Le théorème de Brouwer par le Lemme de Sperner

Christopher

Février 2016

Structure (ou spoiler)

- 1 Motivations et schéma d'attaque
 - Quel théorème de Brouwer, pourquoi et comment?
 - Simplifications, généralisations et schéma de la preuve
- 2 Chaines, simplexes et opérations
- 3 Subdivision barycentrique
- 4 Simplexes numérotés, Lemme de Sperner
- 5 Lemme KKM
- 6 Références et remerciements

Quel théorème de Brouwer, pourquoi et comment?

Théorème

La boule unité fermée \mathbb{B}^n d'un espace euclidien possède la propriété du point fixe pour les applications continues.

Pourquoi est-ce intéressant?:

- C'est un théorème de point fixe qui a pluieurs applications :
 - Nash en théorie des jeux : existence d'un équilibre de Nash
 - Comportement de certaines équations différentielles
 - Fournit une preuve du théorème de séparation de Jordan en dimension n : Le complémentaire de l'image de la sphère \mathbb{S}^{n-1} par une application injective continue dans \mathbb{R}^n admet deux composantes connexes, l'une bornée, l'autre non.

Quel théorème de Brouwer, pourquoi et comment?

Théorème

La boule unité fermée \mathbb{B}^n d'un espace euclidien possède la propriété du point fixe pour les applications continues.

Pourquoi est-ce intéressant?:

- L'intéret de Brouwer le mène à développer les fondements de la topologie algébrique (approffondit idée de groupe fondamental, imaginé par Poincaré)
- Aujourd'hui : preuve constructive issue de la topologie combinatoire qui utilise les lemmes de Sperner puis des (n+1)-fermés (ou KKM : Knaster-Kuratowski-Mazurkiewicz), équivalent au théorème de Brouwer.

Cas simplifiés du théorème de Brouwer :

■ En dimension 0...

- En dimension 0...
- En dimension 1 ce n'est que le théorème des valeurs intermédiaires

- En dimension 0...
- En dimension 1 ce n'est que le théorème des valeurs intermédiaires
- Si f 1 Lipschitzienne sur un compact convexe : se ramener à une suite de fonctions contractantes et appliquer Picard.

- En dimension 0...
- En dimension 1 ce n'est que le théorème des valeurs intermédiaires
- Si f 1 Lipschitzienne sur un compact convexe : se ramener à une suite de fonctions contractantes et appliquer Picard.
- Si f est holomorphe ($\mathbb{R}^2 = \mathbb{C}$), on applique Rouché.

Généralisations du théorème de Brouwer :

Généralisations du théorème de Brouwer :

 Vrai sur un convexe compact non vide d'un espace euclidien (homéomorphe à la boule avec la jauge)

Généralisations du théorème de Brouwer :

- Vrai sur un convexe compact non vide d'un espace euclidien (homéomorphe à la boule avec la jauge)
- Schauder : vrai sur K convexe compact non vide d'un EVN. On approxime K par l'enveloppe convexe d'un ϵ système de précompacité pour se ramener à un simplexe affine et avoir une suite de points fixes approchés.

FIGURE: La Propriété du point fixe est topologique : elle a la même valeur sur tout couple d'espaces homéomorphes.

Au lieu de \mathbb{B}^n on considère un n-simplexe de l'espace euclidien (polyèdre affinement libre à n+1 sommets).

- Au lieu de \mathbb{B}^n on considère un n-simplexe de l'espace euclidien (polyèdre affinement libre à n+1 sommets).
- Ils sont homéomorphes (et même surement biholomorphes, théorème de représentation conforme en dim 2) en le faisant gonfler.

- Au lieu de \mathbb{B}^n on considère un n-simplexe de l'espace euclidien (polyèdre affinement libre à n+1 sommets).
- Ils sont homéomorphes (et même surement biholomorphes, théorème de représentation conforme en dim 2) en le faisant gonfler.
- Les simplexes sont des objets que l'on peut manipuler d'un point de vue combinatoire pour obtenir le Lemme de Sperner.

