区	分	標準的な解答例又は出題意図
問題1		出題意図
(数学1)		逆関数の導関数とマクローリン展開に関する知識と理解を問う.
		解答例
		(1) 第1次導関数, 第2次導関数を求め, 第3次導関数を求める.
		$y = \tan^{-1} x \mathcal{E} \tau \delta.$
		dy 1 2 1 1
		$\frac{dy}{dx} = \frac{1}{\frac{dx}{dx}} = \cos^2 y = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}.$
		dy
		d^2y $2x$
		$\frac{d^2y}{dx^2} = -\frac{2x}{(1+x^2)^2}.$
		$d^3y = 2(3x^2 - 1)$
		$\frac{d^3y}{dx^3} = \frac{2(3x^2 - 1)}{(1 + x^2)^3}.$
		(2) $tan^{-1}x$ を 3 次の項までマクローリン展開すると
		, x ³
		$\tan^{-1} x = x - \frac{x^3}{3} + R_4.$
		R_4 は 4 次の剰余項で、関数 $f(x)$ の第 4 次導関数を用いて以下のように表され
		<u>る</u> .
		$f^{(4)}(\theta r)$
		$R_4 = \frac{f^{(4)}(\theta x)}{4!} x^4, \qquad 0 < \theta < 1.$
		男数はtan ⁻¹ xであるから
		$f^{(4)}(x) = \frac{d^4y}{dx^4} = \frac{24x(1-x^2)}{(1+x^2)^4}.$
		R_4 は以下のように表される.
		$R_4 = \frac{\theta x (1 - (\theta x)^2)}{(1 + (\theta x)^2)^4} x^4.$
		ここで $x = \frac{1}{2}$ の場合を考えると
		$(\theta)^2$
		$1 1 1 1/1 \theta \left(1 - \left(\frac{\theta}{2}\right)\right) \left(1\right)^4$
		$\tan^{-1} \frac{1}{2} = \frac{1}{2} - \frac{1}{3} \left(\frac{1}{2} \right) + \frac{1}{2} \frac{1}{(2)^{2}} \left(\frac{1}{2} \right)$
		$\tan^{-1}\frac{1}{2} = \frac{1}{2} - \frac{1}{3}\left(\frac{1}{2}\right)^3 + \frac{\theta}{2}\frac{\left(1 - \left(\frac{\theta}{2}\right)^2\right)}{\left(1 + \left(\frac{\theta}{2}\right)^2\right)^4}\left(\frac{1}{2}\right)^4$
		$= \frac{11}{24} + \frac{\theta}{32} \frac{(1 - (\frac{\theta}{2})^2)}{(1 + (\frac{\theta}{2})^2)^4}.$
		$=\frac{1}{24}+\frac{1}{32}\left(\frac{\theta}{1+(\theta)^2}\right)^4$
	-	$\left(1+\left(\overline{2}\right)\right)$
		$(\theta)^2$ $(\theta)^2$
		$1 - \left(\frac{\theta}{2}\right)^2 < 1 \text{ in } 01 + \left(\frac{\theta}{2}\right)^2 > 1 \text{ to } \delta \subset 2 \text{ in } \delta$
		.1 11 θ
		$\tan^{-1}\frac{1}{2} < \frac{11}{24} + \frac{\theta}{32}.$
		11 0)50441 1 11 11 11 11 11 11 11 11 11
		したがって $\tan^{-1}\frac{1}{2}$ の近似値として $\frac{11}{24}$ を用いた場合, その誤差は $\frac{1}{32}$ を超えない.
		γ λ

