Chapter 4

Spin Valves

韩伟 量子材料科学中心 2018年10月26日

Review of Last Class

1. Magnetoresistance and ordinary MR

2. Anisotropic MR

3. Tunneling AMR

4. Colossal MR

5. Giant MR

6. Tunneling MR

7. Spin Hall MR

8. Nonlocal MR

9. Hanle MR

Outline 1 and 1 an

1. Spin valves and spin injection

2. Spin valves based on Metal and Superconductor

3. Spin valves based on Semiconductor and Quantum materials

This Class

1. Spin valves and spin injection

Outline

1. Vertical Spin valves

2. From Vertical to Lateral Spin valves

3. Spin injection

Outline |

1. Vertical Spin valves

Valve

Valves

Low Resistance State

High Resistance State

Ferromangetic

$$P = \frac{D_{\uparrow} - D_{\downarrow}}{D_{\uparrow} + D_{\downarrow}}$$

Nonmagnetic

Julie Model

Julie Model

Julie Model

$$R_P = \frac{Rr}{R+r} \approx r < R_{AP} = \frac{R+r}{4}$$

Two examples:

1) Insertion of thin FM layer

2) MgO tunnel barrier

1) Insertion of thin FM layer

Question: What happens?

1) Insertion of thin FM layer

Julie model: two spin current model, then the interface should not matter. The MR depends on the spin polarization of the FMs.

However, this is not the experimental observation.

1) Insertion of thin FM layer

1) Insertion of thin FM layer

1) Insertion of thin FM layer

Origin of Enhanced MR of Magnetic Multilayers:

Spin-Dependent
Scattering from Magnetic
Interface States

2) MgO tunnel barrier

Epitaxial MgO

Parkin, et al, Nature Mater (2004) Yuasa, et al, Nature Mater (2004)

2) MgO tunnel barrier

Maekawa, Book Concepts in Spin electronics (2006)

MgO barrier for tunneling: MR >100%

 Δ_1 , symmetry, slow decaying Tunneling of Co majority spin (SP)

Zhang & Butler, et al, PRB (2004)

Organic Materials

Xiong, et al, Nature (2004)

Organic Materials

Organic Materials

2D Materials

Outline

2. Why Lateral Spin Valves

Lateral Spin valves

Lateral Spin valves

Lateral Spin valves

Spin transistor

Spin logic and computing

Datta & Das, APL (1990)

Dery, et al, Nature (2007) Behin-Aein, et al, Nat. Nano (2010). Dery, et al, IEEE Trans. Elec. Dev. (2012)

Spin transistor

Electronic analog of the electro - optic modulator - Scitation scitation.aip.org/content/aip/journal/apl/56/7/10.../1.102730 ▼ 翻译此页作者: S Datta - 1990 - 被引用次数: 4147 - 相关文章 1990年2月12日 - 10.1063/1.102730. Supriyo Datta¹ and Biswajit Das¹ ... Abstract; Full Text; References (12); Cited By (2579); Data & Media; Metrics; Related ...

Rashba field

- 1) Long spin diffusion length
- 2) Large Rashba parameter → Rashba field

Datta & Das, APL (1990)

Spin FET

Chuang, et al, Nature Nanotech (2014)

Spin FET

Dery, et al, Nature (2007) Dery, et al, IEEE Trans. Elec. Dev. (2012)

Behin-Aein, et al. Nature Nanotech. (2010)

Yang, et al. Nature Nanotech. (2008)

Spin Superconductor

ICQM: Sun & Xie, PRB (2011), Nature Comm (2013)

Summary

Vertical Spin valves

Lateral Spin valves

Spin manipulation

休息10分钟

Summary

Vertical Spin valves

Lateral Spin valves

Spin manipulation

Outline |

3. Spin injection

☐ Electrical

☐ Optical

□ Dynamic

☐ Thermal

3. Spin injection

☐ Electrical

Zutic, et al, Rev. Mod. Phys. (2004)

Charge current:

Einstein relation

$$j = \sigma \nabla \mu$$

$$\sigma = q^2 ND$$

Spin current:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Spin dependent chemical potential:

$$\mu_{\uparrow} = (\frac{qD}{\sigma_{\uparrow}})\delta n_{\uparrow} - \emptyset$$

$$\mu = (\frac{qD}{\sigma})\delta n - \emptyset$$

$$\delta n_{\uparrow} = n_{\uparrow} - n_{\uparrow 0}$$

D: diffusion coefficient

σ: conductivity

Ø: electrical potential

Continuity:

$$egin{aligned}
abla j _{\uparrow} &= +q[rac{\delta n}{ au}_{\uparrow\downarrow} - rac{\delta n}{ au}_{\downarrow\uparrow}] \
abla j _{\downarrow} &= -q[rac{\delta n}{ au}_{\downarrow\uparrow} - rac{\delta n}{ au}_{\downarrow\uparrow}] \end{aligned}$$

