Part III — Statistics

Based on lectures by Brian Notes taken by Dexter Chua

Lent 2017-2018

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

Contents III Statistics

Contents

1	Rep	presentation and summary of data - location	4
	1.1	Basic Concepts of Variable	4
	1.2	Grouped data	4
	1.3	Mean, mode and median	4
	1.4	Linear interpolation	4
	1.5	Coding	4
2	Rep	presentation and summary of data - measures of dispersion	5
	2.1	Range and interquartile range	5
	2.2	Percentiles split the data into 100 parts	5
	2.3	Range and Interquartile range	5
	2.4	Variance and standard deviation	5
	2.5	Variance and standard deviation for grouped data	5
	2.6	Coding	5
3	Rep	presentation of data	6
	3.1	Stem and Leaf diagrams	6
	3.2	Outlier	6
	3.3	Box plot	6
	3.4	Histogram	6
	3.5	Skewness (Shape)	6
	3.6	What!?	7
4	\mathbf{Pro}	bability	8
	4.1	Classical Probability	8
	4.2	Venn diagram and their rules	8
	4.3	Conditional Probabilites	8
		4.3.1 Vann diagram	8
		4.3.2 Tree diagram	8
	4.4	Special Events of Probabilites	8
5	Cor	relation	9
	5.1	Correlation	9
	5.2	Bivariate data	9
	5.3	Product moment Correlation coefficient r	9
	5.4	Coding	9
6			10
	6.1	Linear	10
	6.2		10
	6.3	Interpolation and Extrapolation	10
7	Dis		11
	7.1	Probability distribution	11
8	The	normal distribution	12

Contents III Statistics

9	Binomial distribution 9.1 Basic Concept	13 13 13
10	Poisson distribution 10.1 Basic Concepts	14 14 14 14
11	Continuous random variables 11.1 Continuous random variable	15 15 16 17 17
12	Continuous uniform distribution 12.1 Continuous uniform distribution	18 18 18 18
13	Normal approximation 13.1 Approximating binomial by normal	19 19 19 19
14	Population and samples 14.1 The Concept of population and samples	20 20
15	Hypothesis testing	21
16	Combination of random variables	22
17	Sampling	23
18	Estimation , confidence intervals and tests	24
19	Goodness of fit and contingency tables	25
20	Regression and correlation	26
21	Quality of tests and estimators	27
22	One-sample procedures	28
23	Two-sample procedures	29

1 Representation and summary of data - location

1.1 Basic Concepts of Variable

Definition (Quantitative variables and Qualitative variables). Quantitative variable associated with numerical observation. Qualitative variables associated with non-numerical observations.

Definition (Continuous variable and discrete variable). Continuous variable can take ant value in given range. Discrete can take only specific values in a given range.

1.2 Grouped data

Definition (Grouped data). The groups are more commonly known as classes.

- class boundaries.
- mid-point of a class.
- class width.

Example. Example 5-6

Definition (Frequency and cumulative frequency). Number of anything; example is how many sheeps. It is sometimes helpful to add a column to the table showing the running total of the frequencies. This is called the cumulative frequency

Definition (Ungrouped data). Show all data

1.3 Mean, mode and median

Definition (Mode). The mode is the value that occurs most often

Definition (Median). n/2 term or 1 term above

Definition (Mean).

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

1.4 Linear interpolation

Example. Example 14-15

1.5 Coding

Example. pick 1 example

2 Representation and summary of data - measures of dispersion

2.1 Range and interquartile range

The list of formula:

- Range = Upper value - Lowest value

Example. example 3

2.2 Percentiles split the data into 100 parts

Example. example 4

2.3 Range and Interquartile range

Example (Linear Interpolation).

2.4 Variance and standard deviation

Definition (Variance). Let f stand for the frequency, then $n = \sum f$ and

$$\text{Variance} = \frac{\sum f(x - \bar{x})^2}{\sum f} \text{ or } \frac{\sum fx^2}{\sum f} - (\frac{\sum fx^2}{\sum f})$$

2.5 Variance and standard deviation for grouped data Definition.

Example. example 7-8

2.6 Coding

Example. example 9-11

3 Representation of data

3.1 Stem and Leaf diagrams

3.2 Outlier

Definition. An outlier is an extreme value that lies outside the overall pattern of the data.

An outlier is any value, which is

greater than the upper quartile $+1.5 \times \text{interquartile range}$

OR

less than the lower quartile $+1.5 \times$ interquartile range

3.3 Box plot

3.4 Histogram

Definition (Frequency density).

$$frequency\ density = \frac{frequency}{class\ width}$$

Example. 7

3.5 Skewness (Shape)

A distribution can be symmetrical , have positive skew or have negative skew

symmetrical
$$Q_2 - Q_1 = Q_3 - Q_2$$
 or mode=median=mean

positive : $Q_2 - Q_1 < Q_3 - Q_2$ or mode<median<mean

negative : $Q_2 - Q_1 > Q_3 - Q_2$ or mode>median>mean

Or you can calculate:

$$\frac{3(\mathrm{mean}-\mathrm{median})}{\mathrm{SD}}$$

3.6 What!?

Example. example 10-12

Probability III Statistics

4 Probability

4.1 Classical Probability

4.2 Venn diagram and their rules

Definition (Complementary Probability).

4.3 Conditional Probabilites

4.3.1 Vann diagram

4.3.2 Tree diagram

4.4 Special Events of Probabilites

Definition (Mutually exclusive). When events have no outcomes in common, they are mutually exclusive.

There is no intersection of A and B, so $P(A \cap B) = 0$

We can use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ result is

$$P(A \cup B) = P(A) + P(B)$$

Definition (Independent events). When one event has no effect on another, they are independent so P(A|B) = P(A)

by
$$\frac{P(A \cap B)}{P(B)} = P(A)$$
 we have:

$$P(A \cap B) = P(B) \times P(A)$$

5 Correlation III Statistics

5 Correlation

5.1 Correlation

5.2 Bivariate data

Recall this formula:

Variance =
$$\frac{\sum (x - \bar{x})^2}{n}$$

In correlation we write:

$$S_{xx} = \sum (x - \bar{x})^2$$

$$S_{yy} = \sum (y - \bar{y})^2$$

SO

Variance =
$$\frac{S_{xx}}{n}$$

Definition (Co-Variance).

$$S_{xy} = \frac{\sum (x - \bar{x})(x - \bar{y})}{n}$$

5.3 Product moment Correlation coefficient r

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

The value of r varies between -1 and 1

If r = 1, positive linear correlation

If r = -1, nagative linear correlation

If r = 0, no linear correlation

limitation:

5.4 Coding

does not effect \boldsymbol{r}

6 Regression III Statistics

6 Regression

6.1 Linear

let y = a + bx be a regression line where

$$b = \frac{S_{xy}}{S_{xx}}$$
 and $a = \bar{y} - b\bar{x}$

6.2 Coding

6.3 Interpolation and Extrapolation

7 Discrete random variables

7.1 Probability distribution

Definition (Mean / Expected value).

$$E(X) = \sum x p(x)$$

when we find $E(X^n)$:

$$E(X^n) = \sum x^n p(x)$$

Definition (Variable).

$$Var(X) = E(X^2) - (E(X))^2$$

The constant a and b affect on E(X) and Var(X)

$$E(aX + b) = aE(x) + b$$

$$Var(aX + b) = a^2 Var(X)$$

Definition (Uniform distribution). The distribution is uniform when all the probabilities is the same of all values.

8 The normal distribution

 $Z \sim N(\mu, \sigma^2)$ represent the normal distribution.

The random variable X can be written as $X \sim N(\mu, \sigma^2)$

you can transformed X to Z by this formula

$$z = \frac{X - \mu}{\sigma}$$

Example. Example 8-9

9 Binomial distribution

9.1 Basic Concept

 $X \sim B(n,p)$ represent the Binomial distribution, then

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$$

9.2 Mean and Variance

If $X \sim B(n, p)$ then

$$E(X) = \mu = np$$
$$Var(X) = \sigma^2 = np(1 - p)$$

Example. example 9-14

10 Poisson distribution

10.1 Basic Concepts

Recall the exponential function

$$e^x = 1 + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^r}{r!} + \dots$$

If you let $x = \lambda$ and remember that $\lambda^0 = 1$ this gives

$$e^{\lambda} = \lambda^{0} + \frac{\lambda^{1}}{1!} + \frac{\lambda^{2}}{2!} + \frac{\lambda^{3}}{3!} + \dots + \frac{\lambda^{r}}{r!} + \dots$$

