项目进度报告

$4.25 \sim 5.8$

1. 项目进展

首先基于 PyTorch 搭建了一个简单的 CNN 基本框架,并得到了初步的运行结果。代码位于 src/main.py 中。模型由4层卷积层和1层全连接层组成,结构较为简单,且对原始数据没有作另外的处理,所以预计该模型的分类效果较差。

模型的初步运行结果如下:

epoch:	1	1	train accuracy:	24.95%	1	loss:	8085.953878521919
epoch:	2	1	train accuracy:	33.79%	1	loss:	6638.890607714653
epoch:	3	1	train accuracy:	41.79%	1	loss:	5918.758317232132
epoch:	4	1	train accuracy:	53.48%	1	loss:	4919.836557030678
epoch:	5	1	train accuracy:	69.94%		loss:	3284.9610074162483
epoch:	6	1	train accuracy:	85.40%	1	loss:	1637.2050406336784
epoch:	7	1	train accuracy:	93.78%	1	loss:	665.7362577915192
epoch:	8	1	train accuracy:	96.79%	1	loss:	359.71187787875533
epoch:	9	1	train accuracy:	98.77%	1	loss:	143.88181293569505
epoch:	10	1	train accuracy:	98.58%	1	loss:	173.2406180202961
epoch:	11	1	train accuracy:	98.67%	1	loss:	179.66354236751795
epoch:	12	1	train accuracy:	99.37%	1	loss:	98.99419784522615
epoch:	13	1	train accuracy:	98.77%	1	loss:	154.13164734095335
epoch:	14	1	train accuracy:	97.50%	1	loss:	323.96445006877184
epoch:	15	1	train accuracy:	97.91%	1	loss:	243.56742891669273
epoch:	16	1	train accuracy:	98.12%	1	loss:	209.97899491898715
epoch:	17	1	train accuracy:	97.66%	1	loss:	272.1701627410948
epoch:	18	1	train accuracy:	98.77%	1	loss:	155.96357196569443
epoch:	19	1	train accuracy:	99.05%	1	loss:	123.00837004603818
epoch:	20	1	train accuracy:	99.40%	1	loss:	53.76045500487089
epoch:	21	1	train accuracy:	99.18%	1	loss:	106.18799130097614
epoch:	22	1	train accuracy:	99.21%	1	loss:	108.27148340456188
epoch:	23	1	train accuracy:	99.10%	1	loss:	127.58836902212352
epoch:	24		train accuracy:	99.10%		loss:	112.05609507812187
epoch:	25		train accuracy:	98.26%		loss:	219.49138341099024

可以看到,尽管该模型在训练过程中对训练集的 loss 收敛较快,准确率提升较高,但对于测试集的最优准确率仅在 36% 附近。这说明该模型的泛化能力很差,并且可能出现了一定程度的过拟合。

2. 后续规划

- 1. 首先改进 CNN 模型的构造,使用不同的神经网络结构和技术,如分块网络和残差网络等。
- 2. 对原始数据进行数据增强、数据清洗等预处理,以提高模型的泛化性。
- 3. 在训练过程中使用正则化技术,尽可能降低模型过拟合的风险。
- 4. 在完成上述步骤后对超参数进行调整,以追求同等条件下更好的结果。
- 5. 采用集成学习的思想,尝试集成多个模型,观察模型的效果是否有所改善。