Mining Frequent Patterns: Apriori v.s. FP-Growth

Ling Liu

Slides are adapted from Mining Frequent Patterns without Candidate Generation (SIGMOD200, Pei and Han), The FP-Growth/Apriori Debate by Jeffrey R. Ellis

Outline

- Frequent Pattern Mining: Problem statement and an example
- · Review of Apriori-like Approaches
- · FP-Growth:
 - Overview
 - FP-tree:
 - structure, construction and advantages
 - FP-growth:
 - FP-tree →conditional pattern bases → conditional FP-tree
 →frequent patterns
- Performance Comparison

2

Frequent Patterns

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
 - itemset: A set of one or more items
 - k-itemset: $X = \{x_1, ..., x_k\}$
 - Mining algorithms
 - Apriori
 - · FP-growth

Tid	Items bought				
10	Beer, Nuts, Diaper				
20	Beer, Coffee, Diaper				
30	Beer, Diaper, Eggs				
40	Nuts, Eggs, Milk				
50	Nuts, Coffee, Diaper, Eggs, Beer				

3

Support & Confidence

- Support
 - (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
 - (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
 - An itemset X is frequent if X's support is no less than a minsup threshold
- Confidence (association rule: X→Y)
 - $\sup(X \cup Y)/\sup(x)$ (conditional prob.: $\Pr(Y|X) = \Pr(X^Y)/\Pr(X)$)
 - confidence, c, conditional probability that a transaction having X also contains Y
 - Find all the rules X→Y with minimum support and confidence
 - $sup(X \cup Y) \ge minsup$
 - $\sup(X \cup Y)/\sup(X) \ge \min conf$

4

Frequent Pattern Mining: An Example

Given a transaction database DB and a minimum support threshold ξ , find all frequent patterns (item sets) with support no less than ξ .

Input: DB: $\frac{TID}{100} \frac{Items\ bought}{\{f,\ a,\ c,\ d,\ g,\ i,\ m,\ p\}}$ $200 \qquad \{a,\ b,\ c,\ f,\ l,\ m,\ o\}$ $300 \qquad \{b,\ f,\ h,\ j,\ o\}$ $400 \qquad \{b,\ c,\ k,\ s,\ p\}$ $500 \qquad \{a,\ f,\ c,\ e,\ l,\ p,\ m,\ n\}$

Minimum support: $\xi = 3$

Output: all frequent patterns, i.e., f, a, ..., fa, fac, fam, fm, am ...

Problem Statement: How to efficiently find all frequent patterns?

5

Apriori Principle

- If an itemset is frequent, then all of its subsets must also be frequent (X → Y)
- frequent $(X \rightarrow Y)$ If an itemset is infrequent, then all of its supersets must be

Apriori

• Main Steps of Apriori Algorithm:

- Use frequent (k 1)-itemsets (L_{k-1}) to generate candidates of frequent k-itemsets C_k
- Scan database and count each pattern in C_k, get frequent k-itemsets
 (L_k) .
- E.g.,

TID	Items bought	<u>Apriori</u>	iteration
100	$\{f, a, c, d, g, i, m, p\}$	Ĉ1	f, a , c , d , g , i , m , p , l , o , h , j , k , s , b , e , n
200	$\{a, b, c, f, l, m, o\}$	L1	f, a , c , m , b , p
300	$\{b, f, h, j, o\}$	C2	fa, fc, fm, fp, ac, am,bp
400	$\{b, c, k, s, p\}$	L2	fa, fc, fm, \dots
500	$\{a, f, c, e, l, p, m, n\}$		

7

Apriori: A Candidate Generation & Test Approach

- Initially, scan DB once to get frequent 1-itemset
- Loop
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

8

Generate candidate itemsets

Example

Frequent 3-itemsets:

-Candidate 4-itemset:

-Which need not to be counted?

$$\{1, 2, 4, 5\} \& \{1, 3, 4, 5\} \& \{2, 3, 4, 5\}$$

.

Mining Frequent Itemsets without Candidate Generation

- In many cases, the Apriori candidate generate-andtest method significantly reduces the size of candidate sets, leading to good performance gain.
- However, it suffer from two nontrivial costs:
 - It may generate a huge number of candidates (for example, if we have 10⁴ 1-itemset, it may generate more than 10⁷ candidata 2-itemset)
 - It may need to scan database many times

Performance Bottlenecks of Apriori

- Bottlenecks of Apriori: candidate generation
 - Generate huge candidate sets:
 - 10⁴ frequent 1-itemset will generate 10⁷ candidate 2itemsets
 - To discover a frequent pattern of size 100, e.g., $\{a_1, a_2, ..., a_{100}\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates.
 - Candidate Test incur multiple scans of database: each candidate

12

Bottleneck of Frequent-pattern Mining

- Multiple database scans are costly
- Mining long patterns needs many passes of scanning and generates lots of candidates
 - To find frequent itemset $i_1i_2...i_{100}$
 - # of scans: 100
 - # of Candidates: $\binom{1}{100} + \binom{1}{100} + \dots + \binom{1}{100} \binom{0}{0} = 2^{100} 1 = 1.27 \cdot 10^{30}$!
- Bottleneck: candidate-generation-and-test
- Can we avoid candidate generation?

Example Alternatives to Apriori

- FP-Growth
 - Finding frequent itemsets without candidate generation
- CHARM
 - Based on concept of Closed Itemset
 - CLOSET
 - Han, Pei implementation of Closed Itemset

Maximal vs Closed Frequent Itemsets

 An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y o X

 An itemset X is closed if X is frequent and there exists no super-pattern Y > X, with the same support as X

Closed Frequent Itemsets are Lossless: the support for any frequent itemset can be deduced from the closed frequent itemsets

Maximal vs Closed Frequent Itemsets Closed but null not maximal minsup=2 (B (c D (E) (A) Closed and maximal frequent (AD) (BC) BE AB) (AC) AE ACD ABC ABD CDE (ABE) ACE ADE (BCD) BCE (BDE) TID Items # Closed = 9 ABC # Maximal = 4 BCDE ABCD ABCE ABDE ACDE 2 ABCD 3 BCE **ACDE** (ABCDE) 16 DE

Algorithms to find frequent pattern

- Apriori: uses a generate-and-test approach generates candidate itemsets and tests if they are frequent
 - Generation of candidate itemsets is expensive (in both space and time)
 - Support counting is expensive
 - Subset checking (computationally expensive)
 - Multiple Database scans (I/O)
- **FP-Growth**: allows frequent itemset discovery without candidate generation. Two step:
 - 1.Build a compact data structure called the FP-tree
 - 2 passes over the database
 - 2.extracts frequent itemsets directly from the FP-tree
 - · Traverse through FP-tree

17

FP-Growth Algorithm

- Association Rule Mining
 - Generate Frequent Itemsets
 - Apriori generates candidate sets
 - FP-Growth uses specialized data structures (no candidate sets)
 - Find Association Rules
 - Outside the scope of both FP-Growth & Apriori
- Therefore, FP-Growth is a competitor to Apriori

Overview of FP-Growth: Ideas

- Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure
 - highly compacted, but complete for frequent pattern mining
 - avoid costly repeated database scans
- Develop an efficient, FP-tree-based frequent pattern mining method (FP-growth)
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only.

19

FP-tree:

Construction and Design

Mining Frequent Patterns without Candidate Generation (SIGMOD2000)

FP-tree

Construct FP-tree

FP-Tree is constructed using 2 passes over the data-set:

Two Steps:

 Scan the transaction DB for the first time, find frequent items (single item patterns) and order them into a list L in frequency descending order.

2. For each transaction, order its frequent items according to the order in L; Scan DB the second time, construct FP-tree by putting each frequency ordered transaction onto it.

21

FP-tree Example: step 1

Step 1: Scan DB for the first time to generate L

TID Items bought

100 {f, a, c, d, g, i, m, p}

200 {a, b, c, f, l, m, o}

300 {b, f, h, j, o}

400 {b, c, k, s, p}

500 {a, f, c, e, l, p, m, n}

L

22

FP-tree Example: step 2

Step 2: scan the DB for the second time, order frequent items in each transaction

TID	Items bought	(ordered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o\}$	$\{f, b\}$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$

23

FP-tree Example: step 2

Step 2: construct FP-tree

FP-tree Example: step 2 **Step 2: construct FP-tree** {} **{**} f:3 f:3 {*f*, *b*} $\{c, b, p\}$ $\{f,\,c,\,a,\,m,\,p\}$ c:2 b:1 > b:1 c:2 b:1 c:3 b:1 a:2 p:1 a:2 a:3 p:1 b:1 m:1 *b:1* m:2 b:1 m:1 p:1 | m:1 p:1 m:1 p:2 (m:1 Node-Link

