

SEQUENCE LISTING

<110> C. Frank Bennett
Kenneth Dobie

<120> ANTISENSE MODULATION OF SUPEROXIDE DISMUTASE 1, SOLUBLE EXPRESSION

<130> RTS-0242

<150> 2003-08-04

<151> 10/633,843

<150> 2001-06-21

<151> 09/888,360

<160> 339

<210> 1

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 1

tccgtcatcg ctcctcaggg

20

<210> 2

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 2

atgcattctg cccccaagga

20

<210> 3

<211> 874

<212> DNA

<213> Homo sapiens

<220>

<220>

<221> CDS

<222> (65) . . . (529)

<400> 3
 ctgcagcgtc tggggtttcc gttgcagtcc tcggaaccag gacctcgccg tggcttagcg 60
 agtt atg gcg acg aag gcc gtg tgc gtg ctg aag ggc gac ggc cca gtg 109
 Met Ala Thr Lys Ala Val Cys Val Leu Lys Gly Asp Gly Pro Val
 1 5 10 15
 cag ggc atc atc aat ttc gag cag aag gaa agt aat gga cca gtg aag 157
 Gln Gly Ile Ile Asn Phe Glu Gln Lys Glu Ser Asn Gly Pro Val Lys
 20 25 30
 gtg tgg gga agc att aaa gga ctg act gaa ggc ctg cat gga ttc cat 205
 Val Trp Gly Ser Ile Lys Gly Leu Thr Glu Gly Leu His Gly Phe His
 35 40 45
 gtt cat gag ttt gga gat aat aca gca ggc tgt acc agt gca ggt cct 253
 Val His Glu Phe Gly Asp Asn Thr Ala Gly Cys Thr Ser Ala Gly Pro
 50 55 60
 cac ttt aat cct cta tcc aga aaa cac ggt ggg cca aag gat gaa gag 301
 His Phe Asn Pro Leu Ser Arg Lys His Gly Gly Pro Lys Asp Glu Glu
 65 70 75
 agg cat gtt gga gac ttg ggc aat gtg act gct gac aaa gat ggt gtg 349
 Arg His Val Gly Asp Leu Gly Asn Val Thr Ala Asp Lys Asp Gly Val
 80 85 90 95
 gcc gat gtg tct att gaa gat tct gtg atc tca ctc tca gga gac cat 397
 Ala Asp Val Ser Ile Glu Asp Ser Val Ile Ser Leu Ser Gly Asp His
 100 105 110
 tgc atc att ggc cgc aca ctg gtg gtc cat gaa aaa gca gat gac ttg 445
 Cys Ile Ile Gly Arg Thr Leu Val Val His Glu Lys Ala Asp Asp Leu
 115 120 125
 ggc aaa ggt gga aat gaa gaa agt aca aag aca gga aac gct gga agt 493
 Gly Lys Gly Gly Asn Glu Glu Ser Thr Lys Thr Gly Asn Ala Gly Ser
 130 135 140
 cgt ttg gct tgt ggt gta att ggg atc gcc caa taa acattccctt 539
 Arg Leu Ala Cys Gly Val Ile Gly Ile Ala Gln
 145 150 154
 ggatgtagtc tgaggcccct taactcatct gttatcctgc tagctgtaga aatgtatcct 599
 gataaacatt aaacactgt a atctaaaag tgtaattgtg tgacttttc agagttgctt 659
 taaagtacct gtagtgagaa actgatttat gatcacttgg aagattgtt tagtttata 719
 aaactcagtt aaaatgtctg tttcaatgac ctgtatccg ccagacttaa atcacagatg 779
 ggtattaaac ttgtcagaat ttctttgtca ttcaagcctg tgaataaaaa ccctgtatgg 839
 cacttattat gaggctttaa aaagaatcca aattc 874

<210> 4

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 4

cgtggcctag cgagttatgg

20

<210> 5

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 5

gaaattgatg atgcctgca

20

<210> 6

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Probe

<400> 6

acgaaggccg tgtgcgtgct g

21

<210> 7

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 7

gaaggtgaag gtcggagtc

19

<210> 8

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 8

gaagatggtg atgggatttc

20

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Probe

<400> 9
caagcttccc gttctcagcc

20

<210> 10
<211> 11000
<212> DNA
<213> Homo sapiens

<220>

<400> 10
aaaaacgcag gtgatgccta gaagccaact agttgccgtt tggtatctg tagggttgtg 60
gccttgccaa acaggaaaaa tataaaaaga ataccgaatt ctgccaacca aataagaaac 120
tctatactaa ggactaagaa aattgcaggg gaagaaaagg taagtcccg gattgaggtg 180
tagcgacttt ctataccctc agaaaactaa aaaacaagac aaaaaaatga aaactacaaa 240
agcatccatc ttggggcgtc ccaattgctg agtaacaat gagacgctgt gccaaactc 300
agtcatataact aatgacattt ctagacaaag tgacttcaga tttcaaagc gtaccctgtt 360
tacatcattt tgccaaatttc gcgtactgca accggcgccc cacgcccccg tgaaaagaag 420
gttggtttct ccacatttcg gggttctgga cgtttcccg ctgcggggcg gggggagtct 480
ccggcgcacg cggcccccgg gccccgcccc cagtcattcc cggccactcg cgaccggagg 540
ctgcccagg gggcgggctg agcgcgtgcg aggcgattgg tttggggcca gagtgggcga 600
ggcgcggagg tctggcstat aaagttagtcg cggagacggg gtgctggtt gcgtcgttagt 660
ctcctgcagc gtctggggtt tccgttgcaag tcctcgaaac caggacctcg gcgtggccta 720
gcgagttatg gcgacgaagg ccgtgtgcgt gctgaaggc gacggcccgac tgcaggccat 780
catcaatttc gagcagaagg caagggctgg gacggaggct tgtttgcag gccgctccca 840
cccgctcgac ccccccgcga ctttgctag gagcgggtcg cccgcccagg ctcggggccg 900
ccctggtcca ggcggccgtc cggccgggtg cggccgggtc ggtgccttcg cccccagcgg 960
tgcgggtgccca aagtgcgttag tcaccggggcg ggcccgggcg cggggcgtgg gaccgaggcc 1020

gccgcggggc tgggcctgcg cgtggcgaaa ggcgcggggag ggattgccgc gggccggggaa 1080
ggggcgaaaaa cgggcgtgct gccctctgtg gtccttggc cgccgcccgc ggtctgtcg 1140
ggtgccctgga gcggctgtgc tcgtcccttg cttggccgtg ttctcgttcc tgagggtccc 1200
gcggacaccg agtggcgcaag tgccaggccc agcccgaaaa tggcgactgc gcctggggccc 1260
gcctgggtgc ttgcatcccc tctccgctt ccggcttcag cgctctaggt cagggagtct 1320
tcgctttgt acagctctaa ggcttaggaat ggttttataa tttttaaaag gctttggaaa 1380
acaaaaaatac gcaacagaga cgggttgtgt gacacttgc agggaaagttt gctggcctct 1440
gttctaggtc atgattggc tgcaaggca gagaaggtag cttgaacag aggtcctttt 1500
cctccctccta agctccggaa gccagaggtt taactgaccc ttttgggat ttttggggc 1560
agtgatctta actttgggtg cacagttgc ttatttgaag atcttactaa aaatacacca 1620
gagcccaacc tccgaccaat tacataaaaa cctgtcctag tgcagggtga gtattgtgt 1680
ttttgaaag tttccaaaag tgattttgat gtgcacctac gattgagaac tgtcgttga 1740
ggacagtggg tggagttcg tatttggaaa tttagaagacc tggagttcc attacaccga 1800
attggcactt aataactgtt gtcggagcat ttcttaagcc acatttcgt aaagtggctt 1860
taaaaattgt ctgccagtag gcaggttgc aagatgtca gagacaaact tctgaacgc 1920
tcttgaaaaa tatacagaaa tatttcaga actttatca gtaaaattac aaaacgtgtt 1980
gcaaggaagg tgcttgtat aacactgtcc ccagaacctt agtgaagttt ccaactgggt 2040
gaaaatttc tcttgactc ggctaaaaaa tcatgaggaa atatttacta tacgaatgag 2100
attcagtctt taaaggggtt tacagaaacg tgagaggaca ggaacagttt gtctgtgtt 2160
atgtctgaaa tatatgtgag ggagataatg agtttagcct tttctttaa taggtctcca 2220
gattttctgg aaaaggttct ttggcatttgc actccatttt gctgtttcat ttgtcagact 2280
tcttttgc cctcttact tctccccaca taattcacca gtactagtgt tttgttttc 2340
agaccaagtc tcgctctgtc gcccaggctg gagtgcagtg ggcgcgtctc agtcactgc 2400
aacctccgcc tcccagggttc aagcaattct cctgcctcag cctccgggt agctgggact 2460
acaggcgccg cccgcacgc ctggctaatt ttttatattt tagtagagac ggcgtttcac 2520
catgttggcc agatggtct cgatctgtt acgtcgatccat ccacccgcctt cggccctccca 2580
aagtgcgtggg attacaggcg tgagccaccc cggccggcca ccagtgcctat tcttaagacg 2640
cctctgagga atcccttctc cctggccatt gagaatccat gcatgaaccc aggtttcca 2700
cctccctgaa gcagcttgca tagttccttc ttttaagcgc ctgacttcgt tttgtttgtt 2760
ggccgttgc tccgagaatg agccttggat agtggagcat tccagctttc cagatatgca 2820

