# 4 Variables aléatoires discrètes

# I – Généralités sur les variables aléatoires

### 1 – Espace probabilisé

Étant donné une expérience aléatoire, pour calculer des probabilités,

- 1. On commence par déterminer l'univers  $\Omega$  de toutes les issues possibles de l'expérience aléatoire. Cet ensemble peut être **fini** ou **infini**.
  - Si l'expérience consiste à lancer un dé à 6 faces et à observer le numéro obtenu, alors  $\Omega = [1; 6]$ .
  - Si l'expérience consiste à lancer une pièce de monnaie jusqu'à l'obtention du premier pile, alors
    Ω = N\*.
  - Si l'expérience consiste à observer la durée de vie d'une ampoule (en minutes), alors  $\Omega = \mathbf{R}_{+}$ .
  - etc.
- 2. On détermine ensuite une probabilité sur  $\Omega$ , c'est-à-dire une application P qui à un évènement de  $\Omega$  (*i.e.*, un sous-ensemble) associe un réel, compris entre 0 et 1, qui mesure le « degré de vraisemblance » de cet évènement.

Commençons par rappeler quelques propriétés, vues en première année dans le cas d'un univers fini, et qui restent vraies dans le cas d'un univers infini.

#### Proposition 4.1

Soient  $\Omega$  un espace probabilisé et A, B deux évènements. On a les résultats suivants.

- $P(\Omega) = 1$ ,
- $P(\emptyset) = 0$ ,
- $P(\overline{A}) = 1 P(A)$ ,
- Si  $A \subset B$ , alors  $P(B \setminus A) = P(B) P(A)$ ,
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ ,
- Si *A* et *B* sont incompatibles (*i.e.*,  $A \cap B = \emptyset$ ), alors  $P(A \cup B) = P(A) + P(B)$ .

**Exemple 4.2** – Tout au long de ce chapitre, on s'appuiera sur les deux exemples suivants pour illustrer les différentes notions rencontrées.

- Un sac contient 5 jetons numérotés de 1 à 5. Pour jouer une partie, on doit miser 1€. On tire au hasard un jeton. Si on a le numéro 1, on gagne 4 €, si on a un numéro pair on reçoit 2€ et rien sinon. On note X le gain (algébrique). X est une variable aléatoire et X(Ω) = {−1;1;3}.
- 2. On lance un dé équilibré et on note X le nombre de lancers nécéssaires pour obtenir 6. X est une variable aléatoire et  $X(\Omega) = \mathbf{N}^*$  (il faut au moins un lancer pour obtenir 6).

# 2 - Évènements associés à une variable aléatoire

**Définition 4.3** – Soit X une variable aléatoire sur  $\Omega$  et  $x \in \mathbb{R}$ . On note

$$[X = x] = \{\omega \in \Omega \mid X(\omega) = x\},$$
 
$$[X < x] = \{\omega \in \Omega \mid X(\omega) < x\},$$
 
$$[X > x] = \{\omega \in \Omega \mid X(\omega) > x\},$$
 
$$[X \ge x] = \{\omega \in \Omega \mid X(\omega) \ge x\},$$
 
$$[X \ge x] = \{\omega \in \Omega \mid X(\omega) \ge x\}.$$

Si x et y sont deux réels tels que x < y, alors on note

$$\left[x\leq X\leq y\right]=\{\omega\in\Omega\mid x\leq X(\omega)\leq y\}.$$

Plus généralement, si I désigne une partie de  ${\bf R}$ , on note

$$[X \in I] = \{\omega \in \Omega \mid X(\omega) \in I\}.$$

**Exemple 4.4** – Calculer P([X = 1]) et  $P([X \le 2])$  dans les deux exemples de l'exemple 4.2.

#### Proposition 4.5

Soit X une variable aléatoire définie sur  $\Omega$ . Alors l'ensemble

$$\big\{ [X = x] \mid x \in X(\Omega) \big\}$$

forme un système complet d'évènements. En particulier, on a

$$\sum_{x\in X(\Omega)}P\left([X=x]\right)=1.$$

#### Remarque 4.6 -

• Lorsque  $X(\Omega)$  est fini, la somme précédente est une somme finie. En effet, dans ce cas,

$$X(\Omega) = \{x_1; x_2; \dots; x_n\},\$$

et donc

$$\sum_{k=1}^{n} P([X = x_k]) = 1.$$

- Lorsque  $X(\Omega)$  est dénombrable, la somme précédente est la somme d'une série convergente. En effet,

$$X(\Omega) = \{x_k; k \in \mathbb{N}\},\$$

et donc

$$\sum_{k=0}^{+\infty} P([X = x_k]) = 1.$$

• Dans toute la suite, on convient d'alléger la notation P([X = x]) en P(X = x), et de même pour tous les autres ensembles.

