Práctica:

DETERMINANTE

1. Sea A una matriz de tamaño 4×4 tal que $det(A) = \frac{1}{2}$. Calcular det(2A), det(-A), $det(A^2)$ y $det(A^{-1})$.

2. Sea

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}.$$

Calcular los determinantes de A, A^{-1} y $A - \lambda I$, con $\lambda \in \mathbb{R}$ e I la matriz identidad. ¿Para qué valores de λ se cumple que $A - \lambda I$ es una matriz singular?

3. Considerar las siguientes matrices:

$$A = \begin{bmatrix} 1 & 2 & -2 & 0 \\ 2 & 3 & -4 & 1 \\ -1 & -2 & 0 & 2 \\ 0 & 2 & 5 & 3 \end{bmatrix} \quad \mathbf{y} \quad B = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & -2 \end{bmatrix}.$$

- a) Aplicar Eliminación Gaussiana para obtener las matrices triangulares superiores U_A y U_B respectivamente.
- b) Calcular el determinante de A y B.
- c) Sea B' la matriz que resulta de intercambiar las filas 3 y 4 de B. Calcular el determinante de B'.
- 4. Sea A, la siguiente matriz de rango 1:

$$A = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} \cdot \begin{pmatrix} 2 & -1 & 2 \end{pmatrix}.$$

- a) Calcular el determinante de A.
- b) ¿Cómo podría generalizarse el resultado obtenido en el apartado anterior a matrices $n \times n$ de rango 1?
- 5. Sea U, la matriz triangular superior dada a continuación:

$$U = \begin{bmatrix} 4 & 4 & 8 & 8 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

Calcular det(U), $det(U^T)$, $det(U^{-1})$ y el determinante de la matriz *triangular invertida* que resulta de intercambiar las filas de U según la siguiente permutación de índices: $\pi((1, 2, ..., n)) = (n, n - 1, ..., 1)$.

6. Sean A y B las siguientes matrices:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \qquad B = \begin{bmatrix} a - mc & b - md \\ c - \ell a & d - \ell b \end{bmatrix}.$$

Si el det(A) = p, calcular det(B) en función de p, m y ℓ .

- 7. Una matriz Q es ortogonal si $Q^TQ = I$. Probar que el determinante de una matriz ortogonal es +1 o -1.
- 8. Determinar si las siguientes afirmaciones son verdaderas o falsas. Justificar las respuestas.
 - a) Si A y B tienen las mismas entradas excepto que $b_{11} = 2a_{11}$, entonces det(B) = 2det(A).
 - b) El determinante de una matriz es el producto de sus pivotes.
 - c) Si A es invertible y B es singular, entonces A + B es invertible.
 - d) El determinante de AB BA es cero.

- 9. Sea A una matriz $n \times n$ tal que $A_i^j = ij$ para todo $i, j = 1, \dots, n$. Probar que si $n \ge 2$, det(A) = 0.
- 10. Para las matrices

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{y} \quad B = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 0 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

calcular el determinante de las mismas utilizando los cofactores asociados a las primeras filas de cada matriz.

11. Sea T_n la matriz tridiagonal 1, 1, -1, esto es,

$$T_n = \begin{bmatrix} 1 & -1 & 0 & & \dots & 0 \\ 1 & 1 & -1 & 0 & \dots & 0 \\ 0 & 1 & 1 & -1 & \dots & 0 \\ & & \ddots & \ddots & \ddots & \\ 0 & \dots & 0 & 1 & 1 & -1 \\ 0 & \dots & & 0 & 1 & 1 \end{bmatrix}.$$

Sea F_n el determinante de T_n . Demostrar que $F_n, n \in \mathbb{N}$ es la sucesión de Fibonacci. Esto es, para $n \geq 3$, $F_n = F_{n-1} + F_{n-2}$.

Sugerencia: Usar desarrollo por cofactores.

12. Sean A y B matrices de tamaño $m \times n$ y $n \times m$ respectivamente. Probar por qué

$$\det \begin{pmatrix} \begin{bmatrix} 0 & A \\ -B & I \end{bmatrix} \end{pmatrix} = \det(AB).$$

Sugerencia: Posmultiplicar por la matriz $\begin{bmatrix} I & 0 \\ B & I \end{bmatrix}$.

13. Consideramos la siguiente matriz triangular:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

- a) Calcular el determinante de A y todos los cofactores C_{ij} .
- b) Sea C la matriz adjunta de A, escribir C^T y comprobar que $AC^T = (det(A))I$.
- c) Escribir A^{-1} en función de la matriz de cofactores.
- 14. Si todos los elementos de A son enteros y det(A) es 1 o -1, demostrar que todos los elementos de A^{-1} son enteros.

EJERCICIOS ADICIONALES

1. Sea

$$A = \begin{bmatrix} 3 & 3 & 4 \\ 6 & 8 & 7 \\ -3 & 5 & -9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 3 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & -1 \end{bmatrix} = LU.$$

Calcular los determinantes de: L, U, A, $U^{-1}L^{-1}$ y $U^{-1}L^{-1}A$

- 2. Determinar si las siguientes afirmaciones son verdaderas o falsas.
 - a) Para toda matriz S inversible, el determinante de la matriz $S^{-1}AS$ es igual al determinante de la matriz A.
 - b) Si el det(A) = 0, entonces al menos uno de los cofactores asociados a A es 0.

- c) Una matriz cuyas entradas son 0 y 1 tiene determinante 0, 1 o -1.
- 3. Sea T_n la matriz tridiagonal 1, 0, 1:

$$T_n = \begin{bmatrix} 0 & 1 & 0 & & \dots & 0 \\ 1 & 0 & 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & 1 & \dots & 0 \\ & & \ddots & \ddots & \ddots & \ddots \\ 0 & \dots & 0 & 1 & 0 & 1 \\ 0 & \dots & & 0 & 1 & 0 \end{bmatrix}.$$

Sea C_n el determinante de T_n , $C_n = det(T_n)$.

- a) Calcular C_i con $i \in \{1, \ldots, 4\}$.
- b) Utilizando cofactores, encontrar la relación entre C_n , C_{n-1} y C_{n-2} . Calcular C_{10} .
- 4. Una matriz de Vandermonte $V(a_1, \ldots, a_n)$ es una matriz $n \times n$ tal que, para $k = 1, \ldots, n$, la fila k-ésima de $V(a_1, \ldots, a_n)$ es $(a_1^{k-1}, \ldots, a_n^{k-1})$. Así, la matriz de Vandermonte V(a, b, c, d) es de la forma

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \end{bmatrix}.$$

Sea $D(a_1,\ldots,a_n)$ el determinante de $V(a_1,\ldots,a_n)$ y llamemos F_i a la fila i de $V(a_1,\ldots,a_n)$

- a) Probar que, para $n \geq 2$, $D(a_1, \ldots, a_n) = (a_2 a_1) \ldots (a_n a_1) D(a_2, \ldots, a_n)$. Sugerencia: Calcular el determinante de la matriz que se obtiene de remplazar en $V(a_1, \ldots, a_n)$ la fila F_k por $F_k a_1 F_{k-1}$, para $k = 2, \ldots, n$.
- b) Demostrar que

$$D(a_1, \dots, a_n) = \prod_{i < j: j=2}^n (a_i - a_j).$$