Family list

3 application(s) for: JP2005311325 (A)

Method for forming pattern, thin film transistor, display

1 device, method for manufacturing thereof, and television

apparatus

Inventor: GEN FUJII [JP] Applicant: SEMICONDUCTOR ENERGY LAB

[JP]

EC: H01L29/49B; H01L21/28E; (+3) IPC: G03F9/00; H01L21/208; H01L21/28; (+13)

Publication info: CN1702837 (A) — 2005-11-30

PATTERN FORMING METHOD, FILM TRANSISTOR, DISPLAY,

ITS MANUFACTURING METHOD, AND TELEVISION

Inventor: FUJII ITSUKI Applicant: SEMICONDUCTOR ENERGY LAB
EC: IPC: H05B33/10; H01L21/28; H01L21/288; (+17)

Publication info: JP2005311325 (A) — 2005-11-04

Method for forming pattern, thin film transistor, display

3 device, method for manufacturing thereof, and television

apparatus

Inventor: FUJII GEN [JP] Applicant: SEMICONDUCTOR ENERGY LAB

JP]

EC: H01L29/49B; H01L21/28E; (+3) IPC: G03F9/00; H01L21/208; H01L21/28; (+13)

Publication info: US2005221203 (A1) — 2005-10-06

Data supplied from the esp@cenet database - Worldwide

PATTERN FORMING METHOD, FILM TRANSISTOR, DISPLAY, ITS MANUFACTURING METHOD, AND TELEVISION

Publication number: JP2005311325 (A)

Publication date: 2005-11-04
Inventor(s): FUJII ITSUKI

Applicant(s): SEMICONDUCTOR ENERGY LAB

Classification:

- international: H05B33/10; H01L21/28; H01L21/288; H01L21/3205; H01L21/336; H01L29/786;

H01L51/50; H05B33/14; H05B33/10; H01L21/02; H01L29/66; H01L51/50; H05B33/14; (IPC1-7): H01L21/3205; H01L21/28; H01L21/288; H01L21/336;

H01L29/786; H05B33/10; H05B33/14

- European:

Application number: JP20050081013 20050322

Priority number(s): JP20040088068 20040324; JP20050081013 20050322

Abstract of JP 2005311325 (A)

PROBLEM TO BE SOLVED: To provide a display where an utilization efficiency is elevated and can be manufactured by a simplified process and its manufacturing method; and to provide a technology which can form a pattern of wiring etc. constituting theses display in a desired shape under the good control.; SOLUTION: In the pattern forming method, a mask is formed on a transparent substrate, a first area having a photo catalyst is formed on the substrate and mask, light penetrates the first area to irradiate the photo catalyst, thereby, a part of the first area is modified in a nature, a second area is formed, a composition containing the pattern forming material is discharged on the second area to form a pattern, and the mask blocks the light.; COPYRIGHT: (C)2006, JPO&NCIPI

Data supplied from the esp@cenet database — Worldwide

(12)公 開 特 許 公 報(A)

(11)特許出顧公開番号

特購2005-311325 (P2005-311325A)

(43) 公開日 平成17年11月4日(2005.11.4)

(51) Int.C1. ⁷	FI			テーマコード(参考)					
HO1L 21/3205	HOIL	21/88	В		3 K (007			
HO1L 21/28	HOIL	21/28	Α		4 M	l 04			
HO1L 21/288	H01L	21/288	Z		5F0	33			
HO1L 21/336	HO5B	33/10			5F	110			
HO1L 29/786	HO5B	33/14	Α						
	審査請求 未	請求請求項	の数 18	OL	(全 54	頁)	最終了	に続く	
(21) 出題番号	特題2005-81013 (P2005-81013)	(71) 出題人	0001538	378					
(22) 出願日	平成17年3月22日 (2005.3.22)	株式会社半導体エネルギー研究所							
(31) 優先権主張番号	特願2004-88068 (P2004-88068) 神奈川県厚木市長谷398番地						也		
(32) 優先日	平成16年3月24日 (2004.3.24)	24日 (2004.3.24) (72) 発明者 藤井 厳							
(33) 優先權主張国 日本国(JP) 神奈川県厚木市長谷							地 株	式会社	
		半導体エネルギー研究所内							
		Fターム (参	考) 3KOC	7 AB18	BA06	DB03	FA00	GA00	
			4M10	4 AA09	AA10	BB01	BB02	BB03	
				BB04	BB05	BB06	BB07	BB08	
				BB09	BB14	BB16	BB17	BB18	
				BB30	BB33	BB36	BB40	DD21	
				DD51	DD78	FF13	GG09	GG10	
				GG14					
			最終頁に続く						

(54) [発明の名称] パターン形成方法、薄膜トランジスタ、表示装置及びそれらの作製方法、並びにテレビジョン装置

(57)【要約】

【課題】 本発明は、材料の利用効率を向上させ、かつ、作製工程を簡略化して作製可能な表示装置及びその作製技術を提供することを目的とする。また、それらの表示装置を構成する配線等のパターンを、所望の形状で制御性よく形成できる技術を提供することも目的とする

【解決手段】 本発明のバターン形成方法の一は、透 光性を有する基板上にマスクを形成し、基板及びマスク 上に、光触媒物質を有する第1の領域を形成し、光を基 板を通過させて、光触媒物質に照射して、第1の領域の 一部を改質し、第2の領域を形成し、第2の領域にバタ ーン形成材料を含む組成物を吐出し、パターンを形成し、マスクは光を通過させない。

【選択図】 図1

【特許請求の範囲】

【請求項1】

透光性を有する基板上にマスクを形成し、

前記基板及びマスク上に、光触媒物質を有する第1の領域を形成し、

光を前記基板を通過させて、前記光触媒物質に照射して、前記第1の領域の一部を改 質し、第2の領域を形成し、

前記第2の領域にパターン形成材料を含む組成物を吐出し、パターンを形成し、

前記マスクは前記光を通過させないことを特徴とするパターン形成方法。

【請求項2】

透光性を有する基板上にマスクを形成し、

前記基板及びマスク上に、光触媒物質を有する第1の領域を形成し、

前記光触媒物質上にフッ化炭素鎖を含む物質を形成し、

光を前記基板を通過させて、前記光触媒物質及びフッ化炭素鎖を含む物質に照射して、前記フッ化炭素鎖を含む物質表面の一部を改質し、第2の領域を形成し、

前記第2の領域にパターン形成材料を含む組成物を吐出し、パターンを形成し、

前記マスクは前記光を通過させないことを特徴とするパターン形成方法。

【請求項3】

請求項1または請求項2において、前記光触媒物質として酸化チタンを用いて第1の領域を形成することを特徴とするバターン形成方法。

【請求項4】

請求項1乃至3のいずれか一項において、前記組成物に対するぬれ性が前記第1の領域 より前記第2の領域の方が高まるように、前記フッ化炭素鎖を含む物質表面を改質することを特徴とするパターン形成方法。

【請求項5】

透光性を有する基板上に第1の導電層を形成し、

前記基板及び前記第1の導電層上に絶縁層を形成し、

前記絶縁層上に、光触媒物質を有する第1の領域を形成し、

光を前記基板を通過させて、前記光触媒物質に照射して、前記第1の領域の一部を改 質し、第2の領域を形成し、

前記第2の領域に導電性材料を含む組成物を吐出し、第2の導電層を形成し、

前記第1の導電層は、前記光を通過させないことを特徴とする薄膜トランジスタの作製方法。

【請求項6】

透光性を有する基板上に第1の導電層を形成し、

前記基板及び前記第1の導電層上に絶縁層を形成し、

前記絶縁層上に、光触媒物質を有する第1の領域を形成し、

前記光触媒物質上に、フッ化炭素鎖を含む物質を形成し、

光を前記基板を通過させて、前記光触媒物質及び前記フッ化炭素鎖に照射して、前記フッ化炭素鎖を含む物質表面の一部を改質し、第2の領域を形成し、

前記第2の領域に導電性材料を含む組成物を吐出し、第2の導電層を形成し、

前記第1の導電層は、前記光を通過させないことを特徴とする薄膜トランジスタの作製方法。

【請求項7】

請求項5または請求項6において、前記光触媒物質として酸化チタンを用いて第1の領域を形成することを特徴とする薄膜トランジスタの作製方法。

【請求項8】

請求項5乃至7のいずれか一項において、前記組成物に対するぬれ性が前記第1の領域より前記第2の領域の方が高まるように、前記前記フッ化炭素鎖を含む物質表面を改質することを特徴とする薄膜トランジスタの作製方法。

【請求項9】

請求項5乃至8のいずれか一項において、前記第1の導電層をゲート電極層として、 第2の導電層をソース電極層及びドレイン電極層として形成することを特徴とする表示装 置の作製方法。

【請求項10】

透光性を有する基板上に設けられた第1の導電層を有し、

前記基板及び前記第1の導電層上に絶縁層を有し、

前記絶縁層上に光触媒物質を有し、

前記光触媒物質上にフッ化炭素鎖を含む物質を有し、

前記フッ化炭素鎖を含む物質表面は第1の領域及び第2の領域を有し、

前記第2の領域上に、第2の導電層を有し、

前記第1の領域に含まれる前記フッ化炭素鎖の濃度は、前記第2の領域に含まれる前記フッ化炭素鎖の濃度より高いことを特徴とする薄膜トランジスタ。

【請求項11】

透光性を有する基板上に設けられた第1の導電層を有し、

前記基板及び前記第1の導電層上に絶縁層を有し、

前記絶縁層上に光触媒物質を有し、

前記光触媒物質上にフッ化炭素鎖を含む物質を有し、

前記フッ化炭素鎖を含む物質表面は第1の領域及び第2の領域を有し、

前記第2の領域上に、第2の導電層を有し、

前記フッ化炭素鎖を含む物質及び前記第2の導電層上に半導体層を有し、

前記第1の領域に含まれる前記フッ化炭素鎖の濃度は、前記第2の領域に含まれる前記 フッ化炭素鎖の濃度より高いことを特徴とする薄膜トランジスタ。

【請求項12】

請求項10または請求項11において、前記光触媒物質は酸化チタンであることを特徴とする薄膜トランジスタ。

【請求項13】

透光性を有する基板上に設けられたゲート電極層を有し、

前記基板及び前記ゲート電極層上に絶縁層を有し、

前記絶縁層上に、光触媒物質を有し、

前記光触媒物質上にフッ化炭素鎖を含む物質を有し、

前記フッ化炭素鎖を含む物質表面は第1の領域及び第2の領域を有し、

前記第2の領域上に、ソース電極層及びドレイン電極層を有し、

前記第1の領域に含まれる前記フッ化炭素鎖の濃度は、前記第2の領域に含まれる前記フッ化炭素鎖の濃度より高いことを特徴とする表示装置。

【請求項14】

透光性を有する基板上に設けられたゲート電極層を有し、

前記基板及び前記ゲート電極層上に絶縁層を有し、

前記絶縁層上に、光触媒物質を有し、

前記光触媒物質上にフッ化炭素鎖を含む物質を有し、

前記フッ化炭素鎖を含む物質表面は第1の領域及び第2の領域を有し、

前記第2の領域上に、ソース電極層及びドレイン電極層を有し、

前記フッ化炭素鎖を含む物質、前記ソース電極層及び前記ドレイン電極層上に半導体層を有し、

前記第1の領域に含まれる前記フッ化炭素鎖の濃度は、前記第2の領域に含まれる前記フッ化炭素鎖の濃度より高いことを特徴とする表示装置。

【請求項15】

請求項13または請求項14において、前記光触媒物質は酸化チタンであることを特徴とする表示装置。

【請求項16】

透光性を有する基板上に設けられたゲート電極層を有し、

前記基板及び前記ゲート電極層上に絶縁層を有し、

前記絶縁層上に、光触媒物質を有し、

前記光触媒物質上にフッ化炭素鎖を含む物質を有し、

前記フッ化炭素鎖を含む物質表面は第1の領域及び第2の領域を有し、

前記第2の領域上に、ソース電極層及びドレイン電極層を有する表示装置により表示画面を構成され、

前記第1の領域に含まれる前記フッ化炭素鎖の濃度は、前記第2の領域に含まれる前記フッ化炭素鎖の濃度より高いことを特徴とするテレビジョン装置。

【請求項17】

透光性を有する基板上に設けられたゲート電極層を有し、

前記基板及び前記ゲート電極層上に絶縁層を有し、

前記絶縁層上に、光触媒物質を有し、

前記光触媒物質上にフッ化炭素鎖を含む物質を有し、

前記フッ化炭素鎖を含む物質表面は第1の領域及び第2の領域を有し、

前記第2の領域上に、ソース電極層及びドレイン電極層を有し、

前記フッ化炭素鎮を含む物質、前記ソース電極層及び前記ドレイン電極層上に半導体層を有する表示装置により表示画面を構成され、

前記第1の領域に含まれる前記フッ化炭素鎖の濃度は、前記第2の領域に含まれる前記フッ化炭素鎖の濃度より高いことを特徴とするテレビジョン装置。

【請求項18】

請求項16または請求項17において、前記光触媒物質は酸化チタンであることを特徴 とするテレビジョン装置。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、パターン形成方法、薄膜トランジスタ及びそれらの作製方法、表示装置及び その作製方法、それを用いたテレビジョン装置に関する。

【背景技術】

[0002]

薄膜トランジスタ(以下、「TFT」という。)及びそれを用いた電子回路は、半導体、 絶縁体及び導電体などの各種薄膜を基板上に積層し、適宜フォトリソグラフィ技術により 所定のパターンを形成して製造されている。フォトリソグラフィ技術とは、フォトマス クと呼ばれる透明な平板面上に光を通さない材料で形成した回路等のパターンを、光を利 用して目的とする基板上に転写する技術であり、半導体集積回路等の製造工程において広 く用いられている。

[0003]

従来のフォトリソグラフィ技術を用いた製造工程では、フォトレジストと呼ばれる感光性の有機樹脂材料を用いて形成されるマスクパターンの取り扱いだけでも、露光、現像、焼成、剥離といった多段階の工程が必要になる。従って、フォトリソグラフィ工程の回数が増える程、製造コストは必然的に上がってしまうことになる。このような問題点を改善するために、フォトリソグラフィ工程を削減してTFTを製造することが試みられている(例えば、特許文献 1 参照。)。

[0004]

しかし、上記特許文献1に記載された技術は、TFTの製造工程で複数回行われるフォトリソグラフィ工程の一部を印刷法で置き替えただけのものであり、抜本的に工程数の削減に寄与できるものではない。また、フォトリソグラフィ技術においてマスクパターンを転写するために用いる露光装置は、等倍投影露光若しくは縮小投影露光により、数ミクロンから1ミクロン以下のパターンを転写するものであり、原理的にみて、一辺が1メートルを越えるような大面積基板を一括で露光することは技術的に困難である。

【特許文献1】特開平11-251259号公報

【発明の開示】

【発明が解決しようとする課題】

[0005]

本発明は、TFT及びそれを用いる電子回路並びにTFTによって形成される表示装置の製造工程においてフォトリソグラフィ工程の回数を削減することを目的とする。またより製造工程を簡略化する。そして一辺が1メートルを越えるような大面積の基板にも、低いコストで歩留まり良く製造することができる技術を提供することを目的とする。

[0006]

また、本発明は、それらの表示装置を構成する配線等のパターンを、所望の形状で制御性よく形成できる技術を提供することも目的とする。

【課題を解決するための手段】

[0007]

本発明は、光触媒機能を有する物質(以下光触媒物質ともいう)の光活性によるエネルギーによって、処理物表面を改質するものである。処理物は、透光性を有する物質上に形成され、光は透光性を有する物質側から、透光性を有する物質を通過して光触媒物質に照射される。その際、透光性物質と処理物の間にマスクを形成することによって、非照射領域を形成し、改質する領域を正確に制御することができる。そしてその改質された表面上に、パターン形成材料を吐出(噴出なども含む)などによって、付着させ、パターンを形成する。光触媒物質の光吸収、エネルギー放射作用によって、光による処理効率を向上させることができる。

[8000]

本発明の表示装置には、エレクトロルミネセンス(以下「EL」ともいう。)と呼ばれる発光を発現する有機物、若しくは有機物と無機物の混合物を含む媒体を、電極間に介在させた発光素子とTFTとが接続された発光表示装置や、液晶材料を有する液晶素子を表示素子として用いる液晶表示装置などがある。

[0009]

本発明のパターン形成方法は、透光性を有する基板上にマスクを形成し、基板及びマスク上に、光触媒物質を有する第1の領域を形成し、光を基板を通過させて、光触媒物質に照射して、第1の領域の一部を改質し、第2の領域を形成し、第2の領域にパターン形成材料を含む組成物を吐出し、パターンを形成し、マスクは光を通過させないことを特徴とする。

[0010]

本発明のパターン形成方法は、透光性を有する基板上にマスクを形成し、基板及びマスク上に、光触媒物質を有する第1の領域を形成し、光触媒物質上にフッ化炭素鎖を含む物質を形成し、光を基板を通過させて、光触媒物質及びフッ化炭素鎖を含む物質に照射して、フッ化炭素鎖を含む物質表面の一部を改質し、第2の領域を形成し、第2の領域にパターン形成材料を含む組成物を吐出し、パターンを形成し、マスクは光を通過させないことを特徴とする。

[0011]

本発明の薄膜トランジスタの作製方法は、透光性を有する基板上に第1の導電層を形成し、基板及び第1の導電層上に絶縁層を形成し、絶縁層上に、光触媒物質を有する第1の領域を形成し、光を基板を通過させて、光触媒物質に照射して、第1の領域の一部を改質し、第2の領域を形成し、第2の領域に導電性材料を含む組成物を吐出し、第2の導電層を形成し、第1の導電層は、光を通過させないことを特徴とする。

[0012]

本発明の薄膜トランジスタの作製方法は、透光性を有する基板上に第1の導電層を形成し、基板及び第1の導電層上に絶縁層を形成し、絶縁層上に、光触媒物質を有する第1の領域を形成し、光触媒物質上に、フッ化炭素鎖を有する物質を形成し、光を基板を通過させて、光触媒物質及びフッ化炭素鎖に照射して、フッ化炭素鎖を有する物質表面の一部を改質し、第2の領域を形成し、第2の領域に導電性材料を含む組成物を吐出し、第2の導

電層を形成し、第1の導電層は、光を通過させないことを特徴とする。 【0013】

上記構成において、第1の導電層をゲート電極層として形成し、第2の導電層をソース 電極層及びドレイン電極層として表示装置を作製することもできる。また、組成物に対す るぬれ性が第1の領域より第2の領域の方が高まるように、物質表面を改質することもで きる。また、上記構成において、光触媒物質として、光触媒機能を有する酸化チタンを用 いることができる。

[0014]

本発明の薄膜トランジスタは透光性を有する基板上に設けられた第1の導電層を有し、 基板及び第1の導電層上に絶縁層を有し、絶縁層上に光触媒物質を有し、光触媒物質上に フッ化炭素鎖を含む物質を有し、フッ化炭素鎖を含む物質表面は第1の領域及び第2の領 域を有し、第2の領域上に、第2の導電層を有し、第1の領域に含まれるフッ化炭素鎖の 濃度は、第2の領域に含まれるフッ化炭素鎖の濃度より高いことを特徴とする。

[0015]

本発明の薄膜トランジスタは、透光性を有する基板上に設けられた第1の導電層を有し、基板及び第1の導電層上に絶縁層を有し、絶縁層上に光触媒物質を有し、光触媒物質上にフッ化炭素鎖を含む物質を有し、光触媒物質上にフッ化炭素鎖を含む物質を有し、カッ化炭素鎖を含む物質及び第2の領域を有し、第2の領域上に、第2の導電層を有し、フッ化炭素鎖を含む物質及び第2の導電層上に半導体層を有し、第1の領域に含まれるフッ化炭素鎖の濃度は、第2の領域に含まれるフッ化炭素鎖の濃度より高いことを特徴とする。

[0016]

本発明の表示装置は、透光性を有する基板上に設けられたゲート電極層を有し、基板及びゲート電極層上に純緑層を有し、純緑層上に、光触媒物質を有し、光触媒物質上にフッ化炭素鎖を含む物質を有し、フッ化炭素鎖を含む物質表面は第1の領域及び第2の領域を有し、第2の領域上に、ソース電極層及びドレイン電極層を有し、第1の領域に含まれるフッ化炭素鎖の濃度は、第2の領域に含まれるフッ化炭素鎖の濃度より高いことを特徴とする。

[0017]

本発明の表示装置は、透光性を有する基板上に設けられたゲート電極層を有し、基板及びゲート電極層上に絶縁層を有し、絶縁層上に、光触媒物質を有し、光触媒物質上にフッ化炭素鎖を含む物質を有し、フッ化炭素鎖を含む物質表面は第1の領域及び第2の領域を有し、第2の領域上に、ソース電極層及びドレイン電極層を有し、フッ化炭素鎖を含む物質、ソース電極層及びドレイン電極層上に半導体層を有し、第1の領域に含まれるフッ化炭素鎖の濃度は、第2の領域に含まれるフッ化炭素鎖の濃度より高いことを特徴とする。【0018】

本発明のテレビジョン装置は、透光性を有する基板上に設けられたゲート電極層を有し、基板及びゲート電極層上に絶縁層を有し、絶縁層上に、光触媒物質を有し、光触媒物質上にフッ化炭素鎖を含む物質を有し、光触媒物質上にフッ化炭素鎖を含む物質を有し、第2の領域上に、ソース電極層及びドレイン電極層を有する表示装置により表示画面を構成され、第1の領域に含まれるフッ化炭素鎖の濃度は、第2の領域に含まれるフッ化炭素鎖の濃度より高いことを特徴とする。

[0019]

本発明のテレビジョン装置は、透光性を有する基板上に設けられたゲート電極層を有し、基板及びゲート電極層上に絶縁層を有し、絶縁層上に、光触媒物質を有し、光触媒物質上にフッ化炭素鎖を含む物質を有し、フッ化炭素鎖を含む物質表面は第1の領域及び第2の領域を有し、第2の領域上に、ソース電極層及びドレイン電極層を有し、フッ化炭素鎖を含む物質、ソース電極層及びドレイン電極層上に半導体層を有する表示装置により表示画面を構成され、第1の領域に含まれるフッ化炭素鎖の濃度は、第2の領域に含まれるフッ化炭素鎖の濃度より高いことを特徴とする。

【発明の効果】

[0020]

本発明により、所望なパターンを制御性よく形成できる。また、材料のロスが少なく、 コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製する ことができる。

【発明を実施するための最良の形態】

[0021]

本発明の実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。

[0022]

(実施の形態1)

本発明の実施の形態について、図1を用いて説明する。

[0023]

本発明は、配線層若しくは電極を形成する導電層や、所定のパターンを形成するためのマスク層など表示パネルを作製するために必要なパターンのうち、少なくとも一つ若しくはそれ以上を、選択的にパターンを形成可能な方法により形成して、表示装置を作製することを特徴とするものである。本発明において、パターンとは、薄膜トランジスタや表示装置を構成する、ゲート電極層、ソース電極層、ドレイン電極層などの導電層、半導体層、マスク層、絶縁層などをいい、所定の形状を有して形成される全ての構成要素を含む。選択的にパターンを形成可能な方法として、導電層や絶縁層など形成し、特定の目的に調合された組成物の液滴を選択的に吐出(噴出)して所定のパターンを形成することが可能な、液滴吐出(噴出)法(その方式によっては、インクジェット法とも呼ばれる。)を用いる。また、パターンが転写、または描写できる方法、例えば各種印刷法(スクリーン(孔版)印刷、オフセット(平版)印刷、凸版印刷やグラビア(凹版)印刷などパターンが形成される方法)なども用いることができる。

[0024]

本実施の形態は、流動体であるパターン形成材料を含む組成物を、液滴として吐出(噴出)し、パターンを形成する方法を用いている。パターンの被形成領域に、パターン形成材料を含む液滴を吐出し、焼成、乾燥等を行って固定化しパターンを形成する。本発明では、パターン形成領域に前処理を行う。

[0025]

パターンの形成に用いる液滴吐出装置の一態様を図28に示す。液滴吐出手段1403の個々のヘッド1405、ヘッド1412は制御手段1407に接続され、それがコンピュータ1410で制御することにより予めプログラミングされたパターンを描画することができる。描画するタイミングは、例えば、基板1400上に形成されたマーカー1411を基準に行えば良い。或いは、基板1400の縁を基準にして基準点を確定させても良い。これを撮像手段1404で検出し、画像処理手段1409にてデジタル信号に変換したものをコンピュータ1410で認識して制物信号を発生させて制御手段1407に送る。撮像手段1404としては、電荷結合素子(CCD)や相補型金属酸化物半導体(CMOS)を利用したイメージセンサなどを用いることができる。勿論、基板1400上に形成されるべきパターンの情報は記憶媒体1408に格納されたものであり、この情報を基にして制御手段1407に制御信号を送り、液滴吐出手段1403の個々のヘッド1405、ヘッド1412を個別に制御することができる。吐出する材料は、材料供給源1413、材料供給源1414より配管を通してヘッド1405、ヘッド1412にそれぞれ供給される。

[0026]

ヘッド1405内部は、点線1406が示すように液状の材料を充填する空間と、吐

出口であるノズルを有する構造となっている。図示しないが、ヘッド1412もヘッド1405と同様な内部構造を有する。ヘッド1405とヘッド1412のノズルのサイズは異なっており、異なる材料を異なる幅で同時に描画することができる。一つのヘッドで、導電性材料や有機、無機材料などをそれぞれ吐出し、描画することができ、層間膜のような広領域に描画する場合は、スループットを向上させるため複数のノズルより同材料を同時に吐出し、描画することができる。大型基板を用いる場合、ヘッド1405、ヘッド1412は基板上を、矢印の方向に自在に走査し、描画する領域を自由に設定することができ、同じパターンを一枚の基板に複数描画することができる。

[0027]

液滴吐出法を用いて導電層などのパターン形成方法では、粒子状に加工されたパターン形成材料を吐出し、焼成によって融合や融着接合させ固化することでパターンを形成する。よって、そのパターンは、スパッタ法などで形成したパターンが、多くは柱状構造を示すのに対し、多くの粒界を有する多結晶状態を示すことが多い。

[0028]

本発明では、図1で示すようにパターンの被形成領域を含む近傍に、前処理として、 光による照射処理を行い、選択的に表面を改質する処理を行う。そして改質された表面に パターン形成材料を含む組成物を付着させ、パターンを形成する。基板裏面からの露光処 理により、自己整合的(セルフアライン的)にパターンを形成することができる。よって 本発明を用いると、自己整合的に薄膜トランジスタを形成することができる。

[0029]

改質処理に用いる光は、特に限定されず、赤外光、可視光、または紫外光のいずれか一またはそれらの組み合わせを用いることが可能である。例えば、紫外線ランプ、ブラックライト、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、または高圧水銀ランプから射出された光を用いてもよい。その場合、ランプ光源は、必要な時間点灯させて照射してもよいし、複数回照射してもよい。

[0030]

また、改質処理に用いる光としてレーザ光を用いてもよく、レーザ発振器としては、紫外光、可視光、又は赤外光を発振することが可能なレーザ発振器を用いることができる。例えばレーザ発振器として、KrF、ArF、KrF、XeCl、Xe等のエキシマレーザ発振器、He、He-Cd、Ar、He-Ne、HF等の気体レーザ発振器、YAG、GdVO4、YVO4、YLF、YAlO3などの結晶にCr、Nd、Er、Ho、Ce、Co、Ti又はTmをドープした結晶を使った固体レーザ発振器、GaN、GaAs、GaAlAs、InGaAsP等の半導体レーザ発振器を用いることができる。なお、固体レーザ発振器においては、基本波の第2高調波~第3高調波を適用するのが好ましい。レーザ発振器から射出されるレーザ光の形状やレーザ光の進路を調整するため、シャッター、ミラー又はハーフミラー等の反射体、シリンドリカルレンズを凸レンズなどによって構成される光学系が設置されていてもよい。

【0031】

なお、照射方法は、基板を移動して選択的に光を照射してもよいし、光をX-Y軸方向に走査して光を照射することができる。この場合、光学系にポリゴンミラーやガルバノミラーを用いることが好ましい。

[0032]

本実施の形態では、基板裏面から光を照射し、その照射領域のぬれ性を変化させるように改質する。よって、パターンの被形成領域を含む近傍に、パターン形成材料を含む組成物に対するぬれ性の異なる領域が形成される。このぬれ性の違いは両領域の相対的な関係であり、パターンの形成領域と、その周囲の非形成領域とでパターン形成材料を含む組成物に対するぬれ性の程度に差を有していればよい。また、ぬれ性の異なる領域とは、パターン形成材料を含む組成物の接触角が異なることであり、パターン形成材料を含む組成物の接触角が異なることであり、パターン形成材料を含む組成物の接触角が大きい領域はよりぬれ性が低い領域(以下、低ぬれ性領域ともいう)となり、

接触角が小さい領域はぬれ性の高い領域(以下、高ぬれ性領域ともいう)となる。接触角が大きいと、流動性を有する液状の組成物は、領域表面上で広がらず、組成物をはじくので、表面をぬらさないが、接触角が小さいと、表面上で流動性を有する組成物は広がり、よく表面をぬらすからである。よって、ぬれ性が異なる領域は、表面エネルギーも異なる。ぬれ性が低い領域における表面の、表面エネルギーは小さく、ぬれ性の高い領域表面における表面エネルギーは大きい。本発明においては、このぬれ性の異なる領域の接触角の差は30度以上、好ましくは40度以上であるとよい。

本実施の形態では、ぬれ性の異なる領域を形成するために、光による照射処理を行う。 被形成領域を含む近傍にわたって物質を形成し、光により選択的にぬれ性を高める処理、 ぬれ性を低める処理を行うのである。本実施の形態では、バターンの被形成領域を含む近 傍にぬれ性が低い物質を形成し、ぬれ性が低い物質が分解する程度の光を照射し、処理領 域のぬれ性が低い物質を分解、除去することにより、処理領域のぬれ性を向上させ、高ぬ れ性領域を形成する。よって高ぬれ性領域より、低ぬれ性領域に含まれるぬれ性が低い物 質の濃度(ぬれ性を低める効果をもつフッ化炭素鎖の濃度、量など)は低くなる。ぬれ性

が低い物質とは、ぬれ性を低める効果を有する材料を含む物質であればよく、このぬれ性を低める材料を光照射処理によって分解、破壊し、ぬれ性を低める効果を消滅させるのである。

[0034]

[0033]

本発明においては、ぬれ性の異なる領域を正確に制御性よく形成するために、処理物への光の照射を、処理物の形成されている物質(基板)を通過して行う。本実施の形態では、透光性を有する基板上に、あらかじめマスクを形成し、その上にぬれ性が低い物質を形成する。そして透光性を有する基板側から、光を照射することによって、マスク形成領域以外のぬれ性が低い物質中に含まれるぬれ性の低める材料を分解する。マスク上に形成されているぬれ性が低い物質には光が照射されないため、ぬれ性の異なる領域を制御性よく形成することができる。光の波長としては、使用するぬれ性が低い物質が分解、除去される波長である必要がある。しかし物質によっては、紫外光など、200 nm以下のエネルギーの高い光が必要となり、その選択の幅は狭くなる。さらに、基板となる透光性を有する物質が吸収する波長であると、光は透光性を有する基板中で吸収され、処理物に光が照射されず、表面を改質処理することができない。また十分な処理を行うために多数回にわたる照射が必要となったり、装置や工程にかかるコストや時間も増加し、生産性が低下してしまう。

[0035]

よって、本発明では、光照射による処理効率を向上させるため、処理される物質に接して光触媒物質を形成する。光触媒物質は、光を吸収し活性化する。その活性エネルギーは、周囲の物質に作用し、結果として物質の物性を変化させ、改質する。本発明を用いると、光触媒物質によって改質処理能力が向上するので、光の波長の選択幅が広がる。よって、処理物が形成される物質があまり吸収しない領域の波長を選択することができ、制御性の良い表面改質処理をするための光照射をすることができる。また光の照射効率も向上できるので、光自体が低エネルギーであっても十分に処理を行うことができる。よって、装置や工程が簡略化するので、コストや時間が軽減し、生産性も向上させることができる。【0036】

本実施の形態では、制御性よく配線パターンを形成する例を示す。まず透光性を有する基板50を用い、基板50上にマスク70を形成する(図1(A)参照。)。マスク70は、照射される光を遮断するマスクとして機能させるため、照射する光が透過しにくい材料を用いる必要がある。本実施の形態では、マスク70に絶縁性材料を用いて、その上に形成されるパターン75a、パターン75bに導電性材料を用いる。この場合、マスク70は、パターン75a、パターン75bよりなる配線を電気的に絶縁する絶縁物となる。マスク70、パターン75a及びパターン75bに導電性材料を用いる場合、マスク70とパターン75a、パターン75bの間に絶縁層を形成し、絶縁層上に本発明の前処理

を行えば、配線の積層構造を形成することもできる。

[0037]

[0038]

次に、光触媒物質80を形成する。光触媒物質は、酸化チタン(TiO_x)、チタン酸ストロンチウム($SrTiO_3$)、セレン化カドミウム(CdSe)、タンタル酸カリウム($KTaO_3$)、硫化カドミウム(CdS)、酸化ジルコニウム(ZrO_2)、酸化ニオブ(Nb_2O_5)、酸化亜鉛(ZnO)、酸化鉄(Fe_2O_3)、酸化タングステン(WO_3)等が好ましい。これら光触媒物質に紫外光領域の光(波長400 nm以下、好ましくは380 nm以下)を照射し、光触媒活性を生じさせることができる。

光触媒物質は、ゾルゲル法のディップコーティング法、スピンコーティング法、液滴吐出法、イオンプレーティング法、イオンビーム法、CVD法、スパッタリング法、RFマグネトロンスパッタリング法、プラズマ溶射法、プラズマスプレー法、又は陽極酸化法により形成することができる。また物質は、その形成方法により膜としての連続性を有さなくても良い。複数の金属を含む酸化物半導体からなる光触媒物質の場合、構成元素の塩を混合、融解して形成することができる。ディップコーティング法、スピンコーティング法等の塗布法により光触媒物質を形成する場合、溶媒を除去する必要があるとき、焼成したり、乾燥すればよい。具体的には、所定の温度(例えば、300℃以上)で加熱すればよく、好ましくは酸素を有する雰囲気で行う。

[0039]

この加熱処理により、光触媒物質は所定の結晶構造を有することができる。例えば、アナターゼ型やルチルーアナターゼ混合型を有する。低温相ではアナターゼ型が優先的に形成される。そのため光触媒物質が所定の結晶構造を有していない場合も加熱すればよい。また塗布法により形成する場合、所定の膜厚を得るために複数回にわたって光触媒物質を形成することもできる。

[0040]

更に光触媒物質へ遷移金属(Pd、Pt、Cr、Ni、V、Mn、Fe、Ce、Mo、W等)をドーピングすることにより、光触媒活性を向上させたり、可視光領域(波長400 nm~800 nm)の光により光触媒活性を起こすことができる。遷移金属は、広いバンドギャップを持つ活性な光触媒の禁制帯内に新しい準位を形成し、可視光領域まで光の吸収範囲を拡大しうるからである。例えば、CrやNiのアクセプター型、VやMnのドナー型、Fe等の両性型、その他Ce、Mo、W等をドーピングすることができる。このように光の波長は光触媒物質によって決定することができるため、光照射とは光触媒物質の光触媒活性化させる波長の光を照射することを指す。

[0041]

また光触媒物質を真空中又は水素環流中で加熱し還元させると、結晶中に酸素欠陥が発生する。このように遷移元素をドーピングしなくても、酸素欠陥は電子ドナーと同等の役割を果たす。特に、ゾルゲル法により形成する場合、酸素欠陥が最初から存在するため、還元しなくともよい。また N_2 等のガスをドープすることにより、酸素欠陥を形成することができる。

[0042]

本実施の形態では、光触媒物質として酸化チタン層を形成する。酸化チタン層は、Ti Cl₃溶液をスピンコート法により、塗布し、酸素雰囲気下で焼成して形成する。

[0043]

本実施の形態では、光触媒物質80上にぬれ性が低い物質81を形成する。本実施の形態では、ぬれ性が低い物質を液滴吐出法により選択的に吐出して形成するため、溶媒等に混入し、液状としている。しかし、被形成領域を含む近傍に物質が付着すればよいので、その形成方法は本実施の形態に限定されない。例えば、ゾルゲル法のディップコーティング法、スピンコーティング法、液滴吐出法、イオンプレーティング法、イオンビーム法、CVD法、スパッタリング法、RFマグネトロンスパッタリング法、プラズマ溶射法、プラズマスプレー法、により形成することができる。ディップコーティング法、スピンコーテ

ィング法等の塗布法により形成する場合、溶媒を除去する必要があるとき、焼成したり、 乾燥すればよい。液滴吐出法など直接パターンを被形成領域を含む近傍に形成する方法を 用いると、材料の利用効率が向上するため低コスト化できる。

[0044]

図1(B)のようにぬれ性が低い物質を有する組成物は、吐出装置84より液滴85として光触媒物質80上に吐出され、ぬれ性が低い物質81が形成される。 【0045】

光触媒物質80に、基板50を通過して光源86より光89を照射する(図1(C)参照。)。光触媒物質は光触媒機能を有するので、照射された光によって活性化し、そのエネルギーによって、接して形成されているぬれ性が低い物質81は分解、破壊され、処理領域のぬれ性が高まる。光89は、マスク70の形成領域においてはマスク70によって遮断されるので、マスク70上のぬれ性が低い物質表面は処理されない。よって、ぬれ性の高い領域である高ぬれ性領域72a、高ぬれ性領域72bが形成され、被形成領域を含む近傍にぬれ性が異なる領域が形成される。よって非処理領域は、相対的にぬれ性が低くなり、低ぬれ性領域71となる(図1(F)参照。)。

[0046]

その後、被形成領域である高ぬれ性領域72a、高ぬれ性領域72bに、液滴吐出装置73のノズルより、パターン形成材料を含む液滴74を吐出する。吐出された液滴74は、低ぬれ性領域71には付着せず、低ぬれ性領域71よりぬれ性が高い高ぬれ性領域72a、高ぬれ性領域72bに形成される(図2(B)参照。)。液滴が吐出されるノズルの吐出口の大きさや、吐出口の走査能力などによってパターン材料の吐出方法が、精密に制御できない場合であっても、ぬれ性を高める処理をその被形成領域に施すことによって、液滴は、被形成領域のみに付着し、所望のパターン75a、パターン75bが形成される(図2(C)参照。)。被形成領域とその周囲の領域とで、ぬれ性が異なるので、液滴は低ぬれ性領域でははじかれ、よりぬれ性の高い形成領域に留まるからである。つまり、低ぬれ性領域によって液滴ははじかれるため、高ぬれ性領域と低ぬれ性領域の境界が隔壁(土手)があるかのような機能を果たす。よって、流動性を有するパターン形成材料を含む組成物でも高ぬれ性領域に留まるので、所望の形状にパターンを形成することができる

[0047]

本発明を用いると、例えば電極層など、微細なパターンを形成したい場合、液滴の吐出口が多少大きくても、液滴が形成領域上で広がらず、形成領域のみに導電層を形成することができ、非形成領域へ誤って形成することによるショート等の不良を防止することができる。その配線の膜厚制御も可能になる。本実施の形態のように、基板側からの光照射により物質表面の改質を行うと、制御性よくパターンを形成できるだけでなく、大面積を処理することができるため、生産性が向上する。また、液滴吐出法を組み合わせることで、スピンコート法などによる全面塗布形成に比べ、材料のロスが防げ、コストダウンが可能になる。本発明により、配線等が、小型化、薄膜化により密集、複雑に配置される設計であっても、制御性よく形成することができる。

[0048]

本実施の形態では、前処理として、光触媒物質及びぬれ性が低い物質を形成したが、 その形成条件によっては膜厚が極薄であり、膜として形態を保っていなくてもよい。 【0049】

また、ぬれ性を高めるという処理は、その領域上に吐出される液滴を留めておく力 (密着力、固着力ともいう) を周囲の領域より高い状態にすることであり、光の照射処理により、領域を改質し、液滴との密着性を高めることとも同意味である。また、そのぬれ性は液滴に接し、留めておく表面だけでもよく、必ずしも膜厚方向全体にわたって同様の性質を有する必要はない。

[0050]

パターン形成後に前処理として形成した光触媒物質及びぬれ性を変化させる物質を残

してもよいし、パターンを形成後に、不必要な部分は除去してしまってもよい。除去は、パターンをマスクとして用いることもでき、酸素等によるアッシング、エッチング、プラズマ処理などにより除去すればよい。

【0051】

低めれ性領域を形成する溶液の組成物の一例としては、 $R_n - Si - X_{(4-n)}$ (n=1、2、3)の化学式で表されるシランカップリング剤を用いる。ここで、Rは、アルキル基などの比較的不活性な基を含む物である。また、Xはハロゲン、メトキシ基、エトキシ基又はアセトキシ基など、基質表面の水酸基あるいは吸着水との縮合により結合可能な加水分解基からなる。

