CORRELAÇÃO LINEAR

Em Estatística, a **correlação** é um parâmetro que indica o "grau de correspondência" entre duas variáveis. Ou seja, a correlação mostra a "intensidade" com a qual dois conjuntos de dados estão relacionados mutuamente.

A medida para o grau de correlação linear entre duas variáveis é o coeficiente de correlação de Pearson (conhecido como coeficiente de correlação linear), indicado por "r", calculado por:

$$r = \frac{n.\sum_{i} x_{i}.y_{i} - (\sum_{i} x_{i}).(\sum_{i} y_{i})}{\sqrt{(n.\sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}).(n.\sum_{i} y_{i}^{2} - (\sum_{i} y_{i})^{2})}}$$

Os possíveis valores de correlação linear variam de -1 a 1, ou seja: $-1 \le r \le 1$.

Podemos proceder à seguinte classificação:

- r = -1,00: correlação negativa perfeita.
- r = -0,75: correlação negativa forte.
- r = -0,50: correlação negativa média.
- r = -0,25: correlação negativa fraca.
- r = 0,00: correlação linear inexistente.
- r = +0,25: correlação positiva fraca.
- r = +0,50: correlação positiva média.
- r = +0,75: correlação positiva forte.
- r = +1,00: correlação positiva perfeita.

Exemplo: Um pesquisador indagou a 7 pessoas (todas com 40 anos de idade) que aguardavam o trem em uma plataforma de metrô as seguintes questões:

- ✓ Qual a sua escolaridade, ou seja, quantos anos você estudou?
- ✓ Quantos livros você já leu?

Tabela : Número de anos que a pessoa estudou (x_i) e número de livros que a pessoa já leu (y_i).

Xi	3	5	7	9	10	14	16
yi	1	2	3	5	7	10	13

Xi	y _i	x _i ²	y _i ²	x _i .y _i
3	1	$(3)^2 = 9$	$(1)^2 = 1$	(3).(1) = 3
5	2	$(5)^2 = 25$	$(2)^2 = 4$	(5).(2) = 10
7	3	$(7)^2 = 49$	$(3)^2 = 9$	(7).(3) = 21
9	5	$(9)^2 = 81$	$(5)^2 = 25$	(9).(5) = 45
10	7	$(10)^2 = 100$	$(7)^2 = 49$	(10).(7) = 70
14	10	$(14)^2 = 196$	$(10)^2 = 100$	(14).(10) = 140
16	13	$(16)^2 = 256$	$(13)^2 = 169$	(16).(13) = 208
$\sum x_i = 64$	$\sum y_i = 41$	$\sum x_i^2 = 716$	$\sum y_i^2 = 357$	$\sum x_i \cdot y_i = 497$

O coeficiente de correlação linear é:
$$r = \frac{n \cdot \sum x_i \cdot y_i - (\sum x_i) \cdot (\sum y_i)}{\sqrt{(n \cdot \sum x_i^2 - (\sum x_i)^2) \cdot (n \cdot \sum y_i^2 - (\sum y_i)^2)}}$$

Para o exemplo 2, temos:

$$r = \frac{7.497 - (64).(41)}{\sqrt{(7.716 - (64)^2).(7.357 - (41)^2)}} = \frac{3479 - 2624}{\sqrt{916.818}} = 0,988$$