Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Отчет

по лабораторной работе №5 «Маршрутизация в IP сетях»

по дисциплине «Компьютерные сети»

Автор:

Булаев Дмитрий Андреевич

Факультет:

ФИКТ

Группа:

K33211

Преподаватель: Джаманкулов Амантур

Санкт-Петербург 2022

Цель работы: получить представление о работе IP маршрутизатора; получить опыт в составлении таблиц маршрутизации и работе протоколов внутренней и внешней маршрутизации.

Ход работы

Настройка инфраструктуры

Реализуем схему, приведенную на рисунке. Для всех сетей выберем подсеть из сети 192.168.1.0/24 и проверим доступность ближайших соседей в локальной сети

Рисунок 1. Схема

Рисунок 2. Реализация схемы

Настройка статической маршрутизации

Настроим статическую маршрутизацию в реализованной сети. Проверим возможность передачи пакетов данных между всеми узлами модели. Выведем в консоль сохраним таблицы маршрутизации всех маршрутизаторов.

```
Router>en
Router$show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, O - ODR
P - periodic downloaded static route

Gateway of last resort is not set

192.168.0.0/24 is variably subnetted, 5 subnets, 2 masks
S 192.168.0.0/26 [1/0] via 192.168.0.65
C 192.168.0.128/26 is directly connected, FastEthernet0/0
C 192.168.0.128/26 is directly connected, FastEthernet1/0
S 192.168.0.192/27 [1/0] via 192.168.0.130
S 192.168.0.224/27 [1/0] via 192.168.0.131
```

Рисунок 3. Таблицы маршрутизации

```
Router>en
Router#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
NI - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set

192.168.0.0/24 is variably subnetted, 5 subnets, 2 masks
C 192.168.0.0/26 is directly connected, FastEthernet0/0
C 192.168.0.128/26 [1/0] via 192.168.0.66
S 192.168.0.192/27 [1/0] via 192.168.0.66
S 192.168.0.224/27 [1/0] via 192.168.0.66
```

Рисунок 4. Таблицы маршрутизации

```
Router>en
Router#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      NI - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is 192,168,0,129 to network 0,0,0,0
     192.168.0.0/24 is variably subnetted, 5 subnets, 2 masks
        192,168.0.0/26 [1/0] via 192,168.0.129
        192.168.0.64/26 [1/0] via 192.168.0.129
        192.168.0.128/26 is directly connected, FastEthernet0/0
        192.168.0.192/27 is directly connected, FastEthernet1/0
        192.168.0.224/27 [1/0] via 192.168.0.131
    0.0.0.0/0 [1/0] via 192.168.0.129
```

Рисунок 5. Таблицы маршрутизации

```
Router>en
Router#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is 192.168.0.129 to network 0.0.0.0

192.168.0.0/24 is variably subnetted, 5 subnets, 2 masks
S 192.168.0.0/26 [1/0] via 192.168.0.129
S 192.168.0.128/26 is directly connected, FastEthernet0/0
S 192.168.0.128/26 [1/0] via 192.168.0.130
C 192.168.0.124/27 is directly connected, FastEthernet1/0
S* 0.0.0.0/0 [1/0] via 192.168.0.129
```

Рисунок 6. Таблицы маршрутизации

Router1

en
conf t
ip route 192.168.0.0 255.255.255.192 192.168.0.65
ip route 192.168.0.192 255.255.255.224 192.168.0.130
ip route 192.168.0.224 255.255.255.224 192.168.0.131

Рисунок 7. Настройка маршрутизатора

Настройка динамической маршрутизации

Создадим копию нашей модели. Для всех сетей выберем подсеть из сети 192.168.1.0/24 и проверим доступность ближайших соседей в локальной сети.

Настроим работу протокола RIP2 на всех маршрутизаторах, так чтобы: маршрутные записи не объединялись; рассылка таблиц осуществлялась только через интерфейсы, подключенные к другим маршрутизаторам.

Router1(1)

en
conf t
router rip
version 2
passive-interface fa1/0
network 192.168.1.0
no auto-summary

Рисунок 8. Настройка маршрутизатора (RIP2)

Включим вывод отладочных сообщений на консоль маршрутизаторов и убедимся, что вся необходимая информация получен.

Вывод отладочных сообщений на консоль маршрутизаторов реализован с помощью команды logging console.

Проверим возможность передачи пакетов данных между всеми узлами модели. Выведем на консоль и сохраним таблицы маршрутизации всех маршрутизаторов.

```
Router>en
Router*show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, O - ODR
P - periodic downloaded static route

Gateway of last resort is not set

192.168.0.0/24 is variably subnetted, 5 subnets, 2 masks
S 192.168.0.0/26 [1/0] via 192.168.0.65
C 192.168.0.128/26 is directly connected, FastEthernet0/0
C 192.168.0.128/26 is directly connected, FastEthernet1/0
S 192.168.0.192/27 [1/0] via 192.168.0.130
S 192.168.0.224/27 [1/0] via 192.168.0.131
```

Рисунок 9. Таблицы маршрутизации

```
Router>en
Router*show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGF
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
NI - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set

192.168.0.0/24 is variably subnetted, 5 subnets, 2 masks
C 192.168.0.0/26 is directly connected, FastEthernet0/0
C 192.168.0.128/26 [1/0] via 192.168.0.66
S 192.168.0.192/27 [1/0] via 192.168.0.66
S 192.168.0.224/27 [1/0] via 192.168.0.66
```

Рисунок 10. Таблицы маршрутизации

```
Router>en
Router#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
NI - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is 192.168.0.129 to network 0.0.0.0

192.168.0.0/24 is variably subnetted, 5 subnets, 2 masks
S 192.168.0.0/26 [1/0] via 192.168.0.129
S 192.168.0.64/26 [1/0] via 192.168.0.129
C 192.168.0.128/26 is directly connected, FastEthernet0/0
C 192.168.0.192/27 is directly connected, FastEthernet1/0
S 192.168.0.224/27 [1/0] via 192.168.0.131
S* 0.0.0.0/0 [1/0] via 192.168.0.129
```

Рисунок 11. Таблицы маршрутизации

```
Router*show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, O - ODR

P - periodic downloaded static route

Gateway of last resort is 192.168.0.129 to network 0.0.0.0

192.168.0.0/24 is variably subnetted, 5 subnets, 2 masks

192.168.0.0/26 [1/0] via 192.168.0.129

C 192.168.0.128/26 is directly connected, FastEthernet0/0

192.168.0.192/26 [1/0] via 192.168.0.130

C 192.168.0.224/27 is directly connected, FastEthernet1/0

S* 0.0.0.0/0 [1/0] via 192.168.0.129
```

Рисунок 12. Таблицы маршрутизации

Вывод

В ходе лабораторной работы были получены представление о работе IP маршрутизатора; получен опыт в составлении таблиц маршрутизации и работе протоколов внутренней и внешней маршрутизации.