

Reconstruction Error Based Anomaly Detection 재구축 오차 기반 이상탐지 방법론

9주차 스터디 세션

2024.01.05(금) 09:30 김설진/안정현/이승용/이지흔/이혜준

1

Index

학습 목차

- 8.1 재구축 오차 기반 이상탐지
 - 8.1.1 재구축 오차 원리
 - 8.1.2 용어 정리
- 8.2 재구축 오차 기반 이상탐지 알고리즘
 - 8.2.1 Principal Component Analysis
 - 8.2.2 AutoEncoder
- 8.3 코드 예제

8.1.1 재구축 오차 원리

재구축 오차 기반 알고리즘의 핵심 아이디어

원본 데이터를 압축하고 복원하는 과정에서 발생하는 오차를 이용한 이상탐지 방법론

8.1.1 재구축 오차 원리

재구축 오차 접근법의 2가지 가정

복원된 데이터는 원본 데이터와 유사할 것이며, 압축된 차원은 고차원 공간을 잘 표현할 것

오차 小

오차 大

8.1.1 재구축 오차 원리

재구축 오차를 통한 이상치 탐지 방법

정상 데이터에 대한 표현을 잘 학습한 알고리즘은 정상 데이터를 잘 복원하지만, 이상 데이터는 잘 복원하지 못함

알고리즘 이해를 위한 중요 개념

Representation Learning (표현 학습)

딥러닝 = representation learning?

사람이 직접(feature engineering) vs 모델이 스스로 해석의 어려움...

[임베딩 기술 종류] [단어의 표현 방법] [임베딩 기술 변화] 국소표현 분산표현 통계적 기반 뉴럴 네트워크 기반 단어기반 문장기반 Swivel One-Hot 분해기반 Encoding LSA BoW(TDM, n-gram GloVe TF-IDF) NPLM One-Hot Word2Vec BERT BoW LSA **Encoding** FastText Word2Vec **ELMO** (TDM, TF-IDF) n-gram ELMO **FastText** Topic BERT modeling GloVe (LSA) Word2Vec 기반 LDA 기반 **FastText**

A 4-dimensional embedding

cat =>	1.2	-0.1	4.3	3.2
mat =>	0.4	2.5	-0.9	0.5
on =>	2.1	0.3	0.1	0.4

단어 임베딩 ▶

알고리즘 이해를 위한 중요 개념

Manifold Learning (매니폴드 학습)

데이터 압축

데이터 시각화

차원의 저주

Representation, Latent

- A d dimensional manifold $\mathcal M$ is embedded in an m dimensional space, and there is an explicit mapping $f\colon \mathcal R^d \to \mathcal R^m$ where $d \le m$
- We are given samples $x_i \in \mathcal{R}^m$ with noise

$$x_i = f(\tau_i) + \epsilon_i$$

알고리즘 이해를 위한 중요 개념

Manifold Learning (매니폴드 학습)

Manifold Hypothesis

- 고차원의 데이터의 밀도는 낮지만, 이들의 집합을 포함하는 저차원의 매니폴드가 존재
- 저차원의 매니폴드를 벗어나는 순간 급격히 밀도는 낮아짐

알고리즘 이해를 위한 중요 개념

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- etc..
- Autoencoders (AE)
- t-distributed stochastic neighbor embedding (t-SNE)
- Isomap
- Locally-linear embedding (LLE)
- etc..

8.2 재구축 오차 기반 이상탐지 알고리즘

재구축 오차 기반 이상탐지에 활용되는 알고리즘

재구축 오차 기반 이상탐지에 활용되는 대표적인 알고리즘으로는 PCA와 Autoencoder가 있음

Principal Component Analysis

Autoencoder

8.2.1 Principal Component Analysis

PCA를 통한 재구축 기반 이상탐지

PCA 원리

- 데이터의 분산(정보)을 최대한 보존하는 새로운 축을 찾고, 그 축에 데이터를 사염(projection, 사상, 투사) 시키는 키범
 - 정보 손실을 최소화하는 방향으로 차원을 축소하는 것이 좋요
 - 선형적으로 차원을 축소 (€f. 비선형 차원 축소)
 - 고유값 분해(eigen decomposition)를 통해 데이터를 잘 사영시킬 수 있는 벡터들의 집합을 찾는 것이 목표
 - PCA의 축들은 서로 직교(독립)함으로서, 서로 다른 정보를 보존