Dividing by e^{λ} gives

$$\frac{e^{\lambda}}{e^{\lambda}} = \lambda^0 + \frac{\lambda^1 e^{-\lambda}}{1!} + \frac{\lambda^2 e^{-\lambda}}{2!} + \frac{\lambda^3 e^{-\lambda}}{3!} + \dots + \frac{\lambda^r e^{-\lambda}}{r!} + \dots$$

And the probability function is

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

We say that X has a Poisson distribution with parameter λ abd write

$$X \sim Po(\lambda)$$

10.2 Mean and Variance

$$Var(X) = E(X) = \mu = \sigma^2 = \lambda$$

Lemma. If mean and standard deviation square is same, we usually use Poisson distribution.

Example. example 5-6

10.3 Approximate a Binomial with Poisson

If $X \sim B(n, p)$ and

- n is large
- -p is small

then X can be approximated by

Example. example 7-8 9-10

11 Continuous random variables

11.1 Continous random variable

The Continuous random variables with p.d.f f(x) satisfied the following properties:

- (i) $f(x) \ge 0$ since we cannot have negative probabilities
- (ii) $P(a < X < b) = \text{shaded area} = \int_a^b f(x) \, dx$

(iii) $\int_{-\infty}^{\infty} f(x) dx = 1$ since the area under the curve = 1.

Example. The random variable X has probability density function

$$f(x) = \begin{cases} kx(4-x) & 2 \le x \le 4\\ 0 & \text{otherwise.} \end{cases}$$

Find the value of k and sketch the p.d.f

Proof.

$$\int_{2}^{4} k(4x - x^{2}) dx = 1$$
$$k[2x^{2} - \frac{x^{3}}{3}]_{2}^{4} = 1$$
$$k = (\frac{3}{16})$$

Example. The random variable X has probability density function

$$f(x) = \begin{cases} k & 1 < x < 2 \\ k(x-1) & 2 \le x \le 4 \\ 0 & \text{otherwise.} \end{cases}$$

Find the value of k and sketch the p.d.f

Proof.

$$\int_{1}^{2} k \, dx + \int_{2}^{4} k(x-1) \, dx = 1$$
$$k = \frac{1}{5}$$

11.2 Cumulative distribution function

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

where $F(x) = P(X \le x) = 1$

If X us a Continous random variable with c.d.f. F(x) and p.d.f f(x)

$$f(x) = \frac{\mathrm{d}}{\mathrm{d}t}F(x)$$
 and $F(x) = \int_{-\infty}^{x} f(t) \,\mathrm{d}t$

Example. example 5-6

11.3 Mean and Variance

If X is a Continuous random variable with p.d.f f(x)

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$\sigma^2 = E(X^2) - \mu^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

Remark. The range is the range of that function instead of negative infinity to infinity.

11.4 Mode, median and quartiles

The median m or Q_2 satisfies $F(m) = F(Q_2) = 0.5$

The lower quartile Q_1 satisfies $F(Q_1) = 0.25$

The lower quartile Q_1 satisfies $F(Q_3) = 0.75$

The mode is the x value at the highest point of the p.d.f f(x)

12 Continuous uniform distribution

12.1 Continuous uniform distribution

12.2 Mean and Variance

Example. example 4-7

12.3 Choosing the right model

Example. example 8-10

13 Normal approximation

13.1 Approximating binomial by normal

If $X \sim B(n, p)$ and

- -n is large
- -p is close to 0.5

Then X can be approximated by

$$Y \sim N(np, np(1-p))$$

Example. $X \sim B(120, 0.25)$ approximated to $Y \sim N(30, (\sqrt{22.5})^2)$

Example. example 4

13.2 Approximating Poisson by normal

If λ is large

$$X \sim Po(\lambda) \text{to} Y \sim N(\lambda, (\sqrt{\lambda})^2)$$

Example. $X \sim Po(25)$ transformed to $Y \sim N(25, 5^2)$

Example. example 6

13.3 Choosing the appropriate approximation

Example. example 7

14 Population and samples

14.1 The Concept of population and samples

Example. example 5 6

15 Hypothesis testing

16 Combination of random variables

17 Sampling III Statistics

17 Sampling

18 Estimation , confidence intervals and tests

19 Goodness of fit and contingency tables

20 Regression and correlation

21 Quality of tests and estimators

22 One-sample procedures

23 Two-sample procedures