An Introduction to the Event-Related Potential Technique Steven J. Luck

© 2005 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email special_sales@mitpress.mit.edu or write to Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge, MA 02142.

This book was set in Melior and Helvetica on 3B2 by Asco Typesetters, Hong Kong. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Luck, Stephen J.

An introduction to the event-related potential technique / Stephen J. Luck.

p. cm. — (Cognitive neuroscience)

Includes bibliographical references and index.

ISBN 0-262-12277-4 (alk. paper) — ISBN 0-262-62196-7 (pbk. : alk. paper)

1. Evoked potentials (Electrophysiology) I. Title. II. Series.

QP376.5.L83 2005

616.8'047547—dc22

2005042810

10 9 8 7 6 5 4 3 2 1

Index

Abrasion of skin before electrode	of frequencies, 187–191
placement, 120	half-amplitude cutoff, 179, 180, 314, 321
Absolute voltages, 103	and latency variability problem, 135–139
AC current, 336	local peak, 231, 341n
oscillations in, 113	mean, 229, 234–235. <i>See also</i> Mean
Accessories in ERP lab, 309-310, 311b-	amplitude
312b	measurements of, 57, 229–237, 229f
Action potentials, 23, 27-29	in oscillations, 142–143
Active electrodes, 101–104, 105f	of P3 component, factors affecting, 43-44
Adjacent response (ADJAR) filters for	peak, 139, 229, 230–234. <i>See also</i> Peak
overlap, 149	amplitude
Adrian, E. D., 3	peak-to-peak, 237. See also Peak-to-peak
Advantages of ERP technique, 21–22, 34	amplitude
Ag/AgCl electrodes, 117	relation to latency, 52, 53f, 55–56
Aine, C., 276, 293	Analog filters, 176
Alcaini, M., 39	Analog-to-digital converters (ADC), 125,
Aliasing, 127, 177	315
Alpha waves, 164f, 168–169	sixteen-bit, 126
measurements of, 156	ANOVA, 250-254. See also Statistical
noise from, 177, 317	analyses
as noise source, elimination of, 213	Anterior cingulate cortex, 47
Amperes, 333	Area amplitude, 13, 229–230
Amplifiers	Area-based measures compared to peak-
blocking of, 164f, 167-168	based, 139–140
calibrator for, 310	Arnell, K. M., 87, 88
and common mode rejection, 120-121	Artifact(s), 12
differential, 103	aliasing, 127, 177
electrode-amplifier-computer connec-	in low-pass filtered waveforms, 209, 210f
tions, 307-308	oscillations caused by filters, 183f, 184
filters in, 113	peaks added by filters, 179
gain setting on, 125, 128	stimulus-related, 324
headbox for, 308	tearing, 328
high-pass filter setting on, 125–126	Artifact correction, 152, 170–173
input impedance of, 121	problems with, 172–173
recommended types of, 314–315	Artifact rejection, 101, 151–170, 321, 340n
saturation of, 167–168	alpha waves, 164f, 168–169
Amplitude	amplifier saturation or blocking, 164f,
area, 139, 229–230	167-168
attenuation by filters, 178–181	choice of sensitive measure, 154

Artifact rejection (cont.)	area measures in, 139–140
in electrooculograms, 154–155, 155f	response-locked averages in, 140
eye movements, 162–166	time-locked spectral averaging in, 142–
eyeblinks, 158–162	145, 144f
and filtering before or after averaging,	Woody filter technique in, 141–142
219, 340n-341n	and noise in waveforms, 131, 133
general process, 152–154	on-line, 317
muscle and heart activity, 169-170	and overlap problem, 145–149, 146f
slow voltage shifts, 166–167	in transient and steady-state responses,
threshold choice, 157–158	149–151, 150f
for between-subject studies, 157	reliability of, 18–20, 19f
for individual subjects, 158	residual EEG noise in, 99
Assumptions	response-locked, 138f, 140, 307, 320
ANOVA, violation of, 250, 258–260	baselines in, 237
averaging, 134–135	signal-to-noise ratio in, 133–134
Attention	stimulus-locked, 138f, 140
auditory selective, 75–80, 77f, 340n	time-locked, for spectral information,
and locus of selection, 75	142–145, 144f
and physical stimulus confounds, 70b–	of voltages at time points, 192f, 193–195
71b	Axford, J. G., 36
systems in detection of color and motion,	11x101tt, j. d., 00
13–17	Background music, use of, 312b
Attention effects, 297b	Baillet, S., 271, 320
Attentional blink paradigm, 87–88, 88f	Band-pass filters, 178, 191
Auditory brainstem responses, 7	Baselines, 236–237
Auditory selective attention, 75–80, 77f,	prestimulus, 236
340n	and response-locked averages, 237
Auditory sensory responses, 38–39	Bayes theorem/Bayesian inference, 294,
Auditory stimuli	295
artifacts from, 324	
timing of, 323	Behavioral response devices, 306–307 Belliveau, J. W., 285
9	-
Automation of processing, 321	Bentin, S., 38
Average across all electrodes as reference,	Bereitschaftspotential, 47
109–111, 110f	Berg, P., 171, 172
Average mastoids reference deviation,	Berger, H., 3
107–108	Bertrand, O., 32, 58, 111
Averaging, 131–151	BESA. See Brain electrical source
application of, 132f	analysis
assumptions in, 134–135	Bessel filters, 215
basic procedures in, 9–10, 12, 131–135	Bipolar recordings
of dipole orientations, 31	artifacts and noise sources in, 170
distortions caused by, 56–57	in eye movements, 162
electrooculogram waveforms in, 165–166	in eyeblinks, 162
and filtering before or after artifact	Blink. See Eyeblinks
rejection, 219	Bloch's law, 341n
grand averages in, 17–21, 27. See also	Blocking, amplifier, 164f, 167–168
Grand averages	Blurring of voltage distribution, 32
and latency variability problem, 135–139,	BOLD signal, 23
136f, 138f	Boundary element model, 271