Find space z_k which maximize variance of projected data

8.2.1 Principal Component Analysis

PCA를 통한 재구축 기반 이상탐지

주성분 분석을 통한 변환 행럴 구성 단계

N개의 D차원 자료들 ×n 으로부터 공분산 행렬 ∑(DxD)를 계산한다.

$$\mu = \frac{1}{N} \sum_{n=1}^{N} x_n$$
 $\Sigma = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \mu)(x_n - \mu)^T$ where N: No. of sample:

2. 고유값 분석을 행한다.

$$\mathbf{\Sigma} = U\mathbf{\Lambda}U^T = \begin{bmatrix} \mathbf{u}_1 \mathbf{u}_2 \dots \mathbf{u}_D \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_D \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \mathbf{u}_2 \dots \mathbf{u}_D \end{bmatrix}^T$$

- 3. D개의 고유값들 중에서 가장 큰 고유값 $C(\langle D)$ 개를 $(\lambda_1,...,\lambda_c)$ 을 선택한다.
- 4. 선택된 고유값과 관련된 고유벡터를 구하고 연결하여 변환 행렬 W을 만든다.

$$W = [u_1...u_C]$$

5. 특징 벡터를 다음의 변환식으로 변환한다.

$$y = W^T x$$

8.2.1 Principal Component Analysis

PCA를 통한 재구축 기반 이상탐지

PCA를 통해 축소된 차원 복원

- PCA는 선형결합을 통해 기존의 X 데이터의 차원을 저차원의 Z 공간으로 축소
 - 1) 분산을 최대로 보존하는 새로운 축에 데이터를 사영
 - 2) 새로운 축으로 사영된 데이터를 다시 기존 데이터의 형태로 재구축
 - 3) 재구축된 데이터와 기존 데이터 사이의 차이를 재구축 오차로 정의
 - 4) 재구축 오차가 큰 관측치를 이상치로 정의

Let $Z = \alpha^T X$ be the projection of X onto the direction α

$$Z = \alpha^T X$$

Autoencoder를 통한 재구축 기반 이상탐지

Autoencoder 원리

- 입력된 데이터의 특성을 요약하는 인코더와 요약된 정보를
 복원하는 디코더로 네트워크 구성
- Bottleneck에 해당하는 레이어는 입력 데이터에 대한 정보(representation)를 잘 축약하고 있음
- 정답 레이블 없이 학습이 가능한 비지도학습(unsupervised learning)이자 자가지도학습(self supervised learning)

Autoencoder를 통한 재구축 기반 이상탐지

Autoencoder을 통한 이상 탐지 과정

Autoencoder를 통한 재구축 기반 이상탐지

Autoencoder의 네트워크 구조

- Output layer의 크기는 Input layer의 크기와 동일하게 유지
 - 일반적으로 Regression에서는 1개, Classification에서는 class 개수만큼 output layer 구성
- 입출력이 동일한 네트워크 구조 (X-〉X)
 - 비지도 학습을 지도학습으로 전환 (자가지도 학습)
- Loss function은 MSE 또는 Cross-Entropy 사용
 - VAE에서는 ELBO/KL-Divergence를 사용
- 학습 데이터는 정상 데이터로만 구성
 - Latent Vector(Z)는 정상 데이터에 대한 표현 학습

$$L_{AE} = \sum_{x \in D} L(x, y)$$

MSE or cross-entropy

$$L_{AE} = \| x - y \|^2$$

Autoencoder를 통한 재구축 기반 이상탐지

Autoencoder의 네트워크 구조

- 기본적으로 인코더, 디코더에 심층 신경망 네트워크(DNN) 구성
- 이상 탐지에 적용되는 데이터 특성에 따라
 다양한 네트워크 사용 가능
 - 시계열 데이터 : LSTM
 - 이미지 데이터 : CNN

Special thanks to 김성범 교수님, 강남우 교수님, 이활석 CTO

EOD