In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as pp
from sklearn.linear_model import LogisticRegression
```

In [36]:

```
df = pd.read_csv(r"C:\Users\user\Desktop\C6_bmi.csv")
df
```

Out[36]:

Gender	Height	Weight	Index
Male	174	96	4
Male	189	87	2
Female	185	110	4
Female	195	104	3
Male	149	61	3
Female	150	153	5
Female	184	121	4
Female	141	136	5
Male	150	95	5
Male	173	131	5
	Male Male Female Female Male Female Female Female Male	Male 174 Male 189 Female 185 Female 195 Male 149 Female 150 Female 141 Male 150	Male 174 96 Male 189 87 Female 185 110 Female 195 104 Male 149 61 Female 150 153 Female 184 121 Female 141 136 Male 150 95

500 rows × 4 columns

In [37]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 4 columns):
    Column Non-Null Count Dtype
 #
            -----
                            ----
0
    Gender 500 non-null
                            object
 1
    Height 500 non-null
                            int64
 2
    Weight 500 non-null
                            int64
 3
    Index
            500 non-null
                            int64
dtypes: int64(3), object(1)
memory usage: 15.8+ KB
```

In [38]:

```
df.columns
```

Out[38]:

```
Index(['Gender', 'Height', 'Weight', 'Index'], dtype='object')
```

```
In [44]:
feature_matrix = df1[[ 'Height', 'Weight', 'Index']]
target_vector = df1[['Weight']]
In [45]:
feature_matrix.shape
Out[45]:
(50, 3)
In [46]:
target_vector.shape
Out[46]:
(50, 1)
In [47]:
from sklearn.preprocessing import StandardScaler
In [48]:
fs = StandardScaler().fit_transform(feature_matrix)
In [49]:
log = LogisticRegression()
log.fit(fs,target_vector)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:63:
DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using r
avel().
  return f(*args, **kwargs)
Out[49]:
LogisticRegression()
In [50]:
observations = [[1,2,3]]
In [51]:
prediction = log.predict(observations)
print(prediction)
[139]
```

localhost:8888/notebooks/day11c6.ipynb

```
In [52]:
```

```
log.classes_
```

Out[52]:

```
array([ 51, 52, 56, 61, 62, 64, 65, 67, 72, 76, 79, 80, 81, 87, 90, 92, 95, 96, 97, 101, 103, 104, 107, 108, 110, 111, 114, 118, 120, 121, 122, 126, 129, 131, 132, 139, 145, 149, 152, 153, 159], dtype=int64)
```

In [53]:

```
log.predict_proba(observations)[0][0]
```

Out[53]:

3.431239878111352e-05

In [54]:

```
log.predict_proba(observations)[0][1]
```

Out[54]:

2.0161123095969065e-05

Logic regression 2

In [55]:

```
import re
from sklearn.datasets import load_digits
import numpy as np
import pandas as pd
import matplotlib.pyplot as pp
import seaborn as sb
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
```

```
In [56]:
```

```
digits = load_digits()
digits
```

```
'feature_names': ['pixel_0_0',
```

'pixel_0_1',
'pixel_0_2',

'pixel_0_3',
'pixel_0_4',

'pixel_0_5',

'pixel_0_6',

'pixel_0_7', 'nixel 1 0'.

In [57]:

```
pp.figure(figsize=(20,4))
for index,(image,label) in enumerate(zip(digits.data[0:5],digits.target[0:5])):
    pp.subplot(1,5,index+1)
    pp.imshow(np.reshape(image,(8,8)),cmap = pp.cm.gray)
    pp.title('Numbers:%i\n'%label,fontsize=15)
```


In [58]:

```
x_train,x_test,y_train,y_test = train_test_split(digits.data,digits.target,test_size=0.3)
```

In [59]:

```
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
```

```
(1257, 64)
(540, 64)
(1257,)
(540,)
```

```
In [60]:
```

```
logre = LogisticRegression(max_iter = 10000)
logre.fit(x_train,y_train)
```

Out[60]:

LogisticRegression(max_iter=10000)

In [61]:

```
print(logre.score(x_test,y_test))
```

0.9648148148148148

In []:

In [1]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as pp
from sklearn.linear_model import LogisticRegression

```
In [11]:
```

```
df = pd.read_csv(r"C:\Users\user\Desktop\c7_used_cars.csv")
df1 = df.head(50)
df1
```

Out[11]:

