Metody numeryczne – laboratorium nr 10

Poszukiwanie minimum funkcji dwóch zmiennych – metody gradientowe

Zadanie 1

Napisz skrypt, który znajdzie minimum dowolnej funkcji dwóch zmiennych metodą gradientu prostego.

Przykładowe funkcje do przetestowania skryptu:

L.p.	Funkcja	Zakres zmiennych
1.	$f(x_1, x_2) = x_1^2 + x_2^2$	$x_1 \in [-10, 10]$, $x_2 \in [-10, 10]$
2.	$f(x_1, x_2) = 2x_1^2 + 4x_2^2 - 2x_1x_2 + 4x_1 + 2x_2 - 6$	$x_1 \in [-8, 6], x_2 \in [-6, 5]$
3.	$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$	$x_1 \in [-2, 2], x_2 \in [-1, 3]$

Wyniki działania skryptu zapisz w tabeli dla dwóch wybranych funkcji.

Funkcja <i>f</i>	Zakres i P _{start}	Krok	P_{min}	$f(P_{min})$	Liczba iteracji	Czas
	X 🛭 [- 10,	$\alpha = 0.01$	(0.2149, 0.0572)	0.0806	433	0.619162
F(x, y) =	10] y 2 [- 10, 10] Pstart = (2, 4)	$\alpha = 0.1$	(0.0369,- 0.1038)	0.0260	46	0.091678
x^2+2xy+3y^2		$\alpha = 1$	(0.3413 0.3240)	0.6525	102	0.126402
	X 🛭 [- 10,	$\alpha = 0.01$	(- 0.70670.3925)	-0.7599	451	0.491829
	10] y ? [-	$\alpha = 0.1$	(-1.0079 0.0059)	-0.9999	50	0.098106
$F(x, y) = x^2 + 2x + y^2$	10, 10] Pstart = (2, 4)	$\alpha = 1$	(-1.0697 0.0532)	-0.9923	7	0.031137

Dla każdej z funkcji przygotuj dwa wykresy:

- a) wykres 3D funkcji w podanym zakresie,
- b) wykres poziomicowy na którym zaznaczony zostanie: punkt startowy (z odpowiednim opisem), punkt minimum (z odpowiednim opisem), ścieżka utworzona przez kolejno

wyznaczane przez algorytm punkty. W tytule wykresu podaj wartość funkcji w punkcie minimum.

/Tu wstaw wykresy/

Zadanie 2Dokonaj modyfikacji skryptu z zadania 1 polegające na:

a) wprowadzeniu modyfikacji długość kroku α

Wyniki działania skryptu zapisz w tabeli. Przyjmij te same funkcje oraz punkty startowe jak w zadaniu 1.

a) modyfikacja kroku (przyjmij dokładność znalezienia P_{min} wynoszącą tol=0.01 oraz krok startowy lpha=1)

Funkcja <i>f</i>	Zakres i P _{start}	Dokładność	P_{min}	$f(P_{min})$	Liczba iteracji	Czas
F(x, y) = x^2+2xy+3y^2	X [] [- 10, 10] y [] [-10, 10] Pstart = (2, 4)	tol = 0.01	(0.3413 0.3240)	0.6525	102	0.165803
F(x, y) = x^2+2x+y^2	X [] [- 10, 10] y [] [-10, 10] Pstart = (2, 4)	tol = 0.01	(-1.0697 0.0532)	-0.9923	7	0.179454

/Tu wstaw wykresy dla modyfikacji a)/

Zadanie 3

Napisz skrypt, który znajdzie minimum dowolnej funkcji dwóch zmiennych za pomocą:

- a) metody Newtona,
- b) metody najszybszego spadku.

Wyniki działania skryptu zapisz w tabeli. Przyjmij te same funkcje oraz punkty startowe jak w zadaniu 1.

a) metoda Newtona

Funkcja f	Zakres i P _{start}	Dokładność	P_{min}	$f(P_{min})$	Liczba iteracji	Czas
F(x, y) = x^2+2xy+3y^2	X 2 [- 10, 10] y 2 [-10, 10] Pstart = (2, 4)	tol = 0.01	(0, - 0.5000)	0.7500	2	0.021444
F(x, y) = x^2+2x+y^2	X [] [- 10, 10] y [] [-10, 10] Pstart = (2, 4)	tol = 0.01	(-1.5000 -0.5000)	-0.5000	2	0.021222

/Tu wstaw wykresy dla metody Newtona/

b) metoda najszybszego spadku

Funkcja <i>f</i>	Zakres i P _{start}	Dokładność	P_{min}	$f(P_{min})$	Liczba iteracji	Czas
F(x, y) = x^2+2xy+3y^2	X [] [- 10, 10] y [] [-10, 10] Pstart = (2, 4)	tol = 0.01	(0, - 0.5000)	0.7500	3	0.046939
F(x, y) = x^2+2x+y^2	X [] [- 10, 10] y [] [-10, 10] Pstart = (2, 4)	tol = 0.01	(-1.5000 -0.5000)	-0.5000	1	0.014491

/Tu wstaw wykresy dla metody najszybszego spadku/

