COMP3203 Final Exam Summary

William Findlay
December 14, 2018

Contents

1 1	nits
2]	ormulas
2	1 Frequency
2	2 Period
2	3 Wavelength
2	4 Bandwidth
2	5 Delay
_	2.5.1 Propagation
	2.5.2 Transmit
	2.5.3 Queue
	2.5.4 Round Trip Time
c	6 Overhead
2	7 Orthogonality
]	rror Checking
1	RQ
	1 Sliding Window
	4.1.1 Go Back N
	4.1.2 Selective Reject
,	2 Stop and Wait
-	2 Stop and Watt
I	Iultiaccess
٠	1 LANs
	5.1.1 Switched LANs
	5.1.2 Broadcast LANs
Ę	2 Uncoordinated Access Control
Ę	3 MAC Protocol
	5.3.1 Centralized
	5.3.2 Distributed
F	4 How Does MAC Work?
	5.4.1 Measure
	5.4.2 Coordinate
	5.4.3 Select a Winner
ۏ	5 MAC Efficiency
	thernet
(1 Limitations
6	2 Backoff Protocols
	6.2.1 Implementation
6.3	3 Collision-Free Protocols
	6.3.1 Bitmap
	6.3.2 Tree Splitting
	6.3.3 Binary Countdown
•	Vinalaga
	Vireless 1 Cellular
	2 Ad Hoc
-	
	7.2.1 Traversal
_	7.2.2 Gabriel Test
- 7	3 Bluetooth

		7.3.1 7.3.2	Formation	
Q	GPS	2	1	1
G	8.1		Techniques	
	0.1	8.1.1	TOA	_
		8.1.2	TDOA	_
		8.1.3	AOA	
	0.0	-		
	8.2	Satem	ses	_
9	Rou	ting	1:	2
			ce Vector	
			tate Protocol	
	9.3			
	0.0	9.3.1	Kruskal	
			Prim	
	9.4		a	
	3.4	Dijksu	a	4
10	\mathbf{IP}		1	4
		IPv4		
	10.1		Classes	
			Subnetting	
			Subnet Masks	
			Header	
	10.2		1	
	10.2		Neighbor Discovery	
	10.2		Neighbor Discovery	
	10.5	RARP		U
11	TCI)	10	6
			Works (Sliding Window)	
	11.1		Opening Connection	
			Closing Connection	
			Sliding Window (Important)	
	11 9		ng Statistics	
	11.2		Average Round Trip Time	
			Smoothed Round Trip Time	
			Traffic Variance	
	11 0		RTT Variance Estimation	-
	11.3	Equilli	orium Model	8
12		ple Te		
	1		1	-
		1.1	1	
		1.2		
		1.3		
	2			
	3			9
	4			0
		4.1		0
		4.2		0
	5			1
		5.1	A	1
		5.0	D	11

6																							 		2	21
7																									2	22
	7.1																								2	22
	7.2																								9	22

1 Units

 \bullet unit chart

prefix	base 10	base 2
pico	10^{-12}	2^{-40}
nano	10^{-9}	2^{-30}
micro	10^{-6}	2^{-20}
milli	10^{-3}	2^{-10}
	10^{0}	2^{0}
kilo	10^{3}	2^{10}
mega	10^{6}	2^{20}
$_{ m giga}$	10^{9}	2^{30}
tera	10^{12}	2^{40}
peta	10^{15}	2^{50}

• $Hz \implies$ cycles per second $- GHz \implies 10^9$ cycles per second

- etc.

2 Formulas

2.1 Frequency

$$f=\frac{1}{T}$$

2.2 Period

$$T = \frac{1}{f}$$

2.3 Wavelength

$$\lambda = vT$$
$$\lambda = \frac{v}{f}$$

2.4 Bandwidth

$$B = vT$$

2.5 Delay

$$D = D_P + D_T + D_Q$$

2.5.1 Propagation

$$D_P = \frac{\text{distance}}{\text{speed of light}}$$

2.5.2 Transmit

$$D_T = \frac{\text{packet size}}{\text{bandwidth}}$$

2.5.3 Queue

$$D_Q = \sum_{\text{nodes}} (\text{buffering} + \text{switching})$$

2.5.4 Round Trip Time

$$RTT = 2D$$

• how long does it take a packet to go there and back

2.6 Overhead

$$T_O = \frac{h}{p}$$
 where $h =$ overhead bits, $p =$ message bits

• extra over what we want

2.7 Orthogonality

- take inner product of two vectors
- \bullet add them in mod 2
 - $-0 \implies \text{orthogonal}$
 - $-1 \implies \mathbf{not}$ orthogonal

3 Error Checking

- VRC
- \bullet LRC
- CRC
 - this guy is usually used
 - use in tandem with ARQ
- \bullet checksum

4 ARQ

- automatic repeat request
- handle errors by requesting they be resent

- use in tandem with error detection
 - CRC
 - checksum
- main parts
 - ACKS
 - NAKS
 - timers

4.1 Sliding Window

- number frames sequentially
- window of either fixed or variable size
 - see TCP section

4.1.1 Go Back N

- go back to the beginning of the window and resend everything
- w i = N

4.1.2 Selective Reject

- only resend the damaged frame
- \bullet need sorting logic
 - frames may be out of order

4.2 Stop and Wait

• like sliding window with a **window size** = 1

5 Multiaccess

- $\bullet\,$ problem of shared channels
 - who gets a turn?
 - how do we make sure things get to the right place?
- point-to-point is easy (by contrast)

5.1 LANs

- $\bullet\,$ local area network
- shared channel

5.1.1 Switched LANs

- interconnection by transmission
- \bullet complex
 - routing tables
 - hierarchical addressing

5.1.2 Broadcast LANs

- information received by all
- simple
 - no routing
 - flat addressing scheme

- MAC (medium access control)
- used more often

5.2 Uncoordinated Access Control

- sucks
- $P(\text{exactly one talks}) = np(1-p)^{n-1}$

5.3 MAC Protocol

- Medium Access Control
- dynamic
- on demand
- ullet must **minimize** collisions
- two classes
 - random access
 - scheduling

MAC vs Static

 $MAC \implies dynamic, on demand$

Static \implies separate dedicated channels

5.3.1 Centralized

- one master node
 - makes decisions for slaves nodes
- \bullet dependent on master
 - what if it fails?
 - less efficient

5.3.2 Distributed

- all nodes equivalent
- make a decision together
 - distributed fashion

5.4 How Does MAC Work?

- i) **measure** prop time
- ii) coordinate access
- iii) select a winner

5.4.1 Measure

- ping
- $T_{prop} = \frac{d}{v}$

5.4.2 Coordinate

```
def coordinateTwoHosts(A,B):
    A. listen(channel)

if channel not busy:
```

```
A. transmit (m)
 5
 6
         while no message from B:
 7
          A. listen (channel)
 8
         if time > T_{prop}:
           break
 9
10
         else:
11
          A. retransmit (m)
12
13
      repeat for B
```

5.4.3 Select a Winner

- let T_A = time for a collision detected by A
- let T_B = time for a collision detected by B
- A wins $\iff T_A < T_B$
- loser is quiet until winner completes
- \bullet winner is quiet after transmission for RTT

5.5 MAC Efficiency

$$E = \frac{1}{1 + 2\frac{T_{prop}}{L}}$$

6 Ethernet

- broadcast network
 - every node can hear every other
- when collision occurs
 - stop sending
 - wait to retransmit

6.1 Limitations

- $\bullet\,$ very large packet size as bandwidth increases
- MAC is technology dependent
 - are measurements accurate?
 - measurements may differ between hosts
- ullet but it is **realistic**
 - uptime is important

6.2 Backoff Protocols

- queue of nodes waiting to transmit
- keep track of number of attempts
- define P(x)
 - probability you transmit on attempt \boldsymbol{x}
 - decreasing in x

