3 Fourier pentru semnale discrete

3.1 Definiții

i) un semnal de perioadă N_0 poate fi descris printr-un număr finit de armonice ale frecvenței fundamentale $\Omega_0 = \frac{2\pi}{N_0}$:

$$f[k] = \sum_{r=0}^{N_0 - 1} D_r e^{jr\Omega_0 k}$$

cu coeficienții:

$$D_r = \frac{1}{N_0} \sum_{k=0}^{N_0 - 1} f[k] e^{-jr\Omega_0 k}$$

ii) transformata Fourier în timp discret (DTFT) este

$$F(\Omega) = \sum_{k=-\infty}^{\infty} f[k]e^{-j\Omega k}$$

iar transformata inversă este

$$f[k] = \frac{1}{2\pi} \int_{2\pi} F(\Omega) e^{j\Omega k} d\Omega$$

iii) transformata Fourier discretă în timp discret (DFT) este

$$F[r] = \sum_{k=0}^{N_0 - 1} f[k] e^{-j\frac{2\pi}{N_0}rk}$$

iar transformata inversă este

$$f[k] = \sum_{r=0}^{N_0 - 1} F[r] e^{j\frac{2\pi}{N_0}rk}$$

3.2 Proprietăți DTFT

Table 3: Proprietăți DTFT uzuale

Operație	Timp	Frecvență
adunare	ax[n] + by[n]	$aX(\Omega) + bY(\Omega)$
deplasare în timp	$x[n-n_0]$	$X(\Omega)e^{-j\Omega n_0}$
deplasare în frecvență	$x[n]e^{j\Omega_0n}$	$X(\Omega - \Omega_0)$
conjugare	$x^*[n]$	$X^*(-\Omega)$
inversare timp	x[-n]	$X(-\Omega)$
convoluție în timp	x[n] * y[n]	$X(\Omega)Y(\Omega)$
multiplicare în timp	x[n]y[n]	$ \begin{vmatrix} \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\theta) Y(\Omega - \theta) d\theta \end{vmatrix} $
diferențiere în timp	x[n] - x[n - 1]	$(1 - e^{-j\Omega})X(\Omega)$
acumulare	$\sum_{k=-\infty}^{\infty} x[k]$	$ \begin{array}{c c} \frac{1}{1-e^{-j\Omega}} + \pi X(0) \\ \sum\limits_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k) \end{array} $
diferențiere în frecvență	nx[n]	$j\frac{dX(\Omega)}{d\Omega}$
relația lui Parseval	$\int_{k=-\infty}^{\infty} x[k] ^2$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) ^2 d\Omega$

Table 4: Transformări DTFT uzuale

Table 4: Transformari DTFT uzuale		
x[n]	$X(\Omega)$	
$a^n u[n]$	$\frac{1}{1-ae^{-j\Omega}}, a < 1$	
$(n+1)a^nu[n]$	$\left \frac{1}{(1-ae^{-j\Omega})^2}, a < 1 \right $	
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n]$	$\frac{1}{(1-ae^{-j\Omega})^r}, a < 1$	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\Omega n_0}$	
$\frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$	u[n]	
u[n]	$\frac{1}{1 - e^{-j\Omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\Omega - 2\pi k)$	
$e^{j\Omega_0 n}$	$2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k)$	
$\cos(\Omega_0 n)$	$\pi \sum_{k=-\infty}^{\infty} \left[\delta(\Omega - \Omega_0 - 2\pi k) \right]$	
	$+\delta(\Omega+\Omega_0-2\pi k)$	
$\sin(\Omega_0 n)$	$\frac{\pi}{j} \sum_{k=-\infty}^{\infty} \left[\delta(\Omega - \Omega_0 - 2\pi k) \right]$	
	$-\delta(\Omega+\Omega_0-2\pi k)]$	
$\sum_{k=-\infty}^{\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\Omega - \frac{2\pi k}{N}\right)$	
$ \begin{array}{c c} k = -\infty \\ \hline $	$\frac{\sin(\Omega(N+\frac{1}{2}))}{\sin(\Omega/2)}$	
0, n > N	$\sin(\Omega/2)$	
$\frac{\sin(Wn)}{}$	$\begin{cases} 1, & 0 \le \Omega \le W \\ 0, & W < \Omega \le \pi \end{cases}$	
$\frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$	$0, W < \Omega \le \pi$	

4 Relațiile lui Parseval

1. Semnal periodic (de perioadă T) cu timp continuu $f(t) = \sum_{n \in \mathbb{Z}} D_n e^{jn\omega_0 t}$ are energia pe o perioadă

$$\int_{T} |f(t)|^2 dt = T \sum_{n \in \mathcal{Z}} |D_n|^2$$

2. Semnal cu timp continuu din L_2 cu transformata Fourier $F(\omega)=\int_{-\infty}^{+\infty}f(t)e^{-j\omega t}dt$ are energia

$$||f||_{2}^{2} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |F(\omega)|^{2} d\omega$$

3. Semnal periodic (de perioadă N) cu timp discret $x[n]=\sum_{k=< N>} D_k e^{jk\omega_0 n}$ are energia pe o perioadă

$$\sum_{n=< N>} |x[n]|^2 = N \sum_{k=0}^{N} |D_k|^2$$

4. Semnal cu timp discret din ℓ_2 cu transformata Fourier $X(\omega)=\sum_{n\in\mathcal{Z}}x[n]e^{-j\omega n}$ are energia

$$||x||_2^2 = \frac{1}{2\pi} \int_{2\pi} |X(\omega)|^2 d\omega$$