

SPATII EUCLIDIENE

1. Să se calculeze produsul scalar al vectorilor:

- $\vec{v}_1 = (1, 3, -3, 4)$, $\vec{v}_2 = (4, -5, 3, 1)$ în \mathbb{R}^4 ;
- $\vec{w}_1 = (3, 2, -4, 0, 1)$, $\vec{w}_2 = (-1, 1, -1, 4, -3)$ în \mathbb{R}^5 ;
- $A = \begin{pmatrix} -1 & 2 \\ 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 2 \\ -2 & 1 \end{pmatrix}$ în $M_2(\mathbb{R})$,

considerând că spațiile \mathbb{R}^4 și \mathbb{R}^5 sunt înfestrate cu produsul scalar standard (canonic), iar produsul scalar în spațiu vectorial $M_2(\mathbb{R})$ al matricelor patratica de ordinul doi este data

$$A \cdot B = \text{tr}(A^T B) = \sum_{i=1}^2 \sum_{k=1}^2 A_{ki} B_{ki}, \text{ oricare ar fi matricele } A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \text{ și } B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \text{ cu elementele numerice reale, prin "tr" înțelegând urma matricei date paranteze, adică suma elementelor de pe diagonala principală a matricei produs } A^T B.$$

Răspuns. a) $\vec{v}_1 \cdot \vec{v}_2 = -16$; b) $\vec{w}_1 \cdot \vec{w}_2 = 0$; c) $A \cdot B = 7$.

2. În spațiu euclidian \mathbb{R}^2 prevăzut cu produsul scalar standard (canonic sau ușor) se consideră vectorii $\vec{v}_1 = (1, 2\alpha)$ și $\vec{v}_2 = (\beta, -2)$, $\alpha, \beta \in \mathbb{R}$.

Când cei doi vectori formează o bază ortogonală? Fiecare $\alpha = \beta = 1$ să se arate că cei doi vectori au lungimile egale (normele gal).

Răspuns. Se impune condiția $\vec{v}_1 \cdot \vec{v}_2 = 0 \Rightarrow \beta = 4\alpha$. Fiecare $\alpha = \beta = 1 \Rightarrow \|\vec{v}_1\| = \|\vec{v}_2\| = \sqrt{5}$.

3. Fie vectorii din \mathbb{R}^3 :

a) $\vec{v}_1 = (1, -1, 1)$, $\vec{v}_2 = (0, 1, 1)$, $\vec{v}_3 = (\alpha, \beta, -1)$, $\alpha, \beta \in \mathbb{R}$;

b) $\vec{w}_1 = (1, 0, -1)$, $\vec{w}_2 = (1, \lambda, 1)$, $\vec{w}_3 = (1, 2, \mu)$, $\lambda, \mu \in \mathbb{R}$.

Pentru ce valori ale parametrilor reali α, β , respectiv λ, μ vectorii sistemului $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$, respectiv $\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ sunt ortogonali doi căte doi?

Răspuns. a) $\alpha = 2$, $\beta = 1$; b) $\lambda = -1$, $\mu = 1$.

4. Să se arate că aplicația $\cdot : \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}$, definită prin

(*) $\vec{x} \cdot \vec{y} = x_1 y_1 + x_1 y_2 + x_2 y_1 + 2x_2 y_2$, unde

$\vec{x} = (x_1, x_2)_{\mathcal{B}}$, $\vec{y} = (y_1, y_2)_{\mathcal{B}}$ iar $\mathcal{B} = \{\vec{e}_1, \vec{e}_2\}$ este o bază oricare (nu neapărat cea canonică) din \mathbb{R}^2 , este un produs scalar pe (\mathbb{R}^2) \mathbb{R}^2 .

In spațiul euclidean (\mathbb{R}^2, \cdot) , unde produsul scalar este cel de mai sus, să se calculeze produsul scalar al vectorilor $\vec{x} = (1, 1)_{\mathcal{B}}$, $\vec{y} = (-3, 2)_{\mathcal{B}}$, normele (lungimile) acestora, precum și unghiul dintre ei.

Răspuns. Se arată că aplicația (*) satisfacă axiomele din definitia producătorului scalar pe un spațiu vectorial real (vezi notite ans). Apoi,

$$\vec{x} \cdot \vec{y} = 4; \|\vec{x}\| = \sqrt{5}; \|\vec{y}\| = \sqrt{5}; \cos(\hat{\vec{x}}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}$$

$$= \frac{4}{\sqrt{5} \sqrt{5}} = \frac{4}{5}.$$

pagina nr. 3
TEMA NR. 3

5. Să se arate că vectorii $\vec{f}_1 = (1, 1, -1)$, $\vec{f}_2 = (-1, 1, 1)$ și $\vec{f}_3 = (1, 0, 1)$ sunt linial independenți și apoi ortonormate baza formată în acestia în \mathbb{R}^3 .