Charge vs. Spin

$$\sigma = \sigma_{\uparrow} + \sigma_{\downarrow}$$
 $N = N_{\uparrow} + N_{\downarrow}$

At the balance:

$$\frac{N}{\tau} - \frac{N}{\tau} = 0$$

Interfacial Spin accumulation

$$\mu_{\mathcal{S}} = \mu_{\uparrow} - \mu_{\downarrow}$$

$$\delta S = \delta n_{\uparrow} - \delta n_{\downarrow}$$

$$\mu_{S} = \frac{1}{2q} \frac{N_{\uparrow} + N_{\downarrow}}{N_{\uparrow} N_{\downarrow}} (\delta n_{\uparrow} - \delta n_{\downarrow})$$

Zutic, et al, Rev. Mod. Phys. (2004)

Spin diffusion length

$$L_{SF} = \sqrt{D_{SF}\tau_{sF}}$$

$$L_{SN} = \sqrt{D_{SN}\tau_{SN}}$$

Diffusion equation:

$$abla^2 \mu_{SF} = \mu_{SF}/LSF^2$$

$$abla^2 \mu_{SN} = \mu_{SN}/LSN^2$$

Johnson & Silsbee, PRL (1985)

Johnson & Silsbee, PRL (1985)

Electron beam lithography

Nano Devices: spin diffusion length ~ μm

Jedema, et al, Nature (2001) Jedema, et al, Nature (2002)

GaAs: a semiconducting channel

Electrical Spin detection

Johnson and Silsbee, PRL (1985)

Spin Injector Spin Detector

Pure spin current: Flow of spin without net flow of charge

Nonlocal MR = $(V_P - V_{AP})/I_{INJ}$

Han, et al, APL (2009) $_{72}$

Electrical Spin injection

3. Spin injection

□ Optical

GaMnAs

Maekawa, Book Concepts in Spin electronics (2006)

GaMnAs

GaMnAs

Electrical Spin injection

3. Spin injection

☐ Dynamical

Magnetic resonance

 α is the Gilbert damping

 $H_x e^{i\omega t}$ (rf): small perturbation

Magnetic resonance

FMR

FM NM

$$\vec{J}_S = \frac{\hbar g_r^{\uparrow\downarrow}}{4\pi M^2} \left(\vec{M} \times \frac{\partial \vec{M}}{\partial t} \right)$$

Precessing magnetization in FM layer pump spin current into NM layer (Angular momentum conservatoin)

$$\frac{d\mathbf{M}(t)}{dt} = -\gamma \mathbf{M}(t) \times \mathbf{H}_{\text{eff}} + \frac{\alpha}{M_s} \mathbf{M}(t) \times \frac{d\mathbf{M}(t)}{dt}.$$

$$\tau = -\mathbf{m} \times \mathbf{I}_s \times \mathbf{m}$$
.

$$\mathbf{I}_{s,R}^{\text{pump}} = \frac{\hbar}{4\pi} \left(\mathcal{A}_r^{\uparrow\downarrow} \mathbf{m} \times \frac{d\mathbf{m}}{dt} + \mathcal{A}_i^{\uparrow\downarrow} \frac{d\mathbf{m}}{dt} \right)$$

Spin-Momentum Locking

Song, et al, Nature Communications (2016)

$$\vec{J}_S = \frac{\hbar g_r^{\uparrow\downarrow}}{4\pi M^2} \left(\vec{M} \times \frac{\partial \vec{M}}{\partial t} \right)$$

Enhanced Gilbert Damping

Damping affected by interface, thickness, roughness, etc

Zhao*, Song*, Yang, Su, Yuan, Parkin, Shi, and W. Han, Scientific Reports, 6:22890 (2016)

Song, et al, unpublished

 $H_{sd} = J_{sd} \sum_{i \in FM/NM \ interface} \vec{\sigma}_i \cdot \vec{s}_i$

Enhanced Gilbert damping FMR absorption

Outline |

3. Spin injection

☐ Thermal

Thermal Spin Injection

Slachter, et al, Nature Physics (2010)

Thermal Spin Injection

Thermal Spin Injection

Metal

学习了解一些自旋电子学研究进展

本课程共八章

- 一、自旋电子学简介
- 二、磁性和磁性材料
- 三、磁阻效应
- 四、自旋阀
- 五、自旋转移力矩
- 六、热自旋电子学
- 七、拓扑自旋流
- 八、反铁磁自旋电子学

3. Spin injection

□ Electrical

3. Spin injection

☐ Optical

3. Spin injection

□ Dynamical

FM

3. Spin injection

☐ Thermal

下一节课: Nov. 2nd

Chapter 4: Spin Valves

2. Spin valves based on Metal and Superconductor

课件下载:

http://www.phy.pku.edu.cn/~LabSpin/teaching.html