Exemple 4.7 – On reprend les deux exemples de l'exemple 4.2.

- 1. Un système complet d'évènements est donné par
- 2. Un système complet d'évènements est donné par

### II – Variables aléatoires discrètes

### 1 – <u>Définition</u>

**Définition 4.8** – Soit X une variable aléatoire sur  $\Omega$ . On dit que

- X est une **variable aléatoire discrète** si son support  $X(\Omega)$  est un ensemble discret, *i.e.*, fini ou dénombrable.
- X est une variable aléatoire discrète finie si son support  $X(\Omega)$  est un ensemble fini.
- X est une **variable aléatoire discrète infinie** si son support  $X(\Omega)$  est un ensemble dénombrable.

**Exemple 4.9** – On reprend les deux exemples de l'exemple 4.2.

- 1.
- 2.

#### 2 - Loi d'une variable aléatoire discrète

**Définition 4.10** – Soit X une variable aléatoire sur  $\Omega$ . On appelle **loi** de la variable aléatoire X la donnée des P(X = x) pour tout réel x du support  $X(\Omega)$ .



#### Méthode 4.11 - Donner la loi de probabilité d'une variable aléatoire discrète

- 1. On donne l'ensemble des valeurs  $X(\Omega)$  des valeurs prises par X.
- 2. On calcule P(X = x) pour tout  $x \in X(\Omega)$ .

Lorsque  $X(\Omega)$  est fini, on résume souvent la loi sous la forme d'un tableau avec, sur la 1ère ligne les valeurs prises par X, et sur la 2ème ligne les probabilités correspondantes.

**Exemple 4.12** – On reprend les deux exemples de l'exemple 4.2.

1.

2.

### 3 - Fonction de répartition d'une variable aléatoire discrète

**Définition 4.13** – Soit X une variable aléatoire définie sur  $\Omega$ . On appelle **fonction de répartition** de la variable aléatoire X, et on note  $F_X$ , la fonction définie sur  $\mathbf{R}$  par

$$F_X: \begin{array}{ccc} \mathbf{R} & \rightarrow & [0;1] \\ x & \mapsto & P(X \le x) \end{array}$$

#### Proposition 4.14

Soit X une variable aléatoire discrète définie sur  $\Omega$ . On note  $X(\Omega) = \{x_1; x_2; ...\}$  avec  $x_1 < x_2 < \cdots$ . Alors

$$F_X(x) = \begin{cases} 0 & \text{si } x < x_1, \\ P(X = x_1) + \dots + P(X = x_k) & \text{si } x_k \le x < x_{k+1}, \\ 1 & \text{si } x \ge \max_{i \in \mathbb{N}} x_i. \end{cases}$$

En particulier,  $F_X$  est constante sur  $[x_k; x_{k+1}]$ .

**Exemple 4.15** – On reprend les deux exemples de l'exemple 4.2.

1.



Soit X une variable aléatoire discrète définie sur un espace probabilisé  $\Omega$ . On suppose que  $X(\Omega)\subseteq \mathbf{Z}$ . Alors

$$\forall \, k \in X(\Omega), \quad P(X=k) = F_X(k) - F_X(k-1).$$

**Remarque 4.17** – La fonction de répartition d'une variable aléatoire *X* détermine parfaitement la loi de *X*. En effet, si deux variables aléatoires ont la même fonction de répartition alors elles suivent la même loi.

# III - Moments d'une variable aléatoire discrète

### 1 – Espérance

**Définition 4.18** – Soit X une variable aléatoire discrète définie sur  $\Omega$ .

• Si X est une variable aléatoire discrète finie, avec  $X(\Omega) = \{x_1; ...; x_n\}$ , alors X admet une **espérance**, notée E(X), définie par

$$E(X) = \sum_{i=1}^{n} x_i P(X = x_i).$$

• Si X est une variable aléatoire discrète infinie, avec  $X(\Omega)$   $\{x_k; k \in \mathbb{N}\}$ , et que la série de terme général  $x_n P(x_n)$  est **absolument** convergente, alors on dit que X admet une **espérance**, notée E(X), et définie par

$$E(X) = \sum_{k=0}^{+\infty} x_k P(X = x_k).$$

Remarque 4.19 - L'espérance s'interprète comme une moyenne.

**Exemple 4.20** – Montrer que la variable aléatoire *X*, du premier exemple de l'exemple 4.2, admet une espérance et la calculer.

**Remarque 4.21** – On peut montrer (hors-programme) que la série  $\sum_{n\geq 1} n\left(\frac{5}{6}\right)^{n-1} \times \frac{1}{6}$  converge et que

$$\sum_{k=1}^{+\infty} k \left(\frac{5}{6}\right)^{k-1} \times \frac{1}{6} = 6.$$

Autrement dit, la variable aléatoire X du second exemple de l'exemple 4.2 admet une espérance et E(X) = 6.

#### **Proposition 4.22**

Soient X et Y deux variables aléatoires discrètes définies sur  $\Omega$  et admettant une espérance. Soient a et b deux réels. Alors, X + Y et aX + b admettent une espérance et

$$E(X+Y) = E(X) + E(Y)$$
 et  $E(aX+b) = aE(X) + b$ .

**Exemple 4.23** – On lance un dé non-truqué et on note X le numéro obtenu. Soit g la fonction définie par g(x) = 2x + 3 et Y = g(X) = 2X + 3. Calculer E(Y).

#### Théorème 4.24 - Théorème de transfert

Soit X une variable aléatoire discrète définie sur un espace probabilisé  $\Omega$ . On note  $X(\Omega) = \{x_i; i \in I\}$  avec  $I \subseteq \mathbb{N}$ . Soit g une application de  $X(\Omega)$  dans  $\mathbb{R}$ . Alors, la variable aléatoire g(X) admet une espérance si et seulement si la série de terme général  $g(x_n)P(X=x_n)$  est **absolument** convergente. Dans ce cas, on a alors

$$E(g(X)) = \sum_{i \in I} g(x_i) P(X = x_i).$$

#### Remarque 4.25 -

- Si X est une variable aléatoire discrète finie, alors I est fini, donc l'espérance de g(X) existe et la somme intervenant dans sa définition est une somme finie.
- Le théorème de transfert montre que pour calculer l'espérance de g(X), il est inutile de déterminer la loi de g(X): il suffit de connaître la loi de X.

**Exemple 4.26** – On considère la variable *X* dont la loi de probabilité est donnée par le tableau suivant.

| k      | -3 | -1 | 0  | 1  | 2  | 3  |
|--------|----|----|----|----|----|----|
| P(X=k) | 2  | 1  | 1  | 2  | 3  | 1  |
|        | 10 | 10 | 10 | 10 | 10 | 10 |

Calculer  $E(X^2)$  et  $E(X^3)$ .

#### 2 – Variance

**Définition 4.27** – Soit X une variable aléatoire discrète définie sur  $\Omega$ .

• Si X est une variable aléatoire discrète finie avec  $X(\Omega) = \{x_1; x_2; ...; x_n\}$ , alors X admet une **variance**, notée V(X), et définie par

$$V(X) = \sum_{i=1}^{n} (x_i - E(X))^2 P(X = x_i).$$

• Si X est une variable aléatoire discrète infinie, avec  $X(\Omega) = \{x_k; k \in \mathbb{N}\}$  et que la série de terme général  $(x_n - E(X))^2 P(X = x_n)$  est **absolument** convergente, alors on dit que X admet une **variance**, notée V(X) et définie par

$$V(X) = \sum_{k=0}^{+\infty} (x_k - E(X))^2 P(X = x_k).$$

#### Remarque 4.28 -

- La série  $\sum_{n\geq 0} (x_n E(X))^2 P(X = x_n)$  étant à termes positifs, elle est absolument convergente si et seulement si elle est convergente.
- Sous réserve d'existence, on a  $V(X) = E((X E(X))^2)$ .
- La variance, si elle existe, est un réel positif ou nul.
- La variance mesure la dispersion de la variable aléatoire par rapport à son espérance.

#### Théorème 4.29 - Formule de König-Huygens -

Soit X une variable aléatoire discrète définie sur  $\Omega$ . X admet une variance si et seulement si la variable aléatoire  $X^2$  admet une espérance. Dans ce cas,

$$V(X) = E(X^2) - E(X)^2.$$

### Méthode 4.30 – Répondre à la question « X admet-elle une variance? Si oui, la calculer. »

- 1. Si *X* n'admet pas d'espérance, alors elle n'admet pas de variance.
- 2. Si X admet une espérance, il faut regarder si  $E(X^2)$  existe (grâce au théorème de transfert).
  - Si non, alors *X* n'admet pas de variance.
  - Si oui, alors on peut la calculer en utilisant la formule de König-Huygens

$$V(X) = E(X^2) - E(X)^2.$$

**Exemple 4.31** – Montrer que la variable aléatoire *X*, du premier exemple de l'exemple 4.2, admet une variance et la calculer.

