Document Oriented Middleware using MongoDB

author: Kacper Bohaczyk

version 27-05-2024

Guide

- 1. Git Repository clonen: https://github.com/ThomasMicheler/DEZSYS GK WAREHOUSE DOM.gi
- 2. pull und run image from docker

```
docker pull mongo
docker run -d -p 27017:27017 --name mongo mongo
docker exec -it mongo bash
mongosh
```

3. select Database to use

```
show dbs
use local
```

4. In InteliJ use:

```
docker exec -it mongo bash
mongosh
use test
db.productData.find().pretty()
```

5. Füge 30 Producte zum Speichern hinzu

```
public class Application implements CommandLineRunner {
    public void run(String... args) throws Exception {
        repository.deleteAll();

        // save a couple of product data
        repository.save(new ProductData( WarehouseID: "1", productID: "88-443175", productName: "810 Orangensaft Sonne", productCategory: "getraenk", productQuantBy: 3c2
        repository.save(new ProductData( WarehouseID: "1", productID: "89-871895", productName: "810 Apfelsoft Sold", productCategory: "getraenk", productQuantBy: 3c2
        repository.save(new ProductData( WarehouseID: "1", productID: "91-926885", productName: "Aniel Maschmittel Color", productCategory: "Baschmittel", productQuantBy: 3c2
        repository.save(new ProductData( WarehouseID: "2", productID: "92-234811", productName: "Mampfi Katzenfutter Rind", productCategory: "Eleffutter", productQuantBy: repository.save(new ProductData( WarehouseID: "2", productID: "98-893173", productName: "Hilka Schokolade Alpennsilor"), productCategory: "Boding productQuantBy: repository.save(new ProductData( WarehouseID: "3", productID: "86-827193", productName: "Hilka Schokolade Alpennsilor"), productCategory: "Boding productQuantBy: productQuantBy: "productQuantBy: 1250);
        repository.save(new ProductData( WarehouseID: "3", productQuantBy: "86-8271987", productName: "Novella Muse-NougeT-Greene", productCategory: "Lebensnittel", productQuantBy: 1250);
        repository.save(new ProductData( WarehouseID: "3", productQuantBy: "17-731837", productName: "Repository.save(new ProductData( WarehouseID: "3", productQuantBy: "17-731837", productName: "Pensil Waschmittel Gel", productCategory: "Lebensnittel", productQuantBy: repository.save(new ProductData( WarehouseID: "4", productQuantBy: sproductName: "Pensil Waschmittel Gel", productCategory: "Resentite", productQuantBy: sproductQuantBy: sproductQuantBy:
```

Q&A

• Nennen Sie 4 Vorteile eines NoSQL Repository im Gegensatz zu einem relationalen DBMS

- Skalierbarkeit, Hohe Leistung, Schema-Flexibilität und Felxible Datenmodelle
- Nennen Sie 4 Nachteile eines NoSQL Repository im Gegensatz zu einem relationalen DBMS
 - Komplexe Abfragen, Fehlende ACID-Transaktionen, oft weniger Stabil, weniger umfangreiche Tools
- Welche Schwierigkeiten ergeben sich bei der Zusammenführung der Daten?
 - Unterschiedliche Datenformate, Datenredundanz und Duplikate, Dateninkonsistenz, Latenz und Synchronization
- Welche Arten von NoSQL Datenbanken gibt es? Nennen Sie einen Vertreter für jede Art?
 - Dokumentorientiert(MongoDB), Schlüssel-Wert-orientiert(Redis),
 Spaltenorientiert(Apache Cassandra), und Graphenbasiert(Neo4j)
- Beschreiben Sie die Abkürzungen CA, CP und AP in Bezug auf das CAP Theorem
 - CA (Consistency, Availability):
 - Das System gewährleistet Konsistenz (jeder Lesevorgang liefert die neueste Schreiboperation) und Verfügbarkeit (jedem Lese- oder Schreibanfrage wird eine Antwort geliefert), jedoch kann es Partitionstoleranz nicht sicherstellen.
 - CP (Consistency, Partition Tolerance):
 - Das System gewährleistet Konsistenz und Partitionstoleranz (das System funktioniert trotz Kommunikationsausfällen zwischen den Knoten), aber möglicherweise ist nicht immer eine Verfügbarkeit gewährleistet.
 - AP (Availability, Partition Tolerance):
 - Das System gewährleistet Verfügbarkeit und Partitionstoleranz, jedoch kann es zu Konsistenzproblemen kommen (nicht alle Knoten haben möglicherweise die gleichen Daten zur gleichen Zeit).
- Mit welchem Befehl koennen Sie den Lagerstand eines Produktes aller Lagerstandorte anzeigen.

0

• Mit welchem Befehl koennen Sie den Lagerstand eines Produktes eines bestimmten Lagerstandortes anzeigen.

Fragen

1. Wie viele Produkte gibt es insgesamt in jedem Lager?

2. Welche Produkte haben einen Bestand von weniger als 1000 Einheiten?

```
db.productData.find(
    { productQuantity: { $lt: 1000 } },
    { _id: 0, productID: 1, name: 1, warehouseID: 1, productQuantity: 1 }
)
```

```
{ warehouseID: '1', productID: '01-926885', productQuantity: 478 },
{ warehouseID: '1', productID: '07-765432', productQuantity: 800 },
{ warehouseID: '1', productID: '14-678901', productQuantity: 700 },
{ warehouseID: '1', productID: '15-109876', productQuantity: 600 },
{ warehouseID: '2', productID: '16-789012', productQuantity: 750 },
{ warehouseID: '1', productID: '17-210987', productQuantity: 500 },
{ warehouseID: '2', productID: '18-890123', productQuantity: 400 },
{ warehouseID: '1', productID: '24-678901', productQuantity: 800 },
{ warehouseID: '2', productID: '25-109876', productQuantity: 900 }

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID}

**Test
```

3. Was sind die 5 Produkte mit dem höchsten Bestand in allen Lagern?

```
db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID: 1,
    productQuantity: 1 })
    .sort({ quantity: -1 })
    .limit(5)

test> db.productData.find({}, { _id: 0, productID: 1, name: 1, warehouseID: 1, productQuantity: 1 })    .sort({ quantity: -1 })    .limit(5)

[ { warehouseID: '1', productID: '02-234811', productQuantity: 1324 }, { warehouseID: '2', productID: '03-893173', productQuantity: 7390 }, { warehouseID: '1', productID: '08-871895', productQuantity: 3420 }, { warehouseID: '1', productID: '08-443175', productQuantity: 2500 }, { warehouseID: '1', productID: '01-926885', productQuantity: 478 }
]
test>
```

Sources

E-Learning Kurs - https://elearning.tgm.ac.at/mod/assign/view.php?id=103345