List of Symbols

a	distance front axle to c.g.; half of contact length
a_{x}	longitudinal acceleration
a_{ν}	lateral acceleration
$a_{\mu}^{'}$	slip velocity dependency coefficient for friction
$\stackrel{\mu}{A_r}$	rolling resistance coefficient
$b^{'}$	distance rear axle to c.g.; half contact width
В	stiffness factor in 'Magic Formula'
B_1	brake force of rolling wheel
c	stiffness; factor
c_c	lateral carcass stiffness per unit length
c_{gyr}	non-dimensional gyroscopic coefficient
$c_{px,y}$	tread element stiffness per unit length of circumference
c_{px}	tread element longitudinal stiffness per unit area
Ċ	cornering stiffness; sum front and rear
C_i	cornering stiffness, sum left and right
\boldsymbol{C}	contact centre (point of intersection)
\boldsymbol{C}	shape factor in 'Magic Formula'
C_{dA}	air drag coefficient
C_{Fx}	longitudinal stiffness of standing tyre
C_{Fy}	lateral stiffness of standing tyre
C_{Fz}	stiffness of tyre normal to the road
$C_{F\alpha}$	cornering stiffness
$C_{F\kappa}$	longitudinal slip stiffness
$C_{F\gamma}$	camber stiffness for side force
$C_{Foldsymbol{arphi}}$	spin stiffness for side force
C_{gyr}	tyre gyroscopic coefficient
C_{Ma}	aligning torque stiffness
$C_{M\gamma}$	camber stiffness for aligning torque
$C_{M\varphi}$	spin stiffness for aligning torque
$C_{M\psi}$	torsional yaw stiffness of standing tyre
C_{Mxy}	overturning couple stiffness against camber
$C_{cx,y}$	carcass horizontal stiffness of standing tyre
C_{gyr}	gyroscopic coefficient
df_z	normalised change in normal load, Eq.(4.E2)
d_t	tread depth
D	peak factor in 'Magic Formula'; dissipation function

E	curvature factor in 'Magic Formula'
$\stackrel{-}{e}$	caster length; tread element deflection
f	trail of c.g.
f_r	rolling resistance coefficient
F_{ax}	force for forward acceleration
\overrightarrow{F}_d	air drag force
$F_{x,tot}$	sum of longitudinal tyre forces
$F_x^{x,ioi}$	longitudinal tyre force
\vec{F}_{n}	lateral tyre force
F_y F_z F_r	vertical (normal) tyre force (load) (>0), in Chap.9: F_z <0
$\vec{F_r}$	rolling resistance force (>0)
$F_N^{'}$	tyre normal force (>0)
F_{No}	reference vertical load, nominal load (= $ F_{zo} $)
F_V	tyre vertical force
$\dot{F_H}$	tyre longitudinal horizontal force
8	acceleration due to gravity; feedback rider control gain
$\overset{\circ}{G}$	weighting factor
h	height
H	height; sharpness factor in 'Magic Formula'
H	transform; Hurwitz determinant
i	√-1
i_z	radius of inertia
I	moment of inertia
I_w	wheel polar moment of inertia
I_p	wheel polar moment of inertia
$I_p \ j$	√-1
\boldsymbol{k}	radius of inertia; viscous damping coefficient
K	centrifugal force; force acting in belt, wheel centre
l	wheel base
l_s	shift; two-point follower length
l_b	length of basic curve
$oldsymbol{l}_f$	offset
l	unit vector along line of intersection
m	mass; fraction of $2a$ where adhesion occurs
m_c	contact patch mass (dummy)
m_t	tyre mass
m_m	mass of mainframe (including lower part of rider)
m_{mr}	mass of mainframe plus rider
m_r	mass of upper torso
$M_{B,D}$	brake, drive torque

M_x	overturning couple
M_{v}	rolling resistance moment
M_z	(self) aligning torque
M_z'	(self) aligning torque due to lateral deflections
M_z^*	aligning torque due to longitudinal deflections
$M_{z,gyr}$	gyroscopic couple
$M_{\delta}^{3,8,7}$	steer torque
n	number of elements; frequency [Hz]
n	unit vector normal to the road $=(0,0,-1)^T$
n_{st}	steer system ratio
p	Laplace variable [1/m]
p_i	inflation pressure
q	average vehicle yaw resistance arm; generalised coordinate
$\stackrel{1}{q}$	contact force per unit length of circumference, vector
\dot{Q}	generalised force
r	yaw rate; tyre (loaded) radius
r_c	radius of carcass (belt), unloaded; cross section crown radius
r_{yo}	free tyre radius varying along cross section contour, $r_{yo} = r_{yo}(y_{co})$
r_e^{jo}	effective rolling radius of freely rolling wheel
r_f	free unloaded tyre radius
r_l	loaded radius
r_o	free unloaded tyre radius (= R_o)
R	radius of curvature
R_o	free unloaded tyre radius $(=r_o)$
S	forward position of neutral steer point; half track width
S	Laplace variable; travelled distance
S_{sx}	κ (practical slip component)
S_{sy}	tanα (practical slip component)
S	unit vector along wheel spin axis
S	wheel slip point; impulse; string tension force
$S_{V,H}$	vertical, horizontal shift
t v,n	pneumatic trail; time
t_c	caster length
t_r	rise time
t	unit vector in road plane perpendicular to line of intersection \boldsymbol{l}
T	kinetic energy; moment acting around belt, wheel centre
u	forward velocity of c.g.; longitudinal deflection
U	potential energy
v	lateral velocity of c.g.; lateral deflection
\overline{V}	speed of travel of c.g. (with x , y components)
•	speed of daver of e.g. (with M, y components)

T 7	1 (1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V	speed of travel of wheel centre (with x , y components)
V_c	speed of contact centre C (with x , y components)
V_{g}	speed of sliding (with x , y components)
V_o	reference velocity = $\sqrt{gR_o}$
V_r	wheel linear speed of rolling (= $V_{cx} - V_{sx}$)
V_s	wheel slip velocity of slip point S (with x , y components)
V_{r}	longitudinal speed component of wheel centre
$V_x \ V_s^*$	velocity of contact patch mass (with x, y components)
w	vertical road (effective) profile (positive downwards)
W	work
<i>x</i> , <i>y</i> , <i>z</i>	longitudinal, lateral, vertical displacement
x,y,z	coordinates with respect to moving axes system, z axis vertical
x^{o}, y^{o}, z^{o}	global coordinates
$\bar{x}, \bar{y}, \bar{z}$	global coordinates
X, y, z X	longitudinal horizontal tyre force
X, Y, Z	global coordinates
	distance from wheel centre plane
y_{co}	lateral offset of m_{mr} c.g.
\mathcal{Y}_{mr}	idental offset of m _{mr} e.g.
α	wheel (side) slip angle; axle (side) slip angle
α	road transverse slope angle
α'	transient tyre slip angle
α_a	virtual axle slip angle
β	vehicle side slip angle; tyre yaw torsion angle
$\beta_{x,y}$	road transverse, forward (effective) slope angle
β_{gyr}	gyroscopic wheel coupling coefficient, Eq.(6.35)
	camber (wheel inclination) angle
γ γ'	transient tyre camber angle
$\stackrel{\scriptstyle \gamma}{\Gamma}$	unit step response function
δ	steer angle of front wheels
δ_o	≈ $1/R$, steer angle at $V \rightarrow 0$
Δ	increment
ε	roll steer coefficient; rake angle of steering axis
$oldsymbol{arepsilon}$	string length ratio, Eq.(5.153); eff. roll. radius gradient $-\partial r_t/\partial d_t$
\mathcal{E}_{γ}	camber stiffness reduction factor
\mathcal{E}_{NL}	non-lagging part
ε	small quantity to avoid singularity
ζ	damping ratio; spin factor (=1 if spin influence is disregarded)
ζ_h	height ratio, Eq.(6.36)
ζ_{α}	cornering stiffness load transfer coefficient

ζ_{γ}	camber stiffness load transfer coefficient
η	understeer coefficient; effective rolling radius gradient $-\partial r_e/\partial \rho_z$
η_y	c.g. offset steer coefficient
$\dot{\theta}$	tyre model parameter, Eqs.(3.6,3.24,3.46)
θ	angular displacement about η axis; pitch angle
θ_c	string model composite parameter, Eq.(5.160)
κ	longitudinal wheel slip
κ'	transient longitudinal tyre slip
κ^*	damping coefficient due to tread width
λ	wavelength; root characteristic equation
λ	fraction of 2a where adhesion occurs; user scaling factor
μ	coefficient of friction
ρ	tyre radial (vertical) deflection
$ ho_{x,y,z}$	tyre longitudinal, lateral, normal deflection
σ	relaxation length; load transfer coefficient
σ	theoretical slip, vector, Eq.(3.34)
σ^*	intersection length in string model with tread elements
σ_{c}	string model length parameter, Eq.(5.153)
σ_c	contact patch relaxation length
τ	roll camber coefficient
φ	body roll angle; spin slip
$oldsymbol{arphi}'$	transient spin slip
$\boldsymbol{\varphi}_t$	turn slip
φ	phase angle
Ψ	yaw angle; steer angle
ψ_{c1}	compliance steer angle
ψ_{io}	toe angle
ω	frequency [rad/s]
$\omega_{\rm o}$	undamped natural frequency
$\omega_{1,2}$	natural frequencies
ω_{n}	damped natural frequency
$\omega_{\rm s}$	path frequency [rad/m]
Ω	wheel speed of revolution
ξ,η,ζ	moving axes system, η axis along spin axis, ξ horizontal

Subscripts and superscripts

a	axle; from belt to wheel rim centre
b	belt; from belt centre to rim
c	compliance (steer)

c	contact patch; from contact patch centre to belt; crown; contour
D	drag
e	effective
eff	effective (cornering stiffness)
eq	equivalent
f	free, unloaded; of front frame
g i	global
i	1: front, 2: rear
L,R	left, right
m	of mainframe
mr	of mainframe plus rider
NL	non-lagging
0	original; initial; average
0	unloaded; nominal; at vanishing speed; natural
r	roll; rolling; rolling resistance; of residual spring; of rider
S	slip; from road surface to contact patch; of front sub-frame
sl	at verge of total sliding
sf	side force (steer)
SS	steady state
st	static
stw	steering wheel
t	transition from adhesion to sliding
w	wheel
x, y, z	forward (longitudinal), lateral (to the right), downward
zr	residual (torque)
ξ,η,ζ	along, around ξ, η, ζ axes
1,2	front, rear; leading, trailing edge