Package 'takos'

October 14, 2022

Type Package
Title Analysis of Differential Calorimetry Scans
Version 0.2.0
Author Serena Berretta [aut] and Giorgio Luciano [aut,cre], Kristian Hovde Liland [ctb]
Maintainer Serena Berretta <serena.berretta@ge.imati.cnr.it></serena.berretta@ge.imati.cnr.it>
Description It includes functions for applying methodologies utilized for single-process kinetic analy sis of solid-state processes were recently summarized and described in the Recommendation of ICTAC Kinetic Committee. These methods work with the basic kinetic equation. The Methodologies included refers to Avrami, Friedman, Kissinger, Ozawa, OFM, Mo, Starink, isoconversional methodology (Vyazovkin) according to ICATAC Kinetics Committee recommendations as reported in Vyazovkin S, Chrissafis K, Di Lorenzo ML, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1-23. <doi:10.1016 j.tca.2014.05.036="">.</doi:10.1016>
Imports MASS,devEMF,segmented,sfsmisc,smoother,deSolve, pracma,data.table,broom,colorRamps, minpack.lm, tools, baseline, graphics
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
<pre>URL https://github.com/sere3s/takos</pre>
NeedsCompilation no
Repository CRAN
Date/Publication 2020-10-19 09:50:02 UTC
R topics documented:
addRate

2 addRate

addRa	ate	Title addRate	
ndex			29
	v I		27
	-		
			25
	•		25
	•		24
	•		24
	•		23
	•		23
			22
			21
			21
			19
	0 0		18
			17
	. –		17
	-		17
	• -		16
	. –		16
	plot_avrami		16
	$oz \dots \dots$		15
	OFW		14
	MO		13
	matzero		12
			12
			11
	KAS		10
	JMA		ç
	gAC		8
	FRI		7
			ϵ
	cutValue		5
	cutSelect		5

Description

add to the thermogram the value of rate(s) for each cycle(s) as provided by the user

Usage

```
addRate(dat, lab_rate, lab_cycles)
```

avrami 3

Arguments

dat matrix

lab_rate rate that corresponds to the cycles of the analysis performed

lab_cycles number of the cycles of the analysis performed

Value

the input matrix with one added column with the values of the rate of the cycles performed

avrami	Title Avrami
avianii	Title Tivi anni

Description

performs analysis of the thermograms using the avrami method

Usage

```
avrami(mat)
```

Arguments

mat

matrix of the all the thermograms checked using the function mat.check

Value

```
models "mod", datable "xy" for plot
```

References

1. Avrami M. Kinetics of Phase Change. I General Theory. J Chem Phys. 1939;7(12):1103-1112. doi:10.1063/1.1750380.

```
require(data.table)
require(MASS)
rates=c(0.5,1,2,5,10,20,50)
a<-lapply(rates, function(x) JMA(A=exp(35),Ea=120000,T0=0,T.end=300,q=x,npoints=5000,n=2))
a<-lapply(seq(1,length(a)), function(x) data.table(a[[x]]$time.s,a[[x]]$T.C,
a[[x]]$dadT, rates[[x]]))
lapply(seq(1,length(a)), function(x) setnames(a[[x]],
c("time.seconds","temperature.s","heat.flow","rates") ))
ar<-testMat(a)
avr<-avrami(ar)</pre>
```

4 checkmat

checkmat

Title checkmat

Description

Title checkmat

Usage

```
checkmat(dat, header = TRUE, selected = c(0, 1, 2, 0, 0, 0, 4, 0))
```

Arguments

dat MUST be a data.frame where each column represent a parameter of the thermo-

gram you need to check

header present or not in your data.frame

selected a vector that include the coded position of the parameters present in the dataset.

0 equal not present, while if you insert a number its value will refer to the index of the column of the input matrix where the parameter is stored. the coding of the vector selected is the following 1. "time.minutes" 2. "time.seconds" 3."temperature.s" 4."temperature.r." 5."temperature.s.K" 6."temperature.r.K"7."heat.flow"8.

