Georgia Tech Night Rover

David Esposito
Farzon Lotfi
Roberto Pereira
Kevin Reilley
Richard Zappulla II

Faculty Advisor: Dr. Jay Summet

Contributing Member: John Richardson

Night Rover Purpose

- NASA sponsored Night Rover Centennial Challenge
 - Moon has a 28 earth-day light/darkness cycle
 - New technologies/techniques for solar energy harvesting
- Clean Tech Open: NASA partner for development of clean technologies

Night Rover Goals

- Defined for Intel Cornell Cup:
 - Travel maximum distance over 24 hours
 - Match scaled (1/5) average velocity of Mars rovers
 - Design electrical system such that:
 INPUT = OUTPUT
- Defined for NASA Challenge:
 - Maximum distance over 72 hours

Rover Progress

- On time with feasible deadlines!
 - www.GtNightRover.com/?q=sched
- Within budget!

Rover Progress

- Eletrical Team
 - Circuits designed and components ordered
- Software Team
 - Adapting/writing code for algorithms to handle input from selected electrical components
- Structural Team
 - CAD and machine parts

Base Locomotive Functionality

- Motor controller
 - Forward, reverse, turning
 - Maintain sufficient average velocity
 - Communication with path planning module
- Real time collision detection
- Basic path planning
 - Compass or random decisions of obstacles

Structural Specifications

- Rocker-Bogie suspension
- 6 independently driven wheels
- Closed body design
- Bottom mounted Lidar module

Navigation Specification

- Path planning/navigation uses 2D Lidar distance readings
- Robust graph search algorithms though 2D plots using OMPL and Boost
- 2D map build from combining sequential graphs

Base Solar Harvesting Functionality

- Solar Harvesting
 - Power controller
 - Enable/disable battery charging
 - Sufficient wattage to return batteries to 95-100% capacity

Solar Harvesting Specification

- Custom built flat mounted solar panel
- Sufficient power for electrical systems and recharging batteries during day light
- Requirements calculated for earth's light/darkness cycle

Sun Light Intensity During Daylight

Production Testing Specifications

- Functionality testing in lab setting
 - Mechanical: level carpet or tile
 - Electrical: labs with oscilliscope/multimeter
 - Software: Atom board development environment

Fullscale Testing Specifications

- Full scale tests on a smooth level surface on optimal day
 - Parking deck or parking lot
 - Randomly placed obstacles
 - Clear sunny day

Complications and Concerns

- Scaled size down 1/5th to remain within budget
 - Multiple iterations of design and parts selection
 - More manageable for testing and travel

- Unreliable reporting of electronics power consumption
 - Monte-Carlo simulations for solar panel
 - Experimental readings for actual parts
 - 5-10% over-estimation in power budget to handle uncertainty

Complications and Concerns

- Desired development environment for Atom Board
 - Booting from USB or SD card
 - Linux or embedded OS (Windows XP as fall back)
- Minimize power consumption of Atom Board while maximizing computation power
 - Compute in low power state?
 - Board and OS's responsiveness to sleep/wakeup signals

Complications and Concerns

- Power supply provides single point of failure
 - Careful not to overcharge batteries
 - Rejected two battery design due to complexity
- Time constraints
 - Feasible deadlines
 - Weekly meetings to report progress
 - Each aspect of project completed by team of two for accountability