Brain electrical source analysis (BESA),	Communication with subjects in
271–273, 273f. See also Equivalent	experiments, 311b
current dipole, localization methods	Component-independent experimental
Brainard, D. H., 324, 330	designs, 66–94
Brainstem evoked responses, 7, 38	avoiding confounds and misinterpreta-
auditory, 7, 38	tions in, 66–74
cutoff frequency in, 208	examples of
BrainStorm package for data analysis, 320	auditory selective attention, 75–80, 77f
Brandeis, D., 142	dual-task performance, 87–94, 88f, 90f
Braren, M., 5	partial information transmission, 80-87,
Bright and dim stimuli, comparative	84f
effects of, 71, 73-74, 252, 253f	Computers, 303–305
Broadbent, D. E., 75	for amplifier settings, 315
Brown, C. M., 46	in artifact detection, 156–157
	digitization software, 315–318. See also
C1 component, visual, 35-36, 58-59	Digitization
Cables, noise from, 114, 116, 305, 308,	electrode-amplifier-computer connec-
312b	tions, 307–308
Calibration of recording system, 128–129	event codes for, 305
Calibrator for amplifiers, 310, 314	software for. See Software
Capacitance, 117, 336	Conductance, 334
Carmel, D., 38	Conduction, volume, 32
Carmichael, L., 3	Confounds
Cathode-ray tube. See CRT monitors	avoidance of, 66–74
Causal filters	examples of, 70b–71b
high-pass, 221f, 222-223	Constraints, 281–283, 283f
low-pass, 210f, 214–215	and minimum norm solution, 283-286
frequency response function, 210f, 214-	Context updating hypothesis, 42-43
215	Contingent negative variation, 4–5, 49
impulse response function, 210f, 214	Continuous performance task, 7
Chair, recliner, 169, 306	Continuous recording, 316
Chalklin, V., 109	Contralateral sites, N2pc component in,
Channel mapping, 317	15-17, 41, 65
Chelazzi, L., 297b	Converging evidence, 296–297, 297b
Chin rests, 167, 169, 306, 340n	Convolution
Chun, M. M., 88	mathematical properties of, 215-216
Clark, V. P., 36, 59	and noise affecting latency measures,
Clean data, importance of, 86–87, 99–101,	241
185	in time domain, 197–199, 198f, 200, 201–
CNV. See Contingent negative variation	203, 202f
Cognitive neuroscience	equivalent to multiplication in
ERP findings in, 94	frequency domain, 200-201, 201f, 216
reference sites in, 106–108	of unity impulse response function, 217
Cohen, D., 278	Cortical folding patterns, 20, 31
Coles, M. G. H., 35, 43, 48, 65, 83, 170,	Cortically constrained distributed source
171, 172, 235	localization, 281–283, 283f
Color-defined targets, detection of, 13–17	Costa, L. D., 47
Comerchero, M. D., 42	Costs of recording techniques, 24, 26
Common mode rejection, 120–121, 314	Courchesne, E., 42

CRT monitors, 324-332 Differential amplifiers, 103 basic operation of, 325-327, 326f Differential step function in eyeblink compared to LCD monitors, 330-332 artifact rejection, 162 timing in, 324, 327-329 Digital filters, 176 errors of, 328-329 convolutions in, 201-203, 202f Cuffin, B. N., 278, 298 equation for, 193, 195 Curran, T., 38 impulse response functions in, 196 Current, electrical, 333-334 lack of phase shift with, 181 alternating (AC), 336 Digitization, 124-126 direct (DC), 335 event codes in, 305, 315 Current density, 111-112 filters in, 181, 182, 185 Current source density (current density), rate of, and cutoff frequency of filter, 127, 111-112 Cutoff frequency, 177, 186, 314 software for, 315-318 for brainstem evoked responses, 208 testing of, 317-318 and digitization rate, 127, 177 Dipoles half-amplitude, 179, 180f, 314, 321 equivalent current, 31, 269 in gaussian filter, 212-213 forward problem, 268 in high-pass filters, 125 inverse problem, 33-34, 269 in low-pass filters, 127-128, 208 modeling procedures to isolate ocular and sampling rate, 128 activity, 172 neuron, 29 Dale, A. M., 285 summation of, 31 Data acquisition system, 303-318, 304f seeded, 276 Data analysis systems, 318-322 Direct coupled (DC) recordings, 126 Di Russo, F., 36, 150f, 272, 274f suggested features in, 320-322 Davis, H., 2, 4, 10b Disadvantages of ERP technique, 22-23, 26 Davis, P. A., 4, 10b Distortions DC current, 335 from averaging, 56-57 DC recordings, 185 from filters, 170, 175, 182-185, 183f, in saccades, 163, 166 204-223 Distributed source localization methods. Deblurring, 32 269, 281-289 Deecke, L., 47 Definition of ERP component, 58-59 added value of magnetic recordings, 286-Dehaene, S., 47, 86b, 94 de Jong, R., 86b cortically constrained models, 281-283, Delays between stimuli, and overlapping waveforms, 147, 148 minimum norm solution, 283-286 Donchin, E., 9b, 42, 43, 44, 58, 94, 170, Delorme, A., 319 Desimone, R., 297b 171, 172, 262 Desmedt, J. E., 109 Double filtering, frequency response Deutsch, D., 75 function of, 216 Deutsch, J. A., 75 Dual-task performance, study of, 87-94, Dien, J., 111 88f, 90f Difference waves Duncan-Johnson, C. C., 22, 43 to isolate components, 63-65, 298-299 and isolation of lateralized readiness Earlobe reference sites, 106-107, 308 potential, 83 Early selection hypothesis, 75-79

Earth as reference point, 102

for overlap problems, 91, 94-95, 247

Edge detection algorithms for artifact	averaged waveforms, 165–166
detection, 165	eyeblink detection, 158–160, 159f
EEG. See Electroencephalogram	in saccades, 163, 164f
EEGLAB package for data analysis, 319-	voltages produced by eye movements, 163
320	EMG. See Electromyogram
Eimer, M., 41	Endogenous components, 11
Electrical activity in neurons, 27–32	EOG. See Electrooculogram
Electrical noise in environment, 112–116,	Epoch-based recording, 316
305, 306, 308, 309	Equivalent current dipole, 31
filtering of, 182	localization methods, 269, 271-280, 293-
low-pass filters in, 208	294
Electrical potential, 40, 101–104, 333	BESA technique in, 271-273, 273f
Electricity	multi-start approach in, 276, 294
basic principles of, 333–337	numbers and locations of dipoles in,
relation to magnetism, 336–337, 336f	273–276
Electrocardiogram (EKG) artifacts, 164f,	operator dependence of, 275, 277
170	shortcomings of, 276–278
Electrode(s), 116–124	simulation study of, 278–280, 341n
active, 101–104, 105f	source waveforms in, 273, 274f
caps for, 313	Eriksen, C. W., 80, 296
in geodesic sensor net, 122	ERMF. See Event-related magnetic fields
ground, 102, 103	ERPology, 5–6
interactions between condition and	Error detection, 46–47
electrode site, 254–258, 256f	Error-related negativity, 47
large arrays of, 121	Event codes, 305, 315
perspective on, 123–124, 124b	timing of, 322–324
problems with, 122	Event-related magnetic fields (ERMFs), 23,
placing and naming of sites in 10/20	24t, 33, 286, 299
system, 118b–119b	combined with ERP data, 286–289
recommended types of, 313	Event-related potentials (ERPs)
reference, 103, 104–112, 105f, 308	advantages and disadvantages of, 21–23
silver/silver-chloride, 117	combined with magnetic data, 286–289
tin, 117	compared to other measures, 23–27, 24t
Electrode-amplifier-computer connections,	components of, 34–49, 59–61
307–308	definition of, 58–59, 339n–340n
Electroencephalogram (EEG)	history of, 3–7
amplifier settings, 125–126	origin of term, 4, 6–7
blocking and skin potential artifacts in,	steady-state, 150–151, 150f
164f, 169	transient, 149–150, 150f
fields compared to MEG fields, 286–288	Evoked potentials (EPs), 6
flat-line signal from slow voltage shifts,	Evoked response, 7
125, 167, 168	brainstem, 7, 38, 208
historical aspects of, 3–4	visual, 7
residual noise in, 99	Exogenous components, 11
Electromotive force, 333	Experiment design and interpretation
Electromyogram (EMG), 164f, 169, 306	ambiguities avoided in, 61–66
Electrooculogram (EOG)	component-independent designs in, 66
artifact corrections, 171	confounds and misinterpretations in, 66-
artifact rejections, 154–155, 155f, 157	71

Experiment design and interpretation	and amplitude attenuation, 178–181
(cont.)	analog, 176
avoidance of, 72–74	attenuating low frequencies, 177–178
definition of ERP component in, 57–61	band-pass, 178
examples of, 75–94	frequency response functions, 191
focus in, 62	Bessel, 215
isolation of components in, 63–65	causal
large components in, 63	high-pass, 221f, 222–223
rules for, 52–57, 74, 92, 96–97	low-pass, 210f, 214–215
strategies for, 62–66, 94–95, 98	cutoff frequency of, 177, 186, 314. See
waveform peaks <i>versus</i> latent ERP	also Cutoff frequency
components in, 51–57	digital, 176
well-studied components used in, 62	lack of phase shift with, 181
Experimental effect compared to raw ERP	distortions from, 170, 175, 182–185, 183f,
waveforms, 55	204-223
Experimentwise error, 252	with high-pass filters, 219–223
Eye movements	with low-pass filters, 207–215, 210f
artifact correction, 170–173	with notch filters, 204-207, 206f
detection and rejection of artifacts, 162-	frequency-domain, 175
166	transformed into time domain, 188f, 190
suppressed during recordings, 311b	frequency response function, 179, 180f,
Eyeblinks, 12	188f, 190
artifact correction, 170–173	gaussian, 210f, 212–214. See also
assessment with electrooculogram, 154–	Gaussian filters
155, 155f	half-gaussian, 21
attentional blink paradigm, 87–88, 88f	high-pass, 178, 314
detection and rejection of artifacts, 158-	to attenuate low frequencies, 195
162	avoidance of, 187
differential step function in, 162	causal, 221f, 222–223
step function in, 161	cutoff frequency, 125
polarity reversal in, 159–160, 159f, 161	distortions from, 219–223
reducing occurrence of, 160	in eye movement recordings, 163
suppressed during recordings, 311b	frequency response function, 179, 191
and voltage deflection levels, 153–154	gaussian, 218f, 219-220, 221f
	linear, 219
Face stimuli, N170 wave in, 37–38	noncausal, 222
Falkenstein, M., 47	for overlap problem, 149
Falsification, 295	reducing slow voltage shifts, 167, 178
Fan, S., 36, 59, 94	settings for, 125–126
Faraday cage, 114, 115f, 305, 310	time constants, 179, 180f, 181
Felleman, D. J., 340n	time-domain implementation of, 216–
Ferree, T. C., 123	219
50-Hz noise, 113	windowed ideal, 220, 221f
50 percent area latency measure, 139, 239–	impulse response. See also Impulse
242, 240f	response function
compared to median reaction time, 246	finite, 175, 200
disadvantages of, 242	infinite, 200
Filter(s)	and latency shift, 181
adjacent response (ADJAR), 149	line-frequency, 113, 182, 186, 208

Friston, K. J., 285 Full width at half maximum (FWHM), in gaussian function, 212-213 Functional magnetic resonance imaging. See fMRI