"id"

Details

i.e. selected=c(1,0,2,0,0,0,3) means that your first column is time.seconds, the second column is the temperature of the sample and the this column is the heat flow. 0 represents the other column of your files that are not present in your dataset

Value

Checked data frame

```
npoints=1000
x=seq(1,npoints)
y=(dnorm(x, mean=npoints/2, sd=npoints/10))
x=seq(1,1000)
x2=seq(200,500,length.out=1000)
dat=data.frame(x,x2,y)
colnames(dat) <- c("time.seconds", "temperature.s","heat.flow")
cmat<- checkmat(dat,selected=c(1,0,2,0,0,0,3,0))</pre>
```

cutSelect 5

|--|

Description

cut a region of a spectra and substitutes it with a sequence with initial value i.start and end valye i.end

Usage

```
cutSelect(x, i.start, i.end)
```

Arguments

```
x x to be cut
```

i.start index value of the starting point for the cut to be performedi.end index value of the ending point for the cut to be performed

Examples

```
npoints=1000
x=seq(1,npoints)
y=(dnorm(x, mean=npoints/2, sd=npoints/10))
ycut=cutValue(y,10,40,0.003,0.001)
plot(y)
lines(ycut,col="red")
```

cutValue

Title cutValue

Description

cut a region of a spectra and substitutes it with a sequence with initial value i.start and end valye i.end

Usage

```
cutValue(x, i.start, i.end, value.start, value.end)
```

Arguments

x t	0	be	cut
X	0	D	e

i.start index value of the starting point for the cut to be performedi.end index value of the ending point for the cut to be performed

value.start desired value at point i.start value.end desired value at point i.end

6 dadx

Value

x after cut

Examples

```
npoints=1000
x=seq(1,npoints)
y=(dnorm(x, mean=npoints/2, sd=npoints/10))
ycut=cutSelect(y,10,40)
plot(y)
lines(ycut,col="red")
```

dadx

Title dadx

Description

calculates the ratio of two differential according to the value of d.step

Usage

```
dadx(x, a, d.step = 2)
```

Arguments

denominator variable for calculating da
 numerator variable for calculating dt
 step of differentiation

Value

ratio of two differential of the tw0 input variables

```
npoints=100
seed=42
x1=round(runif(npoints,0,1), 2)
seed=1234
x2=round(runif(npoints,0,1), 2)
xdiff <- dadx(x1,x2)</pre>
```

FRI 7

FRI Title Friedman

Description

performs analysis of the thermograms using Friedman method to calculate the activation energy (Ea)

Usage

```
FRI(mat, id = "rate", degree = seq(0.2, 0.8, by = 0.05))
```

Arguments

mat matrix of the all the thermograms checked using the function mat.check

id variable choosen for subsetting mat (default = "rate")

degree selected degrees of cristallinity for performing the analysis

Value

models "mod", datable "xy" for plot, "Ea" list of value, datatable "DT" built with the values of mat according to the specified degree

References

H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry, Appl. Phen. Plastic J. Polym. Sci. Part C: Polym. Symp. 6 (1964)

```
require(data.table)
require(MASS)
rates=c(0.5,1,2,5,10,20,50)
a<-lapply(rates, function(x) JMA(A=exp(35),Ea=120000,T0=0,T.end=300,q=x,npoints=5000,n=2))
a<-lapply(seq(1,length(a)), function(x) data.table(a[[x]]$time.s,a[[x]]$T.C,
a[[x]]$dadT, rates[[x]]))
lapply(seq(1,length(a)), function(x) setnames(a[[x]],
c("time.seconds","temperature.s","heat.flow","rates") ) )
ar<-testMat(a)
fri<-FRI(ar)</pre>
```

gAC

gAC	Title sbAC	

Description

Performs simulation according to several kinetic models

Usage

```
gAC(time.start = 0, T0 = 0, T.end = 500, qqq = 50, A = 10^{6.3}),
Ea = 80000, m = 1, n = 2, K = 0, npoints = 10000,
prec = 10^{-4.30095790876}), rmod = "SB", ...)
```

