Exercises: Surface Integral by Coordinate

Problem 1. Let S be the upper side of the plane x + y + z = 1 with $x \ge 0$ and $y \ge 0$. Calculate $\iint_S z \, dx \, dy$.

Solution: Let D be the projection of S onto the xy-plane. In other words, D is the shaded triangle as shown below:

Hence:

$$\iint_{S} z \, dx dy = \iint_{D} 1 - x - y \, dx dy. \tag{1}$$

 $\iint_D dxdy$ is simply the area of the triangle, namely, 1/2. Regarding the second term of (1):

$$\iint_D x \, dx dy = \int_0^1 \left(\int_0^{1-x} x \, dy \right) dx$$
$$= \int_0^1 x (1-x) dx = 1/6.$$

By symmetry, we also have $\iint_D y \, dx dy = 1/6$. Therefore, (1) equals 1/2 - 1/6 - 1/6 = 1/6.

Problem 2. Let S be the inner side of the cube that has the origin and the point (1,1,1) as the opposite corners (see below). Calculate $\iint_S (z^2 dx dy + xy dz dx)$.

Solution: We can break S into 6 oriented surfaces $S_1, S_2, ..., S_6$ as shown in the above figure. Each S_i $(1 \le i \le 6)$ corresponds to a face of the cube. Hence:

$$\iint_{S} (z^{2} dxdy + xy dzdx) = \sum_{i=1}^{6} \iint_{S_{i}} (z^{2} dxdy + xy dzdx).$$
 (2)

We have:

$$\sum_{i=1}^{6} \iint_{S_i} z^2 dx dy = \iint_{S_5} z^2 dx dy + \iint_{S_6} z^2 dx dy$$
$$= \iint_{S_5} 1 dx dy + \iint_{S_6} 0 dx dy$$
$$= -\int_0^1 \int_0^1 dx dy = -1.$$

Also:

$$\sum_{i=1}^{6} \iint_{S_i} xy \, dz dx = \iint_{S_1} xy \, dz dx + \iint_{S_2} xy \, dz dx$$
$$= \iint_{S_1} x \cdot 0 \, dz dx + \iint_{S_2} x \, dz dx$$
$$= -\int_0^1 \left(\int_0^1 x \, dz \right) dx = -1/2.$$

Therefore, (2) equals -1 - 1/2 = -3/2.

Problem 3. Let S be the upper side of the surface $x^2 + y^2 + z^2 = 1$ with $\sqrt{2}/2 \le z \le \sqrt{3}/2$. Calculate $\iint_S \frac{1}{z} dx dy$.

Solution 1: Let D be the projection of S onto the xy-plane. D is the annulus $1/4 \le x^2 + y^2 \le 1/2$. Hence:

$$\iint_{S} \frac{1}{z} dx dy = \iint_{D} \frac{1}{z} dx dy. \tag{3}$$

Let us represent S in a parametric form $\mathbf{r}(u,v) = [x(u,v),y(u,v),z(u,v)]$ where

$$x(u, v) = \cos u \sin v$$

 $y(u, v) = \sin u \sin v$
 $z(u, v) = \cos v$

where $u \in [0, 2\pi]$ and $v \in [\pi/6, \pi/4]$. The Jacobian J equals:

$$J = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

= $-\sin u \cdot \sin v \cdot \sin u \cdot \cos v - \cos u \cdot \cos v \cdot \cos u \cdot \sin v$
= $-\sin v \cdot \cos v$.

Now we can change the variables x, y in (3) to u, v as:

$$\iint_{D} \frac{1}{z} dx dy = \iint_{D} \frac{1}{z} \cdot |J| du dv$$

$$= \iint_{D} \frac{1}{\cos v} \cdot |\sin v \cdot \cos v| du dv$$

$$= \int_{0}^{2\pi} \left(\int_{\pi/6}^{\pi/4} \sin v \, dv \right) du$$

$$= (\sqrt{3} - \sqrt{2})\pi.$$

Solution 2: We can also represent S in another parametric form r(u,v) = [x(u,v),y(u,v),z(u,v)] where

$$x(u,v) = u \cos v$$

$$y(u,v) = u \sin v$$

$$z(u,v) = \sqrt{1-u^2}$$

where $u \in [1/2, \sqrt{2}/2]$ and $v \in [0, 2\pi]$. The Jacobian J equals:

$$J = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

= $\cos v \cdot u \cos v - u(-\sin v) \cdot \sin v$
= u .

Now we can change the variables x, y in (3) to u, v as:

$$\begin{split} \iint_D \frac{1}{z} \, dx dy &= \iint_D \frac{1}{z} \cdot |J| \, du dv \\ &= \iint_D \frac{1}{\sqrt{1 - u^2}} \cdot |u| \, du dv \\ &= \int_0^{2\pi} \left(\int_{1/2}^{\sqrt{1/2}} \frac{u}{\sqrt{1 - u^2}} \, du \right) dv \\ &= (\sqrt{3} - \sqrt{2})\pi. \end{split}$$