A complete basis set model chemistry for excited states

George A. Petersson

Hall-Atwater Laboratories of Chemistry,
Wesleyan University,
Middletown, Connecticut 06459-0180

maintaining the data needed, and including suggestions for reducing	ollection of information is estimated completing and reviewing the collect g this burden, to Washington Headqu ould be aware that notwithstanding a OMB control number.	tion of information. Send comments uarters Services, Directorate for Info	s regarding this burden estimator formation Operations and Repo	e or any other aspect of rts, 1215 Jefferson Davi	this collection of information, is Highway, Suite 1204, Arlington		
1. REPORT DATE				3. DATES COVE	RED		
09 FEB 2005	FEB 2005 2. REPORT TYPE						
4. TITLE AND SUBTITLE A Complete Basis	S	5a. CONTRACT NUMBER F04611-03-C-0015					
				5b. GRANT NUM	MBER .		
			5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S) George Petersson				5d. PROJECT NU	UMBER		
				5e. TASK NUMBER R2FT			
				5f. WORK UNIT NUMBER			
	IZATION NAME(S) AND AI Incorporated,4 Four n,MA,01803-3304	` '		8. PERFORMING NUMBER	G ORGANIZATION REPORT		
9. SPONSORING/MONITO	DRING AGENCY NAME(S)	AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAI Approved for pub	LABILITY STATEMENT lic release; distribut	ion unlimited					
13. SUPPLEMENTARY NO	OTES						
14. ABSTRACT N/A							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	PORT b. ABSTRACT c. THIS PAGE			OF PAGES 31	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

I. Background

a. John Pople's Model Chemistries

II. Excited state Models

- a. CCSD(T) vs FCI
- b. CASSCF and CAS-CISD vs FCI

III. CBS Extrapolations

- a. A Systematic Sequence of Basis Sets
- b. The CASSCF CBS Lmit
- c. The CASSCF-CISD CBS Limit

IV. Results

- a. Geometry
- b. Vibrational Frequencies
- c. Excitation energies
- d. Dissociation Energies

V. Acknowledgment

John Pople's Model Chemistries

any

of every

of we can

eory,

The CBS-Q//B3 Model

Geometry: B3LYP/6-311G(2d,d,p)

ZPE & Thermal: B3LYP/6-311G(2d,d,p)

SCF: UHF/6-311+G(3d2f,2df,2p)

CBS(extrap) - MP2: UHF/6-311+G(3d2f,2df,2p)

MP3, MP4(SDQ): MP4(SDQ)/6-31+G(d(f),d,p)

MP5 - CCSD(T): CCSD(T)/6-31+G(d')

Empirical Corrections:

-5.79 mE_h $|S|^2_{ii} [\Sigma_i C^2_{\mu}]_{ii}$ (2e -)

 $-9.54 \text{ mE}_{h} \Delta(S^{2})$ (Spin Contam.)

 $E(core) \sim 3.92 \text{ mE}_h \text{ Q}_{Na} + 2.83 \text{ mE}_h \text{ Q}_{Na}^2$

Experimental Atomic Spin-Orbit Interaction

Test Case

The $X^1\Sigma_g^+$ ground state, along with the a $^3\Sigma_{\mathrm{u}}^{\phantom{\mathrm{u}}}$, A, $^5\Sigma_{\mathrm{g}}^{\phantom{\mathrm{u}}}$, and $A'''^{7}\Sigma_{u}^{+}$ excited states of N₂ dissociates to two ⁴S_{3/2} ground state N atoms. Other low-lying singlet and triplet states dissociate to N atoms in ${}^{2}D$ and ${}^{2}P$ excited states.

Benchmarks

The FCI/cc-pVDZ energies of low-lying states of N₂ [H. Larsen, J. Olsen, P Jørgensen, and O. Christiansen, J. Chem. Phys. 113, 6677 (2000)] provide benchmarks for calibration of model chemistry candidates.

Model

The error in the energy of the ground state of N_2 , relative to the energy at the equilibrium bond length. Note that the Multi-reference **CAS-CISD** is far more accurate than CCSD(T).

The error in the energy of the ground state of N_2 , relative to the Full CI energy is insensitive to bond length, but a constant size-consistency correction must be made for comparisons with atoms.

Table I. The effect of state averaging on CASCF and CASSCF-CISD

State	R _{NN} (Å)	Basis Set	$N_{\text{root}}=1$ (E_h)	$N_{\text{root}}=6$ (E_h)	ΔE ($m E_h$)
			CAS(6 _{e-} ,6 _{Orb})		
$X^1 \Sigma_g^+$	1.10	2ZaP	-109.1045238	-109.0781418	26.3820
		3ZaP	-109.1251169	-109.0979344	27.1825
$A^3\Sigma_u^+$	1.27	2ZaP	-108.8740932	-108.8606554	13.4378
		3ZaP	-108.8898435	-108.8761258	13.7177
			$CAS(6_{e-},6_{Orb}) - CISD$		
$X^1 \Sigma_g^+$	1.10	2ZaP	-109.2896344	-109.2885919	1.0425
$A^3\Sigma_u^+$	1.27	2ZaP	-109.0736612	-109.0733565	0.3047

Table II. Calculated N₂ cc-pVDZ excitaton energies (mE_h).

RNN(Å)	Excitation	CAS(6,6)	CAS(6,6)- CISD	FCI
1.1113	$X^{1}\Sigma_{\mathrm{g}}^{+} \rightarrow a^{1}\Pi_{\mathrm{g}}$	404.8	345.6	343.2
	$\rightarrow a^{"}\Sigma_{\rm u}$	375.9	367.9	367.0
	$\rightarrow w^{1}\Delta_{\rm u}$	412.1	383.5	381.7
1.2700	$X^{1}\Sigma_{\mathrm{g}}^{+} \rightarrow a^{1}\Pi_{\mathrm{g}}$	313.8	274.6	272.2
	$\rightarrow a^{"}\Sigma_{\rm u}$	280.6	271.6	270.6
	$\rightarrow w^{1}\Delta_{\rm u}$	336.9	290.3	288.2
1.4288	$X^{1}\Sigma_{\mathrm{g}}^{+} \rightarrow a^{1}\Pi_{\mathrm{g}}$	252.8	226.7	223.4
	$\rightarrow a^{"}\Sigma_{\rm u}$	215.9	207.0	206.2
	RMS Error	35.3	2.0	

Outline

VI. Background

a. John Pople's Model Chemistries

VII. Excited state Models

- a. CCSD(T) *vs* FCI
- b. CASSCF and CAS-CISD vs FCI

VIII. CBS Extrapolations

- a. A Systematic Sequence of Basis Sets
- b. The CASSCF CBS Lmit
- c. The CASSCF-CISD CBS Limit

IX. Results

- a. Geometry
- b. Vibrational Frequencies
- c. Excitation energies
- d. Dissociation Energies

X. Acknowledgment

$$E_{SCF Limit} \cong E(n_2) + \{exp[a(n_1)^{1/2} - a(n_2)^{1/2}] - 1\}^{-1} \{E(n_2) - E(n_1)\}$$

Table III. Linear SCF extrapolation parameters for the neon atom.

n_1	n_2	$\{exp[a(n_1)^{1/2} - a(n_2)^{1/2}] - 1\}^{-1}$
5	6	0.426
6	7	0.490
7	8	0.551
8	9	0.609
6	8	0.132
8	10	0.178
10	12	0.220
12	14	0.262

Table IV. The convergence of the N_2 SCF anisotropy energy (hartree) with the number of polarization functions in the basis set.

Basis Set	E _{SCF}	ΔE _{SCF} (n)	E _{SCF} Error	Extrapolation Factor ^a
16s10p	-108.910331		በ በ <u></u> ደጋ72 <i>ለ</i>	
16s10p1d	-108.981649	-0.071318	-0.011416	
16s10p2d1f	-108.991667		-0.001398	0.139
16s10p3d2f1g	-108.992847	-0.001180	-0.000218	0.184
16s10p4d3f2g1h	-108.993025		-0.000040	0.22
16s10p5d4f3g2h1i	-108.993057	-0.000032	-0.000008	0.25
SCF LIMIT =	-108.993065			

a. Factor = E_{SCF} Error(n) / ΔE_{SCF} (n)

The nZaP BasisSets

The number of Gaussian primitives in the 2ZaP basis sets was selected to give a constant, 1 millihartree, SCF error per electron. The 3ZaP basis sets each contain two more primitives of each angular momentum. The 4ZaP basis sets include an additional two, etc.

2ZaP NonRelativistic Basis Sets

The nZaP BasisSets

The contracted nZaP basis sets are similar in structure to the cc-pVnZ basis sets, but with diffuse valence functions added. The number of primitives in each contracted function is sufficient to prevent contraction from significantly raising the SCF energy. All "correlation primitives" (valence and polarization) were optimized at the MP2 level.

UHF energies mimic the basis set convergence of CASSCF energies, but ROHF energies do not.

Table V. Basis set convergence of CASSCF and UHFSCF as a function of geometry.

R _{NN} (Å)	Basis Set	CAS(6,6) (<i>E_h</i>)	∆E (<i>mE_h</i>)	$\Delta(\Delta E)_R$ (mE_h)	UHF (<i>E_h</i>)	ΔΕ (<i>mE_h</i>)	$\Delta(\Delta E)_R$ (mE_h)
1.09	2ZaP	-109.1035124			-108.9687667		
	3ZaP	-109.1246270	-21.1146	0.5215	-108.9903071	-21.5404	0.4654
	4ZaP	-109.1279935	-3.3665	0.1042	-108.9935983	-3.2912	0.0966
	5ZaP	-109.1288265	-0.8330	0.0213	-108.9944093	-0.8110	0.0198
	6ZaP				-108.9945297	-0.1204	0.0013
1.10	2ZaP	-109.1045238			-108.9674580		
	3ZaP	-109.1251169	-20.5931	0.4819	-108.9885330	-21.0750	0.4264
	4ZaP	-109.1283792	-3.2623	0.0978	-108.9917276	-3.1946	0.0898
	5ZaP	-109.1291909	-0.8117	0.0204	-108.9925188	-0.7912	0.0189
	6ZaP				-108.9926379	-0.1191	0.0011
1.11	2ZaP	-109.1049575			-108.9655455		
	3ZaP	-109.1250687	-20.1112	0.4447	-108.9861941	-20.6486	0.3898
	4ZaP	-109.1282332	-3.1645	0.0917	-108.9892989	-3.1048	0.0833
	5ZaP	-109.1290245	-0.7913	0.0195	-108.9900712	-0.7723	0.0181
	6ZaP				-108.9901892	-0.1180	0.0011

$$E_{CAS}(CBS) \cong E_{CAS}(3ZaP)$$

$$+1.2 \times \left[E_{UHF}(4ZaP) - E_{UHF}(3ZaP)\right]$$

$$\times \left[\frac{E_{CAS}(3ZaP) - E_{CAS}(2ZaP)}{E_{UHF}(3ZaP) - E_{UHF}(2ZaP)} \right]$$

Table VI. Calculated Full Valence CASSCF energies (hartree au).

	2ZaP	3ZaP	4ZaP	5ZaP	6ZaP	Limit
$C_2 X^1 \Sigma_g^+$	-75.6233832	-75.6412898	-75.6437447	-75.6442121	-75.6442908	-75.6443188
$C_2 a^3 \Pi_u$	-75.6073350	-75.6230710	-75.6251470	-75.6255495	-75.6256266	-75.6256541
$C_2 b^3 \Sigma_g$	-75.5777931	-75.5941905	-75.5962600	-75.5966964	-75.5967840	-75.5968152
$C_2 A^1 \Pi_u$	-75.5627890	-75.5788475	-75.5809697	-75.5813798	-75.5814615	-75.5814906
$\text{CN X}^2\Sigma^{+}$	-92.3544025	-92.3730997	-92.3761806	-92.3766716	-92.3767524	-92.3767812
$CO X^1\Sigma^+$	-112.8946223	-112.9181416	-112.9218328	-112.9224855	-112.9226137	-112.9226594
$N_2 X^1 \Sigma_g^+$	-109.1166132	-109.1373292	-109.1406653	-109.1414826	-109.1415931	-109.1416324
NO $X^2\Pi_i$	-129.3892421	-129.4106758	-129.4138042	-129.4143983	-129.4144941	-129.4145282
$O_2 X^3 \Sigma_g^{-1}$	-149.7411441	-149.7681917	-149.7713131	-149.7719475	-149.7720640	-149.7721055
$O_2 a^1 \Delta_g$	-149.7059304	-149.7327122	-149.7358092	-149.7364403	-149.7365522	-149.7365920
$O_3 X^1 A_1$	-224.5478659	-224.5938866	-224.5991383	-224.6002546	-224.6004950	-224.6005806
OH $X^2\Pi$	-75.4325178	-75.4440618	-75.4456305	-75.4458720	-75.4459251	-75.4459441
OH $A^2\Sigma^+$	-75.2670507	-75.2808979	-75.2825953	-75.2828559	-75.2829216	-75.2829450
RMS Err	or 0.0224147	0.0030328	0.0005829	0.0001180	0.0000310	

Table VII. Extrapolated Full Valence CASSCF energies (hartree au).

