Quiz 2 EECE4040 Spring 2022

Due Jan 24 at 11:59pm

Points 10

Questions 10

Available Jan 24 at 10am - Jan 24 at 11:59pm about 14 hours

Time Limit 15 Minutes

This quiz was locked Jan 24 at 11:59pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	6 minutes	10 out of 10

Score for this quiz: **10** out of 10 Submitted Jan 24 at 11:01pm This attempt took 6 minutes.

Question 1

1 / 1 pts

For a = 680 and b = 43 after one iteration of Euclid's GCD algorithm for computing the gcd(a,b) the values of a and b are

- a = 680, b = 250
- a = 43, b = 13
- a = 43, b = 0
- a = 43, b = 680

Correct!

a = 43, b = 35

Question 2

1 / 1 pts

	The worst-case complexity of Euclid's algorithm for computing the gcd(a,b) occurs when a and b are
	consecutive powers of 2.
	onsecutive Harmonic numbers.
	oconsecutive prime numbers.
Correct!	consecutive Fibonacci numbers.
	O differ by 1.

	Question 3 1 / 1 pts
	The worst-case complexity of an algorithm is
	input for which algorithm is the slowest
	The fewest basic operations the algorithm performs for an input of size n
Correct!	The most basic operations the algorithm performs for an input of size n
	The most basic operations the algorithm performs
	input for which algorithm is fastest
	The fewest basic operations the algorithm performs for an input of size n

Question 4 1 / 1 pts

	The best-case complexity of an algorithm is the
	fastest computing time of the algorithm
	input for which algorithm is the slowest
	most basic operations the algorithm performs
	input for which algorithm is fastest
Correct!	fewest basic operations the algorithm performs for an input of size n

	Question 5 1/1 pt	ts
-	The average complexity of an algorithm is the	
	average of the best-case and worst-case complexities	
Correct!	expected number of basic operations performed over all inputs of size n	
	expected number of basic operations performed	
	expected value of a uniform distribution	
	average measure of how complex an algorithm is for an input of size n	

Question 6	1 / 1 pts
An efficient algorithm for polynomial evaluation	
Newton's rule	

Correct!

Horner's rule
Euclid's rule
Phat rule
Fast Polynomial Evaluation (FPE)

	Question 7 1 / 1 pts	5
	The worst-case complexity W(n) of Linearsearch for a list of size n is	
	$\bigcirc \ n \log_2 n$	
	$\bigcirc \log_2 n$	
Correct!	● n	
	\bigcirc n^2	
	○ 1	
	$\bigcirc \frac{n+1}{2}$	

Question 8	1 / 1 pts
The average complexity A(n) of Linearsearch for a list of size rethe list elements are distinct and the search element is equally found in any position is	_
$\log_2 n$	

					- 1	•	п
11.7	\sim	m	p_l	0	രി	Р	ı
- 1	w		и	œ	اصاا	L	ä

\bigcirc 2n			
\bigcirc $\frac{n+1}{2}$			
\bigcirc n			
O 1			

	Question 9	1 / 1 pts
	1 + 2 + 3 + + 50 equals	
Correct!	1275	
	O 9900	
	<u> </u>	
	O 1050	
	O 10100	

Question 10	1 / 1 pts
Let a = fib(n) and b = fib(n-1) , where fib(n) is the nth Fibonacci $n \geq 2$. After one iteration of Euclid's GCD algorithm the value b are respectively:	
f(n-2) and fib(n-3)	
○ fib(n) and fib(n-2)	

/23/22, 4:34 PM	Quiz 2 EECE4040 Spring 2022: (22SS-Full) DATA STRUCTURES ALGORITHMS (001)
Correct!	fib(n-1) and fib(n-2)
	ib(n-1) and fib(n)
	O fib(n-1) and 0

Quiz Score: 10 out of 10