

- **29.** Graph the curve $x = y 3y^3 + y^5$.
- **30.** Graph the curves $y = x^5$ and x = y(points of intersection correct to one

28. Match the parametric equations with Give reasons for your choices. (Do n device.)

(a) $x = t^4 - t + 1$, $y = t^2$ (b) $x = t^2 - 2t$, $y = \sqrt{t}$ (c) $x = \sin 2t$, $y = \sin (t + \sin 2t)$ (d) $x = \cos 5t$, $y = \sin 2t$ (e) $x = t + \sin 4t$, $y = t^2 + \cos 3t$ (f) $x = \frac{\sin 2t}{4 + t^2}$, $y = \frac{\cos 2t}{4 + t^2}$

27.

29. Graph the curve x = y - 3y³ + y⁵.
30. Graph the curves y = x⁵ and x = y(points of intersection correct to one

(a) $x = t^4 - t + 1$, $y = t^2$ (b) $x = t^2 - 2t$, $y = \sqrt{t}$ (c) $x = \sin 2t$, $y = \sin(t + \sin 2t)$ (d) $x = \cos 5t$, $y = \sin 2t$ (e) $x = t + \sin 4t$, $y = t^2 + \cos 3t$ (f) $x = \frac{\sin 2t}{4 + t^2}$, $y = \frac{\cos 2t}{4 + t^2}$

 \nearrow 29. Graph the curve $x = y - 3y^3 + y^5$.

30. Graph the curves $y = x^5$ and x = y(points of intersection correct to one