6.2.1 Implementation

- station i has bck_i
- set it to 0
- if queue not empty
 - attempt transmission with $p(bck_i)$
 - fails $\implies bck_i + +$
 - succeeds $\implies bck_i := 0$
- if queue was empty, don't change bck_i

6.3 Collision-Free Protocols

6.3.1 Bitmap

- contention period = N slots
- ullet station i inserts one bit into ith slot
- \bullet after N slots, each station knows who wants to transmit
- transmit in order
- a station i is out of luck if it becomes ready just after slot i passes

6.3.2 Tree Splitting

- nodes are leaves
- recursive
- keep taking left subtree until one node in contention
 - that node wins
 - take right subtree if applicable
 - walk back up to root

6.3.3 Binary Countdown

- assume all addresses are same length
- node writes its bit from highest to lowest order
 - if I have a 0 and somebody else has a 1
 - I drop out
 - otherwise
 - I stay in
- last man standing wins

7 Wireless

7.1 Cellular

- $\bullet\,$ organized into \mathbf{cells}
 - hexagons
- \bullet neighboring cells \implies different frequency bands

7.2 Ad Hoc

- temporary connection
- decentralized
- model with a Unit Disk Graph
 - points and circles for range
 - -G = (V, E) where

- vertices are nodes
- edges are nodes that can each each other
- asymmetric ranges \implies directed graph

7.2.1 Traversal

- compass routing
 - draw line \vec{st}
 - pick smallest angle edge sv
 - draw new line \vec{vt}
 - doesn't always complete
- face routing
 - draw line \vec{st}
 - LHR or RHR
 - pick a face which crosses the line
 - walk it until you are **about to cross**, then **flip face** to next

7.2.2 Gabriel Test

- if A and B are in range
- ullet draw a circle with radius AB
 - if there is some C inside the circle, remove link AB
 - make link AC, CB instead
- removes all edge crossings
- edges preserved are called Gabriel edges

7.3 Bluetooth

7.3.1 Formation

- master nodes
- slave nodes
 - bridge nodes (a special slave)

Rules

- 1. master only next to slaves (and bridges)
- 2. slaves only next to a master
- 3. each master's $\mathbf{piconet}$ can have \mathbf{max} 7 \mathbf{slaves}
- 4. bridge between TWO masters ONLY

7.3.2 Joining Two Piconets

- roles of master and slave can switch
 - done by *changing frequencies*
- a slave will act as a **bridge**

8 GPS

8.1 Three Techniques

8.1.1 TOA

• time of arrival

- compute distance from
 - three anchor nodes
 - use **ping time** to do this

8.1.2 TDOA

- time difference of arrival
- difference in arrival from two anchors
 - $-|t_1-t_2|$
- if speed in medium is known
 - time \implies distance
 - -v = d/t

8.1.3 AOA

- angle of arrival
- sensor node determines directions
 - from **two anchors**
- if two sensors on same line
 - use a third anchor

8.2 Satellites

- ullet three satellites
 - $-(a_1,b_1,c_1)$
 - $-(a_2,b_2,c_2)$
 - $-(a_3,b_3,c_3)$
- three unknowns
 - -(x,y,z)
- solve linear system

$$(x - a_1)^2 + (y - b_1)^2 + (z - c_1)^2 = r_1^2 = c^2 t_1^2$$

$$(x - a_2)^2 + (y - b_2)^2 + (z - c_2)^2 = r_2^2 = c^2 t_2^2$$

$$(x - a_3)^2 + (y - b_3)^2 + (z - c_3)^2 = r_3^2 = c^2 t_3^2$$

9 Routing

- routing
 - algorithm to **deliver packets**
 - two problems
 - selection
 - routing table
 - delivery
- route discovery
 - algorithm to discover a route
 - precedes routing

9.1 Distance Vector

- \bullet source distance is 0
 - all other nodes ∞
- for all edges

- if distance to t can be shortened by taking the edge...
- update to new lower value
- \bullet at *i*th iteration
 - all shortest paths of **length at most** *i* **edges**
- initially

$$D[i,j] = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } j \text{ is a neighbor of } i \\ \infty & \text{otherwise} \end{cases}$$

