From Ebony to Ivory

Fourier Transforms and their applications to PDEs

Níckolas Alves

Department of Mathematical Physics Institute of Physics University of São Paulo

February 28, 2019

Summary

- A Silly Idea
- Playing Around With Our New Toy
- 3 Fourier's Physics Playground
 - Maxwell's Electrodynamics
 - Heisenberg's Uncertainty Principle

A Silly Idea

Ordinary Differential Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}y(x) + \frac{1}{CR}y(x) = 0$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

Ordinary Differential Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}y(x) + \frac{1}{CR}y(x) = 0$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2\right] y(x) = f(x)$$

$$y(x) = \frac{f(x)}{\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2}$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2\right] y(x) = f(x)$$

$$\downarrow \qquad \qquad \downarrow$$

$$y(x) = \frac{f(x)}{\mathrm{d}x^2} + \frac{f(x)}{\mathrm{d}x} + \frac{f(x)}{\mathrm{d}x$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(f + \alpha g)(x) \longrightarrow \hat{f}(\xi) + \alpha \hat{g}(\xi)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) \longrightarrow \mathcal{F} \qquad \longrightarrow i\xi \hat{f}(\xi)$$

$$\hat{f}(\xi) \longrightarrow \int \mathcal{F}^{-1} \int \mathcal{F}(x)$$

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2\right] y(x) = f(x)$$

$$\mathcal{F}$$

$$\left[-\xi^2 + i\gamma\xi + \omega_0^2\right] \hat{y}(\xi) = \hat{f}(\xi)$$

Box Proposal

$$\mathcal{F}[f](\xi) = \hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\mathcal{F}^{-1}[\hat{f}](x) = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\xi) e^{ix\xi} d\xi$$

Box Proposal

$$\mathcal{F}[f](\xi) = \hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\mathcal{F}^{-1}[\hat{f}](x) = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\xi) e^{ix\xi} \,\mathrm{d}\xi$$

$$(\widehat{f+\alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (f(x) + \alpha g(x)) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$g)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ix\xi} dx + \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(x) e^{-ix\xi} dx$$

$$(\widehat{f + \alpha g})(\xi) = \widehat{f}(\xi) + \alpha \widehat{g}(\xi)$$

$$(\widehat{f + \alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (f(x) + \alpha g(x)) e^{-ix\xi} dx$$

 \parallel

$$(\widehat{f + \alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx + \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(x)e^{-ix\xi} dx$$

$$(\widehat{f + \alpha g})(\xi) = \widehat{f}(\xi) + \alpha \widehat{g}(\xi)$$

$$(\widehat{f+\alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (f(x) + \alpha g(x)) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f+\alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ix\xi} dx + \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(x) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f+\alpha g})(\xi) = \widehat{f}(\xi) + \alpha \widehat{g}(\xi)$$

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = \frac{f(x)e^{-ix\xi}}{\sqrt{2\pi}} \Big|_{-\infty}^{+\infty} + i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = \frac{f(x)e^{-ix\xi}}{\sqrt{2\pi}} \Big|_{-\infty}^{+\infty} + i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = \frac{f(x)e^{-ix\xi}}{\sqrt{2\pi}} \Big|_{-\infty}^{+\infty} + i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

The inverse does work

for appropriate functions

and, sometimes, the Fourier Transform of a function is not in the same set as the original function, but let's forget about this since we do not know a decent theory of integration

Playing Around With Our New Toy

$$f(t) = \cos(\omega_0 t) e^{-\pi t^2}$$

$$\widehat{f}(\omega) = \frac{e^{-\frac{(\omega - \omega_0)^2}{4\pi}} + e^{-\frac{(\omega + \omega_0)^2}{4\pi}}}{2\sqrt{2\pi}}$$

$$\omega = 2\pi\nu$$

$$f(t) = \cos(\omega_0 t) e^{-\pi t^2}$$

$$\widehat{f}(\omega) = \frac{e^{-\frac{(\omega - \omega_0)^2}{4\pi}} + e^{-\frac{(\omega + \omega_0)^2}{4\pi}}}{2\sqrt{2\pi}}$$

