Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет»

На правах рукописи

Месенёв Павел Ростиславович

Оптимизационные методы решения обратных задач сложного теплообмена

Специальность 05.13.18 — «Математическое моделирование, численные методы и комплексы программ»

Диссертация на соискание учёной степени кандидата физико-математических наук

Научный руководитель: доктор физико-математических наук, профессор Чеботарев Александр Юрьевич

Оглавление

			Стр.			
Введе	ние .		5			
Глава	1. Mo	дели сложного теплообмена	12			
1.1	Уравн	нение переноса теплового излучения	13			
1.2	Диффузионное P_1 приближение					
1.3	Стационарная модель сложного теплообмена					
1.4	Квази	Квазистационарная модель сложного теплообмена				
1.5	Мател	Математический аппарат моделирования сложного теплообмена. 2				
Глава	2. Гра	аничные обратные задачи и задачи с данными Коши	28			
2.1	Квазирешение граничной обратной задачи					
	2.1.1	Постановка обратной задачи	28			
	2.1.2	Формализация задачи нахождения квазирешения	29			
	2.1.3	Анализ экстремальной задачи	30			
2.2	Анализ оптимизационного метода решения задачи сложного					
	теплообмена с граничными условиями типа Коши					
	2.2.1	Постановка обратной задачи	33			
	2.2.2	Формализация задачи управления	34			
	2.2.3	Разрешимость задачи (CP)	36			
	2.2.4	Условия оптимальности	37			
2.3	Анализ оптимизационного метода для квазистационарной модели		39			
	2.3.1	Formulation of an Optimal Control Problem	39			
	2.3.2	Формализация задачи управления	40			
	2.3.3	Разрешимость задачи (\mathbf{OC})	42			
	2.3.4	Условия оптимальности	45			
	2.3.5	Аппроксимация задачи с граничными условиями типа				
		Коши	46			
	2.3.6	Численный алгоритм и примеры	48			
Глава	3. Ан	ализ задач оптимального управления для				
	ква	зистационарных уравнений сложного теплообмена.	52			
3.1	Kopp	ектность начально-краевой задачи для квазилинейной				
	модел	и	52			

			Стр.		
	3.1.1	Введение	. 52		
	3.1.2	Formulation of the initial-boundary value problem	. 53		
	3.1.3	Iterative method			
	3.1.4	Uniqueness theorem and convergence of the iterative method	58		
	3.1.5	Numerical simulation			
3.2	Задач	чи оптимального управления с фазовыми ограничениями .	. 62		
	3.2.1	Введение	. 62		
	3.2.2	Формализация задачи оптимального управления	65		
	3.2.3	Problem (P)	. 66		
	3.2.4	Предварительные результаты	. 66		
	3.2.5	Разрешимость задачи оптимального управления	. 67		
	3.2.6	Задача штрафов	. 69		
	3.2.7	Реализация численного алгоритма	. 70		
3.3	Корр	ектность начально-краевой задачи для квазилинейной			
	модели				
	3.3.1	Введение	. 73		
	3.3.2	Формализация задачи оптимального управления	. 74		
	3.3.3	Предварительные результаты	. 75		
	3.3.4	Метод штрафов	. 76		
Глава	4. Чи	сленные методы и комплексы программ	. 78		
4.1	Перва	ая статья	. 78		
4.2	Втора	ая статья	. 82		
	4.2.1	Аппроксимация задачи с условиями типа коши	. 82		
	4.2.2	Численные эксперименты	. 83		
4.3	Втора	ая статья	. 87		
	4.3.1	Аппроксимация решения без заданного условия			
		излучения на границе	. 87		
	4.3.2	Численные эксперименты	. 88		
Заклю	чение		. 92		
Словај	рь тер	оминов	. 93		
Списо	к рису	⁷ НКОВ	. 94		

	Этр.
Список таблиц	95
Приложение А. Примеры вставки листингов программного кода	96
Приложение Б. Очень длинное название второго приложения,	
в котором продемонстрирована работа	
с длинными таблицами	102
Б.1 Подраздел приложения	102
Б.2 Ещё один подраздел приложения	104
Б.3 Использование длинных таблиц с окружением $longtabu$	108
Б.4 Форматирование внутри таблиц	111
Б.5 Стандартные префиксы ссылок	113
Б.6 Очередной подраздел приложения	114
Б.7 И ещё один подраздел приложения	114
Приложение В. Чертёж детали	115

Введение

Под сложным теплообменом понимают процесс распространения тепла, в котором участвуют несколько видов переноса тепла — радиационный, кондуктивный, конвективный. При чём в данном процессе радиационный перенос тепла занимает существенную роль при высоких температурах. С математической точки зрения процесс сложного теплообмена моделируется системой из дифференциального уравнения теплопроводности, а также интегро-дифференциального уравнения переноса излучения.

Решение уравнения переноса излучения является трудно вычислимой задачей из-за того, что помимо временной и пространственной переменной также задействовано векторное поле, задающее направление излучения. В связи с этим для уравнения переноса излучения применяют ряд аппроксимаций, в том числе диффузионное P_1 приближение, которое использует усреднённая интенсивность излучения по всем направлениям. Широко используемое P_1 приближение является частным случаем метода сферических гармоник (P_N -приближения) и упрощенного метода сферических гармоник (SP_N -приближения, SP_1 эквивалентно P_1).

В классических прямых задачах сложного теплообмена задаются параметры системы, и по ним вычисляется состояние системы — температурное поле и интенсивность теплового излучения. Обратные задачи сложного теплообмена состоят в разыскании исходных параметров системы по некоторым известным сведениям о температурном поле или интенсивности излучения. Например, обратные задачи, связанные с теплопроводностью, обычно связаны с оценкой неизвестного граничного теплового потока при известной температуре.

Отметим трудности, возникающие при решении обратных задач сложного теплообмена.

Эти задачи математически классифицируются как некорректные в общем смысле, из-за высокой нестабильности решений. Как следствие, обратные задачи теплообмена долгое время не представляли физического интереса. Появление в 50-х годах эвристических методов и в 60–70е годы методов оптимизации позволило исправить проблемы некорректности исследуемых задач. В основе таких методов лежит идея замены исходной задачи на задачу оптимизации с использованием регуляризации, которая и позволяет преодолеть проблемы

нестабильности решений. Приведём некоторые пионерские работы А.Н. Тихонова, О.М. Олифанова, J.V.Beck и других, нашедших различные способы преодоления неустойчивостей обратных задач.

Диссертация посвящена теоретическому анализу обратных стационарных задач сложного теплообмена в трёхмерной области в рамках P_1 -приближения уравнения переноса излучения. Теоретические результаты проиллюстрированы численными примерами.

Исследование математических моделей радиационного теплопереноса учитывающих одновременно вклад эффектов теплопроводности и излучения даёт теоретическую основу для инженерных решений в различных областях, таких как производство стекла [glass], лазерная интерстициальная термотерапия [therapy], и другие. Главной особенностью данных процессов является существенное влияние излучения на теплообмен при высоких температурах.

Степень разработанности темы исследования.

Приведём работы [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], которые посвящены анализу разрешимости моделей сложного теплообмена между телами, разделенными прозрачной средой. Эти модели включают уравнение теплопроводности с нелинейным нелокальным краевым условием, моделирующим тепловое излучение границы области и теплообмен излучением между частями границы, в [4, 6, 7, 9, 11, 12, 13] рассмотрены стационарные модели, в [3, 5, 8, 9, 10, 11, 12] — нестационарные.

В следующих работах исследована разрешимость моделей сложного теплообмена в полупрозрачной среде, в которых для моделирования радиационного теплообмена используется полное уравнение переноса излучения. В [14, 15] доказана однозначная разрешимость одномерных стационарных задач радиационно-кондуктивного теплообмена, в [16, 17, 18] доказана однозначная разрешимость трехмерных задач: в [18] исследована стационарная модель, в [17] — нестационарная, в [16] — квазистационарная. Под квазистационарными моделями сложного теплообмена понимаются модели, включающие нестационарное уравнение теплопроводности и стационарное уравнение переноса излучения.

Отметим работы [19, 20, 21, 22, 23, 24], посвященные разработке численных методов для указанных моделей. В работах А.А. Амосова [25, 26, 27, 28] доказана однозначная разрешимость стационарных и квазистационарных моделей сложного теплообмена в системе полупрозрачных тел, где для описания распространения излучения используется уравнение переноса излучения

с краевыми условиями, моделирующими отражение и преломление излучения на границах тел, также учитывается зависимость интенсивности излучения и оптических свойств тел от частоты излучения: в [25, 26] ставились условия диффузного отражения и преломления излучения, в [27, 28] — условия отражения и преломления излучения по законам Френеля.

Отметим следующие работы, посвященные решению обратных задач в рамках моделей сложного теплообмена с полным уравнением переноса излучения. В [29] проведен теоретический анализ задачи оптимального управления источниками тепла в рамках квазистационарной модели сложного теплообмена, включающей полное уравнение переноса излучения: доказана однозначная разрешимость прямой задачи, доказана разрешимость задачи управления, и получены условия оптимальности. В [30] разработан численный алгоритм решения задачи оптимального управления источниками тепла и излучения в рамках стационарной модели сложного теплообмена с полным уравнением переноса излучения. Работа [31] посвящена теоретическому и численному анализу обратной задачи восстановления начального распределения температуры по известной зависимости температуры на границе области от времени в рамках квазистационарной модели сложного теплообмена.

Отметим также работы [32, 33, 34, 11], посвященные анализу задач оптимального управления для стационарных моделей сложного теплообмена в прозрачной среде, включающих уравнение теплопроводности с нелинейным нелокальным краевым условием, моделирующим тепловое излучение границы области и теплообмен излучением между частями границы, и работу [35], в которой построен численный алгоритм решения задачи оптимального управления граничными коэффициентами в одномерной нестационарной модели. Которая включает уравнение теплопроводности с нелинейным краевым условием, описывающее тепловое излучение границ. Работы [36, 37, 38, 39] посвящены численному моделированию в рамках диффузионных моделей сложного теплообмена. В [40] исследована схема метода конечных объемов для решения квазистационарной системы уравнений сложного теплообмена на основе P_1 -приближения уравнения переноса излучения.

Сравнение P_1 -приближения с другими методами аппроксимации уравнения переноса излучения проводилось в [41, 42, 24, 37, 43, 44]. Вывод и численный анализ нестационарного P_1 -приближения выполнен в [45, 46, 47, 42, 44]. В работах R. Pinnau, O. Tse [48, 49] проведен теоретический анализ квазистацио-

нарных моделей сложного теплообмена на основе SP_1 и SP_3 -приближений. Эти модели включают уравнение теплопроводности, стационарное SP_N -приближение, а также в [49] уравнения Навье – Стокса в приближении Буссинеска.

В [48] доказаны существование, единственность и ограниченность решения задачи сложного теплообмена на основе P_1 -приближения без источников тепла и излучения, в [49] доказана однозначная разрешимость задачи свободной конвекции с радиационным теплообменом на основе SP_3 -приближения в двумерной области, в этой модели присутствуют источники тепла с ограниченной плотностью. В работах А.Е. Ковтанюка, А.Ю.Чеботарева [50, 51, 52] доказана однозначная разрешимость краевых задач для стационарных моделей сложного теплообмена на основе P_1 -приближения, доказана сходимость метода простой итерации нахождения решения.

Отметим, что численная реализация данного метода затруднена, поскольку на каждой итерации необходимо решить нелинейное эллиптическое уравнение. В [53] доказана однозначная разрешимость сходной субдифференциальной краевой задачи с многозначной зависимостью коэффициента излучения границы от интенсивности излучения. В [54, 55] получены результаты о существовании и единственности решений обратных задач для стационарной диффузионной модели сложного теплообмена, которые заключаются в нахождении неизвестной плотности источников тепла в виде линейной комбинации заданных функционалов при известных значениях этих функционалов на решении краевой задачи. Работы R. Pinnau, O. Tse [48, 49] посвящены теоретическому анализу задач оптимального управления температурой на границе области в рамках квазистационарных моделей сложного теплообмена на основе SP_N - приближений: доказана разрешимость задач управления, найдены необходимые условия оптимальности. В [56, 57, 47, 58, 59, 60] разработаны численные методы решения задач оптимального управления граничной температурой для квазистационарной модели сложного теплообмена на основе P_1 -приближения, при этом в [56, 57, 58] использовалась модель с учетом зависимости коэффициента поглощения от частоты излучения: в [47, 59] минимизировалось отклонение поля температуры от заданного и для решения задачи оптимизации применялся метод Ньютона, в [58] для решения задачи минимизации отклонения поля температуры от заданного применялся метод проекции градиента, в [56, 60 минимизировалась норма градиента температуры и для решения задачи оптимизации применялся метод проекции градиента. В [57] решалась задача

минимизации отклонения поля температуры от заданного на основе серии из трех моделей, аппроксимирующих уравнение переноса излучения с разной точностью, использовался оптимизационный метод второго порядка

В [61] проведен теоретический анализ задачи оптимального управления температурой на границе области в рамках стационарной диффузионной модели сложного теплообмена, для численно горешения задачи управления применен метод проекции градиента. В работах А.Е.Ковтанюка, А.Ю.Чеботарева и др. [50, 62, 63, 64] исследованы задачи оптимального управления коэффициентом излучения границы области в рамках стационарной модели сложного теплообмена на основе P_1 -приближения. В [50, 64] выведены необходимые условия оптимальности для задачи максимизации выходящей из среды энергии, доказана разрешимость задачи управления и получены достаточные условия регулярности системы оптимальности, которые выполняются при достаточно большой скорости движения среды и малых размерах области. В [62, 63] получены достаточные условия оптимальности для задач максимизации и минимизации полей температуры и излучения во всей области теплообмена, доказана сходимость метода простой итерации нахождения оптимального управления, эти исследования были выполнены позже аналогичной работы автора для нестационарной модели.

Таким образом, ряд важных задач, относящихся к моделированию и оптимизации сложного теплообмена на основе диффузионного приближения, оставался нерешенным: исследование разрешимости нестационарной задачи сложного теплообмена с источниками тепла и излучения и нестационарной задачи свободной конвекции с радиационным теплообменом в трехмерной области, исследование устойчивости по Ляпунову стационарных решений, вывод диффузионной модели сложного теплообмена в многослойной среде, анализ сходимости метода Ньютона для уравнений сложного теплообмена, разработка численных методов решения задач оптимального управления коэффициентом излучения границы области в рамках нестационарных моделей сложного теплообмена, доказательство регулярности условий оптимальности для задачи оптимального управления коэффициентом излучения границы в рамках стационарной модели.

Цели и задачи диссертационной работы. Цели работы - теоретическое исследование разрешимости обратных стационарных задач сложной теплопроводности, разработка численных методов решения исследуемых краевых

задач, а также задач оптимального управления. Разработка вычислительных программ для постановки численных экспериментов и демонстрации результатов расчётов. Перед началом работы были поставлены следующие задачи:

- Исследовать разрешимость задачи по нахождению коэффициента отражения участка границы для стационарной модели, по дополнительной информации о температурном поле.
- Разработать численный метод по нахождению решения для соответствующей экстремальной задачи.
- Исследовать стационарную задачу оптимального управления для уравнений радиационно-кондуктивного теплообмена в трехмерной области в рамках P_1 -приближения уравнения переноса излучения.
- Результаты теоретического анализа проиллюстрировать численными примерами.

Научная новизна. Результатом работы является теоретический анализ разрешимости обратных задач сложного теплообмена. Доказано существование квазирешения для первой рассматриваемой задачи. Реализован алгоритм градиентного спуска для решения экстремальной задачи и представлены результаты численных экспериментов. Далее показано, что последовательность решений экстремальных задач сходится к решению краевой задачи с условиями типа Коши для температуры. Результаты теоретического анализа также проиллюстрированы численными примерами.

Теоретическая и практическая значимость. Исследование однозначной разрешимости экстремальных задач, а также задач оптимального управления крайне важно при реализации численных алгоритмов и позволяет судить об адекватности полученных решений.

Задачи оптимизации имеют крайне важное практическое применение при выборе параметров системы для получения желаемой температуры или теплового излучения. Необходимость выбора параметров системы возникает при проектировании инженерных установок в которых присутствуют процессы сложного теплообмена.

Разработанные комплексы программ служат практическим подтверждением теоретических результатов, а также могут быть использованы в качестве примеров для решения подобных задач.

Научная значимость данной работы состоит в теоретическом вкладе в исследования корректности и разрешимости задач сложного теплообмена.

Реализация конкретных методов решения проблем оптимального управления, в свою очередь, имеет высокую значимость для решения прикладных инженерных задач по проектированию тепловых установок с заданными температурными свойствами.

Методология и методы исследования. В работе широко использовались методы математического и функционального анализа, теории дифференциальных уравнений в частных производных, теории экстремальных задач. Для разработки численных алгоритмов решения применялись методы вычислительной математики, объектно-ориентированное и функциональное программирование, методы оптимизации и другие.

Положения, выносимые на защиту. В области математического моделирования

Разрешимость экстремальной задачи для стандартной модели радиационно-диффузионного теплообмена

Степень достоверности и апробация результатов. Теоретические результаты, представленные в диссертации получены использованием методов функционального анализа, теорий дифференциальных уравнений и экстремальных задач. Теоремы имеют строгие математические доказательства. Достоверность численных экспериментов обеспечивается согласованностью с теоретическими результатами, доказательством сходимости итерационных процессов и тестированием разработанного программного обеспечения.

Публикации. Результаты диссертационного исследования опубликованы в пяти статьях [65, 66] в изданиях, рекомендованных ВАК.

Личный вклад автора. Результаты в области математического моделирования получены совместно с научным руководителем. В области численных методов и комплексов программ результаты получены автором самостоятельно.

Объем и структура работы. Диссертация состоит из введения, 4 глав, заключения и 3 приложений. Полный объём диссертации составляет 115 страниц, включая 6 рисунков и 4 таблицы. Список литературы содержит 0 наименований.

Глава 1. Модели сложного теплообмена

1.1 Уравнение переноса теплового излучения

Уравнение переноса излучения описывает поле интенсивности излучения при взаимодействии теплового излучения с поглощающей, излучающей и рассеивающей средой (radiatively participating medium). Будем предполагать, что среда имеет постоянный показатель преломления n, является неполяризующей, находится в состоянии покоя (по сравнению со скоростью света) и в локальном термодинамическом равновесии [67, с. 280].

Спектральной интенсивностью излучения $I_{\mathbf{v}}(x\boldsymbol{\omega},t)$ [Вт/(2 ·стер· Γ ц)] называется количество энергии излучения, проходящего через единичную площадку, перпендикулярную направлению распространения $\boldsymbol{\omega}$, внутри единичного телесного угла, осью которого является направление $\boldsymbol{\omega}$, в единичном интервале частот, включающем частоту \boldsymbol{v} , и в единицу времени. Считаем, что направления излучения $\boldsymbol{\omega}$ связаны с точками единичной сферы $S = \{\boldsymbol{\omega} \in R^3 : \|\boldsymbol{\omega}\| = 1\}$.

Рассмотрим пучок излучения интенсивностью $I_{\nu}(x\omega,t)$, распространяющегося в поглощающей, излучающей и рассеивающей среде в заданном направлении. Энергия излучения будет уменьшаться вследствие поглощения излучения веществом и отклонения части его от первоначальной траектории в результате рассеяния во всех направлениях, но одновременно она будет возрастать вследствие испускания излучения веществом.

Обозначим через $\kappa_{a\nu}[{\rm M}^{-1}]$ спектральный коэффициент поглощения, равный доле падающего излучения, поглощенной веществом на единице длины пути распространения излучения. Приращение интенсивности излучения за счет поглощения равно $(dI_{\nu})_{\rm norn} = -\kappa_{a\nu}I_{\nu}ds$, где ds — элемент пути. Отметим, что $1/\kappa_{a\nu}$ есть средняя длина свободного пробега фотона до его поглощения веществом [67, с. 281].

Для получения выражения для испускания излучения элементом объема часто используется предположение о локальном термодинамическом равновесии. Оно означает, что любой малый элемент объема среды находится в локальном термодинамическом равновесии, вследствие чего состояние любой точки может быть охарактеризовано локальной температурой T(x). Это предположение законно, когда столкновения атомов в веществе происходят столь часто, что это приводит к локальному термодинамическому равновесию в каждой точке x среды. В этом случае испускание излучения элементом объема

можно описать с помощью функции Планка [68, с. 36]. Приращение интенсивности излучения за счет испускания равно $(dI_{\nu})_{\rm исn} = j_{\nu}ds\ j_{\nu}$ – коэффициент испускания. В локальном термодинамическом равновесии справедлива формула [68, с. 36], [67, с. 282] $j_{\nu} = \kappa_{a\nu}I_{b\nu}$, где $I_{b\nu}$ — интенсивность излучения абсолютно черного тела.

Абсолютно черным называется тело, которое поглощает все падающее со всех направлений излучение любой частоты без отражения, пропускания и рассеяния. Из закона Кирхгофа следует, что абсолютно черное тело также излучает максимальное количество энергии при данной температуре [68, с. 25], [67, с. 5]. Интенсивность излучения абсолютно черного тела при температуре T равна

$$I_{b\nu}(T) = \frac{2h\nu^3 n^2}{c_0^2 (e^{h\nu/kT} - 1)},$$

где h – постоянная Планка, k - постоянная Больцмана, c_0 – скорость света в вакууме, T – абсолютная температура, n – показатель преломления. Интегральная интенсивность злучения абсолютно черного тела $I_b(T)$ вычисляется по формуле [68, с. 28], [67, с. 10]

$$I_b(T) = \int_0^\infty I_{b\nu}(T) d\nu = \frac{n^2 \sigma T^4}{\pi},$$

где σ – постоянная Стефана-Больцмана.

Рассеяние излучения учитывается так же, как поглощение, с той разницей, что рассеянная энергия просто перенаправляется и возникает в приращении интенсивности излучения в другом направлении. Различают когерентное и некогерентное рассеяние. Рассеяние называется когерентным, если рассеянное излучение имеет ту же самую частоту, что и падающее излучение, и некогерентным, если частота рассеянного излучения отличается от частоты падающего излучения. В дальнейшем мы будем рассматривать только когерентное рассеяние. Обозначим через κ_{sv} [м⁻¹] спектральный коэффициент рассеяния, равный доле падающего излучения, рассеянной веществом во всех направлениях на единице длины пути распространения излучения. Тогда приращение интенсивности излучения за счет «рассеяния вне» равно $(dI_{nu})_{\text{расс.вне}} = -\kappa_{sv}I_{nuds}$. Для описания "рассеяния в"вводится неотрицательная фазовая функция рассеяния $P_{nu} = (\omega, \omega')$ такая, что $\frac{1}{4\pi} \int_S P_{nu}(\omega, \omega') d\omega = 1$. Величина $\frac{1}{4\pi} \int_S P_{nu}(\omega, \omega') d\omega$ определяет вероятность того, что излучение частоты ν , падающее в направлении ω' , будет рассеяно в пределах элементарного телесного угла $d\omega$ в

направлении ω . Случай $P_{\nu} \equiv 1$ соответствует изотропному рассеянию. Тогда для того, чтобы получить приращение интенсивности излучения за счет «рассеяния в», нужно проинтегрировать $I_{\nu}(\omega')P_{\nu}(\omega,\omega')/4\pi$ по всем входящим направлениям ω' [67, с. 283]: $(dI_{\nu})_{\text{расс.в}} = ds \frac{\kappa_{s\nu}}{4\pi} \int_{S} I_{\nu}(\omega') P_{nu(\omega,\omega')d\omega'}$. Учитывая приращения интенсивности излучения с учетом поглощения, испускания и рассеяния, получим искомое уравнение переноса излучения [68, с. 272], [67, с. 284]:

$$\frac{1}{c} \frac{\partial I_v(x, \omega, t)}{\partial t} + \omega \cdot \nabla_x I_v(x, \omega, t) + \kappa_v I_v(x, \omega, t) = \\
= \kappa_{av} I_{bv}(T(x, t)) + \frac{K_{sv}}{4\pi} \int_S I_v(x, \omega', t) P_v(\omega, \omega') d\omega'.$$

Здесь $\kappa_{nu=\kappa_{a\nu}+\kappa_{s\nu}}$ – полный спектральный коэффициент взаимодействия, c – скорость света в среде.

Далее получим граничные условия для уравнения переноса излучения. Будем считать, что граница области непрозрачна, испускает излучение диффузно и отражает излучение диффузно и зеркально. Степенью черноты поверхности $\varepsilon v(x)$ называется отношение количества энергии, испускаемого данной поверхностью, к количеству энергии, испускаемому абсолютно черным телом при той же температуре. При диффузном испускании излучения степень черноты не зависит от направления и определяется формулой $\varepsilon_v(x) = \frac{I_{v,ucn}(x)}{I_{bv}(T(x))}$, где $I_{v,ucn}(x)$ – интенсивность излучения, испускаемого поверхностью при температуре T(x) [68, с. 53].

При диффузном поглощении степень черноты равняется поглотительной способности, которая равна доле поглощенного излучения [67, с. 66]. Также введем коэффициенты зеркального и диффузного отражения $\rho_{\nu}^{s}(x), \rho_{\nu}^{d}(x)$ как части зеркально и диффузно отраженного излучения соответственно. Отметим, что в случае непрозрачной поверхности $\varepsilon_{\nu} + \rho_{\nu}^{s} + \rho_{nu=1}^{d}$. Граничное условие имеет вид [69], [67, с. 289]

$$I_{v}(x, \boldsymbol{\omega}, t) = \varepsilon_{v}(x)I_{bv}(T(x, t)) + \rho_{v}^{s}(x)I_{v}(x, \boldsymbol{\omega}_{R}, t) + \frac{\rho_{v}^{d}(x)}{\pi} \int_{\boldsymbol{\omega}' \cdot \mathbf{n} > 0} I_{v}(x, \boldsymbol{\omega}', t) \, \boldsymbol{\omega}' \cdot \mathbf{n} d\boldsymbol{\omega}', \, \boldsymbol{\omega} \cdot \mathbf{n} < 0,$$

где \mathbf{n} — вектор внешней нормали к границе области, $\boldsymbol{\omega}$ — входящее направление, $\boldsymbol{\omega}_R$ — направление отражения, определяемое из соотношения $\boldsymbol{\omega} + (-\boldsymbol{\omega}_R) = 2\cos\theta = \boldsymbol{\omega}\cdot\mathbf{n}$ косинус угла между вектором нормали и направлением падающего излучения. Таким образом, $\boldsymbol{\omega}_R = \boldsymbol{\omega} - 2(\boldsymbol{\omega}\cdot\mathbf{n})\mathbf{n}$.

Поле температуры описывается уравнением теплопроводности [67, с. 297]:

$$\rho c_p \frac{\partial T(x,t)}{\partial t} - k\Delta T(x,t) + \rho c_p \mathbf{v}(x,t) \cdot \nabla T(x,t) = - \div \mathbf{q}_r(x,t),$$

где T[K] — температура, \mathbf{v} [м/с] поле скоростей, k [Вт/м ·] — коэффициент теплопроводности, c_p [Дж/(кг·K)] — удельная теплоёмкость при постоянном давлении, $\mathbf{\rho}$ [кг/м³] — плотность, \mathbf{q}_r — вектор плотности потока излучения, определяемый формулой [67, с. 292] $\mathbf{q}_r(x,t) = \int_0^\infty \int_S I_{\mathbf{v}}(x,\mathbf{w},t) \mathbf{w} d\mathbf{w} d\mathbf{v}$. Дивергенция вектора плотности потока излучения $\div \mathbf{q}_r$ характеризует изменение в единицу времени энергии излучения, заключенной в единице объема среды, по всему спектру частот вследствие испускания излучения во всё сферическое пространство и поглощения падающего из него излучения [68, с. 274]. Для нахождения $\div \mathbf{q}_r$ проинтегрируем уравнение (1.1) по $\mathbf{w} \in S$, получим

$$\frac{1}{c}\frac{\partial}{\partial t}\int_{S}I_{v}(x,\boldsymbol{\omega},t)d\boldsymbol{\omega} + \div \int_{S}I_{v}(x,\boldsymbol{\omega},t)\boldsymbol{\omega}d\boldsymbol{\omega} + \kappa_{v}\int_{S}I_{v}(x,\boldsymbol{\omega},t)d\boldsymbol{\omega} =
= 4\pi\kappa_{av}I_{bv}(T(x,t)) + \frac{\kappa_{sv}}{4\pi}\int_{S}\int_{S}I_{v}(x,\boldsymbol{\omega}',t)P_{v}(\boldsymbol{\omega},\boldsymbol{\omega}')d\boldsymbol{\omega}'d\boldsymbol{\omega}.$$

Поменяем порядок интегрирования во втором слагаемом в правой части:

$$\int_{S} \int_{S} I_{v}(x, \boldsymbol{\omega}', t) P_{v}(\boldsymbol{\omega}, \boldsymbol{\omega}') d\boldsymbol{\omega}' d\boldsymbol{\omega} =
= \int_{S} I_{v}(x, \boldsymbol{\omega}', t) \int_{S} P_{v}(\boldsymbol{\omega}, \boldsymbol{\omega}') d\boldsymbol{\omega} d\boldsymbol{\omega}' = 4\pi \int_{S} I_{v}(x, \boldsymbol{\omega}', t) d\boldsymbol{\omega}'.$$

Обозначим через $G_v(x,t)=\int_S I_v(x,\boldsymbol{\omega},t)d\boldsymbol{\omega}$ пространственную плотность падающего излучения. Тогда

$$\frac{1}{c}\frac{\partial G_v(x,t)}{\partial t} + \div \int_S I_v(x,\boldsymbol{\omega},t)\boldsymbol{\omega}d\boldsymbol{\omega} + \kappa_v G_v(x,t) = 4\pi\kappa_{av}I_{bv}(T(x,t)) + \kappa_{sv}G_v(x,t),$$
 отсюда

$$\div \int_{S} I_{v}(x, \boldsymbol{\omega}, t) \boldsymbol{\omega} \boldsymbol{\omega} d\boldsymbol{\omega} = 4\pi \kappa_{av} I_{bv}(T(x, t)) - \kappa_{av} G_{v}(x, t) - \frac{1}{c} \frac{\partial G_{v}(x, t)}{\partial t},$$

$$\div \mathbf{q}_{r}(x, t) = \int_{0}^{\infty} \kappa_{av} \left(4\pi I_{bv}(T(x, t)) - G_{v}(x, t)\right) dv - \frac{1}{c} \frac{\partial}{\partial t} \int_{0}^{\infty} G_{v}(x, t) dv.$$

Таким образом, уравнение теплопроводности принимает вид

$$\rho c_{p} \frac{\partial T(x,t)}{\partial t} - k\Delta T(x,t) + \rho c_{p} \mathbf{v}(x,t) \cdot \nabla T(x,t) =$$

$$= -\int_{0}^{\infty} \int_{S} \kappa_{av} \left(I_{bv}(T(x,t)) - I_{v}(x,\omega,t) \right) d\omega dv + \frac{1}{c} \frac{\partial}{\partial t} \int_{0}^{\infty} \int_{S} I_{v}(x,\omega,t) d\omega dv.$$

Получим граничные условия для уравнения теплопроводности из закона Ньютона-Рихмана. Согласно этому закону, плотность теплового потока пропорциональна разности температур поверхности тела T и окружающей среды T_b : $q = h (T - T_b)$. Здесь h [Вт $/(2 \cdot K)]$ - коэффициент теплоотдачи, характеризующий интенсивность теплообмена между поверхностью тела и окружающей средой. Численно он равен количеству тепла, отдаваемому (воспринимаемому) единицей поверхности в единицу времени при разности температур между поверхностью и средой в 1 К[70]. Отметим, что непосредственно на поверхности контакта тела с окружающей средой $T=T_b$, однако мы считаем, что температура T на границе поверхности - это температура за пределами пограничного слоя [71]. Рассматривая граничное условие для уравнения переноса излучения (1.2), будем считать, что поверхностное излучение происходит из пограничного слоя, поэтому в качестве аргумента функции $I_{bv}(T)$ будем использовать T_b . По закону сохранения энергии количество тепла, отводимое с единицы поверхности вследствие теплоотдачи, должно равняться теплу, подводимому к единице поверхности вследствие теплопроводности из внутренних объемов тела, тогда $h\left(T-T_b\right)=\mathbf{q}\cdot\mathbf{n}=-k\nabla T\cdot\mathbf{n}=-k\frac{\partial T}{\partial n}$. Таким образом, граничное условие имеет вид:

$$k\frac{\partial T(x,t)}{\partial n} + h(x)\left(T(x,t) - T_b(x,t)\right) = 0.$$

Следует отметить, что условия третьего рода для температуры обычно ставятся на твердой стенке, где $\mathbf{v} \cdot \mathbf{n} = 0$. В данном случае постановка условий третьего рода на всей границе и, в частности, на участке втекания моделирует процесс теплообмена при малых значениях нормальной компоненты скорости.