Rezolvare. Pentru independenta linială a sistemului de vectori $\beta' = \{\vec{f}_1, \vec{f}_2, \vec{f}_3\}$ scriem matricea C de trecere de la baza canonică $\beta = \{\vec{e}_1 = (1, 0, 0), \vec{e}_2 = (0, 1, 0), \vec{e}_3 = (0, 0, 1)\}$ din \mathbb{R}^3 la sistemul β' . Avem "schema"

$$\beta \xrightarrow{C} \beta'$$

și se stie că matricea C are pe coloane coordonatele vectorilor $\vec{f}_1, \vec{f}_2, \vec{f}_3$ în baza β .

Deci

$$C = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$

Se stie de axmenecă β' este baza în $\mathbb{R}^3 \Leftrightarrow \det C \neq 0$.

Amenecă $\det C = 4 \neq 0 \Rightarrow \beta'$ este baza în \mathbb{R}^3 .

De la sistemul de vectori β' trecem la sistemul de vectori $\beta'' = \{\vec{g}_1, \vec{g}_2, \vec{g}_3\}$ ai căror vectori dorim să fie ortogonali doi căte doi. Nu ne împiedică nimic să lucram

$$\left\{ \begin{array}{l} \vec{g}_1 = \vec{f}_1 \\ \vec{g}_2 = \vec{f}_2 - \alpha_{21} \vec{g}_1 \\ \vec{g}_3 = \vec{f}_3 - \alpha_{31} \vec{g}_1 - \alpha_{32} \vec{g}_2 \end{array} \right.$$

În punând condițiile: $\vec{g}_1 \perp \vec{g}_2$ și $\vec{g}_1 \perp \vec{g}_3, \vec{g}_2 \perp \vec{g}_3$

pagina m. 4

TEMA NR 3

Din prima condiție obținem $\alpha_{21} = \frac{\vec{f}_2 \cdot \vec{f}_1}{\|\vec{f}_1\|^2}$
 $= \frac{-1}{3} = -\frac{1}{3} \Rightarrow \vec{g}_2 = \vec{f}_2 + \frac{1}{3}\vec{f}_1 = (-1, 1, 1) +$

$$+ \left(\frac{1}{3}, \frac{1}{3}, -\frac{1}{3}\right) = \left(-\frac{2}{3}, \frac{4}{3}, \frac{2}{3}\right)$$

$$\vec{g}_2 = \left(-\frac{2}{3}, \frac{4}{3}, \frac{2}{3}\right) = \frac{2}{3}(1, 2, 1)$$

$$\text{Rezulta } \|\vec{g}_2\| = \frac{2}{3} \sqrt{(-1)^2 + 2^2 + 1^2} = \frac{2}{3}\sqrt{6}.$$

Impunând condițile de ortogonalitate
 $\vec{g}_1 \perp \vec{g}_2 (\vec{g}_1 \cdot \vec{g}_2 = 0)$ și $\vec{g}_1 \perp \vec{g}_3 (\vec{g}_1 \cdot \vec{g}_3 = 0)$, obținem

$$\alpha_{31} = \frac{\vec{f}_3 \cdot \vec{f}_1}{\|\vec{f}_1\|^2} \quad \alpha_{32} = \frac{\vec{f}_3 \cdot \vec{g}_2}{\|\vec{g}_2\|^2} \Rightarrow$$

$$\alpha_{31} = \frac{0}{\|\vec{f}_1\|^2} = 0, \quad \alpha_{32} = \frac{0}{\|\vec{g}_2\|^2} = 0,$$

prin urmare $\vec{g}_3 = \vec{f}_3$ și $\|\vec{f}_3\| = \|\vec{g}_3\| = \sqrt{2}$.

Vectorii $\{\vec{g}_1, \vec{g}_2, \vec{g}_3\}$ sunt ortogonali
 ai către doi, mai multe au normele egale
 cu unitatea din \mathbb{R} ; $\|\vec{g}_1\| = \|\vec{f}_1\| = \sqrt{3}$;

$$\|\vec{g}_2\| = \frac{2}{3}\sqrt{6} \text{ și } \|\vec{g}_3\| = \|\vec{f}_3\| = \sqrt{2}.$$

Trecem la sistemul de vectori
 ortonormalat prin $\vec{u}_1 = \frac{\vec{g}_1}{\|\vec{g}_1\|}$, $\vec{u}_2 = \frac{\vec{g}_2}{\|\vec{g}_2\|}$ și
 $\vec{u}_3 = \frac{\vec{g}_3}{\|\vec{g}_3\|}$. Obținem

$$\begin{cases} \vec{u}_1 = \frac{1}{\sqrt{3}}(1, 1, -1) = \frac{1}{\sqrt{3}}\vec{e}_1 + \frac{1}{\sqrt{3}}\vec{e}_2 - \frac{1}{\sqrt{3}}\vec{e}_3 \\ \vec{u}_2 = \frac{1}{\sqrt{6}}(-1, 2, 1) = -\frac{1}{\sqrt{6}}\vec{e}_1 + \frac{2}{\sqrt{6}}\vec{e}_2 + \frac{1}{\sqrt{6}}\vec{e}_3 \\ \vec{u}_3 = \frac{1}{\sqrt{2}}(1, 0, 1) = \frac{1}{\sqrt{2}}\vec{e}_1 + \frac{1}{\sqrt{2}}\vec{e}_3 \end{cases}$$

Să se verifice că matricea de trecere de la
 baza canonică din \mathbb{R}^3 la sistemul de vectori $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ este ortogonală

6. Determinați valorile lui $\lambda \in \mathbb{R}$ pentru care vectorii $\vec{f}_1 = (1, 1, 0)$, $\vec{f}_2 = (1, -1, 0)$, $\vec{f}_3 = (0, 0, \lambda)$ formează o bază în \mathbb{R}^3 .

