y określić, jakie są jego elementy. Można to zrobić słownie lub (jeśli to me z trauycją znioty ozmaczamy wienkim meranii. Any opisac zniot, we) wypisać jego elementy, np.

 $\{0,1,2,3,4,5,\ldots\}$ – zbiór liczb naturalnych

[1, 2, 4, 5, 10, 20] – zbiór naturalnych dzielników liczby 20

, który ma skończoną liczbę elementów, nazywamy zbiorem skończonym. , do którego należy nieskończenie wiele elementów, nazywamy zbiorem ończonym.

zapisać, że element należy do zbioru, używamy symbolu \in , np. $7 \in \mathbb{N}$, apisać, że element nie należy do zbioru – symbolu $\not\in$, np. $\sqrt{2}\not\in \mathbb{Q}$.

, do którego nie należy żaden element, nazywamy zbiorem pustym i oznasymbolem 0.

zenie 1

iagramie przedstawiono sześcioelementowy zbiór A. Określ, czy zdanie prawdziwe

c)
$$\sqrt{16} \in A$$

d)
$$\sqrt{9} \in A$$

E A

ze innym sposobem opisania zbioru jest podanie warunku, który muszą iać jego elementy. Na przykład zapis $B=\{x\in\mathbb{N}:x^2\leqslant 16\}$ oznacza, że $\{0, 1, 2, 3, 4\}.$

zenie 2

zbiory A i B są równe?

$$=\{x\in {\bf N}: x^2\leqslant 27\},\, B=\{x\in {\bf N}: x^2\leqslant 30\}$$

$$=\{-3,-2,-1,0,1,2,3\},\ B=\{x\in\mathbb{N}:x^2\leqslant 9\}$$

gdy mają te same elementy.

Dwa zbiory są równe

wtedy i tylko wtedy,

nicja

ntem zbioru B. Zapisujemy to: A C B. Mówimy również, że zbiór A ; zawarty w zbiorze B. Zapis A & B oznacza, że A nie jest podzbiorem iór A jest podzbiorem zbioru B, jeśli każdy element zbioru A jest eleoru B (zbiór A nie jest zawarty w zbiorze B).

ga. Dla dowolnego zbioru A zachodzą zawierania: $A \subset A$ i $\emptyset \subset A$. Jeśli $A \subset B$ i $B \subset A$, to zbiory A i B są równe: A = B.

Między tymi zbiorami zachodzą zależności:

~ に「~に」(十)

Cwiczenie 3

a)
$$A = \{1, 2, 3, 4, 5, 6, 7\}, B = \{3, 4, 5, 6, 7\}$$

b)
$$A = \{-4, -2, -1, 0, 1, 2, 4\}, B = \{x \in \mathbf{Z} : x^2 \leqslant 16\}$$

c)
$$A = \{x \in \mathbb{R} : x^2 = 12\}, B = \{-2\sqrt{3}, 2\sqrt{3}\}$$

Zwrócmy uwagę, że dla poznanych dotychczas zbiorów liczbowych mają miejsce zawierania:

NCZCQCR

- Zapisz zbiory A i B, wypisując wszystkie ich elementy. Czy zachodzi któraś z zależności: $A \subset B, B \subset A$?
- a) $A = \{x \in \mathbb{N} : x \le 5\}, B = \{x \in \mathbb{N} : x^2 \le 36\}$
- b) $A = \{x \in \mathbb{Z} : -4 \leqslant x \leqslant -2\}, B = \{x \in \mathbb{Z} : 4 \leqslant x^2 \leqslant 16\}$
- c) $A = \{x \in \mathbf{Z} : x^2 = 49\}, B = \{x \in \mathbf{N} : x^2 = 49\}$
- 2. Czy zbiory A i B mają tyle samo elementów?
- a) A zbiór dzielników liczby 6, B zbiór dzielników liczby 15
- b) A zbiór dzielników liczby 36, B zbiór dzielników liczby 48
- *c) A zbiór liczb naturalnych mniejszych od 100 podzielnych przez 2 lub przez 5, B – zbiór liczb naturalnych mniejszych od 100 podzielnych przez 3
- Liczba podzbiorów zbioru dwuelementowego {1,2} jest równa 2². Podzbiorami tymi są: \emptyset , $\{1\}$, $\{2\}$, $\{1,2\}$. Wypisz wszystkie podzbiory: က်
- a) zbioru trzyelementowego $\{1,2,3\}$ i sprawdź, czy jest ich 2^3
- b) zbioru czteroelementowego $\{1,2,3,4\}$ i sprawdź, czy jest ich 2^4
- Który ze zbiorów A, B ma więcej podzbiorów?
- a) $A = \{n \in \mathbb{N} : 2 < n^3 < 125\}, B = \{n \in \mathbb{N} : n|125\}$
- b) $A = \{k \in \mathbb{Z} : 2 < k^2 < 15\}, B = \{k \in \mathbb{Z} : 1 < k^4 < 75\}$

4 i nie należą do zbioru B. Różnicę zbiorów A i B oznaczamy: $A \setminus B$.

$$A \setminus B = \{x : x \in A \mid x \notin B\}$$

ı diagramie różnica $A \setminus B$ jest przedstawiona jako szar zakreskowany.

zykład 3

yznacz zbiory $A \setminus B$ i $B \setminus A$, jeśli $A = \{0, 2, 4, 6, 8\}$ i $B = \{0, 1, 2, 3\}$.

$$B = \{4, 6, 8\}$$

 $B \setminus A = \{1,3\}$

viczenie 7

yznacz zbiory $A \setminus B$ i $B \setminus A$, jeśli:

$$A=\{1,3,5,7,9,11\},\ B=\{0,1,2,3,4,5,6\},$$

$$A = \{n \in \mathbb{N} : 8 | n \text{ i } n \leqslant 50 \}, \ B = \{n \in \mathbb{N} : 6 | n \text{ i } n \leqslant 50 \}.$$

czególnym przypadkiem różnicy zbiorów jest dołnienie zbioru, które oznaczamy przez A' i defijemy jako różnicę całej przestrzeni i zbioru A:

$$A' = U \setminus A = \{x \in U : x \not\in A\}$$

oszar zakreskowany na diagramie to zbiór A'.

viczenie 8

zpatrzmy zbiór $U = \{0, 1, 2, ..., 10\}$ oraz jego podzbiory A i B, przy czym zbioru A należą liczby parzyste, a do B liczby podzielne przez 3. Uzasadnij, zachodzi równość:

$$(A \cap B)' = A' \cup B'$$
, b) $(A \cup B)' = A' \cap B'$.

dane obok równości zachodzą dla dowolnych iorów A, B. Nazywane są prawami De Morgana.

Prawa De Morgana $(A \cap B)' = A' \cup B'$ $(A \cup B)' = A' \cap B'$

Wyznacz zbiory: $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$.

- Wyznacz zbiory: $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$,
- a) $A = \{-2, -1, 0, 1, 2\}, B = \{-3, -1, 1, 3\}.$
- b) $A = \{\frac{1}{2}, 1, 2, 4\}, B = \{0, 1, \sqrt{2}, \sqrt{4}\},$
- c) $A = \mathbb{N}$, $B = \mathbb{Z}$.
- Wyznacz ten zbiór, jeśli $A = \{1, 3, 5, 7, 9\}$, Na diagramie obok obszar potrójnie zakreskowany odpowiada zbiorowi $A \cap B \cap C$. $B = \{2, 3, 4, 5, 6, 7\}, C = \{1, 2, 4, 5, 7, 8\}.$ က်

- 4. A jest zbiorem spółgłosek w słowie arytmetyka, B zbiorem spółgłosek w slowie geometria, a C – zbiorem spółgłosek w słowie algebra. Wyznacz zbiór:
- a) A∩B,

b) $A \setminus B$,

- c) B \ A, $d) B \cap C,$
- e) B \ C, f) $C \setminus B$,
- g) $A \cap B \cap C$, h) $A \cup B \cup C$.
- 5. Który z poniższych diagramów odpowiada zbiorowi:
 - a) $(A \cap B) \setminus C$,
 - b) $C \setminus (A \cup B)$,
- Ξ
- c) $(A \cap C) \cup (B \cap C)$?
 - Ξ b Ö

2

Przyjmij, że żadne dwa spośród zbiodzielnych diagramach przedstaw zbiory: rów: A, B, C nie są rozłączne i na od-Ö.

5

Ö

- a) $A \cup (B \cap C)$ i $(A \cup B) \cap (A \cup C)$,
- b) $A \cap (B \cup C)$ i $(A \cap B) \cup (A \cap C)$,
 - c) $A \cap (B \setminus C)$ i $(A \cap B) \setminus (A \cap C)$,
 - d) $B \setminus (A \cup C)$ i $(A \cup B) \setminus (A \cup C)$.

Porównaj otrzymane wyniki.

Czy wiesz, że...

D

Diagramy ilustrujące zależkie jak użyte w tym tema-Johna Venna (1834-1923).

skiego matematyka i filozofa ności między zbiorami – tacie - noszą nazwę diagramów Venna na cześć angiel7. Dany jest zbiór $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Przerysuj przedstawiony obok diagram do zeszytu i umieść na nim liczby ze zbioru U, korzystając z podanych niżej informacji.

$$A \cap B \cap C = \{1, 2\}, A \cap B = \{1, 2, 3\},$$

 $B \cap C = \{1, 2, 6\}, A \cap C = \{1, 2\},$

$$A = \{1, 2, 3, 4, 9\}, B = \{1, 2, 3, 6, 7, 8\}, C = \{1, 2, 5, 6\}.$$

Następnie wyznacz zbiory:

- a) $A \cup B$, $A \cup C$, $A \setminus C$, $B \setminus C$,
- c) $A \cup (B \cap C)$, $(A \cup B) \cap C$, d) $A' \cap B'$, $A' \cup C'$, $A' \cup B' \cup C$
 - b) $A \setminus (B \cap C)$, $(A \setminus B) \cap C$,
- 130 uczniów lubi zupę pomidorową,

dzono ankietę, której wyniki podano poniżej.

- 110 uczniów lubi zupę szczawiową,
- 80 uczniów lubi zupę grochową,
- 40 uczniów lubi zupę pomidorową i szczawiową, 30 uczniów lubi zupę pomidorową i grochową,
 - 20 uczniów lubi zupę szczawiową i grochową,
 - 20 uczniów lubi wszystkie zupy.

Przerysuj do zeszytu i uzupełnij powyższy diagram. Podaj, ilu uczniów

- a) nie lubi żadnej z oferowanych przez stolówkę zup,
- b) lubi dokladnie jedną zupę oferowaną przez stołówkę,
 - c) lubi dokładnie dwie zupy oferowane przez stołówkę.
- 9. W 30-osobowej klasie 14 uczniów ma psa, 9 kota, 3 świnki morsla 8 nie ma żadnego z wymienionych zwierząt. Uczniowie mający świ morskie nie mają innych zwierząt. Podaj, ilu uczniów ma jednocześnie i kota.
- 10. Naszkicuj diagramy dla zbiorów:

 $(A \cup B \cup C)', (A \cap B \cap C)', A' \cup B' \cup C', A' \cap B' \cap C'$

Ilustracja graficzna	¢	è	q	
Warunek, który spelniają liczby x należące do zbioru	ė	$x\geqslant a$	$x\leqslant b$	è
Oznaczenie	$(a;\infty)$	$(a;\infty)$	4	$(-\infty; b)$
Nazwa zbioru	rzedział otwarty	orzedział lewostronnie łomknięty	Š.	

adania

Zapisz jako przedział zbiór liczb spełniających podany warunek.

a)
$$-7 \leqslant x \leqslant 0$$
 b) $\frac{1}{4} \leqslant x < \sqrt{2}$ c) $x \geqslant 2\frac{1}{4}$

$$2\frac{1}{4}$$
 d) $x < -\frac{1}{3}$

Zapisz symbolicznie poniższe przedziały i podaj warunki, które muszą spełniać należące do nich liczby.

a)
$$\frac{1}{-7}$$
 2 c) $\frac{1}{3}$ $\frac{2}{3}$ e) 0 10 g) b) $\frac{1}{-50}$ 20 d) $\frac{1}{3,14}$ f) 0 $\sqrt{2}$ h)

$$\frac{3}{20}$$
 d) $\frac{3}{3,14}$ $\frac{4}{\pi}$ f) $\frac{6}{0\sqrt{2}}$ h)

Zaznacz na osi liczbowej i zapisz w postaci przedziału zbiór wszystkich:

- a) liczb dodatnich, których odległość od zera jest mniejsza od 4,
- b) liczb ujemnych, których odległość od zera jest nie większa niż 4,
- c) liczb nieujemnych, których odległość od zera jest większa od $2\frac{1}{5}$,
- d) liczb niedodatnich, których odległość od zera jest nie mniejsza niż $\sqrt{2}$.

Zaznacz na osi liczbowej i zapisz w postaci przedzialu zbiór, do którego:

- a) należą liczby odległe od liczby 1 o mniej niż 2,
- b) należą liczby odległe od liczby -1 o mniej niż 3,
- c) należą liczby odległe od liczby 3 o nie więcej niż 2,
- d) odlegle od liczby $-\frac{1}{4}$ o nie więcej niż $\frac{3}{2}$.

Wypisz wszystkie liczby całkowite należące do przedzialu:

c)
$$\langle -\frac{2}{3}; \frac{5}{2} \rangle$$
,

d)
$$\left(-\frac{25}{4}; -2\right)$$

$$(-1, 1)$$
, $(-1, 2)$, $(-1, 0)$, $(-1, 0)$, $(-1, 0)$

a)
$$\sqrt{x} \in \langle 1, 2 \rangle$$
 b) $\sqrt{x} \in \langle 2, 3 \rangle$ c) $\sqrt[3]{x} \in (1, 2)$

Sprawdź, czy zachodzi któraś z zależności:
$$A \subset B$$
, $B \subset A$.

iności:
$$A \subset B$$
, $B \subset A$.
c) $A = \left(-\frac{7}{8}; \frac{15}{8}\right)$, $B = \left\langle-\frac{6}{7}; \frac{13}{7}\right\rangle$

d) $\sqrt[3]{x} \in (-2, 0)$

Sprawdź, czy zachodzi któraś z zależności:
$$A \subset B$$
, $B \subset A$.
a) $A = (-1; 2)$, $B = \langle -1; 3 \rangle$ c) $A = \left(-\frac{7}{8}; \frac{15}{8}\right)$, $B = \frac{1}{8}$

b)
$$A = (-\infty, 7), B = (2, 7)$$

d)
$$A = (\frac{22}{7}; 7), B = (\pi; \sqrt{50})$$

a)
$$(-2\frac{1}{2};5\rangle$$
, b) $(-\pi;6)$,

c)
$$\left(-3\frac{3}{4}; 2\frac{3}{4}\right)$$
,

$$\left(-3\frac{3}{4}; 2\frac{3}{4}\right)$$
,

$$\rangle$$
, b) $(-\pi;6)$,

c)
$$(-3\frac{3}{4}; 2\frac{3}{4}$$

c)
$$\langle -3\frac{3}{4}; 2\frac{3}{4} \rangle$$
, d) $\langle -\sqrt{2}; \sqrt{3} \rangle$.

