# Entregable Representación Gráfica

# Alejandro Zubiri

# January 7, 2025

# Contents

| 1 | Dominio                        | 2                |
|---|--------------------------------|------------------|
| 2 | Asíntotas 2.1 Verticales       | 2<br>2<br>2<br>2 |
| 3 | Monotonía y extremos relativos | 3                |
| 4 | Curvatura                      | 3                |
| 5 | Boceto y representación        | 3                |
| 6 | Imagen                         | 3                |
| 7 | Corte con los ejes             | 4                |

Queremos representar la siguiente función:

$$f(x) = \frac{1}{x} + \ln|x| \tag{1}$$

#### 1 Dominio

El dominio de la función es:

$$Dom f = \mathbb{R} - \{0\} \tag{2}$$

#### 2 Asíntotas

#### 2.1 Verticales

El único punto conflictivo es en x = 0:

$$\lim_{x \to 0} \frac{1}{x} + \ln|x| = \begin{cases} \lim_{x \to 0^{-}} \frac{1}{x} + \ln|x| = -\infty \\ \lim_{x \to 0^{+}} \frac{1}{x} + \ln|x| = \infty \end{cases}$$
 (3)

Por tanto, hay una asíntota vertical en x = 0.

#### 2.2 Horizontales

$$\lim_{x \to \infty} \frac{1}{x} + \ln|x| = \infty$$

$$\lim_{x \to -\infty} \frac{1}{x} + \ln|x| = \lim_{x \to \infty} -\frac{1}{x} + \ln|x| = \infty$$
(4)

#### 2.3 Oblicuas

La pendiente de la recta oblicua en  $+\infty$  es:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{1}{x^2} = \frac{\ln|x|}{x} = \tag{5}$$

La primera parte tiende a 0, y al tener una indeterminación de tipo  $\frac{\infty}{\infty}$ , aplicamos L'Hôpital:

$$=\lim_{x\to\infty}\frac{1}{x}=0\tag{6}$$

Por tanto, no hay asíntota oblicua en  $+\infty$ . Si miramos en  $-\infty$ :

$$m = \lim_{x \to -\infty} \frac{1}{x^2} + \frac{\ln|x|}{x} = \lim_{x \to \infty} \frac{1}{x^2} - \frac{\ln|x|}{x} = \lim_{x \to \infty} -\frac{1}{x} = 0$$
 (7)

De nuevo, podemos aplicar L'Hôpital para obtener un resultado similar, donde vemos que tampoco hay asíntota oblicua en  $-\infty$ .

### 3 Monotonía y extremos relativos

La derivada de la función es:

$$f'(x) = \frac{\mathrm{d}f}{\mathrm{d}x} = \frac{x-1}{x^2} \tag{8}$$

Podemos igualar a 0 para encontrar los extremos relativos:

$$f'(x) = 0 \implies x - 1 = 0 \implies x = 1 \tag{9}$$

Si evaluamos la derivada en puntos cercanos al extremo, vemos que por la izquierda es negativa, y que por la derecha es positiva, lo que indica que x=1 es un mínimo relativo.

Además, la función es decreciente  $\forall x \in (-\infty, 1)$  y creciente  $\forall x \in (1, \infty)$ .

#### 4 Curvatura

La segunda derivada de la función es:

$$f''(x) = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} = \frac{2 - x}{x^3} \tag{10}$$

Para obtener los puntos donde la curvatura cambia, igualamos la segunda derivada a 0, obteniendo:

$$f''(x) = 0 \implies 2 - x = 0 \implies x = 2 \tag{11}$$

De nuevo, evaluando a la izquierda la segunda derivada es positiva, y a la derecha es negativa, lo que indica que la función es cóncava hacia abajo  $\forall x \in (-\infty, 2)$  y cóncava hacia arriba  $\forall x \in (2, +\infty)$ .

### 5 Boceto y representación

Evaluando en algunos puntos podemos realizar el siguiente boceto de la función:

- x f(x)
- 1 1
- -1 -1
- $-2 \quad 0.19$
- $-3 \quad 0.76$

### 6 Imagen

Una vez hemos analizado la función, podemos afirmar que la imagen de la función es:

$$Im f = \mathbb{R} \tag{12}$$



# 7 Corte con los ejes

Como f(x) no es continua en x=0, la función no corta con el eje Y. Si buscamos el corte con el eje X, gracias a la representación, sabemos que está a la izquierda de x=0. Queremos resolver la siguiente ecuación:

$$\frac{1}{x} + \ln|x| = 0\tag{13}$$

Como no es una ecuación lineal, podemos utilizar técnicas de aproximación para encontrar la siguiente solución:

$$f(\xi) = 0 \implies \xi \approx -1.76322 \tag{14}$$

Por lo que la función corta con los ejes en  $x \approx -1.76322$ .