

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

September 18, 2014

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 1: Probability models of Language

Setup

Assume a (finite) vocabulary of words:

$$\mathcal{V} = \{\textit{killer}, \textit{crazy}, \textit{clown}\}$$

Setup

Assume a (finite) vocabulary of words:

```
\mathcal{V} = \{killer, crazy, clown\}
```

• Use V to construct an infinite set of *sentences*

Setup

Assume a (finite) vocabulary of words:

```
\mathcal{V} = \{killer, crazy, clown\}
```

• Use $\mathcal V$ to construct an infinite set of *sentences*

▶ A *sentence* is **defined** as each $x \in V^+$

Data

Given a training data set of example sentences $s \in \mathcal{V}^+$

Data

Given a training data set of example sentences $s \in \mathcal{V}^+$

Language Modeling problem

Estimate a probability model:

$$\sum_{s \in \mathcal{V}^+} p(s) = 1.0$$

- ightharpoonup p(clown) = 1e-5
- ▶ p(killer) = 1e-6
- p(killer clown) = 1e-12
- p(crazy killer clown) = 1e-21
- p(crazy killer clown killer) = 1e-110
- p(crazy clown killer killer) = 1e-127

Why do we want to do this?

Scoring Hypotheses in Speech Recognition

From acoustic signal to candidate transcriptions

Hypothesis	Score
the station signs are in deep in english	-14732
the stations signs are in deep in english	-14735
the station signs are in deep into english	-14739
the station 's signs are in deep in english	-14740
the station signs are in deep in the english	-14741
the station signs are indeed in english	-14757
the station 's signs are indeed in english	-14760
the station signs are indians in english	-14790
the station signs are indian in english	-14799
the stations signs are indians in english	-14807
the stations signs are indians and english	-14815

Scoring Hypotheses in Machine Translation

From source language to target language candidates

Hypothesis	Score
we must also discuss a vision .	-29.63
we must also discuss on a vision .	-31.58
it is also discuss a vision .	-31.96
we must discuss on greater vision .	-36.09
1	:

Scoring Hypotheses in Decryption

Character substitutions on ciphertext to plaintext candidates

Hypothesis	Score
Heopaj, zk ukq swjp pk gjks w oaynap?	-93
Urbcnw, mx hxd fjwc cx twxf j bnlanc?	-92
Wtdepy, oz jzf hlye ez vyzh I dpncpe?	-91
Mjtufo, ep zpv xbou up lopx b tfdsfu?	-89
Nkuvgp, fq aqw ycpv vq mpqy c ugetgv?	-87
Gdnozi, yj tjp rvio oj fijr v nzxmzo?	-86
Czjkve, uf pfl nrek kf befn r jvtivk?	-85
Yvfgra, qb lbh jnag gb xabj n frperg?	-84
Zwghsb, rc mci kobh hc ybck o gsqfsh?	-83
Byijud, te oek mqdj je adem q iushuj?	-77
Jgqrcl, bm wms uylr rm ilmu y qcapcr?	-76
Listen, do you want to know a secret?	-25

Scoring Hypotheses in Spelling Correction

Substitute spelling variants to generate hypotheses

Hypothesis	Score
stellar and versatile acress whose combination	-18920
of sass and glamour has defined her	
stellar and versatile acres whose combination	-10209
of sass and glamour has defined her	
stellar and versatile actress whose combination	-9801
of sass and glamour has defined her	

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 2: *n*-grams for Language Modeling

Language models

n-gram Models

Smoothing *n*-gram Models

Smoothing Counts

Add-one Smoothing

Additive Smoothing

Good-Turing Smoothing

Interpolation: Jelinek-Mercer Smoothing

Backoff Smoothing

Katz Backoff

Backoff Smoothing with Discounting

Cross-Entropy and Perplexity

Bigram Models

Google *n*-gram viewer

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 3: Smoothing Probability Models

Language models

n-gram Models

Smoothing *n*-gram Models

Smoothing Counts
Add-one Smoothing
Additive Smoothing
Good-Turing Smoothing
Smoothing by Interpolation
Interpolation: Jelinek-Mercer Smoothing
Backoff Smoothing
Katz Backoff
Backoff Smoothing with Discounting

Cross-Entropy and Perplexity

Bigram Models

In practice:

```
P(\mathsf{Mork} \; \mathsf{read} \; \mathsf{a} \; \mathsf{book}) = \\ P(\mathsf{Mork} \; | \; < \mathsf{start} >) \times P(\mathsf{read} \; | \; \mathsf{Mork}) \times \\ P(\mathsf{a} \; | \; \mathsf{read}) \times P(\mathsf{book} \; | \; \mathsf{a}) \times \\ P(< \mathsf{stop} > \; | \; \mathsf{book})
```

