Due: Wednesday, January 30th

- 1. Do Exercise 6.7.L in the handout, which should read: For h as in Examples 6.7.17, find a continuous function $f:[0,1/\pi]\to\mathbb{R}$ so that $f\notin\mathcal{R}(h)$. Thus, in Corollary 6.7.22, we cannot change 'g of bounded variation' to 'g continuous'.
- 2. If $g:[a,b]\to\mathbb{R}$ is increasing and $f\in\mathcal{R}(g)$ on [a,b], then for any subinterval $[c,d]\subset[a,b]$, $f\in\mathcal{R}(g)$ on [c,d].
- 3. Do Exercise 2.8.J in the text.
- 4. (January 2002 Qual)
 - (a) Let Θ be a collection of pairwise disjoint open intervals of \mathbb{R} . Show that Θ is at most countable.
 - (b) Show that the set of all increasing sequences of natural numbers (i.e., sequences $(n_1, n_2, ...)$ with $n_k \in \mathbb{N}$ and $n_{k+1} \ge n_k$ for all $k \in \mathbb{N}$) is uncountable.