

Гүүрэн гарц

Кинан Бакугийн төв гудмын нэг талд байрлах барилгууд болон гүүрнүүдийн төлөвлөлтийг зуржээ. Тэнд 0-ээс n-1 хүртэл дугаарлагдсан n барилга болон 0-ээс m-1 хүртэл дугаарлагдсан m гүүр байгаа. Төлөвлөлт нь хоёр хэмжээст хавтгайд барилга болон гүүрнүүд нь харгалзан босоо болон хэвтээ хэрчмүүдээр зурагджээ.

i-р $(0 \le i \le n-1)$ барилга нь (x[i],0) цэгээс эхлэдэг бөгөөд h[i] өндөртэй ажээ. Иймээс энэ нь (x[i],0) болон (x[i],h[i]) цэгүүдийг холбосон хэрчим болох юм.

j-р $(0 \le j \le m-1)$ гүүр нь l[j] болон r[j] барилгууд дээр төгсгөлтэй бөгөөд y координатын хувьд эерэг бүхэл y[j]-д байрладаг. Иймээс энэ нь (x[l[j]],y[j]) болон (x[r[j]],y[j]) цэгүүдийг холбосон хэрчим болох юм.

Гүүр болон барилга нь ерөнхий цэгтэй байх юм бол **огтлолцсон** гэж үзнэ. Иймд гүүр нь хоёр төгсгөлийн барилгатай огтлолцох бөгөөд дундах өөр барилгуудтайгаа бас огтлолцож болно.

Кинан барилгууд болон гүүрүүдийг ашиглан зорчиж чаддаг гэвэл s барилгын эхлэлээс g барилгын эхлэл хүртэлх хамгийн богино замыг олж өгөхийг, эсвэл тийм зам байхгүйг тогтоож өгөхийг хүсчээ. Та газраар алхаж болохгүй анхаарна уу. Өөрөөр хэлбэл g координат нь g байх хэвтээ шулуунаар явж болохгүй юм.

Та гүүрнээс барилга уруу эсвэл барилгаас гүүр үрүү аль ч огтлолцлоор зорчиж болно. Хэрэв хоёр гүүрний төгсгөл нь нэг цэгт байвал та нэгнээс нөгөө гүүр үрүү зорчиж болно.

Кинанд асуултанд нь хариулж тус болно уу.

Хэрэгжүүлэлтийн мэдээлэл

Та дараах функцуудыг хэрэгжүүлэх ёстой. Энэ нь шалгагчаар тест болгоны хувьд яг ганц дуудагдана.

- x болон h: n урттай бүхэл тоон массив
- l, r, болон y: m урттай бүхэл тоон массив
- s болон g: хоёр бүхэл тоо

• Энэхүү функц барилгууд болон гүүрүүдээр зорчиж чадаж байвал s барилгын эхлэлээс g барилгын эхлэл хүртэлх хамгийн богино замын уртыг, үгүй бол -1 гэсэн утгыг буцаана.

Жишээ

1 еешиЖ

Дараах байдлаар функцийг дуудав:

```
min_distance([0, 3, 5, 7, 10, 12, 14],
        [8, 7, 9, 7, 6, 6, 9],
        [0, 0, 0, 2, 2, 3, 4],
        [1, 2, 6, 3, 6, 4, 6],
        [1, 6, 8, 1, 7, 2, 5],
        1, 5)
```

Зөв хариулт нь 27 юм.

Доорх зураг нь Жишээ 1-т харгалзах зураг юм:

Жишээ 2

Зөв хариулт нь 21 юм.

Хязгаарлалтууд

- $1 \le n, m \le 100000$
- $0 \le x[0] < x[1] < \ldots < x[n-1] \le 10^9$
- ullet $1 \leq h[i] \leq 10^9$ (бүх $0 \leq i \leq n-1$ хувьд)
- ullet $0 \leq l[j] < r[j] \leq n-1$ (бүх $0 \leq j \leq m-1$ хувьд)
- ullet $1 \leq y[j] \leq \min(h[l[j]], h[r[j]])$ (бүх $0 \leq j \leq m-1$ хувьд)
- $0 \le s, g \le n 1$
- $ullet \ s
 eq g$
- Аль ч хоёр гүүрнүүд төгсгөлүүдээс бусад газарт хэзээ ч огтлолцдоггүй.

Дэд бодлого

- 1. (10 оноо) $n, m \leq 50$
- 2. (14 оноо) Гүүр болгон нь хамгийн ихдээ 10 барилгатай огтлолцоно.
- 3. (15 оноо) s=0, g=n-1, болон бүх барилгууд ижилхэн өндөртэй байна.
- 4. (18 оноо) s = 0, g = n 1
- 5. (43 оноо) Нэмэлт хязгаарлалт байхгүй.

Жишээ шалгагч

Жишээ шалгагч нь дараах байдлаар оролтыг уншина:

- мөр 1: *n т*
- Mop 2+i $(0 \le i \le n-1)$: x[i] h[i]
- Mop n+2+j $(0 \le j \le m-1)$: $l[j] \ r[j] \ y[j]$
- Mep n + m + 2: s g

Жишээ шалгагчийн гаралт нь min_distance функцийн буцаасан утгыг агуулах ганц мөрөөс тогтоно.