1 Деревья истинности для логики высказываний

Доказать или опровергнуть с помощью деревьев истинности:

- 1. $((p \rightarrow q) \rightarrow p) \rightarrow p$
- 2. $p \wedge q, q \wedge r \vdash p \wedge r$
- 3. $p \lor q, q \lor r \vdash p \lor r$
- 4. $p \rightarrow q \equiv \neg p \lor q$
- 5. $\neg(p \to q) \equiv \neg p \to \neg q$
- 6. $\neg (p \lor q) \equiv \neg p \land \neg q$
- 7. $(p \land q) \lor (p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$
- 8. $p \land q \rightarrow r \equiv (p \rightarrow r) \lor (q \rightarrow r)$
- 9. $p \land q \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r)$
- 10. Сформулировать правила деревьев истинности для следующих операций: стрелка Пирса \downarrow , штрих Шеффера |, равносильность \leftrightarrow , сумма по модулю $2 \oplus$ (она же исключающее или). Если какие-то из них незнакомы и не получится найти определение, напишите.
- 11. $(p \leftrightarrow q) \leftrightarrow r \equiv p \leftrightarrow (q \leftrightarrow r)$ (используйте правила из 8).

2 Натуральная дедукция для логики высказываний

Доказать с помощью натуральной дедукции:

- 1. $p \to q \equiv \neg q \to \neg p$.
- 2. $p \to q \land r \equiv (p \to q) \land (p \to r)$.
- 3. $p \equiv \neg \neg p$.
- 4^* . $p \wedge q \rightarrow r \equiv (p \rightarrow r) \vee (q \rightarrow r)$.
- 5. Законы де Моргана (2 в обоих направлениях).
- 6. $\vdash p \lor \neg p$ (использовать RAA и закон де Моргана для отрицания дизъюнкции).
- 7. $p \rightarrow q \equiv \neg p \lor q$.
- 8^{\star} . $\vdash ((p \rightarrow q) \rightarrow p) \rightarrow p$ (есть подсказка).
- 9^* . Составить правила введения и исключения для равносильности, суммы по модулю 2, стрелки Пирса и штриха Шеффера.

3 Формализация утверждений в логике предикатов

Перевести на язык логики предикатов:

- 1. Мне скучно.
- 2. Иванов и Петров играют в шахматы.
- 3. Иванов и Петров слушают лекцию.
- 4. Каждый, кто упорно работает, добивается успеха.
- 5. Слон Бимбо больше собаки Ланды.
- 6. Кошки бывают только белые и серые.

- 7. Среднее арифметическое любых двух чисел больше их среднего геометрического (не используйте операции деления и извлечения корня, так как они не везде определены).
- 8. Уравнение $x^2 3x + 2 = 0$ не имеет решений.
- 9. Функция f непрерывна в точке a (используйте определение предела через ε и δ).
- 10. Точки A, B, C являются вершинами равнобедренного треугольника.
- 11. Функция f принимает в том числе такие комплексные значения, которые не являются действительными.
- 12. У каждого положительного действительного числа есть ровно один положительный квадратный корень.
- 13. Число x простое (для групп, где не сделали на занятии).
- 14. Есть сколько угодно большие простые числа.
- 15. Последовательность a_0, a_1, \dots имеет более одной предельной точки.

4 Деревья истинности для логики предикатов

Доказать или опровергнуть с помощью деревьев истинности:

- 1. $\exists x \ (P(x) \to \forall y \ P(y))$
- 2. $\forall x \ (P(x) \lor Q(x)) \vdash (\exists x \ P(X)) \lor (\forall x \ Q(x))$
- 3. $\exists x \ P(x), \forall x \ (P(x) \to Q(x)) \vdash \exists x \ Q(x)$
- 4. $\neg \exists x \ (P(x) \to Q(x)) \vdash (\exists x \ A(x)) \land (\forall x \ Q(x))$
- 5. $\forall x \exists y \ P(x,y), \exists x \forall y \ Q(x,y) \vdash \exists x \exists y \ (P(x,y) \land Q(x,y))$

Следующие формализовать как секвенции с двумя посылками:

- 6. Не все политики мошенники. Все мошенники умны. Значит, некоторые политики глупы.
- 7. Те, кто что-то учил, решили некоторые задачи. Андрей не решил ни одной. Значит, он не учил ничего.
- 8. Если бинарное отношение транзитивно и симметрично, то оно рефлексивно (здесь квантора по бинарным отношениям нет, просто обозначьте его как R(x,y)).

Задачи с равенством и с функциями:

- 9. $\forall x \exists ! y \ f(x) = y$
- 10. Эквивалентность двух формализаций $\exists !x\ P(x)$: $\exists x\ (P(x) \land \forall y\ (P(y) \to x = y)) \equiv (\exists x\ P(x)) \land \forall y \forall z\ (P(y) \land P(z) \to y = z)$
- $11^{\star}. \ \forall x \forall y \ (P(f(x),y) \lor Q(x,y)), \ \forall x \forall y \ (\neg P(x,g(y)) \lor Q(x,y)) \vdash \exists x \exists y \ Q(x,y)$

5 Натуральная дедукция для логики предикатов

Доказать с помощью натуральной дедукции:

- 1. $(\forall x \ P(x)) \rightarrow (\exists x \ P(x))$
- 2. $\forall x \ P(x), \exists x \ (P(x) \to Q(x)) \vdash \exists x \ Q(x)$
- 3. $\neg \forall x \ P(x) \equiv \exists x \ \neg P(x)$.
- 4. $\exists x \ (P(x) \land Q(x)) \vdash (\exists x \ P(x)) \land (\exists x \ Q(x))$

- 5. $\forall x \ (P(x) \lor Q(x)) \vdash (\exists x \ P(x)) \lor (\forall x \ Q(x))$
- 6. $\forall x \exists y \ P(x,y), \ \exists x \forall y \ Q(x,y) \vdash \exists x \exists y \ (P(x,y) \land Q(x,y))$
- 7. Убедитесь, что $\exists x \ P(x) \vdash \forall x \ P(x)$ нельзя доказать и постройте контрмодель.
- 8. $\exists x \ P(f(x)) \vdash \exists x \ P(x)$
- 9. $\forall x \exists ! y \ f(x) = y$ (если не получится, сделайте упрощённый вариант с $\exists y$)
- 10. $\forall x \forall y \ P(f(x), y), \ \forall x \forall y \ \neg P(x, g(y)) \vdash \bot$
- 11*. Эквивалентность двух формализаций $\exists !x\ P(x)$: $\exists x\ (P(x) \land \forall y\ (P(y) \to x = y)) \equiv (\exists x\ P(x)) \land \forall y \forall z\ (P(y) \land P(z) \to y = z)$
- 12^{\star} . $\exists x \ (P(x) \to \forall y \ P(y))$
- 13*. $\forall x \ (R(x,y) \to R(y,x)), \ \forall x \forall y \forall z \ (R(x,y) \land R(y,z) \to R(x,z)), \ \forall x \exists y \ R(x,y) \vdash \forall x \ R(x,x)$

Для 12 и 13 есть подсказки.

6 Теория множеств: функции

- 1. Проверьте, является ли $f: \mathbb{N} \to \mathbb{Z}, \ f(n) = n^2 + n + 1$ а) вложением, б) наложением, в) биекцией.
- 2. Проверьте, является ли $f: \mathbb{Q}_{>0} \to \mathbb{Q}_{>0}, \ f(x) = x^2$ а) вложением, б) наложением, в) биекцией.
- 3. Проверьте, является ли $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x + \sin x$ а) вложением, б) наложением, в) биекцией.
- 4. Пусть A, B множества. Рассмотрим $i: A \to B, i(x) = x$. Для каких A, B i будет а) функцией? б) вложением? в) наложением? г) биекцией?
- 5. Пусть A, B множества. Рассмотрим $f: A \times B \to B \times A, \ f(x,y) = (y,x)$. Показать, что это всегда биекция.
- 6. Пусть A множество. Рассмотрим $f: A \to \mathcal{P}(A), \ f(x) = \{x\}$. Для каких A f будет a) функцией? б) вложением? b) наложением? b) бискцией?
- 7. Пусть A,B,C множества, $f:A\to B,g:B\to C$ функции. Докажите:
 - а) Если f и g вложения, то $g \circ f = x \mapsto g(f(x))$ вложение.
 - б) Если f и g наложения, то $g \circ f$ наложение.
- 8. Пусть A, B, C, D множества, $f: A \to B, g: C \to D$ вложения.
 - а) Если $A \cup B = C \cup D = \emptyset$, найдите вложение $h: A \cup B \to C \cup D$. Что изменится без этого дополнительного условия?
 - б) Найдите вложение $h: A \times B \to C \times D$.
 - в) Покажите, что если f и g наложения (и не обязательно вложения), то h из обоих предыдущих пунктов будут наложениями.
- 9. Пусть A множество. Найти биекцию между $\mathcal{P}(A)$ и $A \to \{0,1\}$.
- 10^* . Пусть A, B непустые множества, $f: A \to B$ функция. Докажите:
 - а) $\exists g: B \to A \ \forall x: A \ g(f(x)) = x \ (g \ левая \ обратная \ к \ f) \iff f$ вложение.
 - б) $\exists g: B \to A \ \forall y: B \ f(g(y)) = y \ (g$ правая обратная к $f) \iff f$ наложение.
 - в) Если $g,h:B\to A,\,g$ левая обратная к f, и h правая обратная к f, то g=h.
- 11^* . Пусть A, B, C множества. Найдите биекцию между $A \to (B \to C)$ и $A \times B \to C$.
- 12^* . Определение упорядоченной пары по Куратовскому: $(a,b) = \{\{a\}, \{a,b\}\}$.
 - а) Докажите, что $(a,b)=(c,d)\iff a=c\land b=d$. Нужно учесть, что любые из a,b,c,d могут быть равны между собой.
 - б) Определим $pr_1(A) = \bigcup \bigcap A$. Докажите, что $pr_1((a,b)) = a$. (Определение второй проекции существенно сложнее.)

Для 9 и 11 есть подсказки.

7 Теория множеств: мощности

- 1. Найдите мощность множества всех многочленов с рациональными коэффициентами.
- 2. Найдите мощность множества всех алгебраических чисел (действительных корней многочленов с рациональными коэффициентами). Используйте предыдущую задачу.
- 3. Докажите, что мощность любого отрезка равна мощности любого интервала.
- 4. Докажите, что мощности из предыдущей задачи равны $|\mathbb{R}|$.
- 5. Найдите мощность множества всех прямых на плоскости.
- 6. Найдите мощность множества всех невырожденных треугольников на плоскости.
- 7. Найдите мощность множества иррациональных чисел.
- 8. Найдите мощность множества строго возрастающих бесконечных последовательностей натуральных чисел.
- 9. Найдите мощность множества строго убывающих бесконечных последовательностей натуральных чисел.
- 10. Найдите мощность множества нестрого убывающих бесконечных последовательностей натуральных чисел.
- 11. Докажите, что $|\mathbb{R}| = |\mathbb{N} \to \{0, 1\}|$.
- 12. Найдите мощность множества всех функций $\mathbb{R} \to \mathbb{R}$.
- 13. Найдите мощность множества всех вложений $\mathbb{N} \to \mathbb{N}$.
- 14^* . Докажите, что $\mathfrak{c}^2 = \mathfrak{c}$ (построением явной биекции).
- 15^\star . Докажите, что мощность множества непрерывных функций $\mathbb{R} \to \mathbb{R}$ равна \mathfrak{c} .

Для 5 и 15 есть подсказки.

8 Теория множеств: ординалы

- 1. Докажите:
 - а) Если A и B частично упорядочены, то A+B и $A\times B$ частично упорядочены.
 - б) Если A и B линейно упорядочены, то A+B и $A\times B$ линейно упорядочены.
 - в) Если A и B фундированы, то A + B и $A \times B$ фундированы.
- 2. Приведите к нормальной форме Кантора: $(\omega + 2)(\omega + 1)\omega$.
- 3. Приведите к нормальной форме Кантора: $(\omega + 2)^3$.
- 4. Приведите к нормальной форме Кантора: $(\omega + 1)^{\omega + 1}$.
- 5. Найдите контрпример к утверждению $(\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma$.
- 6. Докажите, что $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$.
- 7. Докажите, что если $\alpha < \beta$, то
 - a) $\gamma + \alpha < \gamma + \beta$.
 - б) $\alpha + \gamma < \beta + \gamma$ (но не обязательно <).
- 8*. Докажите, что $\alpha + \beta = \beta \Leftrightarrow \alpha \cdot \omega \leq \beta$.
- 9*. Докажите, что:
 - а) Ординалы вида ω^{α} нельзя представить как сумму двух меньших ординалов.
 - б) Любые другие положительные ординалы можно так представить.

Подсказки

- 2.8: можно использовать задачу 7 или закон исключённого третьего.
 - 5.12: можно использовать закон исключённого третьего для $\forall y \ P(y)$.
- 5.13: так как $\forall x \exists y \ R(x,y)$, то для этого y также верно R(y,x), а из R(x,y) и R(y,x) заключаем R(x,x).
- 6.9: $f:\mathcal{P}(A)\to (A\to\{0,1\}),\ f(B)=x\mapsto \begin{cases} 1, & x\in B\\ 0, & x\notin B \end{cases}$. Остаётся доказать, что это действительно биекция (можно найти обратную функцию).
- 6.11: $f:(A \to (B \to C)) \to (A \times B \to C), \ f(g) = (x,y) \mapsto g(x)(y)$. Остаётся доказать, что это действительно биекция (можно найти обратную функцию).
 - 7.5: точно ли вы задали произвольные прямые, включая параллельные обеим осям?
- 7.15: если две непрерывные функции $\mathbb{R} \to \mathbb{R}$ совпадают на рациональных точках, то они совпадают на всей прямой (почему?).