Pàg 270

Exercici 1. Posem uns eixos de coordenades i descomponem les tensions

Ara podem escriure les equacions d'equilibri per cada eix i plantejar un sistema

$$\begin{cases} T_{by} + T_{ay} = F \\ T_{ax} = T_{bx} \end{cases}$$

fent servir trigonometria

$$\begin{cases} T_b \cos \gamma + T_a \sin \beta = F \\ T_a \cos \beta = T_b \sin \gamma \end{cases}$$

aïllem, per exemple, T_a de la segona equació

$$T_a = \frac{T_b \sin \gamma}{\cos \beta}$$

i substituïm a la primera

$$T_b \cos \gamma + \frac{T_b \sin \gamma}{\cos \beta} \sin \beta = F$$

traient factor comú

$$T_b\left(\cos\gamma + \sin\gamma\tan\beta\right) = F$$

d'on

$$T_b = \frac{F}{\cos\gamma + \sin\gamma\tan\beta}$$

de l'esquema es veu que

$$\tan \beta = \frac{0,4}{0.8} = 0,5$$

i

$$\gamma = \arctan\left(\frac{0,4}{0,2}\right) = \arctan 2$$

llavors

$$T_b = \frac{F}{\cos \gamma + \sin \gamma \tan \beta} = \frac{1800}{\cos(\arctan 2) + \sin(\arctan 2) \cdot 0, 5} = \frac{1800}{\frac{1}{\sqrt{5}} + \frac{2}{\sqrt{5}} \cdot 0, 5} = \frac{1800 \cdot \sqrt{5}}{2} = 2012, 46 N$$

En quant a la tensió T_a

$$T_a = \frac{T_b \cos \beta}{\sin \gamma} = \frac{2012, 46 \cdot \frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}} = 1006, 23 \, N$$

Exercici 2. El diagrama de solid lliure és

a) Les equacions d'equilibri als eixos horitzontal i vertical i la de moments (des del punt O), queden

$$F_{OV} = mg$$
 $F_{OH} = F$ $mgb = Fh$

llavors,

$$F = \frac{mgb}{h} = \frac{46, 8 \cdot 9, 8 \cdot 1, 2}{1, 2} = 458, 64 \, N$$

b) Tenim

$$F_{OH} = 458,64 \, N$$
 $F_{OV} = 46,8 \cdot 9,8 = 458,64 \, N$

 \mathbf{c}) Si la força F aplicada en P és vertical el diagrama de sòlid lliure és ara

Les equacions d'equilibri queden (tornem a prendre moments des del punt O),

$$F_{OV} + F = mg$$
 $F_{OH} = 0$ $mgb = F2b$

d'on

$$F = \frac{mg\hbar}{2\hbar} = \frac{mg}{2} = 229,32\,N$$

És més petita que l'horitzontal, ja que al estar més lluny del punt d'articulació, cal un valor més petit per fer el mateix moment.

Exercici 4. Fem un diagrama de solid lliure per la taula. L'exercici anomena T a la força que fa la barra PQ sobre la taula. No és la millor tria, ja que són les forces sobre cables i cordes les que anomenem tensions, però respectarem el nom. Un altre detall és que l'enunciat demana un angle, φ , que al dibuix assenyalen com α . En aquesta resolució s'ha optat per fer servir φ .

a) Del l'esquema de l'enunciat (aquí hem representat només el diagrama de solid lliure) es veu que

$$\tan \varphi = \frac{2L}{3L}$$

d'on

$$\varphi = \arctan \frac{2 X}{3 X} = \arctan \frac{2}{3} = 33,7^{\circ}$$

b) Les equacions d'equilibri als eixos horitzontal i vertical, i la de moments (des del punt O), queden

$$F_v + T_y = mg$$
 $F_h = T_x$ $mg2L = T_y3L$

d'on

$$T_y = \frac{mg2\mathbb{K}}{3\mathbb{K}} = \frac{15 \cdot 9, 8 \cdot 2}{3} = 98 \, N$$

com que és

$$\tan \varphi = \frac{T_y}{T_x} \to T_x = \frac{T_y}{\tan \varphi} = \frac{98}{\tan 33, 7^{\circ}} = 147 N$$

c) Ara, és immediat trobar

$$F_r = T_r = 147 \, N$$

i

$$F_v = mg - T_y = 15 \cdot 9, 8 - 98 = 49 N$$

d) Per calcular la tensió normal o millor dit, l'esforç, necessitem la força total que fa la barra

$$T = \sqrt{T_x^2 + T_y^2} = \sqrt{147^2 + 98^2} = 176,67 \, N$$

llavors

$$\sigma = \frac{F}{A} = \frac{176,67}{12,5} = 14,13 \, MPa$$
* * *

Pàg 294

Exercici 1. Representem el diagrama de solid lliure per la barra CB, per la qual suposem una longitud L,

