12 UMPU Tests ("UMP unbiased")

Nach Bemerkung 11.8(b) exisitiert im Allgemeinen kein zweiseitiger UMP-Test zu einem Niveau α . Deshalb Einschränkung auf unverfälschte Tests: $\varphi \in \Phi_{\alpha}$ heißt **unverfälscht** (unbiased) zum Niveau α für $H_0: \vartheta \in \Theta_0$ gegen $H_1: \vartheta \in \Theta_1$, falls

(1)
$$E_{\vartheta}\varphi \leq \alpha \ \forall \vartheta \in \Theta_0, \ E_0\varphi \geq \alpha \ \forall \vartheta \in \Theta_1$$

Im Folgenden liegen einparametrige Exponentialfamilien mit Dichte

(*)
$$f(x,\vartheta) = c(\vartheta) \cdot \exp(\vartheta T(x)) \cdot h(x), \ x \in \mathfrak{X}$$

und natürlichem Parameterbereich Θ vor.

Zu testen sei $H_0: \vartheta = \vartheta_0$ gegen $H_1: \vartheta \neq \vartheta_0$.

Nach Lemma 6.12 ist die Gütefunktion $\beta(\vartheta) = E_{\vartheta}\varphi(X)$ beliebig oft differenzierbar. Aus Forderung (1) folgt:

(2)
$$E_{\vartheta_0}\varphi(X) = \alpha$$
, $\frac{d}{d\vartheta}E_{\vartheta}\varphi(X)|_{\vartheta=\vartheta_0} = 0$

Mit

$$c(\vartheta) = \left[\int e^{\vartheta T(x)} h(x) \mu(dx) \right]^{-1}$$

$$c'(\vartheta) = -\int T(x)e^{\vartheta T(x)}h(x)\mu(dx) \cdot c(\vartheta)^2$$

folgt weiter

$$\beta'(x) = \left[\int \varphi(x)c(\vartheta)e^{\vartheta T(x)}h(x)\mu(dx) \right]'$$

$$= c'(\vartheta) \int \varphi(x)e^{\vartheta T(x)}h(x)\mu(dx) + c(\vartheta) \int \varphi(x)T(x)e^{\vartheta T(x)}h(x)\mu(dx)$$

$$= -\bar{c}(\vartheta)^2 \int T(x)e^{\vartheta T(x)}h(x)\mu(dx) \int \varphi(x)e^{\vartheta T(x)}h(x)\mu(dx)$$

$$+E_{\vartheta}[\varphi(x)T(x)]$$

$$= E_{\vartheta}[\varphi(x)T(x)] - E_{\vartheta}T(x)E_{\vartheta}\varphi(x)$$

Damit ist (2) äquivalent zu

(3)
$$E_{\vartheta_0}\varphi(x) = \alpha$$
, $E_{\vartheta_0}[\varphi(x)T(x)] = \alpha E_{\vartheta_0}T(x)$

90

12.1 Satz (UMPU-Tests in einparametrigen Exponentialfamilien)

Exponentialfamilie wie in (*). Weiter sei

$$\varphi^*(x) = \begin{cases} 1, & T(x) < c_1^* \text{ oder } T(x) > c_2^* \\ \gamma_i^*, & T(x) = c_i^* \text{ } (i = 1, 2) \\ 0, & c_1^* < T(x) < c_2^* \end{cases}$$

wobei $c_1^*, c_2^*, 0 \le \gamma_1^*, \gamma_2^* \le 1$ so, dass φ^* (3) erfüllt. Dann:

- a) Unter allen Niveau α Tests für $H_0: \vartheta = \vartheta_0$ gegen $H_1: \vartheta \neq \vartheta_0$ die (3) erfüllen ist φ^* gleichmäßig bester Test.
- b) φ^* ist UMPU-Test zum Niveau α für H_0 gegen H_1 .

Anmerkung:

UMP-Tests sind eventuell auf einer Seite besser, versagen dafür aber auf der anderen Seite. Sie sind hier aber sowieso unzulässig, da sie nicht unverfälscht sind!

