PHYA1 Particles & radiation 4

121 min 116 marks

1.	(a)	(i)	Complete the equation that represents the collision between a proton and an antineutrino.	
			$\overline{\mathbf{v}}_e + \mathbf{p} \longrightarrow$	
		(ii)	What fundamental force is responsible for the interaction shown in part (i)?	
		(iii)	Name an exchange particle that could be involved in this interaction.	
				(4)

	(b)	Describe what happens in pair production and give one example of this process.	
		You may be awarded marks for the quality of written communication in your answer.	
			(3)
		(Total 7 n	narks)
2.	A ra	dioactive isotope of carbon is represented by $^{14}_{6}$ C.	
	(a)	Using the same notation, give the isotope of carbon that has two fewer neutrons.	
			(1)
	(b)	Calculate the charge on the ion formed when two electrons are removed from an atom of $^{14}_{6}\mathrm{C}$.	
			(2)

. . .	Calculate the value of $\frac{\text{charge}}{\text{mass}}$ for the nucleus of an atom of $_6^{14}$ C.
	
 (Total 5 mar	(T
nd state	 (i) Give an example of an exchange particle other than a W⁺ or W⁻ particle, and the fundamental force involved when it is produced.
	exchange particle fundamental force
	(ii) State what roles exchange particles can play in an interaction.
	From the following list of particles,
	$p \qquad \stackrel{-}{n} \qquad \nu_e e^+ \mu^- \pi^0$
	identify all the examples of
	(i) hadrons,
	(ii) leptons,
	(iii) antiparticles,
	(iv) charged particles.

4.	(a)	An io	on of plutonium $^{239}_{94}$ Pu has an overall charge of $+1.6 \times 10^{-19}$ C.	
		For t	his ion state the number of	
		(i)	protons	
		(ii)	neutrons	
		(iii)	electrons	(3)
	(b)	Pluto	onium has several <i>isotopes</i> .	
		Expl	ain the meaning of the word isotopes.	
		•••••	(Total 5 m	(2) arks)
5.	Unde	er certa	ain conditions a γ photon may be converted into an electron and a positron.	
	(a)	Wha	t is this process called?	
				(1)
	(b)	(i)	Explain why there is a minimum energy of the γ photon for this conversion to take place and what happens when a γ photon has slightly more energy than this value.	

		(ii)	Using v	alues	from the	e data she	eet calcu	late th	nis mini	mum (energy	in M	eV.	
	(c)	than a	r suitable an electro an examp	on and	positro	n. other pa	rticles it	could	create.				cles rathe	(3)
												••••••		(1) tal 5 marks)
6.	(a)	Comp	olete the		_	ations								
			p			$\rightarrow \longrightarrow$	•	+						
			n		r	\rightarrow	p	+			<i>v</i> -			
			p	+	- p	,	p	+	p	+	K	+		(4)
	(b)	Give nucle	an equati ons.	on tha	at repres	sents β¯ d	lecay, us	sing qu	ıarks in	the ed	quatio	n rath	er than	
														(2)

	(c)	(i)	Which fundamental force is responsible for electron capture?	
		(ii)	What type of particle is an electron?	
		(iii)	State the other fundamental forces that electrons may experience.	
			(Total 9 ma	(3) rks)
7.	(a)		many protons, neutrons and electrons are there in an atom of caesium, $^{133}_{55}$ Cs, which most abundant and stable <i>isotope</i> of caesium.	
			protons	
			neutrons	
			electrons	(2)
	(b)	(i)	Explain what is meant by isotopes.	
		(ii)	Write down an isotope $^{133}_{55}$ Cs that is likely to be a beta minus emitter.	
				(3)

	(c)	Dete	rmine the specific charg	ge of a nucleus of $^{133}_{55}$ Cs.		
				specific c	harge =	
				•	(Total 8 ma	(3) rks)
8.			model was developed to combinations.	help understand hadrons. Quan	rks cannot exist separately,	
	(a)	(i)	List the three combin	ations that quarks can form.		
		(ii)	Give the quark combine	nation for a positive pion, Π^+ as	nd an antiproton, p.	
			Π^+			
			_ p			(4)
						(4)

(b) The event represented by, $K^- + p \rightarrow K^0 + K^+ + X$, is a strong interaction.

The K^- has strangeness -1 and the kaons K^+ and K^0 both have strangeness +1.

(i) Use the conservation laws to deduce the strangeness, charge, baryon number and lepton number of the particle represented by X.

Strangeness

Charge

Baryon number

Lepton number

(ii) What will particle X eventually decay into?

