CS-200 Computer Architecture

Part Id: Instruction Set Architecture
Arithmetic

Paolo lenne <paolo.ienne@epfl.ch>

Notation

Number (represented on a specific no. of digits/bits)

$$A = A^{(n)} = A^{(m)}$$

Number (in binary or decimal)

$$A = A_{10} = A_2 = A_{2c}$$

Individual digits (bits)

$$a_{n-1}$$
, a_{n-2} , ... a_2 , a_1 , a_0

Digit string (representation)

$$\langle a_{n-1}a_{n-2}...a_2a_1a_0\rangle$$

Binary, 2's complement

Simply 100010 if the digits are known

Binary

Numbers

We usually care for three types of numbers:

Integers (signed and unsigned)

$$0, 1, 2, 3, 4294967295, -2147483648$$

Fixed Point

- Essentially integers with implicit 10^k or 2^k scaling
- Extremely important in practice (most signal-processing is fixed point)
- Floating Point

$$3.14E3$$
, $-2.5E1$, $1.0E0$, $4.2E-2$, $-1.5E-3$

Unsigned Integers

- Weighted (positional)
- Nonredundant
- Fixed-radix (radix-10 or radix-2)
- Canonical

Definition:

$$A = \langle a_{n-1} a_{n-2} \dots a_2 a_1 a_0 \rangle = \sum_{i=0}^{n-1} a_i R^i$$

If R = 2, binary

Signed Integers

Sign-and-Magnitude

2's Complement (particular choice of True-and-Complement)

Biased

Practically used only in Floating Point numbers (mentioned later)

Sign and Magnitude

- Human friendly!
- The first symbol is a sign (+/- for humans, 0/1 for computers)
- The rest is an unsigned number:

+100, -2345 If we use 0/1 for the sign, the number of bits matters $-111_2 = 1111_2^{(4)}$ If R = 2, binary

Definition:

$$A = \langle sa_{n-2} \dots a_2 a_1 a_0 \rangle = (-1)^s \cdot \sum_{i=0}^{n-2} a_i R^i$$

Radix's Complement

Special form of True-and-Complement with C = Rⁿ

Definition:

$$A = \langle a_{n-1} a_{n-2} \dots a_2 a_1 a_0 \rangle = -a_{n-1} R^{n-1} + \sum_{i=0}^{n-2} a_i R^i$$

If R = 2, binary

Radix's Complement

- Not a human-friendly representation
- In **decimal** (10's complement):

$$5,678_{10c}^{(5)} = 05,678_{10c} = +5,678_{10}$$
$$9,999,999_{10c}^{(7)} = -1_{10}$$
$$8,766_{10c}^{(4)} = -1,234_{10}$$

• In **binary** (2's complement):

$$0100,1101,0010_{2c}^{(12)} = 100,1101,0010_{2} = +1,234_{10}$$

$$1111,1111_{2c}^{(8)} = -1_{10}$$

$$1011,0000,1110_{2c}^{(12)} = -1,234_{10}$$

2's Complement from Subtraction

Consider a "normal" paper-and-pencil subtraction

2's Complement from Subtraction

Consider a "normal" paper-and-pencil subtraction

Addition Is Unchanged from Unsigned

Only two instructions (with the immediate version; subi is a pseudo)

Arithmetic						
add	rd,rs1,rs2	$\mathtt{rd} \leftarrow \mathtt{rs1} + \mathtt{rs2}$	R	0x00	0x0	0x33
addi	rd,rs1,imm	$\mathtt{rd} \leftarrow \mathtt{rs1} + \mathrm{sext}(\mathtt{imm})$	I		0x0	0x13
sub	rd,rs1,rs2	$\mathtt{rd} \leftarrow \mathtt{rs1} - \mathtt{rs2}$	R	0x20	0x0	0x33

- Old architectures (MIPS, notably) had distinct add and addu but it was essentially a misnomer; **ignore** it and do not be confused!
- Instead, addition of Sign-and-Magnitude numbers is a different problem (see later) → this is why 2's complement is the universal representation of signed integers today

