

MAXIMILIANS-UNIVERSITÄT MÜNCHEN

E5 Kern- und Teilchenphysik WiSe 17/18 – Übungsblatt 6

Besprechung: 16.01.2018 bis 22.01.2018

Für Studierende im Studiengang Lehramt Gymnasium ist dieses Blatt komplett freiwillig, Studierende aller anderen Studiengänge lösen bitte alle Teilaufgaben.

1. Formfaktor und mittlerer quadratischer Radius von Nukleonen mit kugelsymmetrischer Ladungsverteilung

Betrachten Sie einen Kern mit kugelsymmetrischer Ladungsdichteverteilung $f(r) = \frac{1}{7 \cdot \rho} \cdot \varrho(r)$. Zeigen Sie,

(a) dass der Formfaktor gegeben ist durch

$$F(q) = \frac{4\pi\hbar}{Zeq} \int \varrho(r) \sin\left(\frac{qr}{\hbar}\right) r dr.$$

Berechnen Sie hierzu $F(\vec{q}) = \int f(\vec{r})e^{i\vec{q}\vec{r}/\hbar}dV$ ohne Benutzung einer Taylorreihe.

(b) dass die Ableitung d $F(q)/dq^2$ für q=0 gegeben ist durch

$$\frac{\mathrm{d}F(q)}{\mathrm{d}q^2}|_{q=0} = -\frac{\langle r^2 \rangle}{6\hbar^2}.$$

Tipp: Entwickeln Sie das Ergebnis aus Aufgabe 1a) um q = 0.

(c) In der Präsenzaufgabe hatten Sie gezeigt, dass der mittlere quadratische Radius $\langle r^2 \rangle$ eines Kerns mit gaußförmiger Ladungsverteilung durch $3/a^2$ gegeben ist. Berechnen Sie $\langle r^2 \rangle$ erneut mit Hilfe von Aufgabe 1b), d.h. ausgehend von der Steigung des Formfaktors

$$F(q) = \exp\left(-\frac{q^2}{2a^2\hbar^2}\right)$$

bei q = 0.

2. Formfaktor: Elektronenstreuung an Goldkernen

Elektronen der Energie $E = 500 \,\text{MeV}$ werden an Gold-Kernen gestreut.

(a) Berechen Sie den Formfaktor des Gold-Kerns ausgehend von Aufgabe 1a). Nehmen Sie hierzu an, dass der Kern einer homogen geladenen Kugel mit Radius R entspricht.

(Lösung:
$$F(q) = \frac{3\hbar^3}{R^3 q^3} \left[\sin \frac{qR}{\hbar} - \frac{qR}{\hbar} \cos \frac{qR}{\hbar} \right]$$
)

(b) Berechnen Sie den maximalen Wert für $\alpha = \frac{|q|R}{\hbar}!$ Hinweis: Verwenden Sie für den Kernradius die in der Vorlesung angegebene Näherungsformel $R \approx 1.2 \, \text{fm} \sqrt[4]{A}$.

(Lösung: $\alpha_{\text{max}} = 35.53$)

(c) Wieviele Minima würde man in der Winkelverteilung sehen, wenn man nukleare Wechselwirkungen vernachlässigt?

Hinweis: Der Wirkungsquerschnitt ist proportional zu $|F(q)|^2$, d.h. die Nullstellen von F(q)bestimmen die Lage der Minima in der Winkelverteilung. (Lösung: 10)

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

E5 Kern- und Teilchenphysik WiSe 17/18 – Übungsblatt 6

3. Kinematik der Elektron-Nukleon-Streuung (ehemalige Klausuraufgabe)

Ein Elektron der Energie $E=25\,\text{GeV}$ wird an einem ruhenden Proton um einen Winkel $\theta=10^\circ$ gestreut. Die Elektronenmasse soll vernachlässigt werden.

- Elastische Streuung:
 - (a) Skizzieren Sie das Diagramm des Streuprozesses mit einlaufenden, auslaufenden und ausgetauschten Teilchen. Definieren Sie die zugehörigen Viererimpulse (mit Impulsvektoren) in der Skizze.
 - (b) Zeigen Sie, dass bei der elastischen Streuung die Energie des gestreuten Elektrons durch $E'=E/[1+\frac{E}{m_vc^2}(1-\cos\theta)]$ gegeben ist (Protonmasse $m_p=938\,\mathrm{MeV}/c^2$).

Berechnen Sie E' und mit Herleitung den Viererimpulsübertrag Q^2 . Wie groß ist die Bjorkensche Skalenvariable x?

- · Inelastische Streuung:
 - (c) Skizzieren Sie das Diagramm des Streuprozesses und kennzeichnen Sie das erzeugte hadronische System in der Skizze. Definieren Sie den Viererimpuls des hadronische Systems.
 - (d) Die Energie des gestreuten Elektrons sei $E' = 10 \,\text{GeV}$. Berechnen Sie Q^2 und mit Herleitung die invariante Masse des hadronischen Systems. Berechnen Sie die Bjorkensche Skalenvariable x?