A Salt-Free Zero-Charged Aqueous Onion-Phase Enhances the Solubility of Fullerene C_{60} in Water

Hongguang Li,† Xiangfeng Jia,† Yi Li,† Xingwang Shi,† and Jingcheng Hao*,†,‡

Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China, and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China

Received: August 17, 2005; In Final Form: October 27, 2005

An onion-phase (multilamellar vesicular phase or Lα-phase) was prepared from salt-free zero-charged cationic and anionic (catanionic) surfactant mixtures of tetradecyltrimethylammonium hydroxide (TTAOH)/lauric acid (LA)/ H_2O . The H^+ and OH^- counterions form water (TTAOH + LA \rightarrow TTAL + H_2O), leaving the solution salt free. The onion-phase solution has novel properties including low conductivity, low osmotic pressure and unscreened electrostatic repulsions between cationic and anionic surfactants because of the absence of salt. The spherical multilamellar vesicles have an average 250 nm radius as measured by freeze-fracture transmission electron microscopy (FF-TEM) and the maximum interlayer distance, i.e., the thickness of the hydrophobic bilayer and the water layer, was calculated to be around 52 nm by small-angle X-ray scattering (SAXS). Extremely hydrophobic C₆₀ fullerene can be solubilized in this salt-free zero-charged aqueous onionphase. As a typical result, 0.588 mg·mL⁻¹ (~0.82 mmol·L⁻¹) C₆₀ has been successfully solubilized into a 50 mmol·L⁻¹ catanionic surfactant onion-phase aqueous solution. The weight ratio of fullerene to TTAL is calculated to be around 1:40. Solubilization of C₆₀ in the salt-free catanionic onion-phase solution was investigated by using different sample preparation routes, and a variety of techniques were used to characterize these vesicular systems with or without encapsulated C_{60} . The onion-phase solution changed color from slightly bluish to yellow or brown after C₆₀ was solubilized. ¹H and ¹³C NMR measurements indicated that the C₆₀ molecules are located in the hydrophobic layers, i.e., in the central positions $[\omega$ -CH₃ and δ -(CH₂)_x] of the hydrophobic layers of the TTAL onion-phase. Salt-free zero-charged catanionic vesicular aqueous solutions are good candidates for enhancing the solubility of C60 in aqueous solutions and may broaden the functionality of fullerenes to new potential applications in biology, medicine, and materials. Hopefully, our method can also be extended to solubilize functionalized carbon nanotubes in aqueous solutions.

Introduction

Since the discovery¹ and production of C₆₀ in quantity,² C₆₀ fullerene has received much attention and shown great potential applications in physics, chemistry, life science, and materials science. Unfortunately, the extremely poor solubility of C₆₀ in water has greatly hindered its further study and practical (or potential) applications, especially in applications related to its biological activity.^{3,4} To overcome this difficulty, two methods are usually adopted: (a) to synthesize water-soluble C_{60} derivatives by chemically attaching some hydrophilic functional groups to the pristine C₆₀, which often leads to a disruption of the symmetry and pseudoaromaticity of C₆₀, or (b) to solubilize C₆₀ by suitable carriers which have hydrophobic cores or bilayers. For this purpose, macromolecules including γ -cyclodextrine,⁵ calixerene,⁶ and several aqueous micellar^{7–12} or vesicular solutions^{7,13} formed by surfactants have been used. However, to the best of our knowledge, the maximum solubility of C₆₀ achieved to date is about 0.4 mg·mL⁻¹ in aqueous solution. New candidates are needed to further improve the solubility of C_{60} in water.

On the other hand, taking into consideration biological uses, vesicle solubilization of C_{60} is of particular interest, because vesicles are expected to be good drug carriers and represent the simple model systems of biological membranes. Although

good work has been done by Hungerbühler et al. and Bensasson et al.¹³ in using vesicular aqueous solutions as solubilization media of C₆₀, no systematic investigations have appeared on the solubilization of C₆₀ in catanionic surfactant solutions. Catanionic solutions have been well-known as easy to form thermodynamically stable vesicles in dilute solutions since the pioneering work of Kaler et al. in 1989.¹⁴ However, as the concentrations of cationic and anionic surfactants increase, the excess salt formed by the counterions induces a high conductivity and ionic strength that screens electrostatic interactions between aggregates and further induces a high osmotic pressure that makes the colloidal solutions rather unstable, leading to the formation of precipitates when the stoichiometry between the cationic and anionic components is exactly 1.15 In recent years, excess salt has been eliminated by the strategy of using OH⁻ and H⁺ as counterions of cationic and anionic surfactants, respectively, and by mixing them in equimolar ratios. The socalled salt-free catanionic surfactant systems thus obtained are fascinating. Pioneering studies of these systems have been done by Hoffmann et al., 16 Zemb, 17 and our group. 18 Recent reports have demonstrated the production of novel self-assembled structures such as flat nanodiscs in the case of cationic surfactant excess, 17a,c regular hollow icosahedra in anionic surfactant excess, 17b,c and uni- and multilamellar vesicles with equimolar cationic/anionic surfactants.¹⁸ Because they are salt-free, the unscreened electrostatic repulsion between aggregates induces a low osmotic pressure which highly stabilizes the colloidal