10. Wskaż na osi liczbowej liczbę jednakowo odległą od końców przedziału: a)
$$\langle -3; 1 \rangle$$
, b) $\langle -2; 3 \rangle$, c) $\langle \sqrt{2}; 4\sqrt{2} \rangle$, d) $\langle 1\frac{1}{4}; 2\frac{3}{4} \rangle$.

a)
$$\langle -3; 1 \rangle$$
, b)

$$-2;3\rangle$$
,

c)
$$\langle \sqrt{2}; 4\sqrt{2} \rangle$$
, d) $\langle 1\frac{1}{4}; 2\frac{3}{4} \rangle$.

Współrzędne (x, y) punktów nale $y \in \langle -1; 3 \rangle$. Zapisz warunki, które żących do prostokąta A (rysunek obok) spełniają warunki: $x \in \langle 3, 5 \rangle$ spelniają punkty należące do: <u>4</u>

O

- a) prostokata B,
 - b) kwadratu C.

- 13. Na którym z poniższych rysunków przedstawiono zbiór punktów (x, y), których współrzędne spełniają warunki:
- a) $x \in (2, 4), y \in (1, 4), b) x \in (1, 5), y \in (2, 4), c) x \in (1, 5), y \in (1, 4)$?

Uwaga. Linia przerywana na rysunku oznacza, że leżące na niej punkty nie należą do zbioru.

zedziały to podzbiory zbioru liczb rzeczywistych, można wykonywać na nich ialania: U,∩,\

zykład 1

yznacz zbiory: $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$, gdy $A = \langle -2; 3 \rangle$ i B = (0; 5).

edy wykonujemy działania na przedziałach, wygodnie jest posługiwać się ı ilustracją graficzną.

$A \cup B = (-2; 5)$	Sumie przedziałów A i B odpowiada ta część osi, która jest zaznaczona co najmniej jednym kolorem.
$A \cap B = (0;3)$	Iloczynowi przedziałów A i B odpowiada ta część osi, która jest zaznaczona dwoma kolorami.
$A \setminus B = \langle -2; 0 \rangle$	Różnicy $A \setminus B$ odpowiada ta część osi, która jest zaznaczona tylko kolorem niebieskim.
$B \setminus A = (3;5)$	Różnicy $B \setminus A$ odpowiada ta część osi, która jest zaznaczona tylko kolorem czerwonym.

ı osi liczbowej używamy pustego kólka, gdy liczba odpowiadająca temu punktowi vaga. Wykonując działania na przedziałach, zwróć szczególną uwagę na ich końce. należy do zbioru, a kółka zamalowanego – gdy należy.

wiczenie 1

yznacz zbiory: $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$.

$$A = (1; 4), B = (2; 6)$$

c)
$$A = \langle 1; 3 \rangle$$
, $B = \langle -5; 3 \rangle$

$$A = \langle -4; 1 \rangle, B = \langle 1; 3 \rangle$$

d)
$$A = (-3; 2), B = (-1; 2)$$

zykład 2

oiór X zaznaczony na osi liczbowej jest sumą przedzialów $\langle -3; 0 \rangle$ i $\langle 1; 4 \rangle$.

$$X = \langle -3; 0 \rangle \cup (1; 4)$$

viczenie 2

znacz na osi liczbowej zbiór X.

$$X = \langle -4; -1 \rangle \cup (2; 4)$$

b)
$$X = \langle -6; -5 \rangle \cup (-3; 2) \cup \langle 4; \infty \rangle$$

 $A \setminus B = \langle -2; 0 \rangle \cup (2; 3)$

ווחלווות לחומות עו ו מו jest suma przedziałów.

Ćwiczenie 3

Wyznacz zbiór A \ B.

a)
$$A = \langle -5, 4 \rangle$$
, $B = (-3, -1)$

b)
$$A = \langle -3; 5 \rangle$$
, $B = \langle 2; \frac{5}{2} \rangle$ d) $A = \mathbb{R}$, $B = \langle -3; 1 \rangle$

c)
$$A = \langle -3; \infty \rangle$$
, $B = \langle -1; 2 \rangle$

Zadania

- 1. Wyznacz zbiory: $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$.
- a) A = (-3; 0), B = (-1; 4)
- c) $A = (-\infty; 2)$, B = (0; 2)
 - b) $A = (-4; 2), B = \langle -\frac{1}{2}; 3 \rangle$
- d) $A = \langle -1; 2 \rangle$, $B = \langle 2; \infty \rangle$
- 2. Ile elementów należy do zbioru X? Wykonaj odpowiednią ilustrację gra-
- a) $X = \langle -5; 6 \rangle \cap \mathbb{N}$
- b) $X = (-3; 3) \cap \mathbb{Z}$
- c) $X = (-\pi; \pi) \cap \mathbb{N}$
- Niech A = (-5,3), B = (-7,4). Ile liczb calkowitych należy do zbioru:
 - b) $A \cap B$, a) $A \cup B$,
 - c) $A \setminus B$,
- Zaznacz zbiór X na osi liczbowej.
- c) $X = (-\infty; -4) \cup (-2; 1) \cup \{3\}$
 - b) $X = (-3; -1) \cup (0; 2) \cup (3; \infty)$ a) $X = \langle -2; 0 \rangle \cup \langle 1; 2 \rangle \cup \langle 4; 6 \rangle$
- d) $X = (-\infty; -2) \cup \{0, 1\} \cup (4; \infty)$
- Zaznacz na osi liczbowej zbiory A i B, a następnie wyznacz zbiory: $A \cup B$ $A \cap B, A \setminus B, B \setminus A$.
 - a) $A = (-3; 1) \cup (3; 6), B = (0; 4)$
 - d) $A = (-2, 0), B = \{0\} \cup (3, 5)$
 - b) $A = \langle -2; 1 \rangle \cup \langle 4; 5 \rangle$, $B = (0; \infty)$
- e) $A = \langle 0; 7 \rangle$, $B = (1; 3) \cup \langle 8; 9 \rangle$
 - c) $A = (-\infty; 0) \cup \langle 2; 5 \rangle$, B = (-1; 6)
- f) $A = \langle 1, 9 \rangle, B = \langle 1, 2 \rangle \cup \langle 6, 9 \rangle$
- Zaznacz na osi liczbowej zbiory A i B. Wyznacz zbiory: $A \setminus B$ i $B \setminus A$. ė,
- a) $A = \langle -5, 2 \rangle$, $B = \{1, 2\}$
- c) $A = (-\infty, 4), B = \{0\} \cup (4, \infty)$
- b) $A = (3, \infty), B = \{2, 3, 4\}$
- d) $A = \{1, 2, 3\}, B = \{1\} \cup (2; \infty)$

ykład 2

zwiąż nierówność 6x + 5 < 17.

$$+5 < 17$$

Od obu stron nierówności odejmujemy 5.

Obie strony nierówności dzielimy przez 6.

$$6x < 12 / : 6$$

 $x < 2$

riczenie 4

zwiąż nierówność.

$$3x + 7 \le 34$$
 b) $\frac{3}{4}x - 1 > \frac{1}{3}$ c) $0, 1x + 1 < -\frac{1}{2}$ d) $5x - 7 \ge 3x + 5$

eżeli obie strony nierówności pomnożymy lub podzielimy przez tę samą czbę ujemną, to po zmianie zwrotu nierówności otrzymamy nierówność ównoważną.

zykład 3

Rozwiąż nierówność $-\frac{1}{2}x > 5$.

$$\frac{1}{3}x > 5 / \cdot (-3)$$

Mnożymy obie strony nierówności przez -3.

$$x < -15$$

Zmieniamy zwrot nierówności

rróć uwagę na to, że zamiast mnożyć obie strony nierówności przez liczbę emną (-3), można je pomnożyć przez 3 i przenieść odpowiednie wyrazy na ıgą stronę nierówności.

Rozwiąż nierówność $-6x - 4 \leqslant -13$.

$$3 - 4 \le -13$$

Do obu stron nierówności dodajemy 4.

$$-6x\leqslant -9$$
 / : (-6) Dzielimy obie strony nierówności przez -6.

Zmieniamy zwrot nierówności

viczenie 5

zwiąż nierówność. Zaznacz na osi liczbowej zbiór rozwiązań nierówności.

$$-3x - 7 < 2$$

 $-\frac{2}{3}x+1\leqslant 5$

c)
$$3(x-1) \ge x+5$$

d) $2(x+\frac{1}{4}) > \frac{1}{2}x+4$

$$\frac{x-3}{2} < \frac{x+2}{3}$$

$$\frac{2-x}{5} \leqslant \frac{x+1}{2}$$

a)
$$3(2 - \frac{1}{6}x) \ge -0.5x + 1$$

liczbę $x \in \mathbb{R}$, czy jest sprzeczna.

b)
$$-\frac{2}{3}(3x-2) > \frac{1}{9}(3-4)$$

b)
$$-\frac{2}{3}(3x-2) > \frac{1}{2}(3-4x)$$

c)
$$\frac{x-2}{2} < \frac{3x-4}{6} - 1$$

d) $\frac{4 \cdot 3x}{3} \geqslant \frac{2 \cdot 5x}{5} + 5$

e)
$$\frac{x-3}{2} < \frac{2x+1}{3} - \frac{x-2}{6}$$

$$1-3x<-3x$$
 $1<0x$ sprzeczność
Nierówność jest sprzeczna (nie spełnia jej żadna liczba)

b)
$$4x - 2 \ge 4x - 10$$

 $0x \ge -8$

Nierówność jest spełniona przez każdą liczbę
$$x \in \mathbb{R}$$
.

1. Zapisz w postaci przedziału zbiór liczb spełniających poniższy warunek (klamra oznacza, że obie nierówności mają być jednocześnie spełnione).

a)
$$\begin{cases} x+9 \geqslant 13 \\ 2x-6 < 4 \end{cases}$$

b)
$$\begin{cases} 3x + 6 > -9 \\ 1 - x \geqslant 3 \end{cases}$$

c)
$$\begin{cases} -2x + 3 \leqslant 4 \\ 5 - 4x \geqslant 1 \end{cases}$$

Zaznacz na osi liczbowej i zapisz w postaci przedziału zbiór liczb, które jednocześnie spełniają obie nierówności. Podaj najmniejszą i największą liczbę całkowitą należącą do tego przedziału.

a)
$$2x + 20 > 8$$
 i $5 < 1 - x$

c)
$$2x + 3 < 7$$
 i $3 - 4x \le 19$

b)
$$2x+3>2$$
 i $4x<3$

d)
$$3x + 9 > -7$$
 i $-3x > 4x + 21$

Które spośród liczb: $a = 1 - \sqrt{2}, b = \sqrt{5} - 1, c = \pi + 2$, spełniają podaną nierówność?

က

a)
$$\frac{3}{4}x - \frac{2}{3} > x + \frac{1}{2}$$

b) $\frac{5}{6}x - \frac{1}{2}x \leqslant \frac{3}{8}x - \frac{1}{6}$

c)
$$\frac{3x-2}{5} \geqslant \frac{x+1}{3}$$

d) $\frac{2x+7}{3} > \frac{6-x}{2}$

e)
$$\frac{3x+2}{-5} < 3-x$$

f) $-3(x+3) > \frac{x-5}{-2}$

4. Rozwiąż nierówność.

a)
$$2 - \frac{x+3}{3} < \frac{2x-3}{2}$$

b)
$$\frac{2-x}{2} - \frac{2x-1}{3} \leqslant 1 - x$$

(c)
$$\frac{x+4}{12} + 1 \geqslant \frac{x}{6} - \frac{3-x}{4}$$

d)
$$\frac{3x+1}{4} - \frac{6-2x}{5} > -\frac{1}{20} - \frac{x-1}{2}$$

e)
$$-\frac{1}{6}x - \frac{2x-5}{4} \geqslant 3 - \frac{8x-3}{3}$$

f) $\frac{x-1}{3} - \frac{2x-1}{6} < \frac{1}{2} - \frac{x-3}{5}$

f)
$$\frac{x-1}{2} - \frac{2x-1}{6} < \frac{1}{2} = \frac{x-3}{6}$$

5. Rozwiąż nierówność.

a)
$$\sqrt{3}x - 6 < 9 - 2\sqrt{3}x$$
 b) $\sqrt{2}x$

r b)
$$\sqrt{2}x + 4 < \sqrt{8}x - 8$$
 c) $\sqrt{5}x < \frac{5\sqrt{5}}{3}x - 2\frac{2}{3}$

- Dla dowolnych liczb rzeczywistych a, b, c zachodzi następująca własność (zwana przechodniością): jeśli a < b i b < c, to a < c.
- a) Jeśli podwoimy liczbę naturalną n, od otrzymanego iloczynu odejmiemy 11, a uzyskaną różnicę pomnożymy przez 3, to otrzymamy liczbę naturalną mniejszą od 21. Podaj możliwe wartości n.
- b) Jeśli potroimy całkowitą liczbę ujemną k, do otrzymanego iloczynu dodamy 7, a następnie otrzymaną sumę pomnożymy przez 4, to otrzymamy liczbę większą od 2. Podaj możliwe wartości k.
- pomniejszonej o 2, to otrzymamy liczbę mniejszą od 3. Podaj możliwe c) Jeśli od połowy liczby naturalnej m odejmiemy trzecią część liczby mwartości m.
- Wysokość prostopadlościanu jest równa k cm, a jego podstawą jest kwadrat o boku 3 cm. Jakie wartości całkowite może przyjmować k, jeśli:
- a) suma długości wszystkich krawędzi tego prostopadłościanu jest większa od 38 cm i mniejsza od 46 cm,
- b) pole powierzchni całkowitej tego prostopadlościanu jest większe od 40 cm^2 i mniejsze od 68 cm²?
- Właściciel klubu chce zaprosić na koncert jeden z dwóch zespolów rockoplus 8 zł od każdego uczestnika koncertu. Dla jakiej liczby uczestników wych. Zespół Gamma zażądał za występ 2230 zł, a zespół Kappa – 1550 zł tańsze będzie zaproszenie zespołu Gamma?
- Który symbol, < czy >, należy wstawić w miejce ?, aby otrzymać nierówność prawdziwą, jeśli c<0 oraz a>b? Zapisz tę nierówność w zeszycie.

a)
$$-ac$$
 ? $-bc$ b)

b)
$$\frac{a}{c^2}$$
 ? $\frac{b}{c^2}$

c)
$$\frac{a}{c^3}$$
 ? $\frac{b}{c^3}$

- Czy poniższe zdanie jest prawdziwe (odpowiedź uzasadnij)?
- a) Dla dowolnych liczb p, q, jeśli p < q, to $p^2 < q^2$.
- b) Dla dowolnych różnych od zera liczb p, q, jeśli p < q, to $\frac{1}{p} > \frac{1}{q}.$
- Udowodnij
- a) Jeśli p < q i r < s, to p(r s) > q(r s).
- (b) Jeśli p, q, r, s > 0 i $\frac{p}{q} < \frac{r}{s}$, to $\frac{p}{q} < \frac{p+r}{q+s}$ oraz $\frac{p+r}{q+s} < \frac{r}{s}$.

