\-1\\1 \end{pmatrix}$$

eine Basis von V.

Beispiel

Wir betrachten den Untervektorraum

$$V = \left\{ \begin{pmatrix} 2r + 3s \\ r - s \\ r + s \end{pmatrix} \mid r, s \in \mathbb{R} \right\} \subseteq \mathbb{R}^3$$

Dann bilden

$$\overrightarrow{v_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$

eine Basis von V.

$$\overrightarrow{w_1} = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}, \quad \overrightarrow{w_2} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \quad \overrightarrow{w_3} = \begin{pmatrix} 7 \\ 1 \\ 3 \end{pmatrix}$$

erzeugen V, bilden aber keine Basis.

Beispiel

Wir betrachten den Untervektorraum

$$V = \left\{ \begin{pmatrix} 2r + 3s \\ r - s \\ r + s \end{pmatrix} \mid r, s \in \mathbb{R} \right\} \subseteq \mathbb{R}^3$$

Dann bilden

$$\overrightarrow{v_1} = \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} 3\\-1\\1 \end{pmatrix}$$

eine Basis von V.

$$\overrightarrow{w_1} = \left(\begin{smallmatrix} 5 \\ 0 \\ 2 \end{smallmatrix} \right), \quad \overrightarrow{w_2} = \left(\begin{smallmatrix} 1 \\ -2 \\ 0 \end{smallmatrix} \right), \quad \overrightarrow{w_3} = \left(\begin{smallmatrix} 7 \\ 1 \\ 3 \end{smallmatrix} \right)$$

erzeugen V, bilden aber keine Basis.

Übung

Finden Sie eine Basis des Untervektorraums

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x + y + z = 0 \right\} \subseteq \mathbb{R}^3$$

Übung

Finden Sie eine Basis des Untervektorraums

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x + y + z = 0 \right\} \subseteq \mathbb{R}^3$$

Lösung:

Die Vektoren

$$\overrightarrow{v_1} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

bilden eine Basis von V.

Übung

Finden Sie eine Basis des Untervektorraums

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x + y + z = 0 \right\} \subseteq \mathbb{R}^3$$

Lösung:

Die Vektoren

$$\overrightarrow{v_1} = egin{pmatrix} -1 \ 1 \ 0 \end{pmatrix}, \quad \overrightarrow{v_2} = egin{pmatrix} -1 \ 0 \ 1 \end{pmatrix}$$

bilden eine Basis von V.

Satz

Für einen Untervektorraume V von \mathbb{R}^n gilt:

① Ist $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}\}$ ein Erzeugendensystem von V, so enthält $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}\}$ eine Basis von V, d.h. es gibt $1 \le i_1 < i_2 < \dots < i_t \le m$ so dass $\overrightarrow{v_i}, \overrightarrow{v_i}, \dots, \overrightarrow{v_i}$ eine Basis von V ist.

Satz

Für einen Untervektorraume V von \mathbb{R}^n gilt:

- Ist $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}\}$ ein Erzeugendensystem von V, so enthält $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}\}$ eine Basis von V, d.h. es gibt $1 \le i_1 < i_2 < \dots < i_t \le m$ so dass $\overrightarrow{v_{i_1}}, \overrightarrow{v_{i_2}}, \dots, \overrightarrow{v_{i_t}}$ eine Basis von V ist.
- V hat eine Basis.

Satz

Für einen Untervektorraume V von \mathbb{R}^n gilt:

- Ist $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}\}$ ein Erzeugendensystem von V, so enthält $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}\}$ eine Basis von V, d.h. es gibt $1 \le i_1 < i_2 < \dots < i_t \le m$ so dass $\overrightarrow{v_h}, \overrightarrow{v_h}, \dots, \overrightarrow{v_h}$ eine Basis von V ist.
- V hat eine Basis.
- ③ Je zwei Basen von V sind gleich lang, dh. sind $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}\}$ und $\{\overrightarrow{w_1}, \overrightarrow{w_2}, \dots, \overrightarrow{w_t}\}$ Basen von V, so ist m = t.

Satz

Für einen Untervektorraume V von \mathbb{R}^n gilt:

- Ist $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}\}$ ein Erzeugendensystem von V, so enthält $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}\}$ eine Basis von V, d.h. es gibt $1 \le i_1 < i_2 < \dots < i_t \le m$ so dass $\overrightarrow{v_h}, \overrightarrow{v_h}, \dots, \overrightarrow{v_h}$ eine Basis von V ist.
- V hat eine Basis.
- **3** Je zwei Basen von V sind gleich lang, dh. sind $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}\}$ und $\{\overrightarrow{w_1}, \overrightarrow{w_2}, \dots, \overrightarrow{w_t}\}$ Basen von V, so ist m = t.

Definition

Die Länge einer Basis eines Untervektorraums V heißt die **Dimension** von V und wird mit $\dim(V)$ bezeichnet.

Beispiel

Der \mathbb{R}^3 hat die Dimension 3.

Definition

Die Länge einer Basis eines Untervektorraums V heißt die **Dimension** von V und wird mit $\dim(V)$ bezeichnet.

Beispiel

Der \mathbb{R}^3 hat die Dimension 3.

Beispiel

Der \mathbb{R}^n hat die Dimension n.

Definition

Die Länge einer Basis eines Untervektorraums V heißt die **Dimension** von V und wird mit $\dim(V)$ bezeichnet.

Beispiel

Der \mathbb{R}^3 hat die Dimension 3.

Beispiel

Der \mathbb{R}^n hat die Dimension n.

Beispiel

Der Untervektorraum

$$V = \left\{ \begin{pmatrix} 2r + 3s \\ r - s \\ r + s \end{pmatrix} \mid r, s \in \mathbb{R} \right\} \subseteq \mathbb{R}^3$$

hat die Dimension 2.

Beispiel

Der Untervektorraums

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x + y + z = 0 \right\} \subseteq \mathbb{R}^3$$

hat die Dimension 2

Beispiel

Der Untervektorraum

$$V = \left\{ \begin{pmatrix} 2r + 3s \\ r - s \\ r + s \end{pmatrix} \mid r, s \in \mathbb{R} \right\} \subseteq \mathbb{R}^3$$

hat die Dimension 2.

Beispiel

Der Untervektorraums

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x + y + z = 0 \right\} \subseteq \mathbb{R}^3$$

hat die Dimension 2.