Evaluation des facteurs influençant la précision de la sélection génomique

Boîte à outil

Accuracy de prédiction en fonction de la variable modifiée

Validation croisée

Comprendre la généalogie pour simuler des "likely" données génotypiques

Introduction très (très) rapide à la notion de coalescence

- Il s'agit d'expliciter la généalogie de gènes (et non d'individus) dans un échantillon de copies de ces gènes (des séquences individuelles)
- Cette généalogie est basée sur la probabilité que deux séquences de la génération n proviennent de la même séquence à la génération n-1
- En remontant dans le passé, un ancêtre commun à toutes ces séquences apparaît
- Pour rendre compte du polymorphisme dans l'échantillon, il est nécessaire de distribuer des mutations sur la généalogie qui mène jusqu'a l'ancêtre

Pour comprendre : jouez avec

https://phytools.shinyapps.io/coalescent-plot/

Théorie de la coalescence pour simuler une évolution neutre de séquences nucléotidiques

La taille : force de la dérive, 2N en panmixie pour une diploïde,

La mutation : μ par base, 4Nμ : le nombre de mutants par génération

La migration : m le taux, 4Nm le nombre de migrants par génération

La recombinaison : r par base, 4N r, le nombre de recombinaison par génération

La dérive locale & l'isolement reproducteur entre populations créent de l'apparentement

Matrice de données (n x k)

- n individus (n << N)
- k polymorphismes

Rappel général sur la sélection

Données phénotypiques :

Simulées par la fonction VS.

Architecture du

Mesurées aux champs

Traits multigéniques Modèle infinitésimal Loci à faible effet Ex: rendement

trait

Trait monogénique ou faiblement polygénique Loci à forts effets Ex : Résistance aux

maladies

Données génotypiques :

Simulées par la fonction simul coalescent VS.

Mesurées en laboratoire par séquençage

Calcul des GEBVs (RRblup):

Y = Xg + e

X = Marqueur

Y = Vecteur des phénotypes corrigés

g = effets des marqueurs, σ^2 , h^2 , accuracy

GEBV = Xg

Prédire individus non phénotypés

Qualité de la valeur phénotypique

Phénotypage d'une partie seulement d'une génération? Phénotypage et génotypage d'une pop d'entraînement très diverse + prédiction sans phénotypage des individus?

Classement des individus pour <u>les futures croisements :</u>

- Avec la meilleure **GEBV**?
- Avec quel **QTL / Marqueur** ?
 - Selon quels caractères ?

Détection des gènes majeurs (GWAS) :

Y = XB + ZU + e

Y = vecteur des phénotypes

X = Marqueur (+ mu)

U = Effet polygénique des individus, Var(U)

B = Effets des marqueurs

On fait tourner un modèle pour chaque marqueur. Et on regarde les marqueurs dont l'effet est sign selon un seuil

GWAS

Plus de phénotypage une fois les gènes majeurs trouvés on génotype seulement au marqueur? Mais dans la vraie vie contournement de résistance

> 1/ Données 2/ Statistique 3/Sorties

L'équation du sélectionneur pour gérer les cycles de sélection

$$R_{trait} = i \cdot r \cdot \sigma_A^2$$

```
R_{trait} = gain génétique (en unité de trait)
i = intensité de sélections (quantile de la loi normale) \Rightarrow Épuisement de la div génétique
r = cor(True breeding value, estimateur de la True Breeding value) \Rightarrow précision/qualité de la sélection
```

- = h si on sélectionne sur des données phénotypiques
- = accuracy de prédiction / h si on utilise des données prédites avec un modèle de prédiction génomique
- σ^2_{Δ} = variance génétique disponible pour la sélection \Rightarrow Potentiel pour la sélection

Stratégie de sélection

Pensez-y (Moi j'oublie souvent)

- Mettre les noms des individus dans le bon ordre dans chacune des matrices (on peut utiliser la fonction match)
- Pensez à bien donner à manger les bons objets aux fonctions (attention data.frame != data.table != table != matrix)
- Ordonnez les marqueurs (par chromosome et par position génétique) pour la GWAS
- Fonction pour exporter une matrice en fichier Excel ou en fichier csv
- ⇒ write.csv (data à exporter en csv, file = « Nom.csv»)
- ⇒ write.xlsx (data à exporter en xlsx, file = « Nom.xlsx») # package xlsx