```
In [1]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")
```

In [2]: data=pd.read_csv("/home/placement/Downloads/Advertising.csv")

In [3]: data.describe()

Out[3]:

	Unnamed: 0	TV	radio	newspaper	sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

In [4]: data.head()

Out[4]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

Out[6]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

In [7]: cor=data1.corr()
cor

Out[7]:

	TV	radio	newspaper	sales
TV	1.000000	0.054809	0.056648	0.782224
radio	0.054809	1.000000	0.354104	0.576223
newspaper	0.056648	0.354104	1.000000	0.228299
sales	0.782224	0.576223	0.228299	1.000000

```
In [8]: import seaborn as sns
sns.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidths=.5,cmap='bwr')
```

Out[8]: <Axes: >


```
In [9]: y=data1['sales']
x=data1.drop('sales',axis=1)
```

```
In [10]: y
Out[10]: 0
             22.1
             10.4
              9.3
       2
       3
             18.5
             12.9
       4
             . . .
       195
             7.6
       196
              9.7
       197
             12.8
       198
             25.5
       199
             13.4
       Name: sales, Length: 200, dtype: float64
In [12]: x_test.head(5)
Out[12]:
            TV radio newspaper
         95 163.3
                31.6
                       52.9
         15 195.4
                47.7
                       52.9
           292.9
         30
                28.3
                       43.2
        158
            11.7
                36.9
                       45.2
```

128 220.3

49.0

3.2

```
In [13]: x train.head(5)
Out[13]:
                     radio newspaper
            42 293.6
                      27.7
                                 1.8
           189
                18.7
                      12.1
                                23.4
               134.3
                                 9.3
            90
                       4.9
                25.6
           136
                      39.0
                                 9.3
            51 100.4
                       9.6
                                 3.6
In [14]: y train.head(5)
Out[14]: 42
                  20.7
                   6.7
          189
          90
                  11.2
          136
                   9.5
          51
                  10.7
          Name: sales, dtype: float64
In [15]: from sklearn.linear model import LinearRegression
          reg=LinearRegression() #creating object of LinearRegression
          reg.fit(x train,y train)#training and fitting LR object using training data
Out[15]: LinearRegression()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
```

In [16]: y pred=reg.predict(x test)

```
In [17]: y pred
Out[17]: array([16.58673085, 21.18622524, 21.66752973, 10.81086512, 22.25210881,
                13.31459455, 21.23875284, 7.38400509, 13.43971113, 15.19445383,
                 9.01548612, 6.56945204, 14.4156926, 8.93560138, 9.56335776,
                12.10760805, 8.86091137, 16.25163621, 10.31036304, 18.83571624,
                19.81058732, 13.67550716, 12.45182294, 21.58072583, 7.67409148,
                 5.67090757, 20.95448184, 11.89301758, 9.13043149, 8.49435255,
                12.32217788, 9.99097553, 21.71995241, 12.64869606, 18.25348116,
                20.17390876, 14.20864218, 21.02816483, 10.91608737, 4.42671034,
                 9.59359543, 12.53133363, 10.14637196, 8.1294087, 13.32973122,
                 5.27563699, 9.30534511, 14.15272317, 8.75979349, 11.67053724,
                15.66273733, 11.75350353, 13.21744723, 11.06273296, 6.41769181.
                 9.84865789, 9.45756213, 24.32601732, 7.68903682, 12.30794356,
                17.57952015, 15.27952025, 11.45659815, 11.12311877, 16.60003773,
                 6.906114781)
In [18]: from sklearn.metrics import r2 score
         r2 score(y test,y pred)
Out[18]: 0.8555568430680086
In [19]: from sklearn.metrics import mean squared error
         mean squared error(y pred,y test)
Out[19]: 3.7279283306815105
```

In [20]: **from** sklearn.linear model **import** ElasticNet

```
from sklearn.model selection import GridSearchCV
         elastic=ElasticNet()
         parameters={'alpha':[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20]}
         elastic regressor=GridSearchCV(elastic,parameters)
         elastic regressor.fit(x train,y train)
Out[20]: GridSearchCV(estimator=ElasticNet(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                              5. 10. 201})
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [21]: |elastic_regressor.best params
Out[21]: {'alpha': 1}
In [22]: elastic=ElasticNet(alpha=1)
         elastic.fit(x train,y train)
         v pred elastic=elastic.predict(x_test)
In [23]: from sklearn.metrics import mean squared error
         elastic Error=mean squared error(y pred elastic,y test)
         elastic Error
Out[23]: 3.678636493022797
In [24]: from sklearn.metrics import r2 score
         r2 score(y test,y pred elastic)
Out[24]: 0.8574667157937812
```

```
In [25]: x_test
```

ο.	. 40	$\Gamma \supset \Gamma \downarrow$	
υι	ΙL	[23]	

	TV	radio	newspaper
95	163.3	31.6	52.9
15	195.4	47.7	52.9
30	292.9	28.3	43.2
158	11.7	36.9	45.2
128	220.3	49.0	3.2
97	184.9	21.0	22.0
31	112.9	17.4	38.6
12	23.8	35.1	65.9
35	290.7	4.1	8.5
119	19.4	16.0	22.3

66 rows × 3 columns