 $(a+b) \cdot c = a \cdot c + b \cdot c$

suspens where weeks prosessons or themes

a)
$$(3x^2 + 2x - 4)x^2$$

b)
$$-2x^3(\frac{1}{4}x^2 - \frac{1}{2}x - 2)$$

c) $-\frac{1}{2}x^2(4x^2y - 2xy^2)$

d)
$$\sqrt{2}x^4 \left(\sqrt{8}xy + y^2\right)$$

e)
$$(x^2y - xy + xy^2)x^2y$$

f) $2\sqrt{3}xy^3(\sqrt{3}x^2y^2 - \frac{1}{2}x^3y)$

2. Dopasuj do figury wzór na jej pole.

III. $\frac{1}{2}a^2 + \frac{1}{2}a$

II. $a^2 + a$

I. $2a^2 + a$

$$\frac{1}{2a} + a$$
IV. $a + \frac{1}{2}$

3. Wykonaj mnożenie i zredukuj wyrazy podobne.

a)
$$2x(3x-4)-6x(x^2+2x-3)$$

b)
$$-\frac{1}{2}x^2(x^2 - 2x + 6) - 2x(\frac{1}{2}x^2 - 4x)$$

c)
$$\sqrt{6}x^3(\sqrt{3}x - \sqrt{2}) + \sqrt{3}x(2x^2 - 4\sqrt{2}x)$$

c)
$$v o x^{-} (v o x - v z) + v o x (zx - 4v z.)$$

d) $xy^{2} (2x - 3xy + y) + \frac{1}{4}x^{2}y(\frac{1}{2}y^{2} - 8y)$

e)
$$-\frac{1}{2}x^3y(xy-2xy^2)-\frac{1}{8}xy^2(4x^3-16x^2y)$$

f)
$$-\frac{1}{4}x^2y(-2x+y) - \frac{3}{4}y(x^2-x^2y) - \frac{1}{2}(x^3y+xy)$$

f D 4. Uzasadnij, że wartość wyrażenia nie zależy od wartości zmiennej x.

a)
$$4x^2\left(x^2 - \frac{3}{2}x + 1\right) - 3x\left(\frac{4}{3}x^3 - 2x^2 + 1\right) - 4\left(x^2 - \frac{3}{4}x - 8\right)$$

b)
$$\sqrt{15}x(2\sqrt{3}x^2 - 6\sqrt{5}x - \sqrt{10}) - 2\sqrt{5}x^2(3x - 3\sqrt{15}) + \sqrt{6}(5x - 1)$$

D 5. Uzasadnij, że suma pól figur F_1 i F_2 równa się różnicy pól figur F_3 i F_4 .

E

zen w poszczegomych wyrazach sumy rozpozna się jeunakowe czymnki i wyczy je przed nawias, latwiej będzie wykonać obliczenia.

blicz sumę $7 \cdot 49 + 7 \cdot 51$.

7yłączamy przed nawias liczbę 7:

Korzystamy z własności działań

 $a(b+c) = a \cdot b + a \cdot c$

zwanej rozdzielnością mnożenia

względem dodawania.

 $49 + 7 \cdot 51 = 7 \cdot (49 + 51) = 7 \cdot 100 = 700$

wiczenie 1

blicz w pamięci.

- c) 3 · 251 + 3 · 249 d) $6 \cdot 378 + 6 \cdot 222$ $2 \cdot 183 + 2 \cdot 17$ $9 \cdot 27 + 9 \cdot 23$
- e) $12 \cdot 228 + 12 \cdot 172$ f) $19 \cdot 116 + 19 \cdot 84$
- ównież w sumach algebraicznych można wyłączyć wspólny czynnik przed wias.

rzykład 2

ana jest suma algebraiczna $6x^3 + 12x^2$. Wyłącz przed nawias wspólny czyn-

 $6x^3 + 12x^2 = 6(x^3 + 2x^2)$ Wyłączamy przed nawias 6:

 $6x^3 + 12x^2 = 6x(x^2 + 2x)$ Wyłączamy przed nawias 6x:

 $6x^3 + 12x^2 = 6x^2(x+2)$ Wyłączamy przed nawias $6x^2$:

Wyłączamy przed nawias $12x^2$: $6x^3 + 12x^2 = 12x^2(\frac{1}{2}x + 1)$

o, jaki czynnik wyłączymy przed nawias, zależy od konkretnego zadania.

mnożenia jednomianu przez sumę algebraiczną.

Wyłączanie wspólnego czynnika przed nawias jest czynnością odwrotną do

$$a \cdot b + a \cdot c = a(b + c)$$

viczenie 2

yłącz wspólny czynnik przed nawias.

$$5x + 5y$$
 c) $9x - 27y^2$
 $4b - 8a$ d) $-6x^2 + 18y^2$

e)
$$39y^2 - 26z$$

f) $-11a^3 + 22b^2$

g)
$$-48p + 36q^2$$

h) $75xy^3 - 125$

b)
$$2x^3 - 12xy$$
, $2x$ d) $6pq + 18p^2q$, $6pq$ f) $4x^2y^2 - 5x^3y^2 + 2x^2y^3$, x^2y^2

Przed nawias wyłączamy zwykle czynnik liczbowy oraz wszystkie możliwe zmienne w jak najwyższych potęgach. Na przykład:

$$27x^3y^2 + 18x^2y^3 = 9x^2y^2(3x + 2y)$$

Cwiczenie 4

Wyłącz przed nawias czynnik liczbowy oraz wszystkie możliwe zmienne w jak najwyższych potęgach.

a)
$$8x^3 - 36x^2$$

d)
$$20ax - 15ay$$

e) $8ab + 12bc$

g)
$$2a^3b + 4a^2b - 4a^2b^2$$

h) $21n^3a^2 - 97n^2a^3 + 3n^5$

c)
$$5x^3 + 10x^2y$$

b) $7y^2 - 14y^4$

f)
$$4xy + 6x^2y$$
 i) 48

h)
$$21p^3q^2 - 27p^2q^3 + 3p^2q^2$$

i) $48x^2y + 18xy^2 - 12x^2y^2$

Zadania

- 1. Oblicz.
- a) 4 · 49 + 4 · 51

b) $40 \cdot 47 + 40 \cdot 53$

d) 63 · 37 + 37 · 37

- c) 113 · 25 + 87 · 25
- e) $10 \cdot 17 + 10 \cdot 33 + 50 \cdot 10$

f) $15 \cdot 17 + 15 \cdot 2 + 15$

- 2. Wyłącz podany czynnik przed nawias.
- a) $a^2b + ab^3$, ab

b) $x^3y^2 - xy^3$, xy^2

- c) $9a^3b^2 3a^2c^2$, $3a^2$
- f) $6x^2y^4 + 8x^3y^3$, $2x^2y^3$ e) $3a^3b^2 - 6a^2b$, $3a^2b$ d) $4x^4y^4 + 8y^3z$, $4y^3$
- Zapisz wyrażenie algebraiczne w postaci iloczynu, wyłączając przed nawias podany jednomian.
- a) $x^2yz + xy^2z + xyz^2$, xyz
- c) $2x^3y 4x^2y^2 + 6x^2yz$, $2x^2y$
 - b) $x^2yz^2 + xy^2z^3 x^3yz^2$, xyz^2
- d) $12x^4y^3 + 6x^3y^3 9x^5y^2$, $3x^3y^2$
- 4. Przepisz do zeszytu i uzupełnij odpowiednimi jednomianami.
 - a) $27y^4 + 36y^3 54y^2 = 9y^2(3y^2 + ?? + ??)$ b) $3ab(3a + b + ?) = 9a^2b + ? + 6ab$
- c) $12t^4 9t^3 + 3t^2 = ?$ (? -3t + 1)
- 5. Oblicz wartość podanego wyrażenia, jeśli a+b=15.
- b) 2(a+b)-4a-4b
- c) a(a+b)+b(a+b)

a)
$$(2a+b)(a-1)$$
 c) $(-2a+b)(6a$

a)
$$(2a+b)(a-1)$$
 c) $(-2a+b)(6a-2)$ e) $(2a+b^2)(a-2b)$
b) $(3a-2b)(2b+3)$ d) $(3+4a)(-2b-1)$ f) $(a^2-3b)(2b-3a)$

Wykonaj mnożenie.

a)
$$(x+2y+3)(x-2)$$
 c) $(x^2+y)(x+y+2)$ e) $2x(x-2y)(3+y)$

b)
$$(2x-y+1)(2x-3)$$
 d) $(x-y)(x^2-2x+1)$ f) $-4x(2x-y)(2x+y)$

Uprość wyrażenie.

a)
$$(a+3)(a-4) + (a-3)(a+4)$$
 d) $3y^2 - 2x(x+2y) - (x-y)(2x+y)$

b)
$$(2a-b)(a+3b) - (a-4b)(2a+b)$$
 e) $2x^2 + 3(x(x+2) - x(x-3))$

c)
$$-4a^2 + 3a(a-1) + (2a-1)(a+3)$$
 f) $-4x^2 - 6(y^2 - (x-2y)(x+y))$

Uprość wyrażenie i oblicz jego wartość dla x = -0.5.

a)
$$(x+2)(6(x+4)-5(x+6))$$
 b) $-2(x^4+x^2)+x^3(x+1)+(x^2-2)(x^2+3)$

Dany jest prostokąt o bokach długości a i a + 2.

- a) Przedstaw wzór na pole tego prostokąta w postaci sumy algebraicznej.
- b) Krótszy bok tego prostokąta przedłużono o 1, a dluższy skrócono o 1, w wyniku czego powstał kwadrat. Wyznacz różnicę między polem kwadratu a polem prostokąta.
- a) Dany jest kwadrat o boku długości x+3. O ile zmniejszy się pole tej figury, gdy jeden jej bok zmniejszymy o 2, a drugi o 1?
- b) Dany jest trójkąt o podstawie równej a+3 i wysokości opuszczonej na tę podstawę równej a+4. O ile zwiększy się pole trójkąta, gdy wysokość zwiększymy o 2?
 - c) Dany jest prostokąt o bokach długości x+4 i 2x+3. O ile zwiększy się pole tego prostokąta, jeśli jeden z jego boków zwiększymy o 2, a drugi o 1? Rozpatrz dwa przypadki.

a)
$$(\sqrt{3} + 2\sqrt{2})(4\sqrt{3} - 8\sqrt{2})$$
 c) $(2\sqrt{3} - 3\sqrt{2})(\sqrt{2} + \sqrt{3}) - (4 - \sqrt{6})$
b) $(2\sqrt{5} - 4\sqrt{2})(2\sqrt{2} + \sqrt{5})$ d) $(\sqrt{5} + 2\sqrt{3})(2\sqrt{5} - \sqrt{3}) + (6 - 3\sqrt{15})$

d)
$$(\sqrt{5}+2\sqrt{3})(2\sqrt{5}-\sqrt{3})+(6-3\sqrt{15})$$

Uzasadnij, że dla dowolnej liczby x wartość wyrażenia jest nieujemna.

a)
$$(3x-6)(4x-2)-(6x+3)(2x-6)$$

b)
$$(3x-2)(2x-1)-(5x-2)(x-1)$$

b)
$$(x-4)(x+6) = x(x-4)$$
 e) $(2x+1)(x+3) = (x-4)(2x-3)$

c)
$$(2-x^2)(x^2-3) = x + 5x^2 - x^4$$
 f) $(2x^2 + x - 3)(x-4) = x^2(2x-7)$

10. Rozwiąż nierówność.

a)
$$x^2 - (x+3)(x-3) \le 6x$$

b) $(4-x)(2x+3)+2x^2<6$

c)
$$(2x-1)(3x-1)-(3x-2)(2x-3) \ge$$

d) $(4-6x)(2x+1)+(4x-5)(3x-1) >$

0

11. Ile liczb naturalnych spełnia podaną nierówność?

a)
$$(3x+1)(2-x)+x(3x-5) \ge x$$

b)
$$2x^2 - (2x+1)(x-3) > 6x-7$$

c)
$$(3x+3)(2x-1)+4x < 6(x+2)(x-1)+9$$

d)
$$(x+1\frac{1}{2})(2x+1) \ge (2x+\frac{1}{2})(x-1)+6x$$

- a) Dane są dwa prostokąty: P_1 o wymiarach (2x+30) cm \times (x+20) cm oraz P_2 o wymiarach (2x+10) cm $\times (x+10)$ cm. Różnica pól prostokątów P_1 i P_2 jest równa 900 cm². Oblicz obwody tych prostokątów 12
- b) Dane są dwa prostokąty o wymiarach (6-x) cm $\times (2x-5)$ cm oraz (x+5) cm $\times (2x-1)$ cm. Suma ich pól jest równa 69 cm². Oblicz różnicę między polem większego i mniejszego prostokąta.
- c) Dane są dwa czworokąty: kwadrat o boku (2x+7) cm oraz prostokąt o wymiarach (4x+1) cm \times (x+3) cm. Pole kwadratu jest o 91 cm² większe od pola prostokąta. Oblicz różnicę między obwodami kwadratu i prostokata.
- Wykonaj mnożenie. 13.

a)
$$(x+1)(x-1)(x^2-1)(x^4-1)$$
 c) $(a+b)(a^2-ab+b^2)(a^3-b^3)$

b)
$$(1-x)(1+x)(1+x^2)(1+x^4)$$
 d) $(a-b)(a^2+ab+b^2)(a^3-b^3)$

- delko. Uzasadnij, że pojemność tego pudelka wya) Z prostokątnego arkusza tektury o bokach 30 cm 20 cm wycięto w rogach kwadraty o boku x cm. Pozostalą część sklejono i otrzymano otwarte puraża się wzorem: $V = 4x^3 - 100x^2 + 600x$. D 14.
- gach kwadraty o boku x cm. Pozostałą część sklejono i otrzymano otwarte b) Z kwadratowego arkusza tektury o boku równym 40 cm wycięto w ropudełko. Zapisz w postaci sumy algebraicznej wzór opisujący pojemność

A VYZULY SKIUCULIEGU IIIIIUZEIIIA

rdzenie

dowolnych liczb rzeczywistych a i b:

$$(a+b)^2 = a^2 + 2ab + b^2$$
$$(a-b)^2 = a^2 - 2ab + b^2$$

$$a + b)^2 = a^2 + 2ab + b^2$$

 $a - b)^2 = a^2 - 2ab + b^2$

$(a-b)^2 = a^2 - 2ab + b^2$

kwadrat różnicy

 \dot{z}_i , że dla dowolnych liczb a i b prawdziwe są podane wyżej wzory.

