Comprehension Report-1-1

Base Paper:

Title: Simple & Sharp Analysis of k-means | Author(s): Va'clav, 2020, ICML

Report Objectives:

Fundamental understanding of approximation algorithms w.r.t k-means problem statement (Lloyd's algorithm, kmeans++, kmeans||) along with understanding of their approximation guarantees to the extent of practical application.

Introduction:

k-means|| [2], is a **distributed** variant of the k-means++ [3] algorithm which is an approximation algorithm for the k-means problem. The most popular solution to k-means is more formally known as Lloyd's algorithm (Which is also an approximation algorithm). This paper provides an improvement of the approximation guarantee of k-means||'s over-seeding step and proves that this bound is tight. Additionally, the Author of this paper also provides a refined simple analysis of the initial over-seeding procedure, followed by a sharp analysis of lower and upper bounds of the new approximation guarantee.

Preliminary Notation:

Let $X\subset\mathbb{R}^d$, we call $x\in X$ a point and \mathbb{R}^d denotes a euclidean space of d-dimensions .

For $Y\subset X$ we denote its mean vector as follows, $\mu_Y=\frac{1}{|Y|}\sum_{y\in Y}y$, where μ_Y is called the **centroid** of Y. The distance between two points $x_i,x_j\in X$ is denoted as, $||x_i-x_j||=\sqrt{< x_i-x_j,x_i-x_j}>$. The distance between a point x and a set of points Y is, $d(x,Y)=\min_{y\in Y}||x-y||$. We denote the cost function between $X,C\subset R^d$ as, $\varphi_X(C)=\sum_{x\in X}\min_{c\in C}||x-c||^2$.

k-means problem formulation:

Let Σ be the power-set of \mathbb{R}^d , according to $\sigma-$ algebra. Lets call $\Gamma^k\subset \Sigma$, where $\forall \gamma\in \Gamma^k, |\gamma|=k\in \mathbb{Z}$. Given a $X\subset \mathbb{R}^d, k\in \mathbb{Z}$. Find a set $C\in \Gamma^k$ such that we get $\min_{C\in \Gamma^k}\varphi_X(C)$. We call C^* the optimal set of centers and φ^* the optimal cost. This problem has shown to be NP-Hard. [4]

k-means++ (Brief Overview):

The goal of k-means++ is to provide an approximation guarantee that is within constant bounds of the optimal solution of the k-means problem **for all instances** (meaning worst case guarantee).

It has been proven to be $O(\log(k))$ -competitive to the optimal solution of k-means [3]. The analysis of k-means++ relies on the proof of 3 lemmas, which are as follows: (Note: 1, 2 are proved in notes)

- 1. Let $z\in X\subset \mathbb{R}^d$ then, $\sum arphi_X(z)-\sum arphi_X^*=|X|||\mu_X-z||^2$ [3]
- 2. Let $A\subset\mathbb{R}^d$ and $p\in A$ be a point that is sampled at random according to the uniform distribution. Then, $E[\varphi_A(p)]\leq 2\varphi_A^*$. [1, 3]
- 3. Let $A\subset\mathbb{R}^d$ and $p\in A$ be a point that is sampled at random according to the D^2- distribution .i.e. $\frac{\varphi_p(C)}{\varphi_A(C)}$. Let $C\subset\mathbb{R}^d$ (a random set of centers). Then, $E[\varphi_A(C\cup p)]\leq 8\varphi_A^*$. [1, 3]

k-means++ initialization algorithm: [2, 3]

function k-means-initialization(X, k):

- 1. $C \leftarrow \!\! \{ \, x \in X \}$, where x is a point sampled randomly according to the uniform distribution of X
- 2. while |C| < k do
- 3. $C \leftarrow C \cup x$, where $x \in X \sim D^2$
- 4. end while
- 5. Lloyd's algorithm is then run on C as the initialization of the set of centers for X, k.

Reasoning behind ${\cal D}^2$ -distribution:

Additional note on step 5: At each iteration of t-loop we're picking multiple points in X based on the probability of picking that point (e.g if x in X has 0.9 probability it is very likely to be added to C' but there is a 0.1 chance that it is NOT added to C'). D^2 will give higher weights to those points in X that are further away from the current C.

k-means | Algorithm: [1,2]

function k-means|| (X, k):

1.
$$\ell \leftarrow \Omega(k)$$

2.
$$C \leftarrow \emptyset$$

3.
$$C \leftarrow C \cup x$$
, where $x \in X \sim U$

4.
$$\psi \leftarrow \varphi_X(C)$$

5. for $O(log\psi)$ times do

6.
$$C' \leftarrow \emptyset$$

7.
$$C' \leftarrow C' \cup \{ \ x | \forall x \in X, x \text{ is sampled according to } p_x = \min(1, \frac{\ell \varphi_x(C)}{\varphi_X(C)}) \ \}$$

8.
$$C \leftarrow C \cup C'$$

9. end for

10.
$$W_C \leftarrow \{w_c | \forall c \in C, w_c := \sum_{x \in X} 1 \{\varphi_x(c) = \min_{c \in C} ||x - c||^2 \}\}$$

11. Re-cluster C into k-clusters using weights W_C in any weighted clustering algorithm (e.g. k-means++)

12. return C

Warmup Simple Analysis:

Theorem 1:

Suppose $t=O(\log \frac{\varphi_X^*}{\varphi^*})$ & $\ell \geq k$, then overseeding gives C s.t. $E[\varphi_X(C)]=O(\varphi^*)$.

