

Predictive Analytics Exercise

June 22, 2021

Source: <u>UCI Bike Sharing Demand Dataset</u>: complete data 2011-2012

This Task: Create Time Series Forecast from Oct 2012 to Dec 2012

- 1. Perform forecasting models using the following models:
 - Naive forecast
 - Simple Moving Average (4-week, 8-week, 12-week)
 - Exponentially Weighted Moving Average (4-week, 8-week, 12-week)
 - Autoregressive Integrated Moving Average (ARIMA)
- 2. Compare and Evaluate Model
- 3. Store Model into Pickle

Problem: Develop Time Series Forecast and Predict Weekly Bike Sharing Demand from October 2012 to December 2012

- Train January 2011 to September 2012
- Test October 2012 to November 2012

Decompose Time Series into Trend, Seasonality and Residual

Naive Forecast

Simple Moving Average Forecast

Exponentially Weighted Moving Average (Span) Forecast

Autoregressive Integrated Moving Average (ARIMA) Forecast

Best ARIMA parameter based on "BIC" Criterion

- Order: (p = 1, d = 0, q = 0)
- Seasonal Order: (p = 0, d = 1, q = 0), 52 (weeks)
- Use R's forecast :: auto.arima

ARIMA(1,0,0)(0,1,0)[52]

coefficients:

ar1 0.9235

s.e. 0.0477

sigma^2 estimated as 41208904: log likelihood=-550.5 AIC=1105 AICC=1105.23 BIC=1108.97

Evaluate Time Series Forecasting Models for Oct 2012 to Dec 2012

Insights

Best Forecasting Model: Naive

Store Model in Pickle File

• Use Model: ARIMA