CERTIFIED COPY OF PRIORITY DOCUMENT

PCT/JP 2004/003935

日本国特許庁 JAPAN PATENT OFFICE

23. 3, 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application: 2003年 3月28日

REC'D 1 3 MAY 2004
WIPO PCT

出 願 番 号 Application Number: 特願2003-090485

[ST. 10/C]:

[JP2003-090485]

出 願 人 Applicant(s):

日本化薬株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 4月22日

今井康

出証番号 出証特2004-3034458

【書類名】

特許願

【整理番号】

NKD1744

【あて先】

特許庁長官殿

【国際特許分類】

CO9B

【発明者】

【住所又は居所】

東京都北区志茂3-26-8 日本化薬株式会社 機能

化学品開発研究所内

【氏名】

藤井 隆文

【発明者】

【住所又は居所】

東京都北区志茂3-26-8 日本化薬株式会社 機能

化学品開発研究所内

【氏名】

北山 弘和

【発明者】

【住所又は居所】

東京都北区志茂3-26-8 日本化薬株式会社 機能

化学品開発研究所内

【氏名】

難波 晋一

【特許出願人】

【識別番号】

000004086

【氏名又は名称】

日本化薬株式会社

【代表者】

中村 輝夫

【電話番号】

03-3237-5234

【手数料の表示】

【予納台帳番号】

010319

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】明細書

【発明の名称】フタロシアニン化合物、インク、インクセット、このインクまた はインクセットを用いたインクジェット記録方法、着色体

【特許請求の範囲】

【請求項1】置換基として少なくとも1つ以上無置換スルファモイル基及び置換 スルファモイル基を有する式(1)で表されるフタロシアニン化合物

【化1】

[式 (1) 中、Mは水素原子、金属原子、金属酸化物、金属水酸化物または金属 ハロゲン化物を表す。 R $_2$ 、R $_3$ 、R $_6$ 、R $_7$ 、R $_{10}$ 、R $_{11}$ 、R $_{14}$ 、R $_{15}$ は各々独立 して式(2)で表される無置換スルファモイル基、式(3)で表される置換スル ファモイル基又は水素原子を表わす。但し、 R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} のうち少なくとも1つは無置換スルファモイル基、少なくとも1つは 式 (3) で表される置換スルファモイル基である。又、 R_1 、 R_4 、 R_5 、 R_8 、 R_8 g、 R_{12} 、 R_{13} 、 R_{16} は水素原子を表す。無置換スルファモイル基の数と置換ス ルファモイル基の数の和は2から4であり、且つ無置換スルファモイル基の数は 1から3であり、置換スルファモイル基の数は1から3である。]

【化2】

$$-SO_{2}NH_{2}$$
 (2)
$$-SO_{2}N - R_{18}$$
 (3)

 ${\rm ld}$ (3) 中、 R_{17} 及び R_{18} はそれぞれ独立して水素原子、置換もしくは無置換 のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の

アラルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロ環基、置換もしくは無置換のアルケニル基を表し、 R_{17} 及び R_{18} どうしが互いに連結して環を形成しても良い。但し、 R_{17} 及び R_{18} が共に水素原子の場合は除く。また、 R_{17} 及び R_{18} の少なくとも1つはイオン性親水性基を置換基として有する。 $\{\ \}$

【請求項2】置換基として少なくとも1つ以上無置換スルファモイル基及び置換スルファモイル基を有する式(4)で表されるフタロシアニン化合物

【化3】

[式 (4) 中、 R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} は各々独立して式 (2) で表される無置換スルファモイル基、式 (3) で表される置換スルファモイル基又は水素原子を表わす。但し、 R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} のうち少なくとも1つは無置換スルファモイル基である。又、 R_1 、 R_4 、 R_5 、 R_8 、 R_9 、 R_{12} 、 R_{13} 、 R_{16} は水素原子を表す。無置換スルファモイル基の数と置換スルファモイル基の数の和は2から4であり、且つ無置換スルファモイル基の数は1から3であり、置換スルファモイル基の数は1から3である。]

【化4】

$$-SO2NH2 (2)$$

$$-SO2N R18 (3)$$

|式(3)中、R₁₇及びR₁₈はそれぞれ独立して水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロ

環基、置換もしくは無置換のアルケニル基を表し、 R_{17} 及び R_{18} どうしが互いに連結して環を形成しても良い。但し、 R_{17} 及び R_{18} が共に水素原子の場合は除く。また、 R_{17} 及び R_{18} の少なくとも1つはイオン性親水性基を置換基として有する。 |

【請求項3】 R_2 と R_3 、 R_6 と R_7 、 R_{10} と R_{11} 、 R_{14} と R_{15} の各組み合わせにおいて、それぞれの一方が水素原子であり、もう一方が式(2)で表される無置換スルファモイル基、式(3)で表される置換スルファモイル基又は水素原子であり、かつ R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} のうち、少なくとも1つは無置換スルファモイル基であり、少なくとも1つは式(3)で表される置換スルファモイル基であり、少なくとも1つは式(3)で表される置換スルファモイル基である請求項1または2に記載のフタロシアニン化合物

【請求項4】 R17及びR18がそれぞれ独立して水素原子、アルキル基(スルホン酸基、カルボキシル基、水酸基、アルコキシ基、ジアルキルアミノ基、アリールアミノ基、アリール基、ハロゲン原子、シアノ基からなる群から選択される置換基で置換されても良い。)、フェニル基(スルホン酸基、カルボキシル基、水酸基、ジアルキルアミノ基、アリールアミノ基、アセチルアミノ基、ウレイド基、アルキル基、アルコキシ基、ニトロ基、シアノ基、ヘテロ環基、ハロゲン原子からなる群から選択される1種または2種以上の置換基で置換されても良い。)、ナフチル基(スルホン酸基または水酸基で置換されても良い。)がンジル基(スルホン酸基で置換されても良い。)である請求項1から3のいずれか一項に記載のフタロシアニン化合物【請求項5】式(1)が、式(5)で表されるフタロシアニン化合物またはその塩に塩素化剤を反応させ、スルホン酸基をクロロスルホン基に変換した後、有機アミンの存在下にアミノ化剤を反応させて得られてなる請求項1から4のいずれか一項に記載のフタロシアニン化合物

【化5】

[式(5)中、Mは水素原子、金属元素、金属酸化物、または金属ハロゲン化物を、Lはプロトン、アルカリ金属イオン、アルカリ土類金属イオン、有機アミンのオニウムイオンまたはアンモニウムイオンをそれぞれ示す。 a、b、c、dは0又は1であり、その和は2~4の整数である。]

【請求項6】4ースルホフタル酸誘導体を金属化合物の存在下に反応させることにより得られる式(5)のフタロシアニン化合物またはその塩に塩素化剤を反応させ、スルホン酸基をクロロスルホン基に変換した後、有機アミンの存在下にアミノ化剤を反応させてなる請求項1から5のいずれか一項に記載の式(1)で表されるフタロシアニン化合物

【請求項7】色素成分として請求項1から6のいずれか一項に記載のフタロシア ニン化合物を含有することを特徴とするインク

【請求項8】有機溶剤を含有する請求項7に記載のインク

【請求項9】インクジェット記録用である請求項7または8に記載のインク

【請求項10】色素濃度の異なる2種類以上のシアンインクを用いるインクジェットプリンタにおいて、そのうちの少なくとも1種類は請求項7から9のいずれか一項に記載のインクを用いることを特徴とするインクセット

【請求項11】インク滴を記録信号に応じて吐出させて被記録材に記録を行うインクジェット記録方法において、請求項7から9のいずれか一項に記載のインクまたは請求項10に記載のインクセットを使用することを特徴とするインクジェット記録方法

【請求項12】被記録材が情報伝達用シートである請求項11に記載のインクジェット記録方法

【請求項13】情報伝達用シートが表面処理されたシートであって、支持体上に 白色無機顔料粒子を含有するインク受像層を有するシートである請求項12に記 載のインクジェット記録方法

【請求項14】請求項7から10のいずれか一項に記載のインクまたはインクセットを含有する容器

【請求項15】請求項14に記載の容器を有するインクジェットプリンタ

【請求項16】請求項7から10のいずれか一項に記載のインクまたはインクセットで着色された着色体

【請求項17】4ースルホフタル酸誘導体又は、4ースルホフタル酸誘導体と(無水)フタル酸誘導体を銅化合物の存在下に反応させることにより得られる下記式(6)の化合物またはその塩に塩素化剤を反応させ、スルホン酸基をクロロスルホン化した後、有機アミンの存在下にアミノ化剤を反応させることを特徴とする、前記式(4)で表されるフタロシアニン化合物の製造方法

【化6】

[式(6)中、Lはプロトン、アルカリ金属イオン、アルカリ土類金属イオン、有機アミンのオニウムイオンまたはアンモニウムイオンを示す。a、b、c、d は0又は1で、その和は2~4の整数である。]

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はフタロシアニン化合物、インク、インクセット、このインクまたはインクセットを用いたインクジェット記録方法、着色体、耐オゾン性改良方法および製造方法に関する。

[0002]

【従来の技術】近年、画像記録材料としては、特にカラー画像を形成するための材料が主流であり、具体的には、インクジェット方式記録材料、感熱転写型画像記録材料、電子写真方式を用いる記録材料、転写式ハロゲン化銀感光材料、印刷インク、記録ペン等が盛んに利用されている。また、ディスプレーではLCDやPDPにおいて、撮影機器ではCCDなどの電子部品において、カラーフィルターが使用されている。これらのカラー画像記録材料やカラーフィルターでは、フルカラー画像を再現あるいは記録するために、いわゆる加法混色法や減法混色法の3原色の色素(染料や顔料)が使用されているが、好ましい色再現域を実現出来る吸収特性を有し、且つさまざまな使用条件に耐えうる色素がないのが実状であり、改善が強く望まれている。

[0003]

インクジェット記録方法は、材料費が安価であること、高速記録が可能なこと、 記録時の騒音が少ないこと、更にカラー記録が容易であることから、急速に普及 し、更に発展しつつある。インクジェット記録方法には、連続的に液滴を飛翔さ せるコンティニュアス方式と画像情報信号に応じて液滴を飛翔させるオンデマン ド方式が有り、その吐出方式にはピエゾ素子により圧力を加えて液滴を吐出させ る方式、熱によりインク中に気泡を発生させて液滴を吐出させる方式、超音波を 用いた方式、あるいは静電力により液滴を吸引吐出させる方式等がある。また、 インクジェット記録に適したインクの例としては、水性インク、油性インク、あ るいは固体(溶融型)インク等が挙げられる。

[0004]

このようなインクジェット記録に適したインクに用いられる色素に対しては、溶剤に対する溶解性あるいは分散性が良好なこと、高濃度記録が可能であること、色相が良好であること、光、熱、環境中の活性ガス(NOx、オゾン等の酸化性ガスの他SOxなど)に対して強いこと、水や薬品に対する耐久性に優れていること、被記録材に対して定着性が良く滲みにくいこと、インクとしての保存性に優れていること、毒性がないこと、更には、安価に入手できることが要求されている。特に、良好なシアンの色相を有し、耐光性(光に対する耐久性)、耐オゾン性(オゾンガスに対する耐久性)及び耐湿性(高湿度下における耐久性)に優

[0005]

インクジェット記録に適したインクに用いられる水溶性シアン色素の骨格としてはフタロシアニン系やトリフェニルメタン系が代表的である。最も広範囲に報告され、利用されている代表的なフタロシアニン系色素としては、以下のA~Hで分類されるフタロシアニン誘導体がある。

[0006]

A:Direct Blue 86、Direct Blue 87、Direct Blue 199、Acid Blue 249又はReactive Blue 71等のフタロシアニン系色素

[例えば、Cu-Pc-(SO₃Na) m : m=1~4の混合物]

[0007]

B:特許文献1~3等に記載のフタロシアニン系色素

〔例えば、 $Cu-Pc-(SO_3Na)$ m(SO_2NH_2)n : $m+n=1\sim4$ の混合物〕

[0008]

C:特許文献4等に記載のフタロシアニン系色素

〔例えば、 $Cu-Pc-(CO_2H)$ m($CONR_1R_2$)n : $m+n=0\sim 4$ の数〕

[0009]

D:特許文献5等に記載のフタロシアニン系色素

[例えば、 $Cu-Pc-(SO_3H)$ m($SO_2NR_1R_2$)n : $m+n=0\sim4$ の数、且つ、 $m\neq0$]

[0010]

E:特許文献6等に記載のフタロシアニン系色素

[例えば、Cu-Pc-(SO3H) 1 (SO2NH2) m (SO2NR1R2) n :

[0011]

F:特許文献7等に記載のフタロシアニン系色素

[例えば、 $Cu-Pc-(SO_2NR_1R_2)$ n : $n=1\sim5$ の数]

[0012]

G:特許文献8、9等に記載のフタロシアニン系色素

「置換基の置換位置を制御したフタロシアニン化合物、 β 一位に置換型が導入されたフタロシアニン系色素」

[0013]

H:特許文献10等に記載のピリジン環を有するフタロシアニン系色素

[0014]

現在一般に広く用いられ、Direct Blue 86又はDirect Blue 199に代表されるフタロシアニン系色素については、一般に知られているマゼンタ色素やイエロー色素に比べ耐光性に優れるという特徴がある。フタロシアニン系色素は酸性条件下ではグリーン味の色相であり、シアンインクとしては余り好ましくない。そのためこれらの色素をシアンインクとして用いる場合は中性からアルカリ性の条件下で使用するのが好ましい。しかしながら、インクが中性からアルカリ性でも、用いる被記録材が酸性紙である場合印刷物の色相が大きく変化する可能性がある。

[0015]

さらに、昨今環境問題として取りあげられることの多い酸化窒素ガスやオゾン等の酸化性ガスによってもグリーン味に変色及び消色し、同時に印字濃度も低下してしまう。

[0016]

一方、トリフェニルメタン系については、色相は良好であるが、耐光性、耐オゾン性及び耐湿性において非常に劣る。

[0017]

今後、使用分野が拡大して、広告等の展示物に広く使用されると、光や環境中の 活性ガスに曝される場合が多くなるため、特に、良好な色相を有し、耐光性およ

び環境中の活性ガス(NOx、オゾン等の酸化性ガスの他SOxなど)耐性に優れ、安価な色素及びインクがますます強く望まれてくる。しかしながら、これらの要求を高いレベルで満たすシアン色素(例えば、フタロシアニン系色素)及びシアンインクを開発することは難しい。これまで、活性ガス耐性を付与したフタロシアニン系色素は、特許文献3、8~11等に開示されているが、色相、耐光性、耐オゾン性及び耐湿性等すべての品質を満足させ、更には安価に製造可能なシアン色素及びシアンインクはいまだ得られていない。よってまだ市場の要求を充分に満足させるには至っていない。

[0018]

【特許文献1】

特開昭62-190273号公報

【特許文献2】

特開平7-138511号公報

【特許文献3】

特開2002-105349号公報

【特許文献4】

特開平5-171085号公報

【特許文献5】

特開平10-140063号公報

【特許文献6】

特表平11-515048号公報

【特許文献7】

特開昭59-22967号公報

【特許文献8】

特開2000-303009号公報

【特許文献9】

特開2002-249677号公報

【特許文献10】

特開2003-34758号公報

特開2002-80762号公報

[0019]

【発明が解決しようとする課題】

本発明は、前記従来における問題を解決し、以下の目的を達成することを課題とする。即ち、本発明の目的は、シアンインクとして良好な色相を有し、耐光性、耐オゾン性及び耐湿性に優れた新規なフタロシアニン化合物を提供すること、更には該フタロシアニン化合物を用いたインクジェットに適したインク及びインクジェット記録方法を提供することにある。

[0020]

【課題を解決するための手段】

本発明者らは、良好な色相と耐光性及び耐オゾン性の高いフタロシアニン系色素類を詳細に検討したところ、特定のフタロシアニン系色素をインク用の色素として用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。即ち、本発明は、

(1) 置換基として少なくとも1つ以上無置換スルファモイル基及び置換スルファモイル基を有する式(1)で表されるフタロシアニン化合物、

【化7】

$$R_{14}$$
 R_{16}
 R_{16}
 R_{1}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 R_{19}
 R_{19}
 R_{10}
 R_{10}

[式(1)中、Mは水素原子、金属元素、金属酸化物、または金属ハロゲン化物を表す。 R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} は各々独立して式(2)で表される無置換スルファモイル基、式(3)で表される置換スルファモイル基又は水素原子を表わす。但し、 R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} のうち少なくとも1つは無置換スルファモイル基、少なくとも1つは式(3)で表

される置換スルファモイル基である。又、 R_1 、 R_4 、 R_5 、 R_8 、 R_9 、 R_{12} 、 R_1 3、 R_{16} は水素原子を表す。無置換スルファモイル基の数と置換スルファモイル基の数の和は 2 から 4 であり、且つ無置換スルファモイル基の数は 1 から 3 であり、置換スルファモイル基の数は 1 から 3 である。]

【化8】

$$-SO_2NH_2 \qquad (2)$$

$$-SO_2N - R_{18} \qquad (3)$$

 $\{$ 式(3)中、R $_{17}$ 及びR $_{18}$ はそれぞれ独立して水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロ環基、置換もしくは無置換のアルケニル基を表し、R $_{17}$ 及びR $_{18}$ どうしが互いに連結して環を形成しても良い。但し、R $_{17}$ 及びR $_{18}$ が共に水素原子の場合は除く。また、R $_{17}$ 及びR $_{18}$ の少なくとも1つはイオン性親水性基を置換基として有する。 $\}$

(2) 置換基として少なくとも1つ以上無置換スルファモイル基及び置換スルファモイル基を有する式(4)で表されるフタロシアニン化合物、

【化9】

[式 (4) 中、 R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} は各々独立して式 (2) で表される無置換スルファモイル基、式 (3) で表される置換スルファモイル基又は水素原子を表わす。但し、 R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} のうち少なくとも1つは無置換スルファモイル基である。又、 R_1 、 R_4 、 R_5

5、 R_8 、 R_9 、 R_{12} 、 R_{13} 、 R_{16} は水素原子を表す。無置換スルファモイル基の数と置換スルファモイル基の数の和は 2 から 4 であり、且つ無置換スルファモイル基の数は 1 から 3 である。] 【化 1 0 】

|式(3)中、R₁₇及びR₁₈はそれぞれ独立して水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロ環基、置換もしくは無置換のアルケニル基を表し、R₁₇及びR₁₈どうしが互いに連結して環を形成しても良い。但し、R₁₇及びR₁₈が共に水素原子の場合は除く。また、R₁₇及びR₁₈の少なくとも1つはイオン性親水性基を置換基として有する。|