Arguments

time.start	Starting time for the simulations
T0	Temperature start
T.end	End temperature
qqq	Heating rate
Α	Parameter in the equation
Ea	Parameter in the equation
m	Parameter in the equation
n	Parameter in the equation
K	Parameter in the equation
npoints	Number of points
prec	Starting value for the equation "prec"
rmod	Kinetic model (default = Isoda)
	Parameters to pass to ode function for choosing solver method

Value

startgin temperature "T", "fi", degree of crystallization "alfa", differential alfa in T "dadT", time in seconds "time.s", differential equation solution "sol"

```
gAC(npoints=5000,prec=10^(-4.30095790876))
```

JMA 9

JMA

Title Johnson-Mehl-Avrami (JMA)

Description

simulate a thermogram using JMA theory

Usage

```
JMA(A = \exp(35), Ea = 120000, q = 50, T0 = -100, T.end = 300, npoints = 898, n = 2)
```

Arguments

A	pre exponential parameters (1/s)
Ea	Activation energy (J/mol)
q	= rate of analyis (K/min)
T0	= starting temperature of the simulated thermogram expressed in K
T.end	= ending temperature of the simulated thermogram expressed in K
npoints	desired number of points of the simulate thermogram
n	numerical parameter required by JMA model

Value

- T.C = temperature in Celsius
- $fi = d\alpha/dt * q$
- α
- time.s = time in second
- $d\alpha dT$

References

1. Vyazovkin S, Chrissafis K, Di Lorenzo ML, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1-23. doi:10.1016/j.tca.2014.05.036.

```
data <- JMA(A = exp(35),Ea = 120000,q = 50,T0 = -100,T.end = 300,npoints=898,n=2)
require(data.table)
#choose the rates for the simulation of the thermograms
rates=c(0.5,1,2,5,10,20,50)
#first serie of thermograms for all the chosen rate
a<-lapply(rates, function(x) JMA(A=exp(35),Ea=120000,T0=0,T.end=300,q=x,npoints=5000,n=2))</pre>
```

10 KAS

```
#setup column names
a<-lapply(seq(1,length(a)), function(x) data.table(a[[x]]$time.s,
a[[x]]$T.C, a[[x]]$dadT, rates[[x]]))
lapply(seq(1,length(a)), function(x) setnames(a[[x]],
c("time.seconds","temperature.s","heat.flow","rates") ) )
#create a plot using the function thermo
amaxH <- max(sapply(a, function(x) max(x$heat.flow))) # calculate the max
plot(c(0,300),c(0,amaxH),mytitle="dataset A 120/60 0.66/0.33",
ylab="ExothermicHeatFlow", xlab="Temperature")
lapply(a, function(x) lines(x$temperature.s,x$heat.flow,lwd=3))</pre>
```

KAS

Title KAS

Description

performs analysis of the thermograms using Kissinger-Akahira-Sunose (KAS) method

Usage

```
KAS(mat, degree = seq(0.2, 0.8, by = 0.05))
```

Arguments

matrix of the all the thermograms checked using the function mat.check

degree selected degrees of cristallinity for performing the analysis

Value

models "mod", datable "xy" for plot, "Ea" list of value, datatable "DT" built with the values of mat according to the specified degrees

References

- 1. Akahira, T. Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971. 2. Kissinger HE. Reaction Kinetics in Differential Thermal Analysis. Anal Chem. 1957;29(11):1702-1706. doi:10.1021/ac60131a045.
- 3. Starink M. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1-2):163-176. doi:10.1016/S0040-6031(03)00144-8.

```
require(data.table)
require(MASS)
rates=c(0.5,1,2,5,10,20,50)
a<-lapply(rates, function(x) JMA(A=exp(35),Ea=120000,T0=0,T.end=300,q=x,npoints=5000,n=2))
a<-lapply(seq(1,length(a)), function(x) data.table(a[[x]]$time.s,a[[x]]$T.C,</pre>
```

