This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

SEQUENCE LISTING FREE TEXT

	SEQ ID NO: 1
	Designed oligonucleotide primer to amplify bchH
5	gene
	SEQ ID NO: 2
	Designed oligonucleotide primer to amplify bchH
	gene
	SEQ ID NO: 3
10	Designed oligonucleotide primer to amplify
	soybean PPO gene
	SEQ ID NO: 4
	Designed oligonucleotide primer to amplify
	soybean PPO gene
15	SEQ ID NO: 7
	Designed oligonucleotide primer to amplify bchH
	gene
	SEQ ID NO: 8
	Designed oligonucleotide primer to amplify bchH
20	gene
	SEQ ID NO: 9
	Designed oligonucleotide primer to amplify DNA
	fragment having partial sequence of tobacco chlH gene
	SEQ ID NO: 10
25	Designed oligonucleotide primer to amplify DNA

10

15

20

25

fragment having partial sequence of tobacco chlH gene SEQ ID NO: 11 Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene SEQ ID NO: 12 Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene SEQ ID NO: 13 Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene SEQ ID NO: 14 Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene SEO ID NO: 15 oligonucleotide primer amplify Designed to Chlamydomonas PPO gene SEO ID NO: 16 Designed oligonucleotide primer amplify to Chlamydomonas PPO gene SEO ID NO: 19 Designed oligonucleotide primer to amplify DNA fragment having partial sequence of Chlamydomonas PPO gene SEQ ID NO: 20

Designed oligonucleotide primer to amplify DNA

fragment having partial sequence of Chlamydomonas PPO gene

SEQ ID NO: 21

Designed oligonucleotide primer to amplify DNA fragment having partial sequence of cucumber ferrochelatase gene

5 SEQ ID NO: 22

Designed oligonucleotide primer to amplify DNA fragment having partial sequence of cucumber ferrochelatase gene

SEQ ID NO: 23

Designed oligonucleotide primer to amplify

Escherichia coli hemF gene

SEQ ID NO: 24

Designed oligonucleotide primer to amplify

Escherichia coli hemF gene

15 SEQ ID NO: 25

Designed oligonucleotide primer to amplify

Escherichia coli hemF gene

SEQ ID NO: 26

Designed oligonucleotide primer to amplify

20 Escherichia coli hemF gene

SEQ ID NO: 27

Designed oligonucleotides to synthesize genes encoding random peptides comprising 5 amino acids

SEQ ID NO: 28

25 Designed oligonucleotides to synthesize genes

15

25

encoding random peptides comprising 5 amino acids

SEQ ID NO: 29

Designed oligonucleotide to synthesize the gene encoding the peptide HASYS

5 SEQ ID NO: 30

Designed oligonucleotide to synthesize the gene encoding the peptide HASYS

SEQ ID NO: 31

Designed oligonucleotide to synthesize the gene encoding the peptide RASSL

SEQ ID NO: 32

Designed oligonucleotide to synthesize the gene encoding the peptide RASSL

SEQ ID NO: 33

Designed oligonucleotide to synthesize the gene encoding the peptide MGHASYS

SEQ ID NO: 34

Designed oligonucleotide to synthesize the gene encoding the peptide MGHASYS

20 SEQ ID NO: 35

Designed oligonucleotide to synthesize the gene encoding the peptide MGRASSL

SEQ ID NO: 36

Designed oligonucleotide to synthesize the gene encoding the peptide MGRASSL

15

20

SEO ID NO: 37

Designed oligonucleotide to synthesize the gene encoding the peptide MGYAGY

SEO ID NO: 38

Designed oligonucleotide to synthesize the gene encoding the peptide MGYAGY

SEQ ID NO: 39

 $\label{eq:decomposition} \mbox{Designed oligonucleotide to synthesize the gene}$ encoding the peptide MGYAGF

SEQ ID NO: 40

Designed oligonucleotide to synthesize the gene encoding the peptide MGYAGF

SEQ ID NO: 41

Designed oligonucleotide to synthesize the gene encoding the peptide MG(HASYS)4

SEQ ID NO: 42

Designed oligonucleotide to synthesize the gene encoding the peptide MG(HASYS)4

SEQ ID NO: 43

Designed oligonucleotide to synthesize the gene encoding the peptide MG(HASYS)4

SEQ ID NO: 44

Designed oligonucleotide to synthesize the gene encoding the peptide MG(HASYS)4

25 SEO ID NO: 45

Designed oligonucleotide to synthesize the gene encoding the peptide MG(HASYS)8

SEQ ID NO: 46

Designed oligonucleotide to synthesize the gene encoding the peptide MG(HASYS)8

SEQ ID NO: 47

Designed oligonucleotide to synthesize the gene encoding the peptide MG(RASSL)4

SEQ ID NO: 48

Designed oligonucleotide to synthesize the gene encoding the peptide MG(RASSL)4

SEQ ID NO: 49

Designed oligonucleotide to synthesize the gene encoding the peptide MG(RASSL)4

SEO ID NO: 50

Designed oligonucleotide to synthesize the gene encoding the peptide MG(RASSL) 4

SEQ ID NO: 51

Designed oligonucleotide to synthesize the gene encoding the peptide MG(RASSL)8

SEQ ID NO: 52

Designed oligonucleotide to synthesize the gene encoding the peptide MG(RASSL) 8

SEO ID NO: 53

Protoporphyrin IX binding protein HASYS

25

5

SEQ ID NO: 54

Protoporphyrin IX binding protein MGHASYS

SEQ ID NO: 55

Protoporphyrin IX binding protein RASSL

SEQ ID NO: 56

Protoporphyrin IX binding protein MGRASSL

SEQ ID NO: 57

H₂TMpyP binding protein YAGY

SEQ ID NO: 58

H₂TMpyP binding protein MGYAGY

SEQ ID NO: 59

H₂TMpyP binding protein YAGF

SEQ ID NO: 60

H₂TMpyP binding protein MGYAGF

SEQ ID NO: 61

Protoporphyrin IX binding protein MG(HASYS)4

SEQ ID NO: 62

Protoporphyrin IX binding protein MG(HASYS)8

SEO ID NO: 63

Protoporphyrin IX binding protein MG(RASSL),

SEQ ID NO: 64

Protoporphyrin IX binding protein MG(RASSL)₈

SEQ ID NO: 65

Designed oligonucleotide primer to introduce

mutation into arabidopsis PPO gene

SEQ ID NO: 66

Designed oligonucleotide primer to amplify herbicide resistant arabidopsis PPO(A220V) gene

SEQ ID NO: 67

Designed oligonucleotide primer to amplify herbicide resistant arabidopsis PPO(A220V) gene

SEO ID NO: 68

Designed oligonucleotide primer to amplify arabidopsis chloroplast ferrochelatase gene

SEQ ID NO: 69

Designed oligonucleotide primer to amplify arabidopsis chloroplast ferrochelatase gene

SEQ ID NO: 70

Designed oligonucleotide primer to amplify soybean coproporphyrinogen III oxidase gene

SEQ ID NO: 71

Designed oligonucleotide primer to amplify soybean coproporphyrinogen III oxidase gene

SEQ ID NO: 72

Designed oligonucleotide primer to amplify DNA fragment having nucleotide sequence encoding the Petunia hybrida EPSPS chloroplast transit peptide and the Agrobacterium sp. strain CP4 EPSPS gene

SEO ID NO: 73

Designed oligonucleotide primer to amplify DNA

25

fragment having nucleotide sequence encoding the Petunia hybrida EPSPS chloroplast transit peptide and the Agrobacterium sp. strain CP4 EPSPS gene

SEQ ID NO: 75

Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene

SEQ ID NO: 76

Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene

SEQUENCE LISTING

<110> Hiroki NAKAJIMA et al.

