Ítéletlogika alapjai Gyakorlat

Logika

2022/2023 1. félév

Bevezető

A tárgy a következő problémákat járja körbe:

Hogyan tudunk állításokat formalizálni? Állítások egy halmazából következik-e egy állítás? Létezik-e módszer ennek bizonyítására?

A félév során ezen problémák megválaszolására az ítéletlogika és egy elsőrendű logika nyelvét fogjuk megismerni, majd szemantikus és szintaktikus módszerek segítségével különböző válaszokat adunk.

A félév során szó lesz a következő témakörökről:

- Igazságtábla és elsőrendű formula értéktáblája
- Tablókalkulus
- Bizonyításelmélet
- Természetes levezetés
- Rezolúció

Követelmény: elérhető Teamsben/Canvasben! Aki nincs rajta, jelezze!

Alapvető fogalmak

Egyszerű állítások

Esik az eső. *E* ítéletváltozó Felhős az ég. *F* ítéletváltozó

Összetett állítások

Nem süt a Nap. $\neg N$ - negációs (\neg) formula Esik az eső és nem süt a Nap. $E \land \neg N$ - konjunkciós (\land) formula Süt a Nap vagy felhős az ég. $E \supset F$ - diszjunkciós (\lor) formula - implikációs (\supset) formula

A feladat

Betörtek egy házba. A nyomok alapján próbálják megállapítani, hogy az épület melyik részében járt a betörő. Helyszíni szemle alapján ilyen kapcsolatok véltek felfedezni a helyszínelők a szobák között:

- A konyhában az ajtó be volt törve, így a betörő ott biztos járt.
- 2 Ha a konyhában járt, akkor biztos nem volt a fürdőben.
- A hálóban vagy a fürdőben volt, illetve nem járt a spájzban vagy járt a hálóban.
- Nem igaz az az állítás, hogy: a hallban járt és ha nem járt a nappaliban, akkor a spájzban volt.
- Akkor és csak akkor volt az spájzban, ha volt az étkezőben is.
- A spájzt feldúlta a betörő, és csak akkor járt a nappaliban, ha a hallban is.
- A betörő csak akkor járt a fürdőben, ha nem volt a spájzban vagy járt a fürdőben.

Mely szobákban járt a betörő?

Formalizáljuk az állításokat!

- A konyhában az ajtó be volt törve, így a betörő ott biztos járt.
- Ha a konyhában járt, akkor biztos nem volt a fürdőben.
- 🗿 A hálóban vagy a fürdőben volt, illetve nem járt a spájzban vagy járt a hálóban.
- 🕚 Nem igaz az az állítás, hogy: a hallban járt és ha nem járt a nappaliban, akkor a spájzban volt.
- Akkor és csak akkor volt az spájzban, ha volt az étkezőben is.
- 6 A spájzt feldúlta a betörő, és csak akkor járt a nappaliban, ha a hallban is.
- A betörő csak akkor járt a fürdőben, ha nem volt a spájzban vagy járt a fürdőben.

Mik lehetnének az atomi állítások - ítéletváltozók?

- A— A konyhában járt a betörő
- B— A fürdőben járt a betörő
- C— A hálóban járt a betörő
- D— A spájzban járt a betörő
- E— Az étkezőben járt a betörő
- F— A nappaliban járt a betörő
- G— A hallban járt a betörő

Hogyan nézzenek ki a formulák?

- 4
- \bigcirc $(A \supset \neg B)$

- \bigcirc $(B\supset (\neg D\lor B))$

Műveletek prioritása csökkenő sorrendben

 $\neg, \land, \lor, \supset$

Műveletek zárójelezésének iránya

- A, v zárójelezésének iránya tetszőleges
 - PI.: $A \wedge B \wedge \neg C \approx ((A \wedge B) \wedge \neg C)$ $\approx (A \wedge (B \wedge \neg C))$
- zárójelezése jobbról balra történik!
 - ▶ Pl.: $A \supset \neg B \supset C \approx (A \supset (\neg B \supset C))$

Honnan lehetne elhagyni a zárójelet?

$$\begin{array}{lll} ((C \lor B) \land (\neg D \lor C)) & = & (C \lor B) \land (\neg D \lor C) \\ \neg (G \land (\neg F \supset D)) & = & \neg (G \land (\neg F \supset D)) \\ ((D \supset E) \land (E \supset D)) & = & (D \supset E) \land (E \supset D) \\ ((C \lor B) \supset (\neg D \lor C)) & = & C \lor B \supset \neg D \lor C \\ (B \supset (\neg D \lor B)) & = & B \supset \neg D \lor B \end{array}$$

