Determinação da Condutividade Térmica do Alminio

Tiago Frederico N°63422, Maria Vilelas N°63438, Lúcia Carreira N°63439

Nesta actividade experimental pretende-se determinar a condutividade térmica do alúminio por dois métodos distintos. Atravez da análise do fluxo de calor numa barra de alúminio em regime estacionário e depois em regime variavel.

Introdução

Os três mecanismos essencias de transporte de calor são a radiação, a convecção e a condução (analisado em promenor mais à frente). O transporte de calor por radiação fazse atravez de ondas electromagnéticas, não havendo por isso necessidade de um meio material como suporte. O transporte por conveção é normalmente o mais importante quando o meio em que se encontra é um fluído. Neste transporte, o corpo está em contacto com o fluído que se encontra a uma temperatura diferente. O fluído directamente em contacto com o corpo é constantemente renovado devido a alterações nas suas propriadade, efeito da transferência de calor. Estabelecem-se assim, as correntes de convecção, em que as camadas do fluído a diferentes temperaturas circulam. A transmição de calor por condução é própria de meios sólidos. A entidades responsáveis por este transporte são os electrões de condução e/ou as vibrações da rede cristalina.

Lei de Fourier:

$$\vec{J_Q} \equiv -K\vec{\nabla}T$$

Seja $J_(\vec{Q})$ a energia por unidade de área e por unidade de tempo, que é estabelecida na barra devido à diferença de temperaturas entre dois pontos da mesma, e sendo K uma constante caracteristica do material. A quantidade de calor cedida ou absorvida, por unidade de tempo, é igual ao produto da massa do corpo pelo calor especifico e pela variação da temperatura.

$$\frac{dQ}{dt} = -mc\frac{dT_i}{dt} = -\int_v \rho c\frac{dT_i}{dt} dv$$

Obtendo-se a equação diferencial que descreve a condução termica:

$$\frac{dT}{dt} = \frac{k}{\rho c} \Delta^2 T$$

I. REGIME ESTACIONÁRIO

Como se trata de um ensaio em que a temperatura é considerada invariavél ao longo do tempo, consideremos $\Delta^2 T = 0$ e consideremos também o caso em que a temperatura é unidimensional, $T(\vec{r}) = T(x)$.

A potência que entra na barra de aluminio é igual à potência imposta pela tensão aplicada ao sistema de aquecimento, $P_1 = v_1 I_1$, e sendo a potência na barra de aluminio,

$$P_S = SJ_Q = Sk\frac{dT}{dx} = Sk\frac{T_1 - T_2}{L}$$

ordenando em ordem a k,

$$k = \frac{P_S}{\frac{T_1 - T_2}{L}S}$$

Experiência Realizada

Esquema 1 - Montagem.

Legenda:

A: sistema de arrefecimento, composto pelo cilindro em contacto directo com o aluminio, pelo liquído circulante e pelo reservatório:

B: barra de aluminio, com 4 cm^2 de sessão e 12 cm de comprimento:

C: sistema de aquecimento electrico;

D: placa de aquisição de dados;

E: computador;

F: fonte de tensão continua;

O esquema 1 descreve a montagem utilizada para a experiência.

O cilindro de aluminio encontra-se ligado, ma parte superior, ao sistema de aquecimento, que é composto por um conjunto de resistências, e na parte de inferior por um sistema de arrefecimento. Os sensores de temperatura, localizados na unidade de aquecimento, na unidade de arrefecimento, ao longo da barra (cinco sensores, espacdos 2,5 cm entre si), um à entrada do fluído de arrefecimento e outro à saida. Estes sensores ligam ao computador atravez de um sistema de aquisição de dados e o computador faz a converção das voltagens em temperaturas.

Na primeira parte da experiência analiza-se o sistema em regime estacionário. Para isso é necessário aplicar uma tensão eficaz no sistema de aquecimento (faz-se para duas tensões eficazes diferentes, 20 e 25 V), de modo a formecer ao sistema um fluxo de energia continuo ao longo do tempo. É importante que o fluido de refrigeração estja em circulação e medir o fluxo do fluido de 30 em 30 minutos. Para se atingir o regime estacionário é necessário que a temperatura estabilize.