y na kwadrat sumy i kwadrat różnicy można zilustrować następująco: $(\bigcirc - \square)^2 = \bigcirc^2 - 2 \cdot \bigcirc \cdot \square + \square^2$ $(\bigcirc + \square)^2 = \bigcirc^2 + 2 \cdot \bigcirc \cdot \square + \square^2$

$$(x+5)^2 = x^2 + 2 \cdot x \cdot 5 + 5^2 = x^2 + 10x + 25$$

$$(x+2)^2 = (3x)^2 + 2 \cdot 3x \cdot 2 + 2^2 = 9x^2 + 12x + 4$$

 $(x-3y)^2 = (2x)^2 - 2 \cdot 2x \cdot 3y + (3y)^2 = 4x^2 - 12xy + 9y^2$

sz w postaci sumy algebraicznej

$$(x+1)^2$$
 c) $(x-3)^2$
 $(x+2)^2$ d) $(x-5)^2$

e)
$$(2x+1)^2$$

f) $(\frac{1}{2}x+2)^2$

g)
$$(4x-1)^2$$

h) $(2x-\frac{1}{2})^2$

zenie 3

sz w postaci sumy algebraicznej.

$$(x^2 + 2y)^2$$

d)
$$(3x + \frac{1}{2}y)^2$$

e) $(2x - \frac{1}{4}y)^2$

 $(x-y)^2$

$$(x+2y)^2$$
 f) $(\frac{1}{2}x+\frac{1}{3}y)^2$

zenie 4

$$\frac{3Z}{\sqrt{7}+1}\right)^2$$

e)
$$(\sqrt{6} + \sqrt{15})^2$$

 $\sqrt{5}-3)^{2}$

f)
$$\left(\frac{\sqrt{2}}{2} - \sqrt{6}\right)^2$$

d)
$$(\sqrt{3} + \sqrt{2})^2$$

e)
$$(\sqrt{6} + \sqrt{15})^2$$

f)
$$\left(\frac{\sqrt{2}}{2} - \sqrt{6}\right)^2$$

 $3-\sqrt{3}$

Na rysunku przedstawiono interpretację geometryczną wzoru: $(a+b)^2 = a^2 + 2ab + b^2$

Podaj analogiczną interpretację $(a-b)^2 = a^2 - 2ab + b^2$ geometryczną wzoru:

Dla dowolnych liczb rzeczywistych a i b:

$$a^2 - b^2 = (a - b)(a + b)$$

$$= (a-b)(a+b)$$

różnica kwadratów

D Ćwiczenie 5

Wykaż, że dla dowolnych liczb a i b prawdziwy jest podany wyżej wzór.

Przykład 2 a)
$$(x - 6)(x + 6) = x^2 - 6^2 = x^2 - 36$$

b)
$$(2x - 3y)(2x + 3y) = (2x)^2 - (3y)^2 = 4x^2 - 9y^2$$

Ćwiczenie 6

Zapisz w postaci sumy algebraicznej.

a)
$$(x-3)(x+3)$$

b) (x+7)(x-7)

c)
$$(2x-4)(2x+4)$$

d) (6+5x)(5x-6)

e)
$$(3x - 4y)(3x + 4y)$$

f) $(\frac{1}{2}x + 3y)(3y - \frac{1}{2}x)$

$$(7 - \sqrt{3})(7 + \sqrt{3}) = 49 - 3 = 46$$

Ten przykład rozwiązany za pomocą kalkulatora wyglądałby następująco:

$$(7 - \sqrt{3})(7 + \sqrt{3}) \approx (7 - 1,732050808)(7 + 1,732050808) = 5,267949192 \cdot 8,732050808 \approx 46$$

Ćwiczenie 7

a)
$$(5 - \sqrt{7})(5 + \sqrt{7})$$
 c) $(\frac{1}{3} + \frac{\sqrt{6}}{2})(\frac{1}{3} - \frac{\sqrt{6}}{2})$

b)
$$(\sqrt{5}+1)(1-\sqrt{5})$$
 d) $(2\sqrt{2}-3)(3+2\sqrt{2})$ f) $(\sqrt{5}+1)(1-\sqrt{5})$

e)
$$(\sqrt{2} - \sqrt{3})(\sqrt{2} + \sqrt{3})$$

f) $(\sqrt{5} + \frac{\sqrt{2}}{2})(\sqrt{5} - \frac{\sqrt{2}}{2})$

Zadania

1. Uprość wyrażenie.

a)
$$(x-3)(x+3) + (2+x)(2-x)$$
 d) $(5y+1)(1-5y) - (1+5y)^2$

b)
$$(x + \frac{3}{2})(x - \frac{3}{2}) - (x - \frac{1}{2})(x + \frac{1}{2})$$
 e) $(2x - y)(2x + y) + (3x + 2y)(3x - 2y)$

c)
$$(2y-3)^2 - (3y-2)(3y+2)$$
 f) $(y+3x)(3x-y) - (x-5y)(x+5y)$

ri

a)
$$(x+1)(x-1) + (x+2)(x-2) - (x+3)(x-3) d \ln x = \sqrt{3}$$
,

b)
$$(1-2x)(1+2x) + (1-3x)(1+3x) - (1-4x)(4x+1)$$
 dla $x = \sqrt{5}$,
c) $(2x-1)^2 - (2x-1)(1+2x) - (2x+1)^2$ dla $x = \sqrt{2}$.

$$(\sqrt{3} - 1)^2 - (2 - \sqrt{3})^2$$
 f) $(\sqrt{6} - \sqrt{5})(\sqrt{6} + \sqrt{5}) + (\sqrt{6} - \sqrt{5})^2$ f) $(2\sqrt{3} - \frac{3}{2})^2 - (2\sqrt{3} + \frac{3}{2})^2$ g) $(2\sqrt{5} - \sqrt{10})^2 - (2\sqrt{5} + 1)(1 - 2\sqrt{5})$ f) $(\frac{1}{3} + 3\sqrt{2})^2 - (\frac{1}{3} - 3\sqrt{2})^2$ h) $(\sqrt{6} - 2\sqrt{3})^2 - (5\sqrt{2} - 1)(1 + 5\sqrt{2})$

$$\sqrt{\sqrt{2+1} \cdot \sqrt{\sqrt{2}-1}}$$

c)
$$\sqrt{7-\sqrt{3}} \cdot \sqrt{\sqrt{7}+\sqrt{3}}$$

d) $\sqrt{4-2\sqrt{3}} \cdot \sqrt{4+2\sqrt{3}}$

$$\sqrt{2+\sqrt{3}\cdot\sqrt{2-\sqrt{3}}}$$
 d) $\sqrt{4-2\sqrt{3}\cdot\sqrt{4+2\sqrt{3}}}$ olicz pole powierzchni całkowitej sześcianu o krawędzi a .

$$a = 3 + \sqrt{2}$$
 b) $a = 2\sqrt{3} - 1$ c) $a = \sqrt{6} + \sqrt{2}$

olicz obwód trójkąta prostokątnego o przyprostokątnych a i b.
$$a=4-\sqrt{2},\ b=4+\sqrt{2}$$
 b) $a=8+\sqrt{2},\ b=4-2\sqrt{2}$

$$(\sqrt{4 - \sqrt{7}} + \sqrt{4 + \sqrt{7}})^2$$
 c) $(\sqrt{5 - 2\sqrt{6}} + \sqrt{5 + 2\sqrt{6}})^2$ d) $(\sqrt{2 + \sqrt{5}} - \sqrt{\sqrt{5} - 2})^2$ d) $(\sqrt{\sqrt{7} + \sqrt{3}} - \sqrt{\sqrt{7} - \sqrt{3}})^2$

$$(2x+3y)(2x-3y) - (2x-3y)^2 d \ln x = \sqrt{\sqrt{10}-3}, y = \sqrt{\sqrt{10}+3},$$

$$(\sqrt{3}x-y)^2 - (x-\sqrt{3}y)^2 d \ln x = \sqrt{6}+\sqrt{2}, y = \sqrt{6}-\sqrt{2},$$

$$(\sqrt{2}x-\sqrt{3}y)^2 - (\sqrt{2}x-\sqrt{5}y)(\sqrt{2}x+\sqrt{5}y) d \ln x = \sqrt{5}-4, y = \sqrt{6},$$

$$(x^2-4y^2)^2 - (4y^2-x^2)^2 d \ln x = \frac{1}{\sqrt{2}-1}, y = \frac{1}{\sqrt{2}+1}.$$

sasadnij, że dla każdej liczby naturalnej
$$n$$
 liczba:

$$(n+1)^2-n^2$$
 jest nieparzysta, c) $(n+\frac{1}{2})^2-(n-\frac{1}{2})^2$ jest parzysta, c) $(2n+1)^2$ jest nieparzysta, d) n^3-n jest podzielna przez 6.

'yprowadź wzór:

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$$

skazówka. Pogrupuj wyrazy i skorzystaj ze wzoru na kwadrat sumy.

jeśli
$$c \neq 0$$
 i $(a+b-c)^2 = a^2 + b^2 + c^2 + 2ab$, to $a=-b$, jeśli $b \neq 0$ i $(a-b+c)^2 = a^2 + c^2 - 2ab + 2ac$, to $b=2c$.

Wzór na różnicę kwadratów: $(a-b)(a+b)=a^2-b^2$ można zastosować do usuwania niewymierności z mianownika.

Przykład 1

$$\frac{5}{\sqrt{2}-1} = \frac{5}{\sqrt{2}-1} \cdot \frac{\sqrt{2}+1}{\sqrt{2}+1} = \frac{5\sqrt{2}+5}{2-1} = 5\sqrt{2}+5$$

Cwiczenie 1

Usuń niewymierność z mianownika.

a)
$$\frac{1}{6+\sqrt{2}}$$
 b) $\frac{2\sqrt{2}}{\sqrt{5+4}}$

c)
$$\frac{2}{4-3\sqrt{2}}$$

d)
$$\frac{2\sqrt{3}-1}{2\sqrt{3}+2}$$

e)
$$\frac{\sqrt{3}}{\sqrt{5}+\sqrt{3}}$$

Wzory skróconego mnożenia wykorzystujemy przy rozwiązywaniu równań i nierówności.

Ćwiczenie 2

Przeczytaj podany obok przykład. Rozwiąż równanie.

 $(x-4)(x+4)-(x-3)^2=17$

Rozwiąż równanie.

 $x^2 - 16 - (x^2 - 6x + 9) = 17$ $x^2 - 16 - x^2 + 6x - 9 = 17$

6x - 25 = 176x = 42

a)
$$x^2 - (2-x)^2 = 8$$

b)
$$(3x+1)^2 - 9x^2 =$$

b)
$$(3x+1)^2 - 9x^2 = 7$$

c)
$$(x+1)^2 - (x+1)(x-1) = 12$$

Cwiczenie 3

Rozwiąż nierówność.

a)
$$4x^2 - (2x+1)^2 < 3$$

c)
$$(2x+1)(2x-1) > 4x^2 - 9x$$

b)
$$(3-x)^2 \ge x^2 + 12$$

d)
$$2 - (2x - 1)^2 \leqslant (3 - 2x)(2x + 3)$$

Przykład 2

Dla jakich wartości x wyrażenie x^2+4x+4 przyjmuje wartość równą 0?

$$x^2 + 4x + 4 = (x+2)^2$$
, wiec:
 $x^2 + 4x + 4 = 0 \Leftrightarrow (x+2)^2 = 0 \Leftrightarrow x = -2$

Symbol
$$\Leftrightarrow$$
 czytamy: "wtedy i tylko wtedy, gdy".

Cwiczenie 4

Dla jakich wartości x podane wyrażenie przyjmuje wartość równą 0?

c) $4x^2 - 4x + 1$

a)
$$x^2 + 8x + 16$$

b) $x^2 - 6x + 9$

$$25x^2 + 10x + 1$$

e)
$$4x^2 + 12x + 9$$

f) $9x^2 - 3x + \frac{1}{4}$

kład 3

ozwiąż równanie $(x+3)^2=6x$.

$$x^2 + 6x + 9 = 6x$$
$$x^2 = -9$$

Kwadrat liczby rzeczywistej nie może być liczbą ujemną.

m równanie jest sprzeczne – nie jest spełnione przez żadną liczbę $x \in \mathbb{R}$.

ozwiąż nierówność $(2x-1)^2 < 4x(x-1)$.

$$4x^2 - 4x + 1 < 4x^2 - 4x$$

m nierówność jest sprzeczna – nie jest spełniona przez żadną liczbę $x \in \mathbb{R}$.

nanie lub nierówność spelnione przez każdą liczbę rzeczywistą nazywamy naniem tożsamościowym (krótko: tożsamością) lub nierównością tożsamo-

ozwiąż równanie $(x+3)^2 - (x-3)^2 = 12x$.

$$(x+3)^{2} - (x-3)^{2} = 12x$$

$$x^{2} + 6x + 9 - (x^{2} - 6x + 9) = 12x$$

$$12x = 12x$$

m równanie jest tożsamościowe – jest spełnione przez każdą liczbę $x \in \mathbb{R}$. ozwiąż nierówność (x-2)(x+2)+5>0.

$$(x-2)(x+2)+5>0$$
 Kwadrat liczby rzeczywistej $x^2-4+5>0$ zawsze jest większy od liczby $x^2>-1$ uiennei.

m nierówność jest tożsamościowa – spełniona dla każdego $x \in \mathbb{R}$.

wdź, czy równanie jest tożsamościowe lub sprzeczne.

$$(6-x)^2 - (2-x)^2 = -8x$$

b)
$$(x-4)^2 + 4x = (x-2)^2 + 12$$

szenie 6

wdź, czy nierówność jest tożsamościowa lub sprzeczna.

