Chap 15: Missing Data and Other Opportunities

```
1 md"# Chap 15: Missing Data and Other Opportunities"
1 versioninfo()
   Julia Version 1.11.0
                                                             ?
   Commit 501a4f25c2b (2024-10-07 11:40 UTC)
  Build Info:
    Official https://julialang.org/ release
  Platform Info:
    OS: Linux (x86_64-linux-gnu)
    CPU: 32 × Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
    WORD_SIZE: 64
    LLVM: libLLVM-16.0.6 (ORCJIT, haswell)
  Threads: 16 default, 0 interactive, 8 GC (on 32 virtual cor
  Environment:
    JULIA_PKG_SERVER = https://mirrors.tuna.tsinghua.edu.cn/j
    JULIA_REVISE_WORKER_ONLY = 1
```

```
1 html"""
2 <style>
3    main {
4         margin: 0 auto;
5         max-width: max(1800px, 75%);
6         padding-left: max(5px, 1%);
7         padding-right: max(350px, 10%);
8      }
9 </style>
10 """
```

Table of Contents

Chap 15: Missing Data and Other Opportunities

Code 15.1

15.1 Measurement error

Code 15.2 Code 15.3 model m15_1 Code 15.4 Code 15.5 model m15_2 Figure 15.2 Code 15.6 Figure 15.3 Code 15.7

15.2 Missing data

```
begin
using Pkg, DrWatson
using PlutoUI
TableOfContents()
end
```

```
1 begin
       using Turing
3
       using Turing
       using DataFrames
4
5
       using CSV
6
       using Random
7
      using Dagitty
8
      using Distributions
9
      #using StatisticalRethinking
      using StatisticalRethinking: link
11
      using StatisticalRethinkingPlots
      using StatsPlots
13
       using StatsBase
14
       using Logging
15
       using LinearAlgebra
16 end
```

```
Code 15.1
 1 md"## Code 15.1"
0.6617857711284418
 1 begin
       Random.seed!(2)
 3
       function sim_pancake()
 4
 5
           pancake = [[1, 1], [1, 0], [0, 0]]
 6
           sides = sample(pancake)
           sample([sides, reverse(sides)])
 8
 9
       @time pancakes = vcat([sim_pancake() for _ in
       1:100_000]'...)
11
       up = pancakes[:,1]
       down = pancakes[:,2]
13
14
       num_11_10 = sum(up .== 1)
15
       num_11 = sum((up .== 1) .& (down .== 1))
16
       num_11 / num_11_10
17 end
      0.103752 seconds (1.65 M allocations: 64.906 MiB, 58.
    63% compilation time)
pancake = [[1, 1], [1, 0], [0, 0]]
 1 pancake = [[1, 1], [1, 0], [0, 0]]
sides = [0, 0]
 1 sides = sample(pancake)
 [0, 0]
 1 sample([sides, reverse(sides)])
 [[0, 0], [0, 0]]
 1 [sides, reverse(sides)]
```

15.1 Measurement error

```
1 md" # 15.1 Measurement error"
```


	Location	Loc	Population	MedianAgeMarriage	Marriage	Mi
1	"Alabama"	"AL"	4.78	25.3	20.2	1.
2	"Alaska"	"AK"	0.71	25.2	26.0	2.
3	"Arizona"	"AZ"	6.33	25.8	20.3	0.

```
1 first(d_divorce,3)
```


