

FinRL-Meta: Market Environments and Benchmarks for Data-Driven Financial Reinforcement Learning

Ziyi Xia Columbia University

July. 03, 2022

Overview

- Finance is a particularly difficult playground for deep reinforcement learning (DRL).
- Open-source **FinRL-Meta** library:
 - Build hundreds of market environments.
 - Benchmark popular papers as stepping stones for users.
 - Tens of demos organized in a curriculum, with clean documentation.
- Features:
 - Layered structure
 - Extensibility.
 - "Training-testing-trading" pipeline.
 - Plug-and-play.

Layered Structure

- Three layers: data layer, environment layer, and agent layer.
 - Transparency: layers interact through end-to-end interfaces
 - Modularity: easy extension of user-defined functions

DataOps Paradigm

- Automated data engineering and agile development.
- Reduces the cycle time of data engineering and improves data quality.
- To deal with **financial big data**, we implement an **automatic pipeline**:
 - a. Task planning
 - b. Data processing
 - c. Training-testing-trading
 - d. Performance monitoring

We continuously produce dynamic market datasets.

Training-testing-trading Pipeline

- Training-testing-trading pipeline:
 - First, a DRL agent is **trained** in a training dataset and **fined-tuned** (adjusting hyperparameters) in a testing dataset.
 - Then, backtest the agent (on historical dataset), or deploy in a **paper/live trading** market.

Plug-and-Play

- A DRL agent can be directly plugged in: training-testing-trading.
- Following DRL libraries are supported:
 - **ElegantRL**: Lightweight, efficient and stable DRL implementation using PyTorch.
 - Stable-Baselines3: Improved DRL algorithms based on OpenAl Baselines.
 - RLlib: An open-source DRL library that offers high scalability and unified APIs.

Data Layer

Data Accessing:

- Connect APIs of different platforms via unified interface.
- Access data by specifying the start date, end date, stock list, time interval, and other parameters.
- Support more than 30 data sources, e.g. stocks, cryptocurrencies, ETFs, forex, etc.

Data Cleaning:

- Raw data are unstructured: erroneous or missing data.
- Automate the data cleaning process with a unified data processor.

Data Layer

Feature engineering:

- Automatically calculate technical indicators, e.g., Stockstats, TA-lib
- Add user-defined features

Environment Layer

- Incorporate common market frictions and portfolio restrictions.
 - Flexible account settings
 - Transaction cost
 - Risk-control for market crash
- Multiprocessing training via vector environment:
 - To utilize GPUs for multiprocessing training to accelerates the training process.
 - To achieve multiprocessing simulation of hundreds of market environments on large datasets.

Tutorials and Benchmarks

- For education, >100 Jupyter notebooks as tutorials:
 - Stock trading
 - Portfolio allocation
 - Cryptocurrency trading
 - MARL for liquidation strategy analysis
 - Ensemble strategy for stock trading
 - Paper trading demo
 - China A-share demo
 - Hyperparameter tuning
 - 0
- For demo, reproduce papers as benchmarks:
 - Stock trading task
 - Liquidation analysis
 - Explainable financial RL
 - Podracer on the cloud
 - Ensemble strategy

Conclusion

- Follow the DataOps paradigm and develop FinRL-Meta library
 - provide openly accessible dynamic financial datasets and reproducible benchmarks.

- Future work:
 - FinRL-Meta aims to build a universe of financial market environments.
 - o To improve the performance for the large-scale markets, we are exploiting GPU-based massive parallel simulation such as Isaac Gym.
 - We believe that FinRL-Meta may help provide insights into complex market phenomena and offer guidance for financial regulations.

Collaboration and Support

Thanks for the collaboration and support of the following institutions:

