Anneaux, corps

Aperçu

- 1. La structure d'anneau
- 2. Sous-structures
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 5. La structure d'espace vectoriel
- 6. La structure d'algèbre

- 1. La structure d'anneau
- 1.1 Anneaux
- 1.2 Éléments inversibles d'un anneau; corps
- 1.3 Anneau intègre
- 1.4 Calculs dans un anneau
- 2. Sous-structures
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 5. La structure d'espace vectoriel
- 6. La structure d'algèbre

1. La structure d'anneau

1.1 Anneaux

- 1.2 Éléments inversibles d'un anneau; corps
- 1.3 Anneau intègre
- 1.4 Calculs dans un anneau
- 2. Sous-structures
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 5. La structure d'espace vectoriel
- 6. La structure d'algèbre

D 1 Soit T et \star deux lois de composition internes sur un ensemble E. On dit que la loi \star est **distributive** par rapport à la loi T si l'on a

$$x \star (y \mathsf{T} z) = (x \star y) \mathsf{T} (x \star z) \tag{1}$$

$$(y \top z) \star x = (y \star x) \top (z \star x) \tag{2}$$

pour x, y, z dans E.

On remarquera que les deux égalité sont équivalente si la loi \star est commutative.

E 2 Dans l'ensemble $\mathcal{P}(E)$ des parties d'un ensemble E, chacune des lois internes \cap et \cup est distributive par rapport à elle-même et à l'autre. Cela résulte des formules du type

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

- **D 3** On appelle **anneau** un ensemble *A* muni de deux lois de composition appelées respectivement **addition** et **multiplication**, satisfaisant aux axiomes suivants :
 - 1. Pour l'addition, A est un groupe commutatif.
 - 2. La multiplication est associative et possède un élément neutre.
 - 3. La multiplication est distributive par rapport à l'addition.

On dit que l'anneau A est **commutatif** si sa multiplication est commutative.

Dans la suite On note $(x,y) \mapsto x+y$ l'addition et $(x,y) \mapsto xy$ la multiplication ; on note 0 (ou 0_A) l'élément neutre de l'addition et 1 (ou 1_A) celui de la multiplication. Enfin, on note -x l'opposé de x pour l'addition. Pour économiser les parenthèses, on convient que la multiplication est prioritaire sur l'addition.

Les axiomes d'un anneau s'expriment donc par les identités suivantes :

(1)
$$x + (y + z) = (x + y) + z$$
 (associativité de l'addition)

(2)
$$x + y = y + x$$
 (commutativité de l'addition)

(3)
$$0 + x = x + 0 = x$$
 (zéro)

(4)
$$x + (-x) = (-x) + x = 0$$
 (opposé)

(5)
$$x(yz) = (xy)z$$
 (associativité de la multiplication)

(6)
$$x \cdot 1_A = 1_A \cdot x = x$$
 (élément unité)

(7)
$$(x + y) \cdot z = xz + yz$$
 (distributivité à gauche)

(8)
$$x \cdot (y + z) = xy + xz$$
 (distributivité à droite)

Enfin, l'anneau A est commutatif si l'on a xy = yx pour x, y dans A.

Voici quelques anneaux que nous rencontrerons en MP2I

- 1. $(\mathbb{Q}, +, .)$, $(\mathbb{R}, +, .)$, $(\mathbb{C}, +, .)$ sont des anneaux intègres.
- 2. L'anneau des suites à valeur réelles, $(\mathbb{R}^{\mathbb{N}}, +, .)$, est un anneau commutatif qui n'est pas intègre.
- 3. L'anneau des applications de \mathbb{R} dans \mathbb{R} , $(\mathcal{F}(\mathbb{R}, \mathbb{R}), +, .)$, est un anneau commutatif qui n'est pas intègre.
- 4. L'anneau des matrices carrées $n \times n$, $(\mathcal{M}_n(\mathbb{K}), +, .)$ est un anneau qui n'est pas commutatif et possède des diviseurs de 0.
- 5. L'anneau des polynômes, ($\mathbb{K}[X]$, +, .), est un anneau intègre (et donc commutatif).
- 6. ...

