Are most published research findings false?!

Vincent Detours vdetours@ulb.ac.be

• IRIBHM, UNIVERSITE LIBRE DE BRUXELLES

A lot of biomedical research rests on purely statistical evidence

- Gene-disease association studies
- Epidemiology
- Search for molecular markers of disease status, progression, etc.
- Clinical trials for treatment effectivness
- Etc.

Researchers face a number of potential pitfalls

- Multiple testing issues
- Poorly defined outcome, a posteriori interpretation
- Data drenging
- Confirmation bias
- Difficulty to publish negative results. Pressure to publish strong claims
- Conflict of interest
- Etc.

The research community as a whole faces a number of potential pitfalls

- Multiple testing issues for 'hot topics'
- Herd behaviors
- Co-optation
- Conflict of interest
- Prominence of initial claims. Invisibility of negative results
- Etc.

The research community as a whole may be modeled mathematically

Essay

Why Most Published Research Findings Are False

John P. A. Ioannidis

Ioannidis J.P., PLoS Medicine, 2005

Bayesian approach to scientific research

Basic question:

 What is the probability that a scientific claim is actually true given that a published study reports it is true?

Or, stated in mathematical terms:

 What is the positive predictive value (PPV) of formal statistical significance?

Bayasian approach to scientific research

Example

- 10 polymorphisms in 100.000 are likely to be associated with schizophrenia
- > pre-study odds are 10⁻⁴

Knowing that a statistical association with mutation in Gene Z was reported in *Nature*, what is the probability that gene Z mutation actually *does* predispose to schizophrenia?

Parameters of the model

- R = (true association)/(no association), it is research field-specific
- α = type I error rate (typically 0.05)
- $1-\beta$ = power of the study
- c = number of tests per study
- u = bias, i.e. proportion of studies reporting a significant result when there is none
- n = number of independent studies

From http://www.indiana.edu/~statmath/stat/all/power/statistical_power.jpg

			Ground truth	
		Association	No Association	Total
L D	Significant			
Research	Not Significant			
Re	Total			

R defined as:
$$R = \frac{N_T}{N_F}$$
 P(true association) = $\frac{N_T}{N_T + N_F} = \frac{N_T/N_F}{N_T/N_F} = \frac{R}{R+1}$

 $p(a AND B) = p(A) \times P(b)$, if A and B are independent

P(A OR B) = p(a) + p(B), if A and B are independent

			Ground truth	
		Association	No Association	Total
rch	Significant	???		
Resear	Not Significant			
Re	Total			

R defined as:
$$R = \frac{N_T}{N_F}$$
 P(true association) = $\frac{N_T}{N_T + N_F} = \frac{N_T/N_F}{N_T/N_F} = \frac{R}{R+1}$

p(there is an association AND scientist detects it as significant) x c

$$=\frac{R}{R+1}\cdot(1-\beta)\cdot c=c\cdot\frac{R(1-\beta)}{R+1}$$

			Ground truth	
		Association	No Association	Total
earch	Significant	$c \cdot \frac{R(1-\beta)}{R+1}$???	
Rese	Not Significant			
~	Total			

R defined as:
$$R = \frac{N_T}{N_F}$$
 P(true association) = $\frac{N_T}{N_T + N_F} = \frac{N_T/N_F}{N_T/N_F} = \frac{R}{R+1}$

p(there is no association AND scientist detects it as significant) x c

$$= c \cdot \left(1 - \frac{R}{R+1}\right) \cdot \alpha = \frac{c \cdot \alpha}{R+1}$$

			Ground truth	
		Association	No Association	Total
arch	Significant	$c \cdot \frac{R(1-\beta)}{R+1}$	$\frac{c \cdot \alpha}{R+1}$	$c \cdot \frac{R + \alpha - \beta R}{R + 1}$
Research	Not Significant	???		
~	Total			

R defined as:
$$R = \frac{N_T}{N_F}$$
 P(true association) = $\frac{N_T}{N_T + N_F} = \frac{N_T/N_F}{N_T/N_F} = \frac{R}{R+1}$

p(there is association AND scientist fails to detect it as significant) x c

$$= c \cdot \frac{R}{R+1} \cdot \beta$$

			Ground truth	
		Association	No Association	Total
rch	Significant	$c \cdot \frac{R(1-\beta)}{R+1}$	$\frac{c \cdot \alpha}{R + 1}$	$c \cdot \frac{R + \alpha - \beta R}{R + 1}$
Resear	Not Significant	$= c \cdot \frac{R}{R+1} \cdot \beta$???	
	Total			

R defined as:
$$R = \frac{N_T}{N_F}$$
 P(true association) = $\frac{N_T}{N_T + N_F} = \frac{N_T/N_F}{N_T/N_F} = \frac{R}{R+1}$

p(there is no association AND scientist does not detect it as significant) x c

$$= c \cdot \left(1 - \frac{R}{R+1}\right) \cdot (1-\alpha) = c \cdot \frac{1-\alpha}{R+1}$$