$$(x+1)^2 - 2 \le (x-1)(1+x) + 2x$$
 b) $(x-(3x-1)^2 \ge (2x+3)^2$

a)
$$\frac{1}{1+\sqrt{3}}$$
 d) $\frac{2}{1-2\sqrt{2}}$

e)
$$\frac{6}{3+2\sqrt{3}}$$

 $\frac{1}{3-\sqrt{2}}$

9

h)
$$\frac{4}{\sqrt{3}+\sqrt{5}}$$

g)
$$\frac{1}{\sqrt{6-\sqrt{5}}}$$
 j) $\frac{\sqrt{2}}{\sqrt{3+\sqrt{2}}}$
h) $\frac{4}{\sqrt{3+\sqrt{5}}}$ k) $\frac{\sqrt{6}}{\sqrt{2-2\sqrt{3}}}$
i) $\frac{10}{\sqrt{7-\sqrt{2}}}$ l) $\frac{1+\sqrt{2}}{3+\sqrt{2}}$

i)
$$\frac{10}{\sqrt{7}-\sqrt{2}}$$

8 3√2-4

 $\frac{3}{2+\sqrt{5}}$

0

$$\frac{10}{-\sqrt{2}}$$

a)
$$(x-5)(x+5) = x^2 - 100x$$

$$x$$
 d) $4(x+2)^2 - (2x-1)^2 = 20x + 10$

b)
$$(3-x)^2 - (x+\frac{1}{3})^2 = \frac{2}{9}$$

c) $4(\frac{1}{2}x-3)^2 = (6-x)^2$

f)
$$(-4x-3)(4x-3)+8(1-\sqrt{2}x)^2 =$$

e) $(6 + \frac{1}{3}x)(-\frac{1}{3}x + 6) + (\frac{1}{3}x - 4)^2 =$

a)
$$4(x-3)^2 - (2x-5)^2 \ge 2$$

d)
$$-9(2-x)^2 - (1-3x)(3x+1) \le 11$$

b)
$$9(\frac{2}{3}x - 1)^2 > (1 - 2x)^2 - 8x$$

b)
$$9(\frac{2}{3}x - 1)^2 > (1 - 2x)^2 - 8x$$
 e) $(\frac{1}{4}x + 2)^2 + \frac{1}{4}(1 - \frac{1}{2}x)(1 + \frac{1}{2}x) \ge 0$
c) $2(x + 2)^2 - (\sqrt{2}x - 2)^2 \ge 0$ f) $(\frac{\sqrt{2}}{2}x + 1)(\frac{\sqrt{2}}{2}x - 1) < \frac{(x-1)^2}{2}$

a)
$$\begin{cases} (x+1)^2 > x^2 + 1 \\ (x-1)^2 < (2-x)^2 \end{cases}$$
 c)
$$\begin{cases} (2x+5)(5-2x) + (2x-3)^2 - 2 > 0 \\ (x-\frac{1}{2})^2 - 4 < x - (2-x)(2+x) \end{cases}$$

b)
$$\left\{ \frac{x-3}{4} < \frac{x+1}{2} \right\}$$
 d) $\left\{ x - \frac{4x-2}{3} \ge x - 6 \right\}$ $\left\{ (2x-3)^2 \le (5-2x)^2 \right\}$ d) $\left\{ (1-(2x-1)(1+2x) < -2x - (2x-1)^2 \right\}$

$$\frac{1}{\sqrt{1+\sqrt{2}}} + \frac{1}{\sqrt{2+\sqrt{3}}} + \frac{1}{\sqrt{3+\sqrt{4}}} + \dots + \frac{1}{\sqrt{98+\sqrt{99}}} + \frac{1}{\sqrt{99+\sqrt{100}}}$$

6. Usuń niewymierność z mianownika.

a)
$$\frac{1}{\sqrt{2}+\sqrt{3}-1}$$

$$\frac{2}{1-\sqrt{2}+\sqrt{3}}$$

c)
$$\frac{1}{\sqrt{2+\sqrt{3}+v}}$$

D 7. Udowodnij równość:
$$(\sqrt{1+x^2}+x)^{-1} = \sqrt{1+x^2}-x$$
.

D 8. Wykaż, że jeśli
$$\frac{x}{y} = \frac{1+\sqrt{5}}{2}$$
, to $\frac{x}{y} = \frac{x+y}{x}$. Liczba (patrz str. 61).

efinicja

Liczbę |a| zdefiniowaną za pomocą wzoru:

$$|a| = \begin{cases} a & \text{jeśli} & a \geqslant 0 \\ -a & \text{jeśli} & a < 0 \end{cases}$$

nazywamy wartością bezwzględną liczby a.

Oznaczenie |a| wprowadził Karl Weierstrass w 1841 roku.

liczbą nieujemną: $|a| \ge 0$ dla dowolnego $a \in \mathbb{R}$. Zwróć uwagę, że |a| jest zawsze

zykład 1

$$|3,5| = 3,5$$

b)
$$|-3,5| = -(-3,5) = 3,5$$

c)
$$|1-\sqrt{2}| = \sqrt{2}-1$$

viczenie 1

odaj wartość bezwzględną liczby. 5 b)
$$-5$$
 c) $\sqrt{3}-1$ d) $\sqrt{3}-3$

b) -5

$$\sqrt{3} - 3$$
 e) $4 - 3\sqrt{2}$

$$-\sqrt{2}|=\sqrt{2}-1$$

Interpretacja geometryczna wartości bezwzględnej

artość bezwzględna liczby x to jej odległość na osi liczbowej od liczby 0.

czby -7 i 7 leżą w tej samej odległości od 0 na osi liczbowej i mają tę samą ntość bezwzględną, równą 7.

$$|-7| = 7$$
 i $|7| = 7$

Dia dowolnego
$$a \in \mathbb{R}$$
:
$$|-a| = |a|$$

zykład 2

ozwiąż równanie |x|=3.

mieważ zgodnie z interpretacją geometryczną wartość bezwzględna liczby \boldsymbol{x} st równa jej odległości na osi liczbowej od 0, jedynymi liczbami spełnia jącymi wnanie są -3 oraz 3.

viczenie 2

odaj, dla jakich wartości x spełnione jest równanie.

$$|x| = 2$$

b)
$$|x| = 10$$
 c) $|x| = 0$

$$|x| = -3$$

•
$$\sqrt{a^2} = a \, \mathrm{dla} \, a \geqslant 0$$

•
$$\sqrt{a^2} = -a \operatorname{dla} a < 0$$

Dla dowolnego
$$a \in \mathbf{R}$$
: $\sqrt{a^2} = |a|$

5

5

8 60+

3 (2

3.55

Na przykład: $\sqrt{5^2} = |5| = 5$ oraz $\sqrt{(-5)^2} = |-5| = 5$.

Ćwiczenie 4

a)
$$\sqrt{(\sqrt{3}-2)^2}$$

b)
$$\sqrt{(4-2\sqrt{3})^2}$$

c)
$$\sqrt{(2\sqrt{3} - 3\sqrt{2})^2}$$

Korzystając z interpretacji geometrycznej, możemy rozwiązywać niektóre nierówności z wartością bezwzględną.

Przykład 3

f) $5 - 2\sqrt{5}$

a) Rozwiąż nierówność |x| < 5.

Zaznaczamy na osi liczbowej zbiór tych liczbx, których odległość od 0 jest mniejsza od 5.

Nierówność jest spełniona dla -5 < x < 5, zatem $x \in (-5, 5)$.

b) Rozwiąż nierówność $|x| \ge 2$.

Zaznaczamy na osi liczbowej zbiór tych liczbx, których odległość od 0 jest większa lub równa 2.

Nierówność jest spełniona dła $x\leqslant -2$ oraz dła $x\geqslant 2$, zatem:

$$x \in (-\infty; -2) \cup (2; \infty)$$

Ćwiczenie 5

Rozwiąż nierówność i zaznacz na osi liczbowej jej zbiór rozwiązań.

a)
$$|x| < 8$$

b)
$$|x| \le \sqrt{2}$$
 c) $|x| > 3$

d)
$$|x| \gg \pi$$

Ćwiczenie 6

Rozwiąż nierówność.

a)
$$|x| \geqslant 0$$

b)
$$|x| \le 0$$

c) |x| > 0

d)
$$|x| < 0$$

that a serve had a server of

a)
$$x = -3$$
 b) $x = 4 - 2\sqrt{6}$ c) $x = 6\sqrt{2} - 8$ d) $x = \pi - 2\sqrt{3}$

Wyznacz liczby spełniające równanie

a)
$$2|x| = 8$$
 c) §
b) $\frac{1}{2}|x| = 7$ d) -

e)
$$3|x| + 6 = 7$$
 g)

c)
$$\frac{2}{3}|x| = 4$$

$$3|x| + 6 = 7 g) 3 - 2|x| = 1$$

d)
$$-3|x| = -\frac{3}{4}$$
 f) $\frac{1}{2}|x| - 1 =$

f)
$$\frac{1}{2}|x| - 1 = 3$$
 h) $9 - \frac{3}{4}|x| = 6$

Która nierówność jest spełniona dla wszystkich liczb rzeczywistych, a która nie zachodzi dla żadnej liczby rzeczywistej?

a)
$$|x| > -7$$
, $|x| < -7$

b)
$$|x| \ge -3$$
, $|x| \le -3$

Zbiór rozwiązań nierówności zaznacz na osi liczbowej i zapisz w postaci sumy przedziałów. Ile liczb całkowitych należy do tego zbioru?

$$1 < |x| < 4$$
 c) $2 \leqslant |x| \leqslant 5$

|x| > 0 (q

e)
$$\frac{1}{2} \leqslant |x| < 3$$
 g

d)
$$3 \leqslant |x| \leqslant \pi$$
 f) $\sqrt{3}$

f)
$$\sqrt{3} < |x| \le 6$$
 h) $\sqrt{2} < |x|$

a)
$$\sqrt{(2-\sqrt{5})^2} + \sqrt{(7-3\sqrt{5})^2}$$
 b) $\sqrt{(2\sqrt{2}-3)^2} + \sqrt{(3\sqrt{2}-4)^2}$

Uzasadnij, że:

a)
$$\sqrt{6-4\sqrt{2}} = |\sqrt{2}-2|$$
,

b) $\sqrt{7-4\sqrt{3}} = |\sqrt{3}-2|$,

c)
$$\sqrt{24 - 8\sqrt{5}} = |2 - 2\sqrt{5}|,$$

d)
$$\sqrt{21 - 12\sqrt{3}} = |3 - 2\sqrt{3}|$$

Do każdego z przedstawionych zbiorów punktów plaszczyzny dopasuj warunki, które spelniają współrzędne (x,y) tych punktów.

I.
$$|x| \geqslant 2$$
 i $|y| \leqslant 1$ II.

II.
$$|x| \ge 2$$
 i $|y| \ge 1$

Zaznacz w układzie współrzędnych zbiór punktów płaszczyzny, których współrzędne (x, y) spełniają podane warunki.

a)
$$|x| \leqslant 5$$
 i $|y| \leqslant 1$ b) $|x| \leqslant 3$ i $|y| \geqslant 2$ c) $1 \leqslant |x| \leqslant 3$ i $|y| \leqslant 4$

Wykaż, że liczba $a = \sqrt{(2-3\sqrt{2})^2 - 3\sqrt{2}}$ jest całkowita.

Zauważ, że
$$\sqrt{(2-3\sqrt{2})^2} = |2-3\sqrt{2}| = 3\sqrt{2} - 2$$
.
Stad $a = 3\sqrt{2} - 2 - 3\sqrt{2} = -2$. czyli $a \in \mathbb{Z}$.

Stąd
$$a = 3\sqrt{2} - 2 - 3\sqrt{2} = -2$$
, czyli $a \in \mathbb{Z}$.

Wykaż, że liczba $\sqrt{11-6\sqrt{2}}+\sqrt{2}$ jest calkowita.

Wyrażenie 11 – $6\sqrt{2}$ próbujemy zapisać jako kwadrat różnicy metodą prób

$$(1 - \sqrt{2})^2 = 1 - 2\sqrt{2} + 2 = 3 - 2\sqrt{2} \neq 11 - 6\sqrt{2}$$

$$(1-3\sqrt{2})^2 = 1-6\sqrt{2}+18 = 19-6\sqrt{2} \neq 11-6\sqrt{2}$$

$$(3 - \sqrt{2})^2 = 9 - 6\sqrt{2} + 2 = 11 - 6\sqrt{2}$$

$$\sqrt{11-6\sqrt{2}} + \sqrt{2} = \sqrt{(3-\sqrt{2})^{\frac{2}{3}}} + \sqrt{2} = |3-\sqrt{2}| + \sqrt{2} = 3 - \sqrt{2} + \sqrt{2} = 3$$
, czyli dana liczba jest całkowita.

Wykaż, że liczba $a = \sqrt{4 + 2\sqrt{3}} - \sqrt{4 - 2\sqrt{3}}$ jest wymierna.

Aby wykazać, że liczba a jest wymierna, możemy postąpić na jeden z poniż-

 \bullet Obliczamy kwadrat liczby a:

$$a^{2} = \left(\sqrt{4 + 2\sqrt{3}} - \sqrt{4 - 2\sqrt{3}}\right)^{2} =$$

$$= 4 + 2\sqrt{3} - 2\sqrt{(4 + 2\sqrt{3})(4 - 2\sqrt{3})} + 4 - 2\sqrt{3} =$$

$$= 8 - 2\sqrt{16 - 12} = 8 - 4 = 4$$

Ponieważ a > 0, otrzymujemy a = 2 – jest to liczba wymierna.

• Zauważamy, że $4 + 2\sqrt{3} = (\sqrt{3} + 1)^2$ oraz $4 - 2\sqrt{3} = (\sqrt{3} - 1)^2$ (sprawdź),

$$a = \sqrt{(\sqrt{3} + 1)^2} - \sqrt{(\sqrt{3} - 1)^2} = |\sqrt{3} + 1| - |\sqrt{3} - 1| = \sqrt{3} + 1 - (\sqrt{3} - 1) = 2$$

co oznacza, że a jest liczbą wymierną.

D 1. Wykaż, że:

a)
$$\sqrt{7 + 4\sqrt{3}} + \sqrt{12 - 6\sqrt{3}} = 5$$
, b) $3\sqrt{11 + 6\sqrt{2}} - \sqrt{19 - 6\sqrt{2}} = 10$.

a)
$$|2x - 8| = 4$$

b)
$$|4x + 2| = 6$$

c)
$$\left| \frac{1}{2}x - 1 \right| = 3$$

d) $\left| \frac{2}{3}x + 4 \right| = 2$

e)
$$|10 - x| = 4$$

f) $|1 - 3x| = 6$

f)
$$|1 - 3x| = 6$$

a)
$$|2x + 4| \le 8$$
 d) $|2|$
b) $|3x - 9| \ge 6$ e) $|\frac{5}{2}$

d)
$$|2 - \frac{1}{3}x| < 1$$

g)
$$|2x - 4| \le 0$$

e)
$$\left| \frac{5}{2}x + 10 \right| \ge 5$$

f) $|0,75 + \frac{5}{4}x| <$

c) $|2x + \frac{1}{2}| > 2$

h)
$$|x+11| > 0$$

i) $|x-3| \ge -1$

a)
$$\sqrt{(x+5)^2} = 5$$

b) $\sqrt{(3-x)^2} = 2$

c)
$$\sqrt{x^2 - 2x + 1} = 1$$
 e)

c)
$$\sqrt{x^2 - 2x + 1} = 1$$
 e) $\sqrt{\frac{1}{4} + x + x^2} = 4$
d) $\sqrt{4x^2 + 4x + 1} = 3$ f) $\sqrt{9x^2 - 12x + 4} = 6$

a)
$$|x| \leqslant \sqrt{(4-2\sqrt{2})^2} + \sqrt{(4-3\sqrt{2})^2}$$

b)
$$|x+1| \ge \sqrt{(3-2\sqrt{3})^2} - \sqrt{(2\sqrt{3}-2)^2}$$

5. Jakie liczby x spelniają równanie?

a)
$$|x-3| = x-3$$

b) |3x - 6| = 6 - 3x

c)
$$|x + \sqrt{2}| = -x - \sqrt{2}$$

d) $\sqrt{(x-2)^2} = x - 2$

6. Uprość wyrażenie dla
$$x < 0$$
.

b)
$$\sqrt{(x-3)^2} - \sqrt{x^2}$$
 c) $\sqrt{x^2 - 4}$

a)
$$\sqrt{x^2 + x}$$
 b)

b)
$$\sqrt{(x-3)^2} - \sqrt{x^2}$$
 c) $\sqrt{x^2 - 4x + 4} + x$

- 7. Korzystając z interpretacji geometrycznej wartości bezwzględnej, uzasadnij, że jeśli a < b, to zbiorem rozwiązań nierówności |x - a| < |x - b| jest przedział $(-\infty; \frac{a+b}{2})$.
- Wykaż, że wyrażenie przyjmuje stale tę samą wartość dla podanych warœ,
- a) $|-x| + |2 x| |3 2x| d \ln x \ge 2$
- b) $\sqrt{x^2 + 6x + 9} + |-x| |-2x 6| \text{ dla } x \leqslant -3$
- 9. Wykaż, że jeśli $0 \leqslant a \leqslant b$, to $\sqrt{a+b+2\sqrt{ab}} \sqrt{a+b-2\sqrt{ab}} = 2\sqrt{a}$.

Logika matematyczna

wają reguly logiki matematycznej. Odnoszą się one do zdań, którym można Sposoby budowania zdań w języku, którym porozumiewamy się na co dzień są określone przez reguly gramatyki. W matematyce podobną rolę odgryw jednoznaczny sposób przypisać wartość logiczną: prawdy lub falszu. Stosowane są oznaczenia: 1 (prawda), 0 (falsz)

Na przykład:

a) $\sqrt{2}$ jest liczbą wymierną.

prawda 1

falsz 0

b) Każdy prostokąt jest równoleglobokiem.

- falsz 0
- c) Każdy równoleglobok jest prostokątem.
- Uwaga. Reguly logiki można stosować również do zdań o treści niematematycznej. Ze zdań składowych (będziemy je oznaczać literami: p,q,r,...) możemy tworzyć zdania złożone przy użyciu spójników logicznych: "nie", "lub", i", "jeżeli..., to...", "wtedy i tylko wtedy, gdy...".

Negacja zdania

Rozpatrzmy dwa zdania: zdanie p i jego zaprzeczenie - zdanie Nieprawda, że p, co zapisujemy $\sim p$. Na przykład:

p: 7 jest liczbą ujemną.

~ p: Nieprawda, że 7 jest liczbą ujemną.

Zdanie p jest falszywe, zdanie $\sim p$ – prawdziwe.

0		
~ D	0	-
b	П	0

zawsze jedno jest prawdziwe, a jedno Zwróć uwagę, że z dwóch zdań, $p i \sim p$,

Jesli zdanie p jest falszywe, to zdanie $\sim p$ jest prawdziwe.

eśli zdanie p jest prawdziwe,

- က 1. Jeżeli zdanie p ma postać $\sqrt{8} < 3$, to zdanie $\sim p$ ma postać $\sqrt{8} \geqslant$ Wartości logiczne zdań p i $\sim p$ to odpowiednio 1 i 0.
- a) Sformuluj zdanie $\sim p$, jeżeli p ma postać $\sqrt{625} \neq 25$. Określ wartości logiczne zdań p i $\sim p$.
- b) Sformuluj zdanie p, jeżeli $\sim p$ ma postać 100 jest liczbą nieparzystą. Określ wartości logiczne zdań p i $\sim p$.

zykład 1

ykaż, że zdanie: $\sim (p \land q) \Leftrightarrow ((\sim p) \lor (\sim q)) = zaprzeczenie komiunkcji$ st równoważne alternatywie zaprzeczeń – jest prawem rachunku zdań.

tym celu sporządzamy tabelę.

$((b \sim) \land (d \sim)) \Leftrightarrow (b \lor d) \sim (b \sim) \land (d \sim) b \sim$				-
$(b\sim)\wedge(d\sim)$	0		-	→
	0	1	0	
d~	0	0	1	-
$d \sim (b \lor d) \sim$	0		1	-
bvd b	-	0	0	0
6	-	0	-	0
6		-	0	0

ostatniej kolumnie, bez względu na wartość logiczną zdań p i q, zawsze rzymujemy, że zdanie jest prawdziwe, zatem jest ono prawem rachunku lań. Zdanie to jest znane jako jedno z praw De Morgana

Wykaż, że zdanie jest prawem rachunku zdań.

$$\sim (p \lor q) \Leftrightarrow ((\sim p) \land (\sim q))$$
 drugie z praw De Morgana

Wykaż, że zdanie jest prawem rachunku zdań.

- a) $(\sim p) \lor p$
- prawo wyłączonego środka

 $d \Leftrightarrow (d \sim) \sim (q)$

- prawo podwojnego przeczenia
- $(b \land (b \land b)) \sim (b)$
- prawo sprzeczności
- (a) $(b \Rightarrow d) \Leftrightarrow (-b \Rightarrow b)$ (a) $b \Leftarrow [(b \Leftarrow d) \lor d]$ (p
- prawo transpozycji

prawo odrywania

- $(b \sim \lor d) \Leftrightarrow (b \Leftarrow d) \sim (J)$
- prawo zaprzeczenia implikacji

Sprawdź, czy podane zdanie jest prawem rachunku zdań.

- $(b \rightarrow b \rightarrow d) \Rightarrow (b \rightarrow d)$ (e)
- ($l \Leftrightarrow d$) $\Leftrightarrow (l \Leftrightarrow d) \land (l \Leftrightarrow d) \land (l \Leftrightarrow d)$
 - $d \sim \Leftarrow [b \sim \lor (b \Leftarrow d)]$ (q
- e) $((p \lor q) \land (p \Rightarrow r)) \Rightarrow (q \Rightarrow r)$
 - $b \sim \Leftrightarrow [d \vee (b \sim \wedge d \sim)]$ (c)
- f) $((p \land q) \Rightarrow r) \Leftrightarrow (p \Rightarrow (q \Rightarrow r))$

- לבסומא
- zyków obcych. Otrzymano następujące wyniki: 90 studentów zna język gielski i rosyjski, 20 – niemiecki i rosyjski, a 4 – wszystkie trzy języki. Ilu angielski, 81 – niemiecki, 75 – rosyjski, 45 – angielski i niemiecki, 25 – an-Wśród 180 studentów przeprowadzono ankietę dotyczącą znajomości jęspośród ankietowanych studentów nie zna żadnego z tych języków?
- Dane są zbiory: A zbiór liczb naturalnych mniejszych od 15, B zbiór liczb naturalnych podzielnych przez 3, $C = \{2, 3, 5, 7, 11, 13, 17, 19\}$, $D-{
 m zbi\'or}$ liczb naturalnych, które przy dzieleniu przez 4 dają resztę 1. Wypisz wszystkie elementy zbioru: ci.
- e) $A \cap (D \setminus B)$, f) $A \setminus (B \setminus D)$.
- d) $A \setminus (B \cup C)$, c) $A \cap B \cap C$,
- - Wyznacz zbiory: $A \cap B$, $A \cup B$, $A \setminus B$ i $B \setminus A$.
- a) $A = \langle -1; 4 \rangle$, B = (2; 5)
- d) $A = (-\infty, 0) \cup (1, 2), B = \langle 0, 4 \rangle$
- c) $A = \langle -4; 2 \rangle$, $B = \langle 2; 9 \rangle$ b) A = (2, 7), B = (3, 5)
- e) $A = (-\infty; -1) \cup (3; 5), B = (-2; 4)$ f) $A = (-1; 2) \cup (5; \infty), B = (0; 5)$
- 4. Wykonaj mnożenie.
- a) (a+2b+3)(a-2)
- d) $-4(x^2-2y)(2x^2-y)$

e) $2x(3x^2 - 2y)(2y - 3x^2)$

- b) (2a b + c)(2a 3b)
- f) $(x+y)(x^2+y^2)(x-y)$
- c) (a+2b-3c)(2a-3b)
- 5. Wskaż liczbę całkowitą k, dla której $x \in (k; k+1)$.

a)
$$x = \sqrt[3]{17}$$
 b) $x = \sqrt[3-25]{2}$ c) $x = (3-2\sqrt{2})^2$ d) $x = \sqrt{27-10\sqrt{2}}$

- Ile liczb naturalnych spełnia nierówność?
- a) $\frac{2x+1}{2} 2 < x \frac{x-3}{3}$
- c) $\frac{x-1}{4} \frac{2x-1}{5} \geqslant \frac{x-3}{2} \frac{2-x}{5}$
- b) $\frac{1}{2}x \frac{6x 3}{4} \ge -2 \frac{2x 1}{3}$ d) $\frac{2 x}{2} \frac{1}{3}x > \frac{1 4x}{5} \frac{3 x}{2}$
- Zaznacz na osi liczbowej zbiór liczb spełniających obie nierówności.
- a) |x| > 1 i $|x| \leqslant 9$ b) $|x| \geqslant 2$ i |x 2| < 4 c) |x| < 4 i $|x + 1| \geqslant 2$
- Dane są zbiory: $A = \{x \in \mathbb{R} : |x 3| < 4\}, B = \{x \in \mathbb{R} : |x + 2| \ge 3\}$ i $C = \{x \in \mathbf{R} : |x| \geqslant 3\}.$ Zaznacz na osi liczbowej zbiór:
 - a) $A \cap B$, b) $A \setminus B$, c) $B \setminus A$, d) $(A \cup C) \setminus B$, e) $(A \setminus B) \cup C$.

a)
$$X = (-4; 2) \cap \mathbb{Z}, Y = \{x \in \mathbb{Z} : x^2 \le 4\}, T = \{-3, -2, -1, 0, 1, 2\}$$

b)
$$X = (2; 7) \cup \{7\}, Y = (2; 7) \setminus \{2\}, T = (2; 4) \cup (4; 7)$$

c)
$$X = \{x \in \mathbb{N} : |x| \le 6\}, \ Y = (-7; 7) \cap \mathbb{N}, \ T = \mathbb{N} \setminus (5; 8)$$

Sprawdź, czy prawdziwa jest któraś z zależności: $A \subset B, B$

a)
$$A = \{x \in \mathbb{R} : 0 < |x| < 2\}, B = \{x \in \mathbb{R} : |x - 5| \ge 1\}$$

$$A = \{x \in \mathbb{R} : |x+1| \geqslant 3\}, B = \{x \in \mathbb{R} : |2x-6| > 16\}$$

o)
$$A = \{x \in \mathbb{R} : |x+1| \ge 3\}, B = \{x \in \mathbb{R} : |2x-6| > 16\}$$

:)
$$A = \{x \in \mathbb{R} : 1 \leqslant |x| \leqslant 3\}, B = \{x \in \mathbb{R} : \sqrt{x^2 - 10x + 25} < 8\}$$

1) $(\sqrt{2} + \sqrt{6})(2\sqrt{2} - \sqrt{6})$

c)
$$(2\sqrt{3} - \sqrt{2})^2 + (2\sqrt{3} + \sqrt{2})^2$$

a)
$$(\sqrt{3} + 2\sqrt{2})(4\sqrt{3} - \sqrt{2})$$
 f) $(\sqrt{6} + 2\sqrt{3})^2 - (\sqrt{6} - 2\sqrt{3})^2$

g)
$$(\sqrt{6} + \sqrt{2})^2 - (\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})$$

3)
$$(\sqrt{6} - 2\sqrt{3})(2\sqrt{6} + 6\sqrt{3})$$
 g) $(\sqrt{6} + \sqrt{2})^2 - (\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})$
1) $(5\sqrt{2} - 2\sqrt{10})(-3\sqrt{10} - 2\sqrt{2})$ h) $(\sqrt{7} - \sqrt{3})(\sqrt{10} - \sqrt{2})^2(\sqrt{3} + \sqrt{7})$

Zaznacz na osi liczbowej zbiór liczb spełniających obie nierówności.

1)
$$\begin{cases} 1\frac{1}{3}x - \frac{1}{6} > \frac{1}{2} - x \\ (x - \frac{1}{2})^2 + 0,75x \geqslant x^2 \end{cases}$$
 d)
$$\begin{cases} 2 - x^2 - (x - 2)^2 \leqslant 6 - 2(x + 4)^2 \\ (4 - x)^2 - (6 - x)^2 \geqslant \frac{11}{4} - \frac{0,5 - \frac{1}{2}x}{2} \end{cases}$$

)
$$\begin{cases} \frac{1}{4}x - (\frac{1}{8} - \frac{1}{2}x) \ge x - \frac{5}{4} \\ (2-x)^2 \le (x+1)^2 \end{cases} e) \begin{cases} -4(4-x)^2 < 8 - (4-2x)^2 \\ \frac{(2x-1)^2}{4} - \frac{(\sqrt{2}x-4)(\sqrt{2}x+4)}{2} > 0,25 \end{cases}$$

$$\left(\frac{x-\frac{1}{2}}{2} - \frac{x-\frac{1}{2}}{3} < 1\right) \left\{\frac{\frac{x}{\sqrt{2}+1} + 4x(1-x) > \sqrt{2}x - (1-2x)^2}{(x-\frac{1}{2})^2 \geqslant x^2 - \frac{1}{2}}\right\}$$

aznacz w układzie współrzędnych zbiór punktów plaszczyzny, których vspółrzędne (x, y) spełniają podane warunki. Ile punktów o obu współzędnych całkowitych należy do tego zbioru?

$$|x| \leqslant 3 |x| \leqslant 2$$

c)
$$1 \leqslant |x| \leqslant 2$$
 i $1 \leqslant |y| \leqslant 3$

$$|1| \le |x| \le 4$$
 i $|y| < 1$

d)
$$0 < |x| < 3$$
 i $1 < |y| < 2$

) Liczby
$$p$$
 i q przy dzieleniu przez 4 dają reszty odpowiednio: 1 i 3. Vykaż, że reszty z dzielenia liczb p^2 i q^2 przez 4 są równe.

) Liczby p i q przy dzieleniu przez 5 dają reszty odpowiednio: k i l, gdzie $< l,\, {\rm a}$ reszty z dzielenia liczb p^2 i q^2 przez 5 są równe. Wyznaczki l.

Rozpatrzmy trzy kolejne liczby naturalne: n, n+1, n+2, gdzie $n \in \mathbb{N}$. Suma swadratów tych liczb:

$$S = n^{2} + (n+1)^{2} + (n+2)^{2} =$$

$$= n^{2} + n^{2} + 2n + 1 + n^{2} + 4n + 4 =$$

$$= 3n^{2} + 6n + 5 = 3(n^{2} + 2n + 1) + 2$$

Jonieważ $n^2 + 2n + 1$ jest liczbą naturalną, reszta z dzielenia S przez 3 jest

- Zauważ, że w celu wykazania, że reszta z dzielenia liczby S przez 3 jest ówna 2, liczbę tę przedstawiliśmy w postaci 3k + 2, gdzie $k \in \mathbb{N}$.
- Konieczne jest rozumowanie dotyczące dowolnych kolejnych trzech liczb nauralnych. Sprawdzenie dla konkretnych liczb, np.:

$$1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14 = 3 \cdot 4 + 2$$

$$11^2 + 12^2 + 13^2 = 121 + 144 + 169 = 434 = 3 \cdot 144 + 2$$

nie jest wystarczającym uzasadnieniem.

