MATHEMATICS-I

Anushaya Mohapatra

Department of Mathematics
BITS PILANI K K Birla Goa Campus, Goa

September 12, 2024

Lecture 14

Power Series

Taylor and Maclaurin Series

Definition: Let f be a function with derivatives of all orders throughout some interval containing a as an interior point.

Taylor and Maclaurin Series

Definition: Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the **Tayloar series generated by** f at x = a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

Taylor and Maclaurin Series

Definition: the **Maclaurin series generated by** f is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots,$$

the Taylor series generated by f at x = 0.

Find the Taylor series generated by $f(x) = e^x$ at x = 0.

Find the Taylor series generated by $f(x) = e^x$ at x = 0.

Sol. Since
$$f^{(n)}(x) = e^x$$
 and $f^{(n)}(0) = 1$ for every $n = 0, 1, 2, ...$

Find the Taylor series generated by $f(x) = e^x$ at x = 0.

Sol. Since $f^{(n)}(x) = e^x$ and $f^{(n)}(0) = 1$ for every $n = 0, 1, 2, \ldots$ The Taylor's generated by f at x = 0 (Maclaurin series) is given by

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$
$$= 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \dots + \frac{1}{n!} x^n + \dots$$

The Taylor series representation of $\sin x$ is given by

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}.$$

The Taylor series representation of $\sin x$ is given by

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}.$$

The Taylor series representation of $\cos x$ is given by

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$$

Taylor Polynomial

Definition: Let f(x) be a function with derivatives of order k for k = 1, 2, ..., N in some interval containing $a \in \mathbb{R}$ as an interior point.

Taylor Polynomial

Definition: Let f(x) be a function with derivatives of order k for k = 1, 2, ..., N in some interval containing $a \in \mathbb{R}$ as an interior point.

Then for any integer n from 0 through N, the Taylor polynomial of order n generated by f at x = a is the polynomial

$$P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!} (x - a)^2 + \cdots + \frac{f^{(k)}(a)}{k!} (x - a)^k + \cdots + \frac{f^{(n)}(a)}{n!} (x - a)^n.$$

•
$$f(x) = \ln(x), a = 1$$

•
$$f(x) = \ln(x), a = 1$$

(Ans:
$$\sum_{n=1}^{n=\infty} (-1)^{n+1} \frac{(x-1)^n}{n}$$
)

•
$$f(x) = \ln(x)$$
, $a = 1$

(Ans:
$$\sum_{n=1}^{n=\infty} (-1)^{n+1} \frac{(x-1)^n}{n}$$
)

•
$$f(x) = \sin((\pi x))$$
 $a = 1/2$.

•
$$f(x) = \ln(x)$$
, $a = 1$

(Ans:
$$\sum_{n=1}^{n=\infty} (-1)^{n+1} \frac{(x-1)^n}{n}$$
)

- $f(x) = \sin((\pi x)) \quad a = 1/2.$ (Ans: $\sum_{n=0}^{\infty} (-1)^n \frac{(\pi)^{2n}(x-1/2)^{2n}}{(2n)!}$)
- **3** $f(x) = \sqrt{x}$, a = 1

•
$$f(x) = \ln(x)$$
, $a = 1$

(Ans:
$$\sum_{n=1}^{n=\infty} (-1)^{n+1} \frac{(x-1)^n}{n}$$
)

$$f(x) = \sin((\pi x)) \quad a = 1/2.$$
(Ans: $\sum_{n=0}^{\infty} (-1)^n \frac{(\pi)^{2n}(x-1/2)^{2n}}{(2n)!}$)

9
$$f(x) = \sqrt{x}, a = 1$$

(Ans:
$$1 + \frac{1}{2}(x-1) + \sum_{n=2}^{\infty} (-1)^{n+1} \frac{1 \cdot 3 \cdot \cdot \cdot (2n-3)}{2^n n!}$$
)

Taylor's remainder formula

Theorem 0.1.

Let f be a function having derivatives of order n for $n=1,2,\ldots N$ on an interval I containing 'a' as an interior point. Then for any $x\in I$ and $n=1,2,\ldots,N-1$ we have that

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^{2} + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^{n} + R_{n}(x), \quad (0.1)$$

where
$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$
 for some c between a

Convrgence of Taylor's series

Corollary 0.2.

Let f be a function having derivatives of all orders on an interval I containing 'a' as an interior point. Then for any point x in I, the Taylor series generated by f at x = a converges to f(x) if and only if $R_n(x) \to 0$ as $n \to \infty$.

- Find the power series centered at x = 0 for arctan(x) and its radius of convergence.
- ② Find the power series centered at x = 0 for $\ln(4 + 3x^2)$.
- **3** Compute the first four nonzero terms of the power series for $\frac{\ln(1+x)}{1+2x}$.
- Find the Taylor polynomial of degree 8 (centered at x = 0) for the function ln(cos(x)).
- Find the power series expansion and the radius of convergence of the function

$$f(x) = \frac{x^2}{1 - 2x + x^2}$$

centered at x = -1.

Thank you