

Do Race and Income play a factor in Air Pollution Exposure?

- Which racial/ethnic group is most/least affected by air pollution?
- Which city has the most/least disparities in access to clean air, across racial groups?
- Is this disparity also present across income groups?

We answer these questions for 3 major cities in California:

- San Diego
- San Francisco
- Los Angeles

We select cities in California as no race constitutes a majority of it's population ^[2]

Quantizing the Relationship between Racial groups, Income, and Air Pollution

		_									
			Population			Mean Concentration					
Census Tract	Median Household Income	White	Black	American Indian	Asian	Pacific Islander	Other Race	NO2	со	Aerosol	City
1											San Diego
2											Los Angeles
3						A			A		San Francisco
•		•	•	•							

• For each city, we calculate the correlation between the population of 6 different racial groups and the mean NO₂, CO, and Aerosol concentrations at the census tract level using the Pearson's r coefficient.

2019 ACS Data Census Tract Level Zonal Statistics of Google Earth Engine Spatial Estimates (2019 average) *

^{*} Process of getting this data is described in next slide

Average Air Pollution in each Census Tract

Census Tract Level Zonal Statistics of Google Earth Engine (2019 average) Spatial Estimates *

Air Pollution - Spatial Distribution

Elasticities between Income & Pollution

	Pollution				
	NO2 CO Aerosol				
San Diego	-0.4765	-0.4264	-0.5452		
San Francisco	-0.0194	-0.0696	0.3145		
Los Angeles	-0.4827	-0.4556	-0.5528		

- Aerosol content is significantly higher in high income neighborhoods than low income neighborhoods, only in San Francisco.
- San Francisco doesn't show strong trends like Los Angeles and San Diego. This might be because it is much smaller in area, and thus has lesser variance in pollution content.

Elasticities between Population of a Race and Pollution

White Population

	NO2	со	Aerosol
San Diego	-0.0495	-0.1192	-0.1258
San Francisco	-0.0598	0.1369	0.2644
Los Angeles	-0.39835	-0.3806	-0.31886

Black or African American Population

	NO2	со	Aerosol
San Diego	0.5245	0.3137	0.4267
San Francisco	0.2973	0.01806	-0.1056
Los Angeles	0.1759	0.1523	0.0604

American Indian & Alaska Native Population

	NO2	СО	Aerosol
San Diego	0.0603	-0.1596	0.0089
San Francisco	0.1507	0.1153	0.0456
Los Angeles	0.2144	0.1386	0.1069

Asian Population

	NO2	со	Aerosol
San Diego	-0.0966	-0.1991	-0.1161
San Francisco	-0.0235	-0.0985	0.1184
Los Angeles	-0.0566	0.0017	0.0329

Native Hawaiian & Other Pacific Islander Population

	NO2	СО	Aerosol
San Diego	0.1117	0.0075	0.0521
San Francisco	0.1081	-0.0742	-0.1423
Los Angeles	0.0041	-0.0164	0.0035

Other Race Population

	NO2	СО	Aerosol
San Diego	0.4356	0.2235	0.3481
San Francisco	0.3506	-0.2342	0.0849
Los Angeles	0.3718	0.3357	0.5115

Why do these disparities exist?

- Groups may face greater exposure to pollution because of factors like:
 - Systemic racism
 - Class bias
 - Housing market dynamics and land costs.
- **Redlining:** Residents in neighborhoods historically plagued by redlining are more than twice as likely to go to the emergency room for asthma.
- **Existing health conditions** or traits may predispose racial/income groups to greater health risk.

Key Findings

- Black, American Indian and Other race populations have a positive relationship with pollution while white and asian population contrastingly have a negative one.
- There could be a strong positive correlation between NO₂ emissions and Income as their primary source is through burning of fossil fuels.
- Aerosol content is significantly higher in high income neighborhoods than low income neighborhoods, only in San Francisco.
- San Francisco doesn't show strong trends like Los Angeles and San Diego. This might be because it is much smaller in area, and thus has lesser variance in pollution content.

