Energy aware memory allocation in real-time systems

CCM-SRAM allocation to reduce consumption

Loïc Thomas

LAAS CNRS Ithomas@laas.fr

July 20, 2023

Presentation Overview

- 1 Energy consumption on STM32F3 Blocks Columns
- 2 Table and Figure Examples Table
- 3 Mathematics
- 4 Referencing

Current Measurement

Figure: Intensity consumption graph for differents pointer chase executions

3/16

(UC) Short Title July 20, 2023

Impact on energy

Figure:

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Nam cursus est eget velit posuere pellentesque

Blocks of Highlighted Text

Block Title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue.

Example Block Title

Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan.

Alert Block Title

Pellentesque sed tellus purus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.

Suspendisse tincidunt sagittis gravida. Curabitur condimentum, enim sed venenatis rutrum, ipsum neque consectetur orci.

(UC) Short Title July 20, 2023 5/16

Multiple Columns

Subtitle

Heading

- Statement
- 2 Explanation
- 3 Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Definitions & Examples

Definition

A prime number is a number that has exactly two divisors.

Example¹

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).
- 4 is not prime (three divisors: 1, 2, and 4).

You can also use the theorem, lemma, proof and corollary environments.

(UC) Short Title

Theorem, Corollary & Proof

Theorem (Mass-energy equivalence)

$$E = mc^2$$

Corollary

$$x + y = y + x$$

Proof.

$$\omega + \phi = \epsilon$$

Equation

$$\cos^3\theta = \frac{1}{4}\cos\theta + \frac{3}{4}\cos3\theta \tag{1}$$

Short Title

Verbatim

Example (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem} [Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

11/16

Slide without title.

12/16

(UC) Short Title July 20, 2023

Citing References

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2022, Kennedy, 2023].

13/16

References

John Smith (2022) Publication title Journal Name 12(3), 45 – 678.

Annabelle Kennedy (2023) Publication title Journal Name 12(3), 45 – 678.

Acknowledgements

Smith Lab

- Alice Smith
- Devon Brown

Cook Lab

- Margaret
- Jennifer
- Yuan

Funding

- British Royal Navy
- Norwegian Government

The End

Questions? Comments?