Application	CoAP, MQTT			
Transport		UDP/TC	P	
Network	IPv6 RPL	IPv4/IPv6		
	6LowPan	RFC	C 2464	RFC 5072
MAC	IEEE 802.15.4	IEEE 802.11 (Wi-Fi)	IEEE 802.3 (Ethernet)	2G, 3G, LTE
	2.4GHz, 915, 868MHz	2.4, 5GHz		
	DSS, FSK, OFDM	CSMA/CA	UTP, FO	

Table 1: An example table.

Application protocol	DDS	CoAP	AMQP	MQTT	MQTT-SN	XMPP	HTTP
Service discovery	mDNS DNS-SD						
Network layer	RPL						
Link layer	IEEE 802.15.4						
Physical layer		EPCglob	al	IEEE	802.15.4	Z-W	<i>l</i> ave

Table 2: Standardization efforts that support the IoT

	Board	GW	API
Application			
Network			
MAC			
Radio			

Table 3

Parameter

Requirements:

- Latency/ Reliability Requirements
- Message Size Requirements
- Frequency Requirements
- Range Requirements
- Speed Requirements
- Security Requirements

Parameters	Parameters	Type	Expected as
	network load	Dynamic	Minimized
Network conditions	network coverage	Static	Fixed
Network conditions	network connection time	Dynamic	Minimized
	available bandwidth	Dynamic	Minimized
	throughput	Dynamic	Minimized
	delay	Dynamic	Minimized
Application requirements	jitter	Dynamic	Minimized
	PLR	Dynamic	Minimized
	energy consumption	Dynamic	Minimized
User preferences	budget	Static	Fixed
oser preferences	cost	Static	Fixed
	design		
Mobile equipment	energy	Dynamic	Fixed
Mobile equipment	mobility	Dynamic	Fixed

Table 4: Network selection inputs and classification of parameters [1]

Application layer	Network layer	Sensing layer
Service time	Bandwidth	Energy consumption
Service availability	Packet loss	Sleep management
Service cost	Jitter	Life time management
Service reliability	Delay	Coverage
	Availability	Sensing area
		Information accuracy
		Data accuracy
		Sensing time accuracy
		Spatial accuracy
		Reduce data redundancy
		Data packaging
		Sampling rate
		Bit rate error

Table 5: QoS parameters [2] [3]

Plan de controle	Plan de gestion	Plan de doonées
Controle d'admission	Controle et supervision de QoS	Controle du trafic
Réservation de ressources	Gestion de contrats	Façonnage du trafic
Routage	QoS mapping	Controle de congestion
Signalisation	Politique de QoS	Classification de paquets
		Marquage de paquets
		Ordonnancements des paquets
		Gestion de files d'attente

Table 6: An example table.

Maximize	Minimize
(T) Throughput	(RT) Response Time
(F) Fairness	(LT) Latency
(R) Reliability	(J) Jitter
(IA) Information Accuracy	(TF) Traffic
(Cov) Coverage of IoT	(AWT) Average Waiting Time
(NL) Network Life	(D) Delay
(RU))Resource Utilization	(L) Load
	(EC) Energy Consumption
	(BP) Blocking Probability
	(CCI) Co-channel Interference
	(SC) Service Cost
	(ST) Service Time

Table 7: Objectives of IoT resource scheduling

Blockchain

Blockchain Layers

- Transaction & contract layer
- Validation layer (forward validation request)
- Block Generation Layer (PoW,PoC, PoA PoS, PBFT)
- Distribution Layer

Consensus algorithms

- Proof of Work (PoW)
- Proof of Capacity (PoC)
- Proof of Authority (PoA)
- Proof of Stake (PoS)
- Proof of Bizantine Fault Tolerant (PBFT)

SDN

- [4] Many studies have identified SDN as a potential solution to the WSN challenges, as well as a model for heterogeneous integration.
- [4] This shortfall can be resolved by using the SDN approach.
- [5] SDN also enhances better control of heterogeneous network infrastructures.
- [5] Anadiotis et al. define a SDN operating system for IoT that integrates SDN based WSN (SDN-WISE). This experiment shows how heterogeneity between different kinds of SDN networks can be achieved.
- [5] In cellular networks, OpenRoads presents an approach of introducing SDN based heterogeneity in wireless networks for operators.
- [6] There has been a plethora of (industrial) studies synergising SDN in IoT. The major characteristics of IoT are low latency, wireless access, mobility and heterogeneity.
- [6] Thus a bottom-up approach application of SDN to the realisation of heterogeneous IoT is suggested.
- [6] Perhaps a more complete IoT architecture is proposed, where the authors apply SDN principles in IoT heterogeneous networks.
- [7] it provides the SDWSN with a proper model of network management, especially considering the potential of heterogeneity in SDWSN.

[7] We conjecture that the SDN paradigm is a good candidate to solve the heterogeneity in IoT

Management 111 10 1.	Management feature	Controller	Traffic	Configuration	Scapability	Communica-
architecture		configura-	Con-	and monitoring	and	tion
		tion	trol		localization	management
[8] Sensor	SDN support	Distributed	in/out-	✓	✓	✓
Open Flow	protocol		band			
[9] SDWN	Duty sycling,	Centralized	in-	✓		
	aggregation, routing		band			
[10] SDN-WISE	Programming	Distributed	in-		✓	
	simplicity and		band			
	aggregation					
[degante_smart_	2011/fi]ciency in resource	Distributed	in-		✓	
Smart	allocation		band			
SDCSN	Network reliability	Distributed	in-		✓	
	and QoS		band			
TinySDN	In-band-traffic	Distributed	in-		✓	
	control		band			
Virtual Overlay	Network flexibility	Distributed	in-		✓	
			band			
Context based	Network scalability	Distributed	in-		✓	
	and performance		band			
CRLB	Node localization	Centralized	in-			
			band			
Multi-hope	Traffic and energy	Centralized	in-			✓
	control		band			
Tiny-SDN	Network task	-	in-			
	measurement		band			