És ennél a formulánál? $((A \land B) \lor (A \supset (\neg B \supset A))) = A \land B \lor (A \supset \neg B \supset A)$

Műveletek közös igazságtáblája

Χ	Υ	$\neg X$	$X \wedge Y$	$X \vee Y$	$X\supset Y$
i	i	h	i	i	i
i	h	h	h	i	h
h	i	i	h	i	i
h	h	i	h	h	i

Készítsük el a következő formulához a **kiterjesztett** igazságtáblát:

$$B\supset (\neg D\vee B)$$

В	D	¬D	$\neg D \lor B$	$B\supset (\neg D\lor B)$
i	i	h	i	į
i	h	i	i	i
h	i	h	h	i
h	h	i	i	i

Kielégíthetőség/kielégíthetetlenség/tautológia formulákra

Egy B formula kielégíthető, ha legalább egy interpretáció kielégíti.

Egy B formula kielégíthetetlen, ha egyetlen interpretáció sem elégíti ki.

Egy B formula **tautológia** ($\models_0 B$), ha minden interpretáció kielégíti. A tautológiát **ítéletlogikai törvény**nek is nevezik.

Ezek alapján mit tudunk elmondani az előbb vizsgált formuláról?

- Kielégíthető?
- Kielégíthetetlen?
- Tautológia?

В	D	$\neg D$	$\neg D \lor B$	$B\supset (\neg D\lor B)$
i	i	h	i	i
i	h	i	i	i
h	i	h	h	i
h	h	i	i	i

10/18

⇒ Kielégíthető és tautológia! Minden interpretáció kielégíti.

Logika Ítéletlogika alapjai 2022/2023 1. félév

Milyen tulajdonságúak a következő formulák?

Α	В	$A\supset \neg B$
i	i	h
i	h	i
h	i	i
h	h	i

Α	В	$(\neg A \supset \neg B) \land \neg (A \lor \neg B)$
i	i	h
i	h	h
h	i	h
h	h	h

⇒ Kielégíthető!

Van legalább 1 interpretáció, ami kielégíti.

⇒ Kielégíthetetlen!

Nincs olyan interpretáció, ami kielégítené.

Formulahalmaz szemantikus tulajdonságai

Formulahalmaz szemantikus tulajdonságai

Adott $F := \{F1, F2, ..., Fn\}$ formulahalmaz.

F formulahalmaz **kielégíthető**, ha van olyan interpretáció, amely minden elemét kielégíti.

F formulahalmaz **kielégíthetetlen**, ha minden interpretációban van legalább 1 formulája, amely hamisra értékelődik ki.

Formula szemantikus tulajdonság	Formulahalmaz szemantikus tulajdonság
$F1 \wedge F2 \wedge \wedge Fn$	{F1, F2,, Fn}
kielégíthető	kielégíthető
kielégíthetetlen	kielégíthetetlen
tautológia	minden interpretációban kielégíthető

Szemantikus következmény

Szemantikus következmény

Adott az $F = \{F1, F2, ..., Fn\}$ formulahalmaz és G formula. Azt mondjuk, hogy G formula szemantikus következménye F formiulahalmaznak $(\{F1, F2, ..., Fn\} \models_0 G)$, ha minden olyan I interpretáció, amely kielégíti az F formulahalmazt $(I \models_0 \{F1, F2, ...Fn\})$, az kielégíti a G következményformulát $(I \models_0 G)$ is.

Szemantikus következmény - igazságtáblával

- (1) A konyhában az ajtó be volt törve, így a betörő ott biztos járt.
- (2) Ha a konyhában járt, akkor biztos nem volt a fürdőben.

Mire következtethetnénk ezekből az állításokból?

$${A,A \supset \neg B} \models_0 \neg B$$

Α	В	Α	$A\supset \neg B$	$\neg B$
i	i	i	h	h
i	h	i	i	i
h	i	h	i	h
h	h	h	i	i

Tudjuk, hogy konyhában biztos járt, és a fürdőben nem.