Para o regime variavel utiliza-se a mesma montagem, retirando a unidade de aquecimento e utlixando outro programa de aquisição das temperaturas, para que este registe as variações da temperatura ao longo do tempo.

Resultados Obtidos

I. ESTUDO DO REGIME ESTACIONÁRIO

$\Delta m \ (Kg)$	$e_{\Delta m} (Kg)$	Δt (s)	$e_{\Delta t}$ (s)
0.1	1×10^{-4}	71	0.5
0.1	1×10^{-4}	69	0.5
0.1	1×10^{-4}	70	0.5
0.1	1×10^{-4}	69	0.5
0.1	1×10^{-4}	69	0.5

Tabela I1.

$Caudal_{m\acute{e}dio}(Kg.s^{-1})$	$e_{Caudal}(Kg.s^{-1})$
1.44×10^{-3}	1.18×10^{-5}

Tabela I1A. Cálculo do caudal médio através dos valores da Tabela I1.

		e
V(V)	11.06	0.03
I(A)	1.3	0.03

Tabela I2.

	(^{o}C)	e_T (oC)
$\overline{T_1}$	46.3	0.025
T_2	43.2	0.047
T_3	39.1	0.056
T_4	34.4	0.35
T_5	30.3	0.065
T_{FF}	24.3	0.023
$T_{H_2O_s}$	22.7	0.015
$T_{H_2O_e}$	21.2	0.35
T_{FQ}	55.3	0.52

Tabela I2A. Diferentes valores de temperatura para uma tensão de 11.06 V.

		e
V(V)	15.98	0.03
I (A)	1.7	0.03

Tabela I3.

	(^{o}C)	e_T (oC)
T_1	73.3	0.06
T_2	66.37	0.098
T_3	57.38	0.1
T_4	47.45	0.6
T_5	40.86	0.12
T_{FF}	29.31	0.05
$T_{H_2O_s}$	25.08	0.34
$T_{H_2O_e}$	21.78	0.72
T_{FQ}	92.08	0.89

Tabela I3A. Diferentes valores de temperatura para uma tensão de 15.98 V.

II. ESTUDO DO REGIME VARIÁVEL

Análise dos Resultados

I. ESTUDO DO REGIME ESTACIONÁRIO

Utilizando os valores das temperaturas das tabelas I2A e I3A é possível encontrar um gráfico da temperatura em

função da posição. A partir desses gráficos pode-se calcular o gradiente médio da temperatura, T, que é dado pelo declive da recta.

Gráfico 1. Temperatura¹ em função da posição para uma tensão igual a 11.06V.

Observa-se a partir deste gráfico que

$$\nabla T = -163.2 \pm 6.3 Km^{-1}$$
.

Através dos valores da tensão e da intensidade de corrente, pode-se encontrar a potência fornecida pela fonte quente enquanto que utilizando os valores do caudal médio e das temperaturas de entrada e de saída da água pode-se encontrar a potência fornecida à fonte fria.

$$P_{FQ} = 14.38 \pm 0.37W$$

 $P_{FF} = 9.01 \pm 2.27W$

Pode-se assim encontrar a potência perdida para o exterior:

$$P_P = P_{FQ} - P_{FF} = 5.37 \pm 2.64W$$

Através da $Lei\ de\ Fourier$ pode-se encontrar a seguinte relação:

$$\frac{P}{S} = k\nabla T \qquad (I1)$$

de onde se pode facilmente encontrar k considerando que o fluxo de calor na barra inclui toda a potência fornecida à unidade de aquecimento. Sabendo que $S=4cm^2$ e que P é a potência fornecida pela fonte quente encontra-se

$$k = 220 \pm 14.2 W K^{-1} m^{-1}$$
.

Este valor afasta-se consideravelmente do valor teórico, $k = 237WK^{-1}m^{-1}$, mesmo contado com o intervalo do erro.

Será por isso considerado outro modelo para a determinação de k. À semelhança do cálculo da resistência Ohmica, a resistência existente pode ser calculada através da expressão

$$R_{barra} \simeq \frac{1}{k} \frac{l}{S}$$
 (I2)

 $^{^1}$ Note-se que o facto de a temperatura estar em oC não vai influenciar o declive dos gráficos. Como $1K=1^oC+273.15,$ o factor 273.15 apenas iria deslocar a recta para cima não alterando o seu declive.

onde l é o comprimento da barra. Contudo, as temperaturas das fontes quente e fria não é igual às temperaturas de T_1 e T_5 , respectivamente. É por isso necessário recorrer à extrapolação do gráfico 1 para calcular T_0 e T_L que são as temperaturas das junções da barra com os sistemas de arrefecimento e aquecimento, respectivamente.

$$\begin{array}{c|c} T_0(^{o}C) & T_L(^{o}C) \\ \hline 29.1 {\pm} 0.2 & 47.2 {\pm} 0.2 \end{array}$$

Sendo conhecidos os valores de T_0 e T_L pode-se calcular k através de (I2) e sabendo que a resistência térmica na barra de alumínio é dada por

$$R_{barra} = \frac{T_L - T_0}{P} \qquad (I3)$$

$$k = 238.31 \pm 11.4WK^{-1}m^{-1}$$

Este valor está bastante próximo do valor teórico. Contudo, seria de esperar que o modelo anterior fosse melhor do que este uma vez que recorre amais pontos experimentais.

Por fim podem-se calcular as resistências térmicas das junções da barra com os sistemas de aquecimento e arrefecimento, R_a e R_b , respectivamente. Estas são dadas por

$$R_a = \frac{T_{FQ} - T_L}{P}, R_b = \frac{T_0 - T_{FF}}{P}$$
 (I4)

de onde se obtém

$$R_a = 0.56 \pm 0.065 KW^{-1}$$

$$R_b = 0.53 \pm 0.16 KW^{-1}$$
.

Repetindo o mesmo procedimento para as temperaturas originadas pelos 15.98V adquire-se o seguinte gráfico:

Gráfico 2. Temperatura em função da posição para uma tensão igual a 15.98V.

Da mesma maneira, tem-se

$$\nabla T = -335.2 \pm 12.8 Km^{-1}.$$

Do mesmo modo, encontra-se os seguintes valores para as potências das fontes quente e fria e potência perdida para o exterior:

$$P_{FQ} = 27.17 \pm 0.53W$$

 $P_{FF} = 19.82 \pm 2.35W$
 $P_{P} = 7.34 \pm 2.9W$

Desta forma e utilizando (I1) é possível obter

$$k = 203 \pm 12.5 W K^{-1} m^{-1}$$
.

Tal como para a tensão anterior, o valor de k calculado através do gradiente de temperatura é inferior ao valor teórico, mesmo contando com o erro experimental. Será por isso necessário recorrer ao mesmo modelo utilizado anteriormente. Utilizando (I2) e (I3) e recorrendo novamente à extrapolação para encontrar os valores de T_0 e T_L encontramse os seguintes valores:

$$\frac{T_0(^{\circ}C) \quad T_L(^{\circ}C)}{40.1 \pm 0.2 \quad 75.2 \pm 0.2}$$

$$k = 232 + 7.2WK^{-1}m^{-1}$$

Este valor aproxima-se masi do valor teórico do que o anterior, tal como aconteceu para V=11.06V.

Podem-se por fim calcular os valores para as resistências térmicas das junções da barra utilizando novamente as expressões (I4):

$$R_a = 0.62 \pm 0.05 KW^{-1}$$
$$R_b = 0.54 \pm 0.08 KW^{-1}.$$

II. ESTUDO DO REGIME VARIÁVEL

Utilizando os dados da Tabela II.1 calculou-se o polinómio interpolador T(x,t), função que representa a temperatura ao longo da barra.

O polinómio é do tipo

$$T(x,t1) = a + bx + cx^2 + dx^3 + ex^4.$$

Os coeficientes são calculados através da de uma expressão do tipo:

pressão do tipo:

$$f_{n+1} = \frac{f_n(x_{i+1}) - f_n(x_i)}{x_{i+1} - x_i},$$

ou seja, a aproximação de uma derivada.

O polinómio interpolador é, portanto,

$$T(x,t1) = 8539.05x^4 - 2331.31x^3 + 252.36x^2 - 18.98x + 26.1.$$

Para determinar χ pela expressão (??) é necessário calcular a segunda derivada de T em ordem a x (a) e a derivada de T em ordem a t (b).

