```
1A.
> colMeans(USArrests)
 Murder Assault UrbanPop
                              Rape
  7.788 170.760 65.540 21.232
sei
> median(USArrests$Murder)
[1] 7.25
> median(USArrests$Assault)
[1] 159
> median(USArrests$UrbanPop)
[1] 66
> median(USArrests$Rape)
[1] 20.1
> var(USArrests$Murde)
[1] 18.97047
> var(USArrests$Assault)
[1] 6945.166
> var(USArrests$UrbanPop)
[1] 209.5188
> var(USArrests$Rape)
[1] 87.72916
> sd(USArrests$Murder)
[1] 4.35551
> sd(USArrests$Assault)
[1] 83.33766
> sd(USArrests$UrbanPop)
[1] 14.47476
> sd(USArrests$Rape)
[1] 9.366385
> IQR(USArrests$Murder)
[1] 7.175
> IQR(USArrests$Assault)
[1] 140
> IQR(USArrests$UrbanPop)
[1] 23.25
> IQR(USArrests$Rape
+ )
[1] 11.1
1B.
> library(psych)
> skew(USArrests$Murder)
[1] 0.3706342
```

> skew(USArrests\$Assault)

- [1] 0.2205325
- > skew(USArrests\$UrbanPop)
- [1] -0.2126297
- > skew(USArrests\$Rape)
- [1] 0.7537694

> kurtosi(USArrests\$Murder)

- [1] -0.9492304
- > kurtosi(USArrests\$Assault)
- [1] -1.145487
- > kurtosi(USArrests\$UrbanPop)
- [1] -0.871955
- > kurtosi(USArrests\$Rape)
- [1] 0.07510264

1C.

- > hist(USArrests\$Murder)
- > hist(USArrests\$Assault)
- > hist(USArrests\$UrbanPop)
- > hist(USArrests\$Rape)


```
1D.
```

> cor(x = USArrests, method = "spearman")

MurderAssaultUrbanPopRapeMurder1.00000000.81727350.10671630.6794265Assault0.81727351.00000000.27521330.7143681UrbanPop0.10671630.27521331.00000000.4381068Rape0.67942650.71436810.43810681.0000000

> cor(x = USArrests, method = "pearson")

MurderAssaultUrbanPopRapeMurder1.00000000.80187330.069572620.5635788Assault0.801873311.00000000.258871700.6652412UrbanPop0.069572620.25887171.00000000.4113412Rape0.563578830.66524120.411341241.0000000

2A.

- > state.x77=as.data.frame(state.x77)
- > class(state.x77)
- [1] "data.frame"

2B. (wasn't sure which one so i did both)

> summary(state.x77)

Population	Income	Illiteracy	Life Exp	Murder
HS Grad	Frost			
Min. : 365	Min. :3098	Min. :0.500	Min. :67.96	Min. : 1.400
Min. :37.80	Min. : 0.00			
1st Qu.: 1080	1st Qu.:3993	1st Qu.:0.625	1st Qu.:70.12	1st Qu.: 4.350
1st Qu.:48.05	1st Qu.: 66.25			
Median : 2838	Median :4519	Median :0.950	Median :70.67	Median : 6.850
Median :53.25	Median :114.50			
Mean : 4246	Mean :4436	Mean :1.170	Mean :70.88	Mean : 7.378
Mean :53.11	Mean :104.46			
3rd Qu.: 4968	3rd Qu.:4814	3rd Qu.:1.575	3rd Qu.:71.89	3rd Qu.:10.675
3rd Qu.:59.15	3rd Qu.:139.75			
Max. :21198	Max. :6315	Max. :2.800	Max. :73.60	Max. :15.100
Max. :67.30	Max. :188.00			

Area

Min. : 1049 1st Qu.: 36985 Median : 54277 Mean : 70736 3rd Qu.: 81163 Max. :566432

> describe(state.x77)

	vars n	mean	sd	median	trimmed	mad	min	
max	range skew	kurtosis	se					
Populati	on 1 50	4246.42	4464.49	2838.50	3384.28	2890.33	365.00	
21198.0 20833.00 1.92 3.75 631.37								
Income	2 50	4435.80	614.47	4519.00	4430.08	581.18	3098.00	
6315.0 3217.00 0.20 0.24 86.90								
Illitera	cy 3 50	1.17	0.61	0.95	1.10	0.52	0.50	
2.8	2.30 0.82	-0.47	0.09					
Life Exp	4 50	70.88	1.34	70.67	70.92	1.54	67.96	
73.6 5.64 -0.15 -0.67 0.19								
Murder	5 50	7.38	3.69	6.85	7.30	5.19	1.40	
15.1 13.70 0.13 -1.21 0.52								
HS Grad	6 50	53.11	8.08	53.25	53.34	8.60	37.80	
67.3	29.50 -0.32	-0.88	1.1	4				
Frost	7 50	104.46	51.98	114.50	106.80	53.37	0.00	
188.0 188.00 -0.37 -0.94 7.35								
Area	8 50 7	0735.88 85	5327.30	54277.00	56575.72	35144.29	1049.00	
566432.0 565383.00 4.10 20.39 12067.10								

