cgroup & namespace

cgroup design concept

tasks grouping, resource limitation

vfs

two way to achive a simple fs

- vfs ->lxinfs
 - dentry->priv = lxin
 - file ops =
 - dir ops =
 - sb ops =
- kernfs->kzhangfs
- cgroupfs
 - dentry->priv = cgroup/ss
 - file ops =
 - dir ops =
 - sb ops =

Link:http://lxin.org/linux%20kernel/2015/03/20/linux-a-simple-filesystem-with-two-type/

task to cgroup

net_cls subsys

```
struct cgroup_subsys net_cls_cgrp_subsys = {
    .css_alloc = cgrp_css_alloc,
    .css_online = cgrp_css_online,
    .css_free = cgrp_css_free,
    .attach = cgrp_attach,
    .legacy_cftypes = ss_files,
};
```

```
struct cgroup_cls_state {
    struct cgroup_subsys_state css;
    u32 classid;
};
```

namespace concept

code share, data separation

task to namesapce

- task_struct
 - struct nsproxy *nsproxy;
- nsproxy
 - struct uts namespace *uts ns;
 - struct ipc namespace *ipc ns;
 - struct mnt_namespace *mnt_ns;
 - struct pid_namespace *pid_ns_for_children;
 - struct net *net_ns;

net namespce object

struct net

struct sock

```
    struct list head dev base head;

struct netns_ipv4 ipv4;
struct netns ipv6 ipv6;
struct netns_sctp sctp;
struct netns_nf nf;
struct netns_xt xt
struct netns_ct ct;
struct netns_nftables nft;
struct netns_nf_frag nf_frag;
struct netns xfrm xfrm;
struct netns_ipvs *ipvs;
```

*nfnl

net namespce pernet_list

net namespce pernet_data

int peernet2id(struct net *net, struct net *peer)
struct net *get_net_ns_by_id(struct net *net, int id)