1. Messsysteme und Messfehler

Inhaltsübersicht

1. Messsysteme und Messfehler

- 1.1 Skalen
- 1.2 Metrische Größen
- 1.3 Messsysteme
- 1.4 Messfehler

- Messen: Zuordnen von mathematischen Symbolen (z. B. Zahlen) zu bestimmten Merkmalen empirischer Objekte, basierend auf objektiven Regeln
- Zusammenhänge zwischen den Merkmalen: empirische Relationen (z. B. "größer als", "doppelt so groß")
- Empirisches relationales System (ERS): Menge der empirischen Objekte bzw. Merkmale mit den zugehörigen Relationen
- Mathematisches relationales System (MRS): Menge der mathematischen Symbole mit den zugehörigen (mathematischen) Relationen
- Messen: somit homomorphe (strukturerhaltende) Abbildung vom ERS in ein MRS

 Unterschiedliche Skalentypen je nach Aussagekraft der geltenden empirischen Relationen

1.1 Skalen

	Skala				
	qualitativ		quantitativ (metrisch, kardinal)		
	Nominal-	Ordinal-	Intervall-	Verhältnis-	Absolut-
Empirische	~ Äquivalenz	~ Äquivalenz	~ Äquivalenz	~ Äquivalenz	~ Äquivalenz
Relationen		> Ordnung	> Ordnung	> Ordnung	> Ordnung
			⊕ Emp.	⊕ Emp. Addition	⊕ Emp. Addition
			Addition	⊗ Emp. Multipl.	⊗ Emp. Multipl.
Zulässige Transfor- mationen	$\tilde{u} = f(u)$ mit $f(.)$ bijektiv	$\tilde{u} = f(u)$ mit f(.) streng monoton (i.a. steigend)	$\tilde{u} = a \cdot u + b \text{ mit } a > 0$	$\tilde{u} = a \cdot u \text{ mit}$ $a > 0$	$\tilde{u} = u$
Lage- parameter	Modalwert	Median	arithmetischer Mittelwert	harmonischer/ geometrischer Mittelwert	harmonischer/ geometrischer Mittelwert
Streuungs- maße	Entropie	Quantile	Varianz	Variations- koeffizient	Variation- koeffizient
Mathemati- sche Struktur	Menge	total geordnete Menge	affine Gerade	Körper	Körper
Werte von u	Zahlen, Begriffe, Symbole	i. d. R. natürliche Zahlen	i. d. R. reelle Zahlen	i. d. R. reelle Zahlen > 0	i. d. R. natürliche Zahlen

- Im Kontext der Messtechnik: meist metrische Größen
- Damit Definition einer Messung:
 - Messen bedeutet, die Ausprägung einer (metrischen) Messgröße quantitativ zu erfassen
 - Dazu Vergleich der Messgröße mit einer vereinbarten Maßeinheit (dem Normal, measurement standard)
 - Messgröße = Zahlenwert · Maßeinheit
 - Zahlenwert: gibt an, wie oft die Maßeinheit in der Messgröße enthalten ist
- Definitionen für anders skalierte Messgrößen: hier nicht betrachtet

- Voraussetzung für Messung:
 - Eindeutige Definition der Messgröße
 - Festlegung der Einheit bzw. des Normals durch eine Konvention
- Aspekte bei der Festlegung einer Einheit:
 - Im Prinzip willkürlich möglich
 - Praktische Anwendbarkeit (sowohl im Alltagsleben als auch in der Wissenschaft)
 - Gute Reproduzierbarkeit
 - Unveränderlichkeit des Normals
 - Einfach Zusammenhänge zwischen unterschiedlichen Einheiten

- Widerspruchsfreie Darstellung aller physikalischen Größen mittels 7 Basisgrößen möglich
- Ableitung aller anderen physikalischen Größen aus diesen Basisgrößen
- Bis ins 19. Jahrhundert: keine international einheitliche Festlegung der Basisgrößen
 - Z. B. Einheit für die Länge: Elle (Freiburger Elle: 54 cm, Badische Elle: 60 cm, Bremer Elle: 55 cm)
 - Dadurch Behinderung des nationalen/internationalen Handels

