Redundancy

The first principle is that all encrypted messages must contain some redundancy, that is, information not needed to understand the message. An example may make it clear why this is needed. Consider a mail-order company, The Couch Potato (TCP), with 60,000 products. Thinking they are being very efficient, TCP's programmers decide that ordering messages should consist of a 16-byte customer name followed by a 3-byte data field (1 byte for the quantity and 2 bytes for the product number). The last 3 bytes are to be encrypted using a very long key known only by the customer and TCP.

At first, this might seem secure, and in a sense it is because passive intruders cannot decrypt the messages. Unfortunately, it also has a fatal flaw that renders it useless. Suppose that a recently fired employee wants to punish TCP for firing her. Just before leaving, she takes the customer list with her. She works through the night writing a program to generate fictitious orders using real customer names. Since she does not have the list of keys, she just puts random numbers in the last 3 bytes, and sends hundreds of orders off to TCP.

When these messages arrive, TCP's computer uses the customers' name to locate the key and decrypt the message. Unfortunately for TCP, almost every 3-byte message is valid, so the computer begins printing out shipping instructions. While it might seem odd for a customer to order 837 sets of children's swings or 540 sandboxes, for all the computer knows, the customer might be planning to open a chain of franchised playgrounds. In this way, an active intruder (the exemployee) can cause a massive amount of trouble, even though she cannot understand the messages her computer is generating.

This problem can be solved by the addition of redundancy to all messages. For example, if order messages are extended to 12 bytes, the first 9 of which must be zeros, this attack no longer works because the ex-employee can no longer generate a large stream of valid messages. The moral of the story is that all messages must contain considerable redundancy so that active intruders cannot send random junk and have it be interpreted as a valid message.

However, adding redundancy makes it easier for cryptanalysts to break messages. Suppose that the mail-order business is highly competitive, and The Couch Potato's main competitor, The Sofa Tuber, would dearly love to know how many sandboxes TCP is selling so it taps TCP's phone line. In the original scheme with 3-byte messages, cryptanalysis was nearly impossible because after guessing a key, the cryptanalyst had no way of telling whether it was right because almost every message was technically legal. With the new 12-byte scheme, it is easy for the cryptanalyst to tell a valid message from an invalid one. Thus, we have

Cryptographic principle 1: Messages must contain some redundancy

In other words, upon decrypting a message, the recipient must be able to tell whether it is valid by simply inspecting the message and perhaps performing a

simple computation. This redundancy is needed to prevent active intruders from sending garbage and tricking the receiver into decrypting the garbage and acting on the "plaintext." However, this same redundancy makes it much easier for passive intruders to break the system, so there is some tension here. Furthermore, the redundancy should never be in the form of n 0s at the start or end of a message, since running such messages through some cryptographic algorithms gives more predictable results, making the cryptanalysts' job easier. A CRC polynomial is much better than a run of 0s since the receiver can easily verify it, but it generates more work for the cryptanalyst. Even better is to use a cryptographic hash, a concept we will explore later. For the moment, think of it as a better CRC.

Getting back to quantum cryptography for a moment, we can also see how redundancy plays a role there. Due to Trudy's interception of the photons, some bits in Bob's one-time pad will be wrong. Bob needs some redundancy in the incoming messages to determine that errors are present. One very crude form of redundancy is repeating the message two times. If the two copies are not identical, Bob knows that either the fiber is very noisy or someone is tampering with the transmission. Of course, sending everything twice is overkill; a Hamming or Reed-Solomon code is a more efficient way to do error detection and correction. But it should be clear that some redundancy is needed to distinguish a valid message from an invalid message, especially in the face of an active intruder.

Freshness

The second cryptographic principle is that measures must be taken to ensure that each message received can be verified as being fresh, that is, sent very recently. This measure is needed to prevent active intruders from playing back old messages. If no such measures were taken, our ex-employee could tap TCP's phone line and just keep repeating previously sent valid messages. Thus,

Cryptographic principle 2: Some method is needed to foil replay attacks

One such measure is including in every message a timestamp valid only for, say, 10 seconds. The receiver can then just keep messages around for 10 seconds and compare newly arrived messages to previous ones to filter out duplicates. Messages older than 10 seconds can be thrown out, since any replays sent more than 10 seconds later will be rejected as too old. Measures other than timestamps will be discussed later.

8.2 SYMMETRIC-KEY ALGORITHMS

Modern cryptography uses the same basic ideas as traditional cryptography (transposition and substitution), but its emphasis is different. Traditionally, cryptographers have used simple algorithms. Nowadays, the reverse is true: the object

is to make the encryption algorithm so complex and involuted that even if the cryptanalyst acquires vast mounds of enciphered text of his own choosing, he will not be able to make any sense of it at all without the key.

The first class of encryption algorithms we will study in this chapter are called **symmetric-key algorithms** because they use the same key for encryption and decryption. Fig. 8-2 illustrates the use of a symmetric-key algorithm. In particular, we will focus on **block ciphers**, which take an *n*-bit block of plaintext as input and transform it using the key into an *n*-bit block of ciphertext.

Cryptographic algorithms can be implemented in either hardware (for speed) or software (for flexibility). Although most of our treatment concerns the algorithms and protocols, which are independent of the actual implementation, a few words about building cryptographic hardware may be of interest. Transpositions and substitutions can be implemented with simple electrical circuits. Figure 8-6(a) shows a device, known as a **P-box** (P stands for permutation), used to effect a transposition on an 8-bit input. If the 8 bits are designated from top to bottom as 01234567, the output of this particular P-box is 36071245. By appropriate internal wiring, a P-box can be made to perform any transposition and do it at practically the speed of light since no computation is involved, just signal propagation. This design follows Kerckhoff's principle: the attacker knows that the general method is permuting the bits. What he does not know is which bit goes where.

Figure 8-6. Basic elements of product ciphers. (a) P-box. (b) S-box. (c) Product.

Substitutions are performed by **S-boxes**, as shown in Fig. 8-6(b). In this example, a 3-bit plaintext is entered and a 3-bit ciphertext is output. The 3-bit input selects one of the eight lines exiting from the first stage and sets it to 1; all the other lines are 0. The second stage is a P-box. The third stage encodes the selected input line in binary again. With the wiring shown, if the eight octal numbers 01234567 were input one after another, the output sequence would be 24506713. In other words, 0 has been replaced by 2, 1 has been replaced by 4, etc. Again, by appropriate wiring of the P-box inside the S-box, any substitution can be accomplished. Furthermore, such a device can be built in hardware to achieve great speed, since encoders and decoders have only one or two (subnanosecond) gate delays and the propagation time across the P-box may well be less than 1 picosec.

The real power of these basic elements only becomes apparent when we cascade a whole series of boxes to form a **product cipher**, as shown in Fig. 8-6(c). In this example, 12 input lines are transposed (i.e., permuted) by the first stage (P_1) . In the second stage, the input is broken up into four groups of 3 bits, each of which is substituted independently of the others $(S_1 \text{ to } S_4)$. This arrangement shows a method of approximating a larger S-box from multiple, smaller S-boxes. It is useful because small S-boxes are practical for a hardware implementation (e.g., an 8-bit S-box can be realized as a 256-entry lookup table), but large S-boxes become unwieldy to build (e.g., a 12-bit S-box would at a minimum need $2^{12} = 4096$ crossed wires in its middle stage). Although this method is less general, it is still powerful. By inclusion of a sufficiently large number of stages in the product cipher, the output can be made to be an exceedingly complicated function of the input.

Product ciphers that operate on k-bit inputs to produce k-bit outputs are very common. Typically, k is 64 to 256. A hardware implementation usually has at least 10 physical stages, instead of just 7 as in Fig. 8-6(c). A software implementation is programmed as a loop with at least eight iterations, each one performing S-box-type substitutions on subblocks of the 64- to 256-bit data block, followed by a permutation that mixes the outputs of the S-boxes. Often there is a special initial permutation and one at the end as well. In the literature, the iterations are called **rounds**.

8.2.1 DES—The Data Encryption Standard

In January 1977, the U.S. Government adopted a product cipher developed by IBM as its official standard for unclassified information. This cipher, **DES** (**Data Encryption Standard**), was widely adopted by the industry for use in security products. It is no longer secure in its original form, but in a modified form it is still useful. We will now explain how DES works.

An outline of DES is shown in Fig. 8-7(a). Plaintext is encrypted in blocks of 64 bits, yielding 64 bits of ciphertext. The algorithm, which is parameterized by a 56-bit key, has 19 distinct stages. The first stage is a key-independent transposition on the 64-bit plaintext. The last stage is the exact inverse of this transposition. The stage prior to the last one exchanges the leftmost 32 bits with the rightmost 32 bits. The remaining 16 stages are functionally identical but are parameterized by different functions of the key. The algorithm has been designed to allow decryption to be done with the same key as encryption, a property needed in any symmetric-key algorithm. The steps are just run in the reverse order.

The operation of one of these intermediate stages is illustrated in Fig. 8-7(b). Each stage takes two 32-bit inputs and produces two 32-bit outputs. The left output is simply a copy of the right input. The right output is the bitwise XOR of the left input and a function of the right input and the key for this stage, K_i . Pretty much all the complexity of the algorithm lies in this function.

Figure 8-7. The Data Encryption Standard. (a) General outline. (b) Detail of one iteration. The circled + means exclusive OR.

The function consists of four steps, carried out in sequence. First, a 48-bit number, E, is constructed by expanding the 32-bit R_{i-1} according to a fixed transposition and duplication rule. Second, E and K_i are XORed together. This output is then partitioned into eight groups of 6 bits each, each of which is fed into a different S-box. Each of the 64 possible inputs to an S-box is mapped onto a 4-bit output. Finally, these 8×4 bits are passed through a P-box.

In each of the 16 iterations, a different key is used. Before the algorithm starts, a 56-bit transposition is applied to the key. Just before each iteration, the key is partitioned into two 28-bit units, each of which is rotated left by a number of bits dependent on the iteration number. K_i is derived from this rotated key by applying yet another 56-bit transposition to it. A different 48-bit subset of the 56 bits is extracted and permuted on each round.

A technique that is sometimes used to make DES stronger is called **whiten-ing**. It consists of XORing a random 64-bit key with each plaintext block before feeding it into DES and then XORing a second 64-bit key with the resulting ciphertext before transmitting it. Whitening can easily be removed by running the

reverse operations (if the receiver has the two whitening keys). Since this technique effectively adds more bits to the key length, it makes an exhaustive search of the key space much more time consuming. Note that the same whitening key is used for each block (i.e., there is only one whitening key).

DES has been enveloped in controversy since the day it was launched. It was based on a cipher developed and patented by IBM, called Lucifer, except that IBM's cipher used a 128-bit key instead of a 56-bit key. When the U.S. Federal Government wanted to standardize on one cipher for unclassified use, it "invited" IBM to "discuss" the matter with NSA, the U.S. Government's code-breaking arm, which is the world's largest employer of mathematicians and cryptologists. NSA is so secret that an industry joke goes:

Q: What does NSA stand for?

A: No Such Agency.

Actually, NSA stands for National Security Agency.

After these discussions took place, IBM reduced the key from 128 bits to 56 bits and decided to keep secret the process by which DES was designed. Many people suspected that the key length was reduced to make sure that NSA could just break DES, but no organization with a smaller budget could. The point of the secret design was supposedly to hide a back door that could make it even easier for NSA to break DES. When an NSA employee discreetly told IEEE to cancel a planned conference on cryptography, that did not make people any more comfortable. NSA denied everything.

In 1977, two Stanford cryptography researchers, Diffie and Hellman (1977), designed a machine to break DES and estimated that it could be built for 20 million dollars. Given a small piece of plaintext and matched ciphertext, this machine could find the key by exhaustive search of the 2⁵⁶-entry key space in under 1 day. Nowadays, the game is up. Such a machine exists, is for sale, and costs less than \$10,000 to make (Kumar et al., 2006).

Triple DES

As early as 1979, IBM realized that the DES key length was too short and devised a way to effectively increase it, using triple encryption (Tuchman, 1979). The method chosen, which has since been incorporated in International Standard 8732, is illustrated in Fig. 8-8. Here, two keys and three stages are used. In the first stage, the plaintext is encrypted using DES in the usual way with K_1 . In the second stage, DES is run in decryption mode, using K_2 as the key. Finally, another DES encryption is done with K_1 .

This design immediately gives rise to two questions. First, why are only two keys used, instead of three? Second, why is **EDE** (**Encrypt Decrypt Encrypt**) used, instead of **EEE** (**Encrypt Encrypt Encrypt**)? The reason that two keys are used is that even the most paranoid of cryptographers believe that 112 bits is

Figure 8-8. (a) Triple encryption using DES. (b) Decryption.

adequate for routine commercial applications for the time being. (And among cryptographers, paranoia is considered a feature, not a bug.) Going to 168 bits would just add the unnecessary overhead of managing and transporting another key for little real gain.

The reason for encrypting, decrypting, and then encrypting again is backward compatibility with existing single-key DES systems. Both the encryption and decryption functions are mappings between sets of 64-bit numbers. From a cryptographic point of view, the two mappings are equally strong. By using EDE, however, instead of EEE, a computer using triple encryption can speak to one using single encryption by just setting $K_1 = K_2$. This property allows triple encryption to be phased in gradually, something of no concern to academic cryptographers but of considerable importance to IBM and its customers.

8.2.2 AES—The Advanced Encryption Standard

As DES began approaching the end of its useful life, even with triple DES, NIST (National Institute of Standards and Technology), the agency of the U.S. Dept. of Commerce charged with approving standards for the U.S. Federal Government, decided that the government needed a new cryptographic standard for unclassified use. NIST was keenly aware of all the controversy surrounding DES and well knew that if it just announced a new standard, everyone knowing anything about cryptography would automatically assume that NSA had built a back door into it so NSA could read everything encrypted with it. Under these conditions, probably no one would use the standard and it would have died quietly.

So, NIST took a surprisingly different approach for a government bureaucracy: it sponsored a cryptographic bake-off (contest). In January 1997, researchers from all over the world were invited to submit proposals for a new standard, to be called **AES** (**Advanced Encryption Standard**). The bake-off rules were:

- 1. The algorithm must be a symmetric block cipher.
- 2. The full design must be public.
- 3. Key lengths of 128, 192, and 256 bits must be supported.

- 4. Both software and hardware implementations must be possible.
- 5. The algorithm must be public or licensed on nondiscriminatory terms.

Fifteen serious proposals were made, and public conferences were organized in which they were presented and attendees were actively encouraged to find flaws in all of them. In August 1998, NIST selected five finalists, primarily on the basis of their security, efficiency, simplicity, flexibility, and memory requirements (important for embedded systems). More conferences were held and more potshots taken.

In October 2000, NIST announced that it had selected Rijndael, by Joan Daemen and Vincent Rijmen. The name Rijndael, pronounced Rhine-doll (more or less), is derived from the last names of the authors: Rijmen + Daemen. In November 2001, Rijndael became the AES U.S. Government standard, published as FIPS (Federal Information Processing Standard) 197. Due to the extraordinary openness of the competition, the technical properties of Rijndael, and the fact that the winning team consisted of two young Belgian cryptographers (who were unlikely to have built in a back door just to please NSA), Rijndael has become the world's dominant cryptographic cipher. AES encryption and decryption is now part of the instruction set for some microprocessors (e.g., Intel).

Rijndael supports key lengths and block sizes from 128 bits to 256 bits in steps of 32 bits. The key length and block length may be chosen independently. However, AES specifies that the block size must be 128 bits and the key length must be 128, 192, or 256 bits. It is doubtful that anyone will ever use 192-bit keys, so de facto, AES has two variants: a 128-bit block with a 128-bit key and a 128-bit block with a 256-bit key.

In our treatment of the algorithm, we will examine only the 128/128 case because this is likely to become the commercial norm. A 128-bit key gives a key space of $2^{128} \approx 3 \times 10^{38}$ keys. Even if NSA manages to build a machine with 1 billion parallel processors, each being able to evaluate one key per picosecond, it would take such a machine about 10^{10} years to search the key space. By then the sun will have burned out, so the folks then present will have to read the results by candlelight.

Rijndael

From a mathematical perspective, Rijndael is based on Galois field theory, which gives it some provable security properties. However, it can also be viewed as C code, without getting into the mathematics.

Like DES, Rijndael uses substitution and permutations, and it also uses multiple rounds. The number of rounds depends on the key size and block size, being 10 for 128-bit keys with 128-bit blocks and moving up to 14 for the largest key or the largest block. However, unlike DES, all operations involve entire bytes, to

allow for efficient implementations in both hardware and software. An outline of the code is given in Fig. 8-9. Note that this code is for the purpose of illustration. Good implementations of security code will follow additional practices, such as zeroing out sensitive memory after it has been used. See, for example, Ferguson et al. (2010).

```
#define LENGTH 16
                                                      /* # bytes in data block or key */
                                                      /* number of rows in state */
#define NROWS 4
#define NCOLS 4
                                                      /* number of columns in state */
#define ROUNDS 10
                                                      /* number of iterations */
                                                      /* unsigned 8-bit integer */
typedef unsigned char byte;
rijndael(byte plaintext[LENGTH], byte ciphertext[LENGTH], byte key[LENGTH])
                                                      /* loop index */
 int r;
byte state[NROWS][NCOLS];
                                                      /* current state */
 struct {byte k[NROWS][NCOLS];} rk[ROUNDS + 1]; /* round keys */
 expand_key(key, rk);
                                                      /* construct the round keys */
 copy_plaintext_to_state(state, plaintext);
                                                      /* init current state */
 xor_roundkey_into_state(state, rk[0]);
                                                      /* XOR key into state */
for (r = 1; r \le ROUNDS; r++) \{
    substitute(state);
                                                      /* apply S-box to each byte */
                                                      /* rotate row i by i bytes */
    rotate_rows(state);
    if (r < ROUNDS) mix_columns(state);
                                                      /* mix function */
     xor_roundkey_into_state(state, rk[r]);
                                                      /* XOR key into state */
copy_state_to_ciphertext(ciphertext, state);
                                                      /* return result */
```

Figure 8-9. An outline of Rijndael in C.

The function *rijndael* has three parameters. They are: *plaintext*, an array of 16 bytes containing the input data; *ciphertext*, an array of 16 bytes where the enciphered output will be returned; and *key*, the 16-byte key. During the calculation, the current state of the data is maintained in a byte array, *state*, whose size is $NROWS \times NCOLS$. For 128-bit blocks, this array is 4×4 bytes. With 16 bytes, the full 128-bit data block can be stored.

The *state* array is initialized to the plaintext and modified by every step in the computation. In some steps, byte-for-byte substitution is performed. In others, the bytes are permuted within the array. Other transformations are also used. At the end, the contents of the *state* are returned as the ciphertext.

The code starts out by expanding the key into 11 arrays of the same size as the state. They are stored in rk, which is an array of structs, each containing a state array. One of these will be used at the start of the calculation and the other 10 will be used during the 10 rounds, one per round. The calculation of the round

keys from the encryption key is too complicated for us to get into here. Suffice it to say that the round keys are produced by repeated rotation and XORing of various groups of key bits. For all the details, see Daemen and Rijmen (2002).

The next step is to copy the plaintext into the *state* array so it can be processed during the rounds. It is copied in column order, with the first 4 bytes going into column 0, the next 4 bytes going into column 1, and so on. Both the columns and the rows are numbered starting at 0, although the rounds are numbered starting at 1. This initial setup of the 12 byte arrays of size 4×4 is illustrated in Fig. 8-10.

Figure 8-10. Creating the state and rk arrays.

There is one more step before the main computation begins: rk[0] is XORed into *state*, byte for byte. In other words, each of the 16 bytes in *state* is replaced by the XOR of itself and the corresponding byte in rk[0].

Now it is time for the main attraction. The loop executes 10 iterations, one per round, transforming *state* on each iteration. The contents of each round is produced in four steps. Step 1 does a byte-for-byte substitution on *state*. Each byte in turn is used as an index into an S-box to replace its value by the contents of that S-box entry. This step is a straight monoalphabetic substitution cipher. Unlike DES, which has multiple S-boxes, Rijndael has only one S-box.

Step 2 rotates each of the four rows to the left. Row 0 is rotated 0 bytes (i.e., not changed), row 1 is rotated 1 byte, row 2 is rotated 2 bytes, and row 3 is rotated 3 bytes. This step diffuses the contents of the current data around the block, analogous to the permutations of Fig. 8-6.

Step 3 mixes up each column independently of the other ones. The mixing is done using matrix multiplication in which the new column is the product of the old column and a constant matrix, with the multiplication done using the finite Galois field, $GF(2^8)$. Although this may sound complicated, an algorithm exists that allows each element of the new column to be computed using two table lookups and three XORs (Daemen and Rijmen, 2002, Appendix E).

Finally, step 4 XORs the key for this round into the *state* array for use in the next round.

Since every step is reversible, decryption can be done just by running the algorithm backward. However, there is also a trick available in which decryption can be done by running the encryption algorithm using different tables.

The algorithm has been designed not only for great security, but also for great speed. A good software implementation on a 2-GHz machine should be able to achieve an encryption rate of 700 Mbps, which is fast enough to encrypt over 100 MPEG-2 videos in real time. Hardware implementations are faster still.

8.2.3 Cipher Modes

Despite all this complexity, AES (or DES, or any block cipher for that matter) is basically a monoalphabetic substitution cipher using big characters (128-bit characters for AES and 64-bit characters for DES). Whenever the same plaintext block goes in the front end, the same ciphertext block comes out the back end. If you encrypt the plaintext *abcdefgh* 100 times with the same DES key, you get the same ciphertext 100 times. An intruder can exploit this property to help subvert the cipher.

Electronic Code Book Mode

To see how this monoalphabetic substitution cipher property can be used to partially defeat the cipher, we will use (triple) DES because it is easier to depict 64-bit blocks than 128-bit blocks, but AES has exactly the same problem. The straightforward way to use DES to encrypt a long piece of plaintext is to break it up into consecutive 8-byte (64-bit) blocks and encrypt them one after another with the same key. The last piece of plaintext is padded out to 64 bits, if need be. This technique is known as **ECB mode** (**Electronic Code Book mode**) in analogy with old-fashioned code books where each plaintext word was listed, followed by its ciphertext (usually a five-digit decimal number).

In Fig. 8-11, we have the start of a computer file listing the annual bonuses a company has decided to award to its employees. This file consists of consecutive 32-byte records, one per employee, in the format shown: 16 bytes for the name, 8 bytes for the position, and 8 bytes for the bonus. Each of the sixteen 8-byte blocks (numbered from 0 to 15) is encrypted by (triple) DES.

Leslie just had a fight with the boss and is not expecting much of a bonus. Kim, in contrast, is the boss' favorite, and everyone knows this. Leslie can get access to the file after it is encrypted but before it is sent to the bank. Can Leslie rectify this unfair situation, given only the encrypted file?

No problem at all. All Leslie has to do is make a copy of the 12th ciphertext block (which contains Kim's bonus) and use it to replace the fourth ciphertext block (which contains Leslie's bonus). Even without knowing what the 12th

Figure 8-11. The plaintext of a file encrypted as 16 DES blocks.

block says, Leslie can expect to have a much merrier Christmas this year. (Copying the eighth ciphertext block is also a possibility, but is more likely to be detected; besides, Leslie is not a greedy person.)

Cipher Block Chaining Mode

To thwart this type of attack, all block ciphers can be chained in various ways so that replacing a block the way Leslie did will cause the plaintext decrypted starting at the replaced block to be garbage. One way of chaining is **cipher block chaining**. In this method, shown in Fig. 8-12, each plaintext block is XORed with the previous ciphertext block before being encrypted. Consequently, the same plaintext block no longer maps onto the same ciphertext block, and the encryption is no longer a big monoalphabetic substitution cipher. The first block is XORed with a randomly chosen **IV** (**Initialization Vector**), which is transmitted (in plaintext) along with the ciphertext.

Figure 8-12. Cipher block chaining. (a) Encryption. (b) Decryption.

We can see how cipher block chaining mode works by examining the example of Fig. 8-12. We start out by computing $C_0 = E(P_0 \text{ XOR } IV)$. Then we compute $C_1 = E(P_1 \text{ XOR } C_0)$, and so on. Decryption also uses XOR to reverse the process, with $P_0 = IV \text{ XOR } D(C_0)$, and so on. Note that the encryption of block i is a

function of all the plaintext in blocks 0 through i-1, so the same plaintext generates different ciphertext depending on where it occurs. A transformation of the type Leslie made will result in nonsense for two blocks starting at Leslie's bonus field. To an astute security officer, this peculiarity might suggest where to start the ensuing investigation.

Cipher block chaining also has the advantage that the same plaintext block will not result in the same ciphertext block, making cryptanalysis more difficult. In fact, this is the main reason it is used.

Cipher Feedback Mode

However, cipher block chaining has the disadvantage of requiring an entire 64-bit block to arrive before decryption can begin. For byte-by-byte encryption, **cipher feedback mode** using (triple) DES is used, as shown in Fig. 8-13. For AES, the idea is exactly the same, only a 128-bit shift register is used. In this figure, the state of the encryption machine is shown after bytes 0 through 9 have been encrypted and sent. When plaintext byte 10 arrives, as illustrated in Fig. 8-13(a), the DES algorithm operates on the 64-bit shift register to generate a 64-bit ciphertext. The leftmost byte of that ciphertext is extracted and XORed with P_{10} . That byte is transmitted on the transmission line. In addition, the shift register is shifted left 8 bits, causing C_2 to fall off the left end, and C_{10} is inserted in the position just vacated at the right end by C_9 .

Figure 8-13. Cipher feedback mode. (a) Encryption. (b) Decryption.

Note that the contents of the shift register depend on the entire previous history of the plaintext, so a pattern that repeats multiple times in the plaintext will be encrypted differently each time in the ciphertext. As with cipher block chaining, an initialization vector is needed to start the ball rolling.

Decryption with cipher feedback mode works the same way as encryption. In particular, the content of the shift register is *encrypted*, not *decrypted*, so the selected byte that is XORed with C_{10} to get P_{10} is the same one that was XORed with P_{10} to generate C_{10} in the first place. As long as the two shift registers remain identical, decryption works correctly. This is illustrated in Fig. 8-13(b).

A problem with cipher feedback mode is that if one bit of the ciphertext is accidentally inverted during transmission, the 8 bytes that are decrypted while the bad byte is in the shift register will be corrupted. Once the bad byte is pushed out of the shift register, correct plaintext will once again be generated. Thus, the effects of a single inverted bit are relatively localized and do not ruin the rest of the message, but they do ruin as many bits as the shift register is wide.

Stream Cipher Mode

Nevertheless, applications exist in which having a 1-bit transmission error mess up 64 bits of plaintext is too large an effect. For these applications, a fourth option, **stream cipher mode**, exists. It works by encrypting an initialization vector, using a key to get an output block. The output block is then encrypted, using the key to get a second output block. This block is then encrypted to get a third block, and so on. The (arbitrarily large) sequence of output blocks, called the **keystream**, is treated like a one-time pad and XORed with the plaintext to get the ciphertext, as shown in Fig. 8-14(a). Note that the IV is used only on the first step. After that, the output is encrypted. Also note that the keystream is independent of the data, so it can be computed in advance, if need be, and is completely insensitive to transmission errors. Decryption is shown in Fig. 8-14(b).

Figure 8-14. A stream cipher. (a) Encryption. (b) Decryption.

Decryption occurs by generating the same keystream at the receiving side. Since the keystream depends only on the IV and the key, it is not affected by transmission errors in the ciphertext. Thus, a 1-bit error in the transmitted ciphertext generates only a 1-bit error in the decrypted plaintext.

It is essential never to use the same (key, IV) pair twice with a stream cipher because doing so will generate the same keystream each time. Using the same keystream twice exposes the ciphertext to a **keystream reuse attack**. Imagine that the plaintext block, P_0 , is encrypted with the keystream to get P_0 XOR K_0 . Later, a second plaintext block, Q_0 , is encrypted with the same keystream to get Q_0 XOR K_0 . An intruder who captures both of these ciphertext blocks can simply XOR them together to get P_0 XOR Q_0 , which eliminates the key. The intruder now has the XOR of the two plaintext blocks. If one of them is known or can be guessed, the other can also be found. In any event, the XOR of two plaintext streams can be attacked by using statistical properties of the message. For example, for English text, the most common character in the stream will probably be the XOR of two spaces, followed by the XOR of space and the letter "e", etc. In short, equipped with the XOR of two plaintexts, the cryptanalyst has an excellent chance of deducing both of them.

Counter Mode

One problem that all the modes except electronic code book mode have is that random access to encrypted data is impossible. For example, suppose a file is transmitted over a network and then stored on disk in encrypted form. This might be a reasonable way to operate if the receiving computer is a notebook computer that might be stolen. Storing all critical files in encrypted form greatly reduces the damage due to secret information leaking out in the event that the computer falls into the wrong hands.

However, disk files are often accessed in nonsequential order, especially files in databases. With a file encrypted using cipher block chaining, accessing a random block requires first decrypting all the blocks ahead of it, an expensive proposition. For this reason, yet another mode has been invented: **counter mode**, as illustrated in Fig. 8-15. Here, the plaintext is not encrypted directly. Instead, the initialization vector plus a constant is encrypted, and the resulting ciphertext is XORed with the plaintext. By stepping the initialization vector by 1 for each new block, it is easy to decrypt a block anywhere in the file without first having to decrypt all of its predecessors.

Although counter mode is useful, it has a weakness that is worth pointing out. Suppose that the same key, K, is used again in the future (with a different plaintext but the same IV) and an attacker acquires all the ciphertext from both runs. The keystreams are the same in both cases, exposing the cipher to a keystream reuse attack of the same kind we saw with stream ciphers. All the cryptanalyst has to do is XOR the two ciphertexts together to eliminate all the cryptographic protection and just get the XOR of the plaintexts. This weakness does not mean counter mode is a bad idea. It just means that both keys and initialization vectors should be chosen independently and at random. Even if the same key is accidentally used twice, if the IV is different each time, the plaintext is safe.

Figure 8-15. Encryption using counter mode.

8.2.4 Other Ciphers

AES (Rijndael) and DES are the best-known symmetric-key cryptographic algorithms, and the standard industry choices, if only for liability reasons. (No one will blame you if you use AES in your product and AES is cracked, but they will certainly blame you if you use a nonstandard cipher and it is later broken.) However, it is worth mentioning that numerous other symmetric-key ciphers have been devised. Some of these are embedded inside various products. A few of the more common ones are listed in Fig. 8-16. It is possible to use combinations of these ciphers, for example, AES over Twofish, so that both ciphers need to be broken to recover the data.

Cipher	Author	Key length	Comments	
DES	IBM	56 bits	Too weak to use now	
RC4	Ronald Rivest	1-2048 bits	Caution: some keys are weak	
RC5	Ronald Rivest	128–256 bits	Good, but patented	
AES (Rijndael)	Daemen and Rijmen	128–256 bits	Best choice	
Serpent	Anderson, Biham, Knudsen	128–256 bits	Very strong	
Triple DES	IBM	168 bits	Good, but getting old	
Twofish	Bruce Schneier	128–256 bits	Very strong; widely used	

Figure 8-16. Some common symmetric-key cryptographic algorithms.

8.2.5 Cryptanalysis

Before leaving the subject of symmetric-key cryptography, it is worth at least mentioning four developments in cryptanalysis. The first development is **dif-ferential cryptanalysis** (Biham and Shamir, 1997). This technique can be used

to attack any block cipher. It works by beginning with a pair of plaintext blocks differing in only a small number of bits and watching carefully what happens on each internal iteration as the encryption proceeds. In many cases, some bit patterns are more common than others, which can lead to probabilistic attacks.

The second development worth noting is **linear cryptanalysis** (Matsui, 1994). It can break DES with only 2⁴³ known plaintexts. It works by XORing certain bits in the plaintext and ciphertext together and examining the result. When done repeatedly, half the bits should be 0s and half should be 1s. Often, however, ciphers introduce a bias in one direction or the other, and this bias, however small, can be exploited to reduce the work factor. For the details, see Matsui's paper.

The third development is using analysis of electrical power consumption to find secret keys. Computers typically use around 3 volts to represent a 1 bit and 0 volts to represent a 0 bit. Thus, processing a 1 takes more electrical energy than processing a 0. If a cryptographic algorithm consists of a loop in which the key bits are processed in order, an attacker who replaces the main *n*-GHz clock with a slow (e.g., 100-Hz) clock and puts alligator clips on the CPU's power and ground pins can precisely monitor the power consumed by each machine instruction. From this data, deducing the key is surprisingly easy. This kind of cryptanalysis can be defeated only by carefully coding the algorithm in assembly language to make sure power consumption is independent of the key and also independent of all the individual round keys.

The fourth development is timing analysis. Cryptographic algorithms are full of if statements that test bits in the round keys. If the then and else parts take different amounts of time, by slowing down the clock and seeing how long various steps take, it may also be possible to deduce the round keys. Once all the round keys are known, the original key can usually be computed. Power and timing analysis can also be employed simultaneously to make the job easier. While power and timing analysis may seem exotic, in reality they are powerful techniques that can break any cipher not specifically designed to resist them.

8.3 PUBLIC-KEY ALGORITHMS

Historically, distributing the keys has always been the weakest link in most cryptosystems. No matter how strong a cryptosystem was, if an intruder could steal the key, the system was worthless. Cryptologists always took for granted that the encryption key and decryption key were the same (or easily derived from one another). But the key had to be distributed to all users of the system. Thus, it seemed as if there was an inherent problem. Keys had to be protected from theft, but they also had to be distributed, so they could not be locked in a bank vault.

In 1976, two researchers at Stanford University, Diffie and Hellman (1976), proposed a radically new kind of cryptosystem, one in which the encryption and decryption keys were so different that the decryption key could not feasibly be

derived from the encryption key. In their proposal, the (keyed) encryption algorithm, E, and the (keyed) decryption algorithm, D, had to meet three requirements. These requirements can be stated simply as follows:

- 1. D(E(P)) = P.
- 2. It is exceedingly difficult to deduce *D* from *E*.
- 3. E cannot be broken by a chosen plaintext attack.

The first requirement says that if we apply D to an encrypted message, E(P), we get the original plaintext message, P, back. Without this property, the legitimate receiver could not decrypt the ciphertext. The second requirement speaks for itself. The third requirement is needed because, as we shall see in a moment, intruders may experiment with the algorithm to their hearts' content. Under these conditions, there is no reason that the encryption key cannot be made public.

The method works like this. A person, say, Alice, who wants to receive secret messages, first devises two algorithms meeting the above requirements. The encryption algorithm and Alice's key are then made public, hence the name **public-key cryptography**. Alice might put her public key on her home page on the Web, for example. We will use the notation E_A to mean the encryption algorithm parameterized by Alice's public key. Similarly, the (secret) decryption algorithm parameterized by Alice's private key is D_A . Bob does the same thing, publicizing E_B but keeping D_B secret.

Now let us see if we can solve the problem of establishing a secure channel between Alice and Bob, who have never had any previous contact. Both Alice's encryption key, E_A , and Bob's encryption key, E_B , are assumed to be in publicly readable files. Now Alice takes her first message, P, computes $E_B(P)$, and sends it to Bob. Bob then decrypts it by applying his secret key D_B [i.e., he computes $D_B(E_B(P)) = P$]. No one else can read the encrypted message, $E_B(P)$, because the encryption system is assumed to be strong and because it is too difficult to derive D_B from the publicly known E_B . To send a reply, R, Bob transmits $E_A(R)$. Alice and Bob can now communicate securely.

A note on terminology is perhaps useful here. Public-key cryptography requires each user to have two keys: a public key, used by the entire world for encrypting messages to be sent to that user, and a private key, which the user needs for decrypting messages. We will consistently refer to these keys as the *public* and *private* keys, respectively, and distinguish them from the *secret* keys used for conventional symmetric-key cryptography.

8.3.1 RSA

The only catch is that we need to find algorithms that indeed satisfy all three requirements. Due to the potential advantages of public-key cryptography, many researchers are hard at work, and some algorithms have already been published.

One good method was discovered by a group at M.I.T. (Rivest et al., 1978). It is known by the initials of the three discoverers (Rivest, Shamir, Adleman): **RSA**. It has survived all attempts to break it for more than 30 years and is considered very strong. Much practical security is based on it. For this reason, Rivest, Shamir, and Adleman were given the 2002 ACM Turing Award. Its major disadvantage is that it requires keys of at least 1024 bits for good security (versus 128 bits for symmetric-key algorithms), which makes it quite slow.

The RSA method is based on some principles from number theory. We will now summarize how to use the method; for details, consult the paper.

- 1. Choose two large primes, p and q (typically 1024 bits).
- 2. Compute $n = p \times q$ and $z = (p 1) \times (q 1)$.
- 3. Choose a number relatively prime to z and call it d.
- 4. Find e such that $e \times d = 1 \mod z$.

With these parameters computed in advance, we are ready to begin encryption. Divide the plaintext (regarded as a bit string) into blocks, so that each plaintext message, P, falls in the interval $0 \le P < n$. Do that by grouping the plaintext into blocks of k bits, where k is the largest integer for which $2^k < n$ is true.

To encrypt a message, P, compute $C = P^e \pmod{n}$. To decrypt C, compute $P = C^d \pmod{n}$. It can be proven that for all P in the specified range, the encryption and decryption functions are inverses. To perform the encryption, you need e and e. To perform the decryption, you need e and e. Therefore, the public key consists of the pair (e, n) and the private key consists of (d, n).

The security of the method is based on the difficulty of factoring large numbers. If the cryptanalyst could factor the (publicly known) n, he could then find p and q, and from these z. Equipped with knowledge of z and e, d can be found using Euclid's algorithm. Fortunately, mathematicians have been trying to factor large numbers for at least 300 years, and the accumulated evidence suggests that it is an exceedingly difficult problem.

According to Rivest and colleagues, factoring a 500-digit number would require 10^{25} years using brute force. In both cases, they assumed the best known algorithm and a computer with a 1- μ sec instruction time. With a million chips running in parallel, each with an instruction time of 1 nsec, it would still take 10^{16} years. Even if computers continue to get faster by an order of magnitude per decade, it will be many years before factoring a 500-digit number becomes feasible, at which time our descendants can simply choose p and q still larger.

A trivial pedagogical example of how the RSA algorithm works is given in Fig. 8-17. For this example, we have chosen p = 3 and q = 11, giving n = 33 and z = 20. A suitable value for d is d = 7, since 7 and 20 have no common factors. With these choices, e can be found by solving the equation $7e = 1 \pmod{20}$, which yields e = 3. The ciphertext, C, corresponding to a plaintext message, P, is

given by $C = P^3 \pmod{33}$. The ciphertext is decrypted by the receiver by making use of the rule $P = C^7 \pmod{33}$. The figure shows the encryption of the plaintext "SUZANNE" as an example.

Plaintext (P)		Ciphertext (C)		After decryption		
Symbolic	Numeric	<u>P</u> 3	P ³ (mod 33)	<u>C</u> 7	C7 (mod 33)	Symbolic
S	19	6859	28	13492928512	19	S
U	21	9261	21	1801088541	21	U
Z	26	17576	20	1280000000	26	Z
Α	01	1	1	1	01	Α
N	14	2744	5	78125	14	N
N	14	2744	5	78125	14	N
E	05	125	26	8031810176	05	E
Sender's computation			Receiver's co	 omputation		

Figure 8-17. An example of the RSA algorithm.

Because the primes chosen for this example are so small, P must be less than 33, so each plaintext block can contain only a single character. The result is a monoalphabetic substitution cipher, not very impressive. If instead we had chosen p and $q \approx 2^{512}$, we would have $n \approx 2^{1024}$, so each block could be up to 1024 bits or 128 eight-bit characters, versus 8 characters for DES and 16 characters for AES.

It should be pointed out that using RSA as we have described is similar to using a symmetric algorithm in ECB mode—the same input block gives the same output block. Therefore, some form of chaining is needed for data encryption. However, in practice, most RSA-based systems use public-key cryptography primarily for distributing one-time session keys for use with some symmetric-key algorithm such as AES or triple DES. RSA is too slow for actually encrypting large volumes of data but is widely used for key distribution.

8.3.2 Other Public-Key Algorithms

Although RSA is widely used, it is by no means the only public-key algorithm known. The first public-key algorithm was the knapsack algorithm (Merkle and Hellman, 1978). The idea here is that someone owns a large number of objects, each with a different weight. The owner encodes the message by secretly selecting a subset of the objects and placing them in the knapsack. The total weight of the objects in the knapsack is made public, as is the list of all possible objects and their corresponding weights. The list of objects in the knapsack is kept secret. With certain additional restrictions, the problem of figuring out a possible list of objects with the given weight was thought to be computationally infeasible and formed the basis of the public-key algorithm.

The algorithm's inventor, Ralph Merkle, was quite sure that this algorithm could not be broken, so he offered a \$100 reward to anyone who could break it. Adi Shamir (the "S" in RSA) promptly broke it and collected the reward. Undeterred, Merkle strengthened the algorithm and offered a \$1000 reward to anyone who could break the new one. Ronald Rivest (the "R" in RSA) promptly broke the new one and collected the reward. Merkle did not dare offer \$10,000 for the next version, so "A" (Leonard Adleman) was out of luck. Nevertheless, the knapsack algorithm is not considered secure and is not used in practice any more.

Other public-key schemes are based on the difficulty of computing discrete logarithms. Algorithms that use this principle have been invented by El Gamal (1985) and Schnorr (1991).

A few other schemes exist, such as those based on elliptic curves (Menezes and Vanstone, 1993), but the two major categories are those based on the difficulty of factoring large numbers and computing discrete logarithms modulo a large prime. These problems are thought to be genuinely difficult to solve—mathematicians have been working on them for many years without any great breakthroughs.

8.4 DIGITAL SIGNATURES

The authenticity of many legal, financial, and other documents is determined by the presence or absence of an authorized handwritten signature. And photocopies do not count. For computerized message systems to replace the physical transport of paper-and-ink documents, a method must be found to allow documents to be signed in an unforgeable way.

The problem of devising a replacement for handwritten signatures is a difficult one. Basically, what is needed is a system by which one party can send a signed message to another party in such a way that the following conditions hold:

- 1. The receiver can verify the claimed identity of the sender.
- 2. The sender cannot later repudiate the contents of the message.
- 3. The receiver cannot possibly have concocted the message himself.

The first requirement is needed, for example, in financial systems. When a customer's computer orders a bank's computer to buy a ton of gold, the bank's computer needs to be able to make sure that the computer giving the order really belongs to the customer whose account is to be debited. In other words, the bank has to authenticate the customer (and the customer has to authenticate the bank).

The second requirement is needed to protect the bank against fraud. Suppose that the bank buys the ton of gold, and immediately thereafter the price of gold

drops sharply. A dishonest customer might then proceed to sue the bank, claiming that he never issued any order to buy gold. When the bank produces the message in court, the customer may deny having sent it. The property that no party to a contract can later deny having signed it is called **nonrepudiation**. The digital signature schemes that we will now study help provide it.

The third requirement is needed to protect the customer in the event that the price of gold shoots up and the bank tries to construct a signed message in which the customer asked for one bar of gold instead of one ton. In this fraud scenario, the bank just keeps the rest of the gold for itself.

8.4.1 Symmetric-Key Signatures

One approach to digital signatures is to have a central authority that knows everything and whom everyone trusts, say, Big Brother (BB). Each user then chooses a secret key and carries it by hand to BB's office. Thus, only Alice and BB know Alice's secret key, K_A , and so on.

When Alice wants to send a signed plaintext message, P, to her banker, Bob, she generates $K_A(B, R_A, t, P)$, where B is Bob's identity, R_A is a random number chosen by Alice, t is a timestamp to ensure freshness, and $K_A(B, R_A, t, P)$ is the message encrypted with her key, K_A . Then she sends it as depicted in Fig. 8-18. BB sees that the message is from Alice, decrypts it, and sends a message to Bob as shown. The message to Bob contains the plaintext of Alice's message and also the signed message $K_{BB}(A, t, P)$. Bob now carries out Alice's request.

Figure 8-18. Digital signatures with Big Brother.

What happens if Alice later denies sending the message? Step 1 is that everyone sues everyone (at least, in the United States). Finally, when the case comes to court and Alice vigorously denies sending Bob the disputed message, the judge will ask Bob how he can be sure that the disputed message came from Alice and not from Trudy. Bob first points out that BB will not accept a message from Alice unless it is encrypted with K_A , so there is no possibility of Trudy sending BB a false message from Alice without BB detecting it immediately.

Bob then dramatically produces Exhibit A: $K_{BB}(A, t, P)$. Bob says that this is a message signed by BB that proves Alice sent P to Bob. The judge then asks BB (whom everyone trusts) to decrypt Exhibit A. When BB testifies that Bob is telling the truth, the judge decides in favor of Bob. Case dismissed.

One potential problem with the signature protocol of Fig. 8-18 is Trudy replaying either message. To minimize this problem, timestamps are used throughout. Furthermore, Bob can check all recent messages to see if R_A was used in any of them. If so, the message is discarded as a replay. Note that based on the timestamp, Bob will reject very old messages. To guard against instant replay attacks, Bob just checks the R_A of every incoming message to see if such a message has been received from Alice in the past hour. If not, Bob can safely assume this is a new request.

8.4.2 Public-Key Signatures

A structural problem with using symmetric-key cryptography for digital signatures is that everyone has to agree to trust Big Brother. Furthermore, Big Brother gets to read all signed messages. The most logical candidates for running the Big Brother server are the government, the banks, the accountants, and the lawyers. Unfortunately, none of these inspire total confidence in all citizens. Hence, it would be nice if signing documents did not require a trusted authority.

Fortunately, public-key cryptography can make an important contribution in this area. Let us assume that the public-key encryption and decryption algorithms have the property that E(D(P)) = P, in addition, of course, to the usual property that D(E(P)) = P. (RSA has this property, so the assumption is not unreasonable.) Assuming that this is the case, Alice can send a signed plaintext message, P, to Bob by transmitting $E_B(D_A(P))$. Note carefully that Alice knows her own (private) key, D_A , as well as Bob's public key, E_B , so constructing this message is something Alice can do.

When Bob receives the message, he transforms it using his private key, as usual, yielding $D_A(P)$, as shown in Fig. 8-19. He stores this text in a safe place and then applies E_A to get the original plaintext.

Figure 8-19. Digital signatures using public-key cryptography.

To see how the signature property works, suppose that Alice subsequently denies having sent the message P to Bob. When the case comes up in court, Bob can produce both P and $D_A(P)$. The judge can easily verify that Bob indeed has a valid message encrypted by D_A by simply applying E_A to it. Since Bob does not

know what Alice's private key is, the only way Bob could have acquired a message encrypted by it is if Alice did indeed send it. While in jail for perjury and fraud, Alice will have much time to devise interesting new public-key algorithms.

Although using public-key cryptography for digital signatures is an elegant scheme, there are problems that are related to the environment in which they operate rather than to the basic algorithm. For one thing, Bob can prove that a message was sent by Alice only as long as D_A remains secret. If Alice discloses her secret key, the argument no longer holds, because anyone could have sent the message, including Bob himself.

The problem might arise, for example, if Bob is Alice's stockbroker. Suppose that Alice tells Bob to buy a certain stock or bond. Immediately thereafter, the price drops sharply. To repudiate her message to Bob, Alice runs to the police claiming that her home was burglarized and the PC holding her key was stolen. Depending on the laws in her state or country, she may or may not be legally liable, especially if she claims not to have discovered the break-in until getting home from work, several hours after it allegedly happened.

Another problem with the signature scheme is what happens if Alice decides to change her key. Doing so is clearly legal, and it is probably a good idea to do so periodically. If a court case later arises, as described above, the judge will apply the *current* E_A to $D_A(P)$ and discover that it does not produce P. Bob will look pretty stupid at this point.

In principle, any public-key algorithm can be used for digital signatures. The de facto industry standard is the RSA algorithm. Many security products use it. However, in 1991, NIST proposed using a variant of the El Gamal public-key algorithm for its new **Digital Signature Standard (DSS)**. El Gamal gets its security from the difficulty of computing discrete logarithms, rather than from the difficulty of factoring large numbers.

As usual when the government tries to dictate cryptographic standards, there was an uproar. DSS was criticized for being

- 1. Too secret (NSA designed the protocol for using El Gamal).
- 2. Too slow (10 to 40 times slower than RSA for checking signatures).
- 3. Too new (El Gamal had not yet been thoroughly analyzed).
- 4. Too insecure (fixed 512-bit key).

In a subsequent revision, the fourth point was rendered moot when keys up to 1024 bits were allowed. Nevertheless, the first two points remain valid.

8.4.3 Message Digests

One criticism of signature methods is that they often couple two distinct functions: authentication and secrecy. Often, authentication is needed but secrecy is not always needed. Also, getting an export license is often easier if the system in question provides only authentication but not secrecy. Below we will describe an authentication scheme that does not require encrypting the entire message.

This scheme is based on the idea of a one-way hash function that takes an arbitrarily long piece of plaintext and from it computes a fixed-length bit string. This hash function, MD, often called a **message digest**, has four important properties:

- 1. Given P, it is easy to compute MD(P).
- 2. Given MD(P), it is effectively impossible to find P.
- 3. Given P, no one can find P' such that MD(P') = MD(P).
- 4. A change to the input of even 1 bit produces a very different output.

To meet criterion 3, the hash should be at least 128 bits long, preferably more. To meet criterion 4, the hash must mangle the bits very thoroughly, not unlike the symmetric-key encryption algorithms we have seen.

Computing a message digest from a piece of plaintext is much faster than encrypting that plaintext with a public-key algorithm, so message digests can be used to speed up digital signature algorithms. To see how this works, consider the signature protocol of Fig. 8-18 again. Instead, of signing P with $K_{BB}(A, t, P)$, BB now computes the message digest by applying MD to P, yielding MD(P). BB then encloses $K_{BB}(A, t, MD(P))$ as the fifth item in the list encrypted with K_B that is sent to Bob, instead of $K_{BB}(A, t, P)$.

If a dispute arises, Bob can produce both P and $K_{BB}(A, t, MD(P))$. After Big Brother has decrypted it for the judge, Bob has MD(P), which is guaranteed to be genuine, and the alleged P. However, since it is effectively impossible for Bob to find any other message that gives this hash, the judge will easily be convinced that Bob is telling the truth. Using message digests in this way saves both encryption time and message transport costs.

Message digests work in public-key cryptosystems, too, as shown in Fig. 8-20. Here, Alice first computes the message digest of her plaintext. She then signs the message digest and sends both the signed digest and the plaintext to Bob. If Trudy replaces P along the way, Bob will see this when he computes MD(P).

Figure 8-20. Digital signatures using message digests.

