

Algorithms

EE4033; #901/39000

張耀文

Yao-Wen Chang ywchang@ntu.edu.tw http://cc.ee.ntu.edu.tw/~ywchang

Graduate Institute of Electronics Engineering
Department of Electrical Engineering
National Taiwan University
Fall 2018

Unit 1: Algorithmic Fundamentals

Course contents:

- On algorithms
- Mathematical foundations
- Asymptotic notation
- Growth of functions
- Recurrences

• Readings:

- Chapters 1, 2, 3, 4
- Appendix A

On Algorithms

- Algorithm: A well-defined procedure for transforming some input to a desired output.
- Major concerns:
 - Correctness: Does it halt? Is it correct? Is it stable?
 - Efficiency: Time complexity? Space complexity?
 - Worst case? Average case? (Best case?)

Resource usage

- Better algorithms?
 - How: Faster algorithms? Algorithms with less space requirement?
 - Optimality: Prove that an algorithm is best possible/optimal? Establish a lower bound?
- Applications?
 - Everywhere in computing!

Example: Sorting

- **Input:** A sequence of *n* numbers $< a_1, a_2, ..., a_n > ...$
- Output: A permutation $\langle a_1', a_2', ..., a_n' \rangle$ such that $a_1' \leq a_2' \leq ... \leq a_n'$.

Input: <8, 6, 9, 7, 5, 2, 3>

Output: <2, 3, 5, 6, 7, 8, 9>

Correct and efficient algorithms?

Incremental Approach: Insertion Sort

How do you sort cards?

- 1. Keep left cards sorted, right cards unsorted
- 2. Each time insert a new card to left cards, in sorted order
- 3. Repeat until all cards inserted

Insertion Sort

6 5 3 1 8 7 2 4

```
InsertionSort(A)
```

- j=2 1. for j=2 to A.length key=2 2. key=A[j]

 - 3. // Insert A[j] into the **sorted** sequence A[1..j-1]
 - i = 1 4. i = j 1
 - 5. while i > 0 and A[i] > key
- A[2] = 5 6. A[i+1] = A[i] // Right shift
- i = 0 7. i = i 1
- A[1] = 2 | 8. A[i+1] = key

Correctness?

InsertionSort(A)

- 1. **for** j = 2 **to** A.length
- 2. key = A[j]
- 3. // Insert *A*[*j*] into the sorted sequence *A*[1..*j*-1]
- 4. i = j 1
- 5. while i > 0 and A[i] > key
- 6. A[i+1] = A[i] // Right shift
- 7. i = i 1
- 8. A[i+1] = key

Loop invariant:

subarray *A*[1..*j*-1] consists of the elements originally in *A*[1..*j*-1] but in sorted order.

7

Loop Invariant for Proving Correctness

```
InsertionSort(A)

1. for j = 2 to A.length

2. key = A[j]

3. // Insert A[j] into the sorted sequence A[1..j-1].

4. i = j - 1

5. while i > 0 and A[i] > key

6. A[i+1] = A[i]

7. i = i - 1

8. A[i+1] = key
```

- We may use loop invariants to prove the correctness.
 - 1. **Initialization:** True before the 1st iteration.
 - 2. **Maintenance:** If it is true before an iteration, it remains true before the next iteration.
 - Termination: When the loop terminates, the invariant leads to the correctness of the algorithm.
 - Mathematical induction!

Loop Invariant of Insertion Sort

- Loop invariant: subarray A[1..i-1] consists of the elements originally in A[1..j-1] but in sorted order.
 - Initialization: $j = 2 \Rightarrow A[1]$ is sorted.
 - **Maintenance:** Move A[j-1], A[j-2],... one position to the right until the position for A[i] is found.
 - Termination: $j = n+1 \Rightarrow A[1..n]$ is sorted. Hence the entire array is sorted!

Exact Analysis of Insertion Sort

InsertionSort(A)	cost	time
1. for $j = 2$ to A.length	C ₁	n
2. key = A[j]	c ₂	<i>n</i> -1
3. // Insert A[j] into the sorted sequence A[1j-1]	0	<i>n</i> -1
4. $i = j - 1$	C ₄	<i>n</i> -1
5. while $i > 0$ and $A[i] > key$	c ₅	$\sum_{j=2}^{n} t_j$
6. A[i+1] = A[i]	c ₆	$\sum_{j=2}^{n} (t_j-1)$
7. $i = i - 1$	C ₇	$\sum_{j=2}^{n} (t_j-1)$
8. $A[i+1] = key$	c ₈	<i>n</i> -1

- Line 1 is executed (n-1) + 1 times. (why?)
- t_j : # of times the **while** loop test for value j (i.e., 1 + # of elements that have to be slid right to insert the j-th item).
- Step 5 is executed $t_2 + t_3 + \dots + t_n$ times.
- Step 6 is executed $(t_2 1) + (t_3 1) + ... + (t_n 1)$ times.
- Run time $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j 1) + c_7 \sum_{j=2}^n (t_j 1) + c_8 (n-1)$

10

Exact Analysis of Insertion Sort (cont'd)

InsertionSort(A)	cost	time
1. for $j = 2$ to A.length	<i>C</i> ₁	n
2. key = A[j]	c_2	<i>n</i> -1
3. // Insert A[j] into the sorted sequence A[1j-1]	0	<i>n</i> -1
4. $i = j - 1$	<i>C</i> ₄	<i>n</i> -1
5. while $i > 0$ and $A[i] > key$	C ₅	$\sum_{j=2}^{n} t_j$
6. A[i+1] = A[i]	c ₆	$\sum_{j=2}^{n} (t_j-1)$
7. $i = i - 1$	C ₇	$\sum_{j=2}^{n} (t_j-1)$
8. $A[i+1] = key$	c ₈	<i>n</i> -1

•
$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_8 (n-1)$$

• **Best case:** If the input is already sorted, all t_j 's are 1.

Linear:
$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

• **Worst case:** If the array is in reverse sorted order, $t_j = j$, $\forall j$. Quadratic: $T(n) = (c_5/2 + c_6/2 + c_7/2) n^2 + (c_1 + c_2 + c_4 + c_5/2 - c_6/2 - c_7/2 + c_8) n - (c_2 + c_4 + c_5 + c_8)$

Exact analysis is often hard (and tedious)!

Complexity

- During exact analysis, each line corresponds to several steps, each step requires a constant running time
- Computational complexity: an abstract measure of time and space necessary to execute an algorithm as functions of its "input size"
 - Time complexity ⇒ running time (in terms of steps)
 - Space complexity ⇒ memory requirement
- Input size: the number of alphabet symbols needed to encode the input
 - sort *n* integers ⇒ input size: n
- **Step**: primitive operation
 - The time to execute a primitive operation must be constant: it must not increase as the input size grows

Asymptotic Analysis

- Asymptotic analysis looks at growth of T(n) as $n \to \infty$
- Θ notation: Drop low-order terms and ignore the leading constant E.g., $8n^3 - 4n^2 + 5n - 2 = \Theta(n^3)$
- As n grows large, lower-order Θ algorithms outperform higher-order ones
- Worst case: input sorted in reverse,
 while loop is Θ(j)

Unit 1

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(\sum_{j=2}^{n} j) = \Theta(n^{2})$$

• Average case: all permutations equally likely, while loop is executed about *j* /2 times each iteration

$$T(n) = \sum_{j=2}^{n} j/2 = \Theta(\sum_{j=2}^{n} j/2) = \Theta(n^2)$$

n

O: Upper Bounding Function

- **Def**: f(n) = O(g(n)) if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$
- Intuition: f(n) " \leq " g(n) when we ignore constant multiples and small values of n
- How to verify O (Big-Oh) relationships?

$$- f(n) = O(g(n))$$
 when $\lim_{n\to\infty} \frac{f(n)}{g(n)} \in [0,\infty)$, if the limit exists

Sufficient but not necessary condition

⁽f(n): nonnegative function − n: natural number ➤

Big-Oh Examples

• **Def**: f(n) = O(g(n)) if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

1.
$$3n^2 + n = O(n^2)$$
? Yes

2.
$$3n^2 + n = O(n)$$
? No

3.
$$3n^2 + n = O(n^3)$$
? Yes

$$3n^2 + n \le cn^2$$
?

Take
$$c = 4$$
, $n_0 = 1$

$$f(n) = O(g(n))$$
 when $\lim_{n \to \infty} \frac{f(n)}{g(n)} \in [0,\infty)$, if the limit exists

Ω : Lower Bounding Function

- **Def**: $f(n) = \Omega(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$
- Intuition: $f(n) \stackrel{*}{=} g(n)$ when we ignore constant multiples and small values of n
- How to **verify** Ω (Big-Omega) relationships?

= f(n) = Ω(g(n)) when $\lim_{n\to\infty} \frac{f(n)}{g(n)} ∈ (0,\infty]$, if the limit exists

Big-Omega Examples

• **Def**: $f(n) = \Omega(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

1.
$$3n^2 + n = \Omega(n^2)$$
? Yes
2. $3n^2 + n = \Omega(n)$? Yes
3. $3n^2 + n = \Omega(n^3)$? No

$$f(n) = \Omega(g(n))$$
 when $\lim_{n \to \infty} \frac{f(n)}{g(n)} \in (0, \infty]$, if the limit exists

Θ: Tightly Bounding Function

- **Def**: $f(n) = \Theta(g(n))$ if $\exists c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$
- Intuition: f(n) "=" g(n) when we ignore constant multiples and small values of n
- How to verify

 relationships?
 - Show both "big Oh" (O) and "Big Omega" (Ω) relationships
 - $f(n) = \Theta(g(n))$ when $\lim_{n \to \infty} \frac{f(n)}{g(n)} \in (0,\infty)$, if the limit exists

Theta Examples

• **Def**: $f(n) = \Theta(g(n))$ if $\exists c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

1.
$$3n^2 + n = \Theta(n^2)$$
? Yes

2.
$$3n^2 + n = \Theta(n)$$
? No

$$3.3n^2 + n = \Theta(n^3)$$
? No

$$f(n) = \Theta(g(n))$$
 when $\lim_{n \to \infty} \frac{f(n)}{g(n)} \in (0,\infty)$, if the limit exists

o, ω: Untightly Upper, Lower Bounding Functions

- Little Oh o: f(n) = o(g(n)) if $\forall c > 0$, $\exists n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.
- Intuition: f(n) "<" any constant multiple of g(n) when we ignore small values of n
- Little Omega ω : $f(n) = \omega(g(n))$ if $\forall c > 0$, $\exists n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$.
- Intuition: f(n) is ">" any constant multiple of g(n) when we ignore small values of n
- How to verify o (Little-Oh) and ω (Little-Omega) relationships (if the limit exists)?

$$- f(n) = o(g(n)) \text{ when } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
$$- f(n) = \omega(g(n)) \text{ when } \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Little-Oh Examples

• Little Oh o: f(n) = o(g(n)) if $\forall c > 0$, $\exists n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.

1.
$$3n^2 + n = o(n^2)$$
? No

2.
$$3n^2 + n = o(n)$$
? No

$$3. 3n^2 + n = o(n^3)$$
? Yes

$$f(n) = o(g(n))$$
 when $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$, if the limit exists

Little-Omega Examples

• Little Omega ω : $f(n) = \omega(g(n))$ if $\forall c > 0$, $\exists n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$.

1.
$$3n^2 + n = \omega(n^2)$$
? No

2.
$$3n^2 + n = \omega(n)$$
? Yes

3.
$$3n^2 + n = \omega(n^3)$$
? No

$$f(n) = \omega(g(n))$$
 when $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$, if the limit exists

Properties for Asymptotic Analysis

- Transitivity: If $f(n) = \Pi(g(n))$ and $g(n) = \Pi(h(n))$, then $f(n) = \Pi(h(n))$, where $\Pi = O$, O, O, O, O, or O
- Rule of sums: $f(n) + g(n) = \Pi(\max\{f(n), g(n)\})$, where $\Pi = O, \Omega$, or Θ
- Rule of products: If $f_1(n) = \Pi(g_1(n))$ and $f_2(n) = \Pi(g_2(n))$, then $f_1(n)$ $f_2(n) = \Pi(g_1(n))$, where $\Pi = O$, o, Ω , ω , or Θ
- Transpose symmetry: f(n) = O(g(n)) iff $g(n) = \Omega(f(n))$
- Transpose symmetry: f(n) = o(g(n)) iff g(n) = o(f(n))
- **Reflexivity**: $f(n) = \Pi(f(n))$, where $\Pi = O, \Omega$, or Θ
- Symmetry: $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$

Meaning of Asymptotic Notation

- "An algorithm has the worst-case running time O(f(n))": there is a constant c s.t. for every n big enough, every execution on an input of size n takes at most cf(n) time.
- "An algorithm has the worst-case running time $\Omega(f(n))$ ": there is a constant c s.t. for every n big enough, at least one execution on an input of size n takes at least cf(n) time.

Asymptotic Functions

- $\lg^{(i)} n = \underbrace{\lg \lg \ldots \lg}_{n} n$. (cf. $\lg^{i} n = (\lg n)^{i}$)
- $\lg^* n = \min\{i \ge 0 : \lg^{(i)} n \le 1\}$
- Polynomial-time complexity: O(p(n)), where n is the input size and p(n) is a polynomial function of n $(p(n) = n^{O(1)})$.

Polynomial -time complexity!!

Efficient!

25

Computational Complexity

- Computational complexity: an abstract measure of the time and space necessary to execute an algorithm as functions of its "input size".
 - Time complexity ⇒ running time (in terms of steps)
 - Space complexity ⇒ memory requirement
- Input size: size of encoded "binary" strings.
 - sort *n* words of bounded length ⇒ input size: *n*
 - the input is the integer $n \Rightarrow$ input size: Ig n
 - the input is the graph $G(V, E) \Rightarrow$ input size: | V| and | E|
- Runtime comparison: assume 1 BIPS,1 instruction/op.

Time	Big-Oh	<i>n</i> = 10	<i>n</i> = 100	$n = 10^4$	$n = 10^6$	$n = 10^8$
500	O(1)	5*10 ⁻⁷ sec	5*10 ⁻⁷ sec	5*10 ⁻⁷ sec	5*10 ⁻⁷ sec	5*10 ⁻⁷ sec
3 <i>n</i>	O(<i>n</i>)	3*10 ⁻⁸ sec	3*10 ⁻⁷ sec	3*10 ⁻⁵ sec	0.003 sec	0.3 sec
<i>n</i> lg <i>n</i>	O(<i>n</i> lg <i>n</i>)	3*10 ⁻⁸ sec	6*10 ⁻⁷ sec	1*10 ⁻⁴ sec	0.018 sec	2.5 sec
n ²	O(<i>n</i> ²)	1*10 ⁻⁷ sec	1*10 ⁻⁵ sec	0. 1 sec	16.7 min	116 days
n ³	O(<i>n</i> ³)	1*10 ⁻⁶ sec	0.001 sec	16.7 min	31.7 yr	∞
2 ⁿ	O(2 ⁿ)	1*10 ⁻⁶ sec	4 *10 ¹¹ cent.	8	∞	∞
<i>n</i> !	O(<i>n</i> !)	0.003 sec	∞	80	∞	∞