

Languages and Machines

L10: Decidability (Part I)

Jorge A. Pérez

Bernoulli Institute for Mathematics, Computer Science, and Al University of Groningen, Groningen, the Netherlands

Outline

Church-Turing's Thesis

Decision Problems

The Halting Problem

Problems and Languages

 How to distinguish between the computable and non-computable?

- How to distinguish between the computable and non-computable?
- Mathematicians approached the notion via several formalisms:

- How to distinguish between the computable and non-computable?
- Mathematicians approached the notion via several formalisms:
 - Turing machines (TMs)
 - Combinatory logic
 - ► The λ -calculus (functional programming!)

Then 'computable' would mean computable by, e.g., a TM.

- How to distinguish between the computable and non-computable?
- Mathematicians approached the notion via several formalisms:
 - Turing machines (TMs)
 - Combinatory logic
 - ► The λ -calculus (functional programming!)

Then 'computable' would mean computable by, e.g., a TM.

 These formalisms are all equivalent — they embody the same notion of effective computation, from different angles (<u>Effective</u> as in: complete, mechanical, deterministic)

- How to distinguish between the computable and non-computable?
- Mathematicians approached the notion via several formalisms:
 - Turing machines (TMs)
 - Combinatory logic
 - The λ-calculus (functional programming!)

Then 'computable' would mean computable by, e.g., a TM.

- These formalisms are all equivalent they embody the same notion of effective computation, from different angles (<u>Effective</u> as in: complete, mechanical, deterministic)
- Deterministic TMs are arguably closer to actual computers than the other formalisms

- While formalisms such as TMs, combinatory logic, λ -calculus, etc, are vastly dissimilar, they have a striking commonality
- Effective computability: they capture our intuition about what it means to be effectively computable — no more and no less

- While formalisms such as TMs, combinatory logic, λ -calculus, etc, are vastly dissimilar, they have a striking commonality
- Effective computability: they capture our intuition about what it means to be effectively computable — no more and no less
- Church-Turing's thesis: computability is not just TMs, nor Java, nor the λ -calculus, but the 'common spirit' they embody
- Not a theorem, but an observation (perhaps unsurprising today)

- While formalisms such as TMs, combinatory logic, λ -calculus, etc, are vastly dissimilar, they have a striking commonality
- Effective computability: they capture our intuition about what it means to be effectively computable — no more and no less
- **Church-Turing's thesis**: computability is not just TMs, nor Java, nor the λ -calculus, but the 'common spirit' they embody
- Not a theorem, but an observation (perhaps unsurprising today)
- TMs were a key step towards acceptance of the Church-Turing's thesis: they were the first readily programmable model
- Of course TMs do not address all possible aspects of computation (say,

- While formalisms such as TMs, combinatory logic, λ -calculus, etc, are vastly dissimilar, they have a striking commonality
- Effective computability: they capture our intuition about what it means to be effectively computable — no more and no less
- Church-Turing's thesis: computability is not just TMs, nor Java, nor the λ -calculus, but the 'common spirit' they embody
- Not a theorem, but an observation (perhaps unsurprising today)
- TMs were a key step towards acceptance of the Church-Turing's thesis: they were the first readily programmable model
- Of course TMs do not address all possible aspects of computation (say, interactivity or randomness)

- While formalisms such as TMs, combinatory logic, λ -calculus, etc, are vastly dissimilar, they have a striking commonality
- Effective computability: they capture our intuition about what it means to be effectively computable — no more and no less
- Church-Turing's thesis: computability is not just TMs, nor Java, nor the λ -calculus, but the 'common spirit' they embody
- Not a theorem, but an observation (perhaps unsurprising today)
- TMs were a key step towards acceptance of the Church-Turing's thesis: they were the first readily programmable model
- Of course TMs do not address all possible aspects of computation (say, interactivity or randomness) but they do capture a robust notion of effective computability

Universality

Programs as data:

TMs (but also all other models) are powerful enough that programs can be written to read/manipulate other programs (suitably encoded as data)

- Think: Compilers and interpreters

Universality

• Programs as data:

TMs (but also all other models) are powerful enough that programs can be written to read/manipulate other programs (suitably encoded as data)

- Think: Compilers and interpreters
- TMs can interpret input strings as descriptions of other TMs (see next lecture!)
- A universal machine U is constructed to take an encoded description of another machine M and a string x as input.
 U can perform a step-by-step simulation of M on input x
- This is computers as we know them today!

