Vorlesung Methoden der Funktionalanalysis

Wintersemester 2018/2019

Vorlesung: Prof. Dr. Ralph Chill Mitschrift: Willi Sontopski & Johannes Stojanow

10. Oktober 2018

Inhaltsverzeichnis

0	Einführung	2
1	Akkretive Operatoren	4
	Das "Bracket"	

0 Einführung

Eine Halbgruppe ist

$$t \mapsto S(t)$$

$$S(t): C \to C$$

$$S(0) = id$$

$$S(t+s) = S(t) \circ S(s)$$

Eine Beobachtung: Wir betrachten das folgende Cauchy-Problem (gewöhnliche GDG)

(CP)
$$\begin{cases} \dot{u}(t) + A(u(t)) = 0, & t \ge 0 \\ u(0) = u_0 \end{cases}$$
 (0.1)

Theorem 0.0.1 (Picard-Lindelöf) Sei $A: \mathbb{R}^N \to \mathbb{R}^N$ eine Lipschitz-stetige Funktion. Dann besitzt das Cauchy-Problem für alle $u_0 \in \mathbb{R}^N$ genau eine (globale) Lösung $u \in C^1(\mathbb{R}_+; \mathbb{R}^N)$.

Beweis. Die Existenz einer lokalen Lösung folgt bereits aus dem Theorem von Peano. Darauf kommen wir später zurück. Zur Erbringung des Eindeutigkeitsbeweises seien $u, v \in C^1(\mathbb{R}_+; \mathbb{R}^N)$ zwei Lösungen des Cauchy-Problems zum selben Anfangswert. Dann gilt

$$\frac{1}{2} \frac{d}{dt} \|u(t) - v(t)\|_{2}^{2} = \langle u(t) - v(t), \dot{u}(t) - \dot{v}(t) \rangle_{2}$$

$$\stackrel{\text{CP}}{=} - \langle u(t) - v(t), Au(t) - Av(t) \rangle_{2}$$

$$\stackrel{\text{C.S.}}{\leq} \|u(t) - v(t)\|_{2} \cdot \|Au(t) - Av(t)\|_{2}$$

$$\stackrel{Lip}{\leq} L \cdot \|u(t) - v(t)\|_{2}^{2}$$

mit der Cauchy-Schwarz-Ungleichung und der Lipschitz-Stetigkeit von A. Wir integrieren über [0,t] und erhalten

$$||u(t) - v(t)||_2^2 \le ||u(0) - v(0)||_2^2 + 2L \int_0^t ||u(s) - v(s)||_2^2 ds,$$

wobei $||u(0)-v(0)||_2^2=0$ durch Identität der Anfangswerte für u und v. Mit dem Lemma

von Gronwall folgt

$$||u(t) - v(t)||_2^2 \le \exp(2 \cdot L \cdot t) ||u(0) - v(0)||_2^2 = 0 \quad \forall t \in [0, T].$$

Daraus folgt $u \equiv v$. Der Existenzbeweis erfolgt über den Beweis, dass kein "blow-up" in endlicher Zeit möglich ist.

Bemerkung. Nur Stetigkeit von A reicht nicht für die eindeutige Lösbarkeit. Zum Beispiel sei N=1 und $Au=-\operatorname{sgn}(u)\cdot\sqrt{|u|}$.

Eine Alternative zur Lipschitz-Stetigkeit:

Definition 0.0.2 (Monotonie) Die Funktion $A: \mathbb{R}^N \to \mathbb{R}^N$ heißt monoton (wachsend)

$$:\Leftrightarrow \forall u, v \in \mathbb{R}^N : \langle Au - Av, u - v \rangle > 0$$

Lemma 0.0.3 Ist A monoton und stetig, dann gibt es zu jedem $u_0 \in \mathbb{R}^N$ immer noch genau eine (globale) Lösung des Cauchy-Problems (0.1).

Beweis.

$$\frac{1}{2}\frac{d}{dt}\|u(t) - v(t)\|_2^2 = -\langle u(t) - v(t), Au(t) - Av(t)\rangle \le 0.$$

$$\implies t \mapsto \frac{1}{2}\|u(t) - v(t)\|^2 \text{ ist monoton fallend}$$

Die Abbildung $t \mapsto 2^{-1} ||u(t) - v(t)||_2^2$ ist also monoton fallend, woraus die eindeutige Lösbarkeit folgt.

