RSA Encryption

CS 5158/6058 Data Security and Privacy
Spring 2018

Instructor: Boyang Wang

- Group G, group order m,
 - A function f_e G—>G: exponentiation on <u>element g</u>
 with <u>integer e</u>
 - If G is additive, f_e(g) = e*g,
 - If G is multiplicative, f_e(g) = g^e
 - If gcd(e,m)=1, then fe is a permutation (bijection)

- A function f_e G—>G: f_e(g) = e*g (additive group)
 - If gcd(e,m)=1, then fe is a permutation (bijection)
- E.g., $Z_5 = \{0, 1, 2, 3, 4\}$ is an additive group,
 - if e = 2, gcd(e,m) = gcd(2,5) = 1
 - $f_e(0) = 2^*0 = 0$; $f_e(1) = 2^*1 = 2$; $f_e(2) = 2^*2 = 4$;
 - $f_e(3) = 2*3 = 6 = 1 \mod Z_5$;
 - $f_e(4) = 2*4 = 8 = 3 \mod Z_5$
 - f_e:{0, 2, 4, 1, 3} a permutation of Z₅

- A function f_e G—>G: f_e(g) = e*g (additive group)
 - If gcd(e,m)=1, then fe is a permutation (bijection)
- E.g., $Z_6 = \{0, 1, 2, 3, 4, 5\}$ is an additive group,
 - if e = 2, gcd(e,m) = gcd(2,6) = 2! = 1
 - $f_e(0) = 2*0 = 0$; $f_e(1) = 2*1 = 2$; $f_e(2) = 2*2 = 4$;
 - $f_e(3) = 2*3 = 6 = 0 \mod Z_6$;
 - $f_e(4) = 2*4 = 8 = 2 \mod Z_6$
 - $f_e(5) = 2*5 = 10 = 4 \mod Z_6$
 - f_e:{0, 2, 4} is not a permutation of Z₆

- <u>Practice</u>: Z₇ ={0, 1, 2, 3, 4, 5, 6} is an additive group,
 - Group order m = ?? identity ??
 - If e = 2, is f_e a permutation of Z_7 ?
 - Compute f_e(g), for all the elements in Z₇
 - gcd(e, m) = gcd(2, 7) = 1, f_e is a permutation
 - $f_e(0) = 2*0 = 0$; $f_e(1) = 2*1 = 2$; $f_e(2) = 2*2 = 4$;
 - $f_e(3) = 2*3 = 6$; $f_e(4) = 2*4 = 8 = 1 \mod Z_7$
 - $f_e(5) = 2*5 = 10 = 3 \mod Z_7$
 - $f_e(6) = 2*6 = 12 = 5 \mod Z_7$
 - f_e: {0, 2, 4, 6, 1, 3, 5}

- A function fe G—>G: fe(g), group order is m
 - if ed = 1 mod m, then f_d is inverse of f_e
 - $f_d(f_e(g)) = g$
 - If G is additive

$$f_d(f_e(g)) = f_d(eg) = deg = (ed \mod m)g = g$$

If G is multiplicative

$$f_d(f_e(g)) = f_d(g^e) = (g^e)^d = g^{ed \mod m} = g^1 = g$$

- Example: $Z_5 = \{0, 1, 2, 3, 4\}$ is an additive group,
 - if e = 2, gcd(e,m) = gcd(2,5) = 1
 - f_e:{0, 2, 4, 1, 3} a permutation of Z₅
- If ed = 1 mod m, then f_d is inverse of f_e
 - e = 2, d = 3, $ed = 3*2 \mod m = 1 \mod 5$
 - $f_d(0) = 3*0 = 0$; $f_d(2) = 3*2 = 1$;
 - $f_d(4) = 3^*4 = 12 = 2 \mod Z_5$; $f_d(1) = 3^*1 = 3$;
 - $f_d(3) = 3*3 = 9 = 4 \mod Z_5$
 - f_d:{0, 1, 2, 3, 4} inverse of f_e

