Li, Hui, et al. "Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas." Oncotarget 7.49 (2016): 80415.

Li, Hui, et al. "Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas." Oncotarget 7.49 (2016): 80415.

Li, Hui, et al. "Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas." Oncotarget 7.49 (2016): 80415.

Li, Hui, et al. "Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas." Oncotarget 7.49 (2016): 80415.

Control sim.: Li 27533453 Gli inhibition decreases migration CT Perturb. sim.: Li 27533453 Gli inhibition decreases migration

Li, Hui, et al. "Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas." Oncotarget 7.49 (2016): 80415.

Li, Hui, et al. "Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas." Oncotarget 7.49 (2016): 80415.

rturb. sim.: Wels_21593765_ZEB1_H_OE

Control sim.: Wels_21593765_CT

rturb. sim.: Wels 21593765 SNAI2 OF

Control sim.: Wels_21593765_CT

Partiurh sim : Wals 21593765 ZEB1 H KD

Tang, Huiyi, et al.

"MicroRNA-200b/c-3p regulate epithelial plasticity and inhibit cutaneous wound healing by modulating TGF-β-mediated RAC1 signaling" Cell Death & Disease 11:931 2020

Tang, Huiyi, et al. "MicroRNA-200b/c-3p regulate epithelial plasticity and inhibit cutaneous wound healing by modulating TGF-βmediated RAC1 signaling" Cell Death & Disease, 11:931, 2020 *** Experiment Control miR_200_c_OE CT_wound_edge_noTGF Control sim.: Tang_33122632 Fast_Migrating

Phenotype

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Average time in phenotype

Tang, Huiyi, et al. "MicroRNA-200b/c-3p regulate epithelial plasticity and inhibit cutaneous wound healing by modulating TGF- β -mediated RAC1 signaling" Cell Death & Disease, 11:931, 2020

CT_wound_edge_noTGF

Control sim.: Tang_33122632

Gregory, Philip A., et al. "An autocrine TGF- β /ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition" Mol Biol Cell. 22(10): 1686–1698, 2011

Gregory, Philip A., et al. "An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition" Mol Biol Cell. 22(10): 1686–1698, 2011

Gregory, Philip A., et al. "An autocrine TGF- β /ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition" Mol Biol Cell. 22(10): 1686–1698, 2011

Gregory, Philip A., et al. "An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition" Mol Biol Cell. 22(10): 1686–1698, 2011

Gregory, Philip A., et al. "An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition" Mol Biol Cell. 22(10): 1686–1698, 2011

Gregory, Philip A., et al. "An autocrine TGF- β /ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition" Mol Biol Cell. 22(10): 1686–1698, 2011

Guo, Feng, et al. "Identification of a distal enhancer regulating hedgehog interacting protein gene in human lung epithelial cells". EBioMedicine, 101:101105026, 2024.

Perturb. sim.: Guo_38417378_HHIP_KD

Control sim.: Guo_38417378_CT

Pantazi, Eleni, et al. "GLI2 Is a Regulator of β-Catenin and Is Associated with Loss of E-Cadherin, Cell Invasiveness, and Long-Term Epidermal Regeneration" J Invest Dermatol, 137(8):1719-1730,

Pantazi, Eleni, et al. "GLI2 Is a Regulator of β-Catenin and Is Associated with Loss of E-Cadherin, Cell Invasiveness, and Long-Term Epidermal Regeneration" J Invest Dermatol, 137(8):1719-1730,

Pantazi, Eleni, et al. "GLI2 Is a Regulator of β-Catenin and Is Associated with Loss of E-Cadherin, Cell Invasiveness, and Long-Term Epidermal Regeneration" J Invest Dermatol, 137(8):1719-1730,

Pantazi, Eleni, et al. "GLI2 Is a Regulator of β -Catenin and Is Associated with Loss of E-Cadherin, Cell Invasiveness, and Long-Term Epidermal Regeneration" J Invest Dermatol, 137(8):1719-1730, 2017

Casas, Esmeralda, et al. "Snail2 is an essential mediator of Twist1-induced epithelialmesenchymal transition and metastasis", Cancer Res. 71(1): 245-254, 2011 0.8 Experiment **** **** Control TWIST1_OE Av. molecule expression/activity Control sim.: Casas_21199805_CT 0.0 Ecadherin_mRNA ${\sf Ecadherin_mRNA_H}$ J_Ecadherin

Node output

Casas, Esmeralda, et al. "Snail2 is an essential mediator of Twist1-induced epithelial-mesenchymal transition and metastasis", Cancer Res. 71(1): 245–254, 2011

Polizio, Ariel H., et al. "Heterotrimeric Gi proteins link Hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration", J Biol Chem, 286(22):19589-96, 2011 Experiment ns Control PTCH1_KD SMO_KD

Fast_Migrating
Phenotype

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

Average time in phenotype

Av. molecule expression/activity

Zheng, Xin, et al. "The transcription factor GLI1 mediates TGFβ1 driven EMT in hepatocellular carcinoma via a SNAI1-dependent mechanism", PLoS One 7(11):e49581, 2012

Perturb. sim.: Zheng_23185371_GLI_H_OE_edge

Zheng, Xin, et al. "The transcription factor GLI1 mediates TGFβ1 driven EMT in hepatocellular carcinoma via a SNAI1-dependent mechanism", PLoS One 7(11):e49581, 2012

Zheng, Xin, et al. "The transcription factor GLl1 mediates TGFβ1 driven EMT in hepatocellular carcinoma via a SNAl1-dependent mechanism", PLoS One 7(11):e49581, 2012

Zheng, Xin, et al. "The transcription factor GLI1 mediates TGFβ1 driven EMT in hepatocellular carcinoma via a SNAI1-dependent mechanism", PLoS One 7(11):e49581, 2012

Zheng, Xin, et al. "The transcription factor GLI1 mediates TGF β 1 driven EMT in hepatocellular carcinoma via a SNAI1-dependent mechanism", PLoS One 7(11):e49581, 2012

ontrol sim.: Zheng_23185371_CT_edge

Zheng, Xin, et al. "The transcription factor GLI1 mediates TGF β 1 driven EMT in hepatocellular carcinoma via a SNAI1-dependent mechanism", PLoS One 7(11):e49581, 2012

Control sim.: Zheng_23185371_CT_edge

Zheng, Xin, et al. "The transcription factor GLI1 mediates TGF β 1 driven EMT in hepatocellular carcinoma via a SNAI1-dependent mechanism", PLoS One 7(11):e49581, 2012

