Coordinate Geometry

Abhyas Kumar Kanaujia

Contents

1	Coc	\mathbf{rdinat}	e System	3
	1.1		•	3
	1.2	Basic S	Shapes	3
		1.2.1	-	3
		1.2.2	-	3
		1.2.3		3
		1.2.4		3
		1.2.5		4
	1.3	Area		4
		1.3.1	Area of \triangle	4
		1.3.2		4
		1.3.3	Condition for Colinearity of 3 poitns	4
	1.4	Section		5
		1.4.1	Internal Division	5
		1.4.2	External Division	5
		1.4.3	Mid Point Formula	6
	1.5	Locus		6
2	Stra	aight L	ine	7
	2.1	Slope	or Gradient of a Line	7
		2.1.1		8
	2.2	Forms		8
		2.2.1	Slope Intercept Form	8
		2.2.2	Point Slope Form	8
		2.2.3	Two Point Form	8
		2.2.4		8
		2.2.5		8
		2.2.6	Distance Form	8

CONTENTS 1

	2.3	Transformations
		2.3.1 To Slope intercept form
		2.3.2 To Intercept form
		2.3.3 To Normal form
	2.4	Point Of intersetion of Lines
	2.5	Perpendicular & Parallel Lines
		2.5.1 Formation
		2.5.2 Condition
	2.6	Distance of Point From a Line
	2.7	Distance between Parallel Lines
	2.8	Area of Parallelogram
	2.9	Equation of Lines passing through a given point and making
		a given angle with the line
	2.10	Family of Lines through the intersection of two given lines $$. $$. $$ 12
3	Pair	Of Straight Lines
	3.1	Definition
		3.1.1 Identification of 2nd Degree Equation
		3.1.2 To get the point of intersection
	3.2	Homogenous Equations: Pair of Straight Line through origin . 14
		3.2.1 Component Lines
		3.2.2 Slopes
		3.2.3 Eq of pair of Straight Lines Perpendicular to the given
		pair of lines
		3.2.4 Angle b/w the lines
		3.2.5 Eq of Angle Biscectors
	3.3	Non Homogenous Equation:
		3.3.1 Pont of Intersection
	3.4	Condition for Parallel lines
	3.5	Distance between Parallel Lines
	3.6	Angle biscector for known point
	3.7	Product of Perpendiculars
	3.8	Homogenization
		3.8.1 Process 18

2 CONTENTS

Chapter 1

Coordinate System

1.1 Distance Formulae

$$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

1.2 Basic Shapes

1.2.1 Square

4 sides equal, Diagonal equal $d_1 = d_2 = a\sqrt{2}$

1.2.2 Rhombus

4 sides equal, diagonal not equal $d_1 \neq d_2$

1.2.3 Rectangle

Opposite Sides are equal, diagonal equal $d_1 = d_2 = a\sqrt{l^2 + b^2}$

1.2.4 Parallelogram

Opposite sides equal, diagonal not equal $d_1 \neq d_2$

4

1.2.5 Triangle

• If the vertices of a triangle have integral coordinates then the triangle cannot be an equilateral triangle.

1.3 Area

1.3.1 Area of \triangle

$$\triangle = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

1.3.2 Area of any Polygon

$$= \frac{1}{2} \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \\ \dots & \dots \\ x_n & y_n \\ x_1 & y_1 \end{vmatrix}$$

1.3.3 Condition for Colinearity of 3 poitns

Area of polygon = 0

1.4. SECTION FORMULA

5

1.4 Section Formula

1.4.1 Internal Division

$$x = \frac{mx_2 + mx_1}{m+n}$$
$$y = \frac{my_2 + ny_1}{m+n}$$

For Given eq of 2 Lines and point use:

$$= -\frac{l_1}{l_2}$$

$$\frac{m}{n} = -\frac{ax_1 + by_1 + c}{ax_2 + by_2 + c}$$

1.4.2 External Division

$$x = \frac{mx_2 - nx_1}{m - n}$$
$$y = \frac{my_2 - ny_1}{m - n}$$

1.4.3 Mid Point Formula

$$x = \frac{x_1 + x_2}{2}$$
$$y = \frac{y_1 + y_2}{2}$$

1.5 Locus

- 1. Assume the coordinates of the points (h, k) whose locus is to be found
- 2. Write the given condition in mathematical form involving (h, k)
- 3. Eliminate variables if any except (h, k)
- 4. Replace h by x and k by $y:(h,k)\to (x,y)$ in the result obtained in step 3.

