In []: #Assuming we're working with a software company that's trying to predict a pro #This score is dependent on four factors:• Average response time (in seconds) #Number of features in the product.• Number of bugs reported by users.• Traini

In [2]: import seaborn as sns
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 from sklearn.linear_model import LinearRegression
 from sklearn.metrics import mean_squared_error
 from sklearn.model_selection import train_test_split

In [5]: Synthetic_app_data = pd.read_csv('Synthetic_app_data (1).csv')
Synthetic_app_data.tail(5)

Out[5]:		Average Response Time (s)	Number of Features	Number of Bugs Reported	Training Hours Provided	User Satisfaction Score
	295	1.805608	15	6	4.373508	75.282835
	296	2.424984	25	18	2.644686	24.424736
	297	1.039553	30	7	4.695338	107.672922
	298	2.057226	29	9	3.993916	82.359435
	299	0.713369	26	19	4.989671	43.682683

In [6]: sns.pairplot(Synthetic_app_data)

Out[6]: <seaborn.axisgrid.PairGrid at 0x1ab90f57cd0>

In []: #4. Clearly state your observations using a markdown cell.
From the plot we could see that the independent variables "Number of Feature"

In [37]: #5.
 indp_vars=Synthetic_app_data[['Number of Features','Number of Bugs Reported']]
 dep_var=Synthetic_app_data['User Satisfaction Score']

```
In [38]:
         #6.
         train_x,test_x,train_y,test_y=train_test_split(indp_vars,dep_var,test_size=0.3
         mlr_model=LinearRegression()
         mlr_model.fit(train_x,train_y)
         pred=mlr_model.predict(test_x)
         pred
Out[38]: array([117.03067483, 109.7687762 , 102.88465679, 87.64445919,
                 38.28312758, 46.99740593, 126.12273239, 100.71587672,
                 90.56879769, 48.48894374, 48.82756487, 119.21903393,
                 89.81323926, 114.48411555, 64.40638359, 54.9757049,
                 92.00159837, 66.27570062, 75.68680026, 122.10421434,
                 45.18682604, 75.68680026, 99.24391795, 83.30689906,
                126.12273239, 101.81005628, 128.29151246, 11.8016714,
                 61.87940335, 20.51594975, 121.387814 ,
                                                          78.94975989,
                 35.41752622, 37.94450645, 10.72707089,
                                                           8.53871178,
                 43.01804597, 107.59999613, 50.61856572, 65.16194202,
                122.84019373, 76.74182173, 58.63602278, 115.23967397,
                 37.92492741, 84.73969974, 94.56773669, 56.82544288,
                 98.18889648, 102.88465679, 90.88783977, 86.56985868,
                 49.94132347, 54.25930456, 104.69523668, 99.60211812,
                 85.137058 , 98.52751761, 82.94869889, 18.34716968,
                135.55341108, 19.44134924, 126.10315335, 101.09365593,
                106.50581658, 94.17037844, 50.29952364, 90.17143943,
                120.67141366, 99.60211812, 94.88677878, 123.1983939,
                 72.06564047, 75.70637931, 90.17143943, 105.78941624,
                 58.59686469, 107.59999613, 117.76665421, 24.87308893,
                127.91373324, 91.62381916, 53.20428309, 106.16719545,
                 77.13917999, 111.93755627, 111.57935609, 21.23235009,
                 23.79848841, 62.99316195])
         mse mlr=mean squared error(pred,test y)
In [39]:
         mse_mlr
Out[39]: 154.311721846551
In [31]:
         #6.Fit an MLR model to the data.
         print("Intercept: ", mlr_model.intercept_)
         print("Coefficients: \n")
         print("Number of Features:",mlr_model.coef_[0])
         print("Number of Bugs Reported:",mlr model.coef [1])
         Intercept: 79.9852023102521
         Coefficients:
         Number of Features: 1.4523797252294435
         Number of Bugs Reported: -4.715339346133173
```

In [19]: #7. Compute the necessary evaluation metrics, justify your choice, and analyze #testing with new values new_entry0=input("please enter the Number of Features :") new_entry1=input("please enter the Number of Bugs Reported :") new_entry=[[float(new_entry0),float(new_entry1)]] pred_new=mlr_model.predict(new_entry) print(pred_new)

please enter the Number of Features :6 please enter the Number of Bugs Reported :9 [46.26142655]

C:\Users\91637\anaconda3\lib\site-packages\sklearn\base.py:420: UserWarning:
X does not have valid feature names, but LinearRegression was fitted with fe
ature names

warnings.warn(

```
In [20]: #Finding Linear Model
    indp_vars=Synthetic_app_data['Number of Bugs Reported'].values.reshape(-1,1)
    dep_var=Synthetic_app_data['User Satisfaction Score'].values
    plt.scatter(indp_vars,dep_var)
    plt.xlabel("Number of Bugs Reported")
    plt.ylabel("User Satisfaction Score")
    plt.title("Product's User Satisfaction Score")
```

Out[20]: Text(0.5, 1.0, "Product's User Satisfaction Score")


```
In [32]:
         train_x1,test_x1,train_y1,test_y1=train_test_split(indp_vars,dep_var,test_size
         lr_model=LinearRegression()
In [33]:
In [34]: | lr_model.fit(train_x1,train_y1)
Out[34]: LinearRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust
         the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page
         with nbviewer.org.
         pred=lr_model.predict(test_x1)
In [35]:
         pred
Out[35]: array([110.37680676, 110.37680676,
                                                           85.77977287,
                                             95.61858642,
                 66.10214575, 66.10214575, 95.61858642,
                                                           85.77977287,
                 66.10214575, 26.74689152,
                                             51.34392541, 100.5379932 ,
                 95.61858642, 115.29621354, 85.77977287, 75.94095931,
                 85.77977287, 31.6662983,
                                             61.18273897, 120.21562032,
                 61.18273897, 61.18273897, 105.45739998, 66.10214575,
                 95.61858642, 80.86036609, 105.45739998,
                                                           41.50511186,
                 71.02155253, 41.50511186, 110.37680676,
                                                           66.10214575,
                 26.74689152, 41.50511186, 26.74689152, 36.58570508,
                 51.34392541, 100.5379932 , 75.94095931,
                                                           56.26333219,
                110.37680676, 95.61858642, 46.42451864,
                                                           85.77977287,
                 61.18273897, 85.77977287, 61.18273897, 41.50511186,
                 71.02155253, 95.61858642, 110.37680676, 71.02155253,
                 26.74689152, 66.10214575, 100.5379932 , 110.37680676,
                 51.34392541, 95.61858642, 61.18273897, 31.6662983,
                105.45739998, 26.74689152, 115.29621354,
                                                           71.02155253,
                105.45739998, 95.61858642, 31.6662983, 100.5379932,
                100.5379932 , 110.37680676, 105.45739998, 115.29621354,
                 51.34392541, 41.50511186, 100.5379932 , 95.61858642,
                 85.77977287, 100.5379932 , 100.5379932 , 41.50511186,
                120.21562032, 100.5379932 , 31.6662983 , 80.86036609,
                 61.18273897, 120.21562032, 115.29621354, 51.34392541,
                 26.74689152, 46.42451864])
         mse1=mean_squared_error(pred,test y1)
In [36]:
```

```
Out[36]: 445.57838814765375
```

mse1