

Duale Hochschule Baden-Württemberg - CAS

Forschungsprojektarbeit 1

Überprüfung und Vergleich von PCR-Pooling-Verfahren durch Forschungsmethoden der Wirtschaftsinformatik

Studiengang Wirtschaftsinformatik

Verfasser(in): Daniel Jacobi

Matrikelnummer: 8041730

Firma: Volksbank Backnang eG

Abteilung: Marktfolge Aktiv - Firmenkunden

Kurs: Wirtschaftsinformatik

Studiengangsleiter: Prof. Dr. Martin, Prof. Dr. Kessel

Wissenschaftliche(r) Betreuer(in): Prof. Dr. Martin

Firmenbetreuer(in): Herr Stephan Denz

Bearbeitungszeitraum: 15.12.2021 – 15.02.2022

Inhaltsverzeichnis

Αl	Abkürzungsverzeichnis	iii
1	Einleitung1.1 Problemstellung1.2 Zielsetzung	. 1 . 2
2	Das PCR Verfahren 2.1 Einordnung des PCR-Verfahrens in der Covid19-Teststrategie 2.2 Funktionsweise des RT-PCR-Verfahrens 2.3 Möglichkeiten und Grenzen zum Pooling bei PCR	. 6
3	Analyse und Bewertung der Poolingmethoden 3.1 Minipool	9 . 12
4	Implementierung in der betrieblichen Teststrategie 4.1 Ort der Testdurchführung 4.2 Skalierung im betrieblichen Umfeld	
5	Ergebnis 5.1 Erkenntnisse der Arbeit 5.2 Fazit zur Forschungsfrage	

Rahmenbedingungen:

- 15-20 Seiten
- 70 Prozent schriftliche Ausarbeitung
- 70 Prozent Präsentation

Abkürzungsverzeichnis

Schnelltest Rapid Antigen whatever... TODO

1 Einleitung

1.1 Problemstellung

Die Covid19-Pandemie ist zum aktuellen Zeitpunkt im Februar 2022 seit 23 Monaten ausgerufen. Mit unterschiedlichsten Maßnahmen wird versucht, die weitere Ausbreitung einzudämmen und die Kapazitäten des Gesundheitssystems in den kommenden Wintermonaten nicht zu überlasten. Neben Impfungen und Masken zählen auch Einschränkungen des öffenlichen Lebens und die Nachverfolgung von Infektionsketten zu den ergriffenen Maßnahmen.

Ein weiterer elementarer Baustein der Pandemiestrategie ist die anlassbezogene, aber auch anlasslose Massentestung der Bevölkerung auf Infektion mit dem neuartigen Coronavirus. Hierbei erfolgt die Massentestung üblicherweise mit Antigen-Schnelltests, während Verdachtsfälle über PCR-Tests überprüft werden. ¹ Der Nachweis einer negativen Testung ist – alternativ zu einer Immunisierung – Voraussetzung für die Teilnahmen an vielen Bereichen des öffentlichen Lebens.

Unternehmen sind aktuell verpflichtet Ihren Mitarbeitern zweimal pro Woche eine Testmöglichkeit zu bieten. Hierfür kommen nahezu ausschließlich Antigen-Schnelltests zum Einsatz. Diese Stückpreise schwanken hier zwischen (Betrag) Euro ² und (Betrag) Euro. ³

Die Sensitivität der Schnelltests ist allerdings nach aktueller Auffassung nicht ausreichend. Die Uni Würzburg testete die Sensitivität mehrerer Anbieter in XX/2021 und kam hierbei zu einer Sensitivität von 42,6 Prozent. Die Zulassungsstudien der Schnelltests zeigen eine sehr große Bandbreite in der Qualität. (Hersteller) erkennt selbst bei geringer Viruslast XX Prozent der Infektionen (Hersteller) dagegen zeigt selbst bei sehr hoher Virenlast nur XX Prozent der Infizierten richtig an. ⁴

Aus diesem Grund erfordert die Corona-Verordnung-BW bei einem verstärkten Infektionsgeschehen in vielen Bereichen einen PCR-Test für ungeimpfte Personen. Die Erneute

¹(Quelle Verordnung)

²(Onlinepreis)

³(Onlinepreis)

⁴Zerforschung Jan 2022

Kapitel 1 Einleitung

Aufnahme der Testung von geimpften Personen wurde kürzlich mit 2G-Plus für viele Veranstaltungen beschlossen. ⁵

Die Uni Würzburg testete im XXXX 2021 die Produkte mehrerer Hersteller. Das Ergebnis war eine durchschnittliche Sensitivität von 42,6 Prozent. Die Entdeckungsrate ist abhängig von der Viruslast, welche wiederum von Variante, Impfstatus und Individuellem Verlauf abhängt.

