International Application No
PCT/FR2004/002653

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C02F1/44 C02F1/78 B01D65/02 B01D61/18 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) CO2F B01D IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ° 1 - 26X US 5 607 593 A (COTE PIERRE ET AL) 4 March 1997 (1997-03-04) the whole document PATENT ABSTRACTS OF JAPAN 1,2,4,7, X 14,19 vol. 2000, no. 10, 17 November 2000 (2000-11-17) & JP 2000 197895 A (HITACHI ZOSEN CORP). 18 July 2000 (2000-07-18) abstract 1-26 US 2003/127389 A1 (COTE PIERRE ET AL) A 10 July 2003 (2003-07-10) the whole document 1-26 US 5 932 099 A (COTE PIERRE Α 3 August 1999 (1999-08-03) the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 18/03/2005 10 March 2005 Name and mailing address of the ISA **Authorized officer** European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Liebig, T

International Application No
PCT/FR2004/002653

		PC1/FR2004/002653				
C.(Continu	(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
A	US 2003/178365 A1 (BECK THOMAS W ET AL) 25 September 2003 (2003-09-25) the whole document	1–26				
A	KIM J-O ET AL: "Effect of intermittent back ozonation for membrane fouling reduction in microfiltration using a metal membrane" DESALINATION, ELSEVIER SCIENTIFIC PUBLISHING CO, AMSTERDAM, NL, vol. 143, no. 3, 10 June 2002 (2002-06-10), pages 269-278, XP004374884 ISSN: 0011-9164 the whole document	1-26				
A	TAKIZAWA S ET AL: "Membrane fouling decrease by microfiltration with ozone scrubbing" DESALINATION, ELSEVIER SCIENTIFIC PUBLISHING CO, AMSTERDAM, NL, vol. 106, no. 1, 1 August 1996 (1996-08-01), pages 423-426, XP004019195 ISSN: 0011-9164 the whole document	1-26				

Information on patent family members

International Application No
PCT/FR2004/002653

			FC171 K20047 002033		
Patent document cited in search report	Publication date		Patent family member(s)	Publication date	
US 5607593	A 04-03-1997	FR CA DE DE DK EP JP	2713220 A1 2136943 A1 69417691 D1 69417691 T2 655418 T3 0655418 A1 7256253 A	09-06-1995 31-05-1995 12-05-1999 02-12-1999 03-07-2000 31-05-1995	
JP 2000197895	A 18-07-2000	AU EP WO	7547200 A 1174546 A1 0129331 A1	30-04-2001 23-01-2002 26-04-2001	
US 2003127389	A1 10-07-2003	US US US AT AU BR CA EP HUP US US CZ EP ES PL US	2001027950 A1 6245239 B1 2004112831 A1 2004113293 A1 264272 T 765966 B2 6073899 A 9914376 A 2345682 A1 69916479 D1 22686 A 1119522 A1 0103786 A2 2002527229 T 2002139748 A1 2001027951 A1 0021890 A1 20011236 A3 1445240 A1 1452493 A1 2220113 T3 347240 A1 6319411 B1	11-10-2001 12-06-2001 17-06-2004 17-06-2004 15-04-2004 09-10-2003 01-05-2000 07-08-2001 20-04-2000 19-05-2004 30-06-2003 01-08-2001 28-01-2002 27-08-2002 03-10-2002 11-10-2001 20-04-2000 17-04-2002 11-08-2004 01-09-2004 01-12-2004 25-03-2002 20-11-2001	
US 5932099	A 03-08-1999	FR AU CA DE DE DK EP WO JP	2737202 A1 6703596 A 2199517 A1 69613458 D1 69613458 T2 809611 T3 0809611 A1 9705072 A1 10512192 T	31-01-1997 26-02-1997 07-03-1997 26-07-2001 18-04-2002 01-10-2001 03-12-1997 13-02-1997 24-11-1998	
US 2003178365	A1 25-09-2003	US US US AU AU WO CA CN EP JP NZ	2004084369 A1 2004168979 A1 2004178154 A1 2004232076 A1 721064 B2 5395798 A 9828066 A1 2275146 A1 1244814 A ,C 0952885 A1 2001510396 T 336455 A	06-05-2004 02-09-2004 16-09-2004 25-11-2004 22-06-2000 17-07-1998 02-07-1998 02-07-1998 16-02-2000 03-11-1999 31-07-2001 27-04-2001	

Information on patent family members

International Application No PCT/FR2004/002653

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 2003178365 A	1	NZ US US US	510245 A 2002195390 A1 6555005 B1 2004145076 A1	26-07-2002 26-12-2002 29-04-2003 29-07-2004

