Supermarket notebook

July 11, 2023

1 Final Project

Welcome to the final practical project for our course on Data Science Bootcamp. Throughout this project, you will go through the entire data science process, starting from data loading and cleaning, all the way to running a model and making predictions. This hands-on project will provide you with valuable experience and allow you to apply the concepts and techniques you've learned in the course. Get ready to dive into real-world data analysis and build your skills as a data scientist!

1.1 Important Remarks:

- The ultimate goal of this project is to conduct comprehensive data analysis and build 2 models using the provided datasets.
- Code is not the only thing graded here. Well-written and understandable documentation of your code is to be expected
- Clear reasoning behind your choices in every step of the notebook is important. Be it the choice of a data cleaning technique or selecting certain features in your analysis or the choice of your 2 models.

2 Importing packages

```
[55]: # Import numpy and pandas
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split
```

3 Load the dataset into data

```
[56]: # Load the dataset
df = pd.read_csv('supermarket_survey.csv', sep=';', header=0)
```

4 Dataset overview and statistical summary

```
[57]: #get information about datset df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 353 entries, 0 to 352
Data columns (total 46 columns):

Data	COLUMNIS (COURT 40 COLUMNIS	5).	
#	Column	Non-Null Count	Dtype
0	randomInt	353 non-null	int64
1	age	345 non-null	object
2	gender	347 non-null	object
3	district	334 non-null	object
4	${\tt modeOfTransportation}$	341 non-null	object
5	distance	338 non-null	object
6	G03Q13amountOfPeople	345 non-null	object
7	income	331 non-null	float64
8	frequency	339 non-null	object
9	days[1]	353 non-null	object
10	days[2]	353 non-null	object
11	days[3]	353 non-null	object
12	days[4]	353 non-null	object
13	days[5]	353 non-null	object
14	days[6]	353 non-null	object
15	days[7]	353 non-null	object
16	time[1]	353 non-null	object
17	time[2]	353 non-null	object
18	time[3]	353 non-null	object
19	time[4]	353 non-null	object
20	time[5]	353 non-null	object
21	moneySpent	338 non-null	object
22	orderingItems	334 non-null	object
23	deliveringItems	333 non-null	object
24	willingPayDelivery	166 non-null	object
25	findProducts	334 non-null	object
26	usingDiscounts	326 non-null	object
27	preferCash	331 non-null	object
28	preferCashless	329 non-null	object
29	isRelaxing	327 non-null	object
30	satisGeneralStore	332 non-null	float64
31	satisMusic	288 non-null	float64

```
32
    satisQualityProducts
                              329 non-null
                                              float64
33 satisGeneralAssortment
                              330 non-null
                                              float64
 34
    satisVeganProducts
                              274 non-null
                                              float64
35 satisOrganicProducts
                              301 non-null
                                              float64
    satisGlutenfreeProducts
 36
                              209 non-null
                                              float64
 37
    satisAnimalProducts
                              307 non-null
                                              float64
 38
    ideasExtendedBusiness
                              324 non-null
                                              float64
    ideasHelpCarry
                              322 non-null
                                              float64
 39
    ideasCustomerCouncil
                              318 non-null
                                              float64
 41
    ideasFreeWifi
                              324 non-null
                                              float64
 42 ideasTouchDisplay
                              320 non-null
                                              float64
 43
    ideasSelfCheckout
                              323 non-null
                                              float64
 44 ideasBikeParking
                              312 non-null
                                              float64
    ideasUndergroundParking 300 non-null
                                              float64
dtypes: float64(17), int64(1), object(28)
```

memory usage: 127.0+ KB