^{*} Address correspondence to this author. E-mail: jhao@sdu.edu.cn. Phone: +86-531-88366074. Fax: +86-531-88564464.

Shandong University.

[‡] Lanzhou Institute.

solution. Thus, salt-free catanionic systems can be prepared at very high concentrations without any precipitation, making them good candidates to further improve the solubility of C₆₀ in aqueous solution.

On the basis of the recent report on the phase behavior and uni- and multilamellar vesicles (onion-phase) of catanionic surfactant systems of TTAOH mixing with different fatty acids^{18b} including lauric acid (LA), here, the salt-free zerocharged catanionic surfactant onion-phase was chosen as the candidate to enhance the solubility of C_{60} in aqueous solutions. It was found that the salt-free zero-charged catanionic surfactant onion-phase could greatly enhance the solubility of fullerene C₆₀ in water. Properties of solubilized C₆₀ in onion-phase aqueous solutions were investigated by using different sample preparation routes and a variety of techniques such as ¹H and 13 C NMR spectroscopy, indicating that C_{60} molecules are present in the hydrophobic layers.

Experimental Section

Chemicals and Materials. Tetradecyltrimethylammonium bromide (TTABr) was purchased from Merck and used without further purification. Lauric acid (LA, > 98%), toluene, and NaBr were all purchased from Shanghai Shiyi Chemicals Reagent Co. Ltd. and used without further purification. All the other reagents were analytical grade. C₆₀ was purchased from Sigma, 99% pure by HPLC, and was purified by crystallization from toluene before use. D₂O and C₆D₆ were obtained from Cambridge Isotope Laboratories (CIL), Inc.

Preparation of the Salt-free Zero-Charged Catanionic Surfactant Onion-Phase. TTAOH stock solution was prepared from TTABr aqueous solution (140 mmol·L⁻¹) with use of a strong base anion exchanger (Ion exchanger III, Merck) at 40 °C. Bromide ions could not be detected by AgNO₃ in the TTAOH stock solution with excess HNO₃ (Ag⁺ + Br⁻ \rightarrow AgBr, yellow precipitate), so the ion exchange with hydroxide was >99%. The total concentration of the stock TTAOH solution was determined by acid—base titration with 0.10 mol·L⁻¹ HCl to be 122.1 mmol \cdot L $^{-1}$. To a known volume of TTAOH solution (100 mmol·L⁻¹) was added an equimolar solid LA to completely neutralize the free OH-. Birefringent and bluish Tetradecyltrimethylammonium laurate (TTAL)

onion-phase (Lα-phase) solution was obtained after being kept at room temperature for two months to reach phase equilibrium. To obtain solid TTAL, the 100 mmol·L⁻¹ TTAL vesicular solution was dried in a N2 stream below 40 °C.

Freeze-Fracture Transmission Electron Microscopy (FF-**TEM**) **Observations.** Birefringent Lα-phase solutions were characterized to determine their detailed structures by FF-TEM. Two typical samples are viscoelastically birefringent $L\alpha$ -phase solutions with 50 and 100 mmol·L⁻¹ TTAL. A small amount of solution to be characterized was placed on a 0.1 mm thick copper disk then covered with a second copper disk. The copper sandwich with the sample was frozen by plunging this sandwich into liquid propane, which had been cooled by liquid nitrogen. Fracturing and replication were carried out at a temperature of −140 °C. Pt/C was deposited at an angle of 45°. The replicas were examined in a CEM 902 electron microscope (Zeiss, Germany) operated at 80 kV.

Negative-Staining TEM Observations. The structures of vesicular aqueous solutions containing C₆₀ were determined by negative-staining TEM with uranyl acetate used as the negative stain dye. A drop of aqueous vesicular solution containing C_{60} was placed on a TEM grid (copper grid, 3.02 mm, 200 mesh, coated with Formvar film) and stained with 2% uranyl acetate aqueous solution, which was absorbed off by a piece of filter paper 15 s later. After the solution was dried in air, TEM images were taken on a JEOL JEM 100-CXII instrument (Japan) at an accelerating voltage of 100 kV.

