Základy počítačové grafiky Vyplňování 2D oblastí

Michal Španěl Tomáš Milet

Brno 2023

Cíl přednášky

Seznámit se s algoritmy pro vyplňování uzavřených rovinných oblastí s vektorově definovanou hranicí (trojúhelník, polygon).

Obsah

- 🚺 Úvod
 - Definice a typy oblastí
 - Pravidla vyplňování
 - Druhy výplní
- Vektorové algoritmy
 - Úkol
 - Řádkové vyplňování
 - Inverzní řádkové vyplňování
 - Pinedův algoritmus
 - Interpolace hodnot z vrcholů
- Rastrové algoritmy
 - Semínkové vyplňování

Vyplňování oblastí

Definice

Proces nalezení a označení (obarvení) všech vnitřních bodů dané oblasti (= rasterizace).

- Vstupem je popis hranice oblasti.
- Výstupem je rastrový popis vyplněné oblasti.
- Jsou různé typy vyplňování...

Vyplňování oblastí

Definice

Proces nalezení a označení (obarvení) všech vnitřních bodů dané oblasti (= rasterizace).

- Vstupem je popis hranice oblasti.
- Výstupem je rastrový popis vyplněné oblasti.
- Jsou různé typy vyplňování...

Vyplňování oblastí najdeme i ve 3D grafice

Popis a typy oblastí

Vektorové oblasti

Hranice popsána seznamem vektorových entit (úseček, kruhových oblouků, křivek, atd.).

Rastrové oblasti

Hranice popsána v rastrové matici hodnotou pixelů na hranici nebo barvou vyplňované oblasti.

Popis a typy oblastí

Vektorové oblasti

Hranice popsána seznamem vektorových entit (úseček, kruhových oblouků, křivek, atd.).

Rastrové oblasti

Hranice popsána v rastrové matici hodnotou pixelů na hranici nebo barvou vyplňované oblasti.

Konvexní (vypouklé, vyduté)

Pro libovolné dva body oblasti platí, že jejich spojnice je součástí oblasti, neprotíná její hranice.

? Jak určíme, kde je uvnitř a kde vně oblasti?

Konkávní (nekonvexní, prohnuté, duté)

Oblast, která není konvexni

S vnitřními otvory

Hranice je tvořena více nezávislými smyčkami, obrysem a otvory.

30

Konvexní (vypouklé, vyduté)

Pro libovolné dva body oblasti platí, že jejich spojnice je součástí oblasti, neprotíná její hranice.

? Jak určíme, kde je uvnitř a kde vně oblasti?

Konkávní (nekonvexní, prohnuté, duté)

Oblast, která není konvexní.

S vnitřními otvory

Hranice je tvořena více nezávislým smyčkami, obrysem a otvory.

Konvexní (vypouklé, vyduté)

Pro libovolné dva body oblasti platí, že jejich spojnice je součástí oblasti, neprotíná její hranice.

? Jak určíme, kde je uvnitř a kde vně oblasti?

Konkávní (nekonvexní, prohnuté, duté)

Oblast, která není konvexní.

S vnitřními otvory

Hranice je tvořena více nezávislými smyčkami, obrysem a otvory.

Konvexní (vypouklé, vyduté)

Pro libovolné dva body oblasti platí, že jejich spojnice je součástí oblasti, neprotíná její hranice.

?

Jak určíme, kde je uvnitř a kde vně oblasti?

Konkávní (nekonvexní, prohnuté, duté)

Oblast, která není konvexní.

S vnitřními otvory

Hranice je tvořena více nezávislými smyčkami, obrysem a otvory.

Vektorový popis oblastí

Korektní definice oblasti

- Seznam hraničních entit vyplňované oblasti musí být orientovaný a spojitý.
- Vnitřní díry mají vždy opačnou orientaci.

Jak otestovat orientaci?

- Vektorový součin dvou sousedních hran (pravidlo pravé rukv).
- V případě nekonvexních polygonů suma přes celý polygon.

Vektorový popis oblastí

Korektní definice oblasti

- Seznam hraničních entit vyplňované oblasti musí být orientovaný a spojitý.
- Vnitřní díry mají vždy opačnou orientaci.

Jak otestovat orientaci?

- Vektorový součin dvou sousedních hran (pravidlo pravé ruky).
- V případě nekonvexních polygonů suma přes celý polygon.

Pravidla vyplňování složitých oblastí

• Řeší nejednoznačnost při vyplňování složitých oblastí (hranice protínají sami sebe).

20

Pravidla vyplňování složitých oblastí

• Řeší nejednoznačnost při vyplňování složitých oblastí (hranice protínají sami sebe).

30

Pravidla vyplňování složitých oblastí

Řeší nejednoznačnost při vyplňování složitých oblastí (hranice protínají sami sebe).

Úvod

Vnitřní vyplňování Jsou vyplněny všechny body, které neisou vně oblasti.

Pravidla vyplňování složitých oblastí, pokr.

Nenulové vyplňování Nenulové objetí bodu uzavřenou smyčkou při vyřešení sebeprotinání.

Druhy výplní

Druhy výplní

Druhy výplní, pokr.

Obsah

- 1 Úvod
 - Definice a typy oblastí
 - Pravidla vyplňování
 - Druhy výplní
- Vektorové algoritmy
 - Úkol
 - Řádkové vyplňování
 - Inverzní řádkové vyplňování
 - Pinedův algoritmus
 - Interpolace hodnot z vrcholů
- Rastrové algoritmy
 - Semínkové vyplňování

Stavíme pyramidu

- Rasterizace troj. v rovině XY
- Vrstvy zmenšujících se troj.

Řádkové vyplňování (angl. Scanline Fill)

- Základní algoritmus vyplňování obecných mnohoúhelníků.
- Seznam hraničních entit (hran) oblasti Ω .
- Orientovaný seznam vrcholů úseček.

Základní mvšlenka

- Procházení oblasti Ω po jednotlivých řádcích výsledného rastru.
- Úseky ležící uvnitř oblasti jsou vyplněny barvou nebo vzorem.

Řádkové vyplňování (angl. Scanline Fill)

- Základní algoritmus vyplňování obecných mnohoúhelníků.
- Seznam hraničních entit (hran) oblasti Ω .
- Orientovaný seznam vrcholů úseček.

Základní mvšlenka

- Procházení oblasti Ω po jednotlivých řádcích výsledného rastru.
- Úseky ležící uvnitř oblasti jsou vyplněny barvou nebo vzorem.

Řádkové vyplňování, pokr.

Algoritmus (pro paritní vyplňování)

Pro každý řádek $Y_i \in \langle Y_{min}, Y_{max} \rangle$ oblasti Ω:

- Seznam souřadnic x_i průsečíků řádku Y_j se všemi hraničními úsečkami. Vodorovné hrany se vynechávají!
- Setřídění seznamu průsečíků podle souřadnic x_i.
- Vykreslení vodorovných úseků řádku Y_j mezi lichými a sudými průsečíky seznamu (dvojice tvoří úsek uvnitř oblasti).

Problém krajních bodů úseček (lichý počet průsečíků hran)

- Algoritmus předpokládá sudý počet průsečíků.
- Nemusí platit, pokud řádek protíná některý vrchol hranice!

Obecné řešen

- Ve vrcholech, které jsou lokálním extrémem v ose Y generovat průsečíky obou hran.
- V ostatních vrcholech generovat průsečík pouze jednou.

Problém krajních bodů úseček (lichý počet průsečíků hran)

- Algoritmus předpokládá sudý počet průsečíků.
- Nemusí platit, pokud řádek protíná některý vrchol hranice!

Obecné řešení

- Ve vrcholech, které jsou lokálním extrémem v ose Y generovat průsečíky obou hran.
- V ostatních vrcholech generovat průsečík pouze jednou.

Problém krajních bodů úseček, pokr.

Analýza typu vrcholů

- Generování správného počtu průsečíků testováním extrému v ose Y.
- Implementace algoritmu se komplikuje a zpomaluje!

Problém krajních bodů úseček, pokr.

Zkrácení dolního okraje všech hran

- Zkrátit hranu ve směru osy Y o 1.
- Vodorovné hrany se vypouštějí.
- Je nutné překreslit obrys oblasti!

Vektorové algoritmy

Šrafování, gradient

Vyplnění vodorovnou šrafou

- Jednoduchá úprava vyplňovacích algoritmů.
- Přeskakování řádků pomocí parametru.

Vyplnění gradientem

- Podobné šrafování.
- Parametr inkrementující se každý řádek.

Šrafování, gradient pod libovolným úhlem

Algorimus pro šrafování pod libovolným úhlem

Modifikace vodorovného šrafování

- Pro šrafu/gradient pod úhlem α nutné nejprve otočit oblast o úhel $-\alpha$
- Šrafovat vodorovně
- Otočit oblast zpět o úhel α

Otočení se řeší transformační maticí

Šrafování, gradient pod libovolným úhlem

Inverzní řádkové vyplňování

- Odstraňuje nutnost třídit průsečíky pro každý řádek.
- Mnohoúhelníky, seznam hran oblasti nebo orientovaný seznam vrcholů.

Základní myšlenka

- Procházení oblasti Ω po jednotlivých hranách $e_i \in \Omega$.
- Od každé hrany je napravo po řádcích provedeno vyplnění s inverzí hodnot pixelů.

Inverzní řádkové vyplňování

- Odstraňuje nutnost třídit průsečíky pro každý řádek.
- Mnohoúhelníky, seznam hran oblasti nebo orientovaný seznam vrcholů.

Základní myšlenka

- Procházení oblasti Ω po jednotlivých hranách e_i ∈ Ω.
- Od každé hrany je napravo po řádcích provedeno vyplnění s inverzí hodnot pixelů.

Inverzní řádkové vyplňování, pokr.

Algoritmus (pro paritní vyplňování)

Nalezení maximální souřadnice X_{max} v ose X.

Každou hranu $e_i \in \Omega$ oblasti zpracuj následovně:

- Získání Y_{min} a Y_{max} pro danou hranu e_i .
- Pro každý řádek $Y_j \in \langle Y_{min}, Y_{max} \rangle$, kromě vodorovných hran, proveď:
 - Najdi průsečík $P_{ij} = (x_{ij}, y_{ij})$ řádku Y_i s aktuální hranou e_i .
 - Invertuj hodnoty pixelů v řádku Y_j od průsečíku P_{ij} po maximální souřadnici oblasti X_{max} .

Inverzní řádkové vyplňování, pokr.

+/-

- Lineární časová složitost v závislosti na počtu hran.
- Po vyplnění je nutné překreslit obrys oblasti.
- Binární operace inverze pixelů → binární obraz.
- Ovlivňuje okolí oblasti → generování šablony v pomocném bufferu.

Pinedův algoritmus (J. Pineda, 1988)

- Pracuje pouze s konvexními mnohoúhelníky.
- Vyplňovaná oblast Ω je popsána seznamem hran $\Omega = \{e_1, e_2, \dots, e_n\}$.
- Nejčastěji používán pro trojúhelníky (vždy konvexní).
- Snadná realizace v HW

Základní mvšlenka

- Rozdělení roviny oblasti Ω na poloroviny hran e_i ∈ Ω.
- Body roviny, které leží na kladné straně všech polorovin hran e; jsou uvnitř oblasti O

Pinedův algoritmus (J. Pineda, 1988)

- Pracuje pouze s konvexními mnohoúhelníky.
- Vyplňovaná oblast Ω je popsána seznamem hran $\Omega = \{e_1, e_2, \dots, e_n\}$.
- Nejčastěji používán pro trojúhelníky (vždy konvexní).
- Snadná realizace v HW.

