Dark matter direct detection at one loop

Michael A. Schmidt

24 May 2018

Planck 2018

based on

C. Hagedorn, J. Herrero-García, E. Molinaro, MS [1804.04117] J. Herrero-García, E. Molinaro, MS [1803.05660]

Gravitational evidence for dark matter

Evidences across all astrophysical scales

- Galaxy rotational curve
- Bullet cluster with grav. lensing
- Cosmic microwave background

- fit with ΛCDM
- dark matter abundance:

$$\Omega_{\rm CDM} h^2 = 0.12$$

Gravitational evidence for dark matter

Evidences across all astrophysical scales

- Galaxy rotational curve
- Bullet cluster with grav. lensing
- Cosmic microwave background

- fit with ACDM
- dark matter abundance:

$$\Omega_{\rm CDM} h^2 = 0.12$$

Popular candidate:
Weakly Interacting Massive Particles

No other clear signal in dark matter searches

- ? dark matter mass
- ? spin and other quan. numbers
- ? interactions and strength

- Direct detection: nuclear recoil
- Indirect detection: cosmic rays
- Collider search: missing transverse energy

So far no clear evidence for DM in direct/indirect detection or at LHC

Motivation for direct detection at loop level

- no clear evidence for DM in direct/indirect detection or at Ihc
- only hints from DAM.*
- option: DM is not directly coupled to quarks
- ullet examples: fermionic singlet DM ψ such as bino, fermionic DM in scotogenic model, or models explaining the DAMPE result
- direct detection occurs at one loop
- next generation (liquid noble gas) experiments could probe it

Simplified fermionic DM model

dark sector	field	SU(3) _c	$SU(2)_{\mathrm{L}}$	$U(1)_{\mathrm{Y}}$	$U(1)_{\mathit{DM}}$
dark matter	ψ	1	1	0	1
dark scalar dark fermion	S F	1 1	d_F d_F	Y_F Y_F	q_S q_S+1

$$\mathcal{L}_{\psi} = i \, \overline{\psi} \, \partial \!\!\!/ \psi - m_{\psi} \, \overline{\psi} \, \psi + i \, \overline{F} \, D \!\!\!/ F - m_{F} \, \overline{F} \, F + (D_{\mu} S)^{\dagger} \, D^{\mu} S$$

$$- \left(y_{1} \, \overline{F_{R}} \, S \, \psi_{L} + y_{2} \, \overline{F_{L}} \, S \, \psi_{R} + \text{h.c.} \right) - \lambda_{HS} \, v \, h \, S^{\dagger} S + \dots$$

- Higgs portal coupling may arise in different ways
- easy to generalise to larger dark symmetry groups

Simplified fermionic DM model

dark sector	field	SU(3) _c	$SU(2)_{\mathrm{L}}$	$U(1)_{\mathrm{Y}}$	$U(1)_{\mathit{DM}}$
dark matter	ψ	1	1	0	1
dark scalar dark fermion	S F	1 1	d _F	Y_F	$q_S = q_S + 1$

$$\mathcal{L}_{\psi} = i \, \overline{\psi} \, \partial \!\!\!/ \psi - m_{\psi} \, \overline{\psi} \, \psi + i \, \overline{F} \, D \!\!\!/ F - m_{F} \, \overline{F} \, F + (D_{\mu} S)^{\dagger} \, D^{\mu} S$$

$$- \left(y_{1} \, \overline{F_{R}} \, S \, \psi_{L} + y_{2} \, \overline{F_{L}} \, S \, \psi_{R} + \text{h.c.} \right) - \lambda_{HS} \, v \, h \, S^{\dagger} S + \dots$$

- Higgs portal coupling may arise in different ways
- easy to generalise to larger dark symmetry groups

SM fields in loop

- 1. $F
 ightarrow \mathit{L} / \mathit{e}_{\mathit{R}}$: ψ or S have $\mathit{L} = 1$ LFV, EDM/AMMs, LNV
- 2. $F
 ightarrow
 u_r$: u_r and u_r or S have L = 1 Gonzalez-Macias, Escudero, ...
- 3. $S \rightarrow H$: mixing ψF_0 , thus tree-level h/Z exchange

(Relevant) effective interactions for direct detection

Dirac DM

• Electric and magnetic dipoles: $\mathcal{L} = \mu_{\psi}\mathcal{O}_{ ext{mag}} + d_{\psi}\mathcal{O}_{ ext{edm}}$ [long-range]

$$\mathcal{O}_{\rm mag} = \frac{e}{8\pi^2} (\overline{\psi} \sigma^{\mu\nu} \psi) F_{\mu\nu}, \qquad \mathcal{O}_{\rm edm} = \frac{e}{8\pi^2} (\overline{\psi} \sigma^{\mu\nu} i \gamma_5 \psi) F_{\mu\nu} \,, \label{eq:omega}$$

• Vector interactions from Z/γ penguins $\left[\operatorname{anapole}\left(\overline{\psi}\gamma^{\mu}\psi\right)\left(\partial^{\nu}\mathit{F}_{\mu\nu}\right)\equiv\mathcal{O}_{VV}^{q}\text{ by eom}\right]$

$$\mathcal{O}_{VV}^{q} = (\overline{\psi}\gamma^{\mu}\psi)(\overline{q}\gamma_{\mu}q) \qquad \qquad \mathcal{O}_{AA}^{q} = (\overline{\psi}\gamma^{\mu}\gamma_{5}\psi)(\overline{q}\gamma_{\mu}\gamma_{5}q),$$

Scalar interactions [and gluon interaction induced by heavy quarks]

$${\cal O}_{SS}^q = m_q(\overline{\psi}\psi)(\overline{q}q) \hspace{1cm} {\cal O}_g = rac{lpha_s}{8\pi}(\overline{\psi}\psi)G^{a\mu
u}G^a_{\mu
u}$$

(Relevant) effective interactions for direct detection

Dirac DM

• Electric and magnetic dipoles: $\mathcal{L} = \mu_{\psi}\mathcal{O}_{ ext{mag}} + d_{\psi}\mathcal{O}_{ ext{edm}}$ [long-range]

$$\mathcal{O}_{
m mag} = rac{e}{8\pi^2} (\overline{\psi} \sigma^{\mu
u} \psi) F_{\mu
u}, \qquad \mathcal{O}_{
m edm} = rac{e}{8\pi^2} (\overline{\psi} \sigma^{\mu
u} i \gamma_5 \psi) F_{\mu
u} \,,$$

• Vector interactions from Z/γ penguins $\left[\operatorname{anapole}\left(\overline{\psi}\gamma^{\mu}\psi\right)\left(\partial^{\nu}\mathit{F}_{\mu\nu}\right)\equiv\mathcal{O}_{VV}^{q}\text{ by eom}\right]$

$$\mathcal{O}_{VV}^{q} = (\overline{\psi}\gamma^{\mu}\psi)(\overline{q}\gamma_{\mu}q)$$
 $\qquad \mathcal{O}_{AA}^{q} = (\overline{\psi}\gamma^{\mu}\gamma_{5}\psi)(\overline{q}\gamma_{\mu}\gamma_{5}q),$

• Scalar interactions [and gluon interaction induced by heavy quarks]

$$\mathcal{O}_{SS}^q = m_q(\overline{\psi}\psi)(\overline{q}q)$$
 $\qquad \qquad \mathcal{O}_g = rac{lpha_s}{8\pi}(\overline{\psi}\psi)G^{a\mu
u}G^a_{\mu
u}$

Majorana DM

- no dipole and vector interactions
- P-violating vector interaction [momentum suppressed]

$$\mathcal{O}_{AV}^{q} = (\overline{\psi}\gamma^{\mu}\gamma_{5}\psi)(\overline{q}\gamma_{\mu}q)$$

Dominant interactions: electric/magnetic dipole moments

for Dirac DM ψ [$m_{\psi} \ll m_F < m_S$]

$$\begin{split} \mu_{\psi} &\approx -\frac{Q_F}{4 \, m_S} \left(|y_V|^2 - |y_A|^2 \right) x_F \, \frac{1 - x_F^2 + 2 \, \ln x_F}{(1 - x_F^2)^2} \\ d_{\psi} &\approx -\frac{Q_F}{2 \, m_S} \, \text{Im} [y_V^* \, y_A] \, x_F \, \frac{1 - x_F^2 + 2 \, \ln x_F}{(1 - x_F^2)^2} \end{split}$$

where

$$x_F \equiv \frac{m_F}{m_S}$$
 and $y_{V,A} = \frac{y_2 \pm y_1}{2}$.

Dominant contribution:

Dirac DM: electromagnetic dipole moment Majorana DM Higgs and photon penguin analytical expressions provided in paper and compared to existing results

Berlin, Chang, Agrawal, Kumar, Schmidt, Kopp, Ibarra...

 m_{ψ} dependence of μ_{ψ} and $c_{SS,H}^u$ due to helicity

Dominant interactions: electric/magnetic dipole moments

for Dirac DM ψ $[m_{\psi} \ll m_F < m_S]$

$$\begin{split} \mu_{\psi} &\approx -\frac{Q_F}{4 \, m_S} \left(|y_V|^2 - |y_A|^2 \right) x_F \, \frac{1 - x_F^2 + 2 \, \ln x_F}{(1 - x_F^2)^2} \\ d_{\psi} &\approx -\frac{Q_F}{2 \, m_S} \, \mathrm{Im} [y_V^* \, y_A] \, x_F \, \frac{1 - x_F^2 + 2 \, \ln x_F}{(1 - x_F^2)^2} \end{split}$$

where

$$x_F \equiv \frac{m_F}{m_S}$$
 and $y_{V,A} = \frac{y_2 \pm y_1}{2}$.

Dominant contribution:

Dirac DM: electromagnetic dipole moment Majorana DM Higgs and photon penguin analytical expressions provided in paper and compared to existing results

Berlin, Chang, Agrawal, Kumar, Schmidt, Kopp, Ibarra...

 m_{ψ} dependence of μ_{ψ} and $c_{SS,H}^u$ due to helicity

Nucleon level (non-relativistic): vector-like fermions

Nucleon level (non-relativistic): vector-like fermions

DirectDM_{1708,02678} to match to NR Wilson coefficients

Direct detection limits

Direct detection limits

vector-like fermions we use LikeDM_{1708.04630} to calculate event rates and obtain limits

right-handed charged leptons

connection to neutrino masses:

generalised scotogenic model

Generalised scotogenic model with Dirac fermion DM

simple example of DD at loop level with radiative ν masses:

Dirac DM ψ , $F \equiv L_L$, $S = \Phi, \Phi'$. dark global (anomaly-free) U(1)_{DM}

field	SU(3) _c	$SU(2)_{\mathrm{L}}$	$U(1)_{\mathrm{Y}}$	$U(1)_{\mathrm{DM}}$
Φ	1	2	1/2	1
Φ′	1	2	-1/2	1
$\overline{\psi}$	1	1	0	1

just one fermionic singlet ψ needed. $\mathbf{y}_{\Phi(\prime)}$ are 3-component vectors

$$\mathcal{L}_{\psi} \;\supset\; i\,\overline{\psi}\,\partial\!\!\!/\psi \;-\; m_{\psi}\,\overline{\psi}\,\psi \;-\; \left(y^{\alpha}_{\Phi}\,\overline{\psi}\,\tilde{\Phi}^{\dagger}\,L^{\alpha}_{L} \;+\; \left(y^{\alpha}_{\Phi'}\right)^{*}\,\overline{\psi}\,\tilde{\Phi}'^{\dagger}\tilde{L}^{\alpha}_{L} \;+\; \text{h.c.}\right).$$

two neutral complex scalars $\eta_0^{(\prime)}$ (mixing angle θ), two charged scalars $\eta^{(\prime)\pm}$ (no mixing)

$$V \supset \lambda_{H\Phi\Phi'} \left[(H^{\dagger}\tilde{\Phi}')(H^{\dagger}\Phi) + \text{h.c.} \right] \longrightarrow \sin 2\theta \propto \lambda_{H\Phi\Phi'}.$$

scalar DM heavily constrained by DD (mediated by Z-exchange).

Majorana neutrino mass

$$\mathcal{M}_{\nu}^{\alpha\beta} = \frac{\sin 2\theta \, m_{\psi}}{32 \, \pi^2} \left(y_{\Phi}^{\alpha} \, y_{\Phi'}^{\beta} + y_{\Phi'}^{\alpha} y_{\Phi}^{\beta} \right) \left[\frac{m_{\eta_0}^2}{m_{\eta_0}^2 - m_{\psi}^2} \log \frac{m_{\eta_0}^2}{m_{\psi}^2} - (\eta_0 \leftrightarrow \eta_0') \right]$$

lepton number L violated by combination of \mathbf{y}_{Φ} , \mathbf{y}'_{Φ} , $\lambda_{H\Phi\Phi'}(\sin 2\theta)$, m_{ψ}

 m_{ν} is rank 2 \Rightarrow one massless neutrino

Yukawa vectors $\mathbf{y}_{\Phi}^{(\prime)}$ determined by low-energy data up to one parameter ζ which determines relative size of Yukawa vectors

Majorana neutrino mass

$$\mathcal{M}_{\nu}^{\alpha\beta} = \frac{\sin 2\theta \, m_{\psi}}{32 \, \pi^2} \left(y_{\Phi}^{\alpha} \, y_{\Phi'}^{\beta} + y_{\Phi'}^{\alpha} y_{\Phi}^{\beta} \right) \left[\frac{m_{\eta_0}^2}{m_{\eta_0}^2 - m_{\psi}^2} \log \frac{m_{\eta_0}^2}{m_{\psi}^2} - (\eta_0 \leftrightarrow \eta_0') \right]$$

lepton number L violated by combination of \mathbf{y}_{Φ} , \mathbf{y}'_{Φ} , $\lambda_{H\Phi\Phi'}(\sin 2\theta)$, m_{ψ}

 m_{ν} is rank 2 \Rightarrow one massless neutrino

Yukawa vectors $\mathbf{y}_{\Phi}^{(\prime)}$ determined by low-energy data up to one parameter ζ which determines relative size of Yukawa vectors

Lepton flavour violation: $\mu \rightarrow e$ **transition**

$$\mathrm{BR}(\mu \to \mathrm{e}\,\gamma) = \frac{3\,\alpha_{\mathrm{em}}}{64\pi\,G_F^2}\, \left| \frac{y_\Phi^{\mathrm{e}*}\,y_\Phi^\mu}{m_{\eta^\pm}^2}\,f\left(\frac{m_\psi^2}{m_{\eta^\pm}^2}\right) \,+\, \frac{y_{\Phi'}^{\mathrm{e}*}\,y_{\Phi'}^\mu}{m_{\eta'^\pm}^2}\,f\left(\frac{m_\psi^2}{m_{\eta'^\pm}^2}\right) \right|^2$$

 $\mathsf{CR}(\mathsf{AI}) \simeq [0.0077, 0.011] imes \mathsf{BR}(\mu o e \gamma)$ dipole dominance

only free parameters: masses m_{ψ} , $m_{n^{\pm}}$, and ζ

$$\begin{split} \mathrm{NO}: \mathbf{y}_{\Phi'} &= \sqrt{\frac{32\pi^2}{\sin 2\theta m_{\psi} F}} \frac{\zeta}{\sqrt{2}} \left(\sqrt{m_{sol}} u_2^* \pm i \sqrt{m_{atm}} u_3^* \right) \\ \mathbf{y}_{\Phi'} &= \sqrt{\frac{32\pi^2}{\sin 2\theta m_{\psi} F}} \frac{1}{\zeta \sqrt{2}} \left(\sqrt{m_{sol}} u_2^* \mp i \sqrt{m_{atm}} u_3^* \right) \end{split}$$

with u_i being the columns of the PMNS matrix

$$\begin{cases} 10^{-19} \\ 10^{-24} \\ 10^{-24} \end{cases} \stackrel{\text{Using } f \left(m_{\eta^{\pm}}^2 / m_{\psi}^2 \right) \stackrel{m_{\eta^{\pm}} \to m_{\psi}}{\longrightarrow} \frac{1}{12} \\ 0.0003 \frac{100 \text{ GeV}}{m_{\eta'^{\pm}}} \lesssim |\zeta| \lesssim 4000 \frac{m_{\eta^{\pm}}}{100 \text{ GeV}}$$

$$\tau \to \ell \gamma$$
 correlated with $\mu \to e \gamma$

DM s-wave annihilations into leptons and LFV

$$\begin{array}{c|c} & \stackrel{\ell^{\mp}/\nu}{\longrightarrow} & \stackrel{\ell^{\pm}/\nu}{\longrightarrow} & \stackrel{ch.lep.}{\longrightarrow} \langle \nu \sigma_{\ell\ell} \rangle = \frac{1}{32\pi m_{\psi}^2} \left| y_{\Phi}^{\alpha} y_{\Phi}^{\beta*} \frac{m_{\psi}^2}{m_{\eta\pm}^2 + m_{\psi}^2} - y_{\Phi'}^{\alpha} y_{\Phi'}^{\beta*} \frac{m_{\psi}^2}{m_{\eta'\pm}^2 + m_{\psi}^2} \right|^2 \\ \tilde{\psi} & \stackrel{\ell^{\pm}/\nu}{\longrightarrow} & \stackrel{\ell^{\pm$$

only depends on masses and ζ and thus strongly constrained by LFV

a conservative estimate

$$\frac{\sum_{\alpha,\beta} \left\langle v \sigma(\psi \bar{\psi} \to \ell_{\alpha}^{-} \ell_{\beta}^{+}, \nu_{\alpha} \nu_{\beta}) \right\rangle}{\left\langle v \sigma \right\rangle_{\rm th}} \lesssim 2 \times 10^{-4} \left(\frac{2.2 \times 10^{-26} {\rm cm}^{3}/{\rm s}}{\left\langle v \sigma \right\rangle_{\rm th}} \right) \left(\frac{m}{100 \, {\rm GeV}} \right)^{2}$$

for $m_{\eta_0'} \simeq m_{\eta^\pm} \simeq m_\psi \equiv m$. larger scalar masses lead to a further suppression. this is confirmed by numerical scan with micrOMEGAs.

caveat: MeV DM $m_\psi\simeq m_{\eta_0'}\ll m_{\eta\pm}$ Boehm,Farzan,Hambye,Palomares-Ruiz,Pascoli [hep-ph/0612228]

DM s-wave annihilations into leptons and LFV

$$\begin{array}{c|c} \psi & \stackrel{\ell^{\mp}/\nu}{\longrightarrow} \begin{array}{c} \stackrel{\ell^{\pm}/\nu}{\longrightarrow} & \stackrel{ch.lep.}{\longrightarrow} \langle \nu \sigma_{\ell\ell} \rangle = \frac{1}{32\pi m_{\psi}^2} \left| y_{\Phi}^{\alpha} y_{\Phi}^{\beta*} \frac{m_{\psi}^2}{m_{\eta\pm}^2 + m_{\psi}^2} - y_{\Phi'}^{\alpha} y_{\Phi'}^{\beta*} \frac{m_{\psi}^2}{m_{\eta'\pm}^2 + m_{\psi}^2} \right|^2 \\ \bar{\psi} & \stackrel{\ell^{\pm}/\nu}{\longrightarrow} \end{array}$$

only depends on masses and ζ and thus strongly constrained by LFV

a conservative estimate

$$\frac{\sum_{\alpha,\beta} \left\langle v \sigma (\psi \bar{\psi} \to \ell_\alpha^- \ell_\beta^+, \nu_\alpha \nu_\beta) \right\rangle}{\left\langle v \sigma \right\rangle_{\rm th}} \lesssim 2 \times 10^{-4} \left(\frac{2.2 \times 10^{-26} {\rm cm}^3/{\rm s}}{\left\langle v \sigma \right\rangle_{\rm th}} \right) \left(\frac{m}{100 \, {\rm GeV}} \right)^2$$

for $m_{\eta_0'} \simeq m_{\eta^\pm} \simeq m_\psi \equiv m$. larger scalar masses lead to a further suppression. this is confirmed by numerical scan with micrOMEGAs.

caveat: MeV DM $m_\psi \simeq m_{\eta_0'} \ll m_{\eta\pm}$ Boehm,Farzan,Hambye,Palomares-Ruiz,Pascoli [hep-ph/0612228]

annihilations into leptons too small: need coannihilation with scalars $\eta^{(\prime)}$

Complementarity of LFV and DM direct detection

Conclusions

DM may not couple directly to quarks

DM - nucleus scattering only at 1-loop order (or higher)

discussion of simplifed fermionic DM model

magnetic and electric dipole moment dominate Higgs penguins are important for Majorana DM

generalised scotogenic model with Dirac fermion

fermionic DM requires coannihilation interplay between LFV and direct detection

Review of radiative neutrino mass models

Different classifications

Survey of models in literature

Details for selected examples

Thank you!

Nucleon level (non-relativistic): leptons

Differential event rates

LikeDM_{1708.04630} to calculate event rates and obtain limits

Correlation between different LFV rates

$$\begin{split} \mathrm{NO}: & \frac{\mathsf{BR}(\tau \to e\, \gamma)}{\mathsf{BR}(\mu \to e\, \gamma)} \approx 0.2 \quad \text{and} \quad \frac{\mathsf{BR}(\tau \to \mu\, \gamma)}{\mathsf{BR}(\mu \to e\, \gamma)} \approx 5 \\ & \mathrm{IO}: & \frac{\mathsf{BR}(\tau \to e\, \gamma)}{\mathsf{BR}(\mu \to e\, \gamma)} \approx \frac{\mathsf{BR}(\tau \to \mu\, \gamma)}{\mathsf{BR}(\mu \to e\, \gamma)} \approx 0.2 \; , \end{split}$$

Papers on radiative neutrino mass generation

