Transport Layer - Additional Clarity Keywords Study-Ready Notes

Compiled by Andrew Photinakis

October 17, 2025

Contents

1	Trai	nsport Layer in Computer Networks
	1.1	Core Definitions
	1.2	Keyword Breakdown
	1.3	Stepwise Mechanism
	1.4	Examples & Applications
	1.5	Comparisons / Contrasts
	1.6	Analogies
	1.7	Visual / Diagram Description
	1.8	Concept Integration
	1.9	Summary & Study Aids

1 Transport Layer in Computer Networks

1.1 Core Definitions

- Transport Layer: Layer 4 of the OSI model responsible for end-to-end communication and data delivery between hosts.
- Segment: A unit of data encapsulated by the transport layer for transmission.
- Port: Logical endpoint identifying specific applications/services on a host.
- Flow Control: Mechanism to prevent sender from overwhelming the receiver.
- Error Control: Mechanism to detect and correct errors in transmitted data.

1.2 Keyword Breakdown

- TCP (Transmission Control Protocol): Connection-oriented, reliable, ensures ordered delivery.
- UDP (User Datagram Protocol): Connectionless, faster, but unreliable and unordered.
- Three-Way Handshake: Process to establish TCP connection (SYN, SYN-ACK, ACK).
- Checksum: Field used for error detection in segments/datagrams.
- Sliding Window: Technique for flow control and efficient data transmission.

1.3 Stepwise Mechanism

1. TCP Connection Establishment:

- Client sends SYN.
- Server responds with SYN-ACK.
- Client sends ACK; connection established.

2. Data Transmission:

- Segmenting large messages.
- Sending segments with sequence numbers.
- Receiver acknowledges received segments.
- Retransmit lost or corrupted segments.

3. Connection Termination:

• Four-way handshake: FIN, ACK, FIN, ACK.

1.4 Examples & Applications

- Web Browsing: HTTP/HTTPS over TCP.
- Video Streaming: UDP for live low-latency streams.
- Email: SMTP, IMAP, POP3 over TCP.
- Gaming: Real-time multiplayer using UDP.

1.5 Comparisons / Contrasts

- TCP vs UDP
 - TCP: Reliable, connection-oriented, slower.
 - UDP: Unreliable, connectionless, faster.

• Flow Control vs Congestion Control

- Flow Control: Manages sender vs receiver speed.
- Congestion Control: Manages network congestion to avoid packet loss.

1.6 Analogies

• Transport layer = postal service: ensures letters (data) reach the correct recipient (port) reliably (TCP) or quickly without guarantee (UDP).

1.7 Visual / Diagram Description

- TCP Three-Way Handshake diagram:
 - Client \rightarrow SYN \rightarrow Server
 - Server \rightarrow SYN-ACK \rightarrow Client
 - Client \rightarrow ACK \rightarrow Server
- Optional figure: Segmentation and reassembly of a large message using sequence numbers.

1.8 Concept Integration

- Interfaces with the Network Layer (IP) for addressing and routing.
- Provides reliable delivery for Application Layer protocols.
- Supports end-to-end communication across heterogeneous networks.

1.9 Summary & Study Aids

[Summary: The transport layer ensures end-to-end data delivery, providing reliability, flow control, and error management, mainly through TCP and UDP protocols.]