CSC 411 Design and Analysis of Algorithms

Chapter 8 - Part 1

Dynamic Programming

Instructor: Minhee Jun

Dynamic Programming

- Dynamic Programming is a general algorithm design technique for solving problems defined by recurrences with overlapping subproblems
- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS
- "Programming" here means "planning"
- Main idea:
 - set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
 - solve smaller instances once
 - record solutions in a table
 - extract solution to the initial instance from that table

Examples of DP algorithms

- Fibonaccl numbers problem
- Three basic examples
 - Coin row problem
 - Change-Making problem
 - Coin-collecting problem
- Knapsack problem & memory functions
- Optimal binary search tree
- Warshall's and Floyd's Algorithms

Example: Fibonacci numbers

Recall definition of Fibonacci numbers:

$$F(n) = F(n-1) + F(n-2)$$

 $F(0) = 0$
 $F(1) = 1$

Computing the nth Fibonacci number recursively (top-down):

ALGORITHM F(n)//Computes the nth Fibonacci number recursively by using its definition //Input: A nonnegative integer n//Output: The nth Fibonacci number if $n \le 1$ return nelse return F(n-1) + F(n-2)Linear second-order recurrences with constant coefficient (Appendix B) F(n-2) + F(n-3) + F(n-3) + F(n-4)

4

Example: compute F(5)

FIGURE 2.6 Tree of recursive calls for computing the 5th Fibonacci number by the definition-based algorithm

Example: Fibonacci numbers (cont.)

Computing the *n*th Fibonacci number using bottom-up iteration and recording results:

```
ALGORITHM Fib(n)F(1) = 1//Computes the nth Fibonacci number iteratively by using its definitionF(2) = 1+0 = 1//Output: A nonnegative integer n...F(n-2) = 0F(n-2) = F(n-1) = F(n-1) = F(n-1) = F(n-1) + F(n-2)F(n) = F(n-1) + F(n-2)F(n) = F(n-1) + F(n-2)
ALGORITHM Fib(n)
//Computes the nth Fibonacci number iteratively by using its definition
//Output: The nth Fibonacci number
F[0] \leftarrow 0; F[1] \leftarrow 1
F[i] \leftarrow F[i-1] + F[i-2]
F[i] \leftarrow F[i] \leftarrow F[i-1] + F[i-2]
F[i] \leftarrow F[i] \leftarrow F[i]
F[i] \leftarrow F[i] \leftarrow F[i]
F[i]
```

Efficiency:

- time: O(n)
- space: one dimensional array with size n

See section 2.5 for a single-loop pseudocode

Example: Computing a binomial coefficient

Binomial coefficients are coefficients of the binomial formula: $(a + b)^n$

$$(a+b)^n = C(n,0)a^nb^0 + \dots + C(n,k)a^{n-k}b^k + \dots + C(n,n)a^0b^n$$

- Find C(n, k) for any given n and k. How?
- Find the recurrence

$$C(n,k) = C(n-1, k-1) + C(n-1, k)$$
 for $n > k > 0$
 $C(n,0) = 1$, $C(n,n) = 1$ for $n \ge 0$

Value of C(n, k) can be computed by filling a table:

	0	1	2	 <i>k</i> -1	k
0	1				
1	1	1			
2		2			
				C(1 1 1)	C(1 1)
<i>n-</i> 1				C(n-1, k-1)	
n					C(n, k)

Computing C(n,k): pseudocode and analysis

```
ALGORITHM Binomial(n, k)

//Computes C(n, k) by the dynamic programming algorithm

//Input: A pair of nonnegative integers n \ge k \ge 0

//Output: The value of C(n, k)

for i \leftarrow 0 to n do

for j \leftarrow 0 to \min(i, k) do

if j = 0 or j = i

C[i, j] \leftarrow 1

else C[i, j] \leftarrow C[i - 1, j - 1] + C[i - 1, j]

return C[n, k]
```

- Time efficiency: $\Theta(nk)$
- Space efficiency: $\Theta(nk)$

Example: Coin-row Problem by DP

- There are a row of n coins whose values are some positive integers c_1, c_2, \cdots, c_n , not necessarily distinct.
 - The goal is to pick up the maximum amount of money
 - Constraint: no two coins adjacent in the initial row can be picked up.
 - F(n): the maximum amount that can be picked up from the row of n coins.

$$F(n) = \max\{c_n + F(n-2), F(n-1)\}$$
 for $n > 1$,
 $F(0) = 0$, $F(1) = c_1$.

Coin-row Problem by DP: Pseudocode

ALGORITHM CoinRow(C[1..n])

```
//Applies formula (8.3) bottom up to find the maximum amount of money //that can be picked up from a coin row without picking two adjacent coins //Input: Array C[1..n] of positive integers indicating the coin values //Output: The maximum amount of money that can be picked up F[0] \leftarrow 0; F[1] \leftarrow C[1] for i \leftarrow 2 to n do F[i] \leftarrow \max(C[i] + F[i-2], F[i-1]) return F[n]
```

• Efficiency: $\Theta(n)$

Coin-row Problem by DP: Example

• The coin row: 5, 1, 2, 10, 6, 2

$$F[0] = 0$$
, $F[1] = c_1 = 5$

$$F[2] = \max\{1 + 0, 5\} = 5$$

$$F[3] = \max\{2 + 5, 5\} = 7$$

index	0	1	2	3	4	5	6
$\boldsymbol{\mathcal{C}}$		5	1	2	10	6	2
F	0	5					

index	0	1	2	3	4	5	6
$\boldsymbol{\mathcal{C}}$		5	1	2	10	6	2
F	0	5	5				

index	0	1	2	3	4	5	6
$\boldsymbol{\mathcal{C}}$		5	1	2	10	6	2
F	0	5	5	7			

Coin-row Problem by DP: Example

$$F[3] = \max\{2 + 5, 5\} = 7$$

index

$$F[4] = \max\{10 + 5, 7\} = 15$$

5

10

$$F[5] = \max\{6 + 7, 15\} = 15$$

$$F[6] = \max\{2 + 15, 15\} = 17$$

Change-making Problem by DP

- Give change for amount n using the minimum # coins of denominations $d_1 < d_2 < \cdots < d_m$, where $d_1 = 1$.
 - F(n): the minimum # coins whose values add up to n
 - F(0) = 0

$$F(n) = \min_{j: n \ge d_j} \{F(n - d_j)\} + 1 \quad \text{for } n > 0,$$

$$F(0) = 0.$$

Change-making Problem by DP: Pseudocode

ALGORITHM Change Making (D[1..m], n)//Applies dynamic programming to find the minimum number of coins //of denominations $d_1 < d_2 < \cdots < d_m$ where $d_1 = 1$ that add up to a //given amount n //Input: Positive integer n and array D[1..m] of increasing positive integers indicating the coin denominations where D[1] = 1//Output: The minimum number of coins that add up to n $F[0] \leftarrow 0$ for $i \leftarrow 1$ to n do $temp \leftarrow \infty$: $i \leftarrow 1$ while $j \le m$ and $i \ge D[j]$ do $temp \leftarrow \min(F[i - D[j]], temp)$ $i \leftarrow i + 1$ $F[i] \leftarrow temp + 1$ return F[n]

Time efficiency: O(nm)

Change-making Problem by DP: Example

Amount n =6, and coin denominations 1, 3, 4

$$F[0] = 0$$

$$F[1] = \min\{F[1-1]\} + 1 = 1$$

$$F[2] = \min\{F[2-1]\} + 1 = 2$$

$$F[3] = \min\{F[3-1], F[3-3]\} + 1 = 1$$

n	0	1	2	3	4	5	6
F	0	1	2				

Change-making Problem by DP: Example

Amount n =6, and coin denominations 1, 3, 4

$$F[4] = \min\{F[4-1], F[4-3], F[4-4]\} + 1 = 1$$

$$F[5] = \min\{F[5-1], F[5-3], F[5-4]\} + 1 = 2$$

$$F[6] = \min\{F[6-1], F[6-3], F[6-4]\} + 1 = 2$$

Coin-collecting Problem by DP

- Several coins are placed in cells of an n by m board, no more than one coin per cell.
 - A robot, located in the upper left cell of the board, needs to collect as many of the coins as possible and bring them to the bottom right cell.
 - On each step, the robot can move one cell to the right or one cell down from its current location.
 - When the robot visits a cell with a coin, it always picks up that coin.
 - Design an algorithm to find the maximum number of coins the robot can collect and a path it needs to follow to do this.
 - F(i, j): the largest # coins the robot can collect and bring to the cell (i, j) in the ith row and jth column of the board.

$$F(i, j) = \max\{F(i - 1, j), F(i, j - 1)\} + c_{ij} \text{ for } 1 \le i \le n, 1 \le j \le m$$

 $F(0, j) = 0 \text{ for } 1 \le j \le m \text{ and } F(i, 0) = 0 \text{ for } 1 \le i \le n,$

Coin-collecting Problem by DP: Example

	1	2	3	4	5	6		
1	0	0	0	0	1	1		
2	0	1	1	2	2	2		
3	0	1	1	3	3	4		
4	0	1	2	3	3	5		
5	1	1	2	3	4	5		
,	(b)							

Coin-collecting Problem by DP: Pseudocode

ALGORITHM RobotCoinCollection(C[1..n, 1..m])

```
//Applies dynamic programming to compute the largest number of //coins a robot can collect on an n \times m board by starting at (1, 1) //and moving right and down from upper left to down right corner //Input: Matrix C[1..n, 1..m] whose elements are equal to 1 and 0 //for cells with and without a coin, respectively //Output: Largest number of coins the robot can bring to cell (n, m) F[1, 1] \leftarrow C[1, 1]; for j \leftarrow 2 to m do F[1, j] \leftarrow F[1, j - 1] + C[1, j] for i \leftarrow 2 to n do F[i, 1] \leftarrow F[i - 1, 1] + C[i, 1] for j \leftarrow 2 to m do F[i, j] \leftarrow \max(F[i - 1, j], F[i, j - 1]) + C[i, j] return F[n, m]
```

- Time efficiency: $\Theta(nm)$
- Space efficiency: $\Theta(nm)$

Exercise 8.1