COMP90051 Statistical Machine Learning

Semester 2, 2015

Lecturer: Ben Rubinstein

8. PGM Probabilistic Inference

Probabilistic inference on PGMs

Computing marginal and conditional distributions from the joint of a PGM using Bayes rule and marginalisation.

This deck: how to do it efficiently.

Two familiar examples

- Naïve Bayes (frequentist/Bayesian)
 - * Chooses most likely class given data

*
$$\Pr(Y|X_1,...,X_d) = \frac{\Pr(Y,X_1,...,X_d)}{\Pr(X_1,...,X_d)} = \frac{\Pr(Y,X_1,...,X_d)}{\sum_{y} \Pr(Y=y,X_1,...,X_d)}$$

- Data $X \mid \theta \sim N(\theta, 1)$ with prior $\theta \sim N(0, 1)$ (Bayesian)
 - * Given observation X = x update posterior

*
$$\Pr(\theta | X) = \frac{\Pr(\theta, X)}{\Pr(X)} = \frac{\Pr(\theta, X)}{\sum_{\theta} \Pr(\theta, X)}$$

Joint + Bayes rule + marginalisation → anything

Nuclear power plant

- Alarm sounds; meltdown?!
- $\Pr(HT|AS = t) = \frac{\Pr(HT, AS = t)}{\Pr(AS = t)}$ $= \frac{\sum_{FG, HG, FA} \Pr(AS = t, FA, HG, FG, HT)}{\sum_{FG, HG, FA, HC} \Pr(AS = t, FA, HR, FG, HT)}$

Numerator (denominator similar)

expanding out sums, joint summing once over 25 table

$$= \sum_{FG} \sum_{HG} \sum_{FA} \Pr(HT) \Pr(HG|HT, FG) \Pr(FG) \Pr(AS = t|FA, HG) \Pr(FA)$$

distributing the sums as far down as possible summing over several smaller tables

$$= \Pr(HT) \sum_{FG} \Pr(FG) \sum_{HG} \Pr(HG|HT, FG) \sum_{FA} \Pr(FA) \sum_{AS} \Pr(AS = t|FA, HG)$$

Nuclear power plant (cont.)

 $= \Pr(HT) \sum_{FG} \Pr(FG) \sum_{HG} \Pr(HG|HT, FG) \sum_{FA} \Pr(FA) \sum_{AS} \Pr(AS = t|FA, HG)$ eliminate AS: since AS observed, really a no-op

 $= \Pr(HT) \sum_{FG} \Pr(FG) \sum_{HG} \Pr(HG|HT, FG) \sum_{FA} \Pr(FA) m_{AS} (FA, HG)$ eliminate FA: multiplying 1x2 by 2x2

 $= \Pr(HT) \sum_{FG} \Pr(FG) \sum_{HG} \Pr(HG|HT, FG) m_{FA}(HG)$

Multiplication of tables, followed by summing, is actually matrix multiplication

 $= \Pr(HT) \sum_{FG} \Pr(FG) m_{HG}(HT, FG)$ eliminate FG: multiplying 1x2 by 2x2

 $= \Pr(HT) m_{FG}(HT)$

eliminate HG: multiplying 2x2x2 by 2x1

 $m_{FA}(HG)$ =

HG

Elimination algorithm

Orange background = Slide just for fun!

Eliminate (Graph G, Evidence nodes E, Query nodes Q)

- 1. Choose node ordering I such that Q appears last
- 2. Initialise empty list active
- 3. For each node X_i in G
 - a) Append $Pr(X_i | parents(X_i))$ to active
- 4. For each node X_i in E
 - a) Append $\delta(X_i, x_i)$ to active
- 5. For each i in I
 - a) potentials = Remove tables referencing X_i from active
 - b) N_i = nodes other than X_i referenced by tables
 - Table $\varphi_i(X_i, X_{N_i})$ = product of tables
 - d) Table $m_i(X_{N_i}) = \sum_{X_i} \varphi_i(X_i, X_{N_i})$
 - e) Append $m_i(X_{N_i})$ to active
- 6. Return $\Pr(X_Q|X_E = x_E) = \varphi_Q(X_Q)/\sum_{X_Q} \varphi_Q(X_Q)$

initialise evidence marginalise

normalise

Runtime of elimination algorithm

"reconstructed" graph
From process called
moralisation

- Each step of elimination
 - Removes a node
 - Connects node's remaining neighbours
 - → forms a clique in the "reconstructed" graph (cliques are exactly r.v.'s involved in each sum)
- Time complexity exponential in largest clique
- Different elimination orderings produce different cliques
 - * Treewidth: minimum over orderings of the largest clique
 - Best possible time complexity is exponential in the treewidth

Probabilistic inference by simulation

- Exact probabilistic inference can be expensive/impossible
- Can we approximate numerically?
- Idea: sampling methods
 - Cheaply sample from desired distribution
 - * Approximate distribution by histogram of samples

Monte Carlo approx probabilistic inference

- Algorithm: sample once from joint
 - 1. Order nodes' parents before children (topological order)

- 2. Repeat
 - a) For each node X_i
 - i. Index into $Pr(X_i|parents(X_i))$ with parents' values
 - ii. Sample X_i from this distribution
 - b) Together $X = (X_1, ..., X_d)$ is a sample from the joint
- Algorithm: sampling from $Pr(X_Q|X_E = x_E)$
 - 1. Order nodes' parents before children
 - 2. Initialise set S empty; Repeat
 - 1. Sample *X* from joint
 - 2. If $X_E = x_E$ then add X_O to S
 - 3. Return: Histogram of S, normalising counts via divide by |S|
- Sampling++: Importance weighting, Gibbs, Metropolis-Hastings

Alternate forms of probabilistic inference

- Elimination algorithm produces single marginal
- Sum-product algorithm on trees
 - * 2x cost, supplies all marginals
 - * Name: Marginalisation is just sum of product of tables
 - * "Identical" variants: Max-product, for MAP estimation
- In general these are message-passing algorithms
 - * Can generalise beyond trees (beyond scope): junction tree algorithm, loopy belief propagation
- Variational Bayes: approximation via optimisation

Summary

- Probabilistic inference on PGMs
 - * What is it and why do we care?
 - * Elimination algorithm; complexity via cliques
 - * Monte Carlo approaches as alternate to exact integration