PERAMALAN PERTUMBUHAN EKONOMI PROVINSI BANTEN MENGGUNAKAN BAYESIAN VAR-X PADA DATA PERIODE 2008Q1-2020Q2

(Laporan Penelitian)

Oleh

SITI BUNGA ROHIYATUN NUFUS

JURUSAN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS LAMPUNG
BANDAR LAMPUNG
2021

KATA PENGANTAR

Dengan menyebut nama Allah SWT yang Maha Pengasih lagi Maha Panyayang,

penulis panjatkan puja dan puji syukur atas kehadirat-Nya, yang telah melimpahkan

rahmat, hidayah, dan inayah-Nya kepada penulis, sehingga penulis dapat

menyelesaikan penelitian tentang "Peramalan Pertumbuhan Ekonomi Provinsi

Banten Menggunakan Bayesian VAR-X pada Data Periode 2008Q1-2020Q2".

Laporan ini telah saya susun dengan maksimal dan mendapatkan bantuan dari

berbagai pihak sehingga dapat memperlancar pembuatan laporan ini. Untuk itu

saya menyampaikan banyak terima kasih kepada semua pihak yang telah

berkontribusi dalam pembuatan laporan ini. Terlepas dari semua itu, penulis

menyadari sepenuhnya bahwa masih ada kekurangan baik dari segi susunan kalimat

maupun tata bahasanya. Oleh karena itu penulis menerima segala saran dan kritik

dari pembaca agar penulis dapat memperbaiki karya tulis ilmiah ini. Akhir kata

penulis berharap semoga laporan ini dapat memberikan manfaat maupun

inspirasi terhadap pembaca.

Serang, 30 Agustus 2021

Siti Bunga Rohiyatun Nufus

DAFTAR ISI

Dat	ftar Gambar	. v
Dat	ftar Tabel	vi
AB	STRAK	vii
I.	PENDAHULUAN	. 1
	1.1 Latar Belakang dan Masalah	. 1
	1.2 Rumusan Masalah	. 4
	1.3 Tujuan Penelitian	. 4
	1.4 Manfaat Penelitian	. 5
	1.5 Batasan Masalah	. 5
II.	TINJAUAN PUSTAKA	. 6
	2.1 Pertumbuhan Ekonomi	. 6
	2.2 Peramalan	6
	2.3 Data Deret Waktu	. 7
	2.4 Stasioneritas Data	
	2.5 Analisis Data Deret Waktu Multivariat	. 10
	2.5.1 Model VAR	
	2.5.2 Penentuan Lag Optimum	
	2.5.3 Estimasi Parameter VAR dengan Maximum Likelihood (ML)	
	2.5.4 Bayesian VAR	
	2.5.5 Prior Normal Invers Wishart	
	2.5.6 Gibbs Sampling	
	2.6 MAPE (Mean Absolute Percentage Error)	. 24
III.	METODOLOGI PENELITIAN	. 25
	3.1 Sumber Data Penelitian	. 25
	3.2 Metode Penelitian	. 26
IV.	HASIL DAN PEMBAHASAN	. 27
	4.1 Data Penelitian	. 27
	4.2 Visualisasi Data	
	4.3 Uji Stasioneritas Data	
	4.4 Penentuan Ordo Lag Optimum pada VAR	
	4.5 Estimasi VAR	
	4.6 Bayesian VAR	
	4.7 Evaluasi Peramalan	
	4.8 Peramalan Bayesian VAR-X	.42
v.	KESIMPULAN	.47

5.1 Kesimpulan	
5.2 Saran	47
DAFTAR PUSTAKA	49
LAMPIRAN	

DAFTAR GAMBAR

Ga	umbar	Halaman
1.	Visualisasi Data Deret Waktu	32
2.	Stabilitas Koefisien VAR(1)	38
3.	Stabilitas Bayesian VAR(1)-Eksogen	41
4.	Visualisasi Data Peramalan PDRBRIIL Q-on-Q	44
5	Visualisasi Data Peramalan PDRBRIII. Y-on-Y	45

DAFTAR TABEL

Tal	bel Halaman
1.	Data PDRB Atas Dasar Harga Konstan Provinsi Banten Triwulan I 2008 Sampai Dengan Triwulan II 2020
2.	Data Konsumsi Rumah Tangga Atas Dasar Harga Konstan Provinsi Triwulan I 2008 Sampai Dengan Triwulan II 2020
3.	Data Indeks Produksi Industri Besar Sedang Provinsi Banten Triwulan I 2008 Sampai Dengan Triwulan II 2020
4.	Data Ekspor Barang Atas Dasar Harga Konstan Provinsi Banten Triwulan I 2008 Sampai Dengan Triwulan II 2020
5.	Data Impor Barang Atas Dasar Harga Konstan Provinsi Banten Triwulan I 2008 Sampai Dengan Triwulan II 2020
6.	Data Jumlah Tenaga Kerja Provinsi Banten Triwulan I 2008 Sampai Dengan Triwulan II 2020
7.	Data Indeks Query dari Google Trends Provinsi Banten Triwulan I 2008 Sampai Dengan Triwulan II 2020
8.	Uji Stasioneritas Levin, Lin, dan Chu
9.	Ordo Lag Optimum
10.	Estimasi VAR(1)-Eksogen
11.	Estimasi Bayesian VAR(1)-Eksogen
12.	Evaluasi Peramalan Bayesian VAR-X
13.	Hasil Peramalan 43

ABSTRAK

Pada akhir tahun 2019 terjadi pandemi COVID-19 yang menyebar hampir ke seluruh negara termasuk Indonesia, hal ini menyebabkan perekonomian di negara Indonesia menjadi tidak stabil dan mengalami penurunan termasuk perekonomian di Provinsi Banten. Oleh karena itu diperlukan suatu metode untuk meramalkan pertumbuhan ekonomi di Provinsi Banten, agar pemerintah maupun pengambil kebijakan dapat mengetahui deskripsi masa depan untuk membuat strategi perekonomian di Provinsi Banten. Salah satu metode statistika dalam bidang ekonometrika yang digunakan dalam peramalan yaitu model klasik VAR yang merupakan salah satu model multivariat deret waktu, namun karena adanya informasi prior yang diterapkan dan menganggap parameter dalam VAR sebagai variabel random, maka dapat disebut Bayesian VAR dengan prior wishart. Data dalam penelitian ini merupakan data sekunder periode 2008Q1-2020Q2 yang di peroleh dari Badan Pusat Statistik (BPS), dengan beberapa indikator data dan indeks query dari Google Trend sebagai variabel eksogen. Hasil penelitian menunjukan dengan metode Bayesian VAR-X pertumbuhan ekonomi di Provinsi Banten mengalami peningkatan.

Kata-kata kunci: Pertumbuhan Ekonomi, Peramalan, Bayesian VAR.

BAB I PENDAHULUAN

1.1 Latar Belakang dan Masalah

Pertumbuhan ekonomi adalah salah satu variabel makro ekonomi yang dapat digunakan untuk melihat perkembangan perekonomian di suatu wilayah pada periode tertentu. Pertumbuhan ekonomi dapat juga diartikan suatu proses perubahan kondisi perekonomian suatu Negara yang berkesinambungan menuju keadaan yang lebih baik atau lebih buruk selama periode tertentu. Menurut Sukirno (2008),pertumbuhan berarti perkembangan ekonomi kegiatan dalam perekonomian yang menyebabkan barang dan jasa yang diproduksikan bertambah dan kemakmuran masyarakat meningkat. Sehingga pertumbuhan ekonomi dapat diartikan juga sebagai proses kenaikan kapasitas produksi suatu perekonomian yang diwujudkan dalam bentuk kenaikan pendapatan nasional. menyatakan bahwa pertumbuhan ekonomi adalah proses dimana terjadi kenaikan produk nasional bruto riil atau pendapatan nasional riil. Jadi perekonomian dikatakan tumbuh atau berkembang bila terjadi pertumbuhan output riil (Tambunan, 2003).

Tidak selamanya perekonomian suatu negara dapat berjalan mulus, adanya *shock* baik dari eksternal seperti naiknya harga minyak dunia, krisis global, dan lain sebagainya, maupun *shock* dari internal dalam negeri seperti kenaikan harga barang, stabilitas keamanan, pengangguran dan lain-lain, membuat terjadinya fluktuasi pada variabel-variabel makro perekonomian. Dan juga pada akhir tahun

2019 dimana negara-negara di dunia di hebohkan dengan virus yang berasal dari Wuhan yang merupakan salah satu daerah di China, virus ini dikenal sebagai Coronavirus Disease 2019 atau lebih dikenal dengan sebutan COVID-19.

COVID-19 adalah jenis virus baru yang ditemukan pada tahun 2019 dan belum pernah diidentifikasi menyerang manusia sebelumnya (Mona, 2020). Virus ini terus menyebar hampir ke seluruh negara, peristiwa menyebarnya penyakit COVID-19 ini dikenal dengan sebutan pandemi COVID-19. Virus ini diperkirakan masuk ke Indonesia pada awal tahun 2020 yang membuat aktivitas beberapa wilayah di Indonesia termasuk di Provinsi Banten mengalami pembatasan, yang sampai sekarang virus ini masih menjadi penyebab beberapa wilayah di Indonesia melakukan pembatasan aktivisas. Tentu saja para pengambil kebijakan dalam membuat keputusan dan strategi ekonomi nasional untuk masa depan, memerlukan suatu deskripsi tentang situasi masa lalu, saat ini dan masa depan sehingga keputusan dan program yang dibuat tidak sia-sia, benar dan tepat. Agar pengambil kebijakan dapat mengetahui deskripsi masa depan perekonomian, salah satu solusinya adalah dengan peramalan.

Peramalan adalah suatu aktivitas memperkirakan nilai pada variabel tertentu di masa depan berdasarkan data historis variabel tersebut atau variabel kausal lainnya dengan menggunakan metode ilmiah dalam hal ini adalah metode statistika. Dalam peramalan di bidang ekonomi, metode yang sering digunakan adalah ekonometrika. Model klasik VAR adalah salah satu model *multivariate time series econometrics* yang dikembangkan oleh C.A. Sims (1980) sebagai pengembangan dari pemikiran

Granger (1969). Granger menyatakan bahwa apabila dua variabel misalkan x dan y memiliki hubungan kausal dimana x mempengaruhi y maka informasi masa lalu x dapat membantu memprediksi y. VAR juga merupakan salah satu model linier dinamis (MLD) yang sedang marak digunakan untuk aplikasi peramalan variabel-variabel (terutama) ekonomi dalam jangka menengah maupun dalam jangka panjang. Dalam mengestimasi parameter dalam VAR bisa digunakan metode least square ataupun maksimum likelihood, dimana pandangan dari kedua metode estimasi tersebut menganggap parameter sebuah nilai yang tetap. Sedangkan dalam pendekatan bayesian, terdapatnya informasi terhadap parameter yang ditaksir yang disebut prior.

Dalam statistika terdapat dua pandangan berbeda dalam memandang sebuah parameter, yaitu frequentist dan bayesian. Menurut pandangan frequentist bahwa parameter adalah sebuah nilai tetap (konstan), sedangkan dalam pandangan bayesian terdapatnya informasi terhadap parameter yang ditaksir yang disebut prior. Karena adanya informasi prior yang diterapkan dan menganggap parameter dalam VAR sebagai variabel random, maka dapat disebut Bayesian VAR. Dalam pendekatan Bayesian, yang kita ingin dapatkan adalah momen pertama dan kedua dari distribusi posterior yang terjadi, dimana posterior secara mudah dipahami adalah perkalian antara prior dengan fungsi likelihood-nya. Secara analogi, dapat dikatakan penaksir parameter dalam VAR diperoleh dari momen pertama dari distribusi posteriornya. Setelah didapat nilai estimasinya, kemudian digunakan dalam VAR untuk peramalan.

Studi tentang peramalan menggunakan Bayesian VAR pernah dilakukan oleh Huang (2012), bahwa normal prior mempunyai performance yang baik dalam meramalkan ouput dan inflasi di China. Irem Sacakli-Sacildi (2015), mendapati bahwa prior Minnesota memiliki RMSE paling kecil dalam meramal PDB Turki dibandingkan Unrestricted VAR dan prior lainnya. Oleh karena itu, dalam penelitian ini ingin melihat performance Bayesian VAR-X (Bayesian VAR dengan unsur variabel eksogen) dalam peramalan pertumbuhan ekonomi di Banten dengan indeks query dari Google Trend sebagai variabel eksogen, yang diharapkan dapat dijadikan dasar pertimbangan masukan bagi pengambil kebijakan.

1.2 Rumusan Masalah

Berdasarkan latar belakang tersebut, maka masalah yang dirumuskan dalam penelitian ini adalah sebagai berikut:

- 1. Bagaimana performance Bayesian VAR dalam peramalan pertumbuhan ekonomi di Indonesia?
- Bagaimana tingkat pertumbuhan ekonomi Provinsi Banten pada triwulan III
 2021?

1.3 Tujuan Penelitian

Berdasarkan rumusan masalah diatas, maka penelitian ini bertujuan untuk:

 Mengetahui *performance* peramalan Bayesian VAR dalam peramalan pertumbuhan ekonomi di Indonesia. Mengetahui tingkat pertumbuhan ekonomi Provinsi Banten pada triwulan III 2021.

1.4 Manfaat Penelitian

Adapun manfaat dari penelitian ini adalah:

- Menambah kajian dan informasi terkait performance Bayesian VAR dalam peramalan variabel ekonomi pada ranah ekonometrika.
- 2. Menambah wawasan peneliti dalam bidang Bayesian ekonometrik.

1.5 Batasan Masalah

Dalam peneiltian ini, metode estimasi yang yang digunakan untuk model Bayesian VAR prior yang digunakan adalah prior normal invers wishart, minnesota, steady state dan diffuse. Model pertumbuhan ekonomi yang digunakan dalam analisis ini adalah didasarkan pada fungsi produksi Cobb Douglas augmented tereduksi (faktor teknologi dianggap konstan (diabaikan pada fungsi produksi) kemudian ditambahkan variabel-variabel penting diluar variabel pada fungsi produksi Cobb Douglas).

BAB II TINJAUAN PUSTAKA

2.1 Pertumbuhan Ekonomi

Menurut Ardiansyah (2017), pertumbuhan ekonomi merupakan perkembangan kegiatan dalam perekonomian yang menyebabkan barang yang diproduksikan dalam masyarakat meningkat. Tingkat inflasi yang tinggi akan berdampak buruk pada pertumbuhan ekonomi, tingkat inflasi yang tinggi akan menurunkan pertumbuhan ekonomi.

Pertumbuhan ekonomi adalah sebuah proses dari perubahan kondisi perekonomian yang terjadi di suatu negara secara berkesinambungan untuk menuju keadaan yang dinilai lebih baik selama jangka waktu tertentu. Pertumbuhan ekonomi ditandai dengan adanya peningkatan pendapatan yang terjadi karena peningkatan pada barang dan jasa.

2.2 Peramalan

Peramalan merupakan bagian penting bagi perusahaan/organisasi bisnis dalam pengambilan keputusan, khususnya pengambilan keputusan manajemen yang sangat signifikan. Peramalan menjadi dasar bagi perencanaan jangka panjang perusahaan. Peramalan dapat diartikan sebagai penggunaan data historis dari sebuah variabel atau kumpulan variabel untuk mengestimasikan nilai dimasa yang

akan datang. Secara umum metode peramalan dapat dibedakan menjadi dua yakni metode kualitatif dan metode kuantitatif (Dalimunte, 2017).

Menurut Makridakis (1999), peramalan adalah perkiraan atau penggambaran dari nilai atau kondisi di masa depan. Asumsi yang umum dipakai dalam peramalan adalah pola masa lampau akan berlanjut ke yang akan datang. Peramalan merupakan prediksi nilai-nilai sebuah peubah kepada nilai yang diketahui dari peubah tersebut atau peubah yang berhubungan. Meramal juga dapat didasarkan pada keahlian penilaian, yang pada gilirannya didasarkan pada data historis dan pengalaman.

2.3 Data Deret Waktu

Data deret waktu adalah data yang dikumpulkan dan dicatat dari hasil observasi atau pengamatan dalam rentang waktu tertentu dengan berurutan (Situmorang, dkk., 2015). Periode waktu pengamatan untuk mendapatkan data deret waktu dapat berbentuk tahun, bulan, hari, jam, menit dan dalam jangkauan waktu lainnya tergantung pada objek pengamatan.

Data deret waktu merupakan himpunan hasil observasi terhadap suatu variabel yang diambil secara beruntun atau terurut berdasarkan interval waktu yang tetap. Tujuannya adalah untuk menggambarkan perkembangan suatu kegiatan dari waktu ke waktu. Rangkaian data pengamatan deret waktu dinyatakan dengan variabel X_t , dimana t adalah indeks waktu dari urutan pengamatan.

Analisis data deret waktu digunakan untuk memprediksi masa depan dari suatu variabel didasarkan pada data masa lalu dan sekarang. Langkah penting dalam memilih suatu metode peramalan data deret waktu yang tepat yaitu dengan mempertimbangkan jenis pola data, sehingga metode yang paling tepat dengan pola data tersebut dapat digunakan. Pola data dapat dibedakan menjadi empat jenis, yaitu pola horizontal, pola musiman, pola siklis, dan pola trend (Makridakis, dkk., 1999).

2.4 Stasioneritas Data

Data yang stasioner adalah hal yang fundamental dalam analisis deret waktu. Apabila data deret waktu yang kita miliki tidak stasioner, maka akan berakibat timbulnya *spurious regression*. *Spurious regression* terjadi ketika hasil regresi menunjukkan hubungan yang signifikan antar variabel (ditandai dengan nilai koefisien determinasi yang tinggi), padahal hal tersebut adalah hubungan *contemporaneous* dan tidak memiliki makna kausal.

Kondisi stasioner dinyatakan sebagai berikut:

1. Rata-rata konstan, tidak terpengaruh waktu,

$$E(Y_t) = \mu \tag{2.1}$$

2. Varians data konstan untuk seluruh data time series,

$$V(Y_t) = E(Y_t - \mu)^2 = \sigma^2 = \gamma_0$$
 (2.2)

3. Kovarians antar nilai dari waktu yang berbeda tergantung dari *lag time*, bukan pada posisi dimana kovarians tersebut dihitung.

$$Cov(Y_t, Y_{t+k}) = E[(Y_t - \mu)(Y_{t+k} - \mu)] = \gamma_k$$
 (2.3)

> Uji Levin Lin dan Chu

Uji Levin, Lin, dan Chu (LLC) merupakan uji unit root bagi masing-masing individu (*cross-section*) mempunyai keterbatasan dalam hipotesis alternatif. Hal ini disebabkan secara persisten terjadi deviasi yang cukup besar terhadap keseimbangannya, terutama terjadi pada ukuran sampel yang kecil. Oleh karena itu, disarankan uji unit root bagi data panel daripada hanya uji masing-masing *cross-section*nya. Uji LLC dinyatakan dalam persamaan sebagai berikut:

$$\Delta y_{it} = \rho y_{i,t-1} + \sum_{l=1}^{P_i} \theta_{iL} \Delta y_{it-l} + \alpha_{mi} d_{mt} + \varepsilon_{it}$$
 (2.4)

dengan,

m = 123

Jika ordo lag tidak diketahui, maka perlu dilakukan tiga tahap prosedur uji LLC, sebagai berikut:

- 1. Lakukan uji Augmented Dickey-Fuller (ADF) masing-masing secara terpisah.
- 2. Lakukan estimasi long-run standard deviation.
- 3. Hitung uji statistik untuk data panel dengan mengestimasi *pooled* regresi.

Kelemahan uji LLC, sebagai berikut:

- 1. Uji ini sangat tergantung pada asumsi interdepedensi antar individu dan juga tidak dapat diaplikasikan jika terjadi korelasi antar *cross-section*.
- 2. Adanya asumsi yang sangat restriktif dimana dinyatakan bahwa semua *cross-section* bisa mengandung atau tidak mengandung unit root.

2.5 Analisis Data Deret Waktu Multivariat

2.5.1 Model VAR

Vector Auto Regression (VAR) merupakan alat analisis atau suatu metode statistik yang dapat digunakan untuk meramalkan variabel-variabel dalam runtut waktu dari variabel gangguan yang terdapat dalam sistem variabel tersebut. Selain itu VAR Analysis juga merupakan alat analisis yang sangat bermanfaat, baik di dalam memahami adanya hubungan timbal balik (interrelationship) antara variabel-variabel ekonomi, maupun dalam pembentukan model ekonomi berstruktur (Soemartini, 2011).

Vector Autoregressive (VAR) sendiri pertama kali dikemukakan oleh Christopher A. Sims (1980), sebagai sebuah teknik yang dapat digunakan untuk mengkarakterisasi tingkah laku dinamis dari sekumpulan variabel tanpa membutuhkan batasan yang kuat dalam rangka untuk mengidentifikasi paramater struktural dibawahnya. Metode ini menjadi metode yang sering digunakan dalam model time series.

Di dalam model VAR, semua variabel saling bergantung satu dengan yang lain. Pemodelan time series dengan menggunakan *Vector Autoregressive* adalah salah satu metode pemodelan untuk data multivariat yang sering digunakan karena mudah dan fleksibel jika dibandingkan dengan metode lainya. Melalui analisis dalam VAR, dapat diperoleh sejumlah informasi yang sistematis dan mampu menaksir dengan baik informasi dalam persamaan yang dibentuk dari data time series tersebut.

Model *Vector Autoregressive* (VAR) biasanya digunakan untuk memproyeksikan sistem variabel-variabel runtut waktu dan untuk menganalisis dampak dinamis dari faktor gangguan yang terdapat dalam sistem variabel tersebut. Pada dasarnya analisis VAR bisa dipadankan dengan suatu model persamaan simultan. Hal ini dikarenakan dalam dalam analisis VAR, kita mempertimbangkan beberapa variabel endogen secara bersama-sama di dalam suatu model. Selain itu, dalam analisis VAR biasanya tidak ada variabel eksogen dalam model tersebut. (Nachrowi 2006 dalam Soemartini 2011). Model *Vector Autoregressive* (VAR) juga merupakan gabungan dari beberapa model *Autoregresssive* (AR), dimana model-model ini membentuk sebuah *Vector Autoregresssive* berorde 1. Artinya, variabel bebas dari model tersebut hanya satu lag dari variabel tak bebasnya.

Model VAR sangat berguna sebagai alat analisis yang bertujuan untuk peramalan. Melalui model VAR, dapat diidentifkasi pola atau tingkah laku dari variabelvariabel dalam perekonomian. Misalkan \mathbf{Y}_t adalah sebuah vektor deret waktu yang

mana variabel variabel yang digunakan ada didalamnya. Sebuah Vector Autoregression berordo p (VAR(p)) didefiniskan sebagai berikut:

Terdapat *m* variabel pada model VAR(*p*) dengan *T* observasi, yaitu:

$$Y_t = \Phi + \sum_{i=1}^p \beta_i Y_{t-i} + \varepsilon_t \tag{2.5}$$

Dimana:

$$Y_t = (Y_{1t}, ..., Y_{mt})'$$
 berukuran (m x 1), $t = p + 1, ..., T$

 Φ = Vektor Intersep (m x 1)

 β_i = matriks koefisien (m x m)

 ε_t = Vektor Eror (m x 1)

Kemudian model (2.5) dapat dibentuk menjadi:

$$Y = Z\beta + \varepsilon$$

(2.6)

Dimana:

$$Y = (Y_{1t}, ..., Y_{mt})$$
 berukuran $(T - p) \times m$

$$Z = (z_1, ..., z_T)'$$
 matriks berukuran $(T - p) x (mp+1)$

$$Z = \begin{pmatrix} 1 \ Y_{t-1}' \ ... \ Y_{t-p}' \end{pmatrix} \ berukuran \ (T-p) \ x \ (mp+1)$$

$$\alpha = \text{vec}(\beta)$$

$$y = vec(Y)$$

 β : Matriks Koefisien ((mp + 1) x m)

$$\beta = (\Phi \ \beta_1 \ \dots \ \beta_p)'$$

 ε = matriks eror berukuran ((T - p) x m)

$$\epsilon = \text{vec}(\epsilon)$$

Persamaan (2.6) bisa dibentuk lagi menjadi:

$$y = (I_m \otimes Z)\alpha + \epsilon \tag{2.7}$$

Dimana:

$$\varepsilon: \textit{error} \; \text{berorde} \left(((T-p) \; x \; m) x \mathbf{1} \right) \\ \text{mengikuti} \; \text{N} \left(\mathbf{0}, \Sigma \otimes \; \mathbf{I}_{T-p} \right) = \text{N}(\mathbf{0}, \Sigma_{\epsilon})$$

2.5.2 Penentuan Lag Optimum

Penentuan *lag* optimum diperlukan karena alat analisis deret waktu sangat sensitif terhadap *lag time* yang digunakan pada model. Karena pada penelitian ini sampel yang digunakan berjumlah kurang dari 120 titik data, maka penulis merekomendasikan *criteria selection* lag pada *Schwarz Criterion* (Khiem dan Liew, 2004).

$$SC = -2(l/T) + \frac{k \log(T)}{T}$$
(2.8)

Dimana:

$$l = -\frac{TM}{2}(1 + \log 2\pi) - \frac{T}{2}\log|\widehat{\Omega}|$$
 (2.9)

$$|\widehat{\Omega}| = (\sum_{t}^{T} SSR/T) \tag{2.10}$$

M adalah banyaknya persamaan pada *Vector Autoregressive* (VAR), SSR adalah *Sum Square Of Residual* dari VAR pada persamaan (2.5) dan k adalah banyak parameter, T adalah banyaknya observasi.

2.5.3 Estimasi Parameter VAR dengan Maximum Likelihood (ML)

• Estimasi Koefisien VAR (p)

Asumsi bahwa ϵ pada model VAR(p) mengikuti distribusi normal multivariat, maka kondisi densitasnya mengikuti normal multivariat:

$$Y \sim N(Z\beta, \Sigma \otimes I_T) = y \sim N((I_m \otimes Z)\alpha, \Sigma \otimes I_T)$$
 (2.11)

Sehingga fungsi likelihood:

$$L(\beta, \Sigma | Y, Z) = (2\pi)^{-Tm/2} |\Sigma \otimes I_T|^{-1/2} \exp\left\{-\frac{1}{2}(Y - Z\beta)'(\Sigma^{-1} \otimes I_T)(Y - Z\beta)\right\}$$

$$L(\alpha, \Sigma | y, Z) = (2\pi)^{-Tm/2} | \Sigma \otimes I_T |^{-1/2} \exp \left\{ -\frac{1}{2} (y - \frac{1}{2})^{-1/2} \right\}$$

$$(I_m \otimes Z)\alpha)'(\Sigma^{-1} \otimes I_T)(y - (I_m \otimes Z)\alpha)$$

$$\ln L(\alpha, \Sigma | y, Z) = -\frac{Tm}{2} 2\pi - \frac{1}{2} \ln|\Sigma \otimes I_T| - \left\{ \frac{1}{2} (y - (I_m \otimes Z)\alpha)'(\Sigma^{-1} \otimes I_T)(y - (I_m \otimes Z)\alpha) \right\}$$
(2.12)

Prosesnya sama dengan GLS yang telah dibahas sebelumnya:

$$\frac{\partial \ln L(\alpha, \Sigma | y, Z)}{\partial \alpha} = -\frac{1}{2} (2(\Sigma^{-1} \otimes Z'Z)\alpha - 2(\Sigma^{-1} \otimes Z')y)$$
 (2.13)

Kondisi pertama:

$$\frac{\partial \ln L(\alpha, \Sigma | y, Z)}{\partial \alpha} = 0 \tag{2.14}$$

Sehingga diperoleh persamaan normal

$$2(\Sigma^{-1} \otimes Z'Z)\hat{\alpha}_{ml} = 2(\Sigma^{-1} \otimes Z')y \tag{2.15}$$

Sehingga:

$$\hat{\alpha}_{ml} = (\Sigma^{-1} \otimes Z'Z)^{-1} (\Sigma^{-1} \otimes Z') y$$

$$\hat{\alpha}_{ml} = (\Sigma \otimes (Z'Z)^{-1}) (\Sigma^{-1} \otimes Z') y$$

$$\hat{\alpha}_{ml} = (I_m \otimes (Z'Z)^{-1} Z') y \tag{2.16}$$

Estimasi Kovarians VAR (p)

Kembali lagi bahwa likelihood dari:

$$L(\Sigma, \hat{\alpha}_{ml}) = (2\pi)^{-Tm/2} |\Sigma \otimes I_T|^{-1/2} \exp\left\{-\frac{1}{2}\hat{\epsilon}'(\Sigma^{-1} \otimes I_T)\hat{\epsilon}\right\}$$

$$\ln L(\Sigma, \hat{\alpha}_{ml}) = -\frac{Tm}{2} 2\pi + \frac{1}{2} \ln|\Sigma \otimes I_T|^{-1} - \frac{1}{2}\hat{\epsilon}'(\Sigma^{-1} \otimes I_T)\hat{\epsilon}$$

$$\ln L(\Sigma, \hat{\alpha}_{ml}) = -\frac{Tm}{2} 2\pi + \frac{1}{2} \ln|\Sigma^{-1} \otimes I_T| - \frac{1}{2}\hat{\epsilon}'(\Sigma^{-1} \otimes I_T)\hat{\epsilon}$$

$$L(\Sigma_{\epsilon}, \hat{\alpha}_{ml}) = (2\pi)^{-Tm/2} |\Sigma_{\epsilon}|^{-1/2} \exp\left\{-\frac{1}{2}\hat{\epsilon}'(\Sigma_{\epsilon})\hat{\epsilon}\right\}$$

$$\ln L(\Sigma_{\epsilon}, \hat{\alpha}_{ml}) = -\frac{Tm}{2} 2\pi + \frac{1}{2} \ln|\Sigma_{\epsilon}|^{-1} - \frac{1}{2}\hat{\epsilon}'(\Sigma_{\epsilon})\hat{\epsilon} \qquad (2.17)$$

Kondisi order pertama:

$$\frac{\partial \ln L(\Sigma, \hat{\alpha}_{ml})}{\partial \Sigma_{\epsilon}^{-1}} = \frac{1}{2} \Sigma_{\epsilon}' - \frac{1}{2} \hat{\epsilon} \hat{\epsilon}'$$

$$\frac{\partial \ln L(\Sigma, \hat{\alpha}_{ml})}{\partial \Sigma_{\epsilon}^{-1}} = 0$$

$$\frac{1}{2} \Sigma_{\epsilon}' - \frac{1}{2} \hat{\epsilon} \hat{\epsilon}' = 0$$
(2.18)

Karena Σ'_{ϵ} adalah matriks positif *definite*

$$\hat{\Sigma}_{\epsilon(ml)} = \hat{\epsilon}\hat{\epsilon}' \tag{2.19}$$

Karena adanya sifat invariant

$$\hat{\Sigma}_{ml} \otimes I_T = \hat{\epsilon} \hat{\epsilon}'$$

$$\hat{\Sigma}_{ml} = \frac{\hat{\epsilon} \hat{\epsilon}'}{T}$$
(2.20)

Dimana:

$$\hat{\epsilon} = y - (I_m \otimes Z)\hat{\alpha}_{ml} \tag{2.21}$$

2.5.4 Bayesian VAR

Pada prinsipnya pendekatan Bayesian secara umum adalah perkalian antara likelihood dengan prior merupakan posterior

$$post (\theta | \mathbb{Y}, M_i) \propto L(\theta | \mathbb{Y}, M_i) p(\theta | M_i)$$
 (2.22)

Dimana:

post $(\theta | \mathbb{Y}, M_i)$ adalah distribusi posterior dari parameter θ given \mathbb{Y} (sekumpulan data observasi) dan model M_i $(M_i \in M \subset \mathbb{M}, M$: Kelas umum model, \mathbb{M} : himpunan dari semua model yang mungkin).

 $L(\theta|\mathbb{Y}, M_i)$ adalah fungsi *likelihood* dari parameter θ diberikan \mathbb{Y} (sekumpulan data observasi) dan model M_i .

 $p(\theta|M_i)$ adalah prior dari θ diberikan M_i .

Perbedaan antara pendekatan frekuentis dan Bayesian terletak pada prior dan posteriornya. Pada estimasi Bayesian penaksir merupakan mean dari distribusi posterior parameternya, yang artinya parameter dianggap sebagai variabel acak didukung oleh priornya. Sedangkan frekuentis menaksir parameter berdasarkan *likelihood*-nya (*sample information*).

Jadi dalam Bayesian, parameter model VAR kita anggap suatu variabel acak, kemudian penaksir parameter model VAR merupakan mean dari distribusi posteriornya dimana prior yang digunakan adalah prior normal invers wishart, Minnesota, steady state dan diffuse.

Kembali lagi pada model VAR (p), yaitu:

$$Y_t = \Phi + \sum_{i=1}^p \beta_i Y_{t-i} + \varepsilon_t \tag{2.23}$$

Kemudian dibentuk menjadi:

$$Y = Z\beta + \varepsilon \tag{2.24}$$

Dan terakhir menjadi:

$$y = (I_m \otimes Z)\alpha + \epsilon \tag{2.25}$$

Maka fungsi *likelihood* dari ϵ :

$$L(\alpha, \Sigma | y, Z) = (2\pi)^{-Tm/2} |\Sigma \otimes I_T|^{-1/2} \exp\left\{-\frac{1}{2}(y - (I_m \otimes Z)\alpha)'(\Sigma^{-1} \otimes I_T)(y - (I_m \otimes Z)\alpha)\right\}$$

$$(2.26)$$

Maka log likelihood:

$$\ln L(\alpha, \Sigma | y, Z) = -\frac{Tm}{2} 2\pi - \frac{1}{2} \ln|\Sigma \otimes I_T| - \left\{ \frac{1}{2} (y - (I_m \otimes Z)\alpha)' (\Sigma^{-1} \otimes I_T) (y - (I_m \otimes Z)\alpha) \right\} \propto -\frac{1}{2} \ln|\Sigma \otimes I_T| - \left\{ -\frac{1}{2} (y - (I_m \otimes Z)\alpha)' (\Sigma^{-1} \otimes I_T) (y - (I_m \otimes Z)\alpha) \right\}$$

$$(2.27)$$

Catatan bahwa jika Σ matriks simetris positif definit, maka: $\Sigma = \Omega \Omega^{\prime}$ sehingga:

$$(y - (I_m \otimes Z)\alpha)'(\Sigma^{-1} \otimes I_T)(y - (I_m \otimes Z)\alpha)$$

$$= (y - (I_m \otimes Z)\alpha)'(\Omega^{-1} \otimes I_T)'(\Omega^{-1} \otimes I_T)(y - (I_m \otimes Z)\alpha)$$

$$= ((\Omega^{-1} \otimes I_T)y - (\Omega^{-1} \otimes Z)\alpha)'((\Omega^{-1} \otimes I_T)y - (\Omega^{-1} \otimes Z)\alpha)$$
(2.28)

Misal:

$$\alpha^* = (\Sigma^{-1} \otimes Z'Z)^{-1})(\Sigma^{-1} \otimes Z)'y \tag{2.30}$$

Pada persamaan (15) ditambah dan kurangi dengan $(\Omega^{-1} \otimes Z)\alpha^*$; maka

$$((\Omega^{-1} \otimes I_T)y + (\Omega^{-1} \otimes Z)(\alpha^* - \alpha - \alpha^*))'((\Omega^{-1} \otimes I_T)y) + (\Omega^{-1} \otimes Z)(\alpha^* - \alpha - \alpha^*)) = ((\Omega^{-1} \otimes I_T)y - ((\Omega^{-1} \otimes Z)\alpha^*)'((\Omega^{-1} \otimes I_T)y - ((\Omega^{-1} \otimes Z)\alpha^*) + \alpha^* - \alpha)'(\Sigma^{-1} \otimes Z'Z)(\alpha^* - \alpha)$$

$$(2.31)$$

Maka kita dapat tuliskan log-likelihood menjadi:

$$\ln L(\alpha, \Sigma | y, Z) \propto -\frac{T}{2} \ln |\Sigma| - \left\{ \frac{1}{2} (\alpha - \alpha^*)' (\Sigma^{-1} \otimes Z' Z) (\alpha - \alpha^*) \right\} - \left\{ \frac{1}{2} tr \left[\left((\Omega^{-1} \otimes I_T) y - ((\Omega^{-1} \otimes Z) \alpha^*)' ((\Omega^{-1} \otimes I_T) y - ((\Omega^{-1} \otimes Z) \alpha^*)) \right] \right\} (2.32)$$

Diperoleh bahwa:

$$\ln|\Sigma \otimes I_T| = \ln(|\Sigma|^T |I_T|^m) = T \ln|\Sigma| + m \ln|I_T| = T \ln|\Sigma| \quad (2.33)$$

Kita definisikan:

$$\mathbb{Z} = I_m \otimes Z$$

$$(I_m \otimes Z)'(\Sigma^{-1} \otimes I_T)(I_m \otimes Z) = (I_m \otimes Z)'(\Sigma^{-1} I_m \otimes I_T Z) =$$

$$(I_m \Sigma^{-1} I_m \otimes Z' I_T Z) = (\Sigma^{-1} \otimes Z' Z) \tag{2.34}$$

Sehingga:

$$(\Sigma^{-1} \otimes Z'Z) = \mathbb{Z}'(\Sigma^{-1} \otimes I_T)\mathbb{Z}$$

$$\alpha^* = (\Sigma^{-1} \otimes Z'Z)^{-1})(\Sigma^{-1} \otimes Z)'y = (\mathbb{Z}'(\Sigma^{-1} \otimes I_T)\mathbb{Z})^{-1}\mathbb{Z}'(\Sigma^{-1} \otimes I_T)y$$
(2.35)

