Axler《线性代数应该这样学》(第三版) 习题选解

Alfred Sines*

2020.9.4

目录

1	L 向量空间		1
	1.1	\mathbb{R}^n 与 \mathbb{C}^n	1
	1.2	向量空间的定义	1
	1.3	子空间	1
2	有限维向量空间		2
	2.1	张成空间与线性无关	2
	2.2	基	3
	2.3	维数	3
3	线性	一块射	3

^{*}Department of Algebra, Cloud Society

1 向量空间

1.1 \mathbb{R}^n 与 \mathbb{C}^n

说明: 在本书中F表示R或C.

1.2 向量空间的定义

2. 设V是 \mathbb{F} 上的线性空间, $a \in \mathbb{F}$, $v \in V$, av = 0. 证明: a = 0 或v = 0.

证明: 设 $a \neq 0$, 则 $v = 1v = (a^{-1}a)v = a^{-1}(av) = 0$.

6. 在 $\mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ 上定义加法和标量乘法如下: 实数加法和乘法按通常法则定义; 对于 $t \in \mathbb{R}$,

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \quad t(-\infty) = \begin{cases} \infty & \text{if } t < 0 \\ 0 & \text{if } t = 0 \end{cases} \\ \infty & \text{if } t > 0, \end{cases}$$
$$t + \infty = \infty + t = \infty, \quad t + (-\infty) = (-\infty) + t = -\infty$$
$$\infty + \infty = \infty, \quad (-\infty) + (-\infty) = -\infty, \quad \infty + (-\infty) = 0$$

如此定义的 $\mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ 是否为 \mathbb{R} 上的线性空间?

解: $\infty + \infty + (-\infty) = \infty + (-\infty) = 0$; 另一方面 $(1+1-1)\infty = 1 * \infty = \infty$. 不满足分配性质, 故不是线性空间.

1.3 子空间

12. 设V是 \mathbb{F} 上的线性空间,证明V的两个子空间的并是V的子空间当且仅当其中一个子空间包含另一个子空间.

证明: 充分性显然, 下证必要性. 设 $U_1, U_2, U_1 \cup U_2$ 均为V的子空间, 若 $U_1 \setminus U_2$ 与 $U_2 \setminus U_1$ 均非空, 取 $\alpha \in U_1 \setminus U_2$, $\beta \in U_2 \setminus U_1$, 由 $U_1 \cup U_2$ 是子空间, $\alpha + \beta \in U_1 \cup U_2$. 若 $\alpha + \beta \in U_1$, 推出 $\beta \in U_1$; 若 $\alpha + \beta \in U_2$, 推出 $\alpha \in U_2$, 两者均矛盾. 故 $U_1 \setminus U_2 \cup U_2 \setminus U_1$ 少有一为空集. 命题得证.

19. 设V是 \mathbb{F} 上的线性空间, U_1, U_2, W 为V的子空间, 证明或否定: 若 $U_1 + W = U_2 + W$, 则 $U_1 = U_2$.

解: 反例如下: 取 $V = \mathbb{R}^3$, $U_1 = \{(x,0,0)|x \in \mathbb{R}\}$, $U_2 = \{(x,y,0)|x,y \in \mathbb{R}\}$, $W = \{(0,y,z)|y,z \in \mathbb{R}\}$.

23. 设V是 Γ 上的线性空间, U_1, U_2, W 为V的子空间, 证明或否定: 若 $V = U_1 \oplus W = U_2 \oplus W$, 则 $U_1 = U_2$.

解: 反例如下: 取 $V = \mathbb{R}^2$, $U_1 = \{(0,y)|y \in \mathbb{R}\}$, $U_2 = \{(z,z)|z \in \mathbb{R}\}$, $W = \{(x,0)|x \in \mathbb{R}\}$.

2 有限维向量空间

2.1 张成空间与线性无关

10. 设V是F上的线性空间, v_1, v_2, \dots, v_m 在V中线性无关, $w \in V$. 证明: 若 $v_1 + w, v_2 + w, \dots, v_m + w$ 线性相关, 则 $w \in \text{span}(v_1, v_2, \dots, v_m)$.

证明: 存在不全为0的 λ_i ($1 \le i \le m$),

$$0 = \sum_{i=1}^{m} \lambda_i (v_i + w) = \sum_{i=1}^{m} \lambda_i v_i + (\sum_{i=1}^{m} \lambda_i) w.$$

令 $\mu = \sum_{i=1}^{m} \lambda_i$, 若 $\mu = 0$, 与 v_1, v_2, \dots, v_m 线性无关矛盾. 故 $\mu \neq 0$, $w = -\frac{1}{\mu} \sum_{i=1}^{m} \lambda_i v_i$. 命题得证.

11. 设V是**F**上的线性空间, v_1, v_2, \dots, v_m 在V中线性无关, $w \in V$. 证明: v_1, v_2, \dots, v_m, w 线性无关当且仅当 $w \notin \text{span}(v_1, v_2, \dots, v_m)$.

证明: 必要性: 若 $w \in \text{span}(v_1, v_2, \dots, v_m)$, 设 $w = \sum_{i=1}^m \lambda_i v_i, \lambda_i \in \mathbb{F}$. 这说明

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_m v_m - w = 0.$$

与 v_1, v_2, \dots, v_m, w 线性无关矛盾. 故 $w \notin \text{span}(v_1, v_2, \dots, v_m)$.

充分性: 设 $w \notin \text{span}(v_1, v_2, \dots, v_m)$, 对于

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_m v_m + \mu w = 0.$$

- 2.2 基
- 2.3 维数
- 3 线性映射