	区	分	標 準 的 な 解 答 例 又 は 出 題 意 図
引	問題2	or of the	出題意図
(数学2)	Si Si	ベクトル空間の知識と理解を問う
2		0	
		14 250	
		180	略解
			$\left(\begin{array}{c}a^T\end{array}\right)$
			(1) 行列 $\begin{pmatrix} a^T \\ b^T \\ c^T \end{pmatrix}$ の階数が 3 であればよい.
			$\langle c \rangle$
			$\langle a^T \rangle$ $\langle 1 3 2 4 \rangle$
			$\left(egin{array}{c} m{a}^T \ m{b}^T \ m{c}^T \end{array} ight) \; = \; \left(egin{array}{cccc} 1 & 3 & 2 & 4 \ 4 & 2 & 3 & 1 \ 5t & t+4 & 2t+3 & -t+6 \end{array} ight)$
			$\begin{pmatrix} c^T \end{pmatrix}$ $\begin{pmatrix} 5t & t+4 & 2t+3 & -t+6 \end{pmatrix}$
	4		$\begin{pmatrix} 1 & 3 & 2 & 4 \end{pmatrix}$
			$\sim \begin{pmatrix} 1 & 3 & 2 & 4 \\ 0 & -10 & -5 & -15 \\ 0 & -14t + 4 & -8t + 3 & -21t + 6 \end{pmatrix}$
			$\sim \begin{pmatrix} .1 & 3 & 2 & 4 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 4 + 1 & 0 \end{pmatrix}$
			$\sim \left(\begin{array}{ccc} 0 & 2 & 1 & 3 \\ 0 & 0 & -t+1 & 0 \end{array}\right)$
	- , "		(0 0 -1-1-1 0)
			これより $-t+1 \neq 0$ のとき階数が 3 となる. したがって, a , b , c が線形独立とな
			るための条件は $t \neq 1$ である。
1.			(2)
			$\begin{bmatrix} 0 \\ \cdot c = \end{bmatrix} \cdot \begin{bmatrix} t+4 \\ -t+6 = 0 \end{bmatrix} = -t+6 = 0$
			$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \cdot \mathbf{c} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 5t \\ t+4 \\ 2t+3 \\ -t+6 \end{pmatrix} = -t+6 = 0$
			(1) $(-\iota+0)$
			よって、 $t=6$. このとぎ $d=\begin{pmatrix}30\\10\\15\\0\end{pmatrix}$.
			よって、 $t=6$. このとき $d=\begin{bmatrix} 10\\15 \end{bmatrix}$.
			$\begin{pmatrix} 10 \\ 0 \end{pmatrix}$
			(3)
			(e)
			$\begin{pmatrix} 0 & 1 & 4 & 5t & 30 & 0 \\ 0 & 0 & 1 & 1 & 10 & 0 \end{pmatrix}$
			$\begin{pmatrix} a \ b \ c \ d & 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 5t & 30 & 0 \\ 3 & 2 & t+4 & 10 & 0 \\ 2 & 3 & 2t+3 & 15 & 0 \\ 4 & 1 & -t+6 & 0 & 0 \end{pmatrix}$
			$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 2 & 3 & 2t + 3 & 10 & 0 \\ 4 & 1 & -t + 6 & 0 & 0 \end{pmatrix}$
			$\begin{bmatrix} 1 & 4 & 3t & 30 & 0 \\ 0 & -10 & -14t + 4 & -80 & 0 \end{bmatrix}$
			\sim $\begin{bmatrix} 0 & -5 & -8t+3 & -45 & 0 \end{bmatrix}$
			$\sim \begin{pmatrix} 1 & 4 & 5t & 30 & 0 \\ 0 & -10 & -14t + 4 & -80 & 0 \\ 0 & -5 & -8t + 3 & -45 & 0 \\ 0 & -15 & -21t + 6 & -120 & 0 \end{pmatrix}$
			$\sim \begin{pmatrix} 1 & 4 & 5t & 30 & 0 \\ 0 & -10 & -14t + 4 & -80 & 0 \\ 0 & 0 & -t+1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
			$\sim \begin{bmatrix} 0 & -10 & -14t + 4 & -80 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
			$\begin{bmatrix} 0 & 0 & -t+1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
-			

第3列と第4列を入れ替える (解の第3成分と第4成分を入れ替える)

$$\sim \begin{pmatrix} 1 & 4 & 30 & 5t & 0 \\ 0 & -10 & -80 & -14t + 4 & 0 \\ 0 & 0 & -5 & -t + 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 4 & 30 & 5t & 0 \\ 0 & 1 & 8 & \frac{7t-2}{5} & 0 \\ 0 & 0 & 1 & \frac{t-1}{5} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & -2 & \frac{-3t+8}{5} & 0 \\ 0 & 1 & 0 & \frac{-t+6}{5} & 0 \\ 0 & 0 & 1 & \frac{t-1}{5} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & \frac{-t+6}{5} & 0 \\ 0 & 1 & 0 & \frac{-t+6}{5} & 0 \\ 0 & 1 & 0 & \frac{-t+6}{5} & 0 \\ 0 & 0 & 1 & \frac{t-1}{5} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

このとき,この方程式の解は

$$c \begin{pmatrix} \frac{t-6}{5} \\ \frac{t-6}{5} \\ \frac{-t+1}{5} \\ 1 \end{pmatrix}$$

となるが、第3成分と第4成分を入れ替えて以下が元の方程式の解となる

$$x = c \begin{pmatrix} \frac{t-6}{5} \\ \frac{t-6}{5} \\ 1 \\ \frac{-t+1}{5} \end{pmatrix}$$

ただしcは任意定数.