Chapter 2

Straight Line

2.1 Slope or Gradient of a Line

slope =
$$m = \tan \theta = \frac{dy}{dx}\Big|_{(x,y)}$$

Slope(m)	θ	Line
m = 0	0°	Line parallel to
		x-axis
$m=\infty$	90°	perpendicular to
		x-axis/paralle to
		y-axis
m > 0	$0^{\circ} - 90^{\circ}$	acute +ve slope
m < 0	$90^{\circ} - 180^{\circ}$	obtuse -ve slope

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Angle Between two lines

$$\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|$$

Condition for Parallelism of lines

$$m_1 = m_2$$

Condition for Perpendicularity of Lines

$$m_1 = -\frac{1}{m_2}$$
 (Negative Reciprocal)

2.1.1 Condition for 3 Lines being concurrent

Area of triangle = 0 Then the lines are concurrent.

2.2 Forms

2.2.1 Slope Intercept Form

$$y = mx + c$$

2.2.2 Point Slope Form

$$(y - y_1) = m(x - x_1)$$

2.2.3 Two Point Form

$$\frac{y - y_1}{x - x_1} = \frac{x_2 - x_1}{y_2 - y_1}$$

2.2.4 Intercept Form

$$\frac{x}{a} + \frac{y}{b} = 1$$

2.2.5 Normal Form

$$x\cos\alpha + y\sin\alpha = p$$

2.2.6 Distance Form

$$\frac{x - x_1}{\cos \theta} = \frac{y - y_1}{\sin \theta} = r$$

$$P = (x_1 + r \cos \theta, y_1 + r \sin \theta)$$

2.3. TRANSFORMATIONS

9

2.3 Transformations

For Line

$$ax + by + c = 0$$

2.3.1 To Slope intercept form

Isolate y on L.H.S.:

Form:
$$y = mx + c$$

 $y = \left(-\frac{a}{b}\right)x + \left(-\frac{c}{b}\right)$
 $m = -\frac{a}{b}$ and $c = -\frac{c}{b}$

2.3.2 To Intercept form

Make R.H.S 1:

Form:
$$\frac{x}{a} + \frac{y}{b} = 1$$

or, $\frac{x}{-c/a} + \frac{y}{-c/b} = 1$
 \therefore x-int $= -\frac{c}{a}$ and y-int $= -\frac{c}{b}$

2.3.3 To Normal form

Divide by $\frac{1}{\sqrt{a^2+b^2}}$ and make +ve constant on R.H.S.

$$-\frac{ax}{\sqrt{a^2+b^2}} - \frac{by}{\sqrt{a^2+b^2}} = \frac{c}{\sqrt{a^2+b^2}}$$

2.4 Point Of intersetion of Lines

$$a_1x + b_1y + c_1 = 0$$
$$a_2x + b_2y + c_2 = 0$$

P.O.I. =
$$\left(\frac{b_1c_2 - b_2c_1}{a_1 - a_2b_1}, \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}\right)$$

2.5 Perpendicular & Parallel Lines

2.5.1 Formation

For a given Line ax + by + c = 0

Paralled Line: ax + by + k = 0

Perpendicular Line: bx - ay + k = 0

k can be obtained by using given condition

2.5.2 Condition

For given lines:

$$a_1 x + b_1 y + c_1 = 0$$

$$a_2x + b_2y + c_2 = 0$$

Lines are:

- 1. Coincident, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c+1}{c_2}$
- 2. Parallel, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$
- 3. Intersecting, if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$
- 4. Perpendicular, if $\left(-\frac{a_1}{b_1}\right)\left(-\frac{a_2}{b_2}\right) = -1$

