High Input Impedance . . . JFET-Input Stage

Internal Frequency Compensation (Except

High Slew Rate . . . 13 V/μs Typ

TL080, TL080A) Latch-Up-Free Operation

D2297, FEBRUARY 1977-REVISED NOVEMBER 1988

24 DEVICES COVER MILITARY, INDUSTRIAL AND COMMERCIAL TEMPERATURE RANGES

- Low-Power Consumption
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- **Output Short-Circuit Protection**
- Low Total Harmonic Distortion . . . 0.003% Typ

Includes Vcc+ TL081, TL081A, TL081B D, JG, OR P PACKAGE (TOP VIEW)

TL082, TL082A, TL082B D, JG, OR P PACKAGE

Common-Mode Input Voltage Range

TL080, TL080A D, JG, OR P PACKAGE

IN - F

VCC - []4

IN + □3

2

(TOP VIEW) N1/COMP 1 U 8 COMP 7

Dvcc+ 6 OUT 5 OFFSET N2

TL081M . . . FK CHIP CARRIER PACKAGE

(TOP VIEW)

TL083, TL083A D, J, OR N PACKAGE (TOP VIEW)

Pins 9 and 13 are internally interconnected

TL082M . . . FK CHIP CHARRIER PACKAGE

(TOP VIEW)

TL084, TL084A, TL084B D, J, OR N PACKAGE

(TOP VIEW)

NC-No internal connection

TL081

TL085

NC-No internal connection

symbols

description

The TLO8 _ JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates wellmatched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. Offset adjustment and external compensation options are available within the TL08_ family.

Device types with an "M" suffix are characterized for operation over the full military temperature range of -55°C to 125°C, those with an "I" suffix are characterized for operation from -40°C to 85°C, and those with a "C" suffix are characterized for operation from 0°C to 70°C.

AVAILABLE OPTIONS

	VIO MAX	PACKAGE										
TA	AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP	CERAMIC DIP (JG)	PLASTIC DIP (N)	PLASTIC DIP (P)					
	15 mV	TL080CD			TL080CJG		TL080CP					
	6 mV	TL080ACD			TL080ACJG		TL080ACP					
	15 mV	TL081CD			TL081CJG		TL081CP					
	6 mV	TL081ACD			TL081ACJG		TL081ACP					
1	3 mV	TL081BCD			TL081BCJG		TL081BCP					
0°C	15 mV	TL082CD			TL082CJG		TL082CP					
то	6 mV	TL082ACD			TL082ACJG		TL082ACP					
70°C	3 mV	TL082BCD			TL082BCJG		TL082BCP					
70°C	15 mV	TL083CD		TL083CJ		TL083CN						
	6 mV	TL083ACD		TL083ACJ		TL083ACN						
	15 mV	TL084CD		TL084CJ	-	TL084CN						
1	6 mV	TL084ACD		TL084ACJ		TL084ACN						
	3 mV	TL084BCD		TL084BCJ		TL084BCN						
	15 mV					TL085CN						
	6 mV	TL080ID			TL080IJG		TL080IP					
-40°C	6 mV	TL081ID			TL081IJG		TL081IP					
то	6 mV	TL082ID			TL082IJG		TL082IP					
85°C	6 mV	TL083ID		TL083IJ		TL083IN						
	6 mV	TL084ID		TL084IJ		TL084IN						
	6 mV				TL080MJG							
-55°C	6 mV		TL081MFK		TL081MJG							
то	6 mV		TL082MFK		TL082MJG							
125°C	6 mV		TL083MFK	TL083MJ								
	9 mV		TL084MFK	TL084MJ								

The D package is available taped and reeled. Add "R" suffix to device type (e.g., TL080CDR).

VCC - +

NULL

(N1)

schematic (each amplifier) VCC+ NONINVERTING INPUT IN+ INVERTING R4 0 128 Ω INPUT IN -OUTPUT **64** Ω OFFSET NULL/COMP (N1) TL080 ONLY OFFSET NULL (N2) -COMP 1080 1080 Ω Ω

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

OFFSET

NULL

(N2)

TL081 AND TL083 ONLY

C1 - 18 pF on TL081, TL082, TL083, TL084, AND TL095 ONLY

(INCLUDING THEIR SUFFIX VERSIONS).

COMPONENT VALUES SHOWN ARE NOMINAL.

		TL08_M	TL08_I	TL08_C TL08_AC TL08_BC	UNIT		
Supply voltage, V _{CC+} (see Note 1)		18	18	18	٧		
Supply voltage, V _{CC} – (see Note 1)	- 18	- 18	- 18	٧			
Differential input voltage (see Note 2)	±30	±30	±30	٧			
Input voltage (see Notes 1 and 3)	±15	±15	±15	V			
Duration of output short circuit (see Note 4)	unlimited	unlimited	unlimited				
Continuous total dissipation		See Dissipation Rating Table					
Operating free-air temperature range		-55 to 125	-40 to 85	0 to 70	°C		
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C		
Case temperature for 60 seconds	FK package	260			°C		
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J or JG package	300	300	300	°C		
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D, N, or P package		260	260	°C		

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
- The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that
 the dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING	DERATE	TA = 70°C	TA = 85°C	TA = 125°C
PACKAGE	POWER RATING	FACTOR	ABOVE TA	POWER RATING	POWER RATING	POWER RATING
D (8 Pin)	680 mW	5.8 mW/°C	32 °C	464 mW	377 mW	N/A
D (14 Pin)	680 mW	7.6 mW/°C	60°C	608 mW	494 mW	N/A
FK	680 mW	11.0 mW/°C	88 °C	680 mW	680 mW	275 mW
J (TL08_M)	680 mW	11.0 mW/°C	88 °C	680 mW	680 mW	275 mW
J (all others)	680 mW	8.2 mW/°C	67°C	656 mW	533 mW	N/A
JG (TL08_M)	680 mW	8.4 mW/°C	69°C	672 mW	546 mW	210 mW
JG (all others)	680 mW	6.6 mW/°C	47°C	528 mW	429 mW	N/A
N	680 mW	9.2 mW/°C	76°C	680 mW	598 mW	N/A
Р	680 mW	8.0 mW/°C	65 °C	640 mW	520 mW	N/A

electrical characteristics, VCC ± = ±15 V (unless otherwise noted)

PARAMETER		TEST COM	IDITIONS†	TL080M, TL081M TL082M, TL083M				TL084M		UNIT
				MiN	TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage	V ₀ = 0,	$T_A = 25$ °C $T_A = -55$ °C to 125°C		3	6		3	9	mV
	_	R _S = 50 Ω	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$			9			15	ļ
∝VIO	Temperature coefficient of input offset voltage	$V_O = 0$, $T_A = -55$ °C to 125 °C	$R_S = 50 \Omega$,		18			18		μV/°C
1	Input offset current [‡]	V _O = 0	T _A ≈ 25°C		5	100		5	100	D nA D pA D nA V
lio	input onset current	v ₀ = 0	T _A = 125°C			20			20	nA
l _{iB}	Input bias current [‡]	V _O = 0	$T_A = 25$ °C $T_A = 125$ °C		30	200		30	200	pΑ
.IR	mpar blas carrent		T _A = 125°C			50			50	nA
V _{ICR}	Common-mode				-12			- 12		
	input voltage range	$T_A = 25 ^{\circ}C$		±11	to		±11	to		\ \
	input voltage range				15			15		<u> </u>
	Maximum peak	T _A = 25°C,	$R_L = 10 \text{ k}\Omega$	±12	±13.5		±12	±13.5		
VOM	output voltage swing	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$	R _L ≥ 10 kΩ	±12			±12			
	output voltage swing	1A = -55 C to 125 C	$R_L \ge 2 k\Omega$	±10	±12		±10	±12		
	Large-signal differential		$R_L \geq 2 k\Omega$,	25	200		25	200		
AVD	voltage amplification	$V_0 = \pm 10 \text{ V},$	$R_L \ge 2 k\Omega$,	15			15			V/mV
		$T_A = -55$ °C to 125°C		15			15			
В1	Unity-gain bandwidth	$T_A = 25$ °C			3			3		MHz
ri	Input resistance	T _A = 25°C			1012			1012		Ω
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min,	•	80	86		80	86		dB
ksvr	Supply voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$R_S = 50 \Omega$, $V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V}$, $R_S = 50 \Omega$,		80	86		80	86		dB
lcc	Supply current (per amplifier)	No load, T _A = 25°C	V _O = 0,		1.4	2.8		1.4	2.8	mA
V _{0.1} /V _{0.2}	Crosstalk attenuation	A _{VD} = 100,	T _A = 25°C		120			120		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.

[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 18. Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as is possible.

electrical characteristics, $VCC \pm = \pm 15 \text{ V}$ (unless otherwise noted)

PARAMETER					TL080I TL081I TL082I			TL080C TL081C TL082C			TL080A0 TL081A0 TL082A0	:		TL081BC FL082BC FL084BC		
		TEST CO	NDITIONS [†]		TL083I TL084I			TL083C TL084C TL085C			TL083AC					UNIT
<u> </u>				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
V ₁₀	Input offset voltage	$V_O = 0$, $R_S = 50 \Omega$	$T_A = 25$ °C $T_A = \text{full range}$		3	9		3	15 20		3	7.5		2	5	mV
αVIO	Temperature coefficient of input offset voltage	V _O = 0, T _A = full range	$R_S = 50 \Omega$,		18			18			18			18		μV/°C
l _{IO}	Input offset current [‡]	V _O = 0	$T_A = 25 ^{\circ}C$ $T_A = \text{full range}$		5	100		5	200		5	100		5	100	pA nA
			T _A = full range		30	200		30	400		30	200	 	30	200	DA DA
Iв	I _{IB} Input bias current [‡]	V _O = 0	$T_{\Delta} = \text{full range}$			20			10			7			7	nA
VICR	Common-mode input voltage range	T _A = 25°C	1	±11	- 12 to 15	-	±11	- 12 to		±11	- 12 to 15		±11	-12 to		v
		T 25°C	P 10 k0	+12	±13.5		±12	± 13.5		±12	±13.5		±12	± 13.5		
Vом	Maximum peak output voltage swing	T _A = full range	$R_{L} = 10 \text{ k}\Omega$ $R_{L} = \ge 10 \text{ k}\Omega$ $R_{L} \ge 2 \text{ k}\Omega$	±12	±12		±12	±12		±12	±12		±12	±12		v
A	Large-signal differential	$V_0 = \pm 10 \text{ V},$ $T_A = 25^{\circ}\text{C}$	$R_L \ge 2 k\Omega$,	50	200		25	200		50	200		50	200		V/mV
AVD	voltage amplification	$V_0 = \pm 10 \text{ V},$ $T_A = \text{full range}$	-	25			15			25			25			V/IIIV
В1	Unity-gain bandwidth	T _A = 25°C			3			3			3			3		MHz
rį	Input resistance	T _A = 25°C			1012			1012			1012			1012		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR} min$ $R_S = 50 \Omega$,	-	80	86		70	86		80	86		80	86		dB
k _{SVR}	Supply voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC} = \pm 15 \text{ V t}$ $R_S = 50 \Omega$,	to $\pm 9 \text{ V}, \text{ V}_0 = 0,$ $T_A = 25 ^{\circ}\text{C}$	80	86		70	86		80	86		80	86		dB
lcc	Supply current (per amplifier)	No load, T _A = 25°C	V ₀ = 0,		1.4	2.8		1.4	2.8		1.4	2.8		1.4	2.8	mA
Vo1/Vo2	Crosstalk attenuation	A _{VD} = 100,	T _A = 25°C		120			120			120			120		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for TA is -40 °C to 85 °C for TL08_I and 0 °C to 70 °C for TL08_C, TL08_AC, and TL08_BC.

