Asignatura	Datos del alumno	Fecha
Lógica	Apellidos: Vinueza Mier	06.00.0000
Computacional	Nombre: Dario Fernando	26-03-2020

Actividades

Actividad: Formalización de enunciados en lógica proposicional

Objetivos

En esta actividad aprenderás a formalizar enunciados del lenguaje natural en el lenguaje de lógica proposicional.

Descripción de la actividad

Formaliza los siguientes textos utilizando las variables proposicionales que se indican para cada uno de ellos.

Instrucciones

La formalización debe ser literal. No serán válidas formalizaciones que no se atengan a lo que se indica explícitamente en el texto, aunque la respuesta sea lógicamente equivalente a la fórmula correcta.

Para cada una de las formalizaciones debes indicar:

- » Las conectivas que aparecen.
- » La justificación de las conectivas que empleas.
- » La fórmula resultante.

1. José viaja en tren y Mario en avión.

- p: José viaja en tren.
- q: Mario viaja en avión.
- a. Las conectivas que aparecen: José viaja en tren y Mario en avión.

Conectiva	Número
Λ	1
TOTAL	1

b. La justificación de las conectivas que empleas.

Se usa la conectiva de formulación de *conjunción* [Λ], ya que las expresiones lingüísticas para usar esta conectividad son:

Asignatura	Datos del alumno	Fecha
Lógica Apellidos: Vinueza Mier		06.00.0000
Computacional	Nombre: Dario Fernando	26-03-2020

- ... y ...
- ... pero ...
- ... aunque ... (el verbo de estar en indicativo)
- c. La fórmula resultante.

$$p \wedge q$$

2. Podemos pintar la habitación de azul o de blanco.

p: podemos pintar la habitación de azul.

q: podemos pintar la habitación de blanco.

a. Las conectivas que aparecen: Podemos pintar la habitación de azul o de blanco.

Conectiva	Número
V	1
TOTAL	1

b. La justificación de las conectivas que empleas.

Se usa la conectiva de formulación de *disyunción* [V], ya que las expresiones lingüísticas para usar esta conectividad son:

- ... o ...
- o bien ...
- ... ya ...
- c. La fórmula resultante.

$$p \lor q$$

3. Si nieva, iremos a esquiar.

p: nieva.

q: iremos a esquiar.

a. Las conectivas que aparecen: Si nieva, iremos a esquiar.

Conectiva	Número
\rightarrow	1
TOTAL	1

b. La justificación de las conectivas que empleas.

Se usa la conectiva de formulación de *condicional* $[\rightarrow]$, ya que una de las expresiones lingüísticas para usar esta conectividad es:

Asignatura	Datos del alumno	Fecha
Lógica	Apellidos: Vinueza Mier	06 00 0000
Computacional	Nombre: Dario Fernando	26-03-2020

- Si ... entonces ...
- c. La fórmula resultante.

$$p \rightarrow q$$

4. O es musulmán o es cristiano.

- p: es musulmán.
- q: es cristiano.
- a. Las conectivas que aparecen: O es musulmán o es cristiano.

Conectiva	Número
V	1
TOTAL	1

b. La justificación de las conectivas que empleas.

Se usa la conectiva de formulación de *disyunción* [V], ya que una de las expresiones lingüísticas para usar esta conectividad es:

- o bien ...
- c. La fórmula resultante.

$$p \lor q$$

5. Cogeremos el coche, si no llueve.

- **p**: coger el coche.
- **q**: llover.
- a. Las conectivas que aparecen: Cogeremos el coche, si no llueve.

Conectiva	Número
\rightarrow	1
~	1
TOTAL	2

b. La justificación de las conectivas que empleas.

Se usa la conectiva de formulación de *condicional* $[\rightarrow]$, ya que una de las expresiones lingüísticas para usar esta conectividad es:

• Si ... entonces ...

También se puede modificar la expresión a:

Asignatura	Datos del alumno	Fecha
Lógica	Apellidos: Vinueza Mier	06 00 0000
Computacional	Nombre: Dario Fernando	26-03-2020

"Si no llueve entonces cogeremos el coche"

c. La fórmula resultante.

$$\sim q \longrightarrow p$$

6. Basta que tenga hambre, para que no encuentre ningún restaurante abierto.

p: tener hambre.

q: encontrar un restaurante abierto.

a. Las conectivas que aparecen: *Basta que tenga hambre, para que no encuentre ningún restaurante abierto*.

