EE559 Practical Session 5

François Fleuret

https://fleuret.org/ee559/

March 22, 2020

Introduction

The objective of this session is to observe the impact of residual connections and batch-normalization on the gradient norm at different depth in a residual network.

You can start this session with an embryo of code that includes an implementation of a residual network and an example of graph drawing with Matplotlib:

https://fleuret.org/ee559/src/dlc_practical_6_embryo.py

1 Modification of the ResNet implementation

Edit the implementation of the ResNet and ResNetBlock so that you can pass two Boolean flags skip_connections and batch_normalization to specify if these features are activated or not.

2 Monitoring the gradient norm

Write a function get_stats(skip_connections, batch_normalization) that

- 1. creates a model with 30 residual blocks, 10 channels, 3×3 kernels,
- 2. computes the norm of the gradient of the cross-entropy with respect to the weights of the first convolutional layer of each residual block, on 100 individual samples,
- 3. returns the 30 $\times\,100$ resulting tensor.

Hint: You can create a list of the weight tensors of the first convolution layer of each block with:

monitored_parameters = [b.conv1.weight for b in model.resnet_blocks]
and use it to get the gradient norm for each.

3 Graph

Plot for the four configurations of the two Boolean flags skip_connections and batch_normalization the average of the gradient norm vs. depth.

If you use a notebook, you can set the Maplotlib backend to the 'inline' one to have graphs appear in it with

%matplotlib inline