- (3) R_2 と R_3 、 R_6 と R_7 、 R_{10} と R_{11} 、 R_{14} と R_{15} の各組み合わせにおいて、それぞれの一方が水素原子であり、もう一方が式(2)で表される無置換スルファモイル基、式(3)で表される置換スルファモイル基又は水素原子であり、かつ R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} のうち、少なくとも1つは無置換スルファモイル基であり、少なくとも1つは式(3)で表される置換スルファモイル基である(1)または(2)に記載のフタロシアニン化合物、
- (4) R17及びR18がそれぞれ独立して水素原子、アルキル基(スルホン酸基、カルボキシル基、水酸基、アルコキシ基、ジアルキルアミノ基、アリールアミノ基、アリール基、ハロゲン原子、シアノ基からなる群から選択される置換基で置換されても良い。)、フェニル基(スルホン酸基、カルボキシル基、水酸基、ジアルキルアミノ基、アリールアミノ基、アセチルアミノ基、ウレイド基、アルキル基、アルコキシ基、ニトロ基、シアノ基、ヘテロ環基、ハロゲン原子からなる群から選択される1種または2種以上の置換基で置換されても良い。)、ナフチル基(スルホン酸基または水酸基で置換されても良い。)ベンジル基(スルホン

酸基で置換されても良い。)、フェネチル基(スルホン酸で置換されても良い。)である(1)から(3)のいずれか一項に記載のフタロシアニン化合物、

(5)式(1)が、式(5)で表されるフタロシアニン化合物またはその塩に塩素化剤を反応させ、スルホン酸基をクロロスルホン基に変換した後、有機アミンの存在下にアミノ化剤を反応させて得られてなる(1)から(4)のいずれかー項に記載のフタロシアニン化合物、

【化11】

[式(5)中、Mは水素原子、金属元素、金属酸化物、または金属ハロゲン化物を、Lはプロトン、アルカリ金属イオン、アルカリ土類金属イオン、有機アミンのオニウムイオンまたはアンモニウムイオンをそれぞれ示す。 a、b、c、dは0又は1であり、その和は $2\sim4$ の整数である。]

- (6) 4-スルホフタル酸誘導体を金属化合物の存在下に反応させることにより得られる式(5)のフタロシアニン化合物またはその塩に塩素化剤を反応させ、スルホン酸基をクロロスルホン基に変換した後、有機アミンの存在下にアミノ化剤を反応させてなる式(4)で表される(3)から(5)のいずれか一項に記載のフタロシアニン化合物、
- (7)色素成分として(1)から(6)のいずれか一項に記載のフタロシアニン 化合物を含有することを特徴とするインク、
- (8) 有機溶剤を含有する(7) に記載のインク、
- (9) インクジェット記録用である(7) または(8) に記載のインク、
- (10)色素濃度の異なる2種類以上のシアンインクを用いるインクジェットプリンタにおいて、そのうちの少なくとも1種類は(7)から(9)のいずれか一項に記載のインクを用いることを特徴とするインクセット、

- (11) インク滴を記録信号に応じて吐出させて被記録材に記録を行うインクジェット記録方法において、(7) から(9) のいずれか一項に記載のインクまたは(10) に記載のインクセットを使用することを特徴とするインクジェット記録方法、
- (12)被記録材が情報伝達用シートである(11)に記載のインクジェット記録方法、
- (13)情報伝達用シートが表面処理されたシートであって、支持体上に白色無機顔料粒子を含有するインク受像層を有するシートである(12)に記載のインクジェット記録方法、
- (14) (7) から (10) のいずれか一項に記載のインクまたはインクセットを含有する容器、
- (15) (14) に記載の容器を有するインクジェットプリンタ、
- (16) (7) から(10) のいずれか一項に記載のインクまたはインクセットで着色された着色体、
- (17) 4-スルホフタル酸誘導体又は、4-スルホフタル酸誘導体と(無水) フタル酸誘導体を銅化合物の存在下に反応させることにより得られる下記式(6))の化合物またはその塩に塩素化剤を反応させ、スルホン酸基をクロロスルホン 化した後、有機アミンの存在下にアミノ化剤を反応させることを特徴とする、前 記式(4)で表されるフタロシアニン化合物の製造方法、

【化12】

[式(6)中、Lはプロトン、アルカリ金属イオン、アルカリ土類金属イオン、有機アミンのオニウムイオンまたはアンモニウムイオンを示す。a、b、c、dは0又は1で、その和は2~4の整数である。]

に関する。

[0021]

【発明の実施の形態】本発明を詳細に説明する。本発明のインクジェット記録に適したインクは、前記式(1)のフタロシアニン化合物を含有することを特徴とする。本発明は、特許文献 8 で報告された化合物を原料に用いて、スルホン基をクロロスルホン基に変換した後、有機アミン存在下にアミノ化剤を反応させたフタロシアニン化合物、すなわち式(1)で表される、フタロシアニン環の特定の置換位置(β 位)に無置換スルファモイル基と置換スルファモイル基を導入したフタロシアニン化合物を使用したインクが、極めてオゾンガスに対して耐性が優れることを見出したものである。

[0022]

一般にフタロシアニン誘導体は、その合成時において不可避的に、下記式(1)における置換基R $(n=1\sim16)$ の置換位置 $(R_1\sim R_{16}$ が結合しているベンゼン核上の位置を各々1位 ~16 位と定義する)異性体を含む場合があるが、これら置換位置異性体は互いに区別することなく同一誘導体として見なしている場合が多い。

[0023]

【化13】

$$R_{14}$$
 R_{15}
 R_{16}
 R_{1}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 $R_$

[0024]

置換位置が異なるフタロシアニン誘導体を以下の三種類に分類して定義し、以下、置換位置が異なるフタロシアニン誘導体を説明する場合、上記(1) β 一位置換型、(2) α 一位置換型、(3) α 、 β 一位混合置換型として記載する。

[0025]

- (1) β 位置換型: (2及びまたは3位、6及びまたは7位、10及びまたは11位、14及びまたは15位に特定の置換基を有するフタロシアニン化合物)
- (2) α 位置換型: (1及びまたは4位、5及びまたは8位、9及びまたは1 2位、13及びまたは16位に特定の置換基を有するフタロシアニン化合物)
- (3) α 、 β 位混合置換型:(1~16位の任意の位置に、特定の置換基を有するフタロシアニン化合物)

[0026]

前記式 (1) において、Mは、水素原子、金属原子又はその酸化物、水酸化物もしくはハロゲン化物を表す。金属原子の具体例としては例えば、Li、Na、K、Mg、Ti、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Hg、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Bi等が挙げられる。金属酸化物としてはVO、GeO等が挙げられる。また、金属水酸化物としては例えば、Si(OH)2、Cr(OH)2、Sn(OH)2、AlOH等が挙げられる。さらに、金属ハロゲン化物としては例えば、SiCl2、VCl、VCl2、VOCl、FeCl、GaCl、ZrCl、AlCl等が挙げられる。これらの中でもCu、Ni、Zn、Al、AlOHが好ましく、Cuが最も好ましい。

[0027]

前記式(3)において、R17及びR18はそれぞれ独立して水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアリール基、置換もしくは無置換のアリール基、置換もしくは無置換のアルケニル基を表し、R17及びR18どうしが互いに連結して環を形成しても良い。但し、R17及びR18が共に水素原子の場合は除く。また、R17及びR18の少なくとも1つはイオン性親水性基を置換基として有する。イオン性親水性基としては、陰イオン性親水基が好ましく、例えばスルホン酸基、カルボキシル基、またはリン酸基などが挙げられる。これらのイオン性親水性基は、フリー体であってもよいし、アルカリ金属塩、アルカリ土類金属塩、有機アミンのオニウムイオン塩またはアンモニウム塩であってもよい。アルカリ金属としては、例えばナトリウム、カリウム、リチウム等が挙げられる

[0028]

置換もしくは無置換のアルキル基としては、例えば炭素原子数が1~12のアルキル基があげられる。置換基の例としてはスルホン酸基、カルボキシル基、リン酸基、水酸基、アルコキシ基、アミノ基(アルキル基、アリール基及びアセチル基で置換されても良い)アリール基、ハロゲン原子、シアノ基が挙げられる。中でもスルホン酸基、カルボキシル基、リン酸基、水酸基が好ましい。

[0029]

置換もしくは無置換のシクロアルキル基としては、例えば炭素原子数が1~12のシクロアルキル基があげられる。置換基の例としては例えば、スルホン酸基、カルボキシル基、水酸基、アルコキシ基、アミノ基(アルキル基、アリール基及びアセチル基で置換されても良い。)、アリール基、ハロゲン原子、シアノ基が挙げられる。中でもスルホン酸基、カルボキシル基、リン酸基、水酸基が好ましい。

[0030]

置換もしくは無置換のアラルキル基としては、例えば炭素原子数が1~12のアラルキル基があげられる。置換基の例としては例えば、スルホン酸基、カルボキシル基、リン酸基、水酸基、アミノ基(アルキル基、アリール基及びアセチル基で置換されても良い)、ウレイド基、アルキル基、アルコキシ基、ニトロ基、シアノ基、ヘテロ環基、ハロゲン原子が挙げられる。中でもスルホン酸基、カルボ

キシル基、リン酸基、水酸基が好ましい。

[0031]

置換もしくは無置換のアリール基としては、例えばフェニル基、ナフチル基があげられる。置換基の例としては例えば、スルホン酸基、カルボキシル基、リン酸基、水酸基、アミノ基(アルキル基、アリール基及びアセチル基で置換されても良い)、ウレイド基、アルキル基、アルコキシ基、ニトロ基、シアノ基、ヘテロ環基、ハロゲン原子が挙げられる。中でもスルホン酸基、カルボキシル基、リン酸基、水酸基が好ましい。

