

The Hidden Markov Model

Dr Philip Jackson

- Markov models
- State topology diagrams
- Hidden Markov models
 - Likelihood calculation
 - Recognition & training

Conclusion of Dynamic Time Warping

DTW computes scores efficiently with some flexibility in the alignment, treating templates as deterministic patterns with residual noise.

Problems:

- 1. How much flexibility should we allow?
- 2. How should we penalise any warping?
- 3. How do we determine a fair distance metric?
- 4. How many templates should we register?
- 5. How do we select the best ones?

Approach:

Learn from the statistics of speech data...

Characteristics of the desired model

- 1. sequence evolution is not deterministic
- 2. observations are coloured by their state
- 3. the state is not observed directly
- 4. stochastic sequence + stochastic observations

Applications:

- automatic speech recognition
- optical character recognition
- protein and DNA sequencing
- speech synthesis
- noise-robust data transmission
- crytoanalysis
- machine translation
- image classification, etc.

Introduction to Markov Models

We can model stochastic sequences of discrete states with a Markov chain; the state transitions have probabilities

For 1st-order Markov chains, the state transition probability depends only on the previous state (Rabiner, 1989):

$$P(x_t = j | x_{t-1} = i, x_{t-2} = h, ...) \approx P(x_t = j | x_{t-1} = i)$$
 (1)

So, if we assume the RHS of eq. 1 is independent of time, we can write the **state-transition probabilities**

$$a_{ij} = P(x_t = j | x_{t-1} = i), \quad 1 \le i, j \le N$$
 (2)

with the usual properties of probabilities

$$a_{ij} \ge 0$$
 and $\sum_{j=1}^{N} a_{ij} = 1$ $\forall i, j \in 1..N$

Weather prediction example

We represent the state of the weather by a 1st-order, fully-connected Markov model, \mathcal{M} :

state 1: raining state 2: cloudy state 3: sunny

with state-transition probabilities expressed in matrix form:

$$A = \left\{ a_{ij} \right\} = \begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$
 (3)

Weather predictor probability calculation

Given today's weather what is the probability of directly observing the sequence of weather states "rain-sun-sun" with model \mathcal{M} ?

rain cloud sun rain
$$A = \begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ sun & 0.1 & 0.1 & 0.8 \end{bmatrix}$$

$$P(X|\mathcal{M}) = P(X = \{1,3,3\}|\mathcal{M})$$

= $P(x_1 = \text{rain}|\text{today}) \times P(x_2 = \text{sun}|x_1 = \text{rain})$
 $\times P(x_3 = \text{sun}|x_2 = \text{sun})$
= $a_{1}a_{13}a_{33}$
= $\times 0.3 \times 0.8$
=

Start and end of a state sequence

Null states deal with the start and end of sequences, as in the state topology of this left-right Markov model:

$$a_{11}$$
 a_{22} a_{33}
 π_1 a_{12} a_{23} η_3
 0 0 0 0

Entry probabilities at t=1 for each state j are defined

$$\pi_j = P(x_1 = j) \qquad 1 \le j \le N \tag{4}$$

with the properties $\pi_j \geq 0$, and $\sum_{j=1}^N \pi_j = 1$ for $j \in 1..N$

Exit probabilities at t=T are similarly defined

$$\eta_i = P(x_T = i) \qquad 1 \le i \le N \tag{5}$$

with properties $\eta_i \geq 0$, and $\eta_i + \sum_{j=1}^N a_{ij} = 1$ for $i \in 1..N$

Parameters of the Markov Model, $\mathcal M$

State transition probabilities,

$$A = \{\pi_j, a_{ij}, \eta_i\} = \{P(x_t = j | x_{t-1} = i)\}$$
 for $1 \le i, j \le N$ where N is the number of states

producing a sequence $X = \{1, 1, 2, 3, 3, 4\}$

Example: probability of MM state sequence

Consider the state topology

state transition probabilities

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.8 & 0.2 & 0 \\ 0 & 0 & 0.6 & 0.4 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix}$$

The probability of state sequence $X = \{1, 2, 2\}$ is

$$P(X|\mathcal{M}) = \pi_1 a_{12} a_{22} \eta_2$$

$$= 1 \times 0.2 \times 0.6 \times 0.4$$

$$= 0.048$$

State duration characteristics

As a consequence of the first-order Markov model, the probability of occupying a state for a given duration, τ , decays exponentially:

$$p(X|x_1 = i, \mathcal{M}) = (a_{ii})^{\tau - 1} (1 - a_{ii})$$
 (6)

