15MA207 - Probability & Queueing Theory

UNIT I - Random Variables and Statistical Averages

MULTIPLE CHOICE QUESTIONS

1.	(a) Con	ntinuou	persons in s (b) as well a	Discrete	e (• •			
2.	$\mathop{Lt}_{x\to\infty}F(x)$.5 015010								
	(a) 0		(b) 2	(c		a amah	(d) - 1		••			
٥.	A rando	om vari	able X ha	s the fol	IOWII	ig prob	ability i	uncuoi	1:			
	X	0	1	2		3	4					
	P(x)	k	2k	5k	7	ľk	9k					
	The val											
	(a) $\frac{2}{24}$	(b)	$\frac{21}{24}$	(c) $\frac{7}{12}$		(d) $\frac{1}{2}$						
4.	The p	robabil		sity fu	ınctio	n of	a co	ontinuo	us ra	ndom	variable	is
	(a) $\frac{1}{2}$	(b) $\frac{1}{4}$	(c)	$\frac{3}{4}$	((d) $\frac{1}{6}$						
5.	If X is a random variable which can take only non – negative values, then											
	(a) $E(X)$	$(X^2) = [E($	$[X)]^2$	(b) E	$(X^2) \ge [X$	$E(X)]^2$					
	(c) $E(X)$	$(X^2) \leq [E($	$[X)]^2$	(d	.) No	one of the	ne abov	e				
6.	If c is a	constai	nt (non ra	ndom v	ariabl	e), then	E(c) is	S				
	(a) 0	(b)	1 (c)	cf(c)		(d) c						
7.	If $f(x)$	$=\frac{1}{10}; x =$	10 then E	E(x) is								
	(a) 0	(t	o) 2	(c) 1		(d)	- 1					
8.	var(4x +	8) is										
	(a) 12.v	ar(x)	(b) 4. vai	c(x) + 8	(c)	16. va	$\operatorname{tr}(x)$	(d) 1	6. var(<i>x</i>)	+8		
9.	Family family		n be repre	sented l	y the	randor	n varial	ole x. d	etermi	ne the av	verage	
					X	2	3	4	5			
					P(x)	0.17	0.47	0.26	0.10			
				L		1			1	1		