Demande Internationale No
PCT/FR2004/002653

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 CO2F1/44 CO2F1/78

B01D61/18

B01D65/02

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) $CIB\ 7\ CO2F\ B01D$

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche Internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERES COMME PERTINENTS					
Catégorie °	ldentification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées			
Х	US 5 607 593 A (COTE PIERRE ET AL) 4 mars 1997 (1997-03-04) 1e document en entier	1-26			
X	PATENT ABSTRACTS OF JAPAN vol. 2000, no. 10, 17 novembre 2000 (2000-11-17) & JP 2000 197895 A (HITACHI ZOSEN CORP), 18 juillet 2000 (2000-07-18) abrégé	1,2,4,7, 14,19			
A	US 2003/127389 A1 (COTE PIERRE ET AL) 10 juillet 2003 (2003-07-10) le document en entier	1–26			
Α	US 5 932 099 A (COTE PIERRE ET AL) 3 août 1999 (1999-08-03) 1e document en entier	1-26			
	le document en entier				

Yoir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe
"A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt international ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "B" desument sublié avant le date de dépôt international, mais	T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention X" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinalson étant évidente pour une personne du métier &" document qui fait partie de la même famille de brevets
Date à laquelle la recherche Internationale a été effectivement achevée 10 mars 2005	Date d'expédition du présent rapport de recherche internationale 18/03/2005
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3016	Fonctionnaire autorisé Liebig, T

Deniande Internationale No
PCT/FR2004/002653

			
	OCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec, le cas échéant, l'indication des passages p	ortinonts	no, des revendications visées
Catégorie °	i identification des documents cites, avec, le cas echeant, i mulcation des passages j	,c, mond	dos revendidations visces
4	US 2003/178365 A1 (BECK THOMAS W ET AL) 25 septembre 2003 (2003-09-25) 1e document en entier		1–26
A	KIM J-O ET AL: "Effect of intermittent back ozonation for membrane fouling reduction in microfiltration using a metal membrane" DESALINATION, ELSEVIER SCIENTIFIC PUBLISHING CO, AMSTERDAM, NL, vol. 143, no. 3, 10 juin 2002 (2002-06-10), pages 269-278, XP004374884 ISSN: 0011-9164 le document en entier		1-26
A	TAKIZAWA S ET AL: "Membrane fouling decrease by microfiltration with ozone scrubbing" DESALINATION, ELSEVIER SCIENTIFIC PUBLISHING CO, AMSTERDAM, NL, vol. 106, no. 1, 1 août 1996 (1996-08-01), pages 423-426, XP004019195 ISSN: 0011-9164 le document en entier		1-26

Renseignements relatifs aux membres de familles de brevets

Definance Internationale No
PCT/FR2004/002653

					.004/002033
Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
US 5607593	A	04-03-1997	FR CA DE DE DK EP JP	2713220 A1 2136943 A1 69417691 D1 69417691 T2 655418 T3 0655418 A1 7256253 A	09-06-1995 31-05-1995 12-05-1999 02-12-1999 03-07-2000 31-05-1995 09-10-1995
JP 2000197895	A	18-07-2000	AU EP WO	7547200 A 1174546 A1 0129331 A1	30-04-2001 23-01-2002 26-04-2001
US 2003127389	A1	10-07-2003	US US US AT AU BR AU BR DE EP US WO CZ EP ES PUS	2001027950 A1 6245239 B1 2004112831 A1 2004113293 A1 264272 T 765966 B2 6073899 A 9914376 A 2345682 A1 69916479 D1 22686 A 1119522 A1 0103786 A2 2002527229 T 2002139748 A1 2001027951 A1 0021890 A1 20011236 A3 1445240 A1 1452493 A1 2220113 T3 347240 A1 6319411 B1	11-10-2001 12-06-2001 17-06-2004 17-06-2004 15-04-2004 09-10-2003 01-05-2000 07-08-2001 20-04-2000 19-05-2004 30-06-2003 01-08-2001 28-01-2002 27-08-2002 03-10-2002 11-10-2001 20-04-2000 17-04-2002 11-08-2004 01-09-2004 01-12-2004 25-03-2002 20-11-2001
US 5932099	A	03-08-1999	FR AU CA DE DE DK EP WO JP	2737202 A1 6703596 A 2199517 A1 69613458 D1 69613458 T2 809611 T3 0809611 A1 9705072 A1 10512192 T	31-01-1997 26-02-1997 07-03-1997 26-07-2001 18-04-2002 01-10-2001 03-12-1997 13-02-1997 24-11-1998
US 2003178365	A1	25-09-2003	US US US AU AU WO CA CN EP JP NZ	2004084369 A1 2004168979 A1 2004178154 A1 2004232076 A1 721064 B2 5395798 A 9828066 A1 2275146 A1 1244814 A ,C 0952885 A1 2001510396 T 336455 A	06-05-2004 02-09-2004 16-09-2004 25-11-2004 22-06-2000 17-07-1998 02-07-1998 02-07-1998 16-02-2000 03-11-1999 31-07-2001 27-04-2001

Renseignements relatifs aux membres de familles de brevets

Dermende Internationale No
PCT/FR2004/002653

Document brevet cité au rapport de recherche	Date de publication		Membre(s) de la famille de brevet(s)	Date de publication	
US 2003178365 A1		NZ US US US	510245 A 2002195390 A1 6555005 B1 2004145076 A1	26-07-2002 26-12-2002 29-04-2003 29-07-2004	

Installation et procédé d'épuration d'un effluent aqueux par oxydation et par filtration membranaire.

