Analysis 2 W4-2

fat

March 14, 2024

Definition 1. Let $T \in \mathcal{B}(X,Y)$. We define the **transpose** $T^t: Y^* \to X^*$ by

$$T^t y^*(x) = y^*(Tx) \ \forall y^* \in Y^*, \ \forall x \in X$$

Some people write

$$\langle x^*, x \rangle := x^*(x), x^* \in X^*, x \in X$$

$$\langle T^t y^*, x \rangle = \langle y^*, Tx \rangle$$

Exercises:

- (a) $T^t \in \mathcal{B}(Y^*, X^*)$. Furthermore, $||T^t|| = ||T||$
- (b) $T \mapsto T^t$ is linear from $\mathcal{B}(X,Y)$ to $\mathcal{B}(Y^*,X^*)$
- (c) If $S \in \mathcal{B}(Y, Z)$, then $(ST)^t = T^t S^t$

This transpose extends the one in finite dimensions. Let $T: \mathbb{C}^n \to \mathbb{C}^m$ be linear, and let $\{e_j\}, \{f_j\}$ be the canonical basis for $\mathbb{C}^n, \mathbb{C}^m$, respectively. If $x \in \sum_j \alpha_j e_j$, then $\exists a_{kj} \text{ s.t. } Tx = \sum_{k,j} a_{kj} \alpha_j f_k$. T is represented by the matrix (a_{kj}) . Can also represent T^t as a matrix by using the dual canonical bases $\{f_j^*\}$ and $\{e_j^*\}$. For $y^* = \sum_j \beta_j f_j^*, T^t y^* = \sum_j b_{lj} \beta_j e_l^*$.

$$T^{t} f_{k}^{*}(e_{j}) = \sum_{l} b_{lk} e_{l}^{*}(e_{j}) = b_{jk}$$

$$Te_{j} = \sum_{l} a_{lj} f_{l}$$

$$f_{k}^{*}(Te_{j}) = a_{kj}$$

$$\Rightarrow a_{kj} = b_{jk}$$

Definition 2. $T \in \mathcal{B}(X,Y)$, the range R(T) = T(X), the null space $N(T) = \{x \in X : Tx = 0\}$.

Definition 3. For $Y \subseteq X$, we define its **annihilator** to be

$$Y^{\perp} = \{x^* \in X^* : x^*(y) = 0 \ \forall y \in Y\}$$

For a subspace G of X^* , its annihilator is

$$^{\perp}G = \{x \in X : x^*(x) = 0 \ \forall x^* \in G\}$$

Check:

• The annihilators in both cases are closed subspaces.

•
$$Y \subseteq^{\perp} (Y^{\perp}), G \subseteq (^{\perp}G)^{\perp}.$$

Lemma 1. Let X be a normed space, and let Y be a <u>closed</u> subspace of X. Then $Y = ^{\perp} (Y^{\perp})$. If X is reflexive and G is a closed subspace of X^* , then $G = (^{\perp}G)^{\perp}$.

Proof.

It suffices to show $^{\perp}(Y^{\perp}) \subseteq Y$. Let $x \in ^{\perp}(Y^{\perp})$. Then $\Lambda x = 0 \ \forall \Lambda \in Y^{\perp}$. Such a Λ has to vanish on Y. If $x \notin Y$, then $\exists \Lambda \in Y^{\perp}$ s.t. $\Lambda x = \operatorname{dist}(x,Y) \neq 0$. So $x \in Y$. For the other equality, let $\Lambda \in (^{\perp}G)^{\perp}$. Then $\Lambda x = 0 \ \forall x \in ^{\perp}G$. If $\Lambda \notin G$, then $\exists x \in X \simeq X^{**}$ s.t.

$$\Lambda x = \operatorname{dist}(\Lambda, G) \neq 0 \text{ and } x \in^{\perp} G$$

Impossible. So $\Lambda \in G$.

Proposition 1. Let X, Y be normed spaces and $T \in \mathcal{B}(X, Y)$. Then

$$N(T^{t}) = \overline{R(T)}^{\perp}$$

$$N(T) = {}^{\perp} \overline{R(T^{t})}$$

$${}^{\perp}N(T^{t}) = \overline{R(T)}$$

$$N(T)^{\perp} = ({}^{\perp}\overline{R(T^{t})})^{\perp}$$

Proof.

The 3^{rd} and 4^{th} follows from the first 2 by Lemma. We will only show $N(T^t) = \overline{R(T)}^{\perp}$. Let $y^* \in N(T^t)$. By definition, $T^ty^* = 0 \Rightarrow y^*(Tx) = T^ty^*(x) = 0 \ \forall x \in X. \ y^*$ vanishes on R(T). By continuity, y^* vanishes on $\overline{R(T)}$. So $y^* \in \overline{R(T)}^{\perp}$. Reverse the reasoning gives \supseteq .

Corollary 1. Let X, Y be normed and $T \in \mathcal{B}(X, Y)$. Then R(T) is dense in $Y \Leftrightarrow T^t$ is injective.

Proof.

$$T^t \text{ injective} \Leftrightarrow N(T^t) = \{0\} \Leftrightarrow \overline{R(T)}^\perp = \{0\} \Leftrightarrow \overline{R(T)} = Y.$$

Examples of linear operators

Let $x = (x_n)$ be a sequence. If T is a linear operator that maps sequences to sequences, we can write $Tx = y = (y_n)$. Each y_n depends linearly on x. Formally, we can write

$$y_n = \sum_{j=1}^{\infty} c_{jn} x_j$$

Depending on which sequence space and the growth of c_{jn} , T defines a bounded linear operator or an unbounded one.

Example 1. Two examples.

(a) Let (a_n) be a sequence s.t. $\lim_{n\to\infty} a_n = 0, a_n \neq 0 \ \forall n$. Define $T: \ell^p \to \ell^p$ by

$$Tx = (a_1x_1, a_2x_2, ...).$$

$$||Tx||_p \le ||a||_{\infty} ||x||_p$$

so T is bounded. How about T^{-1} ?

Definition 4. We say that $T \in \mathcal{B}(X,Y)$ is **invertible** if it is bijective and $T^{-1} \in \mathcal{B}(Y,X)$.

The T above is not invertible. Why? If T^{-1} exists, then $T^{-1}e_j=a_j^{-1}e_j \ \forall j$. If $T^{-1}\in \mathcal{B}(\ell^p)$, then

$$||a_i^{-1}e_j||_p = |a_j|^{-1} \le ||T^{-1}||$$

 $\Rightarrow (|a_j|^{-1})$ is bounded, impossible.

Example 1. (b) Right shift operator $S_R: \ell^p \to \ell^p$

$$S_R(x_1, x_2, x_3, ...) = (0, x_1, x_2, x_3, ...)$$

Check $S_R \in \mathcal{B}(\ell^p)$, $||S_R|| = 1$. S_R is not onto, so S_R is not invertible.

Integral operators

Consider 1-dimensional case for simplicity. Fix $K \in C^0([a,b] \times [a,b])$ (can be relaxed) K is usually called the integral kernel. Define

$$Tf(x) = \int_{a}^{b} K(x, y) f(y) dy \ \forall f \in C^{0}([a, b])$$

T is linear and bounded on $C^0([a,b])$.

$$|Tf(x)| \le \int_a^b |K(x,y)| |f(y) dy \le ||f||_{\infty} \int_a^b |K(x,y)| dy$$
$$\le (\sup_x \int_a^b |K(x,y)| dy) ||f||_{\infty}$$

$$\Rightarrow \|Tf\|_{\infty} \le M\|f\|_{\infty} \Rightarrow \|T\| \le M$$

(with more effort, can show ||T|| = M.) Can define integral operators on other spaces, e.g. L^p -spaces. For $1 \le p < \infty$,

$$||Tf||_{L^p}^p = \int_a^b \left| \int_a^b K(x, y) f(y) dy \right|^p dx$$

$$\leq (b - a) ||K||_{\infty}^p \left(\int_a^b |f(y)| dy \right)^p$$

by Holder's inequality.

$$\leq (b-a)\|K\|_{\infty}^{p} \left(\|f\|_{L^{p}}(b-a)^{\frac{1}{q}}\right)^{p}$$

$$= (b-a)^{1+\frac{p}{q}}\|K\|_{\infty}^{p}\|f\|_{L^{p}}^{p} = (b-a)^{p}\|K\|_{\infty}^{p}\|f\|_{L^{p}}^{p}$$

