

Escola de Ciências e Tecnologia Curso: Engenharia Informática Disciplina: Sistemas Digitais Docentes: Prof. Teresa Gonçalves

Trabalho Realizado Por: Marlene Oliveira Nº 25999 Pedro Mateus Nº 26048 João Aiveca Nº 26175

Introdução

O nosso trabalho tem como principal objectivo implementar um circuito que simule o funcionamento de uma máquina de distribuição de bebidas.

Para resolver o problema necessitaremos de conceitos relacionados com Flip-Flops, circuitos combinatórios, contadores e de lógica, utilizada para relacionar e conectar os elementos necessários para o bom funcionamento do circuito. No desenvolvimento deste relatório explicaremos o funcionamento da máquina de estados, bem como dos outros componentes utilizados e tentaremos dar uma resposta ao problema.

Diagrama ASM:

Depois da construção do diagrama de estados que vimos anteriormente, elaborámos as tabelas de verdade com todos as entradas e saídas do nosso sistema. A tabela de transição de estados pode ser consultada no ficheiro tabelas.xls que se encontra em anexo.

Das nossas aulas teóricas sabemos que com "n" flip-flops podem existir "2" " estados distintos. Neste caso temos dezasseis estados, ou seja, 2⁴ estados distintos. Portanto, o sistema irá depender de quatro flip-flops. Para a implementação iremos utilizar flip-flops D e JK. O sistema irá ter quatro entradas (duas destinadas às moedas e duas destinadas à selecção da bebida) e três saídas (uma referente ao café, outra ao chocolate e outra referente à possibilidade de retirar a bebida da máquina).

A tabela de transição de estados é a seguinte:

FFS	CAFE	10CENT	20CENT	>=30CENT	=30CENT	chocolate	FFS'	C1	C2	C3
0000	0	-	-	-	-	-	1000	0	0	0
0000	1	-	-	-	-	-	0001	0	0	0
0001	-	0	-	-	-	-	0011	0	0	0
0001	ı	1	ı	-	-	ı	0010	0	0	0
0010	ı	-	ı	-	ı	ı	0100	0	0	0
0011	ı	-	0	-	-	ı	0001	0	0	0
0011	1	-	1	-	-	1	0100	0	0	0
0100	-	-	-	0	-	-	0001	0	0	0
0100	1	-	ı	1	•	ı	0101	0	0	0
0101	-	-	-	-	0	-	0110	0	0	1
0101	-	-	-	-	1	-	0111	1	0	0
0111	ı	-	ı	-	ı	ı	0000	0	0	0
1000	ı	-	ı	-	-	0	0000	0	0	0
1000	1	-	1	-	-	1	1001	0	0	0
1001	1	0	ı	-	ı	ı	1011	0	0	0
1001	-	1	-	-	-	-	1010	0	0	0
1010	ı	-	ı	-	-	-	1100	0	0	0
1011	ı	-	0	-	ı	ı	1001	0	0	0
1011	1	-	1	-	-	-	1100	0	0	0
1100	1	-	1	0	-	-	1001	0	0	0
1100	1	-	1	1	-	-	1101	0	0	0
1101	1	-	-	-	0	-	1110	0	0	1
1101	1	-	-	-	1	-	1111	0	1	0
1111	-	-	-	-	=	-	0000	0	0	0

Expressões das entradas dos flip-flops D:

- D0 = O0*;
- D1 = Q1*;
- D2 = café (a entrada corresponde ao valor que a variável café assume);
- D3 = chocolate (a entrada corresponde ao valor que a variável chocolate assume);

Descodificador BCD/7 segmentos:

Este descodificador foi implementado para que fosse possível apresentar no mostrador o valor inserido (em dezenas de cêntimos). Cada uma das saídas do descodificador é ligada a uma entrada correspondente no display de 7 segmentos.

Segue-se a tabela de verdade do descodificador, bem como o seu logigrama.