12.2 Bemerkungen

a) Aus (3) folgt

$$E_{\vartheta_0}[\varphi(X)\cdot(aT(X)+b)] = a\underbrace{E_{\vartheta_0}[\varphi(X)T(X)]}_{=\alpha E_{\vartheta_0}T} + \alpha\cdot b = \alpha E_{\vartheta_0}[aT(X)+b]$$

d.h. Bedingung (3) und auch die Form des Tests φ^* ändern sich nicht unter linear affinen Transformationen $\tilde{T}(x) = a \cdot T(x) + b \ (a \neq 0)$. Also ist

$$\tilde{\varphi}^*(x) = \begin{cases} 1, & \tilde{T}(x) < \tilde{c}_1^* \text{ oder } \tilde{T}(x) > \tilde{c}_2^* \\ \tilde{\gamma}_i^*, & \tilde{T}(x) = \tilde{c}_i^* \text{ } (i = 1, 2) \\ 0, & \tilde{c}_1^* < T(x) < \tilde{c}_2^* \end{cases}$$

mit $E_{\vartheta_0}\tilde{\varphi}^* \stackrel{!}{=} \alpha$, $E_{\vartheta_0}[\tilde{\varphi}^*\tilde{T}] = \alpha \cdot E_{\vartheta_0}\tilde{T}$ ebenfalls UMPU-Test zum Niveau α für H_0 gegen H_1 .

b) Sei $P_{\vartheta_0}^T$ symmetrisch bezüglich t_0 , d.h.

$$P_{\vartheta_0}(T - t_0 \le -t) = P_{\vartheta_0}(T - t_0 \ge t) \ \forall t \in \mathbb{R}$$

Sei

$$\varphi^*(x) = \begin{cases} 1, & |T(x) - t_0| > c^* \\ \gamma^*, & |T(x) - t_0| = c^* \\ 0, & |T(x) - t_0| < c^* \end{cases}$$

mit
$$P_{\vartheta_0}(T(X) - t_0 > \underbrace{c^*}_{>0}) + \gamma^* P_{\vartheta_0}(T(X) - t_0 = c^*) \stackrel{!}{=} \frac{\alpha}{2}.$$

 $\Rightarrow P_{\vartheta_0}(|T(X) - t_0| > c^*) + \gamma^* P_{\vartheta_0}(|T(X) - t_0| = c^*) = \alpha, \text{ d.h.}$
 $E_{\vartheta_0}\varphi^* = \alpha$ (*).

Weiter gilt: $E_{\theta_0}T(X)=t_0, \, \varphi^*$ symmetrisch bezüglich t_0

$$\Rightarrow E_{\vartheta_0}[\varphi^* \cdot T] = \underbrace{E_{\vartheta_0}[(T - t_0) \cdot \varphi^*]}_{=0 \text{ s.u.}} + t_0 E_{\vartheta_0} \varphi^* \stackrel{(*)}{=} t_0 \cdot \alpha = \alpha \cdot E_{\vartheta_0} T$$

[Betrachte
$$g(t) = (t - t_0) \cdot \varphi^*(t)$$

 $\Rightarrow E_{\vartheta_0}[(T - t_0) \cdot \varphi^*(T)] = \int g(t) P_{\vartheta_0}^T(dt) = 0.$]

D.h. auch die zweite Bedingung in (3) ist erfüllt. φ^* ist also UMPU-Test zum Niveau α für H_0 gegen H_1 . Bestimmung von c^*, γ^* also wie beim einseitigen UMP-Test zum Niveau $\frac{\alpha}{2}$.

Bemerkung:

Form des Tests bleibt unverändert unter streng monotonen Transformationen $\tilde{T}(x) = h(|T(x) - t_0|)$.

