Basi di Dati - Prof. G. Polese	Anno Accademico 2017/2018
Classwork N.3 (Traccia B)	del 15/12/2017

Nome e Cognome:

Matricola/Alias:

(Scrivere solo nello spazio bianco. Se necessario, usare il retro del foglio. <u>Non sono</u> <u>ammessi elaborati su fogli diversi.</u>)

Dato l'allegato schema logico relazionale relativo ai classwork N. 1 e 2:

revisione

	codRevisione		data	costo		esito	#libretto	
_								
	veicolo							_
→	#libretto	nominativoProp	indirizzoProp	rietario	telefonoProp	dataImmatricolaz	#telaio	
		#revisioniEffettuate	modell	0	alimentazione	marca	tipo	potenza
		cilindrata	dataProxRev	visione	catEmissioni	tipoCatalizzatore	#assi	peso

Esercizio1 (6 punti)

Dal classwork n. 1 sappiamo che le revisioni sono 2.200. Calcolare il fattore di blocco (blocking factor) ed il numero di blocchi occupati dalla relazione *Revisione*, supponendo di disporre di un sistema con record a lunghezza fissa, blocchi di dimensione pari a 8 kilobyte, e attributi con le seguenti dimensioni espresse in byte:

codRevisione (8), Data (10), Costo(2), Esito (50), #libretto(10)

Basi di Dati - Prof. G. Polese	Anno Accademico 2017/2018
Classwork N.3 (Traccia B)	del 15/12/2017

Esercizio2 (7 punti)

Ipotizzando che nella situazione dell'esercizio 1 il puntatore a record occupi 8 byte, calcolare il fattore di blocco di un indice secondario sull'attributo #libretto ed il numero di blocchi da esso occupati.

Esercizio3 (8 punti)

Calcolare l'ordine massimo di un B-Tree su disco per memorizzare la relazione *Revisione*, usando come campo di ricerca la sua chiave primaria, ed ipotizzando una dimensione del puntatore a blocco pari a 7 byte, e come dimensione del blocco su disco e del puntatore a record quelle degli esercizi 1 e 2.

Basi di Dati - Prof. G. Polese	Anno Accademico 2017/2018
Classwork N.3 (Traccia B)	del 15/12/2017

Esercizio4 (9 punti)

Scrivere un programma Java/JDBC, con driver diretto JDBC-MySQL, che prenda in input un intero N e stampi Nominativi dei proprietari con almeno una revisione costata più di N € (Query simile a quella dell'esercizio 1b del classwork n. 2).