Winter 2020 Semester (Results, Definitions, and Theorems)

Lecture: 09

Chapter 9: Metric Spaces (General Properties)

Class: Math 455 (Analysis 4) Date: 9 February 2020

Shereen Elaidi

Abstract

This document contains a summary of all the key definitions, results, and theorems from class. There are probably typos, and so I would be grateful if you brought those to my attention :-).

Syllabus: L^p space, duality, weak convergence, Young, Holder, and Minkowski inequalities, point-set topology, topological space, dense sets, completeness, compactness, connectedness, path-connectedness, separability, Tychnoff theorem, Stone-Weierstrass Theorem, Arzela-Ascoli, Baire category theorem, open mapping theorem, closed graph theorem, uniform boudnedness principle, Hahn Banch theorem.

This section was not covered in class, but since we have homework on this chapter I figured having this as a review from analysis 2 might be helpful. Also, there are a few terms/results that I don't think we covered in analysis 2.

9.1. Examples of Metric Spaces

Definition 1 (Metric Space). Let X be a non-empty set. A function $\rho: X \times X \to \mathbb{R}$ is called a **metric** if $\forall x, y \in X$:

- (i) $\rho(x,y) \ge 0$
- (ii) $\rho(x,y) = 0 \iff x = y$
- (iii) $\rho(x,y) = \rho(y,x)$
- (iv) $\rho(x,z) \le \rho(x,y) + \rho(y,z)$ (Triangle Inequality).

A non-empty set together with a metric, denoted (X, ρ) is called a **metric space**.

Definition 2 (Discrete Metric). For any non-empty set X, the **discrete metric** ρ is defined by setting $\rho(x,y)=0$ if x=y and $\rho(x,y)=1$ if $x\neq y$.

Definition 3 (Metric Subspace). For any metric space (X, ρ) , let $Y \subseteq X$ be non-empty. Then, the restriction of ρ to $Y \times Y$ defines a metric on Y. We define this induced metric space as a **metric subspace**.

Example 9.1.1 (Examples of metric spaces). The following are examples of metric spaces:

- (i) Every non-empty subset of a Euclidean space.
- (ii) $L^p(E)$, where $E \subseteq \mathbb{R}$ is a measurable set.
- (iii) C[a,b].

Definition 4 (Product Metric). For metric spaces (X_1, ρ_1) and (X_2, ρ_2) , we define the **product metric** τ on the cartesian product $X_1 \times X_2$ by setting, for (x_1, x_2) and (y_1, y_2) in $X_1 \times X_2$:

$$\tau((x_1, x_2), (y_1, y_2)) := \{ [\rho_1(x_1, x_2)]^2 + [\rho_2(y_1, y_2)]^2 \}^{1/2}$$
(9.1)

Definition 5. Two metrics ρ and σ on a set X are said to be **equivalent** if there are positive numbers c_1 and c_2 such that $\forall x_1, x_2 \in X$,

$$c_1 \sigma(x_1, x_2) \le \rho(x_1, x_2) \le c_2 \sigma(x_1, x_2)$$

Definition 6 (Isometry). A mapping $f:(X,\rho)\to (Y,\sigma)$ between two metric spaces is called an **isometry** provided that f is surjective and $\forall x_1,x_2\in X$:

$$\sigma(f(x_1), f(x_2)) = \rho(x_1, x_2) \tag{9.2}$$

We say that two metric spaces are **isometric** if there is an isometry from one to another.

9.2. Open Sets, Closed Sets, and Convergent Sequences

Definition 7 (Open Ball). Let (X, ρ) be a metric space. For a point $x \in X$ and r > 0, the set:

$$B(x,r) := \{ x' \in X \mid \rho(x',x) < r \}$$
(9.3)

is called the **open ball** centred at x of radius r. A subset $\mathcal{O} \subseteq X$ is said to be **open** if $\forall x \in \mathcal{O}$, there exists an open ball centred at x and contained in \mathcal{O} . For a point $x \in X$, an open set containing x is called a **neighbourhood** of x.

Proposition 1. Let X be a metric space. The whole set X and the empty set \emptyset are open. The intersection of any two open sets is open. The union of any collection of open sets is open.

Proposition 2. Let X be a subspace of a metric space Y and $E \subseteq X$. Then, E is **open in** $X \iff E = X \cap \mathcal{O}$, where \mathcal{O} is open in Y.

Definition 8 (Closure). For a subset $E \subseteq X$, a point $x \in X$ is called a **point of closure** of E provided that every neighbourhood of x contains a point in E. The collection of the points of closure of E is called the **closure** of E and is denoted by \overline{E} .

Proposition 3. For $E \subseteq X$, where X is a metric space, its closure \overline{E} is closed. Moreover, \overline{E} is the smallest closed subset of X containing E in the sense that if F is closed and if $E \subseteq F$, then $\overline{E} \subseteq F$.

