

Chimie

Classe: Bac scientifique

Chapitre: pH des solutions aqueuses

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Toutes les solutions sont prises à 25°C où pKe=14

Taki Academy www.takiacademy.com

Exercice 1

© 25 min

On dispose de deux solutions aqueuses S_1 et S_2 de deux acides noyés respectivement A_1H et A_2H .

Les pH de deux solutions ont la même valeur pH=3. L'un des acides est faible et l'autre est fort.

- 1. Calculer le nombre de moles n $_{01}$ et n 02 d'ions (H $_3$ O+) contenus dans V' = 5 cm 3 de chaque solution.
- 2. On dilue 5 cm³ de chaque solution avec l'eau distillée jusqu'à obtenir $V=100 \text{ cm}^3$ de solution. La dilution de S_1 donne une solution S'_1 de $pH_1=3,7$ et celle de S_2 donne une solution S'_2 de $pH_2=4,3$.
- a- Calculer les nombres de moles n_1 et n_2 d'ions (H_3O^+) contenus respectivement dans les solutions diluées S'_1 et S'_2 .
- b- Identifier la solution initiale correspondante à l'acide fort. Justifier la réponse.
- c- Calculer la concentration molaire de la solution initiale de l'acide fort.
- 3- La solution initiale de l'acide faible a une concentration molaire égale à $5,75.10^{-2}$ mol. L⁻¹.
- a- Calculer le taux d'avancement final de la réaction.
- b- L'acide peut-il être considéré comme faiblement ionisé?
- c- Etablir en indiquant les approximations adoptées l'expression du pH de la solution correspondante à l'acide faible en fonction de son pKa et de sa concentration initiale C .
- d- Déduire le pka du couple (acide-base) correspondant.

Exercice 2

(\$ 30 min

Une solution triméthylamine (CH₃)₃N (base faible) de concentration C = 10^{-1} mol.L⁻¹ a un pH = 11,45.

- 1. Ecrire l'équation de dissociation du triméthylamine (CH₃)₃N dans l'eau.
- 2. a- Dresser le tableau descriptif d'évolution volumique
 - b-montrer que le triméthylamine (CH₃)₃N est faiblement ionisé dans l'eau
 - c- Montrer que le pKb du couple BH+ / B associé au triméthylamine s'écrit :

$$pKb = pKe - pH + Log\left(\frac{[B]}{[BH^+]}\right)$$

- d- En justifiant les approximations établir l'expression du pKb en fonction du pH, pKe et logC
- e- Déduire la valeur du pKb du couple auguel appartient le triméthylamine (CH₃)₃N
- 3. A 100 cm³ de la solution de triméthylamine (CH₃)₃N, on ajoute 100 cm³ d'une solution de chlorure de sodium.
 - a- Justifier qu'il s'agit d'une simple dilution.
 - b- Calculer la nouvelle valeur du pH de la solution obtenue.

Exercice 3

© 20 min

En dissolvant chacun des trois acides A₁H, A₂H et A₃H dans de l'eau pure, on prépare respectivement trois solutions aqueuses acides (S_1) , (S_2) et (S_3) de concentrations C_i initiales identiques ($C_1 = C_2 = C_3$).

On a oublié de coller une étiquette portant le nom de la solution sur chaque flacon. Seul l'un des acides correspond à un acide fort (Chlorure d'hydrogène HCl).

Pour identifier chaque solution, on a mesuré son pH. Les résultats sont rassemblés dans le tableau suivant :

Solution	(S ₁)	(S ₂)	(S ₃)
рН	3,45	2,00	5,65

- 1. a- Classer les acides A_1H , A_2H et A_3H par ordre croissant de force. Justifier la réponse.
 - b- En déduire celui des trois acides qui correspond à HCl. Déterminer alors, la valeur C_i de la concentration molaire de sa solution.
- 2. On s'intéresse maintenant à l'acide A₃H.
 - a- Montrer que A₃H est un acide faible.
 - b- Ecrire l'équation de son ionisation dans l'eau.
 - c- Calculer la molarité de toutes les espèces chimiques, autre que l'eau, présentes en solution.
 - d- Montrer que l'acide est faiblement ionisé.

Etablir l'expression du pKa de cet acide A₃H en fonction de sa concentration initiale C en solution aqueuse et de son pH. Calculer sa valeur.

Exercice 4

Toutes les solutions considérées dans l'exercice sont prises à 25°C, température à laquelle le produit ionique de l'eau est $Ke = 10^{-14}$.

On dispose de deux solutions aqueuses (S_1) et (S_2) obtenues respectivement par dissolution des monobases B_1 : CH_3CO_2 et B_2 : NH_3 de même concentration molaire

 $C=10^{-2}$ mol.L-1 A l'aide d'un pH mètre préalablement étalonné, on mesure le pH des deux solutions (S_1) et (S_2) on trouve respectivement pH $_1=8,34$ et pH $_2=10,6$

- 1. a- Dresser le tableau descriptif d'avancement volumique y relatif à la réaction d'une monobase faible B avec l'eau.
 - b- Montrer que le taux d'avancement final de la réaction est

$$\tau_f = \frac{10^{(pH - pKe)}}{C}$$

- c– Calculer τ_{f1} et τ_{f2} .
- d-Comparer la force des deux bases B₁ et B₂.
- 2. a- Montrer que la constante d'acidité du couple NH₄+/ NH₃ s'écrit :

$$Ka_2 = \frac{Ke}{\tau_{f2}^2 \cdot C}$$

- b- Déduire le pKa2 du couple NH₄+/ NH₃
- 3. En diluant la solution (S_1) ; on prépare d'autres solutions de concentrations différentes :

On mesure le pH de chaque solution et on représente la courbe $pH = f(\log C)$. On obtient la courbe suivante :

- a- Etablir l'équation numérique de la courbe :pH=f(logC).
- b-Montrer que l'expression du pH s'écrit : $pH = \frac{1}{2}$ (pKe + pKa + logC) en précisant les approximations utilisées.
- c- Déduire le pKa₁ du couple CH₃CO₂H/CH₃COO-
- d-Retrouver la classification de B₁ et B₂ par force croissante.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000