Hull-White (1F) Extended Vasicek Model Bond Option Pricing

A K M Rokonuzzaman Sonet

Abstract

This short report implements and validates European option pricing on zero-coupon bonds under the one-factor Hull–White (HW1F) Extended Vasicek interest-rate model. Three ways of supplying the input discount curve are used: (i) a flat continuous-compounded rate, (ii) pillar zeros with interpolation in z(T), and (iii) a toy bootstrap from a deposit and par swap quotes. We show the HW1f bond-option price equals a Black–76 price when the lognormal volatility is set to the HW-implied bond-price volatility. We verify put–call parity, quantify sensitivities to mean reversion a and volatility σ , and illustrate volatility model risk by comparing against an ad-hoc 10% lognormal volatility. Empirically, at-the-money (ATM-forward) pricing is vegadominated: changing σ matters much more than curve construction or a in this setup.

1 Model overview

The HW1f short rate r_t follows

$$dr_t = (\theta(t) - a r_t) dt + \sigma dW_t, \tag{1}$$

with mean-reversion speed a > 0, volatility $\sigma > 0$, and a time-dependent drift $\theta(t)$ chosen so the model fits the input discount curve P(0,T) exactly.

Zero-coupon bond prices are affine in r_t :

$$P(t,T) = A(t,T) \exp\{-B(t,T)r_t\}, \qquad B(t,T) = \frac{1 - e^{-a(T-t)}}{a}.$$
 (2)

HW-implied bond-price volatility. For an option expiring at S on a bond maturing at T > S, the bond price under the S-forward measure is lognormal with variance

$$\sigma_P^2(t, S, T) = \sigma^2 \left(\frac{1 - e^{-a(T-S)}}{a} \right)^2 \left(\frac{1 - e^{-2a(S-t)}}{2a} \right). \tag{3}$$

In our experiments we take t = 0, so we write $\sigma_P \equiv \sigma_P(0, S, T)$. This σ_P is a total volatility over [0, S] (not "per year").

2 Black-76 bond option (equivalence with HW)

Let P(0,S) and P(0,T) be discount factors from today to S and T. For strike K, define

$$d_1 = \frac{\ln(\frac{P(0,T)}{K \times P(0,S)})}{\sigma_p} + \frac{\sigma_p}{2}, \qquad d_2 = d_1 - \sigma_p, \tag{4}$$

where σ_p is the lognormal volatility used by Black-76. Then

Call =
$$P(0,T) \Phi(d_1) - K P(0,S) \Phi(d_2),$$
 (5)

$$Put = K P(0, S) \Phi(-d_2) - P(0, T) \Phi(-d_1), \tag{6}$$

and put—call parity holds:

Call – Put =
$$P(0,T) - KP(0,S)$$
. (7)

3 Input curves (three constructions)

We supply P(0,T) in three ways:

- 1. Flat curve: $z(T) \equiv z^*$ (continuous compounding); $P(0,T) = e^{-z^*T}$.
- 2. **Pillar zeros** + **interpolation:** given $\{(T_i, z_i)\}$, define z(T) by linear interpolation in T and set $P(0,T) = e^{-z(T)T}$.
- 3. Toy bootstrap from deposit and par swaps: with a 1Y simple deposit $r_{\rm dep}$,

$$P(0,1) = \frac{1}{1 + r_{\rm dep}},\tag{8}$$

and annual fixed-leg par swap quotes $\{(T_n, s_n)\}$, accruals $\alpha_i = 1$,

$$1 - P(0, T_n) = s_n \sum_{i=1}^n \alpha_i P(0, T_i) \implies P(0, T_n) = \frac{1 - s_n \sum_{i=1}^{n-1} \alpha_i P(0, T_i)}{1 + s_n \alpha_n}.$$
 (9)

4 Experiment design

We price a European call and put on the T=5y zero-coupon bond with option expiry S=2y. We use HW parameters a=0.05 (per year) and $\sigma=0.01$ (per $\sqrt{\text{year}}$). We analyze two strike regimes:

- **Deep ITM call:** K = 0.8 P(0,T) (put near zero as expected).
- ATM-forward: $K_{ATM} = P(0,T)/P(0,S)$ (then P(0,T) KP(0,S) = 0 and Call = Put).

