

www.utm.my

# Final Examination Revision AI 2024





### **Heuristic Search Algorithm: Best First Search**

www.utm.my

- It is a general algorithm for heuristically searching any state space graph
- Supports a variety of heuristic evaluation functions
- Better and flexible Algorithm for heuristic search
- Avoid local maxima, dead ends; has open and close lists
- Selects the most promising state
- Apply heuristic and sort the 'best' next state in front of the list (priority queue) can jump to any level of the state space
- If lead to incorrect path, it may retrieve the next best state





# **Best First Search**

#### www.utm.my



return FAIL

end.

% open is empty



# **Best First Search – The List**

#### www.utm.my

open = [A5]; closed = [] evaluate A5; open = [B4,C4,D6]; closed = [A5] evaluate B4; open = [C4,E5,F5,D6]; closed = [B4,A5] evaluate C4; open = [H3,G4,E5,F5,D6]; closed = [C4,B4,A5] evaluate H3; open = [O2,P3,G4,E5,F5,D6]; closed = [H3,C4,B4,A5] evaluate O2; open = [P3,G4,E5,F5,D6]; closed = [O2,H3,C4,B4,A5] evaluate P3; the solution is found!







# **Revision (1): Heuristic Search Algorithm**

www.utm.my



Consider the route-finding problem of selecting the best path from **Starting Location** to **Destination**. The heuristic value and the edge value are given based on the legend.

- (a) Draw the search tree using Best First Search algorithm in order to find the minimum travelling cost. (please label all nodes with their h values).
- (b) Identify the list of visited locations found by this algorithm in (a).

Legend:

Cost: Heuristic value of every locations

Edges/Path/Arc: Distance between two locations





# Heuristic Search Algorithm: A\* (Heuristic Evaluation Function f(n))

www.utm.my

- To evaluate performances of heuristics for solving a problem
- Devise good heuristic using limited information to make intelligent choices
- To better heuristic, f(n)=g(n)+h(n), where h(n) distance from start to n, g(n) is the depth measure
- Eg. 8 puzzle, **heuristics** h(n) could be:
  - No. of tiles in wrong position
  - No. of tiles in correct position
  - Sum of distances out of place
- In other case, heuristics h(n) could be:
  - Traveling cost
  - Fuel consumption
  - Budget





# **Revision (2): Heuristic Search Algorithm**

#### www.utm.my



Consider the route-finding problem of selecting the best path from **Starting Location** to **Destination**. The heuristic value and the edge value are given based on the legend.

- (a) Draw the search tree using A\* algorithm in order to find the minimum travelling cost.(please label all nodes with their h values).
- (b) Identify the list of visited locations found by this algorithm in (a).

#### Legend:

Cost: Heuristic value of every locations

Edges/Path/Arc: Distance between two locations





# Revision (3) – Intelligent Agent

www.utm.my

#### **Case Study: Smart Waste Management System**

Imagine a city implementing a Smart Waste Management System that employs IoT-enabled trash bins equipped with sensors. The system aims to optimize waste collection by monitoring the fill levels of the bins in real-time and dynamically planning collection routes for garbage trucks. The primary goals are to reduce operational costs, minimize environmental impact, and improve the overall efficiency of waste management.

- i) What are the key percepts and sensors involved in the Smart Waste Management System?
- ii) Analyze the actions performed by the IoT-enabled trash bins and the waste collection trucks in the Smart Waste Management System. How does it optimize waste collection routes?
- iii) Propose strategies for enhancing the adaptability of the Smart Waste Management System to changing conditions, such as variations in waste generation patterns or unexpected events.





# **Heuristics in Games: Alpha-Beta Pruning**

www.utm.my

- To improve search efficiency in two-person games (compared to minimax that always pursues all branches in state space)
- Alpha-beta search in depth-first fashion
- Alpha(α) and beta(β) values are created
- α associates with MAX-never decrease
- β associates with MIN-never increase
- How?
  - Expand to full-ply
  - Apply heuristic evaluation to a state and its siblings
  - Back-up to the parent
  - The value is offered to grandparent as a potential  $\alpha$  or  $\beta$  cutoff





### **Revision (4): Heuristics in Games**

Alpha beta pruning improves search efficiency in two-person games

#### www.utm.my

- a) Perform Mini-Max with alpha beta pruning search and calculate the value of each node.
- b) Examine and select the nodes that will not be evaluated.
- c) Calculate the  $\alpha$  and  $\beta$  final values for node C?
- d) What is MAX's best move (B, C OR D)?
- e) Calculate the optimal value for MAX to win the game?