E 4 Voici les tables d'addition et multiplication de l'anneau $\mathbb{Z}/6\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}\}.$

+													4	
Ō	Ō	Ī	2	3	4	5		0	Ō	Ō	Ō	0	0	
Ī								Ī	Ō	1	$\bar{2}$	3	$\bar{4}$	
	2						et	$\bar{2}$	Ō	$\bar{2}$	$\bar{4}$	$\bar{0}$	$\bar{2}$	
3	3	$\bar{4}$	5	Ō	ī	$\bar{2}$		3	Ō	3	Ō	3	$\bar{0}$	
	4							4	Ō	4	$\bar{2}$	$\bar{0}$	4	
5	5	ō	ī	$\bar{2}$	3	$\bar{4}$		5	ō	5	$\bar{4}$	3	$\bar{2}$	

- 1. La structure d'anneau
- 1.1 Anneaux
- 1.2 Éléments inversibles d'un anneau; corps
- 1.3 Anneau intègre
- 1.4 Calculs dans un anneau
- 2. Sous-structures
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 5. La structure d'espace vectoriel
- 6. La structure d'algèbre

- **D 5** Soit $(A, +, \cdot)$ un anneau.
 - Si $x \in A$ admet un inverse pour la multiplication, on dit que x est un **élément** inversible de A
 - L'ensemble des éléments inversibles de A se note A^{\times} ou $U(A)^a$.

^aLa notation U(A) provient du fait que l'on dit aussi que x est une **unité** de A pour dire que x est inversible, mais nous n'utiliserons pas cette terminologie dangereuse.

- **T 6** Soit $(A, +, \cdot)$ un anneau.
 - 1. Si x et y sont deux éléments inversibles d'un anneau A, alors x^{-1} et xy le sont aussi et

$$(x^{-1})^{-1} = x$$
 et $(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$.

2. (A^{\times}, \cdot) est un groupe appelé **groupe multiplicatif de l'anneau A** dont 1_A est l'élément neutre.

$$\mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}, \ \mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}, \ \mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}.$$

E 8

Le groupe multiplicatif de de ($\mathbb{Z},+,.$) est $\{\,-1,1\,\}=\mathbb{U}_2.$

D 9 On dit qu'un anneau $\mathbb K$ est un **corps** s'il est commutatif, non réduit à 0 et si tout élément non nul de $\mathbb K$ est inversible.

E 10 Les corps usuels sont \mathbb{Q} , \mathbb{R} et \mathbb{C} .

E 11 Il existe un corps à deux éléments $A=\left\{\ \dot{0},\dot{1}\ \right\}$ où l'on a $0+0=1+1=0,\ 0+1=1+0=1,$ et la multiplication usuelle ;

E 12 Le groupe multiplicatif de $\mathbb{Z}/6\mathbb{Z}$ est $\{\dot{1},\dot{5}\}$. L'anneau $\mathbb{Z}/6\mathbb{Z}$ n'est donc pas un corps.

1. La structure d'anneau

- 1.1 Anneaux
- 1.2 Éléments inversibles d'un anneau; corps
- 1.3 Anneau intègre
- 1.4 Calculs dans un anneau
- 2. Sous-structures
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 5. La structure d'espace vectorie
- 6. La structure d'algèbre

D 13 On dit qu'un anneau A est **intègre** s'il est commutatif, non réduit à 0, et si le produit de deux élément non nuls de A est non nul, ou encore

$$\forall (x, y) \in A^2, xy = 0 \implies (x = 0 \text{ ou } y = 0).$$

P 14 Soit A un anneau intègre, alors on a une règle de simplification pour la multiplication

$$\forall (x, y, a) \in A^3, (ax = ay \ et \ a \neq 0) \implies x = y$$

$$\forall (x, y, a) \in A^3, (xa = ya \text{ et } a \neq 0) \implies x = y$$

On retiendra surtout que ceci est faux dans un anneau quelconque.

