

Circuit Theory and Electronics Fundamentals

Lecture 3: RC and RL circuits

- Resistor images
- Capacitors and inductors
- Capacitors and inductors in series and in parallel
- RC circuits
- RL circuits

Resistor Images

Discrete Resistors

Discrete SMD Resistors

Voltage and Current sources may be complex circuits! Not shown as yet.

SMD resistors mounted on Printed Circuit Board (PCB)

Integrated resistor (nanometric size: 10⁻⁹ meter)

Component: Capacitor

- Linear Capacitor: Q = CV
- C is capacitance expressed in Farad: F = C/V

Analysis methods are the same but generate <u>linear differential equations</u> instead of <u>algebraic</u> <u>equations</u>

Solutions are time functions (lower case notation)

Component: inductor

Inductor core (permeability µ) Storing magnetic field: energy!

Current keeps magnetic field on, and magnetic field keeps current going

L given Henry: $H = Vs^2/C$

$$\Phi = Li$$

$$\frac{d \Phi}{dt} = L \frac{di}{dt}$$

$$v(t) = L \frac{di(t)}{dt}$$

Capacitor and inductors images

Discrete capacitors

Discrete inductors

Integrated capacitor

Integrated inductor

Parallel of Capacitors

$$i = \sum_{i=1}^{n} i_i$$
 KCL
$$i = \sum_{i=1}^{n} C_i \frac{dv}{dt}$$
 All Cs h

All Cs have the same voltage v

$$i = \left(\sum_{i=1}^{n} C_{i}\right) \frac{dv}{dt}$$

$$C = \sum_{i=1}^{n} C_{i}$$

$$C = \sum_{i=1}^{n} C_{i}$$

Similar to **series** of resistors

Series of Capacitors

$$v = \sum_{i=1}^{n} v_{i} \qquad \text{KVL}$$

$$\frac{dv}{dt} = \sum_{i=1}^{n} \frac{dv_{i}}{dt}$$

$$\frac{dv}{dt} = \sum_{i=1}^{n} \frac{i}{C_{i}} \qquad \text{All Cs have the same current } i$$

KVL

Similar to *parallel* of resistors

Parallel of Inductors

$$L = \frac{1}{\sum_{i=1}^{n} \frac{1}{L_i}}$$

Similar to *parallel* of resistors

Series of Inductors

$$v = \sum_{i=1}^n v_i$$
 KVL $v = \sum_{i=1}^n L_i \frac{di}{dt}$ All Ls have the same current i $v = (\sum_{i=1}^n L_i) \frac{di}{dt}$

$$\sum_{i=1}^{n} T$$

$$L = \sum_{i=1}^{n} L_i$$

Similar to **series** of resistors

RC series: circuit analysis

$$v_s = Ri + v_1$$
 KVL

$$i = C \frac{dv_1}{dt}$$

$$RC\frac{dv_1}{dt} + v_1 = v_s$$
 1st order li differential

1st order linear equation!

Solution:

$$v_1(t) = v_{1n}(t) + v_{1f}(t)$$
 Forced solution: depends on voltage source $v_s(t)$ and R, C

Natural solution: depends on initial charge (voltage) and R, C

RC series: natural solution

$$RC\frac{dv_1}{dt} + v_1 = 0$$

$$\left(RC\frac{d}{dt}+1\right)v_1=0$$

$$RC\frac{d}{dt} + 1 = 0 \lor v_1 = 0$$

$$RCs+1=0$$

$$s=-\frac{1}{RC}$$

$$v_{1n}(t) = Ae^{st} = Ae^{-\frac{t}{RC}}$$

Remove voltage source

Note *d/dt* is a linear operator

Two solutions, $v_1 = 0$ is a trivial (uninteresting) solution

Characteristic equation: replace *d/dt* with *s*, aka complex frequency. Solve for *s*. RC is called "time constant"

Natural solution, A is a constant to be determined

RC series: forced solution with constant excitation

Voltage source drives constant voltage V

Eventually C charges up, v_1 reaches $v_1 = V$, and current stops: i=0

Constant excitation => constant forced solution!

Capacitor behaves like an *open-circuit* after charged!

 $v_{1f}(t)=V$

RC series: final solution

$$v_1(t) = v_{1n}(t) + v_{1f}(t)$$
$$v_1(t) = Ae^{-\frac{t}{RC}} + V$$

$$v_1(0)=0$$

 $v_1(0)=0 \Rightarrow A=-V$

$$v_{1}(t) = V (1 - e^{-\frac{t}{RC}})$$

 $i(t) = C \frac{dv_{1}}{dt} = \frac{V}{R} e^{-\frac{t}{RC}}$

Superimpose natural and forced solutions

Constant *A* can now be determined by a boundary condition: charge (voltage) of C at some instant. A common boundary condition is the initial capacitor voltage at t=0, here assumed 0. Constant *A* is thus determined

Final solutions voltage and current are now computed

RC series: final solution plots

t=0: no voltage across C (electric field build up starts), v_1 is null, all voltage across R, and i is max.

t=∞: all voltage across C (open-circuit behaviour), v_1 is max, no voltage across R and i is null.

RL parallel: circuit analysis

$$i_s = i_R + i_L$$
 KCL

$$v_1 = L \frac{di_L}{dt}$$

$$i_R = \frac{V_1}{R}$$

$$\frac{L}{R}\frac{di_L}{dt} + i_L = i_s$$

Solution for constant current source

$$i_s(t) = I$$

$$i_L(t) = I(1 - e^{-\frac{R}{L}t})$$

$$i_R = i_s - i_L$$

$$i_R(t) = Ie^{-\frac{R}{L}t}$$

$$i_{R}(t) = Ie^{-\frac{R}{L}t}$$

$$v_{1}(t) = RIe^{-\frac{R}{L}t}$$

RL parallel: final solution plots

t=0: no current through L (magnetic field build up starts) All current through R v₁ is max

t=∞: all current through L (short-circuit behavior) No current through R v₁ is null

RC parallel: circuit analysis

Solution for constant i

$$i_{s}(t) = I$$

$$v_{1}(t) = RI(1 - e^{-\frac{t}{RC}})$$

$$i_{C}(t) = Ie^{-\frac{t}{RC}}$$

$$i_{R} = i_{s} - i_{C}$$

$$i_{R}(t) = I(1 - e^{-\frac{t}{RC}})$$

RC parallel circuit analysis

t=0: no current through R (electric field build starts) All current through C v_1 is nul

t= ∞ : all current through R No current through C (open-circuit behavior) v_1 is max (v_1 =RI)

Conclusion

- Images of components R, L and C shown
- Capacitor and inductor laws
- Series and parallel of capacitors and inductors
- Analysis of circuits containing a single capacitor or single inductor, using 1st order linear differential equations
 - RC series
 - RC parallel
 - RL parallel