We also compare $Black@\sigma_p$ to Black@10% to show volatility model risk.

5 Results

Unless noted, numbers below are from the flat 3% curve with $S=2,\,T=5.$

5.1 ATM-forward prices and sanity checks

With P(0, S) = 0.941765, P(0, T) = 0.860708, we have

$$K_{\text{ATM}} = \frac{P(0,T)}{P(0,S)} = 0.913931, \qquad \sigma_P = 0.037508.$$

Prices:

- Black@ σ_P (HW-consistent): Call = 0.012878.
- Black@10% (ad-hoc vol): Call = 0.034323.
- Put-call parity at ATM: Call Put = P(0,T) KP(0,S) = 0 (holds to machine precision).

For small vol at ATM, the Black price obeys the useful approximation

$$\operatorname{Call}_{ATM} \approx P(0, T) \phi(0) \sigma_P \quad \text{with} \quad \phi(0) = \frac{1}{\sqrt{2\pi}},$$

which matches the observed 0.012878.

5.2 ATM comparison across curves

For the same a, σ, S, T (so the same σ_P), changing the curve shifts P(0, S) and P(0, T), hence K_{ATM} and the price.

Curve	$K_{ m ATM}$	σ_P	Call@HWvol	Call@10%vol
Flat 3%	0.913931	0.037508	0.012878	0.034323
Pillar Zeros	0.904837	0.037508	0.012750	0.033981
Bootstrap (dep+swaps)	0.903354	0.037508	0.012715	0.033889

Prices move by about $\sim 1\%$ across curve constructions (mainly through P(0,T)), whereas using a 10% vol roughly triples the ATM price—a clear volatility/model-risk effect.

5.3 Parameter sensitivity at ATM (flat curve)

We bump a and σ by $\pm 20\%$ and reprice at ATM:

Scenario	Price	Δ vs Base
Base (ATM, σ_P)	0.012878	_
a + 20%	0.012570	-0.000308
a-20%	0.013196	+0.000318
σ +20%	0.015453	+0.002575
σ -20%	0.010303	-0.002575

Interpretation: the ATM price is *vega-dominated*. A 20% change in σ moves the price by about $\pm 20\%$, whereas a 20% change in a moves the price by only $\sim 2.5\%$ (higher a reduces long-dated bond-price volatility).

Deep ITM demonstration. Using K = 0.8 P(0,T), the put price is numerically ≈ 0 because the strike is far below the forward P(0,T)/P(0,S). This matches intuition and parity.

6 Discussion & limitations

Volatility assumption dominates. In this configuration, the choice of volatility has a much larger impact on value than either curve-construction differences or reasonable changes in mean reversion a.

Limitations. HW1f is a one-factor Gaussian short-rate model (can produce negative rates and limited volatility smiles). The toy bootstrap used annual accruals; production OIS bootstraps handle exact day counts and tenors. No calibration to a cap/floor or swaption surface was performed here; parameters were illustrative.

7 Conclusions

- The HW1f bond option equals Black-76 when using the HW-implied bond-price volatility σ_P ; this identity is confirmed numerically.
- Put-call parity holds to machine precision (checked at ATM-forward).
- Across three curve constructions, ATM prices vary only modestly ($\sim 1\%$), while replacing $\sigma_P \approx 3.75\%$ with an ad-hoc 10% roughly triples the price: volatility/model-risk dominates.
- ATM sensitivities show price is far more sensitive to σ than to a.

Appendix: quick reference

ATM-forward strike: $K_{\text{ATM}} = \frac{P(0,T)}{P(0,S)}$.

 $\text{Put-call parity:} \quad \text{Call} - \text{Put} = P(0,T) - KP(0,S).$

ATM Black approximation: $\operatorname{Call}_{\text{ATM}} \approx P(0, T) \, \phi(0) \, \sigma_P, \quad \phi(0) = \frac{1}{\sqrt{2\pi}}.$

Par swap bootstrap (annual): $P(0,T_n) = \frac{1 - s_n \sum_{i=1}^{n-1} \alpha_i P(0,T_i)}{1 + s_n \alpha_n}, \quad \alpha_i = 1.$