```
[58]: #disply 100 columns
      df.head(100)
```

				_					
[58]:		randomInt	age	gender		modeOfTranspo	rtation \		
	0	4	NaN	Male	${\tt Godham}$		Own Car		
	1	4	NaN	NaN	NaN		NaN		
	2	3	20-25	Female	Springtown		Own Car		
	3	4	NaN	NaN	NaN		NaN		
	4	3	15-20	Male	Piltunder		Own Car		
				•••	•••	•••			
	95	3	55-60	Male	NaN		Own Car		
	96	2	60-65	Male	Godham		Walking		
	97	4	>75	Male	Duckborg		Own Car		
	98	4	45-50	Female	NaN		NaN		
	99	3	35-40	Male	Godham		Walking		
							C		
				dista	nce G03Q13ar	mountOfPeople	income	frequency	\
	0			1-	2km	3	120000.0	Twice	
	1				NaN	NaN	NaN	NaN	
	2			>	7km	2	15.0	Three times	
	3				NaN	NaN	1337.0	NaN	
	4			1-	2km	4	250000.0	Twice	
					•••			•••	
	95				5km	5 or more	3500.0	Twice	
	96		500 me	ters to		2	200.0	Once	
	97		JUU MO		7km	2	200000.0	Once	
	98				2km	3	4000.0	Once	
		Ioga than	for her						
	99	Less than	Tew Hun	area mer	er 2	1	15000.0	Three times	

days[1] ... satisGlutenfreeProducts satisAnimalProducts \

0	No	8.0	7.0	
1	No	NaN	NaN	
2	No	7.0	NaN	
3	No	NaN	NaN	
4	No	8.0	1.0	
		•••	•••	
95	No	NaN	8.0	
96	No	6.0	9.0	
97	No	NaN	9.0	
98	Yes	NaN	9.0	
99	No	NaN	8.0	
_	ideasExtendedBusiness			
0	2.0		3.0	
1	NaN		Nal	
2	7.0		7.0	
3	NaN	NaN	Nal	NaN NaN
4	9.0	2.0	1.0	10.0
• •				
95	9.0		8.0	
96	8.0		10.0	
97	10.0	5.0	1.0	1.0
98	NaN	1.0	1.0	5.0
99	9.0	1.0	1.0	1.0
		G 7.6G1		
_	ideasTouchDisplay ide		_	
0	NaN	4.0	NaN	
1	NaN	NaN	NaN	
2	NaN	7.0	7.0	
3	NaN	NaN	NaN	
4	10.0	10.0	8.0	
		•••	•••	
95	NaN	8.0	8.0	
96	10.0	10.0	10.0	
97	2.0	10.0	1.0	
98	7.0	10.0	NaN	
99	1.0	5.0	7.0	
^	ideasUndergroundParki	•		
0		aN		
1		aN		
2		· . 0		
3		aN		
4	N	aN		
	•••			
95	N	aN		
96	7	.0		

97	1.0
98	NaN
99	1.0

[100 rows x 46 columns]

[59]: #statistical summary of the numerical columns in the DataFrame.

#which calculate various descriptive statistics, such as count, mean, standard

→deviation, minimum, quartiles, and maximum, for each numerical column.

df.describe()

[59]:		randomInt	inc	come	satisGenera	lStore	satisMusic	\		
	count	353.000000	331.000	0000	332.	000000	288.000000			
	mean	2.609065	66275.568	3882	7.	424699	5.236111			
	std	1.105322	132542.950	0482	1.	705790	2.507094			
	min	1.000000	-99932.000	0000	1.	000000	1.000000			
	25%	2.000000	2290.000	0000	7.	000000	3.000000			
	50%	3.000000	21000.000	0000	8.	000000	5.000000			
	75%	4.000000	80284.000	0000	8.	000000	7.000000			
	max	4.000000	999999.000	0000	10.	000000	10.000000			