 $\Rightarrow T \in \mathcal{B}(L^p([a,b])).$

Differential operator

 $X = C^1([0,1])$ with sup norm X is a subspace of $C^0([0,1])$, but X is not a Banach space. $\frac{d}{dx}: X \to C^0([0,1])$ is linear but unbounded. (e.g. $f_k(x) = \sin(kx)$)

Uniform boundedness principle/Banach-Steinhaus theorem

Theorem 1. Let \mathcal{F} be a family of bounded linear operators from a Banach space X to a normed space Y. Suppose that \mathcal{F} is bounded pointwise:

$$\forall x \in X, \exists \text{ a constant } C_x \text{ s.t. } ||Tx|| \leq C_x \ \forall T \in \mathcal{F}$$

Then $\exists M > 0 \text{ s.t. } ||T|| \leq M \ \forall T \in \mathcal{F}.$

Lemma 2. Let $T: X \to Y$ be linear, where X, Y are normed. Fix $x_0 \in X$. Suppose that $\exists c, \rho > 0$ s.t. $\forall x \in B(x_0, \rho), \|Tx\| \le c$. Then $\|T\| \le \frac{2c}{\rho}$

Proof.

By linearity, $B(0, \rho) = B(x_0, \rho) - x_0$. If $v \in B(0, \rho)$, then $v + x_0 \in B(x_0, \rho)$.

$$||Tv|| \le ||T(v+x_0)|| + ||Tx_0|| \le 2c$$

$$\Rightarrow ||T|| \le \frac{2c}{\rho}$$

Proof of UBP.

Recall: M complete metric space. If M is a countable union of closed sets, then at least one of them has nonempty interior. Let $E_k = \{x \in X : \|Tx\| \le k \ \forall T \in \mathcal{F}\}$. Then $X = \bigcup_{k=1}^{\infty} E_k$. Each E_k is closed. X is complete. At least one of the E_k 's has nonempty interior. By the Lemma, $\exists M > 0$ s.t. $\|T\| \le M \ \forall T \in \mathcal{F}$. \square

The uniform boundedness principle may not hold if the completeness assumption of X is removed.

Alternative formulation:

Definition 5. A vector x_0 is called a **resonance point** for a family \mathcal{F} of bounded linear operators if $\sup_{T \in \mathcal{F}} ||Tx_0|| = \infty$.

Theorem 2. Let \mathcal{F} be a family of bounded linear operators from X to Y, where X is Banach and Y is normed. Suppose that $\sup_{T \in \mathcal{F}} \|T\| = \infty$. Then the resonance points for \mathcal{F} are dense in X.

Proof.

Suppose not. \exists a ball $\overline{B(x_0,\rho)}$ on which \mathcal{F} is bounded pointwise. $\forall x \in \overline{B(x_0,\rho)}, ||Tx|| \leq Cx \ \forall T \in \mathcal{F}$. Pick $0 \neq x \in X$. Then

$$z := \frac{\rho x}{\|x\|} + x_0 \in \overline{B(x_0, \rho)}$$

$$\Rightarrow ||Tz|| = \left| \left| T \left(\frac{\rho x}{||x||} + x_0 \right) \right| \right|$$
$$\Rightarrow ||Tx|| \le \frac{Cz + ||Tx_0||}{\rho} ||x|| \ \forall T \in \mathcal{F}$$

 $\Rightarrow \mathcal{F}$ is bounded pointwise on X. By uniform boundedness principle, $\exists M > 0$ s.t. $||T|| \leq M \ \forall T \in \mathcal{F}$. Impossible!

Interlude: Fourier series

Let $f \in L^1_{loc}(\mathbb{R})$ of period 2π . We would like to express f as a series of sines and cosines.

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

In the complex form,

$$f(x) \sim \sum_{n=-\infty}^{\infty} c_n e^{inx}$$

Question: What should c_n be if we want

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}?$$

Forget about the convergence issue at this point. Fact:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ikx} dx = \begin{cases} 1 \text{ if } k = 0\\ 0 \text{ if } k \neq 0 \end{cases}$$

If $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$, then

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx" = \sum_{n=-\infty}^{\infty} c_n \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{inx} \cdot e^{-ikx} dx = c_k.$$

We (expectedly) call the left hand side $\hat{f}(k)$, the k-th Fourier coefficient of f.

$$f(x) \sim \sum_{n=-\infty}^{\infty} \hat{f}(x)e^{-inx}$$

When does the Fourier series converge? If yes, is it equal to f?