

Department of Mathematical Sciences

Rajiv Gandhi Institute Of Petroleum Technology, Jais

DIFFERENTIAL EQUATIONS (MA 121)

Week 2 / April 2022

Problem Set 2

G.R.

- Notations: ODE = Ordinary Differential Equation, $y' \equiv \frac{dy}{dx}$, $y'' \equiv \frac{d^2y}{dx^2}$, $y^{(i)} \equiv \frac{d^iy}{dx^i}$ for $i = 3, 4, 5, \ldots$
- Introduction of ODE, Solutions of First order and First degree ODE
 - 1. Solve the initial value problems

(a)
$$\frac{dy}{dx} + y = f(x)$$
 where $f(x) = \begin{cases} 2, & 0 \le x < 1, \\ 0, & x \ge 1, \end{cases}$
$$y(0) = 0$$
 Ans: $y(x) = \begin{cases} 2(1 - e^{-x}), & 0 \le x < 1, \\ 2(e - 1)e^{-x}, & x \ge 1. \end{cases}$

(b)
$$\frac{dy}{dx} + y = f(x)$$
 where $f(x) = \begin{cases} e^{-x}, & 0 \le x < 2, \\ e^{-2}, & x \ge 2, \end{cases}$
$$y(0) = 1.$$

$$\begin{cases} \text{Ans: } y(x) = \begin{cases} (1+x)e^{-x}, & 0 \le x < 2, \\ 2e^{-x} + e^{-2}, & x \ge 2. \end{cases} \end{cases}$$

- 2. Consider the ODE $a\frac{dy}{dx} + by = k e^{-\lambda x}$, where a, b and k are positive constants and λ is a non-negative constant.
 - (a) Solve this equation.
 - (b) Show that if $\lambda = 0$ every solution approaches $\frac{k}{b}$ as $x \to \infty$, but if $\lambda > 0$ every solution approaches 0 as $x \to \infty$.
- 3. The equation

$$\frac{dy}{dx} = A(x)y^2 + B(x)y + C(x) \tag{1}$$

is called Riccati's equation. Note that (or check yourself) if A(x) = 0 for all x, then equation (1) is a linear equation, whereas if C(x) = 0 for all x, then equation (1) is a Bernoulli equation.

(a) Show that if f is any solution of (1), then the transformation

$$y = f + \frac{1}{v}$$

reduces equation (1) to a linear equation in v (dependent variable) and x (independent variable).

(b) Using the above, solve the following ODE

$$\frac{dy}{dx} = -y^2 + xy + 1,$$

given solution f(x) = x.

4. Solve the following ODEs by finding integrating factor.

(a)
$$(3x^2y^4 + 2xy) dx + (2x^3y^3 - x^2) dy = 0$$
 Ans: $x^3y^2 + \frac{x^2}{y} = c$

(b)
$$(1 + xy) y dx + (1 - xy) x dy = 0$$
 Ans: $x = cye^{\frac{1}{xy}}$

(c)
$$(xy^2 - x^2) dx + (3x^2y^2 + x^2y - 2x^3 + y^2) dy = 0$$

[Ans: $(\frac{1}{2}x^2y^2 - \frac{1}{3}x^3 + \frac{1}{6}y^2 - \frac{1}{18}y + \frac{1}{108}) e^{6y} = c$]

(d)
$$\left(xy^2 - e^{\frac{1}{x^3}}\right) dx - x^2y dy = 0$$
 Ans: $3y^2 - 2x^2e^{\frac{1}{x^3}} = cx^2$

5. Show that $\frac{1}{(x+y+1)^4}$ is an integrating factor of the ODE

$$(2xy - y^2 - y) dx + (2xy - x^2 - x) dy = 0$$

and hence solve it. [Ans: $xy = c(x + y + 1)^3$]

- 6. Find the orthogonal trajectories of the family of curves $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, where a is a parameter. Ans: $x^{\frac{4}{3}} y^{\frac{4}{3}} = k$
- 7. Show that the family of conics $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$ is self-orthogonal, where λ is a parameter. $\left[\text{Try to show} : x^2 - y^2 + xy \left(y' - \frac{1}{y'} \right) = a^2 - b^2 \right]$
- 8. Find the orthogonal trajectories of the family of cardioides $r = a(1 \cos \theta)$, a being a parameter. [Ans: $r = c(1 + \cos \theta)$]
- **NOTE** [Trajectories in polar co-ordinate]: In cartesian co-ordinate, slope of the tangent of a curve at the point (x,y) is $\frac{dy}{dx}$; whereas in polar co-ordinate, slope of the tangent of a curve at the point (r,θ) is $r\frac{d\theta}{dr}$
 - 1. Orthogonal Trajectories.

Step 1. From the given family of curves $f(r, \theta, c) = 0$, eliminating c, we get the ODE of the given family as

$$F\left(r,\theta,\frac{dr}{d\theta}\right) = 0\tag{2}$$

Step 2. In the ODE (2), replace $\frac{d\mathbf{r}}{d\theta}$ by $-\mathbf{r}^2 \frac{d\theta}{d\mathbf{r}}$. This gives the ODE

$$F\left(r,\theta,-r^2\frac{d\theta}{dr}\right) = 0\tag{3}$$

of the orthogonal trajectories.

- Step 3. Solve the ODE (3) and obtain a one-parameter family $g(r, \theta, k) = 0$, which is the desired family of orthogonal trajectories of the given family of curves.
- 2. Oblique Trajectories (angle α).
- Step 1. From the given family of curves $f(r, \theta, c) = 0$, eliminating c, we get the ODE of the given family as

$$F\left(r,\theta,\frac{dr}{d\theta}\right) = 0\tag{4}$$

Step 2. In the ODE (4), replace $\frac{d\mathbf{r}}{d\theta}$ by $\frac{\mathbf{r} \mp \mathbf{r}^2 \frac{d\theta}{d\mathbf{r}} \tan \alpha}{\mathbf{r} \frac{d\theta}{d\mathbf{r}} \pm \tan \alpha}$. This gives the ODE

$$F\left(r,\theta,\frac{r-r^2\frac{d\theta}{dr}\tan\alpha}{r\frac{d\theta}{dr}+\tan\alpha}\right) = 0$$
(5)

of the oblique trajectories.

Step 3. Solve the ODE (5) and obtain a one-parameter family $g(r, \theta, k) = 0$, which is the desired family of oblique trajectories of the given family of curves.

