Kirszenberg Alexandre Note: 12/20 (score total : 12/20)

+151/1/26+

QCM THLR 4

	Nom et prénom, lisibles : Identifiant (de haut en bas) :
	KIRSZENBER 6. Alexandre 00 01 1 2 03 04 05 06 07 08 09
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. J'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +151/1/xx+···+151/2/xx+.
	Q.2 Le langage $\{0^n 1^n \mid \forall n \in \mathbb{N}\}$ est
2/2	☐ rationnel
	$n \sim m$
0.40	
2/2	rationnel 🔲 fini 🔲 non reconnaissable par automate fini 🔲 vide
	Q.4 Quels langages ne vérifient pas le lemme de pompage?
2/2	 ☐ Tous les langages reconnus par DFA ☐ Certains langages reconnus par DFA ☐ Tous les langages reconnus par DFA ☐ Tous les langages non reconnus par DFA
2/2	Q.5 Un langage quelconque peut avoir une intersection non vide avec son complémentaire n'est pas nécessairement dénombrable est toujours inclus (\subseteq) dans un langage rationnel peut n'être inclus dans aucun langage dénoté par une expression rationnelle Q.6 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):
2/2	\square Il n'existe pas. \square $n+1$ \square $\frac{n(n+1)}{2}$ \square 2^n
	Q.7 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:
-1/2	\boxtimes L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \square L_2 est rationnel \square L_1 est rationnel \square L_1 est rationnels
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
-1/2	\square Il n'existe pas. • (a) 4^n \boxtimes 2^n \square $\frac{n(n+1)(n+2)(n+3)}{4}$
	Q.9 Déterminiser cet automate. $\xrightarrow{a,b} \stackrel{b}{\underset{a}{\overset{b}{\bigcirc}}}$

Q.10 Comment marche la minimisation de Brzozowski d'un automate \mathcal{A} ?

0/2 \triangle $Det(T(Det(T(\mathcal{A}))))$

- \square $Det(T(Det(T(Det(\mathscr{A})))))$

Fin de l'épreuve.

_ ._

2/2