FP-Tree Definition

- FP-tree is a frequent pattern tree. Formally, FP-tree is a tree structure defined below:
 - 1. One root labeled as "null", a set of *item prefix sub-trees* as the children of the root, and a *frequent-item header table*.
 - 2. Each node in the item prefix sub-trees has three fields
 - item-name: register which item this node represents,
 - count, the number of transactions represented by the portion of the path reaching this node,
 - node-link that links to the next node in the FP-tree carrying the same item-name, or null if there is none.
 - 3. Each entry in the *frequent-item header table* has two fields,
 - item-name, and
 - head of node-link that points to the first node in the FP-tree carrying the item-name.

Advantages of the FP-tree Structure

- The most significant advantage of the FP-tree
 - Scan the DB only twice and twice only.
- Completeness:
 - the FP-tree contains all the information related to mining frequent patterns (given the min-support threshold). Why?
- Compactness:
 - The size of the tree is bounded by the occurrences of frequent items
 - The height of the tree is bounded by the maximum number of items in a transaction

Questions?

- Why descending order?
- Example 1:

TID	(unordered) fr	equent items
100	$\{f, a, c, m,$	<i>p</i> }
500	$\{a, f, c, p,\}$	m }

Questions?

• Example 2:

This tree is larger than FP-tree, because in FP-tree, more frequent items have a higher position, which makes branches less

FP-Growth Algorithm

FP-CreateTree

Input: DB, min_support

Output: FP-Tree

- 1. Scan DB & count all frequent items.
- 2. Create null root & set as current node.
- 3. For each Transaction T
 - Sort T's items.
 - For each sorted Item I
 - Insert I into tree as a child of current node.
 - Connect new tree node to header list.

- Two passes through DB
- Tree creation is based on number of items in DB.
- Complexity of CreateTree is O(|DB|)

FP-growth:

Mining Frequent Patterns Using FP-tree

Mining Frequent Patterns Using FP-tree

- General idea (divide-and-conquer)
 Recursively grow frequent patterns using the FP-tree: looking for shorter ones recursively and then concatenating the suffix:
 - For each frequent item, construct its conditional pattern base, and then its conditional FP-tree;
 - Repeat the process on each newly created conditional FPtree until the resulting FP-tree is empty, or it contains only one path (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)

Three Major Steps

Starting the processing from the end of list L:

Step 1:

Construct conditional pattern base for each item in the header table

Step 2

Construct conditional FP-tree from each conditional pattern base

Step 3

Recursively mine conditional FP-trees and grow frequent patterns obtained so far. If the conditional FP-tree contains a single path, simply enumerate all the patterns

Step 1: Construct Conditional Pattern Base

- Starting at the bottom of frequent-item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Properties of FP-Tree

- Node-link property
 - For any frequent item a_i , all the possible frequent patterns that contain a_i can be obtained by following a_i 's node-links, starting from a_i 's head in the FP-tree header.
- Prefix path property
 - To calculate the frequent patterns for a node a_i in a path P, only the prefix sub-path of a_i in P need to be accumulated, and its frequency count should carry the same count as node a_i .

Step 2: Construct Conditional FP-tree

- · For each pattern base
 - Accumulate the count for each item in the base
 - Construct the conditional FP-tree for the frequent items of the pattern base

Principles of FP-Growth

- Pattern growth property
 - − Let α be a frequent itemset in DB, B be α's conditional pattern base, and β be an itemset in B. Then α ∪ β is a frequent itemset in DB iff β is frequent in B.
- Is "fcabm" a frequent pattern?
 - "fcab" is a branch of m's conditional pattern base
 - "b" is **NOT** frequent in transactions containing "fcab"
 - "bm" is **NOT** a frequent itemset.

