

# NATIONAL SENIOR CERTIFICATE

**GRADE 12** 

**JUNE 2023** 

## **TECHNICAL SCIENCES: CHEMISTRY P2**

MARKS: 75

TIME: 1½ hours

This question paper consists of 14 pages, including 2 data sheets.

#### **INSTRUCTIONS AND INFORMATION**

- 1. Write your FULL NAME and SURNAME in the appropriate spaces in the ANSWER BOOK.
- 2. Answer ALL the questions.
- 3. Start each question on a NEW page in the ANSWER BOOK.
- 4. You may use a non-programmable calculator.
- 5. You may use appropriate mathematical instruments.
- 6. Number the answers according to the numbering system used in this question paper.
- 7. Show ALL formulae and substitutions in ALL calculations.
- 8. Round off your final numerical answers to a minimum of TWO decimal places.
- 9. Give brief motivations, discussions et cetera where required.
- 10. You are advised to use the attached DATA SHEETS.
- 11. Write neatly and legibly.

#### **QUESTION 1: MULTIPLE-CHOICE QUESTIONS**

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question numbers (1.1 to 1.5) in the ANSWER BOOK, for example 1.6 E.

1.1 Which ONE of the following combinations is correct about the name of the functional group and homologous series?

|   | Name of the functional group | Homologous series |
|---|------------------------------|-------------------|
| Α | Carboxyl group               | Ketone            |
|   |                              |                   |
| В | Formyl group                 | Carboxylic acid   |
|   |                              |                   |
| С | Carboxyl group               | Aldehyde          |
|   |                              |                   |
| D | Hydroxyl group               | Alcohol           |

(2)

1.2 Consider the structural formula of the compound below and identify its correct IUPAC name and the type of hydrocarbon:



A Pent-3-ene; saturated

B Pent-2-ene; unsaturated

C 2-Pentane; unsaturated

D Pent-2-ene; saturated (2)

1.3 Study the organic reaction below and answer the following question.

The substance that **Y** represents is ..., and it is an ... compound.

- A water; organic
- B water; inorganic
- C carbon; organic
- D methane; inorganic (2)
- 1.4 Which of the following set of answers is the correct arrangement of semiconductors?

|   | Valence<br>electrons | Arrangement of covalent bonds | Element   | Material    |  |  |
|---|----------------------|-------------------------------|-----------|-------------|--|--|
| Α | 4                    | tetrahedral                   | carbon    | diamond     |  |  |
|   |                      |                               |           |             |  |  |
| В | 4                    | hexagonal                     | diamond   | carbon      |  |  |
|   |                      |                               |           |             |  |  |
| С | 5                    | tetrahedral                   | arsenic   | phosphorous |  |  |
|   |                      |                               |           |             |  |  |
| D | 5                    | pentagonal                    | germanium | silicon     |  |  |

(2)

- 1.5 Extrinsic and intrinsic semiconductors:
  - (i) In doping, an impurity is added to a semiconductor to improve the conductivity of the semiconductor
  - (ii) In doping, a catalyst is added to a semiconductor to improve the conductivity of the semiconductor
  - (iii) A few protons gain enough thermal energy to cross the energy gap (from the valence band) to the conduction band
  - (iv) Semiconductors are doped with a trivalent impurity
  - (v) A few electrons gain enough thermal energy to cross the energy gap (from the valence band) to the conduction band

Which ONE of the following combinations below is CORRECT?

- A (i) and (ii)
- B (ii) and (iii)
- C (i) and (iv)
- D (iii) and (iv)

(2)

[10]

Copyright reserved

## QUESTION 2 (Start on a NEW page.)

Consider the organic compounds represented by the letters  ${\bf A}$  to  ${\bf G}$  below and answer the questions that follow.

| Α | Hex-2-ene                  | Е | 2-methylpropan-2-ol                     |
|---|----------------------------|---|-----------------------------------------|
| В | H—C—C—C—C—C—H<br>          | F | H H H O H H O H O H O H O H O H O H O H |
|   |                            |   |                                         |
| С | H H H H<br>                | G | H H H H O<br>                           |
|   |                            |   |                                         |
| D | H—C—C—C—C—C—H<br>H—H—H—H—H | Н | H O H<br>H C C C H<br>H H               |

