CET 141: Day 5

Dr. Noori KIM

AC vs. DC

https://www.youtube.com/watch?v=BcIDRet7
 87k (1min~)

What we did (and should have done) so far...

- Ohm's law
- KCL/KVL
- Nodal analysis
- Ohm's law:

V1=R1*i1, V2=R2*i2

• KVL: Vs=V1+V2

KCL: i1=i2 (=i)

Nodal analysis:
 (\s\z\s\)/R1=(\s\z\0)

(Vs-Vx)/R1=(Vx-0)/R2

Note that v1=Vs-Vxi=Vs/(R1+R2)=i1=V1/R1=i2=V2/R2

Source transformation

R_{th}

- Only independent sources: V short, I open
- With dependent sources: take a ratio (V_{th}/I_N)

Op amp analysis

We will learn Caps and Inds components

a flow of electric charge

$$\Phi_B = N \quad B \quad A$$

$$\Phi_B = N \frac{\mu_0 NI}{\ell} A$$

$$\Phi_B = \frac{\mu_0 A N^2}{\ell} I$$

Inductance and Capacitance

Dr. Noori Kim

Chap. 6, Capacitors and Inductors

- Introduction
- Capacitors
- Series and Parallel Capacitors
- Inductors
- Series and Parallel Inductors

Introduction

- Resistor: a passive element which dissipates energy only
- Two other important passive linear circuit elements:
 - 1) Capacitor
 - 2) Inductor
- Ideal capacitors and inductors can store energy only and they can neither generate nor dissipate energy. They are not active.

Michael Faraday (1971-1867)

Capacitors

Capacitors

• A capacitor consists of two conducting plates separated by an insulator (or dielectric).

$$C = \frac{\varepsilon A}{d}$$

- Three factors affecting the value of capacitance:
 - Area: the larger the area, the greater the capacitance.
 - Spacing between the plates: the smaller the spacing, the greater the capacitance.
 - 3. Material permittivity: the higher the permittivity, the greater the capacitance.

(a) Polyester capacitor, (b) Ceramic capacitor, (c) Electrolytic capacitor

Variable capacitors

Basic of Caps

Charge in Capacitors

 The relation between the charge in plates and the voltage across a capacitor:

Voltage Limit on a Capacitor

- Since Q=Cv, the plate charge increases as the voltage increases. The electric field intensity between two plates increases.
- If the voltage across the capacitor is so large that the field intensity is large enough to break down the insulation of the dielectric, the capacitor is out of work.
- Hence, every practical capacitor has a maximum limit on its operating voltage.

I-V Relation of Capacitor

$$Q = CV_c, i = \frac{dQ}{dt} = C\frac{dV_C}{dt}$$

Physical Meaning

$$i = \frac{dQ}{dt} = C \frac{dV_C}{dt}$$

- V_c: a constant voltage across a capacitor
- When Vc =0
 - The same potential between capacitor's two inner plates create no current through the capacitor,
 - the capacitor in this case: an open circuit.
- If voltage is abruptly changed
 - i: an infinite value
 - Impossible to have an abrupt change in its voltage except an infinite current is applied (practically impossible)

- 1. A capacitor is an open circuit (i=0) at DC (direct current, f=0, t=∞)
- 2. The voltage on a capacitor cannot change abruptly.

$$V_c(t_{0+}) = V_c(t_{0-})$$

$$i = \frac{dQ}{dt} = C\frac{dV_C}{dt}$$

In other words, if this does not satisfy, current can't exist → as you can't differentiate V_c

$$i = C \frac{dV_C}{dt} \qquad \longrightarrow \qquad V_C(t) = \frac{1}{C} \int_{t_o}^t i dt + V_C(t_o)$$

$$V_C(t) - V_C(t_o) = \frac{1}{C} \int_{t_o}^t i dt$$

$$\frac{Q(t)}{C} - \frac{Q(t_0)}{C} = \frac{1}{C} \int_{t_0}^{t} i dt$$

The charge on a capacitor is an integration of current through the capacitor (which makes sense)

Energy Storing in Capacitor

$$p = vi = CV_C \frac{dV_C}{dt} \qquad i = C\frac{dV_C}{dt}$$

$$w = \int_{-\infty}^{t} p dt = C \int_{-\infty}^{t} V_{C} \frac{dV_{C}}{dt} dt = C \int_{V_{C}(-\infty)}^{V_{C}(t)} V_{C} dV_{C} = \frac{1}{2} C V_{C}^{2} \Big|_{V_{C}(-\infty)}^{V_{C}(t)}$$

$$w(t) = \frac{1}{2}CV_C^2(t) \quad (V_C(-\infty) = 0)$$

$$v_C$$

$$v_C$$

$$v_C$$

Eventually two plates potential will become same

Model of Practical Capacitor

Series and Parallel Capacitors

$$\begin{split} i &= i_{1} + i_{2} + i_{3} + \dots + i_{N} \\ i &= C_{1} \frac{dv}{dt} + C_{2} \frac{dv}{dt} + C_{3} \frac{dv}{dt} + \dots + C_{N} \frac{dv}{dt} \\ &= \left(\sum_{k=1}^{N} C_{K}\right) \frac{dv}{dt} = C_{eq} \frac{dv}{dt} \end{split}$$

$$C_{eq} = C_1 + C_2 + C_3 + \dots + C_N$$

 The equivalent capacitance of N parallelconnected capacitors is the sum of the individual capacitance.

Series Capacitors

$$v \stackrel{i}{=} C_{eq} \stackrel{+}{=} v$$
(b)

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_N}$$

$$v(t) = v_1(t) + v_2(t) + \dots + v_N(t)$$

$$\frac{1}{C_{eq}} \int_{-\infty}^{t} i d\tau = \left(\frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} + \dots + \frac{1}{C_{N}}\right) \int_{-\infty}^{t} i d\tau$$

$$\frac{q(t)}{C_{eq}} = \frac{q(t)}{C_{1}} + \frac{q(t)}{C_{2}} + \dots + \frac{q(t)}{C_{N}}$$

(b)

 The equivalent capacitance of seriesconnected capacitors is the reciprocal of the sum of the reciprocals of the individual capacitances.

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$

$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$$

Summary-Capacitor

- These results enable us to look the capacitor in this way: 1/C has the equivalent effect as the eqv. resistance calculation
- The equivalent capacitor of capacitors connected in parallel or series can be obtained via this point of view, so is the Y-△ connection and its transformation

Inverting Integrator

Op-Amp Differentiator

Vo in terms of Vin?

Joseph Henry (1779-1878)

Inductors

An inductor is made of a coil of conducting wire

$$L = \frac{N^2 \mu A}{l}$$

$$\mu = \mu_r \mu_0$$

$$\mu_0 = 4\pi \times 10^{-7} (H/m)$$

N:number of turns.

l:length.

A:cross – sectional area.

 μ : permeability of the core

- (a) air-core
- (b) iron-core
- (c) variable iron-core

Flux in Inductors

• The relation between the flux in inductor and the current through the inductor:

$$\phi=Li$$
 $_{
m IH=1\,Weber/A}$
 $_{
m Nonlinear}$
 $_{
m Nonlinear}$

Energy Storage Forms: Cap vs. Ind

 An inductor is a passive element designed to store energy in the magnetic field while a capacitor stores energy in the electric field.

I-V Relation of Inductors

• An **inductor** consists of a coil of conducting wire. $d\phi$

$$v = \frac{d\phi}{dt} = L\frac{di}{dt}$$

Physical Meaning

$$V = \frac{d\phi}{dt} = L \frac{di_L}{dt}$$

- i_L: a constant current through an inductor
- When i_L=0
 - There is no electron's flow through the inner inductor's spiral coil
 - The inductor in this case nothing but just a wire: a short circuit ->
 V=0
- If current (i_L) is abruptly changed
 - V: and infinite value
 - Impossible to have an abrupt change in it infinite voltage across the inductor is app impossible)

- An inductor is a short circuit (V=0) at DC (direct current, f=0, t=∞)
- 2. The current through an inductor cannot change instantaneously.

$$i_L(t_{0+}) = i_L(t_{0-})$$

$$V = \frac{d\phi}{dt} = L \frac{di_L}{dt}$$

In other words, if this does not satisfy, voltage can't exist → as you can't differentiate i_L

$$V(t) = L \frac{di_L}{dt}$$

$$\downarrow i(t) = \frac{1}{L} \int_{t_o}^t v(t) dt + i(t_o)$$

Energy Stored in an Inductor

$$P = vi = \left(L\frac{di}{dt}\right)i$$

$$w = \int_{-\infty}^{t} pdt = \int_{-\infty}^{t} \left(L\frac{di}{dt}\right)idt$$

$$= L\int_{i(-\infty)}^{i(t)} i \, di = \frac{1}{2}Li^{2}(t) - \frac{1}{2}Li^{2}(-\infty) \quad i(-\infty) = 0,$$

The energy stored in an inductor

$$w(t) = \frac{1}{2}Li^2(t)$$

Model of a Practical Inductor

Inductors in Series

$$L_{eq} = L_1 + L_2 + L_3 + \dots + L_N$$

$$L_{eq}$$

$$L_{eq}$$

$$L_{eq}$$

$$L_{eq}$$

Applying KVL to the loop,

$$v = v_1 + v_2 + v_3 + ... + v_N$$

• Substituting $v_k = L_k \frac{di}{dt}$ results in

$$\begin{aligned} v &= L_1 \frac{di}{dt} + L_2 \frac{di}{dt} + L_3 \frac{di}{dt} + \dots + L_N \frac{di}{dt} \\ &= (L_1 + L_2 + L_3 + \dots + L_N) \frac{di}{dt} \\ &= \left(\sum_{K=1}^{N} L_K\right) \frac{di}{dt} = L_{eq} \frac{di}{dt} \\ L_{eq} &= L_1 + L_2 + L_3 + \dots + L_N \end{aligned}$$

Inductors in Parallel

• Using KCL,
$$i = i_1 + i_2 + i_3 + ... + i_N$$

• But
$$i_k = \frac{1}{L_k} \int_{t_0}^t v dt + i_k(t_0)$$

$$\therefore i = \frac{1}{L_k} \int_{t_0}^t v dt + i_1(t_0) + \frac{1}{L_2} \int_{t_0}^t v dt + i_s(t_0) + \dots + \frac{1}{L_N} \int_{t_0}^t v dt + i_N(t_0)$$

$$= \left(\frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_N}\right) \int_{t_0}^t v dt + i_1(t_0) + i_2(t_0) + \dots + i_N(t_0)$$

$$= \left(\sum_{k=1}^{N} \frac{1}{L_k}\right) \int_{t_0}^{t} v dt + \sum_{k=1}^{N} i_k(t_0) = \frac{1}{L_{eq}} \int_{t_0}^{t} v dt + i(t_0)$$

• The inductor in various connection has the same effect as the resistor. Hence, the Y- Δ transformation of inductors can be similarly derived.

Relation	Resistor (R)	Capacitor (C)	Inductor (L)
v-i:	v = iR	$v = \frac{1}{C} \int_{t_0}^{t} i \ dt + v(t_0)$	$v = L \frac{di}{dt}$
i-v:	i = v/R	$i = C \frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_0}^t \mathbf{V} \ dt + i(t_0)$
p or w :	$p = i^2 R = \frac{v^2}{R}$	$w = \frac{1}{2}Cv^2$	$w = \frac{1}{2}Li^2$
Series:	$R_{\rm eq} = R_1 + R_2$	$C_{\rm eq} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{\rm eq} = L_1 + L_2$
Parallel:	$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{\rm eq}=C_1+C_2$	$L_{\rm eq} = \frac{L_1 L_2}{L_1 + L_2}$
At de:	Same	Open circuit	Short circuit
Circuit variable that cannot			
change abruptly:	Not applicable	v	i