第13章 组合逻辑电路的分析与设计

- 13.1 组合逻辑电路的分析
- 13.2 组合逻辑电路的设计
- 13.3 加法器
- 13.4 编码器
- 13.5 译码器和数据分配器
- 13.6 数据选择器
- 13.7 数据分配器
- 13.8 用MSI实现组合逻辑函数

定义:任意时刻的输出状态只决定于该时刻的输入状态,而 与从前的状态(输入与输出)无关。用方框图表示如下:

电路结构特点: 由门电路组合而成,电路中没有记忆单

元,没有反馈通路。

组合电路分类:

按逻辑功能特点,可分为:加法器、比较器、编码器、译码器、数据选择器、

数据分配器、只读存储器等等

按所使用的基本开关元件,可分为

CMOS、TTL等类型

按集成度不同,可分为SSI、MSI、LSI、

VLSI

逻辑功能表示法: 真值表、卡诺图、逻辑表达式、时间图

关于组合电路,主要研究两个问题:

- (1) 若组合电路已经给定,一般要求对其进行分析
- (2) 若组合电路只给出功能要求,一般要对其进行设计

13.1 组合逻辑电路的分析

分析目的: 说明给定电路的逻辑功能

分析步骤: (1) 由逻辑电路图写出逻辑表达式;

(2) 化简和变换各逻辑表达式;

(3) 列出真值表;

(4) 据真值表和表达式对逻辑电路进行分析,

最后确定其逻辑功能。

化为最简 与或

> 逻辑电 路图

逻辑表达式

列写真 值表

分析逻 辑功能

例1 已知电路如图所示,分析说明该电路的逻辑功能。

3.分析逻辑功能

由真值表可知: ABC三个变量中, 有两个或两个以上为"1"时,输 出为"1";有两个或两个以上为 "0"时,输出为"0";所以, 这是一个: 多数表决电路

解: 1.根据逻辑电路图写出逻辑表达式:

Z = Z1+Z2+Z3 = AB+BC+AC

2.列出真值表

	输入	7			输出
	ABC	Z1	Z2	Z3	Z
	0 0 0	0	0	0	0
	0 0 1	0	0	0	0
	0 1 0	0	0	0	0
9	0 1 1	0	1	0	1 %
	1 0 0	0	0	0	0
	1 0 1	0	0	1	1
	1 1 0	1	0	0	1 1
	1 1 1	1	1	1	1

例2 已知电路如图所示,试分析该电路的逻辑功能。

解: 1.根据逻辑电路图写出逻辑表达式

$$Z = A \oplus B$$

$$L = Z \oplus C$$

$$= (A \oplus B) \oplus C$$

$$= A \oplus B \oplus C$$

- 2. 列出真值表

_					
	\boldsymbol{A}	B	C	$Z = A \oplus B$	$L = (A \oplus B \oplus C)$
	0	0	¦¦0	0	0
í	0	0	¦¦1	0	1
L	0	1	0	1	1
	0	1	1	1	0
į	1	_0_	0	1	1
	1	0	1	1	0
	1	1	0	0	0
ľ	1_	1	11	0_	1

例3 已知电路如图所示,试分析该电路的逻辑功能。

解: 1.根据逻辑电路图写出逻辑表达式

$$P_{1} = \overline{ABC}$$

$$P_{2} = A \cdot P_{1} = A \cdot \overline{ABC}$$

$$P_{3} = B \cdot P_{1} = B \cdot \overline{ABC}$$

$$P_{4} = C \cdot P_{1} = C \cdot \overline{ABC}$$

$$\mathbf{F} = \overline{\mathbf{P}_2 + \mathbf{P}_3 + \mathbf{P}_4} = \mathbf{A} \cdot \overline{\mathbf{ABC}} + \mathbf{B} \cdot \overline{\mathbf{ABC}} + \mathbf{C} \cdot \overline{\mathbf{ABC}}$$

化简得:

$$F = \overline{ABC}(A + B + C) = ABC + \overline{A + B + C}$$

2. 列出真值表

$$F = \overline{ABC}(A + B + C) = ABC + \overline{A + B + C}$$

3. 确定逻辑功能:

由真值表可知,当A、B、 C取相同值时,F 为1,否则F为0。 所以该电路是一个"一致性电路"。

A	В	C	F			
0	0	0	1			
0	0	1	0			
0	1	0	0			
0	1	1	0			
1	0	0	0			
1	0	1	0			
1	1	0	0			
1	1	1	1			

另外,上面的电路其实可以 做进一步的简化

$$\mathbf{F} = \overline{\overline{\mathbf{ABC}}}(\mathbf{A} + \mathbf{B} + \mathbf{C})$$
$$= \mathbf{ABC} + \overline{\mathbf{A} + \mathbf{B} + \mathbf{C}}$$

思考: 不一致电路应是怎样的?

13.2 组合逻辑电路的设计

组合逻辑电路设计是其分析的逆过程

设计目的: 据给定逻辑功能及实现所用器件的要求,

找出实现方案,并画出逻辑电路图

设计步骤:

- (1) 由实际问题进行逻辑抽象,列出真值表;
- (2) 由真值表列出逻辑表达式;
- (3) 简化和变换逻辑表达式;
- (4) 画出逻辑电路图逻辑功能。

实际逻 辑问题 逻辑抽象

列写真 值表

逻辑表 达式

公式法化简

卡诺图化简

所需表 达式

逻辑电 路图

若无要求,则化 为最简逻辑式

若已要求逻辑门 类型及个数,则 视其要求而定

原则: 最简(要求所用器件的种类和数量都尽可能

少,且器件之间的连线也最少)。

例1: 试用与非门和反相器设计一个优先排队电路。火车有特快、直快和慢车。 它们进出站的优先次序是: 特快、直快、慢车,同一时刻只能有一列车 进出。

解:1) 由题意进行逻辑抽象。

输入变量及逻辑状态定义:

有无特快正准备进出站定义为变量A。A=1表示有特快正准备进出站, 反之A=0

同理,将有无直快和慢车正准备进出站分别定义为变量B、C

输出变量及逻辑状态定义:

某时刻特快能否进出站定义为变量LA。LA=1表示特快能够进出站, 反之LA=0

同理,将直快和慢车能否进出站分别定义为变量LB、LC

当特快A=1时,无论直快B、慢车C为何值,LA=1,LB=LC=0; 当直快B=1,且A=0时,无论C为何值,LB=1,LA=LC=0; 当慢车C=1,且A=B=0时,LC=1,LA=LB=0。

经过逻辑抽象,可列真值表:

Α	В	С	LA LB LC			
0	0	0	0 0 0			
1	×	×	1 0 0			
0	1	X	0 1 0			
0	0	1	0 0 1			

LA E	3C 00	01	11	10
0	0	0	0	0
1	1	1	1	1

2) 写出逻辑表达式。

$$L_A = A$$
, $L_B = \overline{A}B$, $L_C = \overline{A}\overline{B}C$

3) 根据题意,变换成与非形式

$$L_A = A$$
, $L_B = \overline{\overline{AB}}$, $L_C = \overline{\overline{ABC}}$

4) 画出逻辑电路图

例2:某工厂有A、B、C三台设备,其中A和B的功率相等,C的功率是A的两倍。这些设备由X和Y两台发电机供电,发电机X的最大输出功率等于A的功率,发电机Y的最大输出功率是X的三倍。要求设计一个逻辑电路,能够根据各台设备的运转和停止状态,以最节约能源的方式启、停发电机。

解: 1)逻辑抽象。

设A、B、C为输入变量,分别表示A、B、C三台设备的运停状态。设备运转为1状态,设备停止为0状态,

X、Y为输出变量,分别表示X、Y两台发电机的启停。1表示发电机启动,0表示发电机停机

2)列真值表

3) 卡诺图化简,并写出X、Y的逻辑表达式;

$$\mathbf{X} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}$$

$$Y = AB + C$$

车	俞 入	输出		
A	В	C	X	Y
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

4) 画出逻辑图。

$$X = \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

$$Y = AB + C$$

给定逻辑门后列写对应逻辑函数的方法:

要求用与非门实现

写原函数最简与或式

$$\mathbf{F}_1 = \mathbf{A}\mathbf{B} + \mathbf{C}\mathbf{D} = \overline{\mathbf{A}\mathbf{B}} \cdot \overline{\mathbf{C}\mathbf{D}}$$

要求用或非门实现

写原函数最简或与式

$$\mathbf{F}_2 = (\mathbf{A} + \mathbf{B}) \cdot (\mathbf{C} + \mathbf{D}) = \overline{\mathbf{A} + \mathbf{B}} + \overline{\mathbf{C} + \mathbf{D}}$$

要求用与或非门实现 ====

写反函数最简与或式

$$\overline{\mathbf{F}_3} = \mathbf{A}\mathbf{B} + \mathbf{C} - - + \mathbf{F}_3 = \overline{\mathbf{A}\mathbf{B} + \mathbf{C}}$$

例3: 用与非门实现函数 F = AB + BC + BD + ABCD (本题单变量的反变量可直接于逻辑图给出,不用经过反相器实现)

解:由于函数已是最简与 或式,直接将F两次取反,

得

$$\mathbf{F} = \overline{\mathbf{A}} \overline{\mathbf{B}} \cdot \overline{\mathbf{B}} \overline{\mathbf{C}} \cdot \overline{\mathbf{B}} \overline{\overline{\mathbf{D}}} \cdot \overline{\overline{\mathbf{A}}} \overline{\overline{\mathbf{B}}} \overline{\overline{\mathbf{C}}} \overline{\mathbf{D}}$$

画逻辑电路图,如右图所示

对函数还可做如下变换:

$$F = AB + BC + B\overline{D} + \overline{A}B\overline{C}D$$

$$= B(A + C + \overline{D}) + \overline{A}B\overline{C}D$$

$$= B\overline{A}\overline{C}D + \overline{A}B\overline{C}D$$

$$= B\overline{A}\overline{C}D \cdot \overline{A}B\overline{C}D$$

$$= B\overline{A}\overline{C}D \cdot \overline{A}B\overline{C}D$$

相应的逻辑电路图,如右图所示

图(a) 为二级5与非门,图(b) 为三级4与非门,显然图(b)中的门电路较少,此为其优点,但是其级数较多,这会使得电路工作速度变慢。

 $\begin{array}{c|c}
B \\
\overline{C} & \overline{A} & & & & & \\
\hline{D} & & & & & & \\
\hline{B} & \overline{C} & & & & & \\
\hline{B} & \overline{C} & & & & & \\
\hline{B} & \overline{C} & & & & \\
\hline{C} & & & & \\
\hline{C} & & & \\
\hline{C} & & \\
\hline{C}$

"门电路的数量最少"和"级数最少"通常相互矛盾。通常,题目不特别指明,即按"级数最少"解题;特别指明侧重前者,则按"门电路的数量最少"解题。

13.3 加法器

13.3.1 半加器 (Half Adder)

不考虑低位来的进位, 只考虑两个加数Ai、Bi相加, 其和为Si,向高位的进位为 Ci。计算过程如下:

真值表:

Α	В	S	С
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

逻辑表达式:

进位Ci

$$S = A\overline{B} + \overline{A}B = A \oplus B$$

$$C = AB$$

$$S = A\overline{B} + \overline{A}B = A \oplus B$$

$$C = AB$$

逻辑图

逻辑符号

13.3.2 全加器 (Full Adder)

全加器能进行加数、被加数和低位来的进位信号相加,并根据求和结果给出该位的进位信号。

真值表:

C_{i-1}	A_{i}	B _i	Si	C _i	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

卡诺图:

卡诺图化简:

$$\begin{split} \mathbf{S}_{i} &= \overline{\mathbf{C}_{i-1}} \overline{\mathbf{A}_{i}} \mathbf{B}_{i} + \overline{\mathbf{C}_{i-1}} \mathbf{A}_{i} \overline{\mathbf{B}_{i}} + \mathbf{C}_{i-1} \overline{\mathbf{A}_{i}} \overline{\mathbf{B}_{i}} + \mathbf{C}_{i-1} \mathbf{A}_{i} \mathbf{B}_{i} \\ &= \mathbf{A}_{i} \oplus \mathbf{B}_{i} \oplus \mathbf{C}_{i-1} \\ \mathbf{C}_{i} &= \mathbf{C}_{i-1} \mathbf{B}_{i} + \mathbf{C}_{i-1} \mathbf{A}_{i} + \mathbf{A}_{i} \mathbf{B}_{i} \\ &= \mathbf{C}_{i-1} \overline{\mathbf{A}_{i}} \mathbf{B}_{i} + \mathbf{C}_{i-1} \mathbf{A}_{i} \overline{\mathbf{B}_{i}} + \mathbf{A}_{i} \mathbf{B}_{i} = \mathbf{C}_{i-1} (\mathbf{A}_{i} \oplus \mathbf{B}_{i}) + \mathbf{A}_{i} \mathbf{B}_{i} \end{split}$$

逻辑图:

$$S_{i} = A_{i} \oplus B_{i} \oplus C_{i-1}$$

$$C_{i} = C_{i-1}(A_{i} \oplus B_{i}) + A_{i}B_{i}$$

该图表明:

1、用两个半加器和一个或门可以实现全加器: 先求两个加数的半加和,再与低位的进位作第二次半加,所得结果即全加器的和。

2、两个半加器的进位作逻辑加,即全加器的进位。

全加器的符号

13.3.3 串行进位加法器

构成: 用多个1位全加器组成

- 低位的进位输出送至邻近高位的进位输入。属于并行相加,串行进位
- 缺点:运算速度慢。

13.3.4 超前进位加法器

$$C_{i} = C_{i-1}(\underline{A_{i} \oplus B_{i}}) + \underline{A_{i}B_{i}}$$

$$P_{i} \qquad G_{i}$$

$$C_i = G_i + P_i C_{i-1}$$

$$S_i = P_i \oplus C_{i-1}$$

 $C_{i} = G_{i} + P_{i} C_{i-1}$

进位信号的产生:

$$C_0 = G_0 + P_0 C_{-1}$$

$$C_1 = G_1 + P_1 C_0 = G_1 + P_1 G_0 + P_1 P_0 C_{-1}$$

$$C_2 = G_2 + P_2 C_1 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_{-1}$$

$$C_3 = G_3 + P_3 C_2 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$$

 $+ P_3 P_2 P_1 P_0 C_{-1}$

集成4位加法器 74LS283

逻辑图:

$$S_i = P_i \oplus C_{i-1}$$

$$C_i = G_i + P_i C_{i-1}$$

74LS283逻辑框图

74LS283引脚图

13.4 编码器

13.4.1 编码器的定义及功能

- ❖编码 : 将若干个二进制码 "0" 和 "1" , 按某种规律编排组合成为代码, 并赋予特定的含义, 用以表示二进制以外其他的数或字母、符号、控制符, 这就是编码。
- ❖编码器:具有编码功能的逻辑电路。
- ❖编码器的特点:能将某一组输入信息变换为二进制的代码输出。即对应输入的每一个状态,输出一个编码。(输入多→输出少)
- ❖编码器分为: 普通编码器和优先编码器。
- ❖普通编码器:同一时刻只允许一个输入信号有效

如BCD编码器:将10个输入编成4位8421BCD码输出。

如4/2线编码器:将输入的4个状态编成2位二进制数码输出;

如8/3线编码器:将输入的8个状态编成3位二进制数码输出;

一般而言,N个不同的信号,至少需要n位二进制数编码。

N和n之间满足下列关系:

 $2^n \ge N$

为此目的而设计的编码电路称为二进制编码器,详称为n位二进制编码器

❖优先编码器: 允许两个以上的输入信号有效,但当同时输入几个有效信号时,优先编码器能按设定的优先级别,只对其中优先权最高的一个进行编码。

1. 普通4/2线编码器

4/2线编码器功能表

I_0	I_1	I_2	I_3	\mathbf{Y}_1	Y_0
1	0	0	0	0	0
0	(<u>+</u>)	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

编码器的输入为高电平有效。

$$\mathbf{Y}_1 = \overline{\mathbf{I}_0} \overline{\mathbf{I}_1} \mathbf{I}_2 \overline{\mathbf{I}_3} + \overline{\mathbf{I}_0} \overline{\mathbf{I}_1} \overline{\mathbf{I}_2} \mathbf{I}_3$$

$$\mathbf{Y}_0 = \overline{\mathbf{I}_0} \mathbf{I}_1 \overline{\mathbf{I}_2} \overline{\mathbf{I}_3} + \overline{\mathbf{I}_0} \overline{\mathbf{I}_1} \overline{\mathbf{I}_2} \mathbf{I}_3$$

逻辑图:

$$\mathbf{Y}_1 = \overline{\mathbf{I}_0} \overline{\mathbf{I}_1} \mathbf{I}_2 \overline{\mathbf{I}_3} + \overline{\mathbf{I}_0} \overline{\mathbf{I}_1} \overline{\mathbf{I}_2} \mathbf{I}_3$$

$$\mathbf{Y}_0 = \overline{\mathbf{I}_0} \mathbf{I}_1 \overline{\mathbf{I}_2} \overline{\mathbf{I}_3} + \overline{\mathbf{I}_0} \overline{\mathbf{I}_1} \overline{\mathbf{I}_2} \mathbf{I}_3$$

