Master Theorem

• The Master Theorem applies to:

- T(n) = a T(n/b) + f(n)
- Where a >= 1 and b > 1

Master Theorem

- T(n) = a T(n/b) + f(n)
- Where a >= 1 and b > 1

- We first calculate $c = log_b a$
- 3 cases

Case # 1

- T(n) = a T(n/b) + f(n)
- If f(n) is $O(n^d)$ and $d < log_b$ a, then
- $// f(n) \le e n^{d} < e n^{\log_b a}$
- $T(n) = \Theta(n^{\log_b a})$

- Important note:
- $d < log_b a$, not $d <= log_b a$

Case # 2

- T(n) = a T(n/b) + f(n)
- If f(n) is $\Theta(n^c)$ and $c = \log_b a$, then
- $T(n) = \Theta(n^{\log_b a} \log n)$

Case # 2f (fancy version)

- T(n) = a T(n/b) + f(n)
- If f(n) is $\Theta(n^c \log^k n)$ and $c = \log_b a$, then

• $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

Case # 3

- If f(n) is $\Omega(n^d)$ and $d > \log_b a$, AND
- There is a C < 1 and n0 such that
 a f(n/b) <= C f(n) for all n >= n0
 (regularity condition, true very often)
- Then, $T(n) = \Theta(f(n))$

- Important note:
- $d > log_b a$, not $d >= log_b a$