

CHARACTERIZATIONS OF CONVEX FUNCTIONS

Why

Convex functions satisfy an interpolation property.

Discussion

By definition, given $S \subset \mathbf{R}^n, \ f: S \to \mathbf{R}$ is convex means that the point

$$(1 - \lambda)(x\mu) + \lambda(x, \nu) = ((1 - \lambda)x + \lambda y, (1 - \lambda)\mu + \lambda \nu)$$

belongs to epi f whenever (x, μ) and (y, ν) belong to epi f and $0 \le \lambda \le 1$. Said differently, we have $(1 - \lambda)x + \lambda y \in S$, and

$$f((1-\lambda)x + \lambda y) \le (1-\lambda)\mu + \lambda \nu$$

whenever $x \in S, y \in S, f(x) \le \mu \in \mathbf{R}$, and $f(y) \le \nu \in \mathbf{R}$.

Concave functions have a similar property, with the inequalities flipped, and affine functions satisfy with qualities. This shows that the functions $f: \mathbb{R}^n \to \mathbb{R}$ we are calling affine coincide exactly with the affine transformations from \mathbb{R}^n to \mathbb{R} .

Visualization

