Assignment-4

Sarvajith-AI24BTECH11008

16: If P and Q are two statements, then which of the following compound statements is a tautology?

a.
$$((P \rightarrow Q) \land \neg Q) \rightarrow P$$

b.
$$((P \rightarrow Q) \land \neg Q) \rightarrow \neg P$$

c.
$$((P \rightarrow Q) \land \neg Q)$$

d.
$$((P \to Q) \land \neg Q) \to \neg Q$$

17: Consider a hyperbola $H: x^2 - 2y^2 = 4$. Let the tangent at a point $P(4, \sqrt{6})$ meet the x-axis at Qand the latus rectum at $R(x_1, y_1)$, where $x_1 > 0$. If F is a focus of H which is nearer to the point P, then the area of $\triangle QFR$ is equal to:

a.
$$\sqrt{6} - 1$$

b. $4\sqrt{6} - 1$

c.
$$4\sqrt{6}$$

d. $\frac{7}{\sqrt{6}} - 2$

18: Let $f: R \to R$ be a function defined as

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin 2x}{2x}, & x < 0\\ b, & x = 0\\ \frac{\sqrt{x + bx^3 - \sqrt{x}}}{bx^{5/2}}, & x > 0 \end{cases}$$

If f is continuous at x = 0, then the value of a+b is equal to

a.
$$-2$$

b. $\frac{-2}{5}$

c.
$$\frac{-3}{2}$$
 d. -3

19: Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} = (y+1)((y+1)e^{x^2/2} - x)$, 0 < x < 2.1, with y(2) = 0. Then the value of $\frac{dy}{dx}$ at x=1 is equal

a.
$$\frac{e^{5/2}}{(1+e^2)^2}$$

b. $\frac{5e^{1/2}}{(e^2)+1}$

c.
$$\frac{-2e^2}{(1+e^2)^2}$$

b.
$$\frac{5e^{1/2}}{(e^2)+1}$$

c.
$$\frac{-2e^2}{(1+e^2)^2}$$

d. $\frac{-e^{3/2}}{(e^2+1)^2}$

20: Let a tangent be drawn to the ellipse $\frac{x^2}{27} + y^2 =$ 1 at $(3\sqrt{3}\cos\theta,\sin\theta)$ where $\theta\in(0,\frac{\pi}{2})$. Then the value of θ such that the sum of intercepts on axes made by a tangent is minimum is equal to:

a.
$$\frac{\pi}{8}$$

I. Section-B

1: Let *P* be a plane containing the line $\frac{x-1}{3} = \frac{y+6}{4} = \frac{z+5}{2}$ and parallel to the line $\frac{x-3}{4} = \frac{y-2}{-3} = \frac{z+5}{7}$. If the point $(1, -1, \alpha)$ lies on the plane *P*, then the value of ($|5\alpha|$) is equal to?

 $2:\sum_{r=1}^{10} r! \left(r^3 + 6r^2 + 2r + 5\right) = \alpha (11!)$ Then the value of α is equal to:

3:The term independent of x in the expansion of $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1} - \frac{x-1}{x-x^{1/2}}\right)^{10}$, $x \ne 1$ is equal to:

4: Let ${}^{n}C_{r}$ denote the binomial coefficient of x^{r} in the expansion of $(1+x)^n$. If $\sum_{k=0}^{10} (22+3k)^n C_k = \alpha \cdot 3^{10} + \beta \cdot 2^{10}$, then $\alpha + \beta$ is equal to:

5:Let P(x) be a real polynomial of degree 3 which vanishes at x = -3. Let P(x) have local minima at x = 1, local maxima at x = -1, and $\int_{-1}^{1} P(x) dx = 18$, then the sum of all the coefficients of the polynomial P(x) is equal to:

6: Let the mirror image of the point (1,3,a) with respect to the plane $\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + \mathbf{k}) - b = 0$ be (-3,5,2), Then, the value of |a+b| is equal to:

7: If f(x) and gx are two polynomials such that the polynomial $P(x) = f(x^3) + xg(x^3)$ is divisible by $x^2 + x + 1$, then P(1) is equal to

8: Let I be an identity matrix of order 2×2 and

$$P = \begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix}$$

 $P_n = 5I - 8P$ Then the value of $n \in \mathbb{N}$ for which $P_n = 5I - 8P$ is equal to:

9: Let $f : \mathbb{R} \to \mathbb{R}$ satisfy the equation f(x + y) = 0 $f(x) \cdot f(y)$ for all $x, y \in \mathbb{R}$ and $f(x) \neq 0$ for any $x \in \mathbb{R}$. If the function f is differentiable at x = 0and f'(0) = 3, then $\lim_{h\to 0} \frac{1}{h} [f(h) - 1]$ is equal to:

10: Let y = y(x) be the solution of the differential equation $xdy - ydx = \sqrt{x^2 - y^2} dx$, $x \ge 1$, with y(1) = 0. If the area bounded by the line x = 1, $x = e^{\pi}$, y = 0 and y = y(x) is $\alpha e^{2\pi} + \beta$, then the value of $10(\alpha + \beta)$ is equal to