L'invention concerne le domaine de l'épuration des effluents aqueux et s'applique notamment, mais non exclusivement :

- au traitement des eaux usées industrielles ou domestiques ;

- au traitement des lixiviats (percolats) de décharge;
- au traitement des eaux de surface en vue de leur potabilisation;
- au traitement de dépollution des eaux souterraines ;
- au traitement des concentrats de filtration membranaire.

10

5

Les traitements d'épuration des effluents aqueux ont pour objectif principal d'éliminer la matière organique difficilement biodégradable contenue dans ces effluents. Plusieurs procédés peuvent être mis en oeuvre pour atteindre un tel objectif.

15

Il est ainsi connu de filtrer les effluents sur un matériau adsorbant, tel que du charbon actif, susceptible de retenir la matière organique qu'ils contiennent. Une telle technique présente l'inconvénient majeur de nécessiter de grandes quantités de matériau adsorbant, pour une quantité donnée de matière organique à éliminer, et donc d'être très coûteuse. La régénération du matériau adsorbant est elle-même onéreuse.

20

D'autres procédés mettent en oeuvre une filtration sur membrane, tel qu'une membrane de microfiltration, d'ultrafiltration, de nanofiltration, ou d'osmose inverse. Outre le fait qu'ils sont également relativement coûteux, de tels procédés présentent aussi l'inconvénient de concentrer la matière organique polluante plutôt que de la détruire. Cette matière organique récupérée doit donc ensuite être dégradée, généralement par incinération.

25

30

Encore d'autres procédés d'élimination de la matière organique mettent en oeuvre une étape consistant à faire floculer celle-ci, en introduisant un ou plusieurs composés coagulants dans les effluents traités. Ces composés coagulants peuvent être des composés minéraux, tels que par exemple du polychlorure d'aluminium, du sulfate d'alumine ou du chlorure ferrique ou bien

des composés organiques, tels que par exemple des polymères cationiques. Les flocs formés par la matière organique coagulés peuvent ensuite être éliminés par décantation.

De tels procédés présentent l'inconvénient majeur de produire énormément de boues, qui constituent un sous-produit difficile à éliminer. On notera que, selon un procédé de coagulation-floculation-décantation amélioré, l'étape de floculation peut être combinée à une oxydation par introduction dans l'effluent du réactif de Fenton (H₂O₂/Fe²⁺). Bien que moins importantes que dans le cas d'un procédé de floculation classique, les quantités de boues produites lors de la mise en oeuvre d'un tel procédé n'en restent pas moins très importantes.

5

10

15

20

25

30

Enfin, certains procédés d'épuration des effluents aqueux mettent en oeuvre une étape d'oxydation poussée de la matière organique grâce à un oxydant puissant (tel que par exemple l'ozone, le chlore, le bioxyde de chlore) ou grâce à un système oxydant puissant (tel que par exemple Ozone/UV, ozone peroxyde d'hydrogène, peroxyde d'hydrogène/UV). L'oxydation permet la dégradation des molécules organiques en molécules plus petites et mieux biodégradables.

Parmi les produits oxydants classiquement utilisés pour oxyder la matière organique, l'ozone est l'oxydant le plus intéressant, car il est capable de détruire complètement la matière organique en la « minéralisant », sous certaines conditions de mise en oeuvre, en dioxyde de carbone et en sels minéraux. De plus, l'ozone autorise des réactions radicalaires impliquant le radical libre OH qui permet d'oxyder très fortement la matière organique lorsqu'il est appliqué à un pH basique ou en combinaison avec le peroxyde d'hydrogène ou bien encore avec un rayonnement ultra-violet (le potentiel d'oxydo-réduction du peroxyde d'hydrogène est de 1,6 volts, celui de l'ozone est de 2,07 tandis que celui du radical OH est de 2,7).

Les procédés mettant en oeuvre une oxydation permettent donc de détruire la matière organique polluante contenue dans les effluents aqueux et non simplement de la concentrer comme c'est le cas dans les procédés de filtration ou

de la séparer de la phase aqueuse comme c'est le cas dans les procédés de coagulation-floculation-décantation.

De tels procédés montrent toutefois l'inconvénient économique de nécessiter des quantités relativement importantes de produit(s) oxydant(s) pour traiter une quantité donnée d'effluents.

5

10

15

20

25

30

L'invention a pour objectif de fournir un procédé d'épuration d'effluents aqueux incluant une étape d'oxydation optimisée, c'est-à-dire dans laquelle la quantité de produit oxydant nécessaire pour traiter un volume donné d'effluent aura été réduite par rapport aux techniques classiques d'oxydation.