	Unnamed: 0	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize
0	0	T-Roc	2019	25000	Automatic	13904	Diesel	145	49.6	2.0
1	1	T-Roc	2019	26883	Automatic	4562	Diesel	145	49.6	2.0
2	2	T-Roc	2019	20000	Manual	7414	Diesel	145	50.4	2.0
3	3	T-Roc	2019	33492	Automatic	4825	Petrol	145	32.5	2.0
4	4	T-Roc	2019	22900	Semi-Auto	6500	Petrol	150	39.8	1.5
5	5	T-Roc	2020	31895	Manual	10	Petrol	145	42.2	1.5
6	6	T-Roc	2020	27895	Manual	10	Petrol	145	42.2	1.5
7	7	T-Roc	2020	39495	Semi-Auto	10	Petrol	145	32.5	2.0
8	8	T-Roc	2019	21995	Manual	10	Petrol	145	44.1	1.0
9	9	T-Roc	2019	23285	Manual	10	Petrol	145	42.2	1.5
10	10	T-Roc	2019	23985	Semi-Auto	10	Petrol	145	39.8	1.5
11	11	T-Roc	2019	23585	Manual	10	Petrol	145	42.2	1.5
12	12	T-Roc	2020	25785	Semi-Auto	10	Petrol	145	39.8	1.5
13	13	T-Roc	2019	23995	Semi-Auto	1069	Petrol	145	39.8	1.5
14	14	T-Roc	2018	17495	Manual	21645	Petrol	145	53.3	1.5
15	15	T-Roc	2018	21495	Manual	16972	Petrol	145	53.3	1.5
16	16	T-Roc	2018	18995	Manual	15100	Petrol	145	44.1	1.0
17	17	T-Roc	2018	18995	Manual	1380	Petrol	150	55.4	1.0
18	18	T-Roc	2019	33785	Semi-Auto	2500	Petrol	145	32.5	2.0
19	19	T-Roc	2020	23790	Semi-Auto	5000	Petrol	145	39.8	1.5
20	20	T-Roc	2019	19995	Manual	12300	Petrol	145	42.2	1.5
21	21	T-Roc	2020	21690	Manual	2500	Petrol	145	44.1	1.0
22	22	T-Roc	2019	23290	Manual	5540	Petrol	145	42.2	1.5
23	23	T-Roc	2019	24790	Manual	3500	Petrol	145	42.2	1.5
24	24	T-Roc	2018	19995	Manual	16251	Petrol	145	53.3	1.5
25	25	T-Roc	2019	20290	Manual	5127	Petrol	145	42.2	1.5
26	26	T-Roc	2019	33990	Semi-Auto	3500	Petrol	145	32.5	2.0
27	27	T-Roc	2018	17685	Manual	22584	Petrol	145	44.1	1.0
28	28	T-Roc	2020	24495	Manual	1955	Diesel	150	50.4	2.0
29	29	T-Roc	2018	17995	Manual	10456	Petrol	150	55.4	1.0
30	30	T-Roc	2020	28290	Semi-Auto	2500	Petrol	145	39.8	1.5
31	31	T-Roc	2018	17495	Manual	6908	Petrol	145	55.4	1.0
32	32	T-Roc	2019	22990	Manual	7216	Diesel	145	50.4	1.6
33	33	T-Roc	2019	22995	Manual	4003	Diesel	145	46.3	2.0
34	34	T-Roc	2019	21498	Manual	5	Diesel	150	50.4	1.6
35	35	T-Roc	2018	17995	Manual	14837	Petrol	145	53.3	1.5

	Unnamed: 0	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize
36	36	T-Roc	2018	17995	Manual	14337	Petrol	145	53.3	1.5
37	37	T-Roc	2019	22230	Manual	3392	Diesel	145	50.4	2.0
38	38	T-Roc	2018	18695	Manual	6753	Petrol	145	53.3	1.5
39	39	T-Roc	2019	25990	Semi-Auto	2423	Diesel	145	49.6	2.0
40	40	T-Roc	2018	18695	Manual	6753	Petrol	145	53.3	1.5
41	41	T-Roc	2019	23999	Manual	4224	Petrol	145	42.2	1.5
42	42	T-Roc	2019	24490	Manual	6144	Diesel	145	50.4	2.0
43	43	T-Roc	2019	24490	Manual	5345	Diesel	145	50.4	2.0
44	44	T-Roc	2019	25990	Semi-Auto	4233	Diesel	145	49.6	2.0
45	45	T-Roc	2018	17995	Manual	14837	Petrol	145	53.3	1.5
46	46	T-Roc	2018	17995	Manual	14337	Petrol	145	53.3	1.5
47	47	T-Roc	2019	23999	Semi-Auto	5027	Petrol	145	39.8	1.5
48	48	T-Roc	2019	22230	Manual	3392	Diesel	145	50.4	2.0
I49 [12]: 49	T-Roc	2019	23999	Manual	2520	Petrol	145	42.2	1.5

