Лабораторная работа №14

Модели обработки заказов

Акопян Сатеник

Содержание

3	Выводы іисок литературы	20
2	Diverse.	20
2	Выполнение лабораторной работы	6
1	Цель работы	5

Список иллюстраций

2.1	модель оформления заказов	7
2.2	отчет по модели оформления заказов	8
2.3	измененная модель оформления заказов	9
2.4	отчет по модели оформления заказов	10
2.5	гистограмма	11
2.6	модель обслуживания двух типов заказов	12
2.7	отчет по модели обслуживания двух типов заказов	13
2.8	модель обслуживания двух типов заказов	14
2.9	отчет по модели обслуживания двух типов заказов	15
2.10	модель оформления заказов несколькими операторами	16
2.11	отчет по модели оформления заказов несколькими операторами .	17
2.12	модель оформления заказов несколькими операторами	18
2.13	отчет по модели оформления заказов несколькими операторами.	19

Список таблиц

1 Цель работы

Смоделировать модель обработки заказов в среде gpss world.

2 Выполнение лабораторной работы

В интернет-магазине заказы принимает один оператор. Интервалы поступления заказов распределены равномерно с интервалом 15 ± 4 мин. Время оформления заказа также распределено равномерно на интервале 10 ± 2 мин. Обработка по- ступивших заказов происходит в порядке очереди (FIFO). Требуется разработать модель обработки заказов в течение 8 часов.

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Рис. 2.1: модель оформления заказов

После запуска симуляции получаем отчёт (рис. 2.2).

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту за- вершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к мо- менту завершения моделирования: STORAGES=0.

Рис. 2.2: отчет по модели оформления заказов

Скорректируйте модель в соответствии с изменениями входных данных: интервалы поступления заказов распределены равномерно с интервалом 3.14 ± 1.7 мин; время оформления заказа также распределено равномерно на интервале 6.66 ± 1.7 мин.

Рис. 2.3: измененная модель оформления заказов

Рис. 2.4: отчет по модели оформления заказов

2. Построение гистограммы распределения заявок в очереди

Предположим требуется построить гистограмму распределения заявок, ожидаю- щих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, запи- сываемых в неё с определённой частотой.

Рис. 2.5: гистограмма

3. Модель обслуживания двух типов заказов от клиентов в интернет-магазине

В интернет-магазин к одному оператору поступают два типа заявок от клиентов — обычный заказ и заказ с оформление дополнительного пакета услуг. Заявки первого типа поступают каждые 15 ± 4 мин. Заявки второго типа — каждые 30 ± 8 мин. Оператор обрабатывает заявки по принципу FIFO («первым пришел — первым обслужился»). Время, затраченное на оформление обычного заказа, составляет 10 ± 2 мин, а на оформление дополнительного пакета услуг — 5 ± 2 мин. Требуется разработать модель обработки заказов в течение 8 часов, обеспечив сбор данных об очереди заявок от клиентов.

Необходимо реализовать отличие в оформлении обычных заказов и заказов с допол- нительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов,

а второй — зака- зов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE-DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE-RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора.

Рис. 2.6: модель обслуживания двух типов заказов

После запуска симуляции получаем отчёт (рис. 2.7).

Рис. 2.7: отчет по модели обслуживания двух типов заказов

4. Скорректируйте модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов. Используйте оператор TRANSFER.

```
GPSS World - [Untitled Model 4]
Eile Edit Search View Command Window Help
; order
GENERATE 15,4
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 10,2
TRANSFER 0.3, noextra, extra
extra ADVANCE 5,2
noextra RELEASE operator
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
            The Simulation has ended. Clock is 480.000000.
```

Рис. 2.8: модель обслуживания двух типов заказов

Рис. 2.9: отчет по модели обслуживания двух типов заказов

5. Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления зака- зов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. Об- работка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня.

Рис. 2.10: модель оформления заказов несколькими операторами

После запуска симуляции получаем отчёт (рис. 2.11).

Рис. 2.11: отчет по модели оформления заказов несколькими операторами

6. Измените модель: требуется учесть в ней возможные отказы клиентов от заказа — когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используйте блок TEST и стандартный числовой атрибут Qj текущей длины очереди j)

```
GPSS World - [Untitled Model 4]
Eile Edit Search View Command Window Help
operator STORAGE 4
GENERATE 5,2
TEST LE Q$operator q,2
QUEUE operator q
ENTER operator,1
DEPART operator q
ADVANCE 30,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
            The Simulation has ended. Clock is 480.000000.
```

Рис. 2.12: модель оформления заказов несколькими операторами

Рис. 2.13: отчет по модели оформления заказов несколькими операторами

3 Выводы

В результате была смоделирована модель обработки заказов в среде gpss world.

Список литературы