Injectively Time-Changed Stationary Processes: A Spectral Analysis

BY STEPHEN CROWLEY
July 13, 2025

Table of contents

1 Introduction12 Fundamental Properties23 Warping Deviation Analysis34 Inversion and Reconstruction35 Band-Limited Structure46 Oscillatory Properties47 Conclusion5

1 Introduction

We develop the theory of injectively time-changed stationary processes, which arise from spectral representations of the form

$$X(t) = \int_{-1}^{1} f(\lambda) e^{i\lambda(\theta(t) - t)} d\lambda$$
 (1)

where $\theta: \mathbb{R} \to \mathbb{R}$ is strictly increasing and $f \in L^2([-1, 1])$.

Definition 1. An injectively time-changed stationary process is a stochastic process $\{X(t)\}_{t\in\mathbb{R}}$ admitting the spectral representation

$$X(t) = \int_{-1}^{1} e^{i\lambda(\theta(t) - t)} dZ(\lambda)$$
 (2)

where $\theta: \mathbb{R} \to \mathbb{R}$ is strictly increasing, $\theta \in C^1(\mathbb{R})$, and $\{Z(\lambda)\}_{\lambda \in [-1,1]}$ is an orthogonal increment process with $E[|dZ(\lambda)|^2] = F(d\lambda)$ for some finite measure F on [-1,1].

2 Fundamental Properties

Theorem 2. [Spectral Representation] Let X(t) be an injectively time-changed stationary process. Then:

- 1. X(t) is well-defined for all $t \in \mathbb{R}$
- 2. $E[|X(t)|^2] = \int_{-1}^1 F(d\lambda) < \infty$
- 3. The covariance function satisfies

$$Cov(X(s), X(t)) = \int_{-1}^{1} e^{i\lambda((\theta(t)-t)-(\theta(s)-s))} F(d\lambda)$$
(3)

Proof. (1) Since θ is strictly increasing and continuous, $\theta(t) - t$ is well-defined for all t. The integral converges by the Cauchy-Schwarz inequality:

$$E[|X(t)|^2] = E\left[\left| \int_{-1}^1 e^{i\lambda(\theta(t) - t)} dZ(\lambda) \right|^2\right] \tag{4}$$

$$= \int_{-1}^{1} F(d\lambda) < \infty \tag{5}$$

- (2) Follows immediately from (1).
- (3) By orthogonality of increments:

$$\operatorname{Cov}(X(s), X(t)) = E\left[\int_{-1}^{1} e^{i\lambda(\theta(s) - s)} dZ(\lambda) \cdot \overline{\int_{-1}^{1} e^{i\mu(\theta(t) - t)} dZ(\mu)}\right]$$
(6)

$$= \int_{-1}^{1} e^{i\lambda((\theta(s)-s)-(\theta(t)-t))} F(d\lambda)$$
 (7)

Theorem 3. [Non-Stationarity] An injectively time-changed stationary process X(t) is stationary if and only if $\theta(t) = t + c$ for some constant $c \in \mathbb{R}$.

Proof. (\Leftarrow) If $\theta(t) = t + c$, then $\theta(t) - t = c$ and

$$Cov(X(s), X(t)) = \int_{-1}^{1} F(d\lambda) = Var(X(0))$$
(8)

which depends only on |t - s| = 0, so X(t) is stationary.

 (\Rightarrow) Suppose X(t) is stationary. Then Cov(X(s),X(t)) depends only on t-s. From Theorem 1, this requires

$$(\theta(t) - t) - (\theta(s) - s) = g(t - s) \tag{9}$$

for some function g. Setting u = t - s and differentiating with respect to t:

$$\theta'(t) - 1 = g'(u) \cdot 1 = g'(t - s) \tag{10}$$

Since the left side depends only on t and the right side on t-s, both must be constant. Thus $\theta'(t) = 1 + k$ for some constant k, implying $\theta(t) = t + k t + c$. For stationarity, we need g(u) = k u, which requires k = 0. Therefore $\theta(t) = t + c$. \square

3 Warping Deviation Analysis

Definition 4. The warping deviation function is $\Delta(t) := \theta(t) - t$.