gagataatac attggctatc agctacttgg cttggcctat tccgtgttta aaatcttgg 2880
ctctttgcta gttttacag atcagaattt ttacagtatt aatccagttt tcctagcttc 2940
tcttgaagaa ttttgaga tctcttcata ctgagccttc attagcccag gacagtactg 3000
ctgttagcagt tcataatattt ttgcgttcc caggcctgtg ttattcaactt aagttcatag 3060
cctggccct gcagggtgtt acccgagcac agctacttag atgtcctgaa tgtattaccg 3120
gttaaatgga ggttcaaag aacctgctgt tttggccct gtgcttga taacagagtg 3180
tttgagggac aacttcaca tttgagtttt tccaaaatta aaggtttag aagagtcaca 3240
gtatctatttgc taaaaaagaa aagaatttaa aaaggcagca attgccagga tacttcattt 3300
gagcaatgat atttccagt ggaaagtcac atcttaaggg ttaatgcccc ttaactgttgc 3360
gccgtatttgc aaaacaaacc aagctaaaaa caagagacac tgacatgttgc tatgacgggt 3420
tgggtggat gttgtgttta ttttagtcct gagatctgt tgtaacttcc ttgatttctg 3480
tatgttagcca cggagcacca ttacctgtca ccattacctg aatggctata ctgcttgc 3540
tcattttggt agagtggaaa ggttacctag gttcagtgc ttgaaaagat ttcagaaagc 3600
agtagtacgt ctggtagac tagaatcagt cctctcctgg gggcagtggaa atataatattt 3660
ttctgactgc taattaaaaa tacctgtat agccggcgt ggtggcttac gcctgtatc 3720
ccagcactttt gggaggccga gacgggtggaa tcacgaggc acagatggaa gaccatcctg 3780
gctaacacgg tgaaaccccg tctctactaa aaatgaaaaa aaattagccg ggtgtgggtgg 3840
tgggcgcctg tagtcccagc tactcaggag gctgaggcag gagaatggca tgaacctggg 3900
aggcggagct tgcaagtgc cgagatcatg tcactgcact ccagcctggg cgacagagcg 3960
agactcgtct caaaaaaaaaa aaaaaaaaaa cttatgatgg acactaaaaa acactcactg 4020
agtggggagt ggagagcagg ggtcccagg tagcctgttgc gacatttcca gggcacttt 4080
ttctttttttt tttttaaag tcaagttagt atgccatatg gaaaagggtg tgcgtggaga 4140
aaaagcaagg ggctccagag tgttaggatga gacatacacc tttgggttta aaaaggctga 4200
ggcaggagaa tggcgtaac ccgggaggcg gagcttgcag tgagctgaga tcatgccact 4260
gcactccagc ctggcgaca gagcgagact cttgtctcaa aataaaaaac gtttacatgt 4320
acatgtatat tcaacatgtaa caaatataac ctattaaaaa gtatttacta cataaaatagg 4380
tacttacattt acctatttac tgtaatagtc aaagcctatg aagtatctaa cactgatgt 4440
taggtactca ctttgcttgc cactctttaa ggtgctttt atgttattta atcatgaagc 4500
ctggccacag ggtgcttgc cattgagtgtt gggaaacaaga ttaccatctc cttttgagg 4560

tttgtaatga tcagatttga tccatttctg taattgctga aattcccccg agttgctttt 6420
tggctttacc gcctctggtc tgggaggtga ttgctctgct gcttcctgta acttgccctgc 6480
ctttctccct gtgtggact cctgcgggtg agagcgtggc tgaagacagc cgtgttatga 6540
aagggcctcc tgtgtctgtcg aggttgtgtct ctgtaatgt catcccctgg tgcacacagc 6600
cacattctac acaggataca gttgaaatgc cgccccctcg agttgtgtaa ggcagcagcc 6660
ttggcccttg cacataagat gctgttaat attctgcctg caccaagtaa agggcacaga 6720
tagaactgct tggcatatgt tgctggggag atgagtttt tgtaaagtat actacgttct 6780
taagaatttg gatcataacc atgggatttt aataatagaa aaactgttga agatcagtct 6840
ggtcccttat ttttacagtg aagaagccaa agcccagaga aggggtgttaa ctttacaagt 6900
gtcagacagt agttagaact tgggtggggtt ttttttttt ttttttttag atggagtctt 6960
gctctgttgc ccaggctgga gtgcagtggt gcgatctcag ctcactgcaa cctctgcctc 7020
ccaggttcaa gcgattctcc tgcctcagcc tactaagtag ctgggactat aggtgcgcac 7080
caccacgcct agctaatttt tgtattttt cagtagagac agggttttgc tatgctggcc 7140
aggctggtct caaactcctg acctcagatg atccagccac ctcagcttcc caaagtgttg 7200
gggttccagg tgtagccac catgcctggc catagacttg tttctgttcc cttctactg 7260
tggctgtacc aaggtgttgc ttatcccaga agtcgtgatg caggtcagca ctttctccat 7320
gggaagtttt agcagtgttt ctttttagaa tgtattggg aactttaatt cataatttag 7380
cttttttttc ttcttcttat aaataggctg taccagtgca gtcctcact ttaatcctct 7440
atccagaaaa cacggtggc caaaggatga agagaggtaa caagatgctt aactcttgc 7500
ataatggcga tagcttctg gagttcatat ggtatactac ttgtaaatat gtgctaagat 7560
aattccgtgt ttccccacc ttgctttt aacttgctga ctcatctaaa cccctgctcc 7620
caaatgctgg aatgctttta cttcctggc ttaaaggaat tgacaaatgg ggacacttaa 7680
aacgatttgg tttttagca ttattgaat atagaactaa tacaagtgcc aaaggggaac 7740
taatacagga aatgtcatga acagtactgt caaccactag caaaatcaat catcattgtg 7800
aaacatagga agcttctgt aataaaaaaa aaaattgata ctgaaaacta gtcgagactc 7860
catttatatg tgtatgtttt ctgaaagcct ttcagaaaaa tattaaattt aaggacaaga 7920
tttttatatc agaggccttg ggacatagct ttgttagcta tgccagtaat taacaggcat 7980
aactcagtaa ctgagagttt accctttggt acttctgaaa tcaggtgcag ccccatctt 8040
cttcccgag cattagtgtg tagacgtgaa gccttggtt aagagctgtt tttagaatgc 8100

ctagctactt gtttgcaaat ttgtgtctac tcagtcaagt ttaattttag ctcataact 8160
accttgatgt ttagtggcat cagccctaatt ccatctgatg cttttcatt attaggcatg 8220
ttggagactt gggcaatgtg actgctgaca aagatggtgt ggccgatgtg tctattgaag 8280
attctgtatc ctcactctca ggagaccatt gcatcattgg ccgcacactg gtggtaagtt 8340
ttcataaaag gatatgcata aaacttcttc taacatacag tcatgtatct tttcacttg 8400
attgttagtc gcggtttcta aagatccaga taaactgtac ttgcagttca aattaggaaa 8460
agcaattttt ttggacaatt acggtaaaaa tgaattattt tatcttaggtc agttaagaac 8520
actgttctgc taagatgcag taaaaagcag gttacattt accatattt atctgagttt 8580
ggaaaacaga agtagtcttt agttttaaaa tggccagatt ttcttgccag gattgggttt 8640
ctcacttgtt aaacagaaca ttttgttaag tttaaaacct gggatggact taagtattca 8700
tgttcattca tgttcattca ggactgcagg ttatcatgac ttgtttaact tgtggaaagc 8760
tgttgtccca agttatcctg gggactgca tctggttctt gcaaaacacc aagtagacag 8820
gctctttttt acctcccctt gagggcatta acattcagta gtcacttcca ttcagttAAC 8880
cctttatTTT tatggTTTTT cttgagccat agttgtaaag cagaaaaatc atttataaag 8940
gtttgttcaa caaaattcaa aatactgtt cttaaagtat taagatTTT taggattata 9000
ccttacttat aggcccgta ttcatttggc atgaaatttt gagttttatt cactttcact 9060
ttcctttttt tccaaagcaa ttaaaaaaac tgccaaagta agagtgactg cggaactaag 9120
gttactgtaa cttaccatgg aggattaagg gtagcgtgtg gtggtctaca acatagttat 9180
ttgggTTTTt gtatttcatt tagacagcaa cacttaccta atgtttaaag gtaatgtctt 9240
tgcaacacca agaaaaagct ttgagtagta gtttctactt ttaaactact aaatattagt 9300
atatctctct actaggatta atgttatttt tctaataattt tgaggttctt aaacatctt 9360
tgggtattgt tgggaggagg tagtgattac ttgacagccc aaagttatct tcttaaaatt 9420
ttttacaggc ccatgaaaaa gcagatgact tgggcaaagg tggaaatgaa gaaagtacaa 9480
agacaggaaa cgctggaagt cgttggctt gtgggttaat tgggatcgcc caataaacat 9540
tcccttggat gtagtctgag gccccctaac tcatacttta tcctgcttagc tgtagaaatg 9600
tatacctgata aacattaaac actgtaatct taaaagtgtt attgtgtgac ttttcagag 9660
ttgctttaaa gtacctgttag tgagaaactg atttatgatc acttggaaaga tttgtatagt 9720
tttataaaac tcagttaaaa tgcgtgtttc aatgacactgt attttgcagactttaatca 9780
cagatgggta ttAAacttgt cagaatttct ttgtcattca agcctgtgaa taaaaaccct 9840
gtatggact tattatgagg ctattaaag aatccaaatt caaactaaat tagctctgat 9900

