slides.md 2025-05-19

Predicting the Weights of Neural Networks using Meta-learning

Metadata Collection

Data Collection

- Loop over all dataset + group combinations.
 - Tourism: Quarterly & Monthly
 - M3: Quarterly & Monthly
 - **Gluonts_m1**: Quarterly & Monthly
- Load the dataset and its metadata
 - lags, frequency, horizon.
- Split the data into training and testing sets.

Baseline Modeling

- Train a **Seasonal Naive** model using training data.
- Predict and merge results with test data.
- Compute baseline **sMAPE** for future comparison.

Hyperparameter Search

Generate combination of hyperparameters:

```
hyperparameters = {
    "hidden_size": [8, 16, 32, 64],
    "max_steps": [500],
    "num_layers": [3],
    "learning_rate": [1e-3, 5e-4, 1e-4],
    "batch_size": [16, 32, 64],
    "scaler_type": ['identity', 'standard', 'robust', 'minmax'],
    "seed": [42, 123, 456, 789, 1011]
}
```

Model Training & Evaluation

- For each hyperparameter set:
 - Train a MLP model with custom Callback.
 - Evaluate the model using **sMAPE**, **MSE**, **MAE**, and **R**².
 - o Compare with the Seasonal Naive baseline.

slides.md 2025-05-19

Store metadata and scores.

Training Callback

- Evaluate weight matrices and get model variance:
 - At the **start of training**: on_train_start
 - At the end of training: on_train_end
 - During training: on_train_batch_end
 - Custom training checkpoits: [10, 25, 50, 100, 200, 300, 400, 500]

Matrix Evaluation

- For each weight tensor:
 - Collect basic stats:
 - shape, mean, std, min, max, var, etc.
 - Calculate matrix norms:
 - frobenius_norm and spectral_norm
 - Attempt power-law distribution:
 - alpha and weighted_alpha

Train Metamodel

Model Configuration

- For **Classification**:
 - Use XGBRFClassifier.
 - Evaluate with: Accuracy, ROC AUC, Log Loss, F1 Score.
- For **Regression**:
 - Use XGBRFRegressor.
 - Evaluate with: MAE, MSE, R², Pearson, Kendall, Spearman.

Stagewise Evaluation

- Iterative stage evaluation:
 - o Gradually add weight stats from:
 - start, step_10, step_25, step_50, ..., step_500.
- Results saved for each stage.
- Summary stored in stagewise_summary.csv.

Cross-Validation

- Perform cross-validation with GroupKFold for each DATASET_GROUP.
- Fit model and predict for each fold.
- Collect, for each fold:

slides.md 2025-05-19

- evaluation metrics;
- o classification reports;
- feature importances.