FWHM. See Full width at half maximum

Gain settings on amplifiers, 125, 128 Galambos, R., 2, 4, 10b, 42, 149, 162

Ganis, G., 38, 45 Garner, W. R., 296 Gasser, T., 171, 172 Gaussian filters

340n

Frequencies

188f

180f, 188f, 190

phases of, 191

high-pass, 218f, 219-220, 221f low-pass, 210f, 212-214

frequency response function, 210f, 212 full width at half maximum value, 212

compared to mean amplitude measures, cutoff frequency, 127-128, 208 distortions from, 207-215, 210f frequency response function, 179, 191 noncausal, 214 windowed ideal, 208-209, 210f, 213 need for, 176-178 noncausal high-pass, 222 low-pass, 214 notch, 178, 182, 186, 315 frequency response functions, 191 temporal distortions from, 204-207, 206f phase response function, 179 recursive, 200 running average, 210f, 211-212, 213-214 settings for, 125-126, 315 suppressing high frequencies, 177 time-domain, 175 distortions from, 204-223 transfer function, 178-179 windowed ideal, 208-209, 210f, 213, 220, 221f as frequency-domain procedure, 187-193, 188f problem with, 191-193 and peak amplitude measures, 232 recommendations for, 181, 185, 186-187, 223 - 224as time-domain procedure, 193-200, 194f Woody technique, 141-142 Finite element models, 270-271 Finite impulse response filters, 175 Flat-line signal in EEG, in slow voltage shifts, 125, 167, 168 **fMRI** activation centers in, 276 BOLD signal in, 23 compared to ERP source localization, 290 - 291

compared to event-related potentials, 16

compared to other recording techniques,

correspondence with ERP data, 285

spatial gaussian filters in, 212

24t. 267

low-pass, 127-128, 178, 314 causal, 210f, 214-215 Filtering, 175-224

Gaussian filters (cont.) Heterogeneity of variance and covariance, impulse response function, 210f, 212 temporal distortion from, 213-214 High-pass filters. See Filter(s), high-pass Gaussian impulse response functions, 321 Hijacking ERP components, 94-95 and noise affecting latency measures, 241 Hillyard, S. Gauthier, I., 38 on auditory selective attention, 75-80 Gazzaniga, M. S., 46 on C1 wave, 36, 59 Gehring, W. J., 46, 47 on converging evidence, 297b Generator site changes, effects of, 255on eye movements, 162 257 on 50 percent area latency, 242 Geodesic sensor net, 122 on fractional area latency, 239, 248 George, J. S., 285, 294 on hijacking ERP components, 94 George, N., 38 on impedance of skin, 121 Gevins, A., 32 laboratory at UCSD, 2, 10b, 100 Gibbs, F. A., 3 on language-related components, 45, 46 Girelli, M., 13, 70b on latency jitter, 135 Glaser, E. M., 175 on mismatch negativity, 39 Go/No-Go trials, and lateralized readiness on modality-specific P3 wave potential, 81, 84-85 subcomponents, 35 Gorodnitsky, I. F., 172 on N1 wave, 37 Grand averages, 17-21, 27 on N2 family, 40, 41 with bright and dim stimuli, 253f on N2pc component, 14 and mean amplitude measures, 235 on overlap patterns, 148, 149 and peak amplitude measures, 232, 233 on P3 family, 42 Gratton, G., 48, 170, 171, 172, 173 on replication of results, 251b Gray, C. M., 135 on slow voltage shifts, 167 Greenhouse-Geisser epsilon adjustment, on steady-state ERPs, 151 259-260, 341n on subtle confounds, 70b Ground circuit, 102-103 on target letter shapes, 68 Ground electrode, 102, 103 on transient responses, 150f Gustatory responses, 40 Hillyard principle, 68-69, 74, 97 Holcomb, P. J., 45, 46 Hackley, S. A., 39, 80-86 Holroyd, C. B., 47 Hagoort, P., 46 Homogeneity-of-covariance assumption, Hake, H. W., 296 258 - 259Half-amplitude cutoff, 179, 180f, 314, 321 Hopf, J.-M., 37, 287f, 297b in gaussian filter, 212-213 Hopfinger, J. B., 149, 151 Half-gaussian filters, 221f, 222 Huang, M., 276, 293 Hämäläinen, M. S., 283, 284 Humphries, C., 172 Hansen, J. C., 100-101, 168, 239, 248, Ideal filters, windowed 340n Hansen's axiom, 100, 112, 152, 185-187, high-pass, 220, 221f 208, 213 low-pass, 208-209, 210f, 213 Headbox, 308 Ignored stimuli Headphones, shielding of, 324 processing of, 22 Heart activity, detection of, 164f, 169 responses to, 75-77 Heffley, E. F., 58, 262 Ikui. A., 40 Heinze, H., 276, 297b Ilmoniemi, R. J., 283, 284, 286 Helmholtz, H., 34, 269 Impedance, 117-119, 314, 335-336

and common mode rejection, 120–121,	Jasper, H. H., 3, 118b
314	Jeffreys, D. A., 36, 37
measurements of, 119	Jennings, J. R., 259
problems from, 120–122	Jitter, latency. See Latency, variability of
reduction of, 119–120	John, E. R., 5
and signal quality with high-impedance	Johnson, R., Jr., 43, 44, 58
systems, 122–123	Joyce, C. A., 166, 172
and skin potentials, 121	Jung, T. P., 172
Impedance meter, 309–310	
Impulse response filters	Keppel, G., 258
finite, 175, 200	Klem G. H., 119b
infinite, 200	Knight, R. T., 42
Impulse response function, 196–200, 198f,	Kok, A., 18, 43
321	Koles, Z. J., 292
of causal filters, 214	Kopell, B. S., 22
convolution in time domain, 197–199,	Kornhuber, H. H., 47
198f, 200, 201–203, 202f	Kramer, A. F., 61, 225
gaussian, 321	Kutas, M, 38, 43, 44, 45, 46, 62, 94, 172,
high-pass, 218f, 219-220, 221f	257
and noise affecting latency measures,	
241	Labeling conventions for ERP components
high-pass	10-11, 35
creation of, 217–219, 218f	Laboratory setup, 303–332
gaussian, 218f, 219–220, 221f	accessories, 309-310, 311b-312b
unity, 217, 218f	amplifier types, 314–315
Independent components analysis (ICA),	behavioral response input devices, 306-
58, 60, 242, 263	307
in artifact correction, 172	computers, 303-305
Inductance, 117	data acquisition system, 303-318, 304f
Inference, strong, 295	data analysis system, 318–322
Interactions with electrode site, 254–258,	digitization software, 315–318
256f	electrode-amplifier-computer connec-
Intercom system, 310	tions, 307–308
Interrupt	electrode types, 313
vertical retrace, 328	recording chamber, 309
video blanking, 328	seating, 305–306
Invasiveness of recording techniques, 24–	stimulus presentation system, 322–332
25, 24t	Language comprehension
Inverse Fourier transform, 189, 201, 201f	assessment of, 22
Inverse problem, 33–34, 269	and semantic mismatch
minimum norm solution in, 285	in attentional blink paradigm, 89
Ipsilateral waveforms, N2pc component in,	difference waves in, 54
15–17	Language-related ERP components, 45-
Isreal, J. B., 44	46
Ito, S., 47	and N400 component in word
,, 	identification, 89–93
Jackknife technique to measure onset	Latency
latency differences, 249	50% area, 139
Jaskowski, P., 42	fractional area, 239–242, 240f, 248
, , ,	

