

Di chi sono i miei dati 20 Settembre 2013, Bologna

Sicurezza all'ombra delle Torri

Concorrenza sleale da parte di dipendenti e collaboratori infedeli nell'epoca della crisi

Paolo Dal Checco Consulente Informatico Forense

Chi sono

- PhD in Informatica a Torino (Computer & Network Security)
- Consulente Informatico Forense
- Perizie Informatiche per Procure, Tribunali, Forze dell'Ordine, Avvocati, Aziende, Privati
- Founder DEFT Association
- Socio IISFA Italian Chapter

Un problema di percezione

- "Di chi sono i miei dati"... un controsenso o un problema di percezione reale?
- Scarsa percezione del reato informatico rispetto al reato "ordinario", perché:
 - Facilità nel commetterlo
 - Errata sensazione di anonimato e impunità
 - I dati digitali vengono percepiti come immateriali
 - Poca chiarezza su proprietà intellettuale

La dura realtà...

- Accesso abusivo a sistema telematico (art. 615 ter): da 1 a 5 anni
- Detenzione e diffusione abusiva di codici di accesso (615 quater): da 1 a 2 anni
- Diffusione di apparecchiature, dispositivi o programmi informatici diretti a danneggiare o interrompere un sistema informatico o telematico (art. 615 quinquies): da 1 a 2 anni
- Installazione di apparecchiature atte ad intercettare od impedire comunicazioni o conversazioni telegrafiche o telefoniche (art. 617 bis): da 1 a 5 anni
- Falsificazione, alterazione o soppressione del contenuto di comunicazioni o conversazioni telegrafiche o telefoniche (art. 617 ter): da 1 a 4 anni
- Intercettazione, impedimento o interruzione illecita di comunicazioni informatiche o telematiche (art. 617 quater): da 1 a 5 anni
- Installazione di apparecchiature atte ad intercettare, impedire od interrompere comunicazioni informatiche o telematiche (art. 617 quinquies): da 1 a 5 anni

La dura realtà...

- Falsificazione, alterazione o soppressione del contenuto di comunicazioni informatiche o telematiche (art. 617 sexies): da 1 a 5 anni
- Rivelazioni del contenuto di corrispondenza (art. 618): fino a 6 mesi
- Rivelazione del contenuto di documenti segreti (art. 621): fino a 3 anni
- Rivelazione di segreto professionale (art. 622): fino a I anno
- Rivelazione di segreti scientifici o industriali (art. 623): fino a 2 anni
- Danneggiamento informatico (art. 635 bis): da 1 a 5 anni
- Installazione di apparecchiature atte ad intercettare od impedire comunicazioni o conversazioni telegrafiche o telefoniche: da l a 5 anni
- Intercettazione, impedimento o interruzione illecita di comunicazioni informatiche o telematiche: da I a 5 anni

Cosa è l'incidente informatico

- "Expectations for Computer Security Incident Response" (RFC 2350, ma vedere anche ISO 27035, ISO 27037 e ISO 27041-42-43)
- L'incidente informatico, un evento che compromette aspetti della sicurezza dei computer e delle reti, con almeno uno fra:
 - perdita di confidenzialità delle informazioni
 - compromissione dell'integrità delle informazioni
 - interruzione di servizio
 - utilizzo inappropriato di servizi, sistemi, informazioni
 - danneggiamento di sistemi

Come gestire l'incidente informatico

- "Guidelines for Evidence Collection and Archiving" (RFC 3227)
- Procedere metodicamente
- Catturare un'immagine completa del sistema
- Minimizzare le modifiche ai dati
- Isolare se necessario il sistema
- Prima si raccoglie, poi si analizza
- Procedere in ordine di volatilità
- Garantire la catena di custodia

Come non gestire l'incidente informatico

- Mancata copia forense (bitstream) dei supporti
- Accensione e utilizzo del PC originale
- Mancata conservazione dei supporti originali
- Mancata apposizione di data certa
- Monitoraggio del dipendente in tempo reale
- Violazione Privacy
- Errata repertazione (hash, sigilli, catena di conservazione)
- Uso di strumenti di duplicazione inadeguati (es. Norton Ghost)
- Utilizzo di strumenti di analisi o metodologie non adeguate (es. RegExp malformate)
- Per l'Avvocato: non chiamare il CT all'ultimo momento
- Per il CT: non fare l'Avvocato (vale anche il viceversa)

Case study

Alcuni casi reali opportunamente anonimizzati

Case study: "Cosa è il cestino"

- Un'azienda ci segnala che un dipendente li ha lasciati improvvisamente, aprendo nuova attività
- Sono sicuri abbia una copia del database clienti di proprietà aziendale
- Hanno solo il computer dell'ex dipendente

Case study: "Cosa è il cestino?"

