西交利物浦大學

\mathcal{C}	1. T	wo main measures for the efficiency of an algorithm are	2.5
	a	Processor and memory	
	b		
	c		
	ď		
	e)		
b	2. C	onsidering the following algorithm	2.5
ν-		input m	
		count = 0	
		x = 1	
		while x < m do	
		begin	
		x = x * 2	
		count = count + 1	
		end	
		output count	
	W	hat is the output of the algorithm for m=2k+1?	
	a		
	b		
	c		
	ď		
	e)		
			
b .	3. T	he time factor when determining the efficiency of an algorithm is measured by	2.5
	a)	Counting the microseconds	
	b		
	c		
	ď		
	e`		
Cı	4.) T	he space factor when determining the efficiency of an algorithm is measured by	2.5
	a) Counting the memory needed by the algorithm	
	t	Counting the number of statements	
	C	Counting the kilobytes of the algorithm	
	C	Counting the maximum disk space needed by the algorithm	
		Counting the number of key operations	
	5. R	unning time $T(n)$, where 'n' is input size of a recursive algorithm is given as follows:	2.5
D		S. T. W. Johnson	

Xi'an Jiaotong-Liverpool University 西交利物浦大学

	Which of the following algorithms, its time complexity can be expressed by the $T(n)$?	
	a) Binary Search	
	b) Merge Sort	
	e) Insertion Sort	
	d) Selection Sort	
	e) Dijkstra's algorithm	
_		
	6. Considering the running time $T(n)$ given above in the question 5. Order of magnitude of	2.5
	T(n) is	
	a) $O(n^2)$	
	b) O(n)	
	c) $O(n \log n)$	
	d) $O(n^3)$	
	$O(n^n)$	
1		
Ø	7. The worst case occurs in a linear search algorithm when	2.5
	a) Item is somewhere in the middle of the array	
	b) Item is not in the array at all	
	c) Item is the last element in the array	
	d) Item is the last element in the array or is not there at all	
	e) None of the above	
	c) Tyone of the above	
D	8. The best case occurs in a linear search algorithm when	2.5
	a) Item is the first element in the array	
	b) Item is not in the array at all	
	c) Item is the last element in the array	
	d) Item is not in the array at all	
	e) None of the above	
Di	9. The time complexity of a linear search algorithm is	2.5
	a) O(n)	
	b) $O(\log n)$	
	c) $O(n^2)$	
	d) $O(n \log n)$	
	e) O(1)	
C	10. Running time $T(n)$, where n is input size of a recursive algorithm is given as follows:	2.5
	$\int 1$ if $n=1$	
	$T(n) = \begin{cases} 1 & \text{if} & n = 1 \\ T(n/2) + 1 & \text{if} & n > 1 \end{cases}$	
	$(I(n/2) \mid I y n \geq I$	

西交利物浦大学

The time complexity of the algorithm is

- a) $O(n^2)$
- b) $O(n \log n)$
- c) $O(n^3)$
- d) $O(n^n)$
- e) $O(\log n)$

Questions 11 to 13 refer to the following graph:

11. The total degree of the graph is

2.5

- a) 21
- b) 18
- c) 20
- d) 19
- e) 10
- 12. Starting at the vertex *a* and resolving ties by the vertex alphabetical order, traverse the graph by breadth-first-search (BFS). Then, the order of vertices visited is

2.5

- a) a, b, d, e, f, c, h, g
- b) a, b, c, d, e, f, g, h
- (c) a, b, f, g, c, d, h, e
- d) a, b, e, g, f, c, d, h
- e) None of the above

