SERIA 15

Twierdzenie. Załóżmy, że φ : $[a,b] \to \mathbb{R}^2$, $\varphi = (\varphi_1, \varphi_2)$ jest funkcją klasy C^1 . Wówczas długość krzywej φ wynosi

 $\int_a^b \sqrt{(\varphi_1'(t))^2 + (\varphi_2'(t))^2} \, \mathrm{d}t$

Twierdzenie. Założmy, że $f\colon [a,b]\to \mathbb{R}$ jest funkcją klasy C^1 . Wówczas długość wykresu tej funkcji wynosci

 $\int_a^b \sqrt{1 + (f'(x))^2} \, \mathrm{d}x.$

Zadanie 1. Obliczyć pola figur ograniczonych krzywymi o równaniach

a)
$$y = x^2$$
, $x = y^2$ b) $y = \ln x$, $y = \ln^x$

Zadanie 2. Obliczyć pole figury ograniczonej pętlą

$$y^2 = x(x-1)^2$$

Zadanie 3. Obliczyć długość wykresu

$$f(x) = \ln x, \quad x \in [\sqrt{3}, \sqrt{8}].$$

Zadanie 4. Znaleźć długość części traktrysy danej parametrycznie

$$x = a\left(\cos t + \ln \operatorname{tg}\frac{t}{2}\right), \quad y = a\sin t$$

od punktu (0, a) do punktu (x, y).

Zadanie 5. Obliczyć pole powierzchni bryły powstałej z obrotu krzywej $y=\operatorname{tg} x,$ gdzie $x\in[0,\frac{\pi}{4}]$ wokół osi OX.

Zadanie 6. Obliczyć granice

a)
$$\lim_{n \to \infty} \int_0^{\pi} \frac{n \sin x}{x+n} dx$$
, b) $\lim_{n \to \infty} \int_0^1 \sqrt{1+x^n} dx$

Zadanie 7. Obliczyć granicę

$$\lim_{t \to 0^+} \int_t^{3t} \frac{\cos x}{x} \, \mathrm{d}x.$$

1