# Northwestern University Deptartment of EECS

EE 495: Game Theory for Networked Systems

Spring 2022

Midterm Exam

Jiaqi Guo JGR9647 **Problem 1** (35 points) For each one of the statements below, state whether it is true or false. If the answer is true, prove it. If the answer is false, give a counterexample. Explanations and counterexamples are required for full credit. (7 points each)

(1) If a static game has a unique strictly dominant strategy equilibrium, then this game *must* also have a unique Nash equilibrium.

Sol: True:

For a game 
$$G = (R, \{S_r\}, \{\Pi_r\})$$
,

An outcome 
$$S^* = (S_1^* \cdots S_R^*)$$

is strictly dominant if 
$$Tr(S_r^*, \bar{S}_r) > Tr(S_r, \bar{S}_r) \ \forall S_r \in S_r, S_r \neq S_r^*, \forall \bar{S}_r \in \bar{S}_r$$

Assume a set of NE 
$$\bar{S}'=(s_1 \cdots s_R)$$
  $\forall reR, \forall S'reS_r, \exists r(S_r, \bar{S}_r) \geqslant \exists r(S_r, \bar{S}_r)$ 

 $\mathcal{U}(\hat{Sr}, \hat{Sr}) > \mathcal{U}(\hat{Sr}, \hat{Sr})$  exist since  $\hat{Sr}$  is strictly dominant, which contradicts the assumption above

So, if a static game has a unique strictly dominant strategy equilibrium, it must have a unique NE.

(2) In a Wardrop equilibrium, each player is infinitesimally small, hence their strategic behavior cannot steer system towards inefficiency and all Wardrop Equilibria maximize social welfare.

Sol: False:

Counter example:



For infinite number of players  $Pr \in [0,1]$ , from  $A \rightarrow B$ .

WE will be achieved when  $x_1 = x_2 = 1$  with total cost = 2

Social Optimal is achieved when  $\chi_1=\chi_2=\frac{1}{2}$ , which has cost  $\frac{3}{2}$  < equilibrium total Cost

And POA is always larger than 1, suggests WE does not maximize the social walfare.

(3) In the following simultaneous static prisoner's dilemma game, there exists a correlated equilibrium where players play (C, C) with probability 1.



Sol: False. When play (C,C) with P=1Assume P get recommendation C; player 2 will also play C. But P1 can deviate to make a higher payoff from -1 to 0. This mean C is not the best respond.

Therefore, there is no correlated equilibrium when play (C,C) with probability 1.

(4) Let G be any two-player supermodular game and let  $(x_1, x_2)$  and  $(\tilde{x}_1, \tilde{x}_2)$  be two distinct Nash equilibria of this game, where in each case the <u>first component</u> indicates the action of player 1 and the second component indicates the action of player 2. Furthermore, assume starting from any of these equilibria, unilateral deviation will strictly decrease that player's payoff. If  $x_1 > \tilde{x}_1$ , it must be that  $x_2 \geq \tilde{x}_2$ .

Sol: True.

Let's assume 
$$3_1 > \hat{8}_1$$
,  $3_2 < \hat{8}_2$   
Since  $(3_1, 3_2)$  &  $(\hat{8}_1, \hat{8}_2)$  are two NE points  
we have  $\mathcal{U}(8_1, 8_2) > \mathcal{U}(\hat{8}_1, 8_2)$ ,  $\mathcal{U}(\hat{8}_1, \hat{8}_2) > \mathcal{U}(8_1, \hat{8}_2)$   
So that,  $\mathcal{U}(3_1, 8_2) - \mathcal{U}(\hat{8}_1, \hat{8}_2) > \mathcal{U}(8_1, \hat{8}_2) - \mathcal{U}(\hat{8}_1, \hat{8}_2) - \mathcal{U}(\hat{8}_$ 

(5) For any finite game, a weakly dominated action cannot be used with positive probability in a correlated equilibrium.

Sol: False:

By constructing a game that has 4 strategies with the same payoffs, which means every strategy in this game is a weakly dominated action.

In correlated equilibrium, we assign a probability to each strategies. Here, we can assign arbitary probabilities to every action, and the payoff will not change, which is contradict to the above assumption.