1

(b) rth factorial moment(d) none of the above

(c) 3.29

10. If X is a random variable and r is an integer, then $E(X^r)$ represents

(d) 3.86

(a) 2.94

(b) 3.00

(a) rth central moment
 (c) rth raw moment

11. If random variable x has the p.d.f $f(x) = \begin{cases} 3x; & 0 < x < 1 \\ 0; & otherwise \end{cases}$, then the p.d.f of $y = 4x + 3$ is
(a) $\frac{3}{4}(y-3)$ (b) $\frac{3}{16}(y-3)$ (c) $\frac{1}{4}(y-3)$ (d) $\frac{3}{2}(y-3)$
12. If the exponential distribution is given as $f(x) = e^{-x}$; $0 \le x \le \infty$, then the mean of the distribution is
(a) 1 (b) 0 (c) 2 (d) - 1
13. The expectation of the number on a die when thrown
(a) 1 (b) $\frac{7}{2}$ (c) 3 (d) 2
14. A coin is tossed until a head appears. What is the expectation of the number of tosses required?
(a) 2 (b) 1 (c) 4 (d) 5
15. A random variable x has the p.d.f given by $f(x) = \begin{cases} 2e^{-2x}; & x \ge 0 \\ 0; & x < 0 \end{cases}$, then the m.g.f is
(a) $\frac{2}{2-t}$ (b) $\frac{3}{3-t}$ (c) $2(2-t)^{-3}$ (d) $3(3-t)^{-2}$
16. If a random variable x has the p.d.f $f(x) = \frac{1}{4}$; $-2 < x < 2$, then $P(x < 1)$ is
(a) $\frac{2}{3}$ (b) $\frac{3}{4}$ (c) $\frac{1}{4}$ (d) $\frac{1}{2}$
17. If $E[x^2] = 8$ and $E[x] = 2$, then $var(x)$ is
(a) 3 (b) 2 (c) 1 (d) 4 18. A random variable x has many $\frac{12}{12}$ and variance $\frac{2}{12}$ 0 and an unknown probability
18. A random variable x has mean $\mu = 12$ and variance $\sigma^2 = 9$ and an unknown probability distribution, then $P(6 < x < 18)$ is
(a) $\frac{1}{2}$ (b) $\frac{3}{4}$ (c) $\frac{1}{4}$ (d) $\frac{1}{8}$
19. The C.D.F of a continuous random variable is given by $F(x) = \begin{cases} 0; & x < 0 \\ 1 - e^{-x/5}; & 0 \le x \le \infty \end{cases}$
(a) $\frac{1}{5}e^{-\frac{1}{5}x}$ (b) $\frac{1}{10}e^{-\frac{1}{5}x}$ (c) $e^{-\frac{1}{5}x}$
20. A continuous random variable x has a p.d.f $f(x) = 3x^2$; $0 \le x \le 1$, find the value of b such
that $P(x > b) = 0.05$
(a) $\left(\frac{16}{20}\right)^{1/3}$ (b) $\left(\frac{19}{20}\right)^{1/3}$ (c) $\left(\frac{13}{20}\right)^{1/3}$ (d) $\left(\frac{15}{19}\right)^{1/4}$
21. If $\mu_1 = 0, \mu_2 = \frac{1}{5}, \mu_3 = 0$ and $\mu_4 = \frac{3}{35}$, then $\beta_2 = \underline{\hspace{1cm}}$
(a) $\frac{13}{7}$ (b) $\frac{17}{9}$ (c) $\frac{15}{7}$ (d) $\frac{13}{5}$

- 22. If the random variable x has the p.d.f $f(x) = \begin{cases} ax^3; & 0 < x < 1 \\ 0; & otherwise \end{cases}$ then the value of a is
 - (a) 3
- (b) 4 (c) $\frac{1}{2}$ (d) $\frac{3}{4}$
- 23. Let x be a continuous random variable with p.d.f $f(x) = \frac{x}{2}$; 1 < x < 5, then the p.d.f of y = 2x - 3 is

- (a) $\frac{y+3}{8}$ (b) $\frac{y+2}{8}$ (c) $\frac{y-3}{8}$ (d) $\frac{y+4}{8}$
- 24. If $P(X = x) = \frac{x}{15}$; x = 1, 2, 3, 4, 5 then $P\left(\frac{1}{2} < X < \frac{5}{2} / X > 1\right)$ is.

 - (a) $\frac{2}{15}$ (b) $\frac{1}{15}$ (c) $\frac{2}{7}$ (d) $\frac{1}{7}$

MULTIPLE CHOICE QUESTIONS- ANSWERS

- 1. (a)
- 2. (c)
- 3. (d)
- 4. (a)
- 5. (c)
- 6. (d)
- 7. (c)
- 8. (c)
- 9. (c)
- 10. (c)
- 11. (b)
- 12. (a)
- 13. (b)

- 14. (a)
- 15. (a)
- 16. (b)
- 17. (d)
- 18. (b)
- 19. (a)
- 20. (b)
- 21. (c)
- 22. (b) 23. (a)
- 24. (d)

15MA207 – Probability & Queueing Theory UNIT II – Theoretical Distributions MULTIPLE CHOICE QUESTIONS

(a) $\mu = np$, $\sigma^2 = npq$ (b) $\mu = npq$, $\sigma^2 = np$ (c) $\mu = nq$, $\sigma^2 = npq$

1. The mean and variance of a binomial distribution is

	(a) $\mu - np$, $\sigma - npq$ (b) $\mu - npq$, $\sigma - np$ (c) $\mu - nq$, $\sigma - npq$
	(d) $\mu = np$, $\sigma^2 = pq$
2.	The MGF of binomial distribution is
	(a) $(p+qe^t)^n$ (b) $(pe^t+q)^n$ (c) $(p+qe^{-t})^n$ (d) $(pe^{-t}+q)^n$
3.	If on an average, 9 ships out of 10 arrive safely to a port, then mean and S.D of the no.
	Of ships returning safely out of 150 ships are
	(a) mean = 135, S.D = 2.674 (b) mean = 125, S.D = 3.674 (c) mean = 135, S.D = 3.674 (d) mean = 125, S.D = 2.674
	(c) mean = 135 , S.D = 3.674 (d) mean = 125 , S.D = 2.674
4.	A radar system has probability of 0.1 of detecting a certain target during a single scan
	then the probability that the target will be detected atleast once in twenty scans is
_	(a) 0.8784 (b) 0.7884 (c) 0.8748 (d) 0.8478
5.	The mean and variance of a binomial distribution are 4 & 4/3 respectively. Find
	$P(X \ge 1)$ of $n = 6$.
	(a) $\frac{725}{729}$ (b) $\frac{726}{729}$ (c) $\frac{727}{729}$ (d) $\frac{728}{729}$
_	
6.	Mean of the Poisson distribution is
	(a) λ (b) $\lambda+1$ (c) λ^2 (d) $\lambda-1$
7	If the random variable X follows a Poisson distribution with mean 3, then P(X=0) is
٠.	(a) e^{-3} (b) e^3 (c) e^2 (d) e
8.	Poisson distribution is limiting case of
	(a) Geometric distribution (b) Normal distribution
	(c) Binomial distribution (d) Exponential distribution
9.	If X is a Poisson variate such that $E(X^2) = 6$ then $E(X)$ is
	(a) 3 (b) 2 (c) 1 (d) 0
10.	If X is a Poisson variate such that $P(X=0)=0.5$, then $var(X)$ is
	(a) e^2 (b) $\log 2$ (c) 0.5 (d) $\log 4$
11.	The mean of a geometric distribution whose pdf is pq^{r-1} , $r = 1, 2,$
	(a) $\frac{1}{1}$ (b) $\frac{p}{1}$ (c) $\frac{q}{1}$
	(a) $\frac{1}{p}$ (b) $\frac{p}{q}$ (c) $\frac{q}{p}$ (d) $\frac{1}{q}$
12.	If the probability of success on each trial is $\frac{1}{3}$. What is the expected no. of trials
	required for the first success?
	(a) 2 (b) 3 (c) 4 (d) 5
13.	A candidate applying for driving license has the probability of 0.8 in passing the road

test in a given trial. The probability that he will pass the test on the fourth trial is

