8.3.9

SAMYAK GONDANE - AI25BTECH11029

Question

If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentric

Solution

Matrix Representation of an Ellipse

The general quadratic form of a centered ellipse is:

$$\mathbf{x}^T A \mathbf{x} = 1$$
 where $A = \begin{bmatrix} \frac{1}{a^2} & 0\\ 0 & \frac{1}{b^2} \end{bmatrix}$ (1)

Here, a and b are the semi-major and semi-minor axes respectively.

SOlution

Geometric Condition

The latus rectum L of an ellipse is given by:

$$L = \frac{2b^2}{a} \tag{2}$$

Given:

$$L = \frac{1}{2} \cdot 2b = b \quad \Rightarrow \quad \frac{2b^2}{a} = b \quad \Rightarrow \quad 2b = a \tag{3}$$

Thus, we have:

$$a=2b \tag{4}$$

Solution

Eccentricity Calculation

Eccentricity e of an ellipse is:

$$e = \sqrt{1 - \frac{b^2}{a^2}} \tag{5}$$

Substituting a = 2b:

$$e = \sqrt{1 - \frac{b^2}{(2b)^2}} = \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$
 (6)

Solution

Final Answer

$$=\frac{\sqrt{3}}{2}$$

Plot

Figure: