考试时长:	120 分钟	叩 恶 张 " "	以上一级大工团队

题号	1	2	3	4	5	6
分值	15 分	25 分	20 分	10 分	15 分	15 分

本试卷共 (6) 大题, 满分 (100) 分. 请将所有答案写在答题本上.

This exam includes 6 questions and the score is 100 in total. Write all your answers on the examination book.

本套试卷为 B 卷 Version B

- 1. (15 points, 3 points each) Multiple Choice. Only one choice is correct. (共 15 分, 每小题 3 分) 选择题. 每题只有一个选项是正确的.
 - (1) Let

$$lpha_1 = \left[egin{array}{c} 0 \\ 0 \\ c_1 \end{array}
ight], lpha_2 = \left[egin{array}{c} 0 \\ 1 \\ c_2 \end{array}
ight], lpha_3 = \left[egin{array}{c} 2 \\ -1 \\ c_3 \end{array}
ight], ext{ and } lpha_4 = \left[egin{array}{c} -2 \\ 1 \\ c_4 \end{array}
ight],$$

where c_1, c_2, c_3, c_4 are arbitrary constants. Which of the following vector systems must be linearly dependent? ()

- (A) α_1 , α_2 , α_3 .
- (B) α_1 , α_3 , α_4 .
- (C) α_1 , α_2 , α_4 .
- (D) α_2 , α_3 , α_4 .

设

$$lpha_1 = \left[egin{array}{c} 0 \\ 0 \\ c_1 \end{array}
ight], lpha_2 = \left[egin{array}{c} 0 \\ 1 \\ c_2 \end{array}
ight], lpha_3 = \left[egin{array}{c} 2 \\ -1 \\ c_3 \end{array}
ight], lpha_4 = \left[egin{array}{c} -2 \\ 1 \\ c_4 \end{array}
ight],$$

其中 c1, c2, c3, c4 为任意常数. 以下向量组一定线性相关的是

()

- (A) α_1 , α_2 , α_3 .
- (B) $\alpha_1, \alpha_3, \alpha_4$.
- (C) α_1 , α_2 , α_4 .
- (D) α_2 , α_3 , α_4 .

(2) Let A and B be $n \times n$ complex matrices. Which of the following statements is cond.	rrect?
(A) If A and B are diagonalizable, so is $A + B$.	
(B) If A and B are diagonalizable, so is AB.	
(C) If A is invertible and A^2 is diagonalizable, then A is diagonalizable.	
(D) If the distinct eigenvalues of A are 1 and 0, then A is diagonalizable.	
设 A 和 B 均为 n×n 复矩阵. 下列陈述正确的是	()
(A) 若 A 和 B 均可对角化, 则 A + B 也如此.	
(B) 若 A 和 B 均可对角化, 则 AB 也如此.	
(C) 若 A 可逆并且 A ² 可对角化, 则 A 也可对角化.	
(D) 若 A 的所有互异特征值为 1 和 0, 则 A 可以对角化.	
(3) Let Q be a 3×3 real orthogonal matrix. Which of the following is false?	()
(A) For every 3×3 real symmetric matrix A , $Q^{-1}AQ$ is symmetric.	
(B) For every column vector $v \in \mathbb{R}^3$, the vectors Qv and v have the same length.	
(C) There is a nonzero column vector $v \in \mathbb{R}^3$ such that $Qv = v$ or $Qv = -v$.	
(D) There is an invertible 3×3 real matrix P of order 3 such that $P^{-1}QP$ is diagon	al.
设 Q 为 3 × 3 实正交矩阵. 下列陈述错误的是	()
(A) 对任意 3×3 实对称阵 A, Q-1AQ 是对称阵.	
(B) 对任意列向量 $v \in \mathbb{R}^3$, 向量 Qv 和 v 的长度相同.	
(C) 存在非零列向量 $v \in \mathbb{R}^3$ 使得 $Qv = v$ 或 $Qv = -v$.	
(D) 存在可逆的 3×3 实矩阵 P 使得 $P^{-1}QP$ 为对角阵.	
(4) Let A and B be $n \times n$ real symmetric matrices. Which of the following must be true?	()
(A) If A and B are both negative definite, then they are congruent.	
(B) The product AB is also symmetric.	
(C) If A and B are congruent, then they have the same column space.	
(D) The complex matrix $A + iB$ is a Hermitian matrix.	
设 A 和 B 为 n×n 实对称阵. 下列陈述一定正确的是	()
(A) 若 A 和 B 都是负定的,则它们是合同的.	
(B) 乘积矩阵 AB 也是对称阵.	
(C) 若 A 和 B 合同, 则它们的列空间相同.	
(D) 复矩阵 $A+iB$ 是一个 Hermite 矩阵.	
5) If a square matrix A is only similar to itself, then	()
(A) A is the identity matrix or the zero matrix.	()
(B) A can be any real symmetric matrix.	
(C) A commutes with all matrices of the same size.	
(D) A can be any diagonal matrix.	

若方阵 A 只和自己相似,则

()

- (A) A 必为单位矩阵或零矩阵.
- (B) A 可以是任意实对称阵
- (C) A 与任意相同大小的矩阵可交换.
- (D) A 可以是任意对角阵.
- 2. (25 points, 5 points each) Fill in the blanks. (共 25 分, 每小题 5 分) 填空题.
 - (1) Let $\lambda \in \mathbb{R}$. Determine for which values of λ the plane curve $-\lambda x^2 + 4xy + (3-\lambda)y^2 = 2023$ is an ellipse. (A circle is also considered as an ellipse.)

 Answer: $\lambda \in \mathbb{R}$. 求 λ 的取值范围使平面曲线 $-\lambda x^2 + 4xy + (3-\lambda)y^2 = 2023$ 是一个椭圆. (圆也认为是椭圆.)
 - (2) Let A be a 3×3 matrix with determinant |A| = 4. Then $|2A^{-1}| =$ ______. 设 A 为 3×3 矩阵, 其行列式为 |A| = 4. 则 $|2A^{-1}| =$ ______.
 - (3) Suppose $A = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 1 & a \\ 4 & 0 & 5 \end{bmatrix}$ is diagonalizable, then $a = \underline{\hspace{1cm}}$.

如果
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 1 & a \\ 4 & 0 & 5 \end{bmatrix}$$
 为可对角化的,则 $a = \underline{\hspace{1cm}}$

- (4) Let A be a 3 × 3 matrix. Suppose that the trace of A is -5, and A² + 2A 3I = 0. Then the three eigenvalues of A are ______.
 设 A 为 3 × 3 矩阵. 假设 A 的迹是 -5, 且 A² + 2A 3I = 0. 则 A 的三个特征值为
- (5) A QR factorization of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & -3 \\ 0 & -2 & 3 \end{bmatrix}$ is $Q = \underline{\qquad}$, $R = \underline{\qquad}$

矩阵
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & -3 \\ 0 & -2 & 3 \end{bmatrix}$$
 的一个 QR 分解为 $Q = \underline{\hspace{1cm}}$, $R = \underline{\hspace{1cm}}$.

- 3. (20 points) Let A be an $n \times n$ real matrix satisfying $A^2 = A$. Let I_n denote the $n \times n$ identity matrix.
 - (a) Prove that $rank(A) + rank(A I_n) = n$.
 - (b) Show that A is diagonalizable.
 - (c) Suppose that the rank of A is 3. Find the trace and the determinant of the matrix $2I_n + A$.
 - (d) Assume further that A is symmetric. Show that for any real monic polynomial

$$f(x) = x^d + c_{d-1}x^{d-1} + \dots + c_1x + c_0,$$

the matrix f(A) is positive definite if and only if $c_0 > 0$ and $1 + c_{d-1} + \cdots + c_1 + c_0 > 0$.

(In this problem, you are allowed to assume the statements of some questions to answer subsequent questions.)

(20 分) 设 A 为 $n \times n$ 实矩阵, 它满足 $A^2 = A$. 用 I_n 表示 $n \times n$ 单位矩阵.

- (a) 证明 $rank(A) + rank(A I_n) = n$.
- (b) 证明 A 可以对角化.
- (c) 假设 A 的秩为 3. 求矩阵 $2I_n + A$ 的迹和行列式.
- (d) 进一步假设 A 是对称阵. 证明: 对任意首项系数为一的实多项式

$$f(x) = x^d + c_{d-1}x^{d-1} + \dots + c_1x + c_0,$$

矩阵 f(A) 正定当且仅当 $c_0 > 0$ 且 $1 + c_{d-1} + \cdots + c_1 + c_0 > 0$.

(本题中, 允许承认前面小题的结果来用于后续问题的解答.)

4. (10 points) Suppose A is a 3×3 real symmetric matrix with eigenvalues 1, 2, 3, and suppose

$$\dot{x}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \ x_2 = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$$

are eigenvectors of A corresponding to the eigenvalues 1 and 2 respectively.

- (a) Find an eigenvector corresponding to the eigenvalue 3.
- (b) Find the matrix A.

(10 分) 设 A 是 3×3 实对称矩阵, 它以 1, 2, 3 为特征值. 假设

$$x_1 = \left[egin{array}{c} 1 \ 1 \ -1 \end{array}
ight], \; x_2 = \left[egin{array}{c} 1 \ -2 \ -1 \end{array}
ight]$$

分别是 A 的对应于特征值 1 和 2 的特征向量.

- (a) 求一个对应于特征值 3 的特征向量.
- (b) 求出矩阵 A.

- 5. (15 points) Let A be an $m \times m$ real symmetric matrix.
 - (a) Prove that there exists an $m \times m$ orthogonal matrix Q such that $Q^T A Q = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_m \end{bmatrix}$, where $\lambda_i \in \mathbb{R}$ and $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$.
 - (b) For each $a=(a_1,\cdots,a_m)^T\in\mathbb{R}^m$, put $||a||=\sqrt{a_1^2+\cdots+a_m^2}$. Prove that every eigenvalue λ of A satisfies

$$\lambda \ge \min_{\|x\|=1} \{x^T A x\}.$$

- (c) Show that there exists a vector $w \in \mathbb{R}^m$ with ||w|| = 1 such that $\min_{||x|| = 1} \{x^T A x\} = w^T A w$.
- (d) Consider the binary function $f(x, y) = x^2 + 2y^2 4\sqrt{3}xy + 2025$. Find the minimum

$$\mu := \min\{f(x, y) \,|\, x^2 + y^2 = 1\}$$

and find a point (x_0, y_0) such that $f(x_0, y_0) = \mu$ and $x_0^2 + y_0^2 = 1$.

(e) Suppose A is positive definite and fix a nonzero column vector $x \in \mathbb{R}^m$. Define $a_n = x^T A^n x$ for each $n \ge 1$. Show that

$$\lim_{n \to +\infty} \sqrt[n^2]{a_n} = 1.$$

(In this problem, you are allowed to assume the statements of some questions to answer subsequent questions.)

- (15 分) 设 A 为 m×m 实对称阵.
- (a) 证明: 存在 $m \times m$ 正交矩阵 Q 使得 $Q^TAQ = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_m \end{bmatrix}$, 其中 $\lambda_i \in \mathbb{R}$ 且 $\lambda_1 \geq \lambda_2 \geq 0$
- (b) 对任意 $a=(a_1,\cdots,a_m)^T\in\mathbb{R}^m$,令 $\|a\|=\sqrt{a_1^2+\cdots+a_m^2}$. 证明: A 的每个特征值 λ 均满足

$$\lambda \ge \min_{\|x\|=1} \{x^T A x\}.$$

- (c) 证明: 存在向量 $w \in \mathbb{R}^m$ 满足 $\|w\| = 1$ 以及 $\min_{\|x\|=1} \{x^T A x\} = w^T A w$.
- (d) 考虑二元函数 $f(x, y) = x^2 + 2y^2 4\sqrt{3}xy + 2025$. 求最小值

$$\mu := \min\{f(x, y) \,|\, x^2 + y^2 = 1\}$$

并求一点 (x_0, y_0) 使得 $f(x_0, y_0) = \mu$ 且 $x_0^2 + y_0^2 = 1$.

(e) 假设 A 是正定的,并取定一个非零列向量 $x\in\mathbb{R}^m$. 对每个 $n\geq 1$,定义 $a_n=x^TA^nx$. 求证

$$\lim_{n\to+\infty} \sqrt[n^2]{a_n} = 1.$$

(本题中, 允许承认前面小题的结果来用于后续问题的解答.)

- 6. (15 points) Let A be an $n \times n$ real orthogonal matrix. Let B be any $n \times n$ real matrix.
 - (a) Show that $\det(I_n + A) = \det(A) \det(I_n + A)$, where I_n denotes the $n \times n$ identity matrix.
 - (b) Show that if $\det(A) + \det(B) = 0$ and B is orthogonal, then $\det(A + B) = 0$.
 - (c) Give an example to show that if B is not orthogonal, it is possible to have $\det(A) + \det(B) = 0$ but $\det(A + B) \neq 0$. (You may choose a suitable value of n.)

(In this problem, you are allowed to assume the statements of some questions to answer subsequent questions.)

(15 分) 设 A 为 $n \times n$ 实正交矩阵, B 为任意 $n \times n$ 实矩阵.

- (a) 证明: $\det(I_n+A) = \det(A) \det(I_n+A)$, 其中 I_n 表示 $n \times n$ 单位矩阵.
- (b) 证明: 如果 $\det(A) + \det(B) = 0$, 则 $\det(A + B) = 0$.
- (c) 举例说明: 如果 B 不是正交阵, 那么有可能 $\det(A) + \det(B) = 0$ 但 $\det(A+B) \neq 0$. (你可以将 n 取为合适的特殊值.)

(本题中,允许承认前面小题的结果来用于后续问题的解答.)