(d) 0.0406

(c) 0.0604

(a) 0.0046

(b) 0.0064

(a) $\frac{3}{4}$ (b) $\frac{3}{2}$ (c) 4 (d) $\frac{3}{2}$
18. A random variable X has a uniform distribution over (-3, 3). The value of k for which $P(X > k) = \frac{1}{3}$ is
(a) 3 (b) 2 (c) 1 (d) -2
19. If X has uniform distribution in $(-1, 3)$, then $P(X > 0)$ is
(a) $\frac{1}{2}$ (b) $\frac{3}{4}$ (c) $\frac{1}{3}$ (d) $\frac{1}{4}$
20. If X is uniform distributed in $(0, 10)$, then $P(X > 8)$ is
(a) $\frac{1}{5}$ (b) $\frac{1}{10}$ (c) $\frac{3}{5}$ (d) $\frac{1}{3}$
21. The mean of uniform distribution $u(a,b)$ is
(a) $a+b$ (b) $\frac{a+b}{2}$ (c) $\frac{a+b}{3}$ (d) $\frac{a+b}{4}$
22. The variance (x) of uniform distribution $U(a,b)$ is
(a) $\frac{1}{12}(b-a)^2$ (b) $\frac{(b-a)^2}{8}$ (c) $\frac{(b-a)^2}{6}$ (d) $\frac{(b-a)^2}{3}$
23. The mean of the exponential distribution with pdf $\lambda e^{-\lambda x}$, $x > 0$ is
(a) λ (b) $\frac{1}{\lambda}$ (c) $\frac{1}{\lambda^2}$ (d) 1
24. If the random variable X has the P.D.F $Ce^{-x/5}$, $x > 0$ then the value of C is
(a) 5 (b) $-\frac{1}{5}$ (c) $\frac{1}{5}$ (d) -5
25. If X is exponentially distributed with mean 10 then the pdf is
(a) $10e^{-10x}, x \ge 0$ (b) $\frac{1}{10}e^{-10x}, x \ge 0$ (c) $\frac{1}{10}e^{x/10}, x \ge 0$ (d) $\frac{1}{10}e^{-x/10}, x \ge 0$
26. If a random variable X has the P.D.F $f(x) = \frac{1}{2}e^{-x/2}, x > 0$, then $P(X > 2)$ is
(a) e (b) $\frac{1}{e}$ (c) $e^{1/2}$ (d) $e^{-1/2}$
2

14. The MGF of geometrical distribution is

(a) $(0.5)^4$

(a) $\frac{1}{1-qe^t}$ (b) $\frac{1}{1-pe^t}$ (c) $\frac{q}{1-pe^t}$ (d) $\frac{pe^t}{1-qe^t}$

probability that it would be destroyed on 6th attempt?

(b) $(0.5)^5$

16. If X is random variable in (-2, 2), P(X < 0) is

(a) $\frac{1}{2}$ (b) $\frac{1}{4}$ (c) $\frac{1}{3}$ (d) $-\frac{1}{2}$

15. If the probability of a target to the destroyed on any one shot is 0.5. What is the

17. If the MGF of a uniform distribution for a random variable is $\frac{1}{t}(e^{5t}-e^{4t})$ then E(X) is

 $(c) (0.5)^6$

27. If the random variable X has the p.d.f $f(x) = \frac{1}{5}e^{-x/5}, x > 0$	then the variance of X is
(a) 25 (b) 5 (c) 15 (d) 1	
28. For a standard normal variable the mean and variance a	re respectively
(a) 1 & 0 (b) $\mu \& \sigma^2$ (c) 0 & 1 (d) $\mu \& \sigma$	
29. The MGF of normal distribution is	,
(a) $e^{\mu + \frac{\sigma^2 t^2}{2}}$ (b) $e^{\frac{\mu + \sigma^2 t^2}{2}}$ (c) $e^{\mu + \frac{\sigma t}{2}}$	(d) $e^{\mu t + \frac{\sigma t^2}{2}}$
30. In a normal distribution about 99% of the observation li	
(a) $\mu \pm 2\sigma$ (b) $\mu \pm \sigma$ (c) $\mu \pm 3\sigma$ (d) $\mu \pm \sigma^2$	
31. The MGF of standard normal distribution	
(a) $e^{\frac{t^2}{2}}$ (b) $e^{\frac{\mu t^2}{2}}$ (c) $e^{\frac{t}{2}}$ (d) $e^{\frac{\mu^2 t}{2}}$	
32. Normal distribution is the limiting form of	distribution under suitable
statistical conditions	
(a) Binomial (b) Poisson (c) Geometric (d) Uniform	n
MULTIPLE CHOICE QUESTIONS- AI	NSWERS
1. (a) 18. (c)	
2. (b) 19. (b)	
3. (c) 20. (a)	
4. (a) 21. (b)	
5. (d) 22. (a)	
6. (a) 23. (b)	
7. (a) 24. (c)	
8. (c) 25. (d)	
9. (b) 26. (b)	
10. (b) 27. (a)	
11. (a) 28. (c)	
12. (a) 29. (a)	
13. (b) 30. (c)	
14. (d) 31. (a)	
15. (c) 32. (a)	
16. (a)	
17. (b)	

