Due Wednesday of Week 7 at the start of class

Complete the following problems and submit them as a pdf to Canvas. 8 points are awarded for thoroughly attempting every problem, and I'll select three problems to grade on correctness for 4 points each. Enough work should be shown that there is no question about the mathematical process used to obtain your answers.

Section 8

In problems 1–5, evaluate the product.

$$1. \left[\begin{array}{cc} 3 & 0 \\ 6 & -2 \end{array} \right] \left[\begin{array}{c} 1 \\ -1 \end{array} \right].$$

$$2. \left[\begin{array}{cc} 1 & 2 & 3 \end{array}\right] \left[\begin{array}{c} 4 \\ 5 \\ 6 \end{array}\right].$$

$$3. \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}.$$

$$4. \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}.$$

$$5. \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{bmatrix}.$$

6. Suppose that for a square matrix \mathbf{A} , there are matrices \mathbf{B} and \mathbf{C} so that $\mathbf{A}\mathbf{B} = \mathbf{I}$ and $\mathbf{C}\mathbf{A} = \mathbf{I}$. Show that it must be the case that $\mathbf{B} = \mathbf{C}$. Hint: multiply both sides of the second equation by something.

- 7. Let A be an $n \times n$ matrix with entries a_{ij} .
 - a) For the products AI and IA to make sense, what dimension must I have?
 - b) The *i*th row of A is $\begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix}$. If the *j*th column of I is denoted $\vec{e_j}$, what is the entry in row i and column j of AI? Your answer should be in terms of i and j.
 - c) What does part b) imply AI is equal to? Why does this make sense in the context of function composition?