Lecture 1 - Ionic structures

Lecture Summary

- Types and applications of ionic materials
- Crystallography recap
- Lattice energy and ionic bonding
- Close-packing and ionic structure types

- Many inorganic solids
 - $\circ\,$ e.g. $\mathrm{Na^{+}Cl^{-}}$ and $\mathrm{Mg^{2+}SO_{4}^{2-}}$

- Many inorganic solids
 - \circ e.g. $\mathrm{Na^{+}Cl^{-}}$ and $\mathrm{Mg^{2+}SO_{4}^{2-}}$
- Organic salts
 - o ammonium acetate NH₄⁺CH₃COO[−]
 - chlorphenirammonium maleate (active part of Piriton®)

Chlorphenirammonium maleate

- Many inorganic solids
 - \circ e.g. $\mathrm{Na^{+}Cl^{-}}$ and $\mathrm{Mg^{2+}SO_{4}^{2-}}$
- Organic salts
 - o ammonium acetate NH₄⁺CH₃COO[−]
 - chlorphenirammonium maleate (active part of Piriton®)
- (in)organic salts
 - \circ Mono-/Di-/Tri-Sodium citrate $\mathrm{Na_{x}C_{6}H_{8-x}O_{7}}$
 - collectively used as E331 in food
 - x can be varied from 1–3

Chlorphenirammonium maleate

Trisodium Citrate (x=3)

- Many inorganic solids
 - \circ e.g. $\mathrm{Na^{+}Cl^{-}}$ and $\mathrm{Mg^{2+}SO_{4}^{2-}}$
- Organic salts
 - o ammonium acetate NH₄⁺CH₃COO[−]
 - chlorphenirammonium maleate (active part of Piriton®)
- (in)organic salts
 - \circ Mono-/Di-/Tri-Sodium citrate $\mathrm{Na_{x}C_{6}H_{8-x}O_{7}}$
 - collectively used as E331 in food
 - x can be varied from 1–3
- Ionic liquids
 - Either organic or inorganic, liquid below 100 °C

Chlorphenirammonium maleate

Trisodium Citrate (*x*=3)

- Large range of practical applications
 - important for energy storage, but lots of other applications!
 - ionic liquids are gaining attention for many applications

- Large range of practical applications
 - important for energy storage, but lots of other applications!
 - ionic liquids are gaining attention for many applications
- High melting points due to Coloumbic energy (see <u>later</u>)

- Large range of practical applications
 - important for energy storage, but lots of other applications!
 - ionic liquids are gaining attention for many applications
- High melting points due to Coloumbic energy (see <u>later</u>)
- Electrically insulating
 - Electronegativity differences promote localised electrons

- Large range of practical applications
 - important for energy storage, but lots of other applications!
 - ionic liquids are gaining attention for many applications
- High melting points due to Coloumbic energy (see <u>later</u>)
- Electrically insulating
 - Electronegativity differences promote localised electrons
- Usually hard, and often robust to harsh conditions
 - e.g. Synroc is used to encapsulate nuclear waste

We can divide solids into two categories:

Molecular (e.g. paracetamol)

- Strong intramolecular bonds
- Weaker intermolecular interactions

Infinite (e.g. NaCl)

- Strong bonds between all atoms
- No discrete molecules

We'll concentrate on **infinite materials**.

Recap on crystal structure

Periodic solids can be described by a unit cell

- Defined by lengths (a, b, c) and angles (α, β, γ)
 - 'Lattice parameters'

Recap on crystal structure

Periodic solids can be described by a unit cell

- Defined by lengths (a, b, c) and angles (α, β, γ)
 - 'Lattice parameters'
- Possesses 'space group' symmetry (an extension to point groups)

Recap on crystal structure

Periodic solids can be described by a unit cell

- Defined by lengths (a, b, c) and angles (α, β, γ)
 - 'Lattice parameters'
- Possesses 'space group' symmetry (an extension to point groups)
- Atom positions defined by fractional position along lattice directions

Example: Sodium chloride

Cubic structure	a = b = a	$z=5.62\mathrm{\AA}$,			
Spacegroup	$Fm\bar{3}m$ (#225, point group = O_h)				
Na atoms at:	(0 0 0) ½)	(½ ½ 0)	(½ 0 ½)	(0 ½	(all symmetry- related)
Cl atoms at:	(½ 0 0) ½)	(0 ½ 0)	(0 0 ½)	(1/2 1/2	(all symmetry- related)