2.6 Distance of Point From a Line

Line: ax + by + c = 0 point: (x_1, y_1)

$$D = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

Line: ax + by + c = 0 Origin: (0,0)

$$D = \frac{|c|}{\sqrt{a^2 + b^2}}$$

11

2.7 Distance between Parallel Lines

For given lines:

$$a_1x + b_1y + c_1 = 0$$
$$a_2x + b_2y + c_2 = 0$$

Distance is:

$$D = \left| \frac{c_2 - c_1}{\sqrt{a^2 + b^2}} \right|$$

2.8 Area of Parallelogram

For a parallelogram formed by the following parallel Lines:

$$a_1x + b_1y + c_1 = 0$$

$$a_1x + b_1y + c_2 = 0$$

$$a_2x + b_2y + d_1 = 0$$

$$a_2x + b_2y + d_2 = 0$$

Area of Parallelogram is given by:

$$\begin{vmatrix} (c_1 - d_1)(c_2 - d_2) \\ a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

2.9 Equation of Lines passing through a given point and making a given angle with the line

Point: (x_1, y_2) Angle: α with the line y = mx + c

$$y - y_1 = \frac{m \pm \tan \alpha}{1 \mp m \tan \alpha} (x - x_1)$$

2.10 Family of Lines through the intersection of two given lines

$$L_1 + \lambda L_2 = 0$$

Chapter 3

Pair Of Straight Lines

3.1 Definition

For two given lines

$$L_1: a_1x + b_1y + c_1 = 0$$

$$L_2: a_2x + b_2y + c_2 = 0$$

The joint equations is

$$L_1 \times L_2 = 0$$

or, $(a_1x + b_1y + c_1)(L_2 : a_2x + b_2y + c_2) = 0$
or, $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

This is the equation of pair of Straight Lines

3.1.1 Identification of 2nd Degree Equation

The Homogenous Equation

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

represents a pair of straight line if,

$$\Delta = abc + 2fgh - af^2 - bg^2 - ch^2 = 0$$

Thus,

$$\Delta = 0 \implies \text{Pair of Staright Line}$$

$$\Delta \neq 0 \implies \begin{cases} a = b \& h = 0 & \implies \text{Circle} \\ h^2 = ab & \implies \text{Parabola} \\ h^2 < ab & \implies \text{Ellipse} \\ h^2 > ab & \implies \text{Hyperbola} \\ h^2 > ab \& a + b = 0 & \implies \text{Rectangular Hyperbola} \end{cases}$$

Hint: Hyperbola has h larger, while Ellipse has it smaller.

3.1.2 To get the point of intersection

For a given equation of pair of straight line

$$S \equiv ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$$

Partially differentiate w.r.t. x and y

$$\frac{\partial S}{\partial x} = 0 \tag{3.1}$$

$$\frac{\partial S}{\partial y} = 0 \tag{3.2}$$

Solve (1) and (2) to get x and y

Remeber: Point of Intersection statifies all these 3 Equations.

3.2 Homogenous Equations: Pair of Straight Line through origin

For two given lines through origin

$$y = m_1 x$$
$$y = m_2 x$$

The joint equation is

$$(m_1x - y)(m_2 - y) = 0$$

or, $m_1m_2x^2 - (m_1 + m_2)xy + y^2 = 0$
or, $ax^2 + 2hxy + by^2 = 0$

This is the equation of a pair of Straight lines through origin.

3.2. HOMOGENOUS EQUATIONS: PAIR OF STRAIGHT LINE THROUGH ORIGIN15

3.2.1Component Lines

For a given equation of pair of straight line through origin

$$ax^2 + 2hxy + by^2 = 0$$

Consider the eq. to be a quadratic in x and use quadratic formula.

$$a^2 + (2hy)x + by^2 = 0$$

3.2.2 Slopes

For a given eq of pair of straight line through origin

$$ax^2 + 2hxy + by^2 = 0$$

Divide both sides by x^2

$$a + 2h\frac{y}{x} + b\left(\frac{y}{x}\right)^2 = 0$$

or,
$$b\left(\frac{y}{x}\right)^2 + 2h\frac{y}{x} + a = 0$$

Solving as a quadratic in $\frac{y}{x}$

$$\therefore \frac{y}{x} = m = \frac{-h \pm \sqrt{h^2 - ab}}{2b}$$

Which given two slopes m_1 and m_2 for \pm .

