COMP30026 Models of Computation

Lecture 11: Regular Expressions

Mak Nazecic-Andrlon and William Umboh

Semester 2, 2024

Regular Expressions

Compact notation for describing regular languages.

Similar to "regexes" in JavaScript or Python.

Example: $(0 \cup 1)(0 \cup 1)((0 \cup 1)(0 \cup 1))^*$ describes the strings whose lengths are a positive multiple of 2.

In Python: r"(0|1)(0|1)((0|1)(0|1))*"

Formal Syntax

The regular expressions over an alphabet $\Sigma = \{a_1, \dots, a_n\}$ are given by the grammar

Semantics:

$$\begin{array}{lll} L(a) & = & \{a\} \\ L(\epsilon) & = & \{\epsilon\} \\ L(\emptyset) & = & \emptyset \\ L(R_1 \cup R_2) & = & L(R_1) \cup L(R_2) \\ L(R_1 R_2) & = & L(R_1) \circ L(R_2) \\ L(R^*) & = & L(R)^* \end{array}$$

Notational Conveniences

Can omit o and sometimes parentheses.

Binding precedence: star > concatenation > union.

Examples:

- ab means $(a \circ b)$
- ab^* means $(a \circ (b^*))$.

Regular Expressions – Examples

Regular Expressions to NFAs

Theorem

A language is regular iff it can be described by a regular expression.

Proof idea (\Leftarrow): Construct NFA from regular expression R. Use structural induction.

Base cases:
$$R = a \in \Sigma$$
, $R = \epsilon$, or $R = \emptyset$.

If
$$R = a$$
: Construct \longrightarrow \longrightarrow

If
$$R = \epsilon$$
: Construct \longrightarrow

If
$$R = \emptyset$$
: Construct \longrightarrow

Inductive step: $R = R_1 \cup R_2$, $R = R_1 \circ R_2$, or $R = R_1^*$. Use the constructions for closure under regular operations.

Regular Expressions to NFAs: Example

Convert $(a \cup b)^*bc$ to an NFA.

Start from innermost expressions and work out:

$$\longrightarrow \bigcirc \xrightarrow{b} \bigcirc$$

So an NFA for $a \cup b$ is:

NFAs from Regular Expressions

Use star construction to get NFA for $(a \cup b)^*$:

Finally, for $(a \cup b)^*bc$, we get:

NFAs to Regular Expressions

Proof idea (\Rightarrow): Reverse the construction; convert small pieces of NFA into matching regular expressions.

Represent using generalised NFAs (GNFAs), which allow labeling arrows with regular expressions.

The process produces either
$$\longrightarrow R_1$$
 R_2 R_3 or $\longrightarrow R_4$

We get $(R_1 \cup R_2 R_3^* R_4)^* R_2 R_3^*$ in the first case; R^* in the second.

Note: some Rs may be ϵ or \emptyset .

Prove correctness by induction on number of states.

NFAs to Regular Expressions: Sketch

First, make sure there is only one accept state. Construction:

$$N: \longrightarrow b$$
 $N': \longrightarrow b$

Next, we eliminate states that are neither start nor accept states.

NFAs to Regular Expressions: Sketch

In general: If there are m incoming and n outgoing arrows, replace them with mn bypassing arrows.

Let us illustrate the process on this example:

State Elimination Example

Eliminate D (and use regular expressions with all arcs):

Models of Computation

State Elimination Example

with

•
$$R_1 = 0 \cup 1$$

•
$$R_2 = 1(0 \cup 1)(\epsilon \cup 0 \cup 1)$$

•
$$R_3 = R_4 = \emptyset$$

Hence the instance of the general "recipe" $(R_1 \cup R_2 R_3^* R_4)^* R_2 R_3^*$ is

$$(0\cup 1)^*1(0\cup 1)(\epsilon\cup 0\cup 1)$$

Full proofs in Sipser.

Some Useful Laws for Regular Expressions

$$A \cup A = A$$

$$A \cup B = B \cup A$$

$$(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$$

$$(A \circ B) \circ C = A \circ (B \circ C) = A \circ B \circ C$$

$$\emptyset \cup A = A \cup \emptyset = A$$

$$\epsilon \circ A = A \circ \epsilon = A$$

$$\emptyset \circ A = A \circ \emptyset = \emptyset$$

More Useful Laws for Regular Expressions

$$(A \cup B) \circ C = (A \circ C) \cup (B \circ C)$$

$$A \circ (B \cup C) = (A \circ B) \cup (A \circ C)$$

$$(A^*)^* = A^*$$

$$\emptyset^* = \epsilon^* = \epsilon$$

$$(\epsilon \cup A)^* = A^*$$

$$(A \cup B)^* = (A^*B^*)^*$$

Limitations of Finite Automata

Cannot look ahead.

Fixed number of bits of memory.

How many bits to recognise this, without lookahead?

$$\{0^n1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$$

Exercise: Is the language $L_1 = \{0^n 1^n \mid 0 \le n \le 999999999\}$ regular?

What about
$$L_2 = \left\{ w \,\middle|\, \begin{array}{c} w \text{ has an equal number of occurrences} \\ \text{of the substrings 01 and 10} \end{array} \right\} \,\, ?$$

The Pumping Lemma for Regular Languages

Lemma

If A is a regular language over Σ , then there is some integer p such that, for all $s \in A$ of length at least p, there exist $x, y, z \in \Sigma^*$ such that s = xyz and

- ① $xy^iz \in A$ for all $i \ge 0$, and
- ② |y| > 0, and
- $|xy| \leq p.$

This is the standard tool for proving languages non-regular.

Loosely, it says that if we have a regular language A and consider a sufficiently long string $s \in A$, then a recogniser for A must traverse some loop to accept s. So A must contain infinitely many strings exhibiting repetition of some substring in s.

Intuition for the Pumping Lemma

Pigeonhole principle: If you put p pigeons into fewer than p holes, some hole has more than one pigeon.

If a DFA has p states, and you run it on a string longer than p symbols, it must enter some state twice.

Therefore it passes through a cycle in the graph!

Tools for the Proof

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

Definition

Let $\hat{\delta}: Q \times \Sigma^* \to Q$ such that for all $q \in Q$, $s \in \Sigma^*$ and $a \in \Sigma$,

$$\hat{\delta}(q,\epsilon) = q, \ \hat{\delta}(q,as) = \hat{\delta}(\delta(q,a),s).$$

Lemma

M accepts a string s if and only if $\hat{\delta}(q_0, s) \in F$.

Lemma

For all $q \in Q$ and $x, y \in \Sigma^*$,

$$\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y).$$

Proving the Pumping Lemma

Let DFA $M = (Q, \Sigma, \delta, q_0, F)$ recognise A. Let p = |Q| and consider s with |s| > p. In an accepting run for s, some state must be re-visited. Let q_i be the first such state. At the first visit, x has been consumed, at the second, xy, (strictly longer than x). This suggests a way of splitting s into x, y and z such that $xz, xyz, xyyz, \dots$ are all in A.

20 / 25

Notice that $y \neq \epsilon$. Also, if input consumed has length k then the number of state visits is k+1. Let m+1 be the number of state visits when reading xy, then $|xy|=m \leq p$. Notice that $m \leq p$, because m+1 is the number of state visits with only one repetition.

Using the Pumping Lemma

The pumping lemma says:

A regular
$$\Rightarrow \exists p \forall s \in A \exists x, y, z \in \Sigma^* : \begin{cases} s \text{ can be written} \\ xyz \text{ such that } \dots \end{cases}$$

We can use its contrapositive to show that a language is non-regular:

$$\forall p \exists s \in A \forall x, y, z \in \Sigma^* : \left\{ \begin{array}{c} s \text{ can't be written} \\ xyz \text{ such that} \end{array} \right\} \Rightarrow A \text{ not regular}$$

Coming up with such an s is sometimes easy, sometimes difficult.

Pumping Example 1

We show that $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Assume it is, and let p be the pumping length.

Consider $0^p 1^p \in B$ with length greater than p.

By the pumping lemma, $0^p 1^p = xyz$, with $xy^i z$ in B for all $i \ge 0$.

But y cannot consist of all 0s, since xyyz then has more 0s than 1s.

Similarly y cannot consist of all 1s. And if y has at least one 0 and one 1, then some 1 comes before some 0 in xyyz.

So we inevitably arrive at a contradiction if we assume that \boldsymbol{B} is regular.

Pumping Example 2

 $C = \{w \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Assume it is, and let p be the pumping length.

Consider $0^p 1^p \in C$ with length greater than p.

By the pumping lemma, $0^p1^p = xyz$, with xy^iz in C for all $i \ge 0$, $y \ne \epsilon$, and $|xy| \le p$. Since $|xy| \le p$, y consists entirely of 0s.

But then $xyyz \notin C$, a contradiction.

A simpler alternative proof: If C were regular then also B from before would be regular, since $B = C \cap 0^*1^*$ and regular languages are closed under intersection.

Pumping Example 3

Show that $D = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Assume it is, and let p be the pumping length.

Consider $0^p 10^p 1 \in D$ with length greater than p.

By the pumping lemma, $0^p 10^p 1 = xyz$, with $xy^i z$ in D for all $i \ge 0$, $y \ne \epsilon$, and $|xy| \le p$.

Since $|xy| \le p$, y consists entirely of 0s.

But then $xyyz \notin D$, a contradiction.

Example 4 – Pumping Down

We show that $E = \{0^i 1^j \mid i > j\}$ is not regular.

Assume it is, and let p be the pumping length.

Consider $0^{p+1}1^p \in E$.

By the pumping lemma, $0^{p+1}1^p = xyz$, with xy^iz in E for all $i \ge 0$, $y \ne \epsilon$, and $|xy| \le p$.

Since $|xy| \le p$, y consists entirely of 0s.

But then $xz \notin E$, a contradiction.