

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 61-051878
(43)Date of publication of application : 14.03.1986

(51)Int.Cl.

H01L 29/78
G02F 1/133
G09F 9/30
H01L 27/12

(21)Application number : 59-173848
(22)Date of filing : 21.08.1984

(71)Applicant : SEIKO INSTR & ELECTRONICS LTD
(72)Inventor : SHINPO MASAFUMI

(54) MANUFACTURE OF THIN-FILM TRANSISTOR

(57)Abstract:

PURPOSE: To obtain an excellent contacting section by continuously depositing a gate insulating film, a high-resistance semiconductor film, a low-resistance semiconductor film and a conductive film on the low-resistance semiconductor film as required without being exposed in an oxidizing atmosphere such as atmospheric air and selectively forming source-drain electrodes.

CONSTITUTION: A gate electrode 2 is shaped selectively onto an insulator substrate 1. A gate insulating film 3, a high-resistance a-Si:H film 4, a low-resistance a-Si:H film 20 and a conductive film 30 consisting of a metal are formed continuously without being exposed in an oxidizing atmosphere such as atmospheric air. A nitride film (Si-NX) as the gate insulating film 3 from a mixed gas of SiH₄ and NH₃, the high-resistance a-Si:H film 4 by using SiH₄ and the N₂ a-Si:H film 20 from a mixed gas of PH₃ and SiH₄ are deposited continuously without breaking a vacuum in the same chamber in a device such as a plasma CVD device. The conductive film 30, the low-resistance a-Si film 20 and the high-resistance a-Si film 4 are left insularly through one-time mask process. Drain-source electrode wirings 15, 16 are formed selectively, and the exposed conductive film 30 and the low-resistance a-Si film 20 are removed selectively while using the electrode wirings 15, 16 as at least one parts of masks, thus shaping a drain electrode 5 and a source electrode 6.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

⑨ 日本国特許庁 (JP) ⑩ 特許出願公開
 ⑪ 公開特許公報 (A) 昭61-51878

⑤Int.Cl. ⁴	識別記号	府内整理番号	④公開 昭和61年(1986)3月14日
H 01 L 29/78	118	8422-5F	
G 02 F 1/133		D-8205-2H	
G 09 F 9/30		6615-5C	
H 01 L 27/12		7514-5F	審査請求 未請求 発明の数 1 (全4頁)

⑤発明の名称 薄膜トランジスタの製造方法

②特 願 昭59-173848
 ②出 願 昭59(1984)8月21日

⑦発明者 新保 雅文 東京都江東区亀戸6丁目31番1号 セイコー電子工業株式会社内

⑦出願人 セイコー電子工業株式会社 東京都江東区亀戸6丁目31番1号

⑦代理人 弁理士 最上 務

明細書

発明の名称

薄膜トランジスタの製造方法

特許請求の範囲

(1) 装置物基板上にゲート電極を選択的に形成する第1工程と、ゲート電極及び前記基板上にゲート絶縁膜、高抵抗半導体薄膜、少なくとも低抵抗半導体薄膜を含む導電膜を酸化性雰囲気にさらすことなく選択的に堆積する第2工程と、少なくとも前記ゲート電極上に前記高抵抗半導体薄膜と前記導電膜を絶縁同一形状に島状領域として残す第3工程と、前記島状領域上の一部に接し、かつ互いに離間するソース及びドレイン電極配線を選択的に形成する第4工程と、前記島状領域上の露出する前記導電膜を前記ソース及びドレイン電極配線を少なくともマスクの一部として選択的に除去する第5工程と、表面保護膜を堆積する第6工程と、前記表面保護膜を選択的に除去し、前記ソース及びドレイン電極配線、前記ゲート電極のそれぞれ

の一部を露出する第7工程とから成る薄膜トランジスタの製造方法。

(2) 前記第2工程において前記導電膜が、低抵抗半導体薄膜とその上の高融点金属膜または透明導電膜の少なくとも2層から成り、両者が酸化性雰囲気にさらすことなく選択的に堆積されることを特徴とする特許請求の範囲第1項記載の薄膜トランジスタの製造方法。

(3) 前記第6工程において表面保護膜の一部に遮光膜を形成することを特徴とする特許請求の範囲第1項または第2項記載の薄膜トランジスタ製造方法。

発明の詳細を説明

(産業上の利用分野)

本発明は、性能の改善された薄膜トランジスタの製造方法に関するものである。

(従来の技術)

非晶質シリコン (a-Si) や多結晶シリコン (p-Si) 等の半導体薄膜を用いた薄膜トランジスタ

(TFT)は、液晶表示装置などに応用されつつある。TFTの構造として種々あるが、第2図(a)～(d)にはその代表例である、いわゆる逆スタガーニュートンの構造TFTの従来製造工程例をa-Si膜を用いた例で説明する。第2図(a)には、ガラス等の絶縁物基板1上にゲート電極2を選択的に形成した断面を示す。第2図(b)では、ゲート超薄膜3(例えば塗化膜)，a-Si膜4を連続的に堆積し、a-Si膜4を選択エッチする。第2図(c)では、フィールド絶縁膜7(例えばSiO₂)を堆積後、ソース・ドレインコンタクトを開孔した状態を示す。図示していないが、このとき同時にゲートコンタクトも開孔する。第2図(d)では、例えばn⁺a-Si膜25, 26とAl等の金属膜15, 16を堆積し、選択エッチによりドレイン・ソース電極5, 6を形成して完成する。必要に応じ、さらに表面保護膜や遮光膜を形成する。

(発明が解決しようとする問題点)

第2図(a)～(d)の従来製造方法においては、n⁺a-Si膜25, 26の堆積前にマスク工程を経るために

気にさらすことなく連続的に堆積し、その後ソース・ドレイン電極を選択的に形成する工程をとることにより、上記の問題点を解決している。

(実施例)

本発明を図面を用い以下に詳述する。第1図(a)～(e)は本発明によるTFTの製造工程に沿った断面図であり、a-Si TFTについて説明する。第1図(a)は、ガラス、石英、セラミックス、絶縁物コートされたSiや金属などの絶縁物基板1上に、ゲート電極2を選択的に形成した断面である。ゲート電極2としてはCr, Mo, W, Al, Ta等の金属やそれらの塗化物、不純物添加されたp-Si等も用いられる。第1図(b)は、ゲート絶縁膜3、高抵抗a-Si:H膜4、低抵抗a-Si:H膜20、金属等の導電膜30を大気などの酸化性雰囲気にさらすことなく連続的に形成した断面である。例えば、プラズマCVD装置において同一チャンバー内で真空をやぶることなく、SiH₄とNH₃の混合ガスからゲート絶縁膜3として塗化膜(SiNx)、SiH₄を用いて高抵抗a-Si:H膜4、PH₃とSiH₄の混合ガスからn⁺a-Si

a-Si膜4の露出した表面には自然酸化膜を生じてしまう。H₂水溶液等で除去できるが、やはり大気にさらすため表面には酸素やその化合物がつきやすいし、他の不純物も付着しやすい。そのため、このTFTにはソース・ドレインとチャンネル間に抵抗を有してしまい、本来の特性が得られなかつた。同様なことは、n⁺a-Si膜25, 26と金属膜15, 16の界面についてもいえる。

以上の様に、従来の製造方法では、ソース・ドレイン間とチャンネル間に抵抗が入ってしまい、本来のオン抵抗、周波数特性が得られなかつた。さらに、マスク工程数が5～6回と多いことも問題であった。

本発明は、上記のコンタクト部を改良する製造方法を提供するもので、製造工程も簡単なものである。

(問題点を解決するための手段)

本発明によるTFTの製造方法では、ゲート絶縁膜、高抵抗半導体膜、低抵抗半導体膜、さらに必要に応じその上の導電膜を大気等の酸化性雰囲

：其膜20を連続的に堆積することができる。または、インライン型のチャンバーを有したプラズマCVD装置を用い、各チャンバーで上記の膜を連続的に形成できるし、スペクタまたは蒸着室も付加すれば導電膜30も大気に出すことなく、連続的に堆積できる。ゲート超薄膜8としてSiNxの他にSiO₂や、それらの多層膜も用いることができる。高抵抗a-Si膜4としてSiH₄を用いたa-Si:Hまたはa-Si:H:Fや、微粒化a-Si膜も適用できる。低抵抗a-Si膜20も同様であり、他の不純物も添加できる。導電膜30としては、Cr, W, Mo, Ta等の高融点金属やその塗化物、またはITOやSnO₂などの透明導電膜などの安定な導電膜が望ましい。特に、透明導電膜の場合には、本TFTをアクティブラチリクス液晶表示装置に適用した場合に、工程が簡単化する利点がある。第1図(e)には、1回のマスク工程で上記の導電膜30、低抵抗a-Si膜20、高抵抗a-Si膜4を島状に残した状態を示す。この工程は既知のウエットエッチ、プラズマエッチ、反応性イオンエッチ、イオンエッチ等が用いられる。