Two rules to stop alphabeta searching: For MIN node, if  $\beta \le \alpha$  of MAX ancestor

For MAX node, if  $\alpha \ge \beta$  of MIN ancestors





At MAX, only update  $\alpha$ 

At MIN, only update β

# Revision (5): Goal Driven Production System

www.utm.my

#### Table 1

| Letter | Fact            |  |  |  |  |
|--------|-----------------|--|--|--|--|
| Н      | You are hot     |  |  |  |  |
| N      | You are not hot |  |  |  |  |
| W      | Window open     |  |  |  |  |
| 0      | Open the window |  |  |  |  |
| D      | Thermostat down |  |  |  |  |
| CW     | Close window    |  |  |  |  |
| L      | Window closed   |  |  |  |  |
| С      | You are cold    |  |  |  |  |

The following rules are knowledge base of a production system. Use this rule set and facts in Table 1 to answer questions (a) and (b).

Rule 1: IF you are hot THEN thermostat down.

Rule 2: IF you are not hot AND window open THEN you are cold

Rule 3: IF thermostat down AND you are cold THEN open the window

- (a) Use **GOAL DRIVEN SEARCH / BACKWARD CHAINING** to describe the production system table (Table 1) including its working memory, conflict set, and rule fired.
- (b) Assume that the goal is Open the window(O), derive all facts that can be found.





# **Revision (7): Machine Learning**

#### www.utm.my

Naïve Bayesian can be used as a supervised learning algorithm. Figure 1 shows diabetes dataset with actual and predicted class (after Naïve Bayesian classification). Below are the details attributes of diabetes dataset that were extracted from Pima Indians Diabetes Database.

#### Attributes:

- 1. Preg Number of times pregnant
- 2. Plas Plasma glucose concentration a 2 hours in an oral glucose tolerance test
- 3. Pres Diastolic blood pressure (mm Hg)
- 4. Skin Triceps skin fold thickness (mm)
- 5. Insu 2-Hour serum insulin (mu U/ml)
- 6. Mass Body mass index (weight in kg/(height in m)^2)
- 7. Pedi Diabetes pedigree function
- 8. Age Age (years)
- 9. Tested\_P Actual tested result
- 10. Predicted\_P Predicted result





# **Revision (7): Machine Learning**

www.utm.my

|      |      |      |      |      |      |       |     | <u> </u>        |                 |
|------|------|------|------|------|------|-------|-----|-----------------|-----------------|
| Preg | Plas | Pres | Skin | Insu | Mass | Pedi  | Age | Tested_P        | Predicted_P     |
| 1    | 85   | 66   | 29   | 0    | 26.6 | 0.351 | 31  | tested_positive | tested_positive |
| 1    | 89   | 66   | 23   | 94   | 28.1 | 0.167 | 21  | tested_positive | tested_negative |
| 5    | 116  | 74   | 0    | 0    | 25.6 | 0.201 | 30  | tested_positive | tested_negative |
| 10   | 115  | 0    | 0    | 0    | 35.3 | 0.134 | 29  | tested_negative | tested_negative |
| 4    | 110  | 92   | 0    | 0    | 37.6 | 0.191 | 30  | tested_negative | tested_negative |
| 10   | 139  | 80   | 0    | 0    | 27.1 | 1.441 | 57  | tested_negative | tested_negative |
| 1    | 103  | 30   | 38   | 83   | 43.3 | 0.183 | 33  | tested_positive | tested_positive |
| 3    | 126  | 88   | 41   | 235  | 39.3 | 0.704 | 27  | tested_positive | tested_positive |
| 8    | 99   | 84   | 0    | 0    | 35.4 | 0.388 | 50  | tested_negative | tested_negative |
| 1    | 97   | 66   | 15   | 140  | 23.2 | 0.487 | 22  | tested_positive | tested_positive |
| 13   | 145  | 82   | 19   | 110  | 22.2 | 0.245 | 57  | tested_positive | tested_positive |
| 5    | 117  | 92   | 0    | 0    | 34.1 | 0.337 | 38  | tested_negative | tested_positive |
| 5    | 109  | 75   | 26   | 0    | 36   | 0.546 | 60  | tested_negative | tested_positive |
| 3    | 88   | 58   | 11   | 54   | 24.8 | 0.267 | 22  | tested_negative | tested_negative |
| 6    | 92   | 92   | 0    | 0    | 19.9 | 0.188 | 28  | tested_negative | tested_negative |
| 10   | 122  | 78   | 31   | 0    | 27.6 | 0.512 | 45  | tested_positive | tested_positive |
| 4    | 103  | 60   | 33   | 192  | 24   | 0.966 | 33  | tested_positive | tested_positive |
| 11   | 138  | 76   | 0    | 0    | 33.2 | 0.42  | 35  | tested_negative | tested_positive |
| 3    | 180  | 64   | 25   | 70   | 34   | 0.271 | 26  | tested_negative | tested_negative |
| 7    | 133  | 84   | 0    | 0    | 40.2 | 0.696 | 37  | tested_negative | tested_positive |

Figure 1

Based on the dataset given in Figure 1, answer the following questions:

- a) Quantify the amount of True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) for the classification result
- b) Using your answers in a), calculate the accuracy, precision and recall for this classification

