

MOSFET

650 V CoolSiC™ M1 SiC Trench Power Device

The 650 V CoolSiC™ is built over the solid silicon carbide technology developed in Infineon in more than 20 years. Leveraging the wide bandgap SiC material characteristics, the 650V CoolSiC™ MOSFET offers a unique combination of performance, reliability and ease of use. Suitable for high temperature and harsh operations, it enables the simplified and cost effective deployment of the highest system efficiency.

Features

- Optimized switching behavior at higher currents
- Commutation robust fast body diode with low Q_{rr}
- · Superior gate oxide reliability
- · Best thermal conductivity and behavior
- Lower R_{DS(on)} and pulse current dependency on temperature
- · Increased avalanche capability
- Compatible with standard drivers (recommended driving voltage: 18V)
- Kelvin source provides up to 4 times lower switching losses

Benefits

- · Unique combination of high performance, high reliability and ease of use
- Ease of use and integration
- Suitable for topologies with continuous hard commutation
- · Higher robustness and system reliability
- Efficiency improvement
- Reduced system size leading to higher power density

Potential applications

- SMPS
- UPS (uninterruptable power supplies)
- Solar PV inverters
- EV charging infrastructure
- Energy storage and battery formation
- Class D amplifiers

Product validation

Fully qualified according to JEDEC for Industrial Applications

Table 1 Kev Performance Parameters

Table 1 Rey Performance Parameters							
Parameter	Value	Unit					
V _{DS} @ T _J = 25 °C	650	V					
R _{DS(on),typ}	27	mΩ					
$Q_{G,typ}$	63	nC					
I _{D,pulse}	184	A					
Q _{oss} @ 400 V	147	nC					
E _{oss} @ 400 V	22.2	μJ					

Type / Ordering Code	Package	Marking	Related Links
IMZA65R027M1H	PG-TO 247-4-3	65R027M1	see Appendix A

Table of Contents

Description	1
Maximum ratings	3
hermal characteristics	4
Electrical characteristics	5
Electrical characteristics diagrams	7
est Circuits	12
Package Outlines	13
ppendix A	14
Revision History	15
rademarks	15
Disclaimer	15

1 Maximum ratings at T_J = 25 °C, unless otherwise specified

Table 2 Maximum ratings

Danamatan	Ol		Value	S	11:4		
Parameter Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current ¹⁾	I _D	-	-	59 41	А	T _C = 25 °C T _C = 100 °C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	184	Α	T _C = 25 °C	
Avalanche energy, single pulse	E _{AS}	-	-	326	mJ	I_D = 12.2 A, V_{DD} = 50 V, L = 4.4 mH; see table 10	
Avalanche energy, repetitive	E _{AR}	-	-	1.63	mJ	I_D = 12.2 A, V_{DD} = 50 V; see table 10	
Avalanche current, single pulse	I _{AS}	-	-	12.2	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	200	V/ns	V _{DS} = 0400 V	
Gate source voltage (recommended driving voltage)	V _{GS}	0	-	18	V	AC (f > 1 Hz)	
Gate source voltage (dynamic)	V _{GS}	-5	-	23	V	t _{pulse,negative} <= 15 ns	
Power dissipation	P _{tot}	-	-	189	W	T _C = 25 °C	
Storage temperature	T _{stg}	-55	-	150	°C	-	
Operating junction temperature	T_J	-55	-	150	°C	-	
Mounting torque	-	-	-	60	Ncm	M3 and M3.5 screws	
Continuous diode forward current ¹⁾	Is	-	-	59	Α	T _C = 25 °C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	184	Α	T _C = 25 °C	
Insulation withstand voltage	V _{ISO}	-	_	n.a.	V	V_{rms} , T_{C} = 25 °C, t = 1 min	

 $^{^{1)}}$ Limited by $T_{\rm J,max}$ $^{2)}$ Pulse width t_p limited by $T_{\rm J,max}$

2 Thermal characteristics

Table 3 Thermal characteristics

Parameter	Symbol	Values			11:4	Nata / Tant Candition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}	-	-	0.66	°C/W	-
Thermal resistance, junction - ambient		-	-	62	°C/W	leaded
Thermal resistance, junction - ambient for SMD version	R _{thJA}	-	-	-	°C/W	n.a.
Soldering temperature, wavesoldering only allowed at leads	T _{sold}	-	-	260	°C	1.6mm (0.063 in.) from case for 10s

Electrical characteristics

at T_J = 25 °C, unless otherwise specified

Table 4 **Static characteristics**

Parameter	Combal		Values			Note (Total Constitution
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	650	-	-	V	$V_{GS} = 0 \text{ V}, I_D = 1.1 \text{ mA}$
Gate threshold voltage ¹⁾	V _{(GS)th}	3.5	4.5	5.7	V	$V_{DS} = V_{GS}, I_D = 11 \text{ mA}$
Zero gate voltage drain current	I _{DSS}	-	1 2	150	μА	$V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 25 \text{ °C}$ $V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 150 \text{ °C}$
Gate-source leakage current	I _{GSS}	-	-	100	nA	V _{GS} = 20 V, V _{DS} = 0 V
Drain-source on-state resistance	R _{DS(on)}	-	0.027 0.035	0.034	Ω	V_{GS} = 18 V, I_D = 38.3 A, T_J = 25 °C V_{GS} = 18 V, I_D = 38.3 A, T_J = 150 °C
Gate resistance	R _G	-	3.0	-	Ω	f = 1 MHz, open drain

