Time plots, Stationarity, ACV, ACF, Random Walk and MA processes

10/10 points (100.00%)

Quiz, 10 questions

Next Item

1/1 points

1.

Time plot of a time series is shown. What can be said about the stationarity of this time series?

Some time series

- It is a staionary time series.
- It is a non-stationary time series since there is a fluctuation.
- It is stationary since there is a trend.

It is a non-stationary time series since there is a trend.

Time plots, Stationarity, ACV, ACF, Random Walk and MA processes

Correct! Trend makes the time series non-stationary.

10/10 points (100.00%)

Quiz, 10 questions

1/1 points

Time plot of a time series is shown. Select one or more that can be said about the stationarity of this time series.

Some time series

It is stationary.

Un-selected is correct

It is non-stationary.

Correct

Correct! Seasonality can be seen in the time plot.

Time plots, Stationarity, ACV, ACF, Random Walk and MA

processes It is non-stationary since there is a trend.

10/10 points (100.00%)

Quiz, 10 questions

Correct

Correct! One part of the plot shows upward trend while other part shows a downward trend.

1/1 points

Time plot of a time series is shown. Select one or more that can be said about the stationarity of this time series.

Some time series

It is a stationary time series since there is no trend.

Un-selected is correct

It is a stationary time series since there is no seasonality.

Time plots, Stationarity, ACV, ACF, Random Walk and MA processes

10/10 points (100.00%)

Quiz, 10 questions

It is a non-stationary time series.

Correct

Correct! There is a systematic change in the variation in the time series. At some point, the variation has increased.

It maybe combination of two stationary time series.

Correct

Correct! Around time 130 ish, variation increased suddenly. This time series can be a combination of two stationary time series.

1/1 points

```
# Simulating a non-stationary time series
1
2
3
   # Set seed so thet we generate the same dataset
4
   set.seed(2017)
   # time variable
5
   t=seq(0,1,1/100)
6
   # generate a time series
   some.time.series=2+3*t+ Rworm(length(t))
    # obtain acv for this timesereries below
10
    (acf(some.time.series, type="covariance"))
```

What is sample autocovariance coefficient c_5 ?

5

0.403

Correct

Correct!

1.717

Time plots, Stationarity, ACV, ACF, Random Walk and MA processes 1/1

10/10 points (100.00%)

Quiz, 10 questions

points		-	•	•			
	3	nts	i	O	p		

5.

What is the sample autocorrelation coefficient r_0 for any time series?

Depends on the time series.

It is 1.

Correct

Correct! Any time series has correlation 1 with itself, i.e., autocorrelation at lag 0 is 1.

1/1 points

6.

```
# Simulating a non-stationary time series
      # Set seed so thet we generate the same dataset
      set.seed(2017)
      # time variable
      |t=seq(0,1,1/100)
Run 7
      # generate a time series
      |some.time.series=2+3*t+ rnorm(length(t))
      # obtain acf of the time series below
      (acf(some.time.series))
```

What is r_5 ?

0.233

Correct

Correct!

Cannot be calculated since it is non-stationary time se

1

points

Time plots, \$tationarity, ACV, ACF, Random Walk and MA Which one or more of the following can be said about the random walk? processes

10/10 points (100.00%)

Quiz, 10 questions

Random walk model relates current value of the time series to the previous value by adding some random deviation to the previous value.

Correct

Correct! Random Walk model is $X_t = X_{t-1} + Z_t$

Random walk is a stationary stochastic process.

Un-selected is correct

Random walk is the accumulation of random deviations from previous steps until the current time.

Correct

Correct! $X_t = \sum_{i=1}^t Z_i$.

1/1

points

8.

How one can obtain a stationary stochastic process from the random walk?

Using the difference operator.

Correct!

One cannot.

1/1

points

9.

Which one or more of the following can be said about moving average Time plots, \$tationarity, ACV, ACF, Random Walk and MA

10/10 points (100.00%)

Quiz, 10 questions

processes

The current value of the process now is a linear combination of the noises from current and past time steps.

Correct

Correct!

Autocorrelation function of the process decreasing slowly without hitting zero.

Un-selected is correct

Autocorrelation function of the process cuts off and becomes zero at the order of the process.

Correct

Correct!

1/1 points

```
10.
      # Simulating MA(4) process.
    2
       \# X_t = Z_t + 0.2 Z_(t-1) + 0.3 Z_(t-2) + 0.4 Z_(t-3)
    3
    4
      set.seed(2^10)
    5
      z=NULL
    6
      z=rnorm(1000)
       data=NULL
    8
       for(i in 4:1000){
         data[i-3]=z[i]+0.2*z[i-1]+0.3*z[i-2]+0.4*z[i-3]
    9
   10
   11
      data=ts(data)
   12
                                  Run
       # find acf below
   13
   14
       acf(data)
                                  Reset
   15
```

What is the autocorrelation coefficient at lag 4?

Correct

Theoretically, it is 0 starting at lag 4. But for a time series, it will be

Time plots, Stationarity, ACV, ACF, Random Walk and MA processes

10/10 points (100.00%)

Quiz, 10 questions

0.022

Un-selected is correct

