GQY 机器人接口文档

(试用版)

宁波 GQY 视讯股份有限公司

郑重声明

本手册内容若有变动,恕不另行通知。未得到宁波 GQY 视讯股份有限公司明确的书面许可,不得为任何目的、以任何形式或手段(电子的或机械的)复制或传播手册的任何部分。本文档可能涉及宁波 GQY 视讯股份有限公司的专利(或正在申请的专利)、商标、版权或其他知识产权,除非得到新世纪机器人有限公司的明确书面许可协议,本文档不授予使用这些专利(或正在申请的专利)、商标、版权或其他知识产权的任何许可协议。本手册提及的其它产品和公司名称均可能是各自所有者的商标。

版权所有©宁波 GQY 视讯股份有限公司

目录

GQY 机器人接口文档	1
版本信息	4
概述	4
目的	4
范围	4
GQY 机器人开放资源和开发接口	5
GQY 机器人开放资源	5
GQY 机器人开发接口	6
获得语音识别和语音理解结果接口	6
访问语音合成接口	7
导航控制接口(导航到某处,暂停和继续导航)	8
导航结果接受接口	10
表情与运动控制接口	12
运动控制接口	18
人脸识别接口	20
超声波感知接口	23
导航 APP 功能介绍	25
定制知识库	26
定制广告	26
定制 VIP 识别	27
附录	28
附录 1	28

版本信息

版本	日期	说明
V1. 0	2017-7-4	试用版
V1. 1	2017-8-18	校正
V1. 2	2017-9-4	校正
V1. 3	2017-9-19	增加机器人版本差别

概述

GQY 机器人接口文档是介绍 GQY 机器人对客户开放的资源和接口,指导客户如何使用这些接口以及和二次开发配套的软件和文档说明。

目的

本手册目录目的是帮助客户了解和开发 GQY 机器人,方便地使用 GQY 机器人的开放的资源和开发接口。

范围

本手册描述 GQY 机器人开发资源和接口,不描述机器人结构和与开放资源及接口无关的机器人功能。

GQY 机器人开放资源和开发接口

GQY 机器人开放资源

开放资源	说明	开放额度
语音识别	客户程序可以请求语音 识别的结果	无限制
语义理解	客户程序可以请求语义 理解的结果;客户可以定 制知识库	无限制
语音合成	客户程序可以请求发声	无限制
导航控制及其结果的接受	客户程序可以请求导航 功能和获悉导航结果; 结合导航 APP 实现导航到 目的地	无限制,导航 APP 的介绍 参考附录 1
表情与动作控制	● 客户程序可以请求眼睛和嘴部表情● 客户程序可以请求单个头部动作和单个手臂动作;也可以请求整套动作	 眼睛表情(27种静态 +11动态),嘴部表情 (4种静态+6动态), 表情图片具体参考表 情表格 2个头部动作和4个 手臂动作 13套整体动作(卖萌、 敬礼、飞吻等)
运动控制	客户程序可以请求运动 控制	前进,左转,右转,转一圈
超声波感知	机器人具有感知是否有 人靠近和离开的能力,客 户程序可以请求该服务	无限制
人脸识别	客户程序可以请求人脸 识别的结果	VIP号,年龄,性别,表情和颜值属性
Windows 程序运行环境	在机器人核心服务不受 影响的情况下,允许客户 的 Windows 程序运行在 GQY 机器人的 Windows10 系统中。	有限
(选配)外设访问	客户程序可以请求外设 访问如打印机,身份证和 银行卡读卡器	外设驱动驱动动态库参 考附录1

GQY 机器人开发接口

说明:使用该接口需要关闭 CBC 界面程序;中文编码为 utf8。

获得语音识别和语音理解结果接口

客户程序通过 socket 访问端口 7070, 具体流程图:

返回参数说明

参数	类型	说明
question	string	语音识别的结果(问题)
behavior	int	在此应用中可以忽略
parameter	string	在此应用中可以忽略

content	string	语义理解的结果(答案)
context	string	在此应用中可以忽略
url	string	在此应用中可以忽略

```
c 语言例程:
const char *req="{\"from\":1,\"action\": 2}";
char buff[1024];
SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in serAddrsound;
serAddrsound.sin family = AF INET;
serAddrsound.sin_port = htons(7070);
serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//surface IP
client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
send(client_socket, req,strlen(req), 0);
recv(client_socket, "ok", 2,0)
while(1)
{
recv(client_socket, buff, 1024, 0);
send(client_socket, "ok",2, 0);
// process the result
}
```

