目录

1	实验	名称													2
2	实验	目的													2
3	实验	元器件													3
4	实验	任务													3
	4.1	功能要	求			 			 						3
	4.2	已知条	件			 			 						3
	4.3	技术指	标要求 .			 			 						4
	4.4	测量内	容			 			 	•		 •		•	4
5	实验	原理及	参考电路												4
	5.1	实验电	路			 			 						4
	5.2	电路安	装与调试技	友术		 			 						5
		5.2.1	合理布局,	分级装	调 .	 			 						5
		5.2.2	电路调试技	支术		 			 			 •		•	5
6	实验	过程													6
	6.1	实验电	路与功率、	增益、	效率	 			 						6
	6.2	幅频响	应			 			 						6
	6.3	音调控	制特性曲线	_{え 利量数}	居 .	 			 					•	6
7	实验	小结													6

1 实验名称

音响放大器的设计

2 实验目的

- 音响放大器的基本组成
- 音调特性控制方法与实现原理
- 了解集成功率放大器内部电路工作原理,掌握其外围电路的设计与主要性能参数的测试方法
- 掌握音响放大器的设计方法与电子线路系统的装调技术—综合运用所学知识,进 行小型多级电子线路系统的设计与装调

3 实验元器件

名称	型号/参数	数量						
作代刊计	LM386	3						
集成功放	NE5532	3						
	10kΩ	5						
	13kΩ	1						
 电阻	30kΩ	2						
+E,PE.	47kΩ	3						
	75kΩ	1						
	10Ω 2W	1						
	$0.01 \mu F$	2						
	$0.22\mu F$	1						
	$0.1\mu F$	1						
电容	1μ F	1						
	10μF	8						
	220μF	2						
	470μF	12						
电位器	10kΩ	3						
七 世命	470kΩ	2						
话筒	输出5mV	1						
音乐播放器	1	1						

4 实验任务

设计一个音响

4.1 功能要求

具有话音放大、音调控制、音量控制、卡拉OK伴唱等功能(不含电子混响)。

4.2 已知条件

• 集成功放LM386。

- 话筒600Ω, 输出信号5mV。
- 集成运放NE5532。
- 10Ω/2W负载电阻1只。
- 8Ω/4W扬声器1只。
- 音源(MP3 or PC)。
- 电源电压±9V(双电源)。

4.3 技术指标要求

- 额定功率: $P_o \ge 0.3 \text{W}(\gamma < 3\%)$
- 负载阻抗: $R_L = 10\Omega(2W)$
- 频率响应: $f_L = 50$ Hz, $f_H = 20$ kHz
- 输入阻抗: $R_i \gg 20$ k Ω
- 音调控制特性: 1kHz处增益为0dB、125Hz和8kHz处有12dB的调节范围, $A_{VL} = A_{VH}e$ 20dB(选做)

4.4 测量内容

5 实验原理及参考电路

5.1 实验电路

5.2 电路安装与调试技术

5.2.1 合理布局,分级装调

- 音响放大器是一个小型电路系统,安装前要对整机线路进行合理布局
- 一般按照电路的顺序一级一级地布线
- 功放级应远离输入级
- 每一级的地线尽量接在一起
- 连线尽可能短, 否则很容易产生自激
- 安装前应检查元器件的质量
- 安装时特别要注意功放块、运算放大器、电解电容等主要器件的引脚和极性,不能接错
- 从输入级开始向后级安装,也可以从功放级开始向前逐级安装
- 安装一级调试一级,安装两级要进行级联调试,直到整机安装与调试完成

5.2.2 电路调试技术

- 1. 电路的调试过程一般是先分级调试,再级联调试,最后进行整机调试与性能指标测试。
- 2. 分级调试又分为静态调试与动态调试。

静态调试时,将输入端对地短路,用万用表测该级输出端对地的直流电压。话放、混放、音调电路均由运放组成,若运放是单电源供电,其静态输出直流电压均为 VCC/2,功放级输出(OTL电路)也为VCC/2,且输出电容CC两端充电电压也应为 VCC/2。若是双电源供电,直流电压均为0。动态调试是指输入端接入规定的信号,用示波器观测该级输出波形,并测量各项性能指标是否满足题目要求,如果相差 很大,应检查电路是否接错,元器件数值是否合乎要求,否则是不会出现很大偏差的。

3. 级联调试

单级电路调试时的技术指标较容易达到,但级联后级间相互影响,可能使单级的技术指标发生很大变化,甚至两级不能进行级联。产生的主要原因:一是布线不太合理,形成级间交叉耦合,应考虑重新布线;二是级联后各级电流都要流经电源内阻,内阻压降对某一级可能形成正反馈,应接RC去耦滤波电路。R一般取几

十欧姆, C一般用几百微法大电容与0.1F小电容相并联。由于功放输出信号较大, 易对前级产生影响, 引起自激。集成块内部电路多极点引起的正反馈易产生高频自激, 常见高频自激现象如图所示。

可以加强外部电路的负反馈予以抵消,如功放级①脚与⑤之间接入几百皮法的电容,形成电压并联负反馈,可消除叠加的高频毛刺。

6 实验过程

- 6.1 实验电路与功率、增益、效率
- 6.2 幅频响应
- 6.3 音调控制特性曲线测量数据
- 7 实验小结