Table 8: SDN-based network and topology management architectures. [6]

Figure 1: LoraWan Parameters.

iii

	Instantaneous		
Naïve modes	Hist. average		
	Clustering		
	Rarely used		
	Traffic Models		
	Time Series		
	Linear regression		
Parametric models	ARIMA		
	Kalman filtering		
	ATHENA		
	SETAR		
	Gaussian Maximum Likelihood		
	k-Nearest Neighbor		
	Locally Weighted Regression		
Non-Parametric models	Fuzzy Logic		
	Bayes Network		
	Neural Network		
	Include temporal/spatial patterns		

Table 9: Taxonomy of prediction models [11]

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2$$
 (1)

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2}$$
 (2)

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$
 (3)

$$Recall = \frac{TP}{TP + FN} \tag{4}$$

$$Precision = \frac{TP}{TP + FP}$$
 (5)

$$F1_Score = \frac{2 \times Precision \times Recall}{Precision + recall}$$

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$
(6)
(7)

$$TPR = \frac{TP}{TP + FN} \tag{7}$$

$$FPR = \frac{FP}{FP + TN} \tag{8}$$

$$ROC = (TPR, FPR) \tag{9}$$

Novelty =
$$\sum_{i \in L} \frac{\log_2 P_i}{n}$$
 where $P_i = \frac{n - rank_i}{n - 1}$

$$Serendipity = \frac{1}{n} \sum_{i \in n} \max(P_{user} - P_{U}, 0) \times rel_{i}$$
(11)

$$diversity = \frac{a}{c} \sum_{i=1}^{c} \frac{1}{n} \sum_{j=1}^{n} i_{j}$$
 (12)

$$Coverage = 100 \times \frac{u}{H}$$
 (13)

Stability =
$$\frac{1}{P_2} \sum_{i \in P_2} |P_{2,i} - P_{1,i}|$$
 (14)

$$DCG = rel_1 + \sum_{i=2}^{pos} \frac{rel_i}{\log_2 i}$$
 (15)

IDCG =
$$rel_1 + \sum_{i=2}^{|h|-1} \frac{rel_i}{\log_2 i}$$
 (16)

$$NDCG = \frac{DCG}{IDCG}$$
 (17)

(18)

Gateway selection Input: Method: Ranking machine learning Output: Ranked list of gateway

(a) Sensors diversity.

(b) Data diversity.

Figure 2: Sensors & data diversity.

Figure 3: Communication diversity.

Figure 4: Filtres [12].

	LiteOS	Nano-RK	MANTIS	Contiki
Architecture	Monolithic	Layered	Modular	Modular
Scheduling Memory	Round Robin	Monotonic harmonized	Priority classes	Interrupts execute w.r.t.
Network	File	Socket abstraction	At Kernel COMM layer	uIP, Rime
Virtualization and	Synchronization	Serialized access	Semaphores	Serialized, Access
Completion	primitives	semaphores		
Multi threading	✓	✓	X	✓
Dynamic protection	✓	X	✓	✓
Memory Stack	✓	×	X	X

Table 10: Common operating systems used in IoT environment [13]

Figure 5: classification [12].

Figure 6: LPWAN connectivity.

Figure 7: Interoperability.

Figure 8: Key barriers in adopting the Industrial Internet 1 .

Figure 9: wsn-IoT.

1 | Application

voir [14]

Use Case	Packet rate () [packet/day]	Minimum success rate (Ps,min)	Grouping
Wearables	10	90	
Smoke Detectors	2	90	
Smart Grid	10	90	Group A PL = 10/20B
White Goods	3	90	
Waste Management	24	90	
VIP/Pet Tracking	48	90	
Smart Bicycle	192	90	
Animal Tracking	100	90	
Environmental Monitoring	5	90	
Asset Tracking	100	90	Group B PL = 50B
Smart Parking	60	90	
Alarms/Actuators	5	90	
Home Automation	5	90	
Machinery Control	100	90	
Water/Gas Metering	8	90	
Environmental Data Collection	24	90	
Medical Assisted Living	8	90	
Microgeneration	2	90	
Safety Monitoring	2	90	Group C PL = 100/200B
Propane Tank Monitoring	2	90	
Stationary Monitoring	4	90	
Urban Lighting	5	90	
Vending Machines Payment	100	90	
Vending Machines General	1	90	Group D PL = 1KB

Table 1.1: A PPLICATION REQUIREMENTS FOR THE USE CASES OF INTEREST[15].

Smart systems in smart cities [16]

- Smart Mobility
- Smart semaphores controle
- Smart Red Swarm
- Smart panels
- Smart bus scheduling
- Smart EV management
- Smart surface parking
- Smart signs

Application	Rest-	Trans-	Publish/Sub-	Request/Re-	Security	QoS	Header size
protocol	Full	port	scribe	sponse			(Byte)
COAP	✓	UDP	✓	✓	DTLS	✓	4
MQTT	X	TCP	✓	X	SSL	✓	2
MQTT-SN	X	TCP	✓	X	SSL	✓	2
XMPP	X	TCP	✓	✓	SSL	X	-
AMQP	X	TCP	✓	X	SSL	✓	8
DDS	X	UDP	✓	X	SSL	✓	-
		TCP			DTLS		
HTTP	√	TCP	X	✓	SSL	X	-

Table 1.2: Application protocols comparison

- Smart energy systems
- Smart lighting
- Smart water jet systems
- Smart residuals gathering
- Smart building construction
- Smart tourism
- Smart QRinfo
- Smart monitoring
- Smart hawkeye

Callenges-Applications	Gids	EHealth	Transportations	Cities	Building
Ressources cinstraints	+	+++	-	++	+
Mobility	+	++	+++	+++	-
Heterogeneity	++	++	++	+++	+
Scalability	+++	++	+++	+++	++
QoS cinstraints	++	++	+++	+++	+++
Data management	++	+	+++	+++	++
Lack of standardization	++	++	++	++	+++
Amount of attacks	+	+	+++	+++	+++
Safety	++	++	+++	++	+++

Table 1.3: Main IoT challenges[17]

Network selection

- * MADM
 - * Ranking methods
 - * Ranking & weighted methods
- * Game theory
 - * Users vs users
 - * Users vs networks
 - * Networks vs network
- * Fuzzy logic
 - * as a score method
 - * another theory
- * Utility function
 - * 1
 - * 2

Paper	Architec-	Avail-	Relia-	Mo-	Perfor-	Manage-	Scala-	Interoper-	Secu-
	ture	ability	bility	bility	mance	ment	bility	ability	rity
IoT-A									
IoT@Work									
EBBITS									
BETaas									
CALIPSO									
VITAL									
SENSAI									
RERUM									
RELEYonIT									
IoT6									
OpenIoT									
Apec IoV									
Smart									
Santander									
OMA Device									
OMA-DM									
LWM2M									
NETCONF									
Light									
Kura									
MASH									
IoT-iCore									
PROBE-IT									
OpenIoT									
LinkSmart									
IETF									
SOLACE									
BUTLER									
Codo									
SVELETE									
SVELEIE								1	

Table 1.4: An example table.

Platform	COAP	XMPP	MQTT
Arkessa			✓
Axeda			
Etherios			
LittleBits			
NanoService	✓		
Nimbits		✓	
Ninja blocks			
OnePlateformv	✓	√	
RealTime.io			
SensorCloud			
SmartThings			
TempoDB			
ThingWorx			✓
Xively			✓
Ubidots			✓

Table 1.5: IoT cloud platforms and their characteristics

Use cases		
Health Monitoring		
Water Distribution		
Electricity Distribution		
Smart Buildings		
Intelligent Transportation		
Surveillance		
Environmental Monitoring		

Table 1.6: Use cases [18]

Application	Rest-	Rest- Trans- Publish/Sub-		Request/Re-	Security	QoS	Header size
protocol	Full	port	scribe	sponse			(Byte)
COAP	✓	UDP	✓	✓	DTLS	✓	4
MQTT	X	TCP	✓	X	SSL	✓	2
MQTT-SN	X	TCP	✓	X	SSL	✓	2
XMPP	X	TCP	✓	✓	SSL	Х	-
AMQP	X	TCP	✓	X	SSL	✓	8
DDS	X	UDP	✓	X	SSL	✓	-
		TCP			DTLS		
HTTP	✓	TCP	Х	✓	SSL	Х	-

Table 1.7: Application protocols comparison

2 | Network

Routing protocol	Control Cost	Link Cost	Node Cost
OSPF/IS-IS	X	✓	X
OLSRv2	?	✓	✓
RIP	1	?	X
DSR	✓	X	X
RPL	✓	1	✓

Table 2.1: Routing protocols comparison [_rpl2_]

- Routing over low-power and lossy links (ROLL)
- Support minimal routing requirements.
 - * like multipoint-to-point, point-to-multipoint and point-to-point.
- A Destination Oriented Directed Acyclic Graph (DODAG)
 - * Directed acyclic graph with a single root.
 - * Each node is aware of ts parents
 - * but not about related children
- RPL uses four types of control messages
 - * DODAG Information Object (DIO)
 - * Destination Advertisement Object (DAO)
 - * DODAG Information Solicitation (DIS)
 - * DAO Acknowledgment (DAO-ACk)
- Standard topologies to form IEEE 802.15.4e networks are

Star contains at least one FFD and some RFDs

Mesh contains a PAN coordinator and other nodes communicate with each other Cluster consists of a PAN coordinator, a cluster head and normal nodes.

- The IEEE 802.15.4e standard supports 2 types of network nodes
 - FFD Full function device: serve as a coordinator
 - * It is responsible for creation, control and maintenance of the net
 - * It store a routing table in their memory and implement a full MAC

RFD Reduced function devices: simple nodes with restricted resources

* They can only communicate with a coordinator

Preamble	PHIDARY	a Pelloricec to	MSHEED RO	p olidgy R	FPort	Payload	MIC	CRC
----------	---------	------------------------	-----------	-------------------	-------	---------	-----	-----

Routing protocol	Control Cost	Link Cost	Node Cost
OSPF/IS-IS	X	✓	X
OLSRv2	?	✓	✓
RIP	✓	?	X
DSR	✓	X	X
RPL	1	✓	✓

Table 2.2: Routing protocols comparison [_rpl2_]

3 | MAC

Figure 1: Class A.

Figure 2: Class B.

Figure 3: Class C.

LoRa has three configurable parameters:

- Bandwidth (BW)
- Carrier Frequency (CF)
- Coding Rate (CR)
- Spreading Factor (SF)

Addition:

- Payload (PL)
- Signal-to-noise ratio (SNR)
- Signal-to-Interference Ratio (SIR)
- Packet delivery ratio (PDR)

Figure 4: uhuhuh.

- Tw Power (Tx Power)
- Bit error rate (BER)
- Packet Reception Ratio (PRR)

signal-to-interference-plus-noise ratio (SINR) signal-to-noise ratio (SNR)

$$T_{s} = \frac{2^{SF}}{BW_{[Hz]}} \tag{3.1}$$

$$SR_{[sps]} = \frac{BW}{2^{SF}}$$
 (3.2)

$$DR_{[\mathbf{bps}]} = SF * \frac{BW_{[Hz]}}{2^{SF}} * CR$$
 (3.3)

$$BR_{[bps]} = SF * \frac{\frac{4}{4 + CR}}{\frac{2SF}{RW}}$$
(3.4)

$$Sen_{[dBm]} = -174 + 10\log_{10}BW + NF + SNR$$
 (3.5)

$$SNR_{[dB]} = 20.log(\frac{S}{N}) \tag{3.6}$$

$$BER_{[\mathbf{bps}]} = \frac{8}{15} \cdot \frac{1}{16} \cdot \sum_{k=1}^{16} k = 216 - 1^{k} \left(\frac{16}{k}\right) e^{20.SINR(\frac{1}{k} - 1)}$$
(3.7)

$$PER_{[\mathbf{pps}]} = 1 - (1 - BER)^{n_{bits}}$$
(3.8)

(3.9)

Figure 5: LoRaWAN frame format.[19]

3.1 Signal

$$\begin{aligned} & \textbf{RSSI} = & \text{T} x_{power}. \frac{\text{Rayleigh}_{power}}{\text{PL}} & (3.10) \\ & \textbf{LoRa} = \frac{2^{\text{SF}}}{\text{BW}} \left((\text{NP} + 4.25) + \left(\text{SW} + \text{max} \left(\left\lceil \frac{8\text{PL} - 4\text{SF} + 28 + 16\text{CRC} - 20\text{IH}}{4(\text{SF} - 2\text{DE})} \right\rceil (\text{CR} + 4), 0 \right) \right) \right) \\ & \textbf{Lora} = & n_s = 8 + max (\left[\frac{8\text{PL} - 4\text{SF} + 8 + \text{CRC} + \text{H}}{4 * (\text{SF} - \text{DE})} \right] * \frac{4}{\text{CR}} \right) \\ & (3.12) \\ & \textbf{Lora} = \frac{1}{R_s} \left(n_{preamble} + \left(\text{SW} + max \left(\left[\frac{8\text{PL} - 4\text{SF} + 28 + 16\text{CRC} - 20\text{IH}}{4(\text{SF} - 2\text{DE})} \right] (\text{CR} + 4), 0 \right) \right) \right) \\ & \textbf{GFSK} = \frac{8}{R_{\text{GFSK}}} \left(L_{preamble} + \text{SW} + \text{PL} + 2\text{CRC} \right) \\ & (3.14) \\ & \textbf{GFSK} = \frac{8}{\text{DR}} (\text{NP} + \text{SW} + \text{PL} + 2\text{CRC}) \\ & (3.16) \end{aligned}$$

- DevAddr: the short address of the device
- FPort: a multiplexing port field
 - * 0: the payload contains only MAC commands
- FOptsLen:
- FCnt: frame counter
- MIC is a cryptographic message integrity code
 - * computed over the fields MHDR, FHDR, FPort and the encrypted FRMPayload.
- MType is the message type (uplink or a downlink)

SF		07	08	09	10	11	12	07	80	09	10	11	12	07	80	09	10	11	12
	BW			12	25			250				500							
07		X								Х								X	
80			Х								X								X
09	125			X								X							
10	123				X								Х						
11						X													
12							Х												
07								X								Х			
80									Х								X		
09 10	250	X								х								X	
10	230		X								X								X
11				X								X							
12					X								X						
07														X					
80															X				
09 10	500							X								Х			
	300								Х								Х		
11		X								Х								X	
12			X								X								X

Table 3.1: uyuyuy

- * whether or not it is a confirmed message (reqst ack)
- Major is the LoRaWAN version; currently, only a value of zero is valid
- ADR and ADRAckReq control the data rate adaptation mechanism by the network server
- ACK acknowledges the last received frame
- FPending indicates that the network server has additional data to send
- FOptsLen is the length of the FOpts field in bytes
- FOpts is used to piggyback MAC commands on a data message
- CID is the MAC command identifier
- Args are the optional arguments of the commands
- FRMPayload is the payload, which is encrypted using AES with a key length of 128 bits

	LoRa[5]	SigFox[6]	NB-IoT [7]	Z-Wave[8]	Wi-Fi[9]
Cost	35e	25e	1020e	812e	< 2e
Data Rate	<50 kbps	<100 bps	<200 kbps	<40 kbps	<300 Mbps
Autonomy	<10 years	<10 years	<10 years	<2 years	<10 days
Range (urban)	<5 km	<10 km	<1 km	<100 m	<40 m
Modulation	CSS	BPSK	QPSK	FSK	BPSK/QAM
Bandwidth	125/250 kHz	100 Hz	200 kHz	300 kHz	20/40 MHz
Frequency (EU)	868 MHz	868 MHz	LTE bands	868 MHz	2.4/5.0 GHz
Spectrum Cost	Free	Free	Very High	Free	Free
Max. msg/day	Unlimited	140(), 4()	Unlimited	Unlimited	Unlimited
Max. payload	243 bytes	12(), 8() bytes	1600 bytes	64 bytes	64 KB

Table 3.2: Wireless technologies commonly used in smart buildings [20]

[24] Nous avons vu en effet plus haut quil a été démontré que la méthode CSMA est plus efficace pour le traitement des faibles trafics, tandis que TDMA est nettement plus appropriée pour supporter les trafics intensesj.

Figure 6: LPWAN.

Characteristics	6LoWPAN	LoRaWAN	SigFox	NB- IoT	IN- GENU	TE- LENSA
Proprietary			✓			
Standar	IETF	LoRa Alliance		3GPP		
CE	902-929	902-928	902			
$CF_{[MHz]}$	868-868.6	863-870 and 434	868			
	0016 for	80 for 915	25			
Channels	2400					
	0010 for	10 for 868 and 780				
	915					
	0001 for					
	868.3					
	0005 for	0.125 and 0.50 for 915	0.0001-			
$BW_{[MHz]}$	2400		0.0012			
	0002 for	0.125 and 0.25 for 868 and 780				
	915					
	0600 for					
	868.3					
	0250 for	0.00098-0.0219 for 915	0.1-0.6			
$DR_{[kbps]}$	2400					
. , .	0040 for	0.250-0.05 for 868 and 780				
	915					
	0020 for					
	868.3					
	QPSK for	LoRa for 915	BPSK and	QSPSK		
Modulation	2400		GFSK			
	BPSK for	LoRa and GFSK for 868 and 780				
	915					
	BPSK for	CSS				
	868.3					
	-085 for	-137	-137			
$CR_{[dBm]}$	2400					
	-092 for 915					
	-092 for					
	868.3					
Range	10-100 m	5-15 km	10-50 km			
Battery lifetime	1-2 years	<10 years	<10 years			
Security	ACL					
Uplink			100bps			
Downlink			8 bytes/msg			
Cost		High				

