Freie Präsentierungen endlicher Gruppen und zugehörige Darstellungen

MANUEL OJANGUREN

1. Einleitung

Eine Präsentierung G=F/R der Gruppe G als Quotient einer freien Gruppe F gibt in bekannter Weise Anlaß zu einer Darstellung von G durch Automorphismen der Abelsch gemachten Relationengruppe $R_0=R/[R,R]$: man ordnet dem Element $\xi=xR$ von G, $x\in F$, die Abbildung zu, welche das Element r[R,R] von R_0 , $r\in R$, in $xrx^{-1}[R,R]$ überführt. Die freie Abelsche Gruppe R_0 , die additiv geschrieben sei, wird dadurch zu einem G-Modul; anders ausgedrückt: es liegt eine ganzzahlige Darstellung von G vor, deren Grad gleich dem Rang N von R ist. Die vorliegende Arbeit handelt von einigen Eigenschaften dieser Darstellung von G. Im folgenden soll F stets frei und nicht-Abelsch sein, also $n \ge 2$ freie Erzeugende besitzen.

Zunächst erinnern wir an die Arbeit von Auslander und Lyndon [1], in welcher folgende bemerkenswerte Aussagen über den genannten G-Modul R_0 gemacht werden:

- (A) G operiert treu in R_0 , d.h. aus $\xi r_0 = r_0$ für alle $r_0 \in R_0$ folgt $\xi = 1$.
- (B) Der bezüglich G invariante Teilmodul R_0^G von R_0 ist genau dann von 0 verschieden, wenn G endlich ist.

In der vorliegenden Arbeit werden, für den Fall einer endlichen Gruppe G der Ordnung g, diese Resultate von Auslander und Lyndon neu bewiesen und verschärft (§ 3 und 4). Wir zeigen insbesondere:

- (A') $R_0 \otimes C \cong C \oplus CG \oplus \cdots \oplus CG$ wobei C der triviale G-Modul der komplexen Zahlen ist, CG die komplexe Gruppenalgebra von G, in üblicher Weise als G-Modul aufgefa βt , und wobei die Anzahl der Summanden rechts gleich n ist (also ≥ 2).
 - (B') R_0^G ist eine freie Abelsche Gruppe vom gleichen Rang wie F.
- Aus (A') folgt, daß die Gruppe G in $R_0 \otimes C$, also auch in R_0 , treu operiert. Aus (B'), daß $R_0^G \neq 0$ ist.

Unsere Methoden benutzen die Interpretation von G als Deckbewegungsgruppe einer regulären Überlagerung P^* eines 1-dimensionalen Komplexes P mit der Fundamentalgruppe F; einige "geometrische" Vorbereitungen finden sich in § 2. Wir verwenden im besonderen einfache Beziehungen betreffend die Bettischen Zahlen von P und P^* (aus denen sich übrigens die Schreiersche Formel für den Rang N von R, N=1+g(n-1) besonders elegant ergibt — unsere Betrachtungen sind in einem gewissen Sinne Verallgemeinerungen dieser Formel).

In § 3 liefert eine Anwendung von (A') den folgenden Satz:

(C) Falls die endliche Gruppe G durch n ihrer Elemente erzeugt werden kann, so ist die dritte ganzzahlige Homologiegruppe $H_3(G)$ von G durch $2n-1+g(n-1)^2$ Elemente (oder weniger) erzeugbar.

In § 5 wird untersucht, ob sich der G-Modul R_0 selbst in ähnlicher Weise zerlegen läßt wie $R_0 \otimes C$; wir zeigen, daß die zu (A') analoge Isomorphie

$$R_0 \cong Z \oplus ZG \oplus \cdots \oplus ZG$$

genau dann besteht, wenn G eine zyklische Gruppe ist.

In § 6 wird eine Basis der Abelschen Gruppe R_0^G konstruiert und, mit Hilfe dieser Basis, folgendes bewiesen:

- (D) Falls F/R endlich ist, ist das Zentrum von F/[R,R] eine freie Abelsche Gruppe vom gleichen Rang wie F, die mit dem Bild der Verlagerung von F in R_0 übereinstimmt.
- (E) Ist F eine freie Gruppe mit $n \ge 2$ Erzeugenden und R ein beliebiger Normalteiler von F, so gibt es keine Untergruppe X von F derart, da β

$$[F,X]=[R,R]$$

ist, ausgenommen in den Fällen R = F oder R = 1.

Die meisten Resultate dieser Arbeit sind ohne Beweise in einer Comptes Rendus-Note¹ angekündigt worden.

2. Überlagerung

In diesem und in den folgenden Abschnitten habe F einen endlichen Rang $n \ge 1$ und G die Ordnung g.

Man kann F als Fundamentalgruppe eines 1-dimensionalen Polyeders P auffassen: dem Normalteiler R von F entspricht eine reguläre Überlagerung P^* über P, deren Deckbewegungsgruppe isomorph zu G ist. Die Fundamentalgruppe von P^* ist isomorph zu R. Hat P α_0 Ecken und α_1 Kanten, so ist [11, S.170]

$$n=1+\alpha_1-\alpha_0$$
;

 P^* hat $g\alpha_0$ Ecken und $g\alpha_1$ Kanten, und deswegen ist der Rang N seiner Fundamentalgruppe durch die Schreiersche Formel [2]

$$N = 1 + g \alpha_1 - g \alpha_0 = 1 + g(n-1)$$

gegeben.

Die erste Homologiegruppe $H_1(P^*, A)$ mit Koeffizienten in einem trivialen G-Modul A ist isomorph zur abelschen Gruppe $A \otimes R_0$. Die Decktransformationen induzieren in $H_1(P^*, A)$ Automorphismen, welche H_1 zu einem G-Modul machen. Wir wollen sehen, wie das geschieht. Es sei b der Basispunkt von P und b^* ein über b liegender Punkt der als Basispunkt von P^* gewählt wird. Es sei r ein beliebiges Element aus der Fundamentalgruppe $\Pi(P^*, b^*) = R$ von P^* , u^* ein zur Homotopieklasse r gehöriger Weg von P^* und u seine

¹ Ojanguren, M.: C. R. Acad. Sci. Paris 264, 60-61 (1967).

Projektion in P. Ferner sei x ein Element aus der Fundamentalgruppe $\Pi(P,b)=F, \bar{x}$ seine Projektion in F/R=G, w ein zur Homotopieklasse x gehöriger Weg von P und w^* die in b^* beginnende Überlagerung von w. Die zu \bar{x} gehörige Decktransformation $D_{\bar{x}}$ bildet u^* in einen geschlossenen Weg $D_{\bar{x}}(u^*)$ ab, der im Endpunkt $D_{\bar{x}}(b^*)$ von w^* beginnt. Die (ganzzahlige) Homologieklasse von $D_{\bar{x}}(u^*)$ ist offenbar dieselbe wie diejenige von $w^*D_{\bar{x}}(u^*)(w^*)^{-1}$. Dieser Weg ist eine Überlagerung von wuw^{-1} und liegt deswegen in der Homotopieklasse xrx^{-1} von $\Pi(P^*,b^*)$. Die Homologieklasse von xrx^{-1} ist aber die Klasse von xrx^{-1} modulo [R,R], also sind $H_1(P^*,Z)$ und R_0 auch als G-Moduln isomorph, falls die G-Modul-Struktur von R_0 wie im §1 erklärt wird. Daraus folgt, daß auch $H_1(P^*,A)$ und $A\otimes R_0$ zueinander isomorphe G-Moduln sind, falls

 $\xi(a \otimes r_0) = a \otimes \xi r_0 \tag{1}$

für alle $\xi \in G$, und $r_0 \in R$ gesetzt wird.

