EFFECTIVE APPROXIMATION OF HEAT FLOW EVOLUTION OF THE RIEMANN XI FUNCTION, AND AN UPPER BOUND FOR THE DE BRUIJN-NEWMAN CONSTANT

D.H.J. POLYMATH

Abstract. For each $t \in \mathbb{R}$, define the entire function

$$H_t(z) := \int_0^\infty e^{tu^2} \Phi(u) \cos(zu) \ du$$

where Φ is the super-exponentially decaying function

$$\Phi(u) := \sum_{n=1}^{\infty} (2\pi^2 n^4 e^{9u} - 3\pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u}).$$

Newman showed that there exists a finite constant Λ (the *de Bruijn-Newman constant*) such that the zeroes of H_t are all real precisely when $t \ge \Lambda$. The Riemann hypothesis is the equivalent to the assertion $\Lambda \le 0$, and Newman conjectured the complementary bound $\Lambda \ge 0$.

1. Introduction

Let $H_0: \mathbb{C} \to \mathbb{C}$ denote the function

(1)
$$H_0(z) := \frac{1}{8}\xi\left(\frac{1}{2} + \frac{iz}{2}\right),$$

where ξ denotes the Riemann xi function

(2)
$$\xi(s) := \frac{s(s-1)}{2} \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \zeta(s)$$

(removing the singularities at the poles of the Gamma function) and ζ is the Riemann zeta function. Then H_0 is an entire even function with functional equation $H_0(\bar{z}) = \overline{H_0(z)}$, and the Riemann hypothesis is equivalent to the assertion that all the zeroes of H_0 are real.

It is a classical fact (see [20, p. 255]) that H_0 has the Fourier representation

$$H_0(z) = \int_0^\infty \Phi(u) \cos(zu) \ du$$

where Φ is the super-exponentially decaying function

(3)
$$\Phi(u) := \sum_{n=1}^{\infty} (2\pi^2 n^4 e^{9u} - 3\pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u}).$$

The sum defining $\Phi(u)$ converges absolutely for negative u also. From Poisson summation one can verify that Φ satisfies the functional equation $\Phi(u) = \Phi(-u)$ (i.e., Φ is even).

De Bruijn [3] introduced the more general family of functions $H_t: \mathbb{C} \to \mathbb{C}$ for $t \in \mathbb{R}$ by the formula

(4)
$$H_t(z) := \int_0^\infty e^{tu^2} \Phi(u) \cos(zu) \ du.$$

As noted in [7, p.114], one can view H_t as the evolution of H_0 under the backwards heat equation $\partial_t H_t(z) = -\partial_{zz} H_t(z)$. As with H_0 , each of the H_t are entire even functions with functional equation $H_t(\overline{z}) = \overline{H_t(z)}$. De Bruijn showed that the zeroes of H_t are purely real for $t \ge 1/2$, and if H_t has purely real zeroes for some t, then $H_{t'}$ has purely real zeroes for all t' > t. Newman [12] strengthened this result by showing that there is an absolute constant $-\infty < \Lambda \le 1/2$, now known as the *De Bruijn-Newman constant*, with the property that H_t has purely real zeroes if and only if $t \ge \Lambda$. The Riemann hypothesis is then clearly equivalent to the upper bound $\Lambda \le 0$. Recently in [15] the complementary bound $\Lambda \ge 0$ was established, answering a conjecture of Newman [12]. Furthermore, Ki, Kim, and Lee [8] sharpened the upper bound $\Lambda \le 1/2$ of de Bruijn [3] slightly to $\Lambda < 1/2$.

2. NOTATION

Unless otherwise specified, log denotes the standard branch of the complex logarithm, thus the branch cut is on the negative real axis and imaginary part in $(-\pi, \pi]$. We then define the standard complex powers $z^w := \exp(w \log z)$, and in particular define the standard square root $\sqrt{z} := z^{1/2}$. We record the standard gaussian identity

(5)
$$\int_{\mathbb{R}} \exp\left(-(au^2 + bu + c)\right) du = \sqrt{\frac{\pi}{a}} \exp\left(\frac{b^2}{4a} - c\right)$$

for any complex numbers a, b, c with Rea > 0.

To obtain effective estimates, it is convenient to use the notation $O_{\leq}(X)$ to denote any quantity that is bounded in magnitude by X. Any expression of the form A=B using this notation should be interpreted as the assertion that any quantity of the form A is also of the form B, thus for instance $O_{\leq}(1) + O_{\leq}(1) = O_{\leq}(3)$. (In particular, the equality relation is no longer symmetric with this notation.)

If F is a meromorphic function, we use F' to denote its derivative. We also use F^* to denote the reflection $F^*(s) := \overline{F(\overline{s})}$ of F. Observe from analytic continuation that if $F : \mathbb{C} \to \mathbb{C}$ is meromorphic and is real-valued on \mathbb{R} then it is equal to its own reflection: $F = F^*$.

3. Applying the fundamental solution for the heat equation

We can write H_t in terms of H_0 using the fundamental solution to the heat equation. Namely, for any t > 0, we have from (5) that

$$e^{tu^2} = \int_{\mathbb{R}} e^{\pm 2\sqrt{t}vu} \frac{1}{\sqrt{\pi}} e^{-v^2} dv$$

for any complex u and any choice of sign \pm . Multiplying by $e^{\pm izu}$ and averaging, we conclude that

$$e^{tu^2}\cos(zu) = \int_{\mathbb{R}} \cos\left(\left(z - 2i\sqrt{t}v\right)u\right) \frac{1}{\sqrt{\pi}} e^{-v^2} dv$$

for any complex z, u. Multiplying by $\Phi(u)$ and using Fubini's theorem, we conclude that

$$H_t(z) = \int_{\mathbb{R}} H_0(z - 2i\sqrt{t}v) \frac{1}{\sqrt{\pi}} e^{-v^2} dv$$

for any complex z. Using (1), we thus have

(6)
$$H_t(z) = \int_{\mathbb{R}} \frac{1}{8} \xi \left(\frac{1 + iz}{2} + \sqrt{t}v \right) \frac{1}{\sqrt{\pi}} e^{-v^2} dv.$$

We now combine this formula with expansions of the Riemann ξ -function. From [20, (2.10.6)] we have the Riemann-Siegel formula

