Богдан Уладзіслаў

ФПМІ, 3 курс, 3 група

ДЗ 2

Аптымізацыйная задача пра разбіццё параў

Будзем даказываць NP-складанасць задачы.

Схема доказу

$$\Pi_1 \propto \Pi_2 \propto \Pi_3 \propto \Pi_4 \propto_T \Pi_{opt}$$

дзе:

 Π_1 - Задача пра разбіццё: мноства натуральных лікаў e_k разбіваецца на два падмноства E_1 і E_2 з роўнымі сумамі элементаў. Ведаем пра NP-паўнату задачы.

 Π_2 - Задача пра разбіццё параў: элементы $(e_1, e_2), ... (e_{n-1}, e_n)$ размяркоўваюцца паміж двумя падмноствамі з роўнымі сумамі элементаў; элементы з адной пары прыналежаць розным мноствам.

 Π_3 - Задача пра разбіццё ўпарадкаваных параў: дадаткова накладваецца абмежаванне $0 < e_1 < e_2 < ... < e_{n-1} < e_n$. Па-ранейшаму, шукаем такое разбіццё, што:

$$F(E_1, E_2) = \sum_{e_k \in E_1} e_k - \sum_{e_k \in E_2} e_k = 0$$

 Π_4 - Задача пра разбіццё ўпарадкаваных параў з мадыфікаванай мэтавай функцыяй:

$$F(E_1, E_2) = \sum_{e_k \in E_1} e_k - \sum_{e_k \in E_2} e_k < y$$

дзе y = const > 0.

 Π_{opt} - Аптымізацыйная задача пра разбіццё ўпарадкаваных параў.

$\Pi_1 \propto \Pi_2$

Пакажам палінаміальную прывадзімасць. Будзем дзейнічаць наступным чынам: кожнаму e_k паставім у адпаведнасць пару лікаў $(1, e_k + 1)$. Атрымаем мноства:

$$(1, e_1 + 1), (1, e_2 + 1), ..., (1, e_{n-1} + 1), (1, e_n + 1)$$

У задачы Π_1 было знойдзенае разбіццё. Для кожнай новаўтворанай пары элемент e_k+1 размяшчаем у тым з мностваў E_1, E_2 , у якім дагэтуль знаходзіўся элемент e_k ; 1-ку размяшчаем у іншым мностве. Зразумела, што значэнне функцыі $F(E_1, E_2)$ не зменіцца.

Выснова: задача Π_2 - NP-поўная.

$\Pi_2 \propto \Pi_3$

Пакажам палінаміальную прывадзімасць. Увядзем абазначэнне $A = \sum e_k$. Наступным чынам мадыфікуем выпісаныя ў папярэднім пункце пары:

$$(1+A, e_1+1+2A), (1+2A, e_2+1+2A), ..., (1+(n-1)A, e_{n-1}+1+(n-1)A), (1+nA, e_n+1+nA)$$

Відавочна, што цяпер мы маем строгую ўпарадкаванасць усіх элементаў у шэрагу.

Выснова: задача Π_3 - NP-поўная.

$\Pi_3 \propto \Pi_4$

Задача Π_3 - падзадача задачы Π_4 з y=0. Мы можам казаць пра NP-паўнату задачы Π_4 таму, што уваходы задачаў Π_3 і Π_4 палінаміальна звязаныя: неглядзячы на адсутнасць яўнага задання значэння y мы маем яшчэ n лікаў, якія з'яўляюцца ўваходнымі дадзенымі задачы. Робім выснову пра NP-паўнату задачы Π_4 .

$$\Pi_4 \propto_T \Pi_{opt}$$

NP-складанасць задачы Π_{opt} будзем даказываць выкарыстоўваючы прывадзімасць па Цюрынгу ад адпаведнай задачы распазнавання Π_4 (фармулюецца аналігачна задачы аптымізацыі, умова мінімізацыі замяняецца ўмовай $F(E_1, E_2) < y$, для зададзенага y).

 Π а Тэарэме 3.4 з NP-паўнаты вынікае NP-складанасць задачы Π_4 (задача Π_4 - NP-складаная).

Мяркуем справядлівасць гіпотэзы пра несупадзенне класаў Р і NP.

Тады праз стандартную схему доказу NP-складанасці аптымізацыйнай задачы (апісанай у тэкстах лекцый) для доказу NP-складанасці задачы Π_{opt} застаецца паказаць палінаміальную вылічальнасць функцыі $F(I,x^*)$. Тут $I\in D_\Pi$ - прыклад задачы, $x^*\in X(I)$ - элемент з канечнага мноства дапускальных элементаў для прыклада I.

$$F(I, x^*) = F(E_1, E_2) = \sum_{e_k \in E_1} e_k - \sum_{e_k \in E_2} e_k$$

Зразумела, што за палінаміальны час мы можам праверыць слушнасць сцверджання $F(I,x^*) < y$ пры наяўнасці I(апісвае задачу, то бок мноства элементаў e_k), x^* (які задае разбіццё паміж мноствамі E_1 і E_2) і y. Падлік дзвюх сумаў элементаў здзяйсняецца за лінейны адносна колькасці элементаў час, то бок за палінаміальны адносна памеру ўваходных дадзеных.

Такім чынам, мы паказалі NP-складанасць аптымізацыйнай задачы пра разбіццё параў.