- Vereinheitlichung ab 1790:
 - Beschluss der Schaffung eines einheitlichen Einheitensystems durch die französische Nationalversammlung, ausschließlich auf Grundlage objektiver physikalischer Kriterien, für alle Nationen zugänglich
 - 1799: einheitliches metrisches System ("Mètre des Archives", "Kilogramme des Archives")
 - 1875: Abschluss der Meterkonvention, Unterzeichnung durch 17 Staaten

Einheitensystem

- Heute gültiges Einheitensystem in Deutschland: SI-System ("Système Internationale d'unités")
 - Festlegung von 7 Basisgrößen und deren Einheiten
 - Auswahl der Basisgrößen nach praktischen Gesichtspunkten
 - Einheiten sind zueinander kohärent (aufeinander abgestimmt):

Ermittlung von abgeleiteten Einheiten durch Multiplikation ur	nd
Division ohne Proportionalitätsfaktoren	

(z. B. Geschwindigkeit: $\frac{m}{s}$)

Basisgröße	Größen- symbol	Basis- einheit	Einheiten- zeichen
Länge	l	Meter	m
Masse	m	Kilogramm	kg
Zeit	t	Sekunde	S
Stromstärke	I	Ampere	A
Thermo- dynamische Temperatur	Т	Kelvin	K
Stoffmenge	n	Mol	Mol
Lichtstärke	$I_{ m V},I_{ m L}$	Candela	cd

- Basiseinheiten:
 - Meter: Länge der Strecke, die das Licht im Vakuum während eines Zeitintervalls von 1 / 299 792 458 Sekunde zurücklegt Damit Festlegung der Lichtgeschwindigkeit c_0 Bezug auf Basiseinheit Sekunde
 - Kilogramm: Masse des Internationalen Kilogrammprototyps
 - Sekunde: 9 192 631 770-faches der Periodendauer der dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes von Atomen des Caesium-Isotops ¹³³Cs entsprechenden Strahlung

- Basiseinheiten:
 - Ampere: Stärke eines konstanten elektrischen Stromes, der, durch zwei parallele, geradlinige, unendlich lange und im Vakuum im Abstand von 1 Meter voneinander angeordnete Leiter von vernachlässigbar kleinem, kreisförmigem Querschnitt fließend, zwischen diesen Leitern pro Meter Leiterlänge die Kraft 2·10⁻⁷ Newton hervorrufen würde Bezug auf abgeleitete Einheit Newton
 - Kelvin: 1 / 273,16 der thermodynamischen Temperatur des Tripelpunkts von Wasser mit genau definierter isotopischer Zusammensetzung Temperaturdifferenzen können auch in Grad Celsius (°C) angegeben werden

- Basiseinheiten:
 - Mol: Die Stoffmenge eines Systems, das aus ebenso vielen Einzelteilchen besteht, wie Atome in 12 Gramm des Kohlenstoff-Nuklids ¹²C in ungebundenem Zustand enthalten sind Die zu beschreibenden Teilchen (z.B. Atome, Moleküle, Ionen, Elektronen) müssen spezifiziert sein
 - Candela: Die Lichtstärke in einer bestimmten Richtung einer Strahlungsquelle, die monochromatische Strahlung der Frequenz 540·10¹² Hz aussendet und deren Strahlstärke in dieser Richtung 1 / 683 Watt pro Steradiant beträgt

Einheitensystem

 SI-Vorsätze: Dezimal-Präfixe zur vereinfachten Darstellung kleiner bzw. großer Größen:

Wert	Bezeichnung	Symbol
10^{-24}	Yokto	У
10^{-21}	Zepto	Z
10^{-18}	Atto	a
10^{-15}	Femto	f
10 ⁻¹²	Piko	р
10 ⁻⁹	Nano	n
10 ⁻⁶	Mikro	μ (u)
10 ⁻³	Milli	m
10-2	Zenti	С
10 ⁻¹	Dezi	d

Wert	Bezeichnung	Symbol
10 ²⁴	Yotta	Y
10 ²¹	Zetta	Z
10 ¹⁸	Exa	Е
10 ¹⁵	Peta	Р
10 ¹²	Tera	Т
10 ⁹	Giga	G
10 ⁶	Mega	M
10 ³	Kilo	k
10 ²	Hekto	h
10 ¹	Deka	da

- Abgeleitete SI-Einheiten:
 - Vereinfachung der Darstellung der jeweiligen Einheit durch Bezug auf Basiseinheiten ohne Proportionalitätsfaktor
 - Verzicht auf Mitführung der jeweiligen Basiseinheiten

Größe	Formelzeichen	SI-Einheit	Beziehung
Ebener Winkel	α	Radiant rad	1 rad = 1 m/m
Raumwinkel	Ω	Steradiant sr	$1 \operatorname{sr} = 1 \operatorname{m}^2/\operatorname{m}$
Frequenz	f	Hertz Hz	1 Hz = 1/s
Kraft	F	Newton N	$1 N = 1 kg m/s^2$
Druck	p	Pascal Pa	$1 \text{ Pa} = 1 \text{ N/m}^2$
Energie	E	Joule J	1 J = 1 N m = 1 W s
Arbeit	W	Joule J	1 J = 1 N m = 1 W s
Wärmemenge	Q	Joule J	1 J = 1 N m = 1 W s
Leistung	P	Watt W	1 W = 1J/s = 1 N m/s

Einheitensystem

Abgeleitete SI-Einheiten:

Größe	Formelzeichen	SI-Einheit	Beziehung
Elektrische Ladung	Q	Coulomb C	1 C = 1 A s
Elektrische Spannung	U	Volt V	1 V = 1 W/A
Elektrische Kapazität	С	Farad F	1 F = 1 C/V = 1 A s/V
Elektrischer Widerstand	R	Ohm Ω	$1 \Omega = 1 \text{ W/A}^2$
Elektrischer Leitwert	G	Siemens S	$1 S = 1/\Omega$
Induktivität	L	Henry H	1 H = 1 Wb/A
Magnetischer Fluss	Ф	Weber Wb	1 Wb = 1 V s
Magnetische Flussdichte	В	Tesla T	$1 T = 1 V s/m^2$
Lichtstrom	Ф	Lumen lm	1 lm = 1 cd sr
Beleuchtungsstärke	$E_{ m V}$	Lux lx	$1 lx = 1 lm/m^2$

Einheitensystem

Abgeleitete SI-Einheiten:

Größe	Formelzeichen	SI-Einheit	Beziehung
Radioaktivität	A	Becquerel Bq	$1 \text{ Bq} = 1 \text{ s}^{-1}$
Energiedosis	D	Gray Gy	$1 \text{ Gy} = 1 \text{ m}^2/\text{s}^2$
Äquivalentdosis	Н	Sievert Sv	$1 \text{ Sv} = 1 \text{ m}^2/\text{s}^2$
Katalytische Aktivität	Z	Katal kat	1 kat = 1 mol/s

Anpassung der Definition der Einheiten

- Definition der Normale nicht für alle Zeiten festgelegt
- Regelmäßige Prüfung des aktuellen Entwicklungsstands und ggf.
 Anpassungen durch das Comité Internationale des Poids et Mesures (CIPM)
- Beispiel Meter:
 - 1889: Mechanisches Normal
 - X-förmiger Stab aus Platin-Iridium
 - Bestimmung des "Urmeters" durch Losverfahren aus 37 Prototypen
 - 1 m: Abstand zweier Strichmarken bei Temperatur 0 °C
 - Aufbewahrung des Urmeters und sechs weiterer Prototypen in Sèvres bei Paris, Verteilung der restlichen Normale auf die Unterzeichnerstaaten der Meterkonvention

Anpassung der Definition der Einheiten

- Beispiel Meter:
 - 1960: Normal durch Vergleich mit Strahlungswellenlänge
 - 1 m: 1 650 763,73-faches der Wellenlänge der von Atomen des Nuklids ⁸⁶Kr (Krypton) beim Übergang vom Zustand 5d₅ auf den Zustand 2p₁₀ ausgesandten Strahlung im Vakuum
 - 1963: Normal durch Vergleich mit der Lichtgeschwindigkeit
 - 1 m: Länge, die Licht im Vakuum in einem Zeitintervall von 1 / 299 792 458 Sekunden zurücklegt
 - Bis heute gültig
- Momentane Bestrebung:
 - Rückführung der Definitionen der Normale auf Naturkonstanten
 - Dadurch gegenseitige Abhängigkeit der Einheitendefinition und der Naturkonstanten: Unsicherheit der Bestimmung der Naturkonstanten legt Unsicherheit der Einheitendefinition fest

Struktur von Messsystemen

- Messsystem: Einrichtung zur Messung einer physikalischen Größe
- Unterschiedliche Komplexität von Messsystemen abhängig von der Messaufgabe (Messgröße, Umgebungsbedingungen, Messzeit, geforderte Unsicherheit usw.)
- Direkte Messverfahren:
 - Bestimmung des gesuchten Messwerts durch unmittelbaren Vergleich der Messgröße mit einem Bezugswert
 - Beispiel: Balkenwaage
 Vergleich der unbekannten Masse m mit der bekannten Masse der Gewichtssteine

Struktur von Messsystemen

- Indirekte Messverfahren:
 - Bestimmung des gesuchten Messwerts durch Rückführung der Messgröße auf andere, messbare Größen mittels physikalischer Zusammenhänge und Ermittlung der Messgröße aus diesen Größen
 - Beispiel: Federwaage
 Bestimmung der Masse m durch Bestimmung der Auslenkung x einer Feder

Kräftegleichgewicht: $mg = cx \Rightarrow m = \frac{cx}{g}$ (g: Erdbeschleunigung)

Abgelesen wird die Auslenkung x, daraus wird die Messgröße m indirekt berechnet

Aufbau von Messsystemen

Signalflussplan (nicht immer sind alle Komponenten vorhanden):

- Aufnehmer (auch als Sensor, Fühler bezeichnet):
 - Eingang: zu messende Größe u
 - Ausgang: weiterverarbeitbares (meist elektrisches) Signal x_s ,
 das von u abhängt
- Messumformer:
 - Abbildung des Eingangssignals x_s in ein zur Weiterverarbeitung geeigneteres Ausgangssignal x_n (z. B. Digitalisierung, Filterung, Übertragung, Speicherung)
 - Enthält meist einen Messverstärker

Aufbau von Messsystemen

Signalflussplan (nicht immer sind alle Komponenten vorhanden):

- Signalverarbeitung:
 - Extraktion des informationstragenden Signals y (z. B. Amplitude, Frequenz) aus dem Eingangssignal x_n
 - Daraus Ermittlung des Messergebnisses
 - Dazu meist digitale Signalverarbeitung (ggf. nach Digitalisierung)
 mittels Digitalrechner oder Mikrocontroller
- Untersuchung des Verhaltens von Messsystemen durch Beschreibung (Modellbildung) der Komponenten: Ermittlung eines mathematischen Zusammenhangs zwischen Ein- und Ausgangsgrößen des Systems

- Beschreibung des dynamischen Verhaltens eines Messsystems:
 - Berücksichtigung der Messgröße (Eingangsgröße) u(t) und des angezeigten Werts (Ausgangsgröße) y(t)
 - Berücksichtigung der inneren Zustandsgrößen des Systems: vermittelnde Größen zwischen Ein- und Ausgang, zusammengefasst im Zustandsvektor x(t)

Beschreibung von Messsystemen im Zustandsraum

Damit allgemeine Beschreibung eines Messsystems:

- Zustandsgleichung: $\dot{x}(t) = \frac{dx(t)}{dt} = w(x(t), u(t), z(t), t)$
- Ausgangsgleichung: y(t) = F(x(t))
- Berücksichtigung von Störungen, die das Systemverhalten (meist unerwünscht) beeinflussen: Störgrößenvektor z(t), sind auch Eingangsgrößen des Systems

- Ziel: eindeutige Bestimmung des Zustandsvektors für beliebige Zeitpunkte $t>t_0$
 - In technischen Systemen meist möglich, wenn Anfangswert $x(t_0)$ und Verlauf der Eingangsgröße u(t) im Intervall $[t_0, t]$ bekannt ist
- Beispiel: Federwaage
 - Messgröße u: Masse m (zeitlich konstant)
 - Zustandsvektor x: Auslenkung x (im stationären Gleichgewicht: zeitlich konstant)
 - Parameter des Messsystems: Federkonstante c,
 Erdbeschleunigung g
 - Mögliche Störgröße: Änderung der Federkonstanten c, z. B. durch Ermüdung
 - Ausgangsgröße y: Schätzwert der Masse $\frac{cx}{g}$

- Beispiel: Balkenwaage
 - Messgröße u: Masse m (zeitlich konstant)
 - Zustandsvektor x (im Gleichgewicht): Anzahl/Masse der Gewichtssteine $m_{\rm g}$
 - Parameter des Messsystems: Längen der Hebelarme
 - Mögliche Störgröße: Änderung der Länge der Hebelarme l_1 , l_2 , z. B. durch Änderung der Umgebungstemperatur
 - Modellierung der Störgröße z:
 - Änderung der Länge der Hebelarme selbst oder
 - Umgebungstemperatur und Beschreibung ihrer Wirkung auf die Länge der Hebelarme
 - Ausgangsgröße y: Schätzwert der Masse $\frac{l_2 m_g}{l_1}$

- Ideales Messsystem:
 - Alleinige Abhängigkeit der Ausgangsgröße y von der Messgröße u
 - Kein Einfluss der Störgrößen z
- In der Praxis nicht erreichbar
- Abhilfe: möglichst genaue Modellierung der Wirkung der Störeinflüsse auf das Messergebnis, wenn möglich dadurch Kompensation der Störeinflüsse

Physikalische Messkennlinie

- Grundaufgabe der Messtechnik: Erfassung von stationären Messgrößen (d. h. keine Änderung der Messgröße während der Messung)
- Stationärer Zustand: alle Einschwingvorgänge sind abgeklungen: $\dot{x} = 0$, keine Abhängigkeit mehr von der Zeit t
- (Stationäre) physikalische Messkennlinie:
 - Vereinfachung der Zustandsgleichung $\dot{x}(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t} = w(x(t), u(t), z(t), t): \quad w(x, u, z) = 0$
 - Zustandsvektor ist also nur noch von der Messgröße und dem Störgrößenvektor abhängig: x = g(u, z)
 - Einsetzen in Ausgangsgleichung: y = F(x) = F(g(u, z)) = f(u, z)
 - Physikalische Messkennlinie: $y = f(u, \mathbf{z})$
- Forderung: stetige, streng monotone Funktion zur Vermeidung von Mehrdeutigkeiten bei der rechnerischen Bestimmung von *u*:

$$f(u + \varepsilon) > f(u)$$
 oder $f(u + \varepsilon) < f(u)$ für $\varepsilon > 0$

Messsignale als Informationsträger

- Innerhalb der Messkette (zwischen den Komponenten des Messsystems): Austausch von Information über die Messgröße u in Form von Messsignalen $x_s(t)$, $x_n(t)$
- Messsignale x(t) sind somit Träger der Messgröße u
- Messsignale x(t) können durchaus auch bei konstanter Messgröße u zeitlich veränderlich sein: dabei in messtechnischen Anwendungen meist harmonische und impulsförmige Messsignale
- Bei harmonischen Messsignalen: Verkörperung der Messgröße u durch Amplitude, Frequenz oder Phase
- Bei impulsförmigen Messsignalen: Verkörperung der Messgröße u
 u. a. durch Impulshöhe, Impulsdauer, Impulsfrequenz