Kembali lagi ke log-likelihood

$$\ln L(\alpha, \Sigma | y, Z) \propto -\frac{T}{2} \ln |\Sigma| - \left\{ \frac{1}{2} (\alpha - \alpha^*)' (\Sigma^{-1} \otimes Z'Z) (\alpha - \alpha^*) \right\}$$

$$- \left\{ \frac{1}{2} tr \left[\left((\Omega^{-1} \otimes I_T) y - ((\Omega^{-1} \otimes I_T) \mathbb{Z} \alpha^*)' (\Omega^{-1} \otimes I_T) y - ((\Omega^{-1} \otimes I_T) \mathbb{Z} \alpha^*)' (\Omega^{-1} \otimes I_T) y - ((\Omega^{-1} \otimes I_T) \mathbb{Z} \alpha^*) \right] \right\}$$

$$- \left\{ \frac{1}{2} tr \left[\left((\Omega^{-1} \otimes I_T) (y - \alpha^*)' (\mathbb{Z}'(\Sigma^{-1} \otimes I_T) \mathbb{Z}) (\alpha - \alpha^*) \right) - \left\{ \frac{1}{2} tr \left[\left((\Omega^{-1} \otimes I_T) (y - \alpha^*)' (\Omega^{-1} \otimes I_T) (y - \alpha^*) \right) \right] \right\}$$

$$- \left\{ \frac{1}{2} tr \left[\left((\Omega^{-1} \otimes I_T) (y - \alpha^*)' (\Omega^{-1} \otimes I_T) (y - \alpha^*) \right) \right\}$$

$$- \left\{ \frac{1}{2} tr \left[(y - \alpha^*)' (\Omega^{-1} \otimes I_T)' (\Omega^{-1} \otimes I_T) (y - \alpha^*) \right] \right\}$$

$$\ln L(\alpha, \Sigma | y, Z) \propto -\frac{T}{2} \ln |\Sigma| - \left\{ \frac{1}{2} (\alpha - \alpha^*)' \mathbb{Z}' (\Sigma^{-1} \otimes I_T) \mathbb{Z} (\alpha - \alpha^*) \right\}$$

$$- \left\{ \frac{1}{2} tr \left[(y - \mathbb{Z} \alpha^*)' (\Sigma^{-1} \otimes I_T) (y - \mathbb{Z} \alpha^*) \right] \right\}$$

$$\ln L(\alpha, \Sigma | y, Z) \propto -\frac{T}{2} \ln |\Sigma| - \left\{ \frac{1}{2} (\alpha - \alpha^*)' \mathbb{Z}' (\Sigma^{-1} \otimes I_T) \mathbb{Z} (\alpha - \alpha^*) \right\}$$

$$- \left\{ \frac{1}{2} tr \left[(y - \mathbb{Z} \alpha^*) (y - \mathbb{Z} \alpha^*)' (\Sigma^{-1} \otimes I_T) \right] \right\}$$

$$\ln L(\alpha, \Sigma | y, Z) \propto \ln(N(\alpha | \alpha^*, \Sigma, \mathbb{Z}, y) IW(\Sigma | \alpha^*, \mathbb{Z}, y)) \qquad (2.37)$$

Jadi *joint likelihood* dari model VAR adalah proporsional terhadap produk dari distribusi normal kondisi untuk α dan distribusi *invers wishart conditional* untuk Σ .

2.5.5 Prior Normal Invers Wishart

Pertama kita anggap bahwa model Bayesian VAR adalah model normal inverse Wishart, dimana joint posterior dari α dan Σ adalah:

$$p(\alpha, \Sigma | \mathbb{Z}, y) \propto p(y | \mathbb{Z}, \alpha, \Sigma) \ p(\alpha, \Sigma)$$
 (2.39)

Kita telah mempunyai bahwa:

$$p(y|\mathbb{Z},\alpha,\Sigma) \propto \ln(N(\alpha|\alpha^*,\Sigma,\mathbb{Z},y)IW(\Sigma|\alpha^*,\mathbb{Z},y)) \tag{2.40}$$

Kita akan menghindari distribusi sampling langung dari $p(\alpha, \Sigma | \mathbb{Z}, y)$ yang dimana memiliki bentuk yang tidak dikenal sehingga kita akan pilih distribusi prior dari densitas $p(\alpha | \Sigma, \mathbb{Z}, y)$ dan $p(\Sigma | \alpha, \mathbb{Z}, y)$. Kita asumsikan bahwa $p(\alpha | \Sigma, \mathbb{Z}, y)$ dan

 $p(\Sigma|\alpha, \mathbb{Z}, y)$ memiliki bentuk distribusi seperti $p(y|\mathbb{Z}, \alpha, \Sigma)$, yakni $p(\alpha|\Sigma, \mathbb{Z}, y)$ berdistribusi normal dan $p(\Sigma|\alpha, \mathbb{Z}, y)$ berdistribusi invers wishart dan parameter pada prior $p(\alpha, \Sigma)$ saling independen $(p(\alpha, \Sigma) = p(\alpha), p(\Sigma))$.

$$p(\alpha) = N(\bar{\alpha}, \Xi_{\alpha})$$

$$= (2\pi)^{-\frac{mp+1}{2}} |\Xi_{\alpha}|^{-\frac{1}{2}} \exp(-(\alpha - \bar{\alpha})' \Xi_{\alpha}^{-1} (\alpha - \bar{\alpha})/2)$$

$$p(\Sigma) = IW(\Xi_{\Sigma}, \gamma)$$
(2.41)

$$=2^{-\frac{\gamma m}{2}}\pi^{-\frac{m(m-1)}{4}}|\Xi_{\Sigma}|^{\frac{\gamma}{2}}(\prod_{i=1}^{m}\Gamma\left(\frac{\gamma+1-i}{2}\right))^{-1}|\Sigma|^{-\frac{\gamma-m-1}{2}}\exp(-\frac{1}{2}tr(\Xi_{\Sigma}\Sigma^{-1}))$$
(2.42)

Bentuk posterior dari dari α dan Σ adalah *proportional* terhadap perkalian dari persamaan (2.42).

$$p(\alpha|\Sigma, \mathbb{Z}, y) \propto \exp\left(-\frac{1}{2}((\alpha - \alpha^*)'\mathbb{Z}'(\Sigma^{-1} \otimes I_T)\mathbb{Z}(\alpha - \alpha^*) + (\alpha - \bar{\alpha})'\Xi_{\alpha}^{-1}(\alpha - \bar{\alpha})\right)\right) (\alpha - \alpha^*)'\mathbb{Z}'(\Sigma^{-1} \otimes I_T)\mathbb{Z}(\alpha - \alpha^*) + (\bar{\alpha} - \alpha)'\Xi_{\alpha}^{-1}(\alpha - \bar{\alpha}) =$$

$$\alpha'\mathbb{Z}'(\Sigma^{-1} \otimes I_T)\mathbb{Z}\alpha - \alpha'\mathbb{Z}'(\Sigma^{-1} \otimes I_T)\mathbb{Z}\alpha^* - \alpha^*'\mathbb{Z}'(\Sigma^{-1} \otimes I_T)\mathbb{Z}\alpha +$$

$$\alpha^*'\mathbb{Z}'(\Sigma^{-1} \otimes I_T)\mathbb{Z}\alpha^* + \alpha'\Xi_{\alpha}^{-1}\alpha - \alpha'\Xi_{\alpha}^{-1}\bar{\alpha} - \bar{\alpha}'\Xi_{\alpha}^{-1}\alpha + \bar{\alpha}'\Xi_{\alpha}^{-1}\bar{\alpha} =$$

$$\alpha'\mathbb{Z}'(\Sigma^{-1} \otimes I_T)\mathbb{Z}\alpha + \alpha'\Xi_{\alpha}^{-1}\alpha - \alpha'\Xi_{\alpha}^{-1}\bar{\alpha} - \bar{\alpha}'\Xi_{\alpha}^{-1}\alpha + \bar{\alpha}'\Xi_{\alpha}^{-1}\bar{\alpha} -$$

$$\alpha'\mathbb{Z}'(\Sigma^{-1} \otimes I_T)\mathbb{Z}\alpha^* - \alpha^*'\mathbb{Z}'(\Sigma^{-1} \otimes I_T)\mathbb{Z}\alpha + \alpha^*'\mathbb{Z}'(\Sigma^{-1} \otimes I_T)\mathbb{Z}\alpha^*$$

$$(2.43)$$

Ingat bahwa:

$$\alpha^* = (\mathbb{Z}'(\Sigma^{-1} \otimes I_T)\mathbb{Z})^{-1}\mathbb{Z}'(\Sigma^{-1} \otimes I_T)y$$

$$(\alpha - \alpha^*)' \mathbb{Z}'(\Sigma^{-1} \otimes I_T) \mathbb{Z}(\alpha - \alpha^*) + (\bar{\alpha} - \alpha)' \Xi_{\alpha}^{-1}(\alpha - \bar{\alpha})$$

$$= \alpha' \mathbb{Z}'(\Sigma^{-1} \otimes I_T) \mathbb{Z}\alpha + \alpha' \Xi_{\alpha}^{-1}\alpha - \alpha' \Xi_{\alpha}^{-1}\bar{\alpha} - \bar{\alpha}' \Xi_{\alpha}^{-1}\alpha + \bar{\alpha}' \Xi_{\alpha}^{-1}\bar{\alpha}$$

$$- \alpha' \mathbb{Z}'(\Sigma^{-1} \otimes I_T) \mathbb{Z}(\mathbb{Z}'(\Sigma^{-1} \otimes I_T) \mathbb{Z})^{-1} \mathbb{Z}'(\Sigma^{-1} \otimes I_T) y$$

$$- ((\mathbb{Z}'(\Sigma^{-1} \otimes I_T) \mathbb{Z})^{-1} \mathbb{Z}'(\Sigma^{-1} \otimes I_T) y)' \mathbb{Z}'(\Sigma^{-1} \otimes I_T) \mathbb{Z}\alpha$$

$$+ ((\mathbb{Z}'(\Sigma^{-1} \otimes I_T) \mathbb{Z})^{-1} \mathbb{Z}'(\Sigma^{-1} \otimes I_T) y)'$$

$$+ \mathbb{Z}'(\Sigma^{-1} \otimes I_T) \mathbb{Z}(\mathbb{Z}'(\Sigma^{-1} \otimes I_T) \mathbb{Z})^{-1} \mathbb{Z}'(\Sigma^{-1} \otimes I_T) y$$

$$= \alpha' \mathbb{Z}'(\Sigma^{-1} \otimes I_T) \mathbb{Z}\alpha + \alpha' \Xi_{\alpha}^{-1}\alpha - \alpha' \Xi_{\alpha}^{-1}\bar{\alpha} - \bar{\alpha}' \Xi_{\alpha}^{-1}\alpha + \bar{\alpha}' \Xi_{\alpha}^{-1}\bar{\alpha} -$$

$$\alpha' \mathbb{Z}'(\Sigma^{-1} \otimes I_T) y - (\mathbb{Z}'(\Sigma^{-1} \otimes I_T) y)'\alpha + y'(\Sigma^{-1} \otimes I_T) y$$

$$= \alpha' (\mathbb{Z}'(\Sigma^{-1} \otimes I_T) \mathbb{Z} + \Xi_{\alpha}^{-1})\alpha - \alpha' (\Xi_{\alpha}^{-1}\bar{\alpha} + \mathbb{Z}'(\Sigma^{-1} \otimes I_T) y) - (\Xi_{\alpha}^{-1}\bar{\alpha} +$$

$$\mathbb{Z}'(\Sigma^{-1} \otimes I_T)' \alpha + y'(\Sigma^{-1} \otimes I_T) y + \bar{\alpha}' \Xi_{\alpha}^{-1}\bar{\alpha}$$

$$(2.44)$$

Jadi,

$$p(\alpha|\Sigma, \mathbb{Z}, y) \propto \exp\left(-\frac{1}{2}((\alpha - \tilde{\alpha})'\tilde{\Sigma}_{\alpha}^{-1}(\alpha - \tilde{\alpha}) + C)\right)$$
 (2.45)

Dimana:

$$\begin{split} &\tilde{\Sigma}_{\alpha}^{-1} = \Xi_{\alpha}^{-1} + \mathbb{Z}'(\Sigma^{-1} \otimes I_{T})\mathbb{Z} \\ &\tilde{\alpha} = \tilde{\Sigma}_{\alpha}^{-1}(\Xi_{\alpha}^{-1}\bar{\alpha} + \mathbb{Z}'(\Sigma^{-1} \otimes I_{T})y) \\ &C = y'(\Sigma^{-1} \otimes I_{T})y + \bar{\alpha}'\Xi_{\alpha}^{-1}\bar{\alpha} - \tilde{\alpha}'\tilde{\Sigma}_{\alpha}^{-1}\tilde{\alpha} \end{split}$$

Sedangkan untuk distribusi posterior kondisional dari $\boldsymbol{\Sigma}$, berikut penurunannya:

Ingat bahwa:

$$\begin{split} \alpha &= vec(\beta) \\ tr(I_T(Y-Z\beta)\Sigma^{-1}(Y-Z\beta)') &= vec(((Y-Z\beta)')')'((\Sigma^{-1})'\otimes I_T)vec(Y-Z\beta) \\ &= vec(Y-Z\beta)'(\Sigma^{-1}\otimes I_T)vec(Y-Z\beta) \end{split}$$

$$p(\Sigma|\beta, Z, Y) \propto |\Sigma|^{-\frac{T}{2}} |\Sigma|^{-\frac{\gamma-m-1}{2}} \exp(-\frac{1}{2}tr(\Xi_{\Sigma}\Sigma^{-1})) \exp(-\frac{1}{2}tr(\Sigma^{-1}(Y - Z\beta)'(Y - Z\beta))) \propto |\Sigma|^{-\frac{(T+\gamma-m-1)}{2}} \exp(-\frac{1}{2}tr(\Xi_{\Sigma} + (Y - Z\beta)'(Y - Z\beta)))$$

$$(2.46)$$

Jadi diperoleh bahwa:

$$p(\alpha|\Sigma, \mathbb{Z}, y) = N(\tilde{\alpha}, \tilde{\Sigma}_{\alpha})$$
 (2.47)

$$p(\Sigma|\beta, Z, y) = IW(\Xi_{\Sigma} + (Y - Z\beta)'(Y - Z\beta), T + \gamma)$$
 (2.48)

Pada prior normal invers wishart dipilih karena tidak menggunakan nilai inisial untuk mengestimasi Σ .

2.5.6 Gibbs Sampling

Gibbs sampling merupakan kasus khusus dari Metropolis Hastings, bisa diterapkan apabila distribusi *probabilitas* bersama tidak diketahui secara eksplisit tetapi distribusi bersyarat dari setiap variabel diketahui. Berikut langkahlangkahnya:

- 1. Misalkan $\theta = (\theta_1, \theta_2, ..., \theta_w)$ dan informasi tentang θ terukur dengan $p(\theta) = p(\theta_1, \theta_2, ..., \theta_w)$
- 2. Tentukan nilai awal $\theta^{(0)}=(\theta_1^{(0)},\theta_2^{(0)},\dots,\theta_w^{(0)})$
- 3. Gibbs sampler mengenerate $\theta^{(h)}$ dari $\theta^{(h-1)}$ sebagai berikut:

i. Sampel
$$\theta_1^{(h)} \sim p(\theta_1 | \theta_2^{(h-1)}, \theta_3^{(h-1)}, ..., \theta_l^{(h-1)})$$

ii. Sampel
$$\theta_2^{(h)} \sim p(\theta_2 | \theta_1^{(h)}, \theta_3^{(h-1)}, \dots, \theta_w^{(h-1)})$$

:

n. Sampel
$$\theta_w^{(h)} \sim p(\theta_w | \theta_1^{(h)}, \theta_3^{(h)}, \dots, \theta_{w-1}^{(h)})$$

2.6 MAPE (Mean Absolute Percentage Error)

Akurasi peramalan pada data testing (*out sample*) dalam penelitian ini menggunakan MAPE (*Mean Absolute Percentage Error*) yang dirumuskan sebagai berikut:

$$MAPE = \frac{1}{v-T} \sum_{t=T+1}^{v} \left| \frac{F_t - A_t}{A_t} \times 100\% \right|$$
 (2.49)

Dengan:

 F_t = nilai hasil peramalan ke-t

 A_t = nilai aktual ke-t.

Kriteria MAPE [4]: (1) jika nilai MAPE < 10%, maka kemampuan peramalan metode Bayesian VAR-X sangat baik, (2) jika nilai MAPE berada pada 10% - 20%, maka kemampuan peramalan metode Bayesian VAR-X baik, (3) jika nilai MAPE berada pada 20% - 50%, maka kemampuan peramalan metode Bayesian VAR-X cukup baik, dan (4) jika nilai MAPE > 50%, maka kemampuan peramalan metode Bayesian VAR-X buruk.

BAB III METODOLOGI PENELITIAN

3.1 Sumber Data Penelitian

Data yang digunakan dalam penelitian ini merupakan data sekunder yang bersumber dari Badan Pusat Statistik (BPS). Data yang digunakan adalah periode 2008Q1-2020Q2, meliputi:

- 1. PDRB atas dasar harga konstan 2010 (PDRB riil) dalam juta Rp.
- Konsumsi Rumah Tangga atas dasar harga konstan 2010 (Kons_riil) dalam juta
 Rp, diambil dari komponen PDRB menurut pengeluaran.
- 3. Indeks Produksi Industri Besar Sedang (ibs).
- 4. Ekspor barang atas dasar harga konstan 2010 (Exporbrg) dalam juta Rp diambil dari komponen PDRB menurut pengeluaran.
- 5. Impor barang atas dasar harga konstan 2010 (imporbrg) dalam juta Rp diambil dari komponen PDRB menurut pengeluaran.
- 6. Jumlah tenaga kerja (naker) dari sakernas tersedia dalam semi-annual (Feb-Agustus) kemudian dilakukan convertion to high frequency dengan menggunakan metode Denton sehingga data naker semi-annual menjadi kuartal/triwulan.
- 7. Indeks query dari Google Trends (dengan kata kunci "Pertumbuhan ekonomi", "ekonomi", "kondisi ekonomi", "industri pengolahan", "PDRB"; dimana nilai google trend tersebut merupakan penjumlahan dari indeks query berdasarkan kata kunci tersebut. Kemudian, data dari bulanan diubah menjadi triwulanan).

Variabel endogen dalam VAR meliputi PDRB_riil, Kons_riil, exporbrg, imporbrg, naker, dan ibs. Sedangkan, variabel eksogen adalah indek query dari google trends.

3.2 Metode Penelitian

Berdasarkan tujuan penelitian, maka langkah-langkah dalam penelitian ini dengan software yang digunakan dalam penelitian ini adalah eviews 12 versi student version, sebagai berikut:

- 1. Mentransformasi logaritma natural semua data yang digunakan.
- 2. Membagi set data ke dalam data *training* dan data *testing*. Data *training* sebanyak 80 persen dari total observasi digunakan untuk modelling. Data *testing* sebanyak 20 persen dari total observasi untuk melihat RMSE dari model.
- 3. Melakukan identifikasi model pada data training:
 - a. Mengecek plot data dan korelasi antar variabel.
 - b. Menguji stasioneritas data.
 - c. Mengecek ordo (*lag*) optimum pada VAR
 - d. Memodelkan VAR berdasarkan ordo optimum dengan metode *least* squared atau maksimum *likelihood*.
 - e. Memodelkan VAR berdasarkan ordo optimum dengan metode Bayesian berdasarkan prior normal invers wishart, Minnesota, steady state, dan diffuse.
 - f. Diagnostik model VAR yang dihasilkan pada langkah (d) dan (e).
 - g. Melakukan validasi dari model VAR dan Bayesian VAR pada data testing.
 - h. Melakukan peramalan sampai 4 triwulan dari waktu periode data *testing*.

BAB IV HASIL DAN PEMBAHASAN

4.1 Data Penelitian

Data yang digunakan dalam penelitian ini merupakan data sekunder yang bersumber dari Badan Pusat Statistik (BPS) periode triwulan I 2008 sampai dengan triwulan II 2020, sebagai berikut:

1. PDRB atas dasar harga konstan.

Tabel 1. Data PDRB Atas Dasar Harga Konstan Provinsi Banten Triwulan I 2008 Sampai Dengan Triwulan II 2020

Tahun	PDRB Atas Dasar Harga Konstan (Juta Rp)			
1 anun	Triwulan I	Triwulan II	Triwulan III	Triwulan IV
2008	57839766.71	59718810.84	61464965.49	62006409.35
2009	62239290.54	62590345.89	64681934.51	65238958.36
2010	65686470.32	66784955.63	68796861.56	70196995.72
2011	71058168.46	71751439.35	73768441.36	73967789.75
2012	75151018.94	77008187.85	79144630.78	79081754.89
2013	80832322.59	82342846.52	84623775.65	83300160.74
2014	84508560.07	86903751.86	88295122.7	89643793.02
2015	89195967.17	91557990.85	93615552.4	94007692.61
2016	93791486.83	96301264.93	98515327.19	99227010.5
2017	99374695.8	101641916.4	104090246.2	105030140
2018	105139245.5	107231753.4	110171398.5	111240316.8
2019	110677167.9	112841809.7	115734481.7	117487368.6
2020	114201430	104633650		

2. Konsumsi Rumah Tangga atas dasar harga konstan.

Tabel 2. Data Konsumsi Rumah Tangga Atas Dasar Harga Konstan Provinsi Triwulan I 2008 Sampai Dengan Triwulan II 2020

Tahun	Konsumsi Rumah Tangga Atas Dasar Harga Konstan (Juta Rp)			
	Triwulan I	Triwulan II	Triwulan III	Triwulan IV
2008	37772284.14	38119273.25	38910929.81	39053571.3
2009	39336703.27	39980804.44	41080308.66	41519847.98
2010	41026172.14	41494284.9	42615756.87	42540595.94
2011	42585235.13	42947646.93	44100775.84	44370297.65
2012	44771901.76	45452904.46	46477591.07	46682962.98
2013	46925173.9	47549286.21	48549612.86	48990690.46
2014	48985748.24	49851530.05	51268223.15	51611142.9
2015	51668366.15	52529003.11	54004787	54448410.93
2016	54558213.06	55555530.28	56780167.76	57218060.22
2017	57449987.83	58639447.74	59569853.15	59831867.59
2018	60322336.98	61650093.81	62781383.57	63138549.34
2019	63465118.9	64875070.29	65740294.74	66070293.41
2020	66108502.39	61422639.07		

3. Indeks Produksi Industri Besar Sedang.

Tabel 3. Data Indeks Produksi Industri Besar Sedang Provinsi Banten Triwulan I 2008 Sampai Dengan Triwulan II 2020

Tahun	Indeks Produksi Industri Besar Sedang			
1 anun	Triwulan I	Triwulan II	Triwulan III	Triwulan IV
2008	189.729807	191.697871	192.830834	192.772853
2009	196.202203	196.23162	197.802376	199.113952
2010	200.279296	202.225464	202.903361	210.637613
2011	214.764572	241.614683	223.359105	215.494993
2012	221.765897	235.936738	235.88955	232.610686
2013	244.729702	252.854728	255.686701	240.422205
2014	234.315481	237.900508	237.805348	243.845604

2015	239.285691	242.492119	251.270334	245.667006
2016	236.184259	235.333996	242.723483	243.063296
2017	244.23	246.1	247.13	251.97
2018	258.63	252.01	256.659204	271.993856
2019	257.61	254.680365	264.693839	284.458319
2020	269.334481	210.479724		

4. Ekspor barang atas dasar harga konstan.

Tabel 4. Data Ekspor Barang Atas Dasar Harga Konstan Provinsi Banten Triwulan I 2008 Sampai Dengan Triwulan II 2020

Tahun	Ekspor Barang Atas Dasar Harga Kor			nstan
1 anun	Triwulan I	Triwulan II	Triwulan III	Triwulan IV
2008	19167731.58	19140624.27	19826672.17	18498956.84
2009	15628533.97	17777882.97	18217517.67	18209369.44
2010	19636642.9	20377783.55	18377393.26	22797225.87
2011	21845120.25	23931376.91	23493748.9	23147832.82
2012	23420158.51	24687900.18	21766861.8	23659348.81
2013	22748887.9	25406516.65	24802778.32	28168626.36
2014	25530675.45	28027079.31	27080750.9	27490306.17
2015	25478930.09	26903988.59	24667928.85	24748036.62
2016	23452127.61	25951127.37	24054043.42	28852531.04
2017	30315308.45	27693275.84	28933397.65	29737412.3
2018	29381252.63	29730980.95	33104130.79	30477411.25
2019	29572073.33	29552225.63	29074136.31	30007276.28
2020	27828903.3	27090463.39		

5. Impor barang atas dasar harga konstan 2010 (imporbrg) dalam juta Rp diambil dari komponen PDRB menurut pengeluaran.

Tabel 5. Data Impor Barang Atas Dasar Harga Konstan Provinsi Banten Triwulan I 2008 Sampai Dengan Triwulan II 2020

Tahun	Impor Barang Atas Dasar Harga Konstan					
1 anun	Triwulan I	Triwulan II	Triwulan III	Triwulan IV		
2008	42881603.09	45181359.44	50616464.48	48972173.08		
2009	35723100.85	44168564.71	42959387.88	46954941.62		
2010	42933228.01	41289257.71	48741478.29	52325184.2		
2011	47941452.91	52051153.61	53262675.63	62152598.05		
2012	55617859.51	63334183.43	54273474.04	68397722.38		
2013	57235459.58	59351471.89	55286239.83	61553776.63		
2014	59068384.6	61389033.87	55732296.66	62864227.91		
2015	55320115.78	59630678.49	57234572.24	62219521.78		
2016	53236040.25	51738149.29	51091685.98	57539664.13		
2017	61068450.33	58889945.16	58673575.55	63115827.37		
2018	58564744.87	60159885.93	64202076.29	64178138.06		
2019	58492917.85	59700027.86	61026630.29	62805996.74		
2020	59027213.39	52556779.48				

6. Jumlah tenaga kerja.

Tabel 6. Data Jumlah Tenaga Kerja Provinsi Banten Triwulan I 2008 Sampai Dengan Triwulan II 2020

Tahun		enaga Kerja		
1 anun	Triwulan I	Triwulan II	Triwulan III	Triwulan IV
2008	1826893.647	1825631.353	1823106.765	1845788.235
2009	1893675.765	1899149.235	1862208.646	1842569.354
2010	1840231.358	1974483.642	2245326.203	2337758.797
2011	2251781.423	2215816.577	2229864.259	2299795.741
2012	2425611.02	2432880.98	2321605.619	2340762.381
2013	2490351.266	2493342.734	2349736.785	2337889.215
2014	2457800.025	2480292.975	2405368.062	2448623.938
2015	2610060.6	2598062.4	2412629.335	2412830.665
2016	2598666.388	2635607.612	2523654.338	2564842.662
2017	2759172.582	2747782.418	2530672.168	2546727.832

2018	2795949.411	2840114.589	2679223.366	2671886.634
2019	2818104.394	2855704.606	2784687.269	2767762.731
2020	2804930.989	2806347.011		

7. Indeks query dari Google Trends.

Tabel 7. Data Indeks Query dari Google Trends Provinsi Banten Triwulan I 2008 Sampai Dengan Triwulan II 2020

Tahun		Indeks Query dari Google Trends				
1 anun	Triwulan I	Triwulan II	Triwulan III	Triwulan IV		
2008	0	0	84	100		
2009	0	48	181	115		
2010	68	0	59	47		
2011	140	181	234	151		
2012	292	147	84	166		
2013	154	45	105	54		
2014	99	100	159	204		
2015	115	177	91	194		
2016	120	125	144	177		
2017	106	119	171	163		
2018	157	121	211	228		
2019	130	143	218	228		
2020	256	291				

4.2 Visualisasi Data

Visualisasi data akan membantu mempermudah pemahaman terhadap jumlah data yang sedang di baca. Berikut merupakan visualisasi data dari beberapa indikator data untuk melakukan peramalan pertumbuhan ekonomi Prvinsi Banten.

Gambar 1. Visualisasi Data Deret Waktu.

Berdasarkan Gambar 1 tersebut, dapat dilihat visualisasi data beberapa indikator yang mempengaruhi pertumbuhan ekonomi di Provinsi Banten, secara umum dari 2008Q1 sampai 2020Q1 mengalami kenaikan dan pada 2020Q2 indikator-indikator data tersebut mengalami penurunan seperti pada PDRB atas dasar harga konstan, konsumsi rumah tangga, indeks produksi industri besar sedang, ekspor barang dan impor barang serta jumlah tenaga kerja di Provinsi Banten, kecuali pada indikator Google Trends (GT) yang merupakan nilai Indeks query (dengan kata kunci "Pertumbuhan ekonomi", "ekonomi", "kondisi ekonomi", "industri pengolahan", "PDRB"; dimana nilai google trend tersebut merupakan penjumlahan dari indeks query berdasarkan kata kunci tersebut. Kemudian, data dari bulanan diubah menjadi triwulanan). Dimana pada periode 2020Q2 pemerintah negara Indonesia sedang menerapkan kebijakan Pembatasan Sosial Berskala Besar (PSBB) yang berdampak langsung pada sosial ekonomi di Indonesia termasuk di Provinsi Banten.

Berdasarkan data Produk Domestik Regional Bruto (PDRB) atas dasar harga konstan secara Q-on-Q mengalami penurunan sebesar 8,38% dan berdasarkan data Indeks Produksi Industri Besar Sedang secara Q-on-Q juga mengalami penurunan sebesar 21,85% pada 2020Q2 terhadap 2020Q1 kondisi ini didorong oleh pandemi COVID-19 yang terus berlanjut serta pemberlakukan PSBB di wikayah Banten. Seiring dengan indikator pembangun pertumbuhan ekonomi di Provinsi Banten tersebut yang mengalami penurunan pada 2020Q2 akibat pandemi COVID-19 sehingga menyebabkan perekonomian di Provinsi Banten juga ikut menurun.

Pergerakan pada indikator-indikator tersebut sangat mempengaruhi kodisi perekonomian di Provinsi Banten. Indikator tersebut dapat merefleksikan keadaan perekonomian di Provinsi Banten. Dimana jika indikator-indikator tersebut mengalami penurunan maka perekonomian di Provinsi Banten juga ikut mengalami penurunan dan jika indikator-indikator tersebut mengalami kenaikan maka perekonomian di Provinsi Banten juga ikut mengalami kenaikan. Seperti pada saat ini dapat dilihat dari grafik indikator-indikator tersebut yang mengalami kenaikan setelah periode 2020Q2 mengalami penurunan yang berarti perekonomian di Provinsi Banten cenderung mengalami perbaikan ditandai dengan beberapa indikator terus mengalami kenaikan. Kondisi ini berjalan seiring dengan pandemi COVID-19 yang masih berlangsung hingga saat ini.

4.3 Uji Stasioner Data

Uji stasioneritas data deret waktu dilakukan dengan pembentukan sebuah hipotesis yang berkaitan dengan hasil ujinya, untuk melihat kestasioneran data deret waktu multivariat maka digunakan Uji Levin, Lin dan Chu dapat dilihat pada Tabel 8 sebagai berikut:

Tabel 8. Uji Stasioneritas Levin, Lin, dan Chu

Method	Statistic	Prob.**	Cross-Sections	Obs
Null: Unit root (assumes of	common u	nit root pr	ocess)	
Levin, Lin & Chu t*	-3.30761	0.0005	7	354
Breitung t-stat	-2.23416	0.0127	7	347
Null: Unit root (assumes i	ndividual	unit root p	process)	
Im, Pesaran and Shin W-				
stat	-4.07271	0.0000	7	354
ADF - Fisher Chi-square	46.6832	0.0000	7	354
PP - Fisher Chi-square	40.4285	0.0002	7	372

Berdasarkan Tabel 8 tersebut, dapat dilihat bahwa nilai prob pada uji Levin, Lin dan Chu menggunakan *software* Eviews12 maka dilakukan analisis uji hipotesis sebagai berikut:

• Hipotesis

H₀: Data tidak stasioner

H₁: Data stasioner

• Taraf signifikasi (α)

 $\alpha = 5\%$

• Statistik uji

Nilai prob Levin, Lin dan Chu = 0.0005

• Daerah kritis

Jika nilai prob Levin, Lin dan Chu $< \alpha$, maka H₀ ditolak

Jika nilai prob Levin, Lin dan Chu $> \alpha$, maka tidak cukup bukti untuk tolak H_0

Keputusan

Nilai prob Levin, Lin, dan Chu (0.0005) dan α (0.05), berarti nilai prob Levin, Lin dan Chu $< \alpha$ maka H $_0$ ditolak

Berdasarkan keputusan analisis uji hipotesis tersebut, jadi secara simultan semua variabel tidak memiliki *common unit root*. Sehingga semua variabel yang digunakan pada data level (tidak ditransformasi).

4.4 Penentuan Ordo Lag Optimum pada VAR

Setelah melakukan uji stasioneritas Langkah selanjutnya yaitu menentukan ordo lag optimum, pada Tabel 9 sebagai berikut:

Tabel 9. Ordo Lag Optimum

Lag	LogL	LR	FPE	AIC	SC	HQ
0	464.4803	NA	2.61e-16	-18.85335	-18.38554	-18.67656
1	643.5294	298.4152	6.87e-19	-24.81373	-22.94252*	-24.10660
2	707.3205	90.37076	2.35e-19	-25.97169	-22.69709	-24.73421
3	754.9964	55.62190	1.80e-19	-26.45819	-21.78018	-24.69036
4	803.5127	44.47326	1.68e-19	-26.97970	-20.89829	-24.68153
5	866.0022	41.65962	1.34e-19	-28.08342	-20.59862	-25.25490
6	990.2612	51.77460*	1.96e-20*	-31.76088*	-22.87268	-28.40202*

Berdasarkan Tabel 9 tersebut, dapat dilihat bahwa panjang lag pada nilai *Schwarz Information Criterion* (SC) yang dipilih sebesar satu.

4.5 Estimasi VAR

Dengan Lag yang dihasilkan sebesar 1 maka didapatkan hasil estimasi VAR(1)-

Eksogen sebagai berikut:

Tabel 10. Estimasi VAR(1)-Eksogen

	LOG(PDRBRII	LOG(KONS		LOG(EXPOR	LOG(IMPOR	LOG(NAKER
	L)	RIIL)	LOG(IBS)	BRG)	BRG)	
LOG(PDRBRIIL	L)	KIIL)	LOG(IDS)	DRG)	DRG)	,
(-1))	1.135434	0.414721	1.684566	1.391282	1.661824	0.788331
(1//	(0.22962)	(0.18919)	(0.58889)	(0.93028)	(1.16855)	(0.55278)
	[4.94484]	[2.19211]	[2.86056]	[1.49555]	[1.42212]	[1.42613]
LOG(KONS_RII	[1.5 1 10 1]	[2.17211]	[2.00020]	[1.19555]	[1.12212]	[1.12013]
L(-1))	-0.220691	0.510283	-1.698804	-1.334260	-2.096491	-0.591714
L(1))	(0.22715)	(0.18716)	(0.58257)	(0.92029)	(1.15600)	(0.54684)
	[-0.97155]	[2.72652]	[-2.91607]	[-1.44983]	[-1.81358]	[-1.08206]
LOG(IBS(-1))	-0.225020	-0.135118	0.081650	-0.044858	0.303252	-0.144364
LOG(IBS(1))	(0.06661)	(0.05488)	(0.17083)	(0.26986)	(0.33898)	(0.16035)
	[-3.37821]	[-2.46203]	[0.47796]	[-0.16623]	[0.89460]	[-0.90029]
LOG(EXPORB	[3.37021]	[2.40203]	[0.47770]	[0.10023]	[0.07400]	[0.70027]
RG(-1))	0.078212	0.064485	0.073107	0.458800	0.192084	0.005796
KG(1))	(0.03962)	(0.03264)	(0.10161)	(0.16052)	(0.20163)	(0.09538)
	[1.97405]	[1.97542]	[0.71948]	[2.85828]	[0.95266]	[0.06077]
LOG(IMPORBR	[1.77403]	[1.77342]	[0.71740]	[2.03020]	[0.93200]	[0.00077]
G(-1))	-0.029558	-0.061603	-0.003695	-0.242093	0.019696	0.067409
G(1))	(0.03382)	(0.02786)	(0.08673)	(0.13700)	(0.17209)	(0.08141)
	[-0.87408]	[-2.21103]	[-0.04261]	[-1.76706]	[0.11445]	[0.82804]
LOG(NAKER(-	[0.07 100]	[2.21103]	[0.01201]	[1.70700]	[0.11 1 13]	[0.02001]
1))	0.136166	0.041054	0.095511	0.381827	0.257874	0.557272
1))	(0.05522)	(0.04549)	(0.14161)	(0.22371)	(0.28101)	(0.13293)
	[2.46599]	[0.90238]	[0.67445]	[1.70680]	[0.91768]	[4.19226]
C	-0.119472	1.259419	1.795340	6.417407	15.57879	2.099130
	(0.80723)	(0.66509)	(2.07026)	(3.27042)	(4.10805)	(1.94330)
	[-0.14800]	[1.89360]	[0.86721]	[1.96226]	[3.79226]	[1.08019]
GT	-3.29E-05	-2.38E-05	-4.87E-06	6.08E-05	0.000142	-2.58E-05
	(3.2E-05)	(2.7E-05)	(8.3E-05)	(0.00013)	(0.00016)	(7.8E-05)
	[-1.02161]	[-0.89529]	[-0.05894]	[0.46546]	[0.86433]	[-0.33262]
R-squared	0.994890	0.995113	0.864704	0.886327	0.662616	0.933332
Adj. R-squared	0.994095	0.994353	0.843657	0.868644	0.610134	0.922961
Sum sq. resids	0.011534	0.007830	0.075862	0.189313	0.298708	0.066843
S.E. equation	0.016010	0.013191	0.041059	0.064861	0.081474	0.038541
F-statistic	1251.548	1309.028	41.08614	50.12448	12.62559	89.99810
Log likelihood	148.2647	158.5300	98.34825	74.11430	62.02863	101.7025
Akaike AIC	-5.293006	-5.680376	-3.409368	-2.494879	-2.038816	-3.535943
Schwarz SC	-4.995604	-5.382974	-3.111965	-2.197477	-1.741414	-3.238540
Mean dependent	18.28324	17.75393	5.455980	17.03223	17.82508	14.69884
S.D. dependent	0.208335	0.175529	0.103841	0.178962	0.130485	0.138857
5.D. dependent	0.200333	0.173327	0.105071	0.170702	0.150+05	0.130037

Determinant resid covariance (dof			
adj.)	2.51E-19		
Determinant resid covariance	9.41E-20		
Log likelihood	709.7352		
Akaike information criterion	-24.97114		
Schwarz criterion	-23.18672		
Number of coefficients	48		

Berdasarkan Tabel 10 tersebut, diketahui bahwa secara berturut-turut menjelaskan keberagaman (R-Squared) estimasi VAR dari PDRB atas dasar harga konstan sebesar 99,5%, konsumsi rumah tangga atas dasar harga konstan sebesar 99,5%, indeks produksi industri besar sedang sebesar 86,5%, ekspor barang atas dasar harga konstan sebesar 88,6%, impor barang atas dasar harga konstan sebesar 66,3%, dan jumlah tenaga kerja sebesar 93,3%. Dari model Log(PDRBRIIL) berdasarkan estimasi VAR dapat dilihat bahwa PDRBRIIL berpengaruh secara signifikan terhadap jumlah ekspor barang dan jumlah tenaga kerja akan tetapi berkontribusi kecil terhadap konsumsi rumah tangga, indeks produksi besar sedang, impor barang dan indeks query dari Google Trend.

Pada model Log(PDRBRIIL) dengan angka satu pada setiap log variabel menunjukkan bahwa panjang lag sebesar satu. Diketahui standar error untuk LOG(PDRBRIIL(-1)) atau log pada PDRB atas dasar harga konstan sebesar (0.22962) dengan nilai p-value sebesar [4.94484], standar error untuk LOG(KONS_RIIL(-1)) atau log pada konsumsi rumah tangga atas dasar harga konstan sebesar (0.22715) dengan nilai p-value sebesar [-0.97155], standar error untuk LOG(IBS(-1)) atau log indeks produksi industri besar sedang sebesar (0.06661) dengan nilai p-value sebesar [-3.37821], standar error untuk LOG(EXPORBRG(-1)) atau log pada ekspor barang atas dasar harga konstan

sebesar (0.03962) dengan nilai p-value sebesar [1.97405], standar error untuk LOG(IMPORBRG(-1)) atau log pada impor barang atas dasar harga konstan sebesar (0.03382) dengan nilai p-value sebesar [-0.87408], standar error untuk LOG(NAKER(-1)) atau log pada jumlah tenaga kerja sebesar (0.05522) dengan nilai p-value sebesar [2.46599], standar error untuk C atau konstanta sebesar (0.80723) dengan nilai p-value sebesar [-0.14800], dan standar error untuk GT atau indeks query dari Google Trend yang berperan sebagai variabel eksogen sebesar (3.2E-05) dengan nilai p-value sebesar [-1.02161].

Dengan spesifikasi VAR(1) dimana variabel eksogen nilai indeks query dari Google Trends (dengan kata kunci "Pertumbuhan ekonomi", "ekonomi", "kondisi ekonomi", "industri pengolahan", "PDRB"; dimana nilai google trend tersebut merupakan dari indeks query dari kata kunci dari bulanan diubah menjadi triwulanan), selanjutnya untuk stabilitas koefisien VAR(1) dapat dilihat pada Gambar 2, sebagai berikut:

Gambar 2. Stabilitas Koefisien VAR(1).

Berdasarkan Gambar 2 tersebut, dapat dilihat bahwa semua titik tidak ada yang keluar lingkaran atau titik-titik tersebar didalam lingkaran, maka dapat disimpulkan bahwa koefisien VAR(1)-X sudah stabil.

4.6 Bayesian VAR

Kemudian dilakukan estimasi bayesian VAR dengan menggunakan koefisien VAR(1)-X, dengan menggunakan prior Normal-Wishart hasil estimasi dapat dilihat pada Tabel 11 sebagai berikut:

Tabel 11. Estimasi Bayesian VAR(1)-Eksogen

	LOG(PDRBRII	LOG(KONS_		LOG(EXPOR	LOG(IMPOR	LOG(NAKER
	L)	RIIL)	LOG(IBS)	BRG)	BRG))
LOG(PDRBRII						
L(-1))	0.429709	0.354618	0.156134	0.159592	-0.099192	0.158164
	(0.46332)	(0.46313)	(0.47092)	(0.48417)	(0.50907)	(0.46821)
	[0.92746]	[0.76569]	[0.33155]	[0.32962]	[-0.19485]	[0.33780]
LOG(KONS_R						
IIL(-1))	0.336316	0.466770	-0.154319	0.134605	0.142844	0.136873
	(0.44652)	(0.44634)	(0.45385)	(0.46662)	(0.49062)	(0.45124)
	[0.75319]	[1.04576]	[-0.34002]	[0.28847]	[0.29115]	[0.30333]
LOG(IBS(-1))	0.056720	-0.119135	0.362432	0.022885	-0.101103	-0.020061
	(0.38573)	(0.38558)	(0.39207)	(0.40309)	(0.42383)	(0.38981)
	[0.14704]	[-0.30897]	[0.92441]	[0.05677]	[-0.23855]	[-0.05146]
LOG(EXPORB						
RG(-1))	0.138340	0.087698	0.127379	0.334310	0.152997	0.068774
	(0.36404)	(0.36389)	(0.37001)	(0.38042)	(0.39999)	(0.36788)
	[0.38002]	[0.24100]	[0.34425]	[0.87879]	[0.38251]	[0.18695]
LOG(IMPORB						
RG(-1))	-0.049669	0.006371	-0.032709	0.024902	0.477625	0.138021
	(0.26613)	(0.26603)	(0.27050)	(0.27811)	(0.29242)	(0.26894)
	[-0.18663]	[0.02395]	[-0.12092]	[0.08954]	[1.63338]	[0.51320]
LOG(NAKER(-						
1))	0.182977	0.136377	0.124118	0.369793	0.437894	0.397687
	(0.41072)	(0.41055)	(0.41746)	(0.42920)	(0.45128)	(0.41505)
	[0.44551]	[0.33218]	[0.29732]	[0.86159]	[0.97035]	[0.95816]
С	-0.011527	0.038039	-0.055543	0.034794	0.139365	0.021391
	(0.62377)	(0.62352)	(0.63401)	(0.65184)	(0.68536)	(0.63035)

	[-0.01848]	[0.06101]	[-0.08761]	[0.05338]	[0.20334]	[0.03393]
GT	6.06E-05	-3.90E-05	8.63E-05	9.45E-06	-0.000221	-2.59E-05
	(0.00034)	(0.00034)	(0.00035)	(0.00036)	(0.00037)	(0.00034)
	[0.17786]	[-0.11452]	[0.24910]	[0.02653]	[-0.58987]	[-0.07519]
R-squared	0.991199	0.990462	0.818155	0.870787	0.512993	0.923730
Adj. R-squared	0.989830	0.988978	0.789868	0.850688	0.437237	0.911866
Sum sq. resids	0.019865	0.015282	0.101962	0.215193	0.431179	0.076470
S.E. equation	0.021010	0.018428	0.047601	0.069152	0.097886	0.041223
F-statistic	723.9789	667.5495	28.92332	43.32330	6.771599	77.85845
Mean						
dependent	18.28324	17.75393	5.455980	17.03223	17.82508	14.69884
S.D. dependent	0.208335	0.175529	0.103841	0.178962	0.130485	0.138857

Berdasarkan Tabel 11 tersebut, diketahui pada model LOG(PDRBRIIL) berdasarkan bayesian VAR(1)-eksogen bahwa indikator PDRBRIIL berpengaruh secara signifikan terhadap konsumsi rumah tangga, indeks produksi besar sedang, ekspor barang, jumlah tenaga kerja dan indeks query dari Google Trend tetapi berkontribusi kecil terhadap impor barang. Pada model PDRBRIIL berdasarkan estimasi bayesian VAR-X diketahui standar error untuk LOG(PDRBRIIL(-1)) sebesar (0.46332) dengan nilai p-value sebesar [0.92746], standar error untuk LOG(KONS_RIIL(-1)) sebesar (0.44652) dengan nilai p-value sebesar [0.75319], standar error untuk LOG(IBS(-1)) sebesar (0.38573) dengan nilai p-value sebesar [0.14704], standar error untuk LOG(EXPORBRG(-1)) sebesar (0.36404) dengan nilai p-value sebesar [0.38002], standar error untuk LOG(IMPORBRG(-1)) sebesar (0.26613) dengan nilai p-value sebesar [-0.18663], standar error untuk LOG(NAKER(-1)) sebesar (0.41072) dengan nilai p-value sebesar [0.44551], standar error untuk C atau konstanta sebesar (0.62377) dengan nilai p-value sebesar [-0.01848], dan standar error untuk indeks query dari Google Trend yang berperan sebagai variabel eksogen sebesar (0.00034) dengan nilai p-value sebesar [0.17786]. Secara berturut-turut menjelaskan keberagaman (R-Squared) estimasi Bayesian VAR(1)-Eksogen dari PDRBRIIL sebesar 99,1%, KONSRIIL sebesar

99%, IBS sebesar 81,8%, EXPOR BRG sebesar 87%, IMPOR BRG sebesar 51,3%, dan NAKER sebesar 92,4%.

Setelah melakukan estimasi bayesian VAR, selanjutnya akan dilihat stabilitas koefisien bayesian VAR atau kelayakan model bayesian VAR pada Gambar 3 sebagai berikut:

Gambar 3. Stabilitas Bayesian VAR(1)-Eksogen.

Berdasarkan Gambar 3 tersebut, dapat dilihat sebaran dari titik-titik tidak ada yang keluar lingkaran, maka dapat disimpulkan bahwa koefisien bayesian VAR(1)-eksogen sudah stabil.

4.7 Evaluasi Peramalan

Dengan melihat nilai MAPE yang merupakan suatu analisis statistik yang digunakan untuk mengukur keakuratan suatu model statistik dalam melakukan

peramalan, nilai MAPE engan metode bayesian VAR-X dapat dilihat pada Tabel 12 sebagai berikut:

Tabel 12. Evaluasi Peramalan Bayesian VAR-X

Variable	Inc. obs.	RMSE	MAE	MAPE	Theil
EXPORBRG	54	2052792.	1693852.	7.043082	0.040633
IBS	54	14.80852	12.18613	5.231633	0.031523
IMPORBRG	54	6436112.	5041142.	9.738796	0.058363
KONS_RIIL	54	2123455.	1646527.	3.058039	0.020412
NAKER	54	133090.9	107504.0	4.750121	0.027387
PDRBRIIL	54	5019136.	3914872.	4.290119	0.028187

Bedasarkan Tabel 12 tersebut, dapat dilihat nilai MAPE untuk peramalan Bayesian VAR-X pada semua indikator yang digunakan yaitu EXPORBRG, IBS, IMPORBRG, KONS_RIIL, NAKER, PDRBRIIL < 10% yang berarti bahwa selisisih rata-rata peramalan dengan nilai hasil sebenarnya < 10%. Berdasarkan kriteria MAPE jika nilai MAPE < 10%, maka kemampuan peramalan metode bayesian VAR-X sangat baik. Sehingga dapat dikatakan pada penelitian ini kemampuan peramalan menggunakan bayesian VAR-X sangat baik.

4.8 Peramalan Bayesian VAR-X

Selanjutnya didapatkan nilai forecast pertumbuhan ekonomi dengan beberapa indikator menggunakan bayesian VAR-X untuk 2021Q3 pada Tabel 13 sebagai berikut:

Tabel 13. Hasil Peramalan

Indikator	Hasil Forecast
PDRBRIIL 2021Q3	114250756.4091352
KONS_RIIL 2021Q3	64944569.41965951
EXPORBRG 2021Q3	31169166.93288973
IMPORBRG 2021Q3	63113653.11798764
IBS 2021Q3	260.4791835775795
NAKER 2021Q3	2872617.255642886

Berdasarkan Tabel 13 tersebut, yang merupakan nilai peramalan bayesian VAR-X dapat dilihat perkiraan dari indikator-indikator pertumbuhan ekonomi di Provinsi Banten dengan prior wishart dan indeks query dari Google Trend sebagai variabel eksogen akan mengalami kenaikan. Sehingga dapat dikatakan pertumbuhan ekonomi Provinsi Banten berdasarkan perkiraan bayesian-VAR akan mengalami kenaikan pada 2021Q3. Hal ini sejalan dengan indikator-indikator yang mempengaruhi keadaan ekonomi di Banten seperti produk domestik regional bruto atas dasar harga konstan, konsumsi rumah tangga atas dasar harga kosntan, indeks produksi industri besar sedang, nilai ekspor atas dasar harga konstan dan impor atas dasar harga konstan, serta jumlah tenaga kerja di Provinsi Banten yang merupakan komponen pengurang pada PDRB pengeluaran. Adapun visualisasi peramalan PDRB Provinsi Banten 2021Q3 secara Q-on-Q (quarter on quarter) pada pada Gambar 4 sebagai berikut:

Gambar 4. Visualisasi Data Peramalan PDRBRIIL Q-on-Q.

Berdasarkan Gambar 4 tersebut, dapat dilihat bahwa nilai hasil peramalan PDRBRIIL atau produk domestrik regional bruto atas dasar harga konstan periode triwulan 3 tahun 2021 secara Q-on-Q yang dihitung terhadap periode triwulan 2 tahun 2021 ditandai dengan shade area berwarna hijau cenderung akan mengalami sedikit kenaikan, dimana kenaikan tersebut bernilai dibawah 1% yaitu 0,22%. Yang berarti selama satu quarter produk domestik regional bruto atas dasar harga kosntan di Provinsi Banten akan mengalami kenaikan sebesar 0,22%, hal ini di dorong oleh beberapa faktor yang mempengaruhi produk domestik regional bruto atas dasar harga konstan selama satu quarter. Faktor-faktor tersebut seperti konsumsi rumah tangga, jumlah ekspor barang, jumlah impor barang, inflasi, dan konsumsi pemerintah yang mengalami kenaikan selama satu quarter sehingga produk domestik regional bruto atas dasar harga konstan di Provinsi Banten pun mengalami kenaikan seiring dengan kenaikan yang dialami oleh faktor-faktor yang mempengaruhinya. Adapun visualisasi peramalan PDRB Provinsi Banten 2021Q3 secara Y-on-Y (year on year) pada GAMBAR 5 sebagai berikut:

Gambar 5. Visualisasi Data Peramalan PDRBRIIL Y-on-Y.

Berdasarkan Gambar 5 tersebut, dapat dilihat bahwa nilai hasil peramalan PDRBRIIL periode triwulan 3 tahun 2021 secara Y-on-Y yang dihitung terhadap periode triwulan 3 tahun 2020 ditandai dengan shade area berwarna kuning cenderung akan mengalami sedikit kenaikan, dimana kenaikan tersebut bernilai dibawah 5% yaitu sebesar 4,26%. Yang berarti selama satu tahun produk domestik regional bruto atas dasar harga konstan di Provinsi Banten akan mengalami kenaikan sebesar 4,26%. Sama halnya seperti pertumbuhan produk domestik regional bruto atas dasar harga konstan secara Q-on-Q yang dipengaruhi oleh beberapa faktor, pertumbuhan produk domestik regional bruto atas dasar harga konstan secara Y-on-Y juga dipengaruhi oleh faktor-faktor yang sama. Seiring dengan meningkatnya faktor-faktor yang mempengaruhi tersebut selama satu tahun yang dihitung terhadap periode triwulan 3 tahun 2020 seperti kenaikan pada konsumsi rumah tangga, jumlah ekspor barang, jumlah impor barang, inflasi, dan

konsumsi pemerintah sehingga produk domestik regional bruto atas dasar harga konstan di Provinsi Banten selama satu tahun ikut mengalami kenaikan

Dari kedua visualisasi data peramalan PDRBRIIL 2021Q3 pada Gambar 4 dan Gambar 5 tersebut, yang berarti baik secara Q-on-Q maupun secara Y-on-Y PDRB Provinsi Banten akan mengalami kenaikan. Hal ini di dorong oleh pandemi COVID-19 yang masih berlanjut sehingga PDRB di Provinsi Banten sudah menunjukkan perbaikan.

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil dan pembahasan diatas, diperoleh kesimpulan sebagai berikut:

- Dengan nilai evaluasi forecast yang menggunakan nilai MAPE sebesar ≤10%
 yang berarti hasil peramalan sangat akurat menunjukkan bahwa penggunaan
 metode Bayesian VAR-X untuk meramalkan pertumbuhan ekonomi di Provinsi
 Banten sangat baik.
- 2. PDRBRIIL 2021Q3 sebesar 114250756.409 yang berarti nilai PDRB mengalami pertumbuhan sebesar 0,22% untuk Q-on-Q dan mengalami pertumbuhan sebesar 4,26% untuk Yo-on-Y. Hasil ini penelitian ini menunjukan bahwa baik menurut Q-on-Q maupun Y-on-Y pertumbuhan ekonomi Banten akan mengalami pertumbuhan, setelah pada awal tahun 2020 mengalami penurunan akibat pandemi Covid-19.

5.2 Saran

Berdasarkan kesimpulan tersebut, adapun saran-saran yang dapat di berikan yaitu:

 Pemerintah maupun pengambil kebijakan yang ada di Provinsi Banten dapat mengambil kebijakan yang lebih tepat untuk melakukan perbaikan ekonomi sehingga dapat meningkatkan pertumbuhan perekonomian di Provinsi Banten.