Summary of Markov models

E.11

State topology diagram:

entry probabilities $\pi = \left\{ \pi_j \right\} = \left[\begin{array}{ccc} 1 & 0 & 0 \end{array} \right]$ and exit probabilities $\eta = \left\{ \eta_i \right\} = \left[\begin{array}{ccc} 0 & 0 & 0.2 \end{array} \right]^\mathsf{T}$ are combined with state transition probabilities in complete A matrix:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0.6 & 0.3 & 0.1 & 0 \\ 0 & 0 & 0.9 & 0.1 & 0 \\ \hline 0 & 0 & 0 & 0.8 & 0.2 \\ \hline 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Probability of a given state sequence X:

$$P(X|\mathcal{M}) = \left(\prod_{t=1}^{T} a_{x_{t-1}x_t}\right) \eta_{x_T} \tag{7}$$

writing the entry probabilities as $a_{x_0x_1} = \pi_{x_1}$

Hidden Markov Models

HMMs use a Markov chain to model stochastic state sequences which then emit stochastic observations, e.g., the state topology of a fully-connected HMM:

Probability of state i generating **discrete** observation o_t , which has a value from a finite set $k \in 1..K$, is

$$b_i(o_t) = P(o_t = k | x_t = i)$$
 (8)

Probability distribution of a **continuous** observation o_t , which has a value from an infinite set, is

$$b_i(o_t) = p(o_t|x_t = i) \tag{9}$$

We begin by considering only discrete observations.

Discrete output probabilities

Observations in discretised feature space

Parameters of a discrete HMM, λ

State transition probabilities,

$$A = \{\pi_j, a_{ij}, \eta_i\} = \{P(x_t = j | x_{t-1} = i)\}$$
 for $1 \le i, j \le N$

for
$$1 < i, j < N$$

Discrete output probabilities,

$$B = \{b_i(k)\} = \{P(o_t = k | x_t = i)\}\$$

$$\begin{array}{c} \text{for } 1 \leq i \leq N \\ 1 \leq k \leq K \end{array}$$

with N states, K observation types

generating a state sequence $X = \{1, 1, 2, 3, 3, 4\}$ and observations $\mathcal{O} = \{o_1, o_2, \dots, o_6\}$

Procedure for generating an observation sequence

- 1. For t=1, choose state $x_t=j$ using entry probability π_j
- 2. Select $o_t = k$ according to $b_{x_t}(k)$
- 3. Transit according to a_{ij} and η_i , then respectively:
 - (a) increment t, set $x_t = j$ and repeat from 2, or
 - (b) terminate the sequence, t = T.

HMM probability calculation

The joint likelihood of state and observation sequences is

$$P(\mathcal{O}, X|\lambda) = P(X|\lambda) P(\mathcal{O}|X, \lambda)$$

For example, state sequence $X = \{1, 1, 2, 3, 3, 4\}$ produces the set of observations

$$\mathcal{O} = \{o_1, o_2, \dots, o_6\}$$
:

$$P(X|\lambda) = \pi_1 a_{11} a_{12} a_{23} a_{33} a_{34} \eta_4 = \left(\prod_{t=1}^T a_{x_{t-1}x_t}\right) \eta_{x_T}$$

$$P(\mathcal{O}|X,\lambda) = b_1(o_1) b_1(o_2) b_2(o_3) b_3(o_4) b_3(o_5) b_4(o_6)$$
$$= \prod_{t=1}^{T} b_{x_t}(o_t)$$

$$P(\mathcal{O}, X | \lambda) = \left(\prod_{t=1}^{T} a_{x_{t-1}x_t} b_{x_t}(o_t)\right) \eta_{x_T}$$

$$(10)$$

$$E.16$$

$$a_{11}$$
 a_{22} a_{33} a_{44}
 π_1 a_{12} a_{23} a_{34} π_4
 $b_1(o_1)$ $b_2(o_3)$ $b_3(o_5)$
 $b_1(o_2)$ $b_3(o_4)$ $b_4(o_6)$
 σ_1 σ_2 σ_3 σ_4 σ_5 σ_6

Example: probability of HMM state sequence

Consider state topology and state transition matrix:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \hline 0 & 0.8 & 0.2 & 0 \\ 0 & 0 & 0.6 & 0.4 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix}$$

Output probabilities:

$$B = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.2 & 0.3 \\ 0 & 0.9 & 0.1 \end{bmatrix}$$

E.17

Probability of observations with state sequence $X = \{1, 2, 2\}$:

$$P(\mathcal{O}, X | \lambda) = \left(\prod_{t=1}^{T} a_{x_{t-1}x_t} b_{x_t}(o_t)\right) \eta_{x_T}$$

$$= \pi_1 b_1(o_1) a_{12} b_2(o_2) a_{22} b_2(o_3) \eta_2$$

$$= 1 \times$$

$$=$$

HMM summary

- Markov models
 - sequence of directly observable states
 - state topology diagram
- Hidden Markov models (HMMs)
 - hidden state sequence
 - generation of observations
 - likelihood calculation

HMM Recognition & Training

Three tasks within HMM framework

- 1. Compute likelihood of a set of observations for a given model, $P(\mathcal{O}|\lambda)$
- 2. Decode a test sequence by calculating the most likely path, X^*
- 3. Optimise pattern templates by training the model parameters, $\Lambda = \{\lambda\}$

