Regularized Bayesian Inference

when Bayes meets Optimization and Learning

Jun Zhu

dcszj@mail.tsinghua.edu.cn
Department of Computer Science and Technology
Tsinghua University

Fudan University, Nov 3, 2013

Outline

RegBayes: Regularized Bayesian inference

Example of max-margin supervised topic modeling

Bayesian Inference

A coherent framework of dealing with uncertainties

$$p(\mathcal{M}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})}{\int p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})d\mathcal{M}}$$

- *M*: a model from some hypothesis space
- x: observed data

Thomas Bayes (1702 - 1761)

Bayes' rule offers a mathematically rigorous computational mechanism for combining prior knowledge with incoming evidence

Why Be Bayesian?

- One of many answers
- Infinite Exchangeability:

$$\forall n, \ \forall \sigma, \ p(x_1, \dots, x_n) = p(x_{\sigma(1)}, \dots, x_{\sigma(n)})$$

De Finetti's Theorem (1955): if $(x_1, x_2,...)$ are infinitely exchangeable, then ∀n

$$p(x_1, \dots, x_n) = \int \left(\prod_{i=1}^n p(x_i|\theta)\right) dP(\theta)$$

for some random variable θ

Bayes' Theorem in the 21st Century

- ♦ This year marks the 250th Anniversary of Bayes' theorem
- Stradley Efron, Science 7 June 2013: Vol. 340 no. 6137 pp. 1177-1178

"There are two potent arrows in the statistician's quiver

there is no need to go hunting armed with only one."

Parametric Bayesian Inference

 ${\mathcal M}$ is represented as a finite set of parameters θ

- \bullet A parametric likelihood: $\mathbf{x} \sim p(\cdot|\theta)$
- \bullet Prior on θ : $\pi(\theta)$
- Posterior distribution

$$p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}|\theta)\pi(\theta)}{\int p(\mathbf{x}|\theta)\pi(\theta)d\theta} \propto p(\mathbf{x}|\theta)\pi(\theta)$$

Examples:

- Gaussian distribution prior + 2D Gaussian likelihood
- → Gaussian posterior distribution
- Dirichlet distribution prior + 2D Multinomial likelihood → Dirichlet posterior distribution
- Sparsity-inducing priors + some likelihood models
- → Sparse Bayesian inference

Nonparametric Bayesian Inference

 $\mathcal M$ is a richer model, e.g., with an infinite set of parameters

- \wedge A nonparametric likelihood: $\mathbf{x} \sim p(\cdot | \mathcal{M})$
- \bullet Prior on $\mathcal{M}: \pi(\mathcal{M})$
- Posterior distribution

$$p(\mathcal{M}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})}{\int p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})d\mathcal{M}} \propto p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})$$

Examples:

 \rightarrow see next slide

Nonparametric Bayesian Inference

binary matrix

 ∞

Dirichlet Process Prior [Ferguson, 1973] + Multinomial/Gaussian/Softmax likelihood Indian Buffet Process Prior [Griffiths & Gharamani, 2005] + Gaussian/Sigmoid/Softmax likelihood

Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006] + Gaussian/Sigmoid/Softmax likelihood

Why Bayesian Nonparametrics?

Let the data speak for itself

- Bypass the model selection problem
 - let data determine model complexity (e.g., the number of components in mixture models)
 - allow model complexity to grow as more data observed

Bayesian Inference with Rich Priors

- The world is structured and dynamic!
- Predictor-dependent processes to handle heterogeneous data
 - Dependent Dirichlet Process (MacEachern, 1999)
 - Dependent Indian Buffet Process (Williamson et al., 2010)
- Correlation structures to relax exchangeability:
 - Processes with hierarchical structures (Teh et al., 2007)
 - □ Processes with temporal or spatial dependencies (Beal et al., 2002; Blei & Frazier, 2010)
 - Processes with stochastic ordering dependencies (Hoff et al., 2003; Dunson & Peddada, 2007)

Challenges of Bayesian Inference

Building an Automated Statistician

- Modeling
 - scientific and engineering data
- Inference/learning
 - discriminative learning
 - large-scale inference algorithms for Big Data
- Applications

Regularized Bayesian Inference?

- Can we directly control the posterior distributions?
 - An extra freedom to perform Bayesian inference
 - Arguably more direct to control the behavior of models
 - Can be easier and more natural in some examples

Regularized Bayesian Inference?

Can we directly control the posterior distributions?

Not obvious!

hard constraints

(A single feasible space)

soft constraints

(many feasible subspaces with different complexities/penalties)

Bayesian Inference as an Opt. Problem

Wisdom never forgets that all things have two sides

$$p(\mathcal{M}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})}{\int p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})d\mathcal{M}}$$

Bayes' rule is equivalent to solving:

$$\min_{q(\mathcal{M})} \operatorname{KL}(q(\mathcal{M}) || \pi(\mathcal{M})) - \mathbb{E}_{q(\mathcal{M})}[\log p(\mathbf{x} | \mathcal{M})]$$

s.t.:
$$q(\mathcal{M}) \in \mathcal{P}_{\text{prob}}$$
,

Regularized Bayesian Inference

Constraints can encode rich structures/knowledge

Bayesian inference with posterior regularization:

$$\min_{q(\mathcal{M}),\xi} KL(q(\mathcal{M})||\pi(\mathcal{M})) - \mathbb{E}_{q(\mathcal{M})}[\log p(\mathbf{x}|\mathcal{M})] + U(\xi)$$
s.t.: $q(\mathcal{M}) \in \mathcal{P}_{post}(\xi)$,
$$\text{convex function}$$

direct and rich constraints on posterior distribution

- Consider both hard and soft constraints
- Convex optimization problem with nice properties
- Can be effectively solved with convex duality theory

Regularized Bayesian Inference

Constraints can encode rich structures/knowledge

Bayesian inference with posterior regularization:

'unconstrained' equivalence:

$$\min_{q(\mathcal{M})} \quad \text{KL}(q(\mathcal{M}) || \pi(\mathcal{M})) - \mathbb{E}_{q(\mathcal{M})}[\log p(\mathbf{x} | \mathcal{M})] + \Omega(q(\mathcal{M}))$$
s.t.: $q(\mathcal{M}) \in \mathcal{P}_{\text{prob}}$,
$$posterior regularization$$

- Consider both hard and soft constraints
- Convex optimization problem with nice properties
- Can be effectively solved with convex duality theory

A High-Level Comparison

Bayes:

RegBayes:

Ways to Derive Posterior Regularization

- From learning objectives
 - Performance of posterior distribution can be evaluated when applying it to a learning task
 - Learning objective can be formulated as Pos. Reg.
- From domain knowledge (ongoing & future work)
 - Elicit expert knowledge
 - E.g., logic rules
- Others ... (ongoing & future work)
 - □ E.g., decision making, cognitive constraints, etc.

PAC-Bayes Theory

- Basic Setup:
 - $f Binary classification: \ {f x} \in \mathbb{R}^d \ y \in \mathcal{Y} = \{-1, +1\}$
 - Unknown, true data distribution: $(\mathbf{x}, y) \sim D$
 - $lue{}$ Hypothesis space: ${\cal H}$
 - Risk, & Empirical Risk:

$$R(h) = \mathbb{E}_{(\mathbf{x},y)\sim D}I(h(\mathbf{x}) \neq y) \quad R_S(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\mathbf{x}_i) \neq y_i)$$

- lacktriangle Learn a posterior distribution Q
- Bayes/majority-vote classifier:

$$B_Q(\mathbf{x}) = \operatorname{sgn}\left[\mathbb{E}_{h\sim Q}h(\mathbf{x})\right]$$

- Gibbs classifier
 - sample an $h \sim Q$, perform prediction

$$R(G_Q) = \mathbb{E}_{h \sim Q} R(h) \quad R_S(G_Q) = \mathbb{E}_{h \sim Q} R_S(h)$$

PAC-Bayes Theory

- ♦ Theorem (Germain et al., 2009):
 - $\hfill \hfill \hfill$

$$\phi: [0,1] \times [0,1] \to \mathbb{R}$$

• for any posterior Q , for any $\delta \in (0,1]$, the following inequality holds with a high probability ($\geq 1-\delta$)

$$\phi\left(R_S(G_Q), R(G_Q)\right) \le \frac{1}{N} \left[\text{KL}(Q||P) + \ln\left(\frac{C(N)}{\delta}\right) \right]$$

• where
$$C(N) = \mathbb{E}_{S \sim D^N} \mathbb{E}_{h \sim P} \left[e^{N\phi(R_S(h), R(h))} \right]$$

RegBayes Classifiers

PAC-Bayes theory

$$\phi\left(R_S(G_Q), R(G_Q)\right) \le \frac{1}{N} \left[\text{KL}(Q||P) + \ln\left(\frac{C(N)}{\delta}\right) \right]$$

RegBayes inference

$$\min_{q(\mathcal{H})} KL(q(\mathcal{H})||p(\mathcal{H}|\mathbf{x})) + \Omega(q(\mathcal{H}))$$
s.t.: $q(\mathcal{H}) \in \mathcal{P}_{\text{prob}}$,

- Observations:
 - when the posterior regularization equals to (or upper bounds) the empirical risk

$$\Omega(q(\mathcal{H})) \ge R_S(G_q)$$

• the RegBayes classifiers tend to have PAC-Bayes guarantees.

RegBayes with Max-margin Posterior

Posterior Regularization

Infinite SVMs

(Zhu, Chen & Xing, ICML'11)

Nonparametric Max-margin Relational Models for Social Link Prediction (Zhu, ICML'12)

Infinite Latent SVMs

(Zhu, Chen & Xing, NIPS'11; Zhu, Chen, & Xing, arXiv 2013)

(Zhu, Ahmed & Xing, ICML'09, JMLR'12; Jiang, Zhu, Sun & Xing, NIPS'12; Zhu, Chen, Perkins & Zhang, ICML'13)

Nonparametric Max-margin Matrix Factorization

(Xu, Zhu, & Zhang, NIPS'12; Xu, Zhu, & Zhang, ICML'13)

Multimodal Representation Learning

(Chen, Zhu & Xing, NIPS'10, Chen, Zhu, Sun & Xing, PAMI'12)

*Works from other groups are not included.

Latent Dirichlet Allocation

-- a generative story for documents

- ♦ A Bayesian mixture model with topical bases
- Each document is a random mixture over topics; Each word is generated by ONE topic

Bayesian Inference for LDA

$$p(\Theta, \Phi, \mathbf{Z}, \mathbf{W} | \alpha, \beta) = \prod_{k=1}^{K} p(\Phi_k | \beta) \prod_{d=1}^{D} p(\theta_d | \alpha) \left(\prod_{n=1}^{N} p(z_{dn} | \theta_d) p(w_{dn} | z_{dn}, \Phi) \right)$$

• Given a set of documents, infer the posterior distribution

$$p(\Theta, \Phi, \mathbf{Z} | \mathbf{W}, \alpha, \beta) = \frac{p(\Theta, \Phi, \mathbf{Z}, \mathbf{W} | \alpha, \beta)}{p(\mathbf{W} | \alpha, \beta)}$$

Approximate Inference

♦ Variational Inference (Blei et al., 2003; Teh et al., 2006)

- Monte Carlo Markov Chains (Griffiths & Steyvers, 2004)
 - Collapsed Gibbs samplers iteratively draw samples from the local conditionals

$$p(z_{dn}^k = 1|Z_\neg)$$

Optimization Problem for LDA

Bayes' rule

$$p(\Theta, \Phi, \mathbf{Z} | \mathbf{W}, \alpha, \beta) = \frac{p(\Theta, \Phi, \mathbf{Z} | \alpha, \beta) p(\mathbf{W} | \mathbf{Z}, \Phi)}{p(\mathbf{W} | \alpha, \beta)}$$

Optimization problem

$$\min_{q(\Theta,\Phi,\mathbf{Z})} \text{KL}(q(\Theta,\Phi,\mathbf{Z})||p(\Theta,\Phi,\mathbf{Z}|\alpha,\beta)) - \mathbb{E}_q[\log p(\mathbf{W}|\mathbf{Z},\Phi)]$$
s.t: $q(\Theta,\Phi,\mathbf{Z}) \in \mathcal{P}$

- Assume q is in the factorized family and solve this problem with coordinate descent
 - * variational mean-field algorithm (Blei et al., 2003)
- Solve this problem, collapse Dirichlet variables and do Gibbs sampling
 - collapsed Gibbs sampling (Griffiths & Steyvers, 2004)

LDA has been widely extended ...

- ♦ LDA can be embedded in more complicated models, capturing rich structures of the texts
- Extensions are either on
 - Priors: e.g., Markov process prior for dynamic topic models, logisticnormal prior for corrected topic models, etc

Likelihood models: e.g., relational topic models, multi-view topic

models, etc.

◆ Tutorials were provide by D. Blei at ICML, SIGKDD, etc. (http://www.cs.princeton.edu/~blei/topicmodeling.html)

Supervised LDA with Rich Likelihood

• Following the standard Bayes' way of thinking, sLDA defines a richer likelihood model

$$p(\mathbf{y}, \mathbf{W} | \mathbf{Z}, \Phi, \eta, \alpha, \beta) = p(\mathbf{y} | \mathbf{Z}, \eta) p(\mathbf{W} | \mathbf{Z}, \Phi, \alpha, \beta)$$

• per-document likelihood $y_d \in \{0, 1\}$

$$p(y_d|\mathbf{z}_d, \eta) = \frac{\{\exp(\eta^\top \bar{\mathbf{z}}_d)\}^{y_d}}{1 + \exp(\eta^\top \bar{\mathbf{z}}_d)} \quad \bar{z}_k = \frac{1}{N} \sum_{n=1}^N \mathbb{I}(z_n^k = 1)$$

■ both variational and Monte Carlo methods can be developed (Blei & McAuliffe, NIPS'07; Wang et al., CVPR'09; Zhu et al., ACL 2013)

Imbalance Issue with sLDA

- A document has hundreds of words
- ... but only one class label
- Imbalanced likelihood combination

$$p(\mathbf{y}, \mathbf{W} | \mathbf{Z}, \Phi, \eta) = p(\mathbf{y} | \mathbf{Z}, \eta) p(\mathbf{W} | \mathbf{Z}, \Phi)$$

Too weak influence from supervision

(Halpern et al., ICML 2012; Zhu et al., ACL 2013)

Max-margin Supervised Topic Models

- Can we learn supervised topic models in a max-margin way?
- How to perform posterior inference?
 - Can we do variational inference?
 - □ Can we do Monte Carlo?
- How to generalize to nonparametric models?

MedLDA:

Max-margin Supervised Topic Models

- Two components
 - An LDA likelihood model for describing word counts
 - □ An max-margin classifier for considering supervising signal
- Challenges
 - How to consider uncertainty of latent variables in defining the classifier?
- Nice work that has inspired our design
 - Bayes classifiers (McAllester, 2003; Langford & Shawe-Taylor, 2003)
 - Maximum entropy discrimination (MED) (Jaakkola, Marina & Jebara, 1999; Jebara's Ph.D thesis and book)

MedLDA:

Max-margin Supervised Topic Models

- The averaging classifier
 - The hypothesis space is characterized by (η, Z)
 - Infer the posterior distribution

$$q(\eta, Z|\mathbf{y}, \mathbf{W})$$

• q-weighted averaging classifier ($y_d \in \{-1, 1\}$)

$$\hat{y} = \operatorname{sign} f(\mathbf{w}) = \operatorname{sign} \mathbb{E}_q[f(\eta, \mathbf{z}; \mathbf{w})]$$

where

$$f(\eta, \mathbf{z}; \mathbf{w}) = \eta^{\top} \bar{\mathbf{z}}$$
 $\bar{z}_k = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}(z_n^k = 1)$

Note: Multi-class classification can be done in many ways, 1-vs-1, 1-vs-all, Crammer & Singer's method

MedLDA:

Max-margin Supervised Topic Models

Bayesian inference with max-margin posterior constraints

$$\min_{q(\eta,\Theta,\mathbf{Z},\Phi)\in\mathcal{P}} \mathcal{L}(q(\eta,\Theta,\mathbf{Z},\Phi)) + 2c \cdot \mathcal{R}(q)$$

objective for Bayesian inference in LDA

$$\mathcal{L}(q) = \mathrm{KL}(q||p_0(\eta,\Theta,\mathbf{Z},\Phi)) - \mathbb{E}_q[\log p(\mathbf{W}|\mathbf{Z},\Phi)]$$

posterior regularization is the hinge loss

$$\mathcal{R}(q) = \sum_{d} \max(0, 1 - y_d f(\mathbf{w}_d))$$

Inference Algorithms

Regularized Bayesian Inference

$$\min_{q(\eta,\Theta,\mathbf{Z},\Phi)\in\mathcal{P}} \mathcal{L}(q(\eta,\Theta,\mathbf{Z},\Phi)) + 2c \cdot \mathcal{R}(q)$$

• An iterative procedure with $q(\eta, \Theta, \mathbf{Z}, \Phi) = q(\eta)q(\Theta, \mathbf{Z}, \Phi)$

$$\min_{q(\eta),\xi} \operatorname{KL}(q(\eta)||p_{0}(\eta)) + c \sum_{d} \xi_{d}$$

$$\forall d, \text{ s.t.} : y_{d} \mathbb{E}_{q}[\eta]^{\top} \mathbb{E}_{q}[\bar{\mathbf{z}}_{d}] \geq 1 - \xi_{d}.$$

$$\min_{q(\Theta,\mathbf{Z},\Phi),\xi} \mathcal{L}(q(\Theta,\mathbf{Z},\Phi)) + c \sum_{d} \xi_{d}$$

$$\forall d, \text{ s.t.} : y_{d} \mathbb{E}_{q}[\eta]^{\top} \mathbb{E}_{q}[\bar{\mathbf{z}}_{d}] \geq 1 - \xi_{d}.$$

A SVM problem with a normal prior

Variational approximation or Monte Carlo methods

Empirical Results on 20Newsgroups

Sparser and More Salient Representations

简准某大学 Tsinghua University

Multi-class Classification with Crammer & Singer's Approach

- Observations:
 - Inference algorithms affect the performance;
 - Max-margin learning improves a lot

- The Gibbs classifier
 - The hypothesis space is characterized by (η, Z)
 - Infer the posterior distribution

$$q(\eta, Z|\mathbf{y}, \mathbf{W})$$

□ A Gibbs classifier

$$\hat{y}|_{\eta,\mathbf{z}} = \operatorname{sign} f(\eta,\mathbf{z};\mathbf{w}), \text{ where } (\eta,\mathbf{z}) \sim q(\eta,Z|\mathbf{y},W)$$

where
$$f(\eta, \mathbf{z}; \mathbf{w}) = \eta^{\top} \bar{\mathbf{z}}$$
 $\bar{z}_k = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}(z_n^k = 1)$

(Zhu, Chen, Perkins, Zhang, ICML 2013; arXiv:1310.2816, 2013)

 \diamond Let's consider the "pseudo-observed" classifier if (η, \mathbf{z}) are given

$$|\hat{y}|_{\eta,\mathbf{z}} = \operatorname{sign} f(\eta,\mathbf{z};\mathbf{w})$$

□ The empirical training error

$$\hat{R}(\eta, Z) = \sum_{d=1}^{D} \mathbb{I}(\hat{y}_d|_{\eta, \mathbf{z}_d} \neq y_d)$$

A good convex surrogate loss is the hinge loss (an upper bound)

$$\mathcal{R}(\eta, \mathbf{Z}) = \sum_{d=1}^{D} \max(0, \zeta_d), \text{ where } \zeta_d = 1 - y_d \eta^{\top} \bar{\mathbf{z}}_d$$

- Now the question is how to consider the uncertainty?
 - A Gibbs classifier takes the expectation!

Bayesian inference with max-margin posterior constraints

$$\min_{q(\eta,\Theta,\mathbf{Z},\Phi)\in\mathcal{P}} \mathcal{L}(q(\eta,\Theta,\mathbf{Z},\Phi)) + 2c \left(\mathcal{R}'(q)\right)$$

an upper bound of the expected training error (empirical risk)

$$\mathcal{R}'(q) = \sum_{d=1}^{D} \mathbb{E}_q[\max(0, \zeta_d)] \ge \sum_{d} \mathbb{E}_q[\mathbb{I}(\hat{y}_d \neq y_d)]$$

Gibbs MedLDA vs. MedLDA

The MedLDA problem

$$\min_{q(\eta,\Theta,\mathbf{Z},\Phi)\in\mathcal{P}} \mathcal{L}(q(\eta,\Theta,\mathbf{Z},\Phi)) + 2c \cdot \mathcal{R}(q)$$

$$\mathcal{R}(q) = \sum_{d} \max(0, 1 - y_d f(\mathbf{w}_d))$$

Applying Jensen's Inequality, we have

$$\mathcal{R}'(q) \ge \mathcal{R}(q)$$

Gibbs MedLDA can be seen as a relaxation of MedLDA

The problem

$$\min_{q(\eta,\Theta,\mathbf{Z},\Phi)\in\mathcal{P}} \mathcal{L}(q(\eta,\Theta,\mathbf{Z},\Phi)) + 2c \cdot \mathcal{R}(q)$$

Solve with Lagrangian methods

$$q(\eta, \Theta, \mathbf{Z}, \Phi) = \frac{p_0(\eta, \Theta, \mathbf{Z}, \Phi)p(\mathbf{W}|\mathbf{Z}, \Phi)\phi(\mathbf{y}|\mathbf{Z}, \eta)}{\psi(\mathbf{y}, \mathbf{W})}$$

• The pseudo-likelihood $\phi(\mathbf{y}|\mathbf{Z},\eta) = \prod_d \phi(y_d|\eta,\mathbf{z}_d)$

$$\phi(y_d|\mathbf{z}_d,\eta) = \exp\{-2c\max(0,\zeta_d)\}\$$

- **♦ Lemma** [Scale Mixture Rep.] (Polson & Scott, 2011):
 - The pseudo-likelihood can be expressed as

$$\phi(y_d|\mathbf{z}_d,\eta) = \int_0^\infty \frac{1}{\sqrt{2\pi\lambda_d}} \exp\left(-\frac{(\lambda_d + c\zeta_d)^2}{2\lambda_d}\right) d\lambda_d$$

- What does the lemma mean?
 - It means:

$$q(\eta, \Theta, \mathbf{Z}, \Phi) = \int q(\eta, \lambda, \Theta, \mathbf{Z}, \Phi) d\lambda$$

where
$$q(\eta, \lambda, \Theta, \mathbf{Z}, \Phi) = \frac{p_0(\eta, \Theta, \mathbf{Z}, \Phi)p(\mathbf{W}|\mathbf{Z}, \Phi)\phi(\mathbf{y}, \lambda|\mathbf{Z}, \eta)}{\psi(\mathbf{y}, \mathbf{W})}$$

$$\phi(\mathbf{y}, \lambda | \mathbf{Z}, \eta) = \prod_{d} \frac{1}{\sqrt{2\pi\lambda_d}} \exp\left(-\frac{(\lambda_d + c\zeta_d)^2}{2\lambda_d}\right)$$

A Gibbs Sampling Algorithm

Infer the joint distribution

$$q(\eta, \lambda, \Theta, \mathbf{Z}, \Phi) = \frac{p_0(\eta, \Theta, \mathbf{Z}, \Phi)p(\mathbf{W}|\mathbf{Z}, \Phi)\phi(\mathbf{y}, \lambda|\mathbf{Z}, \eta)}{\psi(\mathbf{y}, \mathbf{W})}$$

- A Gibbs sampling algorithm iterates over:
 - □ Sample $\eta^{t+1} \sim q(\eta | \lambda^t, \Theta^t, \mathbf{Z}^t, \Phi^t) \propto p_0(\eta) \phi(\mathbf{y}, \lambda^t | \mathbf{Z}^t, \eta)$
 - a Gaussian distribution when the prior is Gaussian
 - □ Sample $\lambda^{t+1} \sim q(\lambda|\eta^{t+1}, \Theta^t, \mathbf{Z}^t, \Phi^t) \propto \phi(\mathbf{y}, \lambda|\mathbf{Z}^t, \eta^{t+1})$
 - a generalized inverse Gaussian distribution, i.e., λ^{-1} follows inverse Gaussian
 - Sample $(\Theta, \mathbf{Z}, \Phi)^{t+1} \sim p(\Theta, \mathbf{Z}, \Phi | \eta^{t+1}, \lambda^{t+1})$ $\propto p_0(\Theta, \mathbf{Z}, \Phi) p(\mathbf{W} | \mathbf{Z}, \Phi) \phi(\mathbf{y}, \boldsymbol{\lambda}^{t+1} | \mathbf{Z}, \boldsymbol{\eta}^{t+1})$
 - a supervised LDA model with closed-form local conditionals by exploring data independency.

