In this exercise, $\{X_t\}_{t\geq 0}$ is a Poisson process with rate λ .

The exercise can be solved easily using the Beta distribution, however we shall present a solution using the material from Ch. 5.

From Theorem S.7, we have the conditional joint density

 $f_{\underline{w}}(\underline{w}) \times_{t=n} = n! t^{-n}$ for $D = \{\underline{w}: 0 < w, < \dots < w_{n} \le t\}$, where $\underline{w} = (w_1, \dots, w_n)$ and $\underline{w} = (w_1, \dots, w_n)$.

We then apply the formula

 $\frac{\mathbb{E}[W, | X_i = n]}{\mathbb{E}[w_i, w_i]} = \int_{\mathbb{R}^n} \omega_i \cdot \int_{\mathbb{R}^n} \omega_i \cdot v_i \cdot d\omega_i \cdot ... \cdot d\omega_n.$

 $= (N+1)^{-1}$

The base case n=2 is easy to show.

For the induction step, we use weak induction and assume it is true for some $n \ge 2$. Then w_{n+1} w_2 w_2 w_3 w_4 w_4 w_5 w_6 w_6

Hence, the induction hypothesis is true and the result follows directly.

An alternative approach is the following.

Let $W_i^{(n)}$ be the first of the arrivals conditioned on $X_i = n$. Then we know that $W_i^{(n)} \stackrel{d}{=} U_{(i)}^{(n)}$, where $U_{(i)}^{(n)} = \min(U_{(i)}, U_{(i)})$, where the $U_i \sim U_i(0,1)$ and are independent. Then

 $F_{u_{(1)}^{(n)}}(u) = P(U_{(1)}^{(n)} \le u) = 1 - (1 - u)^n$, and $f_{u_{(1)}^{(n)}}(u) = \frac{d}{du} F_{u_{(1)}^{(n)}}(u) = N(1 - u)^{n-1}$, for $u \in [0, 1]$.

This leads to the expectation $\mathbb{E}[U_{(i)}^{(n)}] = \int_{0}^{1} u f_{U_{(i)}^{(n)}}(u) du = (n+1)^{-1}$.