Sistema de numeración binario

Sistemas de numeración

Tipos de sistemas

Un _sistema de numeración _ es un conjunto de **símbolos** y **reglas** que permiten representar datos numéricos.

Los sistemas de numeración actuales son sistemas __posicionales. __ Cada símbolo tiene distinto valor según la posición que ocupa en la cifra.

Binario: 000, 001, 010, 011, 100, 101, 110, 111

Octal: 00, 01, 02, 03, 04, 05, 06, 07, 10, 11, 12, 13, 14, ...

Hexadecimal: 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F...

Decimal: 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, ...

- Sistema de numeración que utilizamos habitualmente
- Se compone de diez símbolos o dígitos { 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9 }
- Su valor depende de la posición que ocupen (unidades, decenas, centenas, etc.).
- Valor de cada posición
 - Una potencia de base 10
 - Un **exponente** igual a la posición que ocupa el dígito menos uno, contando desde la derecha.

En el sistema decimal el número 528, por ejemplo, significa:

5 centenas + 2 decenas + 8 unidades

Es decir: __ 5* 10__ 2 __ + 2*10__ 1 __ + 8* 10__ 0

O, lo que es lo mismo: 500+20+8

Sistema binario

- Sistema que utilizan los ordenadores y dispositivos informáticos
- Se compone de 2 símbolos o dígitos {0, 1}
- Cada dígito tiene distinto valor dependiendo de la posición que ocupe.
- Valor de cada posición
 - El de una potencia _ _ de _ _ base _ _ 2 ,
 - Elevada a un exponente igual a la posición del dígito menos uno.

0	0
1	1
2	10
3	11

0	0			
4	100			
5	101			
6	110			
7	111			
8	1000			
9	1001			
10	1010 1011			
11				
12	1100			
13	1101			
14	1110			
15	1111			

- _De acuerdo con estas reglas, el número binario _ 1100 2 _ tiene un valor que se calcula así: _
- $_1 \cdot 2_3_ + 1 \cdot 2_2_ + 0 \cdot 2_1_ + 0 \cdot 2_0_ = 8 + 4 + 0 + 0 = _1210$
- Para expresar que ambas cifras describen la misma cantidad lo escribimos así:

Conversión decimal a binario

Ejemplo Cálculo del equivalente binario del número decimal 60_{10}

Por tanto, $60_{10} = 111100_2$

Conversión decimal a binario

- Proceso
- Realizar divisiones sucesivas por _ 2 _
- Al final, escribir los restos obtenidos en cada división en **orden** inverso
- Ejemplo
- para convertir al sistema binario el número 77 _10 _:
 - o 77:2 = 38 Resto: 1
 - **38:2 = 19** Resto: **0**
 - 19:2 = 9 Resto: 1
 - 9:2 = 4 Resto: 1
 - 4:2 = 2 Resto: 0
 - o 2:2 = 1 Resto: 0
 - 1:2 = 0 Resto: 1
- Tomando los restos en orden inverso obtenemos la cifra binaria:
- 77 10 _ _ = **1001101 2**

Convierte _ a _ binario _ _ los _ _ siguientes _ _ números _ _ decimales :

- 43
- 345
- 255

Conversión binario a decimal

1º. Construimos una tabla donde haya una columna con cada cifra del número binario:

1 0 1 0 1 1 1	1	0	1	0	1	1	1
---------------------------	---	---	---	---	---	---	---

2º. Añadimos una fila con las potencias de dos, empezando de derecha a izquierda:

1	0	1	0	1	1	1
2 ⁶ = 64	2 ⁵ = 32	24= 16	23= 8	22= 4	$2^1 = 2$	20= 1

_Convierte de sistema _ binario _ a sistema _ decimal :

- 1011 **(11)**
- 10011011 **(155)**
- 11011010 (218)

Dígitos necesarios

En el sistema binario necesitamos más digitos que en el sistema decimal.

Para 87 (decimal) = 1010111 (binario) necesitamos 7 dígitos

Para representar números grandes harán falta muchos más dígitos.

Ejemplo

Para representar números > 255 se necesitarán más de ocho dígitos (2 8 _ _ = 256)

255 es el número más grande que puede representarse con ocho dígitos.

Regla general

Con n dígitos binarios pueden representarse un máximo de **2 n** _ _ números.

Número más grande con n dígitos es **2 n** _ - 1_

Con 4 bits, pueden representarse un total de **16** números (**2** 4 = **16**)

El mayor de dichos números es el 15, porque 2 4 _ -1 = 15_.

Nº Bits	ts Cant. Valores Número min		Número max	
0	1	0	0	
1	2	0	1	
2	4	0	3	
3	8	0	7	
4	16	0	15	
5	32	0	31	
6	64	0	63	
7	128	0	127	
8	256	0	255	
9	512	0	511	
10	1024	0	1023	

Ejercicio:

Averigua cuántos números pueden representarse con 8, 10, 16 y 32 bits y cuál es el número más grande que puede escribirse en cada caso.

Ejercicio:

Dados dos números binarios: **01001000** y **01000100** ¿Cuál de ellos es el mayor? ¿Podrías compararlos sin necesidad de convertirlos al sistema decimal?

Conversión binario a decimal