(7)
$$\frac{1}{8}\xi(s) = R_{0,0}(s) + R_{0,0}^*(1-s)$$

for any complex s that is not an integer (in order to avoid the poles of the Gamma function), where $R_{0,0}(s)$ is the contour integral

$$R_{0,0}(s) := \frac{1}{8} \frac{s(s-1)}{2} \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \int_{0, t_1} \frac{w^{-s} e^{i\pi w^2}}{e^{\pi i w} - e^{-\pi i w}} dw$$

with $0 \swarrow 1$ any infinite line oriented in the direction $e^{5\pi i/4}$ that crosses the interval [0, 1]. From the residue theorem (and the gaussian decrease of $e^{i\pi w^2}$ along the $e^{\pi i/4}$ and $e^{5\pi i/4}$ directions) we may expand

$$R_{0,0}(s) = \sum_{n=1}^{N} r_{0,n}(s) + R_{0,N}(s)$$

for any non-negative integer N, where $r_{0,n}$, $R_{0,N}$ are the meromorphic functions

(8)
$$r_{0,n}(s) := \frac{1}{8} \frac{s(s-1)}{2} \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) n^{-s},$$

(9)
$$R_{0,N}(s) := \frac{1}{8} \frac{s(s-1)}{2} \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \int_{N \times N+1} \frac{w^{-s} e^{i\pi w^2}}{e^{\pi i w} - e^{-\pi i w}}$$

and $N \swarrow N+1$ denotes any infinite line oriented in the direction $e^{5\pi i/4}$ that crosses the interval [N,N+1]. For any z that is not purely imaginary, we see from Stirling's approximation that the functions $r_{0,n}(\frac{1+iz}{2}+\sqrt{t}v)$ and $R_{0,N}(\frac{1+iz}{2}+\sqrt{t}v)$ grow slower than gaussian as $v\to\pm\infty$ (indeed they grow like $\exp(O(|v|\log|v|))$), where the implied constants depend on t,z). From this and (6), (7) we conclude that

(10)
$$H_t(z) = \sum_{n=1}^{N} r_{t,n} \left(\frac{1+iz}{2} \right) + \sum_{n=1}^{N} r_{t,n}^* \left(\frac{1-iz}{2} \right) + R_{t,N} \left(\frac{1+iz}{2} \right) + R_{t,N}^* \left(\frac{1-iz}{2} \right)$$

for any t > 0, any z that is not purely imaginary, and any non-negative integer N, where $r_{t,n}(s)$, $R_{t,N}(s)$ are defined for non-real s by the formulae

$$r_{t,n}(s) := \int_{\mathbb{R}} r_{0,n} \left(s + \sqrt{t} v \right) \frac{1}{\sqrt{\pi}} e^{-v^2} dv$$

$$R_{t,N}(s) := \int_{\mathbb{R}} R_{0,N} \left(s + \sqrt{t} v \right) \frac{1}{\sqrt{\pi}} e^{-v^2} dv;$$

these can be thought of as the evolutions of $r_{0,n}$, $R_{0,N}$ respectively under the forward heat equation.

The functions $r_{0,n}(s)$, $R_{0,N}(s)$ grow slower than gaussian as long as the imaginary part of s is bounded and bounded away from zero. As a consequence, we may shift contours (replacing v by $v + \frac{\sqrt{t}}{2}\alpha_n$) and write

(11)
$$r_{t,n}(s) = \exp\left(-\frac{t}{4}\alpha_n^2\right) \int_{\mathbb{R}} \exp\left(-\sqrt{t}v\alpha_n\right) r_{0,n}\left(s + \sqrt{t}v + \frac{t}{2}\alpha_n\right) \frac{1}{\sqrt{\pi}} e^{-v^2} dv$$

for any complex number α_n with Im(s), $\text{Im}(s + \frac{t}{2}\alpha_n)$ having the same sign. Similarly we may write

(12)
$$R_{t,N}(s) = \exp\left(-\frac{t}{4}\beta_N^2\right) \int_{\mathbb{R}} \exp\left(-\sqrt{t}\nu\beta_N\right) R_{0,N}\left(s + \sqrt{t}\nu + \frac{t}{2}\beta_N\right) \frac{1}{\sqrt{\pi}} e^{-\nu^2} d\nu$$

for any complex number β_N with Im(s), $\text{Im}(s+\frac{t}{2}\beta_N)$ having the same sign. In the spirit of the saddle point method, we will select the parameters α_n , β_N later in the paper in order to make the phases in $r_{0,n}$, $R_{0,N}$ close to stationary, in order to obtain good estimates and approximations for these terms.

4. Elementary estimates

We have the following elementary estimates:

Lemma 4.1 (Elementary estimates). Let x > 0.

(i) If a > 0 and $b \ge 0$ are such that x > b/a, then

$$O_{\leq}\left(\frac{a}{x}\right) + O_{\leq}\left(\frac{b}{x^2}\right) = O_{\leq}\left(\frac{a}{x - b/a}\right).$$

More generally, if a > 0 and $b, c \ge 0$ are such that x > b/a, $\sqrt{c/a}$, then

$$O_{\leq}\left(\frac{a}{x}\right) + O_{\leq}\left(\frac{b}{x^2}\right) + O_{\leq}\left(\frac{c}{x^3}\right) = O_{\leq}\left(\frac{a}{x - \max(b/a, \sqrt{c/a})}\right).$$

(ii) If x > 1, then

$$\log\left(1+O_{\leq}\left(\frac{1}{x}\right)\right)=O_{\leq}\left(\frac{1}{x-1}\right).$$

or equivalently

$$1 + O_{\leq}\left(\frac{1}{x}\right) = \exp\left(O_{\leq}\left(\frac{1}{x-1}\right)\right).$$

(iii) If x > 1/2, then

$$\exp\left(O_{\leq}\left(\frac{1}{x}\right)\right) = 1 + O_{\leq}\left(\frac{1}{x - 0.5}\right).$$

(iv) We have

$$\exp(O_{\le}(x)) = 1 + O_{\le}(e^x - 1).$$

(v) If z is a complex number with $|\text{Im}(z)| \ge 1$ or $\text{Re}z \ge 1$, then

$$\Gamma(z) = \sqrt{2\pi} \exp\left((z - \frac{1}{2})\log z - z + O_{\leq}\left(\frac{1}{12(|z| - 0.33)}\right)\right).$$

(vi) If a, b > 0 and $x \ge x_0 \ge \exp(b/a)$, then

$$\log^a x \le \frac{\log^a x_0}{x_0^b} x^b.$$

Proof. Claim (i) follows from the geometric series formula

$$\frac{a}{x-t} = \frac{a}{x} + \frac{at}{x^2} + \frac{at^2}{x^3} + \dots$$

whenever $0 \le t < x$.

