МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КРЕМЕНЧУЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ МИХАЙЛА ОСТРОГРАДСЬКОГО

Кафедра комп'ютерної інженерії та електроніки

ЗВІТ З ПРАКТИЧНИХ РОБІТ

з навчальної дисципліни «Алгоритми та методи обчислень»

Тема «Геометрична інтерпретація задач лінійного програмування»

Студент гр. КІ-23-1 ПІБ Кобець О. О.

Практична робота № 1

Тема: Геометрична інтерпретація задач лінійного програмування

Мета: Засвоєння графічного методу розв'язку задачі лінійного програмування.

Завдання

Використовуючи геометричну інтепретацію задач лінійного програмування, визначити екстремальні значення функції цілі за заданої системи обмежень (або переконатися в її нерозв'язності).

Варіант №12

12
$$F = 5x_1 + x_2 \rightarrow \min(\max)$$

$$\begin{cases} 10x_1 - 3x_2 \ge 2, \\ 9x_1 + 4x_2 \le 6, \\ 2x_1 - 7x_2 \le 14, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

- 1. Оптимальне значення цільової функції: $F = 5x_1 + x_2 = 1$
- 2. Оптимальна точка: $x_1 = 0.2$, $x_2 = 0$
- 3. Інтерпретація: Цільова функція досягає свого мінімуму F=1.0 при $x_1=0$ і $x_2=0$, які задовольняють всі задані обмеження.

Контрольні питання

1. З якою метою будується вектор С ? Яким значенням дорівнюють його координати?

Вектор с будується для того, щоб визначити коефіцієнти при змінних у цільовій функції задачі лінійного програмування. Його координати відповідають коефіцієнтам цих змінних. Наприклад, якщо цільова функція виглядає як $F = 5x_1 + x_2$, то вектор с буде дорівнювати [5,1].

2. Надати визначення опуклої множини.

Опуклою множиною називається така множина, що для будь-яких двох точок, які належать цій множині, відрізок, що їх з'єднує, повністю належить цій множині. Іншими словами, якщо взяти будь-які дві точки в межах множини, то всі точки на прямій між ними також будуть належати цій множині.

3. Сформулювати умови існування та відсутності розв'язку задачі лінійного програмування.

Умови існування розв'язку задачі лінійного програмування такі:

Система обмежень має хоча б одне спільне рішення (тобто існує хоча б одна точка, яка задовольняє всі обмеження).

Цільова функція повинна бути обмеженою у допустимій області, якщо ми шукаємо її мінімум або максимум.

Умови відсутності розв'язку такі:

Система обмежень ϵ несумісною, тобто немає жодної точки, яка задовольняє всі обмеження одночасно.

Цільова функція ϵ необмеженою у допустимій області, тобто нема ϵ кінцевого мінімуму або максимуму.

4. Чим відрізняється стандартна та канонічна форми постановки задачі лінійного програмування? Де їх застосовують?

Стандартна форма задачі лінійного програмування передбачає, що всі обмеження ϵ у вигляді рівностей і всі змінні ϵ невід'ємними. Тобто задачі подаються у вигляді:

Канонічна форма задачі лінійного програмування передбачає, що всі обмеження ϵ нерівностями і всі змінні також ϵ невід'ємними. Задачі подаються у вигляді:

 \max (або \min) c^Tx \sin умови $Ax \le b$

 $x \ge 0$

Стандартну форму зазвичай використовують для зручності застосування симплекс-методу, оскільки цей метод вимагає рівностей у системі обмежень. Канонічну форму застосовують в теоретичному аналізі задачі лінійного програмування і для побудови двоїстих задач.