

Rethinking Deep Neural Network Ownership Verification: Embedding Passports to Defeat Ambiguity Attacks

Lixin Fan¹, Kam Woh Ng^{1,2}, Chee Seng Chan² WeBank Al Lab¹, University of Malaya²

Problem Definition

Conventional DNN Watermarking methods

White-box Ownership Verification (Uchida et al. [1])

Black-box Ownership Verification (Adi et al. [2])

Problem Statements

- 1. Protection on DNN is urgently needed
- 2. Existing watermarking approaches are vulnerable to ambiguity attack

Watermark Approach	Real Watermark	Fake Watermark
White-box (Uchida et al. [1])	100% watermark detected	100% watermark detected
Black-box (Adi et al. [2])	100% watermark detected	100% watermark detected

Watermark detection rate for both real and fake watermarks

Protect your DNN model from theft!

Code & More Details

Our Solution

Embedding Passports Valid passport

Passporting Layer

Discussion

Embedding Binary Signatures into γ of Passporting Layer

Sign Loss =
$$\sum_{i=1}^{C} \max(\gamma_0 - \gamma_i b_i, 0)$$

$$\gamma_0 = 0.1$$
 $b: [-1 \ 1 \ ...]$

64 channels can embed 8 bytes signature

Experimental Results

Ownership Verification Schemes

	Scheme 1	Scheme 2	Scheme 3
Need to distribute passport	Yes	No	No
Inference time	Up to 10%** more time	No extra time	No extra time
Training time	Up to 30%** more time	Up to 150%** more time	Up to 150%** more time
Black or White box Verification	White	White	Black & White

**Time increases are linearly depending on complexity of the network architecture

Contributions

- I. Novel passport-based verification schemes to defeat ambiguity attack
- 2. One passport-protected DNN model will only have one unique signature
- 3. Fake passport or modified signature will paralyze the DNN model