

UNIVERSITÀ DEGLI STUDI DI TRENTO

DEPARTMENT OF PHYSICS BACHELOR DEGREE IN PHYSICS

An investigation of HURST EXPONENT

Candidate:

Alessandro Foradori

Supervisor:

Leonardo Ricci

17th November 2020

Hurst exponent

The Hurst exponent is a dimensionless estimator used to evaluate self-similarity and long-range dependence properties of time series.

$$\mathbb{E}\left[\frac{R(N)}{S(N)}\right] \propto N^H \quad \text{for } N \to \infty$$

Detrended fluctuation analysis

- C.-K. Peng et al., "Mosaic organization of dna nucleotides", Phys. Rev. E 49, 1685–1689 (1994)
- A. Foradori, Hurst exponent, https://github.com/f3fora/hurst-exponent, 2020

Long Memory

Time series

A discrete weakly stationary stochastic process $\{X_n\}_{n\in\mathbb{Z}}$ is called time series.

V. Pipiras and M. S. Taqqu, Long-range dependence and self-similarity, Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, 2017)

B. Jan, Statistics for long-memory processes, Chapman and Hall/CRC monographs on statistics and applied probability (CRC Press, Boca Raton, FL, 1994)

Long memory

Long-range dependence

- $\gamma_X(k) \propto k^{2d-1}$
- $\sum_{k} |\gamma_X(k)| = \infty$
- $Var(X_1 + \cdots + X_N) \propto N^{2d+1}$

with $d \in (0, 0.5)$

Short-range dependence

$$\sum_{k} |\gamma_X(k)| < \infty$$

Antipersistance

$$\sum_{k} |\gamma_X(k)| = 0$$
 and $d < 0$

Long memory

Self-similarity

Intuitively, self-similarity means that a stochastic process scaled in time (that is plotted with a different time scale) looks statistically the same as the original process when properly rescaled in space.

$$\{X(ct)\}_{t\in\mathbb{R}}\stackrel{d}{=}\{c^HX(t)\}_{t\in\mathbb{R}}\quad \text{with } H>0 \text{ and } c>0$$

Long memory

$$H=\frac{1}{2}+d$$

- $H \in (0.5, 1]$ long-range dependence
- H = 0.5 no time lag
- $H \in (0, 0.5)$ anti-persistent short-range dependence

The purpose of DFA is to estimate the variance of partial sums of the series $X=\{X_n\}_{n\in\mathbb{Z}}$. In this way, $\mathrm{Var}(X_1+\cdots+X_N)\propto N^{2H}$ allows to estimate the Hurst exponent

Define the "profile" $\{Y(t)\}\$ of $\{X(t)\}\$.

$$Y(t) = \int_0^t dt'(X(t') - \bar{X})$$

where \bar{X} is the mean of $\{X(t)\}$ computed on the whole time series.

MF-DFA Step2

Split the full time ${\cal T}$ in time windows ${\tau}.$

Compute the linear regression $g^{(k)}(t, \tau, t')$ of order k of $\{Y(t')\}$ in range $t' \in [t, t + \tau]$.

Determinate the variance $f_2^{(k)}(t,\tau)$ between the profile $\{Y(t)\}$ and the regression $g^{(k)}(t,\tau,t')$.

$$f_2^{(k)}(t, au) \equiv rac{1}{ au} \int_t^{t+ au} dt' \left(Y(t') - g^{(k)}(t, au,t')
ight)^2$$

Step4

 $F_q^{(k)}(au)$ is the momentum of order q over all time windows of length au.

$$F_q^{(k)}(\tau) = \left(\int_0^{T-\tau} dt \left(f_2^{(k)}(t,\tau)\right)^{q/2} p(t,\tau)\right)^{1/q}$$

Step5

Determine the scaling behaviour of the fluctuation functions by analysing log-log plots of $F_q^{(k)}(\tau)$ versus τ .

$$F_q^{(k)}(au) \propto au^{lpha(q)}$$

Interpretation

- $\alpha(2) \in (0,1]$ stationary process with $\alpha(2) = H$
- $\alpha(2) \in (1,2]$ non-stationary process with $\alpha(2) = 1 + H$

Sunspots

On the Sun's photosphere there is a strong magnetic field. However in some localized regions (called **sunspots**), the field is significant higher and the surface appear as spots darker than the surrounding areas. Their number varies according to the approximately 11-year solar cycle

S. W. D. Center, "The international sunspot number", International Sunspot Number Monthly Bulletin
and online catalogue (1749-2020)

M. S. Movahed et al., "Multifractal detrended fluctuation analysis of sunspot time series", Journal of Statistical Mechanics: Theory and Experiment 2006, P02003–P02003 (2006)

Sunspots Raw data and profile

daily sunspot number

monthly mean sunspot number

Sunspots DFA1

Vertical black lines at $\tau = 4, 17, 132, 450$ months.

daily sunspot number

monthly mean sunspot number

Sunspots

Profile fitted with polynomials of 7th order

Sunspots DFAk comparison

Sunspots Fourier-DFA

