PARUL UNIVERSITY - Faculty of Engineering and Technology

Department of Computer Science & Engineering SYLLABUS FOR 5th Sem BTech PROGRAMME Distributed Computing

Type of Course:BTech

Prerequisite: Basic knowledge of Operating systems

Rationale: This course provides a broad introduction to distributed computing.

Teaching and Examination Scheme:

Teaching Scheme					Examination Scheme				Total
LectHrs/ Tut Hrs/ Lab Hrs/		Credit	External		Internal				
				Т	Р	Т	CE	Р	
3	0	0	3	60	-	20	20	-	100

Lect- Lecture, Tut - Tutorial, Lab - Lab, T - Theory, P- Practical, CE- CE, T - Theory, P- Practical

Contents:

Sr.	Торіс	Weightage	Teaching Hrs.
1	Introduction & Model of Distributed Computations What is distributed operating system, Background, need, features, Introduction to Distributed Computing	5	2
2	Characteristics of Distributed Systems & system models Examples of distributed systems, Resource sharing and the web, Architectural models, fundamental models	10	4
3	Networking and Internetworking Types of Networks, Network principles, Internet protocols	10	4
4	Inter-process communication Introduction, External data representation and marshalling, client-server communication, group communication	10	4
5	Distributed Objects Introduction, Communication between objects, Remote procedure call, events and notification	10	4
6	Operating System support Introduction, OS layer, Protection, Processes and threads, communication and invocation, OS architecture	15	6
7	Security Introduction, Overview of security techniques, cryptographic algorithms, digital signatures	5	2
8	Distributed file system Introduction, File Service architecture, Case study: Sun network file system	10	4
9	Transactions and Concurrency control, Distributed Transactions	15	6

Printed on: 19-10-2021 02:53 PM Page 1 of 3

	Transactions, nested transactions, Locks, Optimistic concurrency control, Flat and nested distributed transactions, atomic commit protocols, concurrency control in distributed transactions, distributed deadlocks, Transaction recovery		
10	Authentication in Distributed Systems Introduction, Protocols based on Symmetric cryptosystems, protocols based on asymmetric cryptosystems, Password based authentication, Authentication Protocol failures, Self-stabilization.	10	4

*Continuous Evaluation:

It consists of Assignments/Seminars/Presentations/Quizzes/Surprise Tests (Summative/MCQ) etc.

Reference Books:

- Distributed Systems concepts and Design by George coulouris, Jean Dollimore and Tim Kindberg
- 2. Distributed Systems Paperback 31 March 2017 by Coulouris George (Author), Dollimore Jean (Author), Kindberg Tim (Author), Blair Gordon (Author)
- 3. Distributed Computing by Ajay Kshemkalyani and Mukesh Singhal

Course Outcome:

After Learning the course, the students shall be able to:

- 1. Understand the design principles in distributed systems and the architectures for distributed systems.
- 2. Apply various distributed algorithms related to clock synchronization, concurrency control, deadlock detection, load balancing, voting etc.
- 3. Analyze fault tolerance and recovery in distributed systems and algorithms for the same.
- 4. Analyze the design and functioning of existing distributed systems and file systems.
- 5. Implement different distributed algorithms over current distributed platforms.

Printed on: 19-10-2021 02:53 PM Page 2 of 3