Beispiel 0.0.4 N = 1 und $Au = \operatorname{sgn}(u) \cdot \sqrt{|u|}$

Korollar 0.0.5 (Picard-Lindelöf allgemein) $A = A_0 + A_1$, wobei $A_0 : \mathbb{R}^N \to \mathbb{R}^N$ monoton sowie stetig und $A_1 : \mathbb{R}^N \to \mathbb{R}^N$ Lipschitz-stetig sind. Daraus folgt eindeutige (globale) Lösbarkeit und Existenz der Lösung.

Beweis. Folgt auf beiden vorherigen Resultaten.

In dieser Vorlesung behandeln wir die allgemeine Theorie in Banachräumen.

1 Akkretive Operatoren

Im Folgenden sei X ein Banachraum mit Norm $\|\cdot\|$ und H ein Hilbertraum mit Skalarprodukt $\langle\cdot,\cdot\rangle$.

Definition 1.0.1 Ein (nichtlinearer) **Operator** auf X ist eine Relation $A \subseteq X \times X$. Wir schreiben

- $Au := \{ f \in X : (u, f) \in A \} \ \forall u \in X$
- $dom(A) := \{u \in X : Au \neq \emptyset\}$ **Definitions bereich** von A
- $\operatorname{rg}(A) := \{ f \in X : \exists u \in X : (u, f) \in A \}$ Bild von A
- $A^{-1} := \{(f, u) \in X \times X : (u, f) \in A\}$ inverser Operator
- $I := \{(u, u) \in X \times X : u \in X\}$ identischer Operator
- Offenbar gilt $dom(A^{-1}) = rg(A)$
- Sind $A, B \subseteq X \times X$ zwei Operatoren, $\lambda \in \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, dann ist

$$A + B := \{(u, f_1 + f_2) : f_1 \in A, f_2 \in B\}$$

$$:= \{(u, f) \in X \times X : \exists f_1, f_2 \in X : (u, f_1) \in A \land (u, f_2) \in B \land f = f_1 + f_2\}$$

$$\lambda \cdot A := \{(u, \lambda \cdot f : (u, f) \in \} := \{(u, f) \in X \times X : \exists f_1 \in X : (u, f_1) \in X \land f = \lambda \cdot f_1\}$$

1.1 Das "Bracket"

Sei $(X, \|\cdot\|)$ ein Banachraum. Für alle $u, v \in X$ und alle $\lambda \in \mathbb{R}_{>0}$ sei

$$[u, v]_{\lambda} := \frac{\|u + \lambda \cdot v\| - \|u\|}{\lambda} \text{ und}$$
$$[u, v] := \inf_{\lambda > 0} [u, v]_{\lambda}.$$

Die Abbildung $[\cdot, \cdot]: X \times X \to \mathbb{R} \cup \{-\infty\}$ heißt **Bracket**. Das Bracket [u, v] ist eine Richtungsableitung der Norm $\|\cdot\|_X$ im Punkt u in Richtung v.

Lemma 1.1.1 (Eigenschaften des Brackets) Seien $u, v \in X, \mu > 0$. Dann gilt:

(i) $[\cdot,\cdot]: X\times X\to \mathbb{R}\cup\{-\infty\}$ ist **oberhalbstetig**, d.h.

$$(u_n, v_u)_{n \in \mathbb{N}} \to (u, v) \text{ in } X \times X \Longrightarrow [u, v] \ge \limsup_{n \to \infty} [u_n, v_n]$$

- (ii) Die Funktion $]0,\infty[\to\mathbb{R},\,\lambda\mapsto[u,v]_\lambda$ ist monoton wachsend und beschränkt durch $\|v\|$.
- (iii) $[u, v] = \lim_{\lambda > 0} [u, v]_{\lambda}$.
- (iv) Die Funktion $X \to \mathbb{R} \cup \{-\infty\}, v \mapsto [u, v]$ ist sublinear.
- (v) $[\mu \cdot u, v] = [u, v].$
- (vi) [u, 0] = 0.
- (vii) [0, v] = ||v||.
- (viii) [u, u] = ||u||.

