US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

Date of Patent

Inventor(s)

12390258

B2

August 19, 2025

Sack; James A et al.

Methods and apparatus for implanting prostheses

Abstract

A deployment device for a tissue repair system includes a front delivery assembly that is detachable from a base assembly of the deployment device. The front delivery assembly includes at least one prosthesis and at least one driven assembly that actuates the at least one prosthesis. The base assembly includes a driving assembly that may engage the at least one driven assembly of the at least one prosthesis. The front delivery assembly can be rotated so that the position of a prosthesis in the front delivery assembly is moved in and out of alignment with the driving assembly. A kit of parts may be provided that includes a base assembly as well as two or more detachable front delivery assemblies.

Inventors: Sack; James A (Elverson, PA), Yeh; Jack Y. (North Potomac, MD)

Applicant: JMEA Corporation (North Potomac, MD)

Family ID: 1000008763301

Assignee: JMEA Corporation (North Potomac, MD)

Appl. No.: 18/544862

Filed: December 19, 2023

Prior Publication Data

Document IdentifierUS 20240189007 A1

Publication Date
Jun. 13, 2024

Related U.S. Application Data

continuation parent-doc US 15432176 20170214 US 10660686 20200526 child-doc US 16874771 continuation parent-doc US 13552098 20120718 US 9572615 20170221 child-doc US 15432176 division parent-doc US 16874771 20200515 US 11882988 child-doc US 18544862

Publication Classification

Int. Cl.: A61B17/04 (20060101); A61B17/064 (20060101); A61B17/068 (20060101); A61B17/84 (20060101); A61B17/86 (20060101); A61B17/88 (20060101); A61B17/00 (20060101); A61B90/00 (20160101)

U.S. Cl.:

CPC

A61B17/8875 (20130101); A61B17/0401 (20130101); A61B17/0466 (20130101); A61B17/0642 (20130101); A61B17/068 (20130101); A61B17/8644 (20130101); A61B17/86 (20130101); A61B17/8625 (20130101); A61B2017/00367 (20130101); A61B2017/0046 (20130101); A61B2017/00464 (20130101); A61B2017/00473 (20130101); A61B2017/00539 (20130101); A61B2017/00544 (20130101); A61B2017/00734 (20130101); A61B2017/0409 (20130101); A61B2017/0412 (20130101); A61B2017/0414 (20130101); A61B2017/042 (20130101); A61B2017/0424 (20130101); A61B2017/0438 (20130101); A61B2017/0444 (20130101); A61B2017/0646 (20130101); A61B2090/037 (20160201)

Field of Classification Search

CPC:

A61B (17/0401); A61B (2017/00367); A61B (17/8875); A61B (17/0466); A61B (17/0642); A61B (17/068); A61B (17/844); A61B (17/86); A61B (17/8625); A61B (2017/0046); A61B (2017/00464); A61B (2017/00473); A61B (2017/00477); A61B (2017/00535); A61B (2017/00539); A61B (2017/00544); A61B (2017/00734); A61B (2017/0409); A61B (2017/0412); A61B (2017/0414); A61B (2017/0424); A61B (2017/0424); A61B (2017/0427); A61B (2017/0438); A61B (2017/044); A61B (2017/0646); A61B (2090/037); A61B (2017/00336); A61B (2090/08021)

References Cited

U.S. PATENT DOCUMENTS

Old IIII Ell Ed Comercia				
Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
472913	12/1891	Taylor	N/A	N/A
1808318	12/1930	Pleister	N/A	N/A
2108842	12/1937	Bazzoni	N/A	N/A
2222125	12/1939	Stehlik	N/A	N/A
2680246	12/1953	Rambo	N/A	N/A
2765463	12/1955	Anguera	N/A	N/A
3172329	12/1964	Setzler	N/A	N/A
3566739	12/1970	Lebar	N/A	N/A
3765295	12/1972	Ptak	N/A	N/A
3906832	12/1974	Lunn et al.	N/A	N/A
3918130	12/1974	Poe	N/A	N/A
3974735	12/1975	Berner	N/A	N/A
4013071	12/1976	Rosenberg	N/A	N/A
4073212	12/1977	Lerich	N/A	N/A
4085651	12/1977	Koscik	N/A	N/A
4112814	12/1977	Schafers	N/A	N/A

4203446	12/1979	Hofert et al.	N/A	N/A
4223674	12/1979	Fluent et al.	N/A	N/A
4312614	12/1981	Palmer et al.	N/A	N/A
4488843	12/1983	Achille	N/A	N/A
4577400	12/1985	Morgan	N/A	N/A
4738255	12/1987	Goble et al.	N/A	N/A
4790304	12/1987	Rosenberg	N/A	N/A
5028187	12/1990	Sato	N/A	N/A
5042888	12/1990	Shinjo	N/A	N/A
5258010	12/1992	Green et al.	N/A	N/A
5332346	12/1993	Shinjo	N/A	N/A
5441502	12/1994	Bartlett	N/A	N/A
5464427	12/1994	Curtis et al.	N/A	N/A
5480403	12/1995	Lee et al.	N/A	N/A
5486197	12/1995	Le et al.	N/A	N/A
5501695	12/1995	Anspach, Jr. et al.	N/A	N/A
5582615	12/1995	Foshee et al.	N/A	N/A
5618314	12/1996	Harwin et al.	N/A	N/A
5628579	12/1996	Forster	N/A	N/A
E <i>GA</i> 2221	12/1996	McDevitt	606/313	F16B
5643321	12/1990	MCDevill	000/313	13/0866
5645589	12/1996	Li	N/A	N/A
5649963	12/1996	McDevitt	N/A	N/A
5662658	12/1996	Wenstrom, Jr.	N/A	N/A
5690455	12/1996	Fischer et al.	N/A	N/A
5690639	12/1996	Lederer et al.	N/A	N/A
5704746	12/1997	Leib et al.	N/A	N/A
5713903	12/1997	Sander et al.	N/A	N/A
5720753	12/1997	Sander et al.	N/A	N/A
5725541	12/1997	Anspach, III et al.	N/A	N/A
5741268	12/1997	Schutz	N/A	N/A
5741282	12/1997	Anspach, III et al.	N/A	N/A
5741300	12/1997	Li	N/A	N/A
5797963	12/1997	McDevitt	N/A	N/A
5814071	12/1997	McDevitt et al.	N/A	N/A
5830231	12/1997	Geiges, Jr.	N/A	N/A
5860983	12/1998	Wenstrom, Jr.	N/A	N/A
5881942	12/1998	Bergamini Cashin	N/A	N/A
5893850	12/1998	Cachia	N/A	N/A
5904284	12/1998	Lin	N/A	N/A
5928244	12/1998	Tovey	606/104	A61F 2/0811
RE36289	12/1998	Le	606/232	A61L 31/06
5944739	12/1998	Zlock et al.	N/A	N/A
5957953	12/1998	DiPoto et al.	N/A	N/A
5980558 6010512	12/1998	Wiley Tormala et al	N/A	N/A
6010513 6022373	12/1999 12/1999	Tormala et al. Li	N/A N/A	N/A N/A
6074395		Trott et al.	N/A N/A	N/A N/A
6129762	12/1999 12/1999	Li	N/A N/A	N/A N/A
6146387	12/1999	Trott et al.	N/A N/A	N/A N/A
014030/	14/1333	ווטנו לו מו.	1 V / /^1	1 V / <i>L</i> 1

6187008	12/2000	Hamman	N/A	N/A
6273893	12/2000	McAllen, III et al.	N/A	N/A
6280448	12/2000	Trott et al.	N/A	N/A
6319252	12/2000	McDevitt et al.	N/A	N/A
6319269	12/2000	Li	N/A	N/A
6319271	12/2000	Schwartz et al.	N/A	N/A
6328746	12/2000	Gambale	N/A	N/A
6328758	12/2000	Tornier et al.	N/A	N/A
6348053	12/2001	Cachia	N/A	N/A
6387113	12/2001	Hawkins et al.	N/A	N/A
6402759	12/2001	Strong et al.	N/A	N/A
6425900	12/2001	Knodel et al.	N/A	N/A
6457625	12/2001	Tormala et al.	N/A	N/A
6530933	12/2002	Yeung et al.	N/A	N/A
6540770	12/2002	Tornier et al.	N/A	N/A
6544281	12/2002	Eiattrache et al.	N/A	N/A
6575976	12/2002	Grafton	N/A	N/A
6599295	12/2002	Tornier et al.	N/A	N/A
6623492	12/2002	Berube et al.	N/A	N/A
6641596	12/2002	Lizardi	N/A	N/A
6648890	12/2002	Culbert et al.	N/A	N/A
6652561	12/2002	Tran	N/A	N/A
6656183	12/2002	Colleran et al.	N/A	N/A
6673094	12/2003	McDevitt et al.	N/A	N/A
6685706	12/2003	Padget et al.	N/A	N/A
6733506	12/2003	McDevitt et al.	N/A	N/A
6769849	12/2003	Yoneoka	N/A	N/A
6770073	12/2003	McDevitt et al.	N/A	N/A
6779701	12/2003	Bailly et al.	N/A	N/A
6846313	12/2004	Rogers et al.	N/A	N/A
6942666	12/2004	Overaker et al.	N/A	N/A
6942668	12/2004	Padget et al.	N/A	N/A
6986781	12/2005	Smith	N/A	N/A
7008428	12/2005	Cachia et al.	N/A	N/A
7033380	12/2005	Schwartz et al.	N/A	N/A
7037324	12/2005	Martinek	N/A	N/A
7144415	12/2005	Del Rio et al.	N/A	N/A
7309337	12/2006	Colleran et al.	N/A	N/A
7381213	12/2007	Lizardi	N/A	N/A
7438718	12/2007	Milliman et al.	N/A	N/A
7547326	12/2008	Bhatnagar et al.	N/A	N/A
7559449	12/2008	Viola	N/A	N/A
7572283	12/2008	Meridew	N/A	N/A
7597230	12/2008	Racenet et al.	N/A	N/A
7608108	12/2008	Bhatnagar et al.	N/A	N/A
7621927 7622284	12/2008	Messerly et al.	N/A	N/A
7632284	12/2008	Martinek et al.	N/A	N/A
7632313	12/2008	Bhatnagar et al.	N/A	N/A
7637926	12/2008	Foerster et al.	N/A	N/A
7648524	12/2009	Zhang et al.	N/A	N/A

7713285	12/2009	Stone et al.	N/A	N/A
7717921	12/2009	Rezach	N/A	N/A
7780701	12/2009	Meridew et al.	N/A	N/A
7794484	12/2009	Stone et al.	N/A	N/A
7846181	12/2009	Schwartz et al.	N/A	N/A
7862272	12/2010	Nakajima	N/A	N/A
7867251	12/2010	Colleran et al.	N/A	N/A
7867264	12/2010	McDevitt et al.	N/A	N/A
7896907	12/2010	McDevitt et al.	N/A	N/A
7976565	12/2010	Meridew	N/A	N/A
8070818	12/2010	Bhatnagar et al.	N/A	N/A
8177847	12/2011	Bhatnagar et al.	N/A	N/A
8211126	12/2011	Yeh et al.	N/A	N/A
8403944	12/2012	Pain et al.	N/A	N/A
8627553	12/2013	Kuhm et al.	N/A	N/A
9089379	12/2014	Sack et al.	N/A	N/A
9198704	12/2014	Sack et al.	N/A	N/A
9433456	12/2015	Yeh et al.	N/A	N/A
9463009	12/2015	Sack et al.	N/A	N/A
9572615	12/2016	Sack et al.	N/A	N/A
10660686	12/2019	Sack et al.	N/A	N/A
2001/0010008	12/2000	Gellman et al.	N/A	N/A
2001/0049489	12/2000	Kenison et al.	N/A	N/A
2002/0121539	12/2001	Strong et al.	N/A	N/A
2002/0156500	12/2001	Storz-Irion	N/A	N/A
2003/0036770	12/2002	Markman	606/187	A61B 17/3468
2003/0109900	12/2002	Martinek	N/A	N/A
2003/0129040	12/2002	Arisaka	N/A	N/A
	12/2002	Cauthen, III et al.	N/A	N/A
2003/0158604	12/2002			
2003/0158604 2004/0153074	12/2002 12/2003		N/A	N/A
		Bojarski et al. Cachia et al.	N/A N/A	N/A N/A
2004/0153074	12/2003	Bojarski et al.		
2004/0153074 2005/0143734	12/2003 12/2004	Bojarski et al. Cachia et al.	N/A	N/A
2004/0153074 2005/0143734 2005/0149122	12/2003 12/2004 12/2004	Bojarski et al. Cachia et al. McDevitt et al.	N/A N/A	N/A N/A
2004/0153074 2005/0143734 2005/0149122 2005/0220561	12/2003 12/2004 12/2004 12/2004	Bojarski et al. Cachia et al. McDevitt et al. Okada	N/A N/A N/A	N/A N/A N/A
2004/0153074 2005/0143734 2005/0149122 2005/0220561 2006/0235413	12/2003 12/2004 12/2004 12/2004 12/2005	Bojarski et al. Cachia et al. McDevitt et al. Okada Denham et al.	N/A N/A N/A N/A	N/A N/A N/A N/A
2004/0153074 2005/0143734 2005/0149122 2005/0220561 2006/0235413 2006/0247643	12/2003 12/2004 12/2004 12/2004 12/2005 12/2005	Bojarski et al. Cachia et al. McDevitt et al. Okada Denham et al. Bhatnagar et al.	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
2004/0153074 2005/0143734 2005/0149122 2005/0220561 2006/0235413 2006/0247643 2006/0247644	12/2003 12/2004 12/2004 12/2004 12/2005 12/2005 12/2005	Bojarski et al. Cachia et al. McDevitt et al. Okada Denham et al. Bhatnagar et al. Bhatnagar	N/A N/A N/A N/A N/A 623/17.16	N/A N/A N/A N/A N/A A61F 2/4611
2004/0153074 2005/0143734 2005/0149122 2005/0220561 2006/0235413 2006/0247643 2006/0247644 2007/0032793	12/2003 12/2004 12/2004 12/2004 12/2005 12/2005 12/2005 12/2006	Bojarski et al. Cachia et al. McDevitt et al. Okada Denham et al. Bhatnagar et al. Bhatnagar Del Rio et al.	N/A N/A N/A N/A N/A 623/17.16 N/A	N/A N/A N/A N/A N/A A61F 2/4611 N/A
2004/0153074 2005/0143734 2005/0149122 2005/0220561 2006/0235413 2006/0247643 2006/0247644 2007/0032793 2008/0033486	12/2003 12/2004 12/2004 12/2005 12/2005 12/2005 12/2006 12/2007	Bojarski et al. Cachia et al. McDevitt et al. Okada Denham et al. Bhatnagar et al. Bhatnagar Del Rio et al. Whittaker et al.	N/A N/A N/A N/A N/A 623/17.16 N/A N/A	N/A N/A N/A N/A N/A A61F 2/4611 N/A N/A
2004/0153074 2005/0143734 2005/0149122 2005/0220561 2006/0235413 2006/0247643 2006/0247644 2007/0032793 2008/0033486 2008/0281325	12/2003 12/2004 12/2004 12/2005 12/2005 12/2005 12/2006 12/2007 12/2007	Bojarski et al. Cachia et al. McDevitt et al. Okada Denham et al. Bhatnagar et al. Bhatnagar Del Rio et al. Whittaker et al.	N/A N/A N/A N/A N/A 623/17.16 N/A N/A N/A	N/A N/A N/A N/A N/A A61F 2/4611 N/A N/A N/A
2004/0153074 2005/0143734 2005/0149122 2005/0220561 2006/0235413 2006/0247643 2006/0247644 2007/0032793 2008/0033486 2008/0281325 2008/0288003	12/2003 12/2004 12/2004 12/2005 12/2005 12/2005 12/2006 12/2007 12/2007 12/2007	Bojarski et al. Cachia et al. McDevitt et al. Okada Denham et al. Bhatnagar et al. Bhatnagar Del Rio et al. Whittaker et al. Stone et al. McKinley	N/A N/A N/A N/A N/A 623/17.16 N/A N/A N/A	N/A N/A N/A N/A N/A A61F 2/4611 N/A N/A N/A N/A
2004/0153074 2005/0143734 2005/0149122 2005/0220561 2006/0235413 2006/0247643 2006/0247644 2007/0032793 2008/0033486 2008/0281325 2008/0288003 2009/0005792	12/2003 12/2004 12/2004 12/2005 12/2005 12/2005 12/2006 12/2007 12/2007 12/2007 12/2007	Bojarski et al. Cachia et al. McDevitt et al. Okada Denham et al. Bhatnagar et al. Bhatnagar Del Rio et al. Whittaker et al. Stone et al. McKinley Miyamoto et al. Koch Bhatnagar et al.	N/A N/A N/A N/A N/A 623/17.16 N/A N/A N/A N/A	N/A N/A N/A N/A N/A A61F 2/4611 N/A N/A N/A N/A
2004/0153074 2005/0143734 2005/0149122 2005/0220561 2006/0235413 2006/0247643 2006/0247644 2007/0032793 2008/0033486 2008/0281325 2008/0288003 2009/0005792 2009/0105798	12/2003 12/2004 12/2004 12/2005 12/2005 12/2005 12/2006 12/2007 12/2007 12/2007 12/2008 12/2008	Bojarski et al. Cachia et al. McDevitt et al. Okada Denham et al. Bhatnagar et al. Bhatnagar Del Rio et al. Whittaker et al. Stone et al. McKinley Miyamoto et al. Koch	N/A N/A N/A N/A N/A 623/17.16 N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A A61F 2/4611 N/A N/A N/A N/A N/A
2004/0153074 2005/0143734 2005/0149122 2005/0220561 2006/0235413 2006/0247643 2006/0247644 2007/0032793 2008/0033486 2008/0281325 2008/0288003 2009/0005792 2009/0105798 2009/0118734	12/2003 12/2004 12/2004 12/2004 12/2005 12/2005 12/2005 12/2006 12/2007 12/2007 12/2007 12/2008 12/2008 12/2008	Bojarski et al. Cachia et al. McDevitt et al. Okada Denham et al. Bhatnagar et al. Bhatnagar Del Rio et al. Whittaker et al. Stone et al. McKinley Miyamoto et al. Koch Bhatnagar et al.	N/A N/A N/A N/A N/A 623/17.16 N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A A61F 2/4611 N/A N/A N/A N/A N/A N/A N/A N/A
2004/0153074 2005/0143734 2005/0149122 2005/0220561 2006/0235413 2006/0247643 2006/0247644 2007/0032793 2008/0033486 2008/0281325 2008/0288003 2009/0005792 2009/0105798 2009/0118734 2009/0118762	12/2003 12/2004 12/2004 12/2005 12/2005 12/2005 12/2006 12/2007 12/2007 12/2007 12/2008 12/2008 12/2008 12/2008	Bojarski et al. Cachia et al. McDevitt et al. Okada Denham et al. Bhatnagar et al. Bhatnagar Del Rio et al. Whittaker et al. Stone et al. McKinley Miyamoto et al. Koch Bhatnagar et al. Crainch et al. Meridew Lombardo et al.	N/A N/A N/A N/A N/A N/A 623/17.16 N/A	N/A N/A N/A N/A N/A N/A A61F 2/4611 N/A
2004/0153074 2005/0143734 2005/0149122 2005/0220561 2006/0235413 2006/0247643 2006/0247644 2007/0032793 2008/0033486 2008/0281325 2008/0288003 2009/0005792 2009/0105798 2009/0118734 2009/0118762 2009/0299386 2009/0318964 2010/0016869	12/2003 12/2004 12/2004 12/2005 12/2005 12/2005 12/2006 12/2007 12/2007 12/2007 12/2008 12/2008 12/2008 12/2008 12/2008 12/2008 12/2008 12/2008 12/2008 12/2008	Bojarski et al. Cachia et al. McDevitt et al. Okada Denham et al. Bhatnagar et al. Bhatnagar Del Rio et al. Whittaker et al. Stone et al. McKinley Miyamoto et al. Koch Bhatnagar et al. Crainch et al. Meridew Lombardo et al.	N/A N/A N/A N/A N/A N/A N/A 623/17.16 N/A	N/A N/A N/A N/A N/A N/A N/A A61F 2/4611 N/A
2004/0153074 2005/0143734 2005/0149122 2005/0220561 2006/0235413 2006/0247643 2006/0247644 2007/0032793 2008/0033486 2008/0281325 2008/0288003 2009/0005792 2009/0105798 2009/0118734 2009/0118762 2009/0299386 2009/0318964	12/2003 12/2004 12/2004 12/2005 12/2005 12/2005 12/2006 12/2007 12/2007 12/2007 12/2008 12/2008 12/2008 12/2008 12/2008 12/2008 12/2008	Bojarski et al. Cachia et al. McDevitt et al. Okada Denham et al. Bhatnagar et al. Bhatnagar Del Rio et al. Whittaker et al. Stone et al. McKinley Miyamoto et al. Koch Bhatnagar et al. Crainch et al. Meridew Lombardo et al.	N/A N/A N/A N/A N/A N/A 623/17.16 N/A	N/A N/A N/A N/A N/A N/A A61F 2/4611 N/A

2010/0030237	12/2009	Hayashi	606/144	A61B 17/0401
2010/0049215	12/2009	Kayan et al.	N/A	N/A
2010/0100135	12/2009	Phan	N/A	N/A
2010/0121355	12/2009	Gittings et al.	N/A	N/A
2010/0130989	12/2009	Bourque et al.	N/A	N/A
2010/0152773	12/2009	Lunn et al.	N/A	N/A
2010/0198258	12/2009	Heaven et al.	N/A	N/A
2010/0292712	12/2009	Nering et al.	N/A	N/A
2010/0292713	12/2009	Cohn et al.	N/A	N/A
2010/0331881	12/2009	Hart	N/A	N/A
2011/0004258	12/2010	Stone et al.	N/A	N/A
2011/0046682	12/2010	Stephan et al.	N/A	N/A
2011/0082476	12/2010	Furnish et al.	N/A	N/A
2011/0106013	12/2010	Whittaker et al.	N/A	N/A
2011/0112550	12/2010	Heaven et al.	N/A	N/A
2011/0152885	12/2010	McDevitt et al.	N/A	N/A
2011/0264227	12/2010	Boyajian et al.	N/A	N/A
2012/0016373	12/2011	Impellizzeri	N/A	N/A
2012/0022586	12/2011	Whitman et al.	N/A	N/A
2012/0109132	12/2011	Ellis et al.	N/A	N/A
2012/0172885	12/2011	Drapeau et al.	N/A	N/A
2013/0023904	12/2012	Morita et al.	N/A	N/A
2013/0096613	12/2012	Hart	606/232	A61B 17/0401
2013/0138152	12/2012	Stone et al.	N/A	N/A
2013/0296640	12/2012	Goldman et al.	N/A	N/A
2014/0025125	12/2013	Sack et al.	N/A	N/A
2014/0046369	12/2013	Heaven et al.	N/A	N/A

