Prototypical Explanations in an AI method for Protein Pocket Detection

Giovanni Bocchi 1, Alessandra Micheletti 1,

Carmen Gratteri² and Carmine Talarico²

- ¹ Department of Environmental Science and Policy, University of Milan
- ² Dompé Farmaceutici S.p.A.

Problem 1: Protein Pocket Detection

Protein 3BVB surface

Protein 3BVB pocket

AI (not that SAFE) solutions

Problem 2: Pocket Similarity

2025-6-19

SAFE-ML satellite event

Group Equivariant Non-Expansive Operators

GENEO (Group Equivariant Non-Expansive Operators)

Given two functional spaces $\Phi = \{\varphi \colon X \to \mathbb{R}\}$ and $\Psi = \{\psi \colon Y \to \mathbb{R}\}$, two groups G and H of transformations of the functions domains (X and Y) and a fixed homomorphism $T \colon G \to H$, we define a Group Equivariant Non-Expansive Operator as a function F from Φ to Ψ with the following two properties:

Equivariance: For every $\varphi \in \Phi$ and $g \in G$ it holds that

$$F(\varphi \circ g) = F(\varphi) \circ T(g)$$

Non-Expansivity: For every φ_1 , $\varphi_2 \in \Phi$ it holds that

$$||F(\varphi_1) - F(\varphi_2)||_{\infty} \le ||\varphi_1 - \varphi_2||_{\infty}$$

GENEOmap

Each GENEO F_i computes an isometry invariant coefficient η_i . Together, such coefficients, constitute the isometry invariant embedding of the pocket.

$$\eta = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_d \end{bmatrix} \in \mathbb{R}^d$$

GENEOmap: similarity measure

Protein 11GS pocket mapped to η_1

Protein 3BVB pocket mapped to η_2

Similarity enables to define Prototypes

Protein: 3BVB Ligand: ??? Pocket mapped to $\tilde{\eta}$

1st nn $||\tilde{\eta} - \eta_i||_{\infty}$ Protein: 4Q1X Ligand: 017

Library of pockets mapped to η_i

2nd nn $||\tilde{\eta} - \eta_i||_{\infty}$ Protein: 5QKY Ligand: 017

3rd nn $||\tilde{\eta} - \eta_i||_{\infty}$ Protein: 3TKW

Ligand: 017

Results on ProSPECCTs benchmark

ProSPECTTs it's a well known benchmark for pocket similarity in a binary classification sense.

Dataset	similar (y=0)	dissimilar (y=1)
D1	13430	92846
D1.2	241	1784
D2	7729	100512
D3	13430	67150
D4	13430	67150
D5	920	5480
D6	19	43
D7	115	56284

Given two pocket embeddings η_1, η_2 we say that they are similar if $||A\eta_1 - A\eta_2||_{\infty} \leq \tau$ or dissimilar otherwise. The matrix A can be learned using a subset of the data.

$$\widehat{y} = \mathbf{1}_{[\tau, +\infty)}(\|A\eta_1 - A\eta_2\|_{\infty})$$

Results on ProSPECCTs benchmark

ROC curves	for	GENIEO man	\ on	ProSPECCTs
ROC Curves		GENEOMAL		FIUSFECCIS

Dataset	GENEOmap	Site2Vec
D1	0.91±0.002	1.00
D1.2	1.00±0.000	0.94
D2	0.96±0.001	1.00
D3	0.79±0.002	0.99
D4	0.80±0.002	0.99
D5	0.73±0.004	0.86
D6	0.90±0.007	0.53
D7	0.93±0.003	0.66
Mean	0.88±0.001	0.87

10

Prototypes for GENEOnet predictions

Protein: 3BVB Ligand: ??? **GENEOnet predicted pocket** mapped to $\tilde{\eta}$

Library of **GENEOnet predictions** mapped to η_i

1st nn $||\tilde{\eta} - \eta_i||_{\infty}$ Protein: 4Q1X Ligand: 017

2nd nn $||\tilde{\eta} - \eta_i||_{\infty}$ Protein: 5QKY Ligand: 017

3rd nn $||\tilde{\eta} - \eta_i||_{\infty}$ Protein: 3TKW

Ligand: 017

Visualization of GENEOmap embeddings

Thank you for the attention!

Main references

- □ Ehrt, C., Brinkjost, T., Koch, O.: A benchmark driven guide to binding site comparison: An exhaustive evaluation using tailor-made data sets (ProSPECCTs). *PLOS Computational Biology* **14**(11), 1–50 (2018) https://doi.org/10.1371/journal.pcbi.1006483
- ☐ Bhadra, A., Yeturu, K.: Site2vec: a reference frame invariant algorithm for vector embedding of protein-ligand binding sites. *Machine Learning-Science and Technology* **2**(1) (2021) https://doi.org/10.1088/2632-2153/abad88
- ☐ Bocchi, G., Frosini, P., Micheletti, A., et al.: GENEOnet: A new machine learning paradigm based on Group Equivariant Non-Expansive Operators. An application to protein pocket detection. preprint at arXiv (2022)
- ☐ Bocchi, G., Frosini, P., Micheletti, A., et al.: GENEOnet: statistical analysis supporting explainability and trustworthiness. Statistics **0**(0), 1–26 (2025) https://doi.org/10.1080/02331888.2025.2478203