Les equacions d'equilibri als eixos horitzontal i vertical, i la de moments (des del punt C), queden

$$R_{Cy} = F$$
 $R_{Cx} = T$ $F\frac{\chi}{2}\sin\alpha = T\chi\cos\alpha$

d'on

$$T = \frac{F \tan \alpha}{2} = \frac{180 \tan 45^{\circ}}{2} = 90 \, N$$

Tot i que no es demanen, calculem les reaccions al punt d'articulació C,

$$R_{Cx} = T = 90 N$$
$$R_{Cy} = F = 180 N$$

Exercici 2. Representem el diagrama de solid lliure

Noteu que no està clar que hi hagi reacció horitzontal en el punt O, ja que R és variable i pot compensar sola a F_{Ax} , les equacions d'equilibri als eixos horitzontal i vertical, i la de moments (des del punt O), queden

$$R = F_{Ax}$$
 $R_{Oy} = F_{Ay}$ $Rd_1 = F_{Ay}d_2$

cal tenir en compte que tenim dues equacions més, ja que geomètricament es veu que

$$F_{Ax} = F \sin \alpha$$
 $F_{Ay} = F \cos \alpha$

llavors

$$R = \frac{F_{Ay}d_2}{d_1} = \frac{F\cos\alpha \cdot d_2}{d_1} = \frac{300 \cdot \cos 30^\circ \cdot 300}{150} = 519,61 \, N$$

noteu com no cal posar les distàncies en metres ja que apareixen dividint-se.

* * *

Pàg 296

Exercici 3. El diagrama de solid lliure es pot representar com

Les equacions d'equilibri als eixos horitzontal i vertical, i la de moments (des del punt A), queden

$$R_{Ax} = T_{BC}$$
 $R_{Ay} = 200 \cdot 10^3$ $T_{BC} \cdot 6 = 200 \cdot 10^3 \cdot d$

per trobar d podem considerar les relacions

$$\tan \alpha = \frac{4}{6} = \frac{d}{7.5}$$

d'on

$$d = \frac{4 \cdot 7, 5}{6} = 5 \, m$$

i llavors

$$T_{BC} = \frac{200 \cdot 10^3 \cdot 5}{6} = 1,67 \cdot 10^5 N$$

$$R_{Ax} = T_{BC} = 1,67 \cdot 10^5 N$$

$$R_{Ay} = 200 \cdot 10^3 N$$

Exercici 5.

a) Representem el diagrama de solid lliure (amb la notació de l'enunciat)

b) Les equacions d'equilibri als eixos horitzontal i vertical, i la de moments (des del punt B), queden

$$F_{Bx} + F_{Ah} = F$$
 $F_{By} = F_{Av}$ $F(L - s) = F_{Ah} \cdot L$

Hem d'afegir una condició geomètrica sobre les components de la força que fa la barra en el punt B de la pantalla,

$$\tan \alpha = \frac{F_{By}}{F_{Bx}}$$

Ara, per una banda tenim

$$F_{Ah} = \frac{F(L-s)}{L} = \frac{840 \cdot (2-1,25)}{2} = 315 \, N$$

i per una altra

$$F_{Bx} = F - F_{Ah} = 840 - 315 = 525 N$$

i amb

$$F_{By} = F_{Bx} \tan \alpha = 525 \tan 60^{\circ} = 909, 33 N$$

finalment,

$$F_{BC} = \sqrt{(F_{Bx})^2 + (F_{By})^2} = \sqrt{525^2 + 909, 33^2} = 1050 \, N$$

c) D'abans tenim que

$$F_{Ah} = 315 \, N$$

i és immediat calcular

$$F_{Av} = F_{By} = 909,33 \, N$$

d) Al diagrama de solid lliure de la pantalla no hi apareix la barra BC, però és fàcil trobar la força horitzontal sobre ella en el punt C (podeu provar de representar el diagrama de solid lliure de la barra BC) ja que en aquest punt hi ha d'haver una força vertical F_{Cy} que equilibri F_{By} i una horitzontal F_{Cx} que equilibri F_{Bx} de forma que

$$F_{Cx} = F_{Bx} = 525 N$$

Pàg 297

Exercici 1. a) El diagrama de solid lliure és

b) Per trobar F_{BC} necessitem calcular les components F_{BH} i F_{BV} , ja que és

$$F_{BC} = \sqrt{F_{BH}^2 + F_{BV}^2}$$

Les equacions d'equilibri als eixos horitzontal i vertical i la de moments (des del punt B), són

