Implementação e análise de eficiência do bootstrapping amortizado

Número do Processo - 2024/06478-4Período de Vigência - 01/08/2024 a 31/07/2025Período do Relatório científico - 01/08/2025 a 10/08/2025

1 Resumo

O presente trabalho trata da implementação e análise de um *framework* voltado para operações homomórficas, em particular aquelas empregadas em esquemas de criptografia baseados em Learning With Errors (LWE) e suas variantes de anel (RLWE). Tais esquemas têm sido objeto de intensa pesquisa devido à sua relevância prática e segurança pós-quântica, conforme discutido em [2, 5, 4, 7].

A principal motivação desta pesquisa reside na execução eficiente de operações de bootstrapping, incluindo versões amortizadas, no caso [7], que exploram simetrias e decomposições estruturais para reduzir o custo computacional. Foi realizado um estudo sobre a base matemática necessária, com ênfase no necessário para aplicar o produto externo no framework proposto.

Durante o desenvolvimento, foram projetados e implementados algoritmos para computar o traço entre determinados anéis e corpos ciclotômicos, para definir bases duais, implementar operações tensoriais, além de testes, baseado nas propriedades requeridas, para garantir a corretude da implementação. Também foram implementados os esquemas RLWE e RGSW no formato requerido pelo *framework*, além de claro, o próprio *framework*.

Foram também conduzidos experimentos de desempenho temporal e do comportamento de ruído para comparação com resultados da literatura, utilizando parâmetros compatíveis com [7, 6]. No entanto, a implementação atual, embora funcional, apresenta gargalos que impedem a verificação completa do potencial teórico do framework proposto em relação ao seu desempenho. Em particular, algumas operações críticas, como multiplicações de alta dimensão e transformadas, não se beneficiam ainda de otimizações como o uso de NTTs mais otimizadas, a substituição do módulo Q por um primo adequado, decomposições mais eficientes, uso de CRT, pré-computação dos automorfismos na base (com trade-off de memória), entre outras técnicas possíveis descritas em artigos [8, 9]. Já em relação ao ruído, o resultado encontrado foi positivo, com a constante escondida pela análise assintótica podendo ser 1 na prática.

Assim, conclui-se que, embora a implementação atinja seus objetivos funcionais iniciais, é imprescindível uma reestruturação orientada à otimização para assegurar que as comparações experimentais de desempenho com o estado da arte sejam justas e representativas. Tais melhorias permitirão explorar plenamente o ganho teórico prometido pelos métodos descritos em [6, 7], além de contribuir para o desenvolvimento de implementações abertas de alto desempenho em criptografia homomórfica.

O código fonte, exemplos de uso e testes estão presentes em um repositório público no github, sobre licença livre. https://libntl.org/

https://github.com/gustavoesteche/batch_bootstrapping

2 Realizações

Para fundamentar esta pesquisa, é necessário abordar a base matemática envolvida e os resultados essenciais à sua implementação, que foi realizada inicialmente em SageMath, com forte base na implementação presente em [10], e em C++ utilizando-se da biblioteca NTL ² [11]. Ambas implementações estão presentes no repositório no github³. Primeiramente, serão definidos os anéis e os corpos utilizados e suas relações, posteriormente, os resultados de como efetuar os traços entre os mesmos e como computar as suas bases duais. Segundamente, serão definidos os esquemas RLWE e RGSW que foram implementados, nos quais o produto externo descrito em [7] é efetuado, sobre o framework definido pelo mesmo trabalho. Finalmente, será feita uma análise de ruído e complexidade destas operações, bem como uma análise sobre sua viabilidade de utilização.

2.1 Composição de anéis

Considere $m \in \mathbb{Z}$, o objetivo é estudar como compor o anel ciclotômicos coprimos, em um anel ciclotômico resultante $R_m = \mathbb{Q}[X]/\langle \Phi_m(X) \rangle$, onde $\Phi_m(X)$ é o m-ésimo polinômio ciclotômico. Como \mathbb{Q} é um corpo e $\Phi_m(X)$ é irredutível sobre \mathbb{Q} , por ter raízes primitivas da unidade em \mathbb{C} , R_m é um corpo. Além disso, seja $K_m = \mathbb{Q}(\zeta_m)$ a extensão gerada por uma raiz primitiva da unidade de ordem m. Pelo isomorfismo $X \mapsto \zeta_m$, temos $R_m \cong K_m$, e portanto decompor R_m equivale a decompor K_m . A base canônica (ou de potências) do anel R_m é dada por $B = \{1, X, X^2, \dots, X^{\phi(m)-1}\}$, cujos elementos são linearmente independentes sobre \mathbb{Q} . Via isomorfismo, esta base corresponde a $\{1, \zeta_m, \zeta_m^2, \dots, \zeta_m^{\phi(m)-1}\}$ em K_m .

Seja $m = \prod_l m_l$, com cada m_l uma potência de primo. Conforme [9], o corpo K_m admite a decomposição:

$$K_m \cong \bigotimes_l K_{m_l},\tag{2.1}$$

e, analogamente, em termos de anéis polinomiais: $K_m \cong \bigotimes_l \mathbb{Q}[X_l]/\langle \Phi_{m_l}(X_l) \rangle$.

Dessa forma, uma base natural de K_m é o conjunto dos multinômios $\prod_l X_l^{j_l}$ com $0 \le j_l < \phi(m_l)$, formando a chamada powerful basis. Como $\phi(m) = \prod_l \phi(m_l)$, essa base tem o tamanho correto.

A powerful basis \vec{p} de K_m é o produto tensorial das bases $\vec{p_l}$ de cada K_{m_l} . Os índices do tensor podem ser achatados para formar uma base unidimensional, como discutido em [9]. O ponto crucial é entender como efetivar o produto tensorial entre os elementos dos anéis R_{m_l} .

