HIERARCHICAL NEUTRINO MASSES AND MIXING IN NON MINIMAL-SU(5)

M. Paraskevas and K. Tamvakis

Physics Department, University of Ioannina GR451 10 Ioannina, Greece

Abstract

We consider the problem of neutrino masses and mixing within the framework of a non-minimal supersymmetric SU(5) model extended by adding a set of $\underline{\mathbf{1}}$, $\underline{\mathbf{24}}$ chiral superfields accommodating three right-handed neutrinos. A Type I+III see-saw mechanism can then be realized giving rise to a hierarchical mass spectrum for the light neutrinos of the form $m_3 > m_2 >> m_1$ consistent with present data. The extra colored states are pushed to the unification scale by proton stability constraints, while the intermediate see-saw energy scale and the unification scale are maintained in phenomenologically acceptable ranges. We also examine the issue of the large neutrino mixing hierarchy $\theta_{23} > \theta_{12} >> \theta_{13}$ in the above framework of hierarchical neutrino masses.

1 Introduction

The discovery of neutrino oscillations is the first encounter with physics beyond the Standard Model(SM). Data coming from various sources[1] are conclusive that neutrinos are massive (at least two of them) and that they mix, exhibiting oscillation phenomena[2]. This implies a mismatch between flavour and mass eigenstates in an obvious analogy with the CKM matrix in the quark sector of the SM. In order to explain the new evidence on the overall scale and structure of the neutrino mass matrix, several proposals have been put forward, among which the most interesting appears to be the so called see-saw mechanism[3]. It provides an elegant answer to the smallness of the observed neutrino masses, although it leaves open the issue of the underlying structure of the neutrino mass matrix. The see-saw mechanism is a general term and can be realized in a number of forms and variations, with the basic idea relying on the fact that a large energy scale $M >> m_W$ is introduced through the coupling of the left handed neutrinos to a sector of heavy fields. By integrating these heavy degrees of freedom out an effective operator is produced giving small masses to the neutrinos of order $\sim m_W^2/M$. A heavy scale in the neighborhood of $M \sim 10^{14} \, GeV$ leads to an overall neutrino mass scale of $\sim 10^{-1} \, eV$, in general agreement with observations. The usual classification of see-saw types in the literature is based on the gauge properties of the heavy particles used to mediate the seesaw mechanism¹. Types I, II, III correspond to fermion singlets, scalar charged isotriplets and fermion neutral isotriplets, respectively.

Since the see-saw mechanism requires a sector of particles with masses well above the scales at which the validity of the SM has been established, it is natural to consider its realization in the framework of general approaches for the extension of the SM such as Supersymmetry and $Grand\ Unification\ (GUTs)$. The simplest choice of considering $minimal\ supersymmetric\ SU(5)$ and introducing the required heavy fields as singlets, retains all the arbitrariness of realizing the see-saw mechanism within the SM without introducing any new constraint on scales and structure. In addition, a phenomenologically viable scenario within this context has to overcome the problems of the original model such as proton decay and unrealistic fermion masses. A way around the former would be to tune the Yukawa couplings and bi-unitary transformations with the soft sector through certain relations, something unnecessary if the unification scale could be shifted. For realistic fermion masses the presence of nonrenormalizable operators would be required.

In order to obtain potentially interesting constraints on the scale and structure of neutrino masses, the sector of heavy fields has to partake in the GUT. This can be realized in other GUTs[4], such as SO(10) and flipped-SU(5)[5], or by extending the gauge non-singlet field content of SU(5). The realization of the so called type-I see-saw mechanism in the SM introduces right-handed neutrinos as gauge singlet fields. In contrast, in the type-III right-handed neutrinos are non trivially introduced as the neutral components of isotriplet fields[6]. This can be promoted to extended versions of SU(5) that feature additional chiral superfields in the $\underline{\bf 24}$ representation, each containing two suitable right-handed neutrino candidates². A mixed "type-I + III" see-saw mechanism can then

¹An alternative classification based on the explicit mathematical expression for the light neutrino masses is also common.

² Fermions in a single <u>24</u> representation have been introduced in the framework of non-supersymmetric SU(5) in [7], where the see-saw mechanism was realized with two right-handed neutrinos at a predicted low energy scale.

be realized with an extra 24[8], while the most appealing three generation scenario with three right-handed neutrinos requires additional 24's or 1's. In the present article we consider a version of supersymmetric SU(5) extended through the introduction of extra chiral superfields S(1), $\mathcal{T}(24)$, $\mathcal{T}'(24)$, which provide us with three right-handed neutrino candidates. Our basic assumption is that these right-handed neutrino fields obtain a Majorana mass at a high but still intermediate scale a few orders of magnitude below the unification scale. This assumption is supported by a renormalization group analysis, incorporating proton lifetime constraints[9], and allows for an intermediate scale in the vicinity of $10^{13} - 10^{14} \, GeV$. Not all of the scales involved in the right-handed neutrino Majorana mass matrix are constrained by the renormalization group. Depending on assumptions, several possibilities emerge leading to a different dependence of the resulting light neutrino masses on these scales. Furthermore, the fact that two of the right-handed neutrinos are members of the same SU(5) representation leads to a particular rank 2 structure of the resulting light neutrino mass matrix that is accompanied by a massless eigenvalue. Although this fact is modified by non-renormalizable terms, there is a definite prediction for one superlight neutrino, not in conflict with observations. Next, we examine the possibility of a hierarchical light neutrino mass spectrum $m_{\nu}^{(3)} > m_{\nu}^{(2)} >> m_{\nu}^{(1)}$. This can be achieved in a variety of ways depending on assumptions either for the mass scales involved or for the hierarchy of the Yukawa-type couplings. We also consider whether the observed large neutrino mixing can be accommodated in the framework of the model [10]. We conclude that hierarchical mixing patterns with $\theta_{13} \ll \theta_{12} \sim \theta_{23}$ can be obtained with generic choices of Yukawa couplings exhibiting certain structure.

