Comparing Heats of Atom Combination and Heats of Formation

substance	$\Delta H^{\circ}_{ac} \left(\mathrm{kJ/mol}_{\mathrm{rxn}} \right)$	$\Delta H_{f}^{\circ}(kJ/mol_{rxn})$
H(g)	0	218.2
C(g)	0	716.682
N(g)	0	470.4
O(g)	0	249.4
C(s, graphite)	-716.682	0
C(s, diamond)	-714.787	1.90
$H^+(aq)$	-217.65	0
$OH^-(aq)$	-696.81	-229.94
$H_2(g)$	-435.30	0
$N_2(g)$	-945.408	0
$O_2(g)$	-498.340	0
$CH_4(g)$	-1662.09	-74.85
$CO_2(g)$	-1608.531	-393.5
$H_2O(g)$	-926.29	-241.8
H ₂ O(<i>l</i>)	-970.30	-285.5
$NH_3(g)$	-1171.76	-46.3
$NO_2(g)$	-937.86	33.85
$N_2O_4(g)$	-1932.93	9.66