Combinatorial Motion Planning Algorithms

Vertical/Cylindrical Cell Decomposition

EN.530.663: Robot Motion Planning

Jin Seob Kim, Ph.D

Senior Lecturer, LCSR, ME dept., JHU

Spring 2024

Introduction

Combinatorial MP algorithms

- Consider C_{free} as it is.
- All algorithms are "complete".
- Typically "low dimensionality" and complex models → can provide an elegant and practical solution.
 - e.g. $W = \mathbb{R}^2$ and the robot is only translating with fixed orientation.
- Can provide theoretical upper bounds.
- Warning: practicality issue (hard to implement)
- Application: coverage planning problem

Roadmaps

- Let \mathcal{G} be a topological graph that maps into C_{free} . Let $S \subset C_{free}$ be the set of all points reached by \mathcal{G} .
- The graph \mathcal{G} is called a **roadmap** if it satisfies
 - **1 Accessibility** From any $q \in C_{trae}$, it is simple and efficient to compute a path $\tau: [0,1] \to C_{tree}$ such that $\tau(0) = q$ and $\tau(1) = s, \forall s \in S$.
 - **2** Connectivity-preserving If $\exists \tau : [0,1] \to C_{free}$ s.t. $\tau(0) = q_I$ and $\tau(1) = q_G$, then $\exists \tau' : [0, 1] \to S \text{ s.t. } \tau(0) = s_1 \text{ and } \tau(1) = s_2, (s_1, s_2 \in S).$
- Due to these properties, a roadmap provides a discrete representation of the continuous motion planning problem.
- \blacksquare A query (q_I, q_G) is solved by connecting each query point to the roadmap and then performing a graph search on \mathcal{G} .

Exact Cell Decomposition

Exact Cell Decomposition

General Procedures

- **Decompose** the robot's C_{free} into a collection of non-overlapping regions (called cells) whose union is exactly C_{free} . \rightarrow need a finite data structure.
- cells → k-cell : k-dimensional cell
- Construct and search the connectivity graph representing the adjacency relation among cells.
- Extract a path (by using Dijkstra or A*).

Exact Cell Decomposition

- Three Properties of Cell Decomposition
 - Computing a path from one point to another inside a cell must be trivially easy.
 - ex: every cell is convex → any pair of points in a cell is connected by a line segment.
 - 2 Adjacency information for the cells can be easily extracted to build a roadmap.
 - ex: edge-sharing → then maybe choose a center point in that edge for the roadmap.
 - 3 For a given q_l and q_{G_l} , it should be efficient to determine which cells contain them.
 - ex: again, convex cells are useful: in Matlab, inpolygon.

Exact Cell Decomposition: Example

Exact Cell Decomposition: Example

Connectivity

RMP Combinatorial MP Spring 2024

Exact Cell Decomposition: Example

 $2_{I} \in \text{cell}(I)$ $2_{G} \in \text{cell}(I)$

RMP Combinatorial MP

Exact Cell Decomposition

- Other methods
 - Voronoi diagram
 - triangulation
 - Maximum-clearance roadmaps (Sec.6.2.3)

Exact Cell Decomposition

000000

and more...

Vertical/Cylindrical Cell Decomposition

Vertical/Cylindrical Cell Decomposition

Visibility Graph

13/36

Vertical Cell Decomposition

Introduction

- \blacksquare Cells are usually trapezoids or triangles. \rightarrow also called "trapezoidal decomposition".
- One of the easiest methods.
- Consider only *x*-coordinates of all vertices to form a "vertical line".
- See Fig. 6.3 6.5.

Vertical Cell Decomposition

Figure 6.3: The vertical cell decomposition method uses the cells to construct a roadmap, which is searched to yield a solution to a query.

Vertical Cell Decomposition

Figure 6.4: The roadmap derived from the vertical cell decomposition.

Figure 6.5: An example solution path.

Vertical Cell Decomposition

RMP Combinatorial MP Spring 2024 16 / 36

Vertical Cell Decomposition

- Vertical Cell Decomposition Detail
 - 1 Move the sweep-line from left to right.
 - 2 For each vertex it touches, extend from the vertex along the line.
 - 3 Stop when the line hit the features of the environment (e.g., end of the environment box).
 - 4 Compute the centers and/or boundary centers and connect them.

Visibility Graph

Vertical Cell Decomposition

Introduction

Figure 6.2: There are four general cases: 1) extending upward and downward, 2) upward only, 3) downward only, and 4) no possible extension.

Vertical Cell Decomposition: Algorithm

- Simple Algorithm
 - Sort the *x*-coordinates of input points (vertices of C_{obs}) $\rightarrow O(n \log n)$.
 - For each point, check whether the vertical scan line intersects each line segment of the environment/obstacle, then pick the closest intersection points. In other words, given x_i, consider all line segments.
 - 3 Overall, computation time: $O(n^2)$.
- Efficient Algorithm
 - Use "plane-sweep" (or "line-sweep") \rightarrow $O(n \log n)$.
 - Main idea: "keep the List".