[0052]

また、シランカップリング剤の代表例として、Rにフルオロアルキル基を有するフッ素系シランカップリング剤(フルオロアルキルシラン(FAS))を用いることにより、よりぬれ性を低めることができる。FASのRは、(CF_3)(CF_2)、(CH_2)、(x:0以上10以下の整数、y:0以上4以下の整数)で表される構造を持ち、複数個のR又はXがSiに結合している場合には、R又は<math>Xはそれぞれずべて同じでも良いし、異なっていてもよい。代表的なFASとしては、Cプタデカフルオロテトラヒドロデシルトリエトキシシラン、Cプタデカフルオロテトラヒドロデシルトリクロロシラン、トリデカフルオロテトラヒドロオクチルトリクロロシラン、トリフルオロプロピルトリメトキシシラン等のフルオロアルキルシラン(以下、CASともいう。)が挙げられる。

[0053]

低ぬれ性領域を形成する溶液の溶媒としては、nーペンタン、nーヘキサン、nーヘプタン、nーオクタン、nーデカン、ジシクロペンタン、ベンゼン、トルエン、キシレン、デュレン、インデン、テトラヒドロナフタレン、デカヒドロナフタレン、スクワランなどの炭化水素系溶媒、テトラヒドロフラン、ジオクサン、エタノール、ジメチルスルフォキシドなどを用いることができる。

[0054]

また、低ぬれ性領域を形成する溶液の組成物の一例として、フッ化炭素質を有する物質(フッ素系樹脂)を用いることができる。フッ素系樹脂として、ポリテトラフルオロエチレン(PTFE;四フッ化エチレン樹脂)、パーフルオロアルコキシアルカン(PFA;四フッ化エチレンパーフルオロアルキルビニルエーテル共重合樹脂)、パーフルオロエチレンプロペンコーポリマー(PFEP;四フッ化エチレン一六フッ化プロピレン共重合樹脂)、エチレンーテトラフルオロエチレンコポリマー(ETFE;四フッ化エチレンーエチレン共重合樹脂)、ポリビニリデンフルオライド(PVDF;フッ化ビニリデン樹脂)、ポリクロロトリフルオロエチレン(PCTFE;三フッ化塩化エチレン樹脂)、エチレンークロロトリフルオロエチレンコポリマー(ECTFE;三フッ化塩化エチレンーエチレン共重合樹脂)、ポリテトラフルオロエチレンーパーフルオロジオキソールコポリマー(TFE/PDD)、ポリビニルフルオライド(PVF;フッ化ビニル樹脂)等を用いることができる。

[0055]

また、低ぬれ性領域を形成しない(すなわち、高ぬれ性領域を形成する)有機材料を用い、後に CF_4 プラズマ等による処理を行って、低ぬれ性領域を形成してもよい。例えば、ボリビニルアルコール(PVA)のような水溶性樹脂を、 H_2O 等の溶媒に混合した材料を用いることができる。また、PVAと他の水溶性樹脂を組み合わせて使用してもよい。有機(樹脂)材料(ボリイミド、アクリル)やシロキサン樹脂を用いてもよい。なお、シロキサン樹脂とは、Si-O-Si 結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基と用いてもよい。さらには、低ぬれ性領域を有する材料であっても、さらにプラズマ処理等を行うことによって、ぬれ性をより低下させることができる。

[0056]

また、パターンと、被形成領域との密着性を向上させるため、下地膜を形成してもよい。例えば、マスク70として銀を含む導電性材料を基板上に塗布し、銀配線を形成する場合、密着性を向上させるために、基板上に酸化チタン膜を形成してもよい。酸化チタン膜は、形成される銀を含む導電性材料などと密着性がよいので、信頼性が向上する。 【0057】

本発明により、所望なパターンを制御性よく形成できる。また、材料のロスも少なく、 コストダウンも達成できる。よって高性能、高信頼性の発光表示装置を歩留まりよく作製 することができる。

[0058]

(実施の形態2)

本発明の実施の形態について、図3乃至図9、図14及び図15を用いて説明する。より詳しくは、本発明を適用した、チャネルエッチ型の薄膜トランジスタを有する表示装置の作製方法について説明する。図3乃至図8の(A)は表示装置画素部の上面図であり、図3乃至図8(B)は、図3乃至図8(A)における線A-Cによる断面図、(C)は線B-Dによる断面図である。

[0059]

図14(A)は本発明に係る表示パネルの構成を示す上面図であり、絶縁表面を有する基板2700上に画素2702をマトリクス上に配列させた画素部2701、走査線側入力端子2703、信号線側入力端子2704が形成されている。画素数は種々の規格に従って設ければ良く、XGAであれば1024×768×3(RGB)、UXGAであれば1600×1200×3(RGB)、フルスペックハイビジョンに対応させるのであれば1920×1080×3(RGB)とすれば良い。

[0060]

画素2702は、走査線側入力端子2703から延在する走査線と、信号線側入力端子2704から延在する信号線とが交差することで、マトリクス状に配設される。画素2702のそれぞれには、スイッチング素子とそれに接続する画素電極が備えられている。スイッチング素子の代表的な一例はTFTであり、TFTのゲート電極側が走査線と、ソース若しくはドレイン側が信号線と接続されることにより、個々の画素を外部から入力する信号によって独立して制御可能としている。

[0061]

TFTは、その主要な構成要素として、半導体層、ゲート絶縁層及びゲート電極層が挙げられ、半導体層に形成されるソース及びドレイン領域に接続する配線層がそれに付随する。構造的には基板側から半導体層、ゲート絶縁層及びゲート電極層を配設したトップゲート型と、基板側からゲート電極層、ゲート絶縁層及び半導体層を配設したボトムゲート型などが代表的に知られているが、本発明においてはそれらの構造のどのようなものを用いても良い。

[0062]

半導体層を形成する材料は、シランやゲルマンに代表される半導体材料ガスを用いて気相成長法やスパッタリング法で作製されるアモルファス半導体(以下「AS」ともいう。)、該非晶質半導体を光エネルギーや熱エネルギーを利用して結晶化させた多結晶半導体、或いはセミアモルファス(微結晶若しくはマイクロクリスタルとも呼ばれる。以下「SAS」ともいう。)半導体などを用いることができる。

[0063]

SASは、非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造を有し、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質な領域を含んでいる。少なくとも膜中の一部の領域には、0.5~20nmの結晶領域を観測することが出来、珪素を主成分とする場合にはラマンスペクトルが520cm⁻¹よりも低波数側にシフトしている。X線回折では珪素結晶格子に由来するとされる(111)、(220)の回折ピークが観測される。未結合手(ダングリングボンド)の

0064

図14(A)は、走査線及び信号線へ入力する信号を、外付けの駆動回路により制御する表示パネルの構成を示しているが、図15(A)に示すように、COG(Chip on Glass)方式によりドライバIC2751を基板2700上に実装しても良い。また他の実装形態として、図15(B)に示すようなTAB(Tape Automated Bonding)方式を用いてもよい。ドライバICは単結晶半導体基板に形成されたものでも良いし、ガラス基板上にTFTで回路を形成したものであっても良い。図15において、ドライバIC2751は、FPC(Flexible printed circuit)2750と接続している。【0065】

また、画素に設けるTFTをSASで形成する場合には、図14(B)に示すように走査線側駆動回路3702を基板3700上に形成し一体化することもできる。図14(B)において、画素部3701は、信号線側入力端子3704と接続した図14(A)と同様に外付けの駆動回路により制御する。画素に設けるTFTを移動度の高い、多結晶(微結晶)半導体、単結晶半導体などで形成する場合は、図14(C)は、画素部4701、走査線駆動回路4702と、信号線駆動回路4704を基板4700上に一体形成することもできる。

[0066]

透光性を有する基板100は、パリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス等からなるガラス基板、石英基板、シリコン基板、金属基板、ステンレス基板又は本作製工程の処理温度に耐えうる耐熱性を有するプラスチック基板を用いる。また、透光性を有する基板100の表面が平坦化されるようにCMP法などによって、研磨しても良い。なお、透光性を有する基板100上に、絶縁層を形成してもよい。絶縁層は、CVD法、プラズマCVD法、スパッタリング法、スピンコート法等の公知の方法により、珪素を含む酸化物材料、窒化物材料を用いて、単層又は積層して形成される。この絶縁層は、形成しなくても良いが、透光性を有する基板100からの汚染物質などを遮断する効果がある。本発明においては、パターンの被形成領域を改質処理する際に、裏面露光を用い、物質の形成される透光性を有する基板100側から、基板100を通過するように光を照射し、形成されている物質表面を改質処理する。よって、透光性を有する基板100は、パターンの被形成領域を改質できるだけの光を透過する物質である必要がある。

[0067]

透光性を有する基板100上に、ゲート電極層103及びゲート電極層104を形成する。ゲート電極層103及びゲート電極層104は、CVD法やスパッタ法、液滴吐出法などを用いて形成することができる。ゲート電極層103及びゲート電極層104は、Ta、W、Ti、Mo、A1、Cuから選ばれた元素、又は前記元素を主成分とする合金材料もしくは化合物材料で形成すればよい。また、リン等の不純物元素をドーピングした

多結晶シリコン膜に代表される半導体膜や、AgPdCu合金を用いてもよい。また、単層構造でも複数層の構造でもよく、例えば、窒化タングステン(TiN)膜とモリブデン(Mo)膜との2層構造としてもよいし、膜厚50mmのタングステン膜、膜厚500mのアルミニウムとシリコンの合金(A1-Si)膜、膜厚30mmの窒化チタン膜を順次積層した3層構造としてもよい。また、3層構造とする場合、第1の導電膜のタングステンに代えて窒化タングステンを用いてもよいし、第2の導電膜のアルミニウムとシリコンの合金(A1-Si)膜に代えてアルミニウムとチタンの合金膜(A1-Ti)を用いてもよいし、第3の導電膜の窒化チタン膜に代えてチタン膜を用いてもよい。

【0068】

ゲート電極層 103及びゲート電極層 104の形状にパターニングが必要な場合、マスクを形成し、ドライエッチングまたはドライエッチングによりパターニングすればよい。 ICP (Inductively Coupled Plasma: 誘導結合型プラズマ) エッチング法を用い、エッチング条件 (コイル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度等)を適宜調節することにより、電極層をテーパー形状にエッチングすることができる。なお、エッチング用ガスとしては、 $C1_2$ 、 $BC1_3$ 、 $SiC1_4$ もしくは $CC1_4$ などを代表とする塩素系ガス、 CF_4 、 SF_6 もしくは NF_3 などを代表とするフッ素系ガス又は O_2 を適宜用いることができる。

[0069]

パターニングのためのマスクは組成物を選択的に吐出して形成することができる。このように選択的にマスクを形成するとパターニングの工程が簡略化する効果がある。マスクは、エボキシ樹脂、アクリル樹脂、フェノール樹脂、ノボラック樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いる。また、ベンゾシクロブテン、パリレン、フレア、透過性を有するボリイミドなどの有機材料、シロキサン系ボリマー等の重合によってできた化合物材料、水溶性ホモボリマーと水溶性共重合体を含む組成物材料等を用いて液滴吐出法で形成する。或いは、感光剤を含む市販のレジスト材料を用いてもよく、例えば、代表的なボジ型レジストである、ノボラック樹脂と感光剤であるナフトキノンジアジド化合物、ネガ型レジストであるベース樹脂、ジフェニルシランジオール及び酸発生剤などを用いてもよい。いずれの材料を用いるとしても、その表面張力と粘度は、溶媒の濃度を調整したり、界面活性剤等を加えたりして適宜調整する。

本実施の形態では、ゲート電極層103、ゲート電極層104の形成は、液滴吐出手段を用いて行う。液滴吐出手段とは、組成物の吐出口を有するノズルや、1つ又は複数のノズルを具備したヘッド等の液滴を吐出する手段を有するものの総称とする。液滴吐出手段が具備するノズルの径は、0.02~100 μ m(好適には30 μ m以下)に設定し、該ノズルから吐出される組成物の吐出量は0.001 μ l~100 μ l(好適には0.1 μ l以上40 μ l以下、より好ましくは10 μ l以下)に設定する。吐出量は、ノズルの径の大きさに比例して増加する。また、被処理物とノズルの吐出口との距離は、所望の箇所に滴下するために、出来る限り近づけておくことが好ましく、好適には0.1~3 μ m(好適には1 μ m以下)程度に設定する。

[0071]

吐出口から吐出する組成物は、導電性材料を溶媒に溶解又は分散させたものを用いる。 導電性材料とは、Ag、Au、Cu、Ni、Pt、Pd、Ir、Rh、W、A1等の金属 、Cd、Znの金属硫化物、Fe、Ti、Si、Ge、Si、Zr、Baなどの酸化物、 ハロゲン化銀の微粒子又は分散性ナノ粒子に相当する。また、透明導電膜として用いられ るインジウム錫酸化物(ITO)、インジウム錫酸化物と酸化珪素からなるITSO、有 機インジウム、有機スズ、酸化亜鉛、窒化チタン等に相当する。但し、吐出口から吐出す る組成物は、比抵抗値を考慮して、金、銀、銅のいずれかの材料を溶媒に溶解又は分散さ せたものを用いることが好適であり、より好適には、低抵抗な銀、銅を用いるとよい。但 し、銀、銅を用いる場合には、不純物対策のため、合わせてバリア膜を設けるとよい。バ リア膜としては、窒化珪素膜やニッケルボロン(NiB)を用いるとことができる。 [0072]

また、導電性材料の周りに他の導電性材料がコーティングされ、複数の層になっている 粒子でも良い。例えば、銅の周りにニッケルボロン(NiB)がコーティングされ、その 周囲に銀がコーティングされている3層構造の粒子などを用いても良い。溶媒は、酢酸ブ ナル、酢酸エチル等のエステル類、イソプロビルアルコール、エチルアルコール等のアル コール類、メチルエチルケトン、アセトン等の有機溶剤等を用いる。組成物の粘度は20 mPa・s以下が好適であり、これは、乾燥が起こることを防止したり、吐出口から組成 物を円滑に吐出できるようにしたりするためである。また、組成物の表面張力は、40m N/m以下が好適である。但し、用いる溶媒や、用途に合わせて、組成物の粘度等は適宜 調整するとよい。一例として、ITOや、有機インジウム、有機スズを溶媒に溶解又は分 散させた組成物の粘度は5~20mPa・s、銀を溶媒に溶解又は分散させた組成物の粘度は5~20mPa・s、金を溶媒に溶解又は分散させた組成物の粘度は5~20mPa sに設定するとよい。

[0073]

また、薄電層は、複数の導電性材料を積層しても良い。また、始めに導電性材料として 銀を用いて、液滴吐出法で導電層を形成した後、銅などでめっきを行ってもよい。めっき は電気めっきや化学(無電界)めっき法で行えばよい。めっきは、めっきの材料を有する 溶液を満たした容器に基板表面を浸してもよいが、基板を斜め(または垂直)に立てて設 置し、めっきする材料を有する溶液を、基板表面に流すように塗布してもよい。基板を立 てて溶液を塗布するようにめっきを行うと、工程装置が小型化する利点がある。 【0074】

各ノズルの径や所望のパターン形状などに依存するが、ノズルの目詰まり防止や高精細なパターンの作製のため、導電体の粒子の径はなるべく小さい方が好ましく、好適には粒径0.1μm以下が好ましい。組成物は、電解法、アトマイズ法又は湿式還元法等の公知の方法で形成されるものであり、その粒子サイズは、一般的に約0.01~10μmである。但し、ガス中蒸発法で形成すると、分散剤で保護されたナノ粒子は約7 nmと微細であり、またこのナノ粒子は、被覆剤を用いて各粒子の表面を覆うと、溶剤中に凝集がなく、室温で安定に分散し、液体とほぼ同じ挙動を示す。従って、被覆剤を用いることが好ましい。

[0075]

本発明では、流動体の組成物と被形成領域を含む近傍とのぬれ性の違いを利用して、所望のパターン形状に加工するため、組成物は、被処理物に着弾しても流動性を有していることが必要であるが、その流動性が失われない程度であれば、組成物を吐出する工程は、減圧下で行ってもよい。また、減圧下で行うと、導電体の表面に酸化膜などが形成されないため好ましい。組成物を吐出後、乾燥と焼成の一方又は両方の工程を行う。乾燥と焼成の工程は、両工程とも加熱処理の工程であるが、例えば、乾燥は100度で3分間、焼成は200~350度で15分間~60分間で行うもので、その目的、温度と時間が異なるものである。乾燥の工程、焼成の工程は、常圧下又は減圧下で、レーザ光の照射や瞬間熱アニール、加熱炉などにより行う。なお、この加熱処理を行うタイミングは特に限定されない。乾燥と焼成の工程を良好に行うためには、基板を加熱しておいてもよく、そのときの温度は、基板等の材質に依存するが、一般的には100~800度(好ましくは200~350度)とする。本工程により、組成物中の溶媒の揮発、又は化学的に分散剤を除去するとともに、周囲の樹脂が硬化収縮することで、ナノ粒子間を接触させ、融合と融着を加速する。

[0076]

レーザ光の照射は、連続発振またはパルス発振の気体レーザ又は固体レーザを用いれば 良い。前者の気体レーザとしては、エキシマレーザ、YAGレーザ等が挙げられ、後者の 固体レーザとしては、Cr、Nd等がドーピングされたYAG、YVO4、GdVO4等の 結晶を使ったレーザ等が挙げられる。なお、レーザ光の吸収率の関係から、連続発振のレ ーザを用いることが好ましい。また、パルス発振と連続発振を組み合わせた所謂ハイブリ ッドのレーザ照射方法を用いてもよい。但し、基板100の耐熱性に依っては、レーザ光の照射による加熱処理は、該基板100を破壊しないように、数マイクロ秒から数十秒の間で瞬間的に行うとよい。瞬間熱アニール(RTA)は、不活性ガスの雰囲気下で、紫外光乃至赤外光を照射する赤外ランプやハロゲンランプなどを用いて、急激に温度を上昇させ、数分〜数マイクロ秒の間で瞬間的に熱を加えて行う。この処理は瞬間的に行うために、実質的に最表面の薄膜のみを加熱することができ、下層の膜には影響を与えない。つまり、プラスチック基板等の耐熱性が弱い基板にも影響を与えない。【0077】

また、液滴吐出法により、ゲート電極層103、ゲート電極層104を組成物を吐出し 形成した後、その平坦性を高めるために表面を圧力によってプレスして平坦化してもよい 。プレスの方法としては、ローラー状のものを表面に走査することによって、凹凸をなら すように軽減したり、平坦な板状な物で表面を垂直にプレスしてもよい。プレスする時に 、加熱工程を行っても良い。また溶剤等によって表面を軟化、または融解させエアナイフ で表面の凹凸部を除去しても良い。また、CMP法を用いて研磨しても良い。この工程は 、液滴吐出法によって凹凸が生じる場合に、その表面の平坦化する場合適用することがで きる。

[0078]

次に、ゲート電極層103、ゲート電極層104の上にゲート絶縁層106を形成する(図3参照。)。ゲート絶縁層106はその上に形成される光触媒物質を光照射によって活性化する際、光を通過させるため、透光性を有する必要がある。ゲート絶縁層106としては、珪素の酸化物材料又は窒化物材料等の公知の材料で形成すればよく、積層でも単層でもよい。本実施の形態では、窒化珪素膜、酸化珪素膜、窒化珪素膜3層の積層を用いる。またそれらや、酸化窒化珪素膜の単層、2層からなる積層でも良い。好適には、緻密な膜質を有する窒化珪素膜を用いるとよい。また、液滴吐出法で形成される導電層に銀や銅などを用いる場合、その上にバリア膜として窒化珪素膜やNiB膜を形成すると、不純物の拡散を防ぎ、表面を平坦化する効果がある。なお、低い成膜温度でゲートリーク電流の少ない緻密な絶縁膜を形成するには、アルゴンなどの希ガス元素を反応ガスに含ませ、形成される絶縁膜中に混入させると良い。

[0079]

次にソース電極層又はドレイン電極層を制御性よく形成するための前処理としてパターンの被形成領域を含む近傍を周囲の領域と比較して、改質する。本実施の形態では、光触媒物質を形成し、それに接してぬれ性が低い物質を形成する。そして光の照射処理によって光触媒物質の光活性を用いて、選択的にぬれ性を変化させ、高ぬれ性領域と低ぬれ性領域を形成する。また、ぬれ性の差は、接触角によって確認することができ、接触角の差は30度以上、好ましくは40度以上であるとよい。本発明においては、光の照射処理効率を向上させるため、照射する光の波長で活性化する光触媒物質を処理物に接して形成する。