SHA-1 and SHA-2

A variety of message digest functions have been proposed. One of the most widely used functions is **SHA-1** (**Secure Hash Algorithm 1**) (NIST, 1993). Like all message digests, it operates by mangling bits in a sufficiently complicated way that every output bit is affected by every input bit. SHA-1 was developed by NSA and blessed by NIST in FIPS 180-1. It processes input data in 512-bit blocks, and it generates a 160-bit message digest. A typical way for Alice to send a nonsecret but signed message to Bob is illustrated in Fig. 8-21. Here, her plaintext message is fed into the SHA-1 algorithm to get a 160-bit SHA-1 hash. Alice then signs the hash with her RSA private key and sends both the plaintext message and the signed hash to Bob.

Figure 8-21. Use of SHA-1 and RSA for signing nonsecret messages.

After receiving the message, Bob computes the SHA-1 hash himself and also applies Alice's public key to the signed hash to get the original hash, H. If the two agree, the message is considered valid. Since there is no way for Trudy to modify the (plaintext) message while it is in transit and produce a new one that hashes to H, Bob can easily detect any changes Trudy has made to the message. For messages whose integrity is important but whose contents are not secret, the scheme of Fig. 8-21 is widely used. For a relatively small cost in computation, it guarantees that any modifications made to the plaintext message in transit can be detected with very high probability.

Now let us briefly see how SHA-1 works. It starts out by padding the message by adding a 1 bit to the end, followed by as many 0 bits as are necessary, but at least 64, to make the length a multiple of 512 bits. Then a 64-bit number containing the message length before padding is ORed into the low-order 64 bits. In Fig. 8-22, the message is shown with padding on the right because English text and figures go from left to right (i.e., the lower right is generally perceived as the end of the figure). With computers, this orientation corresponds to big-endian machines such as the SPARC and the IBM 360 and its successors, but SHA-1 always pads the end of the message, no matter which endian machine is used.

Figure 8-22. (a) A message padded out to a multiple of 512 bits. (b) The output variables. (c) The word array.

During the computation, SHA-1 maintains five 32-bit variables, H_0 through H_4 , where the hash accumulates. These are shown in Fig. 8-22(b). They are initialized to constants specified in the standard.

Each of the blocks M_0 through M_{n-1} is now processed in turn. For the current block, the 16 words are first copied into the start of an auxiliary 80-word array, W, as shown in Fig. 8-22(c). Then the other 64 words in W are filled in using the formula

$$W_i = S^1(W_{i-3} \text{ XOR } W_{i-8} \text{ XOR } W_{i-14} \text{ XOR } W_{i-16})$$
 (16 \le i \le 79)

where $S^b(W)$ represents the left circular rotation of the 32-bit word, W, by b bits. Now five scratch variables, A through E, are initialized from H_0 through H_4 , respectively.

The actual calculation can be expressed in pseudo-C as

```
\begin{aligned} &\text{for (i = 0; i < 80; i++) \{} \\ &\text{temp = S}^5(A) + f_i \, (B, \, C, \, D) + E + W_i + K_i; \\ &\text{E = D; } D = C; \ C = S^{30}(B); \ B = A; \ A = temp; \\ &\} \end{aligned}
```

where the K_i constants are defined in the standard. The mixing functions f_i are defined as

$$f_i(B, C, D) = (B \text{ AND } C) \text{ OR } (\text{NOT } B \text{ AND } D)$$
 ($0 \le i \le 19$)
 $f_i(B, C, D) = B \text{ XOR } C \text{ XOR } D$ ($20 \le i \le 39$)
 $f_i(B, C, D) = (B \text{ AND } C) \text{ OR } (B \text{ AND } D) \text{ OR } (C \text{ AND } D)$ ($40 \le i \le 59$)
 $f_i(B, C, D) = B \text{ XOR } C \text{ XOR } D$ ($60 \le i \le 79$)

When all 80 iterations of the loop are completed, A through E are added to H_0 through H_4 , respectively.

Now that the first 512-bit block has been processed, the next one is started. The W array is reinitialized from the new block, but H is left as it was. When this

block is finished, the next one is started, and so on, until all the 512-bit message blocks have been tossed into the soup. When the last block has been finished, the five 32-bit words in the *H* array are output as the 160-bit cryptographic hash. The complete C code for SHA-1 is given in RFC 3174.

New versions of SHA-1 have been developed that produce hashes of 224, 256, 384, and 512 bits. Collectively, these versions are called SHA-2. Not only are these hashes longer than SHA-1 hashes, but the digest function has been changed to combat some potential weaknesses of SHA-1. SHA-2 is not yet widely used, but it is likely to be in the future.

MD5

For completeness, we will mention another digest that is popular. **MD5** (Rivest, 1992) is the fifth in a series of message digests designed by Ronald Rivest. Very briefly, the message is padded to a length of 448 bits (modulo 512). Then the original length of the message is appended as a 64-bit integer to give a total input whose length is a multiple of 512 bits. Each round of the computation takes a 512-bit block of input and mixes it thoroughly with a running 128-bit buffer. For good measure, the mixing uses a table constructed from the sine function. The point of using a known function is to avoid any suspicion that the designer built in a clever back door through which only he can enter. This process continues until all the input blocks have been consumed. The contents of the 128-bit buffer form the message digest.

After more than a decade of solid use and study, weaknesses in MD5 have led to the ability to find collisions, or different messages with the same hash (Sotirov, et al., 2008). This is the death knell for a digest function because it means that the digest cannot safely be used to represent a message. Thus, the security community considers MD5 to be broken; it should be replaced where possible and no new systems should use it as part of their design. Nevertheless, you may still see MD5 used in existing systems.

8.4.4 The Birthday Attack

In the world of crypto, nothing is ever what it seems to be. One might think that it would take on the order of 2^m operations to subvert an *m*-bit message digest. In fact, $2^{m/2}$ operations will often do using the **birthday attack**, an approach published by Yuval (1979) in his now-classic paper "How to Swindle Rabin."

The idea for this attack comes from a technique that math professors often use in their probability courses. The question is: how many students do you need in a class before the probability of having two people with the same birthday exceeds 1/2? Most students expect the answer to be way over 100. In fact, probability theory says it is just 23. Without giving a rigorous analysis, intuitively, with 23

people, we can form $(23 \times 22)/2 = 253$ different pairs, each of which has a probability of 1/365 of being a hit. In this light, it is not really so surprising any more.

More generally, if there is some mapping between inputs and outputs with n inputs (people, messages, etc.) and k possible outputs (birthdays, message digests, etc.), there are n(n-1)/2 input pairs. If n(n-1)/2 > k, the chance of having at least one match is pretty good. Thus, approximately, a match is likely for $n > \sqrt{k}$. This result means that a 64-bit message digest can probably be broken by generating about 2^{32} messages and looking for two with the same message digest.

Let us look at a practical example. The Department of Computer Science at State University has one position for a tenured faculty member and two candidates, Tom and Dick. Tom was hired two years before Dick, so he goes up for review first. If he gets it, Dick is out of luck. Tom knows that the department chairperson, Marilyn, thinks highly of his work, so he asks her to write him a letter of recommendation to the Dean, who will decide on Tom's case. Once sent, all letters become confidential.

Marilyn tells her secretary, Ellen, to write the Dean a letter, outlining what she wants in it. When it is ready, Marilyn will review it, compute and sign the 64-bit digest, and send it to the Dean. Ellen can send the letter later by email.

Unfortunately for Tom, Ellen is romantically involved with Dick and would like to do Tom in, so she writes the following letter with the 32 bracketed options:

Dear Dean Smith,

This [letter | message] is to give my [honest | frank] opinion of Prof. Tom Wilson, who is [a candidate | up] for tenure [now | this year]. I have [known | worked with] Prof. Wilson for [about | almost] six years. He is an [outstanding | excellent] researcher of great [talent | ability] known [worldwide | internationally] for his [brilliant | creative] insights into [many | a wide variety of] [difficult | challenging] problems.

He is also a [highly | greatly] [respected | admired] [teacher | educator]. His students give his [classes | courses] [rave | spectacular] reviews. He is [our | the Department's] [most popular | best-loved] [teacher | instructor].

[In addition | Additionally] Prof. Wilson is a [gifted | effective] fund raiser. His [grants | contracts] have brought a [large | substantial] amount of money into [the | our] Department. [This money has | These funds have] [enabled | permitted] us to [pursue | carry out] many [special | important] programs, [such as | for example] your State 2000 program. Without these funds we would [be unable | not be able] to continue this program, which is so [important | essential] to both of us. I strongly urge you to grant him tenure.

Unfortunately for Tom, as soon as Ellen finishes composing and typing in this letter, she also writes a second one:

Dear Dean Smith,

This [letter | message] is to give my [honest | frank] opinion of Prof. Tom Wilson, who is [a candidate | up] for tenure [now | this year]. I have [known | worked with] Tom for [about | almost] six years. He is a [poor | weak] researcher not well known in his [field | area]. His research [hardly ever | rarely] shows [insight in | understanding of] the [key | major] problems of [the | our] day.

Furthermore, he is not a [respected | admired] [teacher | educator]. His students give his [classes | courses] [poor | bad] reviews. He is [our | the Department's] least popular [teacher | instructor], known [mostly | primarily] within [the | our] Department for his [tendency | propensity] to [ridicule | embarrass] students [foolish | imprudent] enough to ask questions in his classes.

[In addition | Additionally] Tom is a [poor | marginal] fund raiser. His [grants | contracts] have brought only a [meager | insignificant] amount of money into [the | our] Department. Unless new [money is | funds are] quickly located, we may have to cancel some essential programs, such as your State 2000 program. Unfortunately, under these [conditions | circumstances] I cannot in good [conscience | faith] recommend him to you for [tenure | a permanent position].

Now Ellen programs her computer to compute the 2^{32} message digests of each letter overnight. Chances are, one digest of the first letter will match one digest of the second. If not, she can add a few more options and try again tonight. Suppose that she finds a match. Call the "good" letter A and the "bad" one B.

Ellen now emails letter A to Marilyn for approval. Letter B she keeps secret, showing it to no one. Marilyn, of course, approves it, computes her 64-bit message digest, signs the digest, and emails the signed digest off to Dean Smith. Independently, Ellen emails letter B to the Dean (not letter A, as she is supposed to).

After getting the letter and signed message digest, the Dean runs the message digest algorithm on letter *B*, sees that it agrees with what Marilyn sent him, and fires Tom. The Dean does not realize that Ellen managed to generate two letters with the same message digest and sent her a different one than the one Marilyn saw and approved. (Optional ending: Ellen tells Dick what she did. Dick is appalled and breaks off the affair. Ellen is furious and confesses to Marilyn. Marilyn calls the Dean. Tom gets tenure after all.) With SHA-1, the birthday attack is difficult because even at the ridiculous speed of 1 trillion digests per second, it would take over 32,000 years to compute all 2⁸⁰ digests of two letters with 80 variants each, and even then a match is not guaranteed. With a cloud of 1,000,000 chips working in parallel, 32,000 years becomes 2 weeks.

8.5 MANAGEMENT OF PUBLIC KEYS

Public-key cryptography makes it possible for people who do not share a common key in advance to nevertheless communicate securely. It also makes signing messages possible without the presence of a trusted third party. Finally,

signed message digests make it possible for the recipient to verify the integrity of received messages easily and securely.

However, there is one problem that we have glossed over a bit too quickly: if Alice and Bob do not know each other, how do they get each other's public keys to start the communication process? The obvious solution—put your public key on your Web site—does not work, for the following reason. Suppose that Alice wants to look up Bob's public key on his Web site. How does she do it? She starts by typing in Bob's URL. Her browser then looks up the DNS address of Bob's home page and sends it a GET request, as shown in Fig. 8-23. Unfortunately, Trudy intercepts the request and replies with a fake home page, probably a copy of Bob's home page except for the replacement of Bob's public key with Trudy's public key. When Alice now encrypts her first message with E_T , Trudy decrypts it, reads it, re-encrypts it with Bob's public key, and sends it to Bob, who is none the wiser that Trudy is reading his incoming messages. Worse yet, Trudy could modify the messages before reencrypting them for Bob. Clearly, some mechanism is needed to make sure that public keys can be exchanged securely.

Figure 8-23. A way for Trudy to subvert public-key encryption.

8.5.1 Certificates

As a first attempt at distributing public keys securely, we could imagine a **KDC key distribution center** available online 24 hours a day to provide public keys on demand. One of the many problems with this solution is that it is not scalable, and the key distribution center would rapidly become a bottleneck. Also, if it ever went down, Internet security would suddenly grind to a halt.

For these reasons, people have developed a different solution, one that does not require the key distribution center to be online all the time. In fact, it does not have to be online at all. Instead, what it does is certify the public keys belonging to people, companies, and other organizations. An organization that certifies public keys is now called a **CA** (**Certification Authority**).

As an example, suppose that Bob wants to allow Alice and other people he does not know to communicate with him securely. He can go to the CA with his public key along with his passport or driver's license and ask to be certified. The CA then issues a certificate similar to the one in Fig. 8-24 and signs its SHA-1

hash with the CA's private key. Bob then pays the CA's fee and gets a CD-ROM containing the certificate and its signed hash.

