KNN solver with hardware acceleration

IOB-KNN User Guide, V0.1, Build 5e7fb2f

January 2, 2021

Contents

•	intro	oduction	5
2	Sym	bol	5
3	Feat	ures	5
4	Ben	efits	6
5	Deli	verables	6
6	Bloc	k Diagram and Description	7
7	Syn	thesis Parameters	8
8	Inte	face Signals	8
9	Reg	isters	9
10	FPG	A Results	10
Li	ist d	of Tables	
	1	Block descriptions	
	2	General Interface Signals	8
	3	CPU Native Slave Interface Signals	8
	4	CPU AXI4 Lite Slave Interface Signals	9
	5	Software accessible registers	9
	6	Implementation Resources for Xilinx Kintex Ultrascale Devices	10
Li	ist d	of Figures	
	1	IP Core Symbol	5

KNN solver with hardware acceleration

IOB-KNN USER GUIDE, V0.1, BUILD 5E7FB2F

4

1 Introduction

The IObundle KNN core is an hardware KNN algorithm solver that attributes the lables to a maximum of 10 lables. It is written in Verilog and includes a C software driver. The IP is currently supported for use only in FPGAs.

2 Symbol

Figure 1: IP Core Symbol

3 Features

- Verilog KNN solver accelerator (16 bit operands);
- · C software driver;
- · Reset, enable and time read functions;
- IOb-SoC native CPU interface.

4 Benefits

- · Compact hardware implementation;
- · Can fit many instances in low cost FPGAs;
- Low power consumption;
- · Quick resolution of KNN algorithm;
- · Parallel design.

5 Deliverables

- · Verilog source code;
- · User documentation for easy system integration;
- Example integration in IOb-SoC;
- FPGA synthesis and implementation scripts.

6 Block Diagram and Description

A high-level block diagram of the IOB-KNN core is presented in Figure 6 and a brief explanation of each block is given in Table 1.

Figure 2: High-level block diagram

Block Description	
Register File	Configuration, control and status registers accessible by the sofware
KNN	

Table 1: Block descriptions.

7 Synthesis Parameters

The KNN module is independent of the number of point, labels (maximum of 10) and neighbors (max of 10) and therefore the synthesis of the module is constant.

8 Interface Signals

The interface signals of the I²S/TDM transceiver core are described in the following tables.

Name	Direction	Width	Description	
clk	input	1	System clock input	
rst	input	1	System reset asynchronous and active high	

Table 2: General Interface Signals

Name Direction Width		Width	Description		
valid	input	1	Native CPU interface valid signal		
address	input	ADDR_W	Native CPU interface address signal		
wdata	input	WDATA_W	Native CPU interface data write signal		
wstrb	input	DATA_W/8	Native CPU interface write strobe signal		
rdata	output	DATA_W	Native CPU interface read data signal		
ready	output	1	Native CPU interface ready signal		

Table 3: CPU Native Slave Interface Signals

Name	Direction	Width	Description	
s_axil_awaddr	input	ADDR_W	Address write channel address	
s_axil_awcache	input	4	Address write channel memory type. Transactions set with	
			Normal Non-cacheable Modifiable and Bufferable (0011).	
s_axil_awprot	input	3	Address write channel protection type. Transactions set with	
			Normal Secure and Data attributes (000).	
s_axil_awvalid	input	1	Address write channel valid	
s_axil_awready	output	1	Address write channel ready	
s_axil_wdata	input	DATA_W	Write channel data	
s_axil_wstrb	input	DATA_W/8	Write channel write strobe	
s_axil_wvalid	input	1	Write channel valid	
s_axil_wready	output	1	Write channel ready	
s_axil_bresp	output	2	Write response channel response	
s_axil_bvalid	output	1	Write response channel valid	
s_axil_bready	input	1	Write response channel ready	
s_axil_araddr	input	ADDR_W	Address read channel address	
s_axil_arcache	input	4	Address read channel memory type. Transactions set with	
			Normal Non-cacheable Modifiable and Bufferable (0011).	
s_axil_arprot	input	3	Address read channel protection type. Transactions set with	
			Normal Secure and Data attributes (000).	
s_axil_arvalid	input	1	Address read channel valid	
s_axil_arready	output	1	Address read channel ready	
s_axil_rdata	output	DATA_W	Read channel data	
s_axil_rresp	output	2	Read channel response	
s_axil_rvalid	output	1	Read channel valid	
s_axil_rready	input	1	Read channel ready	

Table 4: CPU AXI4 Lite Slave Interface Signals

9 Registers

The software accessible registers of the KNN core are described in Table 5. The table gives information on the name, read/write capability, word aligned addresses, used word bits and a textual description.

Name	R/W	Addr	Bits	Initial	Description
				Value	
NK	W	0x00	7:0	0	number of neighbors
XX	W	0x04	WDATA_W-1:0	0	x coordenate for point being studied
YY	W	0x08	WDATA_W-1:0	0	y coordenate for point being studied
DATA_X	W	0x0c	WDATA_W-1:0	0	x coordenate for data point
DATA_Y	W	0x10	WDATA_W-1:0	0	y coordenate for data point
DATA_LABEL	W	0x14	7:0	0	data label
CONTROL	W	0x18	3:0	0	KNN reset and control (LSB reset the others con-
					trol)
XLABEL	R	0x1c	31:0	0	label of the studied point

Table 5: Software accessible registers.

10 FPGA Results

The following are FPGA implementation results for two FPGA device families.

Resource	Used
LUTs	1212
Registers	490 Registers
490	
DSPs	2
BRAM	0

Table 6: Implementation Resources for Xilinx Kintex Ultrascale Devices