Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România



## Olimpiada Națională de Matematică

## Etapa Județeană și a Municipiului București, 13 Martie 2010

## CLASA a IX-a

**Problema 1.** O dreaptă care trece prin centrul I al cercului înscris unui triunghi ABC taie laturile AB și AC în P, respectiv Q. Notăm BC=a, AC=b, AB=c și  $\frac{PB}{PA}=p$ ,  $\frac{QC}{QA}=q$ .

- (i) Arătați că  $a(1+p)\overrightarrow{IP} = (a-pb)\overrightarrow{IB} cp\overrightarrow{IC}$ .
- (ii) Arătați că a = bp + cq.
- (iii) Arătați că dacă  $a^2=4bcpq$ , atunci dreptele  $AI,\ BQ$  și CP sunt concurente.

**Problema 2.** Se consideră șirul  $(x_n)_{n\geq 0}$  dat prin  $x_n=2^n-n, n\in\mathbb{N}$ . Determinați toate numerele naturale p pentru care

$$s_p = x_0 + x_1 + x_2 + \dots + x_p$$

este o putere cu exponent natural a lui 2.

Gazeta Matematică

**Problema 3.** Fie x un număr real. Arătați că x este număr întreg dacă și numai dacă relația

$$[x] + [2x] + [3x] + \dots + [nx] = \frac{n([x] + [nx])}{2}$$

are loc pentru orice  $n \in \mathbb{N}^*$ .

Prin [a] s-a notat partea întreagă a numărului real a.

**Problema 4.** Determinați toate funcțiile  $f: \mathbb{N}^* \to \mathbb{N}^*$  cu proprietatea

$$f(n) + f(n+1) + f(f(n)) = 3n+1$$
, pentru orice  $n \in \mathbb{N}^*$ .

Timp de lucru 3 ore. Se acordă în plus 30 de minute pentru întrebări. Fiecare problemă este notată cu 7 puncte.