Анализ временных рядов в задачах и упражнениях

Борзых Д. А., Демешев Б. Б.

9 апреля 2024 г.

Оглавление

1	Автокорреляция ошиоок в линеинои модели	Э
2	Стационарные процессы	9
3	ARMA	13
4	ETS	21
5	TBATS	23
6	Вступайте в ряды Фурье!	25
7	GARCH	29
8	Единичный корень	35
9	Векторная авторегрессия	37
10	Модели состояние-наблюдение	39
11	Решения и ответы к избранным задачам	41
12	Источники мудрости	61

4 ОГЛАВЛЕНИЕ

Автокорреляция ошибок в линейной модели

- **1.1** Билл Гейтс оценил модель $y_t = \beta_1 + \beta_2 t + \beta_3 y_{t-1} + \varepsilon_t$ с помощью МНК. Значение статистики Дарбина-Уотсона оказалось равно DW = 0.55. Какой из этого следует вывод об автокорреляции ошибок первого порядка?
- 1.2 Рассмотрим модель $y_t = \beta x_t + \varepsilon_t$, где $\varepsilon_1 = u_1$ и $\varepsilon_t = u_t + u_{t-1}$ при $t \ge 2$. Случайные величины u_i независимы с $\mathbb{E}(u_i) = 0$ и \mathbb{V} ar $(u_i) = \sigma^2$.
 - а) Найдите $Var(\varepsilon_t)$
 - б) Являются ли ошибки ε_t гетероскедастичными?
 - в) Найдите $\mathbb{C}\text{ov}(\varepsilon_i, \varepsilon_j)$
 - г) Являются ли ошибки ε_t автокоррелированными?
 - д) Как выглядит матрица $Var(\varepsilon)$?
 - е) Рассмотрим оценку

$$\hat{\beta} = \frac{\sum x_i y_i}{\sum x_i^2}$$

Является ли она несмещенной для β ? Является ли она эффективной в классе линейных по y несмещенных оценок?

- ж) Если приведенная $\hat{\beta}$ не является эффективной, то приведите формулу для эффективной оценки.
- 1.3 Имеются данные $y=(1,\,2,\,0,\,0,\,2,\,1)$. Предполагая модель с автокоррелированной ошибкой, $y_t=\mu+\varepsilon_t$, где $\varepsilon_t=\rho\varepsilon_{t-1}+u_t$ с помощью трёх тестов проверьте гипотезы H_0 : $\rho=0,\,H_0$: $\mu=0,\,H_0$: $\rho=0,\,H_0$: $\rho=0,\,H$
- 1.4 Рассматривается модель $y_t = \mu + \varepsilon_t, t = 1, \dots, T$, где $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$, случайные величины $\varepsilon_0, u_1, \dots, u_T$ независимы, причем $\varepsilon_0 \sim N(0, \sigma^2/(1-\rho^2)), u_t \sim N(0, \sigma^2)$. Имеются наблюдения y' = (1, 2, 0, 0, 1).
 - а) Выпишите функцию правдоподобия

$$L(\mu, \rho, \sigma^2) = f_{Y_1}(y_1) \prod_{t=2}^{T} f_{Y_t \mid Y_{t-1}}(y_t \mid y_{t-1}).$$

б) Найдите оценки неизвестных параметров модели максимизируя условную функцию правдоподобия

$$L(\mu, \rho, \sigma^2 \mid Y_1 = y_1) = \prod_{t=2}^{T} f_{Y_t \mid Y_{t-1}}(y_t \mid y_{t-1})$$

- **1.5** Остаются ли в условиях автокорреляции МНК- оценки в линейной модели несмещёнными? Состоятельными?
- 1.6 Продавец мороженного оценил динамическую модель объёмов продаж:

$$\ln \hat{Q}_t = 26.7 + 0.2 \ln \hat{Q}_{t-1} - 0.6 \ln P_t$$

Здесь Q_t — число проданных в день t вафельных стаканчиков, а P_t — цена одного стаканчика в рублях. Продавец также рассчитал остатки \hat{e}_t .

- а) Чему, согласно полученным оценкам, равна долгосрочная эластичность объёма продаж по цене?
- б) Предположим, что продавец решил проверить наличие автокорреляции первого порядка с помощью теста Бройша-Годфри. Выпишите уравнение регрессии, которое он должен оценить.
- 1.7 Пусть u_t независимые нормальные случайные величины с математическим ожиданием 0 и дисперсией σ^2 . Известно, что $\varepsilon_1 = u_1$, $\varepsilon_t = u_1 + u_2 + \ldots + u_t$. Рассмотрим модель $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$.
 - а) Найдите $\mathbb{V}\mathrm{ar}(\varepsilon_t)$, $\mathbb{C}\mathrm{ov}(\varepsilon_t, \varepsilon_s)$, $\mathbb{V}\mathrm{ar}(\varepsilon)$
 - б) Являются ли ошибки ε_t гетероскедастичными?
 - в) Являются ли ошибки ε_t автокоррелированными?
 - r) Предложите более эффективную оценку вектора коэффициентов регрессии по сравнению МНКоценкой.
 - д) Результаты предыдущего пункта подтвердите симуляциями Монте-Карло на компьютере.
- **1.8** Ошибки в модели $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$ являются автокоррелированными первого порядка, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$. Шаман-эконометрист Ойуун выполняет два камлания-преобразования. Поясните смысл камланий:
 - а) Камлание A, при $t \ge 2$, Ойуун преобразует уравнение к виду $y_t \rho y_{t-1} = \beta_1 (1-\rho) + \beta_2 (x_t \rho x_{t-1}) + \varepsilon_t \rho \varepsilon_{t-1}$
 - б) Камлание Б, при t=1, Ойуун преобразует уравнение к виду $\sqrt{1-\rho^2}y_1=\sqrt{1-\rho^2}\beta_1+\sqrt{1-\rho^2}\beta_2x_1+\sqrt{1-\rho^2}\varepsilon_1.$
- **1.9** Рассмотрим модель $y_t = \beta_1 + \beta_2 x_{t1} + \ldots + \beta_k x_{tk} + \varepsilon_t$, где ε_t подчиняются автокорреляционной схеме первого порядка, т.е.
 - a) $\varepsilon_t = \rho \varepsilon_{t-1} + u_t, -1 < \rho < 1$
 - б) $Var(\varepsilon_t) = const$, $\mathbb{E}(\varepsilon_t) = const$
 - B) $\operatorname{Var}(u_t) = \sigma^2, \mathbb{E}(u_t) = 0$
 - г) Величины u_t независимы между собой
 - д) Величины u_t и ε_s независимы, если $t \geq s$

Найдите:

- a) $\mathbb{E}(\varepsilon_t)$, $\mathbb{V}ar(\varepsilon_t)$
- б) \mathbb{C} ov $(\varepsilon_t, \varepsilon_{t+h})$
- в) \mathbb{C} orr $(\varepsilon_t, \varepsilon_{t+h})$
- **1.10** Рассматривается модель $y_t = \beta_1 + \beta_2 x_{t1} + \ldots + \beta_k x_{tk} + \varepsilon_t$. Ошибки ε_t гомоскедастичны, но в них возможно присутствует автокорреляция первого порядка, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$.

При известном числе наблюдений T на уровне значимости 5% сделайте статистический вывод о наличии автокорреляции.

- a) T = 25, k = 2, DW = 0.8
- 6) T = 30, k = 3, DW = 1.6
- B) T = 50, k = 4, DW = 1.8
- r) T = 100, k = 5, DW = 1.1
- **1.11** По 100 наблюдениям была оценена модель линейной регрессии $y_t=\beta_1+\beta_2x_t+\varepsilon_t$. Оказалось, что $RSS=120,\,\hat{\varepsilon}_1=-1,\,\hat{\varepsilon}_{100}=2,\,\sum_{t=2}^{100}\hat{\varepsilon}_t\hat{\varepsilon}_{t-1}=-50.$

Найдите DW и ρ .

- **1.12** Применяется ли статистика Дарбина-Уотсона для выявления автокорреляции в следующих моделях
 - a) $y_t = \beta_1 x_t + \varepsilon_t$
 - б) $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$
 - $\mathbf{B}) \ y_t = \beta_1 + \beta_2 y_{t-1} + \varepsilon_t$
 - r) $y_t = \beta_1 + \beta_2 t + \beta_3 y_{t-1} + \varepsilon_t$
 - д) $y_t = \beta_1 t + \beta_2 x_t + \varepsilon_t$
 - e) $y_t = \beta_1 + \beta_2 t + \beta_3 x_t + \beta_4 x_{t-1} + \varepsilon_t$
- 1.13 По 21 наблюдению была оценена модель линейной регрессии $\hat{y}_{(se)} = 1.2 + 0.9 \cdot y_{t-1} + 0.1 \cdot t$, $R^2 = 0.6$, DW = 1.21.

Протестируйте гипотезу об отсутствии автокорреляции ошибок на уровне значимости 5%.

1.14 По 24 наблюдениям была оценена модель линейной регрессии $\hat{y}=0.5+2 \atop (se) = (0.01)+(0.02) \cdot t,$ $R^2=0.9,$ DW=1.3.

Протестируйте гипотезу об отсутствии автокорреляции ошибок на уровне значимости 5%.

1.15 По 32 наблюдениям была оценена модель линейной регрессии $\hat{y}=10+2.5\cdot t-0.1\cdot t^2,$ $R^2=0.75,\,DW=1.75.$ Протестируйте гипотезу об отсутствии автокорреляции ошибок на уровне значимости 5%.

Стационарные процессы

Сюда относятся задачи на стационарность до явного упоминания ARMA/ARIMA:)

- **2.1** Запишите процесс $y_t = 4 + 0.4y_{t-1} + 0.3\varepsilon_{t-1} + \varepsilon_t$ с помощью оператора лага.
- **2.2** Пусть x_t , $t=0,1,2,\ldots$ случайный процесс и $y_t=(1+L)^tx_t$. Выразите x_t с помощью y_t и оператора лага L.
- **2.3** Пусть F_n последовательность чисел Фибоначчи. Рассмотрим величину

$$\frac{F_{101} + C_5^1 F_{102} + C_5^2 F_{103} + C_5^3 F_{104} + C_5^4 F_{105} + C_5^5 F_{106}}{F_{111}}$$

- а) Запишите величину с помощью оператора лага
- б) Упростите величину
- **2.4** Пусть x_t , $t = \ldots -2, -1, 0, 1, 2, \ldots$ случайный процесс. И $y_t = x_{-t}$. Какое рассуждение верно?
 - a) $Ly_t = Lx_{-t} = x_{-t-1}$;
 - 6) $Ly_t = y_{t-1} = x_{-t+1}$;
 - B) $x_t L y_t = x_t y_{t-1}$;
 - r) $x_t L y_t = x_{t-1} y_t$;
- **2.5** Пусть y_t стационарный процесс. Верно ли, что стационарны:
 - a) $z_t = 2y_t$
 - б) $z_t = y_t + 1$
 - в) $z_t = \Delta y_t$
 - r) $z_t = 2y_t + 3y_{t-1}$
- **2.6** Известно, что временной ряд y_t порожден стационарным процессом, задаваемым соотношением $y_t = 1 + 0.5y_{t-1} + \varepsilon_t$. Имеется 1000 наблюдений.

Вася построил регрессию y_t на константу и y_{t-1} . Петя построил регрессию на константу и y_{t+1} .

Как примерно будут соотносится между собой их оценки коэффициентов?

2.7 Правильный кубик подбрасывают три раза, обозначим результаты подбрасываний X_1 , X_2 и X_3 . Также ввёдем обозначения для сумм $L=X_1+X_2$, $R=X_2+X_3$ и $S=X_1+X_2+X_3$.

- а) Интуитивно, без вычислений, определите знак обычных и частных корреляций $\mathbb{C}\mathrm{orr}(L,R)$, $\mathbb{C}\mathrm{orr}(L,S)$, $\mathbb{p}\mathbb{C}\mathrm{orr}(L,R;S)$, $\mathbb{p}\mathbb{C}\mathrm{orr}(L,S;R)$, $\mathbb{p}\mathbb{C}\mathrm{orr}(X_1,R;S)$, $\mathbb{p}\mathbb{C}\mathrm{orr}(X_1,R;L)$, $\mathbb{p}\mathbb{C}\mathrm{orr}(L,R;X_2)$, $\mathbb{p}\mathbb{C}\mathrm{orr}(L,R;X_1)$;
- б) Какие из корреляций по модулю равны единице?
- в) Найдите все упомянутые обычные и частные корреляции.
- **2.8** Известно, что ε_t белый шум. У каких разностных уравнений есть слабо стационарные решения?
 - a) $y_t = 1 + \varepsilon_t + 0.5\varepsilon_{t-1} + 0.25\varepsilon_{t-2}$
 - 6) $y_t = -2y_{t-1} 3y_{t-2} + \varepsilon_t + \varepsilon_{t-1}$
 - B) $y_t = -0.5y_{t-1} + \varepsilon_t$
 - r) $y_t = 1 1.5y_{t-1} 0.5y_{t-2} + \varepsilon_t 1.5\varepsilon_{t-1} 0.5\varepsilon_{t-2}$
 - д) $y_t = 1 + 0.64y_{t-2} + \varepsilon_t + 0.64\varepsilon_{t-1}$
 - e) $y_t = 1 + t + \varepsilon_t$
 - ж) $y_t = 1 + y_{t-1} + \varepsilon_t$
- **2.9** Пусть ε_t белый шум. Рассмотрим процесс $y_t = 2 + 0.5y_{t-1} + \varepsilon_t$ с различными начальными условиями, указанными ниже.
 - а) Найдите $\mathbb{E}(y_t)$, \mathbb{V} ar (y_t) и определите, является ли процесс стационарным, если:
 - (a) $y_1 = 0$
 - (b) $y_1 = 4$
 - (c) $y_1 = 4 + \varepsilon_1$
 - (d) $y_1 = 4 + \frac{2}{\sqrt{3}}\varepsilon_1$
 - б) Как точно следует понимать фразу «процесс $y_t = 2 + 0.5y_{t-1} + \varepsilon_t$ является стационарным»?
- 2.10 Верно ли, что при удалении из стационарного ряда каждого второго наблюдения получается стационарный ряд?
- **2.11** У эконометрессы Ефросиньи был стационарный ряд. Ей было скучно и она подбрасывала неправильную монетку, выпадающую орлом с вероятностью 0.7. Если выпадал орёл, она оставляла очередной y_t , если решка то зачёркивала. Получается ли у Ефросиньи стационарный ряд?
- **2.12** Имеется временной ряд, $\varepsilon_1, \, \varepsilon_2, \, ..., \, \varepsilon_{101}.$ Величины ε_t нормально распределены, $N(0,\sigma^2)$, и независимы. Построим график этого процесса.
 - а) Является ли этот процесс белым шумом?
 - б) Сколько в среднем раз график пересекает ось абсцисс?
 - в) Оцените вероятность того, что график пересечет ось абсцисс более 60 раз.
- **2.13** Величины x_t независимы и равновероятно принимают значения 0 и 1. Величины y_t независимы и нормальны $\mathcal{N}(0;24)$. Процессы (x_t) и (y_t) независимы. Для каждого из пунктов ответьте на три вопроса. Верно ли, что величины z_t одинаково распределены? Верно ли, что они независимы? Верно ли, что процесс (z_t) белый шум?
 - a) $z_t = x_t(1 x_{t-1})y_t$;
 - б) $z_t = y_{t-1}y_t$;

2.14 Величина Z равновероятно принимает значения 0 и 1. Условное распределение вектора $X=(X_1,X_2)$ при известном Z известно:

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} | Z = 0 \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} | Z = 1 \sim \mathcal{N}\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}; \begin{pmatrix} 4 & -1 \\ -1 & 9 \end{pmatrix}\right)$$

Найдите

- а) Частную корреляцию $p\mathbb{C}orr(X_1, X_2; Z)$;
- б) Условную корреляцию \mathbb{C} orr $(X_1, X_2|Z)$;
- 2.15 Приведите пример процесса каждого из четырёх типов:
 - а) Слабостационарный и одновременно сильностационарный;
 - б) Слабостационарный но не сильностационарный;
 - в) Сильностационарный но не слабостационарный;
 - г) Не сильностационарный и не слабостационарный.
- **2.16** Процесс (u_t) белый шум. Величины u_t одинаково непрерывно распределены.