Para isso, usa-se o isomorfismo $X_l \mapsto X^{m/m_l}$, que preserva a relação $\zeta_{m_l} = \zeta_m^{m/m_l}$. Por exemplo, para m=15, com $p_3=\{1,x_3\}$ e $p_5=\{1,x_5,x_5^2,x_5^3\}$, obtém-se a base $p=\{1,x^3,x^5,x^6,x^8,x^9,x^{11},x^{14}\}$, como mostrado em [9]. Então, de forma generalizada, para realizar o produto tensorial entre os elementos dos anéis R_{m_l} , temos:

$$\prod_{l} \left(\sum_{i=0}^{\phi(m_l)} a_{il} x^{im/ml} \right) \in R_m \tag{2.2}$$

Por fim, como demonstrado em [9], o isomorfismo σ de K_m é o produto tensorial dos embeddings canônicos $\sigma^{(l)}$ de cada K_{m_l} :

$$\sigma\left(\bigotimes_{l} a_{l}\right) = \bigotimes_{l} \sigma^{(l)}(a_{l}). \tag{2.3}$$

Ou seja, aplicar os homomorfismos antes ou depois do produto tensorial resulta na mesma imagem, o que será explorado a seguir.

2.2 Traço

Seja $K\subseteq L$ um extensão de corpo finito e $Aut_K(L)$ o subconjunto de automorfismos de L que fixam elementos de K, ou seja, se $\sigma\in Aut_K(L)$ e $\alpha\in K$, logo $\sigma(\alpha)=\alpha$. Então o Traço de L em K de um elemento $a\in L$ é definido por

$$Tr_{L/K}(a) = \sum_{\sigma \in Aut_K(L)} \sigma(a)$$
 (2.4)

Então, computar o traço se resume a encontrar os automorfismos que fixam os elementos.

²https://libntl.org/

³https://github.com/gustavoesteche/batch_bootstrapping

Sendo p um primo e $n \in \mathbb{Z}^+$, considere o anel ciclotômico $R_{p^n} = \mathbb{Z}[x]/<\Phi_{p^n}(x)>$. Semelhante a seção anterior, este anel também pode ser escrito como $\mathbb{Z}(\zeta_{p^n})$, onde o isomorfismo é $x \mapsto \zeta_{p^n}$.

Inicialmente, foi encontrado como computar o traço de um elemento a entre os anéis R_{p^n} e $R_{p^{n-1}}$, denotado como $Tr_{R_{p^n}/R_{p^{n-1}}}$. Observe que o problema foi definido sobre os corpos e não anéis, porém como o automorfismo respeita a estrutura do anel, portanto o traço permanece bem definido. Os automorfismos em anéis ciclotômicos são da forma $X \mapsto X^i$, então, para encontrar os automorfismos basta encontrar os expoentes que satisfazem a propriedade de fixação requerida. Vamos separar em dois casos:

Caso 1: n=1 Esta discussão é trivial, porque teremos apenas $\varphi(p)=p-1$ automorfismos, que serão definidos por todos os expoentes coprimos com p, ou seja [1,p-1]. Logo, os automorfismos são $\sigma_i(X)=X^i$.

Caso 2: n > 1 Definimos um conjunto de $\varphi(p^n)/\varphi(p^{n-1}) = p$ automorfismos do anel $\mathbb{Z}[x]/\langle \Phi_{p^n}(x)\rangle$ sobre $\mathbb{Z}[x]/\langle \Phi_{p^{n-1}}(x)\rangle$, dados por:

$$\sigma_k(x) = x^{kp^{n-1}+1}, \quad 0 \le k \le p-1.$$

Se $g(x) \in R_{p^{n-1}}$, ou seja, $g(x) = \sum_{i=0}^{\varphi(p^{n-1})} b_i \zeta_{p^{n-1}}^i$. Usando $\zeta_{p^{n-1}} = \zeta_{p^n}^p$, $\sigma_k(g(x))$ pode ser escrito como:

$$\sigma_k(g(x)) = \sum_i b_i x^{pi(kp^{n-1}+1)} = \sum_i b_i x^{pikp^{n-1}} x^{pi}.$$

Como $x^{pikp^{n-1}} = (x^{p^n})^{ik} \equiv 1 \mod \Phi_{p^n}(x)$, segue que $\sigma_k(g(x)) = g(x)$. Portanto, os automorfismos σ_k fixam o subanel $R_{p^{n-1}}$.

Seja f(x) um polinômio em R_{p^n} escrito como $f(x) = \sum_{i=0}^{\varphi(p^n)/p} x^{pi} \sum_{j=0}^{p-1} a_{ij} x^j$. podemos simplificar a atuação do traço de R_{p^n} para $R_{p^{n-1}}$:

$$\sum_{k=0}^{p-1} \sigma_k(f(x)) = p \sum_{i=0}^{\varphi(p^n)/p} x^{pi} a_{i0}.$$

Esse traço pode ser aplicado recursivamente por uma torre: $R_{p^n} \longrightarrow R_{p^{n-1}} \longrightarrow \cdots \longrightarrow \mathbb{Z}$, permitindo computar traços intermediários até o corpo base, ou até o corpo necessário, operação implementada em SageMath.

Ademais, foram obtidas expressões explícitas para os traços parciais $\operatorname{Tr}_{K/K_{12}}$ e $\operatorname{Tr}_{K/K_{13}}$, fundamentais para o framework de batch bootstrapping apresentado em [7]. Seja $K=K_1\otimes K_2\otimes K_3$ e $K'=\bigotimes_{l\neq q}K_l$, então, para $a=\bigotimes_l a_l\in K$, usando a equação [2.3] foi demonstrado que:

$$\operatorname{Tr}_{K/K'}(a) = \left(\bigotimes_{l \neq q} a_l\right) \cdot \operatorname{Tr}_{K_q/\mathbb{Q}}(a_q)$$
 (2.5)

Essa fórmula permite computar o traço parcial removendo um dos fatores do produto tensorial de corpos, simplificando significativamente sua implementação algébrica, que foi usado para critério de confirmação da solução polinômial e pode ser utilizada no futuro para otimização da implementação proposta, foi implementada em SageMath.

Em vias de fato, os tensores são uma das representações do que na realidade é representado por um polinômio $f(x) \in K$. No desenvolvimento a seguir vamos tratar novamente do caso onde queremos eliminar um corpo do traço, ou seja, fixar os elementos dos outros corpos. Tome os mesmos corpos definidos anteriormente. Como K é dado por um produto tensorial, para $f(x) \in K$ temos:

$$f(x) = \sum_{i}^{\phi(m1)-1} a_i x^{im_2 m_3} \times \sum_{j}^{\phi(m2)-1} b_j x^{jm_1 m_3} \times \sum_{k}^{\phi(m3)-1} c_i x^{km_1 m_2}$$

onde cada termo estava originalmente em K_1, K_2, K_3 respectivamente. Assuma sem perda de generalidade que queremos fixar os elementos dos dois primeiros corpos. logo, o automorfismo a tem a forma:

$$x^{a(im_2m_3+jm_1m_3)} = x^{im_2m_3+jm_1m_3}$$

Então $am_2m_3 \equiv m_2m_3$ e $am_1m_3 \equiv m_1m_3$, para isso $a = k \times m_1m_2$. Porém, é importante que $am_1m_3 \not\equiv m_1m_3$, portanto temos que remover esses múltiplos apropriadamente. A solução pode ser vista no seguinte pseudocódigo:

Algorithm 1: Cálculo dos automorfismos

```
Input: Inteiros m, p, n
Output: Lista de automorfismos

1 rest \leftarrow \{i \in [0, p-1] \mid i \neq k\};

2 aut \leftarrow \emptyset;

3 for i \leftarrow 0 to p^{n-1} - 1 do

4 | foreach j \in rest do

5 | a \leftarrow (i \cdot p + j) \cdot m/p^n + 1;

6 | adiciona a a aut;

7 return aut
```

Tais automorfismos são aplicados na definição de traço para seu cálculo na implementação. Esta função foi implementada em SageMath e C++.

2.3 Dual

O cálculo da base dual dos corpos trabalhado é essencial para o empacotamento proposto em [7]. Seja $K = \mathbb{Q}(\zeta_m)$ e $B = \{b_i\}$ uma base de K sobre \mathbb{Q} . Define-se a base dual $B^v = \{b_i^v\}$ por:

$$Tr(b_i b_j^v) = \delta_{ij}$$

O que implica que qualquer elemento $a \in K$ satisfaz $a_j = \text{Tr}(ab_i^v)$.

No caso da base canônica $[x^0, x^1, \dots, x^{\varphi(p^n)-1}]$, o problema se reduz a encontrar elementos k_i que satisfaçam:

$$\operatorname{Tr}(x^i k_i) = \delta_{ij} \cdot p^n$$

Utiliza-se para isso os polinômios $k_i = x^{p^n-i} - x^{p^{n-1}-i}$, com base na fórmula:

$$\operatorname{Tr}(x^j) = \begin{cases} \varphi(p^n) & \text{se } j \equiv 0 \pmod{p^n} \\ -p^{n-1} & \text{se } j \equiv 0 \pmod{p^{n-1}} \land j \not\equiv 0 \pmod{p^n} \\ 0 & \text{caso contrário} \end{cases}$$

Esse k_i satisfaz $\text{Tr}(x^i k_i) = p^n$, mas falha para o par $(i, i + p^{n-1})$. Para corrigir, redefine-se:

$$k_{i+p^{n-1}} := k_{i+p^{n-1}} + k_i$$

Garantindo que $\operatorname{Tr}(x^j k_i) = 0$ para $j \neq i$ e $\operatorname{Tr}(x^i k_i) = p^n$.

Assim, temos o seguinte algoritmo para computar a base dual canônica:

Algorithm 2: canon_dbasis(p, n)

```
Input: Primo p, inteiro n \ge 1
Output: Base dual canônica de \mathbb{Q}(\zeta_{p^n})
1 f \leftarrow \Phi_{p^n}(x)
2 Inicializa vetor l com zeros em \mathbb{Q}[x]/(f)
3 for i \leftarrow 0 to p^{n-1} - 1 do
4 \lfloor l[i] \leftarrow (x^{p^n - i} - x^{p^{n-1} - i}) \bmod f
5 for i \leftarrow p^{n-1} to \varphi(p^n) - 1 do
6 \lfloor l[i] \leftarrow (l[i] + l[i - p^{n-1}])/p^n
7 return l
```

Cada elemento da base resultante tem norma infinita $\leq 2(p-1)/p^n$, propriedade que será útil na análise de ruído em aplicações criptográficas. A implementação foi feita em SageMath e C++.

2.4 RLWE e RGSW

Nesta seção os esquemas e seus parâmetros serão apresentados tais como descritos em [7] com os detalhes específicos utilizados na implementação. Ambos esquemas tem sua segurança baseada no problema

Learning With Errors(LWE), problema creditado como difícil [3]. Porém, provas e discussões sobre sua dificuldade e definições de parâmetros se estendem juntamente a padronização do NIST [1].

É necessário a introduzir a operações de decomposição. Tome o vetor $g^{\top} = (1, 2, \dots, 2^{\ell-1})$ e a matriz definida por $G = g^{\top} \otimes I_2$.

Lema 2.1 (lema 2.3 [7]). Dado um inteiro q, seja $\ell = \lceil \log q \rceil$, $\mathbf{g}^{\top} = (1, 2, \dots, 2^{\ell-1})$ e uma base fixa \mathbb{Z}_q $de\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}\ de\ \mathcal{O}_K/q\mathcal{O}_K.\ Então,\ existe\ uma\ função\ aleatória\ e\ eficientemente\ computável$

$$\mathbf{g}^{-1}: \mathcal{O}_K/q\mathcal{O}_K \to \mathcal{O}_K^{\ell}$$

 $tal \ que \ a \ sa\'ida \ da \ funç\~ao, \ \mathbf{x} \leftarrow \mathbf{g}^{-1}(a), \ sempre \ satisfaz \ \langle \mathbf{g}, \mathbf{x} \rangle = a \ \mathrm{mod} \ q.$

Mais especificamente, se $a = a_1 \mathbf{b}_1 + \dots + a_n \mathbf{b}_n$ onde $a_i \in \mathbb{Z}_q$ e $\mathbf{x}_i \leftarrow \mathbf{g}^{-1}(a_i)$ (onde a função $\mathbf{g}^{-1}(\cdot)$ é definida no Lema 2.1), então:

$$\mathbf{x} = \mathbf{x}_1 \mathbf{b}_1 + \dots + \mathbf{x}_n \mathbf{b}_n$$

e cada vetor $\mathbf{x}_i \in \mathbb{Z}_q^{\ell}$ é sub-Gaussiano com parâmetro O(1).

Perceba que é possível definir a mesma função para G, G^{-1} . A mesma se baseia na aplicação da anterior nas devidas linhas tal que $\langle \mathbf{G}, \mathbf{G^{-1}}(\mathbf{x}) \rangle = x$.

Abaixo estão presentes os parâmetros utilizados nos esquemas:

- λ : o parâmetro de segurança
- \mathcal{R} : o anel ciclotômico $\frac{\mathbb{Z}[x]}{\langle \Phi_m(x) \rangle}$
- Q: o módulo inteiro onde as cifras operam
- \mathcal{R}_Q : o anel quociente $\mathcal{R}/Q\mathcal{R}$
- \mathcal{D}_{σ} : Distribuição gaussiana discreta de ruído sobre \mathcal{R} com desvio padrão σ .
- $-l = \log_t(Q)$
- $t\!:$ o módulo da mensagem no RLWE, para o RGSW utilizado considera-se t=2

2.4.1 Esquema RLWE

- **KeyGen**(1^{λ}): Amostre uma chave secreta $s \leftarrow \mathcal{R}_Q$
- $\mathbf{Enc}(\mathbf{sk}, \mu \in \mathcal{R}_t)$: Amostre um elemeto uniforme do anel $a \leftarrow \mathcal{R}_q$ e um erro $e \leftarrow \mathcal{D}_{\sigma}$. Retorne um criptograma definido por

$$c:=(a,sa+\left\lfloor\frac{Q}{t}\right\rfloor\mu+e)$$

- $\mathbf{Dec}(\mathbf{c}, \mathbf{sk})$: O algoritmo retorna um elemento $\mu \in \mathcal{R}_t$ definido por:

$$\mu = |t\langle (1, -s), c\rangle / Q \rceil \pmod{t}$$

O ruído de um criptograma c que ecript
ma μ sobre a chave secreta s pode ser definido por

$$Err_{\mu}(c) = \langle (-s, 1), c \rangle - \left| \frac{Q}{t} \right| \mu$$

2.4.2 Esquema RGSW

- **KeyGen**(1^{\lambda}): Amostre uma chave secreta $s \leftarrow \mathcal{R}_Q$. **Enc**(sk, $\mu \in \mathcal{R}$): Amostre um vetor uniformemente $\mathbf{a} \leftarrow \mathcal{R}_Q^{2\ell}$ e um vetor de ruído $e \leftarrow D_\sigma^{2\ell}$. Retorne um criptograma definido por $C:=\begin{pmatrix} s\mathbf{a}^\top+\mathbf{e}^\top\\ \mathbf{a}^\top \end{pmatrix}+\mu\mathbf{G}\in R_Q^{2\times 2\ell}$
- **Dec**(c, sk): O algortimo retorna um elemento $\mu \in \mathcal{R}/2\mathcal{R}$:

$$\mu = \left| \left\langle (1, -s), (2\ell - 1) c \right\rangle / Q \right| \pmod{2}$$

O ruído de um criptograma C que encripta a mensagem μ sobre a chave secreta $sk=(1,-s)^T$ pode ser definido por $Err_{\mu}(C)=e^T=sk^T\cdot C-\mu\cdot sk^T\cdot G$

Operações

- Soma Homomórfica $C_1 \boxplus C_2$: Recebe dois criptogramas RGSW C_1, C_2 cifrados sobre a mesma chave e retorna $C_1 \boxplus C_2 := C_1 + C_2$. O novo criptograma obtido cifra a soma das mensagens (μ_1, μ_2) :

 $C_1 + C_2 = \begin{pmatrix} s(\mathbf{a_1}^\top + \mathbf{a_2}^\top) + \mathbf{E}^\top \\ \mathbf{a_1}^\top + \mathbf{a_2}^\top \end{pmatrix} + (\mu_1 + \mu_2)\mathbf{G}$

- Multiplicação Homomórfica $C_1 \boxdot C_2$: Recebe dois criptogramas RGSW C_1, C_2 cifrados sobre a mesma chave e retorna $C_1 \boxdot C_2 := C_1 \mathbf{G}^{-1}(C_2)$. O novo criptograma obtido cifra a multiplicação das mensagens (μ_1, μ_2) :

$$C_{1}\mathbf{G}^{-1}(C_{2}) = \begin{pmatrix} s\mathbf{a_{1}}^{\top} + \mathbf{e_{1}}^{\top} \\ \mathbf{a_{1}}^{\top} \end{pmatrix} \mathbf{G}^{-1}(C_{2}) + (\mu_{1}) \begin{pmatrix} s\mathbf{a_{2}}^{\top} + \mathbf{e_{2}}^{\top} \\ \mathbf{a_{2}}^{\top} \end{pmatrix} + \mu_{1}\mu_{2}\mathbf{G}$$
$$= \begin{pmatrix} s(\mathbf{a_{1}}^{\top}\mathbf{G}^{-1}(C_{2}) + \mu_{1}\mathbf{a_{2}}^{\top}) + \mathbf{e_{1}}^{\top}\mathbf{G}^{-1}(C_{2}) + \mu_{1}\mathbf{e_{2}}^{\top} \\ \mathbf{a_{1}}^{\top} + \mu_{1}\mathbf{a_{2}}^{\top} \end{pmatrix} + \mu_{1}\mu_{2}\mathbf{G}$$

- **Produto Externo** $C_1 \boxtimes c_2$: Recebe um criptogramas RGSW e um RLWE C_1, C_2 respectivamente cifrados sobre a mesma chave e retorna $C_1 \boxtimes C_2 := C_1 \mathbf{g}^{-1}(c_2)$. O novo criptograma obtido cifra a multiplicação das mensagens (μ_1, μ_2) pelo processo análogo ao anterior, suprimido para conscisão.

Para checar a implementação dos esquemas e cada uma das operações descritas, aquém da multiplicação homomórfica, acesse o github 4

2.5 Empacotamento de plaintext e ciphertext

Neste momento a seção 4 de [7] é tomada como base, cujo as operações foram implementadas em SageMath e C++. A única operação não implementeada foi a multiplicação entre criptogramas RGSW, afinal foge do escopo deste trabalho. A seguir, tome convenções necessárias para o resto do trabalho, tome $\rho = \varphi(p_2^{n_2}), \ \rho' = p_2^{n_2}$ com base v_i e dual v_i^v ; $\tau = \varphi(p_3^{n_3}), \ \tau' = p_3^{n_3}$ com base w_i e dual w_i^v ; $\delta_i^{(j)}$ representa a i-ésima componente do ruído da mensagem $\mu_i^{(j)}$ empacotada e cifrada em RGSW; $e_i^{(j)}$ é a i-ésima componente do ruído da mensagem d_i resultante empacotada em RLWE.

