

OPCIÓN 1

PROBLEMA 1:

Sea $P_3(x)$ el espacio vectorial de los polinomios de grado menor o igual que 3 con coeficientes reales. Sea f: $P_3(x) \longrightarrow P_3(x)$ definida por:

$$f[p(x)] = \beta p(x) + p'(x)$$
, con $\beta \in R$

- a) Probar que f es una aplicación lineal.
- b) Hallar su núcleo, su imagen y clasificar f según los valores de β.
- c) Suponiendo β = 1, hallar la matriz asociada a f, cuando se considera en $P_3(x)$ la base $B = \{2, x + 1, x^2 1, x^3 + 1\}$ tanto en el espacio inicial como en el final.

PROBLEMA 2:

Hallar el volumen del sólido mayor obtenido en un cono recto de base circular de radio 2 cm, al cortarlo con un plano paralelo al eje del cono a una distancia de una unidad de dicho eje. La altura del cono es de 6 cm.

PROBLEMA 3:

- a) Demostrar que si n es par, los números naturales n² 1 y 3n + 1 son primos entre si.
- b) Demostrar que si n = 30m, entonces la cantidad de números enteros positivos distintos de cero que no son mayores que n y que no se dividen por ninguno de los números 6, 10, 15 es igual a 22m.

PROBLEMA 4:

Sean b y c dos números comprendidos entre 0 y 1. Hallar la probabilidad de que la ecuación

$$x^2 + 2bx + c = 0$$

tenga raíces reales en los casos:

- 1) Que los números se elijan al azar e independientemente.
- 2) Que la función de densidad del par (b, c) sea:

$$f(b,c) = \begin{cases} \frac{3}{2}(b^2 + c^2), & \text{si } b,c \in (0,1) \\ 0, & \text{en otro caso} \end{cases}$$

PROBLEMA 5:

La recta tangente a la parábola P de ecuación $y^2 = 2x$ en uno de sus puntos $M \in P$ corta al eje de ordenadas en el punto A. La recta normal a P en el mismo punto M corta a dicho eje en M B. Hallar la ecuación del lugar geométrico que describe el baricentro M del triángulo formado por los puntos M, M M cuando el punto M recorre la parábola M.

OPCIÓN 1

PROBLEMA 1:

Sexa $P_3(x)$ o espazo vectorial dos polinomios de grao menor ou igual que 3 con coeficientes reais. Sexa f: $P_3(x) \longrightarrow P_3(x)$ definida por:

$$f[p(x)] = \beta p(x) + p'(x)$$
, con $\beta \in \mathbb{R}$

- a) Probar que f é unha aplicación lineal.
- b) Achar o núcleo, a imaxe e clasificar f segundo os valores de β.
- c) Supoñendo β = 1, achar a matriz asociada a f, cando se considera en $P_3(x)$ a base $B = \{2, x + 1, x^2 1, x^3 + 1\}$ tanto no espazo inicial como no final.

PROBLEMA 2:

Achar o volume do sólido maior obtido nun cono recto de base circular de raio 2 cm ao cortalo cun plano paralelo ao eixe do cono a unha distancia dunha unidade de dito eixo. A altura do cono é de 6 cm.

PROBLEMA 3:

- a) Demostrar que se n é par, os números naturais n² 1 e 3n + 1 son primos entre si.
- b) Demostrar que se n = 30m, entón a cantidade de números enteiros positivos distintos de cero que non son maiores que n e que non se dividen por ningún dos números 6, 10, 15 é igual a 22m.

PROBLEMA 4:

Sexan b e c dous números comprendidos entre 0 e 1. Achar a probabilidade de que a ecuación

$$x^2 + 2bx + c = 0$$

teña raíces reais nos casos:

- 1) Que os números elíxanse ao azar e independentemente.
- 2) Que a función de densidade do par (b, c) sexa:

$$f(b,c) = \begin{cases} \frac{3}{2}(b^2 + c^2), & \text{se } b,c \in (0,1) \\ 0, & \text{noutro caso} \end{cases}$$

PROBLEMA 5:

A recta tanxente á parábola P de ecuación $y^2 = 2x$ nun dos seus puntos $M \in P$ corta ao eixe de ordenadas no punto A. A recta normal a P no mesmo punto M corta ao devandito eixe en B. Achar a ecuación do lugar xeométrico que describe o baricentro G do triángulo formado polos puntos A, B e M cando M recorre a parábola P.