## Lecture 16: Directional Derivatives and Gradient Vectors (§14.5)

## Goals:

- 1. Interpret directional derivatives geometrically and in terms of directional rates of change.
- 2. Interpret the gradient vector in terms of direction yielding the maximum directional rate of change.
- 3. Exploit the connection between the gradient vector and directional derivatives to simplify computation of directional derivatives.

**Recall:** A function f(x, y) of two variables has two partial derivatives:

$$f_x(a,b) := \frac{\partial f}{\partial x}|_{(a,b)} = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}.$$

$$f_y(a,b) := \frac{\partial f}{\partial y}|_{(a,b)} = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h},$$

which measure the rate of change of f in the x and y directions.

How about other directions?





**Definition.** The derivative of f at (a,b) in the direction of the unit vector  $\overrightarrow{u} = \langle u_1, u_2 \rangle$  is

$$D_{\overrightarrow{u}}(f)|_{(a.b)} := \lim_{s \to 0} \frac{f(a + su_1, b + su_2) - f(a, b)}{s}.$$

**Example.** Write  $D_{\overrightarrow{u}}(f)|_{(a.b)}$  in terms of  $\frac{\partial f}{\partial x}|_{(a,b)}$ ,  $\frac{\partial f}{\partial y}|_{(a,b)}$  and  $\overrightarrow{u}$ .

F(s)=(0+50, b+502)= (a,b)+5(0, 42)

u= <u, u,>

consider f(r(s)) and diffrentiate

This will give the directional derivative.

By the Chain rall: 
$$\frac{d}{ds}f(\vec{r}(s)) = \frac{\partial f}{\partial s} \cdot \frac{dx}{ds} + \frac{\partial f}{\partial s} \cdot \frac{dy}{ds} = \frac{\partial f}{\partial x} \cdot u_1 + \frac{\partial f}{\partial y} \cdot u_2$$

 $D_{n} f(a,b) = \frac{2}{5} f(a,b) \cdot u_1 + \frac{2}{5} f(a,b) \cdot u_2 = \left\langle \frac{2}{5} f, \frac{2}{5} f \right\rangle \cdot \left\langle u_1, u_2 \right\rangle$ 

**Definition.** The gradient of f(x,y) is the vector  $\nabla f = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle$ .

It value at a specific point (a, b) is

$$\nabla f(a,b) = \langle \frac{\partial f}{\partial x}|_{(a,b)}, \frac{\partial f}{\partial y}|_{(a,b)} \rangle.$$

In particular, we have seen that:

$$D_{\overrightarrow{u}}(f)|_{(a.b)} = \nabla f(a,b) \cdot \overrightarrow{u}.$$

f(x, y, z) is a function of 3 variables

$$\Delta t = \langle \frac{9x}{9t}, \frac{9t}{9t}, \frac{9x}{9t} \rangle$$

and the directional derivative w.r.t.  $\vec{u} = \langle u_1, u_2, u_3 \rangle$ 

is: 
$$\nabla f \cdot \vec{u} = \frac{\partial f}{\partial x} u_1 + \frac{\partial f}{\partial y} u_2 + \frac{\partial f}{\partial z} u_3$$

**Example.** Find the directional derivative of  $f(x,y) = \frac{1}{1+x^2+y^2}$  at point P = (0,1) in the direction of  $\langle 4,3 \rangle$ .

The gradient of f is

$$\nabla f = \left(\frac{2f}{2\gamma}, \frac{2f}{2\gamma}\right) = \left(\frac{-2x}{(1+x^2+y^2)^2}, \frac{-2y}{(1+x^2+y^2)^2}\right)$$

$$\nabla f(0,1) = \left(0, -\frac{1}{2}\right)$$

The direction of (4,3) is

The unit vector in the direction of (4,3) is  $\vec{n} = (\frac{4}{5}, \frac{3}{5})$ .

Hence 
$$D_{\vec{w}}(f)|_{(0,1)} = \nabla f(0,1) \cdot \vec{v} = \langle 0, -\frac{1}{2} \rangle \cdot \langle \frac{4}{5}, \frac{3}{5} \rangle = -\frac{3}{10}$$

**Example.** Let  $f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$ . Find the directions in which:

- 1. f increases most rapidly at the point (1,1).
- 2. f decreases most rapidly at the point (1,1).
- 3. f has 0 change at the point (1,1).

$$\nabla f = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle = \langle x, y \rangle$$

$$(1,1) = \langle 1,1 \rangle$$

$$D_{\vec{u}}(f) = \nabla f \cdot \vec{u} = \langle 1, 1 \rangle \cdot \langle u_1, u_1 \rangle = u_1 + u_2$$

$$= |\nabla f| \cdot \cos \varphi = |\langle 1, 1 \rangle| \cdot |\vec{u}| \cdot \cos \varphi = \sqrt{2} \cdot \cos \varphi$$

1) When ==0, i.e. in the direction of the gradient.

3) 
$$P_{\hat{u}}f = 0$$
 iff  $\hat{u}$  is orthogonal to  $\nabla f$ 

$$Q = \pm \frac{\pi}{4}$$



project to the xy plane

(1,1)

## **Summarizing:**

- 1. f(x,y) increases most rapidly in the direction of  $\nabla f$ .
- 2. f(x,y) decreases most rapidly in the direction of  $-\nabla f$ .
- 3. Any direction  $\overrightarrow{u}$  orthogonal to  $\nabla f$  is a direction of zero change.

## Gradients and level curves

Consider the previous example  $f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$ .

In that example the level sets are circles f(x,y)=c (=7  $x^2+y^2=2c$  (of  $r=\sqrt{2}c$ )

The gradien (x,y) is
equals to the position

The fact that the gradient is orthogonal to the level set is general.

Using the gradient vector  $\nabla f$  it is easy to find tangent lines to level curves.

**Example.** Find the equation for the tangent line to the ellipse

$$\frac{x^2}{4} + y^2 = 2,$$

at the point (-2,1).

Consider the function  $f(x,y) = \frac{x^2}{4} + y^2$ . The ellipse is the level set f = 2. The tangent to the ellipse (the level set) is orthogonal to Vf.  $\nabla f = \langle \frac{x}{2}, 2y \rangle$ ,  $\nabla f(-2, 1) = \langle -1, 2 \rangle$ We need a vector orthogonal to  $\nabla f = \langle -1, 2 \rangle$ . E.g.  $\vec{u} = \langle 2, 1 \rangle$ 



FIGURE 14.32 We can find the tangent to the ellipse  $(x^2/4) + y^2 = 2$  by treating the ellipse as a level curve of the function  $f(x, y) = (x^2/4) + y^2$  (Example 4).

Therefore the tangent line to the ellipse at (-2,1) is given by:  $\frac{\sqrt{2}}{(-2,1)} = -\mathbf{i} + 2\mathbf{j}$   $\sqrt{2} = \frac{x^2}{4} + y^2 = 2$  (-2,1)  $\sqrt{2} = \frac{x^2}{4} + y^2 = 2$  (-2,1)  $\sqrt{2} = \frac{x^2}{4} + y^2 = 2$  (-2,1) + 5 < 2,1 > 2 (25-2,5+1)

Algebra rules for gradients:

Let f(x,y), g(x,y) be functions of 2 variables h(x) a function of 1 variable and C a Scalar.

1) 
$$\nabla (f+g) = \nabla f + \nabla g$$

2) 
$$\nabla(cf) = c \cdot \nabla f$$

3) 
$$\nabla (f \cdot g) = f \nabla g + g \nabla f$$

4) 
$$\nabla h(f(x,y)) = h' \cdot \nabla f = h'(f(x,y)) \cdot \nabla f(x,y)$$