Package 'CommonSplines'

May 9, 2018

Title Regression Spline and Smoothing Spline

Version 1.0.0
Authors Xingchen LIU <e0225109@u.nus.edu>, Yuchen SHI <yuchenshinus@gmail.com>, Xiaozhou Yang <yang_xiaozhou@icloud.com></yang_xiaozhou@icloud.com></yuchenshinus@gmail.com></e0225109@u.nus.edu>
Description This is an R package that covers commonly seem regression spline and smoothing spline. For regression spline, commonly seen basis functions are provided such as truncated power basis, natural spline basis and B-spline basis. For smoothing spline, penalties on second order derivative are provided, i.e., cubic smoothing spline.
Depends R (>= $3.3.2$)
Date 2018-05-11
License Apache License 2.0
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
basis_function bsplineBasis bsplineFitting CubicPowerBasisSpline eval_basis_functions natural_cubic_splines natural_cubic_splines.predict natural_cubic_splines.train
Index

2 bsplineBasis

basis_function	b	basis_function	1 3	
----------------	---	----------------	-----	--

Description

Evalute x based on truncated power basis functions for natural cubic splines

Usage

```
basis_function(x, i, knots, nknots)
```

Arguments

x A single predictor variable valuei Location index for x vector.knots Knot location vector.

nknots Number of knots useded in training.

Value

Basis function evaluation at x

k	osplineBasis	Generating B-spline basis	

Description

This function generates B-spline basis. The B-splines are defined following the recursive formulas due to de Boor. Only univariate input can be used.

Usage

```
bsplineBasis(x, y, order, innerknots)
```

Arguments

x The input vector of training dataset.
 y The output vector of training dataset.
 order The order of B-spline functions. The default is order=4 for cubic B-splines.

innerknots The internal knots that define the spline. innerknots should not contain knots

on the boundary.

bsplineFitting 3

Value

A list with the following components:

beta The coefficients of nonparametric regression.

basis The B-spline basis matrix of dimension c(length(x), df). df = length(innerknots)

+ order.

knots The knots used to construct the B-splines, including innerknots, boundary knots

and phantom knots

order The order of basis functions. order=degree+1

Examples

```
x<-seq(0, 1, 0.001)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
innerknots <- seq(0.1, 0.9, 0.1)
order<-4

basis<-bsplineBasis(x,y,order,innerknots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(innerknots)+order)){
    lines(x,basis$basismatrix[,i])
}</pre>
```

bsplineFitting

Regression using B-spline basis

Description

This function provides nonparametric regressions using B-splines. The B-splines are generated by the function bsplinBasis. The return value of bsplinBasis is required as an argument of bsplineFitting

Usage

```
bsplineFitting(x_test, basis)
```

Arguments

x_test The input values at which evaluations are required.

basis The return value of function bsplinBasis.

Value

The evaluated output at x_test.

Examples

```
x<-seq(0, 1, 0.001)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
innerknots <- seq(0.1, 0.9, 0.01)
order<-4
basis<-bsplineBasis(x,y,order,innerknots)

x_test<-seq(0, 1, 0.01)
fit<-bsplineFitting(x_test,basis)
plot(x_test,fit)
lines(x_test,x_test^3 * 3 - x_test^2 * 2 + x_test + exp(1),col="red")</pre>
```

CubicPowerBasisSpline Regression using cubic spline

Description

This function provides regressions using cubic splines. The cubic splines are defined as $h1 = 1,h2 = x,h3 = x^2,h4 = x^3,h5 = (x-k1)^3+,h6 = (x-k2)^3+,...$, where k1, k2 and kn are n knots, '+' denotes the positive part.

Usage

```
CubicPowerBasisSpline(x, y, x_test, innerknots)
```

Arguments

x The input vector of training dataset.
 y The output vector of training dataset.
 x_test The input values at which evaluations are required.
 innerknots The internal knots that define the spline.

Details

Only univariate input can be used.

Value

A list with the following components:

beta The coefficients of nonparametric regression.

basis The cubic spline basis matrix of dimension c(length(x), NumKnots+4)

f The evaluated output at x_test.

eval_basis_functions 5

Examples

```
n <- 100
t <- seq(0,2*pi,length.out = 100)
a <- 3
b <- 2
c.unif <- runif(n)
amp <- 2
set.seed(1)
y1 <- a*sin(b*t)+c.unif*amp # uniform error
innerknots <- 2*pi*c(1/4,2/4,3/4)
solution <- CubicPowerBasisSpline(t,y1,t,innerknots)
y.hat <- solution$f
plot(t, y1, t="1")
lines(t, y.hat, col=4)</pre>
```

Description

Evaluate basis functions as each x and return the evaluated basis matrix N

Usage

```
eval_basis_functions(x, knots, nknots)
```

Arguments

x Predictor variable vector

knots Knots location in terms of quantiles of x_train, optional, default will be evenly

spaced quantiles based on number of knots

nknots Number of knots useded in training.

Value

Basis matrix evaluated at each x value

```
natural_cubic_splines Regression using natural cubic splines
```

Description

This function provides regressions using natural cubic splines with truncated power basis functions. Only univariate input can be used.

Usage

```
natural_cubic_splines(x_train, y_train, x_test, df = NULL, knots = NULL)
```

Arguments

x_train	The input vector of training dataset.
y_train	The output vector of training dataset.
x_test	The input values at which evaluations are required.
df	The degree of freedom specified by user, number of knots will be equal to df.
knots	Knots location in terms of quantiles of x_train, optional, default will be evenly spaced quantiles based on number of knots

Value

y_pred A vector of dimension length(x)The prediction vector evaluated at x_test values

Examples

```
x_train <-seq(0, 1, 0.001)
y_train <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
df <- 10
x_test <- seq(0, 1, 0.01)
y_pred <- natural_cubic_splines(x, y, x_test, df)
plot(x_test,y_pred)
lines(x_test,x_test^3 * 3 - x_test^2 * 2 + x_test + exp(1),col="red")</pre>
```

natural_cubic_splines.predict

Prediction based on trained regression model

Description

Prediction based on trained regression model

Usage

```
natural_cubic_splines.predict(x_test, betas, knots, nknots)
```

Number of knots used in training.

Arguments

nknots

Value

x_test	The input values at which evaluations are required.
betas	Least squure fit parameters obtained from training.
knots	Knots location in terms of quantiles of x_train, optional, default will be evenly spaced quantiles based on number of knots

y_pred A vector of dimension length(x)The prediction vector evaluated at x_test values

```
natural_cubic_splines.train
```

Generate an evaluated basis matrix for natural cubic splines

Description

Generate an evaluated basis matrix for natural cubic splines

Usage

```
natural_cubic_splines.train(x_train, y_train, df = NULL, knots = NULL,
intercept = FALSE)
```

Arguments

x_train The input vector of training dataset.y_train The output vector of training dataset.

df The degree of freedom specified by user, number of knots will be equal to df.

knots Knots location in terms of quantiles of x_train, optional, default will be evenly

spaced quantiles based on number of knots

intercept Default false, do not change.

Value

A list of following components:

knots N betas

Examples

```
x_train <-seq(0, 1, 0.001)
y_train <- x^3 * 3 - x^2 * 2 + x + exp(1) + rnorm(length(x), 0, 0.1)
plot(x,y)
df <- 10
x_test <- seq(0, 1, 0.01)
train_result <- natural_cubic_splines.train(x, y, df)
print(train_result$\text{$betas}$)
print(train_result$\text{$N[1:5,1:5]})</pre>
```

Index

```
basis_function, 2
bsplineBasis, 2
bsplineFitting, 3

CubicPowerBasisSpline, 4
eval_basis_functions, 5

natural_cubic_splines, 5
natural_cubic_splines.predict, 6
natural_cubic_splines.train, 7
```