Table 3.3: LPWan Characteristics [21]

	SIGFOX	LORAWAN	INGENU	TELENSA
Modula-	UNB DBPSK(UL),	CSS	RPMA-DSSS(UL),	UNB 2-FSK
tion	GFSK(DL)		CDMA(DL)	
Band	S UB -GH Z	S UB -GH Z ISM:EU (433MHz	ISM 2.4GHz	S UB -GH Z bands including
	ISM:EU (868MHz),	868MHz), US (915MHz), Asia		ISM:EU (868MHz), US
	US(902MHz)	(430MHz)		(915MHz), Asia (430MHz)
DR	100 bps(UL), 600	0.3-37.5 kbps (L O Ra), 50	78kbps (UL), 19.5	62.5 bps(UL), 500 bps(DL)
	bps(DL)	kbps (FSK)	kbps(DL)	
Range	10 km (URBAN),	5 km(URBAN), 15 km (15 km (URBAN)	1 km (URBAN)
	50 km (RURAL)	RURAL)		
Num. of	360 channels	10 in EU, 64+8(UL) and 8(40 1MHz channels,	multiple channels
channels		DL) in US plus multiple SFs	up to 1200signals per	
			channel	
Link	X	✓	X	X
symmetry				
Forward	X	✓	✓	✓
error				
correction				
Modula-	unslotted A LOHA	unslotted A LOHA	CDMA-like	
tion				
Topology	star	star, stars	star,tree	star
ADR	X	✓	✓	X
PL	12B(UL), 8B(DL)	up to 250B (depends on SF	10KB	
		and region)		
Handover	end devices do not	end devices do not join a		
	join a single base	single base station		
	station			
Encryp-	not supported	AES 128b	16B hash, AES 256b	
tion				

Table 3.4: [22]

Standard	802.15.4k	802.15.4g	Weightless- W	Weightless-N	Weightless- P	DASH 7 Alliance
Modula- tion	DSSS, FSK	MR-[FSK, OFDMA, OQPSK]	16-QAM, BPSK, QPSK, DBPSK	UNB DBPSK	GMSK, offset-QPSK	GFSK
Band	ISM S UB -GH Z, 2.4GHz	ISM S UB -GH Z, 2.4GHz	TV white spaces 470-790MHz	ISM S UB -GH Z EU (868MHz), US (915MHz)	S UB -GH Z ISM or licensed	UB -GH Z 433MHz, 868MHz, 915MHz
DR	1.5 bps-128 kbps	4.8 kbps-800 kbps	1 kbps-10 Mbps	30 kbps-100 kbps	200 bps-100kbps	9.6,55.6,166.7 kbps
Range	5 km (URBAN)	up to several kms	5 km (URBAN)	3 km (URBAN)	2 km (URBAN)	0-5 km (URBAN)
MAC	CSMA/CA, CSMA/CA or A LOHA with PCA	CSMA/CA	TDMA/FDMA	slotted A LOHA	TDMA/FDMA	CSMA/CA
Topology	star	tar, mesh, peer-to- peer	star	star	star	tree, star
PL	2047B	2047B	>10B	20B	>10B	256B
Encryption	AES 128b	AES 128b	AES 128b	AES 128b	AES 128/256b	AES 128b
Forward error correction	/	1	✓	X	1	1

Table 3.5: [22]

Phy protocol	IEEE 802.15.4	BLE	EPCglobal	Z-Wave	LTE-M	ZigBee
Standard		IEEE				IEEE 802.15.4, ZigBee
		802.15.1				Alliance
BW(MHz)	868/915/2400	2400	860-960	868/908/2400	700-900	
MAC	TDMA,	TDMA	ALOHA	CSMA/CA	OFDMA	
	CSMA/CA					
DR (bps)	20/40/250 K	1024K	varies	40K	1G (up), 500M	
			5-640K		(down)	
Through-				9.6, 40,		
put				200kbps		
Scalability	65K nodes	5917 slaves	-	232 nodes	-	
Range	10-20m	10-100m				
Address-	8 16bit	16bit				
ing						

Table 3.6: IoT cloud platforms and their characteristics [13]

	802.15.4	802.15.4e	802.15.4g	802.15.4f
CF	2.4Ghz (DSSS + oQPSK)	2.4Ghz (DSSS + oQPSK,	2.4Ghz (DSSS + oQPSK,	2.4Ghz (DSSS +
		CSS+DQPSK)	CSS+DQPSK)	oQPSK,CSS+DQPSK)
	868Mhz (DSSS + BPSK)			
	915Mhz (DSSS + BPSK)			
				3~10Ghz (BPM+BPSK)
DR	Upto 250kbps	Upto 800kbps	Up to 800kbps	
Differences	-	Time sync and channel	Phy Enhancements	Mac and Phy Enhancements
		hopping		
PL	127 bytes	N/A	Up to 2047 bytes	N/A
Range	1 75+ m	1 75+ m	Upto 1km	N/A
Goals	General Low-power	Industrial segments	Smart utilities	Active RFID
	Sensing/Actuating			
Products	Many	Few	Connode (6LoWPAN)	LeanTegra PowerMote

Table 3.7: IEEE 802.15.4 standards [23]

SF	Sensitivity[dBm]	DR[kb/s]	
6	-118	9.38	
7	-123		
8	-126		
9	-129		
10	-132		
11	-134.5		
12	-137		

Table 3.8: hghg

4 | Introduction

4.1 Introduction

- 4.1.1 Context & motivation
- 4.1.2 Methodology and contributions
- 4.1.3 Organization of the thesis

5 | State of the art [25]