- 2.1 Define the term *hydrocarbon*. (2)
- 2.2 Write down the letter(s) that represents the following:
  - 2.2.1 A secondary alcohol (1)
  - 2.2.2 A saturated hydrocarbon (1)
  - 2.2.3 Functional isomers (2)
  - 2.2.4 Hydrocarbons (1)
  - 2.2.5 Positional isomers (2)

#### QUESTION 3 (Start on a NEW page.)

Students were observing the vapour pressure of three (3) organic compounds from a homologous series with a general formula  $C_nH_{2n+2}$ , represented by A, B and C. The number of carbon atoms of these organic compounds ranges between 3 carbon atoms and 5 carbon atoms. Their results were graphed as follows:



- 3.1 Define the term *homologous series*. (2)
- 3.2 What trend can be deduced from the graph? (2)
- 3.3 Identify the type of intermolecular forces that exist between the molecules of these organic compounds. (1)
- 3.4 Write down the names of the compounds in the graph represented by the following letters:

- 3.5 Explain the difference in the vapour pressure of compounds **B** and **C**. Refer to the MOLECULAR MASSES, STRENGTH OF INTERMOLECULAR FORCES and THE ENERGY NEEDED. (4)
- 3.6 Which compound will have the ...? (Write only **A**, **B** or **C**.)

(1)

(1) **[16]** 

## QUESTION 4 (Start on a NEW page.)

4.5.3

4.5.4

Highest melting point

Lowest viscosity

The table below shows the boiling points of four organic compounds, represented by the letters **A** to **D**, of comparable molecular mass.

|   | Compound      | Molecular mass | Boiling point (°C) |
|---|---------------|----------------|--------------------|
| Α | Butane        | 58             | 0                  |
| В | Propanone     | 58             | 49                 |
| С | Propan-1-ol   | 60             | 97                 |
| D | Ethanoic acid | 60             | 118                |

4.1 Which compound can be used as a fuel in gas burners? (1) 4.2 Explain your answer to QUESTION 4.1. (2)4.3 How will the boiling point of 2-methylpropane compare to that of compound A? Write HIGHER THAN, LOWER THAN or EQUAL TO. Refer to MOLECULAR STRUCTURES, INTERMOLECULAR FORCES and the ENERGY needed to explain the answer. (4) What is the relationship between compound A and 2-methyl propane? 4.4 Explain. (2)Consider the vapour pressure of compounds **B** and **C**. These compounds 4.5 have different vapour pressure. Give a reason for this difference in vapour pressure by referring to 4.5.1 the intermolecular forces present in EACH of these compounds. (4)Which ONE of compounds **B** or **C** has the: 4.5.2 Highest vapour pressure (1)

### QUESTION 5 (Start on a NEW page.)

Consider the flow diagram below and answer the questions that follow.



5.1 Write down the type of reaction represented by the following:

- 5.2 For Reaction **E**, write the following down:
  - 5.2.1 The homologous series to which compound **P** belongs (1)
  - 5.2.2 ONE reaction condition (1)
  - 5.2.3 The balanced chemical equation using STRUCTURAL FORMULAE (3)
- 5.3 Write down the structural formula for compound **Q**. (2) **[10]**

## QUESTION 6 (Start on a NEW page.)

A p-n junction is formed when a p-doped semiconductor is connected to an n-doped semiconductor.

6.1 Label the following diagram of a p-n junction.



TOTAL: 75

[4]

# NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

### DATA FOR TECHNICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

#### GEGEWENS VIR TEGNIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

#### TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

| NAAM/NAME                 | SIMBOOL/SYMBOL                   | WAARDE/ <i>VALUE</i>                      |
|---------------------------|----------------------------------|-------------------------------------------|
| Avogadro se konstante     |                                  |                                           |
| Avogadro's constant       | $N_{A}$                          | 6,02 × 10 <sup>23</sup> mol <sup>-1</sup> |
| Molêre gaskonstante       |                                  |                                           |
| Molar gas constant        | R                                | 8,31 J·K <sup>-1</sup> ·mol <sup>-1</sup> |
| Standaarddruk             |                                  |                                           |
| Standard pressure         | $p^{\scriptscriptstyle{\theta}}$ | 1,013 × 10⁵ Pa                            |
| Molêre gasvolume teen STD |                                  |                                           |
| Molar gas volume at STP   | V <sub>m</sub>                   | 22,4 dm³·mol-¹                            |
| Standaardtemperatuur      |                                  |                                           |
| Standard temperature      | Tθ                               | 273 K                                     |

