Chapter 11

Circle

If P and Q are the points of intersection of the circles $x^2 + y^2 + 3x + 7y + 2p - 5 = 0$ and $x^2 + y^2 + 2x + 2y - p^2 = 0$, then there is a circle passing through P, Q and (1, 1) for

[AIEEE-20091

- (1) All except one value of p
- (2) All except two values of p
- (3) Exactly one value of p
- (4) All values of p
- The circle $x^2 + y^2 = 4x + 8y + 5$ intersects the line 3x - 4y = m at two distinct points if

[AIEEE-2010]

- (1) -85 < m < -35
- (2) -35 < m < 15
- (3) 15 < m < 65
- (4) 35 < m < 85
- The equation of the circle passing through the points (1, 0) and (0, 1) and having the smallest radius is

[AIEEE-2011]

- (1) $x^2 + y^2 + 2x + 2y 7 = 0$
- (2) $x^2 + v^2 + x + v 2 = 0$
- (3) $x^2 + y^2 2x 2y + 1 = 0$
- (4) $x^2 + y^2 x y = 0$
- The length of the diameter of the circle which touches the x-axis at the point (1, 0) and passes through the point (2, 3) is

[AIEEE-2012]

- (1) 3/5
- 6/5 (2)
- (3) 5/3
- (4) 10/3
- The circle passing through (1, -2) and touching the axis of x at (3, 0) also passes through the point

[JEE (Main)-2013]

- (1) (-5, 2)
- (2) (2, -5)
- (3) (5, -2)
- (4) (-2, 5)
- The equation of the circle passing through the foci

of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, and having centre at

(0.3) is

[JEE (Main)-2013]

- (1) $x^2 + y^2 6y 7 = 0$
- (2) $x^2 + y^2 6y + 7 = 0$
- (3) $x^2 + y^2 6y 5 = 0$
- (4) $x^2 + y^2 6y + 5 = 0$

- Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centred at (0, y), passing through origin and touching the circle C externally, then the radius of T is equal to [JEE (Main)-2014]
 - (1) $\frac{1}{2}$

- The number of common tangents to the circles $x^2 + y^2 - 4x - 6y - 12 = 0$ and $x^2 + y^2 + 6x + 18y + 26 = 0$, is [JEE (Main)-2015]
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- The centres of those circles which touch the circle, $x^{2} + y^{2} - 8x - 8y - 4 = 0$, externally and also touch the x-axis, lie on [JEE (Main)-2016]
 - (1) An ellipse which is not a circle
 - (2) A hyperbola
 - (3) A parabola
 - (4) A circle
- 10. If one of the diameters of the circle, given by the equation, $x^2 + y^2 - 4x + 6y - 12 = 0$, is a chord of a circle S, whose centre is at (-3, 2), then the [JEE (Main)-2016] radius of S is
 - (1) $5\sqrt{3}$
 - (2) 5
 - (3) 10
 - (4) $5\sqrt{2}$
- 11. The radius of a circle, having minimum area, which touches the curve $y = 4 - x^2$ and the lines, y = |x|[JEE (Main)-2017]

 - (1) $2(\sqrt{2}-1)$ (2) $4(\sqrt{2}-1)$
 - (3) $4(\sqrt{2}+1)$ (4) $2(\sqrt{2}+1)$

12. Let the orthocentre and centroid of a triangle be A(-3, 5) and B(3, 3) respectively. If C is the circumcentre of this triangle, then the radius of the circle having line segment AC as diameter, is

[JEE (Main)-2018]

