עוצמות 6

שחר פרץ

2024 למרץ 13

עוד על חשבון עוצמות

תזכורות: בעבור A,B קבוצות הגדרנו:

- (הערה: במידה השניה כך שהן אחת מהקבוצות, מותר לנו רק אחת במידה ונתונה לנו רק הערה: במידה ונתונה $|A|+|B|=|A imes\{0\}|$
 - $|A| \cdot |B| = |A \times B| \bullet$
 - $(A o B:=A^B$ (כי $|A|^{|B|}=|B o A|=|A^B|$
 - על תמציאו $-, \frac{|A|}{|B|}$ כי זה לא מוגדר. ullet

(לכן: יהיו a,b,c,d יהיו a,b,c,d יהיו משפט (מונוטוניות): יהיו

- $a + c \le b + d$.1
 - $a \cdot c \leq b \cdot d$.2
- ($a=c=0 \wedge d \neq 0$ אלא אם $a^c \leq a^d$.3
 - $a^c < b^c$.4

תח"ע. $g\colon C\to D$ ולכן קימת $c\le d$ ותון ווכיח את הטענה השלישית. יהיו A,C,D קבוצות כך ש־A,C,D קבוצות כך אוכיח את הטענה השלישית. יהיו $\tilde{g}\colon C\to D$ קבוצות כך $\tilde{g}\colon D\to C$ ולכן קימת $\tilde{g}\colon C\to C$ נרצה להגדיר $\varphi\colon C\to C$ יהי $\tilde{g}\colon C\to C$ וחח"ע. נגדיר קימת $\tilde{g}\colon C\to C$ ולכן קימת $\tilde{g}\colon C\to C$ ולכן קימת סופית]: יהי

$$\tilde{g} = \lambda d \in D. \begin{cases} \iota x \in C. \\ g(x) = d, & d \in \operatorname{Im} g \\ \tilde{c} & d \in D \setminus \operatorname{Im} g \end{cases}$$

G פרן G מוגדרת היטב מאחר ו־ G חח"ע: יהיו G התקיים: G את G את G את G את G ופיח G היהיו G חח"ע: יהיו G חח"ע: יהיו G האם נרכיב על G אם G אם נרכיב על G ברוש. G ברוש.

- - $a^d=0^0=a^c$ אם d=0 ולכן , $a^c=0^0=1$ אם a=0 אם a=0

כיסינו את כל המקרים.

משפט: ("סופר־שימושי"):

- $(1.8 \times \mathbb{N}) = 1.8 \times \mathbb{N}$ (כבר הוכחנו את השוויון לגבי הכפל כשהוכחנו $(2.8 \times \mathbb{N}) = 1.8 \times \mathbb{N}$ (כבר הוכחנו את השוויון לגבי הכפל כשהוכחנו (ב. $(2.8 \times \mathbb{N}) = 1.8 \times \mathbb{N}$
 - (גם בשיעור את הכפל גם את גם או אינר $2^{\aleph_0}\cdot 2^{\aleph_0}=2^{\aleph_0}+2^{\aleph_0}=2^{\aleph_0}$.2
 - $\aleph_0 \cdot 2^{\aleph_0} = \aleph_0 + 2^{\aleph_0} = 2^{\aleph_0}$.3

(הטענות האלו נכונות עבור כל עוצמה אינסופית תחת אקסיומת בחירה, אבל אסור לנו להניח את זה ואין משפט כזה בקורס)

הוכחה. נוכיח את שלושת הטענות:

 $2^{\aleph_0}+2^{\aleph_0}\geq 2^{\aleph_0}+0=2^{\aleph_0}$, עבור כפל כבר הוכחנו (שיעור שעבר הוכחנו כי $|\mathbb{R}|=|\mathbb{R}|$), ובעבור $2^{\aleph_0}+2^{\aleph_0}+2^{\aleph_0}=|\mathbb{R}|=|\mathbb{R}|$ (2): עבור כפל כבר הוכחנו (שיעור שעבר הוכחנו כי $2^{\aleph_0}+2^{\aleph_0}=|\mathbb{R}|=|\mathbb{R}|=|\mathbb{R}|=|\mathbb{R}|$ מהצד השני $2^{\aleph_0}=|\mathbb{R}|=|\mathbb{R}|=|\mathbb{R}|=|\mathbb{R}|=|\mathbb{R}|=|\mathbb{R}|$

(3): תזכורת; היה תרגיל בשיעורי הבית להוכיח כי $|\mathbb{R}| = |\mathbb{R}|$ ולכן $2^{\aleph_0} \cdot \aleph_0 = 2^{\aleph_0} \cdot \aleph_0 = 2^{\aleph_0}$ אפשר גם להוכיח ע"י חשבון עוצמות: $|\mathbb{R}| = |\mathbb{R}|$ היה תרגיל בשיעורי הבית להוכיח כי $|\mathbb{R}| = |\mathbb{R}|$ ולכן $2^{\aleph_0} \cdot 2^{\aleph_0} = 2^{\aleph_0} \cdot \aleph_0 = 2^{\aleph_0}$ כדרוש. בעבור $2^{\aleph_0} \cdot 2^{\aleph_0} = 2^{\aleph_0} \cdot 2^{\aleph_0} = 2^{\aleph_0} \times 2^{\aleph_0} = 2^{\aleph_0$

משפט (חוקי חזקות):

- $(a^b)^c = a^{b \cdot c}$.1
- $(a\cdot b)^c=a^c\cdot b^c$.2
 - $a^{b+c}=a^b\cdot a^c$.3

arphi: ((B imes C) o A) קבוצות ונסמן (1) צ.ל. קיום את סבי להוכיח את a=|A|,b=|B|,c=|C|,d=|D| קבוצות ונסמן A,B,C,D הוכחה. יהיו Cu:=curry והרי שפונקציית עליה לפני חצי שנה. Cu:=curry (קורי) היא איווג... וזהו כאן די נגמרים השימושים של הפונקציה הזו לקורס הזה, סתם חפרו לנו עליה לפני חצי שנה.

:טענה

- $a+leph_0=a$ מתקיים מאנסופית .1
- a+n=a מתקיים, $n\in\mathbb{N}$ ולכל ולכל מינסופית.

הוכחה. ("אה רגע יש לי שתי דקות, אז בו נוכיח"). נוכיח את (1). תהי A קבוצה כך ש־A ומאחר ש־A אינסופית, אזי קיימת לה ת"ק [=תת קבוצה] בת מנייה $B\subseteq A$

$$a+\aleph_0=|A|+|B|=|(A\setminus B)\uplus(B)|+|B|=|A\setminus B|+\underbrace{|B|}_{\aleph_0}+\underbrace{|B|}_{\aleph_0}=|A\setminus B|+\aleph_0=|(A\setminus B)\uplus B|=|A|=a$$