Лабораторная работа 4

Купцов Максим Ахмедович

Содержание

1	Цель работы	5	
2	Задание	6	
3	Выполнение лабораторной работы	7	
	3.1 Колебания гармонического осциллятора без затуханий без действий внешней силы		
	3.2 Колебания гармонического осциллятора с затуханием без действий внешней силы	И	
	3.3 Колебания гармонического осциллятора с затуханием под действием внешней силы	И	
4	Выводы	13	
Бі	Библиография		

Список иллюстраций

3.1	Решение уравнения и фазовыи портрет колебания гармони-	
	ческого осциллятора без затуханий и без действий внешней	
	СИЛЫ	8
3.2	Решение уравнения колебания гармонического осцилля-	
	тора без затуханий и без действий внешней силы	8
3.3	Фазовый портрет колебания гармонического осциллятора	
	без затуханий и без действий внешней силы	9
3.4	Решение уравнения и фазовый портрет колебания гармони-	
	ческого осциллятора с затуханием и без действий внешней	
	СИЛЫ	10
3.5	Решение уравнения колебания гармонического осцилля-	
	тора с затуханием и без действий внешней силы	10
3.6	Фазовый портрет колебания гармонического осциллятора	
	с затуханием и без действий внешней силы	10
3.7	Решение уравнения и фазовый портрет колебания гармони-	
	ческого осциллятора с затуханий и без действий внешней	
	СИЛЫ	11
3.8	Решение уравнения колебания гармонического осцилля-	
	тора с затуханием и с действием внешних сил	12
3.9	Фазовый портрет колебания гармонического осциллятора	
	без затуханий и с действием внешних сил	12

Список таблиц

1 Цель работы

- 1. Построить решение уравнения гармонического осциллятора без затухания
- 2. Записать уравнение свободных колебаний гармонического осциллятора с затуханием, построить его решение. Построить фазовый портрет гармонических колебаний с затуханием.
- 3. Записать уравнение колебаний гармонического осциллятора, если на систему действует внешняя сила, построить его решение. Построить фазовый портрет колебаний с действием внешней силы.

2 Задание

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

1. Колебания гармонического осциллятора без затуханий и без действий внешней силы

$$\ddot{x} + 4.3x = 0$$

2. Колебания гармонического осциллятора с затуханием и без действий внешней силы

$$\ddot{x} + 6\dot{x} + 5x = 0$$

3. Колебания гармонического осциллятора с затуханием и под действием внешней силы

$$\ddot{x} + 10\dot{x} + 9x = 8sin(7t)$$

На интервал $t \in [0;80]$ (шаг 0.05) с начальными условиями $x_0 = 0.8, y_0 = -1.2$

3 Выполнение лабораторной работы

3.1 Колебания гармонического осциллятора без затуханий и без действий внешней силы

1. Зададим изначальные значения для решения варианта.

```
w = 4.3

g = 0.0

x_0 = 0.8

y_0 = -1.2

tspan = (0.0, 80.0)
```

2. Зададим наше уравнение для нахождения фазового портрета и решения уравнения на языке Julia (Полный исходный код представлен в репозитории [1])

```
function ode_fn(du, u, p, t)
  x, y = u
  du[1] = u[2]
  du[2] = -w*u[1] - g*u[2]
end
```

3. Сохраним наш график в файл и посмотрим, что в нем хранится (рис. fig. 3.1).

Рис. 3.1: Решение уравнения и фазовый портрет колебания гармонического осциллятора без затуханий и без действий внешней силы

- 4. Расмотрим решение на OpenModelica (Полный исходный код представлен в репозитории [2]).
- 5. Здесь мы получаем аналогичное решение (fig. 3.2) и аналогичный фазовый портрет (fig. 3.3).

