INTREGRALES DOBLES Y TRIPLES. CAMBIO DE VARIABLES

1. Evalúe las siguientes integrales dobles sobre el rectángulo *R* indicado:

I)
$$\iint_R (8-2x^2-y^2)dA$$
, $R = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 0 \le y \le 2\}$ Resp. 12

II)
$$\iint_R (1 - 2xy^2) dA$$
, $R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 2, -1 \le y \le 1\}$ Resp. $\frac{4}{3}$

III)
$$\iint_R (x-3y^2)dA$$
, $R = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 2, \ 1 \le y \le 2\}$ Resp: -12

2. Evalúe las siguientes integrales dobles sobre la región *D* indicada:

I)
$$\iint_D 1 dA$$
, $D = \{(x, y) \in \mathbb{R}^2 \mid x \le 1, 1 \le y \le e^x \}$ Resp. $e - 2$

II)
$$\iint_D x dA$$
, $D = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, x^3 \le y \le 8\}$ Resp. $\frac{48}{5}$

III)
$$\iint_D y dA$$
, $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 \le y \le 3x \}$ Resp. $\frac{81}{5}$

IV)
$$\iint_D (2+4x)dA$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 \le y \le 2x \}$

Resp:
$$\int_0^2 \left(\int_{x^2}^{2x} (2+4x) dy \right) dx = \int_0^4 \left(\int_{\frac{y}{2}}^{\sqrt{y}} (2+4x) dx \right) dy = 8$$

3. Mediante **integración doble** obtenga el volumen de la región sólida de \mathbb{R}^3 determinada por:

I)
$$\begin{cases} 0 \le z \le 3 - x - y & Resp: V = \int_0^1 \left(\int_0^x (3 - x - y) dy \right) dx \\ 0 \le y \le x & = \int_0^1 \left(\int_y^1 (3 - x - y) dx \right) dy \\ x \le 1 & = 1 \end{cases}$$

II)
$$\begin{cases} 0 \le z \le x^2 + y^2 \\ x^2 \le y \le 2x \end{cases} \qquad Resp: V = \int_0^2 \left(\int_{x^2}^{2x} (x^2 + y^2) dy \right) dx \\ = \int_0^4 \left(\int_{\frac{y}{2}}^{\sqrt{y}} (x^2 + y^2) dx \right) dy = \frac{216}{35} \end{cases}$$

III)
$$\begin{cases} -1 \le z \le x^2 + y^2 \\ |x| \le y \le 1 \end{cases}$$
 Resp: $V = \int_0^1 \left(\int_{-y}^y (x^2 + y^2 + 1) \, dx \right) dy = \frac{5}{3}$

4. Mediante **integración triple** obtenga el volumen de la región sólida de \mathbb{R}^3 determinada por:

I)
$$\begin{cases} 0 \le x \le 1 & Resp: V = \int_0^1 \left(\int_0^{1-x} \left(\int_0^{1-x-y} dz \right) dy \right) dx \\ 0 \le y \le 1 - x & = \int_0^1 \left(\int_0^{1-y} \left(\int_0^{1-x-y} dz \right) dx \right) dy \\ 0 \le z \le 1 - x - y & = \frac{1}{6} \end{cases}$$

II)
$$\begin{cases} x \ge 0 \\ \frac{1}{2}x \le y \le 1 - \frac{1}{2}x \\ 0 \le z \le 2 - x - 2y \end{cases}$$
 Resp: $V = \int_0^1 \left(\int_{\frac{1}{2}x}^{1 - \frac{1}{2}x} \left(\int_0^{2 - x - 2y} dz \right) dy \right) dx = \frac{1}{3}$

III)
$$\begin{cases} x \ge 0 & Resp: V = \int_0^1 \left(\int_0^{1-x} \left(\int_0^{1-x^2} dz \right) dy \right) dx \\ 0 \le y \le 1 - x & = \int_0^1 \left(\int_0^{1-y} \left(\int_0^{1-x^2} dz \right) dx \right) dy \\ 0 \le z \le 1 - x^2 & = \frac{5}{12} \end{cases}$$