Kiss 11

```
a[[x]]$dadT, rates[[x]]))
lapply(seq(1,length(a)), function(x) setnames(a[[x]],
c("time.seconds","temperature.s","heat.flow","rates") ) )
ar<-testMat(a)
kas<-KAS(ar)</pre>
```

Kiss

Title Kissinger

Description

performs analysis of the thermograms using Kissinger method to calculate the activation energy (Ea)

Usage

Kiss(mat)

Arguments

mat

matrix of the all the thermograms checked using the function mat.check

Value

models "mod", datable "xy" for plot, "Ea" list of value, datatable "DT" built with the values of mat according to the specified degrees

References

1. Avrami M. Kinetics of Phase Change. I General Theory. J Chem Phys. 1939;7(12):1103-1112. doi:10.1063/1.1750380. 2. Kissinger HE. Reaction Kinetics in Differential Thermal Analysis. Anal Chem. 1957;29(11):1702-1706. doi:10.1021/ac60131a045.

```
require(data.table)
require(MASS)
rates=c(0.5,1,2,5,10,20,50)
a<-lapply(rates, function(x) JMA(A=exp(35),Ea=120000,T0=0,T.end=300,q=x,npoints=5000,n=2))
a<-lapply(seq(1,length(a)), function(x) data.table(a[[x]]$time.s,a[[x]]$T.C,
a[[x]]$dadT, rates[[x]]))
lapply(seq(1,length(a)), function(x) setnames(a[[x]],
c("time.seconds","temperature.s","heat.flow","rates") ))
ar<-testMat(a)
kiss<-Kiss(ar)</pre>
```

12 matzero

lavrami

Title Avrami Linearization

Description

performs analysis of the thermograms using the linearized avrami method in the interval of Xc selected by the user

Usage

```
lavrami(mat, up = 0.9999, low = 1e-04)
```

Arguments

mat	matrix of the all the thermograms checked using the function mat.check
up	max degree of the interval for applying the linearized model default 0.9999
low	min degree of the interval for applying the linearized model default 0.0001

Value

```
models "mod", datable "xy" for plot
```

References

1. Avrami M. Kinetics of Phase Change. I General Theory. J Chem Phys. 1939;7(12):1103-1112. doi:10.1063/1.1750380.

matzero

Title matzero

Description

zeroes time (in seconds) according to peak given by the user

Usage

```
matzero(mat, spks = 1, x = mat$time.seconds.zero, colname = "v.check",
  myby = "id_cycle")
```

Arguments

mat	matrix	of	spectra

spks number of the peak selected as the starting point

x variable to be reset according to the position of the selected peak

colname name of the selected column

myby variable selected for subsetting the matrix

MO 13

MO Title Mo model

Description

performs analysis of the thermograms using Mo method

Usage

```
MO(mat, degree = seq(0.2, 0.8, by = 0.2))
```

Arguments

mat matrix of the all the thermograms checked using the function mat.check degree selected degrees of cristallinity for performing the analysis

Value

models "mod", datable "xy" for plot, "Ea" list of value, datatable "DT" built with the values of mat according to the specified degrees

References

Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37(3):568-575. doi:10.1002/pen.11700.

```
require(data.table)
require(MASS)
rates=c(0.5,1,2,5,10,20,50)
a<-lapply(rates, function(x) JMA(A=exp(35),Ea=120000,T0=0,T.end=300,q=x,npoints=5000,n=2))
a<-lapply(seq(1,length(a)), function(x) data.table(a[[x]]$time.s,a[[x]]$T.C,
a[[x]]$dadT, rates[[x]]))
lapply(seq(1,length(a)), function(x) setnames(a[[x]],
c("time.seconds","temperature.s","heat.flow","rates") ) )
ar<-testMat(a)
mo<-MO(ar)</pre>
```