#### TABLE 2: FORMULAE/TABEL 2: FORMULES

| $n = \frac{m}{M}$ or/of   | $c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$  | pH= -log[H <sub>3</sub> O <sup>+</sup> ]<br>K <sub>w =</sub> [H <sub>3</sub> O <sup>+</sup> ][OH <sup>-</sup> ] = 1x10 <sup>-14</sup> |
|---------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| $n = \frac{N}{N_A}$ or/of | $\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$ | at /by 298K                                                                                                                           |
| $n = \frac{V}{V_m}$       |                                             |                                                                                                                                       |

$$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} \, / \, E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$$

$$E^{\theta}_{cell} = E^{\theta}_{reduction} - E^{\theta}_{oxidation} \ / \ E^{\theta}_{sel} = E^{\theta}_{reduksie} - E^{\theta}_{oksidasie}$$

$$E^{\theta}_{cell} = E^{\theta}_{oxidising \ agent} - E^{\theta}_{reducing \ agent} \ / \ E^{\theta}_{sel} = E^{\theta}_{oksideermiddel} - E^{\theta}_{reduseermiddel}$$

(EC/JUNE 2023) TECHNICAL SCIENCES P2 12

## TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

| 1<br>(l)         |     | 2<br>(II)       | 3   | 3               | 4   | 4                | 5                      | 6                     | 7                     | 8<br>Atoom      | 9<br>getal       | 10               | 11              | 12              | 13<br>(III)      | 14<br>(IV)         | 15<br>(V)          | 16<br>(VI)          | 17<br>(VII)         | 18<br>(VIII)     |
|------------------|-----|-----------------|-----|-----------------|-----|------------------|------------------------|-----------------------|-----------------------|-----------------|------------------|------------------|-----------------|-----------------|------------------|--------------------|--------------------|---------------------|---------------------|------------------|
| 1 2,1<br>1 1     |     |                 |     |                 |     |                  | KEY/ S                 | SLEUTEL               |                       | Atomic r        | ,                |                  |                 |                 |                  |                    |                    |                     |                     | 2<br>He<br>4     |
| o, Li<br>7       | 1,5 | 4<br>Be<br>9    |     |                 |     |                  |                        | ktronega<br>ectronega |                       |                 | u -              | _Simbo           |                 |                 | 2.0<br>B<br>11   | 2.5<br>C<br>12     | 7<br>0: N<br>14    | 8<br>9.5<br>0<br>16 | 0,4 19<br>6 19<br>9 | 10<br>Ne<br>20   |
| 6 Na<br>23       | 1,2 | 12<br>Mg<br>24  |     |                 |     |                  |                        |                       | Appro                 | derde rel       | elative          | atomic ı         | mass            |                 | 13<br>- Al<br>27 | ο 14<br>ο Si<br>28 | 15<br>7<br>8<br>31 | 16<br>S 32          | 17<br>C C C 35,5    | 18<br>Ar<br>40   |
| 80 K<br>39       | 1,0 | 20<br>Ca<br>40  | 1,3 | 21<br>Sc<br>45  | 1,5 | 22<br>Ti<br>48   | 9. V<br>51             | 9. Cr<br>52           | 25<br>Mn<br>55        | 26<br>Fe<br>56  | 27<br>© Co<br>59 | 28<br>W Ni<br>59 | 63,5<br>63,5    | 9 Zn<br>65      | 9 Ga<br>70       | ∞ Ge<br>73         | 33<br>O As<br>75   | 75 Se<br>79         | 85<br>87<br>80      | 36<br>Kr<br>84   |
| 37<br>% Rb<br>86 | 1,0 | 38<br>Sr<br>88  | 1,2 | 39<br>Y<br>89   | 1,4 | 40<br>Zr<br>91   | 41<br>Nb<br>92         | % Mo<br>96            | 6. Lc                 | 101             | 45<br>Rh<br>103  | 106              | 6: Ag<br>108    | 48<br>Cd<br>112 | 49<br>In<br>115  | ∞ 50<br>Sn<br>119  | 51<br>Sb<br>122    | 52<br>Te<br>128     | 53<br>7 I<br>127    | 54<br>Xe<br>131  |
| 55<br>Cs<br>133  | 6'0 | 56<br>Ba<br>137 |     | 57<br>La<br>139 | 9.  | 72<br>Hf<br>I 79 | 73<br>Ta<br>181        | 74<br>W<br>184        | 75<br>Re<br>186       | 76<br>Os<br>190 | 77<br>Ir<br>192  | 78<br>Pt<br>195  | 79<br>Au<br>197 | 80<br>Hg<br>201 | % Tℓ<br>204      | ∞. Pb<br>207       | ි Bi<br>209        | 84<br>Po<br>Po      | 85<br>At            | 86<br>Rn         |
| 87<br>2, Fr      | 6'0 | 88<br>Ra<br>226 |     | 89<br>Ac        |     |                  | 58<br>Ce               | 59<br>Pr              | 60<br>Nd              | 61<br>Pm        | 62<br>Sm         | 63<br>Eu         | 64<br>Gd        | 65<br>Tb        | 66<br>Dy         | 67<br>Ho           | 68<br>Er           | 69<br>Tm            | 70<br>Yb            | 71<br>Lu         |
|                  |     |                 |     |                 |     |                  | 140<br>90<br>Th<br>232 | 141<br>91<br>Pa       | 144<br>92<br>U<br>238 | 93<br>Np        | 150<br>94<br>Pu  | 152<br>95<br>Am  | 157<br>96<br>Cm | 159<br>97<br>Bk | 163<br>98<br>Cf  | 165<br>99<br>Es    | 167<br>100<br>Fm   | 169<br>101<br>Md    | 173<br>102<br>No    | 175<br>103<br>Lr |