I hereby certify that the public key 19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A belongs to

Robert John Smith 12345 University Avenue Berkeley, CA 94702 Birthday: July 4, 1958

Email: bob@superdupernet.com

SHA-1 hash of the above certificate signed with the CA's private key

Figure 8-24. A possible certificate and its signed hash.

The fundamental job of a certificate is to bind a public key to the name of a principal (individual, company, etc.). Certificates themselves are not secret or protected. Bob might, for example, decide to put his new certificate on his Web site, with a link on the main page saying: Click here for my public-key certificate. The resulting click would return both the certificate and the signature block (the signed SHA-1 hash of the certificate).

Now let us run through the scenario of Fig. 8-23 again. When Trudy intercepts Alice's request for Bob's home page, what can she do? She can put her own certificate and signature block on the fake page, but when Alice reads the contents of the certificate she will immediately see that she is not talking to Bob because Bob's name is not in it. Trudy can modify Bob's home page on the fly, replacing Bob's public key with her own. However, when Alice runs the SHA-1 algorithm on the certificate, she will get a hash that does not agree with the one she gets when she applies the CA's well-known public key to the signature block. Since Trudy does not have the CA's private key, she has no way of generating a signature block that contains the hash of the modified Web page with her public key on it. In this way, Alice can be sure she has Bob's public key and not Trudy's or someone else's. And as we promised, this scheme does not require the CA to be online for verification, thus eliminating a potential bottleneck.

While the standard function of a certificate is to bind a public key to a principal, a certificate can also be used to bind a public key to an **attribute**. For example, a certificate could say: "This public key belongs to someone over 18." It could be used to prove that the owner of the private key was not a minor and thus allowed to access material not suitable for children, and so on, but without disclosing the owner's identity. Typically, the person holding the certificate would send it to the Web site, principal, or process that cared about age. That site, principal, or process would then generate a random number and encrypt it with the public key in the certificate. If the owner were able to decrypt it and send it back,

that would be proof that the owner indeed had the attribute stated in the certificate. Alternatively, the random number could be used to generate a session key for the ensuing conversation.

Another example of where a certificate might contain an attribute is in an object-oriented distributed system. Each object normally has multiple methods. The owner of the object could provide each customer with a certificate giving a bit map of which methods the customer is allowed to invoke and binding the bit map to a public key using a signed certificate. Again, if the certificate holder can prove possession of the corresponding private key, he will be allowed to perform the methods in the bit map. This approach has the property that the owner's identity need not be known, a property useful in situations where privacy is important.

8.5.2 X.509

If everybody who wanted something signed went to the CA with a different kind of certificate, managing all the different formats would soon become a problem. To solve this problem, a standard for certificates has been devised and approved by ITU. The standard is called **X.509** and is in widespread use on the Internet. It has gone through three versions since the initial standardization in 1988. We will discuss V3.

X.509 has been heavily influenced by the OSI world, borrowing some of its worst features (e.g., naming and encoding). Surprisingly, IETF went along with X.509, even though in nearly every other area, from machine addresses to transport protocols to email formats, IETF generally ignored OSI and tried to do it right. The IETF version of X.509 is described in RFC 5280.

At its core, X.509 is a way to describe certificates. The primary fields in a certificate are listed in Fig. 8-25. The descriptions given there should provide a general idea of what the fields do. For additional information, please consult the standard itself or RFC 2459.

For example, if Bob works in the loan department of the Money Bank, his X.500 address might be

/C=US/O=MoneyBank/OU=Loan/CN=Bob/

where C is for country, O is for organization, OU is for organizational unit, and CN is for common name. CAs and other entities are named in a similar way. A substantial problem with X.500 names is that if Alice is trying to contact bob@moneybank.com and is given a certificate with an X.500 name, it may not be obvious to her that the certificate refers to the Bob she wants. Fortunately, starting with version 3, DNS names are now permitted instead of X.500 names, so this problem may eventually vanish.

Certificates are encoded using OSI **ASN.1** (**Abstract Syntax Notation 1**), which is sort of like a struct in C, except with a extremely peculiar and verbose notation. More information about X.509 is given by Ford and Baum (2000).

Field	Meaning	
Version	Which version of X.509	
Serial number	This number plus the CA's name uniquely identifies the certificate	
Signature algorithm	thm The algorithm used to sign the certificate	
Issuer	X.500 name of the CA	
Validity period	The starting and ending times of the validity period	
Subject name	The entity whose key is being certified	
Public key	The subject's public key and the ID of the algorithm using it	
Issuer ID	An optional ID uniquely identifying the certificate's issuer	
Subject ID	An optional ID uniquely identifying the certificate's subject	
Extensions	Many extensions have been defined	
Signature	The certificate's signature (signed by the CA's private key)	

Figure 8-25. The basic fields of an X.509 certificate.

8.5.3 Public Key Infrastructures

Having a single CA to issue all the world's certificates obviously would not work. It would collapse under the load and be a central point of failure as well. A possible solution might be to have multiple CAs, all run by the same organization and all using the same private key to sign certificates. While this would solve the load and failure problems, it introduces a new problem: key leakage. If there were dozens of servers spread around the world, all holding the CA's private key, the chance of the private key being stolen or otherwise leaking out would be greatly increased. Since the compromise of this key would ruin the world's electronic security infrastructure, having a single central CA is very risky.

In addition, which organization would operate the CA? It is hard to imagine any authority that would be accepted worldwide as legitimate and trustworthy. In some countries, people would insist that it be a government, while in other countries they would insist that it not be a government.

For these reasons, a different way for certifying public keys has evolved. It goes under the general name of **PKI** (**Public Key Infrastructure**). In this section, we will summarize how it works in general, although there have been many proposals, so the details will probably evolve in time.

A PKI has multiple components, including users, CAs, certificates, and directories. What the PKI does is provide a way of structuring these components and define standards for the various documents and protocols. A particularly simple form of PKI is a hierarchy of CAs, as depicted in Fig. 8-26. In this example we have shown three levels, but in practice there might be fewer or more. The top-level CA, the root, certifies second-level CAs, which we here call **RAs** (**Regional**

Authorities) because they might cover some geographic region, such as a country or continent. This term is not standard, though; in fact, no term is really standard for the different levels of the tree. These in turn certify the real CAs, which issue the X.509 certificates to organizations and individuals. When the root authorizes a new RA, it generates an X.509 certificate stating that it has approved the RA, includes the new RA's public key in it, signs it, and hands it to the RA. Similarly, when an RA approves a new CA, it produces and signs a certificate stating its approval and containing the CA's public key.

Figure 8-26. (a) A hierarchical PKI. (b) A chain of certificates.

Our PKI works like this. Suppose that Alice needs Bob's public key in order to communicate with him, so she looks for and finds a certificate containing it, signed by CA 5. But Alice has never heard of CA 5. For all she knows, CA 5 might be Bob's 10-year-old daughter. She could go to CA 5 and say: "Prove your legitimacy." CA 5 will respond with the certificate it got from RA 2, which contains CA 5's public key. Now armed with CA 5's public key, she can verify that Bob's certificate was indeed signed by CA 5 and is thus legal.

Unless RA 2 is Bob's 12-year-old son. So, the next step is for her to ask RA 2 to prove it is legitimate. The response to her query is a certificate signed by the root and containing RA 2's public key. Now Alice is sure she has Bob's public key.

But how does Alice find the root's public key? Magic. It is assumed that everyone knows the root's public key. For example, her browser might have been shipped with the root's public key built in.

Bob is a friendly sort of guy and does not want to cause Alice a lot of work. He knows that she is going to have to check out CA 5 and RA 2, so to save her some trouble, he collects the two needed certificates and gives her the two certificates along with his. Now she can use her own knowledge of the root's public key to verify the top-level certificate and the public key contained therein to verify the second one. Alice does not need to contact anyone to do the verification.

Because the certificates are all signed, she can easily detect any attempts to tamper with their contents. A chain of certificates going back to the root like this is sometimes called a **chain of trust** or a **certification path**. The technique is widely used in practice.

Of course, we still have the problem of who is going to run the root. The solution is not to have a single root, but to have many roots, each with its own RAs and CAs. In fact, modern browsers come preloaded with the public keys for over 100 roots, sometimes referred to as **trust anchors**. In this way, having a single worldwide trusted authority can be avoided.

But there is now the issue of how the browser vendor decides which purported trust anchors are reliable and which are sleazy. It all comes down to the user trusting the browser vendor to make wise choices and not simply approve all trust anchors willing to pay its inclusion fee. Most browsers allow users to inspect the root keys (usually in the form of certificates signed by the root) and delete any that seem shady.

Directories

Another issue for any PKI is where certificates (and their chains back to some known trust anchor) are stored. One possibility is to have each user store his or her own certificates. While doing this is safe (i.e., there is no way for users to tamper with signed certificates without detection), it is also inconvenient. One alternative that has been proposed is to use DNS as a certificate directory. Before contacting Bob, Alice probably has to look up his IP address using DNS, so why not have DNS return Bob's entire certificate chain along with his IP address?

Some people think this is the way to go, but others would prefer dedicated directory servers whose only job is managing X.509 certificates. Such directories could provide lookup services by using properties of the X.500 names. For example, in theory such a directory service could answer a query such as: "Give me a list of all people named Alice who work in sales departments anywhere in the U.S. or Canada."

Revocation

The real world is full of certificates, too, such as passports and drivers' licenses. Sometimes these certificates can be revoked, for example, drivers' licenses can be revoked for drunken driving and other driving offenses. The same problem occurs in the digital world: the grantor of a certificate may decide to revoke it because the person or organization holding it has abused it in some way. It can also be revoked if the subject's private key has been exposed or, worse yet, the CA's private key has been compromised. Thus, a PKI needs to deal with the issue of revocation. The possibility of revocation complicates matters.

A first step in this direction is to have each CA periodically issue a **CRL** (**Certificate Revocation List**) giving the serial numbers of all certificates that it has revoked. Since certificates contain expiry times, the CRL need only contain the serial numbers of certificates that have not yet expired. Once its expiry time has passed, a certificate is automatically invalid, so no distinction is needed between those that just timed out and those that were actually revoked. In both cases, they cannot be used any more.

Unfortunately, introducing CRLs means that a user who is about to use a certificate must now acquire the CRL to see if the certificate has been revoked. If it has been, it should not be used. However, even if the certificate is not on the list, it might have been revoked just after the list was published. Thus, the only way to really be sure is to ask the CA. And on the next use of the same certificate, the CA has to be asked again, since the certificate might have been revoked a few seconds ago.

Another complication is that a revoked certificate could conceivably be reinstated, for example, if it was revoked for nonpayment of some fee that has since been paid. Having to deal with revocation (and possibly reinstatement) eliminates one of the best properties of certificates, namely, that they can be used without having to contact a CA.

Where should CRLs be stored? A good place would be the same place the certificates themselves are stored. One strategy is for the CA to actively push out CRLs periodically and have the directories process them by simply removing the revoked certificates. If directories are not used for storing certificates, the CRLs can be cached at various places around the network. Since a CRL is itself a signed document, if it is tampered with, that tampering can be easily detected.

If certificates have long lifetimes, the CRLs will be long, too. For example, if credit cards are valid for 5 years, the number of revocations outstanding will be much longer than if new cards are issued every 3 months. A standard way to deal with long CRLs is to issue a master list infrequently, but issue updates to it more often. Doing this reduces the bandwidth needed for distributing the CRLs.

8.6 COMMUNICATION SECURITY

We have now finished our study of the tools of the trade. Most of the important techniques and protocols have been covered. The rest of the chapter is about how these techniques are applied in practice to provide network security, plus some thoughts about the social aspects of security at the end of the chapter.

In the following four sections, we will look at communication security, that is, how to get the bits secretly and without modification from source to destination and how to keep unwanted bits outside the door. These are by no means the only security issues in networking, but they are certainly among the most important ones, making this a good place to start our study.

8.6.1 IPsec

IETF has known for years that security was lacking in the Internet. Adding it was not easy because a war broke out about where to put it. Most security experts believe that to be really secure, encryption and integrity checks have to be end to end (i.e., in the application layer). That is, the source process encrypts and/or integrity protects the data and sends them to the destination process where they are decrypted and/or verified. Any tampering done in between these two processes, including within either operating system, can then be detected. The trouble with this approach is that it requires changing all the applications to make them security aware. In this view, the next best approach is putting encryption in the transport layer or in a new layer between the application layer and the transport layer, making it still end to end but not requiring applications to be changed.

The opposite view is that users do not understand security and will not be capable of using it correctly and nobody wants to modify existing programs in any way, so the network layer should authenticate and/or encrypt packets without the users being involved. After years of pitched battles, this view won enough support that a network layer security standard was defined. In part, the argument was that having network layer encryption does not prevent security-aware users from doing it right and it does help security-unaware users to some extent.

