All Articles

K-Means Clustering in Python

Clustering is a type of Unsupervised learning. This is very often used when you don't have labeled data. K-Means Clustering is one of the popular clustering algorithm. The goal of this algorithm is to find groups(clusters) in the given data. In this post we will implement K-Means algorithm using Python from scratch.

K-Means Clustering

K-Means is a very simple algorithm which clusters the data into K number of clusters. The following image from <u>PyPR</u> is an example of K-Means Clustering.

Use Cases

K-Means is widely used for many applications.

- Image Segmentation
- Clustering Gene Segementation Data
- News Article Clustering
- Clustering Languages
- Species Clustering

Anomaly Detection

Algorithm

Our algorithm works as follows, assuming we have inputs $x_1, x_2, x_3, ..., x_n$ and value of K

- Step 1 Pick K random points as cluster centers called centroids.
- lacktriangledown Step 2 Assign each x_i to nearest cluster by calculating its distance to each centroid.
- Step 3 Find new cluster center by taking the average of the assigned points.
- Step 4 Repeat Step 2 and 3 until none of the cluster assignments change.

The above animation is an example of running K-Means Clustering on a two dimensional data.

Step 1

We randomly pick K cluster centers(centroids). Let's assume these are $c_1, c_2, ..., c_k$, and we can say that;

$$C = c_1, c_2, ..., c_k$$

 ${\cal C}$ is the set of all centroids.

Step 2

In this step we assign each input value to closest center. This is done by calculating Euclidean(L2) distance between the point and the each centroid.

$$rg\min_{c_i \in C} dist(c_i, x)^2$$

Where dist(.) is the Euclidean distance.

Step 3

In this step, we find the new centroid by taking the average of all the points assigned to that cluster.

$$c_i = rac{1}{|S_i|} \sum_{x_i \in S_i} x_i$$

 S_i is the set of all points assigned to the $i^{
m th}$ cluster.

Step 4

In this step, we repeat step 2 and 3 until none of the cluster assignments change. That means until our clusters remain stable, we repeat the algorithm.

Choosing the Value of K

We often know the value of K. In that case we use the value of K. Else we use the Elbow Method.

We run the algorithm for different values of K(say K = 10 to 1) and plot the K values against SSE(Sum of Squared Errors). And select the value of K for the elbow point as shown in the figure.

Implementation using Python

The dataset we are gonna use has 3000 entries with 3 clusters. So we already know the value of K.

Checkout this Github Repo for full code and dataset.

We will start by importing the dataset.

```
%matplotlib inline
from copy import deepcopy
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
plt.rcParams['figure.figsize'] = (16, 9)
plt.style.use('ggplot')

# Importing the dataset
data = pd.read_csv('xclara.csv')
print(data.shape)
data.head()
(3000, 2)
```

	V1	V2
0	2.072345	-3.241693
1	17.936710	15.784810
2	1.083576	7.319176
3	11.120670	14.406780
4	23.711550	2.557729

```
# Getting the values and plotting it
f1 = data['V1'].values
f2 = data['V2'].values
X = np.array(list(zip(f1, f2)))
plt.scatter(f1, f2, c='black', s=7)
```



```
# Euclidean Distance Caculator
def dist(a, b, ax=1):
    return np.linalg.norm(a - b, axis=ax)
# Number of clusters
k = 3
# X coordinates of random centroids
C_x = \text{np.random.randint}(0, \text{np.max}(X)-20, \text{size=k})
# Y coordinates of random centroids
C_y = np.random.randint(0, np.max(X)-20, size=k)
C = np.array(list(zip(C_x, C_y)), dtype=np.float32)
print(C)
[[ 11. 26.]
 [ 79. 56.]
 [ 79. 21.]]
# Plotting along with the Centroids
plt.scatter(f1, f2, c='#050505', s=7)
plt.scatter(C_x, C_y, marker='*', s=200, c='g')
```



```
# To store the value of centroids when it updates
C_old = np.zeros(C.shape)
# Cluster Lables(0, 1, 2)
clusters = np.zeros(len(X))
# Error func. - Distance between new centroids and old centroids
error = dist(C, C_old, None)
# Loop will run till the error becomes zero
while error != 0:
    # Assigning each value to its closest cluster
    for i in range(len(X)):
        distances = dist(X[i], C)
        cluster = np.argmin(distances)
        clusters[i] = cluster
    # Storing the old centroid values
    C_old = deepcopy(C)
    # Finding the new centroids by taking the average value
    for i in range(k):
        points = [X[j] for j in range(len(X)) if clusters[j] == i]
        C[i] = np.mean(points, axis=0)
    error = dist(C, C_old, None)
colors = ['r', 'g', 'b', 'y', 'c', 'm']
fig, ax = plt.subplots()
for i in range(k):
        points = np.array([X[j] for j in range(len(X)) if clusters[j] == i])
        ax.scatter(points[:, 0], points[:, 1], s=7, c=colors[i])
ax.scatter(C[:, 0], C[:, 1], marker='*', s=200, c='#050505')
```


From this visualization it is clear that there are 3 clusters with black stars as their centroid.

If you run K-Means with wrong values of K, you will get completely misleading clusters. For example, if you run K-Means on this with values 2, 4, 5 and 6, you will get the following clusters.

Now we will see how to implement K-Means Clustering using scikit-learn

The scikit-learn approach

Example 1

We will use the same dataset in this example.

```
# Number of clusters
kmeans = KMeans(n_clusters=3)
# Fitting the input data
kmeans = kmeans.fit(X)
# Getting the cluster labels
labels = kmeans.predict(X)
# Centroid values
centroids = kmeans.cluster_centers_
# Comparing with scikit-learn centroids
print(C) # From Scratch
print(centroids) # From sci-kit learn
```

```
[[ 9.47804546 10.68605232]
 [ 40.68362808 59.71589279]
 [ 69.92418671 -10.1196413 ]]
 [[ 9.4780459 10.686052 ]
 [ 69.92418447 -10.11964119]
 [ 40.68362784 59.71589274]]
```

You can see that the centroid values are equal, but in different order.

Example 2

We will generate a new dataset using make_blobs function.

```
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

plt.rcParams['figure.figsize'] = (16, 9)

# Creating a sample dataset with 4 clusters
X, y = make_blobs(n_samples=800, n_features=3, centers=4)

fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(X[:, 0], X[:, 1], X[:, 2])
```



```
-6
-4
-2
0
2
```

```
# Initializing KMeans
kmeans = KMeans(n_clusters=4)
# Fitting with inputs
kmeans = kmeans.fit(X)
# Predicting the clusters
labels = kmeans.predict(X)
# Getting the cluster centers
C = kmeans.cluster_centers_

fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y)
ax.scatter(C[:, 0], C[:, 1], C[:, 2], marker='*', c='#050505', s=1000)
```


In the above image, you can see 4 clusters and their centroids as stars. scikit-learn approach is very simple and concise.

More Resources

■ <u>K-Means Clustering Video</u> by Siraj Raval

- K-Means Clustering Lecture Notes by Andrew Ng
- K-Means Clustering Slides by David Sontag (New York University)
- <u>Programming Collective Intelligence Chapter 3</u>
- The Elements of Statistical Learning Chapter 14
- Pattern Recognition and Machine Learning Chapter 9

Checkout this Github Repo for full code and dataset.

Conclusion

Even though it works very well, K-Means clustering has its own issues. That include:

- If you run K-means on uniform data, you will get clusters.
- Sensitive to scale due to its reliance on Euclidean distance.
- Even on perfect data sets, it can get stuck in a local minimum

Have a look at this StackOverflow Answer for detailed explanation.

Let me know if you found any errors and checkout this post on Hacker News

Subscribe for more Awesome!

email address
Subscribe

Published 1 Oct 2017

Python Tutorial Machine Learning

Everything you can imagine is real

Mubaris NK on Twitter

LOG IN WITH

OR SIGN UP WITH DISQUS ?

Name

Ashi Singh • 3 months ago

RuntimeWarning: overflow encountered in square

100000 Iterations

newB, cost_history = gradient_descent(X, Y, B, alpha, 100000)

New Values of B print(newB)

Final Cost of new B print(cost_history[-1])

OUTPUT;\::

RuntimeWarning: overflow encountered in square

This is separate from the ipykernel package so we can avoid doing imports until

RuntimeWarning: invalid value encountered in subtract

del sys.path[0]

[nan nan nan]

nan

6 ^ V · Reply · Share ›

Anderson Ribeiro • a month ago

What metod return distance for each centroid?

∧ V · Reply · Share ›

Rahul Raj • 3 months ago

Thanks buddy

∧ ∨ • Reply • Share •

Ibrahim Khatkhatay · 3 months ago

in your make_blobs second scatter plot: why do you use "c=y" instead of "c=labels"? Alternatively, why find the labels if you don't use them?

ALSO ON MORNING DATA

Introduction to Statistics using NumPy

1 comment • a year ago

Akash Verma - Hi.. what is the best online resource for learning Statistics using Python for Data Science?

TensorFlow 101 · Mubaris NK

9 comments • a year ago

Mubaris NK - I changed the syntax highlighting scheme, it's better than before.

Analyzing Movie Subtitles

2 comments • a year ago

Tommy McGuire — There are some fun things you can do if you treat sentiment as a time-domain signal.http://www.matthewjockers.n...http://www.matthewjocl

DataViz Mastery Part 1 - Treemaps

2 comments • a year ago

Mubaris NK — Treemap is not a good option for that.

Subscribe D Add Disqus to your siteAdd DisqusAdd Disqus' Privacy PolicyPrivacy PolicyPrivacy