点阵字符型液晶显示模块

使用手册

(HD44780、KS0066资料)

見 录

前言	3
第一章:注意事项项	3
第二章:字符型液晶显示模块的基本特点	5
第三章:字符型液晶显示模块特性	6
第四章:字符型液晶显示模块指令集	10
第五章:点阵字符液晶模块应用	14
附录:HD44780/KS0066的内部字符集	16

前言

我公司字符系列LCM具有 $8 \times 1 \sim 40 \times 4$ (字符 \times 行)各种规格,广泛应用于智能仪表、通讯、 办公自动化及军工等领域。

字符型液晶显示模块是由字符型液晶显示屏LCD、控制驱动主电路HD44780/KS0066及其扩展驱动电路HD44100或与其兼容的IC, 少量阻、容元件结构件等装配在PCB板上而成。

字符型液晶显示模块目前在国际上已经规范化,无论显示屏规格如何变化,其电特性和接口形式都是统一的。因此只要设计出一种型号的接口电路,在指令设置上稍加改动即可使用各种规格的字符型液晶显示模块。

第一章 注意事项

一、处理保护膜

在装好的模块成品表面贴有一层保护膜,以防在装配时沾污显示表面。在整机装配结束前,不得揭去,以免弄脏或损坏显示屏。

二、加装衬垫

在模块与前面板之间最好加装一块约0.1毫米左右的衬垫面板,还应保持平整,以免在装配后产生扭曲,并可提高抗震性能。

三、严防静电

模块中的控制驱动电路是低压微功耗的CMOS电路,极易被静电击穿。静电击穿是一种不可修复的损坏,而人体有时会产生高达几十伏或上百伏的高压静电,所以在操作、装配以及使用中都应极其小心。要特别注意以下几点:

- 1. 不要用手随意去摸外引线、电路板上的电路及金属框;
- 2. 如必须直接接触时,应使人体与模块保持在同一电位或将人体良好接地;
- 3. 焊接使用的烙铁和操作用的电动工具必须良好接地,没有漏电;
- 4. 不得使用真空吸尘器进行清洁处理,因为它会产生很强的静电;
- 5. 空气干燥也会产生静电,因此工作间湿度应在RH60%以上;
- 6. 取出或放回包装袋或移动位置时,也需小心防止产生静电,不要随意更换包装或舍弃包装。

四、装配操作时的注意事项

- 1. 模块是经过精心设计组装而成的,请勿随意自行加工修整;
- 2. 金属框爪不得随意扭动拆卸;
- 3. 不要随意修改加工PCB板外形、装配孔、线路及其部件;

- 4. 不得修改导电胶条;
- 5. 不得修改任何内部支架;
- 6. 不要碰、摔、折曲、扭动模块。

五、焊接

在焊接模块外引线接口电路时应按如下规程进行操作

- 1. 烙铁头温度小干280°C
- 2. 焊接时间小于3~4s
- 3. 焊接材料共晶型低熔点
- 4. 不要使用酸性助焊剂
- 5. 重复焊接不要超过3次且每次重复需间隔5分钟

六、模块的使用与保养

- 1. 模块的外引线决不允许接错,在您想调试液晶模块时,请注意正确接线,尤其是正、负电源的接线不能有错,否则可能造成过流、过压,烧毁电路上的芯片等,对液晶模块元器件有损的现象。
- 2. 模块在使用时,接入电源及断开电源必须在正电源稳定接入以后才能输入信号,电平如在电源稳定前或断开后输入信号电平,有可能损坏模块中的IC及电路。
- 3. 模块使用时,接入逻辑电源和驱动电源的顺序,应是先逻辑电源,后驱动电源,断电时应 先驱动电源,后逻辑电源,这样做有助于保持屏的良好显示效果和避免在上电、断电时的电压冲击 损坏。所以推荐使用带控制的DC-DC电源做为模块的驱动电源。
- 4. 点阵液晶模块显示时的对比度、视角与温度、驱动电压关系很大,所以,如果VEE调整过高,不仅会影响显示,还会缩短模块的使用寿命。
- 5. 因为液晶材料的物理特性,液晶的对比度会随着温度的变化而相应变化,所以您加的负电压值,应该随温度作相应的调整,大致是温度变化10°C 电压变化1伏。为满足这一要求,您可做一个温度补偿电路或者安排一个电位器,随温度调整负电压值。
- 6. 不应在规定工作温度范围以外使用,并且不应在超过存储极限温度的范围。外存储如果温度低于结晶温度,液晶就会结晶,如果温度过高,液晶将变成各向同性的液体破坏分子取向,使器件报废。
 - 7. 用力按压显示部分,会产生异常显示,这时切断电源稍待片刻,重新上电即恢复正常。
 - 8. 液晶显示器件或模块表面结雾时,不要通电工作。因为这将引起电极化学反应,产生断线。
 - 9. 长期用于阳光及强光下时,被遮部分会产生残留影像。