Jzasadnij, że reszta z dzielenia przez 4 sumy kwadratów trzech kolejnych liczb nieparzystych jest równa 3. Irzy kolejne liczby nieparzyste można zapisać w postaci 2n+1, 2n+3, 2n+5, gdzie $n \in \mathbb{Z}$. Rozpatrywaną sumę oznaczamy przez S.

$$S = (2n+1)^{2} + (2n+3)^{2} + (2n+5)^{2} =$$

$$= (4n^{2} + 4n + 1) + (4n^{2} + 12n + 9) + (4n^{2} + 20n + 25) =$$

$$= 12n^{2} + 36n + 35 = 4(3n^{2} + 9n + 8) + 3$$

Ponieważ $3n^2 + 9n + 8$ jest liczbą całkowitą, reszta z dzielenia S przez 4 jest

- . Zauważ, że w celu wykazania, że reszta z dzielenia liczby S przez 4 jest ówna 3, liczbę S przedstawiliśny w postaci 4k + 3, gdzie $k \in \mathbb{Z}$.
- · Konieczne jest rozumowanie dotyczące dowolnych kolejnych trzech liczb neparzystych. Podobnie jak w przykładzie 1 sprawdzenie dla konkretnych

$$1^2 + 3^2 + 5^2 = 1 + 9 + 25 = 35 = 4 \cdot 8 + 3$$

$$(-7)^2 + (-5)^2 + (-3)^2 = 49 + 25 + 9 = 83 = 4 \cdot 20 + 3$$

czy:

nie jest wystarczającym uzasadnieniem.

Jeśli wszystkie rozpatrywane przez nas zbiory są podzbiorami ustalonego zbioru X, to zbiór X nazywamy przestrzenią.

Jeśli X jest przestrzenią, $A \subset X$, to dopelnieniem zbioru A nazywamy zbiór: $A' = X \setminus A$. Parę elementów (a, b), w której wyrożniono element a jako pierwszy nazywamy parą uporządkowaną. Oznaczamy ją symbolem: (a, b). Iloczynem kartezjańskim (produktem) zbiorów A i B nazywamy zbiór wszystkich uporządkowanych par (a, b), w których pierwszym elementem jest element zbioru A, zaś drugim - element zbioru B. $(a, b) \in A \times B \Leftrightarrow (a \in A \quad i \quad b \in B).$ Działaniem dwuargumentowym wykonalnym w niepustym zbiorze A nazywamy przyporządkowanie każdej uporządkowanej parze elementów zbioru A dokładnie jednego elementu tego zbioru. Jeżeli działanie \triangle jest wykonalne w zbiorze A i dla każdych dwóch elementów a, $b \in A$ spełniony jest warunek $a \triangle b = b \triangle a$, to mówimy, że działanie △ jest przemienne w A. Jeżeli działanie △ jest wykonalne w zbiorze A i dla każdych trzech elementów a, b, $c \in A$ spelniony jest warunek $(a \triangle b) \triangle c = a \triangle (b \triangle c)$, to mówimy, że działanie \triangle jest lączne w A. Jeżeli działanie △ jest wykonalne w zbiorze A i istnieje element $e \in A$ taki, że dla każdego $a \in A$ spełniony jest warunek $a \triangle e = e \triangle a = a$, to e nazywamy elementem neutralnym działania \(\Delta \).

Zadania

- 1.1. Podaj wszystkie elementy zbioru A jeśli:
- a) $A = \{x : x \text{ jest liczbą naturalną dwucyfrową}\};$
- b) $A = \{x : x \in N \mid x \text{ jest dzielnikiem liczby } 12\}$
- c) $A = \{x: x \text{ jest uczniem twojej klasy i } x \text{ uczy się języka an-}$ gielskiego};
 - d) $A = \{x: x \text{ jest stolica państwa w Europie}\};$
 - e) $A = \{x : x \in C \mid 0 \le x < 6\};$
- f) $A = \{x : x \in N \text{ i } x \text{ jest wielokrotnością liczby } 3 \text{ i } x < 23\}.$
- 1.2. Zbiór $M = \{3, 6, 9, 12, 15\}$ można również określić następująco: $M = \{x : x \in N_+ \text{ i } x \text{ jest wielokrotnością } 3 \text{ i } x < 16\}$

W podobny sposób określ zbiory: $A = \{2, 3, 5, 7, 11, 13, 17\};$

 $B = \{1, 3, 5, 15\};$

 $C = \{-2, -1, 0, 1, 2\}.$

 $A = \{x : x \text{ jest potega liczby 2 o wykładniku naturalnym}\};$ 1.3. Podaj pięć elementów każdego z następujących zbiorów:

 $B = \{x : x \in C \mid x \text{ jest liczbą nieparzystą}\};$ $C = \left\{ x : x \in N \text{ i } -1 \leqslant x < 50^{-1}_{2} \right\};$

 $D = \left\{ x : x = \frac{1}{n} \text{ i } n \in \mathcal{N}_+ \right\};$

 $E = \{x : x \text{ jest ssakiem}\}$

1.4. Zbadaj, które z podanych zbiorów są równe:

 $A = \{x : x \in R \mid x^2 - 4 = 0\};$

 $B = \{x : x \text{ jest liczbą parzystą i } x \in C\};$ $C = \{x : x \in R \ i \ |x| = 2\};$

 $D = \{-2, 2\};$

 $E = \{x : x = 2k \text{ i } k \in C\}.$

- a) $A = \{0, 2, 4, 6, 8\}, B = \{x : x \in N \text{ i } x \text{ jest liczba parzysta}\};$ 15. Sprawdź, czy zbiór A jest podzbiorem zbioru B, jeśli:
 - b) A = (x: x jest mieszkańcem Warszawy);

 $B = \{x : x \text{ jest mieszkańcem Polski}\}\$

c) $A = \{x : x = n(n+1) \text{ i } n \in N\}; B = \{x : x \in C \text{ i } x \ge 0\};$

d) $A = \{x : x \text{ jest uczniem twojej klasy}\};$

 $B = \{x : x \text{ ma wiecej niz } 12 \text{ lat}\}.$

1.6. Przez C, oznaczamy zbiór wszystkich liczb całkowitych podziel-Dla każdej z podanych par zbiorów określ, czy jeden ze zbiorów jest zawarty w drugim: nych przez $n(n \in N_+)$

d) C₅ i C₇, e) C₄ i C₆. b) C3 i C6, a) C_2 i C_3 ,

c) CoiCo,

1.7. Podaj wszystkie podzbiory zbioru $A = \{2, 3, 4\}$. Pamietaj, że $A \subset A$ i $\emptyset \subset A$.

e) n = 5, a) n = 1,

1.8. Ile podzbiorów ma zbiór o n elementach gdy:

b) n = 2, c) n = 3,

- 2.11. Napisz wyrażenia: d) suma pięciu kolejnych liczb parzystych jest podzielna przez 10.
- a) kwadrat sumy liczb a, b,
- kwadrat różnicy liczb a, b,
- c) sume kwadratów liczb a, b,
- d) różnicę kwadratów liczb a, b,
- . Uzasadnij, że:
- a) różnica kwadratów dwóch kolejnych liczb naturalnych jest liczbą nieparzystą,
- b) różnica kwadratów dwóch kolejnych liczb parzystych jest liczbą podzielną przez 4,
- c) różnica kwadratów dwóch kolejnych liczb nieparzystych jest liczbą podzielną przez 8.
- 2.13. Podaj i uzasadnij wzory na kwadrat sumy i kwadrat różnicy dwóch wyrażeń a i b.
- 2.14. Podaj i uzasadnij wzory na sześcian sumy i sześcian różnicy dwóch wyrażeń a i b.
- **2.15.** Uzasadnij, że nie istnieją liczby naturalne dodatnie p, m takie, że $2m^2 = p^2$.
- 2.16. Uzupelnij poniższą tabelę zaznaczając wykonalność działań:

Działania Zbiór	Doda- wanie	Odejmo- wanie	Mnożenie	Dzielenie
N	tak	nie	ned som	
C 14 1891	granaer	P QUESQAG	owbruz. i	II X
W	Spront I		Virginia.	
$R \setminus W$	rgri Calcati		N 346 31	
R	is burnaling	CUPILL POSE	00/0 S20	21110
R_{+}	DO 110 13		#10 (I)	
liczby parzyste	18.00			3/4
liczby nieparzyste	(traditation	gestale &	Jason, april	
liczby podzielne przez 5	witczecele	PACORELITY	HIII IIVec	2
$M = \{x : x \in R \text{ i } 0 < x < 1\}$	Trans.			

- 2.17. Jaką liczbą (wymierną czy niewymierną) jest:
- a) suma liczby wymiernej i niewymiernej (patrz odpowiedż),
- b) iloczyn liczby wymiernej i niewymiernej,
- c) różnica liczby wymiernej i niewymiernej,
- d) suma liczb postaci $a+b\sqrt{2}$, gdy $a, b \in W$ e) iloczyn liczb postaci $a+b\sqrt{3}$ i $a-b\sqrt{3}$, gdy $a,b\in W$?
- 2.18. Liczba $a+b+c\in W$, zaś $a+b\in R\setminus W$. Wykaż, że co najmniej dwie z liczb a, b, c są niewymierne.
- **2.19.** Liczby a+b i a-b są wymierne. Wykaż, że liczby a i b są wy-
- 2.20. Dlaczego dzielenie przez zero nie jest wykonalne?
- 2.21. Nie wykonując obliczeń, wstaw w miejsce kropek znak < lub > tak, aby otrzymać nierówność prawdziwą.

a)
$$2\frac{1}{3} + 3\frac{1}{4}$$
 ... $2\frac{1}{4} + 3\frac{1}{4}$, c) $4\frac{5}{8} \cdot 2$
b) $-5\frac{2}{3} - 2\frac{1}{7}$... $-4\frac{1}{2} - 2\frac{1}{7}$, d) $8\frac{2}{3} : \left(-\frac{1}{2}\right)$

$$+3\frac{1}{4}$$
 ... $2\frac{1}{4}+3\frac{1}{4}$

$$+\frac{3}{4}$$
, c) $+\frac{3}{8}$: $-2\frac{1}{7}$, d) $8\frac{2}{3}$: (

$$8\frac{2}{3}$$
: $\left(-\frac{1}{2}\right)$... $\frac{1}{8}$: $\left(-\frac{1}{2}\right)$

2.22. Oblicz:

$$\frac{8 \cdot 4\frac{1}{4} - 11\frac{1}{5} : 9\frac{1}{3} - \left(-2\frac{1}{3}\right) : \frac{5}{3}}{14 : 2\frac{2}{9} + 8\frac{2}{5} : 1\frac{2}{7}} =$$

2.23. Oblicz:

$$0.05 - \frac{\left(2\frac{4}{5} - 1.9\right) : 3\frac{3}{4}}{\left[3\frac{1}{6} - (-1.25)\right] \cdot 2.4 + (-5.8)} =$$

2.24. Oblicz:

$$\frac{30 \cdot 4\frac{1}{4} + 11\frac{1}{5} \cdot 5\frac{3}{5}}{11 \cdot 6 + 12 \cdot 5} = \frac{1 \cdot 6 + 12 \cdot 5}{11 \cdot 6 + 12 \cdot 5} = \frac{11 \cdot 2\frac{2}{9} + 8\frac{2}{5} \cdot 14\frac{2}{3}}{12\frac{2}{5} \cdot 15 - 4\frac{13}{15} \cdot 7\frac{3}{5}} = \frac{11 \cdot 6 + 12 \cdot 5}{11 \cdot 6 + 12 \cdot 5} = \frac{11$$

$$\begin{bmatrix} 2,1: \frac{\left(4,5 \cdot 1\frac{2}{3} + 3,75\right) \cdot \frac{7}{135}}{1 - \frac{10}{27} \cdot \frac{5}{6}} : 2,5 \end{bmatrix} : 2,5$$

- a) $\left(\frac{2}{5}: 2\frac{1}{2}\right) \cdot \left(4\frac{1}{5} 1\frac{3}{40}\right) + 1,35:2,7$

$$\left(3\frac{1}{12} + 4,375\right):19\frac{8}{9}$$

$$\frac{5}{2} = \frac{2}{3} = \frac{5}{3}$$

- 2.28. Oblicz:
- a) 4% liczby 58,
- b) $3\frac{1}{2}$ % liczby $30\frac{1}{4}$
- c) 125% liczby 45,
- d) 104,5% liczby 25000,
 - e) 0,25% liczby 120,
 - f) a% liczby b.

 - Znajdz: 2.29.
- a) liczbę, której 5% wynosi 14,
- b) liczbę, której 0,2% wynosi $1\frac{2}{5}$,
- c) liczbę, której 128% wynosi 512,
 - d) liczbę, której p% wynosi a.
- 2.30. Jakim procentem liczby a jest liczba b, gdy:
 - b = 112;a) a = 14,
- b = 50;b) a = 125,
- b = 0,75. c) a = 0.15,
- Zmieszano 2 kg stopu o zawartości 25% miedzi i 3 kg stopu o zawartości 40% miedzi. Ile procent miedzi zawiera otrzymany 2.31.
- Zmieszano a kg stopu o zawartości p% miedzi i b kg stopu o zawartości 9% miedzi. Ile procent miedzi zawiera stop? 2.32.

- 2.33. Cene towaru obniżono o p%. Towar ten kosztuje obecnie a zl. lle kosztował ten towar przed obniżką?
- podwyższono o 20%. Czy końcowa cena jest równa początkowej? Cene towaru obniżono najpierw o 20%, a następnie nową cene 2.34.
 - Andrzej kupił 6 książek po 390 zł, 9 książek po 450 zł i 3 książki po 510 zł. Ile zapłacił przeciętnie za 1 książkę?. 2.35.
- Przeciętnie zapłacono za 1 nożyce 1820 zł. Jaka jest cena 1 nożyc Rzemieślnik kupił 12 nożyc po 1400 zł i 18 nożyc po innej cenie. drugiego rodzaju? 2.36.
 - Szkoła kupiła 36 atlasów po 180 zł i inne atlasy po 240 zł. Przecietna cena atlasu jest 218,40 zl. Ile atlasów drugiego rodzaju kupiła szkoła? 2.37.
- W pewnej klasie wyniki rocznej klasyfikacji są następujące: 2.38.

