Distributed Algorithms vs Descriptive Combinatorics

Jan Grebík, Vašek Rozhoň

some slides (the ones with nice pictures) taken from a presentation of **Jukka Suomela** https://jukkasuomela.fi/landscape-of-locality/

The area started by an insightful paper of **Anton Bernshteyn**

The Plan

- Define the LOCAL model of distributed computation and give you highlights of the work done in past few years.
- Realize I don't have enough time left.
- A simple example from descriptive combinatorics, some pictures.

The LOCAL Model of Distributed Graph Algorithms

- Undirected graph on *n* nodes
- One computer in each node
- Synchronous message passing rounds
- Unbounded message size and computation
- Initially, nodes know only (an upper bound on) n and perhaps the max degree Δ
- Symmetry breaking:
 - either a random string (randomized algs)
 - unique identifier from $n^{O(1)}$ -sized range
- In the end, each node should know its part of output
- Time complexity: number of rounds

The LOCAL Model of Distributed Graph Algorithms

"unbounded message size and computation":

deterministic **LOCAL** *t*-round algorithm is a function mapping *t*-hop neighbourhoods to labels.

Some Highlights

From now on:

- the maximum degree is bounded by $\Delta = O(1)$.
- we care about so-called locally checkable problems (LCLs)
 - those include vertex & edge coloring, perfect matching, maximal independent set, list coloring
 - o in general: the solution at a node can be checked by looking at constant radius around it
- It turns out that under above conditions, we can 'classify' possible local complexities of LCL problems! For example: no problems of complexity log^{0.5}n
- This holds especially if we further restrict ourselves to: paths, grids, trees

Try to guess: what are possible deterministic/randomized complexities of a local problem on an oriented path?

(2-coloring, 3-coloring, 4-coloring, maximal independent set, maximum independent set, perfect matching, list coloring, ...)

LOCAL, paths

LOCAL, grids

LOCAL, trees

If these pictures are the only thing you remember

from this talk, I will still be very happy. :)

Descriptive Combinatorics

A riddle: Color every point of a unit cycle such that

- 1) no two vertices 1 radian apart have the same color
- 2) vertices of the same color are finite union of intervals

How many colors do you need?

Bernshteyn's Insightful Paper

In general,

- 1. [Chang, Pettie] Any local problem solvable in $O(\log^* n)$ rounds can be solved by first finding a maximal independent set in $G^{O(1)}$ and then doing additional O(1) distributed steps.
- 2. [Kechris, Solecki, Todorcevic] One can always find a maximal independent set in any Borel graph. By definition, you can do local constructions requiring *O(1)* distributed steps.
- [Bernshteyn] Hence, LOCAL(O(log* n)) ⊆ BOREL!

[Bernshteyn] For similar reasons, RLOCAL(poly loglog(n)) \subseteq MEASURE.

Big Picture for Oriented Paths with Inputs

Big Picture for Oriented Grids

Big Picture for Regular Trees

"Locality is a field. "

(paraphrasing Ronitt Rubinfeld)

