What Results in Death?

Analysis of Social Conflict in Africa, 1990–2011

Matthew Boyas

STAT 222: MA Capstone Final Presentation

April 30, 2014

- Social Conflict in Africa Database (SCAD)
 - Cullen Hendrix and Idean Salehyan
 - Hosted by Climate Change and African Political Stability (CCAPS) at the Robert S. Strauss Center for International Security and Law at the University of Texas at Austin
- Correlates of War Project (COW)
 - National Material Capabilities
 - World Religions
- Polity IV Project
 - Measures democracy/autocracy for government regime type

- 1. What differentiates an episode of social conflict that results in deaths from an episode of social conflict that does not result in deaths?
- 2. Is there a way to predict the number of deaths that will result from an episode of social conflict?

Figure 2: Distribution of the Number of Deaths

Number of Deaths

Question #1

What differentiates an episode of social conflict that results in deaths from an episode of social conflict that does not result in deaths?

Figure 6: Map of Superimposed Deaths and No Deaths

Question #2

Is there a way to predict the number of deaths that will result from an episode of social conflict?

- Predict a binary, death/no-death indicator
- Separate dataset into train (70%) and test (30%)
- Logistic regression
 - Location
 - Event type
 - Central government target
 - Primary issue
 - National capability score
- Compare to KNN

Table 4: Logistic Regression Prediction Accuracy

	Predicted as No Deaths	Predicted as Deaths	
No Deaths	957 (89.36%)	114 (10.64%)	
Deaths	170 (30.41%)	389 (69.59%)	

Table 5: KNN Prediction Accuracy (K=10)

	Predicted as No Deaths	Predicted as Deaths	
No Deaths	990 (92.44%)	81 (7.56%)	
Deaths	225 (40.25%)	334 (59.75%)	

- Predict the actual number of deaths
- Use same train/test sets from before
- Poisson regression
 - Similar model selection process as logistic
 - Same set of variables minimizes prediction error
- Compare to KNN and CART Decision Tree

Figure 7: Prediction Accuracy (Fitted Values vs. Residuals)

- Conflict escalation is complicated
 - Escalation involves a variety of factors, supporting the existing literature
- Modeling a death/no-death indicator seems successful & consistent across methods
- Modeling absolute number of deaths is less consistent across methods
 - Results are promising regardless

- Victoria Stodden
- Christine Ho
- Ryan Lovett
- My anonymous peer reviewers
- The students who I've constantly bothered about colors on figures, statistical methodology, etc.

Table 3: Number of Death/No Death Conflicts by Regime Type

	Strong Autocracy	Weak Autocracy	Middle Ground	Weak Democracy	Strong Democracy	Total
No Deaths	798 (18.95%)	1401 (33.27%)	74 (1.76%)	1010 (23.98%)	928 (22.04%)	4211 (100.0%)
Deaths	247 (11.68%)	605 (28.62%)	22 (1.04%)	753 (35.62%)	487 (23.04%)	2114 (100.0%)