ALGEBRA Y ALGEBRA LINEAL 520142

PRACTICA 11: Funciones Polinomiales y Factorización.

Problema 1. Sean $p_1(x) = 3x^3 - 2x^2 + 1$, $p_2(x) = 4x^4 - 3x^3 + 2x^2 - 1$. Calcule:

- a) $(3x^3 \sqrt{3})p_1(x) + \sqrt{3}p_2(x)$
- b) $p_1(x) \cdot p_2(x)$, $(p_1 \circ p_2)(x)$
- c) La descomposición par-impar de ambos polinomios. ¿Qué puede concluir para un polinomio arbitrario de grado n?
- d) $(p_1 p_2)(x 1)$.

Problema 2. Demuestre que si p(x) y q(x) son dos polinomios tales que p(x) divide a q(x) y q(x) divide a p(x), entonces existe una constante c tal que p(x) = cq(x).

[En Práctica]

Problema 3. Sean $p(x) = ax^3 + 3bx^2 + 3cx + d$, $q(x) = ax^2 + 2bx + e$, (a > 0) dos polinomios, tales que p(x) es divisible por q(x). Demuestre que p(x) es el cubo de un binomio y q(x) el cuadrado de un binomio.

Problema 4. Para los siguientes polinomios p(x) y d(x) verifique que d(x) es un factor de p(x) y determinar q(x) tal que p(x) = d(x)q(x). Emplee la división sintética cuando se requiera.

p(x)	d(x)	q(x)
$x^6 - x^5 - 7x^4 + x^3 + 8x^2 + 5x + 2$	x + 2	
$3x^3 - 9x^2 - 4x + 12$	x-3	
$x^3 - 4ax^2 + 2a^2x + a^3$	x-a	
$x^3 - (2a+b)x^2 + (3a+2ab)x - 3ab$	x-b	
$x^4 + 12x^2 + 27$	x+3i	
$x^3 + x - 10$	x+1-2i	
$3x^4 - 4x^3 + 5x^2 - 4$	x + 2/3	
$x^{2n}-a^{2n},\;(n\in\mathbb{N})$	x + a	
$x^{2n+1} + a^{2n+1}, \ (n \in \mathbb{N})$	x + a	

[En Práctica 3^{er} y 5^{to} caso.]

Problema 5. En los siguientes ejercicios emplee división sintética, para hallar el cociente q(x) y el resto r(x) de la división de p(x) por d(x):

p(x)	d(x)	q(x)	r(x)
$x^4 - 3x^3 + 5x^2 + 22x - 10$	$x^2 + x - 2$		
$\boxed{12x^4 - 13x^3 - 57x^2 + 32x + 8}$	$4x^2 + 5x - 6$		
$x^3 + 5x^2 - 2x - 3$	x-1		
$x^6 - 8x^4 - 10x^2 + 9$	x-3		

[En Práctica 1^{er} y 4^{to} caso.]

Problema 6. Determine el valor de k para el cual d(x) sea un factor de p(x) si:

p(x)	d(x)
$-x^3 + 3x^2 + kx - 4$	x-1
$3x^4 + kx^3 + 6x^2 - 9x + 3$	x-1
$2x^4 - 5x^3 + kx^2 - 6x + 8$	x-2

Problema 7. Dados dos polinomios $p(x) = x^4 + ax^2 + b$ y $q(x) = x^2 + 2x + 5$, ¿Cuáles son los valores de a y b para que q(x) sea un divisor de p(x)?

[En Práctica]

Problema 8. Considere la descomposición: p(x) = q(x)(x-1)(x-2) + r(x). Si q(0) = 2, p(0) = 11 y p(1) = 20 determine, si es posible, el resto r(x).

Problema 9. Muestre que los siguientes polinomios no tienen un factores de la forma x - c, si c es real:

$$(a) \ p(x) = x^2 + 1 \quad (b) \ q(x) = x^4 + 3x^2 + 2 \quad (c) \ s(x) = x^4 + 5x^2 + 3$$
 [En Práctica (b)]

Problema 10.

Si $p(x) = x^4 + x^3 - 19x^2 + ax + b$ es divisible por $q(x) = x^2 + x - 20$. Determine el resto de dividir $s(x) = ax^3 - 2x^2 + b$ por q(x).

Problema 11. Muestre que x-c es un factor de x^n-c^n , cualesquiera sea $n\in\mathbb{N}$ y escriba la factorización respectiva.

(**Indicación**: Sume los primeros n términos de una progresión geométrica de razón (x/c) y primer término 1.)