[0080]

ゲート絶縁層106上に、光触媒物質101を形成し、光触媒物質101上にぬれ性が低い物質155a、ぬれ性が低い物質155bを形成する(図4参照。)。

[0081]

本実施の形態では、 $TiCl_3$ 溶液を塗布し、焼成して膜厚50nmで酸化チタン層を形成する。また、スパッタリング法により所定の結晶構造を有する酸化チタン(TiO_X (代表としては TiO_2))結晶を形成してもよい。この場合ターゲットには金属チタンチューブを用い、アルゴンガスと酸素を用いてスパッタリングを行う。更にHeガスを導入してもよい。光触媒活性の高い酸化チタン層を形成するためには、酸素を多く含む雰囲気とし、形成圧力を高めにする。更に成膜室又は処理物が設けられた基板を加熱しながら酸化チタン層を形成すると好ましい。このように形成される酸化チタン層は非常に薄膜であっても光触媒機能を有する。

[0082]

低ぬれ性領域を形成する溶液の組成物の一例としては、R_n-Si-X_(4-n)(n=1、2、3)の化学式で表されるシランカップリング剤を用いる。ここで、Rは、アルキル基などの比較的不活性な基を含む物である。また、Xはハロゲン、メトキシ基、エトキシ基又はアセトキシ基など、基質表面の水酸基あるいは吸着水との縮合により結合可能な加水分解基からなる。

【0083】

また、シランカップリング剤の代表例として、Rにフルオロアルキル基を有するフッ素 系シランカップリング剤(フルオロアルキルシラン(FAS))を用いることにより、よりぬれ性を低めることができる。FASのRは、(CF3)(CF2)、(CH2)、(\mathbf{x} : 0以上10以下の整数、 \mathbf{y} : 0以上4以下の整数)で表される構造を持ち、複数個のR又はXがSiに結合している場合には、R又はXはそれぞれすべて同じでも良いし、異なっていてもよい。代表的なFASとしては、 \mathbf{x} つルオロテトラヒドロデシルトリエトキシシラン、 \mathbf{x} つアクデカフルオロテトラヒドロデシルトリクロロシラン、トリデカフルオロテトラヒドロオクチルトリクロロシラン、トリフルオロプロビルトリメトキシシラン等のフルオロアルキルシラン(以下、FASともいう。)が挙げられる。

低ぬれ性領域を形成する溶液の溶媒としては、nーペンタン、nーへキサン、nーヘプタン、nーオクタン、nーデカン、ジシクロペンタン、ベンゼン、トルエン、キシレン、デュレン、インデン、テトラヒドロナフタレン、デカヒドロナフタレン、スクワランなどの炭化水素系溶媒又はテトラヒドロフランなど、低ぬれ性表面を形成する溶媒を用いる。

[0085]

[0084]

また、低ぬれ性領域を形成する溶液の組成物の一例として、フッ化炭素(フルオロカーボン)鎖を有する材料(フッ素系樹脂)を用いることができる。フッ素系樹脂として、ボリテトラフルオロエチレン(PTFE:四フッ化エチレン樹脂)、パーフルオロアルコキシアルカン(PFA:四フッ化エチレンパーフルオロアルキルビニルエーテル共重合樹脂)、パーフルオロエチレンプロペンコーポリマー(PFEP:四フッ化エチレン一六フッ化プロピレン共重合樹脂)、エチレンーテトラフルオロエチレンコポリマー(ETFE:四フッ化エチレン・エチレン共重合樹脂)、ポリビニリデンフルオライド(PVDF;フッ化ビニリデン樹脂)、ボリクロロトリフルオロエチレン(PCTFE:三フッ化塩化エチレン樹脂)、エチレンークロロトリフルオロエチレンコポリマー(ECTFE;三フッ化塩化エチレン・エチレン共重合樹脂)、ポリテトラフルオロエチレンーパーフルオロジオキソールコポリマー(TFE/PDD)、ポリビニルフルオライド(PVF;フッ化ビニル樹脂)等を用いることができる。

[0086]

また、低ぬれ性領域を示さない(すなわち、高ぬれ性領域を示す)有機材料を用い、後に CF_4 プラズマ等による処理を行って、低ぬれ性領域を形成してもよい。例えば、ポリビニルアルコール(PVA)のような水溶性樹脂を、 H_2 O等の溶媒に混合した材料を用いることができる。また、PVAと他の水溶性樹脂を組み合わせて使用してもよい。有機(樹脂)材料(ポリイミド、アクリル)やシロキサン樹脂を用いてもよい。なお、シロキサン樹脂とは、Si-O-Si 結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。さらには、低ぬれ性表面を有する材料であっても、さらにプラズマ処理等を行うことによって、ぬれ性をより低下させることができる。

[0087]

本実施の形態では、ぬれ性が低い物質としてFASを用いる。このぬれ性は後工程で形成するソース電極層又はドレイン電極層を構成する導電性材料を含む組成物に対してである。本実施の形態で用いるFASは200nm以下の光で分解するが、ガラス基板は300nm以下の波長を吸収し透過しない。基板としてガラス基板を用いた場合FASに光を

照射することはできない。よって本実施の形態では、380nm以下の光照射によって光 触媒効果を示す酸化チタン層を形成する。光源として200nmから450nmの液長の 光を照射する紫外線ランプであるメタルハライドランプを用いる。用いる光の液長に合わ せて、適宜光触媒物質は選択すればよい。本実施の形態では、ぬれ性が低い物質を液滴吐 出法などにより、パターンの被形成領域を含む近傍に選択的に形成するが、スピンコート 法などで広い範囲(全面塗布など)に塗布し、パターニングを行っても良い。本実施の形 態の様に、液滴吐出法を用いると、無駄になる材料を減らすことができるため、材料の利 用効率が向上する。

[0088]

次に、光触媒物質101に対して、透光性を有する基板100側から、基板100を通 過して光源170a、光源170bにより光171a、光171bを照射する。光171 a、171bは、光触媒物質101を活性化し、そのエネルギーによってぬれ性が低い物 質155a、ぬれ性が低い物質155bを分解し、ぬれ性を高める。 光触媒物質の光触媒 効果を用いるため、処理効率が向上する。ゲート電極層103及びゲート電極層104が マスクとなるため、ゲート電極層103及びゲート電極層104と重畳する領域のぬれ性 が低い物質表面は改質処理されない。光171aの照射処理によって、ぬれ性が低い物質 155a表面は、相対的にぬれ性が高い高ぬれ性領域151a、高ぬれ性領域151bと 、相対的にぬれ性が低い低ぬれ性領域150とが形成される(図5(B)参照。)。同様 に、光171bの照射処理によって、ぬれ性が低い物質155b表面は、相対的にぬれ性 が高い高ぬれ性領域153a、高ぬれ性領域153bと、相対的にぬれ性が低い低ぬれ性 領域152とが形成される(図5(C)参照。)。本発明を用いると、光に合わせて、光 触媒物質を選択すればよいので光の選択の幅が広がる。よって、処理物が形成される物質 があまり吸収しない領域の波長を選択することができ、制御性の良い表面改質処理をする ための光照射(いわゆる裏面露光)をすることができる。また光の照射効率も向上できる ので、光自体が低エネルギーであっても十分に処理を行うことができる。よって、装置や 工程が簡略化するので、コストや時間が軽減し、生産性も向上させることができる。 [0089]

また、本実施の形態で、マスクを液滴吐出法によって形成する際、前処理として、被形成領域を含む近傍をぬれ性が異なる領域を形成する処理を行ってもよい。本発明において、液滴吐出法により液滴を吐出してパターンを形成する際、パターンの被形成領域に低ぬれ性領域、高ぬれ性領域を形成し、パターンの形状を制御することができる。この処理を被形成領域に行うことによって、被形成領域では、ぬれ性に差が生じ、ぬれ性が高い被形成領域のみ液滴が留まり、制御性よくパターンを形成することができる。この工程は、液状材料を用いる場合、あらゆるパターン形成の前処理として適用することができる。【0090】

レジストやポリイミド等の絶縁体からなるマスクを液滴吐出法を用いて形成し、そのマスクを用いて、エッチング加工によりゲート絶縁層106の一部に貫通孔145を形成して、その下層側に配置されているゲート電極層104の一部を露出させる。エッチング加工はプラズマエッチング(ドライエッチング)又はウエットエッチングのどちらを採用しても良いが、大面積基板を処理するにはプラズマエッチングが適している。エッチングガスとしては、 CF_4 、 NF_3 、 CI_2 、 BCI_3 、などのフッ素系又は塩素系のガスを用い、HeやArなどの不活性ガスを適宜加えても良い。また、大気圧放電のエッチング加工を適用すれば、局所的な放電加工も可能であり、基板の全面にマスク層を形成する必要はない。

[0091]

高ぬれ性領域151a、高ぬれ性領域151b、高ぬれ性領域153a、高ぬれ性領域153bに、液滴吐出装置180a、液滴吐出装置180bより、導電性材料を含む組成物を吐出し、ソース電極層又はドレイン電極層111、ソース電極層又はドレイン電極層112、ソース電極層又はドレイン電極層113、ソース電極層又はドレイン電極層14を形成する(図6参照。)。液滴が吐出されるノズルの吐出口の大きさや、吐出口の

走査能力などによってパターン材料の吐出方法が、精密に制御できない場合であっても、ぬれ性を高める処理をその被形成領域に施すことによって、液滴は、被形成領域のみに付着し、所望のパターンに形成される。被形成領域とその周囲の領域とで、ぬれ性が異なるので、液滴は低ぬれ性領域でははじかれ、よりぬれ性の高い形成領域に留まるからである。つまり、低ぬれ性領域によって液滴ははじかれるため、高ぬれ性領域と低ぬれ性領域の境界が隔壁(土手)があるかのような機能を果たす。よって、流動性を有する導電性材料を含む組成物でも高ぬれ性領域に留まるので、所望の形状にソース電極層又はドレイン電極層を形成することができる。

[0092]

ソース電極層又はドレイン電極層111はソース配線層としても機能し、ソース電極層 又はドレイン電極層113は電源線としても機能する。

[0093]

ソース電極層又はドレイン電極層111、ソース電極層又はドレイン電極層112、ソース電極層又はドレイン電極層113、及びソース電極層又はドレイン電極層114を形成する工程も、前述したゲート電極層103、ゲート電極層104を形成したときと同様に形成することができる。

[0094]

ソース電極層又はドレイン電極層111、ソース電極層又はドレイン電極層112、ソース電極層又はドレイン電極層113、ソース電極層又はドレイン電極層114を形成する導電性材料としては、Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いることができる。また、透光性を有するインジウム錫酸化物(ITO)、インジウム錫酸化物と酸化珪素からなるITSO、有機インジウム、有機スズ、酸化亜鉛、窒化チタンなどを組み合わせても良い

[0095]

ゲート絶縁層106に形成した貫通孔145において、ソース電極層又はドレイン電極層112とゲート電極層104とを電気的に接続させる。ソース電極層又はドレイン電極層の一部は容量素子を形成する。

[0096]

本発明を用いると、例えば電極層など、微細なパターンを形成したい場合、液滴の吐出口が多少大きくても、液滴が形成領域上で広がらず、形成領域のみに導電層を形成することができ、非形成領域へ誤って形成することによるショート等の不良を防止することができる。その配線の膜厚制御も可能になる。本実施の形態のように、基板側からの光照射により物質表面の改質を行うと、制御性よくパターンを形成できるだけでなく、高面積を処理することができるため、生産性が向上する。また、液滴吐出法を組み合わせることで、スピンコート法などによる全面塗布形成に比べ、材料のロスが防げ、コストダウンが可能になる。本発明により、配線等が、小型化、薄膜化により密集、複雑に配置される設計であっても、制御性よく形成することができる。

[0097]

また、前処理として液滴吐出法によるパターンに対する密着性を上げるために、接着材として機能するような有機材料系の物質を形成してもよい。この場合、この物質上に、ぬれ性の異なる領域を形成する処理を行えばよい。有機(樹脂)材料(ボリイミド、アクリル)やシロキサン樹脂を用いてもよい。なお、シロキサン樹脂とは、Si-O-Si結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。

[0098]

次に半導体層を形成する。一導電性型を有する半導体層は必要に応じて形成すればよい。またN型半導体層を形成し、Nチャネル型TFTのNMOS構造、P型半導体層を形成

したPチャネル型TFTのPMOS構造、Nチャネル型TFTとPチャネル型TFTとの CMOS構造を作製することができる。また、導電性を付与するために、導電性を付与する元素をドーピングによって添加し、不純物領域を半導体層に形成することで、Nチャネル型TFT、Pチャネル型TFTを形成することもできる。

[0099]

半導体層は公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により成膜することができる。半導体層の材料に限定はなく、シリコン又はシリコンゲルマニウム(SiGe)合金などで形成すると良い。

[0100]

半導体層は、アモルファス半導体(代表的には水素化アモルファスシリコン)、結晶性 半導体(代表的にはポリシリコン)、セミアモルファス半導体を素材として用いている。 ポリシリコン(多結晶シリコン)には、800℃以上のプロセス温度を経て形成されるポ リシリコンを主材料として用いた所謂高温ポリシリコンや、600℃以下のプロセス温度 で形成されるポリシリコンを主材料として用いた所謂低温ポリシリコン、また結晶化を促 進する元素などを添加し結晶化させたポリシリコンなどを含んでいる。

[0101]

また、他の物質として、セミアモルファス半導体又は半導体層の一部に結晶相を含む半 導体を用いることもできる。

[0102]

半導体層に、結晶性半導体層を用いる場合、その結晶性半導体層の作製方法は、公知の方法(レーザ結晶化法、熱結晶化法、またはニッケルなどの結晶化を助長する元素を用いた熱結晶化法等)を用いれば良い。また、SASである微結晶半導体をレーザ照射して結晶化し、結晶性を高めることもできる。結晶化を助長する元素を導入しない場合は、非晶質珪素膜にレーザ光を照射する前に、窒素雰囲気下500℃で1時間加熱することによって非晶質珪素膜の含有水素濃度を1×10²⁰ atoms/cm³以下にまで放出させる。これは水素を多く含んだ非晶質珪素膜にレーザ光を照射すると膜が破壊されてしまうからである。

[0103]

非晶質半導体層への金属元素の導入の仕方としては、当該金属元素を非晶質半導体層の表面又はその内部に存在させ得る手法であれば特に限定はなく、例えばスパッタ法、CVD法、プラズマ処理法(プラズマCVD法も含む)、吸着法、金属塩の溶液を塗布する方法を使用することができる。このうち溶液を用いる方法は簡便であり、金属元素の濃度調整が容易であるという点で有用である。また、このとき非晶質半導体層の表面のぬれ性を改善し、非晶質半導体層の表面全体に水溶液を行き渡らせるため、酸素雰囲気中でのUV光の照射、熱酸化法、ヒドロキシラジカルを含むオゾン水又は過酸化水素による処理等により、酸化膜を成膜することが望ましい。

[0104]

非晶質半導体層の結晶化は、熱処理とレーザ光照射による結晶化を組み合わせてもよく 、熱処理やレーザ光照射を単独で、複数回行っても良い。

[0105]

また、結晶性半導体層を、直接基板にプラズマ法により形成しても良い。つまり、プラズマ法を用いて、結晶性半導体層を選択的に基板に形成してもよい。

[0106]

半導体として、有機半導体材料を用い、印刷法、スプレー法、スピン塗布法、液滴吐出法などで形成することができる。この場合、上記エッチング工程が必要ないため、工程数を削減することが可能である。有機半導体としては、低分子材料、高分子材料などが用いられ、有機色素、導電性高分子材料などの材料も用いることができる。本発明に用いる有機半導体材料としては、その骨格が共役二重結合から構成されるπ電子共役系の高分子材料が望ましい。代表的には、ボリチオフェン、ボリフルオレン、ボリ(3-アルキルチオフェン)、ボリチオフェン誘導体、ペンタセン等の可溶性の高分子材料を用いることがで

きる。

[0107]

その他にも本発明に用いることができる有機半導体材料としては、可溶性の前駆体を成 膜した後で処理することにより第1の半導体領域を形成することができる材料がある。な お、このような有機半導体材料としては、ポリチエニレンビニレン、ポリ(2,5-チエ ニレンビニレン)、ポリアセチレン、ポリアセチレン誘導体、ポリアリレンビニレンなど がある。

[0108]

前駆体を有機半導体に変換する際には、加熱処理だけではなく塩化水素ガスなどの反応 触媒を添加することがなされる。また、これらの可溶性有機半導体材料を溶解させる代表 的な溶媒としては、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、アニソー ル、クロロフォルム、ジクロロメタン、アプチルラクトン、ブチルセルソルブ、シクロへ キサン、NMP(Nーメチルー2ーピロリドン)、シクロへキサノン、2ーブタノン、ジ オキサン、ジメチルホルムアミド(DMF)または、THF(テトラヒドロフラン)など を適用することができる。

[0109]

本実施の形態では、低ぬれ性領域150、低ぬれ性領域152に光照射を行い、ぬれ性を高める処理を行う。その後半導体層107、半導体層108をベンタセンを用いて液滴吐出法により形成する(図7参照。)。

[0110]

続いて、ゲート絶縁層106上に選択的に、導電性材料を含む組成物を吐出して、第1の電極層117を形成する(図8参照。)。勿論この第1の電極層117を形成する際、低ぬれ性領域、高ぬれ性領域を形成する前処理を行ってもよい。高めれ性領域に導電性材料を含む組成物を吐出することによって第1の電極層117をより制御性よく、選択的に形成することもできる。第1の電極層117は、透光性を有する基板100側から光を放射する場合、または透過型の表示パネルを作製する場合には、インジウム鏡酸化物(1T〇)、酸化珪素を含むインジウム鏡酸化物(1TSO)、酸化亜鉛(ZnO)を含むインジウム亜鉛酸化物(IZO(indium zinc oxide))、酸化亜鉛(ZnO)、乙nOにガリウム(Ga)をドープしたもの、酸化スズ(SnO₂)などを含む組成物により所定のパターンを形成し、焼成によって形成しても良い。

[0111]

また、好ましくは、スパッタリング法によりインジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)などで形成する。より好ましくは、ITOに酸化珪素が2~10重量%含まれたターゲットを用いてスパッタリング法で酸化珪素を含む酸化インジウムスズを用いる。この他、ZnOにガリウム(Ga)をドープした導電性材料、酸化珪素を含み酸化インジウムに2~20%の酸化亜鉛(ZnO)を混合した酸化物導電性材料であるインジウム亜鉛酸化物(IZO(indium zinc oxide))を用いても良い。スパッタリング法で第1の電極層117を形成した後は、液滴吐出法を用いてマスク層を形成しエッチングにより、所望のパターンに形成すれば良い。本実施の形態では、第1の電極層117は、透光性を有する導電性材料により液滴吐出法を用いて形成し、具体的には、インジウム錫酸化物、ITOと酸化珪素から構成されるITSOを用いて形成する。

[0112]

本実施の形態では、ゲート絶縁層は窒化珪素からなる窒化珪素膜、酸化窒化珪素膜(酸化珪素膜)、窒化珪素膜の3層の例を前述した。好ましい構成として、酸化珪素を含む酸化インジウムスズで形成される第1の電極層117は、ゲート絶縁層106に含まれる窒化珪素からなる絶縁層と密接して形成され、それにより電界発光層で発光した光が外部に放射される割合を高めることが出来るという効果を発現させることができる。また、ゲート絶縁層はゲート電極層や、ゲート電極層と、第1の電極層の間に介在し、容量素子として機能することもできる。

[0113]

第1の電極層117は、ソース電極層又はドレイン電極層114の形成前に、ゲート絶縁層106上に選択的に形成することもできる。この場合、本実施の形態とはソース電極層又はドレイン電極層114と、第1の電極層117の接続構造が、第1の電極層の上にソース電極層又はドレイン電極層114が積層する構造となる。第1の電極層117をソース電極層又はドレイン電極層114より先に形成すると、平坦な形成領域に形成できるので、被覆性、成膜性がよく、CMPなどの研磨処理も十分に行えるので平坦性よく形成できる。

[0114]

また、ソース電極層又はドレイン電極層114上に層間絶縁層となる絶縁層を形成し、 配線層によって、第1の電極層117と電気的に接続する構造を用いてもよい。この場合 、開口部(コンタクトホール)を絶縁層を除去して形成するのではなく、絶縁層に対して ぬれ性が低い物質をソース電極層又はドレイン電極層114上に形成する。その後、絶縁 層を含む組成物を塗布法などで塗布すると、ぬれ性が低い物質の形成されている領域を除 いた領域に絶縁層は形成される。

[0115]