acttatttat ataaacagct tcagtggAAC agatttagta atactaacAG tgatAGcATT 9960
ttatTTGAA agtGTTTGA gaccatcaAA atgcataCTT taaaACAGCA ggtCTTTAG 10020
ctaaaACTAA cacaACTCTG ctTAGACAAA taggCTGTCC ttGAAAGCT ttAGGGAAAT 10080
gttcCTGCTT agTCATTTA gcATTTGAT tcATAAGTA CCTCCTCATT taaaaAGAC 10140
attatGATGT aAGAGAGCCA ttGATAACT ttTAGTGAG CTTGAAAGG caAGTTACAG 10200
cCTCAGCTAG CTAGTAAGAT tatCTACCTG ccAGAAATGGC acAAATTCTA cATTCAAGGG 10260
tagACGCTGG cacaACCTAC ttACAGATTa gCCCTTAAA gCAATCTGTA gcATTAGAAG 10320
atGGAACCAA ggAAATGTT gACTGTGGGT tCTGGCTGTT gAGAAATAAT ttACACACCG 10380
aATTAGTGAATGAGTCATC ttCTCTTAAT gtATTTATGT acCTGAGAGA atGCTTTCA 10440
atGTTAACCT aACTCAGGTT TGACTAAATT ATTCAATTGG AAATTGTAGA ATATTATTC 10500
tgATAAACCA gAAATAAGTG AAATGCTGTT tgTTCTAAAT TATGTACTTT ATCAAATGTA 10560
ggAGAGATCA ttTAGGAGAG gAAAAGCTAA attGGAAGAC AAATCTGTAG tgTTTCCAAA 10620
gtTTAAATATGTTAAAC AACAGTATGT tcACAGTAAG tGGTTAAAC ACCATTCTT 10680
taAAATCTCAG TAGAGAATTt tAAAAAGCA gtATTAAAC CATTCCCTA ATGTAGTTG 10740
ttGCCTATGT gGAATAACTC AATTAGAGAC tcACTTATGC CTTTGAAC ttCAAATATA 10800
attACACTAC CAGTTTAC ATGTGCATAT AGGATGGTCC CAATACTTTA AATTGGAAAT 10860
acAGGCTGTA AGTCCTCAA GTCGGATGT tGGGTAATCA CGTTTCTTC cAGAAGCCAT 10920
ttGTTAGGAC ttAAAACtt CTCAGTGGGC CAGTGTAAAA TTAAGGACAA gTTTATAAT 10980
ttAAATTAC AGATAAATAT 11000

<210> 11
<211> 438
<212> DNA
<213> Homo sapiens

<220>

<400> 11
cgacggccca gtgcaggGCAt tcATCAATTt cgAGCAGAAG gCTGTACCAg tgcaggTCCT 60
cactttaATC ctctatCCAG AAAACACGGT gggccAAAGG atGAAGAGAG gcatgttGGA 120
gacttggcA atgtGACTGC tgACAAAGAT ggtgtggccg atgtgtCTAT tgaAGATTCT 180
gtgatctcac tctcaggAGA ccattGCATC attggccGCA cactggTGGT ccatgaaaa 240
gcagatgact tggGCAAAGG tggAAATGAA gaaAGTACAA agacAGGAAA cgctggAAgt 300

cgtttggctt gtgggtataat tgggatcgcc caataaacat tcccttggat gtagtctgag 360
gcccccttaac tcatctgtta tcctgctagc tgtagaaatg tatcctgata aacattaaac 420
actgtaatct taaaaaaaaa 438

<210> 12
<211> 499
<212> DNA
<213> Homo sapiens

<220>

<221> unsure
<222> 462
<223> unknown

<400> 12
tttggggcca gagtgggcga ggcgcggagg tctggctat aaagtagtcg cggagacggg 60
gtgctggttt gcgtcgtagt ctcctgcagc gtctggggtt tccgttgcag tcctcgaaac 120
caggacctcg gcgtggccta gcgagttatg gcgacgaagg ccgtgtgcgt gctgaaggc 180
gacggccagt tgcagggcat catcaatttc gagcagaagg aaagtaatgg accagtgaag 240
gtgtgggaa gcattaaagg actgactgaa ggcctgcattt gattccatgt tcatgagttt 300
ggagataata cagcaggctg taccagtgcg ggtcctcaact ttaatcctct atccagaaaa 360
cacgggtggc caaaggatga agagaggcat gttggagact tggcaatgt gactgctgac 420
aaagatggtg tggccatgt gtctattgaa gattctgtga tnctccactc tccaggagac 480
cattgcatca ttggccgtn 499

<210> 13
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 13
tcagcacgca cacggcatttc 20

<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 14
gcccttcagc acgcacacgg

20

<210> 15
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 15
gtcgcccttc agcacgcaca

20

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 16
cgaggactgc aacggaaacc

20

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 17
ggttccgagg actgcaacgg

20

<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 18
tcctggttcc gaggactgca

20

<210> 19
<211> 20

<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 19
gaggtcctgg ttccgaggac 20

<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 20
taggccacgc cgaggtcctg 20

<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 21
gtcgccataa ctcgctaggc 20

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 22
gccctgcact gggccgtcgc 20

<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 23
aattgatgat gccctgcact 20

<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 24
cactggtcca ttactttcct 20

<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 25
acacaccttcac tggccatta 20

<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 26
ccacacacctc actggccat 20

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 27
agtcccttaa tgctccccca 20

<210> 28
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 28

aggccttcag tcagtccttt

20

<210> 29

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 29

caggccttca gtcagtcctt

20

<210> 30

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 30

tatctccaaa ctcatgaaca

20

<210> 31

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 31

gctgtattat ctccaaactc

20

<210> 32

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 32

gtacagcctg ctgtattatc 20

<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 33
tgcccaaggtc tccaaacatgc 20

<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 34
cacattgccccc aagtctccaa 20

<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 35
tcggccacac catctttgtc 20

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 36
catcgccac accatctttg 20

<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 37

acacatcggc cacaccatct

20

<210> 38

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 38

tagacacatc ggccacacca

20

<210> 39

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 39

accaccagtg tgcgccaat

20

<210> 40

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 40

catggaccac cagtgtgcgg

20

<210> 41

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 41

tcatggacca ccagtgtgcg

20

<210> 42
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 42
ggcgatcccc attacaccac

20

<210> 43
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 43
ggaatgttta ttgggcgatc

20

<210> 44
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 44
cctcagacta catccaagggg

20

<210> 45
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 45
gataacagat gagttaagggg

20

<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 46

cacaattaca cttttaagat

20

<210> 47

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 47

agtcacacaa ttacactttt

20

<210> 48

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 48

ctcactacag gtactttaaa

20

<210> 49

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 49

aatcagtttc tcactacagg

20

<210> 50

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 50

ataaaatcagt ttctcaactac

20

<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 51
cataaatcag tttctcacta

20

<210> 52
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 52
aatcttccaa gtgatcataa

20

<210> 53
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 53
atacaaatct tc当地gatgtat

20

<210> 54
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 54
tgagtttat aaaactatac

20

<210> 55
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 55

aactgagttt tataaaaacta

20

<210> 56

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 56

acagacattt taactgagtt

20

<210> 57

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 57

attgaaacag acattttaac

20

<210> 58

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 58

tcattgaaac agacatttta

20

<210> 59

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 59

atacaggtca ttgaaacaga

20

<210> 60
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 60
ccatctgtga tttaagtctg 20

<210> 61
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 61
tttaataccc atcttgatt 20

<210> 62
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 62
agtttaatac ccatctgtga 20

<210> 63
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 63
caaagaaatt ctgacaagtt 20

<210> 64
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 64

ttgaatgaca aagaaattct

20

<210> 65

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 65

acaggcgttga atgacaaaga

20

<210> 66

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 66

attcacagggc ttgaatgaca

20

<210> 67

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 67

gttttttatt cacaggcttg

20

<210> 68

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 68

agggtttta ttcacaggct

20

<210> 69

<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 69
atacagggtt tttattcaca 20

<210> 70
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 70
ccatacacagg tttttattca 20

<210> 71
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 71
aagtgccata cagggaaaa 20

<210> 72
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 72
taataagtgc catacagggt 20

<210> 73
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 73
tcataataag tgccatacag 20

<210> 74
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 74
ctcataataa gtgccataca 20

<210> 75
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 75
gcctcataat aagtgccata 20

<210> 76
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 76
ttttaatagc ctcataataa 20

