

Numerical Computing

2023

Student: FULL NAME

Discussed with: FULL NAME

Solution for Project 2

Due date: Wednesday, 25 October 2023, 11:59 PM

Numerical Computing 2023 — Submission Instructions (Please, notice that following instructions are mandatory: submissions that don't comply with, won't be considered)

- Assignments must be submitted to iCorsi (i.e. in electronic format).
- Provide both executable package and sources (e.g. C/C++ files, MATLAB). If you are using libraries, please add them in the file. Sources must be organized in directories called:

 $Project_number_lastname_firstname$

and the file must be called:

 $project_number_lastname_firstname.zip\\project_number_lastname_firstname.pdf$

- The TAs will grade your project by reviewing your project write-up, and looking at the implementation you attempted, and benchmarking your code's performance.
- You are allowed to discuss all questions with anyone you like; however: (i) your submission
 must list anyone you discussed problems with and (ii) you must write up your submission
 independently.

1. The assignment

1.1. Implement various graph partitioning algorithms [50 points]

Summarize your results in table 1.

Table 1: Bisection results

Mesh	Coordinate	Metis 5.0.2	Spectral	Inertial
grid5rec(12,100)	12			
grid5rec(100,12)	12			
grid5recRotate(100,12,-45)				
gridt(50)				
grid9(40)				
Smallmesh				
Tapir				
Eppstein				

1.2. Recursively bisecting meshes [20 points]

Summarize your results in table 2.

Table 2: Edge-cut results for recursive bi-partitioning.

Case	Spectral	Metis 5.1.0	Coordinate	Inertial
mesh3e1				
bodyy4				
de-2010				
biplane-9				
L-9				

1.3. Comparing recursive bisection to direct k-way partitioning [15 points]

Summarize your results in table 3.

Table 3: Comparing the number of cut edges for recursive bisection and direct multiway partitioning in Metis 5.1.0.

Partitions	Helicopter	Skirt
16 - recursive bisection		
16-way direct partition		
32 - recursive bisection		
32-way direct partition		