Latency (cont.) as model but not measurement of and labeling problems, 35 electrical activity, 289-292 local peak, 238 and principles of scientific inference, measurements of, 57, 237-249 295-297 compared to reaction time effects, 243probabilistic approaches in, 292-294 247, 244f recommendations for, 294-300 onset, 66, 247-249. See also Onset reporting range of solutions in, 292-294, latency or time 293f P3 wave, factors affecting, 44-45 Locus of selection, and attention, 75 peak, 22-23, 52, 237-239 LORETA. See Low-resolution relation to amplitude, 52, 53f, 55-56 electromagnetic tomography shift caused by filters, 181 Loveless, N. E., 49 variability of, 135-139, 136f, 139f Low-pass filters, 127-128, 178, 314. See Latent ERP components also Filter(s), low-pass assessment of, 51-57 Low-resolution electromagnetic avoiding ambiguities and misinterpretatomography (LORETA), 284-285, tions in, 61-74 298 examples of, 53f LRP. See Lateralized readiness potential Lateralized readiness potential (LRP), 48, Luck, S. J. on advantages of ERPs, 22 on converging evidence, 297b isolation with difference waves, 82-83 and partial information transmission, 80on detection of color and motion, 13 87 on difference waves, 64, 65 usefulness of, 86b on dual-task performance, 89-94 Lawson, D., 117 on 50 percent area latency, 242 LCD monitors, 330-332, 331f on latency jitter, 135 Leahy, R. M., 271, 278, 298, 299 on minimum norm solution, 285 Lehmann, D., 284 on modality-specific P3 wave Lennox, W. G., 3 subcomponents, 35 Leuthold, H., 45 on N2 family, 40, 41 Lewis, P. S., 271 on N2pc component, 14 Lights, electrical noise from, 114 on overlap patterns, 149 on P1 wave, 36 Lindsley, D. B., 49 on P2 wave, 37 Line-frequency filters, 113, 180f, 182, 186, on P3 family, 43, 45 Line-frequency noise, 113, 317 on reaction times, 246 Linear filters, high-pass, 219 on steady-state ERPs, 151 Lins, O. G., 117, 162, 163, 171, 172, 173 on subtle confounds, 70b Liu. A. K., 285 on target letter shapes, 68 Local field potential recordings, 28 Local peak amplitude, 231, 341n Machizawa, M. G., 41 Local peak latency, 238 Magliero, A., 44 Localization methods, 34, 60, 267-300 Magnetic fields, 30f, 32-33, 287f distributed source approaches in, 269, event-related. See Event-related magnetic 281 - 289equivalent current dipoles and BESA Magnetic resonance imaging (MRI), 298 approach in, 269, 271-280 in cortically constrained distributed forward problem and solution in, 268source localization, 282

functional. See fMRI

271

Magnetism, relation to electricity, 336difference waves in, 54 337, 336f Models of electrical activity compared to Magnetoencephalogram (MEG), 33 measurements, 289-292 fields compared to EEG fields, 286-288 Moecks, J., 171, 172 Makeig, S., 58, 143, 172, 319 Monitoring, real-time, 316, 317 Mangun, G. R., 37, 149 Moore, C. M., 86b MANOVA, 262 Moran, J., 297b Mastoid reference sites, 106-107, 308 Mosher, J. C., 271 Motion-defined targets, detection of, 13average mastoids reference derivation, 107 - 108linked mastoids reference, 107 Motor ERPs in eyeblinks and eye MATLAB program, 148, 319-320, 330 movements, 173 Matthews, B. H. C., 3 Movement-related components, 48 McCarthy, G., 43, 44, 46, 94, 255, 257 Moving-window techniques in time-locked McClelland, J. L., 80 spectral averaging, 143 McPherson, W. B., 45 MRI. See Magnetic resonance imaging Mean amplitude Multiphasic waveforms, latency variability compared to peak amplitude, 73 affecting, 136f, 140 measurement of, 229, 234-235 Multiple electrode sites, and ANOVA advantages of, 234-235 results, 254 compared to low-pass filtering, 234 Multiple peaks, analysis of, 262-263 problems with, 235 Multiple signal characterization (MUSIC), Measuring ERP amplitudes, 229-237, 229f area amplitude, 229-230 Multi-start approach to source localization, baselines in, 236-237 276, 294 mean amplitude, 229, 234-235 Multi-unit recordings, 28 peak amplitude, 229, 230-234 Muscle activity detection of, 164f, 169 peak-to-peak, 237 Measuring ERP latencies, 57, 237-249 low-pass filtering of noise from, 208 compared to reaction time effects, 243post-auricular reflex in, 324 247, 244f Music as background in recording, 312 fractional area latency, 239-242, 240f onset latency, 247-249 N1 component, 10-11 peak latency, 237-239 auditory, 39, 79 MEG. See Magnetoencephalogram modality-specific, 35 Michel, C. M., 284 visual, 37 Microphones, 310 N2 component, 10-11, 40-41 Miller, J., 48, 80-86, 248, 249 basic N2, 40 Miltner, W., 278 modality-specific, 35 Minimum norm solution in distributed N2a, 41 source localization, 283-286 N2b, auditory and visual, 40, 41 combined constraints in, 285 N2pc, 14, 15-17, 41, 65, 297b depth-weighted, 284, 298 isolation of, 15-17 LORETA technique in, 284-285 and physical stimulus confounds, 70b-Mirror symmetry of dipoles in simulation study of BESA, 278-279, 341n N10 component, 40 N170 component, visual (faces), 37-38 Mismatch negativity (MMN), 39 Mismatch, semantic N200 component, 11b in attentional blink paradigm, 89 N280 component, 46