		satisQualit	yProducts	satis	GeneralAsso	rtment	satisVeganP	roduct	ts	\
	count	3	29.000000		330.	000000	274	.00000	00	
	mean		7.498480		7.	278788	6	.35036	35	
	std		1.479792		1.	674366	2	.17744	14	
	min		1.000000		1.	000000	1	.00000	00	
	25%		7.000000		7.	000000	5	.00000	00	
	50%		8.000000		8.	000000	7	.00000	00	
	75%		8.000000		8.	000000	8	.00000	00	
	max		10.000000		10.	000000	10	.00000	00	
		satisOrgani	cProducts	satis	GlutenfreeP	roducts	satisAnima	1Produ	ıcts	\
	count	3	01.000000		209	.000000	3	07.000	0000	
	mean		6.767442		6	.315789		7.348	3534	
	std		1.981347		2	.269317		1.902	2618	
	min		1.000000		1	.000000		1.000	0000	
	25%		6.000000		5	.000000		6.500	0000	
	50%		7.000000		6	.000000		8.000	0000	
	75%		8.000000		8	.000000		9.000	0000	
	max		10.000000		10	.000000		10.000	0000	
		ideasExtend	edBusiness	idea	sHelpCarry	ideasC	ustomerCounc	il \		
	count		324.000000		322.000000		318.0000	00		
	mean		6.919753		3.711180		3.2327	04		
	std		3.129760		3.027465		2.6681	79		
	min		1.000000		1.000000		1.0000	00		
	25%		5.000000		1.000000		1.0000	00		

	50% 75%	8.000000 10.000000		2.000000 6.000000		5	2.000000 5.000000		
	max	10	.000000	10.00	0000	10	.000000		
	count	ideasFreeWifi 324.000000	ideasTouch	nDisplay	ideasS	elfCheckout	ideasBikeParking 312.000000	\	
	mean	6.410494		5.571875		7.857585	7.602564		
	std	3.147757	3	3.197936		2.668804	2.752793		
	min	1.000000	1	.000000		1.000000	1.000000		
	25%	4.000000	3	3.000000		7.000000	6.000000		
	50%	7.000000		3.000000		9.000000	8.000000		
	75%	9.000000		0.00000		10.000000	10.000000		
	max	10.000000	10	0.000000		10.000000	10.000000		
		ideasUndergrou	ndParking						
	count	3	00.00000						
	mean		5.396667						
	std		3.321057						
	min		1.000000						
	25%		2.000000						
	50% 75%		6.000000 8.000000						
	max		10.000000						
	шах		10.00000						
[60]:	df.gen	der.value_count	s()						
[60]:	Male		232						
	Female		84						
		not to say	22						
	Diverse		9						
	Name: g	gender, dtype:	int64						
[61]:	df.mon	eySpent.value_c	ounts()						
[61]:	Between	n 25 and 50 USD	103						
23		n 50 and 75	58						
	Less tl	han 25 USD	58						
	More t	han 125 USD	44						
	Between	n 75 and 100 US	D 42						
	100 to	125 USD	33						
	Name: 1	moneySpent, dty	pe: int64						
[62]:	df.ord	eringItems.valu	e_counts()						
[62] :	selec	ting them mysel	f in the st	ore.	250				
		ring online.	5110 00	=	84				
		orderingItems,	dtype: int6	64					
	•								

```
[63]: df.orderingItems.value_counts()
[63]: ...selecting them myself in the store.
                                                250
      ... ordering online.
                                                  84
      Name: orderingItems, dtype: int64
[64]: df.satisQualityProducts.value_counts()
[64]: 8.0
              103
      7.0
               84
      9.0
               60
      6.0
               30
      5.0
               21
      10.0
               19
      4.0
                 7
      3.0
                 3
      2.0
                 1
      1.0
                 1
      Name: satisQualityProducts, dtype: int64
```

[65]: <AxesSubplot:xlabel='gender', ylabel='Count'>

[65]: sns.histplot(x=df["gender"], bins=5)

[66]: sns.histplot(x=df["satisQualityProducts"], bins=8)

[66]: <AxesSubplot:xlabel='satisQualityProducts', ylabel='Count'>

[67]: sns.histplot(x=df["income"], bins=7)

[67]: <AxesSubplot:xlabel='income', ylabel='Count'>


```
[68]: sns.histplot(data = df["satisGeneralAssortment"], bins=10)
```

[68]: <AxesSubplot:xlabel='satisGeneralAssortment', ylabel='Count'>


```
[69]: # have overviow about income df.income.describe()
```

```
[69]: count
                  331.000000
                66275.568882
      mean
      std
               132542.950482
               -99932.000000
      min
      25%
                 2290.000000
      50%
                21000.000000
      75%
                80284.000000
               999999.000000
      max
      Name: income, dtype: float64
```

```
[70]: #detectime missing income data df.income.isna().sum()
```

[70]: 22

```
[71]: # detect negative income
      negative_income= df[df["income"]<0]</pre>
      negative_income
[71]:
           randomInt
                         age
                                          gender
                                                     district modeOfTransportation \
      75
                       15-20
                              Prefer not to say
                                                  Metrapalis
                                                                             Bicycle
      190
                    3
                       20-25
                                            Male
                                                       Godham
                                                                             Bicycle
                     distance G03Q13amountOfPeople
                                                                            frequency \
                                                       income
                                          5 or more -99932.0
      75
           500 meters to 1km
                                                                                  NaN
      190
                        1-2km
                                                   1 -10000.0 More than four times
                    ... satisGlutenfreeProducts satisAnimalProducts
                                          10.0
                                                                 9.0
      75
                No
                                           1.0
      190
              Yes ...
                                                                 NaN
          {\tt ideasExtendedBusiness\ ideasHelpCarry\ ideasCustomerCouncil\ ideasFreeWifi} \ \ \backslash
      75
                              1.0
                                              1.0
                                                                    1.0
                                                                                  10.0
      190
                            10.0
                                              1.0
                                                                    1.0
                                                                                   1.0
          ideasTouchDisplay ideasSelfCheckout ideasBikeParking \
      75
                        10.0
                                           10.0
                                                              10.0
      190
                         1.0
                                             1.0
                                                              10.0
          ideasUndergroundParking
      75
                                1.0
      190
                                1.0
      [2 rows x 46 columns]
[72]: #detect users with income higher than 10000
      montly_income= df[df["income"]<10000]</pre>
      montly income
[72]:
           randomInt
                                                     district
                                                                 modeOfTransportation \
                                          gender
                         age
      2
                    3
                       20-25
                                                   Springtown
                                                                               Own Car
                                          Female
      3
                    4
                         NaN
                                              NaN
                                                          NaN
                                                                                   NaN
      5
                       20-25
                             Prefer not to say
                                                   Metrapalis
                                                                               Walking
                    2 60-65
                                             Male
                                                       Godham
                                                                               Own Car
                       25-30
                                             Male
                                                  Metrapalis
                                                                               Walking
      8
                    1 25-30
                                            Male
      345
                                                   Metrapalis Public transportation
      349
                    2 30-35
                                             Male
                                                       Godham
                                                                               Own Car
                    3 20-25
                                                       Godham
      350
                                            Male
                                                                               Walking
      351
                    4 35-40
                                             Male
                                                    Piltunder
                                                                               Own Car
                    4 45-50
                                                                               Own Car
      352
                                             Male
                                                     Duckborg
```

