Gravity and Gravitation

Gravity:

The force of attraction between the earth and any object is called gravity.

Example: The force of attraction between earth and table.

Gravitation:

The force of attraction between any two objects in the universe is called gravitation.

Example: The force of attraction between earth and sun.

Newton's Law of Gravitation:

Statement:

"Every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of the masses of the particles and inversely proportional to the square of the distance between them."

Explanation:

Let us consider m_1 and m_2 be the masses of the particles and F is the force of attraction between them. The distance between the centres of the masses is r. Then according to the Newton's law of gravitation, we can write,

$$F \propto \frac{m_1 m_2}{r^2}$$
$$F = G \frac{m_1 m_2}{r^2}.$$

Where, G is the universal constant of gravitation.

Gravitational field:

The space around a body within which the gravitational force of attraction is perceived is called gravitational field.

The gravitational field or intensity at a point is the force experienced by a unit mass at that point. If the gravitational field at a point is E, the force acting on a mass m is F,

Also the gravitational field is defined as the negative gradient of gravitational potential

$$E = -\frac{dV}{dx}$$

Gravitational Potential:

Gravitational potential at a point is defined as the amount of work done is moving a unit mass from the point to infinity against the gravitational force of attraction.

If we denoting the gravitational potential at a point distant r from a body of mass M by V, we can write

$$V = -\frac{G}{r} \cdot M$$

It is maximum and zero at infinity. At all other points it is less than zero, i.e., a negative value. Gravitational potential at a point is a scaler quantity.

1

Gravitational Potential Energy:

The gravitational potential energy of a body at a point in a gravitational field is equal to the product of the mass of the body and the gravitational potential at that point. Therefore, we can write

Gravitational Potential Energy =
$$-\frac{G}{r}M.m.$$

Here, m is the mass of the body.

Gravitational Potential due to Point Mass:

Let a mass M be situated at O (fig.-1) and let a unit mass be situated at P. Then, the force of attraction on the unit mass due to M is clearly

$$F = G \cdot \frac{M \times 1}{x^2}$$
$$= \frac{M}{x^2} \cdot G$$

where x is the distance of P from O, the force being directed towards O. Therefore, work done when the unit mass moves through a small distance dx, towards A, is equal to M. G. $\frac{dx}{x^2}$.

Therefore, work done when it moves from B to A

$$= \int_{B} F \cdot dx$$

$$= \int_{B}^{A} \frac{M}{x^{2}} \cdot G \cdot dx$$

$$= G \cdot M \int_{B}^{A} \frac{1}{x^{2}} \cdot dx$$

$$= -G \cdot M \left[\frac{1}{x} \right]_{B}^{A}$$

$$= -G \cdot M \left[\frac{1}{r} - \frac{1}{r_{1}} \right]$$

$$= G \cdot M \left[\frac{1}{r_{1}} - \frac{1}{r} \right]$$

where r and r_1 are the distances of A and B from O. This, obviously, is the potential difference beween the points A and B.

If B be at infinity, i.e., if $r_1 = \infty$, we have

Potential difference between A and $\infty = G$. $M\left[\frac{1}{\infty} - \frac{1}{r}\right]$

$$=-\frac{M}{r}$$
. G .

But potential difference between A and ∞ is equal to the potential at A, because the gravitational force at ∞ , due to M, is zero and therefore, the work done in moving a mass about, there is also zero. In other words, the potential at infinity is zero. Therefore, the gravitational potential at a due to the mass M,

$$=-\frac{GM}{r}$$
.

If we denoting the gravitational potential at a point distant r from a body of mass M by V, we can write

$$V = -\frac{G}{r}.M.$$

It is maximum and zero at infinity. At all other points it is less than zero,i.e., a negative value.

Gravitational Potential due to a Spherical Shell (a) At a point outside the shell:

Let us consider a uniform thin spherical shell of mass M and radius R. We have to calculate the potential due to this shell at a point P. Let the centre of the shall be O and OP= r. Let ρ be the density per unit area of the shell.

Let us draw a radius making an angle θ . Keeping the fixed $\angle AOP=\theta$ fixed; let us rotate this radius about OP. The point A traces a circle on the surface of the shell. Let us now consider another radius OB at an angle θ + $d\theta$ and draw a similar circle about OP. The part of the spherical shell between these two circles can be treated as a ring. Therefore,

The radius of the ring is given as , AE=OA. $\sin\theta$ =R. $\sin\theta$.

The width of the ring is given as AB= OB. $Sind\theta=R.d\theta$.

So that, its circumference= $2\pi R \sin\theta$.

The area of the ring is hence given as,

= its circumference \times its width

 $= 2\pi R \sin\theta \times R.d\theta$

 $=2\pi R^2 \sin\theta d\theta$.

Mass of the element or ring,

 $m = (2\pi R^2 \sin\theta d\theta)\rho$

Let us consider, AP = x, every point of the element is at a distance x from P and therefore, the potential at P due to this small element is given by

Now, in \triangle OAP, $x^2 = R^2 + r^2 - 2rR \cos \theta$

Differentiating the above expression, we have

$$2x. dx = 0 + 0 + 2rR \sin\theta d\theta$$
.

[R and r being constants]

Hence,
$$x = \frac{rR \sin \theta d\theta}{dx}$$

Substituting this value of x in expression (1) above, we have

$$dV = -\frac{2\pi R^2 \sin\theta \ d\theta \ \rho}{Rr \sin\theta \ d\theta} \ G \ dx$$
$$= -\frac{2\pi GR \rho \ dx}{r}$$

Integrating this between the limits, x = AP = (r - R) and x = BP = (r + R), we get V, the potential due to the whole shell at the point P.

Thus,

$$V = \int_{(r-R)}^{(r+R)} -\frac{2\pi R\rho G \, dx}{r}$$

$$= -\frac{2\pi R\rho G}{r} \int_{(r-R)}^{(r+R)} dx.$$

$$= -\frac{2\pi R\rho G}{r} [x]_{(r-R)}^{(r+R)}$$

$$= -\frac{2\pi R\rho G}{r}.2R$$

$$= -\frac{4\pi R^2 \rho.G}{r}$$

Now, $4\pi R^2$ is the surface area of the whole shell and therefore, $4\pi R^2 \rho$ is equal to its mass M. We thus have

$$V=-\frac{M}{r}G.$$

Thus for a point outside the shell, the shell behaves as if the whole of its mass is concentrated at the centre of the shell.

Further

$$V \propto \frac{1}{r}$$

Gravitational Field:

$$E = -\frac{dV}{dr}$$

(a) At a point inside the shell:

Let us consider a uniform thin spherical shell of mass M and radius R. We have to calculate the potential due to this shell at a point P. Let the centre of the shall be O and OP=r. Let ρ be the density per unit area of the shell.

Let us draw a radius making an angle θ . Keeping the fixed $\angle AOP = \theta$ fixed; let us rotate this radius about OP. The point A traces a circle on the surface of the shell. Let us now consider another radius OB at an angle $\theta + d\theta$ and draw a similar circle about OP. The part of the spherical shell between these two circles can be treated as a ring. Therefore,

The radius of the ring is given as , AE=OA. $Sin\theta$ =R. $Sin\theta$.

The width of the ring is given as AB= OB. $Sind\theta=R.d\theta$.

So that, its circumference= $2\pi R \sin\theta$.

The area of the ring is hence given as,

= its circumference × its width

 $= 2\pi R \sin\theta \times R.d\theta$

 $=2\pi R^2 \sin\theta d\theta$.

Mass of the element,

$$m = (2\pi R^2 \sin\theta d\theta)\rho$$

Let us consider, AP = x, every point of the element is at a distance x from P and therefore, the potential at P due to this small element is given by

Now, in \triangle OAP, $x^2 = R^2 + r^2 - 2rR \cos \theta$

Differentiating the above expression, we have

$$2x. dx = 0 + 0 + 2rR \sin\theta d\theta$$
.

[R and r being constants]

Hence,
$$x = \frac{rR \sin \theta d\theta}{dx}$$

Substituting this value of x in expression (1) above, we have

$$dV = -\frac{2\pi R^2 \sin\theta \ d\theta \ \rho}{Rr \sin\theta \ d\theta} \ G \ dx$$

$$= -\frac{2\pi GR\rho \ dx}{r}$$

For the whole shell integrate between the limits (R-r) and (R+r). In this case, the limits of x are (R-r) and (R+r). So that, we have

Thus,

$$V = \int_{(R-r)}^{(R+r)} -\frac{2\pi GR\rho}{r} dx.$$

$$= -\frac{2\pi GR\rho}{r} [x]_{(R-r)}^{(R+r)}$$

$$= -\frac{2\pi GR\rho}{r} . 2r$$

$$= -4\pi GR\rho.$$

Or, multiplying and dividing by a, we have $V = -\frac{4\pi R^2 \rho G}{R}$.

Now, $4\pi R^2 \rho = M$, the mass of the shell.

Expression (2) shows that V is independent of r. It is the same at all points inside the shell. This potential is equal to the potential on the surface of the shell and is constant.

Gravitational Field:

$$E = -\frac{dV}{dr}$$

(c) At a point on the surface of the shell:

Let us consider a uniform thin spherical shell of mass M and radius R. We have to calculate the potential due to this shell at a point P. Let the centre of the shall be O and OP=r. Let ρ be the density per unit area of the shell.

Let us draw a radius making an angle θ . Keeping the fixed $\angle AOP = \theta$ fixed; let us rotate this radius about OP. The point A traces a circle on the surface of the shell. Let us now consider another radius OB at an angle $\theta + d\theta$ and draw a similar circle about OP. The part of the spherical shell between these two circles can be treated as a ring. Therefore,

The radius of the ring is given as , AE=OA. $\sin\theta$ =R. $\sin\theta$.