Conditional Pattern Bases and Conditional FP-Tree

	Item	Conditional pattern base	Conditional FP-tree			
Î	р	{(fcam:2), (cb:1)}	{(c:3)} p			
	m	{(fca:2), (fcab:1)}	{(f:3, c:3, a:3)} m			
	b	{(fca:1), (f:1), (c:1)}	Empty			
	а	{(fc:3)}	{(f:3, c:3)} a			
	С	{(f:3)}	{(f:3)} c			
	f	Empty	Empty			

order of L

40

Single FP-tree Path Generation

 Suppose an FP-tree T has a single path P. The complete set of frequent pattern of T can be generated by enumeration of all the combinations of the sub-paths of P

Summary of FP-Growth Algorithm

- Mining frequent patterns can be viewed as first mining 1-itemset and progressively growing each 1-itemset by mining on its conditional pattern base recursively
- Transform a frequent k-itemset mining problem into a sequence of k frequent 1-itemset mining problems via a set of conditional pattern bases

Efficiency Analysis

Facts: usually

- 1. FP-tree is much smaller than the size of the DB
- 2. Pattern base is smaller than original FP-tree
- 3. Conditional FP-tree is smaller than pattern base
- mining process works on a set of usually much smaller pattern bases and conditional FP-trees
- → Divide-and-conquer and dramatic scale of shrinking

Experiments:

Performance Evaluation

Mining Frequent Patterns without Candidate Generation (SIGMOD2000)

Experiment Setup

- Compare the runtime of FP-growth with classical Apriori
- · Runtime vs. min sup
 - Runtime per itemset vs. min_sup
 - Runtime vs. size of the DB (# of transactions)
- Synthetic data sets: frequent itemsets grows exponentially as minisup goes down
 - D1: T25.I10.D10K
 - 1K items
 - avg(transaction size)=25
 - avg(max/potential frequent item size)=10
 - 10K transactions
 - D2: T25.I20.D100K
 - 10k items

Conclusion Remarks

- FP-tree: a novel data structure storing compressed, crucial information about frequent patterns, compact yet complete for frequent pattern mining.
- FP-growth: an efficient mining method of frequent patterns in large Database: using a highly compact FP-tree, divide-and-conquer method in nature.

Improvements to FP-Growth

- None currently reported
- Ideas
 - New algorithm that is based on FP-Growth
 - Distributes FP-Trees among processors
- No reports of complexity analysis or accuracy of FP-Growth

The debate between Apriori and FP-growth

Zheng, Kohavi, Mason - "Real World Performance of Association Rule Algorithms"

Algorithm Analysis Results

- FP-Growth IS NOT inherently faster than Apriori
 - Intuitively, it appears to condense data
 - Mining scheme requires some new work to replace candidate set generation
 - Recursion obscures the additional effort
- FP-Growth may run faster than Apriori in circumstances
- No guarantee through complexity which algorithm to use for efficiency

Real World Applications

- Zheng, Kohavi, Mason "Real World Performance of Association Rule Algorithms"
 - Collected implementations of Apriori, FP-Growth, CLOSET, CHARM, MagnumOpus
 - Tested implementations against 1 artificial and 3 real data sets
 - Time-based comparisons generated

Apriori & FP-Growth

- Apriori
 - Implementation from creator Christian Borgelt (GNU Public License)
 - C implementation
 - Entire dataset loaded into memory
- FP-Growth
 - Implementation from creators Han & Pei
 - Version February 5, 2001

Other Algorithms

- CHARM
 - Based on concept of Closed Itemset
 - e.g., { A, B, C } AB→C, A→C, B→C, AC→B, A→B, C→B, etc.
- CLOSET
 - Han, Pei implementation of Closed Itemset
- MagnumOpus
 - Generates rules directly through search-and-prune technique

Four Datasets

- IBM-Artificial
 - Generated at IBM Almaden (T10I4D100K)
 - Often used in association rule mining studies
- BMS-POS
 - Years of point-of-sale data from retailer
- BMS-WebView-1 & BMS-WebView-2
 - Months of clickstream traffic from e-commerce web sites

Dataset Characteristics

	Transac- tions	Distinct Items	Maximum Trans. Size	Average Trans. Size
IBM-Artificial	100,000	870	29	10.1
BMS-POS	515,597	1,657	164	6.5
BMS-WebView-1	59,602	497	267	2.5
BMS-WebView-2	77,512	3,340	161	5.0

Experimental Considerations

- Hardware Specifications
 - Dual 550MHz Pentium III Xeon processors
 - 1GB Memory
- Support { 1.00%, 0.80%, 0.60%, 0.40%, 0.20%, 0.10%, 0.08%, 0.06%, 0.04%, 0.02%, 0.01% }
- Confidence = 0%
- No other applications running (second processor handles system processes)

