Clustering Techniques

K-Means

Objective: To minimize the sum of distances between the points and their respective cluster centroid.

Pick the number of clusters in the beginning

No need to decide the number of clusters in

beginning

Agglomerative

- Agglomerative
 - Assign each point as a separate cluster

- Agglomerative
 - Assign each point as a separate cluster

Merge the closest pair of clusters until only single

cluster is left

- Agglomerative
 - Assign each point as a separate cluster
 - Merge the closest pair of clusters until only single cluster is left
- Divisive

- Agglomerative
 - Assign each point as a separate cluster
 - Merge the closest pair of clusters until only single

cluster is left

- Divisive
 - Assign all the points to a single cluster

- Agglomerative
 - Assign each point as a separate cluster
 - Merge the closest pair of clusters until only single

cluster is left

- Divisive
 - Assign all the points to a single cluster
 - Split the clusters until each cluster only contains a single point

Student_I D	Marks
1	10
2	7
3	28
4	20
5	35

I D	1	2	3	4	5
1					
2					
3					
4					
5					

Student_I D	Marks
1	10
2	7
3	28
4	20
5	35

Proximity Matrix

I D	1	2	3	4	5
1	0				
2		0			
3			0		
4				0	
5					0

Student_I D	Marks
1	10
2	7
3	28
4	20
5	35

I D	1	2	3	4	5
1	0	3			
2	3	0			
3			0		
4				0	
5					0

Student_I D	Marks
1	10
2	7
3	28
4	20
5	35

I D	1	2	3	4	5
1	0	3	18		
2	3	0			
3	18		0		
4				0	
5					0

Student_I D	Marks
1	10
2	7
3	28
4	20
5	35

I D	1	2	3	4	5
1	0	3	18	1 0	
2	3	0			
3	18		0		
4	10			0	
5					0

Student_I D	Marks
1	10
2	7
3	28
4	20
5	35

I D	1	2	3	4	5
1	0	3	18	1 0	25
2	3	0			
3	18		0		
4	10			0	
5	25				0

Student_I D	Marks
1	10
2	7
3	28
4	20
5	35

I D	1	2	3	4	5
1	0	3	18	1 0	25
2	3	0	21	1 3	28
3	18	21	0	8	7
4	10	13	8	0	15
5	25	28	7	1 5	0

Student_I D	Marks
1	10
2	7
3	28
4	20
5	35

1. Assign each point as a different cluster

1. Assign each point as a different cluster

2. Merge the two closest clusters and update the proximity

matrix

I D	1	2	3	4	5
1	Ö	3	1 8	1 0	2 5
2	3	0	2	1 3	2 8
3	1 8	2 1	0	8	7
4	1 0	1 3	8	0	1 5
5	2 5	2 8	7	1 5	0

Student_I D	Marks
1	10
2	7
3	28
4	20
5	35

Student_I D	Marks
(1,2)	10
3	28
4	20
5	35

ID	(1,2)	3	4	5
(1,2)	0	18	10	25
3	18	0	8	7
4	10	8	0	15
5	25	7	15	0

Student_I D	Marks
(1,2)	10
3	28
4	20
5	35

1. Assign each point as a different cluster

2. Merge the two closest clusters and update the proximity

matrix

3. Repeat step 2 until only a single cluster is left

ID	(1,2)	3	4	5
(1,2)	0	18	10	25
3	18	0	8	7
4	10	8	0	15
5	25	7	15	0

Student_I D	Marks
(1,2)	10
(3,5)	35
4	20

ID	(1, 2)	(3, 5)	4
(1, 2)	0	25	10
(3, 5)	25	0	15
4	10	15	0

Student_I D	Marks
(1,2)	10
(3,5)	35
4	20

ID	(1, 2)	(3, 5)	4
(1, 2)	0	25	10
(3, 5)	25	0	15
4	10	15	0

Student_I D	Marks
(1,2)	10
(3,5)	35
4	20

Student_I D	Marks
(1,2,4)	20
(3,5)	35

ID	(1,2, 4)	(3,5)
(1,2, 4)	0	15
(3,5)	15	0

Student_I D	Marks
(1,2,4)	20
(3,5)	35

Analytics Vidhya

Learn everything about analytics

Dendrogram

A dendrogram is a tree like diagram that records the sequences of merges or splits.

S

Challenges with Hierarchical Clustering

Once a cluster is made, it cannot be undone

More time and space complexity

Thank You!