[0032]

置換もしくは無置換のヘテロ環基としては、5 員または6 員環のものが好ましく、それらは更に結環していてもよい。また、芳香族ヘテロ環であっても、非芳香族ヘテロ環であってもよい。ヘテロ環の例としてはピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、イソキノリン、キナゾリン、シンノリン、フタラジン、キノキサリン、ピロール、インドール、フラン、ベンゾフラン、チオフェン、ベンゾチオフェン、ピラゾール、イミダゾール、ベンズイミダゾール、トリアゾール、オキサゾール、ベンズオキサゾール、チアゾール、ベンブチアゾール、インチアゾール、ベンズイソチアゾール、ピロリジン、ピペリジン、ピペラジン、イミダゾリジン、チアゾリンなどが挙げられる。また、これらのヘテロ環は置換基を有していてもよく、その置換基の例としては、スルホン酸基、カルボキシル基、リン酸基、水酸基、アミノ基(アルキル基、アリール基及びアセチル基で置換されても良い。)、ウレイド基、アルキル基、アルコキシ基、ニトロ基、シアノ基、ハロゲン原子が挙げられる。

[0033]

置換もしくは無置換のアルケニル基としては、例えば炭素原子数が1~12のアルケニル基があげられる。置換基の例としては例えば、スルホン酸基、カルボキシル基、リン酸基、水酸基、アルコキシ基、アミノ基(アルキル基、アリール基及びアセチル基で置換されても良い。)、アリール基、ハロゲン原子、シアノ基が挙げられる。中でもスルホン酸基、カルボキシル基、リン酸基、水酸基が好ましい。

[0034]

式(1)中、 R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} は各々独立して式(2)で表される無置換スルファモイル基、式(3)で表される置換スルファモイル基又は水素原子を表わし、 R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} のうち、少なくとも1つは無置換スルファモイル基、少なくとも1つは置換スルファモイル基である。 R_1 、 R_4 、 R_5 、 R_8 、 R_9 、 R_{12} 、 R_{13} 、 R_{16} は水素原子を表す。無置換スルファモイル基の数と置換スルファモイル基の数の和は2から4であり、且つ無置換スルファモイル基の数は1から3である。

 R_2 と R_3 、 R_6 と R_7 、 R_{10} と R_{11} 、 R_{14} と R_{15} の組み合わせにおいて、好ましくは、それぞれ一方が水素原子であり、もう一方が無置換スルファモイル基(-S O_2 N H_2)又は式(3)で表される置換スルファモイル基であり、かつ R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} のうち、少なくとも1つは無置換スルファモイル基、少なくとも1つは前記式(3)で表される置換スルファモイル基である。

[0035]

本発明の式(1)で示されるフタロシアニン化合物において、前記式(2)で表される無置換スルファモイル基と、式(3)で表される置換スルファモイル基の 比率は1:3~3:1である化合物である。

式(2)で表される無置換スルファモイル基の比率が高い場合は、オゾン耐性が高くなる一方、水溶性が低く、ブロンズ現象が起きやすい傾向にある。逆に式(3)で表される置換スルファモイル基の比率が高い場合は、水溶性が高く、ブロンズ現象が起きにくくなる一方、オゾン耐性が低くなる傾向にある。従って、式(3)で表される置換スルファモイル基の種類に応じて、式(2)で表される無置換スルファモイル基と、式(3)で表される置換スルファモイル基の割合を適宜調節し、バランスのよい比率を選択すればよい。

本発明の前記式(1)で示されるフタロシアニン化合物における、Mと前記式(3)の組み合わせの具体例を表1から5に示すが、本発明に用いられるフタロシアニン化合物は、下記の例に限定されるものではない。尚、表中、前記式(3)

は遊離酸の形で記す。

[0036]

【表1】

No.	М	-SO ₂ N(R ₁₇)
1	Cu	-SO ₂ NH(CH ₂) ₂ SO ₃ H
2	Cu	—SO₂NH(CH₂)₂COOH
3	Cu	—SO₂NHCH₂COOH
4	Cu	-SO ₂ N(CH ₂ COOH) ₂
5	Cu	SO ₂ NH-\(\bigs\)SO ₃ H
6	Cu	_SO ₂ NH —SO ₂ NH
7	Cu	HO ₃ S —SO₂NH√
8	Cu	HO ₃ S —SO ₂ NH
9	Cu	SO ₃ H COOH SO ₂ NH OH
10	Cu	—SO₂NH —OH SO₃H

[0037]

【表2】

		
No.	М	-so ₂ N(R ₁₇)
11	Cu	—SO₂NH√ COOH
12	Cu	-so _x NH
13	Cu	H0000 SO ₂ NH
14	Cu	COOH .
15	Cu	-SO ₂ NH
16	Cu	SO ₂ H SO ₂ H HO ₃ S SO ₂ H
17	Cu	SO ₃ H SO ₅ H -SO ₂ NH HO-SO ₃ H
18	Cu	-SO ₂ NH SO ₃ H
19	Cu	HO ₃ S SO ₃ H —SO ₃ NH HO ₃ S
20	Cu	HO ₃ S SO ₃ H —SO ₂ NH SO ₃ H

[0038]

【表3】

No.	М	-SO ₂ N(R ₁₇)
21	Cu	—SO₂NH HO₃S
22	Cu	HO ₃ S —SO ₂ NH — N
23	Cu	но ₃ s —so ₂ ин — so ₃ н
24	Cu	HO ₃ S —SO ₂ NH SO ₃ H CH ₃
25	Cu	HO ₃ S —SO ₂ NH SO ₃ H COOH
26	Cu	HOOC —SO₂NH —NH —NH
27	Cu	-SO ₂ NH \\ N-NH
28	Cu	-SO ₂ NH CH ₂ COOH
29 .	Cu	-SO ₂ NH-(SO ₃ H) ₂
30	Cu	HO ₃ S (SU ₃ ri) ₂ —SO ₂ NH NH

[0039]

【表4】

No.	М	—SO₂N(^{R17})
31	Cu	HO ₃ S
		—so₂n+√n
32	Cu	SO ₃ H
}		
		—SO₂N´ CH₃
33	Cu	SO₃H
	[-so ₂ N
ļ	 	— SO ₂ N (CH ₂) ₂ OHSO ₃ H
34	Cu	SO ₃ H
	ł	
L		-SO ₂ N (CH ₂) ₃ SO ₃ H
35	Cu	SO₃H
		-so₂nh(ch₂)₂nh
ł	1	
	1	HO ₃ S
36	Cu	HO₃\$
		—SO ₂ NHCH ₂ -√>—SO ₃ H
37	Cu	HO₃S
		—SO₂NH-CH₂·CH₂ — SO₃H
38	Cu	(CH ₂) ₃ SO ₃ H
30	100	ISO₂NH(CH₂)₂N
39	Cu	(CH ₂) ₃ SO ₃ H (CH ₂) ₃ SO ₃ H
39	Cu	I —SU ₂ NH(CH ₂ I ₂ N
40	Cu	Но ₃ S (CH ₂) ₃ SO ₃ H
40	Cu	
		-so₂n n- so₃h

[0040]

【表5】

No.	М	R ₁₇
110.	141	-SO ₂ N(R ₁₀)
41	Cu	SO ₂ N ^R 18 ⁷ HO ₃ S
	Ì	-so₂n N-cH₂ So₃H
		SO214 N CIT2 SO311
42	Cu	-so₂n(
)
43	Cu	HOOC
		-SO ₂ NCOOH
44	Cu	-so ₂ N
l		
1		(SO ₃ H) ₂
45	Cu	-so ₂ N
1	1	_ \(/ \ <u>\</u>
		(SO ₃ H) ₂
46	Cu	-so₂n s
	i	
47	Ni	HOOC SO ₂ NH(CH ₂) ₂ SO ₃ H
	Ni	HO ₃ S
48	191	` <u> </u>
		-SO ₂ NH-CH ₂ -CH ₂ -SO ₃ H
49	Ni	(CH ₂) ₃ SO ₃ H
!		SO ₂ NH(CH ₂) ₂ N (CH ₂) ₃ SO ₃ H
50	ИОП	—SO ₂ NH(CH ₂) ₂ SO ₃ H
51	A10H	HO ₃ S
31		- CO NIL CIL CIL
		—SO₂NH−CH₂·CH₂— SO₃H
52	V10H	,(CH ₂) ₃ SO ₃ H —SO ₂ NH(CH ₂) ₂ N
ļ		(CH ₂) ₃ SO ₃ H
53	Zn	—SO₂NH(CH₂)₂SO₃H
54	Zn	HO ₃ S
		-SO ₂ NH-CH ₂ ·CH ₂ -\(\)-SO ₃ H
55	Zn	(CH ₂) ₃ SO ₃ H
		-SO ₂ NH(CH ₂) ₂ N
		`(CH ₂) ₃ SO ₃ H

[0041]

本発明の式(1)の化合物の製造方法を説明する。

[0042]

まず、式(5)で表される金属フタロシアニンスルホン酸を合成する。式(5)を合成するには、例えば触媒及び金属化合物の存在下、4-スルホフタル酸誘導体と(無水)フタル酸誘導体を反応させる事により得られる。4-スルホフタル酸と(無水)フタル酸の反応のモル比を変えることによりスルホン基の数、つまりa~dの数を調整することが可能である。4-スルホフタル酸誘導体としては4-スルホフタル酸、4-スルホ無水フタル酸、4-スルホフタルでは5-スルホー2-シアノベンザミド、5-スルホー1,3-ジイミノイソインドリンが挙げら

