

### "Towards Grid and Cluster Federations"



## Satoshi Sekiguchi

Director, Grid Technology Research Center, Advanced Industrial Science and Technology, Japan















#### Talk Contents

- Back ground who am I
- Grids and clusters
  - ► Typical usage scenario
  - ► Perfect test bed: AIST Super cluster
- Challenges:
  - ► Grid RPC Ninf-G2
  - ▶Grid MPI GNET-1
  - ► Grid File System gfarm
- Conclusion





# Grid Technology Research Center, AIST

- Establishment
  - ► Since Jan. 1, 2002
  - 7 years term
  - 24th Research Center of AIST
- Location
  - Tsukuba Central Umezono 1-1, Tsukuba
  - ▶ Tokyo Office
    - Queno area
    - ② 30 people for software development
- Engaged in developing grid middleware, applications and system technologies
- Research \$\$ approx. 1000M JPY

|                | 2002/<br>1H | 2002/<br>2H | 2003<br>/1H |  |  |  |  |
|----------------|-------------|-------------|-------------|--|--|--|--|
| Researchers    |             |             |             |  |  |  |  |
| Full time      | 14          | 16          | 19          |  |  |  |  |
| Fellowship     | 1           | 8           | 9           |  |  |  |  |
| Collaborators  | 7           | 21          | 32          |  |  |  |  |
| Sub total      | 22          | 44          | 60          |  |  |  |  |
| Staff          |             |             |             |  |  |  |  |
| Administration | 2           | 1           | 1           |  |  |  |  |
| Support        | 5           | 7           | 9           |  |  |  |  |

One of the world's foremost GRID Research Center, the largest in Japan



# Historical Background



# Japan Grid Cluster Federation (SC2002)

aims to build grids powered by clusters with performance aware middleware.





## Cluster to Grid as a poor man's supercomputer



# Cluster to Grid across a campus



## Scenario A: Develop at local, Production in the grid







## Scenario D: More flexibility with RPC in the grid



## Make the all scenarios possible

- Our solutions towards grid and cluster federations are:
  - ► AIST super cluster
    - Perfect test bed
  - ► Grid MPI
    - Extremely keen on communication performance
    - @ GNET-1 provides "pure grid"
  - ► Grid RPC
    - Easy application deployment
    - Ninf-G2 it works everywhere
- Also, ...
  - ► Grid Data farm
    - Cluster enables high I/O bandwidth



## AIST Super cluster P32 & M64 network config.



# Computational Network for P-32 Cluster





## **Grid MPI**

- Intra-cluster
  - ► Vendor MPI
  - ▶ SCore
  - ► IMPI compatible
- Inter-cluster
  - ► GRAM (Globus) & IMPI compatible



| MPI Core            |  |      |                                      |                      |      |        |  |       |         |
|---------------------|--|------|--------------------------------------|----------------------|------|--------|--|-------|---------|
| RPIM                |  |      |                                      | Grid ADI             |      |        |  |       |         |
| SSH RSH GRAM Vendor |  | IMPI | Latency aware communication ropology |                      |      |        |  | Other |         |
|                     |  | MPI  |                                      | 1 to 1 Communication |      |        |  | Comm. |         |
|                     |  |      | T                                    | CP/IP                | PMv2 | Others |  | MPI   | Library |



## LACT (Latency-Aware Communication Topology)

## Bandwidth and Latency

Routing of Point-to-Point message

Based on routing table

Message forwarding at intermediate node

Routing of collective communications

© Communication pattern adapted to the network topology





## LACT (Latency-Aware Communication Topology)

## Bandwidth and Latency

- Routing of Point-to-Point message
  - Based on routing table
  - Message forwarding at intermediate node
    B
- Routing of collective communications
  - © Communication pattern adapted to the network topology

#### **Example Reduction**





## GNET-1: a fully programmable network testbed

# GNET-1 provides functions by programming the core FPGA

- wide area network emulation,
- network instrumentation,
- traffic shaping, and
- traffic generation at gigabit Ethernet wire speeds



## **GNET-1 Current functions**



a) Can emulate network with one-way latency up to 134 ms and with traffic shaping, errors, and jitter.



c) Can measure latency and jitter between GNET-1s with µs precision using GPS.



b) Can measure throughput at an arbitrary sampling rate from 100 µs to 1 s.



d) Can control transfer rate by adjusting IFG.

GNET-1 provides any functions you require!



## "Pure Grid" test bed – no uncertain noise



#### Grid RPC and Ninf-G



# GridRPC (cont'd)

#### Compare to MPI

- Client-server programming is suitable for task-parallel applications.
- Does not need co-allocation
- Able to use nodes with private IP address if NAT is available (at least when using Ninf-G)
- Better fault tolerancy retry

#### Standard GridRPC API is proposed at the GGF GridRPC WG

- Define standard GridRPC API
  - later deal with protocol
- Standardize minimal set of features
  - higher-level features can be built on top
- Provide several reference implementations
  - Q Ninf-G, NetSolve
  - Ninf-G2 is available at <a href="http://ninf.apgrid.org/">http://ninf.apgrid.org/</a>
  - As a part of NaReGI project



## **Application: Climate Simulation**

#### Goal

- Short- to Middle- term, global climate simulation
  - Winding of Jet-Stream
  - @ Blocking phenomenon of high atmospheric pressure

#### Barotropic S-Model

- Climate simulation model proposed by Prof. Tanaka (U. of Tsukuba)
- Simple and precise
- Modeling complicated 3D turbulence as a horizontal one
- Keep high precision over long periods
  - Taking a statistical ensemble mean
    - several 100 simulations
  - Introducing perturbation at every time step
- Typical parameter survey



# Ninfy the original (seq.) climate simulation

- Dividing a program into two parts as a client-server system
  - ► Client:
    - Pre-processing: reading input data

Lib

- Post-processing: averaging results of ensembles
- Server







# Behavior of the System









# ISDL₩同志社

























### ApGrid / PRAGMA Testbed

- 10 countries
- 21 organizations
- 22 clusters
- 853 CPUs















## **Preliminary Evaluation**

- Testbed: 500 CPU
  - ► TeraGrid: 225 CPU (NCSA)
  - ► ApGrid: 275 CPU (AIST, TITECH, KISTI)
- Ran 1000 Simulations
  - ▶ 1 simulation = 20 seconds
  - ► 1000 simulation = 20000 seconds = 5.5 hour (if runs on a single PC)
- Results
  - ▶ 150 seconds = 2.5 min
- Insights
  - Ninf-G2 efficiently works on large-scale cluster of cluster
  - Ninf-G2 provides good performance for fine grain taskparallel applications on large-scale Grid.



# Special acknowledgement on this study

- TeraGrid EC (esp. Pete Beckman @ ANL)
- TeraGrid Help Team
- Resource Contributors
  - ►NCSA, TITECH, KISTI, AIST, SDSC
- Ninf-G developer Team



# Univ. of Hong Kong OPEN Campus, Oct 18, 2003



#### Goal and feature of Grid Datafarm

#### Goal

- Dependable data sharing among multiple organizations
- High-speed data access, High-speed data processing

#### Grid Datafarm

- Grid File System Global dependable virtual file system
   Integrates CPU + storage
- Global parallel and distributed processing

#### Features

- Secured based on Grid Security Infrastructure
- From small scale to world wide scale depending the data size and usage scenarios
- Data location transparent data access
- Automatic and transparent replica access for fault tolerance
- High-performance data access and processing by accessing multiple dispersed storages in parallel



# Grid Datafarm (1): Gfarm file system - World-wide virtual file system [CCGrid 2002]

- Transparent access to dispersed file data in a Grid
  - ▶ POSIX I/O APIs, and native Gfarm APIs for extended file view semantics and replications
  - ► Map from virtual directory tree to physical file
  - ► Automatic and transparent replica access for fault tolerance and access-concentration avoidance



# Grid Datafarm (2): High-performance data access and processing support [CCGrid 2002]

- World-wide parallel and distributed processing
  - ► Aggregate of files = superfile
  - ► Data processing of superfiles = parallel and distributed data processing of member files
    - Q Local file view
    - File-affinity scheduling



# Trans-Pacific Gfarm Datafarm testbed: Network and cluster configuration





## Scientific Data for Bandwidth Challenge

- Trans-Pacific File Replication of scientific data
  - ► For transparent, high-performance, and fault-tolerant access
- Astronomical Object Survey on Grid Datafarm [HPC Challenge participant]
  - World-wide data analysis on whole the archive
  - 652 GBytes data observed by SUBARU telesco
  - N. Yamamoto (AIST)
- Large configuration data from Lattice QCD
  - ► Three sets of hundreds of gluon field configurations on a 24^3\*48 4-D space-time lattice (3 sets x 364.5 MB x 800 = **854.3 GB**)
  - Generated by the CP-PACS parallel computer at Center for Computational Physics, Univ. of Tsukuba (300Gflops x years of CPU time)
  - [Univ Tsukuba Booth]



# Earth simulator impact

#### Top 500 list (Nov.,2003)

- ▶ 33 systems listed, only 6 systems in top100
- ► ES (=35.8TFlops) > all others = (27.4TFlops)
  - § 53 others = (21.4TFlops) as of June 2002
  - @ 18 systems in top 100