- **E 15** L'ensemble \mathbb{Z} des entiers relatifs muni de l'addition et la multiplication usuelle, est un anneau intègre.
- **E 16** Soit E l'anneau des applications de $\mathbb R$ dans $\mathbb R$ et considérons les deux éléments f et g de cet anneau définis comme suit

$$f(x) = \begin{cases} x & \text{si } x \ge 0, \\ 0 & \text{si } x \le 0, \end{cases} \quad \text{et} \quad g(x) = \begin{cases} 0 & \text{si } x \ge 0, \\ x & \text{si } x \le 0, \end{cases}$$

Il est clair que

$$\forall x \in \mathbb{R}, f(x)g(x) = 0,$$

et par suite que fg=0 dans l'anneau considéré; néanmoins on a $f\neq 0$ et $g\neq 0$ (car l'élément 0 de l'anneau E est la fonction qui, en *chaque* $x\in \mathbb{R}$ *sans exception*, prend la valeur 0).

1. La structure d'anneau

- 1.1 Anneaux
- 1.2 Éléments inversibles d'un anneau; corps
- 1.3 Anneau intègre
- 1.4 Calculs dans un anneau
- 2 Sous-structures
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 5. La structure d'espace vectoriel
- 6. La structure d'algèbre

Si x est un élément de A, on a toujours les notations n.x $(n \in \mathbb{Z})$ et x^n $(n \in \mathbb{N})$:

$$nx = \begin{cases} \underbrace{x + \dots + x}^{n} & n > 0 \\ 0 & n = 0 \\ (-x) + \dots + (-x) & n < 0 \end{cases} \qquad x^{n} = \begin{cases} \underbrace{x \dots x}^{n} & n > 0 \\ 1 & n = 0 \\ \underbrace{x^{-1} \dots x^{-1}}^{n} & n < 0 \text{ et } x \text{ inversible} \end{cases}$$

- 1. x.0 = 0.x = 0.
- (Règle des signes) 2. x.(-y) = (-x).y = -(xy) et (-x)(-y) = xy.
- 3. Pour $n \in \mathbb{N}$, on a

$$(-x)^n = \begin{cases} x^n & \text{si } n \text{ est pair} \\ -x^n & \text{si } n \text{ est impair.} \end{cases}$$

Formule qui reste valable aussi si x est inversible et $n \in \mathbb{Z}$.

P 18 Conséquence de la distributivité

Soit A un anneau, n un entier > 0. Alors pour $a, x_1, x_2, \dots x_n \in A$, on a

$$a\left(\sum_{k=1}^{n} x_k\right) = \sum_{k=1}^{n} (ax_k) \qquad \text{et} \qquad \left(\sum_{k=1}^{n} x_k\right) a = \sum_{k=1}^{n} (x_k a).$$

T 19 Soient A un anneau, $(x, y) \in A^2$ deux éléments qui commutent (xy = yx), alors pour tout entier $n \in \mathbb{N}$,

$$(x+y)^n = \sum_{p=0}^n \binom{n}{p} x^{n-p} y^p;$$

$$x^{n+1} - y^{n+1} = (x - y)(x^n + x^{n-1}y + \dots + xy^{n-1} + y^n) = (x - y)\sum_{p=0}^{n} x^{n-p}y^p$$

C 20 Calcul d'une progression géométrique

Soient A un anneau, a un élément de A et n un entier > 0. Alors

$$1 - a^n = (1 - a)(1 + a + a^2 + \dots + a^{n-1}).$$

- 1. La structure d'anneau
- 2. Sous-structures
- 2.1 Sous-anneaux
- 2.2 Idéaux d'un anneau commutatif
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 5. La structure d'espace vectoriel
- 6. La structure d'algèbre

- 1. La structure d'anneau
- 2. Sous-structures
- 2.1 Sous-anneaux
- 2.2 Idéaux d'un anneau commutatif
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 5. La structure d'espace vectorie
- 6. La structure d'algèbre

D 21 Soit (A, +, .) un anneau et B une partie de A. On dit que B est un sous-anneau de A lorsque

- $1_A \in B$,
- \triangleright B est un sous groupe de (A, +),
- ▶ B est stable par produit : $\forall (x, y) \in B^2, xy \in B$.

P 22 Si B est un sous anneau de A, alors B muni des deux lois induites a une structure d'anneau.