<210> 77
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 77
ggattctttt aataggctca 20

<210> 78
<211> 20

<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 78
cagcccttgc cttctgctcg 20

<210> 79
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 79
agttagctggg actacaggcg 20

<210> 80
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 80
cattactttc cttaagaaa 20

<210> 81
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 81
aagatcacta aatgcaactt 20

<210> 82
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 82
caggagaatc gcttgAACCT 20

<210> 83
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 83
ctggtaCAGC ctatttataa 20

<210> 84
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 84
gcttcacgtc tacacactaa 20

<210> 85
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 85
tccaaACATGC ctaataatga 20

<210> 86
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 86
tggtaCAGCC ttctgCTCGA 20

<210> 87
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 87

taggccagac ctccgcgcct

20

<210> 88

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 88

actttatagg ccagagacctcc

20

<210> 89

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 89

gacgcaaacc agcaccccggt

20

<210> 90

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 90

acgctgcagg agactacgac

20

<210> 91

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 91

gcacacggcc ttcgtcgcca

20

<210> 92
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 92
ttcagcacgc acacggcctt 20

<210> 93
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 93
ctttcagcac gcacacggcc 20

<210> 94
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 94
cccttcagca cgcacacggc 20

<210> 95
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 95
cgcccttcag cacgcacacg 20

<210> 96
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 96
tcgcccttca gcacgcacac 20

<210> 97
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 97
cgtcgccctt cagcacgcac 20

<210> 98
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 98
ccgtcgccct tcagcacgca 20

<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 99
caacatgcct ctcttcatcc 20

<210> 100
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 100
ccaacatgcc tctcttcatc 20

<210> 101
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 101
tccaacatgc ctctcttcat 20

<210> 102
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 102
ctccaacatg cctctttca 20

<210> 103
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 103
tctccaacat gcctctttc 20

<210> 104
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 104
gtctccaaca tgcctcttt 20

<210> 105
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 105
ctcctgagag tgagatcaca 20

<210> 106
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 106
tctcctgaga gtgagatcac 20

<210> 107
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 107
caccttgcc caagtcatct 20

<210> 108

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 108
ccaccccttgc ccaaggcatc 20

<210> 109
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 109
tccaccccttg cccaaagtcat 20

<210> 110
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 110
ttccacccctt gcccaagtca 20

<210> 111
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 111
atttccacct ttgcccaagt 20

<210> 112
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 112
catttccacc tttgcccaag 20

<210> 113
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 113
tcatttccac ctttgcccaa 20

<210> 114
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 114
ttcatttcca cctttgcccc 20

<210> 115
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 115
cttcatttcc acctttgcc 20

<210> 116
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 116
tcttcatttc caccttgcc 20

<210> 117
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 117
ttcttcattt ccaccttgcc 20

<210> 118
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 118

tttcttcatt tccacacctt 20
<210> 119
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 119
ctttcttcatt ttccacacctt 20
<210> 120
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 120
actttcttcatt ttccacacctt 20
<210> 121
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 121
tactttcttcatt ttccacacctt 20
<210> 122
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 122
gtactttcttcatt ttccacacctt 20
<210> 123
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 123
tgtactttcttcatt ttccacacctt 20
<210> 124
<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 124
ttgtactttc ttcatttcca 20

<210> 125
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 125
tttgtacttt cttcatttcc 20

<210> 126
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 126
ctttgtactt tcttcatttc 20

<210> 127
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 127
tctttgtact ttcttcattt 20

<210> 128
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 128
gtctttgtac tttcttcattt 20

<210> 129
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide
<400> 129
cattacttgc ttcttgctcg 20
<210> 130
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 130
tccaaacatgc ctctttcat 20
<210> 131
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 131
cattacttgc tttaagaaa 20
<210> 132
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 132
caacacccac ctgctgtatt 20
<210> 133
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 133
ctggtagacgc tattttataa 20
<210> 134
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 134
catcttggta cctctttca 20

<210> 135
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 135
tccaaacatgc ctaataatga 20

<210> 136
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 136
gaaaacttac caccagtgtg 20

<210> 137
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 137
ttttcatgga cctgtaaaaa 20

<210> 138
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 138
ggattctttt aatagcctca 20

<210> 139
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 139
tactttcctt ctgct 15

<210> 140
<211> 15
<212> DNA

<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 140
aacatgcctc tcttc 15
<210> 141
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 141
tactttccctt taaga 15
<210> 142
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 142
cacccacacctg ctgtta 15
<210> 143
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 143
gtacagcccta ttttat 15
<210> 144
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 144
cttggttaccc ctcttt 15
<210> 145
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide

<400> 145
aacatgccta ataat 15

<210> 146
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 146
aacttaccac cagtg 15

<210> 147
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 147
tcatggacct gtaaa 15

<210> 148
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 148
ttcttttaat agcct 15

<210> 149
<211> 650
<212> DNA
<213> R. norvegicus

<220>
<221> CDS
<222> (94) . . . (558)

<400> 149
gttttgcacc ttcggttcct gcggcggctt ctgtcgtctc cttgcttttt gctctcccaag 60
gttccgaggc cgccgcgcgt ctccccggga agc atg gcg atg aag gcc gtg tgc 114
Met Ala Met Lys Ala Val Cys
1 5

gtg ctg aag ggc gac ggt ccg gtg cag ggc gtc att cac ttc gag cag 162
Val Leu Lys Gly Asp Gly Pro Val Gln Gly Val Ile His Phe Glu Gln
10 15 20

aag gca agc ggt gaa cca gtt gtg gtg tca gga cag att aca gga tta 210
Lys Ala Ser Gly Glu Pro Val Val Val Ser Gly Gln Ile Thr Gly Leu
25 30 35

act gaa ggc gag cat ggg ttc cat gtc cat caa tat ggg gac aat aca 258
 Thr Glu Gly Glu His Gly Phe His Val His Gln Tyr Gly Asp Asn Thr
 40 45 50 55

 caa ggc tgt acc act gca gga cct cat ttt aat cct cac tct aag aaa 306
 Gln Gly Cys Thr Thr Ala Gly Pro His Phe Asn Pro His Ser Lys Lys
 60 65 70

 cat ggc ggt cca gcg gat gaa gag agg cat gtt gga gac ctg ggc aat 354
 His Gly Gly Pro Ala Asp Glu Glu Arg His Val Gly Asp Leu Gly Asn
 75 80 85

 gtg gct gct gga aag gac ggt gtg gcc aat gtg tcc att gaa gat cgt 402
 Val Ala Ala Gly Lys Asp Gly Val Ala Asn Val Ser Ile Glu Asp Arg
 90 95 100

 gtg atc tca ctc tca gga gag cat tcc atc att ggc cgt act atg gtg 450
 Val Ile Ser Leu Ser Gly Glu His Ser Ile Ile Gly Arg Thr Met Val
 105 110 115

 gtc cac gag aaa caa gat gac ttg ggc aaa ggt gga aat gaa gaa agt 498
 Val His Glu Lys Gln Asp Asp Leu Gly Lys Gly Gly Asn Glu Glu Ser
 120 125 130 135

 aca aag act gga aat gct gga agc cgc ttg gct tgt ggt gtg att ggg 546
 Thr Lys Thr Gly Asn Ala Gly Ser Arg Leu Ala Cys Gly Val Ile Gly
 140 145 150

 att gcc caa taa acattcccta tgtggtctga gtctcagact catctgctgt 598
 Ile Ala Gln *

 cctgctaaac tgttagaaaaa aaccaaacc a ttaaactgta atcttaaacag tt 650

 <210> 150
 <211> 2026
 <212> DNA
 <213> R. norvegicus

 <400> 150
 ggatccgatg ccctttctg gtgtgtctga agacatattt aaaagaaaaag aaagaaaataa 60
 gactctccag gatagtcata gagcagagcc cagggtcta cataagtaac tgtatcccag 120
 tgttagccaat cagttccctcc tgtttctctg gccttagagtt aggtttcgggt attttgcct 180
 cctcagaatt aaatcctgcc tcctgagtgt agcagaacat gcagttttat gcatgagctc 240
 ttgggagacc acagagattt caattttaaa aagagacagt tttctttttt agttgagaaa 300
 acaactttaa cggccccccag ctccggaaaa aaaaaaaaaa aagaaagaaa caactttaaa 360
 aagagacaat tctgtttta gtttggaaatt ctctcttta ctgataaccct ttcttggctc 420
 caggactcc ccatatatct ttcttagacat ttctgagaac tcaagttaat atatggtgat 480
 gtctccccac ctttttttgt agtttgatcc ttttgcctat tccataaccgt ctttagaaaaat 540
 atcttccttg aagcaactatg ttcacccag tgcattgggt ttcacaaatg acttcatcag 600
 gcatcttgtt ctccagcgca gctgtctga gaacacttca acaggcaaaag aggatacggaa 660
 tgttactatg aagtaacacg actggggatg gtggggcagac gactaatcgt atactgtat 720
 gggtactgag acggagggtt ctgagacggg ggatctcaaa tgaagtttgc tccatctct 780
 aaagttaaaaa gaaaggccagg tacacgcctc taaccccaagc aactggggagg cagaggtcag 840
 aggcaggagg agccctgtga gtttggggatg gctgggtctgc ataatggatg ctgtgatagc 900
 caaggtatac acgggtgtat atttttaaaaa ggaggtgtgtt caaccggcag agcacatgtc 960
 tgcacgagg ggtgtgttgc tcaaatccc cagtagccaag taacaaaaac attagtgaag 1020
 aataagtaac gtgatatgtt cccaggaatt agaaacctgc agagaggggtt tggggattta 1080