加熱、乾燥等によって絶縁層を固化して形成した後、ぬれ性が低い物質を除去し、開口部を形成する。この開口部を埋めるように配線層を形成し、この配線層に接するように第1の電極層117を形成する。この方法を用いると、エッチングによる開口部の形成が必要ないので工程が簡略化する効果がある。

[0116]

また、発光した光を透光性を有する基板100側とは反対側に放射させる構造とする場合、反射型のEL表示パネルを作製する場合には、Ag(銀)、Au(金)、Cu(銅))、W(タングステン)、A1(アルミニウム)等の金属の粒子を主成分とした組成物を用いることができる。他の方法としては、スパッタリング法により透明導電膜若しくは光反射性の導電膜を形成して、液滴吐出法によりマスクパターンを形成し、エッチング加工を組み合わせて第1の電極層117を形成しても良い。

[0117]

第1の電極層117は、その表面が平坦化されるように、CMP法、ポリビニルアルコール系の多孔質体で拭浄し、研磨しても良い。またCMP法を用いた研磨後に、第1の電極層117の表面に紫外線照射、酸素プラズマ処理などを行ってもよい。

[0118]

以上の工程により、透光性を有する基板100上にボトムゲート型のTFTと画素電極が接続された表示パネル用のTFT基板100が完成する。また本実施の形態のTFTはコプレナー型である。本実施の形態で示すTFTは、本発明を用いるために、自己整合的に作製することができる。

[0119]

次に、絶縁層121(隔壁、土手とも呼ばれる)を選択的に形成する。絶縁層121は、第1の電極層117上に開口部を有するように形成する。本実施の形態では、絶縁層121を全面に形成し、レジスト等のマスクによって、エッチングしパターニングする。絶縁層121を、直接選択的に形成できる液滴吐出法や印刷法などを用いて形成する場合は、エッチングによるパターニングは必ずしも必要はない。また絶縁層121も本発明の前処理によって、所望の形状に形成できる。

[0120]

絶縁層121は、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウムその他の無機絶縁性材料、又はアクリル酸、メタクリル酸及びこれらの誘導体、又はポリイミド(polyimide)、芳香族ポリアミド、ポリベンゾイミダゾール(polybenzimidazole)などの耐熱性高分子、又はシロキサン樹脂を用いてもよい。なお、シロキサン樹脂とは、SiOOSi結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(〇)との結合で骨格構造が構成される。置換基として、少なく

とも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。アクリル、ボリイミド等の感光性、非感光性の材料を用いて形成してもよい。絶縁層121は曲率半径が連続的に変化する形状が好ましく、上に形成される電界発光層122、第2の電極層123の被覆性が向上する。

[0121]

[0122]

[0126]

また、液滴吐出法により、絶縁層121を組成物を吐出し形成した後、その平坦性を高めるために表面を圧力によってプレスして平坦化してもよい。プレスの方法としては、ローラー状のものを表面に走査することによって、凹凸をならすように軽減したり、平坦な板状な物で表面を垂直にプレスしてもよい。また溶剤等によって表面を軟化、または融解させエアナイフで表面の凹凸部を除去しても良い。また、CMP法を用いて研磨しても良い。この工程は、液滴吐出法によって凹凸が生じる場合に、その表面の平坦化する場合適用することができる。この工程により平坦性が向上すると、表示パネルの表示ムラなどを防止することができる。

表示パネル用のTFT基板100の上に、発光素子を形成する(図9参照。)。 【0123】

電界発光層122を形成する前に、大気圧中で200℃の熱処理を行い第1の電極層117、絶縁層121中若しくはその表面に吸着している水分を除去する。また、減圧下で200~400℃、好ましくは250~350℃に熱処理を行い、そのまま大気に晒さずに電界発光層122を真空蒸着法や、減圧下の液滴吐出法で形成することが好ましい。【0124】

電界発光層122として、赤色(R)、緑色(G)、青色(B)の発光を示す材料を、それぞれ蒸着マスクを用いた蒸着法等によって選択的に形成する。赤色(R)、緑色(G)、青色(B)の発光を示す材料はカラーフィルタ同様、液滴吐出法により形成することもでき(低分子または高分子材料など)、この場合マスクを用いずとも、RGBの塗り分けを行うことができるため好ましい。電界発光層122上に第2の電極層123を積層形成して、発光素子を用いた表示機能を有する表示装置が完成する。
【0125】

図示しないが、第2の電極層123を覆うようにしてパッシベーション膜を設けることは有効である。表示装置を構成する際に設ける保護膜は、単層構造でも多層構造でもよい。パッシベーション膜としては、窒化珪素(SiN)、酸化珪素(SiO₂)、酸化窒化 珪素(SiON)、窒化酸化珪素(SiNO)、窒化アルミニウム(AIN)、酸化窒化 アルミニウム(AIN)、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウム(AINO)または酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素膜(CN_K)を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層を用いることができる。例えば窒素含有炭素膜(CN_K)、窒化珪素(SiN)のような積層、また有機材料を用いることも出来、スチレンボリマーなど高分子の積層でもよい。また、シロキサン樹脂を用いてもよい。なお、シロキサン樹脂とは、Si-O-Si結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。

この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜、特にDLC膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低い電界発光層の上方にも容易に成膜することができる。DLC膜は、プラズマCVD法(代表的には、RFプラズマCVD法、マイクロ波CVD法、電子サイクロトロン共鳴(ECR)CVD法、熱フィラメントCVD法など)、

燃焼炎法、スパッタ法、イオンビーム蒸着法、レーザ蒸着法などで形成することができる

。成膜に用いる反応ガスは、水素ガスと、炭化水素系のガス(例えば CH_4 、 C_2H_2 、 C_6H_6 など)とを用い、グロー放電によりイオン化し、負の自己バイアスがかかったカソードにイオンを加速衝突させて成膜する。また、CN膜は反応ガスとして C_2H_4 ガスと N_2 ガスとを用いて形成すればよい。DLC膜は酸素に対するブロッキング効果が高く、電界発光層の酸化を抑制することが可能である。そのため、この後に続く封止工程を行う間に電界発光層が酸化するといった問題を防止できる。

[0127]

続いて、シール材を形成し、封止基板を用いて封止する。その後、ゲート電極層103 と電気的に接続して形成されるゲート配線層に、フレキシブル配線基板を接続し、外部と の電気的な接続をしても良い。これは、ソース配線層でもあるソース電極層又はドレイン 電極層111と電気的に接続して形成されるソース配線層も同様である。

[0128]

本発明を用いて作製したEL表示パネルの完成図を図18に示す。図18(A)はEL表示パネルの上面図であり、図18(B)は、図18(A)における線E-Fによる断面図である。図18において、素子基板3300上に形成された画素部3301は、画素3302、ゲート配線層3306a、ゲート配線層3306b、ソース配線層3308を有しており、封止基板3310とシール材3303によって貼り合わされ固着されている。本実施の形態では、FPC3350上にドライバIC3351を設置し、TAB方式で実装している。

[0129]

図18(A)、(B)で示すとおり、表示パネル内には素子の水分による劣化を防ぐため、乾燥剤3305、乾燥剤3304a、乾燥剤3304bが設置されている。乾燥剤3305は画素部周囲を取り囲むように形成され、乾燥剤3304a、乾燥剤3304bは、ゲート配線層3306a、3306bに対応する領域に形成されている。本実施の形態では、乾燥剤は、図18(B)に示されるように封止基板に形成された凹部に設置され、薄型化を妨げない構成となっている。ゲート配線層に対応する領域にも乾燥剤を形成しているので、吸水面積を広く取ることができ、吸水効果も向上する。また、直接発光しないゲート配線層上に乾燥剤を形成しているので、光取り出し効率を低下させることもない。本実施の形態では、表示パネル内に充填剤3307を充填している。この充填剤として、乾燥剤などの吸湿性を含む物質を用いると、さらなる吸水効果が得られ、素子の劣化を防ぐことができる。

【0130】

なお、本実施の形態では、ガラス基板で発光素子を封止した場合を示すが、封止の処理とは、発光素子を水分から保護するための処理であり、カバー材で機械的に封入する方法、熱硬化性樹脂又は紫外光硬化性樹脂で封入する方法、金属酸化物や窒化物等のバリア能力が高い薄膜により封止する方法のいずれかを用いる。カバー材としては、ガラス、セラミックス、プラスチックもしくは金属を用いることができるが、カバー材側に光を放射させる場合は透光性でなければならない。また、カバー材と上記発光素子が形成された基板とは熱硬化性樹脂又は紫外光硬化性樹脂等のシール材を用いて貼り合わせられ、熱処理又は紫外光照射処理によって樹脂を硬化させて密閉空間を形成する。この密閉空間の中に酸化バリウムに代表される吸湿材を設けることも有効である。この吸湿材は、シール材の上に接して設けても良いし、発光素子よりの光を妨げないような、隔壁の上や周辺部に設けても良い。さらに、カバー材と発光素子の形成された基板との空間を熱硬化性樹脂若しくは紫外光硬化性樹脂で充填することも可能である。この場合、熱硬化性樹脂若しくは紫外光硬化性樹脂の中に酸化バリウムに代表される吸湿材を添加しておくことは有効である。

[0131]

本実施の形態では、スイッチングTFTはシングルゲート構造を示したが、ダブルゲート構造などのマルチゲート構造でもよい。また半導体をSASや結晶性半導体を用いて作製した場合、一導電型を付与する不純物の添加によって不純物領域を形成することもできる。この場合、半導体層は濃度の異なる不純物領域を有していてもよい。例えば、半導体

層のチャネル領域近傍、ゲート電極層と積層する領域は、低濃度不純物領域とし、その外側の領域を高濃度不純物領域としてもよい。

[0132]

以上示したように、本実施の形態では、フォトマスクを利用した光露光工程を用いないことにより、工程を省略することができる。また、液滴吐出法を用いて基板上に直接的に各種のパターンを形成することにより、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易に表示パネルを製造することができる。

[0133]

本発明により、所望なパターンを制御性よく形成できる。また、材料のロスも少なく、 コストダウンも達成できる。よって高性能、高信頼性の発光表示装置を歩留まりよく作製 することができる。

[0134]

(実施の形態3)

本発明の実施の形態として、図10、図11を用いて説明する。本実施の形態は、薄膜トランジスタとしてトップゲート型(順スタガ型)の薄膜トランジスタを用いて、表示装置を作製するものである。なお表示素子として液晶材料を用いた液晶表示装置の例を示す。よって、同一部分又は同様な機能を有する部分の繰り返しの説明は省略する。なお、図10、図11は表示装置の断面図である。

[0135]

本実施の形態でも、光触媒物質の光活性効果を用い、基板を通過しての光照射処理より 、照射領域のぬれ性を変化させるように改質する。

[0136]

透光性を有する基板300上に、ソース電極層又はドレイン電極層330及びソース電極層又はドレイン電極層308を形成する。本実施の形態においては、液滴吐出法を用いて形成する。

[0137]

ソース電極層又はドレイン電極層330、ソース電極層又はドレイン電極層308にN型半導体層形成し、レジスト等からなるマスクによってエッチングする。レジストは液滴吐出法を用いて形成すればよい。N型半導体層上に半導体層を形成し再び、マスク等を用いてパターニングする。よってN型半導体層307、半導体層306が形成される。半導体層306は、本実施の形態では、無機材料であるシリコンを用いるが、前述したようなペンタセンなどの有機半導体を用いることもできる。有機半導体を液滴吐出法などによって選択的に形成すると、パターニングの工程を簡略化することができる。

[0138]

次に、プラズマCVD法やスパッタリング法を用いて、ゲート絶縁層305を単層又は 積層構造で形成する(図10(A)参照。)。ゲート絶縁層305は、無機材料、有機材 料どちらを用いてもよく、好ましい形態としては、窒化珪素からなる絶縁体層305a、 酸化珪素からなる絶縁体層305b、窒化珪素からなる絶縁体層305cの3層の積層体 がゲート絶縁層に相当する。

[0139]

ゲート絶縁層305上に、光触媒物質350を形成する。光触媒物質350上のゲート 電極層を形成する領域を含む近傍に、ぬれ性が低い物質351を形成する(図10(B) 参照。)。

[0140]

次に、光触媒物質350上に、レジストなどからなるマスクを形成し、光触媒物質350及びゲート絶縁層305をエッチングし、貫通孔345を形成する。本実施の形態では、液滴吐出法によりマスクを選択的に形成する。

[0141]

光触媒物質350に対し、透光性を有する基板300側から、光源370より光371 を照射する。光371は基板300、半導体層306、ゲート絶縁層305を通過して、 光触媒物質350を活性化させ、そのエネルギーによってぬれ性が低い物質351表面を 改質処理する。ソース電極層又はドレイン電極層330、ソース電極層又はドレイン電極 層308がマスクとなるため、ぬれ性が低い物質351表面には、相対的にぬれ性が高い 高ぬれ性領域301、相対的にぬれ性が低い低ぬれ性領域302a、低ぬれ性領域302 bが形成される(図10(C)参照。)。光触媒物質によって、処理効率及び処理能力が 向上する。本実施の形態のように、ソース電極層又はドレイン電極層をマスクして、光照 射により膜の改質を行うと、ぬれ性の異なる微細なパターンも制御性よく形成することが できる。また、液滴吐出法を組み合わせることで、スピンコート法などによる全面塗布形 成に比べ、材料のロスが防げ、コストダウンが可能になる。

本実施の形態では、透光性を有する基板300、半導体層306、ゲート絶縁層305 を通過させて、その上に形成される光触媒物質に光照射し、光触媒に接して形成されている物質表面を改質処理する。よってゲート電極層の被形成領域表面の改質処理に必要な光触媒物質の光活性によるエネルギーが得られるように、光が通過する透光性基板300、半導体層306、ゲート絶縁層305における光の吸収が抑えられることが重要である。物質表面の改質処理に与えられるエネルギーは、光が通過する物質による吸収量などによっても変化するので、膜厚や光の強度等を適宜設定すればよい。

[0143]

[0142]

この高ぬれ性領域301に導電性材料を含む組成物を流動性を有する液滴として、液滴 吐出装置381より吐出し、ゲート電極層303を形成する(図11(A)参照。)。吐 出された流動性を有する導電性材料を含む組成物は、その被形成領域のぬれ性の違いによ り、低ぬれ性領域302a、低ぬれ性領域302bでは、導電性材料を含む組成物ははじ かれるため、組成物は固着せず、より安定性の高い高ぬれ性領域301に制御性よく安定 して形成される。

[0144]

電極層の形成後に前処理として形成した光触媒物質及びぬれ性を変化させる物質を残してもよいし、パターンを形成後に、不必要な部分は除去してしまってもよい。除去は、パターンをマスクとして用いることもでき、酸素等によるアッシング、エッチング、プラズマ処理などにより除去すればいい。

[0145]

[0146]

画素電極層311を液滴吐出法で形成する。画素電極層311とソース電極層又はドレイン電極層308とを、先に形成した貫通孔345において電気的に接続する。画素電極層311は、前述した第1の電極層117と同様な材料を用いることができ、透過型の液晶表示パネルを作製する場合には、インジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化スズ(SnO_2)などを含む組成物により所定のパターンを形成し、焼成によって形成しても良い。

次に、画素電極層311を覆うように、印刷法やスピンコート法により、配向膜と呼ばれる絶縁層312を形成する。なお、絶縁層312は、スクリーン印刷法やオフセット印刷法を用いれば、選択的に形成することができる。その後、ラビングを行う。続いて、シール材を液滴吐出法により画素を形成した周辺の領域に形成する(図示せず。)。 【0147】

その後、配向膜として機能する絶縁層321、カラーフィルタとして機能する着色層322、対向電極として機能する等電体層323、偏光板325が設けられた対向基板324とTFT基板300とをスペーサを介して貼り合わせ、その空隙に液晶層320を設けることにより液晶表示パネルを作製することができる(図11(B)参照。)。シール材にはフィラーが混入されていても良く、さらに対向基板324には、遮蔽膜(ブラックマトリクス)などが形成されていても良い。なお、液晶層を形成する方法として、ディスペンサ式(滴下式)や、対向基板324を貼り合わせてから毛網管現象を用いて液晶を注入するディップ式(汲み上げ式)を用いることができる。

[0148]

ディスペンサ方式を採用した液晶滴下注入法を図29を用いて説明する。図29の液晶 滴下注入法は、制御装置40、撮像手段42、ヘッド43、液晶33、マーカー35、マ ーカー45、バリア層34、シール材32、TFT基板30、対向基板20からなる。シ ール材32で閉ループを形成し、その中にヘッド43より液晶33を1回若しくは複数回 滴下する。液晶材料の粘性が高い場合は、連続的に吐出され、繋がったまま被形成領域に 付着する。一方、液晶材料の粘性が低い場合には、図29のように間欠的に吐出され液 が滴下される。そのとき、シール材32と液晶33とが反応することを防ぐため、バリア 層34を設ける。続いて、真空中で基板を貼り合わせ、その後紫外線硬化を行って、液晶 が充填された状態とする。

[0149]

以上の工程で形成された画素部と外部の配線基板を接続するために接続部を形成する。 大気圧又は大気圧近傍下で、酸素ガスを用いたアッシング処理により、接続部の絶縁体層 を除去する。この処理は、酸素ガスと、水素、CF₄、NF₃、H₂O、CHF₃から選択された一つ又は複数とを用いて行う。本工程では、静電気による損傷や破壊を防止するために、対向基板を用いて封止した後に、アッシング処理を行っているが、静電気による影響が少ない場合には、どのタイミングで行っても構わない。

[0150]

続いて、異方性導電体層を介して、配線層が電気的に接続するように、接続用の配線基板を設ける。配線基板は、外部からの信号や電位を伝達する役目を担う。上記工程を経て、表示機能を有する液晶表示パネルを作製することができる。

[0151]

本実施の形態では、スイッチングTFTはシングルゲート構造を示したが、ダブルゲート構造などのマルチゲート構造でもよい。また半導体をSASや結晶性半導体を用いて作製した場合、一導電型を付与する不純物の添加によって不純物領域を形成することもできる。この場合、半導体層は濃度の異なる不純物領域を有していてもよい。例えば、半導体層のチャネル領域近傍、ゲート電極層と積層する領域は、低濃度不純物領域とし、その外側の領域を高濃度不純物領域としてもよい。

[0152]

以上示したように、本実施の形態では、フォトマスクを利用した光露光工程を用いないことにより、工程を省略することができる。また、液滴吐出法を用いて基板上に直接的に各種のパターンを形成することにより、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易に表示パネルを製造することができる。

[0153]

本発明により、所望なパターンを制御性よく形成できる。また、材料のロスも少なく、 コストダウンも達成できる。よって高性能、高信頼性の発光表示装置を歩留まりよく作製 することができる。

[0154]

(実施の形態4)

本発明を適用して薄膜トランジスタを形成し、該薄膜トランジスタを用いて表示装置を 形成することができるが、発光素子を用いて、なおかつ、該発光素子を駆動するトランジ スタとしてN型トランジスタを用いた場合、該発光素子から発せられる光は、下面放射、 上面放射、両面放射のいずれかを行う。ここでは、それぞれの場合に応じた発光素子の積 層構造について、図1.2を用いて説明する。

[0155]

また、本実施の形態では、本発明を適用したチャネル保護型の薄膜トランジスタ471、481とチャネルエッチ型の薄膜トランジスタ461を用いる。薄膜トランジスタ481は、透光性を有する基板480上設けられ、ゲート電極層493、ゲート絶縁層497、半導体層494、N型半導体層495、ソース電極層又はドレイン電極層487、チャネル保護層496により形成される。本実施の形態では、半導体層として非晶質の構造を

有する珪素膜を用い、一導電型の半導体層としてN型の半導体層を用いる。N型半導体層を形成するかわりに、PH3ガスによるプラズマ処理を行うことによって、半導体層に導電性を付与してもよい。半導体層は本実施の形態に限定されず、実施の形態2で示したように、結晶性半導体層を用いることもできる。ポリシリコンのような結晶性半導体層を用いる場合、一導電型の半導体層を形成せず、結晶性半導体層に不純物を導入(添加)して一導電型を有する不純物領域を形成してもよい。また、ペンタセンなどの有機半導体を用いることもでき、有機半導体を液滴吐出法などによって選択的に形成すると、パターニングの工程を簡略化することができる。

[0156]

またチャネル保護層496及び、N型半導体層495上に、光触媒物質499及びぬれ性が低い物質490が形成されている。本実施の形態では、この光触媒物質499に、透光性を有する基板側から、光を照射し、ゲート電極層493によって遮断されない光触媒物質499を活性化し、ぬれ性が低い物質490の表面を改質する。光として、その光触媒物質が活性化する波長の光を照射する。光触媒物質の活性化によるエネルギーによって、光の照射による改質処理能力は向上する。光触媒物質を選択することにより、照射する光の波長の選択幅が広がるので、透光性を有する基板が吸収する波長以外の光を選択することができる。