TL080 THRU TL085, TL080A THRU TL084A TL081B, TL082B, TL084B JFET-INPUT OPERATIONAL AMPLIFIERS

[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 18. Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as is possible.

operating characteristics, $V_{CC\pm} = \pm 15 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$

	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	v rate at unity gain $V_{I} = 10 \text{ V}, \qquad R_{L} = 2 \text{ k}\Omega, \\ C_{L} = 100 \text{ pF}, \qquad \text{See Figure 1}$		8	13		V/μs
t _r	Rise time	$V_I = 20 \text{ mV},$	$R_L = 2 k\Omega$,		0.05		μS
	Overshoot factor	$C_L = 100 pF$,	See Figure 1		20%		
1/	Farming land in and a size well-	D- 100.0	f = 1 kHz		18		nV/√ Hz
V _n	Equivalent input noise voltage	$R_S = 100 \Omega$	f = 10 Hz to 10 kHz		4		μV
In	Equivalent input noise current	$R_S = 100 \Omega$,	f = 1 kHz		0.01		pA/√Hz
THD	Total harmonic distortion	$V_{O(rms)} = 10 \text{ V},$ $R_L \ge 2 \text{ k}\Omega,$	$R_S \le 1 k\Omega$, f = 1 kHz	0	.003%		

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. UNITY-GAIN AMPLIFIER

FIGURE 2. GAIN-OF-10 **INVERTING AMPLIFIER**

FIGURE 3. FEED-FORWARD COMPENSATION

INPUT OFFSET VOLTAGE NULL CIRCUITS

TYPICAL CHARACTERISTICS†

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080 and TL080A.

FIGURE 8

FIGURE 9

TYPICAL CHARACTERISTICS[†]

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

MAXIMUM PEAK OUTPUT VOLTAGE

FIGURE 11

LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
and PHASE SHIFT

FIGURE 13

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080 and TL080A.

TYPICAL CHARACTERISTICS[†]

FREE-AIR TEMPERATURE 2.0 V_{CC±} = ±15 V 1.8 No signal No load 1.6 ICC ± -Supply Current-mA 1.4 1.2 1.0 0.8 0.6 0.4 0.2 Λ

0 25 50

TA-Free-Air Temperature - °C

FIGURE 16

SUPPLY CURRENT PER AMPLIFIER

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080 and TL080A.

75 100 125

-75 -50 -25

TYPICAL CHARACTERISTICS†

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080 and TL080A.

TYPICAL CHARACTERISTICS†

FIGURE 21

EQUIVALENT INPUT NOISE VOLTAGE vs **FREQUENCY** 50 V_n-Equivalent Input Noise Voltage-nV/√Hz $V_{CC\pm} = \pm 15 \text{ V}$ AVD = 10 $R_S = 100 \Omega$ 40 = 25°C 30 20 10 10 40 100 400 1 k 4 k 10 k 40 k 100 k f-Frequency-Hz

FIGURE 22

TOTAL HARMONIC DISTORTION

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080 and TL080A.

TYPICAL APPLICATION DATA $R_F = 100 \text{ k}\Omega$ Vcc+ + 15 V TL08 R1 R2 OUTPUT INPUT OUTPUT 3.3 kΩ Vcc-TLOB1 C3 7 C_F = 3.3 μF > 1 kΩ $R1 = R2 = 2R3 = 1.5 M\Omega$ R3 3.3 kΩ = 110 pF ≶ 9.1 kΩ

FIGURE 24. 0.5-Hz SQUARE-WAVE OSCILLATOR

FIGURE 25. HIGH-Q NOTCH FILTER

FIGURE 26. AUDIO DISTRIBUTION AMPLIFIER

NOTE A: These resistor values may be adjusted for a symmetrical output.

FIGURE 27. 100-kHZ QUADRATURE OSCILLATOR

TYPICAL APPLICATION DATA **16 k**Ω 16 $k\Omega$ 220 pF 220 pF **30 k**Ω **30 k**Ω 43 kΩ 43 kΩ Vcc+ **43** kΩ vcc+ 220 pF 220 pF Vcc+ V_{CC+} INPUT 43 kΩ 1/4 TL0841 43 kΩ 43 kΩ 1/4 TL0841 1/4 TL0841 1/4 TL084† OUTPUT 1.5 kΩ ≷ vcc-R 1.5 kΩ § Vcc-Vcc-Vcc-OUTPUT t or TL085 **OUTPUT A** OUTPUT B

SECOND-ORDER BANDPASS FILTER f₀ = 100 kHz, Q = 30, GAIN = 4

CASCADED BANDPASS FILTER f₀ = 100 kHz, Q = 69, GAIN = 16

FIGURE 28. POSITIVE-FEEDBACK BANDPASS FILTER

FIGURE 29. IC PREAMPLIFIER

