1. Fill in the blanks below.

Assume a and c are fixed constants. Also, assume $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist.

- (a) $\lim_{x \to a} c =$
- (b) $\lim_{x \to a} x =$ _____
- (c) $\lim_{x \to a} (f(x) + g(x)) =$ ______
 - i. What do the rules above imply about $\lim_{x\to 12}(x+\pi)$?
- (d) $\lim_{x \to a} (f(x) g(x)) =$ _____
- (e) $\lim_{x \to a} cf(x) = \underline{\hspace{1cm}}$
 - i. What do the rules above imply about $\lim_{x\to 5} 2x + 3$?
- (f) $\lim_{x \to a} f(x)g(x) = \underline{\hspace{1cm}}$
- (g) $\lim_{x \to a} x^n =$ _____provided _____
- (h) $\lim_{x \to a} (f(x))^n =$ _____provided ____
- (i) $\lim_{x \to a} \frac{f(x)}{g(x)} =$ ______ provided _____
- (j) $\lim_{x \to a} \sqrt[n]{x} =$ _____provided _____
- (k) $\lim_{x \to a} \sqrt[n]{f(x)} =$ _____provided ____

2. If $\lim_{x\to\sqrt{2}}f(x)=8$ and $\lim_{x\to\sqrt{2}}g(x)=e^2$, then evaluate

$$\lim_{x \to \sqrt{2}} \left(\frac{g(x)}{(3 - f(x))^2} + 2\sqrt{g(x)} \right)$$

3. Use the previous rules to evaluate (a) and explain why you *cannot* use the rules to evaluate (b).

(a)
$$\lim_{w \to -\frac{1}{2}} \frac{2w+1}{w^3}$$

(b)
$$\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1}$$

4. (One more super-useful rule!) If f(x)=g(x) when $x\neq a$, then $\lim_{x\to a}f(x)\equiv \lim_{x\to a}g(x)$ provided the limits exist. Use this rule and what you know about zeros of polynomials to evaluate

$$\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1}$$