Homotopy, Modular Forms, and the Spectrum $Q(\ell)$

Garrett Credi, Rishi Narayanan, Casey Appleton, Hongyi Liu, Xinyu Wang

Outline Of Presentation

- Background Material
- Problem Description
- 3 Current Work
- 4 Future Work
- Seferences

Modular Forms

In a first abstract algebra, symmetry groups of regular polygons are of primary importance. Here, symmetry groups of functions $f:\mathcal{H}\to\mathbb{C}$ are the objects of investigation.

Modular Forms

In a first abstract algebra, symmetry groups of regular polygons are of primary importance. Here, symmetry groups of functions $f:\mathcal{H}\to\mathbb{C}$ are the objects of investigation.

Definition 1 (Modular Form)

For complex differentiable functions $f: H \to \mathbb{C}$, and any $\gamma \in SL_2(\mathbb{Z})$, f is called a *modular form (of weight k)* if,

$$f(\gamma \tau) = (c\tau + d)^k f(\tau) \text{ for } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and f is complex differentiable at infinity.

Background Material
Problem Description
Current Work
Future Work
References

Congruence Subgroups

The groups in question are subgroups of $SL_2(\mathbb{Z})$,

Congruence Subgroups

The groups in question are subgroups of $SL_2(\mathbb{Z})$,

Taking
$$N > 0$$
, and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

- $\Gamma_0(N) = \{ \gamma \in SL_2(\mathbb{Z}), c \equiv 0 \pmod{N} \}$
- $\Gamma_1(N) = \{ \gamma \in SL_2(\mathbb{Z}), c \equiv 0 \pmod{N} \ a \equiv d \equiv 1 \pmod{N} \}$
- $\Gamma(N) = \{ \gamma \in SL_2(\mathbb{Z}), b \equiv c \equiv 0 \pmod{N} \ a \equiv d \equiv 1 \pmod{N} \}$

Congruence Subgroups

The groups in question are subgroups of $SL_2(\mathbb{Z})$,

Taking
$$N > 0$$
, and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

- $\Gamma_0(N) = \{ \gamma \in SL_2(\mathbb{Z}), c \equiv 0 \pmod{N} \}$
- $\Gamma_1(N) = \{ \gamma \in SL_2(\mathbb{Z}), c \equiv 0 \pmod{N} \ a \equiv d \equiv 1 \pmod{N} \}$
- $\Gamma(N) = \{ \gamma \in SL_2(\mathbb{Z}), b \equiv c \equiv 0 \pmod{N} \ a \equiv d \equiv 1 \pmod{N} \}$

Definition 2 (Congruence Subgroup)

A Congruence Subgroup is, then, any $\Gamma \supset \Gamma(N)$ in $SL_2(\mathbb{Z})$.

Congruence Subgroups

The groups in question are subgroups of $SL_2(\mathbb{Z})$,

Taking
$$N > 0$$
, and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

- $\Gamma_0(N) = \{ \gamma \in SL_2(\mathbb{Z}), c \equiv 0 \pmod{N} \}$
- $\Gamma_1(N) = \{ \gamma \in SL_2(\mathbb{Z}), c \equiv 0 \pmod{N} \ a \equiv d \equiv 1 \pmod{N} \}$
- $\Gamma(N) = \{ \gamma \in SL_2(\mathbb{Z}), b \equiv c \equiv 0 \pmod{N} \ a \equiv d \equiv 1 \pmod{N} \}$

Definition 2 (Congruence Subgroup)

A Congruence Subgroup is, then, any $\Gamma \supset \Gamma(N)$ in $SL_2(\mathbb{Z})$.

Modular forms of weight k, with respect to a congruence group Γ , form rings written $M_k(\Gamma)$.

Now, considering any $\Lambda_{\tau} = \mathbb{Z} \oplus \mathbb{Z} \tau \subset \mathbb{C}$, for $\tau \in \mathcal{H}$,

Now, considering any $\Lambda_{\tau} = \mathbb{Z} \oplus \mathbb{Z} \tau \subset \mathbb{C}$, for $\tau \in \mathcal{H}$,

Definition 3 (Elliptic Curve)

An *Elliptic Curve* E/\mathbb{C} (read "E defined over \mathbb{C} ") is isomorphic to (an exact picture of) $\mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau)$.

Now, considering any $\Lambda_{\tau} = \mathbb{Z} \oplus \mathbb{Z} \tau \subset \mathbb{C}$, for $\tau \in \mathcal{H}$,

Definition 3 (Elliptic Curve)

An *Elliptic Curve* E/\mathbb{C} (read "E defined over \mathbb{C} ") is isomorphic to (an exact picture of) $\mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau)$.

Using this definition, the action of the congruence subgroup $\Gamma_0(2)$ on an elliptic curve $E=\mathbb{C}/(\mathbb{Z}\oplus\mathbb{Z}\tau)$ is given by,

$$f_{\gamma}: \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau) \to \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\gamma(\tau))$$
$$f_{\gamma}:: z + \Lambda_{\tau} \mapsto \frac{z}{c\tau + d} + \Lambda_{\gamma(\tau)}, \ \gamma \in \Gamma_{0}(2).$$

Now, considering any $\Lambda_{\tau} = \mathbb{Z} \oplus \mathbb{Z} \tau \subset \mathbb{C}$, for $\tau \in \mathcal{H}$,

Definition 3 (Elliptic Curve)

An *Elliptic Curve* E/\mathbb{C} (read "E defined over \mathbb{C} ") is isomorphic to (an exact picture of) $\mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau)$.

