Classificazione di Azioni Cestistiche mediante Tecniche di Deep Learning

Candidato: Francia Simone

Relatore: Prof. Simone Calderara Correlatore: Dott. Fabio Lanzi

12 Aprile 2018, Modena

Università di Modena e Reggio Emilia Corso di Laurea Magistrale in Ingegneria Informatica Facoltà di Ingegneria "Enzo Ferrari" Anno Accademico 2016-2017

Importanza degli Indici Prestazionali nello Sport

- L'estrazione di informazioni e di indici prestazionali in ambito sportivo sta sempre più acquisendo importanza.
- Al crescere dei profitti ottenuti dallo sport, allo stesso modo le squadre sportive investono sempre maggiormente nella raccolta di statistiche.
- Tali statistiche possono essere utilizzate sia per il miglioramento di prestazioni della propria squadra, sia per raccogliere informazioni delle squadre avversarie.

Obiettivo e Fasi del Lavoro

Obiettivo: Classificare azioni personali in video di partite di basket

Fase 1: Creazione di Dataset di Azioni Cestistiche

- Dataset dei Giunti "jointsDataset" → parti del corpo
- \bullet Dataset delle Clip "clipsDataset" \to finestra del giocatore

Fase 2: Applicazioni di Metodi di Deep Learning per la Classificazione ed Esperimenti

- Rete Completamente Connessa "jointFC" di tipo deep NN
- Rete "Convolutional 3D" o "C3D" di tipo deep NN
- Fusione jointFC e C3D nel modello "unionFC3D"

1° step: CPM con PAFs per estrazione di Posa di Giunti

Vari step di processing per creazione dei Dataset

- Convolutional Pose Machines utilizza metodi di Deep Learning
- Iterative Heatmaps Branch → Confidence Maps
- Iterative PAFs Branch → Campi Vettoriali
- Post-Processing(Heatmaps + PAFs) \rightarrow Posa

2° step: Tracking di Pose tramite Nearest Neighbor

 Obiettivo: Fornire lo stesso identificatore di posa per la stessa persona tra frame contigui.

• Formula Nearest Neighbor Tracker applicato alle pose tra frame contigui:

$$p_k(f+1) = \operatorname{argmin}_{p_j} \left\{ \sum_{g}^{joints} \sqrt[2]{(g_{p_k}(f) - g_{p_j}(f+1))^2} \right\}$$
 (1)

3° step: Segmentazione Binaria Campo Cestistico mediante Autoencoder e Filtraggio delle Pose

• Individuazione delle pose di interesse: Giocatori

Autoencoder per la Segmentazione Binaria del Campo

Filtraggio delle pose tramite giunti "piedi"

4° step: Creazione jointsDataset e clipsDataset

Dataset Giunti

- 14 coordinate cartesiane (x,y) per 16 frame
- coordinate normalizzate in una finestra (176,128)

Dataset Clip

- clip di 16 frame in RGB
- bounded in (176,128)
- top-left,bottom-right mediante giunti

Sommario e Caratteristiche Dataset

Classi di Azioni										
$1 \to Camminata$										
$2 o Nessuna \; Azione$										
$3 \to Corsa$										
4 o Difesa										
$5 \to Palleggio$										
6 o Palla in Mano										
$7 \to Stoppata$										
8 → Blocco										
9 o Stoppata										
$10 \to Tiro$										
6 o Palla in Mano $7 o Stoppata$ $8 o Blocco$ $9 o Stoppata$										

- Video Partite in Full-HD (1920x1080 pixels)
- 15 partite dalla durata di 1.5 ore ciascuna
- Eliminazione di inquadrature e primi piani con Tecniche di VA

Modello jointFC per Classificazione di Azioni

Architettura jointFC → progettata ad-hoc per il task

 Dense1
 Dense2
 Dense3
 DO
 Dense4
 DO
 Dense5
 Softmax

 512
 512
 0.3
 256
 0.2
 128
 Softmax

- Pose di giunti come input
- Livelli completamente connessi (o densi)
- 2 livelli di Dropout
- Funzione di Softmax in output

Risultati Modello jointFC

	Stoppata	Passaggio	Corsa	Palleggio	Tiro	Palla in Mano	Difesa	Blocco	Nessuna Azione	Camminata
Stoppata	0.54	0.04	0.10	0.05	0.08	0.06	0.06	0.00	0.01	0.06
Passaggio	0.06	0.15	0.12	0.19	0.05	0.29	0.03	0.01	0.01	0.10
Corsa	0.01	0.01	0.69	0.05	0.00	0.01	0.03	0.00	0.01	0.18
Palleggio	0.01	0.00	0.21	0.46	0.00	0.05	0.07	0.01	0.02	0.15
Tiro	0.11	0.07	0.09	0.04	0.48	0.15	0.02	0.00	0.00	0.04
Palla in Mano	0.05	0.03	0.05	0.06	0.04	0.56	0.07	0.01	0.04	0.08
Difesa	0.01	0.01	0.05	0.04	0.00	0.03	0.59	0.01	0.06	0.18
Blocco	0.05	0.01	0.05	0.14	0.01	0.12	0.10	0.18	0.14	0.18
Nessuna Azione	0.01	0.00	0.02	0.01	0.00	0.03	0.10	0.00	0.43	0.40
Camminata	0.00	0.00	0.11	0.02	0.00	0.02	0.06	0.00	0.08	0.70
Media	0.58		·				·			

