Formlenes forutsetninger og gyldighetsområde antas å være kjent. Det antas også at symbolenes betydning framgår av konteksten og ligningene de framkommer i.

Kraft og bevegelse

Bevegelsesligninger (konstant akselerasjon):

$$\vec{v} = \vec{v}_0 + \vec{a}t$$
 $\vec{s} = \frac{1}{2} (\vec{v}_0 + \vec{v}) t$
 $\vec{s} = \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$ $2 \vec{a} \vec{s} = \vec{v}^2 - \vec{v}_0^2$

Newtons lover (i et inertialsystem):

N. 1. lov:
$$\sum \vec{F} = 0 \Leftrightarrow \vec{v} = 0$$
 eller $\vec{v} = \text{konst.}$,

N. 2. lov:
$$\sum \vec{F} = m\vec{a}$$

N. 3. lov:
$$\vec{F}_{AB} = -\vec{F}_{BA}$$

Polarkoordinater og bevegelse:

$$x = r \cos \theta$$
, $y = r \sin \theta$
 $\vec{e_r} = \cos \theta \vec{i} + \sin \theta \vec{j}$, $\vec{e_\theta} = -\sin \theta \vec{i} + \cos \theta \vec{j}$

Vinkelfart:
$$\omega = \frac{d\theta}{dt}$$

Vinkelakselerasjon:
$$\alpha = \frac{d\omega}{dt}$$

$$\vec{v} = \frac{dr}{dt}\vec{e}_{r} + \omega r \vec{e}_{\theta}$$

$$\vec{a} = \left(\frac{d^{2}r}{dt^{2}} - \omega^{2}r\right)\vec{e}_{r} + \left(\alpha r + 2\omega \frac{dr}{dt}\right)\vec{e}_{\theta}$$

N. 2. lov:
$$\sum F_r = m \left(\frac{d^2 r}{dt^2} - \omega^2 r \right)$$

$$\sum F_\theta = m \left(\alpha r + 2\omega \frac{dr}{dt} \right)$$

Noen kraftmodeller:

Friksjon (kinetisk):
$$R = \mu N$$

Tyngde:
$$\vec{G} = m\vec{g}$$
, $g = 9.81 \text{m/s}^2$

Fjær:
$$F = -kx$$

Viskøs dempning:
$$\vec{F} = -b\vec{v}$$

Coulomb–kraften:
$$\vec{F}_{\rm C} = -k_{\rm e} \frac{qQ}{r^2} \vec{e}_{\rm r}$$

$$k_{\rm e} = 8.99 \cdot 10^9 \, {\rm Nm}^2 / {\rm C}^2$$

Mekanisk arbeid og energi

Arbeid:

$$W = \int_{\vec{s}} \vec{F} \cdot d\vec{s}$$

Ved rettlinjet bevegelse og konstant kraft:

$$W = \vec{F} \cdot \vec{s} = Fs \cos \theta$$

Kinetisk energi:

$$E_{\mathbf{k}} = \frac{1}{2}mv^2$$

Arbeid-energi teoremet:

$$W_{\text{tot}} = \Delta E_{\mathbf{k}} = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$

Potensiell energi:

Når kraften er konservativ:

$$E_p(\mathbf{b}) - E_p(\mathbf{a}) = -\int_{\mathbf{a}}^{\mathbf{b}} \vec{F} \cdot d\vec{s}$$

Tyngdefeltet: $E_p = mgh$

Elastisk fjær: $E_{\rm p} = \frac{1}{2}kx^2$

Bevaring av mekanisk energi:

Når kun konservative krefter utfører arbeid:

$$E_{\text{tot}} = E_{\text{k}} + E_{\text{p}} = \text{konstant}$$

elle

$$E_{\rm k1} + E_{\rm p1} = E_{\rm k2} + E_{\rm p2}$$

Elektrisitet og magnetisme

Strøm:

$$I = \frac{dQ}{dt}$$

I defineres som positiv når positive ladninger går i (vilkårlig) valgt positiv retning.

Elektrisk felt:

$$\vec{E} = \frac{\vec{F}}{Q}$$

Når \vec{E} er konservativt:

$$\oint \vec{E} \cdot d\vec{s} = 0$$

Elektrisk potensial: $U = \frac{E_p}{Q}$

Kapasitans: $C = \frac{Q}{U_b - U_a}$

Faradays induksjonslov:

$$\mathcal{E} = -\frac{d\Phi}{dt}$$

Selvfluks og selvinduktans:

$$\Phi = L \cdot I$$

Svingninger

Enkel harmonisk oscillator:

Bev. lign.:
$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$

Løsning:
$$x(t) = x_m \cos(\omega t + \phi) ,$$

$$x_m = \sqrt{x_0^2 + (v_0/\omega)^2}$$

$$\phi = \tan^{-1}(-v_0/(\omega x_0)) - \omega t_0$$

Periode og frekvens:
$$T = 2\pi/\omega$$

$$f = 1/T$$

Kloss-fjærsystem:
$$\omega = \sqrt{k/m}$$

Elektrisk svingekrets:
$$\omega = 1/\sqrt{LC}$$

Bølger

Bølgeligningen:

$$\frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2}$$

Harmonisk bølge:

$$y(x,t) = y_m \sin(kx \pm \omega t - \phi)$$
$$\lambda = 2\pi/k, T = 2\pi/\omega, f = 1/T, v = \omega/k = f \cdot \lambda$$

Eksempel på interferens av to harmoniske bølger (med samme y_m, λ og v):

$$y(x,t) = 2y_m \cos \frac{\phi_2 - \phi_1}{2} \sin \left(kx - \omega t - \frac{\phi_1 + \phi_2}{2}\right)$$

Eksempel på stående bølge:

$$y(x,t) = A \sin kx \cos \omega t$$

 $k = n\pi/L$, $n = 1, 2, 3, ...$

Varmeledning og temperatur

Fouriers lov:

Vektorform: $\vec{j} = -K\nabla T$

Én dimensjon: $j = -K \frac{dT}{dx}$

Varmeledningsligningen i én dimensjon:

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2}$$

Eksempel på løsning (tynn plate):

$$T(x,t) = T_0 \sin\left(\frac{\pi x}{L}\right) e^{-\frac{\kappa \pi^2 t}{L^2}}$$

Differensialligninger og numeriske algoritmer

Ordinære differensialligninger

Eulers metode:

 $x_{n+1} = x_n + f(t_n, x_n) \Delta t$, når f(t, x) er kjent funksjon.

Eulers midtpunktsmetode:

$$x_{n+1} = x_n + f\left[t_n + \frac{\Delta t}{2}, x_n + f(t_n, x_n) \frac{\Delta t}{2}\right] \Delta t$$
,
når $f(t, x)$ er kjent funksjon.

Midtpunktsmetoden for 2. ordens diff. lign.:

$$\frac{d^2x}{dt^2} + p(t)\frac{dx}{dt} + q(t)x(t) = r(t)$$

$$\updownarrow$$

$$\begin{cases}
\frac{dx}{dt} = f(t) \\
\frac{df}{dt} = -p(t)f(t) - q(t)x(t) + r(t)
\end{cases}$$

$$\Downarrow$$

$$\begin{cases}
x_{n+1} = x_n + f_{n+\frac{1}{2}} \cdot \Delta t \\
f_{n+\frac{1}{2}} = f_n + (-p_n f_n - q_n x_n + r_n) \cdot \frac{\Delta t}{2}
\end{cases}$$

Partielle differensialligninger

Varmeledningsligningen (eksplisitt metode):

$$T_i^{n+1} = \alpha (T_{i+1}^n + T_{i-1}^n) + (1 - 2\alpha) T_i^n$$
 $\kappa \Delta t = 1$