14 OFW

OFW Title OFW

Description

performs analysis of the thermograms using Ozawa-Flynn and Wall method

Usage

```
OFW(mat, degree = seq(0.2, 0.8, by = 0.05))
```

Arguments

mat matrix of the all the thermograms checked using the function mat.check

degree selected degrees of cristallinity for performing the analysis

Value

models "mod", datable "xy" for plot, "Ea" list of value, datatable "DT" built with the values of mat according to the specified degrees

References

1. Flynn J, Wall L. Res natl bur standards. Phys Chem. 1966;70:487-492.

```
require(data.table)
require(MASS)
rates=c(0.5,1,2,5,10,20,50)
a<-lapply(rates, function(x) JMA(A=exp(35),Ea=120000,T0=0,T.end=300,q=x,npoints=5000,n=2))
a<-lapply(seq(1,length(a)), function(x) data.table(a[[x]]$time.s,a[[x]]$T.C,
a[[x]]$dadT, rates[[x]]))
lapply(seq(1,length(a)), function(x) setnames(a[[x]],
c("time.seconds","temperature.s","heat.flow","rates") ) )
ar<-testMat(a)
ofw<-OFW(ar)</pre>
```

OZ 15

ΟZ

Title Ozawa model crystallization

Description

performs analysis of the thermograms using Ozawa method

Usage

```
OZ(mat, n.step = 1, spks = 1, eps = 0.001)
```

Arguments

mat	matrix of the all the thermograms checked using the function mat.check
n.step	number of steps for selecting temperature ranges
spks	id of the peaks selected for applying the method
eps	tollerance for the selection process

Value

models "mod", datable "xy" for plot, "Ea" list of value, datatable "DT" built with the values of mat according to the specified degrees

References

1. Ozawa T. Kinetics of non-isothermal crystallization. Polymer (Guildf). 1971;12(3):150-158. doi:10.1016/0032-3861(71)90041-3.

```
require(data.table)
require(MASS)
rates=c(0.5,1,2,5,10,20,50)
a<-lapply(rates, function(x) JMA(A=exp(35),Ea=120000,T0=0,T.end=300,q=x,npoints=5000,n=2))
a<-lapply(seq(1,length(a)), function(x) data.table(a[[x]]$time.s,a[[x]]$T.C,
a[[x]]$dadT, rates[[x]]))
lapply(seq(1,length(a)), function(x) setnames(a[[x]],
c("time.seconds","temperature.s","heat.flow","rates") ) )
ar<-testMat(a)
oz<-OZ(ar)</pre>
```

plot_lavrami

7 4	- · · · · · · · · · · · · · · · · · ·
niat	avrami
DIOL	avianii

Title plot.avrami

Description

template for plotting results from avrami function

Usage

```
plot_avrami(out, skip = 2)
```

Arguments

out	output from avrami function
skip	plot symbols every nth points

plot_fri

Title plot.fri

Description

template for plotting results from friedman function

Usage

```
plot_fri(out)
```

Arguments

out

from friedman function

plot_lavrami

Title plot lavrami

Description

template for plotting results from avrami function

Usage

```
plot_lavrami(out, skip = 2)
```

Arguments

out	output from lavrami function
skip	plot symbols every nth points

plot_mo 17

plot_mo

Title plot.mo

Description

template for plotting results from Mo function

Usage

```
plot_mo(out)
```

Arguments

out

from mo function

plot_ozawa

Title plot.ozawa

Description

template for plotting results from avrami function

Usage

```
plot_ozawa(out)
```

Arguments

out

from ozawa function

ri

Title running integral

Description

calculate the running integral for the selected peak

Usage

```
ri(x, y, pks, TAP = FALSE, linear = FALSE, ...)
```

18 runningIntegral

Arguments

x axis for the intergration
 y y axis for the intergration
 pks selected peak
 TAP if TRUE will apply a baseline using tangent area proportional (default=FALSE)
 if TRUE will apply a linear baseline (default=FALSE)
 parameters in TAPPA function

Value

- ds data frame containing original x and y given as input
- ri running integral
- b.tap baseline calculate if the switch TAP is TRUE
- y.tap = y b.tap

Examples

```
#' require(data.table)
require(MASS)
rates=c(0.5,1,2,5,10,20,50)
a < -1 apply(rates, function(x) JMA(A=exp(35), Ea=120000, T0=0, T.end=300, q=x, npoints=5000, n=2))
a \le -lapply(seq(1, length(a)), function(x) data.table(a[[x]]$time.s,a[[x]]$T.C,
a[[x]]$dadT, rates[[x]]))
lapply(seq(1,length(a)), function(x) setnames(a[[x]],
c("time.seconds","temperature.s","heat.flow","rates") ) )
a.dt < -lapply(seq(1, length(a)), function(x) data.table(data.frame(a.check[[x]])))
a<-rbindlist(a.dt)
a$rate<-a$id
a.peaks <- a[,.(res.list = list(findpeaks(heat.flow,sortstr=TRUE,npeaks=2))),by=id]</pre>
a.peaks$rate<-a.peaks$id
ref.peak=1
a.peaks <- data.table(data.table(a.peaks$rate),rbindlist((lapply(a.peaks$res.list,</pre>
function(x) data.table(t(x[ref.peak,]))))))
colnames(a.peaks)<- c("rate","peak.value","ind.max","left.lim","right.lim")</pre>
a.mat<- lapply(unique(a$rate), function(x)</pre>
ri(a[a$rate==x]$time.seconds,a[a$rate==x]$heat.flow,a.peaks[rate==x]))
```

runningIntegral

Title running integral

Description

calculates the running integral for customer input

sbAC 19

Usage

```
runningIntegral(x, y, integrate.step = 1)
```

Arguments

```
    x variable x use for integration process
    y variable y use for integration process
    integrate.step = the step used for calculating the integrale the default value is 1
```

Examples

```
npoints=1000
x=seq(1,npoints)
y=(dnorm(x, mean=npoints/2, sd=npoints/10))
runningIntegral(x,y)
```

sbAC

Title sbAC

Description

Performs Šesták-Berggren (AC) simulations

Usage

```
sbAC(time.start = 0, T0 = 0, T.end = 500, qqq = 50, A = 10^(6.3), Ea = 80000, m = 1, n = 2, npoints = 10000, prec = 10^{(-4.30095790876)}, \ldots)
```

Arguments

time.start	Starting time for the simulations
Τ0	Temperature start
T.end	End temperature
qqq	Heating rate
A	Parameters in the equation
Ea	Parameters in the equation
m	Parameter in the equation
n	Parameter in the equation
npoints	Number of points
prec	Starting value for the equation "prec"
	Parameters to pass to ode function for choosing solver method

20 select_degree

Value

startgin temperature "T", "fi", degree of crystallization "alfa", differential alfa in T "dadT", time in seconds "time.s", differential equation solution "sol"

References

J. Šesták. Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis. Elsevier: Amsterdam, 1984.

Examples

```
res <- sbAC(npoints=5000,prec=10^(-4.30095790876))
```

select_degree

Title

Description

Title

Usage

```
select_degree(mat, degree = seq(0.01, 0.99, by = 0.01))
```

Arguments

matrix of the all the thermograms checked using the function mat.check

degree selected degrees of cristallinity for performing the analysis

Value

"DT" built with the values of mat according to the specified degrees

simG 21

simG Title simG

Description

create a simulated spectra with gaussian shape

Usage

```
simG(vlen, i.start, gheight, shift = 0, wd = 30)
```

Arguments

vlen desired length of the spectra i.start starting value for the peak

 $\begin{array}{ll} \mbox{gheight} & \mbox{height value} \\ \mbox{shift} & \mbox{shift from } 0 \end{array}$

wd width of the gaussian curve

Examples

```
y=(simG(500,35,1,0,w=20))
plot(y)
```

smooth.loess

Title smooth.loess

Description

a wrapper for the loess function included in the R base system

Usage

```
smooth.loess(x, y, safe.start = 5, safe.end = 5, myspan = 0.28)
```

Arguments

x variable x y variable y

safe.start exclude a the n-th first values from calculation safe.end exclude a the n-th end values from calculation

myspan span parameter for loess function

22 Starink

Examples

```
npoints=1000
x=seq(1,npoints)
y=(dnorm(x, mean=npoints/2, sd=npoints/10))
y.smooth=smooth.loess(x,y)
plot(x,y)
```