Sign Extension

Unsigned numbers can be though as having infinite 0s in front

$$-1_{10} = -0001_{10}$$
$$1,0101_2 = 00000,000000001,0101_2$$

 Instead, 2's complement numbers have infinite replicas of the MSB/sign bit in front

Instructions for Signed Numbers

		Insert zeroes (1 = logi	$c \rightarrow un$	signed) o	r sign bit	:s (a = arit	thmetic → signed)
Shift		<u> </u>					_
srl	rd,rs1,rs2	$ ext{rd} \leftarrow ext{rs1} \gg_u ext{rs2}$	\mathbf{R}	0x00	0x5	0x33	$1110_2/2 = 0111_2$
srli	rd,rs1,imm	$\mathtt{rd} \leftarrow \mathtt{rs1} \gg_u \mathtt{imm}$	I	0x00	0x5	0x13	but
sra	rd,rs1,rs2	$ exttt{rd} \leftarrow exttt{rs1} \gg_s exttt{rs2}$	R	0x20	0x5	0x33	$1110_{2c}/2 = 1111_{2c}$
srai	rd,rs1,imm	$ exttt{rd} \leftarrow exttt{rs1} \gg_s$ imm	Ι	0x20	0x5	0x13	$\frac{1}{2}$
Com	pare						<u> </u>
slt	rd,rs1,rs2	$\mathtt{rd} \leftarrow \mathtt{rs1} <_s \mathtt{rs2}$	\mathbf{R}	0x00	0x2	0x33	
slti	rd,rs1,imm	$\mathtt{rd} \leftarrow \mathtt{rs1} <_s \mathtt{sext}(\mathtt{imm})$	I		0x2	0x13	
sltu	rd,rs1,rs2	$\mathtt{rd} \leftarrow \mathtt{rs1} <_u \mathtt{rs2}$	\mathbf{R}	0x00	0x3	0x33	$0000_2 < 1111_2$
sltiu	rd,rs1,imm	$\mathtt{rd} \leftarrow \mathtt{rs1} <_u \mathtt{sext}(\mathtt{imm})$	Ι		0x3	0x13	- but
Bran	\mathbf{ch}						
blt	rs1,rs2,imm	$\mathtt{pc} \leftarrow \mathtt{pc} + \mathrm{sext}(\mathtt{imm} \ll 1), \ \mathrm{if} \ \mathtt{rs1} <_s \mathtt{rs2}$	В		0x4	0x63	$0000_{2c} > 1111_{2c}$
bge	rs1,rs2,imm	$\mathtt{pc} \leftarrow \mathtt{pc} + \mathrm{sext}(\mathtt{imm} \ll 1), \ \mathrm{if} \ \mathtt{rs1} \geq_s \mathtt{rs2}$	В		0x5	0x63	
bltu	rs1,rs2,imm	$\mathtt{pc} \leftarrow \mathtt{pc} + \mathrm{sext}(\mathtt{imm} \ll 1), \ \mathrm{if} \ \mathtt{rs1} <_u \ \mathtt{rs2}$	В		0x6	0x63	
bgeu	rs1,rs2,imm	$\mathtt{pc} \leftarrow \mathtt{pc} + \mathrm{sext}(\mathtt{imm} \ll 1), \ \mathrm{if} \ \mathtt{rs1} \geq_u \mathtt{rs2}$	В		0x7	0x63	J
Load							_
lb	rd,imm(rs1)	$\mathtt{rd} \leftarrow \mathrm{sext}(\mathrm{mem}[\mathtt{rs1} + \mathrm{sext}(\mathtt{imm})][7:0])$	I		0x0	0x03	
lbu	rd,imm(rs1)	$\mathtt{rd} \leftarrow \mathrm{zext}(\mathrm{mem}[\mathtt{rs1} + \mathrm{sext}(\mathtt{imm})][7:0])$	Ι		0x4	0x03	
lh	rd,imm(rs1)	$\mathtt{rd} \leftarrow \mathrm{sext}(\mathrm{mem}[\mathtt{rs1} + \mathrm{sext}(\mathtt{imm})][15:0])$	Ι		0x1	0x03	
lhu	rd,imm(rs1)	$\mathtt{rd} \leftarrow \mathrm{zext}(\mathrm{mem}[\mathtt{rs1} + \mathrm{sext}(\mathtt{imm})][15:0])$	I		0x5	0x03	

Overflows in 2's Complement Addition

The sum is the same as with unsigned numbers:

...but how to assess **overflows**?