The result of this war was a design called **IPsec** (**IP security**), which is described in RFCs 2401, 2402, and 2406, among others. Not all users want encryption (because it is computationally expensive). Rather than make it optional, it was decided to require encryption all the time but permit the use of a null algorithm. The null algorithm is described and praised for its simplicity, ease of implementation, and great speed in RFC 2410.

The complete IPsec design is a framework for multiple services, algorithms, and granularities. The reason for multiple services is that not everyone wants to pay the price for having all the services all the time, so the services are available a la carte. The major services are secrecy, data integrity, and protection from replay attacks (where the intruder replays a conversation). All of these are based on symmetric-key cryptography because high performance is crucial.

The reason for having multiple algorithms is that an algorithm that is now thought to be secure may be broken in the future. By making IPsec algorithm-in-dependent, the framework can survive even if some particular algorithm is later broken.

The reason for having multiple granularities is to make it possible to protect a single TCP connection, all traffic between a pair of hosts, or all traffic between a pair of secure routers, among other possibilities.

One slightly surprising aspect of IPsec is that even though it is in the IP layer, it is connection oriented. Actually, that is not so surprising because to have any security, a key must be established and used for some period of time—in essence, a kind of connection by a different name. Also, connections amortize the setup

costs over many packets. A "connection" in the context of IPsec is called an SA (Security Association). An SA is a simplex connection between two endpoints and has a security identifier associated with it. If secure traffic is needed in both directions, two security associations are required. Security identifiers are carried in packets traveling on these secure connections and are used to look up keys and other relevant information when a secure packet arrives.

Technically, IPsec has two principal parts. The first part describes two new headers that can be added to packets to carry the security identifier, integrity control data, and other information. The other part, ISAKMP (Internet Security Association and Key Management Protocol), deals with establishing keys. ISAKMP is a framework. The main protocol for carrying out the work is IKE (Internet Key Exchange). Version 2 of IKE as described in RFC 4306 should be used, as the earlier version was deeply flawed, as pointed out by Perlman and Kaufman (2000).

IPsec can be used in either of two modes. In **transport mode**, the IPsec header is inserted just after the IP header. The *Protocol* field in the IP header is changed to indicate that an IPsec header follows the normal IP header (before the TCP header). The IPsec header contains security information, primarily the SA identifier, a new sequence number, and possibly an integrity check of the payload.

In **tunnel mode**, the entire IP packet, header and all, is encapsulated in the body of a new IP packet with a completely new IP header. Tunnel mode is useful when the tunnel ends at a location other than the final destination. In some cases, the end of the tunnel is a security gateway machine, for example, a company firewall. This is commonly the case for a VPN (Virtual Private Network). In this mode, the security gateway encapsulates and decapsulates packets as they pass through it. By terminating the tunnel at this secure machine, the machines on the company LAN do not have to be aware of IPsec. Only the security gateway has to know about it.

Tunnel mode is also useful when a bundle of TCP connections is aggregated and handled as one encrypted stream because it prevents an intruder from seeing who is sending how many packets to whom. Sometimes just knowing how much traffic is going where is valuable information. For example, if during a military crisis, the amount of traffic flowing between the Pentagon and the White House were to drop sharply, but the amount of traffic between the Pentagon and some military installation deep in the Colorado Rocky Mountains were to increase by the same amount, an intruder might be able to deduce some useful information from these data. Studying the flow patterns of packets, even if they are encrypted, is called **traffic analysis**. Tunnel mode provides a way to foil it to some extent. The disadvantage of tunnel mode is that it adds an extra IP header, thus increasing packet size substantially. In contrast, transport mode does not affect packet size as much.

The first new header is **AH** (**Authentication Header**). It provides integrity checking and antireplay security, but not secrecy (i.e., no data encryption). The

use of AH in transport mode is illustrated in Fig. 8-27. In IPv4, it is interposed between the IP header (including any options) and the TCP header. In IPv6, it is just another extension header and is treated as such. In fact, the format is close to that of a standard IPv6 extension header. The payload may have to be padded out to some particular length for the authentication algorithm, as shown.

Figure 8-27. The IPsec authentication header in transport mode for IPv4.

Let us now examine the AH header. The *Next header* field is used to store the value that the IP *Protocol* field had before it was replaced with 51 to indicate that an AH header follows. In most cases, the code for TCP (6) will go here. The *Payload length* is the number of 32-bit words in the AH header minus 2.

The Security parameters index is the connection identifier. It is inserted by the sender to indicate a particular record in the receiver's database. This record contains the shared key used on this connection and other information about the connection. If this protocol had been invented by ITU rather than IETF, this field would have been called *Virtual circuit number*.

The Sequence number field is used to number all the packets sent on an SA. Every packet gets a unique number, even retransmissions. In other words, the retransmission of a packet gets a different number here than the original (even though its TCP sequence number is the same). The purpose of this field is to detect replay attacks. These sequence numbers may not wrap around. If all 2^{32} are exhausted, a new SA must be established to continue communication.

Finally, we come to Authentication data, which is a variable-length field that contains the payload's digital signature. When the SA is established, the two sides negotiate which signature algorithm they are going to use. Normally, public-key cryptography is not used here because packets must be processed extremely rapidly and all known public-key algorithms are too slow. Since IPsec is based on symmetric-key cryptography and the sender and receiver negotiate a shared key before setting up an SA, the shared key is used in the signature computation. One simple way is to compute the hash over the packet plus the shared key. The shared key is not transmitted, of course. A scheme like this is called an HMAC

(Hashed Message Authentication Code). It is much faster to compute than first running SHA-1 and then running RSA on the result.

The AH header does not allow encryption of the data, so it is mostly useful when integrity checking is needed but secrecy is not needed. One noteworthy feature of AH is that the integrity check covers some of the fields in the IP header, namely, those that do not change as the packet moves from router to router. The *Time to live* field changes on each hop, for example, so it cannot be included in the integrity check. However, the IP source address is included in the check, making it impossible for an intruder to falsify the origin of a packet.

The alternative IPsec header is **ESP** (**Encapsulating Security Payload**). Its use for both transport mode and tunnel mode is shown in Fig. 8-28.

Figure 8-28. (a) ESP in transport mode. (b) ESP in tunnel mode.

The ESP header consists of two 32-bit words. They are the Security parameters index and Sequence number fields that we saw in AH. A third word that generally follows them (but is technically not part of the header) is the *Initialization* vector used for the data encryption, unless null encryption is used, in which case it is omitted.

ESP also provides for HMAC integrity checks, as does AH, but rather than being included in the header, they come after the payload, as shown in Fig. 8-28. Putting the HMAC at the end has an advantage in a hardware implementation: the HMAC can be calculated as the bits are going out over the network interface and appended to the end. This is why Ethernet and other LANs have their CRCs in a trailer, rather than in a header. With AH, the packet has to be buffered and the signature computed before the packet can be sent, potentially reducing the number of packets/sec that can be sent.

Given that ESP can do everything AH can do and more and is more efficient to boot, the question arises: why bother having AH at all? The answer is mostly historical. Originally, AH handled only integrity and ESP handled only secrecy. Later, integrity was added to ESP, but the people who designed AH did not want to let it die after all that work. Their only real argument is that AH checks part of the IP header, which ESP does not, but other than that it is really a weak argument. Another weak argument is that a product supporting AH but not ESP might

have less trouble getting an export license because it cannot do encryption. AH is likely to be phased out in the future.

8.6.2 Firewalls

The ability to connect any computer, anywhere, to any other computer, anywhere, is a mixed blessing. For individuals at home, wandering around the Internet is lots of fun. For corporate security managers, it is a nightmare. Most companies have large amounts of confidential information online—trade secrets, product development plans, marketing strategies, financial analyses, etc. Disclosure of this information to a competitor could have dire consequences.

In addition to the danger of information leaking out, there is also a danger of information leaking in. In particular, viruses, worms, and other digital pests can breach security, destroy valuable data, and waste large amounts of administrators' time trying to clean up the mess they leave. Often they are imported by careless employees who want to play some nifty new game.

Consequently, mechanisms are needed to keep "good" bits in and "bad" bits out. One method is to use IPsec. This approach protects data in transit between secure sites. However, IPsec does nothing to keep digital pests and intruders from getting onto the company LAN. To see how to accomplish this goal, we need to look at firewalls.

Firewalls are just a modern adaptation of that old medieval security standby: digging a deep moat around your castle. This design forced everyone entering or leaving the castle to pass over a single drawbridge, where they could be inspected by the I/O police. With networks, the same trick is possible: a company can have many LANs connected in arbitrary ways, but all traffic to or from the company is forced through an electronic drawbridge (firewall), as shown in Fig. 8-29. No other route exists.

Figure 8-29. A firewall protecting an internal network.

The firewall acts as a **packet filter**. It inspects each and every incoming and outgoing packet. Packets meeting some criterion described in rules formulated by the network administrator are forwarded normally. Those that fail the test are uncermoniously dropped.

The filtering criterion is typically given as rules or tables that list sources and destinations that are acceptable, sources and destinations that are blocked, and default rules about what to do with packets coming from or going to other machines. In the common case of a TCP/IP setting, a source or destination might consist of an IP address and a port. Ports indicate which service is desired. For example, TCP port 25 is for mail, and TCP port 80 is for HTTP. Some ports can simply be blocked. For example, a company could block incoming packets for all IP addresses combined with TCP port 79. It was once popular for the Finger service to look up people's email addresses but is little used today.

Other ports are not so easily blocked. The difficulty is that network administrators want security but cannot cut off communication with the outside world. That arrangement would be much simpler and better for security, but there would be no end to user complaints about it. This is where arrangements such as the **DMZ** (**DeMilitarized Zone**) shown in Fig. 8-29 come in handy. The **DMZ** is the part of the company network that lies outside of the security perimeter. Anything goes here. By placing a machine such as a Web server in the **DMZ**, computers on the Internet can contact it to browse the company Web site. Now the firewall can be configured to block incoming TCP traffic to port 80 so that computers on the Internet cannot use this port to attack computers on the internal network. To allow the Web server to be managed, the firewall can have a rule to permit connections between internal machines and the Web server.

Firewalls have become much more sophisticated over time in an arms race with attackers. Originally, firewalls applied a rule set independently for each packet, but it proved difficult to write rules that allowed useful functionality but blocked all unwanted traffic. **Stateful firewalls** map packets to connections and use TCP/IP header fields to keep track of connections. This allows for rules that, for example, allow an external Web server to send packets to an internal host, but only if the internal host first establishes a connection with the external Web server. Such a rule is not possible with stateless designs that must either pass or drop all packets from the external Web server.

Another level of sophistication up from stateful processing is for the firewall to implement **application-level gateways**. This processing involves the firewall looking inside packets, beyond even the TCP header, to see what the application is doing. With this capability, it is possible to distinguish HTTP traffic used for Web browsing from HTTP traffic used for peer-to-peer file sharing. Administrators can write rules to spare the company from peer-to-peer file sharing but allow Web browsing that is vital for business. For all of these methods, outgoing traffic can be inspected as well as incoming traffic, for example, to prevent sensitive documents from being emailed outside of the company.

As the above discussion should make clear, firewalls violate the standard layering of protocols. They are network layer devices, but they peek at the transport and applications layers to do their filtering. This makes them fragile. For instance, firewalls tend to rely on standard port numbering conventions to determine what kind of traffic is carried in a packet. Standard ports are often used, but not by all computers, and not by all applications either. Some peer-to-peer applications select ports dynamically to avoid being easily spotted (and blocked). Encryption with IPSEC or other schemes hides higher-layer information from the firewall. Finally, a firewall cannot readily talk to the computers that communicate through it to tell them what policies are being applied and why their connection is being dropped. It must simply pretend to be a broken wire. For all these reasons, networking purists consider firewalls to be a blemish on the architecture of the Internet. However, the Internet can be a dangerous place if you are a computer. Firewalls help with that problem, so they are likely to stay.

Even if the firewall is perfectly configured, plenty of security problems still exist. For example, if a firewall is configured to allow in packets from only specific networks (e.g., the company's other plants), an intruder outside the firewall can put in false source addresses to bypass this check. If an insider wants to ship out secret documents, he can encrypt them or even photograph them and ship the photos as JPEG files, which bypasses any email filters. And we have not even discussed the fact that, although three-quarters of all attacks come from outside the firewall, the attacks that come from inside the firewall, for example, from disgruntled employees, are typically the most damaging (Verizon, 2009).

A different problem with firewalls is that they provide a single perimeter of defense. If that defense is breached, all bets are off. For this reason, firewalls are often used in a layered defense. For example, a firewall may guard the entrance to the internal network and each computer may also run its own firewall. Readers who think that one security checkpoint is enough clearly have not made an international flight on a scheduled airline recently.

