Real Time Operating systems (RTOS) concepts

Abu Bakr Mohamed Ramadan Eng.abubakr88@gmail.com

Content:

- Task, and Multitasking.
- Polling vs. Interrupt driven events.
- What is a Resource ?
- What is a Shared Resource?
- Critical Section of Code.
- References and Read more

Task, and Multitasking

Task,

- Task also called A thread.
- It's the basic block of an application written under RTOS.
- It's a simple program with an infinite loop,
- Task has it's own stack, CPU registers, and priority.
- void vATaskFunction(void *pvParameters)
 {
 for(;;)
 { -- Task application code here. -- }

Task, and Multitasking

Multitasking,

- Is the process of switching the CPU between several tasks.
- This maximize the utilization of the CPU,
- Provide modular construction for our application, makes the application design is easier.

Polling vs. Interrupt driven events

Polling:

- We checking an event through an infinite loop.
- checks all devices in a round robin fashion.
- The main drawback of this method the application needs to wait and check whether the new information has arrived, so it waste of time of the processor.
- Also It may miss some events.

• Interrupt:

- An external or internal event that interrupts the processor to inform it that a device needs its service.
- When an event happens the processor jump to the Interrupt Service routine(ISR).
- ISR is a function executes once the related interrupt happens.

What is a Resource?

- A Resource is an entity used by the task, it can be:
 - I/O device.
 - Printer.
 - Keyboard.
 - Display.
 - Variable.
 - Array.
 - Structure.
 - File.

What is a Shared Resource?

- A shared Resource, is a resource that can be used by more than one task.
- Each task should has exclusive access to the shared resource to prevent data corruption.
- There are techniques to ensure exclusive access of the resource like mutual exclusion.

Critical Section of Code

- Also called critical region.
- Is a section of code that shouldn't be interrupted.
- Most RTOS Systems enable us to disable the interrupt before this section then enable it again after that.
- There is also other methods to protect these critical section as we will see it later.

References and Read more:

- Real-Time Concepts for Embedded Systems book by Qing Li and Carolyn.
 - http://www.e-reading.club/book.php?book=102147
- An Embedded Software Primer by David E. Simon.
 - http://www.amazon.com/Embedded-Software-Primer-David-Simon/dp/020161569X
- Linux Kernel Embedded Systems Building Blocks 2e by Jean J. Labrosse.
 - http://www.amazon.com/Embedded-Systems-Building-Blocks-Ready/dp/0879306041
- FreeRTOS website.
 - http://www.freertos.org