Obliczenia inżynierskie w środowisku MATLAB Symulacje prostych i złożonych jednowymiarowych układów dynamicznych. Odpowiedzi czasowe i skokowe

Paweł Wachel

Posługując się środowiskiem obliczeniowym MATLAB dokonamy analizy odpowiedzi skokowych i impulsowych prostych obiektów dynamicznych typu SISO (Single Input Single Output) z czasem ciągłym. W rozpatrywanym zadaniu (inaczej niż dotychczas) wykorzystamy reprezentację systemów/obiektów w postaci transmitancji operatorowej. W takim ujęciu ogólna postać systemu dana jest na ogół za pomocą funcji wymiernej

$$K\left(s\right) = \frac{L\left(s\right)}{M\left(s\right)},$$

gdzie L(s) i M(s) to wielomiany zmiennej zespolonej s o współczynnikach odpowiednio $l = [a_l, a_{l-1}, \ldots, a_0]$ oraz $m = [b_m, b_{m-1}, \ldots, b_0]$.

W środowisku MATLAB system K(s) możemy modelować stosując polecenie sys=tf(1,m). Obiekt sys pozwala następnie na dokonywanie szeregu operacji zarówno w dziedzinie czasu jak i częstotliwości. W szczególności możliwe jest wyznaczanie odpowiedzi systemów na pobudzenie skokowe (polecenie step(sys)) impulsowe (polecenie impulse(sys)) oraz dowolne inne, zdefiniowane przez użytkownika (komenda lsim(sys,...)).

Zadania do wykonania:

1. Zbadać (wkreślić) odpowiedzi impulsowe i skokowe obiektów o transmitancjach:

$$K_1(s) = \frac{1}{Ts+1},$$

$$K_2(s) = \frac{s}{Ts+1},$$

$$K_3(s) = \frac{k}{s},$$

$$K_4(s) = \frac{k}{s(Ts+1)}.$$

Badania powtórzyć dla kilku wartości stałych T i k. Zinterpretować wpływ stałych T i k na uzyskiwane przebiegi.

2. Niech s_1, s_2 bedą pewnymi stałymi (niekoniecznie rzeczywistymi). Zbadać odpowiedzi impulsowe i skokowe systemu

$$K(s) = \frac{1}{(s - s_1)(s - s_2)}.$$

Zbadać wpływ stałych s_1 i s_2 (będących tzw. biegunami transmitancji) na odpowiedzi impulsowe i skokowe układu. Rozpatrzyć następujące przypadki:

- (a) s_1, s_2 rzeczywiste oraz $s_1, s_2 < 0$
- (b) s_1 rzeczywiste, $s_1 < 0$, $s_2 = 0$
- (c) s_1, s_2 rzeczywiste oraz $s_1 < 0, s_2 > 0$
- (d) s_1 i s_2 zespolone i sprzężone oraz $\operatorname{Re}\{s_1\} < 0, \operatorname{Re}\{s_2\} < 0$.
- (e) s_1 i s_2 zespolone i sprzężone oraz $\operatorname{Re}\left\{s_1\right\}=0,\operatorname{Re}\left\{s_2\right\}=0.$
- (f) s_1 i s_2 zespolone i sprzężone oraz $\operatorname{Re}\{s_1\} > 0$, $\operatorname{Re}\{s_2\} > 0$.

Przedyskutować wpływ położenia (na płaszczyźnie zespolonej) biegunów s_1 i s_2 na charakter odpowiedzi skokowych i impulsowych układu. Jakie warunki muszą spełniać bieguny, aby odpowiedź impulsowa obiektu zbiegała do zera? Jakie warunki muszą spełniać bieguny, aby odpowiedź skokowa obiektu ustalała się na pewnym poziomie? Jakie warunki muszą spełniać bieguny, aby w układzie występowały/nie występowały oscylacje (gasnące oraz niegasnące)?