5. Mediante **integración doble** y empleando **coordenadas polares** obtenga el volumen de la región sólida de \mathbb{R}^3 determinada por:

I)
$$\begin{cases} -3 \le z \le 6 - x^2 - y^2 \\ y \ge 0 \end{cases}$$
 $Resp: V = \int_0^{\pi} \left(\int_0^3 (9 - r^2) r dr \right) d\theta = \frac{81}{4} \pi$

II)
$$\begin{cases} -2 \le z \le 3 - \sqrt{x^2 + y^2} \\ x \ge 0 \end{cases} \qquad Resp: V = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\int_{0}^{5} (5 - r) r dr \right) d\theta = \frac{125}{6} \pi$$

III)
$$x^2 + y^2 \le z \le 4 - 3\sqrt{x^2 + y^2}$$
 $Resp: V = \int_0^{2\pi} \left(\int_0^1 (4 - 3r - r^2) r dr \right) d\theta = \frac{3}{2}\pi$

IV)
$$\begin{cases} \sqrt{x^2 + y^2} \le z \le 2 - \sqrt{x^2 + y^2} \\ x \ge 0 \\ y \ge 0 \end{cases}$$
 Resp: $V = \int_0^{\frac{\pi}{2}} \left(\int_0^1 (2 - 2r) r dr \right) d\theta = \frac{\pi}{6}$

V)
$$\begin{cases} 3(x^2 + y^2) \le z \le 4 - x^2 - y^2 \\ x \ge |y| \end{cases} \quad Resp: V = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\int_{0}^{1} (4 - 4r^2) r dr \right) d\theta = \frac{\pi}{2}$$

6. Mediante **integración triple** y empleando **coordenadas cilíndricas** obtenga el volumen de la región sólida de \mathbb{R}^3 determinada por:

I)
$$\begin{cases} 2 \le z \le 4 - \sqrt{x^2 + y^2} \\ y \ge 0 \end{cases}$$

Resp:
$$V = \int_0^{\pi} \left(\int_0^2 \left(\int_2^{4-r} r dz \right) dr \right) d\theta = \frac{4}{3}\pi$$

II)
$$\begin{cases} 3\sqrt{x^2 + y^2} \le z \le 4 - x^2 - y^2 \\ 0 \le y \le x \end{cases}$$

Resp:
$$V = \int_0^{\frac{\pi}{4}} \left(\int_0^1 \left(\int_{3r}^{4-r^2} r dz \right) dr \right) d\theta = \frac{3}{16} \pi$$

III)
$$\begin{cases} x^2 + y^2 - 2 \le z \le 2 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

Resp:
$$V = \int_0^{\frac{\pi}{2}} \left(\int_0^2 \left(\int_{r^2-2}^2 r dz \right) dr \right) d\theta = 2 \pi$$

IV)
$$\begin{cases} 0 \le z \le 8 - \sqrt{x^2 + y^2} \\ x^2 + y^2 \le 16 \\ y \ge 0 \end{cases}$$

Resp:
$$V = \int_0^{\pi} \left(\int_0^4 \left(\int_0^{8-r} r dz \right) dr \right) d\theta = \frac{128}{3} \pi$$

v)
$$\begin{cases} 3 \le z \le 6 - \sqrt{x^2 + y^2} \\ y \ge |x| \end{cases}$$

Resp:
$$V = \int_{\frac{\pi}{4}}^{\frac{3}{4}\pi} \left(\int_{0}^{3} \left(\int_{3}^{6-r} r dz \right) dr \right) d\theta = \frac{9}{4}\pi$$

TEOREMA DE GREEN

Verifique el teorema de Green para cada uno de los siguientes campos vectoriales \vec{F} en la región D de \mathbb{R}^2 indicada.

