

Architecting the Neural Network for CVS Health

February 12, 2025

PRESENTED BY: TEAM 17

Daryn Imashev, Gillis Wang, Isabella Chen, Nikita Suryawanshi, Jackson Sui

Intro of the connectionist approach

Well-suited source of value

Architect the neural network

Challenges

CONNECTIONISM MODELS

Artificial neural networks inspired by biological brain structure.

Distributed Parallel Processing

Information flows through interconnected nodes(artificial neurons)

Adaptive Learning

Modifies connection weights through exposure to data

Emergent Behavior

Complex capabilities arise from simple unit interactions

Connectionism

FRAUD DETECTION SYSTEM IN CVS

Financial Protection and Risk Mitigation

Briefly elaborate on the proposed recommendation

Customer Trust and Data Security

Briefly elaborate on the proposed recommendation

Adaptive and Intelligent Fraud Prevention

Briefly elaborate on the proposed recommendation

OPTIMIZING FRAUD PREVENTION THROUGH NEURAL NETWORK DYNAMICS

Pattern Recognition

- Core Detection Capability:
 Fraud detection systems
 require identification of
 complex patterns and
 anomalies across massive
 transactional datasets.
- Architectural Advantage:

 Connectionist approaches
 demonstrate superior
 performance to traditional
 method.

Adaptive Learning

- Evolving Threat Challenge:
 Fraud patterns demonstrate
 constant mutation, requiring
 detection system to continuously
 update their recognition
 parameters.
- Dynamic Learning Response:
 Connectionist architectures
 automatically retrain on
 emerging fraud signatures,
 maintaining detection efficacy
 where rigid rule-based systems
 fail.

Data Rich Environment

- Scalability Imperative: Fraud detection systems must process exponentially growing transactional data streams with increasing dimensionality.
- Architectural Optimization:
 Connectionist frameworks
 inherently scale with data
 volume, leveraging distributed
 representations to extract
 predictive signals from noisedense environments.

NEURAL NETWORK ARCHITECTURE FOR CVS FRAUD DETECTION

Phase 1: Input data and preprocess

Preprocessing standardizes structured and unstructured data (prescription records, purchase histories, staff annotations) through normalization, embeddings, and sequential encoding.

Phase 2: Processing

Analyzes temporal anomalies in structured data, flags suspicious language patterns in unstructured text, and tracks sequential behaviors across multiple locations to identify potential fraud.

Phase 3: Output

Identify the likelihood of fraud and combine all the data to produce a fraud risk score.

MITIGATE THE KEY CHALLENGES

Class Imbalance	Focal Loss for Hard-to-Classify Cases	Weight fraud instances higher than legitimate transactions, aligning with CVS's historical fraud rates.
Evolving Fraud Tactics	Online Learning with Memory Replay	Retrain the neural network weekly using CVS's centralized fraud database, incorporating new attack patterns.
Real Time Constraints	Training a Smaller, Faster Model (Model Distillation)	CVS runs a faster, optimized version that can quickly analyze transactions and detect frauds.
Regulatory Compliance	Add a Layer of Privacy During Training	Add some noise during training to obscure individual patient data while retaining fraud detection capabilities.

Thank you for listening!

Do you have any questions?