**TABLE 4A: STANDARD REDUCTION POTENTIALS** TABEL 4A: STANDAARD REDUKSIEPOTENSIALE

| TABEL 4A: STANDAARD REDUKSIEPOTENSIALE                                            |                      |                                       |          |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|----------------------|---------------------------------------|----------|--|--|--|--|--|--|
| Half-reactions                                                                    | Ε <sup>θ</sup> (V)   |                                       |          |  |  |  |  |  |  |
| F <sub>2</sub> (g) + 2e <sup>-</sup>                                              | =                    | 2F-                                   | + 2,87   |  |  |  |  |  |  |
| Co <sup>3+</sup> + e <sup>-</sup>                                                 | =                    | Co <sup>2+</sup>                      | + 1,81   |  |  |  |  |  |  |
| $H_2O_2 + 2H^+ + 2e^-$                                                            | =                    | 2H₂O                                  | +1,77    |  |  |  |  |  |  |
| MnO <sub>4</sub> + 8H <sup>+</sup> + 5e <sup>-</sup>                              | =                    | $Mn^{2+} + 4H_2O$                     | + 1,51   |  |  |  |  |  |  |
| $C\ell_2(g) + 2e^-$                                                               | =                    | 2Cl <sup>-</sup>                      | + 1,36   |  |  |  |  |  |  |
| Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> + 14H <sup>+</sup> + 6e <sup>-</sup> | =                    | $2Cr^{3+} + 7H_2O$                    | + 1,33   |  |  |  |  |  |  |
| $O_2(g) + 4H^+ + 4e^-$                                                            | =                    | 2H <sub>2</sub> O                     | + 1,23   |  |  |  |  |  |  |
| MnO <sub>2</sub> + 4H <sup>+</sup> + 2e <sup>-</sup>                              | =                    | $Mn^{2+} + 2H_2O$                     | + 1,23   |  |  |  |  |  |  |
| Pt <sup>2+</sup> + 2e <sup>-</sup>                                                | =                    | Pt                                    | + 1,20   |  |  |  |  |  |  |
| $Br_2(\ell) + 2e^-$                                                               | =                    | 2Br <sup>-</sup>                      | + 1,07   |  |  |  |  |  |  |
| NO $_3^-$ + 4H+ + 3e-                                                             | =                    | $NO(g) + 2H_2O$                       | + 0,96   |  |  |  |  |  |  |
| Hg <sup>2+</sup> + 2e <sup>-</sup>                                                | =                    | Hg(ℓ)                                 | + 0,85   |  |  |  |  |  |  |
| Ag+ + e-                                                                          | $\rightleftharpoons$ | Ag                                    | + 0,80   |  |  |  |  |  |  |
| NO <sub>3</sub> + 2H+ + e-                                                        | =                    | $NO_2(g) + H_2O$                      | + 0,80   |  |  |  |  |  |  |
| Fe <sup>3+</sup> + e <sup>-</sup>                                                 | =                    | Fe <sup>2+</sup>                      | + 0,77   |  |  |  |  |  |  |
| O <sub>2</sub> (g) + 2H <sup>+</sup> + 2e <sup>-</sup>                            | =                    | $H_2O_2$                              | + 0,68   |  |  |  |  |  |  |
| l <sub>2</sub> + 2e <sup>-</sup>                                                  | =                    | 2I <sup>-</sup>                       | + 0,54   |  |  |  |  |  |  |
| Cu+ + e-                                                                          | =                    | Cu                                    | + 0,52   |  |  |  |  |  |  |
| SO <sub>2</sub> + 4H <sup>+</sup> + 4e <sup>-</sup>                               | =                    | S + 2H <sub>2</sub> O                 | + 0,45   |  |  |  |  |  |  |
| 2H <sub>2</sub> O + O <sub>2</sub> + 4e <sup>-</sup>                              | =                    | 40H <sup>-</sup>                      | + 0,40   |  |  |  |  |  |  |
| Cu <sup>2+</sup> + 2e <sup>-</sup>                                                | =                    | Cu                                    | + 0,34   |  |  |  |  |  |  |
| SO <sub>4</sub> <sup>2-</sup> + 4H <sup>+</sup> + 2e <sup>-</sup>                 | =                    | $SO_2(g) + 2H_2O$                     | + 0,17   |  |  |  |  |  |  |
| Cu <sup>2+</sup> + e <sup>-</sup>                                                 | =                    | Cu+                                   | + 0,16   |  |  |  |  |  |  |