Bigram Models

▶ In practice:

$$P(\mathsf{Mork\ read\ a\ book}) = P(\mathsf{Mork\ }| < \mathsf{start\ }>) \times P(\mathsf{read\ }| \ \mathsf{Mork}) \times P(\mathsf{a\ }| \ \mathsf{read}) \times P(\mathsf{book\ }| \ \mathsf{a}) \times P(< \mathsf{stop\ }> \ | \ \mathsf{book})$$

P($w_i \mid w_{i-1}$) = $\frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$ On unseen data, $c(w_{i-1}, w_i)$ or worse $c(w_{i-1})$ could be zero

$$\sum_{w_i} \frac{c(w_{i-1}, w_i)}{c(w_{i-1})} = ?$$

Smoothing

► **Smoothing** deals with events that have been observed zero times

Smoothing

- Smoothing deals with events that have been observed zero times
- Smoothing algorithms also tend to improve the accuracy of the model

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Smoothing

- Smoothing deals with events that have been observed zero times
- Smoothing algorithms also tend to improve the accuracy of the model

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

▶ Not just unobserved events: what about events observed once?

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Add-one Smoothing:

$$P(w_i \mid w_{i-1}) = \frac{1 + c(w_{i-1}, w_i)}{V + c(w_{i-1})}$$

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Add-one Smoothing:

$$P(w_i \mid w_{i-1}) = \frac{1 + c(w_{i-1}, w_i)}{V + c(w_{i-1})}$$

► Let *V* be the number of words in our vocabulary Assign count of 1 to unseen bigrams

$$\begin{split} P(\mathsf{Mindy\ read\ a\ book}) = \\ P(\mathsf{Mindy\ }| &< \mathsf{start} >) \times P(\mathsf{read\ }| \ \mathsf{Mindy}) \times \\ P(\mathsf{a\ }| \ \mathsf{read}) \times P(\mathsf{book\ }| \ \mathsf{a}) \times \\ P(< \mathsf{stop} > \ | \ \mathsf{book}) \end{split}$$

Without smoothing:

$$P(\text{read} \mid \text{Mindy}) = \frac{c(\text{Mindy, read})}{c(\text{Mindy})} = 0$$

$$P(\mathsf{Mindy\ read\ a\ book}) = \\ P(\mathsf{Mindy\ }| < \mathsf{start} >) \times P(\mathsf{read\ }| \ \mathsf{Mindy}) \times \\ P(\mathsf{a\ }| \ \mathsf{read}) \times P(\mathsf{book\ }| \ \mathsf{a}) \times \\ P(< \mathsf{stop} > \ | \ \mathsf{book})$$

Without smoothing:

$$P(\text{read} \mid \text{Mindy}) = \frac{c(\text{Mindy, read})}{c(\text{Mindy})} = 0$$

With add-one smoothing (assuming c(Mindy) = 1 but c(Mindy, read) = 0):

$$P(\text{read} \mid \text{Mindy}) = \frac{1}{V+1}$$

Additive Smoothing: (Lidstone 1920, Jeffreys 1948)

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

▶ Add-one smoothing works horribly in practice. Seems like 1 is too large a count for unobserved events.

Additive Smoothing: (Lidstone 1920, Jeffreys 1948)

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- ▶ Add-one smoothing works horribly in practice. Seems like 1 is too large a count for unobserved events.
- Additive Smoothing:

$$P(w_i \mid w_{i-1}) = \frac{\delta + c(w_{i-1}, w_i)}{(\delta \times V) + c(w_{i-1})}$$

Additive Smoothing: (Lidstone 1920, Jeffreys 1948)

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- ▶ Add-one smoothing works horribly in practice. Seems like 1 is too large a count for unobserved events.
- Additive Smoothing:

$$P(w_i \mid w_{i-1}) = \frac{\delta + c(w_{i-1}, w_i)}{(\delta \times V) + c(w_{i-1})}$$

 \blacktriangleright 0 < $\delta \leq 1$ Still works horribly in practice, but better than add-one smoothing.

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

▶ Imagine you're sitting at a sushi bar with a conveyor belt.

