

#### **SPECIAL SESSION**

ON

#### **HYDROGEN MISSION**

India Smart Utility Week 2023, 28 February - 04 March 2023

C P Tiwari TATA Power



## Index

#### **BASICS OF GREEN HYDROGEN**

- Basic Facts
- Role of Green Hydrogen for achieving net zero
- Green Hydrogen Equivalence
- Cost Economics of Green Hydrogen
- Technologies for Green Hydrogen Production

#### **NATIONAL HYDROGEN MISSION**

- India's Energy Targets
- Sectors in Focus
- Major Components
- Pilot Projects & Hydrogen Hubs
- Key Enablers
- Financial Outlay
- Expected Deliverables by 2030
- Mission Governance Framework
- Action Initiated
- Key Action & Implementation Timelines





## **Hydrogen** | Basic facts





#### Hydrogen was first identified in 1776 by British Scientist Henry Cavendish when Zn reacted with HCl to evolve H<sub>2</sub>



#### **Basic Facts:**

- Hydrogen is Colorless, Tasteless & Odorless
- $H_2$  Density is 0.0899 kg/Nm<sup>3</sup> at NTP [0  $^{0}$ C, 1 atm], 1 kg  $H_2$  requires ~ 11.12 m<sup>3</sup>
- Exists as a gas @ NTP (2 H atoms combine to form 1 H<sub>2</sub> molecule
- LHV of H<sub>2</sub>: 33.3 kWh/kg, HHV of H2: 39.4 kWh/kg
- Flammability limits, LFL: 4% (H<sub>2</sub> by v/v), HFL: 75% (H<sub>2</sub> by v/v)
- For water splitting, (at room temperature), minimum voltage requires is 1.48 V (thermoneutral voltage)
- Stoichiometrically, 1 kg of H<sub>2</sub> requires 9 kg of pure water as input

## High Carbon

GREY HYDROGEN (Steam methane reforming.  $CO_2$  emissions not captured,  $CO_2$  Intensity -9 – 10 kg  $CO_2$ per kg of  $H_2$ )

BROWN HYDROGEN (Coal Gasification.  $CO_2$ emissions not captured,  $CO_2$ Intensity -19 – 20 kg  $CO_2$ per kg of  $H_2$ )

## Low Carbon

BLUE HYDROGEN (Steam methane reforming, Coal Gasification  $CO_2$ emissions captured,  $CO_2$ Intensity -2 - 4 kg  $CO_2$  per kg of  $H_2$ )

#### Zero Carbon

TURQUOISE HYDROGEN (Methane Pyrolysis. Solid carbon mass produced. No emissions to the atmosphere)

GREEN HYDROGEN
(Hydrogen produced from water electrolysis.
Completely green if renewable power is used)

PINK HYDROGEN
Pink hydrogen is
generated through
electrolysis powered by
nuclear energy.



## **Hydrogen** | Value Chain & Technologies





Brown  $H_2$  – Produced from fossil fuels

Blue H<sub>2</sub> – Produced from fossil fuels with CCS

#### **Production Technologies Supply & Logistics End Use Applications** - Heavy & Light-duty vehicles Hydrogen gas **Mobility** - Maritime Liquid hydrogen - Rail; Aviation Steam methane reforming (SMR) Conversion - NH<sub>3</sub> Gasification Partial Oxidation - Liquefied organic hydrogen Oil refining and chemicals **Thermochemical** carrier (LOHC) Pyrolysis Feed stock for Ammonia / Fertilizers Autothermal reforming (ATR) Industrial Iron and steel production High-temperature heat - Trucks & Trains Mature technologies Ships **Transport** Co-firing NH3 in coal power plants Pipeline Alkaline **Power and** Back-up and off-grid power supply Polymer electrolyte membrane (PEM) **Energy Electrolysis** Long-term, large-scale storage Solid oxide electrolyzer cell (SOEC) – Blended; pure H<sub>2</sub>. Methanation Anion Exchange Membrane (AEM) Geological storage Storage tanks Heating systems Dark fermentation Storage Cooling systems Chemical reconversion **Buildings** Other Microbial electrolysis Fuel cell generators Liquefaction and Photoelectrochemical regasification

To produce hydrogen, it must be separated from the other elements in the molecules where it occurs. There are many different sources of hydrogen and ways for producing it for use as a fuel.



Mature technologies

The most common methods for producing hydrogen are steammethane reforming. Electrolysis is also likely to become common method for hydrogen generation in future

## **Green Hydrogen** | End Use Application





# P2P [Power to Power] H2 Generation (Efficiency 66%) NH Fuel Cells (Efficiency 50%) RTC-H2-FC-DP

- □ Conversion Efficiency of the Combined "Electrolyser Fuel Cell" System 33%
- ☐ This could be used to replace DG Power where DG utilization is very high, or for long duration energy storage solution where intra day or seasonal storage is required
- ☐ Other option of P2P include Green Ammonia firing in thermal units, using Green Hydrogen for Gas turbines etc.

#### P2G or P2C [Power to Gas or Power to Chemical]

Possible use of Green H<sub>2</sub> include:

- Mobility: Heavy-Duty long-haul transportation, Maritime, Rail & Aviation
- ☐ **Refinery:** for desulphurization
- Green Steel Making
- Green Ammonia Making to be used in Fertilizer industry or for other application
- Methanol Production
- ☐ Buildings heating, cooling etc.
- Blending H2 in NG

- Since conversion efficiency in P2P is around 33%, P2P projects will be required when deep decarbonization of power sector is required or for long duration energy storage solution.
- ☐ In near future, P2G & P2C Projects are likely to come-up with an objective of Decarbonization







#### **Present H2 Production from different Sources**<sup>1</sup>



#### **Present Hydrogen Use by different sectors<sup>2</sup>**



- 1 As per IEA Report 2019 "The Future of Hydrogen"
- 2 As per IEA Report 2022 "Global Hydrogen Review"

Decarbonization

**Pathways** 

emissions (20191)

India GHG

Decarbonization Pathways

## **Net Zero** | Role of Green Hydrogen



## TATA





power storage

<sup>1. 2019</sup> emissions taken due to sharp decline in industrial and transport emissions in 2020 Note: BEV – Battery electric vehicle; FCEV – Fuel cell electric vehicle

## **Green Hydrogen Equivalence** | Sector Wise



Green hydrogen applications are expected to mature as a potential solution to decarbonize hard-to abate sectors such as refinery, ammonia, methanol, iron and steel, Transportation, Gas to Power etc.





#### Refining

10 Mt PA Oil refining (4% of India's refining capacity

#### No. of FCEV

OR

**1.6** Million Passenger Vehicle can run on hydrogen

OR

#### **Power Generation**

食

1.7
BU Power
Generation (1.5%
of India's
Monthly Power
Demand)

OR

# OR

#### Methanol

0.5 Mt PA Methanol Production (20% of total present use of Methanol in India)

#### Urea

Mt PA Urea
Production
(1.6% of total
urea
consumption
in India

OR

#### Steel

1.6

Mt PA Crude Steel Production (**1.4%** of India's Crude steel production)

## **Green Hydrogen** | Cost Components of GH<sub>2</sub> & RE Plant (1/2)





## **Green Hydrogen** | Cost Components of GH<sub>2</sub> & RE Plant<sup>1</sup> (2/2)



**Cost Components RE RTC & GH<sub>2</sub> Plant** 

**Cost Breakup – GH<sub>2</sub> Generation<sup>2</sup>** 

**Cost Breakup of Electrolyser Stack (%)** 



- 1. Break-up indicated is considering approx. cost level
- 2. Cost Break-up for GH<sub>2</sub> Plant is as per estimate. Alkaline Electrolyser stack cost break-up is as per IRENA Report.