Small-Angle X-ray Scattering (SAXS) Measurements. Small-angle X-ray scattering experiments were operated at 298K by means of a Kratky compact small-angle system equipped with a position sensitive detector (OED 50M from Mbraun, Graz, Austria) containing 1024 channels of width 54 mm. The range of scattering angle was chosen from h = 0.05 to 6 nm⁻¹, with the magnitude of the scattering vector being $h = 2\pi \sin \theta$ θ/λ , θ and λ being respectively the scattering angle and incident X-ray wavelength of 0.1542 nm. The distance from sample to detector was 27.7 cm and the exposure time was 600 s for each

Rheological Measurements. The rheological measurements were carried out on a HAAKE RS75 Rheometer or Bohlin CS 10 rheometer with a cone plate measuring system and oscillatory mode from 0.01 to 10 Hz.

¹H NMR and ¹³C NMR Spectra. The ¹H and ¹³C NMR spectra were taken on a Bruker AVANCE-400 spectrometer at 25.0 ± 0.1 °C in 5-mm NMR sample tubes. To obtain the signal spectra, D₂O and C₆D₆ were used to prepare the vesicular solutions with and without C_{60} . ¹³C NMR spectra were measured for more than 21 500 scans.

UV-Visible Spectroscopy. UV-vis measurements were carried out on a computer-controlled spectrometer (UV-vis 4100, HITACHI HIGH-TECHNOLOGIES Co., Japan) at room temperature in a 1 cm path length quartz cell with water as a reference.

An ultrasonicator (Analytical Instrument Inc., Shanghai, KQ-250DB Maximum frequency, 40 kHz \pm 10%) was used at 40% of maximum frequency to prepare homogeneous solutions. All samples were centrifuged (LXJ-II, Analytical Instrument Inc., Shanghai, maximum rotation speed, 4000 rpm) at 2500 rpm for 30 min before characterization and all the experiments were carried out at room temperature unless otherwise stated.

Results and Discussion

Properties and Structures of Salt-Free Zero-Charged Catanionic Onion-Phase Solutions without C₆₀ Incorporation. The 100 mmol·L⁻¹ salt-free zero-charged TTAL catanionic surfactant onion-phase solutions are transparent, highly viscous, and birefringent. The sample exhibits yield stress, i.e., air bubbles can be trapped in these solutions. The rheological properties for a 100 mmol \cdot L $^{-1}$ TTAL L α -phase sample are shown in Figure 1. The storage modulus G' describing the elastic properties of the sample and loss modulus G" are almost frequency independent. G' is almost a decade higher than G". The complex viscosity, $|\eta^*|$, decreases throughout the whole frequency range from 0.01 to 10 Hz with a slope of -1.

When the concentration of the TTAL onion-phase aqueous solution was increased to 200 mmol·L⁻¹, the macroproperties of the onion-phase solution were very similar to those of the 100 mmol·L⁻¹ TTAL solution except for an increase in viscosity. When the vesicular solution was diluted to 50 $\text{mmol} \cdot L^{-1}$, the onion-phase aqueous solution became less viscous and slightly bluish, but still birefringent. These onionphase solutions could be kept for more than one year without

Figure 1. Rheogram of a 100 mmol·L⁻¹ salt-free zero-charged TTAL onion-phase solution: plots of storage modulus G', loss modulus G'', and complex viscosity $|\eta^*|$ as a function of the angular frequency.

Figure 2. FF-TEM images of 50 (left) and 100 (right) mmol· L^{-1} salt-free zero-charged TTAL onion-phase aqueous solutions. Glycerol (20 wt %) was added to the onion-phase aqueous solutions to avoid crystallization during the freezing process.

any changes at 25 $^{\circ}$ C, indicating that once formed, the onion-phase is stable.

The structural features of 50 and 100 mmol·L⁻¹ TTAL onion-phase aqueous solutions can be determined from FF-TEM images, as shown in Figure 2. From both images, one can see that uni- and multilamellar vesicles coexist. The unilamellar vesicles have a rather polydisperse distribution, with diameters ranging from about 30 to more than 300 nm and an average diameter of about 125 nm. The multilamellar onion-phase has an average diameter of about 500 nm based on the FF-TEM images.

SAXS measurements were carried out on salt-free zero-charged TTAL onion-phase solutions. A typical SAXS profile of a 100 mmol·L⁻¹ TTAL vesicular aqueous solution is shown in Figure 3, which clearly indicates the formation of lamellar aggregate structures. Four scattering peaks were observed at $q=0.12,\,0.24,\,0.36$, and $0.48\,\mathrm{mm^{-1}}$. The relative peak positions, $q_1:q_2:q_3:q_4$, are strictly 1:2:3:4, which is typical for a Bragg scattering pattern for a one-dimensional lamellar structure, corresponding to the 001, 002, 003, and 004 planes of a layered structure. The interlayer distance $d=2\pi/q_{\mathrm{max}}$ was determined to be around 52 nm, meaning the thickness of the hydrophobic bilayer and the water layer.