12.3 Beispiel (Zweiseitiger Gauss-Test)

 $X_1, \ldots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma_0^2), \sigma_0^2 > 0$ bekannt.

$$H_0: \mu = \mu_0 \text{ gegen } H_1: \mu \neq \mu_0$$

Verteilung von $X=(X_1,\ldots,X_n)$ ist einparametrige Exponentialfamilie mit $\vartheta=\frac{\mu}{\sigma_0^2},\,T(x)=\sum_{i=1}^n x_i,\,\sum_{i=1}^n X_i\sim\mathcal{N}(n\mu_0,n\sigma_0^2)$ unter H_0 . Linear affine Transformation

$$\tilde{T}(x) = \frac{T(x) - n\mu_0}{\sqrt{n\sigma_0^2}} = \sqrt{n} \frac{\bar{x}_n - \mu_0}{\sigma_0}$$

liefert $P_{\mu_0}^{\tilde{T}} = \mathcal{N}(0,1)$, also symmetrisch bezüglich 0. Verteilungsfunktion ist stetig

$$\Rightarrow \varphi^* = \begin{cases} 1, & \sqrt{n} \left| \frac{\bar{x}_n - \mu_0}{\sigma_0} \right| > z_{1 - \frac{\alpha}{2}} \\ 0, & \sqrt{n} \left| \frac{\bar{x}_n - \mu_0}{\sigma_0} \right| \le z_{1 - \frac{\alpha}{2}} \end{cases}$$

ist UMPU-Test für H_0 gegen H_1 .

12.4 Beispiel

$$X = (X_1, \dots, X_n), X_i \stackrel{uiv}{\sim} Bin(1, p), 0$$

$$H_0: p = p_0 \text{ gegen } H_1: p \neq p_0$$

Einparametrige Exponentialfamilie mit $\vartheta = \log \frac{p}{1-p}$, $T(x) = \sum_{i=1}^{n} x_i$, $\sum_{i=1}^{n} X_i \sim \text{Bin}(n, p_0)$ unter H_0 .

Im Allgemeinen nicht symmetrisch! UMPU-Test:

$$\Rightarrow \varphi^*(x) = \begin{cases} 1, & \sum x_i < c_1^* \text{ oder } \sum x_i > c_2^* \\ \gamma_i^*, & \sum x_i = c_i^* \\ 0, & c_1^* < \sum x_i < c_2^* \end{cases}$$

mit (komplizierten) Bedingungen für $c_1^*, c_2^*, \gamma_1^*, \gamma_2^*$.

In der Praxis oft:

Konstruktion des Tests aus zwei einseitigen UMP-Tests zum Niveau $\frac{\alpha}{2}$, ist aber nicht UMPU.

Im Folgenden Exponentialfamilie mit

(4)
$$f(x, \vartheta, \xi) = c(\vartheta, \xi) \cdot \exp(\vartheta \cdot U(x) + \sum_{i=1}^{k} \xi_i T_i(x)) \cdot h(x)$$

$$(\vartheta, \xi) \in \Theta \subset \mathbb{R} \times \mathbb{R}^k$$
, Θ konvex, $\dot{\Theta} \neq \emptyset$.

Zu testen:

$$H_0: \vartheta \leq \vartheta_0$$
 gegen $H_1: \vartheta > \vartheta_0$

bzw.

$$\tilde{H}_0: \vartheta = \vartheta_0 \text{ gegen } \tilde{H}_1: \vartheta \neq \vartheta_0$$

 $\xi = (\xi_1, \dots, \xi_k)$ ist Störparameter, $T(x) = (T_1(x), \dots, T_k(x))$

Für festes t ist Dichte in (4) einparametrige Exponentialfamilie.

[Genauer: Man kann zeigen, dass die bedingte Verteilung $P_{\vartheta,\xi}^{U|T=t}$ eine einparametrige Exponentialfamilie mit Dichte

$$c_t(\vartheta) \cdot e^{\vartheta \cdot U} h(x)$$

(unabhängig von ξ) ist.]

