TIPO A: RADEMACHER/BERNOULLI (95% dei casi)

STEP 0: RICONOSCI IL TIPO

- **RADEMACHER:** $P(\xi_i = +1) = P(\xi_i = -1) = 1/2$
- **BERNOULLI:** $P(\xi_i = 1) = P(\xi_i = 0) = 1/2$

NUMERI MAGICI DA MEMORIZZARE:

RADEMACHER: $E[\xi_i] = 0$, $E[\xi_i^2] = 1$, $Var(\xi_i) = 1$, $\xi_i^2 = 1$ **SEMPRE BERNOULLI:** $E[\xi_i] = 1/2$, $E[\xi_i^2] = 1/2$, $Var(\xi_i) = 1/4$, $\xi_i^2 = \xi_i$ **SEMPRE**

PUNTO (i) - ALGORITMO MECCANICO:

STEP 1: Scrivi X = ... e Y = ... **STEP 2:** Calcola E[X]

- Sviluppa $X = \xi_1 \pm \xi_2 \pm ...$
- Applica $E[\xi_1 \pm \xi_2] = E[\xi_1] \pm E[\xi_2]$
- Sostituisci E[ξ_i] = 0 (Rademacher) o 1/2 (Bernoulli)

STEP 3: Calcola E[X2]

- Sviluppa $X^2 = (\xi_1 \pm \xi_2 \pm ...)^2$
- **TRUCCO**: $\xi_i^2 = 1$ (Rademacher) o ξ_i (Bernoulli)
- TRUCCO: E[ξ_i·ξ_i] = 0 (Rademacher) o 1/4 (Bernoulli) se i≠j

STEP 4: $Var(X) = E[X^2] - E[X]^2$ STEP 5: Ripeti per Y

PUNTO (ii) - ALGORITMO MECCANICO:

STEP 1: $Cov(X,Y) = E[X \cdot Y] - E[X] \cdot E[Y]$ **STEP 2:** Calcola X·Y (moltiplica le espressioni) **STEP 3:** Applica $E[X \cdot Y]$ sviluppando tutti i prodotti **STEP 4:** Se $Cov(X,Y) = 0 \rightarrow$ INDIPENDENTI, altrimenti NO

PUNTO (iii) - ALGORITMO MECCANICO:

STEP 1: Elenca TUTTI i valori possibili:

- Rademacher: ξ_i ∈ {-1, +1}
- Bernoulli: $\xi_i \in \{0, 1\}$

STEP 2: Costruisci tabella:

STEP 3: Per ogni riga calcola X e Y **STEP 4:** Raggruppa per coppie (X,Y) e somma le probabilità

TIPO B: INDICATRICI DI COPPIE

Setup: X, Y indipendenti a valori in $\{0,1\}$, $Z = a \cdot 1_{(0,0)}(X,Y) + b \cdot 1_{(0,1),(1,0)}(X,Y) + c \cdot 1_{(1,1)}(X,Y)$

FORMULE BASE:

- P(X=0) = 1-p, P(X=1) = p
- P(Y=0) = 1-q, P(Y=1) = q
- P(X=i,Y=j) = P(X=i)·P(Y=j) (indipendenza)

SCHEMA PUNTI (i), (ii), (iii):

(i) E[Z] in termini di p, q:

- $E[Z] = a \cdot P(X=0,Y=0) + b \cdot [P(X=0,Y=1) + P(X=1,Y=0)] + c \cdot P(X=1,Y=1)$
- $E[Z] = a \cdot (1-p) \cdot (1-q) + b \cdot [(1-p) \cdot q + p \cdot (1-q)] + c \cdot p \cdot q$
- (ii) Var[Z] in termini di p, q:
 - $E[Z^2] = a^2 \cdot (1-p) \cdot (1-q) + b^2 \cdot [(1-p) \cdot q + p \cdot (1-q)] + c^2 \cdot p \cdot q$
 - $Var(Z) = E[Z^2] E[Z]^2$
- (iii) Calcolo numerico con valori specifici

TIPO C: SUCCESSIONI MIN/MAX

Setup: $(X_i)_i \in \mathbb{N}$ i.i.d. ~ $Exp(\lambda)$, $M_n = min\{X_1,...,X_n\}$ (o max)

FORMULE FONDAMENTALI:

- $\mathbf{F}_1(\mathbf{x}) = (\mathbf{1} \mathbf{e}^{\wedge}(-\lambda \mathbf{x})) \cdot \mathbf{1}_{(0}, \infty)(\mathbf{x})$ (CDF esponenziale)
- $P(X_1 > x,...,X_n > x) = [P(X_1 > x)]^n = [1-F_1(x)]^n$

SCHEMA PUNTI (i), (ii), (iii):

(i) Esprimere $P(X_1 > x,...,X_n > x)$:

• =
$$\prod_{i=1}^{n} P(X_i > x) = [1-F_1(x)]^n$$

(ii) Calcolare F_n:

- **Per MIN:** $F_n(x) = P(M_n \le x) = 1 P(M_n > x) = 1 [1-F_1(x)]^n$
- **Per MAX:** $G_n(x) = P(M_n \le x) = [F_1(x)]^n$

(iii) Convergenza in distribuzione:

• Dimostrare che $F_n(x) \to G(x)$ per qualche G

TIPO D: TRASFORMAZIONE UNIFORME

Setup: $\xi \sim \text{Unif}[0,1]$, trova $\Psi:[0,1] \to \mathbb{R}$ tale che $Y = \Psi(\xi)$ abbia distribuzione data

METODO INVERSO:

- 1. **Definisci intervalli:** $[0, p_1)$, $[p_1, p_1+p_2)$, ..., dove $p_i = P(Y = y_i)$
- 2. Costruisci Ψ:
 - $\Psi(u) = y_1 \text{ se } u \in [0, p_1)$
 - $\Psi(u) = y_2 \text{ se } u \in [p_1, p_1 + p_2)$
 - ...

RICETTE MECCANICHE:

QUANDO VEDI $(\xi_1 - \xi_2)^2$:

- Rademacher: = ξ_1^2 $2\xi_1\xi_2$ + ξ_2^2 = 1 $2\xi_1\xi_2$ + 1 = 2 $2\xi_1\xi_2$
- Bernoulli: = $\xi_1 2\xi_1\xi_2 + \xi_2$

QUANDO VEDI $\xi_1 \cdot \xi_2$ (con i \neq j):

- Rademacher: $E[\xi_1 \cdot \xi_2] = E[\xi_1] \cdot E[\xi_2] = 0 \cdot 0 = 0$
- Bernoulli: $E[\xi_1 \cdot \xi_2] = E[\xi_1] \cdot E[\xi_2] = 1/2 \cdot 1/2 = 1/4$

QUANDO VEDI $\xi_1 \cdot (\xi_1 + \xi_2)$:

• Sempre: = $\xi_1^2 + \xi_1 \xi_2$

- Rademacher: = $1 + \xi_1 \xi_2$
- Bernoulli: = $\xi_1 + \xi_1 \xi_2$

REGOLA D'ORO:

- Covarianza = $0 \rightarrow INDIPENDENTI$
- Covarianza ≠ 0 → NON INDIPENDENTI
- Fine. Non pensare.