Student's Name:

Introduction to circuit analysis

Homework 3 – Series dc circuit

Instructions:

- You have to show all work in order to receive full credit
- All answer must be in engineering notation rounded off to the hundredth

d.

e.

1. Find the total resistance R_T of a given circuit (8 pts)

2. For the series configuration circuit

- a. Find the total resistance (7 pts)
- b. Calculate the source current (3 pts)_____
- c. Find the voltage across each resistor (7 pts)

 V_{R1} _____ V_{R2} _____ V_{R3}

- Calculate power dissipated by the source (3 pts)
- Calculate power dissipated by each resistor (7 pts):

 P_{R1} P_{R2} P_{R3}

3. Find the voltage source value, E, that will result in the given current (7 pts)

- (3 pts) Find P_{R1}
- (3 pts) Find P_T

4. Using the provided information, find the unknown quantities for E, V₁, V₂, V₃, R₁, and R₂

- (3 pts) E _____(3 pts) V₁_____
- (3 pts) V₂_____(3 pts) V₃_____
- (4 pts) R₂

5. Find the equivalent or total voltage for each of the following circuit (3 pts each):

6. For the following circuits, determine the current direction and value of the circuit, and the voltage drop through each resistor with their respective voltage polarities:

I_{equivalent} = _____(9 pts)(clockwise or counterclockwise)

 V_{R1} _____(3 pts) V_{R2} _____(3 pts)

	- 10 V+ 	R ₁ W - 4.7 Ω	
4 V +			$R_2 \lessapprox 1.2 \Omega$
=	5.6 Ω 	—— - -12.V	

I_{equivalent} = (clockwise or counterclockwise) (9 pts)

 V_{R1} _____(3 pts) V_{R2} _____(3 pts) V_{R3} _____(3 pts)