- E 23
- $ightharpoonup \mathbb{Z}$ est un sous-anneau de \mathbb{Q} , de \mathbb{R} , de \mathbb{C} .
- $ightharpoonup \mathbb{Q}$ est un sous-anneau de \mathbb{R} , de \mathbb{C} .
- $ightharpoonup \mathbb{R}$ est un sous-anneau de \mathbb{C} .
- $\mathbb{Z}[i] = \{ a + ib \mid (a, b) \in \mathbb{Z}^2 \}$ est un sous-anneau de \mathbb{C} .
- **E 24** Le seul sous-anneau de \mathbb{Z} est \mathbb{Z} .

Pour un entier $a \geq 2$, l'ensemble $a\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z},+)$ et il est stable par produit ; mais $1 \notin a\mathbb{Z}$. $a\mathbb{Z}$ n'est donc pas un sous-anneau de \mathbb{Z} .

- 1. La structure d'anneau
- 2. Sous-structures
- 2.1 Sous-anneaux
- 2.2 Idéaux d'un anneau commutatif
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 5. La structure d'espace vectoriel
- 6. La structure d'algèbre

- D 25 Soit (A, +, .) un anneau *commutatif* et I une partie de A. On dit que I est un idéal bilatère de A lorsque
 - I est un sous groupe de (A, +),
 - $\forall a \in A, \forall x \in I, ax \in I.$

Dans la pratique, on parlera simplement d'idéal de A.

Tout idéal d'un anneau A est un sous-groupe de (A, +), l'inverse peut être faux : \mathbb{Z} est un sous-anneau, mais pas un idéal, de \mathbb{Q} .

T 26 Soit A une partie de \mathbb{Z} . Les assertions suivantes sont équivalentes:

- 1. A est un sous-groupe de \mathbb{Z} .
- 2. A est un idéal de \mathbb{Z} .
- 3. If existe $n \in \mathbb{N}$ tel que $A = n\mathbb{Z}$.

S'il en est ainsi, l'entier n est unique.

D 27 Soit (A, +, .) un anneau commutatif et $x \in A$. L'ensemble

$$xA = \{ xa \mid a \in A \}$$

est un idéal de A. C'est le plus petit idéal contenant x : on l'appelle idéal engendré par l'élément x.

- 1. La structure d'anneau
- 2. Sous-structures
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 5. La structure d'espace vectoriel
- 6. La structure d'algèbre

- **D 28** Soient A, B deux anneaux. Une application f: $A \rightarrow B$ est appelée morphisme d'anneaux si elle vérifie les conditions suivantes:
 - Pour tous $x, y \in A$, f(x + y) = f(x) + f(y).
 - Pour tous $x, y \in A$, f(xy) = f(x)f(y).
 - $f(1_A) = 1_B.$

Si de plus f est bijective, on dit que c'est un isomorphisme d'anneaux de A sur B.

P 29 La composée de deux morphismes de anneaux est un morphisme de anneaux.

P 30 Si un morphisme de anneaux est bijectif, l'application réciproque est encore un morphisme de anneaux.

T 31 Soit $f: A \rightarrow B$ un morphisme d'anneaux.

1. Si A' est un sous-anneau de A, alors l'image directe

$$f\left(A'\right) = \left\{ f(x) \mid x \in A' \right\} = \left\{ y \in B \mid \exists x \in A', y = f(x) \right\}$$

est un sous-anneau de B.

En particulier, Im(f) = f(A) est un sous-anneau de B.

2. Si B' est un sous-anneau de B, alors l'image réciproque

$$f^{-1}(B') = \left\{ x \in A \mid f(x) \in B' \right\}$$

est un sous-anneau de A.

3. Supposons A commutatif.
Si J est un idéal de B, alors l'image réciproque

$$f^{-1}(J) = \{ x \in A \mid f(x) \in J \}$$

est un idéal de A.

4. Le noyau ker(f) de f est un idéal de A.

Un morphisme d'anneaux étant a fortiori un morphisme de groupes, on retrouve immédiatement les résultats suivants.