В дальнейшем мы будем рассматривать случай «серой» среды, когда κ_{av} и K_{sv} не зависят от частоты v, так что $K_{av} = K_a$, $K_{sv} = K_s$. Граница области также предполагается «серой». В этом случае уравнения и граничные условия

принимают вид (ср. [69]):

$$\begin{split} &\frac{1}{c}\frac{\partial I(x,\mathbf{w},t)}{\partial t} + \mathbf{w} \cdot \nabla_x I(x,\mathbf{w},t) + \kappa I(x,\mathbf{w},t) = \\ &= \frac{\kappa_s}{4\pi} \int_S P\left(\mathbf{w},\mathbf{w}'\right) I\left(x,\mathbf{w}',t\right) d\mathbf{w}' + \kappa_a \frac{\sigma n^2 T^4(x,t)}{\pi}, \\ &\rho c_p \frac{\partial T(x,t)}{\partial t} - k\Delta T(x,t) + \rho c_p \mathbf{v}(x,t) \cdot \nabla T(x,t) = \\ &= -\kappa_a \left(4\sigma n^2 T^4(x,t) - \int_S I(x,\mathbf{w},t) d\mathbf{w} \right) + \frac{1}{c} \frac{\partial}{\partial t} \int_S I(x,\mathbf{w},t) d\mathbf{w}, \\ &\text{гр.у.: } I(x,\mathbf{w},t) = \varepsilon(x) \frac{\sigma n^2}{\pi} T_b^4(x,t) + \rho^s(x) I\left(x,\mathbf{w}_R,t\right) + \\ &+ \frac{\rho^d(x)}{\pi} \int_{\mathbf{w}' \cdot \mathbf{n} > 0} I\left(x,\mathbf{w}',t\right) \mathbf{w}' \cdot \mathbf{n} d\mathbf{w}', \mathbf{w} \cdot \mathbf{n} < 0, \\ &\text{гр.у.: } k \frac{\partial T(x,t)}{\partial n} + h(x) \left(T(x,t) - T_b(x,t)\right) = 0. \\ &\text{Здесь } I = \int_0^\infty I_v dv. \end{split}$$

Поставим также начальные условия:

$$I(x, \mathbf{\omega}, 0) = I_0(x, \mathbf{\omega}), \quad T(x, 0) = T_0(x).$$

Соотношения (1.3)-(1.7) представляют собой модель сложного теплообмена с полным уравнением переноса излучения.

Перейдем к безразмерным величинам. Обозначим

$$I(x, \boldsymbol{\omega}, t) = \left(\frac{\sigma n^2}{\pi} T_{\text{max}}^4\right) I^*(x, \boldsymbol{\omega}, t), \quad T(x, t) = T_{\text{max}} \theta(x, t),$$

Здесь I^* — нормализованная интенсивность излучения, θ — нормализованная температура, T_{max} - максимальная температура в ненормализованной модели. Подставив (1.8) в уравнения (1.3),(1.4), получим

$$\frac{1}{c} \frac{\partial I^*(x, \omega, t)}{\partial t} + \omega \cdot \nabla_x I^*(x, \omega, t) + \kappa I^*(x, \omega, t) =
= \frac{\kappa_s}{4\pi} \int_S P(\omega, \omega') I^*(x, \omega', t) d\omega' + \kappa_a \theta^4(x, t),$$

$$\frac{\partial \theta(x,t)}{\partial t} - a\Delta \theta(x,t) + \mathbf{v}(x,t) \cdot \nabla \theta(x,t) =
= -b\kappa_a \left(\theta^4(x,t) - \frac{1}{4\pi} \int_S I^*(x,\omega,t) d\omega \right) + \frac{b}{4\pi c} \frac{\partial}{\partial t} \int_S I^*(x,\omega,t) d\omega,$$

где $a=\frac{k}{\rho c_p}, b=\frac{4\sigma n^2 T_{\max}^3}{\rho c_p}$. Подставляя (1.8) в граничные условия (1.5), и полагая $T_b=T_{\max}\theta_b$, получим

гр.у.:
$$I^*(x, \mathbf{\omega}, t) = \varepsilon(x)\theta_b^4(x, t) + \rho^s(x)I^*(x, \mathbf{\omega}_R, t) + \frac{\rho^d(x)}{\pi} \int_{\mathbf{\omega}' \cdot \mathbf{n} > 0} I^*(x, \mathbf{\omega}', t) \, \mathbf{\omega}' \cdot \mathbf{n} d\mathbf{\omega}', \, \mathbf{\omega} \cdot \mathbf{n} < 0,$$
гр.у.: $a \frac{\partial \theta(x, t)}{\partial n} + \beta(x) \left(\theta(x, t) - \theta_b(x, t)\right) = 0,$

где $\beta = \frac{h}{\rho c_p}$. Аналогично получаем начальные условия:

$$I^*(x, \boldsymbol{\omega}, 0) = I_0^*(x, \boldsymbol{\omega}), \quad \theta(x, 0) = \theta_0(x),$$
 где $I_0^*(x, \boldsymbol{\omega}) = \left(\frac{\sigma n^2}{\pi} T_{\max}^4\right)^{-1} I_0(x, \boldsymbol{\omega}), \quad \theta_0(x) = \frac{T_0(x)}{T_{\max}}.$

1.2 Диффузионное P_1 приближение

 P_1 приближение уравнения переноса излучения является частным случаем метода сферических гармоник (P_N) . Идея P_N приближений состоит в том, что функцию интенсивности излучения $I(x, \mathbf{w})$ раскладывают в ряд Фурье по сферическим гармоникам $\mathcal{Y}_l^m(\mathbf{w})$ [67, с. 496]:

$$I(x, \mathbf{\omega}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} I_l^m(x) \mathcal{Y}_l^m(\mathbf{\omega}),$$

где $I_l^m(x)$ - коэффициенты, зависящие от x. Также в ряд раскладывают фазовую функцию $P(\omega, \omega')$. Тогда решение уравнения переноса излучения ищется в виде отрезка ряда Фурье для $l \leq N$. При подстановке указанной конечной суммы в исходное уравнение интегро-дифференциальное уравнение переноса излучения относительно $I(x, \omega)$ сводится к $(N+1)^2$ дифференциальным уравнениям относительно $I_l^m(x)$.

В P_1 приближении используется линейное приближение для интенсивности излучения и фазовой функции:

$$I^*(x, \omega, t) = \varphi(x, t) + \Phi(x, t) \cdot \omega,$$
$$P(\omega, \omega') = 1 + A\omega \cdot \omega'.$$

Для фазовой функции выполняется условие нормировки:

$$\frac{1}{4\pi} \int_{S} P(\omega, \omega') d\omega = 1 + \frac{A}{4\pi} \int_{S} \omega \cdot \omega' d\omega = 1,$$

вычисление интеграла см. ниже. Коэффициент $A \in [-1,1]$ описывает анизотропию рассеяния, а величина A/3 имеет смысл среднего косинуса угла рассеяния, поскольку

$$\frac{1}{4\pi} \int_{S} \left(\boldsymbol{\omega} \cdot \boldsymbol{\omega}' \right) P\left(\boldsymbol{\omega}, \boldsymbol{\omega}' \right) d\boldsymbol{\omega} = \frac{1}{4\pi} \int_{S} \boldsymbol{\omega} \cdot \boldsymbol{\omega}' d\boldsymbol{\omega} + \frac{A}{4\pi} \int_{S} \left(\boldsymbol{\omega} \cdot \boldsymbol{\omega}' \right) \left(\boldsymbol{\omega} \cdot \boldsymbol{\omega}' \right) d\boldsymbol{\omega} = \frac{A}{3},$$

вычисление интегралов см. ниже. Случай A=0 соответствует изотропному рассеянию. Диапазон допустимых значений величины $A\in [-1,1]$ обусловлен тем, что при |A|>1 фазовая функция может принимать отрицательные значения.

Отметим, что если функция I^* ищется в виде (1.14), то [67, с. 502]

$$G(x,t)=\int_S I^*(x,\mathbf{w},t)d\mathbf{w}=4\pi\mathbf{\phi}(x,t),\quad \mathbf{q}_r(x,t)=\int_S I^*(x,\mathbf{w},t)\mathbf{w}d\mathbf{w}=rac{4\pi}{3}\mathbf{\Phi}(x,t),$$
 поэтому

$$\varphi(x,t) = \frac{1}{4\pi}G(x,t), \quad \Phi(x,t) = \frac{3}{4\pi}\mathbf{q}_r(x,t),$$

где G - аппроксимация пространственной плотности падающего излучения, \mathbf{q}_r - аппроксимация плотности потока излучения. Следовательно, функция $\boldsymbol{\varphi}(x,t)$ имеет физический смысл нормализованной интенсивности излучения в точке x в момент времени t, усредненной по всем направлениям.

Лемма 1. Справедливы равенства:

$$\begin{split} \int_{S} 1 \cdot d\mathbf{w} &= 4\pi, \quad \int_{S} \mathbf{a} \cdot \mathbf{w} d\mathbf{w} = 0, \quad \int_{S} (\mathbf{a} \cdot \mathbf{w}) (\mathbf{b} \cdot \mathbf{w}) d\mathbf{w} = \frac{4\pi}{3} \mathbf{a} \cdot \mathbf{b}, \\ \int_{S} \mathbf{w} d\mathbf{w} &= 0, \quad \int_{S} (\mathbf{a} \cdot \mathbf{w}) \mathbf{w} d\mathbf{w} = \frac{4\pi}{3} \mathbf{a}, \\ \int_{\mathbf{w} \cdot \mathbf{a} > 0} \mathbf{a} \cdot \mathbf{w} d\mathbf{w} &= \pi, \quad \int_{\mathbf{w} \cdot \mathbf{a} > 0} (\mathbf{a} \cdot \mathbf{w}) (\mathbf{b} \cdot \mathbf{w}) d\mathbf{w} = \frac{2\pi}{3} \mathbf{a} \cdot \mathbf{b}, \end{split}$$

где a, b – любые векторы.

Доказательство. Первое равенство вытекает из определения поверхностного интеграла и представляет собой выражение для площади поверхности единичной сферы.

Для вычисления остальных интегралов воспользуемся формулой перехода от поверхностного интеграла к двойному [72, с. 143, теорема 5.3]:

$$\int_{S} f(\boldsymbol{\omega}) d\boldsymbol{\omega} = \int_{D} f(\boldsymbol{\omega}_{1}(u, v), \boldsymbol{\omega}_{2}(u, v), \boldsymbol{\omega}_{3}(u, v)) |\boldsymbol{\omega}_{u} \times \boldsymbol{\omega}_{v}| du dv$$

где $D = \{(u,v): 0 \leqslant u \leqslant 2\pi, -\frac{\pi}{2} \leqslant v \leqslant \frac{\pi}{2}\}$, $\omega_1(u,v) = \cos u \cos v$, $\omega_2(u,v) = \sin u \cos v$, $\omega_3(u,v) = \sin v$, $|\omega_u \times \omega_v| du dv = \cos v du dv$ — элемент площади поверхности единичной сферы. Тогда для вычисления остальных интегралов воспользуемся формулой перехода от поверхностного интеграла к двойному [72, с. 143, теорема 5.3]:

$$\int_{S} f(\boldsymbol{\omega}) d\boldsymbol{\omega} = \int_{D} f(\boldsymbol{\omega}_{1}(u, v), \boldsymbol{\omega}_{2}(u, v), \boldsymbol{\omega}_{3}(u, v)) |\boldsymbol{\omega}_{u} \times \boldsymbol{\omega}_{v}| du dv$$

где $D = \{(u,v): 0 \leqslant u \leqslant 2\pi, -\frac{\pi}{2} \leqslant v \leqslant \frac{\pi}{2}\}, \omega_1(u,v) = \cos u \cos v, \omega_2(u,v) = \sin u \cos v, \omega_3(u,v) = \sin v, |\omega_u \times \omega_v| dudv = \cos v dudv$ — элемент площади поверхности единичной сферы. Тогда

$$\int_{S} f(\boldsymbol{\omega}) d\boldsymbol{\omega} = \int_{D} f(\boldsymbol{\omega}_{1}(u, v), \boldsymbol{\omega}_{2}(u, v), \boldsymbol{\omega}_{3}(u, v)) |\boldsymbol{\omega}_{u} \times \boldsymbol{\omega}_{v}| du dv$$

Для вычисления второго интеграла положим $f(\mathbf{w}) = \mathbf{a} \cdot \mathbf{w} = \sum_{i=1}^{3} a_i \mathbf{w}_i$,

$$\int_S \mathbf{a} \cdot \mathbf{w} d\mathbf{w} = \int_{-\pi/2}^{\pi/2} \int_0^{2\pi} \left(a_1 \cos u \cos v + a_2 \sin u \cos v + a_3 \sin v \right) \cos v du dv = 0.$$
 получим

В третьем интеграле положим $f(\mathbf{w}) = (\mathbf{a} \cdot \mathbf{w})(\mathbf{b} \cdot \mathbf{w}) = \sum_{i,j=1}^{3} a_i b_j \mathbf{w}_i \mathbf{w}_j$,

$$\int_{S} (\mathbf{a} \cdot \boldsymbol{\omega})(\mathbf{b} \cdot \boldsymbol{w}) d\boldsymbol{w} =$$

$$= \int_{-\pi/2}^{\pi/2} \int_{0}^{2\pi} \mathbf{a}^{T} \begin{pmatrix} \cos^{2} u \cos^{2} v & \sin u \cos u \cos^{2} v & \cos u \sin v \cos v \\ \sin u \cos u \cos^{2} v & \sin^{2} u \cos^{2} v & \sin u \sin v \cos v \\ \cos u \sin v \cos v & \sin u \sin v \cos v & \sin^{2} v \end{pmatrix} \mathbf{b} \cos v du dv =$$

$$\int_{-\pi/2}^{\pi/2} \int_{0}^{2\pi} \mathbf{a}^{T} \begin{pmatrix} \cos^{2} v & 0 & 0 \\ \cos u \sin v \cos v & \sin u \sin v \cos v \end{pmatrix} \mathbf{b} \cos v du dv =$$

$$= \int_{-\pi/2}^{\pi/2} \mathbf{a}^T \begin{pmatrix} \pi \cos^2 v & 0 & 0 \\ 0 & \pi \cos^2 v & 0 \\ 0 & 0 & 2\pi \sin^2 v \end{pmatrix} \mathbf{b} \cos v dv = \frac{4\pi}{3} \mathbf{a} \cdot \mathbf{b}$$

здесь \mathbf{a}, \mathbf{b} - векторы-столбцы.

Равенства во второй строке получаются из доказанных равенств:

$$\int_{S} \omega d\omega = \sum_{i=1}^{3} \mathbf{e}_{i} \int_{S} (\mathbf{w} \cdot \mathbf{e}_{i}) d\omega = 0,$$

$$\int_{S} (\mathbf{a} \cdot \mathbf{w}) \omega d\omega = \sum_{i=1}^{3} \mathbf{e}_{i} \int_{S} (\mathbf{a} \cdot \mathbf{w}) (\mathbf{w} \cdot \mathbf{e}_{i}) d\omega = \frac{4\pi}{3} \sum_{i=1}^{3} (\mathbf{a} \cdot \mathbf{e}_{i}) \mathbf{e}_{i} = \frac{4\pi}{3} \mathbf{a}.$$

Для доказательства первого равенства в третьей строке введем систему координат так, чтобы ось Oz была сонаправлена с вектором а. Воспользуемся формулой (1.16), в которой вместо S следует взять верхнюю полусферу, $D = \left\{ (u,v) : 0 \leqslant u \leqslant 2\pi, 0 \leqslant v \leqslant \frac{\pi}{2} \right\}$. Заметим, что $f(\boldsymbol{\omega}) = \mathbf{a} \cdot \boldsymbol{\omega} = |\mathbf{a}| \sin v$. Таким образом,

$$\int_{\boldsymbol{\omega}\cdot\mathbf{a}>0} \mathbf{a}\cdot\boldsymbol{\omega}d\boldsymbol{\omega} = |\mathbf{a}| \int_0^{\pi/2} \int_0^{2\pi} \sin v \cos v du dv = 2\pi \int_0^{\pi/2} \sin v \cos v dv = \pi$$

Для доказательства второго равенства в третьей строке заметим, что

$$\int_{S} (\mathbf{a} \cdot \mathbf{\omega})(\mathbf{b} \cdot \mathbf{\omega}) d\mathbf{\omega} = \int_{\mathbf{\omega} \cdot \mathbf{a} > 0} (\mathbf{a} \cdot \mathbf{\omega})(\mathbf{b} \cdot \mathbf{\omega}) d\mathbf{\omega} + \int_{\mathbf{\omega} \cdot \mathbf{a} < 0} (\mathbf{a} \cdot \mathbf{\omega})(\mathbf{b} \cdot \mathbf{\omega}) d\mathbf{\omega},$$

$$\int_{\mathbf{\omega} \cdot \mathbf{a} > 0} (\mathbf{a} \cdot \mathbf{\omega})(\mathbf{b} \cdot \mathbf{\omega}) d\mathbf{\omega} = \int_{\mathbf{\omega} \cdot \mathbf{a} < 0} (\mathbf{a} \cdot \mathbf{\omega})(\mathbf{b} \cdot \mathbf{\omega}) d\mathbf{\omega},$$

следовательно.

$$\int_{\mathbf{\omega}\cdot\mathbf{a}>0} (\mathbf{a}\cdot\mathbf{\omega})(\mathbf{b}\cdot\mathbf{\omega})d\mathbf{\omega} = \frac{1}{2}\int_{S} (\mathbf{a}\cdot\mathbf{\omega})(\mathbf{b}\cdot\mathbf{\omega})d\mathbf{\omega} = \frac{2\pi}{3}\mathbf{a}\cdot\mathbf{b}$$

Подставляя (1.14),(1.15) в (1.9), получаем

$$\frac{1}{c} \left(\frac{\partial \varphi(x,t)}{\partial t} + \boldsymbol{\omega} \cdot \frac{\partial \Phi(x,t)}{\partial t} \right) + \boldsymbol{\omega} \cdot \nabla \varphi(x,t) + \boldsymbol{\omega} \cdot \nabla_x (\Phi(x,t) \cdot \boldsymbol{\omega}) + \kappa \varphi(x,t) + \kappa \Phi(x,t) + \kappa$$

С учетом равенств

$$\int_{S} \Phi(x,t) \cdot \omega' d\omega' = 0, \quad \int_{S} \omega \cdot \omega' d\omega' = 0, \quad \int_{S} \left(\Phi(x,t) \cdot \omega' \right) \left(\omega \cdot \omega' \right) d\omega' = \frac{4\pi}{3} \Phi(x,t) \cdot \omega' d\omega' = 0$$

имеем

$$\frac{1}{c} \left(\frac{\partial \varphi(x,t)}{\partial t} + \boldsymbol{\omega} \cdot \frac{\partial \Phi(x,t)}{\partial t} \right) + \boldsymbol{\omega} \cdot \nabla \varphi(x,t) + \boldsymbol{\omega} \cdot \nabla_x (\boldsymbol{\Phi}(x,t) \cdot \boldsymbol{\omega}) + \boldsymbol{\kappa} \varphi(x,t) + \boldsymbol{\kappa} \boldsymbol{\Phi}(x,t) + \boldsymbol{\Phi}(x,t) \cdot \boldsymbol{\omega} \right) + \kappa_a \theta^4(x,t),$$

ИЛИ

$$\frac{1}{c} \left(\frac{\partial \varphi(x,t)}{\partial t} + \omega \cdot \frac{\partial \Phi(x,t)}{\partial t} \right) + \omega \cdot \nabla \varphi(x,t) + \omega \cdot \nabla_x (\Phi(x,t) \cdot \omega) + \kappa_a \varphi(x,t) + (\kappa_a + \kappa'_s) \Phi(x,t) \cdot \omega = \kappa_a \theta^4(x,t),$$

где $\kappa_s' = \kappa_s (1 - A/3)$ - приведенный коэффициент рассеяния.

Проинтегрируем уравнение (1.17) по $\omega \in S$. Получим

$$\frac{1}{c}\frac{\partial \varphi(x,t)}{\partial t} + \frac{1}{3} \div \Phi(x,t) + \kappa_a \varphi(x,t) = \kappa_a \theta^4(x,t),$$

так как

$$\int_{S} \boldsymbol{\omega} \cdot \nabla_{x} (\Phi(x,t) \cdot \boldsymbol{\omega}) d\boldsymbol{\omega} = \sum_{i=1}^{3} \int_{S} (\boldsymbol{\omega} \cdot \mathbf{e}_{i}) \left(\boldsymbol{\omega} \cdot \frac{\partial \Phi(x,t)}{\partial x_{i}} \right) d\boldsymbol{\omega} =$$

$$= \frac{4\pi}{3} \sum_{i=1}^{3} \frac{\partial \Phi(x,t)}{\partial x_{i}} \cdot \mathbf{e}_{i} = \frac{4\pi}{3} \sum_{i=1}^{3} \frac{\partial \Phi_{i}(x,t)}{\partial x_{i}} = \frac{4\pi}{3} \div \boldsymbol{\Phi}(x,t).$$

 $Y_{\text{множим уравнение}} (1.17)$ на ω :

$$\frac{1}{c} \frac{\partial \varphi(x,t)}{\partial t} \omega + \frac{1}{c} \left(\omega \cdot \frac{\partial \Phi(x,t)}{\partial t} \right) \omega + (\omega \cdot \nabla \varphi(x,t)) \omega + (\omega \cdot \nabla_x (\Phi(x,t) \cdot \omega)) \omega + \\
+ \kappa_a \varphi(x,t) \omega + (\kappa_a + \kappa'_s) (\Phi(x,t) \cdot \omega) \omega = \kappa_a \theta^4(x,t) \omega$$

и проинтегрируем полученное равенство по $\omega \in S$.

Для вычисления четвертого слагаемого представим интеграл по единичной сфере S как сумму интегралов по верхней S_1 и нижней S_2 полусферам и воспользуемся тем, что

$$\int_{S_2} (\boldsymbol{\omega} \cdot \nabla_x (\Phi(x,t) \cdot \boldsymbol{\omega})) \, \boldsymbol{\omega} d\boldsymbol{\omega} = -\int_{S_1} (\boldsymbol{\omega} \cdot \nabla_x (\Phi(x,t) \cdot \boldsymbol{\omega})) \, \boldsymbol{\omega} d\boldsymbol{\omega},$$

следовательно, интеграл равен 0. Таким образом,

$$\frac{1}{c}\frac{\partial\Phi(x,t)}{\partial t} + (\kappa_a + \kappa'_s)\Phi(x,t) + \nabla\varphi(x,t) = 0.$$

Итак, уравнения (1.18), (1.19) представляют собой P_1 приближение для уравнения переноса излучения. Дальнейшие преобразования основываются на предположении, что выполняется закон Фика:

$$\Phi(x,t) = -3\alpha\nabla\varphi(x,t),$$

где $\alpha = \frac{1}{3(\kappa_a + \kappa_s')} = \frac{1}{3\kappa - A\kappa_s}$. Фактически мы пренебрегаем производной $\frac{\partial \Phi}{\partial t}$ в уравнении (1.19). Подставив (1.20) в (1.18), получим

$$\frac{1}{c}\frac{\partial \varphi(x,t)}{\partial t} - \alpha \Delta \varphi(x,t) + \kappa_a \left(\varphi(x,t) - \theta^4(x,t)\right) = 0.$$

Чтобы получить уравнение для температуры, подставим (1.14) в (1.10). Получим

$$\frac{\partial \theta(x,t)}{\partial t} - a\Delta \theta(x,t) + \mathbf{v}(x,t) \cdot \nabla \theta(x,t) + b\kappa_a \left(\theta^4(x,t) - \varphi(x,t)\right) = \frac{b}{c} \frac{\partial \varphi(x,t)}{\partial t}.$$

Учитывая (1.21), уравнение (1.22) можно записать в виде с кросс-диффузией:

$$\frac{\partial \theta(x,t)}{\partial t} - a\Delta \theta(x,t) + \mathbf{v}(x,t) \cdot \nabla \theta(x,t) = b\alpha \Delta \phi(x,t).$$

В дальнейшем вместо уравнения (1.22) будем использовать уравнение с нулевой правой частью (см., например, [73])

$$\frac{\partial \theta(x,t)}{\partial t} - a\Delta \theta(x,t) + \mathbf{v}(x,t) \cdot \nabla \theta(x,t) + b\kappa_a \left(\theta^4(x,t) - \varphi(x,t)\right) = 0.$$

Далее выведем граничные условия типа Маршака для P_1 приближения (см. [74]). Для этого подставим (1.14) в граничное условие (1.11):

$$\varphi(x,t) + \Phi(x,t) \cdot \mathbf{\omega} = \varepsilon(x)\theta_b^4(x,t) + \rho^s(x)\left(\varphi(x,t) + \Phi(x,t) \cdot \mathbf{\omega}_R\right) + \frac{\rho^d(x)}{\pi} \int_{\mathbf{\omega}' \cdot \mathbf{n} > 0} \left(\varphi(x,t) + \Phi(x,t) \cdot \mathbf{\omega}'\right) \mathbf{\omega}' \cdot \mathbf{n} d\mathbf{\omega}', \quad \mathbf{\omega} \cdot \mathbf{n} < 0, \quad \mathbf{\omega}_R = \mathbf{\omega} - 2(\mathbf{\omega} \cdot \mathbf{n})\mathbf{n}$$

Для вычисления интеграла применим лемму 1:

$$\varphi(x,t) + \Phi(x,t) \cdot \mathbf{\omega} = \varepsilon(x)\theta_b^4(x,t) + \rho^s(x)[\varphi(x,t) + \Phi(x,t) \cdot \mathbf{\omega} - 2(\mathbf{\omega} \cdot \mathbf{n})(\Phi(x,t) \cdot \mathbf{n}) + \rho^d(x)\left(\varphi(x,t) + \frac{2}{3}\Phi(x,t) \cdot \mathbf{n}\right), \quad \mathbf{\omega} \cdot \mathbf{n} < 0.$$

Умножим данное равенство на $\mathbf{w} \cdot \mathbf{n}$ и проинтегрируем по множеству входящих направлений, для которых $\mathbf{w} \cdot \mathbf{n} < 0$. Получим

$$-\pi \varphi(x,t) + \frac{2\pi}{3} \mathbf{\Phi}(x,t) \cdot \mathbf{n} = -\pi \varepsilon(x) \theta_b^4(x,t) - \pi \rho^s(x) \varphi(x,t) + \frac{2\pi \rho^s(x)}{3} \mathbf{\Phi}(x,t) \cdot \mathbf{n} - \frac{4\pi \rho^s(x)}{3} \mathbf{\Phi}(x,t) \cdot \mathbf{n} - \pi \rho^d(x) \left(\varphi(x,t) + \frac{2}{3} \mathbf{\Phi}(x,t) \cdot \mathbf{n} \right),$$

ИЛИ

$$\varepsilon(x)\varphi(x,t) = \varepsilon(x)\theta_b^4(x,t) + \frac{2(2-\varepsilon(x))}{3}\mathbf{\Phi}(x,t)\cdot\mathbf{n}.$$

Воспользуемся равенством (1.20), будем иметь

$$\alpha \frac{\partial \varphi(x,t)}{\partial n} + \gamma(x) \left(\varphi(x,t) - \theta_b^4(x,t) \right) = 0,$$

где $\gamma=\frac{\varepsilon}{2(2-\varepsilon)}$. Отметим, что на участках втекания и вытекания среды можно принять $\gamma=1/2[75]$.

Дополним полученные соотношения граничным условием для температуры (1.12):

$$a\frac{\partial \theta(x,t)}{\partial n} + \beta(x) \left(\theta(x,t) - \theta_b(x,t)\right) = 0$$

и начальными условиями

$$\theta(x, 0) = \theta_0(x), \quad \varphi(x, 0) = \varphi_0(x).$$

Соотношения (1.21), (1.23), (1.24)-(1.26) образуют диффузионную модель сложного теплообмена.

Укажем возможные пути обоснования закона Фика (1.20). В [76, с. 136], [77, с. 222], [78, с. 96] указано, что в уравнении (1.19) можно пренебречь слагаемым $\frac{1}{c}\frac{\partial\Phi}{\partial t}$, если

$$\frac{1}{|\Phi|} \frac{\partial |\Phi|}{\partial t} \ll c \left(\kappa_a + \kappa_s' \right).$$

Это предположение означает, что относительное изменение плотности потока излучения во времени много меньше частоты столкновений фотонов, так как величина $\frac{1}{K_a+K'_s}$ есть средняя длина свободного пробега (transport mean free path) [78]

В диффузионном приближении предполагается, что среда имеет большое альбедо ($\kappa_a \ll \kappa_s$) и излучение почти изотропно [78, с. 88]. В [78, с. 97] указано, что предположения о почти изотропности излучения (направленное расширение) и о малом относительном изменении плотности потока излучения (временное расширение потока фотонов по отношению к среднему времени свободного пробега) выполняются при большом числе рассеяний фотонов, так что оба приближения можно свести к предположению $\kappa_s' \gg \kappa_a$. Кроме того, необходимо, чтобы точка наблюдения находилась достаточно далеко от источников и от границ.

В [79, 80] делается предположение $3\omega_0\alpha\ll c$, где ω_0 – частота синусоидально модулированного источника. Авторы [79,81] сначала выводят из (1.18), (1.19) уравнение второго порядка по времени, а затем отбрасывают некоторые слагаемые, которые можно считать малыми в силу указанного предположения.

Применив к уравнению (1.18) операцию дифференцирования по t, а к уравнению (1.19) операцию дивергенции, получим

$$\frac{1}{c}\frac{\partial^{2} \varphi}{\partial t^{2}} + \frac{1}{3}\frac{\partial}{\partial t} \div \Phi + \kappa_{a}\frac{\partial \varphi}{\partial t} = \kappa_{a}\frac{\partial (\theta^{4})}{\partial t}$$
$$\frac{1}{c}\frac{\partial}{\partial t} \div \Phi + (\kappa_{a} + \kappa'_{s}) \div \Phi + \Delta \varphi = 0$$

Умножим второе уравнение на c/3 и вычтем из первого уравнения. Учитывая (1.18), будем иметь

$$\frac{1}{c}\frac{\partial \varphi}{\partial t} - \alpha \Delta \varphi + \kappa_a \left(\varphi - \theta^4\right) + \frac{3\alpha \kappa_a}{c}\frac{\partial \varphi}{\partial t} + \frac{3\alpha}{c^2}\frac{\partial^2 \varphi}{\partial t^2} = \frac{3\alpha \kappa_a}{c}\frac{\partial \left(\theta^4\right)}{\partial t}.$$

Подчеркнутые слагаемые отбрасываем, принимая во внимание, что $3\alpha \kappa_a = \frac{\kappa_a}{\kappa_a + \kappa'_s} \ll 1$. Более точные оценки с переходом в частотную область указаны в [79,80]. Однако их применение для нашей задачи требует дополнительных оценок правой части (1.27), содержащей θ .

Также автор [67, с. 509] отмечает, что P_1 приближение может давать ошибочный результат в оптически тонкой среде со слишком анизотропным распределением интенсивности, в частности, в многомерных областях с длинными узкими конфигурациями и/или когда излучение поверхности преобладает над излучением среды. Среда называется оптически толстой, если средняя длина свободного пробега фотона мала по сравнению с ее характерным размером [68, с. 343]. Авторы [82, с. 228] также указывают, что для применения диффузионного P_1 приближения альбедо k_s/k должно быть близко к единице и среда должна быть оптически толстой. В [79, с. 8] указано, что фазовая функция не должна быть слишком анизотропной (||A/3|| не слишком близко к 1).

Таким образом, благоприятными условиями для применения P_1 приближения являются: 1) $\kappa_a \ll \kappa_s'$;

- 2) оптически толстая среда;
- 3) удаление от границ области.

- 1.3 Стационарная модель сложного теплообмена
- 1.4 Квазистационарная модель сложного теплообмена
- 1.5 Математический аппарат моделирования сложного теплообмена

Глава 2. Граничные обратные задачи и задачи с данными Коши

2.1 Квазирешение граничной обратной задачи

2.1.1 Постановка обратной задачи

Нормализованная стационарная модель, описывающая процесс радиационного теплопереноса в области $\Omega \subset \mathbb{R}^3$ с липшицевой границей Γ (см. [OControl_1]), имеет следующий вид:

$$-a\Delta\theta + b\kappa_a(\theta^3|\theta| - \varphi) = 0,$$

$$-\alpha\Delta\varphi + \kappa_a(\varphi - \theta^3|\theta|) = 0.$$
(2.1)

Здесь θ — нормализованная температура, φ — нормализованная интенсивность излучения, усреднённая по всем направлениям, κ_a — коэффициент поглощения. Константы a,b,α,γ,β описываются следующим образом:

$$a = \frac{k}{\rho c_v}, \ b = \frac{4\sigma n^2 T_{\text{max}}^3}{\rho c_v}, \ \alpha = \frac{1}{3\kappa - A\kappa_s}$$

где k — теплопроводность, c_v — удельная теплоёмкость, ρ — плотность, σ — постоянная Стефана—Больцмана, n — индекс рефракции, $T_{\rm max}$ — максимальная температура, $\kappa := \kappa_s + \kappa_a$ — коэффициент полного взаимодействия, κ_s — коэффициент рассеяния. Коэффициент $A \in [-1,1]$ описывает анизотропию рассеивания; случай A=0 отвечает изотропному рассеиванию.

Уравнения (2.1) дополняются граничными условиями на $\Gamma \coloneqq \partial \Omega = \overline{\Gamma}_0 \cup \overline{\Gamma}_1 \cup \overline{\Gamma}_2$, где части границы $\Gamma_0, \Gamma_1, \Gamma_2$ не имеют пересечений.

$$\Gamma: a\partial_n \theta + \beta(\theta - \theta_b) = 0,$$

$$\Gamma_0 \cup \Gamma_2: \alpha \partial_n \varphi + \gamma(\varphi - \theta_b^4) = 0,$$

$$\Gamma_1: \alpha \partial_n \varphi + u(\varphi - \theta_b^4) = 0.$$
(2.2)

Функции γ , θ_b , β – являются известными. Функция u характеризует отражающие свойства участка границы Γ_1 . Предполагается, что

$$0 < u_1 \leqslant u \leqslant u_2, \tag{2.3}$$

где u_1 и u_2 - заданные ограниченные функции.

Обратная задача состоит в нахождении функций $u(x), x \in \Gamma_1, \ \theta(x), \phi(x), x \in \Omega$ удовлетворяющих условиям (2.1)–(2.3), а также дополнительному условию на участке границы Γ_2 :

$$\theta|_{\Gamma_2} = \theta_0 \tag{2.4}$$

где θ_0 известная функция.

Сформулированная обратная задача (2.1)–(2.4) сводится к экстремальной задаче, состоящей в минимизации функционала

$$J(\theta) = \frac{1}{2} \int_{\Gamma_2} (\theta - \theta_0)^2 d\Gamma$$
 (2.5)

на решениях краевой задачи (2.1)–(2.3). Решение задачи (2.1)–(2.3), (2.5) называется квазирешением задачи (2.1)–(2.4)

2.1.2 Формализация задачи нахождения квазирешения

Будем предполагать что исходные данные удовлетворяют следующему условию:

(i) $\beta \in L^{\infty}(\Gamma)$; $\gamma \in L^{\infty}(\Gamma_0 \cup \Gamma_2)$; $u_1, u_2 \in L^{\infty}(\Gamma_1)$; $0 < \beta_0 \leqslant \beta$; $0 < \gamma_0 \leqslant \gamma$; $\beta_0, \gamma_0 = Const$, $0 \leqslant u_1 \leqslant u_2$;

Пусть $H=L^2(\Omega), V=W_2^1(\Omega), Y=V\times V$. Пространство H отождествляем с сопряжённым пространством H' так, что $V\subset H=H'\subset V'$. Определим (f,v) как значение функционала $f\in V'$ на элементе $v\in V$, совпадающее со скалярным произведением в H, если $f\in H, \|f\|^2=(f,f)$. Пространство $U=L^2(\Gamma_1)$ является пространством управлений; $U_{ad}=\{u\in U, u_1\leqslant u\leqslant u_2\}$ — множество допустимых управлений.

Пусть v произвольный элемент множества $H^1(\Omega)$.

Определим операторы:

$$A_{1,2} \colon V \to V', \quad F \colon V \times U \to V', \quad f \in V', \quad g \in V'.$$

$$(A_1 \theta, v) = a(\nabla \theta, \nabla v) + \int_{\Gamma} \beta \theta v d\Gamma, \quad (A_2 \varphi, v) = \alpha(\nabla \varphi, \nabla v) + \int_{\Gamma_0 \cup \Gamma_2} \gamma \varphi v d\Gamma,$$

$$(f, v) = \int_{\Gamma} \beta \theta_b v d\Gamma, \quad (g, v) = \int_{\Gamma_0 \cup \Gamma_2} \gamma \theta_b^4 v d\Gamma,$$

$$(F(\varphi, u), v) = \int_{\Gamma_1} u(\varphi - \theta_b^4) v d\Gamma.$$

Пару $\{\theta, \phi\} \in Y$ будем называть слабым решением задачи (2.1), (2.2), если

$$A_1 \theta + b \kappa_a(|\theta|\theta^3 - \varphi) = f, A_2 \varphi + \kappa_a(\varphi - |\theta|\theta^3) + F(\varphi, u) = g.$$
 (2.6)

Задача нахождения квазирешения состоит в минимизации функционала $J(\theta)$, определённом на компоненте θ решения системы (2.6). Таким образом

$$J(\theta) \to \inf, \{\theta, \phi\}$$
 решение (2.6), соответствующее функции $u \in U_{ad}$. (2.7)

Пара $\{\hat{\theta}, \hat{\phi}\}$ соответствующая минимуму J, отвечающая функции \hat{u} называется оптимальным состоянием. В таком случае \hat{u} называется квазирешением обратной задачи (2.1)–(2.4).

2.1.3 Анализ экстремальной задачи

Для доказательства разрешимости задачи (2.7) нам необходимо также установить некоторые свойства решения задачи (2.1), (2.2).

Лемма 1. Пусть выполняется условие (i). Тогда для каждого $u \in U_{ad}$ существует единственное слабое решение $\{\theta, \phi\}$ для задачи (2.1),(2.2) и справедливы оценки:

$$M_1 \leqslant \theta \leqslant M_2, \ M_1^4 \leqslant \varphi \leqslant M_2^4, \tag{2.8}$$

$$\|\nabla \varphi\|^2 \leqslant C. \tag{2.9}$$

Здесь $M_1 = \text{ess inf } \theta_b, M_2 = \text{ess sup } \theta_b$, и константа C > 0 зависит только от $a, b, \alpha, \kappa_a, \beta, \gamma, \|u\|_{L^{\infty}(\Gamma)}$ и области Ω .

На основе оценок (2.8) и (2.9) аналогично [cheb_origin] доказывается разрешимость экстремальной задачи (2.7). **Теорема 1.** Пусть выполняется условие (i). Тогда существует хотя бы одно решение задачи (2.7).

Для вывода системы оптимальности, покажем дифференцируемость функционала J. Лемма 2. Функционал $J:V\to\mathbb{R}$ дифференцируем по Фреше.

 \mathcal{A} оказательство. Покажем, что для произвольной функции $\theta \in V$ выполняется следующее равенство:

$$J(\theta + h) = J(\theta) + J'(\theta)\langle h \rangle + r(\theta, h) \,\,\forall h \in V, \quad \text{где} \quad J'(\theta)\langle h \rangle = \int_{\Gamma_2} (\theta - \theta_0) h d\Gamma, \tag{2.10}$$

где для остаточного члена $r(\theta,h)$ справедливо соотношение:

$$\frac{|r(\theta,h)|}{\|h\|_V} \to 0$$
 при $\|h\|_V \to 0$. (2.11)

Перепишем (2.10) в виде

$$\frac{1}{2}\|\theta + h - \theta_0\|_{L^2(\Gamma_2)}^2 = \frac{1}{2}\|\theta - \theta_0\|_{L^2(\Gamma_2)}^2 + (\theta - \theta_0, h)_{L^2(\Gamma_2)} + \frac{1}{2}\|h\|_{L^2(\Gamma_2)}^2.$$

Согласно теореме о следах $||h||_{L^2(\Gamma_2)} \leq C||h||_V$, где C не зависит от h. Поэтому

$$\frac{r(\theta,h)}{\|h\|_V} \leqslant \frac{1}{2}C^2\|h\|_V \to 0$$
 при $\|h\|_V \to 0$.

Вывод условий оптимальности основан на принципе множителей Лагранжа для гладко-выпуклых задач минимизации. **Теорема 2.** Пусть $\hat{y} = \{\hat{\theta}, \hat{\phi}\} \in Y, \hat{u} \in U_{ad}$ — решение экстремальной задачи (??). Тогда существует пара $p = (p_1, p_2), p \in Y$ такая, что тройка (\hat{y}, \hat{u}, p) , удовлетворяет следующим условиям:

$$A_1 p_1 + 4|\hat{\theta}|^3 \kappa_a (bp_1 - p_2) = f_c, \quad (f_c, v) = -\int_{\Gamma_2} (\hat{\theta} - \theta_0) v d\Gamma, \tag{2.12}$$

$$A_2p_2 + \kappa_a(p_2 - bp_1) = g_c((p_2, \hat{u}), v), \quad g_c((p_2, \hat{u}), v) = -\int_{\Gamma_1} \hat{u} p_2 v \Gamma, \quad (2.13)$$

$$\int_{\Gamma_1} p_2(\hat{\varphi} - \theta_b^4)(u - w) \leqslant 0 \quad \forall w \in U_{ad}.$$
 (2.14)

Доказательство. Перепишем уравнения (??) следующим образом:

$$H(y,u) = 0, \ y = \{\theta, \phi\} \in Y,$$

где

$$H: Y \times U \to Y',$$

$$H(y,u) = \{A_1\theta + b\kappa_a(|\theta|\theta^3 - \varphi) - f, A_2\varphi + \kappa_a(\varphi - |\theta|\theta^3) + F(\varphi, u) - g\}.$$

Заметим, что для всех $u \in U_{ad}$, отображение $y \to J(\theta)$ и $y \to H(y,u)$ непрерывно дифференцируемо в окрестности $\mathcal{O}(\hat{y})$ точки \hat{y} . Непрерывная дифференцируемость членов в H следует из непрерывной дифференцируемости функции $t \in \mathbb{R} \to |t|t^3$, а также из непрерывности вложения $V \subset L^6(\Omega)$. В дополнение, отображение $u \to H(y,u)$ непрерывно из $U \to Y'$ и афинно. В [cheb_origin] показано, что $\operatorname{Im} H'_y(\hat{y}, \hat{u}) = Y$, что влечёт невырожденность условий оптимальности.

Рассмотрим функцию Лагранжа $L(y,u,p) = J(\theta) + (H(y,u),p)$, где $y,p \in Y, u \in U_{ad}$. Согласно принципу Лагранжа [theorem_proof_18] существует пара $p = \{p_1,p_2\} \in Y$ такая, что

$$(L_{\theta},\zeta) = \int_{\Gamma_{2}} (\hat{\theta} - \theta_{0}) \zeta d\Gamma + (A_{1}\zeta + 4b\kappa_{a}|\hat{\theta}|^{3}\zeta, p_{1}) - 4\kappa_{a}(|\hat{\theta}|^{3}\zeta, p_{2}) = 0 \ \forall \zeta \in V, \ (2.15)$$

$$(L_{\varphi}, \zeta) = (A_2 \zeta + \kappa_a \zeta, p_2) - b \kappa_a(\zeta, p_1) + \int_{\Gamma_1} \hat{u} \zeta p_2 = 0 \ \forall \zeta \in V, \tag{2.16}$$

$$(L_u, \tau) = \int_{\Gamma_1} \tau(\varphi - \theta_b^4) p_2 d\Gamma \leqslant 0, \ \tau := \hat{u} - w \ \forall w \in U_{ad}.$$
 (2.17)

Сопряжённые уравнения (2.12),(2.13) являются прямым следствием вариационных равенств (2.15) и (2.16).

2.2 Анализ оптимизационного метода решения задачи сложного теплообмена с граничными условиями типа Коши

2.2.1 Постановка обратной задачи

Стационарный радиационный и диффузионный теплообмен в ограниченной области $\Omega \subset \mathbb{R}^3$ с границей $\Gamma = \partial \Omega$ моделируется в рамках P_1 -приближения для уравнения переноса излучения следующей системой эллиптических уравнений [Pinnau07, AMC-13, Kovt14-1]:

$$-a\Delta\theta + b\kappa_a(|\theta|\theta^3 - \varphi) = 0, \quad -\alpha\Delta\varphi + \kappa_a(\varphi - |\theta|\theta^3) = 0, \ x \in \Omega.$$
 (2.18)

Здесь θ — нормализованная температура, φ — нормализованная интенсивность излучения, усредненная по всем направлениям. Положительные физические параметры a, b, κ_a и α , описывающие свойства среды, определяются стандартным образом [Kovt14-1]. Подробный теоретический и численный анализ различных постановок краевых и обратных задач, а также задач управления для уравнений радиационного теплообмена в рамках P_1 —приближения для уравнения переноса излучения представлен в [Pinnau07]—[CMMP20]. Отметим также серьезный анализ интересных краевых задач, связанных с радиационным теплообменом, представленный в [Amosov05]—[Amosov20].

Будем предполагать, что на границе $\Gamma = \partial \Omega$ известно температурное поле,

$$\theta = \theta_b. \tag{2.19}$$

Для задания краевого условия для интенсивности излучения требуется знать функцию, описывающую отражающие свойства границы [JVM-14]. В том случае, если указанная функция неизвестна, естественно вместо краевого условия для интенсивности излучения задавать тепловые потоки на границе

$$\partial_n \theta = q_b. \tag{2.20}$$

Здесь через ∂_n обозначаем производную в направлении внешней нормали ${\bf n}.$

Нелокальная разрешимость нестационарной и стационарной краевых задач для уравнений сложного теплообмена без краевых условий на интенсивность излучения и с условиями (2.19),(2.20) для температуры доказана в [CNSNS19, CMMP20].

Данная статья посвящена анализу предлагаемого оптимизационного метода решения краевой задачи (2.18)-(2.20) с условиями типа Коши для температуры. Указанный метод заключается в рассмотрении задачи граничного оптимального управления для системы (2.18) с "искусственными" краевыми условиями

$$a(\partial_n \theta + \theta) = r, \ \alpha(\partial_n \varphi + \varphi) = u \text{ на } \Gamma.$$
 (2.21)

Функция $r(x), x \in \Gamma$ является заданной, а неизвестная функция $u(x), x \in \Gamma$ играет роль управления. Экстремальная задача заключается в отыскании тройки $\{\theta_{\lambda}, \phi_{\lambda}, u_{\lambda}\}$ такой, что

$$J_{\lambda}(\theta, u) = \frac{1}{2} \int_{\Gamma} (\theta - \theta_b)^2 d\Gamma + \frac{\lambda}{2} \int_{\Gamma} u^2 d\Gamma \to \inf$$
 (2.22)

на решениях краевой задачи (2.18),(2.21). Функция $\theta_b(x), x \in \Gamma$ и параметр регуляризации $\lambda > 0$ заданы.

Как будет показано ниже, задача оптимального управления (2.18),(2.21),(2.22), если $r:=a(\theta_b+q_b),$ где q_b – заданная на Γ функция, является при малых λ аппроксимацией краевой задачи (2.18)-(2.20).

Статья организована следующим образом. В п.2 вводятся необходимые пространства и операторы, приводится формализация задачи оптимального управления. Априорные оценки решения задачи (2.18),(2.21), на основе которых доказана разрешимость указанной краевой задачи и задачи оптимального управления (2.18),(2.21),(2.22), получены в п.3. В п.4 выводится система оптимальности. В п.5 показано, что последовательность $\{\theta_{\lambda}, \phi_{\lambda}\}$, соответствующая решениям экстремальной задачи, сходится при $\lambda \to +0$ к решению краевой задачи (2.18)-(2.20) с условиями типа Коши для температуры. Наконец, в п.6 представлен алгоритм решения задачи управления, работа которого проиллюстрирована численными примерами.

2.2.2 Формализация задачи управления

В дальнейшем считаем, что $\Omega \subset \mathbb{R}^3$ — ограниченная строго липшицева область, граница Γ которой состоит из конечного числа гладких кусков. Через

 $L^p,\ 1\leqslant p\leqslant\infty$ обозначаем пространство Лебега, а через H^s – пространство Соболева W_2^s . Пусть $H=L^2(\Omega),\ V=H^1(\Omega),\$ через V' обозначаем пространство, сопряженное с пространством V. Пространство H отождествляем с пространством H' так, что $V\subset H=H'\subset V'.$ Обозначим через $\|\cdot\|$ стандартную норму в H, а через (f,v) – значение функционала $f\in V'$ на элементе $v\in V$, совпадающее со скалярным произведением в H, если $f\in H$. Через U обозначаем пространство $L^2(\Gamma)$ с нормой $\|u\|_{\Gamma}=\left(\int_{\Gamma}u^2d\Gamma\right)^{1/2}.$

Будем предполагать, что

- (i) $a,b,\alpha,\kappa_a,\lambda = Const > 0,$
- (ii) $\theta_b, q_b \in U, \quad r = a(\theta_b + q_b).$

Определим операторы $A\colon V\to V',\ B\colon U\to V',\$ используя следующие равенства, справедливые для любых $y,z\in V,\ w\in U$:

$$(Ay,z) = (\nabla y, \nabla z) + \int_{\Gamma} yzd\Gamma, \quad (Bw,z) = \int_{\Gamma} wzd\Gamma.$$

Билинейная форма (Ay,z) определяет скалярное произведение в пространстве V, а соответствующая норма $||z||_V = \sqrt{(Az,z)}$ эквивалентна стандартной норме V. Поэтому определен непрерывный обратный оператор $A^{-1}: V' \mapsto V$. Отметим, что для любых $v \in V$, $w \in U$, $g \in V'$ справедливы неравенства

$$||v||^2 \leqslant C_0 ||v||_V^2, ||v||_{V'} \leqslant C_0 ||v||_V, ||Bw||_{V'} \leqslant ||w||_{\Gamma}, ||A^{-1}g||_V \leqslant ||g||_{V'}. \tag{2.23}$$

Здесь постоянная $C_0 > 0$ зависит только от области Ω .

Далее используем следующее обозначение $[h]^s := |h|^s \mathrm{sign}\, h, \, s > 0, \, h \in \mathbb{R}$ для монотонной степенной функции. Определение. Пара $\theta, \, \varphi \in V$ называется слабым решением задачи $(2.18), (2.21), \, \mathrm{ec}$ ли

$$aA\theta + b\kappa_a([\theta]^4 - \varphi) = Br, \quad \alpha A\varphi + \kappa_a(\varphi - [\theta]^4) = Bu.$$
 (2.24)

Для формулировки задачи оптимального управления определим оператор ограничений $F(\theta, \phi, u): V \times V \times U \to V' \times V',$

$$F(\theta, \varphi, u) = \{aA\theta + b\kappa_a([\theta]^4 - \varphi) - Br, \alpha A\varphi + \kappa_a(\varphi - [\theta]^4) - Bu\}.$$

Задача (CP). Найти тройку $\{\theta, \varphi, u\} \in V \times V \times U$ такую, что

$$J_{\lambda}(\theta, u) \equiv \frac{1}{2} \|\theta - \theta_b\|_{\Gamma}^2 + \frac{\lambda}{2} \|u\|_{\Gamma}^2 \to \inf, \ F(\theta, \varphi, u) = 0.$$
 (2.25)

2.2.3 Разрешимость задачи (CP)

Докажем предварительно однозначную разрешимость краевой задачи (2.18),(2.21).

Лемма 1. Пусть выполняются условия (i),(ii), $u \in U$. Тогда существует единственное слабое решение задачи (2.18),(2.21) и при этом

$$a\|\theta\|_{V} \leqslant \|r\|_{\Gamma} + \frac{C_{0}\kappa_{a}}{\alpha} \|r + bu\|_{\Gamma},$$

$$\alpha b\|\phi\|_{V} \leqslant \|r\|_{\Gamma} + \left(\frac{C_{0}\kappa_{a}}{\alpha} + 1\right) \|r + bu\|_{\Gamma}.$$

$$(2.26)$$

Доказательство. Если второе уравнение в (2.24) умножить на b и сложить с первым, то получим равенства

$$A(a\theta + \alpha b\varphi) = B(r + bu), a\theta + \alpha b\varphi = A^{-1}B(r + bu), \varphi = \frac{1}{\alpha b}(A^{-1}B(r + bu) - a\theta).$$

Поэтому $\theta \in V$ является решением следующего уравнения:

$$aA\theta + \frac{\kappa_a}{\alpha}\theta + b\kappa_a[\theta]^4 = g. \tag{2.27}$$

Здесь

$$g = Br + \frac{\kappa_a}{\alpha} A^{-1} B(r + bu) \in V'.$$

Однозначная разрешимость уравнения (2.27) с монотонной нелинейностью хорошо известна (см. например [**Kufner**]). Следовательно задача (2.24) однозначно разрешима.

Для получения оценок (2.26) умножим скалярно (2.27) на $\theta \in V$ и отбросим неотрицательные слагаемые в левой части. Тогда

$$a\|\theta\|_V^2 \le (g,\theta) \le \|g\|_{V'}\|\theta\|_V, \quad a\|\theta\|_V \le \|g\|_{V'}.$$

Неравенства (2.23) позволяют оценить $||g||_{V'}$ и $||\varphi||_V$,

$$||g||_{V'} \leqslant ||r||_{\Gamma} + \frac{C_0 \kappa_a}{\alpha} ||r + bu||_{\Gamma}, \quad ||\varphi||_{V} \leqslant \frac{1}{\alpha b} ||r + bu||_{\Gamma} + \frac{a}{\alpha b} ||\theta||_{V}.$$

В результате получаем оценки (2.26).

Полученные оценки решения управляемой системы позволяют доказать разрешимость задачи оптимального управления.

Теорема 1. Пусть выполняются условия (i),(ii). Тогда существует решение задачи (CP).

Доказательство. Пусть $j_{\lambda} = \inf J_{\lambda}$ на множестве $u \in U, F(\theta, \phi, u) = 0$. Выберем минимизирующую последовательность $u_m \in U, \ \theta_m \in V, \ \phi_m \in V,$

$$J_{\lambda}(\theta_m, u_m) \to j_{\lambda},$$

$$aA\theta_m + b\kappa_a([\theta]^4 - \varphi_m) = Br, \quad \alpha A\varphi_m + \kappa_a(\varphi_m - [\theta]^4) = Bu_m. \tag{2.28}$$

Из ограниченности последовательности u_m в пространстве U следуют, на основании леммы 1, оценки

$$\|\theta_m\|_V \leqslant C, \|\phi_m\|_V \leqslant C, \|\theta_m\|_{L^6(\Omega)} \leqslant C.$$

Здесь через C>0 обозначена наибольшая из постоянных, ограничивающих соответствующие нормы и не зависящих от m. Переходя при необходимости к подпоследовательностям, заключаем, что существует тройка $\{\hat{u}, \hat{\theta}, \hat{\phi}\} \in U \times V \times V$,

$$u_m \to \hat{u}$$
 слабо в U , $\theta_m, \varphi_m \to \hat{\theta}, \hat{\varphi}$ слабо в V , сильно в $L^4(\Omega)$. (2.29)

Заметим также, что $\forall v \in V$

$$\left| ([\theta_m]^4 - [\hat{\theta}]^4, v) \leqslant 2 \|\theta_m - \hat{\theta}\|_{L^4(\Omega)} \|v\|_{L^4(\Omega)} \left(\|\theta_m\|_{L_6(\Omega)}^3 + \|\hat{\theta}\|_{L_6(\Omega)}^3 \right). \tag{2.30} \right|$$

Результаты о сходимости (2.29),(2.30) позволяют перейти к пределу в (2.28). Поэтому

$$aA\hat{\theta} + b\kappa_a([\hat{\theta}]^4 - \hat{\phi} = Br), \ \alpha A\hat{\phi} + \kappa_a(\hat{\phi} - [\hat{\theta}]^4) = B\hat{u},$$

и при этом $j_{\lambda} \leqslant J_{\lambda}(\hat{\theta}, \hat{u}) \leqslant \underline{\lim} J_{\lambda}(\theta_m, u_m) = j_{\lambda}$. Следовательно тройка $\{\hat{\theta}, \hat{\phi}, \hat{u}\}$ есть решение задачи (CP).

2.2.4 Условия оптимальности

Для получения системы оптимальности достаточно использовать принцип Лагранжа для гладко-выпуклых экстремальных задач [10, 11]. Проверим справедливость ключевого условия, что образ производной оператора ограничений

F(y,u), где $y = \{\theta, \phi\} \in V \times V$, совпадает с пространством $V' \times V'$. Именно это условие гарантирует невырожденность условий оптимальности. Напомним, что

$$F(y,u) = \{aA\theta + b\kappa_a([\theta]^4 - \varphi) - Br, \alpha A\varphi + \kappa_a(\varphi - [\theta]^4) - Bu\}.$$

Лемма 2. Пусть выполняются условия (i),(ii). Для любой пары $\hat{y} \in V \times V, \hat{u} \in U$ справедливо равенство

$$\mathrm{Im}F_{y}'(y,u) = V' \times V'.$$

Доказательство. Достаточно проверить, что задача

$$aA\xi + b\kappa_a(4|\hat{\theta}|^3\xi - \eta) = f_1, \quad \alpha A\eta + \kappa_a(\eta - 4|\hat{\theta}|^3\xi) = f_2$$

разрешима для всех $f_{1,2} \in V'$. Данная задача равносильна системе

$$aA\xi + \kappa_a \left(4b|\theta|^3 + \frac{a}{\alpha}\right)\xi = f_1 + \frac{\kappa_a}{\alpha}f_3, \quad \eta = \frac{1}{\alpha b}(f_3 - a\xi).$$

Здесь $f_3 = A^{-1}(f_1 + bf_2) \in V$. Разрешимость первого уравнения указанной системы очевидным образом следует из леммы Лакса-Мильграма.

В соответствии с леммой 2, лагранжиан задачи (CP) имеет вид

$$L(\theta, \phi, u, p_1, p_2) = J_{\lambda}(\theta, u) + (aA\theta + b\kappa_a([\theta]^4 - \phi) - Br, p_1) + (\alpha A\phi + \kappa_a(\phi - [\theta]^4) - Bu, p_2)$$

Здесь $p = \{p_1, p_2\} \in V \times V$ — сопряженное состояние. Если $\{\hat{\theta}, \hat{\phi}, \hat{u}\}$ — решение задачи (CP), то в силу принципа Лагранжа [10] справедливы вариационные равенства $\forall v \in V, w \in U$

$$(\hat{\theta} - \theta_b, v)_{\Gamma} + (aAv + 4b\kappa_a|\hat{\theta}|^3v, p_1) - \kappa_a(4|\hat{\theta}|^3v, p_2) = 0, \ b\kappa_a(v, p_1) + (\alpha Av + \kappa_a v, p_2) = 0,$$
(2.31)

$$\lambda(\hat{u}, w)_{\Gamma} - (Bw, p_2) = 0. \tag{2.32}$$

Таким образом, из условий (2.31),(2.32) получаем следующий результат, который вместе с уравнениями (2.24) для оптимальной тройки определяет систему оптимальности задачи (CP). gg **Teopema 2.** Пусть выполняются условия (i),(ii). Если $\{\hat{\theta},\hat{\phi},\hat{u}\}$ – решение задачи (CP), то существует единственная пара $\{p_1,p_2\} \in V \times V$ такая, что

$$aAp_1 + 4|\hat{\theta}|^3 \kappa_a(bp_1 - p_2) = B(\theta_b - \hat{\theta}), \quad \alpha Ap_2 + \kappa_a(p_2 - bp_1) = 0$$
 (2.33)

u npu этом $\lambda \hat{u} = p_2$.

2.3 Анализ оптимизационного метода для квазистационарной модели

2.3.1 Formulation of an Optimal Control Problem

квазистационарный радиационный и диффузионный теплообмен в ограниченной области $\Omega \subset \mathbb{R}^3$ с границей $\Gamma = \partial \Omega$ моделируется P_1 -аппроксимацией для уравнения переноса излучения со следующей начально-краевой задачей [16, 23]:

$$\frac{\partial \theta}{\partial t} - a\Delta \theta + b\kappa_a \left(|\theta| \theta^3 - \phi \right) = 0,$$

$$-\alpha \Delta \phi + \kappa_a \left(\phi - |\theta| \theta^3 \right) = 0, \quad x \in \Omega, \quad 0 < t < T;$$

$$a \left(\partial_n \theta + \theta \right) = r, \quad \alpha \left(\partial_n \phi + \phi \right) = u \text{ на } \Gamma;$$

$$\theta|_{t=0} = \theta_0.$$

Здесь θ — нормированная температура, φ — нормированная интенсивность излучения, усредненная по всем направлениям. Положительные параметры a, b, κ_a и α , описывающие свойства среды, определяются стандартным образом [18]. Задана функция $r(x,t), x \in \Gamma, t \in (0,T)$, а неизвестная функция $u(x,t), x \in \Gamma, t \in (0,T)$ — управление. Через ∂_n мы обозначаем производную по направлению внешней нормали \mathbf{n} .

Экстремальная задача состоит в том, чтобы найти тройку $\{\theta_{\lambda},\phi_{\lambda},u_{\lambda}\}$ такую, что

$$J_{\lambda}(\theta, u) = \frac{1}{2} \int_{0}^{T} \int_{\Gamma} (\theta - \theta_{b})^{2} d\Gamma dt + \frac{\lambda}{2} \int_{0}^{T} \int_{\Gamma} u^{2} d\Gamma dt \to \inf$$

на решениях задачи (1)-(3).

Функция $\theta_b(x,t), x \in \Gamma, t \in (0,T),$ а также регуляризирующий параметр $\lambda > 0$ являются заданными.

Задача оптимального управления (1)-(4), если $r\coloneqq a\,(\theta_b+q_b)$, где q_b — заданная функция на $\Sigma=\Gamma\times(0,T)$, является при малых значениях λ аппроксимацией краевой задачи для уравнения (1), для которого неизвестны граничные

условия для интенсивности излучения ϕ . Вместо них задаются граничные температура и внешний поток,

$$\theta|_{\Gamma} = \theta_b, \quad \partial_n \theta|_{\Gamma} = q_b.$$

Математическое моделирование теплообмена с учетом радиационных эффектов используется в различных приложениях, например, в электронномикроскопической диагностике [22, 24], производстве стекла [13, 14] и лазерной термотерапии [20]. Подробный теоретический и численный анализ различных постановок краевых и обратных задач, а также задач управления для уравнений радиационного теплообмена в рамках P_1 -приближения для уравнения переноса излучения представлен в в [7, 11,16,18, 19,23]. Интересные краевые задачи, связанные с радиационным теплообменом, изучаются в [2-6]. В [12] доказана нелокальная разрешимость нестационарных и стационарных краевых задач для уравнений комплексного теплообмена без граничных условий на интенсивность излучения и с условиями (5) на температуру.

Основные результаты работы заключаются в получении априорных оценок решения задачи (1), (2), на основании которых доказывается разрешимость задачи оптимального управления (1)-(4) и оптимальность система является производной. Показано, что последовательность $\{\theta_{\lambda}, \phi_{\lambda}, u_{\lambda}\}$ решений экстремальной задачи (1)-(4) при $\lambda \to +0$ сходится к решению начально-краевой задачи (1), (5) с условиями типа Коши для температуры. Представлен алгоритм решения задачи управления.

2.3.2 Формализация задачи управления

В дальнейшем предполагается, что $\Omega \subset \mathbb{R}^3$ — ограниченная строго липшицева область, граница которой Γ состоит из конечного числа гладких кусков. Через $L^s, 1 \leqslant s \leqslant \infty$ обозначается пространство Лебега, а через H^s пространство Соболева W_2^s . Пусть $H = L^2(\Omega), V = H^1(\Omega)$. Через V' обозначим двойственное к V пространство, а через $L^s(0,T;X)$ пространство Лебега функций из L^s , определенных на (0,T) со значениями в пространстве X. Пространство H отождествляется с пространством H' так, что $V \subset H = H' \subset V'$.

Обозначим через $\|\cdot\|$ стандартную норму в H, а через (f,v) значение функционала $f\in V'$ в элементе $v\in V$, что совпадает со скалярным произведением в H, если $f\in H$.

Через U обозначим пространство $L^2(\Sigma)$ с нормой

$$||u||_{\Sigma} = \left(\int_{\Sigma} u^2 d\Gamma dt\right)^{1/2}.$$

Мы также будем использовать пространство $W = \{y \in L^2(0,T;V): y' \in L^2(0,T;V): y' \in L^2(0,T;V)\}$ где y' = dy/dt.

Будем считать, что (i) $a,b,\alpha,\kappa_a,\lambda=\mathrm{Const}>0$, (ii) $\theta_b,q_b\in U,r=a\,(\theta_b+q_b)\in L^5(\Sigma)\theta_0\in L^5(\Omega)$.

Определим операторы $A:V\to V', B:U\to V',$ используя следующие равенства, справедливые для любых $y,z\in V,w\in L^2(\Gamma)$:

$$(Ay, z) = (\nabla y, \nabla z) + \int_{\Gamma} yzd\Gamma, \quad (Bw, z) = \int_{\Gamma} wzd\Gamma.$$

Билинейная форма (Ay,z) определяет скалярное произведение в пространстве V, и соответствующая норма $\|z\|_V = \sqrt{(Az,z)}$ эквивалентна к стандартной норме в V. Следовательно, определен непрерывный обратный оператор $A^{-1}: V' \mapsto V$. Заметим, что для любых $v \in V, w \in L^2(\Gamma), g \in V'$ выполняются следующие неравенства:

$$||v||^2 \leqslant C_0 ||v||_V^2, ||v||_{V'} \leqslant C_0 ||v||_V, ||Bw||_{V'} \leqslant ||w||_\Gamma, ||A^{-1}g||_V \leqslant ||g||_{V'}.$$

Здесь константа $C_0 > 0$ зависит только от домена Ω .

В дальнейшем будем использовать следующие обозначени $[h]^s:=|h|^s \operatorname{sign} h, s>0, h\in \mathbf{R}$ для монотонной степенной функции.

Определение. Пара $\theta \in W, \phi \in L^2(0,T;V)$ называется слабым решением задачи (1)-(3), если

$$\theta' + aA\theta + b\kappa_a ([\theta]^4 - \varphi) = Br, \quad \theta(0) = \theta_0, \quad \alpha A\varphi + \kappa_a (\varphi - [\theta]^4) = Bu.$$

Для формулировки задачи оптимального управления определим оператор ограничения $F(\theta, \phi, u): W \times L^2(0,T;V) \times U \to L^2(0,T,V') \times L^2(0,T,V') \times H$ таким, что

$$F(\theta, \varphi, u) = \left\{ \theta' + aA\theta + b\kappa_a \left([\theta]^4 - \varphi \right) - Br, \alpha A\varphi + \kappa_a \left(\varphi - [\theta]^4 \right) - Bu, \theta(0) - \theta_0 \right\}$$

Таким образом задача (**OC**) заключается в отыскании тройки $\{\theta, \phi, u\} \in W \times L^2(0,T;V) \times U$ такой, что

$$J_{\lambda}(\theta, u) \equiv \frac{1}{2} \|\theta - \theta_b\|_{\Sigma}^2 + \frac{\lambda}{2} \|u\|_{\Sigma}^2 \to \inf, \quad F(\theta, \varphi, u) = 0.$$

2.3.3 Разрешимость задачи (ОС)

Докажем сначала однозначную разрешимость задачи (1)-(3).

Лемма 1. Пусть выполняются условия (i), (ii), $u \in U$. Тогда существует единственное слабое решение задачи (1)-(3) и, кроме того,

$$\psi = [\theta]^{5/2} \in L^{\infty}(0, T; H) \cap L^{2}(0, T; V), \quad [\theta]^{4} \in L^{2}(0, T; H).$$

Доказательство. Выразим φ из последнего уравнения (6) и подставим его в первое. В результате получаем следующую задачу Коши для уравнения с операторными коэффициентами:

$$\theta' + aA\theta + L[\theta]^4 = Br + f, \quad \theta(0) = \theta_0.$$

Здесь

$$L = \alpha b \kappa_a A (\alpha A + \kappa_a I)^{-1} : V' \to V', f = b \kappa_a (\alpha A + \kappa_a I)^{-1} Bu \in L^2(0, T; V).$$

Получим априорные оценки решения задачи (7), на основании которых стандартным образом выводится разрешимость этой задачи. Пусть $[\zeta, \eta] = ((\alpha I + \kappa_a A^{-1})\zeta, \eta), \zeta \in V', \eta \in V$. Отметим, что выражение $[[\eta]] = \sqrt{[\eta, \eta]}$ определяет норму в H, эквивалентную стандартной.

Умножая скалярно в H уравнение в (7) на $(\alpha I + \kappa_a A^{-1}) \theta$, получаем

$$\frac{1}{2}\frac{d}{dt}[[\theta]]^2 + a\alpha(A\theta, \theta) + a\kappa_a\|\theta\|^2 + \alpha b\kappa_a\|\theta\|_{L^5(\Omega)}^5 = [Br, \theta] + [f, \theta].$$

Из равенства (8) следует оценка

$$\|\theta\|_{L^{\infty}(0,T;H)} + \|\theta\|_{L^{2}(0,T;V)} + \|\theta\|_{L^{5}(Q)} \leqslant C_{1},$$

где C_1 зависит только от $a,b,\alpha,\kappa_a,\|f\|_{L^2(0,T;H)},\|theta_0\|,\|r\|_{L^2(\Sigma)}.$ Далее положим $\psi=[\theta]^{5/2}$. В таком случае

$$\left(\theta', [\theta]^4\right) = \frac{1}{5} \frac{d}{dt} \|\psi\|^2, \quad \left(A\theta, [\theta]^4\right) = \frac{16}{25} \|\nabla\psi\|^2 + \|\psi\|_{L^2(\Gamma)}^2.$$

Умножая скалярно в H уравнение в (7) на $[\theta]^4 = [\psi]^{8/5}$, получаем

$$\frac{1}{5}\frac{d}{dt}\|\psi\|^2 + a\left(\frac{16}{25}\|\nabla\psi\|^2 + \|\psi\|_{L^2(\Gamma)}^2\right) + \left(L[\psi]^{8/5}, [\psi]^{8/5}\right) = \left(Br + f, [\psi]^{8/5}\right).$$

Равенство (10) влечет оценку

$$\|\psi\|_{L^{\infty}(0,T;H)} + \|\psi\|_{L^{2}(0,T;V)} + \|[\theta]^{4}\|_{L^{2}(0,T;H)} \leqslant C_{2},$$

где C_2 зависит только от $a,b,\alpha,\kappa_a,\|f\|_{L^2(0,T;H)},\|theta_0\|_{L^5(\Omega)},\|r\|_{L^5(\Sigma)}$. Дадим оценку $\|\theta'\|_{L^2(0,T;V')}$ с учетом $\theta'=Br+f-aA\theta-L[\theta]^4$. В силу условий на начальные данные верно $Br,f\in L^2(0,T;V')$. Поскольку $\theta\in L^2(0,T;V)$, то $A\theta\in L^2(0,T;V')$. Пусть $\zeta=L[\theta]^4$. Таким образом

$$\alpha \zeta + \kappa_a A^{-1} \zeta = \alpha b \kappa_a [\theta]^4.$$

Умножая в смысле скалярного произведения H последнее равенство на ζ , получаем

$$\alpha \|\zeta\|^2 + \kappa_a \left(A^{-1}\zeta, \zeta\right) = \alpha b \kappa_a \left([\theta]^4, \zeta\right) \leqslant \alpha \left(\|\zeta\|^2 + \frac{(b\kappa_a)^2}{4} \left\|[\theta]^4\right\|^2\right).$$

Следовательно, $\|\zeta\|_{V'}^2 = \left(A^{-1}\zeta,\zeta\right) \leqslant \frac{\alpha \kappa_a b^2}{4} \left\|[\theta]^4\right\|^2$ и в силу оценок (9), (11) получаем

$$\|\theta'\|_{L^2(0,T;V')} \leq \|Br + f\|_{L^2(0,T;V')} + aC_1 + \sqrt{\alpha \kappa_a} bC_2.$$

Оценок (9)—(12) достаточно для доказательства разрешимости задачи. Пусть $\theta_{1,2}$ — решения задачи (7), $\eta=\theta_1-\theta_2$. Затем

$$\eta' + aA\eta + L([\theta_1]^4 - [\theta_1]^4) = 0, \quad \eta(0) = 0.$$

Умножая в смысле скалярного произведения H последнее уравнение на $(\alpha I + \kappa_a A^{-1}) \eta$, получаем

$$\frac{1}{2}\frac{d}{dt}[[\eta]]^{2} + a\alpha(A\eta, \eta) + a\kappa_{a}\|\eta\|^{2} + \alpha b\kappa_{a}\left([\theta_{1}]^{4} - [\theta_{1}]^{4}, \theta_{1} - \theta_{2}\right) = 0.$$

Последний член в левой части неотрицательный, поэтому, интегрируя полученное равенство по времени, получаем $\eta=\theta_1-\theta_2=0$, что означает единственность решение. Лемма доказана.

Теорема 1. Пусть выполняются условия (i), (ii). Тогда есть решение проблемы (OC).

Доказательство. Пусть $j_{\lambda} = \inf J_{\lambda}$ on the set $u \in U, F(\theta, \varphi, u) = 0$. Выберем минимизирующую последовательность $u_m \in U, \theta_m \in W, \varphi_m \in L^2(0,T;V), J_{\lambda}(\theta_m,u_m) \to j_{\lambda},$

$$\theta'_m + aA\theta_m + b\kappa_a \left([\theta_m]^4 - \varphi_m \right) = Br, \theta_m(0) = \theta_0,$$
$$\alpha A\varphi_m + \kappa_a \left(\varphi_m - [\theta_m]^4 \right) = Bu_m.$$

Ограниченность последовательности u_m в пространстве U влечет по лемме 1 оценки

$$\|\theta_m\|_{L^2(0,T;V)} \leqslant C, \quad \|\theta_m\|_{L^{\infty}(0,T;L^5(\Omega))} \leqslant C, \|\theta'_m\|_{L^2(0,T;V')} \leqslant C,$$

$$\int_0^T \int_{\Omega} |\theta_m|^8 dx dt \leqslant C, \quad \|\phi_m\|_{L^2(0,T;V)} \leqslant C.$$

Здесь C>0 обозначает наибольшую из констант, ограничивающих соответствующие нормы и не зависящих от m. Переходя, если необходимо, к подпоследовательностям, заключаем, что существует тройка $\{\widehat{u}, \widehat{\theta}, \widehat{\varphi}\} \in U \times W \times L^2(0,T;V)$,

$$u_m o \widehat{u}$$
 слабо в U $heta_m o \widehat{ heta}$ слабо в $L^2(0,T;V)$, сильно в $L^2(Q)$, $\phi_m o \widehat{\phi}$ слабо в $L^2(0,T;V)$.

Более того, $\widehat{\theta} \in L^8(Q) \cap L^\infty(0,T;L^5(\Omega)).$

Результаты сходимости позволяют перейти к пределу в (13). В этом случае предельный переход в нелинейной части следует из следующего неравенства, справедливого при $\xi \in C^{\infty}(\bar{Q})$:

$$\int_{0}^{T} \left| \left([\theta_{m}]^{4} - [\widehat{\theta}]^{4}, \xi \right) \right| dt \leqslant
2 \max_{\widehat{Q}} |\xi| \left(\|\theta_{m}\|_{L^{5}(\Omega)}^{5/3} \|\theta_{m}\|_{L^{8}(\Omega)}^{4/3} + \|\widehat{\theta}\|_{L^{5}(\Omega)}^{5/3} \|\widehat{\theta}\|_{L^{8}(\Omega)}^{4/3} \right) \left\| \theta_{m} - \widehat{\theta} \right\|_{L^{2}(Q)}.$$

Получаем, что

$$\widehat{\theta}' + aA\widehat{\theta} + b\kappa_a \left([\widehat{\theta}]^4 - \widehat{\varphi} \right) = Br, \quad \widehat{\theta}(0) = \theta_0, \quad \alpha A\widehat{\varphi} + \kappa_a \left(\widehat{\varphi} - [\widehat{\theta}]^4 \right) = B\widehat{u},$$

где $j_{\lambda} \leqslant J_{\lambda}(\widehat{\theta}, \widehat{u}) \leqslant \underline{\lim} J_{\lambda}(\theta_m, u_m) = j_{\lambda}$. Таким образом, тройка $\{\widehat{\theta}, \widehat{\varphi}, \widehat{u}\}$ есть решение задачи (OC).

2.3.4 Условия оптимальности

Для получения системы оптимальности достаточно использовать принцип Лагранжа для гладко-выпуклых экстремальных задач [15,17]. Проверим выполнение ключевого условия, что образ производной оператора связи $F'_y(y,u)$, где $y=\{\theta,\phi\}$ $W\times L^2(0,T;V)$, совпадает с пространством $L^2(0,T;V')\times L^2(0,T;V')\times H$. Именно это условие гарантирует невырожденность условий оптимальности. Напомним, что

 $F(\theta, \varphi, u) = \{\theta' + aA\theta + b\kappa_a ([\theta]^4 - \varphi) - Br, \alpha A\varphi + \kappa_a (\varphi - [\theta]^4) - Bu, \theta(0) - \mathbf{\Pi}emma 2. Пусть выполнены условия (i), (ii). Если <math>\widehat{y} \in W \times L^2(0, T; V), \widehat{u} \in U$ является решением задачи (OC), то справедливо равенство:

Im
$$F'_{y}(\widehat{y}, \widehat{u}) = L^{2}(0, T; V') \times L^{2}(0, T; V') \times H.$$

Доказательство. Достаточно проверить, что проблема

$$\xi' + aA\xi + b\kappa_a \left(4|\widehat{\theta}|^3\xi - \eta\right) = f_1, \quad \xi(0) = \xi_0, \quad \alpha A\eta + \kappa_a \left(\eta - 4|\widehat{\theta}|^3\xi\right) = f_2$$

разрешима для всех $f_{1,2} \in L^2(0,T;V')$, $\xi_0 \in H$. Выразим η из последнего уравнения и подставим его в первое. В результате получаем следующую задачу:

$$\xi' + aA\xi + 4L(|\widehat{\theta}|^3\xi) = f_1 + b\kappa_a(\alpha A + \kappa_a I)^{-1}f_2, \xi(0) = \xi_0.$$

Единственная разрешимость линейной задачи (14) доказывается аналогично лемме 1. Согласно лемме 2 лагранжиан задачи (OC) имеет вид

$$L(\theta, \varphi, u, p_1, p_2, q) = J_{\lambda}(\theta, u) + \int_0^T (\theta' + aA\theta + b\kappa_a ([\theta]^4 - \varphi) - Br, p_1) dt$$
$$+ \int_0^T (\alpha A\varphi + \kappa_a (\varphi - [\theta]^4) - Bu, p_2) dt + (q, \theta(0) - \theta_0).$$

Здесь $p = \{p_1, p_2\} \in L^2(0, T; V) \times L^2(0, T; V)$ — сопряженное состояние, $q \in H$ — множитель Лагранжа для начального условия. Если $\{\widehat{\theta}, \widehat{\varphi}, \widehat{u}\}$ является решением задачи (OC), то в силу принципа Лагранжа [15, гл. 2, теорема 1.5] выполняются вариационные равенства $\forall \zeta \in L^2(0, T; V), v \in U$

$$\int_{0}^{T} \left(\left(B \left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{b} \right), \zeta \right) + \left(\zeta' + aA\zeta + 4b\kappa_{a} |\widehat{\boldsymbol{\theta}}|^{3}\zeta, p_{1} \right) - \kappa_{a} \left(4|\widehat{\boldsymbol{\theta}}|^{3}\zeta, p_{2} \right) \right) dt + (q, \zeta(0)) = \int_{0}^{T} \left((\alpha A\zeta + \kappa_{a}\zeta, p_{2}) - b\kappa_{a} \left(\zeta, p_{1} \right) \right) dt = 0, \int_{0}^{T} \left(\lambda(\widehat{u}, v)_{\Gamma} - (Bv, p_{2}) \right) dt = 0.$$

Таким образом, из полученных условий получаем следующий результат.

Теорема 2. Пусть выполнены условия (i), (ii). Если $\{\widehat{\theta}, \widehat{\varphi}, \widehat{u}\}$ — решение задачи (OC), то существует единственная пара $\{p_1, p_2\} \in W \times W$ такая, что

$$-p_1'+aAp_1+4|\widehat{\theta}|^3\kappa_a\left(bp_1-p_2\right)=B\left(\theta_b-\widehat{\theta}\right), p_1(T)=0,$$

$$\alpha Ap_2+\kappa_a\left(p_2-bp_1\right)=0$$
 и $\lambda\widehat{u}=p_2|_{\Sigma}.$

2.3.5 Аппроксимация задачи с граничными условиями типа Коши

Рассмотрим начально-краевую задачу для уравнений комплексного теплообмена, в которой отсутствуют граничные условия на интенсивность излучения:

$$\frac{\partial \theta}{\partial t} - a\Delta \theta + b\kappa_a \left([\theta]^4 - \phi \right) = 0, \quad -\alpha \Delta \phi + \kappa_a \left(\phi - [\theta]^4 \right) = 0, \quad (x, t) \in Q,$$

$$\theta = \theta_b, \quad \partial_n \theta = q_b \text{ Ha } \Sigma, \quad \theta|_{t=0} = \theta_0.$$

Существование и единственность функций $\theta \in L^2(0,T;H^2(\Omega))$, $\varphi,\Delta\varphi \in L^2(Q)$, удовлетворяющие (16), (17) для достаточно гладких θ_b,q_b , доказаны в [12]. Покажем, что решения задачи (OC) для $\lambda \to +0$ аппроксимируют решение задачи (16),(17)

Теорема 3. Пусть выполняются условия (i), (ii) и существует решение $\theta, \phi \in L^2\left(0,T;H^2(\Omega)\right)$ задачи (16), (17). Если $\{\theta_\lambda,\phi_\lambda,u_\lambda\}$ — решение задачи (OC) при $\lambda>0$, то как $\lambda\to+0$

$$heta_\lambda o heta$$
 слабо в $L^2(0,T;V)$, сильно в $L^2(Q)$, $\phi_\lambda o \phi$ слабо в $L^2(0,T;V)$

 \mathcal{A} оказательство. Пусть $\theta, \varphi \in L^2\left(0,T;H^2(\Omega)\right)$ — решение задачи (16),(17), $u=\alpha\left(\partial_n\varphi+\varphi\right)\in U$. Тогда

$$\theta' + aA\theta + b\kappa_a \left([\theta]^4 - \phi \right) = Br, \quad \theta(0) = \theta_0, \quad \alpha A\phi + \kappa_a \left(\phi - [\theta]^4 \right) = Bu$$
 где $r \coloneqq a \left(\theta_b + q_b \right)$. Следовательно, принимая во внимание, что $\theta|_{\Gamma} = \theta_b$,

$$J_{\lambda}(\theta_{\lambda}, u_{\lambda}) = \frac{1}{2} \|\theta_{\lambda} - \theta_{b}\|_{\Sigma}^{2} + \frac{\lambda}{2} \|u_{\lambda}\|_{\Sigma}^{2} \leqslant J_{\lambda}(\theta, u) = \frac{\lambda}{2} \|u\|_{\Sigma}^{2}.$$

Таким образом

$$\|u_{\lambda}\|_{\Sigma}^{2} \leqslant C$$
, $\|\theta_{\lambda} - \theta_{b}\|_{\Sigma}^{2} \to 0, \lambda \to +0$.

Здесь и далее C>0 не зависит от λ . Ограниченность последовательности u_{λ} в пространстве U влечет по лемме 1 оценки

$$\|\theta_{\lambda}\|_{L^{2}(0,T;V)} \leqslant C, \quad \|\theta_{\lambda}\|_{L^{\infty}(0,T;L^{5}(\Omega))} \leqslant C, \quad \|\theta_{\lambda}'\|_{L^{2}(0,T;V')} \leqslant C,$$

$$\int_{0}^{T} \int_{\Omega} |\theta_{\lambda}|^{8} dx dt \leqslant C, \quad \|\phi_{\lambda}\|_{L^{2}(0,T;V)} \leqslant C.$$

Следовательно, можно выбрать последовательность $\lambda \to +0$ такую, что

$$u_{\lambda} o u_*$$
 слабо в U $heta_{\lambda} o heta_*$ слабо в $L^2(0,T;V)$ сильно в $L^2(Q),$ $\phi_{\lambda} o \phi_*$ слабо в $L^2(0,T;V)$

Полученные результаты о сходимости позволяют, как и в теореме 1, перейти к пределу при $\lambda \to +0$ в уравнениях для $\theta_{\lambda}, \phi_{\lambda}, u_{\lambda},$ а затем

 $\theta_*' + aA\theta_* + b\kappa_a \left([\theta_*]^4 - \phi_* \right) = Br, \quad \theta_*(0) = \theta_0, \quad \alpha A\phi_* + \kappa_a \left(\phi_* - [\theta_*]^4 \right) = Bu_*.$ Где $\theta_*|_{\Gamma} = \theta_b$. Из первого уравнения в (18), учитывая, что $r = a \left(\theta_b + q_b \right)$, получаем

$$\frac{\partial \theta_*}{\partial t} - a\Delta \theta_* + b\kappa_a \left(\left[\theta_* \right]^4 - \phi_* \right) = 0 \text{ почти всюду в } Q, \quad \theta_* = \theta_b, quad \partial_n \theta = q_b \text{ почти всюду в } Q.$$

Из второго уравнения в (18) следует, что $-\alpha\Delta\phi + \kappa_a \left(\phi - [\theta]^4\right) = 0$ почти всюду в Q. Таким образом, пара θ_*, ϕ_* является решением задачи (16), (17). Поскольку решение этой задачи единственно [12], то $\theta_* = \theta, \phi_* = \phi$.

2.3.6 Численный алгоритм и примеры

Приведем алгоритм решения задачи управления. Пусть

$$\widetilde{J}_{\lambda}(u) = J_{\lambda}(\theta(u), u),$$

где $\theta(u)$ — компонента решения задачи (1)-(2), соответствующая управлению $u \in U$. Согласно (15) градиент функционала $\widetilde{J}_{\lambda}(u)$ определяется следующим образом: $\widetilde{J}'_{\lambda}(u) = \lambda u - p_2$. Здесь p_2 — соответствующая компонента сопряженного состояния системы (15), где $\widehat{\theta} \coloneqq \theta(u)$.

The proposed algorithm for solving the problem (OC) is as follows:

Algorithm 1 Gradient descent algorithm

- 1: Choosing the value of the gradient step ε ,
- 2: Choosing the number of iterations N,
- 3: Choosing an initial approximation for the control $u_0 \in U$,
- 4: for $k \leftarrow 0,1,2,\ldots,N$ do :
- 5: For a given u_k , calculate the state $y_k = \{\theta_k, \varphi_k\}$, a solution of the problem (1)-(3).
 - 6: We calculate the value of the quality functional $J_{\lambda}(\theta_k, u_k)$.
- 7: From equations (15), we calculate the conjugate state $p_k = \{p_{1k}, p_{2k}\}$, where $\widehat{\theta} := \theta_k, \widehat{u} := u_k$.
 - 8: We We recalculate the control $u_{k+1} = u_k \varepsilon (\lambda u_k p_2)$

The parameter ε is chosen empirically so that the value of $\varepsilon (\lambda u_k - p_2)$ is a significant correction for u_{k+1} . The number of iterations N is chosen sufficient to

satisfy the condition $J_{\lambda}(\theta_k, u_k) - J_{\lambda}(\theta_{k+1}, u_{k+1}) < \delta$, where $\delta > 0$ determines the accuracy of the calculations.

The example considered below illustrates the performance of the proposed algorithm for small, which is important, values of the regularization parameter $\lambda \leqslant 10^{-12}$. Note that for the numerical solution of a direct problem with a given control, the simple iteration method was used to linearize the problem and solve it by the finite element method. Solving a conjugate system that is linear at a given temperature is straightforward. For numerical simulation, we used the solver FEniCS [1,21]. Let us compare the work of the proposed algorithm with the results of the article [12]. The problem is considered in the domain $\Omega \times (-L, L)$, where $\Omega = \{x = (x_1, x_2) : 0 < x_{1,2} < d\}$ and for large L reduces to a two-dimensional problem for the computational domain Ω . The following values of the problem parameters were chosen: $d = 1 \text{ (m)}, a = 0.9210^{-4} \text{ (m}^2/\text{s)}, b = 0.19 \text{ (m/s)}, \alpha = 0.0333 \text{ (m)}$ $\kappa_a = 1 \text{ (m}^{-1})$. The parameters correspond to air at normal atmospheric pressure and temperature 400°C . The function θ_b, q_b for the boundary condition (5) are set as follows: $\theta_b = \hat{\theta}|_{\Gamma}, q_b = \partial_n \hat{\theta}|_{\Gamma}$, where $\hat{\theta} = (x_1 - 0.5)^2 - 0.5x_2 + 0.75$.

An approximate solution to the problem (16), (17) with Cauchy data, presented in [12] (see Fig. 1), was obtained by solving a fourth-order parabolic problem for temperature.

38 A. Chebotarev et al.

Let us compare the work of the proposed algorithm with the results of the article [12]. The problem is considered in the domain $\Omega \times (-L,L)$, where $\Omega = \{x = (x_1,x_2) \colon 0 < x_{1,2} < d\}$ and for large L reduces to a two-dimensional problem for the computational domain Ω . The following values of the problem parameters were chosen: $d=1(\mathrm{m}),\ a=0.92\ 10^{-4}\ (\mathrm{m}^2/\mathrm{s}),\ b=0.19\ (\mathrm{m/s}),$ $\alpha=0.0333\ (\mathrm{m})$ $\kappa_a=1\ (\mathrm{m}^{-1}).$ The parameters correspond to air at normal atmospheric pressure and temperature 400°C. The function $\theta_b,\ q_b$ for the boundary condition (5) are set as follows: $\theta_b=\widehat{\theta}|_{\Gamma},\ q_b=\partial_n\widehat{\theta}|_{\Gamma},\ \text{where }\widehat{\theta}=(x_1-0.5)^2-0.5x_2+0.75.$

An approximate solution to the problem (16), (17) with Cauchy data, presented in [12] (see Fig. 1), was obtained by solving a fourth-order parabolic problem for temperature.

Fig. 1. Temperature field obtained in the article [12].

The solution stabilized after 120 seconds, but the calculations at each time step were quite expensive [12]. Fig. 2 shows the steady-state temperature field obtained by the method proposed in the current article.

The presented example illustrates that the proposed algorithm successfully finds a numerical solution to the problem (16), (17) with the boundary conditions of the Cauchy type.

Fig. 1. Temperature field obtained in the article [12].

The solution stabilized after 120 seconds, but the calculations at each time step were quite expensive [12]. Fig. 2 shows the steady-state temperature field obtained by the method proposed in the current article.

The presented example illustrates that the proposed algorithm successfully finds a numerical solution to the problem (16), (17) with the boundary conditions of the Cauchy type.

Глава 3. Анализ задач оптимального управления для квазистационарных уравнений сложного теплообмена

3.1 Корректность начально-краевой задачи для квазилинейной модели

3.1.1 Введение

Процедура эндовенозной лазерной абляции (EVLA) безопасна и достаточно эффективна при лечении варикозного расширения вен. Во время EVLA в поврежденную вену вводится лазерное оптическое волокно. Затем лазерное излучение передается по волокну, которое в это время вытягивается из вены. Конец оптического волокна обычно покрыт карбонизированным слоем (наконечник оптического волокна). Карбонизированный слой разделяет лазерную энергию на нагрев кончика волокна и излучение. Тепло от наконечника волокна передается через кровь и окружающие ткани за счет кондуктивной теплопередачи. Теплообмен значительно увеличивается за счет потока пузырьков, образующихся на нагретом кончике волокна. Излучение, попадающее в кровь и окружающие ткани, частично поглощается с выделением тепла. В результате генерируемая тепловая энергия вызывает значительный нагрев вены, что приводит к ее облитерации.

Основными эффектами, которые обычно учитываются при моделировании ЭВЛА, являются кондуктивный перенос тепла, перенос и поглощение излучения с выделением тепла, а также перенос тепла потоком пузырьков, образующихся на конце горячего волокна. В работах на основе оценки экспериментальных данных теплообмен потоком пузырьков моделируется зависимостью коэффициента теплопроводности от температуры следующим образом: когда температура в некоторой точке достигает и выше коэффициент теплопроводности увеличивается в 200 раз. Такой подход при моделировании ЭВЛА применяется в [2], где доказана однозначная разрешимость начально-краевой задачи для квазилинейной модели ЭВЛА, и в [12, 13], где исследуются экстремальные задачи ЭВЛА.

В настоящей работе мы изучаем обобщение модели EVLA, рассмотренной в [2]. В дополнение к вышеупомянутым эффектам мы также учитываем излучение абсолютно черного тела. Это дает дополнительные нелинейные члены в уравнениях ЭВЛА. Доказана однозначная разрешимость начально-краевой задачи и установлена сходимость итерационного алгоритма. Работоспособность алгоритма иллюстрируется численными примерами.

3.1.2 Formulation of the initial-boundary value problem

Рассмотрим следующую начально-краевую задачу в ограниченной трехмерной области Ω с отражающей границей $\Gamma = \partial \Omega$:

$$\sigma \partial \theta / \partial t - \operatorname{div}(k(\theta) \nabla \theta) + b \left(\theta^{3} |\theta| - \varphi \right) = f$$
$$- \operatorname{div}(\alpha \nabla \varphi) + \beta \left(\varphi - \theta^{3} |\theta| \right) = g, x \in \Omega, 0 < t < T$$
$$k(\theta) \partial_{n} \theta + p \left(\theta - \theta_{b} \right) |_{\Gamma} = 0, \quad \alpha \partial_{n} \varphi + \gamma \left(\varphi - \theta_{b}^{4} \right) |_{\Gamma} = 0, \quad \theta |_{t=0} = \theta_{in}.$$

Здесь θ — нормированная температура, ϕ — нормированная интенсивность излучения, усредненная по всем направлениям. Нормирующими множителями для получения из θ и ϕ абсолютной температуры и средней интенсивности излучения являются \mathcal{M}_{θ} и \mathcal{M}_{ϕ} соответственно.

Положительные параметры $b, \alpha, \beta, \gamma, p$ описывают радиационные и теплофизические свойства среды [7], $\sigma(x,t)$ - произведение удельной теплоемкости на объем плотность, $k(\theta)$ — коэффициент теплопроводности, f и g описывают вклад источников тепла и излучения соответственно. Символом ∂_n обозначена производная по направлению внешней нормали \mathbf{n} к границе Γ . Предположим, что Ω — липшицева ограниченная область, $\Gamma = \partial \Omega, Q = \Omega \times (0,T), \Sigma = \Gamma \times (0,T)$.

Обозначим через $L^p, 1 \leqslant p \leqslant \infty$ пространство Лебега, через H^1 пространство Соболева W_2^1 и через $L^p(0,T;X)$ пространство Лебега функций из L^p , определенных на (0,T), со значениями в банаховом пространстве X. Пусть $H=L^2(\Omega), V=H^1(\Omega)$, а пространство V' двойственно к V. Тогда мы отождествим H с его двойственным пространством H' таким, что $V \subset H=H' \subset V'$, и обозначим через $\|\cdot\|$ норму в H, а через (h,v) значение функционала $h \in V'$ на элементе $v \in V$, совпадающее со скалярным произведением в H, если $h \in H$.

Будем далее предполагать, что исходные данные удовлетворяют следующим условиям:

(i) $\alpha, \beta, \sigma \in L^{\infty}(\Omega), b = r\beta, r = \text{Const} > 0; \alpha \geqslant \alpha_0, \beta \geqslant \beta_0, \sigma \geqslant \sigma_0, \alpha_0, \beta_0, \sigma_0 = \text{Const} > 0.$

(ii) $0 < k_0 \le k(s) \le k_1, |k'(s)| \le k_2, s \in \mathbb{R}, \quad k_j = \text{Const.}$

(iii) $0 \leqslant \theta_b \in L^{\infty}(\Sigma), 0 \leqslant \theta_{in} \in L^{\infty}(\Omega); \gamma_0 \leqslant \gamma \in L^{\infty}(\Gamma), p_0 \leqslant p \in L^{\infty}(\Gamma), \gamma_0, p_0 = \text{Const} > 0.$

(iv)
$$0 \leqslant f, g \in L^{\infty}(Q)$$
.

Пусть

$$W = \{ y \in L^{2}(0, T; V) : \sigma y' = \sigma dy/dt \in L^{2}(0, T, V') \}$$

Определим операторы $A_1:V\to V_0'$ и $A_2:V\to V'$ такие, что для всех $\theta,\phi v$ справедливы следующие равенства:

$$(A_1(\theta), v) = (k(\theta)\nabla\theta, \nabla v) + \int_{\Gamma} p\theta v d\Gamma = (\nabla h(\theta), \nabla v) + \int_{\Gamma} p\theta v d\Gamma,$$
$$(A_2\varphi, v) = (\alpha\nabla\varphi, \nabla v) + \int_{\Gamma} \gamma\varphi v d\Gamma,$$

где

$$h(s) = \int_0^s k(r)dr$$

Определение 1. Пара $\theta \in W, \phi \in L^2(0,T;V)$ называется слабым решением задачи (1) - (3), если

$$\sigma\theta' + A_1(\theta) + b\left([\theta]^4 - \varphi\right) = f_b + f \quad \text{a. e. on } (0, T), \quad \theta(0) = \theta_{in},$$
$$A_2\varphi + \beta\left(\varphi - [\theta]^4\right) = g_b + g \quad \text{a. e. on } (0, T).$$

Здесь, $f_b, g_b \in L^2(0, T; V')$ и

$$(f_b, v) = \int_{\Gamma} p \theta_b v d\Gamma, \quad (g_b, v) = \int_{\Gamma} \gamma \theta_b^4 v d\Gamma \quad \forall v \in V$$

Замечание 1. Так как $\theta \in W$, то $\theta \in C([0,T];V)$. Следовательно, начальное условие имеет смысл.

3.1.3 Iterative method

Определим операторы $F_1:L^\infty(\Omega)\to V$ и $F_2:L^\infty(Q)\times L^2(0,T;V)\to W$ следующим образом.

Пусть $\varphi = F_1(\theta)$, если

$$A_2 \varphi + \beta \left(\varphi - [\theta]^4 \right) = g_b + g$$

и $\theta = F_2(\zeta, \phi)$ если

$$\sigma\theta' + A(\zeta, \theta) + b([\theta]^4 - \varphi) = f_b + f$$
 a. e. on $(0, T)$, $\theta(0) = \theta_{in}$.

Здесь

$$(A(\zeta, \theta), v) = (k(\zeta)\nabla\theta, \nabla v) + \int_{\Gamma} p\theta v d\Gamma \quad \forall v \in V$$

Пусть $w(t) = M_0 + M_1 t, t \in [0, T]$, где

$$M_0 = \max \left\{ \|\theta_b\|_{L^{\infty}(\Sigma)}, \|\theta_{in}\|_{L^{\infty}(\Omega)} \right\}$$
$$M_1 = \sigma_0^{-1} \left(\|f\|_{L^{\infty}(Q)} + \max b M_2 \right), \quad M_2 = \beta_0^{-1} \|g\|_{L^{\infty}(Q)}.$$

Лемма 1. Пусть выполнены условия (i) - (iv), $0 \leqslant \theta \leqslant w(t), \phi = F_1(\theta)$. В таком случае

$$0 \leqslant \varphi \leqslant w^4(t) + M_2$$

 \mathcal{A} оказательство. Умножая (6) в смысле внутреннего произведения H на $\psi = \max \left\{ \phi - M_2 - w^4, 0 \right\} \in L^2(0,T;V)$, получаем

$$(A_2 \varphi - g_b, \psi) + (\beta (\varphi - M_2 - [\theta]^4), \psi) = (g - \beta M_2, \psi) \leq 0.$$

Заметим, что с учетом ограничений на θ выполняются следующие неравенства:

$$(A_{2}\varphi - g_{b}, \psi) = (\alpha \nabla \psi, \nabla \psi) + \int_{\Gamma} \gamma \left(\varphi - \theta_{b}^{4} \right) d\Gamma \geqslant (\alpha \nabla \psi, \nabla \psi)$$
$$\left(\beta \left(\varphi - M_{2} - [\theta]^{4} \right), \psi \right) = (\beta \psi, \psi) + \left(\beta \left(w^{4} - [\theta]^{4} \right), \psi \right) \geqslant (\beta \psi, \psi).$$

Таким образом, $\psi = 0$ и $\phi \leqslant w^4 + M_2$.

Далее, умножая (6) в смысле скалярного произведения H на $\xi = \min\{\varphi, 0\} \in L^2(0, T; V)$ аналогично получаем, что $\xi = 0$. Таким образом, $\varphi \geqslant 0$.

Лемма 2. Пусть выполняются условия (i)-(iv), $0 \leqslant \varphi \leqslant w^4(t) + M_2, \theta = F_2(\zeta, \varphi), \zeta \in L^\infty(Q)$. Тогда $0 \leqslant \theta \leqslant w(t)$.

Доказательство. Пусть $\widehat{\theta} = \theta - w$. Перепишем уравнение (7) следующим образом

$$\sigma\widehat{\theta}' + A(\zeta, \theta) - f_b + b\left([\widehat{\theta} + w]^4 - (\varphi - M_2)\right) = f - \sigma M_1 + bM_2 \leqslant 0.$$

Умножая (9) в смысле скалярного произведения H на $\mathbf{\eta} = \max\{\widehat{\mathbf{\theta}}, 0\} \in W$. Заметим, что значение правой части неположительно, а также

$$\left(\sigma\widehat{\theta}', \eta\right) = (\sigma\eta', \eta) = \frac{d}{2dt}(\sigma\eta, \eta)$$

$$(A(\zeta, \theta) - f_b, \eta) = (k(\zeta)\nabla\eta, \nabla\eta) + \int_{\Gamma} p\left(\widehat{\theta} + w - \theta_b\right) \eta d\Gamma \geqslant 0$$

$$\left([\widehat{\theta} + w]^4 - w^4\right) \max\{\widehat{\theta}, 0\} \geqslant 0, \quad \left(w^4 + M_2 - \varphi\right) \eta \geqslant 0$$

Тогда

$$\frac{d}{dt}(\sigma\eta, \eta) \leqslant 0, \quad \eta|_{t=0} = 0$$

Таким образом, $\eta=0,\widehat{\theta}\leqslant 0,\theta\leqslant w$. Аналогично, умножая (9) в смысле скалярного произведения H на $\eta=\min\{\theta,0\}\in W$, получаем, что $\eta=0,\ \theta\geqslant 0$.

Пусть $\theta_0=\theta_{in}, \quad \varphi_0=F_1\left(\theta_0\right)$. Определим рекурсивно последовательности $\theta_m\in W, \varphi_m\in L^2(0,T;V)$ таким образом, что

$$\theta_m = F_2(\theta_{m-1}, \phi_{m-1}), \quad \phi_m = F_1(\theta_m), \quad m = 1, 2, \dots$$

Из лемм 1 и 2 следуют оценки

$$0 \leqslant \varphi_m \leqslant w^4(t) + M_2, \quad 0 \leqslant \theta_m \leqslant w(t), \quad m = 1, 2, \dots$$

Лемма 3. Пусть выполнены условия (i) — (iv). Тогда существует константа C>0, не зависящая от m, такая, что

$$\|\varphi_m\|_{L^2(0,T;V)} \le C, \quad \|\theta_m\|_{L^2(0,T;V)} \le C,$$

$$\int_0^{T-\delta} \|\theta_m(s+\delta) - \theta_m(s)\|^2 ds \le C\delta.$$

 \mathcal{A} оказательство. Из определения последовательностей ϕ_m, θ_m следуют равенства

$$A_2 \varphi_m + \beta \left(\varphi_m - \left[\theta_m \right]^4 \right) = g_b + g$$

$$\sigma \theta'_m + A \left(\theta_{m-1}, \theta_m \right) + b \left(\left[\theta_m \right]^4 - \varphi_{m-1} \right) = f_b + f \quad \text{a. e. on } (0, T), \quad \theta_m(0) = \theta_{in}.$$

Оценки (12) выводятся стандартным образом из уравнений (14) и (15) и с учетом (11), т.е. ограниченности последовательностей в $L^{\infty}(Q)$.

Получим оценку, гарантирующую компактность последовательности θ_m в $L^2(Q)$. Перепишем (15) как

$$\sigma \theta'_m = \chi_m \text{ a.e. on } (0,T), \quad \theta_m(0) = \theta_{in}$$

где

$$-\chi_m = A(\theta_{m-1}, \theta_m) + b([\theta_m]^4 - \varphi_{m-1}) - f_b - f.$$

Отметим, что с учетом полученных оценок последовательность χ_m ограничена в $L^2(0,T;V')$. Умножим (16) в смысле скалярного произведения произведения H на $\theta_m(t) - \theta_m(s)$ и проинтегрируем по t на интервале $(s,s+\delta)$ и над s на $(0,T-\delta)$, предполагая, что $\delta>0$ достаточно мало. В результате получим

$$\frac{1}{2} \int_0^{T-\delta} \left\| \sqrt{\sigma} \left(\theta_m(s+\delta) - \theta_m(s) \right) \right\|^2 ds = \int_0^{T-\delta} \int_s^{s+\delta} c_m(t,s) dt ds$$

где

$$c_m(t,s) = (\chi_m(t), \theta_m(t) - \theta_m(s)) \leqslant \|\chi_m(t)\|_{V'}^2 + \frac{1}{2} \|\theta_m(t)\|_V^2 + \frac{1}{2} \|\theta_m(s)\|_V^2.$$

Для оценки интегралов от слагаемых, зависящих от t, достаточно изменить порядок интегрирования. Используя ограниченность последовательностей θ_m в $L^2(0,T;V)$ и χ_m в $L^2(0,T;V')$, получаем оценку равностепенной непрерывности (13).

Полученные оценки (12), (13) позволяют утверждать, переходя при необходимости к подпоследовательностям, что существуют функции θ_* , ϕ_* такие, что

$$\theta_m \to \widehat{\theta}$$
 weakly in $L^2(0,T;V)$, strongly in $L^2(0,T;H)$, $\phi_m \to \widehat{\phi}$ weakly in $L^2(0,T;V)$.

Сходимости (17) достаточно, для перехода к пределу при $m \to \infty$ в равенствах (14), (15) и доказательства, что предельные функции $\widehat{\theta}$, $\widehat{\varphi} \in L^2(0,T;V)$ таковы, что $\sigma \widehat{\theta}' \in L^2(0,T;V')$ и для них выполняются равенства (4), (5).

Теорема 1. Пусть выполнены условия (i)-(iv). Тогда задача (1)-(3) имеет хотя бы одно решение.

3.1.4 Uniqueness theorem and convergence of the iterative method

Покажем, что в классе функций с ограниченным градиентом температуры решение единственно. Это позволяет доказать сходимость итерационной процедуры.

Теорема 2. Пусть выполнены условия (i)–(iv). Если θ_*, ϕ_* — решение задачи (1)-(3) такое, что $\theta_*, \nabla \theta_* \in L^\infty(Q)$, то других ограниченных решений этой задачи нет.

Доказательство.

Пусть θ_1, ϕ_1 - другое решение задачи (1) - (3), $\theta = \theta_1 - \theta_*, \phi = \phi_1 - \phi_*$. В таком случае

$$\sigma \theta' + A_1(\theta_1) - A_1(\theta_*) + b\left([\theta_1]^4 - [\theta_*]^4 - \phi \right) = 0 \quad \text{a. e. on } (0, T), \quad \theta(0) = 0.$$

$$A_2 \phi + \beta \left(\phi - \left([\theta_1]^4 - [\theta_*]^4 \right) \right) = 0 \quad \text{a. e. on } (0, T).$$

Умножьте (18) в смысле внутреннего произведения H на θ и проинтегрируйте по времени. Как результат

$$\frac{1}{2} \|\sqrt{\sigma}\theta\|^{2} + \int_{0}^{t} \left(\left(k\left(\theta_{1}\right) \nabla\theta, \nabla\theta \right) + \int_{\Gamma} p\theta^{2}(s) d\Gamma \right) ds =$$

$$- \int_{0}^{t} \left(b\left(\left[\theta_{1}\right]^{4} - \left[\theta_{*}\right]^{4} - \phi\right), \theta \right) ds - \int_{0}^{t} \left(\left(k\left(\theta_{1}\right) - k\left(\theta_{*}\right)\right) \nabla\theta_{*}, \nabla\theta \right) ds$$

Пусть $|\theta_1| \leqslant M, |\theta_*| \leqslant M.$ С учетом ограничения на функцию k получаем неравенство

$$\frac{\sigma_0}{2} \|\theta\|^2 + k_0 \int_0^t \|\nabla \theta\|^2 ds \leqslant
\int_0^t \left(4M \max b \|\theta\|^2 + \|\phi\| \|\theta\| \right) ds + k_2 \|\nabla \theta_*\|_{L^{\infty}(Q)} \int_0^t \|\theta\| \|\nabla \theta\| ds.$$

Принимая во внимание, что $\|\theta\|\|\nabla\theta\|\leqslant \varepsilon\|\nabla\theta\|^2+\frac{1}{4\varepsilon}\|\theta\|^2$ и предполагая

$$\varepsilon = \frac{k_0}{k_2 \left\| \nabla \theta_* \right\|_{L^{\infty}(Q)}}$$

из (20) получаем

$$\frac{\sigma_0}{2} \|\theta\|^2 \leqslant \int_0^t \left(4M \max b \|\theta\|^2 + \|\phi\| \|\theta\| \right) ds + \frac{1}{4\varepsilon} k_2 \|\nabla \theta_*\|_{L^{\infty}(Q)} \int_0^t \|\theta\|^2 ds.$$

Умножьте (19) на ϕ в смысле скалярного произведения H. Как результат

$$(A_2\varphi,\varphi) + (\beta\varphi,\varphi) = \left(\beta\left(\left[\theta_1\right]^4 - \left[\theta_2\right]^4\right),\varphi\right) \leqslant 4\max\beta M^3\|\theta\|\|\varphi\|.$$

Следовательно, $\|\phi\| \leqslant 4\beta_0^{-1} \max \beta M^3 \|\theta\|$. Тогда из (21) и неравенства Гронуолла следует, что $\theta=0, \theta_1$ совпадает с θ_* и, соответственно, ϕ_1 совпадает с ϕ_* .

Теорема 3.

Пусть выполнены условия (i)-(iv). Если θ_*, ϕ_* — решение задачи (1)-(3) такое, что $\theta_*, \nabla \theta_* \in L^{\infty}(Q)$, то для последовательностей (10) имеют место следующие сходимости:

$$\theta_m \to \theta_*$$
 in $L^2(0,T;V)$, $\phi_m \to \phi_*$ in $L^2(0,T;V)$.

Доказательство.

Сначала покажем, что $\theta_m \to \theta_*$ в $L^2(0,T;H)$. Предполагая противное, заключаем, что существуют $\varepsilon_0 > 0$ и подпоследовательность $\theta_{m'}$ такие, что $\|\theta_{m'} - \theta_*\|_{L^2(0,T;H)} \ge \varepsilon_0$. Оценки (12), (13) позволяют утверждать, переходя при необходимости к подпоследовательностям, что справедливы результаты сходимости (17), где $\hat{\theta}$, $\hat{\varphi}$ также является решением задачи (1) - (3). Следовательно,

 $\|\widehat{\theta} - \theta_*\|_{L^2(0,T;H)} \geqslant \varepsilon_0$, что противоречит теореме 2 о единственности решения. Из уравнений (14) и (15) с учетом (11), т.е. ограниченности последовательностей в $L^\infty(Q)$, а также доказанной сходимости θ_m в $L^2(0,T;H)$ следует сходимость $\theta_m \to \theta_*, \varphi_m \to \varphi_*$ в $L^2(0,;V)$.

3.1.5 Numerical simulation

Перенос тепла и излучения будем рассматривать в среде, состоящей из четырех частей, которые интерпретируются как кровь, стенки вены, предвенозная ткань и оптическое волокно. Расчетная область в цилиндрической системе координат в случае угловой симметрии схематизирована на рис. 1 (линейные размеры даны в миллиметрах).

_____ Рисунок 1: Вычислительная область.

Для нахождения решения начально-краевой задачи (1) - (3) дискретизируем интервал времени $(0,T), \quad 0=t_0 < t_1 < t_2 < \ldots < t_N = T$. Для каждого момента времени $t=t_l=l\Delta t, \ l=1,2,\ldots,N$ используется итерационный алгоритм для нахождения решения соответствующей краевой задачи. n-й шаг итерационной процедуры $(n=1,2,\ldots,M)$ записывается следующим образом

$$-\operatorname{div}\left(\alpha\nabla\varphi_{n}\right)+\beta\left(\varphi_{n}-\theta_{n-1}^{3}\left|\theta_{n-1}\right|\right)=g,$$

$$\sigma\partial\theta_{n}/\partial t-\operatorname{div}\left(k\left(\theta_{n-1}\right)\nabla\theta_{n}\right)-b\left(\theta_{n-1}^{3}\left|\theta_{n}\right|-\varphi_{n}\right)=f,\quad x\in\Omega,$$

$$k\left(\theta_{n-1}\right)\partial_{n}\theta_{n}+p\left(\theta_{n}-\theta_{b}\right)|_{\Gamma}=0,\quad \alpha\partial_{n}\varphi_{n}+\gamma\left(\varphi_{n}-\theta_{b}^{4}\right)|_{\Gamma}=0,$$

где производная по времени в (23) аппроксимируется следующим образом

$$\frac{\partial \theta_n}{\partial t} \simeq \frac{\theta_n|_{t=t_l} - \theta_M|_{t=t_{l-1}}}{\Delta t}$$

а функции $\theta_n, \theta_{n-1}, \phi_n$ в (22) - (24) являются приближениями решения, соответствующего моменту времени $t=t_l$. Нижний индекс функций θ_n, θ_{n-1}

и ϕ_n означает номер итерации. Для инициализации итерационной процедуры задаем начальное приближение температуры для каждого момента времени:

$$|\Theta_0|_{t=t_l} = |\Theta_M|_{t=t_{l-1}}, \quad l = 1, 2, \dots, N, \quad |\Theta_M|_{t=t_0} = |\Theta_{in}|.$$

В уравнениях (22) и (23) $g = P_{\phi}\chi/\mathcal{M}_{\phi}$, $f = P_{\theta}\chi/\mathcal{M}_{\theta}$, где P_{ϕ} — мощность источника, затрачиваемая на излучение, P_{θ} описывает мощность источника, затрачиваемая на нагрев кончика световода, χ — характеристика функция части среды, в которой находится кончик волокна, деленная на объем конца волокна, \mathcal{M}_{ϕ} и \mathcal{M}_{θ} являются нормирующими коэффициенты для получения из ϕ и θ средней интенсивности излучения и абсолютной температуры.

Для реализации каждого шага итерационного алгоритма (22)-(25) использовался метод конечных элементов с использованием пакета программ FreeFEM++ [14]. Оптические и теплофизические параметры среды взяты из [10]. Параметры θ_b и θ_{in} соответствуют температуре 37°C, а коэффициент γ равен 1. Во всех расчетах начальное положение кончика оптического волокна соответствует (r,z)=(0,5), а скорость его обратного хода равна 2 mm/s. Следуя [10, 11], моделируем перенос тепла потоком пузырьков, образующихся на конце горячего волокна, через коэффициент теплопроводности в зависимости от температуры следующим образом: при достижении температуры в некоторой точке 95° mathrmC и выше коэффициент теплопроводности увеличивается в 200 раз.

Эффективность лазерной абляции можно оценить по поведению профилей температуры в различных точках расчетной области. Основными параметрами процедуры лазерной абляции являются мощность лазера, длина волны излучения, скорость обратного хода оптического волокна и соотношение мощностей лазера, затрачиваемых на излучение и нагрев кончика волокна. Отметим, что решение задачи (1) - (3) зависит от длины волны неявно, параметрами α и β , описывающими радиационные свойства среды (см. таблицы значений коэффициента поглощения и приведенный коэффициент рассеяния, определяющий параметры α и $\beta[10,11]$). Как правило, лазерная абляция осуществляется излучением с длиной волны от 810 до 1950 . Достаточно широко используемые диапазоны скорости отвода волокна и мощности лазерного излучения составляют 1-3 mm/s и 5-15 W соответственно [9,10,11].

На рис . 2 показано поведение профилей температуры в точке (1.5,10) для излучения с разными длинами волн: 810 , 1064 , 1470 и 1950 nm. Мощность источника задается как $(P_{\phi}, P_{\theta}) = (7 \text{ W}, 3 \text{ W})$ во всех случаях. Как видно из рис.

2, существенное влияние на поведение температурного профиля оказывает изменение длины волны излучения. Тем не менее можно обеспечить достаточно близкую продолжительность кипения (при температуре более 95°С) для температурных профилей, соответствующих разным длинам волн, путем изменения мощности лазера $P = P_{varphi} + P_{\theta}$, сохраняя отношение P_{ϕ}/P_{θ} равным 7/3 (см. рис. 3).

Отметим, что расчетная температура в точках околовенозной ткани (2,5,10) и (3,5,10) вполне безопасна (см. рис. 4).

Как видно из проведенных экспериментов, использование компьютерного моделирования является перспективным способом определения оптимальных параметров излучения, обеспечивающих эффективное и безопасное проведение ЭВЛА.

3.2 Задачи оптимального управления с фазовыми ограничениями

3.2.1 Введение

Процедура эндовенозной лазерной абляции (EVLA) безопасна и достаточно эффективна при лечении варикозного расширения вен [1]. Во время ЭВЛА в поврежденную вену вводится лазерное оптическое волокно. Затем лазерное излучение передается по волокну, которое в это время вытягивается из вены. Конец оптического волокна обычно покрыт карбонизированным слоем (наконечник оптического волокна). Карбонизированный слой разделяет лазерную энергию на нагрев наконечника оптического волокна и излучение. Тепло от наконечника оптического волокна передается крови за счет кондуктивного теплообмена, теплопередача значительно увеличивается за счет потока пузырьков, образующихся на нагретом наконечнике волокна. Излучение, попадающее в кровь и окружающие ткани, частично поглощается с выделением тепла. В результате генерируемая тепловая энергия вызывает значительный нагрев вены, что приводит к ее облитерации (закрытию вены).

Математическое моделирование радиационных и тепловых процессов, возникающих при ЭВЛА, важно для определения оптимальных параметров излучения, обеспечивающих достаточно высокую температуру внутри вены для успешной облитерации, с другой стороны, генерируемое температурное поле должно быть относительно безопасным для тканей, окружающих вену. Результаты численного моделирования EVLA для длин волн в диапазоне от 810 до 1470 и различных диаметров жил обсуждаются в [2-4]. В [5] отмечается важность математического моделирования для выбора оптимальной мощности лазерного излучения и скорости отката волокна. Обычно при выборе оптимальных параметров излучения используется прямое множественное моделирование [2-5]. Такой подход неэффективен с практической точки зрения. Более того, вопросы, связанные с существованием и уникальностью оптимального режима, остаются открытыми.

Наиболее перспективным подходом к выбору оптимальных параметров излучения является рассмотрение задачи оптимального управления для уравнений реакционно-диффузионного типа, описывающих процедуру EVLA. Различные подходы к анализу и оптимизации параметров реакционно-диффузионных моделей, описывающих различные природные явления, можно найти в [6-9].

Задачи оптимального управления для модели EVLA рассмотрены в [10,11]. В [10] ставится задача оптимального управления для реакционнодиффузионной модели, описывающей процедуру EVLA, которая заключается в аппроксимации заданного температурного профиля в определенной точке модельной области. В [11] изучается аналогичная [10] задача оптимального управления. Здесь целевой функционал берется таким образом, что его минимизация позволяет достичь заданного распределения температуры в разных частях модельной области. Это позволяет обеспечить достаточно высокую температуру внутри вены для ее успешной облитерации и безопасную температуру в перивенозной ткани. Доказана однозначная разрешимость начально-краевой задачи, на основе которой показана разрешимость задачи оптимального управления. Предложен алгоритм нахождения решения задачи оптимального управления. Его эффективность проиллюстрирована численным примером.

В настоящей работе рассматривается задача оптимального управления для квазилинейных уравнений радиационно-кондуктивного теплообмена, моделирующих процесс эндовенозной лазерной абляции в ограниченной области Ω с отражающей границей $\Gamma = \partial \Omega$. Проблема заключается в том, чтобы свести к минимуму функционал

$$J(\theta) = \int_0^T \int_{G_1} (\theta - \theta_d)^2 dx dt \to \inf$$

на решениях начально-краевой задачи:

$$\sigma \partial \theta / \partial t - \operatorname{div}(k(\theta) \nabla \theta) - \beta \varphi = u_1 \chi$$
$$- \operatorname{div}(\alpha \nabla \varphi) + \beta \varphi = u_2 \chi, \quad x \in \Omega, \quad t \in (0, T),$$
$$\theta = 0|_{\Gamma}, \quad \alpha \partial_n \varphi + 2^{-1} \varphi|_{\Gamma} = 0, \quad \theta|_{t=0} = \theta_0$$

При этом учитываются ограничения:

$$u_{1,2} \geqslant 0$$
, $u_1 + u_2 \leqslant P$, $\theta|_{G_2} \leqslant \theta_*$

Здесь G_1 и G_2 подмножества Ω, θ представляет собой разницу между реальной температурой (в единицах Цельсия) и постоянной граничной температурой, φ является ли интенсивность излучения усредненной по всем направлениям, α является коэффициентом диффузии фотонов, β является коэффициентом поглощения, $k(\theta)$ является коэффициентом теплопроводности, $\sigma(x,t)$ является произведением удельной теплоемкости и объемной плотности, u_1 описывает мощность источника, затрачиваемую на нагрев наконечника волокна, u_2 это мощность источника, расходуемая на излучение, P является максимальной мощностью лазерного источника, χ является характерной функцией той части среды, в которой волокно наконечник расположен деленным на объем волоконного наконечника. Обратите внимание, что значения параметров u_1 and u_2 определяются методом карбонизации кончика волокна. Обзор некоторых способов карбонизации приведен в [10].

Таким образом, при моделировании процедуры EVLA мы будем использовать диффузионную модель, которая учитывает кондуктивный теплообмен, а также перенос излучения и поглощение с выделением тепла. Поток пузырьков, образующихся на нагретом наконечнике оптического волокна, вносит значительный вклад в температурное поле. В [2-4], основываясь на оценке экспериментальных данных, теплопередача потоком пузырьков моделируется с использованием кусочно-постоянного коэффициента теплопроводности, который зависит от температуры следующим образом: когда температура в некоторой точке достигает 95°C, коэффициент теплопроводность увеличивается в 200 раз.

Следуя задаче оптимального управления, требуется обеспечить заданное распределение температурного поля θ_d в поддомене G_1 , при этом температура

в поддомене G_2 не может превышать (если это возможно) критическое значение $\theta_* = \mathrm{Const} > 0$.

3.2.2 Формализация задачи оптимального управления

Будем далее предполагать, что Ω является липшицевой ограниченной областью, $\Gamma = \partial \Omega, Q = \Omega \times (0,T), \Sigma = \Gamma \times (0,T)$. Обозначим через $L^p, 1 \leqslant p \leqslant \infty$, пространство Лебега, через H^1 пространство Соболева W_2^1 , через H_0^1 подпространство функций из H^1 с нулевыми граничными значениями, а через $L^p(0,T;X)$ пространство Лебега функций из L^p , определенный на (0,T), со значениями в банаховом пространстве X.

Пусть $H = L^2(\Omega), V = H^1_0(\Omega)$, а пространство V' двойственно к V. Затем мы отождествляем H с его двойственным пространством H' таким, что $V \subset H^1(\Omega) \subset H = H' \subset \left(H^1(\Omega)\right)' \subset V'$, и обозначим через $\|\cdot\|$ норму в H, а через (h,v) значение функционала $h \in V'$ на элементе $v \in V$, совпадающее со скалярным произведением в H, если $h \in H$. Скалярный продукт в V определяется как $(u,v)_V = (\nabla u, \nabla v)$.

Будем предполагать, что выполнены следующие условия:

(c1)
$$\sigma_0 \leq \sigma \leq \sigma_1$$
, $|\partial \sigma/\partial t| \leq \sigma_2$

(c2)
$$k_0 \leqslant k(s) \leqslant k_1$$
, $|k'(s)| \leqslant k_2$, $s \in \mathbb{R}$,

(c3)
$$\theta_0 \in H$$

(c4)
$$\alpha_0 \leqslant \alpha(x) \leqslant \alpha_1, \beta_0 \leqslant \beta(x) \leqslant \beta_1, \quad x \in \Omega,$$

где σ_i, k_i, α_i , и β_i положительные константы.

Определим нелинейный оператор $A:V\to V'$ и линейный оператор $B:H^1(\Omega)\to \left(H^1(\Omega)\right)'$ используя следующие равенства, справедливые для любого $\theta,v\in V,\phi,w\in H^1(\Omega)$

$$(A(\theta), v) = (k(\theta)\nabla\theta, \nabla v) = (\nabla h(\theta), \nabla v)$$
$$(B\varphi, w) = (\alpha\nabla\varphi, \nabla w) + (\beta\varphi, w) + 2^{-1} \int_{\Gamma} \varphi w d\Gamma$$

где

$$h(s) = \int_0^s k(r)dr.$$

Definition 1. Пусть $u_{1,2} \in L^2(0,T)$. Пара функций $\theta \in L^2(0,T;V)$, $\phi \in L^2(0,T;H^1(\Omega))$ тогда a ялвяется слабым решением задачи (1), (2) если $\sigma\theta' \in L^2(0,T;V')$ и

 $\sigma\theta' + A(\theta) - \beta \varphi = u_1 \chi$, $\theta(0) = \theta_0$, $B\varphi = u_2 \chi$ where $\theta' = d\theta/dt$. Из леммы Лакса-Мильграма следует, что для любой функции $g \in H$ существует единственное решение уравнения $B\varphi = g$. Более того, обратный оператор $B^{-1}: H \to H^1(\Omega)$ непрерывен. Поэтому можно исключить интенсивность излучения $\varphi = u_2 B^{-1} \chi$ и сформулировать задачу оптимального управления следующим образом.

3.2.3 Problem (P)

$$J(\theta) = \int_0^T \int_{G_1} (\theta - \theta_d)^2 dx dt \to \inf$$

$$\sigma \theta' + A(\theta) = u, \quad \theta(0) = \theta_0, \quad \theta|_{G_2} \leqslant \theta_*, \quad u \in U_{ad},$$

где

$$U_{ad} = \left\{ u = u_1 \chi + u_2 \beta B^{-1} \chi : u_{1,2} \in L^2(0,T), u_{1,2} \ge 0, u_1 + u_2 \le P \right\}$$

3.2.4 Предварительные результаты

Давайте рассмотрим проблему

$$\sigma \theta' + A(\theta) = f, \quad \theta(0) = \theta_0.$$

Справедлива следующая лемма [11].

Lemma~1.~ Пусть выполняются условия (c1)-(c3) и $f\in L^2(0,T;V').~$ Тогда существует решение задачи (3) такое, что $\theta\in L^\infty(0,T;H)$ и справедливы

следующие оценки:

$$\|\theta(t)\|^2 \leqslant \frac{K}{\sigma_0} \exp \frac{\sigma_2 t}{\sigma_0} \quad \text{a.e. on } (0, T)$$
$$\int_0^T \|\theta(t)\|_V^2 dt \leqslant \frac{K}{k_0} \left(1 + \frac{\sigma_2 T}{\sigma_0} \exp \frac{\sigma_2 T}{\sigma_0}\right)$$

где
$$K = \sigma_1 \|\theta_0\|^2 + k_0^{-1} \|f\|_{L^2(0,T;V')}^2$$
.

Следующий результат важен для установления непустоты множества допустимых пар управляющих состояний. Lemma~2. Пусть выполняются условия (c1)-(c3) и $f=0,~\theta_0\leqslant\theta_*$ а.е. в $\Omega,~$ и θ решение задачи (3). Тогда $\theta\leqslant\theta_*$ а.е. в $\Omega\times(0,T)$.

Proof. Скалярно умножим в H первое уравнение (3) на $v = \max\{\theta - \theta_*, 0\} \in L^2(0, T; V)$ получаем

$$(\sigma v', v) + (k(\theta)\nabla v, \nabla v) = 0.$$

Отбрасывая неотрицательный второй член, приходим к оценке

$$\frac{d}{dt}(\sigma v, v) \leqslant (\sigma_t v, v) \leqslant \sigma_2 ||v||^2.$$

Учитывая, что $v|_{t=0}=0$,
проинтегрировать последнее неравенство по времени. Тогда

$$\sigma_0 \|v(t)\|^2 \leqslant (\sigma v(t), v(t)) \leqslant \sigma_2 \int_0^t \|v(\tau)\|^2 d\tau$$

На основании леммы Гронуолла заключаем, что v=0 и, следовательно, $\theta\leqslant\theta_*$ почти всюду в $\Omega\times(0,T).$

3.2.5 Разрешимость задачи оптимального управления

Theorem 1. Пусть выполняются условия (c1)-(c3), и $\theta_0 \leqslant \theta_*$ а.е. в Ω . Тогда существует решение задачи (P).

Proof. Согласно леммам 1 и 2 множество допустимых пар непусто. Рассмотрим минимизирующую последовательность допустимых пар $\{\theta_m, u_m\} \in L^2(0,T;V) \times U_{ad}$ такой, что $J(\theta_m) \to j = \inf J$, где

$$\sigma \theta'_m + A(\theta_m) = u_m, \quad \theta_m(0) = \theta_0, \quad \theta_m|_{G_2} \leqslant \theta_*.$$

Ограниченность в $L^2(0,T;H)$ множества допустимых управлений U_{ad} влечет по лемме 1 оценки:

$$\|\theta_m\|_{L^{\infty}(0,T;H)} \leqslant C, \quad \|\theta_m\|_{L^2(0,T;V)} \leqslant C,$$

 $\|h(\theta_m)\|_{L^2(0,T;V)} \leqslant C.$

Здесь и далее при доказательстве теоремы через C обозначаются константы, не зависящие от m. Оценки (5), используя при необходимости подпоследовательности, приводят к существованию функций $u \in U_{ad}, \quad \theta \in L^2(0,T;V),$ $\chi \in L^2(0,T;V)$ такое, что

$$u_m \to u$$
 weakly in $L^2(0,T;H)$,
 $\theta_m \to \theta$ weakly in $L^2(0,T;V)$,
*-weakly in $L^\infty(0,T;H)$,
 $h(\theta_m) \to \chi$ weakly in $L^2(0,T;V)$.

Результаты сходимости (6) достаточны для предельного перехода при $m \to \infty$ в системе (4) и доказательства того, что предельная функция $\theta \in L^2(0,T;V)$ такова, что $\sigma\theta' \in L^2(0,T;V')$ удовлетворяет равенству

$$(\sigma\theta', v) + (\nabla\chi, \nabla v) = (u, v) \quad \forall v \in V$$

и начальное условие верно.

Следующая оценка гарантирует компактность последовательности θ_m in $L^2(Q)$:

$$\int_0^{T-\delta} \|\theta_m(s+\delta) - \theta_m(s)\|^2 ds \leqslant C\delta$$

Из неравенства (7), используя при необходимости подпоследовательности, получаем, что $\theta_m \to \theta$ in $L^2(Q)$. Следовательно, в силу неравенства

$$|h(\theta_m) - h(\theta)| \leq k_1 |\theta_m - \theta|$$

следует, что $h(\theta_m) \to h(\theta)$ іп $L^2(Q)$ и, следовательно $\chi = h(\theta)$. Кроме того, предельная функция θ удовлетворяет неравенству $\theta|_{G_2} \leqslant \theta_*$. Следовательно, допустима предельная пара $\{\theta,u\} \in L^2(0,T;V) \times U_{ad}$. Поскольку функционал J слабо полунепрерывен снизу,

$$j \leq J(\theta) \leq \liminf J(\theta_m) = j$$
,

тогда пара $\{\theta, u\}$ является решением задачи (P).

3.2.6 Задача штрафов

Чтобы численно решить задачу оптимального управления с фазовыми ограничениями $\theta|_{G_2}\leqslant \theta_*,$ рассмотрим следующую задачу штрафов.

Problem $(\mathbf{P}_{\varepsilon}):J_{\varepsilon}(\mathbf{\theta})\to\inf$, где

$$J_{\varepsilon}(\theta) = \int_{0}^{T} \int_{G_{1}} (\theta - \theta_{d})^{2} dx dt$$
$$+ \frac{1}{\varepsilon} \int_{0}^{T} \int_{G_{2}} F(\theta) dx dt,$$
$$\sigma \theta' + A(\theta) = u, \quad \theta(0) = \theta_{0}, \quad u \in U_{ad}.$$

Здесь,

$$F(\theta) = \begin{cases} 0, & \text{if } \theta \leqslant \theta_* \\ (\theta - \theta_*)^2, & \text{if } \theta > \theta_* \end{cases}$$

Оценки, представленные в лемме 1, также позволяют доказать разрешимость задачи со штрафом аналогично доказательству теоремы 1.

Theorem 2. Пусть выполняются условия (c1)-(c3). Тогда существует решение задачи (P_{ε}) .

Рассмотрим аппроксимативные свойства решений задачи со штрафом. Пусть $\{\theta_{\varepsilon}, u_{\varepsilon}\}$ — решения задачи (P_{ε}) и $\{\ theta, u\}$ — решение задачи (P). Затем,

$$\sigma \theta_{\varepsilon}' + A(\theta_{\varepsilon}) = u_{\varepsilon}, \quad \theta_{\varepsilon}(0) = \theta_{0}.$$

Since $\theta|_{G_2} \leqslant \theta_*$, the following inequality is true:

$$\int_{0}^{T} \int_{G_{1}} (\theta_{\varepsilon} - \theta_{d})^{2} dx dt + \frac{1}{\varepsilon} \int_{0}^{T} \int_{G_{2}} F(\theta_{\varepsilon}) dx dt$$
$$\leq \int_{0}^{T} \int_{G_{1}} (\theta - \theta_{d})^{2} dx dt = J(\theta)$$

Следовательно,

$$\int_{0}^{T} \int_{G_{1}} (\theta_{\varepsilon} - \theta_{d})^{2} dx dt \leq J(\theta)$$
$$\int_{0}^{T} \int_{G_{2}} F(\theta_{\varepsilon}) dx dt \leq \varepsilon J(\theta)$$

Из полученных оценок, используя при необходимости подпоследовательности, соответствующие $\varepsilon_k \to +0$, аналогично доказательству теоремы 1, устанавливаем существование функций $\widehat{u} \in U_{ad}, \widehat{\theta} \in L^2(0,T;V)$, такой, что

$$u_{\varepsilon} \to \widehat{u}$$
 weakly in $L^2(0,T;H)$
 $\theta_{\varepsilon} \to \widehat{\theta}$ weakly in $L^2(0,T;V)$
strongly in $L^2(0,T;H)$.

Заметим, что

$$\int_{0}^{T} \int_{G_{2}} F(\theta_{\varepsilon}) dx dt \to \int_{0}^{T} \int_{G_{2}} F(\widehat{\theta}) dx dt$$
$$\int_{0}^{T} \int_{G_{2}} F(\theta_{\varepsilon}) dx dt \to 0, \text{ as } \varepsilon \to +0$$

что гарантирует, что $F(\widehat{\theta}) = 0$ and $\widehat{\theta}\Big|_{G_2} \leqslant \theta_*$.

Результаты сходимости достаточны для предельного перехода по $\varepsilon \to +0$ в системе (8) и доказательства того, что предельная пара $\{\widehat{\theta}, \widehat{u}\} \in L^2(0, T; V) \times U_{ad}$ допустимо для задачи (P). Поскольку функционал J слабо полунепрерывен снизу,

$$j \leqslant J(\widehat{\theta}) \leqslant \liminf J(\theta_{\varepsilon}) \leqslant J(\theta) = j = \inf J$$

тогда пара $\{\widehat{\boldsymbol{\theta}}, \widehat{u}\}$ есть решение задачи (Р).

Theorem 3. Пусть выполнены условия (c1)-(c3), и $\theta_0 \leqslant \theta_*$ а.е. in Ω . Если $\{\theta_{\varepsilon}, u_{\varepsilon}\}$ есть решения проблемы (P_{ε}) for $\varepsilon > 0$, тогда существует такая последовательность $\varepsilon \to +0$ что

$$u_{\varepsilon} \to \widehat{u}$$
 weakly in $L^2(0,T;H)$
 $\theta_{\varepsilon} \to \widehat{\theta}$ strongly in $L^2(0,T;H)$,

где $\{\widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{u}}\}$ есть решение проблемы (P).

3.2.7 Реализация численного алгоритма

Рассмотрим итерационный алгоритм решения задачи оптимального управления (P_{ϵ}) для случая, когда параметры управления u_1 и u_2 не зависят

от времени. На каждой итерации алгоритма решается линейно-квадратичная задача оптимального управления, в которой требуется найти минимум функционала:

$$\widehat{J}_{\varepsilon}(\theta) = \int_{0}^{T} \int_{G_{1}} (\theta - \theta_{d})^{2} dx dt + \frac{1}{\varepsilon} \int_{0}^{T} \int_{G_{*}} (\theta - \theta_{*})^{2} dx dt \to \inf, \quad u \in U_{ad}$$

с соответствующими ограничениями

$$\sigma \partial \theta / \partial t - \operatorname{div}(k(\widehat{\theta}) \nabla \theta) = u, \quad x \in \Omega, \quad 0 < t < T,$$

 $\theta|_{\Gamma} = 0, \quad \theta(x, 0) = \theta_0.$

Здесь,

$$U_{ad} = \left\{ u = u_1 \chi + u_2 \beta B^{-1} \chi : u_{1,2} \in \mathbb{R}, \\ u_{1,2} \geqslant 0, u_1 + u_2 \leqslant P \right\},$$
$$G_* = \left\{ x \in G_2 : \hat{\theta}(x,t) > \theta_* \right\}.$$

Функция $\widehat{\boldsymbol{\theta}}$ описывает поле температуры, найденное на предыдущей итерации.

В качестве зависимости коэффициента теплопроводности от температуры используется гладкая аппроксимация кусочно-постоянной функции, рассмотренной в [2-4].

Как легко видеть, задача (9), (10) сводится к нахождению минимума квадратичной функции параметров u_1 и u_2 :

$$\widehat{J}_{\varepsilon}\left(u_1\Theta_1+u_2\Theta_2+\Theta_3\right)\to\inf$$

на треугольнике $\{u_1,u_2\in\mathbb{R}:u_{1,2}\geqslant 0,u_1+u_2\leqslant P\}$. Функции Θ_1,Θ_2 и Θ_3 вычисляются заранее как решения следующих линейных начально-краевых задач для $x\in\Omega,t\in(0,1)$:

$$\sigma\partial\Theta_{1}/\partial t - \operatorname{div}\left(k(\widehat{\boldsymbol{\theta}})\nabla\Theta_{1}\right) = \chi,$$

$$\Theta_{1}|_{\Gamma} = 0, \quad \Theta_{1}(x,0) = 0$$

$$\sigma\partial\Theta_{2}/\partial t - \operatorname{div}\left(k(\widehat{\boldsymbol{\theta}})\nabla\Theta_{2}\right) = \beta B^{-1}\chi,$$

$$\Theta_{2}|_{\Gamma} = 0, \quad \Theta_{2}(x,0) = 0$$

$$\sigma\partial\Theta_{3}/\partial t - \operatorname{div}\left(k(\widehat{\boldsymbol{\theta}})\nabla\Theta_{3}\right) = 0$$

$$\Theta_{3}|_{\Gamma} = 0, \quad \Theta_{3}(x,0) = \theta_{0}.$$

При проведении численных экспериментов использовалась модельная область в цилиндрической системе координат с угловой симметрией, как показано на рис. 1. Толщина карбонизированного слоя равна 0,2, скорость вытягивания волокна 2/s. Рассматривалось излучение с длиной волны 1064. Оптические и теплофизические параметры среды взяты из [2-4].

Для демонстрации сходимости итерационного алгоритма в качестве решения прямой начально-краевой задачи для $(u_1, u_2) = (3,7)$ (здесь и далее единицы в ваттах). Области G_1 и G_2 берутся как достаточно малые окрестности точек (1.5,10),(3.5,10). Для реализации итерационного алгоритма мы взяли $\varepsilon = 0.3$ и θ_* , соответствующие 47° С.

Рисунок 1: Область.

Рисунок 2: Температурные профили: желаемая температура (черный), 1-е (зеленое), 2-е (синее) и 3-е (красное) приближения.

Аппроксимации решения в точке (1.5,10) показаны на рис. 2. Аппроксимации после 1-го, 2-го и 3-го шагов итерационного алгоритма отмечены зеленым цветом $((u_1,u_2)=(2.5,4.8))$, синим $((u_1,u_2)=(3.4,3.5))$ и красным $((u_1,u_2)=(4.2,0.9))$ соответственно. Черная линия показывает желаемую температуру, соответствующую $(u_1,u_2)=(3,7)$. Максимальное значение температуры в точке (3.5,10) равно $48,8^{\circ}$ С. Отметим, что при $(u_1,u_2)=(3,7)$ максимальное значение температуры в точке (3.5,10) равно $50,2^{\circ}$ С.

Эксперимент демонстрирует возможность снижения температуры в околовенозной ткани при сохранении температурного режима внутри вены.

3.3 Корректность начально-краевой задачи для квазилинейной модели

3.3.1 Введение

В настоящей работе рассматривается задача оптимального управления для модели эндовенозной лазерной абляции в ограниченной трехмерной области Ω с отражающей границей $\Gamma = \partial \Omega$. Проблема состоит в том, чтобы свести к минимуму функционал

$$J(\theta) = \int_{G_d} (\theta|_{t=T} - \theta_d)^2 dx \to \inf$$

на решениях начально-краевой задачи

$$\sigma \partial \theta / \partial t - \operatorname{div}(k(\theta) \nabla \theta) - \beta \varphi = u_1 \chi, \quad -\operatorname{div}(\alpha \nabla \varphi) + \beta \varphi = u_2 \chi, \quad x \in \Omega, \quad 0 < t < T$$
$$k(\theta) \partial_n \theta + \gamma (\theta - \theta_b)|_{\Gamma} = 0, \quad \alpha \partial_n \varphi + 0.5 \varphi|_{\Gamma} = 0, \quad \theta|_{t=0} = \theta_0.$$

В этом случае устанавливаются следующие ограничения:

$$u_{1,2} \geqslant 0$$
, $u_1 + u_2 \leqslant P$, $\theta|_{G_b} \leqslant \theta_*$.

Здесь θ - температура, φ - интенсивность излучения, усредненная по всем направлениям, α - коэффициент диффузии оптического излучения, μ_a - коэффициент поглощения, $k(\theta)$ - коэффициент теплопроводности, $\sigma(x,t)$ произведение удельной теплоемкости и объемной плотности, u_1 описывает мощность источника, затрачиваемую на нагрев наконечника волокна, u_2 - мощность источника, затрачиваемая на излучение, χ равно характеристической функции части среды, в которой расположен наконечник волокна, деленной на объем наконечника волокна. Функции θ_b , θ_0 определяют граничное и начальное распределения температуры. Мы обозначим через ∂_n производную в направлении внешней нормали \mathbf{n} к границе Γ . Требуется обеспечить близость распределения температуры к желаемому температурному полю θ_d в конечный момент времени t=T в поддомене G_d , при этом температура в поддомене G_b не превышает постоянного критического значения значение θ_* .

3.3.2 Формализация задачи оптимального управления

В дальнейшем мы предполагаем, что Ω является ограниченной областью Липшица, $\Gamma = \partial \Omega, Q = \Omega \times (0,T), \ \Sigma = \Gamma \times (0,T).$ Обозначим через $L^p, 1 \leqslant p \leqslant \infty$ пространство Лебега и через H^1 пространство Соболева W_2^1 . Пространство $L^p(0,T;X)$ (соответственно, C([0,T];X)) состоит из p-интегрируемых по (0,T) (соответственно, непрерывных по [0,T]) функции со значениями в банаховом пространстве X. Обозначим $H = L^2(\Omega), V = H^1(\Omega)$ и V' двойственное значение V. Затем мы отождествляем H с его двойным пространством H' таким, что $V \subset H = H' \subset V'$ и обозначаем через $\|\cdot\|$ норму в H, и на (h,v) значение функционала $h \in V'$ на элементе $v \in V$, совпадающее с внутренним произведением в H, если $h \in H$.

Пусть выполняются следующие условия:

- (i) $0 < \sigma_0 \leqslant \sigma \leqslant \sigma_1$, $|\partial \sigma/\partial t| \leqslant \sigma_2$, $\sigma_j = \text{Const.}$
- (ii) $0 < k_0 \le k(s) \le k_1$, $|k'(s)| \le k_2, s \in \mathbb{R}, k_i = \text{Const.}$
- (iii) $\theta_0 \in H, \gamma \in L^{\infty}(\Gamma), \gamma \geqslant \gamma_0 = \text{Const} > 0, \quad \theta_b \in L^{\infty}(\Sigma), \quad \theta_d \in G_d$
- (iv) $0 < \alpha_0 \leqslant \alpha(x) \leqslant \alpha_1$, $0 < \beta_0 \leqslant \beta(x) \leqslant \beta_1$, $x \in \Omega$ Мы определяем нелинейный оператор $A: V \to V'$ и линейный оператор $B: V \to V'$, используя следующее равенство, действительное для любого $\theta, v, \varphi, w \in V$:

$$(A(\theta), v) = (k(\theta)\nabla\theta, \nabla v) + \int_{\Gamma} \gamma \theta v d\Gamma = (\nabla h(\theta), \nabla v) + \int_{\Gamma} \gamma \theta v d\Gamma,$$

где

$$h(s) = \int_0^s k(r)dr; \quad (B\varphi, w) = (\alpha \nabla \varphi, \nabla w) + (\beta \varphi, w) + \frac{1}{2} \int_{\Gamma} \varphi w d\Gamma$$

Далее, с помощью следующей билинейной формы, мы определяем внутреннее произведение вV :

$$(u,v)_V = (\nabla u, \nabla v) + \int_{\Gamma} uv d\Gamma.$$

Соответствующая норма эквивалентна стандартной норме пространства V.