Messsignale als Informationsträger

- Klassifikation von Messsignalen:
 - Amplitudenanaloge Signale:
 - Zeit: kontinuierlich oder diskret
 - Wert: kontinuierlich
 - Signalamplitude: proportional zur Messgröße u

Bildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

Messsignale als Informationsträger

- Klassifikation von Messsignalen:
 - Digitale Signale:
 - Wert- und zeitdiskret
 - Messgröße u mittels Binärzahlen kodiert

Bildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

, מווכ הפטונפ פוויסטווויפטוטוו השטופו- טווע איפונפו למטפו פטונים שכו מווס.

3ildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

Messsignale als Informationsträger

- Klassifikation von Messsignalen:
 - Frequenzanaloge Signale:
 - Zeit: kontinuierlich
 - Wert: kontinuierlich oder diskret
 - Momentanfrequenz proportional zur Messgröße u

Messsignale als Informationsträger

- Klassifikation von Messsignalen:
 - Zeitanaloge Signale:
 - Zeit: kontinuierlich
 - Wert: impulsförmig
 - Impulsdauer oder -abstand proportional zur Messgröße u

Bildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

- Fehler: unerwünschte Abweichungen vom korrekten Messergebnis
- Begriff: "Messfehler" oder "Messabweichung" (DIN 1319-1)
- Dazu klare Definition erforderlich: was ist die interessierende Messgröße?
 - Beispiel: örtlich veränderliche Messgröße
 - Messung an repräsentativen Stellen, ggf. Bildung des Mittelwerts
 - Alternativ: ortsaufgelöste Messung der Messgröße
- Jede Messung ist (mehr oder weniger) fehlerbehaftet

- Beispiel: Temperaturüberwachung an Turbinen:
 - Vermeidung von Überbeanspruchungen aufgrund Wärmedehnung
 - Dazu Messung der Temperatur des Gehäuses
 - Auswahl repräsentativer Messorte: große Temperaturdifferenzen bei instationären Vorgängen
- Beispiel: Heizwert von Brennstoffen:
 - Heizwert einer zufälligen Probe meist nicht relevant
 - Relevant ist der mittlere Heizwert (z. B. in einem Tank): dazu Entnahme mehrerer Proben und Schätzung eines mittleren Heizwerts

1.4 Messfehler

Absoluter und relativer Fehler

- Annahme: Messgröße besitzt einen bekannten, wahren Wert y_w an der zu untersuchenden Messeinrichtung
- Absoluter Fehler:

$$F = y_{\rm a} - y_{\rm w}$$

- Positive oder negative Abweichung des angezeigten Werts y_a vom wahren Wert y_w
- Relativer Fehler:

$$F_{\rm r} = \frac{F}{y_{\rm w}} = \frac{y_{\rm a} - y_{\rm w}}{y_{\rm w}}$$

- Bezogene Größe: Bezug meist auf den wahren Wert
- Dimensionslos, meist in Prozent angegeben
- Abschätzung von Fehlern: Betrag relevant
- Korrektur von Fehlern: zusätzlich Vorzeichen relevant

Absoluter und relativer Fehler

- Bestimmung des wahren Werts y_w :
 - Messwert eines besonders genauen Präzisionsinstruments G_n (Referenzmessung)
 - Messung eines bekannten
 Normals N (Maßverkörperung)
 durch das Messsystem G,
 Vergleich des angezeigten Werts y_a
 mit dem bekannten wahren Wert y_w
 des Normals

 Bestimmung des Fehlers des Präzisionsinstruments: durch Vergleich mit einem genaueren Präzisionsinstrument oder Messung an einem Normal

("Kalibrierkette", siehe z. B. Vorlesung Fertigungsmesstechnik)