- A function f_e G—>G: f_e(g)
 - If $ed = 1 \mod m$, then f_d is inverse of f_e

- <u>Practice</u>: Z₇ ={0, 1, 2, 3, 4, 5, 6} is an additive group,
 - e = 2, f_e is a permutation, f_e: {0, 2, 4, 6, 1, 3, 5}
 - what is d =?? and compute f_d with all the inputs
 - $e^*d = 2^*4 = 1 \mod 7, d = 4$
 - $f_d(0) = 4*0 = 0$; $f_d(2) = 4*2 = 1$;
 - $f_d(4) = 4*4 = 16 = 2 \mod Z_7$;
 - $f_d(6) = 4*6 = 24 = 3 \mod Z_7$; $f_d(1) = 4*1 = 4$
 - $f_e(3) = 4*3 = 12 = 5 \mod Z_7$
 - $f_e(5) = 4*5 = 20 = 6 \mod Z_7$
 - f_d: {0, 1, 2, 3, 4, 5, 6}, f_d is inverse of f_e

- $Z_N = \{0, 1, 2, ..., N-1\}$ is a group under addition but not multiplication
 - If identity is 1, then some do not have inverse
 - E.g., 2 does not have an inverse, since 1/2 is not an element of Z_N , i.e. 2 is not invertible
- Find a group under multiplication mod N
 - Remove all the elements in Z_N that are not invertible
 - If b and N are relatively prime, i.e., gcd(b, N) = 1,
 then b is invertible mod N

- Find a group under multiplication mod N
 - Remove elements in Z_N that are <u>not invertible</u>
 - If b and N are relatively prime, i.e., gcd(b, N) = 1,
 then b is invertible mod N
 - Z_N^* has all the integers in {1, 2, ..., N-1} that are relatively prime to N

$$\mathbb{Z}_N^* = \{b \in \{1, ..., N-1\} | \gcd(b, N) = 1\}$$

Z_N* is a multiplicative group

- Example: N = 6, what are the elements in Z_6^* ?
 - $Z_6 = \{0, 1, 2, 3, 4, 5\},\$
 - remove 0 first
 - gcd(1, N) = 1, relatively prime
 - gcd(2, N) = 2, not relatively prime, remove 2
 - gcd(3, N) = 3, not relatively prime, remove 3
 - gcd(4, N) = 2, not relatively prime, remove 4
 - gcd(5, N) = 1, relatively prime
 - Z_6 *= {1, 5} is a multiplicative group

- Practice: N = 9, what are the elements in Z_9^* ?
 - $Z_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\},\$
 - remove 0 first
 - gcd(1, N) = 1, gcd(2, N) = 1,
 - gcd(3, N) = 3! = 1, remove 3
 - gcd(4, N) = 1, gcd(5, N) = 1,
 - gcd(6, N) = 3! = 1, remove 6
 - gcd(7, N) = 1, gcd(8, N) = 1
 - $Z_9^* = \{1, 2, 4, 5, 7, 8\}$

- Practice: N = 11, what are the elements in Z_{11}^* ?
 - $Z_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
 - remove 0 first
 - N=11 is a prime, for any element b>0 in Z₁₁
 - gcd(b, N) = 1
 - no need to remove any b
 - $Z_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

- Example: N = 9, what are the elements in Z_9^* ?
 - $Z_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}; Z_9^* = \{1, 2, 4, 5, 7, 8\}$
- $|Z_N^*|$: Order of group Z_N^*
 - $|Z_N^*| = \phi(N)$, $\phi(\cdot)$ is called <u>Euler phi function</u>
 - The number of the integers in {1, 2, ..., N-1} that are relatively prime to N
 - If N is a prime, then $\phi(N) = |Z_N^*| = N-1$
 - E.g., N=7 is a prime, $|Z_7^*|=6$, $Z_7^*=\{1, 2, 3, 4, 5, 6\}$

- If N = pq, p, q are primes, $\phi(N) = |Z_N^*| = (p-1)(q-1)$
 - Why |Z_N*| is equal to (p-1)(q-1) ??
 - $|Z_N^*|$: the number of the integers in {1, 2, ..., N-1} that are relatively prime to N
 - If a in {1, ..., N-1} is not relatively prime to N
 - gcd(a, N) != 1
 - gcd(a, N) = p or gcd(a, N) = q
 - p | a or q | a

