Solució al problema 18 I

- Si és sempre un producte escalar i $f \in E_{m+1}$ tal que $f(x_i) = 0$, $i = 0, \ldots, m+1$ llavors $\langle f, f \rangle = 0$ i $f \equiv 0$. Recíprocament, suposem que f té com a màxim m zeros. Si $\langle f, f \rangle = 0$ llavors $f(x_i) = 0$, $i = 0, \ldots, m$ i $f \equiv 0$.
- ② És conseqüència immediata de que si $g(x_i) = 0$, i = 0, ..., m llavors g = 0.
- **③** Considerem $g \in E_{m+1}$ tal que $g(x_i) = y_i$, i = 0, ..., m, que sabem per l'apartat anterior que és única. Llavors la condició es pot escriure com, donada $g \in E_{m+1}$ trobar $g_0 \in E_n$ tal que

$$||f-g_0|| \leq ||f-g||, \quad \forall g \in E_n.$$

Solució al problema 18 II

• Notem que $g_0(x)=1$, $g_1(x)=e^x$, $g_2(x)=e^{2x}$, $g_3(x)=e^{3x}$ són linealment independents, ja que aquestes funcions són polinomis de grau 0, 1, 2 i 3 (resp.) respecte de la variable $t=e^x$. Això implica que $\langle f,g\rangle=\sum_{i=0}^3 f(i)g(i)$ és un producte escalar en E_4 . Per tant, cal resoldre les equacions normals: La solució serà $g_0=c_0+c_1e^x$, on

$$\left(\begin{array}{cc} \langle \varphi_0, \varphi_0 \rangle & \langle \varphi_0, \varphi_1 \rangle \\ \langle \varphi_1, \varphi_0 \rangle & \langle \varphi_1, \varphi_1 \rangle \end{array}\right) \left(\begin{array}{c} c_0 \\ c_1 \end{array}\right) = \left(\begin{array}{c} \langle f, \varphi_0 \rangle \\ \langle f, \varphi_1 \rangle \end{array}\right).$$

Fent càlculs

$$\left(\begin{array}{cc} 4 & 1+e+e^2+e^3 \\ 1+e+e^2+e^3 & 1+e^2+e^4+e^6 \end{array}\right) \left(\begin{array}{c} c_0 \\ c_1 \end{array}\right) = \left(\begin{array}{c} 66 \\ 3+6e+16e^2+41e^3 \end{array}\right)$$

Resolent, tenim que $c_0 \approx 0.90269$, $c_1 \approx 2.00011$.