Dradmin	Liczba		ŏ	Oceny			Odchylenia
Tizeumot	uczniow	pdp.	g.	dst.	ndst.	Srednia x	od średniej
J. polski	35	3	5	25	7		
Matematyka	35	4	000	20	3	i	
J. rosyjski	35	7	12	17	4	-	_
J. angielski	- 19	2	3	13	-	Ī	1
J. francuski	91	2	4	6	1		Ī
Historia	35	-9-	9	21	_2	1	ij,
Biologia	35 -	7	10	200	Ì	ł	Ī
Geografia	35	00	00	18	-	140	Ī
Fizyka	. 35	2	2	27 -	4	·	
Chemia	35	9.	10	19	1	A THE STATE OF THE	=
M-ſ	35	10	14	6	1	N. I.	=

- a) Oblicz średnią ocen z każdego przedmiotu,
- b) oblicz średnią ocen ze wszystkich przedmiotów -x,
- c) oblicz odchylenie średniej oceny z poszczególnych przedmiotów od średniej x.
- 2.39. Wypełnij tabelkę podaną w zadaniu poprzednim dla wyników twojej klasy z ostatniego półrocza.

- n = 3,01,a) m = 3,
- b) $m = \frac{1}{3}$,
- n = 1,5,c) $m = \sqrt{2}$, n = 1,5d) m = 3,14, $n = \pi$.

Ile takich liczb możesz wskazać?

- 2.57. Mając dane liczby m, n wskaż trzy liczby k1, k2, k3 takie, że $m < k_1 < k_2 < k_3 < n$
- a) $m = 2\frac{1}{2}$; n = 2,75, c) $m = -\sqrt{3}$, $n = -\frac{1}{2}$,
- b) $m = -\frac{3}{8}$; n = 0, d) m = 10, n = 10,0001.

Ile takich trójek możesz wskazać?

- 2.58. Wyznacz wszystkie elementy zbiorów:
- a) $A = \{x: |x| = 2$ b) $B = \{x : |x| = 3$
- $x \in N^{1},$ $x < 10 \quad i \quad x \in N^{1},$ c) $D = \{x: |x| > 2$
- i $x \in C$. d) $E = \{x : |x| < 3\frac{1}{2}$
- 2.59. Dla jakich liczb (par liczb) prawdziwe są równości:
 - d) |2x+1|=1, e) |3-x|=4, a) |x|+5 = |x+5|, b) $|x| \cdot |y| = |xy|$,
- 0 |x| + |x + 1| = 3.c) |x| - |y| = 0,
 - 2.60. Uprość wyrażenia:
- a) x+(1-x)+2|x-2|,
- gdy 1 < x < 2, gdy x < -1, b) |x|+|x+1|+|x-2|,
- c) $|x-1| + \frac{x}{|x|} |x+1|$, gdy x < -2. Z definicji pierwiastka arytmetycznego wynika, że: 2.61.

 $\sqrt{x^2} = |x|$. Korzystając z tego wzoru uprość:

- a) $\sqrt{x^2 + x}$,
- b) $\sqrt{(x-5)^2 + \sqrt{x^2}}$,
- $\sqrt{\frac{a^2}{b^2}}$ gdy $b \neq 0$. \overline{v}
- d) $\sqrt{x^2-6x+9+x}$.

- 2.62. Zapisz podane wyrażenia bez symbolu wartości bezwzglę-
- a) $|m^2|$ b) |m-n|, gdy c) |m-n|, gdy d) |-m|, gdy
- # < #,
- 2.63. Jakie wartości przyjmuje wyrażenie 12.9
- 2.64. Do jakiego przedziału liczbowego należy x, jeśli:
 - a) |x-3|=x-3,
- c) |2x-6|=6-2x,
 - b) |x+2| = -x-2,
- d) $\sqrt{(x-4)^2} = x-4$?
- 2.65. Wykaż, że dla każdej pary liczb rzeczywistych x, y prawdziwe są związki:
- a) $|xy| = |x| \cdot |y|$,
- c) $|x-y| \le |x| + |y|$,
- b) $|x+y| \le |x| + |y|$,
- d) $(y \neq 0) \Rightarrow \frac{|x|}{|y|} \Rightarrow \frac{|x|}{|y|}$
- 2.66. Korzystając ze wzoru podanego w zadaniu 2.61, oblicz:

d) $\sqrt{1,44a^8b^{12}c^4}$,

- a) $\sqrt{9a^2}$,
- e) $\sqrt{a^2 + 4b^2 + 4ab}$. b) $\sqrt{0.16a^2y^2}$,
 - f) $\sqrt{a^2-2ab+b^2}$.
 - c) $\sqrt{\frac{9a^2b^2}{25x^4y^2}}$,
- 2.67. Wyłącz czynnik przed pierwiastek i przeprowadź redukcję:
 - a) $3\sqrt{20} + 5\sqrt{45} 2\sqrt{80}$,
- b) $0.5\sqrt{50}+0.8\sqrt{72}-0.2\sqrt{32}$
- c) $\sqrt{x^3} + \frac{1}{2} \sqrt{36x^3} \frac{2x}{3} \sqrt{9x}$, gdy x > 0,
- d) $(0.5\sqrt{24} 3\sqrt{40}) (\sqrt{150} + \sqrt{54} \sqrt{1000})$.
- 2.68. Wykonaj mnożenie:
- a) $(\sqrt{3}+2\sqrt{2}) (2\sqrt{3}-\sqrt{2})$, b) $(3\sqrt{5}-2\sqrt{6}) (2\sqrt{6}-\sqrt{5})$, c) $(a-\sqrt{b}) (2a+2\sqrt{b})$.
- 2.69. Dane są liczby x i y. Oblicz: x-y, x+y, xy i $\frac{x}{y}$. Otrzymane wyniki przedstaw w postaci $a+b\sqrt{c}$.

§ 1. Zbiory

b) to nie jest możliwe, 1.6. Tylko $C_6 \subset C_3$. 1.12. a) m jest dzielnikiem n,

c) n jest dzielnikiem m.

e) $A \cap B = \emptyset$. c) $B \subset A$, a) $A \subset B$, 1.20.

d) $A \subset B$. b) A = B.

1.27. Zbiór wszystkich punktów płaszczyzny, których obie współrzędne są liczbami naturalnymi.

1) Każde z tych działań jest wykonalne w zbiorze 2*, bo wynik dowolnego z tych działań na dwóch podzbiorach zbioru X jest podzbiorem zbioru X. 1.29.

b) "o" i "o" (d

c) elementem neutralnym działania "O" jest Ø, a elementem neutralnym działania "∩" jest zbiór X.

1.31. Np. b)

		_	
2	2	0	-
-	1	2	0
0	0	-	2
⊕,	0	-	2

L32. 7; 1; 2; 86; 8; 76. L33. a) 2, b) 0, c) 8, d) 8.

a) (0, 1); (1, 0); (2, 4); (4, 2); (3, 3), b) (0, 0); (1, 11); (11, 1); (2, 10); (10, 2); (3, 9); (9, 3); (4, 8); (8, 4); (5, 7); (7, 5); (6, 6),

c) (0, 1); (1, 0); (2, 3); (3, 2),

d) (0, 1); (1, 0); (2, 5); (5, 2); (3, 4); (4, 3). a) 6, b) 1, c) 20, d) 9, e) 25, f) 2.

1.35. a) 6, b) 1, c) 20, d) 9, e) 25, 1) 2. 1.36. a) 1, b) 2 lub 4 lub 6, lub 6, c) 3, d) nie ma rozwiązania.

1.41. a) Tak, b) 1, 3, 2, 2, 12, 6, 36,

1.42

c) istnieje element neutralny działania □; jest nim liczba 1.

b) elementem neutralnym działania △ jest (-1), a działania o jest 0; działanie a) Każde z tych działań jest przemienne, łączne są tylko działania Δ i o, I nie ma elementu neutrainego,

w zbiorze liczb naturalnych i w zbiorze liczb całkowitych są wykonalne dzia-

§ 2. Liczby rzeczywiste

a) Parzysta, b) parzysta, c) parzysta, d) parzysta.

2.9. a) Parzysta, b) parzysta, c) nieparzysta, d) nieparzysta.

2.10. a) n+(n+1)+(n+2)=3n+3=3(n+1),

b) 2n+(2n+2)+(2n+4)=6n+6=6(n+1),

c) $(2n-1)+(2n+1)+(2n+3)+(2n+5)=8n+8=8\cdot(n+1)$.

2.11. a) $(a+b)^2$, b) $(a-b)^2$, c) a^2+b^2 , d) a^2-b^2 . **2.12.** a) $(n+1)^2-n^2=n^2+2n+1-n^2=2n+1$, b) $(2n+2)^2-(2n)^2=4(2n+1)$,

2.15. Wsk. Rozważ w jakiej potędze występuje liczba 2 w rozkładzie na czynniki pierwsze c) $(2n+3)^2-(2n+1)^2=8(n+1)$. każdej ze stron równości.

217. a) Wiadomo, że jeżeli $a \in W$ i $b \in W$, to $a + b \in W$ i $a - b \in W$. Przypuśćmy więc, że $a \in W$ i $b \notin W$. Niech a + b = c. Gdyby $c \in W$, wowczas $c - a \in W$, c - a = b. Otrzymalibysmy wiec: $b \in W$, co jest sprzeczne z założeniem. W takim razie $a+b \notin W$

2.18. Gdyby każda z liczb a, b, c była wymierna, to suma a+b byłaby liczbą wymierną, wbrew założeniu.

2.19. Ponieważ a+b i a-b są liczbami wymiernymi, to ich suma (a+b)+(a-b)=2ai różnica (a+b)-(a-b)=2b są liczbami wymiernymi. Stąd a i b są wymierne.

2.20. Korzystamy z definicji dzielenia:

 $= c \Leftrightarrow a = b \cdot c$.

Jeśli $a \neq 0$ i b = 0, to nie istnieje liczba c taka, że $a = 0 \cdot c$.

Jesti a = 0 i b = 0, to każda liczba c spełnia warunek $0 = 0 \cdot c$. Jest to sprzeczne z def. działania.

2.22. 2.

2.23. 0.

2.24.

Û b) 1; 2,26. a) 1;

2.25. 0,8.

7 2.27.

e) 0,3; $0,\frac{1}{100}$ ab. c) 56,25; d) 26125; b) 847 800; 2,28. a) 2,32; 59

d) a-100 Δ, c) 400; b) 700; 2.29. a) 280;

2.30. a) 800%; b) 40%; c) 500%.

2.31. 34%.

2.32 ap+bq%.

9+0

2.35. 2.34. Końcowa cena stanowi 96% ceny początkowej. 2.33. $\frac{100a}{100-p}$ zł, 0 .2.36. 2100 zł. 440 zł.

2.41. b) 23750 zł b) $\bar{x} = 3.47$ 4,03. c) 15,37%. c) 27750 zł d) 16,84%

2.38. a) Średnie kolejnych cen są 3,26; 3,37; 3,34; 3,32; 3,44; 3,46; 3,69; 3,66; 3,06; 3,63;

2

2.42. b) 9,4%.

2.43. 246 143

2.44. i.

2.45. a) $64a^{16}b^{26}c^{14}d^4$; 2a"b"c: b) $4x^2y^{13}z^{12}$; d) $-2x^2y^{n-2}z^4$.

246. a) $4x^2 + 10x$;

b) -0.4x + 0.8xy - 14.2y;

c) 6.8x - 1.4y;

e) $4.8x^4 - 0.96x^3y - 1.944x^2y^2 - 2.688xy^3 - 2.88y^4$; f) $6x^2 - 61xy - 35y^2 + 42x + 48y$. 2.47. a) $7x^2 - 16x - 7$; b) $50m^2 + 41n^2$; d) $144y^2 - 85xy - 21x^2$;

c) $13d^2 + 180cd - 79c^2$; d) $16x^3y - 16xy^3$.

2.48. a) 13; b) -30.

2.49. a) $a^6 = 10a^4 + 27a^2 - 11$; c) $3x^4 - 3x^2$

 $-8a^3-32a^2+78a-18;$

						50
127	দ্য	D	С	В	A	Zbior
nie istnieje	0	0	jug-h	0	nie istnieje	Kres dolny
nie istnieje	21		nie istnieje	_	nie istnieje	Kres górny

							2.52.	
ລ	لئر	Į PJ	D	C	В	A	Zbiór	
nie istnieje	-2	nie istnieje	2	1.	- ا ب	0	Kres dolny	
0	2	nie istnieje	nie istnieje	0	_	_	Kres górny	

- 2.53. a) Kres dolny nie istnieje, kres górny -1;
- b) kres dolny 0, kres górny nie istnieje;
- c) kres dolny 2, kres górny 10.
- 256. Zadanie ma nieskończenie wiele rozwiązań, np.

a)
$$k = 3,001$$
; b) $k = \frac{11}{30}$; c) $k = 1,49$; d) $k = 3,1401$.

2.57. Ponieważ m < n, więc "odległość" między tymi liczbami jest n-m. Między liczbami m i n zawarta jest każda liczba postaci $m+a \cdot (n-m)$, gdzie $a \in (0; 1)$.

a)
$$2\frac{1}{2} + a(2.75 - 2.5) = 2.5 + a \cdot 0.25$$
, gdzie $a \in (0; 1)$.

Gdy $a_1 = 0.25$ i $a_2 = 0.5$ i $a_3 = 0.75$, to $k_1 = 2.5625$ i $k_2 = 2.625$ i $k_3 = 2.6875$.

- **2.59.** a) Dla $x \ge 0$; b) dla każdej pary liczb rzeczywistych; c) dla x = y lub x = -y; d) dla x = 0 lub x = -1; e) dla x = -1 lub x = 7; f) dla x = 1 lub x = -2.
- **2.60.** a) 3; b) -3x+1; c) 1.

2.65. b) Wykażemy najpierw, że $|x| \le c \Leftrightarrow -c \le x \le c(*)$.

więc x = |x| lub x = -|x| oraz $-|x| \le |x|$ Ponieważ |x| = x lub |x| = -x, Zatem $-|x| \le x \le |x|$.

Jeśli $|x| \le c$, to $-|x| \ge -c$ co pociąga za sobą nierówności $-c \le -|x| \le x \le |x| \le c$ czyli $-c \le x \le c$.

Aby wykazać b) zauważmy, że Jeśli $-c \le x \le c$ to również $-c \le -x \le c$, czyli $-c \le |x| \le c$.

 $-|x| \leqslant x \leqslant |x|$ $-|y| \leqslant y \leqslant |y|.$

Dodając te nierówności stronami otrzymujemy nierówności $-(|x|+|y|) \leqslant x+y \leqslant |x|+|y|$

które na mocy (*) dają nierówność $|x+y| \le |x|+|y|$

c) Wynika z b) bo $|x-y| = |x+(-y)| \le |x|+|-y| = |x|+|y|$

a) i d) są wnioskami z równości $\sqrt{x^2} = |x|$ (zad. 2.61)

2.67. a) $13\sqrt{5}$; b) $6.5\sqrt{2}$; c) $2x\sqrt{x}$; d) $4\sqrt{10-7}\sqrt{6}$.