Révisions – Trains épicycloïdaux

Train simple ★

Soit le train épicycloïdal suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} .

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$

Corrigé voir 3.

A3-05

C2-06

Train simple ★

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} . En bloquant le porte satellite, on a : $\frac{\omega_{43}}{\omega_{13}} = \frac{Z_1 Z_{22}}{Z_{21} Z_4}$. On a donc, $\frac{\omega_{40} + \omega_{03}}{\omega_{10} + \omega_{03}} = \frac{Z_1 Z_{22}}{Z_{21} Z_4}$ $\Leftrightarrow \omega_{40} + \omega_{03} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} (\omega_{10} + \omega_{03}) \Leftrightarrow \omega_{40} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} (\omega_{10} - \omega_{30}) + \omega_{30} \Leftrightarrow \omega_{40} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} + \left(1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right) \omega_{30}$.

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$.

$$\Leftrightarrow 0 = \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} + \left(1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right) \omega_{30} \Leftrightarrow \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} = -\left(1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right) \omega_{30} \Leftrightarrow \frac{\omega_{30}}{\omega_{10}} = \frac{Z_1 Z_{22}}{Z_{21} Z_4}$$

$$\frac{Z_1 Z_{22}}{Z_{21} Z_4} - 1 = \frac{Z_1 Z_{22}}{Z_1 Z_{22} - Z_{21} Z_4}.$$

Éléments de correction

1. .
$$2. \ \omega_{40} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} + \\ \left(1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right) \omega_{30};$$
3.
$$\frac{\omega_{30}}{\omega_{10}} = \frac{Z_1 Z_{22}}{Z_1 Z_{22} - Z_{21} Z_4}.$$

A3-05

C2-06

A3-05

C2-06

Éléments de correction

1.
$$\omega_{40} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} + \frac{1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}}{\omega_{30}} \omega_{30}.$$

2. $\frac{\omega_{30}}{\omega_{10}} = \frac{Z_1 Z_{22}}{Z_1 Z_{22} - Z_{21} Z_4}$

A3-05

C2-06

Train simple ★

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} .

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$

Corrigé voir 3.

Train simple ★

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} . En bloquant le porte satellite, on a : $\frac{\omega_{43}}{\omega_{13}} = \frac{Z_1 Z_{22}}{Z_{21} Z_4}$. On a donc, $\frac{\omega_{40} + \omega_{03}}{\omega_{10} + \omega_{03}} = \frac{Z_1 Z_{22}}{Z_{21} Z_4}$ $\Leftrightarrow \omega_{40} + \omega_{03} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} (\omega_{10} + \omega_{03}) \Leftrightarrow \omega_{40} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} (\omega_{10} - \omega_{30}) + \omega_{30} \Leftrightarrow \omega_{40} = \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} + \left(1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right) \omega_{30}$.

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$

$$\Leftrightarrow 0 = \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} + \left(1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right) \omega_{30} \Leftrightarrow \frac{Z_1 Z_{22}}{Z_{21} Z_4} \omega_{10} = -\left(1 - \frac{Z_1 Z_{22}}{Z_{21} Z_4}\right) \omega_{30} \Leftrightarrow \frac{\omega_{30}}{\omega_{10}} = \frac{Z_1 Z_{22}}{Z_{21} Z_4}$$

$$\frac{Z_1 Z_{22}}{Z_{21} Z_4} = \frac{Z_1 Z_{22}}{Z_1 Z_{22} - Z_{21} Z_4}.$$

Poulie Redex ★

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer littéralement, en fonction des nombres de dents, la loi E/S du système (c'est-à-dire le rapport de transmission).

Corrigé voir 2.

Poulie Redex ★

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer littéralement, en fonction des nombres de dents, la loi E/S du système (c'est-à-dire le rapport de transmission).

On cherche
$$\frac{\omega_{30}}{\omega_{10}}$$
. En bloquant le porte satellite 1, on a $\frac{\omega_{31}}{\omega_{01}} = \frac{Z_0Z_2}{Z_2'Z_3}$. En décomposant les vitesses, on a : $\frac{\omega_{30} - \omega_{10}}{\omega_{10}} = -\frac{Z_0Z_2}{Z_2'Z_3} \Leftrightarrow \omega_{30} - \omega_{10} = -\frac{Z_0Z_2}{Z_2'Z_3}\omega_{10} \Leftrightarrow \omega_{30} = 0$

$$\left(1 - \frac{Z_0 Z_2}{Z_2' Z_3}\right) \omega_{10} \Leftrightarrow \frac{\omega_{30}}{\omega_{10}} = 1 - \frac{Z_0 Z_2}{Z_2' Z_3}.$$

AN:
$$\frac{\omega_{30}}{\omega_{10}} = 1 - \frac{49 \times 34}{31 \times 46} = -0, 17.$$

D'après ressources de Stéphane Genouël.

A3-05

C2-06

Éléments de correction

1. .
2.
$$\frac{\omega_{30}}{\omega_{10}} = 1 - \frac{Z_0 Z_2}{Z_2' Z_3}$$

D'après ressources de Stéphane Genouël.

A3-05

C2-06

A3-05

C2-06

Train simple ★

On s'intéresse à la chaîne de transmission de puissance d'un tracteur Fendt. Cette dernière est composée d'un moteur (et d'une pompe) hydraulique (Mh) ainsi que d'un moteur thermique MAN (Mm).

Le moteur MAN a pour but de fournir de la puissance à la pompe hydraulique et au tracteur (récepteur R). On donne ci-dessous le schéma de la transmission.

Les rayons des pignons sont les suivants : $R_{12}=60$, $R_{1M}=33$, $R_2=30$, $R_{32}=120$, $R_{3P}=54$, $R_M=54$, $R_M'=48$, $R_R=42$, $R_R'=48$.

Une étude antérieure a permis d'établir que $\frac{\omega(Ph/0)}{\omega(Mh/0)} = \frac{2y}{x}$ avec $x \in [0,71;1]$ et $y \in [0;1]$.

La fréquence de rotation du moteur Man est de 1900 tr/min.

Question 1 Déterminer la relation entre $\omega(1/0)$, $\omega(3/0)$ et $\omega(4/0)$.

Question 2 Montrer que la relation entre la rotation du moteur hydraulique et le moteur Man peut se mettre sous la forme : $\frac{\omega(Mh/0)}{\omega(Mm/0)} = -\frac{Ax}{BR_py + Cx}$ où on explicitera A, B et C.

Corrigé voir 2.

Éléments de correction

avec

1. $R_{32}\omega(3/0) + R_{12}\omega(1/0) =$

 $(R_{12} + R_{32}) R_{1M} R_{3P} x$

 $R_{32}2yR_{P}R_{1M} + R_{3P}xR_{12}R_{M}$

 $\frac{\omega(4/0)(R_{12} + R_{32})}{\omega(Mh/0)}$ $\frac{\omega(Mm/0)}{\omega(Mm/0)}$

 $\begin{array}{ll} (R_{12}+R_{32})\,R_{1M}R_{3P}, \\ B &=& R_{32}2R_{1M} \\ C &=& R_{3P}xR_{12}R_{M}. \end{array}$

Train simple ★

Question 1 Déterminer la relation entre $\omega(1/0)$, $\omega(3/0)$ et $\omega(4/0)$.

Question 2 Montrer que la relation entre la rotation du moteur hydraulique et le moteur Man peut se mettre sous la forme : $\frac{\omega(Mh/0)}{\omega(Mm/0)} = -\frac{Ax}{BR_py + Cx}$ où on explicitera A, B et C.

On cherche une relation entre $\omega_{\text{Mh/0}}$, $\omega_{\text{Ph/0}}$ et $\omega_{\text{Mm/0}}$ (avec Mm et 4 même classe d'équivalence). Pour cela, on va d'abord rechercher une relation entre $\omega(3/0)$, $\omega(4/0)$ et $\omega(1/0)$.

Bloquons le porte satellite 4, directement lié au moteur Mm. On est alors en présence d'un réducteur simple d'entrée $\omega(1/4)$ et de sortie $\omega(3/4)$. On a donc : $\frac{\omega(3/4)}{\omega(1/4)} = -\frac{R_{12}}{R_{32}}$.

En libérant le porte satellite, on a donc : $\frac{\omega(3/4)}{\omega(1/4)} = \frac{\omega(3/0) - \omega(4/0)}{\omega(1/0) - \omega(4/0)} = -\frac{R_{12}}{R_{32}} \Leftrightarrow R_{32}\omega(3/0) + R_{12}\omega(1/0) = \omega(4/0) (R_{12} + R_{32})$

On a donc, $R_{32}\omega(3/0) + R_{12}\omega(1/0) = \omega(\text{Mm}/0)(R_{12} + R_{32})$.

Par ailleurs,
$$\frac{\omega(\text{Ph/0})}{\omega(3/0)} = -\frac{R_{3P}}{R_P}$$
 et $\frac{\omega(1/0)}{\omega(\text{Mh/0})} = -\frac{R_M}{R_{1M}}$.

On a donc,
$$\frac{2y}{x}\omega(Mh/0) = -\omega(3/0)\frac{R_{3P}}{R_P} \Leftrightarrow \omega(3/0) = -\frac{2y}{x}\frac{R_P}{R_{3P}}\omega(Mh/0).$$

En utilisant la relation du train épi : On a donc, $-R_{32}\frac{2y}{x}\frac{R_P}{R_{3P}}\omega(Mh/0)-R_{12}\frac{R_M}{R_{1M}}\omega(Mh/0)=$

$$\omega(\text{Mm/0}) \left(R_{12} + R_{32} \right) \Leftrightarrow \left(-R_{32} \frac{2y}{x} \frac{R_P}{R_{3P}} - R_{12} \frac{R_M}{R_{1M}} \right) \omega(\text{Mh/0}) = \omega(\text{Mm/0}) \left(R_{12} + R_{32} \right).$$

$$\frac{\omega(Mh/0)}{\omega(Mm/0)} = -\frac{R_{12} + R_{32}}{R_{32}\frac{2y}{x}\frac{R_P}{R_{3P}} + R_{12}\frac{R_M}{R_{1M}}}$$

$$\frac{\omega(Mh/0)}{\omega(Mm/0)} = -\frac{(R_{12} + R_{32})\,R_{1M}R_{3P}x}{R_{32}2yR_PR_{1M} + R_{3P}xR_{12}R_M}.$$
 On a donc, $A = (R_{12} + R_{32})\,R_{1M}R_{3P}$, $B = R_{32}2R_{1M}$ et $C = R_{3P}xR_{12}R_M$. Attention, plusieurs solutions possibles, si on

factorise le numérateur et le dénominateur par l'un ou l'autre des rayons.

