

Jan Kämper & Florian Börgel

Universität Oldenburg Semester 2016 11.10.2016

- Selection of Main Parameters
- Rotor design, BEM
- Control and characteristic curves
- Tower design, modal analysis
- External conditions
- Fatigue load analysis
- Extreme load analysis

- Selection of Main Parameters
- Rotor design, BEM
- Control and characteristic curves
- 4 Tower design, modal analysis
- External conditions
- 6 Fatigue load analysis
- 7 Extreme load analysis

Formulas

Results

Main parameters	Unit	Value
Calculate total conversion efficiency	m	0.4704
Total wind power that needs to be extracted	kW	7439.258
Rated wind speed (rounded up)	m/s	11
Rotor radius (rounded up)	m	54
Blade length (without hub)	m	52.75
Rotor area (rounded radius)	m ²	9160.884
Specific rating (design)	W/m^2	382.051
λD Design tip speed ratio	-	7.454
Rotor rated speed	rpm	14.5
Blade element length (8 elements, same length)	m	6.593

Estimation of AEP

$$\mathsf{AEP} = \sum_{\mathsf{v}} \mathsf{n}_{\mathsf{v}} \cdot \mathsf{p}_{\mathsf{v}}$$

with:

n = number of hours

p = power curve

v = wind speed

Resulting Energy yield

AEP = 13,49GWh

Lift-to-drag ratio

Table: Main aerodynamic parameters

- Selection of Main Parameters
- Rotor design, BEM
- 3 Control and characteristic curves
- 4 Tower design, modal analysis
- **External** conditions
- 6 Fatigue load analysis
- Extreme load analysis

BEM algorithm

Blade design

Station	1	2	3	4	5	6	7	8	9
	Cylinder	65-421	65-421	65-421	65-421	65-415	65-415	65-415	65-415
Blade	3.297	9.891	16.484	23.078	29.672	36.≥66	42.859	49.453	52.750
Chord	6,628	5,426	3,935	3,014	2,425	1,887	1,617	1,413	1,329
Twist	27,590	11,022	3,813	0,055	-2,211	-2,715	-3,783	-4,580	-4,907

- Selection of Main Parameters
- 2 Rotor design, BEM
- Control and characteristic curves
- 4 Tower design, modal analysis
- **External** conditions
- 6 Fatigue load analysis
- Extreme load analysis

- Selection of Main Parameters
- 2 Rotor design, BEM
- Control and characteristic curves
- Tower design, modal analysis
- **5** External conditions
- 6 Fatigue load analysis
- Extreme load analysis

- Selection of Main Parameters
- 2 Rotor design, BEM
- 3 Control and characteristic curves
- 4 Tower design, modal analysis
- External conditions
- 6 Fatigue load analysis
- Extreme load analysis

- Selection of Main Parameters
- Rotor design, BEM
- Control and characteristic curves
- 4 Tower design, modal analysis
- External conditions
- 6 Fatigue load analysis
- Extreme load analysis

- Rotor design, BEM

- Extreme load analysis

Thanks!