Vertical Cell Decomposition: Algorithm Execution

Vertical Cell Decomposition Cylindrical Cell Decomposition

Vertical Cell Decomposition: Algorithm Execution

Event	Sorted Edges in L	Event	Sorted Edges in L
0	$\{a,b\}$	7	$\{d, j, n, b\}$
1	$\{d,b\}$	8	$\{d,j,n,m,l,b\}$
2	$\{d, f, e, b\}$	9	$\{d, j, l, b\}$
3	$\{d, f, i, b\}$	10	$\{d, k, l, b\}$
4	$\{d, f, g, h, i, b\}$	11	$\{d,b\}$
5	$\{d, f, g, j, n, h, i, b\}$	12	$\{d,c\}$
6	$\{d, f, q, j, n, b\}$	13	{}

RMP Combinatorial MP Spring 2024

Vertical Cell Decomposition: Algorithm Execution

RMP Combinatorial MP Spring 2024 23 / 36

Vertical Cell Decomposition: Algorithm Execution

- Line segment split and collect center points
- Then generate a graph.

Vertical Cell Decomposition: Example

Vertical Cell Decomposition: Example

RMP Combinatorial MP Spring 2024 26 / 36

Figure 6.20: In higher dimensions, the sweeping idea can be applied recursively.

RMP Combinatorial MP Spring 2024 27 / 36

Visibility Graph

Visibility Graph

- Visibility graph G = (V, E)
 - $V = \{v_i\}$ node set: includes q_i , q_G , and all the vertices of the configuration space obstacles.

Vertical/Cylindrical Cell Decomposition

- $\mathbf{E} = \{e_{ii}\}$ where e_{ii} denotes a straight line segment that connects v_i and v_i .
- $\bullet e_{ii} \neq \emptyset \Leftrightarrow tv_i + (1-t)v_i \in \mathcal{C}I(C_{free}), \forall t \in [0,1]$

Visibility Graph

Specifically:

- Consecutive reflex vertices
- 2 Bitangent edges: touches two reflex vertices that are mutually visible.

Visibility Graph: Radial Sweep

■ Rotational Plane Sweep Algorithm:

Exact Cell Decomposition

- Sort the obstacle vertices according to the CCW angle that $\overline{v_i v_i}$ makes with the positive x-axis
- 2 Check if $v_i, v_i \in \text{same } C_{obs}$.
- If so, keep only "boundary" edges to insert into G.
- If NOT, insert the edges that are "visible" to G.
- Improvements: read p.218 (Sec.6.2.4)

Visibility Graph: Radial Sweep: Visible

- Sorted edges: {*e*₆, *e*₈, *e*₅, *e*₇, *e*₂, *e*₁, *e*₃, *e*₄}
- Edges to keep (visible edges from v): { e_5 , e_7 , e_2 , e_1 }

Visibility Graph

- Needs an algorithm to check the intersection of line segments.
- Regarding the "piano mover's problem", it may not provide a best solution.
- For higher dimensional problems (e.g., 3D), it does not provide a shortest-path solution.

Vertical/Cylindrical Cell Decomposition

→ The shortest path in 3D does not need to pass through vertices.

Visibility Graph: Line Segments Intersection

□ Computing two line segments intersection.

$$\left| \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|} \right| \simeq | \rightarrow l_1, l_2 \text{ are parallel}.$$

$$\frac{k - k}{\vec{p}_0 + s(\vec{p}_1 - \vec{p}_0)} = \vec{k} + t(\vec{k}_1 - \vec{k}_0)
(\vec{p}_0 - \vec{p}_1)s + (\vec{k}_1 - \vec{k}_0)t = \vec{p}_0 - \vec{k}$$

$$(\vec{p}_0 - \vec{p}_1)s + (\vec{k}_1 - \vec{k}_0)t = \vec{p}_0 - \vec{k}$$

$$(\vec{p}_0 - \vec{p}_1)s + (\vec{k}_1 - \vec{k}_0)t = \vec{p}_0 - \vec{k}$$

RMP

First, check paralled
$$A = \begin{bmatrix} \vec{a}_1 \cdot \vec{a}_2 \\ \vec{a}_2 \end{bmatrix} \Rightarrow \begin{bmatrix} \vec{a}_1 \cdot \vec{a}_2 \\ \|\vec{a}_1\| \|\vec{a}_1\| \end{bmatrix} = \begin{bmatrix} \vec{a}_1 \cdot \vec{a}_2 \\ \|\vec{a}_1\| \|\vec{a}_1\| \end{bmatrix} = \begin{bmatrix} \vec{a}_1 \cdot \vec{a}_2 \\ \|\vec{a}_2\| \|\vec{a}_2\| \|\vec{a}_2\| \end{bmatrix} = \begin{bmatrix} \vec{a}_1 \cdot \vec{a}_2 \\ \|\vec{a}_2\| \|\vec{a}$$

→ NOT intersect

else NOT intersect //

Vertical/Cylindrical Cell Decomposition

Visibility Graph: Example

