COMP S265F Design and Analysis of Algorithms Lab 12: Finite Automata and Regular Expressions

1 From NFA with ε moves to DFA

Given a NFA M_{ε} with ε moves, we can construct a DFA M_D using the subset construction technique, where each state of the DFA corresponds to a subset of states in the NFA. A challenge is that state transition may happen by some ε moves.

1.1 Lambda closure of a state

Given the NFA transition function f_{ε} , we can define the *lambda closure* $\lambda(s)$ of a state s to be the set of states which can be reached from s by zero or more ε moves (without consuming any input). More precisely, for any state s in M_{ε} , $s \in \lambda(s)$; if $p \in \lambda(s)$ and there is an ε move from p to q, then $q \in \lambda(s)$.

For example, the following NFA with ε moves has the transition table f_{ε} below:

Then, we can fill in the lambda closures of states 0, 1, 2, 3, 4, as follows:

- 1. At a state s without any ε moves (i.e., $f_{\varepsilon}(s,\varepsilon) = \emptyset$), we can only stay there, so $\lambda(s) = \{s\}$. In the example, $\lambda(1) = \{1\}$, $\lambda(4) = \{4\}$.
- 2. At a state s' with ε moves to a state s in the previous step, $\lambda(s')$ includes s' and the lambda closure $\lambda(s)$. In the example, $\lambda(0) = \{0\} \cup \lambda(1) = \{0,1\}, \ \lambda(2) = \{2\} \cup \lambda(1) = \{1,2\}.$
- 3. The other steps continue similarly. In the example, $\lambda(3) = \{3\} \cup \lambda(2) \cup \lambda(4) = \{1, 2, 3, 4\}$.

The completed transition table f_{ε} with lambda closures is:

$f_{arepsilon}$	s	a	b	ε	$\lambda(s)$
start	0	Ø	Ø	{1}	{0,1}
	1	$\{2, 3\}$	Ø	Ø	{1}
	2	Ø	{3}	{1}	$\{1,2\}$
	3	{4}	Ø	$\{2, 4\}$	$\{1, 2, 3, 4\}$
final	4	Ø	Ø	Ø	{4}

We also extend the definition of lambda closure for a set of states:

$$\lambda(\{s_1, s_2, \dots, s_n\}) = \lambda(s_1) \cup \lambda(s_2) \cup \dots \cup \lambda(s_n) .$$

For example, $\lambda(\{2,3\}) = \lambda(2) \cup \lambda(3) = \{1,2,3,4\}.$

1.2 Construction steps

The construction of the transition function f_D of the DFA can be done, as follows:

Step 1. The DFA start state is $\lambda(s)$, where s is the NFA start state. It is also a DFA final state if $\lambda(s)$ contains any NFA final state.

Step 2. If $\{s_1, s_2, \dots, s_n\}$ is a DFA state and $a \in \Sigma$, then construct a next DFA state in either way below:

• Closure of union:

$$f_D(\{s_1, s_2, \dots, s_n\}, a) = \lambda(f_{\varepsilon}(s_1, a) \cup f_{\varepsilon}(s_2, a) \cup \dots \cup f_{\varepsilon}(s_n, a))$$
, or

• Union of closure:

$$f_D(\{s_1, s_2, \dots, s_n\}, a) = \lambda(f_{\varepsilon}(s_1, a)) \cup \lambda(f_{\varepsilon}(s_2, a)) \cup \dots \cup \lambda(f_{\varepsilon}(s_n, a))$$
.

Step 3. If the next states in Step 2 are new DFA states, add them to the DFA table.

A new DFA state is a final state if its set contains a NFA final state.

Repeat Step 2 for these new DFA states.

