네트워크 침입탐지를 위한 딥러닝 모델 구조 최적화

금락운, 이청준, 권혁민, 최희열 한동대학교 전산전자공학부

e-mail: {21400047, 21400608, 21100047, hchoi}@handong.edu

Optimizing Deep Learning Model Architecture for Network Intrusion Detection

Rakun Keum, Chungjun Lee, Hyuckmin Kwon, Heeyoul Choi School of Computer Science and Electrical Engineering, Handong Global University

요 약

네트워크 침입탐지 시스템(Network Intrusion Detection System)은 데이터를 기반으로 침입을 탐지하여 사이버 보안에서 중요한 역할을 수행한다. 최근 딥러닝 기술이 주목 받기 시작하면서 Deep Neural Network(DNN) 알고리즘을 이용하여 NIDS 를 구현한 연구사례들이 있다. 그러나 해당 논문들은 딥러닝모델의 구현에 초점을 두었기 때문에 최적의 성능을 도출하지 못했다. 특히 최적화 알고리즘(Optimizer)과학습률(Learning Rate)조정을 통해서 모델을 더 개선할 수 있는 가능성이 남아있다. 본 논문에서 구현한모델은 NSL-KDD 데이터셋 Binary Classification 에서 82.5%의 Accuracy 를 달성하여 기존 논문들의결과보다 성능을 제고하였다.

1. 서론

인터넷 네트워크의 보급이 증가하고 이를 통한 정보유통이 증가함에 따라 네트워크 해킹으로 인한 피해도 증가하고 있다 [1]. 네트워크 침입탐지 시스 템 (Network Intrusion Detection System)은 방화벽 과 더불어 네트워크 보안에 있어 중요한 역할을 담당 하고 있다. NIDS 는 포트번호, 프로토콜, 트래픽 크 기 등 네트워크 상의 데이터를 기반으로 침입을 탐지 한다 과거에 NIDS 는 전문가의 지식에 기반하여 만들 어 지는 것이 보편적이었지만, 근래에는 방대한 양의 데이터를 기반으로 머신러닝을 적용하는 경우가 늘고 있다. 특히 최근 딥러닝 기술이 주목 받기 시작하면 서 NIDS 에 Deep Neural Network(DNN) 알고리즘을 적 용한 연구사례들이 있다[2]. 그러나 해당 논문들은 알고리즘의 적용에 초점을 두었기 때문에 구현은 성 공하였지만 최적화를 통한 성능 개선의 여지를 남겨 두고 있다. 본 연구는 실험을 통해 최적의 Parameter 를 찾아내어 기존 논문들보다 성능을 제고하는 것을 목표로 하였다.

2. 관련연구

관련연구는 NSL-KDD 데이터셋을 기반으로 NIDS에 DNN 알고리즘을 적용한 기존 논문들을 조사하였다. 먼저 2017 년에 딥러닝 알고리즘을 이용하여 Deep Neural Network(DNN) 모델과 Recurrent Neural Network(RNN) 모델을 구현한 사례가 있다[3]. 이 논문에서는 DNN, RNN 모델이 각각 73.1%와 81.3%의 Accuracy 를 보였다. 또 다른 연구사례에서는 현재 새롭게 대두되고 있는 네트워크 아키텍처인 Software Defined Network(SDN) 환경을 고려하여 DNN 을 적용 하였고 75.8%의 Accuracy 를 보였다[4].

3. 데이터셋(dataset)

3.1 Dataset 특징

우리는 NIDS 를 구혀하기 위해 NSL-KDD 데이터셋을 사용하여 DNN 모델을 학습하였다. NSL-KDD 데이터셋은 표 1 에 기술된 것처럼 크게는 DoS, Probe, R2L, U2R 로 총 4 가지의 공격유형과 정상 레코드로 이루어져 있고 각 공격 유형에 해당하는 데이터는 세부 공격유형으로 구분될 수 있다. NSL-KDD 데이터셋의 Feature 들은 Nominal Feature 3 개, Binary Feature 6 개, Numeric Feature 32 개로 총 41 개의 Feature 로 이루어져 있다. Train 데이터셋과 각각 125.973. 22.544 개의 Test 데이터셋은 레코드로 이루어져 있다 [5].

표 1. NSL-KDD 데이터셋 데이터 분포

Dataset	Train	Test
Total Records	125,973	22,544
Normal	67,343(53.46%)	9,711(43.08%)
DoS	45,927(36.46%)	7,458(33.08%)
Probe	11,656(9.25%)	2,421(10.74%)
U2R	52(0.04%)	200(0.89%)
R2L	995(0.79%)	2,754(12.22%)

3.2 데이터 전처리

먼저 NSL-KDD dataset 에서 'TCP' 또는 'UDP'과 같은 Nominal 형태의 Feature 들에 대해서 Label Encoding 을 적용하여 각각의 값들을 자연수로 치환하였다. 다른 Feature 에 대해서는 최대값과 최소값

을 구하여 정규화 하는 Min-Max Normalization 을 적 표 4. Binary Class Accuracy 용하였다.