**Remarque 4.32** – On peut montrer (hors-programme) que la série  $\sum_{n\geq 1} n^2 \left(\frac{5}{6}\right)^{n-1} \times \frac{1}{6}$  converge et que

$$\sum_{k=1}^{+\infty} k^2 \left(\frac{5}{6}\right)^{k-1} \times \frac{1}{6} = 66.$$

Autrement dit, le carré de la variable aléatoire X du second exemple de l'exemple 4.2 admet une espérance et  $E(X^2) = 66$ . Alors, X admet une variance et

$$V(X) = E(X^2) - E(X)^2 = 66 - 36 = 30.$$

Soit X une variable aléatoire discrète admettant une variance et soient a et b dans  $\mathbf{R}$ . Alors

$$V(aX + b) = a^2V(X).$$

En particulier,

$$V(X + b) = V(X)$$
.

Remarque 4.34 - Contrairement à l'espérance, la variance n'est pas linéaire.

**Exemple 4.35** – On lance un dé non-truqué et on note X le numéro obtenu. Soit Y = 2X + 3. Calculer la variance de X puis celle de Y.

**Définition 4.36** – Soit X une variable aléatoire discrète admettant une variance. On appelle **écart-type** de X et on note  $\sigma(X)$  le réel

$$\sigma(X) = \sqrt{V(X)}.$$

# IV- Lois discrètes finies usuelles

### 1 - Loi uniforme

**Définition 4.37** – Soit  $(a, b) \in \mathbb{Z}^2$  avec a < b. Une variable aléatoire X suit une **loi uniforme** sur [a; b] lorsque  $X(\Omega) = [a; b]$  et que

$$\forall k \in [a; b], \quad P(X = k) = \frac{1}{h - a + 1}.$$

On note  $X \hookrightarrow \mathcal{U}(\llbracket a; b \rrbracket)$ .

Exemple 4.38 - Deux exemples classiques :

- 1. On lance un dé non-truqué et on note X le numéro obtenu. On a  $X \hookrightarrow \mathcal{U}(\llbracket 1; 6 \rrbracket)$  car  $X(\Omega) = \llbracket 1; 6 \rrbracket$  et pour tout  $k \in \llbracket 1; 6 \rrbracket$ ,  $P(X = k) = \frac{1}{6}$ .
- 2. On tire au hasard une boule dans une urne contenant n boules numérotées de 1 à n, et on note X le numéro obtenu. On a  $X \hookrightarrow \mathcal{U}\left(\llbracket 1;n \rrbracket\right)$  car  $X(\Omega) = \llbracket 1;n \rrbracket$  et pour tout  $k \in \llbracket 1;n \rrbracket$ ,  $P(X=k) = \frac{1}{n}$ .

#### Proposition 4.39

Soit  $n \in \mathbb{N}^*$ . Si  $X \hookrightarrow \mathcal{U}([1; n])$  alors X admet une espérance et une variance et

$$E(X) = \frac{n+1}{2}$$
 et  $V(X) = \frac{n^2-1}{12}$ .

Soit  $(a, b) \in \mathbb{Z}^2$  avec a < b. Si  $X \hookrightarrow \mathcal{U}([a; b])$  alors  $X - a + 1 \hookrightarrow \mathcal{U}([1; b - a + 1])$  et donc

$$E(X) = \frac{a+b}{2}$$
 et  $V(X) = \frac{(b-a+1)^2 - 1}{12}$ 

#### 2- Loi de Bernoulli

**Définition 4.41** – Une variable aléatoire X suit une **loi de Bernoulli de paramètre**  $p \in ]0;1[$  lorsque  $X(\Omega) = \{0;1\}$  et

$$P(X = 1) = p$$
 et  $P(X = 0) = 1 - p$ .

On note  $X \hookrightarrow \mathcal{B}(p)$ .

Une épreuve de Bernoulli est une épreuve aléatoire qui comporte exactement deux issues : une que l'on qualifie de « succès », de probabilité p, et l'autre que l'on qualifie « d'échec », de probabilité 1-p. On réalise une fois cette épreuve de Bernoulli et si l'issue est un « succès », la variable aléatoire prend la valeur X=1, et sinon X=0.

**Exemple 4.42** – On lance une pièce équilibrée et on note X la variable aléatoire qui prend la valeur 1 si le résultat est « Pile » et 0 sinon. Alors,  $X \hookrightarrow \mathcal{B}\left(\frac{1}{2}\right)$ .