```
distance G03Q13amountOfPeople
                                                   income
                                                              frequency days[1]
2
                    >7km
                                                     15.0
                                                            Three times
3
                     NaN
                                             NaN
                                                   1337.0
                                                                     NaN
5
     500 meters to 1km
                                               1
                                                    500.0
                                                                  Twice
                                                                               No
6
                   1-2km
                                                  5000.0
                                                                    Once
                                                                               No
     500 meters to 1km
                                                    600.0
8
                                               1
                                                             Four times
                                                                              Yes
345
                   3-5km
                                                   1000.0
                                               1
                                                                  Twice
                                                                              Yes
349
                   1-2km
                                               3
                                                     50.0
                                                           Three times
                                                                               No
350
                   1-2km
                                               2
                                                      5.5
                                                                    Once
                                                                               No
351
                   3-5km
                                                    600.0
                                                                    Once
                                                                               No
                                                   2500.0
352
                    >7km
                                                                    Once
                                                                               No
    {\tt satisGlutenfreeProducts\ satisAnimalProducts\ ideasExtendedBusiness}
2
                           7.0
                                                 NaN
                                                                          7.0
3
                           NaN
                                                 NaN
                                                                          {\tt NaN}
5
                          10.0
                                                10.0
                                                                          9.0
6
                           NaN
                                                 7.0
                                                                          5.0
8
                           6.0
                                                 8.0
                                                                         10.0
. .
345
                           9.0
                                                 9.0
                                                                          9.0
                                                 7.0
                                                                          9.0
349
                           5.0
350
                           7.0
                                                 7.0
                                                                          4.0
351
                           7.0
                                                 8.0
                                                                          8.0
352
                          10.0
                                                 10.0
                                                                         10.0
    {\tt ideasHelpCarry\ ideasCustomerCouncil\ ideasFreeWifi\ ideasTouchDisplay}
                 7.0
2
                                         7.0
                                                        7.0
                                                                             NaN
3
                 NaN
                                        NaN
                                                        NaN
                                                                            NaN
                                                        9.0
                                                                            9.0
5
                 1.0
                                         1.0
6
                 2.0
                                         2.0
                                                        6.0
                                                                            3.0
                 2.0
                                                        4.0
8
                                         3.0
                                                                            3.0
                 •••
345
                                         5.0
                                                       10.0
                                                                            10.0
                 1.0
349
                 8.0
                                         8.0
                                                        8.0
                                                                            8.0
350
                 6.0
                                        NaN
                                                        8.0
                                                                            9.0
                 9.0
                                                       10.0
                                                                            10.0
351
                                        9.0
352
                10.0
                                       10.0
                                                       10.0
                                                                            10.0
    ideasSelfCheckout ideasBikeParking ideasUndergroundParking
2
                    7.0
                                       7.0
                                                                  7.0
                    NaN
3
                                       NaN
                                                                  NaN
5
                   10.0
                                       1.0
                                                                  1.0
6
                    9.0
                                       9.0
                                                                  9.0
8
                   10.0
                                      10.0
                                                                  2.0
345
                                      10.0
                                                                 10.0
                   10.0
```

349	9.0	9.0	10.0
350	9.0	9.0	8.0
351	10.0	10.0	7.0
352	10.0	10.0	10.0

[152 rows x 46 columns]

```
[73]: #keep just positive income
df= df[df["income"]>0]
```

```
[74]: df.income.describe()
```

```
[74]: count
                  327.000000
      mean
                67422.462691
      std
               132862.089848
      min
                    3.000000
      25%
                 2500.000000
      50%
                24000.000000
      75%
                82784.000000
               999999.000000
      max
```

Name: income, dtype: float64

```
[75]: #Csh vs cashless
sns.histplot(df.preferCash)
```

[75]: <AxesSubplot:xlabel='preferCash', ylabel='Count'>


```
[76]: #count user who prefer cash
     df.preferCash.value_counts()
[76]: Strongly disagree
                           125
     Rather disagree
                            75
     Neutral / Undecided
                            61
     Strongly agree
                            35
     Rather agree
                            16
     Name: preferCash, dtype: int64
[77]: #count user who not prefer cash
     df.preferCashless.value_counts()
[77]: Strongly agree
                           171
     Rather agree
                            52
     Neutral / Undecided
                            48
     Rather disagree
                            22
     Strongly disagree
                            16
     Name: preferCashless, dtype: int64
     5 Data cleaning
[78]: df = df.drop(['randomInt'], axis=1)
     df = df.drop("willingPayDelivery", axis=1)
     df = df.drop("distance", axis=1)
[79]: days_columns = ['time[1]', 'time[2]', 'time[3]', 'time[4]', 'time[5]']
     df.drop(days_columns, axis=1, inplace=True)
[80]: days_columns = ['days[1]', 'days[2]', 'days[3]', 'days[4]', 'days[5]', \( \)
      df.drop(days_columns, axis=1, inplace=True)
[81]: # Handline with missing values
     columns_with_missing_values = ['age', 'gender', 'district', | ]
      \hookrightarrow 'modeOfTransportation',
                                    'G03Q13amountOfPeople', 'income', 'frequency',
      'orderingItems', 'deliveringItems', u
```

6 EDA

