Name :	A
Roll No. :	
Inviailator's Signature :	

2011 SOIL MECHANICS - II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

[Graph sheet(s) will be supplied by the institution on demand]

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any **ten** of the following:

 $10 \times 1 = 10$

- i) In the light compaction test, the number of blows used pre layer is
 - a) 15

b) 25

c) 30

- d) 35.
- ii) The use of sheep's foot rollers to compact cohesionless soils is
 - a) very effective
- b) moderately effective
- c) effective
- d) ineffective.

6010 [Turn over

- iii) When consolidation of saturated soil sample take place, the degree of saturation
 - a) decreases
 - b) increases
 - c) remains constant
 - d) decreases initially and then increases.
- iv) Which soil parameter is considered as a measure of the degree of over-consolidation?
 - a) Pre-consolidation pressure
 - b) Compression index
 - c) Over-consolidation ratio
 - d) Coefficient of consolidation.
- v) The liquid limit of a saturated normally consolidated soil is 50%. The compression index of the soil for the virgin compression curve will be
 - a) 0.36

b) 0.505

c) 0.605

- d) 0.705.
- vi) A clay deposit subjected to pressure in the past which is more than the present overburden pressure is known as
 - a) Normally consolidated soil
 - b) Over-consolidated soil
 - c) Under-consolidated soil
 - d) none of these.

- vii) What is the result of increase the compacting effort in a fixed amount of soil?
 - a) Maximum dry density and OMC both increase
 - b) Maximum dry density increases but OMC decreases
 - c) Maximum dry density decreases but OMC increases
 - d) Maximum dry density and OMC both decrease.
- viii) Shearing strength of cohesion-less soil depends upon
 - a) Dry density
- b) Void ratio
- c) Loading rate
- d) Normal stress.
- ix) Most of the shear tests are done in equipment which are
 - a) Stress controlled
- b) Strain controlled
- c) Drainage controlled
- d) Volume controlled.
- x) In unconfined compression test, alround stress is
 - a) Equal to major principal stress
 - b) Half the major principal stress
 - c) Equal to zero
 - d) Equal to intermediate principal stress.
- xi) One of the graphical methods for earth pressure determination is
 - a) Newmark's influence chart method
 - b) Mohr diagram method
 - c) Culmann's method
 - d) Taylor's method.

- xii) To avoid any tensile pressure generation beneath the gravity retaining wall the resultant force should pass within
 - a) b/3 to 2b/3
- b) 0 to b/2.
- c) b/2 to b/4
- d) 0 to b.
- (xiii) The structure which derives its stability due to self weight is
 - a) Sheet pile wall
 - b) Bulk head wall
 - c) Cantilever retaining wall
 - d) Masonry retaining wall.
- xiv) Bishop's simplified method of slices satisfies
 - a) All the statical equilibrium condition
 - b) Only the vertical force equilibrium condition
 - c) Only the moment equilibrium condition
 - d) All the conditions except the horizontal force equilibrium condition.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Derive the expression : $P_A = \sigma_Z K_A 2c$. $\sqrt{K_A}$, where symbols have usual meaning.
- 3. A soil specimen is of 5m height with a load of $10kN/m^2$. If its Young's modulus is $20kN/m^2$ then, what should be the settlement on this sample?

6010

- 4. At a depth of 5.8m from the ground level at a site, a shear test gave a torque value of 6kN.cm. The vane is 12 cm high and 8 cm across the blades. Compute the shear strength of the soil.
- 5. A direct box test when conducted on remoulded sample of sand gave the following observations at the time of failure:

Normal load 6 = 288 N

Shear Load = 173 N

Cross-section of the sample is 36 cm²

Determine

- (a) angle of internal friction φ
- (b) magnitude and direction of principal stresses in the zone of failure.

Use Mohr's circle method and use graph sheet.

- 6. Explain the assumptions made by Rankine & Columb in the development of earth pressure theories.
- 7. State Terzaghi's theory of one dimensional consolidation. Establish the consolidation settlement equation.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Calculate the total active thrust on a vertical wall 5m high, retaining a sand of density 1.7 gm/cc for which φ = 35°, the surface of the sand is horizontal and the water table is below the bottom of the wall.
 - b) Determine the thrust on the wall if the water table rises to a level 2m below the surface of the sand. The saturated density of the sand is 2gm/cc.

- 9. a) Two identical specimens of a soil were tested in triaxial apparatus. First specimen failed at a deviator stress of 770 kN/m² when the cell pressure was 200 kN/m². The second specimen failed at a deviator stress of 1370 kN/m² under a cell pressure of 400kN/m². Determine the value of c and φ of the soil.
 - b) Compare and explain the special features of triaxial test and direct shear test.
 - c) Explain briefly unconfined compression test. 5 + 5 + 5
- 10. The following data have been obtained in a standard Proctor Test conducted on a soil in the laboratory:

Water content %	5.20	8.81	11.25	13.05	14.40	19.25
Weight of container and compacted soils	3.580	3.730	3.932	4.000	4.007	3.907

The specific gravity of the soil particles is 2.77. The container is 944 cm³ in volume and its weight is 1.978 kg. Plot the compaction curve and determine the optimum water content. Also compute the Void ratio and degree of Saturation at optimum condition.

11. A coffer dam will be constructed of cantilever sheet piling. It will retain soil (bulk density of 2.4 gm/cc and an angle of internal friction 32°), up to a height of 6m. Find the depth to which the piles will be driven assuming that 2/3rd of theoretical passive resistance is developed on the embedded length.

12. A consolidation test was made on a saturated soil having initial thickness of 2 cm. Its natural moisture content was 70 % and the sp. Gr. 2.70. The following results were obtained:

Pressure in kg/cm ²	Compression in cm × 10 ⁻⁴
0.2	90 × 10 ⁻⁴
0.5	252×10^{-4}
1.0	406 × 10 ⁻⁴
2.0	676 × 10 ⁻⁴
4.0	759 × 10 ⁻⁴

Find out the void ratio at each increment of load. What will be the value of a_v and m_v for the increase in pressure from 1.0 to 2.0 kg/cm².

13. Compute the factor of safety against sliding for the cut shown along the interface between dry clay and shale in the figure below:

$$\gamma_{\rm clay} = 19 {\rm kN/m^3}$$

Interface properties : $C = 30kN/m^2$, $\phi = 10^\circ$