- If N = pq, p, q are primes, then $|Z_N^*| = (p-1)(q-1)$
 - There are (q-1) elements, s.t., gcd(a, N) = p
 - Elements divided by p: p, 2p, ..., (q-1)p
 - There are (p-1) elements, s.t., gcd(a, N) = q
 - Elements divided by q: q, 2q, ..., (p-1)q
 - No. of elements s.t., gcd(a, N) != 1
 - (q-1) + (p-1)
 - No. of elements s.t., gcd(a, N) = 1
 - N 1 (q-1) (p-1) = (p-1)(q-1) = $|Z_N^*|$

- If N = pq, p, q are primes, then $|Z_N^*| = (p-1)(q-1)$
- Example: N = 6 = 2*3, $Z_6 = \{0, 1, 2, 3, 4, 5\}$
 - p = 2, q = 3, p and q are primes
 - (q-1) = 2 elements, s.t., gcd(a, N) = p = 2
 - $a = \{2, 4\}$
 - (p-1) = 1 elements, s.t., gcd(a, N) = q = 3
 - $a = \{3\}$
 - Remove {0}, {2, 4} and {3}
 - $Z_6^* = \{1, 5\}$ $|Z_6^*| = (2-1)^*(3-1) = 2$

- If N = pq, p, q are primes, then $|Z_N^*| = (p-1)(q-1)$
- Practice: $N = 21 = 3*7, Z_{21} = \{0, 1, 2, ..., 20, 21\}$
 - What are the elements in Z₂₁*?
 - How many elements in Z_{21}^* ? Or $\phi(N) = |Z_{21}^*| = ?$
 - p = 3, q = 7, p and q are primes
 - (q-1) = 6 elements, s.t., gcd(a, N) = p = 3
 - $a = \{3, 6, 9, 12, 15, 18\}$
 - (p-1) = 2 elements, s.t., gcd(a, N) = q = 7
 - $a = \{7, 14\}$
 - Remove {0}, {3,6,9,12,15,18} and {7,14}
 - $Z_{21}^* = \{1,2,4,7,8,11,13,14,16,17,19,20\}$
 - $|Z_{21}^*| = (3-1)^*(7-1) = 2^*6 = 12$

- If group order is m, then $g^m = 1$, for any g in G
 - Exponentiation on element g with integer m is equal to group identity 1
- Z_N* is a multiplicative group mod N
 - Exponentiation on element g with integer $|Z_N^*|$ is equal to group identity 1

$$g^{|\mathbb{Z}_N^*|} = g^{\phi(N)} = 1 \mod N$$

- $Z_7 = \{0, 1, 2, 3, 4, 5, 6\}, N=7, \text{ group order is } m=7$
- $Z_7^* = \{1, 2, 3, 4, 5, 6\}, N=7, \text{ group order is } m=6$ $g^{|\mathbb{Z}_N^*|} = g^{\phi(N)} = 1 \mod N$
 - $1^6 = 1 \mod N$, $2^6 = 64 = 1 \mod N$,
 - $3^6 = 729 = 1 \mod N$, $4^6 = 4096 = 1 \mod N$,
 - $5^6 = 15625 = 1 \mod N$, $6^6 = 46656 = 1 \mod N$
- Z₇ is additive, Z₇* is multiplicative

- $Z_6 = \{0, 1, 2, 3, 4, 5\}, N=2*3$, group order is m=6
- Z_6 *= {1, 5}, N=2*3, group order is m=(2-1)(3-1)=2 $g^{|\mathbb{Z}_N^*|} = g^{\phi(N)} = 1 \mod N$
 - $1^2 = 1 \mod N$, $5^2 = 25 = 1 \mod N$,
- Z₆ is additive, Z₆* is multiplicative

- Group G, order m
 - A function f_e G—>G: $f_e(g) = g^e$
 - If gcd(e, m)=1, then fe is a permutation
 - ed = 1 mod m, then f_d is inverse of f_e
- Group Z_N^* , order $m = |Z_N^*| = \phi(N)$
 - A function $f_e Z_N^* Z_N^*$: $f_e(g) = g^e$
 - If $gcd(e, |Z_N^*|)=1$, then f_e is a permutation
 - ed = 1 mod $|Z_N^*|$, then f_d is inverse of f_e

Public-Key Encryption

- Alice obtains Bob' public key from <u>public channels</u>
- Alice encrypts with public key
- Bob decrypts with private key

Public-Key Encryption

- PKE includes 3 algorithms
- KeyGen: given a security parameter 1^n , output a pair of keys (pk, sk), where pk is public and sk is private.
- Enc: given a public key pk and a message m, output a ciphertext c
- Dec: given a private key sk and a ciphertext c, output a message m.

One-Way Function

- One-way function is used in public-key crypto
 - Easy to compute
 - Hard to invert: (with polynomial-time algorithm)
 - E.g., factoring, discrete-log problem
- Factoring (integer factorization)
 - Assume p,q are <u>large primes</u>
 - Easy: p, $q N = p^*q$
 - Hard: N —> p,q

RSA

- Rivest-Shamir-Adleman (RSA), 1978
 - Widely used today, SSL/TLS, email, HTTPS, etc.
 - ACM Turing award in 2002

- KeyGen: given a security parameter 1^n , generate two n-bit primes p, q, compute N = pq, choose e s.t. $gcd(e, \phi(N)) = 1$, compute $d = e^{-1} \mod \phi(N)$, output public key pk = (N, e), private key sk = d
- Enc: given a message m and a public key pk = (N, e), return $c = m^e \mod N$
- Dec: given a ciphertext c and a private key sk = d, return $m = c^d \mod N$

Correctness

- For group Z_N^* $g^{|\mathbb{Z}_N^*|} = g^{\phi(N)} = 1 \mod N$
- We know in RSA:

$$ed = 1 \mod \phi(N)$$
 $\operatorname{Enc}_{pk}(m) = c = m^e \mod N$

$$\begin{aligned}
\mathsf{Dec}_{sk}(c) &= c^d &= (m^e)^d \\
&= m^{ed \mod \phi(N)} \\
&= m \mod N
\end{aligned}$$

- m, c are elements of group Z_N*
- e, d are integers

- Example: p*q = 17*23 = 391 = N
 - $\phi(N) = |Z_N^*| = (p-1)(q-1) = 16*22 = 352$
 - choose e, s.t. $gcd(e, \phi(N)) = 1$
 - e = 3, gcd(3, 352) = 1
 - d = 235, $e^*d = 3^*235 = 705 = 1 \mod 352$
 - pk = (N, e) = (391, 3), sk = d = 235
 - Given m=158, c=me mod N =1583 = 295 mod 391
 - Given c=295, $m=c^d \mod N = 295^{235} = 158 \mod 391$

- Practice: p*q = 11*7 = 77 = N
 - $\phi(N) = |Z_N^*| = (p-1)(q-1) = 10^*6 = 60$
 - choose e, s.t. $gcd(e, \phi(N)) = 1$
 - Can we choose e = 3 in KeyGen?
 - No, $gcd(e, \phi(N)) = gcd(3, 60) = 3! = 1$
 - Can we choose e = 7 in KeyGen?
 - Yes, $gcd(e, \phi(N)) = gcd(7, 60) = 1$

- <u>Practice</u>: p*q = 11*7 = 77 = N
 - $\phi(N) = |Z_N^*| = (p-1)(q-1) = 10^*6 = 60$
 - choose e, s.t. $gcd(e, \phi(N)) = 1$
 - e = 7,
 - d = 43, $ed = 7*43 = 1 \mod 60$
 - What is pk =? what is sk =?
 - pk = (N, e) = (77, 7), sk = d = 43
 - Given m = 2, what is $c = m^e$?
 - $c = m^e = 2^7 = 128 = 51 \mod 77$

Additional Reading

Chapter 8, Introduction to Modern Cryptography, Drs. J. Katz and Y. Lindell, 2nd edition