Functional Dependencies Tutorial

SWEN304/SWEN439

Lecturer: Dr Hui Ma

Engineering and Computer Science

- Inferring FDs satisfied by Faculty relation
- Eliminating redundant functional dependencies
 - Closure of a set of attributes
 - Finding a minimal cover
- Relation Schema keys as a consequence of functional dependencies
 - A Key Finding Algorithm
 - Inferring additional keys

Universal Relation "Faculty"

StId	StName	NoPts	CourId	CoName	Grd	LecId	LeName
007	James	80	M114	Math	A +	777	Mark
131	Susan	18	C102	Java	B-	101	Ewan
007	James	80	C102	Java	Α	101	Ewan
555	Susan	18	M114	Math	B+	999	Vladimir
007	James	80	C103	Algorithm	A +	99	Peter
131	Susan	18	M214	Math	ω	333	Peter
555	Susan	18	C201	C++	ω	222	Robert
007	James	80	C201	C++	A+	222	Robert
010	John	0	C101	Inet	ω	820	Ray

FDs of the Faculty Relation Schema

 Suppose the rules of behavior in UoD dictate the following functional dependencies are valid

```
F = \{StId \rightarrow StName + NoPts, \ CourId \rightarrow CoName, \ LeId \rightarrow LeName, \ LeId \rightarrow CourId, \ StId + CourId \rightarrow Grade, \ StId + CourId \rightarrow LeId \}
```

From the relation, one can infer that the following FDs are not satisfied

```
StName \rightarrow StId, CourId \rightarrow LeId, LeId \rightarrow StId, \not\in F StId \rightarrow Grade,... \not\in F
```


Redundant Functional Dependencies

$$U = \{A, B, C, D\}$$

- $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, AB \rightarrow D, A \rightarrow C, A \rightarrow D, BC \rightarrow D\}$
- $F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$
- Use inference rules to show that F can be replaced by F₁
 - This way works fine for small sets of FDs (and F₁ is known)
 - The other way would be to compute closures (and F_1 is known)
 - The best way is to look directly for the minimal cover of F

Inference Rules

- Given U, F, and X, Y, Z, $W \subseteq U$
- 1. (Reflexivity) $Y \subseteq X \models X \rightarrow Y$ (trivial FD)
- 2. (Augmentation) $X \rightarrow Y \land W \subseteq Z \models XZ \rightarrow YW$ (partial FD)
- 3. (Transitivity) $X \rightarrow Y \land Y \rightarrow Z \models X \rightarrow Z$ (transitive FD)
- 4. (Decomposition) $X \rightarrow YZ \models X \rightarrow Y \land X \rightarrow Z$
- 5. (Union) $X \rightarrow Y \land X \rightarrow Z \models X \rightarrow YZ$
- 6. (Pseudo transitivity) $X \rightarrow Y \land WY \rightarrow Z \models WX \rightarrow Z$ (if $W = \emptyset$, pseudo transitivity turns into transitivity)
- Inference rules 1, 2 and 3 are known as Armstrong's inference rules

Computing the Closure of F

- $F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$
- F_1 + = { $\varnothing \rightarrow \varnothing$, $A \rightarrow \varnothing$, $A \rightarrow A$, $A \rightarrow B$, $A \rightarrow C$, $A \rightarrow D$, $B \rightarrow \varnothing$, $B \rightarrow B$, $B \rightarrow C$, $B \rightarrow D$, $C \rightarrow \varnothing$, $C \rightarrow C$, $C \rightarrow D$, $D \rightarrow \varnothing$, $D \rightarrow D$, $AB \rightarrow \varnothing$, $AB \rightarrow A$, $AB \rightarrow B$, $AB \rightarrow C$, AB $\rightarrow D$, $AC \rightarrow \emptyset$, $AC \rightarrow A$, $AC \rightarrow B$, $AC \rightarrow C$, $AC \rightarrow D$, AD $\rightarrow \varnothing$, $AD \rightarrow A$, $AD \rightarrow B$, $AD \rightarrow C$, $AD \rightarrow D$, $BC \rightarrow \varnothing$, BC \rightarrow B, BC \rightarrow C, BC \rightarrow D, BD \rightarrow Ø, BD \rightarrow D, BD \rightarrow C, BD $\rightarrow D$, $CD \rightarrow \emptyset$, $CD \rightarrow C$, $CD \rightarrow D$, $ABC \rightarrow \emptyset$, $ABC \rightarrow A$, $ABC \rightarrow B$, $ABC \rightarrow C$, $ABC \rightarrow C$, $ABC \rightarrow D$, $ABD \rightarrow \emptyset$, $ABD \rightarrow A$, $ABD \rightarrow B$, $ABD \rightarrow C$, $ABC \rightarrow D$, $BCD \rightarrow \emptyset$, $BCD \rightarrow B$, $BCD \rightarrow C$, $BCD \rightarrow D$, $ABCD \rightarrow \emptyset$, $ABCD \rightarrow A$, $ABCD \rightarrow B$, $ABCD \rightarrow C$, $ABCD \rightarrow D$ }