Wir wollen jetzt ein spezielles Paar (P, P^*) konstruieren. Das Polyeder P bestehe einfach aus einer Ecke E und aus n orientierten Schleifen

$$\varepsilon_1, \ldots, \varepsilon_n$$

mit Anfangs- und Endpunkten in E, welche die Erzeugenden

$$e_1, \ldots, e_n$$

der Fundamentalgruppe F repräsentieren. Im folgenden bezeichnen wir mit ε_i sowohl den orientierten Weg als auch die ihm entsprechende 1-dimensionale orientierte Zelle. Der in entgegengesetzter Richtung durchlaufene Weg wird mit ε_i^{-1} bezeichnet. Die Überlagerung P^* von P hat g 0-dimensionale Zellen und ng 1-dimensionale Zellen. Wir identifizieren die Ecken von P^* mit den Elementen $\xi_1,\ldots,\xi_g\in G$ und die 1-Zellen von P^* mit den Produkten

$$\xi_1 \varepsilon_1, \xi_1 \varepsilon_2, \dots, \xi_{\sigma} \varepsilon_n$$

so, daß der 1-Zelle, welche in der ξ_i entsprechenden Ecke beginnt und ε_j überlagert, das Produkt $\xi_i \varepsilon_j$ zugeordnet ist und daß diese Zelle in der $\xi_i \overline{\varepsilon}_j$ entsprechenden Ecke endet. (Hier und in der Folge bezeichnen wir die kanonischen Projektionen von F und F_0 in G mit einem Querstrich.) Die $\xi \in G$ entsprechende Decktransformation von P^* bildet die Ecke ξ_i in die Ecke $\xi \xi_i$ und die 1-Zelle $\xi_i \varepsilon_j$ auf die 1-Zelle $\xi \xi_i \varepsilon_j$ ab. Der G-Modul L^0 der 0-Ketten von P^* ist also zum ganzzahligen Gruppenring ZG isomorph und soll mit ihm identifiziert werden, während der G-Modul L der 1-Ketten frei erzeugt wird durch $\varepsilon_1, \ldots, \varepsilon_n$. Die Randbildung

$$\partial \colon L \to L^0 \tag{2}$$

ist offenbar durch

$$\partial \xi \, \varepsilon_i = \xi (\bar{e}_i - 1) \in ZG \tag{3}$$

gegeben. Jedem Element $x=e_{i_1}^{\pm 1}\dots e_{i_m}^{\pm 1}\in F$ ordnen wir einen geschlossenen Weg $w(x)=\varepsilon_{i_1}^{\pm 1}\dots \varepsilon_{i_m}^{\pm 1}$ zu, und diesem Weg einen ihn überlagernden Weg $w^*(x)$ in P^* mit Anfangspunkt in der Ecke $\xi_1=1$. $w^*(x)$ entspricht in natürlicher Weise eine 1-dimensionale Kette $dx\in L$. Man sieht sofort, daß die folgen-

den Beziehungen gelten:

$$de_i = \varepsilon_i, \tag{4}$$

$$d(xy) = dx + \bar{x} dy. \tag{5}$$

Die so erhaltene Abbildung

$$d: F \rightarrow L$$

definiert einen Homomorphismus von R in L, denn es ist

$$d(r_1 r_2) = dr_1 + dr_2 \qquad r_1, r_2 \in R \tag{6}$$

wie man aus (5) sieht. Weiter gilt

$$d[r_1, r_2] = 0 r_1, r_2 \in R. (7)$$

Also induziert d einen ebenfalls mit d bezeichneten Homomorphismus von R_0 in L. d ist sogar ein G-Homomorphismus, denn

$$d(xrx^{-1}) = dx + \bar{x}dr + \bar{x}\bar{r}d(x^{-1}) = dx + \bar{x}dr - \bar{x}\bar{r}\bar{x}^{-1}dx = \bar{x}dr \tag{8}$$

also

$$d(\bar{x}r_0) = \bar{x}dr_0 \qquad \text{für alle } r_0 \in R_0, \, \bar{x} \in G. \tag{9}$$

Weil die geschlossenen Wege in P^* genau diejenigen sind, deren Projektionen zu einer Homotopieklasse $r \in R$ gehören, fällt der Teilmodul der Zyklen von L mit $d(R_0)$ zusammen. Andererseits ist das Bild $\partial(L)$ von L wegen (3) einfach das Augmentierungsideal IG von ZG.

Aus dieser ganzen Betrachtung erhalten wir:

Lemma 2.1. Zu einer gegebenen freien Präsentierung F/R von G gibt es ein 1-dimensionales Polyeder P und eine reguläre Überlagerung P^* von P so, daß die Deckbewegungsgruppe von P^* über P isomorph zu G ist und daß die G-Modul-Isomorphie $H_*(P^*, Z) \cong R_0 \tag{10}$

gilt.

Lemma 2.2. Zu einer gegebenen freien Präsentierung F/R von G gibt es einen freien G-Modul L und zwei G-Homomorphismen d und ∂ so, daß die Sequenz

$$0 \to R_0 \xrightarrow{d} L \xrightarrow{\partial} IG \to 0 \tag{11}$$

exakt ist.

3. Die Darstellung von G in SL(N, Z)

Weil R eine freie Gruppe vom Range N=1+g(n-1) ist, so ist R_0 eine freie abelsche Gruppe, ebenfalls vom Range N, und besitzt also eine Basis

$$r_1,\ldots,r_N$$
.

Das Operieren eines Elementes $\xi \in G$ auf R_0 kann durch

$$\xi r_i = \sum_j A_{ij}(\xi) r_j, \tag{12}$$

d.h. durch eine ganzzahlige Matrix $A(\xi) = (A_{ij}(\xi))$, beschrieben werden. Wegen

$$(\xi \eta) r = \sum_{j} \xi A_{ij}(\eta) r_{j} = \sum_{j,k} A_{ij}(\eta) A_{jk}(\xi) r_{k}$$
 (13)

liefert die Zuordnung

$$\mathfrak{R} \colon \xi \to A(\xi^{-1}) \tag{14}$$

eine Darstellung von G in $SL(N, Z) \subset SL(N, C)$.

Lemma 3.1. Die Spur Sp $A(\xi)$ von $A(\xi)$ ist gleich 1, wenn $\xi \neq 1$ und gleich N, wenn $\xi = 1$.

Beweis. Der Fall $\xi = 1$ ist trivial. Es sei also $\xi \neq 1$. Die zu ξ gehörige Decktransformation induziert in $H_0(P^*, Z) \cong Z$ die Identität und in $H_1(P^*, Z)$ einen Automorphismus, der auf Grund von (10) und (12) gerade durch $A(\xi)$ beschrieben wird. Weil diese Decktransformation keine Fixpunkte hat, folgt aus der Hopfschen Spurformel:

$$\operatorname{Sp} A(\xi) - 1 = 0$$
, d.h. $\operatorname{Sp} A(\xi) = 1$.

