CLAIMS

1	1.	A method for generating a Cyclic Redundancy Check (CRC) in a system comprising the
2		steps of:
3		creating a circuit comprising a plurality of registers wherein each of the plurality of
4		registers is associated with a corresponding logic gate; and
5		programming a subset of the plurality of registers to have a value of zero and
6		programming a corresponding subset of the logic gates to have a value of zero,
7		wherein the step of programming is based on a pre-selected polynomial key word.
1	2.	The method as recited in Claim 1, wherein the step of programming comprises:
2		programming a first set of selection inputs, wherein:
3		the step of programming the first set of selection inputs is based on the pre-
4		selected polynomial key word;
5		the first set of selection inputs is associated with:
6		selecting corresponding input from each of the logic gates; and
		a shift logic that is associated with the plurality of registers.
	3.	The method as recited in Claim 1, wherein the step of programming comprises:
2		programming a second set of selection inputs, wherein:
3		the second set of selection inputs is associated with selecting corresponding input
4		to each of the logic gates;
5		the second set of selection inputs is associated with selecting a final output from
6		among output from the plurality of registers; and
7		the step of programming the second set of selection inputs is based on the pre-
8		selected polynomial key word.
1	4.	The method as recited in Claim 1, further comprising:
2		using a first set of multiplexers in conjunction with a first set of selection inputs for
3		selecting at least one input for shifting data to a next shift register of the plurality
4		of registers, wherein the at least one input is a member of a set of inputs that

5		includes an output from an adjacent logic gate and a straight shift input from an
6		adjacent register of the plurality of registers.
1	5.	The method as recited in Claim 1, further comprising:
2		using a second set of multiplexers in conjunction with a second set of selection inputs for
3		selecting at least one input to a corresponding logic gate, wherein the at least one
4		input is a member of a set of inputs that includes a primary input and a feedback
5		input.
1	6.	The method as recited in Claim 1, further comprising:
12		using a second set of multiplexers in conjunction with a second set of selection inputs for
		selecting a final output from among output from the plurality of registers.
	7.	The method as recited in Claim 1, wherein the plurality of registers are shift registers.
1	8.	A method for generating a Cyclic Redundancy Check (CRC) generator in a system
2		comprising the steps of:
3		creating a circuit comprising a plurality of registers wherein each of the plurality of
4		registers is associated with a corresponding logic gate; and
5		programming a first set of selection inputs, wherein:
6		the step of programming the first set of selection inputs is based on a pre-selected
7		polynomial that is associated with the CRC generator;
8		the first set of selection inputs is associated with:
9		selecting corresponding input from each of the one or more logic gates;
10		and
11		a shift logic that is associated with the plurality of registers; and
12		programming a second set of selection inputs, wherein:
13		the second set of selection inputs is associated with selecting corresponding input
14		to each logic gate;
15		the second set of selection inputs is associated with selecting a final output from
16		among output from the plurality of registers; and

17		the step of programming the second set of selection inputs is based on the pre-
18		selected polynomial that is associated with the CRC generator.
1	9.	The method as recited in Claim 8, further comprising:
2		using a first set of multiplexers in conjunction with the first set of selection inputs for
3		selecting at least one input for shifting to a next register of the plurality of
4		registers, wherein the at least one input is a member of a set of inputs that includes
5		an output from an adjacent logic gate and a straight shift from an adjacent register
6		of the plurality of registers.
1	10.	The method as recited in Claim 8, further comprising:
		using a second set of multiplexers in conjunction with the second set of selection inputs
<u></u>		for selecting at least one input to a corresponding logic gate, wherein the at least
4		one input is a member of a set of inputs that includes a primary input and a
5		feedback input.
	11.	The method as recited in Claim 8, further comprising:
2		using a second set of multiplexers in conjunction with the second set of selection inputs
		for selecting the final output from among output from the plurality of registers.
200 b		
1	12.	The method as recited in Claim 8, wherein the plurality of registers are shift registers.
1	13.	A computer-readable medium carrying one or more sequences of instructions for
2		generating a Cyclic Redundancy Check (CRC) generator in a system, which instructions,
3		when executed by one or more processors, cause the one or more processors to carry out
4		the steps of:
5		creating a circuit comprising a plurality of registers wherein each of the plurality of
6		registers is associated with a corresponding logic gate; and
7		programming a subset of the plurality of registers to have a value of zero and
8		programming a corresponding subset of the logic gates to have a value of zero,
9		wherein the step of programming is based on a pre-selected polynomial key word.

1	14.	A computer-readable medium carrying one or more sequences of instructions for
2		generating a Cyclic Redundancy Check (CRC) generator in a system, which instructions,
3		when executed by one or more processors, cause the one or more processors to carry out
4		the steps of:
5		creating a circuit comprising a plurality of registers wherein each of the plurality of
6		registers is associated with a corresponding logic gate; and
7		programming a first set of selection inputs, wherein:
8		the step of programming the first set of selection inputs is based on a pre-selected
9		polynomial that is associated with the CRC generator;
10		the first set of selection inputs is associated with:
i D		selecting corresponding input from each of the one or more logic gates;
<u> </u>		and
		a shift logic that is associated with the plurality of registers; and
14		programming a second set of selection inputs, wherein:
1 5		the second set of selection inputs is associated with selecting corresponding input
<u>16</u>		to each logic gate;
Ď		the second set of selection inputs is associated with selecting a final output from
<u>‡</u> 8		among output from the plurality of registers; and
T R R		the step of programming the second set of selection inputs is based on the pre-selected
20		polynomial that is associated with the CRC generator.
1	15.	An apparatus for creating a Cyclic Redundancy Check (CRC) generator in a system,
2		comprising:
3		means for creating a circuit comprising a plurality of registers wherein each of the
4		plurality of registers is associated with a corresponding logic gate; and
5		means for programming a subset of the plurality of registers to have a value of zero and
6		programming a corresponding subset of the logic gates to have a value of zero,
7		wherein the step of programming is based on a pre-selected polynomial key word.

1	16.	An apparatus for creating a Cyclic Redundancy Check (CRC) generator in a system,
2		comprising:
3		means for creating a circuit comprising a plurality of registers wherein each of the
4		plurality of registers is associated with a corresponding logic gate; and
5		means for programming a first set of selection inputs, wherein:
6		the step of programming the first set of selection inputs is based on a pre-selected
7		polynomial that is associated with the CRC generator;
8		the first set of selection inputs is associated with:
[†] 9		selecting corresponding input from each of the one or more logic gates;
10		and
H		a shift logic that is associated with the plurality of registers; and
12		means for programming a second set of selection inputs, wherein:
10 <u>11</u> 12 13 14 13		the second set of selection inputs is associated with selecting corresponding input
14		to each logic gate;
15		the second set of selection inputs is associated with selecting a final output from
		among output from the plurality of registers; and
H 718		means for the step of programming the second set of selection inputs is based on the pre-
18		selected polynomial that is associated with the CRC generator.
ĺ		
1	17.	An apparatus for creating a Cyclic Redundancy Check (CRC) generator in a system,
2		comprising:
3		a processor;
4		one or more stored sequences of instructions which, when executed by the processor,
5		cause the processor to carry out the steps of:
6		creating a circuit comprising a plurality of registers wherein each of the plurality
7		of registers is associated with a corresponding logic gate; and
8		programming a subset of the plurality of registers to have a value of zero and
9		programming a corresponding subset of the logic gates to have a value of
10		zero, wherein the step of programming is based on a pre-selected
11		polynomial key word.

l	18.	An apparatus for creating a Cyclic Redundancy Check (CRC) generator in a system,
2		comprising:
3		a processor;
4		one or more stored sequences of instructions which, when executed by the processor,
5		cause the processor to carry out the steps of:
6		creating a circuit comprising a plurality of registers wherein each of the plurality
7		of registers is associated with a corresponding logic gate; and
8		programming a first set of selection inputs, wherein:
9		the step of programming the first set of selection inputs is based on a pre-
0		selected polynomial that is associated with the CRC generator;
1		the first set of selection inputs is associated with:
2		selecting corresponding input from each of the one or more logic
3		gates; and
		a shift logic that is associated with the plurality of registers; and
5		programming a second set of selection inputs, wherein:
6		the second set of selection inputs is associated with selecting
7		corresponding input to each logic gate;
8		the second set of selection inputs is associated with selecting a final output
9		from among output from the plurality of registers; and
0		the step of programming the second set of selection inputs is based on the
1		pre-selected polynomial that is associated with the CRC generator.