	Huo Robotres
1)	By definition of orthogonal matrix, A-1 = AT for any orthogonal matrix A. The transpose can be bund by sultching the rows with alumns.
$A^{-1}=A$	$ \begin{bmatrix} 1/3 & -2/3 & 2/3 \\ -2/3 & 2/3 & 1/3 \\ -2/3 & 1/3 & 2/3 \end{bmatrix} $
2	Using dot product formula: $\vec{w} \cdot \vec{V} = \vec{w} \vec{V} \cos \theta$ $\cos \theta = \vec{w} \cdot \vec{V} = \langle 4, -3, 3 \rangle \cdot \langle 3, 3, -1 \rangle$ $ \vec{w} \vec{V} = \sqrt{4^2 + (3)^2 + 3^2} \times \sqrt{3^2 + 3^2 + (-1)^2}$
	$= (4)(3) + (-3)(3) + (3)(-1) = 0$ $= \sqrt{16+9+9} \times \sqrt{9+9+1} = \sqrt{34} \times \sqrt{19} = 0$
Eque	toons magnitude = Jx2+42+72 det product = W,V, +W2V2+W3V3 0=90