Pentru $\lambda = 1$, ortonormată baza respectivă

Răspuns. $\lambda \in \mathbb{R}^* = \mathbb{R} \setminus \{0\}$.

Bază ortonormată care se va găsi plecând de la baza (λ ia $\lambda = 1$)

$$\vec{f}_1 = (1, 1, 0), \vec{f}_2 = (1, -1, 0), \vec{f}_3 = (0, 0, 1)$$

este

$$\vec{u}_1 = \frac{1}{\sqrt{2}} (1, 1, 0) = \frac{1}{\sqrt{2}} \vec{e}_1 + \frac{1}{\sqrt{2}} \vec{e}_2$$

$$\vec{u}_2 = \frac{1}{\sqrt{2}} (1, -1, 0) = \frac{1}{\sqrt{2}} \vec{e}_1 - \frac{1}{\sqrt{2}} \vec{e}_2$$

$$\vec{u}_3 = (0, 0, 1) = \vec{e}_3.$$

Observație Bază $\beta' = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ (care este ortonormată) se obține din baza canonică $\beta = \{\vec{e}_1 = (1, 0, 0), \vec{e}_2 = (0, 1, 0), \vec{e}_3 = (0, 0, 1)\}$, de același ortonormată, printr-o rotație de 45° în jurul lui \vec{e}_3 și care după cum se vede din răspuns rămâne neschimbat în procesul de ortonormare.

7. Arătați că vectorii $\vec{f}_1 = (1, 1, 0)$, $\vec{f}_2 = (1, -2, 0)$ și $\vec{f}_3 = (0, 0, 1) = \vec{e}_3$ formează o bază în \mathbb{R}^3 .

Ortonormată baza respectivă.

Răspuns. $\vec{g}_1 = \vec{f}_1$; $\vec{g}_2 = \vec{f}_2 - \alpha_{21} \vec{g}_1 = (3, -3, 0)$, $\vec{g}_3 = \vec{f}_3$,

iar baza ortonormală este $\vec{u}_1 = \frac{1}{\sqrt{2}} (1, 1, 0)$, $\vec{u}_2 = \frac{1}{3\sqrt{2}} (3, -3, 0)$, $\vec{u}_3 = \vec{e}_3$.

8. Se se determine condiția în care vectorii $\vec{f}_1 = (1, 1, \lambda)$, $\vec{f}_2 = (1, \lambda, 1)$, $\vec{f}_3 = (\mu, 1, 1)$ formează o bază în \mathbb{R}^3 . Pentru $\lambda = -1$ și $\mu = 0$ să fie ortognaze baza respectivă.

Răspuns. $(\lambda - 1)[\mu(\lambda + 1) - 2] \neq 0$. Baza ortonormală este $\vec{u}_1 = \frac{1}{\sqrt{3}} (1, 1, -1)$, $\vec{u}_2 = \frac{1}{\sqrt{6}} (2, -1, 1)$, $\vec{u}_3 = \frac{1}{\sqrt{2}} (0, 1, 1)$.

9. a) Să se arate că dacă norma unui vector provine dintr-un produs scalar și $\|\vec{x}\| = \|\vec{y}\|$ atunci $(\vec{x} - \vec{y}) \perp (\vec{x} + \vec{y})$. b) Explicați rezultatul.

Răspuns a) Se arată că $(\vec{x} - \vec{y})(\vec{x} + \vec{y}) = \|\vec{x}\|^2 - \|\vec{y}\|^2 = 0$

b) Într-un "romb" diagonalele sunt perpendiculare. Vedeți desenul din stânga.

10. Să se arate că dacă $\|\vec{x}\| = \sqrt{(\vec{x}, \vec{x})}$, unde prin (\vec{x}, \vec{y}) am notat produsul scalar al vectorilor \vec{x} și \vec{y} dintr-un spațiu vectorial euclidian real, iar $\|\vec{x}\|$ este norma (lungimea) vectorului \vec{x} , atunci

$$(\vec{x}, \vec{y}) = \frac{1}{2} (\|\vec{x} + \vec{y}\|^2 - \|\vec{x}\|^2 - \|\vec{y}\|^2)$$

Dăți o interpretare geometrică rezultatului.

Răspuns. Studiați desenul

și amintiți-vă de teorema comunii.

11. Să se demonstreze că într-un spațiu euclidian real V au loc egalitățile $\|\vec{x} + \vec{y}\|^2 + \|\vec{x} - \vec{y}\|^2 = 2(\|\vec{x}\|^2 + \|\vec{y}\|^2)$.

Să se dea o interpretare geometrică rezultatului.

Răspuns Studiați desenul. Ce figură geometrică reprezintă ABCD?