 \Rightarrow (bedingte) UMP- bzw. UMPU-Tests für H_0 bzw. \tilde{H}_0 existieren. Es lässt sich zeigen, dass diese bedingten Tests auch für zufälliges T=T(X) optimal sind:

12.5 Satz 93

12.5 Satz

a) Der Test φ_1 , definiert durch

$$\varphi_1(x) = \begin{cases} 1, & U > c(t) \\ \gamma(t), & U = c(t) \\ 0, & U < c(t) \end{cases}$$

wobei $E_{\theta_0}[\varphi_1(U,T)|T=t] \stackrel{!}{=} \alpha$, ist UMPU-Test²⁹ zum Niveau α für H_0 gegen H_1 .

b) Der Test φ_2 , definiert durch³⁰

$$\varphi_2(x) = \begin{cases} 1, & U < c_1(t) \text{ oder } U > c_2(t) \\ \gamma_i^*, & U = c_i(t) \\ 0, & c_1(t) < U < c_2(t) \end{cases}$$

wobei $E_{\vartheta_0}[\varphi_2(U,T)|T=t] \stackrel{!}{=} \alpha$,

$$E_{\vartheta_0}[\varphi_2(U,T) \cdot U|T=t] \stackrel{!}{=} \alpha \cdot E_{\vartheta_0}[U|T=t]$$

ist UMPU-Test zum Niveau α für \tilde{H}_0 gegen \tilde{H}_1 .

Die Tests aus 12.5 können manchmal so transformiert werden, dass $c(t), \gamma(t)$ beziehungsweise $c_1(t), c_2(t), \gamma_i(t)$ nicht von t abhängen.

12.6 Satz

Unter der Verteilungsannahme (4) sei V = h(U, T) eine unter $\vartheta = \vartheta_0$ von T unabhängige reellwertige Statistik. Dann gilt:

a) Ist h(u,t) streng monoton wachsend in u bei festem t, so ist

$$\widetilde{\varphi}_1(v) = \begin{cases} 1, & v > \widetilde{c} \\ \widetilde{\gamma}, & v = \widetilde{c} \\ 0, & v < \widetilde{c} \end{cases}$$

wobei $E_{\vartheta_0}\widetilde{\varphi}_1(V) = \alpha$, UMPU-Test zum Niveau α für H_0 gegen H_1 .

 $^{^{29}}$ Kein Schreibfehler! Test ist kein UMP-Test sondern nur UMPU! 30 besser: $\gamma_i(t)$

b) Gilt h(u,t) = a(t)u + b(t), a(t) > 0 so ist

$$\widetilde{\varphi}_2(v) = \begin{cases} 1, & v < \widetilde{c}_1 \text{ oder } v > \widetilde{c}_2 \\ \widetilde{\gamma}_i, & v = \widetilde{c}_i \\ 0, & \widetilde{c}_1 < v < \widetilde{c}_2 \end{cases}$$

wobe
i $E_{\vartheta_0}\widetilde{\varphi}_2(V)=\alpha,\ E_{\vartheta_0}[\widetilde{\varphi}_2(V)V]=\alpha E_{\vartheta_0}(V)$ UMPU-Test zum Niveau α für
 \widetilde{H}_0 gegen $\widetilde{H}_1.$

Beweis:

- a) Nach Korollar 11.11 bleibt die Form des Tests unter streng monotoner Transformation unverändert, man erhält also einen Test der Form $\widetilde{\varphi}_1$ mit $\widetilde{c} = \widetilde{c}(t), \ \widetilde{\gamma} = \widetilde{\gamma}(t)$. Nach Vorraussetzung ist V aber unabhängig von T unter $\vartheta = \vartheta_0$, deshalb hängen $\widetilde{c}, \widetilde{\gamma}$ nicht von t ab.
- b) folgt analog mit Bemerkung 12.2(a)

Nachweis der Unabhängigkeit von V und T? Übliche Methoden der Wahrscheinlichkeitstheorie, oder

12.7 Satz (Basu's Theorem)

Sei $\wp = \{P_{\vartheta} : \vartheta \in \Theta\}$. Statistik T sei suffizient und vollständig für ϑ . Ist V eine Statistik deren Verteilung nicht von ϑ abhängt, so sind V und T stochastisch unabhängig.³¹

Beispiel:

 $X_1, \ldots, X_n \overset{uiv}{\sim} \mathcal{N}(\mu, \sigma_0^2), \ \sigma_0^2 > 0$ bekannt, $\Theta = \{\mu : \mu \in \mathbb{R}\}, \ T = \sum_{i=1}^n X_i$ suffizient und vollständig für μ .