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- Imagine you're sitting at a sushi bar with a conveyor belt.
- You see going past you 10 plates of tuna, 3 plates of unagi, 2 plates of salmon, 1 plate of shrimp, 1 plate of octopus, and 1 plate of yellowtail

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- Imagine you're sitting at a sushi bar with a conveyor belt.
- You see going past you 10 plates of tuna, 3 plates of unagi, 2 plates of salmon, 1 plate of shrimp, 1 plate of octopus, and 1 plate of yellowtail
- ► Chance you will observe a new kind of seafood: $\frac{3}{18}$

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- Imagine you're sitting at a sushi bar with a conveyor belt.
- You see going past you 10 plates of tuna, 3 plates of unagi, 2 plates of salmon, 1 plate of shrimp, 1 plate of octopus, and 1 plate of yellowtail
- ► Chance you will observe a new kind of seafood: $\frac{3}{18}$
- ► How likely are you to see another plate of salmon: should be $<\frac{2}{18}$

► How many types of seafood (words) were seen once? Use this to predict probabilities for unseen events

Let n_1 be the number of events that occurred once: $p_0 = \frac{n_1}{N}$

- ► How many types of seafood (words) were seen once? Use this to predict probabilities for unseen events

 Let n_1 be the number of events that occurred once: $p_0 = \frac{n_1}{N}$
- ► The Good-Turing estimate states that for any *n*-gram that occurs *r* times, we should pretend that it occurs *r** times

$$r^* = (r+1)\frac{n_{r+1}}{n_r}$$

- ► How many types of seafood (words) were seen once? Use this to predict probabilities for unseen events

 Let n_1 be the number of events that occurred once: $p_0 = \frac{n_1}{N}$
- ► The Good-Turing estimate states that for any *n*-gram that occurs *r* times, we should pretend that it occurs *r** times

$$r^* = (r+1)\frac{n_{r+1}}{n_r}$$

 \triangleright n_r : number of different objects seen r times

▶ 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail

- ▶ 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail
- ► How likely is new data? Let n₁ be the number of items occurring once, which is 3 in this case. N is the total, which is 18.

$$p_0 = \frac{n_1}{N} = \frac{3}{18} = 0.166$$

▶ 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail

- ▶ 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail
- ▶ How likely is *octopus*? Since c(octopus) = 1 The GT estimate is 1^* .

$$r^* = (r+1)\frac{n_{r+1}}{n_r}$$
$$p_{GT} = \frac{r^*}{N}$$

- ▶ 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail
- ► How likely is octopus? Since c(octopus) = 1 The GT estimate is 1*.

$$r^* = (r+1)\frac{n_{r+1}}{n_r}$$
$$p_{GT} = \frac{r^*}{N}$$

▶ To compute 1^* , we need $n_1 = 3$ and $n_2 = 1$

$$1^* = 2 \times \frac{1}{3} = \frac{2}{3}$$

$$p_1 = \frac{1^*}{18} = 0.037$$

- ▶ 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail
- ► How likely is octopus? Since c(octopus) = 1 The GT estimate is 1*.

$$r^* = (r+1)\frac{n_{r+1}}{n_r}$$
$$p_{GT} = \frac{r^*}{N}$$

▶ To compute 1^* , we need $n_1 = 3$ and $n_2 = 1$

$$1^* = 2 \times \frac{1}{3} = \frac{2}{3}$$

$$p_1 = \frac{1^*}{18} = 0.037$$

▶ What happens when $n_{r+1} = 0$? (smoothing before smoothing)

Simple Good-Turing: linear interpolation for missing n_{r+1}

$$f(r) = a + b * r$$

$$a = 2.3$$

$$b = -0.17$$

r	$n_r = f(r)$
1	2.14
2	1.97
3	1.80
4	1.63
5	1.46
6	1.29
7	1.12
8	0.95
9	0.78
10	0.61
11	0.44

freq	num with freq r	NS	Add1	SGT
r	n_r	p_r	p_r	p_r
0	0	0	0.0294	0.12
1	3	0.04	0.0588	0.03079
2	2	0.08	0.0882	0.06719
3	1	0.12	0.1176	0.1045
5	1	0.2	0.1764	0.1797
10	1	0.4	0.3235	0.3691

$$N = (1*3) + (2*2) + 3 + 5 + 10 = 25$$

freq	num with freq r	NS	Add1	SGT
r	n_r	p_r	p _r	p_r
0	0	0	0.0294	0.12
1	3	0.04	0.0588	0.03079
2	2	0.08	0.0882	0.06719
3	1	0.12	0.1176	0.1045
5	1	0.2	0.1764	0.1797
10	1	0.4	0.3235	0.3691

