Complex Analysis: Main ideas

Peter Kagey

August 16, 2018

Measures

1. Definition: σ -ring

A σ -ring is a collection of sets that are closed under countable unions and finite differences.

2. Definition: σ -field

A σ -algebra or σ -field is a collection of sets that are closed under countable unions and complements.

3. Definition: Set measures

A measure on a set X equipped with a σ -algebra \mathcal{M} is a function $\mu \colon \mathcal{M} \to [0, \infty]$ such that

(a)
$$\mu(\emptyset) = 0$$
, and

(b)
$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \mu(E_j)$$
 given that $\{E_j\}_1^{\infty}$ is a sequence of disjoint sets.

4. Definition: Outer measure

An outer measure on a set X is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ such that

(a)
$$\mu^*(\emptyset) = 0$$
,

(b)
$$\mu^*(A) < \mu^*(B)$$
 if $A \subset B$, and

(c)
$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \le \sum_{j=1}^{\infty} \mu^* (A_j).$$

5. Definition: Premeasure

A premeasure on a set X equipped with an algebra \mathcal{A} is a function $\mu_0 \colon \mathcal{A} \to [0, \infty]$ such that

(a)
$$\mu_0(\emptyset) = 0$$
, and

(b)
$$\mu_0\left(\bigcup_{j=1}^{\infty}A_j\right)=\sum_{j=1}^{\infty}\mu_0(A_j)$$
 given that $\{A_j\}_1^{\infty}$ is a sequence of disjoint sets with its union in \mathcal{A} .

6. Definition: Construction of measures on \mathbb{R}^n

7. Definition: Signed measure

A signed measure on (X, \mathcal{M}) is a function $\nu \colon \mathcal{M} \to (-\infty, \infty]$ or $\nu \colon \mathcal{M} \to [-\infty, \infty)$ such that

(a)
$$\nu(\emptyset) = 0$$
,

(b)
$$\nu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu(A_j)$$
 when $\{E_j\}_{j=1}^{\infty}$ is a sequence of disjoint sets.

8. Definition: Complex measure

A complex measure on (X, \mathcal{M}) is a function $\nu \colon \mathcal{M} \to \mathbb{C}$ such that

(a)
$$\nu(\emptyset) = 0$$
,

(b) If
$$\{E_j\}_{j=1}^{\infty}$$
 is a sequence of disjoint sets, then $\nu\left(\bigcup_{j=1}^{\infty}A_j\right)=\sum_{j=1}^{\infty}\mu(A_j)$, where the sum converges absolutely.

1

9. Definition: Mutually singular measures

Two signed measures μ and ν are called mutually singular (denoted $\mu \perp \nu$) on (X, \mathcal{M}) if there exists a partition of X into $E, F \in \mathcal{M}$ such that E and F are null for μ and ν respectively.

10. Definition: Variation of signed measures

For any signed measure ν , the Jordan Decomposition theorem guarantees unique, positive, mutually singular measures $\nu^+ \perp \nu^-$ such that $\nu = \nu^+ - \nu^-$, called the positive and negative variations of ν .

11. Definition: Positive set

Suppose ν is a signed measure on (X, \mathcal{M}) . A set $E \in \mathcal{M}$ is called positive if for any subset of E in \mathcal{M} has nonnegative measure.

12. Hahn decomposition theorem

Suppose ν is a signed measure on (X, \mathcal{M}) . There exists a positive set P and a negative set N such that $P \cup N = X$ and $P \cap N = \emptyset$. This is unique up to null sets.

13. Definition: Absolute continuity

Suppose ν is a signed measure and μ is a positive measure on (X, \mathcal{M}) . Then ν is absolutely continuous with respect to μ (denoted $\nu \ll \mu$) if $\mu(E) = 0 \Rightarrow \nu(E) = 0$ for all $E \in \mathcal{M}$. This is the "opposite" of mutual singularity.

14. Definition: Product measures

15. Definition: Regular measures

A Borel measure ν on \mathbb{R}^n is called regular if

- (a) $\nu(K) < \infty$ for every compact K;
- (b) $\nu(E) = \inf \{ \nu(U) \mid U \text{ open, } E \subset U \} \text{ for every } E \in \mathcal{B}_{\mathbb{R}^n}.$

16. Definition: Measurable functions

A function $f: X \to Y$ is called measurable if $f^{-1}(E) \in \mathcal{M}_X$ for any choice of $E \in \mathcal{N}_Y$.

Integration.

1. **Definition:** L^+

The space of all measurable functions from X to $[0, \infty]$ is denoted by L^+ .

2. **Definition:** L^1

The space of all functions f from X to \mathbb{C} such that $\int |f| < \infty$ is denoted by L^1 .

3. Lebesgue's dominated convergence theorem

Let $\{f_n\}$ be a sequence in L^1 such that

- (a) $f_n \to f$ almost everywhere, and
- (b) there exists a nonnegative $g \in L^1$ such that $|f_n| \leq g$ almost everywhere for all n.

Then $f \in L^1$ and $\int f = \lim_{n \to \infty} \int f_n$.

4. Levi's monotone convergence theorem

Let $\{f_n\}$ be an increasing sequence of positive measurable functions. Then

$$\lim_{n \to \infty} \int f_n = \int f.$$

5. Radon-Nikodym theorem

Let ν be a σ -finite signed measure and μ a σ -finite positive measure on (X, \mathcal{M}) . There exist σ -finite signed measures λ , ρ on (X, \mathcal{M}) such that

$$\lambda \perp \mu$$
, $p \ll \mu$, and $\nu = \lambda + \rho$.

6. Fubini's theorem

If $f \in L^1(\mu \times \nu)$, then

- (a) $f_x \in L^1(\nu)$ for almost every $x \in X$,
- (b) $f^y \in L^1(\mu)$ for almost every $y \in Y$,
- (c) $g(x) = \int f_x d\nu \in L^1(\mu)$,
- (d) $h(y) = \int f^y d\mu \in L^1(\nu)$, and

(e)
$$\int f d(\mu \times \nu) = \int \left[\int f(x,y) d\nu(y) \right] d\mu(x) = \int \left[\int f(x,y) d\mu(x) \right] d\nu(y).$$

7. Tonelli's theorem

If $f \in L^+(X \times Y)$, then the functions $g(x) = \int f_x d\nu$ and $h(y) = \int f^y d\mu$ are in $L^+(X)$ and $L^+(Y)$ respectively, and

$$\int f d(\mu \times \nu) = \int \left[\int f(x, y) d\nu(y) \right] d\mu(x) = \int \left[\int f(x, y) d\mu(x) \right] d\nu(y).$$

8. Convolution

9. The n-dimensional Lebesgue integral

10. Polar coordinates

Convergence.

1. Defintion: Almost everywhere convergence

Convergence almost everywhere means that

$$\mu\left(\left\{x: \lim_{n \to \infty} |f_n(x) - f(x)| > 0\right\}\right) = 0.$$

2. Defintion: Uniform Convergence

Uniform convergence means that for each $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all n > N,

$$\{x: |f_n(x) - f(x)| > \epsilon\} = \emptyset.$$

3. Defintion: Almost Uniform Convergence

Almost uniform convergences means that for each $\varepsilon > 0$, $\delta > 0$, there exists E_{δ} with $\mu(E_{\delta}) < \delta$ and $N \in \mathbb{N}$ such that for all n > N,

$$\{x: |f_n(x)-f(x)|>\varepsilon\}\subset E_\delta.$$

4. Defintion: Convergence in measure

Convergence in measure means that for each $\varepsilon > 0$, $\delta > 0$, there exists $N \in \mathbb{N}$ such that for all n > N,

$$\mu(\{x: |f_n(x) - f(x)| > \varepsilon\}) \le \delta.$$

5. Defintion: Convergence in L^1

We say that $f_n \to f$ in L^1 if $\int |f_n - f| \to 0$.

6. Egoroff's Theorem

Suppose that X has finite measure and $\{f_k \colon X \to \mathbb{C}\}_{k \in \mathbb{N}}$ are measurable functions that converge almost everywhere to f. Then we can find an exceptional set E with arbitrary small measure, such that $\mu(E) < \epsilon$ and $f_n \to f$ uniformly on E^c .

7. Lusin's Theorem

If $f: [a, b] \to \mathbb{C}$ is Lebesgue measurable and $\varepsilon > 0$, there is a compact set $E \subset [a, b]$ such that $\mu(E^c) < \epsilon$ and $f|_E$ is continuous.

3