Strategies for Climate Justice

References

- 1. https://www.hsph.harvard.edu/news/press-releases/racial-ethnic-minorities-low-income-groups-u-s-air-pollution/
- 2. https://www.ppic.org/publication/californias-population/
- 3. https://www.usatoday.com/story/news/nation/2019/03/11/air-pollution-inequality-minorities-breathe-air-polluted-whites/3130783002/
- 4. Li, Yiting, et al. "Adoption of low-carbon fuels reduces race/ethnicity disparities in air pollution exposure in California." *Science of The Total Environment* (2022): 155230.
- 5. Lane, Haley M., et al. "Historical Redlining Is Associated with Present-Day Air Pollution Disparities in US Cities." *Environmental Science & Technology Letters* 9.4 (2022): 345-350.
- 6. Masri, Shahir, et al. "Disproportionate impacts of wildfires among elderly and low-income communities in California from 2000–2020." *International journal of environmental research and public health* 18.8 (2021): 3921.
- 7. Bell ML, Ebisu K. Environmental inequality in exposures to airborne particulate matter component in the United States. Environ Health Perspect. 2012; 120: 1699–1704.
- 8. https://www.unep.org/resources/report/actions-air-quality-global-summary-policies-and-programmes-reduce-air-pollution

APPENDIX

Code

```
cities=["Los Angeles", "San Diego", "San Francisco"]
    for i,df in enumerate([LA, SD, SF]):
      print(cities[i], " : Income \n")
      print("NO2: ", pearsonr(list(df['B19049e1']), list(df['NO2 mean']))[0])
      print("CO: ", pearsonr(list(df['B19049e1']), list(df['CO_mean']))[0])
      print("Aerosol: ", pearsonr(list(df['B19049e1']), list(df['AE_mean']))[0])
      print()
10
      print(cities[i], " : Race - White \n")
11
12
      print("NO2: ", pearsonr(list(df['B02001e2']), list(df['NO2 mean']))[0])
13
      print("CO: ", pearsonr(list(df['B02001e2']), list(df['CO mean']))[0])
14
      print("Aerosol: ", pearsonr(list(df['B02001e2']), list(df['AE_mean']))[0])
15
      print()
16
      print(cities[i], " : Race - Black or African American \n")
17
18
      print("NO2: ", pearsonr(list(df['B02001e3']), list(df['N02 mean']))[0])
19
      print("CO: ", pearsonr(list(df['B02001e3']), list(df['CO mean']))[0])
20
      print("Aerosol: ". pearsonr(list(df['B02001e3']), list(df['AE mean']))[0])
21
      print()
22
23
      print(cities[i], " : Race - American Indian and Alaska Native")
24
      print("NO2: ", pearsonr(list(df['B02001e4']), list(df['N02 mean']))[0])
25
      print("CO: ", pearsonr(list(df['B02001e4']), list(df['CO mean']))[0])
26
      print("Aerosol: ", pearsonr(list(df['B02001e4']), list(df['AE_mean']))[0])
27
      print()
28
29
      print(cities[i], " : Race - Asian \n")
30
      print("NO2: ", pearsonr(list(df['B02001e5']), list(df['NO2 mean']))[0])
31
      print("CO: ", pearsonr(list(df['B02001e5']), list(df['CO mean']))[0])
32
      print("Aerosol: ", pearsonr(list(df['B02001e5']), list(df['AE mean']))[0])
33
      print()
34
35
      print(cities[i], ": Race - Native Hawaiian and other Pacific Islander Alone \n")
36
      print("NO2: ", pearsonr(list(df['B02001e6']), list(df['NO2 mean']))[0])
37
      print("CO: ", pearsonr(list(df['B02001e6']), list(df['CO mean']))[0])
38
      print("Aerosol: ", pearsonr(list(df['B02001e6']), list(df['AE_mean']))[0])
39
      print()
```

```
var co = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CO')
  .filterBounds(ROI)
  .select('CO column number density')
  .filterDate(t1 1, t1 2)
  .mean()
  .clip(ROI):
var aerosol = ee.ImageCollection('COPERNICUS/S5P/NRTI/L3 AER AI')
  .filterBounds(ROI)
  .select('absorbing aerosol index')
  .filterDate(t1 1, t1 2)
  .mean()
  .clip(ROI);
var no2 = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3 NO2')
  .filterBounds(ROI)
  .filterDate(t1 1, t1 2)
  .select('tropospheric_NO2_column_number_density')
  .mean()
  .clip(ROI);
```