Self-Reference

- A consequence of universality, and key to the discovery of uncomputable problems
- Observation: there are uncountably many decision problems but countably many TMs
- Extremely powerful: Gödel's incompleteness theorem, whose proof exploits self-reference (Idea: Construct the provable sentence "I am not provable")

Some Terminology

Recall: A TM is **always terminating** (or **total**) if it halts on (accepts or rejects) all inputs

A language (set of strings) L is

- recursive
 - if L = L(M) for some always terminating TM M
- recursively enumerable (r.e.) if L = L(M) for some TM M

Some Terminology

Recall: A TM is **always terminating** (or **total**) if it halts on (accepts or rejects) all inputs

A language (set of strings) L is

- recursive if L = L(M) for some always terminating TM M
- recursively enumerable (r.e.) if L = L(M) for some TM M

Alternatively, let P be a **property** of strings.

- P is decidable
 if the set of all strings having P is recursive: there is a total TM
 that
 accepts strings that have P and rejects those that don't
- P is semi-decidable
 if the set of strings having P is r.e.: there is a TM that accepts x if x has P and rejects or loops if not

Some Terminology

Recursive and **recursively enumerable** are best applied to sets, while **decidable** and **semi-decidable** to properties

- Property P is decidable \Leftrightarrow Set $\{x \mid P(x)\}$ is recursive
- Set A is recursive \Leftrightarrow " $x \in A$ " is decidable

Similarly:

- Property P is semi-decidable \Leftrightarrow Set $\{x \mid P(x)\}$ is r.e.
- Set A is r.e. \Leftrightarrow " $x \in A$ " is semi-decidable

Outline

Church-Turing's Thesis

Decision Problems

The Halting Problem

Problems and Languages

Decision problems

A question that expects an answer 'yes' or 'no', depending on some given **instance** (positive or negative).

We would like to have procedures (programs, TMs) to answer correctly this question in all cases.

Decision problems

A question that expects an answer 'yes' or 'no', depending on some given **instance** (positive or negative).

We would like to have procedures (programs, TMs) to answer correctly this question in all cases.

- 1. Is a natural n the difference between two prime numbers?
- 2. Given a graph, is there a path between two of its nodes?
- 3. Given a CFG G and a string w, do we have $w \in L(G)$?
- 4. Given a CFG G, does L(G) contain a palindrome?
- 5. Given a TM M and a string w, does it hold that $w \in L(M)$?
- 6. Given a program *P*, does the call of *P* with input *I* terminate?

Decidable and semi-decidable problems

A problem is

- decidable if there is a procedure (a program or TM) able to answer the question correctly in all cases
- semi-decidable if there is a procedure that
 - for every positive instance terminates with answer 'yes'
 - for every negative instance terminates with answer 'no' or loops

- 1. Is a natural n the difference between two prime numbers?
- 2. Given a graph, is there a path between two of its nodes?
- 3. Given a CFG G and a string w, do we have $w \in L(G)$?
- 4. Given a CFG G, does L(G) contain a palindrome?
- 5. Given a TM M and a string w, does it hold that $w \in L(M)$?
- 6. The halting problem:
 Given a program P, does the call of P with input I terminate?

- 1. Is a natural n the difference between two prime numbers?
- 2. Given a graph, is there a path between two of its nodes? (decidable)
- 3. Given a CFG G and a string w, do we have $w \in L(G)$? (decidable)
- 4. Given a CFG G, does L(G) contain a palindrome?
- 5. Given a TM M and a string w, does it hold that $w \in L(M)$?
- 6. **The halting problem:** Given a program *P*, does the call of *P* with input *I* terminate?

- 1. Is a natural n the difference between two prime numbers? (semi-decidable)
- 2. Given a graph, is there a path between two of its nodes? (decidable)
- 3. Given a CFG G and a string w, do we have $w \in L(G)$? (decidable)
- 4. Given a CFG G, does L(G) contain a palindrome?
- 5. Given a TM M and a string w, does it hold that $w \in L(M)$?
- 6. The halting problem:
 Given a program P, does the call of P with input I terminate?

- 1. Is a natural n the difference between two prime numbers? (semi-decidable)
- 2. Given a graph, is there a path between two of its nodes? (decidable)
- 3. Given a CFG G and a string w, do we have $w \in L(G)$? (decidable)
- Given a CFG G, does L(G) contain a palindrome? (not decidable)
- 5. Given a TM M and a string w, does it hold that $w \in L(M)$? (not decidable)
- 6. The halting problem: Given a program P, does the call of P with input I terminate? (not decidable)

Outline

Church-Turing's Thesis

Decision Problems

The Halting Problem

Problems and Languages

The halting problem for TMs (1/3)

Theorem

The halting problem for TMs is undecidable.

Idea for a proof by contradiction.

1. Assume there is a TM *H* that solves the halting problem.

A string is accepted by H if

- ▶ the input consists of two strings, R(M) and w. R(M) is the **representation** of a TM M, and w is the input to M
- ightharpoonup the computation of M with input w halts.

Otherwise, *H* rejects the input.

The halting problem for TMs (1/3)

Theorem

The halting problem for TMs is undecidable.

Idea for a proof by contradiction.

1. Assume there is a TM H that solves the halting problem.

A string is accepted by H if

- ▶ the input consists of two strings, R(M) and w. R(M) is the **representation** of a TM M, and w is the input to M
- ▶ the computation of M with input w halts.

Otherwise, H rejects the input.

Graphically:

The halting problem for TMs (2/3)

2. Modify H to build another TM, called K: the computations of K are the same as H, but K loops indefinitely whenever H terminates in an accepting state, i.e., whenever M halts on w.

The halting problem for TMs (2/3)

- 2. Modify H to build another TM, called K: the computations of K are the same as H, but K loops indefinitely whenever H terminates in an accepting state, i.e., whenever M halts on w.
- 3. Combine K with a "copy machine" to build another TM, called D, with D(M) = K(M, M):

If the call D(M) terminates, then the call M(M) won't terminate

The halting problem for TMs (3/3)

4. The input to D may be the representation of any TM, even D itself. Adapting the diagram in the previous slide:

Thus, D(D) terminates iff D(D) doesn't terminate.

A contradiction, derived from the assumption that there is a machine ${\cal H}$ that solves the halting problem.

The halting problem, without input

A seemingly simpler problem, which is also undecidable.

Given a program P without input, is there a program Q that can decide whether or not P terminates?

- 1. Assume *Q* does indeed exist, and is an always terminating program with boolean output.
- 2. Hence, Q(P) terminates iff the call P terminates.
- 3. Define a "linker" L: a program that calls program P_i with input I. That is, $L(P_i, I) = P_i(I)$.
- 4. $L(P_i, I)$ is a program without input, for any P_i and I.
- 5. Thus, $Q(L(P_i, I))$ terminates iff the call $P_i(I)$ terminates
- 6. Define a program Q' such that $Q'(P_i, I) = Q(L(P_i, I))$
- 7. Q' would decide the halting problem—a contradiction

Outline

Church-Turing's Thesis

Decision Problems

The Halting Problem

Problems and Languages

Problems and languages

As mentioned earlier:

- Languages can be recursive or recursively enumerable
- Decision problems can be decidable or semi-decidable

We can relate problems and languages:

- Given a decision problem P, we can define a language L_P that consists of its positive instances.
- We need a function encode that transforms problem instances into a suitable alphabet.
- This way, the decision problem P is reduced to the problem of constructing a TM that accepts the language L_P .

