Quantum field theory in the solid state, Exercise sheet 11

Corrections: July 21^{rst}

Consider the Hamiltonian:

$$\hat{H} = \sum_{\langle i,j \rangle} \hat{\sigma}_{\langle i,j \rangle}^{z} \hat{f}_{i,\sigma}^{\dagger} \hat{f}_{j,\sigma} + h \sum_{\langle i,j \rangle} \hat{\sigma}_{\langle i,j \rangle}^{x}$$

$$\tag{1}$$

The Hamiltonian is defined on a square lattice, $\langle i, j \rangle$ denotes the nearest neighbor sites, $\hat{f}^{\dagger}_{i,\sigma}$ creates a fermion of spin σ at site i, and $\hat{\sigma}^{z,x}_{\langle i,j \rangle}$ are the Pauli matrix acting on the nearest neighbor sites i and j.

1. Symmetries

(a) Let

$$\hat{c}_{i,\sigma}^{\dagger} = \frac{1}{2} (\hat{\gamma}_{i,\sigma,1} - i\hat{\gamma}_{i,\sigma,2}) \tag{2}$$

on one sub-lattice and

$$\hat{c}_{i,\sigma}^{\dagger} = \frac{i}{2} (\hat{\gamma}_{i,\sigma,1} - i\hat{\gamma}_{i,\sigma,2}) \tag{3}$$

on the other sub-lattice. Note that hopping only occurs between different sub-lattices. Compute $\hat{\gamma}_{i,\sigma,n}^{\dagger}$ and the anti-commutation relations of the $\hat{\gamma}$ -operators.

(b) Show that the Hamiltonian can be rewritten as:

$$\hat{H} = \frac{\imath}{2} \sum_{\langle i,j \rangle} \sum_{\sigma,n} \hat{\sigma}_{\langle i,j \rangle}^{z} \hat{\gamma}_{i,\sigma,n} \hat{\gamma}_{j,\sigma,n} + h \sum_{\langle i,j \rangle} \hat{\sigma}_{\langle i,j \rangle}^{x}.$$
(4)

Show that the Hamiltonian is invariant under global O(4) rotations:

$$\tilde{\gamma}_{i,n} = O_{n,n'} \hat{\gamma}_{i,n'} \tag{5}$$

with $OO^T = 1$, and $\eta = 1, 2, 3, 4$ the four components of the $\hat{\gamma}_i$ -operators.

(c) Show that this O(4) symmetry leads to the equality:

$$\langle \hat{S}_{i}^{+} \hat{S}_{j}^{-} \rangle = \langle \hat{\Delta}_{i}^{\dagger} \hat{\Delta}_{j} \rangle \tag{6}$$

with $\hat{S}^+_{\pmb{i}} = \hat{f}^\dagger_{\pmb{i},\uparrow} \hat{f}_{\pmb{i},\downarrow}, \, \hat{S}^-_{\pmb{i}} = \hat{f}^\dagger_{\pmb{i},\downarrow} \hat{f}_{\pmb{i},\uparrow}, \, \text{and} \, \hat{\Delta}^\dagger_{\pmb{i}} = \hat{f}^\dagger_{\pmb{i},\uparrow} \hat{f}^\dagger_{\pmb{i},\downarrow}.$

(d) Show that a Hubbard U-term: $\hat{H}_U = U \sum_{i} (\hat{n}_{i,\uparrow} - 1/2)(\hat{n}_{i,\downarrow} - 1/2)$, with $\hat{n}_{i,\sigma} = \hat{f}_{i,\sigma}^{\dagger} \hat{f}_{i,\sigma}$, reduces the O(4) symmetry to SO(4). Here is a hint: Show that the Hubbart term can be written as $\sum_{i} \gamma_{i,1} \gamma_{i,2} \gamma_{i,3} \gamma_{i,4}$ and that under an O(4) transformation $\gamma_{i,1} \gamma_{i,2} \gamma_{i,3} \gamma_{i,4} \rightarrow$

 $\det(O)\,\gamma_{\boldsymbol{i},1}\gamma_{\boldsymbol{i},2}\gamma_{\boldsymbol{i},3}\gamma_{\boldsymbol{i},4}.$

(e) Show that

$$\hat{D}_{i} = (-1)^{\sum_{\sigma} \hat{f}_{i,\sigma}^{\dagger} \hat{f}_{i,\sigma}^{\dagger} \hat{\sigma}_{\langle i,i+a_{x} \rangle}^{x} \hat{\sigma}_{\langle i,i-a_{x} \rangle}^{x} \hat{\sigma}_{\langle i,i+a_{y} \rangle}^{x} \hat{\sigma}_{\langle i,i-a_{y} \rangle}^{x}}$$
(7)

is a locally conserved quantity, with $\hat{D}_{i}^{\dagger} = \hat{D}_{i}$, and $\hat{D}_{i}^{2} = 1$. Here is a hint: work in a basis where σ^{x} is diagonal.

(f) Check that the $\hat{c}_{i,\sigma}^{\dagger}$ operators as well as the bond $\hat{\sigma}_{\langle i,j \rangle}^z$ operators carry Z_2 charge. That is, they anti-commute with \hat{D}_i .

2. Fluxes

Consider the flux

$$\hat{W}_p = \hat{\sigma}_{\langle i, i+a_x \rangle}^z \hat{\sigma}_{\langle i+a_x, i+a_x+a_y \rangle}^z \hat{\sigma}_{\langle i+a_y, i+a_x+a_y \rangle}^z \hat{\sigma}_{\langle i, i+a_y \rangle}^z$$
(8)

- (a) Does the flux operator carry Z_2 charge.
- (b) Show that the flux is a conserved quantity only in the limit $h \to 0$
- (c) At h = 0 show that the energy eigenstates on open manifolds only depend upon the flux quantum numbers, and not on the specific choice of the bond operators.
- (d) Does the above hold for periodic boundary conditions?