MATH 644

Chapter 6

SECTION 6.3: RIEMANN MAPPING THEOREM

Contents

Statement of the Theorem

2

STATEMENT OF THE THEOREM

THEOREM 1. Suppose $\Omega \subset \mathbb{C}$ is simply-connected and $\Omega \neq \mathbb{C}$. Then there exists a one-to-one map f of Ω onto \mathbb{D} . If $z_0 \in \Omega$, then there is a unique such map with $f(z_0) = 0$ and $f'(z_0) > 0$.

Idea of the proof.

1. Define a family

 $\mathcal{F} = \{f : f \text{ is one-to-one, analytic, } |f| < 1 \text{ on } \Omega, f(z_0) = 0, f'(z_0) > 0\}.$

- 2. Show \mathcal{F} is normal on Ω .
- 3. Extract a subsequence $(f_n) \subset \mathcal{F}$ which converges to some f.
- 4. Show that f has the desire properties.

Lemma 2. The family \mathcal{F} is non-empty and normal in Ω .

Proof.

Non-empty: Let
$$\omega_0 \notin \Omega$$
 ($\Omega \neq C$)

Then $f(z) = z - \omega_0$ is analytic $A \neq 0$ in Ω .

Thuefore, $\exists \varphi : \Omega \rightarrow C$ analytic $A \neq 0$ in Ω .

I) $\varphi(z) = \varphi(\omega) \Rightarrow (\varphi(z))^2 = (\varphi(\omega))^2$
 $\Rightarrow f(z) = f(\omega)$
 $\Rightarrow z = \omega - D$ φ is an $z = \omega$

So, $z \neq \omega$ then $\varphi(z) \neq -\varphi(\omega)$

So, $z \neq \omega$ then $\varphi(z) \neq -\varphi(\omega)$

Notice: $\varphi(\omega) \in B(a_1r) \iff -\varphi(\omega) \in B(-a_1r)$

Thuefore, from z), $\varphi(Dz)$ avoid $z = \omega$

4) Set y:= _ r , well defined on I because of 3). Then y is one-to-one, |4(2)|< 1 because |4(2)+a|>r, for any ZEJZ. 5) les an automorphism P2: D > D Do that Ψα (4(20))=0 A d (4(20)) > 0. Conclusion: g(z) = Px 04 E F

Normality:

I locally bounded => I is normal. I

THEOREM 3. [Hurwitz] Suppose $(g_n)_{n=1}^{\infty}$ is a sequence of analytic functions on a region Ω and suppose $g_n(z) \neq 0$ for all $z \in \Omega$ and all n. If g_n converges uniformly to g on compact subsets of Ω , then

- either g is identically zero in Ω or;
- $g(z) \neq 0$ for all $z \in \Omega$.

Proof.

Weierstrass' Therem
$$\Rightarrow$$
 g is analytic on \mathbb{Z} .

Suppose $g \not\equiv 0$, then g has isolated zeros in \mathbb{Z} .

Let $D \subseteq \mathbb{Z}$ be a clisk p_i !. $g(z) \neq 0$, $\forall z \in \partial \Delta$.

So, $g_n \longrightarrow g$ uniformly on $\partial \Delta$.

Since
$$|g|$$
 is continuous on the compact set $\partial \Delta$
min $|g(z)| = |g(z_0)| > 0$ (some $z_0 \in \partial \Delta$)
 $z_0 \in \partial \Delta$

Let NEIN be p.t.:

max
$$|g_N(z)-g(z)| < \frac{|g(z_0)|}{2}$$

then, finding $z \in \partial \Delta$, we have $|g_N(z) - g_1(z)| < |g_1(z_0)| < |g_2(z_0)| < |g_1(z_0)| < |g$

COROLLARY 4. If $(g_n)_{n=1}^{\infty}$ is a sequence of one-to-one and analytic functions on a region Ω , and if g_n converges to g uniformly on compact subsets of Ω , then

• either g is one-to-one on Ω or;

Apply Hur Witz to g-glw)
on 2/2w, then

yn-gnlw)

wer.

• g is constant in Ω .

Proof of	the Riema	ınn Mappiı	ng Theorem.

From Lemma 2, F ≠ Ø & F is normal.

Let M= sup{ f'(Zo): f ∈ F}>0.

Let $(f_n) \subseteq F$ p.t. $f_n(z_0) \xrightarrow{n\to\infty} M$.

Replacing (fn) by one of its subsequence (normality) we may assume that fn -> f locally uniformly (some f).

By Weierstrass' thenem, f is analytic and first for locally uniformly.

This implies that f'(20) = H 7 0.

Also, by Hurwitz, fis one-to-one.

Also, $\lim_{n\to\infty} f_n(z_0) = f(z_0) = 0$.

Conclusion 1: f & F.

We now have to show that f(x) = 0. Suppose $33 \in \mathbb{D}$ sit. $f(z) \neq 3$, $\forall z \in \mathbb{Z}$.

Let
$$g_1(z) = \frac{f(z) - 3}{1 - 3} f(z) = T_1 \circ f(z)$$
 ($z \in R$).

Then $g_1(z) \neq 0$ $\forall z \in R$ d Ω is simply-consorbed

 $\Rightarrow \exists g_2 : \mathcal{R} \rightarrow \mathbb{D}$ $\Delta 1 \cdot g_2^2 = g_1$.

Notice that g_2 is also one-to-one.

Set $g(z) = \frac{g_2(z) - g_2(z_0)}{1 - g_2(z_0)} = T_2 \circ g_2(z)$ ($z \in R$).

Then, by construction, g is one-to-one d $g(z_0) = 0$.

If $\lambda = \frac{|g_1'(z_0)|}{|g_1'(z_0)|}$, then $\lambda g \in \mathcal{F}$.

Set $\varphi := T_1^{-1} \circ S \circ T_2^{-1}$, where $S(z) = z^2$.

Since $T_1^{-1} d T_2^{-1}$ are curtomorphisms of \mathbb{D} ,

the map φ is a 2-to-1 map of \mathbb{D} onto \mathbb{D} and

 $\varphi(0) = T_1^{-1} \circ S \circ T_2^{-1}(0)$
 $= T_1^{-1} \circ S \circ T_2^{-1}(0) = f(z_0) = 0$
 $\Rightarrow \varphi(0) = 0$.

Similar calculations show that $f(z) = \varphi \circ g(z)$.

By Schwarz's Lemma, $|\varphi'(0)| < 1$ (otherwise,

If $|\varphi'(0)| = 1$, then $|\varphi(z)| = \lambda z$, some $|\lambda| = 1$, $|\chi\rangle$)

So, $f'(z_0) = |f'(z_0)| = |\varphi'(g(z_0))| \cdot |g'(z_0)|$ $= |\varphi'(0)| \cdot |g'(z_0)|$

 $\langle |g'(z_0)| = (\lambda g'(z_0))$ this contradicts the maximality of $f'(z_0)$ $\Rightarrow f(z_0) = D$.

Uniquess

If $g \in F$ with clasine properties. then , he fog! al. h(o) = 0

 $\Rightarrow h(z) = \lambda z$

But, $\lambda = 1$ because $h'(6) = \frac{f'(z_0)}{g'(z_0)} \in (6, \infty)$.

= f=g.

 \square