Segurança em redes de computadores

Parte 1

Introdução

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Alice e Bob são duas pessoas que desejam se comunicar "com segurança".
 - Dois roteadores que querem trocar tabelas de roteamento com segurança.
 - Um cliente e um servidor que querem estabelecer uma conexão de transporte segura.
 - Duas aplicações de e-mail que querem trocar e-mails com segurança.

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- O que significa comunicar com segurança?
 - Alice quer que somente Bob entenda a mensagem que ela envia.
 - Comunicação ocorre em um meio inseguro. Um intruso (Trudy) pode interceptar, ler e executar processos computacionais com qualquer dado transmitido de Alice para Bob.
 - Bob quer ter certeza de que a mensagem que recebe de Alice foi de fato enviada por ela. Alice quer ter certeza de que a pessoa com quem está se comunicando é de fato Bob.
 - Alice e Bob querem ter certeza de que o conteúdo de suas mensagens não foi alterado em trânsito.

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Propriedades desejáveis da comunicação segura:
 - *Confidencialidade:* Somente o remetente e o destinatário pretendido devem poder entender o conteúdo da mensagem transmitida.
 - Mensagem deve ser **cifrada** ("disfarçar" os dados de alguma maneira).
 - Impedir que uma mensagem interceptada seja **decifrada** (entendida) por um interceptador.
 - *Integridade:* Remetente e destinatário querem assegurar que o conteúdo de sua comunicação não seja alterado, por acidente ou por má intenção, durante a transmissão.

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Propriedades desejáveis da comunicação segura:
 - Autenticação: Remetente e destinatário precisam confirmar a identidade da outra parte envolvida na comunicação
 - Confirmar que a outra parte realmente é quem alega ser.

KUROSE | ROSS

O que é segurança de rede?

Redes de computadores e a internet

uma abordagem top-down

6ª edição

Remetente, destinatário e intruso (Alice, Bob e Trudy)

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Quais informações um intruso pode ter acesso e que ações podem ser executadas por ele?
 - *Monitorar* ouvir e gravar as mensagens de controle e de dados no canal.
 - Modificar, inserir ou eliminar mensagens ou conteúdo de mensagens.
- Possibilita montar uma grande variedade de ataques à segurança:
 - Roubar senhas e dados.
 - Fazer-se passar por outra entidade.
 - Sequestrar uma sessão em curso.

Princípios de criptografia

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Técnicas criptográficas permitem que um remetente disfarce os dados de modo que um intruso não consiga obter nenhuma informação dos dados interceptados.
- O destinatário deve estar habilitado a recuperar os dados originais a partir dos dados disfarçados.
 - Criptografia fornece naturalmente confidencialidade.
 - Utilizada também para prover integridade e autenticação.

Princípios de criptografia

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Suponha que Alice queira enviar uma mensagem a Bob.
- A mensagem de Alice em sua forma original é conhecida como texto aberto (m) ou texto claro.
- Alice criptografa sua mensagem em texto aberto usando um **algoritmo de** criptografia.
 - Padronizados e disponíveis para qualquer um.
- Alice fornece uma **chave** (K_A) como entrada para o algoritmo de criptografía.
- O algoritmo de criptografia gera uma mensagem criptografada, conhecida como **texto cifrado** $(K_A(m))$, que parece ininteligível para qualquer intruso.

Princípios de criptografia

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- De maneira semelhante, Bob fornecerá uma chave (K_B) ao algoritmo de decriptação.
 - Pega o texto cifrado e a chave de Bob como entrada e produz o texto aberto original como saída.
 - $K_R(K_A(m)) => m$
- Em sistemas de chaves simétricas, as chaves de Alice e Bob são idênticas e secretas.
- Em sistemas de chaves públicas, é usado um par de chaves.
 - Uma das chaves é conhecida por Bob e Alice (mundo inteiro).
 - A outra chave é conhecida apenas por Bob ou por Alice (mas não ambos).

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

6ª edição

Componentes criptográficos

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

6ª edição

• Cifra de César

- Algoritmo de chaves simétricas muito antigo, muito simples, atribuído a Júlio César.
- Tomar cada letra da mensagem do texto aberto e substitui-la pela k-ésima letra sucessiva do alfabeto.
- Exemplo: k= 3
 - 'a' -> 'd'; 'b' -> 'e'
 - Mensagem "bob, i love you. alice" se torna "ere, l oryh brx. dolfh" em texto cifrado.

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- **DES** (Data Encryption Standard)
 - Desenvolvido em 1977
 - Codifica texto aberto em porções de 64 bits usando uma chave de 56 bits.
 - Considerado inseguro.
 - No desafio DES Challange III de 1999 conseguiram decodificar uma mensagem em pouco mais de 22 horas.

