Recognizing Markets From Natural Language

Carmelo Piccione

November 9, 2014

Terminology

► S : A market string (wti x 100 p vs .48 1.21@1.24)

Terminology

- S : A market string (wti x 100 p vs .48 1.21@1.24)
- ► M : A market
 - product: a financial instrument ("wti, "brent", "goog")
 - month: the month for which the financial contract expires ("jan", "x", "march")
 - strike1..N: represents the strike price(s) of the financial contract
 - strategy: represents the strategy type of the financial contract ("put", "call", "strad")
 - cross: a hedge price for the financial contract
 - bid: a bid price for the financial contract
 - offer: an offer price for the financial contract

Terminology

```
► S :
  0: "wti", 1: "x", 2: "100", 3: "p", 4: "vs", 5: ".48", 6:
  "1.21", 7: "1.24"
► M :
    product: 0, "wti"
    ▶ month: 1, "x"
    strike1: 2, "100"
    ▶ strategy: 3, "p"
     cross: 5, ".48"
    ▶ bid: 6, "1.21"
    ▶ offer: 7, "1.24"
```

▶ Could just map all pairs $(s, m) \in (S \times M)$ to explicitly model P(M|S), but...

- ▶ Could just map all pairs $(s, m) \in (S \times M)$ to explicitly model P(M|S), but...
- ightharpoonup |S| is large (2+ million distinct messages for crude traders alone)

- ▶ Could just map all pairs $(s, m) \in (S \times M)$ to explicitly model P(M|S), but...
- ightharpoonup |S| is large (2+ million distinct messages for crude traders alone)
- ▶ |M| is also large, albeit less than |S|
 - only by a couple orders of magnitude
 - ► example: "z 150 call"

 "dec 150 call"

- ▶ Could just map all pairs $(s, m) \in (S \times M)$ to explicitly model P(M|S), but...
- ▶ |S| is large (2+ million distinct messages for crude traders alone)
- ▶ |M| is also large, albeit less than |S|
 - only by a couple orders of magnitude
 - ► example: "z 150 call"

 "dec 150 call"
- ▶ P(M|S) is still desired, but with a more efficient representation than O(|M||S|)

Semantic Labeling (Intuition)

Use domain knowledge to label each token of the string

Semantic Labeling (Intuition)

Use domain knowledge to label each token of the string

- ▶ Provide X = L(S) where L(S) labelizes each token
- ▶ Design L(S) such that |X| << |S|

Semantic Labeling (Intuition)

Use domain knowledge to label each token of the string

- ▶ Provide X = L(S) where L(S) labelizes each token
- ▶ Design L(S) such that |X| << |S|
- ▶ We hope that P(M|X) is distributed similarly to P(M|S), but in practice one instance of X fans out to more possible M's than S does

Semantic Labeling (Examples)

brent z 50/60 ps vs .43

becomes

PRODUCT MONTH NUMBER OTHER NUMBER STRATEGY OTHER NUMBER

Semantic Labeling (Examples)

brent z 50/60 ps vs .43

becomes

PRODUCT MONTH NUMBER OTHER NUMBER STRATEGY OTHER NUMBER

Can also encode ambiguities as follows ("c" could be a product):

▶ wti x 100 c

becomes

PRODUCT MONTH NUMBER (PRODUCT|STRATEGY)

Generalization By Labeling

PRODUCT MONTH NUMBER OTHER NUMBER OTHER NUMBER

Generalization By Labeling

PRODUCT MONTH NUMBER OTHER NUMBER OTHER NUMBER

- brent z 50/60 ps vs .43
- wti x 55/60 cs vs 1.23
- go jan 120,125 fnc cross 2.78

Generalization By Labeling

PRODUCT MONTH NUMBER OTHER NUMBER OTHER NUMBER

- brent z 50/60 ps vs .43
- wti x 55/60 cs vs 1.23
- go jan 120,125 fnc cross 2.78

No algorithms necessary to generalize, just need some data!

Model Details

Current Model:

- 1. Retain a multinomial distribution over M conditioned on each observed, labelized sequence x = L(s)
- 2. When several markets are possible given x, use analytics (eg. implied premiums) to filter out unlikely markets
- 3. If analytics aren't available then we can maximize the posterior distribution P(M|X=x) instead

Model Details

Current Model:

- 1. Retain a multinomial distribution over M conditioned on each observed, labelized sequence x = L(s)
- 2. When several markets are possible given x, use analytics (eg. implied premiums) to filter out unlikely markets
- 3. If analytics aren't available then we can maximize the posterior distribution P(M|X=x) instead

Cons:

- Does not learn relationships between similar sequences. "x 10 c" and "hello x 10 c" are distinct sequences and thus create independent multinomial distributions over M
- Fails to directly incorporate analytical features into the input vector- can't directly query the probability model with analytical random variables

Model Alternatives

Vectorizing the input:

- ▶ Treat each token of the sequence $x_0, x_1, ..., x_{n-1}$ as a discrete input vector of size n.
- Outputs are also a vector, one column for each attribute of market, each value being a position from the sequence.
 - product: 0
 - ▶ *month*: 1
 - ▶ *strike*1: 3
 - strike2: 4
 - strategy: 6
 - cross: 8
 - ▶ bid: 4
 - offer: 6
- Now we can use any machine learning technique that can tolerate discrete input / output vectors

Conclusions

Use domain knowledge to simplify the learning problem

Most algorithms don't work "out of the box" with traditional machine learning techniques

Conclusions

Use domain knowledge to simplify the learning problem

- Most algorithms don't work "out of the box" with traditional machine learning techniques
- But a good abstraction can make machine learning practically unnecessary

Future Work

- Consider sequence learning approaches, like hidden markov models or dynamic bayesian networks
- Incorporate analytical features directly into the probability model
- Unsupervised learning (use analytics to discover reasonable markets)