Parsa Delavari

Doctoral Student, UBC

\$ +1 (778) 318 3362✓ parsadlr@student.ubc.ca delavari.p@gmail.com

Education

2022-Now The Univesity of British Columbia (UBC), Vancouver, Canada.

PhD in Neuroscience

2020–2022 The University of British Columbia (UBC), Vancouver, Canada.

Master of Science in Neuroscience

CGPA: 4/4

2015–2020 Sharif University of Technology (SUT), Tehran, Iran.

Bachelor of Science in Electrical Engineering

CGPA: 17.02/20 (3.49/4)

Fields of Interest

Neural Coding

Vision

Computational Neuroscience

Deep Learning

Honors and Awards

2024 Recipient, NSF AccelNet Award, USD 10,000.

2023 Recipient, of the Faculty of Medicine Entrance Award.

2022-Now Recipient, of the President's Academic Excellence Initiative PhD Award.

2021 **Recipient**, of the George Wayne King Sr. and Beverley King- Dorsey Scholarship in Neuroscience.

2020 **Recipient**, of the Faculty of Medicine Entrance Award.

2020-Now Recipient, of the International Tuition Award.

2015 Ranked 90th, among more than 180,000 students in the National University Entrance Exam.

2015 Member, of the National Elites Foundation.

2015–2020 **Recipient**, of the grant for undergraduate students, from the National Elite Foundation.

2014 Ranked 9th, in the Iran's National Astronomy Exam.

2013 **Ranked 2**nd, in the 2^{nd} Hashtroodi Mathematics Contest.

2011 Admitted, to NODET (National Organization for the Development of Exceptional Talents).

Research Experience

Sep 2023 - Representational learning on mouse visual responses, Supervisors: Dr. Timothy Murphy.

Now

- Designed a graph neural network (GNN) to model neural population dynamics using Allen Institute Neuropixels and Ca imaging datasets
- o Classified cell classes (excitatory/inhibitory) using the learned latent representations of the neurons

Aug 2022 – CNNs as models of the Brain's Visual Cortex, Supervisors: Dr.Leonid Sigal & Dr.Ipek June 2023 Oruc.

- Used BOLD5000 fMRI dataset to predict brain responses to visual stimuli based on extracted features from a CNN model
- o Demonstrated a hierarchical correspondence between CNN layers and the visual areas of the brain
- Proposed an objective criterion for evaluating CNNs in modelling the brain: comparing the performance
 of predicting brain responses to the presented images when CNN features are used to when the brain
 responses of other subjects are used

2020–2022 Explainable Classification of Fundus Images Using Deep Learning: Uncovering Sex Differences in The Retina, *Master's Thesis*, Supervisor: Dr.Ipek Oruc, NOVA Lab, UBC.

- Successfully classified patient sex based on retinal fundus images, a trait which is not visible to the expert human eye
- Utilized deep learning interpretation techniques (saliency maps and feature visualization) to uncover sex differences in the retina which were previously unknown
- Segmented anatomical parts of fundus images (e.g. optic disc, vessels) to statistically test and confirm the hypothesized sex differences in the retina
- Designed a methodology for explainable and automated diagnosis of neurodegenerative diseases such as Alzheimer's based on retinal fundus images using deep learning.

2018-2019 **Mechanisms Underlying The Propagation of Alpa-Band Traveling Waves**, *Bachelor's Project*, Supervisor: **Dr.Ali Ghazizadeh**, Brain-Center for Research in Artificial Intelligence and Neuroscience, SUT.

- Studied causality in the propagation of traveling waves by detecting spatial disturbances and analyzing the behavior of waves after these disturbances
- Devised a new method for measuring phase gradient consistency in traveling waves with higher performance

Summer 2019 **Precision of Time Perception in Human**, *Internship*, Supervisor: **Dr.Mir-Shahram Safari**, Neuroscience Research Center, Shahid Beheshti University.

 Designed psychophysical experiments using Psychtoolbox to measure precision of time perception in humans through presenting visual and auditory stimuli

Publications (Google Scholar profile)

- Parsa Delavari. "Explainable diagnosis using deep-learning: classification of fundus images as a promising tool for early detection of Alzheimer's disease." MSc diss., University of British Columbia, 2022. [PDF]
- Aaron Berk, Gulcenur Ozturan, Parsa Delavari, David Maberley, Özgür Yılmaz, Ipek Oruc.
 "Learning from few examples: Classifying sex from retinal images via deep learning." Plos one 18, no. 8 (2023): e0289211.
- Parsa Delavari, Gulcenur Ozturan, Lei Yuan, Özgür Yilmaz, Ipek Oruc. "Artificial intelligence, explainability, and the scientific method: A proof-of-concept study on novel retinal biomarker discovery". *PNAS nexus* 2, no. 9 (2023): pgad290.
- Ali Behrouz, Parsa Delavari, Farnoosh Hashemi. "Unsupervised representation learning of brain activity via bridging voxel activity and functional connectivity." NeurIPS 2023 AI for Science Workshop [PDF]

Poster Presentations

 Parsa Delavari, Leonid Sigal, Ipek Oruc. "CNN features generate synthetic fMRI responses to unseen images." NeuroAl 2023 Parsa Delavari, Ipek Oruc, Timothy H. Murphy. "SynapsNet: Enhancing Neuronal Population Dynamics Modeling via Learning Functional Connectivity." NeurIPS 2024 NeuroAI Workshop [PDF]

Professional Experience

2016–2017 Advanced Tech Company, Electrical Engineer.

- Designed a solar tracker panel with 2 methods:
 - Using light sensors to detect the position of the sun
 - Utilizing spherical astronomy to compute the position of the sun
- Learned how to drive servo motors using PLC and servo drive

Teaching Experience

Teaching Assistant

Fall 2023	Behavioural and Neuroscientific Research Methods	UBC
Fall 2022	Behavioural and Neuroscientific Research Methods	UBC
Winter 2022	Elementary Statistics	UBC
Fall 2021	Behavioural and Neuroscientific Research Methods	UBC
Summer 2021	Computational Neuroscience	The Neuromatch Academy (NMA)
Fall 2019	Data Networks	SUT
Fall 2018	Communication Systems	SUT

Related Courses

UBC	Learning to Move (Reinforcement Learning)	87/100
UBC	Advanced Topics in Visual Sciences	93/100
UBC	Machine Learning and Data Mining	100/100
SUT	Foundations of Systems and Computational Neuroscience	18.5/20
SUT	Machine Vision and Learning Lab	18.3/20

Technical Skills

Programming	Machine Learning	Neural-Behavioral
Python	PyTorch	o EEGLAB
MATLAB	 TensorFlow 	 Psychtoolbox
∘ C/C++/C#	 Scikit-Learn 	o FSL

Other Interests

- Astrophotography Click here to see some of my photos
- o Santoor (an Iranian musical instrument), Piano, and Ukulele
- Poetry