点集拓扑作业 (9)

Problem 1 设 X 是拓扑空间, 若不存在 X 的无交开集 A, B 满足 $A \cup B = X$, 使得 $x \in A, y \in B$, 则记为 $x \sim y$. (1) 证明 \sim 是等价关系. (2) 称 \sim 等价类为拟分支, 证明 X 的连通分支是某一拟分支的子集.

(1) 自反性, 对称性是显然的. 对于传递性, $\forall x,y,z\in X,x\sim y,y\sim z$. 假设 $\exists A,B$ 是 X 的无交开集, 且 $A\cup B=X$, 使得 $x\in A,z\in B$. 考虑 y, 不妨设 $y\in A$, 则与 $y\sim z$ 矛盾! 于是 $x\sim z$.

(2) $\forall C$ 是 X 的连通分支, $\forall x, y \in C$, 只需证明 $x \sim y$. 设 $Y \subseteq X$ 连通, $x, y \in Y$, 则 $Y \subseteq C$. 假设 $\exists A, B \in X$ 的无交开集, 且 $A \cup B = X$, 使得 $x \in A, y \in B$, 则 $(A \cap Y) \cup (B \cap Y) = Y$, 因此 $A \cup Y, B \cup Y$ 是开集, 进而是 Y 的分割, 这与 Y 的连通性矛盾! 进而命题得证.

Problem 2 令 $K = \{\frac{1}{n} | n \in \mathbb{N}_+\}$, 求 \mathbb{R}^2 的子空间 $A = (K \times [0,1]) \cup \{(0,0),(0,1)\}$ 的分支和拟分支.

对于 $\frac{1}{n} \times [0,1] \subseteq A$, 注意到映射 $f:[0,1] \to \frac{1}{n} \times [0,1]$, $f(x) = (\frac{1}{n},x)$ 是连续的, 区间 [0,1] 连通且 $f([0,1]) = \frac{1}{n} \times [0,1]$, 所以 $\frac{1}{n} \times [0,1]$ 连通, 接下来证明这是极大连通子集, 只需证明 $\frac{1}{n} \times [0,1]$ 既 开又闭. 令 $\varepsilon = \frac{2}{n} - \frac{2}{n+1}$, $U_n = (\frac{1}{n} - \varepsilon, \frac{1}{n} + \varepsilon) \times \mathbb{R}$ 是 \mathbb{R}^2 上的开集, 则 $\frac{1}{n} \times [0,1] = U_n \cap A$ 是 A 上的开集.

又 $A\setminus (\frac{1}{n}\times[0,1])=\bigcup_{m\neq n}(\frac{1}{m}\times[0,1])\cup\{(0,0),(0,1)\}$ 是开集的并, 于是 $\frac{1}{n}\times[0,1]$ 是闭集.

好吧,这一题我解决不了,坐等答案.

Problem 3 设 L 是至少两个元素的全序集, 若 L 在序拓扑下连通, 证明 L 是线性连续统.

 $\forall C \subseteq L, C$ 有上界, 上界集记为 W, 我们证明:C 有上确界. 若否, 则 $\forall s \in W, \exists s' \in W, s' < s$. 记集合 $X = \{x \in L | \exists t \in C, x \leq t\}$. 则 $X \cup W = L, X \cap W = \phi$. 且 $W = \bigcup_{w \in W} (w, +\infty), X = \bigcup_{x \in X} (-\infty, x)$ 均为开集, 这与连通性矛盾! 接着证明, $\forall x, y \in L, \exists z \in L, x < z < y$. 若否, 则 $L = (-\infty, x) \cup (y, +\infty)$ 与连通性矛盾! 命题得证.

Problem 4 用连通性证明 : (0,1) 与 $(0,1) \cup (2,3)$ 不同胚.

反证法, 假设同胚, 则 $\exists f$ 连续双射, $f(0,1) = (0,1) \cup (2,3)$, 然而 (0,1) 连通, $(0,1) \cup (2,3)$ 不连通, 这是不可能的. 命题得证.

Problem 5 证明: 正方体的表面连通.

正方形的表面集合 $W = \{(x, y, z) \in \mathbb{R}^3 | a > 0, x = \pm a \text{ or } y = \pm a \text{ or } z = \pm a \}$. 我们证明 W 道路连通进而连通. $\forall (x_1, y_1, z_1), (x_2, y_2, z_2) \in W$, 容易知道可以化归为三种情况: $x_1 = x_2 = a$, 两点在同一侧面, 此时只需取 f 为两点间的线段即可; $x_1 = a, x_2 \neq \pm a$, 两点在相邻侧面上, 只需要取 f 为经过

公共棱上任一点 P 的折线即可; $x_1 = a, x_2 = -a$, 两点在对面上, 只需取 f 为经过任意其他侧面与二者分别的公共棱上任意点的折线即可.

Problem 6 考虑 \mathbb{R}^2 的子集 $A=\{(x,\sin\frac{1}{x})|x\in(0,1]\}$. 证明: $\overline{A}=A\cup\{(0,y)|y\in[-1,1]\}$. 一般地,设 $f:(0,1]\to[-1,1]$ 连续, $W=\{(x,f(x))|x\in(0,1]\}$,给出使得 $\overline{W}=W\cup\{(0,y)|y\in[-1,1]\}$ 的 f满足的条件.

直接证明: 当 f 满足 $\forall y \in [-1,1], \exists x_n \to 0^+, f(x_n) \to y$ 时成立. 只需证明 $\{(0,y)|y \in [-1,1]\} \subseteq W'$. 这根据 f 的定义是显然的.