MAGNETISMO

Método e recomendacións

• Carga nun campo magnético

- 1. Un protón acelerado por unha diferenza de potencial de 5000 V penetra perpendicularmente nun campo magnético uniforme de 0,32 T. Calcula:
 - a) A velocidade do protón.
 - b) O raio da órbita que describe.
 - c) O número de voltas que dá en 1 segundo.
 - d) Que campo eléctrico \overline{E} hai que aplicar para que a carga non sufra ningunha desviación? Datos: $m_p = 1,67 \cdot 10^{-27}$ kg, $q_p = 1,60 \cdot 10^{-19}$ C (Fai un debuxo do problema)

Problema modelo basado en P.A.U. Xuño 05

Rta.: a) $v = 9.8 \cdot 10^5$ m/s; b) R = 3.2 cm; c) $N = 4.9 \cdot 10^6$ voltas/s; d) $\overline{E} = 3.1 \cdot 10^5$ N/C perpendicular a \overline{B} e \overline{v}

Datos Potencial de aceleración Valor da intensidade do campo magnético Carga do protón Ángulo entre a velocidade do protón e o campo magnético Masa do protón	Cifras significativas: 3 $V = 5000 \text{ V} = 5,00 \cdot 10^3 \text{ V}$ B = 0,320 T $q = 1,60 \cdot 10^{-19} \text{ C}$ $\varphi = 90^\circ$ $m = 1,67 \cdot 10^{-27} \text{ kg}$
Tempo para calcular o número de voltas	t = 1,00 s
Incógnitas	
Velocidade do protón	ν
Radio da traxectoria circular	R
Número de voltas que dá en 1 s	N
Campo eléctrico para que a carga non sufra ningunha desviación	E
Outros símbolos	
Valor da forza magnética sobre o protón	F_{B}
Período do movemento circular	T
Enerxía (cinética) do protón	$E_{ m c}$
Traballo do campo eléctrico	$W(\text{eléctrico}) = q \cdot \Delta V$
Traballo da forza resultante	$W = \Delta E_{\rm c}$
Enerxía cinética	$E_{\rm c} = \frac{1}{2} m \cdot v^2$
Forza $\overline{F}_{\!\scriptscriptstyle E}$ exercida por un campo electrostático \overline{E} sobre unha carga q	$\overline{F}_E = q \cdot \overline{E}$

Solución:

a) Para calcular a velocidade temos que ter en conta que ao acelerar o protón cunha diferenza de potencial (supomos que desde o repouso), este adquire unha enerxía cinética:

$$W(\text{eléctrico}) = q \cdot \Delta V = \Delta E_{\text{c}} = \frac{1}{2} m_{\text{p}} v^2 - \frac{1}{2} m_{\text{p}} v_0^2$$

Se parte do repouso, $v_0 = 0$. A velocidade final é:

$$v = \sqrt{\frac{2q \cdot \Delta V}{m_{\rm p}}} = \sqrt{\frac{2 \cdot 1,60 \cdot 10^{-19} [{\rm C}] \cdot 5,00 \cdot 10^{3} [{\rm V}]}{1,67 \cdot 10^{-27} [{\rm kg}]}} = 9,79 \cdot 10^{5} {\rm m/s}$$

b) Como só actúa a forza magnética:

$$\Sigma \overline{\boldsymbol{F}} = \overline{\boldsymbol{F}}_B$$

O protón describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal $a{\rm N}$,

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Despexando o raio R

$$R = \frac{m \cdot v}{|q| \cdot B \cdot \text{sen } \varphi} = \frac{1,67 \cdot 10^{-27} \text{ [kg]} \cdot 9,79 \cdot 10^{5} \text{ [m/s]}}{1,60 \cdot 10^{-19} \text{ [C]} \cdot 0,320 \text{ [T]} \cdot \text{sen } 90^{\circ}} = 3,19 \cdot 10^{-2} \text{ m} = 3,19 \text{ cm}$$

Análise: o raio ten un valor aceptable, uns centímetros

c) Despexando o período

$$T = \frac{2\pi \cdot R}{v} = \frac{2 \cdot 3,14 \cdot 3,19 \cdot 10^{-2} [m]}{9,79 \cdot 10^{5} [m/s]} = 2,05 \cdot 10^{-7} s$$