## **GH<sub>2</sub> Cost Sensitivity – as per Hydrogen Council**





#### Renewable hydrogen from electrolysis production cost scenarios, USD/kg of Hydrogen

## Cost of renewable hydrogen with varying LCOE and load factors USD/kg H<sub>2</sub>



#### **Green Hydrogen Cost:**

- Assumptions for 2025 deliveries
- Orders placed in 2023
- Capex \$500/kW (\$0.5m/MW)
- LCOE \$50/MWh (5c/kWh)
- 50% Load Factor
- Direct coupling to renewables



SOURCE: McKinsey

#### **TATA POWER**

## **Electrolyzer** | Comparison of Technologies





| PARAMETERS              | ALKALINE ELECTROLYZER                                                                     | PEM ELECTROLYZER                                                                                  | SOLID OXIDE ELECTROLYZER                                                                       |  |
|-------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Electrolytes            | KOH (20-30%)                                                                              | Polymers                                                                                          | Yttria Stabilized Zirconium                                                                    |  |
| Catalysts               | Ni/ Co/ C-Pt, Non noble metals                                                            | Platinum/ Iridium                                                                                 | Nickel-Copper Alloys                                                                           |  |
| Operating Temp. 1       | 60-80 ºC                                                                                  | 50-80 ºC                                                                                          | 650-1,000 ºC                                                                                   |  |
| Efficiency <sup>1</sup> | 63% -70%                                                                                  | 56% -60%                                                                                          | 74% - 81%                                                                                      |  |
| Life Span               | Up to 90,000 hours                                                                        | Up to 80,000 hours                                                                                | Up to 40,000 hours                                                                             |  |
| Pros                    | <ul><li>Large capacity systems</li><li>Lower capital cost</li></ul>                       | <ul><li>Quick startup time and dynamic operation</li><li>Compact &amp; light-weight</li></ul>     | <ul><li>High efficiency and larger capacity systems</li><li>Lower energy requirement</li></ul> |  |
| Cons                    | <ul><li>Corrosive systems (corrosive electrolyte)</li><li>Low dynamic operation</li></ul> | <ul><li>Expensive membrane and catalysts</li><li>Low durability</li></ul>                         | <ul><li>Limited dynamic operation</li><li>Mechanical stability issues</li></ul>                |  |
| Key Challenges          | More dynamic and flexible operation                                                       | <ul><li>Reduction of noble metal utilization</li><li>Efficiency, durability improvement</li></ul> | Commercialization of technology                                                                |  |
| Key Players             | nel AsahiKASEI McPhy                                                                      | PLUG POWER Energy Storage   Clean Fuel  SIEMENS Ohmium                                            | SUNFICE LANGUE CATALYSING YOUR BUSINESS                                                        |  |

## **Electrolyser** | Cell Level & Stack Level Architecture









## **TATA POWER**





| <b>Parameters</b>                    | 2020                   | 2050                | <b>R&amp;D Focus</b>                           |  |
|--------------------------------------|------------------------|---------------------|------------------------------------------------|--|
| <b>Nominal Current Density</b>       | 0.2 – 0.8 A/cm2        | > 2 A/cm2           | Diaphragm                                      |  |
| Voltage Range (Limits)               | 1.4 – 3 V              | <1.7 V              | Catalyst                                       |  |
| Operating Temperature                | 70 – 90 Deg C          | '> 90 Deg C         | Diaphragm, frames, balance of plant components |  |
| Cell Pressure                        | <30 Bar                | >70 Bar             | Diaphragm, Cell, Frames                        |  |
| Load Range                           | 15% - 100%             | 5% - 300%           | Diaphragm                                      |  |
| H <sub>2</sub> Purity                | 99.9% - 99.9998%       | 99.9% - 99.9999%    | Diaphragm                                      |  |
| Voltage Efficiency                   | 50% - 68%              | <b>'&gt;70</b> %    | Catalyst, Temperature                          |  |
| Electrical Efficiency (Stack) – LHV  | 47 – 66 KWh / kg of H2 | < 42 KWh / kg of H2 | Diaphragm, Catalyst                            |  |
| Electrical Efficiency (System) - LHV | 50 – 78 KWh/kg of H2   | < 45 KWh/kg of H2   | Balance of the System                          |  |
| Life Time (stack)                    | 60,000 Hrs             | 100,000 Hours       | Electrode                                      |  |
| Stack Unit Size                      | 1 MW                   | 10 MW               | Electrode                                      |  |
| Electrode Area                       | 10,000 – 30,000 cm2    | 30,000 cm2          | Electrodes                                     |  |
| Capital Cost (Stack) – Min 1 MW      | USD 270/KW             | < USD 100/KW        | Electrode                                      |  |
| Capital Cost (System) – Min 10 MW    | USD 500 – 1000 / KW    | < USD 200/KW        | Balance of Plant                               |  |

## **Alkaline Electrolyser** | Design Improvement for Cost Reduction (2/2)





#### **Increase in Current Density**

Current density can be increased to more than > 2 A/cm², with thicker diaphragm → Thicker diaphragm leads to efficiency reduction.

The challenge is to increase thickness and at same time reduces ohmic resistance so as to keep efficiency at higher level.



#### **Reducing Diaphragm Thickness**

Reducing diaphragm thickness will improve efficiency however this may lead to gas permeability and lower mechanical robustness.

Presently diaphragm thickness is 460 microns. Decreasing this to 50 microns will lead to improvement of efficiency from 53% to 75% at 1 A/cm2 current density.



#### High specific surface area

Re-designing catalyst composition and electrode architectures for improved specific surface area



#### **Porous Transport Layers**

Design Optimization of Porous Transport Layers (PTLs)

## Alkaline Electrolyser | Supply Chain of Raw Material







#### **Material of Constructions**

- Electrolyte: KOH Solution
- Separator: ZrO2 [Zirconium Oxide] stabilized with PPS [Polyphenylene Sulphide] Mesh
- Cathode, Anode & Bipolar Plate: Nickle collated Stainless Steel
- Porous Transport Layer: Nickle Mesh



#### **Material Loading**

No rare material in construction. Only Nickle is main material used in construction.

- Nickel 0.8 MT / MW
- Zirconium 0.1 MT / MW
- Aluminium 0.5 MT/MW
- Steel 10 MT / MW
- Some amount of copper and cobalt



No raw material supply constraints except for Nickle which can be sourced from Indonesia, Philippines and Russia.



#### Supply Chain –Nickel

- World Nickel Reserve 94 Million MT [Indonesia, Australia & Brazil]
- In 2020, more than 50% Ni Production was from Indonesia, Philippines and Russia
- In 2021, India's Nickel demand was 75 KMT, major qty is imported.
- In Dec 2021, Vedanta acquired
   Nicomet Goa which produces 7.5 KMT
   of Ni and Cobalt
- Major consumption of Nickel is in making stainless steel – 72%.

## **PEM Electrolyser** | Design Improvement for cost Reduction (1/2)



| Parameters                           | 2020                   | 2050                   | R&D Focus                       |  |
|--------------------------------------|------------------------|------------------------|---------------------------------|--|
| Nominal Current Density              | 1 – 2 A/cm2            | > 4-6 A/cm2            | Design, Membrane                |  |
| Voltage Range (Limits)               | 1.4 – 2.5 V            | <1.7 V                 | Catalyst, Membrane              |  |
| Operating Temperature                | 50 – 80 Deg C          | '> 80 Deg C            | Effect on durability            |  |
| Cell Pressure                        | <30 Bar                | >70 Bar                | Membrane, Reconversion catalyst |  |
| Load Range                           | 5% - 120%              | 5% - 300%              | Membrane                        |  |
| H2 Purity                            | 99.9% - 99.9999%       | Same                   | Membrane                        |  |
| Voltage Efficiency                   | 50% - 68%              | <b>'&gt;70</b> %       | Catalyst                        |  |
| Electrical Efficiency (Stack) – LHV  | 47 – 66 KWh / kg of H2 | < 42 KWh / kg of H2    | Membrane, Catalyst              |  |
| Electrical Efficiency (System) - LHV | 50 – 83 KWh/kg of H2   | < 45 KWh/kg of H2      | Balance of the System           |  |
| Life Time (stack)                    | 50,000 – 80,000 Hrs    | 100,000 – 120,000Hours | Membrane, Catalyst, PTLs        |  |
| Stack Unit Size                      | 1 MW                   | 10 MW                  | MEA, PTLs                       |  |
| Electrode Area                       | 1500 cm2               | >10,000 cm2            | MEA, PTLs                       |  |
| Capital Cost (Stack) – Min 1 MW      | USD 400/KW             | < USD 100/KW           | MEA, PTLs, BP                   |  |
| Capital Cost (System) Nin 10 MW      | LISD 700 1400 / KW     | < 112D 300 /K/W        | Postifier Water Durification    |  |
| Capital Cost (System) – Min 10 MW    | USD 700 – 1400 / KW    | < USD 200/KW           | Rectifier, Water Purification   |  |

