

ASSIGNMENT-03

NAME : SAMRAKSHINI. GT

· REGISTER NO : 192511172

· Course code/ : CSAD735 NAME

COMPUTER NETWORKS

FOR COMMUNICATION

· DEPARTMENT : B.E COMPUTER SCIENCE

AND ENGINEERING

* SUBMISSION : 26/07/2025

DATE

* TOPIC : SCLABLE IP NETWORK. 1.

DESIGN FOR EXAM CENTRES VLSM AND SECURE DSPF ROUTING

SIMATS ENGINEERING

ASSIGNMENT - 03

CSA0735 : COMPUTER NETWORKS

REGISTED NUMBER	NAME	5CENARIO
192511172	SAMRAKSHINI. G	A GIDVERNMENT EXAM BOARD CONNECTS 1000,
	DEPARTMENT :	CENTRES USING
	B.E CSE	IP HIERARCY
		AND SECURE
		ROUTING

PARAMETERS:

- * VLSM PLANNING
- * ROUTE AUTHENTICATION
- * IP AGGREGATION

QUESTIONS :

1. IF 800 CENTERS NEED 64 IPS AND 200 CENTRE NEED 32 IPS, WHAT IS THE TOTAL ADDRESS 6PACE REQUIRED?

GIVEN DATA:

- . 800 CENTERS NEED 64 IPS EACH
- · 200 CENTRES NEED 32 IPS EACH

STEP 1: FIND THE SIZE OF SUBNET NEEDED,

standua de laboar Asidue (291 pd .

which is $e^{b} = 64$ addresses

e 32 IPS \rightarrow needs FS | abaen \leftarrow 291 SE = 2 S .

STEP &: TOTAL IP ADDRESSES USED:

- · 800 X 64 = 51,200 IPS
- 200 x 32 = 6400 IPS
- = 0014 +005 : Deau ascarbbe 91 los : 57600 IPS

 So, the total address space required is 57600 IPS

 STEP3: SMALLEST BLOCK THAT CAN ACCOMMODATE

 THIS?
- The smallest power of $2 \ge 57,600$ $\Rightarrow 2^{16} = 63,536$, .: / 16 block (i.e65,536) 1PS is the smallest that fits all.

2) HOW DOES OSPF MD5 AUTHENTICATION PREVENTS ROUTE INJECTION?

Route injection is when an unauthorized on malicious router sends fake OSPF routing updates to

- -> Redirect traffic
- egool prituor saus -
- Arouter aft drutaid

MECHANISM :

-> CONFIGURATION:

· All routers are configured with the same retwerk.

-> HASH GENERATION:

- Before sending an OSPF packet, the nouter
 - redmin esneuper a abbA *
 - * Hashes the packet + Kay using MOS
 - ant of taggib 20M art abnaggh *

-- PACKET VALIDATION:

The receiving router:

- i) Exact the MD5 digest
- ii) Recalculates the hash using

the same Key

iii) If it matches → accept packet. If not → reject the packet.

POSSIBLE THREATS	HOW MD5 STOPS
Fake neuter tries to send OSPF update	It doesn't have the secret key - hash fails - packet dropped.
Spected router pretending to be an original	without the control Kay, its update is rejected.
Replay attack (rousings Old OSPF packets)	sequence rumber ensures æld packets ere ignored.

correct the contains with the correct recret key can send valid routings updates.

3) HOW MANY /26, /27 BLOCKS ARE NEEDED ?

- · 126 = 64 1PS
- · /27 = 32 IPS

navig di ti , noiteaup att nI

era estanduce del x <u>008</u> = anatras 008 •

required.

etanduce FSIx009: cratner 005 real.

800/26 blacks = 51,200 IPS 200/27 blacks = 6400 IPS