O número de voltas en 1 s será:

$$N = 1,00 \text{ [s]} \cdot \frac{1 \text{ volta}}{2,05 \cdot 10^{-7} \text{ [s]}} = 4,88 \cdot 10^6 \text{ voltas}$$

Análise: Se o protón entra nun campo magnético, ao describir media circunferencia sairá del, polo que en realidade só daría media volta nun tempo de $T/2 = 1,03 \cdot 10^{-7}$ s e sairía a unha distancia de 2 R = 6,4 cm do punto de entrada.

d) Tomando o sistema de referencia como o de figura da dereita, cando só actúa a forza magnética a traxectoria do protón é unha circunferencia. Na figura anterior debuxouse o protón movéndose inicialmente no sentido positivo do eixe X e o campo magnético dirixido no sentido negativo do eixe Z.

Cando actúa unha forza eléctrica que anula a magnética,

$$\overline{F}_B + \overline{F}_E = q(\overline{v} \times \overline{B}) + q \cdot \overline{E} = \overline{0}$$

O campo eléctrico debe valer:

$$\overline{E} = -(\overline{v} \times \overline{B}) = -(9.79 \cdot 10^5 \overline{\mathbf{i}} [\text{m/s}] \times 0.320 (-\overline{\mathbf{k}}) [\text{T}]) = -3.13 \cdot 10^5 \overline{\mathbf{j}} \text{ N/C}$$

O campo eléctrico está dirixido no sentido negativo do eixe Y.

En calquera sistema de referencia, a dirección do campo eléctrico debe ser perpendicular tanto á dirección do campo magnético como á dirección da velocidade. O sentido do campo eléctrico ten que ser igual que o da forza eléctrica, porque a carga do protón é positiva, e oposto ao da forza magnética.

A maior parte das respostas pode calcularse coa folla de cálculo <u>FisicaBachGl.ods</u>
Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela

<u>Partícula cargada movéndose nun campo magnético uniforme</u>

del capítulo

Electromagnetismo Lorentz <u>Partícula cargada movéndose nun campo magnético uniforme</u>

Faga clic nas celas de cor salmón e elixa as opcións como se amosa. Escriba os datos nas celdas de cor branca e bordo azul.

Partícula	Carga	<i>q</i> =	1,60218·10 ⁻¹⁹	С
Protón	Masa	<i>m</i> =	$1,67262 \cdot 10^{-27}$	kg
Diferenza de potencial		ΔV =	5000	V
Ángulo entre v e B		φ =	90	o
Raio da circunferencia		R =		
(Campo magnético	<i>B</i> =	0,32	T

Tempo	<i>t</i> =	1	S
(para cal	lcular o nú	mero de voltas)	

Os resultados son:

		Cifras si	gnificativas: 3
a)	Velocidade da partícula	ν =	$9,79 \cdot 10^5 \text{ m/s}$
b)	Raio da traxectoria circular	R =	0,0319 m
c)	Número de voltas	f=	4,88·10 ⁶ vueltas/s

Facendo clic en «Número de voltas» e elixindo «Intensidade de campo eléctrico» vese o resultado do último apartado:

d) Intensidade de campo eléctrico
$$E = 3,13 \cdot 10^5 \text{ N/C}$$
 que anula a desviación

Forza entre condutores

- Dous fíos condutores rectos moi longos e paralelos (A e B) con correntes $I_A = 5$ A e $I_B = 3$ A no mesmo sentido están separados 0,2 m. Calcula:
 - a) O campo magnético no punto medio entre os dous condutores (D)
 - b) A forza exercida sobre un terceiro condutor C paralelo os anteriores, de 0,5 m e con I_C = 2 A e que pasa por D.

Dato: $\mu_0 = 4 \pi \cdot 10^{-7} \text{ S.I.}$ (P.A.U. Set. 06)

Rta.: a) $\overline{B} = 4.0 \cdot 10^{-6}$ T perpendicular aos fios; b) $\overline{F} = 4.0 \cdot 10^{-6}$ N cara a A.

Cifras significativas: 3 **Datos**

Intensidade de corrente polo condutor A $I_{\rm A} = 5,00 {\rm A}$ Intensidade de corrente polo condutor B $I_{\rm B} = 3,00 {\rm A}$ Distancia entre os condutores d = 0.200 m

 $\mu_0 = 4 \pi \cdot 10^{-7} \text{ T} \cdot \text{m} \cdot \text{A}^{-1}$ Permeabilidade magnética do baleiro Intensidade de corrente polo condutor C $I_{\rm C} = 2,00 \text{ A}$

l = 0.500 mLonxitude do condutor C

Incógnitas

Campo magnético no punto D medio entre os dous condutores $\boldsymbol{B}_{\!\!\!\mathrm{D}}$ Forza exercida sobre un terceiro condutor C que pasa por D F_{C}

Lei de Biot e Savart: campo magnético \overline{B} creado a unha distancia r por un con- $B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$ $\overline{\boldsymbol{B}} = \Sigma \overline{\overline{\boldsymbol{B}}}_i$

Principio de superposición: Lei de Laplace: forza magnética que exerce un campo magnético $\overline{\boldsymbol{B}}$ sobre un $\overline{\boldsymbol{F}}_{B} = I(\overline{\boldsymbol{l}} \times \overline{\boldsymbol{B}})$ tramo l de condutor recto polo que circula unha intensidade de corrente I

Solución:

a) O campo magnético creado por un condutor rectilíneo é circular e o seu sentido vén dado pola regra da man dereita: o sentido do campo magnético é o de peche da man dereita cando o polgar apunta no sentido da corrente.

No diagrama debúxanse os campos magnéticos B_A e B_B creados por ambos os condutores no punto medio D.

O campo magnético creado polo condutor A no punto D equidistante de ambos os condutores é:

$$\vec{B}_{A \to D} = \frac{\mu_0 \cdot I_A}{2\pi \cdot r} (-\vec{k}) = \frac{4\pi \cdot 10^{-7} [\text{T·m·A}^{-1}] \cdot 5,00 [A]}{2\pi \cdot 0,100 [m]} (-\vec{k}) = -1,00 \cdot 10^{-5} \vec{k} \text{ T}$$

O campo magnético creado polo condutor B no punto D equidistante de ambos os condutores é:

$$\vec{B}_{\text{B}\to\text{D}} = \frac{\mu_0 \cdot I_{\text{B}}}{2\pi \cdot r} \vec{\mathbf{k}} = \frac{4\pi \cdot 10^{-7} \left[\text{T} \cdot \text{m} \cdot \text{A}^{-1} \right] \cdot 3,00 \left[\text{A} \right]}{2\pi \cdot 0,100 \left[\text{m} \right]} \vec{\mathbf{k}} = 6,00 \cdot 10^{-6} \vec{\mathbf{k}} \text{ T}$$

O campo magnético resultante é a suma vectorial de ambos:

$$\overline{\boldsymbol{B}}_{\mathrm{D}} = \overline{\boldsymbol{B}}_{\mathrm{A} \to \mathrm{D}} + \overline{\boldsymbol{B}}_{\mathrm{B} \to \mathrm{D}} = -1,00 \cdot 10^{-5} \ \overline{\mathbf{k}} \ [\mathrm{T}] + 6,00 \cdot 10^{-6} \ \overline{\mathbf{k}} \ [\mathrm{T}] = -4,0 \cdot 10^{-6} \ \overline{\mathbf{k}} \ \mathrm{T}$$

b) A forza que se exerce sobre un condutor C situado en D é:

$$\overline{F}_B = I(\overline{l} \times \overline{B}) = 2,00 \text{ [A] } (0,500 \overline{j} \text{ [m]} \times (-4,0\cdot10^{-6} \overline{k} \text{ [T]})) = -4,0\cdot10^{-6} \overline{i} \text{ N}$$

Está dirixida cara ao condutor A se o sentido da corrente é o mesmo que o dos outros condutores. Análise: Os condutores que transportan a corrente no mesmo sentido atráense e en sentido oposto repélense. Aínda que se ve atraído por ambos os condutores, o será con maior forza polo que circula maior intensidade, ou sexa o A.

A maior parte das respostas pode calcularse coa folla de cálculo FisicaBachGl.ods
Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela
Campo e forza magnética entre condutores paralelos
do capítulo.

Electromagnetismo Condutores

Campo e forza magnética entre condutores paralelos

Faga clic nas celas de cor salmón e elixa as opcións como se amosa. Escriba os datos nas celdas de cor branca e bordo azul.

ca e bordo azur.				
Intensidade no condutor 1	$I_1 =$	5	A	+
Intensidade no condutor 2	$I_2 =$	3	A	Sentido +
Separación entre condutores	s =	0,2	m	
Distancia del punto P ao condutor 1	$d_1 =$	0,1	m	
Distancia del punto P ao condutor 2	$d_2 =$	0,1	m	
Intensidade no condutor 3	$I_3 =$	2	A	
Lonxitude do condutor 3	$L_3 =$	50	cm	

Os resultados son:

	Campo magnético no punto P		Cifras significativas: 3
	debido ao condutor 1	$B_1 =$	1,00⋅10 ⁻⁵ T
	debido ao condutor 2	$B_2 =$	−6,00·10 ⁻⁶ T
a)	resultante	$B_p =$	4,00·10 ⁻⁶ T
	Forza entre los condutores 1 e 2	$F_{12} =$	$1,50 \cdot 10^{-5} \text{ N/m}$
b)	Forza sobre o cond. 3 no punto P	F =	4,00·10 ⁻⁶ N

- Indica cal é o módulo, dirección e sentido do campo magnético creado por un fío condutor recto
 percorrido por unha corrente e realiza un esquema que ilustre as características de devandito campo.
 Considérese agora que dous fíos condutores rectos e paralelos de gran lonxitude transportan a súa
 respectiva corrente eléctrica.
 - a) Sabendo que a intensidade dunha das correntes é o dobre que a da outra corrente e que, estando separados 10 cm, atráense cunha forza por unidade de lonxitude de 4,8·10⁻⁵ N·m⁻¹, calcula as intensidades que circulan polos fíos.
 - b) Canto vale o campo magnético nun punto situado entre os dous fíos, a 3 cm do que transporta menos corrente?

Dato:
$$\mu_0 = 4 \pi \cdot 10^{-7} \text{ N} \cdot \text{A}^{-2}$$
 (P.A.U. Xuño 15)

Rta.: b) $I_1 = 3.46 \text{ A}$; $I_2 = 6.93 \text{ A}$; c) $B = 3.3 \mu\text{T}$

Datos

Intensidade de corrente polo segundo condutor

Distancia entre os dous condutores

Forza de atracción por unidade de lonxitude

Permeabilidade magnética do baleiro

Incógnitas

Intensidades que circulan polos fíos

Campo magnético a 3 cm do fío con menos corrente

Ecuacións

Lei de Biot e Savart: campo magnético \overline{B} creado a unha distancia r por un condutor recto polo que circula unha intensidade de corrente I $\overline{B} = \sum \overline{B}_i$

Lei de Laplace: Forza que exerce un campo magnético $\overline{\textbf{\textit{B}}}$ sobre un tramo l de

condutor que transporta unha corrente I

Cifras significativas: 3

 $I_2 = 2 I_1$

d = 10.0 cm = 0.100 m

 $F/l = 4.8 \cdot 10^{-5} \text{ N} \cdot \text{m}^{-1}$

 $\mu_0 = 4 \pi \cdot 10^{-7} \text{ N} \cdot \text{A}^{-2}$

 $\overline{F} = I(\overline{l} \times \overline{B})$

Solución:

a) O campo magnético creado por un condutor rectilíneo é circular e o seu sentido vén dado pola regra da man dereita: o sentido do campo magnético é o de peche da man dereita cando o polgar apunta no sentido da corrente.

O valor do campo magnético **B** creado a unha distancia **r** por un condutor recto polo que circula unha intensidade de corrente *I* vén dado pola expresión:

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

b) A forza entre dous condutores rectilíneos paralelos obtense substituíndo na ecuación de Lorentz a expresión da lei de Biot e Savart.

$$F_{1 \to 2} = I_1 \cdot l \cdot B_2 = I_1 \cdot l \cdot \frac{\mu_0 \cdot I_2}{2\pi \cdot r} = \frac{\mu_0 \cdot I_1 \cdot I_2}{2\pi \cdot r} \cdot l$$

Substituíndo os datos, tendo en conta que a forza é por unidade de lonxitude (l = 1 m)

$$4.8 \cdot 10^{-5} \left[\text{N} \cdot \text{m}^{-1} \right] = \frac{4 \pi \cdot 10^{-7} \left[\text{N} \cdot \text{A}^{-2} \right] \cdot I_1 \cdot 2 I_1}{2 \pi \cdot 0.100 \left[\text{m} \right]}$$

$$I_{1} = \sqrt{\frac{4,8 \cdot 10^{-5} \left[\text{N} \cdot \text{m}^{-1}\right] \cdot 2\pi \cdot 0,100 \left[\text{m}\right]}{2 \cdot 4\pi \cdot 10^{-7} \left[\text{N} \cdot \text{A}^{-2}\right]}} = 3,46 \text{ A}$$

c) No diagrama debúxanse os campos magnéticos $\overline{\boldsymbol{B}}_1$ e $\overline{\boldsymbol{B}}_2$ creados por ambos os condutores no punto 3 a 3 cm de I₁.

O campo magnético creado polo condutor 1 a 3 cm de distancia é:

$$B_1 = \frac{\mu_0 \cdot I_1}{2 \pi \cdot r_1} = \frac{4 \pi \cdot 10^{-7} [\text{N} \cdot \text{A}^{-2}] \cdot 3,46 [\text{A}]}{2 \pi \cdot 0,030 \text{ Q/m}} = 2,31 \cdot 10^{-5} \text{ T}$$

O campo magnético creado polo condutor 2 a 7 cm de distancia é:

$$B_2 = \frac{\mu_0 \cdot I_1}{2\pi \cdot r_2} = \frac{4\pi \cdot 10^{-7} \left[\text{N} \cdot \text{A}^{-2} \right] \cdot 6,93 \left[\text{A} \right]}{2\pi \cdot 0,070 \text{ O[m]}} = 1,98 \cdot 10^{-5} \text{ T}$$

Como os campos son de sentidos opostos, o campo magnético resultante no punto que dista 3 cm é

$$B_3 = B_1 - B_2 = 2.31 \cdot 10^{-5} [T] - 1.98 \cdot 10^{-5} [T] = 3.3 \cdot 10^{-6} T$$

A dirección do campo magnético resultante é perpendicular ao plano formado polos dous condutores e o sentido é o do campo magnético do fío máis próximo, (no debuxo, cara ao bordo superior do papel)

Cuestións e problemas das <u>Probas de avaliación do Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice ou OpenOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de <u>traducindote</u>, de Óscar Hermida López.

Procurouse seguir as <u>recomendacións</u> do Centro Español de Metrología (CEM)

Actualizado: 20/01/22

Sumario

							_
M	A١	(4)	ΝF	וידי	18	м	()

Carg	ga nun campo magnético1
1.	Un protón acelerado por unha diferenza de potencial de 5000 V penetra perpendicularmente nun
	campo magnético uniforme de 0,32 T. Calcula:1
	a) A velocidade do protón
	b) O raio da órbita que describe
	c) O número de voltas que dá en 1 segundo
	d) Que campo eléctrico E hai que aplicar para que a carga non sufra ningunha desviación?
Forz	a entre condutores
	Dous fíos condutores rectos moi longos e paralelos (A e B) con correntes IA = 5 A e IB = 3 A no
	mesmo sentido están separados 0,2 m. Calcula:
	a) O campo magnético no punto medio entre os dous condutores (D)
	b) A forza exercida sobre un terceiro condutor C paralelo os anteriores, de 0,5 m e con IC = 2 A e
	que pasa por D
2.	Indica cal é o módulo, dirección e sentido do campo magnético creado por un fío condutor recto
	percorrido por unha corrente e realiza un esquema que ilustre as características de devandito cam-
	po. Considérese agora que dous fíos condutores rectos e paralelos de gran lonxitude transportan a
	súa respectiva corrente eléctrica4
	a) Sabendo que a intensidade dunha das correntes é o dobre que a da outra corrente e que, estando
	separados 10 cm, atráense cunha forza por unidade de lonxitude de 4,8·10 ⁻⁵ N·m ⁻¹ , calcula as in-
	tensidades que circulan polos fíos
	b) Canto vale o campo magnético nun punto situado entre os dous fíos, a 3 cm do que transporta
	menos corrente?

Método e recomendacións