Acronyms

Introduction

Physical Layer

Some Advice References

Lecture R1

Review Chapter 1-2

(Computer Communication Networks)

CS 35201 Spring 2020

> H. Peyravi Department of Computer Science Kent State University

§R1.0.0 Contents

Review Chapter 1-2

Acronyms

Introduction

Physical Layer

Some Advice References

Ac	ronyms
1	Introduction

2	Physical Layer	. 9
3	Some Advice	28
1	References	29

The contents of this lecture have been composed from various resources including those listed at the reference section.

Reading List

■ Chapters 1-2 [Tanenbaum and Wetherall, 2011]

§R1.0.0 Glossaries

Review Chapter 1-2

CDM Code Division Multiplexing 25

DSSS Direct Sequence Spread Spectrum 25

FDM Frequency Division Multiplexing 25
FHSS Frequency Hopping Spread Spectrum 25

TDM Time-Division Multiplexing 25

WDM Wave Division Multiplexing 25

Acronyms

Introduction

Physical Layer

Some Advice

References

§R1.1.0 Introduction I

Review Chapter 1-2

Acronyms

Introduction

Physical Layer Some Advice References

Question R1.1

What are the major principles behind layering?

- 1 Layers created for different abstractions
- Each layer performs a set of well-defined functions
- The function of a layer is chosen with definition of international standard protocols in mind
- 4 Minimize information flow across interfaces between boundaries
- 5 Goal: optimizing the number of layers

§R1.1.0 Introduction II

Review Chapter 1-2

Acronyms

Introduction

Physical Layer Some Advice

References

Question R1.2

What are the advantages of layered architecture?

- Modification/upgrading of layers is easy
- Modulation simplifies the overall design
- 3 Different layers can be assigned to different standards
- Different mechanisms (packet-switching, circuit-switching) may be used independently
- 5 The relation between different control functions can be better understood
- 6 Common lower levels may be shared by different higher levels
- Functions (especially at lower levels) may be removed from software to hardware and microcodes
- Increases the compatibility of different machines

§R1.1.0 Introduction III

Review Chapter 1-2

Acronyms

Physical Layer

Some Advice References

Question R1.3

What are the disadvantages of layered architecture?

- 1 Total overhead is higher
- 2 Two communicating machines may have to use certain functions which they could do without layers
- 3 As technology changes, the functions may not be in the most cost-effective layer

§R1.1.0 Introduction IV

Review Chapter 1-2

Acronyms

Introduction

Physical Layer Some Advice

References

Question R1.4

Describe the major functionality of each OSI layer?

Application	ftp, e-mail rlogin
Presentation	ASCII text, sound
Session	Establish/manage connection
Transport	End-to-end communication: TCP
Network	Routing, Addressing: IP
Datalink	Two part communication: Ethernet
Physical	How to transmit signal: Coding

§R1.1.0 Introduction V

Review Chapter 1-2

Question R1.5

Compare the OSI and TCP/IP protocol stacks

Answer:

Acronyms

Introduction

Physical Layer

Some Advice

References

§R1.2.0 Physical Layer I

Review Chapter 1-2

Acronyms Introduction

Physical Layer

Some Advice

References

Question R1.6

Describe the major characteristics of a signal

Answer:

- **1** Frequency(f): The rate of change of a signal \Rightarrow in H_Z
- **2** Period (t): The time for one repetition of the signal $\Rightarrow t = 1/f$
- 3 Phase (ϕ) : The relative position of the signal in time
- 4 Wavelength (λ): The distance occupied by one cycle
- 5 Spectrum: The range of frequencies contained in a signal

Question R1.7

What is the difference between analog and digital signals?

- 1 Analog: Continuous values of a signal within some interval
- 2 Digital: Discrete values of a signal within some interval

§R1.2.0 Physical Layer II

Review Chapter 1-2

Acronyms

Introduction Physical Layer

Some Advice References

Question R1.8

Describe the differences between analog and digital transmissions

Digital

Analog

		Digital	Arialog
•	Signal level	Discrete	Continuous
	Wave	Square	Other form
Answer:	Content	Sensitive	Insensitive
Aliswei.	Data	Analog/Digital	Analog/Digital
	Technology/cost	Expensive	Inexpensive
	Noise	Less susceptible	More susceptible
	Attenuation	Less	More

§R1.2.0 Physical Layer III

Review Chapter 1-2

Acronyms Introduction

Physical Layer

Some Advice

References

Question R1.9

Define the following

Answer:

- 1 Attenuation: Decrease in signal strength (amplitude) as a function of distance
 - ► Increase in attenuation as a function of frequency

Why?

2 Delay Distortion: Different frequency components travel at different speed

Question R1.10

How signals can be boosted

- Analog: by amplification ⇒ it also amplifies noise ↓
- Digital: by repeaters ⇒ it does not amplify noise ↓

§R1.2.0 Physical Layer IV

Review Chapter 1-2

Acronyms Introduction

Physical Layer

Some Advice

00111071000

References

Question R1.11

What are the advantages of digital transmission

- 1 Lower cost with LSI/VLSI technology
- 2 Better data integrity
- 3 better capacity utilization
 - High bandwidth links economical
 - High degree of multiplexing easier with digital techniques
- 4 Security and Privacy through digital encryption
- 5 Integration ⇒ can co-exist with analog technology

§R1.2.0 Physical Layer V

Review Chapter 1-2

Acronyms Introduction

Physical Layer

i ilysicai Layc

Some Advice

References

Question R1.12

What are the major transmission impairment?

