10. Векторные и матричные нормы. Обусловленность задачи решения линейной алгебраической системы

10.1. Векторные нормы

Вектору $x = (x_1, x_2, \dots, x_n)' \in C^n$ сопоставим вещественное число

$$||x||_p = \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}, \ p \ge 1.$$

Это число называется нормой Гельдера и удовлетворяет всем свойствам для нормы:

$$||x||_p \ge 0, \quad ||x||_p = 0 \Leftrightarrow x_i = 0, \ i = 1, 2, \dots, n.$$

 $||\alpha x||_p = |\alpha| \ ||x||_p, \ \alpha \in C.$
 $||x + y||_p \le ||x||_p + ||y||_p.$

На практике используются следующие частные случаи нормы Гельдера:

$$p = 1: ||x||_1 = \sum_{j=1}^n |x_j|.$$

$$p = 2: ||x||_2 = \sqrt{\sum_{j=1}^n |x_j|^2}.$$

$$p = \infty: ||x||_\infty = \max_{1 \le j \le n} |x_j|.$$

Упражнение 1. ||(1,-5,3)||=?

10.2. Матричные нормы

Обозначим через $M_n(C)$ множество квадратных матриц порядка n, элементами которых являются комплексные числа. Пусть

$$A = [a_{ij}]_{i,j=1}^{n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, a_{ij} \in C.$$

Для матриц норма Гельдера с показателем $p\ (p\geq 1)$ в $M_n(C)$

$$N_p(A) = \left(\sum_{i,j=1}^n |a_{ij}|^p\right)^{1/p}.$$

Норма при p=2 называется нормой Фробениуса.

Определение. Говорят, что матричная норма ||.||согласована с векторной ||.||, если выполняется неравенство $||Ax|| \le ||A|| ||x||$ для любых $x \in C^n$, $A \in M_n(C)$.

Естественнее пользоваться операторной нормой матрицы.

Определение. Операторной нормой матрицы, порожденной векторной нормой ||x||, называется число

$$||A|| = \max_{||x||=1} ||Ax||.$$

Операторная норма матрицы, порожденная некоторой векторной нормой, является минимальной среди всех матричных норм, согласованных с этой векторной нормой.

Операторную норму называют также нормой матрицы, подчиненной заданной векторной норме.

Определение. Спектральным радиусом матрицы А называется число

$$\rho(A) = \max_{1 \le i \le n} |\lambda_i|,$$

где λ_i — собственные числа матрицы A.

Можно показать, что

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|, \quad ||A||_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|, \quad ||A||_{2} = \sqrt{\rho(AA^{*})}.$$

Если $A=A^*,$ то $\|A\|_2=\rho(A).$

Упраженение 2. Вычислить все нормы единичной матрицы.

Упражнение 3. Вычислить нормы Фробениуса, $||A||_1$, $||A||_\infty$ матрицы

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 4 & -5 & 6 \\ 7 & 8 & -9 \end{bmatrix}.$$

Определение. Матричная норма называется мультипликативной, если $||AB|| \leq ||A||||B||$, $A, B \in M_n(C)$.

Операторная матричная норма и норма Фробениуса мультипликативны.

Теорема 1. $\rho(A) \leq ||A||$, где ||A|| - мультипликативна.

Можно показать, что

$$\frac{1}{\|A^{-1}\|} \le |\lambda| \le \|A\|.$$

Это неравенство позволяет найти оценки для собственных чисел матрицы по модулю.

10.3. Обусловленность задачи решения линейной алгебраической системы

Вычислительные задачи, в которых малым изменениям параметров отвечают большие изменения в решениях, называются плохо обусловленными.

Рассмотрим вопрос обусловленности задачи решения линейной алгебраической системы Ax = b. Пусть решением системы является вектор $x^* = (x_1^*, x_2^*, \dots, x_n^*)'$.

Рассмотрим систему уравнений

$$(A + \Delta A)(x^* + \Delta x) = b + \Delta b$$
, где $||A^{-1}|| ||\Delta A|| < 1$.

Можно получить, что

$$\frac{\|\Delta x\|}{\|x^*\|} \le \frac{\text{cond}(A)}{1 - \text{cond}(A) \frac{\|\Delta A\|}{\|A\|}} \left(\frac{\|\Delta b\|}{\|b\|} + \frac{\|\Delta A\|}{\|A\|} \right),$$

где

 $\operatorname{cond}(A) = \|A^{-1}\| \|A\|$ — число обусловленности матрицы².

Очевидно, что $\operatorname{cond}(A) \geq 1$, $\operatorname{cond}(\alpha A) = \operatorname{cond}(A)$. Если $A = A^*$, то $\operatorname{cond}_2(A) = |\lambda_1|/|\lambda_n|$, где $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$ (λ_i — собственные числа матрицы A).

Упражнение 4. Линейная алгебраическая система Ax = b, где

$$A = \begin{bmatrix} 1 & 0.99 \\ 0.99 & 0.98 \end{bmatrix}, b = \begin{bmatrix} 1.99 \\ 1.97 \end{bmatrix},$$

имеет решение $x^* = (1, 1)'$.

Округлим правые части системы до целых, оставив элементы матрицы без изменений. Система $A(x+\Delta x)=b+\Delta b$, где $\Delta b=(0.01,0.03)'$ имеет решение $x+\Delta x=(200,-200)'$. Вычислить число обусловленности матрицы, фактическую относительную по-

грешность решения и получить для неё оценку.

10.4. Задание

Для заданной матрицы A

а) решить систему Ax = b, где

$$b = \begin{pmatrix} 200 \\ -600 \end{pmatrix};$$

б) решить систему с измененной правой частью $A\overline{x}=\overline{b}$, где

$$\bar{b} = \left(\begin{array}{c} 199 \\ -601 \end{array}\right);$$

в) найти число обусловленности $\operatorname{cond}(A)$, фактическую относительную погрешность $\delta x = ||\overline{x} - x||/||x||$ и оценку для этой погрешности.

²Число обусловленности матрицы зависит от выбранной нормы.

10.5. Варианты матриц А

1		7	
-400.60	199.80	-402.90	200.70
1198.80	-600.40	1204.20	-603.60
2		8	
-401.52	200.16	-400.94	200.02
1200.96	-601.68	1200.12	-600.96
3		9	
-401.43	200.19	-401.64	200.12
1201.14	-601.62	1200.72	-601.76
4		10	
-401.98	200.34	-403.15	200.95
1202.04	000 00	1005 50	604.10
1202.04	-602.32	1205.70	-004.10
1202.04	-602.32	1205.70	-004.10
1202.04		1205.70	
			1
Ę	200.18	1	1 200.00
-401.46	200.18	-401.00	1 200.00
-401.46	200.18 -601.64	-401.00	1 200.00 -601.00
-401.46 201.08	200.18 -601.64	1 -401.00 1200.00	1 200.00 -601.00