Chương 3: Định danh và Xác thực (Identification and Authentication)

Khoa Khoa học và Kỹ thuật Máy tính Đại học Bách Khoa Tp.HCM

Nội dung

- Giới thiệu về định danh và xác thực
- 2) Phương pháp định danh
- 3 Phương pháp xác thực
- Giao thức xác thực

Giới thiệu về định danh và xác thực

Các bước trong điều khiển truy cập

Giới thiệu về định danh và xác thực

Các bước trong điều khiển truy cập

Dinh danh (Identification):

Người dùng cung cấp danh định (identity)

Xác thực (Authentication):

Người dùng chứng minh danh định đó là đúng

Uy quyền (Authorization):

Xác định quyền mà người dùng có

Định danh

- Người dùng cung cấp danh định của mình cho hệ thống
- Mục đích:
 - Tìm kiếm sự tồn tại và quyền hạn cho người dùng

Xác thực

- Người dùng cung cấp bằng chứng là danh định đó là đúng và phù hợp với mình.
- Muc đích:
 - Chứng minh danh định là **hợp lệ** và **phù hợp** với người dùng.
 - Quyết định có cho phép người dùng truy cập vào tài nguyên của hệ thống hay không

Nội dung

- 1) Giới thiệu về định danh và xác thực
- 2) Phương pháp định danh
- 3) Điều khiển dữ liệu với SQL
- DAC và điều khiển dòng thông tin

- Có 2 phương pháp:
 - người dùng tự nhập thông tin về danh định
 - Sử dụng danh định số hóa:
 - Danh định sinh trắc học (biometric identity)
 - Danh định máy tính (computer identity)
 - Danh định số (digital identity)

- Phương pháp 1: người dùng tự nhập thông tin về danh định
- Đây là phương pháp phổ biến nhất hiện nay
 - Ví dụ: username, số tài khoản
- Bước đầu tiên khi một hacker muốn xâm nhập vào một hệ thống là thu thập danh sách các người dùng hợp lệ của hệ thống.

- Phương pháp 2: Sử dụng danh định số hóa
- Danh định sinh trắc học (Biometric identity)
 - Nhận dạng khuôn mặt (Facial recognition)
 - Quét tròng mắt (iris scanners)
 - Hình học bàn tay (hand geometry)
 - Nhận dạng vân tay (fingerprint)

- Phương pháp 2: Sử dụng danh định số hóa
- Danh định máy tính (Computer identity)
 - Tên máy tính
 - Địa chỉ MAC
 - Địa chỉ IP

- Phương pháp 2: Sử dụng danh định số hóa
- Danh định số (Digital identity)
 - Chứng nhận số (Digital certificate)
 - The thông minh (Smart card)

Nội dung

- 1) Giới thiệu về định danh và xác thực
- 2) Phương pháp định danh
- 3 Phương pháp xác thực
- Giao thức xác thực

Phương pháp xác thực

- Các phương pháp xác thực:
 - Những gì bạn biết (Something you know)
 - Những gì bạn có (Something you have)
 - Những gì là chính bạn (Something you are)
- Một phương pháp xác thực tốt là phương pháp mà không dễ bị đoán hoặc bị làm giả.

Những gì bạn biết

- Ví dụ:
 - Password
 - Số PIN (Personal Identification Number)
- Uu điểm
 - Tiện lợi
 - Chi phí thấp
- Khuyết điểm
 - Mức độ bảo mật phụ thuộc vào độ phức tạp của password

Những gì bạn biết

- Những vấn đề của password:
 - Password yếu: dễ đoán (tên người dùng, ngày sinh nhật ,...)
 - → Xây dựng chính sách password:
 - Độ dài
 - Có các ký tự đặc biệt (non-letter), có ký viết hoa, viết thường
 - Khác với username, các từ dễ đoán
 - Thay đổi password định kỳ

Cần cân bằng giữa: hacker khó đoán và người dùng có thể nhớ

- Thu thập thông tin bất hợp pháp (Social engineering)
- Các phần mềm gián điệp (spyware), keystroke logging

16

Những gì bạn có

- Thẻ thông minh (smart card): có bộ nhớ nhỏ và có khả năng thực hiện một vài tính toán
- Trong thẻ có lưu thông tin về người dùng và cả password.
 - người dùng có thể chọn những password phức tạp và thay đổi khi cần
- Địa chỉ MAC, địa chỉ IP

- Sử dụng các yếu tố sinh trắc học để xác thực.
 - Nhận dạng khuôn mặt
 - Quét tròng mắt
 - Hình học bàn tay
 - Nhận dạng vân tay
- Xác thực bằng sinh trắc học gồm 2 bước
 - Đăng ký mẫu
 - Nhận dạng

18

- Các lỗi xảy ra khi xác thực bằng sinh trắc học
 - Fraud rate

- Các lỗi xảy ra khi xác thực bằng sinh trắc học
 - Insult rate
 - False reject rate

- Tỷ lệ lỗi sinh trắc học
 - Fraud rate = Insult rate
 - Vân tay (5%)
 - Hình học bàn tay (0.1%)
 - Tròng mắt (0.001%)
- Uu điểm:
 - Khó tấn công
- Khuyết điểm:
 - Tôn kém: lưu trữ, xử lý

Phương pháp xác thực

- Phương pháp xác thực tốt thì tốn kém
- Xét về khả năng bị tấn công:
 - Biometrics < Smartcard < Password
- Xét về chi phí:
 - Password < Smartcard < Biometrics
- Có thể kể hợp các phương pháp xác thực với nhau

Nội dung

- 1) Giới thiệu về định danh và xác thực
- 2) Phương pháp định danh
- 3) Phương pháp xác thực
- Giao thức xác thực

23

Giao thức xác thực

- Giao thức xác thực đơn giản
- Giao thức xác thực challenge-response
- Giao thức xác thực dùng khóa đối xứng
- Giao thức xác thực dùng khóa công khai
- Giao thức xác thực KERBEROS

Giới thiệu

- Giả sử là Alice muốn chứng minh với Bob là "Tôi chính là Alice"
- Alice cũng cần biết người còn lại có đúng là Bob không.
- Malice là người xấu có ý muốn phá giao thức xác thực

Giao thức xác thực đơn giản

Giao thức xác thực đơn giản

Password để ở dạng văn bản rõ, Malice có thể quan sát được.

Giao thức xác thực đơn giản với hàm hash

• P_A: password của Alice

• h(): hàm hash

Giao thức xác thực đơn giản với hàm hash

Tấn công bằng cách lặp lại thông điệp

Giao thức xác thực

- Giao thức xác thực đơn giản
- Giao thức xác thực challenge-response
- Giao thức xác thực dùng khóa đối xứng
- Giao thức xác thực dùng khóa công khai
- Giao thức xác thực KERBEROS

30

Giao thức xác thực challenge-response

N: sô nonce (number used once)

Khuyết điểm: Bob phải biết trước password của Alice

Giao thức xác thực

- Giao thức xác thực đơn giản
- Giao thức xác thực challenge-response
- Giao thức xác thực dùng khóa đối xứng
- Giao thức xác thực dùng khóa công khai
- Giao thức xác thực KERBEROS

- C: ciphertext
- M: plaintext
- K_Δ: khóa của Alice
- $\mathbf{C} = \{\mathbf{M}\}_{\mathbf{K}}$
- K_{AB}: Khoá chung giữa Alice và Bob

- Khuyết điểm:
 - Chỉ có Bob xác thực được Alice
 - Alice không biết có đúng là Bob không

Giao thức xác thực lẫn nhau (mutual) dùng khóa đối xứng

Thông điệp ở bước 3 lặp lại từ bước 2: không thế xác thực người gửi

35

Giao thức xác thực lẫn nhau cải tiến

36

Giao thức xác thực dùng khóa đối xứng

Tấn công giao thức xác thực lẫn nhau cải tiến

Giao thức xác thực dùng khóa đối xứng

Giao thức xác thực lẫn nhau cải tiến khác

Giao thức xác thực

- Giao thức xác thực đơn giản
- Giao thức xác thực challenge-response
- Giao thức xác thực dùng khóa đối xứng
- Giao thức xác thực dùng khóa công khai
- Giao thức xác thực KERBEROS

Giao thức xác thực dùng khóa công khai

- C: ciphertext
- M: plaintext
- K_A: cặp khóa bí mật và công khai của Alice
- $C = \{M\}_{KA}$: mã hóa bằng khóa công khai của Alice
- $M = [C]_{KA}$: giải mã bằng khóa bí mật của Alice
- $S = [M]_{KA}$: ký lên M bằng khóa bí mật của Alice
- $[\{M\}_{KA}]_{KA} = M$
- $[M]_{KA} \}_{KA} = M$

Giao thức xác thực dùng khóa công khai

Dùng mã hóa công khai

Giao thức xác thực dùng khóa công khai

Dùng chữ ký số

Giao thức xác thực

- Giao thức xác thực đơn giản
- Giao thức xác thực challenge-response
- Giao thức xác thực dùng khóa đối xứng
- Giao thức xác thực dùng khóa công khai
- Giao thức xác thực KERBEROS

- Là giao thức được sử dụng trong thực tế
- KERBEROS
 - Dùng mã hóa đối xứng
 - Được thiết kế để dùng trong những hệ thống nhỏ như là mạng nội bộ
 - Dựa vào thành phần thứ 3 tin cậy là Trung tâm phân phối khóa
 (Key Distribution Center KDC)
- Với N người dùng
 - Giao thức dùng khóa công khai: 2N khóa
 - Giao thức dùng khóa đối xứng: N² khóa
 - Giao thức Kerberos: N khóa

- Trung tâm phân phối khóa KDC
 - KDC có một siêu khóa K_{KDC}, chỉ có KDC mới biết khóa này
 - KDC cung cấp: Ticket-Granting Ticket (TGT)
 - TGT chứa khóa phiên, user ID và thời hạn
 - TGT được mã hóa bằng K_{KDC}
 - Chỉ có KDC mới đọc được TGT

Quá trình Alice login vào hệ thống sử dụng KERBEROS

- K_{Δ} : khóa chung giữa Alice và KDC, $K_{\Delta} = h(password)$
- S_{Δ} : khóa phiên
- $TGT_A = \{Alice, S_A\}_{KKDC}$

- 1. Alice gửi cho KDC: Alice, Bob, TGT_A , $\{timestamp\}_{SA}$
- 2. KDC gửi cho Alice: $\{Bob, K_{AB}, ticket-to-Bob\}_{SA}$ $ticket-to-Bob: \{Alice, K_{AB}\}_{KB}$
- 3. Alice gửi cho Bob: *ticket-to-Bob*, {timestamp}_{KAB}
- 4. Bob gửi cho Alice: $\{timestamp + 1\}_{KAB}$

- Một thao tác dư thừa trong KERBEROS:
 - KDC gửi cho Alice: $\{S_A, TGT_A\}_{KA}$ Trong khi $TGT_A = \{Alice, S_A\}_{KKDC}$
 - \rightarrow KDC gửi cho Alice: $\{S_A\}_{KA}$, TGT_A
 - → Tiết kiệm chi phí
- KDC dùng K_{KDC} để giải mã tất cả các TGT
 - → không cần biết ai gửi yêu cầu

Nội dung

- 1) Giới thiệu về định danh và xác thực
- 2) Phương pháp định danh
- 3) Phương pháp xác thực
- Giao thức xác thực