- Un'azienda ci segnala che un dipendente li ha lasciati improvvisamente, aprendo nuova attività
- Sono sicuri abbia una copia del database clienti di proprietà aziendale
- Hanno solo il computer dell'ex dipendente

 Una veloce timeline realizzata tramite fls (TSK o Autopsy) ci serve per inquadrare i giorni in cui il PC è stato utilizzato maggiormente

```
fls -o 63 -r -m C: /dev/sda > c-timeline.body

mactime -y -m -d -i day c-timeline-daily.csv -z

Europe/Rome -b c-timeline.body > c-timeline.csv
```


• Tramite il daily summary notiamo che in una certa data, prossima alla dipartita, vi sono stati numerosi accessi in lettura a file (compreso il DB dei clienti)

```
Tue 03 02 2010, 6616
Wed 03 03 2010, 3990
Thu 03 04 2010, 62239
Fri 03 05 2010, 315
Sat 03 06 2010, 5
Sun 03 07 2010, 178
```

```
Wed 03 03 2010 17:00:00, 63
Wed 03 03 2010 18:00:00, 94
Thu 03 04 2010 01:00:00, 2
Thu 03 04 2010 02:00:00, 1
Thu 03 04 2010 09:00:00, 294
Thu 03 04 2010 10:00:00, 46
Thu 03 04 2010 11:00:00, 13874
Thu 03 04 2010 12:00:00, 44408
Thu 03 04 2010 13:00:00, 3478
Thu 03 04 2010 16:00:00, 3
Thu 03 04 2010 17:00:00, 98
Thu 03 04 2010 18:00:00, 1
Thu 03 04 2010 19:00:00, 2
Thu 03 04 2010 19:00:00, 2
Thu 03 04 2010 20:00:00, 3
Thu 03 04 2010 20:00:00, 2
Thu 03 04 2010 20:00:00, 3
Thu 03 04 2010 20:00:00, 1
Thu 03 04 2010 20:00:00, 2
```


 Dal registro di sistema (Windows) con il tool gratuito UsbDeview rileviamo che poco prima degli accessi è stata inserita una pendrive USB

<u>File Edit View Options Help</u>										
🗙 🌚 🧆 🔸 🖫						No Yes				
Device Name	Description	Device Type	Drive	Serial Number	Last Plug/Un	Connected				
Port_#0006.Hub_#0004	SanDisk U3 Cruzer Micro USB	Mass Storage	E:			No				
Dell USB Keyboard	USB Input Device	HID (Human I				Yes				
Microsoft USB Wireless	Microsoft Hardware USB Wir	HID (Human I				Yes				
Port_#0006.Hub_#0004	Generic USB SD Reader USB	Mass Storage				No				
0000.001d.0000.001.005	USB Input Device	HID (Human I				No				
0000.001d.0000.001.005	USB Input Device	HID (Human I				No				
Motorola USB Device	MTP USB Device	Unknown				No				
0000.001d.0000.001.005	USB Mass Storage Device	Mass Storage				No				
0000.001d.0000.001.005	USB Mass Storage Device	Mass Storage				No				
0000.001d.0000.001.006	USB Mass Storage Device	Mass Storage				No				

- Tramite analisi del registro, dalle ShellBag/MRU notiamo che sulla pendrive (non aziendale e non in possesso dell'azienda) esisteva un folder chiamato... "DB CLIENTI" aperto sulla pendrive
- Tool per analisi ShellBag/MRU Streams: Registry Report (GaiJin), RegRipper (H. Carvey), Sbag (TzWorks)
- Bingo! :-)

Il server dell'azienda Snake Oil Spa viene trovato con schermata nera e un "no bootable device" sullo schermo *

```
No bootable device -- insert boot disk and press any key
-
```

Errore software/hardware o danneggiamento informatico?

 Si avvia il server con DEFT e con Guymager si crea un'immagine forense del disco, in EWF

 Tentiamo di montare la copia forense ma, come immaginabile, non ci sono partizioni

```
deft8vm /mnt/hgfs/Shared % fdisk -l img.dd

Disk img.dd: 74 MB, 74560000 bytes
255 heads, 63 sectors/track, 9 cylinders, total 145625 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000
Disk img.dd doesn't contain a valid partition table
```

 Apriamo l'immagine EWF in un hex editor (FTK Imager) e verifichiamo se ci sono dati...

- La parte iniziale del disco è piena di 0x00
- Ad un certo punto però dei dati sembrano esserci
- Questo è quello che troviamo...

