MODELISATION PAR L'APPROCHE ENERGETIQUE DES PERFORMANCES DES SYSTEMES

PSI - PSI *

BILAN ENERGETIQUE D'UN SYSTEME MULTIPHYSIQUE

CHEVILLE DU ROBOT NAO

1 OBJECTIFS

1 Objectif technique

Objectif:

L'objectif de ce TP est d'estimer l'énergie nécessaire à la mise en mouvement de la cheville ainsi que la part attribuée à chaque sous ensemble.

.2 Contexte pédagogique

Analyser:

☐ A3 – Conduire l'analyse

Modéliser:

- ☐ Mod2 Proposer un modèle
- Mod3 Valider un modèle

Résoudre :

☐ Rés2 — Procéder à la mise en œuvre d'une démarche de résolution analytique

.3 Évaluation des écarts

Problématique : déterminer la consommation énergétique de la cheville lors d'une flexion du robot.

2 ÉVALUATION DE L'ENERGIE NECESSAIRE A LA MISE EN MOUVEMENT DE LA CHEVILLE

2.1 Évaluation de l'énergie cinétique

Modélisation	Expérimentation
Activité 1	Activité 3
En utilisant la documentation et le modèle numérique réaliser : le graphe de liaison du mécanisme de la cheville (mouvement de tangage); le schéma cinématique de la cheville. On considèrera que la cheville est en liaison encastrement avec le pied (considéré comme le bâti).	 Proposer une méthode expérimentale permettant d'estimer la (les) composante(s) utile(s) de la matrice d'inertie des pignons. (Moyens pouvant être mis à disposition : balance, pied à coulisse). Proposer une méthode permettant de valider les valeurs déterminées.
Activité 2	
 Proposer une méthode permettant de donner l'expression littérale de l'énergie cinétique de l'ensemble {Tibia+Rotor+Pignons} par rapport au bâti. 	
Proposer puis appliquer une méthode permettant de	
déterminer l'inertie équivalente des pignons ramenée sur l'arbre moteur.	

2.2 Evaluation du frottement

Activité 4 - Expérimentation

Proposer et mettre en œuvre plusieurs expérimentations permettant d'évaluer le couple de frottement sec qui apparait sur le modèle de comportement de la simulation. Pour chaque mesure expliquer la démarche de mesure en renseignant un "tableau de mesure" (voir exemple sur le réseau).

2.3 Evaluation du rendement

Modélisation	Expérimentation :
Activité 5	Activité 6 : Mesure du rendement de la cheville en
Définir le rendement du système et l'exprimer en fonction	fonction de la vitesse et en fonction du chargement
des grandeurs physiques liées au système	 Proposer et mettre en œuvre une expérimentation permettant de mesurer le rendement de la cheville pour différentes vitesses. Proposer et mettre en œuvre une expérimentation permettant de mesurer le rendement de la cheville pour différents chargements.

2.4 Synthèse

Activité 4 - Résolution

□ Évaluer l'inertie équivalente de l'ensemble {Tibia+Rotor+Pignons}. Vous prendrez soin d'identifier la part (en pourcentage) de chacune des composantes de l'énergie cinétique.

Activité 5 - Résolution

☐ Évaluer le nombre de squats que peut réaliser le robot NAO.

1 Presentation Generale

.1 Description générale

2 Géométrie du robot

Tibia: 7 cm

Cuisse: 7 cm

Masse globale du robot : 5 kg

.3 Spécification de la batterie

Battery type	Lithium ion
Nominal voltage/capacity	21.6 V / 2.15 Ah
Max charge voltage	24.9 V
Recommended charge current	2 A
Max discharge current	2.0 A

Battery type	Lithium ion
Energy	27.6 Wh

.4 Spécifications de la cheville

Ankle Pitch	Module	Z	Coefficient de déport	Entraxe de fonctionnement	Rapport de réduction	
pignon_03_20		20	0	15	4	
mobile_inf_1 - roue	0,3	80	0			
mobile_inf_1- pignon	0,4	25	0,214	14,5	1,88	
mobile_inf_2 - roue		47	0,042			
mobile_inf_2 - pignon	0,4	12	0,564	14,5	4,83	
mobile_inf_3 - roue		58	0,836		,	
mobile_inf_3 - pignon	0,7	10	0,541	16,8	3,6	
roue_sortie_inf	-	36	0,603			
Rapport					130,85	

.5 Spécifications moteur

Product Designation 22NT 82 213P	1001	09/10	Portescap

Sno	cification	unit	value	toleran	
		unit	value	ce	
Mea	sured values				
1	Measuring voltage	V	18	-	
2	No-load speed	rpm	8300	±10%	
3	No-load current	mA	75	max	
4	Starting voltage	V		max	
5	Terminal resistance	Ohm	5.4	±10%	
Rec	ommended values				
10	Continuous current (at 22°C)	A	0.92	max	
11	Continuous torque	mNm	16.1	max	
12	Angular acceleration	10 ³ rad/s ²	181	max	
13	Ambient working temperature range	°C	-30°C to 65°C	typical	
14	Rated coil temperature	°C	155	max	
Intri	nsic parameters				
20	Back-EMF constant	V/1000 rpm	2.03	±8%	
21	Torque constant	mNm/A	19.4	±8%	
22	Motor regulation R/k2	10³/Nms	13.71	typical	
23	Rotor inductance (@1kHz)	mH	0.6	typical	
24	Mechanical time constant	ms	4.5	-	
25	Thermal resistance rotor-body	°C/W	6	typical	
26	Thermal resistance body-ambient	°C/W	22	typical	
27	Thermal time constant – rotor	S	9	typical	
28	Thermal time constant –stator	S	550	typical	
29	Rotor Inertia	Kgm ² 10 ⁻⁷	4.8	typical	
30	Stall torque	mNm	68	±8%	