		2000		Osto
Aus1	: Sy Sz Sz Sz	R	9	
	0 0 0 0 0	×	×	X -> Don't Cone
	10001	0	0	Conda
	2 0 0 1 0	0	T	
	3 0 0 1 1	0	1	(Szipriority)
	4 0 1 0 0	1	0	
	5 0 1 0 1	X	X	7/4/4 K
	6 0 1 1 0	7	0	J (53: perionity)
	7-0111	1	0	1, - truestide
	8 1 0 0 0	1	1	
	9 1001	×	X	
	10 1010	X	X	
	11 1011	X	×	
	12 1 1 0 0	1	1] (Su: prisonty)
	13 1 1 0 1	X	X	
	14 1 1 1 0	1	1	(Sy: priority)
	15		1	
	5251 01 11 19	-	453	2500011110
Sy	00 X 0 1 3 2		00	X 1 3 1 2
	01 /14 × 5 1 3 1 6		01	04 X 7 6
	XIII		11	1 × 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	10 1 8 × a × a × a		10	18/2/ 11/11/11/11/11/11/11/11/11/11/11/11/11
	R=> 53+ S4 €	m		G=54+ 5352 Am
	K=> 331		76	
_	53 ID	-B	SELV.	
	Combinational Suff	T	1	D-6
	circuit: 52	-	1	Am

market B	THE THE PARTY OF T
Ans 2	: Driver reaches on time A=1
	Jotal number of passengers are equal or greater than to
	→ B=1
	No main $C = 1$
	and a part of the second
	P= ABC (traveling at 60kmph)
	P= ASC O' L ONL I
	* = Do = Do 1 1 1 2
	* A [using 3-input]
	B Do EDO OUTPUT NAND GOTE
	c Land
	* A Porto
	B Doutput 2-mput NAND Gate
	c

Q3.

Ans-3		
0,00		5, 50
00 ->	anward	00 -> 500
0/-> 3	Jhr.	0 1 -> yau
10-3 1	<u>1</u> +	10 -> medium
		[] → high
11 -> 341	LULE.	(1 3 mg/c
conspaints	-)	
		to the
high	speed t for ful	movement any
0		
Out.	wol to raib	speed only
10, 100	I SI ISO P	$\Rightarrow P = \{(0, 0.5, 5.) = \{(7, 11, 14, 15)\}$
0 100	0 0	+ 0 1(0,005,5.) = E(7,11,14,15)
0 0	0 1	+ > 1 = 1 = 1 = 1 = 1
0 0	1 0	- 10 × 10 × 10 × 10
0 0	1 1	
0 1	0 0	P=0,0,S, + 0,5,50
0 1	0 1	P=0100S1 + 00×150 T 01×150
0 1	1 0	
0 1	1 1	- " " " " " " " " " " " " " " " " " " "
1 0	0 0	+ 1 5150 (Do +OI)
1 0	0 1	11 12 Dig p= 01 0051 + 5150 (00 + 01)
1 0	1 0	+
1 1	0 0	10 2 2 2 10 .
1 1	0 1	
1 1	1 0 1	Ī
302 × 443 1	.1 1 1	

 401^n : $1,12,13 \Rightarrow 3$ keys Let output be "Y" (lope ligh when two or more keys are used)

Touth Table

2(1	1/2	273	4
0	0	0	0
0	0	ı	6
0	(0	6
0	1	1	10
-	6	0	0
1	0	I	
\	1	0	/
	(l	

$$\begin{cases} x + \overline{x} = 1 \end{cases} ; \begin{cases} x + \overline{x} + y = x + 4 \end{cases}$$

$$Y = \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

$$= \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_3 \cdot x_3 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_1 \cdot x_1 \cdot x_1 \cdot x_2 \cdot x_3 \cdot x_1 \cdot x_1 \cdot x_1 \cdot x_3 \cdot x_1 \cdot x_1 \cdot x_1 \cdot x_2 \cdot x_3 \cdot x_1 \cdot x_1 \cdot x_1 \cdot x_1 \cdot x_1 \cdot x_2 \cdot x_1 \cdot$$