Proposition 5. [Deviation Properties] Let $\Delta(t) = \theta(t) - t$ where θ is strictly increasing. Then:

- 1. $\Delta'(t) = \theta'(t) 1$
- 2. X(t) is non-stationary unless $\Delta(t)$ is constant
- 3. The instantaneous frequency modulation is $\lambda \Delta'(t)$

Proof. (1) and (2) are immediate. For (3), the phase of the spectral component at frequency λ is $\lambda(\theta(t) - t) = \lambda \Delta(t)$. The instantaneous frequency is

$$\frac{d}{dt} \left[\lambda \, \Delta(t) \right] = \lambda \, \Delta'(t) = \lambda \, (\theta'(t) - 1) \tag{11} \quad \Box$$

4 Inversion and Reconstruction

Theorem 6. [Inversion Formula] Let X(t) be an injectively time-changed stationary process with spectral measure F. If θ is invertible, then

$$F(\{\lambda\}) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t) e^{-i\lambda(\theta(t) - t)} dt$$

$$\tag{12}$$

when F has point masses.

Proof. For a point mass at λ_0 , $X(t) = A e^{i\lambda_0(\theta(t)-t)}$ for some constant A. Then:

$$\frac{1}{2T} \int_{-T}^{T} X(t) e^{-i\lambda(\theta(t)-t)} dt \tag{13}$$

$$= \frac{A}{2T} \int_{-T}^{T} e^{i(\lambda_0 - \lambda)(\theta(t) - t)} dt$$
(14)

As $T \to \infty$, this converges to $A \delta_{\lambda_0}(\lambda)$ by the Riemann-Lebesgue lemma when $\lambda \neq \lambda_0$, and to A when $\lambda = \lambda_0$.

5 Band-Limited Structure

Theorem 7. [Band-Limited Representation] Every injectively time-changed stationary process with support in [-1,1] can be written as

$$X(t) = \int_{-1}^{1} \hat{f}(\lambda) e^{i\lambda(\theta(t)-t)} d\lambda$$
 (15)

where \hat{f} is the Fourier transform of some $f \in L^2(\mathbb{R})$.

Proof. Since the spectral measure F has support in [-1,1], we can write $F(d\lambda) = |\hat{f}(\lambda)|^2 d\lambda$ for some $\hat{f} \in L^2([-1,1])$ by the Radon-Nikodym theorem. The band-limited nature ensures \hat{f} extends to an $L^2(\mathbb{R})$ function that is the Fourier transform of some $f \in L^2(\mathbb{R})$.

6 Oscillatory Properties

Theorem 8. [Priestley Oscillatory Characterization] An injectively time-changed stationary process X(t) with band-limited spectrum in [-1,1] is oscillatory in Priestley's sense if and only if the spectral measure F is concentrated away from $\lambda = 0$.

Proof. Priestley defines oscillatory processes as those whose spectral density is concentrated around non-zero frequencies. Since our process has the form

$$X(t) = \int_{-1}^{1} e^{i\lambda(\theta(t) - t)} dZ(\lambda)$$
(16)

the oscillatory nature depends on whether F assigns significant mass near $\lambda = 0$. If $F(\{0\}) = 0$ and F is concentrated away from zero, then X(t) exhibits sustained oscillations modulated by the time-change $\theta(t) - t$.

7 Conclusion

Injectively time-changed stationary processes provide a natural generalization of stationary processes that preserves spectral structure while allowing for non-trivial temporal evolution. The warping deviation $\theta(t)-t$ serves as the fundamental mechanism for introducing non-stationarity while maintaining the interpretability of frequency-domain analysis.