Kwant project

Nagy Dániel

Week 8: april 7. - april 14. Topological Anderson Insulator 2.

2019/04/11

1 Schedule for the semester

Table 1: Original schedule

Week	Scheduled Task
feb. 18 feb. 24.	Installing Kwant & Running an example
feb. 25 mar. 3.	Reading the documentation & Running more examples
mar. 4 - mar. 10	Reading theory of 2DEG & Writing a 2DEG calculation
mar. 11 mar. 17.	2DEG constriction in a magnetic field
mar. 18 mar. 24.	Graphene focusing
mar. 25 mar. 31.	Mid term report
apr. 1 apr. 7.	Topological Anderson Insulator/ Majorana fermion 1.
apr. 8 apr. 14.	Topological Anderson Insulator/ Majorana fermion 2.
easter holiday	-
apr. 22 apr. 28.	Topological Anderson Insulator/ Majorana fermion 3.
apr. 29 may 5.	Topological Anderson Insulator/ Majorana fermion 4.
Eötvös/Pázmány days	-
may 13 may 19.	Final report

Table 2: Status

Week	Scheduled Task
feb. 18 feb. 24.	Installing Kwant & Running an example √
feb. 25 mar. 3.	Reading the documentation & Running more examples ✓
mar. 4 - mar. 10	Struggling with graphene minimal conductivity - no result
mar. 11 mar. 17.	2DEG basics & Eigenstates and LDOS calculation ✓
mar. 18 mar. 24.	2DEG in magnetic field √
mar. 25 mar. 31.	Mid term report
apr. 1 apr. 7.	Topological Anderson Insulator/ Majorana fermion 1.
apr. 8 apr. 14.	Topological Anderson Insulator/ Majorana fermion 2.
easter holiday	-
apr. 22 apr. 28.	Topological Anderson Insulator/ Majorana fermion 3.
apr. 29 may 5.	Topological Anderson Insulator/ Majorana fermion 4.
Eötvös/Pázmány days	-
may 13 may 19.	Final report

2 Progress so far

- Installing kwant 1.4.0
- Getting familiar with kwant: Sites, hoppings, builders
- Creating simple and more complex tight-binding systems
- Calculating transmission coefficients between two leads
- Calculating eigenfunctions, local densities of states
- Applying homogeneous magnetic field to a quantum point contact
- Experimenting with graphene: Minimal conductivity near Dirac-point

3 Progress in this week

- Improved on my report
- Reading an article: Topological Anderson Insulator https://arxiv.org/abs/0811.3045
- Reading about majorana fermions: Introduction to topological superconductivity and Majorana fermions: http://arxiv.org/abs/1206.1736v2, Majorana chain in a quantum dot-superconductor linear array: https://arxiv.org/abs/1111.6600, Search for Majorana fermions in superconductors: https://arxiv.org/abs/1112.1950
- Trying to understand and reproduce the results described in the article about TAI (https://arxiv.org/abs/ 0811.3045)

4 Topological insulator theory

- Behave as an insulator in the interior, but have conducting edge states
- Quantum Hall effect creates protected edge states using a strong magnetic field
- Introducing magnetic field breaks time-reversal symmetry

- Another way to create protected edge states is to start from a system with Dirac cones, and open gaps in those
- Graphene is a two-dimensional system which has Dirac cones
- This makes graphene suitable to be used as a topological insulator

$$H_0(\mathbf{k}) = \begin{pmatrix} 0 & h(\mathbf{k}) \\ h^{\dagger}(\mathbf{k}) & 0 \end{pmatrix}$$

where $\mathbf{k} = (k_x, k_y)$, and

$$h(\mathbf{k}) = t_1 \sum_{i} \exp\left(i\mathbf{k} \cdot \mathbf{a}_i\right)$$

Rewritten:

$$H_0(\mathbf{k}) = t_1 \sum_i \left[\sigma_x \cos(\mathbf{k} \cdot \mathbf{a}_i) - \sigma_y \sin(\mathbf{k} \cdot \mathbf{a}_i) \right] - 2$$

$$E(\mathbf{k}) = \pm |h(\mathbf{k})| \leftarrow \text{Dirac cone}$$

Adding second neighbor hoppings according to Haldane (paper: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.61.2015)

$$H = -t \sum_{\langle i,j \rangle \alpha} c^{\dagger}_{i\alpha} c_{j\alpha} + i \lambda_{SO} \sum_{\langle \langle i,j \rangle \rangle \alpha\beta} \nu_{ij} c^{\dagger}_{i\alpha} \sigma^{z}_{\alpha\beta} c_{j\beta}$$

5 Topological Anderson Insulator

What are topological Andreson insulators? https://arxiv.org/abs/0811.3045

- The physics of a topological insulator is unaffected by weak disorder, but is destroyed by large disorder
- BUT: Disorder can create a topological insulator for parameters where the system was metallic in the absence of disorder
- These states are called topological Anderson insulators
- Disorder can be modeled as random onsite energy with a uniform distribution within [-W/2,W/2]
- the article discusses disordered strips of HgTe/CdTe quantum wells.
- The expected result can be seen on the image

6 Experimenting with disorder

- The physics of a topological insulator is unaffected by weak disorder, but is destroyed by large disorder
- BUT: Disorder can create a topological insulator for parameters where the system was metallic in the absence of disorder
- These states are called topological Anderson insulators
- Disorder can be modeled as random on-site energy with a uniform distribution within $[-W_0, W_0]$

$$t_{ij} \to t_{ij} \times \exp\left(i\frac{e}{\hbar} \int_{\mathbf{x}_{j}}^{\mathbf{x}_{i}} \mathbf{A}(\mathbf{x}) d\mathbf{s}\right) = \exp\left(i \, 2\pi \frac{\phi}{\phi_{0}} \frac{(y_{i} + y_{j})(x_{i} - x_{j})}{2a^{2}}\right), \text{ where } \phi = Ba^{2}$$

$$V_{\text{dis}} = \sum_{i} W_{i} |i\rangle \langle i|$$

$$\mathcal{H} = \sum_{i} V_{\text{dis}} |i\rangle \langle i| + \sum_{\langle i,j \rangle} t_{ij} |i\rangle \langle j|$$

Figure 1: Creating a simple square lattice

Figure 2: Transmission in function of disorder for $\phi=0$ Figure 3: Transmission in function of disorder for $\phi=0.2$

Figure 4: Simple graphene lattice

Figure 5: Transmission in function of disorder for $\phi=0$

Figure 6: Transmission in function of disorder for $\phi=0.2\,$

Figure 7: Transmission in function of disorder for $\phi=0.4\,$

Figure 8: Transmission in function of disorder for $\phi=0.6\,$

Next step

The article about TAI (https://arxiv.org/abs/0811.3045) specifies the Hamiltonian for HgTe/CdTe:

$$\mathcal{H}(\mathbf{k}) = \begin{pmatrix} h(\mathbf{k}) & 0\\ 0 & h^{\dagger}(-\mathbf{k}) \end{pmatrix}$$
$$h(\mathbf{k}) = \epsilon(k) + \mathbf{d}(\mathbf{k})\sigma, \ \mathbf{k} = (k_x, k_y)$$
$$\mathbf{d}(\mathbf{k}) = (Ak_x, Ak_y, M - Bk^2); \ \epsilon(k) = C - Dk^2$$

Problem:

- Kwant builders accept only scalars or matrices that are in real space, not in k-space.
- How can I implement the above Hamiltonian in kwant?

```
def onsite(site, params):
    return s0 * params.m

# How do I add k-dependent values?
sys = kwant.Builder()
sys[graphene.shape(scattering_region, (0, 0))] = onsite
```