2 The Model

The renormalizable part of the minimal SU(5) superpotential, in terms of the chiral superfields $\mathcal{Q}_{i}^{c}(10)$, $\mathcal{Q}_{i}(\overline{5})$, $\mathcal{H}(\overline{5})$, $\mathcal{H}^{c}(5)$, $\Sigma(24)$, is

$$W_0 = \mathcal{Y}_{ij}^u \mathcal{Q}_i^c \mathcal{Q}_j^c \mathcal{H}^c + \mathcal{Y}_{ij}^d \mathcal{Q}_i \mathcal{Q}_j^c \mathcal{H} + \frac{M}{2} Tr(\Sigma^2) + \frac{\lambda}{3!} Tr(\Sigma^3) + \lambda' \mathcal{H}^c \Sigma \mathcal{H} + M' \mathcal{H}^c \mathcal{H}, \quad (1)$$

where we have suppressed SU(5)-indices and display only the family indices i, j. Let us now introduce extra matter supermultiplets $S(1), \mathcal{T}(24), \mathcal{T}'(24)$ with the standard matter parity assignment³. An extra \mathcal{Z}_2 discrete symmetry, under which only $\mathcal{T}'(24)$ changes sign differentiates between them so that \mathcal{T}' does not couple to standard matter fields. The renormalizable contributions of the new fields to the superpotential are

$$W_{1} = \mathcal{Y}_{i}^{\mathcal{S}} \mathcal{Q}_{i} \mathcal{H}^{c} \mathcal{S} + \mathcal{Y}_{i}^{\mathcal{T}} \mathcal{Q}_{i} \mathcal{H}^{c} \mathcal{T} + \frac{\mu}{2} \mathcal{S}^{2} + \frac{\mu'}{2} Tr(\mathcal{T}^{2}) + \frac{\mu''}{2} Tr(\mathcal{T}^{\prime 2})$$

$$+ f Tr(\mathcal{T}^{2} \Sigma) + f' Tr(\Sigma \mathcal{T}) \mathcal{S} + f'' Tr(\mathcal{T}^{\prime 2} \Sigma) . \tag{2}$$

The decomposition of the new matter multiplet $\mathcal{T}(24)$ is

$$\mathcal{T}(24) = B(1,1,0) + T(1,3,0) + O(8,1,0) + \mathcal{X}(3,2,-5/6) + \mathcal{X}^{c}(\overline{3},2,5/6),$$

where the $SU(3) \times SU(2) \times U(1)$ identification of each component is self-explanatory. Analogous is the decomposition of the primed field $\mathcal{T}'(24)$. Denoting by T^0 the neutral

³We have $\mathcal{Q}, \mathcal{Q}^c, \mathcal{S}, \mathcal{T} \to -1$, while $\Sigma, \mathcal{H}, \mathcal{H}^c \to 1$.

component of the isotriplet T(1,3,0), we can identify the three right-handed neutrino candidates as $N_i^c = (\mathcal{S}, B, T^0)$.

Symmetry breaking of SU(5) down to $SU(3) \times SU(2) \times U(1)$ is realized in the standard fashion through a non-zero vev of Σ in the direction $<\Sigma>=\frac{V}{\sqrt{30}}diag(2,2,2,-3,-3)$. Note that the absence of cubic terms for the new fields, due to their parity assignment, does not allow them to acquire a non-zero vev and, thus, symmetry breaking proceeds exactly as in the minimal case. All components of Σ are either higgsed away or obtain masses of the order of the GUT scale. The splitting between the masses of the Higgs isodoublets H_d , H_u and the Higgs coloured triplets D, D^c contained in $\mathcal{H}=(H_d,D^c)$ and $\mathcal{H}^c=(H_u,D)$ is produced by the usual fine-tuning $M'=\frac{3\lambda'V}{\sqrt{30}}$, resulting in massless doublets and superheavy triplets. Then, the effective superpotential relevant for masses below the unification scale M_G reads

$$\mathcal{W}_{eff} = Y_{ij}^{u} u_{i}^{c} Q_{j} H_{u} + Y_{ij}^{d} d_{i}^{c} Q_{j} H_{d} + Y_{ij}^{e} e_{i}^{c} L_{j} H_{d} + Y_{i}^{S} L_{i} S H_{u} + Y_{i}^{B} L_{i} B H_{u} + Y_{i}^{T} L_{i} T H_{u}
+ Y_{i}^{\mathcal{X}} d_{i}^{c} \mathcal{X} H_{u} + \frac{M_{\mathcal{S}}}{2} S^{2} + \frac{M_{B}}{2} B^{2} + M_{\mathcal{S}B} S B + \frac{M_{T}}{2} Tr(T^{2}) + M_{\mathcal{X}} \mathcal{X} \mathcal{X}^{c} + \frac{M_{O}}{2} Tr(O^{2})
+ \frac{M_{T'}}{2} Tr(T'^{2}) + \frac{M_{O'}}{2} Tr(O'^{2}) + M_{\chi'} \mathcal{X}' \mathcal{X}'^{c} + \frac{M_{B'}}{2} B'^{2}.$$
(3)

Matching the effective and the SU(5)-symmetric theory at M_G leads to the following relations for the Yukawa couplings

$$Y^u = 2\mathcal{Y}^u, \quad (Y^e)^\perp = Y^d = \mathcal{Y}^d, \quad Y^\mathcal{S} = \mathcal{Y}^\mathcal{S}, \quad Y^\mathcal{X} = Y^T = \frac{\sqrt{30}}{3}Y^B = \mathcal{Y}^\mathcal{T}, \quad (4)$$

while for the mass parameters we get

$$M_{\mathcal{S}} = \mu, \quad M_B = \mu' - \frac{2fV}{\sqrt{30}}, \qquad M_T = \mu' - \frac{6fV}{\sqrt{30}},$$
 (5)

$$M_O = \mu' + \frac{4fV}{\sqrt{30}}, \qquad M_{\mathcal{X}} = \mu' - \frac{fV}{\sqrt{30}}, \qquad M_{\mathcal{S}B} = -f'V$$
 (6)

and

$$M_{T'} = \mu'' - \frac{6f''V}{\sqrt{30}}, M_{B'} = \mu'' - \frac{2f''V}{\sqrt{30}}, M_{O'} = \mu'' + \frac{4f''V}{\sqrt{30}}, M_{X'} = \mu'' - \frac{f''V}{\sqrt{30}}.$$
 (7)

The see-saw scale is the scale of the right-handed neutrino mass matrix expressed in terms of the parameters $M_{\mathcal{S}}$, M_B , M_T and $M_{\mathcal{S}B}$, related through the four parameters μ , μ' , fV and f'/f. The allowed range for these parameters will be strongly constrained by the requirements of unification at a sufficiently high scale. This will follow shortly from a renormalization group analysis.