5.1 Introduction

5.2 IoT Hardware and software platforms

5.2.1 Software platform: Operating systems

os	Architecture	Multi	Scheduling	Dynamic	Memory	Network	Virtualization
		threading		Memory	protection	Stack	and Completion
Contiki/Contiki-ng	Modular	✓	Interrupts	✓	Х	uIP	Serialized
			execute w.r.t.			Rime	Access
MANTIS	Modular	X	Priority	✓	X	At Kernel	Semaphores.
			classes			COMM layer	
Nano-RK	Layered	✓	Monotonic	X	X	Socket	Serialized access
			harmonized			abstraction	semaphores
LiteOS	Monolithic	✓	Round Robin	✓	✓	File	Synchronization
							primitives

Table 5.1: Common operating systems used in IoT environment [13]

Contiki

RIOT

TinyOS

freeRTOS

5.2.2 Hardware platform

OpenMote

MSB430-H

Zolertia

5.2.3 Communication protocol

IEEE 802.15.4

6LoWPAN

ZigBee

Bluetooth LE LoaraWAN SEMTECH ALIANCE Class-A Uplink Downlink Confirmed data Note: Class-B Downlink Confirmed data Requirements Device Gateway

Class-C

Downlink

Confirmed data

5.2.4 Application protocol

CoAP

- Constrained Application Protocol
- The IETF Constrained RESTful Environments
- CoAP is bound to UDP
- CoAP can be divided into two sub-layers
 - * messaging sub-layer
 - * request/response sub-layer
 - a) Confirmable.
 - b) Non-confirmable.
 - c) Piggybacked responses.
 - d) Separate response
- CoAP, as in HTTP, uses methods such as:

* GET, PUT, POST and DELETE to

 $\underset{0\ 1}{*}\ \underset{2}{*}\ \underset{3}{Achieve,}\ \underset{0}{Create,}\ \underset{10}{Retrieve,}\ \underset{17}{Update}\ \underset{19}{and}\ \underset{10}{Delete}\ \underset{25\ 26\ 27\ 28\ 29\ 30\ 31}{Delete}$

* Ex: the GET method can be used by a server to inquire the clients temperature

Ver	T	TKL	Code	Message ID	,	1
Options						CoAP Header
11111111 Payload						
			•			

Ver: is the version of CoAPT: is the type of Transaction

TKL: Token length

Code: represents the request method (1-10) or response code (40-255).

* Ex: the code for GET, POST, PUT, and DELETE is 1, 2, 3, and 4, respectively.

Message ID: is a unique identifier for matching the response.

Token: Optional response matching token.

MQTT

Message Queue Telemetry Transport

Andy Stanford-Clark of IBM and Arlen Nipper of Arcom

* Standardized in 2013 at OASIS

- MQTT uses the publish/subscribe pattern to provide transition flexibility and simplicity of implementation
- MQTT is built on top of the TCP protocol
- MQTT delivers messages through three levels of QoS
- Specifications
 - * MQTT v3.1 and MQTT-SN (MQTT-S or V1.2)
 - * MQTT v3.1 adds broker support for indexing topic names
- The publisher acts as a generator of interesting data.

Message Type	UDP	QoS Level	Retain)
Remain				
Variable le	CoAP Head			
Variable length				
	_			

Message type: CONNECT (1), CONNACK (2), PUBLISH (3), SUBSCRIBE (8) and so on

DUP flag: indicates that the massage is duplicated

QoS Level: identify the three levels of QoS for delivery assurance of Publish messages

Retain field: retain the last received Publish message and submit it to new subscribers as a first

message

XMPP

- Extensible Messaging and Presence Protocol
- Developed by the Jabber open source community

- An IETF instant messaging standard used for:
 - * multi-party chatting, voice and telepresence
- Connects a client to a server using a XML stanzas
- An XML stanza is divided into 3 components:
 - * message: fills the subject and body fields
 - * presence: notifies customers of status updates
 - * iq (info/query): pairs message senders and receivers
- Message stanzas identify:
 - * the source (from) and destination (to) addresses
 - * types, and IDs of XMPP entities

AMQP

- Advanced Message Queuing Protocol
- Communications are handled by two main components
 - * exchanges: route the messages to appropriate queues.
 - * message queues: Messages can be stored in message queues and then be sent to receivers
- It also supports the publish/subscribe communications.
- It defines a layer of messaging on top of its transport layer.
- AMQP defines two types of messages
 - * bare massages: supplied by the sender
 - * annotated messages: seen at the receiver
- The header in this format conveys the delivery parameters:
 - * durability, priority, time to live, first acquirer & delivery count.
- AMOP frame format

Size the frame size.

DOFF the position of the body inside the frame.

Type the format and purpose of the frame.

- * Ex: 0x00 show that the frame is an AMQP frame
- * Ex: 0x01 represents a SASL frame.

DDS

- Data Distribution Service
- Developed by Object Management Group (OMG)
- Supports 23 QoS policies:
 - * like security, urgency, priority, durability, reliability, etc
- Relies on a broker-less architecture
 - * uses multicasting to bring excellent Quality of Service
 - * real-time constraints
- DDS architecture defines two layers:

DLRL Data-Local Reconstruction Layer

* serves as the interface to the DCPS functionalities

DCPS Data-Centric Publish/Subscribe

- * delivering the information to the subscribers
- 5 entities are involved with the data flow in the DCPS layer:
 - * Publisher:disseminates data
 - * DataWriter: used by app to interact with the publisher
 - * Subscriber: receives published data and delivers them to app

- * DataReader: employed by Subscriber to access received data
- * Topic: relate DataWriters to DataReaders
- No need for manual reconfiguration or extra administration
- It is able to run without infrastructure
- It is able to continue working if failure happens.
- It inquires names by sending an IP multicast message to all the nodes in the local domain
 - * Clients asks devices that have the given name to reply back
 - * the target machine receives its name and multicasts its IP @
 - * Devices update their cache with the given name and IP @

mDNS

- Requires zero configuration aids to connect machine
- It uses mDNS to send DNS packets to specific multicast addresses through UDP
- There are two main steps to process Service Discovery:
 - * finding host names of required services such as printers
 - * pairing IP addresses with their host names using mDNS
- Advantages
 - * IoT needs an architecture without dependency on a configuration mechanism
 - * smart devices can join the platform or leave it without affecting the behavior of the whole system
- Drawbacks
 - * Need for caching DNS entries
- 5.2.5 Summary and discussion
- 5.3 IoT applications
- **5.3.1** Transportation and logistics
- 5.3.2 Healthcare
- 5.3.3 Smart environnement
- 5.3.4 personal and social
- 5.3.5 Futuristic
- 5.3.6 Summary and discussion
- 5.3.7 Summary and discussion

Figure 1: 802.15.4 use cases [sarwar_iot_].