当所有的输入都为0时,电路的输出 $Y_1Y_0=?$ 00

4/2线编码器功能表

I_0	\mathbf{I}_1	I_2	I_3	\mathbf{Y}_1	\mathbf{Y}_0
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

$$\mathbf{Y}_1 = \overline{\mathbf{I}_0} \overline{\mathbf{I}_1} \mathbf{I}_2 \overline{\mathbf{I}_3} + \overline{\mathbf{I}_0} \overline{\mathbf{I}_1} \overline{\mathbf{I}_2} \mathbf{I}_3$$

$$\mathbf{Y}_0 = \overline{\mathbf{I}_0} \mathbf{I}_1 \overline{\mathbf{I}_2} \overline{\mathbf{I}_3} + \overline{\mathbf{I}_0} \overline{\mathbf{I}_1} \overline{\mathbf{I}_2} \mathbf{I}_3$$

 $I_0I_1I_2I_3=0000$ 时,电路的输出 $Y_1Y_0=00$

 $I_0I_1I_2I_3=1000$ 时,电路的输出 $Y_1Y_0=00$

显然,无法区分上面两种情况,本电路存在问题。

2. 键控8421BCD码编码器---10/4线编码器设计一个键控8421BCD码编码器

解: (1) 列出真值表:

				输)	λ		7	Ea			输	出		
So	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	(S ₉)	A	В	C	D	GS	
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	
1	1	1	1	1	1	1	1	1	0	1	0	0	1	1	
1	1	1	1	1	1	1	1	0	1	1	0	0	0	1	
1	1	1	1	1	1	1	0	1	1	0	1	1	1	1	
1	1	1	1	1	1	0	1	1	1	0	1	1	0	1	
1	1	1	1	1	0	1	1	1	1	0	1	0	1	1	
1	1	1	1	0	1	1	1	1	1	0	1	0	0	1	
1	1	1	0	1	1	1	1	1	1	0	0	1	1	1	
1	1	0	1	1	1	1	1	1	1	0	0	1	0	1	1/6
1	0	1	1	1	1	1	1	1	1	0	0	0	1	1	
0	1	1	1	1	1	1	1	1	1	0	0	0	0	1	

该编码器输入低电平有效

(2) 由真值表写出各输出的逻辑表达式为:

$$\mathbf{A} = \overline{\mathbf{S}_8} + \overline{\mathbf{S}_9} = \overline{\mathbf{S}_8} \mathbf{S_9} \qquad \mathbf{B} = \overline{\mathbf{S}_4} + \overline{\mathbf{S}_5} + \overline{\mathbf{S}_6} + \overline{\mathbf{S}_7} = \overline{\mathbf{S}_4} \mathbf{S}_5 \mathbf{S}_6 \mathbf{S}_7$$

$$\mathbf{C} = \overline{\mathbf{S}_2} + \overline{\mathbf{S}_3} + \overline{\mathbf{S}_6} + \overline{\mathbf{S}_7} = \overline{\mathbf{S}_2} \mathbf{S}_3 \mathbf{S}_6 \mathbf{S}_7$$

$$\mathbf{D} = \overline{\mathbf{S}_1} + \overline{\mathbf{S}_3} + \overline{\mathbf{S}_5} + \overline{\mathbf{S}_7} + \overline{\mathbf{S}_9} = \overline{\mathbf{S}_1} \mathbf{S}_3 \mathbf{S}_5 \mathbf{S}_7 \mathbf{S}_9$$

重新整理得:

$$\mathbf{A} = \overline{\mathbf{S}_8 \mathbf{S}_9}$$

$$\mathbf{B} = \overline{\mathbf{S}_4 \mathbf{S}_5 \mathbf{S}_6 \mathbf{S}_7}$$

$$\mathbf{C} = \overline{\mathbf{S}_2 \mathbf{S}_3 \mathbf{S}_6 \mathbf{S}_7}$$

$$\mathbf{D} = \overline{\mathbf{S}_1 \mathbf{S}_3 \mathbf{S}_5 \mathbf{S}_7 \mathbf{S}_9}$$

				输		λ					3	睮	出		
S_0	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	A	В	С	D	GS	
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	
1	1	1	1	1	1	1	1	1	0	1	0	0	1	1	
1	1	1	1	1	1	1	1	0	1	1	0	0	0	1	
1	1	1	1	1	1	1	0	1	1	0	1	1	1	1	
1	1	1	1	1	1	0	1	1	1	0	1	1	0	1	
1	1	1	1	1	0	1	1	1	1	0	1	0	1	1	
1	1	1	1	0	1	1	1	1	1	0	1	0	0	1	
1	1	1	0	1	1	1	1	1	1	0	0	1	1	1	
1	1	0	1	1	1	1	1	1	1	0	0	1	0	1	
1	0	1	1	1	1	1	1	1	1	0	0	0	1	1	
0	1	1	1	1	1	1	1	1	1	0	0	0	0	1	

$$\mathbf{A} = \overline{\mathbf{S}_8 \mathbf{S}_9}$$

$$\mathbf{B} = \overline{\mathbf{S}_4 \mathbf{S}_5 \mathbf{S}_6 \mathbf{S}_7}$$

$$\mathbf{C} = \overline{\mathbf{S}_2 \mathbf{S}_3 \mathbf{S}_6 \mathbf{S}_7}$$

$$\mathbf{D} = \overline{\mathbf{S}_1 \mathbf{S}_3 \mathbf{S}_5 \mathbf{S}_7 \mathbf{S}_9}$$

(3) 由表达式画出逻辑图:

(4) 增加控制使能标志GS:

(1)当按下S₀~S₉ 任意一个键时, GS=1, 表示有 信号输入; (2)当S₀~S₉均没 按下时, GS=0, 表示没有信号 输入。

13.5 译码器和数据分配器

13.5.1 译码器的定义及功能

❖译码:是编码的逆过程。将具有特定含义的不同二进制码识别出来,并转换成控制信号。

❖译码器:具有译码功能的逻辑电路称为译码器。

❖译码器分类:具有译码器按功能的不同可分为:

变量译码器 —— 表示输入变量状态, 2/4, 3/8, 4/16

码制变换译码器 ——BCD/十, 余3/十, 格雷码/十

显示译码器 —— 驱动显示器件

1. 二进制译码器的一般原理

当使能端EI为有效电平时,对应每一组输入代码,只有其中一个输出端为有效电平(输入少 > 输出多)