gctcagtggt agacggcttg cctaggaagc gcaaggccct gggttcgatt ccccagctcc 1140
aaaaaaaaaga accccccccc caaaaaaaaaaag aaacctgcag agaaaaaaaaaaa aaaacctgca 1200
gagacacaga ggtgtgtctg gagatagaac atggcctta cacatattac accgagcatc 1260
catcttggct caccctaact ttcacacagc aactgcggcg cgctgaaag tcagtcgaa 1320
tccgcatttc tagacagagc ggcttcagac cttccaggcg cgacgcagg cctcggcgag 1380
gtttcctccg cgactcggcc gacttcacag ttagaagaca atagcgactt tcccagctct 1440
gtctcgattc tggaacttgc tcagtcgaa gctcctgaag ctggcgctcc cctcagcccc 1500
gcccccaacg tgcccgccgg ccagggaaact tcaggaaggg taggcagaga cccggcgctag 1560
cgattgggtc cctgccaagg tggagtggc caggcacagg catataaaag ctccgcggcg 1620
ctggggccctc gtttgcacc ttctttctc gcggcggtt ctgtcgtctc cttgttttt 1680
gctctcccaag gttccgaggc cgccgcgcgt ctcccgggga agcatgtgg cgacgatggc 1740
cgtgtgcgtg ctgaaggcg acggtccggt gcagggcgtc attcacttcg agcagaaggc 1800
aaggccccggg gcgcgtggc cagagccagc ggtgacggcg gacacctagt gcgggacgca 1860
gccacgcccc cgccgcggcc tgagcccggt aaatgtcgag tcaccgcggc cttgaggagg 1920
ggcggcgcgg actagggagg cggggcgcgg cgggacctt cggcggtct ctcgcgcccc 1980
gagtgcgggc gccgagagag cagtttgcatt cgtatccta tggact 2026

<210> 151

<211> 550

<212> DNA

<213> R. norvegicus

<400> 151

ggatccccac aggcaagtgg acacaattat ttctggcta ctggataaat tatggaaact 60
gataaacatc actgaatgtg gagtagaggt ttctggcag ccaatgttct gaagagtcaa 120
gcctgacaca gtgcgttagc catccatttc ctatgttgc cattgagctg ccccttttgc 180
ttcctctggg tgctttcaa gtgcgttgc gtccagggtt ctgcacacgt gcatctggaa 240
acaagtgttgc gggccgtatgg gtagggagg agaggcctag agctaagcag ctctagagtc 300
accctggagg aaatgggtct acttggattt ggacataggt ttgattttgtt tttgttttt 360
gcattgtgcc ttttcatgt gattcagagt attacacaaa cttgtatgtt tattttgtt 420
tttttaaat aaggcaagcg gtgaaccagt tgcgtgtca ggacagatata caggattaac 480
tgaaggcgag catgggttcc atgtccatca atatgggac aatacacaag gtaggtccta 540
ggctggctag 550

<210> 152

<211> 338

<212> DNA

<213> R. norvegicus

<400> 152

ctctagagtc accctggagg aaatgggtct acttggattt ggacataggt ttgttttgc 60
tttggggggacttgc ttttactgtt attcagaatg attaacacaaa acttggatgtc 120
ttaatttttgc ttttttttgc aataaaggca agcgggtgaac cagttgtgtt gtcaggacag 180
attacaggat taactgaagg cgagcatggg ttccatgtcc atcaatatgg ggacaataca 240
caaggtaagt cttaatctat ctctacctgg tctgactagt gagatgaatg ggtcagagtc 300
aggaccaatt actaaccatt taaaaccatc aattttttt 338

<210> 153

<211> 799

<212> DNA

<213> R. norvegicus

<400> 153

ctgcagatcatgggtgt ggttgtgaga ccctgtctca aatctaaaaa caaacaaca 60
tgacagtcta gtgaaaaagc gggtagcttggaaaatgcggccatatacg tccagcctat 120
ttgttaccagg gtgcgtcttc ctgtttgtat cactccagca cataccagct ccattttgc 180
tgtgttggaa gttgttggaa ttccgtgtc attgcataca gaggtttact tcataatctg 240
actgctgggtt tctggtaata ggctgttacca ctgcaggacc tcattttat cctactcta 300
agaaacatgg cggtccagcg gatgaagaga ggtgagcagc attctctcat gcatgggtt 360

ggagagggggt ctgtggaaaa cacctgaaga cagaactgag tggtctcaact gcctttctt 420
ttgtatgttt ccattcaccc aactcccaca tccccaaagta ctggaatagt ttatattggg 480
tgaaggagct gacaaatgtg gactcttaag tgatitagt ttgttagcatt tattgaagat 540
gaactaatac aagtgc当地 aggaaccaat acagaaaata tcatggataa cagtaactatc 600
acgtcaactag caaaggtaaa tcattgtata atatcattaa tgcagattaa taaaaactag 660
tttagattcc gtttgatgt gaaccttagg aagtccttca tattaaagagg ctagctctt 720
gaatgagctg gagcaaacct tcgtaatca gagctgcata cttcgtaacc tcgaagtgcc 780
ttcttctaga gcagagtga 799

<210> 154

<211> 476

<212> DNA

<213> R. norvegicus

<400> 154

attagacatt agatccctat gattggaaaa taggcattgtt ggagacctgg gcaatgtggc 60
tgctggaaag gacgggtgtgg ccaatgtgtc cattgaagat cgtgtgatct cactctcagg 120
agagcattcc atcattggcc gtactatgtt ggtaagttc catatagtag tagatgttagg 180
atttcttcata acatagttat gtacctttcc atgacttcgt ggtgggtgtt aaactatgttc 240
ctaaaaagatc acataaaatgtt gtaagatgtt cagaatagga aaaaatattt ttttatttggg 300
ttaatagata aagaatttat ttgcctagtc agttaagaac gctcggtctg ctcgaagtgc 360
tggtagaaag ctggttacat ttgatcagac tggatctgag ttgaggatc aatagtctt 420
agtttaaaac agctggattt tcttgccatg attgccccct tacagttat catttc 476

<210> 155

<211> 630

<212> DNA

<213> R. norvegicus

<400> 155

ccttagtagtc tgacttttag ctgatggcaa aaaatttagct tattgattta ctaatagatt 60
tgaacatttt ctaatataca tggtccttgc aagtattgtt gggaaagaat gctaattact 120
tacttgcata cagaaaccta aatgttcttca attctttca aaggccacg agaaacaaga 180
tgacttgggc aaagggtggaa atgaagaaag tacaaagact gaaaatgtc gaagccgctt 240
ggcttgggt gtgatggga ttgcccata aacattccct atgtggctgt agtctcagac 300
tcatctgcgt tcctgctaaa ctgttagaaac caaaccatta aactgtatc ttaacagttg 360
ttccaatgtg tgcattccc ttgcattact gctaaggcat ccgtgagtga gaggtgtac 420
gagtaggttt ggaggtatgt gttgacaat tcctgaatgt gtacaactct tagaactaaa 480
tagtgggttt ttctgtgccc agaccctcac tgggtggttt aagctgaaat ttctctttca 540
agcctctctc tctctctgtg tggatgtctg tggatgtgtg tggatgtgtg tggatgtgtg 600
agagagagag actgagactt atttagagct 630

<210> 156

<211> 544

<212> DNA

<213> R. norvegicus

<400> 156

ttagtattca tctagaataa gccacgagca agaaaacact tagtagtctg cttagtctg 60
atagcataaa aattagctt tgatattact aatagatttgc aacattttctt aatatacatg 120
gtccttggaa gtattgtgg gaagaagtgc taattacttgc atcaccgaaa cctaaatgtt 180
cttaattttt ttcaaaagggtc cacggaaaac aagatgactt gggcaaaagggt ggaaatgaag 240
aaagtacaaa gactggaaat gctggaaagcc gcttggcttg tggatgtgtt gggatggccc 300
aataaacatt ccctatgtgg tctgatgtctc agactcatct gctgtccttc taaactgttag 360
aaaaaaaaacca aaccattaaa ctgtatctt aacagggttt aactgtgtga ctcccttgac 420
ttgatctaaag gacttgcagt gagaggtgc tgacgtatgtt tggaggatgt gttagacttc 480
ctgaatgtgt acaactcatt gaactaaaat ctgttgcatt tggatgtgtg tggatgtgtg 540
taag 544

<210> 157
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 157
gtgcgcgca gccccaaatc 20

<210> 158

<220>

<400> 158
000

<210> 159
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 159
tgctgaaggcgacgg 16

<210> 160
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 160
gttcaccgct tgccttctg 19

