

Examen d'Algèbre 2 Session Normale, Janvier 2020 Durée 2H

Ecole Supérieure de l'Education & de la Formation

Pr. Nouh IZEM

NB: (Barème)

Ex1:(1+1+1+[0.5+0.5]+1+1+1=7pts)

Ex2:([1.5+1.5]+[1.5+1.5]=6pts)

Ex3:(1+2+1+2+1+1=8pts)

Exercice 1

Soient $E = \{(x, y, z) \in /x + y - 2z = 0 \text{ et } 2x - y - z = 0\}$ et $F = \{(x, y, z) \in \mathbb{R}^3 / x + y - z = 0\}$ deux sous-ensembles de \mathbb{R}^3 . On admettra que F est un sous espaces vectoriel de \mathbb{R}^3 . Soient $u_1 = (1, 1, 1), \ u_2 = (1, 0, 1), \ u_3 = (0, 1, 1)$ et $u_4 = (1, 1, 0)$.

- $\boxed{1}$ Montrer que E est un sous espaces vectoriel de \mathbb{R}^3 .
- 2 Déterminer une famille génératrice de E et montrer que c'est une base.
- $\boxed{3}$ Montrer que la famille $\{u_2, u_3\}$ est une base de F.
- 4 Dire et justifier si la famille suivante:
 - (a)- $\{u_1, u_2, u_3, u_4\}$ est libre dans \mathbb{R}^3 .
 - (b)- $\{u_1, u_2\}$ est génératrice de \mathbb{R}^3 .
- $\boxed{5}$ Montrer que $\{u_1, u_2, u_3\}$ est une famille libre de \mathbb{R}^3 . Conclure
- 6 Exprimer le vecteur U = (1, 2, 3) en fonction de u_1, u_2 et u_3 .
- 7 Former l'équation cartésienne du sous espaces vectoriel $G = vect(\{u_3, u_4\})$.

Exercice 2

- $\fbox{1}$ Soit $P \in \mathbb{C}[X]$ défini par: $P(X) = 2X^3 + 3X^2 + 6X + 1 3j$
 - (a) Montrer que $j = e^{\frac{2i\pi}{3}}$ est une racine multiple de P.
- \aleph (b) Factoriser P dans $\mathbb{C}[X]$.
- - (a) $X^4 + 2X^2 3$;

(b) $X^4 + 1$;

Exercice 3

Soient les fractions rationnelles suivantes définies par:

$$F_1(X) = \frac{X-1}{X^2(X^2+1)}, \quad F_2(X) = \frac{X^2+1}{X^2(X^3-1)}, \quad F_3(X) = \frac{X}{(X^2+1)^{2020}}$$

- $\boxed{1}$ Ecrire la forme de la décomposition en éléments simples de F_1 dans $\mathbb{R}(X)$.
- $\fbox{2}$ Calculer les coefficients de la décomposition en éléments simples de F_1 dans $\Bbb R(X)$.
- $\fbox{3}$ Ecrire la forme de la décomposition en éléments simples de F_2 dans $\mathbb{C}(X)$.
- 4 Calculer les coefficients de la décomposition en éléments simples de F_2 dans $\mathbb{C}(X)$.
- $\boxed{5}$ En déduire la décomposition en éléments simples de F_2 dans $\mathbb{R}(X)$.
- $\boxed{6}$ Donner (sans calcul!) la décomposition en éléments simples de F_3 dans $\mathbb{R}(X)$. Justifier?

