Московский Физико-Технический Институт (государственный университет)

Работа 3.6.1

Цель работы: изучить спектральный состав периодических сигналов. text

В работе используются: анализатор спектраб генератор прямоугольных импульсов и сигналов специальной формы, осциллограф.

text

Описание работы

В работе изучается спектральный состав периодических электрических сигналов различной формы: последовательность прямоугольных импульсов, последовательности цугов и амплитудно-модулированных колебаний. Спектры этих сигналлов наблюдаются с помощью анализатора спектра и сравниваются с рассчитанными теоретически.

Периодическая функция может быть представлена в виде бесконечного ряда гармонических функций - ряда Фурье:

$$f(t) = \sum_{n=-\inf}^{\inf} c_n e^{in\omega_0 t}$$
 или $f = \sum_{n=0}^{\inf} a_n \cos(n\omega_0 t + \phi_n).$

Здесь $\omega_0 = 2\pi/T$, где T - период функции f(t). Коэффициенты c_n могут быть найдены по формулы:

$$c_n = \frac{1}{T} \int_{0}^{T} f(t)e^{-in\omega_0 t} dt.$$

Наборы коэффициентов разложения в комплексной c_n и действительной a_n, ϕ_n формах связаны соотношением:

$$a_n = 2|c_n|, \quad \phi_n = \arg c_n.$$

В качестве простейшего спектрального анализатора можно использовать высокодобротный колебательный контур с подстраиваемой ёмкостью или индуктивностью. Такой контур усиливает те гармоники входного сигнала f(t), частота которых близка к резонансной $\nu_0=1/(2\pi\sqrt{LC}$ и практически не реагируют на частоты, далёкие от ν_0 . С точки зрения преобразования гармоник колебательный контур является узкополосным фильтром с шириной полосу пропускания порядка $\Delta \sim \nu_0/Q$, где $Q=\frac{1}{R}\sqrt{\frac{L}{C}}\gg 1$ - его добротность. Амплитуда колебаний в контуре пропорциональна амплитуде $|c(\nu_0)|$ гармоники в спектре функции f(t), частота которой совпадает с ν_0 . Таким образом, меняя резонансную частоту контура, можнно «просканировать» весь спектр входного сигнала.

Эскпериментальная установка

Функциональный генератор WaveStation 2012 позволяет сформировать два различных электрических сигнала, которые выводятся на два независимых канала – "CH1"и "CH2". Сигнал с канала "CH1"подается на вход "A а сигнал с канала "CH2"— на вход "B"USВ-осциллографа. Затем эти сигналы подаются на вход компьютера через USB-соединение. При работе USBосциллографа в режиме осциллографа, на экране компьютера можно наблюдать каждый из сигналов в отдельности, а также их произведение. В режиме спектроанализатора можно наблюдать спектры этих сигналов. При включении функционального

генератора, на его экране отображается информация о параметрах электрического сигнала.

Ход работы

\mathbf{A}

- 1. Соберем и запустим усановку. Установим на анализаторе спектра режим работы с однократной разверткой и получим на экране спектр импульсов с параметрами:
 - $a)f_{\text{повт}}=10^3~\Gamma$ ц; au=25~мкc; частотный масштаб $m_x=5~\text{к}\Gamma$ ц/дел.
 - б) $f_{\text{повт}}=10^3~\Gamma$ ц; au=50~мкc; частотный масштаб $m_x=5~\text{к}\Gamma$ ц/дел.
 - в) $f_{\text{повт}}=2\cdot 10^3~\Gamma$ ц; au=25~мкc; частотный масштаб $m_x=5~\text{к}\Gamma$ ц/дел.

Рис. 1: $f_{\text{повт}} = 10^3 \; \Gamma \text{ц}; \; \tau = 25 \; \text{мкс}$

- 2. Проведем измерения зависимости ширины спектра от длительности импульса $\Delta \nu(\tau)$ при увеличении τ от 25 до 200 мкс. Запишем данные в таблицу.
- 3. Зарисуем спектры с параметрами $f_{\text{повт}}=1$ к Γ ц:
 - а) $\tau = 50 \, \text{мкс}$
 - б) $\tau = 100 \text{ мкс}$

Рис. 2: $f_{\text{повт}} = 10^3 \ \Gamma \text{ц}; \, \tau = 50 \ \text{мкс}$

Рис. 3: $f_{\text{повт}} = 2 \cdot 10^3 \; \Gamma \text{п;} \; \tau = 25 \; \text{мкс}$