Code 15.3 model m15_1

```
1 md"## Code 15.3 model \m15_1\"
```

```
D_true[13]
                                                   D_true[14] D_t
      -0.784182
                 0.591328
                            -0.412152
                                       0.12795
                                                    -0.820124
                                                    -0.808901
 2
      -0.418201
                 1.43575
                            -0.850778
                                      0.108591
                                                               0.5
      -0.638492
                 0.392377
                            -0.361222
                                      1.00863
                                                    -0.986006
                                                               0.6
 3
      -0.509696
                 1.10383
                            -0.518881
                                       0.27218
                                                    -0.814202
                                                               0.5
      -0.691987
                 0.769628
                            -0.666241
                                      0.826797
                                                    -0.71571
                                                               0.4
 5
 6
      -0.521323
                 0.589482
                            -0.991947
                                       -0.00510027
                                                    -1.00075
                                                               0.6
 7
      -0.586819
                 0.689822
                            -0.252866
                                       0.751031
                                                    -0.657953
                                                              0.4
 8
      -0.582998
                 0.455282
                            -0.310074
                                       0.56882
                                                    -0.711395
                                                               0.5
      -0.630576
                 0.790008
                            -0.888668
                                      1.30604
                                                    -0.891928
 9
                                                              0.4
                                                    -0.891928
 10
      -0.630576
                 0.790008
                            -0.888668
                                       1.30604
                                                               0.4
  more
1000 -1.02493
                 0.883494
                            -0.144567
                                       -0.00200293
                                                    -0.840648
                                                               0.6
```

```
1 begin
       d_divorce_ls = (
 3
            D_obs = standardize(ZScoreTransform, d_divorce.Divorce),
 4
            D_sd = d_divorce."Divorce SE" ./ std(d_divorce.Divorce),
 5
            M = standardize(ZScoreTransform, d_divorce.Marriage),
            A = standardize(ZScoreTransform,
 6
       d_divorce.MedianAgeMarriage),
            N = nrow(d_divorce),
8
       @model function m15_1(D_obs, D_sd, M, A, N)
11
            a \sim Normal(0, 0.2)
            bA \sim Normal(0, 0.5)
            bM ~ Normal(0, 0.5)
14
            \mu = 0. a + bA * A + bM * M
            σ ~ Exponential()
15
16
            D_{\text{true}} \sim MvNormal(\mu, \sigma)
17
            @. D_obs ~ Normal(D_true, D_sd)
18
       end
19
       Random.seed!(1)
       @time m15_1_ch = sample(m15_1(d_divorce_ls...), NUTS(),
       1000)
22
       m15_1_df = DataFrame(m15_1_ch);
23 end
```

```
11.256042 seconds (16.66 M allocations: 6.157 GiB, 10. ③ 68% gc time, 55.28% compilation time)
```

```
1 md"## Code 15.4"
```

	variable	mean	min	median	max
1	Symbol("D_true[10]")	-0.622426	-1.17513	-0.621466	-0.05984
2	<pre>Symbol("D_true[11]")</pre>	0.752743	-0.167793	0.764524	1.76655
3	Symbol("D_true[12]")	-0.54162	-2.09472	-0.538969	1.42518
4	<pre>Symbol("D_true[13]")</pre>	0.191023	-1.80048	0.197183	1.54803
5	Symbol("D_true[14]")	-0.86873	-1.59464	-0.878422	-0.135698
6	Symbol("D_true[15]")	0.563774	-0.450136	0.559766	1.55619
7	<pre>Symbol("D_true[16]")</pre>	0.269308	-0.855484	0.282876	1.57184
8	<pre>Symbol("D_true[17]")</pre>	0.505615	-0.78145	0.504514	1.83022
9	Symbol("D_true[18]")	1.25328	0.14058	1.25724	2.48261
10	Symbol("D_true[19]")	0.428978	-0.812482	0.441281	1.63373
r	more				
54	: σ	0.579131	0.30084	0.575787	1.00322

```
1 describe(m15_1_df)
```

Code 15.5 model m15_2

```
1 md"## Code 15.5 model \m15_2\"
       (D_{-}obs = [1.65421, 1.54436, 0.610716, 2.09357, -0.927058, 1.05008, -1.65421, 1.54436, 0.610716, 2.09357, -0.927058, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.05008, -1.65421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.055421, 1.0
     1 begin
                                       dlist2 = (
     2
    3
                                                             D_obs = standardize(ZScoreTransform, d_divorce),
                                                             D_sd = d_divorce."Divorce SE" ./ std(d_divorce.Divorce),
                                                             M_obs = standardize(ZScoreTransform,
                                        d_divorce.Marriage),
                                                             M_sd = d_divorce."Marriage SE" ./
                                        std(d_divorce.Marriage),
                                                             A = standardize(ZScoreTransform,
                                        d_divorce.MedianAgeMarriage),
                                                             N = nrow(d_divorce),
    9
10 end
```

[0.083057, 1.01903, 0.0594721, 1.41732, -0.266635, 0.830463, -0.76543

```
1 begin
3
       @model function m15_2(D_obs, D_sd, M_obs, M_sd, A, N)
4
           a \sim Normal(0, 0.2)
5
           bA ~ Normal(0, 0.5)
6
           bM ~ Normal(0, 0.5)
 7
           M_true ~ filldist(Normal(), N)
8
9
           \mu = @. a + bA * A + bM * M_true
           σ ~ Exponential()
           D_true ~ MvNormal(μ, σ)
11
12
           @. D_obs ~ Normal(D_true, D_sd)
           @. M_obs ~ Normal(M_true, M_sd)
13
14
       end
15
       Random.seed!(1)
16
       @time m15_2_ch = sample(m15_2(dlist2...), NUTS(), 1000)
17
       m15_2_df = DataFrame(m15_2_ch);
19
       D_true = [mean(m15_2_df[!, "D_true[$i]"]) for i ∈
       1:dlist2.N]
       M_true = [mean(m15_2_df[!, "M_true[$i]"]) for i ∈
20
       1:dlist2.N]
21 end
```

```
46.280141 seconds (67.04 M allocations: 42.705 GiB, 1 ⑦ 7.65% gc time, 36.69% compilation time) 35.882352 seconds (53.92 M allocations: 42.077 GiB, 19.90% gc time, 21.32% compilation time)
```