13. Starting at the vertex **a** and resolving ties by the vertex alphabetical order, traverse the graph by depth-first-search (DFS). Then, the order of vertices visited is

a) h, g, f, e, d, c, b, a

2.5

西交利物浦大學

• • • •	
b) a, b, f, g, c, d, h, e	
c) a, b, e, g, f, c, d, h	
d) a, b, d, c, e, f, g, h	
e) None of the above	
14. Let T be a tree constructed by Dijkstra's algorithm in the process of solving the	2
single-source shortest path problem for a weighted connected graph G.	
	_
I. T is a spanning tree of G √II. T is a minimum spanning tree of G √	
III. T is a binary tree X	
Which are of the following is compat?	
Which one of the following is correct?	+
a) I is true, II and III are false	+
a) I is true, II and III are false b) I and III and III are true	
, , , , , , , , , , , , , , , , , , ,	_
e) None of the above	_
15. Let G be a weighted connected graph	
13. Let G be a weighted connected graph	
I. If e is a minimum-weight edge in G, it must be contained in a MST.	_
II. If e is a minimum-weight edge in G, it must be contained in each MST.	
III. If e is a maximum-weight edge in G, it must not be contained in any MST.	_
111. If c is a triaximum-weight edge in G, it must not be contained in any N151.	-
Which one of the following is correct?	-
which one of the following is correct.	
a) I and III are true, II is false	
b) I and II and III are true	
c) I and II and III are false	
d) II and III are correct but I is false	-
e) None of the above	+
-,	+
	_
	+
	+
	\top
16. Let G be a weighted connected graph	2
16. Let G be a weighted connected graph	2
Let G be a weighted connected graph I. If the edge weights are all different G must have exactly one MST	2

Which one of the following is correct?

- a) I and III are true, II is false
- b) I and II and III are true
- c) I and II and III are false
- d) II and III are true but I is false
- e) None of the above

Questions 17 to 19 refer to the following weighted connected graph graph:

- 17. Let T be a minimum spanning tree of the graph computed using Kruskal's algorithm. The order of edges selected by Kruskal's algorithm is
 - a) (c,d)(a,b)(b,d)(a,c)
 - b) (c,d) (a,b) (b,d) (b,e)
 - c) (c,d) (a,b) (b,d) (a,d)
 - d) (c,d)(a,b)(b,d)(b,c)
 - e) None of the above
- 18. Let T be a minimum spanning tree of the graph computed using Prim's algorithm. Assume vertex a is selected first, then the order of vertices selected by Prim's algorithm is
 - a) a, b, d, e, d
 - b) a, c, d, b, e
 - c) a, d, c, e, b
 - d) a, b, d, c, e
 - e) None of the above
- 19. Assume the source vertex is *a*. Running Dijkstra's algorithm for the graph, after the termination, the labels for vertices are

a)
$$a(0,-)$$
, $b(2, a)$, $c(4,a)$, $d(5,b)$, $e(6,b)$

b)
$$a(0,-)$$
, $b(2,a)$, $c(4,a)$, $d(5,c)$, $e(6,b)$

c) a(0,-), b(2, a), c(4,a), d(4,a), e(6,b)

2.5

西交利物浦大学

Al all blacking-Liver pool offiversity	四人インハットラスツ	5
a(0,-), b(2,a), c(6,b), d(4,a), e(6,b)		
e) None of the above		
,		
20. Assume the source vertex is a. Running Dijkstra's alg	rorithm for the graph, after the	2.5
termination, which one of the followings could be an o		
algorithm?	raci of vertices selected by Bijksia s	
uigonumi.		
a) a, b, e, c, d		
b) a, b, d, e, c		
c) a, b, d, c, e		
d) a, b, e, d, c		
e) None of the above		
Questions 21 to 24 refer to the following Selection sort al	lgorithm.	
ALGORITHM SelectionSort($A[0n-1]$)		
//Sorts a given array by selection sort		
//Input: An array $A[0n-1]$ of orderable elements		
//Output: Array $A[0n-1]$ sorted in ascending order	r	
for $i = 0$ to $n - 2$ do		
min = i		
for $j = i + 1$ to $n - 1$ do		
$\mathbf{if} A[j] < A[min] min \neq j$		
if $i < min$ do		
swap $A[i]$ and $A[min]$		
21. The time complexity of the Selection sort algorithm is		2.5
a) $O(n \log n)$		
b) O(2 ⁿ)		
c) O(1)		
d) $O(2n)$		
e) None of the above		
22 77 1 11 11 11 11	A FO 51 FC 5 A 2 2 11'	2.5
22. The number of key comparisons needed to sort the number of key	Sers $A[05] = [6, 5, 4, 3, 2, 1]$ in	2.5
ascending order using the selection sort algorithm is		
a) 10		
b) 4		
c) 3		
d) 15		
e) 20		
23. The number of swapping operations needed to sort th	e numbers $A[05] = [6, 5, 4, 3, 2, 1]$	2.5