Назовём момент времени t — поворотной точкой (turning point), если он является локальным пиком, больше обоих своих соседей или локальной ямой, меньше обоих своих соседей.

Рассмотрим процесс z_t — индикаторы того, что точка t является поворотной. Процесс $s_t = z_2 + \ldots + z_{t-1}$ — считает количество поворотных точек за период от 1 до t. Величины z_1 и z_t в сумму не входят, так как мы не считаем края наблюдаемого отрезка поворотными точками.

- а) Найдите вероятность $\mathbb{P}(z_t = 1)$;
- б) Найдите $\mathbb{E}(s_t)$;
- в) Найдите $Cov(z_1, z_2)$, $Cov(z_1, z_3)$, $Cov(z_1, z_4)$;
- г) Найдите $Var(s_t)$;
- **2.17** Процессы (a_t) и (b_t) стационарны. Кроме того, $\mathbb{C}\mathrm{orr}(a_t,b_t)=0$ для любого момента времени t.

Рассмотрим произведение этих процессов $y_t = a_t b_t$ и сумму $x_t = a_t b_t$.

Предположим, что все необходимые ожидания и ковариации существуют.

- а) Верно ли, что процесс (x_t) стационарный? Докажите, или приведите контр-пример.
- б) Верно ли, что процесс (y_t) стационарный? Докажите, или приведите контр-пример.
- в) Как изменятся ответы на предыдущие пункты, если $\mathbb{C}\mathrm{orr}(a_t,b_s)=0$ для любых моментов времени t и s.

ARMA

Многие источники неверно рассказывают критерий стационарности ARIMA процесса. Проверено, мин нет: [Van10], [Tsa05].

3.1 Рассмотрим три разностных уравнения:

$$(A)y_t = 1 + 0.5y_{t-1}$$
$$(B)y_t = 1 + y_{t-1}$$
$$(C)y_t = 1 + 2y_{t-1}$$

- а) Найдите все постоянные решения каждого уравнения.
- б) Найдите все решения каждого уравнения.
- в) Сколько постоянных решений имеет уравнение $y_t = 1 + \beta y_{t-1}$ в зависимости от β ?
- 3.2 Рассмотрим модель $y_t = \mu + \varepsilon_t$, где ε_t стационарный AR(1) процесс $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$ с $u_t \sim \mathcal{N}(0, \sigma^2)$. Найдите условную логарифмическую функцию правдоподобия $\ln f(y_2, y_3, \dots, y_n \mid \mu, \rho, \sigma^2, y_1)$.
- 3.3 Известно, что ε_t белый шум. Классифицируйте в рамках классификации ARIMA процесс $y_t = 1 + \varepsilon_t + 0.5\varepsilon_{t-1} + 0.4\varepsilon_{t-2} + 0.3\varepsilon_{t-3} + 0.2y_{t-1} + 0.1y_{t-2}$.
- 3.4 На графике представлены данные по уровню озера Гуро́н в футах в 1875-1972 годах:

```
level <- LakeHuron

df <- data.frame(level, obs = 1875:1972)

n <- nrow(df) # used later for answers

v.acf <- acf(level, plot = FALSE)$acf

v.pacf <- pacf(level, plot = FALSE)$acf

acfs.df <- data.frame(lag = c(1:15, 1:15),

acf = c(v.acf[2:16], v.pacf[1:15]),

acf.type = rep(c("ACF", "PACF"), each = 15))

model <- arima(level, order = c(1, 0, 1))

resids <- model$residuals

resid.acf <- acf(resids, plot = FALSE)$acf
```

14 Глава 3. ARMA

```
tikz("../R_plots/huron_ts.tikz", standAlone = FALSE, bareBones = TRUE)
ggplot(df, aes(x = obs, y = level)) + geom_line() +
labs(x = "Год", y = "Уровень озера (футы)")
dev.off()
```

График автокорреляционной и частной автокорреляционной функций:

```
1 ggplot(acfs.df, aes(x = lag, y = acf, fill = acf.type))+
2 geom_histogram(position = "dodge", stat = "identity")+
3 xlab("Лаг") + ylab("Корреляция") +
4 guides(fill = guide_legend(title = NULL))+
5 geom_hline(yintercept = 1.96 / sqrt(nrow(df)))+
6 geom_hline(yintercept = -1.96 / sqrt(nrow(df)))
```

- а) Судя по графикам, какие модели класса ARMA или ARIMA имеет смысл оценить?
- б) По результатам оценки некоей модели ARMA с двумя параметрами, исследователь посчитал оценки автокорреляционной функции для остатков модели. Известно, что для остатков модели первые три выборочные автокорреляции равны соответственно 0.00467, -0.0129 и -0.063. С помощью подходящей статистики проверьте гипотезу о том, что первые три корреляции ошибок модели равны нулю.
- 3.5 Процесс x_t это процесс y_t , наблюдаемый с ошибкой, т.е. $x_t = y_t + \nu_t$. Ошибки ν_t являются белым шумом и не коррелированы с y_t .
 - а) Является ли процесс x_t MA(1) процессом, если y_t MA(1) процесс? Если да, то как связаны их автокорреляционные функциии?
 - б) Является ли процесс x_t стационарным AR(1) процессом, если y_t стационарный AR(1) процесс? Если да, то как связаны их автокорреляционные функциии?
- 3.6 Рассмотрим стационарный AR(1) процесс $y_t = \rho y_{t-1} + \varepsilon_t$, где $\varepsilon_t \sim \mathcal{N}(0,1)$. Имеется ряд y_1, y_2, \dots, y_{101} . Построен график этого процесса. Как от ρ зависит математическое ожидание количества пересечений графика с осью абсцисс?
- 3.7 Рассмотрим процессы:

А Процесс скользящего среднего:

$$y_t = \varepsilon_t + 2\varepsilon_{t-1} + 3$$

В

$$a_t = \varepsilon_t + \varepsilon_1 + 3$$

C

$$b_t = t\varepsilon_t + 3$$

D $c_t = \cos\left(\frac{\pi t}{2}\right)\varepsilon_1 + \sin\left(\frac{\pi t}{2}\right)\varepsilon_2 + 2$

Е Процесс случайного блуждания со смещением:

$$\begin{cases} z_t = \varepsilon_t + z_{t-1} + 3 \\ z_0 = 0 \end{cases}$$

F Процесс с трендом:

$$w_t = 2 + 3t + \varepsilon_t$$

G Еще один процесс:

$$r_t = egin{cases} 1, \ ext{при четных t} \ -1, \ ext{при нечетных t} \end{cases}$$

Н Приращение случайного блуждания

$$s_t = \Delta z_t$$

I Приращение процесса с трендом

$$d_t = \Delta w_t$$

Для каждого процесса:

- а) Найдите $\mathbb{E}(y_t)$, $\mathbb{V}ar(y_t)$
- б) Найдите $\gamma_k = \mathbb{C}\text{ov}(y_t, y_{t-k})$
- в) Найдите $\rho_k = \mathbb{C}\mathrm{orr}(y_t, y_{t-k})$. Если ни одна корреляция ρ_k не зависит от времени t, то постройте график зависимости ρ_k от k.
- г) Является ли процесс стационарным?
- д) Сгенерируйте одну реализацию процесса. Постройте её график и график оценки автокорреляционной функции.
- 3.8 Эконометресса Антуанетта построила график автоковариационной функции временного ряда и распечатала его:

здесь график

Потом она с ужасом обнаружила, что до презентации исследования остается совсем мало времени, а распечатать надо было график автокорреляционной функции.

Что надо исправить Антуанетте на графике, чтобы успеть ещё сделать причёску и макияж (это очень важно для презентации)?

- 3.9 Рассмотрите стационарные процессы
 - A. AR(1): $y_t = 5 + 0.3y_{t-1} + \varepsilon_t$
 - B. AR(2): $y_t = 5 + 0.3y_{t-1} + 0.1y_{t-2} + \varepsilon_t$
 - C. MA(1): $y_t = 5 + 0.3\varepsilon_{t-1} + \varepsilon_t$
 - D. MA(2): $y_t = 5 + 0.3\varepsilon_{t-1} + 0.9\varepsilon_{t-2} + \varepsilon_t$
 - E. ARMA(1, 1): $y_t = 5 + 0.3y_{t-1} + 0.4\varepsilon_{t-1} + \varepsilon_t$

Если возможно, то представьте каждый процесс в виде:

- a) $MA(\infty)$.
- б) $AR(\infty)$.
- в) $y_t = c + \gamma_1 y_{t-1} + u_t$, где u_t некоррелирован с y_{t-1} . Будет ли u_t белым шумом?

16 Глава 3. ARMA

- г) $y_t = c + \gamma_1 y_{t+1} + u_t$, где u_t некоррелирован с y_{t+1} . Будет ли u_t белым шумом?
- д) $y_t = c + \gamma_1 y_{t-1} + \gamma_2 y_{t-2} + u_t$, где u_t некоррелирован с y_{t-1} и y_{t-2} . Будет ли u_t белым шумом?
- е) $y_t = c + \gamma_1 y_{t+1} + \gamma_2 y_{t+2} + u_t$, где u_t некоррелирован с y_{t+1} и y_{t+2} . Будет ли u_t белым шумом?
- 3.10 Рассмотрите стационарные процессы
 - A. AR(1): $y_t = 5 + 0.3y_{t-1} + \varepsilon_t$
 - B. AR(2): $y_t = 5 + 0.3y_{t-1} + 0.1y_{t-2} + \varepsilon_t$
 - C. MA(1): $y_t = 5 + 0.3\varepsilon_{t-1} + \varepsilon_t$
 - D. MA(2): $y_t = 5 + 0.3\varepsilon_{t-1} + 0.9\varepsilon_{t-2} + \varepsilon_t$
 - E. ARMA(1, 1): $y_t = 5 + 0.3y_{t-1} + 0.4\varepsilon_{t-1} + \varepsilon_t$

Для каждого из процессов:

- а) Найдите математическое ожидание $\mathbb{E}(y_t)$.
- б) Найдите первые три значения автокорреляционной функции ρ_1, ρ_2, ρ_3 .
- в) Найдите первые три значения частной автокорреляционной функции $\phi_{11}, \phi_{22}, \phi_{33}$.
- **3.11** Известна автокорреляционная функция стационарного процесса (y_t) : $\rho_1 = 0.7$, $\rho_2 = 0.3$, и $\rho_k = 0$ при $k \ge 3$. Кроме того, $\mathbb{E}(y_t) = 4$. Выпишите возможные уравнения процесса.
- 3.12 Известна частная автокорреляционная функция стационарного процесса (y_t) : $\phi_{11}=0.7, \phi_{22}=0.3,$ и $\phi_{kk}=0$ при $k\geq 3$. Кроме того, $\mathbb{E}(y_t)=4$. Выпишите возможные уравнения процесса.
- **3.13** Если возможно, то найдите процесс с данной автокорреляционной или частной автокорреляционной функцией.
 - a) ACF = (0.9, -0.9, 0, 0, 0, ...);
 - 6) PACF = (0.9, -0.9, 0, 0, 0, ...);
 - B) PACF = (0.9, 0, 0, 0, 0, ...);
 - r) PACF = (0, 0.9, 0, 0, 0, 0, ...);
 - д) $ACF = (0.9, 0, 0, 0, 0, \dots);$
 - e) ACF = (0, 0.9, 0, 0, 0, 0, ...);
- **3.14** Рассмотрим стационарный процесс $y_t = 4 + 0.7y_{t-1} 0.12y_{t-2} + \varepsilon_t$, где ε_t белый шум, причём $\mathbb{C}\text{ov}(\varepsilon_t, y_{t-k}) = 0$ при $k \ge 1$.
 - а) Найдите автокорреляционную функцию: ρ_1 , ρ_2 и общую формулу для ρ_k .
 - б) Найдите $\lim_{k\to\infty} \rho_k$.
 - в) Найдите частную автокорреляционную функцию: $\phi_{11}, \phi_{22},$
- 3.15 Рассмотрим стационарный процесс с уравнением

$$y_t = 10 + 0.69y_{t-1} + \varepsilon_t - 0.71\varepsilon_{t-1}$$
.

Выпишите гораздо более простой процесс со свойствами близкими к свойствам данного процесса.

3.16 Процесс ε_t — белый шум. Рассмотрим уравнение

$$y_t = 0.5y_{t-1} + \varepsilon_t.$$

Какие из указанных процессов (y_t) являются его решением? Стационарным решением?

- a) $y_t = 0.5^t$;
- б) $y_t = \sum_{i=0}^{\infty} 0.5^i \varepsilon_{t-i};$
- B) $y_t = 0.5^t + \sum_{i=0}^{\infty} 0.5^i \varepsilon_{t-i};$
- r) $y_t = 0.5^t \varepsilon_{100} + \sum_{i=0}^{\infty} 0.5^i \varepsilon_{t-i};$
- д) $y_t = 0.5^t + \sum_{i=0}^t 0.5^i \varepsilon_{t-i};$
- e) $y_t = \sum_{i=0}^{t} 0.5^i \varepsilon_{t-i}$;
- **3.17** Рассмотрим стационарный процесс y_t , задаваемый уравнением

$$y_t = 2 + 0.6 \cdot y_{t-1} - 0.08y_{t-2} + \varepsilon_t,$$

где $\varepsilon_t \sim \mathcal{N}(0;4)$.

- а) Найдите $\mathbb{E}_t(y_{t+1})$, \mathbb{V} ar $_t(y_{t+1})$
- б) Найдите $\mathbb{E}_t(y_{t+2})$, $\mathbb{V}ar_t(y_{t+2})$
- в) Постройте 95%-ый предиктивный интервал для y_{102} , если $y_{99}=5$, $y_{100}=5.1$
- г) Найдите $\mathbb{E}(y_t)$, $\mathbb{V}ar(y_t)$
- д) Найдите $\lim_{h\to\infty}\mathbb{E}_t(y_{t+h})$, $\lim_{h\to\infty}\mathbb{V}\mathrm{ar}_t(y_{t+h})$
- 3.18 Задан процесс $y_t=7+u_t+0.2u_{t-1}$, где u_t независимы и нормальны $u_t\sim\mathcal{N}(0;4)$. Известно, что $y_{100}=7.2,\,u_{100}=1.3,\,y_{100}+(-0.2)y_{99}+(-0.2)^2y_{98}+\ldots+(-0.2)^{99}y_1=5.6$.

Пусть
$$\mathcal{F}_t = \sigma(y_t, y_{t-1}, \dots, y_1, u_t, u_{t-1}, \dots, u_1)$$
 и $\mathcal{H}_t = \sigma(y_t, y_{t-1}, \dots, y_1)$.

- а) Найдите $\mathbb{E}(y_{101} \mid \mathcal{F}_{100})$, \mathbb{V} ar $(y_{101} \mid \mathcal{F}_{100})$.
- б) С помощью $AR(\infty)$ представления примерно найдите $\mathbb{E}(y_{101}|\mathcal{H}_{100})$, \mathbb{V} ar $(y_{101}|\mathcal{H}_{100})$. Постройте 95%-ый предиктивный интервал для y_{101} .
- в) Найдите $\mathbb{E}(y_{101} \mid y_{100})$, \mathbb{V} ar $(y_{101} \mid y_{100})$.
- г) Найдите $\mathbb{E}(y_{101} \mid y_{100}, y_{99}), \mathbb{V}ar(y_{101} \mid y_{100}, y_{99}).$
- 3.19 У исследовательницы Аграфены три наблюдения, $y_1 = 0.1$, $y_2 = -0.2$, $y_3 = 0.2$. Аграфена предполагает, что данные подчиняются стационарному AR(1) процессу $y_t = \beta y_{t-1} + u_t$ с $|\beta| < 1$ и независимыми $u_t \sim \mathcal{N}(0; \sigma_u^2)$.
 - а) Найдите $\mathbb{E}(y_1)$, $\mathbb{E}(y_2 \mid y_1)$, $\mathbb{E}(y_3 \mid y_2)$;
 - б) Найдите $Var(y_1)$, $Var(y_2 | y_1)$, $Var(y_3 | y_2)$;
 - в) Найдите функции плотности $f(y_1)$, $f(y_2 \mid y_1)$, $f(y_3 \mid y_2)$;
 - г) Выпишете полную логарифмическую функцию правдоподобия $\ln f(y_1, y_2, y_3 \mid \beta, \sigma_u^2)$.
 - д) Если возможно, явно решите задачу максимизации полного правдоподобия.
 - е) Выпишите условную логарифмическую функцию правдоподобия $\ln f(y_2, y_3 \mid \beta, \sigma_u^2, y_1)$.
 - ж) Если возможно, явно решите задачу максимизации условного правдоподобия при фиксированном y_1 .