Stabilitetskrav :
$$\alpha = \frac{\kappa \Delta t}{\Delta x^2} \le \frac{1}{2}$$

USEFUL MATHEMATICAL RELATIONS

Algebra

$$a^{-x} = \frac{1}{a^x}$$
 $a^{(x+y)} = a^x a^y$ $a^{(x-y)} = \frac{a^x}{a^y}$

Logarithms: If
$$\log a = x$$
, then $a = 10^x$. $\log a + \log b = \log (ab)$ $\log a - \log b = \log (a/b)$ $\log (a^n) = n \log a$

If
$$\ln a = x$$
, then $a = e^x$. $\ln a + \ln b = \ln (ab)$ $\ln a - \ln b = \ln (a/b)$ $\ln (a^n) = b$

Quadratic formula: If
$$ax^2 + bx + c = 0$$
, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Trigonometry

In the right triangle ABC,
$$x^2 + y^2 = r^2$$
.

Definitions of the trigonometric functions:

 $\sin \alpha = y/r$ $\cos \alpha = x/r$ $\tan \alpha = y/x$

 $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1$

 $\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$

Identities:
$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\alpha + \cos^2 \alpha = 1$$
 $\tan \alpha = 1$

$$\sin 2\alpha = 2\sin\alpha\cos\alpha$$

 $\sin(-\alpha) = -\sin\alpha$

$$\cos \frac{1}{2}\alpha = \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$\sin\frac{1}{2}\alpha = \sqrt{\frac{1-\cos\alpha}{2}} \qquad \qquad \cos\frac{1}{2}\alpha = \sqrt{\frac{1}{2}}$$

$$\cos(-\alpha) = \cos\alpha \qquad \qquad \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$

$$\cos(-\alpha) = \cos \alpha \qquad \qquad \cos(\alpha \pm \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\sin(\alpha \pm \pi/2) = \pm \cos \alpha \qquad \qquad \sin \alpha + \sin \beta = 2\sin \frac{1}{2}(\alpha + \beta)\cos \frac{1}{2}(\alpha - \beta)$$

$$\cos(\alpha \pm \pi/2) = \mp \sin \alpha \qquad \cos \alpha + \cos \beta = 2\cos \frac{1}{2}(\alpha + \beta)\cos \frac{1}{2}(\alpha - \beta)$$

For any triangle A'B'C' (not necessarily a right triangle) with sides a, b, and c and angles α , β , and γ :

Law of sines:
$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

Law of cosines:
$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

 $=1-2\sin^2\alpha$

Geometry

Circumference of circle of radius r:
$$C = 2\pi r$$
Area of circle of radius r: $A = \pi r^2$

Area of circle of radius
$$r$$
: $A = \pi r^2$

Area of circle of radius r:
$$A = \pi r^2$$

Volume of sphere of radius r: $V = 4\pi r^3/3$

Surface area of sphere of radius
$$r$$
:
Volume of cylinder of radius r and height h :

$$A = 4\pi r^2$$
$$V = \pi r^2 h$$

Calculus

Derivatives:

$$\frac{d}{dx}x^n = nx^{n-1}$$

$$\frac{d}{dx}\ln ax = \frac{1}{x}$$

$$\frac{d}{dx}e^{ax} = ae^{ax}$$

$$\frac{d}{dx}\sin ax = a\cos ax$$

$$\frac{d}{dx}\cos ax = -a\sin ax$$

Integrals:

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} \quad (n \neq -1) \qquad \qquad \int \frac{dx}{x} = \ln x \qquad \qquad \int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax \qquad \qquad \int \cos ax dx = \frac{1}{a} \sin ax \qquad \int \frac{dx}{\sqrt{a^{2} - x^{2}}} = \arcsin \frac{x}{a}$$

$$\int \frac{dx}{\sqrt{x^{2} + a^{2}}} = \ln \left(x + \sqrt{x^{2} + a^{2}} \right) \qquad \int \frac{dx}{x^{2} + a^{2}} = \frac{1}{a} \arctan \frac{x}{a} \qquad \int \frac{dx}{(x^{2} + a^{2})^{3/2}} = \frac{1}{a^{2}} \frac{x}{\sqrt{x^{2} + a^{2}}}$$

$$\int \frac{x dx}{(x^{2} + a^{2})^{3/2}} = -\frac{1}{\sqrt{x^{2} + a^{2}}}$$

Length
$1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm} = 10^6 \mu \text{m} = 10^9 \text{ nm}$
1 km = 1000 m = 0.6214 mi
1 m = 3.281 ft = 39.37 in.
1 cm = 0.3937 in.
1 in. = 2.540 cm
1 ft = 30.48 cm
1 yd = 91.44 cm
1 mi = 5280 ft = 1.609 km
$1 \text{ Å} = 10^{-10} \text{ m} = 10^{-8} \text{ cm} = 10^{-1} \text{ nm}$
1 nautical mile $= 6080 \text{ft}$
1 light-year = 9.461×10^{15} m

Area $1 \text{ cm}^2 = 0.155 \text{ in.}^2$ $1 \text{ m}^2 = 10^4 \text{ cm}^2 = 10.76 \text{ ft}^2$ $1 \text{ in.}^2 = 6.452 \text{ cm}^2$ $1 \text{ ft}^2 = 144 \text{ in.}^2 = 0.0929 \text{ m}^2$

Volume 1 liter = $1000 \text{ cm}^3 = 10^{-3} \text{ m}^3 = 0.03531 \text{ ft}^3 = 61.02 \text{ in.}^3$ 1 ft³ = $0.02832 \text{ m}^3 = 28.32 \text{ liters} = 7.477 \text{ gallons}$ 1 gallon = 3.788 liters

Time 1 min = 60 s 1 h = 3600 s 1 d = 86,400 s $1 \text{ y} = 365.24 \text{ d} = 3.156 \times 10^7 \text{ s}$

Angle $1 \text{ rad} = 57.30^{\circ} = 180^{\circ}/\pi$ $1^{\circ} = 0.01745 \text{ rad} = \pi/180 \text{ rad}$ $1 \text{ revolution} = 360^{\circ} = 2\pi \text{ rad}$ 1 rev/min (rpm) = 0.1047 rad/s

Speed	
1 m/s = 3.281 ft/s	
1 ft/s = 0.3048 m/s	
1 mi/min = 60 mi/h = 88 ft/s	
1 km/h = 0.2778 m/s = 0.6214 mi/h	
1 mi/h = 1.466 ft/s = 0.4470 m/s = 1.609 km/s	/h
1 furlong/fortnight = 1.662×10^{-4} m/s	

Acceleration $1 \text{ m/s}^2 = 100 \text{ cm/s}^2 = 3.281 \text{ ft/s}^2$ $1 \text{ cm/s}^2 = 0.01 \text{ m/s}^2 = 0.03281 \text{ ft/s}^2$ $1 \text{ ft/s}^2 = 0.3048 \text{ m/s}^2 = 30.48 \text{ cm/s}^2$ $1 \text{ mi/h} \cdot \text{s} = 1.467 \text{ ft/s}^2$
Mass $1 \text{ kg} = 10^3 \text{ g} = 0.0685 \text{ slug}$ $1 \text{ g} = 6.85 \times 10^{-5} \text{ slug}$ $1 \text{ slug} = 14.59 \text{ kg}$ $1 \text{ u} = 1.661 \times 10^{-27} \text{ kg}$ 1 kg has a weight of 2.205 lb when $g = 9.80 \text{ m/s}^2$
Force $1 \text{ N} = 10^5 \text{ dyn} = 0.2248 \text{ lb}$ $1 \text{ lb} = 4.448 \text{ N} = 4.448 \times 10^5 \text{ dyn}$
Pressure $\begin{array}{l} 1 \text{Pa} = 1 \text{N/m}^2 = 1.450 \times 10^{-4} \text{lb/in.}^2 = 0.0209 \text{lb/ft}^2 \\ 1 \text{bar} = 10^5 \text{Pa} \\ 1 \text{lb/in.}^2 = 6895 \text{Pa} \\ 1 \text{lb/ft}^2 = 47.88 \text{Pa} \\ 1 \text{atm} = 1.013 \times 10^5 \text{Pa} = 1.013 \text{bar} \\ = 14.7 \text{lb/in.}^2 = 2117 \text{lb/ft}^2 \\ 1 \text{mm Hg} = 1 \text{torr} = 133.3 \text{Pa} \end{array}$
Energy $1 \text{ J} = 10^7 \text{ ergs} = 0.239 \text{ cal}$ $1 \text{ cal} = 4.186 \text{ J (based on } 15^\circ \text{ calorie)}$