Рис. 3.2: Решение уравнения колебания гармонического осциллятора без затуханий и без действий внешней силы

Рис. 3.3: Фазовый портрет колебания гармонического осциллятора без затуханий и без действий внешней силы

3.2 Колебания гармонического осциллятора с затуханием и без действий внешней силы

1. Зададим изначальные значения для решения варианта.

```
w = 5.0

g = 6.0

x_0 = 0.8

y_0 = -1.2

tspan = (0.0, 80.0)
```

- 2. Зададим наше уравнение для нахождения фазового портрета и решения уравнения на языке Julia (Аналигчное тому, что было в коде из пунтка ранее. Полный исходный код представлен в репозитории [3])
- 3. Сохраним наш график в файл и посмотрим, что в нем хранится (рис. fig. 3.4).

Рис. 3.4: Решение уравнения и фазовый портрет колебания гармонического осциллятора с затуханием и без действий внешней силы

- 4. Расмотрим решение на OpenModelica (Полный исходный код представлен в репозитории [4]).
- 5. Здесь мы получаем аналогичное решение (fig. 3.5) и аналогичный фазовый портрет (fig. 3.6).

Рис. 3.5: Решение уравнения колебания гармонического осциллятора с затуханием и без действий внешней силы

Рис. 3.6: Фазовый портрет колебания гармонического осциллятора с затуханием и без действий внешней силы

3.3 Колебания гармонического осциллятора с затуханием и под действием внешней силы

1. Зададим изначальные значения для решения варианта.

```
w = 9.0

g = 10.0

x_0 = 0.8

y_0 = -1.2

tspan = (0.0, 80.0)
```

2. Зададим наше уравнение для нахождения фазового портрета и решения уравнения на языке Julia (Полный исходный код представлен в репозитории [5])

```
function ode_fn(du, u, p, t)
    x, y = u
    du[1] = u[2]
    du[2] = -w*u[1] - g*u[2] + 8*sin(7*t)
end
```

3. Сохраним наш график в файл и посмотрим, что в нем хранится (рис. fig. 3.7).

Рис. 3.7: Решение уравнения и фазовый портрет колебания гармонического осциллятора с затуханий и без действий внешней силы

- 4. Расмотрим решение на OpenModelica (Полный исходный код представлен в репозитории [6]).
- 5. Здесь мы получаем аналогичное решение (fig. 3.8) и аналогичный фазовый портрет (fig. 3.9).

Рис. 3.8: Решение уравнения колебания гармонического осциллятора с затуханием и с действием внешних сил

Рис. 3.9: Фазовый портрет колебания гармонического осциллятора без затуханий и с действием внешних сил

4 Выводы

Результатом работы стали по три модели в Julia и OpenModelica: конструкция модели колебаний в OpenModelica содержит меньше строк, чем аналогичная конструкция в Julia.

Библиография

- 1. Julia, код для задания 1 [Электронный ресурс]. URL: https://github.com/LLIAJIYH/study_2022-2023_mathmod/blob/master/labs/lab4/lab/task1.jl.
- 2. OpenModelica, код для задания 1 [Электронный ресурс]. URL: https://github.com/LLIAJIYH/study_2022-2023_mathmod/blob/mast er/labs/lab4/lab/lab41.mo.
- 3. Julia, код для задания 2 [Электронный ресурс]. URL: https://github.com/LLIAJIYH/study_2022-2023_mathmod/blob/master/labs/lab4/lab/task2.jl.
- 4. OpenModelica, код для задания 2 [Электронный ресурс]. URL: https://github.com/LLIAJIYH/study_2022-2023_mathmod/blob/mast er/labs/lab4/lab/lab42.mo.
- 5. Julia, код для задания 3 [Электронный ресурс]. URL: https://github.com/LLIAJIYH/study_2022-2023_mathmod/blob/master/labs/lab4/lab/task2.jl.
- 6. OpenModelica, код для задания 3 [Электронный ресурс]. URL: https://github.com/LLIAJIYH/study_2022-2023_mathmod/blob/mast er/labs/lab4/lab/lab43.mo.