What's (kinda) Missing?

Degree of the M.F. Degree of the D.F.

	•
•••	<i>:</i>
4	3
3	2
2	
1	0 (-1) >
0	0
-1	– 2
-2	-3
-3	- 4
-4	- 5 ;
	•

Ex1. Find f'(x) if $f(x) = \ln x$.

$$f(x) = \ln x$$

$$y = \ln x$$

$$e^{y} = x$$

$$e^{y} = x$$

$$y' = \frac{1}{e^{y}}$$

$$y' = \frac{1}{e^{y}}$$

So... IF
$$f(x) = \ln x$$
 THEN $f'(x) = \frac{1}{x}$

IF $f(x) = \ln(g(x))$ THEN $f'(x) = \frac{1}{2(x)} \cdot \varphi'(x) = \frac{9^{1}(x)}{2(x)}$

Ex2. If $f(x) = \ln x$, graph and compare y = f(x) and y = f'(x).

- when $x \rightarrow 0^+$,
 - when $x = 0^{+}$, the shape of $y = \ln x \frac{|y|}{|y|} + \frac{|y|}{|y|}$
 - the value of $y = \frac{1}{x} \rightarrow + \infty$
- when x → ∞,
 - the shape of $y = \ln x + \frac{\text{ophil}}{\text{horizontal}}$
 - the value of $y = \frac{1}{r} \rightarrow 0$

Ex3. Find all critical numbers.

a.
$$y = \ln(3x + 4)$$

b.
$$y = \frac{\ln x}{x^2}$$

$$y' = \frac{3}{3x+4}$$

$$y' = \frac{\left(\frac{1}{x}\right)(x^2) - (\ln x)(2x)}{x^4}$$

$$= \frac{x_4}{x - 3x \ln x}$$

$$= \frac{1 - 2 \ln x}{x^3}$$

$$y'=0$$
 when $1-2\ln x=0$
 $1=2\ln x$
 $\ln x=\frac{1}{2}$
 $x=e^{\frac{1}{2}}$

Ex4. Use the 1st derivative to make an accurate sketch of each function.

a.
$$y = \frac{\ln x^2}{3x}$$
 HA@ $y = 0$ VA@ $x = 0$ $\ln x^2 = 0$ $\chi^2 = e^{\circ}$ $\frac{1}{\sqrt{10}}$ $\chi^2 = \frac{2x}{x^2}(3x) - (\ln x^2)(3)$ $\chi^2 = 1$ $\chi = \pm 1$ $\chi = \pm 1$

$$= \frac{6 - 3 \ln x^2}{9 x^2}$$
 $y'=0$ when $2 - \ln x^2 = 0$ $\ln x^2 = 2$

$$=\frac{2-\ln x^2}{3x^2}$$

$$\chi=\pm 6$$

b.
$$y = \sqrt{x} - \ln x$$
 $\times > D$ $V \in \mathscr{C} = D$

$$A_{1} = \frac{3x}{1} \cdot \frac{3x}{1} - \frac{3x}{1} \cdot \frac{3x}{2}$$

$$= \frac{3x}{1} \cdot \frac{3x}{1} - \frac{3x}{1} \cdot \frac{3}{2}$$

$$= \frac{3x}{1} \cdot \frac{3x}{1} - \frac{3x}{1} \cdot \frac{3}{2}$$

$$= \frac{3x}{1} \cdot \frac{3x}{1} - \frac{3x}{1} \cdot \frac{3x}{2}$$

Ex6. Find the equation of the tangent to $y = \ln(x^2 + e^x)$ when x = 0.

$$y' = \frac{2x + e^{x}}{x^{2} + e^{x}}$$
 When $x = 0$
 $y = \ln(0+1)$ $y' = \frac{0+1}{0+1}$
 $y' = \frac{0+1}{0+1}$

Homefur: Page 575 * 1, 3, 4a \rightarrow d, 5ab, 6, 7a, 8 \rightarrow 11, 13 {Ans 4d $g'(z) = \frac{-2}{1+z}$ }

Desmos Investigation of End-Behaviour

- 1. Graph $y = \frac{\ln x^2}{3x}$ compared with $y = \frac{1}{x}$.
- 2. Graph $y = \sqrt{x} \ln x$ compared with $y = \sqrt{x}$. Or use $y = \sqrt{x} 7$ for a really good match.
- 3. Order of Domination: Exponential, Polynomial, Logarithmic

Graph
$$y = e^x$$

 $y = x^{1/4}$, $y = x$, $y = x^4$
 $y = \ln x$

To see the domination of $y = e^x$ over $y = x^4$, scale max y-value to 10 000. To see the domination of $y = x^{1/4}$ over $y = \ln x$, scale max x-value to 10 000.

Graph $y = x^{0.1}$ compared with $y = \ln x$.

To see the polynomial function $y = x^{0.1}$ dominate the logarithmic function $y = \ln x$, change your window so that $0 \le x \le 5 \times 10^{15}$, $0 \le y \le 40$.