¿Cómo citar?: Montero Granados. R (2016): Modelos de regresión lineal múltiple.

Documentos de Trabajo en Economía Aplicada. Universidad de Granada. España.

Modelos de regresión lineal múltiple

Roberto Montero Granados

Departamento de Economía Aplicada

Universidad de Granada

Resumen

La regresión lineal múltiple trata de ajustar modelos lineales o linealizables entre

una variable dependiente y más de una variables independientes. En este tipo de

modelos es importante testar la heterocedasticidad, la multicolinealidad y la

especificación. En este curso trataremos de introducirnos en el mundo de la

modelización, con creación de dummies, configurando un individuo de referencia,

factores de ponderación, variables de interacción, interrelación, etc. Es particularmente

importante entender lo que se está haciendo en cada momento porque estos principios

sirven para prácticamente todos los modelos que se emprendan a continuación y

después, con modelos más complejos y menos intuitivos, serán más difíciles de

comprender.

Keywords: Regresión lineal, Stata,

Índice

R	esumen	1
1.	Introducción	3
2.	Tipos de variables	6
3.	Hipótesis y Estimación	9
4.	Modelando	11
	Datos ausentes	13
	Valores improbables o imposibles	14
	Creación de variables dummies	15
	La "linealización"	17
	Regresión de polinomios fraccionales	22
	Regresión Cox-Box	24
	Configurar el individuo de referencia	26
5.	Resultados	28
	Tipos de errores	29
	a) Heterocedasticidad.	34
	b) Multicolinealidad	35
	c) Error de especificación.	35
	El ajuste del modelo	38
	Interpretación de $oldsymbol{eta} i$	41
	Los coeficientes estandarizados	42
	Sistemas de selección de variables (stepwise)	43
	Factor de ponderación	45
	El efecto tamaño	46
	Intermediación, interacción y confusión	48
6.	Extensiones del Modelo lineal	51
	Variables Truncadas y Censuradas	52
	Regresión lineal en dos etapas	53
	Modelos de probabilidad lineal y modelos de respuesta fraccional	58
7.	Bibliografía	60

1. Introducción

Dicen los que estudian neurociencia que la inteligencia humana se configura mediante la relación. Que las neuronas, relacionando axones construyen ideas simples y que estos grupos relacionándose entre sí pueden construir ideas más complejas. Que las relaciones entre fenómenos y su aparente causalidad nos hacen incluso más felices porque creemos entender mejor el mundo y así podemos aprovechar mejor sus beneficios y protegernos mejor de sus peligros. Antiguamente relacionar conceptos era algo fácil e intuitivo (una flor + una mariposa = una fruta fresca; una nube + algo de viento = agua también fresca) pero entonces unos señores (Bernoulli, Gauss, Laplace...) pensaron que aquello podía complicarse algo más y, para regocijo de los profesores de matemáticas, inventaron la probabilidad y la estadística.

Hay magnitudes con comportamiento relativamente constante es decir que cada vez que se miden el resultado es el mismo (el tamaño de un folio, el peso de un coche, la distancia a las estrellas...) o cuyo movimiento es fijo o constantemente acelerado (los objetos al caer, las estrellas otra vez...) y cuando queremos comparar dos o más lo que se hace son proporciones o fórmulas que pueden ser más o menos exactas (por ejemplo, el número π que ya tiene 10 billones de decimales, ¡sabe Dios para qué!). Estas son magnitudes deterministas.

Otras magnitudes, en cambio, son absolutamente diferentes cada vez que las observamos (un individuo puede medir más por la mañana que por la tarde, cada pieza de fruta tiene un peso distinto, cada año la producción de la fábrica es distinta...). Esto puede ser debido a que nos equivoquemos al medirlas, a que sean tan grandes que no podamos medirlas enteras o a que estén sometidas a algún tipo de influencia que no controlamos. Hay muchas variables físicas que no son deterministas (el ruido, la posición de un electrón, la generación de ondas) pero casi todas las variables sociales de una población son así (la edad, la renta, las tendencias políticas). A estas magnitudes las denominamos estocásticas.

La correlación es una medida de la similitud de la variabilidad de dos magnitudes estocásticas (que, como varían, las denominamos variables). La ventaja de

la correlación como medida de asociación es la sencillez de cálculo y su inconveniente es que, a veces, no es suficiente para comprender la relación entre ambas.

Si abrimos la base "satisfacción" y calculamos el coeficiente de correlación entre edad y estasalud...

. pwcorr edad estasalud

	edad	estasa~d
edad	1.0000	
estasalud	0.3808	1.0000

El índice de correlación es 0.3808, lo que significa que un cambio en edad suele representar un cambio, en el mismo sentido, en estasalud, pero ¿Es un índice alto o bajo? ¿Suficiente o insuficiente? El primer problema que tenemos es que para interpretar, siquiera superficialmente, el coeficiente tenemos que saber cómo están medidas las variables.

La regresión es una técnica estadística que consiste en calcular dicha similitud en forma de función matemática. Esta función nos ofrece mucha más información sobre dicha relación. Por ejemplo, el modelo más sencillo: la regresión lineal simple, ya nos informa de las siguientes magnitudes: la magnitud de la correlación; el incremento marginal, el valor de una de ellas cuando la otra es cero y si dicha relación puede considerarse significativa o fuerte (distinta de una relación normal) o no significativa o débil (similar a una relación normal)

Si abrimos la base "satisfacción" y calculamos la regresión lineal entre las mismas variables del ejemplo anterior: edad y estasalud...

. mean edad					
Mean estimatio	n	Number	of obs	=	7,747
	Mean	Std. Err.	[95% Co	onf. Int	erval]
edad l	47.63986	.2029268	47.2420	7 48	.03765

```
. generate edad_recode= edad-47
(3 missing values generated)
```

-	-		
regress	estasalud	edad	recode

Source	SS	df	MS	Number F(1, 7		.,.20
Model Residual	694.014765	1 7,723	694.014765 .529987918	Prob >	F =	0.0000 0.1450
Total			.619771033		_	
estasalud		Std. Err.	t	 P> t	-	Interval]
edad_recode _cons	.016782 2.120836	.0004638	36.19	0.000	.0158729 2.104589	.0176911 2.137083

El resultado nos informa de la correlación entre ambas: la varianza común es de un 14.5% (raíz (R2)= coeficiente de correlación. Raíz(.1450)= .3808); de la magnitud de dicha correlación: un incremento de un año de edad implica un incremento de .016 en el estado de salud; de la esperanza de vida esperada para un individuo: en nuestro caso debido a la transformación de edad_recode = edad- 47, implica que un individuo de 47 años tiene una esperanza de estasalud de 2.12; y de que dichas magnitudes son todas significativamente distintas de lo normal: la significación de R2 se puede medir con la F y la significación de las magnitudes se mide con su error estándar y el p-valor de todas es superior a 0.000.

Existen muchas técnicas de regresión en función del tipo de variables y de la forma funcional supuesta entre ellas. Las más elementales (aunque las más potentes en el sentido de que se puede obtener más información) son las lineales. La regresión lineal supone que la relación entre dos variables tiene una forma lineal (o linealizable mediante alguna transformación de las variables). La regresión lineal tiene una versión "simple" que empareja dos variables, pero esta suele ser insuficiente para entender fenómenos mínimamente complejos en la que influyen más de dos variables, esta versión es la "múltiple". En el modelo de regresión lineal múltiple suponemos que más de una variable tiene influencia o está correlacionada con el valor de una tercera variable. Por ejemplo en el peso de una persona pueden influir edad, género y estatura, en la renta pueden influir trabajo, capital físico, conocimientos, etc. En el modelo de regresión lineal múltiple esperamos que los sucesos tengan una forma funcional como

$$y_j = b_o + b_1 x_{1j} + b_2 x_{2j} + \dots + b_k x_{kj} + u_j$$

donde y es la variable endógena, x las variables exógenas, u los residuos y b los coeficientes estimados del efecto marginal entre cada x e y.

2. Tipos de variables

En regresión se trabaja con variables. Y lo que se hace es calcular siempre promedios (promedio de una variable, de una correlación, de una tendencia, de una función, de un ratio; promedios de variables estandarizadas, estudentizadas o refuncionalizadas con cualquier otra función) y su desviación típica (la desviación típica es una denominación que se reserva a la muestra y a la población, cuando se refiere a un parámetro estimado - la media, la tendencia u otro - se suele denominar error estándar). Una vez calculados ambos se interpretan conjuntamente (si son altos, bajos, en términos absolutos o lo que es más usual, en relación a algo como por ejemplo una distribución normal). El 95% de lo que hacen los estadísticos es eso. Lo que hace tremendamente gruesos y desagradables los libros de estadística es que las variables tienen formas muy distintas y su cálculo, aunque similar es ligeramente distinto, por lo que hay que rehacer casi todos los conceptos exprofeso para cada tipo de variables. Los libreros y los vendedores de software explotan constantemente este fenómeno y andan siempre incentivando a los estadísticos a introducir modelos nuevos, algunos completamente inútiles, pero que obligan a los usuarios a actualizar sus librerías (físicas y virtuales)

A pesar que hay muchos tipos de variables los estadísticos se divierten poniendo a un mismo tipo de variable nombres distintos, para confundir a los estudiantes. Así en la función:

$$y_j = b_o + b_1 x_{1j} + b_2 x_{2j} + \dots + b_k x_{kj} + u_j$$

y es una variables que puede denominarse alternativamente como endógena, dependiente, regresando, explicada o variable respuesta, entre otros. x son unas variables que puede denominarse: exógena, independiente, regresor o explicativa. Aunque todo el mundo evita hablar de causalidad (porque correlación no es, en

absoluto, prueba de causalidad), todo el modelo parece indicar un sentido de los efectos desde las variables *x* hacia la variable *y*. de forma que el valor de esta última parece formarse a partir de los valores o la influencia de los valores las primeras.

En regresión lineal múltiple sólo suele haber una variable endógena y puede haber varias variables exógenas. Es decir se individualiza el fenómeno observado. También puede darse el caso de la existencia de varias variables endógenas, pero su solución es difícil por lo que no es el caso general.

Dichas variables (tanto endógenas como exógenas) pueden adoptar dos formas generales:

- Continuas: Las variables continuas son aquellas que llenan el espacio. Son números reales (que pueden tener o no decimales) y servirán incluso cuando su rango no sea desde -∞ hasta +∞. Suelen ser variables cuantitativas (como el peso o la edad) pero también pueden ser consideradas continuas variables cualitativas cuando pueden ordenarse y tienen un número no bajo de elementos (se dice que con más de siete elementos puede considerarse cuantitativa. Ejemplos son el número de escalones de una escalera, habitaciones de una vivienda, árboles plantados...) Todas las variables de recuento (números enteros) siempre que su rango sea alto (más de 7 elementos) podrían considerarse como continuas. Dentro de las variables continuas tienen especial relevancia las conocidas como porcentajes. Estos ratios pueden considerarse variables continuas normales cuando se mueven en un rango central relativamente amplio pero deben considerarse de forma especial cuando se mueven cerca de sus extremos porque sus tasas de crecimiento se ven constreñidas al intervalo [0; 1]
- Discretas: Las variables discretas son aquellas que se mueven "a saltos". Además de las variables de recuento suelen ser factores cualitativos que indican alguna característica del individuo (como el género, color, idioma...) Si las características son sólo dos se suelen llamar dicotómicas (género, bebedor...). Si son más de dos se suelen denominar simplemente factor.

El tipo de variable es más importante si afecta a la variable endógena (porque nos obligará a utilizar uno u otro modelo de regresión) pero no es tan importante si

afecta a la variable exógena. No obstante a las variables exógenas factor y ordenadas también se les puede extraes más contenido informativo si se las transforma en dummies.

En el primer caso tenemos que para cada tipo de variable hay un modelo de regresión completamente distinto:

Tipo de Variable	Modelo
Continua	Lineal
Dicotómica	Logit o probit
Recuento	Poison o Binomial
Factor ordenado	Logit o probit Ordenada
Factor	Logit o probit Multinomial
Porcentaje	Regresión fraccional

Sin embargo en el caso de las variables exógenas la distinta forma sólo exigirá una distinta interpretación de forma que basta con saber cómo están codificadas para interpretar los coeficientes estimados y demás parámetros. Quizá el caso con el que debemos tener especial precaución sea el de los factores porque su introducción directamente en el modelo no puede interpretarse de una forma lógica. Por ejemplo si se introduce la variable color de pelo en un modelo y el resultado es 3 ¿qué puede significar? Pues absolutamente nada.

Dentro del modelo lineal es interesante distinguir entre varios tipos de variable dependiente, porque puede condicionar el tipo de modelo de regresión:

- Libre: Se tienen datos de una muestra que abarca toda la posible medida de la variable que esta puede tener en la población.
- Censurada: Faltan datos en la muestra de la variable en alguna zona de la que sí
 hay datos en la población (el estado de salud en una encuesta que sólo recoge a
 mayores de 16 y hasta 85 años). A veces se pueden ajustar modelos para
 regresión censurada (Modelos Tobit)
- Truncada: Faltan datos en la muestra, o estos dan un salto a partir de un momento. Por ejemplo está prohibido trabajar por menos del salario mínimo de forma que quien no cobra el salario mínimo dice cobrar cero. Esto hace que la

- regresión se trunque. A veces se pueden ajustar modelos para regresión truncada.
- Doble Valla: Surge como evolución del modelo truncado donde parece que hay dos fenómenos que cuantifican una relación: una primera que determina el acceso o no al fenómeno y una segunda que determina el grado con el que se accede. Por ejemplo para obtener unas determinadas calificaciones en la Universidad primero hay que acceder: la probabilidad condicionada de acceso sería la primera valla y la probabilidad condicionada de sacar buenas calificaciones la segunda.

3. Hipótesis y Estimación

Para que los resultados de la regresión sean "confiables" (confiable es una forma coloquial de referirse a: insesgados, es decir que sus resultados sean parecidos a los reales; y óptimos, es decir que su varianza sea mínima) es necesario que:

- a) La relación entre las variables sea lineal. Ser lineal no significa que forzosamente tenga que ser una línea recta sino también que pueda ser lineal con alguna transformación.
- b) Las perturbaciones (es decir los efectos provocados aleatoriamente o por variables no incluidas en el modelo) deben ser: de media cero, homocedásticas y no autocorrelacionadas. Se suelen resumir estos bajo la denominación de "esfericidad" de los residuos.

Por ejemplo, si los siguientes gráficos son los residuos de tres modelos el modelo a no tiene residuos de media cero (aunque parece homocedásticos), los residuos del modelo b son, además, heterocedásticos y ambos parecen muy autocorrelacionados (un valor parece depender del valor anterior). Solo el modelo "normal" tiene unos residuos centrados en 0 (E(u) = 0), no parecen abrirse o cerrarse (son homocedásticos) y no tienen tendencia (no están autocorrelacionados)

Aunque digan que una imagen vale más que mil palabras, en estadística esto no siempre se cumple. El análisis gráfico casi nunca es tan explícito en la vida real. En el caso de la base de Satisfacción si graficamos los residuos de una regresión cualquiera.

. regress estasalud edad

(output omitido)

. rvfplot

El resultado no es siempre igual a la teoría. No es evidente que no haya tendencia, ni qué pueden implicar las distintas bandas. Aunque parece no se puede afirmar rotundamente si hay o no esfericidad.

El software dice que tiene dos formas de estimación de una regresión lineal. Un primero por mínimos cuadrados ordinarios (MCO), que consiste en resolver la ecuación:

$$\hat{b} = (X'X)^{-1}X'y$$

Donde \hat{b} es el vector de estimación de los coeficientes, y es el vector de la dependientes X es la matriz de variables dependientes y X' es la traspuesta de X

Y un segundo mediante máxima verosimilitud (ML). Que consiste en maximizar la ecuación:

$$\ln L(Y) = -\frac{n}{2}\ln(2\pi^2) - \frac{n}{2}\ln(2\sigma^2) - \frac{(Y - X\beta)'(Y - X\beta)}{2\sigma^2}$$

Derivando respecto de β y de σ e igualando a 0. Ambos procedimiento llevan a los mismos resultados (la práctica totalidad de las veces) pero hay ocasiones en que, por repugnantes e inexpugnables problemas matemáticos, no es posible resolver el sistema por MCO y debe resolverse por máxima verosimilitud.

La ventaja de resolver por MCO es que obtenemos medidas de ajuste confiables (R^2 y \overline{R}^2). Por ML no podemos obtener (en la mayoría de los casos) una R^2 pero podemos obtener otras medidas de ajuste como el Criterio de información bayesiano (BIC) y el de Akaique (AIC) (en ambos casos cuanto más pequeños mejor).

4. Modelando

Si en regresión lineal simple se dice que se necesitan al menos 30 datos para que el teorema central del límite entre en vigor y las estimaciones sean consistentes, en regresión múltiple necesitaremos además un número mínimo de casos en función de las variables a introducir. Se dice que, además de los 30 casos general se necesitan un mínimo de 10 casos por variable adicional (Si k es el número de variables independientes el mínimo sería de k+2 y algunos autores sugieren necesario $k\cdot 20$)

Aunque no es normal hay que tener en cuenta que un exceso de variables independientes puede hacer subir artificialmente el R^2 pero también reducir la significación estadística de las variables significativas.

Para comprobar el efecto de la adición incontrolada de variables en el coeficiente de determinación, en la base de datos "satisfacción" se han introducido sucesivamente variables en el orden de la lista. Desde el primero:

. regress estasalud edad

Source		df	MS	Number of obs	s = =	7,725 1309.49
Model Residual	694.014765 4093.09669	1 7,723	694.014765 .529987918	Prob > F R-squared	=	0.0000
	+ 4787.11146		.619771033		ı = =	.728
estasalud		Std. Err.	t	P> t [95% (Conf.	Interval]
edad _cons	.016782	.0004638		0.000 .0158 0.000 1.2858		.0176911

Hasta

. regress estasalud edad genero est_recode ocup_ld nac_esp frec_prim_publ frec_urg_publ frec_esp_pub frec_hosp_pub izq_der

edad .0129958 .0006109 21.27 0.000 genero 0254716 .0186058 -1.37 0.171 - est_recode 069245 .0105595 -6.56 0.000 - ocup_1d .0084289 .0043011 1.96 0.050 - nac_esp 0606391 .0360727 -1.68 0.093 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-
Total 2982.79187 5,164 .577612678 Root MSE estasalud Coef. Std. Err. t P> t edad .0129958 .0006109 21.27 0.000 genero 0254716 .0186058 -1.37 0.171 - est_recode 069245 .0105595 -6.56 0.000 - ocup_1d .0084289 .0043011 1.96 0.050 - nac_esp 0606391 .0360727 -1.68 0.093 -	= .66237	-
edad .0129958 .0006109 21.27 0.000 genero 0254716 .0186058 -1.37 0.171 - est_recode 069245 .0105595 -6.56 0.000 - ocup_1d .0084289 .0043011 1.96 0.050 - nac_esp 0606391 .0360727 -1.68 0.093 -	[95% Conf. Interval]	-
genero 0254716		
frec_urg_publ .0423709 .0081534 5.20 0.000 frec_esp_pub .073405 .0061831 11.87 0.000 frec_hosp_pub .0555632 .0239583 2.32 0.020	.0117981 .0141934 0619468 .0110036 08994610485438 -3.15e-06 .0168609 1313569 .0100787 .0200229 .0300134 .0263866 .0583551 .0612835 .0855266 .0085947 .1025317 02138720014713	5 3 7 4 L

Es decir introduciendo más variables hemos conseguido incrementar el R2 desde el 14.5% hasta el 24.19%. Aunque en el camino algunas variables que originariamente eran significativas han perdido dicha condición.

Antes de obtener resultados hay que preparar los datos de que dispongamos. Los datos se suelen obtener de muy diversas fuentes y con codificaciones a veces inverosímiles. Pero el delicado programa estadístico, para no indigestarse, necesita que los cocinemos un poco. Normalmente tendremos que jugar con datos ausentes, datos irracionales (en el sentido coloquial no matemático), re-escalar variables, linealizarlas, etc. Para la preparación de los datos se puede disponer de unas reglas elementales generales pero probablemente sea el momento en que la experiencia y el genio del modelador tengan más cabida e importancia.

Datos ausentes

Hemos de saber que el programa desprecia cualquier individuo a quién falte uno de los valores de las variables incluidas en el análisis. En datos micro o macro esto puede ser radicalmente importante (puede haber países o regiones enteras sin una variable y eso excluye a dicha región del análisis) pero también puede serlo en casos de encuestas. Hay preguntas que, por comprometidas o por que no son bien comprendidas, no son cumplimentadas por muchos encuestados. Entonces, a pesar de su interés estadístico hemos de pensar si su inclusión en el modelo trae más ventajas que inconvenientes ya que si se incluye dicha variable se pierden todas las encuestas de los individuos que no contestaron dicha pregunta. Algunos autores estiman los datos faltantes también mediante regresión (del resto de información de la base de datos o incluso de información externa) Hacer esto para tener más datos puede afectar a los supuestos del modelo y, por lo tanto, a la confiabilidad de los resultados por lo que es una cuestión que el investigador debe ponderar.

En la base de datos satisfacción podemos estar interesados en los condicionantes del voto. Podemos estimar la regresión de edad, nivel de estudios, estado de salud y ocupación sobre si votó en las últimas elecciones generales. El resultado es:

. regress voto edad est_recode estasalud ocup_1d

Residual	1375.28233	7,356	.186960622		quared	=	0.0727 0.0722
Total	1483.06181	7 , 360	.201502964	_	R-squared t MSE	=	.43239
voto	Coef.	Std. Err.	t	P> t	 [95% C	onf.	Interval]
edad est_recode estasalud ocup_1d _cons	.0072301 .0351379 018707 0131749 .4119321	.0003331 .0056993 .0070907 .0023377	6.17 -2.64 -5.64	0.000 0.000 0.008 0.000 0.000	.00657 .02396 03260 01775 .3468	56 67 76	.0078831 .0463102 0048072 0085923 .4769712

Todas las variables son significativas y el número de observaciones válidas es de 7361. Si ahora ampliamos el número de variables con la autovaloración del individuo entre izquierdas y derechas el resultado es:

. regress voto edad est_recode estasalud ocup_1d izq der

Source	SS	df	MS		er of obs		5,165
				F (5,	5159)	=	64.90
Model	47.2833933	5	9.45667867	Prob	> F	=	0.0000
Residual	751.724545	5,159	.14571129	R-sc	quared	=	0.0592
				Adi	R-squared	=	0.0583
Total	799.007938	5,164	.154726557	Root	MSE	=	.38172
,		,					
voto	Coef.	Std. Err.	t	P> t	[95% C	onf.	<pre>Interval]</pre>
+-							
edad	.005927	.0003614	16.40	0.000	.00521	85	.0066356
est recode	.0144313	.0060582	2.38	0.017	.00255	46	.0263079
estasalud	0163668	.0075913	-2.16	0.031	0312	49	0014847
ocup 1d	0083462	.0024622	-3.39	0.001	01317	32	0035192
izg der	.002176	.0029235	0.74	0.457	00355	52	.0079073
cons	.563934	.0383841		0.000	.48868		.6391831
	. 5 5 5 5 5 5	.0303041	14.00	0.000	. 40000	ュン	.0001001

O sea que se reduce el número de observaciones a 5165 y, en realidad la variable no es ni tan siquiera significativa luego descartarla podría ser una opción correcta.

Valores improbables o imposibles.

En ocasiones hay individuos con valores extraordinarios (altura superior a 2.5m; rentas brutalmente inmorales, ...) otras veces sucede que se ha producido un error de transcripción (donde dije 20 pensando en otra cosa, escribí 200); también pueden ocurrir errores informáticos (yo sufro un problema con mi PC con la importación de bases de datos porque lo tengo configurado para usar el "." como símbolo decimal y puede ser que interprete 158.200 como 158.2) En estos casos es necesario repasarlos (En stata un

sumarize suele ser suficiente). En caso de duda con los datos es necesario rastrear y evaluar individuo por individuo.

. sum edad					
Variable	Obs	Mean	Std. Dev.	Min	Max
edad	7,747	47.63986	17.86102	18	97

En este caso todos los parámetros parecen correctos. Sería sospechoso, por ejemplo encontrar que el máximo es superior a 200 años (si es que hablamos de humanos no bíblicos) o que aparezcan edades por debajo de 18 años que es el límite inferior de la encuesta.

Un outlayer (un valor improbable o imposible) con una base de datos con pocos grados de libertad (poca diferencia entre el número de observaciones y variables) puede confundir mucho las estimaciones.

Creación de variables dummies

Una variable dummy es una variable dicotómica (0; 1) que hemos construido expresamente con algún propósito informativo. Por ejemplo y aunque sólo sea un tema de terminología, el género de un individuo no es una dummy sino una variable discreta dicotómica (con dos opciones), para ser una dummy tiene que ser un artificio construido con algún propósito interpretativo.

El propósito más usual para construir dummies es el de obtener información sobre la influencia de cada escalón de una variable factor ordinal o de un factor puro. Un factor ordinal se puede introducir como tal en un modelo (un factor puro no se puede de ninguna manera no porque el programa no pueda estimarlo sino porque no tiene interpretación alguna) pero su interpretación será más potente si lo dummyficamos (no existe esa palabra, creo, pero la utilizaremos de todas formas).

Cuando se introducen factores dummyficados hay que tener en cuenta que hemos de excluir una dummy del análisis, de lo contrario el mismo programa la excluye porque estaría perfectamente colineada con el resto. (si d1, d2 y d3 son las dummies de d cualquiera de ellas se puede expresar como combinación de las otras 2. Por ejemplo $d1_j=1-d2_j-d3_j$). Y también hay que tener en cuenta que la interpretación de los $\hat{\beta}$ serían cuanto cambia la variable dependiente cuando el individuo pasa de la variable excluida a la dummy estimada.

Esta interpretación provoca que en el caso de los factores dummyficados es posible que haya variables dummies de las que se obtengan estimaciones significativas y otras que no. En el caso de ser variables normales se dice que suele ser prudente excluir a las variables no significativas pero en el caso de las dummies hemos de incluir todo el paquete siempre que, al menos una dummy, sea significativa.

Si con la base "satisfacción" estimamos el modelo de edad y est_recode sobre estasalud los resultados muestran que ambas variables están correlacionadas. La edad está positivamente correlacionada con estasalud y el nivel de estudios lo está inversamente. Dada la codificación de edad implica que un año más de edad implica 0.013 peor estasalud (que está codificada de 1 a 5) y cada grado más en estudios implica una -0.10 mejor estasalud. Pero ¿Qué es un grado más en estudios? ¿es igual pasar de primaria a secundaria que de grado a posgrado? Para ello creamos dummies (también aprovecharemos para crear una variable edad respecto a su promedio y así aumentar la potencia de la información)

regress	estasalud	edad	est	recode

Source	SS	df	MS	Number of obs	=	7,361
Model	651.950926	 2	325.975463	F(2, 7358) Prob > F	=	644.34
	3722.42891			R-squared	=	0.1490
				Adj R-squared	=	0.1488
Total	4374.37984	7,360	.594345087	Root MSE	=	.71127

estasalud	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
edad	.0134507	.0005175	25.99	0.000	.0124362	.0144652
est_recode	1032535	.0081198	-12.72	0.000	1191706	0873364
_cons	1.716913	.0369765	46.43	0.000	1.644429	1.789398

[.] generate edad_recode = edad - 47
(3 missing values generated)

. tabulate est recode, generate (est)

Cum.	Percent	Freq.	est_recode
2.25 25.02 58.04 81.85 98.77 100.00	2.25 22.77 33.02 23.81 16.92 1.23	166 1,681 2,438 1,758 1,249	0 1 2 3 4 5
	100.00	7,383	Total

. regress estasalud edad recode est 1 est 2 est 4 est 5 est 6

Source	SS	df	MS	Number of obs F(6, 7354)	=	7,361 215.26
Model	653.490243	 6	108.91504	Prob > F	_	0.0000
Residual	3720.8896	-	.505968126	R-squared	=	0.1494
				Adj R-squared	=	0.1487
Total	4374.37984	7,360	.594345087	Root MSE	=	.71131

estasalud	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
edad_recode est_1 est_2 est_4 est_5 est_6	.0133599 .2990886 .1063492 0853054 1985412 3067945	.0005612 .0593292 .0251728 .0223086 .024811	23.80 5.04 4.22 -3.82 -8.00 -4.04	0.000 0.000 0.000 0.000 0.000	.0122597 .1827863 .0570032 1290368 2471778	.0144601 .4153909 .1556952 0415741 1499045
_cons	2.134103	.0147502	144.68	0.000	2.105189	2.163018

El resultado final es ahora mucho más interesante, muestra el efecto de la edad (que es igual que antes de 0.103 por año) y el de cada grado. Pero la especial configuración del factor "estudios" hace que podamos afirmar que el nivel de estudios 1 (analfabeto) incrementa la mala salud en 0.30 respecto a los de secundaria (la dummy excluida). También los que solo tienen estudios de primaria tienen peor salud (0.11) que los que tienen secundaria. En cambio los que disponen de un nivel de estudios superior a primaria tienen un mejor autovaloración del estado de salud en -0.09, -0.20, -0.31 si tienen estudios de bachiller, grado o posgrado respectivamente. Además la especial configuración de las variables hace que, cuando todas sean 0 tenemos a un individuo de 47 años con estudios de secundaria. Ese sería nuestro individuo de referencia y la esperanza de su autovaloración del estado de salud es de 2.13

La "linealización"

El modelo lineal exige que la relación entre dependiente e independientes sea lineal. Sin embargo, en ocasiones observamos fenómenos que no tienen este carácter pero que pueden linealizarse (probablemente esa palabra tampoco exista) con relativa facilidad. Los procedimientos más usuales para linearizar variables son:

En el caso de factores ordinales: Creación de dummies de forma que aunque la relación del factor con la dependiente no sea lineal, las de cada dummy con la dependiente sí lo será por construcción porque sólo hay un escalón entre la referencia y cada dummy (Aunque probablemente nunca nos haga falta, llamaremos a esta operación la dummyficación linearizadora)

En el caso de variables cuantitativas (sean números Reales, Enteros o Naturales) las operaciones más usuales son: tomar logaritmos o crear polinomios.

Se suelen tomar logaritmos cuando se dispone de datos cuantificados en unidades monetarias, sobre todo si son datos de diversos momentos del tiempo, pero también si son cortes transversales. El motivo es que los datos en unidades monetarias tienden a la acumulación en el tiempo (la inflación, la producción, los salarios...) y pueden llevar a crecimientos que parecen exponenciales cuando son lineales.

También puede ser recomendable tomar logaritmos cuando la variabilidad de la variable sea muy alta (por ejemplo se introduzcan en la misma base de datos población de países como EEUU o China y otros como Andorra o Liechtenstein). Los logaritmos homogenizan un poco la base de datos y hace que sus estimaciones sean más robustas.

Cuando se trabaja con la variable transformada en logaritmos (por su facilidad matemática se utiliza, usualmente, el logaritmo natural) lo único que hay que hacer es tener cuidado con la interpretación de los $\hat{\beta}$ ya que no se corresponderá con el incremento de y ante una unidad de x sino ante una unidad de ln(x). Pero esto no es un inconveniente sino incluso una virtud ya que, dadas las propiedades de los logaritmos, pueden interpretarse en el sentido de elasticidades (si se regresa ln(x) sobre ln(y)) como el cambio porcentual en y cuando cambia un l% x, o en el sentido de semielasticidades (si se regresa ln(x) sobre y) como el cambio en y de un cambio de un y0 en y1.

En la base "provincias", supongamos que queremos conocer el cambio en el paro (paro) en función del PIB per cápita provincial (pib_pc). Una primera regresión, directa entre muestra que dicha influencia es significativa pero el gráfico parece indicar cierta no linealidad. Si se construye la variable ln_pib_pc = ln(pib_pc) y se vuelve a correr la regresión la significación y el ajuste aumentan. El gráfico muestra que se ha corregido algo la no linealidad

. regress paro pib_pc

Source	SS	df	MS	Number	er of obs	=	52 67.16
Model Residual		1 50	1149.98372 17.1240068	Prob R-sq	•	=	0.0000 0.5732 0.5647
Total	2006.18406	51	39.3369423	_	-	=	4.1381
paro	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
pib_pc _cons	0010924 43.58039	.0001333	-8.19 15.42	0.000	00136 37.902		0008246 49.2578

. twoway (scatter paro pib pc)

- . generate $ln_pib_pc = ln(pib_pc)$
- . regress paro ln_pib_pc

Source		SS	df	MS		umber of obs (1, 50)	=	52 82.52
Model Residual		1249.25134 756.932716	1 50	1249.2513 15.138654	4 P 3 R	rob > F -squared di R-squared	=	0.0000
Total	1	2006.18406	51	39.336942		oot MSE	=	3.8908
paro		Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
ln_pib_pc _cons		-24.94791 268.4069	2.746331 27.25166	-9.08 9.85	0.00			-19.43174 323.1435

. twoway (scatter paro ln_pib_pc)

La construcción de polinomios sigue una filosofía similar. Se trata de introducir un polinomio de la variable en lugar de la variable misma. De forma que se consiga la linealidad de la relación. Es decir en lugar de introducir la variable x o además de introducir la variable x como regresor introducimos x^2 ; x^3 , etc.

En Stata hay varias formas de tratar con variantes polinomiales de una variable. Las tres más usuales son: creación de variables; introducción de polinomios; y regresión polinomial. La primera consiste en crear manualmente potencias de la variable original y en introducirlas en el modelo como regresores (normalmente basta con incluir una potencia cuadrática). La segunda consiste en dar directamente sobre la regresión la orden para que Stata haga las dos cosas automáticamente. La ventaja de esta segunda opción es que podemos calcular los efectos marginales también automáticamente (aunque en realidad tampoco es difícil hacerlo manualmente). La tercera opción consiste en utilizar la regresión polinomial que consiste en dejar que sea Stata quién busque además las potencias más adecuadas para el polinomio a construir.

Con la base de datos "provincias" estudiamos la relación entre el desempleo y el pib_pc de la provincia. La regresión inicial ya es buena pero queremos mejorar la liearidad con potencias de pib_pc. Para ello, en la primera alternativa creamos pib_pc y tras introducirla se observa una mejora el ajuste. En la segunda alternativa damos directamente la orden para que Stata cree e introduzca la variable. El resultado es igual al anterior.

```
Source | SS df MS Number of obs = 52
------ F(1, 50) = 67.16
Model | 1149.98372 1 1149.98372 Prob > F = 0.0000
```

Residual	85	6.20034		50	17.1	24006	8	R-squar Adj R-s	ced	ad	=	0.5732	2
Total	200	06.18406				36942	3	Root MS				4.1381	
paro	 	Coef.	Std.	Err.		t	P>	t	[95%	Coni	. In	terval]	-]
pib_pc _cons		0010924 3.58039											
. generate pil	_	_											
. regress pard	pib_	_pc pib_p	c2										
Source	 +	SS				MS	_	Number	of ol	os		52 AS	
Model Residual		57.68608		2	683.	84303 03057		F(2, 49 Prob > R-squar Adj R-s	F ced		=	0.0000) 7
Total	200	06.18406		51	39.3	36942	3	Adj R-s Root MS			=	0.6687 3.6098	
paro	 +	Coef.	Std.	Err.		t 	P>	t 	[95%	Coni	. In	terval	-] -
pib_pc pib_pc2 _cons	 1.		.0011	182	-5 4	.04	0.0	000	007 5.106 68.12	7885 e-08 2814	 1 1	0033909 .50e-0 17.583	9 7 7
. regress pare	o c.p:	lb_pc##c.]	pib_pc	:									-
Source	l	SS						Number	of ol	os	=	52	2
Model Residual		57.68603		2 49	683. 13.	84301 03057	3 2	F(2, 49) Prob > R-squar	F red		= =	0.0000) 7
Total	200	06.18406				36942		Adj R-s Root MS			=	0.668° 3.6098	
I	paro	Coe	ef.	Std.	Err.		t	P> t	 	[95%	d Con	f. Inte	erval]
pil	o_pc	0056	379	.001	1182	- 5	.04	0.000)	00	7885	00	33909
c.pib_pc#c.pil	o_pc	1.00e	-07	2.45	e-08	4	.09	0.000)	5.10)e-08	1.5	50e-07
(cons	92.8	559	12.3	0497	7	.55	0.000)	68.1	L2814	11	7.5837

La ventaja de la segunda opción es que nos permite calcular el efecto marginal y la predicción puntual con sus intervalos de confianza también automáticamente. Por ejemplo el efecto marginal y la E(paro) cuando el PIB pc de la provincia es de 20.500€ (el promedio en la base es 20.763€ pero elegimos 20.500€ por redondear un poco)

Aunque los valores de los parámetros se pueden calcular también fácilmente mediante sencillas operaciones. En nuestro caso $y = \beta_0 + \beta_2 x + \beta_2 x^2$

Efecto marginal =
$$\frac{\partial y}{\partial x} = \beta_o + 2\beta_o x = -0.0056 + 2 \cdot 1e - 7 \cdot 20500 = -0.0015$$

Esperanza media = $92.86 - 0.056 \cdot 20500 + 1e - 7 \cdot 20500^2 = 19.5$

Pero el ordenador también nos ofrece significación e intervalos de confianza que nosotros no podemos calcular tan fácilmente.

Regresión de polinomios fraccionales

La tercera opción es utilizar una nueva regresión que nos ofrece Stata que denomina regresión de polinomios fraccionales. Esta opción consiste en que es Stata quien, también automáticamente calcula los polinomios que mejor ajuste consiguen. En nuestro caso le indicamos al programa que busque hasta dos polinomios. El software busca entre 44 modelos y encuentra que los dos mejores candidatos son x^{-2} y, por otro lado $x^{-2}+x^{-1}$. Una vez hallados crea las correspondientes variables y ejecuta la regresión. Sin embargo cuando ejecuta la regresión lineal el segundo polinomio no es significativo (es decir el que nosotros digamos que queremos dos polinomios y que haya encontrado los dos mejores no quiere decir que haya dos significativos). Por ello repetimos el análisis con sólo un polinomio. El ajuste es algo mejor que en los modelos anteriores, pasando la \mathbb{R}^2 del 66.87% al 68.42%. El resultado obviamente es el mismo que si manualmente hubiésemos creado la variable X-2 y la hubiésemos introducido

manualmente en el modelo pero este procedimiento nos muestra el mejor ajuste entre bastantes potencias.

```
. fp <pib pc>, replace : regress paro <pib pc>
(fitting 44 models)
(\dots 10^8 \dots 20^8 \dots 30^8 \dots 40^8 \dots 50^8 \dots 60^8 \dots 70^8 \dots 80^8 \dots 90^8 \dots 100^8)
Fractional polynomial comparisons:
   pib pc | df Deviance Res. s.d. Dev. dif. P(*) Powers
_____
omitted | 0 337.512 6.272 64.619 0.000
linear | 1 293.235 4.138 20.342 0.000 1
m = 1 | 2 276.544 3.525 3.650 0.192 -2
m = 2 | 4 272.894 3.438 0.000 -- -2 -1
(*) P = sig. level of model with m = 2 based on F with 47 denominator dof.
Coef. Std. Err.
                             t P>|t|
                                         [95% Conf. Interval]
     paro |
  . fp <pib_pc>, fp(-2) replace : regress paro <pib_pc>
-> regress paro pib pc 1
  _____
    paro | Coef. Std. Err. t P>|t| [95% Conf. Interval]
______
 pib_pc_1 | 5.66e+09 5.36e+08 10.56 0.000 4.58e+09 6.73e+09

_cons | 6.234912 1.472243 4.23 0.000 3.277824 9.191999
```

Si pedimos al programa un ajuste con 3 polinomios el programa propone: x^{-2} ; $x^{-2}+x^{-1}$; $y x^2+\ln(x)x^2+\ln(x)^2x^2$ los tres resultan significativos y el ajuste sube ($\overline{R}^2=70.13\%$) lo que ahora surge es un problema de interpretación de dichos coeficientes. Para intentar intuir algo razonable estimamos los valores previstos por el modelo y los graficamos en función del pib_pc.

omitted	1	0	337.512	6.272	65.977	0.000		
linear	1	1	293.235	4.138	21.699	0.001	1	
m = 1	1	2	276.544	3.525	5.008	0.214	-2	
m = 2	1	4	272.894	3.438	1.358	0.276	-2 -1	
m = 3	1	5	271.536	3.428	0.000		2 2 2	

(*) P = sig. level of model with m = 3 based on F with 46 denominator dof.

Source	SS	df	MS	Number of obs	=	52
+				F(3, 48)	=	40.90
Model	1442.09809	3	480.699363	Prob > F	=	0.0000
Residual	564.085965	48	11.7517909	R-squared	=	0.7188
+				Adj R-squared	=	0.7013
Total	2006.18406	51	39.3369423	Root MSE	=	3.4281

paro	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
pib_pc_1 pib_pc_2 pib_pc_3 _cons	0000511	.0000171	-2.98	0.004	0000855	0000167
	9.54e-06	3.24e-06	2.95	0.005	3.03e-06	.000016
	-4.46e-07	1.53e-07	-2.91	0.005	-7.54e-07	-1.38e-07
	175.078	39.91103	4.39	0.000	94.83153	255.3245

- . fp predict paro_est, fp
- . twoway (scatter paro_est pib_pc)

Regresión Cox-Box

Otro modelo que se utiliza cuando la relación no es lineal es el modelo Cox-Box. Este utiliza una transformación de las variables para conseguir la linealización concretamente se construye una batería de nuevas variables que dependen de λ que denotamos como $Z(\lambda)$ y cuyo valor es

$$Z(\lambda) = \begin{cases} \frac{y^{\lambda} - 1}{\lambda} & \text{si } \lambda \neq 0\\ \ln(y) & \text{si } \lambda = 0 \end{cases}$$

El software permite hacer la transformación Cox-Box sólo a la variable dependiente, sólo a la variables independientes, a todas (ambos lados) con el λ igual, o a todas (ambos lados) con parámetros diferentes λ para las independientes y θ para la dependiente. Dicen los defensores que este modelo reduce al máximo la posible heterogeneidad y no normalidad de los residuos.

Una ventaja respecto a la regresión fraccional es que en la regresión Cox-Box se pueden modificar varias variables independientes mientras que el modelo fraccional las debe estimar una a una.

Con la base "satisfacción" estudiamos la relación de edad y estudios sobre la renta familiar. Para que no exista confusión con edades en las que el individuo no está emancipado truncaremos el modelo sobre 30 años. Estimamos dos modelos: uno sencillo lineal, para comparación, y otro Cox-Box. En el caso del modelo Cox-Box hemos debido generar manualmente la variable edad2 como el cuadrado de la edad. Además hemos debido truncar la variable est_recode a un número mayor que cero (la Cox-Box, como calcula $\ln(y)$ y eleva y^{λ} no admite valores 0). Otra opción hubiese sido recodificar esta variable sumándole una unidad).

De los distintos modelos posibles se ha optado por el que realiza la transformación a ambos lados de la regresión estimando los dos parámetros λ para las independientes y θ para la dependiente.

regress	rentafam	c.edad##c.edad	est	recode	i f	edad >	>30

Source	SS	df	MS		er of obs		4,411
Model Residual	2785.93774 9378.04412	4,407	928.645913 2.12798823	Prob R-sq	4407) > F wared R-squared	= = =	436.40 0.0000 0.2290 0.2285
Total	12163.9819		2.75827253	Root	-	=	1.4588
rentafam	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
edad	.0580353	.0111453	5.21	0.000	.0361	849	.0798857
c.edad#c.edad	0005091	.0000993	-5.13	0.000	0007	037	0003145
est_recode _cons	.6912437 1.379555	.0217104	31.84 4.57	0.000	.6486 .7872		.7338071 1.971843

[.] $generate edad2 = (edad^2)$

```
(3 missing values generated)
. boxcox rentafam edad edad2 est recode if est recode>0 & edad>30, model(theta)
Fitting comparison model
Iteration 0: \log likelihood = -8245.0196
Iteration 1: log likelihood = -8190.6199
Iteration 2: log likelihood = -8190.3497
Iteration 3: log likelihood = -8190.3497
Fitting full model
Iteration 0: log likelihood = -7715.0722
Iteration 1: log likelihood = -7676.0376
Iteration 2: log likelihood = -7675.0140
Iteration 2: log likelihood = -7675.9149
Iteration 3: log likelihood = -7675.9149
                                               Number of obs = 4,281
                                               LR chi2(4) = 1028.87
Prob > chi2 = 0.000
Log likelihood = -7675.9149
______
   rentafam | Coef. Std. Err. z P>|z| [95% Conf. Interval]
   /lambda | 1.641999 .1449672 11.33 0.000 1.357868 1.926129
/theta | .7816837 .0298325 26.20 0.000 .7232131 .8401543
______
Estimates of scale-variant parameters
Notrans
_cons | 1.809667
      |
edad |
                .002309
edad2 | -1.53e-06
est_recode | .2761177
   /sigma | 1.063921
          Restricts.log likelihood
                                      chi2
                                                 Prob > chi2
```

El resultado de la Regresión Cox-Box muestra la estimación más ajustada para λ y θ , así como los parámetros de las independientes para dichos valores. Los valores, aunque difieren un poco no cambian el signo de la regresión lineal. Como puede observarse el modelo Cox-Box no reporta errores estándar luego no se puede hacer inferencia. El investigador debe ponderar los pros y los contras.

Configurar el individuo de referencia

Esta operación no mejora el ajuste ni la significación ni la magnitud de los coeficientes estimados pero es muy útil para que los resultados sean más inteligibles y

la potencia de su interpretación mayor. Consiste en preparar todas las variables que estemos interesados en introducir en el modelo rescaldándolas mediante combinaciones lineales, mediante estandarización o mediante creación de dummies para que cuando sean 0 coincidan con un individuo que, como mínimo exista y mejor si coincide con alguna característica medianamente interesante como que sea un individuo promedio de la población.

Si se hacen estas operaciones entonces, además, la probabilidad condicionada de la variable y quedará recogida en la constante del modelo (E(y/x) = cte) con lo que ganamos un parámetro estimado interesante más.