<210> 161
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Probe

<400> 161
ccgggtgcagg gcgtcattca ctt 23

<210> 162
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 162
cgcagggaaac gaagggtgcaa 20

<210> 163
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 163
gccgcaggaa acgaagggtgc 20

<210> 164
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 164
ctcggAACCT gggagagcaa 20

<210> 165
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 165
ttcatcgcca tgcttccccg 20

<210> 166
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 166
acggccttca tcgcccattgt 20

<210> 167
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 167
cacacggcct tcatacgccat 20

<210> 168

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 168
tcagcacgca cacggccttc 20

<210> 169
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 169
gcccttcagc acgcacacagg 20

<210> 170
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 170
gtcgcccttc agcacgcaca 20

<210> 171
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 171
ggaccgtcgc cttcagcac 20

<210> 172
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 172
ctgctcgaag tgaatgacgc 20

<210> 173
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 173
cttgccttct gctcgaaatg 20

<210> 174
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 174
caccgcttgc cttctgctcg 20

<210> 175
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 175
tggttcacccg cttgccttct 20

<210> 176
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 176
acaactggtt caccgcttgc 20

<210> 177
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 177
taatctgtcc tgacaccaca 20

<210> 178
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 178

tcctgtaatc tgtcctgaca 20
<210> 179
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 179
ttaatcctgt aatctgtcct 20

<210> 180
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 180
ccatgctcgc cttcagttaa 20

<210> 181
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 181
acatggAACC catgctcgCC 20

<210> 182
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 182
attgatggAC atggAACCC 20

<210> 183
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 183
ccttgttat tgtccccata 20

<210> 184
<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 184
tacaggcttg tgtattgtcc 20

<210> 185
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 185
gtgaggattta aaatgaggtc 20

<210> 186
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 186
cttagagtga ggattaaaat 20

<210> 187
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 187
tgtttcttag agtggaggatt 20

<210> 188
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 188
ttgcccgagg ctccaaacatg 20

<210> 189
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 189

acattgcccc ggtctccaaac

20

<210> 190

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 190

cacaccgtcc tttccagcag

20

<210> 191

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 191

ttggccacac cgtccttcc

20

<210> 192

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 192

acattggcca caccgtcctt

20

<210> 193

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 193

acacattggc cacaccgtcc

20

<210> 194

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 194

aatggacaca ttggccacac

20

<210> 195
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 195
tcttcaatgg acacattggc 20

<210> 196
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 196
cacgatcttc aatggacaca 20

<210> 197
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 197
tcacacgatc ttcaatggac 20

<210> 198
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 198
gatcacacga tcttcaatgg 20

<210> 199
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 199
cggccaatga tggaatgctc 20

<210> 200
<211> 20
<212> DNA

<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide

<400> 200
tagtacggcc aatgatggaa 20

<210> 201
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 201
tcgtggacca ccatagtacg 20

<210> 202
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 202
ttctcgtgga ccaccatagt 20

<210> 203
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 203
cggtttccag catttccagt 20

<210> 204
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 204
ccaagcggct tccagcattt 20

<210> 205
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 205
cacaaggccaa gcggcttcca 20

<210> 206
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 206
tcacaccaca agccaagcgg 20

<210> 207
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 207
gcaatcccaa tcacaccaca 20

<210> 208
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 208
tgggcaatcc caatcacacc 20

<210> 209
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 209
ttattgggca atcccaatca 20

<210> 210
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 210
cacataggga atgtttattg 20

<210> 211
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 211
tcagaccaca taggaaatgt 20

<210> 212
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 212
agactcagac cacataggga 20

<210> 213
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 213
tctgagactc agaccacata 20

<210> 214
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 214
caggacagca gatgagtctg 20

<210> 215
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 215
tagcaggaca gcagatgagt 20

<210> 216
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 216
acagtttagc aggacagcag 20

<210> 217
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 217
tctacagtt agcaggacag 20

<210> 218
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 218
gattacagtt taatggtttg 20

<210> 219
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 219
tagcgatgca aactgctctc 20

<210> 220
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 220
ataggatagc gatgcaaact 20

<210> 221
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 221
taggacctac cttgtgtatt 20
<210> 222
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 222
taagacttac cttgtgtatt 20
<210> 223
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 223
actctgaccc attcatctca 20
<210> 224
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 224
gctgctcacc tctcttcatc 20
<210> 225
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 225
ttgctagtga cgtgatagta 20
<210> 226
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 226
atacaaacgg aatctcaact 20
<210> 227

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 227
ctccagctca ttcaaagagc 20

<210> 228
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 228
agtatgcagc tcctgattac 20

<210> 229
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 229
gaaggcactt cgaggttacg 20

<210> 230
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 230
ggaaacttac caccatagta 20

<210> 231
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 231
tatggaaact taccaccata 20

<210> 232
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 232
gcaaattaaat tctttactat 20

<210> 233
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 233
gtatcctcaa ctcagatcca 20

<210> 234
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 234
tctcggtggac ctttgaaaag 20

<210> 235
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 235
agcagactac taagtgttgc 20

<210> 236
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 236
ttttatgcta tcagctaaaa 20

<210> 237
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 237

taaatcaata agctaatttt 20
<210> 238
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 238
gttcaaatct attagtaaat 20
<210> 239
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 239
ctcgtggacc tttgaaaaga 20
<210> 240
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 240
tgggagagca aaaagcaagg 20
<210> 241
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 241
gaacctggga gagcaaaaag 20
<210> 242
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 242
gcctcggaac ctgggagagc 20
<210> 243
<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 243
cggcctcgga acctgggaga 20

<210> 244
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 244
ggcggccctcg gaacctggga 20

<210> 245
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 245
catgcttccc cgggagacgc 20

<210> 246
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 246
tcgccatgct tccccggag 20

<210> 247
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 247
catcgccatg cttccccggg 20

<210> 248
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 248

gccttcatcg ccatgcttcc

20

<210> 249

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 249

gcacgcacac ggccttcatc

20

<210> 250

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 250

tttcagcacg cacacggcct

20

<210> 251

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 251

ttctgctcga agtgaatgac

20

<210> 252

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 252

tgccttctgc tcgaagtgaa

20

<210> 253

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 253

cgcttgcctt ctgctcgaag

20

<210> 254
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 254
ttcaccgcctt gccttctgct 20

<210> 255
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 255
ccacaactgg ttcaccgctt 20

<210> 256
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 256
caccacaact ggttcaccgc 20

<210> 257
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 257
tgtcctgaca ccacaactgg 20

<210> 258
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 258
tctgtcctga caccacaact 20

<210> 259
<211> 20
<212> DNA

<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 259
tgtaatctgt cctgacacca 20
<210> 260
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 260
aatcctgtaa tctgtcctga 20
<210> 261
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 261
agttaatcct gtaatctgtc 20
<210> 262
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 262
tcagttaatc ctgtaatctg 20
<210> 263
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 263
acccatgctc gccttcagtt 20
<210> 264
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide

<400> 264
atggaaccca tgctcgccctt 20

<210> 265
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 265
ggacatggaa cccatgctcg 20

<210> 266
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 266
tgatggacat ggaacccatg 20

<210> 267
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 267
catattgatg gacatggAAC 20

<210> 268
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 268
cccatattGA tggACATGGA 20

<210> 269
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 269
tccccatatt gatggacatg 20

<210> 270
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 270
tgtccccata ttgatggaca 20

<210> 271
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 271
attgtcccca tattgatgga 20

<210> 272
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 272
tgtgtattgt ccccatattg 20

<210> 273
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 273
agccttgtgt attgtcccca 20

<210> 274
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 274
ttcttagagt gaggattaaa 20

<210> 275
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 275
catgtttctt agagtggagga 20

<210> 276
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 276
gccatgtttc ttagagtgag 20

<210> 277
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 277
gaccgcctatg tttcttagag 20

<210> 278
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 278
tggaccgcctt tgtttcttag 20

<210> 279
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 279
gctggaccgc catgtttctt 20

<210> 280
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 280
ccgctggacc gccatgttc 20
<210> 281
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 281
atccgctgga ccgcattgtt 20
<210> 282
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 282
tcatccgctg gaccgcattg 20
<210> 283
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 283
cttcatccgc tggaccgc 20
<210> 284
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 284
ctctcttcat ccgctggacc 20
<210> 285
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 285
gcctctttc atccgctgga 20
<210> 286

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 286
ccacattgcc caggtctcca 20

<210> 287
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 287
agccacattg cccaggtctc 20

<210> 288
<211> 20
<212> DNA
<213> Artificial Sequence .

