CONFIDENTIAL B

Edge Enhancement

Index

- Support Chip
- What is Edge Enhancement
- What issue might meet
- Block diagram
- Function
 - Freq. Division EE
 - <u>LUT</u>
 - Corner Noise
 - White/Dark Edge Suppression
 - Line Pattern Reduction
 - YCE
 - Slow transition

Support Chip

MT6771

What is Edge Enhancement

An image processing to improve image's or video's sharpness

Before EE

After EE

What issue might meet

Overshoot/Undershoot

Edge Enhance (include Detail & Texture)

Block Diagram

CONFIDENTIAL B

UI

EE				
HF Band Control		GLUT		* Slow Transition
H1 DI BLND OFST	0	X1	0	ST OFST RESP 100
H2 DI BLND OFST	0	X2	32	
H3 DI BLND OFST	0	Х3	64	
HX ISO BLND RAT	3	X4	96	
H1 GN	14	Y1	32	
H2 GN	4	Y2	96	
H3 GN	1	Y3	192	
Luma/Shading Mod		Y4	240	
GLUT LINK EN		Y5	192	
SLNK GN Y1	255 Artifact Control			
SLNK GN Y2	255	Dot TH	6	
*YCE	7/	DOT REDUC STR	128	
LUMA CNTST LV	3	OVRSH CLIP STR	2	
	Clipping			
		CLIP LUMA UPB	255	
	607	CLIP LUMA LWB	0	
A Y A		CLIP LUMA SPC TH	0	
	,	RESP CLIP	64	
		*POS GN	16	
		*NEG GN	16	

Freq. Division EE

- Parameters
 - H1 GN
 - Means Signal level. Fine Detail 1, Signal 1, more Noisy
 - H2 GN
 - Means Signal level. Fine Texture ↑, Signal ↑, more Noisy
 - H3 GN
 - Means Signal level. Fine Edge ↑, Signal ↑, more Noisy
 - Suggestion
 - Sharpness is the combination of three parameters
 - If not satisfied the Sharpness result, fine tune Detail and fine Texture and fine tune Edge

H1 GN	14
H2 GN	4
H3 GN	1

Edge Response

- We will enhance edge by High Pass Filter
- Use edge response to judge which to enhance or not

LUT

Use Look Up Table to add edge strength of different scales

Use Edge Response to decide enhance region

GLUT	
X1	0
X2	32
X3	64
X4	96
Y1	32
Y2	96
Y3	192
Y4	240
Y5	192

Y5

Edge Response

0

LUT Example

Small Noise Region

Large Noise Region

Corner Noise

 Some noise will be enhance than center, by control strength to decrease corner noise

Luma/Shading Mod = GLUT LINK EN		> Enable bit		
SLNK GN Y1	255	0: off 1: on		
SLNK GN Y2	255			
Y1/Y2 Usage: GN Y1/Y2 -> Corner Noise, Corner Sharpness				
GN Y1: Control the noise between center and boundary GN Y2: Control the noise of boundary				

White/Dark Edge Suppression (1)

Overshoot/Undershoot Clipping

Default Value

Clipping	
CLIP LUMA UPB	255
CLIP LUMA LWB	0
CLIP LUMA SPC TH	0
RESP CLIP	64
*POS GN	16
*NEG GN	16

Method 1 (Locally adjusted by luma value and edge response)

CLIP LUMA UPB: To suppress overshoot

CLIP LUMA UPB → Overshoot ↓

CLIP LUMA LWB: To suppress undershoot

CLIP LUMA LWB ↑ → Undershoot ↓

CLIP LUMA SPC TH: Select suppression signal

Only the edge response > CLIP LUMA SPC TH would be suppressed

(0: flat region; 255: strong edge)

White/Dark Edge Suppression (2)

Overshoot/Undershoot Clipping

Default Value

Clipping			
CLIP LUMA UPB	255		
CLIP LUMA LWB	0		
CLIP LUMA SPC TH	0		
RESP CLIP	64		
*POS GN	16		
*NEG GN	16		

Method 2 (Global clipping)

•RESP CLIP: Overall edge enhancement would not exceed this limit (0: no EE)

Method 3 (Only depends on overshoot or undershoot response)

POS GN: Adjust overshoot level (base = 16; 0 = no overshoot)

NEG GN: Adjust undershoot level (base = 16; 0 = no undershoot)

Line Pattern Reduction

Use for reducing line pattern

Step:

- 1.Use default value as initial
- 2.First fine tune H1~3 DI BLND OFST
- 3. Then fine tune HX ISO BLND RAT

```
H1 DI BLND OFST ↓ → Detail line pattern ↓
H2 DI BLND OFST ↓ → Texture line pattern ↓
H3 DI BLND OFST ↓ → Edge line pattern ↓
HX ISO BLND RAT ↓ → Line Pattern ↓
```


YCE

 Speed up edge transition speed by drawing pixels close to local max/min ones.

No overshoot/undershoot introduced

Slow Transition

 Avoid applying EE in gradient region for preventing contour artifact

- Range suggestion: 96~128
 - Lower means less contour (but the edge may become smoother)

MEDIATEK

everyday genius

Copyright © MediaTek Inc. All rights reserved.