[0157]

本実施の形態では、導電性材料を含む組成物に対してぬれ性が低い物質490表面において、ゲート電極層493がマスクとなるチャネル保護層496に重畳する表面以外を、光の照射によってより高いぬれ性となるように改質している。よってぬれ性が低い物質490表面には、相対的に高いぬれ性領域である高ぬれ性領域492a、高ぬれ性領域492b、相対的に低いぬれ性領域である低ぬれ性領域491が形成される。チャネル保護層表面の低ぬれ性領域491は、周囲のN型半導体表面の高ぬれ性領域492a、高ぬれ性領域492bよりぬれ性が低いので導電性材料を含む組成物は付着せず、結果としてぬれ性の高い高ぬれ性領域492a、高ぬれ性領域492bにソース電極層又はドレイン電極層487が制御性よく形成される。本実施の形態で用いたぬれ性が低い物質はFASであり、単分子レベルの極薄膜なので、N型半導体層と電極層とを絶縁することはない。導電性を持たすか絶縁性を持たすかは、形成する構造によって、材料、膜厚などを適宜決定すればよい。

[0158]

薄膜トランジスタ481において、チャネル保護層上には、導電性材料を含む組成物に対して低いぬれ性を有する物質が形成されている。この物質が、薄膜トランジスタ481を覆うように形成する絶縁層498に対しても低いぬれ性を有する場合、密着性が低下するなどの絶縁層498の形成不良が生じる可能性があるため、ぬれ性が低い物質を除去するか、光照射を行い、ぬれ性を高める改質処理を行った方が好ましい。絶縁層を蒸着法、CVD法、スパッタ法などによって形成する場合は必ずしもこの処理は必要ではない。図12(A)における薄膜トランジスタ481を覆う絶縁層498は、蒸着法によって形成し、チャネル保護層上の低いぬれ性物質に処理を加えない例を示す。図12(C)における薄膜トランジスタ471上を覆う絶縁層478は、液滴吐出法を用いて形成するため、絶縁層478を形成する前に図12(A)における低ぬれ性領域491に対応する領域に光を照射し、ぬれ性を高める処理を行う例を示す。

【0159】

チャネル保護層496は、液滴吐出法を用いてポリイミド又はポリビニルアルコール等を滴下してもよい。その結果、露光工程を省略することができる。チャネル保護層としては、無機材料(酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素など)、感光性または非感光性の有機(樹脂)材料(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、ベンゾシクロブテンなど)、レジスト、低誘電率であるLow k材料などの一種、もしくは複数種からなる膜、またはこれらの膜の積層などを用いることができる。また、シロキサン樹脂を用いてもよい。なお、シロキサン樹脂とは、Si-O-Si結合を含む樹脂

に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。作製法としては、プラズマCVD法や熱CVD法などの気相成長法やスパッタリング法を用いることができる。また、液滴吐出法や、印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)を用いることもできる。塗布法で得られるTOF膜やSOG膜なども用いることができる。

【0160】

まず、光が透光性を有する基板480側に放射する場合、つまり下面放射を行う場合について、図12(A)を用いて説明する。この場合、薄膜トランジスタ481に電気的に接続するように、ソース電極層又はドレイン電極層487に接して、第1の電極層484、電界発光層485、第2の電極層486が順に積層される。次に、光が透光性を有する基板460と反対側に放射する場合、つまり上面放射を行う場合について、図12(B)を用いて説明する。薄膜トランジスタ461は、前述した薄膜トランジスタの同様に形成することができるが、チャネル保護層は有しておらず、ソース電極層又はドレイン電極層をマスクとして、N型半導体層、透光性を有する物質及び半導体層の一部をエッチングによって除去している。このようにチャネルエッチ型の薄膜トランジスタ461においては、制御よくパターンを形成するために用いた光触媒物質及びぬれ性が低い物質の一部は除去される。チャネル保護型の薄膜トランジスタ481において、本実施の形態では、チャネル保護型であっても除去してもよい。またぬれ性が低い物質のみを除去してもよい。

薄膜トランジスタ461に電気的に接続するソース電極層又はドレイン電極層462、第1の電極層463、電界発光層464、第2の電極層465が順に積層される。上記構成により、第1の電極層463において光が透過しても、該光はソース電極層又はドレイン電極層462において反射され、透光性を有する基板460と反対側に放射する。なお、本構成では、第1の電極層463には透光性を有する材料を用いる必要はない。最後に、光が透光性を有する基板470側とその反対側の両側に放射する場合、つまり両面放射を行う場合について、図12(C)を用いて説明する。薄膜トランジスタ471は、薄膜トランジスタ481と同様のチャネル保護型の薄膜トランジスタであり。薄膜トランジスタ481と同様に形成することができる。薄膜トランジスタ471に電気的に接続するソース電極層又はドレイン電極層477、第1の電極層472、電界発光層473、第2の電極層474が順に積層される。このとき、第1の電極層472と第2の電極層474のどちらも透光性を有する材料、又は光を透過できる厚さで形成すると、両面放射が実現する。

[0162]

[0163]

本実施の形態において適用できる発光素子の形態を図30に示す。発光素子は、電界発光層860を第1の電極層870と第2の電極層850で挟んだ構成になっている。第1の電極層及び第2の電極層は仕事関数を考慮して材料を選択する必要があり、そして第1の電極層及び第2の電極層は、画素構成によりいずれも陽極、又は陰極となりうる。本実施の形態では、駆動用TFTの極性がNチャネル型であるため、第1の電極層を陰極、第2の電極層を陽極とすると好ましい。また駆動用TFTの極性がPチャネル型である場合、第1の電極層を陽極、第2の電極層を陰極とするとよい。

図30(A)及び(B)は、第1の電極層870が陽極であり、第2の電極層850が 陰極である場合であり、電界発光層860は、第1の電極層870側から、HIL(ホー ル注入層)/HTL(ホール輸送層)804、EML(発光層)803、ETL(電子輸 送層)/EIL(電子注入層)802、第2の電極層850の順に積層するのが好ましい

。図30(A)は第1の電極層870から光を放射する構成であり、第1の電極層870

は透光性を有する酸化物等電性材料からなる電極層805で構成し、第2の電極層は発光層860側から、LiFやMgAgなどアルカリ金属又はアルカリ土類金属を含む電極層801とアルミニウムなどの金属材料で形成する電極層800より構成されている。図30(B)は第2の電極層850から光を放射する構成であり、第1の電極層は、アルミニウム、チタンなどの金属、又は該金属と化学量論的組成比以下の濃度で窒素を含む金属材料で形成する電極層807と、酸化珪素を1~15原子%の濃度で含む酸化物導電性材料で形成する第2の電極層806より構成されている。第2の電極層は、第2の電極層は電界発光層860側から、LiFやMgAgなどアルカリ金属又はアルカリ土類金属を含む電極層801とアルミニウムなどの金属材料で形成する電極層800より構成されているがいずれの層も100nm以下の厚さとして光を透過可能な状態としておくことで、第2の電極層850から光を放射することが可能となる。

[0164]

図30(C)及び(D)は、第1の電極層870が陰極であり、第2の電極層850が 陽極である場合であり、電界発光層860は、陰極側からE1L(電子注入層)及びET L (電子輸送層) 802、EML (発光層) 803、HTL (ホール輸送層) 及びH1L (ホール注入層)804、陽極である第2の電極層850の順に積層するのが好ましい。 図30 (C) は第1の電極層870から光を放射する構成であり、第1の電極層870は 電界発光層860側から、LiFやMgAgなどアルカリ金属又はアルカリ土類金属を含 む電極層801とアルミニウムなどの金属材料で形成する電極層800より構成されてい るがいずれの層も100nm以下の厚さとして光を透過可能な状態としておくことで、第 1の電極層870から光を放射することが可能となる。第2の電極層は、電界発光層86 の側から、酸化珪素を1~15原子%の濃度で含む酸化物導電性材料で形成する第2の電 極層806、アルミニウム、チタンなどの金属、又は該金属と化学量論的組成比以下の濃 度で窒素を含む金属材料で形成する電極層807より構成されている。図30(D)は第 2の電極層850から光を放射する構成であり、第1の電極層870は電界発光層860 側から、LiFやMgAgなどアルカリ金属又はアルカリ土類金属を含む電極層801と アルミニウムなどの金属材料で形成する電極層800より構成されており、膜厚は電界発 光層860で発光した光を反射可能な程度に厚く形成している。第2の電極層850は、 透光性を有する酸化物導電性材料からなる電極層805で構成されている。なお電界発光 層は、積層構造以外に単層構造、又は混合構造をとることがでる。

[0165]

また、電界発光層として、赤色(R)、緑色(G)、青色(B)の発光を示す材料を、それぞれ蒸着マスクを用いた蒸着法等によって選択的に形成する。赤色(R)、緑色(G)、青色(B)の発光を示す材料はカラーフィルタ同様、液滴吐出法により形成することもでき(低分子または高分子材料など)、この場合マスクを用いずとも、RGBの塗り分けを行うことができるため好ましい。

【0166】

また上面放射型の場合で、第2の電極層に透光性を有するITOやITSOを用いる場合、ベンゾオキサゾール誘導体 (BzOS) にしiを添加したBzOS-Liなどを用いることができる。また例えばEMLは、R、G、Bのそれぞれの発光色に対応したドーパント (Rの場合DCM等、Gの場合DMQD等)をドープしたAlq $_3$ を用いればよい。【0167】

なお、電界発光層は上記材料に限定されない。例えば、CuPcやPEDOTの代わりに酸化モリブデン($MoOx: x=2\sim3$)等の酸化物と $\alpha-NPD$ やルプレンを共蒸着して形成し、ホール注入性を向上させることもできる。また電界発光層の材料は、有機材料(低分子又は高分子を含む)、又は有機材料と無機材料の複合材料として用いることができる。以下発光素子を形成する材料について詳細に述べる。

[0168]

電荷注入輸送物質のうち、特に電子輸送性の高い物質としては、例えばトリス(8-キノリノラト)アルミニウム(略称:Alq₃)、トリス(5-メチル-8-キノリノラト

)アルミニウム(略称: $A \ Im \ q_3$)、ビス($10 - E \ FU + E > C$ ($10 - E \ FU + E > C$) ベリリウム(略称: $10 - E \ FU + E > C$)、ビス($10 - E \ FU + E > C$)、ビス($10 - E \ FU + E > C$)、ビス($10 - E \ FU + E > C$)、ビス($10 - E \ FU + E > C$)、ビス($10 - E \ FU + E > C$)、ビス($10 - E \ FU + E > C$)、ビス($10 - E \ FU + E > C$) 「ボス $10 - E \ FU + E > C$) 「 $10 - E \ FU + E > C$) 「 $10 - E \ FU + E > C$) 「 $10 - E \ FU + E > C$) 「 $10 - E \ FU$

[0169]

また、電荷注入輸送物質のうち、特に電子注入性の高い物質としては、フッ化リチウム (LiF)、フッ化セシウム (CsF)、フッ化カルシウム (CaF2)等のようなアルカリ金属又はアルカリ土類金属の化合物が挙げられる。また、この他、Alq2のような電子輸送性の高い物質とマグネシウム (Mg)のようなアルカリ土類金属との混合物であってもよい。

[0170]

電荷注入輸送物質のうち、正孔注入性の高い物質としては、例えば、モリブデン酸化物 (MoOx) やバナジウム酸化物 (VOx)、ルテニウム酸化物 (RuOx)、タングステン酸化物 (WOx)、マンガン酸化物 (MnOx)等の金属酸化物が挙げられる。また、この他、フタロシアニン (Rho: H_2Pc) や銅フタロシアニン (CuPC)等のフタロシアニン系の化合物が挙げられる。

[0171]

発光層は、発光波長帯の異なる発光層を画素毎に形成して、カラー表示を行う構成としても良い。典型的には、R(赤)、G(緑)、B(青)の各色に対応した発光層を形成する。この場合にも、画素の光放射側にその発光波長帯の光を透過するフィルターを設けた構成とすることで、色純度の向上や、画素部の鏡面化(映り込み)の防止を図ることができる。フィルターを設けることで、従来必要であるとされていた円偏光版などを省略することが可能となり、発光層から放射される光の損失を無くすことができる。さらに、斜方から画素部(表示画面)を見た場合に起こる色調の変化を低減することができる。

発光材料には様々な材料がある。低分子有機発光材料では、4-ジシアノメチレン-2-Xチルー6-[2-(1,1,7,7-テトラメチルー9-ジュロリジル)エテニル]-4-ピラン (略称: DCJT)、<math>4-ジシアノメチレン-2-t-ブチルー6-[2-(1,1,7,7-テトラメチルジュロリジン-9-イル)エテニル]-4H-ピラン (略称: DCJTB)、ペリフランテン、<math>2.5-ジシアノ-1.4-ビス [2-(10-X)+キシ-1.1,7,7-Fトラメチルジュロリジン-9-イル)エテニル]ベンゼン、<math>N,N'-ジメチルキナクリドン (略称: DMQd)、クマリン6、クマリン545T、トリス(8ーキノリノラト)アルミニウム (略称: AIq3)、9,9'-ビアントリル、9,10-ジフェニルアントラセン (略称: DPA) や9,10-ビス(2-ナフチル)アントラセン (略称: DNA) 等を用いることができる。また、この他の物質でもよい。

【0173】

一方、高分子系有機発光材料は低分子系に比べて物理的強度が高く、素子の耐久性が高い。また塗布により成膜することが可能であるので、素子の作製が比較的容易である。高分子系有機発光材料を用いた発光素子の構造は、低分子系有機発光材料を用いたときと基本的には同じであり、順に陰極、有機発光層、陽極となる。しかし、高分子系有機発光材料を用いた発光層を形成する際には、低分子系有機発光材料を用いたときのような積層構造を形成させることは難しく、多くの場合2層構造となる。具体的には、順に陰極、発光層、正孔輸送層、陽極という構造である。

[0174]

発光色は、発光層を形成する材料で決まるため、これらを選択することで所望の発光を 示す発光素子を形成することができる。発光層の形成に用いることができる高分子系の電 界発光材料は、ボリパラフェニレンビニレン系、ボリパラフェニレン系、ボリチオフェン 系、ボリフルオレン系が挙げられる。

[0175]

ポリパラフェニレンビニレン系には、ポリ (パラフェニレンビニレン) 【PPV】の誘導体、ポリ(2,5ージアルコキシー1,4ーフェニレンビニレン) 【ROーPPV】、ポリ(2ー(2'ーエチルーへキソキシ)-5ーメトキシー1,4ーフェニレンビニレン) 【MEHーPPV】、ポリ(2ー(ジアルコキシフェニル)-1.4ーフェニレンビニレン) 【ROPhーPPV】等が挙げられる。ポリパラフェニレン系には、ポリパラフェニレン 【ROーPPD】、ポリ(2,5ージへキソキシー1,4ーフェニレン)等が挙げられる。ポリチオフェン系には、ポリチオフェン 【PT】の誘導体、ポリ(3ーアルキルチオフェン) 【PAT】、ポリ(3ーペキシルチオフェン) 【PHT】、ポリ(3ーシクロへキシルチオフェン) 【PCHT】、ポリ(3ーシクロへキシルチオフェン) 【PCHT】、ポリ(3,4ージシクロへキシルチオフェン) 【PDCHT】、ポリ【3ー(4ーオクチルフェニル)ーチオフェン】 【POPT】、ポリ【3ー(4ーオクチルフェニル)ークチルフェニル)ークチルフェニル)ークチルフェニル) 「PTOPT】 等が挙げられる。ポリフルオレン系には、ポリフルオレン [PF】の誘導体、ポリ(9,9ージアルキルフルオレン) [PDAF】、ポリ(9,9ージオクチルフルオレン) [PDOF】 等が挙げられる。

[0176]

なお、正孔輪送性の高分子系有機発光材料を、陽極と発光性の高分子系有機発光材料の間に挟んで形成すると、陽極からの正孔注入性を向上させることができる。一般にアクセプター材料と共に水に溶解させたものをスピンコート法などで塗布する。また、有機溶媒には不溶であるため、上述した発光性の有機発光材料との積層が可能である。正孔輸送性の高分子系有機発光材料としては、PEDOTとアクセプター材料としてのショウノウスルホン酸(CSA)の混合物、ポリアニリン [PANI]とアクセプター材料としてのポリスチレンスルホン酸 [PSS]の混合物等が挙げられる。

[0177]

また、発光層は単色又は白色の発光を呈する構成とすることができる。白色発光材料を 用いる場合には、画素の光放射側に特定の波長の光を透過するフィルター(着色層)を設 けた構成としてカラー表示を可能にすることができる。

[0178]

白色に発光する発光層を形成するには、例えば、Alq₈、部分的に赤色発光色素であるナイルレッドをドープしたAlq₃、Alq₈、p-EtTAZ、TPD(芳香族ジアミン)を蒸着法により順次積層することで白色を得ることができる。また、スピンコートを用いた塗布法によりELを形成する場合には、塗布した後、真空加熱で焼成することが好ましい。例えば、正孔注入層として作用するボリ(エチレンジオキシチオフェン)及びボリ(スチレンスルホン酸)水溶液(PEDOT/PSS)を全面に塗布、焼成し、その後、発光層として作用する発光中心色素(1,1,4,4-テトラフェニルー1,3-ブタジエン(TPB)、4-ジシアノメチレン-2-メチルー6-(p-ジメチルアミノースチリル)-4H-ピラン(DCM1)、ナイルレッド、クマリン6など)ドープしたボリビニルカルバゾール(PVK)溶液を全面に塗布、焼成すればよい。

【0179】

発光層は単層で形成することもでき、ホール輸送性のボリビニルカルバゾール (PVK) に電子輸送性の1、3、4ーオキサジアゾール誘導体 (PBD) を分散させてもよい。また、30wt%のPBDを電子輸送剤として分散し、4種類の色素 (TPB、クマリン6、DCM1、ナイルレッド)を適当量分散することで白色発光が得られる。ここで示した白色発光が得られる発光素子の他にも、発光層の材料を適宜選択することによって、赤色

発光、緑色発光、または青色発光が得られる発光素子を作製することができる。 【0180】

なお、正孔輸送性の高分子系有機発光材料を、陽極と発光性の高分子系有機発光材料の間に挟んで形成すると、陽極からの正孔注入性を向上させることができる。一般にアクセプター材料と共に水に溶解させたものをスピンコート法などで塗布する。また、有機溶媒には不溶であるため、上述した発光性の有機発光材料との積層が可能である。正孔輸送性の高分子系有機発光材料としては、PEDOTとアクセプター材料としてのショウノウスルホン酸(CSA)の混合物、ポリアニリン [PANI] とアクセプター材料としてのポリスチレンスルホン酸 [PSS] の混合物等が挙げられる。

[0181]

さらに、発光層は、一重項励起発光材料の他、金属錯体などを含む三重項励起材料を用いても良い。例えば、赤色の発光性の画素、緑色の発光性の画素及び青色の発光性の画素のうち、輝度半減時間が比較的短い赤色の発光性の画素を三重項励起発光材料で形成し、他を一重項励起発光材料で形成する。三重項励起発光材料は発光効率が良いので、同じ輝度を得るのに消費電力が少なくて済むという特徴がある。すなわち、赤色画素に適用した場合、発光素子に流す電流量が少なくて済むので、信頼性を向上させることができる。低消費電力化として、赤色の発光性の画素と緑色の発光性の画素とを三重項励起発光材料で形成し、青色の発光性の画素を一重項励起発光材料で形成しても良い。人間の視感度が高い緑色の発光素子も三重項励起発光材料で形成することで、より低消費電力化を図ることができる。

[0182]

三重項励起発光材料の一例としては、金属錯体をドーパントとして用いたものがあり、第三遷移系列元素である白金を中心金属とする金属錯体、イリジウムを中心金属とする金属錯体などが知られている。三重項励起発光材料としては、これらの化合物に限られることはなく、上記構造を有し、且つ中心金属に周期表の8~10属に属する元素を有する化合物を用いることも可能である。

[0183]

以上に掲げる発光層を形成する物質は一例であり、正孔注入輸送層、正孔輸送層、電子 注入輸送層、電子輸送層、発光層、電子ブロック層、正孔ブロック層などの機能性の各層 を適宜積層することで発光素子を形成することができる。また、これらの各層を合わせた 混合層又は混合接合を形成しても良い。発光層の層構造は変化しうるものであり、特定の 電子注入領域や発光領域を備えていない代わりに、もっぱらこの目的用の電極層を備えた り、発光性の材料を分散させて備えたりする変形は、本発明の趣旨を逸脱しない範囲にお いて許容されうるものである。