Note: $\exists arphi_X^*
eq arphi^*$. But, $arphi_X\left(\mu_X\right) = arphi_X^*$.

Definition 1: (Settled Clusters)

Let
$$A\subset \Sigma_X$$
 s.t. $\mu_A\in C^*\in \Gamma^k\subset \Sigma_{\mathbb{R}^d}$ s.t. $|C^*|=k$.

A is settled w.r.t $C\in\Gamma^k\iff arphi_A(C)\le 10arphi_A^*.$ Otherwise, A is unsettled. (10?)

Lemma 4:

Let $C \in \Gamma$ be current set of centers, during overseeding of k-means $|\cdot|$.

Probability of A being unsettled at next overseeding sampling step is $exp(-\frac{\ell \varphi_A(C)}{5\varphi_X(C)})$.

Proof of Lemma 4:

This proof is based on the following, Lemma 3 (L-3), Markov's Inequality (M.I.), Definition 1(D-1) & $1+x\leq e^x$. Let Y be a +r.v. & a>0

Let C be current centers during over-seeding, $p \in X$ currently sampled point (Acc. to 7.).

$$C' = C \cup p$$
 (de-notion)

M.I. states,
$$P(Y \geq a) = rac{E[Y]}{a}$$
.

$$Y=arphi_A(C')$$
 & $a=10arphi_A^*$. (According to D-1).

$$\therefore P(\varphi_A(C') \ge 10\varphi_A^*) \le \frac{E[\varphi_A(C')]}{10\varphi_A^*} \le \frac{8}{10}$$

$$\implies P(\varphi_A(C') < 10\varphi_A^*) \ge \frac{1}{5}.$$

 $\exists A' \subset A$ such that A becomes "settled".

.i.e.
$$rac{1}{5} \leq rac{arphi_{A'}(C')}{arphi_{A}(C')}$$
 , where

$$arphi_{A'}(C') = \sum \{ orall arphi_{a'}(C') | a' \in A', arphi_{a'}(C') \leq 10 arphi_A(C') \}$$

(Note: best to read as probability of picking A' from A s.t. A is settled is at-least).

We know from step-7 in k-means || algorithm that each point $x\in X$ is sampled with $p_x=\min(1,\frac{\ell\varphi_x(C')}{\ell\sigma_X(C')})$.

$$\therefore 1 \leq \frac{\ell \varphi_x(C')}{\varphi_X(C')} \Longrightarrow x$$
 is sampled.

Which means **if**, $\frac{\varphi_X(C')}{\ell} \leq \varphi_x(C')$ and $x \in A'$ we sample x and say that A is settled.

Else,

$$P(Y \geq a) \leq \prod_{x \in A'} (1 - rac{\ell arphi_x(C')}{arphi_X(C')})$$

$$\leq \exp(-\sum_{x\in A'}rac{\ell arphi_x(C')}{arphi_X(C')})$$

$$\leq \exp(-\tfrac{\ell \varphi_A(C')}{5\varphi_X(C')}) \ \ \ (\mathsf{due} \ \mathsf{to} \ 1 + x \leq e^x) \ \Box$$

Proof of Theorem 1: (Uses Assumption)

Preliminary Notation: From here on φ_Y^t means "cost of point set Y after t sampling rounds. φ_U^t denotes total cost of unsettled clusters after t iterations.

Proposition 1: (Used as assumption, a.k.a ~Theorem 2 from [3])

$$E[\varphi_U^{t+1}] \leq (1 - \frac{1}{50})\varphi_U^t$$
.

From Lemma 2, we know that after step 3 in k-means $||E[\varphi_X(c)]| \leq 2\varphi_X(\mu_X)$.

Note: Proof of Lemma 2 in notes is for = not for \leq .

$$\therefore E[arphi_U^{t+1}] \leq rac{49}{50} arphi_U^t + 20 arphi^*$$

 \Longrightarrow for T times (total iterations) we will get,

$$E[arphi_U^T] \leq 2(rac{49}{50})^T arphi_X(\mu_X) + 20 arphi^* \sum_{t=0}^{T-1} (rac{49}{50})^t$$

$$\leq 2(rac{49}{50})^Tarphi_X(\mu_X)+1000arphi^*.$$

$$\therefore T = O(log rac{arphi_X(\mu_X)}{arphi^*})$$

$$\because arphi^T \leq arphi_U^T + 10 arphi^*$$
 yields desired claim. \Box

References:

- 1. "Simple & Sharp Analysis of k-means||"- Va'clav, 2020
- 2. "k-means++: The Advantages of Careful Seeding"-Authur & Vassilvitskii, 2007
- 3. "Scalable K-Means++" -Bahmani, 2012
- 4. NP-hardness of Euclidean sum-of-squares clustering (Aloise, 2009; Mahajan, 2009)