

Chicago Crime Classification

Evan Nussbaum, MBA

The Problem

- . Chicago has one of the highest crime rates substantially higher than the US average
- . Crime in Chicago has been tracked for several years
- . Goal is to provide better insights into the patterns of crime in Chicago by classification

Classification Types

. Binary Classification: Determining whether a crime was considered serious or not

. Multi-Classification: Took the 4 most common crimes and differentiated them into a function

Who might care?

Cops

Chicago Residents

Tourists

Factors to Consider

- . Hardship Index of neighborhood
- . Crime Location
- . Distance to police station
- . Location Description
- . Primary Crime Type

Data Information

- . Data has over 6 million rows and 112 columns after cleaning
- . First dataset is Chicago crime records from the last decade in CSV format
- . Second dataset is socio-economic status for the different Chicago neighborhoods in CSV format
- . Third dataset is the police district and where they are located in CSV format

	ID	Case Number	Date	Block	IUCR	Primary Type	Description	Location Description	Arrest	Domestic		Ward	Community Area	10000 8000	X Coordi
60282	11556037	JC103643	01/03/2019 07:20:00 PM	0000X W RWY 27R		IPFACE	OTHER VIOLATION	AIRCRAFT	False	False	:	41.0	76.0	26	110037
62200	11626027	JC188126	03/16/2019 05:58:00 PM	001XX N WELLS ST	0460	BATTERY	SIMPLE	STREET	False	False	:	42.0	32.0	08B	117472
			03/12/2019					RESIDENTIAL							

Data Exploration

- . Crime Types by Location
- . Crime Types by Hour
- . Crime Types by Month
- . Socio Economic Relationships

Crime Types by Location

Crime Types by Hour

Crime Types by Month

Crime Occurrence by Year

Hardship Index and Per Capita Income

Hardship Index and Percent without high school diploma

Pre-Processing

- 1. Label Encoding
- 2. Train and Test Split of 70-30
- 3. Scaling
- 4. 5 fold cross validation
- 5. Using scikit learn grid search method

Machine Learning Overview

. Supervised Learning Methods

- 1. Logistic Regression with Lasso
- 2. SVM
- 3. Decision Tree
- 4. Naive Bayes
- 5. Random Forest
- 6. KNN

Training and Testing Accuracy Binary Classification

Training and Testing Accuracy Multi-Classification

Most important features Binary Classification

- . Department Stores
- . Schools
- . Grocery Stores
- . Apartments
- . Crimes that happen from 12-3AM

	feature	coef	abscoef	
62	Location Description_DEPARTMENT STORE	-1.640735	1.640735	
74	Location Description_SCHOOL, PUBLIC, GROUNDS	1.085269	1.085269	
73	Location Description_SCHOOL, PUBLIC, BUILDING	0.902477	0.902477	
64	Location Description_GROCERY FOOD STORE	-0.832584	0.832584	
56	Location Description_APARTMENT	0.741321	0.741321	
39	Timeblock_3	0.659701	0.659701	
76	Location Description_SMALL RETAIL STORE	-0.630873	0.630873	
69	Location Description_RESIDENCE PORCH/HALLWAY	0.624302	0.624302	
70	Location Description_RESIDENCE-GARAGE	-0.420711	0.420711	
41	Timeblock_9	-0.392885	0.392885	
75	Location Description_SIDEWALK	0.354176	0.354176	
34	Timeblock_0	0.346644	0.346644	
18	District_D18.0	-0.338996	0.338996	
35	Timeblock_12	-0.315350	0.315350	
68	Location Description_RESIDENCE	0.295452	0.295452	
45	Weekday_Sunday	0.242579	0.242579	
12	District_D11.0	-0.206649	0.206649	

Most important Features Multi-Classification

- . Department Stores
- . Grocery Food Stores
- . Alleys
- . Bars
- . Sidewalks

	feature	coef	abscoef	
62	Location Description_DEPARTMENT STORE	1.955381	1.955381	
64	Location Description_GROCERY FOOD STORE	1.469881	1.469881	
55	Location Description_ALLEY	-1.346190	1.346190	
57	Location Description_BAR OR TAVERN	1.317098	1.317098	
75	Location Description_SIDEWALK	-1.200522	1.200522	
58	Location Description_COMMERCIAL / BUSINESS OFFICE	1.086883	1.086883	
76	Location Description_SMALL RETAIL STORE	1.062653	1.062653	
74	Location Description_SCHOOL, PUBLIC, GROUNDS	-0.946189	0.946189	
65	Location Description_HOTEL/MOTEL	0.846309	0.846309	
56	Location Description_APARTMENT	-0.834617	0.834617	
60	Location Description_CTA PLATFORM	-0.791962	0.791962	
66	Location Description_PARK PROPERTY	-0.778364	0.778364	
73	Location Description_SCHOOL, PUBLIC, BUILDING	-0.771870	0.771870	
59	Location Description_CONVENIENCE STORE	0.694312	0.694312	
68	Location Description_RESIDENCE	-0.551704	0.551704	
77	Location Description_STREET	-0.520202	0.520202	
61	Location Description_CTA TRAIN	0.437065	0.437065	

Conclusions

- . Theft is more likely to happen in Department Stores
- . Crime happening late at night can be very violent
- . Random forest works very well in training but not as well in testing
- . A combination of features is way more influential than just a single feature

Thank You!

Evan Nussbaum, MBA

Email: enussba1@villanova.edu

https://www.linkedin.com/in/evan-nussbaum-2969b2a8/

https://github.com/ejnuss95/Springboard