I)
$$\vec{F}(x,y) = (3xy, 2x^2);$$

$$Resp: \iint_{D} = \oint_{C-aD} = \frac{5}{6}$$

$$D: \left\{ \begin{array}{l} -1 \le y \le x \\ 0 \le x \le 1 \end{array} \right.$$

II)
$$\vec{F}(x,y) = (xy, x^2);$$

 $Resp: \iint_D = \oint_{C=\partial D} = \frac{5}{12}$

$$D: \begin{cases} x \le y \le 2 - x^2 \\ 0 \le x \le 1 \end{cases}$$

III)
$$\vec{F}(x,y) = (x,x^2);$$

 $Resp: \iint_{\mathbb{R}} = \oint_{C-\partial \mathbb{R}} = \frac{1}{2}$

$$D: \begin{cases} \frac{1}{2} - \frac{1}{2}x \le y \le 1 - x^2 \\ 0 \le x \le 1 \end{cases}$$

IV)
$$\vec{F}(x, y) = (xy, x^2);$$

Resp: $\iint_{D} = \oint_{C-\partial D} = 4$

$$D: \begin{cases} 0 \le y \le x^2 \\ 0 \le x \le 2 \end{cases}$$

V)
$$\vec{F}(x,y) = (3y+1,4x);$$

 $Resp: \iint_{D} = \oint_{C-3D} = 9$

$$D: \begin{cases} x^2 - 2x \le y \le 2x \\ 0 \le x \le 3 \end{cases}$$

VI)
$$\vec{F}(x,y) = (y,2x);$$

 $Resp: \iint_{D} = \oint_{C-aD} = \frac{14}{2}$

$$D: \begin{cases} -1 - x \le y \le x^2 + 2x + 1 \\ -1 \le x \le 1 \end{cases}$$

VII)
$$\vec{F}(x, y) = (3x^2y - y, x^3);$$

 $Resp: \iint_D = \oint_{C=\partial D} = 4$

$$D: \begin{cases} x \le y \le x^3 + 2 \\ -1 \le x \le 1 \end{cases}$$

VIII)
$$\vec{F}(x,y) = (2y, -x);$$

$$Resp: \iint_{D} = \oint_{C=\partial D} = -8$$

$$D: \begin{cases} 0 \le y \le x^2 \\ 0 \le x \le 2 \end{cases}$$

IX)
$$\vec{F}(x,y) = (x,2xy);$$
 $Resp: \iint_{D} = \oint_{C-aD} = 0$

$$D: y^2 \le x \le \sqrt{2 - y^2}$$

X)
$$\vec{F}(x,y) = (xy, x^2);$$

 $Resp: \iint_D = \oint_{G=\partial D} = \frac{4}{3}$

$$D: \left\{ \begin{array}{c} -x - 1 \le y \le x + 1 \\ -1 \le x \le 1 \end{array} \right.$$

TEOREMA DE GAUSS

1. Verifique el teorema de Gauss para cada uno de los siguientes campos vectoriales \vec{F} en la región E de \mathbb{R}^3 indicada.

I)
$$\vec{F}(x, y, z) = (x, y, z);$$

$$Resp: \iiint_E = \oiint_{S=\partial E} = 24\pi$$

$$E: x^2 + y^2 - 4 \le z \le 0$$

II)
$$\vec{F}(x, y, z) = (y, -x, z);$$

 $Resp: \iiint_{F} = \oiint_{S-\partial F} = 72\pi$

$$E: \sqrt{x^2 + y^2} - 4 \le z \le 2$$

III)
$$\vec{F}(x, y, z) = (y, z, xz);$$

Resp: $\iiint_F = \oiint_{S-AF} = 0$

$$E: x^2 + y^2 \le z \le 1$$

IV)
$$\vec{F}(x, y, z) = (x, y, z);$$

 $Resp: \iiint_{E} = \oiint_{S-AE} = 32\pi$

$$E: \sqrt{x^2 + y^2} \le z \le 6 - x^2 - y^2$$

2. Aplique el teorema de Gauss para obtener el flujo de cada uno de los siguientes campos vectoriales \vec{F} a través de la superficie S correspondiente a la frontera de la región E de \mathbb{R}^3 indicada.

