Теория чисел (практика)

Владимир Латыпов donrumata03@gmail.com

Vladimir Latypov donrumata03@gmail.com

Содержание

1 Разбор ДЗ 1	3
1.1 Поле	3
$1.2\ m Kopperthoctь определения локализации S^{-1}R$	3
1.3 Пример, где условие \cdot s существено: $\mathbb Z$	
1.4 Прообраз идеала при гомоморфизме — тоже идеал	
2 Гауссовы числа	
3 Практика 2	3
3.1 Раскладываем на простые множители в кольце Гауссовых чисел	

1 Разбор ДЗ 1

1.1 Поле

Теорема 1.1.1 $\frac{\mathbb{Z}}{p\mathbb{Z}}$ — поле из p элементов

Доказательство Решим уравнение $\overline{a}\cdot\overline{b}+\overline{c}\cdot\overline{d}=1$ алгоритмом Евклида, тогда $\overline{a}\cdot\overline{b}=1$.

1.2 Корретность определения локализации $S^{-1}R$

Показываем, что отношение из определения $S^{-1}R$ — отношение эквивалентности: $(a_1,s_1)\sim(a_2,s_2) \stackrel{\text{def}}{\Longleftrightarrow} (a_1s_2-a_2s_1)\cdot s$ для некоторого s.

Без s тразитивность для не областей целостности не докажется.

Д: домножим накрест равенства, вынесем за скобку.

1.3 Пример, где условие $\cdot s$ существено: $\mathbb Z$

$$S = \{1, 2, 4\}$$

$$S^{-1}R \cong \mathbb{F}_3$$

Разберём 18 случаев, расположим в 3 ряда, 6 колонок.

1.4 Прообраз идеала при гомоморфизме — тоже идеал

Замечание 1.4.2 Уже доказали для ядра (прообраза $\{0\}$)

Доказательство Для начала покажем, что это

2 Гауссовы числа

Определение 2.1 Z[i] — целые Гауссовы числа ($\mathfrak{R},\mathfrak{I}\in\mathbb{Z}$)

Поле частных Z[i] ($\cong \mathbb{Q}[i] = Z[i] + iZ[i]$) вкладывается в \mathbb{C} .

Евклидова норма определяется почти как для копексных: $d(a+bi) = a^2 + b^2$.

Целые гауссовы числа — тоже Евклидово кольцо: для деления с остатком

- делим как комплексные числа
- берём ближайшее из $\mathbb{Z}[i]$

3 Практика 2

3.1 Раскладываем на простые множители в кольце Гауссовых чисел

От 1 до 10-и

- 1
- $2 = (1+i)(1-i) = -i(1+i)^2$
- 3
- 5 = (2 i)(2 + i)
- 7

Замечание 3.1.1 Если сумма квардатов частей — простое число, то и само Гауссово число простое (a^2+b^2 — простое $\Rightarrow a+bi$ — простое + в силу мультипликативности нормы « $\|a+bi\|=a^2+b^2$ » имеем N(a+bi)=N(x)+N(y))

$$1 + 3i = (1+i)(2+i)$$

Нарисовали на координатах схемку 5×5 простых гауссовых чисел.

Теорема 3.1.2

$$\mathbb{Z}[i]/(a+bi) \cong \mathbb{Z}/(a^2+b^2)$$

Доказательство

$$\mathbb{Z} \stackrel{f}{\to} \mathbb{Z}[i]/(a+bi).$$

Покажем, что $a^2+b^2
ightarrow \ker f = \mathbb{Z} \cap_{\mathtt{внутри}} Z_{[i]} (a+bi).$

Замечание 3.1.3 $a, b \neq 0$ a + bi— простое $\Leftrightarrow a^2 + b^2$ — простое

Пример 3.1.4

Easy to learn

Great output

Intuitive

Our best Typst yet

Responsive design in print for everyone

One more thing...

 $\mathbb{Z}[i]/(2) = \mathbb{Z}[i]/(1+i)^2 = \mathbb{F}_2[\varepsilon]/(\varepsilon^2)$ (где ε — dfgdsfg dfgdsfg

dfgdsfg dfgdsfg dfgdsfgdfgdsfg dfgdsfg dfgdsfg

Теорема 3.1.5 (Китайская теорема об остатках) $\gcd(m,n)=1$ $\mathbb{Z}/mn\mathbb{Z}\cong\mathbb{Z}/n\mathbb{Z}\times\mathbb{Z}/m\mathbb{Z}$