To determine if the formation of the onion-phase was reversible, the 100 mmol· L^{-1} TTAL onion-phase aqueous solution was dried in a N₂ stream below 40 °C. Solid TTAL (~12.0 g) was thus obtained and a 50 mmol· L^{-1} vesicular solution was prepared by dissolving the solid TTAL in water. No insoluble fraction was found and the properties of so-

Figure 3. Small-angle X-ray scattering curve of a $100 \text{ mmol} \cdot \text{L}^{-1} \text{ TTAL}$ vesicular solution. The scattering peaks can be indexed as a lamellar structure.

Figure 4. Representative photographs of a 50 mmol·L⁻¹ TTAL onion-phase aqueous solution without C_{60} (a) and with increasing amounts of C_{60} (b-e). The concentration of C_{60} is (b) 0.10, (c) 0.20, (d) 0.30, and (e) 0.82 mmol·L⁻¹, respectively. The photographs were taken after centrifugation: top, without polarizers; bottom, with polarizers.

obtained onion-phase aqueous solutions, which were birefringent and bluish, were the same as those prepared by mixing TTAOH and LA.

Solubilization of C₆₀ in Salt-Free Zero-Charged Catanionic Surfactant Onion-Phase Solutions. Different routes were tested to solubilize C₆₀ into salt-free zero-charged catanionic surfactant aqueous vesicular solutions. Method 1: When solid C_{60} was added to a 50 mmol·L $^{-1}$ TTAL vesicular solution and sonicated, the sample remained birefringent and slightly bluish with visible black C₆₀ clusters suspended in the solution, indicating that solid C₆₀ cannot be solubilized by the salt-free catanionic surfactant aqueous vesicular solution directly. Method 2: To a purple solution of C₆₀ (2.94 mg) in toluene (15 mL) was added 0.1163 g of solid TTAL and the mixed sample was sonicated for 5 min and further stirred overnight under a N₂ atmosphere. A homogeneous yellow toluene solution was obtained. After toluene was evaporated under a stream of N2 at 40−50 °C, a TTAL-C₆₀ solid mixture was obtained, to which 5 mL of tridistilled water was added, then the sample was sonicated again for 5 min. A brown vesicular aqueous solution of about 50 mmol·L $^{-1}$ TTAL and ${\sim}0.82$ mmol·L $^{-1}$ C_{60} was obtained. No insoluble component was observed in the brown vesicular solution and the sample was kept at 25 °C for four weeks before characterization. By this preparation method, a series of vesicular solutions containing different amounts of C₆₀ were prepared (Figure 4). Birefringence of the solutions with low amounts of C₆₀ can still be observed, for example, sample "b" in Figure 4. However, at higher C₆₀ amounts, one cannot

observe the birefringence clearly due to the darkness of the brown solution. Method 3: A C₆₀ toluene solution (5 mL) (0.36 mg of C_{60}) was slowly injected into a 5 mL 50 mmol·L⁻¹ TTAL vesicular aqueous solution under vigorous stirring. A reddish emulsion was obtained, which was dried and redissolved in 5 mL of water following the procedures in Method 2.

According to the experimental results, both Methods 2 and 3 are successful in incorporate C₆₀ molecules into salt-free zerocharged TTAL onion-phase aqueous solutions. In our study we chose Method 2 as illustrated below: i.e.,

$$\begin{array}{c} C_{60} \ solid \xrightarrow{toluene} \ purple \ C_{60} \ toluene \ solution \xrightarrow{TTAL(s)} \ yellow \\ TTAL-C_{60} \ toluene \ solution \xrightarrow{N_2\text{-dried}} \ TTAL-C_{60} \ solid \xrightarrow{water} \\ salt-free \ zero-charged \ TTAL \ onion-phase \ aqueous \\ solutions \ containing \ C_{60} \end{array}$$

No visible changes were observed for all the samples containing C₆₀ during the period of phase equilibrium—at least 4 weeks at $T = 25.0 \pm 0.1$ °C. It could be concluded that the C₆₀ molecules were successfully solubilized into TTAL onionphase aqueous solution by the following proofs: (a) after centrifugation of the samples in Figure 4 (b-e), the color of all the samples remained unchanged and no insoluble components were observed. (b) When each sample's vesicular structure was destroyed by diluting with water, yellow or brown precipitates were found at the bottom. The precipitates could be redissolved totally by evaporating water to increase the TTAL concentration, presumably thus re-forming the onion-phase. (c) Hoffmann et al. have reported that salt addition could induce the phase separation from densely packed vesicles (onion-phase) in the salt-free catanionic surfactant system CTAOH/HNC.16a A similar phenomenon has been observed in our experiments. When 0.025 g of NaBr was added to the sample "c" in Figure 4, a phase separation occurred with a dark-brown layer at the top and a clear phase at the bottom.

Determination of the C₆₀ Solubilization Site in Onionphase Aqueous Solutions by ¹H and ¹³C NMR Spectroscopy. The above observations indicate that the C₆₀ molecules were trapped inside the surfactant onion-phase bilayers and that there is a rather strong affinity between the C₆₀ molecules and the hydrophobic chains of the surfactants. The solubilization site of C₆₀ molecules in salt-free zero-charged TTAL onion-phase aqueous solutions was determined from analysis of ¹H NMR and ¹³C NMR spectra (Figure 5). Figure 5a shows the ¹H NMR spectra for the 20 mmol·L⁻¹ TTAL onion-phase aqueous solution (in D_2O) without and with 0.10 mmol·L⁻¹ C_{60} . The two samples are slightly viscoelastic Lα-phase. The ¹H NMR spectra show brand broadening which could be due to incomplete motional narrowing in the viscoelastic Lα-phase. Comparing the ¹H NMR spectra of salt-free zero-charged TTAL vesicular solutions with and without C₆₀, one can see that in the presence of C_{60} the chemical shifts of α -CH₂, δ -(CH₂)_x (x = 9 for L⁻ and 12 for TTA⁺), and ω -CH₃ groups of the TTAL molecules are shifted to higher field by 8 to 16 Hz, which should be induced by the solubilization of C_{60} . There is an interaction between the C₆₀ molecules and the TTAL hydrocarbon chains because C₆₀ are electron-rich and provide a strong screening effect on the ¹H nuclei of TTAL. The magnitudes of the change in chemical shift for α -CH₂, δ -(CH₂)_x, and ω -CH₃ groups can be calculated and have the following order: ω -CH₃ (16 Hz) > δ -(CH₂)_x (12 Hz) > α -CH₂ (8 Hz), indicating that the interaction between C_{60} molecules and the ω -CH₃ (16 Hz) group is the strongest, i.e., the solubilization site of C₆₀ molecules should be in the central site of hydrophobic layers formed by TTAL.

The ¹³C NMR spectrum of C₆₀ in C₆D₆ was obtained with ¹H decoupling. In Figure 5b, an extremely sharp single resonance is observed at 142.5 ppm due to C_{60} . The ^{13}C NMR spectrum of C₆₀ is well-known, and all 60 carbon atoms are chemically equivalent.¹⁹ The peaks at 127 ppm are from the benzene solvent.

¹³C NMR spectra of TTAL onion-phase aqueous solutions (in D₂O) with and without C₆₀ encapsulated are shown in Figure 5c, which clearly indicate that C_{60} molecules exist in TTAL onion-phase aqueous solutions. 13C NMR spectra of TTAL molecules are absolutely identical in the TTAL onion-phase aqueous solutions with and without C_{60} encapsulated. The C_{60} resonance is clearly observed as an extremely sharp peak located at 142.5 ppm, just like C_{60} in C_6D_6 , indicating that the C_{60} molecules were really solubilized but not degraded (oxidized) so are still present as C_{60} .

Two important conclusions can be drawn from the ¹H and ¹³C spectra: (1) In the hydrophobic bilayers of the onion-phase, there are no nano-C₆₀ clusters which form in many cases when a solution of C₆₀ in an organic solvent is mixed with water and (2) the magnitude of the ¹³C chemical shift change for the ω -CH₃ group is around 18 Hz. This is larger than for other groups, i.e., δ -(CH₂)_x (x = 9 for L⁻ and 12 for TTA⁺), indicating that the C₆₀ molecules are located in the central site of hydrophobic bilayers of the onion-phase.

The salt-free zero-charged catanionic onion-phase aqueous solutions containing C₆₀ were quite stable, and showed no changes after storage at room temperature for more than three months. Two identical samples of 50 mmol·L⁻¹ TTAL onionphase aqueous solution containing 0.30 mmol· L^{-1} C₆₀ (the sample d in Figure 4) were placed in an oven and kept at 50 and 80 °C, respectively, for an hour, after which no obvious changes could be observed. The samples were also frozen at -4 °C and after the temperature recovered to room temperature, homogeneous solutions were again obtained without visible changes.