I)
$$\vec{F}(x,y,z) = (x,y,-z);$$

$$Resp: \oiint_{S=\partial E} = \int_0^\pi \left(\int_0^4 \left(\int_0^{8-r} r dz \right) dr \right) d\theta = \frac{128}{3}\pi$$

$$E: \begin{cases} 0 \le z \le 8 - \sqrt{x^2 + y^2} \\ x^2 + y^2 \le 16 \\ y \ge 0 \end{cases}$$

II)
$$\vec{F}(x, y, z) = (x, z + e^{x^2}, x^2y + 1);$$

 $Resp: \oint_{S=\partial E} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\int_{0}^{1} (\int_{r^2}^{2-r^2} r dz) dr) d\theta = \frac{\pi}{2}$

$$E: \begin{cases} x^2 + y^2 \le z \le 2 - x^2 - y^2 \\ x \ge 0 \end{cases}$$

III)
$$\vec{F}(x,y,z) = (-x,-y,3z);$$

$$Resp: \oiint_{S=\partial E} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\int_{0}^{2} \left(\int_{r}^{2} r dz \right) dr \right) d\theta = \frac{4}{3}\pi$$

$$E: \begin{cases} \sqrt{x^2 + y^2} \le z \le 2\\ x \ge 0 \end{cases}$$

IV)
$$\vec{F}(x, y, z) = (x, xy, z);$$

$$E: \begin{cases} 0 \le z \le 1 - x^2 - y^2 \\ y \ge x \\ x \ge 0 \end{cases}$$

$$Resp: \oint_{S=\partial E} = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\int_{0}^{1} \left(\int_{0}^{1-r^2} (2 + r \cos(\theta)) r dz \right) dr \right) d\theta = \frac{15\pi - 8(\sqrt{2} - 2)}{120}$$

V)
$$\vec{F}(x,y,z) = (-xy,y,4z);$$

$$Resp: \oint_{S=\partial E} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \left(\int_{0}^{2} \left(\int_{r}^{2} (5-rsen(\theta))rdz \right) dr \right) d\theta = \frac{10}{3}\pi$$

$$E: \begin{cases} \sqrt{x^2 + y^2} \le z \le 2\\ -x \le y \le x \end{cases}$$

VI)
$$\vec{F}(x, y, z) = (4x, 5y, 3z);$$

 $Resp: \oint_{S=\partial E} = \int_0^1 \left(\int_0^{1-x} \left(\int_0^{1-x^2} 12dz \right) dy \right) dx = 5$

$$E: \begin{cases} 0 \le z \le 1 - x^2 \\ 0 \le y \le 1 - x \\ 0 \le x \le 1 \end{cases}$$

VII)
$$\vec{F}(x, y, z) = (y + e^{z^2}, x^2 z, z);$$

 $\text{Resp: } \oiint_{S=\partial E} = \int_0^{\pi} \left(\int_0^2 \left(\int_r^{4-r} r dz \right) dr \right) d\theta = \frac{8}{3}\pi$

$$E: \begin{cases} \sqrt{x^2 + y^2} \le z \le 4 - \sqrt{x^2 + y^2} \\ y \ge 0 \end{cases}$$

TEOREMA DE STOKES

Verifique el teorema de Stokes para:

I)
$$\vec{F}(x,y,z) = (xyz,y,z)$$
 y $S:$

$$S: \begin{cases} 6x + 6y + z = 12\\ 0 \le x \le 2\\ 0 \le y \le 2 - x \end{cases}$$

II)
$$\vec{F}(x, y, z) = (z, x, y)$$

$$C: \begin{cases} x^2 + y^2 = 1\\ y + z = 2 \end{cases}$$

$$\mathbf{III})\vec{F}(x,y,z) = (-y,x,z)$$

$$S: \begin{cases} z \le 0 \\ z = x^2 + y^2 - 4 \end{cases}$$

IV)
$$\vec{F}(x, y, z) = (y, x, x + z)$$

$$S: \begin{cases} z \ge 2 \\ z = 6 - x^2 - y^2 \end{cases}$$

V)
$$\vec{F}(x, y, z) = (-y, x, z)$$

$$S: \begin{cases} z \ge 0 \\ z = 4 - \sqrt{x^2 + y^2} \end{cases}$$

ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

I- Obtenga la solución general de las siguientes ecuaciones diferenciales a variables separables:

a)
$$\frac{dy}{dx} = \frac{xy}{x^2 + 1}$$

Resp:
$$y = C\sqrt{x^2 + 1}$$

b)
$$\frac{dy}{dx} = \frac{\ln(x)}{xy + xy^3}$$

Resp:
$$y^2 + \frac{1}{2}y^4 = \ln^2(x) + C$$

c)
$$y' = \frac{x\sqrt{x^2+1}}{ye^y}$$

Resp:
$$(y-1)e^y = \frac{1}{3}(x^2+1)^{\frac{3}{2}} + C$$

d)
$$y' = e^{x-y}$$

Resp:
$$e^y = e^x + C$$

e)
$$(x^2 + 1)dy - (xy + 3x)dx = 0$$

Resp:
$$y = C\sqrt{x^2 + 1} - 3$$

f)
$$ydx - (x^2 - 16)dy = 0$$

Resp:
$$y = C \left(\frac{x-4}{x+4} \right)^{\frac{1}{8}}$$

g)
$$sen(x)cos(y)dx - cos(x)sen(y)dy = 0$$
 $Resp: -ln(cos(y)) = C - ln(cos(x))$

$$\mathbf{h)} (y + xy)dx + (x - xy)dy = 0$$

Resp:
$$y - ln(y) = C - ln(x) - x$$

II- Obtenga la solución general de las siguientes ecuaciones diferenciales exactas:

$$\mathbf{a})\left(x+\frac{2}{y}\right)dy+ydx=0$$

$$Resp: xy + ln(y^2) = C$$

b)
$$(y - x^3)dx + (x + y^3)dy = 0$$

Resp:
$$xy - \frac{1}{4}x^4 + \frac{1}{4}y^4 = C$$

c)
$$(2xy^3 + y\cos(x))dx + (3x^2y^2 + \sin(x))dy = 0$$
 Resp: $x^2y^3 + y\sin(x) = C$

d)
$$(x^3 + xy^2)dx + (x^2y + y^3)dy = 0$$

Resp:
$$x^4 + 2x^2y^2 + y^4 = C$$

III- Obtenga la solución general de las siguientes ecuaciones diferenciales lineales:

a)
$$y' - 3y = e^x$$

$$Resp: y = Ce^{3x} - \frac{1}{2}e^x$$

b)
$$xy' + 2y = e^{x^2}$$

Resp:
$$y = \frac{e^{x^2}}{2x^2} + \frac{c}{x^2}$$

c)
$$y' + 2xy = x$$

Resp:
$$y = Ce^{-x^2} + \frac{1}{2}$$

d)
$$y' - \left(\frac{x}{x^2 - 1}\right) y = -x$$

Resp:
$$y = C\sqrt{x^2 - 1} - x^2 + 1$$

e)
$$(x+1)y'+3y=(1-x)^3$$

Resp:
$$y = \frac{-(5x^6 - 6x^5 - 15x^4 + 20x^3 + 15x^2 - 30x - 30C)}{30(x+1)^3}$$

f)
$$(x^2 + 1)y' - 2xy - 2x - 2x^3 = 0$$
 Resp: $y = (x^2 + 1)[ln(x^2 + 1) + C]$

Resp:
$$y = (x^2 + 1)[ln(x^2 + 1) + C]$$

g)
$$y' + y = x + e^x$$

Resp:
$$y = x - 1 + \frac{1}{2}e^x + Ce^{-x}$$

h)
$$x^2y' + 2xy = cos(x)$$

Resp:
$$y = \frac{sen(x)}{x^2} + \frac{C}{x^2}$$

ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN A **COEFICIENTES CONSTANTES**

I- Empleando el método de los coeficientes indeterminados obtenga la solución de las siguientes ecuaciones diferenciales, con las condiciones iniciales fijadas:

a)
$$y'' - y = 2x^2 + 3x + 5$$

$$v(0) = 0, v'(0) = 0$$

Resp:
$$y = 6e^x + 3e^{-x} - 2x^2 - 3x - 9$$

b)
$$y'' - 2y' + y = -2e^x$$

$$y(0) = 1, y'(0) = 3$$

Resp:
$$y = e^x(1 + 2x - x^2)$$

c)
$$y'' - 9y = 4xe^{3x}$$
 ; $y(0) = 0$, $y'(0) = 0$
Resp: $y = (\frac{1}{3}x^2 - \frac{1}{9}x + \frac{1}{54})e^{3x} - \frac{1}{54}e^{-3x}$

d)
$$y'' + 2y = 3x^2 + 2x + 1$$
 ; $y(0) = 0$, $y'(0) = 0$
 $Resp: y = cos(\sqrt{2}x) - \frac{\sqrt{2}}{2}sen(\sqrt{2}x) + \frac{3}{2}x^2 + x - 1$

e)
$$y'' - 4y = (x+1)e^{2x}$$
 ; $y(0) = 0$, $y'(0) = 0$
 $Resp: y = \left(\frac{1}{8}x^2 + \frac{3}{16}x - \frac{3}{64}\right)e^{2x} + \frac{3}{64}e^{-2x}$

f)
$$y'' - 4y' + 4y = x^2$$
 ; $y(0) = 1$, $y'(0) = 2$
 $Resp: y = \left(\frac{1}{4}x + \frac{5}{8}\right)e^{2x} + \frac{1}{4}x^2 + \frac{1}{2}x + \frac{3}{8}$

g)
$$y'' + y = 4cos(x)$$
 ; $y(0) = 1$, $y'(0) = 1$
 $Resp: y = cos(x) + (2x + 1)sen(x)$

h)
$$y'' + y = 3sen(5x)$$
 ; $y(0) = -1$, $y'(0) = 1$
 $Resp: y = \frac{13}{8}sen(x) - cos(x) - \frac{1}{8}sen(5x)$

i)
$$y'' + 10y' + 25y = 10e^{-5x}$$
 ; $y(0) = 1$, $y'(0) = 5$
 $Resp: y = e^{-5x}(5x^2 + 10x + 1)$

j)
$$y'' + 4y = x(x+1) + 1$$
 ; $y(0) = 2$, $y'(0) = 0$
 $Resp: y = \frac{15}{8}cos(2x) - \frac{1}{8}sen(2x) + \frac{1}{4}x^2 + \frac{1}{4}x + \frac{1}{8}$

k)
$$y'' + y = 2\cos(x)$$
 ; $y(0) = 1$, $y'(0) = 0$
 $Resp: y = \cos(x) + xsen(x)$

1)
$$y'' - y' = 5e^{-x}(sen(x) + cos(x))$$
 ; $y(0) = -4$, $y'(0) = 5$
 $Resp: y = 8e^{x} - 14 + e^{-x}(2cos(x) - sen(x))$

m)
$$y'' - y = 2e^{3x} - e^{-x}$$
 ; $y(0) = 0$, $y'(0) = 0$
 $Resp: y = \frac{1}{4}e^{3x} - \frac{3}{4}e^{x} + \frac{(x+1)}{2}e^{-x}$

n)
$$y'' + 4y = 4x^2 + 5e^{4x}$$
 ; $y(0) = 0$, $y'(0) = 0$
 $Resp: y = \frac{1}{4}cos(2x) - \frac{1}{2}sen(2x) + x^2 - \frac{1}{2} + \frac{1}{4}e^{4x}$

o)
$$y'' + y = sen(x) + (x+1)e^x$$
 ; $y(0) = 0$, $y'(0) = 0$
 $Resp: y = \frac{1}{2}xe^x - \frac{1}{2}xcos(x)$

II- Empleando el método de **variación de parámetros** obtenga la solución general de las siguientes ecuaciones diferenciales:

c)
$$y'' + 3y' + 2y = \frac{1}{1+e^x}$$

Resp: $y = C_1 e^{-x} + C_2 e^{-2x} + (e^{-x} + e^{-2x}) ln(1 + e^x) - e^{-x}$

d)
$$y'' + 3y' + 2y = sen(e^x)$$

 $Resp: y = C_1e^{-x} + C_2e^{-2x} - e^{-2x}sen(e^x)$

e)
$$y'' + y = cos^2(x)$$

Resp:
$$y = C_1 cos(x) + C_2 sen(x) + \frac{1}{3} sen^2(x) + \frac{1}{3}$$