Examenul de bacalaureat naţional 2014 Proba E. d) – 4 iulie 2014 **Fizică**

- Filiera teoretică profilul real, Filiera vocaţională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Varianta 4

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Mărimea fizică a cărei unitate de măsură în S.I. poate fi scrisă sub forma W · A⁻² este:
- a. rezistivitatea electrică
- b. tensiunea electrică
- c. intensitatea curentului
- d. rezistenta electrică
- 2. La bornele unei generator se conectează un rezistor cu rezistența electrică variabilă. Dependența tensiunii la bornele generatorului de intensitatea curentului prin circuit este reprezentată în graficul din figura alăturată. Rezistența interioară a generatorului este egală cu:

a. 2Ω

b. 3Ω

c. 4Ω

d. 5Ω

3. Două fire conductoare confecționate din materiale cu rezistivitățile ρ_1 și respectiv $\rho_2 = 0.6 \cdot \rho_1$, au lungimile ℓ_1 , respectiv $\ell_2 = 1.5 \cdot \ell_1$. Cele două conductoare se conectează, în paralel, la bornele unei baterii. Firele sunt parcurse de curenții l_1 , respectiv l_2 , astfel încât $l_1 = 1.8 \cdot l_2$. Raportul S_1 / S_2 dintre ariile secțiunilor transversale ale celor două conductoare este egal cu:

a. 1.2

c. 2.4

(3p)

4. Randamentul de funcționare al unei baterii, când aceasta alimentează un rezistor $R = 19 \Omega$, este egal cu $\eta = 95\%$. Rezistenţa interioară a bateriei este egală cu:

a. 10Ω

(3p)

5. Cinci conductoare identice (notate cu 1, 2, 3, 4 și 5) având fiecare rezistența electrică R, se conectează ca în figura alăturată. Rezistența echivalentă a grupării celor cinci conductoare, între capetele A şi B, este egală cu $R_{AB} = 40 \Omega$. Rezistența electrică R a unui conductor este egală cu:

a. 8Ω

b. 10Ω

c. 15Ω

d. 24Ω

(15 puncte)

II. Rezolvaţi următoarea problemă:

Se consideră circuitul electric a cărui schemă este reprezentată în figura alăturată. Se cunosc: $E_1 = 18 \text{ V}$, $r_1 = 3 \Omega$, $E_2 = 9 \text{ V}$, $r_2 = 1.5 \Omega$, $R_1 = 13 \Omega$ $R_2 = 20 \Omega$, $R_3 = 80 \Omega$. Rezistența electrică a conductoarelor de legătură se neglijează. Determinați:

b. intensitatea curentului electric care trece prin rezistorul R_2 dacă întrerupătorul Keste deschis:

- c. tensiunea la bornele generatorului având tensiunea electromotoare E₁ dacă întrerupătorul K este închis;
- **d.** intensitatea curentului electric care trece prin generatorul având tensiune electromotoare E_2 dacă întrerupătorul K este închis.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un generator cu tensiunea electromotoare E şi rezistența interioară $r = 1\Omega$ alimentează un bec legat în serie cu un rezistor R. La bornele becului se conectează un voltmetru cu rezistența internă $R_V = 150\,\Omega$. Tensiunea indicată de voltmetru este egală cu $U = 30 \,\mathrm{V}$. Puterea disipată de rezistor în acest caz este $P = 5.76 \,\mathrm{W}$, iar valoarea intensității curentului electric ce străbate generatorul este $I = 1.2 \,\mathrm{A}$. Becul funcționează la parametri nominali.

- a. Calculați rezistența electrică a rezistorului R.
- **b.** Determinați valoarea puterii nominale a becului.
- **c.** Determinați tensiunea electromotoare *E* a generatorului.
- d. Se deconectează voltmetrul de la bornele becului și se înlocuiește rezistorul R cu un alt rezistor având rezistența electrică R_1 astfel încât becul legat în serie cu R_1 funcționează la puterea nominală. Determinați puterea P_1 disipată de rezistorul R_1 .