Numeros complejos.

Definición de un numero complejo.

Para empezar a hablar de numeros complejos primero hay que definir a la unidad imaginaria.

$$\sqrt{-1} = i$$

Todos los numeros de la forma bi donde $b \in \mathbb{R}$ son numeros puramente imaginario.

Un numero complejo es la suma entre un numero real y uno imaginario y se suelen llamar z tal que:

$$z = a + bi$$

Con $a \in \mathbb{R}$, $b \in \mathbb{R}$ y $z \in \mathbb{C}$

Representación geometrica en el plano complejo

Los complejos pueden representarse en un plano mediante pares ordenados de numeros reales, esto se debe al isomorfismo que tiene $(\mathbb{C}, +)$ con $(\mathbb{R}^2, +)$ por lo tanto pueden representarse como vectores.

Igualdad.

La igualdad entre numeros complejos se define asi:

$$z_1 = a + bi \wedge z_2 = c + di$$

$$z_1 = z_2 \Leftrightarrow a = c \land b = d$$

Modulo.

Geometricamente es el modulo del vector asociado a z.

$$|z| = \sqrt{a^2 + b^2}$$

Adición.

$$z = z_1 + z_2 = a + bi + c + di = a + c + bi + di = (a + c) + (b + d)i$$

Es equivalente a la suma de vectores, por lo tanto tiene sus mismas propiedades. Multiplicación.

$$z = z_1 \cdot z_2 = (a+bi) \cdot (b+di) = (a \cdot c - b \cdot d) + i(a \cdot d + b \cdot c)$$

No es necesario recordar esta formula de memoria pues la suma es distributiva respecto de la multiplicación y se puede llegar al resultado operando con esta propiedad y recordando que $i^2 = -1$.

Conjugado.

El conjugado de un numero complejo z=a+bi se define:

$$\bar{z} = a - bi$$

Es decir, tiene la misma parte real y opuesta parte imaginaria. El conjugado es distributiva respecto de la suma, multiplicación y división. Además hay una propiedad muy interesante que nos ayudará a resolver divisiones.

$$z \cdot \bar{z} = |z|^2$$

Esta propiedad es util para deshacerse de un denominador complejo multiplicando arriba y abajo por su conjugado similar a como se suele hacer con la radicación.

Potencias naturales