$$V = \underbrace{\sum_{i=1}^{n} (X_i - \bar{X}_n)^2}_{(*)}$$

$$\begin{split} (*) &= \textstyle \sum_i ((X_i - \mu)(\bar{X}_n - \mu))^2 = \textstyle \sum_{i=1}^n (Y_i - \bar{Y}_n)^2 \text{ wobei } Y_i \sim \mathcal{N}(0, \sigma_0^2) \\ \text{Verteilung von V unabhängig von } \mu \; (V \sim \sigma_0^2 \chi_{n-1}^2). \\ \stackrel{12.7}{\Rightarrow} \text{V und T sind unabhängig.} \end{split}$$

³¹V "ancillary"

12.8 Korollar 95

Beweis:

Sei g beliebige beschränkte Funktion, $m = E_{\vartheta}g(V)$ (unabhänig von ϑ nach Vorraussetzung).

$$h(T(x)) := E_{\vartheta}[g(V) - m|T = T(x)]$$

unabhängig von ϑ , da T suffizient. Wegen

$$E_{\vartheta}h(T) = E_{\vartheta}[E_{\vartheta}[g(V) - m|T]] = 0 \forall \vartheta \in \Theta$$

und der Vollständigkeit von T folgt h(T) = 0 $P_{\vartheta} - f.s.$, also

$$E_{\vartheta}[g(V)|T] = m = E_{\vartheta}g(V) P_{\vartheta} - f.s.$$

und somit die Unabhängigkeit von V und T.

12.8 Korollar

Sei \wp Exponentialfamilie wie in (4), wobei $\vartheta(=\vartheta_0)$ fest gewählt ist. Hängt die Verteilung einer Statistik V nicht von ξ ab, so sind V und T unabhängig.

$\underline{\text{Beweis:}}$

Nach Beispiel 7.7 und 7.12 ist T vollständig und suffizient für ξ . $12.7 \Rightarrow$ Behauptung.

12.9 Beispiel (1-Stichproben-t-Test)

$$X_1, \ldots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma^2), \ \vartheta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_{>0}, \ X = (X_1, \ldots, X_n)$$

a) $H_0: \mu \leq \mu_0$ gegen $H_1: \mu > \mu_0$ 2-parametrige Exponentialfamilie nach Beispiel 6.3, hat die Form in (4) mit $\vartheta = \frac{\mu}{\sigma^2}$, $\xi = -\frac{1}{2\sigma^2}$, $U(x) = \sum_{i=1}^n x_i$, $T(x) = \sum_{i=1}^n x_i^2$. Ohne Einschränkung sei $\mu_0 = 0$, andernfalls betrachte man $x_i - \mu_0$ anstelle der x_i .

 H_0 , H_1 sind dann äquivalent zu H_0 : $\vartheta \leq 0$, H_1 : $\vartheta > 0$. Betrachte:

$$v = \frac{\sqrt{n}\bar{x}_n}{\sqrt{\frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x}_n)^2}} = \frac{1}{\sqrt{n}} \frac{u}{\sqrt{\frac{t - \frac{u^2}{n}}{n-1}}} =: h(u, t)$$

 $\frac{\partial h(u,t)}{\partial u}>0 \Rightarrow h(u,t)$ streng monoton wachsend in u bei festem t. (Beachte: $t>\frac{u^2}{n}>0.)$

Weiter gilt: Unter $\vartheta = \vartheta_0$ gilt $V \sim t_{n-1}$, also unabhängig von ξ . $\overset{12.8}{\Rightarrow}$ V und T sind stochastisch unabhängig (unter $\vartheta=\vartheta_0).$ $\overset{12.6(a)}{\Rightarrow}$ Der UMPU-Test für $H_0: \mu \leq \mu_0$ gegen $\mu > \mu_0$ zum Niveau α

$$\widetilde{\varphi}_1(v) = \begin{cases} 1, \sqrt{n} \frac{\bar{x}_n - \mu_0}{s} \ge t_{n-1;1-\alpha} \\ 0, \sqrt{n} \frac{\bar{x}_n - \mu_0}{s} < t_{n-1;1-\alpha} \end{cases}$$

b) $\tilde{H}_0: \mu = \mu_0 \text{ gegen } \tilde{H}_1: \mu \neq \mu_0$ Ohne Einschränkung $\mu_0 = 0$, dann $\tilde{H}_0: \vartheta = \vartheta_0 = 0$, $\tilde{H}_1: \vartheta \neq \vartheta_0$

$$h(u,t) = \frac{1}{\sqrt{n}} \frac{u}{\sqrt{\frac{t-u^2/n}{n-1}}}$$

nicht linear in u.

