PCI-Express

Mariana Brito Vianini Gabriela de Moura de Camargo Pedro Lucas Montuani Thaís Alves Fagundes

PCI-Express

0 que é?

Padrão de comunicação

Transmissão dos dados entre placas de extensão e a placa mãe.

Histórico

PCI-Express

Placa Mãe - Trilhas

Linhas que percorrem toda a sua superfície, através delas dados percorrem a placa-mãe e chegam às diferentes peças instaladas.

Barramentos PCI e AGP

Barramentos PCI e AGP ficavam responsáveis por serem as portas para placas de vídeo, som e rede serem instaladas.

PCI-Express Criação

2004 - Intel, Dell, HP, IBM

Além de ser mais rápido, padronizou o tipo de conectores de placa de vídeo, som e rede.

Histórico

- Desde sua primeira implementação em uma placa-mãe, os barramentos PCI-Express evoluíram conforme novas placas de expansão foram lançadas.
- > Atualmente, o PCI-Express está disponível em segmentos de 1x a 32x, sendo mais comum encontrar até 16x.
- Existem três tipos de barramentos PCI-Express disponíveis.

TIPOS

PCI-Express

Tipos

PCI-Express 2.0

- Lançado em 2007
- 16 ou 32 caminhos de transmissão de dados
- Um slot realiza o tráfego de 8 até 32
 GB/s

PCI-Express 4.0

- Anunciado em 2011
- Taxa de transmissão de 2GB/s por faixa
- Um slot 16x realiza a transmissão até 32GB/s
- Full Duplex

PCI-Express 1.0

- Lançado em 2004
- 16 caminhos de transmissão de dados
- Um slot realiza o tráfego até 4GB/s

PCI-Express 3.0

- Lançado em 2010
- Maior velocidade alcançada por faixa de dados - 1GB/s até 16GB/s

ARQUITETURA

PCI-Express

Funcionamento

- Ponto a ponto
- Serial
- Uma placa PCI caberá em um slot de seu tamanho ou tamanho maior
- Flexibilidade

Visão Geral

Camadas

- Transações
- Ligação
 - Controle de acesso de mídia
- Física
 - Lógica
 - codificação física
 - Física

Visão Geral

- → Arquitetura de baixa tensão elétrica (LDVS)
 - ◆ Imunidade ao ruído
 - Aumento da largura de banda
 - redução de atraso nas linhas de transmissão
- → Switch Age: gerenciador de conexões seriais

Pinos

PCI Express utiliza 4 pinos de dados

TRANSFERÊNCIA DE DADOS E ARBITRAGEM

Visão Geral

- → Antes de se discutir sobre a maneira como o PCI Express trabalha, é importante entender sobre as diferenças entre comunicações serial e paralela.
- → Diferentemente da Comunicação Paralela, apresentada na aula passada, o PCI Express utiliza Comunicação Serial, ou seja: ao invés de transmitir vários dados ao mesmo tempo, agora ele passa a transmitir apenas um dado por pulso de clock.

Visão Geral

- → Isso gera a impressão de que a transmissão paralela é obrigatoriamente mais rápida que a serial, mas isso não é verdade, pois:
 - Quanto mais elevado o clock, mais chances a transmissão paralela possui de sofrer interferências. Isso ocorre pois, como ela utiliza "um caminho" - um fio - para cada bit, estes caminhos geram interferências eletromagnéticas uns nos outros, corrompendo os dados;
 - Além disso, é praticamente impossível produzir nas placas caminhos com o mesmo comprimento. Ou seja, dados trafegados através de fios mais curtos chegam antes de dados enviados por fios mais longos, gerando atrasos ("Atraso de propagação"). Obs: diferença de comprimento a nivel microscopico

Atraso na Propagação

- → De maneira didática e simplificada, uma comunicação serial se consiste em quatro fios: dois para transmissão, e dois para recepção. Logo, diferentemente da comunicação paralela, a serial pode enviar e receber dados ao mesmo tempo.
- → Para evitar interferências eletromagnéticas, a comunicação serial utiliza uma técnica de "transmissão diferencial", em que os dois fios de transmissão e recepção transmitem os mesmos dados, porém de maneira espelhada com a polaridade invertida

- → Desta forma, a comunicação serial pode alcançar frequencias altíssimas sem sofrer interferências.
- → O PCI Express utiliza um conceito de "pistas", onde a transmissão e recepção podem ser agrupadas para aumentar a quantidade de dados que podem ser trafegados ao mesmo tempo. Exemplo: uma conexão "2x" ocorre quando os dados trafegam utilizando duas pistas. Dessa forma, a largura de banda dobra.

- → Na versão 1.0 do PCI Express ele utiliza a codificação 8b/10b, ou seja, "enxerga 8bits como 10bits". Portanto, para obter a velocidade real de transmissão, nós dividimos os "bits por segundo" por 10. Logo, em um clock de 2,5 GHz, nós obtemos uma velocidade de 250MB/s
- → A partir da versão 3.0, ele utiliza codificação de 128b/130b, obtendo maiores velocidades.

Revisão	Codificação	Clock	Largura de Banda (x1)
1.0	8b/10b	2,5 GHz	250 MB/s
2.0	8b/10b	5 GHz	500 MB/s
3.0	128b/130b	8 GHz	1 GB/s
4.0	128b/130b	16 GHz	2 GB/s

Arbitragem

- → Em relação a arbitragem, o PCI Express utiliza um sistema prioridade de dispositivo, ou seja, aqueles que possuem maior prioridade possuem vantagem na utilização.
- → A prioridade pode ser definida pela prioridade da porta na qual o dispositivo está conectado, ou pela prioridade do canal virtual pelo qual o dispositivo se comunica.

Agradecemos sua atenção

Alguma dúvida?