ALGORITMO DE DAVIS-PUTNAM-LOGEMANN-LOVELAND (DPLL)

Heurística y optimización

Enrique Benvenutto Navarro

1 Nomenclatura

 \bullet \varnothing : Conjunto vacío.

• $\{\emptyset\}$: Cláusula vacía

 $\bullet \lor : Operador OR$

 \bullet \wedge : Operador AND

 \bullet \bot : Falso

 \bullet \top : Cierto

• X_i : Variable de resolución.

• x_i y \bar{x}_i : Literales de X_i

 $\bullet \ n$: nivel de profundidad en el árbol

2 Teoría

Método que aplica resolución unitaria (Forma de resolución en la que uno de los padres es una cláusula unitaria) sobre una fórmula proposicional F en Forma Normal Conjuntiva (CNF), usando literales que existan en ella, tanto afirmados como negados.

Es un algoritmo de <u>el primero en profundidad</u> (en los ejercicios ignoramos un poco esto cuando queremos hayar todos los modelos que satisfagan una fórmula), con consumo de memoria lineal y tiempo exponencial.

Permite encontrar todos los modelos que satisfagan una fórmula.

3 Descripción

Se construye un árbol en el que se realizan progresivamente asignaciones de verdadero (\top) o falso (\bot) a cada variable de resolución X_i , y se observa como se evalúan las cláusulas.

El orden de selección de variables X_i puede ser arbitrario, mediante un algoritmo o heurística, o como nos piden en la mayoría de ejercicios de la asignatura, en orden ascendente.

En cada nivel de profundidad n del árbol se resuelve una variable X_i diferente sobre los nodos padre, aplicando la operación de reducción Red(F, v), explicada más adelante.

3.1 Modelo parcial v

Un modelo parcial v es un modelo que asigna valores a algunas de las variables X_i , pero no a todas.

3.2 Operación de reducción $Red(F, v) = F_v$

Definiremos la operación de reducción de una fórmula F por un modelo parcial v (Red(F,v)) como la sustitución de valores del modelo parcial v en las variables de F, y la simplificación de F de acuerdo a esas asignaciones.

La fórmula resultante de dicha asignación de valores se denominará F_{ν}

4 Resumen

En cada rama del árbol DPLL se evaluará un modelo parcial v, que será el valor de los literales de X_i que estemos asignando en ese momento (verdadero (\top) o falso (\bot)).

Una vez sustituidos los valores, se simplificará la fórmula resultando en F_v .

Todos los F_v obtenidos en este nivel del árbol, pasarán a ser los nodos padre del siguiente.

5 Procedimiento

5.1 Para todos los nodos padre

5.1.1 Elegimos la fórmula F_n sobre la que trabajar

- Si n = 0, $F_n = F$, es decir, si estamos en el nodo raíz del árbol, trabajaremos con la fórmula original F.
- Si n > 0, $F_n = F_{vn-1}$, es decir, si no estamos al comienzo del algoritmo, cogemos uno de los resultados de la reducción de un nodo anterior, es decir, trabajaremos con un nodo padre.

5.1.2 Elegimos X_i

Seleccionamos la X_i a utilizar. Tendrá que ser la misma en cada nivel n del arbol.

5.1.3 Evaluamos tanto verdadero (\top) como falso (\bot) para todos los literales de X_i

Es decir, aplicamos:

- $Red(F_n, v) = F_{vn}$, donde $v = \{x_i = \top\}$
- $Red(F_n, v) = F_{vn}$, donde $v = \{x_i = \bot\}$

 F_{vn} serán nodos hijo.

5.2 Cálculo de $Red(F_n, v) = F_{vn}$

Sustituimos v en F_n , y vemos qué resulta por cada cláusula. No necesitamos hacer más simplificaciones que las mostradas, aunque tengo entendido que no pasa nada si se hacen:

- Si la cláusula se evalua a verdadera, se elimina la cláusula.
 - Si no quedan cláusulas, resultado $F_{vn}=\varnothing$. Solución FACTIBLE. Saltar al paso 5.3 para esta rama.
 - Si quedan cláusulas sin literales de X_i , serán el resultado de F_{vn} . Volver al paso 5.1 para esta rama.
- \bullet Si la cláusula sigue evaluando a falso, se elimina X_i de la cláusula.
 - Si al eliminar X_i queda una cláusula vacía $\{\emptyset\}$, Solución NO FACTIBLE. Fin del algoritmo en esta rama.
 - Si al eliminar siguen quedando literales pero no de X_i , la cláusula forma parte de F_{vn} . Volver al paso 5.1 para esta rama.

5.3 Obtención del modelo que satisfaga F en la rama

Cuando se llega aquí, es porque $F_{vn} = \emptyset$ para el nodo en el que estamos. Para encontrar el modelo que satisfaga F en esta rama, escalamos el árbol hasta el nodo inicial, realizando la unión de todos los modelos parciales v del nodo hoja y todos los padres.

$$M = \bigcup_{n=1}^{\infty} v_n$$

6 Ejemplo

Hay hasta cuatro modelos diferentes que satisfacen la fórmula proposicional ${\cal F}$:

$$M_1 = \{x_1 = \top, x_2 = \top, x_3 = \top\}$$

 $M_2 = \{x_1 = \top, x_2 = \bot, x_3 = \bot\}$
 $M_3 = \{x_1 = \bot, x_2 = \top, x_3 = \bot\}$
 $M_4 = \{x_1 = \bot, x_2 = \bot, x_3 = \top\}$