Лекция 13

26 ноября 2024

Замечание: утверждение «функция f(x) дифференцируема в точке x_0 » принято обозначать как $f(x) \in D(x_0)$.

Теорема 1 – Инвариантности формы первого дифференциала

$$g(t) \in D(t_0) \land g(t_0) = x_0 \land f(x) \in D(x_0) \implies f \circ g \in D(t_0),$$
 причем $(f \circ g)_t'(t_0) = f_x'(x_0) \cdot g_t'(t_0).$

Доказательство.

- 1. Так как $f(x) \in D(x_0)$, $f(x) f(x_0) = f'_x(x_0) \cdot (x x_0) + o(x x_0)$ при $x \to x_0$.
- 2. $o(x-x_0)=(x-x_0)o(1)=(x-x_0)\alpha(x)$, где $\alpha(x)=o(1)$ при $x\to x_0$. Доопределим $\alpha(x_0)=0$.
- 3. Так как $g(t) \in D(t_0), g(t) g(t_0) = g'_t(t_0) \cdot (t t_0) + o(t t_0)$ при $t \to t_0$.
- 4. $f(g(t)) f(g(t_0)) = f'_x(x_0) \cdot (g(t) g(t_0)) + (g(t) g(t_0)) \cdot \alpha(g(t))$.
- 5. $f(g(t)) f(g(t_0)) = f'_x(x_0) \cdot g'_t(t_0) \cdot (t t_0) + f'_x(x_0) \cdot o(t t_0) + g'_t(t_0) \cdot (t t_0) \cdot \alpha(g(t)) + o(t t_0) \cdot \alpha(g(t))$.
- 6. $f(g(t)) f(g(t_0)) = f'_{x}(x_0) \cdot g'_{x}(t_0) \cdot (t t_0) + o(t t_0)$.
- 7. $g(t) \to g(t_0) = x_0 \implies \alpha(g(t)) = o(1)$.
- 8. По теореме о пределе композиции $\lim_{t \to t_0} \alpha(g(t)) = \alpha\left(\lim_{t \to t_0} g(t)\right) = 0$, ч.т.д.

Следствие 1: $d(f(g)) = f'_x \cdot g'_t \cdot dt$.

Следствие 2:

- 1. Пусть некоторая функция y(t(x)) задана параметрически: $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$, причем x(t) является возрастающей и непрерывной в $U(t_0)$; $x,y \in D(t_0)$; $x'(t) \neq 0$ и $x(t_0) = x_0$.
- 2. Тогда $y \in D(x_0)$ и $y_x'(x_0) = (y \circ t)'(x_0) = y_t'(t_0) \cdot t_x'(x_0) = \frac{y_t'(t_0)}{x_t'(t_0)}$.

Производные высших порядков

Определение 1

Пусть $f(x) \in D(U(x_0)) \land f'(x) \in D(x_0)$. Тогда второй производной функции f(x) в точке x_0 называется

$$f''(x) = (f'(x))' \Big|_{x = x_0}$$

<u>Следствие:</u> по индукции можно определить производную n-ого порядка $(f^{(n)}(x)$ — производная от $f^{(n-1)}(x)$).

<u>Замечание:</u> говорят, что функция выпукла вверх в точке x_0 , если $f''(x_0) < 0$, вниз — если $f''(x_0) > 0$. Точки, в которых f''(x) = 0 называются точками перегиба.

Пример 1.
$$f(x) = x^{\alpha} \implies f^{(n)}(x) = \alpha(\alpha - 1) \dots (\alpha - n + 1) x^{\alpha - n}$$

Пример 2. $f(x) = a^x \implies f^{(n)}(x) = \ln^n(a)a^x$

Пример 3.
$$f(x) = \sin(x) \implies f^{(n)}(x) = \sin\left(x + \frac{\pi n}{2}\right)$$

Пример 4.
$$f(x) = \cos(x) \implies f^{(n)}(x) = \cos\left(x + \frac{\pi n}{2}\right)$$

Утверждение 1

Если функции u(x) и v(x) имеют производные первого порядка, то

1.
$$(u(x) \pm v(x))^{(n)} = u^{(n)}(x) \pm v^{(n)}(x)$$
.

2.
$$(u(x)\cdot v(x))^{(n)}=\sum_{k=0}^n\binom{n}{k}u^{(n-k)}v^{(k)}$$
 (формула Лейбница).

 $\underline{\mbox{3амечание:}}$ считается, что $f^{(0)}(x)$ — это сама функция f(x).

$$\mathbf{\Pi pumep.} \ f(x) = x^2 e^{3x} \implies f^{(10)}(x) = 3^{10} e^{3x} x^2 + 2 \binom{1}{10} 3^9 e^{3x} x + 2 \binom{2}{10} 3^8 e^{3x} + \ldots = 3^9 e^{3x} (3x^2 + 20x + 30).$$