Recognition of Animal Skin Texture Attributes in the Wild

Amey Dharwadker (aap2174) Kai Zhang (kz2213)

Motivation

- Patterns and textures are have an important role in object description and understanding
- Scientists in conservation research use skin textures to identify wildlife animals. Manual process, slow, error prone
- A system to automatically recognize animal skin textures to help classify wildlife species caught in millions of camera trap images would be helpful to scientists

Objective

 Build a system to automatically recognize animal skin textures in the wild

Recognize and localize texture class in the

image

Spot texture class recognized

"Zooinverse "Snapshot Serengeti Data

Challenges

- Images captured in the wild scale and viewpoint variations, occlusion
- Dataset generation for training and testing texture classifiers
- Texture localization methods
- Discriminant features for texture recognition
- Texture recognition system evaluation

System Flowchart

Training Process:

Positive Texture Patches

Negative Texture Patches Feature Extraction

SVM Training

SVM Model

Testing Process:

Input Image Feature Extraction

Texture classification & localization

Output:

Texture Bounding
Box

Related Work

- Describing Textures in the Wild
 - M. Cimpoi et al. in CVPR 2014
 - Improved Fisher vector (IFV) with color SIFT descriptor
 - Response of attribute classifiers as a feature representation
- Beyond Sliding Windows
 - C. Lampert et al. in CVPR 2008
 - Branch and bound scheme
 - Bag of visual words with SVM using bounding decision functions

Skin Texture Data

 'ImageClipper' tool used to efficiently crop desired texture patches from images

- Two animals from each skin texture class
- Skin texture training images from both, ImageNet and Serengeti dataset

Texture Representations

- Given texture image, compute a representation and then classify into the four categories
- Local color SIFT descriptors extracted densely at multiple scales
- Representations for texture description computed on dense color SIFT features:
 - Bag of Visual Words (BoV)
 - Improved Fisher vectors (IFV)

Texture Representations

- Improved Fisher vectors (IFV)
 - Port IFV from object recognition literature
 - 384-dimensional color SIFT features, sampled every 3 pixels
 - Soft quantize descriptors using a Gaussian Mixture Model (GMM) with 50 modes
 - Experiments with different SVM kernels
 - Linear SVM classifier found to give best performance with IFV representation

Texture Representations

- Bag of Visual Words (BoV)
 - Codebook generation using k-means: 800 words
 - Background class included with four texture classes
 - Quantize dense SIFT descriptors using the codebook
 - Represent each image by histogram of codebook occurrences
 - Experimented with histogram intersection kernel
 - Four linear SVM classifiers of each texture class vs. all other texture classes (for effective integration with texture localization)

Texture Classifier Results

- Cross-validation results on texture images
 - 75 training images and 35 testing images in each texture category

Texture Category	Recognition accuracy
Band	94.40 %
Solid	86.40 %
Spot	96.00 %
Stripe	95.20 %
Background	96.80 %

Texture Localization

 Linear classifiers with sliding window scheme exhaustive search, massive computations

Sliding Window Detector

- Evaluate classifier at candidate regions in an image – arg max_B f_I(B)
- Sample a subset of regions to evaluate :
 - Scale
 - Aspect ratio
 - Grid size
- n * m image size: Empirical performance O(n^2*m^2).
- Need a better way to search the space of possible windows

Efficient Subwindow Search

Branch and Bound Algorithm!

- Similar boxes have similar scores.
- Calculate scores for sets of boxes jointly (upper bound).
- If no element can contain the object, discard the set.
- Else, split the set into smaller parts and recheck, etc.

Branch and Bound Algorithm

- Branching: Dividing a space of candidate rectangles into subspaces
 - Splitting sets of boxes

- Bounding: Pruning subspaces with highest possible score lower than some guaranteed scores in other subspaces
 - Constructing quality bound (SVM score function)

Efficient Subwindow Search Algorithm

```
Require: image I \in \mathbb{R}^{n \times m}
Require: quality bounding function \hat{f} (see text)
Ensure: (t_{\text{max}}, b_{\text{max}}, l_{\text{max}}, r_{\text{max}}) = \operatorname{argmax}_{R \subset I} f(R)
   initialize P as empty priority queue
   set [T, B, L, R] = [0, n] \times [0, n] \times [0, m] \times [0, m]
   repeat
     split [T, B, L, R] \rightarrow [T_1, B_1, L_1, R_1] \dot{\cup} [T_2, B_2, L_2, R_2]
     push ([T_1, B_1, L_1, R_1], f([T_1, B_1, L_1, R_1]) into P
     push ([T_2, B_2, L_2, R_2], \hat{f}([T_2, B_2, L_2, R_2]) into P
     retrieve top state [T, B, L, R] from P
   until [T, B, L, R] consists of only one rectangle
   set (t_{\text{max}}, b_{\text{max}}, l_{\text{max}}, r_{\text{max}}) = [T, B, L, R]
```

Evaluation

- All experiments include 10 images of each animal, with 3 animals in each texture category
- No ground truth data available for texture localization in the Serengeti dataset
- Ground truth generated by human annotation based on perception of skin texture
 - Developed MATLAB annotation tool for quickly generating ground truth for images

Ground-truth Annotation

DLCcovert.com 09-23-2010 22:33:41

DLGcovert.com 09-28-2010 17:22:52

Experimentation and Results

- All experiments include 30 images in each texture category, containing various animals
- Only area in the image with maximum probability of texture occurrence is considered
- Detection considered true or false positive based on area of overlap with ground truth bounding boxes
- Correct detection: Area of overlap between predicted bounding box and ground truth bounding box must exceed 50%

Texture Recognition Results - Stripe

10-01-2010 14:12:38

DLCcovert.com

DLCcovert.com

09-15-2010 08:05:02

Texture Recognition Results - Spot

DLGcovert.com 07-30-2010 16:42:44

DLGcovert.com 08-31-2010 13:43:39

Texture Recognition Results - Solid

DLCoovert.com 08-06-2010 13:04:16

Texture Recognition Results - Band

Texture Mislocalized Results

DLCcovert.com 10-05-2010 22:53:16

DLCcovert.com 08-06-2010 16:47:38

DLCcovert.com 08-04-2010 12:20:05

Experimentation and Results

- Texture Localization: Average overlap percentage of predicted bounding box with ground-truth bounding box
- Average overlap measure is calculated as:

$$A_0 = \frac{area(Bp \cap Bgt)}{area(Bp \cup Bgt)}$$

Texture Category	Average overlap %
Stripe	48.08 %
Spot	32.36 %
Solid	18.96 %
Band	27.74 %

Experimentation and Results

 Correction Detection: Average overlap measure greater than 50%

Texture Category	Correct Detection %
Stripe	44.44 %
Spot	31.61 %
Solid	19.32 %
Band	26.97 %

- Texture detection in the wild gives an average precision of 30.58% across all texture categories
- High false positive rate

Conclusion

- We built an animal skin texture recognition system to aid classification of wildlife species
- Used linear SVM texture classifiers in conjunction with the ESS algorithm for texture, and hence animal localization in the wild
- Future work :
 - Include in color features of textures
 - Consider hard example mining
 - Study applicability of ESS to kernel-based classifiers
 - Improve accuracy by leveraging background modeling