Zadanie 11. (0-1)

W ciągu arytmetycznym (a_n) , określonym dla $n \ge 1$, dane są dwa wyrazy: $a_1 = 7$ i $a_8 = -49$. Suma ośmiu początkowych wyrazów tego ciągu jest równa

Zadanie 12. (0-1)

Dany jest ciąg geometryczny (a_n) , określony dla $n \ge 1$. Wszystkie wyrazy tego ciągu są dodatnie i spełniony jest warunek $\frac{a_5}{a_3} = \frac{1}{9}$. Iloraz tego ciągu jest równy

A.
$$\frac{1}{3}$$

B.
$$\frac{1}{\sqrt{3}}$$
 C. 3 **D.** $\sqrt{3}$

$$\mathbf{D.} \quad \sqrt{3}$$

Zadanie 13. (0-1)

Sinus kąta ostrego α jest równy $\frac{4}{5}$. Wtedy

$$\mathbf{A.} \quad \cos \alpha = \frac{5}{4}$$

B.
$$\cos \alpha = \frac{1}{5}$$

A.
$$\cos \alpha = \frac{5}{4}$$
 B. $\cos \alpha = \frac{1}{5}$ **C.** $\cos \alpha = \frac{9}{25}$ **D.** $\cos \alpha = \frac{3}{5}$

$$\mathbf{D.} \quad \cos \alpha = \frac{3}{5}$$

Zadanie 14. (0-1)

Punkty D i E leżą na okręgu opisanym na trójkącie równobocznym ABC (zobacz rysunek). Odcinek CD jest średnicą tego okręgu. Kąt wpisany DEB ma miarę α .

Zatem

A.
$$\alpha = 30^{\circ}$$

B.
$$\alpha$$
 < 30°

C.
$$\alpha > 45^{\circ}$$

C.
$$\alpha > 45^{\circ}$$
 D. $\alpha = 45^{\circ}$