Satz 3.1. Die Darstellung \Re ist als komplexe Darstellung aufgefaßt (d.h. als Darstellung von G in SL(N, C)), äquivalent zur Summe einer identischen 1-dimensionalen Darstellung und n-1 regulären Darstellungen von G.

Beweis. χ sei der Charakter einer irreduziblen m-dimensionalen Darstellung von G. Aus Lemma 3.1 folgt

$$\frac{1}{g} \sum_{\xi \in G} \operatorname{Sp} A(\xi) \chi(\xi) = \frac{1}{g} \left[N \chi(1) - \chi(1) + \sum_{\xi \in G} \chi(\xi) \right].$$

Ist nun χ nicht trivial, so ist $\sum_{x \in G} \chi(\xi) = 0$ und $\chi(1) = m$, also

$$\frac{1}{g} \sum_{\xi \in G} \operatorname{Sp} A(\xi) \chi(\xi) = \frac{1}{g} m(N-1) = m(n-1).$$

Falls χ trivial ist, d.h. $\chi(\xi)=1$ für alle $\xi \in G$, erhalten wir

$$\frac{1}{g} \sum_{\xi \in G} \operatorname{Sp} A(\xi) \chi(\xi) = \frac{1}{g} \sum_{\xi \in G} \operatorname{Sp} A(\xi) = \frac{1}{g} (g - 1 + N) = n.$$

Jede m-dimensionale irreduzible Darstellung kommt aber in der regulären Darstellung genau m-mal vor, d.h. \Re besteht aus n-1 regulären Darstellungen und aus einer trivialen 1-dimensionalen Darstellung.

Korollar 3.1. Es gilt

$$R_0 \otimes C \cong C \oplus CG \oplus \cdots \oplus CG. \tag{15}$$

Korollar 3.2. Ist der Rang n von $F \ge 2$, so ist \Re treu, d.h. G operiert treu in R_0 (vgl. §1, (A')).

Als Anwendung vom Satz 3.1 beweisen wir den folgenden Satz über die dritte Homologiegruppe einer endlichen Gruppe.

Satz 3.2. Wenn die endliche Gruppe G durch n ihrer Elemente erzeugt werden kann, so kann $H_3(G, Z)$ durch weniger als

$$2n+g(n-1)^2$$

Elemente erzeugt werden.

Beweis. Auf Grund von Lemma 2.2 und mit derselben Bezeichnung gibt es eine lange exakte Sequenz in der modifizierten Cohomologie \hat{H} von G [10, 12]

$$\rightarrow \hat{H}^n(G,L) \rightarrow \hat{H}^n(G,IG) \rightarrow \hat{H}^{n+1}(G,R_0) \rightarrow \hat{H}^{n+1}(G,L) \rightarrow$$

aus welcher wir die Isomorphie

$$\hat{H}^n(G, IG) \cong \hat{H}^{n+1}(G, R_0) \tag{16}$$

ablesen können; denn L ist frei und somit $\hat{H}^n(G, L) = \hat{H}^{n+1}(G, L) = 0$.

Analog folgt aus der exakten Sequenz

$$0 \to IG \to ZG \to Z \to 0$$

$$\hat{H}^{n+1}(G, IG) \cong \hat{H}^{n-1}(G, Z). \tag{17}$$

(16) und (17) zusammen ergeben die Formel (vgl. [8], S. 273)

$$\hat{H}^{n+1}(G, R_0) \cong \hat{H}^{n-1}(G, Z).$$
 (18)

Für die gewöhnliche Homologie von G entnimmt man daraus die Beziehung

$$H_3(G, \mathbb{Z}) \cong H_1(G, \mathbb{R}_0).$$

Um die Anzahl der Erzeugenden von $H_1(G, R_0)$ abzuschätzen, konstruieren wir eine freie Auflösung von Z:

$$\cdots \to L \xrightarrow{\partial_1} ZG \xrightarrow{\partial_0} Z \to 0. \tag{19}$$

L ist jetzt der freie rechts G-Modul über $\varepsilon_1, \ldots, \varepsilon_n$. Der Homomorphismus ∂_1 ist, wie vorher ∂ , durch

$$\partial_1 \varepsilon_i = \bar{e}_i - 1$$

definiert und ∂_0 ist die evidente Projektion von ZG auf $Z \cong ZG/IG$. Alle anderen Bezeichnungen sind die gleichen wie in § 2.

Aus (19) folgt, durch Tensorieren mit R_0

$$\cdots \to L \otimes_G R_0 \to ZG \otimes_G R_0 \to Z \otimes_G R_0 \to 0. \tag{20}$$

Man kann jedes Element von $L \otimes R_0$ als Summe

$$\sum_{i,j} c_{ij} \varepsilon_i \otimes r_j, \qquad c_{ij} \in \mathbb{Z}$$
 (21)

darstellen, denn

$$\varepsilon_i \xi \otimes r_j = \varepsilon_i \otimes \xi r_j = \sum_{i,j} \varepsilon_i \otimes A_{jk}(\xi) r_k, \qquad (\xi \in G).$$

Die Summe (21) ist ein 1-dimensionaler Zyklus, also ein Element aus

 $Ker(L \otimes R_0 \rightarrow ZG \otimes R_0)$

wenn

$$\sum_{i,j} c_{ij}(\bar{e}_i - 1) \otimes r_j = 0,$$

d.h. wenn

$$\sum_{i,j,k} c_{ij} \left(A_{jk}(\tilde{e}_i) - \delta_{jk} \right) r_k = 0 \tag{22}$$

ist. $(\delta_{jk} = 0 \text{ oder } 1 \text{ je nachdem } j \neq k \text{ oder } j = k.)$ Weil die r_k eine Basis der abelschen Gruppe R_0 bilden, folgt aus (22)

$$\sum_{i,j} c_{ij} (A_{jk}(\bar{e}_i) - \delta_{jk}) = 0 \quad \text{für alle } k = 1, \dots, N.$$
 (23)

Die ganzen Zahlen c_{ij} müssen somit ein Gleichungssystem mit nN Unbekannten und N Gleichungen befriedigen. Durch geeignete Anordnung der c_{ij} kann man die Matrix dieses Systems wie folgt schreiben:

$$\mathfrak{P} = (A^*(\overline{e}_1) - E, \dots, A^*(\overline{e}_n) - E);$$

dabei ist A^* die Transponierte von A und E die Einheitsmatrix.

Hilfssatz. Der Rang von \mathfrak{P} ist (n-1)(g-1).

Aus diesem Hilfssatz folgt sofort, daß der Lösungsraum des Systems (23) die Dimension

$$nN-(n-1)(g-1)=2n-1+g(n-1)^2$$

hat, d.h., daß es höchstens $2n-1+g(n-1)^2$ unabhängige 1-dimensionale Zyklen gibt. $H_1(G, R_0)$ kann also durch $2n-1+g(n-1)^2$ Elemente erzeugt werden, und damit ist 3.2 bewiesen.

Beweis des Hilfssatzes. Nach den Resultaten von § 2 ist auch die durch

$$\xi \to A^*(\xi) \tag{24}$$

definierte Darstellung von G äquivalent zur Summe einer 1-dimensionalen trivialen Darstellung und n-1 regulären Darstellungen von G. Die Matrizen $A^*(\xi)$ sind also äquivalent zu den Matrizen

$$\mathfrak{Q}(\xi) = \begin{pmatrix} 1 & B(\xi) & \\ & \vdots & \\ & \dot{B}(\xi) \end{pmatrix}.$$

wobei $B(\xi)$ die Matrix der regulären Darstellung ist. Infolgedessen ist $\mathfrak P$ äquivalent zu einer Matrix

$$(\mathfrak{Q}(\overline{e}_1)-E,\ldots,\mathfrak{Q}(\overline{e}_n)-E).$$

Der Rang dieser Matrix ist, offensichtlich, n-1 mal größer als der Rang von

$$B_0 = (B(\overline{e}_1) - E, \ldots, B(\overline{e}_n) - E).$$

Um den Rang von Bo zu bestimmen, betrachten wir einen Vektor

$$x = (x, \ldots, x_{\varrho})$$

und das Gleichungssystem

$$xB_0 = 0. (25)$$

Dieses System hat g Unbekannte und ng Gleichungen, die wie folgt geschrieben werden können:

Die σ_i sind dabei diejenigen Permutationen der Indizes $1, \ldots, g$ welche in G der Multiplikation mit \overline{e}_i entsprechen. Weil die Elemente $\overline{e}_1, \ldots, \overline{e}_n$ die ganze Gruppe G erzeugen, wird von den σ_i eine transitive Permutationsgruppe erzeugt, und aus (26) folgt

$$x_1 = x_2 = \dots = x_g.$$

Der Lösungsraum des Systems (25) ist deshalb 1-dimensional und B_0 hat den Rang g-1, also \mathfrak{P} den Rang (n-1)(g-1).

Bemerkung. Im Falle einer zyklischen Gruppe gibt Satz 6.5 für die Anzahl der Erzeugenden von $H_3(G)$ die richtige Schranke (=1) an.

4. Der invariante Teil von R_0

U sei eine beliebige Untergruppe von G. Wir bezeichnen mit R_0^U die Gesamtheit der Elemente aus R_0 , die invariant sind bezüglich U, d.h. die Elemente $r_0 \in R_0$, für welche

$$\xi r_0 = r_0$$
 für alle $\xi \in U$.

Satz 4.1. Hat U den Index j in G, so ist R_0^U eine freie abelsche Gruppe vom Range 1+i(n-1).

Als abelsche Gruppe ist R_0^U ein direkter Faktor von R_0 .

Beweis. Die erste rationale Homologiegruppe von P^* ist

$$H_1(P^*, Q) \cong Q \otimes R_0. \tag{27}$$

Jedem von 1 verschiedenen Element $\xi \in U$ entspricht eine fixpunktfreie Abbildung von P^* in sich, welche in $Q \otimes R_0$ den Automorphismus

$$1 \otimes \xi \colon q \otimes r_0 \to q \otimes \xi r_0 \qquad q \in Q, r_0 \in R_0 \tag{28}$$

induziert. Nach Eckmann [3] ist der Rang des invarianten Teils $H_1(P^*, Q)^U$ von $H_1(P^*, Q)$ (also der Rang von $(Q \otimes R_0)^U$) durch die Formel

$$\frac{1}{u} \sum_{\xi \in U} \operatorname{Sp} A(\xi) \tag{29}$$

gegeben; u ist dabei die Ordnung von U. Aus Lemma 3.1 folgt sofort

$$\operatorname{Rang}(Q \otimes R_0)^U = 1 + j(n-1), \tag{30}$$

wobei j = g/u der Index von U in G ist. Wegen (28) gilt aber

$$(Q \otimes R_0)^U = Q \otimes R_0^U$$

und daher

Rang
$$R_0^U$$
 = Rang $Q \otimes R_0^U = 1 + j(n-1)$.

Aus dem Fundamentalsatz über die freien abelschen Gruppen folgt, daß es eine Basis

$$r_1, \ldots, r_N$$

von R_0 und natürliche Zahlen $\lambda_1, \dots, \lambda_m$ gibt, derart daß

$$\lambda_1 r_1, \ldots, \lambda_m r_m$$

eine Basis von R_0^U ist. Mit $\lambda_i r_i$ ist aber auch r_i invariant, also sind alle $\lambda_i = 1$ und R_0^U ist ein direkter Faktor von R_0 .

Korollar 4.1. R_0^G , der unter G invariante Teil von R_0 , hat den R ang $n \ge 1$ und ist also ± 0 (vgl. §1, (B')).

Korollar 4.2. R_0^U ist genau dann ein Teilmodul von R_0 , wenn U ein Normalteiler von G ist.

Beweis. a) U sei ein Normalteiler von G, r_0 ein Element aus R_0^U und ξ ein Element aus G. Für alle $\eta \in U$ gilt

$$\eta(\xi r_0) = \xi(\xi^{-1}\eta \xi) r_0 = \xi r_0 \tag{31}$$

also $\xi r_0 \in R_0^U$; da dies für beliebige $r_0 \in R_0$ und $\xi \in G$ gilt, ist R_0^U ein Teilmodul von R_0 .

b) Ist R_0^U ein Teilmodul von R_0 , so ist $\xi r_0 \in R_0^U$ für alle $r_0 \in R_0^U$ und alle $\xi \in G$, also $\eta \xi r_0 = \xi r_0$, d.h.

$$\xi^{-1}\eta \,\xi \,r_0 = r_0 \qquad \text{für alle } \xi \in G, \, \eta \in U, \, r_0 \in R_0^U. \tag{32}$$

Sei nun V der von U erzeugte Normalteiler von G. Aus (32) folgt, daß alle bezüglich U invarianten Elemente von R_0 auch bezüglich V invariant sind, was $R_0^V = R_0^U$ und insbesondere

$$\operatorname{Rang} R_0^U = \operatorname{Rang} R_0^V \tag{33}$$

nach sich zieht. Aus (33) und aus Satz 4.1 folgt, daß V und U den gleichen Index haben, also gleich sind.

5. Über die Zerlegbarkeit von R_0

Man kann sich fragen, ob die Zerlegung der Darstellung \Re auch mit Hilfe ganzzahliger unimodularer Transformationen realisierbar ist, d.h. ob es möglich ist, R_0 als Summe

$$R_0 \cong Z \oplus ZG \oplus \cdots \oplus ZG \tag{34}$$

darzustellen, wobei Z der triviale G-Modul der ganzen Zahlen und ZG der ganzzahlige Gruppenring ist. Die Antwort ist im allgemeinen negativ:

Satz 5.1. Ist R_0 als Summe

$$R_0 \cong Z \oplus ZG \oplus \cdots \oplus ZG$$

darstellbar, so ist G eine zyklische Gruppe.

