增加支持二进制传输的功能

• 协议体与编码:

采用键值对的形式表示状态或者命令,默认采用 ASCII 编码。

但如果考虑传输效率、编解码效率等问题,需要采用二进制方式传输协议体的内容。具体内容格式由MCU与云端协商,WiFi模块无需解析。但需要将T口(大循环)和L口(小循环)传输的 data 字段进行**BASE64**解码后转发给MCU,将MCU上报的二进制body进行BASE64加密,封装到data 字段中上报给T口和L口。

MCU如果有二进制传输的需求,需要在 基础信息 中增加 isbin 的字段,值赋值为1。这样WiFi模块在login登录之后查到此字段,便对MCU上报与向MCU下发的数据body进行BASE64编解码

四、协议体内容(Payload)

1. 查询设备基础信息

Request (WiFi to MCU)

命令号 0x01

Response (MCU to WiFi)

命令号	变量名	隔离符	值	当前结束符	 结束符
0x01	key	0x3A	value	0x00	 0x0A

键值对可包括下表所列信息:

变量key	value	长度	是否必选	描述
pid	char	16位以内	必选	产品ID(建议对应产品型号,例如LPB100)
pkey	num	5位定长	必选	产品对应注册密钥
mv	float	10位以内	可选	mcu版本号,例如1.1,2.3
bin	bool	1位 0/1	可选	键值是否采用二进制传输,默认为0

2. 设备控制

Request (WiFi to MCU)

命令号	二进制串	结束符	
0x02	binary	0x0A	

采用二进制传输,WiFi模块将 data 经过BASE64解码后下发给MCU.

3. 上传状态

Request (MCU to WiFi)

命令号	二进制串	结束符
0x03	binary	0x0A

采用二进制传输,WiFi模块将 data 经过BASE64编码后放在data中上报给T口和L口