Aprenda Java e Processo de software

Baseado no Personal Software Process (PSP) para Engenheiros - Parte 1

Programa 1

1. Requisitos do software

Construa um programa para calcular a média e o desvio padrão de um conjunto arbitrário de números reais. O programa pode ler os n números reais a partir do teclado, de um arquivo ou de alguma outra fonte de dados.

A média é o valor médio de um conjunto de dados. A média é a medida de localização mais comumente utilizada para um conjunto de dados. A média localiza o centro dos dados. A fórmula para calcular a média é:

$$x_{avg} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Por exemplo, considere os dados da Tabela 1 para o cálculo da média:

n	x	
1	186	
2	699	
3	132	
4	272	
5	291	
6	331	
7	199	
8	1890	
9	788	
10	1601	
Total	$\sum_{i=1}^{10} x_i = 6389$	

Tabela 1. Conjunto de dados para exemplo sobre média.

Com isto, podemos substituir o valor intermediário da fórmula, obtendo o valor da média.

$$x_{avg} = \frac{6389}{10}$$
$$x_{avg} = 638, 9$$

O desvio padrão é uma medida do espalhamento ou dispersão de um conjunto de dados. Quanto mais dispersos estão os dados, maior é o desvio padrão. Por exemplo, considere duas listas de notas finais para uma turma com 30 alunos; uma lista varia de 31% à 98% enquanto a outra varia de 82% à 93%. O desvio padrão da primeira lista será maior do que o desvio padrão da segunda lista. A fórmula para calcular o desvio padrão, σ, é:

$$\sigma = \sqrt{\frac{\sum\limits_{i=1}^{n} (x_i - x_{avg})^2}{n-1}}$$

em que:

- Σ é o símbolo do somatório
- *i* é um índice para os *n* números
- x é um dado do conjunto
- n é a quantidade de itens no conjunto de dados

Para o cálculo do desvio padrão, considerando os dados da Tabela 1, temos:

n	x	$\left(x-x_{avg}\right)^2$
1	186	205118,41
2	699	3612,01
3	132	256947,61
4	272	134615,61
5	291	121034,41
6	331	94802,41
7	199	193512,01
8	1890	1565251,21
9	788	22230,81
10	1601	925636,41
Total	$\sum_{i=1}^{10} x_i = 6389$	$\sum_{i=1}^{10} (x_i - x_{avg})^2 = 3522761,90$

Tabela 2. Conjunto de dados para exemplo sobre desvio padrão.

Finalmente, podemos substituir o valor intermediário da fórmula do desvio padrão.

$$\sigma = \sqrt{\frac{3522761,00}{9}}$$

$$\sigma = \sqrt{391417,878}$$

$$\sigma = 625, 633981$$

Finalmente teste rigorosamente o programa. Ao menos dois casos de teste devem utilizar os dados contidos nas colunas da Tabela 3. Os resultados esperados são fornecidos na Tabela 4.

Tamanho estimado do proxy	Horas de desenvolvimento		
160	15,0		
591	69,9		
114	6,5		
229	22,4		
230	28,4		
270	65,9		
128	19,4		
1657	198,7		
624	38,8		
1503	138,2		

Tabela 3. Horas de desenvolvimento considerando o tamanho estimado do software.

Caso de teste	Valor esperado		Valor obtido	
	Média	Desvio Padrão	Média	Desvio padrão
Tabela 3: Tamanho estimado do proxy	550,6	572,03		
Tabela 3: Horas de desenvolvimento	60,32	62,26		

Tabela 4. Cálculo da média e desvio padrão considerando os dados da Tabela 3.

Para este software, é necessário utilizar uma lista encadeada para armazenar os n números para o cálculo. Uma lista encadeada é um tipo abstrato de dados geralmente utilizado para manter uma coleção de dados, geralmente implementada com ponteiros ou similares. Uma lista encadeada típica possui dois componentes: cabeça da lista e nós da lista. Geralmente a cabeça da lista aponta para o primeiro nó. Cada nó da lista aponta para o próximo nó. Ponteiros nulos são geralmente utilizados para indicar uma lista vazia ou o final da lista.

As operações típicas de uma lista encadeada são:

- adicionar nó,
- remover nó,
- obter próximo nó,
- obter nó anterior.

Para este software, não é permitido usar algoritmos e estrututuras de dados disponíveis na biblioteca padrão do Java (java.util) ou de terceiros.

2. Processo de software: Visão geral

2.1. Propósito

Guiar o desenvolvimento de programas modulares.

2.2. Critérios de entrada

- Descrição do problema.
- Formulário de Resumo de Planejamento de Projeto.
- Registro de Tempo.
- Registro de Erros.