5

<120> Method for giving resistance to weed control compounds to plants

<130>

10. <150> JP 10/120553

<151> 1998-04-30

<150> JP 10/281127

<151> 1998-10-02

15

<150> JP 10/33098/1

<151> 1998-11-20

<150> JP 11/054730

20 <151> 1999/03-02

<160> 76

<210>/

25 <211 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to/amplify bchH gene 5

<400> 1

gacatctaga ggagacgacc atatgcacgg tgaagtctc 39

<210> 2 10

<211> 31

<212> DNA

<213> Artificial Sequence

<220> 15

<223> Designed oligonucleotide primer to amplify bchH gene

<400> 2/

acggaagett agatetteae teggeggeaa t 31

20

<2/10> 3

∮211> 39

<212> DNA

<213> Artificial Sequence

```
<220>
       <223> Designed oligonucleotide primer to amplify soybean PPO gene
       <400> 3
                                                        39
       tcgagctcca tggtttccgt cttcaacgag atcctattc
 5
       <210> 4
       <211> 39
       <212> DNA
       <213> Artificial Sequence
10
       <220>
       <223> Designed of gonucleotide primer to amplify soybean PPO gene
15
       <400> 4
       ttgtcgacaa ctgctactat ttgtacactc tatttg
                                                     36
       <210> 5
       <211> 1632
       <212>/ DNA
20
       <213⊅ Glycine max var. Williams82
       <2/20>
       <221> CDS
       ₹222> (1)... (1632)
25
```

		<400)> 5															
		atg	gtt	tcc	gtc	ttc	aac	gag	atc	cta	ttc	ccg	ccg	aac	caa	acc	ctt	48
		Met	Val	Ser	Val	Phe	Asn	G1u	Ile	Leu	Phe	Pro	Pro	Asn	Gln	Thr	Leu	£. -
		1				5					10					15		
	5	ctt	cgc	ccc	tcc	ctc	cat	tcc	cca	acc	tct	ttc	ttc	acc	tct	ccc	act	96
		Leu	Arg	Pro	Ser	Leu	His	Ser	Pro	Thr	Ser	Phe	Phe	Thr	Ser	Pro	Thr	
					20					25					30			
		cga	aaa	ttc	cct	cgc	tct	cgc	cct	aac	cct	att	cta	cgc	tgc	tcc	att	144
		Arg	Lys	Phe	Pro	Arg	Ser	Arg	Pro	Asn	Pro	Ile	Leu	Arg	Cys	Ser	Ile	
	10			35					40					45				
		gcg	gag	gaa	tcc	acc	gcg	tct	ccg	ccc	aaa	acc	aga	gac	tcc	gcc	ccc	192
j		Ala	Glu	Glu	Ser	Thr	Ala	Ser	Pro	Pro	Lys	Thr	Arg	Asp	Ser	Ala	Pro	
			50					55					60					
		gtg	gac	tgc	gtc	gtc	gtc	ggc	gga	ggc	gtc	agc	ggc	ctc	tgc	atc	gcc	240
	15	Val	Asp	Cys	Val	Val	Val	G1y	G1y	Gly	Val	Ser	Gly	Leu	Cys	Ile	Ala	
		65					70					7 5					80	
		cag	gcc	ctc	gcc	acc	aaa	cac	gcc	aat	gcc	aac	gtc	gtc	gtc	acg	gag	288
		Gln	Ala	Leu	Ala	Thr	Lys	His	Ala	Asn	Ala	Asn	Val	Val	Val	Thr	Glu	
						85					90					95		
	20	gcc	cga	gac	cgc	gtc	ggc	ggc	aac	atc	acc	acg	atg	gag	agg	gac	gga	336
	ie:	Ala	Arg	Asp	Arg	Val -	Gly	G1 y	Asn	Ile	Thr	Thr	Met	G1u	Arg	Asp	Gly	
					100					105					110			٠
		tac	ctc	tgg	gaa	gaa	ggc	ccc	aac	agc	ttc	cag	cct	tct	gat	cca	atg	384
		Tyr	Leu	Trp	Glu	G1u	G1y	Pro	Asn	Ser	Phe	Gln	Pro	Ser	Asp	Pro	Met	
	25			115		,			120					125				

		ctc	acc	atg	gtg	gtg	gac	agt	ggt	tta	aag	gat	gag	ctt	gtt	ttg	ggg	432
		Leu	Thr	Met	Val	Val	Asp	Ser	G1y	Leu	Lys	Asp	Glu	Leu	Val	Leu	Gly	
			130					135					140					
		gat	cct	gat	gca	cct	cgg	ttt	gtg	ttg	tgg	aac	agg	aag	ttg	agg	ccg	480
	5	Asp	Pro	Asp	Ala	Pro	Arg	Phe	Val	Leu	Trp	Asn	Arg	Lys	Leu	Arg	Pro	
		145					150					155			,		160	•
		gtg	ccc	ggg	aag	ctg	act	gat	ttg	cct	ttc	ttt	gac	ttg	atg	agc	att	528
		Val	Pro	Gly	Lys	Leu	Thr	Asp	Leu	Pro	Phe	Phe	Asp	Leu	Met	Ser	Ile	
						165					170					175		
-	10	ggt	ggc	aaa	atc	agg	gct	ggc	ttt	ggt	gcg	ctt	gga	att	cgg	cct	cct	576
		Gly	Gly	Lys	Ile	Arg	Ala	G1y	Phe	G1y	Ala	Leu	Gly	Ile	Arg	Pro	Pro	
					180					185					190			
		cct	cca	ggt	cat	gag	gaa	tcg	gtt	gaa	gag	ttt	gtt	cgt	cgg	aac	ctt .	624
		Pro	Pro	Gly	His	Glu	Glu	Ser	Val	G1u	Glu	Phe	Val	Arg	Arg	Asn	Leu	
-	15			195					200					205				
		ggt	gat	gag	gtt	ttt	gaa	cgg	ttg	ata	gag	cct	ttt	tgt	tca	ggg	gtc	672
		Gly	Asp	Glu	Val	Phe	Glu	Arg	Leu	Ile	Glu	Pro	Phe	Cys	Ser	Gly	Val	
			210					215					220		•			
		tat	gca	ggc	gat	cct	tca	aaa	tta	agt	atg	aaa	gca	gca	ttc	ggg	aaa	720
2	20	Tyr	Ala	Gly	Asp	Pro	Ser	Lys	Leu	Ser	Met	Lys	Ala	Ala	Phe	Gly	Lys	
		225					230					235					240	
		gtt	tgg	aag	ctg	gaa	aaa	aat	ggt	ggt	agc	att	att	ggt	gga	act	ttc	768
		Val	Trp	Lys	Leu	Glu	Lys	Asn	G1y	G1y	Ser	Ile	Ile	Gly	Gly	Thr	Phe	
						245					250					255		

		aaa	gca	ata	Caa	848	ада	aat	554	gct	tea	aaa	ccu		Cga	gat	CCg	Orc
		Lys	Ala	Ile	Gln	Glu	Arg	Asn	Gly	Ala	Ser	Lys	Pro	Pro	Arg	Asp	Pro	
					260					265					270		,	
		cgt	ctg	cca	aaa	cca	aaa	ggt	cag	act	gtt	gga	tct	ttc	cgg	aag	gga	864
	5	Arg	Leu	Pro	Lys	Pro	Lys	G1y	Gln	Thr	Val	Gly	Ser	Phe	Arg	Lys	G1y	
				275					280					285	,			
		ctt	acc	atg	ttg	cct	gat	gca	att	tct	gcc	aga	cta	ggc	aac	aaa	gta	912
=		Leu	Thr	Met	Leu	Pro	Asp	Ala	Ile	Ser	Ala	Arg	Leu	G1y	Asn	Lys	Val	
und thealt thealt			290					295					300					
thus that u	10	aag	tta	tct	tgg	aag	ctt	tca	agt	att	agt	aaa	ctg	gat	agt	gga	gag	960
7. mar. 17.	•	Lys	Leu	Ser	Trp	Lys	Leu	Ser	Ser	Ile	Ser	Lys	Leu	Asp	Ser	G1y	Glu	
)		305			•		310					315					320	
i T		tac	agt	ttg	aca	tat	gaa	aca	cca	gaa	gga	gtg	gtt	tct	ttg	cag	tgc	1008
		Tyr	Ser	Leu	Thr	Tyr	Glu	Thr	Pro	Glu	Gly	Val	Val	Ser	Leu	G1n	Cys	`
10 m	15					325					330						335	
2		aaa	act	gtt	gtc	ctg	acc	att	cct	, tcc	tat	gtt	gct	agt	aca	ttg	ctg	1056
		Lvs	Thr	Val	Val	Leu	Thr	Ile	Pro	Ser	Tyr	Val	Ala	Ser	Thr	Leu	Leu	
		-			340					345	·					350		
		cgt	cct	ctg		gct	gct	gct	gca		gca	ctt	tca	aag	ttt		tac	1104
	20	_		Leu			-	_	_	_	_							
	20	ть	110	355	ooi	,,,,,			360	пор	Mid	Бси	501	365	1110	.,.	.,.	
		+	,		ant	~~~	~++	too		+	+-+		000		act	att	0.00	1159
				gtt											_			1152
		Pro		Val	Ala	Ala	val		He	Ser	lyr	Pro		Glu	Ala	11e	Arg	
			370					375					380					