Por ejemplo en la base "provincias" intentaremos obtener evidencia sobre los condicionantes del paro provincial. Para ello regresamos pib_pc y nacim1000 sobre paro. Los resultados muestran que ambas variables son significativas y una estimación de su influencia. El ajuste es muy bueno ($\overline{R}^2=67.73\%$). Sin embargo la constante (34.69) no nos dice nada. Si queremos obligar a hablar a la constante lo que se puede hacer es configurar un individuo de referencia (por ejemplo una provincia con PIB per cápita de 20500 y con nacimientos promedio de 9 nacimientos por 1000 habitantes (valores ambos cercanos a los promedios de 20763 y 8.86 respectivamente) tendría una tasa de paro de 21.32%. Con este cambio el resto de parámetros (ajuste, estimaciones, pvalor...) no cambian en absoluto.

. regress paro pib_pc nacim1000

Source	SS	df	MS	Number of obs	=	52
				F(2, 49)	=	54.52
Model	1384.1945	2	692.097249	Prob > F	=	0.0000
Residual	621.989557	49	12.6936644	R-squared	=	0.6900
+-				Adj R-squared	=	0.6773
Total	2006.18406	51	39.3369423	Root MSE	=	3.5628

paro		Coef.	Std	. Err.		t	P>	t]	95% (Conf.	Inte	rval]
pib_pc nacim1000 _cons	 	0010918 1.0018 34.69033		32229	4	.30	0. 0. 0.	000		00132 53312 8.270	213	1.4	08612 70479 11029

- . generate pib_pc_prom = pib_pc 20500
- . generate nacim1000 prom = nacim1000 9
- . regress paro pib pc prom nacim1000 prom

Source | SS df MS Number of obs = 52

Model Residual Total	1384.1945 621.989557 	2 6 49 1:	92.097249 2.6936644	F(2, 49) Prob > F R-squared Adj R-squared Root MSE	= = = ared = =	54.52 0.0000 0.6900 0.6773 3.5628
paro	Coef.	Std. Err.	t	P> t	95% Conf.	Interval]
pib_pc_prom nacim1000_prom _cons	0010918 1.0018 21.32477	.0001148 .2332229 .4960391	-9.51 4.30 42.99	0.000	0013224 5331213 20.32795	0008612 1.470479 22.3216

5. Resultados

Estamos observando que existen diversas formas de plantear los modelos de regresión. Si sólo existiese un método no habría discusión alguna sobre su formulación, no habría dudas sobre el conocimiento de las variables económicas y no habría cursos de econometría. Nuestro objetivo será entonces decir algo, si podemos, pero minimizando la posibilidad de equivocarnos.

Una persona puede equivocarse o mentir de dos formas: Diciendo que algo es cierto cuando no lo es (error tipo I) y diciendo que algo no es cierto cuando sí que lo es (error tipo II). En econometría, y en Ciencia (con mayúscula) en general tratamos de evitar al máximo posible (es decir minimizar) el error tipo I, de forma que sólo digamos que algo es cierto cuando estemos absolutamente seguros de que no es cierto lo contrario.

Denominamos α como la probabilidad de cometer un error tipo I es decir la probabilidad de decir que algo se cumple cuando no se cumple. Cuanta más pequeña sea α casi siempre será mejor porque estamos más seguros de lo que estamos diciendo. α también se llama nivel de significación (su complementaria: 1- α , que cuanto más grande mejor, se suele llamar nivel de confianza).

P(aceptar algo| algo es falso) = α

Escogemos minimizar α como medida del error, mejor que el error tipo II por dos razones: a) porque es más fácil de calcular estadísticamente y b) porque parece que es más importante estar más seguro de lo que se afirma que de lo que se rechaza. (¿Qué es más trágico, equivocarse al introducir un medicamento que no cura o equivocarse

rechazando un medicamento que sí cura? Las dos cosas son importantes: si uno minimiza el primer error significa que si digo que cura es que cura con una confianza 1- α (puede colarse α veces algún medicamento inútil). Si minimizo el segundo es que si digo que no cura es que no cura con cierta probabilidad (puede rechazarse un medicamento bueno). Luego parece, aunque es una cuestión discutible, que si hay que equivocarse, es mejor equivocarse en un sentido que en el contrario.

En la práctica para formular dicha probabilidad se plantea la realización de pruebas o test. Los test son un cálculo que hacemos con nuestros resultados, de la que se obtiene un resultado (parámetro) que, como sabemos que se distribuye según una determinada distribución (normal, t, F, etc.) podemos afirmar si el resultado de nuestra cuenta entra dentro de la zona de rechazo o de aceptación. Para equivocarnos lo menos posible ponemos unas zonas de aceptación muy pequeñas y una zonas de rechazo muy grandes (así cuando aceptemos algo es porque estamos bastante seguros) normalmente la zona de aceptación es del 1% o del 5% y su complementaria la de rechazo.

Para hacerlo todavía más útil casi todos los test se plantean como una aceptación o rechazo de que algo sea 0 (por eso se suele llamar hipótesis nula Ho=0). Por ejemplo que la recta de regresión estimada tenga tangente 0 (Ho: $\hat{\beta} = 0$), que dos parámetros sean iguales (Ho: $\hat{\beta}_1 - \hat{\beta}_2 = 0$), que una función sea normal (Ho: F(Y|X)-N(Y|X)=0); que la correlación entre un valor y él mismo retardado sea 0 (Ho: $corr(x_t; x_{t-n}) = 0$) y así sucesivamente. De hecho cuando un test no dice cuál es la Hipótesis nula es casi seguro que la Ho es que el parámetro estimado sea cero. Y al contrario si por algún capricho del destino una Ho no es que el parámetro sea cero (por ejemplo algún test de normalidad) entonces el programa nos lo recordará y nosotros tendremos que recordarlo en nuestro trabajo.

Tipos de errores

En una investigación estamos sometidos a errores constantes. Podemos equivocarnos en el tipo de muestreo (que no sea aleatorio, que no esté correctamente estratificado...), Podemos equivocarnos al medir las variables (porque los individuos mientan, porque los entrevistadores copien mal las respuestas, porque no se entiendan

las preguntas...). Pero supongamos que minimizamos dichos errores o que, al menos estamos razonablemente seguros de que el muestreo has sido correcto (o que tenemos a toda la población como en el caso de las variables macroeconómicas) y que los errores de medida se compensan unos con otros (es decir, el entrevistador torpe se equivoca con errores de suma cero). Ambos errores se reducen con la ampliación de la muestra, de forma que, si no estamos seguros de cualquiera de ellos bastaría con incrementar la muestra. Si las poblaciones son normales y grandes (más de 100.000 individuos), hay una relación cuadrática inversa entre el error e y el tamaño de la muestra necesaria n en la forma:

$$n = \frac{Z^2 p(1-p)}{e^2}$$

donde Z es el nivel de significación deseado (normalmente Z=0.95 ó 0.99) y p la probabilidad esperada (en caso de duda p=0.5).

Pero los errores más difíciles de tratar son las perturbaciones estocásticas que sufre cualquier variable que se precie de ello. De hecho sólo estaremos razonablemente seguros de que nuestro modelo es razonablemente bueno cuando reduzcamos las perturbaciones a una masa informe de puntos. Dicho de otra forma, mientras las perturbaciones no explicadas por nuestro modelo tengan alguna forma definida puede significar que nuestro modelo adolece de alguna falta de variable explicativa o de algún defecto estructural que deberíamos corregir antes de presentar los resultados.

Para comprobarlo tenemos dos baterías de pruebas: gráficos y test numéricos.

En los test gráfico tendremos que observar si existe cierta esfericidad o si, por el contrario se aprecian tendencias entre *cualquiera* de las variables del modelo y los residuos. El problema de los test gráficos es que los residuos tienen unidades y, por lo tanto puede engañarnos la vista.

En los test numéricos trataremos de descartar la presencia de errores de especificación, de heterocedasticidad, etc.

Por ejemplo si abrimos la base "artificial" y estimamos una regresión de a y b sobre y, los resultados parecen buenos, tanto en significación como en ajuste. Sin embargo los gráficos parecen sugerir cierta correlación de los residuos con y y con a (no tanto en b). Cuando se produce correlación de los residuos con y puede ser un problema de especificación o de variables omitidas. Cuando se produce correlación entre los residuos y alguna variable independiente puede ser un problema también de especificación o variables omitidas pero también un problema de la temida jendogeneidad!.

Además de la regresión le hemos solicitado a Stata que se reporten los coeficientes estandarizados (beta). Esto no es necesario pero por ver cuál de las dos variables tiene un mayor peso en la varianza de la variable dependiente.

. regress y a b, beta

Source	SS	df	MS	Number of obs F(2, 497)	=	500 401.41
Model Residual	79.5929409 49.2735182	2 497	39.7964705 .099141888	Prob > F R-squared	=	0.0000
Total	128.866459	499	.258249417	Adj R-squared Root MSE	=	0.6161 .31487

У	Coef.	Std. Err.	t	P> t	Beta
a b _cons		.0484181 .049771 .0141062	21.46 18.95 4.84	0.000	.5952589 .5256779

. rvpplot a

. rvpplot b

. rvfplot

Dado que no nos quedamos conformes practicamos estimamos los residuos y hacemos dos pruebas previas la de correlación con las variables del modelo y la de normalidad. Curiosamente no mide correlación entre los residuos y la variable a. Pero sí entre los residuos y la dependiente. La prueba de normalidad nos obliga a rechazar la hipótesis nula de normalidad (pero este test es muy exigente en realidad no se suele exigir porque no sale correcto casi nunca)

```
. predict residuos, residuals % \left( 1\right) =\left( 1\right) \left( 1\right) \left(
```

. correlate residuos y a b
(obs=500)

```
residuos y a b

residuos | 1.0000
y | 0.6184 | 1.0000
a | -0.0000 | 0.5843 | 1.0000
b | 0.0000 | 0.5133 | -0.0208 | 1.0000
```

. sktest residuos

```
Skewness/Kurtosis tests for Normality
----- joint -----
Variable | Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2
```

residuos | 500 0.0571 0.0000 33.92 0.0000

Como seguimos algo preocupados (incluso algo más si cabe) seguimos realizamos los tests correspondientes. Por orden el heterogeneidad (hetttest), el de multicolinealidad (vif), el de especificación o variables omitidas (ovtest; test de observaciones relevantes (DFbetas). No se detecta heterocedasticidad (¡bien!) porque se acepta la Ho. No se detectga multicolinealidad (¡bien!) porque ninguna variable tiene un VIF>10 (algunos autores hablan incluso de >30) y la media no es mucho más grande de 1. Atención porque falla el test de variables omitidas. Se rechaza la Ho de especificación correcta. El test dfbeta nos genera dos variables (una por independiente) y nos arroja, para cada observación, cuantas veces se reduciría el error si se omite dicha variable. Algunos autores dicen que hay que plantearse la exclusión cuando $|dfbeta|>2/\sqrt{n}$, en nuestro caso como n=500 el límite estaría en 0.08. Otros autores dicen que sólo es preocupante cuando |dfbeta|>1. En nuestro caso no es preocupante porque, además, no hay valores raros.

```
. estat hettest
```

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of y

> chi2(1) = 0.02 Prob > chi2 = 0.8874

. estat vif

Variable	VIF	1/VIF
a b	1.00	0.999566
Mean VIF	1.00	

. estat ovtest

Ramsey RESET test using powers of the fitted values of y Ho: model has no omitted variables $F\left(3,\ 494\right) = 27.04$ Prob > F = 0.0000

. dfbeta

```
_dfbeta_1: dfbeta(a)
_dfbeta_2: dfbeta(b)
```

. summarize dfbeta 1 dfbeta 2

Variable	Obs	Mean	Std. Dev.	. Min	Max
dfbeta 1	+ 500	-7.10e-06	.0486284	2026569	.1732518
_dfbeta_2	500	9.83e-06	.0472394	155364	.1997676

. histogram _dfbeta_1, normal (bin=22, start=-.20265689, width=.01708676)

. histogram _dfbeta_2, normal (bin=22, start=-.15536402, width=.01614235)

La solución a los problemas de los residuos pasa por controlar la Heterocedasticidad, la Multicolinealidad y la especificación del modelo.

a) Heterocedasticidad.

Si no es muy acusada no es importante. Si es muy acusada será necesario utilizar estimadores robustos. Stata proporciona estimadores robustos de casi todos los modelos. Los estimadores robustos no cambian ni el ajuste ni los parámetros $\hat{\beta}$. Solo aumenta el error estándar estimado y, por tanto aumenta el p-valor por lo que corremos el riesgo de que una variable que fuese significativa deje de serlo.

Los problemas de heterocedasticidad tambien pueden ser debidos a la omisión de alguna variable relevante por lo que el uso de estimadores robustos solo se recomienda cuando el tests Reset de Ramsey (estat ovtest) no sea significativo, es decir no indique que hay variables omitidas.

b) Multicolinealidad.

La colinealidad no sólo es normal sino que es esperable y deseable. Es imposible que unas variables que explican y son explicadas por un fenómeno sean tan completamente independientes que no estén correlacionadas en algún grado. El problema surge cuando hay, como mínimo, dos variables muy, muy, muy correlacionadas, entonces sucede que una de ellas le "roba" la correlación al resto haciendo que las demás aparezcan como no significativas o incluso significativas con un signo distinto al esperado. Esto es normal, por ejemplo en el caso de la renta, la edad y el nivel educativo. Lo que hay que hacer en estos casos es sacrificar una de ellas y quedarnos con la variable que tenga más sentido interpretativo.

c) Error de especificación.

El error de especificación se refiere a que falta por incluir alguna interacción o alguna variable en forma polinómica. El test consiste en regresar a la variable dependiente con potencias de ella misma por lo que las variables omitidas deben ser potencias o interacciones de las variables dependientes. Lamentablemente el test no nos ofrece pistas sobre las variables díscolas por lo que se impone utilizar la lógica y como último recurso, claro está, la prueba y error.

En la base de datos "satisfacción" vamos a estudiar los condicionantes del voto. La primera regresión, aunque el ajuste es bajo, muestra resultados relativamente significativos. Sin embargo los test de variables omitidas y de heterocedasticidad dicen que hay problemas. El test de inflación de la varianza también es correcto $VIF_i < 30$ y media $VIF \approx 1$.

