Analiza Matematyczna I.1

Piotr Nayar, praca domowa, seria I

Każde zadanie warte jest 1 punkt. Zadanie z gwiazdką nie ma ustalonej liczby punktów. **Wszystkie** rozwiązania trzeba spisać i przesłać na Moodle.

Zadanie 1. Udowodnij, że dla $n \ge 1$ prawdziwa jest nierówność

$$2\sqrt{n+1} - 2\sqrt{2} + 1 \le \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \le 2\sqrt{n} - 1.$$

Zadanie 2. Udowodnij, że dla $n \ge 1$ prawdziwa jest równość

$$\sqrt{2+\sqrt{2+\ldots\sqrt{2}}} = 2\cos\left(\frac{\pi}{2^{n+1}}\right).$$

Z lewej strony równości liczba 2 występuje n razy.

Zadanie 3. Załóżmy, że $0 < a_1 \le a_2 \le ... \le a_n$. Wykaż nierówność

$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \ldots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1} \ge \frac{a_2}{a_1} + \frac{a_3}{a_2} + \ldots + \frac{a_n}{a_{n-1}} + \frac{a_1}{a_n}.$$

Zadanie 4. Niech n będzie dodatnią liczbą całkowitą i niech $\sigma(n)$ oznacza sumę jej dodatnich dzielników oraz $\tau(n)$ liczbę tych dzielników. Wykaż nierówność $\sigma(n) \geq \tau(n) \sqrt{n}$.

Zadanie 5. Udowodnij, że dla $n \ge 1$ prawdziwa jest nierówność

$$\frac{1}{2\sqrt{n}} \le \frac{1 \cdot 3 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot \ldots \cdot (2n)} < \frac{1}{\sqrt{2n}}.$$

Zadanie 6. Rozważmy przez $(a_n)_{n\geq 1}$ ciąg $1,2,4,5,7,9,10,12,14,16,17,\ldots$, w którym po jednej liczbie nieparzystej następują dwie parzyste, potem trzy nieparzyste, cztery parzyste, itd. Wykaż, że

$$a_n = 2n - \left\lfloor \frac{1 + \sqrt{8n - 7}}{2} \right\rfloor, \qquad n \ge 1.$$

Zadanie 7. Wykaż, że dla dowolnych liczb dodatnich a_1, \ldots, a_n oraz b_1, \ldots, b_n prawdziwa jest nierówność

$$\sum_{k=1}^{n} \frac{a_k b_k}{a_k + b_k} \le \frac{\left(\sum_{k=1}^{n} a_k\right) \left(\sum_{k=1}^{n} b_k\right)}{\sum_{k=1}^{n} (a_k + b_k)}.$$