$$\omega = 2\pi\nu$$

$$f(t) = \cos(\omega_0 t) e^{-\pi t^2}$$

$$\widehat{f}(\omega) = \frac{e^{-\frac{(\omega - \omega_0)^2}{4\pi}} + e^{-\frac{(\omega + \omega_0)^2}{4\pi}}}{2\sqrt{2\pi}}$$

$$\omega = 2\pi\nu$$

$$f(t) = \cos(2\pi\nu_0 t)e^{-\pi t^2}$$
$$\hat{f}(\nu) = \frac{e^{-\pi(\nu - \nu_0)^2} + e^{-\pi(\nu + \nu_0)^2}}{2\sqrt{2\pi}}$$

$$\widehat{f}(\nu) = \frac{e^{-\pi(\nu - \nu_0)^2} + e^{-\pi(\nu + \nu_0)^2}}{2\sqrt{2\pi}}$$

A Harder Example

$$f(t) = e^{i\omega_0 t} = \cos(\omega_0 t) + i\sin(\omega_0 t)$$

$$\widehat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i\omega_0 t} e^{-i\omega t} dt$$

A Harder Example

$$f(t) = e^{i\omega_0 t} = \cos(\omega_0 t) + i\sin(\omega_0 t)$$

$$\widehat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i\omega_0 t} e^{-i\omega t} dt$$

The Mathematical Moonwalk

$$f(t) = e^{i\omega_0 t}$$
 $e^{i\omega_0 t} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{f}(\omega) e^{i\omega t} d\omega$ $\widehat{f}(\omega) = \sqrt{2\pi} \delta(\omega - \omega_0)$

The Mathematical Moonwalk

$$f(t) = e^{i\omega_0 t}$$

$$1 \qquad f^{+\infty} \widehat{f}(x)$$

$$e^{i\omega_0 t} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{f}(\omega) e^{i\omega t} d\omega$$

$$\widehat{f}(\omega) = \sqrt{2\pi}\delta\left(\omega - \omega_0\right)$$

The Mathematical Moonwalk

$$f(t) = e^{i\omega_0 t}$$

$$e^{i\omega_0 t} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{f}(\omega) e^{i\omega t} d\omega$$

$$\widehat{f}(\omega) = \sqrt{2\pi} \delta(\omega - \omega_0)$$

Cosines

0.0 Tempo t 0.5

1.0

Cosines

$$\widehat{f}(\omega) = \sqrt{\frac{\pi}{2}} \left(\delta \left(\omega - \omega_0 \right) + \delta \left(\omega + \omega_0 \right) \right)$$

Fourier's Physics Playground Maxwell's Electrodynamics

In the beggining, God said:

$$\begin{cases} \mathbf{\nabla \cdot E} = \frac{\rho}{\epsilon_0} \\ \mathbf{\nabla \cdot B} = 0 \\ \mathbf{\nabla \times E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \mathbf{\nabla \times B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{cases}$$

and there was light!

In the beggining, God said:

$$\begin{cases} \mathbf{\nabla \cdot E} = \frac{\rho}{\epsilon_0} \\ \mathbf{\nabla \cdot B} = 0 \\ \mathbf{\nabla \times E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \mathbf{\nabla \times B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{cases}$$

and there was light!

Too hard, let's try something different

$$\begin{cases} \mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t} \\ \mathbf{B} = \nabla \times \mathbf{A} \end{cases}$$

Wave Equations

$$\begin{cases} \nabla^2 V - \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\epsilon_0} \\ \nabla^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu_0 \mathbf{J} \end{cases}$$

All Wave Equations In One

$$\nabla^2 \psi(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2}(\mathbf{r}, t) = -g(\mathbf{r}, t)$$

Fourier's Opinion

$$\widehat{g}(\mathbf{r},\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(\mathbf{r},t) e^{-i\omega t} dt$$

$$g(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{g}(\mathbf{r},\omega) e^{i\omega t} d\omega$$

Fourier's Opinion

$$\widehat{\psi}(\mathbf{r},\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \psi(\mathbf{r},t) e^{-i\omega t} dt$$

$$\psi(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{\psi}(\mathbf{r},\omega) e^{i\omega t} d\omega$$

Fourier's Opinion

$$\nabla^2 \psi(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2}(\mathbf{r}, t) = -g(\mathbf{r}, t)$$

$$\nabla^2 \widehat{\psi}(\mathbf{r}, \omega) + \frac{\omega^2}{c^2} \widehat{\psi}(\mathbf{r}, \omega) = -\widehat{g}(\mathbf{r}, \omega)$$

$$L\phi(\mathbf{r}) = -s(\mathbf{r})$$

$$LG(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}'\right)$$

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau'$$

 $L\phi(\mathbf{r}) = \int LG(\mathbf{r} - \mathbf{r}')s(\mathbf{r}') d\tau' = -\int \delta(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau' = -s(\mathbf{r})$

- 《 ㅁ 》 《 圊 》 《 悥 》 《 悥 》 《 ᆼ

$$L\phi(\mathbf{r}) = -s(\mathbf{r})$$

$$LG(\mathbf{r} - \mathbf{r}') = -\delta (\mathbf{r} - \mathbf{r}')$$

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') \, d\tau'$$

$$L\phi(\mathbf{r}) = \int LG(\mathbf{r} - \mathbf{r}')s(\mathbf{r}') d\tau' = -\int \delta(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau' = -s(\mathbf{r})$$

- 《 ㅁ 》 《 圊 》 《 悥 》 《 悥 》 《 ᆼ

$$L\phi(\mathbf{r}) = -s(\mathbf{r})$$

$$LG(\mathbf{r} - \mathbf{r}') = -\delta (\mathbf{r} - \mathbf{r}')$$

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau'$$

$$L\phi(\mathbf{r}) = \int LG(\mathbf{r} - \mathbf{r}')s(\mathbf{r}') d\tau' = -\int \delta(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau' = -s(\mathbf{r})$$

$$L\phi(\mathbf{r}) = -s(\mathbf{r})$$

$$LG(\mathbf{r} - \mathbf{r}') = -\delta(\mathbf{r} - \mathbf{r}')$$

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau'$$

$$L\phi(\mathbf{r}) = \int LG(\mathbf{r} - \mathbf{r}')s(\mathbf{r}') d\tau' = -\int \delta(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau' = -s(\mathbf{r})$$

One At a Time

$$\nabla^2 \widehat{\psi}(\mathbf{r}, \omega) + \frac{\omega^2}{c^2} \widehat{\psi}(\mathbf{r}, \omega) = -\widehat{g}(\mathbf{r}, \omega)$$

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}'\right)$$

One At a Time

$$\nabla^2 \widehat{\psi}(\mathbf{r}, \omega) + \frac{\omega^2}{c^2} \widehat{\psi}(\mathbf{r}, \omega) = -\widehat{g}(\mathbf{r}, \omega)$$

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}'\right)$$

- (ㅁ) (@) (I E) (E) (O (O)

Solution for $\mathbf{r}-\mathbf{r}' eq \mathbf{0}$

$$\frac{1}{r}\frac{\mathrm{d}^2(rG)}{\mathrm{d}r^2} + k^2G = 0$$

$$G(r) = \frac{A}{r}e^{\pm ikr}$$

Solution for $\mathbf{r}-\mathbf{r}' eq \mathbf{0}$

$$\frac{1}{r}\frac{\mathrm{d}^2(rG)}{\mathrm{d}r^2} + k^2G = 0$$

$$G(r) = \frac{A}{r}e^{\pm ikr}$$

Recovering 0 Psychological Trauma

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}' \right)$$

$$A \int \nabla^2 \frac{1}{r} d\tau' + 4\pi A \frac{\omega^2}{c^2} \int \frac{r^2}{r} dr = -\int \delta \left(\mathbf{r} - \mathbf{r}' \right) d\tau'$$

$$-4\pi A = -1$$

Recovering 0 Psychological Trauma

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}' \right)$$

$$A \int \nabla^2 \frac{1}{r} d\tau' + 4\pi A \frac{\omega^2}{c^2} \int \frac{r^2}{r} dr = -\int \delta \left(\mathbf{r} - \mathbf{r}' \right) d\tau'$$

$$-4\pi A = -1$$

Recovering 0 Psychological Trauma

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}' \right)$$

$$A \int \nabla^2 \frac{1}{r} d\tau' + 4\pi A \frac{\omega^2}{c^2} \int \frac{r^2}{r} dr = -\int \delta \left(\mathbf{r} - \mathbf{r}' \right) d\tau'$$

$$-4\pi A = -1$$

←□ → ←□ → ← = → ← = ←) へ(*)