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- DES triplo (3DES)
 - Proposto como padrão criptográfico para o PPP.
 - 1. O 3DES executa primeiro o algoritmo de criptografia DES sobre os dados utilizando uma primeira chave de 56 bits.
 - 2. Em seguida, executa o algoritmo de decriptação DES sobre a saída da primeira rodada de criptografia usando uma segunda chave.
 - 3. Finalmente, executa o algoritmo de criptografia DES sobre a saída da segunda rodada usando uma terceira chave.

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- AES (Advanced Encryption Standard)
 - Sucessor do DES.
 - Processa dados em blocos de 128 bits.
 - Pode funcionar com chaves de 128, 192 e 256 bits.
 - Estima-se que uma máquina que conseguisse quebrar o DES de 56 bits em 1 segundo levaria aproximadamente 149 trilhões de anos para quebrar uma chave AES de 128 bits.

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- A criptografia de chaves simétricas exige que as duas partes comunicantes compartilhem um segredo em comum (chave simétrica).
 - As duas partes têm de concordar, de alguma maneira, com a chave compartilhada.
 - É preciso comunicação segura!
- Criptografia de chave pública permite que duas partes se comuniquem por criptografia sem compartilhar uma chave comum secreta conhecida com antecedência.
- Propriedades úteis tanto para a confidencialidade quanto para autenticação e assinaturas digitais.

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Suponha que Alice queira enviar uma mensagem (m) para Bob.
- Bob (destinatário) tem duas chaves:
 - Chave pública (K_B^+) : está à disposição do mundo todo (inclusive Trudy, a intrusa).
 - Chave privada (K_B^-) : apenas Bob conhece.

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- 1. Alice busca a chave pública de Bob (K_B^+) .
- 2. Alice criptografa m usando a chave pública de Bob e um algoritmo criptográfico conhecido (calcula $K_B^+(m)$).
- 3. Bob recebe a mensagem criptografada de Alice $(K_B^+(m))$ e usa sua chave privada (K_B^-) e um algoritmo de decriptação para decifrar a mensagem de Alice (calcula $K_B^-(K_B^+(m)) => m$).
 - É possível permutar a chave pública e a chave privada:
 - $K_B^-(K_B^+(m)) = K_B^+(K_B^-(m)) = m$

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

6ª edição

Criptografia de chaves públicas

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- O algoritmo **RSA** (Ron Rivest, Adi Shamir e Leonard Adleman) tounou-se um sinônimo de criptografia de chave pública
- Há dois componentes inter-relacionados no RSA.
 - A escolha da chave pública e da chave privada.
 - O algoritmo de criptografia/decriptação.

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Escolha das chaves pública e privada:
 - 1. Escolher dois números primos grandes, p e q.
 - 2. Computar n = pq e z = (p 1)(q 1).
 - 3. Escolher um número e (*encryption*) menor que n que não tenha fatores comuns com z (e e z são números primos entre si).
 - 4. Achar um número d (decryption), tal que ed I seja divisível exatamente por z.
 - 5. A chave pública que Bob põe à disposição de todos (K_B^+) é o par de números (n, e); sua chave privada (K_B^-) é o par de números (n, d).

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- A criptografia e decriptação:
 - Alice quer enviar a Bob um padrão de bits, ou número *m*, tal que *m* < *n*. Assim, o valor cifrado (*c*) da mensagem em texto aberto (*m*) que Alice envia é:
 - $c = m^e \mod n$
- Para decifrar a mensagem em texto cifrado recebida, Bob processa:
 - $m = c^d \mod n$

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

6ª edição

• Exemplo: e = 5, n = 35

Plaintext Letter	m: numeric representation	m ^e	Ciphertext $c = m^e \mod n$	
1	12	248832	17	
0	15	759375	15	
V	22	5153632	22	
е	5	3125	10	

Criptografia RSA

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

6ª edição

• Exemplo: d = 29, n = 35

Ciphertext c	c ^d	$m = c^d \mod n$	Plaintext Letter
17	4819685721067509150915091411825223071697	12	1
15	127834039403948858939111232757568359375	15	0
22	851643319086537701956194499721106030592	22	٧
10	100000000000000000000000000000000000000	5	е

Decriptação RSA

RSA e Chaves de Sessão

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- A exponenciação exigida pelo RSA é um processo que consome tempo considerável.
- Na prática, RSA é usando em combinação com um algoritmo de chave simétrica (DES ou AES).
- Alice quer enviar a Bob uma grande quantidade de dados.
 - 1. Alice escolhe uma chave DES (**chave de sessão** $-K_S$) que será utilizada para codificar os dados em si.
 - 2. Alice criptografa a chave de sessão usando a chave pública RSA de Bob ($c = (K_S)^e \mod n$)
 - 3. Bob recebe a chave de sessão codificada RSA (c), e a decifra para obter a chave de sessão K_S que Alice usará para transferir dados cifrados em DES.