[0043]

【化14】

[式(5)中、M、L、a、b、c、dは前記と同じ意味を表す。]

[0044]

また、反応は通常、溶媒の存在下に行われ、溶媒としては沸点100 ℃以上、より好ましくは130 ℃以上の有機溶媒が用いられる。例えば、n-rミルアルコール、n-n+tノール、シクロn+tノール、2-xチルn-1-x0 タノール、1-x0 タノール、1-x0 タノール、2-xチルn-1-x0 アルコール、エチレングリコール、プロピレングリコール、トリクロロベンゼン、クロロナフタレン、ニトロベンゼン、キノリン、スルホラン、尿素等が挙げられる。溶媒の使用量は4-x2 ルホフタル酸誘導体の $1\sim100$ 質量倍である。

[0045]

触媒としては、1, 8-ジアザビシクロ [5, 4, 0]-7-ウンデセン、モリブデン酸アンモニウム及びホウ酸等が挙げられる。添加量は4-スルホフタル酸誘導体1モルに対し、0. 001~1倍モルである。

[0046]

金属化合物としては、Li、Na、K、Mg、Ti、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Hg、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Bi等のハロゲン化物、カルボン酸塩、硫酸塩、硝酸塩、アセチ

[0047]

反応温度は通常100~290℃であり、好ましくは130~270℃である。 また反応時間は反応温度により変わるが通常1~8時間である。反応終了後、濾 過、塩析(又は酸析)、乾燥する事により金属フタロシアニンテトラスルホン酸 又はその塩の形で得られる。遊離酸とするには、例えば酸析すればよい。また、 塩にするには、塩析するか、塩析によって所望の塩が得られないときには、例え ば遊離酸にしたものに所望の有機又は無機の塩基を添加する通常の塩交換法を利 用すればよい。

[0048]

また、Mが銅である、前記式(5)で表される銅フタロシアニンテトラスルホン酸またはその塩は、特許文献 8 に記載の方法で合成され、前記式(6)における a、b、c、dが1で表される化合物は、スルホラン溶媒中、4ースルホフタル酸(1モル)、塩化銅(II)(0.3 モル)、リンモリブデン酸アンモニウム(0.003 モル)、尿素(6 モル)、塩化アンモニウム(0.5 モル)を180℃、6時間反応させることにより前記式(6)で表される銅フタロシアニンテトラスルホン酸が得られる。4ースルホフタル酸誘導体、金属化合物、溶媒及び触媒等の種類や使用量により反応性は異なり上記に限定されるものではない。

[0049]

前記式(5)で表されるフタロシアニンスルホン酸又はその塩は、a、b、c、dのすべてが1である場合で示すと、スルホン基の置換位置が異なる4種類の異性体〔式(5)-A~(5)-D〕で表されるフタロシアニンテトラスルホン酸又はその塩の混合物である。

[0050]

【化15】

[式中、M、Lは前記と同じ意味を表す。]

[0051]

式(5)で表される、フタロシアニンスルホン酸又はその塩を有機溶媒、硫酸、発煙硫酸、クロロスルホン酸中でクロロ化剤を反応させる事により、式(7)で表される金属フタロシアニンスルホン酸クロリド得られる。反応に用いられる有機溶剤としてはベンゼン、トルエン、ニトロベンゼン、クロロベンゼン、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド等が挙げられるが、これらに限定されるものではない。また、クロル化剤としてはクロロスルホン酸、塩化チオニル、塩化スルフリル、三塩化リン、五塩化リン、オキシ塩化リン等が

挙げられるが、これらに限定されるものではない。

[0052]

【化16】

〔式(6)中、M、a、b、c、dは前記と同じ意味を表す。〕

[0053]

次に、対応するフタロシアニンテトラスルホン酸クロリドと対応する有機アミンとアミノ化剤を水溶媒中で通常 p H 8 ~ 1 0、通常 5 ~ 7 0 ℃、通常 1 ~ 2 0 時間反応させる事により目的の化合物が得られる。反応に用いられるアミノ化剤としては例えば、塩化アンモニウム、硫酸アンモニウム等のアンモニウム塩、尿素、アンモニア水、アンモニアガス等が挙げられるが、これらに限定されるものではない。

[0054]

なお、有機アミンの使用量は通常、フタロシアニン化合物1モルに対して、通常 、理論値の1倍モル以上であるが、有機アミンの反応性、反応条件により異なり 、これらに限定されるものではない。

[0055]

また、前記式(1)及び(4)で表されるフタロシアニン化合物は一部、2価の連結基(L)を介してフタロシアニン環(Pc)が2量体(例えばPcーL-Pc)または3量体を形成した不純物が生成し、反応生成物中に混入されてもよく、その時複数個存在するLは、それぞれ同一であっても異なるものであってもよい。

[0056]

Lで表される 2 価の連結基はスルホニル基 $-SO_2-$ 、 $-SO_2-NH-SO_2-$ などが挙げられ、及びこれらを組み合わせて形成される基であってもよい。

こうして得られた本発明のフタロシアニン化合物は酸析又は塩析後、濾過等により分離することが出来る。塩析は例えば酸性~アルカリ性、好ましくはpH1~11の範囲で塩析を行うことが好ましい。塩析の際の温度は特に限定されないが、通常40~80℃、好ましくは50~70℃に加熱後、食塩等を加えて塩析するのが好ましい。

[0058]

上記の方法で合成される、本発明の前記式(1)、式(2)、式(3)で表わされるフタロシアニン化合物は、遊離酸の形あるいはその塩の形で得られる。遊離酸とするには、例えば酸析すればよい。また、塩にするには、塩析するか、塩析によって所望の塩が得られないときには、例えば遊離酸にしたものに所望の有機又は無機の塩基を添加する通常の塩交換法を利用すればよい。

[0059]

本発明のシアンインクは、上記の方法にて製造された前記式(1)のフタロシアニン化合物を含み、水を媒体として調製されるが、このインクをインクジェット記録用インクとして使用する場合、フタロシアニン化合物に含まれるC1-及び SO_4^2 -等の陰イオンの含有量は少ないものが好ましく、その含有量の目安は、フタロシアニン化合物中でC1-及び SO_4^2 -の総含量としてS質量%以下、好ましくはS1 質量%以下、更に好ましくはS1 質量%以下であり、インク中にS1 質量%以下である。S2 である。S3 である。S4 である。S5 である。S6 である。S7 である。S7 である。S7 である。S8 である。S9 である。S9 である。S1 である。S1 でが S1 である。S2 で S3 で S4 で S5 で S5 で S6 で S6 で S7 で S7 で S8 で S8 で S9 で

[0060]

本発明のシアンインクをインクジェット記録用インクとして使用する場合、フタロシアニン化合物に含まれる亜鉛、鉄等の重金属(イオン)、カルシウム、シリカ等の金属(陽イオン)等の含有量が少ないものを用いるのが好ましい(フタロシアニン骨格に含有される金属(式(1)におけるM)は除く)。その含有量の目安は例えば、フタロシアニン化合物の精製乾燥品中に、亜鉛、鉄等の重金属(イオン)、カルシウム、シリカ等の金属(陽イオン)について各々500ppm以下程度である。重金属(イオン)及び金属(陽イオン)の含有量はイオンクロマトグラフ法、原子吸光法又はICP(Inductively Coupled Plasma)発光分析法にて測定される。

[0061]

本発明のインク中に前記式(1)のフタロシアニン化合物は、 $0.1 \sim 8$ 質量%、好ましくは $0.3 \sim 6$ 質量%含有される。低い濃度のインクには本発明のフタロシアニン化合物は $0.1 \sim 2.5$ 質量%含有される。

[0062]

本発明のインクは水を媒体として調製される。本発明のインク中に、上記のようにして得られた前記条件を備えた前記式(1)の化合物又はその塩の混合物は、0.3~6質量%含有される。本発明のインクにはさらに必要に応じて、水溶性有機溶剤を、本発明の効果を害しない範囲内において含有される。水溶性有機溶剤は、染料溶解剤、乾燥防止剤(湿潤剤)、粘度調整剤、浸透促進剤、表面張力調整剤、消泡剤等として使用される。その他インク調製剤としては、例えば、防腐防黴剤、pH調整剤、キレート試薬、防錆剤、紫外線吸収剤、粘度調整剤、染料溶解剤、褪色防止剤、乳化安定剤、表面張力調整剤、消泡剤、分散剤、分散安定剤、等の公知の添加剤が挙げられる。水溶性有機溶剤の含有量は0~60質量%好ましくは10~50質量%用い、インク調製剤は0~20質量%好ましくは0~15質量%用いるのが良い。

[0063]

本発明で使用しうる水溶性有機溶剤としては、例えばメタノール、エタノール、 nープロパノール、イソプロパノール、nーブタノール、イソブタノール、第二 ブタノール、第三ブタノール等のC1~C4アルカノール、N, Nージメチルホ