df1.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
```

Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	50 non-null	int64
1	model	50 non-null	object
2	year	50 non-null	int64
3	price	50 non-null	int64
4	transmission	50 non-null	object
5	mileage	50 non-null	int64
6	fuelType	50 non-null	object
7	tax	50 non-null	int64
8	mpg	50 non-null	float64
9	engineSize	50 non-null	float64
10	Make	50 non-null	object
1.0	(1 (4/2)		1 / 4 \

dtypes: float64(2), int64(5), object(4)

memory usage: 4.4+ KB

In [13]:

```
df1.columns
```

Out[13]:

```
In [14]:
feature_matrix = df1[['Unnamed: 0', 'year', 'price', 'mileage', 'tax', 'mpg', 'engineSize
target_vector = df1[['price']]
In [15]:
feature_matrix.shape
Out[15]:
(50, 7)
In [16]:
target_vector.shape
Out[16]:
(50, 1)
In [17]:
from sklearn.preprocessing import StandardScaler
In [18]:
fs = StandardScaler().fit_transform(feature_matrix)
In [19]:
log = LogisticRegression()
log.fit(fs,target_vector)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:63:
DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using r
avel().
  return f(*args, **kwargs)
Out[19]:
LogisticRegression()
In [20]:
observations = [[1,2,3,4,5,6,7]]
In [21]:
prediction = log.predict(observations)
print(prediction)
[24490]
```

```
In [22]:
```

```
log.classes_
```

Out[22]:

```
array([17495, 17685, 17995, 18695, 18995, 19995, 20000, 20290, 21495, 21498, 21690, 21995, 22230, 22900, 22990, 22995, 23285, 23290, 23585, 23790, 23985, 23995, 23999, 24490, 24495, 24790, 25000, 25785, 25990, 26883, 27895, 28290, 31895, 33492, 33785, 33990, 39495], dtype=int64)
```

In [23]:

```
log.predict_proba(observations)[0][0]
```

Out[23]:

5.087365887249748e-07

In [24]:

```
log.predict_proba(observations)[0][1]
```

Out[24]:

2.6163073278563958e-08

Logic regression 2

In [25]:

```
import re
from sklearn.datasets import load_digits
import numpy as np
import pandas as pd
import matplotlib.pyplot as pp
import seaborn as sb
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
```

```
In [26]:
```

```
digits = load_digits()
digits
```

```
Out[26]:
```

```
{'data': array([[ 0., 0., 5., ..., 0., 0.,
        [0., 0., 0., ..., 10., 0., 0.],
              0., 0., ..., 16., 9.,
        [ 0.,
        . . . ,
              0., 1., ..., 6., 0.,
        [ 0., 0., 2., ..., 12., 0.,
                                       0.],
                                 1.,
        [ 0., 0., 10., ..., 12.,
                                       0.]]),
 'target': array([0, 1, 2, ..., 8, 9, 8]),
 'frame': None,
 'feature_names': ['pixel_0_0',
  'pixel_0_1',
  'pixel_0_2',
  'pixel_0_3',
  'pixel_0_4',
  'pixel_0_5',
  'pixel_0_6',
  'pixel_0_7',
  'nixel 1 0'.
```

In [27]:

```
pp.figure(figsize=(20,4))
for index,(image,label) in enumerate(zip(digits.data[0:5],digits.target[0:5])):
    pp.subplot(1,5,index+1)
    pp.imshow(np.reshape(image,(8,8)),cmap = pp.cm.gray)
    pp.title('Numbers:%i\n'%label,fontsize=15)
```


In [28]:

```
x_train,x_test,y_train,y_test = train_test_split(digits.data,digits.target,test_size=0.3)
```

In [29]:

```
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
```

```
(1257, 64)
(540, 64)
(1257,)
(540,)
```

```
In [30]:
logre = LogisticRegression(max_iter = 10000)
logre.fit(x_train,y_train)

Out[30]:
LogisticRegression(max_iter=10000)

In [31]:
print(logre.score(x_test,y_test))
0.9648148148148148
In []:
```

In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as pp
import seaborn as sb
```

