NHDPlus V2 Accumulation Tools and High-Resolution Data

Sarah McDonald, USGS Contractor
Chesapeake Bay Program Office
Lower Mississippi-Gulf Water Science Center

Medium Resolution Data (1:100k Scale)

- NHDPlusV2 is medium resolution National Hydrography Dataset (NHD) data.
 - Catchments
 - Flowlines
 - PlusFlow
 - PlusFlow AR
 - AR: Addition/Removal events
- SAS Routing database (Mike Wieczorek)
 - Improved NHDPlusV2 PlusFlow table
 - Includes attributes such as:
 - https://www.sciencebase.gov/catalog/item/5669a79ee4b08895842a1d47

NHDPlusV2 Accumulation Tools - Overview

- StreamCat
 - USEPA; Marc Weber, Rick Debbout, Ryan Hill, ...
 - https://github.com/USEPA/StreamCat

- Stream Connectivity with a Routing Database
 - USGS; Sarah McDonald
 - https://github.com/smcdonald125/NHD-Accumulation
 - Goal:
 - Translate Mike Wieczorek's SAS code to an open-source, Python tool

StreamCat

- Required data to build upstream network:
 - NHDPlusV2 PlusFlow
 - NHDPlusV2 flowlines dbf
 - interVPU.csv
- The PlusFlow table is altered by removing records from the PlusFlow table:
 - that do not flow to another segment (TOCOMID == 0)
 - where the FROMCOMID is type "CoastLine" in the NHD flowlines dbf
 - where FROMCOMID is listed in the Remove column of InterVPU.csv
 - where the FROMCOMID is not in the current VPU zone and is not listed as the thruCOMID in InterVPU.csv

StreamCat Continued

- Uses ArcPy to calculate catchment statistics
 - Continuous Raster ZonalStatisticsAsTable
 - Classified Raster Tabulate Area
- ArcPy cell size environment is set to 30m for all data
- Accumulating area
 - The results of the catchment statistics include a "raster area" (excludes NoData)
 - Raster area is divided by the NHD catchment attribute "AreaSqKM" to produce the "PctFull" variable.
 - AreaSqKM is accumulated like all variables (summing all values in the network)
 - PctFull is accumulated by taking a weighted average of the PctFull data, using the catchment areas (AreaSqKM) as the weights.

StreamCat Continued

- Final accumulated values can be processed using one of the following three methods:
 - Mean, Density, Percent
 - Density and Percent use the accumulated AreaSqKM value multiplied by the weighted average of the PctFull value to calculate "total accumulated raster area"

Stream Connectivity with a Routing Database

- Open source Python 3.7 tool; Libraries listed below:
 - gdal, geopandas, fiona, numpy, pandas, rasterio, sas7bdat, shapely
- Run Time: ~80 minutes for continuous raster covering the CBW
 - Can be optimized
- Required data to build upstream network:
 - SASS routing database (CONUS)
- The Routing Database is altered by:
 - Reducing the database to a Vector Processing Unit (VPU), if a zone is specified (recommended)
 - The reduced table will be produced as a CSV for future use
 - Removing attributes that are not needed for connectivity

Stream Connectivity with a Routing Database Continued

- Catchment statistics are calculated using open-source numpy functions
 - Continuous Rasters One stat can be picked per run:
 - Maximum: np.amax()
 - Minimum: np.amin()
 - Mean: np.nanmean()
 - Median: np.nanmedian()
 - Sum: np.sum()
 - Classified Rasters:
 - Count of pixels for each unique class: np.unique()

Stream Connectivity with a Routing Database Continued

- Accumulating Area:
 - Continuous Raster
 - Raster area covering the catchment that is not NoData is summed for all upstream catchments
 - Classified Raster
 - Pixel count per class is summed for all upstream catchments and multiplied by a userdefined conversion factor

StreamCat VS Stream Connectivity with a Routing Database

- Comparing area calculation methods:
 - For the Chesapeake Bay Watershed, using a 10m raster that covers all catchments (no NoData)
 - PctFull * Accumulated NHD Area method yielded the exact values as the accumulated raster area
- Enforcing a 30m cell size in the ArcPy environment with finer scale data (10m)
 - Resulted in difference in catchment statistic values

StreamCat VS Stream Connectivity with a Routing Database Cont

Catchment Impervious Cover Difference:
ArcPy ZonalStats vs Python numpy
ArcPy Environment Cell size = 30

Catchment Impervious Cover Difference:
ArcPy ZonalStats vs Python numpy
ArcPy Environment Cell size = 10

StreamCat VS Stream Connectivity with a

Routing Database Cont

 Zonal Statistics using 30m cell size results accumulated in Python code. Differenced with

StreamCat Data

High Resolution Data: 1:24k Scale

- NHD-HR is high-resolution National Hydrography Dataset (NHD) data;
 Can be downloaded at the HUC4 and HUC8 subbasin level
 - Catchments
 - Flowlines
 - PlusFlow

- ecoSHEDs is improved NHD-HR data
 - Catchments
 - Truncated flowlines
 - http://conte-ecology.github.io/shedsGisData/

NHD-HR

• The NHD High Res catchments contained some errors

ecoSHEDs

- Both the catchments and truncated flowlines contain the "NextDownID" data that can be used to build the upstream network
- The upstream networks are different depending which dataset was used

 Percent Difference for the Potomac:
 EcoSHEDS Catchments vs EcoSHEDS Lines

NHD-HR and ecoSHEDs Comparison

- NHD-HR includes more catchments than ecoSHEDs
 - NHD-HR has a total of 106,729 catchments in the Potomac
 - ecoSHEDs has a total of 25,860 catchments in the Potomac

NHD-HR Catchments ecoSHEDs Catchments

NHD-HR and ecoSHEDs Comparison

NHD-HR and ecoSHEDs Comparison Cont

Immediate Applications

Stream Connectivity with Routing Database

- Accumulate Chesapeake bay Healthy Watersheds landscape metrics
- Accumulate simulated impervious cover from the Chesapeake Bay Land Change Model (CBLCM)
- Update sediment simulation for the Chesapeake Bay Watershed Model

Next Steps

- Update to allow user to accumulate more than one raster
- Include a weighted average by % flow for divergences option
 - Wieczorek's SAS code does this
- Add functionality to mask by region(s) to accumulate within
- Make code user-friendly
 - Jupyter notebook?
 - Configuration file?
 - What is easiest to use and set up locally?

Questions

- What attributes should be included for routing?
 - Medium resolution uses ctonode and cfromnode in the routing database
 - High res can use
 - NHD's ToNHDPID and FromNHDPID
 - ecoSHED's NextDownID
- Most effective way of sharing?
 - Jupyter Notebook?
 - GitHub?

- Divergences split flow, should the accumulation account for this?
- Should all metrics be accumulated this way, or should it be optional?
- Should area be accumulated this way?
- Which of these questions is most important?
- Others?

Contact

• smcdonald@chesapeakebay.net