$$N = (1*3) + (2*2) + 3 + 5 + 10 = 25$$

$$V = 1 + 3 + 2 + 1 + 1 + 1 = 9$$

freq	num with freq r	NS	Add1	SGT
r	n_r	p_r	p_r	p_r
0	0	0	0.0294	0.12
1	3	0.04	0.0588	0.03079
2	2	0.08	0.0882	0.06719
3	1	0.12	0.1176	0.1045
5	1	0.2	0.1764	0.1797
10	1	0.4	0.3235	0.3691

$$N = (1*3) + (2*2) + 3 + 5 + 10 = 25$$

$$V = 1 + 3 + 2 + 1 + 1 + 1 = 9$$

► Important: we added a new word type for unseen words. Let's call it UNK, the unknown word.

freq	num with freq r	NS	Add1	SGT
r	n_r	p_r	p _r	p_r
0	0	0	0.0294	0.12
1	3	0.04	0.0588	0.03079
2	2	0.08	0.0882	0.06719
3	1	0.12	0.1176	0.1045
5	1	0.2	0.1764	0.1797
10	1	0.4	0.3235	0.3691

$$N = (1*3) + (2*2) + 3 + 5 + 10 = 25$$

$$V = 1 + 3 + 2 + 1 + 1 + 1 = 9$$

- ► Important: we added a new word type for unseen words. Let's call it UNK, the unknown word.
- ► Check that: $1.0 == \sum_{r} n_r \times p_r$ 0.12 + (3*0.03079) + (2*0.06719) + 0.1045 + 0.1797 + 0.3691 = 1.0

freq	num with freq r	NS	Add1	SGT
r	n_r	p_r	p_r	p_r
0	0	0	0.0294	0.12
1	3	0.04	0.0588	0.03079
2	2	0.08	0.0882	0.06719
3	1	0.12	0.1176	0.1045
5	1	0.2	0.1764	0.1797
10	1	0.4	0.3235	0.3691

▶ NS = No smoothing: $p_r = \frac{r}{N}$

freq	num with freq r	NS	Add1	SGT
r	n _r	p_r	p_r	p_r
0	0	0	0.0294	0.12
1	3	0.04	0.0588	0.03079
2	2	0.08	0.0882	0.06719
3	1	0.12	0.1176	0.1045
5	1	0.2	0.1764	0.1797
10	1	0.4	0.3235	0.3691

- ▶ NS = No smoothing: $p_r = \frac{r}{N}$
- ▶ Add1 = Add-one smoothing: $p_r = \frac{1+r}{V+N}$

freq	num with freq r	NS	Add1	SGT
r	n_r	p_r	p_r	p_r
0	0	0	0.0294	0.12
1	3	0.04	0.0588	0.03079
2	2	0.08	0.0882	0.06719
3	1	0.12	0.1176	0.1045
5	1	0.2	0.1764	0.1797
10	1	0.4	0.3235	0.3691

- ▶ NS = No smoothing: $p_r = \frac{r}{N}$
- ▶ Add1 = Add-one smoothing: $p_r = \frac{1+r}{V+N}$
- ▶ SGT = Simple Good-Turing: $p_0 = \frac{n_1}{N}$, $p_r = \frac{(r+1)\frac{n_{r+1}}{n_r}}{N}$ with linear interpolation for missing values where $n_{r+1} = 0$ (Gale and Sampson, 1995) http://www.grsampson.net/AGtf1.html

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

▶ In add-one or Good-Turing:
P(the | string) = P(Fonz | string)

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- ▶ In add-one or Good-Turing:
 P(the | string) = P(Fonz | string)
- ▶ If $c(w_{i-1}, w_i) = 0$, then use $P(w_i)$ (back off)

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- ▶ In add-one or Good-Turing: P(the | string) = P(Fonz | string)
- ▶ If $c(w_{i-1}, w_i) = 0$, then use $P(w_i)$ (back off)
- Works for trigrams too: back off to bigrams and then unigrams