Starink

Title Staink

Description

performs analysis of the thermograms using Starink method

Usage

```
Starink(mat, degree = seq(0.2, 0.8, by = 0.05))
```

Arguments

mat matrix of the all the thermograms checked using the function mat.check degree selected degrees of cristallinity for performing the analysis

Value

models "mod", datable "xy" for plot, "Ea" list of value, datatable "DT" built with the values of mat according to the specified degrees

References

Starink MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;288(1-2):97-104. doi:10.1016/S0040-6031(96)03053-5.

```
require(data.table)
require(MASS)
rates=c(0.5,1,2,5,10,20,50)
a<-lapply(rates, function(x) JMA(A=exp(35),Ea=120000,T0=0,T.end=300,q=x,npoints=5000,n=2))
a<-lapply(seq(1,length(a)), function(x) data.table(a[[x]]$time.s,a[[x]]$T.C,
a[[x]]$dadT, rates[[x]]))
lapply(seq(1,length(a)), function(x) setnames(a[[x]],
c("time.seconds","temperature.s","heat.flow","rates") ))
ar<-testMat(a)
star<-Starink(ar)</pre>
```

summary Table A 23

summaryTableA

table.avrami

Description

examples of functions for presenting the results obtained with different methods Title summary-Table \boldsymbol{A}

Usage

```
summaryTableA(mat.mod)
```

Arguments

mat.mod

output matrix from avrami function

Value

table with the summary of result of applying the avrami function on the selected thermograms

 ${\it summary} \\ {\it Table} \\ {\it Fri}$

Title summaryTableF

Description

Title summaryTableF

Usage

```
summaryTableFri(mat.mod)
```

Arguments

mat.mod

output matrix from friedman function

Value

table with the summary of result of applying the friedman function on the selected thermograms

24 summaryTableMo

summaryTableKiss

Title summaryTableK

Description

Title summaryTableK

Usage

```
summaryTableKiss(mat.mod)
```

Arguments

 ${\tt mat.mod}$

output matrix from Starink function

Value

table with the summary of result of applying the starink function on the selected thermograms

 ${\it summary} \\ {\it Table Mo}$

Title summaryTable Mo

Description

Title summaryTable Mo

Usage

```
summaryTableMo(mat.mod)
```

Arguments

mat.mod

output matrix from Mo function

Value

table with the summary of result of applying the ozawwa function on the selected thermograms

summary TableOz 25

summaryTableOz

Title summaryTableOz

Description

Title summaryTableOz

Usage

```
summaryTableOz(mat.mod)
```

Arguments

mat.mod

output matrix from ozawa function

Value

table with the summary of result of applying the ozawwa function on the selected thermograms

TAPPA

Title Tangent area proportional method TAPPA

Description

calculates the background of a thermogram according to Tangent-area-proportional method

Usage

```
TAPPA(T, dAlpha, interval = 10, tol = 0.001)
```

Arguments

T temperature dAlpha the da/dt values

interval number of points to use for interpolating the two lines that will merge according

to the area of the peak

tol tollerance for the iterative process

Value

B baseline values

26 testMat

References

1. Svoboda R. Tangential area-proportional baseline interpolation for complex-process DSC data - Yes or no? Thermochim Acta. 2017;658:55-62. doi:10.1016/J.TCA.2017.10.011.2. Svoboda R. Linear baseline interpolation for single-process DSC data-Yes or no? Thermochim Acta. 2017;655:242-250. doi:10.1016/J.TCA.2017.07.008.

