The mu-calculus collapses to modal logic over frames of IS5

Leonardo Pacheco *Tohoku University*

December 19, 2022 Available at: leonardopacheco.xyz/slides/akiu-2022.pdf

MOTIVATION

The μ -calculus = modal logic + fixed points.

Theorem (Alberucci, Facchini¹)

Over equivalence relations, every μ -formula is equivalent to a modal formula.

Two directions to generalize this theorem:

- ► Bigger classes of frames:
 - ► On frames of \$4.3.2: collapse to modal logic.
 - ► On transitive frames: collapse to alternation-free fragment.
- ► Change the semantics:
 - ► Intuitionistic semantics.
 - ► Graded semantics.
 - ▶ Inflationary μ -calculus.

 $^{^{1}}$ L. Alberucci, A. Facchini, The Modal μ -Calculus Hierarchy over Restricted Classes of Transition Systems.

Completeness for S5 and IS5

Theorem

S5 *is complete over equivalence relations* $M = \langle W, R, V \rangle$ *.*

IS5 is an intuitionistic variant of S5.

Theorem (Ono², Fischer Servi³)

IS5 is complete over birelational models $M = \langle W, \preceq, \equiv, V \rangle$, where \equiv is an equivalence relation.

We define IS5 and birelational semantics on the next slides.

²H. Ono, *On Some Intuitionistic Modal Logics*.

³G. Fischer Servi, *The Finite Model Property for MIPQ and Some Consequences*.

IS5

IS5 consists of following axioms:

- ► all intuitionistic tautologies;
- $\blacktriangleright K := \Box(\varphi \to \psi) \to (\Box\varphi \to \Box\psi) \land \Box(\varphi \to \psi) \to (\Diamond\varphi \to \Diamond\psi);$
- $T := \Box \varphi \to \varphi \land \varphi \to \Diamond \varphi;$
- $\bullet \ 4 := \Box \varphi \to \Box \Box \varphi \land \Diamond \Diamond \varphi \to \Diamond \varphi;$
- $\blacktriangleright 5 := \Diamond \varphi \to \Box \Diamond \varphi \land \Diamond \Box \varphi \to \Box \varphi;$
- $FS := (\Diamond \varphi \to \Box \psi) \to \Box (\varphi \to \psi);$
- $ightharpoonup N := \neg \Diamond \bot;$

and the following inference rules:

$$(\mathbf{Nec}) \; \frac{\varphi}{\Box \varphi} \quad \text{ and } \quad (\mathbf{MP}) \; \frac{\varphi \quad \varphi \to \psi}{\psi}.$$

BI-RELATIONAL MODELS

A bi-relational Kripke model is a tuple $M = \langle W, \preceq, \equiv, V \rangle$ such that

- ► W is a set of worlds;
- ▶ $\preceq \subseteq W \times W$ is reflexive and transitive;
- ▶ $\equiv \subseteq W \times W$ is an equivalence relation;
- ▶ *V* is a valuation function.

Furthermore, we require:

- ▶ $w \leq w'$ and $w \in V(P)$ imply $w' \in V(P)$;
- $w \leq w'$ and $w \equiv v$ imply there is v' such that $v \leq v'$ and $w' \equiv v'$;
- $w \equiv w' \preceq v'$ implies there is v such that $w \preceq v \equiv v'$.

These are models for IS5.

μ -FORMULAS

The μ -formulas are generated by the grammar:

$$\varphi := P \mid X \mid \bot \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \mu X.\varphi \mid \nu X.\varphi.$$

Use $\neg \varphi$ as a shorthand for $\varphi \to \bot$.

We require *X* to be positive in φ to define $\mu X.\varphi$ and $\nu X.\varphi$.

SEMANTICS — INTUITIONISTIC MODAL LOGIC

Let $M = \langle W, \preceq, \equiv, V \rangle$ be a birelational model.

- \blacktriangleright $M, w \models P \text{ iff } w \in V(P);$
- ▶ $M, w \models \bot$ is false;
- $\blacktriangleright M, w \models \varphi \land \psi \text{ iff } M, w \models \varphi \text{ and } M, w \models \psi;$
- $\blacktriangleright M, w \models \varphi \lor \psi \text{ iff } M, w \models \varphi \text{ or } M, w \models \psi;$
- $\blacktriangleright M, w \models \varphi \rightarrow \psi \text{ iff, for all } v \succeq w, M, v \models \varphi \text{ implies } M, v \models \psi;$
- ► $M, w \models \Diamond \varphi$ iff, for all $v \succeq w$, there is $u \equiv v$ such that $M, u \models \varphi$;
- ► $M, w \models \Box \varphi$ iff, for all v and u, if $w \leq v \equiv u$ then $M, u \models \varphi$.

SEMANTICS — ... AND FIXED-POINTS

Let $M = \langle W, \preceq, \equiv, V \rangle$ be a birelational model. Let φ be a μ -formula and X be positive in φ . Define:

$$\Gamma_{\varphi(X)}(A) \to \|\varphi(A)\|^M$$

Then

- ▶ $M, w \models \mu X.\varphi$ iff w is in the least fixed point of $\Gamma_{\varphi(X)}$;
- ▶ $M, w \models \nu X.\varphi$ iff w is in the greatest fixed point of $\Gamma_{\varphi(X)}$.

\prec ; \equiv IS TRANSITIVE

Let \leq ; \equiv be the composition of \leq and \equiv .

Lemma

If $M = \langle W, \preceq, \equiv, V \rangle$ is a birelational model, then $\preceq : \equiv$ is transitive.

Proof.

Suppose $w \preceq ;\equiv v \preceq ;\equiv u$. Then:

$$w \xrightarrow{\preceq} \cdot \xrightarrow{\equiv} v \xrightarrow{\preceq} \cdot \xrightarrow{\equiv} \iota$$

\prec ; \equiv IS TRANSITIVE

Let \leq ; \equiv be the composition of \leq and \equiv .

Lemma

If $M = \langle W, \preceq, \equiv, V \rangle$ *is a birelational model, then* \preceq ; \equiv *is transitive.*

Proof.

Suppose $w \leq ;\equiv v \leq ;\equiv u$. Then:

$$w \xrightarrow{\preceq} \cdot \underset{\preceq}{=} v \xrightarrow{\preceq} \cdot \underset{\equiv}{=} \iota$$

\prec ; \equiv IS TRANSITIVE

Let \leq ; \equiv be the composition of \leq and \equiv .

Lemma

If $M = \langle W, \preceq, \equiv, V \rangle$ *is a birelational model, then* \preceq ; \equiv *is transitive.*

Proof.

Suppose $w \leq ;\equiv v \leq ;\equiv u$. Then:

KEY LEMMA

Lemma (Alberucci, Facchini)

Let $M = \langle W, R, V \rangle$ be a transitive Kripke model, w' be a member of the strongly connected component of w, φ be a μ -formula, and $\triangle \in \{\Box, \Diamond\}$. Then $w \in \|\triangle \varphi\|^M$ iff $w' \in \|\triangle \varphi\|^M$.

This lemma does not generalize to intuitionistic semantics, but we can get a good enough version:

Lemma

Let $M = \langle W, \preceq, \equiv, V \rangle$ *be a bi-relational model and* $w \preceq; \equiv w'$. *Then*

$$M, w \models \triangle \varphi \text{ implies } M, w' \models \triangle \varphi,$$

where $\triangle \in \{\Box, \Diamond\}$.

- ▶ Suppose $w \leq ;\equiv w'$ and $M, w \models \Diamond \varphi$.
- ▶ For all $v \succeq w$, there is $u \equiv v$ such that $M, u \models \varphi$.
- ▶ Let $v' \succ w'$, then:

$$w \xrightarrow{\preceq} \cdot \xrightarrow{\equiv} w' \xrightarrow{\preceq} v'$$

- ▶ Suppose $w \leq ;\equiv w'$ and $M, w \models \Diamond \varphi$.
- ▶ For all $v \succeq w$, there is $u \equiv v$ such that $M, u \models \varphi$.
- ▶ Let $v' \succeq w'$, then:

- ▶ Suppose $w \leq ;\equiv w'$ and $M, w \models \Diamond \varphi$.
- ▶ For all $v \succeq w$, there is $u \equiv v$ such that $M, u \models \varphi$.
- ▶ Let $v' \succeq w'$, then:

- ▶ Suppose $w \leq ;\equiv w'$ and $M, w \models \Diamond \varphi$.
- ▶ For all $v \succeq w$, there is $u \equiv v$ such that $M, u \models \varphi$.
- ▶ Let $v' \succeq w'$, then:

► So $M, w' \models \Diamond \varphi$.