[0184]

上記のような材料で形成した発光素子は、順方向にバイアスすることで発光する。発光素子を用いて形成する表示装置の画素は、単純マトリクス方式、若しくはアクティブマトリクス方式で駆動することができる。いずれにしても、個々の画素は、ある特定のタイミングで順方向バイアスを印加して発光させることとなるが、ある一定期間は非発光状態となっている。この非発光時間に逆方向のバイアスを印加することで発光素子の信頼性を向上させることができる。発光素子では、一定駆動条件下で発光強度が低下する劣化や、画素内で非発光領域が拡大して見かけ上輝度が低下する劣化モードがあるが、順方向及び逆方向にバイアスを印加する交流的な駆動を行うことで、劣化の進行を遅くすることができ、発光装置の信頼性を向上させることができる。また、デジタル駆動、アナログ駆動どちらでも適用可能である。

[0185]

よって、図12には図示していないが、透光性を有する基板480、透光性を有する基板470及び透光性を有する基板460の封止基板にカラーフィルタ(着色層)を形成してもよい。カラーフィルタ(着色層)は液滴吐出法によって形成することができ、その場合、前述の下地前処理として光照射処理などを適用することができる。本発明を用いると

、所望なパターンに制御性よくカラーフィルタ(着色層)を形成することができる。カラーフィルタ(着色層)を用いると、高精細な表示を行うこともできる。カラーフィルタ(着色層)により、各RGBの発光スペクトルにおいてブロードなピークを鋭くなるように補正できるからである。

[0186]

以上、各RGBの発光を示す材料を形成する場合を説明したが、単色の発光を示す材料を形成し、カラーフィルタや色変換層を組み合わせることによりフルカラー表示を行うことができる。カラーフィルタ(着色層)や色変換層は、例えば第2の基板(封止基板)に形成し、基板へ張り合わせればよい。また上述したように、単色の発光を示す材料、カラーフィルタ(着色層)、及び色変換層のいずれも液滴吐出法により形成することができる

[0187]

もちろん単色発光の表示を行ってもよい。例えば、単色発光を用いてエリアカラータイプの表示装置を形成してもよい。エリアカラータイプは、パッシブマトリクス型の表示部が適しており、主に文字や記号を表示することができる。

[0188]

上記構成において、陰極としては、仕事関数が小さい材料を用いることが可能で、例え ば、Ca、Al、CaF、MgAg、AlLi等が望ましい。電界発光層は、単層型、積 層型、また層の界面がない混合型のいずれでもよい。またシングレット材料、トリプレッ ト材料、又はそれらを組み合わせた材料や、有機化合物又は無機化合物を含む電荷注入輸 送物質及び発光材料で形成し、その分子数から低分子系有機化合物、中分子系有機化合物 (昇華性を有さず、且つ分子数が20以下、又は連鎖する分子の長さが10 µm以下の有 機化合物を指していう)、高分子系有機化合物から選ばれた一種又は複数種の層を含み、 電子注入輸送性又は正孔注入輸送性の無機化合物と組み合わせてもよい。第1の電極層4 84、第1の電極層463、第1の電極層472は光を透過する透明導電膜を用いて形成 し、例えばITO、ITSOの他、酸化インジウムに2~20%の酸化亜鉛(ZnO)を 混合した透明導電膜を用いる。なお、第1の電極層484、第1の電極層463、第1の 電極層472形成前に、酸素雰囲気中でのプラズマ処理や真空雰囲気下での加熱処理を行 うとよい。隔壁(土手ともいう)は、珪素を含む材料、有機材料及び化合物材料を用いて 形成する。また、多孔質膜を用いても良い。但し、アクリル、ポリイミド等の感光性、非 感光性の材料を用いて形成すると、その側面は曲率半径が連続的に変化する形状となり、 上層の薄膜が段切れせずに形成されるため好ましい。本実施の形態は、上記の実施の形態 と自由に組み合わせることが可能である。

[0189]

(実施の形態5)

実施の形態4乃至6によって作製される表示パネルにおいて、半導体層をSASで形成することによって、図14(B)で説明したように、走査線側の駆動回路を基板3700上に形成することができる。

【0190】

図25は、 $1\sim15$ c m $^2/V$ · s e c の電界効果移動度が得られるSASを使った n チャネル型のTFTで構成する走査線側駆動回路のブロック図を示している。

[0191]

図2 5 においてブロック5 0 0 が 1 段分のサンプリングバルスを出力するパルス出力回路に相当し、シフトレジスタは n 個のパルス出力回路により構成される。9 0 1 はバッファ回路であり、その先に画素 9 0 2 が接続される。

【0192】

図26は、パルス出力回路に相当するブロック500の具体的な構成を示したものであり、n チャネル型のTFT601~613で回路が構成されている。このとき、SASを使ったn チャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良い。例えば、チャネル長を 8μ mとすると、チャネル幅は10~ 80μ mの範囲で設定するこ

とができる。

[0193]

また、バッファ回路901の具体的な構成を図27に示す。バッファ回路も同様にnチャネル型のTFT620~635で構成されている。このとき、SASを使ったnチャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良い。例えば、チャネル長を10μmとすると、チャネル幅は10~1800μmの範囲で設定することとなる。本発明を用いると、パターンを所望の形状に制御性よく形成することができるので、このようなチャネル幅を10μmとするような微細な配線もショート等の不良なく安定的に形成することができる。

[0194]

このような回路を実現するには、TFT相互を配線によって接続する必要があり、その場合における配線の構成例を図16に示す。図16では、実施の形態2と同様に、ゲート電極層103、ゲート絶縁層106(本実施の形態では窒化珪素からなる絶縁体層、酸化珪素からなる絶縁体層、窒化珪素からなる絶縁体層の3層の積層体)、有機半導体で形成される半導体層107、ソース電極層又はドレイン電極層111、ソース電極層又はドレイン電極層112が形成された状態を示している。本実施の形態では、ゲート絶縁層106の上に、光触媒物質101を形成し、ゲート電極層103をマスクとして透光性を有する基板100側から光を照射し、ソース電極層又はドレイン電極層111、ソース電極層又はドレイン電極層112の被形成領域を改質する。本実施の形態では、改質処理としてぬれ性の制御を行う。光照射処理によって光触媒物質101は活性化し、そのエネルギーによってぬれ性が低い物質155a表面は改質される。よって相対的にぬれ性の異なる領域、低ぬれ性領域150、高ぬれ性領域151a、高ぬれ性領域151bに吐出し、ソース電極層又はドレイン電極層111、及びソース電極層又はドレイン電極層112を制御性よく形成することができる。

[0195]

実施の形態2においては、半導体層107を液滴吐出法を用いて形成するため、低ぬれ性領域150上に形成されているぬれ性が低い物質にも光を照射し、そのぬれ性を高める処理を行うが、本実施の形態では、半導体層107を有機半導体であるペンタセンを真空蒸着法によって形成することによって作製するため、必ずしも低ぬれ性領域150に対してぬれ性の制御をする工程は必要でない。また、液滴吐出法などの液状の組成物の状態で、半導体層107を形成する場合であっても、被形成表面が、その組成物に対してぬれ性が低くなければよい。本実施の形態において、低ぬれ性領域150、高ぬれ性領域151 a、高ぬれ性領域151bは、ソース電極層又はドレイン電極層111を形成する導電性材料を含む組成物に対して、相対的にぬれ性が高いか低いかによって便宜上呼んでいるものである。よってソース電極層又はドレイン電極層を形成する導電性材料を含む組成物に対して、低いぬれ性を示したとしても、半導体層107を形成する組成物に対して、低いぬれ性を示したとしても、半導体層107を形成する組成物に対して、低いぬれ性を示さない場合もあり得る。このような場合は、半導体層107の被形成領域に対するぬれ性の制御工程をしなくてもよい。

[0196]

基板100上には、ゲート電極層104と同じ工程で接続配線層160、接続配線層161、接続配線層162を形成しておく。そして、接続配線層160、接続配線層161、接続配線層162が露出するようにゲート絶縁層の一部をエッチング加工して、ソース電極層又はドレイン電極層111、ソース電極層又はドレイン電極層112及びそれと同じ工程で形成する接続配線層163により適宜TFTを接続することにより様々な回路を実現することができる。

【0197】

(実施の形態6)

次に、実施の形態2万至5によって作製される表示パネルに駆動用のドライバ回路を実 装する態様について説明する。

[0198]

まず、COG方式を採用した表示装置について、図15(A)を用いて説明する。基板2700上には、文字や画像などの情報を表示する画素部2701が設けられる。複数の駆動回路が設けられた基板を、矩形状に分断し、分断後の駆動回路(ドライバICとも表記)2751は、基板2700上に実装される。図15(A)は複数のドライバIC2751、該ドライバIC2751の先にFPC2750を実装する形態を示す。また、分割する大きさを画素部の信号線側の辺の長さとほぼ同じにし、単数のドライバICに、該ドライバICの先にテープを実装してもよい。

[0199]

また、TAB方式を採用してもよく、その場合は、図15(B)で示すように複数のテープを貼り付けて、該テープにドライバICを実装すればよい。COG方式の場合と同様に、単数のテープに単数のドライバICを実装してもよく、この場合には、強度の問題から、ドライバICを固定する金属片等を一緒に貼り付けるとよい。

[0200]

これらの表示パネルに実装されるドライバICは、生産性を向上させる観点から、一辺が300mmから1000mm以上の矩形状の基板上に複数個作り込むとよい。

[0201]

つまり、基板上に駆動回路部と入出力端子を一つのユニットとする回路パターンを複数 個形成し、最後に分割して取り出せばよい。ドライバICの長辺の長さは、画素部の一辺 の長さや画素ピッチを考慮して、長辺が15~80mm、短辺が1~6mmの矩形状に形成してもよいし、画素領域の一辺、又は画素部の一辺と各駆動回路の一辺とを足した長さに形成してもよい。

[0202]

ドライバICのICチップに対する外形寸法の優位性は長辺の長さにあり、長辺が15~80mmで形成されたドライバICを用いると、画素部に対応して実装するのに必要な数がICチップを用いる場合よりも少なくて済み、製造上の歩留まりを向上させることができる。また、ガラス基板上にドライバICを形成すると、母体として用いる基板の形状に限定されないので生産性を損なうことがない。これは、円形のシリコンウエハからICチップを取り出す場合と比較すると、大きな優位点である。

[0203]

また、図14(B)のように走査線側駆動回路3702は基板上に一体形成される場合、画素部3701の外側の領域には、信号線側の駆動回路駆動回路が形成されたドライバICが実装される。これらのドライバICは、信号線側の駆動回路である。RGBフルカラーに対応した画素領域を形成するためには、XGAクラスで信号線の本数が3072本必要であり、UXGAクラスでは4800本が必要となる。このような本数で形成された信号線は、画素部3701の端部で数ブロック毎に区分して引出線を形成し、ドライバICの出力端子のビッチに合わせて集められる。

[0204]

ドライバICは、基板上に形成された結晶質半導体により形成されることが好適であり、該結晶質半導体は連続発光のレーザ光を照射することで形成されることが好適である。 従って、当該レーザ光を発生させる発振器としては、連続発光の固体レーザ又は気体レーザを用いる。連続発光のレーザを用いると、結晶欠陥が少なく、大粒径の多結晶半導体層を用いて、トランジスタを作成することが可能となる。また移動度や応答速度が良好なために高速駆動が可能で、従来よりも素子の動作周波数を向上させることができ、特性バラツキが少ないために高い信頼性を得ることができる。なお、さらなる動作周波数の向上を目的として、トランジスタのチャネル長方向とレーザ光の走査方向と一致させるとよい。これは、連続発光レーザによるレーザ結晶化工程では、トランジスタのチャネル長方向とレーザ光の基板に対する走査方向とが概ね並行(好ましくは一30度以上30度以下)であるときに、最も高い移動度が得られるためである。なおチャネル長方向とは、チャネル形成領域において、電流が流れる方向、換言すると電荷が移動する方向と一致する。この ように作製したトランジスタは、結晶粒がチャネル方向に延在する多結晶半導体層によって構成される活性層を有し、このことは結晶粒界が概ねチャネル方向に沿って形成されていることを意味する。

[0205]

レーザ結晶化を行うには、レーザ光の大幅な絞り込みを行うことが好ましく、そのレーザ光の形状(ビームスポット)の幅は、ドライバI Cの短辺の同じ幅の1 mm以上3 mm以下程度とすることがよい。また、被照射体に対して、十分に且つ効率的なエネルギー密度を確保するために、レーザ光の照射領域は、線状であることが好ましい。但し、ここでいう線状とは、厳密な意味で線を意味しているのではなく、アスペクト比の大きい長方形もしくは長楕円形を意味する。例えば、アスペクト比が2以上(好ましくは10以上1000以下)のものを指す。このように、レーザ光のレーザ光の形状(ビームスポット)の幅をドライバI Cの短辺と同じ長さとすることで、生産性を向上させた表示装置の作製方法を提供することができる。

[0206]

図15(A)、(B)のように走査線駆動回路及び信号線駆動回路の両方として、ドライバICを実装してもよい。その場合には、走査線側と信号線側で用いるドライバICの仕様を異なるものにするとよい。

[0207]

画素領域は、信号線と走査線が交差してマトリクスを形成し、各交差部に対応してトランジスタが配置される。本発明は、画素領域に配置されるトランジスタとして、非晶質半導体又はセミアモルファス半導体をチャネル部としたTFTを用いることを特徴とする。非晶質半導体は、プラズマCVD法やスパッタリング法等の方法により形成する。セミアモルファス半導体は、プラズマCVD法で300℃以下の温度で形成することが可能であり、例えば、外寸550×650mの無アルカリガラス基板であっても、トランジスタを形成するのに必要な膜厚を短時間で形成するという特徴を有する。このような製造技術の特徴は、大画面の表示装置を作製する上で有効である。また、セミアモルファスTFTは、SASでチャネル形成領域を構成することにより2~10cm²/V・secの電界効果移動度を得ることができる。また本発明を用いると、パターンを所望の形状に制御性よく形成することができる。また本発明を用いると、パターンを所望の形状に制御性よく形成することができるので、このようなチャネル幅が短い微細な配線もショート等の不良が生じることができるので、このようなチャネル幅が短い微細な配線もショート等の不良が生じることができるので、このようなチャネル幅が短い微細な配線もショート等の不良が生じることができる。従って、この下FTを画素のスイッチング用素子や、走査線側の駆動回路を構成する素子として用いることができる。従って、システムオンパネル化を実現した表示パネルを作製することができる。

[0208]

半導体層をSASで形成したTFTを用いることにより、走査線側駆動回路も基板上に一体形成することができ、半導体層をASで形成したTFTを用いる場合には、走査線側駆動回路及び信号線側駆動回路の両方をドライバICを実装するとよい。 【0209】

その場合には、走査線側と信号線側で用いるドライバICの仕様を異なるものにすることが好適である。例えば、走査線側のドライバICを構成するトランジスタには30V程度の耐圧が要求されるものの、駆動周波数は100kHz以下であり、比較的高速動作は要求されない。従って、走査線側のドライバを構成するトランジスタのチャネル長(L)は十分大きく設定することが好適である。一方、信号線側のドライバICのトランジスタには、12V程度の耐圧があれば十分であるが、駆動周波数は3Vにて65MHz程度であり、高速動作が要求される。そのため、ドライバを構成するトランジスタのチャネル長などはミクロンルールで設定することが好適である。本発明を用いると、微細なパターン

である。 【0210】

ドライバICの実装方法は、特に限定されるものではなく、公知のCOG方法やワイヤ

形成が制御性よくできるので、このようなミクロンルールにも十分に対応することが可能

ボンディング方法、或いはTAB方法を用いることができる。

[0211]

ドライバI Cの厚さは、対向基板と同じ厚さとすることで、両者の間の高さはほぼ同じものとなり、表示装置全体としての薄型化に寄与する。また、それぞれの基板を同じ材質のもので作製することにより、この表示装置に温度変化が生じても熱応力が発生することなく、TFTで作製された回路の特性を損なうことはない。その他にも、本実施形態で示すように I C チップよりも長尺のドライバ I C で駆動回路を実装することにより、1 つの画素領域に対して、実装されるドライバ I C の個数を減らすことができる。

[0212]

以上のようにして、表示パネルに駆動回路を組み入れることができる。

[0213]

(実施の形態7)

本実施の形態で示す表示パネルの画素の構成について、図17に示す等価回路図を参照 して説明する。

[0214]

図17(A)に示す画素は、列方向に信号線410及び電源線411、電源線412、電源線413、行方向に走査線414が配置される。また、スイッチング用TFT401、駆動用TFT403、電流制御用TFT404、容量素子402及び発光素子405を有する。

[0215]

図17(C)に示す画素は、TFT403のゲート電極が、行方向に配置された電源線415に接続される点が異なっており、それ以外は図17(A)に示す画素と同じ構成である。つまり、図17(A)(C)に示す両画素は、同じ等価回路図を示す。しかしながら、列方向に電源線412が配置される場合(図17(A))と、行方向に電源線415が配置される場合(図17(C))では、各電源線は異なるレイヤーの導電体層で形成される。ここでは、駆動用TFT403のゲート電極が接続される配線に注目し、これらを作製するレイヤーが異なることを表すために、図17(A)(C)として分けて記載する

[0216]

図17〈A〉(C)に示す画素の特徴として、画素内にTFT403、TFT404が 直列に接続されており、TFT403のチャネル長 L_3 、チャネル幅 W_3 、TFT404の チャネル長 L_4 、チャネル幅 W_4 は、 L_3/W_3 : L_4/W_4 =5~6000:1を満たすよう に設定される点が挙げられる。6000:1を満たす場合の一例としては、 L_3 が500 μ m、 W_3 が3 μ m、 U_4 が3 μ m、 W_4 が100 μ mの場合がある。また本発明を用いる と、パターンを所望の形状に制御性よく形成することができるので、このようなチャネル 長が短い微細な配線もショート等の不良が生じることなく安定的に形成することができる。よって、図17(A)(C)のような画素を十分機能させるのに必要な電気特性を有するTFTを形成でき、表示能力の優れた信頼性の高い表示パネルを作製することが可能と なる。

[0217]

なお、TFT403は、飽和領域で動作し発光素子405に流れる電流値を制御する役目を有し、TFT404は線形領域で動作し発光素子405に対する電流の供給を制御する役目を有する。両TFTは同じ導電型を有していると作製工程上好ましい。またTFT403には、エンハンスメント型だけでなく、ディプリーション型のTFTを用いてもよい。上記構成を有する本発明は、TFT404が線形領域で動作するために、TFT404の V_{GS} の僅かな変動は発光素子405の電流値に影響を及ぼさない。つまり、発光素子405の電流値は、飽和領域で動作するTFT403により決定される。上記構成を有する本発明は、TFTの特性バラツキに起因した発光素子の輝度ムラを改善して画質を向上させた表示装置を提供することができる。

[0218]

図17(A)~(D)に示す画素において、TFT401は、画素に対するビデオ信号の入力を制御するものであり、TFT401がオンして、画素内にビデオ信号が入力されると、容量素子402にそのビデオ信号が保持される。なお図17(A)(C)には、容量素子402を設けた構成を示したが、本発明はこれに限定されず、ビデオ信号を保持する容量がゲート容量などでまかなうことが可能な場合には、明示的に容量素子402を設けなくてもよい。

[0219]

[0220]

発光素子405は、2つの電極間に電界発光層が挟まれた構造を有し、順バイアス方向の電圧が印加されるように、画素電極と対向電極の間(陽極と陰極の間)に電位差が設けられる。電界発光層は有機材料や無機材料等の広汎に液る材料により構成され、この電界発光層におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と、三重項励起状態から基底状態に戻る際の発光(リン光)とが含まれる。

図17(B)に示す画素は、TFT406と走査線416を追加している以外は、図17(A)に示す画素構成と同じである。同様に、図17(D)に示す画素は、TFT406と走査線416を追加している以外は、図17(C)に示す画素構成と同じである。 【0221】

TFT406は、新たに配置された走査線416によりオン又はオフが制御される。TFT406がオンになると、容量素子402に保持された電荷は放電し、TFT404がオフする。つまり、TFT406の配置により、強制的に発光素子405に電流が流れない状態を作ることができる。従って、図17(B)(D)の構成は、全ての画素に対する信号の書き込みを待つことなく、書き込み期間の開始と同時又は直後に点灯期間を開始することができるため、デューティ比を向上することが可能となる。

図17(E)に示す画素は、列方向に信号線450、電源線451、電源線452、行方向に走査線453が配置される。また、スイッチング用TFT441、駆動用TFT443、容量素子442及び発光素子444を有する。図17(F)に示す画素は、TFT445と走査線454を追加している以外は、図17(E)に示す画素構成と同じである。なお、図17(F)の構成も、TFT445の配置により、デューティ比を向上することが可能となる。

[0223]

[0222]

以上のように、本発明を用いると、配線等のパターンを形成不良を生じることなく制御性よく安定して形成することが出来るので、TFTに高い電気的特性や信頼性をも付与することができ、使用目的に合わせて画素の表示能力を向上するための応用技術にも十分対応できる。

[0224]

(実施の形態8)

走査線側入力端子部と信号線側入力端子部とに保護ダイオードを設けた一態様について 図24を参照して説明する。図24において画素2702にはTFT501、TFT502、容量素子504、発光素子503、ゲート配線層506、電源線507が設けられている。このTFTは実施の形態2と同様な構成を有している。

[0225]

信号線側入力端子部には、保護ダイオード561と保護ダイオード562が設けられている。この保護ダイオードは、TFT501若しくはTFT502と同様な工程で作製され、ゲートとドレイン若しくはソースの一方とを接続することによりダイオードとして動作させている。図24で示す上面図の等価回路図を図23に示している。

[0226]

保護ダイオード561は、ゲート電極層、半導体層、配線層から成っている。保護ダイオード562も同様な構造である。この保護ダイオードと接続する共通電位線554、共通電位線555はゲート電極層と同じ層で形成している。従って、配線層と電気的に接続

するには、ゲート絶縁層にコンタクトホールを形成する必要がある。

[0227]

ゲート絶縁層へのコンタクトホールは、マスク屋を形成し、エッチング加工すれば良い 。この場合、大気圧放電のエッチング加工を適用すれば、局所的な放電加工も可能であり 、基板の全面にマスク層を形成する必要はない。

[0228]

信号配線層はTFT501におけるソース及びドレイン配線層505と同じ層で形成され、それに接続している信号配線層とソース又はドレイン側が接続する構造となっている

[0229]

走査信号線側の入力端子部も同様な構成である。保護ダイオード563は、ゲート電極層、半導体層、配線層から成っている。保護ダイオード564も同様な構造である。この保護ダイオードと接続する共通電位線556、共通電位線557はソース及びドレイン配線層と同じ層で形成している。入力段に設けられる保護ダイオードを同時に形成することができる。なお、保護ダイオードを挿入する位置は、本実施の形態のみに限定されず、駆動回路と画素との間に設けることもできる。

[0230]

以上のように、本発明を用いると、配線等のパターンを形成不良を生じることなく制御性よく安定して形成することが出来るので、保護回路を形成することで、配線等が複雑化し、密に形成される場合であっても、形成時の設置不良によるショートなどを生じることはない。また、広いマージンを考慮する必要もないので、装置が小型化、薄型化しても十分に対応できる。よって、良好な電気的特性と高い信頼性とを有する表示装置を作製することができる。

[0231]

(実施の形態9)

図22は、本発明を適用して作製されるTFT基板2800を用いてEL表示モジュールを構成する一例を示している。図22において、TFT基板2800上には、画素により構成された画素部が形成されている。

[0232]

図22では、画素部の外側であって、駆動回路と画素との間に、画素に形成されたものと同様なTFT又はそのTFTのゲートとソース若しくはドレインの一方とを接続してダイオードと同様に動作させた保護回路部2801が備えられている。駆動回路2809は、単結晶半導体で形成されたドライバIC、ガラス基板上に多結晶半導体膜で形成されたスティックドライバIC、若しくはSASで形成された駆動回路などが適用されている。【0233】

TFT基板2800は、液滴吐出法で形成されたスペーサ2806a、スペーサ2806bを介して封止基板2820と固着されている。スペーサは、基板の厚さが薄く、また画素部の面積が大型化した場合にも、2枚の基板の間隔を一定に保つために設けておくことが好ましい。TFT2802、TFT2803とそれぞれ接続する発光素子2804、発光素子2805上であって、TFT基板2800と封止基板2820との間にある空隙には透光性の樹脂材料を充填して固体化しても良いし、無水化した窒素若しくは不活性気体を充填させても良い。

[0234]

図22では発光素子2804、発光素子2805を上面放射型(トップエミッション型)の構成とした場合を示し、図中に示す矢印の方向に光を放射する構成としている。各画素は、画素を赤色、緑色、青色として発光色を異ならせておくことで、多色表示を行うことができる。また、このとき封止基板2820側に各色に対応した着色層2807a、着色層2807b、着色層2807cを形成しておくことで、外部に放射される発光の色純度を高めることができる。また、画素を白色発光素子として着色層2807a、着色層2807b、着色層2807cと組み合わせても良い。

[0235]

外部回路である駆動回路2809は、外部回路基板2811の一端に設けられた走査線 若しくは信号線接続端子と、配線基板2810で接続される。また、TFT基板2800 に接して若しくは近接させて、ヒートパイプ2813と放熱板2812を設け、放熱効果 を高める構成としても良い。

[0236]

なお、図22では、トップエミッションのELモジュールとしたが、発光素子の構成や外部回路基板の配置を変えてボトムエミッション構造、もちろん上面、下面両方から光が放射する両面放射構造としても良い。トップエミッション型の構成の場合、隔壁となる絶縁層を着色しブラックマトリクスとして用いてもよい。この隔壁は液滴吐出法により形成することができ、ポリイミドなどの樹脂材料に、顔料系の黒色樹脂やカーボンブラック等を混合させて形成すればよく、その積層でもよい。

[0237]

また、TFT基板2800において、画素部が形成された側にシール材や接着性の樹脂を用いて樹脂フィルムを貼り付けて封止構造を形成してもよい。本実施の形態では、ガラス基板を用いるガラス封止を示したが、樹脂による樹脂封止、プラスチックによるプラスチック封止、フィルムによるフィルム封止、など様々な封止方法を用いることができる。樹脂フィルムの表面には水蒸気の透過を防止するガスバリア膜を設けておくと良い。フィルム封止構造とすることで、さらなる薄型化及び軽量化を図ることができる。

[0238]

(実施の形態10)

本発明によって形成される表示装置によって、テレビジョン装置を完成させることができる。表示パネルには、図14(A)で示すような構成として画素部のみが形成されて走査線側駆動回路と信号線側駆動回路とが、図15(B)のようなTAB方式により実装される場合と、図15(A)のようなCOG方式により実装される場合と、図14(B)に示すようにSASでTFTを形成し、画素部と走査線側駆動回路を基板上に一体形成し信号線側駆動回路を別途ドライバICとして実装する場合、また図14(C)のように画素部と信号線側駆動回路と走査線側駆動回路を基板上に一体形成する場合などがあるが、どのような形態としても良い。

[0239]

[0240]

その他の外部回路の構成として、映像信号の入力側では、チューナで受信した信号のうち、映像信号を増幅する映像信号増幅回路と、そこから出力される信号を赤、緑、青の各色に対応した色信号に変換する映像信号処理回路と、その映像信号をドライバICの入力仕様に変換するためのコントロール回路などからなっている。コントロール回路は、走査線側と信号線側にそれぞれ信号が出力する。デジタル駆動する場合には、信号線側に信号分割回路を設け、入力デジタル信号をm個に分割して供給する構成としても良い。

チューナで受信した信号のうち、音声信号は、音声信号増幅回路に送られ、その出力は音声信号処理回路を経てスピーカに供給される。制御回路は受信局(受信周波数)や音量の制御情報を入力部から受け、チューナや音声信号処理回路に信号を送出する。 【0241】

図13は液晶表示モジュールの一例であり、TFT基板2600と対向基板2601がシール材2602により固着され、その間に画素部2603と液晶層2604が設けられ表示領域を形成している。着色層2605はカラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑、青の各色に対応した着色層が各画素に対応して設けられている。TFT基板2600と対向基板2601の外側には偏光板2606、偏光板2607、レンズフィルム2613が配設されている。光源は冷陰極管2610と反射板2611により構成され、回路基板2612は、駆動回路2608とフレキシブル配線基板2609によりTFT基板2600と接続され、コントロール回路や電源回路などの外部回路が組みこまれている。

[0242]

表示モジュールを、図20(A)、(B)に示すように、筐体に組みこんで、テレビジョン装置を完成させることができる。図22のようなEL表示モジュールを用いると、ELテレビジョン装置に、図13のような液晶表示モジュールを用いると液晶テレビジョン装置を完成することができる。表示モジュールにより主画面2003が形成され、その他付属設備としてスピーカ部2009、操作スイッチなどが備えられている。このように、本発明によりテレビジョン装置を完成させることができる。

[0243]

また、図19に示すように、位相差板や偏光板を用いて、外部から入射する光の反射光を遮断するようにしてもよい。図19はトップエミッション型の構成であり、隔壁となる絶縁層3605を着色しブラックマトリクスとして用いている。この隔壁は液滴吐出法により形成することができ、ボリイミドなどの樹脂材料に、カーボンブラック等を混合させてもよく、その積層でもよい。液滴吐出法によって、異なった材料を同領域に複数回吐出し、隔壁を形成してもよい。本実施の形態では、顔料系の黒色樹脂を用いる。位相差板3603、位相差板3604としては入/4板、入/2板を用い、光を制御できるように設計すればよい。構成としては、順にFFT素子基板2800、発光素子2804、封止基板(封止材)2820、位相差板3603、位相差板3604(入/4、入/2)、偏光板3602となり、発光素子から放射された光は、これらを通過し偏光板側より外部に放射される。この位相差板や偏光板は光が放射される側に設置すればよく、両面放射される両面放射型の表示装置であれば両方に設置することもできる。また、偏光板の外側に反射防止膜3601を有していても良い。これにより、より高繊細で精密な画像を表示することができる。

[0244]

図20(A)に示すように、筐体2001に表示素子を利用した表示用パネル2002が組みこまれ、受信機2005により一般のテレビ放送の受信をはじめ、モデム2004を介して有線又は無線による通信ネットワークに接続することにより一方向(送信者から受信者)又は双方向(送信者と受信者間、又は受信者間同士)の情報通信をすることもできる。テレビジョン装置の操作は、筐体に組みこまれたスイッチ又は別体のリモコン装置2006により行うことが可能であり、このリモコン装置にも出力する情報を表示する表示部2007が設けられていても良い。

[0245]

また、テレビジョン装置にも、主画面2003の他にサブ画面2008を第2の表示用パネルで形成し、チャネルや音量などを表示する構成が付加されていても良い。この構成において、主画面2003を視野角の優れたEL表示用パネルで形成し、サブ画面を低消費電力で表示可能な液晶表示用パネルで形成しても良い。また、低消費電力化を優先させるためには、主画面2003を液晶表示用パネルで形成し、サブ画面をEL表示用パネルで形成し、サブ画面は点滅可能とする構成としても良い。本発明を用いると、このような大型基板を用いて、多くのTFTや電子部品を用いても、信頼性の高い表示装置とすることができる。

[0246]

図20(B)は例えば20~80インチの大型の表示部を有するテレビジョン装置であり、筐体2010、操作部であるキーボード部2011、表示部2012、スピーカー部2013等を含む。本発明は、表示部2012の作製に適用される。図20(B)の表示部は、わん曲可能な物質を用いているので、表示部がわん曲したテレビジョン装置となっている。このように表示部の形状を自由に設計することができるので、所望な形状のテレビジョン装置を作製することができる。

[0247]

本発明を用いたことにより、工程が簡略化し、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易に表示パネルを製造することができる。

[0248]

本発明により、所望なパターンを制御性よく形成できる。また、材料のロスも少なく、 コストダウンも達成できる。よって本発明を用いたテレビジョン装置では、大画面の表示 部を有しても低いコストで形成できる。また薄型で配線等が精密化しても形成不良が生じ ない。よって高性能、高信頼性のテレビジョン装置を歩留まりよく作製することができる

[0249]

勿論、本発明はテレビジョン装置に限定されず、パーソナルコンピュータのモニタをは じめ、鉄道の駅や空港などにおける情報表示盤や、街頭における広告表示盤など大面積の 表示媒体としても様々な用途に適用することができる。

[0250]

(実施の形態11)

本発明を適用して、様々な表示装置を作製することができる。即ち、それら表示装置を表示部に組み込んだ様々な電子機器に本発明を適用できる。

[0251]

その様な電子機器としては、ビデオカメラ、デジタルカメラ、プロジェクター、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、カーステレオ、パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDigital Versatile Disc (DVD)等の記録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられる。それらの例を図21に示す。

【0252】

図21(A)は、コンピュータであり、本体2101、筐体2102、表示部2103、キーボード2104、外部接続ポート2105、ポインティングマウス2106等を含む。本発明を用いると、小型化し、配線等が精密化しても、信頼性の高い高画質な画像を表示するコンピュータを完成させることができる。

【0253】

図21(B)は記録媒体を備えた画像再生装置(具体的にはDVD再生装置)であり、本体2201、筐体2202、表示部A2203、表示部B2204、記録媒体(DVD等)読み込み部2205、操作キー2206、スピーカー部2207等を含む。表示部A2203は主として画像情報を表示し、表示部B2204は主として文字情報を表示する。本発明を用いると、小型化し、配線等が精密化しても、信頼性の高い高画質な画像を表示する画像再生装置を完成させることができる。

【0254】

図21(C)は携帯電話であり、本体2301、音声出力部2302、音声入力部2303、表示部2304、操作スイッチ2305、アンテナ2306等を含む。本発明を用いると、小型化し、配線等が精密化する携帯電話であっても、信頼性の高い高画質な画像を表示する携帯電話を完成することができる。

[0255]

図21(D)はビデオカメラであり、本体2401、表示部2402、筐体2403、外部接続ポート2404、リモコン受信部2405、受像部2406、バッテリー2407、音声入力部2408、操作キー2409、接眼部2410等を含む。本発明を用いると、小型化し、配線等が精密化しても、信頼性の高い高画質な画像を表示できるビデオカメラを完成することができる。本実施の形態は、上記の実施の形態と自由に組み合わせることができる。

【実施例】

【0256】

本実施例では、本発明の効果を実験結果に基づき説明する。

10257

基板としてガラス基板、光触媒物質として酸化チタン、ぬれ性が低い物質としてFASを用いた。ガラス基板上に、TiCla溶液を塗布し、焼成し酸化チタン層を形成した

後、その上にFASを形成した。 $TiC1_3$ 溶液は、 $TiC1_3$ を、希塩酸溶液中に溶解した溶液であり、その濃度は2重量%である。焼成は、450度で30分間、酸素雰囲気下において行った。なおFASの溶媒にはイソプロピルアルコールを用いた。

[0258]

比較例として、酸化チタン層を形成せず、ガラス基板上にFASのみを形成した試料と、本発明を適用した前述の試料とに光照射処理を行った。光照射は、ガラス基板側から、ガラス基板を通過させて行い、光源として、メタルハライドランプを用い、300nmから400nmの波長の光を照射した。照射領域における水の接触角と、光の照射時間の関係を図31に示す。

[0259]

図31において、黒色の四角は、本発明を適用しない比較例であり、黒色の菱形は、本発明を適用した本実施例の試料を示している。比較例の試料表面における水の接触角の変化は、照射前は94度、光照射時間が60秒間では94度、180秒間でも93度であり、接触角の値の変化はほとんど見られなかった。ぬれ性が低い物質であるFASを分解するのには、通常200nm以下の波長の光のエネルギーが必要であるが、ガラス基板は300nm以下の波長を吸収してしまう。よって、FASには、300nm以上の波長の光しか照射せず、FASは分解されていないことがわかる。よって、接触角の値から分かるように、比較例の試料の表面のぬれ性は変化せず、表面は改質処理されていない。【0260】

本発明を適用した本実施例である、FASの下に光触媒物質として酸化チタン層を形成した試料表面における水の接触角は、照射前は108度、光照射時間が10秒では95度、30秒では70度、60秒では25度、90秒では17度、120秒では7度にまで低下した。通常200nm以下の波長の光でしか分解しないFASが、本発明の酸化チタンが有する光触媒機能の効果によって、FASが300nmから400nm程度の波長の光によって分解されたことがわかる。よって、本発明を適用した本実施例の試料表面のぬれ性は、光照射によって高められ、表面は改質処理されたことが確認できた。【0261】

本発明を用いると、光触媒物質によって改質処理能力が向上するので、光の波長の選択幅が広がる。よって、処理物が形成される物質があまり吸収しない領域の波長を選択することができ、制御性の良い表面改質処理をするための光照射をすることができる。また光の照射効率も向上できるので、光自体が低エネルギーであっても十分に処理を行うことができる。よって、装置や工程が簡略化するので、コストや時間が軽減し、生産性も向上させることができる

【図面の簡単な説明】

[0262]

- 【図1】本発明を説明する図。
- 【図2】本発明を説明する図。
- 【図3】本発明の表示装置の作製方法を説明する図。
- 【図4】本発明の表示装置の作製方法を説明する図。
- 【図5】本発明の表示装置の作製方法を説明する図。
- 【図6】本発明の表示装置の作製方法を説明する図。
- 【図7】本発明の表示装置の作製方法を説明する図。
- 【図8】本発明の表示装置の作製方法を説明する図。
- 【図9】本発明の表示装置の作製方法を説明する図。 【図10】本発明の表示装置の作製方法を説明する図。
- 【図11】本発明の表示装置の作製方法を説明する図。
- 【図12】本発明の表示装置の断面図。
- 【図13】本発明の液晶表示モジュールの構成例を説明する断面図。
- 【図14】本発明の表示装置の上面図。
- 【図15】本発明の表示装置の上面図。

- 【図16】本発明の表示装置の作製方法を説明する図。
- 【図17】本発明のEL表示パネルに適用できる画素の構成を説明する回路図。
- 【図18】本発明の表示パネルを説明する上面図。
- 【図19】本発明のEL表示モジュールの構成例を説明する断面図。
- 【図20】本発明が適用される電子機器を示す図。
- 【図21】本発明が適用される電子機器を示す図。
- 【図22】本発明のEL表示モジュールの構成例を説明する断面図。
- 【図23】図24で説明するEL表示パネルの等価回路図。
- 【図24】本発明のEL表示パネルを説明する上面図。
- 【図25】本発明のEL表示バネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図。
- 【図26】本発明のEL表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図(シフトレジスタ回路)。
- 【図27】本発明のEL表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図(バッファ回路)。
- 【図28】本発明に適用することのできる液滴吐出装置の構成を説明する図。
- 【図29】本発明に適用することのできる液晶滴下注入法を説明する図。
- 【図30】本発明に適用できる発光素子の構成を説明する図。
- 【図31】光照射時間と照射物質表面における水の接触角の関係を説明するグラフ。

【図3】

[図4]

【図5】

【図6】

[図7]

[図8]

【図9】

[図10]

(⊠11) ∞
303
381
311

【図12】

40 492a 491 496 492b 488

487 484 465 488

[図13]

[図14]

【図20】

【図21】

【図22】

[図23]

【図24】

【図25】

[1x126]

[図27]

[図28]

【図29】

【図30】

【図31】

(51) Int. Cl. 7		FI		テーマコード (参考)
H O 5 B 33/10		HO1L 29/7	78 617J	
H 0 5 B 33/14		HO1L 29/7	78 616K	
		HO1L 29/7	78 627C	
Fターム(参考) 5F033 GG04	нног ннов	HH09 HH10 HH11	HH13 HH14 HH18	Ш19
HH20	HH33 HH34	MM05 MM08 PP15	PP16 PP26 PP27	PP28
QQ00	QQ08 QQ11	QQ48 QQ52 QQ 73	QQ82 QQ83 QQ85	QQ99
RRO3	RR04 RR05	RRO6 RRO7 RR21	RR22 RR25 VV15	XX33
5F110 AA16	AA28 BB01	BB02 BB04 CC03	CC04 CC05 CC07	DD01
DDO2	DD03 DD05	DD11 DD17 DD25	EE01 EE02 EE03	EE04
EE06	EE07 EE09	EE15 EE27 EE38	EE42 EE44 EE45	EE48
FF01	FF02 FF03	FF04 FF07 FF09	FF10 FF28 FF30	GG01
GG02	GG05 GG06	GG13 GG14 GG15	GG16 GG28 GG29	GG32
GG33	GG34 GG42	GG43 GG45 GG47	GG51 HK01 HK02	HKO4
нк07	HK08 HK25	HK32 HL07 HL22	HM15 NN03 NN12	NN22
NN23	NN24 NN27	NN33 NN34 NN35	NN36 NN40 NN71	NN72
NN73	PP01 PP03	PP06 PP24 PP29	PP34 PP35 QQ01	QQ12
QQ19				