18 Глава 3. ARMA

- 3.20 Белые шумы u_t и v_t независимы, $\mathbb{V}\mathrm{ar}(u_t)=1$, $\mathbb{V}\mathrm{ar}(v_t)=1$. Рассмотрим процесс $y_t=5u_{t-1}-4v_{t-1}+u_t+v_t$.
 - а) Выпишите классическое представление процесса y_t как ARMA-процесса.
 - б) Выразите белый шум из полученного классического представления y_t через белые шумы (u_t) и (v_t) .

можно подобрать цифры, чтобы коэффициент был хороший:)

3.21 Рассмотрим модель случайного блуждания,

$$\begin{cases} y_0 = c, \\ y_t = y_{t-1} + u_t, \\ u_t \sim \mathcal{N}(0, \sigma_u^2) \text{ и независимы} \end{cases}$$

- а) Найдите $\mathbb{E}(y_{10})$, \mathbb{V} ar (y_{10}) , закон распределения y_{10} ;
- б) Найдите $\mathbb{E}(y_{10}|y_7)$, \mathbb{V} ar $(y_{10}|y_7)$, условный закон распределения y_{10} при известном y_7 ;
- в) Найдите условный закон распределения y_{101} при известном y_{100} , условный закон распределения y_{102} при известном y_{100} .
- r) Постройте 95%-й предиктивный интервал для y_{101} , 95%-й предиктивный интервал для y_{102} , если известно, что c=4, $\sigma_u^2=9$, $y_{100}=20$.
- д) Оцените параметры c и σ_u^2 методом максимального правдоподобия, если $y_1=4,\,y_2=7,\,y_3=6.$
- е) Оцените параметры c и σ_u^2 методом максимального правдоподобия в общем случае.
- **3.22** Процессы y_t и u_t стационарны и заданы системой уравнений

$$\begin{cases} y_t = \beta y_{t-1} + u_t \\ u_t = \alpha u_{t-1} + \nu_t, \end{cases}$$

где (ν_t) — белый шум. Коэффициенты β и α по модулю меньше единицы.

Исследовательница Ада оценивает обычную регрессию $\hat{y}_t = \hat{\beta}_1 + \hat{\beta}_2 y_{t-1}$ с помощью МНК.

Какие оценки она получит при большом размере выборки?

- **3.23** Процесс (u_t) белый шум с дисперсией σ_u^2 . Процесс (y_t) задан уравнением $y_t = 5 + u_t + 2u_{t-1}$.
 - а) Найдите $\mathbb{E}(y_t)$, $\mathbb{V}ar(y_t)$, $\mathbb{C}ov(y_t, y_s)$.

Про процесс (z_t) известно, что он представим в виде $z_t = c + w_t + \alpha w_{t-1}$, где (w_t) — белый шум с дисперсий σ_w^2 .

Ожидание, дисперсия и автоковариационная функция процесса (z_t) в точности такая же, как и у процесса (y_t) . А именно, $\mathbb{E}(z_t) = \mathbb{E}(y_t)$, $\mathbb{V}\mathrm{ar}(z_t) = \mathbb{V}\mathrm{ar}(y_t)$, $\mathbb{C}\mathrm{ov}(z_t, z_s) = \mathbb{C}\mathrm{ov}(y_t, y_s)$. Однако, $\alpha \neq 2$.

- б) Найдите константы c, α и отношение σ_w^2/σ_u^2 .
- **3.24** Приведите три различных последовательности чисел $(a_t)_{t=-\infty}^{+\infty}$ таких, что $(1+0.5L)a_t=0$.
- 3.25 Процесс (u_t) белый шум. Рассмотрим процесс $w_t=(1+2L)(1-0.5L+0.5^2L^2-0.5^3L^3+\ldots)u_t.$

- а) Верно ли, что w_t белый шум?
- б) Придумайте ещё парочку белых шумов, линейно выражающихся через шум u_t .
- **3.26** Рассмотрим MA(1) процесс (y_t) .
 - а) В каких пределах может лежать корреляция $Corr(y_t, y_{t+1})$?
 - б) В каких пределах может лежать частная корреляция $p\mathbb{C}orr(y_t, y_{t+2}; y_{t+1})$?
- 3.27 Процессы (a_t) и (b_t) обычное и сезонное случайные блуждания. Стартовые значения равны нулю, $a_0=0, b_{-11}=b_{-10}=\ldots=b_{-1}=0$. И далее $a_t=a_{t-1}+u_t, b_t=b_{t-12}+\nu_t$. Случайные процессы (u_t) и (ν_t) независимые белые шумы.
 - а) Получится ли взять несколько раз обычную разность $\Delta = 1 L$ так, чтобы процесс $\Delta^d a_t$ был стационарным?
 - б) Получится ли взять несколько раз обычную разность $\Delta = 1 L$ так, чтобы процесс $\Delta^d b_t$ был стационарным?
 - в) Как изменятся ответы на предыдущие вопросы, если брать сезонную разность $\Delta_{12}=1-L^{12}$?
- 3.28
- 3.29

 20
 Глава 3. ARMA

ETS

Почитать про ETS модели в книжке [HA18].

- **4.1** Рассмотрим ETS-ANN модель с $\alpha=1/2,\,y_1=6,\,y_2=9,\,y_3=6,\,\sigma^2=9.$
 - а) Найдите величину ℓ_0 , которая минимизирует RSS;
 - б) Постройте точечный прогноз $\hat{y}_{4|2}$, $\hat{y}_{5|2}$;
 - в) Постройте 95%-ый предиктивный интервал для y_4 и y_5 .
- **4.2** Рассмотрим ETS-AAN модель с $\alpha = 1/2$, $\beta = 3/4$, $\ell_0 = 7$, $b_0 = 2$, $y_1 = 6$, $y_2 = 9$, $y_3 = 3$, $\sigma^2 = 9$.
 - а) Постройте точечный прогноз $\hat{y}_{4|3}$, $\hat{y}_{5|3}$;
 - б) Постройте 95%-ый предиктивный интервал для y_4 и y_5 .
- **4.3** Рассмотрим ETS-AAN модель с $\alpha=1/2,\,\beta=3/4,\,\ell_0=7,\,y_1=6,\,y_2=9,\,\sigma^2=16.$
 - а) Найдите величину b_0 , которая минимизирует RSS;
 - б) Постройте точечный прогноз $\hat{y}_{3|2}$, $\hat{y}_{4|2}$;
 - в) Постройте 95%-ый предиктивный интервал для y_3 и y_4 .
- **4.4** Рассмотрим ETS-AAN модель с $\alpha=1/2,\,\beta=3/4,\,\ell_0=7,\,y_1=6,\,y_2=9,\,y_3=3.$ Выпишите сумму квадратов ошибок прогнозов на один шаг вперёд через $b_0.$
- **4.5** Рассмотрим ETS-AAN модель с $\alpha=1/2,$ $\beta=3/4,$ $\ell_{99}=8,$ $b_{99}=1,$ $y_{99}=10,$ $y_{100}=8,$ $\sigma^2=16.$
 - а) Найдите ℓ_{100} , b_{100} , ℓ_{98} , b_{98} ;
 - б) Постройте точечный прогноз $\hat{y}_{101|100},\,\hat{y}_{102|100};$
 - в) Постройте 95%-ый предиктивный интервал для y_{101} и y_{102} .
- **4.6** Для каждой из ETS моделей найдите эквивалентную модель класса ARIMA:
 - а) Простое экспоненциальное сглаживание, ETS-ANN;
 - б) Аддитивное сглаживание Хольта, ETS-AAN;
 - в) Аддитивное сглаживание Хольта с угасающим трендом, ETS-AAdN;
 - r) Аддитивное сглаживание Хольта-Винтерса для месячных данных, ETS-AAA;
 - д) Аддитивное сглаживание Хольта-Винтерса с угасающим трендом для месячных данных, ETS-AAdA;

22 Глава 4. ETS

- e) ETS-ANA;
- **4.7** Рассмотрим ETS-AAN модель. По каким параметрам модели оптимальные точки можно получить в явном виде?
- **4.8** Процесс y_t описывается ETS(MNM) моделью. Верно ли, что процесс $z_t = \ln y_t$ точно описывается ETS(ANA) моделью? А примерно?
- 4.9 Рассмотрим $ETS(AA_dN)$ модель с $\phi=0.9, \alpha=0.3, \beta=0.1$ и $\sigma^2=16$. Выразите 95% предиктивный интервал для y_{t+1} и y_{t+2} через ℓ_t, b_t, y_t и u_t .
- **4.10** Найдите $\mathbb{E}(y_t)$, \mathbb{V} ar (y_t) , \mathbb{C} ov (y_t,y_{t+1}) для ETS(AAN) модели с заданными ℓ_0 , ℓ
- **4.11** Полугодовой y_t моделируется с помощью ETS(AAA) процесса:

$$\begin{cases} u_t \sim \mathcal{N}(0;4) \\ s_t = s_{t-2} + 0.1u_t \\ b_t = b_{t-1} + 0.2u_t \\ \ell_t = \ell_{t-1} + b_{t-1} + 0.3u_t \\ y_t = \ell_{t-1} + b_{t-1} + s_{t-2} + u_t \end{cases}$$

- а) Известно, что $s_{100}=2$, $s_{99}=-1.9$, $b_{100}=0.5$, $\ell_{100}=4$. Найдите 95% предиктивный интервал для y_{102} .
- б) В этой задаче все параметры известны. Сколько параметров оценивается в реальной задаче прогнозирования с помощью ETS(AAA) модели?
- **4.12** Вспомним ETS(AAN) модель, кстати, вот и уравнения:

$$\begin{cases} y_t = \ell_{t-1} + b_{t-1} + u_t \\ \ell_t = \ell_{t-1} + b_{t-1} + \alpha u_t \\ b_t = b_{t-1} + \beta u_t \\ u_t \sim \mathcal{N}(0; \sigma^2) \end{cases}$$

- а) Докажите, что ни при каких ℓ_0 и b_0 этот процесс не будет стационарным. Или опровергните и приведите пример, при каких будет.
 - Константы α , β лежат в интервале (0; 1).
- б) При $\ell_{100}=20,\,b_{100}=2,\,\alpha=0.2,\,\beta=0.3,\,\sigma^2=16$ постройте интервальный прогноз на один и два шага вперёд.

TBATS

Оригинальная статья, [DHS11]. Относим к ETS как модель с одной ошибкой в разных уравнениях.

5.1 Найдите предел

$$\lim_{w\to 0}\frac{y^w-1}{w}$$

<u> 24</u> Глава 5. ТВАТS

Вступайте в ряды Фурье!

Суть преобразования Фурье. Вместо исходного временного ряда $x_0, x_1, ..., x_{N-1}$ мы получаем ряд комплексных чисел $X_0, X_1, ..., X_{N-1}$. Эти комплексные числа X_k показывают, насколько сильно проявляется каждая частота в исходном ряду.

Чтобы получить одно комплексное число X_k :

- а) Разрежем круг на N равных частей. Каждая часть образует угол $2\pi/N$.
- б) Разместим исходные числа x_0 , x_1 , ..., x_{N-1} на разрезах по часовой стрелке с шагом k. При этом число x_0 приходится на угол 0; число x_1 на угол $2\pi/N \cdot k$; число x_2 на угол $2\pi/N \cdot 2k$, и так далее.
- в) Трактуем x_i как силу ветра в направлении разреза.
- г) X_k усреднённая сила ветра.

Прямое преобразование Фурье задаётся формулой¹:

$$X_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n w^{kn},$$

где комплексное число w кодирует поворот на 1/N часть круга по часовой стрелке, $w=\exp\left(\frac{-2i\pi}{N}\right)$. Обратное преобразование Фурье

$$x_n = \sum_{k=0}^{N-1} X_k(w^*)^{nk},$$

где комплексное число w^* является сопряжённым к числу w.

6.1 Немножко теории:

- а) Посмотрите видео от 3blue1brown, https://www.youtube.com/watch?v=cV7L95IkVdE.
- б) Прочтите про дискретное преобразование Фурье на brilliant, https://brilliant.org/wiki/discrete-fourier-transfor

6.2 Про Фурье :)

- а) Зачем Фурье собирал огарки свечей в бенедиктинской артиллерийской школе?
- б) Первый раз Фурье был арестован за недостаточную поддержку якобинцев. За что Фурье был арестован во второй раз?

 $^{^1}$ Иногда множитель 1/Nотносят к обратному преобразованию Фурье, иногда поровну разносят как $1/\sqrt{N}.$

- в) После потерей французами Каира Фурье вёл переговоры о перимирии. Что было у него в руке в момент переговоров? Что произошло с этим предметом?
- 6.3 Вспомним комплексные числа:)
 - а) Найдите сумму $7 + 7 \exp(2i\pi/3) + 7 \exp(4i\pi/3)$;
 - б) Найдите сумму $6 + 4 \exp(i\pi)$;
- 6.4 Найдите прямое преобразование Фурье последовательностей
 - a) 1, 4, 1, 4, 1, 4;
 - б) 1, 9;
 - в) 8;
 - r) 1, 0, 0, 0;
- **6.5** Прямое преобразование Фурье можно записать в матричном виде $X = \frac{1}{N} F x$.
 - а) Как устроена матрица F?
 - б) Найдите $F \cdot F^*$, где F^* транспонированная и сопряжённая матрица к F;
 - в) Как устроена матрица F^{-1} ?
 - г) Как записывается обратное преобразование Фурье в матричном виде?
- 6.6 Обратное преобразование Фурье задаётся формулой

$$x_n = \sum_{k=0}^{N-1} X_k(w^*)^{nk},$$

где комплексное число w^* является сопряжённым к числу $w=\exp\left(\frac{-2i\pi}{N}\right)$.

Докажите, что обратное преобразование Фурье, действительно, от комплексных чисел (X_k) переходит к исходныму ряду (x_n) .

- 6.7 В типичной задаче исходный ряд $x_0, x_1, ..., x_{N-1}$ является действительными числами. Докажите, что при дискретном преобразовании Фурье числа X_k и X_{N-k} являются комплексно-сопряжёнными.
- 6.8 Рассмотрим ряд месячной периодичности. Число наблюдений делится на 12. Исследователь Василий рассматривает в качестве регрессоров следующие переменные: столбец из единиц, $\sin\left(\frac{2\pi}{12}t\right)$, $\cos\left(\frac{2\pi}{12}t\right)$, $\sin\left(\frac{2\pi}{12}2t\right)$, $\cos\left(\frac{2\pi}{12}2t\right)$, $\sin\left(\frac{2\pi}{12}3t\right)$, $\cos\left(\frac{2\pi}{12}3t\right)$, $\sin\left(\frac{2\pi}{12}4t\right)$, $\cos\left(\frac{2\pi}{12}4t\right)$, $\cos\left(\frac{2\pi}{12}5t\right)$, $\cos\left(\frac{2\pi}125t\right)$, $\cos\left(\frac{2\pi}125t\right)$, $\cos\left(\frac{2\pi}125t\right)$, $\cos\left(\frac{2\pi}125t\right)$,
 - а) Являются ли эти регрессоры ортогональными?
 - б) Василий рассматривает два варианта действий. Вариант А: построить 12 регрессий исходного ряда на каждый регрессор в отдельности. Вариант Б: построить одну регрессию. Будут ли отличаться коэффициенты при регрессорах?
 - в) Можно ли добавить в качестве perpeccopa $\sin\left(\frac{2\pi}{12}6t\right)$ или $\cos\left(\frac{2\pi}{12}7t\right)$?
- **6.9** Исследовательница Агриппина взяла ряд длиной 6 наблюдений и построила его регрессию на тригонометрические ряды Фурье:

$$\hat{x}_t = 3.5 - 1.73\sin(2\pi t/6) + 1.00\cos(2\pi t/6) - 0.58\sin(4\pi t/6) + 1.00\cos(4\pi t/6) + 0.30\cos(6\pi t/6)$$

Найдите прямое преобразование Фурье исходного ряда.

