Math 251

Quiz 5 September 28, 2016

Name:

By handing in this quiz you assert that you understand and have followed IIT's guidelines for academic integrity.

(1) Find the limit, if it exists: $\lim_{(x,y)\to(0,0)} \frac{x^3 e^y}{x^2 + y^2}$

$$\lim_{r \to 0^+} \frac{r^3 \cot^3 \theta e^{r \sin \theta}}{r^2} = \lim_{r \to 0^+} \frac{r \cot^3 \theta e^{r \sin \theta}}{1} = 0$$

[You should probably have tried some path-limits first; they will all come out as zero.]

(2) Find an equation of the tangent plane to the surface $z = x^2 e^y$ at the point (2,0,4).

Let
$$f(x,y) = x^2 e^y$$
. $f(z,0) = 4$
 $f_x = 2x e^y$ $f_x(z,0) = 4$
 $f_y = x^2 e^y$ $f_y(z,0) = 4$

Tangent plane:
$$Z = f(2,0) + f_x(2,0)(x-2) + f_y(2,0)(y-0)$$

$$Z = 4 + 4(x-2) + 4(y)$$

OR, from §14.6, let $g(xy,z) = x^2e^y - z$.

We want a tangent plane to the level surface g(x,y,z) = 0. $\nabla g = (2xe^y, x^2e^y, -1)$, $\nabla g(2,0,4) = (4,4,-1)$ Tangent plane: (4(x-z) + 4(y-a) - 1(z-4) = 0