Betrachte

$$\tilde{v} = \tilde{h}(u, t) = \frac{u}{\sqrt{t}} = \frac{\sum x_i}{\sqrt{\sum x_i^2}}$$

Unter $\vartheta = 0$ gilt $\tilde{V} \sim \frac{\sum Y_i}{\sqrt{\sum Y_i^2}}$, wobei $Y_i \sim \mathcal{N}(0, 1)$.³²

 \Rightarrow Verteilung von \tilde{V} ist unabhängig von ξ und symmetrisch um 0. Nach 12.6(b) existiert ein UMPU-Test $\tilde{\varphi}_2(\tilde{v})$, der wegen der Symmetrie der Verteilung von \tilde{V} nach 12.2(b) einen Ablehnbereich der Form $|\tilde{v}| >$ \tilde{c} hat.

Nun gilt

$$v = h(u,t) = g(\tilde{v}) = \sqrt{\frac{n-1}{n}} \frac{\tilde{v}}{\sqrt{1-\tilde{v}^2/n}}$$

bzw. $|v| = g(|\tilde{v}|)$.

 $g(|\tilde{v}|)$ ist streng monoton wachsend auf $[0,\sqrt{n}]^{33}$, so dass nach Bemerkung in 12.2(b) der UMPU-Test auch auf einem Ablehnbereich der Form $|v| \geq c$ basieren kann. Somit ist

$$\tilde{\varphi}_2(x) = \begin{cases} 1, & \sqrt{n} \frac{|\bar{x}_n - \mu_0|}{s} \ge t_{n-1;1 - \frac{\alpha}{2}} \\ 0, & \sqrt{n} \frac{|\bar{x}_n - \mu_0|}{s} < t_{n-1;1 - \frac{\alpha}{2}} \end{cases}$$

UMPU-Test für \tilde{H}_0 gegen \tilde{H}_1 .

³³Erweitere \tilde{v} mit $\frac{1}{\sigma}$ um dies zu erkennen! ³³Beachte: $\tilde{v} \in (-\sqrt{n}, \sqrt{n})$ (nachrechenbar)

12.10 Bemerkung

Ähnliche Überlegungen zeigen, dass auch der ein- bzw. zweiseitige 2-Stichproben-t-Test UMPU-Test ist.

(z.B. Lehmann/Romano, S. 157-161, 3. ed.)

Beispiel (Unabhängigkeitstest unter NV-Annahme) 12.11

$$(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{uiv}{\sim} \mathcal{N}_2(\mu, \nu, \sigma^2, \tau^2, \varrho)$$
, also Dichte³⁴

$$f((x_1, y_1), \dots, (x_n, y_n), \mu, \nu, \sigma^2, \tau^2, \varrho) = (2\pi\sigma\tau\sqrt{1-\varrho^2})^{-n}$$

$$\exp(-\frac{1}{2(1-\varrho^2)}(\frac{1}{\sigma^2}\sum_{i}(x_i-\mu)^2 - \frac{2\varrho}{\sigma\tau}\sum_{i}(x_i-\mu)(y_i-\nu) + \frac{1}{\tau^2}\sum_{i}(y_i-\nu)^2)) \quad (*)$$

Zu testen: \tilde{H}_0 : X_1, Y_1 unabhängig; \tilde{H}_1 : X_1, Y_1 nicht unabhängig

Äquivalent: $H_0: \varrho = 0; H_1: \varrho \neq 0$

Bzw. die einseitige Hypothese $H_0: \varrho \leq 0$ gegen $H_1: \varrho > 0$.