ルムアミドまたはN,N-ジメチルアセトアミド等のカルボン酸アミド、2-ピ ロリドン、N-メチル-2-ピロリドン、1、3-ジメチルイミダゾリジン-2 ーオンまたは1,3-ジメチルヘキサヒドロピリミド-2-オン等の複素環式ケ トン、アセトン、メチルエチルケトン、2-メチル-2-ヒドロキシペンタン-4-オン等のケトンまたはケトアルコール、テトラヒドロフラン、ジオキサン等 の環状エーテル、エチレングリコール、1,2-または1,3-プロピレングリ コール、1, 2-または1, 4-ブチレングリコール、1, 6-ヘキシレングリ コール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリ コール、ジプロピレングリコール、チオジグリコール、ポリエチレングリコール 、ポリプロピレングリコール等の(C2~C6)アルキレン単位を有するモノマ ー、オリゴマーまたはポリアルキレングリコールまたはチオグリコール、グリセ リン、ヘキサン-1,2,6-トリオール等のポリオール(トリオール)、エチ レングリコールモノメチルエーテルまたはエチレングリコールモノエチルエーテ ル、ジエチレングリコールモノメチルエーテル又はジエチレングリコールモノエ チルエーテル又はトリエチレングリコールモノメチルエーテル又はトリエチレン グリコールモノエチルエーテル等の多価アルコールの (C1~C4) アルキルエ ーテル、γーブチロラクトンまたはジメチルスルホキシド等があげられる。

[0064]

本発明のインクにおいて、水溶性有機溶剤として好ましいものは、イソプロパノール、グリセリン、モノ、ジまたはトリエチレングリコール、ジプロピレングリコール、2ーピロリドン、Nーメチルー2ーピロリドンであり、より好ましくはイソプロパノール、グリセリン、ジエチレングリコール、2ーピロリドンである。これらの水溶性有機溶剤は、単独もしくは混合して用いられる。

[0065]

防腐防黴剤としては、例えば、有機硫黄系、有機窒素硫黄系、有機ハロゲン系、ハロアリルスルホン系、ヨードプロパギル系、Nーハロアルキルチオ系、ベンツチアゾール系、ニトチリル系、ピリジン系、8ーオキシキノリン系、ベンゾチアゾール系、イソチアゾリン系、ジチオール系、ピリジンオシキド系、ニトロプロパン系、有機スズ系、フェノール系、第4アンモニウム塩系、トリアジン系、チ

[0066]

p H調整剤は、インクの保存安定性を向上させる目的で、インクの p Hを 6.0 ~11.0 の範囲に制御できるものであれば任意の物質を使用することができる。例えば、ジエタノールアミン、トリエタノールアミンなどのアルカノールアミン、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物、水酸化アンモニウム、あるいは炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩などが挙げられる。

[0067]

キレート試薬としては、例えばエチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸ナトリウム、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸ナトリウム、ウラミル二酢酸ナトリウムなどがあげられる。防錆剤としては、例えば、酸性亜硫酸塩、チオ硫酸ナトリウム、チオグリコール酸アンモニウム、ジイソプロピルアンモニウムナイトライト、四硝酸ペンタエリスリトール、ジシクロヘキシルアンモニウムナイトライトなどがあげられる。

[0068]

紫外線吸収剤としては、例えばベンゾフェノン系化合物、ベンゾトリアゾール系

化合物、桂皮酸系化合物、トリアジン系化合物、スチルベン系化合物、又はベンズオキサゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光増白剤も用いることができる。

[0069]

粘度調整剤としては、水溶性有機溶剤の他に、水溶性高分子化合物があげられ、 例えばポリビニルアルコール、セルロース誘導体、ポリアミン、ポリイミン等が あげられる。

[0070]

染料溶解剤としては、例えば尿素、 ε ーカプロラクタム、エチレンカーボネート 等があげられる。

[0071]

褪色防止剤は、画像の保存性を向上させる目的で使用される。褪色防止剤としては、各種の有機系及び金属錯体系の褪色防止剤を使用することができる。有機の褪色防止剤としてはハイドロキノン類、アルコキシフェノール類、ジアルコキシフェノール類、フェノール類、アニリン類、アミン類、インダン類、クロマン類、アルコキシアニリン類、ヘテロ環類などがあり、金属錯体としてはニッケル錯体、亜鉛錯体などがある。

[0072]

表面張力調整剤としては、界面活性剤があげられ、例えばアニオン界面活性剤、
両性界面活性剤、カチオン界面活性剤、ノニオン界面活性剤などがあげられる。
アニオン界面活性剤としてはアルキルスリホカルボン酸塩、αーオレフィンスル
ホン酸塩、ポリオキシエチレンアルキルエーテル酢酸塩、Nーアシルアミノ酸お
よびその塩、Nーアシルメチルタウリン塩、アルキル硫酸塩ポリオキシアルキル
エーテル硫酸塩、アルキル硫酸塩ポリオキシエチレンアルキルエーテル燐酸塩、
ロジン酸石鹸、ヒマシ油硫酸エステル塩、ラウリルアルコール硫酸エステル塩、
アルキルフェノール型燐酸エステル、アルキル型燐酸エステル、アルキルアリル
スルホン塩酸、ジエチルスルホ琥珀酸塩、ジエチルヘキルシルスルホ琥珀酸ジオ
クチルスルホ琥珀酸塩などが挙げられる。カチオン界面活性剤としては2ービニ
ルピリジン誘導体、ポリ4ービニルピリジン誘導体などがある。両性界面活性剤

[0073]

消泡剤としては、フッ素系、シリコーン系化合物が必要に応じて用いられる。

[0074]

本発明のインクを製造方法するにあたり、各薬剤を溶解させる順序には特に制限はない。インクを調製するにあたり、用いる水はイオン交換水または蒸留水など不純物が少ない物が好ましい。さらに、必要に応じメンブランフィルターなどを用いて精密濾過を行って夾雑物を除いてもよく、インクジェットプリンタ用のインクとして使用する場合は精密濾過を行うことが好ましい。精密濾過を行うフィルターの孔径は通常1ミクロン~0.1ミクロン、好ましくは、0.8ミクロン

~0.2ミクロンである。

[0075]

本発明のインクは、単色の画像形成のみならず、フルカラーの画像形成に用いることができる。フルカラー画像を形成するために、マゼンタインク、イエローインク、ブラックインクとのインクセットとしても使用される。更にはより高精細な画像を形成する為に、ライトマゼンタインク、ブルーインク、グリーンインク、オレンジインク、ダークイエローインク、グレーインク等と併用したインクセットとしても使用される。

[0076]

適用できるイエローインクの色素としては、種々のものを使用することが出来る。例えばカップリング成分(以降カプラー成分と呼ぶ)としてフェノール類、ナフトール類、アニリン類、ピラゾロンやピリドン等のようなヘテロ環類、開鎖型活性メチレン化合物類、などを有するアリールもしくはヘテリルアゾ染料;例えばカプラー成分として開鎖型活性メチレン化合物類などを有するアゾメチン染料;例えばベンジリデン染料やモノメチンオキソノール染料等のようなメチン染料;例えばナフトキノン染料、アントラキノン染料等のようなキノン系染料などがあり、これ以外の染料種としてはキノフタロン染料、ニトロ・ニトロソ染料、アクリジン染料、アクリジノン染料等を挙げることができる。

[0077]

適用できるマゼンタインクの色素としては、種々のものを使用することが出来る。例えばカプラー成分としてフェノール類、ナフトール類、アニリン類などを有するアリールもしくはヘテロアゾ染料;例えばカプラー成分としてピラゾロン類、ピラゾロトリアゾール類などを有するアゾメチン染料;例えばアリーリデン染料、スチリル染料、メロシアニン染料、シアニン染料、オキソノール染料などのようなメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料などのようなカルボニウム染料、例えばナフトキノン、アントラピリドンなどのようなキノン染料、例えばジオキサジン染料等のような縮合多環染料等を挙げることができる。

[0078]

前記の各色素は、クロモフォアの一部が解離して初めてイエロー、マゼンタ、シアンの各色を呈するものであってもよく、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。適用できるブラック色素としては、ジスアゾ、トリスアゾ、テトラアゾ染料のほか、カーボンブラックの分散体を挙げることができる。

[0079]

本発明のインクは、印捺、複写、マーキング、筆記、製図、スタンピング、また は記録法、特にインクジェット印捺法における使用に適する。

[0080]

本発明のインクジェット記録方法は、前記の方法で作製されたインクにエネルギーを供与して、公知の受像材料、即ち普通紙、樹脂コート紙、インクジェット専用紙、光沢紙、光沢フィルム、電子写真共用紙、繊維や布(セルロース、ナイロン、羊毛等)、ガラス、金属、陶磁器、皮革等に画像を形成する。

[0081]

画像を形成する際に、光沢性や耐水性を与えたり耐候性を改善する目的からポリマー微粒子分散物(ポリマーラテックスともいう)を併用してもよい。ポリマーラテックスを被記録材に付与する時期については、着色剤を付与する前であっても,後であっても、また同時であってもよく、したがって添加する場所も被記録材中であっても、インク中であってもよく、あるいはポリマーラテックス単独の液状物として使用しても良い。

[0082]

以下に、本発明のインクを用いてインクジェットプリントをするのに用いられる被記録材(特に記録紙及び記録フィルム)について説明する。記録紙及び記録フィルムにおける支持体は、LBKP、NBKP等の化学パルプ、GP、PGW、RMP、TMP、CTMP、CMP、CGP等の機械パルプ、DIP等の古紙パルプ等からなり、必要に応じて顔料、バインダー、サイズ剤、定着剤、カチオン剤、紙力増強剤等の添加剤を混合し、長網抄紙機、円網抄紙機等の各種装置で製

