APMA 2110: HW 5

Milan Capoor

10/21/24

- 1. Show that the characteristic function $\chi_E = \mathbb{1}_E$ is a measurable function iff E is a measurable set.
- \Longrightarrow . Assume $\mathbb{1}_E$ is a measurable function.

By definition, $\forall \alpha \in \mathbb{R}, \{x \in X : \mathbb{1}_E(x) > \alpha\}$ is measurable.

WLOG, let $\alpha = 0$. Then

$${x \in X : 1_E(x) > \alpha} = {x \in X : 1_E(x) > 0}$$

But since $\mathbb{1}_E: X \to \{0, 1\},\$

$${x \in X : \mathbb{1}_E(x) > 0} = {x \in X : \mathbb{1}_E(x) = 1} = {x \in X : x \in E} = E$$

Hence, E is measurable.

 \iff . Now assume E is measurable.

We want to show that $A = \{x \in X : \mathbb{1}_E(x) > \alpha\}$ is measurable for all $\alpha \in \mathbb{R}$.

CASE 1. If $\alpha > 1$, then $A = \emptyset \in \mathcal{M}$.

CASE 2. If $0 \le \alpha < 1$, then

$$A = \{x \in X : 1_E(x) > \alpha\}$$

= \{x \in X : 1_E(x) = 1\}
= \{x \in X : x \in E\}
= E

so A is measurable.

CASE 3. If $\alpha < 0$, then $A = X \in \mathcal{M}$.

2. Let $\{f_n\}$ be a sequence of measurable functions on X then $\{x: \exists \lim f_n(x)\}$ is a measurable set.

Lemma: $\exists \lim f_n(x) \iff \limsup f_n(x) = \liminf f_n(x) = \lim f_n(x).$

Proof: (\Longrightarrow) Let $\varepsilon > 0$. If $\lim f_n(x) = f(x)$, then $\exists N \in \mathbb{N}$ such that $\rho(f_n(x), f(x)) < \varepsilon$ for all $n \geq N$.

Then for $n \geq N$, $\{f_k(x) : k \geq n\} \in B(f_n(x), \varepsilon)$ so

$$\limsup f_n = \lim_{n \to \infty} (\sup \{ f_k(x) : k \ge n \}) \in B(f_n(x), \varepsilon)$$

and

$$\lim\inf f_n = \lim_{n \to \infty} (\inf\{f_k(x) : k \ge n\}) \in B(f_n(x), \varepsilon)$$

Since ε arbitrary, $\limsup f_n(x) = \liminf f_n(x) = f(x)$.

(\iff) Let $\varepsilon > 0$ and denote $f(x) = \lim f_n(x)$. Since $\limsup f_n(x) = \liminf f_n(x) = f(x)$, $\exists N \in \mathbb{N}$ such that for $n \geq N$,

$$\rho(\limsup f_n(x), f(x)) = \rho(\sup_{k \ge n} f_k(x), f(x)) < \varepsilon \implies \sup_{k \ge n} f_k(x) \in B(f(x), \varepsilon)$$

$$\rho(\liminf f_n(x), f(x)) = \rho(\inf_{k > n} f_k(x), f(x)) < \varepsilon \implies \inf_{k > n} f_k(x) \in B(f(x), \varepsilon)$$

But

$$\inf_{k \ge n} f_k(x) \le f_n(x) \le \sup_{k > n} f_k(x)$$

by the definitions of inf and sup so

$$\rho(f_n(x), f(x)) = \max\left(\rho(\inf_{k \ge n} f_k(x), f(x)), \rho(\sup_{k \ge n} f_k(x), f(x))\right) = \max(\varepsilon, \varepsilon) = \varepsilon$$

so for n sufficiently large, $\rho(f_n(x), f(x)) < \varepsilon$. Hence, $\lim f_n(x) = f(x)$.

Call $f(x) = \limsup_{n \to \infty} f_n(x)$ and $g(x) = \liminf_{n \to \infty} f_n(x)$. By propositions from class, f, g, and f - g are measurable functions because $\{f_n\}$ are measurable.

Therefore, by the Lemma,

$$\{x : \exists \lim f_n(x)\} = \{x : f(x) = g(x)\}\$$
$$= \{x : f(x) - g(x) = 0\}$$

Since f - g is measurable, $\{x : f(x) - g(x) > \alpha\}$ is measurable for all $\alpha \in \mathbb{R}$.

Let
$$\varepsilon > 0$$
 so $\{x : f(x) - g(x) > \varepsilon\} \in \mathcal{M}$ and $\{x : f(x) - g(x) > -\varepsilon\} \in \mathcal{M}$.

Then since \mathcal{M} is closed under complements and countable intersections,

$$\{x: f(x) - g(x) > \varepsilon\}^c = \{x: f(x) - g(x) \le \varepsilon\} \in \mathcal{M}$$

and

$$\{x:f(x)-g(x)=0\}=\{x:f(x)-g(x)\leq\varepsilon\}\cap\{x:f(x)-g(x)>-\varepsilon\}\in M\quad \blacksquare$$

3. Let E be a Lebesgue measurable set in \mathbb{R} and $\mu(E) > 0$. Show that for any $\alpha < 1$, there exists an open interval I_{α} such that $\mu(E \cap I_{\alpha}) > \alpha \mu(I_{\alpha})$.

Suppose not. Then for all open intervals $I, \mu(E \cap I) \leq \alpha \mu(I)$.

Let $\varepsilon > 0$. By approximation from above, $\exists O$ open such that $E \subseteq O$ and

$$\mu(O) - \varepsilon \le \mu(E) \le \mu(O)$$

But since $O \subseteq \mathbb{R}$, by a proposition from class, we can write O as a countable union of disjoint open intervals, $O = \bigcup_n I_n$.

Then,

$$\mu(E) = \mu(\bigcup_{n} E \cap I_{n}) \qquad (E \subseteq O)$$

$$= \sum_{n} \mu(E \cap I_{n}) \qquad (I_{n} \text{ disjoint})$$

$$\leq \sum_{n} \alpha \mu(I_{n}) \qquad \text{(by assumption)}$$

$$= \alpha \sum_{n} \mu(I_{n})$$

$$= \alpha \mu(O) \qquad \text{(disjoint union)}$$

So

$$\mu(O) - \varepsilon \le \mu(E) = \alpha \mu(O) \le \mu(O)$$

Taking $\varepsilon \to 0$, we have $\mu(O) = \alpha \mu(O)$ but $\alpha \neq 1$ and $\mu(E) > 0 \implies \mu(O) > 0$ by monotonicity, so we have a contradiction.