Binary Search in 2D Arrays

* Searching in Matrices :-

Lets take a 2D Array (or Matrix)

		0		2	
	0	18	9	-12	1
rous		36	-4	91	
	2	44	33	16	1

Johns target = 91

- unsorted

NOTE: We have already learned "HOW TO TRAVERSE
IN 2D ARRAYS".

>>> Initially: row=0, col=0

check: 9s, 18 = 91 -> [NO] -> col++.

Now, 800 = 0, col=1

check: 98,9 = 91 =) [No] =) col++

Now, row=0, col=2.

check: 98,12 = 91 - [NO] => doop over

Now, you=1, col=0

check: 98,36 = 91 =) [NO] =) col++

row=1, col=1000

check: 98, -4 = 91 => [No] => col++

80W=1, col=2

check: 98, 91 = 91 = Yes => Ans found

So, Ans = [1,2]

* Worst case Time Complexity

O(N2) -> if the matrix is of size TVXN

O(NXM) - if the matrix is of size NXM (Here, N=no of rows, M=no of columns)

* Searching in a matrix which is sorted in row-wise and column-wise manner:

Let's take a matrix in which every row and every column is sorted:

		-				
	0	10	20	30	40	1
rons	1	15	25	35	45	1
	2	28	29	37	49	1
	3	33	34	38	50	4
					The same of	

columns

target = 37

- sorted Matrix (row & column-wise)

>>> There are 3 cases

case 1: if element = = target = ans found

case 2: if element < target = > row++

case 3: if element > target => col --

	0	1	2	3	
lower o	10	20	Charles and the	40	H bound solumn
bound,	15	25	35	45	CHIS last column)
2	28	29	37	49	OKE THE WAR
3	33	34	38	50	Crest of the Land
91196 1999	BULLIN		S. C. Salvari	K RITE	

[target = 37]

>>> Start checking from last column:

• Since, [40 > 37] => all the elements in this (ast column is greater than target element (i.e, 37) Because, the matrix is sorted row & column-wise.

=> So, [col--] (ggnore the last column)

Alabay is -	0	11	2
Now, our Matrix is -	(10)	20	100
LB',	15	25	35
Part of the state	28	29	37
3	33 7	34	38

>>> checking in oth row:

Since, 30 < 37 => Means, all the left-hand Side of the 30 im row 0 is 8 maller than 30 (as matrix is sorted), So, obviously that elements are smaller than target element (ie 37).

So, row++ (9 gnore 0th row)

> Now, our matrix is:

A District Spring of the second

Sec. 10			
1	15	25	35
	28	29	37
1	33	34	38

>>> checking in 1st row :-

• Since | 35 < 37 => All the left-side elements of 35 is smaller than 35 (As matrix is sorted) means -> That elements are also smaller than target element (i.e.37)

=> So, [row++] (Ignore 1st row)

-> Now, our matrix becomes:

128	29	37
33	34	38

>>> checking in 2nd row:

Since, 37 = = target] > "Ans found at [2,2]

* NOTE: we keep running the loop till row is less than dength of matrix and column is greater, equal to zero(0).

* Time complexity = O(N)

* Space complexity = 0(1) //constant

Remember: In these type of Matrices problem, try to reduce the search space. i.e, eleminating the rows and columns.

* Searching in a Sorted Matrix:

Let's take a sorted matrix -

	ð	Y	2	3
1	1	2	3	4
1	5	6	7	8
	9	10	11	12
	13	.14.	15	16

Lowens

* Approach Take middle pucolumn and perform binary search -sorted matrix Themwe have 3 cares

· There are 3 cases:-

rows

case 1: If element == target 11 ans have

. If element > target I / ignore vous after it (below vous)

case 3: If element < target Il ignore above rows

>>> Let's take | target = 3

 $mid(co) = \frac{0+3}{2} = 1$

Now, find mid of that columns (1.e, Perform binary search on mid column)

$$mid(cols) = \frac{0+3}{2} = 1$$
1.e, element 6

		mid(col)				
	•	· , v	2	3		
0	111	2	3	4		
-	5	0	7	8	1	
2	9	10	17	12		
3	13	14	15	16		

* Time (emplexity = O(log(N) + log(M))

search across rows search across columns