Paper Simulasi

Simulasi Kejadian Diskrit

"TEORI ANTRIAN BANDARA"

Nama: Jeffrey Widjaya

NIM: 01112190022

Dosen Pembimbing:

Dr. Ir. I Gusti Agung Anom Yudistira, M.Si

FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS PELITA HARAPAN TANGERANG 2021

BABI

PENDAHULUAN

1.1. Latar Belakang

Pada masa New Normal ataupun pada masa COVID ini manusia mulai jarang untuk berpergian ke luar kota maupun luar negri. Terkadang ada manusia yang memiliki kebutuhan sehingga terdorong oleh situasi dan harus berpergian keluar negri baik melalui penerbangan domestik maupun penerbangan internasional.

Pada masa New Normal atau Covid ini manusia didorong untuk memvaksinasi dirinya sehingga tidak mudah terkena coronavirus yang menyerang saluran pernafasan manusia, namun tentu masih ada manusia manusia yang belum sama sekali memvaksinasi dirinya sendiri karena ada yang masih tidak percaya dengan penyakit coronavirus ini dan ada juga yang sudah divaksin namun belum divaksin secara penuh. Permasalahan yang kita temukan disini adalah karena masa ini merupakan masa pandemik coronavirus dan manusia pada dasarnya akan selalu bekerja, berpergian dan akan selalu berkontak dengan orang lain.

Dalam makalah ini, peneliti akan mensimulasikan kejadian yang mungkin terjadi dalam sebuah bandara dengan sistem regulasi covid. Peniliti berharap dengan simulasi ini, bandara dengan regulasi ini dapat memperlihatkan tingkat vaksinasi seseorang yang ingin berpergian kedalam maupun keluar negeri.

1.2. Tujuan

Tujuan makalah ini dibuat adalah untuk mengetahui laju kedatangan seseorang ke bandara agar seseorang tersebut dapat mengikuti regulasi covid di bandara sehingga tidak tertinggal oleh penerbangannya dan tingkat penumpang yang tidak terkena covid ataupun tingkat penumpang pesawat yang terkena covid.

BAB II

DESKRIPSI SISTEM

2.1. Diagram Sistem

Dengan menggunakan pembangkit kedatangan (Arrival), sistem mengeluarkan jumlah penumpang pesawat yang datang dalam waktu 60 menit. Setelah itu, penumpang pesawat akan melalui prosedur untuk mengecek apakah penumpang tersebut sudah vaksinasi ataukah belum. Ketika pelanggan tersebut belum divaksinasi / tidak bisa menunjukan surat vaksinasinya maka pelanggan tersebut akan masuk ke jalur Tes Antigen. Melalui Tes Antigen akan dilihat apakah penumpang pesawat tersebut boleh melanjutkan perjalanannya atau kah harus dipulangkan kerumahnya untuk isolasi mandiri. Penumpang pesawat yang sudah divaksinasi dan penumpang pesawat yang tes antigennya menunjukan

negative dapat melanjutkan prosedur penerbangan mereka sesuai dengan ketentuan yang diterapkan.

2.2. Asumsi-asumsi dalam Model Diagram

Asumsi-asumsi yang digunakan dalam diagram diatas adalah:

- 1. Pelanggan sudah mempunyai tiket penerbangan dan tidak perlu membeli lagi di bandara.
- 2. Penerbangan yang akan dijalankan dalam waktu 5 jam yang akan datang.
- 3. Bandara tersebut sedang dalam keadaan yang tidak sibuk dan proses tes Antigen yang akan dijalankan oleh penumpang pesawat tidak memerlukan antrian artinya pengerjaan tes tersebut dapat berjalan dengan lancer dan tanpa ada hambatan apapun.
- 4. Alat Tes Antigen yang akan digunakan stok nya selalu ada.
- 5. Ketika penumpang pesawat terdiagnosa positif covid dipulangkan tanpa memberikan perlawanan.
- 6. H_0 : rataan aktifitas yang dilakukan penumpang pesawat adalah 5
- 7. H_1 : rataan aktifitas yang dilakukan penumpang pesawat tidak sama dengan 5.

2.3. Pengujian

Dalam penelitian ini, peneliti menggunakan asumsi pada saat pengujian :

- 1. Laju kedatangan pelanggan 1 setiap 2 menit menggunakan distribusi eksponensial.
- Estimasi cek vaksinasi yang akan dilakukan berada di dalam range 2-4 menit.
- 3. Proses Tes Antigen dilakukan dalam range waktu 10-15 menit.
- 4. Probability seseorang sudah divaksinasi adalah 70% dan yang belum adalah 30%, peluang seseorang positif covid adalah 20% dan tidak covid adalah 80%.
- 5. Akan dijalankan simulasi berdasarkan asumsi asumsi yang sudah tertera diatas.

