MT5823 SUMMARY

J. D. MITCHELL

SEMIGROUPS

- The empty semigroup: the semigroup with 0 element;
- The trivial semigroup: the semigroup with 1 element;
- Full transformation monoids: the set of all transformations from a set X to X with composition of mappings; denoted by T_X or T_n if |X| = n:
 - $|T_n| = n^n \text{ (Problem 1-2)};$
 - $-T_n$ can be generated by 3 mappings (Proposition 2.12);
 - $-S_n \leq T_n$ where S_n denotes the symmetric group on $\{1,\ldots,n\}$;
 - every semigroup is isomorphic to a subsemigroup of some T_X (Theorem 3.4, analogous to Cayley's Theorem for groups);
 - $-f\mathcal{L}g$ if and only if $\operatorname{im}(f) = \operatorname{im}(g)$ (Theorem 9.4);
 - $-f\mathcal{R}g$ if and only if $\ker(f) = \ker(g)$ (Theorem 9.4);
 - $-f\mathcal{H}g$ if and only if $\operatorname{im}(f) = \operatorname{im}(g)$ and $\ker(f) = \ker(g)$;
 - $f \mathcal{D}g$ if and only if rank(f) = rank(g) (Theorem 9.17);
 - let D_r denote the \mathscr{D} -class of T_n of all those elements with rank r. The number of \mathscr{L} -classes in D_r is $\binom{n}{r}$, the number of \mathscr{R} -classes is S(n,r) and the size of an \mathscr{H} -class is r! (Problem 7-2);
 - $-|D_r| = \binom{n}{r} S(n,r) r!$ (Problem **7-2**);
 - $-T_n$ is regular but not inverse.
- Partial transformation monoids: the set of all partial mappings from a set X to X with composition of mappings; denoted by P_X or P_n if |X| = n:
 - $-|P_n|=n^{n+1};$
 - $-T_n \leq P_n;$
 - $f \mathcal{L}g$ if and only if $\operatorname{im}(f) = \operatorname{im}(g)$ (Problem 7-4);
 - $-f\mathcal{R}q$ if and only if $\ker(f) = \ker(q)$ (Problem 7-4);
 - $-f\mathcal{H}g$ if and only if $\operatorname{im}(f) = \operatorname{im}(g)$ and $\operatorname{ker}(f) = \operatorname{ker}(g)$ (Problem 7-4);
 - $f \mathcal{D}g$ if and only if rank(f) = rank(g) (Problem 7-4).
- Free semigroups: the set of all non-empty words over an alphabet A with concatenation is called the *free semigroup* and denoted by A^+ :
 - every semigroup is a homomorphic image of a free semigroup (Theorem 3.9);
 - every semigroup is isomorphic to a quotient of a free semigroup (Theorem 3.9 and the First Isomorphism Theorem (Theorem 5.4));
 - the free semigroup over the alphabet A is defined by the presentation $\langle A \rangle$.
- Semigroup of left zeros: any set X with multiplication xy = x for all $x, y \in X$;
- Semigroup of right zeros: any set X with multiplication xy = y for all $x, y \in X$;
- **Zero semigroup:** the set $X \cup \{0\}$ where xy = 0 for all $x, y \in X \cup \{0\}$;
- Monoid: a semigroup with an identity;
- Group: a monoid in which every element has a unique (group) inverse:
 - a semigroup S is a group if and only if it is non-empty and aS = Sa = S for all $a \in S$ (Problems 1-7 and 1-8).
- Subsemigroup: any nonempty subset T of a semigroup S closed under multiplication;
- Rectangular bands: the set of pairs $I \times \Lambda$ with multiplication $(i, \lambda)(j, \mu) = (i, \mu)$:
 - S is a rectangular band if and only if $x^2 = x$ and xyz = xz holds for all $x, y \in S$ (Problem 2-1 and Problem 3-9);
 - $-I \times \Lambda$ is a left zero semigroup if and only if $|\Lambda| = 1$ (Problem 2-2);
 - $-I \times \Lambda$ is a right zero semigroup if and only if |I| = 1;
 - every subsemigroup and every quotient of a rectangular band is a rectangular band.