Sum and Product of slopes

The sum and product of the slopes are

$$m_1 m_2 = \frac{a}{b}$$

$$m_1 + m_2 = -\frac{2h}{b}$$

Observation from slope

From the term under square root in formula for slop:

- 1. $h^2 ab > 0 \implies h^2 > ab \implies$ lines are real and distinct
- 2. $h^2 ab = 0 \implies h^2 = ab \implies \text{lines are rouncident}$ 3. $h^2 ab < 0 \implies h^2 < ab \implies \text{lines are imaginary}$

3.2.3 Eq of pair of Straight Lines Perpendicular to the given pair of lines

The combined eq of pair of staright lines through origin and perpendicular the the pair of staright lines

$$ax^2 + 2hxy + by^2 = 0$$

is

$$bx^2 - 2hxy + ay^2 = 0$$

Hint: exchange the coefficient of x^2 and y^2 and change the sign of xy.

3.2.4 Angle b/w the lines

For a given eq of pair of straight line through origin

$$ax^2 + 2hxy + by^2 = 0$$

The angle θ b/w the two lines is obtained by

$$\tan \theta = \left| \frac{2\sqrt{h^2 + ab}}{b} \right|$$

3.2.5 Eq of Angle Biscectors

For a given eq of pair of straight line through origin

$$ax^2 + 2hxy + by^2 = 0$$

The Eq of biscectors of the angles between the lines is given by

$$\frac{x^2 - y^2}{a - b} = \frac{xy}{h}$$

3.3 Non Homogenous Equation:

For two given lines

$$y = m_1 x + c_1$$
$$y = m_2 x + c_2$$

The joint equation is

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

17

3.3.1 Pont of Intersection

For a given equation of pair of straight line

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

The point of intersection is

$$\left(\frac{hf-bg}{ab-h^2}, \frac{gh-af}{ab-h^2}\right)$$

Alternatively we can use Partial Derivative method used in homogenous equation.

3.4 Condition for Parallel lines

For a given equation of pair of straight line

$$ax^2 + 2hxy + by^2 + 2qx + 2fy + c = 0$$

The lines are parallel If

$$\frac{a}{h} = \frac{h}{b} = \frac{g}{f}$$

3.5 Distance between Parallel Lines

For a given equation of pair of straight line

$$ax^2 + 2hxy + by^2 + 2qx + 2fy + c = 0$$

Distance between parllel lines is

$$d = 2\sqrt{\frac{g^2 - ac}{a(a+b)}} = 2\sqrt{\frac{f^2 - bc}{c(a+b)}}$$

3.6 Angle biscector for known point

For a given equation of pair of straight line

$$ax^2 + 2hxy + by^2 + 2qx + 2fy + c = 0$$

If the point of intersection is (x_1, y_1) , then the equation for angle biscector is

$$\frac{(x-x_1)^2 - (y-y_1)^2}{a-b} = \frac{(x-x_1)(y-y_1)}{b}$$

This looks similar to homogenous formula added with a shift of origin.

3.7 Product of Perpendiculars

For a given equation of pair of straight line

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

If a perpendicular distances from a point (x_1, y_1) be P_1 and P_2 , then the product of perpenducular distances is given by

$$P_1 P_2 = \left| \frac{ax_1^2 + 2hx_1y_1 + by_1^2 + 2gx_1 + 2fy_1 + c}{\sqrt{(a-b)^2 + (2h)^2}} \right|$$

3.8 Homogenization

For a given equation of a curve

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

and a stragiht line

$$lx + mu + n = 0$$

that cuts the given curve at two points. A pair of straight line can be found that passes through the point of their intersection and has its own intersection at the origin. This produces a Homogenous Equation. This process is called Homogenization.

3.8.1 Process

1. Make each term in the given curve to have 2 degrees by multiplying powers of 1

$$ax^{2} + 2hxy + by^{2} + 2qx(1) + 2fy(1) + c(1)^{2} = 0$$

3.8. HOMOGENIZATION

19

2. Get the value of 1 from the given eq of line

$$lx + my + n = 0$$
or,
$$lx + my = -n$$
or,
$$\frac{lx + my}{-n} = 1$$

3. Put the value of 1 from setp 2 into the eq obtained in setp 1.

$$ax^2 + 2hxy + by^2 + 2gx\left(\frac{lx + my}{-n}\right) + 2fy\left(\frac{lx + my}{-n}\right) + c\left(\frac{lx + my}{-n}\right) = 0$$

4. On simplification

$$Ax^2 + 2Hxy + by^2 = 0$$