- **T 32** Soit $f: A \rightarrow B$ un morphisme d'anneaux.
 - 1. Pour que f soit injectif, il faut, et il suffit que son noyau soit $\{0_A\}$.
 - 2. Pour que f soit surjectif, il faut, et il suffit que son image soit B.
 - 3. Soit $b \in B$.
 - Si $b \notin \text{Im}(f)$, l'équation f(x) = b d'inconnue $x \in A$ n'a pas de solution.
 - Si $b \in \text{Im}(f)$, alors en notant x_0 un antécédent de b par f, on a

$$\{ x \in A \mid f(x) = b \} = x_0 + \ker(f) = \{ x_0 + h \mid h \in \ker(f) \}.$$

- 1. La structure d'anneau
- 2. Sous-structures
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 4.1 Le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$
- 4.2 L'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$
- 5. La structure d'espace vectorie
- 6. La structure d'algèbre

- 1. La structure d'anneau
- 2. Sous-structures
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 4.1 Le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$
- 4.2 L'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$
- 5. La structure d'espace vectoriel
- 6. La structure d'algèbre

N

Soit $n \in \mathbb{N}$. La relation de congruence modulo n, définie par

$$x \equiv y \pmod{n} \iff \exists k \in \mathbb{Z}, y = x + kn$$

est une relation d'équivalence.

La classe d'équivalence de $x \in \mathbb{Z}$ est souvent notée \dot{x} ou \overline{x}

$$\overline{x} = \{ x + kn \mid k \in \mathbb{Z} \}.$$

On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes d'équivalence modulo n.

$$\overline{0}, \overline{1}, \ldots, \overline{n-1}$$

et ils sont deux à deux distincts. L'ensemble $\mathbb{Z}/n\mathbb{Z}$ est donc fini de cardinal n.

T 34 Il existe est une loi de composition interne, appelée addition, sur l'ensemble $\mathbb{Z}/n\mathbb{Z}$

$$\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$

$$(a,b) \mapsto a+b$$

telle que pour tout $(x, y) \in \mathbb{Z}^2$,

$$\overline{x} + \overline{y} = \overline{x + y}$$

Muni de cette addition, $\mathbb{Z}/n\mathbb{Z}$ est un groupe abélien.

- 1. L'élément neutre de $(\mathbb{Z}/n\mathbb{Z},+)$ est $\overline{0}$, l'opposé de \overline{x} est $\overline{(-x)}$.
- 2. L'application $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ est un morphisme surjectif de noyau $n\mathbb{Z}$. $x \mapsto \overline{x}$
- 3. Le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$ est cyclique.
 - \triangleright ($\mathbb{Z}/n\mathbb{Z}$, +) est isomorphe à (\mathbb{U}_n , ·).
 - Les générateurs de $(\mathbb{Z}/n\mathbb{Z}, +)$ sont les éléments \overline{k} tels que $\operatorname{pgcd}(k, n) = 1$.

Le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$ s'appelle le groupe-quotient de \mathbb{Z} par $n\mathbb{Z}$.

R Description des groupes monogènes

Soit $G = \langle a \rangle$ un groupe monogène. Alors,

- 1. Si a est d'ordre infini, alors G est isomorphe au groupe $(\mathbb{Z}, +)$.
- 2. Si a est d'ordre fini $p \in \mathbb{N}^{\star}$, alors G est isomorphe au groupe $(\mathbb{Z}/p\mathbb{Z}, +)$.

- 1. La structure d'anneau
- 2. Sous-structures
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 4.1 Le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$
- 4.2 L'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$
- 5. La structure d'espace vectoriel
- 6. La structure d'algèbre

T 35 Il existe est une loi de composition interne, appelée multiplication, sur l'ensemble $\mathbb{Z}/n\mathbb{Z}$

$$\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$

$$(a,b) \mapsto a \cdot b = ab$$

telle que pour tout $(x, y) \in \mathbb{Z}^2$,

$$\overline{x} \cdot \overline{y} = \overline{xy}$$

Muni de ces deux lois, $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ est un anneau commutatif.