第1図(a)では、ドレイン・ソース電極配線15, 16を選択的に設け、この電極配線15, 16を少なく共マスクの一部として露出する導電膜30, 低抵抗a-Si膜20を選択除去し、ドレイン電極5及びソース電極6を形成した断面を示す。ドレイン・ソース電極配線15, 16の形成にあたっては、その前に導電膜30の表面を逆スペッタ、イオンエッチ等でクリーニングすることが有効である。マスクのチャンネル部はこの場合導電膜30で被覆されているため、クリーニングで損傷を受けにくい。ドレインやソース電極配線15, 16は、導電膜30と同じ材料やムダ等が用いられる。また、低抵抗a-Si膜20の選択エッチ時に、オーバーエッチして高抵抗a-Si膜4まで達してもかまわない。第1図(e)では表面保護膜8を堆積し、ドレインやソース電極配線15, 16, ゲート電極2の一部(図示せず)を露出した状態を示す。表面保護膜8としてはSiO₂, Si₃N₄等のCVD膜やレジスト、ポリイミド樹脂のコーティングが用いられる。

遮光を必要とする場合には、表面保護膜8として

8を堆積後選択エッチし、画素電極とドレイン電極配線15及びゲート電極2, 2'の一部(図示せず)を露出した完成断面図を示す。この例では、低抵抗a-Si膜20上に導電膜を形成していないが、第1図の例と同様導電膜例えばITOを形成することができる。

〔発明の効果〕

上述の様に、本発明によれば、高抵抗a-Si膜4と低抵抗a-Si膜20の界面には、酸化物等が形成されないので良好な接合を形成できる。低抵抗a-Si膜20と導電膜30の界面についても同様である。また、低抵抗a-Si膜20または導電膜30とドレイン・ソース電極配線15, 16との界面は、高抵抗a-Si膜に損傷を与えるにクリーニングできるので、良好なコンタクトが得られると共にTFT特性を犠牲にすることはない。

以上により、良好なコンタクトを有したTFTが4回のマスク工程で形成できる。特にa-Si TFTの様に、低温プロセスを必要とするものにおいては特に本発明は有効である。その結果、チヤン

前記绝缘膜と金属膜や高抵抗半導体膜等との多層膜が用いることができる。特に、a-Si_xO_{1-x}を遮光膜として用いる場合には、特に绝缘膜も不要とすることもできる。

第3図(a)～(d)は、本発明を液晶表示装置用TFT基板に適用した例であり、一単位画素の断面図を示す。第3図(e)はガラス等の透明绝缘基板1上に、行方向にのびるゲート電極2と並行のゲート電極2'を形成したものである。その後、ゲート绝缘膜3, 高抵抗a-Si膜4, 低抵抗a-Si膜20を成膜し、TFT形成領域に低抵抗a-Si膜20と高抵抗a-Si膜4を島状領域に残した状態が、第3図(f)である。

第3図(f)においては、ITO等の透明導電膜を堆積後、ドレイン電極配線15と画素電極もかねたソース電極配線16を選択形成し、露出する低抵抗a-Si膜20を除去した断面を示す。この例では、画素電極(ソース電極配線)16と並行のゲート電極2'及びゲート绝缘膜3で電荷保持容量を形成している。第3図(f)では、遮光をも兼ねた表面保護膜

ネル直列抵抗の小さいTFTが得られるので、駆動能力や周波数特性が改善される。主にプラズマCVDを用いたa-Si TFTを例に述べたが、光CVDや分子線やイオンビーム堆積法による半導体薄膜を用いたn-Si, p-Si TFT, SiGe等の半導体薄膜を用いたTFTに本発明は適用され、工業的意義は非常に高い。

図面の簡単な説明

第1図(a)～(e)は、本発明によるTFTの製造工程に沿った断面図、第2図(a)～(d)は従来のTFTの製造工程断面図、第3図(a)～(f)は本発明を液晶表示用基板に適用した製造工程断面図である。

1…基板 2…ゲート電極 3…ゲート绝缘膜
4…高抵抗a-Si膜 20, 25, 26…低抵抗a-Si膜
30, 35, 36…導電膜 15…ドレイン電極配線
16…ソース電極配線。

以上

出願人 セイコー電子工業株式会社

代理人 弁理士 篠 上 勝

第2図 (a)

第2図 (c)

第2図 (d)

第3図 (a)

第3図 (b)

第3図 (c)

第3図 (d)