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- ▶ In add-one or Good-Turing: P(the | string) = P(Fonz | string)
- ▶ If $c(w_{i-1}, w_i) = 0$, then use $P(w_i)$ (back off)
- Works for trigrams too: back off to bigrams and then unigrams
- Problem: probabilities get mixed up (unseen bigrams, for example will get higher probabilities than seen bigrams)

$$P_{ML}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

▶ $P_{JM}(w_i \mid w_{i-1}) = \lambda P_{ML}(w_i \mid w_{i-1}) + (1 - \lambda)P_{ML}(w_i)$ where, $0 \le \lambda \le 1$

$$P_{ML}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- ► $P_{JM}(w_i \mid w_{i-1}) = \lambda P_{ML}(w_i \mid w_{i-1}) + (1 \lambda)P_{ML}(w_i)$ where, $0 \le \lambda \le 1$
- ▶ Notice that P_{JM} (the | string) > P_{JM} (Fonz | string) as we wanted

$$P_{ML}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- ► $P_{JM}(w_i \mid w_{i-1}) = \lambda P_{ML}(w_i \mid w_{i-1}) + (1 \lambda)P_{ML}(w_i)$ where, $0 \le \lambda \le 1$
- Notice that P_{JM} (the | string) > P_{JM} (Fonz | string) as we wanted
- ► Jelinek-Mercer (1980) describe an elegant form of this **interpolation**:

$$P_{JM}(n \text{gram}) = \lambda P_{ML}(n \text{gram}) + (1 - \lambda)P_{JM}(n - 1 \text{gram})$$

$$P_{ML}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- ► $P_{JM}(w_i \mid w_{i-1}) = \lambda P_{ML}(w_i \mid w_{i-1}) + (1 \lambda)P_{ML}(w_i)$ where, $0 \le \lambda \le 1$
- Notice that P_{JM} (the | string) > P_{JM} (Fonz | string) as we wanted
- ▶ Jelinek-Mercer (1980) describe an elegant form of this **interpolation**:

$$P_{JM}(\textit{n} \textit{gram}) = \lambda P_{ML}(\textit{n} \textit{gram}) + (1 - \lambda)P_{JM}(\textit{n} - 1\textit{gram})$$

▶ What about $P_{JM}(w_i)$? For missing unigrams: $P_{JM}(w_i) = \lambda P_{ML}(w_i) + (1 - \lambda) \frac{\delta}{V}$

Interpolation: Finding λ

$$P_{JM}(n \text{gram}) = \lambda P_{ML}(n \text{gram}) + (1 - \lambda)P_{JM}(n - 1 \text{gram})$$

▶ Deleted Interpolation (Jelinek, Mercer) compute λ values to minimize cross-entropy on **held-out** data which is deleted from the initial set of training data

Interpolation: Finding λ

$$P_{JM}(\textit{n} \textit{gram}) = \lambda P_{ML}(\textit{n} \textit{gram}) + (1 - \lambda)P_{JM}(\textit{n} - 1\textit{gram})$$

- Deleted Interpolation (Jelinek, Mercer)
 compute λ values to minimize cross-entropy on held-out data which is deleted from the initial set of training data
- ▶ Improved JM smoothing, a separate λ for each w_{i-1} :

$$P_{JM}(w_i \mid w_{i-1}) = \lambda(w_{i-1})P_{ML}(w_i \mid w_{i-1}) + (1 - \lambda(w_{i-1}))P_{ML}(w_i)$$
 where $\sum_i \lambda(w_i) = 1$ because $\sum_{w_i} P(w_i \mid w_{i-1}) = 1$

Use smoothing over counts for backoff smoothing.

- Use smoothing over counts for backoff smoothing.
- ▶ Also called discounting since we remove some probability from observed events.

- Use smoothing over counts for backoff smoothing.
- Also called discounting since we remove some probability from observed events.
- Katz Backoff (include Good-Turing with Backoff Smoothing)

$$P_{katz}(y \mid x) = \begin{cases} \frac{c^*(xy)}{c(x)} & \text{if } c(xy) > 0\\ \alpha(x)P_{katz}(y) & \text{otherwise} \end{cases}$$

- Use smoothing over counts for backoff smoothing.
- Also called discounting since we remove some probability from observed events.
- ► Katz Backoff (include Good-Turing with Backoff Smoothing)

$$P_{katz}(y \mid x) = \begin{cases} \frac{c^*(xy)}{c(x)} & \text{if } c(xy) > 0\\ \alpha(x)P_{katz}(y) & \text{otherwise} \end{cases}$$

• where $\alpha(x)$ is chosen to make sure that $P_{katz}(y \mid x)$ is a proper probability

$$\alpha(x) = 1 - \sum_{y} \frac{c^*(xy)}{c(x)}$$

X	c(x)	$c^*(x)$	$\frac{c^*(x)}{c(the)}$
the	48		,
the,dog	15	14.5	14.5/48
the,woman	11	10.5	10.4/48
the,man	10	9.5	9.5/48
the,park	5	4.5	4.5/48
the,job	2	1.5	4.5/48
the,telescope	1	0.5	0.5/48
the,manual	1	0.5	0.5/48
the,afternoon	1	0.5	0.5/48
the,country	1	0.5	0.5/48
the,street	1	0.5	0.5/48
TOTAL			0.9479
the,UNK	0		0.052