(*) ist Exponentialfamilie wie in (4) mit

$$U = \sum_{i} x_{i} y_{i}, T_{1} = \sum_{i} x_{i}^{2}, T_{2} = \sum_{i} y_{i}^{2}, T_{3} = \sum_{i} x_{i}, T_{4} = \sum_{i} y_{i}$$

$$\vartheta = \frac{\varrho}{\sigma \tau (1 - \varrho^{2})}$$

$$\xi_{1} = -\frac{1}{2\sigma^{2} (1 - \varrho^{2})}, \ \xi_{2} = -\frac{1}{2\tau^{2} (1 - \varrho^{2})},$$

$$\xi_{3} = \frac{1}{1 - \varrho^{2}} (\frac{\mu}{\sigma^{2}} - \frac{\nu \varrho}{\sigma \tau}), \ \xi_{4} = \frac{1}{1 - \varrho^{2}} (\frac{\nu}{\tau^{2}} - \frac{\mu \varrho}{\sigma \tau})$$

a) $H_0: \vartheta \leq 0$ gegen $H_1: \vartheta > 0$

$$R = \frac{\sum_{i} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sqrt{\sum_{i} (X_{i} - \bar{X})^{2} \cdot \sum_{i} (Y_{i} - \bar{Y})^{2}}}$$

empirischer Korrelationskoeffizient nach Pearson. Transformation $X_i \to \frac{X_i - \mu}{\sigma}$, $Y_j \to \frac{Y_j - \nu}{\tau}$ ändert R nicht, deshalb hängt die Verteilung von R nicht von $\mu, \nu, \sigma^2, \tau^2$ ab, sondern nur von ϱ . Für $\vartheta = 0$ ist die Verteilung von R also unabhängig von $\xi_1, \xi_2, \xi_3, \xi_4$.

 $^{^{34}\}varrho$ ist Korrelationskoeffizient (s. Stochastik 1)

Korolar 12.8 \Rightarrow R ist unabhängig von (T_1, \dots, T_4) unter $\vartheta = 0$. $\stackrel{12.6}{\Rightarrow}$ UMPU-Test hat Ablehnbereich der Form $R \geq c$ oder äquivalent

$$w := \frac{R}{\sqrt{\frac{1 - R^2}{n - 2}}} \ge \tilde{c}$$

 $[R = \frac{U - T_3 T_4/n}{\sqrt{(T_1 - T_3^2/n)(T_2 - T_4^2/n)}} \text{ ist streng monoton wachsend in U}$ $\Rightarrow \text{ w ist streng monoton wachsend}^{35} \text{ in U}]$

Nach Aufgabe 36 gilt: $w \sim t_{n-2}$ falls $\varrho = 0$ (bzw. $\vartheta = 0$). Deshalb:

$$\varphi_1(w) = \begin{cases}
1, & w \ge t_{n-2,1-\alpha} \\
0, & w < t_{n-2,1-\alpha}
\end{cases}$$

UMPU-Test zum Niveau α für H_0 gegen H_1 .

b) Test von $\tilde{H}_0: \vartheta=0, \ \tilde{H}_1: \vartheta\neq 0$ R ist linear in U mit um 0 symmetrischer Verteilung für $\vartheta=0$ \Rightarrow UMPU-Test hat Ablehnbereich der Form $|R|\geq \tilde{c}$. Die Funktion $x\to \frac{x}{\sqrt{1-x^2}}$ ist streng monoton wachsend für $0\leq x\leq 1$, woraus wie in 12.9(b) folgt:

$$\varphi_2(w) = \begin{cases} 1, & |w| \ge t_{n-2,1-\frac{\alpha}{1}} \\ 0, & |w| < t_{n-2,1-\frac{\alpha}{2}} \end{cases}$$

ist UMPU-Test zum Niveau α für $\tilde{H}_0: \varrho = 0$ gegen $\tilde{H}_1: \varrho \neq 0$.

 $^{^{35}{\}rm w}$ ist streng monoton wachsend in R (Beachte: $R\in[-1,1]$ und $w'(R)>0\;\forall R\in(-1,1))$