Integridade

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Como indicar o dono ou o criador de um documento?
- Como deixar claro que alguém concorda com o conteúdo do documento?
- Exemplo: ao receber uma mensagem de Alice, Bob precisa verificar se:
 - 1. A mensagem foi, realmente, enviada por Alice.
 - 2. A mensagem não foi alterada em seu caminho para Bob.

Assinaturas digitais

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- A assinatura digital é uma técnica criptográfica que cumpre essas finalidades no mundo digital.
- Uma assinatura digital deve ser:
 - *Verificável*: provar que um documento assinado por um indivíduo foi na verdade assinado por ele.
 - Não falsificável: somente aquele indivíduo pode ter assinado o documento.
 - *Incontestável*: o signatário não pode mais tarde negar que assinou o documento.

Assinaturas digitais

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Suponha que Bob queira assinar digitalmente um documento *m*.
- Para assinar esse documento, Bob simplesmente usa sua chave criptográfica privada K_B^- para processar K_B^- (m).
- Bob tem o documento m, e sua assinatura digital do documento é $K_B^-(m)$.

KUROSE | ROSS

Assinaturas digitais

Redes de computadores e a internet

uma abordagem top-down

6ª edição

Criando uma assinatura digital para um documento

Assinaturas digitais

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- A assinatura digital $K_B^-(m)$ atende às exigências de ser verificável, não falsificável e não repudiável?
- Como Alice prova que Bob de fato assinou o documento e que ele era a única pessoa que poderia tê-lo assinado?
 - Alice pega a chave pública de Bob, K_B^+ , e a aplica à assinatura digital K_B^- (m) associada ao documento m.
 - $K_B^+(K_B^-(m))$, o que produz m.
 - Reprodução exata do documento original.

Assinaturas digitais

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Somente Bob pode ter assinado o documento pelas seguintes razões:
 - Quem assinou o documento deve ter usado a chave criptográfica privada K_B^- , para processar a assinatura $K_B^-(m)$, de modo que K_B^+ $(K_B^-(m)) = m$.
 - A única pessoa que poderia conhecer a chave privada K_{R}^{-} é Bob.

Resumos de mensagens

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Dada a sobrecarga de criptografia e decriptação, a assinatura de dados por criptografia/decriptação da mensagem completa pode ser exagerada.
- Um **resumo de mensagem** recebe uma mensagem m, de comprimento arbitrário e calcula uma "impressão digital" dos dados, com comprimento fixo, conhecida como resumo de mensagem H(m).
- Se m for modificado para m, então H(m) processada para os dados originais não combinará com H(m) processada sobre os dados modificados.

Funções de *hash* criptográficas

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Uma função hash criptográfica deve apresentar a seguinte propriedade:
 - Em termos de processamento, é impraticável encontrar duas mensagens diferentes x e y tais que H(x) = H(y).

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

6ª edição

• Enviando uma mensagem assinada digitalmente

Assinaturas digitais

Assinaturas digitais

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

6ª edição

Verificando uma mensagem assinada

Certificação de chaves públicas

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- Entidades (usuários, browsers, roteadores, etc) precisam ter certeza de que possuem a chave pública da entidade com a qual estão se comunicando.
 - A chave pública que supostamente é de Bob, é de fato dele?
- A vinculação de uma chave pública a uma entidade particular é feito por uma autoridade certificadora (*certification authority CA*)
 - 1. Uma CA verifica se uma entidade é quem diz ser.
 - 2. Tão logo verifique a identidade da entidade, a CA cria um **certificado** que vincula a chave pública da entidade à identidade verificada. O certificado contém a chave pública e a informação exclusiva que identifica mundialmente o proprietário da chave pública (nome ou endereço IP).

KUROSE | ROSS

Assinaturas digitais

Redes de computadores e a internet

uma abordagem top-down

6ª edição

Bob obtém sua chave pública certificada pela CA

Autenticação

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- A autenticação é o processo de provar a identidade de uma entidade a outra entidade por uma rede de computadores.
- A autenticação precisa ser feita unicamente com base nas mensagens e dados trocados como parte de um **protocolo de autenticação**.
- O protocolo de autenticação primeiro estabelece as identidades das partes para a satisfação mútua; somente após a autenticação, as partes se lançam à tarefa que tem em mãos.

Autenticação

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

- 1. Alice envia a mensagem "Eu sou Alice" para Bob.
- 2. Bob escolhe um **nonce** e o envia a Alice. O nonce será usado para ele se certificar de que Alice está ao vivo.
- 3. Alice usa sua chave privada K_A^- para criptografar o nonce e envia o valor resultante $K_A^-(R)$ a Bob.
- 4. Bob aplica a chave pública de Alice K_A^+ à mensagem recebida, ou seja, $K_A^+(K_A^-(R)) = R$. Bob autentica Alice.

Autenticação

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