2. 由门电路构成的2/4线译码器

列写功能表如下:

#	俞 入		3	输	出	
EI	A	В	\mathbf{Y}_{0}	\mathbf{Y}_1	\mathbf{Y}_2	\mathbf{Y}_3
H	X	X	H	H	H	H
L	L	L	L	Н	H	H
L	L	H	Н	L	H	H
L	H	L	Н	H	L	H
L	H	H	H	H	H	L

$$\mathbf{Y}_0 = \overline{\overline{\mathbf{EIAB}}} \qquad \mathbf{Y}_1 = \overline{\overline{\mathbf{EIAB}}}$$

$$\mathbf{Y}_1 = \overline{\overline{\mathbf{EI}}} \overline{\overline{\mathbf{A}}} \overline{\mathbf{B}}$$

$$Y_2 = \overline{\overline{EIAB}}$$
 $Y_3 = \overline{\overline{EIAB}}$

$$\mathbf{Y}_3 = \overline{\mathbf{EIAB}}$$

华	俞 入		3	输	出	
EI	A	В	\mathbf{Y}_{0}	\mathbf{Y}_1	\mathbf{Y}_2	\mathbf{Y}_3
1	×	X	H	H	H	H
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

13.5.2 集成译码器

—以74138-3/8线译码器为例

$$\mathbf{Y}_0 = \mathbf{G}_1 \overline{\mathbf{G}_{2A}} \overline{\mathbf{G}_{2B}} \overline{\mathbf{C}} \overline{\mathbf{B}} \overline{\mathbf{A}}$$

$$Y_1 = G_1 \overline{G_{2A}} \overline{G_{2B}} \overline{C} \overline{B} A$$

$$Y_2 = G_1 \overline{G_{2A}} \overline{G_{2B}} \overline{CBA}$$

$$Y_3 = G_1 \overline{G_{2A}} \overline{G_{2B}} \overline{CBA}$$

$$Y_4 = G_1 \overline{G_{2A}} \overline{G_{2B}} \overline{CBA}$$

$$Y_5 = G_1 \overline{G_{2A}} \overline{G_{2B}} \overline{CBA}$$

$$Y_6 = G_1 \overline{G_{2A}} \overline{G_{2B}} CB\overline{A}$$

$$Y_7 = G_1 \overline{G_{2A}} \overline{G_{2B}} CBA$$

74138逻辑符号

74138芯片引脚

根据功能表可得知74138芯片的用法:习惯上,常用A2A1A0表示最高、次高、最低位,

												故此可用 $A_2A_1A_0$		
	输			入				输			出			分别表示CBA
G ₁	G _{2A}	G _{2B}	С	В	Α	Y ₀	Y ₁	Y ₂	Υ ₃	Y ₄	Y ₅	\mathbf{Y}_{6}	Y ₇	
X	Н	X	×	×	×	Ж	Н	Н	Н	Н	Н	4	Н	此处使能端控制
×	X	Н	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н	使芯片处于非正
L	×	X	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н	常工作状态
Н	L	L	<u>L</u>	<u>L</u>	L	<u>L</u>	Н	Н	H	Н	Н	Н	H	$\mathbf{Y}_0 = \overline{\mathbf{A}_2 \mathbf{A}_1 \mathbf{A}_0} = \overline{\mathbf{m}_0}$
Н	L	L	L	L	H	Н	L	Н	Н	Н	Н	Н	Н	$\mathbf{Y}_1 = \overline{\mathbf{A}_2} \overline{\mathbf{A}_1} \mathbf{A}_0 = \overline{\mathbf{m}_1}$
Н	L	L	L	H ^^^^	L	H	Н	L	H	Н	Н	Н	Н	$\mathbf{Y}_2 = \overline{\mathbf{A}_2} \mathbf{A}_1 \overline{\mathbf{A}_0} = \overline{\mathbf{m}_2}$
Н	L	L		,,,,,,		Н	Н	Н	L	Н	Н	Н	Н	$\mathbf{Y}_3 = \overline{\mathbf{A}_2} \mathbf{A}_1 \mathbf{A}_0 = \overline{\mathbf{m}_3}$
Н	L	L	H	L	Ĺ	Н	Н	Н	H	L	Н	Н	Н	$\mathbf{Y}_4 = \overline{\mathbf{A}_2 \overline{\mathbf{A}_1} \overline{\mathbf{A}_0}} = \overline{\mathbf{m}_4}$
Н	L	L	Н	L ^^^^	Н	Н	Н	Н	Н	Н	L	Н	Н	$\mathbf{Y}_5 = \overline{\mathbf{A}_2 \overline{\mathbf{A}_1} \mathbf{A}_0} = \overline{\mathbf{m}_5}$
Н		L	Н	Н	L	Н	Н	Н	H	Н	Н	L	Н	$\mathbf{Y}_6 = \overline{\mathbf{A}_2 \mathbf{A}_1 \overline{\mathbf{A}_0}} = \overline{\mathbf{m}_6}$
Н	L	101 102	H	 H	H	H	Н	Н	H	Н	Н	H,		$\mathbf{Y}_{7} = \overline{\mathbf{A}_{2}} \overline{\mathbf{A}_{1}} \overline{\mathbf{A}_{0}} = \overline{\mathbf{m}_{7}}$

