Lecture 16 – Equivalence of Pushdown Automata and Context-Free Grammars COSE215: Theory of Computation

Jihyeok Park

2023 Spring

A context-free grammar is a 4-tuple:

$$G = (V, \Sigma, S, P)$$

A pushdown automaton (PDA) is a finite automaton with a stack.

- Acceptance by final states
- Acceptance by empty stacks

Contents

1. Equivalence of PDA by Final States and Empty Stacks

PDA_{FS} to PDA_{ES} PDA_{ES} to PDA_{FS}

2. Equivalence of PDA and CFGs

CFGs to PDA_{ES} PDA_{ES} to CFGs

 PDA_{FS} \longrightarrow PDA_{ES} \longrightarrow CFG (by final states)

Contents

 Equivalence of PDA by Final States and Empty Stacks PDA_{FS} to PDA_{ES} PDA_{FS} to PDA_{FS}

 Equivalence of PDA and CFGs CFGs to PDA_{ES} PDA_{ES} to CFGs

PDA_{FS} to PDA_{ES}

Theorem (PDA_{FS} to PDA_{ES})

For a given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, \exists PDA P'. $L_F(P) = L_E(P')$.

Theorem (PDA_{FS} to PDA_{ES})

For a given PDA
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$$
, \exists PDA P' . $L_F(P) = L_E(P')$.

Define a PDA

$$P' = (Q \cup \{q'_0, q'_1\}, \Sigma, \Gamma \cup \{Z'\}, \delta', q'_0, Z', \varnothing)$$

where

$$\delta'(q'_0, \epsilon, Z') = \{(q_0, ZZ')\}$$
$$\delta'(q \in Q, a \in \Sigma, X \in \Gamma) = \delta(q, a, X)$$

$$\delta'(q \in Q, \epsilon, X \in \Gamma)$$
 = $\left\{ \begin{array}{l} \delta(q, \epsilon, X) \cup \{(q'_1, \epsilon)\} & \text{if } q \in F \\ \delta(q, a, X) & \text{otherwise} \end{array} \right.$

$$\delta'(q_1', \epsilon, X \in \Gamma \cup \{Z'\}) = \{(q_1', \epsilon)\}$$

PDA_{FS} to PDA_{ES} – Example

PDA_{ES} to PDA_{ES}

Theorem (PDA_{ES} to PDA_{FS})

For a given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, \exists PDA P'. $L_E(P) = L_F(P')$.

PDA_{ES} to PDA_{FS}

Theorem (PDA_{ES} to PDA_{FS})

For a given PDA
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$$
, \exists PDA P' . $L_E(P) = L_F(P')$.

Define a PDA

$$P' = (Q \cup \{q_0', q_1'\}, \Sigma, \Gamma \cup \{Z'\}, \delta', q_0', Z', \{q_1'\})$$

where

$$\delta'(q'_0, \epsilon, Z') = \{(q_0, ZZ')\}$$

$$\delta'(q \in Q, a \in \Sigma, X \in \Gamma) = \delta(q, a, X)$$

$$\delta'(q \in Q, \epsilon, X \in \Gamma) = \delta(q, a, X)$$

$$\delta'(q \in Q, \epsilon, Z') = \{(q'_1, \epsilon)\}$$

PDA_{ES} to PDA_{FS} – Example

Contents

 Equivalence of PDA by Final States and Empty Stacks PDA_{FS} to PDA_{ES} PDA_{ES} to PDA_{FS}

 Equivalence of PDA and CFGs CFGs to PDA_{ES} PDA_{ES} to CFGs

CFGs to PDA_{ES}

Theorem (CFGs to PDA_{ES})

For a given CFG
$$G = (V, \Sigma, S, R)$$
, $\exists PDA P. L(G) = L_E(P)$.

Define a PDA

$$P = (\{q\}, \Sigma, V \cup \Sigma, \delta, q, S, \varnothing)$$

where

$$\delta(q, \epsilon, A \in V) = \{(q, \alpha) \mid A \to \alpha \in R\}$$

$$\delta(q, a \in \Sigma, a \in \Sigma) = \{(q, \epsilon)\}$$

CFGs to PDA_{ES} – Example

$$\begin{array}{lcl} \delta(q,\epsilon,A\in V) & = & \{(q,\alpha)\mid A\to\alpha\in R\} \\ \delta(q,a\in\Sigma,a\in\Sigma) & = & \{(q,\epsilon)\} \end{array}$$

Consider the following CFG:

$$S
ightarrow \epsilon \mid aSb \mid bSa \mid SS$$

Then, the equivalent PDA (by empty stacks) is:

PDA_{FS} to CFGs

Theorem (PDA_{FS} to CFGs)

For a given PDA
$$P = (Q = \{q_0, \dots, q_{n-1}\}, \Sigma, \Gamma, \delta, q_0, Z, F), \exists CFG G. L_E(P) = L(G).$$

Consider the set of variables $V = \{S\} \cup \{A_{i,i}^X \mid 0 \le i, j < n \land X \in \Gamma\}$. Then, define a CFG:

• For all 0 < i < n,

$$S \rightarrow A_{0,j}^Z$$

• For all $q_i \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma$, consider any $(q_i, X_1 \cdots X_m) \in \delta(q_i, a, X)$ and $0 \le k_1, \cdots, k_m < n$. Then,

$$A_{i,k_m}^X o a A_{j,k_1}^{X_1} A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

Note that each variable $A_{i,i}^X$ generates all words that cause the PDA to go from state q_i to state q_i by popping X:

$$A_{i,i}^X \Rightarrow^* w$$

$$A_{i,j}^X \Rightarrow^* w$$
 if and only if $(q_j, w, X) \vdash^* (q_i, \epsilon, \epsilon)$

PDA_{ES} to CFGs – Example

$$S o A_{0,j}^Z \hspace{1cm} A_{i,k_m}^X o a \ A_{j,k_1}^{X_1} \ A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

Consider the following PDA (by empty stacks):

$$\begin{array}{cccc} a & [Z \to XZ] & \epsilon & [Z \to \epsilon] \\ a & [X \to XX] & b & [X \to \epsilon] \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ &$$

Then, the equivalent CFG is:

Summary

1. Equivalence of PDA by Final States and Empty Stacks

PDA_{FS} to PDA_{ES} PDA_{ES} to PDA_{FS}

2. Equivalence of PDA and CFGs

CFGs to PDA_{ES} PDA_{ES} to CFGs

$$PDA_{FS}$$
 \longrightarrow PDA_{ES} \longrightarrow CFG (by final states)

Next Lecture

• Deterministic Pushdown Automata (DPDA)

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr