5 VD - Singular value decomposition.
Note title
Defn: Criven A E C", a singular value decomposition (SVD)
of A is a factorization A=UZV where U&V
are unitary &) is diagonal.
The diagonal entries of 2 are called the singular values
Defor Criven A E C ^{m×n} , a singular value decomposition (SVD) of A is a factorization A = U Z V* where U & V are unitary & I is diagonal. The diagonal entries of Z are called the singular values of A Z are usually arranged in decreasing order.
Dimension considerations: let m>n (WLOG); for simplicity, assumed rank = n.
Reduced SVD - What happens if $m \le n$? $n \le n$? $n \le n$
What happens nxn nxn.
if $m \leq n^2$ $m \times n$ $m \times n$
· Full SYD - A = U
$A = \mathcal{U} \setminus \mathcal{U}$
5 [6n.cn]
Columns of U are called "left singular vectors" of A V "right singular vectors" of A.
V "right singular vectors" of A
If $A = U \sum V^*$, then $AV = U \sum \left(\sum_{0 \in G_n} \begin{bmatrix} C_1 & C_2 & O \end{bmatrix} \right)$
$A\left[v_{1}\right] \cdot \left v_{n}\right] = \left[u_{1}\right] \cdot \cdot \cdot \left[u_{n}\right] \left[v_{1}\right] \cdot \cdot$
·
$[Av_1 Av_2 \cdots Av_n] = [\sigma_1 u_1 \cdots \sigma_n u_n]$ $i \in Av_i = \sigma_i u_i \qquad \forall 1 \leq i \leq n.$
Onsequences- The e-values of A*A are o?. The night singular vectors
vi are the corr. orthonormal e-vectors i.e.
The e-values of A^*A are σ_i^2 . The night singular vectors v_i are the corr orthonormal e-vectors i e. $(A^*A)v_j = \sigma_j^2 v_j \qquad 1 \le j \le n$
nxm mxn


```
If A = U \Sigma V^*, A^* = V \Sigma^* u^*, \Sigma = \Sigma^*
                            3 SVD of A*:
(Singular values of A)
= singular values of A*)
                                                                                                                                                                                                                                                                                                                     :. A* = V \(\S\T\) of A*
                                                                                                      Columns of V are left singular vectors of A*.
                                                                                                                                                                                                               A* = V I U*
                                                                                                                                                                                                     A^* u_j = \sigma_j v_j
G_i = \sigma_i \left( w h_i^2 \right)
                                                   I_{5} I_{7} I_{7
                                          Similarly, <AA*v, v> = <A*v, A*v>= ||A*v|| >0 +vEV.
                                                                  .. The e-values of A*A & AA* are real & non-neg.

Their +ve sq. roots are the singular values of A(& A*).
                              · Existence of SVD - after matrix norms is done.
                                · Geometry of the SVD: A & Cmxn A = U \( \subseteq V \) \( \tag{V} \) \(
 A: R" - R".
                                                                                                                                                                                                                                                                                             = \mathcal{U}\left(\sum (v^*z)\right)
```


