1: Introduction to Artificial Intelligence

Objectives

- Understand the definition of Artificial Intelligence
- Discuss the different faculties involved with intelligent behavior
- Examine the different ways of approaching
- Look at some example systems that uses Al
- Trace briefly the History of AI

OUTCOMES

- Define AI in different ways
- Identify the components of Intelligent behaviour
- Develop an appreciation of the vast scope of AI and intellectual challenges in AI
- Identify what will be the AI problems that could be solved by computers and what are the limitations (beyond the ability of the computers)

Topics of coverage

- Definition of AI
- Example Systems
- Approaches to Al
- Brief History

What is Al

- AI Artificial Intelligence
- AI is concerned with the design of intelligence in artificial artifacts and artificial devices
- This term was coined by McCarthy in 1956 in a famous conference the Dartmouth conference
- What is an Intelligence?
 - Human?
 - Behaves as intelligently as human
 - Behaves in a best possible manner
 - Thinking?
 - Acting?

Definitions of AI

Thought processes/Reasoning Vs Behavior Human like performance Vs Ideal Performance

Approaches to Al

Thought processes/Reasoning Vs Behaviour Human like performance Vs Ideal Performance

Define Rational

Rational thinking is the ability to consider the relevant variables of a situation and to

- access
- organize
- and analyze relevant information (e.g., facts, opinions, judgments, and data) to arrive at a sound conclusion.

TURING TEST

 If the interrogator is not able to distinguish between the human from computer from the response, then computer is said to possess the Intelligence (artificial)

Typical AI problems

- Intelligent entities or agents need to be able to do both mundane expert tasks:
- Examples for mundane tasks are:
 - Planning route
 - Recognition of objects or recognize faces of people
 - Communication through natural languages
 - Navigation through objects on the street
- Expert Task
 - Medical diagnosis
 - Mathematical problem solving

What is easy and what is hard?

It has very hard to mechanize tasks that lot of animals do easily by

- Walking around without running into things
- Catching prey and avoiding predators
- Interpreting common sensory information
- Modeling internal states of other animals from their behavior

Intelligent Behavior

- Perception
- Reasoning
- Learning
- Understanding Language
- Solving Problems

Practical Impact of AI

Al components are embedded into numerous devices (Eg. Copy machine)

Al systems are in everyday use. For eg:

Detecting the credit card fraud

Configuring products

Aiding complex Planning Task

Advising physicians

Intelligent tutorial system provides students with personalized attention

Thinking humanly: cognitive modeling

- 1960s "cognitive revolution": information-processing psychology
- Requires scientific theories of internal activities of the brain
- How to validate? Requires
 - Predicting and testing behavior of human subjects (top-down)
 - Or Direct identification from neurological data (bottom-up)
- Both approaches (Cognitive Science and Cognitive Neuroscience) are now distinct from AI

Thinking rationally: "laws of thought"

- Aristotle: what are correct arguments/thought processes?
- Several Greek schools developed various forms of logic: notation and rules of derivation for thoughts; may or may not have proceeded to the idea of mechanization
- Direct line through mathematics and philosophy to modern AI Problems:
 - 1. Not all intelligent behavior is mediated by logical deliberation
 - What is the purpose of thinking? What thoughts should I have

Acting rationally: Rational agent

- Rational behavior: doing the right thing
- The right thing: that which is expected to maximize goal achievement, given the available information
- Doesn't necessarily involve thinking e.g., blinking reflex –
 but thinking should be in the service of rational action

Rational agents

- An agent is an entity that perceives and acts
- Abstractly, an agent is a function from percept histories to actions:

$$[f: \mathcal{P}^{\star} \to \mathcal{A}]$$

- For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance
- Caveat: computational limitations make perfect rationality unachievable
 - → design best program for given machine resources

Question ??

Examine the AI literature to discover whether the following tasks can currently be solved by computers

- Buying a week's worth of groceries at the market
- Discovering and providing new mathematical theorems
- Performing a complex surgical operations

Question

"Surely animals, humans and computers cannot be intelligent, they can do only what their constituent atoms are told to do by the laws of physics". Is the latter statement true, and does it imply the former?

Al prehistory

•	Philosophy	Logic, methods of reasoning, mind as physical system foundations of learning, language, rationality
•	Mathematics	Formal representation and proof algorithms, computation, (un)decidability, (in)tractability, probability
•	Economics	utility, decision theory
•	Psychology	phenomena of perception and motor control, experimental techniques
•	Computer engineering	building fast computers
•	Control theory	design systems that maximize an objective function over time
•	Linguistics	knowledge representation, grammar

Abridged history of Al

•	1943	McCulloch & Pitts: Boolean circuit model of brain
•	1950	Turing's "Computing Machinery and Intelligence"
•	1956	Dartmouth meeting: "Artificial Intelligence" adopted
•	1952—69	Look, Ma, no hands!
•	1950 s	Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
•	1965	Robinson's complete algorithm for logical reasoning
•	1966—73	AI discovers computational complexity Neural network research almost disappears
•	1969—79	Early development of knowledge-based systems
•	1980	Al becomes an industry
•	1986	Neural networks return to popularity
•	1987	Al becomes a science
•	1995	The emergence of intelligent agents

State of the art

- Deep Blue defeated the reigning world chess champion Garry Kasparov in 1997
- Proved a mathematical conjecture (Robbins conjecture) unsolved for decades
- Translator (Doctor Patient)
- No hands across America (driving autonomously 98% of the time from Pittsburgh to San Diego)
- During the 1991 Gulf War, US forces deployed an AI logistics planning and scheduling program that involved up to 50,000 vehicles, cargo, and people
- NASA's on-board autonomous planning program controlled the scheduling of operations for a spacecraft
- Proverb solves crossword puzzles better than most humans

State of the art ...contd

- Internet Agents
 - Monitoring of user tasks
 - Seek for the needed information
 - Learn which information is most useful

APPROACHES TO AI

- Strong Al
- Weak AI
- Applications Al
- Cognitive Al

Name the approaches of Al

Al related topics

Core Areas:

Knowledge Representation

Reasoning

Machine Learning

Perception

Vision

NLP

Robotics

Al related topics ...contd

Uncertain ability

Probabilistic approaches

General Algorithms

Search

Planning

Constraint satisfaction

Applications

Game playing

Al and education

Distributed Agents

Decision Theory

Reasoning with symbolic data