Sampling 100%

Found initial step size

	variable	mean	min	median	max
1	Symbol("D_true[10]")	-0.616598	-1.09836	-0.616169	-0.10918
2	Symbol("D_true[11]")	0.773391	-0.153289	0.772106	1.59042
3	Symbol("D_true[12]")	-0.455932	-1.96422	-0.469349	1.27627
4	Symbol("D_true[13]")	0.201203	-1.44406	0.204312	1.67876
5	Symbol("D_true[14]")	-0.860255	-1.57298	-0.85922	-0.15458
6	Symbol("D_true[15]")	0.540992	-0.540644	0.543722	1.62189
7	<pre>Symbol("D_true[16]")</pre>	0.297736	-0.943139	0.293591	1.44996
8	Symbol("D_true[17]")	0.519618	-1.31079	0.522772	2.32168
9	Symbol("D_true[18]")	1.23177	0.22005	1.22341	2.29087
10	Symbol("D_true[19]")	0.431547	-0.906202	0.416142	1.98877
mo	ore				
104	: σ	0.563163	0.242072	0.558362	0.97433
)

Figure 15.2

1 describe(m15_2_df)

```
1 md"## Figure 15.2"
```



```
1 begin
3
       p1 = scatter(dlist2.A, dlist2.D_obs, mc=:blue,
       yerror=dlist2.D_sd,
           label="observed", xlab="median age at marriage (std)",
       ylab="divorse rate (std)")
       scatter!(dlist2.A, D_true, mc=:white, label="true")
5
6
7
       for i ∈ 1:dlist2.N
           plot!([dlist2.A[i], dlist2.A[i]], [dlist2.D_obs[i],
       D_true[i]], c=:red, legend=false)
9
       x = -2.5:0.2:3
10
11
       y = -0.0368595 .+ -0.540089 .* x
       plot!(x,y, c=:orange, label="m15_2 estimate")
12
13
14 end
```

1 Enter cell code...

Code 15.6 Figure 15.3

```
1 md"## Code 15.6 Figure 15.3"
```



```
begin
       p2 = scatter(dlist2.M_obs, dlist2.D_obs, mc=:blue,
       yerror=dlist2.D_sd,
           label="observed", xlab="marriage rate (std)",
3
       ylab="divorse rate (std)",
4
           legend=true)
5
       scatter!(M_true, D_true, mc=:white, label="true",
       legend=true)
6
       for i ∈ 1:dlist2.N
           plot!([dlist2.M_obs[i], M_true[i]], [dlist2.D_obs[i],
8
       D_true[i]], c=:blue, legend=false)
9
       x2 = -2:0.2:3
       y2 = -0.0368595 .+ 0.1915 .* x2
11
       plot!(x2,y2, c=:orange, label="m15_2 estimate")
13
14 end
```



```
1 begin
       p3 = scatter(dlist2.M_obs, dlist2.D_obs, mc=:blue,
       xerror=dlist2.M_sd, yerror=dlist2.D_sd,
           label="observed", xlab="marriage rate (std)",
       ylab="divorce rate (std)")
       scatter!(M_true, D_true, mc=:white, label="true")
4
5
6
       for i ∈ 1:dlist2.N
           plot!([dlist2.M_obs[i], M_true[i]], [dlist2.D_obs[i],
       D_true[i]], c=:red, legend=false)
8
9
       рЗ
10 end
```

```
1 Enter cell code...
```

Code 15.7

```
1 md"## Code 15.7"
```

[-0.366839, -2.48606, 0.579584, -0.588886, -1.54843, -2.13782, -1.197]

```
1 let
2    N = 500
3    A = rand(Normal(), N)
4    M = rand.(Normal.(-A))
5    D = rand.(Normal.(A))
6    A_obs = rand.(Normal.(A));
7 end
```

15.2 Missing data

```
1 md"# 15.2 Missing data"

1 Enter cell code...
```

```
1 md"## Code 15.8"

[4, 8, 0, 7, 6, 5, 4, 5, 5, 6, 8, 7, 6, 9, 4, 4, 8, 8, 8, 1, more ,4, 6]

1 let
2    N = 100
3    S = rand(Normal(), N)
4    H = rand.([BinomialLogit(10, l) for l in S]);
5 end
```