A counter example is:

$$\begin{array}{c|c}
 & L & R \\
\hline
U & (1 \cdot 1) & (1 \cdot 1) \\
\hline
D & (1 \cdot 1) & (1 \cdot 1)
\end{array}
\Rightarrow \begin{cases}
(U,L) = P_1 \\
(U,R) = P_2 \\
(D,L) = P_3 \\
(D,R) = P_4
\end{cases}$$

to be CE:

Obviously. Pi can be any positive probability

Therefore, a weakly dominated action can be used with positive probability in a CE.

**Problem 2** (10 points)(*Mixed Strategy Equilibrium*) Consider a variant of the meeting up for lunch game discussed in class, where the payoff matrix is given as below. Find all (mixed and pure strategy) Nash equilibria.

|     |         | Alice |         |
|-----|---------|-------|---------|
|     |         | TE    | Sargent |
| Bob | TE      | (2,1) | (0,0)   |
|     | Sargent | (0,0) | (3,4)   |

Sol:

• Pure strategy:

O Assume Alice allose TE, Bob will choose TE as well, Alice will have no incentive to change unilaterally, because his purpost will decrease from 2 > 0, which means (TE, TE) is a pure NE point.

DASsume Alice choose Songent, Bob will choose Songent as well, Alice will have no incontive to change runtlaterally, because his payoff will decrease from 3 > 0, which means (Songent, Songent) is a pure NE point.

• Mixed structegy:

Assume, Alice 
$$\begin{cases} 9 \Rightarrow TE \\ 1-9 \Rightarrow Sangent \end{cases}$$

We have  $\begin{cases} 29 = 3(1-9) \\ P = 4(1-P) \end{cases}$ 
 $\Rightarrow \begin{cases} 9 = \frac{3}{3} \\ P = \frac{4}{3} \end{cases}$ 
 $\Rightarrow Mixed strategy$ 

#### Problem 3 (15 points) (Potential Game)

#### 1. Consider the following game

|   |   | A       |        |
|---|---|---------|--------|
|   |   | L       | R      |
| В | U | (1,-2)  | (10,5) |
|   | D | (3,100) | (4,99) |

Show that is is an exact potential game by constructing the potential function.

#### 2. Consider the parameterized version of the game

|   |   | A     |       |
|---|---|-------|-------|
|   |   | L     | R     |
| В | U | (a,b) | (c,d) |
|   | D | (e,f) | (g,h) |

Write down the relations between the parameters, such that this game and the one in the previous part would share the same exact potential potential function.

### 1. Sol:

|   |   | A       |        |
|---|---|---------|--------|
|   |   | L       | R      |
| В | U | (1,-2)  | (10,5) |
|   | D | (3,100) | (4,99) |

To be a priential Games, it should satisfy: 
$$Ur(x,S-r) - Ur(z,S-r) = \phi(z,S-r) - \phi(z,S-r)$$

$$U_r(\lambda,S-r) - U_r(z,S-r) = \phi(\lambda,S-r) - \phi(z,S-r)$$

we first assume 
$$\phi(D,R)=0$$

$$\phi(u,R) - \phi(D,R) = U_B(U,R) - U_B(D,R) = 10-4 = 6$$

$$\phi(D,L) - \phi(D,R) = U_A(D,L) - U_A(D,R) = 100 - 99 = 1$$

$$\phi(N_1L) - \phi(D_1L) = N_8(N_1L) - N_8(D_1L) = 1-3 = -2$$



The values of potential function

## 2. Sol:

we first assume 
$$\phi(D,R)=0$$

$$\phi(U,R)-\phi(D,R)=U_{B}(U,R)-U_{B}(D,R)=C-g=b$$

$$\phi(D,L)-\phi(D,R)=U_{A}(D,L)-U_{A}(D,R)=f-h=1$$

$$\phi(U,L)-\phi(D,L)=U_{B}(U,L)-U_{B}(D,L)=\alpha-e=-2$$

$$\phi(U,L)-\phi(U,R)=U_{A}(U,L)-U_{A}(U,R)=b-d=-7$$
we also have:  $f-h+a-e=c-g+d-b$ 

|   |   | A       |     |
|---|---|---------|-----|
|   |   | L       | R   |
| В | U | f-hta-e | c-g |
|   | D | J-h     | 0   |

:. The value of the potential function

#### **Problem 4** (25 points) (Patent Race for a New Market)

Consider a patent race game, where the players are 2 firms: Alps and Bees, which we denote by A and B, respectively. Both firms simultaneously choose a spending budget on research  $x_i \geq 0$  (i = A, B). Innovation occurs at time  $T(x_i)$ , which is a function of the spending, where the derivative of T(x) satisfies T'(x) < 0 (i.e., more budget leads to faster innovation). The first firm to develop the innovation can file a patent for it worth V dollars (assume no discounting), while any firm developing the innovation later gets no value. The total cost spent by firm i to develop the innovation is  $x_i$ , and if both players innovate simultaneously they share its value equally.

