IN THE CLAIMS

Please amend the claims as indicated.

1-20 Canceled.

(currently amended) A method of petrophysical evaluation of an earth formation 1 21. using a logging tool conveyed in a borehole in said formation, the method 2 3 comprising: obtaining values a value of a horizontal and a value of a vertical resistivity 4 (a) 5 of said earth formation using said logging tool; and determining a horizontal and vertical permeability of said earth formation 6 **(b)** using said the obtained horizontal resistivity and the obtained vertical 7 resistivities resistivity, said horizontal permeability and said vertical 8 permeabilities permeability having a ratio different from a ratio of said 9 vertical resistivity and said horizontal resistivities resistivity. 10 11 (previously presented) The method of claim 21 wherein said earth formation 22. 1 comprises a sand component and a shale component. 2 3 (currently amended) The method of claim 21 wherein determining said horizontal 23. l permeability and said vertical permeabilities permeability further comprises 2 determining a water content of said formation from said horizontal resistivity and 3

10/757,051

10/757,051

4		said ve	ertical resistivities resistivity.		
5					
I	24.	(currently amended) The method of claim 23 wherein determining said horizontal			
2		perme	ability and said vertical permeabilities permeability further comprises		
3		determining an estimate of bulk irreducible water content of the formation from			
4		NMR measurements.			
5					
1	25.	(currently amended) The method of claim 23 wherein determining said water			
2		content of said formation further comprises:			
3		(i)	inverting said values value of horizontal resistivity and said vertical		
4			resistivities resistivity of the formation using a petrophysical model to		
5			give a first estimate of fractional volume of laminated shale in the		
6			formation;		
7		(ii)	obtaining measurements of at least one of (A) a density, and/or and (B) a		
8			neutron porosity of the formation, and using a volumetric model for		
9			deriving therefrom a second estimate of fractional volume of laminated		
10			shale; and		
11		(iii)	inverting said horizontal resistivity and said vertical resistivities resistivity		
12			using a petrophysical model including said second estimate of fractional		
13			shale volume and obtaining therefrom a water content of the formation.		
14					
ì	26.	(curre	ently amended) The method of claim 21 further comprising determining a		

10/757.051

2		vertical resistivity and a horizontal resistivity of an anisotropic sand component of
3		the formation, and determining therefrom and from at least one additional
4		measurement selected from the group consisting of: (i) NMR measurements of the
5		formation, and, (ii) a bulk permeability of the sand component, a parameter of
6		interest of a coarse and a fine grain portion of the sand component.
7		
I	27.	(currently amended) The method of claim 21 further comprising using a
2 .		transverse induction logging tool for obtaining said values value of horizontal
3		resistivity and said value of vertical resistivities resistivity of the formation.
4		
1	28.	(currently amended) The method of claim 21 further comprising using an
2		induction logging tool for obtaining said values value of horizontal resistivities
3		resistivity and a focused current logging tool for obtaining said values value of
4		vertical resistivities resistivity.
5		
I	29.	(previously presented) The method of claim 25 wherein using said volumetric
2		model further comprises using at least one of: (i) the Thomas-Stieber model, and,
3		(ii) the Waxman-Smits model.
4		
l	30.	(previously presented) The method of claim 21 further comprising determining a
2		parameter of interest selected from the group consisting of: (A) a fractional
3		volume of said coarse grain component, (B) a fractional volume of said fine grain

4		compo	nent, (C) a water saturation of said coarse grain component, (D) a water	
5		saturat	ion of said fine grain component, (E) a permeability of said coarse grain	
6		compo	ment, and, (F) a permeability of said fine grain component.	
7				
1	31.	(previo	ously presented) The method of claim 26 wherein the at least one additional	
2		measurement comprises an NMR measurement, and deriving the parameter of		
3		interest further comprises deriving a distribution of relaxation times from said		
4		NMR measurements and obtaining therefrom a distribution of components of said		
5		anisotropic sand.		
6				
1	32.	(curre	ntly amended) The method of claim 26 wherein the at least one additional	
2		measurement comprises a bulk permeability measurement of the anisotropic sand		
3		and de	criving the parameter of interest further comprises:	
4		A.	obtaining a family of possible distributions of volume fractions and bulk	
5			irreducible water content (BVI) for the coarse and fine sand components;	
6		B.	determining a horizontal permeability, a vertical permeability and a bulk	
7			permeability values associated with said family of possible distributions;	
8			and	
9		C.	selecting from said family of possible distributions the one distribution	
10			that has a determined bulk permeability substantially equal to the	
11			measured bulk permeability.	
12				

- 1 33. (previously presented) The method of claim 32 wherein said bulk permeability is
- 2 obtained from the group consisting of (I) NMR diffusion measurements, (II) a
- formation testing instrument, (III) a pressure buildup test, and, (IV) a pressure
- 4 drawdown test.

5

- 1 34. (currently amended) The method of claim 32 wherein determining the horizontal
- 2 permeability value and the vertical permeability values value associated with said
- 3 family of distributions for the coarse and fine sand components further comprises
- 4 using the Coates-Timur equation

$$k = \left(\frac{\phi}{C}\right)^a \cdot \left(\frac{\phi - BVI}{BVI}\right)^b$$

6

- 7 where k is a permeability, φ is a porosity, BVI is the bound volume irreducible,
- and a, b, and C are fitting parameters.

9

- 1 35. (currently amended) The method of claim 32 wherein determining the horizontal
- 2 permeability value, the vertical permeability value and the bulk permeability
- 3 values value further comprises using a relationship of the form
- $k = C\phi^a T^b$
- 5 where k_e is a permeability, φ is a porosity and T is a NMR relaxation time, and a,
- b, and C are fitting parameters.

7

10/757,051

- 1 36. (previously presented) The method of claim 35 wherein T is a longitudinal NMR
- 2 relaxation time.

3

- 1 37. (previously presented) The method of claim 32 wherein the coarse sand portion of
- 2 the selected distribution is characterized by an irreducible water saturation less
- 3 than an irreducible water saturation of the fine grain sand portion of the selected
- 4 distribution.

5

- 1 38. (currently amended) The method of claim 32 wherein the determined bulk
- 2 permeability is a spherical permeability related to the horizontal permeability
- 3 value and the vertical permeability values value by a relationship of the form

$$k_{sph} = \left(k_h^2 k_v\right)^{\frac{1}{3}}$$