DS3

3h00

- Les calculatrices sont <u>interdites</u> durant les cours, TD et a fortiori durant les DS de mathématiques.
- Si vous pensez avoir découvert une erreur, indiquez-le clairement sur la copie et justifiez les initiatives que vous êtes amené·e ·s à prendre.
- Une grande attention sera apportée à la clarté de la rédaction et à la présentations des solutions. (Inscrivez clairement en titre le numéro de l'exercice, vous pouvez aussi encadrer les réponses finales.)
- Vérifiez vos résultats.
- Le résultat d'une question peut être admis et utilisé pour traiter les questions suivantes en le signalant explicitement sur la copie.

Exercice 1. 1. Soit $z \in \mathbb{C}$. Rappeler le lien entre z, \overline{z} et |z| d'une part, et entre z, \overline{z} et Re(z) d'autre part.

2. En déduire que pour tout $(z_1, z_2) \in \mathbb{C}^2$ on a :

$$|z_1 - z_2|^2 = |z_1|^2 - 2Re(z_1 z_2) + |z_2|^2$$

Exercice 2. On considère la relation de récurrence :

$$(R): \forall n \in \mathbb{N}, \ u_{n+2} = 3u_{n+1} - 2u_n + 1$$

Soit (u_n) vérifiant (R), et $u_0 = 1$, $u_1 = 3$.

- 1. Déterminer une suite (v_n) vérifiant (R) de la forme : $v_n = an + b$ avec $(a, b) \in \mathbb{R}^2$.
- 2. On pose alors $w_n = u_n v_n$. Montrer que (w_n) vérifie :

$$\forall n \in \mathbb{N}, \ w_{n+2} = 3w_{n+1} - 2w_n$$

- 3. En déduire l'expression de w_n en fonction de n.
- 4. Donner alors l'expression de u_n en fonction de n.

Exercice 3. Pour tout complexe z, on considère : $f(z) = z^4 - 2z^3 + 6z^2 - 8z + 8z^2 - 8z^2 - 8z^2 + 8z^2 - 8$

- 1. Soit $b \in \mathbb{R}$, exprimer en fonction de b les parties réelles et imaginaires de f(ib).
- 2. En déduire que l'équation f(z) = 0 admet deux solutions imaginaires pures. Quel lien y a-t-il entre ces solutions?
- 3. Démontrer qu'il existe deux réels α et β tels que pour tout $z \in \mathbb{C}$:

$$f(z) = (z^2 + 4)(z^2 + \alpha z + \beta)$$

4. Résoudre alors f(z) = 0 dans \mathbb{C} .

Exercice 4. On définit deux suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ par

$$u_0 = 3 \quad \forall n \in \mathbb{N}, \ u_{n+1} = \frac{2u_n}{u_n + 1} \quad v_n = \frac{2u_n - 1}{-u_n + 1}$$

- 1. **Python**: Ecrire une fonction Python qui prend en argument un entier n et retourne la valeur de u_n et v_n .
- 2. Résoudre $\frac{2x}{x+1} > 1$
- 3. Montrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n > 1$ et en déduire que $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont bien définies.
- 4. Montrer que $(v_n)_{n\in\mathbb{N}}$ vérifie pour tout $n\in\mathbb{N}$

$$v_{n+1} = 2v_n + 1$$

- 5. Donner l'expression de v_n en fonction de n.
- 6. En déduire l'expression de u_n en fonction de n.

Exercice 5. Pour tout $n \in \mathbb{N}^*$ on pose

$$C_n = \sum_{k=0}^n \cos\left(\frac{k\pi}{n}\right)$$
 et $S_n = \sum_{k=0}^n \sin\left(\frac{k\pi}{n}\right)$

On cherche dans ce problème à calculer C_n et S_n en fonction de n. On définit pour tout $x \in]0, 2\pi[$:

$$Z_n(x) = \sum_{k=0}^n e^{ikx}.$$

- 1. Calculer S_4 .
- 2. Quel est le lien entre C_n, S_n et $Z_n(\frac{\pi}{n})$?
- 3. Montrer par récurrence que

$$Z_n(x) = \frac{1 - e^{(n+1)ix}}{1 - e^{ix}}.$$

4. Montrer que

$$Z_n(\frac{\pi}{n}) = \frac{1 + e^{i\frac{\pi}{n}}}{1 - e^{i\frac{\pi}{n}}} = \frac{1}{-i\tan(\frac{\pi}{2n})}$$

- 5. En déduire que : $S_n = \frac{1}{\tan\left(\frac{\pi}{2n}\right)}$. Que vaut C_n ?
- 6. En déduire la valeur de $\tan\left(\frac{\pi}{8}\right)$.
- 7. Rappeler la valeur de $\lim_{x\to 0} \frac{\tan(x)}{x}$
- 8. En déduire que

$$S_n \sim \frac{2n}{\pi}$$

INFORMATIQUE

Exercice 6. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1,u_1=3$ et pour tout $n\in\mathbb{N}$

$$u_{n+2} = u_{n+1}^2 + 3u_n$$

- 1. Ecrire une fonction python $\mathtt{suite_u}$ qui prend en argument un entier n et retourne la valeur de u_n
- 2. Ecrire une fonction python somme qui prend en argument un entier n et retournela valeur de $\sum_{k=0}^{n} u_k$
- 3. Ecrire une fonction python limites qui prend en argument un flottant A et retourne le premier entier n tel que $u_n > A$

Exercice 7. Soit f la fonction définie par $f(x) = x - \sqrt{2x+1}$

- 1. Donner les variations de f sur son ensemble de définition
- 2. Ecrire une fonction python f qui prend en argument un flottant x et retourne "erreur" si x n'est pas dans l'ensemble de définition de f et f(x) sinon.
- 3. On dispose de la fonction mystère suivante :

Qu'affiche la console avec les instructions suivantes - on justifiera brièvement :

- (a) print(mystere(-1,2))
- (b) print(mystere(0,2))
- (c) print(mystere(0,-0.5))
- (d) print(mystere(999,1001))