In addition to the renormalizable contributions above, non-renormalizable contributions to the superpotential

$$W_{NR} = \frac{\lambda_{IJKL}}{M_P} \Phi_I \Phi_J \Phi_K \Phi_L + O(1/M_P^2) + \dots$$

can, in principle, affect masses, especially whenever we have mass-degeneracies. We have denoted the scale of non-renormalizable interactions generically by M_P , expecting their scale to be the Planck scale. The lowest order terms in \mathcal{W}_{NR} are

$$Q^{c}Q^{c}Q^{c}Q + \mathcal{T}^{2}\Sigma^{2} + \Sigma^{2}\mathcal{T}S + \mathcal{H}\mathcal{T}^{2}\mathcal{H}^{c} + \Sigma^{2}S^{2} + \mathcal{H}\mathcal{T}\mathcal{H}^{c}S + \mathcal{H}\mathcal{H}^{c}S^{2} + \mathcal{T}^{4} + \mathcal{T}^{3}S + \mathcal{T}^{2}S^{2} + \mathcal{S}^{4} + \Sigma^{4} + \mathcal{H}\Sigma^{2}\mathcal{H}^{c} + \mathcal{H}\mathcal{H}^{c}\mathcal{H}\mathcal{H}^{c} + \mathcal{T}'^{2}\Sigma^{2} + \mathcal{H}\mathcal{T}'^{2}\mathcal{H}^{c} + \mathcal{T}'^{4} + \mathcal{T}'^{2}\mathcal{T}^{2} + \mathcal{T}\mathcal{T}'^{2}S + \mathcal{T}'^{2}S^{2},$$
(8)

suppressing the factor $1/M_P$ and the dimensionless couplings in front of each term, all assumed to be of the same order. Among these terms, those relevant for neutrino masses are the terms $\mathcal{H}^c \mathcal{Q} \mathcal{Q} \mathcal{H}^c$, leading to (tiny) Majorana masses for left-handed neutrinos, the terms $\mathcal{Q} \mathcal{T} \Sigma \mathcal{H}^c$, $\mathcal{Q} \Sigma \mathcal{H}^c \mathcal{S}$, contributing to Dirac masses, and the terms $\mathcal{T}^2 \Sigma^2$, $\Sigma^2 \mathcal{T} \mathcal{S}$, contributing to Majorana masses for the right-handed neutrinos.

3 Energy Scales

The sector of additional superfields \mathcal{T} , \mathcal{T}' , \mathcal{S} carries with it a set of extra parameters, namely the mass parameters μ , μ' , μ'' and the couplings f, f', f''. A basic assumption of the model is that the Majorana mass of right handed neutrinos is at a high but still intermediate scale, a few orders of magnitude below M_G . Thus, we shall assume that the isotriplet component of \mathcal{T} remains lighter than M_G . In addition, proton lifetime constraints translated to a high enough M_G require the presence of an additional light color octet. These requirements correspond to new fine tunings of parameters, presumably, not worse than the standard GUT fine tunings. As a working set of choices, we take $(M_G^2 = \frac{5g^2}{12}V^2)$

$$\mu' = (3 - \epsilon)M_G/2, \ \mu'' = (2 + 3\epsilon')M_G/5, \ f = \frac{5g}{4\sqrt{2}}(1 - \epsilon), \ f'' = -\frac{g}{2\sqrt{2}}(1 - \epsilon'),$$

where $\epsilon \sim \epsilon' \ll 1$. These choices result in

$$M_T = \epsilon M_G, \ M_{O'} = \epsilon' M_G, \tag{9}$$

while the rest of the masses are M_O , $M_{\mathcal{X}}$, $M_{\mathcal{X}'}$, $M_{T'} \sim O(M_G)$.

Thus, we assume that, apart from the MSSM fields and the color octet and isotriplet superfields that have intermediate masses $M_{O'}$ and M_T , all extra superfields decouple at M_G . In addition, we assume that supersymmetry is broken at an approximately common energy scale of $m_S = O(1 \, TeV)$ at which all superpartners decouple. From the one-loop renormalization group equations for the three $SU(3) \times SU(2) \times U(1)$ gauge couplings⁴, with the intermediate octet and isotriplet mass scales inserted, we obtain the following expressions for these couplings at M_Z

$$\frac{2\pi}{\alpha_3(M_Z)} = \frac{2\pi}{\alpha_G} - 3\ln\left(\frac{M_G}{M_Z}\right) - 4\ln\left(\frac{m_S}{M_Z}\right) + 3\ln\left(\frac{M_G}{M_{O'}}\right)$$

$$\frac{2\pi}{\alpha_2(M_Z)} = \frac{2\pi}{\alpha_G} + \ln\left(\frac{M_G}{M_Z}\right) - \frac{25}{6}\ln\left(\frac{m_S}{M_Z}\right) + 2\ln\left(\frac{M_G}{M_T}\right)$$

$$\frac{2\pi}{\alpha_1(M_Z)} = \frac{2\pi}{\alpha_G} + \frac{33}{5}\ln\left(\frac{M_G}{M_Z}\right) - \frac{5}{2}\ln\left(\frac{m_S}{M_Z}\right), \tag{10}$$

where α_G is the common value of the three couplings at the unification scale M_G . Inserting the existing recent data[12] for $\alpha_3(M_Z)$, $\alpha_2(M_Z)$, $\alpha_1(M_Z)$, we obtain M_G and

⁴The triplet-octet splitting has been previously studied for SU(5) models at one and two loops in [11]

 α_G , as well as the octet mass $M_{O'}$ for various choices of the isotriplet mass treated as input. An octet mass below M_G sets a lower bound of $1.5 \times 10^{16} \, GeV$ for the unification scale. In Figure 1 we show the values of M_G obtained in terms of M_T . These values are tabulated in Table 1 together with the corresponding values of $M_{O'}$ and α_G . Note that the values of $M_{O'}$ follow M_T within a close range, indicating an approximately common intermediate scale. The values for M_T in the proximity of $10^{14} \, GeV$, corresponding to a safe $M_G \sim 10^{17} \, GeV$, have the correct order of magnitude required for the seesaw scale, since $(10^2)^2/10^{14} \sim 0.1 \, eV$.

Figure 1: Isotriplet mass M_T vs the unification scale M_G . The octet mass satisfying $M_{O'} \leq M_G$ sets a lower bound for unification at $M_G \approx 1.5 \times 10^{16} \, GeV$.

$\overline{M_G}$	$M_{O'}$	M_T	α_G
3×10^{16}	3.1×10^{15}	1.3×10^{15}	0.04023
5×10^{16}	1.0×10^{15}	5.2×10^{14}	0.04112
8×10^{16}	3.6×10^{14}	2.3×10^{14}	0.04197
1×10^{17}	2.2×10^{14}	1.5×10^{14}	0.04239
3×10^{17}	2.0×10^{13}	2.1×10^{13}	0.04457
5×10^{17}	6.4×10^{12}	8.3×10^{12}	0.04566
8×10^{17}	2.3×10^{12}	3.6×10^{12}	0.04671
1×10^{18}	1.4×10^{12}	2.4×10^{12}	0.04723
3×10^{18}	1.2×10^{11}	3.3×10^{11}	0.04996

Table 1: Values (GeV) for the unification scale M_G , the colored octet mass $M_{O'}$ and the weak isotriplet mass M_T . The corresponding unified coupling a_G remains within the perturbative limit.

4 Neutrino Masses

The terms relevant for neutrino masses can be easily singled out from the renormalizable part of the superpotential (3).⁵ These terms are

$$Y_{i}^{S}L_{i}SH_{u} + Y_{i}^{B}L_{i}BH_{u} + Y_{i}^{T}L_{i}TH_{u} + \frac{M_{S}}{2}S^{2} + \frac{M_{B}}{2}B^{2} + M_{SB}SB + \frac{M_{T}}{2}T^{2}$$
 (11)

or

$$v_u \left(Y_i^{\mathcal{S}} \mathcal{S} + Y_i^{B} B - \frac{Y_i^{T}}{\sqrt{2}} \tau_0 \right) \nu_i + \frac{M_{\mathcal{S}}}{2} \mathcal{S}^2 + \frac{M_B}{2} B^2 + M_{\mathcal{S}B} \mathcal{S}B + \frac{M_T}{2} \tau_0^2.$$

The corresponding terms for charged fermion masses are $M_T \tau_+ \tau_- - v_u Y_i^T e_i \tau_+$. The full neutrino mass matrix, in an $(\nu_i, \mathcal{S}, B, \tau_0)$ -basis, is

$$\mathcal{M}_N = \begin{pmatrix} 0 & \mathcal{M}_D \\ \\ \mathcal{M}_D^{\perp} & \mathcal{M}_R \end{pmatrix}, \tag{12}$$

where

$$\mathcal{M}_{D} = v_{u} \begin{pmatrix} Y_{1}^{S} & Y_{1}^{B} & -\frac{1}{\sqrt{2}} Y_{1}^{T} \\ Y_{2}^{S} & Y_{2}^{B} & -\frac{1}{\sqrt{2}} Y_{2}^{T} \\ Y_{3}^{S} & Y_{3}^{B} & -\frac{1}{\sqrt{2}} Y_{3}^{T} \end{pmatrix}, \quad \mathcal{M}_{R} = \begin{pmatrix} M_{S} & M_{SB} & 0 \\ M_{SB} & M_{B} & 0 \\ 0 & 0 & M_{T} \end{pmatrix}.$$

Note that $Y_i^B = \frac{3}{\sqrt{30}} Y_i^T$. The constraints on μ' and f imply that $M_B \approx M_G$, while M_S and M_{SB} remain undetermined.

The light neutrino mass matrix will be

$$\mathcal{M}_{\nu} \approx -\mathcal{M}_{D} \,\mathcal{M}_{R}^{-1} \,\mathcal{M}_{D}^{\perp} \,. \tag{13}$$

The inverse right-handed neutrino Majorana mass is

$$\mathcal{M}_{R}^{-1} = \frac{1}{\Delta} \begin{pmatrix} -M_{B} & M_{SB} & 0\\ M_{SB} & -M_{S} & 0\\ 0 & 0 & \frac{\Delta}{M_{-}} \end{pmatrix}, \tag{14}$$

with $\Delta = M_{SB}^2 - M_S M_B$.

The determinant of \mathcal{M}_D vanishes due to the SU(5) relation $Y_i^T = \frac{\sqrt{30}}{3}Y_i^B$. This propagates to \mathcal{M}_{ν} resulting in one massless left-handed neutrino. Such a feature is shared by a wider class of models in which two right-handed neutrinos or more belong to the same GUT representation.

The resulting light neutrino mass matrix can be put in the form

$$(\mathcal{M}_{\nu})_{ij} = \frac{v_u^2}{\Delta} \left(A Y_i Y_j + B \left(Y_i Y_j' + Y_i' Y_j \right) + C Y_i' Y_j' \right). \tag{15}$$

⁵For simplicity, in our treatment of masses and mixings we neglect CP-violation

where

$$A = M_B, B = -\frac{3}{\sqrt{30}}M_{SB}, C = \frac{3}{10}M_S - \frac{\Delta}{2M_T}.$$
 (16)

We have simplified the notation by denoting $Y_i^{\mathcal{S}} = Y_i$ and $Y_i^T = Y_i'$.

By going to the orthogonal basis in flavor space

$$\hat{X}^{(1)} = \frac{\vec{Y}' \times \vec{Y}}{|\vec{Y}' \times \vec{Y}|}, \ \hat{X}^{(2)} = \frac{\vec{Y}}{\sqrt{Y^2}}, \ \hat{X}^{(3)} = \hat{X}^{(1)} \times \hat{X}^{(2)},$$
 (17)

where $\hat{X}^{(1)}$ is the massless eigenvector, we can set the neutrino matrix in the form

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & M_{22} & M_{23} \\ 0 & M_{23} & M_{33} \end{pmatrix}, \tag{18}$$

with

$$M_{22} = \frac{v_u^2}{\Delta} \left(M_B Y^2 - \frac{6}{\sqrt{30}} M_{SB} (Y \cdot Y') + \frac{3}{10} M_S \frac{(Y \cdot Y')^2}{Y^2} \right) - \frac{v_u^2}{2M_T} \frac{(Y \cdot Y')^2}{Y^2}$$

$$M_{23} = \sqrt{Y^2 Y'^2 - (Y \cdot Y')^2} \left\{ -\frac{v_u^2}{\Delta} \left(-\frac{3}{\sqrt{30}} M_{SB} + \frac{3}{10} M_S \frac{(Y \cdot Y')}{Y^2} \right) + \frac{v_u^2}{2M_T} \frac{(Y \cdot Y')}{Y^2} \right\}$$

$$M_{33} = \frac{1}{Y^2} \left(Y'^2 Y^2 - (Y \cdot Y')^2 \right) \left\{ -\frac{v_u^2}{2M_T} + \frac{3v_u^2}{10} \frac{M_S}{\Delta} \right\}. \tag{19}$$

Before we extract the light neutrino eigenvalues from this matrix, we must consider the scales involved in these expressions. For the mass scale M_B we have already made the choice $M_B = M_G$. The other two scales M_S , M_{SB} , associated with the singlet S, are not constrained.

