## BASE-TWO PRIMITIVE GROUPS AND

## THEIR SAXL GRAPHS

## Hong Yi Huang

hy.huang@bristol.ac.uk Ohongyihuang328.github.io





### Bases

Let G be a transitive permutation group on a finite set  $\Omega$  with point stabiliser H. A base for G is a subset  $\Delta \subseteq \Omega$  such that

$$\bigcap_{\alpha \in \Lambda} G_{\alpha} = 1.$$

The minimal size of a base for G is called the **base size** of G and denoted b(G).

**Example.** Assume G = GL(V) and  $\Omega = V \setminus \{0\}$ . Then  $\Delta \subseteq V$  is a base for G if and only if  $\Delta$  contains a basis of V. In particular,  $b(G) = \dim V$ .

An ambitious project initiated by Jan Saxl in the 1990s is:

Classify the finite primitive groups G with b(G) = 2.

See [2, Section 1] for a brief summary of progress towards this goal.

# Saxl graphs

To study base-two groups, Burness and Giudici [1] introduced the following graph.

**Definition.** The Saxl graph  $\Sigma(G)$  of G is a graph with vertices  $\Omega$  and two vertices are adjacent if they form a base.

**Example.** Assume  $G = PGL_2(q)$  and

 $\Omega = \{ \text{distinct pairs of 1-subspaces of } \mathbb{F}_a^2 \}.$ 

Then two elements in  $\Omega$  form a base if and only if they are not disjoint. It follows that  $\Sigma(G)$  is isomorphic to the **Johnson graph** J(q+1,2). In particular, if we take q=4 then  $G\cong A_5$ ,  $H\cong S_3$  and the Saxl graph  $\Sigma(G)$  coincides with the complement of the Petersen graph:



We record some basic properties of Saxl graphs of base-two transitive groups.

- $\succ \Sigma(G)$  is G-vertex-transitive and is the union of regular orbital graphs of G;
- The valency of  $\Sigma(G)$  is v(G) = r(G)|H|, where r(G) is the number of regular H-orbits on  $\Omega$ ;
- ightharpoonup If G is primitive, then  $\Sigma(G)$  is connected.

One of the main problems in the study of Saxl graphs is:

Conjecture (Burness-Giudici). Let G be a base-two primitive permutation group. Then any two vertices in  $\Sigma(G)$  have a common neighbour.

In particular,  $\Sigma(G)$  has diameter at most 2. In the above example, G is base-two primitive and  $\Sigma(G) \cong J(q+1,2)$  has the common neighbour property.

## Main results

We list some evidence for the Burness-Giudici conjecture.

- ➤ All primitive groups of degree up to 4095;
- ➤ "Most" almost simple primitive groups with alternating or sporadic socle;
- > soc $(G) = PSL_2(q)$  (see [3, Theorem 4.22]).

Let  $\mathcal{B}$  be the set of almost simple base-two primitive groups with soluble point stabilisers. The following theorem is proved in [3].

**Theorem** (Burness & H). If  $G \in \mathcal{B}$  then any two vertices in  $\Sigma(G)$  have a common neighbour.

It is proved in [2] that the Burness-Giudici conjecture is equivalent to the following "stronger" statement. Here  $\Sigma(\alpha)$  is the set of neighbours of  $\alpha$  in  $\Sigma(G)$ .

Conjecture. Let  $G \leq \operatorname{Sym}(\Omega)$  be a base-two primitive permutation group and  $\alpha, \beta \in \Omega$ . Then  $\Sigma(\alpha)$  meets every regular  $G_{\beta}$ -orbit.

See [2, Section 5] for some evidence of this conjecture.

### Related results

Some results on the valency of Saxl graphs are presented in [4], including a general method for computing r(G).

Note that  $r(G) \ge 1$  if and only if  $b(G) \le 2$ . The following problem concerns the extremal case.

Classify the finite primitive groups G with r(G) = 1.

This is the case where  $\Sigma(G)$  is an orbital graph of G. In [3, Theorem 4] we classified the groups  $G \in \mathcal{B}$  with r(G) = 1 (e.g.  $(G, H) = (\operatorname{PGL}_2(q), D_{2(q-1)})$ ).

In [3], we also studied the clique number  $\omega(G)$  and the independence number  $\alpha(G)$  of  $\Sigma(G)$ .

**Theorem** (Burness & H). If  $G \in \mathcal{B}$  is simple, then either  $(G, H) = (A_5, S_3)$ , or  $\omega(G) \geqslant 5$  and  $\alpha(G) \geqslant 4$ .

### **Probabilistic methods**

This method was first introduced by Liebeck and Shalev [5]. Consider

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha} \cap G_{\beta} \neq 1\}|}{|\Omega|^2} = 1 - \frac{v(G)}{|\Omega|},$$

the probability that a random pair in  $\Omega$  is not a base.

Note that  $b(G) \le 2$  if and only if Q(G) < 1. Intuitively, if Q(G) is small then  $\Sigma(G)$  contains many edges. More specifically, we have the following.

- ightharpoonup If Q(G) < 1/2, then any two vertices in  $\Sigma(G)$  have a common neighbour.
- ightharpoonup If Q(G) < 1/t for some integer  $t \geqslant 2$ , then  $\omega(G) \geqslant t+1$ .

In general, it is difficult to compute  $\mathcal{Q}(G)$  precisely, but

$$Q(G) \leqslant \sum_{x \in \mathcal{P}} \frac{|x^G \cap H|}{|x^G|} =: \widehat{Q}(G),$$

where  $\mathcal{P}$  is the set of elements of prime order in G. In particular,  $b(G) \leq 2$  if  $\widehat{Q}(G) < 1$ , and we can use  $\widehat{Q}(G)$  to obtain a lower bound on r(G).

### References

- [1] T.C. Burness and M. Giudici, *On the Saxl graph of a permutation group*, Math. Proc. Cambridge Philos. Soc. **168** (2020), 219–248.
- [2] T.C. Burness and H.Y. Huang, *On base sizes for primitive groups of product type*, submitted (2022), arXiv:2202.02816.
- [3] T.C. Burness and H.Y. Huang, *On the Saxl graphs of primitive groups with soluble stabilisers*, Algebr. Comb., to appear.
- [4] J. Chen and H.Y. Huang, *On valency problems of Saxl graphs*, J. Group Theory **25** (2022), 543–577.
- [5] M.W. Liebeck and A. Shalev, *Simple groups, permutation groups, and probability*, J. Amer. Math. Soc. **12** (1999), 497–520.