3/8线译码器能产生三变量函数的全部最小项。

基于这一点用该器件能够方便地实现三变量逻辑函数。

例1: 用3/8线译码器实现逻辑函数 $F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$

$$F = \overline{\overline{A}} \overline{\overline{B}} \overline{\overline{C}} + \overline{\overline{A}} \overline{\overline{B}} \overline{\overline{C}} + \overline{\overline{A}} \overline{\overline{B}} \overline{\overline{C}} + \overline{\overline{A}} \overline{\overline{B}} \overline{\overline{C}} + \overline{\overline{A}} \overline{\overline{B}} \overline{\overline{C}} \cdot \overline{\overline{\overline{A}}} \overline{\overline{C}} \cdot \overline{\overline{\overline{A}}} \overline{\overline{B}} \overline{\overline{C}} \cdot \overline{\overline{\overline{A}}} \overline{\overline{\overline{C}}} \overline{\overline{C}} \cdot \overline{\overline{\overline{A}}} \overline{\overline{C}} \cdot \overline{\overline{\overline{A}$$

$$\mathbf{F} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}$$

用译码器实现逻辑函数时可不用化简,直接由最小项表达。

例2: 用74138实现函数 $F = AB + A\overline{C}$

$$\mathbf{\widetilde{F}}: \mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\overline{\mathbf{C}} = \mathbf{m}_4 + \mathbf{m}_6 + \mathbf{m}_7$$

$$= \overline{\mathbf{m}_4 + \mathbf{m}_6 + \mathbf{m}_7}$$

$$= \overline{\overline{\mathbf{m}_4 \cdot \mathbf{m}_6 \cdot \mathbf{m}_7}}$$

$$= \overline{\overline{\mathbf{Y}_4 \cdot \overline{\mathbf{Y}_6 \cdot \overline{\mathbf{Y}_7}}}$$

另:

$$F(C,B,A) = \underbrace{AB + A\overline{C} = m_1 + m_3 + m_7}_{= \overline{m_1} + \overline{m_3} + \overline{m_7}}_{= \overline{\overline{Y_1} \cdot \overline{Y_3} \cdot \overline{Y_7}}}$$

$$\mathbf{Y}_4 = \overline{\mathbf{m}_4} = \overline{\mathbf{A}_2 \overline{\mathbf{A}}_1 \overline{\mathbf{A}}_0}$$

★处相同都为 $\overline{A_2}\overline{A_1}\overline{A_0}$

$$\mathbf{Y}_4 = \mathbf{m}_4 = \mathbf{A}_2 \overline{\mathbf{A}}_1 \overline{\mathbf{A}}_0$$

例3: 用两片74138扩展为4线—16线译码器

连接好三个部分:输出、输入、使能

13.5.3 显示器和译码器

显示器主要分为两类:

- (1) 按发光物质不同,分为"发光二极管显示器"、"荧光数字显示器"、"液晶显示器"和"气体放电显示器"四种。
- (2) 按字形显示方式不同,分为"字型重叠式"、"点阵式"和"分段式"三种。

a b c d e f g共阴极显示器 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1

译码器7448 (输出为高电平,驱动共阴显示器)

7个输出端

译码器7448

7448功能框图

BCD-七段显示译码器7448的逻辑功能

十进制			输	入			BI/				输出	H		97	字
或功能	LT	RBI	D	C	В	A	RBO	a	b	c	d	e	f	g	形
0	Н	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	L	
1	Н	X	L	L	L	H	Н	L	H	Н	L	L	L	L	
2	Н	X	L	L	H	L	Н	Н	H	L	Н	Н	L	Н	2
3	Н	X	L	L	H	H	Н	Н	H	Н	Н	L	L	Н	3
15	Н	X	Н	Н	H	H	Н	L	L	L	L	L	L	L	of "
消隐	X	X	×	X	×	X	L	L	L	L	L	L	L	L	
脉冲消隐	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	Ü
灯测试	L	×	X	X	X	×	Н	Н	Н	Н	Н	Н	Н	Н	

译码器7448

•BCD-七段显示译码器74148的逻辑功能

功能		输入					BI/		输出						字
力用的	LT	RBI	D	C	В	A	RBO	a	b	c	d	e	f	g	形
消隐	X	X	X	X	X	X	L	L	L	L	L	L	L	L	
脉冲消隐	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	
灯测试	L	X	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н	

试灯输入LT: 当LT=0时(BI/RB0是输出端,且RB0=1), 无论其他输入端是什么状态,所有段输出均为1,显示字形8。 用于检查译码器和显示器的好坏。

用7448驱动BS201A的连接方法

13.6 数据选择器

13.6.1 数据选择器的定义及功能

数据选择器:数据的定向。将多个数据源来的数据,经过选择后,分时送到唯一的通道去。

也相当于一个单刀多掷开关,又称"多路开关"。

以4选1数据选择器为例 (74LS153)

四选一数据选择器

74LS153的工作原理

4选1 功能表

输		λ	输出
使能	地	一制山	
EI	В	A	Y
1	X	×	0
0	0	0	\mathbf{D}_{0}
0	0	1	\mathbf{D}_{1}
0	1	0	$\begin{array}{c c} \mathbf{D_0} \\ \mathbf{D_1} \\ \mathbf{D_2} \\ \mathbf{D} \end{array}$
0	1	1	\mathbf{D}_3

$$\mathbf{Y} = \mathbf{D}_0 \overline{\mathbf{B}} \overline{\mathbf{A}} \overline{\mathbf{E}} \mathbf{I} + \mathbf{D}_1 \overline{\mathbf{B}} \overline{\mathbf{A}} \overline{\mathbf{E}} \mathbf{I} + \mathbf{D}_2 \mathbf{B} \overline{\mathbf{A}} \overline{\mathbf{E}} \mathbf{I} + \mathbf{D}_3 \mathbf{B} \overline{\mathbf{A}} \overline{\mathbf{E}} \mathbf{I}$$

介绍集成电路数据选择器74LS151

74LS151的逻辑图

集成电路数据选择器74LS151的逻辑符号及功能引脚

74LS151功能框图

74LS151引脚图

74LS151的功能表

,	. ^	_		1. 5	.1.
7	俞	入		输	出
使 能 EN	选 C	В	择 A	Y	W
Н	X	X	X	L	Н
L	L	L	L	D_0	$\overline{\mathbf{D}}_{0}$
L	L	L	Н	D_1	$\overline{\mathbf{D}}_{\!1}$
L	L	Н	L	D_2	$\overline{\mathbf{D}}_{2}$
L	L	Н	Н	D_3	$\overline{\mathbf{D}}_{3}$
L	Н	L	L	D_4	$\overline{\mathbf{D}}_{4}$
L	Н	L	Н	D_5	$\overline{\mathbf{D}}_{5}$
L	Н	Н	L	D_6	$\overline{\mathbf{D}}_{6}$
L	Н	Н	Н	D_7	$\overline{\mathbf{D}}_7$

- •当EN=1时, Y=0。无效输出
- •当EN=0时,Y的表达式为:

$$\mathbf{Y} = \sum_{i=0}^{7} \mathbf{m_i} \mathbf{D_i}$$

八选一MUX的逻辑表达式

$$\overline{\mathbf{EN}} = \mathbf{1} \quad \mathbf{Y} = \mathbf{0}$$

$$\begin{split} \boxed{\overline{EN}} &= 0 \quad Y = \overline{A_2} \overline{A_1} \overline{A_0} D_0 + \overline{A_2} \overline{A_1} A_0 D_1 + \overline{A_2} A_1 \overline{A_0} D_2 + \overline{A_2} A_1 A_0 D_3 \\ &\quad + A_2 \overline{A_1} \overline{A_0} D_4 + A_2 \overline{A_1} A_0 D_5 + A_2 A_1 \overline{A_0} D_6 + A_2 A_1 A_0 D_7 \\ &\quad = \sum_{i=0}^7 m_i D_i \end{split}$$

如需选择多位数据时:

可由几个1位的 数选器并联而成

2位八选一数选 器的连接方法

用两片8选1数选器构成16选1数选器

使能端作为地址输入端的最高位。

D₀—D₁₅ 为16路数据输入; Y为输出

16选1数据选择器

数据选择器74LS151的应用

- 1、完成多路数据的传送,如前所述。
- 2、逻辑函数产生器

从功能表和逻辑图上可知: 当使能端EN=O时,输出Y的表达式为:

$$Y = \sum_{i=0}^{7} m_i D_i$$

当 D_i =1时,对应的最小项在表达式中出现; 当 D_i =0时,不出现。

将地址信号CBA作为函数的输入变量,数据输入D0—D7作为控制信号(控制各最小项在输出函数中是否出现),则数选器就成为一个逻辑函数产生器。

例 试用8选1数据选择器74LS151产生逻辑函数 $L = \overline{X}YZ + X\overline{Y}Z + XY$

解:
$$L = \overline{X}YZ + X\overline{Y}Z + XYZ + XY\overline{Z}$$

= $m_3D_3 + m_5D_5 + m_6D_6 + m_7D_7$

显然,当 $D_3=D_5=D_6=D_7=1$, $D_0=D_1=D_2=D_4=0$ 时,74151的输出即为逻辑函数L。

使用数据选择器来实现逻辑函数的好处是:逻辑函数无需化简

13.7 数据分配器

数据分配器:数据的分路。将一个数据源来的数据分时送到多个不同的通道上去。相当于一个单刀多掷开关。

例:用3/8线译码器,将数据信号分配到8个不同的通道。

$$\mathbf{Y}_2 = (\mathbf{G}_1 \cdot \overline{\mathbf{G}}_{2A} \cdot \overline{\mathbf{G}}_{2B}) \cdot \overline{\mathbf{A}}_2 \cdot \mathbf{A}_1 \cdot \overline{\mathbf{A}}_0 = \mathbf{G}_{2A}$$
此时:

$$\mathbf{Y}_{0} = (\mathbf{G}_{1} \cdot \overline{\mathbf{G}}_{2A} \cdot \overline{\mathbf{G}}_{2B}) \cdot \overline{\mathbf{A}}_{2} \cdot \overline{\mathbf{A}}_{1} \cdot \overline{\mathbf{A}}_{0} = 1$$

$$\mathbf{Y}_{1} = (\overline{\mathbf{G}_{1} \cdot \overline{\mathbf{G}}_{2A} \cdot \overline{\mathbf{G}}_{2B}}) \cdot \overline{\mathbf{A}}_{2} \cdot \overline{\mathbf{A}}_{1} \cdot \overline{\mathbf{A}}_{0} = 1$$

$$\mathbf{Y}_{\mathbf{i}} = \mathbf{G}_{\mathbf{1}} \overline{\mathbf{G}_{\mathbf{2A}}} \overline{\mathbf{G}_{\mathbf{2B}}} \mathbf{m}_{\mathbf{i}}$$

74138译码器作为数据分配器时的功能表

输入				输 出									
G_1	G _{2B}	G _{2A}	C	В	A	$\mathbf{Y_0}$	\mathbf{Y}_1	$\mathbf{Y_2}$	\mathbf{Y}_3	\mathbf{Y}_4	\mathbf{Y}_{5}	\mathbf{Y}_{6}	$ \mathbf{Y}_7 $
L	L	X	X	X	X	Н	H	H	H	H	H	H	Н
H	L	D	L	L	L	D	H	H	H	H	H	H	Н
Н	L	D	L	L	H	H	D	H	H	H	H	H	H
Н	L	D	L	H	L	H	H	D	H	H	H	H	H
H	L	D	L	H	H	H	H	H	D	H	H	H	H
H	L	D	H	L	L	H	H	H	H	D	H	H	H
H	L	D	H	L	H	H	H	H	H	H	D	H	H
H	L	D	H	H	L	H	H	H	H	H	H	D	H
H	L	D	H	H	H	H	H	H	H	H	H	H	D

13.8 用MSI实现组合逻辑函数

用MSI设计组合电路的步骤:

- 1) 列真值表
- 2) 写逻辑函数表达式 (SSI中一般要写成最简,此不必)
- 3)将表达式变换成与所用MSI逻辑函数相似的形式
- 4) 根据对比结果,确定数据线,选择线的对应关系,画图

一、用二进制译码器实现逻辑函数

例:用74138设计一个多输出组合 网络,它的输入为A、B、C三个变 量,输出为下面三个函数。

$$\begin{cases} \mathbf{F_1} = \mathbf{AC} + \overline{\mathbf{BC}} \\ \mathbf{F_2} = \mathbf{A} + \overline{\mathbf{C}} \\ \mathbf{F_3} = \mathbf{A} + \mathbf{B} + \mathbf{C} \end{cases}$$