. regress izq_der edad est_recode estasalud ocup_1d nac_esp

Source	SS	df	MS	Number of obs	=	5,165
				F(5, 5159)	=	25.49
Model	420.853127	5	84.1706253	Prob > F	=	0.0000
Residual	17036.6524	5,159	3.3023168	R-squared	=	0.0241
+				Adj R-squared	=	0.0232
Total	17457.5055	5,164	3.38061687	Root MSE	=	1.8172

izq_der	Coef.	Std. Err.	t t	P> t	[95% Conf.	Interval]
edad est_recode estasalud ocup_1d nac_esp _cons	.01255771496953108837705793681906452 5.278402	.0017199 .0288776 .0361265 .0117543 .0989072 .1952128	7.30 -5.18 -3.01 -4.93 -1.93 27.04	0.000 0.000 0.003 0.000 0.054 0.000	.00918592063075179660908098023845452 4.895702	.0159295 093083 0380145 0348934 .0032547 5.661102

. estat ovtest

```
Ramsey RESET test using powers of the fitted values of izq_der Ho: model has no omitted variables F(3,\ 5156) = \qquad 4.24 \\ Prob > F = \qquad 0.0053
```

. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of izq der

> chi2(1) = 5.89Prob > chi2 = 0.0152

. estat vif

Variable	VIF	1/VIF
est_recode ocup_1d edad estasalud nac_esp	1.60 1.35 1.33 1.18 1.03	0.625868 0.738589 0.749768 0.848290 0.970659
Mean VIF	1.30	

Tras un poco de estudio del modelo y de la teoría económica (y bastante de prueba y error) proponemos este otro modelo, cuyo ajuste continúa siendo bajo, pero ya estamos seguros de que no existe error de especificación. También desaparece la heterocedasticidad. Lo que aparece ahora es un pequeño problema de colinealidad entre renta y estudios. La multicolinealidad de los términos de interacción es normal (son el producto de dos variables en el modelo) y no es relevante. Lo difícil ahora es interpretar el sentido de variables como el nivel de estudios, que está en estado, cuadrático y como interacción con renta familiar. Pero como hemos utilizado los automatismos de Stata para introducir las variables entonces podemos pedirle a Stata que nos haga un análisis marginal que resulta interesante

[.] regress izq_der rentafam estasalud ocup_ld nac_esp c.rentafam#c.est_recode c.est recode#c.est recode c.edad##c.edad

Source	SS	df	MS				3,971 13.77	
Model Residual	416.26945 13301.5779			Prob > F R-squared Adj R-squ	d	=	0.0000 0.0303 0.0281	
Total	13717.8474	3 , 970	3.45537718	Root MSE		=		
	izq_der	Coef.	Std. Err.	t	P> t		[95% Conf.	Interval]
	rentafam estasalud ocup_1d nac_esp	1136832 0489874	.0414981	-2.74	0.001 0.006 0.001 0.004		2659974 1950428 0768663 5472261	0666052 0323236 0211085 1063011
c.rentafam#c	.est_recode	.0651922	.0174587	3.73	0.000		.0309633	.0994212
	est_recode	0043596	.1282763	-0.03	0.973		2558534	.2471342
c.est_recode#c	.est_recode	0854879	.0254971	-3.35	0.001		1354766	0354992
	edad	0323012	.0100137	-3.23	0.001		0519336	0126689

.000453 .0000995 4.55 0.000

_cons | 6.551325 .3545609 18.48 0.000 5.856186 7.246464

.0002579

.000648

. estat ovtest

Ramsey RESET test using powers of the fitted values of izq_der Ho: model has no omitted variables F(3, 3958) = 1.87 Prob > F = 0.1324

. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance

 ${\tt Variables:} \ {\tt fitted} \ {\tt values} \ {\tt of} \ {\tt izq_der}$

chi2(1) = 2.71 Prob > chi2 = 0.0995

c.edad#c.edad |

. estat vif

Variable	VIF	1/VIF
rentafam	8.58	0.116525
estasalud	1.17	0.852384
ocup 1d	1.47	0.680204
nac esp	1.06	0.946032
c.rentafam#		
c.est recode	25.60	0.039057
est recode	24.02	0.041629
_ c.		
est recode#		
c.est recode	24.79	0.040338
edad	32.85	0.030442
c.edad#		
c.edad	34.12	0.029305
Mean VIF	17.07	

. margins, at(est recode=(0 1 2 3 4 5)) plot

(output omitido)

. margins, at(est_recode=(0 1 2 3 4 5) rentafam=(1 5 10)) plot
(output omitido)

El resultado es interesante porque no sólo muestra una relación no lineal entre el nivel de estudios y la ideología sino que muestra una interacción curiosísima con la renta. De forma que parece que los que tienen más estudios se hacen bastante de izquierdas cuando no disponen de un nivel de renta familiar alto.

El ajuste del modelo

¿Cuánto de buena es tu idea del modelo? Preguntar eso es de evidente mal gusto, pero lo peor es que podemos medirlo fácilmente. Resulta que la variable dependiente tiene una variabilidad total (que al cuadrado llamamos suma del cuadrado Total -SCT), resulta que los residuos tienen otra variabilidad restante (que al cuadrado llamamos

suma del cuadrado de los residuos - SCR), luego tu modelo ajusta la diferencia. Se puede construir un índice que llamamos coeficiente de determinación como:

$$R^2 = 1 - \frac{SCR}{SCT}$$

Que es un valor que oscila entre 0 (pésimo ajuste) y 1 (máximo ajuste). Ojo un ajuste superior a 0.8 también debe preocuparnos porque igual nos hemos equivocado en algo como haber puesto variables proxi o combinaciones lineales de la dependiente como independientes.

Pero, por construcción, cada vez que añado una variable al modelo, aunque no ajuste nada, me reduce los grados de libertad, con lo que aumenta el ajuste (en última instancia un modelo con tantas variables dependientes como datos ajustaría perfectamente aunque las variables independientes no tengan nada que ver), por ello es mejor corregir dicho coeficiente con los grados de libertad. El coeficiente de determinación ajustado es:

$$\bar{R}^2 = 1 - \frac{SCR/(n-k)}{SCT/(n-1)}$$

Es decir hacemos el mismo cálculo pero ponderando por los grados de libertad con los que hemos medido cada uno de los componentes de variabilidad. Si n es el total de observaciones y k el de variables en el modelo (n-k) son los grados de libertad de los residuos y (n-1) los grados de libertad del modelo.

 \bar{R}^2 también es un parámetro que oscila entre 0 (nulo ajuste) y 1 (ajuste sospechosamente perfecto).

Algunos autores consideran que el test de significación global F también es una medida del ajuste. Este test consiste en comprobar si se cumple la Hipótesis nula de que todas las estimaciones son cero, es decir Ho: $\hat{\beta}_1 = \hat{\beta}_2 = \dots = \hat{\beta}_k = 0$. Si el parámetro F es significativamente distinto de 0 se rechaza la Ho y se puede afirmar que alguna $\hat{\beta}_j$ es distinta de 0 por lo que el modelo ajusta algo. Sin embargo pensar que sólo porque el p-

valor de F sea menor de 0.000 ya tenemos un modelo ajustado puede ser pecar de optimismo.

Otra medida del ajuste es la que se denomina raíz cuadrada de los residuos (error cuadrático medio). Esta medida es muy interesante que aprendamos a calcularla porque algunos modelos más complejos no ofrecen una estimación del R2 y esta medida de ajuste nos la podemos fabricar muy fácilmente. El ECM (Root MSE en Stata) se calcula como

$$ECM = \sqrt{\frac{\sum (y - \hat{y})^2}{(n - k)}}$$

En el caso de la Regresión lineal suele venir calculada pero es sencillo obtenerla como $ECM = \sqrt{MSR}$. Pero en el caso de la regresión lineal ni siquiera es necesaria porque ya disponemos de los coeficientes de determinación. La importancia de conocer esta medida de ajuste será cuando nos enfrentemos a modelos en los que falte una medida del ajuste.

ECM es una medida mayor que 0, no está acotada superiormente y no conocemos su distribución pero sí que nos sirve para comparar modelos siempre que compartan la misma variable dependiente, incluso aunque no estén anidados. Incluso, en algunos modelos relativamente lineales, podremos "fabricar" una pseudo R2, aunque sólo sea para consumo interno, como:

$$Pseudo R^2 = 1 - \frac{ECM_1}{ECM_0}$$

Donde ECM_I es el ECM del modelo final y ECM_o es el ECM del modelo en que sólo está la constante. Decimos, para consumo interno, porque no conocemos la distribución de ECM por lo que, por ejemplo, no estamos seguros de que una reducción en el 50% del ECM se corresponda con un incremento del 50% en el ajuste, pero sí que sabemos que si alguna variable ajusta algo, normalmente $ECM_I < ECM_o$ y que cuanto

más se parezcan ECM_1 y ECM_o , más cercano será el índice a 0 y cuanto mejor ajuste más cercano será a 1.

Interpretación de $\hat{\beta}_i$

Si x es continua, el valor de $\hat{\beta}_j$ es la derivada de y respecto a x_j ($\hat{\beta}_j = \frac{\partial y}{\partial x_j}$) Es decir cuánto cambia y cuando x cambia en una unidad permaneciendo el resto de variables constante.

El término *ceteris paribus* es un latinajo que utilizan los economistas para permitirse especular sobre lo que ocurriría si aislamos el efecto de una única variable permaneciendo el resto constante. Por ejemplo la producción es función de muchas variables como puede ser el capital invertido, el trabajo y el conocimiento, entonces como cambiaría la producción per cápita si ceteris paribus, sólo aumenta el número de trabajadores. Los economistas dicen que la producción total aumentará, pero menos que proporcionalmente por lo que, en términos de producción por trabajador, la producción disminuirá. Como los profesores de los economistas abusaban tanto de este término y era tan confuso para algunos de sus estudiantes, probablemente los estadísticos pensaran en importarlo para sus clases de regresiones de forma que los valores de los parámetros estimados serían ceteris paribus.

Con la base "satisfacción" supongamos que queremos medir el efecto de la edad en el estado de salud. Una primera regresión indica que cada año de edad incrementa la variable estasalud (0; 5) en 0.017 de promedio. Sin embargo es posible que consideremos que este resultado se queda algo corto porque podemos pensar que el estado de salud también puede depender del género o del nivel educativo. Una segunda regresión nos indica que así es y que, controlado por género o nivel educativo la edad sólo tiene un efecto sobre estasalud de 0.013 por año de incremento. Es decir que, ceteris paribus, un año más de vida incrementa, en promedio, la variable estasalud en 0.013.

- . generate edad_recode = (edad- 47)
 (3 missing values generated)
- . regress estasalud edad recode

Model 694.014765	7,725
Model 694.014765	
Residual 4093.09669 7,723 .529987918 R-squared =	1309.49
, , , , , , , , , , , , , , , , , , , ,	
	0.1449
	.728
estasalud Coef. Std. Err. t P> t [95% Conf.	Interval]
edad recode .016782 .0004638 36.19 0.000 .0158729	0176911
cons 2.120836 .0082883 255.88 0.000 2.104589	
<pre>. regress estasalud edad_recode genero est_recode Source SS</pre>	7 361
Model 669.316596	443.01
F(3, 7357) = Model 669.316596 3 223.105532 Prob > F =	443.01
Model 669.316596	443.01
Model 669.316596	443.01 0.0000 0.1530 0.1527
Model 669.316596	443.01 0.0000 0.1530 0.1527 .70966

Además dada la configuración dada a edad, como edad_recode (= edad-47) hemos configurado un individuo de referencia mujer, analfabeta y con edad de 47 años. Y sabemos que, en promedio su estasalud será de 2.40. De no haber recodificado la edad su coeficiente y su error estándar sería el mismo, sólo cambiaría la estimación de la constante.

Los coeficientes estandarizados

Existe la posibilidad de pedir a Stata que estime los coeficientes estandarizados. Estos son los resultantes de una regresión en la que se han estandarizado todas las variables y, en este sentido su interpretación no es intuitiva pero, dado que las variables estandarizadas no tienen unidades de medida, sí que nos sirve para indicarnos qué variable son más influyentes que otras.

En el caso anterior, con la base "satisfacción" obtenemos el mismo modelo pero, a la derecha, en lugar de los intervalos de confianza aparecen los betas estandarizados que nos indican que, de las tres variables la más influyente es la edad, después los estudios y después el género. Si observamos los coeficientes no estandarizados el mayor corresponde a los estudios, el segundo al género y el último a la edad pero estos coeficientes nos confunden porque dependen de la unidad de medida de la variable. Los coeficientes estandarizados salvan dicho problema aunque su interpretación es menos intuitiva. Una interpretación no exacta puede ser la siguiente: como se han estandarizado, el 99.7% de la distribución se ha comprimido entre [-3; +3] luego el coeficiente $\widehat{\beta}^*$ sería el cambio en estasalud (que sabemos que está distribuida entre 1 muy buena y 5 muy mala) cuando cada variable recorre 1/6 de su rango. O lo que es lo mismo la edad (desde casi el mínimo de 18 a casi el máximo de 97 años) influye 0.3*6=1.8 puntos en estasalud.

Sistemas de selección de variables (stepwise)

La mayoría de los programas informáticos y Stata no es una excepción, permite a los investigadores introducir un número elevado de variables en el modelo y dejar al software que haga las iteraciones necesarias para seleccionar aquellas que tienen un p-valor máximo (stepwise forward) o para desechar aquellas que no tengan un p-valor mínimo) (stepwise backward). El programa realiza cientos de iteraciones y determina qué variables superan el requisito de p-valor exigido para quedarse en el modelo.

Esta herramienta es meramente exploratoria, no hay que decir, a estas alturas, que la introducción o la exclusión de una variable en un modelo de regresión sólo puede justificarse por la razón y la literatura (que no siempre coinciden) y nunca porque exista una correlación en la práctica porque esta puede resultar espuria.

El resultado es el mismo en ambos casos pero se pueden hacer dos formulaciones, "hacia delante" o "forward" que consiste en ir introduciendo variables conforme quedan como significativas en el modelo (en nuestro caso decimos que añada la variable mientras que su p-valor sea menor de 0.05).

```
. stepwise, pe(0.05) : regress satisf_1_10 frec_prim_publ frec_urg_publ frec_esp_pub frec_hosp_pub izq_der voto genero edad rentafam est_recode estasalud cronico ocup_1d nac_esp (output omitido)
```

y "hacia detrás" o "backward" que consiste en meter a todas las varibles al principio y extrae aquellas que pierden la significación. (en nuestro caso decimos que retire la variable cuando su p-valor sea mayor de 0.05).

```
. stepwise, pr(0.05) : regress satisf_1_10 frec_prim_publ frec_urg_publ frec_esp_pub frec_hosp_pub izq_der voto genero edad rentafam est_recode estasalud cronico ocup_1d nac esp
```

```
begin with full model

p = 0.7296 >= 0.0500 removing ocup_1d

p = 0.7143 >= 0.0500 removing frec_prim_publ

p = 0.5640 >= 0.0500 removing est_recode

p = 0.2215 >= 0.0500 removing voto

p = 0.0891 >= 0.0500 removing genero

p = 0.0544 >= 0.0500 removing cronico
```

Source		SS	df	MS	Number of obs	=	3 , 947
 	+-		 		F(8, 3938)	=	35.54
Model		1038.48285	8	129.810357	Prob > F	=	0.0000
Residual		14385.1472	3,938	3.65290687	R-squared	=	0.0673
 	+-		 		Adj R-squared	=	0.0654
Total		15423.6301	3,946	3.90867463	Root MSE	=	1.9113

satisf_1_10		Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
nac_esp frec_urg_publ frec_esp_pub frec_hosp_pub izq_der estasalud rentafam edad cons	 	7635506 0731514 .058812 .2083507 .0949765 3536168 .0543324 .0246365 5.98724	.1166087 .0254253 .0199054 .0792349 .0165397 .0452662 .018843 .0020073 .1920789	-6.55 -2.88 2.95 2.63 5.74 -7.81 2.88 12.27 31.17	0.000 0.004 0.003 0.009 0.000 0.000 0.004 0.000	9921697 1229994 .0197863 .0530054 .0625494 4423641 .0173895 .0207011 5.610657	

Factor de ponderación

Uno de los requisitos fundamentales para estimar parámetros poblacionales a partir de muestras es que la muestra se haya obtenido mediante un m.a.s. (muestreo aleatorio simple). En ocasiones (y por motivos que van desde la imposibilidad física al presupuesto) no se realiza un m.a.s. de toda la población sino que se realiza un muestreo estratificado. Es decir se divide la población en grupos y se realiza un muestreo simple en cada grupo. Si no se entrevista a un número proporcionalmente igual de individuos en cada grupo (es decir si existen grupos infra-encuestados), entonces habrá individuos en la encuesta que serán representativos de más individuos que otros. Por ello el encuestador tiene que calcular e introducir, para cada observación, un factor de ponderación que nos indica el número de individuos de los que dicha observación es representativa, en función del tipo de muestreo que haya realizado.