造されたもの等が使用可能である。これらの支持体の他に合成紙、プラスチックフィルムシートのいずれであってもよく、支持体の厚みは10~250μm、坪量は10~250μm2が望ましい。支持体には、そのままインク受容層及びバックコート層を設けてもよいし、デンプン、ポリビニルアルコール等でサイズプレスやアンカーコート層を設けた後、インク受容層及びバックコート層を設けてもよい。更に支持体には、マシンカレンダー、TGカレンダー、ソフトカレンダー等のカレンダー装置により平坦化処理を行ってもよい。本発明では支持体として、両面をポリオレフィン(例えば、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリブテン及びそれらのコポリマー)でラミネートした紙及びプラスチックフィルムがより好ましく用いられる。ポリオレフィン中に、白色顔料(例えば、酸化チタン、酸化亜鉛)又は色味付け染料(例えば、コバルトブルー、群青、酸化ネオジウム)を添加することが好ましい。

[0083]

支持体上に設けられるインク受容層には、顔料や水性バインダーが含有されていてもよい。顔料としては、白色顔料が好ましく、白色顔料としては、炭酸カルシウム、カオリン、タルク、クレー、珪藻土、合成非晶質シリカ、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、硫酸バリウム、硫酸カルシウム、二酸化チタン、硫化亜鉛、炭酸亜鉛等の白色無機顔料、スチレン系ピグメント、アクリル系ピグメント、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。インク受容層に含有される白色顔料としては、多孔性無機顔料が好ましく、特に細孔面積が大きい合成非晶質シリカ等が好適である。合成非晶質シリカは、乾式製造法によって得られる無水珪酸及び湿式製造法によって得られる含水珪酸のいずれも使用可能であるが、特に含水珪酸を使用することが望ましい。

[0084]

インク受容層に含有される水性バインダーとしては、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリアルキレンオキサイド誘導

[0085]

インク受容層中に添加する媒染剤は、例えばポリマー媒染剤が用いられる。

[0086]

耐水化剤は、画像の耐水化に有効であり、これらの耐水化剤としては、特にカチオン樹脂が望ましい。このようなカチオン樹脂としては、ポリアミドポリアミンエピクロルヒドリン、ポリエチレンイミン、ポリアミンスルホン、ジメチルジアリルアンモニウムクロライド重合物、カチオンポリアクリルアミド、コロイダルシリカ等が挙げられ、これらのカチオン樹脂の中で特にポリアミドポリアミンエピクロルヒドリンが好適である。これらのカチオン樹脂の含有量は、インク受容層の全固形分に対して1~15質量%が好ましく、特に3~10質量%であることが好ましい。

[0087]

耐光性向上剤としては、硫酸亜鉛、酸化亜鉛、ヒンダートアミン系酸化防止剤、ベンゾフェノン系、ベンゾトリアゾール系等の紫外線吸収剤等が挙げられる。これらの中で硫酸亜鉛が好適である。

[0088]

界面活性剤は、塗布助剤、剥離性改良剤、スベリ性改良剤あるいは帯電防止剤として機能する。界面活性剤の代わりに有機フルオロ化合物を用いてもよい。有機フルオロ化合物は、疎水性であることが好ましい。有機フルオロ化合物の例には、フッ素系界面活性剤、オイル状フッ素系化合物(例えば、フッ素油)及び固体状フッ素化合物樹脂(例えば、四フッ化エチレン樹脂)が含まれる。その他のインク受容層に添加される添加剤としては、顔料分散剤、増粘剤、消泡剤、染料、

蛍光増白剤、防腐剤、pH調整剤、マット剤、硬膜剤等が挙げられる。なお、インク受容層は1層でも2層でもよい。

[0089]

記録紙及び記録フィルムには、バックコート層を設けることもでき、この層に添加可能な成分としては、白色顔料、水性バインダー、その他の成分が挙げられる。バックコート層に含有される白色顔料としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、カオリン、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、珪酸マグネシウム、合成非晶質シリカ、コロイダルシリカ、コロイダルアルミナ、擬ベーマイト、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム等の白色無機顔料、スチレン系プラスチックピグメント、アクリル系プラスチックピグメント、ポリエチレン、マイクロカプセル、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。

[0090]

バックコート層に含有される水性バインダーとしては、スチレン/マレイン酸塩 共重合体、スチレン/アクリル酸塩共重合体、ポリビニルアルコール、シラノー ル変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラ チン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニル ピロリドン等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマル ジョン等の水分散性高分子等が挙げられる。バックコート層に含有されるその他 の成分としては、消泡剤、抑泡剤、染料、蛍光増白剤、防腐剤、耐水化剤等が挙 げられる。

[0091]

インクジェット記録紙及び記録フィルムの構成層(バックコート層を含む)には、ポリマーラテックスを添加してもよい。ポリマーラテックスは、寸度安定化、カール防止、接着防止、膜のひび割れ防止のような膜物性改良の目的で使用される。ガラス転移温度が低い(40℃以下の)ポリマーラテックスを媒染剤を含む層に添加すると、層のひび割れやカールを防止することができる。また、ガラス

転移温度が高いポリマーラテックスをバックコート層に添加しても、カールを防止することができる。

[0092]

これら記録紙及び記録フィルムは、一般的にインクジェット専用紙、光沢紙又は 光沢フィルムと呼ばれており、例えばピクトリコ(旭硝子(株)製)、カラーB Jペーパー、高品位専用紙、カラーB J フォトフィルムシート、スーパーフォト ペーパー、プロフェッショナルフォトペーパー(いずれもキャノン(株)製)、 カラーイメージジェット用紙(シャープ(株)製)、P M 写真用紙、スーパーフ ァイン専用光沢フィルム(いずれもエプソン(株)製)、ピクタファイン(日立 マクセル(株)製)等として市販されている。特に、本発明のインクを用いたインクジェット記録方法においては、被記録材として支持体上に白色無機顔料粒子 を含有するインク受像層を有する記録紙及び記録フィルムに特に有効に機能する 。なお、普通紙にも利用できることはもちろんである。

[0093]

本発明のインクを用いた着色体は、前記の方法で作製されたインクをインクジェットプリンタにて印刷し、着色されたものである。

[0094]

本発明のインクジェット記録方法で、被記録材に記録するには、例えば上記のインクを含有する容器をインクジェットプリンタの所定位置にセットし、通常の方法で、被記録材に記録すればよい。インクジェットプリンタとしては、例えば機械的振動を利用したピエゾ方式のプリンタや加熱により生ずる泡を利用したバブルジェット(登録商標)方式のプリンタ等があげられる。

[0095]

本発明によるインクは貯蔵中に沈澱、分離することがない。また、本発明によるインクをインクジェット印捺において使用した場合、噴射器 (インクヘッド) を 閉塞することもない。本発明によるインクは連続式インクジェットプリンタによる比較的長い時間一定の再循環下またはオンデマンド式インクジェットプリンタによる断続的な使用においても、物理的性質の変化を起こさない。

[0096]

[0097]

【実施例】

以下に本発明を更に実施例により具体的に説明する。尚、本文中「部」及び「%」とあるのは、特別の記載のない限り質量基準である。

[0098]

実施例1

- (1) 銅フタロシアニンテトラスルホン酸テトラナトリウム塩(β位置換型)の合成(MがCuであり、a、b、c、dがすべて1である、式(5)の化合物)冷却管の付いた四つロフラスコに、スルホラン40部を加え180℃まで1時間で昇温し、そこに4ースルホフタル酸モノナトリウム塩40部、塩化アンモニウム4.5部、尿素55部、モリブデン酸アンモニウム0.5部、塩化銅(II)6部を加え、同温度で6時間攪拌した。反応液を40℃まで冷却した後、目的物をヌッチェで濾過し、400部のメタノールで洗浄した。続いて得られたウェットケーキに300部の水を加え、48%ー水酸化ナトリウム水溶液でpH11に調整し、80℃で1時間攪拌した。そして攪拌しながら35%ー塩酸水溶液を加えpHを3にし、そこに塩化ナトリウム80部を徐々に添加した。析出した結晶を濾取し20%ー塩化ナトリウム水溶液150部で洗浄してウェットケーキ90部を得た。続いてメタノールを210部加え1時間攪拌し、析出した結晶を濾別し、70%ーメタノール水溶液300部で洗浄後乾燥して、式(5)のβ位置換型の銅フタロシアンテトラスルホン酸テトラナトリウム塩22.9部を青色結晶として得た。 λ max:629nm(水溶液中)。
- (2) 銅フタロシアニンテトラスルホン酸クロリド(eta位置換型)の合成(M=

クロロスルホン酸79部中に攪拌しながら60℃以下で銅フタロシアニンテトラスルホン酸テトラナトリウム塩9.8部を徐々に仕込み、120℃で4時間反応を行った。次に反応液を80℃まで冷却し、塩化チオニル47.6部を30分間かけて滴下し、80℃で2時間、次いで90℃で1時間反応を行った。反応液を30℃以下に冷却し、氷水700部中にゆっくりと注ぎ、析出している結晶を濾過し、氷冷2%-塩酸水溶液200部で洗浄し銅フタロシアニンテトラスルホン酸クロライドのウェットケーキ35.2部を得た。

[0099]