It is reasonable that the solubilizing capacity of the salt-free zero-charged onion-phase aqueous solutions for C₆₀ will increase with higher concentrations of vesicles. A sample with $c_{C_{60}} =$ 1.64 mmol· L^{-1} in the 100 mmol· L^{-1} TTAL onion-phase aqueous phase has been successfully prepared. Thus, salt-free zero-charged onion-phase aqueous solutions are perfect candidates to improve the solubility of C₆₀ in aqueous media and potentially also for solubilizing related compounds such as

UV-Vis Measurements of Salt-Free Zero-Charged Onion-Phase Aqueous Solutions Containing C_{60} . UV-vis spectroscopy was used to characterize aqueous and organic solutions containing C_{60} . The characteristic UV-vis absorption of C_{60} in toluene is shown in Figure 6a. The absorption below 290 nm is shielded by the strong absorption of the aromatic chromophore in this region. Figure 6b shows the UV-vis absorption of the samples in Figure 4 (a-e), from which one can see that the strong absorption band of 50 mmol·L⁻¹ saltfree zero-charged TTAL onion-phase solution at lower wavelengths was enhanced and broadened after C₆₀ solubilization, extending to higher wavelengths with the increasing amount of C₆₀ solubilized. From Figure 6, one can also see that all the characteristic absorption peaks of C₆₀ at 329 nm and the 400-700 nm region are difficult to identify due to the complex fluid system.

During sample preparation, when solid TTAL was added to the purple solution of C₆₀ in toluene, the color of the solution changed from purple to yellow after sonication and stirring. To

Figure 5. (a) 1 H NMR spectra of TTAL onion-phase aqueous solution (in $D_{2}O$) with (above) and without (below) C_{60} encapsulated; (b) 13 C NMR spectrum of C_{60} in $C_{6}D_{6}$, with 1 H decoupling, 21 500 scans. The resonance at 142.5 ppm is assigned to C_{60} . (c) 13 C NMR spectra of TTAL vesicular solutions with (above) and without (below) C_{60} . $C_{6}D_{6}$ was added into the sample for locking the field, but it did not affect the measurement of 13 C NMR spectra or the discussion of the results.

obtain more information, we added excess solid TTAL to 0.10 mmol· L^{-1} C₆₀ in toluene (4.5 mL). After sonication for 5 min, the sample was kept at 25 °C with frequent shaking before characterization. Some TTAL solid remained at the bottom and the color of the upper saturated solution was still purple 8 h later but changed slowly from purple to yellow within 2 days. UV—vis measurements were carried out on the solution before and after the color change (Figure 7). Comparing the UV—vis

spectra of C_{60} alone and TTAL- C_{60} in toluene, one can see that the purple solution of TTAL- C_{60} in toluene has an identical UV—vis spectrum with C_{60} in toluene, and the characteristic absorption of C_{60} still appears. However, with time, the purple solution of TTAL- C_{60} in toluene completely changed to yellow and the characteristic absorption of C_{60} was lost from the spectrum. Since all samples were prepared under N_2 and below 50 °C, the influence of O_2 and chemical reactions induced by

Figure 6. (a, left curves): UV-vis absorption of $25 \,\mu$ mol·L⁻¹ (solid line) and $50 \,\mu$ mol·L⁻¹ (dashed line) C_{60} in toluene; the insert is the magnification between 400 and 700 nm. (b, right curves): 50 mmol·L⁻¹ salt-free zero-charged TTAL onion-phase solution with 0.10 to 0.82 mmol·L⁻¹ C_{60} for the samples in Figure 4b-e and without C_{60} for the sample in Figure 4a.

Figure 7. UV—vis spectra of C_{60} in toluene and TTAL- C_{60} in toluene 8 h (purple solution) and 1 month (yellow solution) after TTAL was added, $c_{C_{60}} = 0.10 \text{ mmol} \cdot \text{L}^{-1}$.

temperature can be excluded. The effects of sonication and stirring were also examined, but no direct influence on UV—vis absorption was found except for accelerating the process of color change by speeding up the dissolution of solid TTAL.