1st Approach: We shall assume that these two scales are also of the order of M_G . Thus, the dominant entry in the neutrino matrix elements M_{ab} will be the term $-\frac{v_u^2}{M_T}$ contained in C of (16), while the rest of the contributions will all be of the order of $\frac{v_u^2}{M_G}$, which is three orders of magnitude smaller. We may write⁶

$$M_{22} = \frac{v_u^2}{\sqrt{|\Delta|}} \hat{M}_{22} - \frac{v_u^2}{2M_T} \frac{(Y \cdot Y')^2}{Y^2}$$

$$M_{23} = \frac{v_u^2}{\sqrt{|\Delta|}} \hat{M}_{23} + \frac{v_u^2}{2M_T} \frac{(Y \cdot Y')}{Y^2} \sqrt{Y^2 Y'^2 - (Y \cdot Y')^2}$$

$$M_{33} = \frac{v_u^2}{\sqrt{|\Delta|}} \hat{M}_{33} - \frac{v_u^2}{2M_T} \frac{1}{Y^2} \left(Y'^2 Y^2 - (Y \cdot Y')^2 \right). \tag{20}$$

⁶We have set $\hat{M}_{22} = \frac{1}{\sqrt{|\Delta|}} \left(M_B Y^2 - \frac{6M_{SB}}{\sqrt{30}} (Y \cdot Y') + \frac{3M_S}{10} \frac{(Y \cdot Y')^2}{Y^2} \right)$ $\hat{M}_{23} = \frac{1}{\sqrt{|\Delta|}} \sqrt{Y^2 Y'^2 - (Y \cdot Y')^2} \left(\frac{3M_{SB}}{\sqrt{30}} - \frac{3M_S}{10} \frac{(Y \cdot Y')}{Y^2} \right), \ \hat{M}_{33} = \frac{3M_S}{10 \sqrt{|\Delta|}} \left(Y'^2 - \frac{(Y \cdot Y')^2}{Y^2} \right).$

The resulting light neutrino mass eigenvalues are

$$m_{\nu}^{(3)} \approx -\frac{v_{u}^{2}}{2M_{T}}Y^{\prime 2}, \quad m_{\nu}^{(2)} \approx \frac{v_{u}^{2}}{\sqrt{|\Delta|}} \left\{ \hat{M}_{22} \left(1 - \frac{(Y \cdot Y^{\prime})^{2}}{Y^{2}Y^{\prime 2}} \right) + \hat{M}_{33} \frac{(Y \cdot Y^{\prime})^{2}}{Y^{2}Y^{\prime 2}} + 2\hat{M}_{23} \frac{(Y \cdot Y^{\prime})}{Y^{2}Y^{\prime 2}} \sqrt{Y^{2}Y^{\prime 2} - (Y \cdot Y^{\prime})^{2}} \right\}.$$

$$(21)$$

As it stands, for $|Y| \sim |Y'|$, the mass hierarchy is $m_{\nu}^{(2)}/m_{\nu}^{(3)} \sim \frac{v^2}{M_G} O(Y^2)/\frac{v^2}{M_T} O(Y^2) \sim M_T/M_G \sim \epsilon$, which is too strong a hierarchy to satisfy the data, without any other adjustment of parameters. On the other hand, if the overall scale of the determinant $\sqrt{|\Delta|} = \sqrt{|M_{SB}^2 - M_S M_B|}$ is set to be $\sqrt{|\Delta|} \sim \lambda M_G$, with $\lambda \sim \mathcal{O}(10^{-1})$, the relation $v^2/M_T >> v^2 \hat{M}_{ab}/\sqrt{|\Delta|}$ still holds and, thus, we obtain

$$m_{\nu}^{(2)} \sim \frac{v_u^2}{\lambda^2 M_G} O(Y^2), \quad m_{\nu}^{(3)} \sim \frac{v_u^2}{M_T} O(Y^2).$$
 (22)

This can give the correct overall scale of the neutrino masses and a suitable hierarchy

$$\frac{m_{\nu}^{(2)}}{m_{\nu}^{(3)}} \sim \frac{\epsilon}{\lambda^2} \,. \tag{23}$$

2nd Approach: An alternative assumption is to assume that the scales associated with the singlet S are of the the same intermediate order as M_T , namely

$$M_{\mathcal{S}} \sim M_{\mathcal{S}B} \sim M_T$$
 (24)

and, thus, $\Delta \approx -M_S M_B$. Despite naturalness objections, this assumption is technically feasible. In this case, we have to leading order

$$m_{\nu}^{(2,3)} \approx -\frac{v_u^2}{4M_T} \left\{ (Y')^2 + \lambda' Y^2 \pm \sqrt{\mathcal{R}} \right\},$$
 (25)

where

$$\mathcal{R} \equiv \left(\lambda' Y^2 - {Y'}^2\right)^2 + 4\lambda' (Y \cdot Y')^2 \tag{26}$$

and $\lambda' \equiv 2M_T/M_S$, a number of O(1) by assumption. Note that a hierarchy can also arise in this approach in the case $Y^2 >> {Y'}^2$, namely

$$\frac{m_{\nu}^{(2)}}{m_{\nu}^{(3)}} \approx \frac{\left(Y^2 Y'^2 - (Y \cdot Y')^2\right)}{\lambda' Y^4} = \frac{Y'^2 \sin^2 \alpha}{\lambda' Y^2}.$$
 (27)

We have denoted by α the angle $\cos^{-1}(\hat{Y}\cdot\hat{Y}')$. Similar results can also be obtained for $Y'^2 >> Y^2$ but with

$$\frac{m_{\nu}^{(2)}}{m_{\nu}^{(3)}} \approx \frac{\lambda' Y^2 \sin^2 \alpha}{Y'^2} \,.$$
 (28)

In this approach there is also another possibility for the existence of a mass-hierarchy, namely, the possibility of almost parallel couplings in generation space ($\alpha \approx 0$)

$$Y \cdot Y' = \sqrt{Y^2} \sqrt{Y'^2} \cos \alpha \approx \sqrt{Y^2} \sqrt{Y'^2} \left(1 - \frac{\alpha^2}{2}\right).$$

In this case, keeping $Y \sim Y'$, we obtain

$$\frac{m_{\nu}^{(2)}}{m_{\nu}^{(3)}} \approx \frac{\lambda' Y^2 Y'^2 \alpha^2}{(Y'^2 + \lambda' Y^2)^2} \,. \tag{29}$$

Finally, in this approach, there is a third possibility for a hierarchy if we assume that there is a small hierarchy in the scales $M_S: M_T$ corresponding to $\lambda' \sim 0.1$. In this case we get the same expression for the mass ratio as in (28) but with the desired hierarchy now originating from λ' instead of Y^2/Y'^2 .

The above conclusions rely only on the renormalizable part of the superpotential. There are however some contributions to neutrino masses from various lowest order non-renormalizable terms in (8). These are:

Left-handed neutrino Majorana masses from the term

$$\mathcal{H}^c \mathcal{QQH}^c \sim \lambda_{ij} \frac{v_u^2}{M_P} \nu_i \nu_j \,. \tag{30}$$

These masses are tiny ($10^{-5} eV$ or less, depending on the couplings involved) but they remove the massless state arising from the previous analysis giving a lower bound for light neutrino masses.

Right-handed neutrino Majorana masses from the terms

$$\mathcal{T}^2 \Sigma^2 + \Sigma^2 \mathcal{T} \mathcal{S} + \mathcal{S}^2 \Sigma^2 \sim \lambda'_{ij} \frac{V^2}{M_P} N_j^c N_j^c. \tag{31}$$

These terms could very well be of the same order of magnitude as the intermediate scale M_T or even larger but become subdominant for relatively small couplings, meaning $\lambda' < 10^{-2}$. In addition to these terms, negligible right-handed Majorana mass contributions $O(v^2/M_P)$ arise from the terms $\mathcal{H}\left(\mathcal{T}^2, \mathcal{TS}, \mathcal{S}^2\right) \mathcal{H}^c$.

Dirac neutrino masses from the terms

$$QT\Sigma \mathcal{H}^c + Q\Sigma \mathcal{H}^c S \sim \lambda'_{ij} \frac{v_u V}{M_P} \nu_i N_j^c.$$
 (32)

These contributions, suppressed by the factor V/M_P in comparison with renormalizable contributions, can remove massless states that arise due to the symmetries encountered in the renormalizable part of the Dirac neutrino mass matrix \mathcal{M}_D . To be specific, the operator $\mathcal{QT}\Sigma\mathcal{H}^c$ representing the invariants $\mathcal{Q}_i\mathcal{H}^cTr(\mathcal{T}\Sigma)$, $\mathcal{Q}_i\mathcal{T}\Sigma\mathcal{H}^c$, $\mathcal{Q}_i\Sigma\mathcal{T}\mathcal{H}^c$ contributes to the superpotential as

$$\lambda_{1i}^{"} \frac{v_u V}{M_P} \nu_i B + (\lambda_{2i}^{"} + \lambda_{3i}^{"}) \frac{v_u V}{M_P} \left(\frac{3}{10} \nu_i B - \sqrt{\frac{3}{20}} \nu_i \tau_0 \right). \tag{33}$$

The presence of these terms modifies the structure of \mathcal{M}_D and removes the massless state. The resulting from the seesaw mechanism light neutrino mass will be suppressed at least by a factor of $(\lambda''V/M_P)^2 < 10^{-2}$ compared to the lightest massive neutrino.

5 Neutrino Mixing

The charged lepton and neutrino mass terms $M_{(\ell)} \ell \ell^c + \frac{1}{2} M_{(\nu)} \nu \nu$ can be diagonalized in terms of three unitary matrices $\mathbf{U}_{(\ell)}$, $\mathbf{V}_{(\ell^c)}$ and $\mathbf{U}_{(\nu)}$. These matrices rotate the above

gauge eigenstates into mass eigenstates. If we express the neutrino charge current $J_{\mu} \propto \ell^{\dagger} \sigma_{\mu} \nu$ in terms of mass eigenstates, a combination of two of these matrices will appear $\ell^{\dagger} \sigma_{\mu} \mathcal{U}_{PMNS} \nu'$, known as the *Pontecorvo-Maki-Nakagawa-Sakata*[13] matrix

$$\mathcal{U}_{PMNS} \equiv \mathbf{U}_{(\ell)}^{\dagger} \mathbf{U}_{(\nu)}. \tag{34}$$

In what follows we shall concentrate on $\mathbf{U}_{(\nu)}$ and put aside the charged lepton mixing matrix, for which, in any case very little is known.

The overall neutrino mixing matrix

$$\mathbf{U}_{(\nu)} = \mathbf{U}_1 \, \mathbf{U}_2, \qquad \left(\left(\mathbf{U}_1 \right)_{ij} = \hat{X}_j^{(i)} \right) \tag{35}$$

is composed of the unitary matrix U_1 that rotates the neutrino mass matrix (15) into (18) and a unitary matrix

$$\mathbf{U}_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta \end{pmatrix} \tag{36}$$

that diagonalizes (18). The rotation angle β is related to the matrix entries through

$$\beta \equiv \frac{1}{2} \cot^{-1} \left(\frac{M_{22} - M_{33}}{2M_{23}} \right) . \tag{37}$$

Note that the mass eigenvalues are just

$$m_{\nu}^{(2,3)} = \frac{1}{2} \left(M_{22} + M_{33} \pm \sqrt{(M_{22} - M_{33})^2 + 4M_{23}^2} \right).$$

