$\begin{array}{c} {\rm Table} \ 1 \\ {\it Notation} \ guide. \end{array}$

Notation guide	
Notation	Meaning
H^{\pm}	state of the environment (correct hypothesis)
LLR	log-likelihood ratio
$\xi_t^{(i)}$	observation made at time t by agent i
$\begin{array}{ c c }\hline \xi_{1:t}^{(i)} \\ \hline \Xi \end{array}$	vector of observations made by agent i at times 1 through t
Ξ	set of all possible observations, ξ
$f_{\pm}(\xi)$	measurement (observation) distributions, $P(\xi H^{\pm})$
$\operatorname{Priv}_{1:t}^{(i)}$	private evidence accumulated by agent i through time t
$\operatorname{Soc}_t^{(i)}$	social evidence given by agent i to its neighbors at time t
$ \begin{array}{ c c }\hline I_t^{(i)}\\\hline y_t^{(i)}\\\hline \theta_\pm \end{array}$	total information available to agent i at time t .
$y_t^{(i)}$	belief (LLR) of agent i based on private and social information at time t
θ_{\pm}	decision threshold associated with H^{\pm} . When the thresholds are symmetric about 0, <i>i.e.</i> when $\theta_{+} = -\theta_{-}$, we use the notation $\theta = \theta_{+}$ and $-\theta = \theta_{-}$.
Θ	interval of possible agent LLRs (beliefs) prior to a decision, i.e. $\Theta = (\theta, \theta_+)$
$d_t^{(i)}$	decision state of agent i at time t
$y_{t,k}^{(i)}, d_{t,k}^{(i)}, \operatorname{Soc}_{t,k}^{(i)}$	LLR, decision state, and social information available to agent i at the k th substep of equilibration after a private observation at time t
$S_{\pm}(t)$	survival probability for an independent agent under H^{\pm} .
N	total number of agents
П	all possible LLR increments due to a single private observation
$N^{(i)}$	set of agents that agent i observes (neighbors)
$U^{(i)}$	set of agents that agent i cannot see (unobserved)
$R(t,\mathcal{I})$	LLR from observing agent i has belief in interval \mathcal{I} at time t , $\log\left(\frac{P(y_t^{(i)} \in \mathcal{I} H^+)}{P(y_t^{(i)} \in \mathcal{I} H^-)}\right)$