- 1. Formulate the situation as a static game by specifying the payoff functions  $\pi_i$  for firms i = A, B.
- 2. Show that in all pure strategy Nash equilibria one of the players does not invest.
- 3. Does this game have a pure strategy equilibrium when there are three players, each choosing  $x_i \ge 0$ , i = A, B, C. If there is a tie, the value of the patent is split equally among those who tie.

$$\begin{array}{lll} \text{payoff of} & \pi_A = \left\{ \begin{array}{lll} \mathcal{V}^- \not \exists_A & \pi_A > \not \pi_B \\ \\ \frac{\mathcal{V}}{2} - \not \pi_A & \pi_A = \not \pi_B \\ \\ - \not \pi_A & \pi_A < \not \pi_B \end{array} \right. & \pi_B = \left\{ \begin{array}{lll} -\pi_B & \pi_A > \not \pi_B \\ \\ \frac{\mathcal{V}}{2} - \pi_B & \pi_A > \not \pi_B \\ \\ \mathcal{V}^- \rightarrow \pi_B & \pi_A < \not \pi_B \end{array} \right. \\ \end{array}$$

| 2.Sol: |      |                                                               |             |                                   |              |
|--------|------|---------------------------------------------------------------|-------------|-----------------------------------|--------------|
|        |      | Bees                                                          |             |                                   |              |
|        |      |                                                               | XA > XB     | NA = NB                           | Mac XB       |
|        | ,    | 7A>7B                                                         | (V-XA, -XB) | X                                 | ×            |
|        | Alps | XA = X8                                                       | ×           | $(2K-\frac{1}{L},AK-\frac{1}{L})$ | X            |
|        |      | XA <xb< td=""><td>X</td><td>×</td><td>(-/JA, Y-NB)</td></xb<> | X           | ×                                 | (-/JA, Y-NB) |

There exist 2 pure NE strategies:

① Assume Alp's budget 3A > 3B, Bees will set its budget 3B = 0 to maximize  $\Pi_B = -3B$ , Alpc will have no incentive to change unitaterally, because its payoff will possible decrease to  $\frac{V}{2} - 3A$ , -3A < V - 3A

Therefore, a pure NE exist when A invest %a>0 and B invest 0.

◆ Assume Bee's budget  $χ_B > χ_A$ , Alps will set its budget  $χ_A = 0$  to maximize  $π_A = -χ_A$ , Bees will have no incertive to change unilaterally, because its payoff will possible discrease to  $π_A γ_B = -χ_B γ_B = -χ_B γ_B$ .

Therefore, a pure NE exist when B invest  $χ_B > 0$  and A invest 0.

- B) Assume 7A = 3B, Any one of the firms can deviate to get a higher payoff. Therefore, this is no pure NE Therefore, in all pure strategy NE, one player does not invest (3i=0)
- (3. Sol: Yes, it does. There are three NE points. occurs at

```
\begin{cases} X_1 > X_8, X_C = 0 \Rightarrow payoff(V-X_1, -X_1, -X_2) \\ X_1 > X_2, X_3, X_1 = 0 \Rightarrow payoff(V-X_2, -X_2, -X_3) \\ X_1 > X_3, X_4 = 0 \Rightarrow payoff(V-X_1, -X_2, -X_3) \end{cases}
```

**Problem 5** (15 points) (*Iterated Elimination of Strictly Dominated Strategies in Cournot Competition*)

Consider a market in which the price charged for quantity Q (total quantity in the market) of some good is given by P(Q) = 1 - Q. Assume that the cost of producing a unit of this good is 0. In this problem, we use subscript to index the firm and superscript to count the number of rounds of eliminations of strictly dominated strategies.

- 1. Assume that there are two firms in the market. Starting from the original strategy space  $S_i^0 = [0, \infty]$ , each firm carries out iterated elimination of the strictly dominated strategies. Argue that for i = 1, 2, after one round of elimination, we have the set  $S_i^1$  surviving the elimination process can be written as  $S_i^1 = [0, 1/2]$ .
- 2. Still for two firms, construct the sets of strategies  $S_1^k$ ,  $S_2^k$  for any  $k \ge 1$  and conclude that  $S_i^{\infty}$  is a singleton, i.e. it has only one element. How many Nash Equilibria does this game have?
- 3. Now assume that there are three firms. Show that  $S_1^{\infty}$  is not a singleton.

