A High Throughput Polynomial and Rational Function Approximations Evaluator

Silviu-Ioan Filip, Univ Rennes, Inria, CNRS, IRISA

Joint work with N. Brisebarre, G. Constantinides, M. Ercegovac, M. Istoan & J-M. Muller

25th IEEE Symposium on Computer Arithmetic Amherst, MA, June 2018

Context

Mathematical function evaluation

How?

- in particular cases, use ad hoc solutions
 - e.g. CORDIC, tabulate-and-compute algorithms
- in general, polynomial and rational function approximations

Rational functions are more powerful than polynomials

Polynomials vs rational approximations

Celebrated example in approximation theory: $f(x) = |x|, x \in [-1, 1]$

- lacktriangle polynomial 2n: O(1/n) [Bernstein 1910s, Varga & Carpenter 1985]
- lacktriangledown rational (n,n): $O(\exp(-\pi\sqrt{n}))$ [Newmann 1964, Stahl 1993]

Context

Mathematical function evaluation

How?

- ▶ in particular cases, use ad hoc solutions
 - e.g. CORDIC, tabulate-and-compute algorithms
- in general, polynomial and rational function approximations

Rational functions are more powerful than polynomials

Context

Mathematical function evaluation

How?

- ▶ in particular cases, use ad hoc solutions
 - e.g. CORDIC, tabulate-and-compute algorithms
- in general, polynomial and rational function approximations

Rational functions are more powerful than polynomials

Our goal:

Benefits to implementing rational functions in HW?

The E-method [Ercegovac 1975, 1977]

$$R(x) = \frac{p_{\mu}x^{\mu} + p_{\mu-1}x^{\mu-1} + \dots + p_0}{q_{\nu}x^{\nu} + q_{\nu-1}x^{\nu-1} + \dots + 1}$$

Idea:

▶ R(x) mapped to a linear system: $\mathbf{A}_x \mathbf{y} = \mathbf{p}$

$$\begin{bmatrix} 1 & -x & 0 & & \cdots & 0 \\ q_1 & 1 & -x & 0 & \cdots & 0 \\ q_2 & 0 & 1 & -x & \cdots & 0 \\ & & \ddots & \ddots & & \vdots \\ \vdots & & & & \ddots & 0 \\ q_{n-1} & & & 1 & -x \\ q_n & & & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix} = \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ \vdots \\ \vdots \\ p_{n-1} \\ p_n \end{bmatrix}$$

$$y_0 = R(x)$$

$$n = \max\{\mu, \nu\}, p_k = 0, \mu < k \le n, q_k = 0, \nu < k \le n$$

The E-method [Ercegovac 1975, 1977]

digit-by-digit computation

$$\mathbf{w}^{(j)} = r \cdot \left[\mathbf{w}^{(j-1)} - \mathbf{A}_x \mathbf{d}^{(j-1)} \right], \qquad j = 1, \dots, m$$

m - number of iterations $\begin{aligned} \mathbf{d}^{(0)} &= \mathbf{0}, \mathbf{w}^{(0)} = \mathbf{p} \\ d_i^{(j)} &- \text{single digit rounding of } w_i^{(j)} \end{aligned}$

Result: m-digit solution in radix r

$$y_k = \sum_{j=1}^{m} d_k^{(j)} r^{-j}$$

Rule of thumb: comparable cost for deg n poly & type (n,n) rational

Convergence of the E-method

ightarrow requires bounds on the p_k 's, q_k 's and approximation domain [a,b]

$$\begin{cases} \forall k, |p_k| \leq \xi, \\ \forall k, |x| + |q_k| \leq \alpha \end{cases}$$
$$\xi = \frac{1}{2}(1 + \Delta),$$
$$0 < \Delta < 1,$$
$$\alpha \leq (1 - \Delta)/(2r)$$

- **polynomial**: always (up to scaling the p_k 's and change of variable)
- **rational**: requires bounded $|q_k|$'s \to E-fraction approximations

Computing E-fraction approximations

Input: $f \in \mathcal{C}([a,b]), \mu, \nu \in \mathbb{N}$, magnitude bound d > 0.

Output:
$$R(x) = \frac{p_{\mu}x^{\mu} + p_{\mu-1}x^{\mu-1} + \dots + p_0}{q_{\nu}x^{\nu} + q_{\nu-1}x^{\nu-1} + \dots + 1}$$
, with $\max_{1 \leqslant k \leqslant \nu} |q_k| \leqslant d$, s.t.

$$\max_{x \in [a,b]} |f(x) - R(x)|$$

is minimal.

How?

