Chương 1	Hàm một biến
1.	Câu 1: Giới hạn $\lim_{x\to 0} \frac{\tan x}{4x}$ bằng
	A. $\frac{1}{3}$
	B. ∞
	$C.\frac{1}{2}$
	D. 5
	E. Không tồn tại
	$F.\frac{1}{4}$
2.	Câu 2: Giới hạn $\lim_{x\to 0} \frac{e^{x}-1}{2x}$ bằng
	$A.\frac{1}{2}$
	B. 2
	C. 1 – e
	D. Không tồn tại
	$E.\frac{1}{2}$
3.	F. −1 Câu 3: Tích phân bất định ∫ sin 3x dx bằng
	A. $\frac{1}{3}\cos 3x + C$
	B. $-\cos 3x + C$
	$C. \frac{-1}{3} \sin 3x + C$
	D. $-\frac{1}{3}\cos 3x + C$
	E. $\sin^3 3x + C$
	F. $-\sin 3x + C$
4.	Câu 4: Tích phân bất định $\int \frac{dx}{(2x+1)^2+2}$ bằng
	A. $\frac{1}{2}\arctan\left(\frac{2x+1}{\sqrt{2}}\right) + C$
	B. $\frac{1}{2\sqrt{2}}\arctan\left(\frac{2x+1}{\sqrt{2}}\right) + C$
	C. $\operatorname{arccot}(2x + 1) + C$
	D. $\frac{1}{\sqrt{2}} \arctan\left(\frac{2x+1}{\sqrt{2}}\right) + C$
	E. $\arctan(2x+1)+C$
	F. $\arctan\left(\frac{2x+1}{\sqrt{2}}\right) + C$
5.	Câu 5: Giới hạn $\lim_{x \to +\infty} \frac{\ln x}{x}$ bằng
	A2 B. 2
	B. 2 C. +∞
	D1
	E. 0 F. Không tồn tại
	1. Imong ton the

6.	Câu 6: Hàm số $f(x) = \begin{cases} x+1 & \text{với } x \leq 1 \\ \arctan(x-1) & \text{với } x > 1 \end{cases}$ có giới hạn trái và phải tại
	x = 1 la A. 0 và 2
	B. 1 và 0
	C2 và 0 D1 và 0
	E1 và 2 F. 2 và 0
7	
7.	Câu 7: Tích phân bất định $\int \frac{dx}{\sqrt{3-(2x-1)^2}}$ bằng
	A. $-\frac{1}{2}\arcsin\left(\frac{2x-1}{\sqrt{3}}\right) + C$
	B. $\frac{1}{2}\arcsin\left(\frac{2x-1}{\sqrt{3}}\right) + C$
	C. $\arccos(2x-1) + C$ D. $\frac{1}{\sqrt{3}}\arccos(\frac{2x-1}{\sqrt{3}}) + C$
	$E_{arctan}(2y-1)+C$
	$F. \frac{1}{2}\arctan\left(\frac{2x-1}{\sqrt{3}}\right) + C$
8.	E. arctan $(2x - 1) + C$ $F. \frac{1}{2}\arctan\left(\frac{2x-1}{\sqrt{3}}\right) + C$ Câu 8: Hàm số $f(x) = \begin{cases} \frac{\arcsin x}{x} & \text{với } x \neq 0 \\ a-2 & \text{với } x = 0 \end{cases}$ liên tục tại $x = 0$ khi và chỉ khi $A. a = 3$
	$\begin{array}{c} (a-2) & \text{v\'oi } x=0 \\ A. a=3 \end{array}$
	B. a = 1/2 C. a = 1
	D. $a = -1$
	E. $a = -1/2$ F. $a \in \mathbb{R}$
9.	(sin 2x
