Matematická analýza III

Ladislav Láska

16. února 2010

Učební text k předmětu Matematická analýza III pro informatiky. Je vytvořen na základě látky z přesnášek Martina Klazara a cvičeních a volně navazuje na předmět Matematická analýza II. Text je povětšinou výtahem z přednášek uspořádaným do srozumitelných krátkých celků zaměřený na definice, věty a probrané důkazy. Některé věty jsou pouze minimálně upraveny a přepsány z oficiálních poznámek z přednášek, jiné jsou úplně přepracovány tak, aby byly co nejsrozumitelnější. Seznam všech definic, vět a důkazů potrebných ke zkoušce je uveden na konci textu (zkopírovaný z webu přednášky, pro úplnost).

Pokud najdete chybu, nepřesnost nebo máte lepší (hezčí, kratší) důkaz než já, neváhejte mě kontaktovat (třeba na email ladislav.laska@gmail.com)

Poděkování patří Martinu Pelikánovi za mnoho oprav chyb a vylepšení důkazů.

Upozornění: Tyto poznámky jsou bez jakékoliv záruky. Nemusí být kompletní a mohou obsahovat chyby.

Obsah

1	Met	rické prostory
	1.1	Metrický prostor
	1.2	Izometrie
	1.3	Příklady metrických prostorů
	1.4	Ultrametrika
	1.5	Otevřená a uzavřená koule
	1.6	Otevřená a uzavřená množina
	1.7	Vlastnosti otevřených a uzavřených množin
	1.8	Cauchyovská posloupnost
	1.9	Charakterizace uzavřených množin
		Izolovaný a limitní body
	1.11	Uzávěr množiny
		Ekvivalence metriky
	1.13	Podprostor metriky
	1.14	Spojitost zobrazení metrického prostoru
	1.15	Věta o spojitosti zobrazení
		Homeomorfismus
		Kompaktní prostor a kompaktní množina
		Nabývání maxima a minima na kompaktní množině
		Věta o zachování kompaktnosti
		Kompaktní množina je omezená a uzavřená
		Uzavřená a omezená podmnožina \mathbb{R}^n je kompaktní
		Věta o spojitém zobrazení na kompaktu
		Otevřené pokrytí
		Kompaktnost a otevřené pokrytí
		Cauchyovská posloupnost
	1.26	Úplný metrický prostor
		Kompaktní prostor je úplný
	1.28	Zachování úplnosti
		Kontrakce a pevný bod
		Banachova věta o pevném bodě
		Picardova věta
2	Posl	oupnosti a řady funkcí 10
	2.1	Bodová, stejnoměrná a lokálně stejnoměrná konvergence
	2.2	Bolzano-Cauchyho podmínka
	2.3	Tvrzení o lokální stejnoměrné konvergenci a kompaktní podmnožině
	2.4	Diniho věta
	2.5	Mooreova-Osgoodova věta o záměně pořadí limit
	2.6	Věta o záměně limity a integrování
	2.7	Věta o záměně pořadí limity a derivace
	2.8	Věta o záměně pořadí sumace a limity v bodě
	2.9	Věta o záměně pořadí sumace a integrování
	2.10	Věta o záměně pořadí sumance a derivování
		Weierstrassovo kritérium stejnoměrné konvergence řad
		Abel-Dirichletovo kritérium stejnoměrné konvergence
3	Mod	eninné řady funkcí 15
	3.1	Poloměr konvergence
	3.2	Lokálně stejnoměrná konvergence mocninné řady
	3.3	Abelova věta o mocinných řadách

4	Fou	rierovy (trigonometrické) řady	16
	4.1	Skoro-skalární součin	16
	4.2	Ortogonální systém sinů a cosinů	17
	4.3	Besselova nerovnost a Riemann-Lebesgueovo lemma	17
	4.4	Po částech hladká funkce	18
	4.5	Dirichletova věta o bodové konvergenci Fourierovy řady	18
	4.6	Věta o stejnoměrné konvergenci Fourierovy řady	20
5	Úvod do komplexní analýzy		
	5.1	Tvrzení o rozkladu přirozených čísel na disjunktní množiny	20
	5.2	Holomorfní funkce	21
	5.3	Komplexní exponenciála a její vlastnosti	21
	5.4	Analytická funkce	22
	5.5	Ekvivalence analytičnosti a holomorfismu	22
	5.6	Jednoznačnost koeficientů mocninné řady	22
	5.7	Holomorfní rozšíření a singularity	22
	5.8	Věta o jednoznačnosti holomorfního rozšíření	23
	5.9	Věta o singularitách	23
6	Dodatek A: Požadavky ke zkoušce		
	6.1	Základní pojmy a definice	24
	6.2	Věty a důsledky bez důkazu	
	6.3	Věty s důkazy	

1 Metrické prostory

Poznámka Obsah této kapitoly byl z části pokryt na přednáškách předmětu **Matematická** analýza II, proto zde uvedu jenom základní přehled a všechny důkazy naleznete v odkazovaných poznámkách. Protože tyto přednášky vedl jiný přednášející, bude se lišit některé značení - nenechte se tedy zmást.

1.1 Metrický prostor

Definice Metrický prostor je dvojice (M, d) (kde funkci d se říká metrika) splňující axiomy:

- 1. $\forall x, y \in M$ d(x, y) > 0 $d(x, y) = 0 \Leftrightarrow x = y$
- 2. $\forall x, y \in M$ d(x, y) = d(y, x)
- 3. $\forall x, y, z \in M$ d(x, y) + d(y, z) > d(x, y)

1.2 Izometrie

Definice Metrické prostory $(M_1, d_1), (M_2, d_2)$ jsou izometrické, právě když existuje bijekce $f: M_1 \to M_2$, že $\forall x,y \in M_1 \quad d_1(x,y) = d_2(f(x),f(y))$

1.3 Příklady metrických prostorů

- 1. Euklidovský (\mathbb{R}^n)
- 2. Množina omezených funkcí $M = f : x \to \mathbb{R}$, supremová metrika $d(f,g) = \sup_{x \in X} |f(x) g(x)|$. Pokud jsou na požadovaném intervalu spojité, můžeme psát i max
- 3. Množina spojitých funkcí M=C[a,b], metrika pro $p\in\mathbb{R},\,p>1$:

$$d_p(f,g) = \left(\int_a^b |f(t) - g(t)|^p dt \right)^{\frac{1}{p}}$$

- 4. G=(V,E) souvislý, $M=V,\,d(u,v)=|P_{min}(u,v)|$ (počet vrcholů na cestě)
- 5. Hammingova metrika: A je abeceda, slova délky $n \in \mathbb{N}$. Množina $M = \{u = u_1, ..., u_n | u_i \in A\}$. Metrikou potom bude $d(u, v) = \{\#i | u_i \neq v_i\}$
- 6. Sférická metrika $S=\{(x,y,z)\in\mathbb{R}^3|x^2+y^2+z^2=1\},\ d(x,y)=$ délka nejkratšího oblouku z x do y.
- 7. p-adická metrika

$$p = 3, M = \mathbb{Z}, z \in \mathbb{Z}$$

$$v(z) := \max n \in \mathbb{N} \quad p^n \setminus z \qquad v(0) := \infty$$

$$d(z_1, z_2) = 2^{-v(z_1 - z_2)}$$

1.4 Ultrametrika

Definice Ultrametrika (také nearchimedovská metrika) je metrika splňující:

$$d(x,y) \le \max\{d(x,z); d(y,z)\}$$

1.5 Otevřená a uzavřená koule

Definice Nechť (M,d) je metrický prostor a $x \in M$, $r \in \mathbb{R}$, r > 0. Potom definujeme:

otevřenou kouli: $B(x,r) = \{ y \in M \mid d(x,y) < r \}$

uzavřenou kouli: $\overline{B(x,r)} = \{y \in M \mid d(x,y) \le r\}$

1.6 Otevřená a uzavřená množina

Definice Nechť (M, d) je metrický prostor. Potom definujeme:

otevřenou množinu G pokud $\forall x \in G \quad \exists r > 0 \quad B(x,r) \subseteq G$.

uzavřenou množinu F pokud $P \setminus F$ je otevřená.

1.7 Vlastnosti otevřených a uzavřených množin

Věta Nechť (M, d) je metrický prostor. Potom platí:

- 1. \emptyset, M jsou otevřené i uzavřené množiny
- 2. $X_1,...,X_n$ otevřené množiny, potom $X_1\cap X_2\cap...\cap X_k$ je otevřená množina
- 3. $X_1,...,X_n$ uzavřené množiny, potom $\bigcup X_i$ je uzavřená množina
- 4. $X_i, i \in I$ uzavřené množiny, potom $\bigcap_{i \in I} X_i$ je uzavřená množina

(důkaz v zimním semestru)

1.8 Cauchyovská posloupnost

Definice Nechť (M,d) je metrický prostor a $a_1,a_2,...\subset M$ posloupnost. Tuto posloupnost nazveme **Cauchyovskou** právě když

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} : \quad m, n > N \quad \Rightarrow \quad d(a_m, a_n) < \varepsilon$$

1.9 Charakterizace uzavřených množin

Věta Nechť (M,d) je metrický prostor.

$$X \subset M$$
je uzavřená $\Leftrightarrow (\forall \text{kg. posl.}(a_n) : \lim a_n = a \Leftrightarrow a \in X)$

(důkaz v zimním semestru)

1.10 Izolovaný a limitní body

Definice Nechť U(a) značí nějaké okolí bodu a.

limitní bod $\forall U(a)$ je $U(a) \cap X$ nekonečný

izolovaný bod $\exists U(a) \cap X = a$

1.11 Uzávěr množiny

Definice Nechť (M,d) je metrický prostor a $X\subset M.$ Potom definujeme uzávěr množiny:

$$\overline{X} = X \cup \{\text{limitní body X}\}\$$

1.12 Ekvivalence metriky

Definice Nechť (M, d_1) a (M, d_2) jsou metrické prostory. Řekneme, že metriky d_1, d_2 jsou ekvivalentní, právě když:

$$\forall a \in M \quad \forall r > 0 \quad \exists s > 0 : \quad B_1(a, r) \supset B_2(a, s)$$

 $\land \quad \forall a \in M \quad \forall r > 0 \quad \exists s > 0 : \quad B_1(a, r) \subset B_2(a, s)$

1.13 Podprostor metriky

Definice Nechť (M,d) je metrický prostor a $X\subset M$. Potom (X,d) nazveme podprostorem (M,d).

1.14 Spojitost zobrazení metrického prostoru

Definice Nechť (M_1, d_1) a (M_2, d_2) jsou metrické prostory. Řekneme, že $f: M_1 \to M_2$ je spojité v $a \in M_x$ právě když:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 : \quad f(B_1(a, \delta)) \subset B_2(f(a), \varepsilon)$$

1.15 Věta o spojitosti zobrazení

Věta Nechť (M_1, d_1) a (M_2, d_2) jsou metrické prostory. Zobrazení $f: M_1 \to M_2$ je spojité, právě když:

$$\forall Y \subset M_2$$
 Yotevřenou je $f^{-1}(Y) \subset M_1$ otevřená

tj. do otevřené množiny se mohla zobrazit pouze množina otevřená (poznámka: otevřená množina se však stále může zobrazit do množiny uzavřené)

Důkaz

- 1. ⇒ triviální z definice spojitého zobrazení
- 2. \Leftarrow Mějme libovolné $a \in M_1$, $\varepsilon > 0$. Podle předpokladu platí:

$$B_2(f(a), \varepsilon)$$
 otevřená $\Rightarrow V := f^{-1}(B_2(f(a), \varepsilon))$ otevřená (1)

Protože $V \subset M_1$ a $a \in M_1$:

$$\exists \delta > 0: \quad B_1(a,\delta) \subset f^{-1}(B_2(f(a),\varepsilon)) \tag{2}$$

Po zobrazení obou množin f platí:

$$f(B_1(a,\delta)) \subset B_2(f(a),\varepsilon)$$
 (3)

Tedy f je spojité zobrazení (podle definice).

1.16 Homeomorfismus

Definice Bijektivní zobrazení f je **homeomorfní** právě když jsou f i f^{-1} spojitá zobrazení.

1.17 Kompaktní prostor a kompaktní množina

Definice Metrický prostor (M,d) je kompaktní, právě když má každá posloupnost $(a_n) \subset M$ konvergentní podposloupnost. (navíc $\lim a_{n_k} \in M$, protože, jak uvidíme, je kompaktní množina vždy uzavřená)

Definice Nechť (M, d) je metrický prostor. Množina $X \subset M$ je kompaktní, právě když metrický prostor (X, d) je kompaktní.

Definice Množina K je kompaktní právě tehdy, pokud existuje pro každou posloupnost vybraná konvergentní podposloupnost a má vlastní limitu v množině K.

1.18 Nabývání maxima a minima na kompaktní množině

Věta Nechť (M,d) je metrický prostor a $Z\subset M$ je kompaktní množina. Potom spojitá funkce $f:Z\to\mathbb{R}$ nabývá na Z maxima i minima. (důkaz v dřívějších poznámkách)

1.19 Věta o zachování kompaktnosti

Věta Kompaktnost se zachovává:

- 1. Přechodem k uzavřenému podprostoru
- 2. Obrazem spojitým zobrazením
- 3. Kartézským součinem

Důkaz

- 1. Nechť (M,d) je metrický prostor a $X \subset M$ je uzavřená množina. Mějme libovolnou posloupnost $(a_n) \subset X$. Její konvergentní podposloupnost existuje a má limitu $A \in X$ (z uzavřenosti X), tedy podle definice je i prostor (X,d) uzavřený.
- 2. Nechť $f: M_1 \to M_2$ je spojité zobrazení. Z předpokladu je M_1 kompaktní. Vezmeme libovolnou posloupnost $(b_n) \subset f(M_1)$ a $\forall n$ zvolíme $a_n \in M_1$ tak, že $f(a_n) = b_n$. Protože $(a_n) \subset M_1$ a M_1 je kompaktní, existuje konvergentní podposloupnost (a_{k_n}) s limitou $a \in M_1$. Podle Heineho definice spojitosti zobrazení víme, že $b_{k_n} = f(a_{k_n})$, tedy f(a) = b a b je limitou b_{k_n} v $f(M_1) \Rightarrow f(M_1)$ je kompaktní.
- 3. $M=M_1\times M_2, d((x_1,y_1),(x_2,y_2))=\sqrt{d_1(x_1,x_2)^2+d_2(y_1,y_2)^2}$ Potom tedy posloupnost (dvojic) (x_n,y_n) konverguje k (α,β) , právě, když $x_n\to \alpha v(M_1,d_1)$ a zároveň $y_n\to \beta v(M_2,d_2)$...to se do toho nebudu zamotávat... $(M.\ Klazar)$

1.20 Kompaktní množina je omezená a uzavřená

Tvrzení Každá kompaktní množina je omezená a uzavřená.

Důkaz

- 1. Mějme množinu, která není omezená. V takovéto množině existuje posloupnost s limitou v nekonečnu, tedy nemá konvergentní podposloupnost a podle definice není kompaktní.
- 2. Mějme množinu X, která není uzavřená. Potom existuje konvergentní posloupnost $(a_n) \subset X$, ale $\lim a_n = a \notin X$. Takováto posloupnost však nemá konvergentní posloupnost v X, tudíž podle definice není kompaktní.

1.21 Uzavřená a omezená podmnožina \mathbb{R}^n je kompaktní

Věta Množina $X \subset \mathbb{R}^n$ (euklidovského prostoru) je kompaktní, právě když je omezená a uzavřená.

Důkaz

- 1. Každá kompaktní množina je uzavřená a omezená. (podle předchozí věty)
- 2. Množina X je omezená a uzavřená. Vezměme n-dimenzionální krychli K^n tak velkou, aby platilo $X \subset K^n$ (to můžeme, protože X je omezená). K^n je určitě kompaktní (podle Bolzano-Weierstrassovy věty pro n-dimenzí). Kompaktnost se však přenáší na uzavřenou podmnožinu, tudíž i X je kompaktní.

1.22 Věta o spojitém zobrazení na kompaktu

Věta Nechť $f: M_1 \to M_2$ je spojité zobrazení a M_1 je kompaktní množina. Potom:

- 1. pro $M_2=\mathbb{R}$ nabývá f na M_1 maxima i minima
- 2. f je stejnoměrně spojité zobrazení
- 3. pokud f je navíc bijekce, potom i f^{-1} je spojité

Důkaz

- 1. Protože spojité zobrazení zachovává kompaktnost, $f(M_1)$ je kompaktní, v \mathbb{R} tedy má supremum a infimum a tedy (protože na \mathbb{R}) minimum a maximum.
- 2. (důkaz jako cvičení)
- 3. Mějme zobrazení $f^{-1}:M_2\to M_1$ inverzní k f. Nechť $Y\subset M_1$ je uzavřená množina ověříme, zda i vzor je uzavřený.

$$(f^{-1})^{-1}(Y) = f(Y) \tag{1}$$

Protože ale f je spojité a Y uzavřená, i f(Y) je uzavřená.

1.23 Otevřené pokrytí

Definice Nechť (M, d) je metrický prostor a $P = \{X_i | i \in \mathbb{I}\}$ jsou otevřené množiny. P je otevřené pokrytí, právě když:

$$\bigcup_{i \in \mathbb{I}} X_i = M \tag{1}$$

1.24 Kompaktnost a otevřené pokrytí

Tvrzení Metrický prostor (M,d) je kompaktní právě tehdy, když otevřené pokrytí $P = \{X_i | i \in \mathbb{I}\}$ prostoru M má konečné podpokrytí:

$$\exists J \subset \mathbb{I}: \quad \bigcup_{i \in J} X_i = M$$

Důkaz (neznám)

1.25 Cauchyovská posloupnost

Definice Posloupnost (a_n) je v metrickém prostoru (M, d) Cauchyovská, právě když:

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} : \quad \forall m > n > n_0 \quad d(a_m, a_n) < \varepsilon$$

1.26 Úplný metrický prostor

Definice Metrický prostor je úplný, právě když je každá Cauchyovská posloupnost také konvergentní.

1.27 Kompaktní prostor je úplný

Věta Každý kompaktní prostor (M, d) je také úplný.

Důkaz Nechť $(a_n) \subset M$ je Cauchyovská posloupnost. Potom (z kompaktnosti) existuje konvergentní podposloupnost (a_{k_n}) s limitou v a. Tedy zároveň platí:

$$\forall \varepsilon > 0 \quad \exists n_1 \in \mathbb{N} : \quad \forall m > n > n_1 \qquad \qquad d(a_m, a_n) < \varepsilon$$
 (1)

$$\forall \varepsilon > 0 \quad \exists n_2 \in \mathbb{N} : \quad \forall k_n > n_2$$
 $d(a_{k_n}, a) < \varepsilon$ (2)

Zvolme tedy $n:=\max\{n_1,n_2\}$, potom i pro $m:=k_n$ nerovnosti platí. Tedy:

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} : \quad \forall n > n_0 \quad d(a_{k_n}, a_n) + d(a_{k_n}, a) < \varepsilon$$
 (3)

Pokud uplatníme trojúhelníkovou nerovnost, platí (a_n) je podle definice konvergentní.

1.28 Zachování úplnosti

Tvrzení Nechť (M,d), (M',d') jsou úplné metrické prostory. Potom platí:

- 1. $X \subset M$ uzavřená $\Rightarrow (X, d)$ úplný
- 2. Kartézský součin prostorů $M \times M'$ je také úplný

Důkaz (bez důkazu)

1.29 Kontrakce a pevný bod

Definice Nechť (M,d) je metrický prostor. Zobrazení $f:M\to M$ je kontrakce pokud:

$$\exists q \in (0,1): \forall x,y \in M: d(f(x),f(y)) < q \cdot d(x,y)$$

Definice Nechť $f:X\to X$ je kontrakce. Bod $a\in X$ nazveme **pevným bodem**, pokud f(a)=a.

1.30 Banachova věta o pevném bodě

Věta Nechť (M,d) je úplný metrický prostor a $f:M\to M$ je kontrakce. Potom má f právě jeden pevný bod $a\in M$.

Důkaz Mějme posloupnost prvků (x_n) definovanou jako:

$$x_0 \in M$$
 $\forall n > 0$ $x_n = f(x_{n-1})$

Protože f je kontrakce, můžeme odhadnout členy následovně:

$$d(x_{n+2}, x_{n+1}) \le q \cdot d(x_{n+1}, x_n) \le \dots \le q^n \cdot d(x_2, x_1)$$
(1)

1. Ověříme, že taková posloupnost je Cauchyovská: mějme tedy z definice $m>n>n_0$, odhadmene trojúhelníkovou nerovností:

$$d(x_m, x_n) \le d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_n + 1, x_n)$$
(2)

Takovýto člen odhadneme podle (1) a sečteme geometrickou řadu v závorce:

$$d(x_m, x_n) \le d(x_1, x_0)(q^{m-1} + \dots + q^n) = d(x_1, x_0) \cdot \frac{q^n}{q - q}$$
(3)

Protože q < 1, součet řady konverguje k 0 a tudíž posloupnost má limitu a je Cauchyovská. Nechť tedy $a := \lim x_n$ (z úplnost existuje) je pevný bod.

2. Nechť tedy $a \neq b$ jsou pevné body. Potom nutně se zobrazují samy na sebe a tedy platí:

$$d(a,b) = d(f(a), f(b)) \tag{4}$$

A podle definice kontrahujícího zobrazení:

$$d(f(a), f(b)) \le q \cdot d(a, b) \tag{5}$$

Což (protože 0 < q) vynucuje d(a, b) = 0 a tudíž a = b (spor s předpokladem $a \neq b$).

1.31 Picardova věta

Věta Nechť $f: \mathbb{R}^2 \to \mathbb{R}$ je spojitá funkce a existuje konstanta M > 0 taková, že:

$$\forall u, v, w \in \mathbb{R}: |f(u, v) - f(u, w)| \le M|v - w|$$

Pak každý bod $a \in \mathbb{R}$ má okolí $I = (a - \delta, a + \delta)$ na něm má rovnice (1) jednoznačné řešení:

$$y(a) = b$$

$$y'(x) = f(x, y(x))$$
(1)

(důkaz není požadován ke zkoušce, bude doplněn později)

2 Posloupnosti a řady funkcí

2.1 Bodová, stejnoměrná a lokálně stejnoměrná konvergence

Nechť $M \subset \mathbb{R}$ je množina a $f_n : M \to \mathbb{R}$ je posloupnost funkcí. Potom definujeme:

Definice Posloupnost funkcí f_n je **bodově konvergentní** $(f_n \to f)$, pokud:

$$\forall \alpha \in M \quad \lim f_n(\alpha) = f(\alpha)$$

Definice Posloupnost funkcí f_n je **stejnoměrně konvergentní** $(f_n \rightrightarrows f)$, pokud:

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n > n_0 \quad \forall \alpha \in M : \quad |f_n(\alpha) - f(\alpha)| < \varepsilon$$

Definice Posloupnost funkcí f_n je lokálně stejnoměrně konvergentní $(f_n \stackrel{\text{lok}}{\Rightarrow} f)$, pokud:

$$\forall \alpha \in M \quad \exists \delta > 0: \quad f_n \rightrightarrows f \text{ na } (\alpha - \delta, \alpha + \delta) \cap M$$

2.2 Bolzano-Cauchyho podmínka

Věta Nechť je množina $M \subset \mathbb{R}$ a f_n posloupnost funkcí $f: M \to \mathbb{R}$, potom:

$$\exists f: M \to \mathbb{R}$$
 $f_n \rightrightarrows f \text{ na } M$

právě když

$$\forall \varepsilon > 0 \quad \exists n_0: \quad \forall m > n > n_0 \quad \forall x \in M \Rightarrow |f_m(x) - f_n(x)| < \varepsilon$$

Důkaz

1. $\Rightarrow f_n \rightrightarrows f$ na M, platí tedy:

$$\forall \varepsilon > 0 \quad \exists n_0: \quad \forall n > n_0 \quad \forall x \in M: \quad |f_n(x) - f(x)| < \varepsilon$$
 (1)

Podle trojúhelníkové nerovnosti odhadneme:

$$|f_m(x) - f_n(x)| \le |f_m(x) - f(x)| + |f_n(x) - f(x)| < 2\varepsilon$$
 (2)

Což splňuje podmínku.

2. \Leftarrow Z předpokladu víme, že posloupnost je Cauchyovská, tedy existuje $\lim f_n(x) = f(x)$ (podle věty pro posloupnosti reálných čísel). Z předpokladů vezmeme $n > n_0$ a N libovolné, a odhadneme požadovaný rozdíl trojúhelníkovou nerovností:

$$|f_n(x) - f(x)| \le |f_N(x) - f(x)| + |f_N(x) - f_n(x)| \tag{3}$$

Což platí pro každé N. Zvolme tedy $N>n_0$ a podmínka platí.

$$|f_N(x) - f(x)| < 2\varepsilon \tag{4}$$

2.3 Tvrzení o lokální stejnoměrné konvergenci a kompaktní podmnožině

Tvrzení Nechť $[c,d]\subset (a,b)$ a $f_n\stackrel{\mathrm{lok}}{\rightrightarrows} f$ na (a,b). Pak $f_n\rightrightarrows f$ na [c,d]

Důkaz (bez důkazu)

2.4 Diniho věta

Nechť $f_n \to f$ na kompaktním intervalu I a funkce f_n i f jsou spojité a posloupnost je na daném intervalu monotónní. Pak $f_n \rightrightarrows f$ na I.

Důkaz (bez důkazu)

2.5 Mooreova-Osgoodova věta o záměně pořadí limit

Věta Nechť jsou funkce f_n a f definované na nějakém prstencovém okolí $M = P(x_0, \delta)$ bodu $x_0 \in \mathbb{R}$, který může být i nevlastní, existují vlastní limity

$$a_n = \lim_{x \to x_0} f_n(x)$$
a dále $f_n \rightrightarrows f$ na $P(x_0, \delta)$

Potom existují vlastní limity $\lim_{n\to\infty} a_n$ a $\lim_{x\to x_0} f(x)$ a rovnají se.

Důkaz Protože $f_n \rightrightarrows f$ na M, splňuje f_n Bolzano-Cauchyho podmínku:

$$\forall \varepsilon > 0 \quad \exists n_0 \quad \forall m > n > n_0 \forall x \in M \qquad |f_m(x) - f_n(x)| < \varepsilon \tag{1}$$

Pro pevné indexy $m,n>n_0$ a limitní přechod $x\to x_0$ (limity existují z předpokladu) máme nerovnost:

$$|a_m - a_n| \le \varepsilon \tag{2}$$

Tedy posloupnost čísel (a_n) je cauchyovská a podle věty o posloupnostech reálných čísel má vlastní limitu $A \in \mathbb{R}$:

$$\lim_{n \to \infty} a_n = A \tag{3}$$

Nyní ukážeme, že $\lim_{x\to x_0} f(x) = A$. Odhadneme tedy trojúhelníkovou nerovností:

$$|f(x) - A| \le \underbrace{|f(x) - f_n(x)|}_{V_1 < \varepsilon} + \underbrace{|f_n(x) - a_n|}_{V_2 < \varepsilon} + \underbrace{|a_n - A|}_{V_3 < \varepsilon} \tag{4}$$

Nyní ukážeme, že pravá strana je $< \varepsilon$: V_1 a V_3 "platí" z předpokladů pro nějaké $n > n_1$ a $n > n_3$. Vezměme tedy $n_0 > \max\{n_1, n_3\}$. Pro takové n_0 navíc existuje δ_0 takové, aby pro $x \in P(x_0, \delta_0)$ "platí" i V_2 a tedy platí i rovnost $\lim_{x \to x_0} f(x) = A$, což jsme chtěli dokázat.

2.6 Věta o záměně limity a integrování

Věta Nechť $f_n, f:[a,b] \to \mathbb{R}$ jsou riemannovsky integrovatelné funkce na intervalu [a,b] a $f_n \to f$ na [a,b]. Potom f je riemannovsky integrovatelná na [a,b] a platí:

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} \lim_{n \to \infty} f_{n} = \int_{a}^{b} f$$

Důkaz (důkaz je technický a opsaný ze skript) Nejdříve si připravíme několik nerovností. Mějme $\varepsilon > 0$. Ze stejnoměrné konvergence existuje n_0 , že $\forall n > n_0 \land \forall x \in [a, b]$:

$$f_n(x) - \varepsilon < f(x) < f_n(x) + \varepsilon$$
 (1)

Nechť $D = (a_0, a_1, ..., a_k)$ kde $a = a_0 < a_1 < ... < a_k = b$ je libovolné dělení intervalu [a, b] a $n > n_0$ je pevné. Potom na intervalech $I_i = [a_i, a_i + 1]$ platí nerovnosti:

$$m_i - \varepsilon = \inf_{I_i} f_n - \varepsilon \le \inf_{I_i} f$$
 (2)

$$\sup_{I_i} f \le \sup_{I_i} f_n + \varepsilon = M_i + \varepsilon \tag{3}$$

Nyní dokážeme, že platí nerovnosti:

$$s(f_n, D) - \varepsilon < s(f, D) \le S(f, D) < S(f_n, D) + \varepsilon \tag{4}$$

Pro dolní součty odhadneme podle (2) (pro horní součty analogicky):

$$s(f,D) - \varepsilon(b-a) = \sum_{i=0}^{k-1} |I_i| m_i - \varepsilon(b-a) = \sum_{i=0}^{k-1} |I_i| (m_i - \varepsilon)$$

$$(5)$$

$$\leq \sum_{i=0}^{k-1} |I_i| \inf_{I_i} f = s(f, D) \tag{6}$$

Tedy (4) platí $\forall \varepsilon > 0$.

Nyní již ukážeme, že $f \in \mathcal{R}[a,b]$. Nechť je dáno $\varepsilon > 0$ a $n > n_0$ je libovolné, ale pevné. Protože

 $f_n \in \mathcal{R}[a,b]$, můžeme vzít dělení D_0 takové, že $0 \leq S(f_n,D_0) - s(f_n,D_0) < \varepsilon$. Takové dělení aplikujeme na funkci f (používáme navíc nerovnosti (4)):

$$0 \le S(f, D_0) - s(f, D_0) \le S(f_n, D_0) + \varepsilon - (s(f_n, D_0) - \varepsilon) < 3\varepsilon \tag{7}$$

Tedy podle kritéria integrovatelnosti (věta z MA2) má i funkce f integrál na [a,b]. Zbývá tedy dokázat, že jsou si rovny. Nahlédneme, že samotný integrál je omezen dolním a horním součtem, tedy:

$$\int_{a}^{b} f \in [s(f, D_0), S(f, D_0)] \tag{8}$$

$$\int_{a}^{b} f_n \in [s(f_n, D_0), S(f, D_0)] \tag{9}$$

A oba intervaly jsou obsaženy v intervalu $[s(f_n, D_0) - \varepsilon, S(f_n, D_0) + \varepsilon]$, jehož velikost je $< 3\varepsilon$ podle (7). Tedy:

$$\left| \int_{a}^{b} f - \int_{a}^{b} f_{n} \right| < \varepsilon \tag{10}$$

Což platí pro každé $\varepsilon>0$ a $n>n_0,$ podle definice tedy platí rovnost:

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n} \tag{11}$$

2.7 Věta o záměně pořadí limity a derivace

Věta Nechť $f_n:(a,b)\to\mathbb{R}$ je posloupnost funkcí definovaná na omezeném otevřeném intervalu a:

- 1. každá funkce f_n má na (a,b) vlastní derivaci
- 2. $f'_n \stackrel{\text{lok}}{\Rightarrow} g$ na (a, b)
- 3. posloupnost čísel $(f_n(x_0))$ konverguje pro alespoň jeden bod $x_0 \in (a,b)$

Potom $f_n \stackrel{\text{lok}}{\Longrightarrow} f$ na (a,b) pro nějakou funkci $f:(a,b) \to \mathbb{R}$ a f'=g na (a,b).

Důkaz (bez důkazu)

2.8 Věta o záměně pořadí sumace a limity v bodě

Věta Nechť pro nějaké $\delta > 0$ platí:

$$f_n: P(x_0, \delta) \to \mathbb{R} \quad \forall n \in \mathbb{N}$$

 $\forall n \in \mathbb{N} \exists \lim_{x \to x_0} f_n(x) \text{ vlastn} i$

$$\sum_{n=1}^{\infty} f_n \rightrightarrows f \text{ na } P(x_0, \delta)$$

Pak:

$$\sum_{n=1}^{\infty} \left(\lim_{x \to x_0} f_n(x) \right) = \lim_{x \to x_0} \left(\sum_{n=1}^{\infty} f_n(x) \right)$$

Důkaz (bez důkazu)

2.9 Věta o záměně pořadí sumace a integrování

Věta Nechť $\forall n \in \mathbb{N}$ platí, že $f_n \in \mathcal{R}[a,b]$ a $\sum_{n=1}^{\infty} f_n \Rightarrow$ na [a,b]. Potom:

$$\sum_{n=1}^{\infty} \left(\int_{a}^{b} f_{n} \right) = \int_{a}^{b} \left(\sum_{n=1}^{\infty} f_{n} \right)$$

Důkaz (bez důkazu)

2.10 Věta o záměně pořadí sumance a derivování

Nechť $f_n:(a,b)\to\mathbb{R}$ je posloupnost funkcí definovaná na omezeném otevřeném intervalu a:

- 1. každá funkce f_n má na (a,b) vlastní derivaci
- 2. $\sum_{n=1}^{\infty} f'_n \stackrel{\text{lok}}{\Rightarrow} g$ na (a, b)
- 3. řada čísel $\sum_{n=1}^{\infty} f_n(x_0)$ konverguje pro alespoň jeden bod $x_0 \in (a,b)$

Potom $\sum_{n=1}^\infty f_n \stackrel{\rm lok}{\rightrightarrows} f$ na (a,b)pro nějakou funkci $f:(a,b) \to \mathbb{R}$ af'=gna (a,b).

Důkaz (bez důkazu)

2.11 Weierstrassovo kritérium stejnoměrné konvergence řad

Věta Nechť $f_n: M \to \mathbb{R}$ jsou takové funkce, že řada:

$$\sum_{n=1}^{\infty} ||f_n||_{\infty} = \sum_{n=1}^{\infty} \sup_{x \in M} |f_n(x)|$$

konverguje. Potom $\sum f_n$ stejnoměrně konverguje na M.

Důkaz Protože řada $\sum ||f||_{\infty}$ konverguje, splňuje Cauchyho podmínku pro číselné řady a existuje n_0 takové, že $\forall n \geq m > n_0$ platí:

$$\sum_{i=m+1}^{n} \sup_{x \in M} |f_i(x)| < \varepsilon \tag{1}$$

Odhadneme tedy částečný součet původní řady:

$$\left| \sum_{i=m+1}^{n} f_i(x) \right| \le \sum_{i=m+1}^{n} |f_i(x)| \le \sum_{i=m+1}^{N} \sup_{x \in M} |f_i(x)| < \varepsilon$$
 (2)

Takže původní řada splňuje B-C podmínku (2.2) a tedy stejnoměrně konverguje.

2.12 Abel-Dirichletovo kritérium stejnoměrné konvergence

Věta Nechť $f_n, g_n : M \to \mathbb{R}$ jsou posloupnosti funkcí. Řada $\sum f_n g_n$ stejnoměrně konverguje na M když je splněna podmínka (A) nebo (D) a $\forall x \in M$ je posloupnost $(g_n(x))$ monotónní.

(A) $\sum f_n \Rightarrow$ a existuje konstanta c > 0 taková, že

$$\forall n \in \mathbb{N} \quad \forall x \in M : \quad |g_n(x)| < c$$

(**D**) existuje konstanta c > 0 taková, že:

$$\forall n \in \mathbb{N} \quad \forall x \in M: \quad |f_1(x) + ... + f_n(x)| < c$$

 $\land g_n \Rightarrow 0 \text{ na } M$

Důkaz (bez důkazu)

3 Mocninné řady funkcí

Definice Mocninná řada s koeficienty $a_n \in \mathbb{R}$ a středem x_0 je nekonečná řada funkcí:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Pro jednoduchost v této kapitole uvažujeme řady se středem v 0, tj. ve tvaru $\sum a_n x^n$.

3.1 Poloměr konvergence

Věta Nechť $\sum a_n x^n$ je mocninná řada a $R \in [0, +\infty) \cup \{+\infty\}$ je definováno vztahem:

$$R = \frac{1}{\limsup_{n \to \infty} |a_n|^{\frac{1}{n}}}$$

Potom pro každé $x \in \mathbb{R}$, když |x| < R mocninná řada absolutně konverguje a když |x| > R mocninná řada diverguje.

Důkaz

1. Nechť $0 < R < +\infty$. Použijeme Cauchyho odmocninové kritérium (věta z MA1) a pro každé $x \in \mathbb{R}$ máme:

$$\limsup_{n \to \infty} |a_n x^n|^{\frac{1}{n}} = |x| \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} = \frac{|x|}{R}$$
 (1)

Tedy pro |x| < R řada absolutně konverguje a pro |x| > R diverguje.

2. Pokud $R = +\infty$, máme $\forall x \in \mathbb{R}$:

$$\lim_{n \to \infty} \sup_{n \to \infty} |a_n|^{\frac{1}{n}} \tag{2}$$

a mocninná řada tedy na celém \mathbb{R} konverguje.

3. Analogicky pro R = 0, mocninná řada absolutně konverguje pro $x \in \mathbb{R} \setminus \{0\}$.

3.2 Lokálně stejnoměrná konvergence mocninné řady

Věta Nechť $\sum a_n x^n$ má poloměr konvergence R > 0. Potom:

$$\sum_{n=0}^{\infty} a_n x^n \stackrel{\text{lok}}{\Rightarrow} \text{ na } (-R, R)$$

Neboli mocinná řada stejnoměrně konverguje na každém kompaktním podintervalu konvergence.

Důkaz Omezíme se na kompaktní podintervaly, tj. intervaly [-S, S], kde 0 < S < R. Na takovém intervalu potom máme:

$$\sum ||a_n x^n||_{\infty} = \sum |a_n| S^n \tag{1}$$

Taková řada podle Cauchyho odmocninového kritéria opět konverguje, takže podle Weierstrassova kritéria (2.11) $\sum a_n x^n \Rightarrow$ na [-S, S].

3.3 Abelova věta o mocinných řadách

Věta Nechť má $\sum a_n x^n$ kladný a konečný poloměr konvergence R a číselná řada $\sum a_n R^n$ konverguje, čili mocninná řada konverguje pro x = R. Potom:

$$\sum_{n=0}^{\infty} a_n x^n \Rightarrow \text{ na } [0, R] \quad \text{ a } \quad \lim_{x \to R^-} \sum_{n=0}^{\infty} a_n x^n = \sum_{x=0}^{\infty} a_n R^n$$

Důkaz (bez důkazu)

4 Fourierovy (trigonometrické) řady

Definice Fourierovou řadou budeme rozumět nekonečnou řadu funkcí tvaru:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

kde a_0, a_1, \dots a b_1, b_2, \dots jsou pevně dané reálné koeficienty a proměnná x probíhá \mathbb{R} .

4.1 Skoro-skalární součin

Definice "Skoro-skalární součin" definujeme jako:

$$\langle f, g \rangle := \int_{-\pi}^{\pi} fg$$

Má následující vlastnosti:

- 1. (symetrie) $\langle f_1, f_2 \rangle = \langle f_2, f_1 \rangle$
- 2. (bilinearita) $\langle a_1 f_1 + a_2 f_2, g \rangle = a_1 \langle f_1, g \rangle + a_2 \langle f_2, g \rangle$
- 3. (pozitivní semidefinitnost) $\langle g, g \rangle \geq 0$

4.2 Ortogonální systém sinů a cosinů

Věta Pro každá dvě čísla $m, n \in \mathbb{N}_0$ máme:

$$\langle \sin(mx), \cos(nx) \rangle = 0$$

Pro každá dvě čísla $m, n \in \mathbb{N}_0$, pokud nejsou současně nulová, máme:

$$\langle \sin(mx), \sin(nx) \rangle = \langle \cos(mx), \cos(nx) \rangle = \begin{cases} \pi \text{ pro } m = n \\ 0 \text{ pro } m \neq 0 \end{cases}$$

Pro m = n = 0 pak zvlášť $\langle \sin(0), \sin(0) \rangle = 0$ a $\langle \cos(0), \cos(0) \rangle = 2\pi$.

Důkaz (bez důkazu)

4.3 Besselova nerovnost a Riemann-Lebesgueovo lemma

Věta Nechť $f \in \mathcal{R}[-\pi, \pi]$ je funkce a čísla $a_0, a_1, ..., b_1, ...$ jsou Fourierovy koeficienty funkce f. Potom:

1. Platí Besselova nerovnost:

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) < \frac{\langle f, f \rangle}{\pi} = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2$$

Speciálně tedy řada čtverců Fourierových koeficientů konverguje.

2. Platí Riemann-Lebesgueovo lemma: Pro $n \to \infty$ platí, že $a_n \to 0$ a $b_n \to 0$, tedy:

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = 0$$

Důkaz

1. Pro $n \in \mathbb{N}$ označíme částečný součet $s_n = s_n(x)$ Fourierovy řady funkce f:

$$s_n = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))$$
 (1)

kde
$$a_k = \frac{\langle f, \cos(kx) \rangle}{\pi}, b_k = \frac{\langle f, \sin(kx) \rangle}{\pi}$$
 (2)

Díky vlastnostem skalárního součinu snadno získáme nerovnost a upravíme ji:

$$0 \le \langle f - s_n, f - s_n \rangle = \langle f, f \rangle - 2\langle f, s_n \rangle + \langle s_n, s_n \rangle \tag{3}$$

$$2\langle f, s_n \rangle - \langle s_n, s_n \rangle \le \langle f, f \rangle \tag{4}$$

Vyjádříme tedy $\langle f, s_n \rangle$ (dosadíme za s_n a pomocí bilinearity rozepíšeme, potom podle definice a_k a b_k dosadíme a vytkneme):

$$\langle f, s_n \rangle = \frac{a_0}{2} \langle f, \cos(0x) \rangle + \sum_{k=1}^{n} (a_k \langle f, \cos(kx) \rangle + b_k \langle f, \sin(kx) \rangle)$$
 (5)

$$= \pi \left(\frac{a_0^2}{2} + \sum_{k=1}^n (a_k^2 + b_k^2) \right) \tag{6}$$

Pro jednodušší značení si zavedeme a'_k a b'_k , kde $a'_0 = a_0/2$, $b'_0 = 0$ a pro n > 0 $a'_n = a_n$ a $b'_n = b_n$. Dále podle bilinearity (8), předchozí věty o ortogonalitě (9) a dosazením a_k a b_k podle definice (10):

$$\langle s_n, s_n \rangle = \left\langle \sum_{k=0}^n (a'_k \cos(kx) + b'_k \sin(kx)), \sum_{l=0}^n (a'_l \cos(lx) + b'_l \sin(lx)) \right\rangle$$
 (7)

$$= \sum_{k,l=0}^{n} (a'_k a'_l \langle \cos(kx), \cos(lx) \rangle + 2a'_k b'_l \langle \cos(kx), \sin(lx) \rangle + b'_k b'_l \langle \sin(kx), \sin(lx) \rangle)$$
(8)

$$= \sum_{k=0}^{n} \left((a'_k)^2 \langle \cos(kx), \cos(kx) \rangle + (b'_k)^2 \langle \sin(kx), \sin(kx) \rangle \right) \tag{9}$$

$$= \pi \left(\frac{a_0^2}{2} + \sum_{k=1}^n (a_k^2 + b_k^2) \right) \tag{10}$$

Nyní dosadíme výsledky (6), (10) do (4):

$$\pi \left(\frac{a_0^2}{2} + \sum_{k=1}^n (a_k^2 + b_k^2) \right) \le \langle f, f \rangle \tag{11}$$

Tedy číslo $\langle f, f \rangle / \pi$ je horním odhadem všech částečných součtů, tedy řada nutně konverguje.

2. Z konvergence řady čtverců je vidět, že nutně $\lim (a_n^2 + b_n^2) = 0$, tedy také $\lim a_n = \lim b_n = 0$.

4.4 Po částech hladká funkce

Definice Funkce $f:[a,b]\to\mathbb{R}$ je na intervalu [a,b] po *částech hladká*, když existuje konečná množina $A\supset[a,b]$ taková, že f má na množině $[a,b]\setminus A$ spojitou první derivaci f' a v každém bodu $a\in A$ má f i její derivace f' vlastní jednostranné limity. Ty budeme značit f(a+0) a f(a-0). Jinak řečeno: f je na [a,b] po částech hladká, když existuje dělení

$$a = a_0 < a_1 < \dots < a_k = b \tag{1}$$

intervalu [a, b] takové, že f má na každém intervalu (a_i, a_{i+1}) spojitou první derivaci (sama f je tedy také spojitá) a v dělících bodech existují vlastní jednostranné limity funkce i derivace.

4.5 Dirichletova věta o bodové konvergenci Fourierovy řady

Věta Nechť funkce $f: \mathbb{R} \to \mathbb{R}$ je 2π -periodická a její zúžení na interval $[-\pi, \pi]$ je po částech hladké. Její Fourierova řada pak na \mathbb{R} bodově konverguje k funkci (pro představu – aritmetický průměr):

$$\frac{f(x+0) + f(x-0)}{2}$$
, kde $f'(a_i \pm 0) = \lim_{x \to a_i^{\pm}} f'(x)$

V každém bodu spojitosti x funkce f její fourierova řada konverguje k číslu f(x).

Lemma o Dirichletově jádře: Nechť $n \in \mathbb{N}$ a

$$J_n(x) := \frac{1}{2} + \cos(x) + \cos(2x) + \dots + \cos(nx)$$

Pak pro každé $x \in \mathbb{R}, x \neq 2k\pi$, kde $k \in \mathbb{Z}$:

$$J_n(x) = \frac{\sin((n + \frac{1}{2})x)}{2\sin(\frac{x}{2})}$$

a také:

$$\frac{1}{\pi} \int_{-\pi}^{0} J_n(x) \, dx = \frac{1}{\pi} \int_{0}^{\pi} J_n(x) \, dx = \frac{1}{2}$$

Důkaz lemma (bez důkazu)

Důkaz věty Nechť $x \in \mathbb{R}$ je pevné. Potom funkci $G : [-\pi, \pi] \to \mathbb{R}$ definujeme jako G(0) = 0 a jinak předpisem:

$$G(u) = \begin{cases} \frac{f(x+u) - f(x-0)}{2\sin(\frac{u}{2})} & \text{pro } u \in [-\pi, 0) \\ \frac{f(x+u) - f(x+0)}{2\sin(\frac{u}{2})} & \text{pro } u \in (0, \pi] \end{cases}$$
(1)

Podle l'Hospitalova pravidla spočítáme jednostranné limity:

$$\lim_{u \to 0^{-}} G(u) = \lim_{u \to 0^{-}} \frac{f'(x+u)}{\cos(\frac{u}{2})} = f'(x-0)$$
 (2)

$$\lim_{u \to 0^+} G(u) = f'(x+0) \tag{3}$$

Nyní ukážeme, že G(u) je omezená funkce: na okolí nuly jsme spočítali vlastní limity, jinak se jmenovatel $(2\sin(u/2))$ nepřibližuje nule a čitatel je omezená funkce (f) je omezená). Navíc víme, že funkce G(u) má konečně mnoho bodů nespojitosti (body přechodu z definice po částech hladké funkce, viz předpoklady, případně nula). Tedy G(u) je podle Lebesgueova kritéria riemannovsky integrovatelná na intervalu [a,b].

Nechť $s_n = s_n(x)$ je n-tý částečný součet Fourierovy řady funkce f v daném bodu x:

$$s_n = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx))$$
 (4)

kde
$$a_k = \frac{\langle f(t), \cos(kt) \rangle}{\pi}, \quad b_k = \frac{\langle f(t), \sin(kt) \rangle}{\pi}$$
 (5)

Rozdíl $s_n(x)$ a (f(x+0)+f(x-0))/2 vyjádříme pomocí funkce G(u). Začneme vyjádřením $s_n(x)$. Do původního vzorce pro s_n dosadíme a_k a b_k (i za a_0), pro zjednodušení všude vytkneme $(1/\pi)$:

$$\frac{1}{\pi} \left(\frac{1}{2} \langle f(t), \cos(0t) \rangle + \sum_{k=0}^{n} \langle \sin(kt) \sin(kx) + \cos(kt) \cos(kx), f(t) \rangle \right)$$
 (6)

Nyní podle $\langle u, v \rangle + \langle u, w \rangle = \langle u, v + w \rangle$ sečteme a zjednodušíme:

$$\frac{1}{\pi} \left\langle f(t), \frac{1}{2} + \sum_{k=1}^{n} (\cos(kt)\cos(kx) + \sin(kt)\sin(kx)) \right\rangle \tag{7}$$

Použijeme součtový vzorec $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$:

$$\frac{1}{\pi} \left\langle f(t), \frac{1}{2} \sum_{k=1}^{n} \cos(k(t-x)) \right\rangle \tag{8}$$

Dosadíme za t := x + u - pozor, nyní se skalární součin integuje podle u!

$$\frac{1}{\pi} \left\langle f(x+u), \frac{1}{2} \sum_{k=1}^{n} \cos(ku) \right\rangle \tag{9}$$

Kde ale pravá strana skalárního součinu je Dirichletovo integrační jádro, tedy dosadíme a popíšeme pomocí integrálů:

$$\frac{1}{\pi} \langle f(x+u), J_n(u) \rangle \tag{10}$$

$$= \frac{1}{\pi} \left(\int_{-\pi}^{0} f(x+u) J_n(u) \, du + \int_{0}^{\pi} f(x+u) J_n(u) \, du \right)$$
 (11)

Nyní podle lemmatu přepíšeme: protože x je konstantní, a integrál x Dirichletova jádra je 1/2:

$$\frac{f(x-0)}{2} = \frac{1}{\pi} \int_{-\pi}^{0} f(x-0)J_n(u) \, du \, a \, \frac{f(x+0)}{2} = \frac{1}{\pi} \int_{0}^{\pi} f(x+0)J_n(u) \, du$$
 (12)

A ukážeme, že rozdíl

$$s_n(x) - \frac{f(x+0) + f(x-0)}{2} \tag{13}$$

se blíží nule. Vyjádříme tedy pomocí předchozích výpočtů a sloučíme integrály:

$$= \frac{1}{\pi} \left(\int_{-\pi}^{0} (f(x+u) - f(x-0)) J_n(u) \, du + \int_{0}^{\pi} (f(x+u) - f(x+0)) J_n(u) \, du \right)$$
(14)

Podle lemmatu dosadíme za J_n a jmenovatel zapíšeme jako součást funkce G(u) podle definice:

$$= \frac{1}{\pi} \left(\int_{-\pi}^{0} G(u) \sin((n+1/2)u) \, du + \int_{0}^{\pi} G(u) \sin((n+1/2)u) \, du \right)$$
 (15)

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} G(u) \sin((n+1/2)u) du$$
 (16)

Což podle definice skalárního součinu:

$$s_n(x) - \frac{f(x+0) + f(x-0)}{2} = \frac{\langle G(u), \sin((n+\frac{1}{2})u) \rangle}{\pi}$$
(17)

Nyní už jenom skalární součin rozložíme podle součtového vzorce $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$:

$$= \frac{1}{\pi} \left(\langle G(u) \cos(u/2), \sin(nu) \rangle + \langle G(u) \sin(u/2), \cos(nu) \rangle \right) \tag{18}$$

Kde podle R-L lemmatu (4.3) oba skalární součiny konvergují k 0 a věta je dokázána.

4.6 Věta o stejnoměrné konvergenci Fourierovy řady

Věta Nechť funkce $f: \mathbb{R} \to \mathbb{R}$ je 2π -periodická a její zúžení na interval $[\pi, -\pi]$ je po částech hladké. Nechť je navíc f spojitá na \mathbb{R} . Pak je f na \mathbb{R} stejnoměrným součtem své Fourierovy řady.

Důkaz (bez důkazu)

5 Úvod do komplexní analýzy

5.1 Tvrzení o rozkladu přirozených čísel na disjunktní množiny

Tvrzení Množinu přirozených čísel nelze rozložit na alespoň 2 vzájemě disjunktní aritmetické posloupnosti s unikátními diferencemi.

Důkaz Budeme předpokládat, že máme rozložení na k aritmetických poslupností a diference jsou různé. Nakonec odvodíme spor. Zaveď me si tedy jednotlivé posloupnosti $A_i = \{a_i + d_i n | n \in \mathbb{N}\}$, kde a_i a d_i jsou první členy posloupnosti a diference. Vlastnost, že posloupnosti jsou disjunktní můžeme také vyjádřit pomocí geometrických řad, kde $z \in (-1,1)$:

$$\sum_{n \in \mathbb{N}} z^n = \sum_{n \in A_1} z^n + \dots + \sum_{n \in A_k} z^n \tag{1}$$

Takové řady jistě konvergují. Přepíšeme tedy pomocí indexů místo množin:

$$z\sum_{n=0}^{\infty} z^n = z^{a_1} \sum_{n=0}^{\infty} z^{nd_1} + \dots + z^{a_k} \sum_{n=0}^{\infty} z^{nd_k}$$
 (2)

A podle vzorce pro součet geometrické řady můžeme sečíst:

$$\frac{z}{1-z} = \frac{z^{a_1}}{1-z^{d_1}} + \dots + \frac{z^{a_k}}{1-z^{d_k}}$$
 (3)

Tyto rovnosti nyní převedem do oboru komplexních čísel. Je totiž zřejmé, že platí i pro libovolné $z \in \mathbb{C}$, kde |z| < 1. Napomoc si vezmeme také d_k -tou primitivní odmocninu z 1:

$$\alpha = \cos(2\pi/d_k) + i\sin(2\pi/d_k) \tag{4}$$

A pro $n \to \infty$ zvolíme posloupnost z_n tak, aby konvergovala k α (což můžeme, protože α leží těsně na hranici kruhu |z| < 1) a položíme $z := z_n$. Jak vidíme, pro dostatečně velké n jde poslední člen pravé rovnosti do nekonečna ($1 - \alpha^{d_k}$ se blíží 0 zprava). Upravíme si tedy rovnost pro spor:

$$\frac{z_n^{a_k}}{1 - z_n^{d_k}} = \frac{z_n}{1 - z_n} - \frac{z_n^{a_1}}{1 - z_n^{d_1}} - \dots - \frac{z_n^{a_{k-1}}}{1 - z_n^{d_{k-1}}}$$
 (5)

Použijeme absolutní hodnotu a trojúhelníkovou nerovnost:

$$\left| \frac{z_n^{a_k}}{1 - z_n^{d_k}} \right| \le \left| \frac{z_n}{1 - z_n} \right| + \sum_{i=1}^{k-1} \left| \frac{z_n^{a_i}}{1 - z_n^{d_i}} \right| \tag{6}$$

Je vidět, že pravá strana pro $n\to\infty$ konverguje ke konečné hodnotě. Zároveň však víme, že levá strana pro dostatečně velké n konverguje k ∞ , což je spor s platností nerovnosti.

5.2 Holomorfní funkce

Definice Nechť $X \subset \mathbb{C}$ je otevřená množina, $z_0 \in X$ a $f: X \to \mathbb{C}$. Má-li f v z_0 derivaci řekneme, že je funkce f holomofní v bodě z_0 . Má-li f derivaci v každém bodě množiny X, řekneme, že f je holomorfní na množině X. Funkce je **celá celistvá**, pokud je holomorfní na celém \mathbb{C}

5.3 Komplexní exponenciála a její vlastnosti

Definice Komplexní exponenciála je definována jako řada:

$$e^z = \exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Věta Funkce $\exp(z)$ má vlastnosti:

- 1. $\forall z \in \mathbb{C}$: $\exp(z)' = \exp(z)$
- 2. $\forall z_1, z_2 \in \mathbb{C}$: $\exp(z_1 + z_2) = \exp(z_1) \exp(z_2)$

3. $\forall z \in \mathbb{C} : \exp(z) \neq 0$

4. $\forall a \in \mathbb{R}$: $\exp(ai) = \cos(a) = \cos(a) + i\sin(a)$

5. $\forall z \in \mathbb{C}$: $|\exp(z)| = \exp(\Re(z))$

6. $\forall u \in \mathbb{C}, u \neq 0$: $\exp(z) = u$ má nekonečně mnoho řešení lišící se navzájem o násobky $2\pi i$.

Analytická funkce

Definice Nechť $z_0 \in X \subset \mathbb{C}$, kde X je otevřená a $f: X \to \mathbb{C}$. Pokud existuje r > 0, že $D(z_0,r)\subset X$ a f se dá na disku $D(z_0,r)$ vyjádřit mocninnou řadou se středem v z_0 řekneme, že fje analytická v okolí bodu z_0 . Když je analytická v každém bodu množiny X, je analytická na množině X. Funkce je globálně analytická když je analytická v každém $z_0 \in X$ a pro každé r > 0.

Ekvivalence analytičnosti a holomorfismu 5.5

Nechť $X\subset \mathbb{C}$ je otevřená množina a $f:X\to \mathbb{C}.$ Pak následující tvrzení jsou ekvivalentní:

- 1. Funkce f je na X holomorfní.
- 2. Funkce f je na X analytická.
- 3. Funkce f je na X globálně analytická.

Důkaz (bez důkazu)

Jednoznačnost koeficientů mocninné řady 5.6

Věta Nechť $M = \sum a_n z^n$ a $N = \sum b_n z^n$ jsou mocninné řady a (z_n) prostá posloupnost komplexních čísel konvergující k 0, která leží v disku konvergence M i N. Pokud $\forall n$: $M(z_n) = N(z_n)$, potom také $a_n = b_n$.

Důkaz Můžeme předpokládat, že $z_k \neq 0$. Začneme tedy s prvním členem v 0:

$$a_0 = M(0) = \lim_{k \to \infty} M(z_k) = \lim_{k \to \infty} N(z_k) = N(0) = b_0$$
 (1)

Tedy $a_0=b_0$ a dále dokážeme matematickou indukcí: Nechť jsme již dokázali rovnost všechn členů po m-1 (včetně). Vezmeme funkce:

$$A(z) = \frac{M(z) - \sum_{n=0}^{m-1} a_n z^n}{z^m}$$
 (2)

$$A(z) = \frac{M(z) - \sum_{n=0}^{m-1} a_n z^n}{z^m}$$

$$B(z) = \frac{N(z) - \sum_{n=0}^{m-1} a_n z^n}{z^m} = \frac{N(z) - \sum_{n=0}^{m-1} b_n z^n}{z^m}$$
(2)

Tyto funkce jsou obě definovány na prstencovém okolí 0 a $A(z_k) = B(z_k)$ pro každé k. Dále se A(z) na tomto okolí shoduje s funkcí danou mocninnou řadou $\sum_{n\geq 0} a_{m+n} z^n$, která je spojitá a v 0 má hodnotu a_m . Analogicky B(z) se shoduje s funkcí danou močninnou řadou $\sum_{n>0} b_{m+n} z^n$ a v 0 má hodnotu b_m . Proto platí:

$$a_m = \lim_{z \to 0} A(z) = \lim_{k \to \infty} A(z_k) = \lim_{k \to \infty} B(z_k) = \lim_{z \to \infty} B(z) = b_m$$
 (4)

A krok je dokázán.

5.7 Holomorfní rozšíření a singularity

Definice Nechť $X \subset Y \subset \mathbb{C}$ jsou dvě otevřené množiny a $f: X \to \mathbb{C}, g: Y \to \mathbb{C}$ holomorfní funkce splňující f(x) = g(x) pro každé $x \in X$. Potom je g holomorfní rozšíření funkce f na množinu Y.

Definice Nechť $f(z) = \sum_{n \geq 0} a_n z^n$ má poloměr konvergence $0 < R < +\infty$, takže $f: D(0,R) \to \mathbb{C}$ je holomorfní funkce. Řekneme, že bod $u \in \mathbb{C}$ na konvergenční kružnici (tj. |u| = R) je **singularita funkce** f, když neexistuje holomorfní rozšíření f na žádném jeho okolí.

5.8 Věta o jednoznačnosti holomorfního rozšíření

Věta Holomorfní rozšíření na otevřenou a souvislou množinu je jednoznačné.

Důkaz (bez důkazu)

5.9 Věta o singularitách

Věta Nechť mocninná řada $f(z) = \sum_{n \geq 0} a_n z^n$ má poloměr konvergence R splňující $0 < R < +\infty$.

- 1. Alespoň jeden bod $u \in \mathbb{C}$ s |u| = R je singularitou funkce f.
- 2. (Pringsheimova věta) Pokud jsou koeficienty a_n reálné a nezáporné, je bod u=R singularitou funkce f.

Důkaz (bez důkazu)

6 Dodatek A: Požadavky ke zkoušce

Požadavky ke zkoušce u Martina Klazara ze zimního semestru roku 2009/2010.

6.1 Základní pojmy a definice

- 1. Definujte metrický prostor, otevřené a uzavřené množiny, hraniční bod množiny.
- 2. Definujte limitní bod množiny, izolovaný bod množiny, uzávěr množiny.
- 3. Definujte spojité zobrazení mezi metrickými prostory a homeomorfismus.
- 4. Podejte obě definice kompaktního metrického prostoru, resp. kompaktní množiny v metrickém prostoru.
- 5. Definujte úplný metrický prostor a kontrahující zobrazení mezi metrickými prostory.
- 6. Vysvětlete typy konvergence posloupností a řad funkcí.
- 7. Definujte mocninnou řadu a poloměr konvergence (v reálném oboru).
- 8. Definujte trigonometrickou řadu, Fourierovy koeficienty funkce a Fourierovu řadu funkce.
- 9. Vysvětlete pojem po částech hladké funkce (4.4)
- 10. Definujte holomorfní funkci a analytickou funkci (5.2, 5.4)
- 11. Definujte pojem holomorfního rozšíření a singularity (5.7)

6.2 Věty a důsledky bez důkazu

- 1. Uveď te vlastnosti otevřených a uzavřených množin v metrickém prostoru a topologickou charakterizaci spojitosti zobrazení mezi metrickými prostory (T.1.1-T.1.3).
- 2. Uveď te výsledky o kompaktních množinách v metr. prostoru (T.1.4-V.1.8).
- 3. Uveď te výsledky o úplných metr. prostorech (T.1.9 a V.1.10).
- 4. Uveď te kritéria stejnoměrné konvergence posloupností a řad funkcí (T. 2.1-2.2, V. 2.7-2.8).
- 5. Uveďte věty o záměně pořadí operace limity s dalšími operacemi pro posloupnosti a řady funkcí (V. 2.3-2.5 a jejich verze pro řady).
- 6. Uveď te výsledky o mocninných řadách (3.1, 3.2, 3.3) (orig: V. 2.9, T. 2.10, V. 2.11).
- 7. Uveď te výsledky o Fourierových řadách (T. 2.12, V. 2.13-2.15).
- 8. Uveď te vlastnosti komplexní exponenciály (5.3)
- 9. Uveď te hlavní výsledky o holomorfních funkcích (5.5, 7 a 8).

6.3 Věty s důkazy

- 1. Uveďte a dokažte výsledky o otevřených a uzavřených množinách v metr. prostoru. (T.1.1 a T.1.2).
- 2. Uveď te a dokažte topologickou charakterizaci spojitosti zobrazení mezi metr. prostory (T.1.3).
- 3. Dokažte, že kompaktní množiny v metr. prostoru jsou uzavřené a omezené (T.1.5).
- 4. Uveď te a dokažte vlastnosti spojitých funkcí na kompaktních metr. prostorech (V.1.7).

- 5. Uveďte a dokažte Banachovu větu o pevném bodu (V.1.10).
- 6. Dokažte Bolzanovu-Cauchyovu podmínku pro posloupnosti funkcí (T. 2.1).
- 7. Dokažte Mooreovu-Osgoodovu větu (V 2.3).
- 8. Dokažte větu o záměně pořadí limity a integrování (V. 2.4).
- 9. Dokažte Weierstrassovo kritérium stejnoměrné konvergence (1. část V. 2.7).
- 10. Dokažte vzorec pro poloměr konvergence mocninné řady (V 2.9).
- Dokažte, že mocninná řada konverguje na intervalu konvergence lokálně stejnoměrně (T. 2.10).
- 12. Dokažte Besselovu nerovnost a Riemannovo-Lebesgueovo lemma (4.3)
- 13. Dokažte větu o bodové konvergenci Fourierovy řady po částech hladké funkce (4.5, bez lemma).
- 14. Dokažte, že množina přirozených čísel není sjednocením alespoň dvou disjunktních aritmetických posloupností s různými diferencemi (první Tvrzení bez čísla).
- 15. Dokažte tvrzení o jednoznačnosti koeficientů mocninné řady (T. 6).