- Monoids of binary relations: the set of all binary relations on a set X with composition of relations, denoted B_X and it has $2^{(n^2)}$ elements (Problem 3-6);
- Monogenic semigroup: a semigroup S generated by a single element a, in fewer words, $S = \langle a \rangle = \{a^i : i \in \mathbb{N}, i > 0\};$
- Bicyclic monoid: the monoid B defined by the presentation $\langle b, c | bc = 1 \rangle$:
 - the elements of B are $\{c^ib^j: i, j \geq 0\}$ (Example 6.8);
 - $-c^{i}b^{j}$ is an idempotent if and only if i=j (Problem 5-1);
 - $-c^i b^j \mathcal{R} c^k b^l$ if and only if j=l; (Problem 5-7)
 - $-c^ib^j\mathcal{L}c^kb^l$ if and only if i=k (Problem 5-7);
 - $-c^ib^j \mathcal{H}c^kb^l$ if and only if $c^ib^j = c^kb^l$ (Problem **5-10**);
 - $\mathscr{J} = \mathscr{D} = B \times B \text{ (Problem 5-10)}.$
 - -B is an inverse monoid.
- Commutative: a semigroup S where xy = yx for all $x, y \in S$;
- Semilattices: a commutative semigroup of idempotents;
- Free semilattice: the set of subsets of a set X with the usual union of sets;
- Cancellative semigroup: a semigroup S satisfying $ax = ay \Rightarrow x = y$ and $xa = ya \Rightarrow x = y$ for all $a, x, y \in S$;
- Periodic semigroup: a semigroup S where $\langle x \rangle$ is finite for all $x \in S$
- Regular semigroup: a semigroup where every element is regular:
 - every rectangular band is regular, and so it the bicyclic monoid;
 - a semigroup is regular if every \mathcal{D} -class contains a regular element;
 - a semigroup is regular if every \mathcal{D} -class contains an idempotent.
- Inverse semigroup: a semigroup S where every element has a unique (semigroup) inverse (Definition 12.1)
 - every group is an inverse semigroup;
 - every semilattice is an inverse semigroup;
 - if $x \in S$ and x^{-1} denotes its inverse, then $xx^{-1}x = x$, $x^{-1}xx^{-1} = x^{-1}$, $(x^{-1})^{-1} = x$, $x^2 = x$ implies that $x = x^{-1}$ and $(xx^{-1})^2 = xx^{-1}$;
 - S is inverse if and only if it is regular and its idempotents commute (Theorem 12.2(b));
 - S is inverse if and only if every \mathscr{L} -class and every \mathscr{R} -class of S contains exactly 1 idempotent (Theorem 12.2(iii)).
- The symmetric inverse monoid: the set of all partial bijections on a set X with composition of mappings; denoted by I_X or I_n if |X| = n:
 - $-I_X$ is an inverse semigroup (Example 12.5);
 - every inverse semigroup is isomorphic to an inverse subsemigroup of a symmetric inverse semigroup I_X (the Vagner-Preston Representation Theorem (Theorem 13.1));
 - not every subsemigroup of I_X is an inverse semigroup.

DISTINGUISHED ELEMENTS OF A SEMIGROUP

Throughout assume that S is a semigroup.

- Left zero: an element $s \in S$ such that st = s for all $t \in S$ (Definition 1.6);
- Right zero: an element $s \in S$ such that ts = s for all $t \in S$ (Definition 1.6);
- **Zero:** both a left and a right zero (Definition 1.6):
 - a semigroup has at most one zero (Problem 1-1(b)).
- **Idempotent:** an element $e \in S$ satisfying $e^2 = e$ (Definition 1.19):
 - if S is finite, then every $s \in S$ has an idempotent power (Problem 2-10);
 - an idempotent is a left identity in its \mathscr{R} -class and a right identity in its \mathscr{L} -class (Problem 5-8);
 - if an \mathcal{H} -class H contains an idempotent, then H is a group (Theorem 10.7);
 - if a \mathscr{D} -class D contains an idempotent, then D is regular;
 - in a regular *D*-class every \mathcal{L} -class and every \mathcal{R} -class contains at least one idempotent (Theorem 12.2(c));
 - a transformation $f \in T_n$ is an idempotent if and only if xf = x for all $x \in \text{im}(f)$;
- Left identity: an element $e \in S$ such that es = s for all $s \in S$ (Definition 1.12);
- Right identity: an element $e \in S$ such that se = s for all $s \in S$ (Definition 1.12);
- **Identity:** an element that is both a left identity and a right identity (Definition 1.12)

```
- a semigroup has at most one identity (Lemma 1.16);
```

- if a semigroup has both a left and a right identity, then it is a monoid (Problem 1-1(a)).
- Regular: an element $x \in S$ where there exists $y \in S$ such that xyx = x (Definition 11.1):
 - if x is regular and $x\mathcal{D}y$, then y is regular (Theorem 11.3);
- Inverse: elements $x, y \in S$ are inverse if xyx = x and yxy = y (Definition 11.4):
 - $-x \in S$ has an inverse if and only if x is regular (Theorem 11.5);
 - inverses are not necessarily unique (Problem 7-1(b)).

GREEN'S RELATIONS

- Green's \mathcal{L} -relation: $x, y \in S$ are \mathcal{L} -related if and only if $S^1x = S^1y$ (Definition 9.1)
 - denoted $x\mathcal{L}y$;
 - $-x\mathcal{L}y$ if and only if there exist $s,t\in S^1$ such that sx=y and ty=x (Lemma 9.2);
 - $-\mathcal{L}$ is a right congruence over S (Theorem 9.5) but not always a left congruence (Example 9.6);
 - $-x\mathcal{L}y$ if and only if x and y are in the same strongly connected component of the left Cayley graph of S (Theorem 9.10);
 - $-\mathscr{L}\subseteq\mathscr{D};$
 - if L_1 and L_2 are \mathcal{L} -classes in the same \mathcal{D} -class, then $|L_1| = |L_2|$ (Corollary 10.4).
- Green's \mathscr{R} -relation: $x, y \in S$ are \mathscr{R} -related if and only if $xS^1 = yS^1$ (Definition 9.1)
 - denoted $x\mathcal{R}y$:
 - $x\mathcal{R}y$ if and only if there exist $s, t \in S^1$ such that xs = y and yt = x (Lemma 9.2);
 - $-\mathcal{R}$ is a left congruence over S (Theorem 9.5) but not always a right congruence;
 - $-x\mathcal{R}y$ if and only if x and y are in the same strongly connected component of the right Cayley graph of S (Theorem 9.10);
 - $-\mathscr{R}\subseteq\mathscr{D};$
 - if R_1 and R_2 are \mathscr{R} -classes in the same \mathscr{D} -class, then $|R_1| = |R_2|$ (Corollary 10.4).
- Green's \mathcal{H} -relation: $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$ (Definition 9.12)
 - denoted $x\mathcal{H}y$;
 - $-\mathcal{H}$ is neither a left nor a right congruence in general;
 - $-x\mathcal{H}y$ if and only if x and y are in the same strongly connected component of the right and left Cayley graphs of S;
 - $\mathcal{H} \subseteq \mathcal{R}, \mathcal{L};$
 - if H_1 and H_2 are \mathcal{H} -classes in the same \mathcal{D} -class, then $|H_1| = |H_2|$ (Corollary 10.6).
 - if H is an \mathcal{H} -class, then either $H^2 \cap H = \emptyset$ or H is a group (Theorem 10.7);
 - if H is an \mathcal{H} -class and $e \in H$ is an idempotent, then H is a group;
 - if H and K are group \mathcal{H} -classes of the same \mathscr{D} -class, then $H \cong K$ (Theorem 11.8).
- Green's \mathscr{D} -relation: $\mathscr{D} = \mathscr{L} \circ \mathscr{R} = \mathscr{R} \circ \mathscr{L}$ (Definition 9.14 and Theorem 9.15)
 - denoted $x\mathcal{D}y$;
 - $-x\mathcal{D}y$ if and only if there exists $z \in S$ (not S^1) such that $x\mathcal{L}z$ and $z\mathcal{R}y$;
 - if S is periodic, then $\mathcal{D} = \mathcal{J}$. In particular, if S is finite, then $\mathcal{D} = \mathcal{J}$;
 - any two \mathcal{L} -, \mathcal{R} -, or \mathcal{H} -classes of a \mathcal{D} -class have the same size (Corollaries 10.4 and 10.6);
 - a \mathscr{D} -class D is regular if every element in D is regular;
 - If a is a regular element of a semigroup S and $a\mathcal{D}b$, then b is regular. (Theorem 11.3);
 - if D is a regular \mathscr{D} -class, then every \mathscr{R} -class and \mathscr{L} -class of D contains at least one idempotent (Theorem 11.7).

Miscellaneous

- Homomorphism: If S and T are semigroup, then $\phi: S \to T$ is a **homomorphism** if $(x)\phi(y)\phi = (xy)\phi$ for all $x, y \in S$;
- **Isomorphism:** a bijective homomorphism:
- Homomorphic image: T is a homomorphic image of S if there exists a surjective homomorphism $\phi: S \to T$ (Definition 3.1);
- Equivalence relation: a reflexive, symmetric, and transitive binary relation (Definition 4.6);
- Partial order: a reflexive, antisymmetric and transitive binary relation (Definition 4.6);
- Left congruence: An equivalence relation ρ over S such that $(sx, sy) \in \rho$ whenever $(x, y) \in \rho$ for all $s \in S$ (Definition 5.1);

- Right congruence: An equivalence relation ρ over S such that $(xs, ys) \in \rho$ whenever $(x, y) \in \rho$ for all $s \in S$ (Definition 5.1);
- Congruence: both a left and a right congruence (Definition 5.1);
- Quotient: the set of equivalence classes of a congruence ρ with multiplication $(x/\rho)(y/\rho) = (xy)/\rho$ (Theorem 5.3);
- **Presentation:** A (semigroup) presentation is a pair $\langle A|R\rangle$ where A is an alphabet and $R\subseteq A^+\times A^+$ is a set of relations on A^+ (Definition 6.2);
- Semigroup defined by a presentation $\langle A|R\rangle$: is any semigroup isomorphic to A^+/ρ where ρ is the least congruence containing R (Definition 6.2);
- Left ideal: a subset I of a semigroup S such that $si \in I$ for all $s \in S$ and $i \in I$ (Definition 8.1);
- **Right ideal:** a subset I of a semigroup S such that $is \in I$ for all $s \in S$ and $i \in I$ (Definition 8.1):
 - the intersection of a non-empty right and a non-empty left ideal is always non-empty (Problem 5-3);
 - the intersection of two left ideals can be empty (Problem 5-3).
- (2-sided) ideal: both a left and a right ideal (Definition 8.1);
- Rees equivalence: Let S be a semigroup and I be an ideal of S. Then the relation $\rho_I = (I \times I) \cup \Delta_S = \{(x,y) : x,y \in I \text{ or } x=y\}$ is the Rees equivalence of I
 - $-\rho_I$ is a congruence (Theorem 8.4);
 - $-\rho_I$ has equivalence classes I and $\{s\}$ for all $s \in S \setminus I$;
 - $-\rho_I$ has $|S\setminus I|+1$ equivalence classes.
- Rees quotient of S by I: the quotient of S by ρ_I where I is an ideal; denoted S/I (Definition 8.5);
 - S/I is isomorphic to the semigroup with elements $(S/I) \cup \{0\}$ and multiplication * defined by

$$x * y = \begin{cases} xy & xy \notin I \\ 0 & xy \in I; \end{cases}$$

• Cayley graph: The *left Cayley graph* of a semigroup $S = \langle X \rangle$ is a graph with vertices S and directed edge (a,b) labelled x if xa = b. The **right Cayley graph** is defined analogously.