<i>)</i> .	Câu 9: Hàm số $f(x) = \begin{cases} \frac{\sin 2x}{\sqrt[3]{1+3x-1}} & \text{với } x < 0 \\ e^x + a & \text{với } x \ge 0 \end{cases}$ liên tục tại $x = 0$ khi và chỉ khi
	A. a = 2
	B. $a = -1$ C. $a = -3$
	D. $a = -5$ E. $a \in \mathbb{R}$
	F. $a = 1$
10.	Câu 10: Tích phân bất định $\int \frac{x dx}{\sqrt{9-x^4}}$ bằng
	A. $\frac{1}{2} \arcsin \frac{x^2}{3} + C$
	B. $\arcsin \frac{x^2}{9} + C$
	$C. \frac{1}{3} \arcsin \frac{x^2}{3} + C$
	D. $\arcsin (x + 3) + C$ E. $\arcsin \frac{x^2}{3} + C$
	E. al CSIII $\frac{1}{3}$ + C

	F. $arccos(x + 3) + C$
1.1	
11.	Câu 11: Tích phân bất định $\int \frac{\sin x dx}{\cos^2 x - 4}$ bằng
	$A. \frac{1}{4} \ln \left \frac{\cos x - 2}{\cos x + 2} \right + C$
	B. $\frac{1}{2} \ln \left \frac{\cos x - 2}{\cos x + 2} \right + C$
	$C. \ln \left \frac{\cos x + 21}{\cos x + 2} \right + C$
	$D\frac{1}{4} \ln \left \frac{\cos x - 2}{\cos x + 2} \right + C$
	E. $\frac{1}{2} \ln (\cos x + 2)(\cos x - 2) + C$
	F. $\ln \cos^2 x - 4 + C$
12.	1
	Câu 12: Giới hạn $\lim_{x\to 0} \left(\frac{\arctan x}{x}\right)^{\frac{1}{x^2}}$ bằng
	A. $e^{-\frac{1}{3}}$
	B. $e^{-\frac{1}{6}}$
	C. $+\infty$ D. $e^{\frac{-3}{10}}$
	E. e
10	F. Không tồn tại
13.	Câu 13: Tính tích phân bất định $I = \int \frac{\ln x}{x^3} dx$
	A. $I = -\frac{1}{2x^2} \ln x + \frac{1}{4x^2} + C$
	B. $I = -\frac{1}{2x^2} \ln x - \frac{1}{x^2} + C$
	C. $I = -\frac{1}{x^2} \ln x - \frac{1}{4x^2} + C$
	D. $I = \frac{1}{2x^2} \ln x - \frac{1}{4x^2} + C$
	E. $I = -\frac{1}{2x^2} \ln x - \frac{1}{4x^2} + C$
	F. $I = \frac{1}{2x^2} \ln x + \frac{1}{4x^2} + C$
Chương 2	Hàm nhiều biến
14.	Câu 14: Cho hàm ẩn $y = y(x)$ xác định bởi phương trình $F(x, y) = 0$, khi đó
	$A. y'(x) = -\frac{F_x'}{F_y'}$
	$B. y'(x) = \frac{F_x'}{F_y'}$
	C. $y'(x) = -\frac{F_y'}{F_x'}$
	$D. y'(x) = \frac{F_y'}{F_x'}$
	$E. y'(x) = \frac{F_x'}{F_x'}$ $E. y'(x) = F_x' F_y'$
	E. $y'(x) = F_x F_y$ F. $y'(x) = -F_x' F_y'$
	, , , , , , , , , , , , , , , , , , ,

15.	Câu 15: Cho hàm ẩn hai biến $z = z(x, y)$ xác định bởi phương trình
13.	F(x,y,z) = 0, khi đó