(3) (別解)

$$\begin{pmatrix} \mathbf{a} \ \mathbf{b} \ \mathbf{c} \ \mathbf{d} \ \begin{vmatrix} 0 \\ 0 \\ 0 \\ 0 \ \end{vmatrix} = \begin{pmatrix} 1 & 4 & 5t & 30 & 0 \\ 3 & 2 & t+4 & 10 & 0 \\ 2 & 3 & 2t+3 & 15 & 0 \\ 4 & 1 & -t+6 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 4 & 5t & 30 & 0 \\ 0 & -10 & -14t+4 & -80 & 0 \\ 0 & -5 & -8t+3 & -45 & 0 \\ 0 & -15 & -21t+6 & -120 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 4 & 5t & 30 & 0 \\ 0 & -10 & -14t+4 & -80 & 0 \\ 0 & 0 & -t+1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$1. t = 1 のとき$$

$$\begin{pmatrix} a \ b \ c \ d & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & 5 & 30 & 0 \\ 0 & -10 & -10 & -80 & 0 \\ 0 & 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 4 & 5 & 30 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 8 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

したがって

$$\boldsymbol{x} = c \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix}$$

ただしcは任意定数.

2. $t \neq 1$ のとき

$$\begin{pmatrix} a \ b \ c \ d & 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & 5t & 30 & 0 \\ 0 & -10 & -14t + 4 & -80 & 0 \\ 0 & 0 & -t + 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 4 & 5t & 30 & 0 \\ 0 & 1 & \frac{7t - 2}{5} & 8 & 0 \\ 0 & 0 & -t + 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & \frac{-3t + 8}{5} & -2 & 0 \\ 0 & 1 & \frac{7t - 2}{5} & 8 & 0 \\ 0 & 0 & -t + 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & \frac{-3t + 8}{5} & -2 & 0 \\ 0 & 1 & \frac{7t - 2}{5} & 8 & 0 \\ 0 & 0 & -t + 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & \frac{-3t + 8}{5} & -2 & 0 \\ 0 & 1 & \frac{7t - 2}{5} & 8 & 0 \\ 0 & 0 & 1 & \frac{-5}{-t + 1} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & \frac{-t + 6}{t + 1} & 0 \\ 0 & 1 & 0 & \frac{-t + 6}{t + 1} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

したがって

$$x = c \begin{pmatrix} \frac{t-6}{-t+1} \\ \frac{t-6}{-t+1} \\ \frac{5}{-t+1} \\ 1 \end{pmatrix}$$

ただし c は任意定数.

区	分	標準的な解答例又は出題意図
問題3 (情報基礎	<u>*</u> 1)	出題意図
		フィボナッチ数列を題材として、再帰計算、メモ化、べき乗計算の高速化の方法と、
P., 1		それらの計算量についての知識と理解度を問う。
	91	解答例
	A	(1) f(n-1) + f(n-2) (または f(n-2) + f(n-1))
	×	(2) a[i] = a[i-1] + a[i-2] (または a[i] = a[i-2] + a[i-1])
		(3) O(n): 第 n 項までの配列の各要素が高々定数回参照 (書き込み 1 回、加算時に
		最大 2 回参照) されるため。 (4) (c) Y, X, Y (または X, Y, Y) (d) X, X, X
		(5) $O(\log n)$: 関数 \mathbf{h} の時間計算量は A^n の時間計算量で抑えられ、 A^n は $O(\log n)$ 回の行列の乗算で計算できるため。
	390	ショカシ未発では発できるため。
8		
		*
es e		
	1 8 7	

区 分	標 準 的 な 解 答 例 又 は 出 題 意 図
問題4 (情報基礎2)	出題意図: グラフ探索問題を題材に, データ構造とアルゴリズムに関する知識と理解度を問う.
	(1) (ア) v (イ) g[u] (ウ) newElement (エ) u (オ) g[v] (カ)newElement
	(2) グラフを表現するために、隣接行列では頂点数の二乗のオーダーのメモリ量が必要であるのに対して、隣接リストでは、辺数のオーダーのメモリ量ですむ. 疎なグラフを表現する場合に、隣接リストの方が隣接行列よりもメモリ効率が良いという利点がある. (115 文字)
	(3) (キ) dequeue() (ク) dist[currentVertex]+1 (ケ) enqueue(adjVertex)
	(4) 0 0
	41 21 11 62 52 32 73
	 (5) 各頂点および各辺はたかだか 1 回ずつ探索されるため、漸近計算量は O(N+M)である.
	•