<220>
<223> Antisense Oligonucleotide

<400> 288
gtcctttcca gcagccacat 20

<210> 289
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 289
accgtcctt ccagcagcca 20

<210> 290
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 290
ggacacattg gccacaccgt 20

<210> 291
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 291
ttcaatggac acattggcca 20

<210> 292
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 292
tacggccaat gatggaatgc 20

<210> 293
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 293
gtggaccacc atagtacggc 20

<210> 294
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 294
gcttccagca tttccagtct 20

<210> 295
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 295
agccaagcgg cttccagcat 20

<210> 296
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 296

accacaagcc aaggcggttc 20
<210> 297
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 297
attgggcaat cccaaatcaca 20

<210> 298
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 298
gttttattggg caatcccaat 20

<210> 299
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 299
accacatagg gaatgttat 20

<210> 300
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 300
agaccacata ggaaatgttt 20

<210> 301
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 301
actcagacca catagggaat 20

<210> 302
<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 302
tgagactcag accacatagg 20

<210> 303
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 303
tgagtctgag actcagacca 20

<210> 304
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 304
gatgagtctg agactcagac 20

<210> 305
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 305
cagatgagtc tgagactcag 20

<210> 306
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 306
agcagatgag tctgagactc 20

<210> 307
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide
<400> 307
ggacagcaga tgagtctgag 20
<210> 308
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 308
tttagcagga cagcagatga 20
<210> 309
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 309
agtttagcag gacagcagat 20
<210> 310
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 310
tttctacagt ttagcaggac 20
<210> 311
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 311
tttttctaca gtttagcagg 20
<210> 312
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 312
ttaagattac agtttaatgg 20

<210> 313
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 313
tgttaagatt acagttaat 20

<210> 314
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 314
tttccacctt tgcccaagtc 20

<210> 315
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 315
cttcagcacg cacacggc 18

<210> 316
<211> 650
<212> DNA
<213> R. norvegicus

<220>
<221> CDS
<222> (94)...(558)

<400> 316
gttttgacc ttcgtttctt gcggcggctt ctgtcgcttc cttgcgtttt gctctccag 60
gttccgaggc cgccgcgcgt ctcccgggga agc atg gcg atg aag gcc gtg tgc 114
Met Ala Met Lys Ala Val Cys
1 5

gtg ctg aag ggc gac ggt ccg gtg cag ggc gtc att cac ttc gag cag 162
Val Leu Lys Gly Asp Gly Pro Val Gln Gly Val Ile His Phe Glu Gln
10 15 20

aag gca agc ggt gaa cca gtt gtg gtg tca gga cag att aca gga tta 210
Lys Ala Ser Gly Glu Pro Val Val Val Ser Gly Gln Ile Thr Gly Leu
25 30 35

act gaa ggc gag cat ggg ttc cat gtc cat caa tat ggg gac aat aca 258
Thr Glu Gly Glu His Gly Phe His Val His Gln Tyr Gly Asn Thr

40	45	50	55	
caa ggc tgt acc act gca gga cct cat ttt aat cct cac tct aag aaa Gln Gly Cys Thr Thr Ala Gly Pro His Phe Asn Pro His Ser Lys Lys 60		65		306
		70		
cat ggc ggt cca gcg gat gaa gag agg cat gtt gga gac ctg ggc aat His Gly Gly Pro Ala Asp Glu Glu Arg His Val Gly Asp Leu Gly Asn 75		80		354
		85		
gtg gct gct gga aag gac ggt gtg gcc aat gtg tcc att gaa gat cgt Val Ala Ala Gly Lys Asp Gly Val Ala Asn Val Ser Ile Glu Asp Arg 90		95		402
		100		
gtg atc tca ctc tca gga gag cat tcc atc att ggc cgt act atg gtg Val Ile Ser Leu Ser Gly Glu His Ser Ile Ile Gly Arg Thr Met Val 105		110		450
		115		
gtc cac gag aaa caa gat gac ttg ggc aaa ggt gga aat gaa gaa agt Val His Glu Lys Gln Asp Asp Leu Gly Lys Gly Asn Glu Glu Ser 120		125		498
		130		
aca aag act gga aat gct gga agc cgc ttg gct tgt ggt gtg att ggg Thr Lys Thr Gly Asn Ala Gly Ser Arg Leu Ala Cys Gly Val Ile Gly 140		145		546
		150		
att gcc caa taa acattcccta tgtggtctga gtctcagact catctgctgt Ile Ala Gln *				598
				650
cctgctaaac tgttagaaaaa aaccaaacc a ttaaactgta atcttaacag tt				
<210> 317				
<211> 7001				
<212> DNA				
<213> R. norvegicus				
<400> 317				
cagtaccagt aacaaaaaca ttagtgaaga ataagtaacg tggtatgtgc ccaggaatta 60 aaaacctgca gagagggtt ggggatttag ctcagtggta gagcgcttgc ctaggaagcg 120 caaggccctg ggtcgattc cccagctccg aaaaaaaaaaaa cccccccccc aaaaaaaaaa 180 aacctgcaga gaaaaaaaaaa aaacctgcag agacacagag gtgtgtctgg agatagaaca 240 tgggccttac acatattaca ccgagcatcc atcttggctc acccccaactt tcacacagca 300 actgcggcgc gctgcaaagt cagtcgcaat ccgcatttct agacagagcg gcttcagacc 360 ttccaggcgc gcacgcaggc ctgcggcagg ttctcggtt ccgcgcgcac tcggccgacg 420 tcacagttag aagacaatag cgactttccc agctctgtct cgattctggta actttctcag 480 tccgcaagct cctgaagctg gcgcctccct cagcccgcc cccaacgtgc cccgcggcca 540 ggaaacttca ggaagggttag gcagagaccg cggctagcga ttggttccct gccaagggtgg 600 gagtgccag gcgcaggcat ataaaagctc cgcggcgctg ggccctcggtt ttgcacacctc 660 gtttcctgca gcggttctg tcgtctcctt gcttttgcg ctcccaggtt ccgaggccgc 720 cgcgctc ccgggaagc atggcgatga aggccgtgt cgtgctgaag ggcgacggc 780 cggtgcaggc cgtcattcac ttgcagcaga aggcaaggcc cggggcgctg ggcgcaggcc 840 gcgggtacgc gggcacctg tgccggagca cgccacgccc ccgcgcgcgc ctgagccgt 900 taaatgctga gtcaccgcgg cttgaggca gggccgggc gcgaggagagg gaggccgggg 960 cgccgcgggg cttccgggc gggccctct tcgcggccccc gagtgccgg gccggcccg 1020 gagagcgggc ttggcatccg ctatccctct ggggctgctg cttttccgggt gtccctgtcc 1080 cacaggggtc cagacccttg tggccaccgg ctgcatttgt tgtaagaata tttgaacctg 1140 gtggtgccaa accggactaa cgcagcaagc agaaccatt tggcatt taaagccaag 1200 ccttggtat attaggtca ggtcgtccg caaggggaa agaaaagaga tggccttggg 1260				

cagttgtttt gccaccaaga gctccaagaa agagacctga ctctgggttgc tgtctacgac 1320
agcgagtctc tgagcacaat ttgaaaagta tacagaaaata ttttcgaaac tactgcagg 1380
ctgcaaaaaac acatgcgtca caaggaagat atttgtgtgg ttaagagcgt gttcagagcc 1440
tttagggggtt aacattgtac tcctttaat cccgagagaa atatttgata aatgagcgtt 1500
atgtactctc taaagtgggt tacataaatg tgaggagacc gacaccatag tgaatccaag 1560
tgtttcctt atgaggagaa ctgataacgg gaatttagag ttttcataa ctagtctcag 1620
tttcttggca tttaaatgtt tttgtgtt ttccctgtgt aatttttgtt ttttgtctt 1680
ctcttcttcc cacataattc actgtgagac agggctttc ccccacccctg agaaaagctga 1740
agactagcta ggtctacccc agtgtccacc ttcccagagc agcttgcagc attcttttgt 1800
gacgctgccc tttgtacccg atcaaacgt agttaagcat tccaggttgg cagctgtaac 1860
aacttgacta tcaaaactgt ttgatttaaa ctgttgccaa ctttcaaaa tcagttttt 1920
tctactcaaa gttcttagtc ctttattttt tgaaaacgt tggagagtt aagtagaaaag 1980
gtccggatgt agtgtcttgc ttgttgcag ttgttgcgt ctgcctttt ctccctgtt 2040
ctacaatttc tgaagtaata ctaaatttga attttggatg ttctttttt tttgttaag 2100
tagcaaatttc tctagatttgc gatgcctaat gagactttt taaaagtag ctctggtag 2160
acccaaatgg atccccacag gcagtaggac acaattttt tctggctact ggataaaaatt 2220
atgggaactg ataaacatca ctgaatgtt agtagaggtt tctggcagc caatgttctg 2280
aaagaatcaa gcctgacaca gtgcagtagc catccattcc ctatgttgc cattgagctg 2340
cccccttttgc ttccctctggg tgctttcaa gtgttgcgt gtccagggtt ctgcacacgt 2400
gcatctggaa acaagtgtt gggaaagatgg gtagggaggg agaggcttag agctaagcag 2460
ctctagagtc accctggagg aaatgggtct acttggattt ggacataggt ttgattttgt 2520
tttgggggg gacttgcctt ttttactgtt attcagaagt attaaacacaa acttgatgtc 2580
ttaatttttgc tatttttttgc aataaaggca aggggtgaac cagttgttgg gtcaaggacag 2640
attacaggat taactgaagg cgagcatggg ttccatgttcc atcaatatgg ggacaataca 2700
caaggtaagt cttaatctat ctcttacccgt ctgacttagt agatgaatgg gactgagtca 2760
ggaccaatta ctaaccattt aaaaccatca attttttctt tttcttttta gattaagttt 2820
aaataaccac ttaggtcaac ctcggaaaat agccaaaaaa gtattttagt tagtatcgag 2880
tatttcttgc ctcccttaagt gggaaagggtt gggtaaattt tcttaaatgtt gattattata 2940
gcttgacttt aatatacaga aacaatacg cacccttcctt attttgata atccctttagg 3000
gtgttggag ctgggggttgc aggggtgggtg cttaggcac agtgcataag gacagctatg 3060
cacgagaggc atagtgggac agaagtgaca aaaactgaag attcaatata aatgtttaga 3120
gtaaaattttt ttatattttgg gatttggaaatc aagttagaaa atatagtggc ttacatttgc 3180
tttagtgaac tttagccata ctttttttgc ttcccttgc ttttttttgc ttttaatgtt 3240
ccttatttttgc tttagtgc ttttttttgc ttcccttgc ttttttttgc ttttttttgc 3300
gttgcatttttgc tttagtgc ttttttttgc ttcccttgc ttttttttgc ttttttttgc 3360
ccacatagtg catgttagcc tggaaatctgt gctggagctt aaccatatttta gtcttagatg 3420
tgcagggtt aaggccatca acctgtgtc aatgtacagt aatttggcct acagttactt 3480
atgtttgtt ttgaccctt cggataattt ctaaagttca atcaagttgc tttgcctctg 3540
gcctggtagc ttttttttgc taagttccctt ccagaatctt gcccgttacc tatttcttgg 3600
tctgggtaga aattgttaaac tatgttgc ttttttttgc ttttttttgc ttttttttgc 3660
tgcccttgtt gaatgtatgtc ctttagccca catgtacacc gagttgagaa gcacagcagc 3720
gagttgagaa gcacagcagc cttgacacgt ggggataatc taaaatctg tctgccccaa 3780
gtaaaagcca gatggcttagt ctgttgggtg gtgtaaagggtc ttgaaagata agtggggat 3840
tcatgatctt aaaagcaaaag atctttaaat gtgggactttt aacttttagaa gtgccactaa 3900
aggtcgcttc tggccatgtt gatggcttagt ggggactttt aactgtctgtg acactaccat 3960
gctccctggca ctggaaaggc taaggttaga gggcattaa ctgcagatgtt catggctgt 4020
ggtagttaga ccctgtctca aatctaaaaa caaacaacaa gtcaggttca gtggaaaagc 4080
gggttagctt aaaaatgtca gccatatagtt ccagcttattt gtaggttgc ttttttttgc 4140
gtttgtatca ctccagcaca taccagctcc atgtttgtgt tgtaggttgc ttttttttgc 4200
ccgatgtcat tgacatacaga gttttacttc ataatctgtc ttttttttgc ttttttttgc 4260
gctgttacccat tgccaggacat cattttaaat ctcactctaa ttttttttgc ttttttttgc 4320
atgaagagag gtgagcgcac tttctcttgc gcatgggtt tgtaggttgc ttttttttgc 4380
cactctgaaatc cagaactgtt tggtctact gccttttttgc ttttttttgc ttttttttgc 4440
aactcccaaca tcccccaatgtt ctggaaatgtt ttatatttttttgc ttttttttgc ttttttttgc 4500
gactcttaag tgattttagt ttgttagcatt tatttttttgc ttttttttgc ttttttttgc 4560
aggaaccaat acagaaaata tcatggataa cagtagtactt ttttttttgc ttttttttgc 4620
attgtataat atactaatgc agataataaa aacttagttga gttccgtt gtagtgaaa 4680
ccttagggaaa gtccctacatt taaagagggg ctagcttgc ttttttttgc ttttttttgc 4740
gcaaaacctt gctaattcagg agctgacatc cttttcgaaa gtccttagact gtggctctt 4800
cctttaaact ggaagagctt ttttttttgc ttttttttgc ttttttttgc ttttttttgc 4860

ttccagacct ttgtctggaa aagccatcat atttgatagt gtatgtgcac tcttaatcc 4860
actcatagca tttgacttcg atgtgaattt agctattgaa ctctatttat gtgaaataga 4920
tatcattgct tatccacctg gtgctgttt aatgttaggc atgttggaga cctggcaat 4980
gtggctgctg gaaaggacgg tggccaaat gtgtcattt aagatcggt gatctcaactc 5040
tcaggagagc attccatcat tggccgtact atgggtttaa gttccatata agtagtagat 5100
gtaggatttc ttctaacata gttatgtacc tttccatgac ttcgtgttgg tggtaaact 5160
agttcctaaa agatcacata aattggtaag agttcagaat aggaaaaaat attattttat 5220
tggatgtaat agtaaagaat taatttgcct aggtcagtta agaacgcgt tctgtgaag 5280
tgcggtagaa agctggttac atttgcattt actggatctg agttgaggat acaatagtct 5340
ttagttaaa acagctggat tttcttgcca tgattggccc cttacagtta atcatttcgt 5400
tgagcttaaa atctgcgtat gatgtcaga ttcaagtctg caggttatcg cttgggttacc 5460
atatggagc cgtctccca agttaccctc gggagatgaa tctgggtcat gcagaacacc 5520
aagtagtaaa agctttgcc cacttcgggc agctaactt tcagtaggca cttcccttca 5580
gttgaccctt tatccttaga attttcttca gcccatttgg tgaaggcagaa caatcattca 5640
taaatgttct aaaaataaaa tttaaaatct tggcttaag taaagatatt tagaatttgc 5700
tcttatgtgt aggcctatag ttcactcacc aagagattt gatagagaaa tttgttaagaa 5760
tgactactgt acagttgggt gagggtgagg gctaagatca gcatgtgcct ggtagttatt 5820
tgggtcctt gtattcatct agaaatagcc acggacaagg aaacacttag tagtctgctt 5880
ttagctgata gcataaaaat tagcttattt attactaat agatttgaac attttctaat 5940
atacatggtc ctttgaagta ttgctggaa gaagtgcata ttacttgc accgaaacct 6000
aaatgttctt aatttttca aagggtccac gagaacaacat atgacttggg caaagggtgga 6060
aatgaagaaa gtacaaagac tggaaatgct ggaaggccgt tggcttggg tggatttggg 6120
attgccccat aaacattccc tatgtggctc gagtctcaga ctcatctgcgt gtcctgctaa 6180
actgttagaaa aaaaccaaac cattaaactg taatcttac agttgttaac tgggtgactc 6240
ctttgacttg ctctaaggac ttgcagttag aggtgactga cgatgtttgg aggatgtgta 6300
gaacttcctt aatgttaca actcattgaa cttaaaatctg ttgtttctgt gccagacctc 6360
actgggttta agctgaaatt ctcatcaag cctctctctc tctctgtgt tggctgtgt 6420
tgtgtgtgt tggctgtgt tggctgtgt tggctgtgt tggctgtgt tggctgtgt 6480
agactgagac ttatttagag ctcgagaga tagagactta ttcaaggctt attaatgtat 6540
accaaaaaaa cctaaagctt atacactgag catcaacaac agactcaatg aggctctcat 6600
agtatttaat ttgaaatgt tttcatgtga taccatcaaa atgacgtgtg gtagccaaa 6660
ccggatttga tcttagaaaa tttctgccc ttgttatca tcagaaattt ctgaaagctc 6720
tctttaagat tcagagtacc taaccttatt ttaaaatctt attagagttt gaagccatga 6780
tttaagataa agccctttag taaaacttga taaaactcat aaaaggcaaa taggtgcct 6840
cagctagcca agtttaatac ctcccttacc tgccaagtga agttggtacc acctgcttt 6900
ttaaggttgg cactcagggaa atacatagca ctggagatg agaccaagtg gttctggcgg 6960
ttgtggctaa atcgactttt acagcctcag ttaatgaaac t 7001

<210> 318
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 318
caccgcttgc cttctgctcg

<210> 319
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 319
tctcgtagac caccatagta 20

<210> 320
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 320
tgcaaaacga gggcccaagcg 20

<210> 321
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 321
gggccttgcc ttctgctcga 20

<210> 322
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 322
caccgcttgcc ctttatttaa 20

<210> 323
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 323
ttaagactta ccttgtgtat 20

<210> 324
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 324
gtggtagacgc ctatttacca 20

<210> 325

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 325
tgctgctcac ctctcttcat 20

<210> 326
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 326
tccaaacatgc ctaacattaa 20

<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 327
gaaaaacttac caccatagta 20

<210> 328
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 328
tctcgtggac ctttggaaaag 20

<210> 329
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 329
cgcttgcctt ctgct 15

<210> 330
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 330
cgtggaccac catag 15

<210> 331
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 331
aaaacgaggg cccag 15

<210> 332
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 332
ccttgcccttc tgctc 15

<210> 333
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 333
cgcttgcctt tattt 15

<210> 334
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 334
agacttacct tgtgt 15

<210> 335
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 335

gtacaggccta tttac	15
<210> 336	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 336	
tgctcaccc tcattc	15
<210> 337	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 337	
aacatgccta acatt	15
<210> 338	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 338	
aacttaccac catag	15
<210> 339	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 339	
cgtggacctt tgaaa	15