Definition 9 (Converge). A sequence $\{x_n\}$ in a metric space (X, ρ) is said to **converge** to the point $x \in x$ provided that:

$$\lim_{n \to \infty} \rho(x_n, x) = 0$$

that is, $\forall \varepsilon > 0$, \exists an index N such that $\forall n \geq N$, $\rho(x_n, x) < \varepsilon$.

Proposition 4. Let ρ and σ be equivalent metrics on a non-empty set X. Then, a subset X is open in a metric space $(X, \rho) \iff$ it is open in (X, σ) .

9.3. Continuous Mappings Between Metric Spaces

Definition 10 (Continuous). A mapping f from a metric space X to a metric space Y is continuous at the point $x \in X$ if $\{x_n\} \in X$, if $\{x_n\} \to x$, then $\{f(x_n)\} \to f(x)$. f is said to be **continuous** if it is continuous at every point in X.

Proposition 5 (ε - δ criteria for continuity). A mapping from a metric space (X, ρ) to a metric (Y, σ) is continuous at the point $x \in X \iff \forall \varepsilon > 0, \exists \delta > 0$ such that if $\rho(x, x') < \delta$, then $\sigma(f(x), f(x')) < \varepsilon$. That is:

$$f(B(x,\delta)) \subseteq B(f(x),\varepsilon)$$
 (9.4)

Proposition 6. A mapping f from a metric space X to a metric space Y is continuous $\iff \forall$ open subsets $\mathcal{O} \subseteq Y$, the inverse image under f of \mathcal{O} , $f^{-1}(\mathcal{O})$, is an open subset of X.

Proposition 7. The composition of continuous mappings between metric spaces, when defined, is continuous.

Definition 11 (Uniformly Continuous). A mapping from a metric space (X, ρ) to a metric space (Y, σ) is said to be **uniformly continuous** if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $\forall u, v \in X$, if $\rho(u, v) < \delta$, $\sigma(f(u), f(v)) < \varepsilon$.

Definition 12 (Lipschitz). A mapping $f:(X,\rho)\to (Y,\sigma)$ is said to be **Lipschitz** if \exists a $c\geq 0$ such that \forall $u,v\in X$:

$$\sigma(f(u), f(v)) \le c\rho(u, v)$$

9.4. Complete Metric Spaces

Definition 13 (Cauchy). A sequence $\{x_n\}$ in a metric space (X, ρ) is said to be a **Cauchy sequence** if $\forall \varepsilon > 0$, there exists a $N \in \mathbb{N}$ such that if $m, n \geq N$, then $\rho(x_n, x_m) < \varepsilon$.

Definition 14 (Complete). A metric space X is said to be **complete** if every Cauchy sequence in X converges to a point in X.

Proposition 8. Let [a, b] be a closed and bounded interval of real numbers. Then, C[a, b] with the metric induced by the max norm is complete.

Proposition 9 (Characterisation of Complete Subspaces of Metric Spaces). Let $E \subseteq X$, where X is a complete metric space. Then, the metric subspace E is complete $\iff E$ is a closed subset of X.

Theorem 1. The following are complete metric spaces:

- (i) Every non-empty closed subset of \mathbb{R}^n .
- (ii) $E \subseteq \mathbb{R}$ measurable, $1 \le p \le \infty$, each non-empty closed subset of $L^p(E)$.
- (iii) Each non-empty closed subset of C[a, b].

Definition 15 (Diameter). Let E be a non-empty subset of a metric space (X, ρ) . We define the **diameter** of E, denoted by diam(E), by:

$$\operatorname{diam}(E) := \sup \{ \rho(x, y) \mid x, y \in E \}$$

$$(9.5)$$

We say that E is **bounded** if it has finite diameter.

Definition 16 (Contracting Sequence). A decreasing sequence $\{E_n\}$ of non-empty subsets of X is called a contracting sequence if:

$$\lim_{n \to \infty} \operatorname{diam}(E_n) = 0 \tag{9.6}$$

Theorem 2 (Cantor Intersection Theorem). Let X be a metric space. Then, X is complete \iff whenever $\{F_n\}$ is a contracting sequence of non-empty closed subsets of X, there is a point $x \in X$ for which:

$$\bigcap_{n=1}^{\infty} F_n = \{x\} \tag{9.7}$$

Theorem 3. Let (X, ρ) be a metric space. Then, there is a complete metric space $(\widetilde{X}, \widetilde{\rho})$ for which X is a dense subset of \widetilde{X} and

$$\rho(u,v) = \tilde{\rho}(u,v) \ \forall \ u,v \in X \tag{9.8}$$

we call such a space the **completion** of (X, ρ) .

9.5. Compact Metric Spaces

Definition 17 (Compact Metric Space). A metric space X is called **compact** if every open cover of X has a finite sub-cover. A subset $K \subseteq X$ is compact if K, considered as a metric subspace of X, is compact.