Examples

```
npoints=1000
x=seq(1,npoints)
y=(dnorm(seq(1,npoints), mean=npoints/2, sd=npoints/10)) #simulated peak
y2=y+(dnorm(seq(1,npoints), mean=npoints, sd=npoints/10)) #secondary simulated peak
y2[seq(npoints*0.735,npoints)]=y2[763] #flat the curve at the end of first peak
ytap=TAPPA(x,y2)
plot(x,y2)
lines(x,ytap,col="red")
```

testMat

Title testMat

Description

Title testMat

Usage

```
testMat(a, 1.\lim = 1, r.\lim = NULL, toselect = c(0, 1, 2, 0, 0, 0, 3, 4))
```

Arguments

a	list of data tables of the checked thermograms using checkmat , obtained at different rates to change lines
1.lim	left lim of running integral
r.lim	rigth lim of running integral
toselect	vector

Value

data table ready to be used by all the methods for kinetic analysis included in the package

```
require(data.table)
npoints=1000
x=seq(1,npoints)
y=(dnorm(x, mean=npoints/2, sd=npoints/10))
x=seq(1,1000)
x2=seq(200,500,length.out=1000)
```

t_baseline 27

```
dat=data.frame(x,x2,y)
colnames(dat) <- c("time.seconds", "temperature.s","heat.flow")
dat=data.table(dat)
dat2=dat
dat$rates=20
dat2$rates=50
toTest=list(dat,dat2)
tested=testMat(toTest)</pre>
```

t_baseline

Title t.baseline

Description

a wrapper for the baseline.rdfbaseline function in the package baseline in order to have the output in the same format as the input

Usage

```
t_baseline(y)
```

Arguments

у

baseline correction on y

Value

y.baseline returns the corrected y

Examples

```
y.baseline <- t_baseline(y)</pre>
```

۷Y

title Vyazovkin

Description

performs analysis of the thermograms using Vyazovkin isoconversional method to calculate the activation energy (Ea)

Usage

```
VY(T, bet, Ea)
```

28 VY

Arguments

T temperature

bet rate

Ea estimated Ea to use as a first guess for the iterative process

References

VYAZOVKIN, S. Advanced isoconversional method. Journal of thermal analysis, 1997, 49.3: 1493-1499.

```
require(data.table)
require(MASS)
rates=c(0.5,1,2,5,10,20,50)
a<-lapply(rates, function(x) JMA(A=exp(35),Ea=120000,T0=0,T.end=300,q=x,npoints=5000,n=2))
a<-lapply(seq(1,length(a)), function(x) data.table(a[[x]]$time.s,a[[x]]$T.C,
a[[x]]$dadT, rates[[x]]))
lapply(seq(1,length(a)), function(x) setnames(a[[x]],
c("time.seconds","temperature.s","heat.flow","rates") ) )
as<-select_degree(ar)
vy<-as[, optimize(function(x) VY(temperature.s.K,rate,x), lower=50,upper=250),by=rit]</pre>
```

Index

```
addRate, 2
                                                   \verb|summaryTableKiss|, 24|
avrami, 3
                                                   summaryTableMo, 24
                                                   summaryTableOz, 25
checkmat, 4
cutSelect, 5
                                                   t_baseline, 27
cutValue, 5
                                                   TAPPA, 25
                                                   testMat, 26
dadx, 6
                                                   VY, 27
FRI, 7
gAC, 8
JMA, 9
KAS, 10
Kiss, 11
lavrami, 12
matzero, 12
MO, 13
OFW, 14
OZ, 15
plot_avrami, 16
plot_fri, 16
\verb|plot_lavrami|, 16
plot_mo, 17
plot_ozawa, 17
ri, 17
runningIntegral, 18
sbAC, 19
select_degree, 20
simG, 21
smooth.loess, 21
Starink, 22
summaryTableA, 23
summaryTableFri, 23
```