UV—vis measurements of C_{60} mixed with the starting materials for TTAL, i.e., TTABr and LA, were also examined. (1) When 0.1680 g of TTABr was added to 5 mL of 0.10 mmol·L⁻¹ C_{60} toluene solution, TTABr did not dissolve completely. After removing excess TTABr solid, we found that the solution of TTABr- C_{60} in toluene was purple and became yellow over time. As shown in Figure 8a, the purple solution of TTABr- C_{60} in toluene has an identical UV—vis spectrum with C_{60} in toluene. However, after the purple solution of TTABr- C_{60} in toluene turned yellow, the characteristic absorption of C_{60} was found to be lost from the UV—vis spectrum, just as in the case of TTAL- C_{60} in toluene. (2) When 0.10 g of LA was added to 4.5 mL of 0.10 mmol·L⁻¹ C_{60} in toluene, the water-insoluble LA dissolved completely in a short time, and

no visible changes in the purple color of C_{60} solution were observed. Keeping this mixture at $25.0\pm0.1\,^{\circ}\mathrm{C}$ for more than one month did not cause any visible change in color or UV—vis spectrum (Figure 8b). So it seems that the loss of the characteristic absorptions of C_{60} was due to the existence of the cationic TTA^+ ions rather than the anionic L^- ions.

TEM Observations of Salt-Free Zero-Charged Catanionic Onion-Phase Aqueous Solutions Containing C_{60} . After preparation of the samples with C_{60} encapsulated in salt-free zero-charged TTAL onion-phase aqueous solutions, we used Negative-staining TEM to determine if the vesicle structures had been destroyed or not, or if the uni- and multilamellar vesicle-phase had converted to any other self-assembled structures. Figure 9

Figure 9. TEM micrographs of 50 and 100 mmol· L^{-1} TTAL vesicular aqueous solutions containing 0.82 and 1.64 mmol· L^{-1} C₆₀, respectively. Uranyl acetate was used as the negative-stained reagent.

shows the results for two typical samples of 50 and 100 mmol· L^{-1} TTAL vesicular aqueous solutions containing 0.82 mmol· L^{-1} and 1.64 mmol· L^{-1} C_{60} , respectively. One can easily see that well-defined vesicles are present. The dimensions of the vesicles are between 100 and 300 nm, just as in the original vesicular structures in Figure 2. It is clear that the vesicles have not changed due to the solubilization of C_{60} but some changes of the macroproperties of the vesicular solutions have been observed.

Figure 8. UV-vis spectra: (A) C_{60} in toluene and TTABr- C_{60} in toluene 8 h (purple solution) and 1 month (yellow solution) after addition of TTABr. (B) C_{60} in toluene and LA- C_{60} in toluene 8 h (purple solution) and 1 month (purple solution) after addition of LA. $c_{C_{60}} = 0.10$ mmol·L⁻¹ in both samples.

Figure 10. A sketch of C₆₀ molecules in a spherical multilamellar vesicle with 250 nm radius and the 52 nm thick hydrophobic bilayer and water layer. The model is based on analysis of experimental data from FF-TEM and SAXS measurements. The hydrophobic double-chain hydrocarbons are shown as blue rods, while the hydrophilic charged cationic-anionic groups are green balls. The extremely hydrophobic C₆₀ fullerenes (shown in orange) were located in the hydrophobic layers of vesicles. A sector in each layer has been cut out for enhanced visibility. According to the weight ratio of fullerene C₆₀ to TTAL surfactant (1:40), one could estimate approximately that the bilayers formed with 63 TTAL molecules contain 1 fullerene C₆₀ molecule. However, it is difficult to obtain the exact proportion of fullerene C_{60} molecules to TTAL molecular bilayer. It is impossible to give an opinion of a fairly large quantity of quasi-insoluble fullerene C₆₀ in the surfactant matrix. So the quantity ratio of fullerene C₆₀ to TTAL molecules illustrated in the map may not be strictly consistent with the real case of the microstructure.

Before ending the sufficiently interesting study, the reversible experiment was carried out, the salt-free zero-charged TTAL vesicular aqueous solutions containing C_{60} can be evaporated in N_2 atmosphere to obtain the mixed solids which are TTAL and C_{60} . When we dissolve the solid mixture in water, salt-free zero-charged TTAL vesicular aqueous solutions containing C_{60} can be obtained again. Thus, the preparation of salt-free zero-charged TTAL onion-phase aqueous solutions containing C_{60} is also reversible as for the case of TTAL vesicular solutions. A sketch map of C_{60} molecules in a spherical multilamellar vesicle is given in Figure 10, which should assist in the comprehension of all the experimental observations and parameters.

Conclusion

In conclusion, C_{60} has been found to be solubilized by salt-free zero-charged cationic and anionic vesicular aqueous solutions and the solubilizing capacity of the catanionic surfactant onion-phase aqueous solution was found to be higher than those reported previously. The samples are very stable over a wide range of temperature, thus have great potential for biological and materials uses. We are continuing to investigate these

systems with other insoluble substances in aqueous solutions, such as functionalized carbon nanotubes.

