Leonardo Santos Paulucio

Tarefa Computacional 2

Vitória - ES

15 de Novembro de 2019

1 Introdução

O objetivo desse trabalho computacional é realizar a classificação de um conjunto de dados usando lógica *fuzzy* combinadas com algoritmos evolutivos. O trabalho é baseado no trabalho desenvolvido por Svensson (2019).

O trabalho é composto de duas partes. A primeira corresponde na definição das variáveis linguísticas e seus respectivos conjuntos fuzzy, da base de regras e do classificador fuzzy. Já a segunda parte consiste em achar as funções de pertinências e a base de regra utilizando os algoritmos evolutivos PSO e GA. A fitness utilizada nesse sistema será o erro de acurácia do classificador em todo o dataset da flor Íris. A classe para qual o dado de entrada será classificado irá ser aquela que possuir o maior grau de pertinência entre as três classes.

O dataset Íris consiste de 150 amostras rotuladas, sendo 50 para cada uma das três espécies: Setosa, Versicolor e Virginica. Cada amostra possui informações sobre 4 parâmetros: tamanho da sépala, comprimento da sépala, tamanho da pétala e comprimento da pétala.

2 Sistema Fuzzy

2.1 Variáveis Linguísticas

As variáveis linguísticas utilizadas foram: short, middle e long, ilustrado na Figura 1. Nesse trabalho o valor do parâmetro W será calculado utilizando os algoritmos evolutivos PSO e GA. Dessa forma, para cada um dos 4 parâmetros de entrada um valor W_i correspondente será definido, onde i corresponde ao número da feature. Com esses valores será medido a acurácia do modelo em todo o dataset.

Figura 1 – Grau de pertinência das variáveis short, middle e long

2.2 Base de Regras

Para a base de regras foram utilizadas as 4 regras descritas abaixo.

 R_1 : SE $X_1 =$ (short OU long) E $X_2 =$ (middle OU long) E $X_3 =$ (middle OU long) E $X_4 =$ middle:

ENTÃO iris = versicolor

 R_2 : SE X_3 = (short OU middle) E X_4 = short: ENTÃO iris = setosa

 R_3 : SE X_2 = (short OU middle) E X_3 = long: ENTÃO iris = versicolor

 R_4 : SE X_1 = middle E X_2 = (short OU middle) E X_3 = short E X_4 = long: ENTÃO iris = versicolor

Onde $X_1 = sepal \ legth, \ X_2 = sepal \ width, \ X_3 = petal \ legth \ e \ X_4 = petal \ width.$

3 Resultados e Discussão

Para a realização dos testes foram definidos os parâmetros listados na Tabela 1. Os dados de entrada do dataset também foram normalizados para o intervalo de [0,1].

Parâmetro	Valor	Significado
NumGeraçoes	50	Número de gerações
PopSize	20	Tamanho da População
NumRuns	20	Número de execuções
CrossProb	0.9	Prob. de Crossover
MutProb	0.1	Prob. de Mutação
χ	0.7298	Constante de inércia
c1	2.05	Constante cognitiva
c2	2.05	Constante social

Tabela 1 – Parâmetros utilizados

3.1 Baseline

Foi feito um baseline utilizando um valor $W_i=0.5$ para todas as features. Os resultados obtidos estão ilustrados na Tabela 2. E a matriz de confusão obtida está ilustrada na Figura 2.

Dataset	Acurácia
Íris	0.86

Tabela 2 – Resultado da acurácia média obtida no baseline

Figura 2 – Matriz de confusão obtida no baseline

3.2 Experimento

As tabelas seguintes apresentam os resultados obtidos no experimento. A Figura 3 apresenta as matrizes de confusão obtidas para os melhores W.

Métrica	Melhor	Média	Pior
Acurácia	0.97	0.95	0.85
Tempo(s)	36.58	37.24	38.28

Tabela 3 – Resultados obtidos com GA

Métrica	Melhor	Média	Pior
Acurácia	0.98	0.94	0.68
Tempo(s)	21.17	25.84	42.81

Tabela 4 – Resultados obtidos com PSO

Classificador	W_1	W_2	W_3	W_4
Fuzzy+GA	0.07	0.34	0.48	0.26
Fuzzy+PSO	0.02	0.26	0.43	0.27

Tabela 5 – Melhores W obtidos

Classificador	Acurácia
Baseline	0.86
Fuzzy+GA	0.97
Fuzzy+PSO	0.98
Original	0.95

Tabela 6 – Comparação das melhores acurácias

3.3 Discussões

Analisando-se as tabelas é possível notar que o GA obteve uma acurácia média maior, porém o PSO conseguiu obter a melhor acurácia nos testes chegando a 98%, superando até mesmo o obtido no artigo original. Com relação ao tempo de execução o PSO foi, em média, mais rápido, mas ainda assim ambos os algoritmos se mostraram bem rápidos.

Ao se comparar as matrizes de confusão da Figura 3 com a matriz de confusão obtida no baseline nota-se que os erros de classificação diminuem consideravelmente. Analisando-se as matrizes de confusão obtidas com Fuzzy+GA e Fuzzy+PSO percebe-se que são muito semelhantes, sendo que o erro ocorrido em ambas está na classificação de flores da classe Vírginica (1) como sendo da classe Versicolor (2), o que mostra uma certa dificuldade em se classificar essas duas classes.

Figura 3 – Matrizes de confusão obtidas para as melhores acurácias

Assim, percebe-se que o uso de sistemas fuzzy com algoritmos evolutivos para sintonia das funções de pertinência apresentaram bons resultados, o que mostra serem boas opções para se conseguir otimizar classificadores fuzzy de forma automática.

Referências

SVENSSON, S. Implementing a Fuzzy Classifier and Improving its Accuracy using Genetic Algorithms. [S.l.]: unpublished, 2019. Citado na página 1.