

Semester 1 Examinations 2022-23

Course Instance Code(s) 4BCT1, 4BS2, 4BMS2, 4FM2, 3BA1

Examinations 4th Science

Module Codes MA490

Module Measure Theory

External Examiner(s) Prof C. Roney-Dougal

Internal Examiner(s) Prof G. Pfeiffer

Dr James Cruickshank

Duration 2 hours

No. of Pages 3 pages (including this cover page)

Discipline Mathematics

Instructions Attempt ALL questions.

Requirements Release in Exam Venue Yes

Q1 (40%) Answer five of the following. (8% each)

- (a) Let $X = \{a, b, c, d, e\}$. How many subsets of X are in the σ -algebra generated by $\{\{a, b, c\}\{c, d, e\}\}$.
- (b) In Bernoulli space let E_n be the event that the nth term of the sequence is H. Write down a formula, in terms of the events E_n , for the event that HTH appears infinitely often.
- (c) For each integer $n\geqslant 1$, let A_n be the interval $\left(\frac{(-1)^n}{n},n\right)$. Calculate $\liminf A_n$ and $\limsup A_n$.
- (d) Let A be the set of numbers in the interval [0,1] that have a finite decimal expansion. Compute the Lebesgue measure of A.
- (e) Define $f:[0,1]\to\mathbb{R}$ by setting f(x)=0 if x is rational and f(x)=x if x is irrational. Show that f is a measurable function with respect to the Borel σ -algebra on \mathbb{R} .
- (f) Evaluate $\lim_{n\to\infty}\int_0^1 1-\frac{e^{-x^2}}{(x+1)^n}dx$ and justify each step of the calculation.
- (g) For $n = 1, 2, 3, \cdots$ let $f_n(x) = x^n$. Prove that the sequence (f_n) converges almost uniformly with respect to the Lebesgue measure on the the interval [0, 1].
- (h) Evaluate

$$\sum_{n=0}^{\infty} \sum_{k=2}^{\infty} \frac{k-1}{2^k k^{n+1}}.$$

Justify each step of your calculation.

(i) Let

$$f = \sum_{n=1}^{\infty} (-1)^n n^{-1} \chi_{[n,n+1)},$$

where χ_A denotes the characteristic function of a subset $A \subset X$. Prove that f is not integrable with respect to Lebesgue measure on \mathbb{R} .

- (j) Give an example of a element of the Cantor set that is not the endpoint of one of the intervals that is removed in the standard construction of the Cantor set.
- Q2 (20%) (a) Define the following terms: (2% each)
 - (i) a σ -algebra.
 - (ii) a measure.
 - (iii) a probability space.
 - (iv) the Borel σ -algebra.

(b) (6%) Suppose that (X, \mathcal{A}, μ) is a measure space and let (A_n) be a sequence of sets in \mathcal{A} . Prove that

$$\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)\leqslant\sum_{n=1}^{\infty}\mu(A_{n}).$$

- (c) (6%) State the second Borel-Cantelli Lemma. In Bernoulli space let E be the event that infnitely many heads occur. Use the second Borel-Cantelli Lemma to show that P(E)=1.
- **Q3** (20%) Let X be a set and let \mathcal{A} be a σ -algebra of subsets of X.
 - (a) (3%) Define what it means for a function $f: X \to \mathbb{R}$ to be *measurable* with respect to A.
 - (b) (7%) Suppose that $f: X \to \mathbb{R}$ is measurable. Prove that f^2 is also measurable. Give an example of a measurable space (Y, \mathcal{B}) and a function $f: Y \to \mathbb{R}$ such that f^2 is measurable, but f is not measurable.
 - (c) (10%) For each positive integer n, let $f_n:X\to\mathbb{R}$ be a measurable function. Suppose that the sequence (f_n) converges pointwise to the function $f:X\to\mathbb{R}$. Show that f is a measurable function.
- **Q4 (20%)** Let (X, \mathcal{A}, μ) be a complete measure space.
 - (a) **(6%)** Define the *integral of a measurable simple function* on X. Define the *integral of a nonnegative measurable function* $f: X \to \mathbb{R}$. What does it mean to say that a measurable function $f: X \to \mathbb{R}$ is *integrable*?
 - (b) (7%) Let f be a nonnegative measurable function on X and let E be measurable set. Using the definitions from part (a), prove that $\int_E f d\mu = 0$ if and only if f=0 almost everywhere.
 - (c) **(7%)** State the Lebesgue Monotone Convergence Theorem (no proof is required). Use this theorem to prove that if f and g are nonnegative measurable functions on X then

$$\int_X f + g \ d\mu = \int_X f \ d\mu + \int_X g \ d\mu.$$