

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Industrial

- 00018

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
	Álgebra Lineal

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Segundo	114022	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante de conocimiento y herramientas necesarias que le permitan relacionar el álgebra con la geometría analítica para que pueda modelar y resolver mediante la teoría matricial y vectorial problemas propios del campo de la ingeniería.

TEMAS Y SUBTEMAS

1. Matrices y sistemas de ecuaciones lineales.

- 1.1. Definición de matriz.
- 1.2. Transpuesta de una matriz.
- 1.3. Álgebra de matrices: suma, producto por escalar y multiplicación.
- 1.4. Matrices especiales: diagonales, triangulares, simétricas, matrices invertibles.
- 1.5. Sistemas de ecuaciones lineales.
- 1.6. Solución de un sistema de ecuaciones lineales.
- 1.7. Sistemas equivalentes.
- 1.8. Operaciones elementales de renglón
- 1.9. Método de Gauss-Jordan.
- 1.10. Problemas de Aplicación.
- 1.11. Determinantes y propiedades.
- 1.12. Regla de Cramer.
- 1.13. Inversa de una matriz (método de Gauss y método de la adjunta).

2. Espacios vectoriales.

- 2.1. Operaciones y geometría de R2 y R3.
- 2.2. Definición y propiedades básicas.
- 2.3. Subespacios vectoriales.
- 2.4. Combinaciones lineales y espacio generado.
- 2.5. Dependencia e independencia lineal.
- 2.6. Bases y dimensión.
- 2.7. Cambio de base.
- 2.8. Rango, nulidad, espacio de renglones y de columnas de una matriz.

3. Proyecciones en R" v mínimos cuadrados.

- 3.1. Producto escalar y norma de un vector en Rⁿ.
- 3.2. Proyecciones de un vector sobre otro.
- 3.3. Bases ortonormales y proceso de Gram-Schmidt.
- 3.4. Proyecciones de un vector sobre un subespacio.
- 3.5. Mejor aproximación de un vector sobre un subespacio.
- 3.6. Aproximación por mínimos cuadrados.

4. Trasformaciones lineales.

- 4.1. Definición y propiedades básicas.
- 4.2. Imagen y núcleo de una transformación lineal.
- 4.3. Representación matricial de una transformación lineal.

5. Diagonalización de matrices.

- 5.1. Valores y vectores propios.
- 5.2. Matrices semejantes y diagonalización.
- 5.3. Matrices simétricas y diagonalización ortogonal.

ACADÉMICA

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Industrial

. 00019

PROGRAMA DE ESTUDIOS

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y el retroproyector. Asimismo, se utilizarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso, el profesor indicará el procedimiento de evaluación que comprende tres exámenes parciales que tendrán una equivalencia del 50% y un examen ordinario equivalente al 50%, la suma de estos dos porcentajes dará la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- 1. Álgebra Lineal. Stanley I. Grossman, José Flores Godoy. Editorial McGraw Hill. 8a edición, 2019.
- 2. Álgebra Lineal. Fraleigh Beauregard. Editorial Adisson Wesley Iberoamericana.
- 3. Introducción al Álgebra Lineal. Antón, Howard. Editorial Limusa, México 2002. QA184 A57.
- 4. Fundamentos de álgebra lineal, Ron Larson, 7 edición, 2014.

Libros de Consulta:

- 1. Álgebra Lineal con Aplicaciones y Matlab. Bernard Kolman, Editorial Prentice Hall. 6a edición.
- 2. Elementary Linear algebra, Applications version. Howard Anton, Chris Rorres, Anton Kaul. Wiley, 12th edition.
- 3. Álgebra Lineal y sus Aplicaciones. Gilbert Strang. Editorial Thomson. 4ª. edición.
- 4. Álgebra Lineal Aplicada. Ben Noble James W. Daniel. Editorial Prentice Hall. 3a edición.

PERFIL PROFESIONAL DEL DOCENTE

Maestro o doctor en ciencias (matemáticas o área afín).

DR. IGNACIO HERNANDEZ CASTILLO

Vo. Bo

JEFE DE CARRERA

JEPATURA DE CARRERA INGENIERÍA INDUSTRIAL Autorizo

DR. AGUSTYN SANTIAGO ALVARADO

VICE-RECTOR ACADÉMICO

VICE-RECTORIA ACADÉMICA