Review of Autonomous Technologies for a Crewed Exploration of the Lunar South Pole

James W. Cross University of Florida

AIAA Region II Student Conference, March 27-28, 2023

Copyright © by James W. Cross
Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Artemis Program

- Artemis II Crewed Flyby
- Artemis III Crewed Landing
- Artemis IV Landing and Lunar Gateway development
- Artemis V Landing and Lunar Rover delivery

[1]

Introduction

What technologies are best suited to enabling autonomy in a lunar environment?

Conventional approaches will not work

- No GPS
- No paved roads
- No streetlights

Where are we going?

Shackleton Crater, Lunar South Pole

Likely contains water ice and other volatiles due to permanent darkness

- Scientific interest
- Water to support human settlements

[2]

Exploration Challenges

- Uneven terrain
- Steep grades
- Vast distances

- No existing infrastructure
- Infrastructure is costly

[2] Lunar Reconnaissance Orbiter

Lunar Roving Vehicle (LRV)

Apollo 15

Apollo 16

Apollo 17

Proposed Lunar Rovers

NASA's Lunar Terrain Vehicle (LTV)

[3] Artist Rendering

The Need for Autonomy

Safety

- Obstacle avoidance
- Stability control at speed
- Prepositioning

Future uses

- Bulk logistics
- Rescue missions

[2]

Autonomous System Design Requirements

- Operate on the darkened crater floor
- Operate without external positioning or computing
- Maintain a high degree of safety in all environments

Enabling Technologies

- Light Detection and Ranging (LIDAR)
- Image Recognition
- Optical Flow Sensors

LIDAR

- Can operate in the dark
- Highly accurate up to 300 m
- Versatile and mature

Image Recognition

- Low mass can use existing engineering cameras
- Requires a pretrained model
- > Requires an illumined area
 - Will reduce range

[5] Apollo LRV

Optical Flow Sensors

- Compares features between frames to determine motion
- Lightweight and compact
- Best used to validate other sensors

[6] SCARAB rover

Selection Criteria

- Mass
- Maturity
 - NASA Technology Readiness Level (TRL)
- Cost
- Accuracy

Selection Criteria							
Objective	Weighting Factor	Parameter					
Mass	0.30	kg					
Maturity	0.20	1-9					
Cost 0.20 \$							
Accuracy 0.30 Reported							
Overall Value							

Qualitative Score Assignments:						
Great 10						
Good	7					
Fair	4					
Poor	1					

Decision Matrix

Sel	ection Criteria	<u>a</u>	LIDAR		Image Recognition			Optical Flow Sensors			
Objective	Weighting Factor	Parameter	Magnitude	Score	Value	Mag.	Score	Value	Mag.	Score	Value
Mass	0.30	kg	3.5	7	2.1	0	10	3	0.05	8	2.4
Maturity	0.20	1-9	7	10	2	5	0	0	6	5	1
Cost	0.20	\$	100,000	3	0.6	0	10	2	200	6	1.2
Accuracy	0.30	Reported	Great	10	3	Fair	4	1.2	Poor	1	0.3
C	Overall Value										

Qualitative Score Assignments:						
Great 10						
Good	7					
Fair	4					
Poor	1					

Decision Matrix

Sel	Selection Criteria LIDAR			Image Recognition			Optical Flow Sensors				
Objective	Weighting Factor	Parameter	Magnitude	Score	Value	Mag.	Score	Value	Mag.	Score	Value
Mass	0.30	kg	3.5	7	2.1	0	10	3	0.05	8	2.4
Maturity	0.20	1-9	7	10	2	5	0	0	6	5	1
Cost	0.20	\$	100,000	3	0.6	0	10	2	200	6	1.2
Accuracy	0.30	Reported	Great	10	3	Fair	4	1.2	Poor	1	0.3
C	Verall Value				7.7			6.2			4.9

Qualitative Score Assignments:						
Great 10						
Good	7					
Fair	4					
Poor	1					

Impact

Near Future

- Safety
- Cost

Far Future

Synchronization

Earth

[2]

Conclusions & Next Steps

Conclusions

- Autonomy is necessary to support future exploration
- LIDAR is optimal for navigation in lunar craters

Next Steps

- Combining multiple technologies increases reliability
- Validating LIDAR in the dusty lunar environment

References

- [1] Johnson, N. Panorama View of Apollo 15 Lunar Surface Photos. Flickr. https://www.flickr.com/photos/nasa2explore/48299975991/in/album-72157635384998736/. Accessed Mar. 21, 2023.
- [2] Wright, E. SVS: Visualizing Shackleton Crater. NASA Scientific Visualization Studio. https://svs.gsfc.nasa.gov/4716. Accessed Mar. 14, 2023.
- [3] National Aeronautics and Space Administration, and NASA Johnson Space Center. Modification #1 to Amendment #1 to Lunar Terrain Vehicle (LTV) Special Notice - Update #1. sam.gov. https://sam.gov/opp/48c07a7cd6b24f54833397d5bad3dc14/view. Accessed Mar. 21, 2023.
- [4] Renishaw plc. Renishaw: Application Note: Optical Encoders and LiDAR Scanning. *Renishaw*. https://www.renishaw.com/en/optical-encoders-and-lidar-scanning--39244.
- [5] Williams, D. The Apollo Lunar Roving Vehicle. NASA.gov. https://nssdc.gsfc.nasa.gov/planetary/lunar/apollo_Irv.html. Accessed Feb. 19, 2023.
- [6] Wettergreen, D. S., and Barfoot, T. D. Field and Service Robotics. Springer, 2016.

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS