

University of Massachusetts Dartmouth

A Secure Design Pattern Approach Toward Tackling Lateral-Injection Attacks

The 15th IEEE International Conference on Security of Information and Networks

<u>Chidera "Chi" Biringa</u> & Gokhan Kul

<u>Outline</u>

- Introduction: Security Design Patterns
- Problem: Lateral-SQL Injection Attacks
- SEAL Design
- Evaluating SEAL
- Conclusion

<u>Introduction: Security Design Patterns</u>

<u>Lateral SQL-Injection Attack: Inband Variant</u>

SEAL: Secure DEsign Pattern Approach Towards Tackling Lateral-Injection Attacks

Threat Model

We designed in-band SQLi exploits (E) to demonstrate the utility of our proposed design in tackling injected attacks by permitting the integration of concrete secure strategies.

Attack Vectors Employed in this Work

● E₁: UPDATE-based In-band SQLi

• E₂: ERROR-based In-band SQLi

Evaluating SEAL

Case 2: "User2" Benign Injection

Evaluating SEAL Cont'd

Case 3: UPDATE-based Malicious Injection

Case 4: ERROR-based Malicious Injection

Conclusion

To reproduce the results used in this paper,

visit: https://github.com/biringaChi/SEAL

Thanks