The overall diagonalizing matrix is

$$\mathbf{U}_{\nu} = \mathbf{U}_{1} \, \mathbf{U}_{2} = \begin{pmatrix} \hat{X}_{1}^{1} & \cos \beta \, \hat{X}_{2}^{1} + \sin \beta \, \hat{X}_{3}^{1} & -\sin \beta \, \hat{X}_{2}^{1} + \cos \beta \, \hat{X}_{3}^{1} \\ \hat{X}_{1}^{2} & \cos \beta \, \hat{X}_{2}^{2} + \sin \beta \, \hat{X}_{3}^{2} & -\sin \beta \, \hat{X}_{2}^{2} + \cos \beta \, \hat{X}_{3}^{2} \\ \hat{X}_{1}^{3} & \cos \beta \, \hat{X}_{2}^{3} + \sin \beta \, \hat{X}_{3}^{3} & -\sin \beta \, \hat{X}_{2}^{3} + \cos \beta \, \hat{X}_{3}^{3} \end{pmatrix}$$
(38)

In order to obtain the corresponding relations between the $\hat{X}^{(a)}$ and the original Yukawa couplings Y_i and Y'_i , we note that, as a result of the definitions (17), we may write

$$\vec{Y}' = Y' \left(\cos \alpha \, \hat{X}_2 - \sin \alpha \, \hat{X}_3 \right) \,,$$

where $\alpha \equiv \cos^{-1} \left(\hat{Y} \cdot \hat{Y}' \right)$. Substituting, we obtain

$$\mathbf{U}_{\nu} = (\sin \alpha)^{-1} \begin{pmatrix} \hat{Y}_{3} \hat{Y}_{2}' - \hat{Y}_{2} \hat{Y}_{3}' & \sin(\alpha + \beta) \hat{Y}_{1} - \sin \beta \hat{Y}_{1}' & \cos(\alpha + \beta) \hat{Y}_{1} - \cos \beta \hat{Y}_{1}' \\ \hat{Y}_{3}' \hat{Y}_{1} - \hat{Y}_{1}' \hat{Y}_{3} & \sin(\alpha + \beta) \hat{Y}_{2} - \sin \beta \hat{Y}_{2}' & \cos(\alpha + \beta) \hat{Y}_{2} - \cos \beta \hat{Y}_{2}' \\ \hat{Y}_{2} \hat{Y}_{1}' - \hat{Y}_{1} \hat{Y}_{2}' & \sin(\alpha + \beta) \hat{Y}_{3} - \sin \beta \hat{Y}_{3}' & \cos(\alpha + \beta) \hat{Y}_{3} - \cos \beta \hat{Y}_{3}' \end{pmatrix}.$$
(39)

Equating this matrix with the standard parametrization we obtain the relations between the standard mixing angles θ_{23} , θ_{12} , θ_{13} and the above parameters. It is clear that, as long as we have not imposed any additional constraints on the Yukawa coupling directions in family space, we have no predictive restrictions on the mixing angles. In the particular case that we are close to bimaximal mixing

$$\theta_{23} \approx \frac{\pi}{4} + \epsilon_{23}, \qquad \theta_{12} \approx \frac{\pi}{4} + \epsilon_{12}, \qquad \theta_{13} \approx \epsilon_{13},$$

from the standard parametrization we obtain

$$\mathbf{U}_{(\nu)} \approx \begin{pmatrix} \frac{1}{\sqrt{2}} - \frac{\epsilon_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} + \frac{\epsilon_{12}}{\sqrt{2}} & \epsilon_{13} \\ -\frac{1}{2} - \frac{\epsilon_{12}}{2} + \frac{\epsilon_{23}}{2} - \frac{\epsilon_{13}}{2} & \frac{1}{2} - \frac{\epsilon_{12}}{2} - \frac{\epsilon_{23}}{2} - \frac{\epsilon_{13}}{2} & \frac{1}{\sqrt{2}} + \frac{\epsilon_{23}}{\sqrt{2}} \\ \frac{1}{2} + \frac{\epsilon_{12}}{2} + \frac{\epsilon_{23}}{2} - \frac{\epsilon_{13}}{2} & -\frac{1}{2} + \frac{\epsilon_{12}}{2} - \frac{\epsilon_{23}}{2} - \frac{\epsilon_{13}}{2} & \frac{1}{\sqrt{2}} - \frac{\epsilon_{23}}{\sqrt{2}} \end{pmatrix}. \tag{40}$$

Equating this expression to (39), we obtain

$$\hat{Y} = \begin{bmatrix}
\frac{\cos \beta}{\sqrt{2}} \\
\frac{\cos \beta}{2} - \frac{\sin \beta}{\sqrt{2}}
\end{bmatrix} + \begin{bmatrix}
\epsilon_{12} \frac{\cos \beta}{\sqrt{2}} - \epsilon_{13} \sin \beta \\
-(\epsilon_{12} + \epsilon_{23} + \epsilon_{13}) \frac{\cos \beta}{2} - \epsilon_{23} \frac{\sin \beta}{\sqrt{2}}
\end{bmatrix}$$

$$-\frac{\cos \beta}{2} - \frac{\sin \beta}{\sqrt{2}}
\end{bmatrix} + \begin{bmatrix}
-(\epsilon_{12} + \epsilon_{23} + \epsilon_{13}) \frac{\cos \beta}{2} + \epsilon_{23} \frac{\sin \beta}{\sqrt{2}}
\end{bmatrix}$$

$$(41)$$

and

$$\hat{Y}' = \begin{bmatrix} \frac{\cos(\alpha+\beta)}{\sqrt{2}} \\ \frac{\cos(\alpha+\beta)}{2} - \frac{\sin(\alpha+\beta)}{\sqrt{2}} \\ -\frac{\cos(\alpha+\beta)}{2} - \frac{\sin(\alpha+\beta)}{\sqrt{2}} \end{bmatrix} + \begin{bmatrix} \epsilon_{12} \frac{\cos(\alpha+\beta)}{\sqrt{2}} - \epsilon_{13} \sin(\alpha+\beta) \\ -(\epsilon_{12} + \epsilon_{23} + \epsilon_{13}) \frac{\cos(\alpha+\beta)}{2} - \epsilon_{23} \frac{\sin(\alpha+\beta)}{\sqrt{2}} \\ -(-\epsilon_{12} + \epsilon_{23} + \epsilon_{13}) \frac{\cos(\alpha+\beta)}{2} + \epsilon_{23} \frac{\sin(\alpha+\beta)}{\sqrt{2}} \end{bmatrix}.$$

$$(42)$$

Closing this chapter we note that the range of values for variables $\alpha, \beta, |Y|, |Y'|$, which determine the Yukawa couplings, depends on the mass hierarchy approach followed. Among the different options, the small angle scenario of the 2nd approach—exhibits the most restrictive structure with $\beta \sim \alpha$, while by assumption $|Y| \sim |Y'|$.

6 Conclusions

In the present article we studied a realization of the see-saw mechanism in the framework of an extended renormalizable version of the supersymmetric SU(5) model. The right-handed neutrino fields were introduced as members of chiral 24 + 1 superfields. In particular, two 24 superfields were introduced, out of which, due to different discrete symmetry charges, only one couples to matter and its neutral singlet and isotriplet components are identified as two of the right-handed neutrinos. Our basic assumption is that right-handed neutrinos survive below the grand unification scale having an intermediate mass in the neighborhood of $10^{13} - 10^{14} \, GeV$, a scale suitable to generate, through the

see-saw mechanism, a light neutrino mass of the observed mass value of $O(0.1\,GeV)$. The assumption of an isotriplet of an intermediate mass scale is supported by renormalization group analysis incorporating proton stability constraints. In addition, the model requires a color octet of neighboring mass, which, however, does not couple to ordinary matter. The right-handed neutrino mass matrix, then, depends on the constrained isotriplet scale M_T as well as the free, from renormalization group, scales M_B , M_S , M_{SB} associated with the SM singlets of $\underline{\mathbf{1}},\underline{\mathbf{24}}$. If these scales are of $O(M_G)$, an extra fine tuning is required in order to obtain a light neutrino mass hierarchy in agreement with data (1st approach). The alternative assumption according to which the scales M_S , M_{SB} are of $O(M_T)$ is also possible (2nd approach). In this approach a phenomenologically acceptable neutrino mass hierarchy is possible as a result of the Yukawa hierarchy $Y' \ll Y$ or $Y' \gg Y$, where Y and Y' are the overall scales of the neutrino couplings $\langle H_u \rangle \nu$ (Y 1 + Y' 24). A second possibility of a hierarchy within this approach arises also when the angle between the Yukawa coupling vectors in family space Y_i and Y'_i is small. Nevertheless, the limiting case of aligned Yukawas is excluded, since it corresponds to two massless neutrinos. Alternatively, the required neutrino mass hierarchy can also arise as a result of a slight hierarchy of the scales $M_S: M_T$. However, in all these approaches, one very light neutrino is always present as a result of the structure of the neutrino mass matrix. Finally, we also find that a hierarchical mixing angle structure $\theta_{23} \sim \theta_{12} >> \theta_{13}$ can be easily accommodated within the free parameter structure of the model.

Acknowledgements

The research presented in this article is co-funded by the European Union - European Social Fund (ESF) & National Sources, in the framework of the Programme "HRAK-LEITOS II" of the "Operational Programme for Education and Lifelong Learning" of the Hellenic Ministry of Education, Lifelong Learning and Religious Affairs. Both authors acknowledge the hospitality of the CERN Theory Group.

References

- [1] The Super-Kamiokande Collaborations, Y.Ashie et al., Phys.Rev.D 71 (2005) 112005; Y.Ashie et al., Phys.Rev.Lett 93 (2004) 101801.
 - The KamLAND Collaboration, T. Araki et al., Phys.Rev.Lett. 94 (2005) 081801.
 - The SNO Collaboration, B.Aharmin et al., Phys.Rev.C 72 (2005) 055502.
 - The K2K Collaboration, E.Aliu et al., Phys.Rev.Lett. 94 (2005) 081802.
 - The CHOOZ Collaboration, M. Apollonio et al., Nuclear Eur. Phys. J. C 27 (2003) 331.
- [2] See Guido Altarelli, Status of Neutrino Masses and Mixing in 2009, talk given at 23th Rencontres de Physique de La Vallee d'Aoste, La Thuile, Aosta Valley, Italy (Mar 2009) arXiv:0905.3265 [hep-ph].
- [3] M.Gell-Mann, P.Ramond and R.Slansky, in: Supergravity, eds. D.Freedman and P. van Nieuwenhuizen (North Holland, Amstredam, 1979) p. 315; T.Yanagida, in: Proceedings of the Workshop on Unified Theory and Baryon Number in the Universe, eds. O.Sawada and A.Sugamoto (KEK, Tsukuba, Japan 1979); R.Mohapatra and G.Senjanovic, Phys.Rev.Lett. 44 (1980) 912 and Phys.Rev. D 23 (1981) 165; P.

- Minkowski, Phys.Lett. B 67 (1977) 421; J. Schechter and J. W. F. Valle, Phys. Rev. D 22, 2227 (1980).
- [4] For a review see R.N. Mohapatra and A.Y. Smirnov, Ann.Rev.Nucl.Part.Sci.56 (2006) 569-628, hep-ph/0603118; W. Buchmuller, arXiv:hep-ph/0204288.
- J. Rizos and K. Tamvakis, Phys. Lett. B 685 (2010) 67; C. S. Huang, T. j. Li and
 W. Liao, Nucl. Phys. B 673, 331 (2003) [arXiv:hep-ph/0304130];
- [6] R. Foot, H. Lew, X. G. He and G. C. Joshi, Z. Phys. C 44, 441 (1989); H. F. Jang and M. Singer, Phys. Rev. D 30, 639 (1984).
- [7] B. Bajc and G. Senjanovic, JHEP **0708**, 014 (2007) [arXiv:hep-ph/0612029].
- [8] C. Biggio and L. Calibbi, JHEP **1010**, 037 (2010) [arXiv:1007.3750 [hep-ph]].
- [9] H. Murayama and A. Pierce, Phys. Rev. D 65, 055009 (2002) [arXiv:hep-ph/0108104]; B. Bajc, P. Fileviez Perez and G. Senjanovic, Phys. Rev. D 66, 075005 (2002) [arXiv:hep-ph/0204311].
- [10] For a review on neutrino mixing see S. M. Barr and I. Dorsner, Nucl. Phys. B **585**, 79 (2000) [arXiv:hep-ph/0003058].
- [11] I. Dorsner, P. Fileviez Perez and G. Rodrigo, Phys. Lett. B **649**, 197 (2007) [arXiv:hep-ph/0610034].
- [12] K. Nakamura et al. [Particle Data Group], J. Phys. G 37, 075021 (2010).
- [13] B.Pontecorvo, Sov. Phys. JETP 6 (1957) 429; Z.Maki, N.Nakagawa and S.Sakita, Prog.Theor.Phys. 28 (1962) 870.