

CALCULUS

Prof. Liang ZHENG

Spring 2025

- Integration by parts is a technique for simplifying integrals of the form $\int u(x)v'(x) dx$. It is useful when u can be differentiated repeatedly and v' can be integrated repeatedly without difficulty.
- The integrals $\int x \cos x dx$ and $\int x^2 e^x dx$ are such integrals because u(x) = x or $u(x) = x^2$ can be differentiated repeatedly to become zero, and $v'(x) = \cos x$ or $v'(x) = e^x$ can be integrated repeatedly without difficulty.
- Integration by parts also applies to integrals like

$$\int lnxdx$$
 and $\int e^x cosxdx$.

In the first case, the integrand $\ln x$ can be rewritten as $(\ln x)(1)$, and $u(x) = \ln x$ is easy to differentiate while v'(x) = 1 easily integrates to x. In the second case, each part of the integrand appears again after repeated differentiation or integration.

1 Product Rule in Integral Form

If u and v are differentiable functions of x, the Product Rule says that

$$\frac{d}{dx}[u(x)v(x)] = u'(x)v(x) + u(x)v'(x)$$

In terms of indefinite integrals, this equation becomes

$$\int \frac{d}{dx} [u(x)v(x)]dx = \int [u'(x)v(x) + u(x)v'(x)]dx$$

or
$$u(x)v(x) = \int u'(x)v(x)dx + \int u(x)v'(x)dx$$

Rearranging the terms of this last equation, we get

$$\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx \quad or \quad \int udv = uv - \int vdu$$

which is called "Integration by parts" formula.

- ② Tip to choose u and dv in $\int f(x) dx$
- (a) Try letting u be a factor of f(x) and u' is a function simple than u.
- (b) Try letting dv be the most complicated portion of f(x)dx and $\int dv$ can be found by a basic integration formula.

Example 1 Evaluate

$$\int x \cos x dx$$

Example 2 Evaluate

$$\int lnxdx$$

Example 3 Evaluate

$$\int x^2 e^x dx$$

Example 4 Evaluate

$$\int e^x \cos x dx$$

Skill Practice 1 Evaluate

$$\int e^x \sin x dx$$

Example 5 Obtain a formula that expresses the integral

$$\int cos^n x dx$$

in terms of an integral of a lower power of $\cos x$ $(n \ge 2)$.

$$\int cos^{n}xdx = \frac{cos^{n-1}xsinx}{n} + \frac{n-1}{n} \int cos^{n-2}xdx$$

- The formula found in Example 5 is called a **reduction formula** because it replaces an integral containing some power of a function with an integral of the same form having the power reduced.
- When *n* is a positive integer, we may apply the formula repeatedly until the remaining integral is easy to evaluate.
- For example, the result in Example 5 tells us that:

$$\int \cos^3 x dx = \frac{1}{3}\cos^2 x \sin x + \frac{2}{3}\int \cos x dx = \frac{1}{3}\cos^2 x \sin x + \frac{2}{3}\sin x + C$$

3 Evaluating Definite Integrals by Parts

Integration by Parts Formula for Definite Integrals

$$\int_{a}^{b} u(x)v'(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx$$

Example 6

Find the area of the region bounded by the curve $y = xe^{-x}$ and the x-axis from x = 0 to x = 4.

$$\int_0^4 xe^{-x}dx$$

4 Integrating Inverses of Functions

Integration by parts leads to a rule for integrating inverses that usually gives good results:

Let $y = f^{-1}(x)$, then x = f(y) and dx = f'(y) dy. Therefore:

$$\int f^{-1}(x)dx = \int yf'(y)dy = \int yd[f(y)] = yf(y) - \int f(y)dy = xf^{-1}(x) - \int f(y)dy$$

Example 7 For the integral of $\ln x$: $y = f^{-1}(x) = \ln x \implies x = e^y$, $dx = e^y dy$

$$\int \ln x \, dx = \int y e^y \, dy = \int y \, d(e^y) = y e^y - \int e^y \, dy = y e^y - e^y + C = x \ln x - x + C$$

Example 8 For the integral of $\cos^{-1}x$: $y = f^{-1}(x) = \cos^{-1}x \implies x = \cos y$, $dx = -\sin y dy$

$$\int \cos^{-1}x dx = x\cos^{-1}x - \int \cos y dy = x\cos^{-1}x - \sin(\cos^{-1}x) + C$$

Example 9

Use the formula: let $y = f^{-1}(x)$

$$\int f^{-1}(x)dx = \int yd[f(y)] = yf(y) - \int f(y)dy = xf^{-1}(x) - \int f(y)dy$$

to evaluate

(a)
$$\int \sin^{-1}x dx$$

$$(b) \int tan^{-1}xdx$$

(c)
$$\int log_2 x dx$$

Skill Practice 2

Evaluate the following integrals:

(a)
$$\int xe^{2x}dx$$

$$(b) \int_0^{\pi/2} x^3 \cos x dx$$

Skill Practice 3 Finding volume

Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve $y = e^x$ and the line $x = \ln 2$ about the x-axis.