Study Results - Real Data

- At support >= 0.20%, Apriori performs as fast as or better than FP-Growth
- At support < 0.20%, Apriori completes whenever FP-Growth completes
 - Exception BMS-WebView-2 @ 0.01%
- When 2 million rules are generated, Apriori finishes in 10 minutes or less
 - Proposed Bottleneck is NOT the rule algorithm, but rule analysis

Real Data Results

		BMS-POS		BMS-WebView-1		BMS-WebView-2		
Algorithm	Support	Time	Time Rules		Rules	Time	Rules	
Apriori	0.01	186m	214,300,568	Failed	Falied	Failed	Failed	
FP-Growth	0.01	120m	214,300,300	Failed	Falleu	13m 12s		
Apriori	0.04	16m 9 s	5,061,105	Failed	Failed	58s	1,096,720	
FP-Growth	0.04	10m 41s	5,061,105	Failed	i alicu	29s	1,090,720	
Apriori	0.06	8m 35s	1,837,824	1m 50s	3,011,836	28s	510,233	
FP-Growth	0.00	6m 7s	1,037,024	52s	3,011,030	16s		
Apriori	0.10	3m 58s	530.353	1.2s	10,360	9.1s	119,335	
FP-Growth	0.10	3m 12s	550,555	1.2s	10,300	5.9s		
Apriori	0.20	1m 14s	1m 14s 103,449		1,516	2.4s	12,665	
FP-Growth	0.20	1m 35s	103,449	0.7s	1,310	2.3s	12,000	

Study Results – Artificial Data

- At support < 0.40%, FP-Growth performs MUCH faster than Apriori
- At support >= 0.40%, FP-Growth and Apriori are comparable

	Support	Time	Rules	Support	Time	Rules	Support	Time	Rules
Apriori	0.01	4m 4s	1,376,684	0.04	1m 1s	56,962	0.06	44s	41.215
FP-Growth	0.01	20s	1,370,004	0.04	9.2s	30,902	0.00	8.2s	71,213
Apriori	0.10	34s	26.962	0.20	20s	13.151	0.40	5.7s	1.997
FP-Growth	0.10	7.1	20,902	0.20	5.8s	13, 131	0.40	4.3s	1.991

Real-World Study Conclusions

- FP-Growth (and other non-Apriori) perform better on artificial data
- On all data sets, Apriori performs sufficiently well in reasonable time periods for reasonable result sets
- FP-Growth may be suitable when low support, large result count, fast generation are needed
- Future research may best be directed toward analyzing association rules

Research Conclusions

- FP-Growth does not have a better complexity than Apriori
 - Common sense indicates that it will run faster
- FP-Growth does not always have a better running time than Apriori
 - Support, dataset appears more influential
- FP-Trees are very complex structures (Apriori is simple)
- Location of data (memory vs. disk) is non-factor in comparison of algorithms

To Use or Not To Use?

- Question: Should the FP-Growth be used in favor of Apriori?
 - Difficulty to code
 - High performance at extreme cases
 - Personal preference
- More relevant questions
 - What kind of data is it?
 - What kind of results do I want?
 - How will I analyze the resulting rules?

References

- Han, Jiawei, Pei, Jian, and Yin, Yiwen, "Mining Frequent Patterns without Candidate Generation".
 In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 1-12, Dallas, Texas, USA, 2000.
- Orlando, Salvatore, "High Performance Mining of Short and Long Patterns". 2001.
- Pei, Jian, Han, Jiawei, and Mao, Runying, "CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets". In SIGMOD Int'l Workshop on Data Mining and Knowledge Discovery, May 2000.
- Webb, Geoffrey L., "Efficient search for association rules". In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 99--107, 2000.
- Zaiane, Osmar, El-Hajj, Mohammad, and Lu, Paul, "Fast Parallel Association Rule Mining Without Candidacy Generation". In Proc. of the IEEE 2001 International Conference on Data Mining (ICDM'2001), San Jose, CA, USA, November 29-December 2, 2001
- Zaki, Mohammed J., "Generating Non-Redundant Association Rules". In Proceedings of the International Conference on Knowledge Discovery and Data Mining, 2000.
- Zheng, Zijian, Kohavi, Ron, and Mason, Llew, "Real World Performance of Association Rule Algorithms". In proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, August 2001.