

8. Expectation-Maximization

Table of Contents

- Expectation-Maxmization
 - Parameter estimation
 - Clustering

Parameter estimation with ML

- Two coins are present
- One is randomly selected and tossed 10 times
- Coins are selected 5 times
 - So a total of 5*10 tosses are performed

Maximum likelihood

Probability of coin A tossing a Head

5 sets, 10 tosses per set

Coin A	Coin B		
	5 H, 5 T		
9 H, 1 T			
8 H, 2 T			
	4 H, 6 T		
7 H, 3 T			
24 H, 6 T	9 H, 11 T		

$$\hat{\theta}_A = \frac{24}{24+6} = 0.80$$

$$\hat{\theta}_{B} = \frac{9}{9+11} = 0.45$$

Probability of coin B tossing a Head

Parameter estimation with EM

- What if we don't know which coin has been selected?
- The selected coin is the hidden variable (or latent variable)
- EM can be used to estimate $\hat{\theta}_{A}$ and $\hat{\theta}_{B}$
- The coin tossing can be modelled by the binomial distribution
 - Binomial distribution is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a binary question (yes/no, Head/Tail)

Parameter estimation with EM

ullet Initial step: Initialize $\hat{ heta}_{\!\scriptscriptstyle A}$ and $\hat{ heta}_{\!\scriptscriptstyle B}$

E-step:

• Using the binomial distribution, calculate the **number of expected Heads and tails** for each Coin ($\hat{\theta}_A$, $\hat{\theta}_B$) by observing the data. Here, the log **likelihoods** are computed using the pdf of binomial distribution.

M-step:

- Update $\hat{ heta}_{\!\scriptscriptstyle A}$ and $\hat{ heta}_{\!\scriptscriptstyle B}$ by the ratio of heads from the expectation values
- Iteratively perform E-M until $\hat{\theta}_{A}$ and $\hat{\theta}_{B}$ converges to some threshold value

1st iteration of Coin E-M parameter estimation

Practice 1 – Calculating log likelihood of coins

- For $\hat{\theta}_{A}$, the binomial distribution is as follows
- $\hat{ heta}_{\!\scriptscriptstyle A}$ Probability of coin A tossing a Head

- $\binom{N}{k} p^k q^{N-k} = \frac{N!}{k!(N-k)!} p^k q^{N-k}$
- Here, N is the number of trials, k the number of heads
- p and q are $\hat{ heta}_{\!\scriptscriptstyle A}$ and 1- $\hat{ heta}_{\!\scriptscriptstyle A}$
- Eg) H=5, and $\hat{\theta}_A = 0.6$ (initialized value) $p(5|\hat{\theta}_A) = {10 \choose 5} 0.6^5 0.4^{10-5} = \frac{10!}{5! (10-5)!} 0.6^5 0.4^5$
- Due to many multiplications, we calculate the log-likelikhood
 - $ln(\binom{N}{k}p^kq^{N-k}) = \binom{N}{k} + k * ln(p) + (n-k) * ln(1-p)$
- Similarly, calculate the log-likelihood of $\hat{\theta}_{\!\scriptscriptstyle B}$

Practice 2 – Calculating the expectations of Head and tails

- Expectation of heads and tails are calculated based on the ratio of log likelihoods of coin A and coin B
 5 heads, 5 tails
- $E(H|\hat{\theta}_A) = W_A \times Observation (5,5)$
- $E(H|\hat{\theta}_{\scriptscriptstyle R}) = W_B \times Observation$ (5,5)

•
$$W_A = \frac{LL(\hat{\theta}_A)}{LL(\hat{\theta}_A)LL(\hat{\theta}_B)}$$
 $W_B = \frac{LL(\hat{\theta}_B)}{LL(\hat{\theta}_A)LL(\hat{\theta}_B)}$

- What are the values of W_A and W_b for observation (5, 5)?
- What are the expectation of H and T for $\hat{\theta}_A$ and $\hat{\theta}_B$ for observation (5,5)?

Practice 3 – Maximizing $\hat{\theta}_{A}$ and $\hat{\theta}_{B}$

• If you have calculated all the expectation values in the table, we can calculate a new $\hat{\theta}_{A}$ and $\hat{\theta}_{B}$ using the same technique as in MLE (generating the data for the right table is the key concept here)

When the coins are known

Coin A	Coin B	
	5 H, 5 T	
9 H, 1 T		$\hat{\theta}_{A} = \bar{2}$
8 H, 2 T		â
	4 H, 6 T	$\hat{\theta}_{\scriptscriptstyle B} = \bar{g}$
7 H, 3 T		
24 H, 6 T	9 H, 11 T	

When the coins are hidden

Coin A	Coin B		
≈ 2.2 H, 2.2 T	≈ 2.8 H, 2.8 T		
≈ 7.2 H, 0.8 T	≈ 1.8 H, 0.2 T		
≈ 5.9 H, 1.5 T	≈ 2.1 H, 0.5 T		
≈ 1.4 H, 2.1 T	≈ 2.6 H, 3.9 T		
≈ 4.5 H, 1.9 T	≈ 2.5 H, 1.1 T		
≈ 21.3 H, 8.6 T	≈ 11.7 H, 8.4 T		

$$\hat{\theta}_{A} = \frac{21.3}{21.3 + 8.6}$$

$$\hat{\theta}_{B} = \frac{11.7}{11.7 + 8.4}$$

Practice 4 – Improvement of $\hat{\theta}_{\!\scriptscriptstyle A}$ and $\hat{\theta}_{\!\scriptscriptstyle B}$

- The difference of $\hat{\theta}_{A}$ and $\hat{\theta}_{B}$ at each iteration is measured
- Until the difference becomes smaller than some threshold (i.e., converges), the E-M algorithm stops
- How many iterations are needed to converge with a threshold of 0.001?
- What are the final values of $\hat{\theta}_{A}$ and $\hat{\theta}_{B}$?

Plot

EM-clustering

- As we have seen, EM performs parameter estimation based on a statistical model
 - Binomial distributions (or mixtures)
 - Gaussian distributions
 - Poisson distributions
 - Etc.
- Calculating centroid of clusters (i.e., parameters) to maximize the probability of statistical models on the data is very popular

EM-clustering example

Initialize centroids of 5 clusters

1st iteration of EM

Final iteration of EM

EM-clustering with Iris data

- Clustering is usually performed on unlabeled data
- With labeled data, we can take advantage of label information for improved clustering quality
 - How?
- How well does EM-clustering perform on the iris data?

