

Medizinische Fakultät

Abschlussvortrag

Question Answering auf dem Lehrbuch "Health Information Systems" mit Hilfe von unüberwachtem Training eines Pretrained Transformers

Leipzig, November 2023

Überblick

- ► Einleitung
 - Ziel
 - Aufgaben
- Ergebnisse
 - Evaluierte Modelle
 - Kriterien
 - Vergleich
- ▶ Diskussion und Ausblick

Einleitung - Ziel

- ► Fragen beantworten zu "Health Information Systems" mit eines Sprachmodells
- Beispielklausuren lösen aus dem Modul "Architektur von Informationssystemen im Gesundheitswesen" mit eines Sprachmodells

Einleitung - Aufgaben

Ergebnisse - Evaluierte Modelle

Modell	Epochen	Grafikkarten	Bezeichnung
GPT4	_	-	gpt4
Llama 2 7B	0	Nvidia Tesla A100	11ama2_0e
	1	Nvidia Tesla V100	llama2_1e_v100
	1	Nvidia Tesla A30	11ama2_1e_a30
	3	Nvidia Tesla V100	llama2_3e_v100
	3	Nvidia Tesla A30	11ama2_3e_a30
	5	Nvidia Tesla A30	11ama2_5e_a30
	10	Nvidia Tesla A30	11ama2_10e_a30

Tabelle: Evaluierte Modelle, deren Anzahl an Epochen, genutzte Grafikkarten und Bezeichnungen in den Grafiken.

Ergebnisse - Kriterien

Aus Methodik übernommen (Omar et al.):

- ► Korrektheit (MakroF1)
- Erklärbarkeit
- ▶ Fragenverständnis
- ▶ Robustheit

Zusätzlich gezeigt:

► Fehlerwerte (Training, Validierung)

Ausgeschlossen:

Determinismus

Kriterium Fehlerwerte

Kriterium Fehlerwerte

Evaluierungsdatensatz

Fragen nach Fragetyp

Einzelfakt 34 Multifakten 38 Transfer 23

Fragen nach Quelle

Aus "Health Information Systems"	33
Informationssysteme in der medizinischen Versorgung und Forschung -	9
Klausur	
Informationssysteme in der medizinischen Versorgung und Forschung -	31
Nachholklausur	
Architektur von Informationssystemen im Gesunheitswesen - Klausur	22

Richtig, Falsch und Unbeantwortete Fragen

Kriterium Erklärbarkeit

Kriterium Fragenverständnis

Kriterium Robustheit

Ergebnisse - Vergleich

Modell	MakroF1	Erklärbarkeit	Fragenverständnis	Robustheit (Leistungsverlust)
GPT4	0,7	97,3%	97,9 %	15,7 %
11ama2_0e	0,13	48,1 %	64,2 %	$-0,\!23\%$
llama2_1e_v100	0,01	0 %	2,1 %	100 %
llama2_1e_a30	0,11	50 %	54,7 %	54,5 %
llama2_3e_v100	0,1	47,4 %	40 %	60 %
11ama2_3e_a30	0,3	85,4 %	72,6 %	46,7 %
11ama2_5e_a30	0,33	82,5 %	60 %	60,6 %
11ama2_10e_a30	0,32	81 %	55,8 %	43,8 %

Diskussion

- Grenzen der Modelle
 - ► Kleine Modelle geben schlechtere Startbedingungen
 - ▶ Kleine Datensätze führen zu schneller Überanpassung
 - Kleiner Evaluierungsdatensatz keine hohe Signifikanz
- ▶ Probleme bei Kernfragen
 - ► Reproduzierung von falschem Wissen
 - ▶ Widersprüchliche Aussagen bei ähnlicher Eingabe
 - ► Verbesserung durch Überanpassung

Ausblick

Ansatz	Aufwand	Erfolgseinschätzung
Retrieval Augmented Generation	hoch	sehr hoch
Datensatzvergrößerung	niedrig	hoch
Modellvergrößerung	hoch	hoch
Human Reinforcement Learning	sehr hoch	hoch
Domänenspezifische Modelle	niedrig	mittel

Quellen

- Lewis, Patrick u. a. (2020). "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks". In: ArXiv abs/2005.11401. url: https://api.semanticscholar.org/CorpusID:218869575.
- Mao, Yuning, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han und Weizhu Chen (2020). "Generation-Augmented Retrieval for Open-Domain Question Answering". In: Annual Meeting of the Association for Computational Linguistics. url: https://api.semanticscholar.org/CorpusID:221802772.
- Omar, Reham, Omij Mangukiya, Panos Kalnis und Essam Mansour (2023). ChatGPT versus Traditional Question Answering for Knowledge Graphs: Current Status and Future Directions Towards Knowledge Graph Chatbots. Version 1. arXiv: 2302.06466 [cs.CL].
- OpenAI (2023). "GPT-4 Technical Report". In: arXiv: 2303.08774[cs.CL].
- Touvron, Hugo u. a. (2023). LLaMA: Open and Efficient Foundation Language Models. arXiv: 2302.13971 [cs.CL].
- Touvron, Hugo u. a. (2023b). Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv: 2307.09288 [cs.CL].
- Winter, Alfred, Elske Ammenwerth, Reinhold Haux, Michael Marschollek, Bianca Steiner und Franziska Jahn (2023). Health Information Systems. 3. Aufl. Health Informatics. Springer Cham. isbn: 978-3-031-12310-8. doi: 10.1007/978-3-031-12310-8.

VIELEN DANK!

Paul Keller

Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE) www.imise.uni-leipzig.de