- 2. Pemerintah perlu meningkatkan Produk Domestik Regional Bruto (PDRB) yang merupakan salah satu indikator penting dimana dalam upaya meningkatkan PDRB pemerintah perlu meningkatkan juga faktor yang mempengaruhi PDRB seperti pendapatan asli daerah, inflasi, penanaman modal asing, pengeluaran pemerintah daerah dan jumlah tenaga kerja di Provinsi Banten dalam upaya meningkatkan pertumbuhan ekonomi pertumbuhan ekonomi, serta meningkatkan jumlah ekspor, jumlah impor barang dan indeks produksi industri besar sedang guna meningkatkan perekonomian di Provinsi Banten ditengah pandemi Covid-19.
- 3. Penelitian selanjutnya dapat menerapkan metode Bayesian VAR dengan lebih mempertimbangkan indikator-indikator yang berpengaruh terhadap pertumbuhan ekonomi serta dapat lebih baik dalam menentukan priornya.

DAFTAR PUSTAKA

- Ardiansyah, H. 2017. Pengaruh Inflasi terhadap Pertumbuhan Ekonomi di Indonesia. *ejournal.unesa*. **3**(5).
- Dalimunte, D. Y. 2017. Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung. *Integrated Journal of Business and Economics (IJBE)*. **1**(1).
- Granger, C. W. J. 1969. Investigating Causal relations by Econometric Model and Cross Spectral Methods. *Econometrica*. **3**(37): 424-438.
- Huang, Y. F. 2012. Forecasting Chinese Inflation and Output A Bayesian Vector Autoregressive Approach. *MPRA*. Paper No.41933.
- Khim, V & Liew, S. 2004. Which Lag Length Selection Criteria Should We Employ. Economics Bulletin. 3:. 1–9.
- Makridakis, S., Wheelwright, S. C., & McGee, V. E. 1999. *Metode dan Aplikasi Peramalan*. 2nd Edition. Terjemahan Ir. Untung Sus Ardiyanto, M.Sc., & Ir. Abdul Basith, M.Sc. Erlangga, Jakarta.
- Mona, N. 2020. Konsep Isolasi Dalam Jaringan Sosial Untuk Meminimalisasi Efek Contagious (Kasus Penyebaran Virus Corona di Indonesia). Jurnal Sosial Humaniora Terapan. **2**(2): 117-125.
- Sacakli-Sacildi, Irem. 2015. Do BVAR Models Forecast Turkish GDP Bettef Than UVAR Models. *British Journal od Economics, Management and Trade*. **7**(4): 259-268
- Sims, C. A. 1980. Macroecomomics and Reality. *Econometrica*. **1**(48): 1-48.
- Situmorang, T. M., Hariyati, S., Tumanggor, I.A., Risulyna, B., & Filzah, H. 2015. *Metode Analisis Data Time Series Analisis Vector Auto Regression dan Granger Causality*. Universitas Sumatera Utara, Medan.

- Soemartini. 2011. Menentukan Model Ekonomi Berstruktur Melalui Analisis Vector Auto Regression (VAR) dalam Pertumbuhan Ekonomi Indonesia Periode 1996-2009. Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta.
- Sukirno, S. 2008. *Mikroekonomi: Teori Pengantar*. Edisi Ketiga. PT Raja Grafindo, Jakarta.
- Tambunan, T. T. H. 2003. Perekonomian Indonesia Beberapa Masalah Penting. Ghalia Indonesia, Jakarta.

