RK1

April 19, 2021

1 RK1 Alekhin Sergey IU6-61

1.0.1 Library import

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
import warnings
from sklearn import datasets
from sklearn.datasets import load_boston
from sklearn import linear_model
from sklearn.cluster import KMeans
from sklearn import metrics
from pandas import DataFrame
%pylab inline
```

Populating the interactive namespace from numpy and matplotlib

```
[2]: boston = load_boston()
data = pd.DataFrame(boston.data, columns=boston.feature_names)
data['TARGET'] = boston.target
```

```
[3]: data.head()
```

```
[3]:
          CRIM
                  ZN
                      INDUS
                            CHAS
                                    NOX
                                            RM
                                                 AGE
                                                        DIS
                                                             RAD
                                                                    TAX \
    0 0.00632 18.0
                       2.31
                             0.0 0.538 6.575 65.2 4.0900
                                                             1.0
                                                                  296.0
    1 0.02731
                 0.0
                      7.07
                             0.0 0.469
                                         6.421
                                               78.9 4.9671
                                                             2.0
                                                                  242.0
    2 0.02729
                 0.0
                       7.07
                             0.0 0.469
                                         7.185
                                                61.1 4.9671
                                                             2.0 242.0
    3 0.03237
                 0.0
                       2.18
                             0.0 0.458
                                         6.998
                                                45.8 6.0622
                                                             3.0
                                                                  222.0
                       2.18
                                         7.147
                                                54.2 6.0622
    4 0.06905
                 0.0
                             0.0 0.458
                                                            3.0 222.0
```

```
PTRATIO
                 B LSTAT
                          TARGET
0
      15.3 396.90
                     4.98
                             24.0
1
      17.8
            396.90
                     9.14
                             21.6
                             34.7
2
      17.8
                     4.03
            392.83
3
      18.7
            394.63
                     2.94
                             33.4
```

4 18.7 396.90 5.33 36.2

[4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	CRIM	506 non-null	float64
1	ZN	506 non-null	float64
2	INDUS	506 non-null	float64
3	CHAS	506 non-null	float64
4	NOX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	506 non-null	float64
7	DIS	506 non-null	float64
8	RAD	506 non-null	float64
9	TAX	506 non-null	float64
10	PTRATIO	506 non-null	float64
11	В	506 non-null	float64
12	LSTAT	506 non-null	float64
13	TARGET	506 non-null	float64

dtypes: float64(14)
memory usage: 55.5 KB

[5]: data.describe()

[5]:		CRIM	ZN	INDUS	CHAS	NOX	RM	\
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
	mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	
		AGE	DIS	RAD	TAX	PTRATIO	В	\
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
	mean	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	
	std	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	
	min	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	
	25%	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	
	50%	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	
	75%	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	
	max	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	

```
LSTAT
                             TARGET
     count
            506.000000
                        506.000000
     mean
             12.653063
                          22.532806
     std
              7.141062
                           9.197104
                           5.000000
    min
              1.730000
     25%
              6.950000
                          17.025000
     50%
                          21.200000
             11.360000
     75%
             16.955000
                          25.000000
     max
             37.970000
                          50.000000
[6]:
     corr_matrix = data.corr()
[7]:
    corr_matrix['TARGET']
[7]: CRIM
               -0.388305
     ZN
                0.360445
     INDUS
               -0.483725
     CHAS
                0.175260
     NOX
               -0.427321
     RM
                0.695360
     AGE
               -0.376955
    DIS
                0.249929
     RAD
               -0.381626
     TAX
               -0.468536
    PTRATIO
               -0.507787
                0.333461
    LSTAT
               -0.737663
     TARGET
                1.000000
     Name: TARGET, dtype: float64
[8]: plt.figure(figsize=(20,20))
     sns.heatmap(corr_matrix, annot=True, fmt='.3f')
[8]: <AxesSubplot:>
```



```
[9]: fig, axs = plt.subplots(ncols=3, figsize=(30,10))
sns.regplot(x=data['INDUS'], y=data['TARGET'], ax = axs[0])
sns.regplot(x=data['NOX'], y=data['TARGET'], ax = axs[1])
sns.regplot(x=data['AGE'], y=data['TARGET'], ax = axs[2])
```

[9]: <AxesSubplot:xlabel='AGE', ylabel='TARGET'>

[10]: sns.boxplot(x=data['TARGET'])

[10]: <AxesSubplot:xlabel='TARGET'>

[11]: plt.figure(figsize=(12,6))
sns.pairplot(data)

[12]: <seaborn.axisgrid.JointGrid at 0x7f9a2c709df0>


```
[13]: fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='INDUS', y='TARGET', data=data, hue='AGE')
```

[13]: <AxesSubplot:xlabel='INDUS', ylabel='TARGET'>

