

TIM PENGAJAR

Sachnaz D. Oktarina Ph.D
Lecture & Practical W1-3

Akbar Rizki, M.Si Lecture & Practical W4-5

Rahma Annisa M.Si., M.Act.Sc Lecture & Practical W6-7

Dr. Bagus SartonoKoordinator MK

Lecture & Practical W8-10

SYLLABUS

W	Topik	Detail	Pemangku
1	Pendahuluan	 Penjelasan kontrak perkuliahan Permasalahan umum optimisasi dalam Statistika Review OLS, MLE, dsb Konvergensi 	Sachnaz D. Oktarina Ph.D
2	Pencarian Akar Persamaan	Solusi SPL (system persamaan linear) secara numerik	Sachnaz D. Oktarina Ph.D
3	Pencarian Akar Persamaan	 Solusi akar persamaan non-linear Pencarian nilai x yang memenuhi f(x) = 0 Metode Bisection Metode Newton Metode Secant 	Sachnaz D. Oktarina Ph.D

SYLLABUS

W	Topik	Detail	Pemangku
4	Optimisasi tak berkendala - Untuk Satu Peubah	 Direct Search Pencarian akar persamaan x yang meminimumkan f(x) Fibonacci Interpolasi Kuadratik 	Akbar Rizki M.Si
5	Optimisasi tak berkendala - Untuk Dua Peubah	 Direct Search Pencarian akar persamaan (x1, x2) yang meminimumkan f(x1, x2) Gradient Descent 	Akbar Rizki M.Si
6	Unconstraint Optimization	Gradient Method untuk 1 peubah	Rahma Annisa M.Si., M.Act.Sc
7	Unconstraint Optimization	Gradient Method untuk 2 peubah	Rahma Annisa M.Si., M.Act.Sc

SYLLABUS

W	Topik	Detail	Pemangku	
8	Optimisasi Berkendala	Linear ProgrammingSimplex	Dr. Bagus Sartono	
9	Optimisasi Berkendala	- Non-linear Analysis	Dr. Bagus Sartono	
10	Pengenalan Metaheuristik	Simulated AnnealingEvolutionary	Dr. Bagus Sartono	
11-14		PROJECT ACCOMPLISHMENT	all	
UAS				

KOMPONEN PENILAIAN

4 x QUIZ

30%

Q1 = W3

Q2 = W5

Q3 = W7

Q4 = W10

UAS

20%

Kisi-kisi UAS akan meliputi seluruh materi selama 1 semester

PROJECT

50%

20% presentasi 30% publikasi

- Projek dilaksanakan secara kelompok
- 1 kelompok terdiri dari 5 orang
- Topik dipilih dari 4 topik utama (tbc)
- Naskah disubmit ke jurnal nasional

RUJUKAN LITERATUR

INTRODUCTION T₀ **OPTIMIZATION METHODS** AND THEIR **APPLICATION** IN **STATISTICS** B. S. Everitt

OPTIMIZATION METHODS FOR APPLICATIONS IN STATISTICS James E. Gentle George Mason University (CARCLE Associal Grade) All Rights Reserved.

OPTIMISASI STATISTIKA

Seorang pengusaha menjual jagung dan gula menggunakan truk. Pengusaha tersebut membeli jagung dengan harga Rp5.000 per kilogram dan gula Rp7.000 per kilogram. Modal yang tersedia Rp1.770.000. Diketahui kapasitas maksimum truk sebagai moda transportasi di pasar adalah 300 kg. Jika harga jual jagung Rp5.500 per kilogram dan gandum Rp7.200 per kilogram maka laba maksimum yang diperoleh adalah

- a. Rp. 180.000
- b. Rp. 350.000
- c. Rp. 109.500
- d. Rp. 500.000
- e. Rp. 560.000

Apakah permasalahan tersebut merupakan kasus optimisasi statistika?

LANTAS OPTIMISASI STATISTIKA (?)

- Statistics > optimal decision making -> under uncertainty in various contexts.
- Data collection, analysis, and interpretation of available data.
- Modern theory of statistics → optimization techniques → implementation of statistical procedures.
- Example:
 - estimation and testing hypotheses
 - linear regression
 - analysis of variance
 - design of experiments

- Least Square
- Maximum Likelihood
- etc

LANTAS OPTIMISASI STATISTIKA (?)

METODE PENDUGAAN

In a quest to find the estimates of parameter of certain population distribution

LEAST SQUARE

MINIMIZATION PROBLEM

MAXIMUM LIKELIHOOD

MAXIMIZATION PROBLEM

SYARAT PERLU

$$\frac{df}{d\theta} = 0$$

SYARAT CUKUP

$$\frac{d^2f}{d\theta^2} > 0$$
, minimization

$$\frac{d^2f}{d\theta^2} < 0 , maximization$$

Dengan menggunakan metode pendugaan ordinary least square, buktikan bahwa penduga dari parameter β_1 adalah \hat{b}_1 pada analisis regresi sederhana?

$$\widehat{b_1} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

RESIDUAL MINIMIZATION

• Suppose linear regression model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

 Good estimator -> how closely the model agrees with the observed data -> choose values for the two parameters -> <u>minimize</u> the chosen measure of fit

minimize
$$S = \sum_{i=1}^{n} \in_{i}^{2}$$

• Syarat perlu; cari nilai penduga yang membuat turunan pertama S = 0

RESIDUAL MINIMIZATION

• Syarat cukup: Hessian matrix solvable (definit positif?)

$$H = \begin{bmatrix} \frac{\partial^2 S}{\partial \beta_0^2} & \frac{\partial^2 S}{\partial \beta_0 \partial \beta_1} \\ \frac{\partial^2 S}{\partial \beta_1 \partial \beta_0} & \frac{\partial^2 S}{\partial \beta_1^2} \end{bmatrix}$$

$$= \begin{bmatrix} 2n & 2\sum_{i=1}^{n} x_i \\ 2\sum_{i=1}^{n} x_i & 2\sum_{i=1}^{n} x_i^2 \end{bmatrix}$$

Apakah matrix ini definit positif?

Dengan menggunakan metode pendugaan maximum likelihood, buktikan bahwa penduga dari parameter λ pada fungsi kepekatan peluang distribusi Poisson adalah rataan contohnya?

$$\hat{\lambda} = \frac{\sum_{i=1}^{n} x_i}{n}$$

LIKELIHOOD MAXIMIZATION

 Likelihood function for a sample of n values derived from Poisson Distribution:

$$L(x_1, x_2, \dots, x_n; \lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i}$$

Transform to log-likelihood function:

$$L = log_e \left(\prod_{i=1}^n \lambda e^{-\lambda x_i} \right)$$

Optimization problem:

maximize
$$L = nlog_e \lambda - \lambda \sum_{i=1}^n x_i$$

Apakah syarat perlu dan syarat cukup nya terpenuhi?

ANALISIS NUMERIK PADA OPTIMISASI STATISTIKA

 Pada umumnya diproses secara iterative yang menghasilkan sekuens solusi yang mana tiap solusi tersebut memberikan aproksimasi nilai/ pendekatan lebih baik yang mendekati parameter yang memenuhi kriteria optimasi.

ors containing the procedures requ

Kasus minimisasi

• STOP CONDITION:

SEKIAN TERIMA KASIH