6.10 Исследовательница Агриппина взяла ряд длиной 6 наблюдений и нашла его преобразование Фурье:

1.5,
$$-\frac{1}{6} + \frac{1}{\sqrt{12}}i$$
, 0, $-\frac{1}{6}$, 0, $-\frac{1}{6} - \frac{1}{\sqrt{12}}i$.

- а) Найдите регрессию этого ряда на тригонометрические ряды Фурье;
- б) Восстановите исходный ряд;

GARCH

Книжечка: [FZ19].

Положение GARCH-модели среди классических моделей временных рядов

$$Y_{t} = c + \sum_{i=1}^{p} \phi_{i} Y_{t-i} + \varepsilon_{t} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \sum_{j=1}^{k} \beta_{j} X_{tj},$$

$$\varepsilon_{t} = \sigma_{t} \cdot \xi_{t},$$

$$\sigma_{t}^{2} = \omega + \sum_{i=1}^{s} \delta_{i} \sigma_{t-i}^{2} + \sum_{j=1}^{r} \gamma_{j} \varepsilon_{t-j}^{2}.$$

- при $s=0,\,r=0,\,k=0$ ARMAX/GARCH это классическая ARMA(p,q)-модель,
- при $s=0,\,r=0$ ARMAX/GARCH это ARMA(p,q)-модель, в которой в качестве объясняющих переменных дополнительно включены экзогенные ряды $\{X_{t1}\},...,\{X_{tk}\}.$

Пример использования GARCH-модели

Пусть P_t — цена акции, фьючерса или значение некоторого индекса цен финансовых инструментов в момент времени t.

- простой доходностью называется $rac{P_t P_{t-1}}{P_{t-1}}$,
- логарифмической доходностью называется $\ln \frac{P_t}{P_{t-1}}.$

Связь между простой и логарифмической доходностью

$$\ln \frac{P_t}{P_{t-1}} = \ln \left(\frac{P_{t-1} + P_t - P_{t-1}}{P_{t-1}} \right) = \ln \left(1 + \frac{P_t - P_{t-1}}{P_{t-1}} \right).$$

Используя формулу Тейлора $\ln(1+x)=x+o(x)$ при $x\to 0$, можем записать следующее приближенное равенство:

$$\ln rac{P_t}{P_{t-1}} pprox rac{P_t - P_{t-1}}{P_{t-1}}$$

при малых значениях простой доходности $\frac{P_t - P_{t-1}}{P_{t-1}}$.

В финансовой математике, как правило, используется логарифмическая доходность. Это связано с тем, что

$$\ln \frac{P_T}{P_0} = \ln \frac{P_1}{P_0} + \ln \frac{P_2}{P_1} + \dots + \ln \frac{P_T}{P_{T-1}},$$

т. е. логарифмическая доходность за период [0;T] есть сумма логарифмических доходностей за периоды $[0;1],[1;2],\ldots,[T-1;T].$

30 Глава 7. GARCH

• В качестве зависимой переменной Y_t возьмём логарифмическую доходность $\ln \frac{P_t}{P_{t-1}}$ интересующего нас финансового инструмента.

• Простейшая модель для расчёта и прогнозирования волатильности — ARMAX(p=0,q=0,k=0)/GARCH(s=1,r=1)-модель:

$$Y_t = c + \varepsilon_t,$$

$$\varepsilon_t = \sigma_t \cdot \xi_t,$$

$$\sigma_t^2 = \omega + \delta \cdot \sigma_{t-1}^2 + \gamma \cdot \varepsilon_{t-1}^2,$$

• Дальнейшее изложение будем вести на примере данной модели.

Определение 7.1. Пусть $\omega > 0, \, \delta \geq 0, \, \gamma \geq 0, \, \delta + \gamma < 1$ — некоторые параметры, а $\sigma_0, \, \xi_0, \, \xi_1, \, \xi_2, \dots$ — независимые случайные величины такие, что

$$\mathbb{E}\sigma_0^2 = \frac{\omega}{1 - \delta - \gamma}, \quad \mathbb{E}\xi_t = 0, \quad \mathbb{E}\xi_t^2 = 1, \quad t \ge 1.$$

В этом случае говорят, что последовательность случайных величин $\{\varepsilon_t\}_{t=0}^{\infty}$ образует GARCH(1,1)-процесс, если выполнены следующие соотношения:

$$\varepsilon_0 = \sigma_0 \cdot \xi_0,$$

$$\varepsilon_t = \sigma_t \cdot \xi_t, \quad \sigma_t^2 = \omega + \delta \cdot \sigma_{t-1}^2 + \gamma \cdot \varepsilon_{t-1}^2, \quad t \ge 1.$$

Напомним определения слабо стационарного процесса и белого шума.

Определение 7.2. Случайный процесс $\{X_t\}_{t=0}^{\infty}$ называется *слабо стационарным*, если

- а) $\mathbb{E}X_t^2 < \infty$ для всех $t \ge 0$;
- б) $\mathbb{E}X_t = \mathbb{E}X_s$ для всех $t, s \ge 0$;
- в) $D X_t = D X_s$ для всех $t, s \ge 0$;
- г) $\operatorname{cov}(X_{t+h},X_{s+h}) = \operatorname{cov}(X_t,X_s)$ для всех $t,\,s\geq 0$ и любого h такого, что $t+h\geq 0$ и $s+h\geq 0$.

Определение 7.3. Слабо стационарный процесс $\{X_t\}_{t=0}^{\infty}$ называется белым шумом, если $\mathbb{E}X_t=0$ и $\mathrm{cov}(X_t,X_s)=0$ при $t,\,s\geq 0,\,t\neq s.$

Ниже мы покажем, что GARCH(1,1)-процесс $\{\varepsilon_t\}_{t=0}^\infty$ является белым шумом.

Пемма 7.1. Пусть случайные величины X_1,\ldots,X_m и Y_1,\ldots,Y_n независимы в совокупности. Тогда для любых (борелевских) функций $f\colon \mathbb{R}^m \to \mathbb{R}^1$ и $g\colon \mathbb{R}^n \to \mathbb{R}^1$ случайные величины $U=f(X_1,\ldots,X_m)$ и $V=g(Y_1,\ldots,Y_n)$ независимы.

Доказательство. См., например, Ширяев А. Н. [Shiryaev_Prob], гл. II, § 6, стр. 256.

 Π емма 7.2. Пусть независимые случайные величины X и Y имеют конечное математическое ожидание. Тогда

- (i) математическое ожидание случайной величины $X \cdot Y$ конечно;
- (ii) $\mathbb{E}[X \cdot Y] = \mathbb{E}X \cdot \mathbb{E}Y$.

Доказательство. См. Ширяев А. Н. [Shiryaev_Prob], гл. II, § 6, стр. 267, теорема 6.

Пемма 7.3. Пусть случайные величины X^2 и Y^2 имеют конечное математическое ожидание. Тогда случайная величина $X \cdot Y$ также имеет конечное математическое ожидание.

Доказательство. В силу свойства математического ожидания $|\mathbb{E}Z| \leq \mathbb{E}|Z|$ и неравенства $|X\cdot Y| \leq \frac{1}{2}\cdot X^2 + \frac{1}{2}\cdot Y^2$ получаем:

$$|\mathbb{E}[X \cdot Y]| \le \mathbb{E}[X \cdot Y] \le \frac{1}{2} \cdot \mathbb{E}X^2 + \frac{1}{2} \cdot \mathbb{E}Y^2 < \infty.$$

Пемма 7.4. Для любого $t \geq 0$ случайные величины σ_t и ξ_t независимы.

Доказательство. При t=0 независимость случайных величин σ_0 и ξ_0 содержится непосредственно в определении GARCH(1,1)-процесса.

При t=1 независимость σ_1 и ξ_1 следует из того, что случайные величины σ_0 , ξ_0 , ξ_1 независимы в совокупности, и того, что $\sigma_1=\sqrt{\omega+\delta\cdot\sigma_0^2+\gamma\cdot\sigma_0^2\cdot\xi_0^2}$, т. е. σ_1 является функцией от σ_0 , ξ_0 .

Независимость σ_t и ξ_t при $t \geq 2$ обосновывается аналогично тому, как это сделано при t = 1. Действительно, σ_t есть функция от $\sigma_0, \xi_0, \xi_1, \dots, \xi_{t-1}$, при этом величины $\sigma_0, \xi_0, \xi_1, \dots, \xi_t$ независимы в совокупности.

Утверждение 7.1. Пусть последовательность случайных величин $\{\varepsilon_t\}_{t=0}^{\infty}$ образует GARCH(1,1)-процесс. Тогда для любого $t \geq 0$

- (i) $\mathbb{E}\varepsilon_t^2 < \infty$;
- (ii) $\mathbb{E}\varepsilon_t = 0$;
- (iii) $\mathbb{E}\varepsilon_t^2 = \frac{\omega}{1-\delta-\gamma}$;
- (iv) $cov(\varepsilon_t, \varepsilon_s) = 0$ npu $t \neq s, s \geq 0$.

Доказательство. (i) (t=0) По условию случайные величины σ_0^2 и ξ_0^2 имеют конечное математическое ожидание. При этом независимость σ_0^2 и ξ_0^2 вытекает из независимости σ_0 и ξ_0 . Следовательно, в силу леммы 2 случайная величина $\varepsilon_0^2 = \sigma_0^2 \cdot \xi_0^2$ имеет конечное математическое ожидание.

- (t=1) Согласно лемме 4, случайные величины σ_1 и ξ_1 независимы. Значит, σ_1^2 и ξ_1^2 также независимы. Кроме того, по условию, математическое ожидание ξ_1^2 конечно, а конечность $\mathbb{E}\sigma_1^2$ вытекает из конечности $\mathbb{E}\sigma_0^2$, $\mathbb{E}\varepsilon_0^2$ и формулы $\sigma_1^2=\omega+\delta\cdot\sigma_0^2+\gamma\cdot\varepsilon_0^2$. Следовательно, $\varepsilon_1^2=\sigma_1^2\cdot\xi_1^2$ имеет конечное математическое ожидание.
 - $(t \ge 2)$ Доказательство конечности $\mathbb{E}\varepsilon_t^2$ при $t \ge 2$ проводится аналогично случаю t=1.
 - (ii) Для $t \geq 0$ имеем

$$\mathbb{E}\varepsilon_t = \mathbb{E}[\sigma_t \cdot \xi_t] = \mathbb{E}\sigma_t \cdot \mathbb{E}\xi_t = 0.$$

Здесь мы воспользовались независимостью случайных величин σ_t и ξ_t , а также $\mathbb{E}\xi_t=0$.

(iii) (t=0) При t=0 имеем

$$\mathbb{E}\varepsilon_0^2 = \mathbb{E}\sigma_0^2 \cdot \mathbb{E}\xi_0^2 = \frac{\omega}{1 - \delta - \gamma} \cdot 1 = \frac{\omega}{1 - \delta - \gamma}.$$

(t=1) Пусть t=1. По лемме 4 и доказанному выше, получаем

$$\mathbb{E}\varepsilon_1^2 = \mathbb{E}\sigma_1^2 \cdot \mathbb{E}\xi_1^2 = \mathbb{E}\sigma_1^2 = \omega + \delta \cdot \mathbb{E}\sigma_0^2 + \gamma \cdot \mathbb{E}\varepsilon_0^2 =$$

$$=\omega+\delta\cdot\frac{\omega}{1-\delta-\gamma}+\gamma\cdot\frac{\omega}{1-\delta-\gamma}=\frac{\omega}{1-\delta-\gamma}.$$

 $(t \geq 2)$ Доказательство утверждения при $t \geq 2$ выполняется аналогично рассмотренному случаю t=1.

32 Глава 7. GARCH

(iv) Пусть $0 \leq s < t$. Математическое ожидание ξ_t конечно по определению GARCH(1,1)-процесса. Конечность математического ожидания случайной величины $\sigma_t \cdot \varepsilon_s$ следует из конечности $\mathbb{E}\sigma_t^2$ и $\mathbb{E}\varepsilon_s^2$, а также леммы 7.3. Кроме этого, при $0 \leq s < t$ случайные величины ξ_t и $\sigma_t \cdot \varepsilon_s$ независимы. Поэтому

$$cov(\varepsilon_t, \varepsilon_s) = \mathbb{E}[\varepsilon_t \cdot \varepsilon_s] = \mathbb{E}[\xi_t \cdot (\sigma_t \cdot \varepsilon_s)] = \mathbb{E}\xi_t \cdot \mathbb{E}[\sigma_t \cdot \varepsilon_s] = 0.$$

Замечание 7.1. В ходе доказательства пункта (i) утверждения 7.1 попутно было установлено, что $\mathbb{E}\sigma_t^2<\infty$ для всех $t\geq 0$.

7.1 Рассмотрим следующий AR(1)-ARCH(1) процесс:

$$Y_t = 1 + 0.5Y_{t-1} + \varepsilon_t, \varepsilon_t = \nu_t \cdot \sigma_t$$

 u_t независимые $\mathcal{N}(0;1)$ величины.

$$\sigma_t^2 = 1 + 0.8\varepsilon_{t-1}^2$$

Также известно, что $Y_{100} = 2$, $Y_{99} = 1.7$

- а) Найдите $\mathbb{E}_{100}(\varepsilon_{101}^2)$, $\mathbb{E}_{100}(\varepsilon_{102}^2)$, $\mathbb{E}_{100}(\varepsilon_{103}^2)$, $\mathbb{E}(\varepsilon_t^2)$.
- б) Найдите $Var(Y_t)$, $Var(Y_t|\mathcal{F}_{t-1})$.
- в) Постройте доверительный интервал для Y_{101} при известном Y_{100} и Y_{99} .
- 7.2 Рассмотрим GARCH(1,2) процесс $\varepsilon_t = \sigma_t \nu_t$, $\sigma^2 = 0.2 + 0.5 \sigma_{t-1}^2 + 0.2 \varepsilon_{t-1}^2 + 0.1 \varepsilon_{t-2}^2$. Найдите безусловную дисперсию \mathbb{V} ar(y_t).
- 7.3 Для GARCH(1,1) процесса $\varepsilon_t = \sigma_t \nu_t, \, \sigma_t^2 = w + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$ найдите $\mathbb{E}(\mathbb{E}(\varepsilon_t^2 | \mathcal{F}_{t-1}))$
- 7.4 Рассмотрим GARCH(1,1) процесс $\varepsilon_t = \sigma_t \nu_t$, $\sigma_t^2 = 0.1 + 0.7 \sigma_{t-1}^2 + 0.2 \varepsilon_{t-1}^2$. Известно, $\sigma_T = 1$, $\varepsilon_T = 1$. Найдите $\mathbb{E}(\sigma_{T+2}^2 | \mathcal{F}_T)$.
- 7.5 Найдите безусловную дисперсию GARCH-процессов
 - a) $\varepsilon_t = \sigma_t \cdot z_t, \, \sigma_t^2 = 0.1 + 0.8\sigma_{t-1}^2 + 0.1\varepsilon_{t-1}^2$
 - б) $\varepsilon_t = \sigma_t \cdot z_t, \, \sigma_t^2 = 0.4 + 0.7 \sigma_{t-1}^2 + 0.1 \varepsilon_{t-1}^2$
 - B) $\varepsilon_t = \sigma_t \cdot z_t, \, \sigma_t^2 = 0.2 + 0.8\sigma_{t-1}^2 + 0.1\varepsilon_{t-1}^2$
- 7.6 Являются ли верными следующие утверждения?
 - a) GARCH-процесс является процессом белого шума, условная дисперсия которого изменяется во времени
 - б) Модель GARCH(1,1) предназначена для прогнозирования меры изменчивости цены финансового инструмента, а не для прогнозирования самой цены инструмента
 - в) При помощи GARCH-процесса можно устранять гетероскедастичность
 - r) Безусловная дисперсия GARCH-процесса изменяется во времени
 - д) Модель GARCH(1,1) может быть использована для прогнозирования волатильности финансовых инструментов на несколько торговых недель вперёд
- 7.7 Рассмотрим GARCH-процесс $\varepsilon_t=\sigma_t\cdot z_t,$ $\sigma_t^2=k+g_1\sigma_{t-1}^2+a_1\varepsilon_{t-1}^2.$ Найдите
 - a) $\mathbb{E}(z_t)$, $\mathbb{E}(z_t^2)$, $\mathbb{E}(\varepsilon_t)$, $\mathbb{E}(\varepsilon_t^2)$
 - б) $\mathbb{V}ar(z_t)$, $\mathbb{V}ar(\varepsilon_t)$, $\mathbb{V}ar(\varepsilon_t \mid \mathcal{F}_{t-1})$
 - B) $\mathbb{E}(\varepsilon_t \mid \mathcal{F}_{t-1}), \mathbb{E}(\varepsilon_t^2 \mid \mathcal{F}_{t-1}), \mathbb{E}(\sigma_t^2 \mid \mathcal{F}_{t-1})$

