Alapintegrálok

I $(\mathcal{D}_f ext{ és } \mathcal{D}_F)$	f(x) (f az adott függvény)	F(x) (F az f egy primitív függvénye)	$I \\ (\mathcal{D}_f \text{ \'es } \mathcal{D}_F)$	f(x) (f az adott függvény)	F(x) (F az f egy primitív függvénye)
R	x^n $(n = 0, 1, 2, \dots)$	$\frac{x^{n+1}}{n+1}$	\mathbb{R}	$\operatorname{sh} x$	$\operatorname{ch} x$
			\mathbb{R}	$\operatorname{ch} x$	$\operatorname{sh} x$
$(0,+\infty)$	$\frac{1}{x}$	$\ln x$	\mathbb{R}	h x	$\ln \operatorname{ch} x$
$(-\infty,0)$	$\frac{1}{x}$	$\ln(-x)$	$(0,+\infty)$	$\operatorname{cth} x$	$\ln \sinh x$
$(-\infty,0)$ vagy $(0,+\infty)$	$\frac{1}{x^n}$ $(n=2,3,4,\ldots)$	$\frac{1}{1-n} \cdot \frac{1}{x^{n-1}}$	$(-\infty,0)$	$\operatorname{cth} x$	$\ln \sinh \left(-x \right)$
	$(n=2,3,4,\ldots)$ x^{α}		\mathbb{R}	$\frac{1}{\cosh^2 x}$	h x
$(0,+\infty)$	$(\alpha \in \mathbb{R}, \ \alpha \neq -1)$	$\frac{x^{\alpha+1}}{\alpha+1}$	$(-\infty,0)$ vagy $(0,+\infty)$	$\frac{1}{\sinh^2 x}$	$-\operatorname{cth} x$
\mathbb{R}	e^x	e^x			,
$(0,+\infty)$	a^x $(a \in (0, +\infty), \ a \neq 1)$	$\frac{a^x}{\ln a}$	R	$\frac{1}{1+x^2}$	$ \operatorname{arctg} x \\ = \frac{\pi}{2} - \operatorname{arcctg} x $
			(-1,1)	$\frac{1}{1-x^2}$	$\operatorname{arth} x = \frac{1}{2} \cdot \ln \frac{1+x}{1-x}$
\mathbb{R}	$\sin x$	$-\cos x$			
R	$\cos x$	$\sin x$	$(-\infty, -1)$ vagy $(1, +\infty)$	$\frac{1}{1-x^2}$	$\operatorname{arcth} x = \frac{1}{2} \cdot \ln \frac{x+1}{x-1}$
$(-\frac{\pi}{2},\frac{\pi}{2})$	$\operatorname{tg} x$	$-\ln\cos x$	\mathbb{R}	$\frac{1}{\sqrt{1+x^2}}$	$\operatorname{arsh} x = \ln(x + \sqrt{1 + x^2})$
$(0,\pi)$	$\operatorname{ctg} x$	$\ln \sin x$	(-1,1)	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$ $= \frac{\pi}{2} - \arccos x$
$(-\frac{\pi}{2},\frac{\pi}{2})$	$\frac{1}{\cos^2 x}$	$\operatorname{tg} x$	$(1, +\infty)$	$\frac{1}{\sqrt{x^2 - 1}}$	$\operatorname{arch} x = \ln(x + \sqrt{x^2 - 1})$
$(0,\pi)$	$\frac{1}{\sin^2 x}$	$-\operatorname{ctg} x$	$(-\infty, -1)$	$-\frac{1}{\sqrt{x^2-1}}$	$\operatorname{arch}(-x) = \ln(-x + \sqrt{x^2 - 1})$