	A. $dz = \frac{F'_x}{F'_x} dx + \frac{F'_y}{F'_z} dy$
	· Z · Z
	B. $dz = -\frac{F_x'}{F_z'}dx - \frac{F_y'}{F_z'}dy$
	C. $dz = \frac{F_x'}{F_z'} dx - \frac{F_y'}{F_z'} dy$
	D. $dz = -\frac{F_x'}{F_z'} dx + \frac{F_y'}{F_z'} dy$
	E. $dz = -\frac{F_x^2}{F_y^2} dx - \frac{F_y^2}{F_z^2} dy$
	$F. dz = -\frac{F_x'}{F_z'} dx - \frac{F_y'}{F_x'} dy$
16.	Câu 16: Hàm $z = \sqrt{1 - x^2 - y^2}$ xác định trên miền
	A. D = $\{x + y \le 1\}$
	B. $D = \{x^2 + y^2 > 1\}$
	C. D = $\{x^2 + y^2 \le 2\}$
	D. Toàn bộ mặt phẳng
	E. $D = \{x \ge 0; y \ge 0\}$
17	F. $D = \{x^2 + y^2 \le 1\}$
17.	Câu 17. Đạo hàm riêng theo biến y của hàm số $f(x, y) = \cos(3x + 2y)$ là
	A. $-3\sin(3x + 2y)$
	B. $2\sin(3x + 2y)$ C. $-2\sin(3x + 2y)$
	D. $2\cos(3x + 2y)$
	E. $-3\cos(2x + 3y)$
	F. $\sin(3x + 2y)$
18.	Câu 18: Cho hàm số $f(x,y) = e^{x-2y}$. Khi đó f''_{xy} bằng
	A. $-2e^{x-2y}$
	B. $2xe^{x-2y}$
	A. $-2e^{x-2y}$ B. $2xe^{x-2y}$ C. $-ye^{x-2y}$ D. $-e^{x-2y}$ E. $2e^{x-2y}$
	D. $-e^{x-2y}$
	$E. 2e^{x-2y}$
10	$F. 3e^{x-2y}$
19.	Câu 19: Vi phân toàn phần của hàm số $f(x,y) = x^2$. arctan y là
	A. $x^2 \arcsin y dx + \frac{x^2}{1+y^2} dy$
	$B. 2x dx + \frac{x^2}{1+y^2} dy$
	C. $2x \arctan y dx + \frac{1}{1+y^2} dy$
	D. $\arcsin y dx + \frac{x^2}{1+y^2} dy$
	E. $2x \arctan y dx + \frac{x^2}{1+y^2} dy$
	F. $x \arcsin y dx + \frac{x^2}{1+y^2} dy$

20.	Câu 20: Điểm dừng của hàm số $f(x,y) = x^3 + 3xy + y^3$ là
	A. $(0,0)$ và $(-1,-1)$
	B. (0,0) và (1,1)
	C. (1, 1)
	D. (-1,1)
	E. (1,-1)
	F. $(-1, -1)$ và $(1,0)$
21.	
21.	Câu 21: Đạo hàm riêng theo biến z của hàm số $f(x, y, z) = z^2 \arctan(xyz)$
	băng ²
	A. $\arctan(xyz) + \frac{xyz^2}{1+x^2y^2z^2}$
	$1+x^2y^2z^2$ xyz^2
	B. 2 arctan(xyz) + $\frac{xyz^2}{1+x^2y^2z^2}$
	$C = 2\pi \arctan(xyz) + \frac{xyz}{xyz}$
	$1+x^2y^2z^2$
	C. $2z \arctan(xyz) + \frac{xyz}{1+x^2y^2z^2}$ D. $z \arctan(xyz) + \frac{xyz^2}{1+x^2y^2z^2}$
	$1+x^2y^2z^2$ xyz^2
	E. 2 arctan(xyz) + $\frac{xyz^2}{1+x^2y^2z^2}$
	F. $2z \arctan(xyz) + \frac{xyz^2}{1+x^2y^2z^2}$
22.	Câu 22: Cho hàm ẩn $y = y(x)$ xác định bởi phương trình $3x + 4y = e^{5y}$. Khi
	$d\acute{o}$ v'(x) bằng
	A. $\frac{5}{4-5e^{5y}}$ B. $\frac{-4}{4-5e^{5y}}$ C. $\frac{3}{4-5e^{5y}}$ D. $\frac{-3}{4-5e^{5y}}$ E. $\frac{-5}{4-5e^{5y}}$
	4-5e ^{5y}
	B. $\frac{1}{4-5e^{5y}}$
	$C = \frac{3}{3}$
	4-5e ^{5y}
	D. $\frac{-3}{4-595}$
	$\frac{1}{5}$
	4-5e ^{5y}
	$F. \frac{1}{4-5e^{5y}}$
23.	Câu 23: Cho hàm ẩn hai biến $z = z(x, y)$ xác định bởi $\frac{1}{2}\ln(x^2 + y^2 + z^2) =$
	_
	z. Khi đó
	A. $dz = \frac{x}{x^2 + y^2 + z^2 - z} dx + \frac{y}{x^2 + y^2 + z^2 - z} dy$
	B. $dz = \frac{-x}{x^2 + y^2 + z^2 - z} dx + \frac{-y}{x^2 + y^2 + z^2 - z} dy$
	C. $dz = \frac{1}{x^2 + y^2 + z^2 - z} dx + \frac{1}{x^2 + y^2 + z^2 - z} dy$
	D. $dz = \frac{1}{x^2 + y^2 + z^2 - z} dx + \frac{1}{x^2 + y^2 + z^2 - z} dy$
	E. $dz = \frac{x}{x^2 + y^2 + z^2} dx + \frac{y}{x^2 + y^2 + z^2} dy$
	F. $dz = \frac{-x}{x^2 + y^2 + z^2} dx + \frac{-y}{x^2 + y^2 + z^2} dy$

24.	Câu 24: Cho hàm số $f(x,y) = x^3 - x^2 + 2y^2 + 8y - x - 1$. Kết luận nào
	sau đây đúng
	A. Hàm số đạt cực tiểu tại $\left(-\frac{1}{3}, -2\right)$
	B. Hàm số đạt cực đại tại (1, -2)
	C. Hàm số đạt cực tiểu tại $(-1, -2)$
	D. Hàm số có 2 điểm cực tiểu
	E. Hàm số đạt cực tiểu tại $(1,-2)$ và không có cực trị tại $(-\frac{1}{3},-2)$
	F. Hàm số đạt cực đại tại $\left(-\frac{1}{3}, -2\right)$
25.	Câu 25: Cho hàm số $z = \arctan \frac{y}{x}$. Khi đó d^2z bằng
	A. $d^2z = \frac{xy}{(x^2+y^2)^2}dx^2 + \frac{2(y^2-x^2)}{(x^2+y^2)^2}dxdy - \frac{xy}{(x^2+y^2)^2}dy^2$
	B. $d^2z = \frac{2xy}{(x^2+y^2)^2}dx^2 + \frac{y^2-x^2}{(x^2+y^2)^2}dxdy - \frac{2xy}{(x^2+y^2)^2}dy^2$
	C. $d^2z = \frac{2xy}{(x^2+y^2)^2}dx^2 + \frac{2(y^2-x^2)}{(x^2+y^2)^2}dxdy - \frac{2xy}{(x^2+y^2)^2}dy^2$
	D. $d^2z = \frac{2xy}{(x^2+y^2)^2}dx^2 - \frac{2(y^2-x^2)}{(x^2+y^2)^2}dxdy - \frac{2xy}{(x^2+y^2)^2}dy^2$
	E. $d^2z = \frac{-2xy}{(x^2+y^2)^2}dx^2 + \frac{2(y^2-x^2)}{(x^2+y^2)^2}dxdy - \frac{2xy}{(x^2+y^2)^2}dy^2$
	F. $d^2z = \frac{2xy}{(x^2+y^2)^2}dx^2 + \frac{2(y^2-x^2)}{(x^2+y^2)^2}dxdy + \frac{2xy}{(x^2+y^2)^2}dy^2$