

Sri Chaitanya IIT Academy., India.

A.P, telangana, karnataka, tamilnadu, maharashtra, delhi, ranchi A right Choice for the Real Aspirant

Central Office, Bangalore

AREAS UNDER THE CURVE

SYNOPSIS

- Area bounded by curve and axes :
- 1. The area of the region bounded by the curve y = f(x), X-axis and the lines x = a, x = b is $\left| \int_{a}^{b} f(x) dx \right|$ (If curve does not cross x axis between x = a and x = b)
- 2. The area of the region bounded by the curve x = f(y), Y-axis and the lines y = c, y = d is $\begin{vmatrix} d \\ c \end{vmatrix} f(y) dy$ (If curve does not cross y axis between y = c and y = d)
- 3. If $f(x) > 0 \ \forall x \in [a, c]$ and f(x) < 0, $\forall x \in [c, b]$, then the area bounded by the curve y = f(x), X-axis the lines x = a, x = b is $\int_{a}^{c} f(x)dx \int_{c}^{b} f(x)dx$.
- Area bounded by curve and line :
- 4. Let y = f(x) and y = g(x) are two curves. Then the area between the two curves and the lines x = a, x = b is $\int_a^b |f(x) g(x)| dx$.
- 5. Let y = f(x) and y = g(x) are two curves intersect at x = c(a < c < b) then the area between the given curves and x = a, x = b is $\left| \int_{a}^{c} (f(x) g(x)) dx \right| + \left| \int_{c}^{b} (f(x) g(x)) dx \right|$
- > Area bounded between standard Geometrical figures :
- 1. The area of the region bounded by $y^2 = 4ax$ and $x^2 = 4by$ is $\frac{16|ab|}{3}$ sq.units.
- 2. The area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab sq.units.
- 3. The area of the circle $x^2 + y^2 = a^2$ is πa^2 sq.units
- > Area bounded by curves involving standard Algebraic function :
- 1. The area of the region bounded by $y = ax^2 + bx + c$ and y = mx + k is $\frac{\Delta^2}{6a^2}$ sq.units. Where Δ is the discriminant of $ax^2 + (b - m)x + (c - k)$.

- 2. The area of the region bounded by $y = ax^2 + bx + c$ and $y = px^2 + qx + r$ is $\frac{\Delta^2}{6a^2}$ sq.units where Δ is discriminant of $ay^2 + (b m)y + (c k)$.
- 3. The area of the region bounded by $y = ax^2 + bx + c$ and $y = px^2 + qx + r$ is $\frac{\Delta^{\frac{3}{2}}}{6a^2}$ sq.units where Δ is discriminant of $(a-p)x^2 + (b-q)x + (c-r)$.
- > Area bounded by curves involving standard Trigonometric functions:
- 1. The area of the region bounded by one arch of $Sin\ ax$ or $Cos\ ax$ and X-axis is $\frac{2}{|a|}sq.units.$
- 2. The area of the region bounded by the curve one arch of $y = Sin \ ax$ or $Cos \ ax$ and X-axis is $\frac{2n}{|a|} sq.units$

EXERCISE - I SINGLE CORRECT ANSWER TYPE QUESTIONS

Total Area of Curve:

Area bounded by the curve $y = x \sin x$ and x-axis between x = 0 and $x = 2\pi$ is

A) 2π sq. unit

B) 3π sq. unit

C) 4π sq. unit

D) 5π sq. unit

PRACTICE QUESTIONS

The area between the curve $y = \cos^2 x$, x-axis and ordinates x = 0 and $x = \pi$ in the interval $(0,\pi)$ is

A) π sq. units

B) $\frac{\pi}{4}$ sq. units C) $\frac{\pi}{2}$ sq. units D) 2π sq. units

Area bounded by curve and axes:

The area (in square units) of the region bounded by the curves $2x = y^2 - 1$ and x = 0 is sq.units.

B) $\frac{2}{3}$

D) 2

The area between the curve y = x(x-1)(x-2) and x-axis is sq. units

A) $\frac{1}{4}$

B) $\frac{1}{2}$

C) 1

D) 0

PRACTICE QUESTIONS

The area of the region bounded by $x^2 = 8y$, x = 4 and X - axis is _____ sq.units 5.

A) $\frac{2}{3}$

Area bounded by curve and line:

If the area (in sq. units) bounded by the parabola $y^2 = 4\lambda x$ and the line $y = \lambda x$, $\lambda > 0$,

is $\frac{1}{0}$, then λ is equal to

[Main 2019]

B) 24

C) $4\sqrt{3}$

The area of the region bounded by the parabola $(y-2)^2 = (x-1)$, the tangent to it at the 7. point whose ordinate is 3 and the x-axis is [Main 2021]

A) 4

D) 10

The area bounded by the curves $y = |x^2 - 1|$ and y = 1 is 8.

[Main 2022]

A) $\frac{2}{3}(\sqrt{2}+1)$ B) $\frac{4}{3}(\sqrt{2}-1)$ C) $2(\sqrt{2}-1)$ D) $\frac{8}{2}(\sqrt{2}-1)$

The area of the bounded region enclosed by the curve $y = 3 - \left| x - \frac{1}{2} \right| - \left| x + 1 \right|$ and the x-9.

axis is

[Main 2022]

B) $\frac{45}{16}$

C) $\frac{27}{9}$

D) $\frac{63}{16}$

The area (in sq. units) bounded by the parabola $y = x^2 - 1$, the tangent at the point (2,3) to it 10. and the y-axis is [Main 2019]

A) $\frac{32}{3}$

B) $\frac{8}{3}$

C) $\frac{56}{3}$

D) $\frac{14}{3}$

5	mamanya mi Acaac	, iii		IMEDIO CHELLA TILE CORV	=	
11.	The area enclosed by the curves $y^2 + 4x = 4$ and $y - 2x = 2$ is:					
	A) $\frac{25}{3}$	B) $\frac{22}{3}$	C) 9	D) $\frac{23}{3}$		
12.	The area bound	ded by the curve $y =$	$= x(x-1)^2$. Y-axis and	If the line $y = 2$ is sq.units		
	A) $\frac{10}{3}$	B) $\frac{5}{3}$	C) $\frac{20}{3}$	D) $\frac{40}{3}$		
13.	The area bound	$ded by y^2 = 4x with 1$	the lines $x = 2$ and $x = $	5 is sq.units		
	A) $\frac{8}{3} (5\sqrt{5} - 2\sqrt{5})$	$\sqrt{2}$ B) $\frac{4}{3} (5\sqrt{5} - 2\sqrt{5})$	$\sqrt{2}$ C) $5\sqrt{5} - 2\sqrt{2}$	D) $\frac{16}{3}$		
14.	The area bounded by the curve $y = f(x)$ the coordinate axis and the line $x = t$ is given					
	by te^t then $f($	(x) =				
	A) $e^{x}(x+1)$	B) $e^{x}(x-1)$	C) $x(1+e^x)$	D) $x(1-e^x)$		
		PRACT	TICE QUESTIONS			
15.		units) of the region	bounded by the curv	e $x^2 = 4y$ and the straight line		
	x = 4y - 2 is			(Jee Mains_2019)		
	A) $\frac{7}{8}$	B) $\frac{5}{4}$	C) $\frac{9}{8}$	D) $\frac{3}{4}$		
16.	The area (in sq. units) in the first quadrant bounded by the parabola, $y = x^2 + 1$, the tangent					
		and the coord		(Jee Mains_2019)		
	A) $\frac{187}{24}$	B) $\frac{8}{3}$	C) $\frac{14}{3}$	D) $\frac{37}{24}$		
17.	The area (in sq	The area (in sq. units)of the region bounded by the parabola $y = x^2 + 2$ and the lines,				
	$y = x + 1, \ x = 0$ a			(Jee Mains_2019)		
	A) $\frac{15}{2}$	B) $\frac{21}{2}$	C) $\frac{15}{4}$	D) $\frac{17}{4}$		
18.	The area (in sq. units) of the region enclosed between the parabola $y^2 = 2x$ and the line					
	x+y=4 is	-		(Jee Mains_2022)		
	A) 20	B) 18	C) 36	D) 6		
19.	The area enclosed by the curves $y^2 + 4x = 4$ and $y - 2x = 2$ is : (Jee Mains_2023)					
	A) $\frac{25}{3}$	B) $\frac{22}{}$	C) 9	D) $\frac{23}{}$		
20.	3			3 is equal to [Main 2021]		
20.	2					
	A) $\frac{2}{3}$	B) $\frac{4}{3}$	C) $\frac{9}{2}$	D) $\frac{16}{3}$		
21.	The area bounded by the curve $y = x^2 - 9 $ and the line $y = 3$ is:					
		-		(Main June 26, 2022)		
	A) $4(2\sqrt{3} + \sqrt{3})$	<i>'</i>	<u></u>	B) $4(4\sqrt{3} + \sqrt{6} - 4)$		
	C) $8(4\sqrt{3} + 3\sqrt{3})$	/6 – 9)	D) $8(4\sqrt{3} + \sqrt{3})$	/6 – 9)		

22.	The area enclosed between the curves $y^2 = x$ and $y = x $ is _	sq.units
22.	The area enclosed between the curves $y = x$ and $y = x $ is _	sq.un

A)
$$\frac{1}{3}$$

B)
$$\frac{2}{3}$$

D)
$$\frac{1}{6}$$

The area bounded by the curves $y = x^3$, $y = x^2$ and the ordinates x = 1, x = 2 is ____ 23. sq.units

A)
$$\frac{17}{12}$$

B)
$$\frac{12}{13}$$

C)
$$\frac{2}{7}$$

D)
$$\frac{7}{2}$$

The area of the region enclosed by the curve $y = x^3$ and its tangent at the point (-1,-1)24.

A)
$$\frac{27}{4}$$

B)
$$\frac{19}{4}$$

C)
$$\frac{23}{4}$$

D)
$$\frac{31}{4}$$

Area bounded between standard geometrical figures:

Area (in sq. units) of the region outside $\frac{x}{2} + \frac{y}{3} = 1$ and inside the ellipse $\frac{x^2}{4} + \frac{y^2}{6} = 1$ is 25.

(Jee Mains 2020)

A)
$$3(4-\pi)$$

B)
$$6(4-\pi)$$

C)
$$6(\pi - 2)$$

$$\hat{D}$$
) 3(π – 2)

If the area enclosed between the curves $y = kx^2$ and $x = ky^2$, (k > 0), is 1 square unit. Then k 26. (**Jee Mains 2019**)

A)
$$\sqrt{3}$$

B)
$$\frac{1}{\sqrt{3}}$$

C)
$$\frac{\sqrt{3}}{1}$$

D)
$$\frac{2}{\sqrt{3}}$$

If two circles each of unit radius intersect orthogonally, the common area of the circles 27. is ... sq. units

A)
$$\frac{\pi}{4}$$

A)
$$\frac{\pi}{4}$$
 B) $\frac{\pi}{4} + 1$

C)
$$\frac{\pi}{2} + 1$$

D)
$$\frac{\pi}{2} - 1$$

PRACTICE QUESTIONS

The region represented by $|x-y| \le 2$ and $|x+y| \le 2$ is bounded by a (Jee Mains_2019) 28.

A) Square of side length $2\sqrt{2}$

B)Square of area 16 sq. units

C) Rhombus of side length 2 units

D) Rhombus of area $8\sqrt{2}$ sq. units

The area enclosed between the curves $y = ax^2$ and $x = ay^2$ (a > 0) is 1 sq.unit, then the 29. value of a is (2004 S)

A)
$$\frac{1}{\sqrt{3}}$$

B)
$$\frac{1}{2}$$
 C) 1

D)
$$\frac{1}{3}$$

The area of the region $\{(x,y)/x^2 + y^2 \le 1 \le x + y\}$ is ... sq. units. 30.

A)
$$\frac{\pi}{4} + \frac{1}{2}$$

B)
$$\pi+1$$

C)
$$\frac{\pi}{4} - \frac{1}{2}$$

D)
$$\frac{\pi}{4} + \frac{3}{4}$$

Area bounded by two or more curves:

The area of the region, enclosed by the circle $x^2 + y^2 = 2$ which is not common to the 31. region bounded by the parabola $y^2 = x$ and the straight line y = x, is [Main 2020]

A)
$$\frac{1}{6}(24\pi - 1)$$

B)
$$\frac{1}{6}(12\pi - 1)$$

B)
$$\frac{1}{6}(12\pi - 1)$$
 C) $\frac{1}{3}(12\pi - 1)$ D) $\frac{1}{3}(6\pi - 1)$

D)
$$\frac{1}{3}(6\pi - 1)$$

32. The area enclosed by the curves $y = log_e(x + e^2)$, $x = log_e(\frac{2}{y})$ and $x = log_e(2)$, above the

line y = 1 is:

[Main 2022]

A) $2 + e - \log_e 2$

B) $1 + e - \log_e 2$

C) $e - \log_e 2$

D) $1 + \log_{e} 2$

33. The area of the smaller region enclosed by the curves $y^2 = 8x + 4$ and $x^2 + y^2 + 4\sqrt{3}x - 4 = 0$ is equal to

[Main 2022]

A) $\frac{1}{3}(2-12\sqrt{3}+8\pi)$

B) $\frac{1}{3}(2-12\sqrt{3}+6\pi)$

C) $\frac{1}{3} \left(4 - 12\sqrt{3} + 8\pi \right)$

D) $\frac{1}{3} \left(4 - 12\sqrt{3} + 6\pi \right)$

34. The area of the region enclosed between the parabola $y^2 = 2x - 1$ and $y^2 = 4x - 3$ is

- A) $\frac{1}{3}$
- B) $\frac{1}{6}$

- C) $\frac{2}{3}$
- D) $\frac{3}{4}$ [Main 2022]

35. Let A_1 be the area of the region bounded by the curves $y = \sin x$, $y = \cos x$ and y - axis in the first quadrant. Also, let A_2 , be the area of the region bounded by the curves

y = six, y = cos x, x - axis and $x = \frac{\pi}{2}$ in the first quadrant. Then, [Main 2021]

- A) $A_1 = A_2$ and $A_1 + A_2 = \sqrt{2}$
- B) $A_1: A_2 = 1: \sqrt{2}$ and $A_1 + A_2 = 1$
- C) $A_1:A_2=1:2$ and $A_1+A_2=1$
- D) $2A_1 = A_2$ and $A_1 + A_2 = 1 + \sqrt{2}$

36. Let the functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = e^{x-1} - e^{-|x-1|}$ and $g(x) = \frac{1}{2}(e^{x-1} + e^{1-x})$. Then the area of the region in the first quadrant bounded by the

curves y = f(x), y = g(x) and x = 0 is

[Adv. 2020]

A) $(2-\sqrt{3})+\frac{1}{2}(e-e^{-1})$

B) $(2+\sqrt{3})+\frac{1}{2}(e-e^{-1})$

C) $(2-\sqrt{3})+\frac{1}{2}(e+e^{-1})$

D) $(2+\sqrt{3})+\frac{1}{2}(e+e^{-1})$

37. The area bounded by the curves $y = \sqrt{\frac{1+\sin x}{\cos x}}$ and $y = \sqrt{\frac{1-\sin x}{\cos x}}$ between the lines

 $x = 0, x = \frac{\pi}{4}$ is

[Adv.2014]

A) $\int_{0}^{\sqrt{2}-1} \frac{tdt}{(1+t^2)\sqrt{1-t^2}}$

B) $\int_{0}^{\sqrt{2}-1} \frac{4t \ dt}{(1+t^2)\sqrt{1-t^2}}$

C) $\int_{0}^{\sqrt{2}+1} \frac{4t \ dt}{(1+t^2)\sqrt{1-t^2}}$

D) $\int_{0}^{\sqrt{2}+1} \frac{t \ dt}{(1+t^2)\sqrt{1-t^2}}$

38. The area of the region enclosed by the curves $y = x^2$ and $y = x^3$ is ____ sq.units

- A) $\frac{1}{12}$
- B) $\frac{1}{6}$

C) $\frac{1}{3}$

D) 1

- The area of the region bounded by the curves $y = x^2$ and $y = \frac{2}{1+x^2}$ is _____sq.units 39.
 - A) $\pi \frac{2}{3}$
- B) $\pi + \frac{2}{3}$
- C) $\frac{\pi}{3}$

- D) $\frac{2\pi}{3}$
- Area enclosed between the curves $|y| = 1 x^2$ and $x^2 + y^2 = 1$ is 40.
- A) $\frac{3\pi-8}{3}$ sq. units B) $\frac{\pi-8}{3}$ sq. units C) $\frac{2\pi-8}{3}$ sq. units D) $\frac{\pi+2}{3}$ sq. units

PRACTICE OUESTIONS

- The area (in sq.units) of the region bounded by the curves $y + 2x^2 = 0$ and $y + 3x^2 = 1$, is 41. (Main 2021) equal to:
 - A) $\frac{3}{5}$
- B) $\frac{1}{2}$

- The area (in sq. units) of the region enclosed by the curves $y = x^2 1$ and $y = 1 x^2$ is equal 42. (Jee Mains 2020)
 - A) $\frac{7}{2}$

