Correctitud y completitud respecto a clases de modelos

María Emilia Descotte

27 de octubre de 2017

Definiciones: Fijamos \mathcal{L} un lenguaje de primer orden.

- 1. Dado Γ un conjunto de \mathcal{L} -fórmulas y φ una \mathcal{L} -fórmula, $\vdash_{\Gamma} \varphi$ si existen $\varphi_1, \dots, \varphi_n$ tales que $\varphi_n = \varphi$ y para todo $i = 1, \dots, n \ \varphi_i \in \Gamma$ o φ_i se obtiene por modus ponens a partir de φ_j y φ_k para algunos j, k < i.
- 2. Dado Γ un conjunto de \mathcal{L} -fórmulas y \mathcal{C} una clase de \mathcal{L} -estructuras, decimos que Γ es correcta con respecto a \mathcal{C} si para toda \mathcal{L} -fórmula φ , se tiene que

$$\vdash_{\Gamma} \varphi \Longrightarrow \mathcal{C} \models \varphi.$$

3. Dado Γ un conjunto de \mathcal{L} -fórmulas y \mathcal{C} una clase de \mathcal{L} -estructuras, decimos que Γ es completa con respecto a \mathcal{C} si para toda \mathcal{L} -fórmula φ , se tiene que

$$\mathcal{C} \models \varphi \Longrightarrow \vdash_{\Gamma} \varphi.$$

Observaciones:

- \blacksquare Eventualmente vamos a llamar a Γ sistema axiomático.
- lacksquare Si la clase $\mathcal C$ consiste de una sola estructura, diremos que Γ es correcta y/o completa con respecto a esa estructura.
- El conjunto de todos los axiomas de SQ es correcto y completo con respecto a la clase de todas las \mathcal{L} -estructuras.

Ejercicio 1. Sea S un sistema axiomático de primer orden correcto y completo con respecto a una clase de \mathcal{L} -estructuras \mathcal{C} y sea Γ un conjunto de fórmulas consistente (en el sentido usual, con respecto a SQ). Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.

- a. $S \cup \Gamma$ es completo con respecto a C.
- b. $S \cup \Gamma$ es correcto con respecto a C.
- c. Si $\mathcal{C} \models \Gamma$, $S \cup \Gamma$ es correcto con respecto a \mathcal{C} .

Demostración. a. Verdadero. Supongamos $\mathcal{C} \models \varphi$. Como S es completo con respecto a $\mathcal{C}, \vdash_S \varphi$. Pero como $S \subseteq S \cup \Gamma$, esto implica que $\vdash_{S \cup \Gamma} \varphi$.

b. Falso. Tomemos por ejemplo S = SQ y \mathcal{C} la clase de todos los modelos. En \mathcal{L} debe haber por lo menos un símbolo de relación R. Tomemos entonces $\Gamma = \{ \forall x \ xRx \}$. S es correcto y completo respecto a \mathcal{C} , Γ es consistente (pues es satisfacible) pero $S \cup \Gamma$ no es correcto respecto a \mathcal{C} (tomar la fórmula $\varphi = \forall x \ xRx$).

c. Verdadero. Supongamos $\vdash_{S \cup \Gamma} \varphi$. Como $\mathcal{C} \models \Gamma$ y S es correcto respecto a \mathcal{C} , $\vdash_S \Gamma$ (demuestra todas fórmulas de Γ). Luego, metiendo las demostraciones adentro, podemos obtener una demostración de φ a partir de S, obteniendo que $\vdash_S \varphi$. Finalmente, como S es correcto respecto a \mathcal{C} , tenemos que $\mathcal{C} \models \varphi$.

Ejercicio 2. Decimos que una estructura de primer orden es de equivalencia si todas sus relaciones binarias son de equivalencia. Sea $\mathcal{L} = \{\mathcal{R}\}$ un lenguaje con un símbolo de predicado binario.