The width of the ring is given as AB= OB. $Sind\theta=R.d\theta$.

So that, its circumference= $2\pi R \sin\theta$.

The area of the ring is hence given as,

= its circumference \times its width

 $= 2\pi R \sin\theta \times R.d\theta$

 $=2\pi R^2 \sin\theta d\theta$.

Mass of the element,

$$m = (2\pi R^2 \sin\theta d\theta)\rho$$

Let us consider, AP = x, every point of the element is at a distance x from P and therefore, the potential at P due to this small element is given by

Now, in \triangle OAP, $x^2 = R^2 + r^2 - 2rR \cos \theta$

Differentiating the above expression, we have

$$2x. dx = 0 + 0 + 2rR \sin\theta d\theta$$
.

[R and r being constants]

Hence,
$$x = \frac{rR \sin \theta d\theta}{dx}$$

Substituting this value of x in expression (1) above, we have

$$dV = -\frac{2\pi R^2 \sin\theta \ d\theta \ \rho}{Rr \sin\theta \ d\theta} \ G \ dx$$

$$= -\frac{2\pi GR\rho\ dx}{r}$$

In the above case, if we imagine the point P to lie at N, i.e., on the surface of the shell itself, we obtain the potential there by integrating the expression for dV between the limits x = 0 and x = 2R. So that in this case,

$$V = \int_{0}^{2R} -\frac{2\pi GR\rho}{r} \cdot dx$$
$$= -\frac{2\pi GR\rho}{r} [x]_{0}^{2R}$$
$$= -\frac{4\pi R^{2}\rho \cdot G}{r}$$
$$= -\frac{MG}{r}$$
$$= -\frac{MG}{r}$$

Thus,

$$V=-\frac{M}{r}G.$$

Again, therefore, the whole mass of the shell behaves as though it were concentrated at its centre.

Escape Velocity:

Escape velocity is defined as the velocity with which a body has to be projected vertically upwards from the earth's surface so that it escapes the earth's gravitational field altogether.

If v is the escape velocity, then the initial kinetic energy of projection $\frac{1}{2}mv^2$ must be equal to the work done in moving the body from the surface of the earth to infinity.

Therefore, we can write

$$\frac{1}{2}mv^{2} = \frac{GMm}{r}$$

$$v = \sqrt{2gr}$$

$$v = 11.2 \text{ km/sec.}$$

Kepler's Laws of Motion:

The three laws of planetary motion are:

(1) Shape of the orbit:

Every planet moves in an elliptical orbit with the sun being at one of its foci.

(2) *Velocity in the orbit [Law of areas]:*

The radius vector drawn from the sun to the planet sweeps out equal areas in equal intervals of time.

(3) Time periods of Planets:

The square of the time period of revolution of a planet around the sun is proportional to the cube of the semi-major axis of the orbit. Thus, if a_1 and a_2 are the semi-major axis of the plantes and T_1 and T_2 are the time periods, respectively, then

$$\frac{T_1^2}{a_1^3} = \frac{T_2^2}{a_2^3} = Constant$$

$$or \frac{T^2}{a^3} = Constant$$

$$\therefore T^2 \propto a^3.$$

Compound Pendulum:

A compound pendulum is a rigid mass capable of oscillating about a horizontal axis passing through any point of the mass. This point is called the point of suspension. In Fig.-1, G is the centre of gravity of the body and S is the point of suspension. At any instant of time, when the mass has been displaced, the force acting vertically downwards=Mg. At this position, the line SG makes an angle θ with the vertical and the restoring moment of this force about the point S=Mgl $\sin\theta$. This is the only moment which produces angular acceleration in the pendulum.

Let the moment of inertia of the pendulum about an axis passing through S and perpendicular to its length be I. If the angular acceleration at this instant is $\frac{d^2\theta}{dt^2}$, then

$$I\frac{d^2\theta}{dt^2} = -Mglsin\theta$$

[-ve sign shows that the force is directed towards the mean position].

$$\therefore I\frac{d^2\theta}{dt^2} + Mglsin\theta = 0$$

For small angular displacements, $sin\theta = \theta$

$$\therefore I \frac{d^2 \theta}{dt^2} + Mgl\theta = 0$$

The moment of inertia of the pendulum about an axis passing through S and perpendicular to its plane $=MK^2 + Ml^2$. Where K is the radius of gyration.

$$\frac{d^2y}{dt^2} + \omega^2 y = 0 \dots \dots \dots \dots \dots (2)$$

Comparing equation (1) and (2),

$$\omega^2 = \left(\frac{lg}{K^2 + l^2}\right)$$

Here ω is the angular frequency.

∴ Time period

Here $(K^2/l) + l$ is called the equivalent length of the simple pendulum.