SegNet

Presenter: Khakim Akhunov 22.10.2019, NTNU

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla, Senior Member, IEEE

10 Oct 2016

What Semantic Segmentation is?

The process of assigning a label to every pixel in the image.

Semantic segmentation treats multiple objects of the same class as a single entity.

Example of various Scene Understanding tasks

Object Detection

Tags: Person, Dining Table

Image Classification

Semantic Segmentation

A group of people sitting at a table

Image Captioning

Instance Segmentation

Q: What were the people doing?
A: Eating dinner

Visual Question-Answering

Source: http://www.robots.ox.ac.uk/-tvg/publications/2017/CRFMeetCNN4SemanticSegmentation.pdf

What SegNet is?

Novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation.

SegNet = (Encoder + Decoder) + Pixel-Wise Classification layer

It is primarily motivated by road scene understanding applications which require the ability to model appearance (road, building), shape (cars, pedestrians) and understand the spatial-relationship (context) between different classes such as road and side-walk.

SegNet architecture

- 1 encoder network
- 2 decoder network
- 3 pixel-wise classification layer

Main motivations behind SegNet

- Retain boundary information in the extracted image representation
- Efficient in terms of both memory and computation time
- Able to train end-to-end using efficient weight update technique

SegNet predictions on road scenes and indoor scenes

Quantitative comparisons of SegNet with traditional methods on the CamVid 11 road class segmentation problem

Decoding

VGG16 architecture

1	3	2	9		- 2		_			
7	4	1	5		7	9				
8	5	2	3		8	2				
4	2	1	4		S					
_⁴ 2x	2x2 Max-pooling									

Using pooling indices for upsampling

Source: https://www.cyberailab.com/home/segnet-an-image-segmentation-neural-network

Convolutional Encoder-Decoder **Pooling Indices** Wx+b

Decoder Filter Bank

Batch Normalization

Convolutional Encoder-Decoder **Pooling Indices**

Training the SegNet

Comparison of decoder variants

Variant	Params (M)	Storage multiplier	Inference time (ms)						
Fixed upsampling									
Bilinear-Interpolation	0.625	0	24.2						
Upsampling using max-pooling indices									
SegNeg-Basic	1.425	1	52.6						
SegNeg-Basic-Encoder Addition	1.425	64	53.0						
SegNeg-Basic-SingleChannelDecoder	0.625	1	33.1						
Learning to upsample									
FCN-Basic	0.65	11	24.2						
FCN-Basic-NoAddition	0.65	n/a	23.8						
FCN-Basic-NoDimReduction	1.625	64	44.8						
FCN-Basic-NoAddition-NoDimReduction	1.625	0	43.9						

Summary of different decoders analysis

- The best performance is achieved when encoder feature maps are stored in full
- Compressed forms of encoder feature maps can be stored and used for decoding to meet memory constraints
- Larger decoders increase performance for a given encoder netrowork

Schematic representation of different architectures

Road scene segmentation

Indoor scene segmentation

Conclusion

- SegNet is more efficient compared to other architectures since it only stores the max-pooling indices of the feature maps and uses them in its decoder network to achieve good performance
- On large and well known datasets SegNet performs competitively, achieving high scores for road scene understanding
- End-to-end learning of deep segmentation architectures is a harder challenge

References

- http://mi.eng.cam.ac.uk/projects/segnet/
- 2) https://www.cyberailab.com/home/segnet-an-image-segmentation-neural-network
- 5) http://www.robots.ox.ac.uk/-tvg/publications/2017/CRFMeetCNN4SemanticSegmentation.pdf
- 4) https://neurohive.io/en/popular-networks/vgg16/

Questions?