## **PEM Electrolyser** | Design Improvement for cost Reduction (2/2)





#### **Improving Current Density to 6 A/cm2**

Improving electrode area from 1500 – 2000 cm2 to 5000 to 10000 cm2

Increasing stack size from 1 MW to 5 – 10 MW

Reducing membrane thickness from 125-175 microns to 20 microns – efficiency gain by 6%

Avoiding expensive coatings and redesign of PTLs and BPs: PTLs Anode Side: Platinum collated sintered porous titanium. Platinum provides passivation as well as resistance. This resistance causes efficiency drop of 4%. Also, Bipolar Plates are made of titanium coated with Platinum (cathode) and gold (anode). Alternative material & coating for Bipolar plates is being explored.

Redesign of Catalyst coated Membrane (CCM) / Membrane Electrode Assembly (MEA): economy of scale for CCM fabrication, more reliable and less expansive supply chain for catalyst and membrane

## PEM Electrolyser | Supply Chain of Raw Material







#### **Material of Constructions**

- ☐ Electrolyte / Separator : Solid PFSA (Perfluoroalkylsulfonic acid)

  Membrane
- ☐ Cathode: Platinum nano particle on carbon black
- ☐ Anode: Iridium
- ☐ Bipolar Plate: Platinum coated Titanium (cathode), Gold Coated Titanium (anode)
- □ Porous Transport Layer: Anode side -Platinum coated sintered porous titanium, Cathode side - Sintered porous titanium or carbon cloth



#### **Material Loading**

PEM uses rare material like Platinum and Iridium.

- Platinum 0.3 kg/MW
- Iridium 0.7 kg/MW

It is expected that these quantities will reduce to 1/10<sup>th</sup> by 2030 due to design improvement





#### **Supply Chain – PGM**

- ☐ Globally Platinum and Iridium Supplies were 188 MT/Annum & 6.87 MT/Annum mainly from South Africa, Zimbabwe and Russia (As on 2019)
- □ Other important component in PEM electrolyser is Catalyst Coated Membrane (CCM) / Membrane Electrode Assembly (MEA)
- □ PFSA type membranes, such as Nafion, Flemion or Aquivion [thickness 125 175 microns] are manufactured in US, UK & Japan.

For PEM electrolysers, upstream supply chain is dependent on South Africa, Europe, USA & Japan

## **Energy & Hydrogen** | India's Energy Targets



- 500 GW Non-Fossil
   Capacity
- 50% of Installed Capacity from non-fossil fuels
- Reducing emission intensity of GDP to 45% below its 2005 level



EnergyIndependence



Net Zero



- ✓ Union Cabinet approved National Green Hydrogen Mission on 04<sup>th</sup> January 2023
- ✓ MNRE released National Green Hydrogen Mission document on 13<sup>th</sup> January 2023

## **National Green Hydrogen Mission** | Sectors in Focus



Green Hydrogen can replace fossil fuels in all of the above

## National Green Hydrogen Mission | Major Component (1/2)







## **Export Markets**

Support in development of Infrastructure, hubs etc for export

Substituting imports

Substituting imported fertilizers with Green Fertilizers



#### **Domestic Demand**

Mandating minimum use of Green Hydrogen & its Derivative by different users





**Strategic Interventions for GH2 Transition** 

**Direct Financial Incentives for:** 

- ☐ Electrolyser Manufacturing
- ☐ Green Hydrogen Production

## National Green Hydrogen Mission | Major Component (2/2)



**Compliance Monitoring:** Guideline for monitoring compliance for minimum use of green hydrogen & derivative product shall be developed and implemented



**Competitive Bidding for Procurement:** MNRE will frame model guidelines for competitive bidding and develop regulatory framework for certification of Green Hydrogen and its derivatives.



**Domestic Manufacturing of Green Fertilizers:** Two plants each for production of Green Hydrogen based Urea and Green Hydrogen based DAP are targeted to be set up through competitive bidding route. By 2034-35, it is targeted to substitute all Ammonia based fertilizer imports [6 Billion USD] with domestic Green Ammonia based fertilizers.



Green Hydrogen Policy released in Feb 2022 which includes waiver of ISTS charges, renewable energy banking, granting open access in time bound manner, land in existing RE Part for Hydrogen generation plants etc. shall be implemented.



Development of Regulations, Codes and Standards, Research & Development initiatives, Skill Development initiatives, Public awareness and stakeholder's outreach & International Cooperation

## National Green Hydrogen Mission | Pilot Projects & Hydrogen Hub



## Shipping

- ☐ Retrofit 2 ships to run on Green Hydrogen/derived fuels by 2027
- ☐ Development of Supply Chain, port infrastructure, Green Ammonia bunkers and re-fueling facilities



### **Transport**

- ☐ Phased deployment of hydrogen fuelled buses & trucks
- ☐ Cost of hydrogen fuelled vehicles and associated infrastructure



#### **Green Steel**

☐ Support for blending/injection of Green Hydrogen in 2 steel plants



Setting up 2 Nos Green Hydrogen Hub

## **National Green Hydrogen Mission | Key Enablers**

## **Key Enablers**



#### Resources

Renewable energy banking & storage, transmission, finance, land, water



#### R&D

Result oriented, timebound, including through PPP, grand challenges



#### **Ease of doing business**

Simpler procedures, taxation, SEZ, commercial issues, single window



Infrastructure & Supply Chain

Ports, Re-fueling, Hydrogen Hubs, pipelines



#### **Regulations & Standards**

Testing facilities, standards, regulations, safety & certification



Skill Development,
Public awareness

Coordinated skilling programme, online portal

## **National Green Hydrogen Mission | Financial Outlay**



The initial outlay for the Mission will be Rs 19,744 crore

- **✓** Rs 17,490 crore for the SIGHT programme
- ✓ Rs 1,466 crore for pilot projects
- √Rs 400 crore for R&D
- **✓** Rs 388 crore towards other Mission components

## **Expected Deliverables by 2030**

At least

5 MMT GH<sub>2</sub>

annual Production

60-100 GW

**Electrolyser** capacity

125 GW RE Capacity for GH<sub>2</sub> Generation & associated Transmission network



₹ 1 lakh crore

**Import Savings** 

50 MMT CO<sub>2</sub>

Annual Emissions
Averted

6 lakh
Jobs

₹ 8 lakh cr Investment

#### **Mission Governance Framework**



Mission Secretariat will formulate or facilitate formulation of policies including guidelines for procurement of Green Hydrogen and its derivatives; schemes for incentives and projects; and undertake appraisal, funding and management of pilot and R&D projects. It will also assist the EG and the AG, as required.