\bigtriangleup \nu, кГц	\tau, мкс
32,5	25
17,5	50
12	75
8	100
7	125
6	150
5	175
4	200

4. Построим график зависимости $\Delta \nu(1/\tau)$ и по его наклону убедимся в том, что зависимость линейная:

Рис. 4: $f_{\text{повт}} = 10^3 \; \Gamma$ ц; $\tau = 50 \; \text{мкс}$

Рис. 5: $f_{\text{повт}} = 10^3 \; \Gamma \text{ц;} \; \tau = 100 \; \text{мкс}$

Б

- 1. Изменим схему установки. Установим частоту несущей $\nu_0=25$ к Γ ц и проанализируем как изменяется вид спектра:
 - а)
при увеличении длительности импульса вдвое ($\tau=50,100$ мкс для
 $f_{\text{повт}}=1$ к Гц.
 - б)при изменении несущей частоты ν_0 (на генераторе Γ 6-34 $\nu_0=25,10$ или 40 к Γ ц) при фиксированных значениях $f_{\text{повт}}=1$ к Γ ц, $\tau=100$ мкс.

Рис. 6: $f_{\text{повт}} = 10^3 \; \Gamma$ ц, $\tau = 50 \; \text{мкс}, \; \nu_0 = 25 \; \text{к} \Gamma$ ц

2. При фиксированной длительности импульсов $\tau=50$ мкс исследуем зависимость расстояния $\delta\nu$ между соседними спектральными компонентами от периода T (частоты повторения импульсов $f_{\text{повт}}$). Запишем данные в таблицу:

Рис. 7: $f_{\text{повт}} = 10^3 \ \Gamma \text{ц}, \ \tau = 100 \ \text{мкс}, \ \nu_0 = 25 \ \text{к} \Gamma \text{ц}$

Рис. 8: $f_{\text{повт}} = 10^3 \ \Gamma \text{ц}, \ \tau = 100 \ \text{мкс}, \ \nu_0 = 10 \ \text{к} \Gamma \text{ц}$

- 3. Посмотрим на спектры цугов с параметрами $\tau=100$ мкс, $m_x=5$ к Γ ц/дел:
 - $a)f_{\text{повт}}=1$ к Γ ц
 - б) $f_{\text{повт}}=2$ к Γ ц

Рис. 9: $f_{\text{повт}} = 10^3 \ \Gamma$ ц, $\tau = 100 \ \text{мкс}, \ \nu_0 = 40 \ \text{к} \Gamma$ ц

\delta \nu, кГц	f, кГц
1	1
3	3
4	4
6	6
7	7
8	8

Рис. 10: Зависимость $\delta \nu(T)$

Рис. 11: $f_{\text{повт}}=10^3~\Gamma$ ц, $au=100~\text{мкс},~
u_0=25~\text{к}\Gamma$ ц

4. Построим график $\delta \nu(f_{\text{повт}})$:

Рис. 12: $f_{\mbox{\tiny повт}} = 2 \cdot 10^3 \ \Gamma \mbox{\tiny П}, \, \tau = 100 \ \mbox{мкс}, \, \nu_0 = 25 \ \mbox{к} \Gamma \mbox{\tiny П}$

Зависимость $\delta v(f_{\text{повт}})$

 \mathbf{B}

1. Соберем схему изображенную на рисунке.

2. Изменяя глубину модуляции исследуем зависимость отношения амплитуды боковой линии спектра к амплитуде основной линии $(a_{60\text{k}}/a_{0\text{ch}})$ от глубины модуляции m, вычисляемой по формуле:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}$$

Запишем данные в таблицу:

2A_max	2A_min	m	а_бок/а_осн
2,4	0	1	0,35335689
2	0,4	0,666667	0,3125
1,8	0,6	0,5	0,235294118
1,6	0,8	0,333333	0,166666667
1,4	1	0,166667	0,090909091
1,2	1,2	0	0

Рис. 13: Зависимость $a_{60K/a_{och}} = f(m)$

3. По полученным данным построим график $a_{{
m fok}/a_{{
m och}}} = f(m)$: \pm

Получаем значение углового коэффициента наклона:

$$a = 0.46 \pm 0.01$$

что примерно совпадает с теоретическим значением для данной величины.