QCM n° 7

Un peu de calcul.

Échauffement n°1 Déterminer l'ensemble (u_n) vérifiant pour tout $n \in \mathbb{N}$, $u_{n+2} + 2u_{n+1} + u_n = 4$.

Échauffement n°2 Soit la suite définie par $u_0 \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n^2 + 3}{4}$. Déterminer le comportement de (u_n) en fonction de u_0 .

QCM - cocher une case si la phrase qui suit est correcte.

Question n°1

Laquelle des suites suivantes est extraite de la suite $(u_{2n})_{n>0}$?

 $\Box (u_{3n})_{n\geqslant 0} \qquad \Box (u_{2n+2})_{n\geqslant 0}$ $\Box (u_{2n+1})_{n\geqslant 0} \qquad \Box (u_{n^2})_{n\geqslant 0}$

Question n°2

Soit $(u_n)_{n\geqslant 0}$ une suite strictement positive. Laquelle des conditions suivantes suffit pour dire que les suites $(-u_n)_{n\geqslant 0}$ et $(u_n)_{n\geqslant 0}$ sont adjacentes?

 \square $(u_n)_{n\geqslant 0}$ est décroissante \square $(u_n)_{n\geqslant 0}$ converge vers 0

 \square $(u_n)_{n\geqslant 0}$ est décroissante et converge vers 0

 \square $(u_n)_{n\geqslant 0}$ est croissante et converge vers 0

Question n°3

Soit $(u_n)_{n\geqslant 0}$ une suite de réels strictement positifs. Laquelle des conditions suivantes permet de dire que $(u_n)_{n\geqslant 0}$ est strictement décroissante à partir d'un certain rang ?

Question n°4

Parmi les suites suivantes, laquelle est une suite géométrique ?

 $\Box \ a_n = e^{3n}$

 $\Box b_n = (n+1)^n$

 $\Box c_n = 2^{n^2}$ $\Box d_n = 3n$

Question n°5

Quel est le comportement de la suite définie par $u_0 = 1/2$ et la relation de récurrence $u_{n+1} = u_n^3$?

 $\Box\,$ elle tend vers 1 en croissant

 \square elle tend vers 0 en décroissant

 \Box elle tend vers 1 en décroissant

 \square elle diverge vers $+\infty$ en croissant

Question n°6

Soit $(u_n)_{n\geqslant 1}$ une suite réelle qui vérifie $\frac{u_{n+1}}{n+1}=\frac{u_n}{n}$ pour tout $n\geqslant 1$. Alors

 $\square (u_n)_{n\geqslant 1}$ est croissante

 $\square (u_n)_{n \ge 1}$ tend vers $+\infty$

 $\square (u_n)_{n\geqslant 1}$ converge

 $\square (u_n)_{n\geq 1}^n$ est une suite arithmétique

Question n°7

Quelle relation de récurrence est vérifiée par la suite $u_n = 2^n + 3^n$?

 $\square \ u_{n+2} = 3u_{n+1} + 2u_n$

 $\Box u_{n+2} = 5u_{n+1} + 6u_n$

 $\square \ u_{n+2} = 3u_{n+1} - 2u_n$

 $\Box \ u_{n+2} = 5u_{n+1} - 6u_n$

Question n°8

Soit $(u_n)_{n\geqslant 0}$ une suite définie par son premier terme $u_0>0$ et la relation de récurrence $u_{n+1}=u_n+u_n^2$. Alors

 \square $(u_n)_{n\geq 0}$ converge car elle est croissante

 \square $(u_n)_{n\geqslant 0}$ est strictement croissante donc elle tend vers $+\infty$

 \square $(u_n)_{n\geqslant 0}$ est décroissante et positive donc converge et sa limite ℓ vérifie $\ell=\ell+\ell^2$ donc est nulle

 \square $(u_n)_{n\geqslant 0}$ est croissante et non majorée