- $m
 u=0
 ightarrow {
 m use}$ the polynomial Remez exchange algorithm [Remez 1934]
- ightharpoonup
 u > 0
 ightharpoonupwe **developed** a greedy-based iterative algorithm

Ex. 1:
$$f(x) = \sqrt{1 + (9x/2)^4}, x \in [0, 1/32], (\mu, \nu) = (4, 4)$$
 $d = 3/16$ ($\Delta = 1/8$ and $r = 2$)

Iteration 1

Ex. 1:
$$f(x) = \sqrt{1 + (9x/2)^4}, x \in [0, 1/32], (\mu, \nu) = (4, 4)$$
 $d = 3/16$ ($\Delta = 1/8$ and $r = 2$)

Iteration 1

Ex. 1:
$$f(x) = \sqrt{1 + (9x/2)^4}, x \in [0, 1/32], (\mu, \nu) = (4, 4)$$
 $d = 3/16$ ($\Delta = 1/8$ and $r = 2$)

Ex. 1:
$$f(x) = \sqrt{1+(9x/2)^4}, x \in [0,1/32], (\mu,\nu) = (4,4)$$
 $d=3/16$ ($\Delta=1/8$ and $r=2$)

Ex. 1:
$$f(x) = \sqrt{1+(9x/2)^4}, x \in [0,1/32], (\mu,\nu) = (4,4)$$
 $d=3/16$ ($\Delta=1/8$ and $r=2$)

Ex. 1:
$$f(x) = \sqrt{1 + (9x/2)^4}, x \in [0, 1/32], (\mu, \nu) = (4, 4)$$
 $d = 3/16$ ($\Delta = 1/8$ and $r = 2$)

Iteration 3

Ex. 1:
$$f(x) = \sqrt{1+(9x/2)^4}, x \in [0,1/32], (\mu,\nu) = (4,4)$$
 $d=3/16$ ($\Delta=1/8$ and $r=2$)

Iteration 4

Ex. 1:
$$f(x) = \sqrt{1+(9x/2)^4}, x \in [0,1/32], (\mu,\nu) = (4,4)$$
 $d=3/16$ ($\Delta=1/8$ and $r=2$)

Ex. 1:
$$f(x) = \sqrt{1 + (9x/2)^4}, x \in [0, 1/32], (\mu, \nu) = (4, 4)$$
 $d = 3/16$ ($\Delta = 1/8$ and $r = 2$) **Iteration** 5

Ex. 1:
$$f(x) = \sqrt{1 + (9x/2)^4}, x \in [0, 1/32], (\mu, \nu) = (4, 4)$$
 $d = 3/16$ ($\Delta = 1/8$ and $r = 2$) **Iteration** 5

Ex. 1:
$$f(x) = \sqrt{1 + (9x/2)^4}, x \in [0, 1/32], (\mu, \nu) = (4, 4)$$
 $d = 3/16$ ($\Delta = 1/8$ and $r = 2$)

Iteration 6

Approximation error $\simeq 5.21 \cdot 10^{-11}$

Polynomial $(\mu, \nu) = (4, 0)$ error $\simeq 3.41 \cdot 10^{-10}$

Machine coefficient E-fractions

In practice, finite precision

- ightarrow we target fixed-point implementations
 - ▶ target error $\leq 2^{-m}, m \in \mathbb{N}$
 - ▶ coefficients of the form $i/2^m, -2^m \le i \le 2^m$

Ex. 1:
$$m = 32$$
, target error $2^{-m} \simeq 2.33 \cdot 10^{-10}$

- ightharpoonup real-coefficient error $5.21 \cdot 10^{-11}$
- ▶ rounding error $1.11 \cdot 10^{-9} > 2^{-m}$ 🕄

Machine coefficient E-fractions

In practice, finite precision

- \rightarrow we target fixed-point implementations
 - ▶ target error $\leq 2^{-m}, m \in \mathbb{N}$
 - ightharpoonup coefficients of the form $i/2^m, -2^m \leqslant i \leqslant 2^m$
- **Ex. 1:** m = 32, target error $2^{-m} \simeq 2.33 \cdot 10^{-10}$
 - ightharpoonup real-coefficient error $5.21 \cdot 10^{-11}$
 - ▶ rounding error $1.11 \cdot 10^{-9} > 2^{-m}$ 😂

Our approach:

- based on [Brisebarre & Chevillard 2007, Brisebarre et al 2008]
- apply algorithms from Euclidean lattice theory
- ▶ lattice-based error $\simeq 5.71 \cdot 10^{-11} < 2^{-32}$ ②

HW implementation of the E-method

- generate circuit descriptions for FPGA devices
- flexibility in exploring different HW designs
- unrolled implementation of the method

