

Подпространства и ранг

Нехаенко П.А.

pavel.ushlepkovl@yandex.ru Yaroslavl Demidov state university

Подпространства. Их сумма и пересечения

Определение 1. Непустое подмножество L₁ ⊂ L называется линейным подпространством, если L₁ замкнуто относительно операций сложения и умножения на число:

1) для любых x, $y \in L_1 x + y \in L_1$;

2) для любого $x \in L_1$ и любого $\alpha \in R\alpha x \in L_1$

Иначе говоря, L₁ есть линейное подпространство L, если L₁ само является ли- нейным пространством относительно операций, введённых в более широком множестве L.

Определение 2. Сумма и пересечение подпространств L_1 , L_2 линейного пространства L определяются следующим образом:

$$L_1 + L_2 := \{x \in L : x = x_1 + x_2, x_i \in L_i, i = 1, 2\}, L_1 \cap L_2 := \{x \in L : x_i \in L_i, i = 1, 2\}.$$

Определение 3. Сумма $S = L_1 + L_2$ называется прямой, если для любого $x \in S$ представление $x = x_1 + x_2, x_1 \in L_1, x_2 \in L_2$, является единственным. Прямая сумма в этом тексте обозначается $S = L_1 \oplus L_2$ (другое стандартное обозначение: $S = L_1 + L_2$).

Теорема 1. Сумма является прямой, то есть $S = L_1 \oplus L_2$, тогда и только тогда, когда выполнено любое из следующих эквивалентных условий.

1. $L_1 \cap L_2 = \{\mathbf{0}\}.$

2. $dim(L_1 + L_2) = dimL_1 + dimL_2$.

3.Если $f_1,...,f_l$ – базис $L_1,g_1,...,g_m$ – базис L_2 , то $f_1,...,f_l,g_1,...,g_m$ – базис L_1+L_2

4. Единственность разложения по L_1 и L_2 имеет место для нулевого вектора: если $x_1 + x_2 = 0$, $x_1 \in L_1$, $x_2 \in L_2$, то обязательно $x_1 = x_2 = 0$

Ранг матрицы. Теорема о ранге. Методы вычисления и свойства ранга матрицы

Определение 4. Рангом матрицы **A** называется ранг системы её столбцов как элементов R^m , то есть размерность линейной оболочки системы столбцов $X_1, ..., X_n$:

$$rg(A) := rg(X_1, ..., X_n) = dimlin(X_1, ..., X_n).$$

Проще говоря, ранг матрицы равен максимальному числу линейно независимых столбцов этой матрицы. В этом варианте надо добавить, что ранг нулевой матрицы считается равным 0.

Теорема 2. Ранг матрицы равен максимальному порядку r отличного от нуля минора этой матрицы. (Для нулевой матрицы считаем r=0).

Основной способ вычисления ранга матрицы связан с приведением её к ступенчатому виду с помощью элементарных преобразований над строками, то есть является методом Гаусса.

Другим методом вычисления ранга матрицы является метод окаймления миноров.

Свойства ранга:

1. Для $A \in M_{m,n} \ rg(\mathbf{A}) \leqslant min(m,n)$.

2. Пусть $A \in M_n$. $rg(A) = n \iff |A| \neq 0$.

3. Пусть $A \in M_n$. Матрица A обратима \iff rg(A) = n.

4. Если **AB** существует, то $rg(AB) \leq min(rg(A), rg(B))$.

5. Пусть $B \in M_n$ и $rg(\mathbf{B}) = n$. Если \mathbf{AB} существует, то $\mathbf{AB} = rg(\mathbf{A})$.

Тоже - для произведения АВ.

6. Для $\mathbf{A} \in M_{m,k}$, $\mathbf{B} \in M_{k,n} \ rg(\mathbf{A}) + rg(\mathbf{B}) \leqslant rg(\mathbf{A}\mathbf{B}) + k$.

7. Для $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{m,n} \ rg(\mathbf{A} + \mathbf{B}) \leqslant rg(\mathbf{A}) + rg(\mathbf{B}).$

8. Если все произведения существуют, то $rg(AB) + rg(BC) \leqslant rg(B) + rg(ABC)$.

Применение понятия ранга к анализу систем линейных уравнений. Теорема Кронекера – Капелли. Критерий определённости

С привлечением понятия ранга матрицы нетрудно дать необходимые и достаточные условия совместности и определённости произвольной системы линейных уравнений.

Пусть дана система m уравнений с n неизвестными $x_1, ..., x_n$ и матрицей коэффициентов $\mathbf{A} = (a_{ij}) \in M_{m,n}$:

$$a_{11}x_1 + \cdots + a_{1n}x_n = b_1.$$

 $a_{21}x_1 + \cdots + a_{2n}x_n = b_2.$
 $\cdots \cdots \cdots \cdots \cdots$
 $a_{m1}x_1 + \cdots + a_{mn}x_n = b_m.$ (1)

Пусть X_1, \cdots, X_n — столбцы матрицы A, b — столбец свободных членов. Обозначим через A|b расширенную матрицу системы (1). Ясно, что всегда

$$rq(A) \leqslant rq(A|b) \leqslant rq(A)$$
.

Сначала ответим на вопрос о совместности системы (1).

выполняются одновременно два равенства

Теорема 3. Система (1) является совместной тогда и только тогда, когда

$$rg(\mathbf{A}|\mathbf{b}) = rg(\mathbf{A}).$$

Второе утверждение этого пункта содержит критерий определённости системы (1). **Теорема 4.** Система линейных уравнений (1) является определённой тогда и только тогда, когда

$$rg(\mathbf{A}|\mathbf{b}) = rg(\mathbf{A}) = n.$$

Размерность и базис подпространства Rn, задаваемого системой линейных однородных уравнений. Фундаментальная система решений

Рассмотрим систему линейных однородных уравнений

$$\mathbf{A} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}. \tag{2}$$

с данной матрицей коэффициентов $\mathbf{A} \in \mathcal{M}_{m,n}$. Пусть $L \in \mathbb{R}^n$ определяется равенством

$$L := \{x = (x_1, \cdots, x_n) : x$$
 удовлетворяет $(2)\}.$

Мы говорим, что L задаётся системой уравнений (2) или является подпространством решений этой системы. Исследуем задачу определения размерности и базиса L.

Tеорема 5. dimL = n - rg(A).

С каждой матрицей $\mathbf{A} \in M_{m,n}$ можно связать два линейных подпространства R^n , которые здесь мы обозначим L_1 и L_2 .

1) L_1 — линейная оболочка строк матрицы A . Размерность $dim L_1 = rg(A)$. Базис L_1 образует любая система из r = rg(A) линейно независимых строк.

2) L_2 — подпространство решений системы линейных однородных уравнений. Размерность $dim L_2 = nrg(\mathbf{A})$. Базис L_2 образует фундаментальная система решений данной системы уравнений.

Наконец, заметим, что задачи нахождения базиса или размерности подпространств в конечномерных линейных пространствах, отличных от *R n* (многочленов, матриц и т.д.), решаются с помощью изоморфного перехода в *R n* с нужным значением *n*.

References

1. 1. Невский М. В. Подпространства и ранг // Лекции по алгебре: Учебное пособие // Ярославль: ЯрГУ, 2002. с. 72 - 87 с.