Actuarial Formula Sheet Ma fiche de Révision Actuarielle

Master Économie/Économétrie de l'Assurance Master Actuariat

22 mai 2025

Mathématiques Financières

1 – Capitalisation Actualisation

2 – Les Intérêts

Escompte ou taux précompté

$$d = i/(1+i)$$

Intérêt simple

$$I_t = Pit = Pi\frac{k}{365}$$

Intérêt composés

$$V_n = P(1+i)^n = P\left(1 + \frac{p}{100}\right)^n$$

Intérêt continu

$$V_t = V_0 e^{rt}$$

Taux effectif

$$i_e = \left(1 + \frac{i}{k}\right)^k - 1$$

où i est le taux nominal et m le nombre de périodes sur un an. Taux équivalent

$$i^{(k)} = k(1+i)^{1/k} - 1$$

3 - Valeur actuelle et valeur future

La valeur actuelle (VA) ou valeur présente (VP) représente le capital qui doit être investi aujourd'hui à un taux d'intérêt composé

annuel i pour obtenir des flux de trésorerie futurs (F_k) aux moments t_k :

$$VP = \sum_{k=1}^{n} F_k \times \frac{1}{(1+i)^{t_k}}$$
 (1)

Lorsque les F_k sont constants

$$VP = K \frac{1 - (1+i)^{-n}}{i} \tag{2}$$

La valeur future (VF) représente la valeur du capital en T qui, avec un taux d'intérêt composé annuel i, capitalise les flux de trésorerie futurs (F_k) aux moments t_k .

$$VF = V_n = \sum_{k=1}^{n} F_k \times (1+i)^{n-t_k}$$
 (3)

Plus généralement $VF = (1+i)^n VP$.

4 - Annuités

Annuité certaine $a_{\overline{n}|}$ (ou $a_{\overline{n}|i}$ si le taux d'intérêt i est utile à préciser) : c'est le cas par défaut en mathématiques financières. Ses paiements sont par exemple garantis par un contrat.

Annuité contingente \ddot{a}_x : ses paiements sont conditionnés à un événement aléatoire, comme lors d'une rente viagère d'un individu d'âge x. Dans cet exemple, ils courent jusqu'à ce que mort s'ensuive :

La date du décès est représenté ici par un petit cercueil. Cette forme d'annuité sera largement étudiée dans la partie actuariat vie. Annuité à terme échu (immédiate) $a_{\overline{n}}$: ses paiements périodiques sont effectués à la fin de chaque période de paiement, comme

pour le salaire payé en fin de mois. C'est le cas par défaut, illustré précédemment pour l'annuité certaine.

$$\ddot{a}_{\overline{n}|} = 1 + v + \dots + v^{n-1} = \frac{1 - v^n}{1 - v} = \frac{1 - v^n}{d}$$

$$PV_{\overline{n}|}^{\text{due}} = K\ddot{a}_{\overline{n}|} = K\frac{1 - v^n}{d}$$

Annuité à terme à échoir (due) $\ddot{a}_{\overline{n}|}$: ses paiements périodiques sont effectués au début de chaque période de paiement, comme pour un loyer par exemple.

aussi notée $\mathrm{PV}^{\mathrm{im}}$:

$$a_{\overline{n}|} = v + v^2 + \dots + v^n = \frac{1 - v^n}{i} = v \frac{1 - v^n}{1 - v}$$

$$PV_{\overline{n}|}^{im} = Ka_{\overline{n}|} = K\frac{1 - v^n}{i}$$

Annuité perpétuelle a ou $a_{\overline{n\infty}|}$:

$$a = 1/i$$

Annuité différée $m|a_{\overline{n}|}$: ses paiements ne commencent pas dans la première période mais après m périodes, m étant fixé à l'avance.

Annuité périodique / mensuelle $a^{(m)}$: la périodicité par défaut est un an, mais le paiement unitaire peut être aussi réparti sur m périodes dans l'année.

Si $i^{(m)}$ représente le taux d'intérêt (annuel) nominal équivalent avec m période annuelle $i^{(m)} = m ((1+i)^{1/m} - 1)$.

De même $d^{(m)}$ taux d'escompte nominal conforme à i et m: $d^{(m)} = m (1 - (1 - d)^{1/m})$.

$$\ddot{a}_{\overline{n}|}^{(m)} = \frac{1}{m} \sum_{k=0}^{mn-1} v^{\frac{k}{m}} = \frac{d}{d^{(m)}} \ddot{a}_{\overline{n}|} = \frac{1-v^n}{d^{(m)}} \approx \ddot{a}_{\overline{n}|} + \frac{m-1}{2m} \left(1-v^n\right)$$

$$a_{\overline{n}|}^{(m)} = \frac{1}{m} \sum_{k=1}^{m} v^{\frac{k}{m}} = \frac{i}{i^{(m)}} a_{\overline{n}|} = \frac{1 - v^n}{i^{(m)}} \approx a_{\overline{n}|} - \frac{m - 1}{2m} (1 - v^n)$$

Annuité unitaire a: elle est utilisée lors de la construction de formules d'annuité. Pour une annuité constante, le montant total versé chaque année est de 1, quelque soit m.

Annuité dynamique, croissante/décroissante Ia/Da: dans sa forme la plus simple, elle verse un montant qui démarre à $1\ (n)$ et qui croit (décroit) à chaque période de façon arithmétique ou géométrique. Dans l'exemple suivant, la progression est arithmétique. On utilise le préfixe I (increasing) pour indiquer les annuités croissantes et D (decreasing) pour les annuités dégressives.

$$(I\ddot{a})_{\overline{n}|} = 1 + 2v + \dots + nv^{n-1} = \frac{1}{d} (\ddot{a}_{\overline{n}|} - nv^n)$$
 (4)

avec, on le rappelle, d = i/(1+i) et à terme échu (immediate)

$$(Ia)_{\overline{n}|} = v + 2v^2 + \dots + nv^n = \frac{1}{i} (\ddot{a}_{\overline{n}|} - nv^n)$$

$$(D\ddot{a})_{\overline{n}|} = n + (n-1)v + \dots + v^{n-1} = \frac{1}{d}(n - a_{\overline{n}})$$

et à terme échu :

$$(Da)_{\overline{n}|} = nv + (n-1)v^2 + \dots + v^n = \frac{1}{i}(n - a_{\overline{n}|})$$

5 – L'emprunt (Indivis)

La principale propriété de l'emprunt est de considéré séparément les intérêts du remboursement (ou de l'amortissement).

Par un remboursement constant ou par annuité constante : la somme de l'amortissement et de l'intérêt à chaque période est constante.

Par un amortissement constant.

Par un remboursement in fine, où l'intérêt est constant. Seuls les intérêts sont versés périodiquement jusqu'au terme, moment où le remboursement total est effectué.

6 – Tableau d'amortissement de l'emprunt

		In fine	Amortis- sements constants	Annuités constantes
	Capital restant dû S_k	$T_k = S_0, T_n = 0$	$S_0\left(1-\frac{k}{n}\right)$	$S_0 \frac{1 - v^{n-k}}{1 - v^n}$
	Intérêts U_k	$i \times S_0$	$S_0\left(1-\frac{k-1}{n}\right)i$	$K\left(1-v^{n-k+1}\right)$
	Amortissements T_k	$T_k = O, T_n = S_0$	$\frac{S_0}{n}$	Kv^{n-k+1}
	Annuité K_k	$K_k = iS_0, K_n = (1+i)S_0$	$\frac{S_0}{n}(1-(n-k+1)i)$	$K = S_0 \frac{i}{1 - v^n}$

Finances de Marchés

7 - Fonctionnement des marchés

La Bourse (Exchange) - lieu d'échange - permet, de fait, la rencontre physique entre les demandeurs et offreurs de capitaux. Les principales cotations concernent les actions (equities), les obligations (Fixed Income) et les matières premières (commodities). Sont cotés des titres comme des actions ou des obligations, des fonds (Exhange Trade Funds qui répliquent des indices actions, ETC ou ETN qui répliquent des indices plus spécifiques ou des matières premières, SICAV ou FCP, bons de souscription, warrant), des contrats à terme, des options, des swaps ou encore des produits structurés.

L'Autorité des marchés financiers (AMF) veille :

- à la protection de l'épargne investie;
- à l'information des investisseurs;
- au bon fonctionnement des marchés.

Euronext (dont Amsterdam, Brussels, Lisbon, et Paris) est la principale bourse en France. Ses concurrents sont entre autres Deutsche Börse (dont Eurex, eex) en Europe, ou ICE (dont NYSE (2012), NYBOT (2005), IPE (2001), LIFFE) et CME Group (y compris CBOT, NYMEX, COMEX) aux États-Unis.

Le marché de gré à gré (OTC, Over-The-Counter) représente une part majeure des volumes échangés hors marchés organisés. Depuis le G20 de Pittsburgh (2009), certains dérivés OTC standardisés doivent être compensés via une entité centrale. Ces CCP (Central Counterparties) jouent ainsi le rôle de chambre de compensation (clearing) : elles remplacent le contrat bilatéral par deux contrats entre chaque partie et la CCP.

8 – Le Marché Monétaire

Les titres de taux à court terme, négociés sur les marchés monétaires, sont généralement à **intérêts précomptés**. Les taux nomi-

naux sont alors annuels et les calculs utilisent les **taux proportionnels** pour s'adapter aux durées inférieures à un an. Ces titres sont cotés ou évalués selon le principe de l'escompte et avec une convention de calendrier Euro-30/360.

Sur le marché américain, les titres de dette publique sont appelés : Bons du Trésor (T-bills) : ZC < 1 an, Obligations du Trésor (T-notes) : ZC < 10 ans, Obligations du Trésor (T-bonds) : obligations à coupon avec une maturité > 10 ans.

Ce sont principalement:

- BTF (bons du Trésor à taux fixe, France): émis à 13,
 26, 52 sem., taux précompté, adjudication hebdo, nominal
 1 €, règlement à J+2.
- Bons du Trésor > 1 an : mêmes règles que les obligations (voir section suivante).
- Certificats de dépôt (CDN) : titres émis par banques émis à taux fixe/précompté (court terme) ou à taux variable/postcompté (long terme), aussi appelés BMTN.
- **Eurodollars :** dépôts en USD hors USA, anciennement indexés LIBOR, aujourd'hui en déclin.
- Billets de trésorerie : titres non garantis à court terme, émis par grandes entreprises pour financer leur trésorerie.

Calculs du prix d'un Bon du Trésor à taux fixe et à intérêt précompté

Dans le cas d'un titre à intérêt précompté selon la convention Euro-30/360, l'escompte D s'écrit :

$$D = F \cdot d \cdot \frac{k}{360}$$

où F désigne la valeur nominale, d le taux d'escompte annuel pour évaluer le titre à escompte et k la maturité en jour.

Si le taux d'escompte d est connu, alors le prix P s'écrit :

$$P = F - D = F\left(1 - d \cdot \frac{k}{360}\right)$$

de même, si le prix P est connu, alors le taux d'escompte d se déduit :

$$d = \frac{F - P}{F} \cdot \frac{360}{k}$$

Les principaux Contrats à Terme : Federal Funds Futures (US), Three-Month SOFR Futures (US), ESTR Futures (UE), SONIA Futures (UK), Euribor Futures (UE).

9 – Marché Obligataire

Les obligations sont des titres de créance à long terme dans lesquels l'émetteur (gouvernement central ou local, banque, entreprise emprunteuse) promet à l'obligataire (le prêteur) de payer périodiquement des intérêts (coupons) et de rembourser à la date d'échéance la valeur nominale (ou valeur faciale, ou principal). Comme mentionné dans la section précédente Les Bons du Trésor de durée supérieure à un an seront assimilés aux obligations de maturité inférieure à 5 ans parce que leur fonctionnement est similaire.

Les obligations zéro-coupon : ne paient que la valeur nominale à l'échéance. Avec E le prix d'émission et R son remboursement :

Les obligations à coupon : Les obligations à taux fixe ont un taux de coupon qui reste constant jusqu'à la date d'échéance. Avec l'hypothèse d'un remboursement $in\ fine,\ E$ le prix d'émission, c les coupons et R son remboursement, on peut l'illustrer de la manière suivante :

Les obligations indexées (obligations liées à l'inflation) ont les coupons et parfois aussi la valeur nominale indexés à l'inflation ou à un autre indicateur économique, comme les Obligations Assimilables du Trésor indexées sur l'inflation (OATi). Les valeurs de c varient.

Les obligations à taux flottant, à taux variable ou à taux révisable : ont un taux de coupon variable lié à un taux d'intérêt de référence (par exemple le euro short- term rate $(\in STR)$).

Les obligations **perpétuelles** n'ont pas de date d'échéance, le principal n'est jamais remboursé.

On distingue souvent les obligations d'État (obligations du Trésor, Treasury bonds) des obligations d'entreprises ou corporate qui sont émises par des entreprises privées.

Une obligation se définit principalement par une valeur nominale F pour Face Value), le Taux nominal i, sa durée ou maturité n. Dans le cas par défaut, le détenteur de l'obligation confie le montant E=F à l'émission en 0, reçoit chaque année un coupon $c=i\times F$ et en n, le principal ou capital R=F lui est restitué. Quand E=F, on dit que l'émission est au pair, et quand R=F, on dit que la restitution est au pair.

Le prix d'une obligation est déterminé par la valeur actuelle des flux de trésorerie futurs attendus (coupons et remboursement du principal) actualisés au taux de rendement du marché r.

Le calcul des prix des obligations repose simplement sur la formule de la valeur actualisée :

$$VP = \sum_{k=1}^{n} \frac{c}{(1+r)^k} + \frac{F}{(1+i)^n}$$

OÙ.

- VP: prix ou valeur présente de l'obligation,
- r: taux d'intérêt du marché ou attendu par les investisseurs (rendement à l'échéance).

Pour les obligations à coupons périodiques, le coupon est divisé par le nombre de périodes (m) par an et la formule devient :

$$VP = \sum_{k=1}^{mn} \frac{c/m}{(1+r^{(m)})^k} + \frac{R}{(1+r^{(m)})^{mn}}$$

où c/m représente le paiement périodique du coupon et $r^{(m)}$ le taux d'intérêt périodique.

Le rendement de l'obligation est la valeur $r^{(m)}$, le taux équivalent de r sur m périodes dans l'année, qui égalise la valeur présente VP_r avec le prix actuel ou de marché de cette obligation.

La cotation d'une obligation d'une obligation se fait en pourcentage. Ainsi une cotation à 97,9 sur Euronext indique une valeur de cotation à 97,9/100 \times F. Elle se fait hors **coupons courus**, la part du prochain coupon auquel le vendeur a le droit si l'obligation est vendue avant le paiement de ce coupon.

10 – Duration & Convexité

La duration de Macaulay:

$$D = \sum_{t=1}^{n} t \cdot w_t, \quad \text{où} \quad w_t = \frac{PV(C_t)}{P}.$$

Si la fréquence de paiement est k par an, la duration exprimée en années est obtenue en divisant par k. La duration modifiée D^* :

$$D^* = \frac{D}{1+i}.$$

Ce qui permet d'approximer la variation du porte feuille ΔP en cas de variation des taux Δ_i

$$\Delta P \approx -P D^* \Delta_i$$

De même, la convexité

$$C = \frac{1}{P(i)} \times \frac{d^2 P(i)}{di^2},$$

ce qui permet d'affiner l'approximation de ΔP

$$P(i + \Delta_i) \approx P(i) \left(1 - D^* \Delta_i + \frac{1}{2} C(\Delta_i)^2 \right).$$

11 - MEDAF

ou CAPM (Capital Asset Pricing Model):

$$E(r_i) = r_f + \beta_i (E(r_m) - r_f)$$

- $E(r_i)$ est le rendement espéré de l'actif i,
- r_f est le taux sans risque,
- $E(r_m)$ est le rendement espéré du marché,
- β_i est le coefficient de sensibilité de l'actif i par rapport aux variations observées sur le marché.

Le coefficient β_i mesure la volatilité de l'actif i par rapport à l'ensemble du marché.

12 – Marché des dérivés

Un contrat dérivé (ou actif contingent) est un instrument financier dont la valeur dépend d'un actif ou d'une variable sous-jacente. Les options font partie des contrats dérivés.

Une **option** est un contrat donnant le droit (sans obligation) d'acheter (call) ou de vendre (put) un actif sous-jacent à un prix fixé (prix d'exercice), à une date future, contre paiement d'une prime. L'acheteur (position longue) paie la prime; le vendeur (position courte) la reçoit.L'option européenne (exercice possible uniquement à l'échéance) et option américaine (exercice possible à tout moment jusqu'à l'échéance).

Les options cotées sur actions sont appelées stock options.

13 – Les stratégies simples

Avec T l'échéance, K le prix d'exercice, S ou S_T le sous-jacent à l'échéance, le retour (payoff) est de $\max(0, S_T - K) = (S_T - K)^+$ En notant C la prime, le profit réalisé est de $\max(0, S_T - K) - C$, avec un profit si $(S_T < V_{PM} = K + C)$ (PM pour **point mort**).

À l'échéance, le retour est de $\min(0, K - S_T) = -\max(0, S_T - K) =$ $-(S_T-K)^+$ et le profit réalisé est de $C-\max(0,S_T-K)$.

À l'échéance, le retour est de $\max(0, K - S_T) = (K - S_T)^+$. En notant P la prime du put, le profit réalisé est de $\max(0, K - S_T) - P$, positif $siV_{PM} = K - P < S_T$.

À l'échéance, le retour est de min $(0, S_T - K) = -(K - S_T)^+$.

14 – Les stratégies d'écart

Stratégie d'écart : utilise deux options ou plus du même type (deux options d'achat ou deux options de vente). Si les prix d'exercice varient, c'est un écart vertical. Si les échéances changent, c'est un écart horizontal.

Une stratégie d'écart vertical (spread trading strategy) implique une position longue et une position courte sur des options d'achat portant sur le même sous-jacent, de même échéance mais avec des prix d'exercice différents. On distingue : écart vertical haussier (Bull spread) et écart vertical baissier (Bear spread).

Écart vertical haussier : anticipant une hausse modérée du sousjacent, l'investisseur prend une position longue sur C_1 et courte sur C_2 sous la contrainte $E_1 < E_2$. Résultat net à l'échéance :

Écart vertical baissier : anticipant une baisse modérée du sousjacent, l'investisseur vend l'option la plus chère et achète la moins chère.

Écart papillon (butterfly spread): anticipe une faible variation du sous-jacent. C'est la combinaison d'un écart vertical haussier et d'un écart vertical baissier. Stratégie adaptée si de grandes variations sont jugées peu probables. Investissement initial faible.

15 – Les stratégies combinées

Une stratégie combinée utilise à la fois des options d'achat et de vente. On distingue notamment les stellages et les strangles.

Un stellage (straddle) combine l'achat d'une option d'achat et d'une option de vente de même échéance et de même prix d'exercice. Cette stratégie parie sur une forte variation du prix, à la hausse ou à la baisse. La perte maximale survient si le prix à l'échéance est égal au prix d'exercice.

Un strangle est l'achat d'un call et d'un put de même échéance mais à prix d'exercice différents. Il suppose une très forte variation de la valeur du sous-jacent.

16 – Absence d'opportunité d'arbitrage

Aucun profit sans risque n'est possible par exploitation des écarts de prix.

17 – La relation de parité

L'AOA implique la relation suivante entre le Call et le Put :

$$S_t - C_t + P_t = Ke^{-i_f \cdot \tau}$$

18 – Le modèle de Cox-Ross-Rubinstein

Il repose sur un processus en temps discret avec deux évolutions possibles du prix à chaque période : une hausse (facteur u) ou une baisse (facteur d), avec $u > 1 + i_f$ et $d < 1 + i_f$. Le prix à t = 1est alors $S_1^u = S_0 u$ ou $S_1^d = S_0 d$, selon une probabilité q ou 1 - q.

Ce modèle s'étend à n périodes avec n+1 prix possibles pour S_T . À l'échéance, la valeur d'une option d'achat est donnée par $C_1^u = (S_1^u - K)^+ \text{ et } C_1^d = (S_1^d - K)^+.$

Absence d'opportunité d'arbitrage implique

$$d < 1 + i_f < u$$

et une probabilité risque neutre

$$q = \frac{(1+i_f) - d}{u - d}$$

Prix du call (avec $S_1^d < K < S_1^u$):

$$C_0 = \frac{1}{1 + i_f} \left[qC_1^u + (1 - q)C_1^d \right]$$

On peut aussi construire un portefeuille de réplication composé de Δ actions et B obligations, tel que :

$$\begin{cases} \Delta = \frac{S_1^u - K}{S_1^u - S_1^d}, \\ B = \frac{-S_1^d}{1 + i_f} \cdot \Delta \end{cases} \Rightarrow \Pi_0 = \Delta S_0 + B$$

Prix du put :

$$P_0 = \frac{1}{1 + i_f} \left[q P_1^u + (1 - q) P_1^d \right]$$

Détermination de q, u, d: En calibrant le modèle pour retrouver les premiers moments du rendement sous la probabilité risque neutre (espérance i_f , variance $\sigma^2 \delta t$), on obtient :

$$e^{i_f \delta t} = qu + (1-q)d, \qquad qu^2 + (1-q)d^2 - [qu + (1-q)d]^2 = \sigma^2 \delta t$$

Avec la contrainte $u = \frac{1}{d}$, on arrive à :

$$q = \frac{e^{-if \delta_t} - e^{-if \delta_t}}{u - d}$$
$$u = e^{\sigma \sqrt{\delta t}}$$
$$d = e^{-\sigma \sqrt{\delta t}}$$

19 – Le modèle de Black & Scholes

Hypothèses du modèle

- Le taux sans risque R est constant. On définit $i_f = \ln(1+R)$, ce qui implique $(1+R)^t = e^{i_f t}$.
- Le prix de l'action S_t suit un mouvement brownien géométrique :

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

$$S_t = S_0 \exp\left(\sigma W_t + \left(\mu - \frac{1}{2}\sigma^2\right)t\right)$$

- Pas de dividende pendant la durée de vie de l'option.
- L'option est « européenne » (exercée uniquement à l'échéance).
- Marché sans friction : pas d'impôts ni de coûts de transaction.
- La vente à découvert est autorisée.

L'équation de Black-Scholes-Merton pour évaluer un contrat dérivé f est :

$$\frac{\partial f}{\partial t} + i_f S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} = i_f f$$

À l'échéance, le prix d'une option d'achat est $C(S,T) = \max(0, S_T - K)$, et celui d'une option de vente est $P(S,T) = \max(0, K - S_T)$.

Déterminants	call	put
Cours du sous-jacent	+	-
Prix d'exercice	-	+
La maturité (ou le temps)	+ (-)	+ (-)
Volatilité	+	+
Taux d'intérêt à court terme	+	-
Versement de dividende	-	+

Les solutions analytiques sont :

$$C_{t} = S_{t}\Phi(d_{1}) - Ke^{-i_{f}\tau}\Phi(d_{2})$$

$$P_{t} = Ke^{-i_{f}\tau}\Phi(-d_{2}) - S_{t}\Phi(-d_{1})$$

où:

$$d_1 = \frac{\ln(S_t/K) + (i_f + \frac{1}{2}\sigma^2)\tau}{\sigma\sqrt{\tau}}, \quad d_2 = d_1 - \sigma\sqrt{\tau}$$

- **Delta** Δ : variation du prix de l'option selon le sous-jacent.
- Gamma Γ : sensibilité du delta.
- Thêta Θ : sensibilité au temps.
- Véga V : sensibilité à la volatilité.
- **Rho** ρ : sensibilité au taux d'intérêt.

Le **Delta** mesure l'impact d'une variation du sous-jacent :

$$\Delta_C = \frac{\partial C}{\partial S} = \Phi(d_1), \quad \Delta \in (0, 1)$$

$$\Delta_P = \frac{\partial P}{\partial S} = \Phi(d_1) - 1, \quad \Delta \in (-1, 0)$$

Le Delta global d'un portefeuille Π avec des poids ω_i est :

$$\frac{\partial \Pi}{\partial S_t} = \sum_{i=1}^n \omega_i \Delta_i$$

Actuariat Vie

20 - Notations sur les tables de survie

L'âge x, y, z...

 l_x est le nombre de personnes vivantes, par rapport à une cohorte initiale, à l'âge \boldsymbol{x}

 ω est l'âge limite des tables de mortalité.

 $d_x = l_x - l_{x+1}$ est le nombre de personnes qui meurent entre l'âge x et l'âge x+1.

 q_x est la probabilité de décès entre les âges de x et l'âge x+1.

$$q_x = d_x/l_x$$

 p_x est la probabilité que l'individu agé de x survive à l'âge x+1.

$$p_x + q_x = 1$$

De même, $_nd_x=d_x+d_{x+1}+\cdots+d_{x+n-1}=l_x-l_{x+n}$ montre le nombre de personnes qui meurent entre l'âge x et l'âge x+n. $_nq_x$ est la probabilité de décès entre les âges de x et l'âge x+n.

$$_{n}q_{x} = _{n}d_{x}/l_{x}$$

 ${}_{n}p_{x}$ est la probabilité d'une personne d'âge x de survivre à l'âge x+n

$$_{n}p_{x}=l_{x+n}/l_{x}$$

 $_{m\mid}q_{x},$ la probabilité que l'individu d'âge x meurt dans la $m+1^{e}$ année.

$$_{m|}q_{x}=rac{d_{x+m}}{l_{x}}=rac{l_{x+m}-l_{x+m+1}}{l_{x}}$$

 e_x est l'espérance de vie pour une personne encore en vie à l'âge x. C'est le nombre espéré d'anniversaires à vivre.

$$e_x = \sum_{t=1}^{\infty} {}_t p_x$$

21 – Coefficient ou commutations

Ces coefficients ou commutations établies par des fonctions actuarielles qui dépendent d'une table de mortalité et d'un taux i (v = 1/(1+i)) pour établir la table actuarielle.

$$D_r = l_r . v^x$$

peut être vu "comme" le nombre de survivants actualisés. Les sommes

$$N_x = \sum_{k>0} D_{x+k} = \sum_{k=0}^{\omega - x} D_{x+k}$$

$$S_x = \sum_{k>0} N_{x+k} = \sum_{k>0} (k+1).D_{x+k}$$

seront utilisés pour simplifier les calculs. De même

$$C_r = d_r v^{x+1}$$

peut être vu "comme" le nombre de décès actualisés à l'âge x. Les sommes

$$M_x = \sum_{k=0}^{\omega - x} C_{x+k}$$

$$R_x = \sum_{k=0}^{\omega - x} M_{x+k}$$

seront utilisés pour simplifier les calculs.

Les coefficients D_x N_x et S_x seront utilisés pour les calculs sur les opérations en cas de vie et C_x M_x et R_x pour les opérations en cas de décès.

22 - Les annuités viagères ou rentes

$$a_x = \sum_{k=1}^{\infty} {}_k p_x v^k = \ddot{a}_x - 1 = \frac{N_{x+1}}{D_x}$$

$$\ddot{a}_x = \sum_{k=0}^{\infty} {}_k p_x v^k = \frac{N_x}{D_x}$$

Si la périodicité correspond à m période par an :

$$\ddot{a}_{x}^{(m)} = \sum_{k=0}^{\infty} \frac{1}{m} \frac{1}{m} p_{x} v^{\frac{k}{m}} \approx \ddot{a}_{x} - \frac{m-1}{2m}$$

De même, s'il paie 1/m en début des m périodes

$$a_x^{(m)} \approx a_x + \frac{m-1}{2m}$$

Les annuités viagères temporaires (Whole life annuity guaranteed for n years)

$$a_{x:\overline{n}|} = \sum_{k=1}^{n} {}_{k} p_{x} v^{k} = \frac{N_{x+1} - N_{x+n+1}}{D_{x}}$$

$$\ddot{a}_{x:\overline{n}|} = \sum_{k=0}^{n-1} {}_k p_x v^k = \frac{N_x - N_{x+n}}{D_x}$$

Les annuités viagères différées $m|a_x$ (Deferred life annuity) représentent les rentes sur l'individu d'âge x différée m années. Le premier paiement intervient dans m+1 ans en cas de vie.

23 – Capitaux décès ou survie

Les capitaux décès (Whole life insurance noted SP_x or A_x)

 A_x indique une prestation au décès à la fin de l'année de la mort (montant de 1), quelque que soit la date de survenance, pour un individu assuré à l'âge x lors de la souscription.

 $A_{x:\overline{n}|}$ désigne un capital versé au décès s'il survient et au plus tard dans n années (Endowment).

 $A_{x:\overline{n}}^1$ désigne un capital décès versé si x décède dans les n années à venir (Term insurance).

 $A_x^{(12)}$ indique une prestation payable à la fin du mois du décès.

 \overline{A}_x indique une prestation payée à la date du décès.

Capital décès (Whole life)

$$A_x = \sum_{k=0}^{\infty} {}_{k|} q_x \ \nu^{k+1} = \frac{M_x}{D_x}$$

$$A_{x:\overline{n}|}^1 = \sum_{k=0}^{n-1} {}_{k|}q_x \ \nu^{k+1} = \frac{M_x - M_{x+n}}{D_x}$$

Capital différé (Pure Endowment, capital unique en cas de survie) noté $A_{x:\overline{n}}$ ou ${}_{n}E_{x}$.

$$= {}_{n}E_{x} = {}_{n}p_{x}.v^{n} = \frac{l_{x+n}}{l_{x}}.v^{n} = \frac{D_{x+n}}{D_{x}}$$

Capital décès avec versement du capital en cas de survie (Endowment)

$$A_{x:\overline{n}|} = A_{x:\overline{n}|}^1 + A_{x:\overline{n}|}^1$$

24 – L'assurance vie sur plusieurs individus

 a_{xuz} est une rente annuelle, payée dès la fin de la première année et tant que vivent (x), (y) et (z).

 $a_{\overline{xyz}}$ est une rente annuelle, payée dès la fin de la première année et tant que vivent (x), (y) ou (z).

$$a_{\overline{xy}} = a_y + a_x - a_{xy}$$

 A_{xyz} est une assurance qui intervient à la fin de l'année du premier décès de (x), (y) et (z).

La barre verticale indique la conditionnalité :

 $a_{x|y}$ est une rente de réversion qui profite à (x) après le décès de

 $A_{x|yz}$ est une assurance au premier décès de (y) et (z).

Probabilités & Statistiques

25 - Axiomatique

Un univers Ω , est l'ensemble de tous les résultats possibles qui peuvent être obtenus au cours d'une expérience aléatoire.

L'événement aléatoire est un événement ω_i de l'univers dont l'issue (le résultat) n'est pas certaine.

L'événement élémentaire :

- deux événements élémentaires distincts ω_i et ω_j sont incompatibles,
- la réunion de tous les événements élémentaires de l'univers Ω correspond à la certitude.

Les **ensembles**:

- $E = \{\omega_{i1}, \dots, \omega_{ik}\}$ un sous-ensemble de Ω (k éléments).
- \overline{E} le complémentaire de E,
- $E \cap F$ l'intersection de E et F,
- $E \cup F$ l'union de E et F,
- $E \setminus F = E \cap \overline{F} E$ moins F,
- $-- \varnothing$ l'événement impossible ou vide.

Soit E un ensemble. On appelle **tribu** ou σ -algèbre sur E, un ensemble \mathcal{A} de parties de E qui vérifie :

- $-\mathcal{A}\neq\emptyset$,
- $-\forall A \in \mathcal{A}, \overline{A} \in \mathcal{A},$
- si $\forall n \in \mathbb{N}, A_n \in \mathcal{A} \text{ alors } \cup_{n \in \mathbb{N}} A_n \in \mathcal{A}.$

On appelle **probabilité** \mathbb{P} toute application de l'ensemble des évènements \mathcal{A} dans l'intervalle [0,1], telle que :

$$\mathbb{P}: \mathcal{A} \mapsto [0,1]$$

satisfaisant les propriétés (ou axiomes) suivantes :

- **(P1)** $A \subseteq \mathcal{A}$ alors $\mathbb{P}(A) \geq 0$,
- **(P2)** $\mathbb{P}(\Omega) = 1$,
- **(P3)** $A, B \subseteq \mathcal{A}$, si $A \cap B = \emptyset$ alors $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.

L'espace de probabilité se définit par

$$\{\Omega, \mathcal{A}, \mathbb{P}(.)\}$$

L'égalité de poincarré s'écrit :

$$\forall A \in F, \forall B \in F, \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

26 – Bayes

En théorie des probabilités, la **probabilité conditionnelle** d'un événement A, sachant qu'un autre événement B de probabilité non nulle s'est réalisé.

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Le réel $\mathbb{P}(A|B)$ se lit 'probabilité de A, sachant B. Le théorème de Bayes permet d'écrire :

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}.$$

27 - Variables aléatoires

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. On appelle **variable aléatoire** X de Ω vers \Re , toute fonction mesurable $X : \Omega \mapsto \Re$.

$${X \le x} \equiv {e \in \Omega \mid X(e) \le x} \in \mathcal{A}$$

L'ensemble des événements de Ω n'est souvent pas explicite. La fonction de répartition (F_X) d'une variable aléatoire réelle caractérise sa loi de probabilité.

$$F_X(x) = \mathbb{P}(X \le x), x \in \Re$$

où le membre de droite représente la probabilité que la variable aléatoire réelle X prenne une valeur inférieure ou égale à x. La probabilité que X se trouve dans l'intervalle]a,b] est donc, si a < b, $\mathbb{P}(a < X \le b) = F_X(b) - F_X(a)$

Une loi de probabilité possède une **densité de probabilité** f, si f est une fonction définie sur \mathbb{R}^+ , Lebesgue-intégrable, telle que la probabilité de l'intervalle [a,b] est donnée par

$$\mathbb{P}(a < X \le b) = \int_a^b f(x) \mathrm{d} \mathbf{x} \text{ pour tous nombres tq } a < x < b.$$

28 - Espérance

L'espérance mathématique dans le cas discret (variables qualitatives ou quantitatives discrètes) :

$$\mathbb{E}[X] = \sum_{j \in \mathbb{N}} x_j \mathbb{P}(x_j)$$

où $\mathbb{P}(x_j)$ est la probabilité associée à chaque événement x_i . L'espérance mathématique dans le cas continu :

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x.f(x)dx$$

où f désigne la fonction de densité de la variable aléatoire x, définie dans notre cas sur \mathbb{R} . S'agissant de somme ou d'intégrale, l'espérance est linéaire, c'est-à-dire :

$$\mathbb{E}[c_0 + c_1 X_1 + c_2 X_2] = c_0 + c_1 \mathbb{E}[X_1] + c_2 \mathbb{E}[X_2]$$

$$\mathbb{E}[X] = \int x.f(x)dx = \int_0^1 F^{-1}(p)dp = \int \overline{F}(x)dx$$

29 - Convolution ou loi de la somme

La convolution de deux fonctions f et g, notée (f*g)(x), est définie par :

$$(f * g)(x) = \int f(t)g(x - t) dt$$

Elle est souvent utilisée pour déterminer la loi d'une somme de deux variables aléatoires indépendantes.

La convolution mesure comment f(t) et g(t) interagissent à différents points tout en tenant compte du décalage (ou translation) entre

30 – Loi composée ou modèle fréquence/gravité

Soit N une variable aléatoire discrète dans \mathbb{N}^+ , (X_i) une suite de variable aléatoire iid d'espérance et variance finies, alors pour

$$S = \sum_{i=1}^{N} X_i :$$

$$\mathbb{E}(S) = \mathbb{E}(\mathbb{E}[S \mid N]) = \mathbb{E}(N.\mathbb{E}(X_1)) = \mathbb{E}(N).\mathbb{E}(X_1)$$

$$Var(S) = \mathbb{E}(Var[S \mid N]) + Var(\mathbb{E}[S \mid N])$$

31 – Théorèmes fondamentaux

Soit X une variable aléatoire réelle définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, et supposée presque sûrement positive ou nulle. L'Inégalité de Markov donne :

$$\forall \alpha > 0, \mathbb{P}(X \ge \alpha) \leqslant \frac{\mathbb{E}[X]}{\alpha}.$$

L'inégalité de Bienaymé-Tchebychev : Pour tout réel strictement positif α , avec $\mathbb{E}[X] = \mu$ et $Var[X] = \sigma^2$

$$\mathbb{P}\left(|X - \mu| \ge \alpha\right) \le \frac{\sigma^2}{\alpha^2}.$$

La loi faible des grands nombres considère une suite $(X_i)_{i>n\in\mathbb{N}^*}$ de variables aléatoires indépendantes définies sur un même espace probabilisé, ayant mêmes espérance et variance finies notées respectivement $\mathbb{E}[X]$ et Var(X).

$$\forall \varepsilon > 0, \quad \lim_{n \to +\infty} \mathbb{P}\left(\left|\frac{X_1 + X_2 + \dots + X_n}{n} - \mathbb{E}[X]\right| \ge \varepsilon\right) = 0$$

Considérons une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires indépendantes qui suivent la même loi de probabilité, intégrables, i. e. $E(|X_0|) < +\infty.$

En reprenant les notations, la loi forte des grands nombres précise que $(Y_n)_{n\in\mathbb{N}}$ converge vers E(X) « presque sûrement ».

$$\mathbb{P}\left(\lim_{n\to+\infty}Y_n=E(X)\right)=1$$

Considérons la somme $S_n = X_1 + X_2 + \cdots + X_n$.

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}},$$

l'espérance et l'écart-type de \mathbb{Z}_n valent respectivement 0 et 1 : la variable est ainsi dite centrée et réduite.

Le théorème central limite stipule alors que la loi de Z_n converge en loi vers la loi normale centrée réduite $\mathcal{N}(0,1)$ lorsque n tend vers l'infini. Cela signifie que si Φ est la fonction de répartition de $\mathcal{N}(0,1)$, alors pour tout réel z :

$$\lim_{n \to \infty} P(Z_n \le z) = \Phi(z),$$

ou, de façon équivalente :

$$\lim_{n\to\infty} \mathbf{P}\left(\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \le z\right) = \Phi(z)$$