(Total 8 marks)

9. (a) Complete the labelling of the Feynman diagram below representing positron emission from an individual nucleon.

(3)

(b) (i) What is the virtual exchange particle used by electromotive force?

	(ii)		State two differences between the exchange particles used by the weak interaction and used by the electromagnetic force.						
		•••••							
		•••••							
					(3)				
(c)	The theoretical work of Dirac suggested that for every particle there should exist a corresponding antiparticle. The first to be antiparticle to be discovered was the positron.								
	(i)	State	what is meant by an antiparticle						
		•••••							
	(ii)	Write down the corresponding antiparticle for each of the particles listed in the following table.							
			Particle	antiparticle					

Particle	antiparticle
β-	eta^+
$\pi^{\rm o}$	
K°	
γ	

(5) (Total 11 marks) **10.** (a) **Figure 1** shows the Feynman diagram for a particular interaction.

Figure 1

(i) State the type of interaction involved and name the exchange particle.

(2)

(2)

- (ii) State **two** quantities other than energy and momentum, that are conserved in this interaction.
- (b) **Figure 2** shows the Feynman diagram for another type of interaction.

Figure 2

			exchange particle.	(3)
		(ii)	Name the type of interaction responsible for this exchange particle.	
				(1)
		(iii)	Energy and momentum are conserved in this interaction. State two other quantities that must be conserved and show that they are conserved in this interaction.	rved
				(4)
		(iv)	The exchange particle in this interaction was discovered by experiment with a mass that had been predicted. Why is it important to test by experiment the prediction of a scientific theory?	rest
			(Tota	(2) ll 14 marks)
11.	(a)	Expla	ain what is meant by an isotope.	
		•••••		(2)

The incomplete table shows information for two isotopes of uranium.

Complete the diagram to show the two particles formed in the interaction and the

(i)

(b)

	number of protons	number of neutrons	specific charge of nucleus/
first isotope	92	143	
second isotope			3.7×10^7

(i)	Write the unit for the specific charge in the heading of the last column of the table.	(1)
(ii)	In the above table write down the number of protons in the second isotope in the table.	(1)
(iii)	Calculate the specific charge of the first isotope and write this in the table.	
		(3)
(iv)	Calculate the number of neutrons in the second isotope and put this number in the table	
	(Total 10 ma	(3) rks)

- **12.** (a) The Σ^+ particle is a baryon with strangeness -1.
 - (i) How many quarks does the Σ^+ particle contain?

		answer	(1)
			(1)
	(ii)	How many of the quarks are strange?	
		answer	
			(1)
(b)	The 2	Σ^+ decays in the following reaction	
		$\Sigma^+ \to \pi^+ + n$	
	(i)	State two quantities that are conserved in this reaction.	
			(2)
	(ii)	State a quantity that is not conserved in this reaction.	
			(1)
	(iii)	What interaction is responsible for this reaction?	
			(1)

		(iv)	Into what particle will the neutron formed in this reaction eventually decay?					
							(1) (Total 7 marks)	
13.	(a)	Hadr meso		particles compose	ed of quarks. Had	rons can either be l	oaryons or	
		(i)	What property do	efines a hadron?				
							(1)	
		(ii)	What is the quar	k structure of a ba	ryon?			
							(1)	
		(iii)		k structure of a me				
							(1)	
	(b)	(b) State one similarity and one difference between a particle and its antiparticle. similarity						
		diffe	rence					
		•••••					(2)	
	(c)	Com	plete the table belo	ow which lists pro	perties of the anti	proton.		
				charge / C	baryon number	quark structure		
			antiproton					

(2)

	$K \rightarrow \mu + \nu_u$	
	(i) State, with a reason, what interaction is responsible for this decay.	
(2)		
this	(ii) State two properties, other than energy and momentum, that are conserved in decay.	
(2) otal 11 marks)	(To	
	An unstable nucleus, $_{Z}^{A}X$, can decay by emitting a β^{-} particle.	14. (a)
	(i) What part of the atom is the same as a β^- particle?	
(1)		
	(ii) State the changes, if any, in A and Z when X decays.	
	change in Z	

The K^- is an example of a meson with strangeness -1. The K^- decays in the following

(d)

(b)	In the	e process of β^- decay an <i>anti-neutrino</i> is also released.	
	(i)	Give an equation for this decay.	
			(1)
	(ii)	State and explain which conservation law may be used to show that it is an <i>anti-neutrino</i> rather than a <i>neutrino</i> that is released.	
			(2)
	(iii)	What must be done to validate the predictions of an unconfirmed scientific theory?	
			(2)
		(Total 8 ma	(2) rks)