CSCI 5502 - Data Mining - Homework 3

Name: Krishna Chaitanya Sripada

Student ID: 104375417

Honor Pledge: On my honor, as a University of Colorado at Boulder student, I have neither given nor

received unauthorized assistance on this work.

Ans 1.

a. lift(ski, football) = (1500/4000) / ((2000/4000) * (2500/4000)) = 0.375/0.3125 = 1.2Since the lift measure is greater than 1, the correlation relationship between ski and playing football is positive.

b. Since the association rule " $ski \Rightarrow football$ " is mined, let us assume X = ski and Y = football.

Support = $P(X \cup Y) = 1500/4000 = 0.375 = 37.5\%$.

Confidence = P(Y|X) = 1500/2000 = 0.75 = 75%.

Since the support value is 37.5% and Confidence value is 75% and they satisfy the minimum support and minimum confidence thresholds, the association rule "ski \Rightarrow football" is strong.

Ans 2.

- a. Since min_support = 60%, the maximum number of possible frequent itemsets = 3:
- b. Apriori Algorithm for finding the frequent Itemsets:
- i. By scanning the table, we find the set of frequent 1-itemsets (C_1) :

Itemset	Count	Support
{B}	4	80%
{D}	1	20%
{E}	3	60%
{F}	1	20%
{G}	3	60%
{I}	3	60%
{N}	4	80%
{O}	1	20%
{S}	1	20%
{T}	1	20%
{Z}	3	60%

ii. After pruning this data, itemsets {D}, {F}, {O}, {S}, {T} are removed. So L_1 is:

Itemset	Count	Support
{B}	4	80%
{E}	3	60%
{G}	3	60%
{I}	3	60%
{N}	4	80%
{Z}	3	60%

iii. By scanning the table, we find the set of frequent 2-itemsets (C_2) :

Itemset	Count	Support
{B,E}	2	40%
{B,G}	2	40%
$\{B,I\}$	3	60%
{B,N}	4	80%
$\{B,Z\}$	2	40%
$\{E,G\}$	1	20%
$\{E,I\}$	2	20%
$\{E,N\}$	2	40%
$\{E,Z\}$	1	20%
$\{G,I\}$	1	20%
{G,N}	2	40%
$\{G,Z\}$	3	60%
{I,N}	3	60%
$\{I,Z\}$	1	20%
$\{N,Z\}$	2	40%

iv. After pruning this data, itemsets $\{B,E\}$, $\{B,G\}$, $\{B,Z\}$, $\{E,G\}$, $\{E,I\}$, $\{E,N\}$, $\{E,Z\}$, $\{G,I\}$, $\{G,N\}$, $\{I,Z\}$, $\{N,Z\}$ are removed. So L_2 is:

Itemset	Count	Support
$\{B,I\}$	3	60%
{B,N}	4	80%
$\{G,Z\}$	3	60%
{I,N}	3	60%

v. By scanning the table, we find the set of frequent 3-itemsets (C_3) :

Itemset	Count	Support
$\{B,I,N\}$	3	60%

v. After pruning this data, no itemset is removed and since frequent 4-itemsets cannot be found, the algorithm ends here. L_3 is:

Itemset	Count	Support
$\{B,I,N\}$	3	60%

- c. The number of rounds of database scans is 3. The total number of candidates =11 (6+4+1).
- d. In the first approach, since all frequent k-itemsets are part of the candidate k-itemsets, it produces $\mathcal{O}(|F_{k-1}|*|F_1|)$ where $|F_k|$ is the number of frequent k-itemsets. The computational complexity is $\mathcal{O}(\sum\limits_{k=1}^n |F_{k-1}||F_1|)$.

In the second approach, since there are 'n' items, the number of candidates itemsets generated at level k is equal to $\binom{n}{k}$. Given that the amount of computations needed for each candidate is $\mathcal{O}(k)$, the computational complexity would be $\mathcal{O}(\sum_{k=1}^{n} k * \binom{n}{k}) = \mathcal{O}(n * 2^{n-1})$.

The first approach has a substantial improvement over the second approach however, the first approach still produces a large number of unnecessary candidates. To avoid this, we have to make sure that for every candidate k-itemset that survives the pruning step, every item in the candidate must be contained in atleast k-1 of the frequent (k-1)-itemsets.

Ans 3.

a. The largest value of k=3 and the data containing the frequent itemset is {(Bread, Milk, Cheese), (Bread, Milk, Pie)}.

The non-empty subsets for this frequent itemset are

- 1. {Bread, Milk}, {Bread, Cheese}, {Milk, Cheese}, {Bread}, {Milk}, {Cheese}.
- 2. {Bread, Milk}, {Bread, Pie}, {Milk, Pie}, {Bread}, {Milk}, {Pie}.

For 1. ,the association rules are:

Bread \wedge Milk \Rightarrow Cheese [support = 3/4 = 75\%, confidence = 3/4=75\%]

Bread \land Cheese \Rightarrow Milk [support = 3/4 = 75%, confidence = 3/3=100%]

Milk \land Cheese \Rightarrow Bread [support = 3/4 = 75%, confidence = 3/3 = 100%]

Since $min_support = 60\%$ and $min_confidence = 80\%$, the rules that satisfy are:

Bread \land Cheese \Rightarrow Milk [75%,100%]

 $Milk \wedge Cheese \Rightarrow Bread [75\%, 100\%]$

```
For 2. ,the association rules are:
```

```
Bread \land Milk \Rightarrow Pie [support = 3/4 = 75%, confidence = 3/4=75%]
Bread \land Pie \Rightarrow Milk [support = 3/4 = 75%, confidence = 3/3=100%]
Milk \land Pie \Rightarrow Bread [support = 3/4 = 75%, confidence = 3/3=100%]
```

Since min_support = 60% and min_confidence = 80%, the rules that satisfy are:

Bread \wedge Pie \Rightarrow Milk [75%,100%] Milk \wedge Pie \Rightarrow Bread [75%,100%]

b. Since min_support = 60% and min_confidence = 80%, the largest value of k=3 and the frequent dataset is {(Wonder-Bread, Sweet-Pie, Sunset-Milk), (Wonder-Bread, Sweet-Pie, Dairyland-Milk), (Wonder-Bread, Dairyland-Cheese, Sunset-Milk)}