Nosotros, para no sesgar nuestras estimaciones, tenemos que utilizar el factor de ponderación para ponderar con un mayor peso aquellas observaciones que representen a más individuos. Pero debe hacerse con cuidado, porque la mayoría de los programas informáticos permiten introducir muchas formas de ponderación. Lo más peligroso es confundirla con la ponderación que supone que una observación se corresponde con distintos valores repetidos. Es lo más peligroso porque si utilizamos esta última estaremos incrementando artificialmente el número de observaciones y, por consiguiente reduciendo los p-valores. Por ello es muy importante observar siempre que cuando utilicemos pesos no se incrementen el número de observaciones de la muestra.

En la base satisfacción y una vez que, mediante stepwise, tenemos una relación de variables que están relacionadas con la satisfacción repetiremos la operación pero ponderando por el factor de elevación. Primero comprobamos que no se ha incrementado el número de observaciones y después observamos que algunas variables cambian sensiblemente su estimación. Por ejemplo, cuando se pondera, la renta familiar deja de ser significativa y la opinión política se sitúa como tercera variable en importancia.

frec_urg_publ f			lud nac_	esp rentafam	izq_	_der fred	c_esp_pub
Source	SS	df	MS	Number of obs	=	4,104	
	1040 00600		101 00070	F(8, 4095)	=	35.13	
Model	1048.00632	4 005	131.000/9	F(8, 4095) Prob > F R-squared Adj R-squared	=	0.0000	
Residual	15269.2481	4,095	3.72875411	K-squared	=	0.0642	
mo+ al	16217 2544	1 102	2 07600021	Root MSE	_	1 021	
satisf_1_10	Coef.	Std. Err.				Beta	
edad	.0242404	.0019556	12.40	0.000		.2077126	
estasalud	3652539 7444213	.0445546	-8.20	0.000		1408294	
nac_esp	7444213	.1168009	-6.37	0.000		0982157	
rentafam	.0574368	.0187394	3.07	0.002		.0483961 .0864495	
izq_der	.0930722	.0164056	5.67	0.000			
frec_esp_pub	.0537909	.0197697	2.72	0.007		.04548 0418183	
frec_urg_publ	062989	.0248274	-2.54	0.011			
frec_hosp_pub	.2122674	.077882	2.73	0.006		.0453574	
rentafam izq_der frec_esp_pub frec_urg_publ frec_hosp_pub _cons	5.999079	.1916498	31.30	0.000		•	
frec_urg_publ f				esp rentafam	izq	_der free	c_esp_pub
(sum or wgt is	4.2451e+03)		ractor],	beta			
Linear regressi	4.2451e+03)			Number of obs	=	4,104	
	4.2451e+03)			Number of obs	= =	4,104 27.40	
	4.2451e+03)			Number of obs F(8, 4095) Prob > F	=	27.40 0.0000	
	4.2451e+03)			Number of obs F(8, 4095) Prob > F	=	27.40 0.0000	
	4.2451e+03)			Number of obs	=	27.40 0.0000	
Linear regressi	4.2451e+03)			Number of obs F(8, 4095) Prob > F R-squared Root MSE	=	27.40 0.0000	
Linear regressi	4.2451e+03)	Robust Std. Err.	t	Number of obs F(8, 4095) Prob > F R-squared Root MSE	= = = =	27.40 0.0000	
Linear regressi	4.2451e+03) Lon Coef.	Robust Std. Err.	t	Number of obs F(8, 4095) Prob > F R-squared Root MSE	= = = =	27.40 0.0000 0.0641 1.9261 Beta 1896101	
Linear regressi	4.2451e+03) Lon Coef.	Robust Std. Err.	t	Number of obs F(8, 4095) Prob > F R-squared Root MSE	= = = = = = = = = = = = = = = = = = = =	27.40 0.0000 0.0641 1.9261 Beta 	
Linear regressi satisf_1_10 edad estasalud nac esp	4.2451e+03) ion Coef0220374 .3504589 .6812052	Robust Std. Err. .0021826 .0573838 .1261829	t 10.10 -6.11 -5.40	Number of obs F(8, 4095) Prob > F R-squared Root MSE D> t 0.000 0.000 0.000	= = = = 	27.40 0.0000 0.0641 1.9261 	
Linear regressi satisf_1_10 edad estasalud nac esp	4.2451e+03) ion Coef0220374 .3504589 .6812052	Robust Std. Err. .0021826 .0573838 .1261829	t 10.10 -6.11 -5.40	Number of obs F(8, 4095) Prob > F R-squared Root MSE D> t 0.000 0.000 0.000	= = = = 	27.40 0.0000 0.0641 1.9261 	
Linear regressi satisf_1_10 edad estasalud nac esp	4.2451e+03) ion Coef0220374 .3504589 .6812052	Robust Std. Err. .0021826 .0573838 .1261829	t 10.10 -6.11 -5.40	Number of obs F(8, 4095) Prob > F R-squared Root MSE D> t 0.000 0.000 0.000	= = = =	27.40 0.0000 0.0641 1.9261 	
Linear regressi satisf_1_10 edad estasalud nac esp	4.2451e+03) ion Coef0220374 .3504589 .6812052	Robust Std. Err. .0021826 .0573838 .1261829	t 10.10 -6.11 -5.40	Number of obs F(8, 4095) Prob > F R-squared Root MSE D> t 0.000 0.000 0.000	= = = = 	27.40 0.0000 0.0641 1.9261 	
satisf_1_10 satisf_1_10 edad estasalud nac_esp rentafam izq_der frec_esp_pub frec urg publ	4.2451e+03) Lon Coef. .0220374 3504589 6812052 .0338264 .110823 .0608049 0838816	Robust Std. Err. .0021826 .0573838 .1261829 .0215688 .0209158 .027268	t 10.10 -6.11 -5.40 1.57 5.30 2.23 -2.32	Number of obs F(8, 4095) Prob > F R-squared Root MSE 0.000 0.000 0.000 0.117 0.000 0.026 0.026	= = = =	27.40 0.0000 0.0641 1.9261 	
satisf_1_10 satisf_1_10 edad estasalud nac_esp rentafam izq_der frec_esp_pub frec_urg_pub1 frec hosp pub	Coef022037435045896812052 .0338264 .110823 .06080490838816 .2923589	Robust Std. Err. .0021826 .0573838 .1261829 .0215688 .0209158 .027268 .0361632 .0848188	t 10.10 -6.11 -5.40 1.57 5.30 2.23 -2.32 3.45	Number of obs F(8, 4095) Prob > F R-squared Root MSE 0.000 0.000 0.000 0.117 0.000 0.026 0.026 0.020 0.001	= = = =	27.40 0.0000 0.0641 1.9261 	
satisf_1_10 satisf_1_10 edad estasalud nac_esp rentafam izq_der frec_esp_pub frec_urg_pub1 frec hosp pub	4.2451e+03) Lon Coef. .0220374 3504589 6812052 .0338264 .110823 .0608049 0838816	Robust Std. Err. .0021826 .0573838 .1261829 .0215688 .0209158 .027268 .0361632 .0848188	t 10.10 -6.11 -5.40 1.57 5.30 2.23 -2.32 3.45	Number of obs F(8, 4095) Prob > F R-squared Root MSE 0.000 0.000 0.000 0.117 0.000 0.026 0.026 0.020 0.001	= = = =	27.40 0.0000 0.0641 1.9261 	

El efecto tamaño

Otro caso relevante es el denominado "efecto tamaño". En estudios agregados de países y regiones, en los que se mezclan países grandes como Argentina o Brasil, con otros pequeños como Costa Rica o Guatemala. En muchos casos se plantea la necesidad o no de ponderar en función de pesos como puede ser la población o la superficie (entre otros). La respuesta es clara y evidente. Si lo que se está estudiando son características estructurales de los países o regiones (tasa de crecimiento, endeudamiento y variables

macroeconómicas en general) no se debe ponderar porque cada país o región es un individuo. Pero si lo que se está estudiando son características de los individuos de cada país (renta per cápita, tasa de analfabetismo y variables características de los individuos) sí se debe ponderar si se quieren tener una interpretación individual.

Por ejemplo si queremos estimar si los países con menos impuestos atraen más capital extranjero, entonces no se puede ponderar, pero si se quiere saber si la inversión en educación mejora la esperanza de vida pero, en lugar de tener datos individuales tenemos datos agregados por regiones entonces tenemos que pesar cada región en función de sus habitantes.

A continuación estimamos dos modelos, en el primero se trata de testar la relación de la curva de Phillips entre inflación y desempleo en España, controlado por el PIB per cápita. En este caso cada región es un individuo y no se puede pesar. Por cierto la relación, aunque negativa no es significativa lo cual es relativamente esperable porque no tenemos datos temporales, con los que trabajó Phillips, sino un corte transversal de provincias.

En el segundo modelo nos preguntamos si la existencia o la posibilidad de acceder a servicios sociales como educación, sanidad etc, incrementa o diminuye la posibilidad de estar parado (controlando también por PIB per cápita). En este caso sí que procede pesar por alguna variable de "efecto tamaño" porque nos estamos preguntando por un problema individual ante un servicio individual y las conclusiones que saquemos tienen que ser individuales. En este caso el resultado es positivo y significativo es decir, a igualdad de renta, la existencia de más servicios sociales implica más desempleo.

Ojo: es muy importante tener mucho cuidado con la interpretación individual de fenómenos de los que disponemos datos agregados porque podemos caer en la denominada "falacia de la composición". El caso anterior puede ser un ejemplo. No es lo mismo observar que en las provincias donde hay más servicios sociales hay más desempleo que argumentar que los individuos que hacen más uso de los servicios

sociales tienen más probabilidad de estar parados. Sobre todo porque, a nivel agregado la causalidad puede ser al revés y no podemos decir nada a nivel individual.

Source	SS	df	MS		r of obs =	
+				F(2,	49) =	33.29
Model	1155.64273	2	577.821364	Prob	> F =	0.0000
Residual	850.541326	49	17.3579863	R-squ	ared =	= 0.5760
+					-squared =	
Total	2006.18406	51	39.3369423	Root	MSE =	4.1663
paro	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+	1 500060			0 571		4 006065
incr_ipc	-1.590368	2./85332	-0.57	0.5/1	-/.18//03	4.006967
pip_pc	0010399 41.88826	1 100700	-6.39	0.000	0013668	UUU/I3
 regress paro	n_s_educs_ss 4.6624e+07	 pib_pc [p				
regress paro	n_s_educs_ss 4.6624e+07	 pib_pc [p	weight = po	b_total]	f obs =	
regress paro um of wgt is	n_s_educs_ss 4.6624e+07	 pib_pc [p	weight = po	Number o	f obs = =	52 36.95
regress paro um of wgt is	n_s_educs_ss 4.6624e+07	 pib_pc [p	weight = pc	Number o F(2, 49) Prob > F	f obs = = = =	52 36.95 0.0000
regress paro um of wgt is	n_s_educs_ss 4.6624e+07	 pib_pc [p	weight = pc	Number o F(2, 49) Prob > F R-square	f obs = = = = d = =	52 36.95 0.0000 0.6707
regress paro	n_s_educs_ss 4.6624e+07	 pib_pc [p	weight = pc	Number o F(2, 49) Prob > F R-square	f obs = = = = d = =	52 36.95 0.0000
regress paro	n_s_educs_ss 4.6624e+07	 pib_pc [p	weight = pc	Number o F(2, 49) Prob > F R-square	f obs = = = = d = =	52 36.95 0.0000 0.6707
regress paro	n_s_educs_ss 4.6624e+07	pib_pc [p) Robust	weight = pc	Number o F(2, 49) Prob > F R-square Root MSE	f obs = = = d = = = = =	52 36.95 0.0000 0.6707 3.4454
regress paro um of wgt is near regress	n_s_educs_ss 4.6624e+07 ion	pib_pc [p) Robust Std. Err.	weight = po	Number o F(2, 49) Prob > F R-square Root MSE	f obs = = = = = = = = = = = = = = = = = = =	52 36.95 0.0000 0.6707 3.4454
regress paro um of wgt is near regress paro paro s_educs_ss	n_s_educs_ss	pib_pc [p) Robust Std. Err0000449	weight = po	Number o F(2, 49) Prob > F R-square Root MSE P> t 0.009	f obs = = = = = = = = = = = = = = = = = = =	52 36.95 0.0000 0.6707 3.4454 Interval

Intermediación, interacción y confusión

La introducción de variables en un modelo es un asunto complejo y siempre ha de tener una justificación teórica. Los procesos más reconocidos son:

Intermediación: Se dice que una variable intermedia a otra cuando al introducirla como variable independiente desaparece la correlación previa de otra independiente. Suelen ser variables muy colineadas que, a su vez se producen una a la otra. Por ejemplo la ampliación del presupuesto de la sanidad debe mejorar la salud de los contribuyentes. Pero el presupuesto provocará mejoras en el capital físico y el capital humano sanitario y serán estos y no el presupuesto el que provoque la mejoría del servicio. Luego si introducimos éstas últimas en el análisis deberá desaparecer la correlación entre presupuesto y mejora en salud.

Interacción: Muchas veces las variables muestran una correlación de forma individual pero, a veces algunas variables cambian su grado de influencia en función del valor de una tercera variable. Esto se llama intermediación. Por ejemplo los litros de cerveza deben influir en la conducción, pero es posible que cuanto mayor sea el peso del individuo menor sea la influencia de la cerveza. Una vez comprobado que existe interacción, para medirla correctamente, se deben introducir todas las variables en estado (incluso aunque no sean significativas) además de en forma multiplicativa.

Confusión: La confusión de variables en un problema de especificación. Las correlaciones son falsas o están mal medidas porque falta introducir en el modelo una variable "confusora" que cambiaría las estimaciones. El caso más conocido es el de un estudio de una compañía de seguros que afirmaba que, tras una campaña de concienciación de conductores en Gran Bretaña, había crecido la probabilidad de tener un accidente. El estudio se basaba en una encuesta previa y otra posterior a la campaña. El problema era que no habían controlado por género y en el estudio previo habían encuestado a muchas más mujeres que hombres y en el estudio posterior habían encuestado a más varones que mujeres. Como la media de accidentes de hombre es superior a la de las mujeres el resultado era que había más accidentes. Sin embargo si hubiesen controlado por género habrían obtenido que tanto hombres como mujeres habían reducido su siniestralidad.

Se presentan tres prácticas. En los tres casos utilizaremos la base "satisfacción". Se supone que buscamos los determinantes del voto. En el primer caso parece observarse una intermediación de rentafam sobre nivel de estudios. De forma que cuando introducimos ambas el nivel de estudios deja de ser significativo en favor de la renta familiar. Una justificación puede ser el que el nivel de estudios determina un nivel de renta que es el que realmente incita a la participación política.

Un segundo caso parece indicar un proceso de interacción. El voto parece estar determinado por la edad, la ocupación y el estado de salud, pero también por sus interacciones que han sido introducidas mediante variables multiplicativas.

El tercer caso sería de confusión. En un primer modelo parece que el estado de salud influye en la probabilidad de voto con un coeficiente significativo. Sin embargo se ha omitido una importante variable de control, la edad. Una vez introducida esta variable confusora (confusora de la relación se entiende) observamos como la relación entre estasalud y voto es negativa y significativa.

