Module 9: Linear Algebra III Operational math bootcamp

Emma Kroell

University of Toronto

July 26, 2023

Outline

Adjoints, unitaries and orthogonal matrices Spectral theory and matrix decompositions:

- Eigenvalues and eigenvectors
- Algebraic and geometric multiplicity of eigenvalues
- Jordan canonical form
- Singular value decomposition
- LU and QR decompositions

Proposition

Let $A \in M_{m \times n}(\mathbb{F})$ be a matrix and $T_A \colon \mathbb{F}^n \to F^m \colon \mathbf{x} \mapsto A\mathbf{x}$. Then, $T_A^*(\mathbf{x}) = A^*\mathbf{x}$, where $A^* \in M_{n \times m}(\mathbb{F})$ with $(A^*)_{ij} = \overline{A_{ji}}$ for $i = 1, \ldots, n$ and $j = 1, \ldots, m$.

In particular, if $\mathbb{F} = \mathbb{R}$, the adjoint of the matrix is given by its transpose, denoted A^T , and if $\mathbb{F} = \mathbb{C}$, it is given by its conjugate transpose, denoted A^* .

Definition

A matrix $O \in M_n(\mathbb{R})$ is called *orthogonal* if its inverse is given by its transpose, i.e. $O^TO = OO^T = I$.

A matrix $U \in M_n(\mathbb{C})$ is called *unitary* if the inverse is given by the conjugate transpose, i.e. $U^*U = UU^* = I$.

Example

• Let $\varphi \in [0, 2\pi]$. Then

$$\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$$

is an orthogonal matrix. What does it describe geometrically?

• The following is a unitary matrix:

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Definition

Let $A \in M_n(\mathbb{F})$. We call A self-adjoint if $A^* = A$. In the case $\mathbb{F} = \mathbb{R}$, such an A is called *symmetric* and if $\mathbb{F} = \mathbb{C}$, such an A is called *Hermitian*.

Orthogonality and Gram-Schmidt

Definition

Two vectors $\mathbf{x}, \mathbf{y} \in V$ are called *orthogonal* if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, denoted $\mathbf{x} \perp \mathbf{y}$. We call them *orthonormal* if additionally the vectors are normalized, i.e. $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$. A basis $\mathbf{x}_1, \dots, \mathbf{x}_n$ of V is called *orthonormal basis* (ONB), if the vectors are pairwise orthogonal and normalized.

Proposition

Let $\mathbf{x}_1, \dots, \mathbf{x}_k \in V$ be orthonormal. Then the system of vectors is linearly independent.

Proof.

Proposition (Orthogonal Decomposition)

Let $\mathbf{x}, \mathbf{y} \in V$ with $\mathbf{y} \neq 0$. Then, there exist $c \in F$ and $\mathbf{z} \in V$ such that $\mathbf{x} = c\mathbf{y} + \mathbf{z}$ with $\mathbf{y} \perp \mathbf{z}$.

Given a basis we can obtain an ONB from it using the Gram-Schmidt algorithm by reiterating the orthogonal decomposition from above.

Proposition (Gram-Schmidt Algorithm)

Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in V$ be a system of linearly independent vectors. Define $\mathbf{y}_1 = \mathbf{x}_1/\|\mathbf{x}_1\|$. For $i = 2, \dots, n$ define \mathbf{y}_i inductively by

$$\mathbf{y}_i = \frac{\mathbf{x}_i - \sum_{k=1}^{i-1} \langle \mathbf{x}_i, \mathbf{y}_k \rangle \mathbf{y}_k}{\|\mathbf{x}_i - \sum_{k=1}^{i-1} \langle \mathbf{x}_i, \mathbf{y}_k \rangle \mathbf{y}_k\|}.$$

Then the y_1, \ldots, y_n are orthonormal and

$$\mathrm{span}\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}=\mathrm{span}\{\mathbf{y}_1,\ldots,\mathbf{y}_n\}.$$

The proof is omitted but can be found in the book.

Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map

Let $A \in M_{m \times n}$ be a fixed matrix. Then, we can define a linear map $T_A \colon \mathbb{F}^n \to \mathbb{F}^m$ via $T_A(\mathbf{v}) = A\mathbf{v}$, where we recall matrix vector multiplication $(A\mathbf{v})_i = \sum_{k=1}^n A_{ik} v_k$ for $i = 1, \ldots, m$.

Given a bases for U and V, $T: U \rightarrow V$ can be written as a matrix

Let $T \in \mathcal{L}(U,V)$ where U and V are vector spaces. Let $\mathbf{u}_1,\ldots,\mathbf{u}_n$ and $\mathbf{v}_1,\ldots,\mathbf{v}_m$ be bases for U and V respectively. The matrix of T with respect to these bases is the $m \times n$ matrix $\mathcal{M}(T)$ with entries A_{ij} , $i=1,\ldots,m$, $j=1,\ldots,n$ defined by

$$T\mathbf{u}_k = A_{1k}\mathbf{v}_1 + \cdots + A_{mk}\mathbf{v}_m.$$

12 / 41

Eigenvalues

Definition

Given an operator $A \colon V \to V$ and $\alpha \in \mathbb{F}$, λ is called an *eigenvalue* of A if there exists a non-zero vector $\mathbf{v} \in V \setminus \{\mathbf{0}\}$ such that

$$A\mathbf{v}=\lambda\mathbf{v}$$
.

We call such \mathbf{v} an eigenvector of A with eigenvalue λ . We call the set of all eigenvalues of A spectrum of T and denote it by $\sigma(T)$.

Motivation in terms of linear maps: Let $T: V \to V$ be a linear map, where V is a vector space. We would like to describe the action of this linear map in a particularly "nice" way: such that T acts only by scaling, i.e. $T\mathbf{v}_i = \lambda_i \mathbf{v}_i$ where $\lambda_i \in \mathbb{F}$ for $i=1,\ldots,n$.

Finding eigenvalues

- Rewrite $A\mathbf{v} = \lambda \mathbf{v}$ as
- Thus, if λ is an eigenvalue, we can find the corresponding eigenvectors by finding the null space of $A \lambda I$.
- The subspace $\operatorname{null}(A \lambda I)$ is called the *eigenspace*
- To find the eigenvalues of A, one must find the scalars λ such that $\operatorname{null}(A \lambda I)$ contains non-trivial vectors (i.e. not $\mathbf{0}$)
- Recall: We saw that $T \in \mathcal{L}(U, v)$ is injective if and only if null $T = \{\mathbf{0}\}$.
- Thus λ is an eigenvector if and only if $A \lambda I$ is not invertible.
- Recall: $|A| \neq 0$ if and only if A is invertible.
- ullet Thus λ is an eigenvector if and only if

Theorem

The following are equivalent

- **1** $\lambda \in \mathbb{F}$ is an eigenvalue of A,
- **2** $(A \lambda I)\mathbf{v} = 0$ has a non-trivial solution,
- **3** $|A \lambda I| = 0$.

Characteristic polynomial

Definition

If A is an $n \times n$ matrix, $p_A(\lambda) = |A - \lambda I|$ is a polynomial of degree n called the characteristic polynomial of A.

To find the eigenvectors of A, one needs to find the roots of the characteristic polynomial.

Example

Find the eigenvalues of

$$\begin{bmatrix} 4 & -2 \\ 5 & -3 \end{bmatrix}.$$

17 / 41

Multiplicity

Definition

The multiplicity of the root λ in the characteristic polynomial is called the *algebraic* multiplicity of the eigenvalue λ . The dimension of the eigenspace $\operatorname{null}(A - \lambda I)$ is called the *geometric multiplicity* of the eigenvalue λ .

Definition (Similar matrices)

Square matrices A and B are called *similar* if there exists an invertible matrix S such that

$$A = SBS^{-1}$$
.

Similar matrices have the same characteristic polynomials and hence the same eigenvalues (see exercise).

Theorem

Suppose A is a square matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be eigenvectors corresponding to these eigenvalues. Then $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent.

Proof

21 / 41

Corollary

If a $A \in M_n(\mathbb{C})$ has n distinct eigenvalues, then A is diagonalizable. That is there exists an invertible matrix $S \in M_n(\mathbb{C})$ such that $A = SDS^{-1}$, where D is a diagonal matrix with the eigenvalues of A in the diagonal.

Theorem

Let $A:V\to V$ be an operator with n eigenvalues. A is diagonalizable if and only if for each eigenvalue λ , the geometric multiplicity of λ and the algebraic multiplicity of λ are the same.

Example: a diagonalizable matrix

$$\begin{bmatrix} 1 & 2 \\ 8 & 1 \end{bmatrix}$$
 is diagonalizable.

.

Example continued

Example: a matrix that is not diagonalizable

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 is *not* diagonalizable.

Theorem

Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. Then, there exists an orthogonal matrix $O \in M_n(\mathbb{R})$ such that $A = ODO^T$, where D is a diagonal matrix with the eigenvalues of A in the diagonal. Furthermore, all eigenvalues of A are real.

We can also state this for $M_n(\mathbb{C})$:

Let $A \in M_n(\mathbb{C})$ be a Hermitian matrix. Then, there exists a unitary matrix $U \in M_n(\mathbb{C})$ such that $A = UDU^*$, where D is a diagonal matrix with the eigenvalues of A in the diagonal. Furthermore, all eigenvalues of A are real.

Block matrices

Definition

A block matrix is a matrix that can be broken into sections called blocks, which are smaller matrices.

Example

$$\begin{bmatrix} 2 & 1 & 0 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix}$$

Definition

A square matrix is called *block diagonal* if it can be written as a block matrix where the main-diagonal blocks are all square matrices and the off-diagonal blocks are all zero.

Example

The matrix

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix}$$

is block diagonal.

Definition

A vector ${\bf v}$ is called a *generalized eigenvector* of A corresponding to an eigenvalue λ if there exists $k \geq 1$ such that

$$(A-\lambda I)^k \mathbf{v}=0.$$

The set of generalized eigenvectors of an eigenvalue λ (plus $\mathbf{0}$) is called the *generalized* eigenspace of λ .

Proposition

The algebraic multiplicity of an eigenvalue λ is the same as the dimension of the corresponding generalized eigenspace.

Theorem (Jordan decomposition theorem)

For any operator A there exists a basis such that A is block diagonal with blocks that have eigenvalues on the diagonal and 1s on the upper off-diagonal. In other words, A can be written in the form

$$A = \begin{bmatrix} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_k \end{bmatrix}$$

where the blocks J; on the main diagonal are Jordan block of the form

$$\begin{bmatrix} \lambda \end{bmatrix}, \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}, \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}, \text{ etc.}$$

This form is called Jordan canonical form.

Connection to algebraic and geometric multiplicity:

- The algebraic multiplicity of an eigenvalue λ is the number of times λ appears on the diagonal.
- The geometric multiplicity of λ is the number of Jordan blocks associated with λ .

Why is Jordan form useful?

Singular value decomposition

- A^TA is symmetric
- therefore it is orthogonally diagonalizable and has real eigenvalues
- In fact, the eigenvalues are non-negative (exercise)

Definition

Let A be an $m \times n$ matrix. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of $A^T A$. Then the singular values of A are defined as

$$\sigma_1 = \sqrt{\lambda_1}, \dots, \sigma_n = \sqrt{\lambda_n}.$$

Theorem (Singular value decomposition)

If A is an $m \times n$ matrix of rank k, then we can write

$$A = U\Sigma V^T$$

where Σ is an $m \times n$ matrix of the form

$$\begin{bmatrix} D_{k\times k} & 0_{k\times (n-k)} \\ 0_{(m-k)\times k} & 0_{(m-k)\times (n-k)} \end{bmatrix},$$

D is a diagonal matrix with the singular values of A, $\sigma_1, \ldots, \sigma_k$, on the diagonal and U and V are both orthogonal matrices (of size $m \times m$ and $n \times n$, respectively).

Uses of SVD:

Differences between JCF and SVD:

LU-decomposition

Definition

The LU-decomposition of a square matrix A is the factorization of A into a lower triangular matrix L and an upper triangular matrix U as follows:

$$A = LU$$
.

Why is this useful? Consider the linear system $A\mathbf{x} = \mathbf{b}$

Recall: orthonormal basis

Definition

Two vectors $\mathbf{x}, \mathbf{y} \in V$ are called *orthogonal* if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, denoted $\mathbf{x} \perp \mathbf{y}$. We call them *orthonormal* if additionally the vectors are normalized, i.e. $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$. A basis $\mathbf{x}_1, \ldots, \mathbf{x}_n$ of V is called *orthonormal basis* (ONB), if the vectors are pairwise orthogonal and normalized.

Starting from a set of linearly independent vectors, we can construct another set of vectors which are orthonormal and span the same space using the **Gram-Schmidt Algorithm**.

37 / 41

QR-decomposition

Definition (QR-decomposition)

The QR-decomposition of an $m \times n$ matrix A with linearly independent column vectors is the factorization of A as follows:

$$A = QR$$

where Q is an $m \times n$ matrix with orthonormal column vectors and R is an $n \times n$ invertible upper triangular matrix.

One obtains the factorization by applying the Gram-Schmidt algorithm to the columns of A. Let $\mathbf{q}_1, \dots, \mathbf{q}_n$ be the column vectors of A. Let $\mathbf{q}_1, \dots, \mathbf{q}_n$ be the orthonormal vectors obtained by applying Gram Schmidt. Then one can write:

$$\begin{aligned} \mathbf{u}_1 &= \langle \mathbf{u}_1, \mathbf{q}_1 \rangle \mathbf{q}_1 + \langle \mathbf{u}_2, \mathbf{q}_2 \rangle \mathbf{q}_2 + \ldots + \langle \mathbf{u}_n, \mathbf{q}_n \rangle \mathbf{q}_n \\ \mathbf{u}_2 &= \langle \mathbf{u}_2, \mathbf{q}_2 \rangle \mathbf{q}_2 + \ldots + \langle \mathbf{u}_n, \mathbf{q}_n \rangle \mathbf{q}_n \\ &\vdots \\ \mathbf{u}_n &= \langle \mathbf{u}_n, \mathbf{q}_n \rangle \mathbf{q}_n \end{aligned}$$

Thus the orthonormal vectors obtained using Gram-Schmidt form the columns of Q, while R is the terms needed to go between the columns of A and thsoe of Q, i.e.

$$R = \begin{bmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \dots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \\ 0 & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \dots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \end{bmatrix}.$$

Why use *QR*-decomposition?

References

Howard Anton and Chris Rorres. Elementary Linear Algebra. 11th ed. Wiley, 2014

Axler S. Linear Algebra Done Right. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from:

https://link.springer.com/book/10.1007/978-3-319-11080-6

Treil S. Linear Algebra Done Wrong. 2017. Available from: https://www.math.brown.edu/streil/papers/LADW/LADW.html

41 / 41