Overflows in Hardware

- In hardware, carry out is the only missing bit from the complete result
- We can think of overflows as a truncation problem:

Overflow in Software

- Some architectures (e.g., x86) give us the carry bit in a special "register" (a flag)
 - overflow detection is the same as in hardware
- Other (modern) architectures give us only the result of the addition (e.g., RISC-V)
- Detection usually based on the following observations:
 - If addition of opposite sign numbers, magnitude can only reduce \rightarrow no overflow possible
 - If addition of same sign numbers, overflow possible but the sign of the result will appear wrong

Detect Addition Overflow in Software

- Add two 32-bit signed integers and detect overflow
 - At call time, a0 and a1 contain the two integers
 - On return, a0 contains the result and a1 must be nonzero in case of overflow

$$A + \overline{A} = -1$$

A "strange" but very useful property

$$A + \bar{A} = -1 \qquad \text{or} \quad -A = \bar{A} + 1$$

Not too hard to prove

$$\left(-a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i\right) + \left(-\overline{a_{n-1}}2^{n-1} + \sum_{i=0}^{n-2} \overline{a_i}2^i\right) =$$

$$= -(a_{n-1} + \overline{a_{n-1}}) \cdot 2^{n-1} + \sum_{i=0}^{n-2} (a_i + \overline{a_i}) \cdot 2^i = -2^{n-1} + \sum_{i=0}^{n-2} 2^i = -1$$

Also somehow intuitive

Two's Complement Subtractor

• Using this property, $A - B = A + (-B) = A + \overline{B} + 1$

Two's Complement Add/Subtract Units

Fun Stuff: Bounds Check

 Check for a signed number t0 (e.g., an array index) to be within the bounds 0..N-1 where N is t1

- If $t0 \ge 0$, bgeu is like bge and the right behaviour is evident
- If t0 < 0, as an unsigned t0 looks like larger than any signed positive

Floating Point

Corresponds to our everyday habits

ur every d	lay habi	its	notation		
_	-		\rightarrow	1.8 · 10 ⁻⁷ m	Normalized scientific
75 km	\rightarrow	$75\cdot 10^3$ m	\rightarrow	7.5 · 10 ⁴ m	notation
35 mm	\rightarrow	35 ⋅ 10 ⁻³ m	\rightarrow	3.5 ⋅ 10 ⁻² m	
2.5 m	\rightarrow	$2.5\cdot 10^0\mathrm{m}$	\rightarrow	$2.5\cdot 10^0~\text{m}$	

Engineering

2's complement exponent

A significand (or mantissa) and an exponent of the base, for instance

 $X = \langle sa_{n-1} \dots a_2 a_1 a_0 e_{m-1} \dots e_1 e_0 \rangle = (-1)^s \cdot \sum_{i=0}^{n-1} a_i 2^i \cdot 2^{-e_{m-1} 2^{m-1} + \sum_{j=0}^{m-2} e_j 2^j}$

Sign-and-Magnitude significand

Floating Point

- Large dynamic range but variable accuracy
- Redundant unless normalized
- Not real numbers: not associative!
- Often exponent in biased signed representation
 - Zero can be represented by 0000...0000
 - Easier for comparisons and hardware implementations
- Often normalized mantissa $1 \le m < 2$ with hidden bit (1.xxxxx)
- Today the IEEE 754 standard is almost universally adopted
- x86/x64 supports FP through SSE/AVX extensions (since 1999)
- RISC-V supports FP through ISA extensions (not used in CS-200)

Example Sign-and-Magnitude Addition

- Write a function in RISC-V assembler to sum two 32-bit signed numbers represented in sign-and-magnitude (S&M) format and produce the result also in sign-andmagnitude format
- The two operands are in registers a0 and a1 on entry and the result should be placed in register a0

Ignore overflows

References

- Patterson & Hennessy, COD RISC-V Edition
 - Chapter 2 and, in particular, Section 2.4
 - Chapter 3 and, in particular, Section 3.2