- C) $\frac{8}{3}$
- The odd natural number a, such that the area of the region bounded by y = 1, y = 3, x =43. (Main July 26, 2022)
 - 0, $x = y^a$ is $\frac{364}{3}$, is equal to :

A) 3

C) 7

- D) 9
- $\begin{cases} x & , & 0 \le x < \frac{1}{2} \end{cases}$ Given: $F(x) = \begin{cases} \frac{1}{2} & \text{,} \quad x = \frac{1}{2} \text{ and } g(x) = \left(x - \frac{1}{2}\right)^2, x \in \mathbb{R} \text{. Then the area of (in sq. units) of} \end{cases}$ 44. 1-x, $\frac{1}{2} < x < 1$

the region bounded by the curves y = f(x) and y = g(x) between the lines, 2x = 1 and

- $2x = \sqrt{3}$ A) $\frac{\sqrt{3}}{4} - \frac{1}{2}$
- B) $\frac{1}{2} + \frac{\sqrt{3}}{4}$ C) $\frac{1}{2} \frac{\sqrt{3}}{4}$
- D) $\frac{1}{2} + \frac{\sqrt{3}}{4}$

(**Jee Mains 2020**)

- The area enclosed by $y^2 = 8x$ and $y = \sqrt{2}x$ that lies outside the triangle formed by 45. $y = \sqrt{2}x$, x = 1, $y = 2\sqrt{2}$, is equal to: (Main June 29, 2022)
 - A) $\frac{16\sqrt{2}}{6}$
- B) $\frac{11\sqrt{2}}{6}$ C) $\frac{13\sqrt{2}}{6}$
- D) $\frac{5\sqrt{2}}{6}$
- The area of the region bounded by $y^2 = 8x$ and $y^2 = 16(3-x)$ is equal to [Main-2022] 46.
 - A) $\frac{32}{2}$
- B) $\frac{40}{3}$
- D) 9
- The area (in sq.units) of the part of the circle $x^2 + y^2 = 36$, which is outside the parabola 47. $y^{2} = 9x$, is
 - A) $12\pi 3\sqrt{3}$
- B) $24\pi + 3\sqrt{3}$
- C) $12\pi + 3\sqrt{3}$ D) $24\pi 3\sqrt{3}$

48.	If $x = a(> 0)$ divides the area bounded by $X - axis$, part of the curve	$y = 1 + \frac{8}{x^2}$ and
	the ordinates $x = 2$, $x = 4$ into equal parts then $a =$	

- A) 2
- B) $\sqrt{2}$ C) $\frac{1}{\sqrt{2}}$

D) $2\sqrt{2}$

 $y = \frac{x^2}{1+x^2}$ divides the area enclosed by $y = \frac{1}{1+x^2}$, x-axis and y-axis in the first quadrant in the ratio

- A) $\frac{\pi-2}{2}$
- B) $\frac{4-\pi}{4}$
- C) $\frac{2\pi 4}{\pi}$
- D) $\frac{\pi 1}{\pi + 1}$

Area bounded by two or more cure inequalities:

- If the area (in sq. units) of the regions $\{(x,y): y^2 \le 4x, x+y \le 1, x \ge 0\}$ is $a\sqrt{2} + b$ then a b50. is equal to [Main-2019]
 - A) $-\frac{2}{3}$

- C) $\frac{10}{2}$

The area (in sq. units) of the region $\{(x, y) \in \mathbb{R}^2 \mid 4x^2 \le y \le 8x + 12\}$ is [Main-2020] 51.

- A) $\frac{128}{2}$
- B) $\frac{125}{2}$ C) $\frac{127}{2}$

The area (in sq. units)of the region $\{(x,y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, \frac{1}{2} \le x \le 2\}$ is 52.

[Main-2020]

- A) $\frac{79}{16}$
- B) $\frac{23}{6}$ C) $\frac{79}{24}$

The area of the region $A = \{(x, y) : 0 \le y \le x |x| + 1 \text{ and } -1 \le x \le 1\}$ in sq. units is 53.

[Main-2019]

- B) $\frac{4}{3}$ C) $\frac{2}{3}$

D) $\frac{1}{2}$

54. Let $A = \{(x, y) \in \mathbb{R}^2 : y \ge 0, 2x \le y \le \sqrt{4} - (x - 1)^2 \}$ and

 $B = \left\{ (x, y) \in R \times R : 0 \ge y \le y \le \min \left\{ 2x, \sqrt{4 - (x - 1)^2} \right\} \right\}.$ Then the ratio of the area of A to the area of B is

[Main 2023]

- 1) $\frac{\pi 1}{\pi + 1}$

- 2) $\frac{\pi}{\pi 1}$ 3) $\frac{\pi}{\pi + 1}$ 4) $\frac{\pi + 1}{\pi 1}$

The area of the region $\{(x,y); |x-1| \le y \le \sqrt{5-x^2}\}$ is equal to 55.

[Main-2022]

- A) $\frac{5}{2}\sin^{-1}\left(\frac{3}{5}\right) \frac{1}{2}b$ B) $\frac{5\pi}{4} \frac{3}{2}$ C) $\frac{3\pi}{4} + \frac{3}{2}$ D) $\frac{5\pi}{4} \frac{1}{2}$

Let the straight line x = b divide the area enclosed by $y = (1 - x)^2$, y = 0 and x = 0 into 56. two parts $R_1(0 \le x \le b)$ and $R_2(b \le x \le 1)$ such that $R_1 - R_2 = \frac{1}{4}$. Then b equals

[Adv.2011]

- A) $\frac{3}{4}$
- B) $\frac{1}{2}$
- C) $\frac{1}{3}$

D) $\frac{1}{4}$

The area of the region $A = \left\{ (x, y) : \left| \cos x - \sin x \right| \le y \le \sin x, \ 0 \le x \le \frac{\pi}{2} \right\}$ 57.