Es scheint sogar plausibel zu sein, daß eine Zerlegung von R_0 in einer Summe $R_0 = S_0 \oplus T_0$

mit einem freien G-Modul T_0 nur dann möglich ist, wenn G mit weniger als n Elementen erzeugbar ist. Man kann jedenfalls den folgenden Satz beweisen:

Satz 5.2. Falls G nilpotent ist und R_0 in eine Summe

$$R_0 = S_0 \oplus T_0 \tag{35}$$

zerfällt, wobei T_0 ein freier G-Modul vom Range k ist, so kann die Gruppe G durch n-k ihrer Elemente erzeugt werden.

Wir beweisen zunächst den folgenden Satz:

Satz 5.3. Zerfällt R_0 in eine Summe

$$R_0 = S_0 \oplus T_0$$
,

wobei T_0 ein freier G-Modul vom Range k ist, so kann die Gruppe G/[G,G] durch n-k ihrer Elemente erzeugt werden.

Beweis. Wir betrachten die exakte Sequenz (11) und fassen R_0 als Teilmodul von L auf. L wird von den Elementen

$$\varepsilon_1, \ldots, \varepsilon_n$$

erzeugt und L^{G} , der invariante Teil von L, wird durch

$$\sum_{\xi \in G} \xi \, \varepsilon_1, \, \dots, \, \sum_{\xi \in G} \xi \, \varepsilon_n \tag{36}$$

erzeugt. In der Folge schreiben wir Γ für die Summe $\sum_{\xi \in G} \xi$. L^G ist in R_0 enthalten, weil die Elemente $\Gamma \varepsilon_i$, die bei der Abbildung $\hat{\sigma}$: $L \to IG$ in $\Gamma(\bar{e}_i - 1) = \Gamma - \Gamma = 0$ übergehen, im Kern von $\hat{\sigma}$, also in R_0 liegen. Es ist also

$$R_0^G = L^G. (37)$$

Der freie G-Modul T_0 sei von den k Elementen

$$t_1, \ldots, t_k$$

frei erzeugt; T_0^G wird also, analog wie L^G , durch

$$\Gamma t_1, \dots, \Gamma t_k$$
 (38)

erzeugt. Aus (35) folgt

$$R_0^G = S_0^G \oplus T_0^G \tag{39}$$

und aus (37)

$$L^G = S_0^G \oplus T_0^G. \tag{40}$$

 L^G ist eine freie abelsche Gruppe mit den freien Erzeugenden (36); S_0^G und T_0^G sind ebenfalls freie abelsche Gruppen. Weil T_0^G den Rang k hat, gibt es eine Basis

$$S_1, \ldots, S_{n-k}$$

von S_0^G und eine unimodulare Transformation

$$\Gamma t_i = \sum_j a_{ij} \Gamma \varepsilon_j \qquad i = 1, ..., k$$

$$s_i = \sum_j b_{ij} \Gamma \varepsilon_j \qquad i = 1, ..., n - k,$$
(41)

welche die Basis (36) von L^G in die Basis

$$\Gamma t_1, \dots, \Gamma t_k, s_1, \dots, s_{n-k} \tag{42}$$

überführt. Da T_0 ein Teilmodul von L ist, kann man schreiben

$$t_i = \sum_j c_{ij} \varepsilon_j$$

mit $c_{ij} \in ZG$, oder auch

$$t_i = \sum_j c'_{ij} \varepsilon_j + \sum_j \gamma_{ij} \varepsilon_j \tag{43}$$

mit $c'_{ij} \in \mathbb{Z}$ und $\gamma_{ij} \in IG$. Durch Multiplikation mit Γ und Vergleich mit (41) erhält man aus (43) $c'_{ij} = a_{ij}. \tag{44}$

Betrachten wir jetzt die Basistransformation

$$\tau_{i} = \sum_{j} a_{ij} \varepsilon_{j} \qquad i = 1, \dots, k$$

$$\sigma_{i} = \sum_{j} b_{ij} \varepsilon_{j} \qquad i = 1, \dots, n - k$$
(45)

in L, und die Sequenz

$$S_0 \oplus T_0 \xrightarrow{d} L \xrightarrow{\partial} IG \xrightarrow{p} IG/(IG)^2,$$
 (46)

wobei p die natürliche Projektion von IG auf $IG/(IG)^2$ ist. Aus (43) und (44) ergibt sich $\tau_i = t_i - \sum_i \gamma_{ij} \varepsilon_j$

und aus Lemma 2.2 folgt $\partial t_i = 0$, d.h., es ist

$$\partial \tau_i = -\sum_j \gamma_{ij} (\overline{e}_j - 1) \in (IG)^2$$

und somit

$$p \partial \tau_i = 0$$
.

 $IG/(IG)^2$ wird also durch die n-k Bilder der σ_i erzeugt, und aus der bekannten Isomorphie [13] $IG/(IG)^2 \cong G/\lceil G,G\rceil$

folgt, daß die abelsch gemachte Gruppe G durch n-k Elemente erzeugt wird.

Satz 5.2 ist eine unmittelbare Folgerung aus Satz 5.3 und aus

Satz 5.4. Ist G eine endliche nilpotente Gruppe und kann man G/[G, G] mit k Elementen erzeugen, so kann man auch G mit k Elementen erzeugen.

Beweis. Es sei m die kleinstmögliche Anzahl Erzeugender von G. Es genügt zu zeigen, daß G/[G,G] mindestens m Erzeugende hat. Nach [6, Theorem 3.5] kann man die m Erzeugenden a_1, \ldots, a_m von G so wählen, daß ihre Bilder in G/[G,G] eine kanonische Basis der Abelsch gemachten Gruppe bilden. Falls diese weniger als m Erzeugende hat, liegt eines der a_i , z.B. a_1 , in [G,G] und nach [6, Lemma 5.9], da G nilpotent ist, wird G schon durch a_2, \ldots, a_m erzeugt, was der Voraussetzung über m widerspricht.

Beweis des Satzes 5.1. Mit Hilfe einfacher homologischer Methoden kann man den Satz 5.1 folgendermaßen verschärfen:

Satz 5.5. Ist R_0 in eine Summe

$$R_0 = Z \oplus T_0$$

zerlegbar, wobei der G-Modul To die Bedingung

$$\hat{H}^2(G, T_0) = 0 \tag{47}$$

erfüllt, so ist G zyklisch.

 $(\hat{H} \text{ ist wieder, wie in } \S 3, \text{ der modifizierte Cohomologiefunktor.})$

Zum Beweis benötigen wir folgendes Lemma:

Lemma 5.1. Ist G eine endliche Gruppe, für die

$$\hat{H}^{0}(G, Z) = \hat{H}^{2}(G, Z)$$
 (48)

gilt, so ist G zyklisch.

Korollar. Hat G die Periode 2, so ist G zyklisch.

Beweis des Lemmas. Es gilt [12, S. 36]

$$\hat{H}^0(G, Z) \cong Z_g$$
 und $\hat{H}^2(G, Z) \cong G/[G, G]$.

Daraus folgt

$$Z_g \cong G/[G, G],$$

also, da g die Ordnung von G ist,

$$[G, G] = 1$$
 und $G \cong Z_g$.

Beweis des Satzes 5.5. Ist

$$R_0 = Z \oplus T_0$$
 und $\hat{H}^2(G, T_0) = 0$,

so folgt aus (18) für n=1,

$$\hat{H}^{2}(G, Z \oplus T_{0}) = \hat{H}^{2}(G, Z) \cong \hat{H}^{0}(G, Z)$$

und nach Lemma 5.1 muß G zyklisch sein.

Wir beweisen jetzt die Umkehrung des Satzes 5.1.

Satz 5.6. Ist G zyklisch, so ist

$$R_0 \cong Z \oplus ZG \oplus \cdots \oplus ZG$$
.

Beweis. Wir wählen in F eine neue Basis a_1, \ldots, a_n derart, daß

$$a_1^g, a_2, \ldots, a_n \in R$$
.

Das ist sicher möglich, weil es eine solche Basis in F/[F, F] gibt (Fundamentalsatz der Abelschen Gruppen) und weil jede Basistransformation von F/[F, F] durch (mindestens) eine Basistransformation von F induziert wird. Mit Hilfe dieser neuen Basis konstruieren wir, nach der Methode von Schreier, eine Basis von R (vgl. [4], Ch. 7, S.91). Als Repräsentanten der Elemente von G nehmen wir das "Schreier-System"

$$1, a_1, a_1^2, \dots, a_1^{g-1}.$$

Ist für alle $x \in F \Phi(x)$ der Vertreter von \bar{x} , so bilden die von 1 verschiedenen Elemente der Form

$$a_1^h a_j \Phi(a_1^h a_j)^{-1}$$
 $h = 0, 1, ..., g-1; j = 1, ..., n$

eine Basis von R. Wir haben also die Basis

Die Konjugation mit a_1 führt a_1^g in sich selbst über und bewirkt eine zyklische Vertauschung der Elemente der anderen Zeilen; also erzeugt das Bild von a_1 in R_0 einen direkten Summanden $\cong Z$ und das Bild von a_i , $i \ge 2$, einen direkten Summanden $\cong ZG$. Damit ist der Satz bewiesen.

6. Weitere Eigenschaften der Präsentierung F/R

Aus dem Satz 4.1 und aus dem Fundamentalsatz über freie abelsche Gruppen folgt, daß es eine Basis

$$t_1, \ldots, t_n, r_{n+1}, \ldots, r_N \tag{49}$$

der abelschen Gruppe R_0 gibt, so daß

$$t_1, \dots, t_n \tag{50}$$

eine Basis von R_0^G ist. Im Hinblick auf einige Anwendungen soll jetzt hier eine solche Basis explizit konstruiert werden.

Die freie Gruppe F sei durch

$$e_1, \ldots, e_n$$

erzeugt. Nach dem Beweis des Schreierschen Satzes über freie Gruppen (vgl. z. B. [4], S. 94) kann man ein System

$$x_1, \dots, x_{\sigma} \tag{51}$$

von Repräsentanten der Klassen xR konstruieren, derart, daß R genau durch die von 1 verschiedenen Elemente

$$t_{ij} = x_i e_j \Phi(x_i e_j)^{-1}$$
 $i = 1, ..., g, j = 1, ..., n$ (52)

frei erzeugt wird. $\Phi(x)$ ist hier der Repräsentant der Klasse x R. Setzen wir jetzt

$$t_j^* = t_{1j}t_{2j} \dots t_{gj} \qquad j = 1, \dots, n.$$
 (53)

Offensichtlich ist

$$t_j^* \equiv e_j^g \quad \text{modulo } [F, F]$$
 (54)
 $t_i^* \neq 1 \quad \text{für alle } i$.

also

Bei festem j sind also nicht alle $t_{ij} = 1$, und man kann in der aus den t_{ij} gebildeten Basis n Elemente $t_{i_11}, \ldots, t_{i_nn}$ durch t_1^*, \ldots, t_n^* ersetzen. Damit erhalten wir eine neue Basis von R:

$$t_1^*, \dots, t_n^*, r_{n+1}^*, \dots, r_N^*.$$
 (55)

Für alle t_i^* und alle $x \in F$ gilt

$$xt_j^* x^{-1} \equiv t_j^* \quad \text{modulo } [R, R]; \tag{56}$$

in der Tat:

$$x t_{j}^{*} x^{-1} = x \prod_{i=1}^{g} x_{i} e_{j} \Phi(x_{i} e_{j})^{-1} x^{-1} = \prod_{i=1}^{g} x x_{i} e_{j} \Phi(x_{i} e_{j})^{-1} x^{-1}$$

$$= \prod_{i=1}^{g} x x_{i} \Phi(x x_{i})^{-1} \Phi(x x_{i}) e_{j} \Phi(\Phi(x x_{i}) e_{j})^{-1} \Phi(x x_{i} e_{j}) \Phi(x_{i} e_{j})^{-1} x^{-1}$$

$$\equiv ABC \qquad \text{modulo } [R, R],$$

wobei

$$\begin{split} A &= \prod_{i=1}^{g} x x_{i} \Phi(x x_{i})^{-1} \\ B &= \prod_{i=1}^{g} \Phi(x x_{i}) e_{j} \Phi(\Phi(x x_{i}) e_{j})^{-1} \\ C &= \prod_{i=1}^{g} \Phi(x x_{i} e_{j}) \Phi(x_{i} e_{j})^{-1} x^{-1}. \end{split}$$

Mit x_i durchläuft auch $\Phi(x x_i)$ das ganze System (51) und daher ist

also
$$B \equiv t_j^* \quad \text{und} \quad A \equiv C^{-1} \quad \text{modulo } [R, R],$$

$$x t_j^* x^{-1} \equiv AB C \equiv t_j^* \quad \text{modulo } [R, R].$$

Die kanonischen Bilder t_j der t_j^* in R/[R, R] erzeugen einen direkten Faktor von R_0 , welcher den Rang n hat und, wegen (56), invariant ist bezüglich G, also mit R_0^G übereinstimmt. Damit ist gezeigt, daß die kanonischen Bilder der (55) eine Basis der gewünschten Art (49) bilden.

Aus der Konstruktion der t_j und aus der Definition der Verlagerung folgt sofort der

Satz 6.1. R_0^G ist das Bild der Verlagerung von F in R_0 .

Eine unmittelbare Folgerung dieses Satzes ist

Satz 6.2. Das Zentrum von F/[R, R] ist das Bild der Verlagerung von F/[R, R] in R/[R, R].

Beweis (vgl. [1, Th. 1, Cor.]). Es sei z im Zentrum von F/[R, R]. Für alle $x \in F/[R, R]$ gilt $z \times z^{-1} \times z^{-1} = 1$ (57)

und insbesondere

$$zr_0z^{-1}r_0^{-1}=1$$
 für alle $r_0 \in R_0$,

was gleichbedeutend ist mit

$$\bar{z}r_0 = r_0$$
 für alle $r_0 \in R_0$.

Nach Korollar 3.2 muß, in diesem Fall, $\bar{z}=1$ sein, d.h. $z \in R/[R, R]$. Das Zentrum von F/[R, R] liegt also in R_0 . Aus (57) folgt sofort, daß R_0^G mit ihm übereinstimmt und daraus mit Satz 6.1 die Behauptung.

Aus Satz A von §1 und aus Korollar 4.1 erhält man noch:

Satz 6.3. Das Zentrum von F/[R, R] ist trivial, wenn F/R unendlich ist. Es ist eine freie abelsche Gruppe vom gleichen Rang wie F, wenn F/R endlich ist.

Wir wollen jetzt einen Satz über Kommutatorgruppen freier Gruppen beweisen.

Satz 6.4. Ist F eine freie Gruppe mit $n \ge 2$ Erzeugenden und R ein beliebiger Normalteiler von F (eventuell also von unendlichem Index), so gibt es keine Untergruppe X von F derart, $da\beta$

$$\lceil F, X \rceil = \lceil R, R \rceil$$
,

außer wenn R = F oder R = 1 ist.

Beweis. Wenn [F, X] = [R, R] ist, so muß X/[F, X] = X/[R, R] im Zentrum von F/[R, R] liegen. Ist F/R unendlich, so ist das Zentrum von F/[R, R] die triviale Gruppe (Satz 6.3) und somit

oder

$$X/[F, X] = 1$$

$$X = [F, X].$$
(58)

Wiederholte Anwendung von (58) hat die Gleichungen

$$X = [F, X] = [F, [F, X]] = \cdots = [F, \cdots [F, X] \ldots]$$

zur Folge. Diese zeigen, daß X in allen Kommutatorgruppen

$$[F, [F, \dots [F, F] \dots]]$$

enthalten ist. Der Durchschnitt dieser Kommutatorgruppen ist aber = 1 (Magnus [5]), also sind auch X und R = 1. Wir nehmen jetzt an, F/R = G habe die endliche Ordnung g. (Die Bezeichnungen sind die gleichen wie in den vorhergehenden Abschnitten.) Nach einem bekannten Satz (vgl. z.B. [6], S. 140, Theorem 3.5) ist es möglich, eine Basis

$$e_1, \ldots, e_n$$

von F so zu wählen, daß R von gewissen Elementen

$$e_1^{d_1}c_1, \ldots, e_n^{d_n}c_n, c_{n+1}, \ldots$$

erzeugt wird, wobei die d_i natürliche Zahlen sind und die c_i in der Kommutatorgruppe von F liegen. Die d_i können sogar so gewählt werden, daß d_i immer ein Teiler von d_{i+1} ist. Es sei nun T das Urbild von R_0^G in F, d.h. T ist die von den t_j^* und [R,R] erzeugte Untergruppe von F. Wie vorher ist X/[R,R] im Zentrum von F/[R,R] enthalten, also ist

 $X \subset T$

und somit

$$[F, X] \subset [F, T] \subset [R, R];$$

 $[F, T] = [R, R].$

(59)

folglich gilt

Es sei jetzt x ein beliebiges Element aus F und t ein beliebiges Element aus T. Man kann schreiben

$$x \equiv e_1^{p_1} \dots e_n^{p_n} \quad \text{modulo } [F, F]$$
 (60)

und wegen (54),

$$t \equiv e_1^{g_1} \dots e_n^{g_n} \quad \text{modulo } [F, F], \tag{61}$$

wobei alle gi durch g teilbar sind. Aus (60) und (61) folgt leicht, daß

$$[x,t] \equiv \prod_{i < j} [e_i, e_j]^{gk_{ij}} \quad \text{modulo} [F, [F, F]],$$
(62)

für gewisse ganze Zahlen k_{ij} ; damit ist jedes Element aus [X, T] zu einem solchen Produkt kongruent modulo [F, [F, F]]. Es ist jetzt leicht zu zeigen, daß (59) nicht möglich ist, falls $n \ge 3$ (n =Anzahl der Erzeugenden von F) vorausgesetzt wird. Wir betrachten in R die drei Elemente

$$e_1^{d_1}c_1, \quad e_2^{d_2}c_2, \quad e_3^{d_3}c_3.$$

Es gilt

$$[e_1^{d_1}c_1, e_2^{d_2}c_2] \equiv [e_1, e_2]^{d_1d_2} \quad \text{modulo} [F, [F, F]]$$

$$[e_1^{d_1}c_1, e_3^{d_3}c_3] \equiv [e_1, e_3]^{d_1d_3} \quad \text{modulo} [F, [F, F]]$$

$$[e_2^{d_2}c_2, e_3^{d_3}c_3] \equiv [e_2, e_3]^{d_2d_3} \quad \text{modulo} [F, [F, F]].$$
(63)

Wenn wirklich [F,T]=[R,R] wäre, so könnte man die linke Seite dieser Kongruenzen durch ein Produkt der Form (62) darstellen. Die Klassen modulo [F,[F,F]] aller Kommutatoren $[e_i,e_j]$ mit i < j bilden, nach einem Satz von Witt [7], eine Basis der freien abelschen Gruppe [F,F]/[F,[F,F]]. Folglich sind die rechten Seiten von (63) nur dann als Produkte der $[e_i,e_j]^{gk_{ij}}$ darstellbar, wenn die Exponenten d_id_j (i,j=1,2,3) durch g teilbar sind. Es müßte somit g^3 die Zahl $(d_1d_2d_3)^2$ teilen. Das Produkt $d_1d_2\ldots d_n$ gibt aber gerade die Ordnung von G/[G,G] an; diese ist ein Teiler von g. Es müßte also g^3 ein Teiler von g^2 sein, was für $g \neq 1$, d.h. $F \neq R$ unmöglich ist.

Betrachten wir jetzt den Fall n=2. Die gleiche Überlegung wie im Falle $n \ge 3$ zeigt, daß G eine abelsche Gruppe der Ordnung g ist; d.h., G besitzt eine Präsentierung

$$\{e_1,e_2;e_1^{d_1},e_2^{d_2},[e_1,e_2]\}$$

die für g > 1 folgende Bedingungen erfüllt:

$$d_1|d_2, \quad d_1d_2 = g, \quad 1 \le d_1 < g.$$
 (64)

Wir setzen $[F, F] = F_2$ und $F_{m+1} = [F, F_m]$ für $m \ge 2$. F_2/F_3 ist frei erzeugt durch $[e_1, e_2]$ F_3 und F_3/F_4 durch

$$[[e_1, e_2], e_1] F_4$$
 und $[[e_1, e_2] e_2] F_4$ ([4], S.167).

Der Kürze halber bezeichnen wir $[e_1, e_2]$ einfach mit e_{12} . Für jedes Element x aus F gilt bekanntlich ([7] oder [4, S.167])

$$x \equiv e_1^{p_1} e_2^{p_2} e_{12}^{p_{12}} \quad \text{modulo } F_3$$
 (65)

mit eindeutig bestimmten p_1, p_2, p_{12} . Aus der Definition der t_{ij} und der t_j^* sieht man leicht, daß nicht nur (54) gilt, sondern sogar

$$t_i^* \equiv e_i^g \quad \text{modulo } [R, R].$$
 (66)

Die Untergruppe T ist deshalb durch die e_j^z und [R, R] erzeugt. Jedes Element r aus R erfüllt eine Kongruenz der Form

$$r \equiv e_1^{d_1 k_1} e_2^{d_2 k_2}$$
 modulo $[F, F]$. (67)

