Fundamentals of Data Structures

Laboratory Project 1

Performance Measurement(POW)

Date: 2023-10-07

Author:陈硕 Number:3220106406

Chapter 1: Introduction

This project uses two different algorithms to compute X^N for some positive integer N.. Then, we analyze the complexities of the two algorithms by measuring and comparing the performances of Algorithm 1 and the iterative and recursive implementations of Algorithm 2 for X=1.0001 and N=1000, 5000, 10000, 20000, 40000, 60000, 80000, 100000.

Chapter 2: Algorithm Specification

Algorithm 1: use N-1 multiplications.(Let's call it iterativepow1)

Here I use a loop to calculate.

```
//This function uses the Algorithm1 to conpute x^m
double iterativepow1(double x,long m){
   long i;
   double result=1;
   for(i=1;i<=m;i++){      //getting the result by using N-1 multiplications
        result*=x;
   }
   return result;
}</pre>
```

Algorithm 2 works in the following way: if N is even, $X^N=X^(N/2)\times X^(N/2)$; and if N is odd, $X^N=X^(N-1)/2\times X^(N-1)/2\times X$.

I implement algorithm 2 in a recursive version and an iterative version.

1. The recursive version of algorithm 2(Let's call it recursive pow)
When exponent=0, return 1 as the exit of recursion. Otherwise, make the latter base square of the previous base to halve the times that we need to multiply.

2. The iterative version of algorithm 2(Let's call it iterative pow2)

I use a loop. The loop number i means the times left to multiply, so i starts from the exponent m. Every time we finish the operation in a loop, i=i/2.

Chapter 3: Testing Results

	N	1000	5000	10000	20000	40000	60000	80000	100000
Algori	Iteratio	2086	1707	1200	493	4	149	85	40
thm1	ns(K)								
	Ticks	16	15	15	15	15	16	15	16

	Total Time(se c)	0.016	0.015	0.015	0.015	0.015	0.016	0.015	0.016
	Duratio n(sec)	0.00000 76702	0.00000 87873	0.00001 25000	0.00003 04280	0.00375	0.00010 73826	0.00017 64706	0.0004
Algori thm2	Iteratio ns(K)	168014	262697 4	164597	188258	166937 1	200323	348212	21124
(iterati	Ticks	14	15	15	15	16	15	16	15
ve Versio n)	Total Time(se c)	0.014	0.015	0.015	0.015	0.016	0.015	0.016	0.015
	Duratio n(sec)	0.00000 00833	0.00000 00057	0.00000 00911	0.00000 00797	0.00000 00096	0.00000 000749	0.00000 00459	0.00000 07101
Algori thm2 (recur sive Versio n)	Iteratio ns(K)	127349	50207	333404	25496	10528	495370	148485	78183
	Ticks	16	10	15	16	14	25	16	14
	Total Time(se c)	0.016	0.01	0.015	0.016	0.014	0.025	0.016	0.014
	Duratio n(sec)	0.00001 256	0.00001 992	0.00000 00450	0.00000 06275	0.00000 13298	0.00000 00505	0.00000 01078	0.00000 01791

Chapter 4: Analysis and Comments

1. Theoretically analyze the time and space complexity of the three methods Compute X^N:

1) Algorithm 1

the loop will always circulate for n times, so the time complexity is O(n). the space complexity is O(1)

2) Algorithm 2(recursive version)

Every time we make m/2 until m=0,then we get out of the recursion.

So the time complexity is log(n).

The space complexity is O(n)

3) Algorithm 2(iterative version) O(logn), just similar with 2) the space complexity is O(1)

2. Some conclusions we practically get from our test data in Chapter 3

- 1) We can see that As a whole, algorithm 2 runs more quickly than algorithm 1,no matter the recursive version or the iterative version. What's more, as N grows larger, the gap between the two algorithms becomes larger.
- 2) In terms of algorithm 2, Iterative version runs more quickly than recursive version. I think maybe it's because recursion version has a process of backtracking, consuming some time. But the gap isn't very big, and when N = 100000,I even see that recursive version runs more quickly.

3. Some comments and confusion

I think as a whole I finish the project perfectly and try my best to use as little code as possible to reach the goal.

But I find that the time don't grow very regularly as the time complexity shows, for example, time complexity of algorithm 1 is O(n), but the time it consumes isn't linear. This confuses me a lot.

Chapter 5: Appendix: Here are part of my Source Code (in C)

Chapter 6:Declaration

I hereby declare that all the work done in this project titled"陈硕" is of my independent effort