Decidability of logical theories via rigidity and randomness in dynamical systems

Toghrul Karimov

Max Planck Institute for Software Systems, Saarbrücken, Germany

This talk

Let $\mathcal M$ be a mathematical structure, e.g. $\mathcal M=(\mathbb Z;<,+,2^{\mathbb N},3^{\mathbb N})$

Does there exist an algorithm that takes a sentence φ and decides whether $\mathcal{M} \models \varphi$?

Ex.: $\varphi := \exists x. \forall y. \exists z_1. \exists z_2: z_1 > y \land z_2 > y \land x = z_1 - z_2 \land z_1 \in 2^{\mathbb{N}} \land z_2 \in 3^{\mathbb{N}}$

This talk

Let $\mathcal M$ be a mathematical structure, e.g. $\mathcal M=(\mathbb Z;<,+,2^{\mathbb N},3^{\mathbb N})$

Does there exist an algorithm that takes a sentence φ and decides whether $\mathcal{M} \models \varphi$?

Ex.: $\varphi := \exists x. \forall y. \exists z_1. \exists z_2: z_1 > y \land z_2 > y \land x = z_1 - z_2 \land z_1 \in 2^{\mathbb{N}} \land z_2 \in 3^{\mathbb{N}}$ \equiv "There exist x such that $x = 2^n - 3^m$ for infinitely many $n, m \geq 0$ "

This talk

Let $\mathcal M$ be a mathematical structure, e.g. $\mathcal M=(\mathbb Z;<,+,2^{\mathbb N},3^{\mathbb N})$

Does there exist an algorithm that takes a sentence φ and decides whether $\mathcal{M} \models \varphi$?

Ex.: $\varphi := \exists x. \forall y. \exists z_1. \exists z_2: z_1 > y \land z_2 > y \land x = z_1 - z_2 \land z_1 \in 2^{\mathbb{N}} \land z_2 \in 3^{\mathbb{N}}$ \equiv "There exist x such that $x = 2^n - 3^m$ for infinitely many $n, m \geq 0$ "

- Step 1. Link the algebraic object to dynamical systems, e.g. $(\mathbb{R}/\mathbb{Z}, x \mapsto x + \log_2(3))$
- Step 2. Study whether the relevant system(s) are rigid (\approx zero-entropy, deterministic) or fully random ("everything that can happen will happen")
- Step 3. Deduce decidability or undecidability

Problems can be undecidable

Decision problem: yes/no question about the input

Undecidable problem: there does not exist an algorithm that terminates on all inputs and correctly outputs yes/no

Problems can be undecidable

Decision problem: yes/no question about the input

Undecidable problem: there does not exist an algorithm that terminates on all inputs and correctly outputs yes/no

Gödel 1931

The theory of $\langle \mathbb{Z}; <, +, \cdot \rangle$ is undecidable

Matiyasevich, Robinson, Davis, Putnam 1949-1970

H10 (given $p \in \mathbb{Z}[x_1, \dots, x_d]$, decide whether $\exists x_1, \dots, x_d \in \mathbb{Z} : p(x_1, \dots, x_d) = 0$) is undecidable

Canonical undecidable problem

Given a program \mathcal{P} , decide whether it terminates

What are our dynamical systems?

Discrete dynamical system: $(X, f: X \mapsto X)$. The *orbit* of $x \in X$ is $\langle x, f(x), f(f(x)), \ldots \rangle$

Polynomial dynamics: $X = \mathbb{R}^d$, $f(x) = (p_1(x), \dots, p_d(x))$

Translations on a torus: $X = (\mathbb{R}/\mathbb{Z})^d$, f(x) = x + t for some $t \in X$

The Gauss map: X=(0,1), $f(x)=\frac{1}{x}-\lfloor\frac{1}{x}\rfloor$. Orbits compute continued fraction expansions

Expansions in base $\beta > 1$: X = [0,1), $f(x) = \beta x - \lfloor \beta x \rfloor$

Shift spaces: $X = \Sigma^{\omega}$, $f((x_n)_n) = ((x_{n+1})_n)$

Valérie Berthé

Joël Ouaknine

Florian Luca

James Worrell

Mihir Vahanwala

Joris Nieuwveld

Semënov 1980

The theory of $(\mathbb{Z}; <, +, 2^{\mathbb{N}})$ is decidable

Proof 1: given $\varphi := Q_1x_1 \cdots Q_mx_m : \psi(x_1, \dots, x_m)$, where $Q_i \in \{\exists, \forall\}$ and ψ is quantifier-free, eliminate Q_mx_m, \dots, Q_1x_1

Semënov 1980

The theory of $(\mathbb{Z};<,+,2^{\mathbb{N}})$ is decidable

Proof 1: given $\varphi := Q_1x_1 \cdots Q_mx_m \colon \psi(x_1, \dots, x_m)$, where $Q_i \in \{\exists, \forall\}$ and ψ is quantifier-free, eliminate Q_mx_m, \dots, Q_1x_1

Proof 2: Represent integers by their binary expansions. Given φ , construct a finite-state machine (=automaton) that takes as input

$$(s_1,\ldots,s_m)\in\big(\pm\{0,1\}^*\big)^m$$

and computes the truth value of $\psi(\text{eval}(s_1), \dots, \text{eval}(s_m))$.

Semënov 1980

The theory of $(\mathbb{Z};<,+,2^{\mathbb{N}})$ is decidable

Proof 1: given $\varphi := Q_1x_1 \cdots Q_mx_m \colon \psi(x_1, \dots, x_m)$, where $Q_i \in \{\exists, \forall\}$ and ψ is quantifier-free, eliminate Q_mx_m, \dots, Q_1x_1

Proof 2: Represent integers by their binary expansions. Given φ , construct a finite-state machine (=automaton) that takes as input

$$(s_1,\ldots,s_m)\in \left(\pm\{0,1\}^*\right)^m$$

and computes the truth value of $\psi(\text{eval}(s_1), \dots, \text{eval}(s_m))$. Decide the truth of $Q_1s_1 \cdots Q_ms_m : \psi(\text{eval}(s_1), \dots, \text{eval}(s_m))$ using automata theory

Hieronymi, Schulz 2022

The theory of $\mathcal{M} \coloneqq (\mathbb{Z};<,+,2^{\mathbb{N}},3^{\mathbb{N}})$ is undecidable

Hieronymi, Schulz 2022

The theory of $\mathcal{M} := (\mathbb{Z}; <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}})$ is undecidable

Proof idea: there exists a function $g:\mathbb{Z}^k o \mathbb{N}^*$ that

- 1. can be implemented in ${\mathcal M}$
- 2. is onto

Hieronymi, Schulz 2022

The theory of $\mathcal{M} := (\mathbb{Z}; <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}})$ is undecidable

Proof idea: there exists a function $g:\mathbb{Z}^k o \mathbb{N}^*$ that

- 1. can be implemented in ${\mathcal M}$
- 2. is onto

For $x \in 3^{\mathbb{N}}$, $x \neq 1$ write $x = 2^{\alpha(x)} + 2^{\beta(x)} + R(x)$ where $2^{\alpha(x)} > 2^{\beta(x)} > R(x)$. Hieronymi and Schulz have k = 2 and

$$g(3^{a},3^{b}) = (\beta(3^{n}) - \beta(3^{a}))_{n=a+1}^{b-1} \cap [0,\beta(3^{b}))$$

The dynamical system: $x \mapsto x + \log_2(3) \mod 1$

Hieronymi-Schulz, 2022

The theory of $\mathcal{M} := (\mathbb{Z}; <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}})$ is undecidable

Proof idea: reduce from the problem of deciding whether a given program ${\mathcal P}$ halts

Hieronymi-Schulz, 2022

The theory of $\mathcal{M} := (\mathbb{Z}; <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}})$ is undecidable

Proof idea: reduce from the problem of deciding whether a given program ${\mathcal P}$ halts

Program \mathcal{P} : two variables c_1, c_2 initialised to 1, lines $1, \ldots, L$, instructions of the form $c_i = c_i + 1$, JUMP TO ℓ , IF $c_i > 1$ THEN $c_i = c_i - 1$ ELSE JUMP TO ℓ , HALT

The run of \mathcal{P} is $(0, c_{1,0}, c_{2,0}, \ell_0, 0, c_{1,1}, c_{2,1}, \ell_1, 0 \dots)$

Hieronymi-Schulz, 2022

The theory of $\mathcal{M} := (\mathbb{Z}; <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}})$ is undecidable

Proof idea: reduce from the problem of deciding whether a given program ${\mathcal P}$ halts

Program \mathcal{P} : two variables c_1, c_2 initialised to 1, lines $1, \ldots, L$, instructions of the form $c_i = c_i + 1$, JUMP TO ℓ , IF $c_i > 1$ THEN $c_i = c_i - 1$ ELSE JUMP TO ℓ , HALT

The run of \mathcal{P} is $(0, c_{1,0}, c_{2,0}, \ell_0, 0, c_{1,1}, c_{2,1}, \ell_1, 0 \dots)$

 \mathcal{P} halts \Leftrightarrow there exists a finite sequence $(x_n)_{n=0}^m$ such that $(x_0,\ldots,x_3)=(0,1,1,1)$, $x_m=L$, and for all $n,n+1,\ldots,n+7\leq m$,

$$x_n = 0 \Rightarrow x_{n+4} = 0 \text{ and } (x_{n+1}, x_{n+2}, x_{n+3}) \to_{\mathcal{P}} (x_{n+5}, x_{n+6}, x_{n+7})$$

Hieronymi, Schulz 2022

The theory of $\mathcal{M}:=(\mathbb{Z};<,+,2^{\mathbb{N}},3^{\mathbb{N}})$ is undecidable

Reduction from the halting problem: given a program \mathcal{P} , construct the formula

$$\varphi := \exists 3^a, 3^b$$
: the sequence $g(3^a, 3^b)$ is a halting run of \mathcal{P} .

Check whether $\mathcal{M} \models \varphi$

Integers with addition and powers: the bigger picture

Hieronymi, Schulz 2022

The theory of $\mathcal{M} \coloneqq (\mathbb{Z};<,+,2^{\mathbb{N}},3^{\mathbb{N}})$ is undecidable

K., Luca, Nieuwveld, Ouaknine, Worrell 2025

- 1. The existential theory of ${\mathcal M}$ is decidable
- 2. The existential theory of $(\mathbb{Z}; <, +, n \mapsto 2^n, n \mapsto 3^n)$ is hard: decidability would yield algorithms for checking whether a given word occurs in $bin(log_2(3))$

Problem

Is the theory of $(\mathbb{Z}; <, n \mapsto 2^n, n \mapsto 3^n)$ is decidable?

The tau function

The function $\tau \colon \mathbb{N} \to \mathbb{Z}$ returns the *n*th Fourier coefficient of the cusp modular form

$$\Delta(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$

where $q=e^{i2\pi z}$. We have $\tau(0)=0$, and $\tau(n)\neq 0$ for $n\geq 1$ by Lehmer's conjecture. The first few values of $\tau(n)$ are

$$0, 1, -24, 252, -1472, 4830, -6048, -16744, \dots$$

K., Nieuwveld, Ouaknine 2025+

The theory of $(\mathbb{N}; <, n \mapsto |\tau(n)|)$ is undecidable assuming Lehmer's conjecture

The tau function

Bilu, Deshouillers, Gun, Luca 2018

Assume $\tau(n) \neq 0$ for all $n \geq 1$. Then for any permutation $\sigma \colon \{1, \dots, m\} \to \{1, \dots, m\}$ there exist infinitely many n such that

$$| au(n+\sigma(1))| < \cdots < | au(n+\sigma(m))|$$

To prove undecidability of the theory of $(\mathbb{N}; <, n \mapsto |\tau(n)|)$, we need $g: \mathbb{Z}^k \to \mathbb{N}^*$ that

- 1. can be implemented in $(\mathbb{N}; <, n \mapsto |\tau(n)|)$
- 2. is onto

We have k = 3 and

$$g(a, b, c) = (\#\{a \le m < b : |\tau(m)| < |\tau(n)|\})_{n=b}^{c}$$

More undecidability via randomness

Let $u_n=a\lambda^n+\overline{a}\,\overline{\lambda^n}+v_n$ be a non-degenerate integer linear recurrence sequence with exactly two dominant roots $\lambda,\overline{\lambda}$

Ex.:
$$u_n = (2+i)^n + (2-i)^n - 2^n$$
, satisfies $u_{n+3} = 6u_{n+2} - 13u_{n+1} + 10u_n$

Let $(p_n)_{n=-\infty}^{\infty}$ be an ordering of $\{u_n \colon n \geq 0\}$

More undecidability via randomness

Let $u_n=a\lambda^n+\overline{a}\,\overline{\lambda^n}+v_n$ be a non-degenerate integer linear recurrence sequence with exactly two dominant roots $\lambda,\overline{\lambda}$

Ex.:
$$u_n = (2+i)^n + (2-i)^n - 2^n$$
, satisfies $u_{n+3} = 6u_{n+2} - 13u_{n+1} + 10u_n$

Let $(p_n)_{n=-\infty}^{\infty}$ be an ordering of $\{u_n \colon n \geq 0\}$

K., Nieuwveld, Ouaknine 2025+

1. There exists $\varepsilon > 0$ with the following property. For any $0 = \varepsilon_1 < \cdots < \varepsilon_{m+1} < \varepsilon$, there exist bi-infinitely many n such that for all $1 \le i \le m$

$$1 + \varepsilon_i < \frac{\rho_{n+i}}{\rho_n} < 1 + \varepsilon_{i+1}$$

More undecidability via randomness

Let $u_n=a\lambda^n+\overline{a}\,\overline{\lambda^n}+v_n$ be a non-degenerate integer linear recurrence sequence with exactly two dominant roots $\lambda,\overline{\lambda}$

Ex.:
$$u_n = (2+i)^n + (2-i)^n - 2^n$$
, satisfies $u_{n+3} = 6u_{n+2} - 13u_{n+1} + 10u_n$

Let $(p_n)_{n=-\infty}^{\infty}$ be an ordering of $\{u_n \colon n \geq 0\}$

K., Nieuwveld, Ouaknine 2025+

1. There exists $\varepsilon > 0$ with the following property. For any $0 = \varepsilon_1 < \cdots < \varepsilon_{m+1} < \varepsilon$, there exist bi-infinitely many n such that for all $1 \le i \le m$

$$1+\varepsilon_i<\frac{p_{n+i}}{p_n}<1+\varepsilon_{i+1}$$

2. The theories of $(\mathbb{Z}; <, +, \{u_n : n \ge 0\})$ and $(\mathbb{Z}; <, n \mapsto u_n)$ are undecidable

Decidability via randomness

Let $u_n=a\lambda^n+\overline{a}\,\overline{\lambda^n}+v_n$ be a non-degenerate integer linear recurrence sequence with exactly two dominant roots $\lambda,\overline{\lambda}$

Let $(p_n)_{n=-\infty}^{\infty}$ be an ordering of $\{u_n \colon n \geq 0\}$

Nieuwveld, Ouaknine 2025

1. The sequence $(p_n)_n$ is pro-disjunctive: For every $m \ge 1$, every

$$w \in \{0 \le c < m : p_n \equiv c \pmod{m} \text{ for infinitely many } n\}^*$$

appears bi-infinitely often in $(p_n \mod m)_n$

Decidability via randomness

Let $u_n=a\lambda^n+\overline{a}\,\overline{\lambda^n}+v_n$ be a non-degenerate integer linear recurrence sequence with exactly two dominant roots $\lambda,\overline{\lambda}$

Let $(p_n)_{n=-\infty}^{\infty}$ be an ordering of $\{u_n \colon n \geq 0\}$

Nieuwveld, Ouaknine 2025

1. The sequence $(p_n)_n$ is pro-disjunctive: For every $m \ge 1$, every

$$w \in \{0 \le c < m : p_n \equiv c \pmod{m} \text{ for infinitely many } n\}^*$$

appears bi-infinitely often in $(p_n \mod m)_n$

2. The monadic second-order theory of $(\mathbb{Z}; <, \{u_n : n \ge 0\})$ is decidable

MSO generalises first-order logic by allowing quantifications over $X \subseteq \mathbb{Z}$

Undecidability via randomness: open problems

Problem

Classify all LRS $(u_n)_n$ for which the theory of $(\mathbb{Z};<,+,\{u_n\colon n\geq 0\})$ is decidable

Problem

Is the theory of (\mathbb{Z} ; <, +, PRIMES) decidable?

Problem

Does Sarnak's conjecture imply undecidability of the theory of $(\mathbb{Z}; <, +, n \mapsto \mu(n))$? Here $\mu \colon \mathbb{Z} \to \{-1, 0, 1\}$ is the *Möbius function*

Decidability via rigidity

Berthé, K., Nieuwveld, Ouaknine, Vahanwala, Worrell 2024

The monadic second-order theory of $\mathcal{M} := (\mathbb{Z}; <, 2^{\mathbb{N}}, 3^{\mathbb{N}})$ is decidable

Define

$$\alpha = \emptyset \{2,3\} \{2\} \{3\} \{2\} \emptyset \emptyset \emptyset \{2\} \{3\} \emptyset \cdots$$

 $\beta = 2 \ 3 \ 2 \ 3 \ 2 \ 3 \ 2 \cdots$

Then

Deciding $\mathcal{M} \models \varphi \Leftrightarrow \text{Deciding } \mathcal{A} \models \alpha \text{ for a given automaton } \mathcal{A} \Leftrightarrow \text{Deciding } \mathcal{B} \models \beta \text{ for a given automaton } \mathcal{B}$

Decidability via rigidity

Need to decide whether a given automaton \mathcal{B} accepts $\beta = 2 \ 3 \ 2 \ 3 \ 2 \ \cdots$

 β is the *cutting sequence* generated by $y = \log_3(2)x$

 β is Sturmian: it has exactly n+1 distinct subwords of length n, which is the lowest possible among non-periodic words

Decidability via rigidity

Need to decide whether a given automaton \mathcal{B} accepts $\beta =$ 2 3 2 2 3 2 \cdots

 β is the *cutting sequence* generated by $y = \log_3(2)x$

 β is Sturmian: it has exactly n+1 distinct subwords of length n, which is the lowest possible among non-periodic words

Berthé, K., Vahanwala 2025

Given an automaton \mathcal{B} , we can compute N such that for any cutting sequence β with the slope κ , whether $\mathcal{B} \models \beta$ only depends on the first N terms of the continued fraction expansion of κ

Decidability via rigidity, summary

Berthé, K., Nieuwveld, Ouaknine, Vahanwala, Worrell 2024

The monadic second-order theory of $\mathcal{M} \coloneqq (\mathbb{Z};<,2^{\mathbb{N}},3^{\mathbb{N}})$ is decidable

Need to decide whether a given automaton \mathcal{B} accepts $\beta =$ 2 3 2 2 3 2 \cdots

 β is the cutting sequence generated by $y = \log_3(2)x$

Berthé, K., Vahanwala 2025

Given an automaton \mathcal{B} , we can compute N such that for any cutting sequence β with the slope κ , whether $\mathcal{B} \models \beta$ only depends on the first N terms of the continued fraction expansion of κ

The Ergodic Dream

Let $\mathcal M$ be a mathematical structure, e.g. $\mathcal M=(\mathbb Z;<,+,2^{\mathbb N},3^{\mathbb N})$

Does there exist an algorithm that takes a sentence φ and decides whether $\mathcal{M} \models \varphi$?

- Step 1. Link the algebraic object to dynamical systems, e.g. $(\mathbb{R}/\mathbb{Z}, x \mapsto x + \log_2(3))$
- Step 2. Study whether the relevant system(s) are rigid or fully random
- Step 3. Deduce decidability or undecidability

Problem

Classify all LRS $(u_n)_n$ for which the theory of $(\mathbb{Z};<,+,\{u_n\colon n\geq 0\})$ is decidable

Problem

Is the theory of $(\mathbb{Z}; <, +, PRIMES)$ decidable?

