نمونه آزمایشی حل مسئله SHM با استفاده از SHM مسئله

در این نمونه یک مدل ساده به شرح زیر تصور شده است:

ساختمانی در نظر بگیرید که تنها دو سنسور برای تشخیص رطوبت دارد. و دو نوع واقعه در هر لحظه میتواند رخ بدهد. یا باران میبارد یا باران نمیبارد. بنابراین در کل ۸ حالت خواهیم داشت مطابق جدول زیر:

حالت ها	سنسور اول	سنسور دوم	وضعيت هوا
S0	خاموش	خاموش	صاف
S1	خاموش	روشن	صاف
S2	روشن	خاموش	صاف
S3	روشن	روشن	صاف
S4	خاموش	خاموش	برانی
S5	خاموش	روشن	برانی
S6	روشن	خاموش	برانی
S7	روشن	روشن	بلراني

در چنین سناریویی Reward های زیر در نظر گرفته شده است:

حالت	امتياز
S0	0.5-
S1	0
S2	0
S3	1-
S4	1-
S5	1
S6	1
S7	0.5-

با کد نوشته شده جدول گذار زیر تولید شده است:

حالت	اتفاق	حالت پس از اتفاق	احتمال وقوع
S0	on1	S2	0.2
S0	off1	S0	0.2
S0	on2	S 1	0.2
S0	off2	S0	0.2

S0	on1	S6	0.2
S0	off1	S4	0.4
S0	on2	S 5	0.2
S0	off2	S4	0.4
S1	on1	S3	0.2
S1	off1	S1	0.2
S1	on2	S1	0.2
S1	off2	S0	0.2
S1	on1	S7	0.2
S1	off1	S5	0.2
S1		S5	0.4
	on2	S4	
S1	off2		0.2
S2	on1	S2	0.2
S2	off1	SO	0.2
S2	on2	S3	0.2
S2	off2	S2	0.2
S2	on1	S6	0.4
S2	off1	S4	0.2
S2	on2	S7	0.2
S2	off2	S6	0.4
S3	on1	S3	0.2
S3	off1	S1	0.2
S3	on2	S3	0.2
S3	off2	S2	0.2
S3	on1	S7	0.4
S3	off1	S5	0.2
S3	on2	S7	0.4
S3	off2	S6	0.2
S4	on1	S2	0.3
S4	off1	SO	0.1
S4	on2	S1	0.3
S4	off2	SO	0.1
S4	on1	S6	0.3
S4	off1	S4	0.3
S4	on2	S5	0.3
S4	off2	S4	0.3
S5	on1	S3	0.3
S5	off1	S1	0.5
S5		S1	0.1
	on2 off2	S0	
S5		S7	0.3
S5	on1		0.3
S5	off1	S5	0.3
S5	on2	S5	0.3
S5	off2	S4	0.3
S6	on1	S2	0.1
S6	off1	SO	0.3
S6	on2	S3	0.3
S6	off2	S2	0.1
S6	on1	S6	0.3

S6	off1	S4	0.3
S6	on2	S7	0.3
S6	off2	S6	0.3
S7	on1	S 3	0.1
S7	off1	S 1	0.3
S7	on2	S 3	0.1
S7	off2	S2	0.3
S7	on1	S7	0.3
S7	off1	S 5	0.3
S7	on2	S7	0.3
S7	off2	S6	0.3

پس از آن کد اصلی در خصوص شبیه سازی MDP اجرا میشود که نتیجه زیر را در بر خواهد داشت.

```
eitd@eitd-RnD: ~/Desktop/MDP_Lab/test1_begining
File Edit View Search Terminal Help
eitd@eitd-RnD:~/Desktop/MDP_Lab/test1_begining$ python mdp.py 0.004 0.001
State - Value
S3 -
      -1.0
S2
   - 0.0
S1
   - 0.0
SO
      -0.5
57
      -0.5
56
   - 1.0
S5
      1.0
S4 - -1.0
Optimal policy is
State - Action
S3 - off1
S2 - off2
S1
   - off1
SO
57
      off1
56
      off2
55
   - off1
54
      on2
```

در واقع Optimal Policy اشاره شده. دستورالعل كم حجمى است كه به سنسور داده خواهد شد تا در هر لحظه تصميم بگيرد اقدام بهينه چيست.