## **Datasets**

```
load(file.path(data_dir, "data_ml.RData"))
```

## **Example Factor, Size**

```
data ml %>%
   group_by(date) %>% # group by date
  mutate(large = Mkt_Cap_12M_Usd > median(Mkt_Cap_12M_Usd)) %>% # Creates the cap sort
  ungroup() %>% # ungroup
  mutate(year = lubridate::year(date)) %>% # Creates a gear variable
   group_by(year, large) %>% # Analyze by year & cap
   summarize(avg return = mean(R1M Usd)) %>% # avg return by year & cap
   ggplot(aes(x = year, y = avg_return, fill = large)) + # plot!
   geom_col(position = "dodge") + # bars side-to-side
  theme(legend.position = c(0.8, 0.2)) + # legend location
   coord_fixed(124) + # x/y aspect ration
   theme(legend.title = element_blank()) +
   scale_fill_manual(values = c("#F87E1F", "#0570EA"), name = "", # colors
                    labels = c("Small", "Large")) +
   vlab("Average Returns") +
   theme(legend.text = element_text(size=9))
```

`summarise()` regrouping output by 'year' (override with `.groups` argument)



# **Factors**

## Size

**SMB** = small firms minus large firms

## **Value**

**HM** = high minus low: undervalued minus 'growth' firms

# Momentum

WML winners minus losers

## **Profitability**

**RMW** = robust minus weak profits

profitability is measured as (revenues - (cost and expenses)) / equity

### Investment

**CMA** conservative minus aggressive

Investment is measured via the growth of total assets (divided by total assets).

### Low 'risk'

**BAB** betting against beta (simple vol, market beta, idiosyncratic vol, etc) Kenneth French Factor Library

#### **Example Factor Model**

```
min_date <- "1963-07-31"; max_date <- "2020-06-30"
temp <- tempfile()</pre>
KF website <- "http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/"
KF file <- "ftp/F-F Research Data 5 Factors 2x3 CSV.zip"
link <- pasteO(KF_website, KF_file)</pre>
download.file(link, temp, quiet = T)
FF_factors <- read_csv(unz(temp, "F-F_Research_Data_5_Factors_2x3.CSV"),</pre>
                   skip = 3) %>% # Check the number of lines to skip!
   rename(date = X1, MKT_RF = `Mkt-RF`) %>% # Change the name of first columns
   mutate_at(vars(-date), as.numeric) %>%
                                        # Convert values to number
   mutate(date = ymd(parse_date_time(date, "%Y%m"))) %>% # Date in right format
   Warning: Missing column names filled in: 'X1' [1]
-- Column specification ------
cols(
 X1 = col_character(),
```

`Mkt-RF` = col\_character(),

```
SMB = col character(),
  HML = col_character(),
 RMW = col character(),
  CMA = col_character(),
  RF = col character()
)
Warning: 1 parsing failure.
row col expected
                     actual
                                    file
693 -- 7 columns 1 columns <connection>
Warning: Problem with `mutate()` input `MKT RF`.
i NAs introduced by coercion
i Input `MKT_RF` is `.Primitive("as.double")(MKT RF)`.
Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
Warning: Problem with `mutate()` input `SMB`.
i NAs introduced by coercion
i Input `SMB` is `.Primitive("as.double")(SMB)`.
Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
Warning: Problem with `mutate()` input `HML`.
i NAs introduced by coercion
i Input `HML` is `.Primitive("as.double")(HML)`.
Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
Warning: Problem with `mutate()` input `RMW`.
i NAs introduced by coercion
i Input `RMW` is `.Primitive("as.double")(RMW)`.
Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
Warning: Problem with `mutate()` input `CMA`.
i NAs introduced by coercion
i Input `CMA` is `.Primitive("as.double")(CMA)`.
Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
Warning: Problem with `mutate()` input `RF`.
i NAs introduced by coercion
i Input `RF` is `.Primitive("as.double")(RF)`.
Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
Warning: Problem with `mutate()` input `date`.
i 58 failed to parse.
i Input `date` is `ymd(parse_date_time(date, "%Y%m"))`.
Warning: 58 failed to parse.
```

Table 1: Sample of Monthly Factor Returns.

| date       | MKT_RF  | SMB     | HML     | RMW     | CMA     | RF     |
|------------|---------|---------|---------|---------|---------|--------|
| 1963-07-31 | -0.0039 | -0.0045 | -0.0094 | 0.0066  | -0.0115 | 0.0027 |
| 1963-08-31 | 0.0507  | -0.0082 | 0.0182  | 0.0040  | -0.0040 | 0.0025 |
| 1963-09-30 | -0.0157 | -0.0048 | 0.0017  | -0.0076 | 0.0024  | 0.0027 |
| 1963-10-31 | 0.0253  | -0.0130 | -0.0004 | 0.0275  | -0.0224 | 0.0029 |
| 1963-11-30 | -0.0085 | -0.0085 | 0.0170  | -0.0045 | 0.0222  | 0.0027 |
| 1963-12-31 | 0.0183  | -0.0190 | -0.0006 | 0.0007  | -0.0030 | 0.0029 |

```
FF factors <- FF factors %>% mutate(MKT RF = MKT RF / 100,
                                    SMB = SMB / 100,
                                    HML = HML / 100,
                                    RMW = RMW / 100
                                    CMA = CMA / 100,
                                    RF = RF / 100) \%
   filter(date >= min_date, date <= max_date)</pre>
knitr::kable(head(FF factors), booktabs = T,
             caption = "Sample of Monthly Factor Returns.")
FF_Avg_Returns <- FF_factors %>%
   mutate(date = year(date)) %>%
   gather(key = factor, value = value, - date) %>%
   group_by(date, factor) %>%
   summarise(value = mean(value))
`summarise()` regrouping output by 'date' (override with `.groups` argument)
FF Avg Returns %>%
   ggplot(aes(x = date, y = value, color = factor)) +
   geom_line() + coord_fixed(500)
FF factors %>%
   gather(key = factor, value = return, - date) %>%
   filter(factor != 'RF') %>%
   ggplot(aes(return, group = factor)) +
      geom_density(aes(fill = factor, alpha = .25))
FF Avg Returns %>%
   filter(factor != 'RF') %>%
   ggplot(aes(value, group = factor)) +
      geom_density(aes(fill = factor, alpha = .25))
```



Figure 1: Factor Returns



Figure 2: Return Densitites



Figure 3: Yearly Avg Return Densities

```
FF_Cum_Returns <- FF_factors %>%
  gather(key = factor, value = value, -date) %>%
  group_by(factor) %>%
  mutate(lag_ret = lag(value)) %>%
  mutate(return = cumprod(1 + ifelse(is.na(lag_ret), 0, lag_ret)))

FF_Cum_Returns %>%
  ggplot(aes(date, return, group = factor)) +
  geom_line(aes(col = factor))
```



Figure 4: Growth of \$1 by factor