15.3

```
float data[1024], buf[10];
for(int i = 0; i < 10; i++) buf[i] = data[32*i];
MPI_Send(buf, 10, MPI_FLOAT, dst, tag, MPI_COMM_WORLD);</pre>
```

15.13

1

在a=b=l=1,针的数量为1000000的情况下,程序运行结果如下:模拟运行时间为0.126000s, $\pi=3.142062$,精确到小数点后两位

```
time: 0.126000s
Pi = 3.142062请按任意键继续. . . ■
```

2

针数为 10^3 , 10^4 , 10^5 , 10^6 , 10^7 , 处理器数为2, 4, 6, 8时, 程序运行时间如下:

mpi:

(处理器数,针数)->时间	10^{3}	10^4	10^5	10^{6}	10^7
2	0.000596	0.000683	0.006205	0.061909	0.621716
4	0.001063	0.000384	0.003112	0.032425	0.323915
6	0.000947	0.000344	0.002318	0.023835	0.239409
8	0.001662	0.000408	0.001864	0.019416	0.201228

openmp:

(处理器数,针数)->时间	10^3	10^4	10^5	10^6	10^7
2	0.000385	0.000673	0.006805	0.062617	0.624714
4	0.000336	0.000448	0.003639	0.035880	0.330013
6	0.000251	0.000396	0.003239	0.024227	0.242950

(处理器数,针数)->时间	10^3	10^4	10^5	10^6	10^7
8	0.000297	0.000450	0.002242	0.020388	0.204005

针对针数 10^3 , 10^7 , 由上表数据可得程序运行时间与所用处理器数关系图如下:

由图可以看到,当针数为 10^3 时,程序运行时间并不随处理器增加而近似线性减少,会出现较大波动,甚至当处理器较多时,程序运行时间反而增加,此时可扩展性差。而当针数为 10^7 时,程序运行时间随处理器增加而近似线性减少,可扩展性较好。

因为当针数为 10^3 时,程序运行时间较短,实际计算的时间在总时间开销中并不占主导地位,处理器数增加减少的计算时间很可能不如其增加的通信开销等,导致程序运行时间增加。而当针数为 10^7 时,程序运行时间较长,处理器数增加会减少计算时间,远大于处理器数增加引起的通信开销的增加,导致程序运行时间减少。