Un tel procédé pourra être utilisé pour épurer les eaux très chargées en matière organique comme par exemple certains effluents industriels ou encore les lixiviats de décharge, c'est-à-dire les eaux s'écoulant à travers des déchets stockés. Ces effluents se caractérisent généralement par une charge en matière organique très importante et très peu biodégradable. Classiquement ces lixiviats montrent un ratio DBO₅/DCO souvent inférieur à O,1 traduisant une très faible biodégradabilité (la DBO₅ représente la « Demande Biologique en Oxygène » de l'effluent et traduit la quantité totale de matière organique présente dans celuici). L'épuration de tels effluents est donc problématique puisque seuls des procédés de traitement coûteux peuvent être utilisés pour les décharger de leurs matières organiques. En particulier, il ne pouvait être envisagé jusqu'ici de traiter les lixiviats de décharge par des techniques mettant en oeuvre des oxydants puissants avec des coûts de traitement raisonnables.

Un autre objectif de l'invention est de fournir une installation d'épuration mettant en oeuvre peu de produit par rapport aux techniques existantes de l'état de l'art.

Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints à l'aide d'une installation d'épuration d'un effluent aqueux chargé en matière organique, du type comprenant au moins un réacteur présentant au moins une arrivée dudit effluent au moins une sortie dudit effluent et au moins un évent, des moyens d'injection d'au moins un gaz oxydant, ledit réacteur contenant un lit

d'un matériau permettant de catalyser la réaction d'oxydation de ladite matière organique dudit effluent et/ou d'adsorber cette matière organique. Selon l'invention, ledit réacteur intègre également un dispositif de filtration à membranes immergées et ledit réacteur définit une unique chambre intégrant les traitements d'oxydation et de filtration dudit effluent, ladite chambre étant prévue de telle sorte que ledit effluent et ledit gaz oxydant soient injectés à co-courant en direction dudit lit de matériau catalyseur puis dudit dispositif de filtration à membranes.

Clairement, l'invention propose donc une solution pour regrouper plusieurs traitements à l'intérieur d'un même cuvelage.

On comprendra qu'une telle intégration offre de multiples avantages, au rang desquels on peut citer :

- la réduction des coûts de fonctionnement liés à la filtration et à la mise en suspension du matériau catalyseur et/ou adsorbant;
- le gain économique du à la suppression d'ouvrages et d'accessoires;
- le gain de place induit par la réalisation d'un réacteur plus compact;
- la simplification du schéma hydraulique avec la réduction des équipements.

Grâce à une telle intégration selon l'invention, on obtient une combinaison de traitement de l'effluent qui présente une réelle synergie.

En effet, le gaz oxydant exerce dans l'installation selon l'invention plusieurs fonctions du fait du regroupement dans une unique chambre des moyens de traitement tels ceux définis.

Tout d'abord, le gaz oxydant exerce bien entendu une fonction de dégradation des matières organiques dissoutes dans l'effluent à traiter.

Le gaz oxydant exerce une seconde fonction qui est de maintenir ledit matériau en suspension dans le réacteur, ce qui permet d'optimiser l'action de celui-ci.

15

10

5

20

30

Le gaz oxydant exerce encore une autre fonction qui est de limiter le colmatage des membranes du dispositif de filtration, grâce à l'action mécanique du gaz sur les membranes qui conduit notamment à améliorer le débit de l'effluent.

5

On note que le regroupement selon l'invention de moyens d'injection d'un gaz oxydant tel que l'ozone et d'un dispositif de filtration à membranes dans un même réacteur est une approche allant à l'encontre des pratiques traditionnelles qui conduisent à séparer, à l'aide de deux cuves distinctes, le traitement d'oxydation et le dispositif à membranes, l'ozone (utilisée généralement comme gaz oxydant) étant considérée par l'homme du métier comme source de dégradation des membranes.

10

15

Or, de façon surprenante, la Demanderesse a constaté que l'intégration dans un même réacteur de traitements d'oxydation et de filtration membranaire, n'entraîne pas de dégradation par l'ozone des membranes après oxydation des matières organiques réfractaires de l'effluent. Au contraire, l'ozone contribue à limiter le colmatage des membranes, combinant l'action mécanique des bulles de gaz et éventuellement l'action oxydante sur la matière organique colmatante présente à la surface de la membrane, augmentant ainsi les durées de cycle de celle-ci.

20

Sous des conditions optimales de fonctionnement, cette action de l'ozone, ou plus généralement du gaz oxydant, sur les membranes s'avère donc plus performante que si l'on procédait à une simple aération des membranes par injection d'air ou d'oxygène injecté au niveau des membranes.

25

30

L'invention s'avère donc particulièrement efficace et économique, comparée à l'approche traditionnelle qui aurait conduit l'homme du métier à utiliser deux cuves: l'une pour l'oxydation par l'ozone, éventuellement en présence d'un catalyseur, de l'effluent, l'autre cuve pour la filtration membranaire de l'effluent oxydé, cette seconde cuve étant pourvue d'un système d'aération spécifique aux membranes. De plus, ce type d'installation conduirait l'éventuel catalyseur non ozoné à se saturer dans la seconde cuve, ce qui

risquerait bien entendu d'amener ce catalyseur à ne plus pouvoir jouer son rôle dans la première cuve une fois réinjecté dans celle-ci.

En outre, l'installation selon l'invention permet d'obtenir une régénération du matériau catalyseur et/ou adsorbant directement au sein du réacteur, cette régénération s'opérant avantageusement de façon continue.

Selon une solution avantageuse, ledit matériau est constitué par un matériau solide minéral présentant une capacité d'adsorption des matières organiques, préférentiellement dopé en substances métalliques.

On obtient de cette façon un lit d'un matériau particulièrement efficace et actif puisqu'il optimise l'action d'oxydation du gaz oxydant et retient en son sein une fraction importante des matières organiques de l'effluent.

Avantageusement, ledit matériau est présent dans ledit réacteur sous forme d'un lit fluidisé. Dans ce cas, ledit catalyseur présente préférentiellement une granulométrie inférieure à 100 µm et, d'une façon préférentielle, une granulométrie comprise entre environ 10nm et environ 40 µm.

Selon une solution préférée, ledit matériau comprend l'un au moins des matériaux appartenant au groupe suivant :

- alumine;
- titane;
- charbon;

5

10

15

20

25

30

- charbon actif;
- oxydes polymétalliques.

Selon une première variante de réalisation, les membranes sont des membranes de micro-filtration.

Selon une deuxième variante de réalisation, les membranes sont des membranes d'ultra-filtration.

Selon une troisième variante de réalisation, les membranes sont des membranes de nano-filtration.

En fonction de l'objectif recherché, on adoptera l'une ou l'autre de ces variantes, cet objectif pouvant par exemple être d'obtenir une simple séparation

du matériau et de l'effluent traité, avec traitement des substances indésirables.

Par ailleurs, selon un premier mode de réalisation, les membranes sont de type minéral.

Selon un deuxième mode de réalisation, les membranes sont de types organiques.

Avantageusement, ledit matériau forme une pré-couche à la surface dudit dispositif de filtration à membranes.

Le gâteau ainsi formé par le matériau à la surface de la membrane tend à améliorer sensiblement les performances de filtration et de traitement de la membrane correspondante.

Préférentiellement, ledit gaz oxydant comprend l'un au moins des oxydants appartenant au groupe suivant :

- air;
- ozone;
- air ozoné ;

5

10

20

25

30

- oxydes d'azote;
- oxygène;

L'ozone pourra être choisi en particulier comme oxydant puissant pouvant donner naissance à des radicaux libres très oxydants et permettant la décomposition de la matière organique soit en la transformant en matières biodégradables soit en la minéralisant en dioxyde de carbone et en sels minéraux. D'autres oxydants, tels que ceux mentionnés précédemment, peuvent toutefois être envisagés par l'homme du métier.

Selon une solution avantageuse, l'installation comprend des moyens d'ajout d' H_2O_2 dans ledit réacteur.

Cet ajout $d'H_2O_2$ pourra être réalisé de façon continue ou séquentielle, son pouvoir oxydant se combinant éventuellement avec celui de l'ozone.

Selon une autre caractéristique, l'installation comprend une boucle de recirculation dudit effluent dans ledit réacteur.

On peut de cette façon assurer un temps de contact de l'effluent avec les

réactifs au sein du réacteur tout en autorisant un débit de l'effluent assez soutenu.

On peut de cette façon augmenter, si besoin, les temps de traitement de l'effluent au sein du réacteur.

Préférentiellement, ledit réacteur est réalisé sous la forme d'une colonne non agitée mécaniquement.

L'invention concerne également un procédé mis en oeuvre à l'aide de l'installation qui vient d'être décrite et caractérisé en ce que l'intégration dudit gaz oxydant dans ledit réacteur est réalisée de façon continue.

Selon une solution préférée, la durée de contact entre ledit effluent et ledit matériau est comprise entre environ 5 minutes et environ 3 heures, cette durée étant préférentiellement comprise entre environ 30 minutes et environ 60 minutes.

Avantageusement, le procédé comprend une étape de re-circulation du gaz provenant de l'évent du réacteur.

Préférentiellement, l'étape de filtration est effectuée par aspiration en configuration externe-interne.

Cette étape étant avantageusement réalisée avec une pression d'aspiration comprise inférieure à environ 1 bar, et préférentiellement avec une pression d'aspiration comprise entre environ 0,1 bar et environ 0,8 bar.

D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante d'un mode de réalisation préférentiel de l'installation selon l'invention, donné à titre d'exemple illustratif et non limitatif, en référence à la figure 1 unique qui est une vue schématique d'une installation selon l'invention.