Distribution	Densité & support	Moments &	Fonction génératric
	••	fonction de répartition	de moment
$\mathcal{B}in(m,q)$ $(0$	$\binom{m}{x} p^x (1-p)^{m-x}$ $x = 0, 1, \dots, m$	$E = mp, \text{Var} = mp(1-p)$ $\gamma = \frac{mp(1-p)(1-2p)}{\sigma^3}$	$\left(1 - p + pe^t\right)^m$
$\mathcal{B}er(q)$	$\equiv \text{Binomial}(1, p)$		
$\mathcal{DU}ni(n)$ $(n>0)$	$\frac{1}{n}, x = 0, 1, \dots n$	$\mathbb{E} = (n+1)/2$ $\operatorname{Var} = (n^2 - 1)/12$ $\mathbb{E} = \operatorname{Var} = \lambda$	$\frac{e^t(1-e^{nt})}{n(1-e^t)}$
$\mathcal{P}ois(\lambda)$ $(\lambda > 0)$	$e^{-\lambda} \frac{\lambda^x}{x!}, x = 0, 1, \dots$	$\gamma = 1/\sqrt{\lambda}$	$\exp\left[\lambda\left(e^{t}-1\right)\right]$
$\mathcal{NB}in(m,q)$ $m > 0, 0$	$\binom{m+x-1}{x}p^m(1-p)^x$ $x=0,1,2,\dots$	$\kappa_j = \lambda, j = 1, 2, \dots$ $\mathbb{E} = m(1-p)/p$ $\text{Var} = \mathbb{E}/p$ $\gamma = \frac{(2-p)}{p\sigma}$	$\left(\frac{p}{1 - (1 - p)e^t}\right)^m$
$\mathcal{G}eo(q)$	$\equiv \mathcal{NB}in(1,q)$		
$\mathcal{CU}ni(a,b)$ $(a < b)$	$\frac{1}{b-a}; a < x < b$	$\mathbb{E} = (a+b)/2,$ $Var = (b-a)^2/12,$ $\gamma = 0$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
$\mathcal{N}\left(\mu, \sigma^2\right)$ $(\sigma > 0)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\frac{-(x-\mu)^2}{2\sigma^2}$	$\mathbb{E} = \mu, \text{Var} = \sigma^2, \gamma = 0$ $(\kappa_j = 0, j \ge 3)$	$\exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$
$\mathcal{G}am(k,\theta)$ $(k,\theta>0)$	$\frac{\theta^k}{\Gamma(k)} x^{k-1} e^{-\theta x}, x > 0$	$\mathbb{E} = k/\theta, \text{Var} = k/\theta^2,$ $\gamma = 2/\sqrt{k}$	$\left(\frac{\theta}{\theta - t}\right)^k (t < \theta)$
$\mathcal{E}_{xp}(\lambda)$	$\equiv \mathcal{G}am(1,\lambda)$	$\mathbb{E} = 1/\lambda$ $Var = 1/\lambda^2$	
$\chi^2(k) (k \in \mathbb{N})$	$\equiv \mathcal{G}am(k/2,1/2)$		
$\mathcal{IN}(\alpha,\beta)$ $(\alpha > 0, \beta > 0)$	$\frac{\alpha x^{-3/2}}{\sqrt{2\pi\beta}} \exp\left(\frac{-(\alpha - \beta x)^2}{2\beta x}\right)$	$\mathbb{E} = \alpha/\beta, \text{Var} = \alpha/\beta^2, e^{\alpha}$	
	$F(x) = \Phi\left(\frac{-\alpha}{\sqrt{\beta x}} + \sqrt{\beta x}\right) + e^{2\alpha}\Phi\left(\frac{-\alpha}{\sqrt{\beta x}}\right)$		$\leq eta/2)$
$\mathcal{B}eta(\alpha,\beta)$ $(\alpha > 0, \beta > 0)$	$\Gamma(\alpha + \beta) \frac{x^{(\alpha - 1}(1 - x)^{\beta - 1}}{\Gamma(\alpha)\Gamma(\beta)}, 0 < x < 1$		
$\mathcal{LN}orm\left(\mu,\sigma^2\right)$ $(\sigma>0)$	$\frac{1}{x\sigma\sqrt{2\pi}}\exp\frac{-(\log x - \mu)^2}{2\sigma^2}, x > 0$	$\mathbb{E} = e^{\mu + \sigma^2/2}, \text{Var} = e^{2\mu + 2\sigma^2}$ $\gamma = c^3 + 3c \text{ où } c^2 = \text{Var}/\mathbb{E}^2$	$-e^{2\mu+\sigma^2}$
$\mathcal{P}areto\left(\alpha, x_{\rm m}\right)$ $\left(\alpha, x_{\rm m} > 0\right)$	$\frac{\alpha x_{\rm m}^{\alpha}}{x^{\alpha+1}}, x > x_{\rm m}$	$\mathbb{E} = \frac{\alpha x_{\rm m}}{\alpha - 1} \alpha > 1, \text{Var} = \frac{\alpha}{(\alpha + 1)^{1/2}}$	$\frac{\alpha x_{\rm m}^2}{(\alpha - 1)^2 (\alpha - 2)} \alpha > 2$
$Weibull(\alpha, \beta)$ $(\alpha, \beta > 0)$	$\alpha\beta(\beta y)^{\alpha-1}e^{-(\beta y)^{\alpha}}, x>0$	$\mathbb{E} = \Gamma(1 + 1/\alpha)/\beta$ $\operatorname{Var} = \Gamma(1 + 2/\alpha)/\beta^2 - \mathbb{E}^2$ $\mathbb{E} \left[Y^t \right] = \Gamma(1 + t/\alpha)/\beta^t$	

À propos de l'auteur

Martial Phélippé-Guinvarc'h @ Martial Phélippé-Guinvarc'h est Actuaire et Maître de conférences à Le Mans Université depuis 2012 et enseigne également à l'EURIA depuis 2003. Il est actuaire (EURIA, 2006), membre de l'institut des actuaires (IA) et membre de l'association des économistes agricoles européens (EAAE). Martial Phélippé-Guinvarc'h enseigne les statistiques, l'analyse de données, la modélisation actuarielle, la programmation, en particulier en SAS et SAS IML, les mathématiques financières, les marchés des matières premières, la finance de marché et des dérivés, l'actuariat non vie, l'actuariat vie, le provisionnement, la solvabilité, la réassurance, l'économie de l'assurance, la gestion des risques, la gestion actifs passif. Il est SAS Protor, et a obtenu pour le Master MBFA de Le Mans Université le SAS Join certificate Insurance and Economic Analytics.