Problem

$_{\text{Let}}$ $S=\{\langle M \rangle | \ M \text{ is a TM and } L(M)=\{\langle M \rangle \} \}.$ is Turing-recognizable.

Step-by-step solution

Step 1 of 1

S and \overline{S} are not recognizable can be proof by following method:

Proof:

This can be proved by reduction that is by reducing $\overline{A_{TM}}$ to \overline{S} and $\overline{A_{TM}}$ to \overline{S} . At first it is necessary to show that $\overline{A_{TM}} \leq_m S$.

Consider a function f having input $\langle M, w \rangle$ and output M' which works as follow on input x.

1. When $x == \langle M' \rangle$

ACCEPT

2. When x == 0 then execute M on input w.

If w is accept the ACCEPT else REJECT

3. REJECT.

It is a many-one reduction from $\overline{A_{TM}}$ to S. When $\langle M, w \rangle \in A_{TM}$ then it shows that w is accepted by M. According to M definition it can be states that $L(M) = \{\langle M' \rangle, 0\} \neq \{\langle M' \rangle\}$. When $\langle M, w \rangle \notin A_{TM}$ then it shows that w is not accepted by M. As 0 is not acceptable by M therefore $L(M') = \{\langle M' \rangle\}$

Now show $\overline{A_{TM}}$ to \overline{S} . Consider another function f having input $\langle M, w \rangle$ and output M which works as follow on input x.

- 1. When $x == \langle M" \rangle$
- 2. Execute M on input w. If w is accept the **ACCEPT** else **REJECT**
- 3. REJECT.

It is also a many-one reduction from $\overline{A_{TM}}$ to \overline{S} . When $\langle M, w \rangle \notin A_{TM}$ then it shows that w is not accepted by M. According to M definition it can state that M is not acceptable by M therefore M $\notin S$. When $\langle M, w \rangle \in A_{TM}$ then it shows that w is accepted by M then according to M definition M is acceptable by M.

Comment