Modello C3D per Classificazione di Azioni

Architettura Convolutional 3D → Letteratura DNN

Conv1a	Conv2a	ol2	Conv3a	Conv3b	013	Conv4a	Conv4b	ol4	Conv5a	Conv5b	ols	fc6	fc7	max
Conv1a 64	1,28	Po	256	256	Po	512	512	Po	512	512	Po	4096	4096	soft

- Clips come input
- Kernel tridimensionali \rightarrow features spazio temporali
- Livelli convolutivi + livelli completamente connessi
- Funzione di Softmax in output

Risultati Modello C3D

	Stoppata	Passaggio	Corsa	Palleggio	Tiro	Palla in Mano	Difesa	Blocco	Nessuna Azione	Camminata
Stoppata	0.44	0.07	0.07	0.01	0.05	0.05	0.06	0.00	0.01	0.25
Passaggio	0.01	0.42	0.08	0.15	0.01	0.18	0.01	0.02	0.00	0.11
Corsa	0.00	0.01	0.87	0.02	0.00	0.01	0.01	0.00	0.00	0.09
Palleggio	0.00	0.02	0.04	0.89	0.00	0.02	0.01	0.00	0.00	0.02
Tiro	0.07	0.09	0.07	0.02	0.52	0.11	0.00	0.00	0.02	0.11
Palla in Mano	0.01	0.08	0.06	0.11	0.02	0.64	0.01	0.02	0.02	0.04
Difesa	0.00	0.01	0.04	0.02	0.00	0.03	0.53	0.02	0.11	0.24
Blocco	0.00	0.01	0.03	0.02	0.00	0.07	0.06	0.33	0.08	0.40
Nessuna Azione	0.00	0.01	0.00	0.00	0.00	0.01	0.04	0.01	0.66	0.28
Camminata	0.00	0.01	0.07	0.00	0.00	0.00	0.02	0.01	0.07	0.82
Media	0.73									

Modello unionFC3D

- Clip e posa di giunti in input.
- Classificazione mediante due componenti differenti: jointFC + C3D

Risultati Modello unionFC3D

	Stoppata	Passaggio	Corsa	Palleggio	Tiro	Palla in Mano	Difesa	Blocco	Nessuna Azione	Camminata
Stoppata	0.44	0.05	0.07	0.03	0.05	0.05	0.08	0.00	0.01	0.22
Passaggio	0.00	0.36	0.07	0.18	0.01	0.23	0.01	0.01	0.00	0.15
Corsa	0.00	0.00	0.86	0.02	0.00	0.00	0.01	0.00	0.00	0.10
Palleggio	0.00	0.01	0.04	0.90	0.00	0.02	0.01	0.00	0.00	0.02
Tiro	0.11	0.07	0.11	0.02	0.48	0.11	0.00	0.00	0.02	0.09
Palla in Mano	0.01	0.06	0.07	0.12	0.01	0.64	0.02	0.01	0.02	0.04
Difesa	0.00	0.01	0.05	0.01	0.00	0.02	0.59	0.01	0.09	0.22
Blocco	0.01	0.00	0.03	0.03	0.00	0.06	0.08	0.31	0.09	0.39
Nessuna Azione	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.01	0.64	0.30
Camminata	0.00	0.00	0.07	0.00	0.00	0.00	0.02	0.01	0.06	0.83
Media	0.74									

Conclusioni e Sviluppi Futuri

Conclusioni

- 2 Dataset di Azioni Cestistiche di diverse natura
- Problema di sbilanciamento di dataset, con bassa accuracy con scarso numero di esempi.
- Confusione tra azioni simili tra loro (es. Palla in mano con Passaggio)
- Buone prestazioni di accuracy totale (74%), confrontata con lo stato dell'Arte per l'Action Recognition (85%)

Sviluppi Futuri

- Bilanciamento del Training delle Reti mediante Focal Loss
- Bilanciamento dei Dataset
 - 1. Modelli generativi per la creazione di nuovi esempi (GANs, variational autoencoders, ...)
 - 2. Nuove annotazioni manuali di azioni

Video Demo

Cliccare per il video

Grazie per l'attenzione