(a)
$$a_0 + a_1 + a_2 + \cdots + a_{10} = \frac{\nu}{2}$$
; $22 - |x| \Rightarrow 4x$

(b)
$$a_1 + a_3 + a_5 + a_7 + a_9 = 1$$

(c)
$$a_3 = 5$$

(d) $a_0 = 4$
(e) $a_1 + a_2 - a_3 + \cdots - a_9$

(c)
$$a_3 = \frac{1}{2}$$

(d) $a_0 = \frac{1}{4}$

(e) $a_0 = \frac{1}{4}$

(for all $a_0 = a_0 = a_0$

$$\left[\left(\frac{t+1}{2}\right)^2+\right]\left(\frac{1}{2}+1\right)^{8}$$

$$\left(\frac{t+1}{\nu} \right)^2 + \left[\left(\frac{\nu t - 1}{\nu} \right)^{\delta} \right]$$

$$= a_0 + \sum_{i=1}^{n} a_i t^i$$

12. 设等比数列
$$\{a_n\}$$
 的前 n 项和为 $S_n = q^n + p$ 且 $a_3 = 4$.

(1) 求
$$\{a_n\}$$
 的通项公式;

(2) 证明:
$$S_n < \frac{n}{2}(a_1 + a_n)$$
;

(3) 若数列
$$\{b_n\}$$
 的通项公式为 $b_n = \sum_{k=1}^n k^2 C_n^k a_k$,求 b_n 的前 n 项和 T_n .

fig1= 01= (8-1) 82=4 => 8=2

Notice: 9=226641, File 8=2061 11-13

A= (-2.

$$0.000 = 2$$

$$= \left[a(h+1)^{2} + b(n+1) + c \right] \frac{2^{n-1}}{2^{n-1}} \left[ah^{2} + bh + c \right] \frac{2^{n-2}}{2^{n-2}}$$

$$= \left[\frac{2a(h^{2} + 2n+1)}{2^{n-1}} + \frac{2a+1}{2^{n-1}} + \frac{2a+1}{2^{n-2}} + \frac{2a+1}{2^{n$$

$$P(AB) = P(A) P(B) \Leftrightarrow A \cdot B \cdot B \cdot A \cdot$$

3. 已知 P(A) > 0, P(B) > 0 证明: P(B|A) = P(B) 的**充要条件**是 $P(A|B) = P(A|\overline{B})$. 其中一式成立的情况下,还有 $P(B|\overline{A}) = P(B)$, $P(A|\overline{B}) = P(A)$.

$$A,A$$
 a_{1} b_{1} b_{2} b_{1} b_{2} b_{1} b_{2} b_{3} b_{4} b_{5} b_{5

有 $P(B|\overline{A}) = P(B)$, $P(A|\overline{B}) = P(A)$. p(A|B)=p(A)

P(AB) = P(A)P(B)

- 13. 甲、乙两口袋中各装有 1 个黑球和 2 个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行 $n(n \in \mathbb{N}^*)$ 次这样的操作,记口袋中黑球的个数为 X_n ,恰有 1 个黑球的概率为 p_n ,恰有 2 个黑球的概率为 q_n , 恰有 0 个黑球的概率为 r_n .
 - (1) 求 p_1, p_2 的值;
 - (2) 容易看出第 n 次口袋中黑球个数只受到 n-1 次操作后口袋中黑球数量这一状态的影响,与先前的操作无关。记 $p_n = a \cdot p_{n-1} + b \cdot q_{n-1} + c \cdot r_{n-1}$,其中 $a,b,c \in [0,1]$ 为常数,同时 $p_n + q_n + r_n = 1$,请求出 p_n ;