▶ Witten-Bell discounting use the n − 1 gram model when the n gram model has too few unique words in the n gram context

- ▶ Witten-Bell discounting use the n − 1 gram model when the n gram model has too few unique words in the n gram context
- Absolute discounting (Ney, Essen, Kneser)

$$P_{abs}(y \mid x) = \begin{cases} \frac{c(xy) - D}{c(x)} & \text{if } c(xy) > 0\\ \alpha(x) P_{abs}(y) & \text{otherwise} \end{cases}$$

compute $\alpha(x)$ as was done in Katz smoothing

▶ Kneser-Ney smoothing P(Francisco | eggplant) > P(stew | eggplant)

- ▶ Kneser-Ney smoothing P(Francisco | eggplant) > P(stew | eggplant)
 - ► Francisco is common, so interpolation gives P(Francisco | eggplant) a high value

- Kneser-Ney smoothing P(Francisco | eggplant) > P(stew | eggplant)
 - ► *Francisco* is common, so interpolation gives *P*(Francisco | eggplant) a high value
 - ▶ But Francisco occurs in few contexts (only after San)

- ▶ Kneser-Ney smoothing P(Francisco | eggplant) > P(stew | eggplant)
 - ► Francisco is common, so interpolation gives P(Francisco | eggplant) a high value
 - ▶ But Francisco occurs in few contexts (only after San)
 - stew is common, and occurs in many contexts

- ▶ Kneser-Ney smoothing P(Francisco | eggplant) > P(stew | eggplant)
 - ► Francisco is common, so interpolation gives P(Francisco | eggplant) a high value
 - ▶ But Francisco occurs in few contexts (only after San)
 - stew is common, and occurs in many contexts
 - Hence weight the interpolation based on number of contexts for the word using discounting

Language models

n-gram Models

Smoothing *n*-gram Models

Add-one Smoothing
Additive Smoothing
Good-Turing Smoothing

Interpolation: Jelinek-Mercer Smoothing

Backoff Smoothing

Katz Backoff

Backoff Smoothing with Discounting

Cross-Entropy and Perplexity

▶ So far we've seen the probability of a sentence: $P(w_0, ..., w_n)$

- ▶ So far we've seen the probability of a sentence: $P(w_0, ..., w_n)$
- ► What is the probability of a collection of sentences, that is what is the probability of a corpus

- ▶ So far we've seen the probability of a sentence: $P(w_0, ..., w_n)$
- ▶ What is the probability of a collection of sentences, that is what is the probability of a corpus
- Let $T = s_0, \dots, s_m$ be a text corpus with sentences s_0 through s_m

- ▶ So far we've seen the probability of a sentence: $P(w_0, ..., w_n)$
- ▶ What is the probability of a collection of sentences, that is what is the probability of a corpus
- Let $T = s_0, \dots, s_m$ be a text corpus with sentences s_0 through s_m
- What is P(T)? Let us assume that we trained P(·) on some training data, and T is the test data

 $ightharpoonup T=s_0,\ldots,s_m$ is the text corpus with sentences s_0 through s_m

- $ightharpoonup T = s_0, \dots, s_m$ is the text corpus with sentences s_0 through s_m
- ▶ $P(T) = P(s_0, s_1, s_2, ..., s_m)$ but each sentence is independent from the other sentences

- $ightharpoonup T = s_0, \dots, s_m$ is the text corpus with sentences s_0 through s_m
- ▶ $P(T) = P(s_0, s_1, s_2, ..., s_m)$ but each sentence is independent from the other sentences
- $P(T) = P(s_0) \cdot P(s_1) \cdot P(s_2) \cdot \ldots \cdot P(s_m) = \prod_{i=0}^m P(s_i)$

- $ightharpoonup T = s_0, \dots, s_m$ is the text corpus with sentences s_0 through s_m
- ▶ $P(T) = P(s_0, s_1, s_2, ..., s_m)$ but each sentence is independent from the other sentences
- $P(T) = P(s_0) \cdot P(s_1) \cdot P(s_2) \cdot \ldots \cdot P(s_m) = \prod_{i=0}^m P(s_i)$
- $P(s_i) = P(w_0^i, \ldots, w_n^i)$