Back To Our Problem

$$\widehat{\psi}(\mathbf{r},\omega) = \int G(\boldsymbol{z})\widehat{g}(\mathbf{r}',\omega) \,\mathrm{d}\tau'$$

$$G(\mathbf{r}) = \frac{1}{4\pi \, \mathbf{r}} e^{\pm ik\, \mathbf{r}}$$

$$\widehat{\psi}(\mathbf{r},\omega) = \frac{1}{4\pi} \int \frac{\widehat{g}(\mathbf{r}',\omega)e^{\pm ikz}}{z} d\tau'$$

Back To Our Problem

$$\widehat{\psi}(\mathbf{r},\omega) = \int G(\boldsymbol{z})\widehat{g}(\mathbf{r}',\omega) d\tau'$$

$$G(\mathbf{z}) = \frac{1}{4\pi \, \mathbf{z}} e^{\pm ik\, \mathbf{z}}$$

$$\widehat{\psi}(\mathbf{r},\omega) = \frac{1}{4\pi} \int \frac{\widehat{g}(\mathbf{r}',\omega)e^{\pm ikz}}{z} d\tau'$$

Back To Our Problem

$$\widehat{\psi}(\mathbf{r},\omega) = \int G(\boldsymbol{z})\widehat{g}(\mathbf{r}',\omega) d\tau'$$

$$G(\mathbf{r}) = \frac{1}{4\pi \, \mathbf{r}} e^{\pm ik\, \mathbf{r}}$$

$$\widehat{\psi}(\mathbf{r},\omega) = \frac{1}{4\pi} \int \frac{\widehat{g}(\mathbf{r}',\omega)e^{\pm ik\,\boldsymbol{\imath}}}{\boldsymbol{\imath}} \,\mathrm{d}\tau'$$

$$\psi(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{\psi}(\mathbf{r},\omega) e^{i\omega t} d\omega$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \frac{\widehat{g}(\mathbf{r}',\omega)e^{i\omega t \pm i\omega\frac{c}{c}}}{\mathbf{z}} d\omega d\tau$$

(4 마) 4 년) 4 년) 4 년) 9 (약

$$\psi(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{\psi}(\mathbf{r},\omega) e^{i\omega t} d\omega$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \widehat{g}(\mathbf{r}',\omega) e^{i\omega t \pm i\omega \frac{\epsilon}{c}} d\omega d\tau'$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \frac{\widehat{g}(\mathbf{r}',\omega)e^{i\omega\left(t \pm \frac{\imath}{c}\right)}}{\imath} d\omega d\tau'$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi} \int \frac{g(\mathbf{r}',t \pm \frac{\mathbf{z}}{c})}{\mathbf{z}} d\tau'$$

4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト 9 Q (*)

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \frac{\widehat{g}(\mathbf{r}',\omega)e^{i\omega\left(t\pm\frac{\imath}{c}\right)}}{\imath} d\omega d\tau'$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi} \int \frac{g(\mathbf{r}',t \pm \frac{\mathbf{z}}{c})}{\mathbf{z}} d\tau'$$

- (ㅁ) (@) (I E) (E) (O (O)

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \frac{\widehat{g}(\mathbf{r}',\omega)e^{i\omega\left(t\pm\frac{\imath}{c}\right)}}{\imath} d\omega d\tau'$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi} \int \frac{g(\mathbf{r}',t-\frac{\mathbf{z}}{c})}{\mathbf{z}} d\tau'$$

Back at Maxwell's

$$V(\mathbf{r},t) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}', t - \frac{\mathbf{z}}{c})}{\mathbf{z}} d\tau'$$

$$\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}',t-\frac{\mathbf{z}}{c})}{\mathbf{z}} \, \mathrm{d}\tau'$$

One Last Step

$$\begin{cases} \mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t} \\ \mathbf{B} = \nabla \times \mathbf{A} \end{cases}$$

