

Flow Through Tensor: A Computational Graph Framework for Rewriting Transportation Planning Models with AI

Presenter: Henan (Bety) Zhu

Advisor: Dr. Xuesong (Simon) Zhou

Arizona State University Contact: xzhou74@asu.edu

Agenda

- Why a New Framework?
- Transportation Network Modeling
- Traffic System State Estimation
- Tensor Thinking for Transportation
 Planning
- Acknowledgements

Why a New Framework?

1. Data Explosion

Detectors, GPS, smartcards, connected vehicles, and large-scale surveys.

2. Computing & Machine Learning Power

Modern GPUs, parallel computing, and Al techniques enable new modeling approaches.

Source: ASU Trans+AI Lab

Why a New Framework?

3. New Models & Strategies

- Traditional analytical models vs. New data-driven frameworks.
- From simple trip-based methods → activity-based and tour-

based → toward graph- and tensor-based extensions.

Why a New Framework?

4. Integration Challenge

- Macro vs. Meso vs. Micro levels.
- Existing models don't link across levels → need a new framework.
- Scalable, data-driven systems are required to unify models and leverage diverse data effectively.

Source: ASU Trans+AI Lab

Contents lists available at ScienceDirect

Artificial Intelligence for Transportation

journal homepage: www.elsevier.com/locate/ait

Xuesong (Simon) Zhou^{a,*}, Taehooie Kim^b, Mostafa Ameli^c, Henan (Bety) Zhu^a, Yudai Honma^d, Ram M. Pendyala^a

- ^a School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- ^b Maricopa Association of Governments (MAG), Phoenix, AZ, USA
- ^c COSYS-GRETTIA, Gustave Eiffel University, Paris, France
- d Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

Flow-Through-Tensor (FTT) framework, a data-driven, end-to-end optimization architecture designed for complex transportation systems.

Scan for full paper

Zhou, X. (Simon), Kim, T., Ameli, M., Zhu, H. (Bety), Honma, Y., & Pendyala, R. M. (2025). Flow-through tensors: A unified computational graph architecture for multi-layer transportation network optimization. Artificial Intelligence for Transportation, 1, 100006. https://doi.org/10.1016/j.ait.2025.100006

Preview of Tensor-Based Representation of Flows

Flow Assignment

OD Travel Time Estimation

Source: ASU Trans+Al Lab

Transportation Network Modeling: FTT and Traffic Assignment

□ Mapping Matrices and Vectors

Matrix
$$A_{PL} = \{a_{pl}\}$$

Vector
$$\mathbf{f}_{\mathrm{P}} = (\cdots, f_{p}, \cdots)^{\mathrm{T}}$$

Entry a_{pl} – value of path p and link l

OD pairs: (1,3), (1,4), (2,3), (2,4)

Links: a, b, c (other links are ignored)

Paths:

Path	OD	Traversed Nodes
P_1	(1,3)	<u>1-5-6-3</u>
P_2	(1,4)	<u>1-5-6-4</u>
P_3	(2,3)	<u>2-5-6-3</u>
P_4	(2,4)	<u>2-5-6-4</u>
P_5	(2,4)	<u>2-4</u>

Traffic Assignment

This example demonstrates how to integrate origindestination (OD) matrices, path flows, and link flows using tensors to complete the traffic assignment task.

Transportation Network Modeling: FTT and Route Choice

□ Route Choice

> CG representation of choice model

Calculate OD-path choice probability based on the Logit model $a_{od,p} = \frac{e^{\frac{1}{\mu}v_{od,p}(\beta,t_p)}}{\sum e^{\frac{1}{\mu}v_{od,p}}}$

 $v_{od,p}(\beta, t_p)$ the utility that a traveler of OD pair w will choose path p.

β the pre-carlibrated parameter vector that represents the traveler preference.

the travel time of path p, a function of f_l with the consideration of the congestion effect.

> Integrated into FTT

- The logit model is a widely used choice model for travelers' behavior. In existing research, it is often embedded within optimization models.
- FTT also supports the embedding of the logit model.

Source: ASU Trans+Al Lab

Transportation Network Modeling: FTT and Tour-Based Modeling

(a) An eight-node transportation network

(b) The location of activities

Reference: Mahmoudi, M., Tong, L. (Carol), Garikapati, V. M., Pendyala, R. M., & Zhou, X. (2021). How many trip requests could we support? an activity-travel based vehicle scheduling approach. Transportation Research Part C: Emerging Technologies, 128, 103222.

Transportation Network Modeling: FTT and Multimodal Coordination

Source: ASU Trans+AI Lab

Traffic System State Estimation

State Representation

Construct Functions Based on Partial Observations and Traffic Flow Models

References: Lu, J., Li, C., Wu, X. B., & Zhou, X. S. (2023). Physics-informed neural networks for integrated traffic state and queue profile estimation: A differentiable programming approach on layered computational graphs. *Transportation Research Part C: Emerging Technologies*, *153*, 104224.

Traffic System State Estimation

Freeway I880-N in Alameda County, California (postmile 22 to 25). Loop detector data and GPS data

(a) Speed estimations of the proposed method

(b) Speed estimations from PeMS

Source: ASU Trans+Al Lab

Travel Modeling at a Crossroads

- ➤ Traditional: 4-Step models, ABM
- ➤ Data-driven: ML/AI methods
- > Surveys vs. Big Data
- ➤ Rigid structure vs. flexibility, behavior vs. scalability

PYTORCH

Source: TensorFlow logo © Google

Source: PyTorch logo © Meta Al

Urban Traffic Big Data Sources

Source: ASU Trans+Al Lab

Dr. Ram M. Pendyala

School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA

Dr. Taehooie Kim

Maricopa Association of Governments (MAG), Phoenix, AZ, USA

Dr. Mostafa Ameli

Gustave Eiffel University, France

Dr. Yudai Honma

Institute of Industrial Science, The University of Tokyo, Japan

Thank You

Contact us:

https://github.com/asu-trans-ai-lab