访问语音合成接口

客户程序通过 socket 访问端口 7070, 具体流程图:


```
握手请求 json:
{
 "from":1,
 "action": 1
}
语音合成内容示例:
"content":"你好,欢迎来到 GQY 公司"
语音合成请求参数说明
                   说明
参数
          类型
                   发声内容
content
          string
c 语言例程:
const char *req="{\"from\":1,\"action\": 1}";
char buff[1024];
SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr in serAddrsound;
serAddrsound.sin_family = AF_INET;
serAddrsound.sin_port = htons(7070);
serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP
client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
send(client socket, reg, strlen(reg), 0);
```

const char *ttsB="{\"content\": "你好, 欢迎来到 GQY 公司"}" //xxx 是发声的 utf8

导航控制接口(导航到某处, 暂停和继续导航)

客户程序通过 socket 访问端口 7050, 具体流程:

recv(client_socket ,buff ,1024,0)//接受确认

send(client_socket, ttsB,strlen(ttsB), 0); recv(client_socket, buff, 1024, 0);//接受确认。

参数 类型 说明 from int 固定为 1 cmd int 导航命令,固定为 73 subcmd int ● 0-20 机器人导航到达位置号,使用导航 APP 设置; ● 0xff, 暂停导航(进入了导航模式有效,即发过 0-20 导航点命令,且没有到达预定位置) ● 0xfe,继续导航(进入了导航模式有效)

```
导航命令处理结果示例:
{
  "from": 3,
  "cmd":73,
  "subcmd":10,
  "resp":1
}
  导航命令协理结果参数说明
```

导肌命令处埋结果参数说明			
参数	类 型	说明	

参数	类型	说明
from	int	固定为3

cmd	int	导航命令,固定为73
subcmd	int	导航命力下发的导航点
		或者 0xff/0xfe
resp	int	1表示接受导航,
		2表示拒绝导航

```
C 语言例程:
const char *req="{\"from\":1,\"action\": 1}";
char buff[1024];

SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in serAddrsound;
serAddrsound.sin_family = AF_INET;
serAddrsound.sin_port = htons(7050);
serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP
client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
send(client_socket, req,strlen(req), 0);
recv(client_socket, buff,1024,0);//接受确认

const char *n1="{\"from\": 1,\"cmd\":73,\\"subcmd\":1};//导航到一号地点
send(client_socket, n1,strlen(n1), 0);
recv(client_socket, buff, 1024, 0);//接受导航命令处理结果,查看 resp 键值是接受还是拒绝
```

导航结果接受接口

客户程序通过 socket 访问端口 7050, 具体流程:

握手请求 json:

```
"from":1,
    "action": 2
}

导航结果示例:
{
    "from": 3,
    "cmd":73,
    "subcmd":10,
    "resp":3
}
```

导航结果参数说明:

参数	类型	说明
from	int	固定为3
cmd	int	导航命令,固定为73
subcmd	int	导航命力下发的导航点
		(0-20)或者 0xff/0xfe
resp	int	1表示导航正在进行
		2表示导航失败
		3 表示导航成功
		4表示导航临时遇到障碍

```
c 语言例程:
const char *req="{\"from\":1,\"action\": 2}";
char buff[1024];

SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in serAddrsound;
serAddrsound.sin_family = AF_INET;
serAddrsound.sin_port = htons(7050);
serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP
client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
send(client_socket, req,strlen(req), 0);
recv(client_socket, buff,1024,0);//接受确认

recv(client_socket, buff,1024,0);//接受导航结果,查看
send(client_socket, n1,strlen(n1), 0);
```

表情与运动控制接口

客户程序通过 socket 访问端口 7050, 具体流程:


```
握手请求 json:
{
    "from":1,
    "action": 1
}

表情控制命令示例:
{
    "from":1,
    "cmd":102,
    "subcmd":1792
}
表情控制命令参数说明:
```

参数	类型	说明
from	int	固定为1
cmd	int	动作命令,固定为102
subcmd	int	表情或者动作号

```
表情控制命令结果示例:
"from": 1,
"cmd":102,
"subcmd":1792,
"resp":1
}
表情控制命令结果参数说明:
```

参数	类型	说明
from	int	固定为1
cmd	int	动作命令,固定为102
subcmd	int	表情或者动作号
resp	int	1 表示接受动作指令
		2 表示拒绝动作指令

```
表情停止命令示例:
 "from": 1,
 "cmd":65,
 "subcmd":0
表情控制命令参数说明:
```

参数	类型	说明	
from	int	固定为1	
cmd	int	动作命令,固定为65	
subcmd	int	值为0,忽略它	

```
表情停止命令结果示例:
 "from": 1,
 "cmd":65,
 "subcmd":0,
 "resp":1
表情停止命令结果参数说明:
```

农情门 正命 〈 和水乡 & 奶奶:		
参数	类型	说明
from	int	固定为1
cmd	int	动作命令,固定为65
subcmd	int	值为0,忽略它
resp	int	1 表示接受动作指令
		2 表示拒绝动作指令

表情或者动作号的取值格式为三个字节组成的整数如下图:

高 中 低

每个字节的取值范围:

低字节: 1-12,可以调用 GQY 定制好的整套表情和动作;和其他字节是互斥,如果该字节为非 0,其他字节必须为 0。

低字节值₽	动作意义₽
1₽	指示平板₽
2₽	解答问题₽
3₽	卖萌 1₽
4₽	卖萌 2₽
543	迎宾₽
6₽	大屏介绍↩
7₽	请₽
8₽	舞蹈 1₽
943	握手₽
10₽	敬礼₽
11₽	摆 pose₽
12₽	舞蹈 2₽

中字节: 1-46, 可以调用眼睛表情; 该字节可以和高字节做或运算, 实现眼睛和嘴巴动作组合。

中字节值	表达意思	眼睛形状
0	welcome	WEL COME
1	桃心	
2	三角	
3	微笑	

4	大落	
5	眼睫毛	
6	圆圈	00
7	横线	
8	Hi	Hi Hi
9	Z	$\left \mathbf{Z} \right \mathbf{Z}$
10	波浪	
11	叉	XX
12	电池没电	
13	哭泣	
14	嚎啕大哭	
15	闪电	(*) (*)
16	问号	? ?

17	 向右看 	
18	向左看	
19	眩晕	
20	音乐 1	
21	音乐 2	
22	感叹号	
23	充电	
24	心电图	
25	警示符	
26	byebye	Bye Bye
27	Hi 动画	
28	音乐条动画	
29	心电图动画	
30	波浪线动画	
31	哭泣动画	
32	向左看动画	
33	向右看动画	
34	桃心动画	
35	byebye 动画	
36	睡觉动画	
37	思考动画	
38	程序更新动画	

39	眨眼睛一次动画	
40	眨眼睛两次动画	
41	眨眼睛两次后熄灭动画	
42	清屏	
43	故障	* *
44	电量不足动画	
45	充电动画	

表情表格

高字节: 1-14, 可以调用嘴巴表情;

高字节值	表达意思	嘴巴形状
0	微笑)
1	失落	
2	口型	
3	横线	
4	清屏	
5	嘴部说话1	
6	嘴部说话 2	
7	嘴部说话3	
8	嘴部说话 4	
9	嘴部说话 5	
10	嘴部说话 6	
11	嘴部说话7	
12	嘴部说话8	

C 语言例程:

让眼睛显示圈圈: const char *req="{\"from\":1,\"action\":1}"; char buff[1024];

```
SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in serAddrsound;
serAddrsound.sin_family = AF_INET;
serAddrsound.sin_port = htons(7050);
serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP
client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
send(client_socket, req,strlen(req), 0);
recv(client_socket, "ok", 2, 0)//接受确认
send(client_socket, req,strlen(req), 0);
recv(client_socket,buff,1024,0);//接受确认
const char *n1="{\"from\": 1,\"cmd\":102,\"subcmd\":1792}; //1792 的 16 进制为 0x700
send(client_socket, n1,strlen(n1), 0); //动作控制命令
recv(client_socket, buff, 1024, 0);//接受表情控制命令结果,查看 resp 键值是接受还是拒绝
const char *n2="{\"from\": 1,\"cmd\":65,\"subcmd\":}; //停止动作命令
send(client_socket, n2,strlen(n2), 0);
recv(client socket, buff, 1024, 0); //停止动作命令结果
```

运动控制接口

客户程序通过 socket 访问端口 7050,可以控制机器人前进,左转,右转以及转一圈。具体流程:


```
{
    "from":1,
    "action": 1
}

运动控制指令示例:
{
    "from":1,
    "cmd":69,
    "subcmd":1
}
```

表情控制命令参数说明:

参数	类型	说明
from	int	固定为1
cmd	int	运动控制命令,固定为
		69
subcmd	int	1表示左转
		2 表示右转
		3 表示转圈
		4 表示前进

```
运动控制指令结果示例:
```

```
{
    "from":1,
    "cmd":69,
    "subcmd":1,
    "resp":1
}
```

运动控制指令结果参数说明:

参数	类型	说明
from	int	固定为1
cmd	int	运动控制命令,固定为
		69
subcmd	int	1表示左转
		2 表示右转
		3 表示转圈
		4 表示前进
resp	int	1 表示接受
		2 表示拒绝

C 语言例程:

```
const char *req="{\"from\":1,\"action\": 1}";
char buff[1024];
```

```
SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); struct sockaddr_in serAddrsound; serAddrsound.sin_family = AF_INET; serAddrsound.sin_port = htons(7050); serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound)); send(client_socket, req,strlen(req), 0); recv(client_socket, buff,1024,0);//接受确认

const char *n1="{\"from\": 1,\"cmd\":69,\"subcmd\":1};//左转 send(client_socket, n1,strlen(n1), 0); recv(client_socket, buff, 1024, 0);//接受左转命令结果,查看 resp 键值是接受还是拒绝
```

人脸识别接口

人脸识别接口在 A2 和 A3 接口是不同的。请认清机器人版本,选择对应的接口。

A2 机器人:

客户程序通过 socket 访问端口 7090,可以获得人脸识别的结果。具体流程:

参数	类型	说明
id	int	VIP 号码

gender	int	性别,0表示女,1表示
		男,2表示不确定
emtion	int	0表示愤怒
		1表示平静
		2表示困惑
		3表示厌恶
		4表示高兴
		5 表示悲伤
		6表示惊恐
		7表示诧异
		8表示斜视
		9 表示尖叫
age	int	年龄,0-100
attr	int	颜值,0-100

```
c 语言例程:
char buff[1024];
SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in serAddrsound;
serAddrsound.sin_family = AF_INET;
serAddrsound.sin_port = htons(7090);
serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP
client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
while(1)
{
    recv(client_socket, buff,1024,0);//接受人脸识别结果
    send(client_socket, "ok",2, 0);//发送确认
    //处理人脸识别结果
}
```

A3 机器人:

客户程序通过 socket 访问端口 7050,可以获得人脸识别的结果。具体流程:

人脸识别结果参数说明:

参数	类型	说明
id	int	VIP 号码
gender	int	性别为男性的百分比置
		信度(0-100)
emtion_t	int	0表示愤怒
		1表示平静
		2表示困惑
		3表示厌恶
		4表示高兴
		5 表示悲伤
		6表示惊恐
		7表示诧异
		8表示斜视
		9 表示尖叫
age	int	年龄,0-100
attr	int	颜值,0-100

```
char buff[1024];
const char *req="{\"from\":4,\"action\": 2}";
SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in serAddrsound;
serAddrsound.sin_family = AF_INET;
serAddrsound.sin_port = htons(7050);
serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP
client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
send(client_socket, req,strlen(req), 0);
recv(client_socket ,buff,1024,0);//接受确认
while(1)
{
    recv(client_socket,buff,1024,0);//接受人脸识别结果
    send(client_socket, "ok",2,0);//发送确认
    //处理人脸识别结果
}
```

超声波感知接口

客户程序通过 socket 访问端口 7050, 感知机器人前面有人进入或者离开。 具体流程:


```
"from":1,
    "action",2
}
超声波感知结果示例:
{
    "from":3,
    "cmd":80,
    "subcmd":1,
    "resp":1
}
```

超声波感知结果参数

参数	类型	说明
from	int	固定值 3
cmd	int	固定值 80
subcmd	int	该值得掩码是 0x400, 与运算
		后的结果为0表示人离开,
		为1表示人进来
resp	int	固定值 1, 忽略它

```
c 语言例程:
char buff[1024];
const char *req="{\"from\":1,\"action\":2}";

SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in serAddrsound;
serAddrsound.sin_family = AF_INET;
serAddrsound.sin_port = htons(7050);
serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP
client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
send(client_socket, req,strlen(req), 0);
recv(client_socket, "ok",2,0)//接受确认

recv(client_socket, buff,1024,0);//接受超声波感知结果
send(client_socket, "ok",2,0);//发送确认
//接受结果和 0x400 掩码作与运算,获得超声波感知结果
```

导航 APP 功能介绍

GQY 提供了手机 app 实现建图和导航点设置。结合导航接口,客户可以全方位控制导航。本手册只介绍和导航点设置相关功能,其它建图功能参考附录 1 进入建图模式,建图后标注导航点

1输入初始导航点的名字,机器人上电点和充电点

2 反复输入其它导航点

3 确认后保存地图和导航点

定制知识库

GQY 机器人提供了便捷的定制语义理解知识库方法,具体步骤如下:

- 1. 在 U 盘中,建立目录:新知识库
- 2. 在客户知识库目录下创建 exec 表格文件,文件名如: 1.xls,文件夹中可以多个 exec 表格文件;文件名不能是中文。
- 3. 每个 exec 文件有两列:问题和答案,表必须保留前两行表头内容,从第三行开始填入自己定义的问题和答案。
- 4. 在 name 列填写自定义问题,在对应的 content 列填写自定义答案,多个问题或答案可用"|"分隔,例如 name 填"今天天气|天气怎么样|天气",对应 content 填"天气晴|晴空万里|好天气",每一句句首句尾均不加标点;

在 github 中可以下载完整 execl 表格文件示例,参考附录 1。

- 5. 参考附录1中的客户知识库目录。
- 6. 插入 U 盘到机器人充电座后盖的 USB 接口,如下图红圈标示处:

7. 重起 Surface 平板,完成客户知识库的定制

定制广告

GQY 机器人提供了便捷的定制客户广告方法,具体步骤如下:

- 1. 在 U 盘中, 建立目录: 客户广告\图片, 客户广告\视频
- 2. 客户广告\图片目录下保存客户的广告图片,格式为 png,分辨率推荐为 1600*1000
- 3. 客户广告\视频目录下保存客户的广告视频,格式为 mp4
- 4. 如下图:

5. 插入 U 盘到机器人充电座后盖的 USB 接口,如下图红圈标示处:

7. 重起 Surface 平板,完成客户广告的定制。

定制 VIP 识别

GQY 机器人提供了便捷的定制客户 VIP 识别,具体步骤如下: 更换主题和增加 VIP 数据的方法。具体的使用方法如下:

- 1. 在 U 盘中,建立目录: VIP 客户资料。
- 2. 在目录中保存 VIP 图片,格式为 jpg,分辨率为 1280*960 左右,大小为 500K 左右,单个人脸的正面照。
- 3. 创建 VIP 客户信息表.xlsx 文件,建立照片和称呼的对应。
- 4. 示例: VIP 客户资料目录下的 030.jpg 照片和对应的称呼文档。

4.插入 U 盘到机器人充电座后盖的 USB 接口,如下图红圈标示处:

7.打开 VIP 录入程序,完成 VIP 识别定制。

附录

附录 1

该附录包括目录和文件:

- 1. 外设:包括了外设的帮助文档和头文件
- 2. 客户知识库:包括了 execl 文件,展示如何编写知识库
- 3. 导航 APP 说明:介绍导航 APP 功能和使用方法

下载地址: https://github.com/43970117/GQY