Formulation of compactness in terms of closed sets: Let \mathcal{T} be a collection of open subsets of a metric space X. Define \mathcal{F} to be the collection of the complements of elements in \mathcal{T} . Since the elements of \mathcal{T} are open, the elements of \mathcal{F} are closed. Thus, \mathcal{T} is a cover \iff the elements of \mathcal{F} have *empty intersection*. By deMorgan's law, we can formulate compactness in terms of closed sets as:

A metric space X is compact \iff every collection of closed sets with empty intersection has a finite sub-collection whose intersection is non-empty.

This property is called the **finite intersection property**.

Definition 18 (Finite Intersection Property). A collection of sets \mathcal{F} is said to have the finite intersection property if any finite sub-collection of \mathcal{F} has a non-empty intersection.

Proposition 10 (Compactness in terms of closed sets). A metric space X is compact \iff every collection \mathcal{F} of closed subsets of X with the finite intersection property has a non-empty intersection.

Definition 19 (Totally Bounded). A metric space X is **totally bounded** if $\forall \varepsilon > 0$, the space X can be covered by a finite number of open balls of radius ε . A subset $E \subseteq X$ is said to be **totally bounded** if E, as a subspace of the metric space X, is totally bounded.

Definition 20 (ε -net). Let E be a subset of a metric space X. A ε -net for R is a finite collection of open balls $\{B(x_k, \varepsilon)\}_{k=1}^n$ with centres $x_k \in X$ whose union covers E.

Proposition 11. A metric space E is totally bounded $\iff \forall \varepsilon > 0$, there is a finite ε -net for E.

Proposition 12. A subset of Euclidean space \mathbb{R}^n is bounded \iff it is totally bounded.

Definition 21 (Sequentially Compact). A metric space X is sequentially compact if every sequence in X has a subsequence that converges to a point in X.

Theorem 4 (Characterisation of Compactness for a metric space). Let X be a metric space. Then, TFAE:

(i) X is complete and totally bounded.

- (ii) X is compact.
- (iii) X is sequentially compact.

The following three propositions of this chapter are just breaking down these equivalences, so I will not write them.

Theorem 5. Let $K \subseteq \mathbb{R}^n$. Then, TFAE:

- (i) K is closed and bounded.
- (ii) K is compact.
- (iii) K is sequentially compact.

Observe: The equivalence $(1) \iff (2)$ is the Heine-Borel theorem. The equivalence $(2) \iff (3)$ is the Bolzano-Weierstrass theorem.

Proposition 13. Let f be a continuous mapping from a compact metric space X to a compact metric space Y. Then, its image f(X) is compact.

Theorem 6 (Extreme Value Theorem). Let X be a metric space. Then, X is compact \iff every continuous real-valued function on X attains a minimum and maximum value.

Definition 22 (Lebesgue Number). Let X be a metric space, and let $\{\mathcal{O}_{\lambda}\}_{{\lambda}\in\Lambda}$ be an open cover of X. Thus, each $x\in X$ is contained in a member of the cover, \mathcal{O}_{λ} . Since \mathcal{O}_{λ} is open, $\exists \ \varepsilon > 0$ such that:

$$B(x,\varepsilon)\subseteq\mathcal{O}_{\lambda}$$

In general, ε on X, but for compact metric spaces we can get *uniform control*. This ε that uniformly works is called the **Lebesgue number** for the cover $\{\mathcal{O}_{\lambda}\}_{{\lambda}\in\Lambda}$.

Lemma 7. Let $\{\mathcal{O}_{\lambda}\}_{\lambda in\Lambda}$ be an open cover of a compact metric space X. Then, there is a number $\varepsilon > 0$ such that for each $x \in X$, the open ball $B(x, \varepsilon)$ is contained in some member of the cover.

Proposition 14. A continuous mapping from a compact space (X, ρ) to a metric space (Y, σ) is uniformly continuous.

9.6. Separable Metric Spaces

Definition 23 (Dense & Separable). A subset D of a metric space X is **dense** in X if every non-empty subset of X contains a point of D. A metric space is **separable** if there is a countable subset of X that is dense in X.

The Weierstrass Approximation Theorem states that polynomials are dense in C[a, b]. So, C[a, b] is separable, with the countable dense set being the set of polynomials with rational coefficients.

Proposition 15. A compact metric space is separable.

Proposition 16. A metric space X is separable \iff there is a countable collection of $\{\mathcal{O}_n\}$ of open subsets of X such that any open subset of X is the union of a sub-collection of $\{\mathcal{O}_n\}$.

Proposition 17. Every subspace of a separable metric space is separable.

Theorem 8. Each of the following are separable metric spaces:

- (i) Every non-empty subset of Euclidean space \mathbb{R}^n .
- (ii) $1 \le p < \infty$, $L^p(E)$ and all non-empty subsets of $L^p(E)$.
- (iii) Each non-empty subset of C[a, b].