Amazon Prime Video View Time per Day Prediction

Data Incubator Project

11/20/2019 Fei Yu

Better Recommendations for Videos

- Two benefits of making better video recommendations to customers:
 - Better business value
 - Better customer relationship
- One reliable quantitative metric: Cumulated View Time (CVT) per Day
- Objective: use machine learning to predict CVT for videos

Content

- > Amazon Video Data
- Data Preparation
- Model Evaluation
- > Feature Importance Analysis
- > Summary

Amazon Video Data

Dataset: 4,226 rows, 16 columns. Each row is one movie.

> Prediction:

CVT – Cumulated View Time [Seconds] per day (indicates whether a movie is popular or not, more profit)

Feature examples

- Weighted_vertical_position
- Weighted_horizontal_position
- Genres (Drama, comedy,...)
- Release_year (Year 1920 ~ 2019)
- IMDB_votes (total IMDB votes)
- IMDB rating (0~10)
- Duration_in_minutes (mins)
- Budget (\$)
- Awards (Oscar, other award)
- MPAA (PG-13, R, ...)
- Boxoffice
- Supervised learning

4	Α	В	С	D	E	F	G
1	video_id	cvt_per_day	weighted_categorical_position	weighted_horizontal_poition	import_id	release_year	genres i
2	385504	307127.6056	1	3	lionsgate	2013	Action,Thr
3	300175	270338.4264	1	3	lionsgate	2013	Comedy,Comedy,Comedy
4	361899	256165.8674	1	3	other	2012	Crime,Drar
5	308314	196622.721	3	4	lionsgate	2008	Thriller,Dra
6	307201	159841.6521	1	3	lionsgate	2013	Crime,Thri
7	389496	135076.6098	1	5	mgm	2000	Comedy
8	385507	134155.7402	1	6	lionsgate	2013	Action,Adv
9	380517	116906.0079	1	7	lionsgate	2014	Western,D
0	369857	116871.1216	2	9	lionsgate	2013	Thriller,Cri
1	393463	111565.5967	2	7	lionsgate	2009	Action,Adv

imdb_votes	budget	boxoffice	imdb_rati	duration_	metacritic	awards	mpaa	star_category
69614	15000000	42930462	6.5	112.301	51	other	PG-13	1.71
46705	15000000	3301046	6.5	94.98325	41	no	R	3.25
197596	26000000	37397291	7.3	115.7637	58	other	R	2.646666667
356339	15000000	15700000	7.6	130.7036	94	Oscar	1.666667	
46720	27220000	8551228	6.4	105.5455	37	other	R	3.066666666
13250	60000000	32095318	5.5	98.46835	37	no	PG-13	2.75
16188	11000000	8551228	5.2	94.33642	57	other	R	2.74
0.4004	4.0000000	0400000		400 0005		- Albania	_	0.000777770

> Three Key Questions:

- Predict CVT of a new movie based on its existing features
- Which features are important to the CVT for a new movie

Help video website optimize website to do better recommendations

Data Preparation

- Deal with missing data used mean values
 - For budget, missing data is not very obvious; no NAs; but zero budget indicates missing value
- Feature Engineering
 - Bin the release years for every 10 years (1920 ~ 2019)
 - Categorical features one hot encoding
 - Feature standardization
 - Since different features are in different scales
- > 80% for Training & 20% for testing with cross-validation

Model Evaluation

Random Forest model has the highest R Square, lowest MSE

Modelling

- Linear model
 - All features with Lasso
 - All features with Ridge
 - Polynomial features with Lasso
 - Polynomial features with Ridge

Nonlinear model

Random forest

Feature Importance Analysis

Google Golden Triangle

https://www.mediapost.com/publications/article/235341/the-evolution-of-googles-golden-triangle.html

- Top two important features: the categorical and horizontal positions of video on the website
- Consistent with Google Golden Triangle Rule
- The least important feature: release year

Summary

✓ Two Key Questions:

- 1. Predict CVT of a new movie based on its existing features
- 2. Which features are important to the CVT for a new movie

✓ Take-Aways:

- This model can help website manager to predict the CVT for new movies so to help them optimize movie recommendations
- 2. The location of movie is the most important feature for the CVT
- 3. This result also applies to other similar video websites or online shopping websites