5.4 IoT security

5.4.1 Summary and discussion

5.5 Conclusion

6 | Aghiles [25]

6.1	Introduction	ı &	problem	statement
-----	--------------	-----	---------	-----------

- 6.1.1 Background
- 6.1.2 Purpose (Goal)
- 6.1.3 Limitations
- **6.1.4** Method

6.2 Background

6.2.1 Requirements

Hardware

Operating system

Communication protocol

- 6.2.2 Hardware
- **6.2.3** Operating system
- **6.2.4** Communication protocol
- **6.2.5** Workspace and tools

6.3 Prototype

- **6.3.1** Drivers and firmware
- **6.3.2** CoAP server

Testing

Final prototype

6.4 Evaluation

6.4.1 Range

- **6.4.2** Response time
- **6.4.3** Connection speed
- **6.4.4** Power consumption
- 6.5 Discussion
- **6.5.1** The prototype

Results

Range

Response time

Connection speed

Power consumption

- **6.5.2** Project execution
- 6.6 Conclusion

7 | SDN: Sentilo [26]

7.1 Introduction &	problem statement
--------------------	-------------------

- 7.1.1 Background
- 7.1.2 Purpose (Goal)
- 7.1.3 Limitations
- **7.1.4** Method

7.2 Background

- 7.2.1 Requirements
- 7.2.2 Hardware: Zolertia Z1 Motes

Peripherals ports

North Port

East Port

South Port

West Port

Internal sensors

Temperature Sensor

Accelerometer

External Sensors

Analog sensors

Precision Light Sensor

Force Sensor

Relay actuator				
Distance sensor				
7.2.3 Operating systems				
Main aspects				
Contiki size				
Contiki Hardware				
Kernel structure				
7.2.4 Communication protocol				
Composition				
Physical and MAC Layer (IEEE 802.15.4)				
Physical Layer				
Definitions				
Topologies				
RIME				
6LowPAN				
Characteristics				
Encapsulation Header format				
Fragment Header				
Mesh addressing header				
Header compression (RFC4944)				
Header compression Improved (draft-hui-6lowpan-hc-01)				
RPL				
7.2.5 Application protocol				
COAP (COnstrained Application Protocol)				
Overview				
Coap Methods				

Coap Transactions

Coap Messages

7.2.6 Workspace ant tools

7.3 Sentilo

7.3.1 Definitions

7.3.2 Sentilo Architecture

PubSub Server

Web Catalog Application

Extensions (Agents)

7.3.3 Sentilo structure

7.3.4 Sentilo API

7.4 Evaluation

7.4.1 Environment description

Sensor Network

Border Router

Nodes

Network connector

Application workflow

Sensor registration

Sensor data publish

7.5 Discussion

7.5.1 The prototype

Results

Range

Response time

Connection speed

Power consumption

- 7.5.2 Project execution
- 7.6 Conclusion
- 7.6.1 Future lines of work

8 | MEC: Chapter 4

8.1 Introduction & problem statement

- 8.1.1 Background
- 8.1.2 Purpose (Goal)
- 8.1.3 Limitations
- **8.1.4** Method

8.2 Background

8.2.1 Selection of technology

Requirements

Hardware

Operating system

Communication protocol

Hardware

Operating system

Communication protocol

Workspace and tools

8.3 Prototype

- 8.3.1 Drivers and firmware
- 8.3.2 CoAP server

Testing

Final prototype

8.4 Evaluation

- 8.4.1 Environment description
- **8.4.2** Results exploitation
- **8.4.3** Range
- 8.4.4 Response time
- 8.4.5 Connection speed
- **8.4.6** Power consumption
- 8.5 Discussion
- 8.5.1 The prototype

Results

Range

Response time

Connection speed

Power consumption

- 8.5.2 Project execution
- 8.6 Conclusion

9 | Conclusion

- 9.1 Conclusion
- 9.2 Perspectives

10 | Publications

10.1 List of publications

A | Appendix A

- A.1 Introduction & problem statement
- A.2 Background
- A.3 Approach
- A.4 Performance evaluation
- **A.4.1** Environment description
- A.4.2 Results exploitation
- A.5 Conclusion

B | Appendix B

Year		Factors	Computation Model	Results interpretation
2018	[27]	-Closeness Centralityjhjhjhjhjhjh	Estimation	Closeness have a high degree of nbnbnbnbnbnbnb
		-Degree Centrality		correlation with privacy score

Table B.1: An example table.

