Практический тест

16. Площадь Ленина

Васильев К. И.

Определите диаметр большого *мухомора* и оцените площадь его надземной части. Цветная версия фотографии во время теста проецируется на экран (для красоты).

17. Старая деревня

Волобуева М. И.

Найдите широту места наблюдения и среднее солнечное время, в которое производилась съёмка аналеммы. Как вы думаете, что это за город? :)

Указание. Горизонт на изображении отмечен чёрной линией.

18. Звёздная

Утешев И.А.

В таблице приведены данные фотометрии для некоторых близких (< 100 пк) звёзд различных классов в системе Джонсона—Моргана (фильтры BVHK) и в полосе G аппарата GAIA.

- 1. Рассчитайте средние показатели цвета $(B-V)_0$, $(G-V)_0$, $(H-V)_0$, $(K-V)_0$ для каждого спектрального класса и оцените погрешности. Результат вычислений представьте в виде таблицы.
- 2. Предположите, как выглядит функция пропускания в полосе G относительно фильтров BVHK.

3. Определите спектральные классы звёзд A-E. Результат представьте в виде таблицы.

*	B	V	G	H	K
Α	10.58	10.05	9.352	6.54	6.38
В	0.03	0.03		-0.03	-0.13
C	7.22	6.78	6.671	5.79	5.76
D	14.82	13.10	11.674	8.16	7.91
E	6.67	6.00	5.832	4.53	4.46

19. Беговая

Утешев И.А.

Соотношение Фабер – Джексона — эмпирическое степенное соотношение, связывающее светимость L и центральную дисперсию скоростей звёзд σ эллиптических галактик:

$$L = k\sigma^{\gamma}$$
. (FJ)

- 1. В таблице приведены значения абсолютных звёздных величин M_B недалёких эллиптических галактик и центральных дисперсий скоростей звёзд σ . Оцените параметры k и γ и их ошибки.
- 2. Придумайте обоснование соотношения (FJ) и найдите теоретическое значение показателя степени γ^* . Совпадают ли γ и γ^* ?

20. Бухарестская

Васильев К.И.

Следующая станция «Международная».

Перед вами спектр галактики DDO 53, полученный в обсерватории Китт-Пик в Аризоне. Оцените межзвёздное поглощение в направлении галактики методом бальмеровского декремента, считая, что величина поглощения $\propto \lambda^{-1.4}$.

Суть метода. Отношение интенсивностей бальмеровских линий при температуре $T \sim 10^4 \ {
m K} \ {
m ectb}$

$$H_{\alpha}: H_{\beta}: H_{\gamma} = 2.8: 1.0: 0.47.$$

Таблица к задаче 18. Звёздная

<u>Nº</u>	Звезда	В	V	G	Н	K	Класс
1	γ Aqr	3.79	3.83	3.750	4.05	4.02	A0V
2	κ And	4.06	4.14	4.053	4.31	4.34	A0V
3	ι PsA	4.29	4.34	4.259	4.60	4.42	A0V
4	κ Lup	4.60	4.60	4.532	4.35	4.48	A0V
5	θ Lep	4.71	4.66	4.603	4.59	4.52	A0V
6	ιCyg	3.90	3.76	3.659	3.69	3.60	A5V
7	HD 210715	5.52	5.38	5.334	5.02	4.96	A5V
8	HD 45618	6.81	6.63	6.572	6.20	6.12	A5V
9	HD 14619	6.84	6.64	6.600	6.14	6.15	A5V
10	HD 6416	6.72	6.52	6.473	6.03	5.98	A5Vn
11	HD 204153	5.92	5.60	5.484	4.86	4.74	F0V
12	m Per	6.47	6.08	5.972	5.13	5.04	F0V
13	HD 212810	7.69	7.28	7.176	6.29	6.25	F0V
14	HD 7458	7.72	7.32	7.206	6.35	6.28	F0V
15	ϵ Cep	4.47	4.19	4.063	3.67	3.54	F0V(Sr)
16	5 And	6.14	5.70	5.550	4.67	4.65	F5V
17	HD 16176	6.38	5.90	5.776	4.73	4.69	F5V
18	HD 199373	8.19	7.73	7.608	6.61	6.57	F5V
19	$AG+51\ 117$	9.02	8.53	8.406	7.26	7.20	F5V
20	BD+41 344	10.60	9.68	9.476	7.82	7.69	F5V
21	HD 199168	8.84	8.29	8.163	7.05	7.02	G0V
22	$BD+43\ 375$	10.02	9.29	9.177	7.73	7.68	G0V
23	TYC 3583-1038-1	9.93	9.36	9.223	7.85	7.82	G0V
24	HD 239919	9.97	9.39	9.269	8.09	8.02	G0V
_25	TYC 3987-1327-1	11.57	11.18	10.911	9.60	9.56	G0V
26	HD 10086	7.30	6.61	6.427	5.02	4.98	G5V
27	$BD+44\ 3682$	9.86	9.17	8.968	7.47	7.40	G5V
28	$BD+53\ 2840$	10.18	9.46	9.260	7.70	7.63	G5V
29	HD 9801	10.70	9.91	9.801	8.35	8.20	G5V
_30	TYC 3986-2447-1	11.34	10.36	10.349	8.68	8.62	G5V
31	HD 221354	7.57	6.74	6.521	4.98	4.80	K0V
32	HD 222366	8.38	7.52	7.285	5.53	5.47	K0V
33	HD 200466B	9.34	8.57	8.373	6.59	6.56	K0V
34	TYC 3987-878-1	11.85	11.08	10.704	8.83	8.77	K0V
_35	TYC 3982-3824-1	12.24	11.44	10.983	9.03	8.95	K0V