- r) $\mathbb{E}(z_t z_{t-1})$, $\mathbb{E}(z_t^2 z_{t-1}^2)$, $\mathbb{C}\text{ov}(\varepsilon_t, \varepsilon_{t-1})$, $\mathbb{C}\text{ov}(\varepsilon_t^2, \varepsilon_{t-1}^2)$
- д) $\lim_{h\to\infty} \mathbb{E}(\sigma_{t+h}^2 \mid \mathcal{F}_t)$
- 7.8 Используя 500 наблюдений дневных логарифмических доходностей y_t , была оценена GARCH(1,1)-модель: $\hat{y}_t = -0.000708 + \hat{\varepsilon}_t$, $\varepsilon_t = \sigma_t \cdot z_t$, $\sigma_t^2 = 0.000455 + 0.6424\sigma_{t-1}^2 + 0.2509\varepsilon_{t-1}^2$. Также известно, что $\hat{\sigma}_{499}^2 = 0.002568$, $\hat{\varepsilon}_{499}^2 = 0.000014$, $\hat{\varepsilon}_{500}^2 = 0.002178$. Найдите
 - a) $\hat{\sigma}_{500}^2$, $\hat{\sigma}_{501}^2$, $\hat{\sigma}_{502}^2$
 - б) Волатильность в годовом выражении в процентах, соответствующую наблюдению с номером $t=500\,$
- 7.9 Рассмотрим ARCH(1) процесс

$$\begin{cases} y_t = 2 + \varepsilon_t \\ \varepsilon_t = \sigma_t \cdot \nu_t \\ \sigma_t^2 = 10 + 0.5\varepsilon_{t-1}^2 \end{cases}$$

- а) Найдите \mathbb{V} ar (y_{101}) , постройте 95%-ый предиктивный интервал для y_{101}
- б) Известно, что $y_{100}=3$, постройте 95%-ый предиктивный интервал для y_{101}
- в) Известно, что $y_{100}=12$, постройте 95%-ый предиктивный интервал для y_{101}
- **7.10** Может ли у GARCH процесса условная дисперсия ε_t быть больше, чем безусловная? А меньше, чем безусловная?
- 7.11 Как известно, у GARCH процесса условная дисперсия ε_t может быть как больше, так и меньше безусловной.
 - а) Имеет ли смысл строить предиктивный интервал для y_t , используя условную дисперсию, если она больше безусловной?
 - б) При построении предиктивного интервала эконометресса Агнесса использует безусловную дисперсию, если она меньше условной, и условную дисперсию, если она меньше безусловной. Корректно ли поступает Агнесса?
- **7.12** Рассмотрим процесс AR(1)-GARCH(1,1):

$$\begin{cases} y_t = 2 + 0.6y_{t-1} + \varepsilon_t \\ \varepsilon_t = \sigma_t \cdot \nu_t \\ \sigma_t^2 = 6 + 0.4\sigma_{t-1}^2 + 0.2\varepsilon_t^2 \end{cases}$$

Найдите $Var(\varepsilon_t|\mathcal{F}_{t-1})$, $Var(y_t|\mathcal{F}_{t-1})$, $Var(\varepsilon_t)$, $Var(y_t)$

34 Глава 7. GARCH

Единичный корень

8.1 Винни-Пух пытается выявить закономерность в количестве придумываемых им каждый день ворчалок. Винни-Пух решил разобраться, является ли оно стационарным процессом, для этого он оценил регрессию

$$\Delta \hat{y}_t = 4.5 - 0.4 y_{t-1} + 0.7 \Delta y_{t-1}$$

Из-за опилок в голове Винни-Пух забыл, какой тест ему нужно провести, то ли Доктора Ватсона, то ли Дикого Фуллера.

- а) Аккуратно сформулируйте основную и альтернативную гипотезы
- б) Проведите подходящий тест на уровне значимости 5%
- в) Сделайте вывод о стационарности ряда
- ${\bf r}$) Почему Сова не советовала Винни-Пуху пользоваться широко применяемым в Лесу t-распределением?

Глава 9

Векторная авторегрессия

9.1 Рассмотрим систему уравнений:

$$\begin{cases} x_t = -\frac{1}{6}x_{t-1} + \frac{2}{6}y_{t-1} + \varepsilon_{xt} \\ y_t = -\frac{4}{6}x_{t-1} + \frac{1}{6}y_{t-1} + \varepsilon_{yt} \end{cases}$$

- а) Есть ли у данной системы стационарное решение?
- б) Если стационарное решение имеется, то найдите $\mathbb{E}(x_t)$ и $\mathbb{E}(y_t)$
- в) Нарисуйте в осях (x_t, y_t) типичную тракторию стационарного решения
- 9.2 Рассмотрим систему уравнений:

$$\begin{cases} x_t = -0.2x_{t-1} + 0.6y_{t-1} + \varepsilon_{xt} \\ y_t = 1.2x_{t-1} + 0.4y_{t-1} + \varepsilon_{yt} \end{cases}$$

- а) Есть ли у данной системы коинтегрированное решение?
- б) Если коинтегрированное решение имеется, то найдите коинтеграционное соотношение и представьте модель в виде модели коррекции ошибок
- в) Нарисуйте в осях (x_t, y_t) типичную тракторию коинтегрированного решения
- 9.3 Белые шумы ε_t и u_t независимы. Пусть $y_t = 2 0.5t + u_t$, $x_t = 1 + 0.5t + \varepsilon_t$.
 - а) Является ли процесс $z_t = x_t + y_t$ стационарным?
 - б) Являются ли процессы x_t и y_t коинтегрированными?
- 9.4 Два процесса (x_y) и (y_t) называются независимыми, если независимы любые случайные величины x_s и y_t .

Докажите каждое утверждение или приведите контр-пример.

- а) Сумма двух белых шумов является белым шумом.
- б) Сумма двух независимых белых шумов является белым шумом.
- в) Сумма двух стационарных процессов стационарна.
- г) Сумма двух независимых стационарных процессов стационарна.
- д) Сумма двух нестационарных процессов нестационарна.
- е) Сумма двух независимых нестационарных процессов нестационарна.
- **9.5** Какие процессы могут быть коинтегрированы: $x_t \sim I(0)$, $y_t \sim I(1)$, $z_t \sim I(2)$, $w_t \sim I(2)$, $s_t \sim I(1)$?

9.6 Белые шумы (ε_t) и (u_t) независимы.

Классифицируйте каждый процесс 1 как ARIMA(p,d,q), определите порядок интеграции каждого процесса и определите, какие пары процессов коинтегрированы:

- a) $a_t = 0.5a_{t-1} + u_t$
- $b_t = b_{t-1} + u_t, b_0 = 0$
- B) $c_t = 0.5b_t + \varepsilon_t$
- r) $d_t = 0.3b_t + a_t$
- д) $e_t = e_{t-1} + \varepsilon_t$
- e) $g_t = g_{t-1} + b_t$
- ж) $h_t = 0.7h_{t-1} + b_t$
- 9.7 Процессы u_t и ε_t независимые белые шумы с дисперсиями σ_u^2 и σ_ε^2 . Рассмотрим процессы

$$y_t = \begin{cases} y_{t-1} + \varepsilon_t, \text{ при } t > 0, \\ 0, \text{ при } t = 0; \end{cases}$$

$$z_t = \begin{cases} z_{t-1} + \varepsilon_t + 0.5\varepsilon_{t-1}, \text{ при } t > 0, \\ 0, \text{ при } t = 0; \end{cases}$$

$$w_t = \begin{cases} 0.5w_{t-1} + y_{t-1} + u_t, \text{ при } t > 0, \\ 0, \text{ при } t = 0; \end{cases}$$

$$r_t = \begin{cases} -2y_t + 0.5r_{t-1} + y_{t-1} + u_t, \text{ при } t > 0, \\ r_0, \text{ при } t = 0; \end{cases}$$

- а) Найдите порядок интеграции каждого процесса;
- б) Какие пары процессов являются коинтегрированными? Найдите коинтеграционные соотношения для коинтегрированных пар.

¹Если у уравнения не заданы начальные условия, то подразумевается стационарное решение, если оно, конечно, есть.

Глава 10

Модели состояние-наблюдение

- **10.1** Представьте процесс AR(1), $y_t = 0.9y_{t-1} 0.2y_{t-2} + \varepsilon_t$, $\varepsilon \sim$ WN(0;1) в виде модели состояниенаблюдение.
 - а) Выбрав в качестве состояний вектор $\left(egin{array}{c} y_t \\ y_{t-1} \end{array} \right)$
 - б) Выбрав в качестве состояний вектор $\left(egin{array}{c} y_t \\ \hat{y}_{t,1} \end{array}
 ight)$

Найдите дисперсии ошибок состояний

- **10.2** Представьте процесс MA(1), $y_t = \varepsilon_t + 0.5\varepsilon_{t-1}$, $\varepsilon \sim$ WN(0;1) в виде модели состояние-наблюдение.
 - a) $\begin{pmatrix} \varepsilon_t \\ \varepsilon_{t-1} \end{pmatrix}$
 - 6) $\left(\begin{array}{c} \varepsilon_t + 0.5\varepsilon_{t-1} \\ 0.5\varepsilon_t \end{array}\right)$
- **10.3** Представьте процесс ARMA(1,1), $y_t = 0.5y_{t-1} + \varepsilon_t + \varepsilon_{t-1}$, $\varepsilon \sim$ WN(0;1) в виде модели состояниенаблюдение.

Вектор состояний имеет вид x_t, x_{t-1} , где $x_t = \frac{1}{1-0.5L} \varepsilon_t$

- 10.4 Рекурсивные коэффициенты
 - а) Оцените модель вида $y_t=a+b_tx_t+arepsilon_t$, где $b_t=b_{t-1}$.
 - б) Сравните графики filtered state и smoothed state.
 - в) Сравните финальное состояние b_T с коэффициентом в обычной модели линейной регрессии, $y_t=a+bx_t+\varepsilon_t.$

Глава 11

Решения и ответы к избранным задачам

1.1. В данном случае статистика DW не применима, так как есть лаг y_{t-1} среди регрессоров.

1.2.

- а) $\mathbb{E}(arepsilon_t)=0$, $\mathbb{V}\mathrm{ar}(arepsilon_1)=\sigma^2$, $\mathbb{V}\mathrm{ar}(arepsilon_t)=2\sigma^2$ при $t\geq 2$. Гетероскедастичная.
- б) $\mathbb{C}\mathrm{ov}(e_t,e_{t+1})=\sigma^2$. Автокоррелированная.
- в) $\hat{\beta}$ несмещенная, неэффективная
- г) Более эффективной будет $\hat{eta}_{gls} = (X'V^{-1}X)^{-1}X'V^{-1}y$, где

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Матрица V известна с точностью до константы σ^2 , но в формуле для $\hat{\beta}_{gls}$ неизвестная σ^2 сократится. Другой способ построить эффективную оценку — применить МНК к преобразованным наблюдениям, т.е. $\hat{\beta}_{gls} = \frac{\sum x_i' y_i'}{\sum x_i'^2}$, где $y_1' = y_1, x_1' = x_1, y_t' = y_t - y_{t-1}, x_t' = x_t - x_{t-1}$ при $t \geq 2$.

1.3. Для простоты закроем глаза на малое количество наблюдений и как индейцы пираха будем считать, что пять — это много.

а) Поскольку имеют место соотношения $\varepsilon_1 = \rho \varepsilon_0 + u_1$ и $Y_1 = \mu + \varepsilon_1$, то из условия задачи получаем, что $\varepsilon_1 \sim N(0, \sigma^2/(1-\rho^2))$ и $Y_1 \sim \mathcal{N}(\mu, \sigma^2/(1-\rho^2))$. Поэтому

$$f_{Y_1}(y_1) = \frac{1}{\sqrt{2\pi\sigma^2/(1-\rho^2)}} \exp\left\{\left(-\frac{(y_1-\mu)^2}{2\sigma^2/(1-\rho^2)}\right)\right\}.$$

Далее, найдем $f_{Y_2\mid Y_1}(y_2\mid y_1)$. Учитывая, что $Y_2=\rho Y_1+(1-\rho)\mu+u_2$, получаем $Y_2\mid \{Y_1=y_1\}\sim N(\rho y_1+(1-\rho)\mu,\sigma^2)$. Значит,

$$f_{Y_2|Y_1}(y_2 \mid y_1) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ \left(-\frac{(y_2 - \rho y_1 - (1-\rho)\mu)^2}{2\sigma^2} \right) \right\}.$$

Действуя аналогично, получаем, что для всех $t \geq 2$ справедлива формула

$$f_{Y_t|Y_{t-1}}(y_t \mid y_{t-1}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ \left(-\frac{(y_t - \rho y_{t-1} - (1-\rho)\mu)^2}{2\sigma^2} \right) \right\}.$$

Таким образом, находим функцию правдоподобия

$$L(\mu, \rho, \sigma^2) = f_{Y_T, \dots, Y_1}(y_T, \dots, y_1) = f_{Y_1}(y_1) \prod_{t=2}^T f_{Y_t \mid Y_{t-1}}(y_t \mid y_{t-1}),$$

где $f_{Y_1}(y_1)$ и $f_{Y_t \mid Y_{t-1}}(y_t \mid y_{t-1})$ получены выше.

б) Для нахождения неизвестных параметров модели запишем логарифмическую условную функцию правдоподобия:

$$\ln L(\mu, \rho, \sigma^2 \mid Y_1 = y_1) = \sum_{t=2}^{T} \log f_{Y_t \mid Y_{t-1}}(y_t \mid y_{t-1}) =$$

$$= -\frac{T-1}{2} \log(2\pi) - \frac{T-1}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{t=2}^{T} (y_t - \rho y_{t-1} - (1-\rho)\mu)^2.$$

Найдем производные функции $\ell(\mu, \rho, \sigma^2 \mid Y_1 = y_1)$ по неизвестным параметрам:

$$\frac{\partial \ell}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{t=2}^{T} 2(y_t - \rho y_{t-1} - (1-\rho)\mu) \cdot (\rho - 1),$$

$$\frac{\partial \ell}{\partial \rho} = -\frac{1}{2\sigma^2} \sum_{t=2}^{T} 2(y_t - \rho y_{t-1} - (1 - \rho)\mu) \cdot (\mu - y_{t-1}),$$

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{T-1}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{t=2}^{T} (y_t - \rho y_{t-1} - (1-\rho)\mu)^2.$$

Оценки неизвестных параметров модели могут быть получены как решение следующей системы уравнений:

$$\begin{cases} \frac{\partial \ell}{\partial \mu} = 0, \\ \frac{\partial \ell}{\partial \rho} = 0, \\ \frac{\partial \ell}{\partial \sigma^2} = 0. \end{cases}$$

Из первого уравнения системы получаем, что

$$\sum_{t=2}^{T} y_t - \hat{\rho} \sum_{t=2}^{T} y_{t-1} = (T-1)(1-\hat{\rho})\hat{\mu},$$

откуда

$$\hat{\mu} = \frac{\sum_{t=2}^{T} y_t - \hat{\rho} \sum_{t=2}^{T} y_{t-1}}{(T-1)(1-\hat{\rho})} = \frac{3 - \hat{\rho} \cdot 3}{4 \cdot (1-\hat{\rho})} = \frac{3}{4}.$$

Далее, если второе уравнение системы переписать в виде

$$\sum_{t=2}^{T} (y_t - \hat{\mu} - \hat{\rho}(y_{t-1} - \hat{\mu}))(y_{t-1} - \hat{\mu}) = 0,$$

то легко видеть, что

$$\hat{\rho} = \frac{\sum_{t=2}^{T} (y_t - \hat{\mu})(y_{t-1} - \hat{\mu})}{\sum_{t=2}^{T} (y_{t-1} - \hat{\mu})^2}.$$

Следовательно, $\hat{\rho} = -1/11 = -0.0909$.