A)
$$1 - \frac{3}{\sqrt{2}} + \frac{4}{\sqrt{5}}$$

A)
$$1 - \frac{3}{\sqrt{2}} + \frac{4}{\sqrt{5}}$$
 B) $\sqrt{5} + 2\sqrt{2} - 4.5$ C) $\frac{3}{\sqrt{5}} - \frac{3}{\sqrt{2}} + 1$ D) $\sqrt{5} - 2\sqrt{2} + 1$

C)
$$\frac{3}{\sqrt{5}} - \frac{3}{\sqrt{2}} + 1$$

D)
$$\sqrt{5} - 2\sqrt{2} + 1$$

The area bounded by the curves $|y+x| \le 1$, $|y-x| \le 1$ and $2x^2 + 2y^2 \ge 1$ is ... sq. units 58.

A)
$$\left(2+\frac{\pi}{2}\right)$$

B)
$$\left(2 - \frac{\pi}{2}\right)$$
 C) $\left(4 - \frac{\pi}{2}\right)$ D) $\left(4 + \frac{\pi}{2}\right)$

C)
$$\left(4-\frac{\pi}{2}\right)$$

D)
$$\left(4+\frac{\pi}{2}\right)$$

59. Let Δ be the area of the region $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 21, y^2 \le 4x, x \ge 1\}$.

$$\frac{1}{2} \left(\Delta - 21 \sin^{-1} \frac{2}{\sqrt{7}} \right) \text{ is equal to}$$

A)
$$2\sqrt{3} - \frac{1}{3}$$
 B) $\sqrt{3} - \frac{2}{3}$ C) $2\sqrt{3} - \frac{2}{3}$ D) $\sqrt{3} - \frac{4}{3}$

B)
$$\sqrt{3} - \frac{2}{3}$$

C)
$$2\sqrt{3} - \frac{2}{3}$$

D)
$$\sqrt{3} - \frac{4}{3}$$

Let q be the maximum integral value of p in [0, 10] for which the roots of the equation 60. $x^2 - px + \frac{3}{4}p = 0$ are rational. Then the area of the region

$$\{(x,y): 0 \le y \le (x-q)^2, 0 \le x \le q\}$$
 is

C)
$$\frac{125}{3}$$

PRACTICE OUESTIONS

The area (in sq. units) of the region $\{(x,y) \in \mathbb{R}^2 : x^2 \le y \le 3 - 2x\}$ is 61. (**Jee Mains 2020**)

A)
$$\frac{31}{3}$$

B)
$$\frac{29}{3}$$

C)
$$\frac{34}{3}$$

D)
$$\frac{32}{3}$$

Consider a region $R = \{(x, y) \in \mathbb{R}^2 : x^2 \le y \le 2x\}$ if a line $y = \alpha$ divides the area of region R 62. into two equal parts, then which of the following is true? (**Jee Mains 2020**)

A)
$$3\alpha^2 - 8\alpha + 8 = 0$$

B)
$$\alpha^3 - 6\alpha^{\frac{3}{2}} - 16 = 0$$
 C) $3\alpha^3 - 8\alpha^{\frac{3}{2}} + 8 = 0$ D) $\alpha^3 - 6\alpha^2 + 16 = 0$

C)
$$3\alpha^3 - 8\alpha^{\frac{3}{2}} + 8 = 0$$

D)
$$\alpha^3 - 6\alpha^2 + 16 = 0$$

The area (in sq. units) of the region $A = \{(x, y) \in R \times R \mid 0 \le x \le 3, 0 \le y \le 4, y \le x^2 + 3x \}$ is 63.

A)
$$\frac{26}{3}$$
 B) $\frac{59}{6}$

B)
$$\frac{59}{6}$$

D)
$$\frac{53}{6}$$
 (Jee Mains_2019)

Let $S(a) = \{(x, y) : y^2 \le x, 0 \le x \le \alpha\}$ and $A(\alpha)$ is area of the region $S(\alpha)$. If for $0 < \lambda < 4$, 64. $A(\lambda): A(4) = 2:5$ then λ equals (Jee Mains 2019)

A)
$$2\left(\frac{2}{5}\right)^{\frac{1}{3}}$$

B)
$$2\left(\frac{4}{25}\right)^{\frac{1}{2}}$$

B)
$$2\left(\frac{4}{25}\right)^{\frac{1}{3}}$$
 C) $4\left(\frac{2}{5}\right)^{\frac{1}{3}}$ D) $4\left(\frac{4}{25}\right)^{\frac{1}{3}}$

D)
$$4\left(\frac{4}{25}\right)^{\frac{1}{3}}$$

The area (in sq. units) of the region $\{(x,y): x^2 \le y \le x+2\}$ is (Jee Mains_2019) 65.

