6.2

Suites arithmétiques

SPÉ MATHS 1ÈRE - JB DUTHOIT

6.2.1 Définition

une suite arithmétique, c'est exactement ça!

Définition 6.2

Une suite (u_n) est une **suite arithmétique** s'il existe un réel r, appelé **raison** de la suite, tel que pour tout $n \in \mathbb{N}$, on ait $u_{n+1} = u_n + r$.

Exemple

- La suite (u_n) définie par $u_0 = -2$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 3$ est la suite arithmétique de raison r = 3 et de premier terme $u_0 = -2$.
- La suite (v_n) définie par $v_0=3$ et pour tout $n\in\mathbb{N}$, $v_{n+1}=v_n-0,5$ est la suite arithmétique de raison r=-0,5 et de premier terme $v_0=3$.

Savoir-Faire 6.6

SAVOIR MONTRER QU'UNE SUITE EST UNE SUITE ARITHMÉTIQUE Dans chaque cas, dire si la suite est une suite arithmétique, et préciser éventuellement sa raison :

- Soit (u_n) définie par $u_0 = -2$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n 5$
- Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 5n 3$.
- Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 5 2n$
- Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 5n^2$

6.2.2**Propriétés**

Propriété 6. 1

Soit (u_n) une suite arithmétique de raison r.

- Pour tout n ∈ N, u_n = u₀ + nr.
 Pour tout n ∈ N, u_n = u₁ + (n − 1)r.
- Pour tout $n \in \mathbb{N}$ et $p \in \mathbb{N}$, $u_n = u_p + (n-p)r$.

Savoir-Faire 6.7

SAVOIR UTILISER LES FORMULES EXPLICITES DES SUITES ARITHMÉTIQUES Exemple:

- Soit (u_n) est une suite arithmétique de premier terme $u_0 = 10$ et de raison 3. Déterminer u_{1000} .
- Soit (u_n) est une suite arithmétique de premier terme $u_7 = 10$ et de raison 5. Déterminer u_{1000} .
- Soit (u_n) est une suite arithmétique avec $u_{11} = 11$ et $u_{15} = 23$. Déterminer u_0 et r.
- Soit (u_n) est une suite arithmétique avec $u_7 = 23$ et $u_{25} = 50$. Déterminer u_0 et r.

Substitution Substitution

Choisir deux nombres r et u_0 . Calculer deux termes distincts en considérant que la suite est arithmétique (par exemple u_{117} et u_{215}). A partir de u_{117} et u_{215} , retrouver r et u_0 .

6.2.3 Sommes des termes consécutifs d'une suite arithmétique

Carl Gauss

Nous sommes dans les années 1780, en ce qui est aujourd'hui l'Allemagne. M. Büttner est instituteur. Ses élèves étant ce jour-là quelque peu dissipé, il leur demande d'additionner les nombres de 1 à 100, espérant bien obtenir un peu de calme.

Seulement voilà, à peine quelques instants plus tard, alors que tous devraient être en train de plancher pour encore un moment sur le problème, l'un deux (Carl Gauss) prétend avoir le résultat : 5050...

Propriété 6. 2

Soit (u_n) une suite arithmétique. Somme des termes conséctifs = $\frac{nb\ de\ termes \times (1er\ terme\ +\ dernier\ terme)}{2}$

Savoir-Faire 6.8

SAVOIR CALCULER LA SOMME DES TERMES CONSÉCUTIFS D'UNE SUITE ARITHMÉTIQUE Exemple : Calculer la somme des nombres impairs inférieurs à 100.

Substitution Substitution

Voici quelques exercices corrigés

- On considère une suite arithmétique telle que $u_7=-9$ et $u_{25}=-45$. Calculer la somme $S=u_7+\ldots+u_{25}$. Rép : -513
- On considère une suite arithmétique telle que $u_8 = -19$ et $S = u_8 + ... + u_{32} = -1075$. Déterminer la raison r de cette suite. Rép : r = -2.
- On considère une suite arithmétique telle que $u_3 = -17$ et $S = u_3 + ... + u_{32} = -2250$. Déterminer la raison r de cette suite. Rép : r = -4.
- On considère une suite arithmétique telle que $u_6 = 19$ et $u_{29} = 111$. Calculer la somme $S = u_6 + ... + u_{29}$. Rép : 1560.
- On considère une suite arithmétique telle que $u_5 = -10$ et $u_{20} = -40$. Calculer la somme $S = u_5 + ... + u_{20}$. Rép : -400.
- Déterminer l'entier n tel que 16 + 17 + ... + n = 5875. Rép : 109.
- Calculer la somme suivante, sachant que les termes de cette somme sont les termes d'une suite arithmétique. S = -76 81 + ... 251. Rép : -5886