Calculo de la metalicidad de una muestra de galaxias

Importa las librerias necesarias

```
In [4]: !pip install --user PyNeb

Requirement already satisfied: PyNeb in c:\users\sgong\appdata\roaming\pyth on\python39\site-packages (1.1.14)
WARNING: You are using pip version 20.2.3; however, version 21.0.1 is avail able.
You should consider upgrading via the 'c:\users\sgong\appdata\local\program s\python\python39\python.exe -m pip install --upgrade pip' command.

In [5]: %matplotlib inline
from os import getcwd
import numpy as np
import matplotlib.pyplot as plt
import pyneb as pn
import pandas as pd
```

Ejecuta la llamada a la base de datos de blabla para obtener los datos

SELECT TOP 100 s.specObjID, s.oiii_4363_flux, s.oiii_4363_flux_err, s.oiii_4959_flux, s.oiii_4959_flux_err, s.oiii_5007_flux, oiii_5007_flux_err, s.h_beta_flux, s.h_beta_flux_err, s.specObjID

FROM galSpecLine AS s

WHERE s.oiii_4363_flux > 0 AND s.oiii_4363_flux > 3*s.oiii_4363_flux_err

Pero por lo que he visto, el método directo consiste simplemente en eso que comentáis, calcular cocientes de intensidades en I([OIII] 4363)/I(Hbeta), dividirlo por el cociente de emisividades de ambas especies a la temperatura electrónica (que se podría derivar -creopor el cociente de 5007 y otra más) y multiplicarlo por una constante chachipiruli llamada "ICF", también conocida como "Ionization Correction Factor", que a partir de un n(OIII)/n(H) hace magia borrás y te da el cociente n(O)/n(H)

Derivar 12+log(O/H) con el método directo y con alguna de las calibraciones de strong lines.

Nos da la metalicidad

Lineas disponibles: specObjID sigma_balmer sigma_balmer_err sigma_forbidden sigma_forbidden_err v_off_balmer v_off_balmer_err v_off_forbidden v_off_forbidden_err oii_3726_cont oii_3726_cont_err oii_3726_reqw oii_3726_reqw_err oii_3726_eqw oii_3726_eqw_err oii_3726_flux oii_3726_flux_err oii_3726_inst_res oii_3726_chisq oii_3729_cont oii_3729_cont_err oii_3729_reqw oii_3729_reqw_err oii_3729_eqw oii_3729_eqw_err oii_3729_flux_err oii_3729_inst_res oii_3729_chisq neiii_3869_cont_err neiii_3869_reqw neiii_3869_reqw_err neiii_3869_eqw neiii_3869_eqw_err neiii_3869_flux_err neiii_3869_flux_err neiii_3869_inst_res neiii_3869_chisq

1 de 3 06/02/2021 0:25

h_delta_cont h_delta_cont_err h_delta_reqw h_delta_reqw_err h_delta_eqw h_delta_eqw_err h_delta_flux h_delta_flux_err h_delta_inst_res h_delta_chisq h_gamma_cont h_gamma_cont_err h_gamma_reqw h_gamma_reqw_err h_gamma_eqw h_gamma_eqw_err h_gamma_flux h_gamma_flux_err h_gamma_inst_res h_gamma_chisq oiii_4363_cont oiii_4363_cont_err oiii_4363_reqw_oiii_4363_reqw_err oiii_4363_eqw_oiii_4363_eqw_err oiii_4363_flux oiii_4363_flux_err oiii_4363_inst_res oiii_4363_chisq h_beta_cont h_beta_cont_err h_beta_reqw h_beta_reqw_err h_beta_eqw h_beta_eqw_err h_beta_flux h_beta_flux_err h_beta_inst_res h_beta_chisq oiii_4959_cont oiii_4959_cont_err oiii_4959_reqw_err oiii_4959_eqw oiii_4959_eqw_err oiii_4959_flux oiii_4959_flux_err oiii_4959_inst_res oiii_4959_chisq oiii_5007_cont oiii_5007_cont_err oiii_5007_reqw oiii_5007_reqw_err oiii_5007_eqw oiii_5007_eqw_err oiii_5007_flux oiii_5007_flux_err oiii_5007_inst_res oiii_5007_chisq hei_5876_cont hei_5876_cont_err hei_5876_reqw hei_5876_reqw_err hei_5876_eqw hei_5876_eqw_err hei_5876_flux hei_5876_flux_err hei_5876_inst_res hei_5876_chisq oi_6300_cont oi_6300_cont_err oi_6300_reqw oi_6300_reqw_err oi_6300_eqw oi_6300_eqw_err oi_6300_flux oi_6300_flux_err oi_6300_inst_res oi_6300_chisq nii_6548_cont nii_6548_cont_err nii_6548_reqw nii_6548_reqw_err nii_6548_eqw nii_6548_eqw_err nii_6548_flux nii_6548_flux_err nii_6548_inst_res nii_6548_chisq h_alpha_cont h_alpha_cont_err h_alpha_reqw h_alpha_reqw_err h_alpha_eqw h_alpha_eqw_err h_alpha_flux h_alpha_flux_err h_alpha_inst_res h_alpha_chisq nii_6584_cont nii_6584_cont_err nii_6584_reqw nii_6584_reqw_err nii_6584_eqw nii_6584_eqw_err nii_6584_flux nii_6584_flux_err nii_6584_inst_res nii_6584_chisq sii_6717_cont sii_6717_cont_err sii_6717_reqw sii_6717_reqw_err sii_6717_eqw sii_6717_eqw_err sii_6717_flux sii_6717_flux_err sii_6717_inst_res sii_6717_chisq sii_6731_cont sii_6731_cont_err sii_6731_reqw sii_6731_reqw_err sii_6731_eqw sii_6731_eqw_err sii_6731_flux sii_6731_flux_err sii_6731_inst_res sii_6731_chisq ariii7135_cont ariii7135_cont_err ariii7135_reqw ariii7135_reqw_err ariii7135_eqw_err ariii7135_flux_err ariii7135_inst_res ariii7135_chisq oii_sigma oii_flux oii_flux_err oii_voff oii_chi2 oiii_sigma aiii flux aiii flux arr aiii vaff aiii chi? snactafihar

$$Cociente \ [OIII] \to \frac{I(\lambda 4959 \ \text{Å}) \ + (\lambda 5007 \ \text{Å})}{I(\lambda 4363 \ \text{Å})} = 8.32 \ . \ e^{3.29 \ . \ 10^4 \ / T_e}$$

```
In [13]: # Calculo el cociente de lineas para obtener la temperatura electronica de
         np.log((df['oiii 4959 flux'] + df['oiii 5007 flux'])/df['oiii 4363 flux'])
           -0.316567
Out[13]: 0
         1
                 NaN
         2
                   NaN
             4.202962
         3
             4.215820
            -3.879028
         96
              5.748209
         97
              0.186508
         98
              4.274654
         99
             -0.000374
         Length: 100, dtype: float64
```

1) Chequear si los flujos están o no corregidos de extinción usando el cociente Hα/Hβ.Explica

2 de 3 06/02/2021 0:25

	las hipótesis realizadas para hacer esta corrección
In []:	

3 de 3