Определение 1. Пусть $u_{1,2} \in L^2(0,T)$. Пара $\theta, \varphi \in L^2(0,T;V)$ слабое решение задачи (1), (2) если $\sigma\theta' \in L^2(0,T;V')$ и

$$\sigma \theta' + A(\theta) - \beta \varphi = g + u_1 \chi, \quad \theta(0) = \theta_0, \quad B\varphi = u_2 \chi,$$

где

$$\theta' = d\theta/dt, \quad g \in L^{\infty}(0, T; V'), \quad (g, v) = \int_{\Gamma} \gamma \theta_b v d\Gamma$$

Замечание 1. Так как $(\sigma\theta)' = \sigma\theta' + \theta\partial\sigma/\partial t \in L^2(0,T;V')$ and $\sigma\theta \in L^2(0,T;V)$, then $\sigma\theta \in C([0,T];H)$, и поэтому начальные условия имеют физические основания.

Из леммы Лакса-Милграма следует, что для любой функции $g \in H$ существует единственное решение уравнения $B\phi = g$. Более того, обратный оператор $B^{-1}: H \to V$ является непрерывным. Следовательно, мы можем исключить интенсивность излучения $\phi = u_2 B^{-1} \chi$ и сформулировать задачу оптимального управления следующим образом. Проблема (CP)

$$J(\theta) = \int_{G_d} (\theta|_{t=T} - \theta_d)^2 dx \to \inf, \quad \sigma\theta' + A(\theta) = g + u, \quad \theta(0) = \theta_0,$$
$$\theta|_{G_b} \leqslant \theta_*, \quad u \in U_{ad}.$$

Здесь

$$U_{ad} = \left\{ u = u_1 \chi + u_2 \beta B^{-1} \chi : u_{1,2} \in L^2(0,T), u_{1,2} \geqslant 0, u_1 + u_2 \leqslant P \right\}$$

3.3.3 Предварительные результаты

В статье [5] получен следующий результат.

$$\sigma \theta' + A(\theta) = g + u, \quad \theta(0) = \theta_0,$$

такое что $\theta \in L^{\infty}(0,T;H)$, а также верна следующая оценка:

$$\|\theta(t)\|^2 + \|\theta\|_{L^2(0,T;V')}^2 \le C \left(\|\theta_0\|^2 + \|g + u\|_{L^2(0,T;V')}^2\right),$$

где C > 0 не зависит от θ_0, g , и u.

Lemma~2.~ Пусть условия (i) - (iv) выполняются, $u=0, \theta_0 \leqslant \theta_*$ другими словами, в $\Omega, \theta_b \leqslant \theta_*$ то есть $\Sigma,$ и θ будут решением задачи (4). Тогда $\theta \leqslant \theta_*$ в $\Omega \times (0,T).$

Доказательство. Умножая в смысле внутреннего произведения в H первое уравнение в (4) на $v=\max\{\theta-\theta_*,0\}\in L^2(0,T;V)$, мы получаем

$$(\sigma v', v) + (k(\theta)\nabla v, \nabla v) + \int_{\Gamma} \gamma \theta v d\Gamma = 0.$$

Отбрасывая неотрицательные второе и третье слагаемые, мы приходим к оценке

$$\frac{d}{dt}(\sigma v, v) \leqslant (\sigma_t v, v) \leqslant \sigma_2 ||v||^2.$$

Интегрируя последнее неравенство по времени и принимая во внимание, что $v|_{t=0}\,=\,0,$ мы получаем

$$||\sigma_0||v(t)||^2 \leqslant (\sigma v(t), v(t)) \leqslant \sigma_2 \int_0^t ||v(\tau)||^2 d\tau$$

Основываясь на лемме Гронуолла, мы приходим к выводу, что v=0 и, следовательно, $\theta\leqslant\theta_*$ в $\Omega\times(0,T)$

Леммы 1 и 2 подразумевают непустое множество допустимых пар задачи (СР) и ограниченность минимизирующей последовательности допустимых пар $\{\theta_m, u_m\} \in L^2(0,T;V) \times U_{ad}$ так, что $J(\theta_m) \to j = \inf J$, где

$$\sigma \theta'_m + A(\theta_m) = g + u_m, \quad \theta_m(0) = \theta_0, \quad \theta_m|_{G_b} \leqslant \theta_*.$$

Аналогично [4], переходя к пределу в системе (5), можно установить разрешимость задачи (СР).

Theorem 1. Пусть условия (i)-(iv) выполняются, $\theta_0 \leqslant \theta_*$ а.е. в $\Omega, \theta_b \leqslant \theta_*$ а.е. в Σ . Тогда решение проблемы (CP) существует.

3.3.4 Метод штрафов

Рассмотрим следующую задачу оптимального управления с параметром $\varepsilon > 0$, решения которой аппроксимируют решение задачи (CP) как $\varepsilon \to +0$. Problem (CP $_{\varepsilon}$)

$$J_{\varepsilon}(\theta) = \int_{G_d} (\theta|_{t=T} - \theta_d)^2 dx + \frac{1}{\varepsilon} \int_0^T \int_{G_b} F(\theta) dx dt \to \inf$$
$$\sigma \theta' + A(\theta) = g + u, \quad \theta(0) = \theta_0, \quad u \in U_{ad}$$

Здесь,

$$F(\theta) = \begin{cases} 0, & \text{if } \theta \leqslant \theta_*, \\ (\theta - \theta_*)^2, & \text{if } \theta > \theta_* \end{cases}$$

Оценки, представленные в лемме 1, позволяют, аналогично доказательству теоремы 1, доказать разрешимость задачи со штрафом. **Теорема 2.** Пусть выполняются условия (i)-(iv). Тогда существует решение проблемы (CP_{ε}) .

Рассмотрим аппроксимативные свойства решений задачи со штрафом. Пусть $\{\theta_{\varepsilon}, u_{\varepsilon}\}$ будет решением проблемы $(\operatorname{CP}_{\varepsilon})$ и $\{\theta, u\}$ будет решением проблемы (CP) . Тогда,

$$\sigma \theta_{\varepsilon}' + A(\theta_{\varepsilon}) = g + u_{\varepsilon}, \quad \theta_{\varepsilon}(0) = \theta_{0}.$$

так как $\theta|_{G_b}\leqslant \theta_*$, верны следующие неравенства:

$$\int_{G_d} (\theta_{\varepsilon}|_{t=T} - \theta_d)^2 dx \leqslant J(\theta), \quad \int_0^T \int_{G_b} F(\theta_{\varepsilon}) dx dt \leqslant \varepsilon J(\theta).$$

Из полученных оценок, используя при необходимости подпоследовательности в качестве $\varepsilon \to +0$, аналогично, как и в доказательстве теоремы 1, мы можем доказать существование функций $\widehat{u} \in U_{ad}, \widehat{\theta} \in L^2(0,T;V)$ таких, что

 $u_{\varepsilon} \to \widehat{u}$ слабо в $L^2(0,T;H), \theta_{\varepsilon} \to \widehat{\theta}$ слабо в $L^2(0,T;V),$ сильно в $L^2(0,T;H);$

$$\int_{0}^{T} \int_{G_{b}} F\left(\theta_{\varepsilon}\right) dx dt \to \int_{0}^{T} \int_{G_{b}} F(\widehat{\theta}) dx dt \quad \text{ и } \quad \int_{0}^{T} \int_{G_{b}} F\left(\theta_{\varepsilon}\right) dx dt \to 0, \text{ как } \varepsilon \to +0$$

Следовательно, $F(\widehat{\theta}) = 0$ и $\widehat{\theta}\Big|_{G_b} \leqslant \theta_*$. Результатов сходимости достаточно, чтобы перейти к пределу как $\varepsilon \to +0$ в системе состояний (6) и доказать, что предельная пара $\{\widehat{\theta}, \widehat{u}\} \in L^2(0,T;V) \times U_{ad}$ является приемлемым для проблемы(СР). Поскольку функционал J является слабо полунепрерывным снизу, то есть

$$j \leqslant J(\widehat{\theta}) \leqslant \liminf J(\theta_{\varepsilon}) \leqslant J(\theta) = j = \inf J$$

Тогда пара $\{\widehat{\theta}, \widehat{u}\}$ это решение проблемы (CP). **Теорема 3.** Пусть выполняются условия (i)-(iv), $\theta_0 \leqslant \theta_*$ а.е. в $\Omega, \theta_b \leqslant \theta_*$ а.е. в Σ . If $\{\theta_{\varepsilon}, u_{\varepsilon}\}$ решения проблемы (CP_{ε}) for $\varepsilon > 0$, тогда существует последовательность вида $\varepsilon \to +0$ $u_{\varepsilon} \to \widehat{u}$ слабо в $L^2(0,T;H)$, $\theta_{\varepsilon} \to \widehat{\theta}$ слабо в $L^2(0,T;V)$, сильно в $L^2(0,T;H)$, where $\{\widehat{\theta}, \widehat{u}\}$ есть решение проблемы (CP).

Глава 4. Численные методы и комплексы программ

4.1 Первая статья

Пусть функционал $J(\theta)$ удовлетворяет условиям, указанным в $\ref{1.2}$?. Для удобства введём переобозначение $\hat{J}(u) := J(\theta(u)), \hat{J}: L^2(\Gamma_1) \to \mathbb{R}$. Здесь $\theta(u)$ – температурное поле задачи $\ref{1.2}$? отвечающее управлению $u \in L^2(\Gamma_1)$. Согласно формуле (2.14) градиент функционала $\hat{J}(u)$ [grenkin 13] имеет вид

$$\hat{J}'(u) = (\varphi(u) - \theta_b^4)p_2,$$

где $\varphi(u)$ есть интенсивность излучения, p_2 — соответствующая переменная сопряжённой системы.

Предлагаемый алгоритм решения выглядит следующим образом:

Оператор проекции $P_{ad}:U\to U_{ad}$ определён следующим образом

$$P_{ad}[v] = egin{cases} u_1, & ext{если } v \leqslant u_1 \ v, & ext{если } u_1 < v < u_2 \ u_2, & ext{если } v \geqslant u_2 \end{cases}$$

Приведём далее примеры расчётов для двумерного случая. Положим $\Omega = \{(x,y), 0 \leqslant x,y \leqslant 1\},\ l=1$ см. Граница $\partial\Omega$ состоит из участков:

$$\Gamma_0 = \{x = \{0,1\}, y \in [0,1]\}$$

 $\Gamma_1 = \{x \in [0,1], y = 0\}$ — участок с неизвестными отражающими свойствами, $\Gamma_2 = \{x \in [0,1], y = 1\}$ — участок наблюдения.

Будем также далее считать, что $a=0.006 [{\rm cm}^2/{\rm c}], b=0.025 [{\rm cm/c}], \beta=0.00005 [{\rm cm/c}], \kappa=1 [{\rm cm}^{-1}], \kappa_s=0, A=0, \gamma=0.3$. Указанные параметры соответствуют стеклу [grenkin_13]. Температуру на границе Ω положим равной $\theta_b=(x^2+y^2)/3$.

При указанных параметрах для первого эксперимента выберем следующее тестовое значение функции u (рис. 4.1??):

$$u(x) = \begin{cases} 0.01, & \text{если } x \le 0.5, \\ 0.5, & \text{если } x > 0.5, \end{cases}$$
(4.1)

и для второго эксперимента (рис. 4.1??):

$$u(x) = 0.49x + 0.01. (4.2)$$

Вычислим решение прямой задачи (2.1)–(2.2) для этих случаев. Полученное температурное поле на участке наблюдения Γ_2 выберем в качестве θ_0 . Далее, применяя предложенный алгоритм находим квазирешение обратной задачи (2.1)–(2.4). Эффективность алгоритма, а также значение u_0 в первом и втором случаях иллюстрируются рис. 4.1. На рис. 4.2 показана динамика функционала качества по итерациям.

Замечание. В предложенных примерах потребовалось $2*10^6$ итераций для нахождения квазирешения u. В то же время температурное поле на участке наблюдения Γ_2 становится близким к θ_0 уже на 10^2 итерации. Также наблюдается существенное падение скорости уменьшения функционала качества с каждой итерацией после того, как среднее значение найденной функции контроля становится близко к тестовой функции.

Рисунок 4.1 — Тестовая функция u, начальная u_0 , найденная функция u_{end} .

[Первый эксперимент]

[Второй

эксперимент]

Рисунок 4.2 — Динамика функции $\hat{J}(u)$ по итерациям.

4.2 Вторая статья

4.2.1 Аппроксимация задачи с условиями типа коши

Рассмотрим краевую задачу (2.18)-(2.20) для уравнений сложного теплообмена, в которой нет краевых условий на интенсивность излучения. Существование $\theta, \phi \in H^2(\Omega)$, удовлетворяющих (2.18)-(2.20) для достаточно гладких θ_b, q_b и достаточные условия единственности решения установлены в [CMMP20]. Покажем, что решения задачи (CP) при $\lambda \to +0$ аппроксимируют решение задачи (2.18)-(2.20).

Теорема 3. Пусть выполняются условия (i),(ii) и существует решение задачи (2.18)-(2.20). Если $\{\theta_{\lambda}, \phi_{\lambda}, u_{\lambda}\}$ – решение задачи (CP) для $\lambda > 0$, то существует последовательность $\lambda \to +0$ такая, что

$$\theta_{\lambda} \to \theta_{*}, \ \phi_{\lambda} \to \phi_{*}$$
 слабо в V , сильно в H ,

где θ_*, ϕ_* – решение задачи (2.18)-(2.20).

Доказательство. Пусть $\theta, \varphi \in H^2(\Omega)$ — решение задачи (2.18)-(2.20), $u = \alpha(\partial_n \varphi + \varphi) \in U$. Тогда

$$aA\theta + b\kappa_a([\theta]^4 - \varphi) = Br, \quad \alpha A\varphi + \kappa_a(\varphi - [\theta]^4) = Bu,$$

где $r:=a(\theta_b+q_b)$. Поэтому, с учетом того, что $\theta|_{\Gamma}=\theta_b$,

$$J_{\lambda}(\theta_{\lambda}, u_{\lambda}) = \frac{1}{2} \|\theta_{\lambda} - \theta_{b}\|_{\Gamma}^{2} + \frac{\lambda}{2} \|u_{\lambda}\|_{\Gamma}^{2} \leqslant J_{\lambda}(\theta, u) = \frac{\lambda}{2} \|u\|_{\Gamma}^{2}.$$

Следовательно,

$$||u_{\lambda}||_{\Gamma}^{2} \leqslant C, ||\theta_{\lambda} - \theta_{b}||_{\Gamma}^{2} \to 0, \lambda \to +0.$$

Здесь и далее C>0 не зависит от λ . Из ограниченности последовательности u_{λ} в пространстве U следуют, на основании леммы 1, оценки

$$\|\theta_{\lambda}\|_{V} \leqslant C, \|\phi\|_{\lambda} \leqslant C.$$

Поэтому можно выбрать последовательность $\lambda \to +0$ такую, что

$$u_{\lambda} \to u_*$$
 слабо в U , θ_{λ} , $\varphi_{\lambda} \to \theta_*$, φ_* слабо в V , сильно в $L^4(\Omega)$. (4.3)

Результаты (4.3) позволяют перейти к пределу при $\lambda \to +0$ в уравнениях для $\theta_{\lambda}, \phi_{\lambda}, u_{\lambda}$ и тогда

$$aA\theta_* + b\kappa_a([\theta_*]^4 - \phi_*) = Br, \quad \alpha A\phi_* + \kappa_a(\phi_* - [\theta_*]^4) = Bu_*.$$
 (4.4)

При этом $\theta_*|_{\Gamma} = \theta_b$. Из первого уравнения в (4.4), с учетом, что $r = a(\theta_b + q_b)$, выводим

$$-a\Delta\theta_* + b\kappa_a([\theta_*]^4 - \phi_*) = 0$$
 п.в. в $\Omega, \quad \theta_* = \theta_b, \quad \partial_n\theta = q_b$ п.в. на $\Gamma.$

Из второго уравнения в (4.4) следует, что $-\alpha \Delta \phi + \kappa_a (\phi - [\theta]^4) = 0$ почти всюду в Ω . Таким образом, пара θ_*, ϕ_* – решение задачи (2.18)-(2.20).

Замечание. Из ограниченности последовательности u_{λ} в пространстве U следует ее слабая относительная компактность и существование последовательности (возможно неединственной) $\lambda \to +0$ такой, что $u_{\lambda} \to u_*$ слабо в U. Для практического решения задачи (2.18)-(2.20) важно то, что ∂ ля любой последовательности $\lambda \to +0$ справедлива оценка $\|\theta_{\lambda} - \theta_{b}\|_{\Gamma}^{2} \leqslant C\lambda$, а поскольку $\partial_{n}\theta_{\lambda} = \theta_{b} + q_{b} - \theta_{\lambda}$, то также $\|\partial_{n}\theta_{\lambda} - q_{b}\|_{\Gamma}^{2} \leqslant C\lambda$. Указанные неравенства гарантируют, что граничные значения θ_{λ} , $\partial_{n}\theta_{\lambda}$ при малых λ аппроксимируют краевые условия задачи (2.18)-(2.20).

4.2.2 Численные эксперименты

Представим итерационный алгоритм решения задачи оптимального управления. Пусть $\tilde{J}_{\lambda}(u) = J_{\lambda}(\theta(u), u)$, где $\theta(u)$ компонента решения задачи (2.18),(2.20), соответствующая управлению $u \in U$.

В соответствии с (2.33) градиент функционала $\tilde{J}_{\lambda}(u)$ равен

$$\tilde{J}_{\lambda}'(u) = \lambda u - p_2.$$

Здесь p_2 — соответствующая компонента сопряженного состояния из системы (2.33), где $\hat{\theta} := \theta(u)$.

Значение параметра ε выбирается эмпирически таким образом, чтобы значение $\varepsilon(\lambda u_k - p_2)$ являлось существенной поправкой для u_{k+1} . Количество итераций N выбирается достаточным для выполнения условия $J_{\lambda}(\theta_k, u_k) - J_{\lambda}(\theta_{k+1}, u_{k+1}) < \delta$, где $\delta > 0$ определяет точность расчетов.

Примеры, рассмотренные ниже, иллюстрируют работоспособность предложенного алгоритма при малых, что важно, значениях параметра регуляризации $\lambda \leqslant 10^{-12}$. В первом примере выполнены тестовые расчеты для куба. Во втором примере приводится сравнение расчетов по предложенному алгоритму с результатами работы [CNSNS19].

Отметим, что для численного решения прямой задачи с заданным управлением использовался метод простой итерации для линеаризации задачи и ее решения методом конечных элементов. Решение сопряженной системы, которая является линейной при заданной температуре, не вызывает трудностей. Для численного моделирования использовался солвер FEniCS [fenics, dolfin].

Исходный код экспериментов можно найти по ссылке [mesenev-github].

Пример 1.

Приведем примеры расчетов для куба $\Omega=(x,y,z), 0\leqslant x,y,z\leqslant l$. Будем считать, что l=1 см, a=0.006[см 2 /с], b=0.025[см/с], $\kappa_a=1$ [см $^{-1}$], $\alpha=0.(3)$ [см]. Указанные параметры соответствуют стеклу [Grenkin5]. Параметр регуляризации $\lambda=10^{-12}$.

Пусть граничные данные r и u в (2.19) имеют вид:

$$r = 0.7,$$

 $u = \hat{u} = 0.5.$

Далее рассчитываем состояние θ и ϕ как решение задачи (2.18),(2.19) и в качестве θ_b выбираем граничные значение функции θ на Γ . Значения нормальной производной $\partial_n \theta$ на Γ должны соответствовать значениям $q_b = r/a - \theta_b$. Применяя предложенный алгоритм с начальным приближением $u_0 = 0.1$, находим приближенное решение $\{\theta_{\lambda}, \phi_{\lambda}, u_{\lambda}\}$ задачи (CP). Для демонстрации того, что алгоритм находит приближенное решение задачи с данными Коши для температуры, важно сравнить значения $\partial_n \theta_{\lambda}$ на Γ с q_b .

На рисунке ?? представлен модуль относительного отклонения $\partial_n \theta_\lambda$ от q_b на грани куба в плоскости z=l, где $\partial_n \theta_\lambda = \partial \theta_\lambda/\partial z$, а также динамика функционала качества, определяющего норму разности $\|\theta_\lambda - \theta_b\|_{\Gamma}^2$. На остальных гранях куба значения относительного отклонения имеют тот же порядок малости.

Пример 2. Сравним работу предложенного алгоритма с результатами статьи [CNSNS19], где соавтором был один из авторов данной работы. Задача рассматривается в области $\Omega \times (-L,L)$, где $\Omega = \{x = (x_1,x_2) \colon 0 < x_{1,2} < d\}$ и

 $[|\partial_n \theta_{\lambda} - q_b|/|q_b|]$

[Изменение

функционала качества по итерациям

Рисунок 4.3 — Результаты первого эксперимента

при больших L сводится к двумерной задаче с вычислительной областью Ω . Выбраны следующие значения параметров задачи: $d=1(\mathrm{m}), a=0.92\ 10^{-4}\ (\mathrm{m}^2/\mathrm{s}),$ $b=0.19\ (\mathrm{m/s}), \ \alpha=0.0333\ (\mathrm{m})$ и $\kappa_a=1\ (\mathrm{m}^{-1})$. Параметры соответствуют воздуху при нормальном атмосферном давлении и температуре $400^{\circ}\mathrm{C}$.

Функции θ_b, q_b в краевом условии (2.20) заданы следующим образом: $\theta_b = \widehat{\theta}|_{\Gamma}, \ q_b = \partial_n \widehat{\theta}|_{\Gamma}, \ \text{где} \ \widehat{\theta} = (x_1 - 0.5)^2 - 0.5x_2 + 0.75.$

Приближенное решение задачи с данными Коши, представленное в [CNSNS19] получено путем решения эллиптической задачи четвертого порядка для температуры методом установления по времени. Использовались H^2 конформные конечные элементы Богнера-Фокса-Шмитта и солвер FeliCs, разработанный в техническом университете Мюнхена. Решение стабилизировалось через 120 секунд, но вычисления на каждом временном шаге потребовали довольно значительных затрат [CNSNS19].

На рис. ?? представлено температурное поле, полученное предложенным в данной статье методом, достаточно точно совпадающее с результатом

[Полученное решение θ]

[Изменение

функционала качества]

Рисунок 4.4 — Результаты второго эксперимента

в [CNSNS19]. Величина $\|\partial_n \theta_\lambda - q_b\|_{L^2(\Gamma)}/\|q_b\|_{L^2(\Gamma)}$ равна 0.000567. Значение функционала качества, определяющего норму разности $\|\theta_\lambda - \theta_b\|_{\Gamma}^2$, равно 0.000255 и стабилизируется после 10 итераций ??.

Представленные численные примеры иллюстрируют, что предложенный алгоритм успешно справляется с нахождением численного решения задачи (2.18)-(2.20).

4.3 Вторая статья

4.3.1 Аппроксимация решения без заданного условия излучения на границе

Покажем, что если существует пара $\{\theta, \phi\} \in V \times V$ – решение обратной задачи (2.18)-(2.20) и при этом $q = a\partial_n \phi|_{\Gamma_2} \in L^2(\Gamma_2)$, то решения задачи (P_λ) при $\lambda \to +0$ аппроксимируют решение задачи (2.18)-(2.20).

Предварительно заметим, что указанная пара для всех $v \in V$ удовлетворяет равенствам

$$a(\nabla \theta, \nabla v) + b\kappa_a(|\theta|\theta^3 - \varphi, v) = \int_{\Gamma} q_b v d\Gamma, \tag{4.5}$$

$$\alpha(\nabla \varphi, \nabla v) + \int_{\Gamma_1} \gamma \varphi v d\Gamma + \kappa_a(\varphi - |\theta|\theta^3, v) = \int_{\Gamma_1} \gamma \theta_b^4 v d\Gamma + \int_{\Gamma_2} q v d\Gamma$$
 (4.6)

и при этом $\theta|_{\Gamma_1} = \theta_b$.

Теорема 3. Пусть выполняются условия (i),(ii) и существует решение задачи (2.18)-(2.20), удовлетворяющее равенствам (4.5), (4.6), Если $\{\theta_{\lambda},\psi_{\lambda},u_{\lambda}\}$ – решение задачи (P_{λ}) для $\lambda>0$, то существует последовательность $\lambda\to+0$ такая, что

$$\theta_{\lambda} \to \theta_{*}, \;\; \frac{1}{\alpha b}(\psi_{\lambda} - a\theta_{\lambda}) \to \phi_{*} \;\;$$
 слабо в $V, \;\;$ сильно в $H, \;\;$

 $ho de \ \theta_*, \phi_* - peшение \ задачи \ (2.18)-(2.20).$

Доказательство. Умножим равенство (4.5) на α , (4.6) на αb и сложим равенства. Тогда, полагая $\psi = a\theta + \alpha b\phi$, $u = \alpha bq + \alpha q_b|_{\Gamma_2}$, получаем

$$\alpha(\nabla \psi, \nabla v) + \int_{\Gamma_1} \gamma \psi v d\Gamma = \int_{\Gamma_1} rv d\Gamma + \int_{\Gamma_2} uv d\Gamma.$$

Здесь $r = \alpha b \gamma \theta_b^4 + \alpha q_b + a \gamma \theta_b$. Поэтому $A_2 \psi = f_2 + B_2 u$.

Из (4.5), с учетом условия $\theta|_{\Gamma_1} = \theta_b$ выводим равенство $A_1\theta + g(\theta) = \frac{\kappa_a}{\alpha}\psi + f_1$. Таким образом, тройка $\{\theta, \psi, u\} \in V \times V \times U$ является допустимой для задачи (P_λ) и следовательно

$$J_{\lambda}(\theta_{\lambda}, u_{\lambda}) = \frac{1}{2} \|\theta_{\lambda} - \theta_b\|_{L^2(\Gamma_1)}^2 + \frac{\lambda}{2} \|u_{\lambda}\|_U^2 \leqslant J_{\lambda}(\theta, u) = \frac{\lambda}{2} \|u\|_U^2.$$

Тогда

$$||u_{\lambda}||_{U}^{2} \leq ||u||_{U}^{2}, ||\theta_{\lambda} - \theta_{b}||_{L^{2}(\Gamma_{1})}^{2} \to 0, \lambda \to +0.$$

Из ограниченности последовательности u_{λ} в пространстве U следуют, на основании леммы 1, оценки

$$\|\theta_{\lambda}\|_{V} \leqslant C, \|\psi_{\lambda}\|_{V} \leqslant C,$$

где постоянная C>0 не зависит от λ . Поэтому можно выбрать последовательность $\lambda\to +0$ такую, что

$$u_{\lambda} \to u_{*}$$
 слабо в U , $\theta_{\lambda}, \psi_{\lambda} \to \theta_{*}, \psi_{*}$ слабо в V , сильно в $H, L^{4}(\Omega)$, $\theta_{\lambda}|_{\Gamma_{1}} \to \theta_{*}|_{\Gamma_{1}}$ сильно в $L^{2}(\Gamma_{1})$. (4.7)

Результаты (4.3) позволяют перейти к пределу при $\lambda \to +0$ в уравнениях для $\theta_{\lambda}, \psi_{\lambda}, u_{\lambda}$ и тогда

$$A_1\theta_* + g(\theta_*) = \frac{\kappa_a}{\alpha}\psi_* + f_1, \quad A_2\psi_* = f_2 + B_2u_*, \quad \theta_*|_{\Gamma_1} = \theta_b.$$
 (4.8)

Полагая $\phi_* = \frac{1}{\alpha b}(\psi_* - a\theta_*)$, заключаем, что пара θ_*, ϕ_* – решение задачи (2.18)-(2.20).

4.3.2 Численные эксперименты

Представим итерационный алгоритм решения задачи оптимального управления. Пусть $\tilde{J}_{\lambda}(u) = J_{\lambda}(\theta(u), u)$, где $\theta(u)$ компонента решения задачи (2.18),(2.20), соответствующая управлению $u \in U$.

В соответствии с (2.33) градиент функционала $\tilde{J}_{\lambda}(u)$ равен

$$\tilde{J}_{\lambda}'(u) = \lambda u - p_2.$$

Здесь p_2 — соответствующая компонента сопряженного состояния из системы (2.33), где $\hat{\theta} := \theta(u)$.

Значение параметра ε выбирается эмпирически таким образом, чтобы значение $\varepsilon(\lambda u_k - p_2)$ являлось существенной поправкой для u_{k+1} . Количество итераций N выбирается достаточным для выполнения условия $J_{\lambda}(\theta_k, u_k) - J_{\lambda}(\theta_{k+1}, u_{k+1}) < \delta$, где $\delta > 0$ определяет точность расчетов.

Примеры, рассмотренные ниже, иллюстрируют работоспособность предложенного алгоритма при малых, что важно, значениях параметра регуляризации $\lambda \leqslant 10^{-12}$. Численное решение прямой задачи с заданным управлением проводилось методом Ньютона для линеаризации задачи и ее решения методом конечных элементов. Решение сопряженной системы, которая является линейной при заданной температуре, не вызывает трудностей. Для численного моделирования использовался солвер FEniCS [fenics],[dolfin]. Исходный код экспериментов можно найти по ссылке [mesenev-github].

Пример 1. Рассмотрим куб $\Omega=(x,y,z):0< x,y,z< l$ с границей $\Gamma=\Gamma_1\cup\Gamma_2,$ где

$$\Gamma_1 = \{(x, y, z), 0 \leqslant x, y \leqslant l, z = 0, l\}, \ \Gamma_2 = \partial \Omega \setminus \Gamma_1.$$

Будем считать, что l=1 см, a=0.6[см 2 /с], b=0.025[см/с], $\kappa_a=1$ [см $^{-1}$], $\alpha=0.(3)$ [см]. Указанные параметры соответствуют стеклу [**Grenkin5**]. Параметр регуляризации $\lambda=10^{-12}$.

Пусть граничные данные обратной задачи в (2.19),(2.20) имеют вид $q_b=0.5$ и $\theta_b=0.1+z/2$. Обратную задачу решаем, используя предложенный оптимизационный алгоритм с параметром регуляризации $\lambda=10^{-12}$ и начальным приближением управления $u_0=0$.

На фиг. ??, ?? представлены полученные поля θ и ϕ на грани куба z=1. Начальное значение целевого функционала 0.025 и через сто итераций становится равным $5\cdot 10^{-5}$.

Пример 2. Рассмотрим двумерный случай, где область Ω является квадратом с круговой полостью,

$$\Omega = \{(x,y): 0 < x,y < l, (x-l/2)^2 + (y-l/2)^2 > \rho^2\}, \ l = 1 \text{ cm.}, \ \rho = 0.15 \text{ cm.}$$

Условия для интенсивности излучения неизвестны на внутренней границе $\Gamma_2 = \{(x,y): (x-l/2)^2 + (y-l/2)^2 = \rho^2\}$, а условие переопределения ставится на $\Gamma_1 = \Gamma \setminus \Gamma_2$. Параметры среды такие же как в примере 1, а граничные данные q_b и θ_b положим равными

$$\theta_b = 0.5, \quad q_b = \begin{cases} 0.2, & \text{если } x \in \Gamma_1 \\ -0.2, & \text{если } x \in \Gamma_2. \end{cases}$$

На фиг. $\ref{eq:thm.posterior}$, $\ref{eq:thm.posterior}$ представлены полученные поля θ и ϕ . Начальное значение

Рисунок 4.5 — Результаты первого эксперимента

целевого функционала 0.045 и через тридцать итераций становится равным $6.2 \cdot 10^{-5}$.

Представленные численные примеры демонстрируют успешную работу предложенного алгоритма численного решения граничной обратной задачи (2.18)-(2.20).

Рисунок 4.6 — Результаты второго эксперимента

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа . . .
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан ...

И какая-нибудь заключающая фраза.

Последний параграф может включать благодарности. В заключение автор выражает благодарность и большую признательность научному руководителю Иванову И.И. за поддержку, помощь, обсуждение результатов и научное руководство. Также автор благодарит Сидорова А.А. и Петрова Б.Б. за помощь в работе с образцами, Рабиновича В.В. за предоставленные образцы и обсуждение результатов, Занудятину Г.Г. и авторов шаблона *Russian-Phd-LaTeX-Dissertation-Template* за помощь в оформлении диссертации. Автор также благодарит много разных людей и всех, кто сделал настоящую работу автора возможной.

Словарь терминов

 ${f TeX}$: Система компьютерной вёрстки, разработанная американским профессором информатики Дональдом Кнутом

панграмма : Короткий текст, использующий все или почти все буквы алфавита

Список рисунков

4.1	Тестовая функция u , начальная u_0 , найденная функция u_{end}	80
4.2	Динамика функции $\hat{J}(u)$ по итерациям	81
4.3	Результаты первого эксперимента	85
4.4	Результаты второго эксперимента	86
4.5	Результаты первого эксперимента	90
4.6	Результаты второго эксперимента	91

Список таблиц

1	Наименование таблицы средней длины
2	Тестовые функции для оптимизации, D —размерность. Для всех
	функций значение в точке глобального минимума равно нулю 109
3	Длинная таблица с примером чересстрочного форматирования 112
4	Стандартные префиксы ссылок

Приложение А

Примеры вставки листингов программного кода

Для крупных листингов есть два способа. Первый красивый, но в нём могут быть проблемы с поддержкой кириллицы (у вас может встречаться в комментариях и печатаемых сообщениях), он представлен на листинге А.1. Второй

Листинг А.1: Программа "Hello, world" на С++

```
#include <iostream>
using namespace std;

int main() //кириллица в комментариях при xelatex и lualatex и меет проблемы с пробелами
{
    cout << "Hello, world" << endl; //latin letters in commentaries
    system("pause");
    return 0;
}
```

не такой красивый, но без ограничений (см. листинг А.2).

Листинг А.2: Программа "Hello, world" без подсветки

```
#include <iostream>
using namespace std;

int main() //кириллица в комментариях
{
    cout << "Привет, мир" << endl;
}</pre>
```

Можно использовать первый для вставки небольших фрагментов внутри текста, а второй для вставки полного кода в приложении, если таковое имеется.

Если нужно вставить совсем короткий пример кода (одна или две строки), то выделение линейками и нумерация может смотреться чересчур громоздко.

В таких случаях можно использовать окружения lstlisting или Verb без ListingEnv. Приведём такой пример с указанием языка программирования, отличного от заданного по умолчанию:

```
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
```

Такое решение—со вставкой нумерованных листингов покрупнее и вставок без выделения для маленьких фрагментов—выбрано, например, в книге Эндрю Таненбаума и Тодда Остина по архитектуре компьютера.

Наконец, для оформления идентификаторов внутри строк (функция main и тому подобное) используется lstinline или, самое простое, моноширинный текст (\texttt).

Пример А.3, иллюстрирующий подключение переопределённого языка. Может быть полезным, если подсветка кода работает криво. Без дополнительного окружения, с подписью и ссылкой, реализованной встроенным средством.

Листинг А.3: Пример листинга с подписью собственными средствами

```
## Caching the Inverse of a Matrix
  ## Matrix inversion is usually a costly computation and there
     may be some
  ## benefit to caching the inverse of a matrix rather than
     compute it repeatedly
5 ## This is a pair of functions that cache the inverse of a
     matrix.
  ## makeCacheMatrix creates a special "matrix" object that can
     cache its inverse
  makeCacheMatrix <- function(x = matrix()) {#кириллица в коммента
     риях при xelatex и lualatex имеет проблемы с пробелами
10
      i <- NULL
      set <- function(y) {</pre>
          x <<- y
          i <<- NULL
      }
15
      get <- function() x</pre>
      setSolved <- function(solve) i <<- solve</pre>
      getSolved <- function() i</pre>
      list(set = set, get = get,
      setSolved = setSolved,
20
      getSolved = getSolved)
```

```
}
25 ## cacheSolve computes the inverse of the special "matrix"
     returned by
  ## makeCacheMatrix above. If the inverse has already been
     calculated (and the
  ## matrix has not changed), then the cachesolve should retrieve
     the inverse from
  ## the cache.
30 cacheSolve <- function(x, ...) {
       ## Return a matrix that is the inverse of 'x'
      i <- x$getSolved()</pre>
      if(!is.null(i)) {
           message("getting cached data")
35
           return(i)
      }
      data <- x$get()</pre>
      i <- solve(data, ...)</pre>
      x$setSolved(i)
      i
40
  }
```

Листинг А.4 подгружается из внешнего файла. Приходится загружать без окружения дополнительного. Иначе по страницам не переносится.

Листинг А.4: Листинг из внешнего файла

```
# Analysis of data on Course Project at Getting and Cleaning
   data course of Data Science track at Coursera.

# Part 1. Merges the training and the test sets to create one
   data set.

# 3. Uses descriptive activity names to name the activities in
   the data set

# 4. Appropriately labels the data set with descriptive variable
   names.

if (!file.exists("UCI HAR Dataset")) {
   stop("You need 'UCI HAR Dataset' folder full of data")
}
```

```
library(plyr) # for mapualues
15 #getting common data
  features <- read.csv("UCI HAR Dataset/features.txt",sep=" ",</pre>
     header = FALSE,
                         colClasses = c("numeric", "character"))
  activity_labels <- read.csv("UCI HAR Dataset/activity_labels.txt
     ",sep="",
                                header = FALSE, colClasses = c("
     numeric", "character"))
20
  #getting train set data
  subject_train <- read.csv("UCI HAR Dataset/train/subject_train.</pre>
     txt",
                              header = FALSE, colClasses = "numeric",
     col.names="Subject")
  y_train <- read.csv("UCI HAR Dataset/train/y_train.txt", header</pre>
     = FALSE,
25
                        colClasses = "numeric")
  x_train <- read.csv("UCI HAR Dataset/train/X_train.txt",sep="",</pre>
     header = FALSE,
                        colClasses = "numeric",col.names=features$V2
     , check.names = FALSE)
  activity_train <- as.data.frame(mapvalues(y_train$V1, from =
     activity_labels$V1,
30
                                               to = activity_labels$
     V2))
  names(activity_train) <- "Activity"</pre>
35 #getting test set data
  subject_test <- read.csv("UCI HAR Dataset/test/subject_test.txt"</pre>
                             header = FALSE, colClasses = "numeric",
     col.names="Subject")
  y_test <- read.csv("UCI HAR Dataset/test/y_test.txt", header =</pre>
     FALSE,
                      colClasses = "numeric")
40 x_test <- read.csv("UCI HAR Dataset/test/X_test.txt", sep="",
     header = FALSE,
```

```
colClasses = "numeric", col.names=features$V2,
     check.names = FALSE)
  activity_test <- as.data.frame(mapvalues(y_test$V1, from =</pre>
     activity_labels$V1,
                                             to = activity_labels$V2
     ))
45 names (activity_test) <- "Activity"
  # Forming full dataframe
  data_train <- cbind(x_train, subject_train, activity_train)</pre>
50 data_test <- cbind(x_test, subject_test, activity_test)
  data <- rbind(data_train, data_test)</pre>
  # Cleaning memory
  rm(features, activity_labels, subject_train, y_train, x_train,
     activity_train,
     subject_test, y_test, x_test, activity_test, data_train, data
     _test)
  # Part 2. Extracts only the measurements on the mean and
     standard deviation for each measurement.
60 cols2match <- grep("(mean|std)",names(data))
  \# Excluded gravityMean, tBodyAccMean, tBodyAccJerkMean,
     tBodyGyroMean,
  # tBodyGyroJerkMean, as these represent derivations of angle
  # opposed to the original feature vector.
  # Subsetting data frame, also moving last columns to be first
  Subsetted_data_frame <- data[ ,c(562, 563, cols2match)]</pre>
  # Part 5. From the data set in step 4, creates a second,
     independent tidy data set
70 # with the average of each variable for each activity and each
     subject.
  library(dplyr) # for %>% and summarise_each
```

Приложение Б

Очень длинное название второго приложения, в котором продемонстрирована работа с длинными таблицами

Б.1 Подраздел приложения

Вот размещается длинная таблица:

Параметр	Умолч.	Тип	Описание
&INP			
kick	1	int	 0: инициализация без шума (p_s = const) 1: генерация белого шума 2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$) 1: генерация белого шума 2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
mana	0	int	экватора
mars kick	0 1	int int	1: инициализация модели для планеты Марс 0: инициализация без шума $(p_s = const)$ 1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$ 1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$ 1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$ 1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
	1	1	продолжение следует

П	37	m	(продолжение)
Параметр	Умолч.	Тип	Описание
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
	0	. ,	экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	$_{ m int}$	0: инициализация без шума $(p_s = const)$ 1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
111011	_	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	$_{ m int}$	1: инициализация модели для планеты Марс
kick	1	$_{ m int}$	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума 2: генерация белого шума симметрично относительно
			2: генерация оелого шума симметрично относительно экватора
mars	0	int	зкватора 1: инициализация модели для планеты Марс
&SURFPAI		1110	1. инициализация модели для плансты марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
KICK	1	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
	_		экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			продолжение следует

	(продолжение)				
Параметр	Умолч.	Тип	Описание		
			2: генерация белого шума симметрично относительно		
			экватора		
mars	0	int	1: инициализация модели для планеты Марс		
kick	1	int	0: инициализация без шума $(p_s = const)$		
			1: генерация белого шума		
			2: генерация белого шума симметрично относительно		
			экватора		
mars	0	int	1: инициализация модели для планеты Марс		
kick	1	int	0: инициализация без шума $(p_s = const)$		
			1: генерация белого шума		
			2: генерация белого шума симметрично относительно		
			экватора		
mars	0	int	1: инициализация модели для планеты Марс		
kick	1	int	0: инициализация без шума $(p_s = const)$		
			1: генерация белого шума		
			2: генерация белого шума симметрично относительно		
			экватора		
mars	0	int	1: инициализация модели для планеты Марс		
kick	1	int	0: инициализация без шума $(p_s = const)$		
			1: генерация белого шума		
			2: генерация белого шума симметрично относительно		
			экватора		
mars	0	int	1: инициализация модели для планеты Марс		

Б.2 Ещё один подраздел приложения

Нужно больше подразделов приложения! Конвынёры витюпырата но нам, тебиквюэ мэнтётюм позтюлант ед про. Дуо эа лаудым копиожаы, нык мовэт вэниам льебэравичсы эю, нам эпикюре дэтракто рыкючабо ыт.

Пример длинной таблицы с записью продолжения по ГОСТ 2.105:

Таблица 1 — Наименование таблицы средней длины

Параметр	Умолч.	Тип	Описание
&INP			
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора

Продолжение таблицы 1

Параметр	Умолч.	Тип	Описание
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно

Продолжение таблицы 1

одолжение			
Параметр	Умолч.	Тип	Описание
			экватора
mars	0	\mid int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	\mid int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
&SURFPA	R		
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	\inf	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$

Продолжение таблицы 1

	'	1	
Параметр	Умолч.	Тип	Описание
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс

Б.3 Использование длинных таблиц с окружением longtabu

В таблице 2 более книжный вариант длинной таблицы, используя окружение longtabu и разнообразные toprule midrule bottomrule из пакета booktabs. Чтобы визуально таблица смотрелась лучше, можно использовать следующие параметры: в самом начале задаётся расстояние между строчками с помощью arraystretch. Таблица задаётся на всю ширину, longtabu позволяет делить ширину колонок пропорционально — тут три колонки в пропорции 1.1:1:4 — для каждой колонки первый параметр в описании X[]. Кроме того, в таблице убраны отступы слева и справа с помощью @{} в преамбуле таблицы. К первому и второму столбцу применяется модификатор

>{\setlength{\baselineskip}{0.7\baselineskip}},

который уменьшает межстрочный интервал в для текста таблиц (иначе заголовок второго столбца значительно шире, а двухстрочное имя сливается с окружающими). Для первой и второй колонки текст в ячейках выравниваются по центру как по вертикали, так и по горизонтали—задаётся буквами m и c в описании столбца X[].

Так как формулы большие — используется окружение alignedat, чтобы отступ был одинаковый у всех формул — он сделан для всех, хотя для большей части можно было и не использовать. Чтобы формулы занимали поменьше места в каждом столбце формулы (где надо) используется \textstyle — он делает дроби меньше, у знаков суммы и произведения — индексы сбоку. Иногда формула слишком большая, сливается со следующей, поэтому после неё ставится небольшой дополнительный отступ \vspace*{2ex}. Для штрафных функций — размер фигурных скобок задан вручную \Big\{, т. к. не умеет alignedat работать с \left и \right через несколько строк/колонок.

В примечании к таблице наоборот, окружение cases даёт слишком большие промежутки между вариантами, чтобы их уменьшить, в конце каждой строчки окружения использовался отрицательный дополнительный отступ \\[-0.5em].

Таблица 2 — Тестовые функции для оптимизации, D— размерность. Для всех функций значение в точке глобального минимума равно нулю.

Φ_J in Eq. (describing to willimmy we public flythe.
Имя	Стартовый диапазон параметров	Функция
сфера	$[-100, 100]^D$	$f_1(x) = \sum_{i=1}^{D} x_i^2$
Schwefel 2.22	$[-10, 10]^D$	$f_2(x) = \sum_{i=1}^{D} x_i + \prod_{i=1}^{D} x_i $
Schwefel 1.2	$[-100, 100]^D$	$f_3(x) = \sum_{i=1}^{D} \left(\sum_{j=1}^{i} x_j \right)^2$
Schwefel 2.21	$[-100, 100]^D$	$f_4(x) = \max_i \{ x_i \}$
Rosenbrock	$[-30,30]^D$	$f_5(x) = \sum_{i=1}^{D-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$
ступенчатая	$[-100, 100]^D$	$f_6(x) = \sum_{i=1}^{D} [x_i + 0.5]^2$
зашумлённая квартиче- ская	$[-1.28, 1.28]^D$	$f_7(x) = \sum_{i=1}^{D} ix_i^4 + rand[0,1)$
Schwefel 2.26	$[-500, 500]^D$	$f_8(x) = \sum_{i=1}^{D} -x_i \sin \sqrt{ x_i } + D \cdot 418.98288727243369$
Rastrigin	$[-5.12, 5.12]^D$	$f_9(x) = \sum_{i=1}^{D} [x_i^2 - 10 \cos(2\pi x_i) + 10]$
Ackley	$[-32, 32]^D$	$f_{10}(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{D}\sum_{i=1}^{D} x_i^2}\right) - \exp\left(\frac{1}{D}\sum_{i=1}^{D} \cos(2\pi x_i)\right) + 20 + e$
Griewank	$[-600, 600]^D$	$f_{11}(x) = \frac{1}{4000} \sum_{i=1}^{D} x_i^2 - \prod_{i=1}^{D} \cos(x_i/\sqrt{i}) + 1$
штрафная 1	$[-50, 50]^D$	$f_{12}(x) = \frac{\pi}{D} \left\{ 10 \sin^2(\pi y_1) + \sum_{i=1}^{D-1} (y_i - 1)^2 \left[1 + 10 \sin^2(\pi y_{i+1}) \right] + (y_D - 1)^2 \right\} + \sum_{i=1}^{D} u(x_i, 10, 100, 4)$

(продолжение)

Имя	Стартовый диапазон параметров	Функция
штрафная 2	$[-50, 50]^D$	$f_{13}(x) = 0.1 \left\{ \sin^2(3\pi x_1) + \sum_{i=1}^{D-1} (x_i - 1)^2 \left[1 + \sin^2(3\pi x_{i+1}) \right] + (x_D - 1)^2 \left[1 + \sin^2(2\pi x_D) \right] \right\} + \sum_{i=1}^{D} u(x_i, 5, 100, 4)$
сфера	$[-100, 100]^D$	$f_1(x) = \sum_{i=1}^{D} x_i^2$
Schwefel 2.22	$[-10, 10]^D$	$f_2(x) = \sum_{i=1}^{D} x_i + \prod_{i=1}^{D} x_i $
Schwefel 1.2	$[-100, 100]^D$	$f_3(x) = \sum_{i=1}^{D} \left(\sum_{j=1}^{i} x_j \right)^2$
Schwefel 2.21	$[-100, 100]^D$	$f_4(x) = \max_i \{ x_i \}$
Rosenbrock	$[-30,30]^D$	$f_5(x) = \sum_{i=1}^{D-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$
ступенчатая	$[-100, 100]^D$	$f_6(x) = \sum_{i=1}^{D} [x_i + 0.5]^2$
зашумлённая квартиче- ская	$[-1.28, 1.28]^D$	$f_7(x) = \sum_{i=1}^{D} ix_i^4 + rand[0,1)$
Schwefel 2.26	$[-500, 500]^D$	$f_8(x) = \sum_{i=1}^{D} -x_i \sin \sqrt{ x_i } + D \cdot 418.98288727243369$
Rastrigin	$[-5.12, 5.12]^D$	$f_9(x) = \sum_{i=1}^{D} [x_i^2 - 10 \cos(2\pi x_i) + 10]$
Ackley	$[-32, 32]^D$	$f_{10}(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{D}\sum_{i=1}^{D} x_i^2}\right) - \exp\left(\frac{1}{D}\sum_{i=1}^{D} \cos(2\pi x_i)\right) + 20 + e$
Griewank	$[-600, 600]^D$	$f_{11}(x) = \frac{1}{4000} \sum_{i=1}^{D} x_i^2 - \prod_{i=1}^{D} \cos(x_i/\sqrt{i}) + 1$

(окончание)

Имя	Стартовый диапазон параметров	Функция
штрафная 1	$[-50, 50]^D$	$f_{12}(x) = \frac{\pi}{D} \left\{ 10 \sin^2(\pi y_1) + \sum_{i=1}^{D-1} (y_i - 1)^2 \left[1 + 10 \sin^2(\pi y_{i+1}) \right] + (y_D - 1)^2 \right\} + \sum_{i=1}^{D} u(x_i, 10, 100, 4)$
штрафная 2	$[-50, 50]^D$	$f_{13}(x) = 0.1 \left\{ \sin^2(3\pi x_1) + \sum_{i=1}^{D-1} (x_i - 1)^2 \left[1 + \sin^2(3\pi x_{i+1}) \right] + (x_D - 1)^2 \left[1 + \sin^2(2\pi x_D) \right] \right\} + \sum_{i=1}^{D} u(x_i, 5, 100, 4)$

Примечание — Для функций
$$f_{12}$$
 и f_{13} используется $y_i=1+\frac{1}{4}(x_i+1)$ и $u(x_i,a,k,m)=\begin{cases} k(x_i-a)^m, & x_i>a\\ 0, & -a\leqslant x_i\leqslant a\\ k(-x_i-a)^m, & x_i<-a \end{cases}$

Б.4 Форматирование внутри таблиц

В таблице 3 пример с чересстрочным форматированием. В файле userstyles.tex задаётся счётчик \newcounter{rowcnt} который увеличивается на 1 после каждой строчки (как указано в преамбуле таблицы). Кроме того, задаётся условный макрос \altshape который выдаёт одно из двух типов форматирования в зависимости от чётности счётчика.

В таблице 3 каждая чётная строчка — синяя, нечётная — с наклоном и слегка поднята вверх. Визуально это приводит к тому, что среднее значение и среднеквадратичное изменение группируются и хорошо выделяются взглядом в таблице. Сохраняется возможность отдельные значения в таблице выделить цветом или шрифтом. К первому и второму столбцу форматирование не применяется по сути таблицы, к шестому общее форматирование не применяется для наглядности.

Так как заголовок таблицы тоже считается за строчку, то перед ним (для первого, промежуточного и финального варианта) счётчик обнуляется, а в **\altshape** для нулевого значения счётчика форматирования не применяется.

Таблица 3 — Длинная таблица с примером чересстрочного форматирования

	Итера- ции	JADE++	JADE	jDE	SaDE	DE/rand /1/bin	PSO
f1	1500	1.8E-60 (8.4E-60)	1.3E-54 (9.2E-54)	2.5E-28 (3.5E-28)	4.5E-20 (6.9E-20)	9.8E-14 (8.4E-14)	9.6E-42 (2.7E-41)
f2	2000	1.8E-25 (8.8E-25)	3.9E-22 (2.7E-21)	1.5E-23 (1.0E-23)	1.9E-14 (1.1E-14)	1.6E-09 (1.1E-09)	9.3E-21 (6.3E-20)
f3	5000	5.7E-61 (2.7E-60)	6.0E-87 (1.9E-86)	5.2E-14 (1.1E-13)	9.0E-37 (5.4E-36)	6.6E-11 (8.8E-11)	2.5E-19 (3.9E-19)
f4	5000	8.2E-24 (4.0E-23)	4.3E-66 (1.2E-65)	1.4E-15 (1.0E-15)	7.4E-11 (1.8E-10)	$4.2 ext{E-}01 \ (1.1E+00)$	4.4E-14 (9.3E-14)
f5	3000	8.0E-02 (5.6E-01)	3.2E-01 (1.1E+00)	$1.3E+01 \ (1.4E+01)$	$\substack{2.1E+01\\ (7.8E+00)}$	$2.1\mathrm{E}{+00}\ (1.5E{+00})$	2.5E+01 (3.2E+01)
f6	100	$\frac{2.9E+00}{(1.2E+00)}$	$5.6E+00 \ (1.6E+00)$	$^{1.0\mathrm{E}+03}_{(2.2E+02)}$	$9.3E+02 \ (1.8E+02)$	$4.7E+03 \ (1.1E+03)$	$\substack{4.5\mathrm{E}+01\\ (2.4E+01)}$
f7	3000	6.4E-04 (2.5E-04)	6.8E-04 (2.5E-04)	3.3E-03 (8.5E-04)	4.8E-03 (1.2E-03)	4.7E-03 (1.2E-03)	2.5E-03 (1.4E-03)
f8	1000	3.3E-05 (2.3E-05)	7.1E+00 (2.8E+01)	7.9E-11 (1.3E-10)	4.7E+00 $(3.3E+01)$	$5.9E+03 \ (1.1E+03)$	$\frac{2.4\mathrm{E}+03}{(6.7E+02)}$
f9	1000	1.0E-04 (6.0E-05)	1.4E-04 (6.5E-05)	1.5E-04 (2.0E-04)	1.2E-03 (6.5E-04)	$1.8E+02 \ (1.3E+01)$	$5.2\mathrm{E}{+01} \ (1.6E{+01})$
f10	500	8.2E-10 (6.9E-10)	3.0E-09 (2.2E-09)	3.5E-04 (1.0E-04)	2.7E-03 (5.1E-04)	1.1E-01 (3.9E-02)	4.6E-01 (6.6E-01)
f11	500	9.9E-08 (6.0E-07)	2.0E-04 (1.4E-03)	1.9E-05 (5.8E-05)	7.8E-04 (1.2E-03)	2.0E-01 (1.1E-01)	1.3E-02 (1.7E-02)
f12	500	4.6E-17 (1.9E-16)	3.8E-16 (8.3E-16)	1.6E-07 (1.5E-07)	1.9E-05 (9.2E-06)	1.2E-02 (1.0E-02)	1.9E-01 (3.9E-01)
f13	500	2.0E-16 (6.5E-16)	1.2E-15 (2.8E-15)	1.5E-06 (9.8E-07)	6.1E-05 (2.0E-05)	7.5E-02 (3.8E-02)	2.9E-03 (4.8E-03)
f1	1500	1.8E-60 (8.4E-60)	1.3E-54 (9.2E-54)	2.5E-28 (3.5E-28)	4.5E-20 (6.9E-20)	9.8E-14 (8.4E-14)	9.6E-42 (2.7E-41)

(окончание)

	Итера- ции	JADE++	JADE	jDE	SaDE	$\frac{\mathrm{DE/rand}}{/1/\mathrm{bin}}$	PSO
f2	2000	1.8E-25 (8.8E-25)	3.9E-22 (2.7E-21)	1.5E-23 (1.0E-23)	1.9E-14 (1.1E-14)	1.6E-09 (1.1E-09)	9.3E-21 (6.3E-20)
f3	5000	5.7E-61 (2.7E-60)	6.0E-87 (1.9E-86)	5.2E-14 (1.1E-13)	9.0E-37 (5.4E-36)	6.6E-11 (8.8E-11)	2.5E-19 (3.9E-19)
f4	5000	8.2E-24 (4.0E-23)	4.3E-66 (1.2E-65)	1.4E-15 (1.0E-15)	7.4E-11 (1.8E-10)	4.2E-01 (1.1E+00)	4.4E-14 (9.3E-14)
f5	3000	8.0E-02 (5.6E-01)	3.2E-01 (1.1E+00)	$1.3E+01 \ (1.4E+01)$	2.1E+01 (7.8E+00)	$2.1\mathrm{E}{+00}\ (1.5E{+00})$	2.5E+01 (3.2E+01)
f6	100	$\frac{2.9\mathrm{E}+00}{(1.2E+00)}$	$5.6\mathrm{E}{+00}\ (1.6E{+00})$	$^{1.0\mathrm{E}+03}_{(2.2E+02)}$	9.3E+02 (1.8E+02)	$4.7E+03 \ (1.1E+03)$	4.5E+01 (2.4E+01)
f7	3000	6.4E-04 (2.5E-04)	6.8E-04 (2.5E-04)	3.3E-03 (8.5E-04)	4.8E-03 (1.2E-03)	4.7E-03 (1.2E-03)	2.5E-03 (1.4E-03)
f8	1000	3.3E-05 (2.3E-05)	$7.1E+00 \ (2.8E+01)$	7.9E-11 (1.3E-10)	4.7E+00 (3.3E+01)	$5.9E+03 \ (1.1E+03)$	$\frac{2.4E+03}{(6.7E+02)}$
f9	1000	1.0E-04 (6.0E-05)	1.4E-04 (6.5E-05)	1.5E-04 (2.0E-04)	1.2E-03 (6.5E-04)	$1.8E+02 \ (1.3E+01)$	$5.2E+01 \ (1.6E+01)$
f10	500	8.2E-10 (6.9E-10)	3.0E-09 (2.2E-09)	3.5E-04 (1.0E-04)	2.7E-03 (5.1E-04)	1.1E-01 (3.9E-02)	4.6E-01 (6.6E-01)
f11	500	9.9E-08 (6.0E-07)	2.0E-04 (1.4E-03)	1.9E-05 (5.8E-05)	7.8E-04 (1.2E-03)	2.0E-01 (1.1E-01)	1.3E-02 (1.7E-02)
f12	500	4.6E-17 (1.9E-16)	3.8E-16 (8.3E-16)	1.6E-07 (1.5E-07)	1.9E-05 (9.2E-06)	1.2E-02 (1.0E-02)	1.9E-01 (3.9E-01)
f13	500	2.0E-16 (6.5E-16)	1.2E-15 (2.8E-15)	1.5E-06 (9.8E-07)	6.1E-05 (2.0E-05)	7.5E-02 (3.8E-02)	2.9E-03 (4.8E-03)

Б.5 Стандартные префиксы ссылок

Общепринятым является следующий формат ссылок: <prefix>:<label>. Например, \label{fig:knuth}; \ref{tab:test1}; label={lst:external1}. В таблице 4 приведены стандартные префиксы для различных типов ссылок.

Таблица 4 — Стандартные префиксы ссылок

Префикс	Описание			
ch:	Глава			
sec:	Секция			
subsec:	Подсекция			
fig:	Рисунок			
tab:	Таблица			
eq:	Уравнение			
lst:	Листинг программы			
itm:	Элемент списка			
alg:	Алгоритм			
app:	Секция приложения			

Для упорядочивания ссылок можно использовать разделительные символы. Haпример, \label{fig:scheemes/my_scheeme} или \label{lst:dts/linked_list}.

Б.6 Очередной подраздел приложения

Нужно больше подразделов приложения!

Б.7 И ещё один подраздел приложения

Нужно больше подразделов приложения!

Копировал

Формат А4