- ---

(3) 式(1) におけるM、式(3) で表される置換スルファモイル基がN o. 1 の組み合わせである化合物の合成

水水100部中に(2)で得られた銅フタロシアニンテトラスルホン酸クロライドウェットケーキ17.6 部を投入し、攪拌懸濁させた。10分後、5℃以下を保持したまま28%ーアンモニア水を滴下し、pH9.0に調整した。次に水50部中にタウリン1.3 部溶解させたものを注加し、28%アンモニア水を添加しながらpH9.0を保持し、10℃で2時間、20で2時間、50℃で1時間反応を行った。水を加え、液量を200部に調整し、塩化ナトリウム30部を投入し結晶を析出させた。析出した結晶を濾過分取し、15%塩化ナトリウム水溶液100部で洗浄し、ウェットケーキ44.3 部を得た。再度、水に溶解させ、全量を200部に調整、60℃に昇温した後、塩化ナトリウム10部を添加し、35%塩酸水溶液を添加しpHを2に調整し、結晶を析出させた。析出した結晶を濾別し、5%一塩化ナトリウム水溶液100部で洗浄し、No.1で表される化合物のウェットケーキ31.8 部を得た。

得られたウェットケーキ31.8部をメタノール260部中に投入し、水13部を加え、60℃で1時間攪拌懸濁させた後、濾過、メタノールで洗浄、乾燥し、青色結晶4.3部をとして得た。

反応生成物は多様な混合物であるが、反応からみて、この化合物は平均すれば、 式(1)における、M、式(3)で表される置換スルファモイル基、Y、ZがN o.1の組み合わせであり、無置換スルファモイル基が2モル、式(3)で表さ

れる置換スルファモイル基が2モル付加した、下記式(8)で表される化合物であると考えられる。

[0100]

【化17】

[0101]

実施例2 (インク評価)

(A) インクの調製

下記表 6 に記載の各成分を混合溶解し、0. 45μ mのメンブランフィルター(アドバンテック社製)で濾過する事によりインクを得た。尚、水はイオン交換水を使用した。又、インクのp Hがp H = $8 \sim 10$ 、総量が100 部になるように水、苛性ソーダ(p H 調整剤)を加えた。インクは実施例 1 の化合物を用いたインクをC-1 とした。

[0102]

表 6

上記実施例1で得られた化合物	1.	3 部
水+苛性ソーダ	79.	6部
グリセリン	5.	0部
尿素	5.	0 部
N-メチル-2-ピロリドン	4.	0部
IPA(イソプロピルアルコール)	3.	0部
ブチルカルビトール	2	沿

0.1部

計

100.0部

[0103]

比較例として、Direct Blue 199として使用されているインクジェット記録用色素、製品名:<math>Projet Cyan 1 (アベシア社製:比較例1) 及び、特許文献8の実施例1に記載の方法にて合成及び精製したフタロシアニン化合物(比較例2)を印刷時、表6の実施例1のインクと同じ印刷濃度になるように同様の方法で調製した。比較例1の製品を用いたインクはC-A、比較例2の化合物を用いたインクはC-Bとした。

[0104]

(B) インクジェットプリント

インクジェットプリンタ (商品名 キヤノン社製 BJ S630) を用いて、専用紙A (キャノン社製高品位専用紙 HR-101S)、専用紙B (ヒューレットパッカード社製hpプレミアムインクジェット専用紙 Q1948A)の2種にインクジェット記録を行った。

[0105]

(C) 記録画像の評価

1. 色相評価

記録画像の色相は、記録紙を測色システム(GRETAG SPM50:GRETAG TAG社製)を用いて測色し、印刷物の L^* が40~80の範囲にあるときの a^* 、 b^* 値を測色した。評価は好ましい a^* 値を-60~-20、 b^* 値を-60~-20と定義し、3段階で行なった。

〇:a*、b*値共に好ましい領域内に存在

△: a*、b*値片方のみ好ましい領域内に存在

×: a*、b*値共に好ましい領域外に存在

[0106]

2. 耐光性試験

記録画像の試験片を、キセノンウェザーメーター(ATLAS社製 型式Ci4 000)を用い、0.36W/平方メートル照度で、槽内温度24℃、湿度60

% R H の条件にて50時間照射した。試験後、反射濃度(D値)が0.90~1.10の範囲で、試験前後の反射濃度を測色システムを用いて測色した。測定後、色素残存率を(試験後の反射濃度/試験前の反射濃度)×100(%)で計算して求め、3段階で評価した。

〇:残存率70%以上

△: 残存率 50~70%

×:残存率50%未満

[0107]

3. 耐オゾン性試験

記録画像の試験片を、オゾンウェザーメーター(スガ試験機社製 型式OMSーH)を用い、オゾン濃度 12ppm、槽内温度 $24\mathbb{C}$ 、湿度 60% R Hで 3 時間放置した。試験後、反射濃度(D値)が $0.90\sim1.10$ の範囲で、試験前後の反射濃度を測色システムを用いて測色した。測定後、色素残存率を(試験後の反射濃度/試験前の反射濃度)×100(%)で計算して求め、3 段階で評価した。

○:残存率70%以上

△: 残存率 4 0 ~ 7 0 %

×:残存率 4 0 %未満

[0108]

4. 耐湿性試験

○:にじみが認められない

△:わずかににじみが認められる

×:大きくにじみが認められる

[0109]

実施例1で得られた化合物を使用したインク(C-1)の記録画像の色相評価、耐光性試験結果、耐オゾン性試験結果及び耐湿性試験結果をそれぞれ表7(専用

紙A)及び表8(専用紙B)に表わす。

[0110]

表 7

インク評価結果:専用紙A

インク番号	色相	耐光性	耐オゾン性	耐湿性
C - 1	0	0	0	0
C - A	\circ	0	×	0
C - B	0	0	×	0

[0111]

表8

インク評価結果:専用紙B

インク番号	色相	耐光性	耐オゾン性	耐湿性
C - 1	0	0	0	0
C - A	\circ	\circ	×	0
C-B	0	0	×	\circ

[0112]

表7及び8から明らかなように、本発明の化合物を用いたシアンインクは色相に 優れ、耐光性、耐オゾン性及び耐湿性に優れるものである。特に耐オゾン性に優 れることは明らかである。

[0113]

実施例3 (インクセット)

淡色シアン及び濃色シアンの2種類の濃度が設定されたシアンインクセットを有するインクジェットプリンタ(商品名 キヤノン社製 BJ F850)に、淡色シアンインクとしてC-1を、濃色シアンインクとしてキャノン社純正シアンインクを装着して、専用紙A(キャノン社製高品位専用紙 HR-101S)、専用紙B(ヒューレットパッカード社製hpプレミアムインクジェット専用紙Q1948A)の2種にインクジェット記録を行った。印刷結果は、ドット抜けなど生じず、またフルカラー画像印刷としても満足のいく、鮮明な印刷物が得られた。この結果、本発明のインクは、淡色シアン及び濃色シアンの2種類の濃度

が設定されたシアンインクセットを有するインクジェットプリンタにも使用できることが確認された。

[0114]

【発明の効果】

本発明のフタロシアニン化合物を用いたインクは、シアンインクとして良好な色相を有し、耐光性、耐オゾン性及び耐湿性に優れたインクである。また、長期間保存後の結晶析出、物性変化、色変化等もなく、貯蔵安定性が良好である。更に、他のマゼンタインク及びイエローインクと共に用いることで、広い可視領域の色調を色だしすることができる。従って、本発明のフタロシアニン化合物を用いたシアンインクはインクジェット記録用のインクとして極めて有用である。

【書類名】要約書

【要約】

【課題】シアンインクとして良好な色相を有し、耐光性、耐オゾン性及び耐湿性に優れたインクジェット記録に適したフタロシアニン化合物を提供すること。

【解決手段】

置換基として少なくとも1つ以上無置換スルファモイル基及び置換スルファモイル基を有する式(1)で表されるフタロシアニン化合物。

【化1】

$$R_{14}$$
 R_{16}
 R_{16}
 R_{1}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 $R_$

[式 (1) 中、Mは水素原子、金属元素、金属酸化物、または金属ハロゲン化物を表す。 R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} は各々独立して式 (2) で表される無置換スルファモイル基、式 (3) で表される置換スルファモイル基 又は水素原子を表わす。但し、 R_2 、 R_3 、 R_6 、 R_7 、 R_{10} 、 R_{11} 、 R_{14} 、 R_{15} のうち少なくとも1つは無置換スルファモイル基、少なくとも1つは式 (3) で表される置換スルファモイル基である。又、 R_1 、 R_4 、 R_5 、 R_8 、 R_9 、 R_{12} 、 R_1 3、 R_{16} は水素原子を表す。無置換スルファモイル基の数と置換スルファモイル基の数の和は 2 から 4 であり、且つ無置換スルファモイル基の数は 1 から 3 であり、置換スルファモイル基の数は 1 から 3 であり、置換スルファモイル基の数は 1 から 3 である。

【化2】

$$-SO_2NH_2 \qquad (2)$$

$$-SO_2N-R_{18} \qquad (3)$$

|式(3)中、R17及びR18はそれぞれ独立して水素原子、置換もしくは無置換

のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロ環基、置換もしくは無置換のアルケニル基を表す。但し、 R_{17} 及び R_{18} が共に水素原子の場合は除く。また、 R_{17} 及び R_{18} の少なくとも1つはイオン性親水性基を置換基として有する。 $\{ \}$

認定 · 付加情報

特許出願の番号

特願2003-090485

受付番号

50300515311

書類名

特許願

担当官

第六担当上席 0095

作成日

平成15年 3月31日

<認定情報・付加情報>

【提出日】

平成15年 3月28日

次頁無

特願2003-090485

出願人履歴情報

識別番号

[000004086]

変更年月日
 変更理由]

氏 名

1990年 8月 9日

更理由] 新規登録 住 所 東京都千·

東京都千代田区富士見1丁目11番2号

日本化薬株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	efects in the images include but are not limited to the items checked:
	☐ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.