Acknowledgment. The authors greatly thank Professor Dr. Andreas Hirsch from Universität Erlangen-Nürnbergand and Professor Dr. Heinz Hoffmann from Bayreuth Universität for helpful discussions. This work was supported by the NFSC (20473049, 20571048, 20533050) and by the Program of Hundreds Talent of the Chinese Academy of Sciences. The authors also thank Dr. Pamela Holt for assistance in the preparation of the manuscript.

References and Notes

- Kroto, H. W.; Heath, J.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
- (2) Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.
- (3) Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. P.; Srdanov, G.; Wudl, F.; Kenyon, G. L. *J. Am. Chem. Soc.* **1993**, *115*, 6506.
- (4) Tokuyama, H.; Yamago, S.; Nakamura, E.; Shiraki, T.; Sugiura, Y. J. Am. Chem. Soc. 1993, 115, 7918.
- (5) Andersson, Th.; Nilsson, K.; Sundahl, M.; Westman, G.; Wennerström, O. *J. Chem. Soc.*, *Chem. Commun.* **1992**, 604.
- (6) Atwood, J. L.; Koutsantionis, G. A.; Raston, C. L. Nature 1994, 368, 229.
- (7) Hungerbühler, H.; Guldi, D. M.; Asmus, K. D. J. Am. Chem. Soc. 1993, 115, 3386.
- (8) Beeby, A.; Eastoe, J.; Heenan, R. K. J. Chem. Soc., Chem. Commun. 1994, 173.
- (9) Yamakoshi, Y. N.; Yagami, T.; Fukuhara, K.; Sueyoshi, S.; Miyata,
- N. J. Chem. Soc., Chem. Commun. 1994, 517.(10) Eastoe, J.; Crooks, E. R.; Beeby, A.; Heenan, R. K. Chem. Phys.
- Lett. 1995, 245, 571.
 (11) Moussa, F.; Trivin, F.; Ceolin, R.; Hadchouel, M.; Sizaret, P.-Y.;
 Greugny, V.; Fabre, C.; Rassat, A.; Szwarc, H. Fullerene Sci. Technol. 1996,
- 4, 21. (12) Lai, D. T.; Neumann, M. A.; Matsumoto, M.; Sunamoto, J. Chem.
- Lett. 2000, 64.
 (13) Bensasson, R. V.; Bienvenue, E.; Dellinger, M.; Leach, S.; Seta, P. J. Phys. Chem. 1994, 98, 3492.
- (14) Kaler, E. W.; Herrington, K. L.; Murthy, A. K.; Zasadzinski, J. A. N. Science 1989, 245, 1371.
- (15) Horbaschek K.; Hoffmann, H.; Hao, J. J. Phys. Chem. B 2000, 104, 2781.
- (16) (a) Hoffmann, H.; Kalus, J.; Schwander, B. *Ber. Bunsen-Ges. Phys. Chem.* **1987**, *91*, 99. (b) Horbaschek, K.; Hoffmann, H.; Thunig, C. *J. Colloid Inter. Sci.* **1998**, *206*, 439.
- (17) (a) Zemb, Th.; Dubois, M.; Demè, B.; Gulik-Krzywicki, Th. *Science* **1999**, 283, 816. (b) Dubois, M.; Demè, B.; Gulik-Krzywichi, Th.; Dedieu, J. C.; Vautrin, C.; Dèsert, S.; Perez, E.; Zemb, Th. *Nature* **2001**, 411, 672. (c) Dubois, M.; Lizunov, V.; Meister, A.; Gulik-Krzywichi, Th.; Verbavatz, J. M.; Perez, E.; Zimmerberg, J.; Zemb, Th. *PNAS* **2004**, 101, 15082.
- (18) (a) Hao, J.; Hoffmann, H.; Horbaschek, K. Langmuir 2001, 17, 4151. (b) Hao, J.; Liu, W.; Xu, G.; Zheng, L. Langmuir 2003, 19, 10635. (c) Hao, J.; Hoffmann, H.; Horbaschek, K. J. Phys. Chem. B 2000, 104, 10144. (d) Hao, J.; Yuan, Z.; Liu, W.; Hoffmann, H. J. Phys. Chem. B 2004, 108, 19163. (e) Hao, J.; Li, H.; Liu, W.; Hirsch, A. Chem. Commun. 2004, 602. (f) Song, A.; Dong, S.; Jia, X.; Hao, J.; Liu, W.; Liu, T. Angew. Chem., Int. Ed. 2005, 44, 4018.
- (19) (a) Johnson, R. D.; Meijer, G.; Bethune, D. S. J. Am. Chem. Soc. 1990, 112, 8983. (b) Taylor, R.; Hare, J. P.; Abdul-Sada, A. K.; Kroto, H. W. Chem. Commun. 1990, 1423.