

EDU LH2 Tank Chill/Fill Analysis Objectives

 Utilize Generalized Fluid Simulation Systems Program (GFSSP) to develop EDU fluid/thermal model for:

Pretest

- Predict/Estimate maximum ullage pressure in EDU tank during Fill process
- Evaluate vent system capacity
- Predict/Estimate Chill-down/Fill time

Post-test

- Incorporate test conditions into GFSSP model
- Correlate/anchor the model

EDU LH2 Tank Chill/Fill Analysis Approach

- GFSSP model was developed for EDU configuration by applying modeling methodology used in:
 - Ares LO2 and LH2 Tank Loading and Chill down Model, reported in:

"LO2 and LH2 Tank Loading and Boil-Off Analysis Report," Report No. MPS-CDR-AE-01 Prepared by Alok Majumdar & André LeClair ER43/Thermal and Combustion Analysis Branch, Summer, 2010

Propellant Loading of the Space Shuttle External Tank Model, published in:

"Computational Model of the Chilldown and Propellant Loading of the Space Shuttle External Tank," André C. LeClair and Alok K. Majumdar, AIAA 2010-6561, 46th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 25 - 28 July 2010, Nashville, TN

- Model contains:
 - LH2 supply source
 - EDU tank divided into five equal segments
 - Fill/Vent lines and components

EDU LH2 Tank Chill/Fill Analysis GFSSP Model

EDU LH2 Tank Chill/Fill Analysis: Assumptions

- Lines dimensions are based on actual measurement
- Valve CVs provided by testing personnel
- EDU Tank is divided into 5 equal segments (100 lb/segment)
- Tank maximum heat leak = 3 kW
- Fill/Vent lines heat leak is neglected

EDU LH2 Tank Chill/Fill Analysis

Table 1. Component representations used in GFSSP Model

Branch#	Component representation	Dimension (s)
8079	Pipe	D = 2 in., L = 39 in., ε = 6x10-5 in.
7978	Valve	Cv = 50
7873	Pipe	D = 2 in., L = 295 in., ε = 6x10-5 in.
7372	Valve	Cv = 50
7271	Pipe	D = 2 in., L = 80 in., ε = 6x10-5 in.
7170	valve	Cv = 50
702	Pipe	D = 2 in., L = 180 in., ε = 6x10-5 in.
23	Valve	Cv = 1.12
34	Pipe	D = 2 in., L = 36 in., ε = 6x10-5 in.
45	Tank	D = 66.9 in., L = 14.21 in., ε = 6x10-5 in.
56	Tank	D = 66.9 in., L = 14.21 in., ϵ = 6x10-5 in.
67	Tank	D = 66.9 in., L = 14.21 in., ε = 6x10-5 in.
78	Tank	D = 66.9 in., L = 14.21 in., ϵ = 6x10-5 in.
89	Tank	D = 66.9 in., L = 14.21 in., ϵ = 6x10-5 in.
910	Reduction	D1 = 66.9 in., D2 = 1.5 in.
1011	Pipe	D = 2 in., L = 174 in., ε = 6x10-5 in.
1112	Valve	Cv = 46
1213	Pipe	D = 1.5 in., L = 71 in., ε = 6x10-5 in.
1314	Valve	Cv = 39.5
1415	Pipe	D = 1.5 in., L = 18 in., ε = 6x10-5 in.
1516	Expansion	D1 = 1.5 in., D2 = 2 in.
1617	Pipe	D = 2 in., L = 126 in., ε = 6x10-5 in.
1718	Expansion	D1 = 2 in, D2 = 3 in.
1819	Pipe	D = 3 in., L = 2183 in., ε = 6x10-5 in.
1920	Check valve	Cv = 50
2021	Pipe	D = 3. in., L = 12 in. , ε = 6x10-5 in.

D = diameter, L = length, ε = pipe roughness, Cv = Valve flow coefficient

EDU LH2 Tank Chill/Fill Analysis Pre-test Results

- Criteria given to Team to implement the test:
 - LH2 Source pressure $P_s = 39$ psia
 - Maximum ullage pressure P_{max})_{Ullage} = 24 psia
 - Chill/Fill duration = $t_{C/F}$ = 3.75 hours
- Observations based on initial results:
 - Due to long duration of model simulation (time step = 10⁻⁵ s), the chill/fill was estimated based on chill-down slope in early stage of cool-down predicted by the model.
 - Values for P_{max})_{Ullage} and t _{C/F} included:
 - Addition of 6 psi (i.e., 18 + 6 = 24 psi)
 - Addition of 30% margin (i.e. 2.88 *1.3 = 3.75 hours)

EDU LH2 Tank Chill/Fill Analysis: Pre-test Results Ullage Pressure: Comparison Pre-test Estimates & Test Data

EDU LH2 Tank Chill/Fill Analysis: Pre-test Results

EDU LH2 Tank Chill/Fill Analysis Post-Test

- To speed up model simulation time, worked with Alok Majumdar/ER43. Per his suggestions, time step selection has been modified (no changes in model configurations and physics). This modification lead to a significant reduction in model simulation run time.
- Correlated and anchored the model by incorporating the EDU chill/fill conditions into GFSSP model.

EDU LH2 Chill/Fill Tank Analysis: Post-test Results

Tank Wall temperature History, 10% Fill Level

EDU LH2 Chill/Fill Tank Analysis: Post-test Results

EDU Tank Wall temperature History, 50% Fill Level

EDU LH2 Chill/Fill Tank Analysis: Post-test Results

Tank Wall temperature History, 80% Fill Level

EDU Tank LH2 Chill/Fill Tank Analysis: Post-test Results

Accumulated LH2 Mass History

EDU Tank LH2 Chill/Fill Analysis Summary

- Utilized GFSSP to thermal/fluid model for EDU tank during chill/fill
- In Pre-test, provided EDU testing team following criteria to implement the testing:
 - LH2 source pressure
 - Maximum ullage pressure estimate
 - Chill/Fill duration estimate
- In Post-test, correlated GFSSP model by Incorporating EDU fill/chill test initial and boundary conditions.
 - Comparison of model predictions with test data, provided good agreements for :
 - Tank wall temperature at 10%, 50%, and 80% fill levels
 - Accumulated LH2 mass in EDU tank during fill/chill process