Lecture

Complex Power Equations and Computations

Agenda

Lecture

R.D. del Mundo Ivan B.N.C. Cruz Christian. A. Yap

Visualizing Phasors

http://www.swarthmore.edu/NatSci/echeeve
 1/Ref/phasors/phasors.html

What is the difference between real and reactive power?

Lecture Outcomes

at the end of the lecture, the student must be able to ...

- Formulate Complex Power Equations in AC Circuits
- Solve Problems using Complex Power Equations

POWER IN SINGLE-PHASE AC CIRCUITS

Instantaneous Power

$$v_{an} = V_{max} \cos(\omega t)$$

 $i_{an} = I_{max} \cos(\omega t - \theta)$

The product of voltage and current at any instant of time is called *instantaneous power*, and is given by,

$$p = v_{an}i_{an} = V_{max}I_{max}cos(\omega t) cos(\omega t - \theta)$$

A positive *p* indicates a transfer of energy from the source to the network, while a negative *p* corresponds to a transfer of energy from the network to the source.

Average Power

Consider the ideal case where the passive network consists only of an inductive element, and apply to the network a sinusoidal voltage of the form,

$$v = V_{\rm m} \sin \omega t$$

The resulting current will have the form,

$$i = I_m \sin(\omega t - \pi/2)$$

Then the power at any instant of time is

$$p = vi = V_m I_m [\sin (\omega t)] [\sin (\omega t - \pi/2)]$$

Since $\sin (\omega t - \pi/2) = -\cos \omega t$ and $\sin x \cos x = \sin 2x$, we have,

When v and i are both positive, the power p is positive and energy is delivered from the source to the inductance. When v and i have opposite sign, the power p is negative and energy is returning from the inductance to the source.

In the ideal case of a pure capacitive network, analogous results can also be obtained.

Apply now a voltage $v = V_m \sin \omega t$ to a network containing only resistance. The resulting current is $i = I_m \sin \omega t$, and the corresponding power is,

$$p = vi = V_m I_m \sin^2 \omega t$$

Since $\sin^2 x = \frac{1}{2} (1 - \cos 2x)$, we have,

$$p = \frac{1}{2} V_{\rm m} I_{\rm m} (1 - \cos 2\omega t)$$

Finally, consider the case of a general passive network. For an applied sinusoidal voltage $v = V_m \sin \omega t$, we have a resulting current $i = I_m \sin (\omega t + \theta)$. The phase angle will be positive or negative depending on the capacitive or inductive character of the network. Then,

$$p = vi = V_m I_m \sin \omega t \sin (\omega t + \theta)$$

Note:

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos (\alpha - \beta) - \cos (\alpha + \beta)]$$

 $\cos (-\alpha) = \cos \alpha$

Therefore,

$$p = \frac{1}{2} V_{m} I_{m} [\cos \theta - \cos (2\omega t + \theta)]$$

Average Power

The instantaneous power p consists of a sinusoidal term - $\frac{1}{2} V_m I_m \cos{(2\omega t + \theta)}$ which has an average value of zero and a constant term $\frac{1}{2} V_m I_m \cos{\theta}$.

Then, the average value of p is,

$$\mathbf{P} = \frac{1}{2} V_{\rm m} I_{\rm m} \cos \theta = VI \cos \theta$$

where $V = V_m/\sqrt{2}$ and $I = I_m/\sqrt{2}$ are the effective values of the phasors V and I respectively.

The term $\cos \theta$ is called the <u>Power Factor</u> (pf). The angle θ is the angle between V and I, and its value is between $\pm 90^{\circ}$.

Review

 For a general passive network, the power factor depends <u>only on</u> the resistance value of that network. True or False?

Transitioning from Time Domain to Frequency

Phasors makes use of the Power Triangle
 Concept to simplify power calculations

COMPLEX POWER AND THE POWER TRIANGLE

Complex Power = Voltage x Current*

- Delivering bulk power (large amount of energy in short time) will require large current.
- Delivering the same bulk power in higher voltage will result in lower current.

Complex Power

The <u>Complex Power (S)</u> can be obtained from the product VI^* . It's real part equals the average power P and it's imaginary part is equal to the reactive power Q.

Consider,
$$V = |V| \angle \alpha$$
 and $I = |I| \angle \beta$

$$S = VI^* = |V| e^{j\alpha} |I| e^{-j\beta}$$

$$= |V| |I| e^{j(\alpha - \beta)}$$

$$= |V| |I| \angle (\alpha - \beta)$$

$$= |V| |I| cos(\alpha - \beta) + j|V| |I| sin(\alpha - \beta)$$

$$= |V| |I| cos\theta + j|V| |I| sin \theta$$

$$= P + jQ$$

Complex Power

The equations associated with the average, apparent and reactive power can be developed geometrically on a right triangle called the *power triangle*.

```
Apparent Power (S) = voltage x current
= VI
```

Average Power (P) = voltage x in-phase component of current

= VI cos θ

Reactive Power Q = voltage x quadrature comp. of current = $VI \sin \theta$

(note: Average Power is also called Real Power or Active Power)

Power Triangle

Power Factor

$$PF = \frac{\text{Re } al \ Power \ (P)}{A \text{pparent } Power \ (S)}$$
$$= \frac{VI \cos \theta}{VI} = \cos \theta$$

 $Q = VI \sin \theta$ leading

Inductive Circuit

Capacitive Circuit

Power Factor

Power Factor

Measure of Efficient Utilization of Power

$$PF = \frac{Real\ Power(P)}{Apparent\ Power(S)} = \frac{VI\cos\theta}{VI}$$

Example

Given a circuit with an impedance $\mathbf{Z} = 3 + \mathrm{j}4$ and an applied phasor voltage $\mathbf{V} = 100 \angle 30^{\circ}$, draw the power triangle.

Solution:

$$I = V/Z = (100 \angle 30^{\circ}) / (5 \angle 53.1^{\circ}) = 20 \angle -23.1^{\circ}$$

 $|S| = VI = 100(20) = 2000 \text{ VA}$
 $P = VI \cos \theta = 2000 \cos 53.1^{\circ} = 1200 \text{ W}$
 $Q = VI \sin \theta = 2000 \sin 53.1^{\circ} = 1600 \text{ VARs lagging}$
 $pf = \cos \theta = \cos 53.1^{\circ} = 0.6 \text{ lagging}$

Example

Alternative Solution:

$$S = VI* = (100 \angle 30^{\circ})(20 \angle 23.1^{\circ})$$

= $2000 \angle 53.1^{\circ}$
= $1200 + j1600$

We get,

P = 1200 W

Q = 1600 VArs lagging

S = 2000 VA and

$$pf = \cos 53.1^{\circ} = 0.6 lagging$$

P = 1200 W

Concept Test! Again? Yes! Again!

- Work by pairs or individually
- Box your final answer

A small manufacturing plant is located 2 km down a transmission line, which has a series reactance of $0.5 \Omega/\text{km}$. The line resistance is negligible. The line voltage at the plant is $480/0^{\circ}$ V (rms), and the plant consumes 120 kW at 0.85 power factor lagging. Determine the voltage and power factor at the sending end of the transmission line by using (a) a complex power approach and (b) a circuit analysis approach. any approach.

- Sending end voltage = 682.4 < 21.49° V
- Sending end power factor = 0.6 lagging

Summary

- Average Power
- Power Triangle
- Power Factor

