Computational neuroscience

- -- techniques for recording from the brain
- -- tools for discovering how the brain represents information
- -- models that express our understanding of this representation
- -- some methods for inferring what the brain is doing based on its activity (week 3)
- -- using information theory to quantify neural representations (week 4)
- -- the biophysical basis of how the brain processes inputs and performs complex computations (week 5)

Recording from the brain

Recording from the brain: fMRI

Recording from the brain: fMRI

 \bigcirc

S. Murray

Recording from the brain: EEG

Reading out the neural code: electrode arrays

Alan Litke, UCSC

Reading out the neural code: electrode arrays

Reading out the neural code: calcium imaging

Alex Kwan

Looking inside single cells

Theresa Knott, Creative Commons

http://www.royles-opticians.co.uk

Ramon y Cajal, 1901

Michael J. Berry II

Encoding and decoding

Encoding: how does a stimulus cause a pattern of responses?

building quasi-mechanistic models

Decoding: what do these responses tell us about the stimulus?

how can we reconstruct what the brain is doing?

P(response | stimulus) encoding

P(stimulus | response) decoding

What is the response? What is the stimulus? What is the relationship between them?

Neural representation of information

Stimulus parameter

Tuning curves

Gaussian tuning curve of a cortical (V1) neuron

from Dayan and Abbott, *Theoretical Neuroscience*: adapted from Wandell '95, Hubel and Wiesel '68; data from Henry et al., '74

Tuning curves

Cosine tuning curve of a motor cortical neuron

from Dayan and Abbott, *Theoretical Neuroscience*: adapted from Georgopoulos et al. '92

Map of feature selectivity in primary visual cortex

Issa N P et al. J Neurophysiol 2008;99:2745-2754

Journal of Neurophysiology

Higher order feature selectivity

"Tuning curves"

Quian Quiroga, Reddy, Kreiman, Koch and Fried, Nature (2005)

What is the stimulus *s*?

Quian Quiroga, Reddy, Kreiman, Koch and Fried, *Nature* (2005)

Tuning curves

Quian Quiroga, Reddy, Kreiman, Koch and Fried, Nature (2005)

What is *s*?

Quian Quiroga, Reddy, Kreiman, Koch and Fried, Nature (2005)

Building up complex selectivity

Top-down effects

Next up: constructing response models