| Sn <sup>4+</sup> + 2e <sup>-</sup>                                                | =                    | Sn <sup>2+</sup>                      | + 0,15   |  |  |  |  |  |  |
| S + 2H+ + 2e-                                                                     | =                    | H <sub>2</sub> S(g)                   | + 0,14   |  |  |  |  |  |  |
| 2H⁺ + 2e⁻                                                                         | <b>=</b>             | H <sub>2</sub> (g)                    | 0,00     |  |  |  |  |  |  |
| Fe <sup>3+</sup> + 3e <sup>-</sup>                                                | =                    | Fe                                    | - 0,06   |  |  |  |  |  |  |
| Pb <sup>2+</sup> + 2e <sup>-</sup>                                                | =                    | Pb                                    | - 0,13   |  |  |  |  |  |  |
| Sn <sup>2+</sup> + 2e <sup>-</sup>                                                | =                    | Sn                                    | - 0,14   |  |  |  |  |  |  |
| Ni <sup>2+</sup> + 2e <sup>-</sup>                                                | =                    | Ni                                    | - 0,27   |  |  |  |  |  |  |
| Co <sup>2+</sup> + 2e <sup>-</sup>                                                | =                    | Co                                    | - 0,28   |  |  |  |  |  |  |
| Cd <sup>2+</sup> + 2e <sup>-</sup>                                                | =                    | Cd                                    | - 0,40   |  |  |  |  |  |  |
| Cr <sup>3+</sup> + e <sup>-</sup>                                                 | =                    | Cr <sup>2+</sup>                      | - 0,41   |  |  |  |  |  |  |
| Fe <sup>2+</sup> + 2e <sup>-</sup>                                                | =                    | Fe                                    | - 0,44   |  |  |  |  |  |  |
| Cr <sup>3+</sup> + 3e <sup>-</sup>                                                | =                    | Cr                                    | - 0,74   |  |  |  |  |  |  |
| Zn <sup>2+</sup> + 2e <sup>-</sup>                                                | <b>=</b>             | Zn                                    | - 0,76   |  |  |  |  |  |  |
| 2H <sub>2</sub> O + 2e <sup>-</sup>                                               | <b>=</b>             | H <sub>2</sub> (g) + 2OH <sup>-</sup> | - 0,83   |  |  |  |  |  |  |
| Cr <sup>2+</sup> + 2e <sup>-</sup>                                                | <b>=</b>             | Cr                                    | - 0,91   |  |  |  |  |  |  |
| Mn <sup>2+</sup> + 2e <sup>-</sup>                                                | <b>=</b>             | Mn                                    | - 1,18   |  |  |  |  |  |  |
| $A\ell^{3+} + 3e^{-}$                                                             | <b>=</b>             | Αℓ                                    | - 1,66   |  |  |  |  |  |  |
| Mg <sup>2+</sup> + 2e <sup>-</sup>                                                | =                    | Mg                                    | - 2,36   |  |  |  |  |  |  |
| Na <sup>+</sup> + e <sup>-</sup>                                                  | =                    | Na                                    | - 2,71   |  |  |  |  |  |  |
| Ca <sup>2+</sup> + 2e <sup>-</sup>                                                | =                    | Ca                                    | - 2,87   |  |  |  |  |  |  |
| Sr <sup>2+</sup> + 2e <sup>-</sup>                                                | =                    | Sr                                    | - 2,89   |  |  |  |  |  |  |
| Ba <sup>2+</sup> + 2e <sup>-</sup>                                                | =                    | Ва                                    | - 2,90   |  |  |  |  |  |  |
| Cs <sup>+</sup> + e <sup>-</sup>                                                  | =                    | Cs                                    | - 2,92   |  |  |  |  |  |  |
| K+ + e-                                                                           | =                    | K                                     | - 2,93   |  |  |  |  |  |  |
| Li+ + e-                                                                          | <b>=</b>             | Li                                    | - 3,05   |  |  |  |  |  |  |
|                                                                                   |                      |                                       | <u> </u> |  |  |  |  |  |  |

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD REDUKSIEPOTENSIALE

| Half-reactions                                                      | E <sup>θ</sup> (V) |                                       |        |
|---------------------------------------------------------------------|--------------------|---------------------------------------|--------|
| Li+ + e-                                                            | <b>=</b>           | Li                                    | - 3,05 |
| K+ + e-                                                             | =                  | K                                     | - 2,93 |
| Cs+ + e-                                                            | =                  | Cs                                    | - 2,92 |
| Ba <sup>2+</sup> + 2e <sup>-</sup>                                  | =                  | Ва                                    | - 2,90 |
| Sr <sup>2+</sup> + 2e <sup>-</sup>                                  | <del>=</del>       | Sr                                    | - 2,89 |
| Ca <sup>2+</sup> + 2e <sup>-</sup>                                  | <b>=</b>           | Ca                                    | - 2,87 |
| Na⁺ + e⁻                                                            | =                  | Na                                    | - 2,71 |
| Mg <sup>2+</sup> + 2e <sup>-</sup>                                  | =                  | Mg                                    | - 2,36 |
| $A\ell^{3+} + 3e^{-}$                                               | =                  | Αℓ                                    | - 1,66 |
| Mn <sup>2+</sup> + 2e <sup>-</sup>                                  | <del>=</del>       | Mn                                    | - 1,18 |
| Cr <sup>2+</sup> + 2e <sup>-</sup>                                  | =                  | Cr                                    | - 0,91 |
| 2H <sub>2</sub> O + 2e <sup>-</sup>                                 | <del>=</del>       | H <sub>2</sub> (g) + 2OH <sup>-</sup> | - 0,83 |
| Zn <sup>2+</sup> + 2e <sup>-</sup>                                  | =                  | Zn                                    | - 0,76 |
| Cr <sup>3+</sup> + 3e <sup>-</sup>                                  | =                  | Cr                                    | - 0,74 |
| Fe <sup>2+</sup> + 2e <sup>-</sup>                                  | =                  | Fe                                    | - 0,44 |
| Cr <sup>3+</sup> + e <sup>-</sup>                                   | =                  | Cr <sup>2+</sup>                      | - 0,41 |
| Cd <sup>2+</sup> + 2e <sup>-</sup>                                  | =                  | Cd                                    | - 0,40 |
| Co <sup>2+</sup> + 2e <sup>-</sup>                                  | =                  | Со                                    | - 0,28 |
| Ni <sup>2+</sup> + 2e <sup>-</sup>                                  | =                  | Ni                                    | - 0,27 |
| Sn <sup>2+</sup> + 2e <sup>-</sup>                                  | =                  | Sn                                    | - 0,14 |
| Pb <sup>2+</sup> + 2e <sup>-</sup>                                  | =                  | Pb                                    | - 0,13 |
| Fe <sup>3+</sup> + 3e <sup>-</sup>                                  | =                  | Fe                                    | - 0,06 |
| 2H⁺ + 2e⁻                                                           | <b>=</b>           | H₂(g)                                 | 0,00   |
