Register Number					

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test – I Question Paper

Degree & Branch	BE & Computer Science and Engineering				Semester	VII	
Subject Code & Name	UCS1701- Dist	ributed Sy	Regulation:	2018			
Academic Year	2022-2023 ODD	Batch	2019-2023	Date	15-09-2022	FN / AN	
Time: 08:15 – 09:45 AM (90 Minutes)	Answer All Questions				Maximum: 50 Marks		

$Part - A (6 \times 2 = 12 Marks)$

KL2	1. Outline the two important key issues of distributed systems.	CO1
KL1	2. Define concurrent events.	CO1
KL2	3. Outline the properties of "happened- before relationship".	CO1
KL3	4. Apply the logic of vector clock and comprehend the timestamp (3,4,2) at the system S2.	CO2
KL1	5. Define Cut.	CO1
KL3	6. Identify the reason for allowing the transit messages while recording global states.	CO2

$Part - B (3 \times 6 = 18 Marks)$

	Turt D (5×0 – 10 Warks)	
KL2	7. Explain clock skew and clock drift with suitable examples and graphs.	CO1
KL2	8. Explain the types of global states and illustrate it using a time space diagram by marking them with appropriate cuts.	CO2
KL3	9. Apply Lamport's logical clock and vector clock algorithms for the given time-space diagram. Identify any set of events which portray the limitation of Lamport's logical clock, that could be solved by vector clocks. S1 82 82 82 82 83 84 85 83 84 85 85 83 84 85 85 85 85 85 85 85 85 85	CO2