In [3]:

```
df = pd.read_csv(r"C:\Users\user\Desktop\C8_loan-train.csv")
df
xf = pd.read_csv(r"C:\Users\user\Desktop\C8_loan-test.csv")
xf
```

Out[3]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	С		
0	LP001015	Male	Yes	0	Graduate	No	5720			
1	LP001022	Male	Yes	1	Graduate	No	3076			
2	LP001031	Male	Yes	2	Graduate	No	5000			
3	LP001035	Male	Yes	2	Graduate	No	2340			
4	LP001051	Male	No	0	Not Graduate	No	3276			
362	LP002971	Male	Yes	3+	Not Graduate	Yes	4009			
363	LP002975	Male	Yes	0	Graduate	No	4158			
364	LP002980	Male	No	0	Graduate	No	3250			
365	LP002986	Male	Yes	0	Graduate	No	5000			
366	LP002989	Male	No	0	Graduate	Yes	9200			
367 r	367 rows × 12 columns									

In [4]:

df.fillna("39.0")

Out[4]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	С
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
609	LP002978	Female	No	0	Graduate	No	2900	
610	LP002979	Male	Yes	3+	Graduate	No	4106	
611	LP002983	Male	Yes	1	Graduate	No	8072	
612	LP002984	Male	Yes	2	Graduate	No	7583	
613	LP002990	Female	No	0	Graduate	Yes	4583	
614 rows × 13 columns								
4								•

In [5]:

```
df0 = df.head(20)
df1 = df0.fillna("30.0")
df1
xf0 = xf.head(20)
xf1 = xf0.fillna("25.5")
xf1
```

Out[5]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Co
0	LP001015	Male	Yes	0	Graduate	No	5720	
1	LP001022	Male	Yes	1	Graduate	No	3076	
2	LP001031	Male	Yes	2	Graduate	No	5000	
3	LP001035	Male	Yes	2	Graduate	No	2340	
4	LP001051	Male	No	0	Not Graduate	No	3276	
5	LP001054	Male	Yes	0	Not Graduate	Yes	2165	
6	LP001055	Female	No	1	Not Graduate	No	2226	
7	LP001056	Male	Yes	2	Not Graduate	No	3881	
8	LP001059	Male	Yes	2	Graduate	25.5	13633	
9	LP001067	Male	No	0	Not Graduate	No	2400	
10	LP001078	Male	No	0	Not Graduate	No	3091	
11	LP001082	Male	Yes	1	Graduate	25.5	2185	
12	LP001083	Male	No	3+	Graduate	No	4166	
13	LP001094	Male	Yes	2	Graduate	25.5	12173	
14	LP001096	Female	No	0	Graduate	No	4666	
15	LP001099	Male	No	1	Graduate	No	5667	
16	LP001105	Male	Yes	2	Graduate	No	4583	
17	LP001107	Male	Yes	3+	Graduate	No	3786	
18	LP001108	Male	Yes	0	Graduate	No	9226	
19	LP001115	Male	No	0	Graduate	No	1300	
4								•

```
In [6]:
```

```
df1.info()
xf1.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20 entries, 0 to 19
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	20 non-null	object
1	Gender	20 non-null	object
2	Married	20 non-null	object
3	Dependents	20 non-null	object
4	Education	20 non-null	object
5	Self_Employed	20 non-null	object
6	ApplicantIncome	20 non-null	int64
7	CoapplicantIncome	20 non-null	float64
8	LoanAmount	20 non-null	object
9	Loan_Amount_Term	20 non-null	object
10	Credit_History	20 non-null	object
11	Property_Area	20 non-null	object
12	Loan_Status	20 non-null	object

dtypes: float64(1), int64(1), object(11)

memory usage: 2.2+ KB

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 20 entries, 0 to 19 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	20 non-null	object
1	Gender	20 non-null	object
2	Married	20 non-null	object
3	Dependents	20 non-null	object
4	Education	20 non-null	object
5	Self_Employed	20 non-null	object
6	ApplicantIncome	20 non-null	int64
7	CoapplicantIncome	20 non-null	int64
8	LoanAmount	20 non-null	float64
9	Loan_Amount_Term	20 non-null	float64
10	Credit_History	20 non-null	object
11	Property_Area	20 non-null	object

dtypes: float64(2), int64(2), object(8)

memory usage: 2.0+ KB

In [7]:

```
df1.describe()
xf1.describe()
```

Out[7]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term
count	20.000000	20.000000	20.000000	20.000000
mean	4728.000000	1390.950000	141.100000	336.000000
std	3312.898397	2004.777438	66.004705	59.683375
min	1300.000000	0.000000	40.000000	180.000000
25%	2385.000000	0.000000	100.000000	360.000000
50%	3833.500000	166.500000	126.000000	360.000000
75%	5166.750000	2436.500000	163.000000	360.000000
max	13633.000000	7916.000000	300.000000	360.000000

In [8]:

```
df1.columns
xf1.columns
```

Out[8]:

In [9]:

```
sb.pairplot(df1)
sb.pairplot(xf1)
```

Out[9]:

<seaborn.axisgrid.PairGrid at 0x1d56b02f9a0>

In [12]:

```
sb.histplot(df0["LoanAmount"], color = 'yellow')
sb.histplot(xf0["LoanAmount"],color = 'red')
```

Out[12]:

<AxesSubplot:xlabel='LoanAmount', ylabel='Count'>

In [13]:

Out[13]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term
0	5720	0	110.0	360.0
1	3076	1500	126.0	360.0
2	5000	1800	208.0	360.0
3	2340	2546	100.0	360.0
4	3276	0	78.0	360.0
5	2165	3422	152.0	360.0
6	2226	0	59.0	360.0
7	3881	0	147.0	360.0
8	13633	0	280.0	240.0
9	2400	2400	123.0	360.0
10	3091	0	90.0	360.0
11	2185	1516	162.0	360.0
12	4166	0	40.0	180.0
13	12173	0	166.0	360.0
14	4666	0	124.0	360.0
15	5667	0	131.0	360.0
16	4583	2916	200.0	360.0
17	3786	333	126.0	360.0
18	9226	7916	300.0	360.0
19	1300	3470	100.0	180.0

In [14]:

```
sb.heatmap(df2.corr())
sb.heatmap(xf2.corr())
```

Out[14]:

<AxesSubplot:>

In [16]:

In [17]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.3)
```

REGRESSION

LINEAR REGRESSION

In [18]:

```
from sklearn.linear_model import LinearRegression
```

```
In [19]:
```

```
lr = LinearRegression()
lr.fit(x_train,y_train)
```

Out[19]:

LinearRegression()

In [20]:

```
print(lr.intercept_)
```

[518.19673612 3089.18320968 82.12168522 188.32436315]

In [21]:

```
print(lr.score(x_test,y_test))
```

-0.30041062799103213

In [22]:

```
prediction = lr.predict(x_test)
pp.scatter(y_test,prediction)
```

Out[22]:

<matplotlib.collections.PathCollection at 0x1d56dde6f40>

lasso and ridge regression

In [23]:

```
lr.score(x_test,y_test)
```

Out[23]:

-0.30041062799103213

```
In [24]:
from sklearn.linear_model import Ridge,Lasso
In [25]:
r = Ridge(alpha=10)
r.fit(x_train,y_train)
r.score(x_test,y_test)
r.score(x_train,y_train)
Out[25]:
0.3498203226447659
In [26]:
1 = Lasso(alpha=10)
1.fit(x_train,y_train)
1.score(x_test,y_test)
1.score(x_train,y_train)
Out[26]:
0.3498060155009918
elasticnet
In [27]:
from sklearn.linear_model import ElasticNet
e = ElasticNet()
e.fit(x_train,y_train)
Out[27]:
ElasticNet()
In [28]:
print(e.coef )
[[-1.36057183e-01 -9.19455661e-01 3.63535214e+01 5.74318976e+00]
 [ 7.77999483e-02 -3.09457272e-01 1.33619367e+01 -9.17478469e+00]
 [-2.23600361e-03 -2.63435366e-02 1.01344545e+00 -2.29546041e-02]
 [ 1.33577283e-02 -8.92564080e-03 -2.00762556e-01 3.76470671e-01]]
In [29]:
print(e.intercept_)
[ 519.03586808 3089.22557998
                               82.13670048 188.332421
```

-0.29975698893124114

Mean Absolute Error

```
In [32]:
from sklearn import metrics
```

```
In [33]:
```

```
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, predictions))
```

Mean Absolute Error: 1116.607854239524

Mean Squared Error

```
In [34]:
```

```
print("Mean Squared Error:", metrics.mean_squared_error(y_test,predictions))
```

Mean Squared Error: 5309401.758014495

Root Mean Squared Error

```
In [35]:
```

```
print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

Root Mean Squared Error 2304.2139132499165