- 1. Les éléments neutres de $\mathbb{Z}/n\mathbb{Z}$ sont $\overline{0}$ et $\overline{1}$.
- 2. Les éléments inversibles de $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ sont les éléments \overline{k} tels que $\operatorname{pgcd}(k, n) = 1$.
- 3. L'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ est intègre si, et seulement si n est premier.
- 4. L'anneau ($\mathbb{Z}/n\mathbb{Z}, +, \cdot$) est un corps si, et seulement si n est premier.

L'anneau ($\mathbb{Z}/n\mathbb{Z}, +, \cdot$) s'appelle le **anneau-quotient de** \mathbb{Z} **par** $n\mathbb{Z}$.

$$1 \le k \le n$$
 et $pgcd(k, n) = 1$

est noté $\varphi(n)$. L'application $\varphi: \mathbb{N}^{\star} \to \mathbb{N}^{\star}$ ainsi définie s'appelle indicateur d'Euler.

- 1. La structure d'anneau
- 2. Sous-structures
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 5. La structure d'espace vectoriel
- 6. La structure d'algèbre

- **D** 37 Étant donné un corps (\mathbb{K} , +, .), d'éléments neutres $0_{\mathbb{K}}$ et $1_{\mathbb{K}}$, on appelle **espace vectoriel** sur \mathbb{K} un ensemble E muni d'une structure algébrique définie par la donnée
 - 1. d'une loi de composition interne, appelée addition

$$E \times E \quad \to \quad E$$
$$(x, y) \quad \mapsto \quad x + y$$

telle que (E, +) soit un groupe commutatif.

2. D'une loi d'action appelée multiplication externe

$$\mathbb{K} \times E \quad \to \quad E$$
$$(\lambda, x) \quad \mapsto \quad \lambda \cdot x$$

qui satisfait aux axiomes suivants a

- Pour tous $\lambda \in \mathbb{K}, x \in E, y \in E, \lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y$.
- Pour tous $\lambda \in \mathbb{K}$, $\mu \in \mathbb{K}$, $x \in E$, $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$.
- Pour tous $\lambda \in \mathbb{K}$, $\mu \in \mathbb{K}$, $x \in E$, $(\lambda \cdot \mu) \cdot x = \lambda \cdot (\mu \cdot x)$.
 - Pour tout $x \in E$, $1_{\mathbb{K}} \cdot x = x$.

^aRègle bien connue : pour économiser les parenthèses, on convient que la multiplication est prioritaire sur l'addition.

Les morphismes d'espaces vectoriels portent le nom d'applications linéaires.

D 38 Soient $(E,+,\cdot)$ et (F,\oplus,\odot) deux espaces vectoriels sur le même corps \mathbb{K} . On appelle application linéaire de E dans F toute application $f:E\to F$ telle que pour tous $u,v\in E$, et tout $\alpha\in\mathbb{K}$,

$$f(u+v) = f(u) \oplus f(v)$$
 et $f(\alpha \cdot u) = \alpha \odot f(u)$.

- 1. La structure d'anneau
- 2. Sous-structures
- 3. Morphisme d'anneaux
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$
- 5. La structure d'espace vectoriel
- 6. La structure d'algèbre

D 39 On appelle K-algèbre un quadruplet $(A, +, *, \cdot)$ tel que

- (A, +, *) est un anneau.
- $(A, +, \cdot)$ est un \mathbb{K} -espace vectoriel.
- $\forall \lambda \in \mathbb{K}, \forall (x, y) \in A^2, (\lambda \cdot x) * y = x * (\lambda \cdot y) = \lambda \cdot (x * y).$

D 40 Soient $(A, +, *, \cdot)$ et $(B, \oplus, \circledast, \odot)$ deux algèbres sur le même corps \mathbb{K} . On appelle morphisme d'algèbre de A dans B toute application $f: A \to B$ telle que pour tous $u, v \in A$, et tout $\alpha \in \mathbb{K}$,

$$f(u+v) = f(u) \oplus f(v)$$
$$f(\alpha \cdot u) = \alpha \odot f(u)$$
$$f(1_A) = 1_B$$
$$f(u*v) = f(u) \circledast f(v)$$