Fehlerklassen

- Zufällige (stochastische) Fehler:
 - Bewirken Streuung der Messwerte: verschiedene Messwerte bei wiederholten Messungen für dieselbe Messgröße
 - Im Einzelnen nicht erfassbar, konkrete Ursachen meist unbekannt
 - Beschreibung des Messwerts über stochastische Kenngrößen:
 - z. B. Mittelwert, Standardabweichung (siehe Kap. 4)
 - Beispiele:
 - Heizwert von Brennstoffen (s. o.)
 - Ausfallrate von Bauelementen
 - Messung von elektrischen Spannungen

Fehlerklassen

- Systematische Fehler:
 - Bewirken konstante Abweichung des Messwerts
 - Falls Ursache des Fehlers und Art der Einwirkung bekannt:
 Kompensation des Fehlers im Prinzip möglich
 - Falls Ursache des Fehlers und Art der Einwirkung nicht bekannt: Ähnliche Behandlung wie zufällige Fehler
 - Beispiele:
 - Temperatureinfluss (kompensierbar)
 - Fehlerhafte Kalibrierung (im Prinzip kompensierbar)
 - Parallaxenfehler (im Prinzip kompensierbar)

Fehlerursachen

- Vereinfachungen bei der Modellierung des Messsystems und des Messvorgangs:
 - Vereinfachung der physikalischen Eigenschaften des Messgegenstands, z. B. örtlich verteilte Eigenschaften (siehe Bsp. Turbinentemperatur)
 - Vereinfachung der physikalischen Komponenten des Systems,
 z. B. Energiespeicher
 - Idealisierung der Komponenten, z. B. durch Linearisierung, Konzentration

Fehlerursachen

- Innere Störgrößen:
 - Unvollkommenheiten der Messeinrichtung und des Messverfahrens, z. B. Alterungseffekte an Federn
- Äußere Störgrößen:
 - Größen, die auf den physikalischen Messeffekt einen unerwünschten Einfluss haben
 - Wechselnde Umwelteinflüsse
 - Beobachtbare und deterministisch beschreibbare Störgrößen: systematische Fehler, Kompensation möglich
 - Nicht beobachtbare oder deterministisch beschreibbare Störgrößen: stochastische Fehler, Unterdrückung durch statistische Verfahren möglich (z. B. Mittelwertbildung)
 - Beispiel: Temperatureinfluss auf Brückenschaltung

Fehlerursachen

- Beobachtungsfehler:
 - Fehler des Beobachters/Bedieners, z. B. falsche Ablesung (Parallaxe), falsche Einstellungen, falsche Vorgehensweise
- Dynamische Fehler:
 - Abweichungen des angezeigten Werts von der Messgröße aufgrund nicht ausreichender Dynamik der Messeinrichtung
 - Vgl. Abtasttheorem
 - Beispiel: Beobachtung des Druckverlaufs in einem Verbrennungsmotor
- Rückwirkung auf die Messgröße:
 - Messung soll keine Rückwirkung auf Messgröße haben,
 - z. B. durch Eintrag/Entzug von Energie/Leistung

Fehlerursachen

- Beispiel: Rückwirkung auf die Messgröße bei der Temperaturmessung einer Flüssigkeit:
 - Flüssigkeit mit der Temperatur Tw und der Wärmekapazität c
 - Messung mittels Berührungsthermometer mit der Temperatur $T_{\rm m}$ und der Wärmekapazität $c_{\rm m}$
 - Gemessene Temperatur:

$$E_{\text{vorher}} = cT_{\text{w}} + c_{\text{m}}T_{\text{m}} = E_{\text{nachher}} = (c + c_{\text{m}})T_{\text{a}}$$

 $\Rightarrow T_{\text{a}} = \frac{cT_{\text{w}} + c_{\text{m}}T_{\text{m}}}{c + c_{\text{m}}}$