Also gilt für ein Element y aus [R, R]:

$$y \equiv \prod_{i} \left[e_{1}^{d_{1}k_{1}i} e_{2}^{d_{2}k_{2}i}, e_{1}^{d_{1}h_{1}i} e_{2}^{d_{2}h_{2}i} \right]$$

$$\equiv \prod_{i} \left[e_{1}, e_{2} \right]^{g(k_{1}ih_{2}i - k_{2}ih_{1}i)} \quad \text{modulo } F_{3},$$
(68)

wie man leicht aus den Identitäten

$$[AB, C] = [B, C] [[B, C], A] [A, C],$$
 (69)

$$[A, B C] = [A, B] [A, C] [[A, C], B]$$
 (70)

schließen kann. Aus (66) und (68) ergibt sich für jedes $t \in T$,

$$t \equiv e_1^{g_1} e_2^{g_2} e_{12}^{g_{12}} \quad \text{modulo } F_3, \tag{71}$$

wobei g_1, g_2, g_{12} Vielfache von g sind. Aus (65) und aus (71) folgt weiter, mit Hilfe der Identitäten (69) und (70),

$$[x, t] \equiv [e_1^{p_1} e_2^{p_2} e_{12}^{p_{12}}, e_1^{g_1} e_2^{g_2} e_{12}^{g_{12}}]$$

$$\equiv e_{12}^a [e_{12}, e_1]^b [e_{12}, e_2]^c \qquad \text{modulo } F_4$$

$$(72)$$

mit

$$a = p_1 g_2 - p_2 g_1$$

$$b = p_{12}g_1 - p_1g_{12} + p_1g_2g_1 - p_1p_2g_1 + \frac{1}{2}p_1g_2(g_2 - 1) + \frac{1}{2}g_2p_1(p_1 - 1)$$

$$c = p_{12}g_2 - p_2g_{12} - \frac{1}{2}p_2g_1(g_1 - 1) - \frac{1}{2}g_1p_2(p_2 - 1).$$
(73)

Wir wollen jetzt zeigen, daß das Element $[e_{12}, e_1^{d_1}]$ von [R, R] in [F, T] nicht enthalten ist, d.h. daß es nicht zu einem Produkt

$$\prod_{i} [x_{i}, t_{i}] = \prod_{i} [e_{1}^{p_{1}i} e_{2}^{p_{2}i} e_{12}^{p_{1}2i}, e_{1}^{g_{1}i} e_{2}^{g_{2}i} e_{12}^{g_{1}2i}]$$

$$\equiv \prod_{i} e_{12}^{a_{i}} [e_{12}, e_{1}]^{b_{i}} e_{12}, e_{2}^{c_{i}}$$
(74)

modulo F_4 kongruent ist. (Die a_i, b_i, c_i sind, mutatis mutandis, durch die (73) gegeben.) Es ist

$$[e_{12}, e_1^{d_1}] \equiv [e_{12}, e_1]^{d_1}$$
 modulo F_4

und für jedes Element $z \in F$ gilt eine Kongruenz der Form

$$z \equiv e_1^{q_1} e_2^{q_2} e_{12}^{q_{12}} [e_{12}, e_1]^{m_1} [e_{12}, e_2]^{m_2} \quad \text{modulo } F_4, \tag{75}$$

wobei die Exponenten eindeutig bestimmt sind (vgl. z.B. [4, S. 167]). Wäre also

$$[e_{12}, e_1]^{d_1} \equiv \prod_i e_{12}^{a_i} [e_{12}, e_1]^{b_i} [e_{12}, e_2]^{c_i}$$
 modulo F_4 ,

so müßte

$$\sum_{i} a_{i} = 0$$
, $\sum_{i} b_{i} = d_{1}$, $\sum_{i} c_{i} = 0$

und insbesondere, wegen (73)

$$\sum_{i} (p_{1i}g_{2i} - p_{2i}g_{1i}) = 0, \tag{76}$$

$$\sum_{i} \frac{1}{2} p_{1i} g_{2i} (g_{2i} - 1) \equiv d_1 \quad \text{modulo } g,$$
 (77)

$$\sum_{i} \frac{1}{2} p_{2i} g_{1i} (g_{1i} - 1) \equiv 0 \qquad \text{modulo } g$$
 (78)

sein. Für ein ungerades g erhielte man aus (77)

$$d_1 \equiv 0 \mod g$$

was den Voraussetzungen (64) widerspräche. Wäre aber g = 2h, so ergäben die Kongruenzen (77) und (78)

$$\sum_{i} p_{1i} h_{2i} (2h_{2i} - 1) \equiv d_1 \quad \text{modulo } g,$$
 (79)

$$\sum_{i} p_{2i} h_{1i} (2h_{1i} - 1) \equiv 0 \qquad \text{modulo } g$$
 (80)

mit $2h_{1i}=g_{1i}$, $2h_{2i}=g_{2i}$. Aus (79) und (80) würde, durch Subtraktion und Berücksichtigung von (76),

$$\sum_{i} 2(p_{1i}h_{2i}^{2} - p_{2i}h_{1i}^{2}) \equiv d_{1} \quad \text{modulo } g$$

folgen. Dies ergäbe wieder den Widerspruch

$$d_1 \equiv 0$$
 modulo g .

Damit ist gezeigt, daß es ein Element aus [R, R] gibt, das nicht in [F, T] liegt. Satz 6.4 ist somit bewiesen.

Bemerkung. Als Spezialfall von Satz 6.4 erhalten wir:

$$F_m \neq [R, R]$$
 falls $F \neq R$.

Dies ist im folgenden Resultat von Neumann [9] enthalten:

$$F_m \not\subset [R, R]$$
 falls $F \neq R$.

Literatur

- 1. Auslander, M., and R. C. Lyndon: Commutator subgroups of free groups. Amer. J. Math. 77, 929-931 (1955).
- Schreier, O.: Die Untergruppen der freien Gruppen. Abh. Math. Sem. Univ. Hamburg 5, 161-183 (1927).
- 3. Eckmann, B.: Coverings and Betti numbers. Bull. Amer. Math. Soc. 55, 95-101 (1949).
- 4. Hall, M.: The theory of groups. New York: Macmillan Co. 1959.
- Magnus, W.: Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring. Math. Ann. 111, 259-280 (1935).
- -, A. Karras, and D. Solitar: Combinatorial group theory. New York-Sidney-London: Interscience 1966.
- 7. Witt, E.: Treue Darstellung Liescher Ringe. J. reine angew. Math. 177, 152-160 (1937).
- 8. MacLane, S.: Homology. Berlin-Göttingen-Heidelberg: Springer 1963.
- 9. Neumann, B. H.: On a theorem of Auslander and Lyndon. Arch. Math. 13, 4-9 (1962).
- 10. Cartan, H., and S. Eilenberg: Homological algebra. Princeton: Princeton Univ. Press 1956.
- 11. Seifert, H., and W. Threlfall: Lehrbuch der Topologie. Leipzig u. Berlin: Teubner 1934.
- 12. Lang, S.: Rapport sur la cohomologie des groupes. New York-Amsterdam: Benjamin 1966.
- Hopf, H.: Fundamentalgruppe und zweite Bettische Gruppe. Comm. Math. Helv. 14, 237 309 (1942).

Dr. Manuel Ojanguren Forschungsinstitut für Mathematik der Eidgenössischen Technischen Hochschule CH 8006 Zürich

(Eingegangen am 20. Oktober 1967)