A)
$$\frac{31}{6}$$

B)
$$\frac{10}{3}$$

C)
$$\frac{9}{2}$$

D)
$$\frac{13}{6}$$

<u>®Sri</u> C	haitanya IIT Acc	ademy		AREAS UNDER THE CURVE	
66.	The area (in	sq. units) of the region	$A = \left\{ \left(x, y \right) : \frac{y^2}{2} \le x \le y + 4 \right\}$	is (Jee Mains_2019)	
	A)18	B) 16	C) $\frac{53}{3}$	D)30	
67.	The area (in	sq. units) of the region	$A = \{(x, y) : (x-1)[x] \le y$	$\leq 2\sqrt{x}, 0 \leq x \leq 2$, where [t]	
		greatest integer function		(Jee Mains_2020)	
	3	3	C) $\frac{8}{3}\sqrt{2} - \frac{1}{2}$	J = L	
68.	The area (in			$\geq x $ is (Jee Mains_2020)	
	A) $\frac{1}{6}$	B) $\frac{7}{6}$	C) $\frac{8}{3}$	D) $\frac{1}{3}$	
69.	_			hich the roots of the equation	
	$x^2 - px + \frac{5}{4}$	p = 0 are rational. The	en the area of the region	[Main 2023]	
	$\Big\{(x,y):0\leq y$	$\leq (x-q)^2$, $0 \leq x \leq q$ i	s		
	A) 243	B) 25	C) $\frac{125}{3}$	D) 164	
70.	The area (in sq. units) of the region, given by the set				
	$\{ (x,y) \in R \times$	$ x \le 0, \ 2x^2 \le y \le 4 - 2$	2x is	[Main 2021]	
	A) $\frac{8}{3}$	B) $\frac{13}{3}$	C) $\frac{7}{3}$	D) $\frac{17}{3}$	
71.	If the area	of the bounded region	on $R = \left\{ (x, y) : \max \left\{ 0, \right\} \right\}$	$\log_e x$ $\} \le y \le 2^x, \frac{1}{2} \le x \le 2$ is,	
	$\alpha(\log_e 2)^{-1}$ +	$-\beta(\log_e 2) + \gamma$, then the	e value of $(\alpha + \beta - 2\gamma)^2$	is equal to [Main 2021]	
	A) 2	B) 8	C) 4	D) 1	
72.	the second second second	the region: $R = \{(x, y)\}$			
	A) $9\sqrt{3}$ squared C) $11\sqrt{3}$ squared Squared C		B) $6\sqrt{3}$ squared D) $12\sqrt{3}$ squared Eq. (2)		
5 0					
//3.	The area of t	the region $\{(x,y):0\leq 1\}$	$x \le \frac{1}{4}, \ 0 \le y \le 1, \ x \ge 3y,$	$x + y \ge 2$ is [Main 2021]	
	A) $\frac{11}{32}$	B) $\frac{35}{96}$	C) $\frac{37}{96}$	$ x + y \ge 2$ is [Main 2021] D) $\frac{13}{32}$	
74.	The area of t	the region $\{(x,y): 0 \le x\}$	$x \le \frac{9}{4}, \ 0 \le y \le 1, \ x \le 3y,$	$x + y \ge 2$ (Adv. 2022)	
	A) $\frac{11}{32}$		C) $\frac{37}{96}$,	
	3 -	70	30	1	
75.	The area (in	sq.units) of the region	$\{(x,y): y \le x^2 + 1, 0 \le y$	$2 \le x+1, \frac{1}{2} \le x \le 2$	
	. 23	-, 7 9	₆ , 79	D) 23	
	A) $\frac{23}{16}$	B) $\frac{79}{24}$	C) $\frac{79}{16}$	D) $\frac{23}{6}$ [Main 2019]	

Page: 10

The area of the region $\{(x, y: xy \le 8, 1 \le y \le x^2\}$ is 76.

(Adv.2018)

A) $8\log_e 2 - \frac{14}{2}$ B) $16\log_e 2 - \frac{14}{3}$ C) $8\log_e 2 - \frac{7}{3}$ D) $16\log_e 2 - 6$

Area of the region $\{(x, y) \in \mathbb{R}^2 : y \ge \sqrt{|x+3|}, 5y \le x + 9 \le 15\}$ is equal to **(Adv.2016)** 77.

A) $\frac{1}{\epsilon}$

B) $\frac{4}{3}$ C) $\frac{3}{2}$

D) $\frac{5}{2}$

The area of the region enclosed by $y \le 4x^2$, $x^2 \le 9y$ and $y \le 4$, is equal to 78.

(Main 2022)

A) $\frac{40}{3}$

B) $\frac{56}{3}$

C) $\frac{112}{2}$

The area of the region $S = \{(x, y): y^2 \le 8x, y \ge \sqrt{2}x, x \ge 1\}$ is 79. (Main 2022)

A) $\frac{13\sqrt{2}}{6}$

B) $\frac{11\sqrt{2}}{6}$ C) $\frac{5\sqrt{2}}{6}$

D) $\frac{19\sqrt{2}}{6}$

Area of the region $\{(x, y): x^2 + (y-2)^2 \le 4, x^2 \ge 2y\}$ is 80.

A) $2\pi - \frac{16}{2}$ B) $\pi - \frac{8}{2}$ C) $\pi + \frac{8}{2}$ D) $2\pi + \frac{16}{2}$

The area of the region $\{(x, y): x^2 \le |x^2 - 4|, y \ge 1\}$ is 81.

A) $\frac{3}{4}(4\sqrt{2}-1)$ B) $\frac{4}{2}(4\sqrt{2}-1)$ C) $\frac{4}{2}(4\sqrt{2}+1)$ D) $\frac{3}{4}(4\sqrt{2}+1)$

Least area bounded by two or more curves:

The area bounded by $y = f(x) = x^4 - 2x^3 + x^2 + 3$, x-axis and ordinates corresponding to 82. minimum of the function f(x) is Sq. units

B) $\frac{91}{30}$

D) $\frac{1}{2}$

Miscelleneous based on area bounded by two or more curves:

83. The area enclosed by the closed curve C given by the differential equation $\frac{dy}{dx} + \frac{x+a}{y-2} = 0$, y(1) = 0 is 4π . Let P and Q be the points of intersection of the curve C and the y-axis. If normal at P and Q on the curve C intersect x-axis at points R and S respectively, then the length of the line segment RS is [Main 2023]

A) $2\sqrt{3}$

B) $\frac{2\sqrt{3}}{2}$

D) $\frac{4\sqrt{3}}{3}$

Let $g(x) = \cos x^2$, $f(x) = \sqrt{x}$ and α , $\beta(\alpha < \beta)$ be the roots of the quadratic equation 84. $18x^2 - 9\pi x + \pi^2 = 0$ Then the area (in sq.units) bounded by the curve y = (gof)(x) and the lines $x = \alpha \ x = \beta \ and \ y = 0$, is: (Adv. 2018)