N400 component, 11b Null hypothesis, acceptance or rejection discovery of, 62 in dual-task performance, 89-93 Number of trials, and signal-to-noise ratio, in experimental manipulations, 61-65 123, 133-134 in semantic violations, 45-46 Nunez, P. L., 34, 107 and word identification, 93 Nyquist theorem, 127, 176 Näätänen, R., 35, 39, 40, 59 Nagamine, T., 48 Oddball experiment, 7 Naming components, 10-11 signal averaging in, 134 Negative-upward plotting, 9 Offline filtering, recommendations for, 181, Negative variation, contingent, 4-5, 48 185, 186-187 Neurons, electrical activity in, 27-32 Offset time, filters affecting, 183, 183f Niese, A., 94 Ohms, 334 Noise, 12, 339n in impedance measurements, 119 affecting peak amplitude measures, 231-Ohm's law, 166, 335 Olfactory responses, 40 from alpha waves, 177, 317 On-line averaging, 317 elimination of, 213 Onset latency or time, 66 in averaged waveforms, 131, 133 differences measured between two and common mode rejection, 120-121 conditions, 249 electrode impedance affecting, 123 filters affecting, 183, 183f environmental sources of, 112-116, 305. of lateralized readiness potential, 85 306, 308, 309 measurement of, 247-249 filtering of, 180f, 182, 208 Operator dependence of equivalent current and 50 percent area latency measure, 241 dipole localization, 275, 277 and importance of clean data, 86-87, 99-Orientation of dipoles, averaging of, 31 101, 185 Oscillations in LCD monitors, 332 amplitude, measurement of, 142-143 line-frequency, 317 artifactual, caused by filters, 183f, 184 filtering of, 113, 180f, 182, 186, 208 voltage, sources of, 113 Osman, A., 80, 86b, 248 and onset time, 247 and peak latency measures, 238, 241 Osterhout, L., 46 reduction with filters, 177 Overlap, 145-149, 146f from skin potentials, 121 adjacent response (ADJAR) filters for, sources of, 100 Noncausal filters in analysis of multiple peaks, 262, 263 high-pass, 222 area-based measures in, 140 low-pass, 214 difference waves for, 91, 94-95 Nonlinear measures and expansion of time between stimuli, peak amplitude, 232, 233 peak latency, 238 high-pass filtering of, 149 Nonsphericity, 259 isolation of components in, 247 Non-uniqueness problem in distributed management of, 148-149 source localization, 281-283 in mean amplitude measures, 235 Normalization of data, 257-258 in peak amplitude measures, 232-233 Norman, D. A., 75 simulation of, 148 Notch filters, 178, 182, 186, 315 subtraction of, 149 frequency response functions, 191 Overshoots caused by filters, 218f, 219temporal distortions from, 204-207, 206f 220

p-values	Peak latency, 22–23, 52
and .05 criterion, 250	local, 238
adjustment in violation of ANOVA	measurement of, 237-239
assumptions, 259–260	noise affecting, 238, 241
P1 component, 10–11	as nonlinear measure, 238–239
visual, 36	precautions with, 239
modality-specific, 35	Peak-to-peak amplitude
P2 component, 10-11	in electrooculogram, 155–156, 157
amplitude measurements, 263	measurements of, 237
visual, 37	in saccade detection, 165
P3 component, 10-11, 42-45, 339n	in slow voltage shifts, 167
amplitude of, 43–44	Pelli, D. G., 324, 330
in attentional blink context, 93–94	Pernier, J., 32, 58, 111
context updating hypothesis of, 42-43	Perrin, F., 32, 58, 111, 321
discovery of, 5	PET scans. See Positron-emission
elicited by bright and dim stimuli, 73, 252	tomography
latency of, 44–45	Phase(s)
modality-specific, 35	of frequencies, 191
P3a, 42	plots of, 189, 340n
P3b, 42	response function of filters, 179
signal averaging in oddball experiment,	shift caused by filters, 181
134	Phillips, C., 285
and stimulus evaluation time, 93–94	Physical stimulus confounds
and uncertainty, 42–43, 48	avoidance of, 74
P100 component, 11b	effects of, 67-74, 70b-71b
P300 component, 11b	Picton, T. W.
P600 component, 46	on auditory selective attention, 76
Partial information transmission, study of,	on brain electrical source analysis, 271
80-87, 84f	on ERP components, 35, 59
Pascual-Marqui, R. D., 284	on impedance, 167
Patterson, T., 248, 249	on N1 component, 39
Peak(s), 10-11	on N2 family, 40
artifactual, added by filters, 179	on overlap, 149
compared to components, 52, 230, 233,	on P3 family, 43
239	on plotting ERP data, 225
multiple, analysis of, 262–263	on skin potentials, 121
relation to latent components, 51–57, 53f	on tin electrodes, 117
shapes of, 53f, 54	Pixels, 325
X-within-Y-of-peak function, 168	Platt, J. R., 295
Peak amplitude, 139, 229	Plonsey, R., 34, 269
compared to mean amplitude, 73	Plotting ERP data
in filtered waveforms, 232	examples of, 226–227, 226f
local, 231, 341n	line types in, 228
measurement of, 229, 230-234	multiple electrode sites in, 225–226,
noise affecting, 231–232	228
as nonlinear measure, 232, 233	negative upward and positive downward
simple, 231, 341n	9, 10b
Peak-based measures compared to area-	recommendations for, 225–229, 321
based, 139–140	voltage and time scales in, 226

