

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH University of Science and Technology

Object Tracking

Mikołaj Leszczuk, Jakub Nawała

- Process of locating and tracking a (moving) object (or multiple objects)
- Fundamental pre-processing step in Computer Vision
- Requires a video

- Commonly added to e.g.:
 - Object detection
 - Process of modelling changes in object's look

Applications

- » Human-computer interaction
 - Gesture recognition
 - Eye gaze tracking
- » Traffic monitoring
 - Surveillance systems
 - Person counter
- » Medical imaging

Theoretical Fundamentals

- Given an initial position, track object position in subsequent frames
 - In a non-ideal case, object detection needed from time to time
- Unique IDs for each tracked object needed
- Time consuming process
- One can track anything
 - If there is no dependency on an object detector

Centroid Tracking

- 1. Use initial bounding boxes of objects and compute centroids
 - a. Assign unique IDs to centroids
- 2. Calculate the Euclidean distance between the centroids
- 3. Update centroids
 - a. the lowest distance method
- 4. Register new objects
- 5. Deregister old objects
- 6. Go back to step 2.

Dependent on object detector

Steps taken from this article at pyimagesearch.com

Problem Complexity

- » Still being improved
- » Source of difficulties
 - Information loss, caused by transferring from a 3D world into its 2D representation
 - Capturing distortions
 - Changes in lighting
 - Computational complexity of convolutional neural networks (if an object detector used)
 - Frame rate of object detectors limited even on modern graphics processing unit

Problem Complexity

- » Extra complexity when
 - Objects moving fast relative to the frame rate
 - Tracked objects changing orientation over time
- » Complex training for deep learning
- » Motion model helps with the changing orientation
 - how would an image look like for different object motions

- **2D object**: 2D transformation of object image (e.g. initial frame):
 - Affine transformation
 - Homography
 - Applies to planar objects
- 3D object: aspect depending on its 3D position and orientation

Affine transformation

- » Preserves
 - Points
 - Lines
 - Planes
- » Examples
 - Translation
 - Scaling
 - Reflection
 - Rotation

Motion Model Examples

Deformable objects:

- Covered with mesh
- Object motion defined by a position of mesh nodes

• Video compression:

- Key frames divided into macroblocks
- One tracks a motion of macroblocks
- This motion is needed to recreate the video

The Most Popular Approaches

Mean Shift Tracking

- » Given a region from the previous frame, find the most similar region in the current frame
- » Proposed in 1975

i-th frame

i+1-th frame

This Video
Nicely
Explains
the Topic of
Mean Shift
Object
Tracking

The Most Popular Approaches

Contour Tracking

Best Understood in Action

Minimizing object energy

Using gradient descent, & by doing so iteratively evolving initial contour initialized from previous frame to its new position in the current frame

Frame Differencing

- Comparing 2 subsequent images
- Computing differences between them
- Using threshold to distinguish noises from a real movement
- Method especially useful in situations when:
 - Background staying still
 - Tracking path of all moving objects

Frame Differencing

- A.k.a. foreground detection
- Extracting image foreground for further processing
 - in this case, for tracking
- Applicable when background is static

Live Demo

You can run this demo on your computer using this tutorial from pyimagesearch.com.