```
In [36]:
```

```
from sklearn.linear_model import LogisticRegression
```

```
In [46]:
feature_matrix = df2[['ApplicantIncome', 'CoapplicantIncome']]
target_vector = df2[['CoapplicantIncome']]
In [47]:
feature_matrix.shape
Out[47]:
(20, 2)
In [48]:
target_vector.shape
Out[48]:
(20, 1)
In [49]:
from sklearn.preprocessing import StandardScaler
In [50]:
fs = StandardScaler().fit_transform(feature_matrix)
In [51]:
log = LogisticRegression()
log.fit(fs,target_vector)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:63:
DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using r
avel().
  return f(*args, **kwargs)
Out[51]:
LogisticRegression()
In [53]:
observations = df2[['ApplicantIncome', 'CoapplicantIncome']]
In [54]:
prediction = log.predict(observations)
print(prediction)
[10968. 10968. 10968. 10968. 10968. 10968. 10968. 10968. 10968.
 10968. 10968. 10968. 10968. 10968. 10968. 10968. 10968. 10968. 10968.
```

```
In [55]:
log.classes_
Out[55]:
                700., 1086.,
                                        1516., 1526., 1840., 2358.,
array([
          0.,
                               1508.,
        2504., 2840.,
                       3500.,
                               4196.,
                                        8106., 10968.])
In [56]:
log.predict_proba(observations)[0][0]
Out[56]:
8.317905704449431e-19
In [57]:
log.predict_proba(observations)[0][1]
Out[57]:
0.0
```

logic regression 2

```
In [59]:
```

```
import re
from sklearn.datasets import load_digits
import numpy as np
import pandas as pd
import matplotlib.pyplot as pp
import seaborn as sb
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
```

```
In [60]:
```

```
digits = load_digits()
digits
```

```
Out[60]:
{'data': array([[ 0., 0., 5., ..., 0., 0.,
        [0., 0., 0., ..., 10., 0., 0.],
              0., 0., ..., 16., 9.,
        [ 0.,
        . . . ,
              0., 1., ..., 6., 0.,
        [ 0., 0., 2., ..., 12., 0.,
                                       0.],
                                 1.,
        [ 0., 0., 10., ..., 12.,
                                       0.]]),
 'target': array([0, 1, 2, ..., 8, 9, 8]),
 'frame': None,
 'feature_names': ['pixel_0_0',
  'pixel_0_1',
  'pixel_0_2',
  'pixel_0_3',
  'pixel_0_4',
  'pixel_0_5',
  'pixel_0_6',
  'pixel_0_7',
  'nixel 1 0'.
```

In [61]:

```
pp.figure(figsize=(20,4))
for index,(image,label) in enumerate(zip(digits.data[0:5],digits.target[0:5])):
    pp.subplot(1,5,index+1)
    pp.imshow(np.reshape(image,(8,8)),cmap = pp.cm.gray)
    pp.title('Numbers:%i\n'%label,fontsize=15)
```


In [62]:

```
x_train,x_test,y_train,y_test = train_test_split(digits.data,digits.target,test_size=0.3)
```

In [63]:

```
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
```

```
(1257, 64)
(540, 64)
(1257,)
(540,)
```

In [11]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as pp
from sklearn.linear_model import LogisticRegression
import seaborn as sb

