1 Revision

2 Strassman's Theorem

For the entirety of section §2 let

$$f: \mathbb{Z}_p \to \mathbb{Q}_p, f(X) = \sum_{n=0}^{\infty} a_n X^n = a_0 + a_1 X + a_2 X^2 + \cdots$$

be a non-zero (formal?) power series with coefficients in \mathbb{Q}_p

Lemma 2.1. For $x, y \in \mathbb{Z}_p$ we have

$$f(x) - f(y) = (x - y) \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} a_n x^j y^{n-1-j}$$

Proof.

Lemma 2.2. If f(x) converges $(\lim_{n\to\infty} a_n = 0) \ \forall x\in\mathbb{Z}_p$, then $\exists N\in\mathbb{N}_0$:

$$|a_N| = \max_{n \in \mathbb{N}_0} |a_n| \text{ and } |a_n| < |a_N| \forall n > N$$

Proof. \Box

Theorem 2.3 (Strassman). Suppose we have $\lim_{n\to\infty} a_n = 0$, so that f(x) converges $\forall x \in \mathbb{Z}_p$. Define $N \in \mathbb{N}_0$ by the following condition:

$$|a_N| = \max_{n \in \mathbb{N}_0} |a_n| \ and \ |a_n| < |a_N| \forall n > N$$

then the function f has at most N zeros.

Proof. First step is to show that N exists.

Corollary 2.4. Let $f(X) = \sum a_n x^n$ be a non-zero power series which converges on \mathbb{Z}_p , and let $\alpha_1, ..., \alpha_m \in \mathbb{Z}_p$ be the roots of f(X) in \mathbb{Z}_p , then there exists another power series g(X) which also converges on \mathbb{Z}_p but has no zeros in \mathbb{Z}_p , for which

$$f(X) = \left(\prod_{i=1}^{m} (X - \alpha_i)\right) g(X)$$

Proof.

Corollary 2.5. Let $f(X) = \sum a_n x^n$ be a non-zero power series which converges on $p^m \mathbb{Z}_p$, for some $m \in \mathbb{Z}$. Then f(X) has a finite number of roots in $p^m \mathbb{Z}_p$.

Proof.

Corollary 2.6. Let $f(X) = \sum a_n x^n$ and $g(X) = \sum b_n X^n$ be two p-adic power series which converge in a disc $p^m \mathbb{Z}_p$. If there exist infinitely many numbers $\alpha \in p^m Z_p$ such that $f(\alpha) = g(\alpha)$, then $a_n = b_n, \forall n \geq 0$

Proof.

Corollary 2.7. Let $f(X) = \sum a_n x^n$ be a p-adic power series which converges in some disc $p^m \mathbb{Z}_p$. If the function $p^m \mathbb{Z}_p \to \mathbb{Q}_p$, $x \mapsto f(x)$ is periodic, that is, $\exists \pi \in p^m \mathbb{Z}_p : f(x + \pi) = f(x), \forall \in p^m \mathbb{Z}_p$ then f(X) is constant.

 \square

Corollary 2.8. Let $f(X) = \sum a_n x^n$ be a p-adic power series which is entire, that is, f(x) converges $\forall x \in \mathbb{Q}_p$. Then f(X) has at most countably many zeros. Furthermore, if the set of zeros is not finite then the zeros form a sequence α_n with $|\alpha_n| \to \infty$.

Proof.

3 The p-adic Logarithm Function

4 Roots of Unity