#### Clusters

- ▶ 6 clusters in June, 2002
  - ② 2.64TFlops out of 5.47TFlops
- ▶ 8 clusters in Nov., 2003
  - © 5.76TFlops out of 9.12TFlops
  - Q AIST owns 3 clusters WoW
- ► +25TFlops (peak) in June, 2004
  - Riken + AIST super cluster + + +





#### Titech Campus Grid - System Image (Pseudo grid) (since April 2002)

Titech Grid is a large-scale, campus-wide, pilot commodity Grid deployment for next generation E-Science application development within the Campuses of Tokyo Institute of **Technology (Titech)** 

√ High-density blade PC server systems consisting of 800 high-end PC processors installed at 13 locations throughout the Titech Campuses, interconnected via the Super TITAI backbone. 30KM\_

√ The first campus-wide pilot Grid system deployment in Japan, providing next-generation high-performance "virtual parallel computer" infrastructure for high-end computational E-Science.

24-processor Satellite Systems @ each department ×12 systems

> **Do-okayama Campus**

**Grid-wide Single System** Image via Grid middleware Globus, Ninf-G, Condor, **NWS**, ...

High Density GSIC Main Cluster Super SINET

(10 Gbps MOE National **Backbone Network)** to other Grids

Slide: courtesy of S. Matsuoka (Titech),

Suzukake-dai

**Campus** 

Super TITANET (1-4Gbps)

**NEC Express** 5800 Series **Blade Servers** 

(256 processers) x 2 systems in just 5 cabinets

800-processor high-perf blade servers, > 1.2 TeraFlops, over 25 Terabyte

# Onto a Production Grid – Reality

#### Bootstrapping Problem

Slide: courtesy of S. Matsuoka (Titech),

- User Side
  - People not used to sharing compute resources
  - People not used to using various Grid middleware
  - People want to share federated data but don't know how or have time to learn to use tools
  - People do not have idea or experience of coupling applications on the Grid
- ► Center (Operations) Side
  - On not (yet) have skills to manage clusters
  - On not (yet) have skills to manage large machines in distribution
  - Oo not (yet) have skills to manage Grid middleware
  - On not (yet) have skills to facilitate campus-wide security
- Research Side
  - On not have skills to manage a center with over 1000 users
  - On not know if middleware or tools will scale



# Summary

- Grid Cluster federation is the way to go for achieving high performance with low cost.
  - ► And is real computing environment near future
  - ►We don't wait for a long time to touch a monster
- Scenario A & D are ready to go by grid RPC and existing grid tools, however
  - ►CA operation, policy issues, etc.
- Scenario B & C are not simple
  - ► A lot of more work to be done
  - ► Scheduling, resource mgnt, FT, etc.
  - "pure grid" is useful in this development



# Top 10 Cluster Ranking in Asia (preliminary)

| rank |              | CPU       | GHz  | #node | #ways | #proc | TFlops |
|------|--------------|-----------|------|-------|-------|-------|--------|
| 1    | Riken, JP    | Xeon      | 3.06 | 1024  | 2     | 2048  | 12.40  |
| 2    | CAS, CN      | Opteron   | 2.4  | 512   | 4     | 2048  | 9.83   |
| 3    | AIST, JP     | Opteron   | 2.0  | 1074  | 2     | 2148  | 8.59   |
| 4    | CAS, CN      | Itanium2  | 1.3  | 265   | 4     | 1024  | 5.32   |
| 5    | KISTI, KR    | Xeon      | 2.4  | 512   | 2     | 1024  | 4.92   |
| 6    | AIST, JP     | Xeon      | 3.06 | 256   | 2     | 512   | 3.13   |
| 7    | AIST, JP     | Itanium 2 | 1.3  | 132   | 4     | 528   | 2.75   |
| 8    | AMSS, CN     | Xeon      | 2.0  | 256   | 2     | 512   | 2.05   |
| 9    | UHK, HK      | Xeon      | 1.8  | 256   | 2     | 512   | 1.84   |
| 9    | Doshisha, JP | Opteron   | 1.8  | 256   | 2     | 512   | 1.84   |





## High Performance Computing and Grid in Asia

#### Submission deadline

- ▶ January 31, 2004
- ▶ No automatic extension

#### Conference

▶ July 20-22, 2004

#### Venue

- Omiya Sonic City, Tokyo Area, Japan
- by 20-30 min train from major terminals in Tokyo

#### Sponsor

- High Performance Computing SIG, Information Processing Society of Japan
- Co-sponsored by IEEE CS Japan Chapter





