Smart Farmer – IoT Enabled Smart Farming Application

Submitted by

Team Id	PNT2022TMID43889
Team Lead	JAYARAMACHANDRAN R
Team Members	DILUXSAN S VISHNUVARTHAN E JAGATHEESWARI S

CONTENTS

CHAPTER NO	TITLE	PG.NO
1.	Introduction	4
	1.1.Project Overview	
	1.2.Purpose	
2.	Literature Survey	6
	2.1.Existing Problem	
	2.2.References	
	2.3.Problem Statement Definition	
3.	Ideation & Proposed Solution	10
	3.1.Prepare Empathy Map	
	3.2.Ideation	
	3.3. Proposed Solution	
	3.4. Proposed Solution Fit	
4.	Requirement Analysis	16
	4.1.Functional Requirement	
	4.2.Non- Functional Requirement	
5.	Project Design	19
	5.1. Data Flow Diagrams	
	5.2. Solution & Technical Architecture	
	5.3.User Stories	

6.	Project Planning & scheduling	23
	6.1 Sprint Planning & Estimation	
	6.2 Sprint Delivery Schedule	
	6.3Reports from JIRA	
7.	Coding and Solution	26
	7.1. Feature – 1	
	7.2. Feature 2	
	7.3.Data Scheme	
8.	Testing	36
	8.1. Test Cases	
	8.2. User Acceptance Testing	
9.	Results	39
	9.1.Performance Metrics	
10.	Advantages & Disadvantages	41
11.	Conclusion	41
12.	Future Scope	43
13.	Appendix	44
	13.1 Source code	
	13.2 GitHub & Project Demo Link	

1. Introduction

1.1 Project Overview

IoT-based farming systems help farmers monitor various parameters of their fields, such as soil moisture, temperature, and humidity, using several sensors. A farmer can monitor all sensor her parameters through his web or mobile application without being near his field. Crop irrigation is one of the most important tasks for a farmer. By monitoring sensor parameters and controlling motor pumps from a mobile application, irrigation or crop movement decisions can be made.

1.2 Purpose

Better production management leads to better cost control and less waste. For example, the ability to eliminate abnormal animal health conditions helps eliminate the risk of yield loss. In addition, automation increases efficiency. Smart Farming forms the ecological base of faming. Minimizing the site-specific application of inputs such as fertilizers and pesticides in precision farming systems reduces leaching issues and digester gas emissions.

2. Literature Survey

2.1 Existing Problem

Smart Farming improves entire farming systems by monitoring fields in real time. With the help of sensors and internet connectivity, the Internet of Things in culture has not only saved the celebrity era, but has also encouraged the abuse of resources such as water and electricity. Climate plays a very important role in agriculture. Mis-knowledge of climate also significantly reduces the quality production. of crop Precision quantity and agriculture/precision farming is one of his best known applications of IoT in agriculture. It enables smart farming applications such as livestock monitoring, field observation, and inventory monitoring, making farming practices more precise and controllable. To make smart. IoT has enabled weather greenhouses stations automatically adjust climate conditions according to a specific set of instructions. IoT implementation in the greenhouse eliminated human intervention, making the whole process more cost-effective and more accurate.

2.2 References

- 1. Zuraida Muhammad, Muhammad Azri Asyraf Mohd Hafez, Nor Adni MatLeh, Zakiah Mohd Yusoff, Shabinar Abd Hamid [1] The term "Internet of Things" refers to the connection of objects, equipment, vehicles, and other electronic devices to a network for the purpose of data exchange (IoT). The Internet of Things (IoT) is increasingly being utilised to connect objects and collect data.
- 2.Divya J., Divya M.,Janani V. [2] Agriculture is essential to India's economy and people's survival. The purpose of this project is to create an embedded-based soil monitoring and irrigation system that will reduce manual field monitoring and provide information via a mobile app. The method is intended to help farmers increase their agricultural output. A pH sensor, a temperature sensor, and a humidity sensor are among the tools used to examine the soil. Based on the findings, farmers may plant the bestcrop for the land.
- 3. H.G.C.R. Laksiri, H.A.C. Dharmagunawardhana, J.V. Wijayakulasooriya [3] Development of an effective loT-based smart irrigation system is also a crucial demand for farmers in the field of agriculture. This research develops a low-cost, weather-based smart watering system. To begin, an effective drip irrigation system must be devised that can automatically regulate water flow to plants based on soil moisture levels. Then, to make this water-saving irrigation system even more efficient, an IoT-based communication feature is added, allowing a remote user to monitor soil moisture conditions and manually adjust water flow.