Ionic Bonding

 Ionic compounds stay together because of electrostatic interactions (strong)

Ionic Bonding

- Ionic compounds stay together because of electrostatic interactions (strong)
- Total electrostatic energy is the (infinite) sum over all ion pairs,

$$E_{ ext{Madelung}} = \sum_{i
eq j} rac{q_i q_j}{4 \pi \epsilon_0 r}$$

q is the charge on ions i, j and r is the distance between them

Ionic Bonding

- Ionic compounds stay together because of electrostatic interactions (strong)
- Total electrostatic energy is the (infinite) sum over all ion pairs,

$$E_{ ext{Madelung}} = \sum_{i
eq j} rac{q_i q_j}{4 \pi \epsilon_0 r}$$

q is the charge on ions i, j and r is the distance between them

• $\frac{1}{r}$ dependence makes long-range interactions important

Infinite summations

- For infinite solids, periodicity usually means the sum converges
 - \circ As r increases, the contribution becomes smaller.

Infinite summations

- For infinite solids, periodicity usually means the sum converges
 - As r increases, the contribution becomes smaller.
- An infinite sum can therefore be replaced by the Madelung constant
 - depends on the structure type

Infinite summations

- For infinite solids, periodicity usually means the sum converges
 - As r increases, the contribution becomes smaller.
- An infinite sum can therefore be replaced by the Madelung constant
 - depends on the structure type
- e.g. for NaCl:

$$egin{align} E_{ ext{Madelung}} &= \sum_{i
eq j} rac{q_i q_j}{4\pi\epsilon_0 r} \ &= rac{ ext{N}_{ ext{A}} q_i q_j}{4\pi\epsilon_0 r} igg(6 - rac{12}{\sqrt{2}} + rac{8}{\sqrt{3}} - rac{6}{2} + rac{24}{\sqrt{5}} - \dots igg) \ &\simeq rac{ ext{N}_{ ext{A}} q_i q_j}{4\pi\epsilon_0 r} imes 1.74756 \ \end{aligned}$$

Ionic Structures

Generally, structures **maximise cation-anion** interactions (-ve energy) while **minimising like-charge** interactions (+ve energy)

- Maximise cation-anion coordination number
 - Ideally, ions should be densely packed

In many materials, the optimum is found when the largest ion (often oxide) is **close-packed**

Close packing

Close packing

Face-centered cubic (FCC)

... ABCABC ...

Hexagonal close-packed (HCP)

... ABABAB ...

Holes

CP arrangements of large (an)ions [X] leave 'holes' within the structure, which can be occupied by smaller (cat)ions [M]

Octahedral holes

One hole per cp ion - both are 6-coordinate

Rock salt (NaCl) structure

Nickel Arsenide structure (e.g. FeS)

Rutile

Although not strictly close-packed, rutile (TiO_2) is distorted HCP with Ti^{4+} filling half the octahedral holes CN = 6/3

Tetrahedral holes

Two holes per cp ion

Holes filled	FCC Type	CN(A/X)	HCP Type	CN(A/X)
All	Fluorite (CaF ₂)	4/8	(not possible)	-
Half	Zinc-blende (ZnS)	4/4	Wurtzite (ZnS)	4/4

Which structure type?

Generally, the structure formed depends on the ratio of ionic radii

Smaller cations will prefer lower coordination numbers

$rac{r^+}{r^-}$	Cation C.N.	MX Structure	MX ₂ Structure
0.7 - 1.0	8	CsCl	CaF_2
0.4 - 0.7	6	NaCl	${ m TiO}_2$
0.2 - 0.4	4	ZnS (Wurtzite/Zinc-blende)	Anti-fluorite (e.g. $\mathrm{Li}_2\mathrm{S}$)

These are only approximate 'rules', and other binary structures exist (e.g. CdI_2 , $CdCl_2$, PbO, etc...)

Very difficult to predict!

Beyond binary compounds

With 3 or more elements, structures become much more complicated!

An important one is perovskite, ABX_3

• $r(A) \simeq r(X)$, so can be considered as FCC AX_3 layer with B filling 25% of octahedral holes:

Lecture recap

- Variety of ionic materials with a range of applications
- Revision of basic crystallography
 - Unit cells, symmetry
- Electrostatic interaction hold ionic crystals together
 - Long-ranged
 - Aim to maximise cation-anion interactions
- Close-packing of anions often most stable
 - Ratio of ionic radii suggests which structure is adopted
 - Beyond binary compounds, predicting structures is hard!