- 1 Attenuation ⇒ signal strength weakens with distance and higher frequency
- 2 Delay distortion ⇒ Propagation velocity varies with frequency
- 3 Noise
 - ► Thermal noise ⇒ white noise, uniform
 - ► Inter-modulation ⇒ sum of frequencies
 - Crosstalk
 - ► Impulse ⇒ irregular noise

§R1.2.0 Physical Layer VI

Review Chapter 1-2

Acronyms Introduction

Physical Layer

Some Advice

References

Question R1.13

What is channel capacity?

Answer:

- Bandwidth in terms of channel frequency ⇒ cycles/s
- Data Rate in terms of bits/s, depends on:
 - 1 Channel frequency
 - Modulation rate
 - Noise

Question R1.14

Describe the difference between bandwidth, data Rate, throughput, capacity. Give an example

§R1.2.0 Physical Layer VII

Review Chapter 1-2

Acronyms Introduction

Physical Layer

Some Advice

References

Question R1.15

How do we measure channel capacity?

Answer: Depends on the condition of the noise on that channel

1 Noiseless channel

$$C = 2 B \log_2 M \tag{1}$$

Noisy channel

$$C = B \log_2 (1 + \frac{S}{N}), \qquad 10 \log_{10} \frac{S}{N} dB$$
 (2)

§R1.2.0 Physical Layer VIII

Review Chapter 1-2

Acronyms

Introduction
Physical Layer

. .

Some Advice References

Question R1.16

Calculate the maximum data rate of a 16-kHz

- noiseless channel with 4-level encoding
- 2 30 dB noisy channel

1
$$C = 2 B \log_2 M = 2 \times 16,000 \log_2 4 = 64 \text{ kbps}$$

2 30 dB =
$$10 \log_{10} \frac{S}{N}$$
, $\Rightarrow \frac{S}{N} = 1000$
 $C = B \log_2 \left(1 + \frac{S}{N}\right) = 16,000 \log_2(1 + 1000) \le 159.47 \text{ kbps}$

§R1.2.0 Physical Layer IX

Review Chapter 1-2

Acronyms Introduction

Physical Layer

Some Advice

References

Question R1.17

Describe single mode and multi-mode fiber optics

Answer:

- Single mode
 - A small core
 - 2 Support a single pathway of light
 - 3 Realigns the light toward the center of the core
- Multi mode
 - A large-diameter core that is much larger than the wavelength of light transmitted
 - 2 Supports multiple pathways of several wavelengths of light
 - 3 Less bandwidth per wavelength

Why?

§R1.2.0 Physical Layer X

Review Chapter 1-2

Acronyms Introduction

Physical Layer

Some Advice

Some Advice

References

Question R1.18

What are advantages/disadvantages of satellite communications?

- Larger coverage area ↑
- Transmission cost is independent of distance ↑
- Satellite to Satellite communication is very precise ↑
- Higher bandwidth are available ↑
- Launching satellites into orbit is costly ↓
- Satellite bandwidth is gradually becoming used up
- Large propagation delay ↓

§R1.2.0 Physical Layer XI

Review Chapter 1-2

Acronyms Introduction

Physical Layer

Some Advice

References

Question R1.19

What is modulation? What are their classifications?

Answer:

- Modulation is a process of encoding source data onto a carrier signal with frequency f
- 2 Classified based on one or more of the three fundamental frequency domain parameters
 - ► Amplitude ⇒ Amplitude modulation
 - Two different amplitudes are used to represent 0/1
 - ► Frequency ⇒ Frequency modulation
 - Two different tones are used to represent 0/1
 - ▶ Phase ⇒ Phase modulation
 - Two carrier wave shift used to represent 0/1

In all we can use more discrete values to represent mor digits per sample

§R1.2.0 Physical Layer XII

Review Chapter 1-2

Acronyms Introduction

Physical Layer

Some Advice

References

Question R1.20

How does modulation work?

Question R1.21

What is Modulation Rate?

Answer: A rate at which the signal level changes. It is Measured in baud

⇒ signal elements per second

§**R1.2.0** Physical Layer XIII

Review Chapter 1-2

Acronyms

Introduction Physical Layer

Some Advice References

Question R1.22

What are the major components of a delay suffered by a packet?

- Propagation delay ⇒ depends on distance ⇒ deterministic
- Transmission delay ⇒ depends on modulation rate ⇒ deterministic
- Queuing delay ⇒ depends on queue (buffer) size/length ⇒ non-deterministic
- 4 Access delay ⇒ depends on LAN access policy
 - ⇒ deterministic/non-deterministic

Question R1.23

What is the E2E delay a 64KB packet suffers on a fiber at 1Gbps crossing NY to LA, given there is no queuing or access delay. Assume NY-LA is 4000 km.

