Ion Implantation

Contents

- > General Introduction
- > Ion Implant
 - ***Introduction**
 - Application
 - System Overview
 - *Beam Wafer Interaction
 - Annealing
 - ***RTP**

Introduction

- Introducing dopants into the silicon crystal can alter the "type" of the silicon
 - *from n type to p type and vise versa
- Dopants are usually introduced in a two stage process
- Predeposition and Drive-in
- Implant and Drive-in (anneal)

Doping the Silicon

Doping the Silicon 2

- In older processes the Source /Drain regions were doped using Thermal Diffusion
- With the maturing of implant technology, CMOS processes became possible because of the greater control over the dopant quantities introduced to the silicon
- In CMOS processes up to about the 130nm node all of the doping with the exception of the saturation doping of polysilicon was done by implantation.
- Below the 130nm node this is also now done by implant with the poly doped N-Type over the N-Channel and P-Type over the P-Channel

Process Overview

- > Ion implantation is an enabling technology
- Single MOS processes were possible prior to the development of implantation
- Furnace doping techniques are too coarse for the fine control needed in the doping of the well regions in CMOS processes
- ➤ Furnace doping saturation dopes the surface during the pre-deposition stage, whereas implantation can control the dopant quantity down to the 10¹¹ cm⁻² region

SYSTEM OVERVIEW

- > ION SOURCE
- > MASS ANALYSIS
- > ACCELERATION
- > SCANNING
- > DOSE MEASUREMENT
- > VACUUM SYSTEM

ION IMPLANTER SCHEMATIC

High Voltage Terminal

ION SOURCE

IMPLANT GASES

SPECIESIMPLANTED
SPECIESSOURCE
TYPEDOPANT
TYPE

BORON B^{11} BF_3 P TYPE

PHOSPHOROUS P³¹ PH₃ N TYPE

ARSENIC As^{74} AsH_3 NTYPE

MASS ANALYSER MAGNET

- > B=(2mV/qr²)^{1/2}
- B=MAGNETIC FIELD STRENGTH
- > m=ION MASS
- > V=ACCELERATING VOLTAGE
- > q=ION CHARGE
- > r=MAGNET RADIUS

MASS SELECTION MAGNET

MASS ANALYSIS

ACCELERATING COLUMN

ACCELERATION

> ION ENERGY

ION ENERGY = CHARGE ON ION X ACCELERATING VOLTAGE

ION CHARGE = 1 ACCELERATING VOLTAGE = 50kV ION ENERGY = 50keV

ION CHARGE = 2 ACCELERATING VOLTAGE = 50kV ION ENERGY = 100keV

FOCUS

SCANNING

- Electrostatic Scanning
 - Used on medium current machines
- Mechanical scanning
 - *used on high current machines
- > Hybrid scanning
 - *used on medium current systems on large wafer sizes (8 inch)

ELECTROSTATIC SCANNING

Y Scan

X Scan

X and Y Scan

MECHANICAL SCANNING

rotation direction wafer scan direction

Stationary Beam

Wafer Moved Mechanically in X and Y Direction

HYBRID SCANNING

X Scan Electrostatically

Wafer Moved Mechanically in Y Direction

NEUTRAL TRAP

DOSE MEASUREMENT

> DOSE : IONS/cm²

DOSE MEASUREMENT

- > Typical dose ranges
- > CMOS wells 1e12-1e13 ions/cm²
- Threshold adjust implants 1e11-1e12 ions/cm²
- Source drain implants 1e15-1e16 ions/cm²

ION IMPLANTATION

BEAM WAFER INTERACTION

MATHEMATICAL MODEL

The total distance travelled in the Silicon is called the Range⇒ R

- lons lose energy in collisions with atoms in the silicon lattice (Target Atoms)
- > Two types of collision
 - Nuclear collisions
 - Transfer of energy to the target nuclei
 - Electronic collisions
 - Interaction of the charged ion with the electron cloud of the target atom

IMPLANT MODELLING

- > Rp Average range of ions in the wafer
- > Distribution around the range
- Computer models are used to simulate range of ions in the lattice

Gaussian Expression

> The expression which describes this distribution is

$$C_x = C_p \exp \left[-\left(x - R_p\right)^2 \right]$$

$$2\Delta R_p$$

➤ The area under the Gaussian curve is the implanted dose and is equal to
∞

$$Q=\int_{\mathbb{R}}C_{x}dx$$

For an implant completely contained within the silicon the dose is equal to

$$Q = \sqrt{2\pi} C_p \Delta R_p$$

Similarity to The Diffusion Equation

Note how similar the implant concentration expression is to the diffusion equation

$$C_x = C_p \exp \left[\frac{-(x - R_p)^2}{2\Delta R_p^2} \right]$$

$$C_{(x,t)} = \frac{S}{\sqrt{\pi Dt}} \exp\left[-\frac{x^2}{4Dt}\right]$$

4Dt is represented by $2\Delta Rp^2$

Similar but the distribution is shifted along the x axis by a distance R_p

Junction Formation

The junction between the P/N region occurs where the concentration of the introduced dopant is equal to the background dopant concentration

JUNCTION FORMATION

- > High energy implant
- > Two junctions can be formed during implant

$$C_x = C_p \exp \left[-\frac{(x - R_p)^2}{2\Delta R_p^2} \right]$$

Junction occurs where the implanted concentration is equal to the background concentration.

$$x_j = R_p \pm \Delta R_p \sqrt{2 \ln \frac{C_p}{C_b}}$$

JUNCTION FORMATION

Peak concentration normally at surface of the silicon, the oxide/silicon interface

IMPLANT MASKING

- Normally the implant energy is chosen to put the peak of the implant just at the oxide/silicon interface
- This mimics the type of junction profile formed with thermal doping

Channeling

- Channelling is where incident ions fly between the target atoms in the silicon lattice
- The ions do not have collisions as early as "expected"
- This means that ions travel further than the models would normally predict

Prevention of Channeling

- Wafer normally tilted to avoid channeling
- Implant oxide also helps to reduce channeling by scattering ion beam

Channeling Affect

Exponential tail due to channeling in wafer

DAMAGE

- > Electronic collisions
 - ions lose energy due to excitation of electrons in silicon wafer
- Nuclear collisions
 - collisions between ions and atoms in the wafer
- For the same energy heavy ions create more damage close to the surface
 - Even light ions lose the last of their energy through nuclear collisions

ANNEALING

ANNEALING

- Heavier ions create an amorphous layer at the surface
- A lower annealing temp. required at high doses due to formation of this amorphous layer
- The effect is know as "Solid Phase Epitaxial Growth"
- The underlying still crystalline silicon acts as a seed for the recrystallization

ION IMPLANTATION

RAPID THERMAL PROCESSOR

RAPID THERMAL PROCESSER

<u>RTP</u>

ION IMPLANTATION

WAFER CHARGING

WAFER CHARGING

- Positive ions arrive at wafer
- Negative electrons removed from wafer
- Charge builds up on wafer surface
- Use source of electrons to neutralize the wafer charge

ELECTRONS

CHARGE NEUTRALISATION

- Beam is scanned outside wafer
- lons hit graphite ring and knock out electrons
- Electrons are carried to wafer surface
- Electrons are used to prevent positive charge build up

Summary Implantation

- Enabling technology
- Modern processes <u>all</u> doping introduction by implantation
- Implanted species must have a heat treatment after the implant
 - ❖ To repair crystal damage
 - To activate the implanted ions