BAB III

PEMBAHASAN

3.1. Script R library(simmer) library(dplyr) set.seed(01112190022) Airport = simmer("Airport") #Kedatangan Pelanggan dengan rate 1 orang per 2 menit Arrival = $function(){rexp(1,0.5)}$ #Service time asumsi CekVaksin = function(){runif(1,2,4)} TesAntigen = function(){runif(1,10,15)} Branch.1 = function(){runif(1,0,1) < 0.3} Branch.2 = $function()\{runif(1,0,1) < 0.2\}$ TidakCovid = function(){runif(1,1,6)} Covid = function(){runif(1,1,6)} #Alur perjalanan traj.cv = trajectory() %>% log_("Penumpang Pesawat Cek Vaksinasi") %>% seize("Cek Vaksin") %>% timeout(CekVaksin) %>% release("Cek Vaksin") traj.pcv = trajectory() %>%

log_("Proses Cek Vaksinasi")

seize("Proses Cek Vaksin")

```
traj.sv = trajectory() %>%
 log_("Penumpang Pesawat Sudah divaksin") %>%
 seize("Sudah Vaksin") %>%
 timeout(TidakCovid) %>%
 release("Sudah Vaksin")
traj.ta = trajectory() %>%
 log_("Penumpang Pesawat Tes Antigen") %>%
 seize("Tes Antigen") %>%
 timeout(TesAntigen) %>%
 release("Tes Antigen")
traj.ne = trajectory() %>%
 log_("Hasil Tes Antigen Negatif") %>%
 seize("Negatif Covid") %>%
 timeout(TidakCovid) %>%
 release("Negatif Covid")
traj.po = trajectory() %>%
 log_("Hasil Tes Antigen Positif") %>%
 seize("Positif Covid") %>%
 timeout(Covid) %>%
 release("Positif Covid")
Pulang = trajectory() %>%
 log_("Penumpang Pesawat di Pulangkan")
Lanjut = trajectory() %>%
log_("Penumpang Pesawat Melanjutkan Prosedur
Penerbangan")
```

```
main.traj = trajectory () %>%
 branch(Branch.1, continue = TRUE, join(traj.ta) %>%
      branch(Branch.2, continue = TRUE, join(traj.po)) %>%
      join(Pulang)) %>%
 join(traj.ne) %>% join(Lanjut)
#Aturan Sistem
Airport %>%
 add_resource("Cek Vaksin",1) %>%
 add_resource("Sudah Vaksin",1) %>%
 add_resource("Tes Antigen",1) %>%
 add_resource("Negatif Covid",1) %>%
 add_resource("Positif Covid",1) %>%
 add_generator("Arrival", main.traj, Arrival) %>%
 run(300) %>%
 get_mon_arrivals()
result1 = get_mon_attributes(Airport)
result2 = get_mon_arrivals(Airport,per_resource = TRUE)
#Filter Data
R3 = filter(result2, resource != "Tes Antigen")
#Total Penumpang Pesawat
ppesawat = count(R3)
#Filter data hanya yang Tidak Covid
result4 = filter(R3, resource == "Negatif Covid")
R4 = count(result4)
```

```
#Filter data hanya yang Positif Covid
result5 = filter(R3, resource == "Positif Covid")
R5 = count(result5)
```

#Tingkat probabilitas penumpang pesawat yang tidak terkena covid

#dalam penerbangan yang akan dijalankan dalam 5 jam R4/ppesawat

#Tingkat probabilitas penumpang pesawat yang terkena covid #dalam penerbangan yang akan dijalankan dalam 5 jam R5/ppesawat

#Rata rata penumpang pesawat melakukan aktifitas adalah MAct = round(mean(R3\$activity_time),3)
MAct

#Confidence Interval dari rata rata dan aktifitas yang dilakukan penumpang pesawat quantile(R3\$activity_time, prob=c(0.05,0.95))

3.2. Pendugaan Parameter dan Selang Kepercyaan

Pendugaan parameter dengan dilakukan melihat aktifitas rata rata yang dilakukan oleh penumpang pesawat dari pada saat mereka datang hingga mereka selesai.

```
> #Rata rata penumpang pesawat melakukan aktifitas adalah
> MAct = round(mean(R3$activity_time),3)
> MAct
[1] 3.665
```

Parameter yang digunakan dalam *output* ini adalah rata-rata dari aktifitas yang dilakukan penumpang pesawat selama berada di dalam sistem mulai dari

mengantri untuk cek vaksinasi sampai pelanggan melanjutkan prosedur penerbangan atau dipulangkan.

Dengan selang kepercayaan 95%, peneliti percaya bahwa rata-rata dari aktifitas yang dilakukan penumpang pesawat ada diantara (0.133295, 5.667990).

Data penumpang pesawat yang di hasilkan adalah sebagai berikut :

*	name ‡	start_time ‡	end_time ‡	activity_time ‡	resource ‡	replication
1	Arrival0	7.194507	10.16227	2.967764	Negatif Covid	1
2	Arrival2	13.034554	14.21037	1.175812	Negatif Covid	1
3	Arrival1	21.886540	27.77674	5.890198	Negatif Covid	1
4	Arrival6	33.724932	35.04123	1.316300	Negatif Covid	1
5	Arrival7	34.262463	39.99426	4.953030	Negatif Covid	1
6	Arrival3	34.974450	45.25149	5.257230	Negatif Covid	1
7	Arrival10	37.713384	49.87626	4.624764	Negatif Covid	1
8	Arrival11	38.765075	52.33450	2.458240	Negatif Covid	1
9	Arrival12	41.292315	55.63833	3.303832	Negatif Covid	1
10	Arrival13	41.295599	58.54838	2.910050	Negatif Covid	1
11	Arrival14	41.993525	63.00288	4.454501	Negatif Covid	1
12	Arrival5	58.942723	63.86014	4.917418	Positif Covid	1
13	Arrival4	45.787161	65.50806	2.505186	Negatif Covid	1
14	Arrival15	46.304791	67.25911	1.751041	Negatif Covid	1
15	Arrival16	52.230982	68.59817	1.339068	Negatif Covid	1

16	Arrival18	54.327296	69.80787	1.209693	Negatif Covid	1
17	Arrival19	58.092965	75.09996	5.292088	Negatif Covid	1
18	Arrival8	71.429428	75.29753	3.868100	Positif Covid	1
19	Arrival20	59.799386	81.08020	5.980242	Negatif Covid	1
20	Arrival21	63.211361	83.55198	2.471784	Negatif Covid	1
21	Arrival5	63.860141	84.83823	1.286251	Negatif Covid	1
22	Arrival24	64.292357	87.16382	2.325588	Negatif Covid	1
23	Arrival25	65.153881	92.54307	5.379249	Negatif Covid	1
24	Arrival27	68.076531	98.44396	5.900892	Negatif Covid	1
25	Arrival29	69.172396	102.78398	4.340015	Negatif Covid	1
26	Arrival30	72.112093	106.91242	4.128444	Negatif Covid	1
27	Arrival31	73.751511	111.06243	4.150010	Negatif Covid	1
28	Arrival8	75.297528	116.60082	5.538394	Negatif Covid	1
29	Arrival32	78.122774	118.69277	2.091946	Negatif Covid	1
30	Arrival33	78.200846	124.25880	5.566028	Negatif Covid	1
						- 1
	Arrival34	81.475044	126.72263	2.463836	Negatif Covid	1
	Arrival36	82.468530	129.27399	2.551354	Negatif Covid	1
33	Arrival9	83.714946	132.11171	2.837717	Negatif Covid	1
34	Arrival37	83.785125	134.05571	1.944003	Negatif Covid	1
35	Arrival38	87.021954	135.90322	1.847510	Negatif Covid	1
36	Arrival42	91.868186	138.31164	2.408425	Negatif Covid	1
37	Arrival43	94.703816	143.88030	5.568660	Negatif Covid	1
38	Arrival17	96.472393	148.90250	5.022194	Negatif Covid	1
39	Arrival44	97.899602	153.75639	4.853889	Negatif Covid	1
40	Arrival45	98.525397	158.88329	5.126899	Negatif Covid	1
41	Arrival46	103.592729	163.62205	4.738764	Negatif Covid	1
42	Arrival48	105.283813	168.17456	4.552506	Negatif Covid	1
43	Arrival49	106.402203	172.47227	4.297713	Negatif Covid	1
44	Arrival22	108.089444	173.86586	1.393592	Negatif Covid	1
45	Arrival50	109.460475	178.79033	4.924473	Negatif Covid	1

46	Arrival51	110.715439	184.14519	5.354861	Negatif Covid	1
47	Arrival53	111.569258	187.61673	3.471541	Negatif Covid	1
48	Arrival54	112.688754	190.90504	3.288307	Negatif Covid	1
49	Arrival23	120.269175	194.11008	3.205039	Negatif Covid	1
50	Arrival58	123.177643	198.38118	4.271098	Negatif Covid	1
51	Arrival26	131.244721	202.33499	3.953811	Negatif Covid	1
52	Arrival60	131.589327	205.34161	3.006626	Negatif Covid	1
53	Arrival47	202.395245	207.31132	4.916076	Positif Covid]
54	Arrival63	141.673349	210.25447	4.912856	Negatif Covid]
55	Arrival28	144.795305	215.16900	4.914526	Negatif Covid]
56	Arrival65	150.890970	218.84777	3.678774	Negatif Covid]
57	Arrival66	151.135812	223.74174	4.893968	Negatif Covid]
58	Arrival67	151.374787	226.71126	2.969525	Negatif Covid]
59	Arrival68	151.548128	230.47343	3.762170	Negatif Covid]
60	Arrival69	151.975775	231.49523	1.021794	Negatif Covid]
60	Arrival69	151.975775	231.49523	1.021794	Negatif Covid	1
61	Arrival70	152.981953	233.11685	1.621629	Negatif Covid	1
62	Arrival35	155.914884	235.84861	2.731755	Negatif Covid	1
63	Arrival72	156.032890	239.26120	3.412589	Negatif Covid	1
64	Arrival73	164.198560	244.22457	4.963368	Negatif Covid	1
65	Arrival74	165.664864	249.52552	5.300957	Negatif Covid	1
66	Arrival75	165.792280	251.36035	1.834830	Negatif Covid	1
67	Arrival39	166.336489	254.36434	3.003990	Negatif Covid	1
68	Arrival76	166.905431	257.05605	2.691708	Negatif Covid	1
69	Arrival57	258.642783	261.90807	3.265288	Positif Covid	1
70	Arrival77	169.415382	262.83660	5.780550	Negatif Covid	1
71	Arrival78	169.843397	268.07706	5.240459	Negatif Covid	1
72	Arrival81	175.036706	270.06958	1.992524	Negatif Covid	1
73	Arrival40	177.382226	272.13922	2.069635	Negatif Covid	1
74	Arrival82	178.547101	276.44484	4.305618	Negatif Covid	1
75	Arrival83	179.677208	281.91619	5.471356	Negatif Covid	
76	Arrival84	182.065692	287.57168	5.655483	Negatif Covid	
77	Arrival85	182.420303	290.11767	2.545998	Negatif Covid	
78	Arrival87	185.609885	293.13624	3.018569	Negatif Covid	
	Arrival88	189.164311	296.29141	3.155166	Negatif Covid	

Dihasilkan jumlah penumpang pesawat sebanyak 79, dan untuk penerbanga yang akan melakukan penerbangan dalam waktu 5 jam melalui proses

simulasi didapatkan bahwa dari 79 penumpang pesawat ada 4 penumpang pesawat yang terdiagnosa positif covid dan didapatkan tingkat probabilita sebagai berikut

3.3. Analisis

Sistem berjalan dengan baik, namun kedatangan pelanggan cukup banyak dan cukup memakan waktu dalam proses tes antigen. Karena sistem memperbolehkan penumpang pesawat untuk menghabiskan waktu tergantung kebutuhan mereka, dan waktu yang dialokasikan untuk penumpang berada di dalam antrian tes antigen

Dalam percobaan, rata-rata aktifitas yang dilakukan oleh 79 pelanggan adalah 3,665 menit. Pada percobaan ini, peneliti menolak H_0 yang sudah dituliskan diatas karena nilai rataan aktifitas yang dilakukan pelanggan tidak sama dengan 5 tapi nilainya ada di antara (0.133295, 5.667990).

BAB IV

KESIMPULAN DAN PENUTUP

4.1. Kesimuplan

Peneliti menilai sistem ini cukup efektif dengan asumsi yang sudah dituliskan diatas. Melalui pendugaan parameter yang dikeluarkan, peneliti menyimpulkan bahwa rata-rata waktu pelanggan beraktifitas dengan selang kepercayaan 95% ada pada (0.133295, 5.667990). Melalui simulasi ini, meskipun kita sedang berada di dalam masa Covid namun masih aka nada orang yang membutuhkan layanan penerbangan dan dari antara orang orang tersebut juga masih terdapat mereka yang belum divaksinasi dan terkena covid.

4.2. Saran

Saran yang peneliti berikan untuk penelitian berikutnya adalah melanjutkan proses penerbangan hingga take off dengan mempertimbangkan cuaca sehingga dari cuaca tersebut dapat ditambahkan sistem dimana Ketika cuaca sedang tidak baik / lokasi yang dituju sedang mengalami badai maka akan diberikan waktu delay penerbangan.

Bab V

Daftar Pustaka

Carson, B., & Nicol, N. (2014). Pearson New International Edition. In *Discrete Event System Simulation Fifth Edition*.

 $\underline{https://www.scribd.com/document/336991679/A-Discrete-Event-Simulation-to-Model-Passenger-Flow-in-the-Airport-Terminal}$