 $(1)\sqrt{10}$

(2) $2\sqrt{10}$

(3) $3\sqrt{\frac{5}{2}}$

- (4) $\frac{3\sqrt{5}}{2}$
- 13. If the tangent at (1, 7) to the curve $x^2 = y 6$ touches the circle $x^2 + y^2 + 16x + 12y + c = 0$ then the value of c is [JEE (Main)-2018]
 - (1) 195
- (2) 185
- (3) 85
- (4) 95
- 14. Three circles of radii a, b, c (a < b < c) touch each other externally. If they have x-axis as a common tangent, then [JEE (Main)-2019]
 - (1) a, b, c are in A.P.
 - $(2) \quad \frac{1}{\sqrt{a}} = \frac{1}{\sqrt{b}} + \frac{1}{\sqrt{c}}$
 - (3) \sqrt{a} , \sqrt{b} , \sqrt{c} are in A.P.
 - (4) $\frac{1}{\sqrt{b}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{c}}$
- 15. If the circles $x^2 + y^2 16x 20y + 164 = r^2$ and $(x 4)^2 + (y 7)^2 = 36$ intersect at two distinct points, then [JEE (Main)-2019]
 - (1) 1 < r < 11
 - (2) r > 11
 - (3) r = 11
 - (4) 0 < r < 1
- 16. If a circle C passing through the point (4, 0) touches the circle $x^2 + y^2 + 4x 6y = 12$ externally at the point (1, -1), then the radius of C is

[JEE (Main)-2019]

- (1) 5
- (2) $2\sqrt{5}$
- (3) $\sqrt{57}$
- (4) 4
- 17. If the area of an equilateral triangle inscribed in the circle, $x^2 + y^2 + 10x + 12y + c = 0$ is $27\sqrt{3}$ sq. units

[JEE (Main)-2019]

- (1) 13
- (2) 25
- (3) 25
- (4) 20

18. Two circles with equal radii are intersecting at the points (0, 1) and (0, -1). The tangent at the point (0, 1) to one of the circles passes through the centre of the other circle. Then the distance between the centres of these circles is

[JEE (Main)-2019]

- (1) 1
- (2) $\sqrt{2}$
- (3) $2\sqrt{2}$
- (4) 2
- 19. A square is inscribed in the circle $x^2 + y^2 6x + 8y 103 = 0$ with its sides parallel to the coordinate axes. Then the distance of the vertex of this square which is nearest to the origin is

[JEE (Main)-2019]

- (1) 6
- (2) $\sqrt{41}$
- (3) 13
- (4) $\sqrt{137}$
- 20. A circle cuts a chord of length 4a on the x-axis and passes through a point on the y-axis, distant 2b from the origin. Then the locus of the centre of this circle, is [JEE (Main)-2019]
 - (1) A hyperbola
 - (2) A parabola
 - (3) An ellipse
 - (4) A straight line
- 21. If a variable line, $3x + 4y \lambda = 0$ is such that the two circles $x^2 + y^2 2x 2y + 1 = 0$ and $x^2 + y^2 18x 2y + 78 = 0$ are on its opposite sides, then the set of all values of λ is the interval

[JEE (Main)-2019]

- (1) (2, 17)
- (2) (12, 21)
- (3) (13, 23)
- (4) (23, 31)
- 22. If a circle of radius R passes through the origin O and intersects the coordinate axes at A and B, then the locus of the foot of perpendicular from O on AB is [JEE (Main)-2019]
 - (1) $(x^2 + y^2)^2 = 4Rx^2y^2$
 - (2) $(x^2 + y^2)^2 = 4R^2x^2y^2$
 - (3) $(x^2 + y^2)^3 = 4R^2x^2y^2$
 - (4) $(x^2 + y^2)(x + y) = R^2xy$
- 23. The sum of the squares of the lengths of the chords intercepted on the circle, $x^2 + y^2 = 16$, by the lines, x + y = n, $n \in \mathbb{N}$, where \mathbb{N} is the set of all natural numbers, is **[JEE (Main)-2019]**
 - (1) 105
- (2) 160
- (3) 320
- (4) 210

- 24. The tangent and the normal lines at the point $(\sqrt{3}, 1)$ to the circle $x^2 + y^2 = 4$ and the x-axis form a triangle. The area of this triangle (in square units) is [JEE (Main)-2019]

- 25. If a tangent to the circle $x^2 + y^2 = 1$ intersects the coordinate axes at distinct points P and Q, then the locus of the mid-point of PQ is

[JEE (Main)-2019]

- (1) $x^2 + y^2 16x^2y^2 = 0$
- (2) $x^2 + y^2 2x^2y^2 = 0$
- (3) $x^2 + v^2 4x^2v^2 = 0$
- (4) $x^2 + y^2 2xy = 0$
- 26. The common tangent to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 + 6x + 8y - 24 = 0$ also passes through the point [JEE (Main)-2019]
 - (1) (-6, 4)
- (2) (-4, 6)
- (3) (4, -2)
- (4) (6, -2)
- 27. The line x = y touches a circle at the point (1, 1). If the circle also passes through the point (1, -3), then its radius is [JEE (Main)-2019]
 - (1) $3\sqrt{2}$
- (3) $2\sqrt{2}$
- (4) 3
- 28. If the circles $x^2 + y^2 + 5Kx + 2y + K = 0$ and $2(x^2 + y^2) + 2Kx + 3y - 1 = 0$, $(K \in R)$, intersect at the points P and Q, then the line 4x + 5y - K= 0 passes through P and Q, for

[JEE (Main)-2019]

- (1) Exactly one value of K
- (2) Infinitely many values of K
- (3) Exactly two values of K
- (4) No value of K
- 29. The locus of the centres of the circles, which touch the circle, $x^2 + y^2 = 1$ externally, also touch the yaxis and lie in the first quadrant, is

[JEE (Main)-2019]

- (1) $y = \sqrt{1+2x}, x \ge 0$ (2) $x = \sqrt{1+4y}, y \ge 0$
- (3) $x = \sqrt{1+2y}, y \ge 0$ (4) $y = \sqrt{1+4x}, x \ge 0$

- 30. A circle touching the x-axis at (3, 0) and making an intercept of length 8 on the y-axis passes through the point [JEE (Main)-2019]
 - (1) (2, 3)
- (2) (1, 5)
- (3) (3, 5)
- (4) (3, 10)
- 31. Let the tangents drawn from the origin to the circle, $x^2 + y^2 - 8x - 4y + 16 = 0$ touch it at the points A and B. The $(AB)^2$ is equal to

[JEE (Main)-2020]

- (1) $\frac{64}{5}$
- (3) $\frac{56}{5}$
- 32. If a line, y = mx + c is a tangent to the circle, $(x-3)^2 + y^2 = 1$ and it is perpendicular to a line L_1 , where L_1 is the tangent to the circle,

 $x^2 + y^2 = 1$ at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$; then

[JEE (Main)-2020]

- (1) $c^2 + 6c + 7 = 0$ (2) $c^2 7c + 6 = 0$
- (3) $c^2 + 7c + 6 = 0$ (4) $c^2 6c + 7 = 0$
- 33. A circle touches the y-axis at the point (0, 4) and passes through the point (2, 0). Which of the following lines is not a tangent to this circle?

[JEE (Main)-2020]

- (1) 3x 4y 24 = 0 (2) 4x 3y + 17 = 0
- (3) 4x + 3y 8 = 0
- (4) 3x + 4y 6 = 0
- 34. The circle passing through the intersection of the circles, $x^2 + y^2 - 6x = 0$ and $x^2 + y^2 - 4y = 0$, having its centre on the line, 2x - 3y + 12 = 0, also passes through the point [JEE (Main)-2020]
 - (1) (-3, 6)
- (2) (-1, 3)
- (3) (-3, 1)
- (4) (1, -3)
- 35. If the length of the chord of the circle, $x^2 + y^2 = r^2$ (r > 0) along the line, y - 2x = 3 is r, then r^2 is equal to [JEE (Main)-2020]
 - (1) $\frac{9}{5}$

- 36. The number of integral values of *k* for which the line, 3x + 4y = k intersects the circle, $x^2 + y^2 - 2x - 4y + 4 = 0$ at two distinct points [JEE (Main)-2020]
- 37. The diameter of the circle, whose centre lies on the line x + y = 2 in the first quadrant and which touches both the lines x = 3 and y = 2, is

[JEE (Main)-2020]

38. Let PQ be a diameter of the circle $x^2 + y^2 = 9$. If α and β are the lengths of the perpendiculars from P and Q on the straight line, x + y = 2 respectively, then the maximum value of $\alpha\beta$ is

[JEE (Main)-2020]

39. Let C_1 and C_2 be the centres of the circles $x^2 + y^2 - 2x - 2y - 2 = 0$ and $x^2 + y^2 - 6x - 6y + 14 = 0$ respectively. If P and Q are the points of intersection of these circles, then the area (in sq. units) of the quadrilateral PC_1QC_2 is

[JEE (Main)-2019]

- (1) 4
- (2) 9
- (3) 6
- (4) 8
- 40. Let a point P be such that its distance from the point (5, 0) is thrice the distance of P from the point (-5, 0). If the locus of the point P is a circle of radius r, then [4r²] is equal to _____ (where [·] represents g.i.f).

[JEE (Main)-2021]

41. If the area of the triangle formed by the positive x-axis, the normal and the tangent to the circle $(x - 2)^2 + (y - 3)^2 = 25$ at the point (5, 7) is A, then 24A is equal to _____.

[JEE (Main)-2021]

42. In the circle given below, let OA = 1 unit,OB = 13 unit and PQ ⊥ OB. Then, the area of the triangle PQB (in square units) is :

[JEE (Main)-2021]

- (1) $24\sqrt{2}$
- (2) $24\sqrt{3}$
- (3) $26\sqrt{3}$
- (4) $26\sqrt{2}$

- 43. Let the normals at all the points on a given curve pass through a fixed point (a, b). If the curve passes through (3, -3) and (4, $-2\sqrt{2}$), and given that $a 2\sqrt{2}$ b = 3, then ($a^2 + b^2 + ab$) is equal to ______ [JEE (Main)-2021]
- 44. Let the lengths of intercepts on x-axis and y-axis made by the circle $x^2 + y^2 + ax + 2ay + c = 0$, (a < 0) be $2\sqrt{2}$ and $2\sqrt{5}$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line x + 2y = 0, is equal to : [JEE (Main)-2021]
 - (1) $\sqrt{11}$
- (2) $\sqrt{7}$
- (3) $\sqrt{6}$
- (4) $\sqrt{10}$
- 45. Choose the incorrect statement about the two circles whose equations are given below:

[JEE (Main)-2021]

$$x^2 + y^2 - 10x - 10y + 41 = 0$$
 and
 $x^2 + y^2 - 16x - 10y + 80 = 0$

- (1) Distance between two centres is the average of radii of both the circles
- (2) Circles have two intersection points
- (3) Both circles pass through the centre of the each other
- (4) Both circles' centres lie inside region of one another
- 46. The minimum distance between any two points P₁ and P₂ while considering point P₁ on one circle and point P₂ on the other circle for the given circles' equations [JEE (Main)-2021]

$$x^2 + y^2 - 10x - 10y + 41 = 0$$

 $x^2 + y^2 - 24x - 10y + 160 = 0$ is ______.

47. Let the tangent to the circle $x^2 + y^2 = 25$ at the point R(3,4) meet x-axis and y-axis at points P and Q, respectively. If r is the radius of the circle passing through the origin O and having centre at the incentre of the triangle OPQ, then r^2 is equal to:

[JEE (Main)-2021]

- (1) $\frac{529}{64}$
- (2) $\frac{585}{66}$
- (3) $\frac{625}{72}$
- (4) $\frac{125}{72}$

48. For the four circles M, N, O and P, following four equations are given :

Circle M : $x^2 + y^2 = 1$

Circle N : $x^2 + y^2 - 2x = 0$

Circle O: $x^2 + y^2 - 2x - 2y + 1 = 0$

Circle P : $x^2 + y^2 - 2y = 0$

If the centre of circle M is joined with centre of the circle N, further centre of circle N is joined with centre of the circle O, centre of circle O is joined with the centre of circle P and lastly, centre of circle P is joined with centre of circle M, then these lines form the sides of a : [JEE (Main)-2021]

- (1) Rectangle
- (2) Parallelogram
- (3) Square
- (4) Rhombus
- 49. Choose the correct statement about two circles whose equations are given below:

[JEE (Main)-2021]

$$x^2 + y^2 - 10x - 10y + 41 = 0$$

 $x^2 + y^2 - 22x - 10y + 137 = 0$

- (1) circles have only one meeting point
- (2) circles have two meeting points
- (3) circles have no meeting point
- (4) circles have same centre
- 50. Let S_1 : $x^2 + y^2 = 9$ and S_2 : $(x 2)^2 + y^2 = 1$. Then the locus of center of a variable circle S which touches S_1 internally and S_2 externally always passes through the points:

[JEE (Main)-2021]

(1)
$$\left(\frac{1}{2}, \pm \frac{\sqrt{5}}{2}\right)$$
 (2) $\left(0, \pm \sqrt{3}\right)$

- (3) $\left(2,\pm\frac{3}{2}\right)$ (4) $\left(1,\pm2\right)$
- 51. Let r_1 and r_2 be the radii of the largest and smallest circles, respectively, which pass through the point (-4, 1) and having their centres on the circumference of the circle $x^2 + y^2 + 2x + 4y 4 = x^2 + y^2 + 2x + 4y 4x + 4y 4x$
 - 0. If $\frac{r_1}{r_2} = a + b\sqrt{2}$, then a + b is equal to

[JEE (Main)-2021]

(1) 3

(2) 7

(3) 11

(4) 5

- 52. Let the circle S: $36x^2 + 36y^2 108x + 120y + c = 0$ be such that it neither intersects nor touches the co-ordinate axes. If the point of intersection of the lines, x 2y = 4 and 2x y = 5 lies inside the circle S, then:

 [JEE (Main)-2021]
 - $(1) \quad \frac{25}{9} < c < \frac{13}{3}$
- (2) 81 < c < 156
- (3) 100 < c < 156
- (4) 100 < c < 165

53. Let

A =
$$\{(x, y) \in \mathbf{R} \times \mathbf{R} \mid 2x^2 + 2y^2 - 2x - 2y = 1\},\$$

B = $\{(x, y) \in \mathbf{R} \times \mathbf{R} \mid 4x^2 + 4y^2 - 16y + 7 = 0\}$
and

C =
$$\{(x, y) \in \mathbf{R} \times \mathbf{R} \mid x^2 + y^2 - 4x - 2y + 5 \le r^2\}$$
.

Then the minimum value of |r| such that $A \cup B \subseteq C$ is equal to : [JEE (Main)-2021]

(1)
$$\frac{2+\sqrt{10}}{2}$$

- (2) $\frac{3+2\sqrt{5}}{2}$
- (3) $1+\sqrt{5}$
- (4) $\frac{3+\sqrt{10}}{2}$
- 54. Let P and Q be two distinct points on a circle which has center at C(2, 3) and which passes through origin O. If OC is perpendicular to both the ling segments CP and CQ, then the set {P, Q} is equal to:

 [JEE (Main)-2021]
 - (1) $\{(2+2\sqrt{2},3+\sqrt{5}),(2-2\sqrt{2},3-\sqrt{5})\}$
 - $(2) \{(4, 0), (0, 6)\}$
 - (3) {(-1, 5), (5, 1)}
 - (4) $\{(2+2\sqrt{2},3-\sqrt{5}),(2-2\sqrt{2},3+\sqrt{5})\}$
- 55. Two tangents are drawn from the point P(-1, 1) to the circle $x^2 + y^2 2x 6y + 6 = 0$. If these tangents touch the circle at points A and B, and if D is a point on the circle such that length of the segments AB and AD are equal, then the area of the triangle ABD is equal to [JEE (Main)-2021]
 - (1) 2