若将译码器的输入信号 A_2 、 A_1 、 A_0 分别对应于A、B、C,则有

$$\overline{\overline{Y_1}} = \overline{\overline{A}\overline{B}C}$$
 $\overline{\overline{Y_5}} = \overline{A\overline{B}C}$ $\overline{\overline{Y_7}} = \overline{ABC}$

$$F_{2}(A,B,C) = A + \overline{C} = \overline{m_{1} + m_{3}} = \overline{m_{1}} \cdot \overline{m_{3}} = \overline{Y_{1}} \cdot \overline{Y_{3}}$$

$$F_{3}(A,B,C) = A + B + C = \overline{\overline{A}} \overline{\overline{B}} \overline{\overline{C}} = \overline{m_{0}} = \overline{Y_{0}}$$

$$= \overline{W_{0}} = \overline{W_{0}}$$

$$F_1(A,B,C) = \overline{Y_1} \cdot \overline{Y_5} \cdot \overline{Y_7}$$

二、用数据选择器实现逻辑函数

例1: 试用8选1数据选择器74151实现逻辑函数: L = AB + BC + AC

法1:8选1数据选择器标准"与或式"为

$$\mathbf{Y} = \overline{\mathbf{A}_2} \overline{\mathbf{A}_1} \overline{\mathbf{A}_0} \mathbf{D}_0 + \overline{\mathbf{A}_2} \overline{\mathbf{A}_1} \mathbf{A}_0 \mathbf{D}_1 + \overline{\mathbf{A}_2} \mathbf{A}_1 \overline{\mathbf{A}_0} \mathbf{D}_2 + \overline{\mathbf{A}_2} \mathbf{A}_1 \mathbf{A}_0 \mathbf{D}_3 + \mathbf{A}_2 \overline{\mathbf{A}_1} \overline{\mathbf{A}_0} \mathbf{D}_4$$
$$+ \mathbf{A}_2 \overline{\mathbf{A}_1} \mathbf{A}_0 \mathbf{D}_5 + \mathbf{A}_2 \mathbf{A}_1 \overline{\mathbf{A}_0} \mathbf{D}_6 + \mathbf{A}_2 \mathbf{A}_1 \mathbf{A}_0 \mathbf{D}_7$$

将待实现的逻辑函数转换成最小项表达式并令A=A2,B=A1,C=A0:

$$\begin{split} \mathbf{L} &= \mathbf{A}\mathbf{B}\mathbf{C} + \mathbf{A}\mathbf{B}\mathbf{C} + \mathbf{A}\mathbf{B}\mathbf{C} \\ &= \overline{\mathbf{A}_2}\mathbf{A}_1\mathbf{A}_0 + \mathbf{A}_2\overline{\mathbf{A}_1}\mathbf{A}_0 + \mathbf{A}_2\mathbf{A}_1\overline{\mathbf{A}_0} + \mathbf{A}_2\mathbf{A}_1\mathbf{A}_0 \\ & \qquad \qquad \mathbf{比较以上两式可得:} \end{split}$$

$$D_3 = D_5 = D_6 = D_7 = 1$$

$$D_0 = D_1 = D_2 = D_4 = 0$$

画出连线图如右图所示:

法2: 8选1数据选择器标准"与或式"为

$$\mathbf{Y} = \sum_{i=0}^{7} \mathbf{m}_i \mathbf{D}_i$$

令A=A2,B=A1,C=A0并将待实现的逻辑函数转换成最小项表达式:

$$L = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$
$$= m_3 + m_5 + m_6 + m_7$$

比较以上两式可得:

$$D_3 = D_5 = D_6 = D_7 = 1$$

$$D_0 = D_1 = D_2 = D_4 = 0$$

画出连线图如右图所示:

例2: 试用4选1数据选择器实现逻辑函数L = AB + BC + AC

解:将A、B接到地址输入端,C加到适当的数据输入端。

作出逻辑函数L的真值表,根据真值表画出连线图。

_	L的真值表									
	Α	В	C	L						
	0	0	0	0						
	0	0	1	0						
	0	1	0	0						
	0	1	1	1						
	1	0	0	1						
	1	0	1	0						
	1	1	0	1						
	1	1	1	1						

本章小结

- 1. 常用的中规模组合逻辑器件包括编码器、译码器、数据选择器、数值比较器、加法器等。
- 2. 上述组合逻辑器件除了具有其基本功能外,还可用来设计组合逻辑电路。应用中规模组合逻辑器件进行组合逻辑电路设计的一般原则是:使用MSI芯片的个数和品种型号最少,芯片之间的连线最少
- 3. 用MSI芯片设计组合逻辑电路最简单和最常用的方法是, 用数据选择器设计多输入、单输出的逻辑函数;用二进制 译码器设计多输入、多输出的逻辑函数。

以下为课件所用素材

0	0
+) 0	+) 1
0	1
1	1
+) 0	+) 1
1	1 0

C_{i-1}	A_{i}	B _i	Si	Ci
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

B,			
00	01	11	10
0	1	0	1
1	0	1	0
B _i	01	11	10
0	0	1	0
0	1	1	1
	1 iB _i 00	0 1 1 0 iB _i 00 01 0 0	0 1 0 1 0 1 B _i 00 01 11 0 0 1

74138集成译码器功能表													
输入						输出					14		
G ₁	G _{2A}	G _{2B}	C	В	A	Y ₀	Y ₁	Y ₂	Y ₃	Y ₄	Y ₅	Y ₆	Y ₇
×	Н	×	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
×	X	Н	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
L	×	×	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	Н	L	Н	H	Н	Н	Н	Н
Н	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	H
Н	L	L	L	Н	Н	Н	Н	Н	L	H	Н	Н	H
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	H
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	-	Н	H
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	H
H			H/		7/K	H	H	JH.	H	H	SH (H	