15 MA207 Unit –III HYPOTHESIS TESTING MULTIPLE CHOICE QUESTIONS

- 1. If a researcher takes a large enough sample, he/she will almost always obtain:
 - a. virtually significant results
 - b. practically significant results
 - c. consequentially significant results
 - d. statistically significant results

ANSWER: d

- 2. The null and alternative hypotheses divide all possibilities into:
 - a. two sets that overlap
 - b. two non-overlapping sets
 - c. two sets that may or may not overlap
 - d. as many sets as necessary to cover all possibilities

ANSWER: b

- 3. Which of the following is true of the null and alternative hypotheses?
 - a. Exactly one hypothesis must be true
 - b. both hypotheses must be true
 - c. It is possible for both hypotheses to be true
 - d. It is possible for neither hypothesis to be true

ANSWER: a

- 4. The chi-square goodness-of-fit test can be used to test for:
 - a. significance of sample statistics
 - b. difference between population means
 - c. normality
 - d. probability

ANSWER: c

- 5. A type II error occurs when:
 - a. the null hypothesis is incorrectly accepted when it is false
 - b. the null hypothesis is incorrectly rejected when it is true
 - c. the sample mean differs from the population mean
 - d. the test is biased

ANSWER: a

- 6. The form of the alternative hypothesis can be:
 - a. one-tailed
 - b. two-tailed
 - c. neither one nor two-tailed
 - d. one or two-tailed

ANSWER: d

- 7. A two-tailed test is one where:
 - a. results in only one direction can lead to rejection of the null hypothesis
 - b. negative sample means lead to rejection of the null hypothesis
 - c. results in either of two directions can lead to rejection of the null hypothesis
 - d. no results lead to the rejection of the null hypothesis

ANSWER: 0

- 8. The value set for α is known as:
 - a. the rejection level
 - b. the acceptance level
 - c. the significance level
 - d. the error in the hypothesis test

ANSWER: 0

- 9. Which of the following values is *not* typically used for α ?
 - a. 0.01
 - b. 0.05
 - c. 0.10
 - d. 0.25

ANSWER: d

- 10. The hypothesis that an analyst is trying to prove is called the:
 - a. elective hypothesis
 - b. alternative hypothesis
 - c. optional hypothesis
 - d. null hypothesis

ANSWER: b

- 11. The chi-square test is not very effective if the sample is:
 - a. small
 - b. large
 - c. irregular
 - d. heterogeneous

ANSWER: a

- 12. A type I error occurs when:
 - a. the null hypothesis is incorrectly accepted when it is false
 - b. the null hypothesis is incorrectly rejected when it is true
 - c. the sample mean differs from the population mean
 - d. the test is biased

ANSWER: b

13.	What is the a. Sampling b. Sample e c. Standard d. Simple e ANSWER	error error
14.	A is a. Sample, po b. Population c. Statistic, p d. Parameter, ANSWER:	ar, sample arameter
15. char	A is acteristic of a p	a numerical characteristic of a sample and a is a numerical population.
	a. Sample, po	•
	b. Population	· <u> •</u>
	c. Statistic, pa	
	d. Parameter, ANSWER:	
	mowen.	
16.		he values that mark the boundaries of the confidence interval.
	a. Confidence	
	b. Confidence	
	c. Levels of co d. Margin of e	
,	ANSWER:	b
1	II (B (~
17	results if	you fail to reject the null hypothesis when the null hypothesis is
	ally false.	
	. Type I error	
	. Type II error	
	. Type III error	
	. Type IV erroi	
A	NSWER:	b
18. V	When the resea	rcher rejects a true null hypothesis, a error occurs.
	Type I	<i>y</i> ——
	Type A	
c.	Type II	
	Type B	
A	NSWER:	a