Architecture of an iteration

$$w_i^{(j)} = r \cdot \left[w_i^{(j-1)} - q_i \cdot d_0^{(j-1)} - d_i^{(j-1)} + d_{i+1}^{(j-1)} \cdot x \right]$$

Architecture of an unrolled implementation

Optimizations

$$w_i^{(j)} = r \cdot \left[w_i^{(j-1)} - q_i \cdot d_0^{(j-1)} - d_i^{(j-1)} + d_{i+1}^{(j-1)} \cdot x \right]$$

- - multiplication by a constant
 - ▶ use the KCM technique [Chapman 1993]
- - pre-compute all products
 - reduced to a MUX
- ightharpoonup r.
 - ▶ shift left by one digit
 - on an FPGA, no hardware needed (wiring)
- summation
 - ▶ use a bitheap [Brunie et al 2013]
 - generalization of a compressor tree
 - optimal cost and execution time

Iteration-level optimizations

- Iteration 0:
 - initialization
 - store precomputed values
- Iteration 1:
 - precompute values
 - store in logic fabric
- ► Iteration 2:
 - ightharpoonup precompute values (computations not involving x)
 - simpler iterations

Simplifying the last iterations

Some Results on a Xilinx Virtex6 device

- **Ex.** 1: $f(x) = \sqrt{1 + (9x/2)^4}, x \in [0, 1/32]$
 - ▶ target error 2^{-32} , approx. type: (4,4)

Design	Approach	radix	Resources		Performance	
Design		rauix	LUT	reg.	cycles@period(ns)	
Ex. 1	Ours	2	7,880	0	1@94.3	
			7,966	1,523	11@9.6	
			7,299	2,689	17@5.7	
			6,786	5,202	36@3.7	
		4	4,871	0	1@57.9	
			4,768	988	7@12.3	
			4,600	1,583	11@6.9	
			4,853	3,106	22@3.8	
		8	4,210	0	1@44.4	
			3,875*	0	1@62.2*	
			5,307*	309	5@18.4*	
			5,184*	499	8@10.4*	
			4,707*	1,027	15@5.8*	
	FloPoCo	-	994	0	1@29.5	
			1,032	138	7@6.7	
			1,147	335	19@5.3	

More results

Ex. 2:
$$f(x) = \exp(2x)$$
, $x \in [0, 7/128]$

▶ target error 2^{-32} , approx. types: (3,3), (4,4), (5,0).

Design	Approach	radix	Resources		Performance	
			LUT	reg.	cycles@period(ns)	
Ex. 2	Ours	2	6,820	0	1@88.5	
		4	6,356	0	1@68.0	
		8	5,042	0	1@39.0	
	FloPoCo	_	3,024	0	1@41.1	

Even more results

```
Ex. 3: f(x) = \log_2(1 + 2^{-16x}), x \in [0, 1/16], approx. types: (5, 5), (5, 0).
```

Ex. 4: $f(x) = erf(x), x \in [0, 1/32]$, approx. types: (4,4), (5,0).

Ex. 5: $f(x) = J_0(2x - 1/16), x \in [0, 1/16]$, approx. types: (4, 4), (6, 0).

D i	Λ	radix	Resources		Performance	Target error	
Design Approach		radix	LUT	reg.	cycles@period(ns)		
Ex. 3	Ours	2	2,944	0	1@67.0		
		4	2,742	0	1@35.1		
		8	2,582	0	1@33.1	2^{-24}	
		16	2,856	0	1@31.2		
			1,565*	0	1@29.0*		
	FloPoCo	_	3,622	0	1@55.7		
Ex. 4	Ours	2	19,564	0	1@139.6		
		4	23,052	0	1@92.5		
			21,179*	0	1@131.5*		
		8	15,388*	0	1@250.7*	2^{-48}	
		16	12,878*	0	1@76.9*		
		32	3,909*	0	1@86.7*		
	FloPoCo	_	20,494	0	1@139.9		
Ex. 5	Ours	2	19,423	0	1@368.1		
		4	13,642	0	1@70.3	2-48	
		8	8 18,653 0 10		1@58.6	2	
	FloPoCo	-	-				

18/19

Our work

- efficient methods for (quasi)optimal E-fraction approximation
- ► FPGA-optimized implementation of the E-method
 - efficient HW implementation of rational functions
 - ightharpoonup customizable pipelined design ightarrow high throughput
- automatic open source tool for function evaluation
 - ▶ written in C++
 - available at: https://github.com/sfilip/emethod

Polynomial or rational function?

depends on the problem!

Thank you!

Scan me!