$N_{\overline{0}}$	Звезда	B	V	G	H	K	Класс
36	HD 239999	10.38	9.26	8.816	6.56	6.44	K5V
37	G 241-8	10.70	9.52	9.083	6.77	6.67	K5V
38	$BD + 58 \ 317$	10.80	9.69	9.320	7.19	7.09	K5V
39	HIP 11273	12.47	11.16	10.695	8.26	8.11	K5V
40	$\mathrm{BD}{+50~860}\mathrm{B}$	11.85	10.50	9.947	7.55	7.41	K5Ve
41	G 218-5	11.72	10.51	9.807	7.06	6.92	M0.0Ve
42	G 217-45	12.52	11.58	10.925	8.22	8.01	M0.0Ve
43	BD+47 612	10.85	9.35	8.632	5.77	5.55	M0V
44	G 134-1	11.63	10.24	9.551	6.80	6.60	M0V
45	G 172-28	12.59	11.08	10.415	7.70	7.45	M0V
46	G 227-22	14.74	13.37	11.773	7.96	7.65	M5.0V
47	LHS 4057	17.97	16.09	14.305	10.26	9.93	M5.0V
48	Ross 188	15.30	13.48	12.148	8.63	8.36	M5V
49	G 222-2	16.00	15.22	13.552	9.67	9.36	M5V
50	LHS 1541	17.22	15.34	13.637	9.86	9.60	M5V

Таблица к задаче 19. Беговая

$N_{\overline{0}}$	M_B	$\sigma \frac{\kappa_{\rm M}}{c}$	<u>№</u>	M_B	$\sigma \frac{\mathrm{KM}}{\mathrm{c}}$	 $N_{\overline{0}}$	M_B	$\sigma \frac{\text{KM}}{\text{c}}$
1	-15.1	30	15	-19.0	169	29	-20.8	224
2	-15.4	25	16	-19.1	153	30	-20.9	215
3	-16.7	61	17	-19.5	157	31	-20.9	207
4	-16.8	67	18	-19.6	152	32	-21.2	201
5	-17.0	93	19	-19.6	156	33	-21.5	247
6	-17.3	109	20	-19.8	184	34	-21.8	250
7	-17.6	99	21	-19.9	172	35	-21.8	216
8	-17.8	114	22	-20.1	172	36	-21.9	235
9	-18.0	126	23	-20.1	176	37	-22.0	237
10	-18.2	111	24	-20.2	196	38	-22.1	245
11	-18.3	130	25	-20.2	189	39	-22.1	245
12	-18.5	127	26	-20.3	200	40	-22.1	225
13	-18.7	160	27	-20.4	211	41	-22.2	257
14	-19.0	161	28	-20.5	210	42	-22.2	265

