

Основы машинного обучения

Поляк Марк Дмитриевич

Оценивание качества моделей

Лекция 9

Оценки качества классификации

Чувствительность, специфичность, ROC, AUC

Оценка результата внедрения модели машинного обучения

Иерархия метрик

- 1. Верхний уровень: повышение эффективности бизнеса. Например, рост дохода/прибыли. Невозможно измерить в моменте
- 2. Количественные показатели «удовлетворенности» пользователя. Например, длительность сессии, средний чек и т.п. Косвенно влияют на критерий верхнего уровня
- 3. Доля удовлетворенных качеством предсказаний модели асессоров, на которых модель протестирована до выставления на суд пользователей
- 4. Функция потерь, использованная при обучении модели

Online-метрики вычисляются по данным, собираемым с работающей системы.

Offline-метрики могут быть измерены до введения модели в эксплуатацию, например, по историческим данным или с привлечением специальных людей, асессоров.

Оценка качества модели

- Функционал качества: эмпирический риск $Q_{ERM}(oldsymbol{ heta})$, правдоподобие $Q_{MLE}(oldsymbol{ heta}))$
- Функция потерь $\mathcal{L}(\mathbf{\theta}, x_i)$: связана с решением задачи оптимизации
- Метрика качества: внешний, объективный критерий качества, обычно зависящий не от параметров модели, а только от предсказанных меток.

Функция потерь ≠ метрика качества

Но не всегда. Например, в задаче регрессии MSE может быть как метрикой, так и функцией потерь.

Анализ ошибок классификации

Задача классификации на два класса: $y_i, g(x_i) \in \{-1, +1\}$

	Модель классификации	учитель
TP, True Positive	$g(x_i) = +1$	$y_i = +1$
TN, True Negative	$g(x_i) = -1$	$y_i = -1$
FP, False Positive	$g(x_i) = +1$	$y_i = -1$
FN, False Negative	$g(x_i) = -1$	$y_i = +1$

Матрица ошибок:

n=165	Predicted: NO	Predicted: YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105

55

110

FP: ложноположительно, ошибка І рода, «ложная тревога»

FN: ложноотрицательно, ошибка II рода, «пропуск цели»

Правильность классификации (чем больше, тем лучше):

$$Accuracy = \frac{1}{\ell} \sum_{i=1}^{\ell} [g(x_i) = y_i] = \frac{TP + TN}{FP + FN + TP + TN}$$

Недостаток: не учитывается дисбаланс численности классов, различие цены ошибки I и II рода

Функции потерь, зависящие от штрафов за ошибку

Задача классификации на два класса: $y_i \in \{-1, +1\}$ Модель классификации $g(x; \mathbf{\theta}, \theta_0) = \mathrm{sign}(h(x, \mathbf{\theta}) - \theta_0)$ Чем больше θ_0 , тем больше x_i таких, что $g(x_i) = -1$.

Пусть λ_y – штраф за ошибку на объекте класса y.

Функция потерь теперь зависит от штрафов:

$$\mathcal{L}(\boldsymbol{\theta}, x_i) = \frac{\lambda_{y_i}}{[g(x_i; \boldsymbol{\theta}, \theta_0) \neq y_i]} = \frac{\lambda_{y_i}}{[g(x_i, \boldsymbol{\theta}) - \theta_0)y_i < 0]}$$

Проблема

На практике штрафы $\{\lambda_{\mathcal{V}}\}$ могут пересматриваться

- Нужен удобный способ выбора θ_0 в зависимости $\{\lambda_y\}$, не требующий построения модели (поиска вектора $oldsymbol{\theta}$) заново.
- Нужна характеристика качества модели $h(x, \mathbf{\theta})$, не зависящая от штрафов $\{\lambda_y\}$ и численности классов.

Определение ROC-кривой

Кривая ошибок ROC (receiver operating characteristic). Каждая точка кривой соответствует некоторому $g(x; \theta, \theta_0)$

• по оси X: доля ошибочных положительных классификаций (FPR – false positive rate)

$$FPR = \frac{FP}{FP + TN} = \frac{\sum_{i=1}^{\ell} [y_i = -1][g(x; \boldsymbol{\theta}, \theta_0) = +1]}{\sum_{i=1}^{\ell} [y_i = -1]}$$

1-FPR называется специфичностью алгоритма g

• по оси Y: доля правильных положительных классификаций (TPR – true positive rate)

$$TPR = \frac{TP}{TP + FN} = \frac{\sum_{i=1}^{\ell} [y_i = +1][g(x; \boldsymbol{\theta}, \theta_0) = +1]}{\sum_{i=1}^{\ell} [y_i = +1]}$$

TPR называется также *чувствительностью* алгоритма g

ROC-кривая и площадь под ней AUC (Area Under Curve)

ABCDE — положение порога $heta_0$ на оси значений функции h

Точность и полнота бинарной классификации

В информационном поиске не важен ТN:

Точность, Precision =
$$\frac{TP}{TP+FP}$$

Полнота, Recall = $\frac{TP}{TP+FN}$

Precision — доля релевантных среди найденных Recall — доля найденных среди релевантных

В медицинской диагностике:

Чувствительность, Sensitivity =
$$\frac{TP}{TP+FN}$$
 Специфичность, Specificity = $\frac{TN}{TN+FP}$

Sensitivity — доля верных положительных диагнозов Specificity — доля верных отрицательных диагнозов

Точность и полнота многоклассовой классификации

Для каждого класса $y \in Y$:

 TP_{y} — верные положительные

 FP_{v} — ложные положительные

 FN_y — ложные отрицательные

Точность и полнота с микроусреднением:

Precision:
$$P = \frac{\sum_{y} TP_{y}}{\sum_{y} (TP_{y} + FP_{y})};$$

Recall:
$$R = \frac{\sum_{y} TP_{y}}{\sum_{y} (TP_{y} + FN_{y})};$$

Микроусреднение не чувствительно к ошибкам на малочисленных классах

Точность и полнота многоклассовой классификации

Для каждого класса $y \in Y$:

 TP_{v} — верные положительные

 FP_{v} — ложные положительные

 FN_{ν} — ложные отрицательные

Точность и полнота с макроусреднением:

Precision:
$$P = \frac{1}{|Y|} \sum_{y} \frac{TP_{y}}{TP_{y} + FP_{y}};$$

Recall:
$$R = \frac{1}{|Y|} \sum_{y} \frac{\mathsf{IP}_{y}}{\mathsf{TP}_{y} + \mathsf{FN}_{y}};$$

Макроусреднение чувствительно к ошибкам на малочисленных классах

Кривые ROC и Precision-Recall

Модель классификации $g(x)=\mathrm{sign}(\langle x, \pmb{\theta} \rangle - \theta_0)$ Каждая точка кривой соответствует значению порога θ_0

AUROC — площадь под ROC-кривой AUPRC — площадь под кривой Precision-Recall

Примеры из Python scikit learn: http://scikit-learn.org/dev

Резюме. Оценки качества классификации

- Чувствительность и специфичность лучше подходят для задач с несбалансированными классами
- Логарифм правдоподобия (log-loss) лучше подходит для оценки качества вероятностной модели классификации.
- Точность и полнота лучше подходят для задач поиска, когда доля объектов релевантного класса очень мала.

Агрегированные оценки:

- AUC лучше подходит для оценивания качества, когда соотношение цены ошибок не фиксировано.
- AUPRC площадь под кривой точность-полнота.
- ullet $F_1=rac{2PR}{P+R}-F$ -мера, другой способ агрегирования P и R.
- $F_{\beta}=rac{(1+eta^2)PR}{eta^2P+R}-F_{eta}$ -мера: чем больше eta, тем важнее R.

Оценка качества регрессии

Метрики оценки качества регрессии

$$MSE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^N (y_i - f(x_i))^2$$

$$R^2 = 1 - rac{\sum_{i=1}^{N}(y_i - f(x_i))^2}{\sum_{i=1}^{N}(y_i - ar{y})^2}.$$

$$MAE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} |y_i - f(x_i)|.$$

$$MAPE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} rac{|y_i - f(x_i)|}{|y_i|}$$