

Alberi binari quasi completi

Si consideri un albero binario quasi completo di altezza h

Se il livello inferiore contiene 1 elemento:

num. di elementi
$$n = (1 + 2 + ... + 2^{h-1}) + 1 = (2^h - 1) + 1 = 2^h$$

Se il livello inferiore è pieno:

numero di elementi
$$n = 1 + 2 + ... + 2^h = 2^{h+1} - 1$$

Quindi in ogni caso: $2^{h} \le n \le 2^{h+1} - 1 < 2^{h+1}$

$$\rightarrow h \le log \ n < h + 1$$

$$\rightarrow log n - 1 < h \le log n$$

$$\rightarrow h = \lfloor \log n \rfloor$$

Sarà importante per heap sort

Vittorio Maniezzo - Universita di Bologna

3

Heap: definizione formale

Una Heap (max-heap) è un albero binario quasi completo.

Quasi significa che possono mancare alcune foglie consecutive a partire dall'ultima foglia di destra.

Per ogni nodo $i: value(i) \le value(parent(i))$

Nota 1: il massimo si trova nella radice

Nota 2: non c'è nessuna relazione tra il valore di un nodo e quello di un suo fratello

Vittorio Maniezzo - Universita di Bologna

Δ


```
HEAPIFY(A,i)

1 = left(i)

r = right(i)

if (1 \le heap-size(A) and A[1]>A[i])

then largest=1

else largest=i

if (r \le heap-size(A) and A[r]>A[largest])

then largest=r

if (largest \neq i)

then SWAP(A[i],A[largest])

HEAPIFY(A,largest)
```


Build-heap

BUILD-HEAP(A)

heap-size(A)=length(A)

for i=length(A)/2downto 1

do HEAPIFY(A,i)

Gli elementi in posizione da length(A)/2 a length(A) sono già heap unitarie.

Analisi approssimativa:

- ogni chiamata a heapify costa O(log(n)).
- chiamiamo heapify O(n) volte,
- quindi build-heap = $O(n \log(n))$

Domanda (esercizio): build-heap = $\Theta(n \log(n))$?

Vittorio Maniezzo - Universita di Bologna

13

Priority Queue (Code a Prioritá)

Dati:

un insieme di elementi, ognuno dei quali ha una chiave (un intero per esempio).

Operazioni:

- inserimento,
- trova il massimo,
- estrazione del massimo (massima chiave).

Applicazioni delle PQ:

Job scheduling, event-driven simulations, ...

Vittorio Maniezzo - Universita di Bologna

Implementazione (facile) usando Prima soluzione: vettore ordinato. Ricerca massimo: $\Theta(1)$ operazioni estrazione massimo: $\Theta(1)$ operazioni $\Theta(n)$ operazioni inserimento: Seconda soluzione vettore non ordinato. $\Theta(n)$ operazioni Ricerca massimo: $\Theta(n)$ operazioni estrazione massimo: inserimento: $\Theta(1)$ operazioni Si può fare meglio ??? Vittorio Maniezzo - Universita di Bologna

15

Heap Sort: l'idea.

Per ordinare in senso crescente.

Prima parte:

• si trasforma l'array in input in una *max*-heap

Seconda parte:

- si scambia il dato nella radice con il dato dell'ultimo nodo
- si esclude l'ultimo nodo dalla heap (non lo si tocca più)
- si ricostruisce la heap

Vittorio Maniezzo - Universita di Bologna

19


```
HEAP SORT

HEAPSORT(A)

BUILDHEAP(A)

for i=length(A) downto 2

do EXCHANGE(A[1],A[i])

heap-size[A] = heap-size(A)-1

HEAPIFY(A,1)

Oppure (meglio)

HEAPSORT(A)

BUILDHEAP(A)

for i=length(A) downto 2

A[i] = EXTRACTMAX();
```

Heap Sort, complessitá Complessità nel caso pessimo di heapsort. • buildHeap ripete O(n) volte il ciclo interno • Si fanno n − 1 chiamate a Heapify • Ogni chiamata costa O(log n) • Quindi heapSort ∈ O(n · log n) Domanda: heapsort è in-place?

tea	PS	ort	, e	SE	.	~ [))	Ø		(d	a v	viki	ped	dia,
Dati:	6, 5, 3	3, 1, 8	3, 7, 2	, 4										
leap:	8, 6,	7, 4, 5	5, 3, 2	, 1										
Heap:	7, 6, 3	3, 4, 5	, 1, 2		8									
Heap:	6, 5, 3	3, 4, 2	, 1		7,	8								
Heap:	5, 4, 3	3, 1, 2			6,	7,	8							
Heap:	4, 2, 3	3, 1			5,	6,	7,	8						
leap:	3, 2, 2	1			4,	5,	6,	7,	8					
Heap:	2, 1				3,	4,	5,	6,	7,	8				
leap:	1				2,	3,	4,	5,	6,	7,	8			
leap:					1,	2,	3,	4,	5,	6,	7,	8		

