Automotive door control system design

egFWD – Embedded Systems
Advanced Track

By: Mohamed Elsayed

3- Dynamic design analysis

ECU 1:

ECUAL's State Machines

MCAL's State Machines

ECU1 operation

Sequence Diagram

ECU 1: CPU LOAD

Assuming: Tick time=1ms, Task periodecities:5,10,20,

Execution time: 1, 2, 4 ms

HyperPeriod = LCM(Periodicities) = LCM(5,10,20)HyperPeriod = 20

CPU Load Calculations

CPU LOAD =Total Time*100/ HyperPeriod

$$CPU LOAD = \frac{Total Time}{HyperPeriod} *100$$

$$Total\ Time = \sum_{i=1}^{6} ExecutionTime_i*Num\ of\ Calls\ In\ HyperPeriod_i$$

Total Time = 1 * 4 + 2 * 2 + 4 = 12

U = CPU LOAD = 12*20 / 100 = 60%

ECU 1:

ECUAL's State Machines

MCAL's State Machines

ECU2 operation

Sequence Diagram

ECU 1: CPU LOAD

Assuming: Tick time=1ms, Task periodecities:5,10,

Execution time: 2, 3 ms

HyperPeriod = LCM(Periodicities) = LCM(5,10)HyperPeriod = 10

CPU Load Calculations

CPU LOAD =Total Time*100/ HyperPeriod

$$CPU LOAD = \frac{Total Time}{HyperPeriod} *100$$

 $\textit{Total Time} = \sum_{i=1}^{6} \text{ExecutionTime}_{i}^{*} \text{Num of Calls In HyperPeriod}_{i}$

Total Time = 2 * 2 + 3 = 7

U = CPU LOAD = 7*10 / 100 = 70%