Undergraduate Topics in Computer Science

Series editor

Ian Mackie

Advisory Board

Samson Abramsky, University of Oxford, Oxford, UK
Chris Hankin, Imperial College London, London, UK
Dexter C. Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven S. Skiena, Stony Brook University, Stony Brook, USA
Iain Stewart, University of Durham, Durham, UK

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for undergraduates studying in all areas of computing and information science. From core foundational and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and modern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored by established experts in their fields, reviewed by an international advisory board, and contain numerous examples and problems. Many include fully worked solutions.

More information about this series at http://www.springer.com/series/7592

Antti Laaksonen

Guide to Competitive Programming

Learning and Improving Algorithms Through Contests

Antti Laaksonen Department of Computer Science University of Helsinki Helsinki Finland

ISSN 1863-7310 ISSN 2197-1781 (electronic) Undergraduate Topics in Computer Science ISBN 978-3-319-72546-8 ISBN 978-3-319-72547-5 (eBook) https://doi.org/10.1007/978-3-319-72547-5

Library of Congress Control Number: 2017960923

© Springer International Publishing AG, part of Springer Nature 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company is Springer International Publishing AG part of Springer Nature.

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The purpose of this book is to give you a comprehensive introduction to modern competitive programming. It is assumed that you already know the basics of programming, but previous background in algorithm design or programming contests is not necessary. Since the book covers a wide range of topics of various difficulty, it suits both for beginners and more experienced readers.

Programming contests already have a quite long history. The *International Collegiate Programming Contest* for university students was started during the 1970s, and the first *International Olympiad in Informatics* for secondary school students was organized in 1989. Both competitions are now established events with a large number of participants from all around the world.

Today, competitive programming is more popular than ever. The Internet has played a significant role in this progress. There is now an active online community of competitive programmers, and many contests are organized every week. At the same time, the difficulty of contests is increasing. Techniques that only the very best participants mastered some years ago are now standard tools known by a large number of people.

Competitive programming has its roots in the scientific study of algorithms. However, while a computer scientist writes a proof to show that their algorithm works, a competitive programmer *implements* their algorithm and submits it to a contest system. Then, the algorithm is tested using a set of test cases, and if it passes all of them, it is accepted. This is an essential element in competitive programming, because it provides a way to *automatically* get strong evidence that an algorithm works. In fact, competitive programming has proved to be an excellent way to learn algorithms, because it encourages to design algorithms that really work, instead of sketching ideas that may work or not.

Another benefit of competitive programming is that contest problems require *thinking*. In particular, there are no spoilers in problem statements. This is actually a severe problem in many algorithms courses. You are given a nice problem to solve, but then the last sentence says, for example: "*Hint*: modify Dijkstra's algorithm to solve the problem." After reading this, there is not much thinking needed, because you already know how to solve the problem. This never happens in competitive

vi Preface

programming. Instead, you have a full set of tools available, and you have to figure out *yourself* which of them to use.

Solving competitive programming problems also improves one's programming and debugging skills. Typically, a solution is awarded points only if it correctly solves all test cases, so a successful competitive programmer has to be able to implement programs that do not have bugs. This is a valuable skill in software engineering, and it is not a coincidence that IT companies are interested in people who have background in competitive programming.

It takes a long time to become a good competitive programmer, but it is also an opportunity to learn a lot. You can be sure that you will get a good general understanding of algorithms if you spend time reading the book, solving problems, and taking part in contests.

If you have any feedback, I would like to hear it! You can always send me a message to ahslaaks@cs.helsinki.fi.

I am very grateful to a large number of people who have sent me feedback on draft versions of this book. This feedback has greatly improved the quality of the book. I especially thank Mikko Ervasti, Janne Junnila, Janne Kokkala, Tuukka Korhonen, Patric Östergård, and Roope Salmi for giving detailed feedback on the manuscript. I also thank Simon Rees and Wayne Wheeler for excellent collaboration when publishing this book with Springer.

Helsinki, Finland October 2017 Antti Laaksonen

Contents

1	Intro	duction		1			
	1.1	What i	s Competitive Programming?	1			
		1.1.1	Programming Contests	2			
		1.1.2	Tips for Practicing	3			
	1.2	About	This Book	3			
	1.3	CSES	Problem Set	5			
	1.4	Other 1	Resources	7			
2	Programming Techniques						
	2.1	Langua	age Features	9			
		2.1.1	Input and Output	10			
		2.1.2	Working with Numbers	12			
		2.1.3	Shortening Code	14			
	2.2	Recurs	ive Algorithms	15			
		2.2.1	Generating Subsets	15			
		2.2.2	Generating Permutations	16			
		2.2.3	Backtracking	18			
	2.3	Bit Ma	nnipulation	20			
		2.3.1	Bit Operations	21			
		2.3.2	Representing Sets	23			
3	Effic	iency		27			
	3.1	-	Complexity	27			
		3.1.1	Calculation Rules	27			
		3.1.2	Common Time Complexities	30			
		3.1.3	Estimating Efficiency	31			
		3.1.4	Formal Definitions	32			
	3.2	Examp	oles	32			
		3.2.1	Maximum Subarray Sum	32			
		3.2.2	Two Queens Problem	35			
4	Sorti	ing and	Searching	37			
	4.1	Sorting	g Algorithms	37			
		111	Rubble Sort	38			

viii Contents

		4.1.2	Merge Sort	39
		4.1.3	Sorting Lower Bound	40
		4.1.4	Counting Sort	41
		4.1.5	Sorting in Practice	41
	4.2	Solving	g Problems by Sorting	43
		4.2.1	Sweep Line Algorithms	44
		4.2.2	Scheduling Events	45
		4.2.3	Tasks and Deadlines	45
	4.3	Binary	Search	46
		4.3.1	Implementing the Search	47
		4.3.2	Finding Optimal Solutions	48
5	Data	Structu	res	51
•	5.1		nic Arrays	51
	0.11	5.1.1	Vectors	52
		5.1.2	Iterators and Ranges	53
		5.1.3	Other Structures	54
	5.2	Set Str	uctures	55
		5.2.1	Sets and Multisets	55
		5.2.2	Maps	57
		5.2.3	Priority Queues	58
		5.2.4	Policy-Based Sets	59
	5.3		ments	60
		5.3.1	Set Versus Sorting.	60
		5.3.2	Map Versus Array	61
		5.3.3	Priority Queue Versus Multiset	62
6	Dvn	amic Pro	ogramming	63
•	6.1		Concepts	63
	0.1	6.1.1	When Greedy Fails	63
		6.1.2	Finding an Optimal Solution	64
		6.1.3	Counting Solutions	67
	6.2		Examples	68
		6.2.1	Longest Increasing Subsequence	69
		6.2.2	Paths in a Grid	70
		6.2.3	Knapsack Problems	71
		6.2.4	From Permutations to Subsets	72
		6.2.5	Counting Tilings	74
7	Grai	nh Algar	ithms	77
•	7.1		of Graphs.	78
	,	7.1.1	Graph Terminology	78
		7.1.2	Graph Representation	80
	7.2		Traversal	83
	=	7.2.1	Depth-First Search.	83
			1	

Contents ix

86 87 88 89 92 94 94 96 97 98 99 100 101 103 106 107 107 110 111
88 89 92 94 94 96 97 98 99 100 101 103 106 107 107 108 110 111
89 92 94 94 96 97 98 99 100 101 103 106 107 107 108 110 111
92 94 94 96 97 98 99 100 101 103 106 107 107 108 110 111
94 94 96 97 98 99 100 101 103 106 107 107 108 110 111
94 96 97 98 99 100 101 103 106 107 107 108 110 111
96 97 98 99 100 101 103 106 107 107 108 110 111
97 98 99 100 101 103 106 107 107 108 110 111
98 99 100 101 103 106 107 107 108 110 111
99 100 101 103 106 107 107 107 108 110
100 101 103 106 107 107 108 110
101 103 106 107 107 107 108 110
103 106 107 107 107 108 110 111
106 107 107 107 108 110 111
107 107 107 108 110 111
107 107 108 110 111
 107 108 110 111
 108 110 111
 110 111
 111
111
 111
 113
 114
 115
 115
 116
 117
 119
 119
120
 121
122
122
125
128
 131
131
132
 134
135

x Contents

	10.2	_	ries	137
		10.2.1 F	Finding Ancestors	137
		10.2.2 S	Subtrees and Paths	138
			Lowest Common Ancestors	140
		10.2.4 N	Merging Data Structures	142
	10.3		d Techniques	144
		10.3.1 C	Centroid Decomposition	144
		10.3.2 H	Heavy-Light Decomposition	145
11	Math	ematics		147
	11.1	Number 7	Γheory	147
		11.1.1 F	Primes and Factors	148
		11.1.2 S	Sieve of Eratosthenes	150
		11.1.3 E	Euclid's Algorithm	151
		11.1.4 N	Modular Exponentiation	153
			Euler's Theorem	153
			Solving Equations	155
	11.2		torics	156
		11.2.1 E	Binomial Coefficients	157
		11.2.2	Catalan Numbers	159
			nclusion-Exclusion	161
			Burnside's Lemma	163
			Cayley's Formula	164
	11.3			164
			Matrix Operations	165
			Linear Recurrences	167
		11.3.3	Graphs and Matrices	169
			Gaussian Elimination	170
	11.4		ty	173
			Working with Events	174
			Random Variables	175
		11.4.3 N	Markov Chains	178
			Randomized Algorithms	179
	11.5		eory	181
			Game States	181
			Nim Game	182
			Sprague-Grundy Theorem	184
12	Adva	nced Gran	ph Algorithms	189
	12.1	_	onnectivity	189
			Kosaraju's Algorithm	190
			2SAT Problem	192
	12.2		Paths	193
			Eulerian Paths	194

Contents xi

	12.3	12.2.2 12.2.3 Maximu 12.3.1	Hamiltonian Paths	195 196 198 199
	12.4	12.3.2 12.3.3 12.3.4 Depth-I 12.4.1 12.4.2	Disjoint Paths	202 203 205 207 207 209
13	Geon	net r v		211
13	13.1	·	tric Techniques	211
	1011	13.1.1	Complex Numbers	211
		13.1.2	Points and Lines	213
		13.1.3	Polygon Area	216
		13.1.4	Distance Functions	218
	13.2	Sweep	Line Algorithms	220
		13.2.1	Intersection Points	220
		13.2.2	Closest Pair Problem	221
		13.2.3	Convex Hull Problem	224
14	String	g Algori	thms	225
	14.1	Basic T	Topics	225
		14.1.1	Trie Structure	226
		14.1.2	Dynamic Programming	227
	14.2	_	Hashing	228
		14.2.1	Polynomial Hashing	228
		14.2.2	Applications	229
	142	14.2.3	Collisions and Parameters	230
	14.3	2-Aigo:	rithm	231 232
		14.5.1	Constructing the Z-Array	232
			· · · · · · · · · · · · · · · · · · ·	233
	14 4	14.3.2	Applications	233 234
	14.4	14.3.2 Suffix A	Applications	234
	14.4	14.3.2	Applications	
	14.4	14.3.2 Suffix A 14.4.1	Applications	234 235
15		14.3.2 Suffix A 14.4.1 14.4.2 14.4.3	Applications Arrays Prefix Doubling Method Finding Patterns LCP Arrays	234 235 236 236
15		14.3.2 Suffix A 14.4.1 14.4.2 14.4.3 tional To	Applications Arrays Prefix Doubling Method Finding Patterns LCP Arrays	234 235 236 236 239
15	Addi	14.3.2 Suffix A 14.4.1 14.4.2 14.4.3 tional To	Applications Arrays Prefix Doubling Method Finding Patterns LCP Arrays	234 235 236 236
15	Addi	14.3.2 Suffix A 14.4.1 14.4.2 14.4.3 tional To Square	Applications Arrays Prefix Doubling Method Finding Patterns LCP Arrays opics Root Techniques	234 235 236 236 239 239
15	Addi	14.3.2 Suffix A 14.4.1 14.4.2 14.4.3 tional To Square 15.1.1	Applications Arrays Prefix Doubling Method Finding Patterns LCP Arrays opics Root Techniques Data Structures	234 235 236 236 239 239 240

xii Contents

15.2	Segmen	nt Trees Revisited	245
	15.2.1	Lazy Propagation	246
	15.2.2	Dynamic Trees	249
	15.2.3	Data Structures in Nodes	251
	15.2.4	Two-Dimensional Trees	253
15.3	Treaps.		253
	15.3.1	Splitting and Merging	253
	15.3.2	Implementation	255
	15.3.3	Additional Techniques	257
15.4	Dynam	ic Programming Optimization	258
	15.4.1	Convex Hull Trick	258
	15.4.2	Divide and Conquer Optimization	260
	15.4.3	Knuth's Optimization	261
15.5	Miscell	aneous	262
	15.5.1	Meet in the Middle	263
	15.5.2	Counting Subsets	263
	15.5.3	Parallel Binary Search	265
	15.5.4	Dynamic Connectivity	266
Appendix	A: Mat	hematical Background	269
Reference	s		277
Indev			279