HLMA101 - Partie C : Analyse (fonctions réelles)

Chapitre 10 Continuité

Simon Modeste

Faculté des Sciences - Université de Montpellier

2020-2021

- 1. Continuité
- 2. Théorème des valeurs intermédiaires
- 3. Continuité et monotonie, bijection

Sommaire

- 1. Continuité

Reformulation

f continue en x_0

 $\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in]x_0 - \delta; x_0 + \delta \big[\cap I, \ |f\big(x\big) - f\big(x_0\big)| < \varepsilon$

 $\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in I, \ |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$

Continuité en un point

Définition

Soit f une fonction définie sur $I \subset \mathbb{R}$ et $x_0 \in I$. On dit que f est continue en x_0 lorsque $\lim_{x \to \infty} f(x) = f(x_0)$

Remarque

On a alors : f continue en $x_0 \Leftrightarrow \lim_{x \to x_0} f(x)$ existe.

Non-continuité

f discontinue en x_0

 $\exists \varepsilon > 0, \forall \delta > 0, \exists x \in I, (|x - x_0| < \delta \text{ et } |f(x) - f(x_0)| > \varepsilon)$

Remarque

La continuité est une notion **locale** : seul compte le comportement de f au voisinage de x_0 .

Exemples

- 1. $\forall x_0 \in \mathbb{R}, x \mapsto |x|$ est continue en x_0
- 2. La fonction partie entière est discontinue en tout entier relatif.

Continuité à gauche et à droite

Définition

Soit $x_0 \in I$, et f une fonction de I dans \mathbb{R} . On dira que f est continue à gauche (resp. à droite) en x_0 si $\lim_{\substack{x \to x_0 \\ x \leqslant x_0}} f(x)$ (resp.

 $\lim_{\substack{x \to x_0 \\ x \geqslant x_0}} f(x)) \text{ existe.}$

Exemple

La fonction partie entière est continue à droite en chaque entier relatif, mais pas à gauche.

Théorème

f est continue en x_0 si et seulement si f est continue à gauche et à droite en x_0 .

Théorème

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux fonctions continues en $x_0 \in I \cap J$.

- (i) |f| est continue en x_0
- (ii) pour tout $\lambda \in \mathbb{R}$, λf est continue en x_0
- (iii) f + g est continue en x_0
- (iv) f.g est continue en x_0
- (v) si $f(x_0) \neq 0$, $\frac{1}{f}$ est continue en x_0

Théorème

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$. Si f est continue en x_0 et g est continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

Idée des preuves : C'est une conséquence directe des théorèmes sur les opérations sur les limites.

Exemples

- 1. Une application constante est continue sur \mathbb{R} .
- 2. L'identité de $\mathbb R$ dans $\mathbb R$ est continue sur $\mathbb R$
- 3. La fonction définie sur $\mathbb R$ par :

$$\begin{cases} f(x) = 1 \text{ si } x \in \mathbb{Q} \\ f(x) = 0 \text{ si } x \notin \mathbb{Q} \end{cases}$$

est discontinue en tout point.

Exemples

- 1. Toute fonction polynomiale est continue sur \mathbb{R} (par exemple : $x \mapsto 2x^3 \sqrt{2}x + 1$)
- 2. Toute fonction $\underline{\text{fraction rationnelle}}$ est continue où elle est définie.

3.
$$\begin{cases} f(x) = \frac{1}{2}x + 1 \text{ si } x < 2\\ f(x) = -x + 4 \text{ si } x \ge 2 \end{cases}$$
 est continue sur \mathbb{R}

Théorème

Soit f une fonction continue sur [a;b], à valeurs dans \mathbb{R} (a < b). Pour tout y compris entre f(a) et f(b), il existe $c \in [a;b]$ tel que f(c) = y

Preuve.

Continuité sur un intervalle

Définition

Soit f une fonction définie sur $I \subset \mathbb{R}$. On dit que f est <u>continue</u> sur I lorsque f est continue en tout point de I.

On note $\mathscr{C}(I)$ l'ensemble des fonctions continues sur I.

Propriétés

- $\diamond \ \mathscr{C}(I)$ est stable par combinaisons linéaires
- $\diamond \mathscr{C}(I)$ est stable par produit
- \diamond Si $f \in \mathcal{C}(I)$, alors $|f| \in \mathcal{C}(I)$
- ♦ Si f et g sont dans $\mathscr{C}(I)$ et g ne s'annule pas sur I, alors $\frac{f}{\sigma} \in \mathscr{C}(I)$.
- \diamond $\tilde{\mathsf{Si}}$ f est une application continue de I dans J, et g continue de J dans \mathbb{R} , alors $g \circ f$ est continue sur I

Idée des preuves

C'est une conséquence directe des théorèmes précédents sur la continuité en un point.

Sommaire

- 1 Continuité
- 2. Théorème des valeurs intermédiaires
- 3. Continuité et monotonie, bijection

Exemples

- ♦ On retrouve que pour tout réel $a \ge 0$, il existe $x \in \mathbb{R}$ tel que $x^2 = a$.
- ♦ L'équation $e^{-x} = x$ admet une solution dans [0;1].

Corollaire (pratique)

Si f est continue sur un intervalle I = [a; b] avec f(a)f(b) < 0, alors il existe $c \in]a; b[$ tel que f(c) = 0

Corollaire

L'image d'un intervalle par une fonction continue est un intervalle : si I est un intervalle et $f \in \mathscr{C}(I)$, alors f(I) est aussi un intervalle.

Idée de la preuve :

- \diamond Soient a' < b' deux éléments de f(I) : i.e. a' = f(a) et b' = f(b) avec $a, b \in I$
- \diamond Soit c' tel que a' < c' < b' : c' est compris entre f(a) et f(b).
- ♦ TVI : Il existe $c \in [a; b]$ (ou $c \in [b; a]$) tel que c' = f(c)
- ♦ Conclusion : comme I est un intervalle, c ∈ I et c' = f(c) ∈ f(I).

Théorème:

Soit f une fonction monotone sur I. Si f(I) est un intervalle, alors f est continue sur I.

Rappels:

- \diamond f est dite monotone si f est croissante sur I, ou décroissante sur I.
- \diamond f est dite croissante sur I lorsque :

$$\forall a, b \in I, \ a \leq b \Rightarrow f(a) \leq f(b)$$

 $\diamond\ f$ est dite décroissante sur I lorsque :

$$\forall a, b \in I, \ a \leq b \Rightarrow f(a) \geq f(b)$$

Théorème des valeurs extrêmes

Soit f une fonction continue sur un segment [a,b]. Alors f est bornée et elle atteint ses bornes.

Autrement dit, il existe c et c' dans [a,b] tels que :

$$\forall x \in [a, b], f(c) \leq f(x) \leq f(c')$$

Note : Pas tout à fait au programme, mais c'est bien d'avoir compris ce que ça dit et de savoir que ça existe.

Sommaire

- 1 Continuité
- 2. Théorème des valeurs intermédiaires
- 3. Continuité et monotonie, bijection

Bijection réciproque

Théorème

Soit f une application continue strictement croissante sur un intervalle $\emph{I}.$ Alors :

- (i) f induit une bijection de I sur J = f(I).
- (ii) La réciproque $f^{-1}: J \to I$ est continue et strictement croissante
- (iii) L'image f(I) de f est un intervalle de \mathbb{R} , de même nature que I, dont le bornes sont les limites de f aux extrémités de I.

Preuve.

Remarque : Il existe un théorème analogue pour le cas *f* strictement décroissante.