Dr.N.BALAJI, Asst.Professor SG, Department of Mathematics, SRM University

19	is the failure to reject a false null hypothesis.
a.	. Type I error
	. Type II error
	. Type A error
d	. Type B error
A	NSWER: a
20. V	Which of the following statements is/are <u>true</u> according to the logic of hypothesis
testii	ng?
a.	. When the null hypothesis is true, it should be rejected
b	. When the null hypothesis is true, it should not be rejected
c.	. When the null hypothesis is false, it should be rejected
d	. When the null hypothesis is false, it should not be rejected
e.	Both b and c are true
A	NSWER: e
21. /	A failing student is passed by an examiner, it is an example of
(a) T	Гуре I error (b) Type II error (c) Unbiased decision (d) Difficult to tell
A	ANSWER: b
	A passing student is failed by an examiner, it is an example of
(a) T	Type I error (b) Type II error (c) Best decision (d) All of the above
	ANSWER: a
	Area of the rejection region depends on
(a) S	Size of α (b) Size of β (c) Test-statistic (d) Number of values
	ANSWER: a
	Which hypothesis is always in an inequality form?
,	a) Null hypothesis (b) Alternative hypothesis (c)Simplehypothesis
(b) (d) Composite hypothesis
	ANSWER: b
	The degree of freedom for t-test based on n observations is
(a) 2n -1 (b) n -2 (c) 2(n -1) (d) n -1
	ANSWER: d
	Student's t-distribution has (n-1) d.f. when all the n observations in the sample are
(2	a) Dependent (b) Independent (c) Maximum (d) Minimum
	ANSWER: b
	The number of independent values in a set of values is called
(a)) Test-statistic (b) Degree of freedom (c) Level of significance (d)Levelofconfidence
	ANSWER: b

MA1014 – Probability & Queueing Theory UNIT IV – Queueing Theory MULTIPLE CHOICE QUESTIONS

l. In	which basis	s the service i	s provided in	queueing	g theory	8
(a)	LCFO	(b) LIFO	(c) FCFS	(d) F	CLS	
2. Wł	nat stands f	or 'd' in the q	ueue model (a/b/c : d/	e) (c) service time	(d) number of
	queue aisc	apine (b)) System capa	city	(c) service time	(a) nameer er
		notation of q	ueueing mode	el is repre	esented by	
(a) Kendall	(b) E	Euler (c)	Fisher	(d) Neumann	Callanna
		between two	consecutive ai	rivals of	a Poisson process	s follows
(a)	stribution Binomial	(b) Uniform	n (c) N	ormal	(d) Expone	ntial
5. Th	e average i	number of cus	stomers in the	system i	$n (M/M/1 : \infty/FIF$	O) model is
		(b) $\frac{\mu}{\lambda - \mu}$				
33 13		(b) μ	(c) $\lambda \mu$	(d)	lenoted by	
7. If	the behavio	our of the syst	tem is indepen	ndent of 1	time, then the syst	em is said to be
(a)) steady sta	te (b) t	ransient state		(c) unsteady s	tate
) all of the		1.1	(/1 / 1/-		
8. W	hat stands	for 'e' in the c cipline	queue model ((b) system	(a/b/c:d/e	(*) V	
(a.) queue uis) maximun	queue size	(d) service	e time	,	
9. Th	ne probabil	ity of no cust	omers in the s	system in	$(M/M/1:\infty/FIFO)$) model
(a	$\frac{\lambda}{}$	(b) $\frac{\lambda}{\mu}$ -1	(c) $1-\frac{\lambda}{}$	(d)	$\frac{\lambda}{2} + 1$	
	P -	ity of 'n' cust				
10. 11	ne probabii					
	$\frac{\lambda}{\mu}P_0$		$\left(\frac{\lambda}{\mu}\right)^n P_0$ (c	$\left(\frac{\mu}{\lambda}\right)P_0$	(d) $\frac{\mu}{\lambda}P_0$	
		effective arriv			(4) 10	
		(b) $\lambda(1-$			(d) λP_0	
		lity that the m FIFO) model	umber of cust	omers in	the system exceed	ds k, in
(8	a) $\left(\frac{\lambda}{\mu}\right)^{k+1}$	(b) $\left(\frac{1}{\mu}\right)$	$\left(c\right)^{k+2}$	$\left(\frac{\lambda}{\mu}\right)^{k+}$	(d) $\left(\frac{\lambda}{\mu}\right)^k$	
13. T	he average	waiting time	of a custome	r in the s	ystem in (M/M/1:	∞/FIFO) model
(8	a) $\frac{1}{\mu - \lambda}$	(b) $\frac{1}{\lambda - \mu}$	(c) $\frac{1}{\lambda + \mu}$	(d) No	one	
14. V	What is the	mean of the F	Poisson proces	ss?		
(:	a) λ	(b) λ <i>ι</i>	(c) $\frac{\lambda}{l}$	(d) $\frac{t}{\lambda}$		

