AMENDMENTS TO THE CLAIMS

- 1. (Currently Amended) A dye preparation consisting essentially of, each percentage being based on the weight of the preparation,
- a) from 0.1% to 30% by weight of one or more anthraquinone, quinophthalone or azo dyes which are free of ionic groups as a component (A),
- b) from 0.1% to 20% by weight of a dispersant based on a naphthalenesulfonic acid-formaldehyde condensation product having an average molecular weight of ranging from 11 000 g/mol to 20 000 g/mol 18 000 g/mol, as a component (B),
- c) from 0.1% to 90% by weight of one or more mono- or polyhydric alcohols as a component (C),
- d) from 0% to 5% by weight of customary assistants selected from the group consisting of preservatives, antioxidants, foam preventatives, surfactants or viscosity regulators as a component (D), and
 - e) if appropriate water to reach a total of 100% by weight.
 - 2. 4. (Canceled)
- 5. (Previously Presented) A process for printing a textile substrate, said process comprising:

ink jet printing said textile substrate with said dye preparation as claimed in claim 1.

6. (Previously Presented) A printed textile substrate obtained by the process of claim5.

7. (Previously Presented) A process for printing a textile substrate, said process comprising:

sublimation transfer printing said textile substrate with a dye preparation as claimed in claim 1.

- 8. (Previously Presented) A printed textile substrate obtained by the process of claim 7.
- 9. (Previously Presented) The dye preparation of claim 1, wherein component (A) is an anthraquinone dye which is free of ionic groups and said anthraquinone dye has the following formula I

$$\begin{array}{c|c}
O & NH - L^1 \\
L^2 \\
L^3 \\
O & L^4
\end{array}$$
(I)

wherein

L¹ is hydrogen, C₁–C₁₀–alkyl or unsubstituted or C₁–C₄–alkyl-, C₁–C₄–alkoxy-, halogen- or nitro-substituted phenyl,

 L^2 and L^3 are independently hydrogen, unsubstituted or phenyl- or C_1 – C_4 –alkylphenyl-substituted C_1 – C_{10} –alkoxy, unsubstituted or phenyl-substituted C_1 – C_{10} –alkylthio, halogen, hydroxyphenyl, C_1 – C_4 –alkoxyphenyl, C_1 – C_6 –alkanoyl, C_1 – C_6 –alkoxycarbonyl or a radical of the formula

$$G^{l}$$
 G^{2} ,

3

where G¹ is oxygen or sulfur and G² is hydrogen or C₁-C₈-monoalkylsulfamoyl whose alkyl chain may be interrupted by 1 or 2 oxygen atoms in ether function, and

 L^4 is unsubstituted or phenyl- or C_1 – C_4 –alkylphenyl-substituted amino, hydroxyl or unsubstituted or phenyl-substituted C_1 – C_{10} –alkylthio.

10. (Previously Presented) The dye preparation of claim 1, wherein component (A) is a quinophthalone dye which is free of ionic groups and said quinophthalone dye has the following formula II:

where X is hydrogen, chlorine or bromine.

11. (Previously Presented) The dye preparation of claim 10, wherein X is hydrogen.

12. (Previously Presented) The dye preparation of claim 1, wherein component (A) is an azo dye and said azo dye is a monoazo dye having a diazo component which is derived from an aniline or from a heterocyclic amine selected from the group consisting of pyrrole, furan, thiophene, pyrazole, imidazole, oxazole, isoxazole, thiazole, isothiazole, triazole, oxadiazole, thiadiazole, benzofuran, benzothiophene, benzimidazole, benzoxazole, benzothiazole, pyridothiophene, pyrimidothiophene, thienothiophene and thienothiazole.

4

13. (Previously Presented) The dye preparation of claim 1, wherein component (A) is an azo dye and said azo dye has the following formula III:

$$L^{16} \longrightarrow N \longrightarrow N \longrightarrow N \longrightarrow R^{1}$$

$$L^{17} \longrightarrow R^{4} \longrightarrow N \longrightarrow R^{2}$$

$$(III)$$

wherein

L¹⁵ and L¹⁷ are each cyano,

$$L^{16}$$
 is C_1 – C_6 –alkyl,

 R^1 and R^2 are each C_1 – C_6 –alkyl,

 R^3 is hydrogen, C_1 – C_6 –alkyl or C_1 – C_6 –alkoxy, and

R⁴ is hydrogen, C₁–C₆–alkyl or Cc₁–C₆–alkanoylamino.

14. – 15. (Canceled)

- 16. (Previously Presented) The dye preparation of claim 1, wherein condensation product as component (B) have a sulfonic acid group content of not more than 40% by weight.
- 17. (Previously Presented) The dye preparation of claim 1, wherein component (C) is a polyol having from 2 to 8 carbon atoms and up to 4 alcoholic hydroxyl groups.

- 18. (Previously Presented) The dye preparation of claim 1, wherein component (C) is selected from the group consisting of 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,2,5-pentanetriol or 1,2,6-hexanetriol, 1,2-hexanediol and 1,2-pentanediol.
- 19. (Previously Presented) The dye preparation of claim 1, which further contains, based on the weight of the preparation, from 0.1% to 10% by weight of a polyalkylene glycol.
- 20. (Previously Presented) The dye preparation of claim 1, wherein said dye preparation has a surface tension of the dye preparations ranging from 20 to 70 Nm/m.
- 21. (Previously Presented) The dye preparation of claim 1, wherein said dye preparation has a viscosity ranging from 2 to 300 mPa·s.
- 22. (Previously Presented) The dye preparation of claim 1, wherein said dye preparation has a pH ranging from 5 to 11.