■ Sol: payoff ⇒ Tor firm 1: 
$$P(q_1, q_1) = Q_1(1 - Q_1 - Q_2)$$
  $u_1' = 0 \Rightarrow Q_1 = \frac{1 - Q_2}{2}$ 

$$Q_1 \text{ is best response} \Rightarrow \frac{1 - Q_2}{2} \text{ as } Q_2 \geqslant 0 \quad \frac{1 - Q_2}{2} \in [0, \pm 1]$$

$$\therefore \quad S_1' = [0, \frac{1}{2}]$$

$$\Rightarrow \text{ Sol:}$$

$$u_1(Q_1, Q_2') = Q_1 P(Q_1, Q_2) = Q_1(1 - Q_1 - Q_2)$$
Let  $Q_1 \rightarrow Q_1 + \Delta$  for  $\Delta > 0$  then,
$$u_1(Q_1 + \Delta, Q_2) = (Q_1 + \Delta)(1 - Q_1 - Q_2 - \Delta)$$

$$= (Q_1 + \Delta) - (Q_1 + \Delta)^2 - (Q_1 + \Delta)Q_2$$

$$\begin{cases} S_1 = Q_1 & \text{the difference between the } u_1(Q_1 + \Delta, Q_2) \text{ and } u_1(Q_1, Q_2') \text{ will thereose as } Q_1 \text{ therease.} \\ S_2 = Q_2 & \text{the game is now a supermodular game, which means:} \end{cases}$$

$$S^{DO} \text{ will has } S \text{ and } S, \text{ which are the least and greatest pure } NE \text{ point } \cdots D$$

For each iteration:  $Q_1 = \frac{+Q_2}{2}$ ,  $Q_i$  has the same strategy space.

Therefore, it can be formulated as: 
$$Q_i^{k+1} = \frac{1-Q_i^k}{2}$$
 at the  $k^{th}$  iters.

iteration: 
$$Q_{i}^{2} = \frac{1 - \frac{LQ_{i}^{2}}{2}}{2} = \frac{1}{2} - \frac{1}{4} + \frac{Q_{i}^{2}}{4}$$
 iteration:  $Q_{i}^{3} = \frac{1 - \frac{LQ_{i}^{2}}{2}}{2} = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{Q_{i}^{2}}{8}$ 

Therefore, iteration 
$$k: Q_i^k = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} \cdots + (-\frac{1}{2})^k Q_i^{k-1}$$
 as  $k \to +\infty$   $S^{\infty} = Q_i^{\infty} = -\sum_{k=1}^{\infty} (-\frac{1}{2})^k = \frac{\frac{1}{2}}{1+\frac{1}{2}} = \frac{1}{2}$ 

as 
$$k \to \infty$$
  $Q_i^{\infty+1} = Q_i^{\infty} \Rightarrow Q_i^{\infty} = \frac{1}{3}$  which is a singleton. ...  $Q$ 

Based on O and O, we can know,  $\overline{S} = \underline{S} \Rightarrow S_1^{\infty} = \frac{1}{3}$ , and it is the unique NE

- 9. Sol: For 3 firms, they respetively have quantity Q1, Q2, Q3.
- iteration:

$$P(q_1, q_2) = Q_1 (1 - Q_1 - Q_2 - Q_3) \qquad u_1' = 0 \implies Q_1 = \frac{1 - Q_2 - Q_3}{2} \quad \text{as } Q_1 \geqslant 0$$

$$\therefore S_1' = [D, \frac{1}{2}]$$

$$Q_1^2 = \frac{J - Q_2^2 - Q_3^2}{2} \geqslant (Q_2 + Q_3) \in [0,1]$$
 which means  $Q_1^2 \in [0,\frac{1}{2}]$ 

thus  $S_i^2 = [0, \frac{1}{2}] = S_i'$ , in a similar way, we can conclude as iteration  $k \to \infty$ , we will always have  $Q_i^k \in [0, \frac{1}{2}]$ 

 $\therefore S_1^{\infty} = [0, \frac{1}{2}]$ , which is not a singleton.