Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Solutions for Tutorial Sheet 5

1. (a)
$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} = \begin{cases} \lim_{h \to 0} \frac{h}{h} = 1, & h \in \mathbb{Q} \\ \lim_{h \to 0} \frac{\sin h}{h} = 1, & h \notin \mathbb{Q}. \end{cases}$$
 Thus $f'(0) = 1$.

(b)
$$\lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} \frac{\sin\frac{1}{h}}{\sqrt{h}}$$
 doesn't exist. So f is not differentiable at $x=0$.

(c)
$$\lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} h\cos\frac{1}{h} = 0$$
. Therefore f is differentiable at $x=0$.

(d)
$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{e^{-\frac{1}{h^2}}}{h} = \lim_{k \to \infty} \frac{k}{e^{k^2}} = 0$$
. Thus f is differentiable at 0.

(e)
$$\lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} \cos \frac{1}{h}$$
 doesn't exist. So f is not differentiable at 0.

(f)
$$\lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} \frac{e^{-|h|}-1}{h}$$
 doesn't exist. So f is not differentiable at 0.

2. (a)
$$\lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0} \frac{h^3 \sin\frac{1}{h}}{h} = \lim_{h\to 0} h^2 \sin\frac{1}{h} = 0$$
. Thus f is differentiable at 0 and $f'(0) = 0$. Now $f'(x) = 3x^2 \sin\frac{1}{x} - x \cos\frac{1}{x}$. So $\lim_{x\to 0} f'(x) = 0 = f'(0)$. Therefore f' is continuous at $x = 0$.

(b)
$$f'(0) = \lim_{h\to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h\to 0} \frac{h^2 \cos\frac{1}{h}}{h} = 0$$
. Therefore f is differentiable at 0 and $f'(0) = 0$. Now $f'(x) = 2x \cos\frac{1}{x} + \sin\frac{1}{x}$, $x \neq 0$. So limit does not exist as $x \to 0$. Thus f' is not continuous at $x = 0$.

(c) For x > 0, $f'(x) = 2x \ln \frac{1}{x} - x$ and $\lim_{x \to 0^+} f'(x) = 0$. Also for x < 0, $f'(x) = 2x \ln \frac{1}{|x|} - x$ and $\lim_{x \to 0^-} f'(x) = 0$. As $f'(0) = \lim_{h \to 0} h \ln \frac{1}{|h|} = 0$, thus f' is continuous at 0.

3. Use
$$\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$$
.

4. Use L'Hospital rule. (a)
$$\frac{1}{2}$$
, (b) $-\frac{1}{24}$, (c) -1.