宿題 1

ガウス混合モデルの EM アルゴリズムを実装し、適当な一次元の確率密度関数を推定する。

今回は、平均0・分散1の正規分布からのサンプリングのうち、7割に2を足し、3割に-2を足した分布を用いる。サンプル数1000点、および10000点について実験を行った。この分布のサンプル数1000のときのヒストグラムを図1に示す。なお、このヒストグラムは正規化されていることに注意されたい。

図 1: 実データのヒストグラム (サンプル数 1000)

パラメータの初期化は一様分布により行った。 w_j は総和が 1 となるようにし, μ は [-1.5, 1.5), σ は [0, 1) の一様分布を用いた。また,実データを見ると,2 つの正規分布で近似するのが妥当だと考られるため,m=2 とした。

結果は図 2,3 に示した。また、収束時のパラメータを表 1 に示す。データの作り方から考えて、平均 2・分散 1 の正規分布と平均 -2・分散 1 の正規分布が 7:3 で重ね合わせられている分布が真の分布であると考えられる。表 1 を見ると、特に 10000 点の場合は、実際そのようなパラメータに近くなっていることがわかる。

図 2: サンプル数 1000 のときの実データのヒストグラムとガウス混合モデル

図 3: サンプル数 10000 のときの実データのヒストグラムとガウス混合モデル

表 1: 収束時のパラメータと Q の値

n	Q	Q/n	w_1	w_2	μ_1	μ_2	σ_1	σ_2	
1000	-1996	-1.996	0.7138	0.2862	2.013	-2.201	0.9054	0.9614	
10000	-20194	-2.019	0.3020	0.6980	-2.041	1 980	0 9797	0 9916	