基礎幾何

陳信睿

2023 年,暑假

目錄

0	基礎	2
1		3
2	完全四線形	4

0 基礎

定義 1 (有向角). 給定兩條直線 ℓ_1,ℓ_2 ,我們定義 $\angle(\ell_1,\ell_2)$ 爲 ℓ_1 所需逆時針轉的角度使得 ℓ_1 平行 ℓ_2 。我們用 $\angle YXZ$ 表示 $\angle (YX,XZ)$ 。

爲什麼我們會用到有向角呢? 因爲它很多時候可以幫助我們處理方向的問題,舉例來說,假設現在 $P \times Q \times R \times S$ 四點共圓,如果 R 與 S 在直線 PQ 的同側,則會有 $\angle PRQ = \angle PSQ$ 。反之如果在相異側,則會有 $\angle PRQ + \angle PSQ = \pi$ 。有向角可以輕鬆的解決這些問題,在以上不論任何狀況,我們都會有

$$\angle PRQ = \angle PSQ = \angle PTQ \circ$$

1 圓

定義 2 (圓幂). 給定一圓 $\odot(O)$ 以及平面上任何一點 P 定義 P 對圓 $\odot(O)$ 的幂爲 $\overline{OP}^2 - R^2$,其中 R 爲圓 $\odot(O)$ 的半徑。

附註. 會這樣定是因爲假設 P 在圓外,任意定一條割線交圓 $\odot(O)$ 於 A,B 兩點,則根據外幂定理, $\overline{PA} \cdot \overline{PB}$ 不會因爲割線的選取而改變,假設 PC 爲 P 對圓 $\odot(O)$ 的一條切線 (C 在圓 $\odot(O)$ 上),則 $\overline{PC}^2 = \overline{PA} \cdot \overline{PB} = \overline{OP}^2 - R^2$,因此我們用這條式子來定義外幂很合理。類似的,我們也可以發現這樣定出來的內幂會與我們熟悉的定法是吻合的,也就是 P 在圓內,且 APB 爲一條弦,則 $\overline{PA} \cdot \overline{PB} = \left| \overline{OP}^2 - R^2 \right|$ 。然而,因爲有向線段的關係,我們把 P 的幂定爲負的也是有所道理的。

定義 3 (根軸). 給定兩圓 $\odot(O_1)$, $\odot(O_2)$,定義根軸爲一集合搜集所有 P 使得 P 對兩圓的幂相等。

定理 4. 給定兩圓 $\odot(O_1), \odot(O_2)$, 根軸爲一條垂直連心線的直線。

引理 1. 固定平面上兩點 S 跟 T, 並固定兩個非負實數 $a,b \in \mathbb{R}_{>0}$, 則所有滿足

$$\overline{PS}^2 - a^2 = \overline{PT}^2 - b^2$$

的點 P 形成一條垂直 TS 的直線。

證明. To be completed...

定理 4的證明. 這是引理1的直接推論,因爲 $\overline{O_1P}^2-R_1^2=\overline{O_2P}^2-R_2^2$ 的軌跡是一條垂直 O_1O_2 的直線。

定理 5 (根心). 給定三相異圓,則三個根軸會交於一點,此點稱爲根心。

2 完全四線形

現在我們來介紹一些完全四線形相關性質。

定義 6 (完全四線形). 完全四線形 $Q = \{\ell_1, \ell_2, \ell_3, \ell_4\}$ 爲四條直線形成的集合,其中我們要求任三條線不共點。

定理 7 (密克點). 給定一完全四線形 $Q = \{AB, BC, CA, \ell\}$,假設 ℓ 交 $AB \times BC \times CA$ 分別爲 $D \times E \times F$,則 $\odot(ABC) \times \odot(AEF) \times \odot(BFD) \times$ 與 $\odot(CDE)$ 交於一點。此點稱爲完全四線形 Q 的密克點。

證明. 令 $M \leq O(ABC)$ 與 O(AEF) 異於 A 的交點。則我們有

$$\angle MBD = \angle MBC = \angle MAC = \angle MAE = \angle MFE = \angle MFD$$
,

故 $M \in \odot(BFD)$ 。類似的,我們有 $M \in \odot(CDE)$ 。

定理 8 (斯坦納線). 給定一個三角形 ABC,假設 P 爲 $\odot(ABC)$ 上一點,令 P_A 爲 P 對 BC 的對稱點, P_B 、 P_C 類似定義,H 爲三角形 ABC 的垂心。則 P_A 、 P_B 、 P_C 、以及 H 四點共線。

證明. 首先,我們定義 Q_A 爲 P 對 BC 的垂足, Q_B 、 Q_C 類似定義。則我們宣稱 Q_A 、 Q_B 、 Q_C 三點共線。注意到 B、P、 Q_C 、 Q_A 四點共圓,且 C、P、 Q_A 、 Q_B 也四點共圓。故

$$\angle PQ_AQ_C = \angle PBQ_C = \angle PCA = \angle PCQ_B = \angle PQ_AQ_B$$

即證明了 $Q_A \setminus Q_B \setminus Q_C$ 三點共線,此線即爲 P 對三角形 ABC 的西姆松線。

明顯的, P_A 爲 Q_A 對 P 往外推一倍 (位似一倍),所以我們現在只剩下證明 H 在直線 $P_AP_BP_C$ 上。注意到, $A \times B \times H \times P_C$ 四點共圓 (此圓即爲 $\odot(ABC)$ 對 AB 做對稱)。類似的,我們有 $A \times C \times H \times P_B$ 四點共圓。現在,我們即有

$$\angle AHP_C = \angle ABP_C = \angle PBA = \angle PCA = \angle ACP_B = \angle AHP_B \circ$$

這證明了H在直線 P_BP_C 上,故得證。

定理 9 (垂心線). 給定一完全四線形 $Q = \{AB, BC, CA, \ell\}$,假設 ℓ 交 $AB \setminus BC \setminus CA$ 分別為 $D \setminus E \setminus F$ 。令 $H \setminus H_A \setminus H_B \setminus H_C$ 分別為三角形 $ABC \setminus AEF \setminus BFD \setminus CDE$ 的垂心。則 $H \setminus H_A \setminus H_B \setminus H_C$ 共線,此線稱為垂心線。

證明. 我們定義 $P imes P_A imes P_B imes P_C$ 爲完全四線形 Q 的密克點 M 分別對 $\ell imes BC imes CA imes$ AB 的對稱點。我們使用四次**定理**8,即可得知:

$$\begin{cases} P_A \cdot P_B \cdot P_C \cdot H \\ P \cdot P_B \cdot P_C \cdot H_A \\ P \cdot P_C \cdot P_A \cdot H_B \\ P \cdot P_A \cdot P_B \cdot H_C \\ \end{pmatrix}$$

故我們可得, $H \setminus H_A \setminus H_B \setminus H_C \setminus P \setminus P_A \setminus P_B \setminus P_C$ 八點共線。