

Langages et automates

L3 Informatique Semestre 5

Avant-Propos

- 3 séances CM
- 8 séances JPA
- 4 séances CM

0.1 *

MCC

Contrôle continue 30%Contrôle terminal 70%

0.2 *

Objectifs Avoir les bases pour aborder la compilation lors du S7 en master.

Le but est de nous apprendre ce qu'est un **automate** et ce qu'est une **grammaire**.

Table des matières

Introduction

L'information doit être exprimée à l'aide d'une grammaire et reconnue, vérifiée grâce aux automates.

Les langages sont plus ou moins compliqué, il en existe plusieurs types :

- les langages les plus simples sont les langages $r\'{e}gulier$, soit une grammaire $lin\'{e}aire à droite$ et un automate fini.
- Les langages plus complexes sont les langages hors contexte lié à une grammaire hors contexte et un automate à pile.
- Langages sensible au contexte, avec une grammaire sensible au contexte et une machine de Turing

langage régulier \subset langage hors contexte \subset langage sensible au contexte

Langages et grammaires

2.1 Définitions

Langage Un langage est engendré par une grammaire et reconnu par un automate Alphabet Ensemble fini non vide de symboles tous différents

$$X = \{0, 2, 4, 6, 8\} \ X = \{do, re, mi, fa, sol, la, si\} \ X = \{if, then, else\}$$

Mot Sur un alphabet X une suite finie, éventuellement vide de symboles de X

$$a_1 = 2246 \ a_2 = fasolsi$$

Longueur d'un mot ω $|\omega|$ =Nombre de symboles de x qui contient ω

Mot vide λ tel que $|\lambda| = 0 \ \forall x, \ \lambda \notin x$

Nombre d'occurences d'un sybole $s \in x$ dans un mot omega $|\omega|s$

Opérations sur les mots

Concaténation de mots Soient X un alphabet et deux mots ω_1 et ω_2 .

$$\omega = x_1 x_2 \dots x_n, x_1 \in x \forall i \in [1, n]$$

- La concaténation n'est pas commutative. La concaténation est associative
- - λ est l'élément neutre de la concaténation

Puissance soit $w \in X$, $w^n = \lambda$ si n = 0 et $w^n = w.w^{n-A}$ pour n > 0.

L'ensemble X^* de mots construits sur X muni de la concaténation . est un monoïde libre ayant X pour générateur.

Langage L

Un langage est un ensemble de mots. $L \subseteq X^*$. $X = \{a, b, c\}X^*$ L = ensemble de mots sur qui commencent par a = $\{w \in X^*/w = a.w', w' \in X^*\}$

Opérations sur les langages 2.4

Les opérateurs ensemblistes fonctionnent sur les langages, mais également une opération induite par la concaténation : le produit.

Soit X un alphabet. $L_1 \subseteq X^*, L_2 \subseteq X^*$.

- $-L_1 \cup L_2 = L_1 + L_2 = \{ w \in X^* / w \in L_1 ouw \in L_2 \}$

- $L_{1} \cap L_{2} = \{ w \in X^{*} / w \in L_{1} etw \in L_{2} \}$ $L_{1} = X^{*} L_{1} = \{ w \in X^{*} / w \notin L_{1} \}$ $\text{Produit } L_{1}.L_{2} = L_{1}L_{2} = \{ w \in X^{*} / \exists w_{1} \in I_{2} \exists w_{2} \in L_{2} \text{ tel que} w = w_{1}.w_{2} \}$
 - Le produit de langages n'est pas commutatif.
 - Le produit de langages est associatif
- $L \subseteq X^*$ Langage $L^* = \bigcup_{n>=0} L^n$ avec L^n tel que $L^0 = \lambda$

$$L^{n} \left\{ \begin{array}{ll} si & n=0 & L^{0}=\{\lambda\} \\ & n>0 & L^{n}=L.L^{n-1} \end{array} \right.$$

Grammaire

Dérivation, arbre de dérivation, ambigüité, langage engendré, classification

Definition 3.1 Moyen précis, concis, explicite pour exprimer comment sont construit les mots d'un langage. Une grammaire $G = \langle N, X, P, S \rangle$

- X : alphabet, ensemble de terminaux(minuscule).
- N : ensemble de non terminaux (majuscule)
- S : axiome, $S \in N$
- P : ensemble de règle de production (réécriture) = $\{\lambda \to \beta, \lambda \in (NUX)^+, \beta \in (NUX)^*\}$

$$G_1' = \langle N, X, P, S \rangle$$

$$N = \{S, A\}X\{a, b, c\}$$

$$P = \{S \rightarrow aAc$$

$$A \rightarrow bAb$$

$$A \rightarrow b\}$$

3.1 Dérivation

$$G = \langle N, X, P, S \rangle$$

$$W \in (NUX)^{+}$$

$$w_{1} \in (NUX)^{*}$$

w se dérive en w_1 . Si $\exists x, y \in (NUX)^*$ tel que w = xuy et $w_1 = xvy$ avec $u \to v \in p$ w se dérive en plusieurs étapes en w.

Definition 3.2 Un arbre de dérivation est un outil visuel pour exprimer la dérivation des mots.

Soit G une grammaire =< N, X, P, S >, le langage engendré par G = L(G) est = l'ensemble de tous les mots de X^* que l'on peut engendré à a partir de l'axiome S.

$$L(G) = \{w \in X^*/S \Rightarrow^* w\}$$