Neuroconductor: An R Platform for Medical Imaging Analysis

John Muschelli¹, Jean-Philippe Fortin², Adrian Gherman¹,Brian Avants², Brandon Whitcher^{3,4}, Jonathan D. Clayden⁵, Brian S. Caffo¹, Ciprian M. Crainiceanu¹

¹Johns Hopkins Bloomberg School of Public Health, Department of Biostatistics ²Perelman School of Medicine, University of Pennsylvania ³Klarismo Ltd, London, UK ⁴Department of Mathematics, Imperial College London, London, UK

⁵Institute of Child Health, Developmental Imaging and Biophysics Section, University College London, UK

What is Neuroconductor?

Neuroconductor (https://neuroconductor.org/) is a a centralized repository of R software dedicated to medical image analysis.

Goals of Neuroconductor

- Disseminate quickly software updates
- Educate a large, diverse community of scientists using detailed tutorials and short courses
- Ensure quality via automatic and manual quality controls
- Promote the reproducibility of image data analysis

Benefits of Imaging in R

Allow medical imaging to use all R has to offer:

- Statistics and Machine Learning
- Package versioning, testing, and distribution
- Reproducibile reports and analyses (knitr and rmarkdown)
- Shiny applications for the web

(Image from http://rmarkdown.rstudio.com/images/RMarkdownOutputFormats.ng)

Potential Downsides to Neuroconductor

- More control over the workflow = more work (e.g. for statisticians)
- Users need external software (versions/installation)
- No control over external software
- if maintainer changes something, not much recourse
- Need the content (buy-in from the imaging/R communities)

References

- [1] Brandon Whitcher, Volker J. Schmid, and Andrew Thornton. "Working with the DICOM and NIfTI Data Standards in R". In: Journal of Statistical Software 44.6 (2011), pp. 1–28.
- Xiangrui Li et al. "The first step for neuroimaging data analysis: DICOM to NIfTI conversion". In: Journal of
- Neuroscience Methods 264 (2016), pp. 47–56.

[3] Dirk Eddelbuettel et al. "Rcpp: Seamless R and C++ integration". In: Journal of Statistical Software 40.8 (2011),

- [4] Stephen M Smith et al. "Advances in functional and structural MR image analysis and implementation as FSL".
- In: Neuroimage 23 (2004), S208–S219. John Muschelli et al. "fslr: Connecting the FSL Software with R". In: The R Journal 7.1 (2015), pp. 163–175.
- Bruce Fischl. "FreeSurfer". In: Neuroimage 62.2 (2012), pp. 774–781.
- [7] William D Penny et al. Statistical parametric mapping: the analysis of functional brain images. Academic press,

[8] B. B. Avants et al. "A Reproducible Evaluation of ANTs Similarity Metric Performance in Brain Image Registra-

- tion". In: Neurolmage 54.3 (2011), 2033—2044. [9] Russell T Shinohara et al. "Statistical normalization techniques for magnetic resonance imaging". In: NeuroImage:
- [10] Bennett A Landman et al. "Multi-parametric neuroimaging reproducibility: a 3-T resource study". In: Neuroimage 54.4 (2011), pp. 2854–2866.
- [11] Kenichi Oishi et al. "Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants". In: Neuroimage 46.2 (2009),
- pp. 486–499. [12] Vladimir Fonov et al. "Unbiased average age-appropriate atlases for pediatric studies". In: NeuroImage 54.1
- [13] Vladimir S Fonov et al. "Unbiased nonlinear average age-appropriate brain templates from birth to adulthood".
- [14] Bennett Allan Landman et al. MICCAI 2012 Workshop on Multi-Atlas Labeling. CreateSpace Independent Publishing Platform, 2012.
- [15] David C Van Essen et al. "The WU-Minn human connectome project: an overview". In: Neuroimage 80 (2013),
- pp. 62–79.

Clinical 6 (2014), pp. 9–19.

malf.templates

hcp

bash - shell scripting is usually required for command-line tools or pipelining

MRIcroGL - imaging

analysis suite, with

dcm2nii - DICOM to

NIfTI software

≜0SIRI**X**

FSL (FMRIB Software Library) suite of neuroimaging analysis tools

OsiriX - standalone

DICOM viewer

- state-of-the-art tools for neuroimaging analysis SPM 12 - statistical parametric mapping, requires MATLAB (Mathworks, Natick,

Normalization Tools)

Massachusetts, USA) - analysis tools for PET/SPECT/fMRI

Overview of Neuroconductor Packages

Templates [14] for Multi-Atlas Label Fusion (MALF) and Skull Stripping

Download data from the Human Connectome Project [15]

GitHub - a online hosting service of git repositories. All Neuroconductor packages are hosted on GitHub.

Travis Cl

Before uploading to GitHub, checks are performed, a confirmatory email is sent (reduce spam), and Travis/Appveyor configuration files are added

Travis CI (continuous integration) - an online service of Linux/Mac OSX virtual machines that build and check pack-

AppVeyor - a similar CI service that builds and checks packages on Windows

Sources of Funding

The project described and data used were supported by the NIH grants R01EB012547, T32AG000247, R01NS046309, R01NS060910, R01NS085211, R01NS046309, U01NS080824, U01NS080824 and U01NS062851 and R01MH095836.