Tel qu'illustré par la figure 1, l'installation comprend un réacteur 1 présentant une conduite 9 d'arrivée de l'effluent à traiter, une conduite 10 de sortie de l'effluent traité, un évent 5 dans sa partie supérieure destiné à l'évacuation des gaz et des moyens de recirculation 6 de ce gaz en pied de réacteur..

L'installation comprend en outre des moyens d'injection continue 2

10

5

15

20

25

d'ozone dans le réacteur, qui contient par ailleurs un matériau 3 se présentant sous forme d'un lit fluidisé.

Un dispositif de filtration membranaire 4 est de plus intégré dans le réacteur 1.

5

Ainsi constitué, le réacteur 1 définit donc une unique chambre qui intègre à la fois des traitements d'oxydation et de filtration de l'effluent, cette chambre unique étant prévue selon l'invention de telle sorte que l'effluent et le gaz oxydant (en l'occurrence l'ozone) soit injecté à co-courant en direction du lit de matériau catalyseur 3 puis des membranes de filtration 4.

10

On note que ce réacteur est réalisé sous la forme d'une colonne non agitée mécaniquement, l'injection de l'effluent et du gaz oxydant étant réalisée à la base de la colonne.

15

Les moyens d'injection 2 du gaz oxydant sont par exemple constitués par un émulseur (encore appelé trompe à vide ou hydroinjecteur). Il est également possible d'utiliser des appareils de type « Venturi » à émulsion, ou tout autre appareillage permettant la formation de micro-bulles de gaz oxydant dans le liquide à traiter.

_ _

Le matériau utilisé pour améliorer la réactivité de l'ozone est un matériau solide minéral en poudre présent dans le réacteur dans une proportion comprise entre 0,5 g/l et 50 g/l.

20

Selon le présent mode de réalisation, ce matériau catalyseur est de l'alumine boehmite (γ Al₂O₃), calciné à une température inférieure à 600°C. On note que l'alumine boehmite peut être utilisée pure ou sous une forme enrichie en substances métalliques (notamment en vue d'accroître sa capacité d'adsorption des matières organiques).

25

30

De plus, le matériau catalyseur est finement divisé de telle sorte que le diamètre de ses particules soit inférieur à 50 µm (préférentiellement, les particules ont un diamètre d'environ 30 µm), le catalyseur présentant donc une surface d'échange très importante permettant l'adsorption de la majeure partie des matières organiques de l'effluent.

Par ailleurs, la séparation des particules de catalyseur contenues dans l'effluent est obtenue par le dispositif de filtration à membranes 4, réalisé à l'aide de membranes dont les pores présentent préférentiellement des dimensions inférieures à 0,1 µm. Préférentiellement, ces membranes sont réalisées en céramique ou en un polymère organique résistant à l'ozone.

On note que, notamment en fonction de la dimension des particules du catalyseur, les membranes utilisées pourront être des membranes de micro-filtration, d'ultra-filtration ou de nano-filtration.

On note également que la transition entre le lit fluidisé du matériau catalyseur 3 et les membranes 4 est telle que le catalyseur forme une pré-couche à la surface des membranes 4.

Selon le présent mode de réalisation, la filtration de l'effluent est effectuée par aspiration en configuration externe-interne, à l'aide d'une pompe 8 prévue sur la canalisation d'évacuation 10, ladite pompe permettant d'obtenir une pression d'aspiration d'environ 0,8 bar.

Par ailleurs, on prévoit une boucle de re-circulation 7 de l'effluent, à l'aide de laquelle on fait recirculer l'effluent dans le réacteur, de façon continue (ou semi-continue selon un autre mode de réalisation envisageable). Une boucle de reciculation 6 des gaz provenant de l'évent 5 est également prévu.

D'autres modes de réalisation ou perfectionnements sont bien entendu envisageables, notamment en prévoyant des moyens d'ajout dans le réacteur d'H₂O₂, en tant que seul oxydant ou combiné avec l'ozone.

Deux tests réalisés avec l'installation selon l'invention vont maintenant être décrits.

Ces tests ont été réalisés en prenant comme effluent à traiter, une eau chargée produite par l'industrie cosmétique et ayant subi un pré-traitement biologique.

Tests en mode batch.

Une première série de tests est réalisée en mode batch. On introduit 5 litres d'effluent dans le réacteur. L'oxydation de l'effluent est réalisée dans ce

10

5

15

20

25

réacteur dans lequel de l'ozone est injectée de façon continue, l'eau traitée étant séparée du catalyseur (γ Al₂O₃) à l'aide de membranes de micro-filtration immergées, le perméat étant recirculé de façon continue dans le réacteur.

