Package 'mLDA'

June 16, 2019

Type Package		
Title Multi-Class Linear Discrin Ultrahigh-Dimensional Fea	· · · · · · · · · · · · · · · · · · ·	
Version 2.0		
Date 2019-04-14		
Author Yanming Li, Hyokyoung	g G. Hong and Yi Li	
Maintainer Yanming Li liyar	nmin@umich.edu>	
Description The mLDA package implements the multi-class linear discriminant analysis method for classifications with ultrahigh-dimensional data. The method can select both marginally and jointly informative features that are informative for classifications.		
License GPL (>= 2)		
NeedsCompilation no		
mLDA.Kclass mLDA.Kclass.cv	; 	
Index	9	
	ulti-class linear discriminant analysis with ultrahigh-dimensional atures	
Description		

tive features that are informative for classifications.

The mLDA package implements the multi-class linear discriminant analysis method for classifications with ultrahigh-dimensional data. The method can select both marginally and jointly informa-

2 mLDA.Kclass

Details

The package mLDA conducts a variable selection and a multi-class classification for ultrahigh-dimensional features. The mLDA can select both the marginally informative features and the marginally uninformative but jointly informative features.

Author(s)

Yanming Li liyanmin@umich.edu>, Hyokyoung G. Hong and Yi Li Maintainer:Yanming Li liyanmin@umich.edu>

References

Li, Yanming and Hong, Hyokyoung and Li, Yi (2018) Multiclass Linear Discriminant Analysis with Ultrahigh-Dimensional Features. Under revision.

mLDA.Kclass

A function for feature selection and K-class classification.

Description

The mlda.Kclass function selects informative features (both marginally and jointly informative features) from ultrahigh-dimensional feature space and use the selected features for binary classifications.

Usage

```
mLDA.Kclass(X, y, X.new, COV = NULL, COR = NULL, K = 3, tau = 200, alpha = 0.5, nu = 100, d = 10)
```

Arguments

X	An n x p matrix of features. Each row is for a subject and each column is for a feature.
у	A class index vector in length of n. Class labels should be coded in 1,,K
X.new	An n.new x p matrix of test data. Each row is for a subject and each column is for a feature.
COV	A p x p covariance matrix of the features. By default is set to NULL and will estimated from the training data.
COR	A p x p correlation matrix of the features. By default is set to NULL and will estimated from the training data.
K	The total number of classes in the training data. By default is set to be 3.
tau	The thresholding parameter for the marginal informative features.
alpha	The thresolding parameter for the correlation matrix.

mLDA.Kclass.cv 3

nu	The thresholding parameter for the marginally uninformative but jointly informative features.
d	An integer specify the number of most highly correlated features to each marginal informative feature to detect. That is, the max size of each connected components.

Details

The mlda.Kclass function selects informative features (both marginally and jointly informative features) that differentiate any pair of classes from ultrahigh-dimensional feature space and use the selected features for K-class classifications.

Value

ISmatrix An n.new x K matrix of ordered covariance adjusted absolute mean difference statistics, i.e., the inportant scores for a selected feature to differentiate a pair of classes. The columns are in order for class pairs 1<->2, 1<->3, ..., 1<->K, 2<->3, ..., 2<->K, ..., (K-1)<->K.

screenset A vector of indices for final selected features.

Fisher matrix An n.new x K vector of the Fisher discriminant statistics for the test data.

PredClass An n.new x 1 vector of predicted classes for the test data.

Author(s)

Yanming Li, Hyokyoung G. Hong and Yi Li

References

Li, Yanming and Hong, Hyokyoung and Li, Yi (2018) Multiclass Linear Discriminant Analysis with Ultrahigh-Dimensional Features. Under revision.

Examples

Description

The mLDA.Kclass.cv function conducts 5-fold cross-validation to select the optimal tunning parameters to pass to the mLDA.Kclass function.

4 mLDA.Kclass.cv

Usage

```
mLDA.Kclass.cv(X, y, COV = NULL, COR = NULL, K = 3, fold = 5, tau.list = c(1, 10, 20, 100, 200), alpha = 0.5, nu.list = c(20, 100, 200), d = 10)
```

Arguments

X	An n x p matrix of features. Each row is for a subject and each column is for a feature.
у	A class index vector in length of n. Class labels should be coded in 1,,K
COV	A p x p covariance matrix of the features. By default is set to NULL and will estimated from the training data.
COR	A p x p correlation matrix of the features. By default is set to NULL and will estimated from the training data.
K	The total number of classes in the training data. By default is set to be 3.
fold	The total number of fold in the cross validation. By default is set to be 5.
tau.list	A vector of thresholding parameters for the marginal informative features.
alpha	The thresolding parameter for the correlation matrix. By default is set to be 0.5
nu.list	A vector of thresholding parameters for the marginally uninformative but jointly informative features.
d	An integer specify the number of most highly correlated features to each marginal informative feature to detect. That is, the max size of each connected components.

Details

The mLDA.Kclass.cv function conducts 5-fold cross-validation to select the optimal tunning parameters to pass to the mLDA.Kclass function.

Value

mLDA.Kclass.cv returns a matrix of classification errors corresponding to each combination of the tuning parameter values. Each row corresponds to a tau value and each column corresponds to a nu value.

Author(s)

Yanming Li, Hyokyoung G. Hong and Yi Li

References

Li, Yanming and Hong, Hyokyoung and Li, Yi (2018) Multiclass Linear Discriminant Analysis with Ultrahigh-Dimensional Features. Under revision.

Examples

```
## Not run:
tmp <- mLDA.Kclass.cv(X, y, COV=NULL, COR=NULL, K=3, fold=5)
## End(Not run)</pre>
```

mLDA.pair

A function for feature selection and binary classification.

Description

The mLDA.pair function selects informative features (both marginally and jointly informative features) from ultrahigh-dimensional feature space and use the selected features for binary classifications.

Usage

```
mLDA.pair(X, y, X.new, COV = NULL, COR = NULL, pair = c(1, 2), tau = 200, alpha = 0.5, nu = 100, d = 10)
```

Arguments

X	An n x p matrix of features. Each row is for a subject and each column is for a feature.
у	A class index vector in length of n. Class labels should be coded in 1,,K
X.new	An n.new x p matrix of test data. Each row is for a subject and each column is for a feature.
COV	A p x p covariance matrix of the features. By default is set to NULL and will estimated from the training data.
COR	A p x p correlation matrix of the features. By default is set to NULL and will estimated from the training data.
pair	A pair of classes in 1,,K to classify.
tau	The thresholding parameter for the marginal informative features.
alpha	The thresolding parameter for the correlation matrix.
nu	The thresholding parameter for the marginally uninformative but jointly informative features.
d	An integer specify the number of most highly correlated features to each marginal informative feature to detect. That is, the max size of each connected components.

Details

The mlda.pair function selects informative features (both marginally and jointly informative features) from ultrahigh-dimensional feature space and use the selected features for binary classifications.

Value

iffcond	An n.new vector of ordered covariance adjusted absolute mean difference statistics, which is also an if and only if condition for a feature to be informative.
screenset	A vector of indices for final selected features.
FisherDR	An n.new x 1 vector of the Fisher discriminant statistics for the test data.
PredClass	An n.new x 1 vector of predicted classes for the test data.
MIset	Index set of the marginal informative features.
connMatrix	A tau x p connection matrix of connections betwenn each MI feature and other features.

Author(s)

Yanming Li, Hyokyoung G. Hong and Yi Li

References

Li, Yanming and Hong, Hyokyoung and Li, Yi (2018) Multiclass Linear Discriminant Analysis with Ultrahigh-Dimensional Features. Under revision.

Examples

```
## Not run:
######
library(MASS)
set.seed(12345)
n.train <- 100
n1 <- n.train
n2 <- n.train
n3 <- n.train
mu1 < -c(rep(0,5), rep(1.5,5), rep(0,5), rep(0,5), rep(0,5), rep(0,5), rep(-1.5,5))
mu2 \leftarrow c(rep(0,4), 2.5, rep(-1.5,5), rep(0,4), 2.5, rep(-1.5,5), rep(0,5), rep(-1.5,5))
mu3 \leftarrow c(rep(0,5), rep(-1.5,5), rep(0,5), rep(-1.5,5), rep(0,4), 2.5, rep(1.5, 5))
sigma <- 1
Sig0 <- matrix(sigma, 5, 5)</pre>
rho <- 0.7
for(i in 2:5){
 for(j in 1:(i-1)){
   Sig0[i,j] <- sigma*rho*(abs(i-j))</pre>
   Sig0[j,i] \leftarrow Sig0[i,j]
 }
}
Sig <- matrix(rep(0, 900), 30, 30)
Sig[1:5, 1:5] <- Sig0
Sig[6:10, 6:10] <- Sig0
```

```
Sig[11:15, 11:15] <- Sig0
Sig[16:20, 16:20] <- Sig0
Sig[21:25, 21:25] <- Sig0
Sig[26:30, 26:30] <- Sig0
Xinfo1 <- mvrnorm(n1, mu=mu1, Sigma=Sig)</pre>
Xinfo2 <- mvrnorm(n2, mu=mu2, Sigma=Sig)</pre>
Xinfo3 <- mvrnorm(n3, mu=mu3, Sigma=Sig)</pre>
Xinfo <- rbind(Xinfo1, Xinfo2, Xinfo3)</pre>
p<- 970
X0 \leftarrow matrix(rnorm((n1+n2+n3)*p), (n1+n2+n3), p)
X_train <- cbind(Xinfo,X0)</pre>
y_train <- c(rep(1, n1), rep(2, n2), rep(3, n3))
#####
n.test <- 50
n1 <- n.test
n2 <- n.test
n3 <- n.test
mu1 \leftarrow c(rep(0,5), rep(1.5,5), rep(0,5), rep(0,5), rep(0,5), rep(-1.5,5))
mu2 <- c(rep(0,4), 2.5, rep(-1.5,5), rep(0,4), 2.5, rep(-1.5,5), rep(0,5), rep(-1.5,5))
mu3 < -c(rep(0,5), rep(-1.5,5), rep(0,5), rep(-1.5,5), rep(0,4), 2.5, rep(1.5,5))
sigma <- 1
Sig0 <- matrix(sigma, 5, 5)</pre>
rho <- 0.7
for(i in 2:5){
 for(j in 1:(i-1)){
   Sig0[i,j] <- sigma*rho^(abs(i-j))</pre>
   Sig0[j,i] \leftarrow Sig0[i,j]
}
}
Sig \leftarrow matrix(rep(0, 900), 30, 30)
Sig[1:5, 1:5] <- Sig0
Sig[6:10, 6:10] <- Sig0
Sig[11:15, 11:15] \leftarrow Sig0
Sig[16:20, 16:20] \leftarrow Sig0
Sig[21:25, 21:25] <- Sig0
Sig[26:30, 26:30] <- Sig0
Xinfo1 <- mvrnorm(n1, mu=mu1, Sigma=Sig)</pre>
Xinfo2 <- mvrnorm(n2, mu=mu2, Sigma=Sig)</pre>
Xinfo3 <- mvrnorm(n3, mu=mu3, Sigma=Sig)</pre>
Xinfo <- rbind(Xinfo1, Xinfo2, Xinfo3)</pre>
X0 \leftarrow matrix(rnorm((n1+n2+n3)*p), (n1+n2+n3), p)
X_test <- cbind(Xinfo,X0)</pre>
```

```
y_test <- c(rep(1,n1), rep(2, n2), rep(3, n3))
try <- mLDA.pair(X_train, y_train, X_test)
## End(Not run)</pre>
```

Index

```
*Topic Multi-class classification,
ultrahigh-dimensional
variable selection, corelation
assisted multivariate
screening, marginally
informative features,
marginally uninformative
but jointly informative
features
mLDA-package, 1
*Topic methods
mLDA.Kclass, 2
mLDA.Kclass.cv, 3
mLDA.pair, 5

mLDA (mLDA-package), 1
mLDA-package, 1
mLDA-Kclass, 2
mLDA.Kclass, 2
mLDA.Kclass, 2
mLDA.Kclass, 3
mLDA.pair, 5
```