UPPSALA UNIVERSITET

Matematiska institutionen M. Klimek

Prov i matematik Kurs: 1MA022 2015-06-03

Complex Analysis

Writing time: 08:00-13:00.

Other than writing utensils and paper, no help materials are allowed.

- **1.** Suppose that u(x,y) and v(x,y) are harmonic functions in a domain D, such that $u(x,y) = -v^2(x,y)$ for all $z = x + iy \in D$. Show that f(z) = u(x,y) + iv(x,y) is analytic in D only if f is a constant function.
- 2. Find a conformal mapping that transforms the domain

$$\{z \in \mathbb{C} : \operatorname{Im} z > 0\} \cup \{z \in \mathbb{C} : |z| < 1\}$$

onto the left half-plane $\{z \in \mathbb{C} : \operatorname{Re} z < 0\}.$

3. Find the Laurent series expansion of the function

$$f(z) = \frac{1}{(z-2)^3} - \frac{1}{(z+3)}$$

in the annulus $A = \{z \in \mathbb{C} : 2 < |z| < 3\}.$

4. Let γ be a piecewise smooth, simple closed curve in a domain D. Assume that $f: D \longrightarrow \mathbb{C}$ is analytic and at each point z belonging to the trace of γ the following inequality is satisfied:

$$|f(z) - 1| < |f(z)| + 1.$$

Show that

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0.$$

Hint: Characterize geometrically the domain $\{w \in \mathbb{C} : |w-1| < |w|+1\}$ and observe that Log w is analytic in this domain.

5. Use the residue theorem to calculate the integral

$$\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+2)^2} \, dx.$$

6. Show that all zeros the polynomial $p(z) = z^5 - z + 16$ are contained in the annulus $A = \{z \in \mathbb{C} : 1 < |z| < 2\}$. How many of the zeros have positive real part?

- **7.** Find a formula for the analytic function $f: \mathbb{C} \setminus \{1,-1\} \longrightarrow \mathbb{C}$ which has the following properties:
 - f has simple zeros at $\pm i$ and a double zero at 0;
 - f has double poles at ± 1 with residues ± 1 respectively;
 - f has a removable singularity at ∞ .
- **8.** Suppose that $D=\{z\in\mathbb{C}:|z|<1\}$ and $f:\bar{D}\longrightarrow\mathbb{C}$ is a continuous function, which is analytic in D. Assume that f(0)=0 and $|f(z)|\leq 1$ for all $z\in\partial D$. Show that $|f(z)|\leq |z|$ for all $z\in D$. Show also that if |f(a)|=|a| at some point $a\in D$, then in fact f(z)=cz for some constant c such that |c|=1.

Hint: The function f(z)/z has a removable singularity at 0.

GOOD LUCK!

SOLUTIONS

Solution 1: If f is analytic, then the Cauchy-Riemann equations hold: $u_x = v_y$ and $u_y = -v_x$. But since $u = -v^2$, we also have $u_x = -2vv_x$ and $u_y = -2vv_y$. Therefore $u_x = 2vu_y = -4v^2v_y = -4v^2u_x$. So $u_x(1+4v^2) = 0$ identically in D. Consequently $u_x \equiv 0$, and so $v_y \equiv 0$ because of the Cauchy-Riemann equations. Thus u depends only on u and u depends only on u. Since $u = -v^2$, the required conclusion follows.

Solution 2: Let $Q_I, Q_{II}, Q_{III}, Q_{IV}$ denote the 1st, 2nd, 3rd and 4th quadrant in the plane. We want to map $Q_I \cup Q_{II} \cup D(0,1)$ onto $Q_{II} \cup Q_{III}$. The composition of the following mappings will do:

- $z \mapsto z + 1$ maps $Q_I \cup Q_{II} \cup D(0,1)$ onto $Q_I \cup Q_{II} \cup D(1,1)$;
- $z \mapsto 1/z$ maps $Q_I \cup Q_{II} \cup D(1,1)$ onto $Q_{III} \cup Q_{IV} \cup \{z \in \mathbb{C} : \operatorname{Re} z > 1/2\};$
- $z \mapsto z 1/2$ maps $Q_{III} \cup Q_{IV} \cup \{z \in \mathbb{C} : \operatorname{Re} z > 1/2\}$ onto $Q_{III} \cup Q_{IV} \cup Q_I$;
- $z \mapsto \frac{\sqrt{3}+i}{2} \cdot z^{2/3}$ maps $Q_{III} \cup Q_{IV} \cup Q_I$ onto $Q_I \cup Q_{II}$ (because $\cos(\pi/6) = \sqrt{3}/2$ and $\sin(\pi/6) = 1/2$);
- $z \mapsto iz$ maps $Q_I \cup Q_{II}$ onto $Q_{II} \cup Q_{III}$.

The outcome is

$$f(z) = \frac{i\sqrt{3} - 1}{2^{5/3}} \left(\frac{1 - z}{1 + z}\right)^{2/3}.$$

Solution 3: For |z| > 2

$$\frac{1}{z-2} = \frac{1}{z} \frac{1}{1-\frac{2}{z}} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{2^n}{z^n} = \sum_{n=1}^{\infty} \frac{2^{n-1}}{z^n}.$$

Since

$$\left(\frac{1}{z-2}\right)'' = \left(-\frac{1}{(z-2)^2}\right)' = \frac{2}{(z-2)^3},$$

we have

$$\frac{1}{(z-2)^3} = \frac{1}{2} \left(\sum_{n=1}^{\infty} \frac{2^{n-1}}{z^n} \right)'' = \sum_{n=1}^{\infty} \frac{n(n+1)2^{n-2}}{z^{n+2}}.$$

For |z| < 3 we have

$$\frac{1}{z+3} = \frac{1}{3} \frac{1}{\frac{z}{3}+1} = \frac{1}{3} \frac{1}{1-\left(-\frac{z}{3}\right)} = \frac{1}{3} \sum_{n=0}^{\infty} \frac{z^n}{(-3)^n} = -\sum_{n=0}^{\infty} \frac{z^n}{(-3)^{n+1}}.$$

Hence

$$f(z) = \sum_{n=3}^{\infty} \frac{(n-2)(n-1)2^{n-4}}{z^n} + \sum_{n=0}^{\infty} \frac{z^n}{(-3)^{n+1}}.$$

Solution 4: Note that $\{w \in \mathbb{C} : |w-1| < |w|+1\} = \mathbb{C} \setminus (-\infty, 0]$. Indeed, if $w \in \mathbb{C} \setminus \mathbb{R}$, then |w-1| < |w|+1 because the points 0, 1, w form a triangle. If w > 0, then obviously $\max\{w-1, 1-w\} < w+1$. If $w \le 0$, then |w-1| = -w+1 = |w|+1. Since Log is analytic in $\mathbb{C} \setminus (-\infty, 0]$, the function Log f(z) is analytic in D with derivative f'/f. Since γ is closed the result follows.

Solution 5: If R > 2, the function

$$f(z) = \frac{e^{iz}}{(z^2 + 2)^2}$$

has only one singularity within the upper half of $\bar{D}(0,R)$, a pole of order 2 at $i\sqrt{2}$. Also if Γ_R denotes the upper semicircle of radius R and centre at 0 oriented counterclockwise, then in view of Jordan's lemma

$$\left| \int_{\Gamma_R} f(z) \, dz \right| \le \frac{1}{(R^2 - 1)^2} \int_{\Gamma_R} |e^{iz}| |dz| < \frac{\pi}{(R^2 - 1)^2} \to 0 \text{ as } R \to \infty.$$

Since

Res
$$[f, i\sqrt{2}] = \left(\frac{e^{iz}}{(z + i\sqrt{2})^2}\right)'\Big|_{z=i\sqrt{2}} = -\frac{ie^{-\sqrt{2}}}{16}(2 + \sqrt{2}),$$

the integral is equal to

$$\frac{\pi e^{-\sqrt{2}}}{4} \left(1 + \frac{1}{\sqrt{2}} \right).$$

Solution 6: If |z| = 1, then obviously $|16 - z| > |z^5|$, so the polynomial has no zeros in the unit disc by Rouche's theorem. If |z| = 2, then $|z^5| > |16 - z|$, so – again by Rouche's theorem – the polynomial has 5 roots in the disk D(0,2). Combining these two statements, we get the first assertion. Let R > 2. If z = ir, for $r \in [-R, R]$, then $p(z) = 16 + ir(r^4 - 1)$. So the change of argument as z travels from iR to -iR along the imaginary axis is approximately $-\pi$ for large R. When z travels along the right-half of the circle $\partial D(0,R)$ counterclockwise from -iR to iR, the change of argument of p(z) is for lage R dictated by the dominant term z^5 , and therefore is approximately 5π . Hence, in view of the argument principle, the number of roots with positive real part is 2.

Solution 7: For some analytic function $g: \mathbb{C} \longrightarrow \mathbb{C}$ we have

$$f(z) = \frac{z^2(z^2+1)}{(z-1)^2(z+1)^2}g(z), \qquad z \in \mathbb{C}.$$

Since f has a removable singularity at ∞ , so does g and so by Liouville's theorem g is constant $g \equiv A$. Then

$$\pm 1 = \text{Res}[f, \pm 1] = \frac{d}{dz} \left((z \mp 1)^2 f(z) \right) \Big|_{z=\pm 1} = \pm A.$$

So A = 1.

Solution 8: Since g(z) = f(z)/z has a removable singularity at zero and its modulus is bounded by 1 on ∂D , we get the first inequality from the maximum modulus principle. If |f(a)| = |a| at some point $a \in D$, then g has a global maximum 1 there and so $g(z) \equiv c$ for some constant $c \in \partial D$.