(2) $(3\sqrt{2}+2)$

(3) 4

- (4) $3(\sqrt{2}-1)$
- 56. Consider a circle C which touches the *y*-axis at (0, 6) and cuts off an intercept $6\sqrt{5}$ on the *x*-axis. Then the radius of the circle C is equal to

[JEE (Main)-2021]

- (1) $\sqrt{53}$
- (2) 9

(3) 8

4) ./82

57. The locus of a point, which moves such that the sum of squares of its distances from the points (0, 0), (1, 0), (0, 1), (1, 1) is 18 units, is a circle of diameter d. Then d^2 is equal to

[JEE (Main)-2021]

- 58. A circle C touches the line x = 2y at the point (2, 1) and intersects the circle C_1 : $x^2 + y^2 + 2y$ -5 = 0 at two points P and Q such that PQ is a diameter of C_1 . Then the diameter of C is
 - (1) $\sqrt{285}$
- (2) 15
- (3) $4\sqrt{15}$
- (4) $7\sqrt{5}$

[JEE (Main)-2021]

59. Let the equation $x^2 + y^2 + px + (1 - p)y + 5 = 0$ represent circles of varying radius $r \in (0, 5]$. Then the number of elements in the set $S = \{q : q = p^2\}$ and *q* is an integer} is _

[JEE (Main)-2021]

60. If the variable line $3x + 4y = \alpha$ lies between the two circles $(x-1)^2 + (y-1)^2 = 1$ and $(x-9)^2 + (y-1)^2$ = 4, without intercepting a chord on either circle, then the sum of all the integral values of α is

[JEE (Main)-2021]

- 61. Let B be the centre of the circle $x^2 + y^2 2x + 4y$ + 1 = 0. Let the tangents at two points P and Qon the circle intersect at the point A(3, 1). Then
 - $8 \cdot \left(\frac{\text{area } \triangle APQ}{\text{area } \triangle BPQ} \right)$ is equal to _____.

[JEE (Main)-2021]

- 62. If one of the diameters of the circle $x^2 + y^2 - 2x - 6y + 6 = 0$ is a chord of another circle 'C', whose center is at (2, 1), then its radius [JEE (Main)-2021]
- 63. Let a circle C: $(x h)^2 + (y k)^2 = r^2$, k > 0, touch the x-axis at (1, 0). If the line x + y = 0 intersects the circle C at P and Q such that the length of the chord PQ is 2, then the value of h + k + r is equal to ____. [JEE (Main)-2022]
- 64. Let a circle C touch the lines $L_1: 4x 3y + K_1 = 0$ and $L_2: 4x - 3y + K_2 = 0, K_1, K_2 \in \mathbf{R}$. If a line passing through the centre of the circle C intersects L_1 at (-1, 2) and L_2 at (3, -6), then the equation of the circle C is:
 - (1) $(x-1)^2 + (y-2)^2 = 4$ (2) $(x+1)^2 + (y-2)^2 = 4$
 - (3) $(x-1)^2 + (y+2)^2 = 16$ (4) $(x-1)^2 + (y-2)^2 = 16$

- 65. Let the abscissae of the two points P and Q be the roots of $2x^2 - rx + p = 0$ and the ordinates of P and Q be the roots of $x^2 - sx - q = 0$. If the equation of the circle described on PQ as diameter is $2(x^2 + y^2) - 11x - 14y - 22 = 0$, then 2r + s - 2q + pis equal to _____. [JEE (Main)-2022]
- 66. A circle touches both the y-axis and the line x + y = 0. Then the locus of its center is [JEE (Main)-2022]
 - (1) $y = \sqrt{2}x$
- $(2) \quad x = \sqrt{2}y$
- (3) $v^2 x^2 = 2xv$ (4) $x^2 v^2 = 2xv$
- 67. Let C be a circle passing through the points A(2, -1) and B(3, 4). The line segment AB is not a diameter of C. If r is the radius of C and its centre lies on the circle $(x-5)^2 + (y-1)^2 = \frac{13}{2}$, then r^2 is equal to: [JEE (Main)-2022]
 - (1) 32
 - (3)
- 30 (4)
- 68. A rectangle R with end points of one of its sides as (1, 2) and (3, 6) is inscribed in a circle. If the equation of a diameter of the circle is 2x - y + 4 = 0, then the area of R is [JEE (Main)-2022]
- 69. The set of values of k, for which the circle $C: 4x^2 +$ $4y^2 - 12x + 8y + k = 0$ lies inside the fourth quadrant and the point $\left(1, -\frac{1}{3}\right)$ lies on or inside the circle C, [JEE (Main)-2022]
 - (2) $\left(6, \frac{65}{9}\right)$ (1) An empty set
 - (3) $\left[\frac{80}{9}, 10\right]$ $(4) \quad \left(9, \frac{92}{\alpha}\right]$
- 70. Let a circle C of radius 5 lie below the x-axis. The line L_1 : 4x + 3y + 2 = 0 passes through the centre P of the circle C and intersects the line L_3 : 3x - 4y -11 = 0 at Q. The line L_{2} touches C at the point Q. Then the distance of P from the line 5x - 12y + 51 =[JEE (Main)-2022] 0 is

- 71. If the tangents drawn at the points O(0, 0) and $P(1+\sqrt{5},2)$ on the circle $x^2 + y^2 - 2x - 4y = 0$ intersect at the point Q, then the area of the triangle OPQ is equal to [JEE (Main)-2022]

 - (1) $\frac{3+\sqrt{5}}{2}$ (2) $\frac{4+2\sqrt{5}}{2}$
 - (3) $\frac{5+3\sqrt{5}}{2}$ (4) $\frac{7+3\sqrt{5}}{2}$
- 72. Let the lines $y + 2x = \sqrt{11} + 7\sqrt{7}$ and $2y + x = 2\sqrt{11} + 6\sqrt{7}$ be normal to a circle

 $C: (x - h)^2 + (y - k)^2 = r^2$. If the line $\sqrt{11}y - 3x = \frac{5\sqrt{77}}{3} + 11$ is tangent to the circle C, then the value of $(5h - 8k)^2 + 5r^2$ is equal to

[JEE (Main)-2022]

- 73. If one of the diameters of the circle $x^2 + y^2 - 2\sqrt{2}x - 6\sqrt{2}y + 14 = 0$ is a chord of the circle $(x-2\sqrt{2})^2 + (y-2\sqrt{2})^2 = r^2$, then the value of r^2 is equal to . [JEE (Main)-2022]
- 74. Let the tangent to the circle C_1 : $x^2 + y^2 = 2$ at the point M(-1, 1) intersect the circle C_2 : $(x - 3)^2$ + $(y-2)^2 = 5$, at two distinct points A and B. If the tangents to C_{2} at the points A and B intersect at N, then the area of the triangle ANB is equal to

[JEE (Main)-2022]

- (1) $\frac{1}{2}$
- (3) $\frac{1}{6}$
- 75. Let the locus of the centre (α, β) , $\beta > 0$, of the circle which touches the circle $x^2 + (y - 1)^2 = 1$ externally and also touches the x-axis be L. Then the area bounded by L and the line y = 4 is:

[JEE (Main)-2022]

- (1) $\frac{32\sqrt{2}}{3}$
- (2) $\frac{40\sqrt{2}}{3}$

- 76. A point P moves so that the sum of squares of its distances from the points (1, 2) and (-2, 1) is 14. Let f(x, y) = 0 be the locus of P, which intersects the x-axis at the points A, B and the y-axis at the points C, D. Then the area of the quadrilateral ACBD is equal to [JEE (Main)-2022]
 - (1) $\frac{9}{2}$
- (2) $\frac{3\sqrt{17}}{2}$
- (3) $\frac{3\sqrt{17}}{4}$
- (4) 9
- 77. If the circle $x^2 + y^2 2gx + 6y 19c = 0$, $g, c \in \mathbb{R}$ passes through the point (6, 1) and its centre lies on the line x - 2cy = 8, then the length of intercept made by the circle on x-axis is

[JEE (Main)-2022]

- (1) $\sqrt{11}$
- (2) 4
- (3) 3
- $(4) \quad 2\sqrt{23}$
- A circle C passes through the origin O and has diameter 4 on the positive x-axis. The line y = 2xgives a chord OA of circle C_1 . Let C_2 be the circle with OA as a diameter. If the tangent to C_{a} at the point A meets the x-axis at P and y-axis at Q, then QA: AP is equal to [JEE (Main)-2022]
 - (1) 1:4
- (2) 1:5
- (3) 2:5
- (4) 1:3
- 79. For $t \in (0, 2\pi)$, if *ABC* is an equilateral triangle with vertices $A(\sin t, -\cos t)$, $B(\cos t, \sin t)$ and C(a, b)such that its orthocentre lies on a circle with centre

$$\left(1,\frac{1}{3}\right)$$
, then (a^2-b^2) is equal to

[JEE (Main)-2022]

- (1) $\frac{8}{3}$
- (2) 8

MATHEMATICS

- 80. Let C be the centre of the circle $x^2 + y^2 - x + 2y = \frac{11}{4}$ and P be a point on the circle. A line passes through the point C, makes an angle of $\frac{\pi}{4}$ with the line *CP* and intersects the circle at the Q and R. Then the area of the triangle PQR (in unit2) is: [JEE (Main)-2022]
 - (1) 2
- (2) $2\sqrt{2}$
- (3) $8\sin\left(\frac{\pi}{8}\right)$ (4) $8\cos\left(\frac{\pi}{8}\right)$
- 81. Let the tangents at two points A and B on the circle $x^2 + y^2 - 4x + 3 = 0$ meet at origin O(0, 0). Then the area of the triangle OAB is

[JEE (Main)-2022]

- (1) $\frac{3\sqrt{3}}{2}$

82. Let AB be a chord of length 12 of the circle $(x-2)^2 + (y+1)^2 = \frac{169}{4}$. If tangents drawn to the

> circle at points A and B intersect at the point P, then five times the distance of point P from chord AB is equal to . [JEE (Main)-2022]

83. If the circles $x^2 + y^2 + 6x + 8y + 16 = 0$ and $(x^2 + y^2 + 2(3 - \sqrt{3})x + 2(4 - \sqrt{6})y = k + 6\sqrt{3} + 8\sqrt{6}, k > 0$ 0, touch internally at the point $P(\alpha, \beta)$, then $(\alpha + \sqrt{3})^2 + (\beta + \sqrt{6})^2$ is equal to _____.

[JEE (Main)-2022]

- 84. Let the abscissae of the two points P and Q on a circle be the roots of $x^2 - 4x - 6 = 0$ and the ordinates of P and Q be the roots of $y^2 + 2y - 7 = 0$. If PQ is a diameter of the circle $x^2 + y^2 + 2ax + 2by + c = 0$. then the value of (a + b - c) is
 - (1) 12
- (2) 13

- (3) 14
- (4) 16

[JEE (Main)-2022]

Let the mirror image of a circle c_1 : $x^2 + y^2 - 2x - 6y$ + α = 0 in line y = x + 1 be $c_2 : 5x^2 + 5y^2 + 10gx +$ 10 fy + 38 = 0. If r is the radius of circle c_2 , then α + $6r^2$ is equal to _____. [JEE (Main)-2022]