Aufgabe 1.

- a) Für alle rationalen Zahlen x gibt es mindestens eine natürliche Zahl y für die gilt, dass $y \le x$.
- b) Für alle reellen Zahlen x gilt, dass x nicht auch eine rationale Zahl ist wenn $x^2 = 2$.
- c) Für alle Kombinationen aus einer rationalen Zahl x und einer ganzen Zahl y gilt, dass es für x < y mindestens eine rationale Zahl z gibt, für die gilt, dass x < z und z < y.
- d) $\exists x \in \mathbb{R} : x^2 = 2 \land \exists y \in \mathbb{R} : y^2 = 2 \land x \neq y$

Aufgabe 2.

- a) Für ein gewisses x ist p(x) wahr und q(x) falsch. Die linke Seite der Äquivalenz ist falsch, die rechte wahr.
- b) Für jedes x gilt entweder p(x) oder q(x). Die linke Seite der Äquivalenz ist falsch, die rechte wahr.
- c) Für jedes x gibt es genau ein y für welches p(x,y) gilt. Die linke Seite der Äquivalenz ist wahr, die rechte falsch.

Aufgabe 3. Zu zeigen ist, dass $A \cap B$ eine Untermenge von $A \cup B$ ist. Für die Menge $A \cap B$ gilt $\forall x : x \in A \land x \in B$. Für die Menge $A \cup B$ gilt $\forall x : x \in A \lor x \in B$. Um zu zeigen, dass $A \subseteq B$ sei darzulegen, dass $\forall x \in A : x \in B$.

Man betrachte ein beliebiges x mit $x \in A$ und $x \in B$. Es gilt nun $x \in (A \cap B)$. Für $x \in (A \cup B)$ muss nur gelten, dass $x \in A$ oder $x \in B$. Für das gewählte x trifft sogar beides zu; es gilt also auch $x \in (A \cup B)$.

Es wurde gezeigt, dass alle Elemente von $A\cap B$ auch Element von $A\cup B$ sind. Somit gilt $A\cap B\subseteq A\cup B$