A) $\frac{1}{2}(\sqrt{3}+1)$ B) $\frac{1}{2}(\sqrt{3}-\sqrt{2})$ C) $\frac{1}{2}(\sqrt{2}-1)$ D) $\frac{1}{2}(\sqrt{3}-1)$

- 85. For a > 0, let the curves $C_1 : y^2 = ax$ and $C_2 : x^2 = ay$ intersect at origin O and a point P. Let the line x = b (0 < b < a) intersect the chord OP and the x-axis at the points Q and R, respectively. If the line x = b bisects the area bounded by the curves C_1 and C_2 , and the area of $\triangle OQR = \frac{1}{2}$, then 'a' satisfies the equation (Jee Mains_2020)
- A) $x^6 + 6x^3 4 = 0$ B) $x^6 12x^3 4 = 0$ C) $x^6 6x^3 + 4 = 0$ D) $x^6 12x^3 + 4 = 0$ 86. Let $f:[-1,2] \rightarrow [0,\infty)$ be a continuous function such that f(x) = f(1-x) for all $x \in [-1,2]$ Let $R_1 = \int_{-1}^{2} xf(x)dx$, and R_2 be the area of the region bounded by y = f(x), x = -1, x = 2, and the x-axis. Then (Main 2021)
 A) $R_1 = 2R_2$ B) $R_1 = 3R_2$ C) $2R_1 = R_2$ D) $3R_1 = R_2$
- 87. The area cut off from a parabola by any double ordinate is k times the corresponding rectangle contained by that double ordinate and its distance from the vertex then k = A.

 A) $\frac{3}{2}$ B) $\frac{2}{3}$ C) $\frac{4}{3}$ D) $\frac{3}{4}$
- 88. P is a variable point in the square formed by the lines $x = \pm 1$ and $y = \pm 1$, P moves such that its distance from the origin is less than its distance from any side of the square. The area traced by the point P is Sq. units.
 - A) $\frac{4}{3}(4\sqrt{2}+1)$ B) $\frac{4}{3}(4\sqrt{2}-1)$ C) $\frac{4}{3}(4\sqrt{2}-3)$ D) $\frac{4}{3}(4\sqrt{2}-5)$
- 89. Integral part of the area of figure bounded by the tangents at the ends of latusrecta of ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and directrices of hyperbola $\frac{x^2}{9} \frac{y^2}{72} = 1$ is
- 90. Let $A = \left(\frac{1}{2}, 0\right)$, $B = \left(\frac{3}{2}, 0\right)$, $C = \left(\frac{5}{2}, 0\right)$ be 3-points on xy-plane P is another point on the same plane satisfying $\max \{PA + PB + PC\} < 2$. If the area of the region of P is

D) 11

 $\sqrt{3} \left(\frac{\pi}{a} - \frac{\sqrt{3}}{b} \right) \text{ then } a+b = \underline{\qquad}$ A) 7 B) 5 C) 9

- 91. The area enclosed by the curve $|x-60|+|y|=\left|\frac{x}{4}\right|$
- A) 240 sq.units B) 360 sq.units C) 480 sq.units D) 600 sq.units PRACTICE QUESTIONS
- 92. The area bounded by the curve $4y^2 = x^2(4-x)(x-2)$ is equal to [Main 2021]
 - A) $\frac{\pi}{8}$ B) $\frac{\pi}{16}$ C) $\frac{3\pi}{8}$ D) $\frac{3\pi}{2}$

Consider a curve y = y(x) in the first quadrant as shown in the figure. Let the Area A_1 is 93. twice the area A_2 . Then the normal to the curve perpendicular to the line 2x-12y=15is passing through the point. [Main 2021]

- A) (6, 21)
- B) (8, 9)
- C) (10, -4)
- D) (12, -15)
- 94. Left f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates $x = \frac{\pi}{4}$ and $x = \beta > \frac{\pi}{4}$ is $\beta \sin \beta + \frac{\pi}{4} \cos \beta + \sqrt{2}\beta$ sq. units, then $f^{1}\left(\frac{\pi}{2}\right)$ is
 - A) $\left(\frac{\pi}{2} \sqrt{2} 1\right)$ B) $\left(\frac{\pi}{4} + \sqrt{2} 1\right)$ C) $-\frac{\pi}{2}$

- D) $\left(1-\frac{\pi}{4}+\sqrt{2}\right)$
- If $P = \lim_{a \to \infty} \frac{\int_0^a \sin^6 x \cos^4 x \, dx}{a}$ and $f(x) = \frac{x^3}{2} + 1 x \int_0^x g(t) dt$, $g(x) = x \int_0^1 f(t) dt$ such that 95.
 - the area of the region bounded by y = f(x) with x-axis between the ordinates x = 0 and x = 4 is Q then the value of $\frac{64PQ}{3}$ is
 - A) 6

- D) 9

- If p(x), q(x), r(x) and s(x) in x such that 96.
 - $\int_{t} p(t)q(t)dt \int_{t}^{\infty} r(t)s(t)dt \int_{t}^{\infty} p(t)s(t)dt \int_{t}^{x} q(t)r(t)dt \text{ is divisible by } (x-1)^{\lambda}, \lambda \in \mathbb{N}$
 - $\lambda_{\text{max}} = a \text{ and } \int |\sin x| dx = 8 \text{ and } \int |\cos x| dx = 9 \text{ such that the area of the region bounded}$
 - by $f(x) = x \sin x$ with x-axis and between the ordinates x = b and x = c 14b is A, then the value of $\frac{a\sqrt{2}}{4} = \dots$
 - A) $\frac{4}{}$
- B) $\frac{2}{}$
- C) $\frac{8}{}$

Area bounded by curves involving standard algebraic function:

- The area bounded by $y = e^x$, $y = e^{-x}$ and x = 1 is sq.units 97.
 - A) $e + \frac{1}{2} + 2$
 - B) $e + \frac{1}{e^2} 2$
- C) $e^{-\frac{1}{a}+2}$
- D) $e^{-\frac{1}{a}-2}$

- The area bounded by y = 2 |2 x|, $y = \frac{3}{|x|}$ is 98.
 - A) $\left(\frac{5-4\ln 2}{3}\right)$ sq.unit

B) $\left(\frac{2-\ln 3}{2}\right)$ sq.unit

C) $\left(\frac{4-3\ln 3}{2}\right)$ sq.unit

- D) $\left(\frac{4+3\ln 3}{2}\right)$ sq.unit
- Area bounded by the curves $y = \log_e^x$ and $y = (\log_e x)^2$ is 99.
 - A) e-2 sq. units
- B) 3-*e* sq. units
- C) e sq. units
- D) *e*-1 sq. units
- Area of the region bounded by the curve $y = 25^x + 16$ and curve y = b. $5^x + 4$ whose 100. angent at the point x=1, makes and angle $\tan^{-1}(40\log^5)$ with the x-axis is sq. units
- A) $2\log_5\left(\frac{e^4}{27}\right)$ B) $4\log_5\left(\frac{e^4}{27}\right)$ C) $3\log_5\left(\frac{e^4}{27}\right)$ D) None of these

PRACTICE QUESTIONS

- The area (in sq. units) of the region bounded by the curves $y = 2^x$ and y = |x+1|, in the first quadrant is: (Main 2019)
 - A) $\frac{3}{2} \frac{1}{\log 2}$
- B) $\frac{1}{2}$ C) $\log_e 2 + \frac{3}{2}$ D) $\frac{3}{2}$
- The area of the region given by max $(|x|,|y|) \le 2$ and $e^{|x|}(|y|+\frac{1}{2})$ is Sq. units
 - A) 14 + ln 2
- B) 14 2ln 2
- C) 14 + 2ln 2
- D) 14 ln 2

Area bounded by a function and its Trignometic function:

- 103. The positive value of parameter "a" for which the area of the figure bounded by $y = \sin ax$, y = 0, $x = \frac{\pi}{a}$ and $x = \frac{\pi}{3a}$ is 3 is Sq. units
 - A) 1

- B) $\frac{1}{2}$ C) $\frac{1}{2}$

- D) $\frac{1}{1}$
- 104. The area bounded by $y = \sec^{-1} x$, $y = \cos ec^{-1} x$ and line x 1 = 0 is
 - A) $\log(3+2\sqrt{2})-\frac{\pi}{2}$ sq. units B) $\frac{\pi}{2}-\log(3+2\sqrt{2})$ sq. units

C) $\pi - \log_{\rho} 3$ sq. units

- D) $\pi + \log_{e} 3$ sq. units
- 105. If $f(x) = \max \left\{ \sin x \cdot \cos x, \frac{1}{2} \right\}$ then the area of the region bounded by the curves
 - y = f(x), x-axis, y-axis and the line $x = \frac{5\pi}{2}$ is
 - A) $\frac{5\pi}{12} + \sqrt{3} \text{ sq.units}$

B) $\frac{5\pi}{12} + \frac{\sqrt{3}}{2} sq.units$

C) $\frac{5\pi}{12} + \sqrt{3} + \sqrt{2} \text{ sq.units}$

D) $\frac{5\pi}{12} + \frac{\sqrt{3}}{2} + \sqrt{2} sq.units$

PRACTICE QUESTIONS

The area bounded by y-axis and the curve $x = e^y . \sin \pi y$, y = 0, y = 1 is Sq. units

A)
$$\frac{e+1}{\pi^2+1}$$

B) $\frac{e-1}{-2}$

C) $\frac{(e+1)\pi}{e^{-2}+1}$

- A square ABCD is inscribed in a circle of radius 4. A point P moves inside the circle such that $d(P, AB) \le \min\{d(P, BC), d(P, DA)\}\$ where d(P, AB) is the distance of a point P from line AB. The area of region covered by the moving point Pin square units
 - A) 4π
- B) 8π
- C) $8\pi 16$ D) $4\pi 4$
- The area, enclosed by the curves $y = \sin x + \cos x$ and $y = |\cos x \sin x|$ and the lines $x = |\cos x|$ 108.

0,
$$x = \frac{\pi}{2}$$
, is:

(Main Sep 1, 2021)

A) $2\sqrt{2}(\sqrt{2}-1)$

B) $2(\sqrt{2}+1)$

C) $4(\sqrt{2}-1)$

D) $2\sqrt{2}(\sqrt{2}+1)$

Area bounded by a function and its Inverse:

109. Let $f(x) = x^3 - x^2 + 2x - 8$ and g(x) is inverse of f(x). Then area bounded by y = g(x), x - axis between x = -12, and x = 16 is

A)
$$\frac{325}{6}$$
 sq.units

B)
$$\frac{325}{4}$$
 sq.units

A)
$$\frac{325}{6}$$
 sq.units B) $\frac{325}{4}$ sq.units C) $\frac{325}{7}$ sq.units D) $\frac{325}{9}$ sq.units

- 110. Let g(x) be the inverse $f(x) = x^3 + 3x + 1$. If the area bounded by y = g(x), x-axis x = -3 and x = 5 is Δ then the value of $[\Delta]$ equals ([.]GIF).
 - A) 4

Area bounded by a function and Y = X:

The area of the region enclosed by the curves y = x, x = e, $y = \frac{1}{x}$ and the positive x-axis

is A) $\frac{3}{2}$ square units B) $\frac{5}{2}$ square units C) $\frac{1}{2}$ square units D) square units

- 112. If A_n is the area bounded by the curve y = x and $y = x^n$, $n \in \mathbb{N} \{1\}$ in the first quadrant if $(A_2)(A_3)(A_4)....(A_n) = \frac{1}{(an^2 + bn).2^{n+c}}$ then a + b + c =

 - A) 0 B) $\frac{1}{2}$ C) 2

D) $\frac{1}{4}$