七、模块的存储

若长期(如几年以上)存储,我们推荐以下方式:

- 1. 装入聚乙稀口袋,最好有防静电涂层,并将口封住。
- 2. 在-10°C~+35°C 之间存储。
- 3. 放暗处,避强光。
- 4. 决不能在表面压放任何物品。
- 5. 严格避免在极限温/湿度条件下存放。

八、责任范围及维修

在您购买液晶显示模块时我公司将会为您做显示模块的检测,确保您所买的显示模块为完好的器件。在您使用过程中因不小心将显示模块损坏,您可送至我公司维修,如果出现屏被损坏的问题,将无法进行修理,只能更换玻璃。我公司将收取成本费。

公司产品质量都是严格检测及时间的考验的,请用户放心使用。如果在使用中发现问题,可以拿到我公司检测。确实是质量问题,而且购买时间在一年之内,我公司给予换货处理,因为用户使用不当,例如:静电、焊接连线不当、过流、过压使用等所造成的损坏,将不能维修,只能更换PCB板。我公司将收取成本费。

第二章 字符型液晶显示模块的基本特点

- 1. 液晶显示屏是以若干个5×7/8或5×10/11点阵块组成的显示字符群,每个点阵块为一个字符位,字符间距和行距都为一个点的宽度。
- 2. 主控制驱动IC为HD44780及其他公司全兼容IC如: NT3881 NOVATEK KS0066 SAMSUNG SPLC78A01 SUNPLUS。
 - 3. 具有<mark>字符发生器ROM</mark>,可显示192种字符,160个5×7点阵字符和32个5×10点阵字符。
 - 4. 具有64个字节的自定义字符RAM ,可自定义8个5×8点阵字符或4个5×11点阵字符。
 - 5. 具有80个字节的RAM。
 - 6. 标准的接口特性,适配M6800系列MPU的操作时序。
 - 7. 模块结构紧凑轻巧装配容易。
 - 8. 单+5V电源供电。
 - 9. 低功耗、长寿命、高可靠性。

第三章 字符型液晶显示模块特性

一、点阵字符型液晶显示模块电路框图

二、字符液晶与 MPU 连接示例图

a. Application Circuit 1

b. Application Circuit 2

三、字符型接口特性及时序

1、引出脚及功能

引线号	符号	电平	功能
1	VSS	0V	GND
2	VDD	5V±10%	电源电压: +5V
3	V0	0-5V	液晶驱动电压:
4	RS	H/L	寄存器选择: 1: 数据寄存器; 0: 指令寄存器
5	R/W	H/L	读、写操作选择 1: 读; 0: 写
6	E	H,H → L	使能信号 ENABLE
7	DB0	H/L	数据总线
8	DB1	H/L	数据总线
9	DB2	H/L	数据总线
10	DB3	H/L	数据总线
11	DB4	H/L	数据总线
12	DB5	H/L	数据总线
13	DB6	H/L	数据总线
14	DB7	H/L	数据总线

2、读、写操作

(1)写操作(MPU至HD44780/KS0066)

rs=0/1 rw=0 delay data E=1 delay E=0

项目	符号	最小值	最大值	单位
使能周期	TcycE	1000	-	ns
使能脉冲宽度	Pweh	450	-	ns
使能升降时间	Ter,Tef	Ter,Tef -		ns
地址建立时间	Tas	Tas 140		ns
地址保持时间	Tah	10	-	ns
数据建立时间	Tdsw	195	-	ns
数据保持时间	Th	10	-	ns

(2)读操作

项目	符号	最小值	最大值	单位
使能周期	TcycE	1000	-	ns
使能脉冲宽度	Pweh	450	-	ns
使能升降时间	Ter,Tef	-	25	ns
地址建立时间	间 Tas 140		-	ns
地址保持时间	Tah	10	-	ns
数据延迟时间	Tddr	-	320	ns
数据保持时间	Tdhr	10	-	ns