Neue Varianten können Anpassungen an Testverfahren sowie bei den Impfstoffen erfordern.

1.2 Zielsetzung

Bestehende Verfahren sollen analysiert und miteinander vergleichen werden. Im Laufe der Arbeit soll hierfür ein Kriterienkatalog entwickelt werden.

Im Laufe der Pandemie wurden von vielen Forschungsgruppen und Laboren Methoden entwickelt, um PCR-Pooling durchzuführen. Die Skalierung ist hier sehr unterschiedlich und es gibt widersprüchliche Aussagen dazu, wie robust das PCR Verfahren gegen Verwässerung der Proben ist. Einige behaupten man könne maximal 5 Personen gemeinsam testen. Andere testen 25-40 gemeinsam.

In Deutschland haben die größte Erfahrung die Blutspendedieste zu haben, da diese seit Jahrzehnten Pooling-Verfahren einsetzen um auf HIV und Hepatitis zu testen (Ärtzeblatt). Diese haben hierfür auch ein Patent angemeldet. Die Methode dieses Patents soll die Basis für den Vergleich anderer Verfahren sein.

Forschungsfragen

Primäres Forschungsziel

Analyse existierender PCR-Pooling-Verfahren.

Überprüfung dieser Methoden auf Effizienz und Robustheit.

Sekundäres Forschungsziel

Erarbeitung einer Referenzimplementierung für das betriebliche Umfeld.

⁵Verordnung / Zeitung MPK

Kapitel 1 Einleitung

Neu Schreiben: Ermittlung von Kostensenkungspotenzialen bei der betrieblichen Testung durch PCR-Poolingverfahren.

lst es möglich, das PCR-Verfahren auf einer Kosten-Präzissions-Basis effizienter durchzuführen als Schnelltests.

Ziele dieser Arbeit

Erklärtes ziel dieser Arbeit ist es, eine alternative zu Antigen-Schnelltest aufzuzeigen. Die Rahmenbedingungen der bisherigen Testung sind somit

- Sehr schnelle Anzeige des Ergebnisses
- Sehr geringe Kosten unter 1€ Materialaufwand pro Stück
- Die Akzeptanz einer hohen Fehlerquote
- Massenscreenings mit sehr geringer Prävalenz

Um sich hiermit messen zu können, ist es notwendig die Prioritäten der PCR-Methode ähnlich festzulegen. Einschränkungen der Präzision sind akzeptabel, um preislich mit den ungenauen Schnelltests zu konkurrieren. Es ist außerdem eine für PCR-Verfahren unüblich niedrige Prävalenz zu erwarten, da normalerweise Verdachtsfälle mit PCR überprüft werden.

Für die Ziele dieser Arbeit ist es somit erforderlich, eine große Poolgröße zu wählen. Diese ermöglicht eine Stärkere Kostenreduzierung. Die Präzision fällt hierbei allerdings unter die Schwelle dessen, was üblicherweise für PCR als akzeptabel betrachtet wird.

Politische Ebene

Politisch ist anzumerken, dass bei den Corona-Schutzmaßnahmen zwischen präzissen PCR-Tests und ungenauen Schnelltests getrennt wird. Die Teilnahme an einigen Veranstaltungen ist somit nur mit PCR-Test zulässig. es kann unterstellt werden, dass der Gesetzgeber hierbei kein oder nur ein schwaches Pooling eingerechnet hat. Sollte durch die gewählte Pooling-Methode die Genauigkeit deutliche reduziert sein, sollten deshalb nur Schnelltest-Bescheinigungen an die negativ getesteten Personen ausgestellt werden.

2 Das PCR Verfahren

2.1 Einordnung des PCR-Verfahrens in der Covid19-Teststrategie

Rapid antigen

Den Schwerpunkt der Teststrategie bietet derzeit der Rapid-Antigen-Schnelltest. Das Verfahren kann schnell und günstig angewandt werden, was aktuell millionenfach täglich durchgeführt wird.¹ Die Testkits können für unter einen Euro pro Testperson gekauft werden² und das Ergebnis liegt innerhalb weniger Minuten vor. Die Probe ist hierbei nach Entnahme nur 60min stabil,³ sodass die Auswertung vor Ort erfolgen muss.

Die Qualität der Schnelltests unterscheidet sich deutlich zwischen den Herstellern. Eine Aufbereitung der Zulassungsstudien ergibt folgende Qualitätsverteilung: ⁴

Die Spezifizität der Schnelltests ist mit deutlich über 99 Prozent sehr hoch, was für eine Massentestung auf Bevölkerungsebene essentiell ist, um nicht massenhaft falsch-positive Ergebnisse zu produzieren.⁵

PCR

Das polymerase chain-reaction-Verfahren (PCR) ist seit vielen Jahren der Standard in der Forensik⁶ und im Nachweis von Viruserkrankungen. Es bietet eine hohe Erkennungsrate (Sensitivität) und ist für geschultes Personal relativ einfach durchführbar. Notwendig sind allerdings spezielle Geräte, weshalb die Tests üblicherweise in Speziallaboren durchgeführt werden. Die eigentliche Testzeit von 4-5 Stunden wird hierdurch um den Transportweg der Proben verlängert. Das nachfolgende Kapitel beschäftigt sich näher mit diesem Verfahren

¹Quelle tägliche Kosten Test

²Kaufpreis Schnelltests

³Quelle Schnelltest nur 60min stabil

⁴Zerforschung / Schnelltesttest

⁵Quelle Bayessches Theorem

⁶Quelle Forensik PCR

TrueNAT and CBNAAT

60min bis ergebnis Sens 80-80 Spez 90-95

Cartridge-Based-NAAT nutzt Einweg-Container für die Proben jedes Patienten, welche in ein vollautomatisches Diagnosegerät gefüllt werden können. Hierdurch ist ein sehr hoher Automatisierungsgrad und die Reduzierung von Fehlern erreichbar. Die Methode begann wenige Jahre vor der Pandemie gegen Tuberkulose entwickelt und von den Herstellern zwischenzeitlich auf den neuen Virustyp angepasst.

7

IgG Antigen Tests

Bei einen IgG-Antigen-Test wird der Antikörperspiegel durch eine Blutentnahme ermittelt. Das Verfahren wird zur Erkennung einer vergangenen Infektion und zur Kontrolle der Impfwirksamkeit eingesetzt. Zur Diagnostik einer akuten Infektion ist es nicht geeignet, weshalb es für diese Arbeit keine Relevanz hat. ⁸

⁷https://factly.in/explainer-what-are-the-different-types-of-tests-being-used-in-india-for-covid-19-detection/https://www.youtube.com/watch?v=FJFXYDP8N7M

⁸Quelle IgG Antikörper / Paper von Lenz-Website

2.2 Funktionsweise des RT-PCR-Verfahrens

Ct werte und stuff

Durch Flüssigkeit werden Proteine und Fette gelöst / nur RNA bleibt übrig 4-5 Stunden bis ergebnis 90 proben können Zeitgleich getestet werden Sensitivität: 60-90 Prozent Spezifizität: 90-95 Prozent

2.3 Möglichkeiten und Grenzen zum Pooling bei PCR

Unklare Ergebnisse und Nachtestung

Durch Pooling besteht - abhängig vom Verfahren - das Risiko, dass die Ergebnisse nicht für alle Testpersonen eindeutig interpretiert werden können. Bei vielen Pooling-Verfahren ergibt sich hierdurch die Notwendigkeit einer Nachtestung. Ob dies der Fall ist und welche Quote der Testpersonen nachuntersucht werden muss, ist abhängig vom gewählten Verfahren.

Durch die erneute Testung geht Zeit verloren, bevor für alle Testpersonen das Ergebnis fest steht. Die Proben müssen zudem ausreichend umfangreich sein, um genug Substanz für mehrere Testungen zu enthalten. Beim Pooling des ersten Durchlaufs muss darauf geachtet werden, die Proben untereinander nicht zu kontaminieren.

Prävalenz

Die Prävalenz ist die Quote, mit welcher eine Krankheit in einer Stichprobe vorkommt. Sie ist ähnlich der derzeit allgemein bekannteren Inzidenz, welche sich auf die Gesamtbevölkerung bezieht. Bei einer anlasslosen, repräsentativen Testung der Bevölkerung kann die Prävalenz eines Tests gleich der Inzidenz sein.

Bei einer anlassbezogenen Testung werden allerdings meist deutlich höhere Prävalenzen beobachtet.

9 10

Verhinderung von Kontamination

Die komplette Matrix sollte vor dem Pooling einmal dupliziert werden. Die für den aktuellen Test notwendigen Proben werden hierbei entnommen und im Duplikat gepoolt. Für diesen Duplikationsschritt gibt es spezialisierte Laborgeräte, sodass dies in einem Arbeitsschritt für alle Proben durchgeführt werden kann.

⁹Leon Gordis S37

¹⁰Beispiel Zeitungsbericht 70 Prozent Prävalenz

Hierfür muss zu beginn genug Probenmaterial bereit stehen und dieses darf nicht bei der Kombination kontaminiert werden. Es empfiehlt sich, die Testmatrix zu beginn einmal zu klonen, um in der Originalmatrix ohne kontamination einzeln nachtesten zu können.

Mögliche Poolgrößen und Erkennungsrate

Um ein zuverlässiges Ergebnis zu liefern, dürfen die Proben nicht zu stark verwässert werden. Hierbei wird empfohlen, maximal 20 Personen in einem Pool zu kombinieren. ¹¹ Die Testgruppe kann je nach Verfahren größer sein, solange kein Pool mehr als 20 Personen enthält. Diese Poolgröße liegt laut Viehweger "comfortable above the detection rate" ¹²

Eine höhere Verdünnung ist zulasten der Erkennungsrate problemlos möglich. Abgewogen werden muss hierbei die Priorisierung zwischen Präzision und Kostenersparnis.

¹¹Vieweger v1

¹²Vieweger v1

3 Analyse und Bewertung der Poolingmethoden

In diesem Kapitel sollten Methoden für das PCR-Pooling beschrieben werden. Begonnen wird mit einem einfachen, eindimensionalen Poolingverfahren als spätere Referenz. Kompliziertere Verfahren werden später erläutert um zu prüfen, ob hierdurch ein Mehrwert beobachtet werden kann. Hierdurch wird sichergestellt, dass das einfachstmögliche Verfahren angewandt wird. Umfangreiche Methoden werden nur weiter verfolgt, wenn sie das einfache Referenzverfahren übertreffen.

3.1 Minipool

Das einfachste Verfahren für Pooling ist, eine eindimensionale Reihe von Proben zu verwenden und diese vor der PCR-Analyse zu kombinieren. Die Matrix lässt sich hierbei als 1xN beschreiben. Die Proben werden gemeinsam getestet.

• Negatives Poolergebnis:

Ein negatives Gesamtergebnis bedeutet, dass jede Einzelprobe negativ war.

Es wurde somit durch einen Test festgestellt, dass alle Personen im Pool negativ sind.

Die Effizienz lässt sich somit beschreiben als $\frac{AnzahlTestpersonen(N)}{AnzahlTests(1)}$.

• Positives Poolergebnis:

Ein positives Gesamtergebnis bedeutet, dass mindestens eine Einzelprobe positiv war.

In diesem Fall müssen weitere Tests durcheführt werden, um die positiven Einzelpersonen zu ermitteln. Die Tests erfolgen hierbei nacheinander und sind statistisch unabhängig voneinander.

Die Nachtestung kann durch mehrstufiges Pooling optimiert werden. Für das einfachste Basisverfahren wird allerdings angenommen, dass nach einem Positivergebnis

das Pooling beendet wird. Die Personen innerhalb des positiven Pools werden einzeln nachgetestet.

Im Falle einer Nachtestung wird somit ein initialer Test für den Pool benötigt, welcher positiv ausfällt. Danach werden nochmal Tests für jede Einzelperson benötigt.

Die Effizienz lässt sich somit beschreiben als $\frac{AnzahlTestpersonen(N)}{1Pooltest+NEinzeltests}$

Die Testung erfolgt zweistufig.

Der Erwartungswert für die benötigte Anzahl der Tests lässt sich beschreiben als:

Wenn(Pool Positiv) Dann -> N+1 Andernfalls -> 1

Der erwartete Testbedarf hängt ab von der Wahrscheinlichkeit, dass der Pool positiv ist. Dieser lässt sich durch die prozentuale Angabe der Testprävalent ermitteln.

Hieraus ergibt sich:

 $P(PoolPositiv) = (min(1; Poolsize \cdot Pravalenz))$

Erwartungswert Personen pro Test = $\frac{Poolsize}{P(PoolPositiv) \cdot (Poolsize+1)) + (1 - P(PoolPositiv))}$

Der Erwartungswert ist also abhängig von zwei Variablen: Der Prävalenz, welche zur Positivwahrscheinlichkeit des Pools führt, und der Testgröße, welche frei gewählt werden kann.

Für jeden gegebene Testgröße lässt sich der Erwartungswert als abhängige Variable der Prävalenz darstellen.

Unterschiedliche Testgrößen bilden hierbei unterschiedliche Kurvenverläufe. Allerdings muss nicht für den gesamten Prävalenzspektrum derselbe Test zum einsatz kommen.

Für jede Prävalenz kann somit errechnet werden, welche Testgröße den optimalen Erwartungswert ergibt.

Einen Effizienzwechsel findet man immer an den Schnittpunkten der Effizienzkurven.

Effizienzkurve Minipool

Für das Minipool Verfahren ergibt sich insgesamt die folgende Effizienzkurve.

Eine vollständige gegenüberstellung in tabellarischer Form ist im Anhang dargestellt.

Als logarithmische Tabelle bedeutet dies:

Prävalenz (von 100.000)	Erwartungswert	
1	sdf	
10	sdf	
100	asdad	
1.000	sdfsd	
10.000	dfg	
100.000	dfg	

3.2 Stefan-Pool

Bei dieser Poolingmethode handelt es sich um einen zweidimensionalen Pool, mit dem Ziel, den Bedarf einer Nachtestung bei einzelnen Positivfällen zu minimieren. Die Testpersonen werden in einer AxB-Matrix angeordnet. Die Proben werden dann für jede Spalte und jede Reihe gepoolt. Allgemein formuliert lässt sich sagen: Testbedarf pro Person = $\frac{A+B}{A\cdot B}$

Die Testgruppe lässt sich geometrisch als Rechteck beschreiben. Die Kanten A und B ergeben in Summe die benötigte Testanzahl. Die Fläche beschreibt die mögliche Anzahl der zu testenden Personen. Aus der Geometrie ist bekannt, 1 dass das Verhältnis von Fläche zu Kantenlänge bei einem Quadrat optimal ist. Bei dieser Methode kommen somit nur Quardate als effizient infrage. Hierdurch lässt sich festlegen, dass A=B.

Für eine Testgruppe von 25 Personen, welche in einer 5x5 Matrix angeordnet sind, werden somit 5+5 Tests benötigt. Die Effizienz läge bei 2,5 Personen pro Test. Vergleichen mit dem Minipool-Verfahren klingt das zunächst nicht nach sehr viel. Allerdings ist dieses Verfahren darauf optimiert, robust gegen einzelne Positivfälle zu sein. Die Hypothese wäre somit, dass es bei hohen Prävalenzen einen Vorteil bietet, da nicht alle Testpersonen erneut getestet werden müssen.

Erwartungswert Personen pro Test =

¹Geometrie Quadrat

4 Implementierung in der betrieblichen Teststrategie

4.1 Ort der Testdurchführung

Pooling im Unternehmen

Das Pooling wird bei diesem Ansatz von Mitarbeitern des Unternehmens durchgeführt. Das Labor muss nicht einmal zwangsläufig wissen, dass Pooling durchgeführt wird. ¹

Keine Verarbeitung der Proben im Unternehmen aufgrund

• Unsachgemäße Handhabung

Risiko der Ansteckung

Risiko von fehlerhafter Verarbeitung

Risiko der Kontamination der Probe

Effizenz

Geeigente Geräte im Labor

Höhere Geschwindigkeit

Routine in der Anwendung

Von einer Probenverarbeitung im Unternehmen wird deshalb abgeraten.

¹Abhängig vom Grad der Verwässerung sollte diese Information mitgeteilt werden, um die Anzahl der Zyklen zu erhöhen.

Pooling im Labor

Beim Pooling im Labor werden im Unternehmen nur die Proben entnommen, beschriftet und an das Labor gesendet. Hierdurch wird Arbeitsaufwand an das Labor verlagert und es wird ein Labor benötigt, welches das Pooling anbietet.

Der deutliche Vorteil ist hierbei, dass das Pooling von Medizinisch geschultem Personal mit angemessenen Werkzeugen durchgeführt wird. Hierdurch ist von einer geringeren Fehlerquote, höherer Effizienz und einer Risikoreduktion im Umgang mit den möglicherweise kontaminierten Proben auszugehen. Eine Durchführung des Poolings im Labor wird deshalb nach Möglichkeit empfohlen.

Auf der Evaluierung der Poolingmethoden wurden mathematisch sinnvolle Verfahren für die jeweiligen Inzidenzstufen ermittelt. Diese sollen nun um weitere Parameter erweitert werden, um ihre Tauglichkeit im betrieblichen Umfeld zu ermitteln.

4.2 Skalierung im betrieblichen Umfeld

Skalierung im Betrieblichen Umfeld funktioniert grundsätzlich anders als in der Informatik. Während große Speicherblöcke den Paritätsbedarf senken, ergibt sich durch die Vergrößerung einer Testgruppe ein deutlicher Mehraufwand an Logistik und Organisation. Diese Aspekte sollen im vorliegenden Kapitel Beachtung finden.

Grundsätzlich gibt es zwei Ansätze, das Pooling zu organisieren, welche nachfolgend kurz beschrieben werden.

Organisation im Unternehmen

Mitarbeiter bekommen persistenten Voucher-Barcode auf dem Alle Daten und auch Abteilung / Kontaktpersonen hinterlegt sind Ggf. Kontaktpersonen über Plattform oder auf Zettel mit Nr selbst angeben.

Tests werden an MA verteilt oder zentral im Gebäude entnommen. Die Teströhren bekommen einen Barcode und gehen unverändert ins Labor.

Die Probenentnahme muss von einer geschulten Person beaufsichtigt werden, um Fehlanwendung und Missbrauch zu verhindert. Hierfür gibt es in vielen Betrieben bereits Personal, welches nach ² für die Beaufsichtigung der 3G-Nachweise zugelassen ist.

Die Teströhrchen müssen bereits im Unternehmen beschriftet werden, um die Ergebnisse später zuzuordnen. Hierbei bietet es sich an, eine nicht datenschutzrelevante Liste mit Personalnummern zu verwenden. Ggf. kann in Büros die Telefondurchwahl als Testnummer genutzt werden.

Müll durch Einmaltests beachten. ggf Glasröhrchen für Proben und abkochen.

² §XXXX		

5 Ergebnis

5.1 Erkenntnisse der Arbeit

Zusammenfassend kann aus der Forschungsarbeit abgeleitet werden:

- Pooling Das PCR-Verfahren kann genutzt werden, um mehrere Proben gemeinsam zu testen.¹
- Einfache Poolingverfahren Bereit durch einfache Poolingverfahren mit Nachtestung im Falle eines positiven Pools kann eine deutliche Effizienzsteigerung gegenüber der PCR-Einzeltestung erreicht werden.²
- Mehrdimensionale Poolingverfahren Durch komplexere Analysen und mehrdimensionale Testgruppen kann eine / keine / Im Bereich von ... eine signifikante Effizienzsteigerung gegenüber einfachen Poolingverfahren erreicht werden.³
- Potenzial Das Effizienzsteigerungspotenzial durch Pooling hängt direkt von der Prävalenz der Testgruppe ab. Das Potenzial ist bei geringer Prävalenz besonders hoch.⁴
- **Testort** Vor Ort im Unternehmen sollte nur die Probenentnahme durchgeführt werden. Hintergrund hier sind die effizienteren Methoden und das geschulte Personal, welchen in Laboren zur Verfügung steht. ⁵
- Erkenntnis
- Erkenntnis

 $^{^{1}}$ S. XX

 $^{^2}$ S. XX

³S. XX - TODO

⁴S. XX

⁵S. XX

5.2 Fazit zur Forschungsfrage