DATA SCIENCE AND STATISTICS - 23SC3201

TUTORIAL - 1

NAME OF THE STUDENT	KUNAL KUMAR DAPPU
ROLL NUMBER	2320030167
NAME OF THE INSTRUCTOR	SARIKA SABAVATH
DATE AND SIGNATURE OF THE STUDENT	

TOPICS COVERED

- Bayes Theorem
- Probability Addition Rule
- Probability Multiplication Rule

Q1. Bayes Theorem

1.1 Definition

Bayes Theorem is a fundamental result in probability theory that describes how to update the probabilities of hypotheses when given evidence. It provides a way to revise existing predictions or theories (probabilities) given new or additional evidence.

Mathematical Formula:

$$P(A|B) = rac{P(B|A) \cdot P(A)}{P(B)}$$

Where:

- P(A|B): Posterior Probability (Probability of event A occurring given that B is true)
- P(B|A): Likelihood (Probability of event B occurring given that A is true)
- P(A): Prior Probability (Probability of event A occurring)
- P(B): Marginal Probability (Total probability of event B occurring)

1.2 Types of Events

- **Independent Events:** The occurrence of one does not affect the probability of the other.
- **Dependent Events:** The probability of one event depends on the outcome of another.
- Mutually Exclusive Events: Events that cannot happen at the same time.

Bayes Theorem is especially useful for **dependent events**, where prior information is updated with new evidence.

1.3 Detailed Example

Medical Diagnosis:

Suppose there is a rare disease affecting 0.5% of the population. A test for this disease is 99% accurate (true positive rate) and has a 5% false positive rate.

Events:

- Let D = Person has disease
- Let ¬D = Person does not have disease
- Let T = Test is positive

Probabilities:

- P(D)=0.005
- $P(\neg D)=0.995P(\neg D)=0.995P(\neg D)=0.995$
- P(T|D)=0.99P(T|D)=0.99P(T|D)=0.99
- $P(T|\neg D)=0.05P(T|\neg D)=0.05P(T|\neg D)=0.05$

Question:

What is the probability that a person who tests positive actually has the disease?

Step-by-step Solution:

1. Calculate total probability of testing positive:

$$P(T) = P(T|D) \cdot P(D) + P(T|\neg D) \cdot P(\neg D)$$

$$P(T) = (0.99 \times 0.005) + (0.05 \times 0.995) = 0.00495 + 0.04975 = 0.0547$$

2. Apply Bayes Theorem:

$$P(D|T) = rac{P(T|D) \cdot P(D)}{P(T)}$$
 $P(D|T) = rac{0.99 \times 0.005}{0.0547} pprox 0.0905$

So, even after a positive test, the probability the person has the disease is only ~ 9%.

1.4 Python Program

1.5 Real-life Use Cases

- **Medical Testing:** Diagnosing diseases, as above.
- **Spam Detection:** Updating the probability an email is spam based on certain keywords.
- Machine Learning: Naive Bayes classifiers for text classification.
- Forensics: Updating likelihood of guilt given new evidence.

1.6 Types of Implementations

- Manual calculation for simple cases
- Naive Bayes algorithms in machine learning (e.g., sklearn.naive_bayes)
- Bayesian Networks for complex dependencies (e.g., pgmpy in Python)
- Markov Chain Monte Carlo (MCMC) for Bayesian inference in advanced statistics

2. Probability Addition Rule

2.1 Definition

The Addition Rule determines the probability that at least one of several events occurs.

Mutually Exclusive Events:

$$P(A \cup B) = P(A) + P(B)$$

Non-Mutually Exclusive Events:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

where $P(A \cap B)$ is the probability that both events occur.

2.2 Types of Events

- **Mutually Exclusive Events:** Two events cannot happen at the same time (e.g., drawing a king or a queen from a single card draw).
- **Non-Mutually Exclusive Events:** Two events can occur together (e.g., drawing a red card or a king).

2.3 Detailed Example

Example 1: Mutually Exclusive

Question:

What is the probability of rolling a 2 or a 5 on a six-sided die?

Solution:

- P(2) = 1/6
- P(5) = 1/6
- P(2 and 5) = 0 (cannot roll both at once)

$$P(2 ext{ or } 5) = rac{1}{6} + rac{1}{6} = rac{2}{6} = rac{1}{3}$$

Example 2: Non Mutually Exclusive

Question:

What is the probability of drawing a card that is a heart or a king from a standard deck?

Solution:

- P(heart) = 13/52
- P(king) = 4/52
- P(heart and king) = 1/52 (king of hearts)

$$P(\text{heart or king}) = \frac{13}{52} + \frac{4}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13}$$

2.4 Python Program

```
# Addition Rule: Mutually Exclusive
P_2 = 1/6
P_5 = 1/6
P_2_or_5 = P_2 + P_5  # Mutually exclusive
print(f"Probability of rolling 2 or 5: {P_2_or_5:.2f}")

# Addition Rule: Non-Mutually Exclusive
P_heart = 13/52
P_king = 4/52
P_heart_and_king = 1/52
P_heart_or_king = P_heart + P_king - P_heart_and_king
print(f"Probability of heart or king: {P_heart_or_king:.2f}")
```

2.5 Real-life Use Cases

- Quality Control: Probability of a product failing due to defect A or B.
- **Elections:** Probability that a voter supports candidate X or Y.
- Insurance: Probability of claims from fire or theft.

2.6 Types of Implementations

- Direct calculation using rules
- Simulation (e.g., Monte Carlo) for complex real-world events
- Use of probability libraries (numpy, scipy.stats)

3. Probability Multiplication Rule

3.1 Definition

The Multiplication Rule calculates the probability that **two or more events** occur together:

Independent Events:

$$P(A \cap B) = P(A) \times P(B)$$

Dependent Events:

$$P(A \cap B) = P(A) \times P(B|A)$$

where P(B|A) is the probability of B given A.

3.2 Types of Events

- **Independent Events:** The occurrence of one does not affect the other (e.g., flipping two coins).
- **Dependent Events:** The outcome of one event affects the probability of the next (e.g., drawing cards without replacement).

3.3 Detailed Examples

Example 1: Independent Events

Question:

What is the probability of flipping heads and rolling a 6 on a die?

Solution:

$$P(heads) = 0.5$$

$$P(6) = 1/6$$

$$P(ext{heads and 6}) = 0.5 imes rac{1}{6} = rac{1}{12} pprox 0.083$$

Example 2: Dependent Events

Question:

What is the probability of drawing 2 aces in a row (without replacement) from a deck?

Solution:

P(first ace) = 4/52
P(second ace | first ace drawn) = 3/51

$$P(ext{2 aces}) = rac{4}{52} imes rac{3}{51} = rac{12}{2652} pprox 0.0045$$

3.4 Python Program

3.5 Real-life Use Cases

- Manufacturing: Probability two machines fail on same day.
- Genetics: Probability of inheriting two independent traits.
- **Project Management:** Probability two risk events occur together.

3.6 Types of Implementations

- Direct calculation for simple cases
- Probability trees for dependent events
- Simulation for complex dependencies
- Bayesian Networks for advanced dependencies

References & Further Reading

1. [Khan Academy: Probability and Statistics]

(https://www.khanacademy.org/math/statistics-probability)

2. [Wikipedia: Bayes' Theorem]

(https://en.wikipedia.org/wiki/Bayes%27 theorem)

3. [Python scikit-learn: Naive Bayes]

(https://scikit-learn.org/stable/modules/naive bayes.html)

4. [Probability Rules: Addition and Multiplication]

(https://stattrek.com/probability/probability-rules.aspx)

5. [pgmpy: Probabilistic Graphical Models in Python]

(https://pgmpy.org/)

Submitted by Kunal Kumar Dappu – 2320030167 04-10-2025.