Proofs by Reduction #1

coinstudent2048

September 21, 2021

Let Let λ be the security parameter. Let Setup be the setup algorithm: $(\mathbb{G}, \mathbb{F}) \leftarrow \mathsf{Setup}(1^{\lambda})$, where \mathbb{G} is a cyclic group of prime order and \mathbb{F} is its scalar field. Let $Z \in \mathbb{G}$ be the identity element.

The notation $\stackrel{\$}{\leftarrow}$ will be used to denote for a uniformly randomly chosen element, and (1/x) for the modular inverse of $x \in \mathbb{F}$. Lastly, we use additive notation for group operations.

Definition 0.1. A function $f: \mathbb{N} \to \mathbb{R}$ is **negligible** if for every polynomial $p(\cdot)$ there exists an $N \in \mathbb{N}$ such that for all integers n > N it holds that $f(n) < \frac{1}{p(n)}$.

Definition 0.1 is copied from Katz & Lindell. We first prove the following lemma:

Lemma 0.1. If $f: \mathbb{N} \to \mathbb{R}$ is non-negligible, then $g(n) = f(n)^m$ for any $m \in \mathbb{N}$ and m > 1 is non-negligible.

Proof. The non-negligibility of f means that there exists a polynomial $p(\cdot)$ such that for all $N \in \mathbb{N}$, there exists an n > N such that $f(n) \geq \frac{1}{p(n)}$. Let $p_f(\cdot)$ be such polynomial and n_f be such n > N. Then setting $p_g(\cdot) = p_f(\cdot)^m$ and $n_g = n_f$ suffices for non-negligibility of g because $f(n_f) \geq \frac{1}{p_f(n_f)} \Rightarrow f(n_f)^m \geq \left(\frac{1}{p_f(n_f)}\right)^m$.

Lemma 0.1 justifies the usage of finite number of breaks in proof by reduction.

Definition 0.2 (Discrete Logarithm (DL) Assumption). *DL assumption holds relative to* Setup *if for every* PPT adversary \mathcal{A} , there exists a negligible function $\operatorname{negl}(\lambda)$ such that

$$\Pr\left[\begin{array}{c|c} H=xG & (\mathbb{G},\mathbb{F}) \leftarrow \mathsf{Setup}(1^{\lambda}); G, H \xleftarrow{\$} \mathbb{G}; \\ x \in \mathbb{F} \leftarrow \mathcal{A}(\mathbb{G},\mathbb{F},G,H) \end{array}\right] \leq \mathsf{negl}(\lambda).$$

Definition 0.3 ("One-time Address" (OTA) Assumption). OTA assumption holds relative to Setup if for every PPT adversary A, there exists a negligible function $negl(\lambda)$ such that

$$\Pr\left[\begin{array}{c|c} C_1 = k_a U + k_b G \\ \wedge C_2 = (1/k_a)G \end{array} \middle| \begin{array}{c} (\mathbb{G},\mathbb{F}) \leftarrow \mathsf{Setup}(1^\lambda); U,G,C_1,C_2 \xleftarrow{\$} \mathbb{G}; \\ k_a,k_b \in \mathbb{F} \leftarrow \mathcal{A}(\mathbb{G},\mathbb{F},U,G,C_1,C_2) \end{array} \right] \leq \mathsf{negl}(\lambda).$$

Theorem 0.2. OTA assumption holds if and only if DL assumption holds.

Proof. The proof consists of 2 parts:

- DL is $easy \Rightarrow OTA$ is easy: Applying the first DL break on L base G will give $1/k_a$, which will trivially give k_a . Then applying the second DL break on $K k_a U$ base G will give k_b .
- OTA is easy \Rightarrow DL is easy: Let $A, B \in \mathbb{G}$ (both not equal to Z) be the group elements to find DL for (without loss of generality, $x \in \mathbb{F}$ such that xA = B). Then perform the following procedure on A:
 - 1. Applying an OTA break on (U, A) will give $k_a, k_b \in \mathbb{F}$ such that $U = k_a U + k_b G$ and $A = (1/k_a)G$. Hence, $k_a A = G \Rightarrow U = k_a U + k_b (k_a A)$.
 - 2. Let $y_1 \in \mathbb{F}$ such that $U = y_1 A$. Now $U = k_a U + k_b k_a A$ becomes $y_1 A = k_a (y_1 A) + k_b k_a A \Rightarrow y_1 = k_a y_1 + k_b k_a \Rightarrow y_1 k_a y_1 = k_b k_a$. Therefore,

$$y_1 = k_b k_a (1/(1 - k_a)).$$

Then perform the same procedure on B (hence another OTA break). Now we have $y_1, y_2 \in \mathbb{F}$ such that $U = y_1 A$ and $U = y_2 B$. Hence, $y_1 A = y_2 B \Rightarrow y_1 (1/y_2) A = B$.

This completes the proof.

Definition 0.4 (DL "Vector" Assumption). DL Vector assumption holds relative to Setup if for all n > 1 and for every PPT adversary \mathcal{A} , there exists a negligible function $negl(\lambda)$ such that

$$\Pr\left[\begin{array}{c|c} \exists z_i(z_i\neq 0), i\in\{1,\dots,n\} & (\mathbb{G},\mathbb{F})\leftarrow \mathsf{Setup}(1^\lambda);\\ \wedge \sum_{i=1}^n z_iG_i = H & G_1,\dots,G_n,H \xleftarrow{\$} \mathbb{G};\\ z_1,\dots,z_n\in\mathbb{F}\leftarrow \mathcal{A}(\mathbb{G},\mathbb{F},G_1,\dots,G_n,H) \end{array}\right] \leq \mathsf{negl}(\lambda).$$

Theorem 0.3. DL Vector assumption holds if and only if DL assumption holds.

Proof. The proof consists of 2 parts:

- DL is easy \Rightarrow DL Vector is easy: Set random scalars on z_2, \ldots, z_n so that at least one of them is not zero. Then applying DL break on $H \sum_{i=2}^{n} z_i G_i$ base G_1 will give z_1 .
- DL Vector is easy \Rightarrow DL is easy: Assume that there exists an n > 1 such that finding $z_1, \ldots, z_n \in \mathbb{F}$ satisfying the properties in Definition 0.4 is "easy". Let $A, B \in \mathbb{G}$ (both not equal to Z) be the group elements to find DL for (without loss of generality, $x \in \mathbb{F}$ such that xA = B). Then applying a DL Vector break on $G_1 = A, G_2 = B, G_3 = \ldots = G_n = A, H = Z$ will give z_1, z_2 such that $z_1A + z_2B = Z$. Now we have $z_1A + z_2(xA) = Z \Rightarrow z_1 + z_2x = 0 \Rightarrow x = (-z_1)(1/z_2)$.

Note that both z_1 and z_2 will never be zero, because if one of them is, then the other should also be zero, contradicting the requirement $\exists z_i (z_i \neq 0)$.

This completes the proof. \Box