Antibiotikumok, Antifungális szerek, Anthelmintikumok, Paraziták elleni szerek

Varga Balázs Pharm.D., PhD
Farmakológiai és Farmakoterápiai Intézet
Debreceni Egyetem

Antibiotikumok

Baktériumok felépítése

- Prokarióták
- Esszenciális alkotók:
 - Maganyag
 - Citoplazma
 - Riboszóma (70 S, 50 S, 30 S)
 - Sejtmembrán
 - Sejtfal (ez alapján Gram + és -)
- Nem esszenciális alkotók:
 - Csilló
 - Pílus, fimbra
 - Tok
 - Zárvány
 - Endospóra

Baktériumok morfológiája

Figure 4-1 Microbiology, 7/e © 2008 John Wiley & Sons

Antibiotikumok támadáspontjai

Antibiotikumok - a kétélű kard

- Penicillin Alexander Fleming -1928
 - → 1943 után sérült angol katonákat kezeltek vele a II. világháború idején - németeknek, japánoknak, olaszoknak nem állt rendelkezésresokkal több amputált katona volt ezekben az országokban
- 2019-es adat alapján: több mint 2.8 millió antibiotikum rezisztens bakteriális fertőzést azonosítanak évente az USA-ban, és több mint 35,000 ember hal meg emiatt
- Fontos, hogy csak indokolt esetben kapjon a páciens antibiotikumot

Legfontosabb rezisztencia mechanizmusok

- 1. **Alternatív fehérjék:** A ß-laktám-antibiotikumok a mutáns PBP-kre (penicillin kötőfehérje) nem hatnak. Ilyen például a meticillinnek ellenálló Staphylococcus aureus PBP2a fehérjéje.
- 2. Inaktiváló fehérjék: A baktérium olyan fehérjéket termel, amik hatástalanítják az antibiotikumot. Ismert példák a B-laktamázok. Ezek hidrolizálják a B-laktámot, így az antibiotikum már nem tud a célfehérjéhez, a PBP-hez kapcsolódni.
- 3. Célmutációk: A célfehérjék mutálódnak, így az antibiotikum már nem képes hatni rájuk.
- 4. Transzláció és transzkripció utáni módosulás: Hogyha egy antibiotikum a célfehérje egy bizonyos régiójához kapcsolódik, akkor a transzláció és a transzkripció utáni apróbb módosulások miatt a kötés gyengébbé válhat, vagy akár meg is szűnhet.
- 5. Csökkent felvétel: A sejtfal megváltozása miatt az antibiotikum többé már nem vagy csak csökkent mértékben képes átjutni a sejtfalon.
- 6. **Efflux-pumpák**: Speciális transzportfehérjék kipumpálják a bejutott antibiotikumot, így elég alacsonyan tartják annak koncentrációját.
- 7. Túltermelés: Az antibiotikum által támadott fehérje túltermelődik, így ha az antibiotikum működésképtelenné teszi a molekulák egy részét, akkor még mindig marad elég működőképes molekula, így a baktérium tovább élhet.
- 8. Alternatív anyagcsereutak: Ha egy antibiotikum blokkol egy anyagcsereterméket, akkor az bizonyos körülmények között helyettesíthető lehet. A baktérium áttér egy másik anyagcsereútra, így többé nincs szüksége a blokkolt termékre.
- Biofilm képződés

Alapfogalmak

- Alkalmazási formák
 - Antibiotikum profilaxis
 - Célzott terápia
 - Empirikus terápia

Antibiotikumok csoportosítása:

- Antibiotikum-alkalmazás és hatékonyság
 - ► MIC: minimális gátló koncentráció → ez alapján...
 - C_{max}/MIC: az antibiotikum hatása attól függ, hogy a szérum-csúcskoncentráció hányszorosa a MIC-nek a hatás koncentráció függő (pl. aminoglikozidok)
 - AUC/MIC: a baktérium ölő hatás főleg a csúcskoncentrációtól függ, de fontos tartósan MIC feletti AB koncentráció fenntartása is (pl. fluorokinolonok)
 - T>MIC: az a meghatározó a hatékonyság szempontjából hogy az AB konc. Tartósan haladja meg a MIC-et, tehát az AB hatása időfüggő (pl. B-laktámok, glikopeptidek, makrolidok)
- Ezentúl az AB hatása lehet
 - Baktericid (ilyen szert választunk immundeficiens betegnél, ha a fertőzés súlyos, életveszélyes nehezen kezelhető illetve ha az AB számára nehezen hozzáférhető helyen van)
 - Bakteriosztatikus
- Hatásspektrum alapján:
 - Keskeny/szűk spektrumú (pl. vancomycin)
 - Széles spektrumú (pl carbapenemek)

Antibiotikumok csoportosítása hatásmechanizmus alapján

Hatás	Gyógyszer	Hatásmód
Baktériumfal felépítésének gátlása	vancomycin β-laktámok	a peptidoglikánlánc keresztkötései kialakulásának gátlása a peptidoglikánszintézis gátlása a penicillint kötő fehérjék (penicillin- binding proteins, PBP) enzimfunkciójának blokkolásával
A nukleinsavszintézis gátlása	rifamicinek	az RNS-polimerázműködésének gátlása
A DNS kettős spirál kialakulásának gátlása	fluorokinolonok	a giráz enzimcsoport gátlása révén
A folsavszintézis gátlása	szulfonamidok trimethoprim	a dihidrofolsav-szintézis gátlása a dihidrofolsav-reduktáz gátlása
A fehérjeszintézis gátlása	aminoglikozidok bakteriosztatikus szerek (tetracyclinek, chloramphenicol, erythromycin, clindamycin)	a riboszóma 30S alegységén, ami a sejt pusztulását okozza reverzibilis gátlást okoznak a riboszóma 30S vagy 50S alegységén
A DNS károsítása citotoxikus metabolitokkal	metronidazol	
Nukleinsav-analógok	vírusellenes szerek, mint zidovudin, acyclovir, ganciclovir	a vírusreplikáció gátlása

Antibiotikumok csoportosítása kémiai struktúra szerint

β-laktámok

-penicillinek

-cefalosporinok

-carbapenemek

–monobaktámok

Aminoglikozidok

Fluorokinolonok

Glycopeptidek

Imidazolok

Makrolidok

–azalidok

-streptograminok

-ketolidok

Lincosamidok

Tetracyclinek

Chloramphenicol

Sulfonamidok

Oxazolidinonok

Egyéb antibiotikumok

-polymyxinek

-rifamicinek

-fusidanok

-nitrofuranok

-fosfomycin trometalol

-mupirocin

- A csoport tagjai:
 - Penicillinek
 - Cefalosporinok
 - Carbapenemek
 - Monobactamok
- Hatásmód
 - Kötődés PBP-hez (penicillin binding protein)
 - ► Transzpeptidáz gátlás → keresztkötés nem jön létre = sejtfalszintézis-gátlás
 - ► Autolizinek aktiválása → nem jön létre új sejtfal
 - Baktericidek
 - Csak a logaritmikus fázisban lévő kórokozókra hatnak
 - Naponta 3-6 részre osztva adjuk a betegnek, mert rövid felezési idejük van, és időfüggő baktériumölő hatásuk (nem jelentős a poszt-antibiotikum effektus)
 - Szinergizmus aminoglikozidokkal
 - ► Rosszul penetrálnak ic. Térbe → hatástalanok ic. Patogének ellen
 - Ált. vesén keresztül ürülnek (epével: nafcillin)

Rezisztencia mechanizmusok

- 1. B-laktamáz termelés: pl S. aureus, E. coli, H. influenzae, P. aeruginosa
- Kötőfehérje változás: pl. MRSA
- Sejtfal-permeabilitás csökkenés
- 4. Efflux mechan

an)

Penicillinek

Csoportosítás:

- Alappenicillinek
 - Benzilpenicillinek: Penicillin G (parent.)
 - ► Fenoxipenicillinek: Penicillin V (orális)

Liquorba bejutnak

 A csop. Streptococcus: S. pyogenes: tonsillitis follicularis, erysipelas, cellulitis, endocarditis

- Lues
- Actinomycosis
- Anaerob streptococcusok, clostridiumok okozta bőr-lágyr infekciók (pl. gázgangraena)
- B-laktamáz rezisztens penicillinek
 - lzoxazolilpenicillinek: Oxacillin, flucloxacillin, nafcillin
 - Ma már csak Staphylococcus fertőzés ellen használhatóak, MRSA és MRSE törzsek ellen nem hatnak

Penicillin G

Penicillinek

- Szélesített spektrumú penicillinek
 - aminopenicillinek: Ampicillin, amoxicillin
 - Hatékonyak: Streptococcus (pyogenes, pneumoniae), Enterococcus, E. coli, H. influenzae, Proteus mirabilis, salmonellék, shigellák, Listeria monocytogenes. H. pylori (kombinációban), Borellia burgorferi
 - Per os alkalmazásra amoxicillin javasolt (jól felszívódik a bélből)
- Szélesített spektrumú anti-"pseudomonas" penicillinek
 - ► Karboxipenicillinek: Carbenicillin
 - Ureidopenicillinek: Piperacillin (liquorba bejut) ma már csak ezt használják a csoportból
- B-laktamáz gátlóval kombinált
 - ▶ aminopenicillinek: Ampicillin + sulbactam (Unazyn), amoxicillin + clavulansav (Augmentin)
 - Ureidopenicillin: piperacillin + tazobactam (Tazocin) polimikróbás infekciók, nozokomiális fertőzések
 - Középsúlyos légúti, húgyúti infekciók, cholecystitis, fogászati műtét utáni profilaxis

Penicillinek a gyakorlatban

- FONTOS: gyakran alkalmazott szerek, főleg az amoxicillin+claulansav kombináció (Aktil Duo, Augmentin) gyakran helytelenül alkalmazzák:
 - Gyermekekben 3 év alatt nem jellemző az A csop. (haemolizáló)
 Streptococcus okozta mandulagyulladás szinte mindig vírusfertőzés! (más a tonsilláknak még a szerkezete, nehezebben alakul ki bakteriális fertőzés) gyakran a gyermekek az AB terápia miatt kerülnek kórházba! Hasmenés (akár pseudomembranosus colitis) → kiszáradás
 - Tonsillitis follicularis fertőzés gyanúja esetén érdemes tenyésztést csinálni a szövődmények legalább 2 hét elteltével jelenhetnek meg → ha pozitív a tenyésztés, van idő célzott AB terápiát kezdeni amoxicillin! (ált. Augementint vagy Aktil Duo-t írnak fel, pedig clavulansav nem kell mert nincs β-laktamáz termelés)
 - ► Ha EBV okozza a tonsillitist és penicillin th-t kap a beteg → amoxicillin rash
- Hatékonyak N. meningitidis kezelésére
- N. gonorrhoeae: terjed a rezisztencia
- Treponema pallidum kezelése (im.)
- Allergizálnak

Antibiotikumok csoportosítása kémiai struktúra szerint

β-laktámok

-penicillinek

-cefalosporinok

-carbapenemek

-monobaktámok

Aminoglikozidok

Fluorokinolonok

Glycopeptidek

Imidazolok

Makrolidok

–azalidok

-streptograminok

-ketolidok

Lincosamidok

Tetracyclinek

Chloramphenicol

Sulfonamidok

Oxazolidinonok

Egyéb antibiotikumok

-polymyxinek

-rifamicinek

-fusidanok

-nitrofuranok

-fosfomycin trometalol

-mupirocin

- Szintén PBP-hez kötődnek
- Széles spektrumú antibiotikumok
- Kevésbé allergizálnak, de penicillin allergiásoknak nem érdemes adni
- Nem toxikusak
- Előnyös farmakokinetikájuk van
- Ellenállnak a B-laktamáz enzimek nagy részének
- 5 generáció: a generációk számának emelkedésével
 - Fokozott Gr aktivitás
 - Csökkent Gr + aktivitás
 - Nő az ellenállás β-laktamázokkal szemben

Generáció	Alkalmazás	
	parenteralis	oralis
1. generáció	cefalotin	cefalexin
	cefazolin	cefadroxil
2. generáció	cefamandol	cefaclor
	cefuroxim	cefuroxim-axetil
	cefoxitin	cefprozil
3. generáció	cefotaxim	
	ceftriaxon	
	ceftizoxim	
	cefoperazon	
	ceftazidim	
4. generáció	cefepim	
5. Generáció	Ceftobiprol Ceftarolin	
Cephalosporin - béta-laktamáz kombinációk	Ceftolozan - tazobactam Cefazidim - avibactam	

- 1. generáció
 - Cefazolin, cefalexin, cefadroxil
 - ▶ Gram + coccusok (pl. Staphylococcus), néhány Gram bacilli (pl. E. coli)
 - Liquorba nem penetrálnak
- 2. generáció
 - ► Cefaclor, Cefuroxime axetil (Zinnat iv. és per os is), Cefoxitin
 - Liquorba nem penetrálnak
 - Felső és alsó légúti fertőzésekre
 - Néhány Gr ellen (H. influenzeae, Neisseria) hatékonyság nő
- 3. generáció
 - Cefixime (Suprax), Cebtibuten, Cefotaxime (Claforane), Ceftriaxone (Rocephine), Ceftazidime (Fortum), Cefoperazone
 - A cefotaxime és ceftriaxone meningitis esetén vakterápiára jók! →tehát liquorba bejutnak (a ceftazidime is)
 - ▶ Gram spektrum nőtt
 - Ceftazidime hatásos P. aeruginosa ellen

- 4. generáció
 - Cefepime: kiegyenlítettebb antibakteriális spektrum, mint a 3. generációs szereknél → jobban hatnak Staphylococcusokra és nagyobb B.laktamáz stabilitás
 - Liquorba bejut
 - Csak súlyos fertőzésekre
 - P. aeruginosa ellen jók!
- 5. generáció
 - Ceftaroline, Ceftobiprole iv.
 - Bejutnak a liquorba
- ▶ Új kombinációs szerek: Ceftolozan tazobactam, Cefazidim avibactam
 - Indikáció: komplikált húgyúti fertőzés, komplikált intraabdominális infekciók
- Jelentős probléma az ESBL termelő bélbaktériumok terjedése (plazmiddal) főleg E. coli és Klebsiella pneumoniae esetén ilyenkor hatékonyak az új kombinációs szerek (multidrog rezisztens P. aeruginosa ellen is)

Antibiotikumok csoportosítása kémiai struktúra szerint

β-laktámok

-penicillinek

-cefalosporinok

-carbapenemek

-monobaktámok

Aminoglikozidok

Fluorokinolonok

Glycopeptidek

Imidazolok

Makrolidok

–azalidok

-streptograminok

-ketolidok

Lincosamidok

Tetracyclinek

Chloramphenicol

Sulfonamidok

Oxazolidinonok

Egyéb antibiotikumok

-polymyxinek

-rifamicinek

-fusidanok

-nitrofuranok

-fosfomycin trometalol

-mupirocin

Carbapenemek

- ▶ Imipenem (Tienam), meropenem (Meronem), ertapenem, doripenem
- Intravénás alkalmazásra
- Szintén PBP-hez kötődnek
- Rendkívül ellenállóak a β-laktamázzal szemben
- A B-laktám csoportban a legszélesebb spektrumú AB-ok
- Hatékonyak Gr + és aerobok és anaerobok ellen is (P. aeruginosara is! kiv. Ertapenem) + viszonylag hatékonyak az Acinetobacter speciesekkel szemben
- Baktericid hatás
- A cephalosporinok és carbapenemek között ált. nincs keresztrezisztencia
- Rezisztenciamechanizmusok:
 - Baktériumfal átjárhatóságának csökkenése
 - Efflux mechanizmus
 - Karbapenemáz enzim termelés

Carbapenemek

- Meropenem
 - ▶ Jól penetrál a KIR-be → meningitis kezelésére alkalmas
- Imipenem
 - intravénásan
 - Cilastatinnal kombinációban (vese dehidropeptidáz enzim reverzibilis gátlószere) → így stabil az imipenem
 - Fontos mellékhatás: epileptiform görcsi OH, SOYOUT MEROPENEM
- Terápiás indikációk:
 - Elsőként választandó Acinetobacter fert
 - Multimikróbás infekciók
 - Septicus állapotokban

Antibiotikumok csoportosítása kémiai struktúra szerint

β-laktámok

-penicillinek

-cefalosporinok

-carbapenemek

-monobaktámok

Aminoglikozidok

Fluorokinolonok

Glycopeptidek

Imidazolok

Makrolidok

–azalidok

-streptograminok

-ketolidok

Lincosamidok

Tetracyclinek

Chloramphenicol

Sulfonamidok

Oxazolidinonok

Egyéb antibiotikumok

-polymyxinek

-rifamicinek

-fusidanok

-nitrofuranok

-fosfomycin trometalol

-mupirocin

Monobactamok

- Aztreonam
- Csak Gr baktériumokra hat, Gr +-akra és a anaerobokra nem → pl. Gr coccusok (H. influenzae), Gr bélbaktériumok, Pseudomonas + aminoglikozid rezisztens törzsek
- Im. Vagy iv. alkalmazásra
- cisztikus fibrosisban P. aeruginosa krónikus szuppressziója aerosol formában (FDA 2010)
- Th. Indikáció: Gram bőr-, lágyrész-, hasi, kismedencei, posztop. fertőzésekben
- ▶ Mo.-on nincs forgalomban

Antibiotikumok csoportosítása hatásmechanizmus alapján

Hatás	Gyógyszer	Hatásmód
Baktériumfal felépítésének gátlása	vancomycin β-laktámok	a peptidoglikánlánc keresztkötései kialakulásának gátlása a peptidoglikánszintézis gátlása a penicillint kötő fehérjék (penicillin- binding proteins, PBP) enzimfunkciójának blokkolásával
A nukleinsavszintézis gátlása	rifamicinek	az RNS-polimerázműködésének gátlása
A DNS kettős spirál kialakulásának gátlása	fluorokinolonok	a giráz enzimcsoport gátlása révén
A folsavszintézis gátlása	szulfonamidok trimethoprim	a dihidrofolsav-szintézis gátlása a dihidrofolsav-reduktáz gátlása
A fehérjeszintézis gátlása	aminoglikozidok bakteriosztatikus szerek (tetracyclinek, chloramphenicol, erythromycin, clindamycin)	a riboszóma 30S alegységén, ami a sejt pusztulását okozza reverzibilis gátlást okoznak a riboszóma 30S vagy 50S alegységén
A DNS károsítása citotoxikus metabolitokkal	metronidazol	
Nukleinsav-analógok	vírusellenes szerek, mint zidovudin, acyclovir, ganciclovir	a vírusreplikáció gátlása

Antibiotikumok csoportosítása kémiai struktúra szerint

B-laktámok

-penicillinek

-cefalosporinok

-carbapenemek

–monobaktámok

Aminoglikozidok

Fluorokinolonok

Glycopeptidek

Imidazolok

Makrolidok

–azalidok

-streptograminok

-ketolidok

Lincosamidok

Tetracyclinek

Chloramphenicol

Sulfonamidok

Oxazolidinonok

Egyéb antibiotikumok

-polymyxinek

-rifamicinek

-fusidanok

-nitrofuranok

-fosfomycin trometalol

-mupirocin

Glikopeptidek

- Vancomycin, teicoplanin (dalbavancin, telavancin)
- Transzglikoziláz enzimet gátolják (glikopeptid szintézis)
- ldőfüggő antibakteriális hatás
- Gr bacik ellen SOHA nem hatnak
- Szűk spektrum
 - MRSA, penicillin rezisztens Streptococcus pneumoniae, Clostridium difficile, Listeria monocytogenes, Bacillus anthracis
- Ált. iv. alkalmazás, per os csak C. difficile fertőzésben (nem szívódnak fel)
- Szinergizmus aminoglycosidokkal
- Mellékhatások (vancomycin)
 - Vese-ill ototoxikusak
 - Red man szindróma: a vancomycin direkt hisztaminfelszabadító hatása miatt
- Terápiás felhasználás: MRSA vagy MRSE okozta súlyos infekció, ampicillinrezisztens Enterococcus infekciók, Str. pneumoniae meningitis, életveszélyes pseudomembranosus colitis (tehát nem elsőként választandó C. difficile fertőzésben)

Vancomycin

Egyéb bakteriális sejtfalon vagy sejtmembránon ható szerek

- Lipopeptidek: daptomycin
 - Baktericid hatású
 - Számos ponton károsítja a bakteriális sejtmembránt (pl. pórusokat hoz létre rajta)
 - ► Hatásspektruma hasonlít a vancomycinéhez → Gram +-akkal szemben hat
 - Csak iv., napi 1X
 - ► Fő mellékhatás: myopathia
 - MRSA, Streptococcusok, vancomycin rezisztens Enterococcusok, VRSA
- Fosfomycin (Monural)
 - Sejtfalszintézis gátlása- N-acetilmuraminsav szintézisét gátolja
 - Nők húgyúti fertőzésének kezelésére (akár terhességben) egyetlen adag!
 - ► Gr + és Gr infekciók ellen is: pl. E. coli, Klebsiella spp., Proteus mirabilis, S. aureus
 - Jól felszívódik a bélből és nagy konc.-ban választódik ki a vizeletben ahol egyszeri alkalmazás után 48 óráig antibakteriális hatású koncentrációt ér el
 - Veseelégtelenségben nem adható
 - Indikáció: nem komplikált alsó húgyúti infekciók

Egyéb bakteriális sejtfalon vagy sejtmembránon ható szerek

- Polymixinek colistin
 - egyszerű bázikus peptidek
 - polymixin B / polymixin E = colistin
 - kationios detergensek membránkárosodást okoznak
 - csak Gram- gátló hatásuk van
 - endotoxint (LPS) inaktiválhatnak
 - ▶ mellékhatás: nephro- és neurotoxikusak → csak a más szerre rezisztens baktériumok kezelésére
 - klinikai alkalmazás
 - ▶ főként lokálisan DE
 - A multrezisztens patogének megjelenésével
 - » A. baumannii
 - » P. aeruginosa
 - » parenterális mentő terápia ált. kombinációban

Antibiotikumok csoportosítása hatásmechanizmus alapján

Hatás	Gyógyszer	Hatásmód
Baktériumfal felépítésének gátlása	vancomycin β-laktámok	a peptidoglikánlánc keresztkötései kialakulásának gátlása a peptidoglikánszintézis gátlása a penicillint kötő fehérjék (penicillinbinding proteins, PBP) enzimfunkciójának blokkolásával
A nukleinsavszintézis gátlása	rifamicinek	az RNS-polimerázműködésének gátlása
A DNS kettős spirál kialakulásának gátlása	fluorokinolonok	a giráz enzimcsoport gátlása révén
A folsavszintézis gátlása	szulfonamidok trimethoprim	a dihidrofolsav-szintézis gátlása a dihidrofolsav-reduktáz gátlása
A fehérjeszintézis gátlása	aminoglikozidok	a riboszóma 30S alegységén, ami a sejt pusztulását okozza
	bakteriosztatikus szerek (tetracyclinek, chloramphenicol, erythromycin, clindamycin)	
A DNS károsítása citotoxikus metabolitokkal	metronidazol	
Nukleinsav-analógok	vírusellenes szerek, mint zidovudin, acyclovir, ganciclovir	a vírusreplikáció gátlása

Aminoglikozidok

- pentamicin, tobramicin, neomicin, streptomicin, amikacin, netilmicin, kanamicin
- ► Hatás a 30S alegységen → téves transzlációt okoznak
- Baktericid vegyületek
- Koncentrációfüggő hatás
- Hosszú posztantibiotikum- effektusuk is van
- Alt. beta-laktámokkal és glikopeptidekkel kombinációban
- lv. és im. Egyaránt adható vegyületek, KIR-be nem penetrálnak (nagy poláros moleklák)
- Irreverzibilis ototoxicitás, reverzibilis nephrotoxicitás
- ► Transzportja a sejtekbe ATP-t igényel → anaerobokra nem hatnak (pl. tályogra) + hatástalan még: enterococcusok, atípusos pneumónia kórokozóival szemben
- Rezisztencia mechanizmusok:
 - Konjugáció (foszforiláció, adenliláció, acetiláció)
 - Célpont megváltozása (30S alegység)
 - Permeabilitás csökkenés
- Indikáció: Gram aerob bacik: E. coli, Klebsiella, Enterobacter, Acinetobacter, Pseudomonas stb.
- Klinikai alkalmazás: nozokomiális pneumonia, ismeretlen eredetű septicus állapotok, neutropéniás beteg lázas epizódja, intraabdominális infekciók (metronidazollal/clindamycinnel), kismedencei infekciók, amikacin vagy streptomicin jó M. tubercolosis kezelésére
- A spectinomycin hasonló az amidoglikozidokhoz penicillinallergia esetén vagy penicillinrezisztens gonorrheafertőzésre egyszeri im. injekció

Antibiotikumok csoportosítása hatásmechanizmus alapján

Hatás	Gyógyszer	Hatásmód
Baktériumfal felépítésének gátlása	vancomycin β-laktámok	a peptidoglikánlánc keresztkötései kialakulásának gátlása a peptidoglikánszintézis gátlása a penicillint kötő fehérjék (penicillinbinding proteins, PBP) enzimfunkciójának blokkolásával
A nukleinsavszintézis gátlása	rifamicinek	az RNS-polimerázműködésének gátlása
A DNS kettős spirál kialakulásának gátlása	fluorokinolonok	a giráz enzimcsoport gátlása révén
A folsavszintézis gátlása	szulfonamidok trimethoprim	a dihidrofolsav-szintézis gátlása a dihidrofolsav-reduktáz gátlása
A fehérjeszintézis gátlása	aminoglikozidok	a riboszóma 30S alegységén, ami a sejt pusztulását okozza
	bakteriosztatikus szerek (tetracyclinek, chloramphenicol, erythromycin, clindamycin)	
A DNS károsítása citotoxikus metabolitokkal	metronidazol	
Nukleinsav-analógok	vírusellenes szerek, mint zidovudin, acyclovir, ganciclovir	a vírusreplikáció gátlása

Tetracyclinek

- ► Tetracyclin, doxycyclin, domeclocycline, minocyclin, metacycline
- Hatás: tRNS kötődését gátolja a riboszómához 30S alegység
- Bakteriosztatikus
- Széles spektrum, de sok a másodlagosan rezisztens kórokozó
- Rezisztencia mechanizmusok:
 - Csökkent permeabilitás
 - Aktív efflux
- Atípusos pneumónia kórokozói ellen hatékony!
- Hatástalan: Pseudomonas spp és Proteus spp.
- ► Kontraindikáció: terhesség, 8 év alatti gyerekek (fog elszíneződése)
- Mellékhatás: fotoszenzibilizálás, GI panaszok, C. difficile, hepatotoxicitás
- Indikáció:
 - Krónikus bronchitis akut exacerbációja
 - > STD Chlamydia trachomatis, Ureaplasma urealyticum, Mycoplasma hominis
 - Atípusos pneumónia
 - H. pylori eradikáció (kombinációban)
 - Doxycycline: Borrelia burgdorferi Lyme-kór, maláriaprofilaxis

Tetracyclin

Tetracyclinek Tigecyclin

- A tigecyclin hatékony a tetracyclin rezisztens törzsekkel szemben
- Széles spektrumú (Gr + és bacik is)
- Hatékony MRSA, vancomycinrezisztens enterococcusok és ESBL termelő Gram - bacik ellen is
- Bakteriosztatikus
- Van post-antibiotikum effektusa (PAE)
- AUC/MIC határozza meg az antibakteriális hatást
- Csak parenterálisan
- Mellékhatás: hányinger, hányás, hasmenés, thrombocytopenia
- Indikáció:
 - **Bőr-**, lágyrész-, intraabdominális infekciók
 - Közösségben szerzett tüdőgyulladások

Chloramphenicol

- Széles spektrumú, de toxikus és sok a másodlagosan rezisztens baci
- > 50 S alegységhez kötődik és gátolja a fehérjeszintézist
- Bakteriosztatikus hatás
- ► Gr + és aerob és anaerob bacikkal szemben is + spirochaeták, chlamydiák
- Rezisztencia mechanizmusok:
 - Membrán áteresztőképességének csökkenése
 - Dezacetilálás (plazmid)
- Jól felszívódik, kitűnően penetrál agyba, tályogüregekbe
- Mellékhatások:
 - Csontvelő-toxicitás
 - Dózisfüggő csv. Depresszió (reverzibilis)
 - Nem dózisfüggő aplasticus anaemia (irreverzibilis)
 - » "gray baby" szindróma: újszülöttekben a glükoronid konjugáció elégtelensége miatt
- Indikáció: használata visszaszorult
 - Agytályog (ha metronidazol+cephalosporin nem hat)
 - Meningitisben penicillin-cephalosporin allergia esetén
 - Fejlődő országokban Salmonella fertőzésekre (mert olcsó)

Makrolidok

- Erythromycin (Zineryt), roxithromycin, claritromycin (Klacid), spiramycin, azitromycin (Azi, Sumamed)
- Jó orális felszívódás, KIR-be nem penetrálnak, májban akkumulálódnak, azithromycin koncentrálódik a fagocytákban
- Bakteriosztatikus szerek, időfüggő antibakteriális hatás
- Hatás: polipeptidlánc transzlokációjának gátlása 50S alegység
- Szűk spektrum: főleg Gram +-akra, +Campylobacter, atípusos pneumonia kórokozói, atípusos mycobacteriumok
- Clarithromycin

H₅C₂

- Rezisztencia mechanizmusok:
 - Riboszóma metilálása
 - Aktív efflux
- Mellékhatások: biztonságos, atoxikus vegyületek
 - Hányinger, hányás, hasmenés (főleg erythomycinnél anhidrohemiketál metabolit)
 - ► Fejfájás, szédülés
 - Cholestaticus icterus (erythromycin főleg)
 - Allergiás bőrjelenségek, eosinophilia

Makrolidok

- Terápiás indikáció:
 - Penicillin allergiásoknál alternatív gyógyszer tonsillitis follicularis kezelésére
 - Atípusos pneumonia
 - Területen szerzett felső és alsó légúti infekciók
 - Campylobacter jejuni infekció (csak ha panaszt okoz)
 - Spiramycin terhességi toxoplasmosis
 - Clarithromycin:
 - H. pylori,
 - H. influenzae,
 - Legionellosis
 - Azithromycin: i.c. térben akkumulálódik, elég 3 napos terápia
 - H. inflenzae
 - ► Chlamydia trachomatis infekcióban egyszer adott 1 g elegendő
 - Korai Lyme-kór
 - Legionellosis

Ketolidok

- Makrolidok továbbfejlesztése
- Telithromycin
- Hatás: ua. mint a makrolidoknak de sokkal erősebben kötődik az 50 S alegységhez → hatékony a makrolidrezisztens törzsekre is
- Hosszú PAE
- Baktericid
- Konc. Függő hatás
- Per os alkalmazás
- Indikáció:
 - Felső légúti infekciók
 - Otthon szerzett pneumonia
 - Krónikus bronchitis akut exacerbációja

Makrociklinek

- Makrolidszármazék
- Fidaxomicin
- Baktericid
- Gátolja az RNS polimeráz enzimet
- Hosszú PAE
- Szelektíven hat a C. difficile fertőzésre (erre fejlesztették ki) nem károsítja a normál bélflórát
- Bélből nem szívódik fel → magas intraluminalis koncentráció + szisztémás mellékhatások nincsenek
- Kisebb relapszusráta mint metronidazol vagy vancomycin esetén

Streptograminok

- Quinopristin + dalfopristin fix kombinációja (Synercid)
- Csak iv.
- Baktericid
- 50 S alegységen gátolja a fehérjeszintézist
- Hatásspektrum: vancomycin rezisztens Enterococcus faecium, MSSA, MRSA, penicillin rezisztens Streptococcus pneumoniae
- Nem penetrál KIR-be
- Mh.: phlebitis, arthralgia

Indikáció: multirezisztens Gram + baktériumok okozta súlyos

infekció

Lincosamidok

- Clindamycin (per os)
- Bakteriosztatikus
- ► Hatás: fehérjeszintézis gátlása az 50S alegységen + fokozza a baktériumok opszonizációját + toxintermelés gátlása (Staphyloc., Streptoc., Clostridium)
- Hasonlóan hatnak mint a makrolidok
- Szűk spektrum (Gr + aerobok és Gr + és anaerobok)
- Orálisan jól felszívódik, liquorba nem jut be
- Mellékhatások:
 - Morbilliform kitütések, erythema multiforme
 - Neutropenia, agranulocytosis
 - Pseudomembranosus colitits
- Indikáció
 - Krónikus alsó és felső légúti infekciók (aspirációs pneumonia, tüdőtályog)
 - Polimikróbás hasi infekciók
 - Bakteriális vaginosis
 - Odontogén infekciók
 - Osteomyelitis
 - Bőr-, lágyrészinfekciók (pl. diabéteszes láb, gangraena, fasciitis) (Gr bacikra ható AB-mal kombinálva)

Antibiotikumok csoportosítása hatásmechanizmus alapján

Hatás	Gyógyszer	Hatásmód
Baktériumfal felépítésének gátlása	vancomycin β-laktámok	a peptidoglikánlánc keresztkötései kialakulásának gátlása a peptidoglikánszintézis gátlása a penicillint kötő fehérjék (penicillin- binding proteins, PBP) enzimfunkciójának blokkolásával
A nukleinsavszintézis gátlása	rifamicinek	az RNS-polimerázműködésének gátlása
A DNS kettős spirál kialakulásának gátlása	fluorokinolonok	ı giráz enzimcsoport gátlása révén
A folsavszintézis gátlása	szulfonamidok trimethoprim	a dihidrofolsav-szintézis gátlása a dihidrofolsav-reduktáz gátlása
A fehérjeszintézis gátlása	aminoglikozidok bakteriosztatikus szerek (tetracyclinek, chloramphenicol, erythromycin, clindamycin)	a riboszóma 30S alegységén, ami a sejt pusztulását okozza reverzibilis gátlást okoznak a riboszóma 30S vagy 50S alegységén
A DNS károsítása citotoxikus metabolitokkal	metronidazol	
Nukleinsav-analógok	vírusellenes szerek, mint zidovudin, acyclovir, ganciclovir	a vírusreplikáció gátlása

Fluorokinolonok

- Hatás: DNS giráz vagy topoizomeráz IV enzim gátlása
- Baktericid szerek
- Jó orális felszívódás, jól penetrálnak szövetekbe (kiv. Liquor)
- Koncentráció és időfüggő antibakteriális hatás (AUC/MIC)
- Hosszú PAE
- Rezisztencia mechanizmusok (ritka a plazmid kódolt rezisztencia)
 - Efflux
 - Mutáció a DNS giráz vagy topoizomeráz IV.-ben
 - Porinok mutációja
- Generációk: növekedésével nő a Gram + spektrum
 - o. generáció: nalidixsav, oxolinsav (még nincs F atom)
 - ▶ 1. generáció: norfloxacin
 - ▶ 2. generáció: perfloxacin, ofloxacin, ciprofloxacin
 - 3. generáció: levofloxacin
 - 4. generáció: moxifloxacin

Fluorokinolonok

- Terápiás indikáció:
 - o. generáció: nalidixsav, oxolinsav (még nincs F atom) csak húgyúti fertőzésekre
 - ▶ 1. generáció: norfloxacin
 - szintén alsó húgyúti fertőzésekre
 - enteritisek kezelésére (Salmonellosis, utazási hasmenés)
 - ▶ 2. generáció: perfloxacin, ofloxacin, ciprofloxacin
 - Széles spektrum, főleg Gr -ok ellen
 - Húgyúti infekciók
 - Shigella, Salmonella, E.coli, Campylobacter-okozta bélfertőzések
 - Ciprofloxacin: antrax profilaxisa és kezelése
 - osteomyelitis
 - > 3. generáció: levofloxacin (Tavanic), perfloxacin
 - ► Hasonló a 2. generációhoz de jobb Gram + spektrum → Str. pneumoniae, S aureus
 - Atípusos légúti patogének ellen
 - Húgyúti-és lágyrész-infekciól
 - ▶ 4. generáció: moxifloxacin (Avelox), gemifloxacin
 - Mint a 3. generáció, de jó anaerobok ellen is
 - ▶ Hatékonyak penicillin rezisztens pneumococcus ellen
 - Felső légúti infekciók, területen szerzett és nozokomiális pneumonia, krónikus bronchitis akut exacerbációja,

Fluorokinolonok

- Mellékhatások:
 - fejfájás, hányinger, szédülékenység
 - Fototoxicitás
 - Görcsroham, pszichotikus reakciók, eszméletvesztés (ritka)
- Gyógyszerinterakció:
 - Felszívódást csökkentik: antacidák, vasat tartalmazó készítmények
 - Gátolják a theophyllin lebomlását
- Gyermekeknek és terheseknek adása nem javasolt
- Nem komplikált húgyúti fertőzések kezelésére fosfomycin adása megfontolandó (terjedő fluorokinolon rezisztencia miatt)
- Gonorrhoea kezelésére már nem ajánlottak (terjedő rezisztencia miatt)
- Tuberculosis kezelése (cipro, levo és moxifloxacin)

Antibiotikumok csoportosítása hatásmechanizmus alapján

Hatás	Gyógyszer	Hatásmód
Baktériumfal felépítésének gátlása	vancomycin β-laktámok	a peptidoglikánlánc keresztkötései kialakulásának gátlása a peptidoglikánszintézis gátlása a penicillint kötő fehérjék (penicillin- binding proteins, PBP) enzimfunkciójának blokkolásával
A nukleinsavszintézis gátlása	rifamicinek	az RNS-polimerázműködésének gátlása
A DNS kettős spirál kialakulásának gátlása	fluorokinolonok	a giráz enzimcsoport gátlása révén
A folsavszintézis gátlása	szulfonamidok trimethoprim	dihidrofolsav-szintézis gátlása dihidrofolsav-reduktáz gátlása
A fehérjeszintézis gátlása	aminoglikozidok bakteriosztatikus szerek (tetracyclinek, chloramphenicol, erythromycin, clindamycin)	a riboszóma 30S alegységén, ami a sejt pusztulását okozza reverzibilis gátlást okoznak a riboszóma 30S vagy 50S alegységén
A DNS károsítása citotoxikus metabolitokkal	metronidazol	
Nukleinsav-analógok	vírusellenes szerek, mint zidovudin, acyclovir, ganciclovir	a vírusreplikáció gátlása

Szulfonamidok és trimethoprim

- Sulfasalazin: RA, IBD
- Sulfamethoxazole (SMX) + trimethoprim (TMP)
- Folsavszintézis két különb lépésének gátlása
 - A szulfonamid: a para-an (PABA) dihidro-folsavvá :
 - Trimethoprim: dihidrofol (nem képződik FH4)
- Szinergista hatás: SMX:TM kombinációja: co-trimoxa:
- Szelektív toxicitás
- Gram + és bacik ellen is hatékony, de sok a másodlagos rezisztencia

Szulfonamidok és trimethoprim

Mellékhatások:

- Gl tünetek
- Allergiás bőrtünetek, ritkán exfoliatív dermatitis
- Hematológiai eltérések: neutropenia, thrombocytopenia, hemolíticus anaemia
- Kumarinok hatását fokozza (leszorítja az albuminról)

Indikáció:

- területen szerzett sinusitisek, otitisek,
- Nem komplikált húgyúti infekciók
- Krónikus bronchitis akut exacerbációja
- Neutropeniás beteg szelektív dekontaminációja
- AIDS-es beteg Pneumocystis carinii pneumonia kezelése

Antibiotikumok csoportosítása hatásmechanizmus alapján

Hatás	Gyógyszer	Hatásmód
Baktériumfal felépítésének gátlása	vancomycin β-laktámok	a peptidoglikánlánc keresztkötései kialakulásának gátlása a peptidoglikánszintézis gátlása a penicillint kötő fehérjék (penicillin- binding proteins, PBP) enzimfunkciójának blokkolásával
A nukleinsavszintézis gátlása	rifamicinek	z RNS-polimerázműködésének átlása
A DNS kettős spirál kialakulásának gátlása	fluorokinolonok	a giráz enzimcsoport gátlása révén
A folsavszintézis gátlása	szulfonamidok trimethoprim	a dihidrofolsav-szintézis gátlása a dihidrofolsav-reduktáz gátlása
A fehérjeszintézis gátlása	aminoglikozidok bakteriosztatikus szerek (tetracyclinek, chloramphenicol, erythromycin, clindamycin)	a riboszóma 30S alegységén, ami a sejt pusztulását okozza reverzibilis gátlást okoznak a riboszóma 30S vagy 50S alegységén
A DNS károsítása citotoxikus metabolitokkal	metronidazol	
Nukleinsav-analógok	vírusellenes szerek, mint zidovudin, acyclovir, ganciclovir	a vírusreplikáció gátlása

Rifamicinek

- Rifampicin, rifabutin, rifaximin
- RNS polimeráz gátlása
- baktericidek
- Jó szöveti penetráció (mell- és hasüregi folyamatok, csont, tályog)
- Terápiás koncentrációt ér el a liquorban
- Hatékonyak:
 - Gr + bacik: pl. S aureus, C. difficile
 - Gr- baktériumok: Neisseriák, H inflenzae
- Erős enziminduktorok→ más gyógyszerek (ill. saját) metabolizmusát fokozza
- Mellékhatások:
 - Vizelet, nyál, könny piros-narancssárgává válik
 - Hasi fájdalom, hepatitis
- Terápiás indikáció:
 - Rifampicin, rifabutin: kombinációban előnyösek, mert károsítják a biofilmet, így a másik szer jobban ki tudja fejteni hatását Staphylococcus, Pseudomonas fertőzésben + Profilaxisra: N. megingitidis és H. influenzae B ellen + Kombinációs terápia részeként: Mycobactériumok ellen
 - Rifaximin: nem szívódik fel, bélben nagy konc.-t ér el → Gl infekciók kezelése (Acinetobacter, Bacteroides fragilis)

Antibiotikumok csoportosítása hatásmechanizmus alapján

Hatás	Gyógyszer	Hatásmód
Baktériumfal felépítésének gátlása	vancomycin β-laktámok	a peptidoglikánlánc keresztkötései kialakulásának gátlása a peptidoglikánszintézis gátlása a penicillint kötő fehérjék (penicillin- binding proteins, PBP) enzimfunkciójának blokkolásával
A nukleinsavszintézis gátlása	rifamicinek	az RNS-polimerázműködésének gátlása
A DNS kettős spirál kialakulásának gátlása	fluorokinolonok	a giráz enzimcsoport gátlása révén
A folsavszintézis gátlása	szulfonamidok trimethoprim	a dihidrofolsav-szintézis gátlása a dihidrofolsav-reduktáz gátlása
A fehérjeszintézis gátlása	aminoglikozidok bakteriosztatikus szerek (tetracyclinek, chloramphenicol,	a riboszóma 30S alegységén, ami a sejt pusztulását okozza
A DNS károsítása citotoxikus metabolitokkal	metronidazol	
Nukleinsav-analógok	vírusellenes szerek, mint zidovudin, acyclovir, ganciclovir	a vírusreplikáció gátlása

Metronidazol

- nitroimidazol anaerob sejtekben redukálódva aktiválódik
- Hatás: nukleinsav károsítása
- orálisan felszívódik / egyszerű diffúzióval permeál / májban metabolizálódik (részlegesen aktív metabolitja is van)
- Rezisztencia ritka
- anaerob vagy microaerophil kórokozókra hat
 - extraluminalis amebiasis egy luminalisan ható szerrel együtt
 - giardiasis kisebb dózis
 - trichomoniasis
 - anaerob baktériumok
- mellékhatások ritkán súlyosak
 - b gyakori: fejfájás, hányinger, fémes íz érzés a szájban
 - sötét vizelet / disulfiram szerű hatás (alkoholt ne)
 - neurotoxicitás
 - baktériumokban mutagenitását figyelték meg

Antifungális szerek

A gombák

- Eukarióta szervezetek (=valódi sejtmaggal rendelkeznek)
- Mai modern rendszertani besorolás szerint:
 - Az eukarióták "domén"-jén belül külön országot/birodalmat képviselnek, mint az állatok vagy a növények
- Spórákkal szaporodnak
- Több, mint 100 000 faj ismert, (és úgy tartják, több, mint 1millió fajuk létezik), de <1000 patogén emberre
- Sejtfaluk poliszacharidokból épül fel: kitin, α- és βglükán
- Sejtmembránjuk fő komponense: ergoszterin

Gombás fertőzések

- Ép kültakaró esetén az egészséges, immunkompetens emberek rendszerint rezisztensek a gombás megbetegedésekkel szemben.
- De legyengült szervezetekben fakultatív patogén gombák súlyos, akár halálos "opportunista fertőzést" is okozhatnak.

Gombás fertőzések II.

- Felületi mycosis
 - Bőr, nyálkahártya, hajas fejbőr felszínén (kívülről) szaporodó gombák okozzák, általában gyulladást nem okozva
 - PI. pityriasis versicolor, tinea nigra
 - De ha beterjed az epidermisbe, a nyálkahártyába, hajas fejbőrbe, körömbe, hajba
 → gyulladás
 - ► Trichophyton-fertőzés, Candida-fertőzés
- Subcutan mycosis
 - ▶ Dermis, izom, fascia érintett → szisztémás kezelés
 - ▶ Pl. gyenge virulenciájú talaj-gombák okozzák pl. traumás sérülés után
- Szisztémás mycosis
 - Rendszerint tüdő érintett (inhalatív fertőzések),
 - ▶ de létezik gomba-szepszis is → kezelés szisztémásan
 - ▶ PI. Sarjadzó és penészgombák okozzák

Gombák csoportosítása és terápiájuk

- Candida fajok (C. albicans, C. krusei, C. tropicalis, C. glabrata, C. parapsilosis) | Middle Midle M
- Rhizopus arrhizus

Gombaellenes kezelés nehézségei

- Kevés megfelelő hatóanyag
- Toxicitás:
 - ► Emberi sejtekhez való hasonlóság nagy → hatóanyagok egyrésze csak felületi kezelésre
- Hatóanyag szöveti megoszlása
 - Dúsul-e keratin gazdag szövetben? → per os hatóanyagok vagy csak mucocutan vagy csak haj és köröm vagy csak gasztrointesztinális mycosisban alkalmazható
- Gyógyszerkölcsönhatások
 - CYP-gátlók:
 - ► CYP2D6: terbinafin, CYP2C9: fluconazole, CYP3A4: ketoconazole, myconazole, itraconazole
- Rezisztencia
 - Folyamatosan követi és publikálja az EUCAST-SAS: European Cimmittee on Antimicrobial Susceptibiliy Testing - Subcommittee on Antifungal Susceptibility

Gombaellenes szerek csoportosítása

Egyfajta csoportosítás:

- Szisztémásan ható
 - Szisztémás megbetegedésekre
 - Mucocután megbetegedésekre
- Lokálisan ható

Egy másik csoportosítás:

- Hatásmechanizmus szerint csoportosítva
 - Ezen belül kémiai szerkezeten alapuló csoportok

Membránkárosító szerek

- Polién makrolidok ("Poliének")
- Azolok
 - imidazolok és
 - ▶ triazolok

► Allilaminok

Morfolinok

Membránkárosító szerek – Poliének I.

- Polién makrolidok ("Poliének")
 - Streptomyces fajok ~150 különböző poliént termelnek: makrociklikus laktongyűrűk kül. számú konjugált kettős kötésekkel
 - ► <u>Hatásmechanizmus:</u> az ergoszterolhoz kötődnek és pórust képeznek a membránban → ion-cserélő mechanizmusok károsodnak és végül az ATP-szintézis
 - Más szterinekhez is kötődnek (koleszterin) → több közülük is toxikus (léteznek lipidasszociált változatok, amik kevésbé toxikusak) → nem mind alkalmazható szisztémásan
 - <u>Hatáserősség:</u> Kis koncentrációban fungisztatikus, nagy koncentrációban fungicid szerek

Membránkárosító szerek – Poliének II.

- Hatóanyagok:
 - ► Amphotericin B
 - ▶ rosszul szívódik fel Gl traktusból → i.v.
 - kombinálják lipidekkel (liposzomális, kolloid diszperz, foszfolipid komplex) → nephrotoxicitás csöken

ОН

OH OH

OH OH

OH

HO₁₁

 hosszantartó alkalmazás: nephrotoxicitás, máj és vérképzőrendszeri toxicitás

HO.

- főleg szisztémás kezelésre (i.v.), súlyos szisztémás gombás fertőzéseknél
- ritkán Gl Candida oralis kezelésére
- kombinált kezelési sémákban: katasztrófakeverék amph B + flucitozin amph B + flukonazol amph B + echinokandinok echinokandinok + triazolok
- kontraindikáció: más nephrotoxikus vegyületek (aminglikozidok, ciklosporin), terhesség (átjut a placentán)

Membránkárosító szerek – Poliének III.

► Nystatin

▶ jellemzői mint az amph B, de szisztémásan toxikusabb

Gl nyálkahártya helyi kezelésére (per os) (*Cryptococcus, Histoplasma, Blastomyces*)

▶ hüvelyi gombafertőzésekre (*Candida*)

- ► Natamycin
 - ► szintén alig penetrál
 - helyi kezelésre kúpban kenőcsben (Candida, Aspergillus, Cephalosporium, Fusarium, Penicillium)

ŌН

HO.

Membránkárosító szerek – Azolok I.

- Azol-származékok
 - széles hatásspektrum: nem csak gombák, egyes Gram-pozitív bacik ellen is hatnak
 - Hatásmechanizmus:
 - a lanoszterol-14α-demetiláz enzimet gátolják → az ergoszterol bioszintézise gátolt
 - (az ergoszterol elengedhetetlen a gombák sejtmembránjához) (mint a koleszterin az állatoknál, helyes permeabilitáshoz, fluiditáshoz szükséges)
 - Hatáserősség: fungisztatikus szerek
- Két csoportjuk van: imidazolok és triazolok

Membránkárosító szerek – Azolok II.

Imidazolok:

Miconazole, Econazole, Ketoconazole, Clotrimazole, Bifonazole, Clomidazole, Croconazole, Fenticonazole, Isoconazole, Neticonazole, Oxiconazole, Sertaconazole, Sulconazole, Tioconazole

Alkalmazás:

- főleg helyileg
 - bőrgomba (kezelési idő: 4-6 hét)
 - Hüvelygomba (kezelési idő: 1-2 hét)
- ritkán szisztémásan is (ketokonazol; Mo.-on nem)
- széles spektrumúak

Ketokonazol:

- első (és egyetlen) per os imidazol-szárm.
- jól felszívódik
- kiválasztás: epe, bél
- mellékhatás: akár súlyos máskárosodás is
- CYP3A4 enziminhibítor

Membránkárosító szerek – Azolok III.

Triazolok:

I. gen.: Fluconazole, Fosfluconazole, Itraconazole,

II. gen.: Posaconazole, Voriconazole

Alkalmazás:

- ▶ főleg szisztémásan (helyileg inkább az imidazol-származékokat használják)
- széles spektrumúak

Flukonazol:

- per os vagy i.v. is
- viszonylag kevés mellékhatás
- katasztrófa-keverékben is
- nem metabolizálódik
- CYP2C9 enzim-inhibítor (kumarinok!)

Itrakonazol:

- főleg per os
- erősen fehérjekötött (99,8%)
- ▶ kötődik keratinhoz → akkumulálódik hajban, bőrben, körömben

Posakonazol:

- főleg per os szuszpenzióban szisztémás mikózisban
- Vorikonazol:
 - flukonazolhoz hasonló de
 - metabolizálódik (CYP-ek által)

Membránkárosító szerek – Allilaminok

- Allilaminok: Terbinafin, Naftifin (Butenafin)
 - Hatásmechanizmus: a szkvalén-epoxidáz enzimet gátolják
 - → gátlódik az ergoszterol bioszintézise és
 - → felhalmozódik a szkvalén, ami toxikus a gombára
 - Hatáserősség: fungicid
 - ► <u>Terbinafin:</u>
 - lokálisan és szisztémásan (per os) is
 - 70-80%-ban felszívódik
 - Májban metabolizálódik
 - 80%ban vizelettel, 20%-ban széklettel ürül
 - Dermatomycosis, onychomycosis, tinea pedis/corporis
 - Naftifin, butenafin
 - csak lokálisan
 - főleg fonalas gombák ellen hatásosak dermatomikózisban

Membránkárosító szerek -Egyéb

- Amorolfine
 - Morfolin-vázas (N és O egy gyűrűn belül)
 - Hatásmechanizmus:
 - az ergoszterol bioszintézisében résztvevő enzimeket gátol (D14-reduktáz és D7-D8izomeráz)
 - gátlódik az ergoszterol-szintézis
 - intermedierek halmozódnak fel a gomba membránjában
 - ► <u>Hatáserősség:</u>
 - fungicid
 - Alkalmazás:
 - helyileg, elsősorban körömre körömlakként
 - ► Célszerű a körmöt felpuhítani, vagy a felszínét megreszelni

Mikrotubulus gátló szerek

Grizeofulvin

- Vízben oldhatatlan benzofurán-származék
- Hatásmechanizmus:
 - ▶ tubulinhoz kötődik → gátolja a mikrotubuláris folyamatokat pl. a mitózist
 - Keratin-prekurzor sejtekben felhalmozódik → így az újonnan növő haj/köröm védett lesz a gombainvázió ellen → régi fertőzött köröm/haj eltávolítandó
 - ▶ energiafüggő transzferrel veszik fel a gombák ← rezisztens törzseknél ez csökken

Hatáserősség:

- fungisztatikus
- Alkalmazás:
 - ▶ Per os ← ultra-mikroméretű részecskék formájában alkalmazzák (oldhatatlansúga miatt)
 - zsíros ételek növelik a felszívódását
 - dermatophyták ellen Epidermophyton, Microsporum és Trichophyton fajok; helyi kezelésre

Nukleinsavszintézis gátlószerek

- 5-fluorocitozin/flucitozin
 - ► Fluoropirimidin
 - <u>Hatásmechanizmus:</u>
 - Sejten belül 5-fluoro-uracillá alakul (⇔ emlős sejtben kevés → szelektív)
 - ▶ nukleotid analóg → a gombák RNS és DNS szintézisét gátolja
 - Hatáserősség:
 - fungisztatikus
 - Alkalmazás:
 - Per os/i.v. (szisztémás Candida/Cryptococcus)
 - Helyileg (kenőcs)
 - Szinergizmus amph B-vel (az amph B miatt jobb a felszívódása)

Sejtfalszintézis gátlószerek

- Echinocandinok: Caspofungin, Micafungin, Anidulafungin
 - Hatásmechanizmus:
 - ▶ B-glükán szintáz enzimet gátolják ← a B-glükán a gombák sejtfalának elengedhetetlen alkotója
 - Hatáserősség:
 - sarjadzógombák ellen pl. Candida fungicid hatású
 - ▶ fonalas gombák ellen pl. Aspergillus fungisztatikus
 - Alkalmazás:
 - Candida és Aspergillus ellen használják, főleg szisztémásan
 - Katasztrófa-keverékben

Összefoglalás

- Szisztémásan alkalmazott antifungális szerek szisztémás fertőzésekre
 - Poliének Amph B
 - ▶ 5-Fluorocitozin
 - Azolok
 - Imidazolok ketokonazol
 - ► Triazolok Itrakonazol, Flukonazol, Vorikonazol, Posakonazol
 - ► Echinocandinok Caspofungin, Micafungin, Anidulafungin
- Szisztémásan alkalmazott antifungális szerek mukokután fertőzésekre
 - Allilaminok terbinafin
 - Grizeofulvin
- Helyileg alkalmazott antifungális szerek
 - Poliének Nystatin, Natamycin, Candicin
 - Allilaminok Terbinafin, Naftifin
 - Amorolfin
 - Azolok
 - ▶ Imidazolok Mikonazol, Ekonazol, Klotrimazol

Összefoglalás

- Gombák ellen leggyakrabban adott szerek:
 - ► Aphotericin B (*i.v.*)
 - ► Itrakonazol (vagy Flukonazol) (per os)
 - Ketokonazol (*lokálisan*)

Féregfertőzések terápiája

Féregfertőzések fogalma

Helminthiasis: Az emberi vagy állati tápcsatornában, illetve szövetekben élő férgek által okozott megbetegedések.

<u>Világviszonylat</u>ban igen elterjedtek, legnagyobb számban a gazdaságilag elmaradott országokban fordulnak elő.

Hazánkban a fonal- és a szalagféregfertőzések a leggyakoribbak.

Férgek csoportosítása

Férgek

Nematoda (Fonálférgek)

Bélben előforduló:

Enterobius vermicularis Trichuris trichiura Ascaris lumbricoides

- SZ → Toxocara canis
 Ancylostoma duodenale
 Necator americanus
 Strongyloides stercolaris
- SZ Trichinella spiralis
 Vérben és szövetekben előforduló:
 Wuchereria bancrofti

Loa Loa Oncocerca volvulus Dracunculus medinensis Cestoda (szalagférgek)

Bélben előforduló:

Taenia saginata

- SZ → Taenia solium
- SZ → Echinococcus granulosis
- SZ Echinococcus multilocularis
 Dipylidium caninum
 Diphyllobotrium latum
 Hymenolepis nana

Trematoda (mételyek)

Bélben előforduló:
Fasciola hepatica
Schistosoma mansoni
Schistosoma japonicum
Scistosoma haematobium
Paragonismus westermani

SZ = szexuális szaporodás emberben is lehet → emberi szövetekben is előfordulhat

Laposférgek

S7

Férgek csoportosítása és ellenük használható szerek

Nematoda (Fonálférgek)

Bélben előforduló:

Enterobius vermicularis - mebendazol
Trichuris trichiura - mebendazol
Ascaris lumbricoides - mebendazol, tiabendazol, levamisol
Toxocara canis - tiabendazol
Ancylostoma duodenale - mebendazol, tiabendazol, levamisol
Necator americanus - mebendazol, tiabendazol, levamisol
Strongyloides stercolaris - tiabendazol
Trichinella spiralis - tiabendazol

Vérben és szövetekben előforduló:

Wuchereria bancrofti - dietilkarbamazin, ivermektin Loa Loa - dietilkarbamazin, ivermektin Oncocerca volvulus - dietilkarbamazin, ivermektin Dracunculus medinensis - sebészi Cestoda (szalagférgek)

Bélben előforduló:

Taenia saginata - niklozamid, prazikvantel
Taenia solium - niklozamid, prazikvantel
Echinococcus granulosis - sebészi, mebendazol, albendazol
Echinococcus multilocularis - sebészi, mebendazol, albendazol
Dipylidium caninum - niklozamid, prazikvantel
Diphyllobotrium latum - niklozamid, prazikvantel
Hymenolepis nana - niklozamid, prazikvantel
Trematoda

Laposférgek -

Bélben előforduló:

Fasciola hepatica - bithionol Schistosoma mansoni - prazikvantel Schistosoma japonicum - prazikvantel

(mételyek)

Scistosoma haematobium - prazikvantel

Paragonismus westermani - prazikvantel

Féregellenes szerek

Anthelmintikumok: azok a vegyületek, amelyek egymagukban, vagy más terápiás eljárásokkal együtt alkalmazva a férgeket megölik (féregölők), vagy csökkentik azok számát az emberi vagy állati gazdaszervezetben (féregűzők).

A gyógyszerek támadáspontja általában a kifejlett féregben található:

- a féreg mozgásának neuromuscularis koordinációja,
- a szénhidrát-anyagcsere, mint a féreg energiaforrása (itt a glukóz az elsődleges szubsztrát) és
- a mikrotubulusok integrációja, aminek a peterakásban és kikelésben, a lárva fejlődésében, a glukóztranszportban és az enzimek aktivitásában és szekréciójában van szerepe.

Diagnosztika

- A férgek által okozott fertőzések terápiájában nehézséget okoz az, hogy a parazita és a gazdaszervezet biokémiai és fiziológiai folyamatai hasonlóak, így a helminthiasisban alkalmazható gyógyszerek többsége a gazdaszervezetre toxikus mellékhatással rendelkezik.
- Ezért a terápia elkezdése előtt célszerű a parazita kimutatása és meghatározása, majd ez alapján a megfelelő gyógyszer kiválasztása.
- A férgek különböző fejlődési alakjainak kimutatása (pete, lárva, kifejlett alak) történhet a székletből, vizeletből, vérből, köpetből vagy a szövetekből.

Benzimidazolok

Mebendazol, albendazol, tiabendazol, triclabendazol

<u>Támadáspont</u>: férgek mikrotubuláris rendszere (b-tubulin)

Hatásmechanizmus:

b-tubulinhoz kötődnek

gátolják a mikrotubulusok polimerizációját

a féreg mozgásképtelenné válik, majd elpusztul és lassan kiürül a szervezetből

A szelektív toxicitás oka az, hogy a benzimidazolok sokkal nagyobb affinitással kötődnek a parazita, mint az emlőssejt b-tubulinjához.

Spektrum: szinte minden féreg ellen hatásosak, de főleg bélben élősködő fonálférgek ellen használják

fonálférgek $igg\{$	Mebendazol	Trichuris, Enterobius, Ancylostoma
	Tiabendazol	Toxocara, Strongyloides, larva migrans (Necator, Ancylostoma)
szalagférgek {	Albendazol	Echinococcus, cysticercus (Taenia)
mételyek $\{$	Triclabendazol	Fasciola hepatica

Idegrendszerre ható szerek Paraszimpatomimetikumok

<u>Hatásmechanizmus:</u> acetilkolinerg szinapszison hatnak és a férgek izomzatát kontrahált állapotban bénítják (görcsös bénulás - depolarizáló neuromuszkuláris blokkolás)

Kolinerg szinapszisokat serkentők:

- Imidazolotiazolok
 - Levamisol Ascaris, Necator, Ancylostoma (tehát bél-fonálférgek) ellen, immunmodulátor hatású is
- ► Tetrahidropirimidinek (elsősorban állatgyógyászatban):
 - > Pyrantel Ancylostoma, Necator, Enterobius, Trichinella (tehát bél-fonálférgek) ellen
 - Oxantel Trichuris (bél-fonálféreg) ellen
- Benzilammonium-származékok
 - ▶ Bephenium Ascaris, Necator, Ancylostoma (tehát bél-fonálférgek) ellen

Kolinészteráz-bénítók:

- Foszfonsav-származékok (irreverzibilis organofoszfátok)
 - Metrifonát Schistosoma haematobium (métely) ellen (egyébként Alzheimer ellenes szer is)

Idegrendszerre ható szerek Gátló receptorokon ható szerek

Hatásmechanizmus: gátló (Glutamáterg/GABAerg) szinapszisokon hatnak és a férgek izomzatát petyhüdt állapotban bénítják (petyhüdt bénulás - nemdepolarizáló neuromuszkuláris blokkolás)

Glutamáterg receptorokon hatók:

- Makrolid-származékok
 - Ivermectin fonálférgek ellen, pl.: Strongyloides; rokonvegyülete az avermectin rovarellenes

GABAerg szinapszison hatók:

- Piperazin-származékok
 - Piperazin Ascaris, Enterobius (tehát bél-fonálférgek) ellen
 - Dietilkarbamazin Dracunculus, Ascaris (tehát fonálférgek) ellen

Ennek egy <u>másik hatásmechanizmust</u> is feltételeznek: arachidonsav-metabolizmust gátolja, ezáltal megváltozik a féregsejtek felszíni membránja, vagyis féregantigéneket tár fel és érzékenyebbé teszi a férgeket az immunrendszerrel szemben.

Anyagcserére ható szerek

Salicylanilid-származékok:

Niclosamid

Pontos <u>hatásmechanizmus</u>a nem ismert, valószínűleg széjjelkapcsolja az oxidatív foszforiláció enzimeit, ezáltal gátolja az ATP-termelést.

Spektrum: minden szalagféreg (cestoda) ellen

Szulfanilfenol-származékok:

Bithionol

Pontos <u>hatásmechanizmus</u>a nem ismert, valószínűleg ez is az ATP-termelést gátolja.

Spektrum: Fasciola, Paragonismus (mételyek) ellen

<u>Kinolin-származék:</u>

Pyrvinium

Hatásmechanizmus: a férgek szénhidrát- (glükóz-) felvételét gátolja

Spektrum: a legtöbb fonálféreg (nematoda) ellen hatásos

Egyéb hatásmechanizmusú szerek

Kinolin-származékok:

Prazikvantel

<u>Hatásmechanizmus:</u> nem teljesen tisztázott; feltehetően megnöveli a féregsejtek membránjának permeabilitását Ca²⁺-ok számára, így kontrahált izomzattal bénul a féreg; egy másik mechanizmus, hogy meggátolja a férgek adenozin felvételét (a férgek pedig nem képesek *de novo* purin-szintézisre)

Spektrum: mételyek (Schistosoma, Paragonismus), és szalagférgek ellen

Oxamniquin

<u>Hatásmechanizmus:</u> valószínűleg a féreg DNS-éhez kötődik és károsítja azt, valamint ennek hatására a féreg kontrahálva bénul; feltételeznek egy esetleges antikolinerg hatásútvonalat is

Spektrum: Schistosoma mansoni ellen hatásos

Egyéb szerek / Kevert spektrumú szerek

Naftalénszulfonát-származékok:

Suramin

Hatásmechanizmus: Valószínűleg a DNS- és RNS-metabolizmus enzimein keresztül fejti ki hatását, pl. onchocerciasisban a felnőtt nőstény férget sterilizálja, majd megőli; antiprotozoon szer is (lásd ott) Spektrum: Onchocerca volvulus ellen, valamint antiprotozoon szerként (lásd ott)

Aminoakridin-származékok:

Quinacrin
 antiprotozoon (lásd ott), anthelmint, valamint antiprion (Creutzfeldt-Jakob kór) hatású

Butirofenon-származék:

Desapidine
 Hatásmechanizmusa ismeretlen, cestodák ellen

Klórfenol-származék:

Dichlorophen
 Hatásmechanizmusa ismeretlen, cestodák ellen

Tiazol-származék:

Niridazol
 Hatásmechanizmusa ismeretlen, trematodák ellen

Arilszulfonát-származék:

Stibophen

Hatásmechanizmusa ismeretlen, trematodák ellen

Összefoglalás

- Bélben élő
 - ▶ Fonálférgek ellen → mebendazol/tiabendazol
 - Szalagférgek ellen → niklozamid/prazikvantel
 - ▶ Mételyek ellen → prazikvantel
- Vérben élő férgek ellen (fonálférgek)
 - ▶ dietilkarbamazin/ivermectin

Ezenkívül fontosabb szerek még: levamisol → bél-fonálférgek ellen metrifonát → mételyek bithionol → mételyek

Magyarországon kapható készítmények

DECARIS 150 mg tabletta (levamisol) 1x

 DECARIS 50 mg tabletta (levamisol) 2x (gyermekek részére)

VERMOX tabletta (mebendazol) 6x (100mg)

Mindegyik bélben élősködő fonálféreg fertőzés ellen.

Parazitaellenes szerek

Paraziták csoportosítása és ellenük alkalmazható szerek

Testüregekben élő:

- Amőbák

Paraziták csoportosítása és ellenük alkalmazható szerek

Testüregekben élő protozoonok (folytatás):

- Ostorosok
 - Dientamoeba fragilis (nem amőba!) metronidazol
 - Giardia lamblia metronidazol, nitrofurantoin (utóbbi nitrofurán antibiotikum)
 - Trichomonas vaginalis metronidazol, nitrofurantoin (a szexuális partnert is kezelni!)
- Csillósok
 - Balantidium coli metronidazol, tetraciklinek
- Spórások
 - Isospora hominis Sumetrolim® (trimethoprim + szulfametoxazol; ezt a kombinációt hívják co-trimoxazolnak is)
 - Cryptosporidium parvum (AIDS-eseknél kell csak kezelés:) spiramycin (16tagú gyűrűs makrolid antibiotikum)

Paraziták csoportosítása és ellenük alkalmazható szerek

Vérben és szövetekben élő protozoonok:

- Amőbák
 - Naegleria amphotericin B (=ampB) + myconazol + rifampicin
 (gomba:polién) (gomba:azol) (anza-makrolid antibiotikum)
 - Acanthamoeba myconazol (lokálisan) v. ampB + myconazol + rifampicin
- Ostorosok
 - Trypanosoma brucei gambiense suramin, pentamidin; melarsoprol, eflornitin (Álomkór) (hemolimfatikus szakasz) (KIR-tünetek megjelenése után)
 - Trypanosoma brucei rhodesiense suramin ; melarsoprol
 - Trypanosoma cruzi (Chagas-kór) benznidazol (nitroimidazol antibiotikum), nifurtimox (nitrofurán antibiotikum)
 - Leishmania fajok ellen Na-stiboglükonát, IFN-γ (általános immunstimuláns), pentamidin, ampB, azolok, paromomycin
- Spórások
 - Plasmodium falciparum, P. vivax, P. ovale, P. malariae összes szer külön tárgyalva
 - Toxoplasma gondii Fansidar[®] (sulfadoxin+pirimetamin), spiramycin, atovaquone

Entamoeba histolytica ellenes szerek - Luminális amöbicidek

Emetin/Dehidro-emetin

(utóbbinak kevesebb a mellékhatása)

- <u>Hatásmechanizmus:</u> hatásmechanizmusa ismeretlen; in vitro transzlokáció-gátló hatású
- Diklóracetamid-származékok (Diloxanid-furoát, Klefamid, Etofamid, Teklozan)
 - Hatásmechanizmus: ismeretlen; a cystákra is hatnak

Entamoeba histolytica ellenes szerek - Luminális amöbicidek

- Halogénezett Hidroxikinol-származékok (Jodokinol, Klórkinaldol, Tilbrokinol, Broxikinolin, Kliokinol, Chiniofon)
 - Hatásmechanizmus: nem teljesen tisztázott,
 - feltételezhetően a protozoon létfontosságú enzimeit inaktiválja,
 - valamint halogenizálja a fehérjéit;

így a parazita osztódását gátolja

Hosszantartó használatuk vakságot okozhat!

A Trypanosoma brucei fajok életciklusa

Trypanosoma brucei fajok ellenes szerek - álomkór

► Suramin

- <u>Hatásmechanizmus:</u> számos enzimet gátol:
 - a protozoonok speciális glikoszómájában található glikolitikus enzimeket (αglicerinfoszfát oxidázt (ez az enzim csak protozoonokban található), glicerin-3foszfát dehidrogenázt, foszfofruktokinázt, aldolázt és piruvát kinázt),
 - RNS polimerázt, szukcinát dehidrogenázt,
 - pirimidin-szintézis enzimeit (timidilát szintetáz, dihidrofolát reduktáz), a
 - parazita protein-kinázát mind-mind gátolja.

Ezáltal gátlódik a parazita ATP-szintézise, az RNS- és DNS-metabolizmusa, valamint a fehérje-szintézise.

<u>Alkalmazás:</u> nagyon hatékony korai gambiense fertőzés ellen, kevésbé rhodesiense trypanosomiasisban; KIR-be nem pentrál, tehát csak a hemolimfatikus szakaszban használható, a KIR-tünetek megjelenése előtt.

Onchocerca volvulus (fonálféreg) ellen is hatásos, valamint a dietilkarbamazin alternatatívája Wuchereria bancrofti (szintén fonálféreg) fertőzésben

Trypanosoma brucei fajok ellenes szerek - álomkór (folyt.)

Pentamidin

- <u>Hatásmechanizmus:</u> nem teljesen tisztázott;
 - valószínűleg a kinetoplast DNS-hez (kDNS) kötődik ezáltal a kinetoplast replikációját és funkcióját gátolja,
 - valamint a kinetoplast szétesést okozhatja;
 - ezenkívül hatása lehet még a szukcinát-dehidrogenázra (és így a sejtlégzésre) és
 - az S-adenozil-methioninra (és így a biológiai metilezés folyamatára) is
- Alkalmazás: afrikai trypanosomiasis korai szakaszának kezelésére; valamint leishmaniasisban, ha stiboglükonát nem használ; ritkábban Pneumocystis carinii okozta tüdőgyulladásban

Trypanosoma brucei fajok ellenes szerek - álomkór (folyt.)

- Melarsoprol (3 vegyértékű arzénszármazék)
 - Hatásmechanizmus: enzimek (pl.: a glikolitikus foszfopiruvátkináz enzim) esszenciális SH-csoportjaihoz kapcsolódik kovalensen, ezáltal gátlódik az osztódás
 - Alkalmazás: Trypanosoma brucei gambiense és rhodesiense ellen is; KIR-be penetrál, így a fertőzés kései fázisában is alkalmazható
- Léteznek más, 5 vegyértékű arzénszármazékok is (Tryparsamide, Glycobiarsone, Difetarsone), de ezek sokkal mérgezőbbek, így kivonták őket a forglomból.

Trypanosoma brucei fajok ellenes szerek - álomkór (folyt.)

- Eflornitin/α-Difluoromethylornithine (DFMO)
 - ► Hatásmechanizmus: ornitin-analóg szer → specifikusan hozzákötődve irreverzibilisen gátolja az ornitin-dekarboxiláz enzimet, ezáltal gátlódik a protozoon sejtosztódása és sejtdifferenciálódása, így a protozoon növekedése
 - Alkalmazás: álomkór ellen (Trypanosomiasis), valamint pneumocystis (gomba) és cryptosporidium (protozoon) fertőzésben;
 - Mivel képes a KIR-be penetálni így a trypanosomiasis haemolimfatikus es késői, KIR-tünetekkel járó fázisában is adható a betegnek.

Leishmaniasis elleni szerek

- 5 vegyértékű antimon-származékok (Na-stiboglükonát, Meglumin-antimonát)
 - Hatásmechanizmus: a paraziták foszfo-fruktokináz enzimét gátolják, ezáltal gátlódik a paraziták glikolízise, ami a fő energiaellátási mechanizmusuk; egy másik hatásmechanizmus: a zsírsavak β-oxidációjának enzimeit gátolják
- Léteznek 3 vegyértékű antimon-származékok is (pl. antimonnátrium-tartarát), de ezek sokkal toxikusabbak, így kivonták őket a forgalomból.

Malária/váltóláz - A Plasmodium fajok életciklusa

A maláriaplasmodium életciklusainak és az ember-szúnyog közti körforgásának a sémája.

Malária-ellenes szerek -Összefoglalás

- ► Vér-schizontocid szerek = merozoiták ellen
 - Kinolin-vázas szerek
 - Aminokinolinok
 - ► 4-aminokinolinok (Amodiaquine, Chloroquine, Hydroxychloroquine)
 - ▶ 8-aminokinolinok (Primaquine, Pamaquine) (NEM vér-schizontocidok!!)
 - Methanolkinolinok
 - Cinchona-alkaloidok (Kinin, Kinidin, Chinchonin, Chinchonidin)
 - Mefloquine
 - Halofantrin (Fenantrén-vázas származék)
 - Quinacrine (Amino-akridin származék)
 - Artemisinin-származékok (szeszkviterpén-laktonok)

Malária-ellenes szerek -Összefoglalás (folyt.)

- ► Folát-anyagcsere-gátlók (Vér schizontocid és gametocitocid)
 - DHPS-gátlók
 - Szulfonamidok (pl. Sulfadoxin)
 - Szulfonok (pl. Dapson)
 - DHFR-gátlók
 - ▶ Biguanidok (pl. Proguanil, Klór-proguanil)
 - Diaminopirimidinek (pl. Pirimetamin, Trimethoprim)
- ► Atovaquone (naftokinon-származék)
- Tetraciklinek
- Bakteriális riboszómákra hatnak --- a protozoonokban a mitokondriális DNS-szintézisre
- Klindamicin

- 4-aminokinolinok (Amodiaquine, Chloroquine, Hydroxychloroquine)
- Cinchona-alkaloidok (Kinin, Kinidin, Chinchonin, Chinchonidin)
- Mefloquine
 - Hatásmechanizmusuk:
 - a hemoglobinbontó/táplálék vacuolumban hozzákapcsolódnak a szabad hem-hez és az ún. hemozoin-hoz ezáltal megakadályozzák a további polimerizációt, így a detoxifikálást;
 - a hemoglobin emésztése során felszabaduló hem toxikus a parazitákra, ezért átalakítják hemozoinná, ami egy nem-toxikus hem-polimer;
 - Egyesek szerint dsDNS-be interkalálódhatnak, ezáltal gátolják a DNS, RNS és fehérje-szintézist is
 - Bizonyos zsírsavakkal is interferálhatnak, amik a protozoon vvt-ből való kiszabadulásához szükségesek
 - Alkalmazás: P. vivax, P. ovale, P. malariae és P. falciparum fertőzésben; csak vér-schizontákra hatnak, szöveti schizontákra vagy vérsejteken kívüli alakokra nem;
 - a chloroquine az elsőként választandó szer maláriában!

- 8-aminokinolinok (Primaquine, Pamaquine) (NEM vér-schizontocidok!!)
 - Hatásmechanizmus:
 - Metabolitja az ubiquinonnal interferál, így gátolja a terminális oxidációt a mitokondriumban (így az energiatermelés gátlódik)
 - A pirimidin-szintézist is gátolhatja
 - dsDNS-be interkalálódhatnak, ezáltal gátolják a DNS, RNS és fehérje-szintézist is
 - Alkalmazás: Ezek NEM vér-schizontocid szerek!, semmilyen hatásuk nincs az eritrociter-fázisra!, hatékonyak viszont P. ovale és vivax hypnozoitái és májschizontái ellen, valamint gametocitocid hatásúak is;
 - A 8-aminokinolinok nem adhatóak Glükóz-6-foszfát-dehidrognáz deficienciában szenvedő betegeknek, mert bennük életveszélyes hemolízist okoz!

- Halofantrin (Fenantrén-vázas származék)
 - Hatásmechanizmus: pontos hatásmechanizmusa ismeretlen; valószínűleg mefloquine-szerű aktivitása van bár nem kinolin-vázas (hemozoin-képzés gátlása; DNSbe interkalálódás)
 - Alkalmazás: QT megnyúlást, arrhythmiát okoz, ezért szívbetegeknek nem adható; felszívódása növekszik zsíros táplálékkal, ezért éhgyomorra kell bevenni

- Quinacrine (Amino-akridin származék)
 - <u>Hatásmechanizmus:</u> ismeretlen;
 - valószínűleg a protozoon membránját károsítja;
 - egyes források foszfolipáz A2 inhibítornak is tartják;
 - mások chloroquin-hez hasonló hatásmechanizmust feltételeznek
 - Alkalmazás: vér-schizontocid hatású; giardiasisban is alkalmazzák

- Artemisinin-származékok (Artemether, Artesunate, Artenimol, Arteether/Artemotil)
 - egy kínai, malária ellen régóta használt gyógynövény (Artemisia annua) hatóanyagai
 - Hatásmechanizmus:
 - a parazitában lévő hem aktiválja a molekulát szabadgyök képződés
 - Egy SER Ca²⁺ ATPáz pumpát is gátol; ennek mutációja rezisztanciát jelenthet a protozoon számára
 - <u>Alkalmazás:</u> nagyon gyors hatású vér-schizontocid szerek, minden alakra hat, kivéve a hypnozoiták; szinergista hatású mefloquinnel, primaquinnel, tetraciklinekkel

Szulfonamidok és szulfonok

(Sufadoxin) (Dapson)

<u>Hatásmechanizmus:</u> dihidropteroát-szintáz (DHPS) gátlók: a p-amino benzoesavat kompetitíve kiszorítják az enzimről, ezáltal a folsav (B10) szintézist gátolják. (így a purin bázisok szintézisét gátolják)

Alkalmazás:

- széles spektrumú bakteriosztatikus antibiotikumok;
- dapson leprában
- sulfadoxin,dapson maláriában,
- sulfadoxin Toxoplasmosisban
- A sulfadoxin az ultra-hosszú hatástartamú szulfonamidok csoportjába tartozik.
- A szulfadoxin szinergista pirimetaminnal (diaminopirimidin)

Biguanidok és diaminopirimidinek

(proguanil, klórproguanil) (pirimethamin, trimethoprim)

- Hatásmechanizmus: dihidro folát reduktáz (DHFR) gátlók: a dihidrofolsav tetrahidrofolsavvá történő átalakulását gátolja, ezáltal a folsav (B10) szintézist gátolják (így purin bázisok szintézisét gátolják).
- Alkalmazás:
 - széles spektrumú baktericid antibiotikumok
 - pirimetamin, (klór) proguanil malária ellen
- Szinergizmus (kombinációk):
 - Sulfamethoxazole + Trimethoprim = Sumetrolim®
 - Sulfadoxine + Pirimethamine = Fansidar®
 - Atovaquone + Proguanil = Malarone®

- Atovaquone (naftokinon-származék)
 - Hatásmechanizmus:
 - Ubiquinon-analóg, az ubiquinonnal interferál, ezáltal gátolja a terminális oxidációt a mitokondriumban (így az energiatermelés gátlódik) (mint a primaquin)
 - Alkalmazás: a Plasmodium fertőzés májstádiumában nagyon hatékony; Leishmania donovani, Toxoplasma gondii és Pneumocystis carinii ellen is alkalmazzák;
 - proguanillal (biguanid) szinergista (Malarone®)

Ektoparazita-ellenes terápiák

- Mechanikus eltávolítás sebészileg
- Kemoterápia
 - pyrethroidok
 - pyrethrin, [cy]permethrin, phenothrin, deltamethrin
 - ▶ lindán
 - organofoszfátok (malathion)
 - ivermectin
 - crotamiton,
 - benzil-benzoát,
 - ► SMX+TMP

- Pyrethroidok Pyrethrin I,II , permethrin, cypermethrin, phenothrin, deltamethrin, bifenthrin
 - Hatásmechanizmus: kis mennyiségben repellens hatásúak, nagy mennyiségben neurotoxikusak a rovarokra; a neuronok membránjában lévő Na+ csatornák nyitvatartását megnyújtják így hiperexcitációt okoznak
 - Alkalmazás: elsőként választandó szerek; minden ektoparazitózis ellen hatásosak
- Halakra, macskákra toxikusak!

- Lindán (hexaklórciklohexán)
 - Hatásmechanizmus: nem-kompetitíve gátolja a GABA_A receptor-kloridion-csatornákat a pikrotoxin kötőhelyen = neurotoxikus, hiperexcitációt okoz
 - Alkalmazás: leggyakrabban sampon és oldat formájában; emberre nézve is mérgező ezért sok országban már kivonták a forgalomból; epilepsziás betegeknél fokozott figyelemmel alkalmazandó; mindig betartani az orvos adagolási utasításait, a túladagolás kerülendő!

- organofoszfátok (malathion)
 - ► <u>Hatásmechanizmus:</u> irreverzibilis acetilkolin-észteráz gátlók
 - Alkalmazás: minden ektoparazita ellen; emberre is hatnak (harci gázok is ide tartoznak)

- ivermectin és avermectin (makrolid-származékok)
 - Hatásmechanizmus: neuronokon és izomsejtken lévő glutamát vezérelt kloridion-csatornákhoz kötődnek és aktiválják őket;
 - Alkalmazás: az avermectint főleg hangyairtókban használják; az ivermectint pedig főleg féregirtóként (fonálférgek ellen), de ektoparazitákra is hatásos

- crotamiton
 - ► <u>Hatásmechanizmus</u>: ismeretlen
 - Alkalmazás: scabicid szerként oldat-formában;
- bőrirritáló hatású

- benzil-benzoát
 - Hatásmechanizmus: ismeretlen
 - Alkalmazás: színtelen scabicid folyadék; helyi alkalmazásra

Magyarországon kapható készítmények

DELAGIL tabletta (30x) Chloroquine maláriás és amőbás megbetegedések és bizonyos ízületi-, kötőszöveti- és bőrbetegségek kezelésére

- KLION tabletta (20x) Metronidazol
- LARIAM "ROCHE" 250 mg tabletta (8x) Mefloquine malária ellen
- MALARONE filmtabletta (12x) Atovaquone + Proguanil malária ellen
- SUPPLIN 250 mg filmtabletta (20x) Metronidazol
- SUPPLIN 500 mg filmtabletta (20x) Metronidazol
- TINIDAZOL-POL 500 mg filmtabletta (4x) Tinidazol
- JACUTIN emulzió (100 ml) Lindán (rüh ellen)
 - JACUTIN gél (50 g) Lindán (Fejtetvesség, lapostetvesség, rühesség)
- NOVASCABIN emulzió (70 g) Dimetil-ftalát (nem dimentil-ftalát!) és Benzilbenzoát