Para (a) o resultado obtido a partir do polinómio interpolador é

$$T''(x, t1) = 102588.57.12x^2 - 13987.83x + 504.71.$$

$$\begin{array}{c|c}
\frac{\partial^2 T(x_3)}{\partial x^2} \\
617, 9 \cdot 10 - 1
\end{array}$$

Tabela II.4 - Cálculo da segunda derivada de T em ordem a x. Para (b) faz-se uma aproximação da seguinte forma $\frac{\partial T}{\partial t} = \frac{\Delta T}{\Delta t}|_{x3}^{1^oC}.$

e utiliza-se o ponto $x_3 = 0.050m$ e os dados das Tabelas II.1 e II.2 no cálculo.

$t1 + \Delta t$	$t1 - \Delta t$	$\Delta T(^{o}C)$	$\frac{\partial T}{\partial t}$ 1	$\frac{\partial T}{\partial t}$ 2
$1595,\!58$	124,81	1	$626, 7 \cdot 10^{-6}$	$801, 2 \cdot 10^{-5}$

Tabela II.5 - Cálculo da derivada parcial de T em ordem a t. A partir dos resultados anteriores calcula-se χ .

ν1	ν2	$\rho_{A1}(Ka/m^3)$	$c_{AI}(JKq^{-1}K^{-1})$	1(m)
101, 4 · 10 ⁻⁷	129, 7 · 10 - 6	2697	900	0,12

Tabela II.6 - Cálculo da condutividade térmica DÚVIDA. A partir da fórmula (??) obtém-se que: $U1=205,16Wm^{-1}K^{-1}$

 $U2 = 2622,76Wm^{-1}K^{-1}$. em ultimo caso desprezar.

Conclusões

I. Estudo do regime estacionário

Nesta parte da experiência calculou-se a condutividade térmica do alumínio partindo de um regime estacionário utilizando dois valores de tensão diferentes,11.06V e 15.98V. k foi calculado de duas maneiras diferentes: através do gradiente de temperatura e através da diferença de temperatura nos extremos da barra. Uma vez que o primeiro método tem em consideração mais pontos experimentais seria de experar que fosse mais exacto que o segundo. Contudo, não é isso que se verifica.

Tabela 1. Valores experimentais de k para as diferentes tensões e para dois métodos distintos (1 equivale ao método que utiliza o gradiente de temperatura enquanto que 2 utiliza a diferença de temperatura nos extremos da barra).

Os valores de k para o 1^o método são muito inferiores que o valor teórico, mesmo contando com o erro teórico. Tal pode ser devido ao facto de existirem perdas de calor para o exterior. Contudo, ao utilizar-se o 2^o método utilizaram-se apenas dois pontos experimentais e o valor de k deu próximo do valor teórico e dentro do intervalo do erro exeperimental. Pode-se observar também que o aumento de tensão implica um aumento de temperatura e que por sua vez resulta num afastamento dos valores experimentais do valor teórico. Uma explicação para estes resultados é o facto de

a barra não ser de alumínio puro, o que influencia o valor de k, e o facto de a condutividade térmica variar com a temperatura. Relativamente à resistência térmica da barra observa-se que o seu valor é positivo e diferente de zero. Isto seria de esperar uma vez que o calor que flui pela barra vai aumentar a sua energia interna fazendo com que a energia no topo da barra seja superior à energia da base. Tal facto é previsível devido à Primeira Lei da Termodinâmica.

No que diz respeitos às resistências térmicas nas junções da barra com os sistemas de aquecimento e arrefecimento verifica-se que o valor para a primeira é superior ao da segunda. Isto acontece porque a resistência térmica, como o nome indica, depende da temperatura e na junção da barra com o sistema deaquecimento a temperatura é superior do que na do sistema de arrefecimento. Pode-se observar também que essas resistências aumentam com o aumento da tensão, que implica um aumento de temperatura.

II. ESTUDO DO REGIME VARIÁVEL

Referências

- [1] Figueirinhas, João, Apontamentos das aulas teóricas, 2009.
- [2] Deus, J. D., Pimenta, M., Noronha, A., Peña, T., Brogueira, P., *Introdução à Física*, McGrawHill, 2000.