MPiS Zadanie domowe 1

Manfred Gawlas

Parametry symulacji

Do symulacji wykorzystano generator Mersenne Twister, implementacja wykożystana z biblioteki <u>System.Random.Mersenne.Pure64</u>.

This is pure functional implementation of RNG.

Program napisano w Haskell'u. Za to się spóźniłem z wysłaniem, w piątek wieczorem skończyłem symulacje, sobota rano robie teraz dokumentacje.

Zad1 - Nierówno´sci ogonowe dla rozkładu dwumianowego Bin(n, 1/2)

Niech $X \sim \mathrm{Bin}(n,\frac{1}{2})$. Zastosowano nierówności Markowa oraz Czebyszewa do oszacowania:

(a)
$$P(X\geq 1.15E(X))$$

(b) $P(|X-E(X)|\geq 0.1E(X))$

Do obliczenia dokładnych wyników, zastosowano biblioteke statistics:

import Statistics.Distribution.Binomial

Wyniki

(a) Oszacowanie (P(X \geq 1.15 E(X)))

(n)	Ograniczenie Markowa	Ograniczenie Czebyszewa	Wartość dokładna
100	0.8696	0.00756	0.09667
1000	0.8696	0.000756	0.0000118
10000	0.8696	0.0000756	0.0

(b) Oszacowanie (P(|X - E(X)| | qq 0.1 E(X)))

(n)	Ograniczenie Markowa	Ograniczenie Czebyszewa	Wartość dokładna
100	10.0	1.0	0.3682

(n)	Ograniczenie Markowa	Ograniczenie Czebyszewa	Wartość dokładna
1000	10.0	0.1	0.00173
10000	10.0	0.01	0.0

Wnioski

Dokładność oszacowania:

- Jak widać, bardziej dokładne oszacowanie daje Ograniczenie Czebyszewa, które co ciekawe, w przypadku (a) dla n = 100 daje wynik mnijeszy o rząd wielkości od wartości dokładnej.
- W obu przypdakach ograniczenie Czebyszewa dokładniejsze od rzędy wielkości.

Charakterystyka oszacowań

Dla obu ograniczeń widać bardzo proste zależności. Ograniczenie Markowa jest constst względem n oraz ogranicznie Czebyszewa maleje proporcjonalnie do n. Jest to oczywiście oczekiwane, ze względu na to jak one się wyrażają.

Zad2 - Błądzenie losowe na liczbach całkowitych Wyniki

Wnioski

Jak widać, wyznaczone dystrybuanty są bardzo podobne z dystrybuantą rozkładu normalnego który aproksymuje S_n .

Zależność pomiędzy różnymi CDF dla różnych n też pokazuje że wsumie jest to z grubszda rozciąganie tego samego efektu.

Dla n=100 mamy prawie perfekcyjnie pokrywające się warotści empiryczne z teorytycznymi.

Zad3 - Błądzenie losowe na \mathbb{Z} – rozkład "czasu spędzonego nad osią OX"

Wyniki

Wnioski

Po pierwsze, warto zauważyć że zwiększenie n z 100 na 1000 zauważalnie poprawia zależność między histogramem a PDF dla arcsinusa.

Ale co ważniejsze, to widać bardzo ciekawą zależność. Jest bardzo bardzo wysokie prawdopodobieństwo że proces spędzi prawie cały czas nad lub pod osią. Dla zakresu [0.2, 0.8] wartość prawdopodobieństwa jest niska, ale dla [0, 0.2] i [0.8, 1.0] mamy wystrzał w kosmos.

Takie moje przeczucie dlaczego tak jest, to że nawet jak mamy jakieś 50-50 -1 i 1, to żeby spędzić po równo czasu nad i pod to by trzeba było bardzo charakterystycznie uporządkować te 1 i -1, dokładnie tak, by po ciągu iluś -1 następował 2 razy większy ciąg 1, i potem tej samej wielkości ciąg -1 itd. Jak będziemy mieli jakieś zanieczyszczenia w tym ciągu, to tym bardziej będzie poprostu bardziej wypłaszczona trasa nad czy pod.