

BTA10 GP

TRIACS

FEATURES

■ LOW I_H = 13mA max

■ HIGH SURGE CURRENT : I_{TSM} = 120A

■ IGT SPECIFIED IN FOUR QUADRANTS

■ INSULATING VOLTAGE = 2500V_(RMS) (UL RECOGNIZED : E81734)

The BTA10 GP's use high performance, glass passivated chips.

The insulated TO220AB package, the high surge current and low holding current make this family well adapted to LIGHT DIMMER applications.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter		Value	Unit
IT(RMS)	RMS on-state current (360° conduction angle)	Tc = 90 °C	10	А
ITSM	Non repetitive surge peak on-state current	tp = 8.3 ms	126	Α
	(Tj initial = 25°C)		120	
l2t	I2t value	tp = 10 ms	72	A2s
dl/dt	Critical rate of rise of on-state current Gate supply: IG = 500mA dig/dt = 1A/μs	Repetitive F = 50 Hz	10	A/μs
		Non Repetitive	50	
Tstg Tj	Storage and operating junction temperature range		- 40 to + 150 - 40 to + 125	°C
TI	Maximum lead temperature for soldering during 1 from case	260	°C	

Symbol	Parameter	ВТА	Unit	
		400 GP	600 GP	
VDRM VRRM	Repetitive peak off-state voltage Tj = 125 °C	400	600	V

March 1995 1/4

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
Rth (j-a)	Junction to ambient	60	°C/W
Rth (j-c) DC	Junction to case for DC	4	°C/W
Rth (j-c) AC	Junction to case for 360° conduction angle (F= 50 Hz)	3	°C/W

GATE CHARACTERISTICS (maximum values)

PG~(AV) = 1W $PGM = 10W~(tp = 20~\mu s)$ $IGM = 4A~(tp = 20~\mu s)$ $VGM = 16V~(tp = 20~\mu s)$.

ELECTRICAL CHARACTERISTICS

Symbol	Test Conditions		Quadrant		Suffix	Unit
					GP	
I _{GT}	$V_D=12V$ (DC) $R_L=33\Omega$	Tj=25°C	1-11-111	MAX	50	mA
			IV	MAX	75	
VGT	$V_D=12V$ (DC) $R_L=33\Omega$	Tj=25°C	I-II-III-IV	MAX	1.5	V
V _{GD}	V _D =V _{DRM} R _L =3.3kΩ	Tj=110°C	I-II-III-IV	MIN	0.2	V
tgt	$V_D=V_{DRM}$ $I_G=500$ mA $dI_G/dt=3$ A/ μ s	Tj=25°C	I-II-III-IV	TYP	2	μs
IL	IG=1.2 IGT	Tj=25°C	I-III-IV	TYP	20	mA
			II		40	
IH *	IT= 100mA gate open	Tj=25°C		MAX	13	mA
VTM *	I _{TM} = 14A tp= 380μs	Tj=25°C		MAX	1.5	V
IDRM	VDRM Rated	Tj=25°C		MAX	0.01	mA
^I RRM	V _{RRM} Rated	Tj=110°C		MAX	0.5	
dV/dt *	Linear slope up to VD=67%VDRM	Tj=110°C		MIN	30	V/μs
	gate open			TYP	100	
(dV/dt)c *	(dl/dt)c= 2.2A/ms	Tj=110°C		MIN	1	V/μs
				TYP	10	

 $^{^{\}star}$ For either polarity of electrode A_2 voltage with reference to electrode $A_1.$

Fig.1: Maximum RMS power dissipation versus RMS on-state current (F=50Hz). (curves are cut off by (dl/dt)c limitation)

Fig.3: RMS on-state current versus case temperature.

Fig.5: Relative variation of gate trigger current and holding current versus junction temperature.

Fig.2: Correlation between maximum RMS power dissipation and maximum allowable temperatures (T_{amb} and T_{case}) for different thermal resistances heatsink + contact.

Fig.4: Relative variation of thermal impedance versus pulse duration.

Fig.6 : Non repetitive surge peak on-state current versus number of cycles.

Fig.7 : Non repetitive surge peak on-state current for a sinusoidal pulse with width : $t \le 10 ms$, and corresponding values of I^2t .

Fig.8: On-state characteristics (maximum values).

PACKAGE MECHANICAL DATA

TO220AB Plastic

REF.	DIMENSIONS				
	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
Α	10.20	10.50	0.401	0.413	
В	14.23	15.87	0.560	0.625	
С	12.70	14.70	0.500	0.579	
D	5.85	6.85	0.230	0.270	
F		4.50		0.178	
G	2.54	3.00	0.100	0.119	
Н	4.48	4.82	0.176	0.190	
	3.55	4.00	0.140	0.158	
J	1.15	1.39	0.045	0.055	
L	0.35	0.65	0.013	0.026	
М	2.10	2.70	0.082	0.107	
N	4.58	5.58	0.18	0.22	
0	0.80	1.20	0.031	0.048	
P	0.64	0.96	0.025	0.038	

Cooling method: C Marking: type number Weight: 2.3 g Recommended torque value : 0.8 m.N. Maximum torque value : 1 m.N.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

