

UNIVERSIDADE ESTADUAL DO NORTE DO PARANÁ CAMPUS LUIZ MENEGHEL CENTRO DE CIÊNCIAS TECNOLÓGICAS CURSO DE CIÊNCIA DA COMPUTAÇÃO

Henrique Gaspar Yuri Lucas Luz

FERRAMENTA PARA CÁLCULO DE UMA DERIVADA

Henrique Gaspar Yuri Lucas Luz

FERRAMENTA PARA CÁLCULO DE UMA DERIVADA

Trabalho apresentado ao Curso de Ciência da Computação, da Universidade Estadual do Norte do Paraná, *Campus* Luiz Meneghel, como requisito parcial de avaliação da disciplina de Cálculo I. Professora: Me. Carolina Subirá Pereira

SUMÁRIO

1 INTRODUÇÃO	1
2 DESENVOLVIMENTO	2
2.1 Código Fonte	
3 CONCLUSÕES	1

1 INTRODUÇÃO

Devido a um período de grandes mudanças e transformações que a sociedade vem sofrendo na área da educação, cada vez mais surgem novas discussões sobre diferentes ideias, metodologias e práticas a serem aplicadas, com o objetivo melhorar as qualidades de ensino. A utilização dos recursos tecnológicos vem ganhando espaço na aprendizagem, favorecendo a construção de ser ativo, autônomo, reflexivo, criativo e produtivo. Vagar mente as escolas estão implantando a informática em seus currículos, instruindo os alunos com primeiras noções.

Segundo Borba e Penteado (2001), um dos argumentos que torna relevante o uso do computador nas escolas, é aquele que enfatiza a importância do uso da informática em educação para preparar o jovem para o mercado de trabalho. É razoável pensar que aquele que possui conhecimento sobre o uso do computador, esteja mais preparado para o mercado de trabalho.

Neste caso, o seguinte trabalho apresenta informações trazendo as características de um software que foi criado com intuito de facilitar no processo do cálculo de uma função, transformando-a em uma propriedade do cálculo, que é denominada de "Derivada".

2 DESENVOLVIMENTO

Em nosso trabalho utilizamos a linguagem de programação C++ e uma IDE online (Cloud Nine io) para que o trabalho em grupo pudesse ser mais produtivo.

Antes de iniciarmos o desenvolvimento do código-fonte em si, fizemos alguns rascunhos e colocamos nossas ideias em uma folha de papel para que pudéssemos esclarecer melhor nossas ideias. Primeiro procuramos entender o funcionamento da Regra da cadeia, depois, procuramos por 10 equações para termos como base quando fossemos começar a desenvolver de fato nosso programa. Fizemos alguns esboços de como ficaria o código de visto de forma mais ampla, para que não houvesse nenhum tipo de interrupção por causa de alguma dúvida, o que acabaria atrasando o trabalho.

Então começamos a desenvolver nosso código de fato. Fizemos comentário bem explicados por todo o código, para que não houvessem dúvidas caso alguém de fora venha a ler o código fonte.

Separamos o código em 2 arquivos, "Derivada.cpp" e "Funções.h" onde o arquivo principal seria o "Derivada" e o secundário, onde ficam somente as funções que são usadas pelo arquivo principal está, é o "Funções".

Separamos a string de entrada em 2 partes, a função de fora e a função de dentro. Derivamos a função de fora por meio de verificações. Na segunda parte fizemos duas verificações: Caso a função de dentro seja um "e^x" ele deriva direto, caso seja diferente, será acessado a função "equac2" que retira a função de dentro e a coloca em um substring, onde a partir desta, será derivada e enfim retornando o resultado na função "equac2" e imprimindo a equação derivada por meio de um printf no arquivo principal.

2.1 Código Fonte

```
Derivada.cpp
                   × Funções.h
    #include <iostream>
 2 #include <cstdio>
 3 #include <string>
    #include "Funções.h"
 4
   using namespace std;
 6
 8 string equac1(string);
 9 string equac2(string);
10 void deriv(string);
11
12
    int main(){
     string func;
13
14
15
   printf("\
   Digite sua função para derivá-la !\n\
16
    (Sempre coloque um número antes do \"x\"\n\
17
   Ex: sen(1x^2)\n\
18
    F(x) = ");
19
20
21
       getline(cin,func);
22
      printf("F(x)= ");
23
      if(equac1(func) == "sen"){
  printf("cos(");
24
25
26
27
      else if(equac1(func) == "cos"){
28
       printf("-sen(");
29
30
      else if(equac1(func) == "-cos"){
       printf("sen(");
31
32
       else if(equac1(func) == "-sen"){
33
34
       printf("-cos(");
35
36
    //(END)Deriva a primeira parte da equação(I):_____
38
    //Segunda parte da equação com e^x:_
     if(equac2(func) == "e^x"){
  cout << equac2(func) << ")";</pre>
39
40
         cout << "*(";cout << equac2(func); cout << ")" << endl;</pre>
41
42
43
    //(END)Segunda parte da equação com e^x:___
44
45
      else{
46
    //Segunda parte da equação(II):
        cout << equac2(func) << ")";
cout << "*("; deriv(func); cout << ")" << endl;
47
48
49
    //(END)Segunda parte da equação(II):__
50
51
52
       return 0;
54
```

```
Funções.h
  Derivada.cpp
    #include <iostream>
 2 #include <string>
   using namespace std;
 6
       string equac1(string func){
        int i = 0;
 8
 9
10
11
         while(func[i] != '('){
12
13
           i++;
14
15
         string equac1 = func.substr(0,c);
16
         return equac1;
18
19
    //(END)Seleciona a primeira parte da equação:_____
20
21
    //Seleciona a segunda parte da equação:__
22
23
         string equac2(string func){
24
           int c = 0;
int p = func.find('(') + 1;
25
26
           int s = func.length() - p - 1;
27
28
29
           string equac2 = func.substr(p,s);
30
31
           return equac2;
33
    //(END)Seleciona a segunda parte da equação:_____
34
    //Deriva a segunda parte:
    void deriv(string func){
36
37
        string deriv;
38
         int c = 0;
39
40
41
       //Verifica se possui "^":_____
while(equac2(func)[i] != '^'){
42
43
44
           i++;
45
           c++;
if(i > equac2(func).length()){
46
             break;
47
48
49
50
52
53
           int q = 0;
54
         while(equac2(func)[i] != '+'){
55
56
           i++;
           q++;
if(i > equac2(func).length()){
58
```

```
Funções.h
  Derivada.cpp
       int c = 0;
39
40
41
       //Verifica se possui "^":_
42
         while(equac2(func)[i] != '^'){
44
          i++;
           c++;
if(i > equac2(func).length()){
45
46
47
            break;
48
49
       }
//(END)Verifica se possui "^":____
50
51
52
           int q = 0;
54
         //Verifica se possui "+":
         while(equac2(func)[i] != '+'){
55
           i++;
56
           q++;
if(i > equac2(func).length()){
57
58
59
            break;
60
61
62
         //(END)Verifica se possui "+":_____
63
64
65
            if(equac2(func)[q] == '+'){}
66
              char s = equac2(func)[c+1] - 1;
67
              int f = equac2(func)[c+1] - 48;
int h = equac2(func)[c-2] - 48;
cout << (f*h) << equac2(func)[c-1] << "^" << s;</pre>
68
69
70
71
72
         //(END)deriva quando possui "+":
73
74
         //deriva quando possui "^":_____
else if(equac2(func)[c] == '^'){
75
76
           char s = equac2(func)[c+1] - 1;
           int f = equac2(func)[c+1] - 48;
78
           int h = equac2(func)[c-2] - 48;
79
80
           cout << (f*h) << equac2(func)[c-1] << "^" << s;
81
82
83
84
85
         //Deriva quando for simples:__
86
            else{
87
             cout << equac2(func)[0];</pre>
88
89
         //(END)Deriva quando for simples:_____
90
91
    //(END)Deriva a segunda parte:__
92
93
94
   1
```

Integrais

1-F(x) = cos(4x) * 4 dx

$$\int \cos(4x) * (4) dx$$

$$4 \int \cos(4x) dx$$

$$\frac{\sin(4x)}{4} * 4$$

$$\int \frac{\cos(u)}{4} du$$

$$\frac{1}{4} \cos(u) du$$

$$\frac{1}{4} \sin(u)$$

$$\frac{4 \sin(4x)}{4}$$

$$\sin(4x)$$

2-F(x) = -sen(5x) * 5 dx

$$\int -sen(5x) * 5$$

$$-5 \int sen(5x)$$

$$-5 * \frac{cos(5x)}{5}$$

$$\int \frac{sen(u)}{5}$$

$$\frac{1}{5} \int sen(u)$$

$$\frac{5cos(5x)}{5}$$

$$cos(5x)$$

$3-F(x) = sen(x^2)*(2x^1) dx$

$$\int sen(x^2) * (2x^1) dx$$

$$2 \int sen(x^2) x dx 2 * -\frac{cos(x^2)}{2}$$

$$\int \frac{sen(u)}{2} du$$

$$-\frac{2cos(x^2)}{2}$$

$$-cos(x^2)$$

$4-F(x) = cos(4x^3)*(12x^2) dx$

$$\int \cos(4x^3) * (12x^2) dx$$

$$12 \int x^2 * \cos(4x^3) dx$$

$$12 \frac{\sin(4x^3)}{12}$$

$$\int \frac{\cos(u)}{12} du$$

$$\frac{12\sin(4x^3)}{12}$$

$$\sin(4x^3)$$

$$12$$

$$5-\int -sen(x^2+3) \cdot 2x$$

$$u = x^2 + 3$$

$$du = 2x \cdot dx$$

$$\int -sen(u) \cdot du$$

$$= cos(x^2+3) + k$$

$$6-\int cos(e^x) \cdot e^x \cdot dx$$

$$u = e^x$$

$$du = e^x \cdot dx$$

$$\int cos(u) \cdot du$$

$$= sen(e^x) + k$$

$$7-\int -sen(e^x) \cdot e^x \cdot dx$$

$$u = e^x$$

$$du = e^x \cdot dx$$

$$= cos(e^x) + k$$

$$8-\int -cos(e^x) \cdot e^x \cdot dx$$

$$u = e^x$$

$$du = e^x \cdot dx$$

$$= -sen(e^x) + k$$

$$9-\int sen(x^3) \cdot 3x^2 \cdot dx$$

$$u = x^3$$

$$du = 3x^2 \cdot dx$$

$$\int sen(u) \cdot du$$

$$= -cos(x^3) + k$$

$$10-\int -cos(2x^2) \cdot 4x \cdot dx$$

$$u = 2x^2$$

$$du = 4x \cdot dx$$

$$\int -cos(u) \cdot du$$

$$= -sen(2x^2) + k$$