Conectiva	Número
\rightarrow	1
~	1
TOTAL	2

b. La justificación de las conectivas que empleas.

Se usa la conectiva de formulación de *condicional* $[\rightarrow]$, ya que una de las expresiones lingüísticas para usar esta conectividad es:

- Es suficiente ... para que ...
- Basta que ... para que ...

También se puede modificar la expresión a:

"Cuando tengo hambre entonces no encuentro un restaurante abierto"

c. La fórmula resultante.

$$p \longrightarrow \sim q$$

7. Es imprescindible mover un peón para mover la dama.

p: mover un peón.

q: mover la dama.

a. Las conectivas que aparecen: *Es imprescindible mover un peón para mover la dama*.

Conectiva	Número
\rightarrow	1
TOTAL	1

b. La justificación de las conectivas que empleas.

Asignatura	Datos del alumno	Fecha
Lógica	Lógica Apellidos: Vinueza Mier	
Computacional	Nombre: Dario Fernando	26-03-2020

Se usa la conectiva de formulación de *condicional* $[\rightarrow]$, ya que una de las expresiones lingüísticas para usar esta conectividad es:

- Es necesario que ... para que ...
- Es imprescindible que ... para que ...

También se puede modificar la expresión a:

"Si se mueve un peón entonces puedo mover la dama"

c. La fórmula resultante.

$$p \rightarrow q$$

8. No es cierto que María y Lucía sean buenas cocineras.

- p: María es buena cocinera.
- q: Lucía es buena cocinera.
- a. Las conectivas que aparecen: No es cierto que María y Lucía sean buenas cocineras.

Conectiva	Número
~	1
Λ	1
TOTAL	2

b. La justificación de las conectivas que empleas.

Se usa la conectiva de formulación de *conjunción* [Λ], ya que una de las expresiones lingüísticas para usar esta conectividad es:

- ... y ...
- c. La fórmula resultante.

$$\sim (p \land q)$$

9. O Mahoma va a la montaña o la montaña va a Mahoma. La montaña no va a Mahoma. Luego Mahoma irá a la montaña.

- p: Mahoma va a la montaña.
- q: La montaña va a Mahoma.
- a. Las conectivas que aparecen: O Mahoma va a la montaña o la montaña va a Mahoma. La montaña no va a Mahoma. Luego Mahoma irá a la montaña.

Conectiva	Número
-----------	--------

Asignatura	Datos del alumno	Fecha
Lógica Computacional	Apellidos: Vinueza Mier	0(00 000
	Nombre: Dario Fernando	26-03-2020

V	1
~	1
TOTAL	2

b. La justificación de las conectivas que empleas.

Se usa la conectiva de formulación de *negación* [\sim] y de *disyunción* [Λ], ya que una de las expresiones lingüísticas para usar esta conectividad es:

- no
- ... 0 ...
- c. La fórmula resultante.
 - 1. Mahoma va a la montaña o la montaña va a Mahoma.
 - 2. La montaña no va a Mahoma
 - 3. Mahoma irá a la montaña
 - 1. *p* V *q*
- $2. \sim q$

3. *p*

10. Cuando no se puede, no se puede y además es imposible.

p: se puede.

a. Las conectivas que aparecen: Cuando no se puede, no se puede y además es imposible.

Conectiva	Número
~	2
\rightarrow	1
TOTAL	3

b. La justificación de las conectivas que empleas.

Se usa la conectiva de formulación de *negación* [\sim] y de *disyunción* [Λ], ya que una de las expresiones lingüísticas para usar esta conectividad es:

- No
- Cuando ... (entonces)
- c. La fórmula resultante.
 - 1. Cuando no se puede, no se puede.
 - 2. Es imposible

También se puede modificar la expresión a:

Asignatura	Datos del alumno	Fecha
Lógica	Apellidos: Vinueza Mier	06 00 0000
Computacional	Nombre: Dario Fernando	26-03-2020

- 1. Si no se puede entonces no se puede.
- 2. No se puede

1.
$$\sim p \rightarrow \sim q$$

Rúbrica

Formalización de enunciados en lógica proposicional (valor real: 4 puntos)	Descripción	Puntuación máxima (puntos)	Peso %
Criterio 1	Identificación de las conectivas	2,5	25 %
Criterio 2	Justificación de las conectivas	2,5	25 %
Criterio 3	Fórmulas obtenidas	5	50 %
		10	100 %

Extensión máxima: puedes emplear tantas páginas como consideres necesarias.