

User manual

An ArcGIS Pro Toolbox for Depth-to-Water Index Calculation

Noah Greupner | Version 1.0 | August 2024

Usage

This toolbox is open for public use and distribution. Users are encouraged to use, share and further enhance the tool according to their needs. However, when sharing, modifying or citing the tool, please give an appropriate credit to the original creator according to the following:

Greupner, N. (2024): An ArcGIS Pro toolbox for Depth-to-Water index calculation. University of Salzburg. Available at: https://github.com/noahgreupner/DepthToWater.

Background

This tool calculates the (cartographic) Depth-to-Water (DTW) index, representing the simulated vertical difference (in metres) between a landscape cell and the nearest surface water cell along the least-cost slope path. DTW is useful for soil wetness modelling and identifying areas of high or low probability of water accumulation, which can be useful for hydrologic modelling, environmental planning and landscape monitoring.

While there are openly accessible tools available for similar indices, such as the Height-Above-the-Nearest-Drainage (HAND), DTW lacks comprehensive documentation and non-proprietary tools for its calculation. Therefore, this product enables users like environmental authorities, NGOs, students or GIS analysts to calculate DTW more easily.

About the product

The product represents an user-friendly ArcGIS script tool which calculates the DTW index using a Digital Elevation Model (DEM) and an optional hexagonal grid layer. The implemented workflow is based on the steps described by Schönauer and Maack (2021). The encoded workflow steps implemented in this ArcGIS script tool encompass the following:

- **Pre-processing:** The input DEM is hydrologically corrected by applying an algorithm that fills sinks and depressions.
- Stream extraction: Flow direction and flow accumulation are calculated using the Deterministic 8 Neighbour method. Subsequently, a stream network is extracted out of the flow accumulation raster based on the Flow Initiation Area (FIA) in hectares specified by the user.
- DTW calculation: A slope map is derived from the initial (not hydrologically corrected) DEM
 and used together with the extracted stream data in a cost function for calculating the DTW
 index.

• **DTW** aggregation (optional): For better and faster visualization of soil wetness patterns and enhanced decision-making, the index values are averaged in hexagonal grids which can optionally be provided by the user.

Please consult the implemented code for more detailled information about the workflow.

Prerequisites

- **ArcGIS Pro:** The tool is designed to be used within ArcGIS Pro. The *Spatial Analyst* extension is required for executing the tool. As the tool was implemented for ArcGIS Pro 3.3.0, there might be compatibility issues in other versions of the software.
- SAGA GIS Installation: Ensure that SAGA GIS is installed on your system as the tool relies on
 it for calculations of accumulated cost which are not available within the ArcGIS
 geoprocessing tool environment. SAGA GIS can be downloaded under
 https://sourceforge.net/projects/saga-gis/. You might have also installed SAGA GIS already as
 part of a QGIS installation.
- Saga_cmd executable: You need to know the directory path to the saga_cmd executable ("saga_cmd.exe") for the tool to function correctly. If SAGA GIS is installed seperately (and not as part of QGIS), the executable can usually be found under C:/Program Files/SAGA/saga_cmd.exe.

Parameters

Parameter	Data Type	Type	Description
Digital	Raster	Required	The Digital Elevation Model representing the terrain of
Elevation	Layer		the study area.
Model			
Flow	Float	Required	The Flow Initiation Area in hectares, representing the
Initiation			minimum area required to initiate a stream or river.
Area (FIA)			Smaller FIAs lead to more extracted streams, while a
			greater FIA results in fewer extracted streams and
			drier assumptions of the landscape. As the FIA heavily
			influences the resulting DTW maps, consult further
			information and literature before setting the FIA.
Hexagons	Feature	Optional	Polygon feature layer containing hexagonal grid cells.
	Layer		If provided, the tool will aggregate the DTW values
			within each hexagonal cell and save the aggregated
			output as a separate layer.
Saga_cmd	String	Required	The file path to the SAGA GIS command-line
Path			executable ("saga_cmd.exe"). This path is necessary
			for executing SAGA GIS tools within the script. If SAGA
			GIS is installed seperately (and not as part of QGIS),
			the executable can usually be found under C:/Program
			Files/SAGA/saga_cmd.exe.
Workspace	String	Required	The directory where intermediate files will be stored.
			This folder should have enough disk space to
			accommodate large raster files. By default, the tool

			creates a folder named DepthToWater under
			C:/Temp/.
Output	Raster	Required	The file path for the DTW raster output. The name
Layer	Dataset		should include a .tif extension if saving as a TIFF file,
			or a file name without an extension if saving within a
			geodatabase.

Outputs

DTW Raster	The primary output raster showing the calculated DTW across the	
	landscape	
Aggregated DTW	If hexagons were provided, this output represents the mean DTW value	
Raster	aggregated within each hexagonal cell	
Intermediate results	The intermediate rasters (e.g. slope, flow direction, flow accumulation	
	etc.) can be found in your workspace directory (by default	
	C:/Temp/DepthToWater)	

Support

For further assistance, contact the developer or refer to ArcGIS Pro's documentation for additional help with the implemented geoprocessing tools and scripting.

References

Schönauer, M., & Maack, J. (2021). *R-code for calculating depth-to-water (DTW) maps using GRASS GIS*. https://doi.org/10.5281/zenodo.5638517.