Bmad Converter Model

John Mastroberti

June 11, 2020

Contents

1	Introduction	2
2	The converter model	2
	2.1 Probability Distributions	4
	2.2 P_1 and P_2 Parameterization	4
3	Setup for Generating the Probability Parameters	5
	3.1 Dependencies	5
	3.2 Geant4 Installation Guide	6
	3.3 Compiling the Executables	7
4	How to run the programs	7
	4.1 Configuration	7
	4.2 The Simulation Program	8
	4.3 The Fitting Program	9
5	Output from the Programs	9
	5.1 Simulation Output	9
	5.2 Fitting Output	10
	5.2.1 Gnuplot Files	10
6	The Bmad Converter Element	10
A	Notes for ACC Computer Users	11

1 Introduction

This monograph discusses the converter model used in converter lattice elements in *Bmad*. In a converter, incoming particles generate particles of a different type. For example, a converter may be used to simulate the production of positrons produced when a tungsten target plate is bombarded by electrons.

The converter model currently in *Bmad* discussed here replaces an older model that was developed by Daniel Fromowitz[2]. This older model used equations to model the output distribution. The problems with this approach were the approximations that were used in developing the equations coupled with uncertainty as to how to calculate the various coefficients that were needed if parameters like the target material or the species of particles simulated were varied.

The present model replaces the equations of the older model with probability distribution tables for the energy and radial distribution of the outgoing particle along with a generalized parameterization of the probability distribution of the outgoing particles's direction of propagation. Probability distribution table values and coefficients needed to characterize the velocity distribution are obtained through a Geant[1] simulation. These tables and coefficients can then be stored in a Bmadlattice file and used for efficient generation of outgoing particles. The present model is not only more accurate but can also simulate a wider range of parameters in terms of converter thickness, converter material, incoming particle energy, and different particle species.

While it would be technically feasible to use Geant directly to simulate the converter process, the production of outgoing particles in the converter is a stochastic process, the details of which are computationally expensive. The use of probability distribution tables, which only have to be computed once, while not as accurate, speeds up the computation time by orders of magnitude.

The imputus for developing the new model was to better simulate the converter in the Cornell CESR Linac which generated positrons due to bombardment of a tungsten plate by electrons. The electrons have an energy of order $\sim 100\,\mathrm{MeV}$. As the incident electrons pass through the converter, they emit photons via Bremsstrahlung, which in turn decay to e^+e^- pairs:

$$e^{-} + Z \to e^{-} + Z + \gamma \to e^{-} + Z + e^{+} + e^{-}$$
 (1)

2 The converter model

For now, assume that the incoming particle's momentum is perpendicular to the surface of the converter. The coordinate system is shown in Figure 1. The outgoing particle's position on the downstream face of the converter is then described by r, its distance from the z axis, and the angle θ shown in the figure. By symmetry, θ must be distributed uniformly between 0 and 2π and so the probability distributions will be independent of θ . The x-axis is defined to be in the same direction as \mathbf{r} . We then choose our y axis such that (x, y, z) is a right handed orthogonal coordinate system.

Figure 1: Coordinates used to describe the outgoing particles exiting the converter. The incoming particle is labeled e^- and the outging particle is labeled e^+ .

2.1 Probability Distributions

The incoming particle is labeled by a plus symbol subscript and the outgoing particle is labeled by a minus symbol subscript. The outgoing particle as it leaves the surface of the converter is characterized by θ , its momentum p_+ , the offset from the origin r, and the dx/ds and dy/ds slopes with

$$p_{+}c = |\mathbf{p}_{+}| c \tag{2}$$

$$\frac{dx}{ds} = \frac{p_x}{p_s} \tag{3}$$

$$\frac{dy}{ds} = \frac{p_y}{p_s} \tag{4}$$

Ignoring θ , we seek the distribution

$$P\left(p_{+}c, r, \frac{dx}{ds}, \frac{dy}{ds}\right) \tag{5}$$

which describes the probability that an outgoing particle will attain particular values of p_+c , r, $\frac{dx}{ds}$, and $\frac{dy}{ds}$. This probability distribution is dependent upon the incoming particle's energy, as well as the thickness and material type of the converter. This will be discussed later.

P is normalized to the number of outgoing particles produced per incoming particle:

$$\int P\left(p_{+}c, r, \frac{dx}{ds}, \frac{dy}{ds}\right) d(p_{+}c) dr d\left(\frac{dx}{ds}\right) d\left(\frac{dy}{ds}\right) = \frac{N_{+}}{N_{-}}$$
(6)

This normalization lets us easily account for the fact that number of outgoing particles produced varies with the incoming particle energy and converter thickness. P can be decomposed into two distributions:

$$P\left(p_{+}c, r, \frac{dx}{ds}, \frac{dy}{ds}\right) = P_{1}\left(p_{+}c, r\right) P_{2}\left(\frac{dx}{ds}, \frac{dy}{ds}; p_{+}c, r\right),\tag{7}$$

where we choose P_1 to be normalized to N_+/N_- and P_2 to be normalized to 1.

2.2 P_1 and P_2 Parameterization

Using Geant[1], A number of incoming particles of a given energy incident upon a converter of a given thickness is simulated. The values of p_+c , r, $\frac{dx}{ds}$, and $\frac{dy}{ds}$ for each outgoing particle at the downstream face of the converter is recorded. This data is then binned into a two-dimensional histogram by p_+c and r. The sizes of the bins are chosen non-uniformly so that each bin holds approximately the same number of outgoing particles. The binned data produces a probability distribution table that characterizes $P_1(p_+c,r)$.

To model P_2 , for each (p_+c, r) bin, the distribution of particles in dx/ds and dy/ds is fit to the functional form

$$P_2\left(\frac{dx}{ds}, \frac{dy}{ds}; p_+c, r\right) = A \frac{1 + \beta \frac{dx}{ds}}{1 + \alpha_x^2 \left(\frac{dx}{ds} - c_x\right)^2 + \alpha_y^2 \left(\frac{dy}{ds}\right)^2}.$$
 (8)

Since P_2 is normalized to 1, A is not a true fit parameter, but is fixed by the normalization. The fit gives values of c_x , α_x , α_y , and β in each (p_+c,r) bin. The distribution of $\frac{dx}{ds}$ and $\frac{dy}{ds}$ is also characterized by $\frac{dx}{ds_{min}}$, $\frac{dx}{ds_{max}}$ and $\left|\frac{dy}{ds}\right|_{max}$, which define the rectangle in $\frac{dx}{ds} \times \frac{dy}{ds}$ space where $P_2\left(\frac{dx}{ds}, \frac{dy}{ds}\right)$ is significantly nonzero. Fits to each of the parameters c_x , α_x , α_y , β , $\frac{dx}{ds_{min}}$, $\frac{dx}{ds_{max}}$, $\left|\frac{dy}{ds_{max}}\right|$ as functions of p_+c and r are made as follows:

• At each value of p_+c below a user-defined cutoff, we perform a 1D fit of the form

$$\pi(r) = a_0 + a_1 r + a_2 r^2 + a_3 r^3 + a_4 r^4 \tag{9}$$

for each parameter $\pi=c_x,\alpha_x,\alpha_y,\beta,\frac{dx}{ds\min},\frac{dx}{ds\max},\left|\frac{dy}{ds}\right|_{\max}$. For c_x and β , a_0 is fixed to be 0, as c_x and β must be zero at r=0 by symmetry. For all other parameters, a_4 is fixed to be zero, so that a third degree polynomial is fit instead of a fourth degree polynomial.

• Above the user-defined p_+c cutoff, we perform a 2D fit of the form

$$\pi(r) = (1 + a_1(p_+c) + a_2(p_+c)^2 + a_3(p_+c)^3)(b_0 + b_1r + b_2r^2 + b_3r^3)e^{-(k_p(p_+c) + k_rr)} + C$$
(10)

for each parameter $\pi = c_x, \alpha_x, \alpha_y, \beta, \frac{dx}{ds_{\min}}, \frac{dx}{ds_{\max}}, \left|\frac{dy}{ds}\right|_{\max}$. The parameter C is only used for $\frac{dx}{ds_{\max}}$. Note that we set the constant term for the p_+c polynomial to 1 in each case. This must be done so that the fitting problem is full rank.

With these fits in hand, we have an approximation of $P_2\left(\frac{dx}{ds}, \frac{dy}{ds}; p_+c, r\right)$.

3 Setup for Generating the Probability Parameters

Generating the probability parameters has two main stages. In the first stage, the particle creation events are simulated with Geant, and the resulting outgoing particles are binned into a histogram. In the second stage, fits are performed for $\frac{dx}{ds}$ and $\frac{dy}{ds}$. As such, we have developed two executables: one responsible for the first stage, converter_simulation, and one responsible for the second, converter_fitter.

After the probability parameters are generated, a *Bmad* lattice file can be created that contains these parameters and this lattice file is used for simulating the converter independent of Geant.

3.1 Dependencies

To build and run the simulation proper, **converter_simulation**, you will need an up to date installation of Geant4 on your system. See the Geant4 installation guide below for details on how to get Geant4 up and running on Linux. You will also need **cmake** installed, although this is already a requirement for a standard *Bmad* distribution.

To build and run the fitting program, converter_fitter, you will need the GNU Scientific Library (GSL) installed on your system. This is distributed with *Bmad*, so you should already have it on your system.

Both executables require a C++ compiler with support for C++17; GCC 8 or higher should be fine.

3.2 Geant4 Installation Guide

This guide is an abbreviated version of the instructions found on the Geant4 website.

- 1. Download the source files from https://geant4.web.cern.ch/support/download.
- 2. Create a directory where Geant will be installed. I'll be using \$HOME/geant.
- 3. cd to this directory and unpack the downloaded files with

```
$ tar xzvf ~/Downloads/geant4.10.06.tar.gz
```

(change the version number as appropriate).

4. Make another directory where you will build Geant with

```
$ mkdir geant4.10.06-build
```

5. cd to this new directory, and use cmake to configure the Geant4 build with

The first -D flag will cause the necessary data sets to be downloaded when we build Geant, and the second -D flag sets the install directory. If you chose a different location for installing Geant, edit this flag as needed.

Note: if you encounter the the error

```
Could NOT find EXPAT (missing: EXPAT_LIBRARY EXPAT_INCLUDE_DIR)
```

at this step, try editting the file

../ geant 4.10.06/cmake/Modules/Geant 40 ptional Component ents.cmake, replacing the line

```
option(GEANT4_USE_SYSTEM_EXPAT "Use system Expat library" ON)
```

with

```
option(GEANT4_USE_SYSTEM_EXPAT "Use system Expat library" OFF)
```

and then re-run the above cmake command.

6. After cmake finished running, start building Geant with

```
$ make -jN
```

where N is the number of threads you want to use for the compilation.

7. Once the compilation has finished, install to the install directory you specified in step 5 with

```
$ make install
```

8. The file \$HOME/geant/geant4.10.06-build/geant4make.sh must be sourced to add Geant4 to your path. To do so, add the following to your .bashrc:

```
cd $HOME/geant/geant4.10.06-build && source geant4make.sh && cd -
```

Again, if you chose a different location for installing Geant, modify this as necessary.

3.3 Compiling the Executables

The converter simulation and fitting programs are distributed as part of the util_programs project, which is included in a standard *Bmad* distribution. If you are working with a release instead of a distribution, you can pull down the latest version of the util_programs project with

```
$ svn co https://accserv.lepp.cornell.edu/svn/trunk/src/util_programs
```

Once you have util_programs on your system, you will need to add

```
export ACC_BUILD_TEST_EXES="Y"
```

to your .bashrc, and then start a new shell. cd to the util_programs folder, and then simply run mk to build converter_simulation and converter_fitter (or mkd for debug builds).

