#### **SUPSI**

# ESAME MODULO M-B3010 PARTE 1 - ANALISI 2

1. febbraio 2022

| Nome          | : |  |
|---------------|---|--|
| Cognome       | : |  |
| Classe        | : |  |
| N. fogli all. | : |  |

#### Osservazioni:

- 1. È permesso utilizzare:
  - 2 fogli A4 (fronte/retro) di riassunto **personale**
  - foglio "Integrali e volumi, aree, lunghezze curve e baricentri"
  - foglio Ansatz
  - formulario (es. "Formulari e tavole" Edition G d'Encre)
  - calcolatrice non grafica e non programmabile (NON CAS).
- 2. Il procedimento di soluzione deve sempre essere comprensibile: risultati non giustificati da un procedimento non verranno accettati.
- 3. Se non specificato altrimenti dal testo dell'esercizio, tutti i risultati devono essere scritti in forma esatta e semplificata.
- 4. Comportamenti illeciti durante l'esame quali copiature, comunicazione tra studenti, utilizzo di sussidi non ammessi (...) verranno sanzionati con l'assegnazione della valutazione F.
- 5. Durata esame: 120 minuti

| Es.   | 1  | 2 | 3 | 4 | 5 | 6 | 7  | TOT | VOTO |
|-------|----|---|---|---|---|---|----|-----|------|
|       |    |   |   |   |   |   |    |     |      |
|       |    |   |   |   |   |   |    |     |      |
| Punti | 14 | 6 | 6 | 6 | 8 | 7 | 16 | 63  |      |

#### 1. (2+2+3+4+3=14 punti)

Sia R la regione compresa tra i grafici delle funzioni  $y=x^2$  e  $x=3\sqrt{3x}$  .

- (a) Determinare i punti d'intersezione tra i due grafici.
- (b) Calcolare l'area di R.
- (c) Calcolare il volume del solido di rotazione ottenuto ruotando la regione R attorno all'asse x.
- (d) Calcolare il volume del solido di rotazione ottenuto ruotando la regione R attorno all'asse y.
- (e) Calcolare le coordinate del baricentro di R.





# 2. **(6 punti)**

Calcolare la lunghezza della spirale definita dalla funzione in forma polare  $f(\theta)=e^{-2\theta}$  con  $\theta\in[0;\infty[$ .

### 3. (6 punti)

Risolvere il seguente problema a valori iniziali:

$$xy' = y - 3x^4 , \ y(1) = 0$$

N.B: indicare in modo chiaro l'insieme di definizione della soluzione del problema.

# 4. (6 punti)

Determinare la soluzione generale della seguente equazione differenziale:

$$x'' - 2x' = 2t + 1$$

### 5. (2+6=8 punti)

 $\grave{\mathbf{E}}$  data la seguente equazione differenziale:

$$3y''' - y'' + 6y' - 2y = 0$$

- (a) Verifica che  $y(t) = \cos(\sqrt{2}t)$  è una soluzione dell'equazione differenziale.
- (b) Trovare la soluzione generale dell'equazione differenziale omogenea.

# 6. **(7 punti)**

Determinare e classificare i punti critici della funzione:

$$f(x;y) = x^4 + y^4 + 4xy$$

#### 7. (3+2+11=16 punti)

È data la funzione  $f(x; y) = 2x^4 + y^3 - x^2y$ .

- (a) Determinare l'equazione del piano tangente alla superficie di equazione z=f(x;y) nel punto (1;-2;f(1;-2)).
- (b) Calcolare la derivata direzionale di f(x;y) in P=(1;-2) in direzione del punto Q=(2;2).
- (c) Disegnare la regione D limitata dal grafico delle rette di equazione  $y=0,\ x=2$  e y=x. Determinare il massimo e il minimo assoluti assunti dalla funzione nella regione D.

