Métodos Matemáticos I

Capítulo 6 Séries de Potências

2006/2007

Definição

Uma série de potências de x - a é uma série da forma

$$a_0 + a_1(x-a) + a_2(x-a)^2 + \ldots + a_n(x-a)^n = \sum_{n=0}^{+\infty} a_n(x-a)^n.$$

Uma série de potências de x-a é sempre convergente para x=a. De facto, quando x=a, obtemos a série numérica $a_0+0+0+\ldots$, cuja soma é $a_0\in {\rm I\!R}$.

Exemplos de séries de potências

- $ightharpoonup \sum_{n=0}^{+\infty} x^n$ é uma série de potências em que $a_n=1$ e a=0
- $ightharpoonup \sum_{n=0}^{+\infty} 2^n (x-3)^n$ é uma série de potências em que $a_n=2^n$ e a=3

Será que existem outros valores de x, diferentes de a para os quais a série de potências acima definida é convergente ?

_

3

1

Teorema de Abel - séries de potências de x - a

Dada a série de potências $\sum_{n=0}^{+\infty} a_n(x-a)^n$, apenas uma das seguintes situações se verifica:

- 1. a série converge apenas para x = a;
- 2. a série converge absolutamente (e por isso converge) para todos os valores reais de *x*;
- 3. existe um número real R (chamado raio de convergência) tal que a série converge absolutamente para todos os valores de x para os quais |x-a| < R, e diverge para todos os valores de x para os quais |x-a| > R.

No teorema anterior, quando se verifica o 1º caso tem-se R=0 e quando se verifica o 2º caso tem-se $R=+\infty$.

Definição

Chama-se intervalo de convergência da série de potências ao conjunto de todos os valores para os quais a série converge.

Vejamos agora como determinar o raio de convergência de uma série de potências de termos não nulos.

5

Teorema

O raio de convergência de uma série de potências da form $a_n(x-a)^n$ é dado por:

- ▶ $R = \lim_{n \to +\infty} \left| \frac{a_n}{a_{n+1}} \right|$, desde que o limite exista ou seja $+\infty$. ou
- ▶ $R = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{|a_n|}}$, desde que o limite exista ou seja $+\infty$.

Além disso,

- 1. se R = 0 a série converge para x = a;
- 2. se $R = +\infty$ então a série converge $\forall x \in \mathbb{R}$
- 3. se $R \in]0, +\infty[$ então a série converge pelo menos para todos os valores de $x \in]a R, a + R[$.

Exemplo

Encontre o raio de convergência e o intervalo de convergência da série $\sum_{n=0}^{+\infty} \frac{x^n}{n!}$

Resolução:

$$R = \lim_{n \to +\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to +\infty} \left| \frac{1/n!}{1/(n+1)!} \right| = \lim_{n \to +\infty} \left| \frac{(n+1)!}{n!} \right| = +\infty$$

Como o raio de convergência é $+\infty$ a série dada converge $\forall x \in {\rm I\!R}$

7

8

Exemplo

Encontre o raio de convergência e o intervalo de convergência da série $\sum_{n=0}^{+\infty} n! x^n$

Resolução:

$$R = \lim_{n \to +\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to +\infty} \left| \frac{n!}{(n+1)!} \right| = \lim_{n \to +\infty} \left| \frac{1}{n+1} \right| = 0$$

Como o raio de convergência é 0 a série dada converge apenas para x=0.

Exemplo

Encontre o raio de convergência e o intervalo de convergência da série $\sum_{n=0}^{+\infty} \frac{(x-5)^n}{n^2}$

Resolução:

$$R = \lim_{n \to +\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to +\infty} \left| \frac{1/n^2}{1/(n+1)^2} \right| = \lim_{n \to +\infty} \left| \frac{(n+1)^2}{n^2} \right| = 1$$

Como o raio de convergência é 1 a série dada converge pelo menos para $x \in]5-1, 5+1[=]4, 6[$.

Continuação da Resolução

Nos pontos terminais x=4 e x=6 é necessário analisar separadamente. Para x=4 a série vem

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n^2}$$

que é uma série absolutamente convergente (justificar!) e por isso é convergente. Para x=6 a série vem

$$\sum_{n=0}^{+\infty} \frac{1^n}{n^2} = \sum_{n=0}^{+\infty} \frac{1}{n^2}$$

que é uma série de Dirichlet com p=2 e por isso é convergente. Assim o intervalo de convergência é [4,6].

10

9