Answer:

- Transmission delay = $\frac{64 \times 1024 \times 8}{2^{30}} = 2^{-11}$ sec.
- Propagation delay = $\frac{4 \times 10^6}{3 \times 10^8} = 0.013$ sec. \Rightarrow dominates
- E2E delay = 0.013333333333 + 0.00048828125 = 0.01382161458 sec.

Question R1.24

What is the length of a bit in time and space in the above question Answer:

- Bit time = $\frac{1}{2^{30}} = 2^{-30}$ sec.
- Bit space= $3 \times 10^8 \times 2^{30} = 0.279$ meters

§R1.2.0 Physical Layer XV

Review Chapter 1-2

Question R1.25

At each instance, how much data is being carried by the above pipe?

Answer:

■ Delay × Bandwidth = 2^{30} × 0.01382161458 = 14840846 = 14.8 Mb

Acronyms Introduction Physical Layer

Some Advice

References

Question R1.26

What is QoS? What are the major QoS metrics?

Answer:

■ Delay, throughput, loss, jitter

Question R1.27

What is the percentage of T1 overhead? What is the efficiency?

<u>Answer:</u>

- Bandwidth = $(24 \times 8 + 1) \times 8000 = 1544000$ bps
- *Throughput* = $24 \times 7 \times 8000 = 1344000$ *bps*
- Efficiency = 1344000/1544000 = 87%

§R1.2.0 Physical Layer XVI

Review Chapter 1-2

Acronyms Introduction

Physical Layer

Some Advice

References

Question R1.28

Show the four major encoding schemes for 0010111101000010.

Answer:

Transition in middle of interval \Rightarrow easy to synchronize

§R1.2.0 Physical Layer XVII

Review Chapter 1-2

Question R1.29

How does Frequency Division Multiplexing (FDM) work? Give an illustrated example.

- 2 How does Time-Division Multiplexing (TDM) work? Give an illustrated example.
- How does Code Division Multiplexing (CDM) work? Give an illustrated example.
- How does Wave Division Multiplexing (WDM) work? Give an illustrated example. Reuse distance

Answer: Read Section 2.15 of the lecture notes

Question R1.30

■ What is the difference between Frequency Hopping Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS)

Answer: Read Section 2.15 of the lecture notes

Acronyms

Introduction

Physical Layer

Some Advice

References

§R1.2.0 Physical Layer XVIII

Review Chapter 1-2

Question R1.31

Describe the basic multiplexing techniques, advantage/disadvantages

Answer: Read Section 2.16 of the lecture notes

Acronyms Introduction

Physical Layer

Some Advice

References

Question R1.32

Discuss the difference between Frequency Hopping and Direct Sequence and show how they work

Answer: Read Section 2.16 of the lecture notes

Question R1.33

- Reuse distance
- Asymmetric traffic
- Orthogonal FDM (ODFM)
- 4 Clock-based framing

Answer: Read Section 2.16 of the lecture notes

§R1.2.0 Physical Layer XIX

Review Chapter 1-2 Acronyms Introduction

Physical Laver

Some Advice References

Question R1.34

Consider a 10 Kbps point-to-point connection between two devices 20 kilometers apart. Assume that the signal travels at the speed of 2×10^8 meters/s in the medium. $1 \textit{Kb} = 2^{10} \ \textit{b}$

1 What is the length of a bit in time in the medium?

$$\frac{1}{10 \times 2^{10}} = .000097656250 \, s = 97.65 \, \mu s$$

What is the length of a bit in space (in meters) in the medium?

$$2 \times 10^8 \times \frac{1}{10 \times 2^{10}} = 19531.25 \, m = 19.531 \, km$$

3 Assuming we transmit 64KB packets, what is the transmission time of the packet.

$$\tau = \frac{64 \times 2^{10} \times 8}{10 \times 2^{10}} = 51.2 \, s$$

4 What is the end-to-end (round-trip time) delay for the packet? Assume no queuing (buffer)delay and no access delay.

delay = transmission delay + round trip delay

$$delay = \frac{40}{2 \times 10^5} + 51.2 = 0.0002 + 51.2 = 51.2001 \, s$$

How much data (MB) is lost if the pipe breaks suddenly. Assuming we keep the pipe full all the time.

§R1.3.0 Some Advice

Review Chapter 1-2

Acronyms

Introduction
Physical Laver

Some Advice

- There are a lot material. You should have read the book in piece-meal fashion
- This review, by no means, is complete, but guides you to read more efficiently
- Strategy ⇒ order of importance
 - 1 Review notes
 - 2 Lecture notes
 - 3 Problems at the end of each chapter
 - 4 The book itself

§R1.4.0 References

Review Chapter 1-2

Acronyms Introduction

Physical Layer

Some Advice

References

[Tanenbaum and Wetherall, 2011] Tanenbaum, A. S. and Wetherall, D. J. (2011). Computer Networks: 5th Edition. Prentice Hall PTR.

R1.29