- ▶ Suppose $w \leq ;\equiv w'$ and $M, w \models \Diamond \varphi$.
- ▶ For all $v \succeq w$, there is $u \equiv v$ such that $M, u \models \varphi$.
- ▶ Let $v' \succeq w'$, then:

GAME SEMANTICS — INTUITIONISTIC MODAL LOGIC

We define the evaluation game $\mathcal{G}(M, w \models \varphi)$:

- ► Two players: Verifier and Refuter.
- ▶ At $\langle v, P \rangle$, V wins iff $v \in V(P)$.
- ▶ At $\langle v, \varphi \lor \psi \rangle$, V chooses to move to $\langle v, \varphi \rangle$ or $\langle v, \psi \rangle$.
- **•** • •
- ▶ At $\langle v, \Diamond \varphi \rangle$, R chooses $v \succeq w$ and V chooses $u \equiv v$. The players move to $\langle u, \varphi \rangle$.
- ▶ At $\langle v, \Box \varphi \rangle$, R chooses $v \succeq w$ and $u \equiv v$. The players move to $\langle u, \varphi \rangle$.

DEFINING THE FIXED-POINTS

Lemma

Let $M = \langle W, \preceq, \equiv, V \rangle$ be a birelational model and φ be a formula where X is positive. Then

$$\|\varphi(\varphi(\top))\| = \|\varphi(\varphi(\varphi(\top)))\| \text{ and } \|\varphi(\varphi(\bot))\| = \|\varphi(\varphi(\varphi(\bot)))\|.$$

- ▶ $\|\varphi(\varphi(\varphi(\top)))\| \subseteq \|\varphi(\varphi(\top))\|$ as X is positive in φ .
- ▶ We show $\|\varphi(\varphi(\top))\| \subseteq \|\varphi(\varphi(\varphi(\top)))\|$.
- ▶ Suppose $M, w \models \varphi(\varphi(\top))$ and $M, w \not\models \varphi(\varphi(\varphi(\top)))$.
- ▶ V has a winning strategy σ for $\mathcal{G}(M, w \models \varphi(\varphi(\top)))$ and R has a winning strategy τ for $\mathcal{G}(M, w \models \varphi(\varphi(\varphi(\top))))$.

DEFINING THE FIXED-POINTS — CONT.

V and R play $\mathcal{G}(M, w \models \varphi(\varphi(\top)))$ and $\mathcal{G}(M, w \models \varphi(\varphi(\varphi(\top))))$ simultaneously, using analogous strategies σ' and τ' . For example:

$$\begin{split} \mathcal{G}(M,w &\models \varphi(\varphi(\top))): \to^* \langle v, (\psi \vee \theta)(\top) \rangle \to \langle v, \psi(\top) \rangle \\ \mathcal{G}(M,w &\models \varphi(\varphi(\varphi(\top)))): \to^* \langle v, (\psi \vee \theta)(\varphi(\top)) \rangle \to \langle v, \psi(\varphi(\top)) \rangle \end{split}$$

Eventually, the players will reach positions as follows:

$$\begin{split} \mathcal{G}(M,w &\models \varphi(\varphi(\top))): \to^* \langle w', \triangle \psi(\varphi(\top)) \rangle \to^* \langle w'', \triangle \psi(\top) \rangle \\ \mathcal{G}(M,w &\models \varphi(\varphi(\varphi(\top)))): \to^* \langle w', \triangle \psi(\varphi(\varphi(\top))) \rangle \to^* \langle w'', \triangle \psi(\varphi(\top)) \rangle \end{split}$$

By the lemma we proved above, $M, w'' \models \triangle \psi(\varphi(\top))$; since $w' \preceq ;\equiv w''$ and $M, w' \models \triangle \psi(\varphi(\top))$.

THE COLLAPSE

Theorem

Over birelational models of IS5, every μ -formula is equivalent to a modal formula.

Proof.

Let φ be a μ -formula and ψ be an equivalent modal formula.

Then

$$\mu X.\varphi \equiv \mu X.\psi \equiv \psi(\psi(\perp)),$$

and

$$\nu X.\varphi \equiv \nu X.\psi \equiv \psi(\psi(\top)).$$

THANKS!

A QUESTION — INFLATIONARY μ -CALCULUS

The μ -calculus allows only positive fixed-point operators. What happens on equivalence relations if we allow non-positive fixed-points operators?

	positive fp	non-positive fp
GL	μ -calc \equiv ML	μ -calc \equiv ML
S5	μ -calc \equiv ML	???