4. 실험

4.1 모델 구조

본 논문에서 제안하는 Deep Neural Network(DNN) 모델의 구조는 아래의 표 2 와 같이 Input Layer, Hidden Layer, Output Layer 로 구성된다. Input Layer 는 NSL-KDD 의 Feature 개수와 대응하는 41 이 다. Hidden Layer 는 3 개 층을 쌓았으며 각 층은 300, 100, 50 의 Hidden 노드의 갯수를 가진다. Output 는 Binary Classification, Multi Layer Classification 에서 각각 2 와 5 값을 가진다. 또한 활성화 함수(Activation Function)로 Leaky ReLU 를 사용하였다.

표 2. Deep Neural Network 모델의 구조

Algorithm	Input Layer	Hidden Layer	Output Layer	Activation
DNN	41	300, 100, 50	2(binary)/5(multi)	Leaky- ReLU

4.2 실험 과정

먼저 Train 데이터셋을 Sub-Train Set Validation Set 으로 각각 90%, 10% 비율로 무작위 추출하였다. 다음으로는 DNN 모델을 만들어서 각 Epoch 마다 Sub-Train Set 을 통해 모델을 학습시키고. Validation Set 을 통해 모델의 학습 정도를 평가하 였다. 학습할 때 Max Epoch 은 10,000 으로 설정하였 으며 Early-Stopping 기법을 이용하여 특정 Patience 에 도달하면 더 이상 학습이 되지 않는 것으로 간주 하여 학습을 종료시켰다. 학습과정을 마친 후 Test 데이터셋을 사용하여 모델의 성능을 평가하였다. 최 종 결과 값은 실험 과정을 15 번 반복하여 평균값을 도출하였다.

최적화를 위해 실험한 Parameter 들은 최적화 알 고리즘(Optimizer)과 학습률(Learning Rate)이다. 딥 러닝에서 대표적으로 사용되는 RMSprop, Adam, SGD Optimizer 에 대하여 실험을 진행하였다. 위의 세 가 지 최적화 알고리즘과 학습률에 대한 Accuracy 를 도 출하였다.

4.3 실험 결과

NSL-KDD 데이터셋에 대한 DNN 모델 실험 결과를 표 3 과 표 4 에 정리 하였다. 최적의 모델은 Binary Classification 에서 82.2%의 Accuracy 를 보였고, Multi-Class Classification 에서는 77.3%의 Accuracy 를 달성하였다.

丑3. Multi-Class Accuracy

Learning rate	RMSprop	Adam	SGD
0.1	0.740	0.743	0.760
0.01	0.751	0.749	0.773
0.001	0.760	0.763	0.769
0.0001	0.753	0.768	0.631

Learning rate	RMSprop	Adam	SGD
0.1	0.780	0.775	0.822
0.01	0.782	0.795	0.817
0.001	0.796	0.795	0.771
0.0001	0.812	0.779	0.742

5. 결론

본 논문에서는 NSL-KDD Dataset 을 기반으로 DNN 알고리즘을 통해 NIDS 의 성능을 실험하였다. 실험을 통해서 모델 Parameter 의 최적화를 통해 기존 연구 사례보다 모델의 성능을 개선할 수 있었다. 향후 과 제로는 Software Defined Netwrok(SDN)이나 사물인터 넷 네트워크 등 특정 환경에 맞추어 구현된 DNN 모델 을 최적화 하여 성능을 개선할 수 있을 것으로 기대 된다.

6. 사사

이 논문은 2018 년도 정부(과학기술정보통신부)의 재원으로 정보통신기술진흥센터의 지원(No.2018-0-00749,인공지능 기반 가상 네트워크 관리기술 과학기술정보통신부와 개발)과, 정보통신기술 진흥센터의 소프트웨어중심대학 지원사업(2019-0-00130)의 지원을 받아 수행하였음.

참고문헌

- [1] R. Doshi, N. Apthorpe, Feamster, "Machine Learning DDoS Detection for Consumer Internet of Things Devices," *IEEE* Security and Privacy Workshops (SPW) 2018.
- [2] P. Garcia-Teodoro, J. Diaz-Verdego, G.Macia-Fernandez, and E. Vazquez, "Anomaly-based Network Intrusion Detection: Techniques, Systems and Challenges," Computers and Security Volume 28 Issue 1-2, February 2009, Pages 18-28.
- [3] C. Yin, Y. Zhu, and X. He, "A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Network," *IEEE Access*, *Volume* Publication October 12, 2017.
- [4] T. Tang, L. Mhamdi, D. McLernon, S.A.R. Zaidi, and M. Ghogho, "Deep Learning Approach for Network Intrusion Detection in Software Defined Networking," 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM).
- [5] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, "A Detailed Analysis of the KDD CUP 99 Data Set, " Proceedings of the 2009 IEEE Symposium on Computational Intelligence in Security and Defense Applications (CISDA 2009).