4 How to run the programs

4.1 Configuration

Both converter_simulation and converter_fitter are configured by editing the file config.txt, which should be in the working directory where you run both executables. Each line in this file should have the form

```
setting = value
```

Comments can be inserted with an exclamation mark! and last until the end of the line. An example config file, with all available settings listed, is shown below.

```
! Example configuration file
! The ! introduces a comment that lasts until the end of the line
target_material = tungsten ! Defines the converter material
target\_thickness = 6.35 \text{ mm}, 1.0 \text{ cm} ! Defines the target thicknesses to be simulated
pc_in = 300 MeV, 500 MeV, 1 GeV ! Defines the incoming particle energies to be simulated
out_pc_min = 0 ! Minimum pc cutoff for outgoing particles, defaults to 0
out_pc_max = 100000000 ! Maximum pc cutoff for outgoing particles (in eV here)
dxy_ds_max = 10! Maximum cutoff for the magnitude of dx/ds
                ! and dy/ds allowed for outgoing particles
output_directory = sim_data ! Name of the directory where data will be output,
                            ! should be specified relative to the working directory
                            ! Defaults to sim_data
num_bins = 15 ! Number of bins to use for both pc and r histogram binning
              ! with just this line, you would have a 15x15 histogram
              ! Defaults to 15
num_pc_bins = 12 ! Number of pc bins to use for histogram binning
num_r_bins = 20 ! Number of r bins to use for histogram binning
fit_crossover = 10 MeV ! For alpha and beta fits, this defines the
                       ! point where the fitter transitions from 1D
                       ! to 2D fits, defaults to 10 MeV
```

All settings accept a single value, except for pc_in and target_thickness, which accept a comma separated list of values. The settings out_pc_min, output_directory, num_bins, and fit_crossover have default values, while the settings target_material, target_thickness, pc_in, out_pc_max, and dxy_ds_max must be specified in the file.

The settings pc_in, out_pc_min, and out_pc_max take values with dimensions of energy. These default to eV if no unit is specified, although MeV and GeV can be added as suffixes to use MeV and GeV instead as shown in the sample file. The target_thickness setting takes values with dimensions of length. The default unit is meters, although cm and mm are supported as well.

The settings num_bins, num_pc_bins, and num_r_bins control the number of bins used in the histogram. If you only provide a value for num_bins, it will be used for both the number of p_+c bins and then number of r bins. If you provide num_pc_bins or num_r_bins in your config file, this value will supersede num_bins for the number of p_+c or r bins respectively. If you do not set num_bins in your config file, you must set both num_pc_bins and num_r_bins.

4.2 The Simulation Program

To run converter_simulation and perform the converter simulation, first create and edit the configuration file config.txt, and place it in your working directory. Then, just run

```
$ converter_simulation
```

at your command prompt. The program will parse your config file and report the settings it read, and report if there are any problems reading your config file. It will then verify that the directory you set for output_directory does not exist or is empty, and will ask you if you

want to overwrite it if it already exists. Then, for each value of pc_in and target_thickness specified in the config file, the program will simulate many particle creation events for those settings. For example, with the above config file, six simulations will be run with the following settings:

- 300 MeV pc_in and 6.35 mm target_thickness
- 500 MeV pc_in and 6.35 mm target_thickness
- 1 GeV pc_in and 6.35 mm target_thickness
- 300 MeV pc_in and 1 cm target_thickness
- 500 MeV pc_in and 1 cm target_thickness
- 1 GeV pc_in and 1 cm target_thickness

Depending on your computer and the number of different simulations that need to be run, this step may take several hours.

4.3 The Fitting Program

Once the simulations are complete, just run

\$ converter_fitter

in the same directory where you ran converter_simulation. converter_fitterwill re-parse your config file for the settings it needs, and will again report on any errors it encounters. It then performs the fit from Equation 8 in each of the (p_+c,r) bins for each simulation. At this stage, the program may report that the fitting iteration limit has been reached a few times; this is not cause for concern. Once this step is complete, and the program has obtained values of c_x , α_x , α_y , and β in each (p_+c,r) bin, it performs the fits from Equations 9-10 on these fit parameters. Finally, the results of the simulation, as well as the results of the fits, are output to the file converter.bmad, located in the output_directory specified in the config file.

5 Output from the Programs

5.1 Simulation Output

After running the converter_simulation program, the directory specified by the output_directory setting in the configuration file will exist in your working directory. Inside it, there will be one file of the format 'E{pc_in}_T{thickness}_er.dat', for each incoming p_c and target thickness specified in the configuration file, where pc_in and thickness are the p_c and thickness in MeV and cm respectively. These files contained the binned data which approximate $P_1(p_+c,r)$. The output directory will also contain a directory dir_dat, with subdirectories E{pc_in}_T{thickness}_er.dat for each p_c and target thickness combination. Each of these directories will contain files named E{pc_out}_r{r_out}_bin.dat, which contain the binned $\frac{dx}{ds}$ and $\frac{dy}{ds}$ data used by converter_fitter.