Selon un premier test, on prévoit de traiter avec un débit recirculé de perméat de 10 l/h et un temps d'exposition de 60 mn, un effluent présentant une DCO (Demande Chimique en Oxygène) de 213 mg/l et un taux de COT (Carbone Organique Total) de 75,8 mg/l. Le traitement effectué est un traitement à l'ozone seul (sans catalyseur), l'ozone étant injectée à raison de 4,6 g O₃/g DCO.

Les résultats de ce premier test sont les suivants :

- DCO final: 74,8 mg/l, soit un abattement de 64,9 %
- COT final: 34,1 mg/l, soit un abattement de 55 %
- quantité O₃ consommée/COT éliminé: 8,4

Selon un deuxième test, on prévoit de traiter avec un débit recirculé de perméat de 10 l/h et un temps d'exposition de 60 mn, un effluent présentant une DCO (Demande Chimique en Oxygène) de 181 mg/l et un taux de COT (Carbone Organique Total) de 61,4 mg/l. Le traitement effectué est un traitement à l'ozone en présence d'un catalyseur présent à raison de 20 g/l, l'ozone étant injectée à raison de 4,7 g O₃/g DCO.

Les résultats de ce deuxième test sont les suivants :

- DCO final: 47,7 mg/l, soit un abattement de 73,6 %
- COT final: 19,9 mg/l, soit un abattement de 67,6 %
- quantité O₃ consommée/COT éliminé : 6,3

Ces premiers tests indiquent clairement que l'oxydation catalysée suivie d'une filtration membranaire dans une installation selon l'invention, procure un meilleur abattement tant de DCO que de COT, comparé à un traitement à l'ozone seul, ceci avec une moindre consommation d'ozone.

Tests en mode continu.

Une seconde série de tests est réalisée en continu. On injecte un effluent à

5

10

15

20

5

10

15

20

traiter dans le réacteur avec un débit de 101/h. L'oxydation de l'effluent est réalisée dans ce réacteur dans lequel de l'ozone est injectée de façon continue, l'eau traitée étant séparée du catalyseur (γ Al₂O₃) à l'aide de membranes de micro-filtration immergées, le perméat n'étant pas recirculé dans le réacteur, à l'inverse du mode semi-continu

Selon un premier test, on prévoit de traiter avec un débit de 10 l/h et un temps d'exposition de 2 h, un effluent présentant une DCO (Demande Chimique en Oxygène) de 185 mg/l. Le traitement effectué est un traitement à l'ozone seul (sans catalyseur), l'ozone étant injectée à raison de 3,8 g O₃/g DCO.

Les résultats de ce test sont les suivants :

- DCO final: 104 mg/l, soit un abattement de 43,8 %
- COT final: 44,5 mg/l, avec un abattement de 35,7 %
- quantité O₃ consommée/COT éliminé: 11,1

Selon un deuxième test, on prévoit de traiter avec un débit de 10 l/h et un temps d'exposition de 48 h, un effluent présentant une DCO (Demande Chimique en Oxygène) de 200 mg/l et un taux de COT (Carbone Organique Total) de 69,2 mg/l. Le traitement effectué est un traitement à l'ozone en présence d'un catalyseur présent à raison de 20 g/l, l'ozone étant injectée à raison de 4,2 g O₃/g DCO.

Les résultats de ce deuxième test sont les suivants :

- DCO final: 100 mg/l, soit un abattement de 50 %
- COT final: 40 mg/l, soit un abattement de 42,2 %
- quantité O₃ consommée/COT éliminé: 9,9

Selon un troisième test, on prévoit de traiter avec un débit de 10 l/h et un temps d'exposition de 5 h, un effluent présentant une DCO (Demande Chimique en Oxygène) de 200 mg/l. Le traitement effectué est un traitement à l'ozone en présence d'un catalyseur présent à raison de 20 g/l, avec ajout d'H₂O₂, l'ozone étant injectée à raison de 5,9 g O₃/g DCO.

Les résultats de ce troisième test sont les suivants :

- DCO final: 72 mg/l, soit un abattement de 64 %

30

- COT final: 24,4 mg/l, avec un abattement de 64,7 %
- quantité O₃ consommée/COT éliminé : 9,1

Ces tests indiquent que le procédé et l'installation selon l'invention permettent d'obtenir de très bons résultats comparés à d'autres traitements.

REVENDICATIONS

1. Installation d'épuration d'un effluent aqueux chargé en matière organique, du type comprenant au moins un réacteur (1) présentant au moins une arrivée (9) dudit effluent, au moins une sortie (10) dudit effluent, au moins un évent (5), des moyens d'injection (2) d'au moins un gaz oxydant, ledit réacteur contenant un lit d'un matériau (3) permettant de catalyser la réaction d'oxydation de ladite matière organique dudit effluent et/ou d'adsorber cette matière organique,

