Speed up Entity Resolution with Bit Arrays

Big Data Praktikum SS 17

Moritz Engelmann Maik Fröbe

31.07.2017

- Einführung
- 2 Ansätze zur Entity-Resolution
 - Trivialer Ansatz
 - Sortier-Ansatz
 - Bit-Array-Ansatz
 - Vergleich
- Optimierungen des Bit-Array-Ansatzes
 - Bit-Array als Filter
 - Filtern in 2 Phasen
- Rückblick + Ausblick

Einführung

Problembeschreibung

- Eingabe
 - 2 Mengen von Personen
 - Verhältnis 80:20

7iel

Id: 12345 Name: Peter Müller Adresse: Dorfstraße 1 Geb.: 19.05.1980

• finden ähnlicher Personen in beiden Datensätzen

- Anforderungen
 - Bestimmung der Ähnlichkeit mit Jaccard-Index
 - $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|}$

Framework zur Entity-Resolution

- vollständig Parametrisierbar
- Modular
- Start der Entity-Resolution mit:
 - Transformation: Person $\rightarrow V$
 - Ähnlichkeit: $V \times V \rightarrow [0,1]$
 - n (Größe der n-Gramme)
 - Threshold
 - ...
- sequentieller Nested-Loop
 - Vollständige Berechnung der Ähnlichkeit für kartesisches Produkt

Importphase

Ansätze zur Entity-Resolution

Trivialer Ansatz

Transformation:


```
Id: 1234
Name: {pet, ete, ter, ...}
Adresse: {dor, orf, rfs, ...}
Geb.: {18, 19, 20, 4, 5, ...}
```

```
Transformation
```

Id: 1234
Name: {pet, ete, ter, ...}
Adresse: {dor, orf, rfs, ...}

Geb.: {18, 19, 20, 4, 5, ...}

<u>Ähnlichkeitsfunktion:</u>

Sortier-Ansatz

- Analog zu Sort-Merge-Verbund¹
 - Während Import: Sortiere Mengen
 - Während ER: Berechne Kardinalität der Schnittmenge in $\mathcal{O}(n)$
 - Schritthaltende Traversierung der sortierten Mengen

¹Siehe Vorlesung Implementierung von Datenbanksystemen

Bit-Array-Ansatz

pet

ete

ter

HF

Hier:

Immer genau eine Hashfunktion!

0 0 0 0 0 0 0 0 0

Ähnlichkeitsfunktion:

Vergleich

Vergleich

Ausführungszeit in Minuten

- für unterschiedlich große Datensätze
- Parameter

115

110

105 100

95

90

85 80

75

70 65

60

55

- Trigramme
- Threshold: 0.7
 - Datumsunschärfe: 1
- Testsystem
 - CPU: 8 Kerne (HT) @ 3.4 GHz
 - RAM: 16 GB

Absolute Werte:

Absolute Werte:

Optimierungen des Bit-Array-Ansatzes

Bit-Array als Filter

- Zwischenschritt:
 - Obere Schranke des Jaccard-Index mit Bit-Arrays effizient bestimmen
- Idee:
 - A, B Mengen
 - $A_F = bloom(A)$, $B_F = bloom(B)$ Bit-Arrays der Mengen
 - Es gilt:
 - $|A_F| \le |A|$
 - $|A_F \vee B_F| \leq |A \cup B|$
 - $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A| + |B| |A \cup B|}{|A \cup B|} \le \frac{|A| + |B| |A_F \vee B_F|}{|A_F \vee B_F|}$
- Vorgehen:
 - Schätze Jaccard-Index
 - Größer Threshold? ⇒ berechne Jaccard-Index

- Zwischenschritt:
 - Obere Schranke des Jaccard-Index mit Bit-Arrays effizient bestimmen
- Idee:
 - A, B Mengen
 - $A_F = bloom(A)$, $B_F = bloom(B)$ Bit-Arrays der Mengen
 - Es gilt:
 - $|A_F| \le |A|$
 - $|A_F \vee B_F| \leq |A \cup B|$
 - $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A| + |B| |A \cup B|}{|A \cup B|} \le \frac{|A| + |B| |A_F \vee B_F|}{|A_F \vee B_F|}$
- Vorgehen:
 - Schätze Jaccard-Index
 - Größer Threshold? ⇒ berechne Jaccard-Index

- Zwischenschritt:
 - Obere Schranke des Jaccard-Index mit Bit-Arrays effizient bestimmen
- Idee:
 - A. B Mengen
 - $A_F = bloom(A)$, $B_F = bloom(B)$ Bit-Arrays der Mengen
 - Es gilt:
 - $|A_F| < |A|$
 - $|A_F \vee B_F| < |A \cup B|$
 - $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A| + |B| |A \cup B|}{|A \cup B|} \le \frac{|A| + |B| |A_F \vee B_F|}{|A_F \vee B_F|}$
- Vorgehen:
 - Schätze Jaccard-Index
 - Größer Threshold? ⇒ berechne Jaccard-Index

- Zwischenschritt:
 - Obere Schranke des Jaccard-Index mit Bit-Arrays effizient bestimmen
- Idee:
 - A. B Mengen
 - $A_F = bloom(A)$, $B_F = bloom(B)$ Bit-Arrays der Mengen
 - Es gilt:
 - \bullet $|A_F| < |A|$
 - $|A_F \vee B_F| < |A \cup B|$
 - $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A| + |B| |A \cup B|}{|A \cup B|} \le \frac{|A| + |B| |A_F \vee B_F|}{|A_F \vee B_F|}$
- Vorgehen:
 - Schätze Jaccard-Index
 - Größer Threshold? ⇒ berechne Jaccard-Index

- Obere Schranke des Jaccard-Index mit Bit-Arrays effizient bestimmen
- Idee:
 - A, B Mengen
 - $A_F = bloom(A)$, $B_F = bloom(B)$ Bit-Arrays der Mengen
 - Es gilt:
 - $|A_F| \leq |A|$
 - $|A_F \vee B_F| \leq |A \cup B|$
 - $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A| + |B| |A \cup B|}{|A \cup B|} \le \frac{|A| + |B| |A_F \vee B_F|}{|A_F \vee B_F|}$
- Vorgehen:
 - Schätze Jaccard-Index
 - Größer Threshold? ⇒ berechne Jaccard-Index

- Zwischenschritt:
 - Obere Schranke des Jaccard-Index mit Bit-Arrays effizient bestimmen
- Idee:
 - A. B Mengen
 - $A_F = bloom(A)$, $B_F = bloom(B)$ Bit-Arrays der Mengen
 - Es gilt:
 - \bullet $|A_F| < |A|$
 - $|A_F \vee B_F| \leq |A \cup B|$
 - $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A| + |B| |A \cup B|}{|A \cup B|} \le \frac{|A| + |B| |A_F \vee B_F|}{|A_F \vee B_F|}$
- Vorgehen:
 - Schätze Jaccard-Index
 - Größer Threshold? ⇒ berechne Jaccard-Index

- Zwischenschritt:
 - Obere Schranke des Jaccard-Index mit Bit-Arrays effizient bestimmen
- Idee:
 - A, B Mengen
 - $A_F = bloom(A)$, $B_F = bloom(B)$ Bit-Arrays der Mengen
 - Es gilt:
 - $|A_F| \leq |A|$
 - $|A_F \vee B_F| \leq |A \cup B|$
 - $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A| + |B| |A \cup B|}{|A \cup B|} \le \frac{|A| + |B| |A_F \vee B_F|}{|A_F \vee B_F|}$
- Vorgehen:
 - Schätze Jaccard-Index
 - Größer Threshold? ⇒ berechne Jaccard-Index

- Zwischenschritt:
 - Obere Schranke des Jaccard-Index mit Bit-Arrays effizient bestimmen
- Idee:
 - A, B Mengen
 - $A_F = bloom(A)$, $B_F = bloom(B)$ Bit-Arrays der Mengen
 - Es gilt:
 - $|A_F| \leq |A|$
 - $|A_F \vee B_F| \leq |A \cup B|$
 - $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A| + |B| |A \cup B|}{|A \cup B|} \le \frac{|A| + |B| |A_F \vee B_F|}{|A_F \vee B_F|}$
- Vorgehen:
 - Schätze Jaccard-Index
 - Größer Threshold? ⇒ berechne Jaccard-Index

- Zwischenschritt:
 - Obere Schranke des Jaccard-Index mit Bit-Arrays effizient bestimmen
- Idee:
 - A, B Mengen
 - $A_F = bloom(A)$, $B_F = bloom(B)$ Bit-Arrays der Mengen
 - Es gilt:
 - $|A_F| \leq |A|$
 - $|A_F \vee B_F| \leq |A \cup B|$
 - $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A| + |B| |A \cup B|}{|A \cup B|} \le \frac{|A| + |B| |A_F \vee B_F|}{|A_F \vee B_F|}$
- Vorgehen:
 - Schätze Jaccard-Index
 - Größer Threshold? ⇒ berechne Jaccard-Index

Zwischenschritt:

- Obere Schranke des Jaccard-Index mit Bit-Arrays effizient bestimmen
- Idee:
 - A, B Mengen
 - $A_F = bloom(A)$, $B_F = bloom(B)$ Bit-Arrays der Mengen
 - Es gilt:
 - $|A_F| \leq |A|$
 - $|A_F \vee B_F| \leq |A \cup B|$
 - $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A| + |B| |A \cup B|}{|A \cup B|} \le \frac{|A| + |B| |A_F \vee B_F|}{|A_F \vee B_F|}$
- Vorgehen:
 - Schätze Jaccard-Index
 - Größer Threshold? ⇒ berechne Jaccard-Index

Moritz Engelmann, Maik Fröbe

Filtern in 2 Phasen

Filtern in 2 Phasen

- Phase 1
 - ER mit Bit-Array-Filter-Only
- Phase 2
 - Eingabe: Id-Paare der Kandidaten aus Phase 1
 - Import (Normalisierung + Transformation) für Sortier-Ansatz aus
 - ER nur für Kandidaten-Paare

optimerungen des Bit-Array-Ansatzes Ausführungszeit in Minuten für unterschiedlich große Datensätze Parameter Parameter

- Trigramme
- Threshold: 0.7
- Datumsunschärfe: 1
- Testsystem

4,2

3,8

3,6

3,2

2,8

2,6

2,4

1,6

0,8 0,6 0,4 0,2

- CPU: 8 Kerne (HT) @ 3.4 GHz
- RAM: 16 GB

5.000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 55.000 60.000 65.000 70.000 75.000 80.000 85.000 90.000 95.000 100.000

Rückblick + Ausblick

- Erfahrungen:
 - Abstraktion + große Datenstrukturen sind teuer
- Tipps für unbekannte Datensätze:
 - Untersuche Datensatz mit "Phase 1"
 - Schrittweise Anpassung der Parameter
 - Ziel: sehr hohe Selektivität trotz kleinem Bit-Array
 - Abschließend: ER mit "Phase 1 + 2"
- mögliche Nächste Schritte:
 - Parallelisierung
 - Ein Partitionierter Bit-Array
 - Vergleich mit weiteren ER-Ansätzen
 - Integration unterschiedlicher ER-Ansätze als "Phase 2"