Energy	
$1 J = 10^7 \text{ ergs} = 0.239 \text{ cal}$	
1 cal = 4.186 J (based on 15° calorie)	
$1 \text{ ft} \cdot \text{lb} = 1.356 \text{ J}$	
$1 \text{ Btu} = 1055 \text{ J} = 252 \text{ cal} = 778 \text{ ft} \cdot \text{lb}$	
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	
$1 \text{ kWh} = 3.600 \times 10^6 \text{ J}$	

Mass-Energy Equivalence
$1 \text{ kg} \leftrightarrow 8.988 \times 10^{16} \text{ J}$
$1 \text{ u} \leftrightarrow 931.5 \text{ MeV}$
$1 \text{ eV} \leftrightarrow 1.074 \times 10^{-9} \text{ u}$

Por	wer		
1 W	I = 1 J/s		
1 hj	p = 746 W	$= 550 \text{ft} \cdot \text{lb/}$	S
1 B	tu/h = 0.29	93 W	

Quantity	Name of unit	Symbol	
	SI base units		
length	meter	m	
mass	kilogram	kg	
time	second	S	
electric current	ampere	A	
thermodynamic temperature	kelvin	K	
amount of substance	mole	mol	
luminous intensity	candela	cd	
	SI derived units		Equivalent units
area	square meter	m^2	
volume	cubic meter	m^3	
frequency	hertz	Hz	s^{-1}
mass density (density)	kilogram per cubic meter	kg/m ³	
speed, velocity	meter per second	m/s	
angular velocity	radian per second	rad/s	
acceleration	meter per second squared	m/s^2	
angular acceleration	radian per second squared	rad/s ²	
force	newton	N	$kg \cdot m/s^2$
pressure (mechanical stress)	pascal	Pa	N/m^2
kinematic viscosity	square meter per second	m^2/s	- /
dynamic viscosity	newton-second per square meter	$N \cdot s/m^2$	
work, energy, quantity of heat	joule	J	$N \cdot m$
power	watt	W	J/s
quantity of electricity	coulomb	C	A·s
potential difference, electromotive force	volt	V	J/C, W/A
electric field strength	volt per meter	V/m	N/C
electrical resistance	ohm	Ω	V/A
capacitance	farad	F	$A \cdot s/V$
magnetic flux	weber	Wb	V·s
inductance	henry	H	$V \cdot s/A$
magnetic flux density	tesla	T	Wb/m^2
magnetic field strength	ampere per meter	A/m	,
magnetomotive force	ampere	Α .	
luminous flux	lumen	lm .	cd · sr
luminance	candela per square meter	cd/m ²	
illuminance	lux	lx	1m/m^2
wave number	1 per meter	m^{-1}	/
	joule per kelvin	J/K	
entropy specific heat capacity	joule per kilogram-kelvin	J/kg·K	
thermal conductivity	watt per meter-kelvin	$W/m \cdot K$	
mermar conductivity	wate ber meter-kervin	71/111	