Absoluter Fehler:

$$\Delta T = T_{\rm a} - T_{\rm w} = \frac{c_{\rm m}}{c + c_{\rm m}} (T_{\rm m} - T_{\rm w})$$

- Messfehler wird also klein, wenn
 - die Wärmekapazität $c_{\rm m}$ des Thermometers klein gegenüber der Wärmekapazität der Flüssigkeit c ist
 - die Temperaturen von Thermometer $T_{\rm m}$ und Flüssigkeit $T_{\rm w}$ vor der Messung (annähernd) gleich sind

Spezifizierte Normalbedingungen

- Hersteller eines Messsystems beschreibt in der Spezifikation die Randbedingungen und Umwelteinflüsse, unter denen er einen maximalen Fehler garantiert, z. B.:
 - Messbereich
 - Betriebsbedingungen
 - Einbauvorschriften
 - Energieversorgung
 - Vorgehensweise bei der Messung

Spezifizierte Normalbedingungen

- Beurteilung von Fehlern mittels Vergleich mit ähnlichen Geräten und deren Fehlern
- Besonders einfacher Vergleich im eingeschwungenen Zustand: statische Fehler
- Statische Fehler unter spezifizierten Normalbedingungen:
 - Störgrößen aus der Umgebung sind konstant oder null: $z=z_0$
- Statische Fehler bei Abweichung von den spezifizierten Normalbedingungen:
 - Einfluss der Störgrößen muss einzeln analysiert werden:
 - Definierte Abweichung von den Normalbedingungen für jede wichtige Störgröße erzeugen: $z = z_i$, i = 1, ..., n, n: Anzahl der wichtigen Störgrößen
 - Auswirkung auf die Ausgangsgröße als Fehler feststellen

Beispiel: mögliche Fehlerursachen

- Messung der Winkelgeschwindigkeit ω eines horizontal rotierenden Körpers
 - Messprinzip: Messung der Beschleunigung an einem Ort P auf dem Körper
 - Technische Mechanik:
 - Führungsbeschleunigung: *a*₀
 - Tangentialbeschleunigung: $a_t = \dot{\boldsymbol{\omega}} \times \boldsymbol{r}$
 - Zentripetalbeschleunigung: $a_{\mathrm{zp}} = \omega \times v$
 - Gesamte Beschleunigung: $a_{\rm P} = a_{\rm O} + a_{\rm t} + a_{\rm zp} \approx \dot{\omega}r \cdot e_{\omega} - \omega^2 r \cdot e_r$

Bildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

Beispiel: mögliche Fehlerursachen

- Anbringung eines idealen Beschleunigungssensors an der Scheibe:
 - Messgleichung: $a_{\rm M} = -\dot{\omega}r \cdot \sin \theta - \omega^2 r \cdot \cos \theta$
 - Stationärer Fall ($\dot{\omega} = 0$): statische Messkennlinie: $a_{\rm M} = -\omega^2 r \cdot \cos \theta$
 - Quadratische stationäre Kennlinie: $y = a_{\rm M} = {\rm const.} \cdot u^2$ Wünschenswert ist meist eine lineare Kennlinie, Vorteil: konstante Empfindlichkeit (siehe Kap. 3: Linearisierung der Messkennlinie)

Beispiel: mögliche Fehlerursachen

- Störgrößen:
 Sensorposition r und
 Sensorausrichtung θ
 (innere Störgrößen des Messsystems)
- Normalbedingungen: r_0 , θ_0 (z. B. konstruktiv vorgegeben)
- Weitere mögliche Störungen (äußere Störgrößen):
 - Veränderliche Winkelgeschwindigkeit ($\dot{\omega} \neq 0$)
 - Führungsbeschleunigung a₀ ≠ 0:
 kann systematisch (z. B. wenn Rotationsachse nicht vertikal steht) oder stochastisch (z. B. bei unbekannten Vibrationen) sein
 - Änderung der Winkelgeschwindigkeit ω : dynamische Fehler, proportional zu $\dot{\omega}$, Einschwingen abwarten

Bildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015