Наконец, из третьего уравнения системы

$$\hat{\sigma}^2 = \frac{1}{T-1} \sum_{t=2}^{T} (y_t - \hat{\rho}y_{t-1} - (1-\hat{\rho})\hat{\mu})^2.$$

Значит, $\hat{\sigma}^2=165/242=0.6818$. Ответы: $\hat{\mu}=3/4=0.75,\,\hat{\rho}=-1/11=-0.0909,\,\hat{\sigma}^2=165/242=0.6818$.

1.5. Несмещёнными остаются. Состоятельными не всегда остаются, например, состоятельность исчезает, если все случайные ошибки тождественно равны между собой.

1.6.

а) Для начала мы избавимся от логарифмов.

$$\ln \hat{Q}_t = 26.7 + 0.2 \ln \hat{Q}_{t-1} - 0.6 \ln P_t \Leftrightarrow \ln \hat{Q}_t = \ln \left(e^{26.7} \cdot \hat{Q}_{t-1}^{0.2} \cdot P_t^{-0.3} \right) \Leftrightarrow \hat{Q}_t = e^{26.7} \cdot \hat{Q}_{t-1}^{0.2} \cdot P_t^{-0.3}$$

Воспользуемся формулой эластичности объема продаж по цене (спроса по цене).

$$\hat{e}_t = \frac{\frac{\Delta Q(p)}{Q(p)}}{\frac{\Delta P}{P}} = \frac{(e^{26.7} \cdot Q_{t-1}^{0.2} \cdot P_t^{-0.3})'}{(P)'} = \frac{-0.3P^{1.3}(e^{26.7} \cdot Q_{t-1}^{0.2})}{1} = -0.3P^{1.3}(e^{26.7} \cdot Q_{t-1}^{0.2})$$

б) По формуле теста Бройша-Годфри

$$e_t = \sum_{i=1}^p e_i \cdot a_{t-i} + u_t$$

То есть для нашего случая p=1, так как p равна порядку автокорелляции, то есть единице,

$$e_t = e_{t-1} \cdot a_1 + u_t.$$

1.7.

1.8.

1.9.

a)
$$\mathbb{E}(\varepsilon_t) = 0$$
, $\mathbb{V}ar(\varepsilon_t) = \sigma^2/(1-\rho^2)$

6)
$$\mathbb{C}ov(\varepsilon_t, \varepsilon_{t+h}) = \rho^h \cdot \sigma^2/(1-\rho^2)$$

$$\mathbf{B}) \ \mathbb{C}\mathrm{orr}(\varepsilon_t, \varepsilon_{t+h}) = \rho^h$$

1.10.

- а) Воспользуемся табличкой критических значений DW. Для T=25, k=2 критические значения для этого количества: $d_L=1.21, d_U=1.55$. Гипотеза об отсутствии автокорреляции отвергается.
- б) Воспользуемся табличкой критических значений DW. Для T=30, k=3 критические значения для этого количества: $d_L=1.21, d_U=1.65$. Статистика DW попадает в зону неопределенности.
- в) Воспользуемся табличкой критических значений DW. Для T=50, k=4 критические значения для этого количества: $d_L=1.38, d_U=1.72$. Гипотеза об отсутствии автокорреляции не отвергается.
- г) Воспользуемся табличкой критических значений DW. Для T=100, k=5 критические значения для этого количества: $d_L=1.57, d_U=1.78$. Статистика DW меньше d_L и гипотеза об отсутствии автокорреляции отвергается.

1.11. Вспомним формулу теста Дарбина-Уотсона

$$DW = \frac{\sum_{i=2}^{n} (\hat{e}_i - \hat{e}_{i-1})^2}{\sum_{i=1}^{n} \hat{e}_i^2}$$

Осталось ее применить.

$$DW = \frac{\sum_{i=2}^{n} (\hat{e}_{i} - \hat{e}_{i-1})^{2}}{\sum_{i=1}^{n} \hat{e}_{i}^{2}} = \frac{\sum_{i=2}^{n} \hat{e}_{i}^{2}}{\sum_{i=1}^{n} \hat{e}_{i}^{2}} + \frac{\sum_{i=1}^{n-1} \hat{e}_{i}^{2}}{\sum_{i=1}^{n} \hat{e}_{i}^{2}} + \frac{\sum_{i=2}^{n} \hat{e}_{i} \cdot \hat{e}_{i-1}}{\sum_{i=1}^{n} \hat{e}_{i}^{2}} =$$

$$= \frac{\sum_{i=1}^{n} \hat{e}_{i}^{2} - \hat{e}_{1}^{2}}{\sum_{i=1}^{n} \hat{e}_{i}^{2}} + \frac{\sum_{i=1}^{n} \hat{e}_{i}^{2} - \hat{e}_{100}^{2}}{\sum_{i=1}^{n} \hat{e}_{i}^{2}} - \frac{\sum_{i=2}^{n} \hat{e}_{i} \cdot \hat{e}_{i-1}}{\sum_{i=1}^{n} \hat{e}_{i}^{2}} =$$

$$= \frac{120 - (-1)^{2}}{120} + \frac{120 - (2)^{2}}{120} - \frac{-50}{120} =$$

$$= \frac{119}{120} + \frac{116}{120} + \frac{50}{120} = \frac{285}{120} = 2.375$$

Теперь найдем ρ

$$\rho = \frac{\sum_{i=2}^{n} \hat{e}_i \cdot \hat{e}_{i-1}}{\sum_{i=1}^{n} \hat{e}_i^2} = \frac{-50}{120} \approx -0.417$$

- 1.12. Для начала вспомним, когда мы не можем применить статистику Дарбина Уотсона:
- а) если в уравнении нет свободного члена,
- б) если в уравнении есть стохастический регрессор,

- в) если возмущения удовлетворяют авторегрессионной схеме не первого, а большего порядка.
- а) В этом уровнении нет свободного члена, статистика Дарбина Уотсона не применима.
- б) Для этой модели ни одно из условий неприменимости не выполняется, так что можно применить статистику Дарбина-Уотсона.
- в) В уравнении есть стохастический регрессор, статистика Дарбина Уотсона не применима.
- г) В уравнении есть стохастический регрессор, статистика Дарбина Уотсона не применима.
- д) В этом уровнении нет свободного члена, статистика Дарбина Уотсона не применима.
- е) Для этой модели ни одно из условий неприменимости не выполняется, так что можно применить статистику Дарбина-Уотсона.
- **1.13**. Воспользуемся табличкой критических значений DW. Для T=21, k=2 критические значения для этого количества: $d_L=1.13, d_U=1.54$. Статистика DW попадает в зону неопределенности.
- **1.14**. Воспользуемся табличкой критических значений DW. Для T=24, k=1 критические значения для этого количества: $d_L=1.27, d_U=1.45$. То есть DW попадает в зону неопределенности.
- 1.15. Воспользуемся табличкой критических значений DW. Для T=32, k=2 критические значения для этого количества: $d_L=1.31, d_U=1.57$. То есть DW меньше d_U и гипотеза об отсутствии автокорреляции не отвергается.

2.1.

$$(1 - 0.4L)y_t = 4 + (1 + 0.3L)\varepsilon_t$$

2.2.
$$x_t = (1 - L)^t y_t$$

2.3.
$$F_n = L(1+L)F_n$$
, значит $F_n = L^k(1+L)^kF_n$ или $F_{n+k} = (1+L)^kF_n$ Ответ: 1

- **2.4**. a неверно, б верно, b верно, r нет.
- **2.5.** а, б, в, г стационарны
- 2.6. Они будут примерно одинаковы. Оценка наклона определяется автоковариационной функцией.

2.7.

2.8.

а)
$$y_t = 1 + \varepsilon_t + 0.5\varepsilon_{t-1} + 0.25\varepsilon_{t-2} -$$
 стационарный

6)
$$y_t = -2y_{t-1} - 3y_{t-2} + \varepsilon_t + \varepsilon_{t-1}$$

в)
$$y_t = -0.5y_{t-1} + \varepsilon_t -$$
стационарный

- r) $y_t = 1 1.5y_{t-1} 0.5y_{t-2} + \varepsilon_t 1.5\varepsilon_{t-1} 0.5\varepsilon_{t-2}$
- д) $y_t = 1 + 0.64 y_{t-2} + \varepsilon_t + 0.64 \varepsilon_{t-1} -$ стационарный
- e) $y_t = 1 + t + \varepsilon_t$ нестационарный
- ж) $y_t = 1 + y_{t-1} + \varepsilon_t$ нестационарный
- **2.9**. Процесс стационарен только при $y_1 = 4 + \frac{2}{\sqrt{3}} \varepsilon_1$. Фразу нужно понимать как «у стохастического разностного уравнения $y_t = 2 + 0.5 y_{t-1} + \varepsilon_t$ есть стационарное решение».
 - 2.10. да, стационарный
 - 2.11. да, получается
 - **2.12**. да, это белый шум. Величина N распределена биномиально, $Bin(n=100,p=1/2), \mathbb{E}(N)=50.$
 - 2.13.
 - а) $z_t = x_t(1 x_{t-1})y_t$; Процесс z_t белый шум, $\mathbb{E}(z_t) = 0$, $\mathbb{V}\mathrm{ar}(z_t) = 6$. Величины z_t зависимы. Например, если $z_t \neq 0$, то $z_{t+1} = z_{t-1} = 0$. Величины z_t одинаково распределены.
 - б) $z_t = y_{t-1}y_t$; Процесс z_t белый шум. Величины z_t зависимы. Величины z_t одинаково распределены.
- **2.14.** Проекции: $\tilde{X}_1 = X_1 + Z$; $\tilde{X}_2 = X_2 + Z$; $\mathbb{E}(X_i|Z) = 1 Z$; $\mathbb{C}\text{ov}(X_i,Z) = -1/4$; Величина Z имеет распределение Бернулли, поэтому $\mathbb{E}(Z) = 1/2$ и \mathbb{V} ar(Z) = 1/4;

$$p\mathbb{C}orr(X_1, X_2; Z) = \frac{-1/2}{12.5} = -\frac{1}{\sqrt{50}}$$
$$\mathbb{C}orr(X_1, X_2 | Z) = -Z/6$$

- 2.15.
 - а) $u_t \sim \mathcal{N}(0;1)$ и независимы;
 - б) $u_t \sim \mathcal{N}(0;1)$ и независимы при t>1, а при t=1 величина u_t равновероятно принимает значения -1 и 1;
 - в) Величины u_t независимы и одинаково распределены с бесконечным математическим ожиданием;
 - г) $u_t \sim \mathcal{N}(t;1)$ и независимы.
- 2.16.
 - a) $\mathbb{P}(z_t = 1) = 2/3$;
 - б) $\mathbb{E}(s_t) = (t-2) \cdot 2/3;$
 - B) $\mathbb{C}ov(z_1, z_2)$, $\mathbb{C}ov(z_1, z_3)$, $\mathbb{C}ov(z_1, z_4) = 0$;

r) $Var(s_t) = (16t - 29)/90$;

2.17.

- а) Процесс (x_t) не обязательно стационарен;
- б) Процесс (y_t) не обязательно стационарен;
- в) Если любые корреляции равны нулю, то процесс-сумма будет стационарным, а процесс-произведение не обязательно.

3.1.

- а) $a_t = 2$, уравнение (B) не имеет постоянных решений, $c_t = -1$
- 6) $a_t = 2 + d0.5^t$, $b_t = d + t$, $c_t = -1 + d2^t$.
- в) уравнение $y_t=1+\beta y_{t-1}$ имеет единственное постоянное решение при $\beta \neq 1$

3.2.

3.3.

ARMA(2,3), ARIMA(2,0,3)

3.4.

- а) Процесс AR(2), т.к. две первые частные корреляции значимо отличаются от нуля, а гипотезы о том, что каждая последующая равна нулю не отвергаются.
- б) Можно использовать одну из двух статистик

Ljung-Box =
$$n(n+2)\sum_{k=1}^{3} \frac{\hat{\rho}_k^2}{n-k} = 0.42886$$

Box-Pierce =
$$n \sum_{k=1}^{3} \hat{\rho}_k^2 = 0.4076$$

Критическое значение хи-квадрат распределения с 3-мя степенями свободы для $\alpha=0.05$ равно $\chi^2_{3,crit}=7.81$. Вывод: гипотеза H_0 об отсутствии корреляции ошибок модели не отвергается.

3.5.

3.6. Среднее количество пересечений равно 50 помножить на вероятность того, что два соседних y_t разного знака. Найдём вдвое меньшую вероятность, $\mathbb{P}(y_1>0,y_2<0)$.

3.7.

$$\mathbb{E}(b_t) = 3$$

$$Var(b_t) = t^2 \sigma_{\varepsilon}^2$$

$$\mathbb{C}\mathrm{ov}(b_t, b_{t-k}) = 0, k \ge 1$$

$$\mathbb{C}\mathrm{orr}(b_t,b_{t-k})=0, k\geq 1$$

 b_t — нестационарный из-за дисперсии

$$\mathbb{E}(c_t) = 2$$

$$\mathbb{V}\operatorname{ar}(c_t) = \sigma_{\varepsilon}^2$$

$$\mathbb{C}\text{ov}(c_t, c_{t-k}) = \cos(\pi k/2)\sigma_{\varepsilon}^2, k \ge 1$$

$$\mathbb{C}\operatorname{orr}(c_t, c_{t-k}) = \cos(\pi k/2), k \ge 1$$

 c_t — стационарный

3.8. зачеркнуть одну цифру

3.9.

3.10.

3.11. По нулевым корреляциям догадываемся, что это процесс MA(2).

$$y_y = 4 + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2}$$

$$\begin{cases} \frac{\alpha_1\alpha_2 + \alpha_1}{\alpha_2} = 7/3\\ \frac{\alpha_1^2 + \alpha_2^2 + 1}{\alpha_2} = 10/3 \end{cases}$$

3.12.

3.13.

- а) ACF = (0.9, -0.9, 0, 0, 0, ...) не бывает, так как определитель корреляционной матрицы 3 на 3 отрицательный;
- 6) PACF = (0.9, -0.9, 0, 0, 0, ...) AR(2);

- B) $PACF = (0.9, 0, 0, 0, 0, ...) y_t = 0.9y_{t-1} + u_t;$
- r) $PACF = (0, 0.9, 0, 0, 0, 0, ...) y_t = 0.9y_{t-2} + u_t;$
- д) $ACF = (0.9, 0, 0, 0, 0, \dots)$ не бывает, подозрение падает на MA(1), но решения только с комплексными коэффициентами, геометрически: два угла с косинусом 0.9, то есть примерно по 30 градусов, и они даже в сумме не могут дать перпендикуляр;
- e) $ACF = (0, 0.9, 0, 0, 0, 0, 0, \dots)$ не бывает, если проредить процесс через один, то должна получится невозможная АСГ;

В целом PACF может быть любая, http://projecteuclid.org/euclid.aos/1176342881.

- **3.14.** $\phi_{kk} = 0$ при $k \geq 3$.
- **3.15**. Заметим, что $0.69 \approx 0.71$, сокращаем множитель 1-0.7L, получаем $y_t = 100/3 + \varepsilon_t$.
- 3.16. Стационарным решением является $y_t = \sum_{i=0}^{\infty} 0.5^i \varepsilon_{t-i}$. Решениями также являются: $y_t = 0.5^t + \sum_{i=0}^{\infty} 0.5^i \varepsilon_{t-i}$, $y_t = 0.5^t \varepsilon_{t-i}$, $y_t = 0.5^t \varepsilon_{t-i}$, $y_t = 0.5^t \varepsilon_{t-i}$.
 - 3.17.

$$\mathbb{E}_t(y_{t+1}) = 2 + 0.6y_{t-1} - 0.08y_{t-2}, \mathbb{V}ar_t(y_{t+1}) = 4$$

$$\mathbb{E}_t(y_{t+2}) = 3.2 + 0.28y_t - 0.048y_{t-1}, \, \mathbb{V}ar_t(y_{t+2}) = 1.36 \cdot 4$$

$$\mathbb{E}_{100}(y_{102}) = 4.388, \mathbb{V}ar_{100}(y_{102}) = 5.44.$$

Предиктивный интервал $[4.388 - 1.96\sqrt{5.44}; 4.388 + 1.96\sqrt{5.44}]$

$$\mathbb{E}(y_t) = \frac{2}{0.48} \approx 4.17$$

3.18. Заметим, что \mathbb{V} ar $(u_t|\mathcal{F}_t)=0$. Более того, для обратимого процесса \mathbb{V} ar $(u_t|y_t,y_{t-1},\ldots,y_1)\approx \mathbb{V}$ ar $(u_t|y_t,y_{t-1},\ldots)=0$ 0.

$$\mathbb{E}(y_{101}|y_{100}) = 7 + 0 + 0.2 \,\mathbb{E}(u_{100}|y_{100})$$

$$\mathbb{E}(u_{100}|y_{100}) = \beta_1 + \beta_2 y_{100}$$

$$\beta_2 = \frac{\mathbb{C}\text{ov}(y_{100}, u_{100})}{\mathbb{V}\text{ar}(y_{100})} = 4/4.16, \beta_1 = \mathbb{E}(u_{100}) - \beta_2 \,\mathbb{E}(y_{100}) = -4 \cdot 7/4.16$$

$$\frac{y_t}{1 + 0.2L} = \frac{7}{1 + 0.2L} + u_t$$

Заметим, что $\frac{7}{1+0.2L}=7/1.2$, так как $L\cdot 7=7$ (вчера семь равнялось семи). По условию $\frac{y_{100}}{1+0.2L}\approx 5.6$. Знак «примерно равно» возникает из-за замены бесконечной суммы на конечную.

3.19. $\mathbb{E}(y_1) = 0$, $\mathbb{V}\operatorname{ar}(y_1) = \sigma_u^2/(1-\beta^2)$, $\mathbb{E}(y_t|y_{t-1}) = \beta y_{t-1}$, $\mathbb{V}\operatorname{ar}(y_t|y_{t-1}) = \sigma_u^2$.

При максимизации условного правдоподобия получаем:

$$\hat{\beta} = \frac{y_1 y_2 + y_2 y_3}{y_1^2 + y_2^2}$$

- 3.20.
- 3.21.

50

3.22.

$$\operatorname{plim} \hat{\beta}_2 = \frac{\beta + \alpha}{1 + \beta \alpha}$$

3.23. Если обозначить отношение дисперсий буквой $R = \sigma_w^2/\sigma_u^2$, то равенство дисперсии и ковариации даёт систему уравнений:

$$\begin{cases} \alpha R = 2\\ (1 + \alpha^2)R = 5 \end{cases}$$

Решений у неё два, старый процесс $(\alpha=2,R=1)$, и новый $(\alpha=0.5,R=4)$. Из равенства ожиданий следует, что c=5.

3.24. Берем любое a_0 , а дальше в обе стороны заполняем числа по принципу $a_t = -0.5a_{t-1}$.

3.25.

а) Пусть (u_t) — белый шум, рассмотрим следующий процесс:

$$w_t = (1 + 2L)(1 - 0.5L + 0.5^2L^2 - 0.5^3L^3 + \dots)u_t$$

Выпишем сначала определение белого шума (u_t) , а затем проверим все ли свойства выполняются для (w_t) .

$$\begin{cases} \mathbb{E}(u_t) = 0 \\ \mathbb{V}\operatorname{ar}(u_t) = \sigma^2 \\ \mathbb{C}\operatorname{ov}(u_t, u_s) = 0 \quad \forall s \neq t \end{cases}$$

Преобразуем выражение для w_t :

$$w_{t} = (1 + 2L)(1 - 0.5L + 0.5^{2}L^{2} - 0.5^{3}L^{3} + \dots)u_{t}$$

$$\Rightarrow w_{t} = \frac{1 + 2L}{1 - 0.5L} \cdot u_{t}$$

$$\Rightarrow (1 - 0.5L)w_{t} = (1 + 2L)u_{t}$$

$$\Rightarrow w_{t} - 0.5w_{t-1} = u_{t} + 2u_{t+1}$$

$$\Rightarrow w_{t} = u_{t} + 2u_{t+1} + 0.5w_{t-1}$$

Считаем, что процесс (w_t) является стационарным, то есть для него выполняется:

$$\begin{cases} \mathbb{E}(w_t) = \mu \\ \mathbb{V}\operatorname{ar}(w_t) = \sigma_w^2 \\ \mathbb{C}\operatorname{ov}(w_t, w_{t-k}) = \gamma_k \quad \forall k \end{cases}$$

Теперь наконец найдём математическое ожидание w_t используя выписанные выше свойства процессов (u_t) и (w_t) .

$$\mathbb{E}(w_t) = \mathbb{E}(u_t + 2u_{t+1} + 0.5w_{t-1}) = \mathbb{E}(u_t) + 2 \cdot \mathbb{E}(u_{t+1}) + 0.5 \cdot \mathbb{E}(w_{t-1}) = 0.5 \cdot \mathbb{E} w_t \quad \Rightarrow \quad \mathbb{E} w_t = 0$$

Из стационарности (w_t) дисперсия \mathbb{V} аг w_t уже не зависит от t, следовательно, второе свойство из системы для белого шума тоже выполняется. Осталось найти коварицию w_t и w_{t-k} для произвольного k и показать, что она равна 0, сделаем это с помощью индукции. Тогда базой является следующее равенство:

$$\mathbb{C}\mathrm{ov}(w_t, w_{t-1}) = 0$$

Раскроем коварицию и покажем, что это выполняется.

$$\mathbb{C}ov(w_{t}, w_{t-1}) = \mathbb{C}ov((1+2L)(1-0.5L+0.5^{2}L^{2}-\ldots)u_{t}, (1+2L)(1-0.5L+0.5^{2}L^{2}-\ldots)u_{t-1}) = \\
= \mathbb{C}ov(u_{t}+(2-0.5)u_{t-1}+(-1+0.5^{2})u_{t-2}+\ldots, u_{t-1}+(2-0.5)u_{t-2}+\ldots) = \\
= ((2-0.5)+(-1+0.5^{2})(2-0.5)+(0.5-0.5^{3})(-1+0.5^{2})+\ldots)\sigma^{2} = \\
= \left((2-0.5)+\sum_{i=0}^{\infty}(-1+0.5^{2})\cdot(-0.5)^{i}\cdot(2-0.5)\cdot(-0.5)^{i}\right)\sigma^{2} = \\
= \left((2-0.5)-(1-0.5^{2})(2-0.5)\cdot\sum_{i=0}^{\infty}(-0.5^{2})^{i}\right)\sigma^{2} = \\
= \left((2-0.5)-(1-0.5^{2})(2-0.5)\cdot\frac{1}{(1-0.5^{2})}\right)\sigma^{2} = \\
= ((2-0.5)-(2-0.5))\sigma^{2} = 0$$

Теперь докажем шаг индукции. Пусть для k-1>0 верно, что $\mathbb{C}\mathrm{ov}(w_t,w_{t-(k-1)})=0$, выведем аналогичное утверждение для k.

$$\begin{split} \mathbb{C}\text{ov}(w_{t}, w_{t-k+1}) &= \mathbb{C}\text{ov}(w_{t}, u_{t-k+1} + 2u_{t-k+2} + 0.5w_{t-k}) = \\ &= \mathbb{C}\text{ov}(w_{t}, u_{t-k+1} + 2u_{t-k+2}) + 0.5 \cdot \mathbb{C}\text{ov}(w_{t}, w_{t-k}) \\ \mathbb{C}\text{ov}(w_{t}, u_{t-k+1} + 2u_{t-k+2}) &= \mathbb{C}\text{ov}((1 + 2L)(1 - 0.5L + 0.5^{2}L^{2} - \dots)u_{t}, u_{t-k+1} + 2u_{t-k+2}) = \\ &= \mathbb{C}\text{ov}(u_{t} + (2 - 0.5)u_{t-1} + (-1 + 0.5^{2})u_{t-2} + \dots, u_{t-k+1} + 2u_{t-k+2}) = \\ &= \sum_{i=0}^{\infty} \mathbb{C}\text{ov}((2 - 0.5) \cdot (-0.5)^{i}u_{t-i-t}, u_{t-k+1} + 2u_{t-k+2}) = \\ &= \begin{bmatrix} t - i - 1 = t - k + 1 & \Rightarrow & i = k - 2 \\ t - i - 1 = t - k + 2 & \Rightarrow & i = k - 3 \end{bmatrix} = \\ &= (2 - 0.5) \cdot (-0.5)^{k-2}\sigma^{2} + (2 - 0.5) \cdot (-0.5)^{k-3} \cdot 2\sigma^{2} = \\ &= (2 - 0.5) \cdot (-0.5)^{k-2}\sigma^{2} (1 - 0.5 \cdot 2) = 0 \end{split}$$

$$\Rightarrow \mathbb{C}\text{ov}(w_{t}, w_{t-k}) = 2(\mathbb{C}\text{ov}(w_{t}, w_{t-k+1}) - \mathbb{C}\text{ov}(w_{t}, u_{t-k+1} + 2u_{t-k+2})) = 0$$

Значит, третье свойство из системы для белого шума тоже выполняется, и (w_t) действительно является белым шумом.

б) Как можно видеть из доказательства выше, умножение или деление на $(1+\alpha L)$ для любого $|\alpha| \neq 1$ сохраняет белый шум. Аналогичное верно и для умножения или деления на $(1+\alpha F)$ для любого $|\alpha| \neq 1$.

Тогда белым шумом являются и следующие стационарные процессы:

$$y_t = \frac{(1+0.2F)}{(1+0.3F)}u_t = (1+0.2F)(1+0.3F+0.3^2F^2+0.3^3F^3+\ldots)u_t$$
$$v_t = (1-3L)(1+0.2F)u_t = (1-3L+0.2F-0.6LF)u_t = (0.4-3L+0.2F)u_t$$

- **3.26.** \mathbb{C} orr $(y_t, y_{t+1}) \in [-0.5; 0.5]$, p \mathbb{C} orr $(y_t, y_{t+2}; y_{t+1}) \in [-1; 1/3]$
- **3.27**. Процессы Δb_t , $\Delta_{12}a_t$, $\Delta_{12}b_t$ стационарные. Превратить сезонное случайное блуждание в стационарный процесс взятием обычной разности не получится.
- 3.28.
- 3.29.
- 4.1.

$$\hat{y}_{4|3} = \ell_3$$

$$y_4 - \hat{y}_{4|3} = \ell_3 + \varepsilon_4 - \ell_3 = \varepsilon_4$$

$$\mathbb{V}\operatorname{ar}(y_4 - \hat{y}_{4|3} \mid \mathcal{F}_3) = \mathbb{V}\operatorname{ar}(\varepsilon_4 \mid \mathcal{F}_3) = \mathbb{V}\operatorname{ar}(\varepsilon_4)$$

$$\hat{y}_{5|3} = \ell_3$$

$$y_5 - \hat{y}_{5|3} = \ell_4 + \varepsilon_5 - \ell_3 = (\ell_3 + \alpha \varepsilon_4) + \varepsilon_5 - \ell_3 =$$

$$= \varepsilon_5 + \alpha \varepsilon_4 \quad (11.1)$$

$$\mathbb{V}\operatorname{ar}(y_5 - \hat{y}_{5|3} \mid \mathcal{F}_3) = \mathbb{V}\operatorname{ar}(\varepsilon_5 + \alpha \varepsilon_4)$$

4.2.

$$\hat{y}_{4|3} = \ell_3 + b_3$$

$$y_4 - \hat{y}_{4|3} = \ell_3 + b_3 + \varepsilon_4 - (\ell_3 + b_3) = \varepsilon_4$$

$$\mathbb{V}ar(y_4 - \hat{y}_{4|3} \mid \mathcal{F}_3) = \mathbb{V}ar(\varepsilon_4 \mid \mathcal{F}_3) = \mathbb{V}ar(\varepsilon_4)$$

$$\hat{y}_{5|3} = \ell_3 + 2b_3$$

$$y_{5} - \hat{y}_{5|3} = \ell_{4} + b_{4} + \varepsilon_{5} - (\ell_{3} + 2b_{3}) = (\ell_{3} + b_{3} + \alpha\varepsilon_{4}) + (b_{3} + \beta\varepsilon_{4}) + \varepsilon_{5} - (\ell_{3} + 2b_{3}) =$$

$$= \varepsilon_{5} + (\alpha + \beta)\varepsilon_{4} \quad (11.2)$$

$$\mathbb{V}\operatorname{ar}(y_{5} - \hat{y}_{5|3} \mid \mathcal{F}_{3}) = \mathbb{V}\operatorname{ar}(\varepsilon_{5} + (\alpha + \beta)\varepsilon_{4})$$

- 4.3.
- **4.4**.

4.5. Для начала запишем уравнения для ETS-AAN модели в общем виде:

$$\begin{cases} u_t \sim \mathcal{N}(0, \sigma^2), & iid \\ b_t = b_{t-1} + \beta u_t \\ \ell_t = \ell_{t-1} + b_{t-1} + \alpha u_t \\ y_t = \ell_{t-1} + b_{t-1} + u_t \end{cases}$$

Теперь подставим известные параметры и начальные значения:

$$\begin{cases} u_t \sim \mathcal{N}(0, 16) \\ b_t = b_{t-1} + \frac{3}{4} \cdot u_t, b_{99} = 1 \\ \ell_t = \ell_{t-1} + b_{t-1} + \frac{1}{2} \cdot u_t, \ell_{99} = 8 \\ y_t = \ell_{t-1} + b_{t-1} + u_t, y_{99} = 10, y_{100} = 8 \end{cases}$$

а) Пользуясь этим уравнениям, найдём искомые ℓ_{100} , ℓ_{100} , ℓ_{98} и ℓ_{98} :

$$y_{100} = \ell_{99} + b_{99} + u_{100} \quad \Rightarrow \quad u_{100} = y_{100} - \ell_{99} - b_{99} = 8 - 8 - 1 = -1$$

$$\Rightarrow \quad \ell_{100} = \ell_{99} + b_{99} + \frac{1}{2} \cdot u_{100} = 8 + 1 - \frac{1}{2} = 8.5$$

$$\Rightarrow \quad b_{100} = b_{99} + \frac{3}{4} \cdot u_{100} = 1 - \frac{3}{4} = \frac{1}{4} = 0.25$$

$$\begin{cases} b_{99} = b_{98} + \frac{3}{4} \cdot u_{99} \\ \ell_{99} = \ell_{98} + b_{98} + \frac{1}{2} \cdot u_{99} \\ y_{99} = \ell_{98} + b_{98} + u_{99} \end{cases}$$

$$\Rightarrow b_{98} = b_{99} - \frac{3}{4} \cdot u_{99}$$

$$\Rightarrow \ell_{99} = \ell_{98} + b_{99} - \frac{3}{4} \cdot u_{99} + \frac{1}{2} \cdot u_{99} = \ell_{98} + b_{99} - \frac{1}{4} \cdot u_{99}$$

$$\Rightarrow \ell_{98} = \ell_{99} - b_{99} + \frac{1}{4} \cdot u_{99}$$

$$\Rightarrow y_{99} = \ell_{99} - b_{99} + \frac{1}{4} \cdot u_{99} + b_{99} - \frac{3}{4} \cdot u_{99} + u_{99} = \ell_{99} + \frac{1}{2} \cdot u_{99}$$

$$\Rightarrow u_{99} = 2 \cdot (y_{99} - \ell_{99}) = 2 \cdot (10 - 8) = 4$$

$$\Rightarrow b_{98} = b_{99} - \frac{3}{4} \cdot u_{99} = 1 - \frac{3}{4} \cdot 4 = -2$$

$$\Rightarrow \ell_{98} = \ell_{99} - b_{99} + \frac{1}{4} \cdot u_{99} = 8 - 1 + \frac{1}{4} \cdot 4 = 8$$

Итак, ответ в этом пункте:

$$\ell_{100} = 8.5, \qquad b_{100} = 0.25, \qquad \ell_{98} = 8, \qquad b_{98} = -2$$