2.3. Atividades

• Planejar

- o Produzir ou obter requisitos.
- o Estimar o tempo necessário para desenvolvimento.
- Preencher os dados de planejamento no formulário de Resumo de Planejamento de Projeto.
- o Completar o Registro de Tempo.

Desenvolver

- o Projetar o programa.
- o Implementar o projeto.
- Compilar o programa, consertar e registrar todos os erros encontrados.
- Testar o programa, consertar e registrar todos os erros encontrados.
- o Completar o Registro de Tempo.

• Encerrar

 Completar o formulário de Resumo de Planejamento de Projeto com os dados de tempo efetivo, erros e tamanho.

2.4. Critérios de saída

- Programa rigorosamente testado.
- Formulário de Resumo de Planejamento de Projeto preenchido com dados estimados e efetivos.
- Registro de Tempo completo.
- Registro de Erros completo.

3. Processo de software: Planejar

3.1. Propósito

Guiar o processo de planejamento do PSP.

3.2. Critérios de entrada

- Descrição do problema.
- Formulário de Resumo de Planejamento de Projeto.
- Registro de Tempo.

3.3. Atividades

• Analisar requisitos

- Produzir ou obter os requisitos para o programa.
- Garantir que os requisitos estão claros e sem ambiguidade.
- Resolver qualquer questão quanto aos requisitos.

Estimar recursos

- Fazer sua melhor estimativa do tempo necessário para desenvolver o programa.
- Preencher os dados de tempo estimado/planejado no formulário de Resumo de Planejamento de Projeto.

3.4. Critérios de saída

- Requisitos documentados.
- Formulário de Resumo de Planejamento de Projeto preenchido com as estimativas e tempo de desenvolvimento.
- Registro de Tempo completo.
- Registro de Erros completo.

4. Processo de software: Desenvolver

4.1. Propósito

Guiar o desenvolvimento de programas pequenos.

4.2. Critérios de entrada

- Requisitos.
- Formulário de Resumo de Planejamento de Projeto preenchido com estimativas de tempo de desenvolvimento do programa.
- Registro de Tempo.
- Registro de Erros.

4.3. Atividades

• Desenhar / Projetar

- Revisar os requisitos e produzir um projeto para atendê-los.
- Registrar no registro de erros qualquer erro encontrado nos requisitos.
- Registrar o tempo no Registro de Tempo.

• Programar

- o Implementar o projeto.
- Registrar no Registro de Erros qualquer erro encontrado nos requisitos e no projeto.
- Registrar o tempo no Registro de Tempo.

Compilar

- o Compilar o programa até que não existam mais erros de compilação.
- o Corrigir todos os erros encontrados.
- Registrar erros no Registro de Erros.
- Registrar o tempo no Registro de Tempo.

Testar

- Testar o programa até que os casos de teste executem sem erros.
- o Corrigir todos os erros encontrados.
- Registrar erros no Registro de Erros.
- o Registrar o tempo no Registro de Tempo.

4.4. Critérios de saída

- Programa rigorosamente testado.
- Registro de Tempo completo.
- Registro de Erros completo.

5. Processo de software: Encerrar

5.1. Propósito

Guiar o processo de encerramento do PSP.

5.2. Critérios de entrada

- Descrição do problema e requisitos.
- Formulário de Resumo de Planejamento de Projeto com dados de tempo de desenvolvimento do programa.
- Registro de Tempo.
- Registro de Erros.
- Programa testado e executável.

5.3. Atividades

- Registrar de erros
 - Revisar o Resumo de Planejamento de Projeto para verificar que todos os erros encontrados em cada fase foram realmente registrados.
 - Usando o melhor possível sua memória, corrigir qualquer dado omisso ou incorreto.

• Garantir a consistência de dados de erros

- Verificar se os dados de cada erro no Registro de Erros estão corretos e completos.
- Verificar se a quantidade de erros inseridos e removidos em cada fase é razoável e correta.
- Usando o melhor possível sua memória, corrigir qualquer dado omisso ou incorreto sobre os erros.

• Garantir a consistência de dados de tempo

• Revise o Registro de Tempo, procurando por erros e omissões.

• Usando o melhor possível sua memória, corrija qualquer dado omisso ou incorreto sobre os registros de tempo.

5.4. Critérios de saída

- Programa rigorosamente testado.
- Formulário de Resumo de Planejamento de Projeto completo.
- Registro de Tempo completo.
- Registro de Erros completo.

6. Entrega

Quando você completar a fase de encerramento, envie os dados do pacote da tarefa, código fonte e resultados de teste para o professor.

O pacote de tarefa deve conter os seguintes a seguir, na ordem apresentada:

- Formulário de Resumo de Planejamento de Projeto,
- Registro de Tempo,
- Registro de Erros,
- Listagem do código fonte do Programa 1,
- Resultados dos testes.