Analisi Matematica II

Mattia Martelli

Indice

Ι	Equazioni differenziali ordinarie del primo ordine						
Ι	Introduzione alle equazioni differenziali del primo ordine	4					
II	II Equazioni differenziali del primo ordine a variabili separabili						
II	I Equazioni differenziali lineari del primo ordine	7					
	II Equazioni differenziali ordinarie del secondo ordine IV Introduzione alle equazioni differenziali lineari del secondo ordine						
V Equazioni differenziali omogenee del secondo ordine a coefficienti costanti							
	I Il caso $\Delta > 0$	11					
	II Il caso $\Delta < 0$						
	III Il caso $\Delta = 0$						
	IV Tabella riassuntiva						
	17 Idoona habaniiya						

Indice delle Definizioni e dei Teoremi

1	Definizione (Equazione differenziale ordinaria del primo ordine)
2	Definizione (Forma normale di una EDO)
3	Definizione (Integrale generale e particolare di una EDO)
4	Definizione (EDO a variabili separate)
1	Teorema (Risoluzione di EDO a variabili separabili)
5	Definizione (EDO lineari del primo ordine)
2	Teorema (Integrale generale di una EDO lineare del primo ordine)
6	Definizione (Soluzione di un'equazione differenziale del secondo ordine)
3	Teorema (Teorema di Cauchy)
4	Teorema (Principio di sovrapposizione)
5	Teorema (Teorema di struttura)
6	Teorema (Teorema di struttura per equazioni complete)

PARTE I

EQUAZIONI DIFFERENZIALI ORDINARIE DEL PRIMO ORDINE

CAPITOLO I

Introduzione alle equazioni differenziali del primo ordine

Introduciamo il concetto di equazione differenziale.

Definizione 1 (Equazione differenziale ordinaria del primo ordine). Un'equazione differenziale ordinaria del primo ordine, per brevità EDO, è una relazione che coinvolge una funzione incognita y(x), dove $x \in \mathbb{R}$, e la sua derivata prima y'(x):

$$F(x, y(x), y'(x)) = 0.$$

In altre parole, una EDO è un'equazione nella quale l'incognita non è un numero, ma una funzione.

Definizione 2 (Forma normale di una EDO). *Una EDO del primo ordine in forma normale è una EDO nella forma*

$$y'(x) = f(x, y(x)).$$

Definizione 3 (Integrale generale e particolare di una EDO). Data la EDO

$$F(x, y(x), y'(x)) = 0,$$

chiamiamo integrale generale dell'equazione, più raramente soluzione generale, l'insieme di tutte le sue soluzioni.

Si chiama **integrale particolare** dell'equazione, più raramente soluzione particolare, una specifica soluzione.

Alcune osservazioni:

• Nel caso particolare di EDO del tipo

$$y'(x) = f(x),$$

cioè EDO del primo ordine in forma normale con $f(x, y \in \mathcal{I})$, basta integrare:

$$y(x) = \int f(x) \, \mathrm{d}x.$$

- Più in generale, risolvere una EDO non significa calcolare un integrale, ma comunque trovare y conoscendo delle informazioni relative a y'. Da qui il nome integrale generale.
- In generale, una EDO ha infinite soluzioni, proprio come la soluzione di un integrale indefinito.

CAPITOLO ${f II}$

Equazioni differenziali del primo ordine a variabili separabili

Introduciamo ora il concetto di equazione differenziale ordinaria del primo ordine a variabili separabili.

Definizione 4 (EDO a variabili separate). Una EDO del primo ordine in forma normale si dice a variabili separabili se è della forma

$$y'(x) = h(x) g(y(x)),$$

con $h: J_1 \subseteq \mathbb{R} \to \mathbb{R}$ e $g: J_2 \subseteq \mathbb{R} \to \mathbb{R}$ continue.

 $Cio \stackrel{\circ}{b} f(x,y) = h(\stackrel{\circ}{x}) \times g(y) \stackrel{\circ}{e} il$ prodotto di una funzione che dipende solo da x per una funzione che dipende solo da y.

A questo punto passiamo alla loro risoluzione.

Teorema 1 (Risoluzione di EDO a variabili separabili). Consideriamo la EDO a variabili separate

$$y'(x) = h(x) g(y(x)),$$

con $h: J_1 \subseteq \mathbb{R} \to \mathbb{R}$ e $g: J_2 \subseteq \mathbb{R} \to \mathbb{R}$ continue.

Possiamo dunque dividere le soluzioni in due categorie:

- 1. Se g(D) = 0 per qualche $D \in \mathbb{R}$ allora la funzione costante $y(x) = D, \forall x \text{ è soluzione}.$
- 2. Se $g(y) \neq 0, \forall y$ in un certo intervallo, una soluzione y(x) è definita implicitamente dall'equazione

$$\Gamma(y(x)) = H(x) + c,$$

dove

- $c \in \mathbb{R}$;
- *H* è una primitiva di h;
- Γ è una primitiva di $\frac{1}{q}$.

 $Se\ \Gamma\ non\ \grave{e}\ invertibile\ otteniamo\ eslicitamente$

$$y(x) = \Gamma^{-1}(H(x) + c),$$

 $con \ c \in \mathbb{R}$.

Dimostrazione. Dimostriamo entrambe le categorie:

- 1. Sia g(D)=0 e $y(x)=D,\,\forall\,x.$ L'identità è soddisfatta:
 - (a) Sinistra: y'(x) = 0;
 - (b) Destra: $h(x) g(y(x)) = h(x) g(D) = h(x) \times 0 = 0$.
- 2. Prendiamo un intervallo $[x_0, x]$ in cui la funzione g(y) non si annulla. Dunque,

$$\frac{y'(x)}{g(y(x))} = h(x).$$

Dati $x_0 < x$, con $x_0, x \in J_1$, integriamo:

$$\int_{x_0}^x \frac{y'(r)}{g(y(r))} dr = \int_{x_0}^x h(r) dr = H(x) + c.$$

Per il lato sinistro faccio il cambio di variabili:

$$y(r) = k,$$

$$y'(r) = dk,$$

quando

$$r = x_0 \Rightarrow k = y(x_0),$$

 $r = x \Rightarrow k = y(x).$

Dunque,

$$\int_{x_0}^x \frac{y'(r)}{g(y(r))} \, \mathrm{d}r = \int_{y(x_0)}^{y(x)} \frac{1}{g(k)} \, \mathrm{d}k = \Gamma(y(x)) + \mathrm{c}.$$

Uguagliando i due lati,

$$\Gamma(y(x)) = H(x) + c,$$

con $c \in \mathbb{R}$.

CAPITOLO III

Equazioni differenziali lineari del primo ordine

Introduciamo ora il concetto di equazione differenziale lineare ordinaria del primo ordine.

Definizione 5 (EDO lineari del primo ordine). *Un'equazione differenziale lineare ordinaria del primo ordine* è una EDO nella forma

$$c(x) y'(x) + a(x) y(x) = b(x),$$

 $con \ c, a, b : J \subseteq \mathbb{R} \to \mathbb{R} \ continue \ su \ J.$

Ci occuperemo solo di EDO lineari del primo ordine in forma normale, cioè

$$y'(x) + a(x)y(x) = b(x).$$

A questo punto passiamo alla loro risoluzione.

Teorema 2 (Integrale generale di una EDO lineare del primo ordine). $Date\ a,b: J\subseteq \mathbb{R} \to \mathbb{R}$ continue, consideriamo

$$y'(x) + a(x)y(x) = b(x).$$

L'integrale generale di questa equazione è dato dalla formula

$$y(x) = e^{-A(x)} [B(x) + c],$$

dove

- $c \in \mathbb{R}$;
- A(x) è una qualunque primitiva di a(x): $A = \int a$;
- B(x) è una qualunque primitiva di $e^{A(x)}$ b(x): $A = \int e^{\int a} b$.

PARTE II

EQUAZIONI DIFFERENZIALI ORDINARIE DEL SECONDO ORDINE

CAPITOLO ${ m IV}$

Introduzione alle equazioni differenziali lineari del secondo ordine

Un'equazione differenziale del secondo ordine si presenta nella forma

$$a(t) y'' + b(t) y' + c(t) y = f(t),$$

con $t \in I$. Definiamo dunque una sua soluzione.

Definizione 6 (Soluzione di un'equazione differenziale del secondo ordine). Si dice soluzione dell'equazione differenziale nell'intervallo $I \subset \mathbb{R}$ una funzione $y : I \to \mathbb{R}$ derivabile due volte per cui, sostituendo nell'equazione differenziale i valori effettivi di y(t), y'(t) e y''(t), si ottiene che

$$a(t) y'' + b(t) y' + c(t) y = f(t) \quad \forall t \in I,$$

cioè un'identità su I.

Un'equazione differenziale del secondo ordine ha soluzioni infinite. Queste vengono racchiuse nella loro totalità in dipendenza da due parametri all'interno dell'integrale generale. Se a questo aggiungiamo una coppia di condizioni iniziali otteniamo una soluzione specifica. Il sistema formato dall'integrale generale e le condizioni iniziali è detto **problema di Cauchy** ed il teorema che garantisce l'unicità della soluzione è detto **teorema di Cauchy**.

Teorema 3 (Teorema di Cauchy). Data l'equazione differenziale

$$a(t) y'' + b(t) y' + c(t) y = f(t),$$

con $t \in I$, a, b, c e d funzioni continue in I e $a \neq 0$, allora, $\forall t_0 \in I$ $e \forall (y_0, v_0) \in \mathbb{R}^2$, il problema di Cauchy

$$\begin{cases} a(t) y'' + b(t) y' + c(t) y = f(t) \\ y(t_0) = y_0 \\ y'(t_0) = v_0 \end{cases}$$

ha una ed una sola soluzione definita su tutto l'intervallo I.

Introduciamo dunque un importante teorema che sfrutta la linearità delle equazioni: il principio di sovrapposizione.

Teorema 4 (Principio di sovrapposizione). Se y_1 è soluzione di $ay'' + by' + cy = f_1$ ed y_2 è soluzione di $ay'' + by' + cy = f_2$, allora la funzione

$$y(t) = C_1 y_1(t) + C_2 y_2(t)$$

 \grave{e} soluzione di

$$ay'' + by' + cy = C_1 f_1 + C_2 f_2.$$

Prendiamo ora un'equazione differenziale omogenea, ovvero con f=0. Possiamo a questo punto notare che l'insieme S delle soluzioni forma uno **spazio vettoriale** di dimensione due. Da questo ricaviamo il teorema di struttura.

Teorema 5 (Teorema di struttura). L'integrale generale di

$$a(t) y'' + b(t) y' + c(t) y = 0,$$

con a, b e c continue su I e $a(t) \neq 0$, è dato da tutte le combinazioni lineari

$$y(t) = C_1 y_1(t) + C_2 y_2(t) \quad \forall C_1, C_2 \in \mathbb{R},$$

dove y_1 ed y_2 sono due **soluzioni linearmente indipendenti** dell'equazione stessa.

Osserviamo adesso un'equazione con $f \neq 0$. Questa è detta completa o **non omogenea**. Se poniamo f = 0, otteniamo dunque l'equazione **omogenea associata**. Definendo y_P come una particolare soluzione dell'equazione completa e y_0 come una particolare soluzione dell'equazione omogenea associata, notiamo che queste soddisfano il principio di sovrapposizione. Con queste premesse possiamo dunque estendere il teorema di struttura alle equazioni non omogenee.

Teorema 6 (Teorema di struttura per equazioni complete). L'integrale generale di

$$a(t) y'' + b(t) y' + c(t) y = f(t),$$

con a, b, c e f continue su I e $a(t) \neq 0$, è dato da **tutte e sole** le funzioni

$$y(t) = C_1 y_1(t) + C_2 y_2(t) + y_P(t) \quad \forall C_1, C_2 \in \mathbb{R},$$

 $dove y_1 ed y_2 sono due soluzioni linearmente indipendenti dell'equazione omogenea associata$

$$a(t) y'' + b(t) y' + c(t) y = 0$$

 $e y_P \ e$ una **soluzione particolare** dell'equazione completa

$$a(t) y'' + b(t) y' + c(t) y = f(t).$$

CAPITOLO ${f V}$

Equazioni differenziali omogenee del secondo ordine a coefficienti costanti

Per studiare un'equazione differenziale omogenea a coefficienti costanti, possiamo sfruttare il teorema di struttura. Partiamo innanzitutto definendo il **polinomio caratteristico**: data una generica equazione differenziale ay'' + by' + cy = 0, il polinomio caratteristico associato è

$$P(\lambda) = a \lambda^2 + b \lambda + c.$$

Possiamo dunque facilmente definire l'equazione caratteristica come $P(\lambda) = 0$, o, più esplicitamente,

$$a\lambda^2 + b\lambda + c = 0.$$

Abbiamo dunque ricondotto la ricerca delle soluzioni dell'equazione differenziale omogenea a quella delle radici del polinomio caratteristico, ovvero alla risoluzione dell'equazione caratteristica. La natura delle radici dipende chiaramente dal discriminante $\Delta=b^2-4ac$.

I Il caso $\Delta > 0$

Nel caso di un discriminante positivo, possiamo ricavare due radici **reali e distinte** tramite la classica formula

$$\lambda_i = \frac{-b \pm \sqrt{\Delta}}{2a},$$

da cui ricaviamo le due soluzioni dell'equazione differenziale come

$$y_1(t) = e^{\lambda_1 t},$$

$$y_2(t) = e^{\lambda_2 t},$$

linearmente indipendenti poiché $\lambda_1 \neq \lambda_2$. Possiamo dunque sfruttare il teorema di struttura ed ottenere l'integrale generale dell'equazione di partenza come

$$y(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}.$$

II Il caso $\Delta < 0$

Nel caso di un discriminante negativo, possiamo ricavare due radici **complesse e coniugate** definite come

$$\lambda_1 = \alpha + i \beta,$$

$$\lambda_2 = \alpha - i \beta,$$

dove

$$\alpha = \frac{-b}{2a},$$
$$\beta = \frac{\sqrt{-\Delta}}{2a},$$

ricavabili dalla formula classica. Prendendo la generica soluzione $y(t) = e^{\lambda t}$ e ricordando la formula di Eulero per l'esponenziale complesso $e^{\alpha+i\beta} = e^{\alpha}(\cos\beta + i\sin\beta)$, possiamo dunque scrivere le soluzioni come

$$y_1(t) = e^{\alpha}(\cos \beta + i \sin \beta),$$

$$y_2(t) = e^{\alpha}(\cos \beta + i \sin \beta).$$

Ma poiché cerchiamo soluzioni reali, dobbiamo definire due funzioni che chiameremo u come

$$u_1(t) = \frac{y_1(t) + y_2(t)}{2},$$

$$u_2(t) = \frac{y_1(t) - y_2(t)}{2},$$

che possono dunque essere generalizzate come

$$u_1(t) = e^{\alpha t} \cos(\beta t),$$

$$u_2(t) = e^{\alpha t} \sin(\beta t).$$

L'integrale generale è dunque

$$y(t) = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right).$$

III Il caso $\Delta = 0$

Nel caso di un discriminante nullo, possiamo ricavare due radici reali e concidenti definite come

$$\lambda_1 = \lambda_2 = -\frac{b}{2a},$$

come si può facilmente ricavare dalla formula classica. Poiché abbiamo una sola soluzione, abbiamo bisogno di cercare una funzione C(t) tale che

$$y_2(t) = C(t) e^{\lambda_1},$$

$$y_2(t)' = e^{\lambda_1} (C'(t) + \lambda_1 C(t)),$$

$$y_2(t)'' = e^{\lambda_1} (C''(t) + 2\lambda_1 C'(t) + 3\lambda_1 C(t)).$$

Se sostituiamo nell'equazione differenziale ci accorgiamo che tutti i termini contenenti C(t) e C'(t) si semplificano, risultando nell'equazione

$$C''(t) = 0 \quad \forall t \in \mathbb{R}.$$

La più semplice funzione che soddisfa l'equazione è la funzione identità, ovvero C(t) = t. Possiamo dunque generalizzare quanto trovato definendo l'integrale generale come

$$y(t) = C_1 e^{\lambda_1 t} + C_2 t e^{\lambda_2 t}.$$

IV Tabella riassuntiva

Riassumiamo quanto trovato in una tabella.

	Δ	Radici	Soluzioni		Integrale generale
			$y_1(t)$	$y_2(t)$	$\forall C_1, C_2 \in \mathbb{R}$
	$\Delta > 0$	$\lambda_1 \neq \lambda_2, \ \lambda_1, \ \lambda_2 \in \mathbb{R}$	$e^{\lambda_1 t}$	$e^{\lambda_2 t}$	$y(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$
Ī	$\Delta = 0$	$\lambda_1 = \lambda_2, \ \lambda_1, \ \lambda_2 \in \mathbb{R}$	$e^{\lambda_1 t}$	$t e^{\lambda_2 t}$	$y(t) = C_1 e^{\lambda_1 t} + C_2 t e^{\lambda_2 t}$
	$\Delta < 0$	$\lambda_{1,2} = \alpha \pm \beta, \ \alpha, \beta \in \mathbb{R}$	$e^{\alpha t}\cos(\beta t)$	$e^{\alpha t} \sin(\beta t)$	$y(t) = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right)$

Queste formule generali valgono per la risoluzione di equazioni **omogenee**, siano esse associate o meno, con **coefficienti costanti**. Non si applicano se queste due condizioni non sono verificate.