

Я Закладки	Неделя 6. Комплексные числа > Тест > Оцениваемое задание
	Оцениваемое задание
▶ О ВШЭ	ЭТОТ ЭЛЕМЕНТ КУРСА ОЦЕНИВАЕТСЯ КАК 'ПРОМЕЖУТОЧНЫЕ ТЕСТЫ'
	BEC: 1.0
▶ Неделя 1. Числа	ДО 13 ОКТ. 2019 Г. 23:59 MSK
педелл т. тиела	Д Добавить страницу в мои закладки
▶ Неделя 2.	
Индукция	Тест по шестой лекции
	15 из 15 баллов (оценивается)
▶ Неделя 3.	В первых шести заданиях выберите правильный вариант ответа.
Инструменты	
	При перемножении комплексных чисел
Неделя 4. Целые	
числа и	🔘 их модули и аргументы складываются.
многочлены	
	🔘 их модули складываются, а аргументы перемножаются.
Неделя 5. Цепные	
дроби	 их модули перемножаются, а аргументы складываются.
▼ Неделя 6.	их модули и аргументы перемножаются.
Комплексные числа	- 10 1p 3 1p 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-ivic/iu	
Видеозапись	
лекции	Умножение на комплексное число $1+\mathbf{\emph{i}}$ задаёт преобразование
Тест	комплексной плоскости, которое является
Дополнительные материалы	
Презентация	\bigcirc поворотом на угол ${f 45}^\circ$ против часовой стрелки.
, , , , , , , , , , , , , , , , , , , ,	
	\bigcirc поворотом на угол 45° по часовой стрелке.
	\bigcirc растяжением в $\sqrt{2}$ раз.

$ullet$ композицией поворота на угол 45° против часовой стрелки и растяжения в $\sqrt{2}$ раз. \checkmark
\bigcirc композицией поворота на угол 45° по часовой стрелке и растяжения в $\sqrt{2}$ раз.
Аргументы всех комплексных корней уравнения $z^5+1=0$ равны:
• 36°, 108°, 180°, 252°, 324°. ✓
$\bigcirc \ 0^{\circ}, 72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}.$
$\bigcirc \ 0^{\circ}, 36^{\circ}, 72^{\circ}, 108^{\circ}, 144^{\circ}.$
$\bigcirc \ 0^{\circ}, 36^{\circ}, 72^{\circ}, 108^{\circ}, 144^{\circ}, 180^{\circ}, 216^{\circ}, 252^{\circ}, 288^{\circ}, 324^{\circ}.$
Формулой Эйлера называется следующее тождество:
$\circ\sin\pi=0$.
$\bigcirc \cos \pi = -1.$
$lacktriangledown e^{i\pi} = -1$. $lacktriangledown$
$\bigcirc ij=k$.
$\bigcirc i^2 = -1.$
Корень уравнения $z^n-1=0$ называется первообразным корнем степени n из единицы, если он не является корнем уравнения $z^m-1=0$ ни при каком $m< n$. Количество комплексных первообразных корней степени 24 из единицы

135	5	•	
135		_	
Найд	ците модуль ко	мплексного числа	$i^{18}(1-\sqrt{3}i)^{10}(-1-i)$
204	1 8	•	
204	.8		
Вычи	ислите вещесті	зенную часть комг	плексного числа $\dfrac{(1+\sqrt{3}i)^{10}}{\left(1+i ight)^{2020}}$
2		•	
2			
веще	ественного мн	о $2020 + 2019i$ яв огочлена f , причё ел. Найдите степен	м $m{f}$ неприводим над пол
2		•	
2			
4			
В пос	следних четыр іанты ответа.	ёх заданиях выбер	рите BCE правильные
В пос	анты ответа.	ёх заданиях выбер их утверждений ве	·
В поо вари Каки	анты ответа. е из следующи Каждый много	іх утверждений ве	·

	Каждый многочлен с комплексными коэффициентами имеет вещественный корень.
✓	Каждый многочлен с комплексными коэффициентами имеет комплексный корень.
~ (ак <i>v</i>	ie из следующих утверждений верны?
✓	Каждый комплексный многочлен раскладывается на линейные множители.
	Каждый комплексный многочлен степени $m{n}$ имеет ровно $m{n}$ попарно различных комплексных корней.
	Если комплексное число является корнем комплексного многочлена, то сопряженное к нему тоже является корне этого многочлена.
✓	Если комплексное число является корнем вещественного многочлена, то сопряженное к нему тоже является корне этого многочлена.
✓ Įля	каждого комплексного числа $oldsymbol{z}$ выполнены соотношения:
✓	$\operatorname{Re} z = rac{z+ar{z}}{2}.$
	$\operatorname{Im} z = \frac{z - \overline{z}}{2}.$
	$\mathrm{Im}\ z=rac{z-ar{z}}{2i}.$
✓	$mz=_{2i}$.
	$ z ^2 = z ar{z}.$

✓	Явные формулы в радикалах для корней уравнений степени 3 и 4 были опубликованы в книге Джероламо Кардано "Великое искусство или правила алгебры" в Х веке.	VI			
☐ Явные формулы в радикалах для корней уравнений степени 3 и 4 впервые появились в работах Эвариста Галуа в XIX веке.					
✓	Нильс Хенрик Абель доказал, что некоторые уравнени степени 5 неразрешимы в радикалах.	Я			
✓	Галуа вывел общие критерии разрешимости уравнени радикалах.	ІЙ Е			
0.	Этправить Вы использовали 1 из 1 попытки				
/	Верно (15/15 баллов)				

<u>Каталог курсов</u> <u>Направления</u> <u>подготовки</u>

О проекте Вопросы и ответы Пользовательское соглаш Контакты Помощь

© 2018 Открытое Образование