5.2 Fitting Output

After running the converter_fitter program, the output directory will also contain a file called converter.bmad. This file aggregates all the information about P_1 and P_2 at each p_+c and target thickness tested, and is designed for use with a Bmad converter element.

5.2.1 Gnuplot Files

converter_fitter also generates several gnuplot scripts for inspecting the quality of the obtained fits. These are all written to the individual E{}_r{} directories under dir_dat.

Each of the (p_+c,r) bins gets two gnuplot scripts: cauchy_E{pc_out}_r{r_out}.gp and meta_E{pc_out}_r{r_out}.gp. The scripts with the cauchy prefix display the distribution P_2 obtained by directly fitting Equation 8 to the data in each bin. The scripts with the meta prefix display the distribution P_2 obtained from evaluating the fits from Equations 9-10 to the Cauchy fit parameters.

converter_fitter also outputs scripts for viewing the fits from Equations 9-10 across all (p_+c,r) bins. These are named c_x_master.gp, a_x_master.gp, a_y_master.gp, beta_master.gp, dxds_min_master.gp, dxds_max_master.gp, and dyds_max_master.gp.

To view any of these plots, simply open Gnuplot in the $E\{\}_T\{\}$ directory of interest, and call the script. For example:

```
$ pwd
/home/user/sim_data/dir_dat/E300_T0.635
$ gnuplot
        GNUPLOT
        Version 5.2 patchlevel 8
                                    last modified 2019-12-01
        Copyright (C) 1986-1993, 1998, 2004, 2007-2019
        Thomas Williams, Colin Kelley and many others
        gnuplot home:
                          http://www.gnuplot.info
        faq, bugs, etc:
                          type "help FAQ"
        immediate help:
                          type "help" (plot window: hit 'h')
Terminal type is now 'qt'
gnuplot> call 'c_x_master.gp'
```

This will open the plot for c_x across all (p_+c, r) bins for $p_+c = 300$ MeV, T = 0.635 cm.

6 The *Bmad* Converter Element

As mention in the previous section, converter_fitteroutputs a file, converter.bmad, which encodes all of the simulation and fitting output, and can be used to specify the properties of a Bmad converter element. See the Bmad manual for the full details regarding the converter element in Bmad.

The user should be aware that Bmad's method of generating outgoing particles may not be completely faithful to the simulation results. In particular, Bmad uses linear interpolation for the $P_1(p_+c,r)$ distribution. This can cause noticeable discrepancies on the edges of the distribution, especially in the bins with the lowest values of p_+c . Since $P_1(p_+c,r)$ changes rapidly at low p_+c , and Bmad additionally does not generate outgoing particles with p_+c lower than the lowest value of p_+c for the bins, Bmad does not generate as many outgoing particles at low p_+c as it should.

A Notes for ACC Computer Users

As detailed in Section 3.1, building converter_simulationand converter_fitterrequires GSL, Geant, and a C++ compiler with support for C++17. GSL is already available on the lab machines, and a build of Geant is provided at /nfs/acc/temp/jmm699/geant. To get access to this Geant build, you can simply add the following to your .bashrc:

cd /nfs/acc/temp/jmm699/geant/geant4.10.06.p01-build && source geant4make.sh && cd -

As for the C++ compiler, you can get access to GCC 8.3 by adding

source /opt/rh/devtoolset-8/enable

to your .bashrc.

References

- [1] S. Agostinelli et al. "Geant4—a simulation toolkit". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506.3 (2003), pp. 250–303. ISSN: 0168-9002. DOI: https://doi.org/10.1016/S0168-9002(03)01368-8. URL: http://www.sciencedirect.com/science/article/pii/S0168900203013688.
- [2] Daniel Bret Fromowitz. "Increasing the positron capture efficiency of the CESR linac injector". PhD thesis. Cornell University, Oct. 2000.