COMPITO C

Algebra e Geometria, Fisica, (Fioresi)

	19 Dicembre, 2019	
NOME:		
COGNOME:		

NUMERO DI MATRICOLA:

Non sono permesse calcolatrici, telefonini, libri o appunti.

Tutto il lavoro deve essere svolto su queste pagine. Non fate la brutta e siate chiari nei ragionamenti.

In tutto il compito siano a e b le ultime due cifre NON NULLE e DISTINTE del proprio numero di matricola. Esempio: se il numero di matricola e' 624040066 allora a=4, b=6.

1	
2	
3	
Totale	

Esercizio 1 (50 punti)

- a) Si consideri la forma quadratica: $q(x,y) = ax^2 + xy$.
- 1) Si scriva il prodotto scalare ad essa associato e si determini se e' non degenere, definito positivo. Si scriva inoltre la segnatura di q.
- 2) Dato il luogo dei punti nel piano $ax^2+xy=1$, di che conica si tratta? Motivare la risposta.
- b) Si determini una base ortogonale per il sottospazio W in \mathbf{R}^4 definito dalle equazioni:

$$\begin{cases} ax + y + 2z + 2t = 0\\ 2ax + 2y + 3z + 3t = 0 \end{cases}$$

Esercizio 2 (50 punti)

- a) Sia V spazio vettoriale reale di dimensione n (finita) con un prodotto scalare. Sia W un sottospazio vettoriale di V. Si indichi come dimostrare che $V = W \oplus W^{\perp}$, (max 15 righe).
- b) Si risponda vero o falso motivando la risposta con una dimostrazione oppure con un controesempio. Se si intende utilizzare un risultato (che non sia quanto richiesto) e' necessario enunciarlo chiaramente.
- I) Matrici simili hanno lo stesso rango.
- II) Sia A matrice $n \times n$ reale simmetrica, $\mathbf{u}, \mathbf{v} \in \mathbf{R}^n$ autovettori di autovalori λ e μ , $\lambda \neq \mu$. Allora
- 1) \mathbf{u} e \mathbf{v} sono perpendicolari tra loro rispetto al prodotto scalare euclideo in \mathbf{R}^n .
- 2) \mathbf{u} e \mathbf{v} sono perpendicolari tra loro rispetto al prodotto scalare con matrice associata A nella base canonica.

CREDITO EXTRA. Sia V uno spazio vettoriale finito dimensionale. Si dia un isomorfismo tra $V \otimes V^*$ e lo spazio vettoriale delle applicazioni lineari da V a V, SENZA fissare una base.

Esercizio 3 (50 punti)

a) Si determini per quali valori di k la matrice A complessa e' diagonalizzabile:

$$A = \begin{pmatrix} -a & -a & -a \\ ak & ak & ak \\ bk & bk & bk \end{pmatrix}$$

b) Scelto un valore di k per il quale A non e' diagonalizzabile si calcoli la forma di Jordan di A. Non e' richiesta la base di Jordan.