A Collapsed Gibbs Sampling Algorithm

The collapsed joint distribution

$$q(\eta, \lambda, \mathbf{Z}) = \int q(\eta, \lambda, \Theta, \mathbf{Z}, \Phi) d\Theta d\Phi$$

- A Gibbs sampling algorithm iterates over:
 - □ Sample $\eta^{t+1} \sim q(\eta | \lambda^t, \mathbf{Z}^t) \propto p_0(\eta) \phi(\mathbf{y}, \lambda^t | \mathbf{Z}^t, \eta)$
 - a Gaussian distribution when the prior is Gaussian
 - □ Sample $\lambda^{t+1} \sim q(\lambda | \eta^{t+1}, \mathbf{Z}^t) \propto \phi(\mathbf{y}, \lambda | \mathbf{Z}^t, \eta^{t+1})$
 - a generalized inverse Gaussian distribution, i.e., λ^{-1} follows inverse Gaussian
 - □ Sample $\mathbf{Z}^{t+1} \sim q(\mathbf{Z}|\eta^{t+1}, \lambda^{t+1})$ $\propto \int p_0(\Theta, \mathbf{Z}, \Phi) p(\mathbf{W}|\mathbf{Z}, \Phi) \phi(\mathbf{y}, \boldsymbol{\lambda}^{t+1}|\mathbf{Z}, \boldsymbol{\eta}^{t+1}) d\Theta d\Phi$
 - closed-form local conditionals

$$q(z_{dn}^k = 1 | \mathbf{Z}_{\neg}, \eta, \lambda, w_{dn} = t)$$

The Collapsed Gibbs Sampling Algorithm

Algorithm 1 Collapsed Gibbs Sampling Algorithm

- 1: **Initialization:** set $\lambda = 1$ and randomly draw z_{dk} from a uniform distribution.
- 2: **for** m = 1 **to** M **do**
- 3: draw the classifier from the normal distribution (11)
- 4: **for** d = 1 **to** D **do**
- 5: **for** each word n in document d **do**
- 6: draw the topic using distribution (12)
- 7: **end for**
- 8: draw λ_d^{-1} (and thus λ_d) from distribution (13).
- 9: **end for**
- 10: **end for**

Easy to Parallelize

Some Analysis

- The Markov chain is guaranteed to converge
- Per-iteration time complexity

$$\mathcal{O}(K^3 + N_{total}K)$$

 $ightharpoonup N_{total}$ the total number of words

Experiments

20Newsgroups binary classification

Experiments

Sensitivity to burn-in: binary classification

Distributed Inference Algorithms

- Leverage big clusters
- Allow learning big models that can't fit on a single machine

- 20 machines;
- 240 CPU cores
- 1.1M multi-labeled Wiki pages
- 20 categories (scale to hundreds/thousands of categories)

Summary

- RegBayes: bridging the gap between Bayesian methods, learning and optimization
- Max-margin supervised topic models
 - with averaging classifiers + variational inference
 - with Gibbs classifiers + MCMC sampling with DA

Future Work

- Dealing with weak supervision and other forms of side information
- RegBayes algorithms for network models
- Learning with dynamic and spatial structures
- Fast and scalable inference architectures
- Generalization bounds

Acknowledgements

- Collaborators:
 - Prof. <u>Bo Zhang</u> (Tsinghua)、 Prof. <u>Eric P. Xing</u> (CMU)、 Prof. <u>Li Fei-Fei</u> (Stanford)
 - Amr Ahmed (CMU), Ning Chen (Tsinghua), Ni Lao (CMU), Seunghak Lee (CMU), Li-jia Li (Stanford), Xiaojiang Liu (USTC), Xiaolin Shi (Stanford), Hao Su (Stanford), Yuandong Tian (CMU).
- Students at Tsinghua:
 - Aonan Zhang Minjie Xu Hugh Perkins
 Jianfei Chen, Bei Chen, Shike Mei, Xun Zheng, Fei Xia, Zi Wang, Tianlin Shi, Yining Wang, Li Zhou, etc.
- Funding:

Microsoft Research 溦软亚洲研究院

Thanks!

Some code available at:

http://www.ml-thu.net/~jun