Variable	Published Units	Converted Units	Updated Value	Reference
ρ	$g cm^{-3}$	$kg m^{-3}$	_	
A_0	$MPa^{-3}s^{-1}$	$Pa^{-3}s^{-1}$	$2.45 \cdot 10^{-14}$	
λ	$g cm^{-2} year^{-1}$	$kg m^{-2} s^{-1}$	_	
T	K	K	_	
k	_	_	_	
Q	$KJ \ mol^{-1}$	$J mol^{-1}$	$6.0 \cdot 10^4$	
R	$KJ mol^{-1}K^{-1}$	$J mol^{-1} K^{-1}$	$8.3145 \cdot 10^4$	
f	_	_	_	
α	$cm^{9}g^{-3}$	$m^9 kg^{-3}$	$-3.7455 \cdot 10^{-8}$	
β	$cm^{6}g^{-2}$	$m^6 kg^{-2}$	$9.9743 \cdot 10^{-5}$	Barnola (1991) [2]
δ	cm^3g^{-1}	$m^3 kg^{-1}$	$-9.5027 \cdot 10^{-2}$, , , ,
γ	_	_	30.673	
P	MPa	Pa	_	
n	_	_	3	
h	m	m	_	
t	year	S	_	
Age	$Kyr\ BP$	_	_	
V_i	cm^3g^{-1}	$m^3 kg^{-1}$	_	
T	$K \ or \ ^{\circ}C$	K	_	
Z_0	_	_	_	
$\rho (density)$	$g cm^{-3}$	$kg \ m^{-3}$	_	
P_{eff}	MPa	Pa	_	
\overline{v}	0	$kg s^{-1} m^{-1}$	_	
$R(grain\ radii)$	0	m	_	
r	0	m	_	
γ	0	$s kg^{-1}$	_	
Age	year	s	_	
$\dot{\epsilon}$	s^{-1}	s^{-1}	_	
σ	MPa	Pa	_	
A	$MPa^{-3}s^{-1}$	$Pa^{-3}s^{-1}$	$7.89 \cdot 10^{-15}$	
Q	$KJ \ mol^{-1}$	$J mol^{-1}$	$6.0 \cdot 10^4$	
$R\left(gasconstant\right)$	$KJ mol^{-1}K^{-1}$	$J mol^{-1} K^{-1}$	$8.3145 \cdot 10^4$	
D	_	_	_	
t	0	0	_	Arnaud (2000) [1]
a	_	m^2	_	
P^*	$kPa \ or \ MPa$	Pa	_	
f(D)	_	_	_	
n	_	_		
$temp_{mean}$	$^{\circ}C$	K	_	
a_c	$g m^{-2} y r^{-1}$	$kg \ m^{-2}s^{-1}$	_	
$load\ pressure$	$Mg m^{-3}$	$kg m^{-3}$		
depth	m	m	_	

β	_	-	_	
S_v	0	m^2	_	
G(r)	0	0	_	
ρ	$Mg~m^{-3}$	$kg m^{-3}$	_	
A(accum. rt.)	$m yr^{-1}$	$m s^{-1}$	_	H & L (1980) [4]
temp	$^{\circ}C$	K	_	
C	0	0	_	
C'	0	0	_	
a	_	_	_	
b	_	_	_	
k	0	0	_	
Z_0	0	0	_	
ρ	$g cm^{-3}$	$kg m^{-3}$	_	
V_c	0	m^3	_	
D	_	_	_	
T_s	K	K	_	
u, v, w	0	$m s^{-1}$	_	
Q	$W m^{-3}$	$W m^{-3}$	_	
K	$W m^{-1} K^{-1}$	$W m^{-1} K^{-1}$	_	
c	$J K^{-1} k g^{-1}$	$J K^{-1} k g^{-1}$	_	Goujon (2003) [3]
z	m	m	_	
Н	m	m	_	
$w_b(melt)$	$m \ yr^{-1}$	$m s^{-1}$	$10^{-6} \cdot 31536^{-1}$	
$w_b(no\ melt)$	$m yr^{-1}$	$m s^{-1}$	0	
$w_s(melt)$	$m \ yr^{-1}$	$m s^{-1}$	$accum. \ rt.$	
heat flux	$mW m^{-2}$	$W m^{-2}$	_	
P	_	_	_	
γ	_	_	0.37	
λ	_	_		
Δm	$kg \ mol^{-1}$	$kg mol^{-1}$	_	
<u> </u>	K^{-1}	K^{-1}		

References

- [1] Laurent Arnaud, Jean-Marc Barnola, and Paul Duval. Physical modeling of the densification of snow/firn and ice in the upper part of polar ice sheets. *Physics of Ice Core Records*, pages 285–305, 2000.
- [2] J.-M. Barnola, P. Pimienta, D. Raynaud, and Y. S. Korotkevich. CO2-climate relationship as deduced from the Vostok ice core: a reexamination based on new measurements and on a re-evaluation of the air dating. *Tellus B*, 43(2):83–90, 1991.

- [3] C. Goujon, J.-M. Barnola, and C. Ritz. Modeling the densification of polar firn including heat diffusion: application to close-off characteristics and gas isotopic fractionation for Antarctica and Greenland sites. *Journal of Geophysical Research*, 108(D24), 2003.
- [4] Michael Herron and Chester Langway. Firn densification: an empirical model. *Journal of Glaciology*, 25(93):373–385, 1980.