5

20

- caractérisée en ce que ledit réacteur intègre également un dispositif de filtration à membranes immergées (4) et en ce que ledit réacteur (1) définit une unique chambre intégrant les traitements d'oxydation et de filtration dudit effluent, ladite chambre étant prévue de telle sorte que ledit effluent et ledit gaz oxydant soient injectés à co-courant en direction dudit lit de matériau catalyseur (3) puis dudit dispositif de filtration à membranes (4).
 - 2. Installation d'épuration selon la revendication 1, caractérisée en ce que ledit matériau (3) est constitué par un matériau solide minéral présentant une capacité d'adsorption des matières organiques.
 - 3. Installation d'épuration selon la revendication 2, caractérisée en ce que ledit solide minéral est dopé en substances métalliques.
 - 4. Installation d'épuration selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ledit matériau (3) est présent dans ledit réacteur (1) sous forme d'un lit fluidisé.
 - 5. Installation d'épuration selon la revendication 4, caractérisée en ce que ledit matériau (3) présente une granulométrie inférieure à 100 μm.
 - 6. Installation d'épuration selon la revendication 5, caractérisée en ce que ledit matériau (3) présente une granulométrie comprise entre environ 10nm et environ 40 μm.
- 7. Installation d'épuration selon l'une des revendications 2 à 6, caractérisée en ce que ledit matériau (3) comprend l'un au moins des matériaux appartenant

PCT/FR2004/002653

10

25

30

au groupe suivant:

- alumine;
- titane;
- charbon;
- 5 charbon actif;
 - oxydes polymétalliques.
 - 8. Installation d'épuration selon l'une quelconque des revendications 1 à 7, caractérisée en ce que les membranes (4) sont des membranes de micro-filtration.
 - 9. Installation d'épuration selon l'une quelconque des revendications 1 à 7, caractérisée en ce que les membranes (4) sont des membranes d'ultra-filtration.
 - 10. Installation d'épuration selon l'une quelconque des revendications 1 à 7, caractérisée en ce que les membranes (4) sont des membranes de nano-filtration.
 - 11. Installation d'épuration selon l'une quelconque des revendications 8 à 10, caractérisée en ce que les dites membranes (4) sont de type minéral.
- 15 **12.** Installation d'épuration selon l'une quelconque des revendications 8 à 10, caractérisée en ce que lesdites membranes (4) sont de type organique.
 - 13. Installation d'épuration selon l'une quelconque des revendications 1 à 12, caractérisée en ce que ledit matériau catalyseur (3) forme une pré-couche à la surface dudit dispositif de filtration à membranes (4).
- 20 14. Installation d'épuration selon l'une quelconque des revendications 1 à 13, caractérisée en ce que ledit gaz oxydant comprend l'un au moins des oxydants appartenant au groupe suivant :
 - air;
 - ozone;
 - air ozoné ;
 - oxydes d'azote;
 - oxygène;
 - 15. Installation d'épuration selon l'une quelconque des revendications 1 à 14, caractérisée en ce qu'elle comprend des moyens d'ajout d'H₂O₂ dans ledit réacteur.

16. Installation d'épuration selon l'une quelconque des revendications 1 à 15, caractérisée en ce qu'elle comprend une boucle de re-circulation (7) dudit effluent dans ledit réacteur.

17. Installation d'épuration selon l'une quelconque des revendications 1 à 16 caractérisée en ce qu'elle comprend une boucle de re-circulation (6) des gaz provenant dudit évent (5).

5

15

20

25

- 18. Installation d'épuration selon l'une quelconque des revendications 1 à 17, caractérisée en ce que ledit réacteur (1) est réalisé sous la forme d'une colonne non agitée mécaniquement.
- 19. Procédé mis en oeuvre à l'aide d'une installation selon l'une quelconque des revendications 1 à 18, caractérisé en ce que l'injection dudit gaz oxydant dans ledit réacteur (1) est réalisé de façon continue.
 - 20. Procédé selon la revendication 19, caractérisé en ce que la durée de contact entre ledit effluent et ledit matériau (3) est comprise entre environ 5 minutes et environ 3 heures.
 - 21. Procédé selon la revendication 20, caractérisé en ce que la durée de contact entre ledit effluent et ledit matériau (3) est comprise entre environ 30 minutes et environ 60 minutes.
 - 22. Procédé selon l'une quelconque des revendications 19 à 21, caractérisé en ce qu'il comprend une étape de re-circulation dudit effluent.
 - 23. Procédé selon l'une quelconque des revendications 19 à 22 caractérisé en ce qu'il comprend une étape de re-circulation des gaz.
 - 24. Procédé selon l'une quelconque des revendications 19 à 23, caractérisé en ce que l'étape de filtration est effectuée par aspiration en configuration externeinterne.
 - 25. Procédé selon la revendication 24, caractérisé en ce que ladite étape de filtration est réalisée avec une pression d'aspiration inférieure à 1 bar.
 - 26. Procédé selon la revendication 25, caractérisé en ce que ladite étape de filtration est réalisée avec une pression d'aspiration comprise entre environ 0,1 bar et environ 0,8 bar.

Fig. 1