	12	angle.
	1	\0 15. \The method of claim 14 wherein the application of a torque
	2	is applied in a tightering direction.
	1	1) 16. The method of claim 15 wherein the torque is applied until
	2	a rotation from about 1 degree to about 15 degrees is achieved.
	1	The method of claim 16 wherein the torque is applied until a
	2	rotation from about 10 degrees to about 14 degrees is achieved.
	1	13 18. The method of claim 14 wherein the application of a torque
	2	is applied in a loosening direction.
	1	(4) 19. The method of claim 18 wherein the torque is applied until a
	2	rotation from about 1 degree to about 10 degrees is achieved.
	1	(5 .20. The method of claim 14 further comprising the step of
	2	computing an angle intercept of the angle axis from the determined constant
=	3	rate of change.
	1	16 21. The method of claim 20 further comprising the step of scaling
	2	the angle axis whereby the zero degree point is the angle intercept of angle
	3	axis.
		17
	1	.22. The method of claim 14\wherein the predetermined angle
	2	is a design parameter.

REMARKS

Upon entry of this Amendment, claims 1-8, and 14-22 are