- a. Proponer una axiomatización SQ_{equiv} que extienda a SQ y que sea correcta y completa con respecto a la clase de todas las \mathcal{L} -estructuras que son de equivalencia.
- b. Demostrar que la axiomatización propuesta en el ítem anterior es completa pero no correcta con respecto a la clase de todas las L-estructuras.

Demostración. a. Extendemos SQ con los siguientes axiomas:

$$S_1 : \forall x \ xRx$$

$$S_2 : \forall x \ \forall y \ (xRy \to yRx)$$

$$S_3 : \forall x \ \forall y \ \forall z \ ((xRy \land yRz) \to xRz)$$

Veamos la correctitud: Supongamos $\vdash_{SQ_{equiv}} \varphi$. Entonces (por definición de $\vdash_{SQ_{equiv}}$ más el hecho de que $SQ \subseteq SQ_{equiv}$) tenemos que $\{S_1, S_2, S_3\} \vdash \varphi$. Luego por la correctitud de SQ vista en la teórica, tenemos que $\{S_1, S_2, S_3\} \models \varphi$. Ahora supongamos que tenemos una estructura que es de equivalencia, queremos ver que satisface φ . Pero si es de equivalencia, claramente satisface S_1, S_2 y S_3 . Luego por definición de consecuencia semántica, satisface φ .

Veamos finalmente la completitud: Supongamos $\mathcal{M} \models \varphi$ para toda \mathcal{M} de equivalencia. Entonces $\{S_1, S_2, S_3\} \models \varphi$ y, por lo tanto, por completitud de SQ, $\{S_1, S_2, S_3\} \vdash \varphi$. Pero al igual que en la correctitud, esto último es equivalente a decir $\vdash_{SQ_{equiv}} \varphi$.

b. Es completa por el ejercicio 1 a. Veamos que no es correcta. Si lo fuese, la fórmula $\forall x \ xRx$ debería ser verdadera en cualquier \mathcal{L} -estructura. Lo cual obviamente no es cierto (dar un ejemplo).

Ejercicio 3. Sea $\mathcal{L} = \{c, f, =\}$ un lenguaje de primer orden con c un símbolo de constante y f un símbolo de función unario. Sea $\mathcal{N} = \langle \mathbb{N}, 0, *_2, = \rangle$ la estructura usual de los naturales con el 0 y la función multiplicar por 2. Consideramos SQ_N la axiomatización que extiende SQ con los siguientes axiomas:

$$S_1: \forall x \ (f(x) = x \leftrightarrow x = c)$$

$$S_2: \ \forall x \ \forall y \ (x \neq y \to f(x) \neq f(y))$$

- a. Probar que SQ_N es correcta respecto de \mathcal{N} .
- b. Hallar una fórmula φ y un modelo \mathcal{M} de SQ_N tales que $\mathcal{N} \models \varphi$ y $\mathcal{M} \not\models \varphi$.
- c. Probar que SQ_N no es completa respecto de \mathcal{N} .

Demostración. a. Supongamos $\vdash_{SQ_N} \varphi$. Entonces (por definición de \vdash_{SQ_N} más el hecho de que $SQ \subseteq SQ_N$) tenemos que $\{S_1, S_2\} \vdash \varphi$. Luego por la correctitud de SQ vista en la teórica, tenemos que $\{S_1, S_2\} \models \varphi$. Pero \mathcal{N} satisface S_1 y S_2 . Luego por definición de consecuencia semántica, satisface φ .

b.
$$\mathcal{M} = \langle \{0\}, 0, id, = \rangle, \varphi : \exists x \exists y \ x \neq y.$$

c. Si lo fuese, como $\mathcal{N} \models \varphi$ (φ es la del ítem anterior), tendríamos que $\vdash_{SQ_N} \varphi$. Pero si fuese así, tendríamos que $SQ_N \vdash \varphi$ y por correctitud de SQ, valdría que $SQ_N \models \varphi$ pero esto no es cierto por el ítem b. Luego no es completa.