Kinetic Effects in RF Discharges

Philipp Hacker

Mathematisch-Naturwissenschaftliche Fakultät Institut für Physik

Ernst-Moritz-Arndt-Universität Greifswald

1. Dezember 2017

Betreuer: Prof. Dr. R. Schneider Gutachter: Prof. Dr. J. Meichsner

- 1. Motivation
- 2. Experiment
- 3. Particle-in-Cell Methode
- 4. 1D Simulation
- 5. Simulationen in 2D
- 6. Ausblick
- 7. Referenzen

Kapazitive gekopplte RF-Plasmen

- Anwendung in Halbleiterund Computerchip-Industrie
- in elektronegativen CCRF-Entladungen treffer schnelle lonen auf die Elektroden
- Oberflächenprozesse an der Elektrode mit negativen lonen

(Negative Ionen Energieverteilung in Sauerstoffentladungen) [2]

Kapazitive gekopplte RF-Plasmen

- Anwendung in Halbleiterund Computerchip-Industrie
- in elektronegativen CCRF-Entladungen treffen schnelle lonen auf die Elektroden
- Oberflachenprozesse an der Elektrode mit negativen lonen

(Negative Ionen Energieverteilung in Sauerstoffentladungen) [2]

Kapazitive gekopplte RF-Plasmen

- Anwendung in Halbleiterund Computerchip-Industrie
- in elektronegativen CCRF-Entladungen treffen schnelle lonen auf die Elektroden
- Oberflächenprozesse an der Elektrode mit negativen Ionen

(Negative Ionen Energieverteilung in Sauerstoffentladungen) [2]

- negative Aufladung der Wände durch schnellere Elektronen
 →Self-Bias
- Ionen werden auf Bohm-Geschwindigkeit beschleunigt $\sqrt{k_{\rm B}T_{\rm b}}$

$$v_{\mathsf{i},\mathsf{B}} = \sqrt{\frac{k_{\mathsf{B}}T_{\mathsf{e}}}{m_{\mathsf{i}}}}$$

 Asymmetrie der getriebenen/geerden Elektroden

- negative Aufladung der Wände durch schnellere Elektronen →Self-Bias
- Ionen werden auf Bohm-Geschwindigkeit beschleunigt

$$v_{\mathsf{i},\mathsf{B}} = \sqrt{\frac{k_{\mathsf{B}}T_{\mathsf{e}}}{m_{\mathsf{i}}}}$$

(Schema einer Entladung) [1]

- negative Aufladung der Wände durch schnellere Elektronen →Self-Bias
- Ionen werden auf Bohm-Geschwindigkeit beschleunigt

$$v_{\mathsf{i},\mathsf{B}} = \sqrt{\frac{k_\mathsf{B} T_\mathsf{e}}{m_\mathsf{i}}}$$

 Asymmetrie der getriebenen/geerden Elektroden

(Dichte und Potential vor einer Wand) [1]

• ...

 Kapazitive Kopplung führt zur Verschiebung des Plasma-Potentials

Oberflächen- und Stoßprozesse

(ausgewählte Stoßquerschnitte in Sauerstoff)

Oberflächen- und Stoßprozesse

Nr.	Reaction	Type
	Elastic scattering	Energy loss
(1)	$e^{-} + O_{2} \rightarrow O_{2} + e^{-}$	
(2)	$O^{-} + O_{2} \rightarrow O_{2} + O^{-}$	
(3)	$O_2^- + O_2 \rightarrow O_2 + O_2^-$	
	Electron energy loss scattering	Energy loss
(4)	$e^{-} + O_{2} \rightarrow O_{2}^{\nu} + e^{-}$	Vibrational excitation ($\nu = 1,, 4$)
(5)	$e^- + O_2 \rightarrow O_2(Ryd) + e^-$	Rydberg excitation
(6)	$e^- + O_2 \rightarrow O(1D) + O(3P) + e^-$	Dissociative excitation at 8.6 eV
(7)	$e^- + O_2 \rightarrow O_2(a^1\Delta_g, b^1\Sigma_g)$	Meta-stable excitation
	Electron and ion reactions	Creation and loss
(8)	$e^- + O_2^+ \rightarrow 2 O$	Dissociative recombination
(9)	$O^{-} + O_{2}^{+} \rightarrow O_{2} + O$	Neutralization
(10)	$e^- + O_2 \rightarrow O + O^-$	Dissociative attachment
(11)	$O^- + O_2 \rightarrow O + O_2 + e$	Direct detachment
(12)	$e^- + O_2 \rightarrow 2e^- + O_2^+$	Impact ionisation
(13)	$e^- + O^- \rightarrow O + 2e^-$	Impact detachment

Das Experiment

Particle-in-Cell Methode

Monte-Carlo Stoßroutinen

1D Simulation

Energieverteilungen

Dynamik negativer lonen

Simulationen in 2D

Negative Ionen EVF

Asymmetrische Ranbedingungen

Einfluss des Self Bias

Ausblick

Referenzen

