

UniversidadInternacional de Valencia

Máster Universitario en Inteligencia Artificial

02MIAR | Matemáticas:

Matemáticas para la Inteligencia Artificial

Profesor:

David Zorío Ventura

De

Planeta Formación y Universidades

- 1. Sea p una proposición contradictoria. Entonces:
 - 1.1 $p \vee q$ es contradictorio.
 - 1.2 $p \land q$ es contradictorio.
 - 1.3 $p \rightarrow q$ es contradictorio.
 - 1.4 $p \rightarrow q$ es tautológico.
- 2. Determínese cuál o cuáles de los valores siguientes de x cumplen p(x):

"
$$\exists y \in \mathbb{Z} : x \cdot y = 3$$
":

- 2.1 x = 1.
- 2.2 x = 2.
- 2.3 x = -3.
- 2.4 x = 0.
- 3. ¿Cuántos números diferentes se pueden obtener reordenando los dígitos del número 1454641?

- 4. Sean $f, g, h, i : \mathbb{R} \to \mathbb{R}$ funciones diferenciables. Entonces $\forall x \in \mathbb{R}$, $[i \circ h \circ g \circ f]'(x)$ es igual a:
 - 4.1 i'(h'(g'(f'(1)))).
 - 4.2 i'(h'(g'(f'(x)))).
 - 4.3 i'(h(g(f(x))))h'(g(f(x))).
 - **4.4** i'(h(g(f(x))))h'(g(f(x)))g'(f(x))f'(x).
- 5. Sea \mathcal{A} un conjunto con una operación producto, "·", definida sobre sus elementos y $p(\mathcal{A})$ el predicado $\forall x, y \in \mathcal{A}, x \cdot y = y \cdot x$. Selecciónese el o los enunciados correctos.
 - 5.1 Se cumple $p(\mathbb{Z})$.
 - 5.2 Se cumple $p(\mathbb{Q})$.
 - 5.3 Se cumple $p(\mathbb{R})$.
 - 5.4 Se cumple $p(\mathbb{R}^{2\times 2})$.

6. El coste computacional de una función algoritmo(n) es de $c(n) = 2^n + n^3$ operaciones. ¿Cuál es el coste computacional de algoritmo2(n)?, donde

Algorithm algoritmo2(n)

for $i \leftarrow 1$ to n do algoritmo(i) end for

- 6.1 $\mathcal{O}(n^3)$.
- 6.2 $\mathcal{O}(n^4)$.
- 6.3 $\mathcal{O}(2^n)$.
- 6.4 $\mathcal{O}(n2^n)$.

7. Sean A, B, $C \in \mathbb{R}^{n \times n}$ cumpliendo $\det(A) = 2$ y $\det(B) = -8$, $\det(A^2C + I_n) = 1$. Obténgase

$$\det\left(\left(A^2B^{-1}\right)^{-1}+BC\right)$$
 .

- 8. Sea $A \in \mathbb{R}^{2 \times 2}$ una matriz simétrica cuyo polinomio característico asociado es $\lambda^2 - 3\lambda + 2$. Selecciónese la o las respuestas correctas:
 - 8.1 A es diagonalizable.
 - 8.2 Necesariamente A tiene que ser definida positiva.
 - 8.3 $\det(A) = 2$.
- $8.4 A^2$ es simétrica. 9. Sea $A \in \mathbb{R}^{7 \times 7 \times 7}$ un array multidimensional definido por $A_{i,i,k} = i - i^2 k$, para
- $i, j, k \in \{1, 2, 3, 4, 5, 6, 7\}$. Entonces A representa... 9.1 Un tensor de rango 3⁷ y dimensión 7³.
- 9.2 Un tensor de rango 7³ y dimensión 3⁷.
- 9.3 Un tensor de rango 3 y dimensión 7. 9.4 Un tensor de rango 7 y dimensión 3.

- 10. Sea $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^3 3x + 1$. Indíquese el punto de convergencia del algoritmo de descenso de gradiente para el valor inicial $x_0 = 0$ y un ratio de aprendizaje lo suficientemente pequeño.
- 11. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ dada por f(x, y) = x(1 y). Entonces:
 - 11.1 (0,1) es un punto crítico de f y se trata de un mínimo relativo.
 - 11.2 (0,1) es un punto crítico de f y se trata de un máximo relativo.
 - 11.3 (0, 1) es un punto crítico de f y se trata de un punto de silla.
 - 11.4 f no tiene puntos críticos.
- 12. Sean $f: \mathbb{R} \to \mathbb{R}^n$ y $g: \mathbb{R}^n \to \mathbb{R}$ differenciables y $h = g \circ f$. Entonces h'(x) es igual a:
 - 12.1 $\nabla g(f(x))$. 12.2 $\nabla g(f'(x))$.
 - 12.3 $\nabla g(f(x)) \cdot f'(x)$.
 - 12.4 $\nabla g(f'(x)) \cdot f'(x)$.

¡Muchas gracias!

Contacto:

david.zorio@campusviu.es