Continuing on the previous example, we complete the DFA transition table f_D row by row, as follows:

• Step 1:

start state =
$$\lambda(0) = \{0, 1\}$$

• Step 2 on state $\{0,1\}$:

$$f_D(\{0,1\},a) = \lambda(f_{\varepsilon}(0,a)) \cup \lambda(f_{\varepsilon}(1,a))$$
 (union of closure)
= $\lambda(\emptyset) \cup \lambda(\{2,3\})$
= $\lambda(2) \cup \lambda(3) = \{1,2\} \cup \{1,2,3,4\} = \{1,2,3,4\}$

Therefore, we have the following table:

$$\begin{array}{c|ccccc} f_D & a & b \\ \hline \text{start} & \{0,1\} & \{1,2,3,4\} & \emptyset \\ \end{array}$$

• Step 3:

There are two new states: $\{1, 2, 3, 4\}$ and \emptyset .

 $\{1,2,3,4\}$ is also a DFA final state, as 4 is a NFA final state.

• Step 2 on state $\{1, 2, 3, 4\}$ (and on state \emptyset , which is trivial):

$$\begin{split} f_D(\{1,2,3,4\},a) &= \lambda(f_{\varepsilon}(1,a) \cup f_{\varepsilon}(2,a) \cup f_{\varepsilon}(3,a) \cup f_{\varepsilon}(4,a)) \quad \text{(closure of union)} \\ &= \lambda(\emptyset \cup \{2,3\} \cup \emptyset \cup \{4\}) = \lambda(\{2,3,4\}) \\ &= \lambda(2) \cup \lambda(3) \cup \lambda(4) = \{1,2\} \cup \{1,2,3,4\} \cup \{4\} = \{1,2,3,4\} \\ f_D(\{1,2,3,4\},b) &= \lambda(f_{\varepsilon}(1,b) \cup f_{\varepsilon}(2,b) \cup f_{\varepsilon}(3,b) \cup f_{\varepsilon}(4,b)) \quad \text{(closure of union)} \\ &= \lambda(\{3\}) \\ &= \{1,2,3,4\} \end{split}$$

Therefore, we have the following table:

1.3 Renaming the states

For clarity of presentation, we can assign a unique name to each DFA state. In the previous example, the renamed transition table f_D and the resultant DFA are shown below:

1.4 Reducing the number of states

Sometimes, we can easily observe unnecessary states in our solution and can reduce the number of states:

If two states are **both final** or **both non-final**, and their transitions for all inputs are exactly the same, these two states can be merged as one state.

Note that if one of these two states is a start state, the merged state is also a start state.

Consider the following example:

$$\begin{array}{c|cccc} f_D & s & a & b \\ \hline start & 0 & 1 & 3 \\ final & 1 & 2 & 2 \\ final & 2 & 2 & 2 \\ & 3 & 3 & 3 \\ \end{array}$$

We can merge states 1 and 2 to a merged state (named state 1), and rename state 3 to state 2. Then the resultant DFA is the same as the DFA in Section 1.3.

1.5 Example

Example 1. Transform the following NFA with ε moves to a DFA:

Solution. The transition table f_{ε} for the NFA with lambda closures is:

$f_arepsilon$	s	a	b	ε	$\lambda(s)$
start	0	{2}	Ø	{1}	$\{0, 1, 3\}$
	1	{1}	Ø	$\{3\}$	$\{1, 3\}$
	2	Ø	$\{3\}$	Ø	{2}
final	3	Ø	Ø	Ø	$\{3\}$

Now, we construct the transition table f_D of the DFA, as follows:

• start state = $\lambda(0) = \{0, 1, 3\}$ (also final state as it contains NFA final state 3)

•
$$f_D(\{0,1,3\},a) = \lambda(f_{\varepsilon}(0,a) \cup f_{\varepsilon}(1,a) \cup f_{\varepsilon}(3,a))$$
 (closure of union)

$$= \lambda(\{1,2\})$$

$$= \{1,2,3\}$$

$$f_D(\{0,1,3\},b) = \lambda(f_{\varepsilon}(0,b) \cup f_{\varepsilon}(1,b) \cup f_{\varepsilon}(3,b))$$
 (closure of union)

$$= \lambda(\emptyset)$$

$$= \emptyset$$

Therefore, we have the following table:

• There are two new states: $\{1,2,3\}$ (final state as it contains NFA final state 3) and \emptyset .

•
$$f_D(\{1,2,3\},a) = \lambda(f_{\varepsilon}(1,a) \cup f_{\varepsilon}(2,a) \cup f_{\varepsilon}(3,a))$$
 (closure of union)

$$= \lambda(\{1\})$$

$$= \{1,3\}$$

$$f_D(\{1,2,3\},b) = \lambda(f_{\varepsilon}(1,b) \cup f_{\varepsilon}(2,b) \cup f_{\varepsilon}(3,b))$$
 (closure of union)

$$= \lambda(\{3\})$$

$$= \{3\}$$

Therefore, we have the following table:

• There are two new final states (as they contain NFA final state 3): {1,3} and {3}.

•
$$f_D(\{1,3\},a) = \lambda(f_{\varepsilon}(1,a) \cup f_{\varepsilon}(3,a))$$
 (closure of union)

$$= \lambda(\{1\})$$

$$= \{1,3\}$$

$$f_D(\{1,3\},b) = \lambda(f_{\varepsilon}(1,b) \cup f_{\varepsilon}(3,b))$$
 (closure of union)

$$= \lambda(\emptyset)$$

$$= \emptyset$$

Therefore, we have the following table:

	f_D	a	b
start, final	$\{0, 1, 3\}$	$\{1, 2, 3\}$	Ø
$_{ m final}$	$\{1, 2, 3\}$	$\{1, 3\}$	$\{3\}$
	Ø	Ø	Ø
$_{ m final}$	$\{1, 3\}$	$\{1, 3\}$	\emptyset
final	$\{3\}$	Ø	Ø

• We rename the five states to 0, 1, 2, 3, 4:

	f_D	a	b
start, final	0	1	2
final	1	3	4
	2	2	2
final	3	3	2
final	4	2	2

• States 2 and 4 have the same transitions for all inputs, but state 2 is non-final while state 4 is final. Therefore, we cannot merge these two states.

As a result, we obtain the following DFA:

2 From regular expression to NFA with ε moves

2.1 The four rules

Given a regular expression, we can construct the corresponding NFA with ε moves by starting with a start state, a single final state, and an edge labeled with the given regular expression (regex):

Then, we can repeatedly apply the following rules until all edges are labeled with an input symbol or ε :

Rule 1. If an edge is labeled with \emptyset , then remove the edge.

Rule 2. Transform the diagram on the left to that on the right:

Rule 3. Transform the diagram on the left to that on the right:

Rule 4. Transform the diagram on the left to that on the right:

2.2 Example

Example 2. Construct an NFA with ε moves for the regular expression $a^* \cup ab$.

Solution. We start with the diagram on the left. Next, we can apply Rule 2 to obtain the diagram on the right:

Then, we apply Rule 4 on the upper edge, and Rule 3 on the lower edge to obtain the following answer:

3 Exercises

Question 1. Let $\Sigma = \{a, b, c\}$. Consider the following NFA with ε moves:

- (i) Write down the transition table of the above NFA including the lambda closure of the states.
- (ii) Transform the above NFA to a DFA. Write down the transition table of the DFA.
- (iii) Reduce the number of states of the DFA in (ii), and write down the new transition table.
- (iv) Draw the diagram of the DFA in (iii).

Question 2. A regular language is a language that can be described by a regular expression. Using the pumping lemma to prove that the following languages are not regular:

(i)
$$L = \{a^n b c^n \mid n \in \mathbb{N}\}$$

(ii)
$$M = \{a^m b^n \mid m, n \in \mathbb{N} \text{ and } |m-n| < 10\}$$

Question 3. Let $\Sigma = \{a, b, c\}$. Construct a NFA with ε moves for the regular expression

$$a^*(b^* \cup c^*)a^*$$

6