In addition, there is a whole other class of attacks that firewalls cannot deal with. The basic idea of a firewall is to prevent intruders from getting in and secret data from getting out. Unfortunately, there are people who have nothing better to do than try to bring certain sites down. They do this by sending legitimate packets at the target in great numbers until it collapses under the load. For example, to cripple a Web site, an intruder can send a TCP SYN packet to establish a connection. The site will then allocate a table slot for the connection and send a SYN + ACK packet in reply. If the intruder does not respond, the table slot will be tied up for a few seconds until it times out. If the intruder sends thousands of connection requests, all the table slots will fill up and no legitimate connections will be able to get through. Attacks in which the intruder's goal is to shut down the target rather than steal data are called **DoS** (**Denial of Service**) attacks. Usually, the request packets have false source addresses so the intruder cannot be traced easily. DoS attacks against major Web sites are common on the Internet.

An even worse variant is one in which the intruder has already broken into hundreds of computers elsewhere in the world, and then commands all of them to attack the same target at the same time. Not only does this approach increase the intruder's firepower, but it also reduces his chances of detection since the packets are coming from a large number of machines belonging to unsuspecting users. Such an attack is called a **DDoS** (**Distributed Denial of Service**) attack. This attack is difficult to defend against. Even if the attacked machine can quickly recognize a bogus request, it does take some time to process and discard the request, and if enough requests per second arrive, the CPU will spend all its time dealing with them.

8.6.3 Virtual Private Networks

Many companies have offices and plants scattered over many cities, sometimes over multiple countries. In the olden days, before public data networks, it was common for such companies to lease lines from the telephone company between some or all pairs of locations. Some companies still do this. A network built up from company computers and leased telephone lines is called a **private network**.

Private networks work fine and are very secure. If the only lines available are the leased lines, no traffic can leak out of company locations and intruders have to physically wiretap the lines to break in, which is not easy to do. The problem with private networks is that leasing a dedicated T1 line between two points costs thousands of dollars a month, and T3 lines are many times more expensive. When public data networks and later the Internet appeared, many companies wanted to move their data (and possibly voice) traffic to the public network, but without giving up the security of the private network.

This demand soon led to the invention of **VPNs** (**Virtual Private Networks**), which are overlay networks on top of public networks but with most of the properties of private networks. They are called "virtual" because they are merely an illusion, just as virtual circuits are not real circuits and virtual memory is not real memory.

One popular approach is to build VPNs directly over the Internet. A common design is to equip each office with a firewall and create tunnels through the Internet between all pairs of offices, as illustrated in Fig. 8-30(a). A further advantage of using the Internet for connectivity is that the tunnels can be set up on demand to include, for example, the computer of an employee who is at home or traveling as long as the person has an Internet connection. This flexibility is much greater then is provided with leased lines, yet from the perspective of the computers on the VPN, the topology looks just like the private network case, as shown in Fig. 8-30(b). When the system is brought up, each pair of firewalls has to negotiate the parameters of its SA, including the services, modes, algorithms, and keys. If IPsec is used for the tunneling, it is possible to aggregate all traffic between any

Figure 8-30. (a) A virtual private network. (b) Topology as seen from the inside.

two pairs of offices onto a single authenticated, encrypted SA, thus providing integrity control, secrecy, and even considerable immunity to traffic analysis. Many firewalls have VPN capabilities built in. Some ordinary routers can do this as well, but since firewalls are primarily in the security business, it is natural to have the tunnels begin and end at the firewalls, providing a clear separation between the company and the Internet. Thus, firewalls, VPNs, and IPsec with ESP in tunnel mode are a natural combination and widely used in practice.

Once the SAs have been established, traffic can begin flowing. To a router within the Internet, a packet traveling along a VPN tunnel is just an ordinary packet. The only thing unusual about it is the presence of the IPsec header after the IP header, but since these extra headers have no effect on the forwarding process, the routers do not care about this extra header.

Another approach that is gaining popularity is to have the ISP set up the VPN. Using MPLS (as discussed in Chap. 5), paths for the VPN traffic can be set up across the ISP network between the company offices. These paths keep the VPN traffic separate from other Internet traffic and can be guaranteed a certain amount of bandwidth or other quality of service.

A key advantage of a VPN is that it is completely transparent to all user software. The firewalls set up and manage the SAs. The only person who is even aware of this setup is the system administrator who has to configure and manage the security gateways, or the ISP administrator who has to configure the MPLS paths. To everyone else, it is like having a leased-line private network again. For more about VPNs, see Lewis (2006).

8.6.4 Wireless Security

It is surprisingly easy to design a system using VPNs and firewalls that is logically completely secure but that, in practice, leaks like a sieve. This situation can occur if some of the machines are wireless and use radio communication, which passes right over the firewall in both directions. The range of 802.11 networks is

often a few hundred meters, so anyone who wants to spy on a company can simply drive into the employee parking lot in the morning, leave an 802.11-enabled notebook computer in the car to record everything it hears, and take off for the day. By late afternoon, the hard disk will be full of valuable goodies. Theoretically, this leakage is not supposed to happen. Theoretically, people are not supposed to rob banks, either.

Much of the security problem can be traced to the manufacturers of wireless base stations (access points) trying to make their products user friendly. Usually, if the user takes the device out of the box and plugs it into the electrical power socket, it begins operating immediately—nearly always with no security at all, blurting secrets to everyone within radio range. If it is then plugged into an Ethernet, all the Ethernet traffic suddenly appears in the parking lot as well. Wireless is a snooper's dream come true: free data without having to do any work. It therefore goes without saying that security is even more important for wireless systems than for wired ones. In this section, we will look at some ways wireless networks handle security. Some additional information is given by Nichols and Lekkas (2002).

802.11 Security

Part of the 802.11 standard, originally called **802.11i**, prescribes a data link-level security protocol for preventing a wireless node from reading or interfering with messages sent between another pair of wireless nodes. It also goes by the trade name **WPA2** (**WiFi Protected Access 2**). Plain WPA is an interim scheme that implements a subset of 802.11i. It should be avoided in favor of WPA2.

We will describe 802.11i shortly, but will first note that it is a replacement for WEP (Wired Equivalent Privacy), the first generation of 802.11 security protocols. WEP was designed by a networking standards committee, which is a completely different process than, for example, the way NIST selected the design of AES. The results were devastating. What was wrong with it? Pretty much everything from a security perspective as it turns out. For example, WEP encrypted data for confidentiality by XORing it with the output of a stream cipher. Unfortunately, weak keying arrangements meant that the output was often reused. This led to trivial ways to defeat it. As another example, the integrity check was based on a 32-bit CRC. That is an efficient code for detecting transmission errors, but it is not a cryptographically strong mechanism for defeating attackers.

These and other design flaws made WEP very easy to compromise. The first practical demonstration that WEP was broken came when Adam Stubblefield was an intern at AT&T (Stubblefield et al., 2002). He was able to code up and test an attack outlined by Fluhrer et al. (2001) in one week, of which most of the time was spent convincing management to buy him a WiFi card to use in his experiments. Software to crack WEP passwords within a minute is now freely available and the use of WEP is very strongly discouraged. While it does prevent casual

access it does not provide any real form of security. The 802.11i group was put together in a hurry when it was clear that WEP was seriously broken. It produced a formal standard by June 2004.

Now we will describe 802.11i, which does provide real security if it is set up and used properly. There are two common scenarios in which WPA2 is used. The first is a corporate setting, in which a company has a separate authentication server that has a username and password database that can be used to determine if a wireless client is allowed to access the network. In this setting, clients use standard protocols to authenticate themselves to the network. The main standards are **802.1X**, with which the access point lets the client carry on a dialogue with the authentication server and observes the result, and **EAP** (**Extensible Authentication Protocol**) (RFC 3748), which tells how the client and the authentication server interact. Actually, EAP is a framework and other standards define the protocol messages. However, we will not delve into the many details of this exchange because they do not much matter for an overview.

The second scenario is in a home setting in which there is no authentication server. Instead, there is a single shared password that is used by clients to access the wireless network. This setup is less complex than having an authentication server, which is why it is used at home and in small businesses, but it is less secure as well. The main difference is that with an authentication server each client gets a key for encrypting traffic that is not known by the other clients. With a single shared password, different keys are derived for each client, but all clients have the same password and can derive each others' keys if they want to.

The keys that are used to encrypt traffic are computed as part of an authentication handshake. The handshake happens right after the client associates with a wireless network and authenticates with an authentication server, if there is one. At the start of the handshake, the client has either the shared network password or its password for the authentication server. This password is used to derive a master key. However, the master key is not used directly to encrypt packets. It is standard cryptographic practice to derive a session key for each period of usage, to change the key for different sessions, and to expose the master key to observation as little as possible. It is this session key that is computed in the handshake.

The session key is computed with the four-packet handshake shown in Fig. 8-31. First, the AP (access point) sends a random number for identification. Random numbers used just once in security protocols like this one are called **nonces**, which is more-or-less a contraction of "number used once." The client also picks its own nonce. It uses the nonces, its MAC address and that of the AP, and the master key to compute a session key, K_S . The session key is split into portions, each of which is used for different purposes, but we have omitted this detail. Now the client has session keys, but the AP does not. So the client sends its nonce to the AP, and the AP performs the same computation to derive the same session keys. The nonces can be sent in the clear because the keys cannot be derived from them without extra, secret information. The message from the client is protected

with an integrity check called a MIC (Message Integrity Check) based on the session key. The AP can check that the MIC is correct, and so the message indeed must have come from the client, after it computes the session keys. A MIC is just another name for a message authentication code, as in an HMAC. The term MIC is often used instead for networking protocols because of the potential for confusion with MAC (Medium Access Control) addresses.

Figure 8-31. The 802.11i key setup handshake.

In the last two messages, the AP distributes a group key, K_G , to the client, and the client acknowledges the message. Receipt of these messages lets the client verify that the AP has the correct session keys, and vice versa. The group key is used for broadcast and multicast traffic on the 802.11 LAN. Because the result of the handshake is that every client has its own encryption keys, none of these keys can be used by the AP to broadcast packets to all of the wireless clients; a separate copy would need to be sent to each client using its key. Instead, a shared key is distributed so that broadcast traffic can be sent only once and received by all the clients. It must be updated as clients leave and join the network.

Finally, we get to the part where the keys are actually used to provide security. Two protocols can be used in 802.11i to provide message confidentiality, integrity, and authentication. Like WPA, one of the protocols, called **TKIP** (**Temporary Key Integrity Protocol**), was an interim solution. It was designed to improve security on old and slow 802.11 cards, so that at least some security that is better than WEP can be rolled out as a firmware upgrade. However, it, too, has now been broken so you are better off with the other, recommended protocol, **CCMP**. What does CCMP stand for? It is short for the somewhat spectacular name Counter mode with Cipher block chaining Message authentication code Protocol. We will just call it CCMP. You can call it anything you want.

CCMP works in a fairly straightforward way. It uses AES encryption with a 128-bit key and block size. The key comes from the session key. To provide confidentiality, messages are encrypted with AES in counter mode. Recall that we discussed cipher modes in Sec. 8.2.3. These modes are what prevent the same message from being encrypted to the same set of bits each time. Counter mode mixes a counter into the encryption. To provide integrity, the message, including header fields, is encrypted with cipher block chaining mode and the last 128-bit block is kept as the MIC. Then both the message (encrypted with counter mode) and the MIC are sent. The client and the AP can each perform this encryption, or verify this encryption when a wireless packet is received. For broadcast or multicast messages, the same procedure is used with the group key.

Bluetooth Security

Bluetooth has a considerably shorter range than 802.11, so it cannot easily be attacked from the parking lot, but security is still an issue here. For example, imagine that Alice's computer is equipped with a wireless Bluetooth keyboard. In the absence of security, if Trudy happened to be in the adjacent office, she could read everything Alice typed in, including all her outgoing email. She could also capture everything Alice's computer sent to the Bluetooth printer sitting next to it (e.g., incoming email and confidential reports). Fortunately, Bluetooth has an elaborate security scheme to try to foil the world's Trudies. We will now summarize the main features of it.

Bluetooth version 2.1 and later has four security modes, ranging from nothing at all to full data encryption and integrity control. As with 802.11, if security is disabled (the default for older devices), there is no security. Most users have security turned off until a serious breach has occurred; then they turn it on. In the agricultural world, this approach is known as locking the barn door after the horse has escaped.

Bluetooth provides security in multiple layers. In the physical layer, frequency hopping provides a tiny little bit of security, but since any Bluetooth device that moves into a piconet has to be told the frequency hopping sequence, this sequence is obviously not a secret. The real security starts when the newly arrived slave asks for a channel with the master. Before Bluetooth 2.1, two devices were assumed to share a secret key set up in advance. In some cases, both are hardwired by the manufacturer (e.g., for a headset and mobile phone sold as a unit). In other cases, one device (e.g., the headset) has a hardwired key and the user has to enter that key into the other device (e.g., the mobile phone) as a decimal number. These shared keys are called **passkeys**. Unfortunately, the passkeys are often hardcoded to "1234" or another predictable value, and in any case are four decimal digits, allowing only 10⁴ choices. With simple secure pairing in Bluetooth 2.1, devices pick a code from a six-digit range, which makes the passkey much less predictable but still far from secure.