

NS8002 用户手册 V1.0

深圳市纳芯威科技有限公司 2011年11月

修改历史

日期	版本	作者	修改说明

目 录

1 功能	说明	5
2 主要	特性	5
3 应用	领域	5
	应用电路	
5 极限	参数	6
6 电气	特性	6
7 芯片	管脚描述	7
7.1 7.2	管脚分配图	
8 NS80	002 典型参考特性	8
8.1 8.2 8.3 8.4 8.5	总谐波失真(THD),失真+噪声(THD+N),信噪比(S/N) 电源电压抑制比(PSRR)	10 11 12
9 NS80	002 应用说明	14
9.1 9.2 9.3 9.4 9.5	芯片基本结构描述	15 15 15
9. 6 9.7	电源旁路 掉电模式	
10 芯片	的封装	16

单声道 AB 类音频功放

图目录

图 1 NS8002 典型应用电路	5
图 2 SOP8 封装的管脚分配图(top view)	
图 3 NS8002 原理框图	
图 4 SOP8 封装尺寸图	16
表目录	
表 1 芯片最大物理极限值	6
表 2 NS8002 电气特性	6
表 3 NS8002 管脚描述	7
表 4 关断信号数字逻辑特性	

1 功能说明

NS8002 是一款 AB 类桥式输出音频功率放大器。其应用电路简单,只需极少数外围器件。输出不需要外接耦合电容或上举电容和缓冲网络。SOP8 封装,更适合用于便携系统。NS8002 可以通过控制进入低功耗关断模式,从而减少功耗。增益带宽积高达 2.5M,并且单位增益稳定。通过配置外围电阻可以调整放大器的电压增益,方便应用。NS8002 提供 SOP8 封装,额定的工作温度范围为-40℃至 85℃。

2 主要特性

- 输出功率: 2.4W(RL=4Ω,THD=10%)
- 掉电模式漏电流小: 1uA (典型)
- 高电平 ShutDown
- 采用 SOP8 封装
- 外部增益可调
- 电压范围 3.0V-5.25V
- 不需驱动输出耦合电容、自举电容和缓冲网络
- 单位增益稳定

3 应用领域

- 手提电脑
- 台式电脑
- 低压音响系统

4 典型应用电路

图1 NS8002 典型应用电路

5 极限参数

表1 芯片最大物理极限值

参数	最小值	最大值	单位	说明
电源电压	2.8	5.5	V	
储存温度	-65	150	°C	
输入电压	-0.3	V_{DD}	V	
耐 ESD 电压 1	3000		V	HBM
耐 ESD 电压 2	250		V	MM
节温	150		°C	典型值 150
工作温度	-40	85	°C	
热阻				
$\theta_{JC}(SOP8)$		35	°C/W	
$\theta_{JA}(SOP8)$		140	°C/W	
焊接温度		220	°C	15 秒内

注: 在极限值之外或任何其他条件下, 芯片的工作性能不予保证。

6 电气特性

限定条件: (VDD=5.0V, TA=25oC)

表2 NS8002 电气特性

符号	参数	测试条件	最小值	标准值	最大值	单位
V_{DD}	电源电压		3.0		5.25	V
I_{DD}	电源静态电流	$V_{IN}=0V$, Io=0A,		6	10	mA
I_{SD}	关断漏电流			1	20	μΑ
Vos	输出失调电压			5.7	50	mV
R_{O}	输出电阻		7	8.5	10	ΚΩ
Po	输出功率	THD=1%,f=1KHz R_L =4 Ω R_L =8 Ω		1.8 1.3		W
		THD+N=10%,f=1KHz R_L =4 Ω R_L =8 Ω		2. 4 1.7		W
THD+N	总失真度+噪声	$\begin{array}{l} A_{VD}\!\!=\!\!2\\ 20 H_{\rm Z}\!\!\leqslant\!f\!\leqslant\!\!20 \text{KHz}\\ R_L\!\!=\!\!4\Omega\;,\\ P_0\!\!=\!\!1 W\\ R_L\!\!=\!\!8\Omega\;,\\ P_0\!\!=\!\!0.5 W \end{array}$		0.1		%
PSRR	电源抑制比		65	80		dB
SNR	信噪比	$RL=4\Omega,Po=1W$		85		dB

7 芯片管脚描述

7.1 管脚分配图

图2 SOP8 封装的管脚分配图(top view)

7.2 引脚功能描述

表3 NS8002 管脚描述

管脚号	符号	描述			
1	SD	掉电控制管脚,高电平关断,低电平开启			
2	Bypass	内部共模电压旁路电容			
3	+IN	模拟输入端,正相			
4	-IN	模拟输入端,反相			
5	VO1	模拟输出端 1			
6	VDD	电源正			
7	GND	电源地			
8	VO2	模拟输出端 2			

8 NS8002 典型参考特性

8.1 总谐波失真(THD),失真+噪声(THD+N),信噪比(S/N)

THD vs Frequency T=25°C, Vdd=5V, RL=8 Ω , and Po=500mW

THD vs Frequency T=25°C,Vdd=3.3V,RL=8 Ω ,and Po=425mW

THD vs Frequency T=25°C, Vdd=2.5V, RL=8 Ω , and Po=150mW

THD vs Frequency T=25°C, Vdd=3.3V, RL=4 Ω , and Po=425mW

THD vs Frequency T=25°C,Vdd=2.5V,RL=4 Ω ,and Po=150mW

THD+N vs Frequency T=25°C, Vdd=5V, RL=8 Ω , and Po=500mW

Nsiway

THD+N vs Frequency T=25°C, Vdd=3.3V, RL=8 Ω , and Po=425mW

THD+N vs Frequency T=25°C, Vdd=2.5V, RL=8 Ω , and Po=150mW

THD+N vs Frequency T=25°C, Vdd=3.3V, RL=4 Ω , and Po=425mW

THD+N vs Frequency T=25°C,Vdd=2.5V,RL=4 Ω ,and Po=150mW

S/N vs Frequency T=25°C, Vdd=5V, RL=8 Ω , and Po=500mW

S/N vs Frequency T=25°C, Vdd=3.3V, RL=8 Ω , and Po=425mW

S/N vs Frequency T=25°C,Vdd=2.5V,RL=8 Ω ,and Po=150mW

S/N vs Frequency T=25°C,Vdd=3.3V,RL=4 Ω , and Po=425mW

S/N vs Frequency T=25°C, Vdd=2.5V, RL=4 Ω , and Po=150mW

8.2 电源电压抑制比 (PSRR)

PSRR vs Frequency VDD=3.3V, RL=8Ω, 输入悬空 PSRR vs Frequency VDD=3.3V, RL=8Ω, 输入接10Ω电阻 -100-100 -90 -80 -70 -60 -50 -40 -30 -90 -80 -70 -60 PSRR (dB) PSRR (dB) -50 -40 -30 -20 -10 -20 -10 0 0 10 1,000 100,000 10 1,000 100,000 FREQUENCY (Hz) FREQUENCY (Hz)

8.3 芯片功耗 (Power Dissipation)

8.4 关断滞回 (Shut Down Hysteresis)

8.5 输出功率(Output Power)

THD+N vs OutputPower VDD=2.5V, RL=4 Ω , and f=1KHz

4

SUPPLY VOLTAGE (V)

Output Power vs Supply Voltage, RL=4 Ω

Nsiway_

9 NS8002 应用说明

9.1 芯片基本结构描述

NS8002 是双端输出的音频功率放大器,内部集成两个运算放大器,第一个放大器的增益可以调整反馈电阻来设置,后一个为电压反相跟随,从而形成增益可以配置的差分输出的放大驱动电路,其原理框图为:

图3 NS8002 原理框图

9.2 芯片数字逻辑特性

参数	最小值	典型值	最大值	单位	说明	
电源电压为 5V						
VIH		1.5		V		
VIL		1.3		V		
电源电压为 3V						
VIH		1.3		V		
VIL		1.0		V		

表4 关断信号数字逻辑特性

9.3 外部电阻配置

如应用图示,运算放大器的增益由外部电阻 R_f 、 R_i 决定,其增益为 $A_v=2\times R_f/R_i$,芯片通过 V_{O1} 、 V_{O2} 输出至负载,桥式接法。

桥式接法比单端输出有几个优点:其一是,省却外部隔直滤波电容。单端输出时,如不接隔直电容,则在输出端有一直流电压,导致上电后有直流电流输出,这样即浪费了功耗,也容易损坏音响。其二是,双端输出,实际上是推挽输出,在同样输出电压情况下,驱动功率增加为单端的 4 倍,功率输出大。

9.4 外部电容配置

过大的输入电容,增加成本、增加面积,这对于成本、面积紧张的应用来讲,非常不利。显然,确定使用多大的电容来完成耦合很重要。实际上,在很多应用中,扬声器(Speaker)不能够再现低于 100Hz-150Hz 的低频语音。输入耦合电容 C_i (与 Ri 形成一阶高通)决定了低频响应,计算公式为: $fc=1/(2\,\pi\times Ri\times Ci)$ 。因此采用大的电容并不能够改善系统的性能。除了考虑系统的性能,开关/切换噪声的抑制性能受电容的影响,如果耦合电容大,则反馈网络的延迟大,导致 pop 噪声出现,因此,小的耦合电容可以减少该噪声。

9.5 芯片功耗

功耗对于放大器来讲是一个关键指标之一,差分输出的放大器的最大自功耗为: $P_{DMAX}{=}4\times \left(V_{DD}\right)^{2}/\left(2\times\Pi^{2}\times R_{L}\right)\;.$

必须注意,自功耗是输出功率的函数。在进行电路设计时,不能够使得芯片内部的节温高于正常工作温度,根据芯片的热阻 Θ_{JA} 来设计,可以通过自己散热铜铂来增加散热性能。如果芯片仍然达不到要求,则需要增大负载电阻、降低电源电压或降低环境温度来解决。

9.6 电源旁路

在放大器的应用中,电源的旁路设计很重要,特别是对应用方案的噪声性能及电源电压抑制性能。设计中要求旁路电容尽量靠近芯片、电源脚。典型的电容为 10uF 的电解电容并上 0.1uF 的陶瓷电容。

在 NS8002 应用电路中,另一电容 C_B (接 BYP 管脚)也是非常关键,影响 PSRR、开 关/切换噪声性能。一般选择 0.1uF~1uF 的陶瓷电容。

9.7 掉电模式

为了节电,在不使用放大器时,可以关闭放大器,NS8002 有掉电控制管脚,可以控制放大器是否工作。

该控制管脚的电平必须要接满足接口要求的控制信号,否则芯片可能进入不定状态,而不能够进入掉电模式,其自功耗没有降低,达不到节电目的。

Nsiway 15

10 芯片的封装

图4 SOP8 封装尺寸图

声明:深圳市纳芯威科技有限公司保留在任何时间,并且没有通知的情况下修改产品资料和产品规格的权利,本手册的解释权归深圳市纳芯威科技有限公司所有,并负责最终解释。

Nsiway 16