BCD0	BCD1	BCD2	BCD3	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	1	0	1	1	1	1
1	0	1	1	1	1	0	1	1	1	1
1	1	0	0	1	1	0	1	1	1	1
1	1	0	1	1	1	0	1	1	1	1
1	1	1	0	1	1	0	1	1	1	1
1	1	1	1	1	1	0	1	1	1	1

Contadores:

Existem dois contadores no nosso trabalho. Ambos os contadores funcionam de uma forma semelhante à de um contador síncrono. Em ambos os contadores a entrada do contador é ligada à entrada de relógio dos flip-flops JK, o que permite com que a sequência de estados evolua com cada impulso aplicado à entrada. Para a construção do primeiro contador foram necessários dois flip-flops JK. As saídas do contador serão denominadas Q0 e Q1. À saída Q1 corresponderá o bit mais significativo da contagem. O logigrama do nosso contador e a tabela de verdade podem ser consultados de seguida:

Sequência de Contagem						
> <	Q1	Q0				
0	0	0				
1	0	1				
2	1	0				
3	1	1				

O segundo contador funciona de modo semelhante ao anterior, a única diferença é que foi implementado com três flip-flops JK e possui três saídas. Neste contador o bit mais significativo corresponderá à saída Q3. O logigrama e a tabela de verdade podem ser consultados de seguida.

Sequência de Contagem							
$>\!\!<$	Q3	Q2	Q1				
0	0	0	0				
1	0	0	1				
2	0	1	0				
3	0	1	1				
4	1	0	0				
5	1	0	1				
6	1	1	0				
7	1	1	1				

Somador de 3 Bits:

O nosso trabalho inclui um somador de 3 bits que tem como principal função calcular o valor (em dezenas de cêntimos) inserido na máquina. Cada uma das entradas do somador (A0, A1, A2, A3, B0, B1 e B2) corresponderá a cada uma das saídas dos contadores, com excepção da entrada B0, a que corresponderá uma entrada com o valor zero constante. Cada uma das saídas (C0, C1, C2) corresponderá a cada uma das entradas do comparador de 3 bits, do qual falaremos de seguida.

A tabela de verdade do somador de 3 bits pode ser consultada no ficheiro tabelas.xls que se encontra em anexo. O logigrama do somador pode ser consultado de seguida.

Comparador de 3 Bits:

Existem dois comparadores de 3 bits, que verificam se o valor inserido corresponde ao preço da bebida seleccionada, ou seja, se o resultado da soma dos valores das moedas inseridas perfazem o preço da bebida (30 cêntimos para o caso do café ou 40 cêntimos, no caso da bebida seleccionada ser chocolate quente). As entradas do comparador corresponderão às saídas do somador e a entrada de enable corresponderá ao botão correspondente à bebida seleccionada. Cada uma das saídas dos comparadores que adquire o valor 1 quando o valor calculado corresponde ao preço da bebida são ligadas a uma saída (a do café corresponderá a uma saída e a do chocolate a outra), ou seja, a saída correspondente ao café ou ao chocolate adquire o valor 1 quando a saída "A=B" do comparador possui o valor 1. Ambos os comparadores funcionam do mesmo modo.

A tabela de verdade do comparador pode ser consultada no ficheiro *tabelas.xls* que segue em anexo. O logigrama do comparador pode ser consultado de seguida.

Sistema Completo

O circuito que simula o funcionamento da máquina recebe como variáveis as moedas, com valor 1 quando colocadas na máquina, e o input do utilizador na máquina (o pedido, café ou chocolate, representado pelas variáveis correspondentes, 1 quando verdade). Tem também o mostrador que indica gráficamente o valor actual inserido na máquina. Devolve os 3 casos possíveis: Chocolate, Devolução ou Café. A implementação descreve o comportamento do diagrama ASM com a implementação de 4 flip flops (moedas 10, moeads 20, café, chocolate; 2^4=16, e temos 16 estados). De seguida é apresentado o logigrama do sistema completo.

Conclusão

Tendo em conta o objectivo do trabalho, podemos concluir que o circuito cumpre os requisitos pretendidos e funciona de uma forma algo simples e, de certo modo, funcional. Este trabalho permitiu-nos aprofundar os nossos conhecimentos no que respeita à utilização de Flip-Flops, circuitos combinatórios, contadores e lógica.

Conclui-se portanto que este trabalho foi proveitoso para a nossa aprendizagem no que respeita aos Sistemas digitais.