- $ightharpoonup T = s_0, \dots, s_m$ is the text corpus with sentences s_0 through s_m
- ▶ $P(T) = P(s_0, s_1, s_2, ..., s_m)$ but each sentence is independent from the other sentences
- $P(T) = P(s_0) \cdot P(s_1) \cdot P(s_2) \cdot \ldots \cdot P(s_m) = \prod_{i=0}^m P(s_i)$
- $P(s_i) = P(w_0^i, \ldots, w_n^i)$
- ▶ Let W_T be the length of the text T measured in words

- $ightharpoonup T = s_0, \dots, s_m$ is the text corpus with sentences s_0 through s_m
- ▶ $P(T) = P(s_0, s_1, s_2, ..., s_m)$ but each sentence is independent from the other sentences
- $P(T) = P(s_0) \cdot P(s_1) \cdot P(s_2) \cdot \ldots \cdot P(s_m) = \prod_{i=0}^m P(s_i)$
- $P(s_i) = P(w_0^i, \ldots, w_n^i)$
- Let W_T be the length of the text T measured in words
- ▶ Then for the unigram model, $P(T) = \prod_{w \in T} P(w)$

- $ightharpoonup T = s_0, \dots, s_m$ is the text corpus with sentences s_0 through s_m
- ▶ $P(T) = P(s_0, s_1, s_2, ..., s_m)$ but each sentence is independent from the other sentences
- $P(T) = P(s_0) \cdot P(s_1) \cdot P(s_2) \cdot \ldots \cdot P(s_m) = \prod_{i=0}^m P(s_i)$
- $P(s_i) = P(w_0^i, \ldots, w_n^i)$
- Let W_T be the length of the text T measured in words
- ▶ Then for the unigram model, $P(T) = \prod_{w \in T} P(w)$
- ightharpoonup A problem: we want to compare two different models P_1 and P_2 on T

- $ightharpoonup T = s_0, \dots, s_m$ is the text corpus with sentences s_0 through s_m
- ▶ $P(T) = P(s_0, s_1, s_2, ..., s_m)$ but each sentence is independent from the other sentences
- $P(T) = P(s_0) \cdot P(s_1) \cdot P(s_2) \cdot \ldots \cdot P(s_m) = \prod_{i=0}^m P(s_i)$
- $P(s_i) = P(w_0^i, \dots, w_n^i)$
- Let W_T be the length of the text T measured in words
- ▶ Then for the unigram model, $P(T) = \prod_{w \in T} P(w)$
- A problem: we want to compare two different models P₁ and P₂ on T
- ► To do this we use the *per word* perplexity of the model:

$$PP_P(T) = P(T)^{-\frac{1}{W_T}} = \sqrt[W]{\frac{1}{P(T)}}$$

▶ The *per word* perplexity of the model is:

$$PP_P(T) = P(T)^{-\frac{1}{W_T}}$$

▶ The *per word* perplexity of the model is:

$$PP_P(T) = P(T)^{-\frac{1}{W_T}}$$

▶ Recall that $PP_P(T) = 2^{H_P(T)}$ where $H_P(T)$ is the cross-entropy of P for text T.

▶ The *per word* perplexity of the model is:

$$PP_P(T) = P(T)^{-\frac{1}{W_T}}$$

- ▶ Recall that $PP_P(T) = 2^{H_P(T)}$ where $H_P(T)$ is the cross-entropy of P for text T.
- ► Therefore, $H_P(T) = \log_2 PP_P(T) = -\frac{1}{W_T} \log_2 P(T)$

▶ The *per word* perplexity of the model is:

$$PP_P(T) = P(T)^{-\frac{1}{W_T}}$$

- ▶ Recall that $PP_P(T) = 2^{H_P(T)}$ where $H_P(T)$ is the cross-entropy of P for text T.
- ► Therefore, $H_P(T) = \log_2 PP_P(T) = -\frac{1}{W_T} \log_2 P(T)$
- Above we use a unigram model P(w), but the same derivation holds for bigram, trigram, . . .

