

What will We Learn Today?

- 1. What is imbalance data
- 2. Handling imbalance data
- 3. Dimensionality reduction
- 4. Explainable Al

Profile

Professional

Senior Data Analyst – Kompas (2021 – Present)

Data Scientist - Rukita (2020 - 2021)

Research Assistant Analyst – Ensterna (2017 – 2019)

Educational Background

Nuclear Engineering – Universitas Gadjah Mada

Connect with me

- M https://dataimpact.medium.com/
- in https://www.linkedin.com/in/ariprabowo/
- https://github.com/densaiko

Ari Sulistiyo Prabowo

Imbalance data

target variable yang memiliki jumlah data yang tidak seimbang 50:50

Imbalance data

Terdapat dua hal dalam membuat data menjadi balance:

- 1. Oversampling: menambahkan data pada target variable yang sedikit
- 2. **Undersampling:** mengurangi data pada target variable yang banyak

Imbalance data (Smote)

Dalam imbalance data, terutama oversampling, dilakukan penambahan data sintesis dengan menggunakan library **SMOTE**

3.0 - 0 0 1 2 3 4

After Oversampling

Imbalance data (Smote)

y train.value counts()


```
from imblearn.over_sampling import SMOTE #oversampling
```

oversampling
sm = SMOTE(random_state=25, sampling_strategy=1) #sampling strategy 0.x to 1
fit the sampling
X train, y train = sm.fit sample(X train, y train)

Before smoting Counter({2: 5440, 1: 4703, 3: 2736, 0: 1638})
After smoting Counter({1: 5440, 3: 5440, 2: 5440, 0: 5440})

Dimensionality Reduction

Mengurangi dimensi suatu dataset

Dimensionality Reduction

Manfaat melakukan pengurangan dimensi:

- Mengurangi misleading data yang membuat akurasi model meningkat
- Mengurangi dimensi, mengurangi komputasi
- Mengurangi feature yang redundant

Terdapat dua teknik di dalam dimensionality reduction

- Feature selection
- Feature extraction

Hands on (binary classification)

Objective

X company would like to assess the employee to get a promotion. There are some criteria whether this employee can be promoted or not. Therefore, HR needs help from data scientist to create a machine learning model.

Target Variable

is_promoted

- 1 (promoted)
- 0 (not promoted)

Feature Selection

Feature selection adalah proses memilih subset dari fitur-fitur relevan dari seluruh fitur yang ada di dataset. Beberapa hal keuntungan feature selection:

- Mengurangi waktu komputasi
- Mengurangi data yang tidak relevan
- Meningkatkan akurasi

Filter Method

Metode filter digunakan dengan melihat fitur-fitur yang memiliki korelasi yang tinggi.

Pada filter metode ini kita menggunakan metode statistik yaitu ANOVA yang digunakan untuk menganalisis variance untuk menentukan jika **rata-rata** dari lebih dari dua populasi adalah **sama**

from sklearn.feature_selection import SelectKBest, f_classif

```
filter = SelectKBest(f_classif, k=5)
filter.fit(X_train, y_train)

X_train_new = filter.transform(X_train)
X_test_new = filter.transform(X_test)

print("Before feature selection", X_train.shape)
print("After feature selection", X_train_new.shape)

Before feature selection (37104, 10)
After feature selection (37104, 5)
```

Features = 5
Selected Features = avg_training_score, awards_worn, previous_year_rating, education, no_of_trainings

Baseline ML (Logistic Regression)	91.79%	
Logistic Regression + Anova	92.03%	

Score of features [1.58485364e-01 3.26275563e+01 6.63837086e+00 1.47834343e+00 3.00369928e+01 2.54122347e+01 1.00475625e+03 1.02120870e+01 1.63478931e+03 1.33002169e+03]

Metode wrapper digunakan untuk menemukan kombinasi variable yang terbaik. Salah satu metode wrapper adalah RFE (Recursive Feature Elimination (RFE)

Wrapper Method

from sklearn.feature selection import RFE

wrapper = RFE(clf, n_features_to_select=5)
wrapper.fit(X_train, y_train)

X_train_wrapper = wrapper.transform(X_train)
X_test_wrapper = wrapper.transform(X_test)

Features = 5
Selected Features = avg_training_score, awards_worn, previous_year_rating, education, no_of_trainings

Baseline ML (Logistic Regression)	91.79%
Logistic Regression + Anova	92.03%
Logistic Regression + RFE	91.83%

Before feature selection (37104, 10) After feature selection (37104, 5)

Score of features [6 1 1 2 1 3 1 4 1 5]

Embedded Method

Metode embedded ini digunakan untuk memilih fitur-fitur mana aja yang digunakan dari hasil performa algoritma machine learning model

Embedded Method

from sklearn.feature_selection import SelectFromModel

```
clf = LogisticRegression()
clf_feature = SelectFromModel(clf)

clf_feature.fit(X_train, y_train)

X_train_importance = clf_feature.transform(X_train)
X_test_importance = clf_feature.transform(X_test)
```

Features = 2
Selected Features = awards_worn, previous_year_rating

Baseline ML (Logistic Regression)	91.79%
Logistic Regression + Anova	92.03%
Logistic Regression + RFE	91.83%
Logistic Regression + Feature Importance	91.67%

Coef [0.01008519 0.2411234 -0.0189336 0.01141018 -0.53517601 -0.08410499 0.37662892 0.05672754 2.66393455 0.02762389]
Treshold 0.4025748276559864

Explainable AI (BONUS)

Explanation

Explainable AI (BONUS)

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions

Features **pushing the prediction higher** are shown in **red**, those **pushing the prediction lower** are in **blue**

Thank YOU