Table 5 **Dynamic characteristics**

Parameter			Values			
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance	Ciss	-	2131	-	pF	$V_{GS} = 0 \text{ V}, V_{DS} = 400 \text{ V}, f = 250 \text{ kHz}$
Reverse capacitance	C _{rss}	-	22	-	pF	$V_{GS} = 0 \text{ V}, V_{DS} = 400 \text{ V}, f = 250 \text{ kHz}$
Output capacitance ²⁾	Coss	-	244	317	pF	$V_{GS} = 0 \text{ V}, V_{DS} = 400 \text{ V}, f = 250 \text{ kHz}$
Output charge ²⁾	Qoss	-	147	191	nC	calculation based on Coss
Effective output capacitance, energy related ³⁾	C _{o(er)}	-	278	-	pF	V _{GS} = 0 V, V _{DS} = 0400 V
Effective output capacitance, time related ⁴⁾	C _{o(tr)}	-	368	-	pF	I_D = constant, V_{GS} = 0 V, V_{DS} = 0400 V
Turn-on delay time	t _{d(on)}	-	21.4	-	ns	$V_{DD} = 400 \text{ V}, V_{GS} = 18 \text{ V}, I_D = 38.3 \text{ A}$ $R_G = 1.8 \Omega$; see table 9
Rise time	tr	-	4.2	-	ns	$V_{DD} = 400 \text{ V}, V_{GS} = 18 \text{ V}, I_D = 38.3 \text{ A}$ $R_G = 1.8 \Omega$; see table 9
Turn-off delay time	$t_{d(off)}$	-	21.6	-	ns	$V_{DD} = 400 \text{ V}, V_{GS} = 18 \text{ V}, I_D = 38.3 \text{ A}$ $R_G = 1.8 \Omega$; see table 9
Fall time	t_f	-	8.4	-	ns	$V_{DD} = 400 \text{ V}, V_{GS} = 18 \text{ V}, I_D = 38.3 \text{ A}$ $R_G = 1.8 \Omega$; see table 9

 $^{^{1)}}$ Tested after 1 ms pulse at $V_{\rm GS}$ = +20 V $^{2)}$ Maximum specification is defined by calculated six sigma upper confidence bound $^{3)}$ $C_{o(er)}$ is a fixed capacitance that gives the same stored energy as $C_{\rm oss}$ while $V_{\rm DS}$ is rising from 0 to 400 V $^{4)}$ $C_{o(tr)}$ is a fixed capacitance that gives the same charging time as $C_{\rm oss}$ while $V_{\rm DS}$ is rising from 0 to 400 V

 Table 6
 Gate charge characteristics

Parameter	Symbol		Values	•	Unit	Note / Test Condition
		Min.	Тур.	Max.	Offic	Note / Test Condition
Gate to source charge	Q_{gs}	-	17	-	nC	V_{DD} = 400 V, I_D = 38.3 A, V_{GS} = 0 to 18 V
Gate to drain charge	Q_{gd}	-	14	-	nC	$V_{DD} = 400 \text{ V}, I_D = 38.3 \text{ A}, V_{GS} = 0 \text{ to } 18 \text{ V}$
Gate charge total	Q_g	-	63	-	nC	$V_{DD} = 400 \text{ V}, I_D = 38.3 \text{ A}, V_{GS} = 0 \text{ to } 18 \text{ V}$

Table 7 Reverse diode characteristics

Parameter	O. was book	Values			11	Nata / Taat Can dition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode forward voltage	V _{SD}	-	4.0	-	V	$V_{GS} = 0 \text{ V}, I_F = 38.3 \text{ A}, T_J = 25 \text{ °C}$
Reverse recovery time	t _{rr}	-	102	-	ns	$V_R = 400 \text{ V}, I_F = 38.3 \text{ A},$ $di_F/dt = 1000 \text{ A/}\mu\text{s}; \text{ see table 8}$
Reverse recovery charge	Qrr	-	239	-	nC	$V_R = 400 \text{ V}, I_F = 38.3 \text{ A},$ $di_F/dt = 1000 \text{ A/}\mu\text{s}; \text{ see table 8}$
Peak reverse recovery current	I _{rrm}	-	10.6	-	А	$V_R = 400 \text{ V}, I_F = 38.3 \text{ A},$ $di_F/dt = 1000 \text{ A/}\mu\text{s}; \text{ see table 8}$

4 Electrical characteristics diagrams

5 Test Circuits

Table 8 Diode characteristics

Table 9 Switching times (ss)

Table 10 Unclamped inductive load (ss)

6 Package Outlines

Figure 1 Outline PG-TO 247-4-3, dimensions in mm

7 Appendix A

Table 11 Related Links

• IFX CoolSiC M1 Webpage: www.infineon.com

• IFX CoolSiC M1 application note: www.infineon.com

• IFX CoolSiC M1 simulation model: www.infineon.com

• IFX Design tools: www.infineon.com

Revision History

IMZA65R027M1H

Revision: 2019-12-16, Rev. 2.0

Previous Revision

Revision	Date	Subjects (major changes since last revision)
2.0	2019-12-16	Release of final version

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2019 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Final Data Sheet 15 Rev. 2.0, 2019-12-16