		tca	gaa	tgc	ttg	ata	gat	ggt	gag	ttg	aag	ggg	ttt	ggt	caa	ttg	cat	1200
		Ser	Glu	Cys	Leu	Ile	Asp	Gly	Glu	Leu	Lys	Gly	Phe	Gly	Gln	Leu	His	
		385					390					395					400	•
		cca	cgt	agc	caa	gga	gtg	gaa	aca	tta	gga	act	ata	tac	agc	tca	tca	1248
	5	Pro	Arg	Ser	G1n	Gly	Val	Glu	Thr	Leu	G1y	Thr	Ile	Tyr	Ser	Ser	Ser	
						405					410				,	415		
		cta	ttc	ccc	aac	cga	gca	cca	cct	gga	agg	gtt	cta	ctc	ttg	aat	tac	1296
		Leu	Phe	Pro	Asn	Arg	Ala	Pro	Pro	Gly	Arg	Val	Leu	Leu	Leu	Asn	Tyr	
i D					420					425					430			
10	10	att	gga	gga	gca	act	aat	act	gga	att	tta	tcg	aag	acg	gac	agt	gaa	1344
`~ ∸ -		Ile	Gly	Gly	Ala	Thr	Asn	Thr	G1y	Ile	Leu	Ser	Lys	Thr	Asp	Ser	Glu	
'.O ''				435					440					445				
		ctt	gtg	gaa	aca	gtt	gat	cga	gat	ttg	agg	aaa	atc	ctt	ata	aac	cca	1392
		Leu	Val	Glu	Thr	Val	Asp	Arg	Asp	Leu	Arg	Lys	Ile	Leu	Ile	Asn	Pro	
	15		450					455					460					
		aat	gcc	cag	gat	cca	ttt	gta	gtg	ggg	gtg	aga	ctg	tgg	cct	caa	gct	1440
		Asn	Ala	G1n	Asp	Pro	Phe	Val	Val	Gly	Val	Arg	Leu	Trp	Pro	Gln	Ala	
		465					470					475					480	
		att	cca	cag	ttc	tta	gtt	ggc	cat	ctt	gat	ctt	cta	gat	gtt	gct	aaa	1488
	20	Ile	Pro	Gln	Phe	Leu	Val	Gly	His	Leu	Asp	Leu	Leu	Asp	Val	Ala	Lys	
,	e 15				.	485		_	-	e.	490					495	<u></u> -	÷ = +
		gct	tct	atc	aga	aat	act	ggg	ttt	gaa	ggg	ctc	ttc	ctt	ggg	ggt	aat	1536
		Ala	Ser	Ile	Arg	Asn	Thr	Gly	Phe	Glu	Gly	Leu	Phe	Leu	G1y	Gly	Asn	
					500					505					510		•	

tat gtg tct ggt gtt gcc ttg gga cga tgc gtt gag gga gcc tat gag Tyr Val Ser Gly Val Ala Leu Gly Arg Cys Val Glu Gly Ala Tyr Glu gta gca gct gaa gta aac gat ttt ctc aca aat aga gtg tac aaa tag Val Ala Ala Glu Val Asn Asp Phe Leu Thr Asn Arg Val Tyr Lys <210> 6 <211> 543 <212> PRT <213> Glycine max var. Williams82 <400> 6 Met Val Ser Val Phe Asn Glu Ile Leu Phe Pro Pro Asn Gln Thr Leu Leu Arg Pro Ser Leu His Ser Pro Thr Ser Phe Phe Thr Ser Pro Thr Arg Lys Phe Pro Arg Ser Arg Pro Asn Pro Ile Leu Arg Cys Ser Ile Ala Glu Glu Ser Thr Ala Ser Pro Pro Lys Thr Arg Asp Ser Ala Pro Val Asp Cys Val Val Val Gly Gly Val Ser Gly Leu Cys Ile Ala Gln Ala Leu Ala Thr Lys His Ala Asn Ala Asn Val Val Thr Glu

	Ala	Arg	Asp	Arg	Val	Gly	Gly	Asn	He	Thr	Thr	Met	Glu	Arg	Asp	Gly
				100					105					110		
	Tyr	Leu	Trp	Glu	Glu	Gly	Pro	Asn	Ser	Phe	G1n	Pro	Ser	Asp	Pro	Met
			115					120					125			
5	Leu	Thr	Met	Val	Val	Asp	Ser	Gly	Leu	Lys	Asp	Glu	Leu	Val	Leu	G1y
		130					135					140				
	Asp	Pro	Asp	Ala	Pro	Arg	Phe	Val	Leu	Trp	Asn	Arg	Lys	Leu	Arg	Pro
	145					150					155					160
	Val	Pro	G1y	Lys	Leu	Thr	Asp	Leu	Pro	Phe	Phe	Asp	Leu	Met	Ser	Ile
10					165					170					175	
	Gly	Gly	Lys	Ile	Arg	Ala	Gly	Phe	Gly	Ala	Leu	G1y	Ile	Arg	Pro	Pro
				180					185				-	190		
	Pro	Pro	Gly	His	Glu	Glu	Ser	Val	Glu	Glu	Phe	Val	Arg	Arg	Asn	Leu
			195					200	•				205			
15	Gly	Asp	Glu	Val	Phe	G1u	Arg	Leu	I1e	Glu	Pro	Phe	Cys	Ser	Gly	Val
		210					215					220				
	Tyr	Ala	Gly	Asp	Pro	Ser	Lys	Leu	Ser	Met	Lys	Ala	Ala	Phe	G1y	Lys
	225					230					235					240
	Val	Trp	Lys	Leu	Glu	Lys	Asn	Gly	Gly.	Ser	Ile	Ile	Gly	G1y	Thr	Phe
20					245					250					255	
	Lys	Ala	Ile	G1n	Glu	Arg	Asn	G1y	Ala	Ser	Lys	Pro	Pro	Arg	Asp	Pro
7 mg - 1 mg				260		-			- 265	_	-	= .		270	. = .	
	Arg	Leu	Pro	Lys	Pro	Lys	Gly	Gln	Thr	Val	Gly	Ser	Phe	Arg	Lys	G1y
			275	-		-	-	280			-		285	. –		

	Leu	Ihr	Met	Leu	Pro	Asp	Ala	11e	Ser	Ala	Arg	Leu	GIY	Asn	Lys	vaı
		290					295					300				
	Lys	Leu	Ser	Trp	Lys	Leu	Ser	Ser	Ile	Ser	Lys	Leu	Asp	Ser	Gly	Glu
	305					310					315					320
5	Tyr	Ser	Leu	Thr	Tyr	Glu	Thr	Pro	Glu	G1y	Val	Val	Ser	Leu	G1n	Cys
					325					330				,		335
	Lys	Thr	Val	Val	Leu	Thr	Ile	Pro	Ser	Tyr	Val	Ala	Ser	Thr	Leu	Leu
				340					345						350	
	Arg	Pro	Leu	Ser	Ala	Ala	Ala	Ala	Asp	Ala	Leu	Ser	Lys	Phe	Tyr	Tyr
10		•	355					360					365			
	Pro	Pro	Val	Ala	Ala	Val	Ser	Ile	Ser	Tyr	Pro	Lys	Glu	Ala	Ile	Arg
		370					375					380				
	Ser	Glu	Cys	Leu	Ile	Asp	G1y	Glu	Leu	Lys	Gly	Phe	Gly	Gln	Leu	His
	385					390			•		395					400
15	Pro	Arg	Ser	G1n	G1y	Val	G1u	Thr	Leu	G1y	Thr	Ile	Tyr	Ser	Ser	Ser
					405					410					415	
	Leu	Phe	Pro	Asn	Arg	Ala	Pro	Pro	Gly	Arg	Val	Leu	Leu	Leu	Asn	Tyr
				420					425					430		
	Ile	Gly	Gly	Ala	Thr	Asn	Thr	G1y	Ile	Leu	Ser	Lys	Thr	Asp	Ser	Glu
20			435					440					445			
	Leu	Val	Glu	Thr	Val	Asp	Arg	Asp	Leu	Arg	Lys	Ile	Leu	Ile	Asn	Pro
	, , ,	450					455					460				
	Asn	Ala	Gln	Asp	Pro	Phe	Va1	Val	G1 y	Val	Arg	Leu	Trp	Pro	Gln	Ala
	465			•		470					475					480

```
Ile Pro Gln Phe Leu Val Gly His Leu Asp Leu Leu Asp Val Ala Lys
                                            490
                        485
                                                                 495
       Ala Ser Ile Arg Asn Thr Gly Phe Glu Gly Leu Phe Leu Gly Gly Asn
                   500
                                        505
                                                             510
       Tyr Val Ser Gly Val Ala Leu Gly Arg Cys Val Glu Gly Ala Tyr Glu
 5
                                    520
               515
                                                         525
       Val Ala Ala Glu Val Asn Asp Phe Leu Thr Asn Arg Val Tyr Lys
                                535
                                                    540
                                                                 543
           530
10
       <210> 7
       <211> 39
       <212> DNA
       <213> Artificial Sequence
15
       <220>
       <213> Designed oligonucleotide primer to amplify bchH gene
       <400> 7
       gacatctagt ctagacgacc atatgcacgg tgaagtctc
                                                       39
20
```

<210> 8

<211> 31

<212> DNA

25 <213> Artificial Sequence

<220>

25

<220>

```
<223> Designed oligonucleotide primer to amplify bchH gene
 5
       <400> 8
                                                31
       acggaagett ggtaceteae teggeggeaa t
       <210> 9
       <211> 35
10
       <212> DNA
       <213> Artificial Sequence
       <220>
       \langle 223 \rangle Designed oligonucleotide primer to amplify DNA fragment having
15
       partial sequence of tobacco chlH gene
       <400> 9
       ccaatgtaat gctatggtac ctatgttatt cacte 35
20
       <210> 10
       <211> 34
       <212> DNA
       <213> Artificial Sequence
```

10

15

25

```
<223> Designed oligonucleotide primer to amplify DNA fragment having
partial sequence of tobacco chlH gene
<400> 10
gagateatte tttttgetgt egaettateg ateg 34
<210> 11
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having
partial sequence of soybean PPO gene
<400> 11
ggcggaggcg tcaccatggt ctgcatcgcc caggcc
```

<210> 12

20 <211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify DNA fragment having

partial sequence of soybean PPO gene

<400> 12

<220>

25

partial sequence of soybean PPO gene

 $\langle 223 \rangle$ Designed oligonucleotide primer to amplify DNA fragment having

<400> 14

cctgcagctc gagagctcct actatttgta cac 33

```
5
       <210> 15
       <211> 28
       <212> DNA
       <213> Artificial Sequence
10
       <220>
       <223> Designed oligonucleotide primer to amplify Chlamydomonas PPO
       gene
       <400> 15
       aatgatgttg acccagactc ctgggacc 28
       <210> 16
       <211> 27
       <212> DNA
20
       <213> Artificial Sequence
       <220>
```

<223> Designed oligonucleotide primer to amplify Chlamydomonas PPO

25

gene

```
<400> 16
```

tactacacat cccagcaagc gccaatg 27

<210> 17

5 〈211〉 1838

<212> DNA

<213> Chlamydomonas reinhardtii CC407

<220>

10 <221> CDS

<222> (2)...(1693)

<400> 17

a atg atg ttg acc cag act cct ggg acc gcc acg gct tct agc cgg

Met Met Leu Thr Gln Thr Pro Gly Thr Ala Thr Ala Ser Ser Arg

1 5 10 15

cgg tcg cag atc cgc tcg gct gcg cac gtc tcc gcc aag gtc gcg cct

Arg Ser Gln Ile Arg Ser Ala Ala His Val Ser Ala Lys Val Ala Pro

20 25 30

45

20 cgg ccc acg cca ttc tcg gtc gcg agc ccc gcg acc gct gcg agc ccc 142

Arg Pro Thr Pro Phe Ser Val Ala Ser Pro Ala Thr Ala Ala Ser Pro

gcg acc gcg gcg gcc cgc cgc aca ctc cac cgc act gct gcg gcg gcc 190
Ala Thr Ala Ala Ala Arg Arg Thr Leu His Arg Thr Ala Ala Ala Ala

40

5 50 55 60

35

		act	ggt	gct	ccc	acg	gcg	tcc	gga	gcc	ggc	gtc	gcc	aag	acg	ctc	gac	238
		Thr	Gly	Ala	Pro	Thr	Ala	Ser	Gly	Ala	Gly	Val	Ala	Lys	Thr	Leu	Asp	
			65					70					75					
		aat	gtg	tat	gac	gtg	atc	gtg	gtc	ggt	gga	ggt	ctc	tcg	ggc	ctg	gtg	286
	5	Asn	Val	Tyr	Asp	Val	Ile	Val	Val	Gly	G1y	Gly	Leu	Ser	Gly	Leu	Val	
		80					85					90			,		95	
		acc	ggc	cag	gcc	ctg	gcg	gct	cag	cac	aaa	att	cag	aac	ttc	ctt	gtt	334
==		Thr	Gly	Gln	Ala	Leu	Ala	Ala	Gln	His	Lys	Ile	Gln	Asn	Phe	Leu	Val	
						100					105					110		
	10	acg	gag	gct	cgc	gag	cgc	gtc	ggc	ggc	aac	att	acg	tcc	atg	tcg	ggc	382
7 TH		Thr	Glu	Ala	Arg	Glu	Arg	Val	G1y	Gly	Asn	Ile	Thr	Ser	Met	Ser	G1y	
j				•	115					120					125			
#		gat	ggc	tac	gtg	tgg	gag	gag	ggc	ccg	aac	agc	ttc	cag	ccc	aac	gat	430
		Asp	Gly	Tyr	Val	Trp	Glu	Glu	Gly	Pro	Asn	Ser	Phe	G1n	Pro	Asn	Asp	•
	15			130					135	,				140				
		agc	atg	ctg	cag	att	gcg	gtg	gac	tct	ggc	tgc	gag	aag	gac	ctt	gtg	478
		Ser	Met	Leu	Gln	Ile	Ala	Val	Asp	Ser	G1y	Cys	Glu	Lys	Asp	Leu	Val	
			145					150					155					
		ttc	ggt	gac	ссс	acg	gct	ссс	cgc	ttc	gtg	tgg	tgg	gag	ggc	aag	ctg	526
	20	Phe	Gly	Asp	Pro	Thr	Ala	Pro	Arg	Phe	Val	Trp	Trp	Glu	G1y	Lys	Leu	
		160					165					170	4			_	175	
-	*e	cgc	ccc	gtg	ccc	tcg	ggc	ctg	gac	gcc	ttc		ttc	gac	ctc	atg	tcc	574
	•															Met		
						180					185					190		

	atc	ccc	ggc	aag	atc	cgc	gcc	ggg	ctg	ggc	gcc	atc	ggc	ctc	atc	aac	622
	Ile	Pro	Gly	Lys	Ile	Arg	Ala	Gly	Leu	Gly	Ala	Ile	G1y	Leu	Ile	Asn	
				195					200					205			
	gga	gcc	atg	ccc	tcc	ttc	gag	gag	agt	gtg	gag	cag	ttc	atc	cgc	cgc	670
5	Gly	Ala	Met	Pro	Ser	Phe	Glu	Glu	Ser	Val	Glu	Gln	Phe	Ile	Arg	Arg	
			210					215					220	,			
	aac	ctg	ggc	gat	gag	gtg	ttc	ttc	cgc	ctg	atc	gag	ccc	ttc	tgc	tcc	718
	Asn	Leu	Gly	Asp	Glu	Val	Phe	Phe	Arg	Leu	Ile	Glu	Pro	Phe	Cys	Ser	
		225					230					235					
10	ggc	gtg	tac	gcg	ggc	gac	ссс	tcc	aag	ctg	tcc	atg	aag	gcg	gcc	ttc	766
	Gly	Val	Tyr	Ala	Gly	Asp	Pro	Ser	Lys	Leu	Ser	Met	Lys	Ala	Ala	Phe	
	240					245					250					255	
	aac	agg	atc	tgg	att	ctg	gag	aag	aac	ggc	ggc	agc	ctg	gtg	gga	ggt	814
	Asn	Arg	Ile	Trp	Ile	Leu	Glu	Lys	Asn	Gly	G1y	Ser	Leu	Val	Gly	Gly	
15					260					265					270		
	gcc	atc	aag	ctg	ttc	cag	gaa	cgc	cag	tcc	aac	ccg	gcc	ccg	ccg	cgg	862
	Ala	Ile	Lys	Leu	Phe	G1n	Glu	Arg	Gln	Ser	Asn	Pro	Ala	Pro	Pro	Arg	
				275					280					285			
	gac	ccg	cgc	ctg	ccg	ссс	aag	ccc	aag	ggc	cag	acg	gtg	ggc	tcg	ttc	910
20	Asp	Pro	Arg	Leu	Pro	Pro	Lys	Pro	Lys	G1y	G1n	Thr	Val	Gly	Ser	Phe	
was.			290	_	,		-	295			-		300	= -			-
	cgc	aag	ggc	ctg	aag	atg	ctg	ccg	gac	gcc	att	gag	cgc	aac	atc	ccc	958
	Arg	Lys	Gly	Leu	Lys	Met	Leu	Pro	Asp	Ala	Ile	Glu	Arg	Asn	Ile	Pro	
		305					310					315					

		gac	aag	atc	cgc	gtg	aac	tgg	aag	ctg	gtg	tct	ctg	ggc	cgc	gag	gcg	1006
		Asp	Lys	Ile	Arg	Val	Asn	Trp	Lys	Leu	Val	Ser	Leu	G1y	Arg	G1u	Ala ·	
		320					325					330					335	
		gac	ggg	cgg	tac	ggg	ctg	gtg	tac	gac	acg	ccc	gag	ggc	cgt	gtc	aag	1054
	5	Asp	G1y	Arg	Tyr	Gly	Leu	Val	Tyr	Asp	Thr	Pro	G1u	Gly	Arg	Val	Lys	
						340					345				,	350		
		gtg	ttt	gcc	cgc	gcc	gtg	gct	ctg	acc	gcg	ccc	agc	tac	gtg	gtg	gcg	1102
		Val	Phe	Ala	Arg	Ala	Val	Ala	Leu	Thr	Ala	Pro	Ser	Tyr	Val	Val	Ala	
) N					355					360					365			
e t	10	gac	ctg	gtc	aag	gag	cag	gcg	ссс	gcc	gcc	gcc	gag	gcc	ctg	ggc	tcc	1150
÷		Asp	Leu	Val	Lys	Glu	Gln	Ala	Pro	Ala	Ala	Ala	G1u	Ala	Leu	G1y	Ser	
Ī				370					375					380				
± 3		ttc	gac	tac	ccg	ccg	gtg	ggc	gcc	gtg	acg	ctg	tcg	tac	ccg	ctg	agc	1198
U U		Phe	Asp	Tyr	Pro	Pro	Val	G1y	Ala	Val	Thr	Leu	Ser	Tyr	Pro	Leu	Ser	
(j) (j)	15		385					390					395					
		gcc	gtg	cgg	gag	gag	cgc	aag	gcc	tcg	gac	ggg	tcc	gtg	ccg	ggc	ttc	1246
		Ala	Val	Arg	Glu	Glu	Arg	Lys	Ala	Ser	Asp	Gly	Ser	Va1	Pro	G1y	Phe	
		400					405					410					415	
•		ggt	cag	ctg	cac	ccg	cgc	acg	cag	ggc	atc	acc	act	ctg	ggc	acc	atc	1294
	20	Gly	Gln	Leu	His	Pro	Arg	Thr	G1n	G1y	Ile	Thr	Thr	Leu	Gly	Thr	Ile	
						420		_		-	425					430		
		tac	agc	tcc	agc	ctg	ttc	ccc	ggc	cgc	gcg	ccc	gag	ggc	cac	atg	ctg	1342
		Tyr	Ser	Ser	Ser	Leu	Phe	Pro	Gly	Arg	Ala	Pro	Glu	Gly	His	Met	Leu	
					435					440					445			

		ctg	ctc	aac	tac	atc	ggc	ggc	acc	acc	aac	cgc	ggc	atc	gtc	aac	cag	1390
		Leu	Leu	Asn	Tyr	Ile	Gly	G1y	Thr	Thr	Asn	Arg	Gly	Ile	Val	Asn	Gln	
				450					455					460				
		acc	acc	gag	cag	ctg	gtg	gag	cag	gtg	gac	aag	gac	ctg	cgc	aac	atg	1438
	5	Thr	Thr	Glu	Gln	Leu	Val	Glu	Gln	Val	Asp	Lys	Asp	Leu	Arg	Asn	Met	
			465					470					475		,			
		gtc	atc	aag	ссс	gac	gcg	ссс	aag	ссс	cgt	gtg	gtg	ggc	gtg	cgc	gtg	1486
		Val	Ile	Lys	Pro	Asp	Ala	Pro	Lys	Pro	Arg	Val	Va1	Gly	Val	Arg	Val	
ī ī		480					485					490					495	
e e e e e e	10	tgg	ccg	cgc	gcc	atc	ccg	cag	ttc	aac	ctg	ggc	cac	ctg	gag	cag	ctg	1534
4	٠	Trp	Pro	Arg	Ala	Ile	Pro	G1n	Phe	Asn	Leu	Gly	His	Leu	Glu	G1n	Leu	
.i						500					505					510		
		gac	aag	gcg	cgc	aag	gcg	ctg	gac	gcg	gcg	ggg	ctg	cag	ggc	gtg	cac	1582
											Ala							
וו ווייייייייייייייייייייייייייייייייי	15		_,_		515	_,			•	520					525			
: sed	15	cta.	aaa	aac		tac	gtc	agc	øøt.		gcc	ctg	aac	aag	gtg	gtg	gag	1630
											Ala							
		Leu	Uly		ASII	1 9 1	vai	961	535	741	MIG	Lou	019	540	, ,		014	
				530										•	+00	000		1678
											gcc							1010
	20	His					Ala				Ala			vaı	Ser	Lys	Ala	
-	-										·		555			-		
		gca	gtc	aag	gcc	taa	gcgg	gctgo	cag o	cagta	agcag	gc ag	gcag	catc	g ggo	ctgta	agct	1733
		Ala	Val	Lys	Ala													
		560			563													
	25	ggta	aaat	gcc (gcag	tggca	ac c	ggca	gcago	c aa	ttgg	caag	cac	ttgg	ggc a	aagc	ggagtg	1793

15

<400> 18

Met Met Leu Thr Gln Thr Pro Gly Thr Ala Thr Ala Ser Ser Arg

1 5 10 15

Arg Ser Gln Ile Arg Ser Ala Ala His Val Ser Ala Lys Val Ala Pro

20 25 30

Arg Pro Thr Pro Phe Ser Val Ala Ser Pro Ala Thr Ala Ala Ser Pro

35 40 45

Ala Thr Ala Ala Ala Arg Thr Leu His Arg Thr Ala Ala Ala

50 55 60

Thr Gly Ala Pro Thr Ala Ser Gly Ala Gly Val Ala Lys Thr Leu Asp

65 70 75

20 Asn Val Tyr Asp Val Ile Val Val Gly Gly Leu Ser Gly Leu Val

80 85 90 95

Thr Gly Gln Ala Leu Ala Ala Gln His Lys Ile Gln Asn Phe Leu Val

100 105 110

Thr Glu Ala Arg Glu Arg Val Gly Gly Asn Ile Thr Ser Met Ser Gly

25 115 120 125

	Asp	Gly	Tyr	Val	Trp	Glu	Glu	Gly	Pro	Asn	Ser	Phe	G1n	Pro	Asn	Asp
			130					135					140			
	Ser	Met	Leu	Gln	Ile	Ala	Val	Asp	Ser	G1 y	Cys	Glu	Lys	Asp	Leu	Val
		145					150					155				
5	Phe	Gly	Asp	Pro	Thr	Ala	Pro	Arg	Phe	Val	Trp	Trp	Glu	Gly	Lys	Leu
	160					165	•				170			,		175
	Arg	Pro	Val	Pro	Ser	Gly	Leu	Asp	Ala	Phe	Thr	Phe	Asp	Leu	Met	Ser
					180					185					190	
	Ile	Pro	Gly	Lys	Ile	Arg	Ala	Gly	Leu	G1y	Ala	Ile	Gly	Leu	Ile	Asn
10				195					200					205		
	Gly	Ala	Met	Pro	Ser	Phe	Glu	Glu	Ser	Val	G1u	G1n	Phe	Ile	Arg	Arg
			210					215					220			
	Asn	Leu	G1 y	Asp	Glu	Val	Phe	Phe	Arg	Leu	Ile	Glu	Pro	Phe	Cys	Ser
		225					230					235				
15	G1y	Val	Tyr	Ala	G1y	Asp	Pro	Ser	Lys	Leu	Ser	Met	Lys	Ala	Ala	Phe
	240				-	245					250					255
	Asn	Arg	Ile	Trp	Ile	Leu	Glu	Lys	Asn	G1y	G1y	Ser	Leu	Val	Gly	Gly
					260					265					270	
	Ala	Ile	Lys	Leu	Phe	G1n	Glu	Arg	G1n	Ser	Asn	Pro	Ala	Pro	Pro	Arg
20				275					280					285		
	Asp_	Pro	Arg	Leu	Pro	Pro	Lys	Pro	Lys	G1y	G1n	Thr	Val	G1y	Ser	Phe
			290					295					300			
	Arg	Lys	Gly	Leu	Lys	Met	Leu	Pro	Asp	Ala	Ile	Glu	Arg	Asn	Ile	Pro
		305					310					315				

	Asp	Lys	Ile	Arg	Val	Asn	Trp	Lys	Leu	Val	Ser	Leu	G1y	Arg	Glu	Ala
	320					325					330					335
	Asp	G1y	Arg	Tyr	Gly	Leu	Val	Tyr	Asp	Thr	Pro	Glu	Gly	Arg	Val	Lys
					340					345					350	
5	Val	Phe	Ala	Arg	Ala	Val	Ala	Leu	Thr	Ala	Pro	Ser	Tyr	Val	Val	Ala
				355					360					365		
	Asp	Leu	Val	Lys	Glu	Gln	Ala	Pro	Ala	Ala	Ala	Glu	Ala	Leu	G1 y	Ser
			370					375					380			
	Phe	Asp	Tyr	Pro	Pro	Val	Gly	Ala	Val	Thr	Leu	Ser	Tyr	Pro	Leu	Ser
LO		385					390					395				
	Ala	Val	Arg	Glu	G1u	Arg	Lys	Ala	Ser	Asp	Gly	Ser	Val	Pro	Gly	Phe
	400	-				405		•			410					415
	Gly	G1n	Leu	His	Pro	Arg	Thr	Gln	Gly	Ile	Thr	Thr	Leu	G1y	Thr	Ile
					420					425					430	
15	Tyr	Ser	Ser	Ser	Leu	Phe	Pro	Gly	Arg	Ala	Pro	Glu	Gly	His	Met	Leu
				435					440					445		
	Leu	Leu	Asn	Tyr	Ile	G1y	G1y	Thr	Thr	Asn	Arg	G1y	Ile	Val	Asn	G1n
			450					455					460			
	Thr	Thr	Glu	G1n	Leu	Val	G1u	Gľn	Val	Asp	Lys	Asp	Leu	Arg	Asn	Met
20		465					470					475				
	Val	Ile	Lys	Pro	Asp	Ala	Pro	Lys	Pro	Arg	Val	Val_	G1 y	Val	Arg	Val
	480	·				485					490					495
	Trp	Pro	Arg	Ala	Ile	Pro	Gln	Phe	Asn	Leu	Gly	His	Leu	Glu	Gln	Leu
					500					505					510	

Asp Lys Ala Arg Lys Ala Leu Asp Ala Ala Gly Leu Gln Gly Val His
515
520
525

Leu Gly Gly Asn Tyr Val Ser Gly Val Ala Leu Gly Lys Val Val Glu
530
535
540

His Gly Tyr Glu Ser Ala Ala Asn Leu Ala Lys Ser Val Ser Lys Ala
545
550
555

Ala Val Lys Ala
560
563

10 <210> 19

5

<211> 32

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of Chlamydomonas PPO gene

⟨400⟩ 19

20 ggtcggtgga ggggatccga tgctggtgac cg 32

<210> 20

<211> 32

<212> DNA

25 (213) Artificial Sequence

```
<220>
```

<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of Chlamydomonas PPO gene

5

<400> 20

gctactgctg cgagctctta ggccttgact gc 32

<210> 21

10

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

15

<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of cucumber ferrochelatase gene

<400> 21

getttagaat eggateetat ggeagtggat gae 33

20

<210> 22

<211> 36

<212> DNA

<213> Artificial Sequence

```
<220>
```

<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of cucumber ferrochelatase gene

5 <400> 22

ggtgaacttc tatttgagct ctcaggtaaa tataag 36

<210> 23

<211> 25

10 <212> DNA

<213> Artificial Sequence

<220>

 $\ensuremath{\texttt{<}223\texttt{>}}$ Designed oligonucleotide primer to amplify Esherichia coli hem F

15 gene

<400> 23

gctgaaggcg tgatcagtta tttcc 25

20 <210> 24

<211> 24

<212> DNA

<213> Artificial Sequence

25 <220>

```
<223> Designed oligonucleotide primer to amplify Esherichia coli hemF
       gene
       <400> 24
 5
       catcagcctg cagtgcgaaa agtg 24
       <210> 25
       <211> 26
       <212> DNA
       <213> Artificial Sequence
10
       <220>
       <223> Designed oligonucleotide primer to amplify Esherichia coli hemF
       gene
15
       <400> 25
       cgaaaaaggg atccgttatg aaaccc 26
       <210> 26
20
       <211> 23
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Designed oligonucleotide primer to amplify Esherichia coli hemF
25
```

```
gene
```

<400> 26

getgttttcc gageteeegt cae 23

5

<210> 27

<211> 22

<212> DNA

<213> Artificial Sequence

10

<220>

<223> Designed oligonucleotides to synthesize genes encoding random peptides comprising 5 amino acids

15

<400> 27

tggccnnknn knnknnknnk gc 22

<210> 28

<211> 29

20

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotides to synthesize genes encoding random

25 peptides comprising 5 amino acids

```
<400> 28
```

ggccgcmnnm nnmnnmnnmn nggccagct 29

5 〈210〉 29

<211> 22

<212> DNA

<213> Artificial Sequence

10 <220>

 $\langle 223 \rangle$ Designed oligonucleotide to synthesize the gene encoding the peptide HASYS

<400> 29

tggcccatgc tagttagtcg gc 22

<210> 30

<211> 29

<212> DNA

20 <213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed oligonucleotide to synthesize the gene encoding the peptide HASYS

<400> 30

<400> 32

```
tggcgccgac taactagcat gggccagct 29
       ⟨210⟩ 31
       <211> 22
 5
       <212> DNA
       <213> Artificial Sequence
       <220>
       \langle 223 \rangle Designed oligonucleotide to synthesize the gene encoding the
10
       peptide RASSL
       <400> 31
       tggcccggc gtcgtcgttg gc 22
15
       ⟨210⟩ 32
       <211> 29
       <212> DNA
       <213> Artificial Sequence
20
       <220>
       <223> Designed oligonucleotide to synthesize the gene encoding the
       peptide RASSL
```

```
ggccgccaac gacgacgccc gggccagct 29
```

<210> 33

<211> 26

5 <212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed oligonucleotide to synthesize the gene encoding the

10 peptide MGHASYS

<400> 33

catgggtcac gcttcttact cctaag 26

15 <210> 34

<211> 26

<212> DNA

<213> Artificial Sequence

20 <220>

<223> Designed oligonucleotide to synthesize the gene_encoding the
peptide MGHASYS

<400> 34

25 aattettagg agtaagaage gtgace 26

```
<210> 35
<211> 26
<212> DNA
```

<213> Artificial Sequence 5

<220>

<223> Designed oligonucleotide to synthesize the gene encoding the peptide MGRASSL

10

<400> 35

catgggtcgt gcttcttccc tgtaag 26

<210> 36

<211> 26 15

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide to synthesize the gene encoding the 20 peptide MGRASSL

<400> 36 ⋅

aattettaca gggaagaage acgace 26

<210> 39

⟨210⟩ 37

<211> 23 <212> DNA <213> Artificial Sequence 5 <220> <223> Designed oligonucleotide to synthesize the gene encoding the peptide MGYAGY <400> 37 10 catgggttac gctggctact aag 23 <210> 38 <211> 23 15 <212> DNA <213> Artificial Sequence <220> <223> Designed oligonucleotide to synthesize the gene encoding the peptide MGYAGY 20 <400> 38 aattettagt agceagegta acc 23

```
10
```

```
<212><213><213></220></223>
```

<211> 23

<212> DNA

<213> Artificial Sequence

<223> Designed oligonucleotide to synthesize the gene encoding the
peptide MGYAGF

<400> 39

10 catgggttac gctggcttct aag 23

<210> 40

<211> 23

<212> DNA

15 <213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed oligonucleotide to synthesize the gene encoding the peptide MGYAGF

20

<400> 40

aattettaga ageeagegta acc 23

<210> 41

25 〈211〉 34

```
<212> DNA
```

<213> Artificial Sequence

<220>

5 <223> Designed oligonucleotide to synthesize the gene encoding the peptide MG(HASYS)4

<400> 41

catgggtcac gcttcttact cccatgcatc ttac 34

10

<210> 42

<211> 34

<212> DNA

<213> Artificial Sequence

15

<220>

<223> Designed oligonucleotide to synthesize the gene encoding the
peptide MG(HASYS)4

20 <400> 42

gtgggagtaa gatgcatggg agtaagaagc gtgacc 36

<210> 43

<211> 37

25 <212> DNA

```
<213> Artificial Sequence
```

<220>

<223> Designed oligonucleotide to synthesize the gene encoding the
peptide MG(HASYS)4

<400> 43

teccaegett ettaetecca tgeatettae tectaag 37

10 <210> 44

5

<211> 35

<212> DNA

<213> Artificial Sequence

15 <220>

 $\langle 223 \rangle$ Designed oligonucleotide to synthesize the gene encoding the peptide MG(HASYS)4

<400> 44

20 aattettagg agtaagatge atgggagtaa gaage 35

<210> 45

<211> 30

<212> DNA

25 <213> Artificial Sequence

```
<220>
```

 $\langle 223 \rangle$ Designed oligonucleotide to synthesize the gene encoding the peptide MG(HASYS)8

5

<400> 45

tcccacgctt cttactccca tgcatcttac 30

<210> 46

10 <211> 30

<212> DNA

<213> Artificial Sequence

<220>

223> Designed oligonucleotide to synthesize the gene encoding the peptide MG(HASYS)8

<400> 46

gtgggagtaa gatgcatggg agtaagaagc 30

20

<210>_47_.

<211> 34

<212> DNA

<213> Artificial Sequence

```
<220>
```

<223> Designed oligonucleotide to synthesize the gene encoding the peptide MG(RASSL)4

5 <400> 47

catgggtcgt gcttcttccc tgcgcgcatc ttcc 34

<210> 48

<211> 36

10 <212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed oligonucleotide to synthesize the gene encoding the peptide MG(RASSL)4

<400> 48

acgcagggaa gatgcgcgca gggaagaagc acgacc 36

20 <210> 49

<211> 37

<212> DNA

<213> Artificial Sequence

25 <220>

```
\langle 223 \rangle Designed oligonucleotide to synthesize the gene encoding the peptide MG(RASSL)4
```

<400> 49

5 ctgcgtgctt cttccctgcg cgcatcttcc ctgtaag 37

<210> 50

<211> 35

<212> DNA

10 <213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed oligonucleotide to synthesize the gene encoding the peptide MG(RASSL)4

15

<400> 50

aattettaca gggaagatge gegeagggaa gaage 35

<210> 51

20 <211> 30

<212> DNA

<213> Artificial Sequence

<220>

25 <223> Designed oligonucleotide to synthesize the gene encoding the

peptide MG(RASSL)8

```
<400> 51
       ctgcgtgctt cttccctgcg cgcatcttcc 30
 5
       <210> 52
       <211> 30
       <212> DNA
       <213> Artificial Sequence
10
       <220>
       <223> Designed oligonucleotide to synthesize the gene encoding the
       peptide MG(RASSL)8
       <400> 52
15
       acgcagggaa gatgcgcgca gggaagaagc
       <210> 53
       <211> 5
       <212> PRT
20
       <213> Artificial Sequence
       <220>
       <223> Protoporphyrin IX binding protein HASYS
25
```

<212> PRT

10 <220>

<223> Protoporphyrin IX binding protein MGHASYS

<400> 54

Met Gly His Ala Ser Tyr Ser

<213> Artificial Sequence

15 1 5

<210> 55

<211> 5

<212> PRT

20 <213> Artificial Sequence

<220>

<223> Protoporphyrin IX binding protein RASSL

25 <400> 55

Tyr Ala Gly Tyr 4

```
Arg Ala Ser Ser Leu
          1
                            5
       <210> 56
       <211> 7
 5
       <212> PRT
        <213> Artificial Sequence
        <220>
       <223> Protoporphyrin IX binding protein MGRASSL
10
        <400> 56
       Met Gly Arg Ala Ser Ser Leu
          1
                            5
15
       <210> 57
       <211> 4
        <212> PRT
       <213> Artificial Sequence
20
       <220>
       \langle 223 \rangle H<sub>2</sub>TMpyP binding protein YAGY.
       <400> 57
```

```
<210> 58
        <211> 6
        <212> PRT
        <213> Artificial Sequence
 5
        <220>
        \langle 223 \rangle H<sub>2</sub>TMpyP binding protein MGYAGY
        <400> 58
10
        Met Gly Tyr Ala Gly Tyr
                               5
         . 1
        <210> 59
        <211> 4
15
        <212> PRT
        <213> Artificial Sequence
        <220>
        \langle 223 \rangle H<sub>2</sub>TMpyP binding protein YAGF
20
        <400> 59
```

Tyr Ala Gly Phe

<210> 60

```
<211> 6
        <212> PRT
        <213> Artificial Sequence
 5
        <220>
        <223> H<sub>2</sub>TMpyP binding protein MGYAGF
        <400> 60
        Met Gly Tyr Ala Gly Phe
10
          1
                            5
        <210> 61
        <211> 22
15
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Protoporphyrin IX binding protein MG(HASYS)<sub>4</sub>
20
        <400> 61
       Met Gly His Ala Ser Tyr Ser His Ala Ser Tyr Ser His Ala Ser Tyr
          1
                           5
                                                10
                                                                      15
       Ser His Ala Ser Tyr Ser
                      20
25
```

```
<210> 62
       <211> 42
       <212> PRT
       <213> Artificial Sequence
 5
       <220>
       <223> Protoporphyrin IX binding protein MG(HASYS)<sub>8</sub>
       <400> 62
10
       Met Gly His Ala Ser Tyr Ser His Ala Ser Tyr Ser His Ala Ser Tyr
                                                                    15
                          5
                                               10
         1
       Ser His Ala Ser Tyr Ser His Ala Ser Tyr Ser His Ala Ser Tyr Ser
                                          25
                                                                30
                     20
       His Ala Ser Tyr Ser His Ala Ser Tyr Ser
15
                                      40
                 35
       <210> 63
       <211> 22
       <212> PRT
20
```

<220>

<213> Artificial Sequence

 $\ensuremath{\texttt{<}223\texttt{>}}$ Protoporphyrin IX binding protein MG(RASSL)₄

```
Met Gly Arg Ala Ser Ser Leu Arg Ala Ser Ser Leu Arg Ala Ser Ser
         1
                          5
                                               10
                                                                    15
       Leu Arg Ala Ser Ser Leu
                     20
 .5
       <210> 64
       <211> 42
       <212> PRT
10
       <213> Artificial Sequence
       <220>
       <223> Protoporphyrin IX binding protein MG(RASSL)<sub>8</sub>.
       <400> 64
15
       Met Gly Arg Ala Ser Ser Leu Arg Ala Ser Ser Leu Arg Ala Ser Ser
                          5
         1
                                               10
                                                                    15
       Leu Arg Ala Ser Ser Leu Arg Ala Ser Ser Leu Arg Ala Ser Ser Leu
                     20
                                          25
                                                                30
20
       Arg Ala Ser Ser Leu Arg Ala Ser Ser Leu
       <210> 65
```

<400> 63

<211> 36

<212> DNA

```
<213> Artificial Sequence
```

<220>

<223> Designed oligonucleotide primer to introduce mutation into
arabidopsis PPO gene

<400> 65

tgttcaggtg tttatgttgg tgatccttca aaactg 36

10 <210> 66

5

<211> 32

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed oligonucleotide primer to amplify herbicide resistant arabidopsis PPO(A220V) gene

<400> 66

20 ccatgcggaa gcttatggag ttatctcttc tc 32

<210> 67

<211> 34

<212> DNA

25 <213> Artificial Sequence

```
<220>
      <213> Designed oligonucleotide primer to amplify herbicide resistant
      arabidopsis PPO(A220V) gene
 5
       <400> 67
       gggagattta atgtcgacca tttacttgta agcg
                                                 34
       <210> 68
       <211> 31
10
       <212>. DNA
       <213> Artificial Sequence
       <220>
                                                                    Arabidopsis
                         oligonucleotide
                                            primer
                                                         amplify
               Designed
                                                     to
       <223>
15
       chloroplast ferrochelatase gene
       <400> 68
                                              31
       gatcggttct gaaatttgga tccatgcagg c
20
      <210> 69
       <211> 31
       <212> DNA
       <213> Artificial Sequence
```

```
<223> Designed oligonucleotide primer to amplify Arabidopsis chloroplast ferrochelatase gene
```

5 <400> 69

cacaaaacca acgageteet ataggtteeg g 31

<210> 70

<211> 30

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify soybean
coproporphyrinogen III oxidase gene

<400> 70

gaatcggatc cgaagcatga tgcattgtgc 30

20 <210> 71

<211> 30

<212> DNA

<213> Artificial Sequence

25 <220>

<223> Designed oligonucleotide primer to amplify soybean coproporphyrinogen III oxidase gene

<400> 71

5 gggggtcgac tgatgaatta gatccattcc 30

<210> 72

<211> 36

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify DNA fragment having nucleotide sequence encoding the Petunia hybrida EPSPS chloroplast transit peptide and the Agrobacterium sp. strain CP4 EPSPS gene

<400> 72

ggaagettea agaatggeac aaattaacaa catgge 36

20 <210> 73

<211> 32

<212> DNA

<213> Artificial Sequence

25 <220>

<223>Designed oligonucleotide primer to amplify DNA fragment having nucleotide sequence encoding the Petunia hybrida EPSPS chloroplast transit peptide and the Agrobacterium sp. strain CP4 EPSPS gene

5 <400> 73

gagtcgacgg tcatcaggca gccttcgtat cg

<210> 74

<211> 1587

10 <212> DNA

<213> Petunia hybrida EPSPS chloroplast transit peptide and Agrobacterium sp. strain CP4 EPSPS

<220>

15 <221> CDS

<222> (1)...(1581)

<400> 74

atg gca caa att aac aac atg gct caa ggg ata caa acc ctt aat ccc 48

Met Ala Gln Ile Asn Asn Met Ala Gln Gly Ile Gln Thr Leu Asn Pro

aat tcc aat ttc cat aaa ccc caa gtt cct aaa tct tca agt ttt ctt 96
Asn Ser Asn Phe His Lys Pro Gln Val Pro Lys Ser Ser Ser Phe Leu

10

20 25 30

		gtt	ttt	gga	tct	aaa	aaa	ctg	aaa	aat	tca	gca	aat	tct	atg	ttg	gtt	144
		Val	Phe	G1y	Ser	Lys	Lys	Leu	Lys	Asn	Ser	Ala	Asn	Ser	Met	Leu	Val	
					35					40					45			
		ttg	aaa	aaa	gat	tca	att	ttt	atg	caa	aag	ttt	tgt	tcc	ttt	agg	att	192
	5	Leu	Lys	Lys	Asp	Ser	Ile	Phe	Met	G1n	Lys	Phe	Cys	Ser	Phe	Arg	Ile	
				50					55					60				
		tca	gca	tca	gtg	gct	aca	gcc	tgc	atg	ctt	cac	ggt	gca	agc	agc	cgg	240
<u> </u>		Ser	Ala	Ser	Val	Ala	Thr	Ala	Cys	Met	Leu	His	G1y	Ala	Ser	Ser	Arg	
٠D			65					70					75					
	10	ссс	gca	acc	gcc	cgc	aaa	tcc	tct	ggc	.ctt	tcc	gga	acc	gtc	cgc	att	288
*4] -1		Pro	Ala	Thr	Ala	Arg	Lys	Ser	Ser	Gly	Leu	Ser	G1y	Thr	Val	Arg	Ile	
ıD :		80					85					90					95	
14 []		ccc	ggc	gac	aag	tcg	atc	tcc	cac	cgg	tcc	ttc	atg	ttc	ggc	ggt	ctc	336
"U		Pro	Gly	Asp	Lys	Ser	Ile	Ser	His	Arg	Ser	Phe	Met	Phe	Gly	Gly	Leu	
	15					100					105					110		
		gcg	agc	ggt	gaa	acg	cgc	atc	acc	ggc	ctt	ctg	gaa	ggc	gag	gac	gtc	384
		Ala	Ser	Gly	Glu	Thr	Arg	Ile	Thr	Gly	Leu	Leu	G1u	Gly	Glu	Asp	Val	
					115					120					125			
		atc	aat	acg	ggc	aag	gcc	atg	cag	gcc	atg	ggc	gcc	agg	atc	cgt	aag	432
	20	Ile	Asn	Thr	G1y	Lys	Ala	Met	G1n	Ala	Met	Gly	Ala	Arg	Ile	Arg	Lys	•
				130					135					140				
-		gaa	ggc	gac	acc	tgg	atc	atc	gat	ggc	gtc	ggc	aat	ggc	ggc	ctc	ctg	480
		Glu	Gly	Asp	Thr	Trp	Ile	Ile	Asp	Gly	Val	G1y	Asn	Gly	Gly	Leu	Leu	
			145					150					155					

	gcg	cct	gag	gcg	ccg	ctc	gat	ttc	ggc	aat	gcc	gcc	acg	ggc	tgc	cgc	528
-	Ala	Pro	G1u	Ala	Pro	Leu	Asp	Phe	Gly	Asn	Ala	Ala	Thr	Gly	Cys	Arg	
	160					165					170					175	
	ctg	acc	atg	ggc	ctc	gtc	ggg	gtc	tac	gat	ttc	gac	agc	acc	ttc	atc	576
5	Leu	Thr	Met	Gly	Leu	Val	Gly	Val	Tyr	Asp	Phe	Asp	Ser	Thr	Phe	Ile	
					180					185				,	190		
	ggc	gac	gcc	tcg	ctc	aca	aag	cgc	ccg	atg	ggc	cgc	gtg	ttg	aac	ccg	624
	Gly	sp /	Ala S	Ser l	Leu T	ſhr I	ys A	Arg H	Pro N	Met (Gly A	Arg '	Val l	Le u .	Asn 1	Pro	
				195					200					205			
10	ctg	cgc	gaa	atg	ggc	gtg	cag	gtg	aaa	tcg	gaa	gac	ggt	gac	cgt	ctt	672
	Leu	Arg	Glu	Met	Gly	Val	G1n	Val	Lys	Ser	G1u	Asp	Gly	Asp	Arg	Leu	
			210					215					220				
	ccc	gtt	acc	ttg	cgc	ggg	ccg	aag	acg	ccg	acg	ccg	atc	acc	tac	cgc	720
	Pro	Val	Thr	Leu	Arg	Gly	Pro	Lys	Thr	Pro	Thr	Pro	Ile	Thr	Tyr	Arg	
15		225					230					235					
	gtg	ccg	atg	gcc	tcc	gca	cag	gtg	aag	tcc	gcc	gtg	ctg	ctc	gcc	ggc	768
	Val	Pro	Met	Ala	Ser	Ala	G1n	Val	Lys	Ser	Ala	Val	Leu	Leu	Ala	Gly	
	240					245					250					255	
	ctc	aac	acg	ccc	ggc	atc	acg	acg	gtc	atc	gag	ccg	atc	atg	acg	cgc	816
20	Leu	Asn	Thr	Pro	G1y	Ile	Thr	Thr	Val	Ile	Glu	Pro	Ile	Met	Thr	Arg	
					260					265					270		 .
	gat	cat	acg	gaa	aag	atg	ctg	cag	ggc	ttt	ggc	gcc	aac	ctt	acc	gtc	864
	Asp	His	Thr	Glu	Lys	Met	Leu	Gln	Gly	Phe	G1y	Ala	Asn	Leu	Thr	Val	
				275					280					285			

		gag	acg	gat	gcg	gac	ggc	gtg	cgc	acc	atc	cgc	ctg	gaa	ggc	cgc	ggc	912
		Glu	Thr	Asp	Ala	Asp	Gly	Val	Arg	Thr	Ile	Arg	Leu	Glu	Gly	Arg	Gly	
				290					295	3				300				
		ลลฮ	ctc	acc	ggc	caa	gtc	atc	gac	gtg	ccg	ggc	gac	ccg	tcc	tcg	acg	960
	r											Gly						
	5	Lys		IIII	Gly	GIII	Val		лър	Vai	110	Oly		110	001	501	1111	
			305					310					315		,			
		gcc	ttc	ccg	ctg	gtt	gcg	gcc	ctg	ctt	gtt	ccg	ggc	tcc	gac	gtc	acc	1008
-		Ala	Phe	Pro	Leu	Val	Ala	Ala	Leu	Leu	Val	Pro	Gly	Ser	Asp	Val	Thr	
i D 'n		320					325					330					335	
	10	atc	ctc	aac	gtg	ctg	atg	aac	ссс	acc	cgc	acc	ggc	ctc	atc	ctg	acg	1056
		Ile	Leu	Asn	Val	Leu	Met	Asn	Pro	Thr	Arg	Thr	Gly	Leu	Ile	Leu	Thr	
ō						340					345					350		
i L									4.			_4_				o++	700	1104
												atc						
Li ti Li Ci ti		Leu	Gln	Glu	Met	Gly	Ala	Asp	Ile	Glų	Val	Ile	Asn	Pro	Arg	Leu	Ala	
J	15				355					360					365			
		ggc	ggc	gaa	gac	gtg	gcg	gac	ctg	cgc	gtt	cgc	tcc	tcc	acg	ctg	aag	1152
		Gly	Gly	Glu	Asp	Val	Ala	Asp	Leu	Arg	Val	Arg	Ser	Ser	Thr	Leu	Lys	
				370					375					380				
		aac	atc		σtσ	cca	ฮลล	gac	CCC	gcg	cct	tcg	atg	atc	gac	gaa	tat	1200
	20	Gly	Val	Ihr	Val	Pro	Glu	Asp	Arg	ĀТА	Pro	Ser		11e	ASP	GIU	1 9 1	
.			3 <u>8</u> 5	-				390					395		=			
		ccg	att	ctc	gct	gtc	gcc	gcc	gcc	ttc	gcg	gaa	ggg	gcg	acc	gtg	atg	1248
		Pro	Ile	Leu	Ala	Val	Ala	Ala	Ala	Phe	Ala	Glu	G1y	Ala	Thr	Val	Met	
		400					405					410					415	

		aac	ggt	ctg	gaa	gaa	ctc	cgc	gtc	aag	gaa	agc	gac	cgc	ctc	tcg	gcc	1296
		Asn	Gly	Leu	Glu	G1u	Leu	Arg	Val	Lys	Glu	Ser	Asp	Arg	Leu	Ser	Ala	
						420					425					430		÷
		gtc	gcc	aat	ggc	ctc	aag	ctc	aat	ggc	gtg	gat	tgc	gat	gag	ggc	gag	1344
	5	Val	Ala	Asn	Gly	Leu	Lys	Leu	Asn	Gly	Val	Asp	Cys	Asp	Glu	G1y	Glu	
					435					440					445			
		acg	tcg	ctc	gtc	gtg	cgc	ggc	cgc	cct	gac	ggc	aag	ggg	ctc	ggc	aac	1392
: -		Thr	Ser	Leu	Val	Val	Arg	Gly	Arg	Pro	Asp	Gly	Lys	Gly	Leu	Gly	Asn	
Ö				450					455					460				
j	10	gcc	tcg	ggc	gcc	gcc	gtc	gcc	acc	cat	ctc	gat	cac	cgc	atc	gcc	atg	1440
		Ala	Ser	Gly	Ala	Ala	Val	Ala	Thr	His	Leu	Asp	His	Arg	Ile	Ala	Met	
			465					470					475					
		agc	ttc	ctc	gtc	atg	ggc	ctc	gtg	tcg	gaa	aac	cct	gtc	acg	gtg	gac	1488
		Ser	Phe	Leu	Va1	Met	Gly	Leu	Val	Ser	Glu	Asn	Pro	Val	Thr	Val	Asp	
j	15	480					485					490					495	
		gat	gcc	acg	atg	atc	gcc	acg	agc	ttc	ccg	gag	ttc	atg	gac	ctg	atg	1536
		Asp	Ala	Thr	Met	Ile	Ala	Thr	Ser	Phe	Pro	Glu	Phe	Met	Asp	Leu	Met	
						500		,			505					510		
		gcc	ggg	ctg	ggc	gcg	aag	atc	gaa	ctc	tcc	gat	acg	aag	gct	gcc	tga	1584
	20	Ala	Gly	Leu	Gly	Ala	Lys	Ile	Glu	Leu	Ser	Asp	Thr	Lys	Ala	Ala		٠
		-2 - ====		== - = - =	515			. =	- • •	520					525			
		tga								•								1587
		<210)> 7	5														

<211> 33

```
<212> DNA
```

<213> Artificial Sequence

<220>

5 <223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene

<400> 75

cacaggaaag gtaccatggt ctgcatcgcc cag 33

10

<210> 76

<211> 33

<212> DNA

<213> Artificial Sequence

15

<220>

<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene

20

<400> 76

cctgcagctc gagagctcct actatttgta cac