- Au lieu de \mathbb{B}^n on considère un n-simplexe de l'espace euclidien (polyèdre affinement libre à n+1 sommets).
- Ils sont homéomorphes (et même surement biholomorphes, théorème de représentation conforme en dim 2) en le faisant gonfler.
- Les simplexes sont des objets que l'on peut manipuler d'un point de vue combinatoire pour obtenir le Lemme de Sperner.
- En rajoutant une structure euclidienne on en déduit le :

Lemme (KKM)

Soit $\Delta = [x_0, ..., x_n]$ un vrai simplexe affine de \mathbb{R}^n et des fermés $F_0, ..., F_n$ de Δ tels que :

$$\forall \{i_0,...,i_k\} \subset [0,n], \quad [x_{i_0},...,x_{i_k}] \subset F_{i_0} \cup ... \cup F_{i_k}.$$

Alors
$$\bigcap_{i=0}^n F_i \neq \emptyset$$
.

FIGURE: Lemme des 3 fermés pour un triangle

Une fois qu'on a KKM, on déduit Brouwer sur les vrais simplexes affines $\Delta = [x_0, ..., x_n]$:

Une fois qu'on a KKM, on déduit Brouwer sur les vrais simplexes affines $\Delta = [x_0, ..., x_n]$:

• On ecrit en coordonnées baricentriques $(\sum \lambda_i = \sum \mu_i = 1)$, $y = \sum \lambda_i x_i$ et $f(y) = \sum \mu_i x_i$

Une fois qu'on a KKM, on déduit Brouwer sur les vrais simplexes affines $\Delta = [x_0, ..., x_n]$:

- On ecrit en coordonnées baricentriques $(\sum \lambda_i = \sum \mu_i = 1)$, $y = \sum \lambda_i x_i$ et $f(y) = \sum \mu_i x_i$
- On pose $F_i = \{y \in \Delta | \lambda_i \ge \mu_i\}$ l'ensemble des y rapprochés de x_i par F.

FIGURE: y est dans F_0 mais pas dans F_2

Les F_i sont fermés, de plus si y est dans la face $[x_{i_0}, ..., x_{i_k}]$ alors

- Les F_i sont fermés, de plus si y est dans la face $[x_{i_0}, ..., x_{i_k}]$ alors
 - lacksquare $\lambda_{i_0}+...+\lambda_{i_k}=1$ or $\mu_{i_0}+...+\mu_{i_k}\leq 1$

- Les F_i sont fermés, de plus si y est dans la face $[x_{i_0}, ..., x_{i_k}]$ alors
 - lacksquare $\lambda_{\emph{i}_0}+...+\lambda_{\emph{i}_k}=1$ or $\mu_{\emph{i}_0}+...+\mu_{\emph{i}_k}\leq 1$
 - lacksquare donc $\mu_{i_j} \leq \lambda_{i_j}$ pour un certain $j \in \{0,...k\}$

- Les F_i sont fermés, de plus si y est dans la face $[x_{i_0}, ..., x_{i_k}]$ alors
 - $\lambda_{i_0} + ... + \lambda_{i_k} = 1 \text{ or } \mu_{i_0} + ... + \mu_{i_k} \leq 1$
 - donc $\mu_{i_i} \leq \lambda_{i_i}$ pour un certain $j \in \{0,...k\}$
 - c'est à dire $y \in F_{i_i}$ et vérifient la condition KKM

- Les F_i sont fermés, de plus si y est dans la face $[x_{i_0}, ..., x_{i_k}]$ alors
 - $\lambda_{i_0} + ... + \lambda_{i_k} = 1 \text{ or } \mu_{i_0} + ... + \mu_{i_k} \leq 1$
 - donc $\mu_{i_i} \leq \lambda_{i_i}$ pour un certain $j \in \{0,...k\}$
 - c'est à dire $y \in F_{i_i}$ et vérifient la condition KKM
- L'intersection des F_i est donc non vide et tous ses points sont fixes par f.

Organigramme de la preuve

Definition

Chaîne sur un ensemble X : $c \in \mathcal{C}(X) = \mathcal{P}_f(\mathcal{P}_f \setminus \{\emptyset\})$

Ses sommets : $S(c) = \bigcup_{p \in c} p$

Definition

Chaîne sur un ensemble X : $c \in C(X) = \mathcal{P}_f(\mathcal{P}_f \setminus \{\emptyset\})$

Ses sommets : $S(c) = \bigcup_{p \in c} p$

$$c_0 = \emptyset$$
, $S(c_0) = \emptyset$

Definition

Chaîne sur un ensemble X : $c \in \mathcal{C}(X) = \mathcal{P}_f(\mathcal{P}_f \setminus \{\emptyset\})$

Ses sommets : $S(c) = \bigcup_{p \in c} p$

- $c_0 = \emptyset$, $S(c_0) = \emptyset$
- $c_1 = \{\{2\}, \{3,5\}, \{2,11,31\}\}, \quad S(c_1) = \{2,3,11,31\}$

Definition

Chaîne sur un ensemble X : $c \in C(X) = \mathcal{P}_f(\mathcal{P}_f \setminus \{\emptyset\})$

Ses sommets : $S(c) = \bigcup_{p \in c} p$

- $c_0 = \emptyset, \quad S(c_0) = \emptyset$
- $c_1 = \{\{2\}, \{3,5\}, \{2,11,31\}\}, \quad S(c_1) = \{2,3,11,31\}$
- Mais $\{\emptyset, \mathbb{N}\}$ et $\{\{k, k+1\} | k \in \mathbb{N}\}$ ne sont pas des chaînes

On note + la différence symétrique entre deux chaînes. C'est une loi de groupe abélien sur $\mathcal{C}(X)$ et $\forall c, c+c=\emptyset$.

Proposition

 $(\mathcal{C}(X), +)$ est un $\mathbb{Z}/2\mathbb{Z}$ espace vectoriel. Base $\mathfrak{S}(X)$ des chaînes à un élément appelées simplexes. $\langle x_0, \cdots, x_n \rangle = \{\{x_0, \cdots, x_n\}\}$ est un n-simplexe de X lorsque les x_i sont distincts, et il vaut 0 sinon.

Exemple :
$$c_1 = \underbrace{\langle 2 \rangle}_{0-\text{simplexe}} + \underbrace{\langle 3,5 \rangle}_{1-\text{simplexe}} + \underbrace{\langle 2,3,11,31 \rangle}_{3-\text{simplexe}}$$

FIGURE: Penser les chaînes combinatoirement

■ Chaîne : choix d'un nombre fini de boites dans le treilli des parties (finies non vides) de X.

- Chaîne : choix d'un nombre fini de boites dans le treilli des parties (finies non vides) de X.
- Les n simplexes sont sur la ligne n + 1 et engendrent le sous-espace vectoriel des n chaînes.

- Chaîne : choix d'un nombre fini de boites dans le treilli des parties (finies non vides) de X.
- Les n simplexes sont sur la ligne n + 1 et engendrent le sous-espace vectoriel des n chaînes.
- L'ensemble des sommets est l'union de tous les ensembles choisis.

FIGURE: Penser les chaînes géométriquement : $c_1 = \langle 2 \rangle + \langle 3, 5 \rangle + \langle 2, 3, 11, 31 \rangle$

■ Chaîne : ensemble fini de figures géométriques de dimension 0,1,2,...

- Chaîne : ensemble fini de figures géométriques de dimension 0,1,2,...
- Les n simplexes sont les figures de dimension n (d'où l'appellation).

- Chaîne : ensemble fini de figures géométriques de dimension 0,1,2,...
- Les n simplexes sont les figures de dimension n (d'où l'appellation).
- Une 2 *cha*î *ne* est une ensemble fini de triangles non dégénérés.

- Chaîne : ensemble fini de figures géométriques de dimension 0,1,2,...
- Les n simplexes sont les figures de dimension n (d'où l'appellation).
- Une 2 *cha*î *ne* est une ensemble fini de triangles non dégénérés.
- Sommets d'une chaine : ensemble des sommets des figures géométriques.

Définition

On construit l'endomorphisme bord ∂ de C(X) en le définissant sur la base des simplexes :

Si
$$\lambda = \langle x_0, \cdots, x_n \rangle$$
, on pose :

$$\partial \lambda = \sum_{i=0}^{n} \langle x_0, \cdots, \widehat{x_i}, \cdots, x_n \rangle$$

Définition

On construit l'endomorphisme bord ∂ de C(X) en le définissant sur la base des simplexes :

Si
$$\lambda = \langle x_0, \cdots, x_n \rangle$$
, on pose :

$$\partial \lambda = \sum_{i=0}^{n} \langle x_0, \cdots, \widehat{x_i}, \cdots, x_n \rangle$$

L'opérateur ∂ s'étend à l'espace des chaines par linéarité : $\partial(\langle 1,2,3\rangle+\langle 2,3,4\rangle)=\langle 1,2\rangle+\langle 1,3\rangle+\langle 2,4\rangle+\langle 3,4\rangle$

Le segment (2,3) est compté deux fois (caractéristique deux!)

Observations:

 Combinatoirement il remplace chaque boite par la somme des ses parents immédiats (simplifications...)

- Combinatoirement il remplace chaque boite par la somme des ses parents immédiats (simplifications...)
- Dans la vision géométrique il remplace :
 - un tétraèdre par la somme de ses faces triangulaires

- Combinatoirement il remplace chaque boite par la somme des ses parents immédiats (simplifications...)
- Dans la vision géométrique il remplace :
 - un tétraèdre par la somme de ses faces triangulaires
 - un triangle par la somme de ses arêtes

- Combinatoirement il remplace chaque boite par la somme des ses parents immédiats (simplifications...)
- Dans la vision géométrique il remplace :
 - un tétraèdre par la somme de ses faces triangulaires
 - un triangle par la somme de ses arêtes
 - une arête par la somme de ses extremités

- Combinatoirement il remplace chaque boite par la somme des ses parents immédiats (simplifications...)
- Dans la vision géométrique il remplace :
 - un tétraèdre par la somme de ses faces triangulaires
 - un triangle par la somme de ses arêtes
 - une arête par la somme de ses extremités
- ∂ envoie le sous-espace des n+1-chaînes dans celui des n-chaînes.

- Combinatoirement il remplace chaque boite par la somme des ses parents immédiats (simplifications...)
- Dans la vision géométrique il remplace :
 - un tétraèdre par la somme de ses faces triangulaires
 - un triangle par la somme de ses arêtes
 - une arête par la somme de ses extremités
- ∂ envoie le sous-espace des n+1-chaînes dans celui des n-chaînes.
- II est de carré nul : $\partial^2 = 0$.

Extension depuis un sommet

Définition

On définit l'opérateur d'extension depuis le sommet $a \in X$, φ_a par :

$$\varphi_a: \langle x_0, \cdots, x_n \rangle \mapsto \langle a, x_0, \cdots, x_n \rangle$$

Extension depuis un sommet

Définition

On définit l'opérateur d'extension depuis le sommet $a \in X$, φ_a par :

$$\varphi_a:\langle x_0,\cdots,x_n\rangle\mapsto\langle a,x_0,\cdots,x_n\rangle$$

- Géométrico-combinatoirement, remplace la n-clique $\{x_1, \dots, x_n\}$ par la n+1-clique $\{a, \dots, x_n\}$.
- $ullet \varphi_a$ remplace le trianle uvw par le tétraèdre auvw.

Applications linéaires induites

Définition

Si $f: X \to Y$ est une application, l'application linéaire induite $\tilde{f}: \mathcal{C}(X) \to \mathcal{C}(Y)$ est définit sur les simplexes par :

$$\tilde{f}:\langle x_0,\cdots,x_n\rangle\mapsto\langle f(x_0),\cdots,f(x_n)\rangle$$

Applications linéaires induites

Définition

Si $f: X \to Y$ est une application, l'application linéaire induite $\tilde{f}: \mathcal{C}(X) \to \mathcal{C}(Y)$ est définit sur les simplexes par :

$$\tilde{f}:\langle x_0,\cdots,x_n\rangle\mapsto\langle f(x_0),\cdots,f(x_n)\rangle$$

- Si f injective sur $S(\lambda)$ alors $\tilde{f}(\lambda)$ est le n-simplexe de sommets $f(S(\lambda))$ sinon 0.
- $\forall c \in \mathcal{C}(X), \quad \partial \tilde{f}(c) = \tilde{f}(\partial c)$ (vrai sur $\mathfrak{S}(X)$, linéarité...)

Définition

Désormais X=E, espace vectoriel normé par $\|.\|$ de dimension n. On définit par récurrence l'endomorphisme σ de $\mathcal{C}(E)$:

Définition

Désormais X = E, espace vectoriel normé par $\|.\|$ de dimension n. On définit par récurrence l'endomorphisme σ de C(E):

• Si $\lambda = \langle x_0 \rangle$ est un 0-simplexe, $\sigma(\lambda) = \lambda$.

Définition

Désormais X = E, espace vectoriel normé par $\|.\|$ de dimension n. On définit par récurrence l'endomorphisme σ de C(E):

- Si $\lambda = \langle x_0 \rangle$ est un 0-simplexe, $\sigma(\lambda) = \lambda$.
- Si $\lambda = \langle x_0, \cdots, x_n \rangle$ est un n-simplexe,

$$\sigma(\lambda) = \left\langle \frac{x_0 + \dots + x_n}{n+1}, \sigma(\partial \lambda) \right\rangle$$

Remarques:

lacksquare $\partial \lambda$ est une (n-1)-chaîne donc définission récursive cohérente

- lacksquare $\partial \lambda$ est une (n-1)-chaîne donc définission récursive cohérente
- lacksquare σ est ainsi définie sur la base $\mathfrak{S}(X)$

- lacktriangle $\partial \lambda$ est une (n-1)-chaîne donc définission récursive cohérente
- lacksquare σ est ainsi définie sur la base $\mathfrak{S}(X)$
- Si λ est un n-simplexe, $\sigma(\lambda)$ est la somme de (n+1)! n-simplexes de la forme $\langle b_{n+1}, \cdots, b_1 \rangle$ où b_k est le baricentre de k points x_i . Cela se voit dans la récurrence :

- lacktriangle $\partial \lambda$ est une (n-1)-chaîne donc définission récursive cohérente
- ullet σ est ainsi définie sur la base $\mathfrak{S}(X)$
- Si λ est un n-simplexe, $\sigma(\lambda)$ est la somme de (n+1)! n-simplexes de la forme $\langle b_{n+1}, \cdots, b_1 \rangle$ où b_k est le baricentre de k points x_i . Cela se voit dans la récurrence :
 - \blacksquare le premier point est le baricentre de tous les x_i

- $\partial \lambda$ est une (n-1)-chaîne donc définission récursive cohérente
- lacksquare σ est ainsi définie sur la base $\mathfrak{S}(X)$
- Si λ est un n-simplexe, $\sigma(\lambda)$ est la somme de (n+1)! n-simplexes de la forme $\langle b_{n+1}, \cdots, b_1 \rangle$ où b_k est le baricentre de k points x_i . Cela se voit dans la récurrence :
 - le premier point est le baricentre de tous les x_i
 - puis viendra un baricentre de poids n (on élimine un des (n+1) sommets pour se projeter au centre de la face opposée)

- lacktriangle $\partial \lambda$ est une (n-1)-chaîne donc définission récursive cohérente
- ullet σ est ainsi définie sur la base $\mathfrak{S}(X)$
- Si λ est un n-simplexe, $\sigma(\lambda)$ est la somme de (n+1)! n-simplexes de la forme $\langle b_{n+1}, \cdots, b_1 \rangle$ où b_k est le baricentre de k points x_i . Cela se voit dans la récurrence :
 - le premier point est le baricentre de tous les x_i
 - puis viendra un baricentre de poids n (on élimine un des (n+1) sommets pour se projeter au centre de la face opposée)
 - et ainsi de suite... jusqu'à arriver au baricentre d'un segment et au choix de l'une des extrêmités

- lacktriangle $\partial \lambda$ est une (n-1)-chaîne donc définission récursive cohérente
- lacksquare σ est ainsi définie sur la base $\mathfrak{S}(X)$
- Si λ est un n-simplexe, $\sigma(\lambda)$ est la somme de (n+1)! n-simplexes de la forme $\langle b_{n+1}, \cdots, b_1 \rangle$ où b_k est le baricentre de k points x_i . Cela se voit dans la récurrence :
 - le premier point est le baricentre de tous les x_i
 - puis viendra un baricentre de poids n (on élimine un des (n+1) sommets pour se projeter au centre de la face opposée)
 - et ainsi de suite... jusqu'à arriver au baricentre d'un segment et au choix de l'une des extrêmités
 - $1*(n+1)*n*\cdots*3*2=(n+1)!$

- $\partial \lambda$ est une (n-1)-chaîne donc définission récursive cohérente
- lacksquare σ est ainsi définie sur la base $\mathfrak{S}(X)$
- Si λ est un n-simplexe, $\sigma(\lambda)$ est la somme de (n+1)! n-simplexes de la forme $\langle b_{n+1}, \cdots, b_1 \rangle$ où b_k est le baricentre de k points x_i . Cela se voit dans la récurrence :
 - le premier point est le baricentre de tous les x_i
 - puis viendra un baricentre de poids n (on élimine un des (n+1) sommets pour se projeter au centre de la face opposée)
 - et ainsi de suite... jusqu'à arriver au baricentre d'un segment et au choix de l'une des extrêmités
 - $1*(n+1)*n*\cdots*3*2=(n+1)!$
- Et en image(s)?

Subdivision barycentrique, en images

FIGURE: Récurrence dans la subdivision barycentrique

Subdivision barycentrique, en images

FIGURE: σ décompose le *n*-symplexe en *cellules* : (n+1)! *n*-symplexes

Définition

Définition

- Support d'un simplexe : $[x_0, \dots, x_n] = Conv\{x_0, \dots, x_n\}$
- Support d'une chaîne : l'union des supports des simplexes qui le constituent.

Définition

- Support d'un simplexe : $[x_0, \dots, x_n] = Conv\{x_0, \dots, x_n\}$
- Support d'une chaîne : l'union des supports des simplexes qui le constituent.
- Norme simplexe : $|\lambda| = diam[x_0, \dots, x_n]$ (au sens de $\|.\|$)
- Norme d'une chaîne : norme maximale des simplexes qui la constituent.

Définition

- Support d'un simplexe : $[x_0, \dots, x_n] = Conv\{x_0, \dots, x_n\}$
- Support d'une chaîne : l'union des supports des simplexes qui le constituent.
- Norme simplexe : $|\lambda| = diam[x_0, \dots, x_n]$ (au sens de $\|.\|$)
- Norme d'une chaîne : norme maximale des simplexes qui la constituent.
- C'est une norme ultramétrique sur l'espace C(E)
- \bullet ∂ est 1-lipschitzienne pour |.|.

Subdivision barycentrique, un lemme essentiel

Proposition

Le caractère non-archémédien de la norme permet de montrer par récurrence que :

$$\forall c \in \mathcal{C}_n(E), \quad |\sigma(c)| \leq \frac{n}{n+1}|c|$$

Simplexes numérotés (ou coloriés)

Définition

 $\lambda \in \mathfrak{S}(X)$ est bien numéroté par $f: X \to \{x_0, \cdots, x_n\}$ si f est injective sur $S(\lambda)$.

C'est à dire si la coloration f attribue à ses sommets des couleurs toutes distinctes.

Dans ce cas,
$$\tilde{f}(\lambda) = \langle 0, \cdots, n \rangle$$
, et sinon $\tilde{f}(\lambda) = 0$.

Simplexes numérotés (ou coloriés)

Proposition

Soit la n-chaîne $A \in \mathcal{C}_n(X)$, $A = \sum_{i=1}^k \lambda_i$ somme de n-simplexes. On a

$$\tilde{f}(A) = \sum_{i=1}^{k} \tilde{f}(\lambda_i)$$

Donc $\tilde{f}(A) = \langle 0, \dots, n \rangle$ s'il y a un nombre pair de λ_i bien numérotés et 0 sinon.

Lemme (Sperner)

Soient $x_0, \dots, x_n \in E$ affinements indépendants, $k \in \mathbb{N}$ et $A = \sigma^k(\langle x_0, \dots, x_n \rangle)$.

Soit $f: S(A) \to \{x_0, \dots, x_n\}$ une numérotation de Sperner :

- Si $y \in [x_{i_0}, \dots, x_{i_p}]$, alors $f(y) \in [i_0, \dots, i_p]$ (donc $f(x_i) = i$)
- Sinon f(y) est un entier quelconque de $\{x_0, \dots, x_n\}$

Lemme (Sperner)

Soient $x_0, \dots, x_n \in E$ affinements indépendants, $k \in \mathbb{N}$ et $A = \sigma^k(\langle x_0, \dots, x_n \rangle)$.

Soit $f: S(A) \rightarrow \{x_0, \cdots, x_n\}$ une numérotation de Sperner :

- Si $y \in [x_{i_0}, \dots, x_{i_p}]$, alors $f(y) \in [i_0, \dots, i_p]$ (donc $f(x_i) = i$)
- Sinon f(y) est un entier quelconque de $\{x_0, \dots, x_n\}$

Alors il y a un nombre impair de n-simplexes dans A qui sont bien numérotés par f.

En particulier il y en a au moins un.

FIGURE: Coloriage de Sperner de $A = \sigma^2(\langle R, V, B \rangle)$

Remarques:

■ La preuve résulte d'un calcul, par récurrence sur n, de $\tilde{f}(A)$. On utilise HR en diminuant n grâce :

Remarques:

- La preuve résulte d'un calcul, par récurrence sur n, de $\tilde{f}(A)$. On utilise HR en diminuant n grâce :
 - La commutativité de ∂ avec \tilde{f} et σ
 - lacksquare Le fait que l'espace des n-chaînes est stable par σ

Remarques:

- La preuve résulte d'un calcul, par récurrence sur n, de $\tilde{f}(A)$. On utilise HR en diminuant n grâce :
 - La commutativité de ∂ avec \tilde{f} et σ
 - lacksquare Le fait que l'espace des n-chaînes est stable par σ
- Elle est purement combinatoire.

Remarques:

- La preuve résulte d'un calcul, par récurrence sur n, de $\tilde{f}(A)$. On utilise HR en diminuant n grâce :
 - La commutativité de ∂ avec \tilde{f} et σ
 - lacktriangle Le fait que l'espace des n-chaînes est stable par σ
- Elle est purement combinatoire.
- Prouver l'existence d'une certaine structure maximale, en montrant qu'elle sont au nombre de 1 (mod2) fait penser aux théorèmes de Sylows et à sa généralisations par Frobenius.

Lemme (KKM)

Soit $\Delta = [x_0, ..., x_n]$ un vrai simplexe affine de \mathbb{R}^n et des fermés $F_0, ..., F_n$ de Δ tels que :

$$\forall \{i_0,...,i_k\} \subset [0,n], \quad [x_{i_0},...,x_{i_k}] \subset F_{i_0} \cup ... \cup F_{i_k}.$$

Alors
$$\bigcap_{i=0}^n F_i \neq \emptyset$$
.

En voici une preuve dans ses grandes lignes :

 \blacksquare On subdivise le simplexe en des cellules barycentriques de module inféreures à ϵ (grâce au lemme essentiel)

- On subdivise le simplexe en des cellules barycentriques de module inféreures à ϵ (grâce au lemme essentiel)
- On Sperner-numérote ses sommets avec la condition suplémentaire $f(x_i) \in \{k | x_i \in F_k\}$

- On subdivise le simplexe en des cellules barycentriques de module inféreures à ϵ (grâce au lemme essentiel)
- On Sperner-numérote ses sommets avec la condition suplémentaire $f(x_i) \in \{k | x_i \in F_k\}$
- Il existe une cellule bien numérotée et tous ses points sont donc à distance inférieure à tous les fermés.

- On subdivise le simplexe en des cellules barycentriques de module inféreures à ϵ (grâce au lemme essentiel)
- On Sperner-numérote ses sommets avec la condition suplémentaire $f(x_i) \in \{k | x_i \in F_k\}$
- Il existe une cellule bien numérotée et tous ses points sont donc à distance inférieure à tous les fermés.
- $z \mapsto \max_{i \le n} d(z, F_i)$ continue sur compact Δ , elle atteint son minimum : 0.

Et après?

Voici une application dûe à Monsky à laquelle vous pourrez réfléchir pendant l'apéro :

Et après?

Voici une application dûe à Monsky à laquelle vous pourrez réfléchir pendant l'apéro :

Un carré ne peut être divisé en un nombre impair de triangles de même aire.

Et après?

Voici une application dûe à Monsky à laquelle vous pourrez réfléchir pendant l'apéro :

Un carré ne peut être divisé en un nombre impair de triangles de même aire.

Références : Wkipédia et un article d'une revue de la RMS de H. Pépin (1997)