Szemantikus következmény - igazságtáblával

- 1+2) Tudjuk, hogy a fürdőben nem járt.
 - (3) A hálóban vagy a fürdőben volt, illetve nem járt a spájzban vagy járt a hálóban.

$$\{\neg B, (C \lor B) \land (\neg D \lor C)\} \models_0 C$$

В	С	D	$\neg B$	$(C \lor B) \land (\neg D \lor C)$	С
i	i	i	h	$(i \lor i) \land (\neg i \lor i) = i$	
i	i	h	h	$(i \lor i) \land (\neg h \lor i) = i$	
i	h	i	h	$(h \lor i) \land (\neg i \lor h) = h$	
h	i	i	i	$(i \lor h) \land (\neg i \lor i) = i$	i
i	h	h	h	$(h \lor i) \land (\neg h \lor h) = i$	
h	i	h	i	$(i \lor h) \land (\neg h \lor i) = i$	i
h	h	i	i	$(h \lor h) \land (\neg i \lor h) = h$	
h	h	h	i	$(h \lor h) \land (\neg h \lor h) = h$	

Tudjuk, hogy a hálóban járt betörő.

Szemantikus következmény - igazságtáblával

Egy kis előrekövetkeztetés:

A következőkből melyik formulák következményei a $\{A, B \supset A\}$ formulahalmaznak?

				X	✓	✓	×	Х	✓
Α	В	A	$B\supset A$	$\neg B$	$A \lor D$	$A \vee B$	$\neg A$	$\neg A \lor B$	$A \vee \neg A$
i	i	i	i	h	i	i	h	i	i
i	h	i	i	i	i	i	h	h	i
h	i	h	h	h	D	i	i	i	i
h	h	h	i	i	D	h	i	i	i

És a $\{A \land B, \neg B \lor \neg A\}$ formulahalmaznak?

				/	/	/	/ /
Α	В	$A \wedge B$	$\neg B \lor \neg A$	Α	$B \vee \neg B$	$\neg A \land A$	Ε
i	i	i	h	i	i	h	?
i	h	h	i	i	i	h	?
h	i	h	i	h	i	h	?
h	h	h	i	h	i	h	?

Szemantikus következmény alakítás tautológia vizsgálatra

Ellenőrizzük:

$$\{\neg(G \land (\neg F \supset D)), (D \supset E) \land (E \supset D), D \land (F \supset G)\} \models_0 D \land E \land \neg F \land \neg G$$

1 irány:

Dedukciós tétel

Legyenek $A_1, A_2, ..., A_n, B(n \ge 1)$ tetszőleges ítéletlogikai formulák. $\{A_1, A_2, ..., A_{n-1}, A_n\} \models_0 B$ pontosan akkor, ha $\{A_1, A_2, ..., A_{n-1}\} \models_0 A_n \supset B$.

Az eldöntésprobléma tétele

Legyenek $A_1,A_2,...,A_n,B$ ítéletlogikai formulák. $\{A_1,A_2,...,A_{n-1},A_n\} \models_0 B$ pontosan akkor, ha $\models_0 A_1 \supset A_2 \supset ... \supset A_{n-1} \supset A_n \supset B$, vagy másképp a $A_1 \supset A_2 \supset ... \supset A_{n-1} \supset A_n \supset B$ formula tautológia.

Kéne:

 $\neg (G \land (\neg F \supset D)) \supset ((D \supset E) \land (E \supset D)) \supset (D \land (F \supset G)) \supset (D \land E \land \neg F \land \neg G)$ **tautológia**?

Szemantikus következmény alakítás kielégíthetetlenség vizsgálatra

Ellenőrizzük:

$$\{\neg(G \land (\neg F \supset D)), (D \supset E) \land (E \supset D), D \land (F \supset G)\} \models_{0} D \land E \land \neg F \land \neg G$$

2. irány:

Tétel

Legyenek $A_1,A_2,...,A_n,B(n\geq 1)$ tetszőleges ítéletlogikai formulák. $\{A_1,A_2,...,A_{n-1},A_n\}\models_0 B$ pontosan akkor, ha az $\{A_1,A_2,...,A_n,\neg B\}$ formulahalmaz kielégíthetetlen, vagy másképp a $A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \neg B$ formula kielégíthetetlen.

Kéne: $\{\neg(G \land (\neg F \supset D)), (D \supset E) \land (E \supset D), D \land (F \supset G), \neg(D \land E \land \neg F \land \neg G)\}$ **kielégíthetetlen?**

Logika Ítéletlogika alapjai 2022/2023 1. félév