For Claim (ii), we use the Taylor expansion of the logarithm to note that

$$\log\left(1 + O_{\leq}\left(\frac{1}{x}\right)\right) = O_{\leq}\left(\frac{1}{x} + \frac{1}{2x^2} + \frac{1}{3x^3} + \dots\right)$$

which on comparison with the geometric series formula

$$\frac{1}{x-1} = \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \dots$$

gives the claim. Similarly for Claim (iii), we may compare the Taylor expansion

$$\exp\left(O_{\leq}\left(\frac{1}{x}\right)\right) = 1 + O_{\leq}\left(\frac{1}{x} + \frac{1}{2!x^2} + \frac{1}{3!x^3} + \dots\right)$$

with the geometric series formula

$$\frac{1}{x - 0.5} = \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{2^2 x^3} + \dots$$

and note that $k! \ge 2^k$ for all $k \ge 2$.

Claim (iv) follows from the trivial identity $e^x = 1 + (e^x - 1)$ and the elementary inequality $e^{-x} \ge 1 - (e^x - 1)$. For Claim (v), we may use the functional equation $\Gamma = \Gamma^*$ to assume that $\text{Im}(z) \ge 0$. We use equations (1.13), (3.1), (3.14) and (3.15) of [2] to obtain the Stirling approximation

$$\Gamma(z) = \sqrt{2\pi} \exp\left(\left(z - \frac{1}{2}\right) \log z - z\right) \left(1 + \frac{1}{12z} + R_2(z)\right)$$

where the remainder $R_2(z)$ obeys the bound

$$|R_2(z)| \le (2\sqrt{2} + 1) \frac{C_2\Gamma(2)}{(2\pi)^3|z|^2}$$

for $Re(z) \ge 0$ and

$$|R_2(z)| \le (2\sqrt{2} + 1) \frac{C_2\Gamma(2)}{(2\pi)^3|z|^2|1 - e^{2\pi iz}|}$$

for $Re(z) \le 0$, where C_2 is the constant

$$C_2 := \frac{1}{2}(1 + \zeta(2)) = \frac{1}{2}\left(1 + \frac{\pi^2}{6}\right).$$

In the latter case, we have $\text{Im}(z) \ge 1$ by hypothesis, and hence $|1 - e^{2\pi iz}| \ge 1 - e^{-2\pi}$. We conclude that in all ranges of z of interest, we have

$$|R_2(z)| \le (2\sqrt{2} + 1) \frac{C_2\Gamma(2)}{(2\pi)^3|z|^2(1 - e^{-2\pi})} \le \frac{0.0205}{|z|^2}$$

and hence by Claim (i)

$$\Gamma(z) = \sqrt{2\pi} \exp\left(\left(z - \frac{1}{2}\right) \log z - z\right) \left(1 + O_{\leq}\left(\frac{1}{12(|z| - 0.246)}\right)\right)$$

and the claim then follows by Claim (ii).

For Claim (vi), it suffices to show that the function $x \mapsto \frac{\log^a x}{x^b}$ is nonincreasing for $x \ge \exp(b/a)$. Taking logarithms and writing $y = \log x$, it suffices to show that $a \log y - by$ is non-increasing for $y \ge b/a$, but this is clear from taking a derivative.

5. Initial estimation of $r_{t,n}, R_{t,N}$

In this section we give some initial estimates on the functions $r_{t,n}$, $R_{t,N}$ appearing in Section 3.

We begin with the estimation of $r_{t,n}$. We will need the function

(13)
$$M_0(s) := \frac{1}{8} \frac{s(s-1)}{2} \pi^{-s/2} \sqrt{2\pi} \exp\left(\left(\frac{s}{2} - \frac{1}{2}\right) \log \frac{s}{2} - \frac{s}{2}\right)$$

defined for all s away from the negative axis. Clearly this function is non-vanishing for all such s. We may compute the logarithmic derivative $\alpha := \frac{M'_0}{M_0}$ of this function as

(14)
$$\alpha(s) = \frac{1}{s} + \frac{1}{s-1} - \frac{1}{2}\log\pi + \frac{1}{2}\log\frac{s}{2} - \frac{1}{2s}$$
$$= \frac{1}{2s} + \frac{1}{s-1} + \frac{1}{2}\log\frac{s}{2\pi}.$$

We can also compute one further derivative:

(15)
$$\alpha'(s) = -\frac{1}{2s^2} - \frac{1}{(s-1)^2} + \frac{1}{2s}.$$

If Im(s) > 3, we conclude in particular that

(16)
$$\alpha'(s) = O_{\leq}\left(\frac{1}{2\operatorname{Im}(s)^{2}}\right) + O_{\leq}\left(\frac{1}{\operatorname{Im}(s)^{2}}\right) + O_{\leq}\left(\frac{1}{2\operatorname{Im}(s)}\right)$$
$$= O_{\leq}\left(\frac{1}{2(\operatorname{Im}(s) - 3)}\right)$$

thanks to Lemma 4.1(i). Finally, we introduce the more general functions

(17)
$$M_t(s) := \exp(\frac{t}{4}\alpha(s)^2)M_0(s)$$

for any $t \ge 0$, as well as the sequence

$$b_n^t := \exp(\frac{t}{4}\log^2 n).$$

Proposition 5.1 (Estimate for $r_{t,n}$). Let σ be real, let T > 10, let n be a positive integer, and let $0 < t \le 1/2$. Then

$$r_{t,n}(\sigma+iT) = M_t(\sigma+iT) \frac{b_n^t}{n^{\sigma+iT+\frac{t}{2}\alpha(\sigma+iT)}} \left(1 + O_{\leq}(\epsilon_{t,n}(\sigma+iT))\right)$$

where

$$\epsilon_{t,n}(\sigma + iT) := \exp\left(\frac{1}{T - 3.33} \left(\frac{t^2}{8} |\alpha(\sigma + iT) - \log n|^2 + \frac{t}{4} + \frac{1}{6}\right)\right) - 1,$$

Proof. From (8), (13) and Lemma 4.1(v) one has

$$r_{0,n}(s) = M_0(s)n^{-s} \exp\left(O_{\leq}\left(\frac{1}{6(|s| - 0.66)}\right)\right)$$

whenever Im(s) > 2. Let α_n denote the quantity

(19)
$$\alpha_n := \alpha(\sigma + iT) - \log n;$$

this is the logarithmic derivative of $M(s)n^{-s}$ at $s = \sigma + iT$. From (11) we have

$$\begin{split} r_{t,n}(\sigma+iT) &= \exp\left(-\frac{t}{4}\alpha_n^2\right) \int_{\mathbb{R}} \exp\left(-\sqrt{t}v\alpha_n\right) M_0(\sigma+iT+\sqrt{t}v+\frac{t}{2}\alpha_n) \times \\ &\times \exp\left(-(\sigma+iT+\sqrt{t}v+\frac{t}{2}\alpha_n)\log n + O_{\leq}\left(\frac{1}{6(|\sigma+iT+\sqrt{t}v+\frac{t}{2}\alpha_n|-0.66)}\right)\right) \frac{1}{\sqrt{\pi}} e^{-v^2} \ dv. \end{split}$$

By (14) and the hypothesis $T \ge 10$, the imaginary part of α_n may be lower bounded by

$$\operatorname{Im}(\alpha_n) \ge -\frac{1}{2T} - \frac{1}{T} \ge -0.15;$$

since $t \le 1/2$, we conclude that $\sigma + iT + \sqrt{t}v + \frac{t}{2}\alpha_n$ has imaginary part at least T - 0.08. Thus

$$r_{t,n}(s) = \exp(-\frac{t}{4}\alpha_n^2) \int_{\mathbb{R}} \exp(-\sqrt{t}v\alpha_n) M_0(\sigma + iT + \sqrt{t}v + \frac{t}{2}\alpha_n) \times \\ \times \exp\left(-(\sigma + iT + \sqrt{t}v + \frac{t}{2}\alpha_n)\log n + O_{\leq}\left(\frac{1}{6(T - 0.74)}\right)\right) \frac{1}{\sqrt{\pi}} e^{-v^2} dv.$$

From (16) we have

$$\alpha'(s) = O_{\leq}\left(\frac{1}{2(T - 3.08)}\right)$$

for all s between $\sigma + iT$ and $\sigma + iT + \sqrt{tv} + \frac{t}{2}\alpha_n$. Applying Taylor's theorem with remainder to a branch of the complex logarithm of M_0 , we conclude that

$$M_0(\sigma + iT + \sqrt{t}v + \frac{t}{2}\alpha_n) = M_0(\sigma + iT)\exp\left(\alpha(\sigma + iT)(\sqrt{t}v + \frac{t}{2}\alpha_n) + O_{\leq}\left(\frac{|\sqrt{t}v + \frac{t}{2}\alpha_n|^2}{4(T - 3.08)}\right)\right).$$

Inserting this estimate, writing $\alpha(\sigma + iT) = \alpha_n + \log n$, estimating $\frac{1}{6(T-0.74)}$ by $\frac{1}{6(T-3.08)}$ and $|\sqrt{t}v + \frac{t}{2}\alpha_n|^2$ by $2tv^2 + \frac{t^2}{2}|\alpha_n|^2$, and simplifying, we conclude that

$$\begin{split} r_{t,n}(s) &= M_0(\sigma + iT) \exp\left(\frac{t}{4}\alpha_n^2 - (\sigma + iT)\log n\right) \times \\ &\times \int_{\mathbb{R}} \exp\left(O_{\leq}\left(\frac{\frac{t}{2}\nu^2 + \frac{t^2}{8}|\alpha_n|^2 + \frac{1}{6}}{T - 3.08}\right)\right) \frac{1}{\sqrt{\pi}} e^{-\nu^2} d\nu. \end{split}$$

Using (19), (17), (18) we see that

$$M_0(\sigma + iT) \exp\left(\frac{t}{4}\alpha_n^2 - (\sigma + iT)\log n\right) = M_t(\sigma + iT) \frac{b_n^t}{n^{\sigma + iT + \frac{t}{2}\alpha(\sigma + iT)}}$$

and so it suffices to show that

$$\int_{\mathbb{R}} \exp\left(O_{\leq}\left(\frac{\frac{t}{2}v^2 + \frac{t^2}{8}|\alpha_n|^2 + \frac{1}{6}}{T - 3.08}\right)\right) \frac{1}{\sqrt{\pi}} e^{-v^2} dv = 1 + O\left(\exp\left(\frac{\frac{t^2}{8}|\alpha_n|^2 + \frac{t}{4} + \frac{1}{6}}{T - 3.33}\right) - 1\right).$$

Since $\frac{1}{\sqrt{\pi}}e^{-v^2} dv$ integrates to one, and $\frac{1}{T-3.08} \le \frac{1}{T-3.33}$, it suffices by Lemma 4.1(iv) to show that

(20)
$$\int_{\mathbb{R}} \exp\left(\frac{tv^2}{2(T-3.08)}\right) \frac{1}{\sqrt{\pi}} e^{-v^2} dv \le \exp\left(\frac{t}{4(T-3.33)}\right).$$

Using (5), the left-hand side may be calculated exactly as

$$\left(1-\frac{t}{2(T-3.08)}\right)^{-1/2}$$
.

Applying Lemma 4.1(ii) and using the hypotheses $t \le 1/2$, $T \ge 10$, one has

$$1 - \frac{t}{2(T - 3.08)} = \exp(O_{\leq}(\frac{t}{2(T - 3.33)}))$$

and the claim follows.

Now we begin the estimation of $R_{t,N}$. We begin with the following estimates of Arias de Reyna [1] on the term $\int_{N \swarrow N+1} \frac{w^{-s}e^{i\pi w^2}}{e^{\pi iw}-e^{-\pi iw}}$ appearing in (9):

Proposition 5.2. Let σ be real and T' > 0, and define the quantities

$$(21) s := \sigma + iT'$$

$$a \coloneqq \sqrt{\frac{T'}{2\pi}}$$

$$(23) N \coloneqq \lfloor a \rfloor$$

(24)
$$p := 1 - 2(a - N)$$

(25)
$$U := \exp\left(-i\left(\frac{T'}{2}\log\frac{T'}{2\pi} - \frac{T'}{2} - \frac{\pi}{8}\right)\right).$$

Let K be a positive integer. Then we have an expansion

$$\int_{N \swarrow N+1} \frac{w^{-s} e^{i\pi w^2}}{e^{\pi i w} - e^{-\pi i w}} = (-1)^{N-1} U a^{-\sigma} \left(\sum_{k=0}^K \frac{C_k(p,\sigma)}{a^k} + RS_K(s) \right)$$

where $C_0(p, \sigma) = C_0(p)$ is independent of σ and is given explicitly by the formula

(26)
$$C_0(p) := \frac{e^{\pi i(\frac{p^2}{2} + \frac{3}{8})} - i\sqrt{2}\cos\frac{\pi p}{2}}{2\cos(\pi p)}$$

(removing the singularities at $p = \pm 1/2$), while for $k \ge 1$ the $C_k(p, \sigma)$ are quantities obeying the bounds

$$|C_k(p,\sigma)| \le \frac{\sqrt{2}}{2\pi} \frac{9^{\sigma} \Gamma(k/2)}{2^k}$$

for $\sigma > 0$ and

(28)
$$|C_k(p,\sigma)| \le \frac{2^{\frac{1}{2}-\sigma}}{2\pi} \frac{\Gamma(k/2)}{2\pi ((3-2\log 2)\pi)^{k/2}}$$

for $\sigma \leq 0$, while the error term RS_K(s) is a quantity obeying the bounds

(29)
$$|RS_K(s)| \le \frac{1}{7} 2^{3\sigma/2} \frac{\Gamma((K+1)/2)}{(a/1.1)^{K+1}}$$

for $\sigma \geq 0$, and

(30)
$$|RS_K(s)| \le \frac{1}{2} \left(\frac{9}{10} \right)^{\lceil -\sigma \rceil} \frac{\Gamma((K+1)/2)}{(a/1.1)^{K+1}}$$

if $\sigma < 0$ and $K + \sigma \ge 2$.

Proof. This follows from [1, Theorems 3.1, 4.1, 4.2] combined with [1, (3.2), (5.2)]. The dependence of $C_k(p,\sigma), k \ge 1$ on σ and the dependence of $RS_K(s)$ on s is suppressed in [1], but can be discerned from the definitions of these quantities (and the related quantities $g(\tau,z), P_k(z) = P_k(z,\sigma), Rg_K(\tau,z)$) in [1, (3.9), (3.10), (3.7), (3.6)].

Note that p ranges in the interval [-1, 1]. One can show that

$$|C_0(p)| \le \frac{1}{2}$$

for all $p \in [-1, 1]$; this follows for instance from the n = 0 case of [1, Theorem 6.1].

Proposition 5.3 (Estimate for $R_{t,N}$). Let $0 \le \sigma \le 1$, let $T \ge 100$, and let $0 < t \le 1/2$. Set

$$T' \coloneqq T + \frac{\pi t}{8}$$

and then define $a, N, p, U, C_0(p)$ using (22), (23), (25), (26) Then

$$R_{t,N}(\sigma + iT) = (-1)^{N-1} U e^{\pi i \sigma/4} \exp\left(\frac{t\pi^2}{64}\right) M_0(iT') (C_0(p) + O_{\leq}(\epsilon'(\sigma + iT)))$$

where

$$\epsilon'(\sigma + iT) := \left(\frac{0.366 \times 9^{\sigma} + 1.023 \times 2^{-\sigma}}{a - 0.125} + \frac{5}{3(T' - 3.33)}\right) \exp\left(\frac{3.49}{T' - 3.33}\right).$$

Proof. We apply (12) with $\beta_N := \pi i/4$ to obtain

$$R_{t,N}(\sigma + iT) = \exp\left(\frac{t\pi^2}{64}\right) \int_{\mathbb{R}} \exp\left(-\frac{\sqrt{t}v\pi i}{4}\right) R_{0,N}(\sigma + iT' + \sqrt{t}v) \frac{1}{\sqrt{\pi}} e^{-v^2} dv.$$

From (9) we have

$$R_{0,N}(\sigma + iT' + \sqrt{t}v) = \frac{1}{8} \frac{s_{\nu}(s_{\nu} - 1)}{2} \pi^{-s_{\nu}/2} \Gamma\left(\frac{s_{\nu}}{2}\right) (-1)^{N-1} U a^{-\sigma - \sqrt{t}v} \left(\sum_{k=0}^{K_{\nu}} \frac{C_{k}(p, \sigma + \sqrt{t}v)}{a^{k}} + RS_{K_{\nu}}(s_{\nu})\right)$$

for any positive integer K_v that we permit to depend (in a measurable fashion) on v, where $s_v := \sigma + iT' + \sqrt{t}v$. From (13) and Lemma 4.1(v) we thus have

$$R_{0,N}(\sigma + iT' + \sqrt{t}v) = M_0(s_v) \exp\left(O_{\leq}\left(\frac{1}{12(T' - 0.33)}\right)\right) (-1)^{N-1} U a^{-\sigma - \sqrt{t}v} \left(\sum_{k=0}^{K_v} \frac{C_k(p, \sigma + \sqrt{t}v)}{a^k} + RS_K(s_v)\right).$$

From (16) and Taylor expansion of a logarithm of M, we have

$$M_0(s_v) = M_0(iT') \exp\left(\alpha(iT')(\sigma + \sqrt{t}v) + O_{\leq}\left(\frac{(\sigma + \sqrt{t}v)^2}{4(T' - 0.33)}\right)\right);$$

from (14), (22) one has

$$\alpha(iT') = O_{\leq}\left(\frac{1}{2T'}\right) + O_{\leq}\left(\frac{1}{T'}\right) + \frac{1}{2}\log\frac{iT'}{2\pi} = \log a + \frac{i\pi}{4} + O_{\leq}\left(\frac{3}{2T'}\right)$$

and hence (bounding $\frac{3}{2T'}$ by $\frac{6}{4(T'-0.33)}$)

$$\alpha(iT')(\sigma + \sqrt{t}v) = (\sigma + \sqrt{t}v)\log a + \frac{\pi i\sigma}{4} + \frac{\sqrt{t}v\pi i}{4} + O_{\leq}\left(\frac{6|\sigma + \sqrt{t}v|}{4(T' - 0.33)}\right).$$

We conclude that

$$\exp\left(-\frac{\sqrt{t}v\pi i}{4}\right)R_{0,N}(\sigma + iT' + \sqrt{t}v) = M_0(iT')\exp\left(O_{\leq}\left(\frac{(\sigma + \sqrt{t}v)^2 + 6|\sigma + \sqrt{t}v| + \frac{1}{3}}{4(T' - 0.33)}\right)\right) \times \left(-1\right)^{N-1}Ue^{\pi i\sigma/4}\left(\sum_{k=0}^{K_v}\frac{C_k(p, \sigma + \sqrt{t}v)}{a^k} + RS_{K_v}(s_v)\right).$$

Bounding $6|\sigma + \sqrt{t}v| \le 3(\sigma + \sqrt{t}v)^2 + 3$, we have

$$\frac{(\sigma + \sqrt{t}v)^2 + 6|\sigma + \sqrt{t}v| + \frac{1}{3}}{4(T' - 0.33)} \le \frac{(\sigma + \sqrt{t}v)^2 + \frac{5}{6}}{T' - 0.33}$$

Putting all this together, we obtain

$$\begin{split} R_{t,N}(\sigma+iT) &= (-1)^{N-1} U e^{\pi i \sigma/4} \exp\left(\frac{t\pi^2}{64}\right) M_0(iT') \times \\ &\times \int_{\mathbb{R}} \exp\left(O_{\leq}\left(\frac{(\sigma+\sqrt{t}v)^2+\frac{5}{6}}{T'-0.33}\right)\right) \left(\sum_{k=0}^{K_v} \frac{C_k(p,\sigma+\sqrt{t}v)}{a^k} + RS_{K_v}(s_v)\right) \frac{1}{\sqrt{\pi}} e^{-v^2} \ dv. \end{split}$$

We separate the k=0 term from the rest. By Lemma 4.1(iv) and the fact that $\frac{1}{\sqrt{\pi}}e^{-v^2}$ integrates to one, we can write the above expression as

(32)
$$R_{t,N}(\sigma+iT) = (-1)^{N-1} U e^{\pi i \sigma/4} \exp\left(\frac{t\pi^2}{64}\right) M_0(iT') \left(C_0(p)(1+O_{\leq}(\epsilon)) + O_{\leq}(\delta)\right)$$

where

$$\epsilon := \int_{\mathbb{R}} \left(\exp\left(\frac{(\sigma + \sqrt{t}v)^2 + \frac{5}{6}}{T' - 0.33}\right) - 1 \right) \frac{1}{\sqrt{\pi}} e^{-v^2} dv$$

and

$$\delta := \int_{\mathbb{R}} \exp\left(\frac{(\sigma + \sqrt{t}v)^2 + \frac{5}{6}}{T' - 0.33}\right) \left(\sum_{k=1}^{K_v} \frac{|C_k(p, \sigma + \sqrt{t}v)|}{a^k} + |RS_{K_v}(s_v)|\right) \frac{1}{\sqrt{\pi}} e^{-v^2} dv.$$

Bounding $(\sigma + \sqrt{t}v)^2 \le 2\sigma^2 + 2tv^2$ and using (5) we obtain

$$\epsilon \le \exp\left(\frac{2\sigma^2 + \frac{5}{6}}{T' - 0.33}\right) \left(1 - \frac{2t}{T' - 0.33}\right)^{-1/2} - 1.$$

Applying Lemma 4.1(ii) and using the hypotheses $t \le 1/2$, $T \ge 100$, one has

$$1 - \frac{2t}{T' - 0.33} = \exp\left(O_{\leq}\left(\frac{2t}{T' - 3.33}\right)\right)$$

and hence

$$\epsilon \le \exp\left(\frac{2\sigma^2 + t + \frac{5}{6}}{T' - 3.33}\right) - 1.$$

With $t \le 1/2$ and $0 \le \sigma \le 1$, one has $2\sigma^2 + t + \frac{5}{6} \le \frac{10}{3}$. By the mean value theorem we then have

(33)
$$\epsilon \le \frac{10}{3(T'-3.33)} \exp\left(\frac{10}{3(T'-3.33)}\right).$$

Now we work on δ . Making the change of variables $u := \sigma + \sqrt{t}v$, we have

$$\delta = \int_{\mathbb{R}} \exp\left(\frac{u^2 + \frac{5}{6}}{T' - 0.33}\right) \left(\sum_{k=1}^{\tilde{K}_u} \frac{|C_k(p, u)|}{a^k} + |RS_{\tilde{K}_u}(u + iT')|\right) \frac{1}{\sqrt{\pi t}} e^{-(u - \sigma)^2/t} du,$$

where \tilde{K}_u is a positive integer parameter that can depend arbitrarily on u (as long as it is measurable, of course).

We choose \tilde{K}_u to equal 1 when $u \ge 0$ and $\lfloor -\sigma \rfloor + 3$ when u < 0, so that Proposition 5.2 applies. The expression

$$\sum_{k=1}^{\tilde{K}_u} \frac{|C_k(p,u)|}{a^k} + |RS_{\tilde{K}_u}(u+iT')|$$

is then bounded by

(34)
$$\frac{\sqrt{2}}{2\pi} \frac{9^{u} \Gamma(1/2)}{2a} + \frac{1}{7} 2^{3u/2} \frac{\Gamma(1)}{(a/1.1)^{2}} \le \frac{0.200 \times 9^{u}}{a} + \frac{0.173 \times 2^{3u/2}}{a^{2}}$$

for $u \ge 0$ and

(35)
$$\sum_{\substack{1 \le k \le 1-u \ge 3}} \frac{2^{\frac{1}{2}-u}}{2\pi} \frac{\Gamma(k/2)}{2\pi ((3-2\log 2)\pi)^{k/2} a^k} + \frac{1}{2} (9/10)^{\lceil -u \rceil} \frac{\Gamma((\lfloor -u \rfloor + 4)/2)}{(a/1.1)^{\lfloor -u \rfloor + 4}}$$

for u < 0. One can calculate that

$$\frac{2^{\frac{1}{2}}}{2\pi} \frac{1}{2\pi} \le \frac{1}{2}$$

and

$$\frac{1}{((3-2\log 2)\pi)^{1/2}} \le 1.1$$

and hence we can bound (35) somewhat crudely by

$$\frac{1}{2}2^{-u}\sum_{1\leq k\leq -u+4}\frac{\Gamma(k/2)}{(a/1.1)^k}.$$

For $u \ge 0$, we can estimate (34) by

$$0.2 \times 9^{u} (\frac{1}{a} + \frac{0.865}{a^2}) \le \frac{0.2 \times 9^{u}}{a - 0.865}$$

thanks to Lemma 4.1(i). For u < 0, we observe that if $k \le \frac{a^2}{1.21} = \frac{T'}{2.42\pi}$ then

$$\frac{\Gamma(k+2/2)}{(a/1.1)^{k+2}} = \frac{1.21k}{2a^2} \frac{\Gamma(k/2)}{(a/1.1)^k} \le \frac{1}{2} \frac{\Gamma(k/2)}{(a/1.1)^k}$$

and hence by the geometric series formula

$$\sum_{\substack{2 \le k \le \frac{T'}{242}, k \text{ even}}} \frac{\Gamma(k/2)}{(a/1.1)^k} \le 2 \frac{\Gamma(2/2)}{(a/1.1)^2} = \frac{2.42}{a^2}$$

and similarly

$$\sum_{\substack{3 \le k \le \frac{T'}{2\sqrt{42}}, k \text{ odd}}} \frac{\Gamma(k/2)}{(a/1.1)^k} \le 2 \frac{\Gamma(3/2)}{(a/1.1)^3} = \frac{1.331 \sqrt{\pi}}{a^3}$$

and hence we can bound (35) by

$$\frac{1}{2}2^{-u}\left(\frac{1.1\sqrt{\pi}}{a} + \frac{2.42}{a^2} + \frac{1.331\sqrt{\pi}}{a^3} + \sum_{\frac{T'}{2.47\pi} \le k \le -u+4} \frac{\Gamma(k/2)}{(a/1.1)^k}\right).$$

By Lemma 4.1(i) we have

$$\frac{1.1\sqrt{\pi}}{a} + \frac{2.42}{a^2} + \frac{1.331\sqrt{\pi}}{a^3} \le \frac{1.1\sqrt{\pi}}{a - 1.25}$$

and thus we can bound (35) by

$$\frac{1}{2}2^{-u}\left(\frac{1.1\sqrt{\pi}}{a-1.25} + \sum_{\frac{T'}{2.47\pi} \le k \le -u+4} (1.1)^k \frac{\Gamma(k/2)}{a^k}\right).$$

Putting this together, we conclude that

$$\sum_{k=1}^{\tilde{K}_u} \frac{|C_k(p,u)|}{a^k} + |RS_{\tilde{K}_u}(u+iT')| \leq \frac{0.2 \times 9^u}{a-0.865} + \frac{1.1\sqrt{\pi} \times 2^{-u}}{2(a-1.25)} + \frac{2^{-u}}{2} \sum_{\frac{T'}{2.2} \leq k \leq -u+4} (1.1)^k \frac{\Gamma(k/2)}{a^k}$$

for all *u* (positive or negative). We conclude that $\delta \leq \delta_1 + \delta_2 + \delta_3$, where

$$\delta_{1} := \int_{\mathbb{R}} \exp(\frac{u^{2} + \frac{5}{6}}{T' - 0.33}) \frac{0.2 \times 9^{u}}{a - 0.865} \frac{1}{\sqrt{\pi t}} e^{-(u - \sigma)^{2}/t} du$$

$$\delta_{2} := \int_{\mathbb{R}} \exp(\frac{u^{2} + \frac{5}{6}}{T' - 0.33}) \frac{1.1 \sqrt{\pi} \times 2^{-u}}{2(a - 1.25)} \frac{1}{\sqrt{\pi t}} e^{-(u - \sigma)^{2}/t} du$$

$$\delta_{3} := \int_{\mathbb{R}} \exp(\frac{u^{2} + \frac{5}{6}}{T' - 0.33}) \frac{2^{-u}}{2} \sum_{\frac{T'}{22\pi} \leq k \leq -u + 4} (1.1)^{k} \frac{\Gamma(k/2)}{a^{k}} \frac{1}{\sqrt{\pi t}} e^{-(u - \sigma)^{2}/t} du.$$

For δ_1 , we translate u by σ to obtain

$$\delta_1 = \frac{0.2 \times 9^{\sigma}}{a - 0.865} \int_{\mathbb{R}} \exp(\frac{1}{T' - 0.33}(u^2 + 2\sigma u + \sigma^2 + \frac{5}{6}) + 2u\log 3) \frac{1}{\sqrt{\pi t}} e^{-u^2/t} du$$

and hence by (5)

(36)
$$\delta_1 = \frac{0.2 \times 9^{\sigma}}{a - 0.865} \exp\left(\frac{\sigma^2 + \frac{5}{6}}{T' - 0.33} + \frac{t(\log 3 + \frac{\sigma}{T' - 0.33})^2}{1 - \frac{t}{T' - 0.33}}\right) (1 - \frac{t}{T' - 0.33})^{-1/2}.$$

One can write

(37)
$$\frac{1}{1 - \frac{t}{T' - 0.33}} = 1 + \frac{t}{T' - 0.33 - t} \le 1 + \frac{t}{T' - 0.83}$$

while by Lemma 4.1(ii) we have

(38)
$$1 - \frac{t}{T' - 0.33} = \exp\left(O_{\leq}\left(\frac{t}{T' - 0.33 - t}\right)\right) = \exp\left(O_{\leq}\left(\frac{t}{T' - 0.83}\right)\right).$$

We conclude that

$$\delta_1 \le \frac{0.2 \times 9^{\sigma}}{a - 0.865} \exp(\frac{5 + 3t + 6\sigma^2}{6(T' - 0.83)} + t(\log 3 + \frac{\sigma}{T' - 0.33})^2 (1 + \frac{t}{T' - 0.83})).$$

From Lemma 4.1(i) and the hypothesis $0 \le \sigma \le 1$, we have

$$(\log 3 + \frac{\sigma}{T' - 0.33})^2 \le \log^2 3(1 + \frac{2\sigma/\log 3}{T' - 0.33 - \frac{\sigma}{2\log 3}})$$
$$\le \log^2 3(1 + \frac{2\sigma/\log 3}{T' - 0.83})$$

and then

$$(\log 3 + \frac{\sigma}{T' - 0.33})^2 (1 + \frac{t}{T' - 0.83}) \le \log^2 3 (1 + \frac{\frac{2\sigma}{\log 3} + t}{T' - 0.83 - \frac{2\sigma t/\log 3}{2\sigma/\log 3 + t}})$$

$$\le \log^2 3 (1 + \frac{\frac{2\sigma}{\log 3} + t}{T' - 0.83 - t})$$

$$\le \log^2 3 (1 + \frac{\frac{2\sigma}{\log 3} + t}{T' - 1.33})$$

and thus

$$\delta_1 \leq \frac{0.2 \times 9^{\sigma} \exp(t \log^2 3)}{a - 0.865} \exp(\frac{5 + 3t + 6\sigma^2 + 12t\sigma \log 3 + 6t^2 \log^2 3}{6(T' - 1.33)}).$$

By repeating the proof of (36), we have

$$\delta_2 = \frac{1.1\sqrt{\pi} \times 2^{-\sigma}}{2(a-1.25)} \exp(\frac{\sigma^2 + \frac{5}{6}}{T' - 0.33} + \frac{t(-\log\sqrt{2} + \frac{\sigma}{T' - 0.33})^2}{1 - \frac{t}{T' - 0.33}})(1 - \frac{t}{T' - 0.33})^{-1/2}.$$

We can bound $(-\log \sqrt{2} + \frac{\sigma}{T'-0.33})^2$ by $\log^2 \sqrt{2}$. Using (37), (38) we thus have

$$\delta_2 \leq \frac{1.1 \sqrt{\pi} \times 2^{-\sigma} \exp(t \log^2 \sqrt{2})}{2(a-1.25)} \exp(\frac{5+3t+6\sigma^2}{6(T'-1.33)}).$$

With $t \le 1/2$ and $0 \le \sigma \le 1$ one has

$$0.2 \exp(t \log^2 3) \le 0.366$$

$$\frac{1.1 \sqrt{\pi} \exp(t \log^2 \sqrt{2})}{2} \le 1.023$$

$$\frac{5 + 3t + 6\sigma^2}{6} \le \frac{5 + 3t + 6\sigma^2 + 12t\sigma \log 3 + 6t^2 \log^2 3}{6} \le 3.49$$

and hence

$$\delta_1 \le \frac{0.366 \times 9^{\sigma}}{a - 0.865} \exp(\frac{3.49}{T' - 1.33})$$

and

$$\delta_2 \le \frac{1.023 \times 2^{-\sigma}}{a - 1.25} \exp(\frac{3.49}{T' - 1.33}).$$

Now we turn to δ_3 . By the Fubini-Tonelli theorem, we have

$$\delta_3 = \frac{1}{2\sqrt{\pi t}} \sum_{k \ge \frac{T'}{22\pi}} (1.1)^k \frac{\Gamma(k/2)}{a^k} \int_{-\infty}^{4-k} \exp(\frac{1}{T' - 0.33} (u^2 + \frac{5}{6}) - \frac{(u - \sigma)^2}{t} - u \log 2) du.$$

Since $u \le 4 - k$, $k \ge \frac{T'}{2.2\pi}$, and $T' \ge T \ge 100$, we have $k \ge 14$ and $u \le -10$; since $\sigma \ge 0$, we may thus lower bound $(u - \sigma)^2/t$ by u^2/t . Since $t \le 1/2$, we can upper bound $\frac{1}{T' - 0.33}(u^2 + \frac{5}{6}) - \frac{u^2}{t}$ by $-\frac{u^2}{2t}$, thus

$$\delta_3 \le \frac{1}{2\sqrt{\pi t}} \sum_{k \ge \frac{T'}{22\pi}} (1.1)^k \frac{\Gamma(k/2)}{a^k} \int_{-\infty}^{4-k} e^{-u^2/2t - u \log 2} du.$$

We can bound $e^{-u^2} \le e^{(k-4)u/2t}$, and thus

$$\int_{-\infty}^{4-k} e^{-u^2/2t - u \log 2} du \le \frac{1}{\frac{k-4}{2t} - \log 2} e^{-\frac{(k-4)^2}{2t} + (k-4) \log 2} \le \frac{1}{\frac{k-4}{2t} - \log 2} e^{-(k-4)^2 + (k-4) \log 2};$$

bounding

$$\frac{k-4}{2t} - \log 2 = \frac{k-4-2t\log 2}{2t} \ge \frac{k-6}{2t}$$

we conclude that

$$\delta_3 \le \frac{\sqrt{t}}{\sqrt{\pi}} \sum_{k \ge \frac{T'}{2.2\pi}} (1.1)^k \frac{\Gamma(k/2)}{(k-6)a^k} e^{-(k-4)^2 + (k-4)\log 2}.$$

For $k \ge 14$ one can easily verify that $(1.1)^k \Gamma(k/2) e^{-(k-4)^2 + (k-4)\log 2} \le 10^{-30}$; discarding the $\frac{\sqrt{t}}{\sqrt{\pi}}$ and $\frac{1}{k-6}$ factors we thus have

$$\delta_3 \le \sum_{k>14} \frac{10^{-30}}{a^k} \le \frac{2 \times 10^{-30}}{a^{14}}$$

(say). Since

$$\frac{0.366}{a - 0.865} + \frac{2 \times 10^{-30}}{a^{14}} \le \frac{0.366}{a - 1.25}$$

we thus have

$$\delta \leq \delta_1 + \delta_2 + \delta_3 \leq \frac{0.366 \times 9^{\sigma} + 1.023 \times 2^{-\sigma}}{a - 1.25} \exp(\frac{3.49}{T' - 1.33}).$$

Inserting this and (33), (31) into (32) we obtain the claim.

References

- [1] J. Arias de Reyna, *High-precision computation of Riemann's zeta function by the Riemann-Siegel asymptotic formula, I*, Mathematics of Computation, Volume 80, Number 274, April 2011, Pages 9951009.
- [2] W. G. C. Boyd, *Gamma Function Asymptotics by an Extension of the Method of Steepest Descents*, Proceedings: Mathematical and Physical Sciences, Vol. 447, No. 1931 (Dec. 8, 1994), pp. 609–630.
- [3] N. C. de Bruijn, The roots of trigonometric integrals, Duke J. Math. 17 (1950), 197–226.
- [4] G. Csordas, T. S. Norfolk, R. S. Varga, A lower bound for the de Bruijn-Newman constant Λ, Numer. Math. 52 (1988), 483–497.
- [5] G. Csordas, A. M. Odlyzko, W. Smith, R. S. Varga, A new Lehmer pair of zeros and a new lower bound for the De Bruijn-Newman constant Lambda, Electronic Transactions on Numerical Analysis. 1 (1993), 104–111.

- [6] G. Csordas, A. Ruttan, R.S. Varga, *The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis*, Numer. Algorithms, **1** (1991), 305–329.
- [7] G. Csordas, W. Smith, R. S. Varga, Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis, Constr. Approx. 10 (1994), no. 1, 107–129.
- [8] H. Ki, Y. O. Kim, and J. Lee, *On the de Bruijn-Newman constant*, Advances in Mathematics, **22** (2009), 281–306.
- [9] D. H. Lehmer, On the roots of the Riemann zeta-function, Acta Math. 95 (1956) 291-298.
- [10] H. L. Montgomery, *The pair correlation of zeros of the zeta function*, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 181–193. Amer. Math. Soc., Providence, R.I., 1973.
- [11] H. L. Montgomery, R. C. Vaughan, Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, 2007.
- [12] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246–251.
- [13] T. S. Norfolk, A. Ruttan, R. S. Varga, *A lower bound for the de Bruijn-Newman constant* Λ *II.*, in A. A. Gonchar and E. B. Saff, editors, Progress in Approximation Theory, 403–418. Springer-Verlag, 1992.
- [14] A. M. Odlyzko, An improved bound for the de Bruijn-Newman constant, Numerical Algorithms 25 (2000), 293–303.
- [15] B. Rodgers, T. Tao, The De Bruijn-Newman constant is nonnegative, preprint.
- [16] Y. Saouter, X. Gourdon, P. Demichel, An improved lower bound for the de Bruijn-Newman constant, Mathematics of Computation. 80 (2011), 2281–2287.
- [17] J. Stopple, *Notes on Low discriminants and the generalized Newman conjecture*, Funct. Approx. Comment. Math., vol. 51, no. 1 (2014), pp. 23–41.
- [18] J. Stopple, Lehmer pairs revisited, Exp. Math. 26 (2017), no. 1, 45–53.
- [19] H. J. J. te Riele, A new lower bound for the de Bruijn-Newman constant, Numer. Math., 58 (1991), 661-667.
- [20] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, Second ed. (revised by D. R. Heath-Brown), Oxford University Press, Oxford, 1986.

HTTP://MICHAELNIELSEN.ORG/POLYMATH1/INDEX.PHP