Taking Stock

- Effective computation and Church-Turing's thesis
- Universality and self-reference
- A language (set of strings) is recursive or recursively enumerable
- A property can be decidable or semi-decidable
- Decision problems
- Accepting a language is a decision problem; every decision problem corresponds to a language (via an encoding function)
- The halting problem is not decidable, even without input

Taking Stock

- Effective computation and Church-Turing's thesis
- Universality and self-reference
- A language (set of strings) is recursive or recursively enumerable
- A property can be decidable or semi-decidable
- Decision problems
- Accepting a language is a decision problem; every decision problem corresponds to a language (via an encoding function)
- The halting problem is not decidable, even without input

Next lecture:

- A Universal Turing machine
- Acceptance of the empty string (the blank tape problem)
- Undecidability results

A Suggestion

You Can't Prove Everything That's True

https://www.youtube.com/watch?v=HeQX2HjkcNo

The Universal TM

- A Universal TM can read representations for TMs and their inputs, and simulate running a TM on its input
- TM0: a very simple class of TMs with acceptance by termination and bits as input alphabet
- Given M, we write R(M) to denote its representation
- M terminates on input w iff the UTM terminates on input R(M)w
- We need to define/establish R and UTM

From M to R(M)

- Define a **numbering function** n that maps each state q into a positive integer n(q)
- Define numbering functions also for symbols in the tape alphabet and directions L and R
- Mappings may clash, as in $n(q_0) = 1$, n(0) = 1, and n(L) = 1.

From M to R(M)

- Define a **numbering function** n that maps each state q into a positive integer n(q)
- Define numbering functions also for symbols in the tape alphabet and directions L and R
- Mappings may clash, as in $n(q_0) = 1$, n(0) = 1, and n(L) = 1.
- Let $1^k = \underbrace{1 \ 1 \cdots 1}_{k \text{ times}}$. A transition $\delta(q,X) = [r,Y,d]$:

$$001^{n(q)}01^{n(X)}01^{n(r)}01^{n(Y)}01^{n(d)}$$

- Given M, its representation R(M) corresponds to a sequence of encoded transitions, followed by '000'.
- Given an input alphabet of bits, R(M)w corresponds to the regular expression

$$(0(01^+)^5)^* 000 (0|1)^*$$

From M to R(M): Example

• Encoding states, tape alphabet, directions:

$$n(q_0) = 1$$
 $n(0) = 1$, $n(1) = 2$, $n(B) = 3$ $n(L) = 1$, $n(R) = 2$

• R(M):

$$\overbrace{ 00 \underbrace{ 1}_{q_0} \underbrace{ 0}_{0} \underbrace{ 1}_{q_0} \underbrace{ 0}_{1} \underbrace{ 0}_{R_0} \underbrace{ 11}_{R} \underbrace{ 00}_{1} \underbrace{ 11}_{R_0} \underbrace{ 0}_{q_0} \underbrace{ 11}_{1} \underbrace{ 0}_{q_0} \underbrace{ 11}_{q_0} \underbrace{ 0}_{0} \underbrace{ 1}_{q_0} \underbrace{ 0}_{0} \underbrace{ 1}_{R} \underbrace{ 000}_{R}$$

A Universal TM

Theorem

Consider Turing's halting language:

$$L_H = \{R(M)w \mid R(M) \text{ represents a TM } M \text{ and } M \text{ halts with input } w\}$$

We have that L_H is recursively enumerable.

Proof (Sketch).

It is possible to give a deterministic, three-tape machine U that accepts L_H , simulating the transitions of M—see next.

Running the UTM

A deterministic, 3-tape TM simulating TMs with a binary alphabet:

- 1. Check the format of the input; enter into an infinite loop if invalid.
- 2. Move input to tape 2
- 3. Write 1 on tape 3 state 1 should always be the start state
- 4. Simulate the machine by repeating the following:
 - Find a transition based on the state (tape 3) and the current symbol (tape 2)
 - ii. If no transition is found, terminate
 - iii. Otherwise, if a transition is found: change the state (tape 3), change the symbol (tape 2), and move the head (tape 2).

The reader explains how to handle a non-binary alphabet; this requires a fourth tape.

Decidable \neq **Semi-decidable**

Recall:

- Theorem. If L is recursive (decidable) then
 L is recursively enumerable (semi-decidable).
- **Theorem**. If L is recursive, then \overline{L} is also recursive.

As already seen, the UTM terminates for input u iff $u \in L_H$, where L_H is Turing's halting language (which the UTM accepts precisely).

- **Theorem**. Language L_H is recursively enumerable.
- **Theorem**. Language $\overline{L_H}$ is not recursively enumerable. Similar to the proof of undecidability of the halting problem.
- Theorem. Language L_H is not recursive. If L_H were recursive, $\overline{L_H}$ would be recursive too (closure properties), and therefore recursively enumerable: contradiction.