Intermediación

. regress voto edad estasalud ocup_1d est_recode , beta

-			_	•		
Source	SS	df	MS			7,361
	107.779478 1375.28233	7,356	.186960622	R-squared	= =	0.0000
Total					=	
voto	Coef.			 P> t		Beta
ocup_1d est_recode		.0003331 .0070907 .0023377 .0056993	21.70 -2.64 -5.64 6.17	0.000 0.008 0.000 0.000 0.000	-	.2800425 .0321279 .0727368 .0867421
. regress voto	edad estasal	ud ocup_1d	est_recode	rentafam , beta		
Source	SS	df	MS	Number of obs	=	5,351

Source	SS	df	MS	Number of obs	=	5 , 351
				F(5, 5345)	=	97.30
Model	87.0258212	5	17.4051642	Prob > F	=	0.0000
Residual	956.147417	5,345	.178886327	R-squared	=	0.0834
				Adj R-squared	=	0.0826
Total	1043.17324	5,350	.194985652	Root MSE	=	.42295

edad .0067403 .000389 17.33 0.000 .2597893 estasalud 0190992 .0080574 -2.37 0.018 0336298 ocup_1d 0070514 .0028009 -2.52 0.012 0391972 est_recode .0106533 .0069456 1.53 0.125 .0268038 rentafam .040714 .0039988 10.18 0.000 .1539239 _cons .2905787 .0424308 6.85 0.000 .	voto		Coef.	Std. Err.	t	P> t	Beta
	estasalud ocup_1d est_recode rentafam	 	0190992 0070514 .0106533 .040714	.0080574 .0028009 .0069456 .0039988	-2.37 -2.52 1.53 10.18	0.018 0.012 0.125 0.000	0336298 0391972 .0268038

Interacción

. regress voto edad estasalud ocup_ld [pweight = factor], beta (sum of wgt is 7.7366e+03)

ession	Number of obs	=	7,725
	F(3, 7721)	=	141.52
	Prob > F	=	0.0000
	R-squared	=	0.0696
	Root MSE	=	.42995
	ession	F(3, 7721) Prob > F R-squared	F(3, 7721) = Prob > F = R-squared =

voto	Coef.	Robust Std. Err.	t	P> t	Beta
edad estasalud ocup_1d _cons	.006618403015770182515 .5759777	.0003419 .0079603 .0022807 .0221512	19.36 -3.79 -8.00 26.00	0.000 0.000 0.000 0.000	.2652622 0530602 1001809

. regress voto edad estasalud ocup_1d c.edad#c.estasalud c.edad#c.ocup_1d [pweight = factor], beta (sum of wgt is 7.7366e+03)

Linear regression	Number of obs	=	7 , 725
	F(5, 7719)	=	93.83
	Prob > F	=	0.0000
	R-squared	=	0.0749
	Root MSE	=	.42877

voto	Coef.	Robust Std. Err.	t	P> t	Beta
edad estasalud ocup_1d	.0074467 .0614793 0440699	.0011498 .0239932 .0071456	6.48 2.56 -6.17	0.000 0.010 0.000	.2984586 .1081683 2418965
c.edad#c.estasalud	0018321	.0004273	-4.29	0.000	2737476
c.edad#c.ocup_1d	.0005562	.0001358	4.10	0.000	.2068263
_cons	.5308189	.0606077	8.76	0.000	

Confusión

. regress voto estasalud rentafam , beta

Source	SS	df	MS			•
+				F(2, 5629)		69.81
· ·	26.4653734			Prob > F		0.0000
	1066.98189	•		1		0.0242
				Adj R-squared		0.0203
Total	1093.44727	5,631	.194183496	Root MSE	=	.43537
	Coof	C+d Exx		\ +		Beta
voto	Coel.	Sta. Err.	t P	> L 		вета
estasalud I	.0297427	007503	3 96 N	000		.0536782
· ·	.0418965					.1591002
	.4884871					.1331002
. regress voto	edad estasal	ud rentafa	m , beta			
,			,			
Source	SS	df	MS	Number of obs	=	5,632
+				F(3, 5628)	=	163.63
Model	87.7197937	3	29.2399312	Prob > F		0.0000
Residual	1005.72747	5,628	.178700688	R-squared	=	0.0802
+				Adj R-squared	=	0.0797

Total	1093.44727	5,631	.19418349	- Adj k-squared 6 Root MSE	=	.42273
voto	Coef.	Std. Err.	t	P> t		Beta
edad estasalud rentafam _cons	.0064067 018072 .0485067 .2538681	.000346 .0077293 .0034806 .0279044	18.51 -2.34 13.94 9.10	0.000 0.019 0.000 0.000	-	.2551636 .0326155 .1842024

6. Extensiones del Modelo lineal

El modelo lineal es suficiente para modelar muchas de las correlaciones más evidentes y siempre que los residuos tengan una forma esperada normal. Sin embargo hay algunas veces que necesitamos de modelos lineales con una estimación de los parámetros algo atípica. Repasamos los modelos básicos más usuales

Variables Truncadas y Censuradas

Una variable truncada es una variable normal de la que nos falta la información de un grupo completo de individuos por encima o por debajo de un cierto valor. Por ejemplo en la encuesta sólo se encuesta a individuos de 16 a 80 años. El truncamiento es un problema grave cuando justo queremos analizar lo que pasa en esos extremos, como puede ser el nivel educativo alcanzado o la necesidad de cuidados de dependencia. En el resto de los casos pues puede ser un problema o no.

Una variable censurada es una variable de la que o no se dispone del valor por encima o por debajo de una frontera o a esta se le asigna un valor constante. Por ejemplo en la encuesta se asigna valor 10 a los individuos que tienen una renta familiar superior a 6000€ mes.

Cuando las variables dependientes están censuradas o truncadas el estimador estará sesgado (al alza o a la baja depende del tipo de truncamiento o censura) y tendremos que utilizar la regresión truncada o la regresión censurada (tobit).

Como ejemplo de regresión truncada vamos a truncar nosotros mismos una variable y estimaremos dos modelos (con y sin truncamiento). Estimaremos los condicionantes dela asistencia a atención primaria. Truncaremos la base de datos sólo para los mayores de 30 años. Los resultados muestra resultados ligeramente distintos, aunque, salvo la edad al cuadrado, ninguna cambia el signo o significación.

. regress frec prim publ c.edad##c.edad estasalud cronico est recode if edad >30

Source	SS	df	MS	Number of obs	=	5,865
+-				F(5, 5859)	=	155.67
Model	13750.9074	5	2750.18147	Prob > F	=	0.0000
Residual	103507.233	5,859	17.6663651	R-squared	=	0.1173
+-				Adi R-squared	=	0.1165

Total	117258.14	5,864	19.9962723	B Root	MSE =	4.2031
frec_prim_p~l	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
edad	0560542	.0278648	-2.01	0.044	1106795	001429
c.edad#c.edad	.0004878	.0002473	1.97	0.049	3.11e-06	.0009726
cronico	1.204643 1.487637 3272761 1.855866	.134339	11.07	0.000	1.043075 1.224283 4351202 .3437092	1.366212 1.750991 2194321 3.368023
. truncreg free (note: 3,409 ol			dad estasal	ud croni	co est_recode	, 11(edad >30
Fitting full mo	odel:					
	log likelihoo	d = -8342 d = -8340 d = -8340	.9172 .5224 .5148			
Truncated regre				Number	f obs =	2 0/1
	= +inf			Wald chi	2(5) = hi2 =	522.91
frec prim p~l		Std Err		P>171	[95% Conf.	 Intervall
	+					
edad	.0424582	.021178	2.00	0.045	.0009501	.0839662
c.edad#c.edad	0003933	.0002094	-1.88	0.060	0008037	.000017
cronico est_recode	1.259428 1.305438 3742258 1.092324	.1649816 .0729267	7.91 -5.13	0.000	1.053195 .9820804 5171596 .051862	1.628796 2312921
/sigma	4.341074	.0471113	92.14	0.000	4.248738	4.433411

Regresión lineal en dos etapas

Uno de los requisitos del modelo es que las variables independientes no estén correlacionadas con los residuos. Pero, en ocasiones, esto no sucede. Causas pueden ser:

- Variables relevantes omitidas.
- Errores de especificación.
- Endogeneidad de la/s variable/s independientes.

Una vez solucionados los dos primeros casos (linealizando, buscando las variables necesarias, etc.) queda el tercero. En estos casos una solución puede ser la

estimación en dos etapas con variables instrumentales. El más grave problema sería encontrar los instrumentos porque es necesario que estos están correlacionados con las variables independientes (que sean relevantes) y no lo estén con los residuos (que sean independientes).

La regresión bietápica realiza las siguientes operaciones. Supongamos el modelo

$$y = \beta_0 + \beta_1 x 1 + \beta_2 x 2 + u$$

Donde y es la variable dependiente, x1 y x2 son las independientes pero parece que x1 está correlacionada con los residuos u. Necesitaremos, al menos una variable instrumental Z para que el sistema esté identificado — es decir haya una soluciónnecesitamos tantas variables instrumentales como variables potencialmente endógenas). Es necesario que Z no esté correlacionada con los residuos u y que esté correlacionada con x1. El **primer paso** del modelo es estimar la regresión

$$x1 = \beta'_0 + \beta'_1 x^2 + \beta'_2 Z + v$$

Y obtener los valores previstos para la variable endógena $(\widehat{x1})$. El segundo paso será estimar ahora el modelo inicial pero reemplazando xI por sus valores estimados antes $(\widehat{x1})$. Es decir el modelo sería:

$$y = \beta''_o + \beta''_1 \widehat{x1} + \beta''_2 x^2 + u'$$

Hay dos problemas graves con esta metodología:

- a) Encontrar buenos instrumentos. Hay que tener en cuenta que en función del instrumento elegido los valores previstos de xI cambian y los parámetros estimados también cambian. No siempre es fácil. Hay que buscar variables que afecten a xI y no afecten a y. Suelen ser variables "naturales" que provocan shocks.
- b) Encontrar pruebas de la endogeneidad. Saber si xI es o no endógena no siempre se obtiene de un test. Lo normal es que la endogeneidad (así como la independencia de los

instrumentos) sea el resultado de un debate intelectual. Existe un test de endogeneidad (propuesto por Hausman) que consiste en estimar las dos siguientes ecuaciones

$$y = \beta_0 + \beta_1 x 1 + \beta_2 x 2 + \beta_3 Z + u$$
 [1]

$$y = \beta'_{o} + \beta'_{1} v + \beta'_{2} x^{2} + u$$
 [2]

En la ecuación [1] es necesario que el coeficiente $\widehat{\beta_3}$ no sea significativo (para que el instrumento sea independiente) y en la ecuación [2] donde v son los residuos estimados en $x1 = \beta'_0 + \beta'_1 Z + v$. Si $\widehat{\beta'}_1$ es significativa es que xI es efectivamente endógena y si no lo es es que x1 puede que no sea endógena. Sin embargo, como ya advertimos, los test no son siempre suficientes.

1er. ejemplo

Supongamos que en la base "satisfacción" queremos estimar la relación entre la satisfacción con el servicio público sanitaria con la renta familiar con la edad, el nivel y el estado de salud. La regresión inicial muestra un bajo ajuste pero las variables son todas significativas y tienen el signo esperado. Sospechamos, no obstante que puede haber cierta endogeneidad entre estado de salud y satisfacción porque una mayor satisfacción puede provocar más frecuenciación y una percepción de peor salud. Decidimos instrumentalizar autovaloración del estado de salud con padecer una enfermedad crónica. comprobamos que crónico no entra en la regresión y lo estimamos por 2 etapas. Los resultados en la regresión bietápica muestran un ajuste similar y una estimación similar en el resto de regresores. Respecto a la variable endógena "estasalud" parece que incrementa un poco su influencia, de 0.34 a 0.44.

. regress satisf 1 10 c.edad##c.edad nac esp rentafam estasalud

Source		df	MS		er of obs	=	5,600
Model Residual	1556.01284 21808.007	5 5 , 594	311.202568 3.89846389	Prob R-sq	uared	= = =	79.83 0.0000 0.0666 0.0658
Total	23364.0198		4.17289156	_	R-squared MSE	=	1.9745
satisf_1_10	•	Std. Err.	t	P> t	[95% C	onf.	Interval]
edad	0293866	.008748	-3.36	0.001	04653	61	0122371
c.edad#c.edad	.0005605	.0000839	6.68	0.000	.0003	96	.0007249
nac_esp rentafam	87417 .0776756	.0890797 .0167819	-9.81 4.63	0.000	-1.0488 .04477		6995391 .1105747

	3449031 7.593775				4160072 7.146426	
. regress satis	sf_1_10 c.edad	##c.edad r	nac_esp ren	tafam e	stasalud croni	co
Source		df	MS		er of obs = 5584) =	-,
	1553.80397 21756.1188	6 5 , 584	258.967328	Prob R-sq	> F = uared =	0.0000
	23309.9227			Root		1.9739
satisf_1_10			. t		[95% Conf.	
	•				0465019	
c.edad#c.edad	.0005636	.0000839	6.72	0.000	.0003991	.0007281
	.0760211 3260467 0810155 7.571778	.0891352 .0167922 .039735 .0670275 .2301599	-8.21 -1.21 32.90	0.000 0.000 0.000 0.227 0.000	.0431018 4039427 2124155 7.120575	6949851 .1089404 2481507 .0503845 8.022981
Instrumental va	ariables (2SLS) regressi	ion	Wald of Prob	r of obs = chi2(5) = > chi2 = ared = MSE =	331.37 0.0000 0.0652
satisf_1_10	Coef.	Std. Err.	. z	P> z	[95% Conf.	Interval]
estasalud edad	4435617 0271	.0887486	-5.00 -3.02	0.000	6175057 0447134	
c.edad#c.edad	.000552	.0000843	6.55	0.000	.0003868	.0007173
		.0891402 .0181946 .2614505		0.000 0.000 0.000		6964536 .1029045 8.27381