$$F_{BH} = F_{AH}$$
 $F_{AV} = mg + F_{BV}$ $mgL_2 = F_{AH}L_1$

a més, tenim una condició geomètrica sobre F_{BV} i F_{BH}

$$\tan \alpha = \frac{F_{BV}}{F_{BH}}$$

De forma que

$$F_{AH} = \frac{mgL_2}{L_1} = \frac{35 \cdot 9, 8 \cdot 0.5}{3} = 57,17 \, N = F_{BH}$$

$$F_{BV} = F_{BH} \tan \alpha = 57,17 \tan 45^{\circ} = 57,17 N$$

i, finalment

$$F_{AV} = mg + F_{BV} = 35 \cdot 9, 8 + 57, 17 = 400, 17 N$$

Ara, ja podem calcular F_{BC}

$$F_{BC} = \sqrt{F_{BH}^2 + F_{BV}^2} = \sqrt{57,17^2 + 57,17^2} = 57,17\sqrt{2} = 80,85 \, N$$

c) Dels càlculs anteriors es veu que

$$F_{AV} = 400, 17 N$$
 $F_{AH} = 57, 17 N$

d) La força horitzontal F_{cable} sobre la barra BC ha d'estar equilibrada per F_{BH} , ja que no hi ha més forces horitzontals sobre la barra BC, llavors,

$$F_{cable} = F_{BH} = 57,17 \, N$$

Exercici 3. Fem una representació del diagrama de solid lliure per la porta

Les equacions d'equilibri als eixos horitzontal i vertical i la de moments (des del punt B), són

$$F_{guia} = F_{CDx}$$
 $F_{cp} = F + mg + F_{CDy}$ $F \cos \alpha L_2 = F_{CD}L_1$

que es poden escriure com

$$F_{quia} = F_{CD} \sin \alpha$$
 $F_{cp} = F + mg + F_{CD} \cos \alpha$ $F \cos \alpha L_2 = F_{CD} L_1$

De la darrera podem aïllar F_{CD}

$$F_{CD} = \frac{F\cos\alpha L_2}{L_1}$$

per substituir a la segona i obtenir

$$F_{cp} = F + mg + \frac{F\cos\alpha L_2}{L_1}\cos\alpha$$

traient factor comú i reordenant

$$F\left(1 + \frac{\cos^2 \alpha L_2}{L_1}\right) = F_{cp} - mg$$

llavors

a)
$$F = \frac{F_{cp} - mg}{1 + \frac{\cos^2 \alpha L_2}{L_1}} = \frac{500 - 30 \cdot 9, 8}{1 + \frac{\cos^2 45^{\circ} \cdot 1,06}{0,6}} = 109, 4 N$$

b) Un resultat parcial d'abans ens permet calcular

$$F_{CD} = \frac{F \cos \alpha L_2}{L_1} = \frac{109, 4 \cdot \cos 45^{\circ} \cdot 1, 06}{0, 6} = 136, 64 N$$

i finalment

c)
$$F_{guia} = F_{CD} \sin \alpha = 136,64 \cdot \sin 45^{\circ} = 96,62$$

Exercici 4.

a) Fem una representació del diagrama de solid lliure del respatller

A priori podríem suposar que hi ha una component horitzontal al punt O, però com que no hi ha cap altre en aquesta direcció, hem de concloure que $F_{Oh} = 0$.

L'equació d'equilibri a l'eix vertical i la de moments (des del punt P), són

$$F_p + F_{Ov} = mg$$
 $mg \cos \alpha \frac{L_1 + L_2}{2} = F_{Ov} \cos \alpha$

b) Si $\alpha \neq 90^{\circ}$ l'equació de moments es pot escriure

$$mg\frac{L_1 + L_2}{2} = F_{Ov}$$

d'on

$$F_{Ov} = mg \frac{L_1 + L_2}{2} = 50 \cdot 9, 8 \cdot \frac{0,250 + 0,380}{2} = 154,35 \, N$$

i ja hem raonat que $F_{Oh} = 0$

c) L'angle α en la configuració inicial que es mostra es pot calcular com

$$\sin\alpha = \frac{h}{L_2} \rightarrow \alpha = \arcsin\frac{h}{L_2} = \arcsin\frac{0.3}{0.38} = 52,13^{\circ}$$

En la posició que es troba tombat el respatller, l'alçada que té val h-b de forma que pel nou angle β tenim,

$$\sin \beta = \frac{h-b}{L_2} \rightarrow \beta = \arcsin \frac{h-b}{L_2} = \arcsin \frac{0, 3-0, 15}{0, 38} = 23, 25^{\circ}$$