		Error	
	3ZaP	4ZaP	5ZaP
$C_2 X^1 \Sigma_g^+ (Re)$	-0.0001705	0.0000255	-0.0000059
$C_2 a^3 \Pi_u(Re)$	-0.0001753	0.0000582	0.0000012
$C_2 b^3 \Sigma_g^-(Re)$	-0.0002094	0.0000064	-0.0000040
$C_2 A^1 \Pi_u(Re)$	-0.0000459	0.0000176	0.0000026
$CN X^2\Sigma^{+}(Re)$	-0.0001536	0.0000366	-0.0000031
$N_2 X^1 \Sigma_g^+ (Re)$	-0.0005054	-0.0001428	-0.0000276
NO $X^2\Pi_i(Re)$	-0.0001124	-0.0001120	-0.0000175
$O_2 X^3 \Sigma_g^-(Re)$	0.0000564	-0.0001285	-0.0000186
$O_2 a^1 \Delta_g(Re)$	-0.0000230	-0.0001280	-0.0000168
OH X²∏(Re)	-0.0000524	-0.0000353	-0.0000136
OH $A^2\Sigma^+$ (Re)	0.0000168	-0.0000603	-0.0000194
RMS Error	0.0002327	0.0000956	0.0000245
Before Extrap	0.0030328	0.0005829	0.0001180

[&]quot;Approved for public release; distribution unlimited"

MP2 CBS Limit

The $\alpha\alpha$ secondorder Møller-**Plessett electron** pair correlation energies converge to the CBS limit as the inverse fifth power of the maximum angular momentum included in the basis set.

MP2 CBS Limit

The $\alpha\beta$ secondorder Møller-**Plessett electron** pair correlation energies converge to the CBS limit as the inverse third power of the maximum angular momentum included in the basis set.

Table VIII. The basis set convergence of dynamic correlaton energy.

State	Basis Set	$\mathbf{E}^{(2)}$ ($m \mathbf{E}_h$)	$\Delta \mathrm{E}^{(2)}$ (mE _h)	$\mathrm{E}_{\mathrm{CAS-CISD}}-\ \mathrm{E}_{\mathrm{CAS}}\left(m{mE_h} ight)$	$\Delta(\mathbf{E}_{\mathrm{CAS-CISD}} - \mathbf{E}_{\mathrm{CAS}})$ (\mathbf{mE}_h)
$\chi^1 \Sigma_g^+$	2ZaP	-316.0189		-181.9089	
1.10Å	3ZaP	-379.3504	-63.3315	-244.4998	-62.5909
	4ZaP	-403.7559			
	5ZaP	-413.3317			
	6ZaP	-417.4648			
	CBS Limit	-426.90			
$\mathbf{A}^{3}\Sigma_{u}^{^{+}}$	2ZaP	-250.9989		-195.6356	
1.27Å	3ZaP	-310.1058	-59.1069	-255.0882	-59.4526
	4ZaP	-332.4087			
	5ZaP	-341.1121			
	6ZaP	-344.7652			
	CBS Limit	-353.59			

[&]quot;Approved for public release; distribution unlimited"

$$E_{CAS-CISD}(CBS) \cong E_{CAS-CISD}(3ZaP)$$

$$+\left[E^{(2)}(CBS)-E^{(2)}(3ZaP)\right]$$

$$\times \left[\frac{E_{CAS-CISD}(3ZaP) - E_{CAS-CISD}(2ZaP)}{E^{(2)}(3ZaP) - E^{(2)}(2ZaP)} \right]$$

Outline

XI. Background

a. John Pople's Model Chemistries

XII. Excited state Models

- a. CCSD(T) vs FCI
- b. CASSCF and CAS-CISD vs FCI

XIII. CBS Extrapolations

- a. A Systematic Sequence of Basis Sets
- b. The CASSCF CBS Lmit
- c. The CASSCF-CISD CBS Limit

XIV. Results

- a. Geometry
- b. Vibrational Frequencies
- c. Excitation energies
- d. Dissociation Energies

XV. Acknowledgment

Table IX. Calculated CAS-CISD **geometries** (R_e in Å) for low-lying excited states of N_2 .

State	2ZaP	3ZaP	CBS limit	Exp.
$\overline{X^{1}\!\varSigma_{\!g}^{+}}$	1.1175	1.1039	1.0991	1.0977
$A^{3}\Sigma_{u}^{+}$	1.3066	1.2951	1.2905	1.2866
$B^{3}\Pi_{g}$	1.2314	1.2201	1.2152	1.2126
$W^3\Delta_u$	1.2972	1.2859	1.2815	
$B^{\prime,3}\Sigma_{u}^{-}$	1.2955	1.2845	1.2800	1.2784
$a^{1}\Sigma_{u}$	1.2914	1.2805	1.2759	1.2755
$a^{1}\Pi_{g}$	1.2390	1.2271	1.2213	1.2203
$w^{1}\Delta_{u}$	1.2837	1.2728	1.2684	1.268
RMS Error	0.0181	0.0066	0.0020	

[&]quot;Approved for public release; distribution unlimited"

Table X. Calculated CAS-CISD harmonic vibrational frequencies $(\omega_e \text{ in cm}^{-1})$ for low-lying excited states of N_2 .

State	2ZaP	3ZaP	CBS limit	Ехр.
$X^{1}\Sigma_{g}^{+}$	2319.1	2345.2	2358.1	2358.57
$A^{3}\Sigma_{u}^{+}$	1418.5	1439.7	1450.8	1460.64
$B^{3}\Pi_{g}$	1707.4	1715.3	1727.4	1733.39
$W^3\Delta_u$	1482.0	1499.1	1508.9	1501.4
$B^{,3}\Sigma_u^{-}$	1494.5	1509.9	1518.9	1516.88
$a^{1}\Sigma_{u}$	1508.6	1528.4	1538.8	1530.25
$a^{1}\Pi_{g}$	1648.2	1686.1	1696.4	1694.21
$w^{-1}\Delta_u$	1543.5	1561.3	1571.3	1559.26
RMS Error	31.1	12.1	7.3	

[&]quot;Approved for public release; distribution unlimited"

Table XI. Calculated CAS-CISD excitation energies (Ev) of N₂.

State	2ZaP	3ZaP	CBS limit	Exp.
$X^{1}\Sigma_{\!\!g}^{+}\! o$				
$A^{3}\Sigma_{u}^{+}$	5.843	6.093	6.192	6.224
$B^{3}\Pi_{g}$	7.275	7.397	7.447	7.392
$W^3\Delta_u$	7.233	7.364	7.432	7.415
$B^{\prime,3}\Sigma_{u}^{-}$	8.067	8.230	8.265	8.217
$a^{1}\Sigma_{u}$	8.427	8.471	8.407	8.450
$a^{1}\Pi_{g}$	8.547	8.653	8.562	8.590
$w^{-1}\Delta_u$	8.932	9.008	8.927	8.939
RMS Error	0.176	0.065	0.037	

[&]quot;Approved for public release; distribution unlimited"

Table XII. Calculated CAS-CISD dissociation energies (Ev) of N₂.

State	2ZaP	3ZaP	CBS limit	Exp.
$X^{1}\Sigma_{g}^{+}$ \rightarrow				
$A^{3}\Sigma_{u}^{+}$	5.857	6.093	6.192	6.224
$B^{\beta}\Pi_{g}$	7.256	7.397	7.447	7.392
$W^3\Delta_u$	7.301	7.364	7.432	7.415
$B^{,3}\Sigma_u^{-}$	8.063	8.230	8.265	8.217
$a^{1}\Sigma_{u}$	8.417	8.471	8.407	8.450
$a^{1}\Pi_{g}$	8.537	8.653	8.562	8.590
$w^{-1}\Delta_u$	8.914	9.008	8.927	8.939
RMS Error	0.167	0.065	0.037	

[&]quot;Approved for public release; distribution unlimited"

Acknowledgments

Dr. Michael J. Frisch
Dr. Matthew Braunstein
Dr. David K. Malick

\$upport

Gaussian Inc.™ Wesleyan University Department of Defense