Closure of a Set of Attributes

- Given U, F and $X \subseteq U$
- Closure of X with regard to F, defined as

$$X_F^+ = \{A \in U \mid X \rightarrow A \in F^+\}$$

is used in finding the minimal cover of F

Attribute Closure Algorithm

```
// according to reflexivity
X^{+:}=X;
oldX^+ = \emptyset
while (oldX^+ \subset X^+) {
        oldX^+ = X^+
       for (each FD Y \rightarrow Z \in F) {
               if (Y \subset X^+) {
              X^+ = X^+ \cup Z; //according to
                 // augmentation & transitivity
```


Exercise 1: Computing the Closure of X (5 minutes)

- $F = \{D \rightarrow E, BC \rightarrow D, A \rightarrow C, A \rightarrow D\}$, compute closure of
 - A + =
 - B + =
 - · C+ =
 - $D^{+} =$
 - $E^+ =$
 - AB, AC, AD, AE, BC, BD, BE, CD, CE, DE, ABC, ABD....

Exercise 1: Computing the Closure of X

•
$$F = \{D \rightarrow E, BC \rightarrow D, A \rightarrow C, A \rightarrow D\}$$

•
$$A + = ACDE$$

•
$$B^+ = B$$

•
$$C^{+} = C$$

•
$$D^{+} = DE$$

•
$$E^+ = E$$

•
$$(BC)^+ = BCDE$$

•
$$(AB)^+ = ABCDE$$

 Note: we need to compute closures for all subsets of attributes of relation R to determine keys for R. Here there are 31 subsets.

Minimal Cover of a Set of FDs F

- A set of FDs G is a minimal cover of a set F if:
 - each FD in G has a single attribute on its right hand side
 - 2. G is left reduced (no one FD in G has any superfluous attribute on its left hand side, (a left reduced FD = total FD, a not reduced FD = partial FD))

$$(\forall X \rightarrow A \in G)(\forall B \in X)((X-B) \rightarrow A \notin G^+)$$

3. G is non redundant (doesn't contain any trivial or pseudo transitive FD)

$$(\forall X \rightarrow A \in G)((G - \{X \rightarrow A\})^+ \subset G^+),$$

4. $F^+ = G^+$

Finding a Minimal Cover Algorithm

- 1. Set G := F
- 2. Replace each FD $X \rightarrow \{A_1, A_2, ..., A_n\}$ in G with the following n FDs $X \rightarrow A_1$, $X \rightarrow A_2$,..., $X \rightarrow A_n$
- 3. Do left reduction

for each FD $X \rightarrow A$ in G do

for each B in X do

if
$$A \in (X - B)^+_G$$
 then

Replace $X \rightarrow A$ by $(X - B) \rightarrow A$

$$G := (G - \{X \rightarrow A\}) \cup \{(X - B) \rightarrow A\}$$

4. Eliminate redundant FDs

for each FD $X \rightarrow A$ in G do

Remove
$$X \rightarrow A$$

if
$$A \in (X)^+_{G - \{X \to A\}}$$
 then $G := G - \{X \to A\}$

Computing a Minimal Cover Example 1

- $U = \{A, B, C, D, E\}$
- $F = \{A \rightarrow B, AC \rightarrow B, A \rightarrow A, AD \rightarrow CE, B \rightarrow DE\}$
- After step 2 of the algorithm

$$G = \{A \rightarrow B, AC \rightarrow B, A \rightarrow A, AD \rightarrow C, AD \rightarrow E, B \rightarrow D, B \rightarrow E\}$$