```
[16]: # Heatmap of the correlation of the features
plt.figure(figsize=(25,15),dpi=150)
sns.heatmap(df.corr(),cmap='viridis',annot=True)
plt.title('Correlation between features');
```



```
[17]: # understanding the relations between variables
data = df[['orderingItems', 'age', 'gender', 'income', 'frequency',
```


[19]: <seaborn.axisgrid.PairGrid at 0x7fe5bb7d82b0>

7 Data Processing and normalization

```
[82]: # Label encoding for categorical columns
      le = LabelEncoder()
      categorical_cols = ['age', 'gender', 'district', 'modeOfTransportation',__
       _{\hookrightarrow}'G03Q13amountOfPeople', 'frequency', 'moneySpent', 'orderingItems', _{\sqcup}
       →'deliveringItems', 'findProducts', 'usingDiscounts', 'preferCash', □
       →'preferCashless', 'isRelaxing']
      for col in categorical_cols:
          df[col] = le.fit_transform(df[col])
[83]: # Normalization
      # Select the columns for normalization
      columns_to_normalize = ['satisGeneralStore', 'satisMusic', | ]
       →'satisQualityProducts', 'satisGeneralAssortment']
      # Create a scaler object
      scaler = StandardScaler()
      # Apply normalization to the selected columns
      X_normalized = scaler.fit_transform(df[columns_to_normalize])
[84]: # Split the dataset into input features (X) and target variable (y)
      X = df.drop(columns=['moneySpent'])
      y = df['moneySpent']
[85]: # Perform data normalization using StandardScaler
      scaler = StandardScaler()
      X normalized = scaler.fit transform(X)
```

```
# Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X_normalized, y, u

→test_size=0.2, random_state=42)
```

8 Creating ML model 1

```
[86]: # Create an instance of the ML model (e.g., Logistic Regression)
model = LogisticRegression()

# Train the model
model.fit(X_train, y_train)
```

[86]: LogisticRegression()

8.1 Prediction on Test data

```
[87]: # Make predictions on the test set
y_pred = model.predict(X_test)
```

8.2 Model 1 Performance

```
[88]: # Evaluate the model
# get accuracy of the model
accuracy_score_RegModel = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy_score_RegModel, "percent")
```

Accuracy: 0.31818181818182 percent

```
[89]: #use an othe method
from sklearn.metrics import classification_report, confusion_matrix
confusion_matrix(y_test, model.predict(X_test))
```

9 Creating ML model 2

```
[90]: from sklearn.tree import DecisionTreeClassifier

# Create a Decision Tree classifier
model = DecisionTreeClassifier()
```

```
[91]: # Train the model model.fit(X_train, y_train)
```

[91]: DecisionTreeClassifier()

9.1 Prediction on Test data

```
[92]: # Make predictions on the test set
y_pred = model.predict(X_test)
```

9.2 ## Model 2 Performance

```
[93]: # Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```

Accuracy: 0.31818181818182

```
[94]: #use an othe method
from sklearn.metrics import classification_report, confusion_matrix
confusion_matrix(y_test, model.predict(X_test))
```

10 Report and insight from your analysis

As we se we get low accuracy for both models Logistic regression we acheived 31%, and for Descision tree we get 33%, it seems that Decision tree is model can be used, but we need to try different models until find high accuracy. Even we can try Neural Network models in this data, as we have alot of features and data.

```
[96]: #print classification report
print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
0	0.14	0.10	0.12	10
1	0.50	0.40	0.44	20
2	0.43	0.46	0.44	13
3	0.00	0.00	0.00	7
4	0.33	0.38	0.35	8
5	0.21	0.38	0.27	8
accuracy			0.32	66
macro avg	0.27	0.29	0.27	66
weighted avg	0.32	0.32	0.32	66