#### **Proposition 4.43**

Soit X une variable aléatoire suivant une loi de Bernoulli de paramètre  $p \in ]0;1[$ . Alors X admet une espérance et une variance et on a

$$E(X) = p$$
 et  $V(X) = p(1-p)$ .

#### 3 - Loi binomiale

**Définition 4.44** – Une variable aléatoire X suit une **loi binomiale de paramètres**  $n \in \mathbb{N}^*$  et  $p \in ]0;1[$  lorsque  $X(\Omega) = [0;n]$  et que

$$\forall k \in [0; n], \quad P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}.$$

On note  $X \hookrightarrow \mathcal{B}(n, p)$ .

On répète n épreuves de Bernoulli identiques et indépendantes. La probabilité d'obtenir un « succès » lors de la réalisation d'une épreuve est p. La variable aléatoire qui compte le nombre de succès obtenus une fois que les n épreuves ont été réalisées suit une loi binomiale de paramètres n et p.

**Exemple 4.45** – On lance 10 fois de suite un dé non-truqué, et on note X le nombre de numéros obtenus inférieurs ou égaux à 2. Alors,  $X \hookrightarrow \mathcal{B}\left(10, \frac{1}{3}\right)$ .

**Remarque 4.46** – La loi de Bernoulli est le cas particulier de la loi binomiale avec n = 1.

Soit X une variable aléatoire suivant une loi binomiale de paramètres  $n \in \mathbb{N}^*$  et  $p \in ]0;1[$ . Alors X admet une espérance et une variance et on a

$$E(X) = np$$
 et  $V(X) = np(1-p)$ .

# V- Lois discrètes infinies usuelles

### 1 – Loi géométrique

**Définition 4.48** – Une variable aléatoire X suit une **loi géométrique de paramètre**  $p \in ]0;1[$  lorsque  $X(\Omega) = \mathbb{N}^*$  et que

$$\forall k \in \mathbf{N}^*, \quad P(X = k) = p(1 - p)^{k-1}.$$

On note  $X \hookrightarrow \mathcal{G}(p)$ .

**Exemple 4.49** – On lance indéfiniment un dé non-truqué. On note X le rang du lancer qui donne le nombre 1 pour la première fois. Alors, X suit une loi géométrique de paramètre  $\frac{1}{6}$ .

#### Remarque 4.50 -

- Cet exemple est typique de la loi géométrique dont le modèle est le suivant :
  - 1. On réalise une succession d'épreuves indépendantes de Bernoulli de même paramètre *p*.
  - 2. On note *X* le rang de l'épreuve qui a amené le premier succès. *X* est considéré comme « le temps d'attente du premier succès ».
- On a bien  $\sum_{k=1}^{+\infty} P(X = k) = 1$ .

#### Proposition 4.51

Soit X une variable aléatoire suivant une loi géométrique de paramètre  $p \in ]0;1[$ . Alors X admet une espérance et une variance et on a

$$E(X) = \frac{1}{p}$$
 et  $V(X) = \frac{1-p}{p^2}$ .

**Exemple 4.52** – On effectue une succession de tirages avec remise d'une boule dans une urne contenant 7 boules noires et 3 boules rouges et on note *Y* le rang de la première boule rouge. Reconnaître la loi de *Y* puis déterminer l'espérance et la variance de *Y*.

### 2 - Loi de Poisson

**Définition 4.53** – Soit  $\lambda$  un réel strictement positif. Une variable aléatoire X suit une **loi de Poisson de paramètre**  $\lambda$  lorsque  $X(\Omega) = \mathbf{N}$  et

$$\forall k \in \mathbf{N}, \qquad P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

On note  $X \hookrightarrow \mathcal{P}(\lambda)$ .

#### Remarque 4.54 -

- La loi de Poisson est parfois appelée loi des évènements rares. Elle sert par exemple à modéliser :
  - le nombre d'appels reçus par un standard téléphonique dans un intervalle de temps donné,
  - le nombre de véhicules franchissant un poste de péage dans un intervalle de temps donné,
  - le nombre de clients se présentant dans un magasin dans un intervalle de temps donné,
  - le nombre de fautes de frappe dans les pages d'un cours de maths, etc.
- On a bien  $\sum_{k=0}^{+\infty} P(X = k) = 1$ .

#### **Proposition 4.55**

Soit X une variable aléatoire suivant une loi de Poisson de paramètre  $\lambda > 0$ . Alors X admet une espérance et une variance et on a

$$E(X) = \lambda$$
 et  $V(X) = \lambda$ .