```
In [6]:
```

```
df1 = pd.read_csv(r"C:\Users\user\Desktop\C9_Data.csv")
df = df1.head(50)
df
```

Out[6]:

	row_id	user_id	timestamp	gate_id
0	0	18	2022-07-29 09:08:54	7
1	1	18	2022-07-29 09:09:54	9
2	2	18	2022-07-29 09:09:54	9
3	3	18	2022-07-29 09:10:06	5
4	4	18	2022-07-29 09:10:08	5
5	5	18	2022-07-29 09:10:34	10
6	6	18	2022-07-29 09:32:47	11
7	7	18	2022-07-29 09:33:12	4
8	8	18	2022-07-29 09:33:13	4
9	9	1	2022-07-29 09:33:16	7
10	10	18	2022-07-29 09:33:23	9
11	11	18	2022-07-29 09:33:23	9
12	12	18	2022-07-29 09:33:41	5
13	13	18	2022-07-29 09:33:42	5
14	14	18	2022-07-29 09:34:04	10
15	15	1	2022-07-29 09:34:18	9
16	16	1	2022-07-29 09:34:18	9
17	17	1	2022-07-29 09:34:32	5
18	18	1	2022-07-29 09:34:33	5
19	19	1	2022-07-29 09:35:00	10
20	20	3	2022-07-29 09:40:40	7
21	21	3	2022-07-29 09:42:49	9
22	22	3	2022-07-29 09:42:49	9
23	23	3	2022-07-29 09:43:01	5
24	24	3	2022-07-29 09:43:03	5
25	25	3	2022-07-29 09:43:29	10
26	26	6	2022-07-29 09:53:22	7
27	27	29	2022-07-29 09:53:44	7
28	28	29	2022-07-29 09:53:46	7
29	29	6	2022-07-29 09:54:25	9
30	30	6	2022-07-29 09:54:25	9
31	31	6	2022-07-29 09:54:35	5
32	32	6	2022-07-29 09:54:37	5
33	33	6	2022-07-29 09:54:57	10
34	34	29	2022-07-29 09:56:04	9
35	35	29	2022-07-29 09:56:04	9
36	36	29	2022-07-29 09:56:12	5

	row_id	user_id	timestamp	gate_id
37	37	29	2022-07-29 09:56:14	5
38	38	18	2022-07-29 09:56:31	12
39	39	18	2022-07-29 09:56:33	12
40	40	29	2022-07-29 09:56:41	10
41	41	55	2022-07-29 10:09:23	7
42	42	55	2022-07-29 10:10:28	3
43	43	55	2022-07-29 10:10:30	3
44	44	55	2022-07-29 10:10:50	10
45	45	24	2022-07-29 10:12:52	15
46	46	24	2022-07-29 10:15:52	3
47	47	24	2022-07-29 10:15:55	3
48	48	24	2022-07-29 10:16:19	10
I 49	[7]:49	24	2022-07-29 10:17:48	11

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	row_id	50 non-null	int64
1	user_id	50 non-null	int64
2	timestamp	50 non-null	object
3	<pre>gate_id</pre>	50 non-null	int64

dtypes: int64(3), object(1)

memory usage: 1.7+ KB

In [8]:

df.describe()

Out[8]:

	row_id	user_id	gate_id
count	50.00000	50.000000	50.000000
mean	24.50000	17.820000	7.560000
std	14.57738	14.603173	2.785971
min	0.00000	1.000000	3.000000
25%	12.25000	6.000000	5.000000
50%	24.50000	18.000000	8.000000
75%	36.75000	24.000000	9.750000
max	49.00000	55.000000	15.000000

In [9]:

df.columns

Out[9]:

Index(['row_id', 'user_id', 'timestamp', 'gate_id'], dtype='object')

In [12]:

sb.pairplot(df)

Out[12]:

<seaborn.axisgrid.PairGrid at 0x20da1389cd0>

In [13]:

sb.distplot(df["row_id"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[13]:

<AxesSubplot:xlabel='row_id', ylabel='Density'>

In [14]:

sb.histplot(df["row_id"])

Out[14]:

<AxesSubplot:xlabel='row_id', ylabel='Count'>


```
In [15]:
```

```
df1=df[['row_id', 'user_id', 'gate_id']]
df1
```

Out[15]:

	row_id	user_id	gate_id
0	0	18	7
1	1	18	9
2	2	18	9
3	3	18	5
4	4	18	5
5	5	18	10
6	6	18	11
7	7	18	4
8	8	18	4
9	9	1	7
10	10	18	9
11	11	18	9
12	12	18	5
13	13	18	5
14	14	18	10
15	15	1	9
16	16	1	9
17	17	1	5
18	18	1	5
19	19	1	10
20	20	3	7
21	21	3	9
22	22	3	9
23	23	3	5
24	24	3	5
25	25	3	10
26	26	6	7
27	27	29	7
28	28	29	7
29	29	6	9
30	30	6	9
31	31	6	5
32	32	6	5
33	33	6	10
34	34	29	9
35	35	29	9
36	36	29	5

```
row_id user_id gate_id
 37
         37
                 29
                           5
 38
         38
                 18
                          12
 39
         39
                 18
                          12
                 29
 40
         40
                          10
                 55
                           7
 41
         41
 42
         42
                 55
                           3
 43
         43
                 55
                           3
 44
         44
                 55
                          10
         45
                 24
 45
                          15
 46
         46
                 24
                           3
 47
         47
                 24
                           3
 48
         48
                 24
                          10
I49 [18] 49
                 24
                          11
x = df1[['row_id', 'user_id', 'gate_id']]
y = df1['row_id']
In [19]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [20]:

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train,y_train)
```

Out[20]:

LinearRegression()

In [21]:

```
print(lr.intercept_)
```

3.552713678800501e-15

In [22]:

```
print(lr.score(x_test,y_test))
```

1.0

```
In [23]:
```

```
prediction = lr.predict(x_test)
pp.scatter(y_test,prediction)
```

Out[23]:

<matplotlib.collections.PathCollection at 0x20da259ddf0>

In [24]:

```
lr.score(x_test,y_test)
```

Out[24]:

1.0

In [25]:

```
lr.score(x_train,y_train)
```

Out[25]:

1.0

In [26]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [27]:

```
r = Ridge(alpha=10)
r.fit(x_train,y_train)
r.score(x_test,y_test)
r.score(x_train,y_train)
```

Out[27]:

0.9999975268576631

```
In [28]:
l = Lasso(alpha=10)
1.fit(x_train,y_train)
1.score(x_test,y_test)
1.score(x_train,y_train)
Out[28]:
0.9975686744103146
In [29]:
from sklearn.linear_model import ElasticNet
e = ElasticNet()
e.fit(x_train,y_train)
Out[29]:
ElasticNet()
In [30]:
print(e.intercept_)
print(e.coef_)
0.12114106288533932
[0.99508128 0.
                       0.
                                  ]
In [31]:
predictions = e.predict(x_test)
predictions
Out[31]:
array([21.01784793, 47.88504247, 15.04736025, 12.06211642, 3.1063849,
       33.95390456, 43.90471735, 1.11622234, 6.09162874, 30.96866072,
       28.97849816, 42.90963607, 13.05719769, 26.98833561, 35.94406712])
In [32]:
print(e.score(x_test,y_test))
0.9999757860638582
In [33]:
from sklearn.linear_model import LogisticRegression
In [36]:
feature_matrix = df[['row_id', 'user_id', 'gate_id']]
target_vector = df[['user_id']]
```

```
In [37]:
feature_matrix.shape
Out[37]:
(50, 3)
In [38]:
target_vector.shape
Out[38]:
(50, 1)
In [39]:
from sklearn.preprocessing import StandardScaler
In [40]:
fs = StandardScaler().fit_transform(feature_matrix)
In [41]:
log = LogisticRegression()
log.fit(fs,target_vector)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:63:
DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using r
avel().
  return f(*args, **kwargs)
Out[41]:
LogisticRegression()
In [51]:
observations = [[1,2,3]]
In [52]:
prediction = log.predict(observations)
print(prediction)
[18]
In [53]:
log.classes_
Out[53]:
array([ 1, 3, 6, 18, 24, 29, 55], dtype=int64)
```

```
In [54]:
```

```
log.predict_proba(observations)[0][0]
```

Out[54]:

0.00015476222083038137

logic regression2

```
In [20]:
```

```
import re
from sklearn.datasets import load_digits
import numpy as np
import pandas as pd
import matplotlib.pyplot as pp
import seaborn as sb
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
```

```
In [21]:
```

```
digits = load_digits()
digits
```

```
Out[21]:
{'data': array([[ 0., 0., 5., ..., 0., 0., 0.],
       [0., 0., 0., ..., 10., 0., 0.],
       [ 0., 0., 0., ..., 16., 9.,
        [0., 0., 1., \ldots, 6., 0., 0.],
        [0., 0., 2., ..., 12., 0., 0.],
       [ 0., 0., 10., ..., 12., 1.,
 'target': array([0, 1, 2, ..., 8, 9, 8]),
 'frame': None,
 'feature names': ['pixel 0 0',
  'pixel 0 1',
  'pixel_0_2',
  'pixel 0 3',
  'pixel_0_4',
  'pixel_0_5',
  'pixel_0_6',
  'pixel_0_7',
  'nixel 1 0'.
```

In [22]:

```
pp.figure(figsize=(20,4))
for index,(image,label) in enumerate(zip(digits.data[0:5],digits.target[0:5])):
    pp.subplot(1,5,index+1)
    pp.imshow(np.reshape(image,(8,8)),cmap = pp.cm.gray)
    pp.title('Numbers:%i\n'%label,fontsize=15)
```


In [23]:

x_train,x_test,y_train,y_test = train_test_split(digits.data,digits.target,test_size=0.3)

In [24]:

```
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
```

(1257, 64) (540, 64) (1257,) (540,)

In [25]:

```
logre = LogisticRegression(max_iter = 10000)
logre.fit(x_train,y_train)
```

Out[25]:

LogisticRegression(max_iter=10000)

In [26]:

```
print(logre.score(x_test,y_test))
```

0.9629629629629

In []: