

Predictive Analytics using Machine Learning

Topic

Machine Learning: A Perspective of Statistics

Machine Learning: A Definition

A computer program is said to *learn* from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T as measured by P, and improves with experience E.

Program Vs. Machine Learning REPRINGENCY & TECHNOLOGY OF UNIVERSE A TEC

When to use Machine Learning?

- Human expertise does not exist
 - (navigating on Mars)
- Humans are unable to explain their expertise
 - (speech recognition)
- Solution changes in time
 - (routing on a computer network)
- Solution needs to be adapted to particular cases
 - (user biometrics)

Components of a Learning System THAPAR INSTITUTE (Deemed to be University)

(i) Task (T)(ii) Data (Experience, E)(iii) Performance Measure (P)

Learning System

A dataset (D) comprise of two types of features as:

- A set of features $X = \{x_1, x_2, x_3, ..., x_n\}$
- A target feature Y = f(x)

Task of Learner

To estimate the function
$$\widehat{Y} = \widehat{f}(x)$$
 from D, where, $\widehat{Y} = f(x) + \varepsilon$

Task of Reasoner

To compute $\widehat{Y} = \widehat{f}(x)$ for a new value of x.

Mathematical Understanding

Task of Learner

To estimate the function

$$\widehat{Y} = \widehat{f}(x)$$
 from D

$$\widehat{Y} = f(x) + \varepsilon$$

Task of Reasoner

To compute $\widehat{Y} = \widehat{f}(x)$ for a new value of x.

Types of features (X and Y)

- (i) Categorical (such as blood group)
- (ii) Ordinal (such as large, medium, or small)
- (iii) Integer valued (such as no. of students)
- (iv) Real valued (such as height, weight)

Categories of features (X and Y)

- (i) Discrete
- (ii) Continuous

Height (x1)	Age (x2)	Complexion (x3)	Weight (x4)
5.1	20	Fair	60.5
2.1	3	Dark	20.2
6.7	30	Dark	80.6
4	10	Fair	40.5

Types of Machine Learning

1. Supervised Learning

- ✓ Classification (When Y is discrete)
- ✓ Regression (When Y is continuous)

Classification Training Data

Height (x1)	Age (x2)	Complexion (y)
5.1	20	Fair
2.1	3	Dark
6.7	30	Dark
4	10	Fair

Predict the value of Complexion for Height=2.5 and Age=5.

Regression Training Data

Height (x1)	Age (x2)	Weight (y)
5.1	20	60.5
2.1	3	20.2
6.7	30	80.6
4	10	40.5

Predict the value of weight for Height=2.5 and Age=5.

2. Unsupervised Learning

It draws inferences from the values of X to obtain pattern of the data.

✓ Clustering

Type of	Weight	PH-
Medicine		Value
A	1	1
В	2	1
С	4	3
D	5	4

What is the type of a medicine with weight=2 and PH-value=2?

3. Reinforcement Learning

- ✓ It enables an agent to learn in an interactive environment by trial and error using feedback from its own actions and experiences.
- ✓ It uses **rewards and punishments** as signals for positive and negative behavior. (The supervised learning consists positive signal only)

Performance Measures

(i) Supervised Learning

Regression – Squared Error or absolute error **Classification** - Precision/Recall

(ii) Unsupervised Learning

Clustering – Scatter

(iii) **Reinforcement Learning** – Award/Punishment

Performance Measure for Regression

(i) Mean Absolute Error (MEA)

$$MEA = \frac{1}{N} \sum |Y - \hat{Y}|$$

(ii) Mean Square Error (MSE)

$$MSE = \frac{1}{N}\sum (Y - \hat{Y})^2$$

Performance Measure for Classification

Confusion Matrix

	Predicted		d	
	Class	Cat	Dog	
Actual	Cat	1	3	True-Positive False-Negative
	Dog	0	8 -	True-Negative False-Positive

Performance Measure for Classification

Confusion Matrix

	Predicted		
	Class	Cat	Dog
Actual	Cat	0	3
	Dog	1	4

Preceision=
$$\frac{TP}{TP+FP}$$

Recall=
$$\frac{TP}{TP+FN}$$

Accuracy=
$$\frac{TP+TN}{TP+FP+TN+FN}$$

Performance Measure for Classification

Confusion Matrix

F-1 Score=
$$\frac{2*preceision*recall}{preceision+recall}$$

You Explore

The AUC curve to measure performance of classification.

Bias and Variance

Consider the following training dataset.

