Tema 2: Sucesos Aleatorios.

- 2.1. Experimentos y sucesos.
- 2.2. Definición de Probabilidad.
- 2.3. Probabilidad condicional.
- 2.4. Independencia de sucesos.
- 2.5. Probabilidad Total y teorema de Bayes

Experimentos y Sucesos (I).

- •Existen experimentos que realizados en las mismas condiciones proporcionan siempre los mismos resultados (Fenómenos deterministas).
- •Sin embargo, hay otros experimentos en los que no se puede predecir el resultado (**Fenómenos aleatorios**).
- •La teoría de la probabilidad estudia los fenómenos aleatorios.
 - •Se inicia en el siglo XVII (Pascal, Fermat) relacionada con el estudio de los juegos de azar.
 - •Posteriormente fue desarrollada por Bernoulli, De Moivre, Laplace, Bayes, etc. hasta la definición axiomática de Kolmogorov

ESTADÍSTICA

Experimentos y Sucesos (II).

Definición: Llamaremos **espacio muestral** Ω al conjunto de todos los posibles resultados de un experimento aleatorio.

- •Si el experimento aleatorio consiste en lanzar un dado, el espacio muestral sería: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- •Si el experimento aleatorio consiste en lanzar una moneda, el espacio muestral sería: $\Omega = \{ \text{cara}, \text{cruz} \}$

Definición: Llamaremos **suceso** a cualquier subconjunto $A \subseteq \Omega$ incluido el Φ y todo el espacio muestral Ω

- •Si el experimento aleatorio consiste en lanzar un dado: $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - •Un suceso $A = \{\text{sale un cara par}\} = \{2, 4, 6\}$
 - •*Un suceso* $B = \{3\}$

ESTADÍSTICA

ESTADÍSTICA

<u>₩ 4 ▶ ₩</u>

Experimentos y Sucesos (III).

Los espacios muestrales pueden ser:

- •Discretos
 - •Finitos
 - •Infinito numerables (se puede establecer una relación de orden entre los elementos del conjunto)
- •Continuos
 - •Infinito no numerables (no se puede establecer una relación de orden entre los elementos del conjunto)

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

 $\Omega = \{cara, cruz\}$

 $\Omega = \{n \text{ imeros naturales}\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9,\}$

 Ω ={altura de las personas} = { 1.50, 1.78, 0.55, 0.5559,

0.55599, 0.555999, ...}

2

Experimentos y Sucesos (IV).

Definición: Diremos que un suceso A se **ha verificado** si el resultado de la experiencia aleatoria es un elemento de A

•Si el experimento aleatorio consiste en lanzar un dado:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Sea el suceso $A = \{sale un cara par\} = \{2, 4, 6\}$

Sea el suceso $B = \{3\}$

Si lanzamos el dado y sale un 3, entonces el suceso B se ha verificado, mientras que A no se ha verificado.

Definición: Llamaremos **suceso elemental** a aquel que consta de un único elemento y **suceso compuesto** a aquel que consta de varios sucesos simples. Al Φ se le llama **suceso imposible** y al espacio muestral Ω se le llama **suceso seguro**.

Operaciones con sucesos (I).

Definición: Diremos que el suceso $C = A \cup B$ si C se verifica si y solo si se verifica el suceso A o el B o ambos a la vez. El subconjunto de Ω correspondiente a C es la unión de los subconjunto de Ω correspondientes a A y a B.

Sea el experimento aleatorio consistente en lanzar un dado: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Sea el suceso $A = \{\text{sale una cara par}\} = \{2, 4, 6\}$ Sea el suceso $B = \{3\}$

Entonces el suceso unión $C = A \cup B = \{2, 3, 4, 6\}$

ESTADÍSTICA

Operaciones con sucesos (II).

Definición: Diremos que el suceso $C = A \cap B$ si C se verifica si y solo si se verifica el suceso A y el B. El subconjunto de Ω correspondiente a C es la intersección de los subconjuntos de Ω correspondientes a A y a B.

B

Sea el experimento aleatorio consistente en lanzar un dado:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

ESTADÍSTICA

ESTADÍSTICA

Sea el suceso $A = \{\text{sale una cara par}\} = \{2, 4, 6\}$

Sea el suceso $B = \{3\}$

Entonces el suceso intersección $C = A \cap B = \{\Phi\}$

Operaciones con sucesos (III).

Teorema: Dados dos sucesos A y B se tiene:

$$A \cup B = B \cup A$$

$$A \bigcup A = A$$

$$A \bigcup \Phi = A$$

 $A\bigcup\Omega=\Omega$

Teorema: Dados dos sucesos A y B se tiene:

$$A \cap B = B \cap A$$

$$A \cap A = A$$

$$A \cap \Phi = \Phi$$

$$A \cap \Omega = A$$

<u>₩ 4 ▶ ₩</u>

Operaciones con sucesos (IV).

Definición: Se llama suceso complementario de un suceso A, y se le representa por \bar{A} , a aquel que se verifica si y solo si no se verifica A.

Teorema: Dado un suceso A se tiene:

$$A \subset B \to \overline{B} \subset \overline{A}$$

$$\binom{=}{A} \equiv A$$

$$A \cup \underline{\overline{A}} = \Omega$$

$$A \cap \overline{A} = \Phi$$

El complementario de Ω es el Φ

El complementario de Φ es el Ω

Definición: Dos sucesos A y B son incompatibles si $A \cap B = \Phi$ $A_1, A_2, ..., A_n$ son incompatibles si $A_i \cap A_i = \Phi$, para $i \neq j$

<u>₩ 4 ▶ ₩</u>

Operaciones con sucesos (V).