Gödel's Incompleteness Theorem

- A proof system is sound if all theorems are true, i.e., it is not possible to prove a false sentence
- A proof system is complete if all true sentences are theorems of the system

Gödel's Result: No reasonable formal system for number theory is complete—can prove all true sentences

In the following:

- The language of number theory
- Peano arithmetic (a proof system for number theory)
- Sketch of Gödel's proof

The language of number theory

A language for expressing properties of the naturals $\mathbb{N} = \{0, 1, \ldots\}$.

- variables x, y, z, \ldots ranging over \mathbb{N}
- operator symbols + and ·, and
- constant symbols 0 and 1 (identities for + and \cdot)
- relation symbol = (symbols such as <, \le , >, \ge are definable)
- quantifiers \forall , \exists , and propositional operators \lor , \land , \neg , \Rightarrow , etc.
- parentheses

The language can define concepts such as "y divides x", "x is odd", and bit-manipulation formulas (cf. TM encodings)

A formula without free (unquantified) variables is called a sentence. Sentences have a well-defined truth value.

Th(\mathbb{N}): the set of all true sentences. The decision problem for number theory is to decide whether a sentence is in Th(\mathbb{N}).

Peano Arithmetic (PA)

A proof system for number theory.

Consists of axioms (basic assumptions) + rules of inference (applied mechanically to derive theorems from the axioms)

Write $\varphi(x)$ to denote a formula with free variable x

- Axioms from first-order logic (propositional formulas, quantifiers, equality) but also from number theory (successor, identities, induction axiom)
- Inference rules:

$$rac{arphi \quad arphi \Rightarrow \psi}{\psi} \qquad rac{arphi}{orall x \, arphi}$$

A proof of φ_n is a sequence $\varphi_0, \ldots, \varphi_n$ of formulas s.t. each φ_i either is an axiom or follows from earlier formulas by an inference rule. A sentence is a theorem if it has a proof.

PA is sound: the set of theorems of PA is a subset of $Th(\mathbb{N})$. Gödel's remarkable result is that PA is not complete.

Incompleteness Theorem

Gödel proved incompleteness by constructing a sentence of number theory φ that asserts its own unprovability:

 φ is true $\iff \varphi$ is not provable

The construction of φ is interesting, as it captures self-reference as present in TMs and programming languages.

Incompleteness Theorem - Proof Sketch

A proof approach due to Turing: In a proof system such as PA one can show that

- 1. The set of theorems (provable sentences) is r.e., but
- 2. The set of true sentences $Th(\mathbb{N})$ is not r.e.

Therefore, the two sets cannot be equal, and the proof system cannot be complete.

It is relatively easy to show (1), but proving (2) is much harder.

$\mathsf{Th}(\mathbb{N})$ is not r.e - Proof Sketch

A reduction from $\overline{L_H}$ to Th(N).

- Given R(M)w, we produce a sentence γ in the language of number theory such that $R(M)w \in \overline{L_H} \iff \gamma \in \mathsf{Th}(\mathbb{N})$. Thus, M doesn't halt on $w \iff \gamma$ is true.
- Intuitively, γ uses number theory to say "M doesn't halt on w".
- Construct a formula VALCOMP $_{M,w}(y)$ that says that y represents a valid computation history of M on input w.
- Hence, VALCOMP $_{M,w}(y)$ says that y represents a sequence of configurations of M, written $\alpha_0, \ldots, \alpha_N$, such that α_0 is the start configuration (with w) and α_N is a halt configuration.
- The desired formula is then $\gamma = \neg \exists y \, \mathsf{VALCOMP}_{M,w}(y)$.

Taking Stock (2)

This lecture:

- A Universal Turing machine
- Undecidability results
- Acceptance of the empty string (the blank tape problem)
- Incompleteness of arithmetic

Next Lecture

- Unrestricted and Context-Sensitive Grammars/Languages
- Course Evaluation

A Suggestion

You Can't Prove Everything That's True

https://www.youtube.com/watch?v=HeQX2HjkcNo