MATH 330 – HW #29

Cristobal Forno

December 8, 2017

Question: Let z = x + yi be a complex number, where $x, y \in \mathbb{R}$. (a) $|\bar{z}| = |z|$.

Proof: We have the equation $|\bar{z}| = |z|$. If we square both sides, we have $|\bar{z}|^2 = |z|^2$. This can be computed as $|x - yi|^2 = |x + yi|^2$, where $x, y \in \mathbb{R}$. By Proposition C.9 (iii),

$$|x - yi|^2 = (x + yi)(x - yi)$$
 (1)

$$=x^2+y^2\tag{2}$$

$$= |x + yi| \tag{3}$$

(3) is computed by the modulus of a complex number. Since $|x+yi|=|\bar{z}|$, we have prove that $|z| = |\bar{z}|$. \square

(b) If
$$z \neq 0$$
, then $z^{-1} = \frac{\bar{z}}{|z|^2}$

(b) If $z \neq 0$, then $z^{-1} = \frac{\bar{z}}{|z|^2}$ **Proof:** Assume $z \neq 0$, where $z \in \mathbb{C}$. Let z = x + yi, where $x, y \in \mathbb{R}$. Then there exists an inverse of z, z^{-1} .

$$z^{-1} = \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{\bar{z}}{x^2 + y^2} = \frac{\bar{z}}{x^2 + (-1)y^2} = \frac{\bar{z}}{x^2 - y^2i^2} = \frac{\bar{z}}{z^2} = \frac{\bar{z}}{|z|^2}$$

The last equality is computed from Proposition 10.6. \square