			Ground truth	
		Association	No Association	Total
ے	Significant	$c \cdot \frac{R(1-\beta)}{R+1}$	$\frac{c \cdot \alpha}{R+1}$	$c \cdot \frac{R + \alpha - \beta R}{R + 1}$
Research	Not Significant	$= c \cdot \frac{R}{R+1} \cdot \beta$	$c \cdot \frac{1-\alpha}{R+1}$	$c \cdot \frac{1-\alpha+\beta R}{R+1}$
&	Total	$\frac{cR}{R+1}$	$\frac{c}{R+1}$	С

$$PPV = \frac{TP}{TP + FP} = \frac{\frac{(1-\beta)Rc}{R+1}}{\frac{(1-\beta)Rc}{R+1} + \frac{c\alpha}{R+1}} = \frac{(1-\beta)R}{(1-\beta)R + \alpha}$$

Research	True Relationship		
Finding	Yes	No	Total
Yes	$c(1 - \beta)R/(R + 1)$	cα/(R + 1)	$c(R + \alpha - \beta R)/(R + 1)$
No	$c\beta R/(R+1)$	$c(1-\alpha)/(R+1)$	$c(1-\alpha+\beta R)/(R+1)$
Total	cR/(R+1)	c/(R + 1)	C

Schizophrenia example

$$PPV = \frac{(1-\beta)R}{R-\beta R + \alpha}$$
 • c = 100.000
• α = 0.05
• $1-\beta$ = 60% at effect size 1.3

- $R = 10^{-4}$

Post-study probability = 12 * 10⁻⁴!

Model 2: effect of bias

Table 1. Research Findings and True Relationships Research True Relationship Finding Total Yes No $c(1-\beta)R/(R+1)$ $c(R + \alpha - \beta R)/(R + 1)$ Yes $c\alpha l(R+1)$ $c(1-\alpha+\beta R)/(R+1)$ No $c\beta R/(R+1)$ $c(1-\alpha)/(R+1)$ cR/(R+1)c/(R+1)Total

Table 2. Research Findings and True Relationships in the Presence of Bias

Research	True Relationship				
Finding	Yes	No	Total		
Yes	$(c[1-\beta]R + uc\beta R)/(R+1)$	$c\alpha + uc(1 - \alpha)/(R + 1)$	$c(R + \alpha - \beta R + u - u\alpha + u\beta R)/(R + 1)$		
No	$(1-u)c\beta R/(R+1)$	$(1-u)c(1-\alpha)/(R+1)$	$c(1-u)(1-\alpha+\beta R)/(R+1)$		
Total	cR/(R+1)	c/(R + 1)	c		

Model 2: effect of bias

$$PPV = \frac{(1-\beta)R + u\beta R}{R - \beta R + \alpha + u - u\alpha + u\beta R}$$

Bias strongly reduces PPV

Biases *do* exist in actual published studies

- Meta-analysis of studies of p53 status association of head and neck cancer outcome
- Results are stratified by publication status

(from Kyzas et al. JNCI, 2005)

Model 3: effect of multiple studies

Table 1. Research Findings and True Relationships Research True Relationship Finding Total Yes No $c\alpha/(R+1)$ $c(R + \alpha - \beta R)/(R + 1)$ Yes $c(1-\beta)R/(R+1)$ $c\beta R/(R+1)$ $c(1-\alpha+\beta R)/(R+1)$ No $c(1-\alpha)/(R+1)$ cR/(R+1)c/(R+1)Total

Table 3. Research Findings and True Relationships in the Presence of Multiple Studie	Table 3. F	Research Finding	s and True Relation	ships in the Presen	ce of Multiple Studies
--	------------	------------------	---------------------	---------------------	------------------------

Research	True Relationship		
Finding	Yes	No	Total
Yes	$cR(1 - \beta^c)/(R + 1)$	$c(1 - [1 - \alpha]^{\circ})/(R + 1)$	$c(R + 1 - [1 - \alpha]^{\circ} - R\beta^{\circ})/(R + 1)$
No	$cR\beta^{\circ}/(R+1)$	$c(1 - \alpha)^{n}/(R + 1)$	$c([1-\alpha]^n + R\beta^n)/(R+1)$
Total	cR/(R+1)	c/(R+1)	c

Model 3: effect of multiple studies

$$PPV = \frac{(1-\beta^n)R}{R+1-(1-\alpha)^n-\beta R^n}$$

Studies in 'hot' fields have reduced PPV

Table 4. PPV of Research Findings for Various Combinations of Power $(1 - \beta)$, Ratio of True to Not-True Relationships (R), and Bias (u)

1 – β	R	u	Practical Example	PPV
0.80	1:1	0.10	Adequately powered RCT with little bias and 1:1 pre-study odds	0.85
0.95	2:1	0.30	Confirmatory meta-analysis of good-quality RCTs	0.85
0.80	1:3	0.40	Meta-analysis of small inconclusive studies	0.41
0.20	1:5	0.20	Underpowered, but well-performed phase I/II RCT	0.23
0.20	1:5	0.80	Underpowered, poorly performed phase I/II RCT	0.17
0.80	1:10	0.30	Adequately powered exploratory epidemiological study	0.20
0.20	1:10	0.30	Underpowered exploratory epidemiological study	0.12
0.20	1:1,000	0.80	Discovery-oriented exploratory research with massive testing	0.0010
0.20	1:1,000	0.20	As in previous example, but with more limited bias (more standardized)	0.0015