• then

$$D[i,k] = \min_{j,k \neq i} \{w[i,j] + D[j,k]\}$$

9.2 Link State Protocol

- router responsible for neighbors
- make an LSP packet
 - ID of creator
 - list of neighbors and cost
 - sequence number
 - TTL for the packet
- LSP transmitted to all routers
 - flooding
- every router has a complete map
- updating/calculation uses Dijkstra's

9.3 MST

- two standard algorithms
 - Prim
 - Kruskal

9.3.1 Kruskal

- start with nodes separated
 - keep adding smallest edge that doesn't create a cycle
 - we are done when all vertices are in the tree
- time complexity
 - # of times we change group label is at most $\log n$
 - limited by how fast we can sort the edges
 - $(|E|\log|E|)$

9.3.2 Prim

- (\mathbf{p}) rim's = (\mathbf{p}) ick a node
 - pick smallest edge from that vertex that reaches an unvisited vertex
 - add that edge, now imagine the two vertices as one meta-vertex
 - repeat until we have reached the last vertex
- time complexity
 - $\overline{O(|E|\log|E| + |V|\log|E|)}$

9.4 Dijkstra

- add all vertices to a min-heap of d(v) Q
 - initialize d(s) is 0
 - initialize all other d(v) to ∞
- pop s and update weight of all neighbors v of s as d(s) + wt(s, v)
 - keep track that you popped it
- pop the lowest and repeat the above step for the lowest
- ullet continue until Q contains no more vertices
- time complexity
 - $\left| O(|E| \log |E| + |V| \log |E|) \right|$

10 IP

10.1 IPv4

10.1.1 Classes

- five classes
 - A 7N 24H
 - B 14N 16H
 - C 21N 8H
 - D multicast
 - E experiments

Class	Net ID	Host ID
A	7 bits	24 bits
В	14 bits	16 bits
\mathbf{C}	21 bits	8 bits

Figure 1: Division of bits in class A, B, and C IP classes.

Figure 2: Breakdown of the five IP classes.

10.1.2 Subnetting

- solution when addresses can't be made "less flat"
- only router should be aware
- two levels to three levels

- net ID
- subnet ID
- host ID
- single IP, several physical networks
 - subnets
 - near each other physically

10.1.3 Subnet Masks

- 24 1's
- followed by 8 0's
- bitwise AND of address and subnet mask
 - yields subnet number

10.1.4 Header

- no options \implies 20 bytes
- IHL is header length in words
 - a word is **32-bit**
- TOS
 - type of service
- TOS subfield
 - route selection
 - subnet service
 - queuing
- precedence subfield
 - degree of urgency
- options
 - security
 - timestamping
 - source routing
 - route recording

10.2 IPv6

- need more address space
- hexadecimal digits
 - 16 bit blocks
- block1:block2:block3:block4:block5:block6:block7:block8
- block1:block2::block7:block8
 - in this example blocks 3-6 inclusive are all 0's
- 128.33.87.51 = ::00FF:128.33.87.51
- prefixes
 - 001 global unicast
 - 010 provider based

10.2.1 Neighbor Discovery

- each router periodically sends advertisements on subnets
- indicate
 - IP address
 - gateway functionality
 - link layer address
 - network prefixes
 - etc.

• automatically identify routers in the subnet

10.3 DHCP

- automate IP configuration
- host broadcasts discover message to physical network
- server responds with offer message
- host accepts an offer
- server sends DHCP ACK and assigns the IP
 - for a period of time T and two thresholds
 - $-T_1, T_2 = T/2, 7T/8$
- T_1 is period before it asks to **renew lease**
- T_2 is is period before it starts broadcasting to any server on network
- \bullet T is period before it must start from beginning

10.4 ARP

- address resolution protocol
- translates IP understood locally
- allows hosts to build tables
- updates every 15 minutes

10.5 RARP

- reverse address resolution protocol
- obsolete
- request IP address from a computer network

11 TCP

11.1 How it Works (Sliding Window)

- byte oriented
 - sender writes bytes into
 - receiver reads from
- variable Max Segment Size
 - decides when it has enough bytes (=MSS)
 - or sending process requests packets
 - timer can trigger transmissions

11.1.1 Opening Connection

- A sets SYN bit and register a SEQ#
- B sets SYN bit and registers a SEQ#
 - acknowledges with A's SEQ# + 1
- A acknowledges with B's SEQ# + 1
- this is important because
 - A informs B of its starting number
 - B acknowledges and informs A of its own starting number
 - A acknowledges B's starting number
- in this way, they can anticipate what the other will do
- a timer makes sure that if an expected response is not received, they will retry

11.1.2 Closing Connection

- A sets FIN bit with SEQ#
- B responds with its own FIN bit
- A acknowledges

11.1.3 Sliding Window (Important)

- credit allocation scheme
- each byte transmitted has a sequence number
- sender includes SEQ# of first byte
- receiver acknowledges
 - -(A=i,W=j)
 - all bytes up to i-1 are acknowledged
 - next byte has SEQ# i
 - grant permission to send next $i, i+1, \ldots, j-1$ bytes
- \bullet keep track of a congestion window w locally
 - if W < w, increase it by sending out a packet
 - if $W \geq w$, wait for ACK and reduce W (and increase w)

11.2 Building Statistics

11.2.1 Average Round Trip Time

- RTT(i) = round trip time for ith segment
- ARTT(k) =average round trip time for first k segments

$$ARTT(k+1) = \frac{1}{k+1} \sum_{i=1}^{k+1} RTT(i)$$

- observe we have coefficient $\frac{1}{k+1}$ for all terms
- or, recursively

$$ARTT(k+1) = \frac{k}{k+1}ARTT(k) + \frac{1}{k+1}RTT(K+1)$$

• observe we have coefficient $\frac{k}{k+1}$ and $\frac{1}{k+1}$

11.2.2 Smoothed Round Trip Time

- SRTT(k) = smoothed RTT estimate
- defined by recursion

$$SRTT(K = 1) = \alpha SRTT(k) + (1 - \alpha)RTT(k + 1)$$

• α further from $k \implies$ less weight assigned

11.2.3 Traffic Variance

• calculate error then calculate standard deviation

$$AERR(k+1) = RTT(k+1) - ARTT(k)$$

$$ADEV(k+1) = \frac{1}{k+1} \sum_{i=1}^{k+1} |AERR(i)|$$

RTT Variance Estimation

- Jacobson's
 - works for no retransmissions
- Exponential RTO Backoff
 - good for when a retransmission occurs
- Karn's (best of both worlds)
 - do not use measured RTT for retransmitted segments
 - calculate backoff RTO when retransmission occurs
 - use backoff RTO until we get an ACK for a new segment
 - then start using Jacobson's again

11.3 Equilibrium Model

- \bullet loss \Longrightarrow decrease w
- $-w = \frac{w}{2}$ no loss \Longrightarrow increase w $-w = w + \frac{1}{w}$

Sample Test **12**

1

A system has an n-layer protocol hierarchy. Applications generate messages of length MBytes. At each level of the layers, an h-Byte header is added.

1.1

[3 pts] What fraction of the network bandwidth is filled with headers? (Give the formula.)

$$overhead = \frac{nh}{nh + M}$$

1.2

[3 pts] Now assume M = 20h. What should the max number n of layers be so that the fraction in previous Question 1 does not exceed 10 % of the total?

$$overhead = \frac{nh}{nh+M}$$

$$10\% \ge \frac{nh}{nh+20h}$$

$$\frac{1}{10} \ge \frac{n}{n+20}$$

$$(n+20)\frac{1}{10} \ge n$$

$$(n+20)\frac{1}{10} \ge n$$

$$\frac{n}{10} + 2 \ge n$$

$$n+20 \ge 10n$$

$$20 \ge 9n$$
$$n \le \frac{20}{9}$$

1.3

Two CDMA users are assigned the 9-bit vectors A = 110011011, B = 100101111, respectively. Are they orthogonal? (Prove or disprove!) **Hint:** Recall $0 \to -1$ and $1 \to +1$.

Take inner product of vectors in mod 2.

$$\langle \vec{A}, \vec{B} \rangle \mod 2 = 1 + 0 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 1 \mod 2$$
 \iff orthogonal

2

You are observing a ship from two base stations A, B. Assume that at this time of observation $\alpha = \pi/3, \beta = \pi/4$ and $d = 1000 \ m$.

Derive a formula for the unknown distance x (You are not required to evaluate the trigonometric functions of $\pi/3$ and $\pi/4$).

$$x = d \frac{\tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$$
$$x = 1000 \,\mathrm{m} \frac{\tan \frac{\pi}{3} \tan \frac{\pi}{4}}{\tan \frac{\pi}{3} + \tan \frac{\pi}{4}}$$

3

Ethernet stations a, b, c, d, e, f, g, h contend for a channel. Assume a, e, f, g, h become ready at once and that they use the tree resolution protocol to resolve contentions.

for each contention slot give in the table below the winning stations.

Slot	Station
1	a e f g h
2	a
3	e f g h
4	e f

Slot	Station
5	e
6	f
7	g h
8	g

4

The links and faces of a planar wireless network are labeled as depicted in the Figure below. Moreover there is a source node s and a destination node t.

4.1

Apply the face routing algorithm with the left-hand rule (on a face) to give a path from s to t. In the table below name the face and the edges of that face being traversed. Your answers must list all the links traversed and the paths formed must arise from the corresponding routing algorithm!

Face	List of Edges Being Traversed
F_2	4
F_3	12,13
F_5	14, 15

4.2

Apply the compass routing algorithm to give a path from s to t.

4, 9, 10, 11, 14, 15

5

In the networks below empty (gray, black) bullets are pure slaves, bridges, masters, respectively. According to Bluetooth formation rules, which of the two networks are bluetooth networks, which are not and why?

5.1 A

• valid

- all piconets have slavecount ≤ 7
- all piconets have slaves
- no adjacent masters
- no adjacent slaves
- bridge connects two piconets by their master nodes

5.2 B

• invalid

- the good
 - all piconets have slavecount ≤ 7
 - no adjacent masters
 - no adjacent slaves
- the bad
 - bridge connects **three** piconets by their master nodes
 - should be \mathbf{TWO}
 - one piconet has **no slaves**

6

There are $n \geq 2$ possible frequencies and 2 synchronous wireless stations. Each station is using frequency-hoping to select at random (with probability 1/n) one of these frequencies. What is the probability that the stations select the same frequency? (Give explanation of your answer.)

Define event A is both stations select same frequency.

$$P(A) = n \frac{1}{n} \frac{1}{n}$$
$$= \frac{1}{n}$$

7

n sensors all having range equal to 1, form a unit line graph arranged on a line such that the ith sensor has x-coordinate equal to x_i , for $i=1,2,\ldots,n$. Further, assume $x_i=i+(-1)^i$, for all $i=1,2,\ldots,n$.

7.1

Give the values x_1, x_2, x_3 .

$$x_1 = 1 + (-1)^1 = 1 - 1 = 0$$

 $x_2 = 2 + (-1)^2 = 2 + 1 = 3$
 $x_3 = 3 + (-1)^3 = 3 - 1 = 2$

7.2

[2 pts] Is the unit line graph a connected graph? Give a precise explanation of your answer.

In order for the graph to be connected, we need some node with an x-coordinate of 1 at a bare minimum. Is it possible to have such an x-coordinate?

$$1 = i + (-1)^i$$
$$i = 0$$

Our $i \in \{1, 2, ..., n\} \implies i \neq 0$. Therefore it is not a connected graph.