Jefimenko Equations

$$\mathbf{E}(\mathbf{r},t) = \frac{1}{4\pi\epsilon_0} \int \frac{\hat{\mathbf{z}}}{\mathbf{z}^2} \left[\rho \right] + \frac{\hat{\mathbf{z}}}{c \, \mathbf{z}} \left[\frac{\partial \rho}{\partial t} \right] - \frac{1}{c^2 \, \mathbf{z}} \left[\frac{\partial \mathbf{J}}{\partial t} \right] d\tau'$$

$$\mathbf{B}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \left(\frac{1}{\mathbf{z}^2} \left[\mathbf{J} \right] + \frac{1}{c \, \mathbf{z}} \left[\frac{\partial \mathbf{J}}{\partial t} \right] \right) \times \hat{\mathbf{z}} d\tau'$$

Fourier's Physics Playground Heisenberg's Uncertainty Principle

Position and Momentum

$$\psi(x) = \langle x|\psi\rangle = \int \langle x|k\rangle \langle k|\psi\rangle dk = \frac{1}{\sqrt{2\pi}} \int e^{ikx} \psi(k) dk$$

$$\psi(k) = \langle k | \psi \rangle = \int \langle k | x \rangle \langle x | \psi \rangle dx = \frac{1}{\sqrt{2\pi}} \int e^{-ikx} \psi(x) dx$$

Position and Momentum

$$\psi(x) = \langle x|\psi\rangle = \int \langle x|k\rangle \langle k|\psi\rangle dk = \frac{1}{\sqrt{2\pi}} \int e^{ikx} \psi(k) dk$$

$$\psi(k) = \langle k | \psi \rangle = \int \langle k | x \rangle \langle x | \psi \rangle dx = \frac{1}{\sqrt{2\pi}} \int e^{-ikx} \psi(x) dx$$

Position and Momentum (but weirder)

$$\begin{cases} X |\psi\rangle = x\psi(x) \\ K |\psi\rangle = -i\frac{\partial \psi}{\partial x}(x) \end{cases}$$

$$\begin{cases} X |\psi\rangle = -i \frac{\partial \psi}{\partial k}(k) \\ K |\psi\rangle = k\psi(k) \end{cases}$$

Position and Momentum (but weirder)

$$\begin{cases} X |\psi\rangle = x\psi(x) \\ K |\psi\rangle = -i\frac{\partial \psi}{\partial x}(x) \end{cases}$$

$$\begin{cases} X |\psi\rangle = -i\frac{\partial \psi}{\partial k}(k) \\ K |\psi\rangle = k\psi(k) \end{cases}$$

Fourier Diplomacy

$$|x\rangle \stackrel{\mathcal{F}}{\longleftrightarrow} |k\rangle$$

Fourier Uncertainty

- $\psi(x)$: what is x?
- $\psi(k)$: what is k?

Fourier Uncertainty

- $\psi(x)$: what is x?
- $\psi(k)$: what is k?

Definite Position

$$\psi(x) = \sqrt{\frac{\pi}{2}} \left(\delta \left(x - x_0 \right) + \delta \left(x + x_0 \right) \right)$$

N. Alves (DFMA-IFUSP)

Undefinite Momentum

Uncertainty Relation

$$\sigma_x \sigma_p \ge \frac{\hbar}{2}$$

The uncertainty relation is a consequence of the general fact that anything narrow in one space is wide in the transform space and vice versa. So if you are a 45 kg weakling and are taunted by a 270 kg bully, just ask him to step into momentum space!

Ramamurti Shankar

Acknowledgments

The author is extremely thankful to Prof. Antônio F. R. T. Piza for the short, yet wonderful, conversations about this seminar.

References

- de Figueiredo, D. G. Análise de Fourier e Equações Diferenciais Parciais. 5th ed. (IMPA, 2018).
- Fleming, H. George Green e Suas Funções. http://www.hfleming.com/green.pdf.
- Panofsky, W. K. H. & Phillips, M. Classical Electricity and Magnetism. 2nd ed. (Addison-Wesley Publishing Company, Inc., 1962).
- Shankar, R. *Principles of Quantum Mechanics*. 2nd ed. (Springer, 1994).

The End