X	\mathbf{Y}		
2	4		
3	6		
4	8		
5	10		
6	12		

After applying linear regression algorithm over the training data, the following target function is estimated.

$$\widehat{Y} = \widehat{f}(x) = 2 * X + 1$$

Mean of
$$\hat{Y} = (5+7+9+11+13)/5=9$$

$$E(\hat{Y})=Mean of \hat{Y}=(5+7+9+11+13)/5=9$$

X	Y	\widehat{Y}	$\mathbf{E}(\widehat{Y}) - \mathbf{Y}$	$\mathbf{E}(\widehat{Y}) - \widehat{Y}$
2	4	5	5	4
3	6	7	3	2
4	8	9	1	0
5	10	11	-1	-2
6	12	13	-3	-4

Bias² = E(**E**(
$$\hat{Y}$$
) - Y)²
= (25+9+1+1+9)/5
= 9
Variance= E(**E**(\hat{Y}) - \hat{Y})²
= (16+4+0+4+16)
= 8

Bias² = E(**E**(
$$\hat{Y}$$
) -Y)²
= (25+9+1+1+9)/5
= 9

Bias:

- (i) Bias is the difference between the average prediction of our model and the correct value which we are trying to predict.
- (ii) Model with high bias pays very little attention to the training data and oversimplifies the model.
- (iii) It always leads to high error on training and test data.

Bias and Variance

Variance=
$$E(\mathbf{E}(\widehat{Y}) - \widehat{Y})^2$$

= $(16+4+0+4+16)$
= 8

Variance

- (i) Variance is the variability of model prediction for a given data point or a value which tells us spread of our data.
- (ii) Model with high variance pays a lot of attention to training data and does not generalize on the data which it hasn't seen before.
- (iii) As a result, such models perform very well on training data but has high error rates on test data.

Simple Linear Regression

Response Variable Covariate Linear Model:
$$Y=mX+b$$
 Slope Intercept (bias)

THAPAR INSTITUTE OF ENGINEERING & TECHNOLOGY (Deemed to be University)

Motivation

- One of the most widely used techniques
- Fundamental to many larger models
 - Generalized Linear Models
 - Collaborative filtering
- Easy to interpret
- Efficient to solve

Multiple Linear Regression

The Regression Model

• For a *single* data point (x,y):

Joint Probability:

$$p(x,y) = p(x) p(y|x)$$
 Discriminative Model

The Linear Model

What about bias/intercept term?

Define:
$$x_{p+1} = 1$$

Then redefine p := p+1 for notational simplicity

Conditional Likelihood p(y|x)

Conditioned on x:

$$y = \theta^T x + \epsilon \sim N(0, \sigma^2)$$
 Mean Variance

Conditional distribution of Y:

$$Y \sim N(\theta^T x, \sigma^2)$$

$$p(y|x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y - \theta^T x)^2}{2\sigma^2}\right)$$

Parameters and Random Variables SISTITUTE (Deemed to be University)

Parameters

$$y \sim N(\theta^T x, \sigma^2)$$

- Conditional distribution of y:
 - Bayesian: parameters as random variables

$$p(y|x,\theta,\sigma^2)$$

Frequentist: parameters as (unknown) constants

$$p_{\theta,\sigma^2}(y|x)$$

So far ...

Independent and Identically Distributed (iid) Data

• For *n* data points:

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$
$$= \{(x_i, y_i)\}_{i=1}^n$$

Plate Diagram

Joint Probability

For n data points independent and identically distributed (iid):

$$p(\mathcal{D}) = \prod_{i=1} p(x_i, y_i)$$

$$= \prod_{i=1}^{n} p(x_i) p(y_i|x_i)$$

Rewriting with Matrix Notation

HAPAR INSTITUTE
ENGINEERING & TECHNOLOGY
(Deemed to be University)

• Represent data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ as:

Rewriting with Matrix Notation Nation of Technology Removed to be University)

Rewriting the model using matrix operations:

$$Y = X\theta + \epsilon$$

Estimating the Model

• Given data how can we estimate θ ?

$$Y = X\theta + \epsilon$$

- Construct maximum likelihood estimator (MLE):
 - Derive the log-likelihood
 - Find θ_{MIF} that maximizes log-likelihood
 - Analytically: Take derivative and set = 0
 - Iteratively: (Stochastic) gradient descent

Joint Probability

• For *n* data points:

$$p(\mathcal{D}) = \prod_{i=1}^n p(x_i, y_i)$$
 $= \prod_{i=1}^n p(x_i) p(y_i|x_i)$ Discriminative Model

Defining the Likelihood

$$p_{\theta}(y|x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y - \theta^T x)^2}{2\sigma^2}\right)$$

$$\mathcal{L}(\theta|\mathcal{D}) = \prod_{i=1}^{n} p_{\theta}(y_i|x_i)$$

$$= \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}\right)$$

$$= \frac{1}{\sigma^n (2\pi)^{\frac{n}{2}}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2\right)$$

Maximizing the Likelihood

Want to compute:

$$\hat{\theta}_{\text{MLE}} = \arg\max_{\theta \in \mathbb{R}^p} \mathcal{L}(\theta|\mathcal{D})$$

To simplify the calculations we take the log:

$$\hat{\theta}_{\text{MLE}} = \arg\max_{\theta \in \mathbb{R}^p} \log \mathcal{L}(\theta | \mathcal{D})$$

which does not affect the maximization because log is a monotone function.

$$\mathcal{L}(\theta|\mathcal{D}) = \frac{1}{\sigma^n (2\pi)^{\frac{n}{2}}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \theta^T x_i)^{\frac{1}{12}} \exp^{\frac{1}{2}(y_i - \theta^T x_i)^{\frac{1}{12}}} \right)$$

Take the log:

$$\log \mathcal{L}(\theta|\mathcal{D}) = -\log(\sigma^n(2\pi)^{\frac{n}{2}}) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$

• Removing constant terms with respect to θ :

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{n} (y_i - \theta^T x_i)^2$$
Monotone Function (Easy to maximize)

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{n} (y_i - \theta^T x_i)^2$$

Want to compute:

$$\hat{\theta}_{\text{MLE}} = \arg\max_{\theta \in \mathbb{R}^p} \log \mathcal{L}(\theta|\mathcal{D})$$

Plugging in log-likelihood:

$$\hat{\theta}_{\text{MLE}} = \arg\max_{\theta \in \mathbb{R}^p} - \sum_{i=1}^n (y_i - \theta^T x_i)^2$$

$$\hat{ heta}_{ ext{MLE}} = rg\max_{ heta \in \mathbb{R}^p} - \sum_{i=1}^{m} (y_i - heta^T x_i)^{ ext{CAPAR INSTITUTE}}_{ ext{(Deemed to be University)}}$$

 Dropping the sign and flipping from maximization to minimization:

$$\hat{ heta}_{ ext{MLE}} = rg\min_{ heta \in \mathbb{R}^p} \sum_{i=1}^n (y_i - heta^T x_i)^2$$

Minimize Sum (Error)²

- Gaussian Noise Model → Squared Loss
 - Least Squares Regression

Maximizing the Likelihood (Minimizing the Squared Error)

$$\hat{\theta}_{\text{MLE}} = \arg\min_{\theta \in \mathbb{R}^p} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$

Take the gradient and set it equal to zero

Minimizing the Squared Error,

$$\hat{\theta}_{\text{MLE}} = \arg\min_{\theta \in \mathbb{R}^p} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2$$

Taking the gradient

$$-\nabla_{\theta} \log \mathcal{L}(\theta) = \nabla_{\theta} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2$$

Chain Rule
$$\rightarrow = -2\sum_{i=1} (y_i - \theta^T x_i)x_i$$

$$= -2\sum_{i=1}^{n} y_i x_i + 2\sum_{i=1}^{n} (\theta^T x_i) x_i$$

Rewriting the gradient in matrix form:

$$-\nabla_{\theta} \log \mathcal{L}(\theta) = -2\sum_{i=1}^{n} y_i x_i + 2\sum_{i=1}^{n} (\theta^T x_i) x_i$$
$$= -2X^T Y + 2X^T X \theta$$

 To make sure the log-likelihood is convex compute the second derivative (Hessian)

$$-\nabla^2 \log \mathcal{L}(\theta) = 2X^T X$$

- If X is full rank then X^TX is positive definite and therefore θ_{MLF} is the minimum
 - Address the degenerate cases with regularization

$$-
abla_{ heta}\log\mathcal{L}(heta)=-2X^Ty+2X^TX heta= abla_{ heta}^{ ext{Than institute}}$$

• Setting gradient equal to 0 and solve for θ_{MLE} :

$$(X^T X)\hat{\theta}_{\text{MLE}} = X^T Y$$

$$\hat{\theta}_{\text{MLE}} = (X^T X)^{-1} X^T Y$$

Normal
Equations
(Write on board)

$$\mathbf{p} = \begin{pmatrix} \mathbf{n} & \mathbf{p} \\ \mathbf{p} & \mathbf{r} \end{pmatrix} - \mathbf{1} \begin{pmatrix} \mathbf{n} & \mathbf{1} \\ \mathbf{p} & \mathbf{r} \end{pmatrix}$$