Sea el experimento aleatorio consistente en lanzar un dado: Ω ={1, 2, 3, 4, 5, 6}

Sea el suceso $A = \{sale \ una \ cara \ par\} = \{2, 4, 6\}$ Su complementario será $\overline{A} = \{sale \ una \ cara \ impar\}$ = $\{1, 3, 5\}$

$$\begin{array}{c}
A \cap \overline{\underline{A}} = \{\Phi\} \\
A \cup \overline{\underline{A}} = \{\Omega\}
\end{array}$$

ESTADÍSTICA

ESTADÍSTICA

Definición de Probabilidad (I).

Definición: Llamaremos función de probabilidad y la representaremos por P, a toda aplicación

$$P: \Omega \to R$$

$$A \rightarrow n^{\circ} real$$

$$B \rightarrow n^{\circ} real$$

que cumple las siguientes condiciones:

- 1. Para cualquier suceso A, $P(A) \ge 0$
- 2. $P(\Omega) = 1$

ESTADÍSTICA

ESTADÍSTICA

3. Para cualquier par de sucesos A y B / $A \cap B = \Phi$ se cumple que P ($A \cup B$) = P(A) + P(B)Si tenemos n sucesos A_1 , A_2 , ..., A_n incompatibles dos a dos, $A_i \cap A_j = \Phi$, para $i \neq j$ entonces $P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$

<u>₩ 4 ▶ ₩</u>

Definición de Probabilidad (II).

Teorema: Dada una función de probabilidad se cumple que:

$$1. P(\overline{A}) = 1 - P(A)$$

- 2. $P(\Phi) = 0$
- 3. Para cualquier suceso $A, 0 \le P(A) \le 1$
- 4. Si $A \subseteq B$, entonces $P(A) \le P(B)$
- 5. Si A y B son dos sucesos cualesquiera entonces $P(A \cup B)$ = $P(A) + P(B) - P(A \cap B)$

Definición de Probabilidad (III).

Probabilidad de la unión de sucesos

- Si A y B son dos sucesos cualesquiera entonces $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Si A, B y C son tres sucesos cualesquiera, entonces $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B) P(A \cap C) P(B \cap C) + P(A \cap B \cap C)$
- Sean $A_1, A_2, ..., A_n$ n sucesos cualesquiera, entonces

$$P(A_1 \cup A_2 \cup ... \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) + ... + (-1)^{n+1} P(A_1 \cap A_2 \cap ... \cap A_n)$$

Definición de Probabilidad (IV).

- •Supongamos un espacio muestral finito compuesto por n sucesos elementales e_i todos con la misma probabilidad $\Omega = \{e_1, e_2, ..., e_n\}$
- ullet Para cada suceso elemental e_i la probabilidad de que ocurra

$$P(e_i) = \frac{1}{n}$$

•Sea A un suceso compuesto por m sucesos elementales (incompatibles dos a dos), la probabilidad de que ocurra será:

$$\begin{split} &P(A) = \sum_{e_i \in A} P(e_i) = P(e_j) + P(e_k) + \dots + P(e_l) = \frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n} = \\ &= \frac{m}{n} = \frac{n^o \ de \ elementos \ de \ A}{n^o \ de \ elementos \ de \ \Omega} = \frac{n^o \ de \ casos \ favorables}{n^o \ de \ casos \ posibles} \end{split}$$

Definición de Probabilidad (V).

Sea el experimento aleatorio consistente en lanzar un dado: Ω ={1, 2, 3, 4, 5, 6}

Sea el suceso $A = \{sale una cara par\} = \{2, 4, 6\}$ Sea el suceso $B = \{3\}$

$$P(B) = \frac{1}{n} = \frac{1}{6}$$

$$P(A) = \frac{m}{n} = \frac{n^{\circ} de \ elementos}{n^{\circ} de \ elementos} \frac{de \ A}{de \ \Omega} = \frac{n^{\circ} de \ casos}{n^{\circ} de \ casos} \frac{favorables}{posibles} = \frac{3}{6} = \frac{1}{2}$$

Problema 1

De una baraja española de 48 cartas, se extraen dos cartas a la vez. Hallar la probabilidad de que :

- a) Ambas sean copas.
- b) Al menos una sea copas.
- c) Una sea copa y la otra espada.

Solución:

ESTADÍSTICA

a)Definimos el suceso A={ambas cartas son copas}

$$P(A) = \frac{n^{\circ} de \ casos \ favorables}{n^{\circ} de \ casos \ posibles} = \frac{\binom{12}{2}}{\binom{48}{2}} = 0.0585$$

Definimos los sucesos:

B = {al menos una carta sea copas}

 $B_1 = \{ 1 \text{ carta sea copas} \}$

 $B_2 = \{ las 2 cartas sean copas \}$

B = {al menos una sea copas} = { 1 sea copas} \cup {2 sean copas} = B₁ \cup B₂

Comprobamos que son sucesos incompatibles:

 $B_1 \cap B_2 = \emptyset$

por lo tanto $P(B_1 \cup B_2) = P(B_1) + P(B_2)$

$$P(B_1) = \frac{n^{\circ} de \ casos \ favorables}{n^{\circ} de \ casos \ posibles} = \frac{\binom{12}{1}\binom{36}{1}}{\binom{48}{2}} = 0.383$$

P(B₂) la hemos calculado en el apartado a)

 $P(B) = P(B1 \cup B2) = P(B1) + P(B2) = 0.383 + 0.0585$

- c) Definimos el suceso
- C = {1 carta sea copas y la otra espadas}

$$P(C) = \frac{n^{\circ} de \ casos \ favorables}{n^{\circ} de \ casos \ posibles} = \frac{\binom{12}{1}\binom{12}{1}}{\binom{48}{2}} = 0.1277$$