University of South Bohemia

Faculty of Science

Praktika IV

Frank-Hertzův experiment

Datum: 5.12.2023 Jmeno: Martin Skok

Obor: Fyzika Hodnoceni:

1 Úkoly

- Změřte závislost magnetického pole na rezonanční frekvenci vzorku DPPH (radikál 2,2-difenyl-1-pikrylhydrazylu)
- Určete jeho q faktor.

2 Seznam pomůcek

Počítač, 3B-NET log, 3B-NET lab program, jednostka s cívkami a se sondou, vzorek DPPH

3 Teorie

EPR nebo ESP je metoda, při níž se hledají prvky s nepárovanými elektrony, neboli radikáli. Elektrony mají několik vlastností, kterými jsou náboj, hmotnost a spin. Nezpárované elektrony můžou okupovat

hodnoty $m_s=+\frac{1}{2}$ nebo $m_s=-\frac{1}{2}$. K magnetickému poli přispívá spinový magnetický moment. Interakce mezi magnetickým polem a magnetickým momentem je dána vztahem

$$\Delta E = hf = g\mu_B B \tag{1}$$

kde g je faktor volného elektronu který má má hodnotu 2.002319 μ_b Bohrův magnetron s hodnotou 9.72401 · 10^{-24} Vztah můžeme upravit a vyjádřit g faktor

$$g = \frac{f_r h}{B_r \mu_B} \tag{2}$$

Magnetické pole v našem případě můžeme vyjádřit jako

$$B_r = 3.648U_r \tag{3}$$

kde U_r je rezonanční napětí cívky.

4 Postum měření

Sestavil jsem a zapnul obvod

Vložil jsem vzorek DPPH

Zapnul jsem počítač a spustil program 3B-NET lab

Nastavil jsem potřebné paratemry a spustil osciloskop

Nastavil jsem frekvenci na 40MHz a uložil data

Toto jsem opakoval do frekvence kolem 80Mhz po intervalech kolem 5Mz

Frekvence jsem ne vždy dokázal nastavit na přesnou hodnotu, tak jsem si vždy zapsal aktualňí hodnotu frekvence

5 Naměřená data

Figure 1: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 2: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 3: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 4: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 5: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 6: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 7: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 8: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

6 Zpracování dat

Tabulka 1:

<u>Tabulka 1:</u>				
index	$\int f_r[MHz]$	$U_r[V]$	$B_r[mT]$	g
0	45.0	0.486	1.773	1.813
1	50.014	0.542	1.977	1.807
2	55.195	0.584	2.13	1.851
3	60.104	0.63	2.298	1.869
4	65.049	0.687	2.506	1.854
5	70.107	0.732	2.67	1.876
6	75.087	0.785	2.864	1.873
7	77.962	0.809	2.951	1.887

Hodnoty U_r jsou hodnoty peaků na grafech. Magnetické pole B_r jsem počítal podle vztahu **3**.

gfaktor jsem počítal podle vztahu ${\bf 2}.$

$$\overline{g} = \sum_{i=1}^{n} \frac{g_i}{n}$$

 $\bar{g} = 1.8539$

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^n (g_i - \overline{g})^2}{n-1}}$$

 $\sigma_g = 0.029307$

Figure 9: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

7 Diskuse

Z měření je vidět, že se námi naměřená hodnota g liší od hodnoty udavané ze zdrojů. Chyba může být způsobena špatným nastavováním hodnot nebo jino neznámou chybou, které jsem se mohl dopustit.

8 Závěr

$$g = 1.8539 \pm 0.0293$$

9 Zdroje

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_ Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_ Theoretical_Chemistry)/Spectroscopy/Magnetic_Resonance_Spectroscopies/ Electron_Paramagnetic_Resonance/EPR_-_Interpretation