(3) 信号真值表

RS	R/W	E	功能
0	0	下降沿	写指令代码
0	1	高电平	读忙标志和AC值
1	0	下降沿	写数据
1	1	高电平	读数据

四、电特性

(1)绝对最大值范围

项目	符号	最小值	最大值	单位
电路逻辑电压(V)	VDD -Vss	-0.3	7.0	V
液晶驱动电压(V)	VDD -V0	-0.3	13.0	V
输入电压(V)	Vı	-0.3	VDD+0.3	V
工作温度(°C)	Topr	-20	+70	°C
存储温度(°C)	Tstg	-30	+80	°C

(2)电特性

项目	符号	条件	MIN	TYP	MAX	单位
输入高电压	VIH		2.2		VDD	V
输入低电压	VIL		-0.3		0.6	V
输出高电压	VOH	IOH=0.2mA	2.4		VDD	V
输出低电压	VOL	IOL=1.2mA	0		0.4	V
电源电流	IDD	VDD=5V		2.0	3.0	mA

第四章 字符型液晶显示模块指令集

一、指令集

In atomatic a				Ins	structi	on co	de				Description	Execution time
Instruction	RS	RW	DB7	DB6	DB5	DB4	DВЗ	DB2	DB1	DB0	Description	(fosc=270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DDRAM address to 00H.	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	1	Sets DDRAM address to 00H in AC and returns shifted display to its original position. The contents of DDRAM remain unchanged.	1.53ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Sets cursor move direction and enable the shift of entire display. These operations are performed during data write and read.	39 µ s
Display ON/ OFF Control	0	0	0	0	0	0	1	D	С	В	Set ON/OFF of entire display (D), cursor ON/OFF(C), and blinking of cursor position character(B).	39 µ s
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	-	-	Moves cursor and shifts display without changing DDRAM contents.	
Function Set	0	0	0	0	1	DL	z	F	-	-	Sets interface data length (DL: 8-bit/4-bit), numbers of display line (N: 2-line/1-line), and display font type (F: 5x11dots/5x8dots)	39 µ s
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39 µ s
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address Counter.	39 µ s
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Reads busy flag (BF) indicating internal operation is being performed and reads address counter contents.	0 μ s
Write data to CG or DD RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43us
Read data from CG or DD RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43us

1、清屏

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

运行时间(250Khz): 1.64 μs

功能:清DDRAM和AC值。

2、归位(返回)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	-

运行时间(250Khz): 1.64 μs

功能: AC= 0, 光标、画面回HOME位。

3、输入方式设置

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	I/D	SH

运行时间(250Khz): 40 μs

功能:设置光标、画面移动方式。

其中: I/D =1: 数据读、写操作后, AC自动增一;

I/D =0: 数据读、写操作后, AC自动减一;

S=1:数据读、写操作,画面平移;

S=0: 数据读、写操作,画面不动。

4、显示开关控制

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Ì	0	0	0	0	0	0	1	D	С	В

运行时间(250Khz): 40 μs

功能:设置显示、光标及闪烁开关。

其中:D表示显示开关:D=1为开,D=0为关;

C表示光标开关:C = 1为开,C = 0为关;

B表示闪烁开关:B=1为开,B=0为关。

5、光标、画面位移

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	1	1

运行时间(250Khz): 40 μs

功能:光标、画面移动,不影响DDRAM。

其中:S/C = 1: 画面平移一个字符位;

S/C = 0: 光标平移一个字符位;

R/L = 1: 右移; R/L = 0: 左移。

6、功能设置

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	F	1	-

运行时间(250Khz): 40 μs

功能:工作方式设置(初始化指令)。

其中: DL = 1:8位数据接口: DL = 0:4位数据接口:

0001_0100 右移平移 0001_0000 左移平移

0110 自动增 不平移

1100 数字时钟 显示 无光标 不闪烁 1111 计算器 显示 有光标 闪烁

> 0011_1000 38 两行 0011_0100 34 一行

N=1:两行显示; N=0:一行显示;

 $F = 1:5 \times 10$ 点阵字符; $F = 0:5 \times 7$ 点阵字符。

7、CG RAM地址设置

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

运行时间(250Khz): 40 μs

功能:设置CG RAM地址。A5 ~ A0 = 0 ~ 3FH。

8、DD RAM地址设置

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
I	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0

运行时间(250Khz): 40 μs

功能:设置DD RAM地址;

N=0:一行显示, A6 ~ A0=0 ~ 4FH

N = 1: 两行显示 ,首行A6 ~ A0 = 00H ~ 2FH ,次行A6 ~ A0 = 40H ~ 67H

9、读BF及AC值

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Γ	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0

