The Network Layer

Modelo de capas y redireccionamiento IP

💢 ¿Qué es una Red de Datos?

Una red de datos es un sistema que permite interconectar dispositivos (computadoras, celulares, routers, etc.) para compartir información y recursos.

Su objetivo principal es permitir la **transmisión de datos** entre estos dispositivos.

Ejemplos:

- Redes hogareñas.
- Redes bancarias entre sucursales.
- Internet, redes sociales, correo electrónico, transmisión de audio/video.

陷 Breve Historia de las Redes de Datos

- 1966: Se inicia el proyecto ARPANET (financiado por el Departamento de Defensa de EE.UU.).
- 1972: Se inventa el correo electrónico.
- 1983: Se adopta el protocolo TCP/IP.

- 1990: ARPANET se apaga oficialmente.
- 1991: Nace la World Wide Web (WWW).

El modelo OSI es un estándar de la ISO que divide la comunicación en **7 capas**, para que diferentes dispositivos y protocolos puedan **interoperar**.

Objetivo:

Establecer un **lenguaje común** para que cualquier dispositivo pueda comunicarse con otro.

Las 7 capas del modelo OSI

Сара	Nombre	Función principal
7	Aplicación	Interfaz con el usuario final. Proporciona servicios de red.
6	Presentación	Formato, compresión y cifrado de datos.
5	Sesión	Administración del diálogo entre dispositivos. Establece, mantiene y termina conexiones.
4	Transporte	Entrega de extremo a extremo, control de flujos, correccion
3	Red	Direccionamiento y selección de ruta
2	Enlace de datos	Transmisión segura entre dispositovos de la misma red, detecta y corrige errores
1	Física	Transmisión y recepecion de bits por el medio físico (cables, fibras opticas)

Q Detalle de cada capa:

Capa 7 – Aplicación

Es la más cercana al usuario.

- Identifica el servicio o software que se comunica.
- Protocolos:
 - HTTP / HTTPS (navegadores web)
 - SMTP (correo electrónico)
 - FTP / TFTP (transferencia de archivos)
 - DNS
- Ejemplo en vida real: La capa hace de interfaz entre el usuario y la red
- Aplicaciones mas comunes basadas en TCP/IP

Capa 6 - Presentación

- Es el traductor entre los sistemas de comunicación.
- Se encarga del formato de los datos.
- · Realiza:
 - o Compresión/descompresión
 - Cifrado/descifrado (seguridad)
 - Traduccion de datos (texto, imagen, audio)
- Ejemplos de formatos:
 - Texto: ASCII, EBCDIC
 - Imagen: JPEG, GIF
 - Audio/video: MPEG, QuickTime
- Ejemplo cuando mandas una foto a otra persona, esta capa la puede comprimir y leugo descomprimir cuando llega.

• Trabaja con la capa de aplicacion.

Capa 5 - Sesión

- Gestiona y controla
- Controla la comunicación entre dispositivos (inicio, mantenimiento y fin de la sesión).
- Protocolos:
 - NFS: para que archivos se compartan en la web
 - SQL: para operaciones en base de datos
 - RPC: para que los programas ejecuten procedimientos
 - X-Window
 - AppleTalk:
 - o SCP: para la transferencia segura de archivos, utilizando cifrado SSH

Capa 4 – Transporte

- Asegura que los datos lleguen **completos y en orden**.
- Implementa control de flujo y detección de errores.

Tipo	Protocolos	Características
Confiable	ТСР	Usa acuses de recibo, controla errores
No confiable	UDP	Más rápido, pero sin control ni confirmación

Capa 3 – Red

- Decide la **ruta** por donde viajarán los datos.
- Se encarga del direccionamiento lógico (ej: IP).
- · Protocolos:
 - IP (Internet Protocol): direcciona y encapsula paquetes para que lleguen a destino.
 - IPX (obsoleto): se usaba para enrutamiento

Capa 2 - Enlace de Datos

 Establece comunicación entre dos dispositivos vecinos (en la misma red local).

- Gestiona:
 - Direccionamiento físico (ej: MAC)
 - Control de flujo
 - Organización en tramas
- Protocolos:
 - Ethernet (IEEE 802.3)
 - PPP: conexiones punto a punto como internet
 - **Token Ring:** tecnologia IBM, se maneja pasandose un token
 - HDLC: protocolo de encapsulamiento de datos, para ocmunicaciones punto a punto

Capa 1 – Física

- Define cómo se transmiten los bits en forma eléctrica, óptica o de radio.
- Características:
 - Voltajes, conectores, velocidad
 - Medios: cables, fibra, radiofrecuencia
- Estándares:
 - 10BASE-T (10 Mbps)
 - 100BASE-TX (100 Mbps)
 - 1000BASE-SX (1 Gbps fibra óptica)

RS232, V35

Comparación OSI vs TCP/IP

Dirección IP y TCP/IP

¿Qué es una dirección IP?

- Es un número único de 32 bits que identifica a un dispositivo en una red.
- Se escribe en **decimal punteado**: 192.168.1.1

Estructura:

- 32 bits → 4 octetos → 8 bits cada uno.
- Se divide en parte de red y parte de host.

Clases de direcciones IP

Clase	Rango primer octeto	Uso
Α	0 – 127	Grandes organizaciones

Clase	Rango primer octeto	Uso
В	128 – 191	Empresas medianas
С	192 – 223	Redes pequeñas
D	224 – 239	Multicast
Е	240 – 255	Experimental

Ej: 192.168.100.50 es clase C (usada en redes privadas)

Otros parámetros del direccionamiento:

- Máscara de subred: define qué parte de la IP pertenece a la red y cuál al host.
- Puerta de enlace (gateway): dirección del router que permite salir a otras redes.

HTTP - Protocolo Web

- HTTP es el protocolo que usan navegadores, apps móviles y servidores web.
- Pertenece a la Capa 7 (Aplicación) del modelo OSI.
- Funciona con un sistema cliente-servidor.

Flujo de una solicitud HTTP:

- El usuario accede a un sitio (escribe URL).
- El navegador hace una solicitud HTTP al servidor (con encabezados).
- 3. El servidor responde con código y contenido HTML.
- 4. El navegador **muestra** la página web.

SMTP – Protocolo de Correo Electrónico

- SMTP (Simple Mail Transfer Protocol) se encarga de enviar correos electrónicos.
- Es solo un **protocolo de entrega**, no de lectura (para eso se usa POP o IMAP).
- Usa Capa 7 (Aplicación) y se apoya en TCP (Capa 4) para enviar datos.

Funcionamiento:

- 1. Se abre una conexión TCP.
- 2. El cliente envía comandos (HELO , MAIL FROM , RCPT TO ...).
- 3. El **MTA** (Mail Transfer Agent) consulta el DNS para llegar al destino.
- 4. Se cierra la conexión tras enviar el mensaje.

¿Qué es el "sobre SMTP"?

Es la información de origen y destino del correo, no visible para el usuario.

Puertos de SMTP:

Puerto	Uso actual
25	Envío entre servidores (hoy restringido)
465	Usado antes con SSL (obsoleto)
587	Recomendado actualmente (con TLS)
2525	Alternativo (no oficial)