Definition 1.1.2 Eine Funktion $f: M \to \mathbb{R} \cup \{+\infty\}$ auf einem metrischen Raum M heißt **unterhalbstetig** : \Leftrightarrow

$$\forall (u_n)_{n \in \mathbb{N}} \subseteq M, \forall u \in M : u_n \stackrel{n \to \infty}{\longrightarrow} u \text{ in } M \Longrightarrow f(u) \leq \liminf_{n \to \infty} f(u_n)$$

f heißt **oberhalbstetig**, falls -f unterhalbstetig ist.

Lemma 1.1.3 Sei M ein metrischer Raum, $f: M \to \mathbb{R} \cup \{+\infty\}$ eine Funktion. Dann sind äquivalent:

- (i) f ist unterhalbstetig.
- (ii) $\forall c \in \mathbb{R} : \{f \leq c\} := \{u \in M \mid f(u) \leq c\}$ ist abgeschlossen.
- (iii) $\{(u, \lambda) \in M \times \mathbb{R} \mid f(u) \leq \lambda\} =: epi(f) \text{ ist abgeschlossen.}$

Beweis. Zeige (i) \Rightarrow (iii):

Sei $c \in \mathbb{R}$ und sei $(u_n)_{n \in \mathbb{N}} \subseteq \{x \in M : f(x) \leq c\}$ konvergente Folge mit $u := \lim u_n$ in M. Dann ist

$$\lim_{n \to \infty} \underbrace{(u_n, c)}_{=\text{epi}(f)} \text{ mit } M \times \mathbb{R}.$$

Da epi(f) abgeschlossen ist, ist $(u, c) \in \text{epi}(f)$, d.h. $f(u) \leq c$ d.h. $u \in \{f \leq c\}$

Zeige (ii) \Rightarrow (i):

 $\overline{\text{Sei}(u_n)_{n\in\mathbb{N}}}\subseteq\{x\in M:f(x)\leq c\}$ konvergente Folge mit $u:=\lim u_n$ in M. Setze

$$c := \liminf_{n \to \infty} f(u_n) \in \mathbb{R} \cup \{\pm \infty\}.$$

Falls $c > -\infty$, dann enthält $\{f \le c + \varepsilon\}$ für $\varepsilon > 0$ unendlich viele u_n . Weil $\{f \le c + \varepsilon\}$ abgeschlossen ist, ist

$$u = \lim_{n \to \infty} u_n \in \{ f \le c + \varepsilon \} \text{ d.h. } f(u) \le c + \varepsilon.$$

Da $\varepsilon > 0$ beliebig ist, ist $f(u) \leq c = \liminf_{n \to \infty} f(u_n)$.

Falls $c = -\infty$, dann enthält $\{f \leq K\}$ mit $K \in \mathbb{R}$ beliebig unendlich viele u_n . Und weil $\{f \leq K\}$ abgeschlossen ist, ist $u = \lim_{n \to \infty} u_n \in \{f \leq K\}$, d.h. $f(u) \leq K$. Da $K \in \mathbb{R}$ beliebig ist, ist $f(u) \leq -\infty$. Dies ist aber ein Widerspruch zur Annahme.

Lemma 1.1.4 Sei M ein metrischer Raum und sei $(f_i)_{i\in I}$ eine Familie von unterhalbstetigen Funktionen $f_i: M \to \mathbb{R} \cup \{+\infty\}, i \in I$.

Dann ist das Supremum $f := \sup_{i \in I} f_i$ unterhalbstetig.

Beweis. Es gilt

$$\operatorname{epi}(f) = \operatorname{epi}\left(\sup_{i \in I} f_i\right) = \bigcap_{i \in I} \operatorname{epi}(f_i)$$

und beliebige Schnitte abgeschlossener Mengen sind abgeschlossen.

Definition 1.1.5 Sei X ein reeller oder komplexer Vektorraum. Eine Funktion $f: X \to X$ $\mathbb{R} \cup \{\infty\}$ heißt konvex

$$:\iff \forall x,y\in X, \forall \lambda\in[0,1]: f(\lambda\cdot x+(1-\lambda)\cdot y)\leq \lambda\cdot f(x)+(1-\lambda)\cdot f(y)$$

Eine Teilmenge $C \subseteq X$ heißt konvex

$$:\iff \forall x,y\in C, \forall \lambda\in[0,1]:\lambda\cdot x+(1-\lambda)\cdot y\in C$$

Lemma 1.1.6 f ist konvex \iff epi(f) ist konvex.

Lemma 1.1.7 Sei $f: \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ konvex. Dann gilt

(a) Für alle $x \in \mathbb{R}$ mit $f(x) < \infty$ und für alle $y \in \mathbb{R}$ ist

$$(0,\infty) \to \mathbb{R} \cup \{+\infty\}, \qquad \lambda \mapsto \frac{f(x+\lambda \cdot y) - f(x)}{\lambda}$$

monoton wachsend.

(b) $\forall x \in \mathbb{R} \text{ mit } f(x) < \infty \text{ existieren die Grenzwerte}$

$$\lim_{\lambda \to 0^+} \frac{f(x+\lambda \cdot y) - f(x)}{\lambda} \in \mathbb{R} \cup \{\pm \infty\} \text{ und } \lim_{\lambda \to 0^+} \frac{f(x-\lambda \cdot y) - f(x)}{-\lambda} \in \mathbb{R} \cup \{\pm \infty\}.$$

(c) $dom(f) := \{r \in \mathbb{R} : f(r) < \infty\}$ ist ein Intervall und f ist stetig auf dom(f).

Beweis. Zeige (a): O.B.d.A. sei $x=0,\ f(x)=0$ und y=1. Zu zeigen ist, dass $\lambda\mapsto \frac{f(\lambda)}{\lambda}$ monoton wachsend auf $(0,\infty)$ ist. Sei $0<\lambda_1<\lambda_2$. Dann ist

$$\lambda_1 = (1 - \lambda) \cdot 0 + \lambda \cdot \lambda_2 \text{ für } \lambda := \frac{\lambda_1}{\lambda_2} \in [0, 1]$$

und somit

$$f(x_1) = f\left((1-\lambda)\cdot 0 + \lambda\cdot \lambda_2\right) \stackrel{f \text{ konv}}{\leq} \underbrace{(1-\lambda)\cdot f(0)}_{=0} + \lambda\cdot f(\lambda_2) = \frac{\lambda_1}{\lambda_2}\cdot f(\lambda_2).$$

Behauptung (c) folgt dann aus (b), welche aus (a) folgt.

Beweis des Lemmas über die Eigenschaften des Brackets.

Zeige (a): Das Bracket ist oberhalbstetig, denn

$$[\cdot,\cdot]_{\lambda}: X \times X \to \mathbb{R}, \ (u,v) \mapsto [u,v]_{\lambda} := \frac{\|u+\lambda \cdot v\| - \|u\|}{\lambda}$$

ist stetig (da jede Norm stetig ist) und damit auch oberhalbstetig für alle $\lambda > 0$. Das Infimum von oberhalbstetiger Funktion ist wieder oberhalbstetig.

Zeige (b):

Die Funktion $\lambda \mapsto [u, v]_{\lambda}$ ist monoton wachsend auf $(0, \infty)$, weil $\lambda \mapsto ||u + \lambda \cdot v||$ konvex ist, denn jede Norm ist konvex (dies folgt aus der Dreiecksungleichung).

Zeige (c):

 $[u,v] = \lim_{\lambda \to 0^+} [u,v]_{\lambda}$ folgt aus (b) und aus

$$[u,v]_{\lambda} := \frac{\|u+\lambda \cdot v\| - \|u\|}{\lambda} \overset{\Delta \mathrm{Ungl}}{\leq} \frac{\|u\| + \lambda \cdot \|v\| - \|u\|}{\lambda} = \|v\|.$$

Zeige (d):

 $v \mapsto [u, v]$ ist sublinear, denn

$$\begin{split} [u,\mu\cdot v] &= \inf_{\lambda>0}[u,\mu\cdot v]_{\lambda} \\ &= \inf_{\lambda>0}\frac{\|u+\lambda\cdot \mu\cdot v\| - \|u\|}{\lambda}\cdot \frac{\mu}{\mu} \\ &= \inf_{\lambda>0}\mu\cdot [u,v]_{\lambda\cdot \mu} \\ &= \mu\cdot [u,v] \end{split}$$

und für alle $\mu \in (0,1)$ gilt

$$[u, v_{1} + v_{2}] = \inf_{\lambda > 0} \frac{\|u + \lambda \cdot (v_{1} + v_{2})\| - \|u\|}{\lambda} \cdot \frac{\mu}{\mu}$$

$$\stackrel{\mu \in (0,1)}{\leq} \inf_{\substack{\lambda > 0 \\ = \lim_{\lambda \to 0}}} \|\mu \cdot u + \lambda \cdot v_{1}\| + \|(1 - \mu) \cdot u + \lambda \cdot v_{2}\| - \mu \cdot \|u\| - (1 - \mu) \cdot \|u\|$$

$$= \lim_{\lambda \to 0} \frac{\|u + \frac{\lambda}{\mu} \cdot v_{1}\| - \|u\|}{\frac{\lambda}{\mu}} + \frac{\|u + \frac{\lambda}{1 - \mu} \cdot v_{2}\| - \|u\|}{\frac{\lambda}{1 - \mu}}$$

$$= [u, v_{1}] + [u, v_{2}]$$

Zeige (e): Es gilt $[\mu \cdot u, v] = [u, v]$, denn

$$[\mu \cdot u, v] = \inf_{\lambda > 0} \frac{\|\mu \cdot u + \lambda \cdot v\| - \|\mu \cdot u\|}{\lambda}$$
$$= \inf_{\lambda > 0} \frac{\left\|u + \frac{\lambda}{\mu} \cdot v\right\| - \|u\|}{\frac{\lambda}{\mu}}$$
$$= [u, v]$$

Zeige (f):

$$[u, 0] = \inf_{\lambda > 0} \frac{\|u + \lambda \cdot 0\| - \|u\|}{\lambda} = 0$$

Zeige (g):

$$[0, v] = \inf_{\lambda > 0} \frac{\|0 + \lambda \cdot v\| - \|0\|}{\lambda} = \|v\|$$

Zeige (h):

$$[u, u] = \inf_{\lambda > 0} \frac{\|u + \lambda \cdot u\| - \|u\|}{\lambda} = \inf_{\lambda > 0} \frac{(1 + \lambda) \cdot \|u\| - \|u\|}{\lambda} = \|u\|$$

Bemerkung. Falls X = H ein Hilbertraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ ist, dann ist

$$\begin{split} [u,v] &= \lim_{\lambda \to 0^+} \sqrt{\langle u + \lambda \cdot v, u + \lambda \cdot v \rangle} - \sqrt{\langle u, u \rangle} \\ &= \lim_{\lambda \to 0^+} \frac{\sqrt{\langle u, u \rangle + 2 \cdot \lambda \cdot \langle u, v \rangle + \lambda^2 \cdot \langle v, v \rangle} - \sqrt{\langle u, u \rangle}}{\lambda} \\ \overset{u \neq 0}{=} \frac{1}{2 \cdot \|u\|} \cdot 2 \cdot \langle u, v \rangle \\ &= \left\langle \frac{u}{\|u\|}, v \right\rangle \end{split}$$

Lemma 1.1.8 Sei X ein Banachraum, $I \subseteq \mathbb{R}$ ein Intervall und sei $u: I \to X$ eine Funktion. Dann gilt:

(a) Wenn die rechtsseitige Ableitung von u,

$$D_t^R u(t) := \dot{u}(t+) := \lim_{h \to 0^+} \frac{u(t+h) - u(t)}{h},$$

existiert, dann existiert

$$D_t^R \|u(t)\| := \dot{u}(t+) := \lim_{h \to 0^+} \frac{\|u(t+h)\| - \|u(t)\|}{h}$$

und es gilt

$$D_t^R ||u(t)|| = [u(t), D_t^R u(t)]|.$$

(b)