| S + 2H <sup>+</sup> + 2e <sup>-</sup>                               | =                  | H <sub>2</sub> S(g)                   | + 0,14 |
| Sn <sup>4+</sup> + 2e <sup>-</sup>                                  | =                  | Sn <sup>2+</sup>                      | + 0,15 |
| Cu <sup>2+</sup> + e <sup>-</sup>                                   | =                  | Cu <sup>+</sup>                       | + 0,16 |
| 2-<br>SO <sub>4</sub> + 4H <sup>+</sup> + 2e <sup>-</sup>           | =                  | $SO_2(g) + 2H_2O$                     | + 0,17 |
| Cu <sup>2+</sup> + 2e <sup>-</sup>                                  | <b>=</b>           | Cu                                    | + 0,34 |
| 2H <sub>2</sub> O + O <sub>2</sub> + 4e <sup>-</sup>                | =                  | 4OH⁻                                  | + 0,40 |
| SO <sub>2</sub> + 4H <sup>+</sup> + 4e <sup>-</sup>                 | =                  | S + 2H <sub>2</sub> O                 | + 0,45 |
| Cu+ + e-                                                            | =                  | Cu                                    | + 0,52 |
| l <sub>2</sub> + 2e <sup>-</sup>                                    | =                  | 2I <sup>-</sup>                       | + 0,54 |
| O <sub>2</sub> (g) + 2H <sup>+</sup> + 2e <sup>-</sup>              | =                  | $H_2O_2$                              | + 0,68 |
| Fe <sup>3+</sup> + e <sup>-</sup>                                   | =                  | Fe <sup>2+</sup>                      | + 0,77 |
| NO 3 + 2H+ + e-                                                     | =                  | $NO_2(g) + H_2O$                      | + 0,80 |
| Ag⁺ + e⁻                                                            | <b>=</b>           | Ag                                    | + 0,80 |
| Hg <sup>2+</sup> + 2e <sup>-</sup>                                  | =                  | Hg(ℓ)                                 | + 0,85 |
| NO <sub>3</sub> + 4H+ + 3e <sup>-</sup>                             | =                  | $NO(g) + 2H_2O$                       | + 0,96 |
| $Br_2(\ell) + 2e^-$                                                 | =                  | 2Br <sup>-</sup>                      | + 1,07 |
| Pt <sup>2+</sup> + 2 e <sup>-</sup>                                 | =                  | Pt                                    | + 1,20 |
| MnO <sub>2</sub> + 4H <sup>+</sup> + 2e <sup>-</sup>                | =                  | Mn <sup>2+</sup> + 2H <sub>2</sub> O  | + 1,23 |
| O <sub>2</sub> (g) + 4H <sup>+</sup> + 4e <sup>-</sup>              | =                  | 2H <sub>2</sub> O                     | + 1,23 |
| Cr <sub>2</sub> O <sub>7</sub> + 14H <sup>+</sup> + 6e <sup>-</sup> | =                  | 2Cr <sup>3+</sup> + 7H <sub>2</sub> O | + 1,33 |
| $Cl_2(g) + 2e^-$                                                    | =                  | 2Cℓ <sup>-</sup>                      | + 1,36 |
| MnO <sub>4</sub> + 8H <sup>+</sup> + 5e <sup>-</sup>                | =                  | Mn <sup>2+</sup> + 4H <sub>2</sub> O  | + 1,51 |
| H <sub>2</sub> O <sub>2</sub> + 2H <sup>+</sup> +2 e <sup>-</sup>   | =                  | 2H₂O                                  | +1,77  |
| Co <sup>3+</sup> + e <sup>-</sup>                                   | =                  | Co <sup>2+</sup>                      | + 1,81 |
| F <sub>2</sub> (g) + 2e <sup>-</sup>                                | <b>=</b>           | 2F-                                   | + 2,87 |

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë