МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6 по дисциплине «Машинное обучение»

Тема: Кластеризация (DBSCAN, OPTICS)

Студент гр. 6304	Виноградов К.А
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2020

Загрузка данных

Датасет загружен в датафрейм.

DBSCAN

Проведена кластеризация методом DBSCAN при параметрах по умолчанию. Выведены метки кластеров, количество кластеров, а также процент наблюдений, которые кластеризовать не удалось, что показано на рис. 1. В табл. 1 представлены все параметры, которые принимает DBSCAN.

```
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1} 36 0.7512737378415933
```

Рисунок 1 – Кластеризация DBSCAN при параметрах по умолчанию

Таблица 1 – Параметры DBSCAN

Параметр	Описание		
eps: float,	Максимальное расстояние между двумя наблюдениями,		
default=0.5	чтобы один считался соседним с другим (радиус		
	окрестности наблюдения).		
min_samples: int,	Минимальное количество наблюдений в окрестности		
default=5	точки, чтобы считать ее базовой (включая саму точку).		
metric: string or	Метрика для вычисления расстояния между		
callable,	экземплярами в массиве признаков.		
default='euclidean'			
algorithm: {'auto',	Алгоритм, который будет использоваться для		
'ball_tree',	вычисления точечных расстояний и поиска ближайших		
'kd_tree', 'brute'},	соседей.		
default = 'auto'			

Построены график количества кластеров и процента не кластеризованных наблюдений в зависимости от максимальной

рассматриваемой дистанции (минимальное значение точек, образующих кластер, оставлено по умолчанию) и график количества кластеров и процента не кластеризованных наблюдений в зависимости от минимального значения количества точек, образующих кластер (максимальная рассматриваемая дистанция между наблюдениями оставлена по умолчанию). Графики представлены на рис. 2 и 3.

Рисунок 2 – Зависимости количества кластеров и процента шума от ерѕ

Рисунок 3 – Зависимости количества кластеров и процента шума от min_samples

Размерность данных понижена до 2 с помощью метода главных компонент. Результаты кластеризации данных пониженной размерности представлены на рис. 4.

Estimated number of clusters: 5

Рисунок 4 – Кластеризация данных пониженной размерности

OPTICS

В табл. 2 представлены все параметры, которые принимает OPTICS.

Таблица 2 – Параметры OPTICS

Параметр	Описание		
max_eps: float,	Максимальное расстояние между двумя		
default=∞	наблюдениями, чтобы один считался соседним с		
	другим (радиус окрестности наблюдения).		
min_samples: int>1 or	Количество наблюдений в окрестности точки,		
float in [0, 1],	чтобы считать ее базовой.		
default=5			

metric: string or	Метрика для вычисления расстояния.
callable,	
default='minkowski'	
p: int, default = 2	Параметр для метрики Минковского.
cluster_method: string,	Метод извлечения кластеров. Также можно
default = 'xi'	поставить 'dbscan'.
eps	Максимальное расстояние между двумя
	наблюдениями, чтобы один считался соседним с
	другим (радиус окрестности наблюдения). Нужен
	только при cluster_method=dbscan.
xi: float in [0,1],	Определяет минимальную крутизну на графике
default=0.05	достижимости, который составляет границу
	кластера.
predecessor_correction:	Коррекция кластеров в соответствии с
bool, default=True	предшественниками, рассчитанными OPTICS. Этот
	параметр оказывает минимальное влияние на
	большинство наборов данных. Используется только
	когда cluster_method = 'xi'.
min_cluster_size: int>1	Минимальное количество выборок в кластере
or float in [0, 1],	OPTICS, выраженное в виде абсолютного числаили
default=None	доли от количества выборок (округленное до не
	менее 2). Если None, вместо этого используется
	значение min_samples. Используется только когда
	cluster_method = 'xi'.
algorithm: {'auto',	Алгоритм, который будет использоваться для
'ball_tree', 'kd_tree',	вычисления точечных расстояний и поиска
'brute'}, default =	ближайших соседей.
'auto'	

Результаты кластеризации методом OPTICS близки к результатам DBSCAN при cluster_method=dbscan, max_eps=0.5, min_samples=5. Результат представлен на рис. 5.

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1} 36 0.7550949513663733

Рисунок 5 – Результат кластеризации OPTICS

Процесс определения базовых точек в OPTICS идентичен DBSCAN, однако в OPTICS для точек вычисляются и сохраняются расстояния достижимости, на основе которых наблюдения выстраиваются в кластере, сохраняя при этом иерархическую структуру.

Рисунок 6 – График достижимости

Работа классификатора исследована при различных параметрах metric. Результаты представлены на рис. 7 - 11 и в табл. 3.

Рисунок 7 – График достижимости при метрике cityblock

Рисунок 7 – График достижимости при метрике cosine

Рисунок 7 – График достижимости при метрике Euclidean

Рисунок 7 – График достижимости при метрике 11

Reachability Plot

Рисунок 7 – График достижимости при метрике 12

Reachability Plot

Рисунок 7 – График достижимости при метрике manhattan

Таблица 3 – Результаты OPTICS для различных метрик

Метрика	Количество кластеров	Процент выпавших наблюдений
cityblock	15	0.031
cosine	34	0.077
euclidean	17	0.03
11	15	0.03
12	17	0.037
manhattan	15	0.03

Выводы

В ходе лабораторной работы изучены такие методы кластеризации модуля Sklearn, как DBSCAN и OPTICS. При cluster_method='xi' OPTICS разделяет данные на большое число кластеров, малое количество кластеров достигается только при большом количестве выпавших наблюдений.