功能:读忙BF值和地址计数器AC值。

其中:BF=1:忙; BF=0:准备好。此时AC值意义为最近一次地址设置(CG RAM或DD RAM)定义。

10、写数据

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

运行时间(250Khz): 40 μs

功能:根据最近设置的地址性质,数据写入DD RAM或CG RAM内。

11、读数据

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

运行时间(250Khz): 40 μs

功能:根据最近设置的地址性质,从DD RAM或CG RAM数据读出。

二、功能设置指令参数N , F值及显示RAM地址对应表

规格	NF	行	1 28 9 1016 17 1820 2124 2540
8 × 1	00	1	00 0107
16 × 1	10	1	00 0107 40 4147
16×2	10	1	00 0107 08 090F
10 % 2	10	2	40 4147 48 494F
		1	00 0107 08 090F
16 × 4	10	2 3	40 4147 48 494F
10%	. •	3	10 1117 18 191F
		4	50 5157 58 595F
20 × 2	10	1	00 0107 08 090F 10 1113
		2	40 4147 48 494F 50 5153
		1	00 0107 08 090F 10 1113
20 × 4	10	2	40 4147 48 494F 50 5153
		2 3 4	14 151B 1C1D23 24 2527
		4	54 555B 5C 5D63 64 6567
40 × 2	10	1	00 0107 08 090F 10 1113 1417 1827
40 % 2	10	2	40 4147 48 494F 50 5153 5457 5867
		1	00 0107 08 090F 10 1113 1417 1827
40 × 4	10	2	40 4147 48 494F 50 5153 5457 5867
		2 3 4	00 0107 08 090F 10 1113 1417 1827
		4	40 4147 48 494F 50 5153 5457 5867

第五章 点阵字符液晶模块应用

一、初始化

1、如果电路电源能满足内部 RESET 电路的如下要求, 初始化可自动完成

	符号	最小值	最大值	单位
电源上升时间	T_{RON}	0.1	10	ms
电源下降时间	T_{OFF}	1.0	-	ms

2、如果电路电源不能满足内部 RESET 电路的要求的话, 需要用初始化程序来实现初始化。 过程如下:

二、程序示例

本程序适用于 8031 单片机控制的各种点阵式字符 LCD 模块。

AJMP INI

SUB1: SET P3.7 写指令子程序;

CLR P3.6

N1: MOV P7, #3FH N2: MOV P1, A

```
SETB P3.5
   NOP
   CLRP3.5
TI1: NOP
   NOP
   NOP
   NOP
   NOP
   NOP
   NOP
   NOP
   DJNZ R7, TI1
   RET
INI: CLR P3.7
                    初始化程序开始;
   CLR P3.6
   MOV R5, #07H
                    等待
                         15ms;
N0: MOV R7, #FFH
   ACALL TI1
   DJNZ R6, N0
   MOV R7, #FFH
                    等待
                         4.1 ms;
   MOV A, #38H
   ACALL N2
                    等待
   MOV R7, #6FH
                         100 μs;
   MOV A, #38H
   ACALL N2
   MOV A, #38H
   ACALL N1
   MOV A, #38H
                    设显示 2 行、5X7 字形;
   ACALL N1
   MOV A, 08H
                    显示关;
   ACALL N1
   MOV R7, #FFH
                     清屏;
   MOV A, 01H
   ACALL N2
   MOV A<sub>o</sub> 06H
                    设光标右移;
   ACALL N1
                    初始化结束;
                    显示开、光标开、闪烁关;
   MOV A, 0E
   ACALL N1
   MOV R7, #FFH
                     清屏;
   MOV A, #01H
   ACALL N2
   MOV R6, #21H
                     写 80 个字符;
     MOV R5, #50H
N11: MOV A, R6
     SETB P3.7
     ACALL N1
     INC R6
     DJNZ R5, N11
     END
```

附录: HD44780/KS0066的内部字符集

Umar	1							Ι								
LUMPET LUMPET 4 bit	0000	0001	0010	0011	0100	0101	01 10	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)															
G001	(2)															
D010	(3)															
0011	(4)															
0100	(5)															
0101	(6)															
0110	(7)															
0111	(B)															
100D	(1)				\blacksquare	/										
1001	(2)															
101D	(3)															
1011	(4)															
1100	(5)															
1101	(6)					×										
1110	(7)															
1111	(8)															\$