б) Точечный прогноз $\hat{y}_{101|100}$ равен математическому ожиданию y_{101} при условии всей информации \mathcal{F}_{100} , которую мы знаем на шаге 100, а именно:

$$\hat{y}_{101|100} = \mathbb{E}(y_{101} \mid \mathcal{F}_{100}) = \mathbb{E}(\ell_{100} + b_{100} + u_{101} \mid \mathcal{F}_{100}) = \ell_{100} + b_{100} = 8.5 + 0.25 = 8.75$$

Аналогично найдём $\hat{y}_{102|100}$:

$$\hat{y}_{102|100} = \mathbb{E}(y_{102} \mid \mathcal{F}_{100}) = \mathbb{E}(\ell_{101} + b_{101} + u_{102}) = \mathbb{E}(\ell_{101}) + \mathbb{E}(b_{101}) =$$

$$= \mathbb{E}\left(\ell_{100} + b_{100} + \frac{1}{2} \cdot u_{101}\right) + \mathbb{E}\left(b_{100} + \frac{3}{4} \cdot u_{101}\right) =$$

$$= \ell_{100} + b_{100} + b_{100} = 8.5 + 0.25 + 0.25 = 9$$

в) В общем виде 95% предиктивные интервалы для y_{101} и y_{102} вычисляются по следующим формулам соответственно:

$$y_{101} \in \left[\mathbb{E}(y_{101} \mid \mathcal{F}_{100}) - 1.96\sqrt{\mathbb{V}\operatorname{ar}(y_{101} \mid \mathcal{F}_{100})}, \quad \mathbb{E}(y_{101} \mid \mathcal{F}_{100}) + 1.96\sqrt{\mathbb{V}\operatorname{ar}(y_{101} \mid \mathcal{F}_{100})} \right]$$

$$y_{102} \in \left[\mathbb{E}(y_{102} \mid \mathcal{F}_{100}) - 1.96\sqrt{\mathbb{V}\operatorname{ar}(y_{102} \mid \mathcal{F}_{100})}, \quad \mathbb{E}(y_{102} \mid \mathcal{F}_{100}) + 1.96\sqrt{\mathbb{V}\operatorname{ar}(y_{102} \mid \mathcal{F}_{100})} \right]$$

Значит, нам осталось найти только дисперсии y_{101} и y_{102} при условии всё той же информации \mathcal{F}_{100} :

$$\begin{aligned} \mathbb{V}\mathrm{ar}(y_{101} \mid \mathcal{F}_{100}) &= \mathbb{V}\mathrm{ar}(\ell_{100} + b_{100} + u_{101}) = \mathbb{V}\mathrm{ar}(u_{101}) = 16 \\ \mathbb{V}\mathrm{ar}(y_{102} \mid \mathcal{F}_{100}) &= \mathbb{V}\mathrm{ar}(\ell_{101} + b_{101} + u_{102}) = \mathbb{V}\mathrm{ar}(\ell_{100} + b_{100} + \frac{1}{2} \cdot u_{101} + b_{100} + \frac{3}{4} \cdot u_{101} + u_{102}) = \\ &= \mathbb{V}\mathrm{ar}\left(\frac{5}{4} \cdot u_{101} + u_{102}\right) = \frac{25}{16} \cdot \mathbb{V}\mathrm{ar}(u_{101}) + \mathbb{V}\mathrm{ar}(u_{102}) = \frac{25}{16} \cdot 16 + 16 = 41 \end{aligned}$$

Значит, 95% предиктивные интервалы для y_{101} и y_{102} следующие:

$$\begin{array}{ll} y_{101} \in \left[8.75 - 1.96 \cdot 4; 8.75 + 1.96 \cdot 4\right] \\ y_{102} \in \left[9 - 1.96 \cdot \sqrt{41}; 9 + 1.96 \cdot \sqrt{41}\right] \end{array} \Rightarrow \begin{array}{ll} y_{101} \in \left[0.91; 16.59\right] \\ y_{102} \in \left[-3.55; 21.55\right] \end{array}$$

4.6.

- а) Простое экспоненциальное сглаживание, ETS-ANN; ARIMA(0,1,1)
- б) Аддитивное сглаживание Хольта, ETS-AAN; ARIMA(0,2,2)
- в) Аддитивное сглаживание Хольта с угасающим трендом, ETS-AAdN; ARIMA(1,1,2)
- r) Аддитивное сглаживание Хольта-Винтерса для месячных данных, ETS-AAA; ARIMA(0,1,13)-SARIMA(0,1,0)
- д) Аддитивное сглаживание Хольта-Винтерса с угасающим трендом для месячных данных, ETS-AAdA; ARIMA(0,1,13)-SARIMA(0,1,0)
- e) ETS-ANA; ARIMA(0,1,12)-SARIMA(0,1,0)
- **4.7.** По ℓ_0 , b_0 ;
 - **4.8**. Только примерно, $ln(1 + x) \approx x$.
 - 4.9.

4.10. Выпишем модель ETS(AAN) в общем виде:

$$\begin{cases} u_t \sim \mathcal{N}(0, \sigma^2), & iid \\ b_t = b_{t-1} + \beta u_t \\ \ell_t = \ell_{t-1} + b_{t-1} + \alpha u_t \\ y_t = \ell_{t-1} + b_{t-1} + u_t \end{cases}$$

Для начала выпишем выражение для b_t :

$$b_t = b_{t-1} + \beta u_t = b_0 + \beta(u_1 + \dots + u_t) = b_0 + \sum_{i=1}^t \beta u_i$$

Из последнего уравнения модели можно видеть, что y_t выражается через сумму $\ell_{t-1} + b_{t-1}$. Значит, чтобы в дальнейшем посчитать требуемые $\mathbb{E}(y_t)$, $\mathbb{V}\mathrm{ar}(y_t)$, $\mathbb{C}\mathrm{ov}(y_t,y_{t-1})$, нужно привести эту сумму к известным нам величинам: ℓ_0 , b_0 , α , β и сумме некоторых u_s , для которых все эти величины мы можем найти, поскольку знаем их распределение. Докажем по индукции, что для $\ell_t + b_t$ верно равенство:

$$\ell_t + b_t = \ell_0 + (t+1)b_0 + (\alpha + t\beta)u_1 + \dots + (\alpha + 2\beta)u_{t-1} + (\alpha + \beta)u_t =$$

$$= \ell_0 + (t+1)b_0 + \sum_{i=1}^t (\alpha + (t-i+1)\beta)u_i$$

Шаг индукции для t=1 доказывается просто:

$$\ell_1 + b_1 = (\ell_0 + b_0 + \alpha u_1) + (b_0 + \beta u_1) = \ell_0 + 2b_0 + (\alpha + \beta)u_1$$

Теперь докажем шаг индукции: предположим, что для t-1 такая формула верна, и выразим через неё аналогичную для t.

$$\ell_{t-1} + b_{t-1} = \ell_0 + tb_0 + \sum_{i=1}^{t-1} (\alpha + (t-i)\beta)u_i$$

$$\ell_t + b_t = (\ell_{t-1} + b_{t-1} + \alpha u_t) + (b_{t-1} + \beta u_t) = (\ell_{t-1} + b_{t-1}) + b_{t-1} + (\alpha + \beta)u_t =$$

$$= (\ell_0 + tb_0 + \sum_{i=1}^{t-1} (\alpha + (t-i)\beta)u_i) + b_{t-1} + (\alpha + \beta)u_t =$$

$$= (\ell_0 + tb_0 + \sum_{i=1}^{t-1} (\alpha + (t-i)\beta)u_i) + b_0 + \sum_{i=1}^{t-1} \beta u_i + (\alpha + \beta)u_t =$$

$$= \ell_0 + (t+1)b_0 + \sum_{i=1}^{t-1} ((\alpha + (t-i)\beta)u_i + \beta u_i) + (\alpha + \beta)u_t =$$

$$= \ell_0 + (t+1)b_0 + \sum_{i=1}^{t-1} (\alpha + (t-i+1)\beta)u_i + (\alpha + \beta)u_t =$$

$$= \ell_0 + (t+1)b_0 + \sum_{i=1}^{t} (\alpha + (t-i+1)\beta)u_i$$

Теперь с помощью этой формулы можем найти все требуемые величины.

$$\mathbb{E}(y_t) = \mathbb{E}(\ell_{t-1} + b_{t-1} + u_t) = \mathbb{E}(\ell_{t-1} + b_{t-1}) = \mathbb{E}(\ell_0 + tb_0 + \sum_{i=1}^{t-1} (\alpha + (t-i)\beta)u_i) = \mathbb{E}(\ell_0 + tb_0) = \ell_0 + tb_0$$

$$Var(y_t) = Var(\ell_{t-1} + b_{t-1} + u_t) + Var(\ell_0 + tb_0 + \sum_{i=1}^{t-1} (\alpha + (t-i)\beta)u_i + u_t) =$$

$$= \sum_{i=1}^{t-1} (\alpha + (t-i)\beta)^2 Var(u_i) + Var(u_t) = \sum_{i=1}^{t-1} (\alpha + (t-i)\beta)^2 \sigma^2 + \sigma^2 =$$

$$= \left[k = t - i \right] = \left(1 + \sum_{k=1}^{t-1} (\alpha + k\beta)^2 \right) \sigma^2$$

$$\mathbb{C}\text{ov}(y_{t}, y_{t+1}) = \mathbb{C}\text{ov}(\ell_{t-1} + b_{t-1} + u_{t}, l_{t} + b_{t} + u_{t+1}) = \\
= \mathbb{C}\text{ov}(\ell_{0} + tb_{0} + \sum_{i=1}^{t-1} (\alpha + (t-i)\beta)u_{i} + u_{t}, l_{0} + (t+1)b_{0} + \sum_{i=1}^{t} (\alpha + (t-i+1)\beta)u_{i} + u_{t+1}) = \\
= \mathbb{C}\text{ov}(\sum_{i=1}^{t-1} (\alpha + (t-i)\beta)u_{i} + u_{t}, \sum_{i=1}^{t} (\alpha + (t-i+1)\beta)u_{i}) = \\
= \sum_{i=1}^{t-1} (\alpha + (t-i)\beta)(\alpha + (t-i+1)\beta)\sigma^{2} + (\alpha + \beta)\sigma^{2} = \\
= \left((\alpha + \beta) + \sum_{i=1}^{t-1} (\alpha + (t-i)\beta)(\alpha + (t-i+1)\beta) \right)\sigma^{2} = \\
= \left[k = t - i \right] = \left((\alpha + \beta) + \sum_{k=1}^{t-1} (\alpha + k\beta)(\alpha + (k+1)\beta) \right)\sigma^{2}$$

4.11.

Запишем y_{102} :

$$y_{102} = \ell_{101} + b_{101} + s_{100} + u_{102} = \ell_{100} + b_{100} + 0.3u_{101} + b_{100} + 0.2u_{101} + s_{100} + u_{102}$$

Найдём условное математическое ожидание y_{102} при известной информации \mathcal{F}_{100} :

$$\mathbb{E}(y_{102} \mid \mathcal{F}_{100}) = \mathbb{E}(\ell_{100} + b_{100} + 0.3u_{101} + b_{100} + 0.2u_{101} + s_{100} + u_{102} \mid \mathcal{F}_{100}) = \ell_{100} + 2b_{100} + s_{100} = 4 + 2 \cdot 0.5 + 2 = 7$$

Аналогично, найдём условную дисперсию y_{102} при известной информации \mathcal{F}_{100} :

$$\operatorname{Var}(y_{102} \mid \mathcal{F}_{100}) = \operatorname{Var}(\ell_{100} + b_{100} + 0.3u_{101} + b_{100} + 0.2u_{101} + s_{100} + u_{102} \mid \mathcal{F}_{100}) = \\ = \operatorname{Var}((0.3 + 0.2)u_{101} + u_{102} \mid \mathcal{F}_{100}) = 0.25 \operatorname{Var}(u_{101}) + \operatorname{Var}(u_{102}) = 1 + 4 = 5$$

В результате, $(y_{102} \mid \mathcal{F}_{100}) \sim \mathcal{N}(7,5)$, а значит 95% доверительный интервал имеет вид:

$$\left[7 - 1.96 \cdot \sqrt{5}, 7 + 1.96 \cdot \sqrt{5}\right]$$

Ответ: 7 свободных параметров для ETS(AAA) с полугодовой сезонностью:

$$s_0, b_0, \ell_0, \alpha, \beta, \gamma, \sigma^2$$

Примечание:

 $s_0 + s_{-1} = 0 \qquad \qquad s_{-1} = -s_0$

4.12.

5.1. ln *y*

6.1.

6.2.

- а) Чтобы заниматься математикой по ночам.
- б) За поддержку якобинцев.
- в) Кофейник. Был разбит пулей.

6.3.

6.4.

6.5.

6.6.

6.7.

- 6.8. Да, ряды являются ортогональными. Можно строить регрессии на эти регрессоры в любых комбинациях, оценки бет выходят одни и те же. Другие ряды добавить нельзя будет строгая мультиколлинеарность.
- **6.9**. На всякий случай, это был ряд 1, 2, 3, 4, 5, 6.

6.10. 1, 1, 1, 2, 2, 2

7.1.

7.2.

7.3.

7.4.

7.5. 1, 2, 2

7.6.

7.7.

7.8.

7.9.

7.10. Да, может быть и больше, и меньше.

7.11.

7.12.

$$Var(\varepsilon_t | \mathcal{F}_{t-1}) = Var(y_t | \mathcal{F}_{t-1}) = 6 + 0.4\sigma_{t-1}^2 + 0.2\varepsilon_t^2$$
$$Var(\varepsilon_t) = 6/(1 - 0.4 - 0.2) = 6/0.4 = 15$$
$$Var(y_t) = 15/(1 - 0.36)$$

8.1.

- а) H_0 : ряд содержит единичный корень, $\beta=0$; H_a : ряд не содержит единичного корня, $\beta<0$
- б) ADF = -0.4/0.1 = -4, $ADF_{crit} = -2.89$, H_0 отвергается
- в) Ряд стационарен
- г) При верной H_0 ряд не стационарен, и t-статистика имеет не t-распределение, а распределение Дики-Фуллера.

9.1.

9.2.

9.3.

 z_t стационарный, x_t и y_t не коинтегрированы

9.4.

9.5. y_t и s_t ; z_t и w_t .

9.6.

a)
$$a_t = 0.5a_{t-1} + u_t$$
, AR(1)

6)
$$b_t = b_{t-1} + u_t, b_0 = 0$$
, ARIMA(0, 1, 0)

в)
$$c_t = 0.5b_t + \varepsilon_t$$
, ARIMA(0, 1, 1)

r)
$$d_t = d_{t-1} + a_t$$
, ARIMA(1, 1, 0)

д)
$$e_t = e_{t-1} + \varepsilon_t$$
, ARIMA(0, 1, 0)

e)
$$g_t = g_{t-1} + b_t$$
, ARIMA(0, 2, 0)

ж)
$$h_t = 0.7h_{t-1} + b_t$$
, ARIMA(1, 1, 0)

коинтегрированы: b_t , c_t , d_t , h_t .

9.7. Процессы y_t и z_t коинтегрированы, $z_t-1.5y_t$ стационарен. Процессы y_t и r_t коинтегрированы, r_t+2y_t стационарен.

- 10.1.
- 10.2.
- 10.3.
- 10.4.

Глава 12

Источники мудрости

- [Van10] Aad W Van der Vaart. "Time series". B: VU University Amsterdam, lecture notes (2010). URL: https://staff.fnwi.uva.nl/p.j.c.spreij/onderwijs/master/aadtimeseries2010.pdf.
- [Tsa05] Ruey S Tsay. Analysis of financial time series. T. 543. John wiley & sons, 2005.
- [HA18] Rob J Hyndman и George Athanasopoulos. *Forecasting: principles and practice*. OTexts, 2018. url: https://otexts.com/fpp3/.
- [DHS11] Alysha M De Livera, Rob J Hyndman n Ralph D Snyder. "Forecasting time series with complex seasonal patterns using exponential smoothing". B: *Journal of the American statistical association* 106.496 (2011), c. 1513—1527. URL: https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm09771.
- [FZ19] Christian Francq и Jean-Michel Zakoian. *GARCH models: structure, statistical inference and financial applications.* John Wiley & Sons, 2019.

Предметный указатель

доходность логарифмическая, 29 доходность простая, 29 процесс GARCH, 30

Список обозначений