Nota: A única diferença da implementação para o proposto teoricamente é que para os plaintexts e ciphertexts, seus elementos vão ser armazenados sempre em \mathcal{R} ao invés de ocasionalmente em $\mathcal{R}_1 \otimes \mathcal{R}_2^{\vee} \otimes \mathcal{R}_3$ ou $\mathcal{R}_1 \otimes \mathcal{R}_2 \otimes \mathcal{R}_3^{\vee}$. Por exemplo, para o criptograma $a \in \mathcal{R}_1 \otimes \mathcal{R}_2^{\vee} \otimes \mathcal{R}_3$, vamos armazenar o criptograma $aP \in \mathcal{R}$ onde $P = \rho$. Esta multiplicação garante que o elemento tem representação única em \mathcal{R} e facilita a implementação.

Surge uma dúvida natural, **Por que não empacotar as mensagens em um criptograma?** O ruído acaba crescendo exponencialmente ao realizar múltiplos produtos externos consecutivamente. Emprestando um resultado da sessãoi seguinte, se decidirmos empacotar mensagens a expressão de um produto externo será: $Tr_{K/K_{13}}(e_1g^{-1}(c_2) + \mu_1e_2) + e'$

Onde e_1, e_2 são os ruídos do criptograma RGSW e RLWE respectivamente. Como o ruído não possui nenhuma propriedade especial em relação as bases v_i, w_i é válido afirmar que a sua norma vai crescer proporcional a um fator $\phi(p_2^{n_2})$. Portanto, após k aplicações de produto externo, a norma final será limitada com um fator de $\approx \phi(p_2^{n_2})^{k/2}\phi(p_3^{n_3})^{k/2}$ que é exponencial. Tal crescimento pode ser verificado via o gráfico a seguir:

 $^{^4}$ https://github.com/gustavoesteche/batch_bootstrapping

Figura 1: Crescimento do ruído pela quantidade de produtos externos com empacotamento ingênuo.

2.6 Análise de Ruído das operações

Nesta seção estão as análises do crescimento de ruído das operações entre criptogramas RLWE e RGSW.

Soma Homomórfica $C_1 \boxplus C_2$

O ruído dessa operação pode ser calculado por:

$$Err(C_1 \boxplus C_2) = sk^T(C_1 + C_2) - (\mu_1 + \mu_2)sk^TG$$

Organizando,

$$Err(C_1 \boxplus C_2) = sk^T(C_1) - (\mu_1)sk^TG + sk^T(C_2) - (\mu_2)sk^TG = e_1^T + e_2^T$$

${f 2.6.1}$ Multiplicação Homomórfica $C_1 oxdots C_2$

O ruído desta operação pode ser calculado por

$$Err(C_1 \boxdot C_2) = sk^{\top}(C_1G^{-1}(C_2)) - (\mu_1\mu_2)sk^{\top}\mathbf{G}$$

Expandindo a expressão encontra-se:

$$Err(C_1 \boxdot C_2) = (1, -s) \begin{pmatrix} s\mathbf{a}_1^\top + \mathbf{e}_1^\top \\ \mathbf{a}_1^\top \end{pmatrix} G^{-1}(C_2) + \mu_1(1, -s) \begin{pmatrix} s\mathbf{a}_2^\top + \mathbf{e}_2^\top \\ \mathbf{a}_2^\top \end{pmatrix}$$

Simplificando, finalmente:

$$Err(C_1 \boxdot C_2) = \mathbf{e}_1^{\mathsf{T}} G^{-1}(C_2) + \mu_1 \mathbf{e}_2^{\mathsf{T}}$$

O produto externo padrão entre RGSW e RLWE pode ser calculado por

$$C_{1} \boxtimes c_{2} = \begin{pmatrix} s\mathbf{a}_{1}^{\top} + \mathbf{e}_{1}^{\top} \\ \mathbf{a}_{1}^{\top} \end{pmatrix} g^{-1}(c_{2}) + \mu_{1}\mathbf{G}g^{-1}(c_{2})$$

$$= \begin{pmatrix} s\mathbf{a}_{1}^{\top}g^{-1}(c_{2}) + \mathbf{e}_{1}^{\top}g^{-1}(c_{2}) \\ \mathbf{a}_{1}^{\top}g^{-1}(c_{2}) \end{pmatrix} + \begin{pmatrix} sa_{2}\mu_{1} + \mu_{1}\mu_{2}\frac{Q}{B} + \mu_{1}e_{2} \\ a_{2}\mu_{1} \end{pmatrix}$$

$$= \begin{pmatrix} s(\mathbf{a}_{1}^{\top}g^{-1}(c_{2}) + a_{2}\mu_{1}) + \mu_{1}\mu_{2}\frac{Q}{B} + \mathbf{e}_{1}^{\top}g^{-1}(c_{2}) + \mu_{1}e_{2} \\ \mathbf{a}_{1}^{\top}g^{-1}(c_{2}) + a_{2}\mu_{1} \end{pmatrix}$$

Finalmente, o ruído é calculado por:

$$Err(C_1 \boxtimes c_2) = \mathbf{e}_1^{\top} g^{-1}(c_2) + \mu_1 e_2$$

Dessa forma, a sua norma infinita deve ser

$$||Err(C_1 \boxtimes c_2)||_{\infty} < 2\ell N ||e_1||_{\infty} + \mu_1 ||e_2||_{\infty}$$

2.6.2 Subgaussiana

Para a análise de ruído 'justa' é preciso utilizar que parte das variáveis aleatórias trabalhadas são limitadas por distribuições subgaussianas. A intuição é de que podemos encontrar um limite superior probabilístico utilizando a desigualdade de Markov se soubermos a distribuição que rege a variável aleatória.

Definição 2.2. Para s > 0, define-se a função Gaussiana $\rho_s : H \to (0,1]$ por

$$\rho_s(\mathbf{x}) = \exp\left(-\pi \|\mathbf{x}\|_2^2/s^2\right).$$

A distribuição Gaussiana contínua D_s é obtida pela normalização de ρ_s , com densidade $s^{-n} \cdot \rho_s(\mathbf{x})$.

Define-se também que uma variável aleatória $X \in \mathbb{R}$ é δ -subgaussiana com parâmetro s > 0 se, para todo $t \in \mathbb{R}$,

$$\mathbb{E}[\exp(2\pi tX)] \le \exp(\delta + \pi s^2 t^2).$$

Agora tome as seguintes propriedades presentes em [9] e [7].

Lema 2.3 (Lema 3.2 [7]). Para quaisquer cifras RGSW C_1 , C_2 que cifram μ_1 , μ_2 com termos de erro e_1 , e_2 respectivamente, temos o seguinte:

$$Err(\mathbf{C}_1 \boxplus \mathbf{C}_2) = \mathbf{e}_1^\top + \mathbf{e}_2^\top.$$

$$Err(\mathbf{C}_1 \boxtimes \mathbf{C}_2) = \mathbf{e}_1^{\top} \cdot \mathbf{G}^{-1}(\mathbf{C}_2) + \mu_1 \cdot \mathbf{e}_2^{\top}.$$

Além disso, suponha que \mathbf{G}^{-1} é amostrado com respeito a alguma base \mathbb{Z} de \mathcal{R} , isto é, $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, tal que $\max_{i \in [n]} \{\|\sigma(\mathbf{b}_i)\|_{\infty}\} \le 1$ como no Lema 2.3. Então os seguintes fatos valem:

- Denote $\mathbf{e}_1^{\top} \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$ como $\mathbf{e}^{\top} = (e_1, \dots, e_{2\ell})$. Então cada entrada de \mathbf{e} é uma variável aleatória independente.
- $\|\sigma(\mathbf{e})\|_{\infty}$ é limitada superiormente por uma variável sub-Gaussiana com parâmetro O(r), para algum r > 0 tal que $r \le \sqrt{N \cdot \log Q} \cdot \|\sigma(\mathbf{e}_1)\|_{\infty}$.

Lema 2.4. Seja uma variável aleatória X de distribuição gaussiana de parâmetros ($\mu = 0, \sigma$), esta variável é limitada superiormente por um subgaussiana de parâmetro mínimo $\sqrt{2\pi}\sigma$

Com o último lema, garantimos que a amostragem gaussiana do erro reflete em uma variável subgaussiana. Logo, passamos para uma análise dos ruídos acumulados pelo resto das operações.

2.6.3 Key Switch

O algoritmo de key-switch, tem como função a troca de chave de um criptograma cifrado em uma chave antiga s', para uma chave nova s, o que aumenta o ruído gerado na cifra, vamos verificar quanto. Para que o algoritmo seja realizado corretamente, é necessário que seja passado como parâmetro a lower half de um criptograma $RGSW_s(s')$, ou seja, é necessário assumir que o RGSW tem segurança circular.

Seja então $d \in \text{RLWE}_{s'}(\mu)$ e d = (a, b), e queremos então um criptograma de μ cifrado em RLWE_s. Considere então K a lower half de um criptograma $RGSW_s(s')$. O objetivo então é encontrar o ruído gerado por,

$$[0,b] - K \times q^{-1}(a)$$

Como K é a parte inferior de $RGSW_s(s')$ considere $K = (A, As + gs' + \mathbf{e}_{KS}) \in \mathcal{R}_Q^{2 \times \ell}$. Desenvolvendo,

$$-(g^{-1}(a) \times A), -(g^{-1}(a) \times A)s + \mu \frac{Q}{B} + E - \mathbf{e}_{KS}g^{-1}(a)$$

Note que o vetor obtido é um criptograma valido $\in \text{RLWE}_s(\mu)$ com ruído $E - \mathbf{e}_{KS}g^{-1}(a)$ que possui norma infinita correspondente:

$$||Err(KS(d))||_{\infty} < ||Err(d)||_{\infty} + N\ell||\mathbf{e}_{KS}||_{\infty}$$

No teorema 4.6 de [7], assume-se que Err(d) e $\mathbf{e}_{KS}g^{-1}(a)$ são subgaussianas com um mesmo parametro B, o que é coerente visto que a magnitude do ruído do key-switch deve ser muito menor do que a da mensagem d. O key switch foi implementado em SageMath e C++.

2.6.4 Eval-Trace

Para facilitar a análise de ruído do algoritmo 4.1 de [7], considere o mesmo algoritmo simplificado, para o efeito da acumulação do ruído ser mais visível, a variável d terá um índice que representa seu degrau na torre de extensão.

Algorithm 3: (RLWE)-Eval- $\operatorname{Tr}_{K/K_{13}}$ com a estrutura de torre

Entrada:

- $c = (b, a) \in (\mathcal{R}_1 \otimes \mathcal{R}_2 \otimes \mathcal{R}_3)^2$ que encripta uma mensagem $\mu \in \mathcal{R}_1 \otimes \mathcal{R}_2 \otimes \mathcal{R}_3$ sob um segredo $s \in \mathcal{R}$.
- $\{\operatorname{evk}^{(\sigma)}\}_{\sigma \in \bigcup_{i=1}^{t-1} \operatorname{Gal}(E_i/E_{i+1})}$, e $\operatorname{evk} \in \operatorname{RGSW}_s(P^{-1} \cdot s) \in \mathcal{R}^2$.

Saída : $c_{out} \in RLWE_s(Tr_{K/K_{13}}(\mu)).$

- 1 Inicialize c = (b, a), defina $\bar{a} = P \cdot a$
- **2** Calcule $d_0 = \operatorname{evk} \boxtimes (0, \bar{a})$
- $\mathbf{3}$ for i=1 até t-1 do
- 4 Calcule $d_{i+1} = \sum_{\sigma \in Gal(E_i/E_{i+1})} KS(\sigma(d_i), evk^{(\sigma^{-1})})$
- **5** Retorne $(\text{Tr}_{K/K_{13}}(b), 0) d_n$

Assuma sem perda de generalidade que o traço realizado é $K \to K_{13}$. Começaremos analisando a recurssão do loop na linha 4:

$$d_{i+1} = \sum_{\sigma \in Gal(E_i/E_{i+1})} KS(\sigma(d_i), evk^{(\sigma^{-1})})$$

Então, utilizando a expressão do erro do key-switch:

$$Err(d_{i+1}) = \sum_{\sigma \in Gal(E_i/E_{i+1})} Err(\sigma(d_i)) - e_{KS}^{\sigma} g^{-1}(d_i[0])$$

Perceba que $Err(\sigma(d_i)) = \sigma(Err(d_i))$ e que o segundo termo no somatório tem sua norma limitada por um valor pequeno, em uma análise inicial $N\ell||e^{\sigma}_{KS}||$, utilizando o lema 3.2 é uma variável subgaussiana com parâmetro limitado por $\sqrt{N\ell}||e^{\sigma}_{KS}||$. Visto que sua norma independe do seu estágio na torre, troque-o por e' onde $||e'|| \leq N\ell||e^{\sigma}_{KS}||$. Logo,

$$Err(d_{i+1}) < p_2 e' + \sum_{\sigma \in Gal(E_i/E_{i+1})} \sigma(Err(d_i))$$

Observe que o termo $\sum_{\sigma \in \operatorname{Gal}(E_i/E_{i+1})} \sigma(Err(d_i)) = Tr_{E_i/E_{i+1}}(Err(d_i))$

$$Err(d_{i+1}) < p_2 e' + Tr_{E_i/E_{i+1}}(Err(d_i))$$

A partir dessa recorrência, é possível chegar na relação:

$$Err(d_n) < Tr_{K/K_{12}}(Err(d_0)) + \rho'e'$$

Sabendo que $d_0 = evk \boxtimes [0, \bar{a}], Err(d_0) = Err(evk)g^{-1}([0, \bar{a}])$. Tome f como o criptograma resultante, $f = (\text{Tr}_{K/K_{13}}(b), 0) - d_n$. Então, expressão do ruído toma a forma:

$$Err(f) < Tr_{K/K_{12}}(e) + Tr_{K/K_{12}}(Err(d_0)) + \rho'e'$$

Ao considerar que as normas de ruído de \mathbf{e}_{KS} e evk são limitadas pelo mesmo valor E, temos que $||Tr_{K/K_{13}}(Err(d_0))|| < 2N\ell E$, logo aplicando as normas:

$$||Err(f)|| < ||Tr_{K/K_{13}}(e)|| + 3\rho' N\ell E$$

Lembrando que ||e|| é a norma do ruído do criptograma inicial. Note que no teorema 4.6 de [7] é proposta uma análise mais justa do erro, a única diferença é que os produtos da forma $eg^{-1}(x)$, onde ||e|| < E são subgaussianos com parametros limitados. Tal operação foi implementada em SageMath e C++.

2.6.5 framework Ext-Prod

Tome $\delta_i^{(j)}$ como a componente i do ruído da mensagem $\mu_i^{(j)}$ empacotada cifrada em RGSW e $e_i^{(j)}$ como a componente i do ruído da mensagem d_j resultante empacotada em RLWE.

Analisado o resultado após Com o resultado da seção anterior e com o erro do produto externo, temos:

$$e^{(1)} < Tr_{K/K_{13}}(\sum_{i} \delta_{i}^{(1)} v_{i}^{v} w_{i} g^{-1}(d_{0}) + \mu^{(0)} e_{i}^{(0)} v_{i}) + \Delta$$

Onde $||\Delta|| < 3\rho' N \ell E$. Se aplicarmos a norma infinita da expressão, conseguimos obter:

$$||e^{(1)}|| < \frac{2\rho(p_2 - 1)N\ell}{\rho'} \sum ||\delta_i^{(1)}|| + \rho||\mu^{(1)}|| \sum ||e_i^{(0)}|| + 3\rho'N\ell$$

Perceba que essa expressão é análoga a expressão obtida no artigo ao efetuarmos uma análise utilizando variáveis subgaussianas.

2.6.6 k Aplicações

Calcular o ruído após k, com k par, operações onde as mensagens são $\mu_i^{(j)} = \xi_q^{t_i^{(j)}}$ simulando o que ocorre durante o batch bootstraping. Substituindo a expressão [], pelas variáveis definidas:

$$e^{(k)} < \sum_{i} e_{i}^{(k-1)} \xi_{q}^{t_{i}^{(k)}} w_{i} + Tr_{K/K_{13}} (\sum_{i} \delta_{i}^{(k)} v_{i}^{v} w_{i} g^{-1}(d_{k-1})) + \Delta$$

Vamos replicar a mesma coisa para k-1 lembrando que agora o traço efetuado será relativo ao corpo K_{12} :

$$e^{(k-1)} < \sum_{i} e_{i}^{(k-2)} \xi_{q}^{t_{i}^{(k-1)}} v_{i} + Tr_{K/K_{12}} (\sum_{i} \delta_{i}^{(k)} w_{i}^{v} v_{i} g^{-1}(d_{k-2})) + \Delta'$$

onde $||\Delta'|| \leq 3\tau' N \ell E$. Agora temos que isolar as componentes de $e^{(k-1)}$ utilizando o traço, por definição do dual temos:

$$e_i^{(k-1)} = Tr_{K/K_{13}}(e^{(k-1)}v_i^v)$$

Desenvolvendo este sistema, encontramos o resultado que:

$$||e^{(k)}|| < ||e^{(0)}|| + \frac{k}{2}(4p_2p_3r^2 + 6p_2r\tau' + 2rp_2 + 3\rho')N(\log Q)E$$

Sobre a análise 'justa', utilizando o lema 8.3, basicamente o que mudam são as normas das operações envolvendo os vetores g, artigo ajustasse o parâmetro da subgaussiana para $r\sqrt{N\log Q}E$ tendo assim como resultado final:

$$||e^{(k)}|| < ||e^{(0)}|| + \frac{k}{2}(4p_2p_3r^2 + 6p_2r\tau' + 2rp_2 + 3\rho')r\sqrt{N\log Q}E$$

Note que esta operação foi implementada em SageMath e C++. Observe as figuras a seguir comparando o crescimento da norma infinita do ruído:

Figura 2: Gráficos da norma infinita pela quantidade de produtos externos realizados

Para a geração destes plots foram omitidas as constantes dos primos, levou-se em conta apenas as variáveis relacionadas ao parâmetro de segurança, $O(r^3\sqrt{N\log Q}E)$. Perceba que mesmo assim, existe uma distância bem razoável entre o ruído encontrado e o limite probabilistíco encontrado. Dado estes e outros testes, é um bom indicativo que escolher os parâmetros da forma utilizada pelo artigo, com a constante da análise assintótica sendo 1 é, de fato, condizente com a realidade.

2.7 Complexidades

Para a memória, é trivial que um inteiro com tamanho máximo Q pode ser representado por $\log Q$ bits, disto, segue que um polinômio de grau N com seus coeficientes em \mathbb{Z}_Q é representado por $O(N\log Q)$ bits. Na implementação realizada fica claro que a complexidade de memória do framework é $O(rN\log^2 Q)$ que provém das chaves de bootstrapping, em que cada criptograma tem $O(N\log^2 Q)$ bits armazenando r mensagens, valores idênticos ao desenvolvido anteriormente, por exemplo em [6].

Para complexidade temporal, a parte relevante para este trabalho é a do produto externo definido pelo trabalho analisado. A complexidade do produto externo padrão envolve, primeiramente, a decomposição de dois polinômios. Em seguida, executa-se a multiplicação de um vetor $(1 \times 2\ell)$ por uma matriz $(2\ell \times 2)$, cujos elementos são polinômios com coeficientes de até $N \log Q$ bits. Essa etapa requer 4ℓ multiplicações polinomiais e $4\ell-2$ somas polinomiais, resultando na complexidade final $O(N \log N \log^2 Q)$.

No traço homomórfico, além de um produto externo, são realizadas $\log r$ chamadas de key-switch em que cada uma tem duas aplicações de automorfismo. Cada key-switch demanda uma decomposição polinomial, 2ℓ multiplicações polinomiais e $2\ell-2$ somas polinomiais. Agregando isto, por cada produto interno no framework proposto temos $[(2\ell-2)\log r+8\ell-2]$ somas polinomiais, $[2\ell\log r+8\ell]$ multiplicações polinomiais, $(2\log r)$ automorfismos e $(\log r+2)$ decomposições. Ao utilizarmos as complexidades mais favoráveis obtemos $O(N\log N\log r\log^2 Q)$, substituindo pelos parâmetros propostos $\tilde{O}(\lambda\log^3\lambda\log r)$ por produto externo de r mensages, resultando em uma complexidade amortizada $\tilde{O}(\log^4\lambda)\cong \tilde{O}(1)$ em contraste de $O(\lambda\log^3\lambda)\cong \tilde{O}(\lambda)$ obtido pelo TFHE apresentado em [6].

2.8 Comentário final

A implementação atual ainda não é capaz de explorar plenamente todo o potencial teórico do framework proposto. Há diversas otimizações possíveis, como o uso de NTTs mais otimizadas, a substituição do módulo Q por um primo adequado, decomposições mais eficientes, uso de CRT, pré-computação dos automorfismos na base (com trade-off de memória), entre outras técnicas possíveis descritas em artigos [8, 9]. Apesar dessas limitações, a presente implementação serve como guia e demonstra resultados promissores, especialmente pelo bom comportamento observado no ruído. Com a aplicação das otimizações mencionadas, será possível quantificar com precisão as constantes associadas ao produto externo proposto. No entanto, na implementação atual, o novo método ainda é mais lento, na prática, quando comparado a outros produtos externos amortizados do estado da arte, como em [6]. Assim, uma implementação otimizada é indispensável para garantir uma comparação justa e fidedigna com tais abordagens.

Referências

- [1] Daniel Balbás. *The Hardness of LWE and Ring-LWE: A Survey*. Cryptology ePrint Archive, Paper 2021/1358. 2021. URL: https://eprint.iacr.org/2021/1358.
- [2] Zvika Brakerski, Craig Gentry e Vinod Vaikuntanathan. "(Leveled) Fully Homomorphic Encryption Without Bootstrapping". Em: *Proceedings of the 3rd Innovations in Theoretical Computer Science Conference*. ITCS '12. Cambridge, Massachusetts: ACM, 2012, pp. 309–325. ISBN: 978-1-4503-1115-1. DOI: 10.1145/2090236.2090262. URL: http://doi.acm.org/10.1145/2090236.2090262.
- [3] Zvika Brakerski et al. "Classical Hardness of Learning with Errors". Em: Proceedings of the 45th ACM Symposium on Theory of Computing (STOC). ACM Press, 2013, pp. 575–584.
- [4] Ilaria Chillotti et al. "Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds". Em: Advances in Cryptology ASIACRYPT 2016. Ed. por Jung Hee Cheon e Tsuyoshi Takagi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 3–33. ISBN: 978-3-662-53887-6.
- [5] Craig Gentry, Amit Sahai e Brent Waters. "Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based". Em: Advances in Cryptology – CRYPTO 2013. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 75–92. ISBN: 978-3-642-40041-4.
- [6] André Guimarães, Hugo V. L. Pereira e Bas van Leeuwen. "Amortized Bootstrapping Revisited: Simpler, Asymptotically-Faster, Implemented". Em: Advances in Cryptology ASIACRYPT 2023. Ed. por Jian Guo e Ron Steinfeld. Vol. 14443. Lecture Notes in Computer Science. Singapore: Springer, 2023, pp. 3–33. DOI: 10.1007/978-981-99-8736-8_1. URL: https://doi.org/10.1007/978-981-99-8736-8_1.
- [7] Feng-Hao Liu e Hao Wang. "Batch Bootstrapping I: A New Framework for SIMD Bootstrapping in Polynomial Modulus". Em: Advances in Cryptology EUROCRYPT 2023, Part III. Vol. 14007. Lecture Notes in Computer Science. Springer, 2023, pp. 321–352. DOI: 10.1007/978-3-031-30620-4_11. URL: https://doi.org/10.1007/978-3-031-30620-4_11.
- [8] Feng-Hao Liu e Hao Wang. "Batch Bootstrapping II: Bootstrapping in Polynomial Modulus Only Requires Õ(1) FHE Multiplications in Amortization". Em: Advances in Cryptology EUROCRYPT 2023, Part III. Vol. 14007. Lecture Notes in Computer Science. Springer, 2023, pp. 353–384. DOI: 10.1007/978-3-031-30620-4_12. URL: https://doi.org/10.1007/978-3-031-30620-4_12.
- [9] Vadim Lyubashevsky, Chris Peikert e Oded Regev. "A Toolkit for Ring-LWE Cryptography". Em: Advances in Cryptology EUROCRYPT 2013. Ed. por Thomas Johansson e Phong Q. Nguyen. Vol. 7881. Lecture Notes in Computer Science. Springer, 2013, pp. 35–54. URL: https://eprint.iacr.org/2013/293.pdf.
- [10] Hilder V. L. Pereira e Eduardo Morais. "Introdução à criptografia completamente homomórfica com implementação em Sage". Em: *Minicursos do XXI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais*. Porto Alegre, Brazil: Sociedade Brasileira de Computação SBC, 2021. Cap. 1, pp. 1–50. DOI: 10.5753/sbc.7165.8.
- [11] Victor Shoup. NTL: A Library for doing Number Theory. https://shoup.net/ntl/. Acessado em: 7 ago. 2025.