Analyse

Séries numériques

Question 1/2

Sommation des relations de comparaison dans le cas divergeant $\sum v_n \text{ diverge}$

Réponse 1/2
$$u_n = O(v_n) \Rightarrow \sum_{k=0}^n (u_k) = O\left(\sum_{k=0}^n (v_k)\right)$$

polise
$$1/2$$

 $u_n = o(v_n) \Rightarrow \sum_{k=0}^n (u_k) = o\left(\sum_{k=0}^n (v_k)\right)$

 $u_n \sim v_n \Rightarrow \sum (u_k) \sim \sum (v_k)$

Dans ce dernier cas, $\sum u_n$ diverge

Question 2/2

Sommation des relations de comparaison dans le cas convergeant $\sum v_n$ converge

Réponse 2/2

conse 2/2
$$u_n = O(v_n) \Rightarrow \sum_{k=n+1}^{+\infty} (u_k) = O\left(\sum_{k=n+1}^{+\infty} (v_k)\right)$$

 $u_n = o(v_n) \Rightarrow \sum_{k=n+1}^{+\infty} (u_k) = o\left(\sum_{k=n+1}^{+\infty} (v_k)\right)$

 $u_n \sim v_n \Rightarrow \sum_{k} (u_k) \sim \sum_{k} (v_k)$

Dans ces trois cas, $\sum u_n$ converge

k=n+1

k=n+1