2.3 Problem Statement Solution

Traditional agriculture and related sectors are unable to meet the demands of modern agriculture, which requires high yield, quality and efficient production. Therefore, it is very important to look to modernize existing methods and use information technology and data over a period of time to predict the best possible productivity and country-suitable crops. The introduction of high-speed internet, mobile devices, and access to reliable and low-cost satellites is just some of the key technologies characterizing the precision farming trend in agriculture. Precision agriculture is one of his best-known applications of IoT in the agricultural sector, with many organizations around the world using the technology. Products and services used include VRI Optimization, Soil Moisture Probes and Virtual Optimizer PRO. Optimize variable rate irrigation (VRI) to maximize profitability, improve yields and increase water efficiency in irrigated fields with variable terrain and soils. IoT is making great strides in areas such as manufacturing, healthcare, and automotive. When it comes to food production, transportation and storage, it offers a range of options to improve his per capita food availability in India. Sensors that provide information on soil nutrient status, pest infestation, moisture conditions, etc. can be used to improve crop yields over time. Here are some examples of problem areas related to agriculture and related sectors where IoT applications would benefit:

3. Ideation & Proposed Solution

3.1 Prepare Empathy Map

3.2 Ideation

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	 Watering the field is a difficult process, Farmers have to wait in the field until the water covers the whole farm field. Power Supply is also one of the problems. In Village Side, the power supply may vary. The Biggest Challenges Faced by IoT in the Agricultural Sector are Lack of Information, High Adoption, Cost and Security Concerns, etc
2.	Idea / Solution description	 As is the case of precision Agriculture Smart Farming Technique Enables Farmers better to monitor the fields and maintain the humidity level accordingly. The Data collected by sensors, In terms of humidity, temperature, moisture, and dew detections help in determining the weather pattern in Farms. So cultivation is done for suitable crops.
3.	Novelty / Uniqueness	ALERT MESSAGE – IoT sensor nodes collect information from the farming environment, such as soil moisture, air humidity, temperature, nutrient ingredients of soil, pest images, and water quality, then transmit collected data to IoT backhaul devices.

		REMOTE ACCESS – It helps the farmer to				
		operate the motor from anywhere.				
4.	Social Impact / Customer Satisfaction	 Reduces the wages for labors who work in the agricultural field. It saves a lot of time. IoT can help improve customer relationships by enhancing the customer's overall experience. Easily identify maintenance needs, build better products, send personalized communications, and more. IoT can also help e-commerce businesses thrive and increase sales. It make a wealthy society 				
5.	Business Model (Revenue Model)	Revenue (No. of Users vs Months) User 800				
6.	Scalability of the Solution	Scalability in smart farming refers to the adaptability of a system to increase the capacity, for example, the number of technology devices such as sensors and actuators, while enabling timely analysis.				

3.4 Proposed Solution Fit

4. Requirement Analysis

4.1 Functional Requirement

FR	Functional Requirement	Sub Requirement (Story / Sub-Task)
Ng. 1	(Epic)	
FR-1	User Registration	Registration through Form Registration
4.2		through Gmail
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	Sensor Function for framing	Measure the Temperature and Humidity
	System	Measure the Soil Monitoring Check the
		cropdiseases
FR-4	Manage Modules	Manage Roles of User
		Manage User permission
FR-5	Check whether details	Temperature detailsHumidity details
FR-6	Data Management	Manage the data of weather
		conditions Manage the data of
		crop conditions
		Manage the data of live stock conditions

4.2 Non-Functional Requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	User friendly guidelines for
		users to avail the features.
		Most simplistic user interface
		for ease of use.
NFR-2	Security	All the details about the user
		are protected from
		unauthorized access.
		Detection and identification of
		any misfunctions of sensors.
NFR-3	Reliability	Implementing Mesh IoT
		Networks
		Building a Multi-layered
		defence for IoT Networks.
NFR-4	Performance	The use of modern technology
		solutions helps to achieve the
		maximumperformances thus
		resulting in better quality and
		quantity yields.
NFR-5	Availability	This app is available for all
		platforms
NFR-6	Scalability	Scalability refers to the ability
		to increase available resources
		and systemcapability without
		the need to go through a major
		system redesign or
		implementation.