Using this definition, the action of the congruence subgroup $\Gamma_0(2)$ on an elliptic curve $E=\mathbb{C}/(\mathbb{Z}\oplus\mathbb{Z}\tau)$ is given by,

$$f_{\gamma}: \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau) \to \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\gamma(\tau))$$
$$f_{\gamma}:: z + \Lambda_{\tau} \mapsto \frac{z}{c\tau + d} + \Lambda_{\gamma(\tau)}, \ \gamma \in \Gamma_{0}(2).$$

With this action, one arrives at $\mathcal{H}/\Gamma_0(2)$ which turns out to be precisely classes of elliptic curves (E,C) where C is the cyclic group of order two in E.

Problem Description

Our primary goal is to figure out under what conditions

$$\psi(f) + f \in M^{\bullet}(SL_2(\mathbb{Z}))$$

for

$$f \in M^{\bullet}(\Gamma_0(2))$$

Background Material Problem Description Current Work Future Work References

Continuing From the Previous Semester

Last semester, we developed nice conditions to be in kernel.

Background Material Problem Description Current Work Future Work References

Continuing From the Previous Semester

Last semester, we developed nice conditions to be in kernel. Two nice facts:

Last semester, we developed nice conditions to be in kernel. Two nice facts:

For
$$f \in M_k(\Gamma_0(2))$$
, $(\psi_d + 1)^{-1}(f) = \frac{1}{2^k - 1}(\psi_d - 1)(f)$.

Last semester, we developed nice conditions to be in kernel. Two nice facts:

Theorem 4

For
$$f \in M_k(\Gamma_0(2))$$
, $(\psi_d + 1)^{-1}(f) = \frac{1}{2^k - 1}(\psi_d - 1)(f)$.

(this follows from the fact that $\psi_d^2 = [2^k]$.)

Last semester, we developed nice conditions to be in kernel. Two nice facts:

Theorem 4

For
$$f \in M_k(\Gamma_0(2))$$
, $(\psi_d + 1)^{-1}(f) = \frac{1}{2^k - 1}(\psi_d - 1)(f)$.

(this follows from the fact that $\psi_d^2 = [2^k]$.) This leads to the fact that

$$(\psi_d+1)^{-1}(f)$$
 exists for $f \in M_k(SL_2(\mathbb{Z}))$ if and only if, when we write $f = \sum_{i=0}^{\infty} a_i q^i$, $3^{\nu_3(k)+1} | a_i \, \forall i \geq 1$.

Last semester, we developed nice conditions to be in kernel. Two nice facts:

Theorem 4

For
$$f \in M_k(\Gamma_0(2))$$
, $(\psi_d + 1)^{-1}(f) = \frac{1}{2^k - 1}(\psi_d - 1)(f)$.

(this follows from the fact that $\psi_d^2 = [2^k]$.) This leads to the fact that

Theorem 5

$$(\psi_d+1)^{-1}(f)$$
 exists for $f\in M_k(SL_2(\mathbb{Z}))$ if and only if, when we write $f=\sum_{i=0}^{\infty}a_iq^i$, $3^{\nu_3(k)+1}|a_i\;\forall i\geq 1$.

(Trickier to prove, more useful though).

Which Bases Elements Occur?

Since the forms $c_4^i c_6^j \Delta^k$ generate $M^{\bullet}(SL_2(\mathbb{Z}))$, we investigated when inverses of those elements existed.

Which Bases Elements Occur?

Since the forms $c_4^i c_6^j \Delta^k$ generate $M^{\bullet}(SL_2(\mathbb{Z}))$, we investigated when inverses of those elements existed.

Oftentimes, they do not exist, so we wanted to examine weights

$$c_{i,j,k} = \min \left\{ n \in \mathbb{N} : 3^n c_4^i c_6^j \Delta^k \in im(\psi_d + 1) \right\}.$$

Which Bases Elements Occur?

Since the forms $c_4^i c_6^j \Delta^k$ generate $M^{\bullet}(SL_2(\mathbb{Z}))$, we investigated when inverses of those elements existed.

$$c_{i,j,k} = \min \left\{ n \in \mathbb{N} : 3^n c_4^i c_6^j \Delta^k \in im(\psi_d + 1) \right\}.$$

These measure 'failure to be in image'.

Background Material Problem Description Current Work Future Work References

Characterization of Weights

We were able to fully characterize those weights for all i, j, k.

Characterization of Weights

We were able to fully characterize those weights for all i, j, k.

If
$$k \neq 0$$
, $c_{i,j,k} = \nu_3(4i + 6j + 12k) + 1$.

Characterization of Weights

We were able to fully characterize those weights for all i, j, k.

Theorem 6

If
$$k \neq 0$$
, $c_{i,j,k} = \nu_3(4i + 6j + 12k) + 1$.

If
$$val_3(4i+6j) \le 2$$
, $c_{i,j,0} = 0$.

Characterization of Weights

We were able to fully characterize those weights for all i, j, k.

Theorem 6

If
$$k \neq 0$$
, $c_{i,j,k} = \nu_3(4i + 6j + 12k) + 1$.

Theorem 7

If
$$val_3(4i+6j) \le 2$$
, $c_{i,j,0} = 0$.

$$c_{i,j,0} = \max\{0, \nu_3(2i+3j) - \nu_3(i) - 1\}$$

How Did We Formulate Conjecture?

Used MAGMA to do many, many computations:

```
Weight: 54: Vals: 0.1.1.0.1
Weight: 108; Vals: 0,1,1,0,1,1,0,1,1,0
Weight: 162; Vals: 0,2,2,1,2,2,1,2,2,0,2,2,1,2
Weight: 216; Vals: 0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0
Weight: 270: Vals: 0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1
Weight: 324: Vals: 0.2.2.1.2.2.1.2.2.0.2.2.1.2.2.1.2.2.0.2.2.1.2.2.0.2.2.1.2.2.0.
Weight: 378: Vals: 0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1
Weight: 1026: Vals: 0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1
Weight: 1080: Vals: 0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1
Weight: 1134; Vals: 0,2,2,1,2,2,1,2,2,0,2,1,2,2,1,2,2,0,2,2,1,2,2,1,2,2,0,2,2,1,2,2,1,2,2,0,2,2,1,2,2,1,2,2,1,2
Weight: 1296; Vals: 0,2,2,1,2,2,1,2,2,0,2,2,1,2,2,1,2,2,0,2,2,1,2,2,1,2,2,0,2,2,1,2,2,1,2,2,0,2,2,1,2,2,1,2,2,0,2,2,1,2,2,1,2,2,0,2,2,1,2,2,1,2,2,0,2,2,1,2,2,1,2,2,0,2,2,1,2,2,1,2,2,0,2
 weight: 1404; Vals: 0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1
Weight: 1458: Vals:
Weight: 1566; Vals:
```

Figure: Sequences we considered that demonstrated pattern.

Noting that $ker(\psi_d+1-\phi_f)$ is a module graded by weight, this works gives us a free graded submodule of it.

Noting that $ker(\psi_d+1-\phi_f)$ is a module graded by weight, this works gives us a free graded submodule of it. Specifically,

$$\bigoplus_{\substack{i,j,k\\4i+6j+12k=w}} \langle (\psi_d+1)^{-1} (3^{c_{i,j,k}} c_4^i c_6^j \Delta^k) \rangle \subseteq ker(\psi_d+1-\phi_f)_k$$

Noting that $ker(\psi_d+1-\phi_f)$ is a module graded by weight, this works gives us a free graded submodule of it.

Specifically,

$$\bigoplus_{\substack{i,j,k\\4i+6j+12k=w}} \langle (\psi_d+1)^{-1} (3^{c_{i,j,k}} c_4^i c_6^j \Delta^k) \rangle \subseteq ker(\psi_d+1-\phi_f)_k$$

However, it is not the whole kernel, and we are sad...

Noting that $ker(\psi_d+1-\phi_f)$ is a module graded by weight, this works gives us a free graded submodule of it.

Specifically,

$$\bigoplus_{\substack{i,j,k\\4i+6j+12k=w}} \langle (\psi_d+1)^{-1} (3^{c_{i,j,k}} c_4^i c_6^j \Delta^k) \rangle \subseteq ker(\psi_d+1-\phi_f)_k$$

However, it is not the whole kernel, and we are sad...

Why We Are Sad

$$c_4^3c_6^{16}+c_4^9c_6^{12}\in ker(\psi_d+1-\phi_f)$$
 but the summands are not. $c_{3,16,0}=c_{9,12,0}=1.$

Noting that $ker(\psi_d+1-\phi_f)$ is a module graded by weight, this works gives us a free graded submodule of it.

Specifically,

$$\bigoplus_{\substack{i,j,k\\4i+6j+12k=w}} \langle (\psi_d+1)^{-1} (3^{c_{i,j,k}} c_4^i c_6^j \Delta^k) \rangle \subseteq ker(\psi_d+1-\phi_f)_k$$

However, it is not the whole kernel, and we are sad...

Why We Are Sad

$$c_4^3c_6^{16}+c_4^9c_6^{12}\in ker(\psi_d+1-\phi_f)$$
 but the summands are not. $c_{3,16,0}=c_{9,12,0}=1.$

Future work to figure out what's going on! Most likely (and hopefully) there is a better basis.

Future Work

- Fully characterize $ker(\psi_d + 1 \phi_f)$.
- ② Characterize $im(\phi_f \oplus ((2^{\left\lceil \frac{w}{2} \right\rceil} 1)^{-1}(\psi_d 1))$
- Compute Homology.
- Further research
 - Hecke Operators/elliptic curves over finite fields.
 - Dirichlet L Series

Background Material Problem Description Current Work Future Work References

References I