Lampiran 1. Data Penelitian

2009Q1 62239291 39336703 15628534 35723101 196.2022 0 2009Q2 62590346 39980804 17777883 44168565 196.2316 48 2009Q3 64681935 41080309 18217518 42959388 197.8024 181 2009Q4 65238958 41519848 18209369 46954942 199.114 1181 2010Q1 65686470 41026172 19636643 42933228 200.2793 68 2010Q2 66784956 41494285 20377784 41289258 202.2255 0 2010Q3 68796862 42615757 18377393 48741478 202.9034 59 2011Q1 71058168 42545596 22797226 52325184 210.6376 44 2011Q1 71058168 42585235 21845120 47941453 214.7646 140 2011Q2 71751439 42947647 23931377 52051154 241.6147 181 2011Q2 73768441 44100776 23493749	Periode	PDRBRIIL	KONS_RIIL	EXPORBRG	IMPORBRG	IBS	GT
2008Q3 61464965 38910930 19826672 50616464 192.8308 84 2008Q4 62006409 39053571 18498957 48972173 192.7729 100 2009Q1 62239291 39336703 15628534 35723101 196.2022 0 2009Q2 62590346 39980804 17777883 34168565 196.2316 48 2009Q3 64681935 41080309 18217518 42959388 197.8024 181 2010Q1 65686470 41026172 19636643 42933228 200.2793 68 2010Q2 66784956 4194285 20377784 41289258 202.2255 0 2010Q4 70196996 42540596 22797226 52325184 210.6376 47 2011Q1 71058168 42585235 21845120 47941453 214.7646 140 2011Q2 71751439 42947647 23931377 52051154 241.6147 181 2011Q3 7368441 44100776 23493749	2008Q1	57839767	37772284	19167732	42881603	189.7298	0
2008Q4 62006409 39053571 18498957 48972173 192.7729 100 2009Q1 62239291 39336703 15628534 35723101 196.2022 0 2009Q2 62590346 39980804 17777883 44168565 196.2316 48 2009Q3 64681935 41080309 18217518 42959388 197.8024 18 2009Q4 65238958 41519848 18209369 46954942 199.114 115 2010Q2 66784956 41026172 19636643 42933228 200.2793 68 2010Q2 66784956 41494285 20377784 41289258 202.2255 0 2010Q3 68796862 42615757 18373393 48741478 202.9034 52 2010Q4 70196996 42540596 22797226 52325184 210.6376 47 2011Q1 71058168 42540596 2279726 52325184 210.6376 47 2011Q2 770814444 4100776 23931377	2008Q2	59718811	38119273	19140624	45181359	191.6979	0
2009Q1 62239291 39336703 15628534 35723101 196,2022 0 2009Q2 62590346 39980804 17777883 44168565 196,2316 48 2009Q3 64681935 41080309 18217518 42959388 197,8024 181 2009Q4 65238958 41519848 18209369 46954942 199,114 118 2010Q1 65686470 41026172 19636643 42933228 200,2793 68 2010Q2 66784956 41494285 20377784 41289258 202,2255 0 2010Q3 68796862 42615757 18377393 48741478 202,9034 59 2011Q1 71058168 42585235 21845120 47941453 214,7646 140 2011Q2 71751439 42947647 23931377 52051154 241,6147 181 2011Q4 73967790 44370298 23147833 62152598 215,495 151 2012Q1 7551019 44771902 23420159	2008Q3	61464965	38910930	19826672	50616464	192.8308	84
2009Q2 62590346 39980804 17777883 44168565 196.2316 48 2009Q3 64681935 41080309 18217518 42959388 197.8024 181 2009Q4 65238958 41519848 18209369 46954942 199.114 115 2010Q1 65686470 41026172 19636643 42933228 200.2793 68 2010Q2 66784956 41494285 20377784 41289258 200.2255 0 2010Q4 70196996 42540596 22797226 52325184 210.6376 47 2011Q1 71058168 42585235 21845120 47941453 214.7646 41 181 2011Q2 71751439 42947647 23931377 52051154 241.6147 181 2011Q3 73768441 44100776 23493749 53262676 223.3591 234 2012Q1 75151019 44771902 23420159 55617860 221.7659 292 2012Q2 77008188 45452904	2008Q4	62006409	39053571	18498957	48972173	192.7729	100
2009Q3 64681935 41080309 18217518 42959388 197.8024 181 2009Q4 65238958 41519848 18209369 46954942 199.114 115 2010Q1 65686470 41026172 19636643 42933222 200.2793 68 2010Q2 66784956 41494285 20377784 41289258 202.2955 0 2010Q3 68796862 42615757 18377393 48741478 202.9034 59 2010Q4 70196996 42540596 22797226 52325184 210.6376 47 2011Q2 71751439 42947647 23931377 52051154 241.6147 181 2011Q3 73768441 44100776 23493749 53262676 223.3591 234 2011Q4 73967790 44370298 23147833 62152598 215.495 151 2012Q2 77008188 45452904 24687900 63334183 235.9367 142 2012Q3 79144631 46477591 21766862	2009Q1	62239291	39336703	15628534	35723101	196.2022	0
2009Q4 65238958 41519848 18209369 46954942 199.114 115 2010Q1 65686470 41026172 19636643 42933228 200.2793 68 2010Q2 66784956 41494285 20377784 41289258 202.2255 0 2010Q3 68796862 42615757 18377393 48741478 202.0255 0 2011Q1 71058168 42540596 22797226 52325184 210.6376 47 2011Q1 71058168 42585235 21845120 47941453 214.646 140 2011Q2 71751439 42947647 23931377 52051154 241.6147 181 2011Q3 73768441 44100776 23493749 53262676 223.3591 234 2011Q4 7396790 44370298 23147833 62152598 215.495 151 2012Q1 77008188 45452904 24687900 63334183 235.8896 84 2012Q2 77008188 45452904 24687900	2009Q2	62590346	39980804	17777883	44168565	196.2316	48
2010Q1 65686470 41026172 19636643 42933228 200.2793 68 2010Q2 66784956 41494285 20377784 41289258 202.2255 0 2010Q4 70196996 42540596 22797226 52325184 210.6376 47 2011Q1 71058168 42585235 21845120 47941453 214.7646 140 2011Q2 71751439 42947647 23931377 52051154 241.6147 181 2011Q3 73768441 44100776 23493749 53262676 223.3591 234 2012Q1 75151019 44771902 23420159 55617860 221.7659 292 2012Q2 77008188 45452904 24687900 63334183 235.9367 147 2012Q3 79144631 46477591 21766862 54273474 235.8896 84 2012Q4 79081755 46682963 23659349 68397722 232.6107 166 2013Q3 84623776 48549613 24802778 <td>2009Q3</td> <td>64681935</td> <td>41080309</td> <td>18217518</td> <td>42959388</td> <td>197.8024</td> <td>181</td>	2009Q3	64681935	41080309	18217518	42959388	197.8024	181
2010Q2 66784956 41494285 20377784 41289258 202.2255 0 2010Q3 68796862 42615757 18377393 48741478 202.9034 59 2010Q4 70196996 42540596 22797226 52325184 210.6376 47 2011Q1 71058168 42585235 21845120 47941453 214.7646 140 2011Q2 71751439 42947647 23931377 52051154 241.6147 181 2011Q3 73768441 44100776 23493749 53262676 223.3591 234 2011Q4 73967790 44370298 23147833 62152598 215.495 151 2012Q1 75151019 44771902 23420159 55617860 221.7659 292 2012Q2 77008188 45452904 24687900 63334183 235.9369 84 2012Q3 79144631 46477591 21766862 54273474 235.8896 84 2012Q4 79081755 46682963 23659349	2009Q4	65238958	41519848	18209369	46954942	199.114	115
2010Q3 68796862 42615757 18377393 48741478 202.9034 59 2010Q4 70196996 42540596 22797226 52325184 210.6376 47 2011Q1 71058168 42585235 21845120 47941453 214.7646 140 2011Q2 71751439 42947647 23931377 52051154 241.6147 141 2011Q3 73768441 44100776 23493749 53262676 223.3591 234 2011Q4 73967790 44370298 23147833 62152598 215.495 151 2012Q1 75151019 44771902 23420159 55617860 221.7659 292 2012Q2 77008188 45452904 24687900 63334183 235.9367 147 2012Q3 79144631 46477591 21766862 54273474 235.8896 86 2013Q1 80832323 46925174 22748888 57235460 244.7297 154 2013Q2 82342847 47549286 25406517 <td>2010Q1</td> <td>65686470</td> <td>41026172</td> <td>19636643</td> <td>42933228</td> <td>200.2793</td> <td>68</td>	2010Q1	65686470	41026172	19636643	42933228	200.2793	68
2010Q4 70196996 42540596 22797226 52325184 210.6376 47 2011Q1 71058168 42585235 21845120 47941453 214.7646 140 2011Q2 71751439 42947647 23931377 52051154 241.6147 181 2011Q4 73967790 44370298 23147833 62152598 215.495 151 2012Q1 75151019 44771902 23420159 55617860 221.7659 292 2012Q2 77008188 45452904 24687900 63334183 235.9367 147 2012Q3 79144631 46477591 21766862 54273474 235.8896 84 2012Q4 79081755 46682963 23659349 68397722 232.6107 166 2013Q1 80832323 46925174 22748888 57235460 244.7297 154 2013Q2 83300161 48990690 28168626 61553777 240.4222 54 2013Q4 83505063 48985748 25530675 <td>2010Q2</td> <td>66784956</td> <td>41494285</td> <td>20377784</td> <td>41289258</td> <td>202.2255</td> <td>0</td>	2010Q2	66784956	41494285	20377784	41289258	202.2255	0
2011Q1 71058168 42585235 21845120 47941453 214.7646 140 2011Q2 71751439 42947647 23931377 52051154 241.6147 181 2011Q3 73768441 44100776 23493749 53262676 223.3591 234 2011Q4 73967790 44370298 23147833 62152598 215.495 151 2012Q1 75151019 44771902 23420159 55617860 221.7659 292 2012Q2 77008188 45452904 24687900 63334183 235.9367 147 2012Q3 79144631 46477591 21766862 54273474 235.8896 84 2012Q4 79081755 46682963 23659349 68397722 232.6107 166 2013Q1 80832323 46925174 22748888 57235460 244.7297 154 2013Q4 83300161 4899699 28168626 61553777 240.4222 54 2014Q1 84508560 48985748 25530675 <td>2010Q3</td> <td>68796862</td> <td>42615757</td> <td>18377393</td> <td>48741478</td> <td>202.9034</td> <td>59</td>	2010Q3	68796862	42615757	18377393	48741478	202.9034	59
2011Q2 71751439 42947647 23931377 52051154 241.6147 181 2011Q3 73768441 44100776 23493749 53262676 223.3591 234 2011Q4 73967790 44370298 23147833 62152598 215.495 151 2012Q1 75151019 44771902 23420159 55617860 221.7659 292 2012Q2 77008188 45452904 24687900 63334183 235.9367 147 2012Q3 79144631 46477591 21766862 54273474 235.8896 84 2012Q4 79081755 46682963 23659349 68397722 232.6107 166 2013Q1 80832323 46925174 22748888 57235460 244.7297 154 2013Q2 82342847 47549286 25406517 59351472 252.8547 45 2013Q3 84623776 48549613 24802778 55286240 255.6867 105 2013Q4 83300161 48990690 28168626 </td <td>2010Q4</td> <td>70196996</td> <td>42540596</td> <td>22797226</td> <td>52325184</td> <td>210.6376</td> <td>47</td>	2010Q4	70196996	42540596	22797226	52325184	210.6376	47
2011Q3 73768441 44100776 23493749 53262676 223.3591 234 2011Q4 73967790 44370298 23147833 62152598 215.495 151 2012Q1 75151019 44771902 23420159 55617860 221.7659 292 2012Q2 7708188 45452904 24687900 63334183 235.9367 147 2012Q4 79081755 46682963 23659349 68397722 232.6107 166 2013Q1 80832323 46925174 22748888 57235460 244.7297 154 2013Q2 82342847 47549286 25406517 59351472 252.8547 45 2013Q3 84623776 48549613 24802778 55286240 255.6867 105 2013Q4 83300161 48990690 28168626 61553777 240.4222 54 2014Q1 84508560 48985748 25530675 59068385 234.3155 99 2014Q2 86903752 49851530 28027079 <td>2011Q1</td> <td>71058168</td> <td>42585235</td> <td>21845120</td> <td>47941453</td> <td>214.7646</td> <td>140</td>	2011Q1	71058168	42585235	21845120	47941453	214.7646	140
2011Q4 73967790 44370298 23147833 62152598 215.495 151 2012Q1 75151019 44771902 23420159 55617860 221.7659 292 2012Q2 77008188 45452904 24687900 63334183 235.9367 147 2012Q3 79144631 46477591 21766862 54273474 235.8896 84 2012Q4 79081755 46682963 23659349 68397722 232.6107 166 2013Q1 80832323 46925174 22748888 57235460 244.7297 154 2013Q2 82342847 47549286 25406517 59351472 252.8547 45 2013Q3 84623776 48549613 24802778 55286240 255.6867 105 2013Q4 83300161 48990690 28168626 61553777 240.4222 54 2014Q1 84508560 48985748 25530675 59068385 234.3155 99 2014Q2 86903752 49851530 28027079 <td>2011Q2</td> <td>71751439</td> <td>42947647</td> <td>23931377</td> <td>52051154</td> <td>241.6147</td> <td>181</td>	2011Q2	71751439	42947647	23931377	52051154	241.6147	181
2012Q1 75151019 44771902 23420159 55617860 221.7659 292 2012Q2 77008188 45452904 24687900 63334183 235.9367 147 2012Q3 79144631 46477591 21766862 54273474 235.8896 84 2012Q4 79081755 46682963 23659349 68397722 232.6107 166 2013Q1 80832323 46925174 22748888 57235460 244.7297 154 2013Q2 82342847 47549286 25406517 59351472 252.8547 45 2013Q3 84623776 48549613 24802778 55286240 255.6867 105 2013Q4 83300161 48990690 28168626 61553777 240.4222 54 2014Q1 84508560 48985748 25530675 59068385 234.3155 99 2014Q2 86903752 49851530 28027079 61389034 237.9005 100 2014Q4 89643793 51611143 27490306 <td>2011Q3</td> <td>73768441</td> <td>44100776</td> <td>23493749</td> <td>53262676</td> <td>223.3591</td> <td>234</td>	2011Q3	73768441	44100776	23493749	53262676	223.3591	234
2012Q2 77008188 45452904 24687900 63334183 235.9367 147 2012Q3 79144631 46477591 21766862 54273474 235.8896 84 2012Q4 79081755 46682963 23659349 68397722 232.6107 166 2013Q1 80832323 46925174 22748888 57235460 244.7297 154 2013Q2 82342847 47549286 25406517 59351472 252.8547 45 2013Q3 84623776 48549613 24802778 55286240 255.6867 105 2013Q4 83300161 48990690 28168626 61553777 240.4222 54 2014Q1 84508560 48985748 25530675 59068385 234.3155 99 2014Q2 86903752 49851530 28027079 61389034 237.9005 100 2014Q3 88295123 51268223 27080751 55732297 237.8053 159 2015Q2 91557991 52529003 26903989 <td>2011Q4</td> <td>73967790</td> <td>44370298</td> <td>23147833</td> <td>62152598</td> <td>215.495</td> <td>151</td>	2011Q4	73967790	44370298	23147833	62152598	215.495	151
2012Q3 79144631 46477591 21766862 54273474 235.8896 84 2012Q4 79081755 46682963 23659349 68397722 232.6107 166 2013Q1 80832323 46925174 22748888 57235460 244.7297 154 2013Q2 82342847 47549286 25406517 59351472 252.8547 45 2013Q3 84623776 48549613 24802778 55286240 255.6867 105 2013Q4 83300161 48990690 28168626 61553777 240.4222 54 2014Q1 84508560 48985748 25530675 59068385 234.3155 99 2014Q2 86903752 49851530 28027079 61389034 237.9005 100 2014Q3 88295123 51268223 27080751 55732297 237.8053 159 2014Q4 89643793 51611143 27490306 62864228 243.8456 204 2015Q1 89155967 51668366 25478930 <td>2012Q1</td> <td>75151019</td> <td>44771902</td> <td>23420159</td> <td>55617860</td> <td>221.7659</td> <td>292</td>	2012Q1	75151019	44771902	23420159	55617860	221.7659	292
2012Q4 79081755 46682963 23659349 68397722 232.6107 166 2013Q1 80832323 46925174 22748888 57235460 244.7297 154 2013Q2 82342847 47549286 25406517 59351472 252.8547 45 2013Q3 84623776 48549613 24802778 55286240 255.6867 105 2013Q4 83300161 48990690 28168626 61553777 240.4222 54 2014Q1 84508560 48985748 25530675 59068385 234.3155 99 2014Q2 86903752 49851530 28027079 61389034 237.9005 100 2014Q3 88295123 51268223 27080751 55732297 237.8053 159 2014Q4 89643793 51611143 27490306 62864228 243.8456 204 2015Q1 89195967 51668366 25478930 55320116 239.2857 115 2015Q2 91557991 52529003 26903989 </td <td>2012Q2</td> <td>77008188</td> <td>45452904</td> <td>24687900</td> <td>63334183</td> <td>235.9367</td> <td>147</td>	2012Q2	77008188	45452904	24687900	63334183	235.9367	147
2012Q4 79081755 46682963 23659349 68397722 232.6107 166 2013Q1 80832323 46925174 22748888 57235460 244.7297 154 2013Q2 82342847 47549286 25406517 59351472 252.8547 45 2013Q3 84623776 48549613 24802778 55286240 255.6867 105 2013Q4 83300161 48990690 28168626 61553777 240.4222 54 2014Q1 84508560 48985748 25530675 59068385 234.3155 99 2014Q2 86903752 49851530 28027079 61389034 237.9005 100 2014Q3 88295123 51268223 27080751 55732297 237.8053 159 2014Q4 89643793 51611143 27490306 62864228 243.8456 204 2015Q1 91557991 52529003 26903989 59630678 242.4921 177 2015Q3 93615552 54004787 24667929 </td <td>2012Q3</td> <td>79144631</td> <td>46477591</td> <td>21766862</td> <td>54273474</td> <td>235.8896</td> <td>84</td>	2012Q3	79144631	46477591	21766862	54273474	235.8896	84
2013Q2 82342847 47549286 25406517 59351472 252.8547 45 2013Q3 84623776 48549613 24802778 55286240 255.6867 105 2013Q4 83300161 48990690 28168626 61553777 240.4222 54 2014Q1 84508560 48985748 25530675 59068385 234.3155 99 2014Q2 86903752 49851530 28027079 61389034 237.9005 100 2014Q3 88295123 51268223 27080751 55732297 237.8053 159 2014Q4 89643793 51611143 27490306 62864228 243.8456 204 2015Q1 89195967 51668366 25478930 55320116 239.2857 115 2015Q2 91557991 52529003 26903989 59630678 242.4921 177 2015Q3 93615552 54004787 24667929 57234572 251.2703 91 2016Q1 93791487 54558213 23452128 <td></td> <td>79081755</td> <td>46682963</td> <td>23659349</td> <td>68397722</td> <td>232.6107</td> <td>166</td>		79081755	46682963	23659349	68397722	232.6107	166
2013Q3 84623776 48549613 24802778 55286240 255.6867 105 2013Q4 83300161 48990690 28168626 61553777 240.4222 54 2014Q1 84508560 48985748 25530675 59068385 234.3155 99 2014Q2 86903752 49851530 28027079 61389034 237.9005 100 2014Q3 88295123 51268223 27080751 55732297 237.8053 159 2014Q4 89643793 51611143 27490306 62864228 243.8456 204 2015Q1 89195967 51668366 25478930 55320116 239.2857 115 2015Q2 91557991 52529003 26903989 59630678 242.4921 177 2015Q3 93615552 54004787 24667929 57234572 251.2703 91 2016Q1 93791487 54558213 23452128 53236040 236.1843 120 2016Q2 96301265 555555530 25951127<	2013Q1	80832323	46925174	22748888	57235460	244.7297	154
2013Q3 84623776 48549613 24802778 55286240 255.6867 105 2013Q4 83300161 48990690 28168626 61553777 240.4222 54 2014Q1 84508560 48985748 25530675 59068385 234.3155 99 2014Q2 86903752 49851530 28027079 61389034 237.9005 100 2014Q3 88295123 51268223 27080751 55732297 237.8053 159 2014Q4 89643793 51611143 27490306 62864228 243.8456 204 2015Q1 89195967 51668366 25478930 55320116 239.2857 115 2015Q2 91557991 52529003 26903989 59630678 242.4921 177 2015Q3 93615552 54004787 24667929 57234572 251.2703 91 2016Q1 93791487 54558213 23452128 53236040 236.1843 120 2016Q2 96301265 555555530 25951127<	2013Q2	82342847	47549286	25406517	59351472	252.8547	45
2014Q1 84508560 48985748 25530675 59068385 234.3155 99 2014Q2 86903752 49851530 28027079 61389034 237.9005 100 2014Q3 88295123 51268223 27080751 55732297 237.8053 159 2014Q4 89643793 51611143 27490306 62864228 243.8456 204 2015Q1 89195967 51668366 25478930 55320116 239.2857 115 2015Q2 91557991 52529003 26903989 59630678 242.4921 177 2015Q3 93615552 54004787 24667929 57234572 251.2703 91 2015Q4 94007693 54448411 24748037 62219522 245.667 194 2016Q1 93791487 54558213 23452128 53236040 236.1843 120 2016Q2 96301265 55555530 25951127 51738149 235.334 125 2016Q3 98515327 56780168 24054043 <td></td> <td>84623776</td> <td></td> <td>24802778</td> <td>55286240</td> <td>255.6867</td> <td>105</td>		84623776		24802778	55286240	255.6867	105
2014Q1 84508560 48985748 25530675 59068385 234.3155 99 2014Q2 86903752 49851530 28027079 61389034 237.9005 100 2014Q3 88295123 51268223 27080751 55732297 237.8053 159 2014Q4 89643793 51611143 27490306 62864228 243.8456 204 2015Q1 89195967 51668366 25478930 55320116 239.2857 115 2015Q2 91557991 52529003 26903989 59630678 242.4921 177 2015Q3 93615552 54004787 24667929 57234572 251.2703 91 2015Q4 94007693 54448411 24748037 62219522 245.667 194 2016Q1 93791487 54558213 23452128 53236040 236.1843 120 2016Q2 96301265 55555530 25951127 51738149 235.334 125 2016Q3 98515327 56780168 24054043 <td></td> <td>83300161</td> <td>48990690</td> <td>28168626</td> <td>61553777</td> <td>240.4222</td> <td>54</td>		83300161	48990690	28168626	61553777	240.4222	54
2014Q2 86903752 49851530 28027079 61389034 237.9005 100 2014Q3 88295123 51268223 27080751 55732297 237.8053 159 2014Q4 89643793 51611143 27490306 62864228 243.8456 204 2015Q1 89195967 51668366 25478930 55320116 239.2857 115 2015Q2 91557991 52529003 26903989 59630678 242.4921 177 2015Q3 93615552 54004787 24667929 57234572 251.2703 91 2015Q4 94007693 54448411 24748037 62219522 245.667 194 2016Q1 93791487 54558213 23452128 53236040 236.1843 120 2016Q2 96301265 55555530 25951127 51738149 235.334 125 2016Q3 98515327 56780168 24054043 51091686 242.7235 144 2016Q4 99227010 57218060 28852531 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>99</td>							99
2014Q4 89643793 51611143 27490306 62864228 243.8456 204 2015Q1 89195967 51668366 25478930 55320116 239.2857 115 2015Q2 91557991 52529003 26903989 59630678 242.4921 177 2015Q3 93615552 54004787 24667929 57234572 251.2703 91 2015Q4 94007693 54448411 24748037 62219522 245.667 194 2016Q1 93791487 54558213 23452128 53236040 236.1843 120 2016Q2 96301265 55555530 25951127 51738149 235.334 125 2016Q3 98515327 56780168 24054043 51091686 242.7235 144 2016Q4 99227010 57218060 28852531 57539664 243.0633 177 2017Q1 99374696 57449988 30315308 61068450 244.23 106 2017Q2 1.02E+08 58639448 27693276 <td></td> <td>86903752</td> <td>49851530</td> <td>28027079</td> <td>61389034</td> <td>237.9005</td> <td>100</td>		86903752	49851530	28027079	61389034	237.9005	100
2014Q4 89643793 51611143 27490306 62864228 243.8456 204 2015Q1 89195967 51668366 25478930 55320116 239.2857 115 2015Q2 91557991 52529003 26903989 59630678 242.4921 177 2015Q3 93615552 54004787 24667929 57234572 251.2703 91 2015Q4 94007693 54448411 24748037 62219522 245.667 194 2016Q1 93791487 54558213 23452128 53236040 236.1843 120 2016Q2 96301265 55555530 25951127 51738149 235.334 125 2016Q3 98515327 56780168 24054043 51091686 242.7235 144 2016Q4 99227010 57218060 28852531 57539664 243.0633 177 2017Q1 99374696 57449988 30315308 61068450 244.23 106 2017Q2 1.02E+08 58639448 27693276 <td>2014Q3</td> <td>88295123</td> <td>51268223</td> <td>27080751</td> <td>55732297</td> <td>237.8053</td> <td>159</td>	2014Q3	88295123	51268223	27080751	55732297	237.8053	159
2015Q2 91557991 52529003 26903989 59630678 242.4921 177 2015Q3 93615552 54004787 24667929 57234572 251.2703 91 2015Q4 94007693 54448411 24748037 62219522 245.667 194 2016Q1 93791487 54558213 23452128 53236040 236.1843 120 2016Q2 96301265 55555530 25951127 51738149 235.334 125 2016Q3 98515327 56780168 24054043 51091686 242.7235 144 2016Q4 99227010 57218060 28852531 57539664 243.0633 177 2017Q1 99374696 57449988 30315308 61068450 244.23 106 2017Q2 1.02E+08 58639448 27693276 58889945 246.1 119 2017Q3 1.04E+08 59831868 29737412 63115827 251.97 163 2018Q1 1.05E+08 60322337 29381253		89643793	51611143	27490306	62864228		204
2015Q3 93615552 54004787 24667929 57234572 251.2703 91 2015Q4 94007693 54448411 24748037 62219522 245.667 194 2016Q1 93791487 54558213 23452128 53236040 236.1843 120 2016Q2 96301265 55555530 25951127 51738149 235.334 125 2016Q3 98515327 56780168 24054043 51091686 242.7235 144 2016Q4 99227010 57218060 28852531 57539664 243.0633 177 2017Q1 99374696 57449988 30315308 61068450 244.23 106 2017Q2 1.02E+08 58639448 27693276 58889945 246.1 119 2017Q3 1.04E+08 59569853 28933398 58673576 247.13 171 2018Q1 1.05E+08 60322337 29381253 58564745 258.63 157 2018Q2 1.07E+08 61650094 29730981	2015Q1	89195967	51668366	25478930	55320116	239.2857	115
2015Q4 94007693 54448411 24748037 62219522 245.667 194 2016Q1 93791487 54558213 23452128 53236040 236.1843 120 2016Q2 96301265 55555530 25951127 51738149 235.334 125 2016Q3 98515327 56780168 24054043 51091686 242.7235 144 2016Q4 99227010 57218060 28852531 57539664 243.0633 177 2017Q1 99374696 57449988 30315308 61068450 244.23 106 2017Q2 1.02E+08 58639448 27693276 58889945 246.1 119 2017Q3 1.04E+08 59569853 28933398 58673576 247.13 171 2017Q4 1.05E+08 59831868 29737412 63115827 251.97 163 2018Q1 1.07E+08 61650094 29730981 60159886 252.01 121 2018Q4 1.11E+08 63138549 30477411	2015Q2	91557991	52529003	26903989	59630678	242.4921	177
2016Q1 93791487 54558213 23452128 53236040 236.1843 120 2016Q2 96301265 55555530 25951127 51738149 235.334 125 2016Q3 98515327 56780168 24054043 51091686 242.7235 144 2016Q4 99227010 57218060 28852531 57539664 243.0633 177 2017Q1 99374696 57449988 30315308 61068450 244.23 106 2017Q2 1.02E+08 58639448 27693276 58889945 246.1 119 2017Q3 1.04E+08 59569853 28933398 58673576 247.13 171 2017Q4 1.05E+08 59831868 29737412 63115827 251.97 163 2018Q1 1.05E+08 60322337 29381253 58564745 258.63 157 2018Q2 1.07E+08 61650094 29730981 60159886 252.01 121 2018Q4 1.11E+08 63138549 30477411	2015Q3	93615552	54004787	24667929	57234572	251.2703	91
2016Q2 96301265 55555530 25951127 51738149 235.334 125 2016Q3 98515327 56780168 24054043 51091686 242.7235 144 2016Q4 99227010 57218060 28852531 57539664 243.0633 177 2017Q1 99374696 57449988 30315308 61068450 244.23 106 2017Q2 1.02E+08 58639448 27693276 58889945 246.1 119 2017Q3 1.04E+08 59569853 28933398 58673576 247.13 171 2017Q4 1.05E+08 59831868 29737412 63115827 251.97 163 2018Q1 1.05E+08 60322337 29381253 58564745 258.63 157 2018Q2 1.07E+08 61650094 29730981 60159886 252.01 121 2018Q4 1.11E+08 63138549 30477411 64178138 271.9939 228 2019Q1 1.11E+08 63465119 29572073	2015Q4	94007693	54448411	24748037	62219522	245.667	194
2016Q3 98515327 56780168 24054043 51091686 242.7235 144 2016Q4 99227010 57218060 28852531 57539664 243.0633 177 2017Q1 99374696 57449988 30315308 61068450 244.23 106 2017Q2 1.02E+08 58639448 27693276 58889945 246.1 119 2017Q3 1.04E+08 59569853 28933398 58673576 247.13 171 2017Q4 1.05E+08 59831868 29737412 63115827 251.97 163 2018Q1 1.05E+08 60322337 29381253 58564745 258.63 157 2018Q2 1.07E+08 61650094 29730981 60159886 252.01 121 2018Q3 1.1E+08 62781384 33104131 64202076 256.6592 211 2018Q4 1.11E+08 63138549 30477411 64178138 271.9939 228 2019Q1 1.11E+08 63465119 29572073	2016Q1	93791487	54558213	23452128	53236040	236.1843	120
2016Q4 99227010 57218060 28852531 57539664 243.0633 177 2017Q1 99374696 57449988 30315308 61068450 244.23 106 2017Q2 1.02E+08 58639448 27693276 58889945 246.1 119 2017Q3 1.04E+08 59569853 28933398 58673576 247.13 171 2017Q4 1.05E+08 59831868 29737412 63115827 251.97 163 2018Q1 1.05E+08 60322337 29381253 58564745 258.63 157 2018Q2 1.07E+08 61650094 29730981 60159886 252.01 121 2018Q3 1.1E+08 62781384 33104131 64202076 256.6592 211 2018Q4 1.11E+08 63138549 30477411 64178138 271.9939 228 2019Q1 1.11E+08 63465119 29572073 58492918 257.61 130	2016Q2	96301265	55555530	25951127	51738149	235.334	125
2017Q1 99374696 57449988 30315308 61068450 244.23 106 2017Q2 1.02E+08 58639448 27693276 58889945 246.1 119 2017Q3 1.04E+08 59569853 28933398 58673576 247.13 171 2017Q4 1.05E+08 59831868 29737412 63115827 251.97 163 2018Q1 1.05E+08 60322337 29381253 58564745 258.63 157 2018Q2 1.07E+08 61650094 29730981 60159886 252.01 121 2018Q3 1.1E+08 62781384 33104131 64202076 256.6592 211 2018Q4 1.11E+08 63138549 30477411 64178138 271.9939 228 2019Q1 1.11E+08 63465119 29572073 58492918 257.61 130	2016Q3	98515327	56780168	24054043	51091686	242.7235	144
2017Q1 99374696 57449988 30315308 61068450 244.23 106 2017Q2 1.02E+08 58639448 27693276 58889945 246.1 119 2017Q3 1.04E+08 59569853 28933398 58673576 247.13 171 2017Q4 1.05E+08 59831868 29737412 63115827 251.97 163 2018Q1 1.05E+08 60322337 29381253 58564745 258.63 157 2018Q2 1.07E+08 61650094 29730981 60159886 252.01 121 2018Q3 1.1E+08 62781384 33104131 64202076 256.6592 211 2018Q4 1.11E+08 63138549 30477411 64178138 271.9939 228 2019Q1 1.11E+08 63465119 29572073 58492918 257.61 130		99227010	57218060	28852531	57539664	243.0633	177
2017Q2 1.02E+08 58639448 27693276 58889945 246.1 119 2017Q3 1.04E+08 59569853 28933398 58673576 247.13 171 2017Q4 1.05E+08 59831868 29737412 63115827 251.97 163 2018Q1 1.05E+08 60322337 29381253 58564745 258.63 157 2018Q2 1.07E+08 61650094 29730981 60159886 252.01 121 2018Q3 1.1E+08 62781384 33104131 64202076 256.6592 211 2018Q4 1.11E+08 63138549 30477411 64178138 271.9939 228 2019Q1 1.11E+08 63465119 29572073 58492918 257.61 130							106
2017Q3 1.04E+08 59569853 28933398 58673576 247.13 171 2017Q4 1.05E+08 59831868 29737412 63115827 251.97 163 2018Q1 1.05E+08 60322337 29381253 58564745 258.63 157 2018Q2 1.07E+08 61650094 29730981 60159886 252.01 121 2018Q3 1.1E+08 62781384 33104131 64202076 256.6592 211 2018Q4 1.11E+08 63138549 30477411 64178138 271.9939 228 2019Q1 1.11E+08 63465119 29572073 58492918 257.61 130						246.1	119
2017Q4 1.05E+08 59831868 29737412 63115827 251.97 163 2018Q1 1.05E+08 60322337 29381253 58564745 258.63 157 2018Q2 1.07E+08 61650094 29730981 60159886 252.01 121 2018Q3 1.1E+08 62781384 33104131 64202076 256.6592 211 2018Q4 1.11E+08 63138549 30477411 64178138 271.9939 228 2019Q1 1.11E+08 63465119 29572073 58492918 257.61 130	_			28933398			171
2018Q1 1.05E+08 60322337 29381253 58564745 258.63 157 2018Q2 1.07E+08 61650094 29730981 60159886 252.01 121 2018Q3 1.1E+08 62781384 33104131 64202076 256.6592 211 2018Q4 1.11E+08 63138549 30477411 64178138 271.9939 228 2019Q1 1.11E+08 63465119 29572073 58492918 257.61 130		1.05E+08		29737412			163
2018Q2 1.07E+08 61650094 29730981 60159886 252.01 121 2018Q3 1.1E+08 62781384 33104131 64202076 256.6592 211 2018Q4 1.11E+08 63138549 30477411 64178138 271.9939 228 2019Q1 1.11E+08 63465119 29572073 58492918 257.61 130		1.05E+08					157
2018Q3 1.1E+08 62781384 33104131 64202076 256.6592 211 2018Q4 1.11E+08 63138549 30477411 64178138 271.9939 228 2019Q1 1.11E+08 63465119 29572073 58492918 257.61 130							121
2018Q4 1.11E+08 63138549 30477411 64178138 271.9939 228 2019Q1 1.11E+08 63465119 29572073 58492918 257.61 130		1.1E+08	62781384	33104131	64202076		211
2019Q1 1.11E+08 63465119 29572073 58492918 257.61 130							228
						257.61	130
2019Q2 1.13E+08 648/50/0 29552226 59/00028 254.6804 143	2019Q2	1.13E+08	64875070	29552226	59700028	254.6804	143

2019Q3	1.16E+08	65740295	29074136	61026630	264.6938	218
2019Q4	1.17E+08	66070293	30007276	62805997	284.4583	228
2020Q1	1.14E+08	66108502	27828903	59027213	269.3345	256
2020Q2	1.05E+08	61422639	27090463	52556779	210.4797	291
2020Q3	1.1E+08	63078950	28661271	53892343	232.3277	405
2020Q4	1.13E+08	64301074	29942540	56577592	248.1311	419
2021Q1	1.14E+08	64952702	31560334	57181004	265.5705	404
2021Q2	1.14E+08	65033370	31775082	57390705	271.0767	285

Lampiran 2. Output Visualisasi Data

Lampiran 3. Output Hasil Var Uji LLC

Group unit root test: Summary

Series: PDRBRIIL, KONS_RIIL, IBS, EXPORBRG, IMPORBRG, NAKER,

GT

Date: 08/20/21 Time: 22:11 Sample: 2008Q1 2021Q3

Exogenous variables: Individual effects, individual linear trends

Automatic selection of maximum lags

Automatic lag length selection based on SIC: 0 to 9

Newey-West automatic bandwidth selection and Bartlett kernel

			Cross-				
Method	Statistic	Prob.**	sections	Obs			
Null: Unit root (assumes comm	on unit root p	rocess)					
Levin, Lin & Chu t*	-3.30761	0.0005	7	354			
Breitung t-stat	-2.23416	0.0127	7	347			
Null: Unit root (assumes individual unit root process)							
Im, Pesaran and Shin W-stat	-4.07271	0.0000	7	354			
ADF - Fisher Chi-square	46.6832	0.0000	7	354			
PP - Fisher Chi-square	40.4285	0.0002	7	372			

^{**} Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Lampiran 4. Output Panjang Lag

VAR Lag Order Selection Criteria Endogenous variables: LOG(PDRBRIIL) LOG(KONS_RIIL) LOG(IBS) LOG(EXPORBRG)

LOG(IMPORBRG) LOG(NAKER) Exogenous variables: C GT Date: 08/20/21 Time: 22:13 Sample: 2008Q1 2021Q3 Included observations: 48

Lag	LogL	LR	FPE	AIC	SC	HQ
0 1 2 3 4 5	464.4803 643.5294 707.3205 754.9964 803.5127 866.0022	NA 298.4152 90.37076 55.62190 44.47326 41.65962	2.61e-16 6.87e-19 2.35e-19 1.80e-19 1.68e-19 1.34e-19	-18.85335 -24.81373 -25.97169 -26.45819 -26.97970 -28.08342	-18.38554 -22.94252* -22.69709 -21.78018 -20.89829 -20.59862	-18.67656 -24.10660 -24.73421 -24.69036 -24.68153 -25.25490
6	990.2612	51.77460*	1.96e-20*	-31.76088*	-22.87268	-28.40202*

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

Lampiran 5. Estimasi Var

Vector Autoregression Estimates
Date: 08/20/21 Time: 22:14
Sample (adjusted): 2008Q2 2021Q2
Included observations: 53 after adjustments
Standard errors in () & t-statistics in []

	LOG(PDRBRII L)	OG(KONS_RI IL) LOG(IBS)		LOG(EXPORB LOC RG)		
LOG(PDRBRIIL(-1))	1.135434	0.414721	1.684566	1.391282	1.66	
(.,,	(0.22962)	(0.18919)	(0.58889)	(0.93028)	(1.10	
	[4.94484]	[2.19211]	[2.86056]	[1.49555]	[1.4:	
LOG(KONS_RIIL(-1))	-0.220691	0.510283	-1.698804	-1.334260	-2.09	
	(0.22715)	(0.18716)	(0.58257)	(0.92029)	(1.1	
	[-0.97155]	[2.72652]	[-2.91607]	[-1.44983]	[-1.8	
LOG(IBS(-1))	-0.225020	-0.135118	0.081650	-0.044858	0.30	
	(0.06661)	(0.05488)	(0.17083)	(0.26986)	(0.3	
	[-3.37821]	[-2.46203]	[0.47796]	[-0.16623]	[0.8	
LOG(EXPORBRG(-1))	0.078212	0.064485	0.073107	0.458800	0.19	
	(0.03962)	(0.03264)	(0.10161)	(0.16052)	(0.2	
	[1.97405]	[1.97542]	[0.71948]	[2.85828]	[0.9	
LOG(IMPORBRG(-1))	-0.029558	-0.061603	-0.003695	-0.242093	0.01	
	(0.03382)	(0.02786)	(0.08673)	(0.13700)	(0.1	
	[-0.87408]	[-2.21103]	[-0.04261]	[-1.76706]	[0.1	
LOG(NAKER(-1))	0.136166	0.041054	0.095511	0.381827	0.25	
	(0.05522)	(0.04549)	(0.14161)	(0.22371)	(0.2	
	[2.46599]	[0.90238]	[0.67445]	[1.70680]	[0.9	
С	-0.119472	1.259419	1.795340	6.417407	15.5	
	(0.80723)	(0.66509)	(2.07026)	(3.27042)	(4.1)	
	[-0.14800]	[1.89360]	[0.86721]	[1.96226]	[3.7!	
GT	-3.29E-05	-2.38E-05	-4.87E-06	6.08E-05	0.00	
	(3.2E-05)	(2.7E-05)	(8.3E-05)	(0.00013)	(0.0)	
	[-1.02161]	[-0.89529]	[-0.05894]	[0.46546]	[0.8	
R-squared	0.994890	0.995113	0.864704	0.886327	0.66	
Adj. R-squared	0.994095	0.994353	0.843657	0.868644	0.61	
Sum sq. resids S.E. equation	0.011534 0.016010	0.007830 0.013191	0.075862 0.041059	0.189313 0.064861	0.29 0.08	
F-statistic	1251.548	1309.028	41.08614	50.12448	12.6	
Log likelihood	148.2647	158.5300	98.34825	74.11430	62.0	
Akaike AIC	-5.293006	-5.680376	-3.409368	-2.494879	-2.03	
Schwarz SC	-4.995604	-5.382974	-3.111965	-2.197477	-1.74	
Mean dependent	18.28324	17.75393	5.455980	17.03223	17.8	
S.D. dependent	0.208335	0.175529	0.103841	0.178962	0.13	
Determinant resid covariar	nce (dof adj.)	2.51E-19				
Determinant resid covariance		9.41E-20				
Log likelihood		709.7352				
Akaike information criterion		-24.97114				
Schwarz criterion		-23.18672				
Number of coefficients		48				

Lampiran 6. Output Stabilitas Koefisien VAR

Inverse Roots of AR Characteristic Polynomial

Lampiran 7. Output Bayesian Var

Bayesian VAR Estimates
Date: 08/20/21 Time: 22:32
Sample (adjusted): 2008Q2 2021Q2
Included observations: 53 after adjustments

Prior type: Normal-Wishart Hyper-parameters: Mu: 0, L1: 0.1 Standard errors in () & t-statistics in []

	LOG(PDRBRI	I LOG(KONS_R IL)	LOG(EXPORE RG)	ORB LOG(II) R	
LOG(PDRBRIIL(-1))	0.429709	0.354618	0.156134	0.159592	-0.09
	(0.46332)	(0.46313)	(0.47092)	(0.48417)	(0.5)
	[0.92746]	[0.76569]	[0.33155]	[0.32962]	[-0.1)
LOG(KONS_RIIL(-1))	0.336316	0.466770	-0.154319	0.134605	0.14
	(0.44652)	(0.44634)	(0.45385)	(0.46662)	(0.49
	[0.75319]	[1.04576]	[-0.34002]	[0.28847]	[0.29
LOG(IBS(-1))	0.056720	-0.119135	0.362432	0.022885	-0.10
	(0.38573)	(0.38558)	(0.39207)	(0.40309)	(0.4)
	[0.14704]	[-0.30897]	[0.92441]	[0.05677]	[-0.2]
LOG(EXPORBRG(-1))	0.138340	0.087698	0.127379	0.334310	0.15
	(0.36404)	(0.36389)	(0.37001)	(0.38042)	(0.39
	[0.38002]	[0.24100]	[0.34425]	[0.87879]	[0.38
LOG(IMPORBRG(-1))	-0.049669	0.006371	-0.032709	0.024902	0.47
	(0.26613)	(0.26603)	(0.27050)	(0.27811)	(0.29
	[-0.18663]	[0.02395]	[-0.12092]	[0.08954]	[1.63
LOG(NAKER(-1))	0.182977	0.136377	0.124118	0.369793	0.43
	(0.41072)	(0.41055)	(0.41746)	(0.42920)	(0.48
	[0.44551]	[0.33218]	[0.29732]	[0.86159]	[0.9
С	-0.011527	0.038039	-0.055543	0.034794	0.13
	(0.62377)	(0.62352)	(0.63401)	(0.65184)	(0.6)
	[-0.01848]	[0.06101]	[-0.08761]	[0.05338]	[0.2)
GT	6.06E-05	-3.90E-05	8.63E-05	9.45E-06	-0.00
	(0.00034)	(0.00034)	(0.00035)	(0.00036)	(0.0)
	[0.17786]	[-0.11452]	[0.24910]	[0.02653]	[-0.5
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Mean dependent S.D. dependent	0.991199	0.990462	0.818155	0.870787	0.51
	0.989830	0.988978	0.789868	0.850688	0.43
	0.019865	0.015282	0.101962	0.215193	0.43
	0.021010	0.018428	0.047601	0.069152	0.09
	723.9789	667.5495	28.92332	43.32330	6.77
	18.28324	17.75393	5.455980	17.03223	17.8
	0.208335	0.175529	0.103841	0.178962	0.13

Lampiran 8. Output Stabilitas Koefisien Bayesian Var

Inverse Roots of AR Characteristic Polynomial

Lampiran 9. Output Evaluasi Peramalan Bayesian VAR

Forecast Evaluation

Date: 08/20/21 Time: 22:35 Sample: 2008Q1 2021Q3 Included observations: 55

Variable	Inc. obs.	RMSE	MAE	MAPE	Theil
EXPORBRG IBS IMPORBRG KONS_RIIL NAKER PDRBRIIL	54	2052792.	1693852.	7.043082	0.040633
	54	14.80852	12.18613	5.231633	0.031523
	54	6436112.	5041142.	9.738796	0.058363
	54	2123455.	1646527.	3.058039	0.020412
	54	133090.9	107504.0	4.750121	0.027387
	54	5019136.	3914872.	4.290119	0.028187

RMSE: Root Mean Square Error MAE: Mean Absolute Error

MAPE: Mean Absolute Percentage Error

Theil: Theil inequality coefficient

Lampiran 10. Output Hasil Peramalan Bayesian VAR-X

PDRBRIIL FN KONS RIIL FN EXPORBRG FN IMPORBRG FN IBS FN NAKER FN 2008Q1 2008Q2 60557913.99220159 37651535.75539878 18458126.24945914 44069851.80432222 199.2450392414509 1874447.09983476 2008Q3 62069260.58955339 37880151.56240881 18576328.09621478 43632137.83222324 205.3415797422751 1902899.711881375 2008Q4 43399049.01707644 209.1189573016368 1919644.005101668 63287912.55417589 38257140.59352742 18820266.89021238 2009Q1 63945117.57016964 38856792.71292357 19035589.54561301 44409212.53679238 209.6231749125653 1939513.133601912 2009Q2 64913573.06158489 39298822.41147653 19273771.03172893 44747492.95315034 210.9274686692571 1960033.029976664 2009Q3 66354016.47696632 39585001.61175998 19536865.55602648 43872409.73711736 214.5373857633098 1972704.85709397 2009Q4 67213393.54168466 40129664.76608001 19746397.44437614 44188901.46776672 215.8142963160466 1985773.498203999 2010Q1 67884803.99139519 40693429.53728973 19940302.52174352 45010213.22369536 215.8009466449098 2004439.020189183 2010Q2 68360710.1432823 41306268.28782286 20140812.34949626 46400632.31191352 214.7915577330918 2028999.566544727 2010Q3 69285784.79700789 41739886.66742059 20387692.46892465 46879927.39723966 215.6454650405513 2052359.393207149 2010Q4 70126092.2367631 42257795.73314953 20635679.66625722 47550054.59394129 216.4071845987525 2074220.187521308 2011Q1 71404932.70046784 42621827.05547177 20902697.46330827 47215142.09624042 218.9483647020595 2091129.373270794 2011Q2 72659236.63816414 43033461.71605035 21151185.45329591 46808060.98700323 221.6234940218517 2103448.136398588 2011Q3 73960965.72365965 43419423.16418654 21379973.72967029 46201329.5837202 224.4624901858638 2112738.110661977 2011Q4 74649474.26303716 44016091.08685476 21561275.06047939 46848395.05840495 224.729498746665 2126764.119637088 45947939.80590265 227.7570572865736 2136974.570708892 2012Q1 76071911.1724074 44269667.86792986 21784321.59560972 2012Q2 76474277.84275428 44932915.45498436 21947224.08539228 47065514.66347356 227.0605083093211 2152400.859272321 2012Q3 76813671.56899735 45540100.17184701 22121894.54655757 48576360.78951663 225.4850476193533 2176758.141617056 2012Q4 77786072.367222 45901130.14213415 22360475.43005754 48834394.59441843 226.5125042927472 2198491.053470456 49354471.03719057 227.3712100725761 2217723.340957606 2013Q1 78617376.50010789 46381123.74663024 22595435.54779338 2013Q2 78947209.12890659 47063255.3211782 22802736.50521623 51092161.58115419 226.0302387814122 2243368.606155589 2013Q3 79873103.86678812 47500718.14081711 23060287.77179764 51707506.19357314 226.6851983958198 2268638.874052933 2013Q4 80530994.20747915 48107231.94723631 23312685.11533701 52936025.62468473 226.5649277041866 2294311.974870623 2014Q1 81575650.8551452 48579898.24276812 23589762.56495199 53410274.78514877 227.7072726060986 2318167.021145799 2014Q2 82581654.94211761 49117215.80012353 23862482.83406368 53946295.57147411 228.8280107770794 2340077.297797731 2014Q3 83883142.20780726 49558701.16926599 24142750.88210321 53810094.34413982 230.9874469316346 2358229.946552292 2014Q4 85248392.58184755 50002181.10553635 24410724.1973969 53423986.76109129 233.5137488825094 2372116.323545488 2015Q1 85942908.67346195 50696151.15869875 24628104.8050627 54451685.53277431 233.4618400052283 2391073.813825362 2015Q2 87120151.3006271 51149496.39309315 24878430.74431033 54529712.39279515 234.8442961477594 2410215.600130066 2015Q3 87710049.39570998 51850707.63544658 25104782.68229811 55856911.51835398 234.3045754232809 2433327.899942623 2015Q4 89071043.38103816 52228123.17792295 25382110.57596597 55623000.09427195 236.3186875353889 2452986.918221978 2016Q1 89809415.5380087 52898165.91313962 25623726.39195924 56644139.00077546 236.4454145766365 2474048.564397076 2016Q2 90724685.71605972 53468897.96618326 25878007.6721307 57426956.83747785 236.8288879520231 2497595.81994238 2016Q3 91785763.83043762 54001715.23605816 26149204.39358552 57910224.80472255 237.8111032443854 2519894.941971452 2016Q4 93007148.64950165 54498143.77906905 26427274.1225479 58028711.04051209 239.4314360387607 2539289.229949185 2017Q1 93717014.10713296 55206104.34559209 26672814.95485927 59257055.38639586 239.244159807983 2562514.399611739 2017Q2 94683193.33309316 55788430.74458206 26941850.90198448 60074657.36263338 239.6408357843499 2587740.586281166 2017Q3 95987658.35572449 56270954.4588288 27237054.99938216 60146554.25795344 241.3522931930249 2608931.69747198 2017Q4 97111016.33634566 56859909.14903579 27514066.653163 60552748.74317482 242.5760102703715 2628743.995803537 2018Q1 98172805.63846416 57464664.15506389 27781294.27000689 61113819.19395956 243.4345058322054 2649733.461084821 62186207.16134805 243.4723212773052 2674036.572871589 2018Q2 99019054.59314596 58144986.71713742 28040924.63785513 2018Q3 100536147.9254742 58563890.98073419 28343344.19698232 61855050.67209509 245.6971803757273 2693643.947554563 2018Q4 101910804.3235554 59087362.69661748 28625810.26706069 61677899.56456681 247.7890771361816 2708962.541841022 2019Q1 102515907.3901913 59884965.61510194 28854984.49307548 63134899.34853859 247.1513511916639 2731473.906491041 2019Q2 103458545.0523866 60494947.87639928 64070609.28372936 247.2310175058566 2757680.548024361 29119373.293316 2019Q3 104936555.1467049 60932515.19484978 29426370.43813422 63849398.09397448 249.2966720861742 2777998.925910653 2019Q4 106263219.8321723 61477951.32463996 29711809.83454272 63832747.56315754 251.1335775310003 2794625.814603018 2020Q1 107648266.9935067 61990738.10359676 29982358.0127148 63645617.64342725 253.0601826160205 2809575.961404204 2020Q2 109088427.6016048 62469727.48246748 30241941.64828531 63247042.56682666 255.2059144190522 2822149.455420226 2020Q3 111071044.5697004 62731156.91489369 30509371.5119025 61624797.59367895 259.2296504358525 2826484.411635072 2020Q4 112599761.8407251 63155538.69761446 30717256.29071158 60631118.66316988 262.1513239036568 2827540.090419736 2021Q1 113695356.3676091 63649287.73426311 30877627.7906445 60342361.87353658 263.5455487330401 2832125.574122036 113822805.6957204 64400135.31470615 30995548.63601044 61878089.94466308 261.7027352358444 2848932.792397165 2021Q2 2021Q3 114250756.4091352 64944569.41965951 31169166.93288973 63113653.11798764 260.4791835775795 2872617.255642886