FEM for 2D problems

Heat conduction: Weak formulation

Differential equation

 $-\lambda \operatorname{div} \nabla\theta = \omega$

Multiplication with test function 50 € Vo

 $-\lambda \cdot \text{div} \nabla \theta \cdot \delta \theta = \omega \cdot \delta \theta$

where Vo is the set of all "nice" functions $u: \Omega - \mathbb{R}$ with u(x,y)=0 for $(x,y)\in \mathbb{R}$.

lutegrate over 12

- In div VO. SO dA = Sw. SO dA

Not symmetric & second derivatives -> lutegration by parts Integration by purb formula $f: \Omega \to \mathbb{R}^2$ $\iint_{\Omega} div u dA = \iint_{\Gamma} u \cdot n dS - \iint_{\Omega} u dA$ $\iff \iint_{\Omega} div u \cdot f dA = \iint_{\Gamma} u \cdot n \cdot f dS - \iint_{\Omega} v \cdot f dA$

Integration by parts ($\nabla \theta$ takes the role of \underline{u} , $\delta \theta$ of f)

Boundary conditions! $\int_{\Omega} \lambda \cdot \text{div} \, \nabla \theta \cdot \delta \theta \, dA = \int_{\Omega} \lambda \cdot \nabla \theta \cdot \underline{v} \, \delta \theta \, dS - \int_{\Omega} \lambda \cdot \nabla \theta \cdot \nabla \delta \theta \, dA$

Boundary term only for TR

 $\int_{\Omega} \lambda \cdot div \, \nabla\theta \cdot \delta\theta \, dA = \int_{\Omega} \lambda \cdot \nabla\theta \cdot \underline{n} \cdot \delta\theta \, dS + \int_{\Omega} \lambda \cdot \nabla\theta \cdot \nabla\delta\theta \, dA$ $= \int_{\Omega} \lambda \cdot div \, \nabla\theta \cdot \delta\theta \, dA = \int_{\Omega} \lambda \cdot \nabla\theta \cdot \underline{n} \cdot \delta\theta \, dS + \int_{\Omega} \lambda \cdot \nabla\theta \cdot \nabla\delta\theta \, dA$ $= \int_{\Omega} \lambda \cdot div \, \nabla\theta \cdot \delta\theta \, dA = \int_{\Omega} \lambda \cdot \nabla\theta \cdot \underline{n} \cdot \delta\theta \, dS + \int_{\Omega} \lambda \cdot \nabla\theta \cdot \nabla\delta\theta \, dA$ $= \int_{\Omega} \lambda \cdot div \, \nabla\theta \cdot \delta\theta \, dA = \int_{\Omega} \lambda \cdot \nabla\theta \cdot \underline{n} \cdot \delta\theta \, dS + \int_{\Omega} \lambda \cdot \nabla\theta \cdot \nabla\delta\theta \, dA$

Boundary condition on TR

$$- \lambda \cdot \nabla \theta \cdot \mathbf{n} = h \cdot (\theta - \theta^*)$$

Inser t

$$-\int_{\Omega} \cdot div \, \nabla \theta \cdot \delta \theta \, dA = -\int_{\Gamma_{R}} \cdot \nabla \theta \cdot \underline{n} \cdot \delta \theta \, ds + \int_{\Omega} \lambda \cdot \nabla \theta \cdot \nabla \delta \theta \, dA$$

$$= \int_{\Gamma_{R}} h \cdot (\theta \cdot \theta^{*}) \cdot \delta \theta \, ds + \int_{\Omega} \lambda \cdot \nabla \theta \cdot \nabla \delta \theta \, dA$$

$$= \int_{\Gamma_{R}} h \cdot \theta \cdot \delta \theta \, ds - \int_{\Gamma_{R}} h \cdot \theta^{*} \cdot \delta \theta \, ds + \int_{\Omega} \lambda \cdot \nabla \theta \cdot \nabla \delta \theta \, dA$$

Finally

Variational problem (heat 2D): Find $\theta \in V_0$ such that $\int_{X} \cdot \nabla \theta \cdot \nabla \delta \theta \, dA + \int_{\Gamma_R} \cdot \partial \cdot \delta \theta \, dS = \int_{\Sigma} \cdot \delta \theta \, dA + \int_{\Gamma_R} \cdot \delta \theta \, dS$ for all test functions $\delta \theta \in V_0$. The space (set) V_0 contains all "uice" functions $U: \Sigma Z \to \Gamma R$ with U(X,Y) = 0 for $(X,Y) \in \Gamma_0$.

Remarks:

- · "vice" means that we can compute the integrals
- · Obviously we have

 $\alpha: V_0 \times V_0 \rightarrow \mathbb{R}$ with $a(\theta, \delta\theta) = \int_{\Omega} \chi \cdot \nabla \theta \cdot \nabla \delta \theta \, dA + \int_{\mathbb{R}} h \cdot \theta \cdot \delta \theta \, dS$

b: $V_0 \rightarrow \mathbb{R}$ with $b(80) = \int_{\mathbb{R}} w \cdot \delta\theta \, dA + \int_{\mathbb{R}} h \cdot \theta^* \cdot \delta\theta \, ds$

where a is a scalar product and b a linear form As before 1