Instrumented: estasalud

Instruments: edad c.edad#c.edad nac esp rentafam cronico

2º Ejemplo

Igual que antes se realiza una primera regresión por la que pretendemos explicar el valor del estado de salud en función de la edad, el género la renta familiar y el nivel de estudios. Todas las variables aparecen como significativas. Sin embargo pensamos que rentafam puede ser potencialmente endógena del estado de salud por lo que los resultados pueden estar sesgados. Entonces pretendemos instrumentalizarla con ocup_1d. Observamos que Ocup_1d no es significativa en el modelo general y sí que está correlacionada con rentafam. Al utilizarla como instumento el resultado muestra que la rentafam aumenta ligeramente su influencia y que el nivel de estudios (est_recode) deja de ser significativa (probablemente por problemas de colinealidad con renta familiar y ocup_1d)

regress	estasalud	edad	genero	rentafam	est	recode

3	_		_			
Source		df				5,351
				- \ - /		238.15
Model						0.0000
Residual	2745.12851 +	5,346	.51349205	∠ K−sqi - ∧d÷i		0.1512 0.1506
Total		5,350	.60453712	2 Root		.71658
estasalud		Std. Err.		P> t	[95% Conf.	Interval]
	.0130606			0.000	.0118318	.0142894
				0.000	1289068	0520055
rentafam	0904561 061293	.0066012	-9.29	0.000	0742341	048352
est_recode	0602441 1.958409	.0106784	-5.64	0.000	0811782 1.863172	03931
_cons	1.958409	.0485802	40.31	0.000	1.863172	2.053646
. regress rent	tafam ocup_1d					
Source	l ss	df	MS	Numbe	er of obs = 5646) =	5,648 994.94
Model	l 2370.46694	1	2370.4669	4 Prob	> F =	
Residual	2370.46694 13451.6915	5 , 646	2.382517	1 R-sq	> F = uared =	0.1498
						0.1497
Total	15822.1585	•			MSE =	1.5435
rentafam	Coef.	Std. Err.	t		[95% Conf.	Interval]
	'		_31 5/		_ 2822139	_ 2/01872
cons	2657006 5.868146	.0510094	115.04	0.000	5.768148	5.968144
. regress esta	asalud edad q	enero rent	afam est re	ecode oci	ld au	
. regress esta		df	_	Numbe	er of obs =	
Source	SS + 490.083656	df 5	MS 98.0167313	Numbe - F(5, 1 Prob	er of obs = 5345) =	190.91
Source	SS + 490.083656 2744.18994	df 5 5,345	MS 98.0167311 .513412523	Number F(5, 1 Prob R-sq	er of obs = 5345) = > F = uared =	190.91 0.0000 0.1515
Source Model Residual	SS + 490.083656 2744.18994	df 5 5,345	MS 98.016731: .51341252:	Number F(5, 1 Prob R-square Adj 1	er of obs = 5345) = > F = uared = R-squared =	190.91 0.0000 0.1515 0.1507
Source Model Residual	SS + 490.083656 2744.18994	df 5 5,345	MS 98.016731: .51341252:	Number F(5, 1 Prob R-square Adj 1	er of obs = 5345) = > F = uared = R-squared =	190.91 0.0000 0.1515
Source Model Residual Total estasalud	SS 	5,345 5,350 Std. Err.	98.016731: .51341252: .6045371:	Number F(5, 1 Prob 3 R-sq 2 Root P> t	er of obs = 5345) = > F = uared = R-squared =	190.91 0.0000 0.1515 0.1507 71653
Source Model Residual Total estasalud	SS 	5,345 5,350 Std. Err.	98.016731: .51341252: .6045371:	Number F(5, 1 Prob 3 R-sq 2 Root	er of obs = 5345) = 545) = 4	190.91 0.0000 0.1515 0.1507 71653 Interval]
Source Model Residual Total estasalud edad genero	SS 	df 5,345 5,350 Std. Err. .0006339	MS 98.0167311.513412523 .60453711	Number F(5, 1 Prob 3 R-sqr Adj 1 2 Root P> t 0.000 0.000	er of obs = 5345) = 545) = 4	190.91 0.0000 0.1515 0.1507 71653 Interval]
Source Model Residual Total estasalud edad genero	SS 	df 5,345 5,350 Std. Err. .0006339	MS 98.0167311.513412523 .60453711	Number F(5, 1 Prob 3 R-sqr Adj 1 2 Root P> t 0.000 0.000	er of obs = 5345) = 545) = 4	190.91 0.0000 0.1515 0.1507 71653 Interval]
Source Model Residual Total estasalud edad genero	SS 	df 5,345 5,350 Std. Err. .0006339	MS 98.0167311.513412523 .60453711	Number F(5, 1 Prob 3 R-sqr Adj 1 2 Root P> t 0.000 0.000	er of obs = 5345) = 545) = 4	190.91 0.0000 0.1515 0.1507 71653 Interval]
Source Model Residual Total estasalud edad genero	SS 	df 5,345 5,350 Std. Err. .0006339	MS 98.0167311.513412523 .60453711	Number F(5, 1 Prob 3 R-sqr Adj 1 2 Root P> t 0.000 0.000	er of obs = 5345) = 545) = 4	190.91 0.0000 0.1515 0.1507 71653 Interval]
Model Residual Total estasalud edad genero rentafam est_recode ocup_1dcons	SS 490.083656 2744.18994 3234.27359 Coef. .0131886 0919558 0595219 0536325 .0064253 1.894696	std. Err	MS 98.016731: .51341252: .6045371: t 20.81 -4.68 -8.84 -4.57 1.35 28.00 o est_recoo	Number F(5, 1 Prob Prob Prob Prob Prob Prob Prob Prob	er of obs = 5345) = 1	Interval] .0144313053446704632940306093 .0157414 2.02737
Model Residual Total estasalud edad genero rentafam est_recode ocup_ld _cons . ivregress 2s	SS 490.083656 2744.18994 3234.27359 Coef. .0131886 0919558 0595219 0595219 .054253 1.894696 Sls estasalud	df 5,345 5,350 Std. Err. .0006339 .0196434 .0067294 .0117441 .0047521 .0676768 	98.016731: .51341252: .6045371: t 20.81 -4.68 -8.84 -4.57 1.35 28.00 o est_recodion	Number F(5, Prob 3 R-sq	er of obs = 5345) = > F = uared = R-squared = MSE = [95% Conf	190.91 0.0000 1.1515 0.1507 .71653 Interval] .0144313 0534467 0463294 0306093 .0157414 2.02737 d) 5,351 869.46 0.0000 0.1439 .71935
Source Model Residual Total estasalud edad genero rentafam est_recode ocup_ld _cons ivregress 2s Instrumental v	SS 490.083656 2744.18994 3234.27359 3234.27359 Coef. .0131886 0919558 0595219 0536325 .0064253 1.894696 Sls estasalud	df 5,345 5,350 Std. Err0006339 .0196434 .0067294 .0117441 .0047521 .0676768 edad gener .S) regress	MS 98.016731: .51341252: .6045371: 20.81 -4.68 -8.84 -4.57 1.35 28.00 o est_recordion	Number F(5, 1 Prob 3 R-square Noot I	er of obs = 5345) = 5345) = 1	190.91 10.0000 10.1515 10.1507 171653 Interval 10.0000 10.144313 10.0534467 10.463294 10.0306099 10.157414 10.02737 10.157414 10.0000 10.1439 171935
Source Model Residual Total estasalud edad genero rentafam est_recode ocup_ld _cons ivregress 2s Instrumental v	SS 490.083656 2744.18994 3234.27359 3234.27359 Coef. .0131886 0919558 0595219 0536325 .0064253 1.894696 Sls estasalud	df 5,345 5,350 Std. Err0006339 .0196434 .0067294 .0117441 .0047521 .0676768 edad gener .S) regress	MS 98.016731: .51341252: .6045371: 20.81 -4.68 -8.84 -4.57 1.35 28.00 o est_recordion	Number F(5, 1 Prob 3 R-square Noot I	er of obs = 5345) = 5345) = 1	190.91 10.0000 10.1515 10.1507 171653 Interval 10.0000 10.144313 10.0534467 10.463294 10.0306099 10.157414 10.02737 10.157414 10.0000 10.1439 171935
Source Model Residual Total estasalud edad genero rentafam est_recode ocup_ld _cons ivregress 2s Instrumental v	SS 490.083656 2744.18994 3234.27359 3234.27359 Coef. .0131886 0919558 0595219 0536325 .0064253 1.894696 Sls estasalud	df 5,345 5,350 Std. Err0006339 .0196434 .0067294 .0117441 .0047521 .0676768 edad gener .S) regress	MS 98.016731: .51341252: .6045371: 20.81 -4.68 -8.84 -4.57 1.35 28.00 o est_recordion	Number F(5, 1 Prob 3 R-square Noot I	er of obs = 5345) = 5345) = 1	190.91 10.0000 10.1515 10.1507 171653 Interval 10.0000 10.144313 10.0534467 10.463294 10.0306099 10.157414 10.02737 10.157414 10.0000 10.1439 171935
Source Model Residual Total estasalud edad genero rentafam est_recode ocup_ld _cons ivregress 2s Instrumental v	SS 490.083656 2744.18994 3234.27359 3234.27359 Coef. .0131886 0919558 0595219 0536325 .0064253 1.894696 Sls estasalud	df 5,345 5,350 Std. Err0006339 .0196434 .0067294 .0117441 .0047521 .0676768 edad gener .S) regress	MS 98.016731: .51341252: .6045371: 20.81 -4.68 -8.84 -4.57 1.35 28.00 o est_recordion	Number F(5, 1 Prob 3 R-square Noot I	er of obs = 5345) = 5345) = 1	190.91 10.0000 10.1515 10.1507 171653 Interval 10.0000 10.144313 10.0534467 10.463294 10.0306099 10.157414 10.02737 10.157414 10.0000 10.1439 171935
Source Model Residual Total estasalud edad genero rentafam est_recode ocup_ld _cons ivregress 2s Instrumental v	SS 490.083656 2744.18994 3234.27359 Coef. .0131886 0919558 0595219 0595219 .054253 1.894696 Sls estasalud	df 5,345 5,350 Std. Err0006339 .0196434 .0067294 .0117441 .0047521 .0676768 edad gener .S) regress	MS 98.016731: .51341252: .6045371: 20.81 -4.68 -8.84 -4.57 1.35 28.00 o est_recordion	Number F(5, 1 Prob 3 R-square Noot I	er of obs = 5345) = 5345) = 1	190.91 10.0000 10.1515 10.1507 171653 Interval 10.0000 10.144313 10.0534467 10.463294 10.0306099 10.157414 10.02737 10.157414 10.0000 10.1439 171935

Instrumented: rentafam

Instruments: edad genero est_recode ocup_1d

Modelos de probabilidad lineal y modelos de respuesta fraccional

Cuando la variable dependiente es un porcentaje, es decir está acotado superior e inferiormente entre 0 y 1 se puede estimar un modelo de probabilidad lineal, sobre todo si el modelo sólo tiene valores intermedios. Sin embargo, cuando los porcentajes están muy próximos a 0 o a 1 ya no se comportan como cuando están en mitad de la tabla porque se "frenan", se "tuercen" acotados en 0 y 1 respectivamente. Entonces hay que estimar un modelo de respuesta fraccional, que es similar a un logit o probit. Hay dos versiones similare francreg y betareg que se pueden estimar como logit, probit log-log, etc. La única diferencia entre ambas es que la última no puede ajustar cuando se tienen 0 y 1 exactos en la variable dependiente (lo cual no deja de ser sorprendente).

En el ejemplo, utilizando la base "provincias" estimamos la regresión de pib per cápita y nacimientos por 1000 habitantes sobre paro. Como paro es una variable porcentual pero se mueve en valores intermedios podemos estimar los modelos de probabilidad lineal (regress) y de respuesta fraccional (fracreg y betareg). En los primeras instrucciones generamos y adaptamos las variables necesarias. Despues se realizan las estimaciónes y se predicen los valores de la dependiente (ŷ). En la última se genera el gráfico de las tres predicciones. El gráfico muestra que las tres regresiones son similares en los resultados previstos e incluso en los parámetros estimados. Sorprende el bajísimo pseudo R2 reportado por fracreg lo que nos hace dudar de estas medidas de ajuste en los modelos estimado por máxima verosimilitud. (Si lo calculamos mediante la proporción del ECM entre el modelo vacío y el completo el ajuste – ver en la sección de ajuste - es resultado es del 0.4442. Bastante más parecido al del modelo lineal)

```
. generate pib pc prom = pib pc - 20500
```

[.] generate nacim1000 prom = nacim1000 - 9

[.] generate paro01 = paro/100

. regress paro01 pib pc prom nacim1000 prom

Source	SS	df	MS	Number of obs	=	52
				F(2, 49)	=	54.52
Model	.138419449	2	.069209724	Prob > F	=	0.0000
Residual	.062198962	49	.001269367	R-squared	=	0.6900
				Adj R-squared	=	0.6773
Total	.200618411	51	.003933694	Root MSE	=	.03563

paro01	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
pib_pc_prom	0000109	1.15e-06	-9.51	0.000	0000132	-8.61e-06
nacim1000_prom	.010018	.0023322	4.30	0.000	.0053312	.0147048
cons	.2132477	.0049604	42.99	0.000	.2032795	.223216

. predict est1, xb

. fracreg probit paro01 pib_pc_prom nacim1000_prom

Iteration 0: log pseudolikelihood = -41.646255log pseudolikelihood = -26.261506 Iteration 1: log pseudolikelihood = -26.233496 Iteration 2: log pseudolikelihood = -26.233487 Iteration 3: log pseudolikelihood = -26.233487 Iteration 4:

Fractional probit regression Number of obs Wald chi2(2) 113.75 = Prob > chi2 = 0.0000 Log pseudolikelihood = -26.233487 Pseudo R2 0.0159

 paro01	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
pib_pc_prom	0000398	4.10e-06	-9.71	0.000	0000479	0000318
nacim1000_prom	.0303472	.0073074	4.15	0.000	.016025	.0446695
_cons	8087627	.0166711	-48.51	0.000	8414375	776088

- . predict est2, cm
- . betareg paro01 pib pc prom nacim1000 prom

log likelihood = 88.43002 initial: log likelihood = 88.43002 rescale: log likelihood = rescale eq: 88.43002 (setting technique to bhhh) Iteration 0: log likelihood = 88.43002 log likelihood = 102.94676 Iteration 1: log likelihood = 104.0842 Iteration 2: Iteration 3: log likelihood = 104.5199 $\log \text{ likelihood} = 104.59874$ Iteration 4: log likelihood = 104.60789 log likelihood = 104.60817 Iteration 5: Iteration 6: log likelihood = 104.60945 log likelihood = 104.60945 Iteration 7: Iteration 8:

Beta regression Number of obs 52 63.94 LR chi2(2) Prob > chi2 0.0000

[Logit]

Link function : g(u) = log(u/(1-u))Slink function : g(u) = log(u)[Log]

Log likelihood = 104.60945

paro01	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
paro01 pib_pc_prom nacim1000_prom _cons	0000706	7.29e-06	-9.68	0.000	0000849	0000563
	.0492118	.0116811	4.21	0.000	.0263173	.0721063
	-1.334806	.0281772	-47.37	0.000	-1.390033	-1.27958

scale | _cons | 5.013226 .1957241 25.61 0.000 4.629614 5.396838

[.] twoway (scatter est1 pib_pc_prom) (scatter est2 pib_pc_prom) (scatter est3 pib_pc_prom)

7. Bibliografía

- Baum, C. F., M. E. Schaffer, and S. Stillman. 2003. Instrumental variables and GMM: Estimation and testing. Stata Journal 3: 1–31.
- Becketti, S. 1995. sg26.2: Calculating and graphing fractional polynomials. Stata Technical Bulletin 24: 14–16. Reprinted in Stata Technical Bulletin Reprints, vol. 4, pp. 129–132. College Station, TX: Stata Press.
- Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: Wiley.
- Breusch, T. S., and A. R. Pagan. 1979. A simple test for heteroscedasticity and random coefficient variation. Econometrica 47:1287-1294.
- Cameron, A. C., and P. K. Trivedi. 1990. The information matrix test and its applied alternative hypotheses. Working Paper 372, University of California-Davis, Institute of Governmental Affairs.
- Cong, R. 1999. sg122: Truncated regression. Stata Technical Bulletin 52: 47–52.
 Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 248–255. College Station, TX: Stata Press.

[.] predict est3, cm

- Desbordes, R., and V. Verardi. 2012. A robust instrumental-variables estimator. Stata Journal 12: 169–181.
- Greene, W. H. (2006). Análisis Econométrico (3ª ed.). Madrid, España: Prentice-Hall.
- Gujarati, D. N. y Portes, D.C. (2009). Econometría (5ª ed.). México: McGraw-Hill.
- Lindsey, C., and S. J. Sheather. 2010a. Power transformation via multivariate Box–Cox. Stata Journal 10: 69–81. 2010b. Optimal power transformation via inverse response plots. Stata Journal 10: 200–214.
- Ramsey, J. B. 1969. Tests for specification errors in classical linear least-squares regression analysis. Journal of the Royal Statistical Society, Series B 31: 350-371.
- Tobin, J. 1958. Estimation of relationships for limited dependent variables. Econometrica 26: 24–36.
- White, H. 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48: 817-838.
- Wooldridge, J. M. (2010). Introducción a la econometría: un enfoque moderno. Thomsom Learning.

Granada, marzo de 2016