Recliner, 169, 306 Polarity and definition of ERP component, 58, 59 Recording, 99-129 reversal in eyeblinks, 159-160, 159f, 161 active and reference electrodes in, 101-Polich, J., 18, 42, 43, 117 Pooled error term, use of, 261 amplification in, 128-129 Pop-out stimuli, 14 continuous, 315 Popper, K., 295 digitization process in, 124-126 Positive-downward plotting, 9 direct coupled (DC), 126, 185 Positron-emission tomography (PET) in saccades, 163, 166 compared to ERP source localization, and electrical noise in environment, 112-289-292 compared to event-related potentials, 16 electrodes and impedance in, 116-124 compared to other recording techniques, epoch-based, 316 24t, 267 filters in Posner, M. L., 47 high-pass, 125-126 Post-auricular reflex, 324 low-pass, 127-128 Postsynaptic potentials, 28 importance of clean data in, 86-87, 99summation of, 29-31 101, 185 interactions with subjects in, 311b-312b Potential(s), 40, 101-104, 333 event-related. See Event-related sampling period in, 127 potentials (ERPs) Recording chamber, 309 readiness, 47-48 Recursive filters, 200 Reference electrodes, 103, 104-112, 105f, skin, 121 vertex positive, 37-38 308 Potter, M. C., 88 artifacts and noise sources in, 170 average across all electrodes, 109-111, Prestimulus interval, and baseline voltage, 236 110f Primary auditory cortex, 38 mastoid process sites, 106-107, 308 Primary visual cortex, 35-36 average deviation, 107-108 Principal components analysis (PCA), 58, linked mastoids reference, 107 59-60, 242, 263 site selections, 104-112, 105f alternatives to, 109-112, 110f Pritchard, W. S., 43 Probabilistic approaches to localization, criteria for, 106 Reflexes, stimulus-related, 324 292-294 Probability, and P3 amplitude, 44 Refresh rate of CRT monitor, 325 Psychological confounds, effects of, 68 Regan, D., 2, 35 PsychToolbox, 330 Reliability of ERP waveforms, 17-21, 19f Replication as best statistic, 250-251, 251b Raster beam, 325, 326f Requin, I., 48 Raymond, J. E., 87, 88 Residual variance, 272 Reaction time. See also 50 percent area Resistance, 334, 335 latency measure of skull, 33, 339n in bright or dim conditions, 71, 74 Resource allocation, and P3 amplitude, 44 compared to ERP latencies, 243-247, 244f Response density waveforms, 246-247 differences, 22, 23 Response devices, types of, 306–307 Readiness potential, 47–48 Response-locked averaging, 138f, 140, 307, lateralized, 48, 65 320 Real-time control in programming, 322 baselines in, 237 Real-time monitoring, 316, 317 Response-related ERP components, 47-49

Retina, integration time of, 327, 341n	Selective attention, auditory, 75–80, 77f,
Riehle, A., 48	340n
Ritter, W., 6, 37, 41, 47	Semantics
Robson, T., 324	affecting ERP components, 45
Rohrbaugh, J. W., 49	mismatch in
Rossion, B., 38	in attentional blink context, 89
Ruchkin, D. S., 175	difference waves in, 54
Rugg, M. D., 35, 285	Sensory disorders, steady-state response
Rules for experimental design, 52–57, 74,	in, 151
92, 96–97	Sensory responses
Running average filters	auditory, 38–49
impulse response function of, 210f, 211–	evoked by nontarget stimuli, 78
212, 213	visual, 35–38
temporal distortion from, 213–214	in eyeblinks and eye movements, 173
	Sereno, M. I., 45, 285
Saccades	Setting up ERP lab, 303–332. See also
detection and rejection of artifacts, 162-	Laboratory setup
166	Shapes of peaks and components, 53f, 54
electrooculogram in, 163, 164f	Shapiro, K. L., 43, 64, 87, 88, 89–94, 149
visual ERP responses in, 163	Sheatz, G. C., 4
Sampling period, 127	Shibasaki, H., 48
Sampling rate, 127	Shielding
and cutoff frequency, 128	of cables, 114, 116, 305, 308, 312b
Sanford, A. J., 49	of headphones, 324
Saturation, amplifier, 167–168	Shifts
Scalp current density (SCD), 111	latency, 181
Scalp distribution	phase, 181
in brain electrical source analysis (BESA),	slow voltage, 166–167, 178, 182
272	Shocks
and definition of ERP component, 58, 59	from improper grounding, 101–102
distortion of, 236–237	for somatosensory stimulation, 324
in experimental effects or in raw ERP	Side lobes with running average filter, 211
waveforms, 55	Signal averaging. See Averaging
and inverse problem, 269	Signal-to-noise ratio, 16
topographic maps of, 321	in averaging, 133–134
voltage at different neural generator sites	of difference waves, 65
affecting, 254–257, 256f, 258	number of trials affecting, 123, 133–134
Scalp ERPs, 29–31, 39f	for target and nontarget waveforms, 69, 71
Schendan, H. E., 38	Silver/silver-chloride electrodes, 117
Scherg, M., 117, 171, 172, 271	Simple peak amplitude, 231, 341n
Schmidt, D. M., 285, 294	Simson, R., 41
Schmolesky, M. T., 275	Simulated head, 114–116, 115f
Schultz, D. W., 80	Simulation study of equivalent current
Schwent, V. L., 76	dipole localizations, 278–280, 341n
Scientific inference, principles of, 295–	Single-unit recordings, 28
4297	60-Hz noise, 113
Seating arrangements for subjects, 169,	filtering of, 188f, 190, 202f, 203–204
305–306	60-Hz notch filters, temporal distortions
Seeded dipoles, 276	from, 204–207, 206f

Stimulus confounds Skin potentials, 121, 164f, 166-167 avoidance of, 74 high-pass filters for, 125, 178, 182 Slow voltage shifts, 166-167, 178, 182 effects of, 67-74, 70b-71b Snyder, A., 267 Stimulus evaluation time, P3 wave in, 93-Software for data analysis, 318-322 Stimulus-locked averages, 138f, 140 data from simulated head, 116 Stimulus presentation system, 322-332 for digitization, 315-318 artifacts in, 324 testing of, 317-318 timing of event codes in, 322-324 for stimulus presentations, 322, 330 Strategies for experimental design, 62-66, Soltani, M., 42 94 - 95.98Somatosensory stimulation, 40 Strong inference, 295 artifacts from, 324 Stroop paradigm, 21-22 Sommer, W., 45 Stuss, D. T., 35 Source analysis procedures in artifact Summation of electrical potentials, 29-31 correction, 172 Sutton, S., 5 Source localization. See Localization Swaab, T. Y., 46 methods Sweating, and skin potentials, 121, 166, Source waveforms, 273, 274f Spatial layout of EEG display, 317 Svndulko, K., 49 Spatial resolution of recording techniques, Syntax affecting ERP components, 46 24t, 25-26 Szücs, A., 246 Speakers, powered, 310 Spectral averaging, time-locked, 142-145, Tallon-Baudry, C., 143, 145 144f Target and nontarget differences, effects of, Sphericity, 258 67 - 71Spike density waveforms, 246 Target probability, and P3 amplitude, 43 SQUID probe, 33 Tearing artifact, 328 Squires, K. C., 42 Teder-Sälejärvi, W. A., 150f Squires, N. K., 42 Temporal jitter, filtering properties of, 147 Static electricity, 102 Temporal resolution of recording Statistical analyses, 250-264, 321 techniques, 24t, 25-26 10/20 system for placing electrodes, 118bfollow-up comparisons, 260-262 interactions between conditions and 119b electrode sites in, 254-258, 256f Testing of digitization system, 317-318 for multiple components, 262-263 Text files, 317, 321 normalization of data in, 257-258 Thayer, J. F., 262 results described in, 255b Thorpe, S., 66 standard approach in (ANOVA), 251-254 Time constants of filters, 179, 180f, 181 type I errors in, 250, 253 Time delays between stimuli, and type II errors in, 253-254 overlapping waveforms, 147, 148 violation of ANOVA assumptions, 250, Time domain, 175, 317 258-260 distortions from filters, 192-193, 204-Steady-state responses to stimuli, 150-223, 206f, 210f 151, 150f in filtering, 193-200, 194f Step function implementation of high-pass filters, in eyeblink artifact rejection, 161, 162 216-219, 218f in saccade detection, 165 impulse response function in, 196-200, in slow voltage shifts, 167 198f

relation to frequency domain, 182, 184, Video splitter, 305 187, 200-204, 201f, 202f Visual cortex, primary, 35-36 Visual evoked potential, 7 weighting function in, 195-196 Time-locked spectral averaging, 142-145, Visual evoked response, 7 Visual inspection in artifact detection, 156, Timing of event codes, 322-324 Tin electrodes, 117 Visual sensory responses, 35-38 Tomberg, C., 109 Visual stimuli presentation Transfer function, 178-179 CRT monitors in, 324-332 Transient responses to stimuli, 149-150, LCD monitors in, 330-332, 331f 150f software packages for, 330 and filtering, 340n timing of, 323, 323f Transient waveforms represented in Vitacco, D., 298 Vogel, E. K., 22, 36, 37, 41, 43, 64, 89-94, Fourier analysis, 192 Transmission of partial information, 149 responses to, 80-87, 84f Voltage, 333 Treisman, A. M., 75 absolute, 103 between active and reference sites, 101-Tucker, D. M., 47, 122, 123 Type I errors, 250, 253 Type II errors, 253-254 ADC range for, 125 averaged at time points, 192f, 193-195 Ulrich, R., 248, 249 baseline, 236 Uncertainty, and P3 amplitude, 44 changes with skin potentials, 121 Uniqueness problem in source deflection from eyeblinks, 153-154 localization, 269 distribution Unity impulse response function, 217, in forward problem, 268 218f in inverse problem, 269 Urbach, T. P., 257 and impedance, 117 and latent components, 52, 56 Van Essen, D. C., 340n oscillating, sources of, 113 van Shier, H. T., 47 prestimulus, 236 Variability at single site, 103 slow voltage shifts, 166-167, 178, 182 between-subject, 17-20 Volume conduction, 32 latency, 135-139, 136f, 139f within-subject, 18 von Cramon, D., 271 Variance, residual, 272 Vasey, M. W., 262 Wada, M., 40 Walter, W. G., 4, 49 Vasjar, J., 271 Wastell, D. G., 141 Vaughan, H. G., 6-7, 41, 47 Verleger, R., 42 Wauschkuhn, B., 42 Vertex positive potential, 37-38, 40 Waveforms Vertex site, 37 distortion by filters, 170, 182-185, 183f Vertical retrace interrupt, 328 overlapping, 145-149, 146f. See also Very early components, auditory, 38-39 Overlap Video blanking interrupt, 328 response density, 246-247 Video cards, frame buffers in source, 273, 274f in CRT monitors, 325, 329 spike density, 246 in LCD monitors, 330 Weighting function for filtering, 195-196 Video monitors, noise from, 113 reversed, 196

Westerfield, M., 172
Willoughby, A. R., 47
Windowed ideal filter
high-pass, 220, 221f
low-pass, 208–209, 210f, 213
Woldorff, M. G., 39, 69, 70b, 145, 148, 149, 214, 236
Wood, C. C., 255, 257, 259, 285, 294
Woodman, G. F., 22, 65
Woody, C. D., 141
filter technique, 141–142
Word identification, N400 component in, 89–93

X-within-Y-of-peak function, 168

Zubin, J., 5