## ECO 2020 Tutorial 4

9 is twice differentiable read to show 10 take the element  $(x, y', \overline{z})$  and  $(x', y, \overline{z})$   $x \in x', y \in y'$ 

by supermodularity,  $f(x, y', z) + f(x', y, z) \leq f(x', y', z) + f(x, y, z)$   $f(x', y, z) - f(x, y, z) \leq f(x', y', z) - f(x, y', z)$   $f(x', y) - f(x, y) \leq f(x', y') - f(x, y')$ and so f(x, y) = f(x, y) = f(x, y') = f(x, y')

Conversely, fxy 30

Suppose  $x \in x'$ ,  $y \in y'$ ,  $z \in z'$ 

by 1D  $f(x', y, z) - f(x, y, z) \leq f(x', y', z') - f(x, y', z')$ 

=) f(x', y, z) + f(x, y', z') = f(x', y', z) + f(x, y, z)

 $= \int \left( x', y, \xi \right) + \int \left( x, y', \xi' \right) \in \left( x \vee x', y \vee y', \xi \vee \xi' \right) + \left( x \wedge x', y \wedge y', \xi \wedge \xi' \right)$ 

and so f is supermolar.

NEED additional proof of  $f_{xy} \ge 0$  iff ID modify the proof in  $\ge D$ .

(9) a) I state only: 
$$S = \{*\}$$
 $z = \{a, b, c\}$ 
 $f \sim g \sim \alpha f + (1 - \alpha)g$ 
 $(\alpha f + (1 - \alpha)g) = (\alpha p_a^f + (1 - \alpha) p_a^g) u(a)$ 
 $(\alpha p_b^f + (1 - \alpha) p_b^g) u(b)$ 
 $(\alpha p_b^f + (1 - \alpha) p_b^g) u(c)$ 
 $(\beta p_b^f + (1 - \alpha) p_b^g) u(c)$ 

b) Be tweenness  $Ax_i$ om  $\forall L, L' \text{ and } \lambda \in (0,1) \text{ if } L \sim L', \text{ then}$   $\lambda L + (1-\lambda) L' \sim L$ 

(a)  $L \gtrsim L'$  take any lottery  $L'' \in \Delta \gtrsim$  by independence  $\lambda L + (1-\lambda)L'' \gtrsim \lambda L' + (1-\lambda)L'''$ 

take  $L^* = L' \Rightarrow \lambda L + (1-\lambda)L' \gtrsim L'$   $L \sim L' \Rightarrow L \gtrsim L' \text{ and } L \lesssim L'$ 

 $\lambda L + (1-\lambda) L' \approx L'$  and  $\lambda L + (1-\lambda) L' \lesssim L'$ 

 $\Rightarrow$   $\lambda L + (1 \lambda) L' \sim L' \Rightarrow$  between ness axion holds.



are equally preferred

Some indifference curve

(straight line)





L, >L',

L',

L2'>L2

$$(5) \quad E \left[ \pi(a, q, A, c) \right] = p(a) q A + q P(q) - q c - q$$

$$\times T$$

$$= t = -c$$

i) 
$$h(a, q, A) = p(a) q A$$
 $wlog +ake \times = (q, q, A) \qquad a < a' \\ q > q'$ 
 $y = (a', q', A)$ 
 $h(x \vee y') + h(x \wedge y) - h(x) - h(y) > 0$ 
 $p(a') q A + p(a) q' A - p(a) q A - p(a') q' A > 0$ 
 $(p(a') A - p(a) A) (q - q') > 0$ 

Since  $A > 0$ 

: h is supermodular

≥ 0

(2) 
$$-qc = qt$$
  
 $h(q,t) = qt$  take  $q < q'$ ,  $t > t'$   
 $h(x \lor y) + h(x \land y) - h(x) - h(y) \ge 0$   
 $q't + qt' - qt - q't' \ge 0$   
 $(q'-q)(t-t') \ge 0$   
 $\Rightarrow qt$  is supermodular

TI is S. and (a\*, q\*) (A, t) is monotonically increasing (decreasing in c)

a) 
$$(x, \leq x)$$
 $f: x \rightarrow P$ 
 $V: P \rightarrow P$ 
 $V$ 

 $(\mathfrak{F})$ 

1) 
$$f \int a c$$
 $b \in d$ 
 $f \leq m \qquad a+b \in c+d$ 
 $x = \frac{d-a}{d-c} \implies 1-x = \frac{a-c}{d-c}$ 
 $x = \frac{d-b}{d-c} \implies 1-x = \frac{b-c}{d-c}$ 

$$V(a) \leq \alpha \times V(c) + (1-\alpha_x) V(d)$$

$$+ v(b) \leq \alpha_y V(c) + (1-\alpha_y) V(d)$$

$$V(0) + V(0) \in \left(\frac{d-6}{d-c} + \frac{d-6}{d-c}\right) V(c) + \left(\frac{a-c}{d-c} + \frac{b-c}{d-c}\right) V(d)$$

$$\leq \frac{2d - (a+b)}{d-c} V(c) + \frac{(a+b) - 2c^{*} d^{-d}}{d-c} V(d)$$

$$= V(c) + V(d) + \frac{(c+d) - (a+b)}{b-c} (V(c) - V(d))$$

$$= 0$$

b) 
$$f$$
  $g$ 

$$(xf + (1-\alpha)g)(x) + (xf + (1-\alpha)g)(y)$$

$$= xf(x) + (1-\alpha)g(x) + x f(y) + (1-\alpha)g(y)$$

$$\downarrow x (f(x) + f(y)) + (1-\alpha)(g(x) + g(y))$$

$$\in x (f(x + y) + f(x + y)) + (1-\alpha)(g(x + y)) + g(x + y)$$

$$c) x \in \mathbb{R} \qquad (x, \in)$$

$$x = (a, b)$$

$$f: x \to \mathbb{R}$$

$$take c, d \in (a, b) \qquad s.t c \leq d \to c \wedge d = c$$

$$c \vee d = d$$

$$f(c \wedge d) = f(c)$$

$$f(c \vee d) = f(d)$$

f(c) + f(d) = f(c) + f(d)

$$10 = u(0) \ge p(u(10 - 5.65)) + (1 - p)u(-3.65)$$

$$\ge \sqrt{94.35} + p(\sqrt{104.35} + \sqrt{94.35})$$
 $p \in P_{13} = 0.57$ 

$$u(0) \ge p(u(-10 + S,65)) + (1-p) u(5.63)$$



$$(2) \qquad (3) \qquad \frac{\times \times y}{\times} \qquad \qquad \times y$$





d) 
$$A = \{(0,1), (1,0)\}$$
  
e). Same

Independence: Suppose 
$$f \lesssim g$$
,  $h$   
 $U(\alpha f + (1-\alpha)h) = \sum_{s,z} M_s(z)(\alpha f + (1-\alpha)h)_s(z)$   
 $= \alpha \sum_{s,z} U_s(z) f_s(z) + (1-\alpha) \sum_{s,z} M_s(z) h_s(z)$   
 $= \alpha U(f) + (1-\alpha)U(h)$   
 $\leq \alpha U(g) + (1-\alpha)U(h)$ 

Axion 1:  $V \rightarrow R$  . R complete and transitive Axion 2:

$$(a_1, f_2) = \min_{x \in A} (f_1, f_2)$$

$$f = (1, 0), \quad g = (0, 1)$$

$$h = \frac{1}{3}f + \frac{2}{3}g = (\frac{1}{3}, \frac{2}{3})$$

$$u(h) > u(f) = u(g)$$

b)

g

h

Ind 
$$L \sim L'$$

$$\alpha L + (1 \sim \alpha) L' \sim L'$$
Non-linear

 $\angle = \frac{1}{3}$