Lab session 6: Propositional logic

Pierre-Alexandre Murena

May 3, 2024

1 Propositional logic: Base questions

Question 1. Write the truth table for the propositions $\phi_1 = a \to (b \lor (b \to a))$

Question 2. Which of the following propositions are tautologies? Unsatisfiable?

$$\phi_1 = a \to (b \lor (b \to a))$$

$$\phi_2 = (a \to b) \lor \neg (b \to a)$$

$$\phi_3 = ((b \to c) \leftrightarrow (a \land \neg c)) \to (b \lor \neg c)$$

$$\phi_4 = \neg c \land ((a \leftrightarrow b) \to c) \land (a \leftrightarrow b)$$

2 Substitutions in tautologies

Remark: The theorem presented in this exercise is important and is considered to be part of what you must know¹.

The substitution of a propositional symbol x by a propositional formula ψ in a propositional formula ϕ is the propositional formula, denoted by $\phi[x \setminus \psi]$, similar to ϕ , but with all instances of x replaced by ψ .

Question 3. For
$$\phi = ((a \lor b) \to (b \land c))$$
 and $\psi = (a \leftrightarrow c)$, what is $\phi[a \setminus \psi]$?

We will now prove the following result:

Theorem 1. If ϕ is a tautology, then any substitution $\phi[x \setminus \psi]$ (for any propositional symbol x and any proposition ψ) is a tautology.

Question 4. Let \mathcal{I} be an interpretation. What is $(\phi[x \setminus \psi])^{\mathcal{I}}$? Prove the theorem.

We will now use this result to prove that, for all propositional sentences α , $\neg(\neg \alpha) \equiv \alpha$.

Question 5. Using the deduction theorem, show that $\neg(\neg \alpha) \equiv \alpha$ if and only if $\neg(\neg \alpha) \rightarrow \alpha$ and $\alpha \rightarrow \neg(\neg \alpha)$ are tautologies.

Question 6. Show that, for a propositional symbol x, we have $\neg(\neg(x)) \equiv x$. Using the deduction and substitution theorems, as well as the previous answer, show the result for any proposition α .

¹In other words, don't be surprised if you have a question about it in the exam.

3 Enumeration method

Question 7. Given the knowledge base $KB = (a \lor c) \land (b \lor \neg c)$ and the propositional formula $\alpha = a \lor b$, show that $KB \models \alpha$ using the enumeration method.

The complexity of a propositional formula is defined recursively as follows. An atomic formula (i.e. a propositional symbol) has complexity 0. A formula of complexity n + 1 is a compound proposition of 1 or 2 propositions of complexity at most n (the composition can be of 1 or 2 variables).

Question 8. What is time complexity of a naive implementation of the enumeration method, with a KB of complexity c_1 , a proposition of complexity c_2 and a language of n atomic variables.