LINEAR PROGRAMMING (LP): Excel Solver Add-in

C. B. Vaz Instituto Politécnico de Bragança

The Solver is an Add-in of Excel that is necessary to install:

- Select File > Options;
- Manage Excel Add-ins > Go;
- ► Select the Solver Add-in.
- After the Solver Add-in is available in Data.

Solving a LP model using Excel Solver Add-in:

Consider the following linear programming (LP) model to determine the production plan of three products (1, 2 and 3), using 110, 150 and 200 hours (h) in machines M1, M2 and M3, respectively.

$$\begin{aligned} \text{Max } Z &= 3x_1 + 3x_2 + 2x_3\\ \text{subject to} \\ 2x_1 + 3x_2 + 4x_3 &\leq 110\\ 3x_1 + 2x_2 + 3x_3 &\leq 150\\ 4x_1 + 2x_2 + 3x_3 &\leq 200\\ x_1, x_2, x_3 &\geq 0. \end{aligned}$$

Set the decision variables x_1 , x_2 and x_3 which are the number of units produced of A, B and C products, respectively.

1st step: To define the model in the workbook, including:

- ▶ Decision variables will be determined through the cells B4 to D4 after run the Solver;
- ► Coefficients of the objective function: insert them in the cells B8 to D8.
- ► The matrix constraints coefficients: insert them in the cells B12 to D14; the constants of the right side of the constraints: insert them in the cells G12 to G14.

	Α	В	C	D	Е	F	G
1							
2		Decision Variables					
3		X ₁	X ₂	X ₃			
4							
5							
6		OF Coeficients					
7		X ₁	X ₂	X ₃	Objetive function (OF)		
8		3	3	2	0	Maximize	
9							
10		Constraints Coeficients					
11		X ₁	x ₂	X ₃	Hours used		Constraint
12	Machine 1	2	3	4	0	≤	110
13	Machine 2	3	2	3	0	≤	150
14	Machine 3	4	2	3 1	0	≤	200
15				- 4			

2nd step: To define the formulas of the objective function and the left side of each constraint:

- Objective function (cell E8) this formula relates the coefficients of the objective function to the decision variables (B8xB4 + C8xC4 + D8xD4), using the "SUMPRODUCT" function.
- ▶ Left side of each constraint (cells E12, E13 and E14) this formula relates the coefficients of each constraint to the decision variables (in E12 is B12xB4 + C12xC4 + D12xD4).

3rd step: To open the Solver in Data to insert:

- ▶ Objective function: select the cell E8
- By Changing Variable Cells: select the cells B4 to D4
- Add for each constraint: selecting the cell on the left side, the sign and the cell on right side. In the example, for the 1st to 3rd constraints: select the cells E12 to E14, the sign ≤ and the cells G12 to G14.
- Select a solving method: chose the Simplex LP

4th step: To obtain the optimum solution: the optimum profit is 156€ which is achieved if the company produces 46 units of A and 6 units of B. There are 4 hours available in the machine M3.

5th step: To obtain the Answer and the Sensitivity reports

4							
13				Answer Report	:		
4							
15	OŁ	jective	Cell (Max)				
16		Cell	Name	Original Value	Final Value		
7		\$E\$8	Z	0	156		
8							
19							
20	Va	riable C	Cells				
21		Cell	Name	Original Value	Final Value	Integer	
22		\$B\$4	x1	0	46	Contin	
23		\$C\$4	x2	0	6	Contin	
24		\$D\$4	x3	0	0	Contin	
25							
26							
27	Cc	nstrain	ts				
28		Cell	Name	Cell Value	Formula	Status	Slack
29		\$E\$12	Hours used in M1	110	\$E\$12<=\$G\$12	Binding	0
30		\$E\$13	Hours used in M2	150	\$E\$13<=\$G\$13	Binding	0
31		\$E\$14	Hours used in M3	196	\$E\$14<=\$G\$14	Not Binding	4

4									
5	Sensitivity Report								
6									
7	Variable (Cells							
8			Final	Reduced	Objective	Allowable	Allowable		
9	Cell	Name	Value	Cost	Coefficient	Increase	Decrease		
10	\$B\$4	x ₁	46	0	3	1,5	1		
11	\$C\$4	x ₂	6	0	3	1,5	1		
12	\$D\$4	х ₃	0	-2,2	2	2,2	1E+30		
13									
14	Constraints								
15			Final	Shadow	Constraint	Allowable	Allowable		
16	Cell	Name	Value	Price	R.H. Side	Increase	Decrease		
17	\$E\$12	Hours used in M1	110	0,6	110	115	10		
18	\$E\$13	Hours used in M2	150	0,6	150	2,5	76,66666667		
19	\$E\$14	Hours used in M3	196	0	200	1E+30	4		
20									
24	1								

Reference

Hillier F. S., & Lieberman G.R. (2010). Introduction to operations research (9th ed.). New York: McGraw-Hill.