Week 3 lab

COGS 108, 9:00-9:50AM (B01)

Reminders 😸 🗆

- ➤ A1 is due TODAY at 11:59PM!
- > D2 is due Friday, October 20th at 11:59PM
- ➤ Make some office hours appointments :3
 - https://calendly.com/alexandrarh/office-hours

Want to see a topic more/less covered? Let us know with this survey!

Pre-lab thoughts!

Survivorship bias

Definition: When you only consider the "surviving" results from a study, ignoring those that didn't "survive" (ex: the WWII plane)

> May prevent you from achieving the actual BEST result!

D2 Overview

Data wrangling and cleaning

Pt I: Data wrangling www.

Important aspects of data wrangling include:

- Data exploration: Trying to understand via visualizations
- 2. **Data reshaping:** Fitting data according to requirements
- 3. **Data filtering**: Filtering out unnecessary data (DON'T CONFUSE WITH SURVIVORSHIP BIAS)
- 4. **Missing data**: labeling them appropriately (fill in later)!

Unfortunately, no cows are included here :(...unless you are studying a dataset regarding cows!

Pt II: NumPy and Pandas

NumPy

Aka <u>Numerical Python</u>, it's good to use for vectorization of mathematical operations (very efficient)

When using, use the command import numpy as np

Pandas

This Python package is good for data analysis operations (very efficient too!)

When using, use the command import pandas as pd

PANDAS	NUMPY
When we have to work on Tabular data , we prefer the p <i>andas</i> module.	When we have to work on Numerical data , we prefer the n <i>umpy</i> module.
The powerful tools of pandas are Data frame and Series.	Whereas the powerful tool of <i>numpy</i> is Arrays.
Pandas consume more memory.	Numpy is memory efficient.
Pandas has a better performance when a number of rows is 500K or more.	Numpy has a better performance when number of rows is 50K or less.
Indexing of the <i>pandas</i> series is very slow as compared to <i>numpy</i> arrays.	Indexing of <i>numpy</i> Arrays is very fast .
Pandas offer a have2d table object called DataFrame.	Numpy is capable of providing multi-dimensional arrays.

Pt II, Pt A: Pandas operations

Pandas uses include...

- df = pd_read.csv("file.csv"): opens up a
 CSV file + reads it for usage
- df.head(n): returns n rows from the dataset;
 default param = 5
- df.describe(): generates statistics from dataset (e.g. mean, median, mode)
 - Could also be used on a single column (df[n].describe())
- df.iloc[n,m]: returns a view of selected row and/or column in dataframe
- > list(df): prints dataframe column names
 - can also rename columns with
 survey.columns = ['name1', ...]

```
: import pandas as pd
  one = pd.DataFrame({
     'Name': ['Amber', 'Jack', 'Brown'
     'subject_id':['sub1','sub2','sub4
     'Marks scored':[93,90,82,64,71]},
     index=[1,2,3,4,5])
  two = pd.DataFrame({
     'Name': ['Ben', 'Cole', 'Sam', 'T
     'subject id':['sub2','sub4','sub3
     'Marks_scored':[96,80,73,77,81]},
     index=[1,2,3,4,5])
  print (pd.concat([one,two]))
        Name subject id Marks scored
       Amber
                   sub1
        Jack
                  sub2
                  sub4
       Brown
       Smith
                  sub6
       Young
                  sub5
                  sub2
         Ben
        Cole
                  sub4
         Sam
                  sub3
         Tom
                  sub6
     Martial
                   sub5
```

Pt II, Pt B: Pandas cleaning

messy_dataset = ick. Here's how Pandas helps:

- isnull(df)/isnull(): checks if there's any null values in dataframe (boolean)
 - can be used with null_rows =
 dataframeName.isnull().any(axis=1).sum()
- > dropna(): drop rows + columns with NaN values
- > fillna(): fills any NaN values in dataset
 - o Good for few null values present
- df = df.fillna(method='fill'): fill null value with
 value of previous

Next week...

D3 + possible Project Review questions?

D2 Demo

https://datahub.ucsd.edu