Implementing 4 using minimum number of NAND gates,

$$\frac{do(^{M}: (a) F_{I}(A,B,C,D) = \overline{A}B + A\overline{B} + \overline{C}D}{C \underline{SoP} form,}$$

$$= \overline{A}B(C+\overline{C})(D+\overline{D}) + \overline{A}B(C+\overline{C})(D+\overline{C})(D+\overline{D}) + \overline{A}B(C+\overline{C})(D+\overline{D}) + \overline{A}B(C+\overline{C})(D+\overline{C})(D+\overline{D}) + \overline{A}B(C+\overline{C})(D+\overline{C})(D+\overline{D}) + \overline{A}B(C+\overline{C})(D+\overline$$

$$= \overline{AB}(C+\overline{C})(D+\overline{D}) + \overline{AB}(C+\overline{C})(D+\overline{D}) + (A+\overline{A})(B+\overline{B})\overline{C}D$$

$$= \overline{AB}(CD+C\overline{D}+\overline{C}D+\overline{C}D+\overline{C}D+\overline{C}D) + (A+\overline{A})(B+\overline{B})\overline{C}D$$

$$= \overline{AB}(CD + C\overline{D} + \overline{C}D +$$

$$\begin{array}{c} \overline{ABCD} + \overline{ABCD} +$$

(6)
$$FI(A,B,C,D) = \overline{A}B + A\overline{B} + \overline{C}D$$

This is the whimized SOP form.

$$FI = (\overline{A} + B) \cdot (\overline{C} + \overline{D})$$

A Mensunged Pas Jam.

(c)
$$F2(A,B,C,D) = (A+B).(\overline{C}+\overline{D}).(C+D)$$

(C)
$$F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (\overline{C}+\overline{D}) \cdot (C+D)$$

(C) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (\overline{C}+\overline{D}) \cdot (C+D)$

(C) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (\overline{C}+\overline{D}) \cdot (C+D)$

(C) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (\overline{C}+\overline{D}) \cdot (C+D)$

(C) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (\overline{C}+\overline{D}) \cdot (C+D)$

(C) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(C) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(C) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(D) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, B, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E) $F_{\overline{a}}(A, C, D) = (A+B) \cdot (C+D) \cdot (C+D)$

(E)

MRNSwlized POS form
$$F2 = (A + B) \cdot (Z + D) \cdot (C + D)$$
4) The expression is in minimized Pos only.

Q7.

Using postulates,

a. find minimum SOP expression for the function,

$$F(A,B,C) = A \cdot C + A \cdot B' + A' \cdot B \cdot C + A' \cdot B' \cdot C'$$

b. Prove that $\mathbf{B} \oplus (\mathbf{A} \cdot \mathbf{B} + \mathbf{B} \cdot \mathbf{C} + \mathbf{A}' \cdot \mathbf{C}) = \mathbf{A}' \cdot (\mathbf{B} \oplus \mathbf{C})$

$$|| \mathbf{A} || \mathbf{A} ||$$

	Input			Outputs	
Α	В	Cin	S	Cout	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

For
$$S_g$$

(CSOP): $S = \overline{ABCm} + \overline{ABCm} + \overline{ABCm} + \overline{ABCm} + \overline{ABCm}$

$$(CPOS)$$
: $S = (A+B+CEN) \cdot (A+\overline{B}+\overline{CEN}) \cdot (\overline{A}+B+\overline{CEN}) \cdot (\overline{A}+\overline{B}+\overline{CEN})$

$$S = \overline{AB} C_{Bn} + \overline{AB} \overline{C}_{Bn} + \overline{AB} \overline{C}_{Bn} + \overline{AB} C_{Bn}$$

$$= C_{Bn} (\overline{AB} + \overline{AB}) + \overline{C}_{Bn} (\overline{AB} + \overline{AB})$$

$$= C_{Bn} (\overline{AB} + \overline{AB}) + \overline{C}_{Bn} (\overline{AB} + \overline{AB})$$

$$= (P + C_{EL}) (\overline{P} + \overline{C_{EL}})$$

$$\{ \text{ Let } \overline{P} + \overline{C_{EL}} = Q \} = \} \text{ for examplicity}$$

$$= \frac{9(P + Cen)}{9P + 9Cen}$$

$$S = \overline{QP \cdot QCen}$$

$$Cen$$

Now, P = A @ B so we can repeat the above wteps for A & B.

for Cout,

CPOS: (out =
$$(A+B+CEn).(A+B+\overline{CEn}).(A+\overline{B}+CEn).(\overline{A}+B+CEn)$$

$$\frac{2}{2} \cdot \frac{1}{2} \times \frac{1}$$

(b)	Inputs				Output
(0)	A	В	C	D	F
C /	0	0	0	0	0
	0	0	0	1	0
	0	0	1	0	0
	0	0	1	1	1
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	0	1	1	1	1
	1	0	0	0	0
	1	0	0	1	0
	1	0	1	0	0
	1	0	1	1	1,
	1	1	0	0	1
	1	1	0	1	1
	1	1	1	0	1
	1	1	1	1	1

$$\frac{Cso}{F}$$

$$F = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$\frac{CPOS}{F}$$

$$F = (A+B+C+D) \cdot (A+B+C+\overline{D}) \cdot (A+B+\overline{C}+D).$$

Mrismizing ,

$$F = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$= \overline{BCD}(\overline{A} + A) + \overline{BCD}(\overline{A} + A) + \overline{ABC}(\overline{D} + ABC\overline{D})$$

$$= \overline{BCD} + \overline{BCD} + \overline{ABCD} + \overline{ABCD}$$

$$= \overline{CD}(\overline{B} + B) + \overline{ABC} + \overline{ABCD}$$

$$= \overline{CD}(\overline{B} + B) + \overline{ABC} + \overline{ABCD}$$

$$= \overline{CD} + \overline{ABC} + \overline{CD} + \overline{ABCD}$$

$$= \overline{ABC} + \overline{C}(\overline{D} + \overline{ABD})$$

$$= \overline{ABC} + \overline{C}(\overline{D} + \overline{ABC})$$

$$= \overline{ABC} + \overline{CD} + \overline{ABC}$$

Q9. Prove that A'B(D' + C'D) + B(A + A'CD) = B

Lets:
$$\overline{A}B(\overline{D}+\overline{c}D) + B(A+\overline{A}cD) = B$$

Lets: $\overline{A}B(\overline{D}+\overline{c}D) + B(A+\overline{A}cD)$

$$\begin{cases} w & x + \overline{x} & y = x + y \end{cases}$$

$$= \overline{A}B(\overline{D}+\overline{c}) + B(A+CD)$$

$$= \overline{A}B\overline{D} + \overline{A}B\overline{c} + AB + BCD$$

$$= B[\overline{A}\overline{D} + (\overline{A}\overline{c} + A) + cD]$$

$$= B[\overline{A}\overline{D} + \overline{c} + A + cD]$$

$$= B[\overline{A}\overline{D} + A + \overline{c} + D]$$

$$= B[1 + A + \overline{c}]$$

$$= B[1]$$

$$= B[1]$$

$$= B[1]$$

Q10. Assuming zero delay between input and output of each gate, complete the timing diagram of the following circuit. (In answer sheet, show all 6 timing diagrams corresponding to boolean variables a,b,c,x,y,f on the same page).

Truth-Table

	۵	Ь	С	× a+c	(a+c).b	f ×⊕y
	0	0	0	1	I	0
	0	0		0	1	/
	0	(0	I	1	0
	O	1	l	0	D	0
	1	0	0	0	1	1
	l	0	1	0		J
	1	١	0	0	0	0
Ł	1	l			0	, 0