After step 3 of the algorithm

$$G = \{A \rightarrow B, A \rightarrow A, A \rightarrow C, A \rightarrow E, B \rightarrow D, B \rightarrow E\}$$

After step 4 of the algorithm

$$G = \{A \rightarrow B, A \rightarrow C, B \rightarrow D, B \rightarrow E\}$$

Exercise 2: Computing a Minimal Cover

Given:

$$U = \{A, B, C, D, E\}$$

$$F = \{A \rightarrow B, A \rightarrow C, B \rightarrow C, C \rightarrow B\}$$

- Compute the two possible minimal covers of F
- 1) In the fourth step of the minimal cover algorithm:
 - first consider whether FD $A \rightarrow B$ is redundant
 - then consider whether FD $A \rightarrow C$ is redundant
- 2) In the second attempt
 - consider FD $A \rightarrow C$ first, and
 - then FD $A \rightarrow B$

Exercise 2: Computing a Minimal Cover (10 minutes)

$$U = \{A, B, C, D, E\}$$

$$F = \{A \rightarrow B, A \rightarrow C, B \rightarrow C, C \rightarrow B\}$$

- 1) first consider whether FD $A \rightarrow B$ is redundant
 - then consider whether FD $A \rightarrow C$ is redundant

- 2) consider FD $A \rightarrow C$ first, and
 - then FD $A \rightarrow B$

A Key Finding Algorithm

```
(*X is initialized as a super key*)
X := R
for each A in X do
  if R \subset (X - A)^+ then
  X := X - A
```

Example

- $R = \{A, B, C\}, F = \{A \rightarrow B, B \rightarrow C\}$
- X = ABC
- $(X A)^+ = BC$
- (* The superkey is still $X = ABC^*$)
- $(X B)^+_F = ABC$ (* The superkey is now $X = AC^*$)
- $(X C)^+ = ABC$ (* The superkey is now X = A*)
- K(R) = A

Exercise 3: Finding Keys (10 minutes)

1.
$$R = \{A, B, C\}, F = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

2.
$$R = \{D, E, F\}, F = \{D \rightarrow E, E \rightarrow D, D \rightarrow F\}$$

3.
$$R = \{G, H, I\}, F = \{G \rightarrow H, G \rightarrow I\}$$

4.
$$R = \{C, E, J\}, F = \{CE \rightarrow J\}$$

5.
$$R = \{C, E, G\}, F = \{\}$$

6.
$$R = \{I, L\}, F = \{I \rightarrow L\}$$

Inferring Additional Keys

- Let $X = \{A_1, ..., A_j, ..., A_k\}$ be a relation schema (R, F) key, where $X \subseteq R$,
 - If there is $W \rightarrow Z \in F(Z \not\subseteq W, Z \subseteq X \text{ and } W \not\subseteq X)$
 - Then $Y = (X Z) \cup W$ is also a relation schema (R, F) key,

Example:

$$R = \{A, B, C, D\}, F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow B\}$$

 $X = AB$ is a key of (R, F)

- since $D \rightarrow B \in F$ Y = AD is another key of (R, F)
- since $C \rightarrow D \in F$ Z = AC is a key of (R, F), as well

Exercise 4: Finding Keys

```
R = \{StdId, StName, NoPts, CourId, CoName, LecId, LeName, Grade \}
F = \{StdId \rightarrow StName + NoPts, CourId \rightarrow CoName, LecId \rightarrow LeName, LecId \rightarrow LeName, LecId \rightarrow CourId, StdId + CourId \rightarrow Grade, StdId + CourId \rightarrow LecId \}
```

- $K_1(Faculty) = StdId + CourId$
- $K_2(Faculty) = ?$

Functional Dependencies

• Show that $AB \rightarrow E$ can be inferred form $F = \{D \rightarrow E, BC \rightarrow D, A \rightarrow C, A \rightarrow D\}$ using Armstrong's inference rules.

Derivation tree