2C.
install.packages("Hmisc")

> library(Hmisc

2D.

```
> cor(x = state.x77, method = "pearson")
         Population Income Illiteracy Life Exp
                                                  Murder
                 Area
Grad
        Frost
Population 1.00000000 0.2082276 0.10762237 -0.06805195 0.3436428
-0.09848975 -0.3321525 0.02254384
      0.20822756 1.0000000 -0.43707519 0.34025534 -0.2300776
0.61993232 0.2262822 0.36331544
Illiteracy 0.10762237 -0.4370752 1.00000000 -0.58847793 0.7029752
-0.65718861 -0.6719470 0.07726113
Life Exp -0.06805195 0.3402553 -0.58847793 1.00000000 -0.7808458
0.58221620 0.2620680 -0.10733194
        0.34364275 -0.2300776 0.70297520 -0.78084575 1.0000000
Murder
-0.48797102 -0.5388834 0.22839021
HS Grad -0.09848975 0.6199323 -0.65718861 0.58221620 -0.4879710
1.00000000 0.3667797 0.33354187
       Frost
0.36677970 1.0000000 0.05922910
         0.33354187 0.0592291 1.00000000
```

> cor(x = state.x77, method = "spearman")

	Population	Income	Illiteracy	Life Exp	Murder	HS Grad
Frost	Area					
Population	1.0000000	0.12460984	0.3130496	-0.1040171	0.3457401	-0.3833649
-0.4588526	-0.12067227	1				
Income	0.1246098	1.00000000	-0.3145948	0.3241050	-0.2174623	0.5104809
0.1968638	0.05709484					
Illiteracy	0.3130496	-0.31459482	1.0000000	-0.5553735	0.6723592	-0.6545396
-0.6831936	-0.25037208	3				
Life Exp	-0.1040171	0.32410498	-0.5553735	1.0000000	-0.7802406	0.5239410
0.2983910	0.12750018					
Murder	0.3457401	-0.21746230	0.6723592	-0.7802406	1.0000000	-0.4367330
-0.5438432	0.10642590)				
HS Grad	-0.3833649	0.51048095	-0.6545396	0.5239410	-0.4367330	1.0000000
0.3985351	0.43897520					
Frost	-0.4588526	0.19686382	-0.6831936	0.2983910	-0.5438432	0.3985351
1.0000000	0.11228778					
Area						

The hs_grad to murder relationship is interesting, although i cannot explain why it is like that.

2E.

> row.names(state.x77)[which.max(state.x77\$Population)]

[1] "California"

```
> row.names(state.x77)[which.min(state.x77$Population)]
[1] "Alaska"
> row.names(state.x77)[which.max(state.x77$Income)]
[1] "Alaska"
> row.names(state.x77)[which.min(state.x77$Income)]
[1] "Mississippi"
> row.names(state.x77)[which.max(state.x77$Illiteracy)]
[1] "Louisiana"
> row.names(state.x77)[which.min(state.x77$Illiteracy)]
[1] "Iowa"
> row.names(state.x77) [which.max(state.x77$`Life Exp`)]
[1] "Hawaii"
> row.names(state.x77)[which.min(state.x77$`Life Exp`)]
[1] "South Carolina"
> row.names(state.x77)[which.max(state.x77$Murder)]
[1] "Alabama"
> row.names(state.x77)[which.min(state.x77$Murder)]
[1] "North Dakota"
> row.names(state.x77)[which.max(state.x77$`HS Grad`)]
[1] "Utah"
> row.names(state.x77)[which.min(state.x77$`HS Grad`)]
[1] "South Carolina"
> row.names(state.x77) [which.max(state.x77$Frost)]
[1] "Nevada"
> row.names(state.x77)[which.min(state.x77$Frost)]
[1] "Hawaii"
> row.names(state.x77)[which.max(state.x77$Area)]
[1] "Alaska"
> row.names(state.x77)[which.min(state.x77$Area)]
[1] "Rhode Island"
```