Lower cross entropy values and perplexity values are better
 Lower values mean that the model is better
 Correlation with performance of the language model in various applications

- Lower cross entropy values and perplexity values are better
 Lower values mean that the model is better
 Correlation with performance of the language model in various applications
- Performance of a language model is its cross-entropy or perplexity on test data (unseen data) corresponds to the number bits required to encode that data

- Lower cross entropy values and perplexity values are better
 Lower values mean that the model is better
 Correlation with performance of the language model in various applications
- Performance of a language model is its cross-entropy or perplexity on test data (unseen data)
 corresponds to the number bits required to encode that data
- On various real life datasets, typical perplexity values yielded by n-gram models on English text range from about 50 to almost 1000 (corresponding to cross entropies from about 6 to 10 bits/word)

Natural Language Processing

 ${\bf Anoop\ Sarkar} \\ {\bf anoopsarkar.github.io/nlp-class}$

Simon Fraser University

Part 4: Event space in Language Models

Trigram Models

► The trigram model:

$$P(w_1, w_2, ..., w_n) = P(w_1) \times P(w_2 \mid w_1) \times P(w_3 \mid w_1, w_2) \times P(w_4 \mid w_2, w_3) \times ... P(w_i \mid w_{i-2}, w_{i-1}) ... \times P(w_n \mid w_{n-2}, ..., w_{n-1})$$

Trigram Models

► The trigram model:

$$P(w_1, w_2, ..., w_n) = P(w_1) \times P(w_2 \mid w_1) \times P(w_3 \mid w_1, w_2) \times P(w_4 \mid w_2, w_3) \times ... P(w_i \mid w_{i-2}, w_{i-1}) ... \times P(w_n \mid w_{n-2}, ..., w_{n-1})$$

▶ Notice that the length of the sentence *n* is variable

Trigram Models

► The trigram model:

$$P(w_1, w_2, ..., w_n) = P(w_1) \times P(w_2 \mid w_1) \times P(w_3 \mid w_1, w_2) \times P(w_4 \mid w_2, w_3) \times ... P(w_i \mid w_{i-2}, w_{i-1}) ... \times P(w_n \mid w_{n-2}, ..., w_{n-1})$$

- ▶ Notice that the length of the sentence *n* is variable
- ▶ What is the event space?

▶ Let $V = \{a, b\}$ and the language L be V^*

- ▶ Let $V = \{a, b\}$ and the language L be V^*
- ► Consider a unigram model: P(a) = P(b) = 0.5

- ▶ Let $V = \{a, b\}$ and the language L be V^*
- ► Consider a unigram model: P(a) = P(b) = 0.5
- ► So strings in this language *L* are:

a stop
$$0.5$$
b stop 0.5^2
bb stop 0.5^2
:

- ▶ Let $V = \{a, b\}$ and the language L be V^*
- ► Consider a unigram model: P(a) = P(b) = 0.5
- ► So strings in this language *L* are:

a stop
$$0.5$$
b stop 0.5^2
bb stop 0.5^2
:

▶ The sum over all strings in *L* should be equal to 1:

$$\sum_{w\in L}P(w)=1$$

- ▶ Let $V = \{a, b\}$ and the language L be V^*
- ► Consider a unigram model: P(a) = P(b) = 0.5
- ► So strings in this language *L* are:

a stop
$$0.5$$
b stop 0.5^2
bb stop 0.5^2
:

▶ The sum over all strings in *L* should be equal to 1:

$$\sum_{w\in L}P(w)=1$$

▶ But P(a) + P(b) + P(aa) + P(bb) = 1.5 !!

▶ What went wrong? We need to model variable length sequences

- What went wrong?
 We need to model variable length sequences
- Add an explicit probability for the stopsymbol:

$$P(a) = P(b) = 0.25$$

 $P(stop) = 0.5$

- What went wrong?
 We need to model variable length sequences
- Add an explicit probability for the stopsymbol:

$$P(a) = P(b) = 0.25$$

 $P(stop) = 0.5$

▶ P(stop) = 0.5, $P(a \text{ stop}) = P(b \text{ stop}) = 0.25 \times 0.5 = 0.125$, $P(aa \text{ stop}) = 0.25^2 \times 0.5 = 0.03125$ (now the sum is no longer greater than one)

▶ With this new stop symbol we can show that $\sum_w P(w) = 1$ Notice that the probability of any sequence of length n is $0.25^n \times 0.5$

Also there are 2^n sequences of length n

$$\sum_{w} P(w) = \sum_{n=0}^{\infty} 2^{n} \times 0.25^{n} \times 0.5$$
$$\sum_{n=0}^{\infty} 0.5^{n} \times 0.5 = \sum_{n=0}^{\infty} 0.5^{n+1}$$
$$\sum_{n=1}^{\infty} 0.5^{n} = 1$$

Acknowledgements

Many slides borrowed or inspired from lecture notes by Michael Collins, Chris Dyer, Adam Lopez, and Luke Zettlemoyer from their NLP course materials. All mistakes are my own.