度量空间与集合(作业: 20230220)

- 1. 度量空间: 设 X 是集合, 有映射 $d:(x,y) \to d(x,y).d$ 满足:
 - (a) $\forall x, y \in X, d(x, y) \ge 0$;
 - (b) $\forall x, y \in X, d(x, y) = d(y, x);$
 - (c) $\forall x, y, z \in X, d(x, z) \le d(x, y) + d(y, z);$

则称 d 为一个度量(距离), (X,d)为度量空间;

- 2. 常见度量:
 - (a) p- 度量: $d_p(x,y) = \left(\sum_{x=1}^n |x_i y_i|^p\right)^{\frac{1}{p}};$
 - (b) ∞ 度量: $d_{\infty}(x,y) = \max |x_i y_i|$;
- 3. 球: 在度量空间 (X,d) 中,称
 - (a) 开球: $B(x_0, r) = \{x \in X | d(x, x_0) < r\};$
 - (b) 闭球: $\overline{B(x_0,r)} = \{x \in X | d(x,x_0) \le r\};$
 - (c) 球面: $S(x_0, r) = \{x \in X | d(x, x_0) = r\};$
- 4. ε 邻域: 开球 $B(x_0, \varepsilon)$ 称为 x_0 的一个 ε 邻域;
 - (a) 开集: 度量空间 $(X,d), M \subset X$, 若对任意元素 $x_0 \in M$, 存在 $\varepsilon > 0$, 使得 $B(x_0, \varepsilon) \subset M$, 则称 $M \in X$ 中的开集;
 - (b) 闭集: 度量空间 (X,d), $K \subset X$, 若 $K^c = X | K$ 是开集, 则称 K 是 X 中的闭集;
 - (c) 内点: 度量空间 $(X,d), M \subset X, x_0 \in M$, 若存在 $\varepsilon > 0$, 使得 $B(x_0, \varepsilon) \subset M$, 则称 $x_o \in M$ 的一个内点;
 - (d) 内部: M 中全体内点构成的集合称为 M 的内部, 记为: M^{o} ;
- 5. 集类: Ξ 是 X 中某些子集构成的集合, 称 Ξ 为集类;
- 6. 拓扑空间: 满足开集条件的集类组成的空间 (X,Ξ) , 定义见另一笔记文件;
- 7. 聚点 (极限点): 度量空间 $(X,d), M \subset X, x_0 \in X, \Xi, x_0$ 的任一 ε 邻域 都至少函有一个不同于 x_0 的点 $y_0 \in M$, 则称 $x_0 \in M$ 的聚点;

- (a) 导集: M 的聚点全体构成的集合称为 M 的导集, 记为 M';
- (b) 闭句: $\bar{M} := M \cup M'$;
 - i. 度量空间 $(X,d), M \subset X, 则 \overline{M}$ 是闭集;
 - ii. 度量空间 $(X,d), M \subset X : M$ 是闭集 $\Leftrightarrow M = \overline{M}$;
- (c) 边缘: $\partial M = \bar{M} M^o$;
- 8. 有限集: 如果集合中元素个数有限,则称其为有限集;
 - (a) 可列集: 若集合中元素的个数无限多, 但可与自然数集 № 中的元素 ——对应, 则集合为可列集;
 - (b) 可数集: 有限集和可列集统称为可数集;
 - (c) $A_n(n \in \mathbb{N})$ 为可列集, 则 $A = \bigcup_{n=1}^{\infty} A_n$ 为可列集;
 - i. 推论: 可列个可列集的并集为可列集. 如: 有理数集 Q 是可列 集:
 - (d) 常见的不可列集: 无理数集, 实数集 ℝ;
- 9. 稠密子集: 度量空间 $(X, d), M \subset X$, 若 $\overline{M} = X$, 则称 M 在 X 中稠密, M 是 X 中的稠密子集;
- 10. 可分性: 若 X 有一个可数的稠密子集 M, 则称 X 是可分的, (X, d) 是一个可分空间;
 - (a) 常见可分空间: $(\mathbb{R}^n, d_p)(1 \le p \le \infty)$, $(l^p, d_p)(1 \le p \le \infty)$, 其中 $l^p = \{\{x_i\}, i \in \mathbb{N}, \sum_{i=1}^{\infty} |x_i|^p < \infty\};$
 - i. 函数空间可分: $(\mathbb{C}[a,b],d_{max})$ $d_{max}(f,g) = \max_{a \leq t \leq b} |f(t) g(t)|$ $C[a,b] = \{f: [a,b] \rightarrow R | \exists f'(t)\}$
 - (b) 常见不可分空间: (l^{∞}, d_{∞}) ; $l^{\infty} = \{(x_i) | i \in \mathbb{N}, \sup_{i \in \mathbb{N}} |x_i| < \infty\}$
- 11. 作业: 20230220
 - (a) 设 (X,d) 是任一度量空间, 证明由 $\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}$ 在 X 上定义了另一个度量, 且在 \tilde{d} 度量下, X 是有界的;