## **Green Hydrogen | Actions Initiated**



## **Hydrogen Mission** | key action and implementation timelines

| MISSION IMPLEMENTATION TIMELINE |                                                             |                                                 |                                         |                                                 |                                                              |                                                 |
|---------------------------------|-------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|
|                                 | Facilitate                                                  | Green<br>Fertilizers                            | SIGHT                                   | Pilots &<br>Hubs                                | Regulations<br>& Standards                                   | R&D                                             |
| YEAR<br>2022-23                 |                                                             |                                                 | Consultation<br>and Market<br>Review    | Roadmap<br>for key<br>sectors                   | Procedure<br>for regulatory<br>approval of<br>pilot projects | Formulation<br>of R&D<br>Roadmap                |
| 2023-24                         | Notification<br>of targets<br>as may be<br>decided<br>by EG | Notification<br>of Bids<br>Award of<br>Capacity | Notification<br>of Incentive<br>Schemes | Call for Proposals<br>Phase I<br>Implementation | Adoption<br>of<br>relevant<br>international<br>standards     | Call for Proposals<br>Phase I<br>Implementation |
| 2024-25                         | Preparatory<br>steps for<br>implemen-<br>tation             | Construction                                    |                                         | Call for<br>Ph<br>Implen                        |                                                              | Call for<br>Ph<br>Implen                        |
| 2025-26                         |                                                             |                                                 |                                         | Call for proposals                              |                                                              | Call for proposals                              |

## **Hydrogen Mission** | key action and implementation timelines



FY 2022 - 2023



FY 2023 - 2024



FY 2024 - 2025



FY 2025 - 2030

Consultation & Market Review for SIGHT, Roadmap for Key Pilot Projects & Hubs, Finalization of procedure for regulatory approval of pilot projects & Formulation of R&D Roadmap

Notification of Target for min use of hydrogen, Notification of Bid and award of capacity for Green Fertilizers,
Notification of incentive scheme for SIGHT, For Pilot Projects and Hubs — Call of proposal and Phase-I implementation, Adoption of Relevant international standards, Call of proposal for R&D Proposal and Implementation

Call of Proposal for Phase-II Pilot, Hub and R&D Projects, start of implementation of Green Fertilizer Plant, start of implementation of incentives for SIGHT Implementation of
Phase-II Pilot, Hub & R&D
Projects, implementation
of Green Fertilizer Plant,
implementation of
incentives for SIGHT

## **Hydrogen Mission** | Further Actions Required



**Policy and Regulatory Interventions** 



# Fiscal & Financial Interventions



- ✓ Obligation for domestic demand
- ✓ Relaxation in open access charges
- ✓ Provision of Banking up to 2030
- ✓ Extension of ISTS waiver beyond 2025
- ✓ Provision of carbon market to encourage green hydrogen use
- ✓ Facilitate central and govt agency approvals

- ✓ Concessional GST for Green Hydrogen & its derivatives
- ✓ RE to be covered under GST to allow input tax credit for Hydrogen
- ✓ Priority Sector lending for GH2 Projects
- ✓ GH2 and its related EPC Projects shall be included in the harmonized list of infrastructure projects
- ✓ Provision of accelerated depreciation for green hydrogen projects

✓ Lifecycle assessment toolkits to enable estimation of emission from green hydrogen production at different locations and under different conditions.

## **Hydrogen Mission** | Further Actions Required



R&D



**Incentive Scheme** 



Hydrogen Hub

- Establishment of facilitative R&D ecosystem for development and commercialization of GH2 technologies
- ✓ A collaborative framework must be developed to ensure coordination and collaboration between research institutes and industry

- ✓ Manufacturing support may promote indigenization at component level for Green Hydrogen technologies
- ✓ Relaxation of import duties on machinery to produce electrolyser to enable cost competitiveness with global players
- ✓ Integrated development may be incentivized whereby critical components are developed and manufactured indigenously.

- ✓ Initiating development of green hydrogen hubs near ports including inter-alia Dahej, Mangalore, Kandla, Vishakhapatnam, Tuticorin, Machilipatnam and Paradip.
- ✓ Corridors for transportation of Ammonia
- ✓ Development of transmission capacity and ISTS connectivity at coastal hub locations
- ✓ Land in coastal regions for developing projects may be provided on concessional rates
- Enabling infrastructure including storage bunkers, handling facilities, pipeline, export terminals at identified ports

**Disclaimer:** The contents of this presentation are private & confidential. Please do not duplicate, circulate or distribute without prior permission.



# Thank You!

Website: www.tatapower.com

Email Id: <a href="mailto:chandra.tiwari@tatapower.com">chandra.tiwari@tatapower.com</a>

Contact: +91 9312072156 /7678237415