UVOD V GEOMETRIJSKO TOPOLOGIJO: 2. TEST 25. 5. 2012

1. NALOGA (5 točk)

Naj bo $n \in \mathbb{N} - \{1\}$, naj bo $\zeta = e^{2\pi i/n} \in \mathbb{C}$, in naj bo $Q = \{1, \zeta, \zeta^2, \dots, \zeta^{n-1}\} \subset \mathbb{C}$ multiplikativna grupa n-tih korenov kompleksne enote.

Definirajmo preslikavo $\Phi \colon Q \times \mathbb{C} \to \mathbb{C}$ s predpisom

$$\Phi(\zeta^k, z) = \zeta^k \cdot z.$$

- a. Prepričaj se, da je Φ delovanje grupe Q na $\mathbb C$ in da zožitev $\Phi|_{Q\times S^1}$ podaja delovanje grupe Q na enotski krožnici S^1 .
- b. Kateremu znanemu prostoru je homeomorfen prostor orbit S^1/Q ?
- c. Kateremu znanemu prostoru je homeomorfen prostor orbit \mathbb{C}/Q ?

Rešitve oziroma odgovore utemelji.

2. NALOGA (5 točk)

a. Naj za zvezni funkciji $\varphi, \psi \colon \mathbb{R}^n \to \mathbb{R}$ velja $\varphi(x) \leqslant \psi(x)$ za vse $x \in \mathbb{R}^n$. Naj bo

$$X = \{(x, y) \in \mathbb{R}^n \times \mathbb{R} \mid \varphi(x) \leqslant y \leqslant \psi(x)\}.$$

Dokaži, da je X retrakt prostora \mathbb{R}^{n+1} .

b. Podana je množica $\{a_n \mid n \in \mathbb{Z}\} \subset (0, \infty)$. Definirajmo množico:

$$A = \mathbb{R} \times \{0\} \ \cup \ \bigcup_{n \in \mathbb{Z}} \{n\} \times [0, a_n].$$

Dokaži, da je A retrakt ravnine \mathbb{R}^2 .

Nasvet: Retrakcijo $\mathbb{R}^2 \to A$ sestavi kot kompozitum retrakcij $\mathbb{R}^2 \to X \to A$, kjer je X primeren podprostor ravnine \mathbb{R}^2 .

c. (Naloga za bonus!) Naj bo $\{r_n \mid n \in \mathbb{N}\} \subset (0, \infty)$ in naj bo $(x_n)_{n \in \mathbb{N}}$ zaporedje v \mathbb{R}^2 brez stekališča. Definirajmo

$$B = \mathbb{R}^2 \times \{0\} \cup \bigcup_{n \in \mathbb{N}} \{x_n\} \times [0, r_n].$$

Dokaži, da je B retrakt prostora \mathbb{R}^3 .

TEORETIČNA NALOGA (5 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna (\mathbf{P}) oziroma napačna (\mathbf{N}) .

Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

Vsaka topološka grupa je povezan prostor.
Zlepek normalnih prostorov X in Y preko zvezne preslikave $f\colon A\to Y$, kjer je A zaprta v X , je Hausdorffov prostor.
Kot kvocientni prostor prostora $\mathbb{R}^{n+1}-\{0\}$ je projektivni prostor $\mathbb{R}P^n$ nekompakten.
Projektivni prostori so Hausdorffovi.
Vsak retrakt ravnine \mathbb{R}^2 je absolutni ekstenzor za normalne prostore.
Krožnica S^1 je retrakt enotskega kroga \mathbb{B}^2 .
Naj bo $H = S^2 \cap \mathbb{R}^2 \times [0, \infty)$ zaprta hemisfera enotske sfere S^2 . Če je $f: S^2 \to S^2$ taka zvezna preslikava, za katero je $f(H) \subset H$, ima f vsaj eno negibno točko.
Vsaka zvezna preslikava $\mathbb{R}^2 \to \mathbb{R}^2$ ima vsaj eno negibno točko.
Vsako zvezno preslikavo $(-5,5) \to [0,1]$ je mogoče razširiti do zvezne preslikave $\mathbb{R} \to [0,1]$.
Naj bo U odprta množica v \mathbb{R}^n . Vsaka zvezna injekcija $U \to \mathbb{R}^n$ je odprta preslikava.