FOREIGN PATENT DOCUMENTS

Patent No.	Application Date	Country	CPC
0507605	12/1991	EP	N/A
0589306	12/1993	EP	N/A
0990450	12/1999	EP	N/A
9627332	12/1995	WO	N/A
9831288	12/1997	WO	N/A

OTHER PUBLICATIONS

Dr. Stephen J. Snyder, "The Rotator Cuff Repair System Surgical Technique," Linvatec Corporation, Largo, Florida 34643, 1993. cited by applicant

International Search Report and Written Opinion dated Nov. 13, 2013 in International Application No. PCT/US2013/050441. cited by applicant

Office Action mailed May 5, 2014 in U.S. Appl. No. 13/552,130. cited by applicant Interview Summary mailed Sep. 22, 2014 in U.S. Appl. No. 13/552,130. cited by applicant Office Action mailed Oct. 1, 2014 in U.S. Appl. No. 13/552,181. cited by applicant Amendment filed Oct. 6, 2014 in U.S. Appl. No. 13/552,130. cited by applicant Final Office Action mailed Jan. 9, 2015 in U.S. Appl. No. 13/552,130. cited by applicant Office Action mailed Feb. 11, 2015 in U.S. Appl. No. 13/552,072. cited by applicant Amendment filed Mar. 2, 2015 in U.S. Appl. No. 13/552,181. cited by applicant

Interview Summary mailed Mar. 2, 2015 in U.S. Appl. No. 13/552,181. cited by applicant Notice of Allowance mailed Mar. 23, 2015 in U.S. Appl. No. 13/552,181. cited by applicant Amendment After Final Rejection filed May 11, 2015 in U.S. Appl. No. 13/552,130. cited by applicant

Interview Summary mailed Jul. 9, 2015 in U.S. Appl. No. 13/552,072. cited by applicant Amendment filed Jul. 13, 2015 in U.S. Appl. No. 13/552,072. cited by applicant Notice of Allowance mailed Jul. 28, 2015 in U.S. Appl. No. 13/552,072. cited by applicant Office Action mailed Jul. 29, 2015 in U.S. Appl. No. 13/552,163. cited by applicant Office Action mailed Oct. 2, 2015 in U.S. Appl. No. 13/552,130. cited by applicant Response to Official Communication under Rule 161, filed Nov. 24, 2015 in European Patent Application No. 13 820 667.7. cited by applicant

Amendment filed Dec. 22, 2015 in U.S. Appl. No. 13/552,163. cited by applicant Amendment filed Feb. 2, 2016 in U.S. Appl. No. 13/552,130. cited by applicant Final Office Action mailed Mar. 11, 2016 in U.S. Appl. No. 13/552,130. cited by applicant Extended European Search Report dated Apr. 29, 2016 in European Patent Application No. 13820667.7. cited by applicant

Notice of Allowance mailed May 6, 2016 in U.S. Appl. No. 13/552,163. cited by applicant Interview Summary mailed May 11, 2016 in U.S. Appl. No. 13/552,130. cited by applicant

Primary Examiner: Gabr; Mohamed G

Assistant Examiner: Mann; Aman Kumar

Attorney, Agent or Firm: Plumsea Law Group, LLC

Background/Summary

RELATED APPLICATIONS (1) This application is a division of U.S. patent application Ser. No. 16/874,771, filed May 15, 2020, now U.S. Pat. No. 11,882,988, issued Jan. 20, 2024, which is a continuation of U.S. patent application Ser. No. 15/432,176, filed Feb. 14, 2017, now U.S. Pat. No. 10,660,686, issued May 26, 2020, which is a continuation of U.S. patent application Ser. No. 13/552,098, filed Jul. 18, 2012, now U.S. Pat. No. 9,572,615, issued Feb. 21, 2017, all of which are herein incorporated by reference in their entirety. (2) This application is related to the following commonly owned co-pending applications: U.S. Patent Publication Number US2014/0025082, published Jan. 23, 2014 (U.S. patent application Ser. No. 13/552,072, filed Jul. 18, 2012), titled "Impact And Drive System For Prosthesis Deployment Device"; U.S. Patent Publication Number US2014/0025125, published Jan. 23, 2014 (U.S. patent application Ser. No. 13/552,130, filed Jul. 18, 2012), titled "Expandable Prosthesis For A Tissue Repair System"; U.S. Patent Publication Number US2014/0025108, published Jan. 23, 2014 (U.S. patent application Ser. No. 13/552,163, filed Jul. 18, 2012), titled "Method And System For Implanting Multiple Prostheses"; and U.S. Patent Publication Number US2014/0025109, published Jan. 23, 2014 (U.S. patent application Ser. No. 13/552,181, filed Jul. 18, 2012), titled "Multi-Impact System For Prosthesis Deployment Device", which are all herein incorporated by reference.

BACKGROUND

- (1) The present embodiments relate generally to systems and methods for repairing tissue.
- (2) Sutures are often used to repair various imperfections in tissue. For example, flaws, holes, tears, bulges, a deliberate cut or incision may all be repaired using sutures. In the case of a rotator cuff tendon tear, sutures may be used to help re-attach the torn or receded portion of the rotator cuff

tendon to the humerus bone. Sutures are also used to repair glenoid labrum tears and superior labrum anterior and posterior (SLAP) tears.

SUMMARY

- (3) In one aspect, a deployment device for a prosthesis includes a driven assembly configured to apply a force to the prosthesis. The driven assembly includes a driven tube including a hollow longitudinal cavity and the driven assembly also includes a driven pin. The deployment device also includes a driving assembly configured to drive the driven pin and the driven tube. The driven pin can move through the hollow longitudinal cavity of the driven tube.
- (4) In another aspect, a deployment device for a prosthesis includes a driven assembly configured to apply a force to the prosthesis. The driven assembly includes a driven tube including a hollow longitudinal cavity and the driven assembly also includes a driven pin. The driven pin is configured to move through the hollow longitudinal cavity of the driven tube. The driven tube is configured to move a first distance and the driven pin is configured to move a second distance. The first distance is substantially greater than the second distance.
- (5) In another aspect, a deployment device for a prosthesis includes a driving assembly comprising a driving pin and a driving tube. The driving tube includes a first hollow longitudinal cavity, where the driving pin can move through the first hollow longitudinal cavity. The deployment device also includes a driven assembly to apply a force to the prosthesis, where the driven assembly also includes a driven tube including a second hollow longitudinal cavity and where the driven assembly also includes a driven pin. The driven pin is configured to move through the second hollow longitudinal cavity of the driven tube and the driving tube, the driving pin, the driven tube, and the driven pin are all aligned along a longitudinal axis.
- (6) In another aspect, a kit of parts for tissue repair includes a first front delivery assembly including at least one prosthesis configured for implantation and a second front delivery assembly including at least one prosthesis configured for implantation. The kit of parts also includes a base assembly, where the first front delivery assembly can be removably attached to the base assembly and where the second front delivery assembly can be removably attached to the base assembly. The base assembly is configured to provide power assistance for implanting prostheses.
- (7) In another aspect, a deployment device for tissue repair includes a first prosthesis and a second prosthesis. The deployment device also includes a driving assembly configured to provide a driving force. The first prosthesis and the second prosthesis can be positioned within the deployment device at a first configuration and a second configuration. The first prosthesis is aligned with the driving assembly in the first configuration and the second prosthesis is out of alignment with the driving assembly in the second configuration and the first prosthesis is out of alignment with the driving assembly in the second configuration and the first prosthesis is out of alignment with the driving assembly in the second configuration.
- (8) In another aspect, a method of operating a deployment device for tissue repair includes attaching a front delivery assembly including at least one prosthesis to a base assembly. The method also includes aligning the front delivery assembly with a desired region of tissue. The method also includes implanting the at least one prosthesis using the deployment device and detaching the front delivery assembly from the base assembly.
- (9) In another aspect, a prosthesis configured for implantation into tissue includes a driving portion including a driving tip portion and a wedge portion as well as a base portion including a forward portion and a rearward portion, where the forward portion being associated with the driving portion. The base portion includes a first longitudinal portion that extends along the length of the base portion and a second longitudinal portion that extends along the length of the base portion. The first longitudinal portion and the second longitudinal portion are attached at the rearward portion, and the first longitudinal portion and the second longitudinal portion are separable at the forward portion. The first longitudinal portion is associated with a first surface of the wedge portion, and the second longitudinal portion is associated with a second surface of the wedge

portion. The first longitudinal portion and the second longitudinal portion are configured to engage the wedge portion and spread apart from one another during the implantation of the prosthesis. (10) In another aspect, a prosthesis for tissue repair includes a driving portion including a driving tip portion and a wedge portion and a base portion including a forward portion and a rearward portion, where the forward portion is disposed adjacent to the wedge portion. The base portion is configured to expand when the forward portion is engaged by the wedge portion. The forward portion is connected to the wedge portion prior to implantation into a tissue and the forward portion and the wedge portion are configured to separate during an implantation process.

- (11) In another aspect, a prosthesis configured for implantation into tissue includes a driving portion and a base portion including a forward portion and a rearward portion, where the forward portion being associated with the driving portion. The prosthesis also includes a wedge portion associated with the rearward portion of the base portion. The base portion includes a first longitudinal portion that extends along the length of the base portion and a second longitudinal portion that extends along the length of the base portion. The first longitudinal portion and the second longitudinal portion are attached at the forward portion and the first longitudinal portion and the second longitudinal portion are separable at the rearward portion. The first longitudinal portion and the second longitudinal portion are configured to engage the wedge portion and spread apart from one another during the implantation of the prosthesis.
- (12) In another aspect, a prosthesis for tissue repair includes a driving portion. The prosthesis also includes a base portion including a forward portion and a rearward portion, where the forward portion is associated with the driving portion. The prosthesis also includes a wedge portion associated with the rearward portion of the base portion. The base portion is configured to expand when the rearward portion is engaged by the wedge portion. The rearward portion is connected to the wedge portion prior to implantation into a tissue and the rearward portion and the wedge portion are configured to separate during an implantation process.
- (13) In one aspect, a tissue repair system includes a deployment device configured to house two or more prostheses, where the deployment device provides two prosthesis positions including a driving position and a storage position. The tissue repair system also includes a first prosthesis, a second prosthesis, and at least one connecting member. The deployment device has an initial configuration where the first prosthesis is in the driving position, the second prosthesis is in the storage position, and the at least one connecting member joins the first prosthesis and the second prosthesis. The deployment device is configured to implant the first prosthesis and the second prosthesis in multiple stages. A first stage includes the first prosthesis being implanted from the driving position such that the at least one connecting member extends from the implanted first prosthesis to the second prosthesis in the storage position. A second stage includes the second prosthesis being moved from the storage position to the driving position. And a third stage includes the second prosthesis being implanted from the driving position with the connecting member still joining the first prosthesis and the second prosthesis.
- (14) In another aspect, a tissue repair system includes a deployment device configured to house two or more prostheses, where the deployment device provides two prosthesis positions including a driving position and a storage position. The tissue repair system also includes a plurality of prostheses and at least one connecting member. The deployment device has an initial configuration in which one of the plurality of prostheses is in the driving position, one or more other prostheses of the plurality of prostheses is in the storage position, and the connecting member joins together each prosthesis of the plurality of prostheses. The deployment device is configured to implant each prosthesis of the plurality of prostheses in multiple stages. The multiple stages include a stage of implanting the one prosthesis from the driving position. The multiple stages also include a stage of moving at least one of the one or more other prostheses from the storage position to the driving position.
- (15) In another aspect, a method of implanting multiple prostheses into a tissue using a deployment

device includes aligning an end of the deployment device in a first location, where the deployment device includes an energy storage system that provides power to implant prostheses. The method also includes releasing energy of the energy storage system such that the deployment device implants a first prosthesis in the first location, where the implanted first prosthesis is attached by at least one connecting member to a second prosthesis inside the deployment device. The method also includes adjusting the position of the second prosthesis within the deployment device so that the second prosthesis is configured for implantation. The method also includes aligning the end of the deployment device in a second location that is different from the first location. The method also includes releasing energy of the energy storage system such that the deployment device implants the second prosthesis in the second location, where the first prosthesis and the second prosthesis are joined by the at least one connecting member extending from the first location to the second location.

- (16) In one aspect, a deployment device for repairing tissue includes a front delivery assembly including a driven assembly configured to hold a prosthesis, a base assembly including a driving assembly that is configured to impact the driven assembly and a trigger assembly for activating the driving assembly. The deployment device is configured such that the driving assembly is adapted to impact the driven assembly multiple times by engaging the trigger assembly multiple times. Subsequent impacts of the driving assembly with the driven assembly are configured to drive the prosthesis farther into the tissue.
- (17) In another aspect, a deployment device includes a front delivery assembly including a driven assembly configured to hold a prosthesis, a base assembly including a driving assembly, and a trigger assembly for activating the driving assembly. The deployment device is operable in an initial state in which the driving assembly is at rest and the driving assembly and the driven assembly are spaced apart by a first distance. The deployment device is also operable in an intermediate state in which the driving assembly is at rest and the driving assembly and the driven assembly are spaced apart by a second distance. The deployment device is also operable in a final state in which the driving assembly is at rest and the driving assembly and the driven assembly are spaced apart by a third distance. The third distance is greater than the second distance and wherein the second distance is greater than the first distance.
- (18) In another aspect, a method of implanting a prosthesis into tissue using a deployment device includes actuating a driving assembly so that the driving assembly engages a driven assembly corresponding to the prosthesis, observing a position of a depth indicator that is associated with a depth to which the prosthesis has been implanted within the tissue, and actuating the driving assembly a second time if the position of the depth indicator is spaced apart from a predetermined depth position.
- (19) Other systems, methods, features and advantages of the embodiments will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description and this summary, be within the scope of the embodiments, and be protected by the following claims.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) The embodiments can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the embodiments. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
- (2) FIG. **1** is a schematic diagram of an example of a shoulder joint including the attachment of

- rotator cuff tendons to the greater tuberosity of the humerus;
- (3) FIG. **2** is a schematic diagram of an example of a shoulder joint in which a rotator cuff tendon has partially torn;
- (4) FIG. **3** is a schematic diagram of a conventional method of repairing a torn rotator cuff tendon;
- (5) FIG. **4** is a schematic diagram that shows a surgeon preparing to repair a torn rotator cuff tendon according to one embodiment;
- (6) FIG. **5** is a schematic diagram of an embodiment of a deployment device as well as various components of the deployment device;
- (7) FIG. **6** is a schematic diagram that shows a surgeon using a deployment device to install a first prosthesis according to one embodiment;
- (8) FIG. **7** is a schematic diagram that shows a surgeon adjusting a deployment device to align a second prosthesis with a driving device according to one embodiment;
- (9) FIG. **8** is a schematic diagram that shows a surgeon using a deployment device to install a second prosthesis according to one embodiment;
- (10) FIG. **9** is a schematic diagram of another embodiment of a portion of a deployment device that is configured to house three prostheses;
- (11) FIG. **10** is a schematic diagram of another embodiment of a portion of a deployment device that is configured to house five prostheses;
- (12) FIG. **11** is a schematic diagram of another embodiment of a portion of a deployment device that is configured to house any desired number of prostheses;
- (13) FIG. **12** is a schematic diagram of an embodiment of a plurality of prostheses being used to repair a portion of a rotator cuff tendon;
- (14) FIG. **13** is a schematic diagram illustrating an isometric view of an embodiment of a tissue repair system;
- (15) FIG. **14** is a schematic diagram illustrating an isometric exploded view of an embodiment of a tissue repair system that includes a base assembly, a front delivery assembly and a plurality of prostheses;
- (16) FIG. **15** is a schematic diagram illustrating an isometric cut-away view of an embodiment of a tissue repair system that illustrates various internal components of a deployment device;
- (17) FIG. **16** is a schematic diagram illustrating an enlarged cut-away view of an embodiment of a plurality of prostheses positioned within the end of a front delivery assembly;
- (18) FIG. **17** is a schematic diagram illustrating an isometric view of an embodiment of a prosthesis;
- (19) FIG. **18** is a schematic diagram illustrating another isometric view of the prosthesis of FIG. **17**, in which the prosthesis has been rotated about a central axis;
- (20) FIG. **19** a schematic diagram illustrating a schematic view of a prosthesis being aligned with a tissue according to one embodiment;
- (21) FIG. **20** is a schematic diagram illustrating another schematic view of the prosthesis of FIG.
- **19**, in which the prosthesis has been driven into the tissue;
- (22) FIG. 21 is a schematic diagram illustrating another schematic view of the prosthesis of FIG.
- **19**, in which a base portion of the prosthesis has started to expand;
- (23) FIG. 22 is a schematic diagram illustrating another schematic view of the prosthesis of FIG.
- **21**, in which the base portion continues to expand;
- (24) FIG. 23 is a schematic diagram illustrating another schematic view of the prosthesis of FIG.
- **22**, in which the base portion is fully expanded;
- (25) FIG. **24** is a schematic diagram illustrating an isometric view of another embodiment of a prosthesis;
- (26) FIG. **25** is a schematic diagram illustrating a schematic view of a prosthesis being aligned with a tissue according to one embodiment;
- (27) FIG. **26** is a schematic diagram illustrating another schematic view of the prosthesis of FIG.

- **25**, in which the prosthesis has been driven into the tissue;
- (28) FIG. **27** is a schematic diagram illustrating another schematic view of the prosthesis of FIG.
- **26**, in which a base portion of the prosthesis has started to expand;
- (29) FIG. 28 is a schematic diagram illustrating another schematic view of the prosthesis of FIG.
- **26**, in which the base portion continues to expand;
- (30) FIG. **29** is a schematic diagram illustrating an isometric view of an embodiment of a prosthesis including three separated portions as well as an enlarged cut-away view of the prosthesis;
- (31) FIG. **30** is a schematic diagram illustrating a side view of an embodiment of the prosthesis of FIG. **29** split into three portions;
- (32) FIG. **31** is a schematic diagram of two different configurations for a prosthesis according to various embodiments;
- (33) FIG. **32** is a schematic diagram illustrating an isometric cut-away view of portions of a front delivery assembly according to an embodiment;
- (34) FIG. **33** is a schematic diagram illustrating an isometric cut-away view of an embodiment of a portion of a deployment device including views of components internal to a base assembly;
- (35) FIG. **34** is a schematic diagram illustrating an isometric cut away view of a portion of a deployment device including a brace member;
- (36) FIG. **35** is a schematic diagram illustrating an isometric view of an embodiment of the coaxial alignment of several components of a tissue repair system;
- (37) FIG. **36** is a schematic diagram illustrating a side view of some components of a deployment device being aligned with a tissue according to one embodiment;
- (38) FIG. **37** is a schematic diagram illustrating a side view of the components of FIG. **36**, in which a prosthesis is driven into the tissue;
- (39) FIG. **38** is a schematic diagram illustrating a side view of the components of FIG. **37**, in which a portion of the prosthesis begins to expand;
- (40) FIG. **39** is a schematic diagram illustrating a side view of the components of FIG. **38**, in which a portion of the prosthesis continues to expand;
- (41) FIG. **40** is a schematic diagram illustrating a side view of the components of FIG. **39**, in which the prosthesis has been fully implanted into the tissue;
- (42) FIG. **41** is a schematic diagram illustrating a side cross-sectional view of a portion of a deployment device according to one embodiment;
- (43) FIG. **42** is a schematic diagram illustrating a side cross-sectional view of a portion of a deployment device according to one embodiment;
- (44) FIG. **43** is a schematic diagram illustrating an isometric cut-away view of an embodiment of a portion of a base assembly including components used to generate and control an impact force;
- (45) FIG. **44** is a schematic diagram illustrating an isometric cut-away view of the base assembly of FIG. **43**, in which a control knob has been adjusted;
- (46) FIG. **45** is an isometric cut-away view of the base assembly of FIG. **43**, in which an impact spring has been loaded;
- (47) FIG. **46** is a schematic diagram illustrating an isometric cut-away view of the base assembly of FIG. **43**, in which an impact spring has been released and a driving pin and driving tube move together;
- (48) FIG. **47** is a schematic diagram illustrating an isometric cut-away view of the base assembly of FIG. **43**, in which a control hook releases a projecting portion of the driving pin;
- (49) FIG. **48** is a schematic diagram illustrating an isometric cut-away view of the base assembly of FIG. **43**, in which a driving pin and a driving tube can move independently;
- (50) FIG. **49** is a schematic diagram illustrating an embodiment of a base assembly including a trigger assembly;
- (51) FIG. **50** is a schematic diagram of the base assembly of FIG. **49**, in which the trigger assembly is engaged;

- (52) FIG. **51** is a schematic diagram of the base assembly of FIG. **49**, in which the trigger assembly is engaged and an impact spring has been released;
- (53) FIG. **52** is a schematic diagram of the base assembly of FIG. **49**, in which the trigger assembly and a driving assembly are returning to a default position;
- (54) FIG. **53** is a schematic diagram illustrating an isometric cut-away view of an embodiment of a portion of a front delivery assembly and a portion of a base assembly;
- (55) FIG. **54** is a schematic diagram illustrating an isometric view of a portion of a front delivery assembly, which includes a rotating assembly;
- (56) FIG. **55** is a schematic diagram illustrating an isometric cut-away view of a portion of a deployment device according to one embodiment;
- (57) FIG. **56** is a schematic diagram illustrating a detailed side view of an embodiment of a deployment device in a pre-deployment state;
- (58) FIG. **57** is a schematic diagram of the deployment device of FIG. **56**, in which the prosthesis is being driven into a tissue;
- (59) FIG. **58** is a schematic diagram of the deployment device of FIG. **57**, in which the prosthesis has been partially implanted into the tissue;
- (60) FIG. **59** is a schematic diagram of the deployment device of FIG. **58**, in which the prosthesis is being driven further into the tissue;
- (61) FIG. **60** is a schematic diagram of the deployment device of FIG. **59**, in which the prosthesis is fully driven into the tissue;
- (62) FIG. **61** is a schematic diagram illustrating a schematic view of a method of implanting multiple prostheses according to one embodiment;
- (63) FIG. **62** is a schematic diagram illustrating another view of the method of FIG. **61**, in which a rotating assembly has been rotated by 90 degrees;
- (64) FIG. **63** is a schematic diagram illustrating another view of the method of FIG. **61**, in which a rotating assembly has been rotated by 180 degrees;
- (65) FIG. **64** is a schematic cut-away diagram of a portion of a front delivery assembly, in which the top half of the front delivery assembly has been removed forwards of a locking ring, and which further illustrates the locking ring in a ready to actuate position according to an embodiment;
- (66) FIG. **65** is a schematic cut-away diagram illustrating the locking ring of FIG. **64** in a locked out position according to an embodiment;
- (67) FIG. **66** is a schematic diagram illustrating an isometric cut-away view of a portion of a deployment device according to one embodiment, in which a front delivery assembly is attached to a base assembly;
- (68) FIG. **67** is a schematic diagram illustrating the location where a surgeon may apply a force to remove a front delivery assembly from a base assembly according to one embodiment;
- (69) FIG. **68** is a schematic diagram illustrating an isometric cut-away view of a portion of the deployment device of FIG. **66** as a front delivery assembly has started to disengage from a base assembly;
- (70) FIG. **69** is a schematic diagram illustrating an isometric cut-away view of a portion of the deployment device of FIG. **66** as a front delivery assembly has been fully disengaged from a base assembly;
- (71) FIG. **70** is a schematic diagram illustrating a schematic view of an embodiment of a kit of parts including a base assembly and a plurality of front delivery assemblies;
- (72) FIG. **71** is a schematic diagram illustrating an isometric view of an embodiment of a front delivery assembly including a plurality of holding members;
- (73) FIG. **72** is a schematic diagram illustrating a possible use for holding members of a front delivery assembly according to one embodiment; and
- (74) FIG. **73** is a schematic diagram illustrating an isometric view of an embodiment of a front delivery assembly in which a plurality of holding members may be hidden within a retractable

cannula of the front delivery assembly.

DETAILED DESCRIPTION

- (75) FIG. 1 illustrates a schematic view of an embodiment of some elements of shoulder joint 100. More generally, shoulder joint 100 may comprise a ball and socket joint formed by the humerus and scapula bones. Shoulder joint 100 may generally comprise various muscles and tendons that help with stabilization of the joint. For example, shoulder joint 100 may include four muscles including the supraspinatus muscle, the infraspinatus muscle, the teres minor muscle and the subscapularis muscle. These muscles may be attached to the greater tuberosity 104 and lesser tuberosity 103 of humerus 102 by various groups of tendons. The fusion of the tendons associated with each of the muscle groups forms the rotator cuff. As one example, subscapularis tendon 106, also referred to simply as tendon 106, provides attachment of the subscapularis muscles to lesser tuberosity 103 of humerus 102. Additionally, the current embodiment also clearly illustrates supraspinatus tendon 107, which attaches the supraspinatus muscles to greater tuberosity 104 of humerus 102.
- (76) At times, a tendon of the rotator cuff, such as tendon **106** may be ruptured or torn, a condition commonly referred to as a "torn rotator cuff." Rotator cuff tears may be classified as partial thickness tears or full thickness tears, as well as by whether the tendon has completely detached from the greater tuberosity **104** or lesser tuberosity **103** of humerus **102**. By way of example, FIG. **2** illustrates a schematic view of an embodiment of shoulder joint **100** in which tendon **106** has been torn. In particular, tear **120** is a partial tear that occurs adjacent to the region where tendon **106** attaches to humerus **102**.
- (77) Although FIG. 2 illustrates one possible location for a rotator cuff tear, it will be understood that tears can occur at any location along tendon 106. Other examples of tears include glenoid labrum tears and SLAP (superior labrum anterior and posterior) tears. It will be understood that this is not intended to be an exhaustive list of possible tears. The method and system discussed below for repairing tears is not limited to tears of the kind illustrated in FIG. 2. Instead, FIG. 2 is meant to illustrate one possible example of a tear for purposes of clarifying the general method and system for repair disclosed throughout the remainder of this detailed description. As discussed in further detail below, the method and system discussed in these embodiments may be utilized for repairing a wide variety of tears or other imperfections in various different kinds of tissues.
- (78) FIG. **3** is intended to illustrate a schematic view of one possible method of repairing a rotator cuff tear **123**, in which an end portion of tendon **106** has been fully detached from humerus **102**. The method illustrated in FIG. **3** for repairing rotator cuff tears may be complex and may require many steps that could be difficult to perform by surgeons. In some cases, one step of the repair surgery involves passing sutures 132 through tendon 106 to form a predetermined stitch. These stitches can be complicated to ensure the end of the tendon is properly anchored. In another step, the surgeon may form bone tunnels **130** in humerus **102**, typically through the use of a cortical gauge punch or similar tool (not shown). As many bone tunnels are necessary, the cortical gauge punch may be used many times in succession. With the stitches made in tendon **106** and bone tunnels **130** formed in humerus **102**, sutures **132** must then be threaded through bone tunnels **130**. This may be achieved using a plunger **134** or similar tool. Finally, once all sutures **132** have been passed through bone tunnels **130**, the ends of sutures **132** must be matched with corresponding ends and tied together with knots (not shown). This process may be time consuming and laborious due to the large number of steps. Moreover, the complexity of the process may limit the number of surgeons able to perform the operation. Other methods for repairing a tear in a tendon may use anchors. These other methods may also require sutures to be tied together during surgery (following implantation of anchors into the bone), which can be a time consuming and laborious process.
- (79) System and Method for Implanting Multiple Prostheses
- (80) In contrast to the embodiment shown in FIG. 3, FIGS. 4 through 73 are directed towards

embodiments of a system and method that simplifies the repair of a rotator cuff tendon by limiting the complexity of the repair as well as the number of steps involved. The system and method described below may be generally characterized by a plurality of prostheses and an associated deployment device for implanting the plurality of prostheses. In some embodiments, the plurality of prostheses could be physically attached through some joining mechanism, or simply intended for use together. In some cases, for example, a plurality of prostheses may comprise a plurality of suturing anchors that are joined using one or more suture threads. However, in other embodiments, a plurality of prostheses could comprise other kinds of prostheses known in the art. Moreover, the term "prosthesis" as used throughout this detailed description and in the claims refers to any device, component, or other element that is configured to be implanted into a portion of the body. It will be understood that the term prosthesis is not intended to designate a particular structure, material, location, or function.

- (81) FIG. 4 illustrates a schematic view of patient 140 undergoing rotator cuff repair surgery. Specifically, surgeon 142 may perform a surgical procedure that attempts to repair tear 120 of tendon 106. Surgeon 142 may be provided with tissue repair system 148 according to one embodiment. In some embodiments, tissue repair system 148 may comprise plurality of prostheses 160 (see FIG. 5) that may be implanted into tendon 106 and/or humerus 102 in order to repair tear 120. In some embodiments, tissue repair system 148 may also comprise deployment device 150, which is used to implant plurality of prostheses 160 at the location of tear 120. (82) For purposes of clarity, patient 140 is shown with a single incision 144 through which deployment device 150 may be inserted to facilitate the implantation of one or more prostheses. However, in some cases, additional incisions may be made at the shoulder to facilitate the use of other instrumentation. For example, an arthroscope may be inserted into a second incision simultaneously with the insertion of deployment device 150 into incision 144. This may allow surgeon 142 to inspect tear 120 carefully and may also be used to guide the implantation of one or more prostheses using deployment device 150. Moreover, it will also be understood that in other situations, tissue repair system 148 could be used in conjunction with any other surgical technique
- (83) Although the following embodiments describe the use of tissue repair system **148** for repairing tears in a rotator cuff tendon, the applications of tissue repair system **148** are not limited to this particular use. Instead, this particular application simply highlights how one type of tissue repair may be improved through the use of tissue repair system **148**. Moreover, this method could be utilized in repairing a wide range of imperfections or irregularities in tissue including, but not limited to: flaws, holes, tears, bulges, a deliberate cut or incision, as well as any other imperfections.

including open surgery, in which the shoulder joint may be fully exposed during implantation.

- (84) FIG. 5 illustrates a schematic view of one possible embodiment of tissue repair system 148. For purposes of clarity, deployment device 150, plurality of prostheses 160, and their corresponding sub-components are shown schematically in FIGS. 5 through 13. Referring to FIG. 5, each prosthesis of plurality of prostheses 160 may be joined by connecting member 166 while housed within deployment device 150. In some embodiments, connecting member 166 may be a suture thread. However, in other embodiments, connecting member 166 could comprise a more rigid member. In another embodiment, for example, connecting member 166 could comprise a plastic connecting member that is substantially stiffer than a suture thread. In still other embodiments, the structural properties of connecting member 166 may vary in any manner and may generally be determined according to the type of repair needed. For example, in situations where tissue repair system 148 may be used to fasten different portions of bone together, a connecting member that is substantially more rigid than suture thread may be used to help fasten the portions of bone together. Still other examples of connecting members include, but are not limited to nets and meshes.
- (85) In one embodiment, plurality of prostheses 160 includes first prosthesis 162 and second

prosthesis **164**. In some embodiments, first prosthesis **162** and/or second prosthesis **164** may comprise anchors that are intended for implantation into one or more kinds of tissue. This configuration may allow first prosthesis **162** and second prosthesis **164** to act as anchors for connecting member **166**, which may comprise a suture thread as previously discussed. (86) In different embodiments, the general form or structure of deployment device **150** may vary. In one embodiment, for example, housing **152** of deployment device **150** may take the form of a handheld device. In some cases, housing **152** may include a handgrip portion **170**. This general shape allows deployment device **150** to be easily handled and used. Although the current embodiment illustrates a generic shape for handgrip portion **170**, other embodiments could include additional provisions to enhance handling and use. For example, some embodiments could incorporate contours that conform to the natural shape and position of fingers along handgrip portion **170**. Still other embodiments could use pads or similar provisions to enhance grip and/or cushioning.

- (87) In some embodiments, deployment device **150** may be configured to temporarily house plurality of prostheses **160** up until the time of implantation. In some cases, therefore, housing **152** may include delivery portion **172** that extends away from handgrip portion **170**. With handgrip portion **170** held by the surgeon, delivery portion **172** may be configured to insert through an incision or other opening in order to align plurality of prostheses 160 with the desired region of tissue. In some cases, therefore, delivery portion 172 may be configured with a narrow tube-like, or barrel, shape. This shape for delivery portion **172** may help to reduce the footprint of deployment device **150** at the intended implantation site in order to improve precision of the deployment. In still other embodiments, delivery portion 172 could be configured with any other geometry. Other suitable geometries for a delivery portion may be selected according to various factors including the type of incision, the number, and/or arrangement of prostheses as well as other factors. (88) Deployment device **150** may include provisions for assisting a surgeon with implanting plurality of prostheses **160** into tissue. In some cases, deployment device **150** may include actuating system **153**. Generally, actuating system **153** could utilize any kind of actuators known in the art. In some cases, actuating system **153** may include an energy storage system **155**. In some cases, actuating system **153** may further include driving system **159**. Using power generated by energy storage system **155**, driving system **159** may generally apply the necessary impact and driving forces to implant first prosthesis **162** and/or second prosthesis **164**.
- (89) As one possible example, actuating system **153** is depicted schematically in FIG. **5** as comprising spring **154** and driving rod **156**, which may be particular components of energy storage system **155** and driving system **159**, respectively. As spring **154** expands, the mechanical energy stored within spring **154** generates the linear motion of driving rod **156**, which further acts to deploy one or more of plurality of prostheses **160** from deployment device **150**. Other embodiments could use any other kind of energy storage systems for generating the required force to implant plurality of prostheses **160** into tissue. In another embodiment, for example, energy storage system **155** could comprise a chemical energy storage system, such as a battery. Still other embodiments could use hydraulic energy, pneumatic energy, and/or electrical energy to generate the necessary impact and driving forces for implanting prostheses. In still another embodiment, combustion could be used to generate power for implanting prostheses. It should be understood that deployment device **150** could include additional provisions for charging, or otherwise supplying sources of stored energy, for energy storage system **155**. For example, in embodiments where energy storage system **155** includes a battery, deployment device **150** could include provisions for recharging and/or interchanging a battery. As another example, in embodiments where energy storage system **155** uses combustion to actuate driving system **159**, deployment device **150** could include provisions for replacing the source of the combustion energy (such as an explosive powder).
- (90) For purposes of clarity, driving system ${\bf 159}$ is illustrated schematically as comprising a single

driving rod **156** that acts to propel plurality of prostheses **160** into a tissue. In other embodiments, driving system **159** could comprise multiple components. For example, some embodiments could incorporate one or more driven rods that mediate the transfer of forces between a driving rod and a prosthesis. Still other cases may include multiple driving components and multiple driven components. For example, one embodiment described in detail below includes a driving assembly with a driving pin and a driving tube that houses the driving pin. The driving pin and driving tube may further interact with one or more driven assemblies, where each driven assembly includes a driven pin and a corresponding driven tube.

- (91) In some embodiments, driving system **159** may be designed to facilitate the implantation of plurality of prostheses **160** in a precisely controlled manner. For example, driving system **159** may be designed to deliver a predetermined amount of force to plurality of prostheses **160**. Additionally, in some embodiments, driving system **159** may be designed to vary the location at which force is applied to plurality of prostheses **160**. In some embodiments, driving system **159** may also be designed to deliver force to plurality of prostheses **160** in multiple stages, rather than at a single instance. It will therefore be understood that other embodiments of driving system **159** could incorporate any other components or systems that facilitate increased control over the implantation process.
- (92) Deployment device **150** can also include provisions that allow a user (such as a surgeon) to activate actuating system **153**. In some cases, deployment device **150** may include user activation device **158**. In FIG. **5**, user activation device **158** is shown schematically as a trigger. In other embodiments, deployment device 150 could include other kinds of activation devices, including, but not limited to: mechanical push buttons, electronic buttons, knobs, dials, and switches, as well as any other activation devices known in the art. Moreover, some embodiments could include various devices for modifying the operating properties of actuating system **153**. For example, some embodiments could include a control knob or dial for varying the magnitude of the impact force generated by actuating system **153**. An example of such a control knob is described below. (93) Using the configuration described here, deployment device **150** may be capable of providing assistance to a surgeon when implanting one or more prostheses. In particular, energy storage system **155**, which can include components such as spring **154**, may provide assistance in generating the amount of force required to insert a prosthesis into various kinds of tissue, including bone. This power assistance can greatly increase ease of use over systems that may require the surgeon to generate an impact force directly. Furthermore, the force generated by an energy storage system such as a spring may facilitate a more controlled impact and driving motion for driving system **159** in comparison to systems that may use mechanical energy generated directly by a surgeon.
- (94) It will be understood that in some embodiments user activation device **158** may be used to both store energy in energy storage system **155** and release energy from energy storage system **155**. For example, in some embodiments user activation device **158** may be a trigger that is used to load spring **154** and to release spring **154**. In some cases, both loading and releasing of spring **154** may occur as a surgeon fully squeezes user activation device **158**. In other cases, however, user activation device **158** may only be used to release energy from energy storage system **155**. In such cases, deployment device **150** could incorporate additional provisions for loading spring **154**. (95) Some embodiments of deployment device **150** can also include provisions for implanting multiple prostheses in a sequential manner. In some embodiments, deployment device **150** includes provisions for aligning multiple prostheses with driving rod **156** in a sequential manner. In one embodiment, this may be accomplished through the use of rotating portion **157**. In some cases, rotating portion **157** comprises a portion of delivery portion **172** that is configured to rotate the positions of plurality of prostheses **160**. In one embodiment, rotating portion **157** may be rotated to align driving rod **156** with different prostheses.
- (96) For consistency and convenience, reference is made to a forward-most end of a deployment

device and a rearward-most end of a deployment device. The forward-most end of a deployment device may be the end where a prosthesis is configured to exit the deployment device. The rearward-most end may be the opposing end of the deployment device. In general use, the forward-most end may be disposed farthest from a surgeon, while the rearward-most end may be disposed closest to the surgeon. Moreover, the terms "forward end" or "forward end portion" may describe portions of a component that are closer to the forward-most end of a deployment device. Likewise, the terms "rearward end" or "rearward end portion" may describe portions of a component that are closer to the rearward-most end of a deployment device.

- (97) FIGS. 6 through 8 illustrate views of a process for repairing a rotator cuff tendon using tissue repair system 148 (see FIG. 5) according to one embodiment. More specifically, each figure illustrates one possible step, or set of steps, in the process. As seen in FIG. 6, surgeon 142 may insert delivery portion 172 of deployment device 150 into incision 144. Generally, surgeon 142 may attempt to align forward end 174 of delivery portion 172 at a first location associated with tear 120. In some cases, as discussed above, surgeon 142 may use an arthroscope or similar device to guide forward end 174 to the first location of tear 120. In addition, in some cases, deployment device 150 may include provisions that allow surgeon 142 to manipulate one or more portions of tendon 106. For example, deployment device 150 could include provisions for grasping tendon 106 on either side (or both sides) of tear 120. Some embodiments, for example, could include pin-like members that project outwardly from forward end 174 and help to hold down the tendon during implantation. An example of such an embodiment is described in detail below and shown in FIGS. 71 through 73.
- (98) As represented by arrow **199**, as surgeon **142** squeezes user activation device **158**, actuating system **153** is activated and applies a driving force to first prosthesis **162**. As user activation device **158** is depressed, energy may be released from energy storage system **155** (see FIG. **5**). In particular, spring **154** is released from a compressed state and expands rapidly, which acts to propel driving rod **156** and first prosthesis **162**. In FIG. **6**, arrow **197** represents the motion of driving rod **156** and first prosthesis **162** as spring **154** expands. First prosthesis **162** is then driven through tendon **106** and into greater tuberosity **104** of humerus **102**. Thus, the implantation of first prosthesis **162** facilitates the joining of the opposing edges of tear **120** of tendon **106**. Once implanted into humerus **102**, first prosthesis **162** serves as an anchor for one end of connecting member **166**.
- (99) The amount of force applied by actuating system **153** may vary in different embodiments. Generally, the amount of force applied can be selected according to various different factors. For example, the amount of force applied can vary according to the type of tissue into which a plurality of prostheses is implanted. In particular, in some cases, a greater degree of force may be necessary for harder tissues such as bone. Less force may be necessary for implanting prostheses into softer tissue. As another example, the amount of force applied by actuating system **153** can vary according to size, material composition, and/or geometry of one or more prostheses. In some embodiments, for example, the amount of force applied may vary according to the geometry of the driving head of an anchor-type prosthesis.
- (100) In different embodiments, various different methods could be used to vary the force applied by actuating system **153**. In embodiments including a spring for storing energy, for example, the amount of pre-compression of the spring could be changed through a dial or other mechanism. An example of a control knob for adjusting the compression of a spring is discussed in further detail below. In systems using electrical energy storage systems, the amount of electrical energy stored and/or applied could be adjustable. In still other embodiments, any other methods known in the art for modifying the amount of force delivered, or otherwise produced, by an actuating system could be used.
- (101) Referring now to FIG. **7**, once first prosthesis **162** has been implanted, surgeon **142** may prepare deployment device **150** to implant second prosthesis **164**. In the current embodiment,

198 until second prosthesis 164 comes into alignment with driving rod 156. In FIG. 7, the initial position 171 of second prosthesis 164 prior to the rotation is indicated schematically in order to clearly show how the position of second prosthesis 164 changes. It is contemplated that the adjustment of the position of second prosthesis 164 could be accomplished through either a manual adjustment (as shown in FIG. 7) or an automatic adjustment. FIG. 7 illustrates the rotation of rotating portion 157 as occurring in the direction represented by arrow 198. However, it will be understood that in some embodiments rotating portion 157 may be rotated in an opposing direction to the direction represented by arrow 198. In other words, rotating portion 157 could be configured to rotate in a clockwise and/or counterclockwise direction.

- (102) Referring now to FIG. **8**, once second prosthesis **164** is aligned with driving rod **156**, surgeon **142** may associate delivery portion **172** with a second location along tear **120**. The second location may be disposed adjacent to the location of first prosthesis **164** in some cases. At this point, surgeon **142** may squeeze user activation device **158** (as represented by arrow **199**) to release energy from energy storage system **155** (see FIG. **5**). This activates actuating system **153** and drives second prosthesis **164** through tendon **106** and into humerus **102**. In particular, second prosthesis **164** is impacted by driving rod **156**, which moves in a direction indicated by arrow **197** during the expansion of spring **154**. After first prosthesis **162** and second prosthesis **164** have been fully implanted, connecting member **166**, which may comprise a suture thread, may be taut against tendon **106**. This arrangement may facilitate the closing of tear **120** of tendon **106** by anchoring connecting member **166** at a first location and a second location of tendon **106**.

 (103) It may be useful to characterize the above sequence of operations in terms of various
- configurations and/or stages of operation. For example, FIG. 5 may be seen to illustrate an initial configuration of deployment device 150. In this initial configuration, first prosthesis 162 may be in a driving position while second prosthesis 164 may be in a storage position. The driving position is a position within deployment device 150 associated with implantation and may be further characterized as a position in which a prosthesis is generally aligned, or otherwise associated with, actuating system 153. In some cases, first prosthesis 162 may protrude sufficiently to be in contact with tissue for accurate implantation (see FIGS. 15 and 16, for example). Therefore, a prosthesis can be directly implanted from the driving position through the operation of actuating system 153. The storage position is a position within deployment device 150 that is generally out of alignment with actuating system 153, including driving rod 156. Therefore, a prosthesis cannot be implanted directly from the storage position, but must be moved from the storage position to the driving position prior to implantation. It should also be noted that in this initial configuration, connecting member 166 joins first prosthesis 162 and second prosthesis 164, as discussed above.
- (104) FIGS. **6** through **8** are seen to illustrate various stages of implantation during the operation of deployment device **150**. For example, in FIG. **6**, first prosthesis **162** is implanted from a driving position into tendon **106**. Moreover, in this situation, connecting member **166** is seen to join prosthesis **162** (now disposed outside of deployment device **150**) and second prosthesis **164** (which remains within deployment device **150**). Referring to FIG. **7**, second prosthesis **164** may be moved from the storage position into the driving position as described above. Finally, as seen in FIG. **8**, second prosthesis **164** may be implanted from the driving position.
- (105) The method described here for implanting multiple prostheses may facilitate improvements in surgical techniques for repairing various types of tissue imperfections, including, for example, rotator cuff tears. By housing multiple prostheses in a single hand-held deployment device, a surgeon can install multiple prostheses in relatively quick succession.
- (106) For purposes of clarity, the embodiments shown in FIGS. **5** through **8** illustrate a plurality of prostheses **160** including two prostheses. However, other embodiments may include any other number of prostheses housed within a single deployment device. In some cases, for example, a deployment device may be configured to house a single prosthesis. In still other cases, a

deployment device may be configured to simultaneously house three or more prostheses. (107) FIGS. **9** through **11** illustrate embodiments of various possible configurations for housing multiple prostheses in a deployment device. In particular, FIGS. **9** and **10** both illustrate schematic views of a forward end **182** of a deployment device **180** as well as corresponding cross-sectional views. FIG. **11** shows a schematic cross-sectional view of deployment device **180** when configured to house any other number of prostheses. Referring first to FIG. **9**, deployment device **180** may be configured to simultaneously house three different prostheses. In particular, deployment device **180** houses first prosthesis **185**, second prosthesis **186**, and third prosthesis **187**. Moreover, deployment device **180** may also include driving device **184** that may be used to drive each prosthesis into tissue. As with the embodiment discussed above and shown in FIGS. **5** through **8**, each of first prosthesis **185**, second prosthesis **186**, and third prosthesis **187** can be brought into alignment with driving device **184** in order to implant each prosthesis in succession.

- (108) In some embodiments, two or more of first prosthesis **185**, second prosthesis **186**, and third prosthesis **187** could be connected to one another. In other embodiments, none of the prostheses may be connected. In still other embodiments, each prosthesis may be connected to at least one other prosthesis. In one embodiment, first prosthesis **185** may be joined to second prosthesis **186**. Also, second prosthesis **186** may be joined to third prosthesis **187**. This provides three prostheses that are daisy-chained to one another. The connections discussed here could be suture threads or any other provisions for connecting two or more prostheses.
- (109) Referring next to FIG. **10**, in another embodiment, deployment device **180** may be configured to simultaneously house five different prostheses. In particular, deployment device **180** houses first prosthesis **191**, second prosthesis **192**, third prosthesis **193**, fourth prosthesis **194**, and fifth prosthesis **195**. As with the embodiment discussed above and shown in FIGS. **5** through **8**, each of first prosthesis **191**, second prosthesis **192**, third prosthesis **193**, fourth prosthesis **194**, and fifth prosthesis **195** can be brought into alignment with driving device **184** in order to implant each prosthesis in succession.
- (110) FIG. **11** illustrates an embodiment including N prostheses that are housed within deployment device 180 (shown only in schematic cross section). In particular, this embodiment includes first prosthesis 111, second prosthesis 112, third prosthesis 113, fourth prosthesis 114, and fifth prosthesis 115. Additionally, Nth prosthesis 116 is also shown. It will be understood that N may be any number. Moreover, it is to be understood that the general operation of implanting N prostheses housed within a single deployment device may proceed in a manner similar to that discussed above. (111) In some embodiments comprising multiple prostheses housed within a single deployment device, the prostheses could be connected through the use of one or more connecting members. For example, FIG. 12 illustrates a schematic view of an embodiment where first prosthesis 191, second prosthesis 192, third prosthesis 193, fourth prosthesis 194, and fifth prosthesis 195 have been implanted through tendon **106** and into humerus **102**. In some embodiments, these prostheses may be connected to one another through connecting member 196. In this particular example, first prosthesis **191**, second prosthesis **192**, third prosthesis **193**, fourth prosthesis **194**, and fifth prosthesis **195** may be daisy-chained together using connecting member **196**. In some embodiments, connecting member **196** may comprise a suture thread that helps to tie down a portion of tendon **106** against humerus **102**. In some cases, first prosthesis **191**, second prosthesis **192**, third prosthesis **193**, fourth prosthesis **194**, and fifth prosthesis **195** serve as suture anchors for connecting member **196**.
- (112) Although the current embodiment illustrates an embodiment where five different prostheses are connected to one another using a single connecting member, other embodiments could use two or more separate connecting members. In some cases, for example, adjacent pairs of prostheses could be attached by distinct connecting members. For example, in an alternative embodiment, first prosthesis **191** and second prosthesis **192** may be connected to one another using a first connecting member, while second prosthesis **192** and third prosthesis **193** may be connected to one another

using a different second connecting member. Furthermore, although the approximate arrangement of prostheses in FIG. **12** is generally an alternating or zig-zag configuration, other embodiments may utilize any other suitable arrangement of prostheses in order to repair tissue. Examples of other possible arrangements for two or more anchors include, but are not limited to: lines, curves, various shapes including triangular, rectangular as well as any other kind contour and/or shape. The type of anchor arrangement could be selected according to various factors including the type of imperfection or tear, the location of the imperfection, the type of surgical procedure, preferences of the surgeon, the type of connecting members being used as well as possibly other factors. (113) General Overview of Tissue Repair System

- (114) FIGS. **13** through **15** illustrate isometric views of one embodiment of tissue repair system **200**. In particular, FIGS. **13** and **14** illustrate an isometric view and an isometric partial exploded view, respectively, of tissue repair system **200**, while FIG. **15** illustrates a cut-away view of tissue repair system **200**.
- (115) Referring to FIGS. 13 through 15, tissue repair system 200 may comprise various sub-components including deployment device 202 and plurality of prostheses 206. Deployment device 202 may comprise a body that includes a number of elements to assist in inserting and installing plurality of prostheses 206. In some cases, deployment device 202 includes provisions to move one or more of plurality of prostheses 206 into position. Moreover, in some cases, deployment device 202 includes provisions that associate one or more end portions of plurality of prostheses 206 with tissue such as tendon 106 (see FIGS. 1 and 2). In embodiments where prostheses may articulate in some manner following installation (for example, by expanding inside the implanted tissue), deployment device 202 may further include provisions to facilitate articulation of plurality of prostheses 206.
- (116) Deployment device **202** may generally be a hand-held device. In some cases, deployment device **202** may be configured for one-handed operation so that all of the various functions can be controlled with one hand. This arrangement allows plurality of prostheses **206** to be implanted using a single hand.
- (117) Deployment device **202** may be further divided into two sub-assemblies, including a reusable base assembly **210** and a detachable front delivery assembly **212**. In some cases, base assembly **210** may comprise various components for generating an impact force that is used to deploy plurality of prostheses **206**. In some cases, front delivery assembly **212** may include various components for transmitting forces generated within base assembly **210** to plurality of prostheses **206**. As seen in FIG. **14**, front delivery assembly **212** can be separated from base assembly **210**. This allows base assembly **210** to be used with multiple different detachable front delivery systems, as discussed in further detail below.
- (118) Base assembly **210** may comprise various provisions to enhance usability. In some cases, base assembly **210** may include handgrip portion **214**. Handgrip portion **214** may accommodate either the left or right hand of a surgeon. Although the design of handgrip portion **214** is shown generically in these embodiments, other embodiments could be configured with various additional features. For example, in some other embodiments, the geometry of handgrip portion **214** may be contoured to improve grip. In still other embodiments, handgrip portion **214** could comprise various pads or similar portions that enhance traction and comfort, as well as any other characteristics that improve usability.
- (119) Base assembly **210** may incorporate one or more activation devices that help to initiate implantation of a prosthesis. In one embodiment, base assembly **210** may include trigger portion **216**. Trigger portion **216** may be squeezed by one or more fingers in order to initiate implantation. As described in further detail below, trigger portion **216** may initiate a sequence of actuating events that act to deploy and implant a prosthesis in a tissue such as bone.
- (120) In some embodiments, base assembly **210** can include provisions that allow a surgeon to adjust the magnitude of the impact force generated by components of base assembly **210**. For

- example, some embodiments could include control knob **218**. In some cases, control knob **218** may be disposed at a rearward portion **211** of base assembly **210**. In other cases, control knob **218** may be disposed along any other portion of base assembly **210**.
- (121) By turning control knob **218**, a surgeon can modify the force generated by deployment device **202**. For example, a surgeon may turn control knob **218** in a first direction in order to generally increase the force generated by deployment device **202**. Similarly, a surgeon may turn control knob **218** in a second direction in order to generally decrease the force generated by deployment device **202**. In some cases, control knob **218** can be adjusted between discrete settings. In other cases, control knob **218** can be adjusted between continuous settings.
- (122) Base assembly **210** can include provisions for constraining the motion of one or more components, assemblies or systems disposed internally to base assembly **210**. As seen in FIGS. **13** and **14**, base assembly **210** may be configured with retaining slot **267** (shown in phantom), which receives a protruding portion **812** that is discussed in further detail below.
- (123) Although a single adjustment knob is shown in this example, other embodiments could include still other adjustment devices. In particular, it will be understood that any other kinds of control devices could be used with base assembly **210**. Examples of other types of control devices include, but are not limited to: buttons, switches, knobs, touch displays, as well as any other devices or components. Moreover, in other embodiments, one or more control devices could be used for purposes of adjusting any other kinds of operating characteristics of deployment device **202**.
- (124) Front delivery assembly **212** may extend forwards from base assembly **210**. In some embodiments, front delivery assembly **212** may have an elongated geometry. In some embodiments, for example, front delivery assembly **212** has an approximately tube-like geometry. In some embodiments, rearward end portion **213** of front delivery assembly **212** may be attached to forward portion **209** of base assembly **210**. In addition, forward end portion **221** of front delivery assembly **212** may be configured to house plurality of prostheses **206**.
- (125) In some embodiments, front delivery assembly **212** includes attachment assembly **220** that is configured to engage with forward portion **209** of base assembly **210**. In some embodiments, front delivery assembly **212** may be a detachable system that can easily be attached to, and detached from, base assembly **210**. Moreover, in some embodiments, front delivery assembly **212** can be configured with additional features for changing the positions of plurality of prostheses **206**. These features are described in further detail below.
- (126) Front delivery assembly **212** may also include cannula **215** that extends forwardly from attachment assembly **220**. In some cases, a lumen **217** of cannula **215** may be sized to receive one or more prostheses, as well as additional components that facilitate the driving and implantation of prostheses. In some cases, cannula **215** could be an 8 mm cannula that is configured to house plurality of prostheses **206**. In other cases, however, the size of cannula **215** could vary and may depend on the number and size of prostheses housed within cannula **215**. Moreover, cannula **215** may be of any length necessary to achieve proper positioning for installation of plurality of prostheses **206**.
- (127) Referring to FIG. **15**, which illustrates some of the internal components of deployment device **202**, base assembly **210** and front delivery assembly **212** house various components that generate the required impact forces to implant one or more prostheses. In some cases, base assembly **210** may include trigger assembly **232**, energy storage system **240**, driving assembly **250**, and plurality of driven assemblies **260**. The general operation of some of these components according to one embodiment is described here. Trigger assembly **232**, including trigger portion **216**, may be used to store energy in energy storage system **240** (for example, by compressing a spring) and/or to release mechanical energy stored within energy storage system **240** (for example by releasing a compressed spring). This mechanical energy is converted into motion of driving assembly **250**. Driving assembly **250** may further impact, and drive, one or more driven assemblies

of plurality of driven assemblies **260**. The corresponding driven assembly may then apply a force directly to one of the plurality of prostheses **206**, which serves to deploy and implant the prosthesis. The details of trigger assembly **232**, energy storage system **240**, driving assembly **250**, and plurality of driven assemblies **260** are discussed in further detail below. (128) Expandable Prostheses

- (129) FIG. **16** illustrates a schematic cut-away view of an embodiment of plurality of prostheses **206** disposed within forward end portion **221** of front delivery assembly **212**. As seen in FIG. **16**, plurality of prostheses **206** may further include first prosthesis **270** and second prosthesis **272**. In some embodiments, first prosthesis **270** and second prosthesis **272** may be substantially similar. In other embodiments, however, first prosthesis **270** and second prosthesis **272** may be substantially different in shape, size, and/or materials. For the present embodiments, it may be assumed that first prosthesis **270** and second prosthesis **272** are substantially similar. In particular, the following figures and accompanying description focus on the features of first prosthesis **270**, though it should be understood that similar principles may also apply to second prosthesis **272**.
- (130) Although one particular embodiment of prostheses **206** is illustrated in the figures, the size, shape, and other characteristics of prostheses **206** may be determined based on a number of factors, potentially including the size and shape of the imperfection; the condition and type of tissue into which prostheses **206** are to be deployed; and the type and amount of circumferential or other stress that is to be exerted by prostheses **206** on the surrounding tissue. The prostheses **206** may be made in a variety of shapes, as appropriate for different size incisions, cuts, holes, condition of patient, and method of repair. Additionally, although FIG. 16 illustrates an embodiment of prostheses 206 in which both first prosthesis 270 and second prosthesis 272 are of roughly equal size, other embodiments could incorporate two or more prostheses of different sizes. For example, it may be desirable to make one of first prosthesis **270** or second prosthesis **272** larger if needed to provide suitable anchoring for a detached tendon at adjacent tissue locations with varying properties such as size or density. Moreover, it should be understood that the length of any suture or other kind of connecting member that connects first prosthesis **270** and second prosthesis **272** could be varied in order to accommodate various spacings between first prosthesis 270 and second prosthesis 272 following implantation. For purposes of clarity, first prosthesis **270** and second prosthesis **272** are shown without a connecting member attached between them, though a corresponding connecting member **830** between first prosthesis **270** and second prosthesis **272** is shown in FIGS. **61** through **63**.
- (131) In the embodiment shown in FIG. **16**, first prosthesis **270** and second prosthesis **272** may temporarily be mounted to components of plurality of driven assemblies **260**. As one of plurality of driven assemblies **260** is impacted by driving assembly **250** (see FIG. **15**), first prosthesis **270** and/or second prosthesis **272** may be deployed from forward end portion **221**. However, other embodiments may utilize different mechanisms for implanting first prosthesis **270** and/or second prosthesis **272** into tissue. In other words, it should be understood that the prostheses shown in the figures are not limited to use with a particular kind of deployment device.
- (132) FIGS. **17** and **18** illustrate isometric views of an embodiment of first prosthesis **270**, or simply prosthesis **270**. Specifically, FIG. **17** illustrates a first isometric view of prosthesis **270**, while FIG. **18** illustrates a second isometric view of prosthesis **270** in which prosthesis **270** has been rotated approximately 90 degrees around a central axis **271**. For purposes of clarity, prosthesis **270** is shown in isolation from components of a deployment device and/or additional prostheses. (133) As previously discussed with respect to earlier embodiments of a prosthesis, prosthesis **270** may be adapted to repair a flaw, imperfection, cut, incision, hole, or tear in a tissue or collection of tissues. One possible application is the repairing of a rotator cuff tendon tear. However, the use of prosthesis **270** is not limited to this particular application and could be generally applied in a variety of different situations. For example, prosthesis **270** could also be used to repair any other kinds of tendons, muscles, fascia, bone, cartilage, meniscus, ligaments, or skin.

- (134) In some embodiments, prosthesis **270** may function as an anchor for a suture that may facilitate repair of a tear or other kind of imperfection. In other embodiments, prosthesis **270** could function as an anchor for any other kind of prosthetic devices apart from sutures. Still other embodiments could utilize prosthesis **270** for directly attaching or otherwise fastening adjacent tissues together.
- (135) The geometry of prosthesis **270** could vary from one embodiment to another. In one embodiment, prosthesis **270** may have the approximate geometry of a screw or similar fastening device. In some embodiments, prosthesis **270** may include a driving portion **274** that is disposed at one end of an elongated base portion **290**. In other embodiments, however, prosthesis **270** could have any other approximate geometry that is suitable for repairing a particular type of imperfection. (136) In some embodiments, driving portion **274** is configured with a driving tip portion **275**. Driving tip portion **275** may have a tapered or sloped forward surface **276** that facilitates penetration. In some embodiments, driving tip portion **275** may have an approximately conical geometry that may be approximately symmetrical about central axis **271**. In other embodiments, however, the geometry of driving tip portion **275** could vary. For example, in other embodiments, the geometry of driving tip portion **275** could be substantially irregular or asymmetric. Moreover, in some embodiments driving tip portion **275** could be configured with additional features such as cavities, projections, mechanical threads or any other geometric features that could enhance and/or control implantation.
- (137) In some embodiments, driving portion **274** may include hole **277**. In some cases, hole **277** may be a through-hole configured to receive one or more suture threads. For example, one or more suture threads may be inserted through hole **277** in order to fasten the one or more suture threads to prosthesis **270**. In some cases, the end of a suture thread may be fed through hole **277** and tied in order to anchor the end of the suture thread in place. In other cases, an intermediate portion of a suture thread could be fed through, looped around, or otherwise associated with hole **277**. This arrangement may allow intermediate sections of a suture thread to be anchored in place. In still other embodiments, driving portion **274** could incorporate two or more holes. Such configurations would allow for the attachment of different connecting portions at driving portion **274**. (138) In some embodiments, hole **277** may be disposed in central portion **273** of driving portion **274**. In other embodiments, however, hole **277** could be disposed in any other portion of driving portion **274**. In still other embodiments, hole **277** could be disposed in base portion **290**. In embodiments where multiple suture threads may be used, prosthesis **270** could be provided with multiple holes.
- (139) In some embodiments, driving portion **274** may also include wedge portion **278**. In some cases, wedge portion **278** extends away from driving tip portion **275** towards base portion **290**. Wedge portion **278** may generally have a wedge-like shape that is configured to interact with an end of base portion **290**, as described in further detail below. In one embodiment, wedge portion **278** can include a first wedge surface **279** and a second wedge surface **280** that meet along an edge **282**.
- (140) In some embodiments, base portion **290** comprises a first longitudinal portion **291** and a second longitudinal portion **292** that extend along the length of base portion **290**. First longitudinal portion **291** and second longitudinal portion **292** may be joined at a rearward portion **293** of base portion **290**. In some embodiments, rearward portion **293** has a ring-like geometry that is approximately symmetric about central axis **271**. In addition, in some embodiments, first longitudinal portion **291** and second longitudinal portion **292** may be separated from rearward portion **293** to a forward portion **294** of base portion **290**. In some embodiments, first longitudinal portion **291** and second longitudinal portion **292** may generally remain separated at forward portion **294**.
- (141) In some embodiments, base portion **290** includes longitudinal slot **295**, which is clearly seen in FIG. **17**. In some embodiments, longitudinal slot **295** may extend through the diameter of base

portion **290** and may generally be seen as dividing first longitudinal portion **291** from second longitudinal portion **292**. In some cases, longitudinal slot **295** may be characterized as oriented in a lateral direction to an implantation direction of prosthesis **270**. In addition, in some embodiments, base portion **290** incorporates a longitudinal cavity **296** that extends through the entire length of base portion **290**. In some embodiments, longitudinal cavity **296** may intersect longitudinal slot **295**.

- (142) Longitudinal cavity **296** may facilitate various kinds of functionality for prosthesis **270**. In some embodiments, longitudinal cavity **296** may be shaped and sized to receive a driven rod, pin, or similar component from a driven assembly and/or driving assembly. For example, the current embodiment illustrates a generally circular cross section for longitudinal cavity **296** and opening **299** in order to receive a generally cylindrical pin or rod that can apply a force directly to driving portion **274**.
- (143) Longitudinal slot **295** may facilitate various kinds of functionality for prosthesis **270**. In one embodiment, longitudinal slot **295** may facilitate the alignment of one or more suture threads along prosthesis **270**. For example, in some embodiments a suture thread that is tied through hole **277** may extend within longitudinal slot **295** towards rearward portion **293** of base portion **290**. An example of such an arrangement is described in detail below. This may allow for some protection of the suture thread as it is housed within a deployment device and/or during implantation into tissue and anchor expansion.
- (144) In some embodiments, base portion **290** and driving portion **274** may be attached at first connecting portion **310** and second connecting portion **398**. In some embodiments, base portion **290** may be connected directly to wedge portion **278** of driving portion **274**. In some embodiments, first longitudinal portion **291** and second longitudinal portion **292** may be connected to first wedge surface **279** and second wedge surface **280**, respectively. In other embodiments, however, base portion **290** and driving portion **274** may not be attached, but instead may be held in relation to one another using a driving pin or similar component.
- (145) Some embodiments of prosthesis **270** may include provisions for grasping, gripping, or otherwise embedding prosthesis **270** into tissue such that prosthesis **270** resists removal from the tissue once inserted. In some embodiments, prosthesis **270** could include plurality of projecting portions **297** that extend from base portion **290**. In some cases, plurality of projecting portions **297** may extend in a lateral direction to the implantation direction of prosthesis **270**. For example, the present embodiments illustrate prosthesis **270** with five projecting portions **297**. However, other embodiments could include any other number of projecting portions **297**. For example, some other embodiments could include one, two, three, or more projecting portions.
- (146) Plurality of projecting portions **297** may include first projecting portion **298**. In some embodiments, first projecting portion **298** may be representative of the remaining projecting portions in plurality of projecting portions **297**. In the current embodiment, for example, each of plurality of projecting portions **297**, including first projecting portion **298**, may be substantially similar in geometry, size, and/or other characteristics. However, other embodiments could comprise two or more projecting portions that vary in geometry, size, and/or orientation. By varying the size, geometry, and/or orientation of two or more projecting portions, the anchoring properties of prosthesis **270** could be varied along the length of base portion **290**.
- (147) In some cases, first projecting portion **298** comprises a first surface **302** and a second surface **304**. First surface **302** may be oriented such that first surface **302** is approximately perpendicular to central axis **271** of prosthesis **270**. In contrast, in some cases, second surface **304** may be oriented at an acute angle with respect to central axis **271**. In some embodiments, second surface **304** slopes downwardly from the intersection of second surface **304** with first surface **302** towards forward portion **294** of base portion **290**. In one embodiment, second surface **304** may be sloped in a manner to facilitate, or reduce resistance to, the insertion of prosthesis **270** into a tissue. In addition, first surface **302** may be oriented in a way that helps resist removal of prosthesis **270** from

- a tissue. This configuration helps to firmly anchor prosthesis **270** into place within a tissue. (148) Although the current embodiment illustrates a particular geometry for plurality of projecting portions **297**, other embodiments could include any other kinds of structures that help to anchor prosthesis **270** into place following implantation. For example, in other embodiments, prosthesis **270** may include a plurality of barb-like projections. The shape, geometry, and/or other structural characteristics of projections extending from prosthesis **270** could vary according to various factors such as the type of tissue being repaired, the materials comprising prosthesis **270**, as well as the method of implantation.
- (149) Some embodiments can include additional provisions for anchoring prosthesis **270** in place within bone or any other tissue. For example, some embodiments can include provisions that allow some portions of prosthesis **270** to expand as prosthesis **270** is implanted. In some embodiments, base portion **290** may be configured to expand as prosthesis **270** is implanted.
- (150) FIGS. **19** through **22** illustrate schematic side views of various configurations of prosthesis **270** during implantation into tissue **330**. Tissue **330** is shown here as boney material. However, it should be understood that a similar process of implantation may occur within various other kinds of tissue, including both hard and soft tissues.
- (151) Some embodiments of a prosthesis may include provisions to help anchor the prosthesis within a tissue. In some embodiments, some portions of a prosthesis may be configured to expand once the prosthesis has been inserted into a tissue. In some embodiments, implanting a prosthesis may occur in two stages, including a first stage where the prosthesis is driven to a predetermined depth within the tissue and a second stage where at least one portion of the prosthesis expands. (152) Referring first to FIG. 19, prosthesis 270 may be aligned with the desired region of tissue 330 prior to implantation. In some embodiments, prosthesis 270 may be housed within deployment device 202 (not shown). However, in other embodiments, prosthesis 270 may be associated with any other device or tools for implanting prosthesis 270, including devices or tools that facilitate manual implantation. As previously discussed, in some embodiments a driven rod, pin, or similar component (not shown) may extend through longitudinal cavity 296 (see FIG. 17) of base portion 290. This allows an initial driving force to be applied directly to driving portion 274, as well as base portion 290 rather than driving portion 274. In still other embodiments, the initial driving force could be applied directly to driving portion 274 rather than base portion 290.
- (153) Referring next to FIG. **20**, a first force **340** may be applied to prosthesis **270** at driving portion **274**. In some embodiments, a second force **341** may simultaneously be applied to prosthesis **270** at rearward portion **293** of base portion **290**. The result of first force **340** and second force **342** may be to drive prosthesis **270** into tissue **330**. In some cases, first force **340** and second force **342** may act to drive prosthesis **270** to a depth **D1** within tissue **330**. In some cases, first force **340** and/or second force **342** may be selected to achieve a particular implantation depth. This depth can be chosen according to various factors including tissue structure, the type of repair being made, and the desired position of rearward portion **293** at the completion of the first stage of implantation. Note that while in some embodiments rearward portion **293** may extend outwardly from tissue **330** following this first stage of implantation, the final position of rearward portion **293** can change during a second stage of implantation as described below.
- (154) In some embodiments, a second stage of implantation occurs as first force **340** ceases (or is substantially reduced) while second force **342** continues to apply a driving force to base portion **290**. During this second stage, driving portion **274** may remain substantially in place while base portion **290** is driven further into tissue **330** and simultaneously expands in the radial direction. (155) In some embodiments, first connecting portion **310** and second connecting portion **398** may be configured such that base portion **290** and driving portion **274** can separate under a predetermined amount of force, e.g., first connecting portion **310** and second connecting portion **398** may be separable. In some embodiments, the geometry and/or thickness of first connecting

portion **310** and second connecting portion **398** can be controlled so that base portion **290** and driving portion **274** separate as a predetermined amount of force is applied. In other embodiments, the material composition of first connecting portion **310** and second connecting portion **398** could be selected to achieve separation of base portion **290** and driving portion **274** under the predetermined amount of force. During the first stage of implantation, the simultaneous application of first force **340** and second force **342** results in a substantially low net force in the region of first connecting portion **310** and second connecting portion **398**. However, in the second stage of implantation, the decrease in first force **340** creates a net force in the region of first connecting portion **310** and second connecting portion **398**, which may act to deform and eventually separate first connecting portion **310** and second connecting portion **398**.

(156) Referring to FIG. **21**, second force **342** is applied at rearward portion **293** of base portion **290**. The magnitude of second force **342** may be such that base portion **290** separates from driving portion **274** at first connecting portion **310** and second connecting portion **398**. With base portion **290** separated, second force **342** acts to push forward portion **294** against wedge portion **278**. As seen here, wedge portion 278 may drive into forward portion 294, which has the effect of driving first longitudinal portion 291 and second longitudinal portion 292 apart at forward portion 294. (157) In some embodiments, base portion **290** is driven further into tissue **330** under the continued application of second force **342**. As base portion **290** continues to penetrate farther into tissue **330**, driving portion **274**, which remains approximately stationary within tissue **330**, acts to further separate first longitudinal portion **291** and second longitudinal portion **292**, as shown in FIG. **22**. (158) Referring to FIG. 23, the end of the second stage of implantation may occur when wedge portion 278 is disposed directly adjacent to rearward portion 293 of base portion 290. In some cases, as seen in FIG. 23, rearward portion 293 may be recessed with respect to outer surface 331 of tissue **330**. In other cases, rearward portion **293** may be approximately flush with outer surface **331**. In still other cases, rearward portion **293** may extend outwardly from outer surface **331**. The depth of rearward portion **293** relative to outer surface **331** may vary in different embodiments according to various factors such as the type of tissue, the magnitude of the forces applied to the prosthesis, the condition of the patient, the method of repair, the surgeon's preference, as well as the geometry and material composition of the prosthesis. Moreover, these various factors may be tuned in order to achieve a desired implantation depth.

(159) The configuration of prosthesis **270** following the first and second stages of implantation helps anchor prosthesis **270** within tissue **330**. Any suture placed within hole **277** could extend along base portion **290** and apply tension along an outward direction from tissue **330**. The splayed configuration of first longitudinal portion **291** and second longitudinal portion **292** may help resist outward movement of prosthesis **270**. In some cases, plurality of projecting portions **297** (FIG. **17**) may further help to secure prosthesis **270** within tissue **330**. In particular, each of the projecting portions may generally project outwardly from base portion **290** to increase the resistance of base portion **290** to being removed.

(160) Some embodiments may include provisions for helping to ensure a prosthesis expands properly during implantation. In some embodiments, a prosthesis may be provided with provisions that help to maintain axial alignment of driving portion **274** and base portion **290**, which may facilitate proper engagement between base portion **290** and wedge portion **278** as discussed in further detail below. Referring back to FIG. **17**, in one example, wedge portion **278** may include first projecting feature **301** and second projecting feature **303**, which extend from first wedge surface **279** and second wedge surface **280**, respectively. Moreover, base portion **290** may comprise corresponding track-like features along interior surface **399**. In some embodiments, first projecting feature **301** and second projecting feature **303** have convex rounded cross-sectional shapes that correspond with the concave cross-sectional shapes of interior surface **399** of base portion **290**. Thus, as first wedge surface **279** and second wedge surface **280** engage base portion **290** and begin splitting first longitudinal portion **291** and second longitudinal portion **292** apart, first projecting

feature **301** and second projecting feature **303** may enter corresponding tracks or channels along interior surface **399** of base portion **290**. This may help to maintain the desired axial alignment between driving portion **274** and base portion **290** throughout implantation.

- (161) In some embodiments, driving portion **274** and base portion **290** may include cooperating features to help resist back-out, or any tendency for base portion **290** to move rearwardly away from driving portion **274**. In particular, these features may help lock driving portion **274** and base portion **290** together at various stages of implantation and especially once prosthesis **270** has been fully implanted (i.e. base portion has fully expanded). In some embodiments, wedge portion 278 could be configured with surface features that engage corresponding recesses or notches in base portion **290** in order to restrict any tendency of base portion **290** to back away from driving portion **274**, as well as to lock driving portion **274** and base portion **290** together at the end of the implantation process. Some embodiments could include notches within base portion **290** that receive corresponding features or protrusions on driving portion **274** in order to resist rearward motion of base portion 290 during implantation. Examples of various cooperating or corresponding surfaces and/or surface features may include, but are not limited to, protrusions that engage corresponding recesses, corresponding ridged surfaces, corresponding teeth, as well as any other features. In some embodiments, this arrangement may have the effect of preventing driving portion **274** from moving further into tissue **330** (see FIG. **23**). Additionally, this arrangement may also help prevent base portion **290** from moving in a direction opposite of implantation. (162) In one embodiment, as seen in FIG. 17 and FIG. 19, prosthesis 270 may comprise first
- (162) In one embodiment, as seen in FIG. 17 and FIG. 19, prosthesis 270 may comprise first barbed portion 391 and second barbed portion 393 that are disposed on driving portion 274. In some embodiments, first barbed portion 391 and second barbed portion 393 may be configured to engage plurality of notch-like portions 395 that are disposed on interior surfaces of plurality of projecting portions 297. As shown in FIGS. 21 through 23, as prosthesis 270 expands, first barbed portion 391 and second barbed portion 393 may engage notch-like portions 395 of rearward portion 293 of base portion 290.
- (163) In some embodiments, the features described here may work together to help prosthesis **270** to expand in the desired manner during implantation. For example, as prosthesis **270** begins to expand, first projecting feature **301** and second projecting feature **303** may engage corresponding tracks or grooves of interior surface **399** of base portion **290** in order to guide and prevent the separation of driving portion **274** and base portion **290** and maintain the desired axial alignment. Simultaneously, as base portion **290** expands, first barbed portion **391** and second barbed portion **393** engage notch-like portions **395** within base portion **290**, which prevents relative movement and back-out and helps ensure that driving portion **274** and base portion **290** do not move apart along the axial direction. Moreover, these features work together to lock prosthesis **270** in a fully expanded position once the implantation process is complete.
- (164) FIG. **24** illustrates an isometric view of an alternative embodiment of a prosthesis **350**. Prosthesis **350** could share some similar characteristics with prosthesis **270** described above. For example, prosthesis **350** may include a driving portion **352** and a base portion **360**. Moreover, base portion **360** can be divided into a first longitudinal portion **361** and a second longitudinal portion **362** that are separated by longitudinal cavity **364** as well as longitudinal slot **365**. In some embodiments, base portion **360** may also include plurality of ridged portions **366**.
- (165) In contrast to the previous embodiment, however, the embodiment shown in FIG. **24** includes a separate wedge portion **370**. In some embodiments, wedge portion **370** and driving portion **352** may be disposed on opposing end portions of base portion **360**. In addition, first longitudinal portion **361** and second longitudinal portion **362** are separated at rearward portion **368**, which is disposed adjacent to wedge portion **370**. Also, first longitudinal portion **361** and second longitudinal portion **362** may be connected at forward portion **369**, which is disposed adjacent to driving portion **352**.
- (166) In some embodiments, wedge portion 370 can include one or more channels or holes. In

some embodiments, wedge portion **370** can include hole **372** that extends through the entirety of wedge portion **370**. In some embodiments, hole **372** may be aligned with longitudinal cavity **364** of base portion **360**. In one embodiment, hole **372** and longitudinal cavity **364** may be configured to receive a rod, pin, or similar device that can be inserted through base portion **360**. This allows a force to be applied directly to forward portion **369** of base portion **360**, which is adjacent to driving portion **352**.

- (167) FIGS. **25** through **28** illustrate schematic side views of several configurations of prosthesis **350** during implantation into tissue **380**. As with the previous embodiment, the process of implanting prosthesis **350** may generally occur in two stages. During a first stage, prosthesis **350** may be driven to a predetermined depth D2 into tissue **380** (as seen in FIG. **26**). Following this, during a second stage, base portion **360** of prosthesis **350** may undergo expansion within tissue **380** (as seen in FIGS. **27** and **28**).
- (168) Referring to FIG. **25**, prior to implantation, prosthesis **350** may be aligned with the desired region of tissue **380**. Next, as seen in FIG. **26**, a first force **390** may be applied to forward portion **369**. In some embodiments, a second force **392** may be simultaneously applied to wedge portion **370**. The application of first force **390** and second force **392** may help to drive prosthesis **350** into tissue **380**. This comprises the first stage of implantation in which driving portion **352** is inserted to a depth **D2**.
- (169) As seen in FIG. **27**, the second stage of implantation begins as first force **390** ceases or substantially decreases in magnitude while second force **392** continues to be applied to wedge portion **370**. At this point, the magnitude of second force **392** may be such that wedge portion **370** separates from base portion **360**. Once separated from base portion **360**, wedge portion **370** may be driven into rearward portion **368**. Moreover, as shown in FIG. **27**, wedge portion **370** acts to separate first longitudinal portion **361** and second longitudinal portion **362** of base portion **360**. Finally, as seen in FIG. **28**, wedge portion **370** may be disposed adjacent to driving portion **352** after the implantation process has been completed.
- (170) The configuration of prosthesis **350** following the first and second stages of implantation helps anchor prosthesis **350** within tissue **380**. Any suture secured at driving portion **352** could extend around wedge portion **370** and apply tension along an outward direction from tissue **380**. The splayed configuration of first longitudinal portion **361** and second longitudinal portion **362** helps resist outward movement of prosthesis **350**. In some embodiments, plurality of ridged portions **366** may further help to secure prosthesis **350** within tissue **380**.
- (171) As described earlier, some embodiments of a prosthesis can include portions that have corresponding or cooperating surfaces (including both textures and/or other surface features). In the embodiments shown in FIGS. 24 through 28, wedge portion 370 and base portion 360 may be configured with cooperating surface textures or features in order to reduce or substantially eliminate movement that may otherwise separate wedge portion 370 and base portion 360 both during and after implantation. Examples of various cooperating or corresponding surfaces and/or surface features may include, but are not limited to, protrusions that engage corresponding recesses, corresponding ridged surfaces, corresponding teeth, track-like features, as well as any other features. In some embodiments, for example, wedge portion **370** includes surface textures or features that cooperate with corresponding textures or features of an interior surface of longitudinal cavity **364**. Therefore, as wedge portion **370** drives into base portion **360** and acts to expand or splay base portion **360**, surface features of wedge portion **370** may engage surface features of the interior surface of longitudinal cavity **364** to help prevent wedge portion **370** from axial misalignment with base portion **360** during or after implantation. In particular, these provisions help resist movement in a direction opposite of implantation, once prosthesis **350** has been fully implanted.
- (172) The prostheses of the above described embodiments (including the embodiments shown in FIGS. **17** through **23** as well as the embodiments shown in FIGS. **24** through **28**) are configured to

split, or splay, into two portions. In other embodiments, a prosthesis could be configured to split into three or more portions. In some embodiments, for example, the base portion of a prosthesis could be configured as three or more distinct portions that are separated by various slots as well as a longitudinal cavity.

(173) FIGS. **29** and **30** illustrate schematic views of an embodiment of a prosthesis **400** that is configured to separate into three distinct portions under a predetermined force. In particular, FIG. **29** illustrates a schematic isometric view of prosthesis **400** including an enlarged cut-away view. FIG. **30** illustrates a schematic view of prosthesis **400** where base portion **460** has been expanded. Referring to FIGS. **29** and **30**, prosthesis **400** may share some similar characteristics with prosthesis **350** described above. For example, prosthesis **400** may include a driving portion **452** and a base portion **460**. For purposes of clarity, only some of the shared features between prosthesis **400** and prosthesis **350** are described here.

(174) In the current embodiment, base portion **460** comprises three distinct portions. Specifically, in this case, base portion **460** comprises first longitudinal portion **461**, second longitudinal portion **462**, and third longitudinal portion **463**. First longitudinal portion **461**, second longitudinal slot **464**, second longitudinal slot **465**, and third longitudinal slot **466**, as well as longitudinal cavity **468**. (175) As shown in FIG. **30**, first longitudinal portion **461**, second longitudinal portion **462**, and third longitudinal portion **463** may each be configured to expand, or splay, outwardly. In some embodiments, the splaying of first longitudinal portion **461**, second longitudinal portion **462**, and third longitudinal portion **463** occurs as splitting member **470** is driven into base portion **460**. Splitting member **470** could be similar in some respects to wedge portion **370** of the previous embodiment. In some embodiments, splitting member **470** may be configured with a geometry to apply approximately equal outward forces against first longitudinal portion **461**, second longitudinal portion **462**, and third longitudinal portion **463**.

(176) FIG. **31** illustrates schematic cut-away views of two more alternative embodiments of prostheses with expandable base portions. Referring to FIG. **31**, prosthesis **430** is configured with four distinct portions that may split apart from one another during implantation. Prosthesis **440** is configured with five distinct portions that may split apart during implantation. Moreover, prosthesis **430** and prosthesis **440** are only shown as further possible embodiments. Additional embodiments are not limited to any particular number of distinct portions and could include, for example, six separate portions, seven separate portions, or any other number of portions. It should be understood that the number of portions of a prosthesis that may be pre-configured to split apart as the prosthesis is implanted may depend on a variety of factors including geometry and material of the prosthesis, the method of repair employed by the surgeon, as well as the type of tissue into which a prosthesis may be deployed. Furthermore, while the embodiments described above include portions that are generally arranged in a symmetric manner about a central axis of the prosthesis, other embodiments could incorporate portions that are arranged in an asymmetric manner about a central axis.

(177) In different embodiments, the size, shape, and other characteristics of a prosthesis may vary. Generally, the size, shape, and other characteristics could be determined based on a number of factors. These factors may potentially include the size and shape of the corresponding imperfection; the condition and type of tissue into which the prosthesis is to be deployed; the type and amount of stress that is to be exerted by the prosthesis on the surrounding tissue; and the method of repair employed by the surgeon.

(178) The prostheses described above and shown in the figures may be made of a variety of materials. In some cases, a prosthesis may be made using a biocompatible material that is sufficiently rigid to anchor a suture for repairing tendons, yet sufficiently compliant so as to avoid further damaging the tendon should slight relative motion between the tendon (or adjacent tissue) and the prosthesis occur. Examples of suitable materials include polymers such as nylon, prolene,

dacron, ultra high molecular weight polyethylene (UHMWPE), and other suitable materials. Some examples of suitable bioabsorbable materials are: poly L-lactic acid (PLLA), polyglycolic acid (PGA). A prosthesis can also be formed of other possible materials, including polymers and metals such as polytetrafluorethylene (PTFE), polyaryletherketone (PAEK), polyetheretherketone (PEEK), polyoxymethylene (acetal), polycarbonate, polysulfone, silicone elastomers, commercially pure titanium, titanium alloys, CoCr alloys, nickel titanium (nitinol) alloys, and implant grade stainless steels. In some embodiments, a prosthesis may be formed of a bioabsorbable polymer that is gradually absorbed by the body. Still other possible materials for a prosthesis include composites, such as carbon fiber composites and ceramics. It will be understood that the materials used for a prosthesis are not limited and a variety of different materials could be used according to desired characteristics for the prosthesis.

- (179) Prostheses including multiple longitudinal portions can be manufactured as single monolithic parts in some cases. For example, some embodiments may include prostheses comprising a substantially monolithic material, such as a bioabsorbable polymer that may be molded to the desired shape. In still other embodiments, however, longitudinal portions of a prosthesis could be formed separately and joined in a later stage of manufacturing.
- (180) Impact System
- (181) A surgeon may install one or more prostheses during a surgical procedure to repair damaged or otherwise imperfect tissue by manually inserting the one or more prostheses, with or without the help of additional tools. As previously discussed, however, a deployment device may also be used to install one or more prostheses.
- (182) FIGS. **32** and **33** illustrate isometric cut-away views of deployment device **202** according to one embodiment. In particular, FIG. **32** illustrates an isometric cut-away view of forward end portion **221** of front delivery assembly **212** as well as the rearward end portion **214** of front delivery assembly **212**. FIG. **33** illustrates an isometric cut-away view of a portion of deployment device **202** including base assembly **210** and rearward end portion **214** of front delivery assembly **212**.
- (183) Referring first to FIG. **32**, components of base assembly **210** and front delivery assembly **212** may cooperate to implant one or more prostheses. As described earlier and shown in FIGS. **19** through **23**, first prosthesis **270** may be implanted into tissue through a two stage implantation process. During a first stage a first force may be applied directly to driving portion **274** and base portion **290** of prosthesis **270** to drive first prosthesis **270** to a predetermined depth within a tissue. During a second stage a force may be applied only to base portion **290** of prosthesis **270** in order to expand base portion **290** within the tissue. To accommodate this two stage process, deployment device **202** can incorporate a two stage impact and driving mechanism to implant first prosthesis **270**. This two stage impact and driving mechanism may similarly be used to implant second prosthesis **272**.
- (184) In some embodiments, plurality of prostheses **206** may be associated with components of plurality of driven assemblies **260**. In some embodiments, first prosthesis **270** may be associated with first driven tube **502** and first driven pin **504**. First driven pin **504** may be coaxially located within a hollow longitudinal cavity **510** (see FIG. **34**) of first driven tube **502**. In some embodiments, first driven pin **504** may be capable of translating through hollow longitudinal cavity **510** of first driven tube **502**.
- (185) In some embodiments, first prosthesis **270** may be associated with end portions of first driven tube **502** and first driven pin **504**. In some embodiments, first end portion **512** (see FIG. **32**) of first driven pin **504** may be inserted into longitudinal cavity **296** (see FIG. **17**) of first prosthesis **270**. In some cases, first end portion **512** may further be disposed adjacent to driving portion **274**, which may allow first driven pin **504** (FIG. **32**) to apply a force directly to driving portion **274** during implantation. Additionally, in some embodiments, first end portion **514** of first driven tube **502** may be disposed adjacent to rearward portion **293** of base portion **290**. This arrangement may allow first

driven tube **502** to apply a force directly to base portion **290** during implantation.

(186) Referring to FIG. **32**, in some embodiments, second prosthesis **272** may likewise be associated with second driven tube **506** and second driven pin **508**. In some cases, the arrangement of second prosthesis **272** with second driven tube **506** and second driven pin **508** may be substantially similar to the relationship described above between first prosthesis **270**, first driven tube **502** and first driven pin **504**. In some embodiments, for example, second driven tube **506** may include a hollow longitudinal cavity through which second driven pin **508** may translate. For purposes of reference, first driven tube **502** and first driven pin **504** may be collectively referred to as first driven assembly **261** while second drive tube **506** and second driven pin **508** may be collectively referred to as second driven assembly **262**.

(187) First prosthesis **270** may or may not be joined with first driven tube **502** and/or first driven pin **504**. In some embodiments, for example, first driven pin **504** may simply be inserted within first prosthesis **270**, without being directly attached. In some embodiments, a frictional fit could be formed between first driven pin **504** and first prosthesis **270**. Likewise, in some embodiments, first driven tube **502** could be disposed adjacent to, but not joined with, first prosthesis **270**. In other embodiments, first prosthesis **270** could be temporarily joined with first driven pin **504** and/or first driven tube **502**. Various joining methods could be used including, but not limited to, adhesives and mechanical connectors. Further examples of provisions for joining first prosthesis **270** with first driven pin **504** and/or first drive tube **502** include, but are not limited to: ridges, annular rings, frictional fits and threading. For example, in some embodiments, a driven pin and a prosthesis could have corresponding threaded portions, which could allow the driven pin to be screwed into the prosthesis. It will be understood that in embodiments where first prosthesis 270 may be attached to first driven tube **502** and/or first driven pin **504**, this attachment could be temporary and these components may be easily and/or automatically separated during the implantation process so that only first prosthesis **270** remains implanted in the tissue. The specific provisions used for retaining the prosthesis on the driven pin can vary and in different embodiments could be selected according to: materials of the pin and/or prosthesis; type of tissue into which the prosthesis is to be implanted as well as possibly other factors.

(188) As seen in FIG. 32, some embodiments of front delivery assembly 212 may include guide member **581**. In some embodiments, guide member **581** is configured to control the alignment of first driven tube **502**, first driven pin **504**, second driven tube **506** and second driven pin **508**. Moreover, in some cases, guide member **581** is configured with a groove for receiving one or more o-rings. One or more o-rings may be used to seal out fluids and may also provide sufficient friction to maintain axial advancement of each driven tube during impact with driving tube **520**. (189) The following discussion makes reference to the implantation of first prosthesis 270 using first driven tube **502** and first driven pin **504**, in combination with other components of deployment device **202**. However, it should be understood that the discussion may equally apply to the implantation of second prosthesis 272. As discussed later, the locations of second prosthesis 272, second driven tube **506** and second driven pin **508** within front delivery assembly **212** can be interchanged with first prosthesis **270**, first driven tube **502**, and first driven pin **504**, respectively. Therefore, the operation of implanting second prosthesis **272** may be substantially similar to the operation of implanting first prosthesis **270**. Moreover, in some embodiments, the process of implanting first prosthesis **270** and second prosthesis **272** makes use of the same components within base assembly **210** for impacting and driving the associated driven pin and driven tube. (190) Using the arrangement described here for first prosthesis **270**, base assembly **210** can include provisions for applying the desired forces to first driven tube **502** and first driven pin **504**. Specifically, in some cases, base assembly **210** may be configured to deliver at least two forces of possibly varying magnitudes and in a predetermined sequence that coincide with the two stage implantation of first prosthesis **270**. In some embodiments, this is accomplished using a driving tube **520** and driving pin **522** that generally comprise portions of the driving assembly **250**

mentioned earlier. Driving tube **520** and driving pin **522** may be aligned with first driven tube **502** and first driven pin **504**, respectively. In some embodiments, driving pin **522** may be coaxially located within a hollow longitudinal cavity **526** (see FIG. **35**) of driving tube **520**. Driving pin **522** may be capable of translating through hollow longitudinal cavity **526** of driving tube **520**. (191) In different embodiments, the relative movement of driving tube **520** and driving pin **522** could vary. In some embodiments, driving tube **520** may move independently of driving pin **522**. In other embodiments, however, driving tube **520** and driving pin **522** may be configured to move together. In one embodiment, driving tube **520** and driving pin **522** may move together during some stages of implantation and may move independently during other stages of implantation. For example, during some stages of implantation driving tube **520** is in motion. As an alternative example, during some stages of implantation driving tube **520** may remain approximately stationary with respect to base assembly **210**, while driving pin **522** is in motion.

- (192) Referring now to FIG. **33**, base assembly **210** may include provisions that control the driving motions of driving tube **520** and driving pin **522**, including the relative motions between driving tube **520** and driving pin **522**. These motions are generally initiated and controlled by various other components including components for storing energy, components for releasing the stored energy and components for transforming the released energy into a particular sequence of motions accomplished by driving tube **520** and driving pin **522**.
- (193) The following discussion describes one possible configuration of base assembly **210** that may facilitate the actuation of driving tube **520** and driving pin **522**. In some embodiments, some of the following components are optional and could be omitted. In other embodiments, additional components not shown or described here may be added. Moreover, it should be understood that the particular components used to initiate actuation, store energy, and/or control the resulting movement of driving assembly **250** could vary in other embodiments.
- (194) Base assembly **210** can include provisions for storing energy. In some embodiments, energy could be stored using one or more springs. In one embodiment, base assembly **210** includes impact spring **550**. Generally, impact spring **550** could be any type of spring including, for example, a tension spring, a torsion spring, wave spring, and/or a compression spring. In one embodiment, impact spring **550** is a compression spring that stores mechanical energy.
- (195) Impact spring **550** may include first end portion **552** and second end portion **554**. In some cases, first end portion **552** may be disposed adjacent to impact collar **556** that generally translates with first end portion **552**. In some cases, second end portion **554** may be disposed adjacent to rear bushing **558**. As discussed below, the absolute positions of impact collar **556** and rear bushing **558** within base assembly **210** can be made to vary.
- (196) In some embodiments, impact spring **550** is associated with various additional components that facilitate the storage of energy in, and the release of energy from, impact spring **550**. The compression and/or extension of impact spring **550** occurs when the relative distance between impact collar **556** and rear bushing **558**, which are generally associated with the positions of first end portion **552** and second end portion **554**, varies. In some cases, the absolute position of rear bushing **558** within base assembly **210** can be controlled using control knob **218** in order to adjust the force. In some cases, for example, a threaded portion **560** of control knob **218** engages a thread receiving portion **562** of rear bushing **558**. As control knob **218** is turned, the position of rear bushing **558** can be moved towards or away from impact collar **556**, which adjusts the force that is applied to one or more prostheses.
- (197) In some embodiments, the absolute position of impact collar **556** may depend on several components, including positioning ram **570**. In some cases, as positioning ram **570** is moved towards rearward portion **211** of base assembly **210**, impact collar **556** also translates rearwardly. This causes impact spring **550** to compress and store mechanical energy.
- (198) In some embodiments, impact collar **556** may be connected to driving tube **520**. As seen in

- FIG. 33, driving tube 520 may generally extend rearwardly through base assembly 210 and may terminate within rearward portion 211. Therefore, as impact collar 556 is translated within base assembly 210 (for example, by manipulating positioning ram 570 and/or under the forces of impact spring 550) driving tube 520 may be similarly translated with respect to base assembly 210. Furthermore, as described in detail below, loading impact spring 550 and releasing impact spring 550 generates an impacting force at impact collar 556, which is translated to an impacting force within driving tube 520.
- (199) A deployment device can include provisions for retaining an impact spring and associated components of a driving assembly. In some embodiments, a deployment device can be configured with a brace member that houses an impact spring as well as a return spring. The brace member may help to retain the driving assembly relative to a base assembly. In some embodiments, the brace member may be made of a substantially rigid material, such as metal, in order to help limit plastic deformation.
- (200) FIG. **34** illustrates a schematic isometric view of an embodiment of a portion of deployment device **202**. Referring to FIG. **34**, brace member **1210** comprises a rectangular box-like structure that includes vertical sidewalls and which is substantially open at its upper and lower surfaces. As seen in FIG. **34**, positioning ram **570** is configured to rest against lower peripheral edge **1212** of brace member **1210**. Moreover, brace member **1210** may be fixed within base assembly **210** through one or more fastening means (not shown).
- (201) Referring to FIG. **34**, brace member **1210** may include slot **1262** that is disposed at a forward end of brace member **1210**. Slot **1262** may include a peripheral slot portion **1264** and a central hole slot portion **1266**. In some cases, central hole slot portion **1266** has an approximately circular shape and is configured to receive a portion of front bushing **1272**. In addition, peripheral slot portion **1264** connects central hole slot portion **1266** with lower peripheral edge **1212** and generally has a width that is substantially less than the diameter of central hole slot portion **1266**.
- (202) In some embodiments, slot **1262** provides a way of assembling driving assembly **250** with brace member **1210**. In particular, driving tube **520**, which extends throughout the length of base assembly **210**, may fit through peripheral slot portion **1264**. Once driving tube **520** is disposed within central hole slot portion **1266**, front bushing **1272** may be pushed into place through central hole slot portion **1266**. Front bushing **1272** may be sized so that it is too large to slide down through peripheral slot portion **1264**. Furthermore, the tension provided by impact spring **550** (see FIG. **33**) and return spring **815** (see FIG. **43**) provides a restraining force that prevents front bushing **1272** from backing out of central hole slot portion **1266** and thereby helps retain driving tube **520** within brace member **1210**.
- (203) FIG. **35** illustrates a schematic view of an embodiment of some components of driving assembly **250** (see FIG. **33**), plurality of driven assemblies **260** (see FIG. **32**), and prosthesis **270**. For purposes of illustrating the general arrangement of these components, the components of driving assembly **250** and plurality of driven assemblies **260** are shown schematically. For example, the general dimensions of the components, including length and thickness, have been modified to clearly illustrate the relative positions and orientations of the components to one another.
- (204) Referring to FIG. **35**, each of prosthesis **270**, first driven tube **502**, first driven pin **504**, first driving tube **520**, and first driving pin **522** may be approximately aligned along axis **580**. Moreover, the general arrangement of these components may be such that first driven pin **504** is disposed coaxially within first driven tube **502** and driving pin **522** is disposed coaxially within driving tube **520**. In particular, first driven pin **504** may be disposed within hollow longitudinal cavity **510** of first driven tube **502**. Likewise, driving pin **522** may be disposed within hollow longitudinal cavity **526** of driving tube **520**. This coaxial arrangement for first driven tube **502** and first driven pin **504** may facilitate the two stage implantation process required to properly install prosthesis **270** into tissue. Additionally, the coaxial arrangement for driving tube **520** and driving

pin **522** may ensure that first driven tube **502** and first driven pin **504** are properly actuated during the implantation of prosthesis **270**.

(205) In some embodiments, driving assembly **250** and plurality of driven assemblies **260** may be configured such that driving tube **520** can interact directly with first driven tube **502**, but not with first driven pin **504**. Likewise, in some cases, driving pin **522** may be configured to interact directly with first driven pin **504**, but not with first driven tube **502**. This allows a configuration in which driving tube **520** applies a driving force directly to first driven tube **502**, while driving pin **522** applies a driving force directly to first driven pin **504**. Moreover, it is possible for driving tube **520** to pass over first driven pin **504** without affecting the motion of first driven pin **504**. In some embodiments, therefore, the dimensions of first driven pin **504** and driving pin **522** may be selected so that first driven pin **504** and driving pin **522** have substantially similar diameters. Then, as first driven pin **504** and driving pin **522** are aligned along the same axis **580**, driving pin **522** can engage driven pin **504** without also engaging first driven tube **502**. Likewise, in some embodiments, the dimensions of first driven tube **502** and a portion of driving tube **520** may be selected so that first driven tube 502 and driving tube have substantially similar cross-sectional dimensions. In some embodiments, driving tube **520** includes a forward portion **517** and a rearward portion **519** that have substantially different diameters. In one embodiment, for example, first driven tube **502** and forward portion **517** of driving tube **520** may have substantially similar inner diameters and outer diameters that characterize the corresponding ring-like cross-sectional shapes of both tubes. This allows driving tube **520** to engage first driven tube **502** without also engaging first driven pin **504**. (206) FIGS. **36** through **40** illustrate schematic side views of a method of implanting prosthesis **270** into tissue **600** according to one embodiment. For purposes of clarifying the operation of plurality of driven assemblies 260 (see FIG. 32) and driving assembly 250 (see FIG. 33) during implantation, prosthesis 270, first driven pin 504, first driven tube 502, first driving pin 522, and first driving tube **520** are shown here in isolation, without any other components of deployment device **202** (see FIG. **32**). Moreover, as discussed above with reference to FIG. **35**, these figures are not intended to accurately represent dimensions including, for example, length and width, of the components.

(207) As seen in FIG. **36**, as a first step in the process, prosthesis **270** may be aligned with a desired region of tissue **600**. Next, as shown in FIG. **37**, driving tube **520** and driving pin **522** may apply approximately equivalent driving forces to first driven tube **502** and first driven pin **504**. For purposes of reference the forces applied by driving tube **520** are indicated schematically by arrows **491**, while forces applied by driving pin **522** are indicated schematically by arrow **492**. These driving forces are then transferred by first driven pin **504** and first driven tube **502** to driving portion **274** and base portion **290**, respectively, of prosthesis **270**. During this first stage of the process, prosthesis **270** may be driven into tissue **600**.

(208) FIGS. **38** and **39** illustrate schematic views of a second stage in the process in which the motion of driving pin **522** and first driven pin **504** is halted. Driving tube **520**, however, continues to move and applies a driving force to first driven tube **502**, which is represented by arrows **491**. This creates an imbalance of forces across prosthesis **270** as base portion **290** is driven further into tissue **600** while driving portion **274** remains in place. Eventually, base portion **290** separates away from driving portion **274** and begins to expand under the driving force of driving tube **504**. (209) FIG. **40** illustrates a schematic view of prosthesis **270** fully implanted into tissue **600**. At this point, prosthesis **270** may be separated from first driven pin **504** and first driven tube **502**. In embodiments where a suture thread is used with prosthesis **270**, the suture thread may extend from driving portion **274** out through a newly formed opening in tissue **600**.

(210) As can be seen from comparing the positions of first driven tube **502** and first driven pin **504** in FIGS. **36** through **40**, first driven tube **502** and first driven pin **504** undergo different amounts of displacement during the implantation process. For example, referring to FIG. **40**, first driven tube **502** starts at an initial position **791** prior to implantation and moves to final position **792** once the

implantation is complete. In some cases, final position **792** may be disposed distally farther from a deployment device (not shown) than initial position **791**. The distance D3 traveled by first driven tube **502** is indicated schematically in FIG. **40**. Additionally, first driven pin **504** starts at an initial position **793** prior to implantation and moves to final position **794** once the implantation is complete. In some cases, final position **794** may be disposed distally farther from the deployment device (not shown) than initial position **793**. The distance D4 traveled by first driven pin **504** is indicated schematically in FIG. **40**. In one embodiment, distance D3 may be substantially greater than distance D4. In other words, first driven tube **502** may travel substantially farther than first driven pin **504** during the implantation process.

- (211) Similar to the arrangement described above for first driven tube **502** and first driven pin **504**, driving tube **520** may generally travel farther than driving pin **522** during implantation. For example, referring to FIG. **40**, driving tube **520** starts at an initial position **795** prior to implantation and moves to final position **796** once the implantation is complete. In some cases, final position **796** may be disposed distally farther from a deployment device (not shown) than initial position **795**. The distance D**5** traveled by driving tube **520** is indicated schematically in FIG. **40**. Additionally, driving pin **522** starts at an initial position **797** prior to implantation and moves to final position **798** once the implantation is complete. In some cases, final position **798** may be disposed distally farther from the deployment device (not shown) than initial position **797**. Additionally, in some cases, initial position **797** of driving pin **522** may coincide with initial position **795** of driving tube **520**. The distance D**6** traveled by driving pin **522** is indicated schematically in FIG. **40**. In one embodiment, distance D**5** may be substantially greater than distance D**6**. In other words, driving tube **520** may travel substantially farther than driving pin **522** during the implantation process.
- (212) FIG. **41** illustrates a side cross-sectional view of front delivery assembly **212** for purposes of describing the geometry of plurality of driven assemblies 260. Referring to FIG. 41, some embodiments may incorporate provisions that help prevent a driven pin from falling out of a driven tube. In some embodiments, a driven pin and driven tube may be configured with corresponding geometries that help restrict the maximum distance that the driven pin may move within the driven tube. As one possible example, the current embodiment illustrates first driven pin **504** having a first portion **1102** and a second portion **1104**. In this case, first portion **1102** has a substantially smaller diameter than second portion **1104**. Moreover, hollow longitudinal cavity **510** of first driven tube **502** may be configured with a first cavity section **1106** and a second cavity section **1108**. In this case, first cavity section **1106** may have a substantially smaller diameter than second cavity section **1108**. Moreover, the diameters of first cavity section **1106** and second cavity section **1108** may be selected so that both first portion **1102** and second portion **1104** of first driven pin **504** may translate through second cavity section **1108**, but only first portion **1102** may translate through first cavity section **1106**. In particular, first driven pin **504** includes shoulder portion **1110** that may abut an o-ring associated with interior surface **1112** of hollow longitudinal cavity **510**, which prevents first driven pin **504** from translating further in the axial direction. Using this arrangement, first driven pin **504** is prevented from falling out of first driven tube **502**, for example, under the force of gravity. It will be understood that other assemblies of driven assemblies **260** may be configured in a similar manner so that each driven pin is prevented from falling out of, or over extending from, the corresponding driven tube.
- (213) As seen in FIG. **41**, some embodiments can further include a ring member **1120**. Ring member **1120** may be configured to fit around first portion **1102** of first driven pin **504** and within second cavity section **1108**. In some cases, ring member **1120** may be configured as a friction ring that helps to provide a predetermined amount of resistance against the relative movement of first driven pin **504** within first driven tube **502**.
- (214) FIG. **42** illustrates a schematic cross-sectional view of a portion of deployment device **202** in order to illustrate one possible provision for ensuring concentric alignment of driving assembly **250**

and one or more of driven assemblies **260**. In one embodiment, each of driving tube **520**, driving pin **522**, first driven tube **502** and first driven pin **504** may be configured with corresponding approximately conical geometries. For example, forward end portion **575** of driving tube **520** and forward end portion **577** of driving pin **522** may have concave shapes that receive the convex shapes of rearward end portion **571** of first driven tube **502** and rearward end portion **573** of first driven pin **504**, respectively. Using this arrangement, as driving assembly **250** impacts first driven assembly **261**, these corresponding geometries act to concentrically align first driven assembly **261** and driving assembly **250**. Of course, it will be understood that second driven assembly **262** may be configured with a substantially similar geometry to first driven assembly **261** so that second driven assembly **262** likewise may have a corresponding geometry with driving assembly **250** that facilitates concentric alignment.

- (215) FIG. **43** illustrates an isometric cut-away view of a portion of deployment device **202**. For purposes of clarity, only some components of deployment device **202** are shown. For example, only some components of front delivery assembly **212** are shown, including first driven tube **502**, first driven pin **504** (shown in phantom), and second driven tube **506**.
- (216) Referring to FIG. **43**, driving assembly **250** may comprise various components that facilitate the two stage implantation process for one or more prostheses. In some embodiments, driving assembly **250** includes provisions to control and/or constrain the relative movement between driving tube **520** and driving pin **522**. In some embodiments, driving tube **520** may include longitudinal slot **810**. In addition, driving pin **522** may include protruding portion **812** that is perpendicular to the length of driving pin **522**. In some cases, protruding portion **812** extends through longitudinal slot **810**. In some cases, protruding portion **812** extends laterally through longitudinal slot **810**. This configuration may limit the relative movement between driving tube **520** and driving pin **522**, as longitudinal slot **810** constrains the position of protruding portion **812** and thereby limits the relative movement of driving pin **522**.
- (217) In some embodiments, driving assembly **250** includes control hook **802** that is attached to driving tube **520**. In some cases, control hook **802** may be attached to driving tube **520** in a manner that allows control hook **802** to pivot about driving tube **520**. Moreover, in some embodiments, control hook **802** may be rotatable between an engaged position and a disengaged position. As is shown in FIG. **45**, in the engaged position, control hook **802** may engage protruding portion **812** of driving pin **522**. As is shown in FIG. **43**, in the disengaged position, control hook **802** may be disengaged from protruding portion **812** of driving pin **522**. As discussed in further detail below, placing control hook **802** in the engaged position around protruding portion **812** acts to prevent any relative movement between driving tube **520** and driving pin **522**. Also, with control hook **802** in the disengaged position, driving pin **522** may move relative to driving tube **520**.
- (218) In some embodiments, driving assembly **250** may further include hook biasing spring **804**. In some embodiments, hook biasing spring **804** may be configured to interact with control hook **802**. In some cases, the geometry of hook biasing spring **804** is configured such that control hook **802** is rotated into an engaged position when control hook **802** is disposed beneath hook biasing spring **804**.
- (219) In some embodiments, driving assembly **250** can include bumper member **814**. In some embodiments, bumper member **814** may help to terminate the stroke of impact collar **556** at the end of the impact stroke. Bumper member **814** could be configured with any shape, size, and/or material. The shape, size, and material could be selected to absorb a predetermined amount of force generated by impact collar **556** at the end of the impact stroke.
- (220) In some embodiments, driving assembly **250** can also include impact return spring **815**. In some embodiments, impact return spring **815** may be positioned between impact collar **556** and bumper member **814**. In some embodiments, return spring **815** may help bias impact collar **556** in a default position that is spaced apart from bumper member **814**.
- (221) Some embodiments can include one or more biasing springs that help bias the position of

driving pin **522** within driving tube **520**. For example, as shown in the enlarged cut-away view in FIG. **43**, driving assembly **250** may include first biasing spring **820** and second biasing spring **822**. In some embodiments, first biasing spring **820** and second biasing spring **822** may act to bias the position of driving pin **522** within driving tube **520** such that the default position of protruding portion **812** is aligned with, and capable of being engaged by, control hook **810**. (222) As previously discussed, delivery device **202** may include provisions that allow a surgeon to

control the impact force generated by delivery device **202**. In some embodiments, control knob **218** can be used to adjust the impact force. In one embodiment, control knob **218** can be used to adjust the compression of impact spring **550**. For example, FIG. **44** illustrates a possible configuration for control knob **218**, where control knob **218** has been rotated in a direction represented by arrow **493** in order to adjust the position of rearward end portion **551** of impact spring **550**. In this case, rearward end portion **551** may be moved towards forward end portion **553** of impact spring **550**, which is a direction schematically indicated by arrow **494**, in order to increase the amount that impact spring **550** is compressed from the free length of impact spring **550**. This provides a surgeon with some control of the position of rearward end portion **551**, which can be used to adjust the impact force generated during implantation. As previously discussed, the position of control knob **218**, and thus the amount of impact force generated during implantation, can be selected according to various factors including the type of implantation tissue, the geometry and/or material construction of a prosthesis, the type of tissue repair, and the method of repair employed by the surgeon, as well as other factors.

(223) For purposes of reference, the term "impact cycle" is used throughout the remainder of this detailed description and in the figures to refer to a sequence of events in which a driving assembly is retracted and then propelled forward to impact a driven assembly. The impact cycle may include an energy storage stage where the driving assembly is retracted away from a driven assembly and energy is stored in an energy storage device (such as an impact spring). The impact cycle can also include a driving stage where the driving assembly is projected forward to impact a driven assembly as energy is released from the energy storage device. In some cases, the impact cycle starts with the driving assembly in an initial or pre-actuated position and likewise ends with the driving assembly in a final position that is substantially the same as the initial position.

(224) FIGS. 45 through 48 illustrate views of a possible actuating sequence for driving assembly 250 that allows for the two stage implantation process described above and shown schematically in FIGS. 36 through 40. As seen in FIG. 45, positioning ram 570 may be used to adjust the position of impact collar 556. In some cases, a surgeon may interact with a trigger or other mechanism in order to move positioning ram 570.

(225) As positioning ram **570** and impact collar **556** are translated rearwardly, impact spring **550** may be compressed, thereby storing mechanical energy within impact spring **550**. Since impact collar **556** is fixedly attached to driving tube **520**, control hook **802** may also translate rearwardly until control hook **802** is disposed beneath hook biasing spring **804**. This causes control hook **802** to rotate into a position such that control hook engages protruding portion **812**, which is positioned at a distal most portion of longitudinal slot **810**.

(226) Following this, as shown in FIG. **46**, positioning ram **570** may rotate out of the way of impact collar **556** as represented by arrow **495**, which allows impact collar **556** to be released. This may occur at the end of a trigger event that includes loading and then releasing impact spring **550**, or as a separate trigger event that occurs an indefinite period of time after impact spring **550** has been loaded. Once released, the energy stored within impact spring **550** is transferred to impact collar **556** in the form of mechanical energy. Thus, impact collar **556** may be quickly accelerated, which accelerates driving tube **520** and driving pin **522** towards driven tube **502** and driven pin **504**. With driving tube **520** and driving pin **522** locked together by control hook **802**, driven tube **502** and driven pin **504** may be impacted simultaneously. This acts to drive a corresponding prosthesis (not shown) into a tissue during the first stage of implantation. As an example, the corresponding

motions of driving tube **520**, driving pin **522**, first driven tube **502**, and first driven pin **504** at this point may be similar to the scenario depicted in FIG. **37**.

- (227) Referring now to FIG. **47**, as driving assembly **250** continues to move in the forward direction, control hook **802** may disengage with hook biasing spring **804**. Moreover, at some point distal end **803** of control hook **802** may engage with hook biasing ramp **805** of delivery device **202**. Upon engaging with hook biasing ramp **805**, control hook **802** may be automatically rotated from the engaged position to the disengaged position, which releases protruding portion 812. (228) Referring now to FIG. 48, with protruding portion 812 released from control hook 802, driving pin **522** and driving tube **520** may translate with respect to one another. At this point, driving tube **520** may continue to move forward while the motion of driving pin **522** is approximately stopped or substantially decreased, which starts the second stage of the implantation process. In some embodiments, any further motion of driving pin **522** at this point in the impact cycle may be impeded as protruding portion **812** reaches the end of retaining slot **267** (see FIGS. 13 and 14). An example of the corresponding motions of driving tube 520, driving pin 522, first driven tube **502**, and first driven pin **504** at this point may be similar to the scenario depicted in FIGS. **38** and **39**. Driving tube **520** may continue to push against driven tube **502**, while the degree of forces transferred from driving pin **522** to driven pin **520** is drastically reduced. Therefore, driven tube **502** continues to deliver an impacting force to a prosthesis while driven pin **504** ceases to deliver any substantial impacting force to the prosthesis. This may have the effect of expanding a base portion of a prosthesis (as show, for example, in FIGS. **38** and **39**).
- (229) The process described here for applying an impacting force in order to implant a prosthesis can be repeated. In some cases, this process can be repeated so that multiple impacts are applied to the same prosthesis, as discussed in further detail below. In other cases, this process can be repeated by implanting a first prosthesis, rotating front delivery assembly **212** (see FIG. **54**) so as to align a second prosthesis in a driving position, and implanting the second prosthesis. Moreover, for embodiments utilizing N anchors, the process could be repeated at least N times to implant the N anchors in succession.
- (230) A trigger assembly can include provisions for automatically returning to a ready position. In some embodiments, a trigger assembly may be configured with provisions to automatically reengage a positioning ram with an impact collar immediately after actuation of the driving assembly, once the surgeon has released the trigger portion. This configuration allows the driving assembly to be conveniently actuated multiple times in a given surgical procedure.

 (231) FIGS. **49-52** illustrate schematic cut-away views of a portion of deployment device **202**, in
- order to demonstrate the detailed operation of trigger assembly **232** and driving assembly **250**. Referring first to FIG. **49**, trigger assembly **232** comprises trigger portion **216**, trigger biasing spring **1200**, positioning ram **570** and ram biasing spring **572**. The components of trigger assembly **232** may act to move impact collar **556** in a rearward direction in order to compress impact spring **550**.
- (232) As previously mentioned, portions of driving assembly **250**, including impact spring **550** and impact collar **556** are housed within brace member **1210**. Moreover, positioning ram **570** is biased upwardly by ram biasing spring **572** until it contacts lower peripheral edge **1212** of brace member **1210**.
- (233) In the pre-impact configuration shown in FIG. **49**, positioning ram **570** of trigger assembly **232** is engaged with impact collar **556** of driving assembly **250**. This ensures that as trigger assembly **232** is engaged (for example, when a surgeon squeezes trigger portion **216**) positioning ram **570** (which translates with trigger portion **216**) will translate impact collar **556** rearwardly. (234) Referring next to FIGS. **50** and **51**, as trigger portion **216** is squeezed by a surgeon in a direction represented by arrows **496**, positioning ram **570** is translated along lower peripheral edge **1212** of brace member **1210**. As seen in FIG. **50**, positioning ram **570** translates rearwardly in the direction indicated by arrow **497** and causes impact collar **556** to move in a similar rearward

direction indicated by arrow **498**, which acts to compress impact spring **550** and store energy. As positioning ram **570** translates down sloped section **1220** of lower peripheral edge **1212**, positioning ram **570** is rotated about pivoting portion **1230**, as represented by arrow **591** (see FIG. **51**), until it is below impact collar **556**. Once positioning ram **570** is rotated out of contact with impact collar **556**, impact spring **550** may rapidly expand. This moves impact collar **556** in a forward direction represented by arrow **592** in order to supply an impacting force for driving assembly **250**.

- (235) Referring next to FIG. **52**, following the impacting event, impact collar **556** may be moved towards a default position under the force of impact return spring **815**. In particular, impact collar **556** may travel rearwardly, as represented by arrow **498**, towards a default position. Additionally, once trigger portion **216** has been released by the surgeon, trigger biasing spring **1200** biases or urges trigger portion **216** and positioning ram **570** forwards, as represented by arrows **593** and arrow **594**. Eventually, following the stage shown in FIG. **52**, positioning ram **570** is pushed forwards of impact collar **556** and rotated up into an engaged position by ram biasing spring **572**. At this point, trigger assembly **232** and driving assembly **250** have been reset so that driving assembly **250** can be re-engaged when a surgeon depresses trigger portion **216** again. In some cases, the final position of deployment device following a trigger event is substantially identical to the initial configuration, which is shown in FIG. **49**.
- (236) Configuring a deployment device to allow multiple impacts to be applied to the same prosthesis can improve the versatility of the deployment device. As an example, this configuration may enable a surgeon to adapt to variations in tissue during surgery (e.g. variations in bone density). Rather than requiring the deployment device to be tuned so that the surgeon can be assured the prosthesis will be implanted during a single impact, the multi-impact design of the embodiments described here allow for a surgeon to iteratively implant a prosthesis to the desired depth through the application of one, two or more impacts to the prosthesis.
- (237) Detachable Front Delivery Assembly
- (238) FIG. **53** illustrates a cut-away view of adjacent portions of front delivery assembly **212** and base assembly **210**. In addition to housing portions of plurality of driven assemblies **260** as well as plurality of prostheses **206** (see FIG. **16**), front delivery assembly **212** can also include various components to facilitate ease of use and further enhance the functionality of deployment device **202**.
- (239) With front delivery assembly **212** mounted to base assembly **210**, portions of front delivery assembly **212** may be inserted within forward mounting portion **710**. In some cases, a portion of cannula **215** may be inserted into an interior of forward mounting portion **710**. Likewise, in some cases, end portions of first driven pin **504** and first driven tube **502** may be disposed within forward mounting portion **710**. In a similar manner, end portions of second driven tube **506** and second driven pin **508** could also be disposed within forward mounting portion **710**. In addition, first end portion **521** of driving tube **520** and first end portion **523** of driving pin **522** may extend through an alignment hole **713** and into forward mounting portion **710**. This arrangement may facilitate the alignment of driving tube **520** and driving pin **522** with first driven tube **502** and first driven pin **504**, respectively, for example.
- (240) As previously mentioned, some embodiments can include provisions for implanting multiple prostheses in an efficient manner. In some cases, front delivery assembly **212** may include provisions that allow a surgeon to align various components of plurality of driven assemblies **260** with driving assembly **250**. In some cases, for example, front delivery assembly **212** may include provisions for rotating the positions of some components.
- (241) FIG. **54** illustrates an enlarged isometric view of portions of front delivery assembly **212**, including a rotating assembly **741**. Referring to FIG. **54**, in some embodiments, rotating assembly **741** could include one or more components that allow a surgeon to rotate the position of plurality of driven assemblies **260**. For example, while FIG. **53** is shown with first driven tube **502** and first

- drive pin **504** positioned to be aligned with driving tube **520** and driving pin **522**, front delivery assembly **212** may be adjusted so that second driven tube **506** and second driven pin **508** are aligned with driving tube **520** and driving pin **522** as discussed below. This may allow a single driving assembly **250** to apply driving forces to at least two different sets of driven tubes and driven pins disposed within front delivery system **210**.
- (242) As seen in FIG. **54**, rotating assembly **741** could be mounted around cannula **215**. In some embodiments, rotating assembly **741** may be fixedly mounted around cannula **215**, so that rotating assembly **741** and cannula **215** are configured to rotate together. Moreover, as plurality of driven assemblies **260** may be fixed in place relative to cannula **215** in some embodiments, plurality of driven assemblies **260** may also be rotated through the use of rotating assembly **741**.
- (243) In some embodiments, rotating assembly **741** can include rotation control lever **744**. In some cases, rotation control lever **744** comprises first lever portion **746** and second lever portion **748**. By grasping first lever portion **746** and/or second lever portion **748**, a surgeon can apply torque to rotating assembly **741**, thereby turning rotating assembly **741** and plurality of driven assemblies **260** to a desired position.
- (244) Referring now to FIGS. **53** and **54**, front delivery assembly **212** may include retracting assembly **760**. In some cases, retracting assembly **760** may comprise first retracting member **762** and second retracting member **764**. Each retracting member may include a corresponding retracting slider and driven tube engagement portion. In some cases, first retracting member **762** includes first slider **766** that extends outwardly on front delivery assembly **212**. First retracting member **762** may also include first driven tube engaging portion **768**. Moreover, first driven tube engaging portion **768** may engage first driven tube control post **770**, which extends radially from first driven tube **502**. First driven tube control post **770** is able to translate within driven tube control slot **771**. With this configuration, as first driven tube **502** is advanced during implantation, first driven tube control post **770** may push first driven tube engaging portion **768**. This acts to advance first slider **766**. In some cases, as first driven tube control post **770** contacts a forward wall of driven tube control slot **771**, first driven tube **502** may be prevented from advancing any further. Following implantation of prosthesis **270** (see FIG. **40**), a surgeon may retract first driven tube **502** to the pre-implantation position using first slider **766**.
- (245) Generally, second retracting member **764** may be configured in a similar manner. In particular, once second driven tube **506** has been aligned with driving assembly **250** (for example, by rotating second driven tube **506** into alignment with driving assembly **250**), a second driven tube engaging portion **780** may abut second driven control post **782**. As second driven tube **506** is advanced during implantation, second driven control post **782** slides through driven tube control slot **771**. Second driven control post **782** further acts to advance second retracting member **764**, including second slider **784**.
- (246) Some embodiments may incorporate provisions that automatically readjust the positions of one or more prostheses as the plurality of driven assemblies **260** is rotated. In some cases, for example, the geometry of forward mounting portion **710** of base portion **210** may help control the advancement and retraction of components of driving assembly **250**.
- (247) Using this configuration, retracting assembly **760** may serve several purposes that facilitate the efficiency of deployment device **202**. First, retracting assembly **760** provides a means for retracting a driven tube and driven pin of plurality of driven assemblies **260** following implantation of a prosthesis. In addition, the sliding portions used to retract a driven tube and driven pin may also function as depth indicators that may be used to determine the approximate depth at which a prosthesis has been implanted.
- (248) FIG. **55** illustrates a schematic isometric cross-sectional view of a portion of base assembly **210** and front assembly **212** for purposes of understanding some features of retracting assembly **760** (see FIG. **53**). As seen in FIG. **55**, forward edge **1402** of base assembly **210** comprises an approximately helical geometry that matches the approximately helical geometry of interior

rearward edge **1404** of front delivery assembly **212**. Moreover, front delivery assembly **210** and front delivery assembly **212**. Rotational slot **1410** may be connected with driven tube control slot **771**, so that a control post translated to rearward end **1420** of driven tube control slot **771** may be capable of translating through rotational slot **1410**. This configuration helps ensure that front delivery assembly **212** may only be rotated when the driven assembly that is aligned with driving assembly **250** (see FIG. **53**) is fully retracted, such that the corresponding control post may then move through rotational slot **1410**. For example, in the configuration shown in FIG. **53**, driven tube control slot **771** may be used to limit and/or prevent the rotation of front delivery assembly **212** until the desired depth is achieved for the current prosthesis, at which time first slider **766** (see FIG. **53**) may be retracted to allow rotation.

- (249) As seen clearly in FIG. **55**, base assembly **210** includes top attachment portion **1441** and bottom attachment portion **1443**, which may be configured to facilitate the attachment of front delivery assembly **212** to base portion **210**. Furthermore, FIG. **55** also clearly illustrates alignment aperture **1439**, which may be contoured to help align a driving assembly. In some cases, alignment aperture **1439** has a contoured geometry that gets narrower in the forwards direction in order to help guide a driving assembly into proper alignment.
- (250) A deployment device can include provisions for ensuring a prosthesis is implanted to a desired depth within a tissue for a variety of different conditions. In some embodiments, a deployment device can include provisions for re-applying a driving force to a prosthesis. In some embodiments, a driving assembly may be configured to cycle through an impact cycle two or more times in order to implant a prosthesis to a desired depth.
- (251) FIGS. **56** through **60** illustrate schematic views intended to depict a scenario in which two impact cycles are required to fully drive a prosthesis into a tissue. For purposes of illustration, tissue **1300** is shown schematically in these figures, though it should be understood that tissue **1300** could be any kind of tissue including, for example, skin, bone, muscle, or any other kinds of tissue. (252) Referring first to FIG. **56**, deployment device **202** is in an initial or pre-deployment state. In this state, first prosthesis **270** and first driven assembly **261** are aligned with driving assembly **250**, but have not been engaged by driving assembly **250**. In this initial state, first driven assembly **261** and driving assembly **250** are separated by a distance **D11**. Moreover, in this initial state, first retracting member **762** may be disposed in a rearward-most position.
- (253) Referring next to FIG. **57**, as trigger portion **216** is squeezed in a direction represented by arrow **595**, driving assembly **250** may proceed through an impacting cycle, as described above, which results in an impact between driving assembly **250** and first driven assembly **261**. This impact displaces first driven assembly **261** and provides enough force to begin implanting first prosthesis **270** into tissue **1300**. Moreover, as previously mentioned, the motion of first driven assembly **261** may cause first retracting member **762** to similarly move forwards, as represented by arrow **596**. As seen in FIG. **58**, when the impact cycle has completed, driving assembly **250** may return to a default position. In this intermediate state of deployment device **202** where driving assembly **250** is at rest, driving assembly **250** and first driven assembly **261** may be separated by a distance D12. Furthermore, first prosthesis 270 has been driven a distance D14 into tissue 1300. As seen by comparing FIGS. **56** and **58**, distance D**12** is substantially greater than distance D**11**. In other words, following the initial impact cycle of driving assembly **250**, first driven assembly **261** and driving assembly **250** are spaced farther apart from one another than the initial spacing. (254) As seen in FIG. **58**, first prosthesis **270** has not been fully implanted into tissue **1300**. This may occur, for example, when tissue 1300 is bone having a relatively high density. In this case, the amount of energy required to completely implant prosthesis **270** may be greater than the amount of energy supplied by driving assembly **250** during one impact cycle.
- (255) To ensure that prosthesis **270** is fully implanted, driving assembly **250** may be actuated a second time so that driving assembly **250** undergoes a second impact cycle during which a second

impact between driving assembly **250** and first driven assembly **261** serves to further drive prosthesis **270** into tissue **1300**.

(256) Referring to FIG. **59**, driving assembly **250** re-impacts first driven assembly **261** as a surgeon depresses trigger portion **216** a second time (represented by arrow **595**). As previously mentioned, first retracting member **762** may also translate in a forward direction represented by arrow **596**, as first driven assembly **261** is impacted and moves forwards. The result of these two sequential impacts on first driven assembly **261** is to fully drive first prosthesis **270** into tissue **1300**, as seen in FIG. **60**. In this final state of deployment device **202** where driving assembly **250** is at rest, driving assembly **250** and first driven assembly **261** may be separated by a distance **D13**. Furthermore, first prosthesis **270** has been driven a distance **D15** into tissue **1300**. As seen by comparing FIGS. **58** and **60**, distance **D13** is substantially greater than distance **D12**. In other words, the relative spacing between driving assembly **250** and first driven assembly **261** increases with each successive impact cycle. Moreover, distance **D15** is substantially greater than distance **D14** and in particular, distance **D15** may approximately correspond to the desired implantation depth of prosthesis **270**.

(257) Referring to FIGS. **56** through **60**, the depth at which prosthesis **270** has been inserted into a tissue may be obscured by front end portion **1450** of front delivery assembly **212**, as well as possibly by features of the surgical environment (for example, skin, other tissue, etc.). Therefore, in order to determine if prosthesis **270** has been implanted to the desired depth, a surgeon may make use of first retracting member **762** and in particular the position of first slider **766** to determine the depth of prosthesis **270**. For example, referring to the state of deployment device **202** in FIG. **58**, a surgeon may see that first slider **766** has not yet reached, or is spaced apart from, its final position adjacent to forward portion **1460** of retracting assembly **760**. At this point, a surgeon may decide to squeeze trigger portion **216** a second time, thereby actuating driving assembly **250** again in order to re-impact first driven assembly **261** and thereby drive first prosthesis **270** further into tissue **1300**. In the final state, shown in FIG. **60**, the surgeon may see that first slider **766** has reached a final predetermined position that is adjacent to forward portion **1460**, which indicates that prosthesis **270** has been implanted to the desired depth within tissue **1300**.

(258) As seen in FIG. **60**, prosthesis **270** (see FIG. **56**) may expand at the end of the implantation sequence. As previously described, prosthesis **270** may expand when driving tube **520** begins to translate relative to driving pin **522**, which causes first driven tube **502** to translate relative to first driven pin **504**. Therefore, the expansion of prosthesis **270** may be associated with a segment of the full range of motion of driving tube **520**. In this case, the distance traveled by both driving tube **520** and first retracting member **762** during the impact cycle may be substantially greater than the implantation depth of prosthesis **270**.

(259) The current embodiment illustrates an embodiment that requires two impact cycles to fully implant prosthesis **270** into tissue **1300**. However, it should be understood that the embodiments allow for any number of impact cycles to be achieved so that a surgeon can engage trigger assembly **216** as many times as are needed to fully implant a prosthesis.

(260) Using the configuration described here, deployment device **202** may be configured so that driving assembly **250** undergoes a full impact cycle even when a prosthesis is only partially driven into a tissue, as could occur if the prosthesis is driven into a high density tissue. In other words, driving assembly **250** is configured to undergo substantially similar motions associated with an energy storage stage and a driving stage each time that trigger portion **216** is engaged by the surgeon and these motions may be substantially independent of the depth that the prosthesis is driven into a tissue. This helps ensure consistent operation of deployment device **202** between successive impacts of the prosthesis for a variety of implanting conditions, such as various possible densities of the implanting tissue.

(261) FIGS. **61** through **63** illustrate schematic views of the operation of an embodiment of rotating assembly **741** as it facilitates the implantation of multiple prostheses in quick succession. In

particular, FIG. **61** illustrates a schematic view of an initial position of rotating assembly **741** following implantation of a first prosthesis **270**. FIG. **62** illustrates a schematic view of an intermediate position of rotating assembly **741** as a second prosthesis is repositioned. FIG. **63** illustrates a schematic view of rotating assembly **741** in a final position in which second prosthesis **272** can be implanted. Although the current embodiment illustrates an example in which two prostheses may be implanted, it will be understood that other embodiments could incorporate multiple prostheses in a single front delivery assembly. Moreover, straightforward modifications to rotating assembly **741** could be made to house and allow for the implantation of three or more prostheses.

(262) Referring first to FIG. **61**, first prosthesis **270** has been implanted into tissue **800**. At this point, first driven tube **502** is fully advanced. In order to implant second prosthesis **272**, plurality of driven assemblies **260** may be adjusted so that second driven tube **506** and second driven pin **508** are aligned with driving tube **520** and driving pin **522**. As seen in FIG. **62**, this realignment may be accomplished by engaging rotating assembly **741**. In some embodiments, rotation control lever **744** is used to rotate driving assembly **260**. Using control lever **744**, portions of front delivery assembly **212** may be rotated in a direction represented by arrows **598** or in a direction opposite of the direction represented by arrows **598**. Referring now to FIG. **63**, rotating assembly **741** has been turned approximately 180 degrees from the initial position shown in FIG. **61**. In this final rotated position, second driven tube **506** and second driven pin **508** may be aligned with driving tube **520** and driving pin **522**. In this position, second driven tube **506** and second driven pin **508** can be engaged by driving tube **520** and driving pin **522** in order to implant second prosthesis **272** into tissue **800**.

(263) Using the arrangement described here, the components of plurality of driven assemblies **260** may be associated with at least two different configurations. In a first configuration, shown for example in FIGS. **53** and **61**, first driven tube **502** and first driven pin **504** may be aligned with driving tube **520** and driving pin **522**, respectively. Also, in this first configuration, first prosthesis **270** may generally be aligned with driving tube **520** and driving pin **522**. In a second configuration, shown for example in FIG. **63**, second driven tube **506** and second driven pin **508** may be aligned with driving tube **520** and driving pin **522**, respectively. Also, in this second configuration, second prosthesis **272** may generally be aligned with driving tube **520** and driving pin **522**. Moreover, using rotation control lever **744** (see FIG. **62**) allows a surgeon to rotate these components between the first configuration and the second configuration.

(264) The arrangement described above allows a plurality of prostheses to be housed within front delivery assembly **212**. Moreover, each prosthesis may be disposed in either a driving position, in which the prosthesis is aligned with driving assembly **250** (see FIG. **53**), or a storage position, in which the prosthesis is out of alignment with driving assembly **250**. Furthermore, in some embodiments, only one prosthesis may be in the driving position. However, for configurations incorporating three or more prostheses within front delivery device **212**, two or more prostheses could be in the storage position simultaneously. Thus, front delivery assembly **212** may provide a prosthesis configured for immediate implantation, and may also provide storage for one or more prostheses.

(265) As seen in FIGS. **61** through **63**, the process of adjusting second prosthesis **272** from the storage position to the driving position includes rotating front delivery assembly **212** about its own central longitudinal axis **599**. Moreover, front delivery assembly **212** is rotated with respect to base assembly **210**, which stays in place within the surgeon's hand as the position of second prosthesis **272** is adjusted. Thus, the driving position and the storage position may be characterized as angularly displaced from one another with respect to central longitudinal axis **599** of front delivery assembly **212**.

(266) As seen in the enlarged cut-away views included in FIGS. **61** through **63**, first prosthesis **270** and second prosthesis **272** may be connected by suture thread **830**. Following the insertion of first

prosthesis **270**, suture thread **830** may remain taut against a side of first prosthesis **270** and may extend back to second prosthesis **272**, which is still housed within cannula **215** at this stage. Once second prosthesis **272** is implanted within tissue **800**, as seen in FIG. **63**, suture thread **830** may be pulled taut along the surface of tissue **830**, anchored in place by first prosthesis **270** and second prosthesis **272**.

(267) FIGS. **61** through **63** further illustrate indentation **989** of rotating assembly **741**. In some embodiments, indentation **989** may be configured to receive first flange portion **991** or second flange portion **993**. As front delivery assembly **212** is rotated, first flange portion **991** and second flange portion **993** may rotate, while indentation **989** is fixed in place. Moreover, indentation **989** may be positioned such that first flange portion **991** or second flange portion **993** is received in indentation **989** when either of driven assemblies **260** are aligned with driving tube **520** and driving pin **522**. First flange portion **991** and second flange portion **993** may engage indentation **989** in a manner that helps to resist accidental rotation of front delivery assembly **212**. Although only one indentation is visible in FIGS. **61** through **63**, it should be understood that some embodiments can include at least two corresponding indentations, such as having a pair of indentations disposed 180 degrees apart from one another about central longitudinal axis **599** that both receive either first flange portion **991** or second flange portion **993**.

(268) FIGS. **64** and **65** illustrate schematic cut-away views of a portion of front delivery assembly **212** for the purposes of showing the relationship of various components of front delivery assembly **212**. The specific views shown in FIGS. **64** and **65** illustrate a region where driving tube **520** enters front delivery assembly **212**. Moreover, the cut-away view seen in FIGS. **64** and **65** is taken such that a top half of front delivery assembly **212** (specifically, the top half of cannula **215** that is shown in FIG. **53**) has been removed forwards of a locking member **871**. Locking member **871** is described in detail below, and in some embodiments it may generally form a rearward end of cannula **215**.

(269) Referring to FIGS. **64** and **65**, some embodiments can include provisions to help prevent unintentional actuation of a deployment device. In some embodiments, front delivery assembly **212** may include locking member 871. Locking member 871 may comprise a ring-like member including an inner edge **873** that defines an inner diameter for locking member **871**. In some cases, inner edge **873** is designed to engage locking groove **875** of driving tube **520**. Moreover, locking member 871 may include first gap 877 and second gap 879. When either first gap 877 or second gap **879** are disposed directly over driving tube **520**, driving tube **520** is free to translate axially. However, should locking member **871** be rotated to any other angular position (for example, any angular position where first driven tube **502** or second driven tube **506** are out of alignment with driving tube 520), inner edge 873 engages locking groove 875 and prevents axial movement of driving tube **520**. For example, FIG. **65** illustrates a configuration where front delivery assembly **212** has been rotated in a direction represented by arrows **597** so that inner edge **873** is engaged with locking groove **875**. This state may be described as a locked-out state, in which driving tube **520** is locked and unable to translate. This is in contrast to the ready to actuate state of FIG. **64**, where driving tube **520** is free to translate and impact a driven tube. This arrangement may help ensure that driving tube **520** is not accidentally actuated while front delivery assembly **212** is disposed in an intermediate position where neither of the two driving assemblies are properly aligned with driving tube **520**.

(270) FIG. **66** illustrates another cut-away view of portions of front delivery assembly and base portion **210**. Referring to FIG. **66**, in some embodiments, front delivery assembly **212** may be mounted to forward portion **209** of base assembly **210**, rather than being integrally formed with base assembly **210**. In order to receive front delivery assembly **212**, in some cases base assembly **210** can include forward mounting portion **710**. In some embodiments, forward mounting portion **710** may be a tube-like portion. Additionally, forward mounting portion **710** may include upper mounting shoulder **712** and lower mounting shoulder **714**. In some cases, upper mounting shoulder

712 and lower mounting shoulder **714** may be formed by varying the radial thickness of forward mounting portion **710**. Also, the end surfaces between forward mounting portion **710** and second mounting portion **724** of mounting assembly **720** are contoured to facilitate the axial movement of the driven assemblies **260** from the storage position to the deployed position.

(271) In some embodiments, front delivery assembly 212 may include mounting assembly 720 that includes provisions for mounting front delivery assembly 212 to base assembly 210 at forward mounting portion 710. In some cases, mounting assembly 720 may further include first mounting portion 722 and second mounting portion 724 (also shown in FIG. 67). In some cases, first mounting portion 722 may be sized and shaped to slide over an exterior surface of forward mounting portion 710. In addition, second mounting portion 724 may include one or more fastening portions. In one embodiment, second mounting portion 724 may include first fastening portion 730 and second fastening portion 732 may be configured to engage upper mounting shoulder 712 or lower mounting shoulder 714, respectively. In some cases, first fastening portion 730 and second fastening portion 732 comprise snap hooks that rest against upper mounting shoulder 712 and lower mounting shoulder 714, respectively. This configuration helps to prevent front delivery assembly 212 from disengaging with base assembly 210 during use.

(272) Some embodiments may include provisions to facilitate easy detachment of front delivery assembly **212** from base assembly **210**. In some embodiments, mounting assembly **720** may include a release mechanism. In some embodiments, second mounting portion **724** may include one or more release levers. In one embodiment, second mounting portion **724** includes first release lever **740** that is associated with first fastening portion **730**. Additionally, second mounting portion **732** may include second release lever **742** that is associated with second fastening portion **732**. As described in further detail below, first release lever **740** and second release lever **742** may be depressed by a surgeon in order to disengage first fastening portion **730** and second fastening portion **732**, respectively, from forward mounting portion **710** of base portion **210**.

(273) The particular features described here for detachably mounting front delivery assembly **212** with base assembly **210** are intended to be exemplary. It should therefore be understood that other embodiments of deployment device **202** can include any other means for detachably mounting front delivery assembly **212** with base assembly **210**. Other embodiments could utilize one or more removable fasteners that help to detachably mount front delivery assembly **212** with base assembly **210**. In one alternative embodiment, for example, front delivery assembly **212** and base assembly **210** could comprise corresponding threading and thread receiving portions that would provide for front delivery assembly **212** to be screwed onto base assembly **210**.

(274) FIGS. **67** through **69** illustrate isometric views of a process of detaching front delivery assembly **212** from base assembly **210**, according to one embodiment. In order to detach front delivery assembly **212** a surgeon may depress first release lever **740** and second release lever **742**, as represented by arrows **697** in FIGS. **67** and **68**. As seen in FIG. **68**, as first release lever **740** and second release lever **742** are depressed, first fastening portion **730** and second fastening portion **732** may be released from engagement with upper mounting shoulder **712** and lower mounting shoulder **714**, respectively, which is represented schematically by arrows **698**. At this point, a surgeon is able to pull mounting assembly **720** off of forward mounting portion **710**, thereby separating front delivery assembly **212** and base assembly **210**, as shown in FIG. **69**. Here, the motion of front delivery assembly **212** away from base assembly **210** is represented by arrows **699**. Of course, a similar process in reverse order (not shown) could be used to attach front delivery assembly **212** and base assembly **210**.

(275) The embodiments described above allow for a detachable front delivery assembly **212** to be used with base assembly **210**. To enhance the ease of use, some embodiments may include provisions for associating multiple different front delivery systems with a single base assembly. In particular, some embodiments may make use of multiple front delivery assemblies that may be

disposed of after use. This may improve ease of use by removing potentially cumbersome steps of replacing individual prostheses and/or driven assemblies within a front delivery assembly. (276) Some of the components described above for a front delivery assembly could be optional. In some embodiments, for example, one or more driven assemblies could be optional. In one such alternative embodiment, a detachable front delivery assembly may be configured to house one or more prostheses but may not include any driven assemblies. In such an embodiment it is contemplated that the prostheses of the front delivery assembly may be directly associated with a driving assembly of a deployment device. For example, one such embodiment of a front delivery assembly could include an arrangement such that first prosthesis 270 and second prosthesis 272 may be directly aligned with, and configured to be directly driven by, driving assembly **250** of base assembly **210** (see FIGS. **15** and **16**). In such an embodiment, the front delivery assembly could be significantly shorter than front delivery assembly 212 described above, to ensure that first prosthesis **270** and second prosthesis **272** are capable of direct contact with driving assembly **250**. Furthermore, it will be understood that such alternative embodiments could incorporate additional changes to accommodate other constraints imposed by the removal of one or more driven assemblies. For example, in the alternative embodiment described here, the step or steps of associating first prosthesis 270 or second prosthesis 272 with driving assembly 250 may further include a step of inserting driving pin 522 into a corresponding longitudinal cavity of first prosthesis **270** or second prosthesis **272** prior to implantation. This additional step may help ensure that driving tube **520** and driving pin **522** provide the desired impacting forces on a driving portion and a base portion, respectively, of a prosthesis during the first stage of implantation. (277) FIG. **70** illustrates a schematic view of an exemplary embodiment of kit of parts **850** that comprises various interchangeable front delivery assemblies for use with a single base assembly 210. Referring to FIG. 70, kit of parts 850 may include first front delivery assembly 852, second front delivery assembly **854**, and third front delivery assembly **856**. Each assembly could be interchangeably used with base assembly **210**. (278) In some embodiments, each of first front delivery assembly **852**, second front delivery assembly **854** and third front delivery assembly **856** may be substantially identical. For example, each of first front delivery assembly 852, second front delivery assembly 854, and third front delivery assembly **856** could incorporate similar components including the same number of prostheses for implantation. In other embodiments, however, two or more of first front delivery assembly 852, second front delivery assembly 854, and third front delivery assembly 856 could differ in some aspect including the number of prostheses. For example, one kit could include a front delivery assembly including two prostheses, another front delivery assembly including three

prostheses, and still another front delivery assembly including four prostheses. (279) The kit of parts **850** described here may allow for more flexibility in repairing various forms of tissue imperfections during surgery. Different sterile and prepackaged front delivery assemblies could vary in provisions, including, but not limited to, suture types, suture lengths, anchor types, anchor sizes, anchor materials, anchor number, cannula size, cannula depth, as well as other features. During surgery, a surgeon may select the most desirable front delivery assembly based on conditions encountered during surgery, rather than relying on a single configuration for a deployment device that is determined using only pre-surgical information. For example, this may allow a surgeon to increase the number of available prostheses for repairing an imperfection based on surgery conditions. Likewise, this may allow a surgeon to change the type or material of prostheses to be used in a repair based on surgery conditions. In each case, a surgeon can simply interchange the currently attached front delivery assembly with a more suitable front delivery assembly according to surgery conditions.

(280) It is contemplated that a method of providing a deployment device to customers could incorporate providing a kit of parts including a single base assembly as well as two or more front delivery assemblies. In terms of retail considerations, in some cases, an intended surgeon could

purchase a kit including the base assembly as well as multiple front delivery assemblies. In other cases, some components could be sold separately while still being intended for use together. (281) A detachable front assembly can include provisions to hold tissue in place prior to implanting one or more prostheses. In some embodiments, for example, a detachable front assembly can include one or more holding members. In some embodiments, a holding member could comprise a pin-like projection that acts to position and/or hold down a tendon and/or muscle over a particular location of a bone. In one embodiment, a holding member could be used to position and/or hold down a portion of a rotator cuff tendon that is being positioned for reattachment to an underlying bone.

- (282) FIGS. **71** and **72** illustrate schematic views of an embodiment of a detachable front system **900** that includes plurality of holding members **902**. In some embodiments, plurality of holding members **902** may comprise four individual holding members including first holding member **911**, second holding member **912**, third holding member **913**, and fourth holding member **914**. Each of first holding member **914** may be shaped and aligned in a manner that facilitates holding down a tendon or other type of tissue in place over a bone. Moreover, each of first holding member **911**, second holding member **912**, third holding member **913**, and fourth holding member **914** may extend outwardly from forward rim **901** of detachable front delivery system **900**.
- (283) As seen in FIG. **72**, plurality of holding members **902** may be used to pin down portion **920** tendon **922** in a predetermined location of bone **924**. As portion **920** may be a portion that of tendon **922** that requires reattachment, plurality of holding members **902** may act to keep portion **920** in place and thereby prevent the natural contraction or recession of portion **920** away from the desired location on bone **924**. With this arrangement, a surgeon may operate a delivery device to deploy one or more prostheses through tendon **922** and bone **924** without requiring the surgeon to manipulate the position of portion **920** through an additional tool or means. This may simplify the implantation procedure.
- (284) Generally, the number of holding members used with a delivery device could vary in different embodiments. In some cases, a single holding member could be used. In other cases, two or more holding members could be used. In still other cases, three holding members could be used. In still other cases, five or more holding members could be used.
- (285) The alignment of two or more holding members could vary in different embodiments. Some embodiments could utilize holding members that are approximately evenly spaced around a distal end of detachable front delivery system **900**. In other embodiments, the spacing or configuration of holding members could vary and could include asymmetric configurations or configurations with uneven spacing.
- (286) The geometry of each holding member could vary in different embodiments. In some embodiments, each holding member could have a substantially similar geometry. In other embodiments, the geometry of at least two holding members could be substantially different. For example, some embodiments could incorporate two or more holding members of different lengths (as measured from the distal end of a delivery device).
- (287) Some embodiments may include provisions for retracting one or more holding members. Some embodiments could include holding members that are attached to a moveable tube, cannula, or other similar component that is disposed within a detachable front delivery system. As one example, shown in FIG. 73, detachable front delivery system 1000 includes an outer cannula 1002 and an inner cannula 1004. Plurality of holding members 1006 may be attached to, and/or formed with, inner cannula 1004. This configuration may allow for holding members 1006 to be protected within movable outer cannula 1002, which is spring loaded via spring 1020. This may help prevent plurality of holding members from engaging tissue until the surgeon has located outer cannula 1002 at the desired location for implantation.

(288) Whatever its ultimate use or features, a deployment device as discussed here (for example, deployment device **202** of FIG. **13**) may be adapted for use in a medical environment. For example, some components of deployment device **202** could be detachable from their respective points of connection on base assembly **210** and/or front delivery assembly **212**, so as to facilitate autoclaving or other sterilization procedures. In some embodiments, base assembly **210** itself may also be autoclavable or otherwise sterilizable. As previously mentioned, a front delivery assembly could be packaged sterile and/or disposable. In some embodiments, the entire deployment device could be packaged sterile and/or disposable.

(289) Further, in describing representative embodiments of the present invention, the specification may have presented the method and/or process of the present invention as a particular sequence of steps. However, to the extent that the method or process does not rely on the particular order of steps set forth herein, the method or process should not be limited to the particular sequence of steps described. As one of ordinary skill in the art would appreciate, other sequences of steps may be possible. Therefore, the particular order of the steps set forth in the specification should not be construed as limitations on the claims. In addition, the claims directed to the method and/or process of the present invention should not be limited to the performance of their steps in the order written, and one skilled in the art can readily appreciate that the sequences may be varied and still remain within the spirit and scope of the present invention.

(290) While various embodiments have been described, the description is intended to be exemplary, rather than limiting and it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the embodiments. Accordingly, the embodiments are not to be restricted except in light of the attached claims and their equivalents. Also, various modifications and changes may be made within the scope of the attached claims.

Claims

- 1. A method of implanting multiple prostheses into a tissue, comprising: positioning a deployment device at a first location, wherein the deployment device comprises: a first driven tube, and a first driven pin disposed and longitudinally moveable within the first driven tube; moving the first driven tube and the first driven pin together over a first distance in an implantation direction, while pushing a first prosthesis into the tissue with the first driven tube and/or the first driven pin; beyond the first distance, moving the first driven tube relative to the first driven pin a second distance in the implantation direction, such that the first driven tube pushes the first prosthesis over the second distance and implants the first prosthesis into the tissue at the first location, wherein the implanted first prosthesis is attached by at least one connecting member to a second prosthesis on the deployment device; positioning the deployment device at a second location that is different from the first location, wherein the deployment device comprises: a second driven tube, and a second driven pin disposed and longitudinally moveable within the second driven tube; moving the second driven tube and the second driven pin together over a third distance in the implantation direction, while pushing the second prosthesis into the tissue with the second driven tube and/or the second driven pin; and beyond the third distance, moving the second driven tube relative to the second driven pin a fourth distance in the implantation direction, such that the second driven tube pushes the second prosthesis over the fourth distance and implants the second prosthesis into the tissue at the second location, wherein the implanted first prosthesis and the implanted second prosthesis are joined by the at least one connecting member extending from the first location to the second location.
- 2. The method of claim 1, wherein the deployment device further comprises an energy storage system and a trigger portion configured to release energy of the energy storage system, and wherein moving the first driven tube and the first driven pin together over the first distance and moving the

first driven tube relative to the first driven pin a second distance are accomplished by pulling the trigger portion to release energy of the energy storage system.

- 3. The method of claim 1, wherein the deployment device further comprises a driving assembly that applies force in the implantation direction along a driving axis to move the first driven tube and the first driven pin and to move the second driven tube and the second driven pin, and wherein before moving the second driven tube and the second driven pin together, the method further comprises moving the first driven tube and the first driven pin out of alignment with the driving axis and moving the second driven tube and the second driven pin into alignment with the driving axis.
- 4. The method of claim 1, wherein moving the first driven tube relative to the first driven pin the second distance comprises pushing the first prosthesis multiple times.
- 5. The method of claim 1, wherein the first prosthesis includes a first portion pushed by the first driven tube and a second portion pushed by the first driven pin, and wherein the first driven tube pushes the first portion of the first prosthesis farther than the first driven pin pushes the second portion of the first prosthesis.
- 6. The method of claim 1, wherein the first prosthesis cuts tissue at the first location to implant the first prosthesis, and wherein the second prosthesis cuts tissue at the second location to implant the second prosthesis.
- 7. A method of implanting multiple prostheses into a tissue, comprising: positioning a deployment device at a first location, wherein the deployment device comprises: a driven tube, and a driven pin disposed and longitudinally moveable within the driven tube; moving the driven tube and the driven pin together over a first distance in an implantation direction, while pushing a first prosthesis into the tissue with the driven tube and/or the driven pin; beyond the first distance, moving the driven tube relative to the driven pin a second distance in the implantation direction, such that the driven tube pushes the first prosthesis over the second distance and implants the first prosthesis into the tissue at the first location, wherein the implanted first prosthesis is attached by at least one connecting member to a second prosthesis on the deployment device; positioning the deployment device at a second location that is different from the first location, moving the driven tube and the driven pin together over a third distance in the implantation direction, while pushing the second prosthesis into the tissue with the driven tube and/or the driven pin; and beyond the third distance, moving the driven tube relative to the driven pin a fourth distance in the implantation direction, such that the driven tube pushes the prosthesis over the fourth distance and implants the second prosthesis into the tissue at the second location, wherein the implanted first prosthesis and the implanted second prosthesis are joined by the at least one connecting member extending from the first location to the second location.
- 8. The method of claim 7, wherein the deployment device further comprises an energy storage system and a trigger portion configured to release energy of the energy storage system, and wherein moving the driven tube and the driven pin together over the first distance and moving the driven tube relative to the driven pin a second distance are accomplished by pulling the trigger portion to release energy of the energy storage system.
- 9. The method of claim 7, wherein moving the driven tube relative to the driven pin the second distance comprises pushing the first prosthesis multiple times.
- 10. The method of claim 7, wherein the first prosthesis includes a first portion pushed by the driven tube and a second portion pushed by the driven pin, and wherein the driven tube pushes the first portion of the first prosthesis farther than the driven pin pushes the second portion of the first prosthesis.
- 11. The method of claim 7, wherein the first prosthesis cuts tissue at the first location to implant the first prosthesis, and wherein the second prosthesis cuts tissue at the second location to implant the second prosthesis.