Physics Tutorial

Fadil Ahmed Abdul Jaleel

May 2022

1 Questions

Consider an arbitrary distribution of charges having density $\rho(\vec{r})$. Let v be a spherical region of space of radius r_0 centered at origin. the average electric field \bar{E} inside v is given by

$$\bar{E} = \frac{1}{\frac{4}{3}\pi r_0^3} \int_{v} \vec{E}(\vec{r}) dv = \bar{E}_{int} + \bar{E}_{ext}$$

. Find \bar{E}_{int} and \bar{E}_{ext}

2 Solution

Substituting $\vec{E} = -\vec{\nabla}V$, we see that $\bar{E} = -\frac{1}{\frac{4}{3}\pi r_0^3} \oint_{\partial v} V(\vec{r}) da$. By substitut-

ing
$$V = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\vec{r})}{|\vec{r} - \vec{r'}|} dv'$$
, we get $\bar{E} = -\frac{1}{\frac{4}{3}\pi r_0^3} \frac{1}{4\pi\epsilon_0} \int_v \rho(\vec{r'}) \left(\oint_{\partial v} \frac{da}{|\vec{r} - \vec{r'}|} \right) dv'$

which then simplifies to 2 cases, when $r \leq r_0$ and $r > r_0$ which are respectively the internal and external electric fields. So we get that

$$\bar{E}_{int} = -\frac{\vec{\mathbf{p}}}{4\pi\epsilon_0 r_0^3}$$

$$\bar{E}_{ext} = -\frac{1}{4\pi\epsilon_0} \int_{\tilde{V}} \frac{\rho(\vec{r'})\vec{r'}}{r'^3} dv'$$

Where
$$\vec{\mathbf{p}} := \int_{v} \vec{r'} \rho(\vec{r'})$$
 and $\tilde{V} := \mathbb{R}^3/v$