Bibliography

Others

- [1] Fayssal Bendaoud, Marwen Abdennebi, and Fedoua Didi. "Network Selection in Wireless Heterogeneous Networks: A Survey". In: *Journal of Telecommunications and Information Technology* 4 (Jan. 2019). 00000, pp. 64–74 (p. 3).
- [2] Atefeh Meshinchi. " QOS-Aware and Status-Aware Adaptive Resource Allocation Framework in SDN-Based IOT Middleware ". 00000. masters. École Polytechnique de Montréal, May 2018 (p. 4).
- [3] Abishi Chowdhury and Shital A. Raut. " A Survey Study on Internet of Things Resource Management ". In: *Journal of Network and Computer Applications* 120 (Oct. 15, 2018). 00002, pp. 42–60 (p. 4).
- [4] Zhijing Qin et al. " A Software Defined Networking Architecture for the Internet-of-Things". In: 2014 IEEE Network Operations and Management Symposium (NOMS). NOMS 2014 2014 IEEE/IFIP Network Operations and Management Symposium. 00258. Krakow, Poland: May 2014, pp. 1–9 (p. 7).
- [5] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke. "A Survey on Software-Defined Wireless Sensor Networks: Challenges and Design Requirements". In: *IEEE Access* 5 (2017). 00135, pp. 1872–1899 (p. 7).
- [6] Musa Ndiaye, Gerhard Hancke, and Adnan Abu-Mahfouz. "Software Defined Networking for Improved Wireless Sensor Network Management: A Survey". In: 17.5 (May 4, 2017). 00053, p. 1031 (p. 7).
- [7] Samaresh Bera, Sudip Misra, and Athanasios V. Vasilakos. "Software-Defined Networking for Internet of Things: A Survey". In: *IEEE Internet of Things Journal* 4.6 (Dec. 2017). 00057, pp. 1994–2008 (p. 7).
- [8] Tie Luo, Hwee-Pink Tan, and Tony Q. S. Quek. "Sensor OpenFlow: Enabling Software-Defined Wireless Sensor Networks". In: *IEEE Communications Letters* 16.11 (Nov. 2012). 00341, pp. 1896–1899 (p. 7).
- [9] Salvatore Costanzo et al. "Software Defined Wireless Networks (SDWN): Unbridling SDNs ". In: (2012). 00181, p. 25 (p. 7).
- [10] Laura Galluccio et al. "SDN-WISE: Design, Prototyping and Experimentation of a Stateful SDN Solution for WIreless SEnsor Networks". In: 2015 IEEE Conference on Computer Communications (INFOCOM). IEEE INFOCOM 2015 - IEEE Conference on Computer Communications. 00173. Kowloon, Hong Kong; Apr. 2015, pp. 513–521 (p. 7).
- [11] Short Term Traffic Prediction Models. 00000. 2007 (p. 9).
- [12] Pierre Merdrignac. " Système Coopératif de Perception et de Communication Pour La Protection Des Usagers Vulnérables ". In: (2015). 00003, p. 253 (p. 11, 12).

- [13] Ala Al-Fuqaha et al. " Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications ". In: *IEEE Communications Surveys & Tutorials* 17.4 (24–2015). 02482, pp. 2347–2376 (p. 11, 28, 31).
- [14] Mattia Rizzi et al. "Evaluation of the IoT LoRaWAN Solution for Distributed Measurement Applications ". In: *IEEE Transactions on Instrumentation and Measurement* 66.12 (Dec. 2017). 00000, pp. 3340–3349 (p. 15).
- [15] Luca Feltrin et al. "LoRaWAN: Evaluation of Link- and System-Level Performance". In: *IEEE Internet of Things Journal* 5.3 (June 2018). 00000, pp. 2249–2258 (p. 15).
- [16] Enrique Alba. " Intelligent Systems for Smart Cities ". In: *Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion GECCO '16 Companion.* The 2016. 00004. Denver, Colorado, USA: ACM Press, 2016, pp. 823–839 (p. 15).
- [17] Djamel Eddine Kouicem, Abdelmadjid Bouabdallah, and Hicham Lakhlef. " Internet of Things Security: A Top-down Survey ". In: *Computer Networks* 141 (Aug. 4, 2018). 00029, pp. 199–221 (p. 16).
- [18] Gerhard Hancke, Bruno Silva, and Gerhard Hancke Jr. " The Role of Advanced Sensing in Smart Cities ". In: 13.1 (Dec. 27, 2012). 00318, pp. 393–425 (p. 17).
- [19] Aloßs Augustin et al. " A Study of LoRa: Long Range & Low Power Networks for the Internet of Things ". In: 16.9 (Sept. 9, 2016). 00373, p. 1466 (p. 23).
- [20] Sérgio I. Lopes et al. " Design of Compact LoRa Devices for Smart Building Applications ". In: *Green Energy and Networking*. Ed. by João L. Afonso, Vítor Monteiro, and José Gabriel Pinto. Vol. 269. 00000. Cham: Springer International Publishing, 2019, pp. 142–153 (p. 24).
- [21] H. A. A. Al-Kashoash and Andrew H. Kemp. "Comparison of 6LoWPAN and LPWAN for the Internet of Things". In: *Australian Journal of Electrical and Electronics Engineering* 13.4 (Oct. 2016). 00010, pp. 268–274 (p. 26).
- [22] Usman Raza, Parag Kulkarni, and Mahesh Sooriyabandara. "Low Power Wide Area Networks: An Overview". In: *IEEE Communications Surveys & Tutorials* 19.2 (22–2017). 00000, pp. 855–873 (p. 27).
- [23] Usman Sarwar. " IoT Architecture : Elements of Connectivity Technologies ". In: (2015). 00000, p. 23 (p. 28).
- Évaluation et Amélioration Des Plates-Formes Logicielles Pour Réseaux de Capteurs sans-Fil, Pour Optimiser La Qualité de Service et l'énergie. 00000. URL: http://docnum.univlorraine.fr/public/DDOC_T_2016_0051_ROUSSEL.pdf (visited on 04/17/2019) (p. 24).
- [25] Johan Bregell. "Hardware and Software Platform for Internet of Things". In: *Master of Science Thesis in Embedded Electronic System Design* (2015). 00002 (p. 31, 37).
- [26] Contiki Applications for Z1 Motes for 6LowPAN. 00000. 2016. URL: https://upcommons.upc.edu/bitstream/handle/2117/82767/Master%20Thesis.pdf?sequence=1&isAllowed=y (visited on 01/14/2019) (p. 39).
- [27] Pascal Thubert, Maria Rita Palattella, and Thomas Engel. "6TiSCH Centralized Scheduling: When SDN Meet IoT". In: 2015 IEEE Conference on Standards for Communications and Networking (CSCN). 2015 IEEE Conference on Standards for Communications and Networking (CSCN). 00033. Tokyo, Japan: Oct. 2015, pp. 42–47 (p. 51).