5. Project Design

5.1 Data Flow Diagram

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 Solution Architecture

- The different soil parameters (temperature, humidity, Soil Moisture) are sensed using different sensors, and the obtained value is stored in the IBM cloud.
- Arduino UNO is used as a processing unit that processes the data obtained from sensors and weather data from weather API.
- Node-red is used as a programming tool to wire the hardware, software, and APIs.
 The MQTT protocol is followed for communication.
- All the collected data are provided to the user through a mobile application that was
 developed using the MIT app inventor. The user could make a decision through an
 app, whether to water the crop or not depending upon the sensor values. By using
 the app they can remotely operate the motor switch.

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release	User Type
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by	I can access my account / dashboard	High	Sprint-1	Customer (Mobile user)
			entering my email, password, and confirmingmy password.				
		USN-2	As a user, I will receive confirmation emailonce I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1	
		USN-3	As a user, I can register for the application through Gmail		Medium	Sprint-1	
	Login	USN-4	As a user, I can log into the application by entering email & password		High	Sprint-1	
Customer (Web user)	Dashboard	USN-5	As a User can view the dashboard, and this dashboard include the check roles of access	I can view the dashboard in this smart farming application system.	High	Sprint 2	Customer (Web user)
			and then move to the manage modules.				
		USN-6	User can remotely access the motor switch	In the smart farming app	High	Sprint 3	

6. Project Planning & Scheduling

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Simulation creation	USN-1	Connect Sensors and Arduino with code	2	High	Kavipriya, Vasanth
Sprint-2	Software	USN-2	Creating device in the IBM Watson IoT platform workflow for IoT Scenarios using Node- RED	2	High	Swathy, Vasanth, Kavipriya
Sprint-3	MIT App Inventor	USN-3	Develop an application for the Smart farmerproject using MIT App Inventor	2	High	Selvabhar athi, Bala, Swathy
Sprint-3	Dashboard	USN-3	Design the Modules and test the app	2	High	Bala Vasanth , Kavipriya
Sprint-4	Web UI	USN-4	To make the user to interact with software.	2	High	Vasanth, Selvabhara thi

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Sprint End Date (Planned)		Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	16 Nov 2022

6.3 JIRA Report

7. Coding & Solutioning

7.1 Feature - 1

Receiving commands from IBM cloud using C++ program

```
#include "Arduino.h"
#include "dht.h"
#include "SoilMoisture.h"
#define dht apin A0
#define organization = "mmbh4c"
#define deviceType = "smartfarmer"
#define deviceId = "smartfarmer 1"
#define authMethod = "use-token-auth"
#define authToken = "123456789"
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";
char publishTopic[] = "iot-2/evt/abcd 1/fmt/json";char topic[] = "iot-
2/cmd/home/fmt/String";
char authMethod[] = "use-token-auth";char token[]=TOKEN;
char clientId[] = "d:" ORG ":" DEVICE TYPE ":"DEVICE ID;
const int sensor pin = A1; //soil moistureint pin out = 9;
dht DHT; int c=0; void setup()
{
pinMode(2, INPUT); //Pin 2 as INPUT pinMode(3, OUTPUT); //PIN 3 as OUTPUT
pinMode(9, OUTPUT);//output for pump
void loop()
```

```
if(digitalRead(2) == HIGH)
 digitalWrite(3, HIGH);
                         // turn the LED/Buzz ONdelay(10000);
 digitalWrite(3, LOW);
                           // turn the LED/Buzz OFFdelay(100);
 }
Serial.begin(9600);delay(1000);
   DHT.read11(dht apin); //tempraturefloat h=DHT.humidity;
float t=DHT.temperature;delay(5000); Serial.begin(9600);
 float moisture percentage; int sensor analog;
 sensor analog = analogRead(sensor pin);
   moisture percentage = (100 - ((sensor analog/1023.00) *100));
 float m=moisture percentage; delay(1000);
 if(m < 40) // pump
 while (m < 40)
 digitalWrite(pin out,HIGH);
                                     //open pump sensor analog =
 analogRead(sensor pin);
   moisture percentage = (100 - ((sensor analog/1023.00) *100));
 m=moisture percentage; delay(1000);
 }
 digitalWrite(pin out,LOW);
                                    //closepump
```

```
if(c>=0)
{
mySerial.begin(9600);delay(15000); Serial.begin(9600); delay(1000); Serial.print("\r");
delay(1000);

Serial.print((String)"update-
>"+(String)"Temprature="+t+(String)"Humidity="+h+(String)"Moisture="+m);delay(1000);
}

Noisture="+m);delay(1000);
```

Output

7.2 Feature – 2

Configuration of Node-Red to send commands to IBM cloud

ibmiot out node I used to send data from Node-Red to IBM Watson device. So, after adding it to the flow we need to configure it with credentials of our Watsondevice.

Here we add two buttons in UI

 $1 \rightarrow \text{for motor on}$

$2 \rightarrow \text{for motor off}$

We used a function node to analyses the data received and assign command toeach number.

The Java script code for the analyses is:

if(msg.payload===1)
msg.payload={"command":
"ON"}; else if(msg.payload===0)
msg.payload={"command":
"OFF"};

This is the program flow for sending commands to IBM cloud.

Adjusting User Interface

In order to display the parsed JSON data a Node-Red dashboard is created

Here we are using Gauges, text and button nodes to display in the UI and helps to monitor the parameters and control the farm equipment.

Below images are the Gauge, text and button node configurations.

Complete Program Flow

Web APP UI Home Tab

Mobile App UI

SMART FARMER APPLICATION

Blocks

8. Testing

8.1 Test Cases

8.2 User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

Increasing control over production leads to **better cost management and waste reduction**. The ability to trace anomalies in crop growth or livestock health, for instance, helps eliminate the risk of losing yields. Additionally, automation boosts efficiency. Smart farming **reduces the ecological footprint of farming**. Minimized or site-specific application of inputs, such as fertilizers and pesticides, in precision agriculture systems will mitigate leaching problems as well as the emission of greenhouse gases.

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	8	3	2	2	16
Duplicate	1	0	2	0	3
External	2	3	0	1	6
Fixed	9	2	3	17	<u>3</u> 1
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	1	4	1	1	7
Totals	21	12	9	22	66

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	5	О	О	5
Client Application	30	О	О	30
Security	2	О	О	2
Outsource Shipping	2	О	0	2
Exception Reporting	9	О	О	9
Final Report Output	4	О	0	4
Version Control	1	0	0	1

9.Result

10. Advantages & Disadvantages

Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of WebApp.

11. Conclusion

An IoT-based SMART FARMING SYSTEM for live monitoring of temperature, humidity and soil moisture is proposed using Arduino and cloud computing. The system has high efficiency and accuracy in acquiring live temperature and soil moisture data. The IoT-based smart farming system proposed in this report constantly assists farmers by providing accurate live feeds of ambient temperature and soil moisture for over 99 curated results, thus enabling farmers to increase their agricultural yields and help manage food production efficiently.

12. Future Scope

By collecting data from Sensor with IoT devices, we can learn about the "real state" of Crops. In future, IoT system in agriculture enables predictive analytics and helps you make better harvest decisions. It is important to use the latest information and communication technology to manage the family in order to improve the quantity and quality of products while optimizing the human labor force. In between Technologies available for today's glory: Soil, water, light, humidity and temperature control. Small Agricultural Products are designed to support field monitoring through the automation of automation systems using Sensors. As a result, Fame and associated volumes can easily monitor field conditions from anywhere.

13. Appendix

Links:

IBM cloud reference: https://cloud.ibm.com/

Github link: https://github.com/IBM-EPBL/IBM-Project-52382-1660999528

-IOT Watson simulator:

https://157uf3.internetofthings.ibmcloud.com/dashboard/devices/browse

Node-Red: https://node-red-hdyfv-2022-10-01.eugb.mybluemix.net/red/#flow/c7ddb1462b8a000c