- Questo è quello che avremmo dovuto trovare...
- Un MBR, o settore di avvio, con qualcosa all'interno dei primi 512 byte

```
0000C00C90 BB 4C 10 BE 05 7C C6 44 FF 01 66 8B 1E 44 7C C7 L % | ED9 f D C
0000C00Cb0 70 G6 31 C0 09 44 04 G6-09 44 0C B4 42 CD 13 72 pf1A D f D 'Bf r
0000000170 00 BE 93 7D E8 2A 00 EB-FE 47 52 55 42 20 00 47 -%-; e*- EDGRUB -G
       20 20 00 00 00 00 00 00-00 00 00 00 00 02 02 02
```


- Tentiamo di ricostruire le partizioni
- Non possiamo lavorare sull'immagine EWF che è "congelata" per non alterare i dati e mantenere la catena di conservazione
- Come possiamo procedere?

- Due alternative almeno per "scongelare" la copia forense EWF, vediamo come fare in DEFT:
 - Riverso l'EWF su un disco creando un "clone" di quello originario

ewfmount img.ewf /mnt/ewf

dcfldd if=/mnt/ewf/ewf1 of=/dev/sdb

 Uso "xmount" da DEFT per convertire virtualmente in real time l'EWF in un DD, <u>utilizzando il caching</u>

xmount --in ewf --out dd --cache img.cache img.ewf /mnt/ewf

- Una volta che ho una copia modificabile (ovviamente l'originale in entrambi i casi rimarrà integro) procedo con un tool di partition recovery, sul disco clone o sul virtual raw dd
- Utilizziamo "testdisk", presente in DEFT, che ovviamente conferma che manca la chiusura dell'MBR, cioé i byte "0xAA55"

```
TestDisk 6.11, Data Recovery Utility, April 2009
Christophe GRENIER <grenier@cgsecurity.org>
http://www.cgsecurity.org

Disk /mnt/ewf/ewf1 - 1000 GB / 931 GiB - CHS 121602 255 63 (RO)
Current partition structure:
Partition Start End Size in sectors

Partition sector doesn't have the endmark 0xAA55
```


 Testdisk propone alcune alternative, le testiamo e riusciamo a ricostruire le partizioni così da poterle visualizzare con "mmls" e montare su una directory

```
# mmls /mnt/ewf/img.dd
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors
    Slot
            Start
                         End
                                     Length
                                                  Description
                                                  Primary Table (#0)
00:
   Meta
            0000000000
                         0000000000
                                     00000000001
                                                  Unallocated
01:
           0000000000
                         00000000062
                                     00000000063
02: 00:00
                                                  Linux (0x83)
           00000000063
                         1145234556
                                     1145234552
03: ----
                                                  Unallocated
            1145334624
                         1145643544
                                     0000004124
# mount -o ro,loop,offset=$((63*512)) /mnt/ewf/img.dd /mnt/p2
```


- Andiamo a visualizzare il contenuto della partizione e cominciamo a esplorare il folder /var/log
- Trovo i file wtmp (last access, runlevel switch, reboot, shutdown) e btmp (come wtmp ma per tentativi falliti)
- Non si possono leggere i file direttamente perché sono strutturati: uso i comandi "last" e "lastb" con opportuni parametri

last -wix -f wtmp lastb -wix -f btmp

Parametri utilizzati per "last" e "lastb" (man last):

- -w: Display full user and domain names in the output.
- -i: This option is like -d in that it displays the IP number of the remote host, but it displays the IP number in numbers-and-dots notation.
- -x: Display the system shutdown entries and run level changes.
- -f file: Specifies a file to search other than /var/log/wtmp.

 Andiamo in /root e vediamo se c'è traccia degli ultimi comandi digitati in ".bash_history" e... sorpresa!

```
# cat .bash_history

fdisk -l

dd if=/dev/sda of=/root/sda.bin bs=512 count=1

dd if=/dev/zero of=/dev/sda bs=512 count=1

rm .bash_history
reboot
```

 Ciò che è avvenuto pare ovvio ma la domanda è: perché nonostante il "rm .bash_history" la history è rimasta? :-)

 La history di ogni sessione viene regolata tramite le seguenti variabili

```
deft8vm /var/log % set | grep HIS
HISTCONTROL=ignoredups:ignorespace
HISTFILE=/root/.bash_history
HISTFILESIZE=2000
HISTSIZE=1000
deft8vm /var/log %
```

 Cancellando il file .bash_history quindi si elimina la history vecchia, ma al logout viene scritta quella della sessione corrente!

Q&A

Grazie per l'attenzione!

