

Network Layer: Subnetting

Lecture 8 | CSE421 – Computer Networks

Department of Computer Science and Engineering School of Data & Science

Objectives

- Subnetting
- VLSM
 - Binary Calculation
 - Base 256 Calculation
- Route Summarization

IPv4 Address Exhaustion

This report generated at 10-Jan-2016 08:20 UTC.

IANA Unallocated Address Pool Exhaustion:

03-Feb-2011

Projected RIR Address Pool Exhaustion Dates:

RIR Projected Exhaustion Date Remaining Addresses in RIR Pool (/8s)

APNIC: 19-Apr-2011 (actual) 0.6284 RIPE NCC: 14-Sep-2012 (actual) 0.9520 LACNIC: 10-Jun-2014 (actual) 0.1140

ARIN: 24 Sep-2015 (actual)

AFRINIC: 12-Aug-2018 1.8246

Projection of consumption of Remaining RIR Address Pools

Solutions

Long term:

- Change to IP version 6.
- Plenty of addresses using a different scheme

Short term:

- Use Subnetting (VLSM & CIDR) to avoid wasting addresses
- Use private addresses locally and NAT for internet access lets many host share a few public addresses
- DHCP!

Subnetting

- The strategy used to partition a single physical network into more than one smaller logical sub-networks (subnets).
- Subnets are designed by accepting bits from the IP address's host part and using these bits to assign a number of smaller sub-networks inside the original network.
- Allows an organization to add sub-networks without the need to acquire a new network number via the Internet service provider (ISP).

Subnetting

- Three methods of subnetting
 - Classful IP Addressing We have already seen it in the previous lecture!
 - Fixed Length Subnet Masking
 - Variable Length Masking
- Goal
 - Assign a block of IP addresses to fulfill the total needs of a network
 - A network has 200 hosts per say, give them a network address which can support 200 hosts!
 - Give them the smallest block possible to waste least of the IP addresses but not below 200!

**Note: You can assign blocks of size 2^N only. This is because the number of bits assigned to host from an IP address cannot be partial, number of bits is discrete and must be an integer value. (Can you

Fixed length subnetting

- All subnets of a main network must have the same subnet mask.
- This means that they must all have the same number of hosts.
- Example
 - How many network addresses do you need for the organization?
 - How many network addresses do you have?

Fixed Length Subnetting: Example

VLSM

- Also known as "Variable Length Subnet Masking"
- Always satisfy the requirements of your biggest LAN and then work your way down to the smallest LAN.
 - Assign a block of IP satisfying only that particular LAN.
 - 200 hosts? Assign a block of size 256 IPs!
 - 1000 hosts? Assign a block of size 1024 IPs!
 - 2 Hosts? Assign a block of size 2 IPs!

- Given the network **192.168.1.0/24.**
 - Subnet this to two hosts of size 120 (Network A) and 3 (Network B)
 - So, Network A needs 122 IPs and Network B needs 5 IPs.

Classful IP Addressing		Fixed Length Sub Masking	net	Variable Length Subnet Masking (VLSM)/CIDR		
Network A:	122	Network A:	122	Network A:	122	
Subnet; Class C:	<u>-254</u>	Subnet Size(2 ⁷):	<u>-128</u>	Subnet Size(2 ⁷):	<u>-128</u>	
Waste: 254 – 122	132	Waste: 128 — 122	6	Waste: 128 – 122	6	
Network B:	5	Network B:	5	Network B:	5	
Subnet; Class C:	<u>-254</u>	Subnet Size(2 ⁷):	-128	Subnet Size(2 ³):	<u>-8</u>	
Waste: 254 – 5	249	Waste: 128 – 5	123	Waste: 128 – 5	3	
Total Waste:	381	Total Waste:	129	Total Waste:	9	

```
**Total Waste = Waste<sub>Network A</sub> + Waste<sub>Network B</sub>

**Waste<sub>Network Y</sub> = Subnet Size<sub>Network Y</sub> - Network Y<sub>Host</sub>
```


- Given the network **192.168.1.0/24.**
 - Subnet this to two hosts of size 120 (Network A) and 3 (Network B)

• So, N	Classful IP Addressing		Fixed Length Subnet Masking		Variable Length Subnet Masking (VLSM)/CIDR	
	Network A:	122	Network A:	122	Network A:	122
	Subnet; Class C:	-256	Subnet Size(2 ⁷):	<u>-128</u>	Subnet Size(2 ⁷):	<u>-128</u>
	Waste: 254—122	134	Waste: 128–122	6	Waste: 128—122	6
	Network B:	5	Network B:	5	Network B:	5
	Subnet; Class C:	<u>-256</u>	Subnet Size(2 ⁷):	-128	Subnet Size(2³):	<u>-8</u>
	Waste: 254–5	251	Waste: 128–5	123	Waste: 128–5	3
	Total Waste:	385	Total Waste:	129	Total Waste:	9

```
**Total Waste = Waste<sub>Network A</sub> + Waste<sub>Network B</sub>

**Waste<sub>Network Y</sub> = Subnet Size<sub>Network Y</sub> - Network Y<sub>Host</sub>
```

Lots of Waste!

Waste:

- Classful subnetting wastes addresses.
- If you are using private addresses then you may not be bothered.
- Waste of public addresses does matter.

Solutions:

- Variable Length Subnet Masking (VLSM)
- Create subnets as per specific host requirements.

- Network address given: 192.168.16.0/24
- Host requirements (sorted largest to smallest)
 - LAN 1: 120 Hosts
 - LAN 2: 60 Hosts
 - LAN 3: 20 Hosts
 - WAN 1: 2 Hosts
 - WAN 2: 2 Hosts

Host Name	Host requirement	+2	IP Block size	Host bits required	Network bits required
Α	120	122	128	7	25
В	60	62	64	6	26
С	20	22	32	5	27
D	2	4	4	2	30
E	2	4	4	2	30

Host Name	Host requirement	+2	IP Block size	Host bits required	Network bits required
А	120	122	128	7	25
В	60	62	64	6	26
С	20	22	32	5	27
D	2	4	4	2	30
E	2	4	4	2	30

Host Name		Host requirement	+2	IP Block size	Host bits required	Network bits required
	Α	120	122	128	7	25
	В	60	62	64	6	26
	C	20	22	32	5	27
	D	2	4	4	2	30
	E	2	4	4	2	30

CIDR Concept

- Also known as "Classless Inter-Domain Routing"
- To CIDR-compliant routers, address class is meaningless
- The network portion of the address is determined by the network subnet mask, also known as the prefix or prefix length (/8, /19, etc.)
- Classless routing protocols are complaint with CIDR which means they understand
 - VLSM and
 - Route Summarization.
- All routing protocols are classless nowadays.

The End