Základní myšlenka

- Rozdělení roviny oblasti Ω na poloroviny hran e_i ∈ Ω.
- Body roviny, které leží na kladné straně všech polorovin hran e_i jsou uvnitř oblasti Ω.

Test polohy bodu P(x, y) k přímce

Hranová funkce $E_i(x, y)$

Vekt. součin vektoru $\vec{h_i}$ hrany a vektoru $\vec{b_{Pi}}$ z počátku hrany k testovanému bodu P.

$$\vec{h_i} = (x_{i1} - x_{i0}, y_{i1} - y_{i0}) = (\Delta x_i, \Delta y_i)$$
 $\vec{b_{Pi}} = (x - x_{i0}, y - y_{i0})$
 $E_i(x, y) = \vec{h_i} \times \vec{b_{Pi}}$
 $E_i(x, y) = (x - x_{i0})\Delta y_i - (y - y_{i0})\Delta x_i$

28 / 44

Trojúhelníková oblast a její poloroviny

• Je-li hodnota všech hranových funkcí $E_i(x,y) \ge 0$, pak bod P(x,y) leží uvnitř nebo na hranici oblasti.

Výpočet hranové funkce

- Není nutné vyhodnocovat hranové fce E_i(x, y) pro každý bod!
- Hodnotu lze určit na základě sousedního bodu $P(x \pm 1, y)$ nebo $P(x, y \pm 1)$.

Odvození

$$E_{i}(x,y) = (x - x_{i0})\Delta y_{i} - (y - y_{i0})\Delta x_{i}$$

$$E_{i}(x + 1, y) = (x + 1 - x_{i0})\Delta y_{i} - (y - y_{i0})\Delta x_{i}$$

$$E_{i}(x + 1, y) = E_{i}(x, y) + \Delta y_{i}$$

$$E_{i}(x \pm 1, y) = E_{i}(x, y) \pm \Delta y_{i}$$

$$E_{i}(x + 1, y) = E_{i}(x, y) \pm \Delta y_{i}$$

Výpočet hranové funkce

- Není nutné vyhodnocovat hranové fce $E_i(x, y)$ pro každý bod!
- Hodnotu lze určit na základě sousedního bodu $P(x \pm 1, y)$ nebo $P(x, y \pm 1)$.

Odvození

$$E_{i}(x,y) = (x - x_{i0})\Delta y_{i} - (y - y_{i0})\Delta x_{i}$$

$$E_{i}(x + 1, y) = (x + 1 - x_{i0})\Delta y_{i} - (y - y_{i0})\Delta x_{i}$$

$$E_{i}(x + 1, y) = E_{i}(x, y) + \Delta y_{i}$$

$$E_{i}(x \pm 1, y) = E_{i}(x, y) \pm \Delta y_{i}$$

$$E_{i}(x, y \pm 1) = E_{i}(x, y) \pm \Delta x_{i}$$

Základní algoritmus

- Nalezení x_{min}, x_{max}, y_{min} a y_{max}.
- Pro každou hranu oblasti inicializuj $E_i(x_{min}, y_{min})$.
- Cyklus přes všechny body (x, y) v obdélníku (x_{min}, y_{min}), (x_{max}, y_{max}):
 - Je-li $E_i(x, y) \ge 0$ pro všechny hrany, pak nastav hodnotu pixelu.
 - Aktualizace $E_i(x, y)$.

Procházení opsaného obdélníka po řádcích

Zbytečný průchod $\sim 1/2$ obdélníka.

Základní algoritmus

- Nalezení x_{min} , x_{max} , y_{min} a y_{max} .
- Pro každou hranu oblasti inicializuj $E_i(x_{min}, y_{min})$.
- Cyklus přes všechny body (x, y) v obdélníku (x_{min}, y_{min}), (x_{max}, y_{max}):
 - Je-li $E_i(x, y) \ge 0$ pro všechny hrany, pak nastav hodnotu pixelu.
 - Aktualizace $E_i(x, y)$.

Procházení opsaného obdélníka po řádcích

Zbytečný průchod $\sim 1/2$ obdélníka.

Ukázka - Pinedův algoritmus v Processing

Rasterizace troj. v rovině XY

(FIT VUT v Brně) Základy počítačové grafiky 31 / 44

Lepší algoritmus

Procházení od maximálního vrcholu s obratem a přechodem na další řádek

Algoritmicky složitější.

Procházení po řádcích od svislého plotu

Plot ve středu opsaného obdélníka nebo skrz prostřední vrchol. Možnost paralelizace (strany nezávisle).

Lepší algoritmus

Procházení od maximálního vrcholu s obratem a přechodem na další řádek

Algoritmicky složitější.

Procházení po řádcích od svislého plotu

Plot ve středu opsaného obdélníka nebo skrz prostřední vrchol. Možnost paralelizace (strany nezávisle).

Jak interpolovat barvu v ploše trojúhelníku?

Barycentrické souřadnice

Hlavní myšlenka

- Souřadnice vztažené relativně k n zvoleným bodům.
- Pro n-úhelník lze jakýkoliv bod vyjádřit n souřadnicemi.
- Představují vliv "hmotnosti" bodů N-úhelníku v konkrétním bodě (barvcenter = těžiště).

Hodnoty bar. souřadnic v konkrétních bodech trojúhelníku:

Barycentrické souřadnice pro trojúhelník

Vlastnosti

- Mějme libovolný bod $r = (\lambda_1, \lambda_2, \lambda_3)$ v barycentrických souřadnicích
- Mějme p₁, p₂, p₃ body trojúhelníku
- Pak platí
 - $\bullet r = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3$
 - $\lambda_1 + \lambda_2 + \lambda_3 = 1$ pokud bod r náleží trojúhelníku (p_1, p_2, p_3)

Vhodné pro určení polohy bodu vúči trojúhelníku

- $\lambda_1 + \lambda_2 + \lambda_3 = 1$ pokud bod r náleží trojúhelníku (p_1, p_2, p_3)
- $\lambda_1 + \lambda_2 + \lambda_3 \neq 1$ pokud bod r leží mimo trojúhelník (p_1, p_2, p_3)
- $\lambda_1 = 0$ a $\lambda_2 + \lambda_3 = 1$ pokud bod r leží na hraně protilehlé bodu p_1

Barycentrické souřadnice pro trojúhelník

Vlastnosti

- Mějme libovolný bod $r = (\lambda_1, \lambda_2, \lambda_3)$ v barycentrických souřadnicích
- Mějme p₁, p₂, p₃ body trojúhelníku
- Pak platí
 - $r = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3$
 - $\lambda_1 + \lambda_2 + \lambda_3 = 1$ pokud bod r náleží trojúhelníku (p_1, p_2, p_3)

Vhodné pro určení polohy bodu vúči trojúhelníku

- $\lambda_1 + \lambda_2 + \lambda_3 = 1$ pokud bod r náleží trojúhelníku (p_1, p_2, p_3)
- $\lambda_1 + \lambda_2 + \lambda_3 \neq 1$ pokud bod r leží mimo trojúhelník (p_1, p_2, p_3)
- $\lambda_1 = 0$ a $\lambda_2 + \lambda_3 = 1$ pokud bod r leží na hraně protilehlé bodu p_1

Výpočet barycentrických souřadnic pro trojúhelník

Konverze z kartézských souřadnic

$$\begin{array}{l} \bullet \ \lambda_1 = A(r,p_2,p_3)/A(p_1,p_2,p_3) \\ \lambda_2 = A(r,p_1,p_3)/A(p_2,p_1,p_3) \\ \lambda_3 = A(r,p_1,p_2)/A(p_3,p_1,p_2) \end{array}$$

Barycentrické souřadnice pro N-úhelník

Zobecnění souřadnic pro N-úhelník

- Pro N-úhelník je bod vyjádřen n souřadnicemi.
- Platí

$$\sum_{i=1...n} \lambda_i = 1$$

pro bod náležící n-úhelníku.

Platí

$$r = \sum_{i=1, n} \lambda_i r_i$$

pro libovolný bod.

38 / 44

Ukázka - Interpolace barev z vrcholů pomocí bar. souřadnic

 Vazba mezi výpočtem bar. souřadnic a hranovou fcí Pinedova algoritmu

https:
//youtu.be/eu6i7WJeinw?list=
PLZHQObOWTQDPD3MizzM2xVFitgF8hE_
ab

(FIT VUT v Brně) Základy počítačové grafiky

Obsah

- Úvod
 - Definice a typy oblastí
 - Pravidla vyplňování
 - Druhy výplní
- Vektorové algoritmy
 - Úkol
 - Řádkové vyplňování
 - Inverzní řádkové vyplňování
 - Pinedův algoritmus
 - Interpolace hodnot z vrcholů
- Rastrové algoritmy
 - Semínkové vyplňování

Semínkové vyplňování (angl. Flood-fill)

- Vyplňování rastrových oblastí.
- Startovací bod (semínko) uvnitř oblasti.

Základní myšlenka

- Semínko uvnitř oblasti šíříme na sousedy (obarvování sousedních pixelů).
- Obarvené pixely se rekurzivně stávají semínky.

Rastrové algoritmy

Definice hranice oblasti

Hraniční

Oblast definována spojitou hranicí z pixelů dané barvy.

Rastrové algoritmy

Definice hranice oblasti

Hraniční

Oblast definována spojitou hranicí z pixelů dané barvy.

Záplavová

Oblast definována spojitou množinou vnitřních pixelů dané barvy.

Rastrové algoritmy

Způsob výběru sousedů

Způsob výběru sousedů

Rekurzivní implementace

```
FloodFill(int x, int y)
{
   if (get_pixel(x,y) == background_color)
   {       set_pixel(x, y, fill_color);
        FloodFill(x, y - 1);
        FloodFill(x, y + 1);
        FloodFill(x - 1, y);
        FloodFill(x + 1, y);
   }
}
```

 Hrozí nebezpečí přetečení zásobníku!

Implementace s využitím fronty/zásobníku

- Vlož počáteční semínko (x₀, y₀) do fronty.
- Dokud fronta není prázdná:
 - Vyber semínko (x_i, y_i) ze začátku fronty.
 - Je-li uvnitř oblasti, pak nastav hodnotu pixelu a vlož sousedy (x_i + 1, y_i),... do fronty.

Rekurzivní implementace

 Hrozí nebezpečí přetečení zásobníku!

Implementace s využitím fronty/zásobníku

- Vlož počáteční semínko (x₀, y₀) do fronty.
- Dokud fronta není prázdná:
 - Vyber semínko (x_i, y_i) ze začátku fronty.
 - Je-li uvnitř oblasti, pak nastav hodnotu pixelu a vlož sousedy $(x_i + 1, y_i), \ldots$ do fronty.

Optimalizace vyplňování

- Řádkové vyplňování se seznamem aktivních hran.
- Řádkové semínkové vyplňování (angl. scanline seed fill).

Druhy výplní

- Použití šablon pro šrafování.
- Vyplnění vzorkem.

Literatura

 Žára, J., Beneš, B., Felkel, P., Moderní počítačová grafika, ComputerPress, 1999.

30

Optimalizace vyplňování

- Řádkové vyplňování se seznamem aktivních hran.
- Řádkové semínkové vyplňování (angl. scanline seed fill).

Druhy výplní

- Použití šablon pro šrafování.
- Vyplnění vzorkem.

Literatura

 Žára, J., Beneš, B., Felkel, P., Moderní počítačová grafika, ComputerPress, 1999.

30

Optimalizace vyplňování

- Řádkové vyplňování se seznamem aktivních hran.
- Řádkové semínkové vyplňování (angl. scanline seed fill).

Druhy výplní

- Použití šablon pro šrafování.
- Vyplnění vzorkem.

Literatura

 Žára, J., Beneš, B., Felkel, P., Moderní počítačová grafika, ComputerPress, 1999.