西交利物浦大学

- a) 10
- b) 4
- c) 3
- d) 15
- e) 20
- 24. To merge the following two sorted sequences into a single sorted sequence, using the Merge algorithm given in the lecture,

2.5

the number of key comparisons needed is

- a) 9
- b) 5
- c) 7
- d) 6
- e) None of the above

Questions 25 to 28 refer to the following Longest Common Subsequence problem.

Let c[i,j] be the length of the Longest Common Subsequence of Xi = x1, x2,..., xi and Yj = y1, y2,...,yj. Then c[i,j] can be recursively defined as following:

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max\{c[i-1,j],c[i,j-1]\} & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

The following is an incomplete table for the sequences of AATGTT and AGCT.

		A	A	T	G	T	T
	0	0	0	0	0	0	0
A	0	1	1	1	1	1	1
G	0	1	1	1	2	2	2
С	0	1	1	1	2	2	2
T	0	1	1	2	2	3	3

- 25. The value of c[3, 4] is
 - a) 1
 - b) 2
 - c) 3
 - d) 4
 - e) 5

26. The length of the longest common subsequence of AATGTT and AGCT is

西交利物浦大学 Xi'an Jiaotong-Liverpool University 1 a) 2 b) c) 3 d) 4 e) 27. The longest common subsequence of AATG/TT and AGCT is a) AGCT b) ATGT c) AATG d) AGC e) AGT 28. The length of the longest common subsequence of AATGT and AGC is b) 2 c) 4 d) e) 5 PART II (30 Marks) Question 1 (18 marks) Consider the following problem. Given an array A consisting of n distinct integers A[1], ... A[n]. It is known that there is a position p $(1 \le p \le n)$, such that A[1], ..., A[p] is in increasing order and A[p], A[p+1], ..., A[n] is in decreasing order.

西交利物浦大学

6

- 1. Devise a "divide and conquer" algorithm to find the position p.
- 2. Set up a recurrence relation for the number of key comparisons made by your algorithm and explain it.
- 3. Based on the recurrence relation, show the complexity of your algorithm in big-O notation and prove it using either the iterative method or the substitution method, i.e., Mathematical Induction (for simplicity, you can assume that n = 2k).

Question 2 (12 marks)

Given the following instance of the 0/1 Knapsack problem

item	weight	value
1	2	\$12
2	1	\$10
3	3	\$20

The Knapsack Capacity W=3

Let V[i, j] be the value of the most valuable subset of the first i items that fit into the Knapsack of capacity j. Then V[i, j] can be recursively defined as following:

$$V[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max\{V[i-1,j], & v_i + V[i-1,j-w_i]\} & \text{if } j - w_i \ge 0 \\ & V[i-1,j] & \text{if } j - w_i < 0 \end{cases}$$

1. Using dynamic programming, fill the missed values (filled with question marks) in the following table.

capacity i

1 1 3						
Item	i	0	1	2	3	
	0	0	0	0	? 0	
$w_1=2, v_1=12$	1	0	0	12	12	
$w_2=1, v_2=10$	2	0	10	? 12	22	
$w_3=3, v_3=20$	3	0	10	12	?22	

- 2. What is the value of the most valuable subset?
 - 22
- 3. Give an optimal subset of the instance based on the table.
 - Put item I and item 2
- 4. What is the value of the most valuable subset if the capacity of the knapsack is 2?

2

2

Xi'an Jiaotong-Liverpool University 西交利物浦大学

2.
$$T(n) = \begin{cases} O(1) & n = 1 \\ T(\frac{n}{v}) + O(1) & n > 1 \end{cases}$$

3. Suppose
$$n=2^k$$
, then $k=log_3^n$

$$T(n)=T(\frac{n}{2})+1=T(\frac{n}{2})+1+1=\cdots=T(\frac{n}{2^k})+1\cdot k=T(1)+k=log_3^n+1=0$$

$$=0$$
 $clog_n$