(b) <i>P</i> ₁	ne system 1 (c) P_2	s idle is denoted $\{d\}$
(b) P_1	(c) P_2	(d) P _n
intensity o	f a queueing	system is
" (c) \lambda	(d) ^{\(\mu \)}	
	(b) P_1 ability that the (b) P_1 c intensity of	ability that the system i (b) P_1 (c) P_2 ability that the system is (b) P_1 (c) P_2 c intensity of a queueing μ (c) $\frac{\lambda}{\mu}$ (d) $\frac{\mu}{\lambda}$

- 18. Which term refers to "A customer who leaves the queue because the queue is too long"
 - (a) Balking (b) Reneging (c) Jockeying (d) Leaving
- 19. In all the queueing models, what is the symbol 'M' stands for?
 - (a) Maths (b) Model (c) Markov (d) Multi
- 20. In (M/M/1: K /FIFO) model, if $\lambda = 3 / hour$, $\mu = 4 / hour$ and effective mean arrival rate of a customer is 2.88 / hour then what is P_0 ?
 - (a) 0.18 (b) 0.28 (c) 0.38 (d) 0.48

MULTIPLE CHOICE QUESTIONS- ANSWERS

1. (c)	12. (a)
2. (b)	13. (a)
3. (a)	14. (b)
4. (d)	15. (a)
5. (a)	16. (d)
6. (b)	17. (c)
7. (a) 8. (a)	18. (a)
9. (c)	19. (c)
10. (b)	20. (b)
(-)	

11. (a)

Unit -V MARKOVCHAINS MULTIPLE CHOICE QUESTIONS

1.Markov process is one in which the future value is independent of values
a) Present b)Past c) Future d) None
2. Chapman- Kolomogorov theorem states that
$a) \ [P_{ij}{}^{(n)}\] = [\ Pij]^n b) \ \ [P_{(n)}\] = [\ Pij]^n c \) \ [nP_{ij}] = [\ Pij]^n d) Pij \ [^{(n)}\] = [\ Pij]^n$
3. Transition matrix is a with sum of the row as 1
a) zero matrix b) Square matrix c) Rectangular matrix d) any order
4Ergodic means
a) irreducible and periodic b) irreducible and aperiodic c) not irreducible d) regular
5. In a transition probability matrix, the sum of all elements of any row is
a) 0 b) 1 c)2 d)-1
5. If the tpm of the markov chain is $P = \begin{pmatrix} 0 & 1 \\ 1/2 & 1/2 \end{pmatrix}$ the steady – state distribution of the chain is
a)(1/2, ½) b)(5 /6, 1/6) c) (1/6, 1/6) d)(1,0)
7. The limiting probability $\lim_{ec{n}\infty}$ p ⁽ⁿ⁾ =
a) 0 b)1 c) π d) P
3. If P is a tpm of the regular Markov chain, then
a) $P\pi = \pi$ b) $\pi P = \pi$ c) $\pi P^2 = \pi$ d) $P^2\pi = \pi$