

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta elektrotechnická Katedra elektrických pohonů a trakce

Název dokumentu

Podnázev dokumentu

OBSAH

1	Rovnice asynchronního motoru				
	Conclusion	2			
	References	3			
	A Seznam symbolů a zkratek				
A.1	Seznam zkratek	3			
A.2	Seznam symbolů	4			

SEZNAM OBRÁZKŮ

SEZNAM TABULEK

1 Rovnice asynchronního motoru

Rovnice pro ASM je možné odvodit při uvažování následujících zjednodušení:

- tloušťka vzduchové mezery je po celém obvodu mezi rotorem a statorem konstatní,
- statorová a rotorová vinutí jsou rozložena podél obvodu vzduchové mezery sinusově, vinutí jednotlivých fází jsou proti vůči sobě natočeny o 120°,
- ztráty v železe jsou zanedbány,
- není uvažováno sycení magnetického obvodu,
- aktivní železo stroje má nekonečnou relativní permeabilitu,
- statorová a rotorová vinutí jsou souměrná, tj. činné odpory, indukčnosti a vzájemné indukčnosti jednotlivých fází jsou identické.

Při uvažování uvedených zjednodušení je poté možné psát rovnice

$$\underline{u_1^k} = R_1 \underline{i_1^k} + \frac{\mathrm{d}\psi_1^k}{\mathrm{d}t} + \mathrm{j}\omega_k \underline{\psi_1^k},\tag{1-1}$$

$$\underline{u_2^k} = R_2 \underline{i_2^k} + \frac{\mathrm{d}\psi_2^k}{\mathrm{d}t} + \mathrm{j}(\omega_k - \omega)\underline{\psi_2^k},\tag{1-2}$$

$$\psi_1^k = L_1 i_1^k + L_m i_2^k, \tag{1-3}$$

$$\psi_2^k = L_2 i_2^k + L_{\rm m} i_1^k. \tag{1-4}$$

Kde k v horním indexu značí obecný souřadnicový systém, $\underline{u_1^k}$ (V) značí prostorový vektor napětí statorového vinutí, $\underline{u_2^k}$ (V) prostorový vektor napětí rotorového vinutí, $\underline{\psi_1^k}$ (Wb) prostorový vektor spřaženého magentického toku statorového vinutí, $\underline{\psi_2^k}$ (Wb) prostorový vektor spřaženého magnetického toku rotorového vinutí, R_1 () rezistivita statorového vinutí, R_2 (Ω) rezistivita rotorového vinutí, $\underline{i_1^k}$ (A) prostorový vektor proudu statorového vinutí, $\underline{i_2^k}$ (A) prostorový vektor proudu rotorového vinutí, $\underline{u_1^k}$ (A) elektrická úhlová rychlost rotoru, $\underline{\omega_s}$ (s⁻¹) skluzová rychlost, $\underline{\omega_k}$ (s⁻¹) obecná úhlová rychlost, L_1 (H) indukčnost statorového vinutí, L_2 (H) indukčnost rotorového vinutí.

Conclusion

And this is the conclusion of my report. P_n .

Appendix A: Seznam symbolů a zkratek

Seznam zkratek ASM Asynchronní Motor

A.2 Seznam symbolů P_n (W) nominal power