OUT

μ**A741**

FREOUENCY-COMPENSATED OPERATIONAL AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The μ A741 is a high performance monolithic Operational Amplifier constructed using the Fairchild Planar* epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of latch-up tendencies make the μΑ741 ideal for use as a voltage follower. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications.

- NO FREQUENCY COMPENSATION REQUIRED
- SHORT CIRCUIT PROTECTION
- OFFSET VOLTAGE NULL CAPABILITY
- LARGE COMMON MODE AND DIFFERENTIAL VOLTAGE RANGES
- LOW POWER CONSUMPTION
- NO LATCH-UP

ABSOLUTE MAXIMUM RATINGS

Supply Voltage μΑ741Α, μΑ741, μΑ741Ε

+22 V μA741C +18 V

Internal Power Dissipation (Note 1) Metal Can

Molded and Hermetic DIP

Mini DIP

Flatpak

Differential Input Voltage

Input Voltage (Note 2)

Storage Temperature Range

Metal Can, Hermetic DIP, and Flatpak

Mini DIP, Molded DIP

Operating Temperature Range

Military (μΑ741Α, μΑ741)

Commercial (µA741E, µA741C)

Pin Temperature (Soldering)

Metal Can, Hermetic DIPs, and Flatpak (60 s)

Molded DIPs (10 s)

Output Short Circuit Duration (Note 3)

CONNECTION DIAGRAMS 8-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 5B PACKAGE CODE H - OFFSET OFFSET NULL Note: Pin 4 connected to case ORDER INFORMATION PART NO. TVPF μ**Α741A** μ**Α741AHM** μ**A741** μ**Α741HM μΑ741EHC** μ**Α741E** μA741C μA741HC

500 mW

670 mW

310 mW

570 mW

±30 V

±15 V

300° C

260°C

Indefinite

-65°C to +150°C

-55°C to +125°C

-55°C to +125°C

 0° C to +70°C

14-PIN DIP (TOP VIEW) PACKAGE OUTLINES 6A, 9A PACKAGE CODES D P

ORDER II	NFORMATION
TYPE	PART NO.
μΑ741Α	μ Α741ADM
μ Α741	μ Α741DM
μ Α741E	μ Α741EDC
μ Α741C	μ Α741DC
μ Α741C	μ Α741PC

8-PIN MINI DIP 10-PIN FLATPAK (TOP VIEW) (TOP VIEW) PACKAGE OUTLINES 6T 9T PACKAGE OUTLINE 3F PACKAGE CODES R PACKAGE CODE F -OFFSET NC [NULL NC −IN F V/+ OUT +IN + OFFSET ORDER INFORMATION ORDER INFORMATION TYPE PART NO. TYPE PART NO. μ**Α741C** μ**Α741TC** μ**Α741Α** μ**Α741AFM** μA741C μA741RC μ**Α741** μ**A741FM**

^{*}Planar is a patented Fairchild process.

FAIRCHILD • μA741

ELECTRICAL CHARACTERISTICS: $V_S = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless otherwise specified.

CHARACTERISTICS (see definitions)		CONDITIO	NS	MIN	TYP	MAX	UNITS
Input Offset Voltage		$R_{S} \le 50\Omega$			0.8	3.0	mV
Average Input Offset Voltage Drift						15	μV/°C
Input Offset Current					3.0	30	nA
Average Input Offset	Current Drift					0.5	nA/°C
Input Bias Current					30	80	nA
Power Supply Rejecti	ion Ratio	V _S = +20, -	-20 ; $V_S = -20$, $+10V$, $R_S = 50\Omega$		15	50	μV/V
Output Short Circuit	Current			10	25	40	mA
Power Dissipation		V _S = ±20V			80	150	mW
Input Impedance		V _S = ±20V		1.0	6.0		ΩM
Large Signal Voltage	Gain	V _S = ±20V,	$R_L = 2k\Omega$, $V_{OUT} = \pm 15V$	50			V/mV
Transient Response	Rise Time				0.25	0.8	μs
(Unity Gain)	Overshoot				6.0	20	%
Bandwidth (Note 4)				.437	1.5		MHz
Slew Rate (Unity Gain)		V _{IN} = ±10V	,	0.3	0.7		V/μs
The following	specifications apply	for –55°C ≤ T _A ≤	€ +125°C				
Input Offset Voltage						4.0	mV
Input Offset Current						70	nA
Input Bias Current						210	nA
Common Mode Rejec	tion Ratio	$V_S = \pm 20 V_s$	$V_{IN} = \pm 15V$, $R_S = 50\Omega$	80	95		dB
Adjustment For Inpu	t Offset Voltage	V _S = ±20V		10			mV
Output Short Circuit	Current			10		40	mA
D	_55°C		-55° C +125° C			165	mW
Power Dissipation		VS - ±20V	V _S = ±20V +125°C			135	mW
Input Impedance		V _S = ±20V		0.5			МΩ
2		V + 20V	$R_{L} = 10k\Omega$ $R_{L} = 2k\Omega$	±16			V
Output Voltage Swin	y 	vs = ±20V,	$R_L = 2k\Omega$	±15			V
Lorgo Cianal Valtaria	Coin	V _S = ±20V,	R _L = 2kΩ, V _{OUT} = ±15V	32			V/mV
Large Signal Voltage	Gain	V _S = ±5V, F	R _L = 2kΩ, V _{OUT} = ±2 V	10			V/mV

NOTES

4. Calculated value from: BW(MHz) = $\frac{0.35}{\text{Rise Time (}\mu\text{s)}}$

Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3mW/°C for the metal can, 8.3mW/°C for the DIP and 7.1mW/°C for the Flatpak.
 For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
 Short circuit may be to ground or either supply. Rating applies to +125°C case temperature or 75°C ambient temperature.
 Calculated value from: BW(MHz) = 0.35

μA741

ELECTRICAL CHARACTERISTICS: $V_S = \pm 15 \text{ V}$, $T_A = 25^{\circ} \text{C}$ unless otherwise specified.

CHARACTERISTICS (see definitions)		CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage		$R_{S} \leq 10 \text{ k}\Omega$		1.0	5.0	mV
Input Offset Current				20	200	nA
Input Bias Current				80	500	nA
Input Resistance			0.3	2.0		MΩ
Input Capacitance				1.4		pF
Offset Voltage Adjustment Range				±15		mV
Large Signal Voltage Gain		R _L ≥ 2 kΩ, V _{OUT} = ±10 V	50,000	200,000		
Output Resistance				75		Ω
Output Short Circuit Current				25		mA
Supply Current				1.7	2.8	mA
Power Consumption				50	85	mW
Transient Response (Unity Gain)	Rise time	V_{IN} = 20 mV, R_L = 2 k Ω , C_L \leq 100 pF		0.3		μs
Overshoot Slew Rate		R ₁ ≥ 2 kΩ		5.0 0.5		% V/μs

The following specifications apply for -55° C \leq T_A \leq +125 $^{\circ}$ C:

Input Offset Voltage	R _S ≤ 10 kΩ		1.0	6.0	mV
Input Offset Current	T _A = +125°C		7.0	200	nA
Input Oriset Current	T _A = -55°C		85	500	nA
Innut Bin Comment	T _A = +125°C		0.03	0.5	μΑ
Input Bias Current	T _A = -55°C		0.3	1.5	μΑ
Input Voltage Range		±12	±13		V
Common Mode Rejection Ratio	R _S ≤ 10 kΩ	70	90		dB
Supply Voltage Rejection Ratio	R _S ≤ 10 kΩ		30	150	μV/V
Large Signal Voltage Gain	$R_L \geqslant 2 k\Omega$, $V_{OUT} = \pm 10 V$	25,000			
Output Voltage Swing	R _L ≥ 10 kΩ	±12	±14		V
Output Voltage Swing	R _L ≥ 2 kΩ	±10	±13		V
Summit Course	T _A = +125°C		1.5	2.5	mA
Supply Current	$T_A = -55^{\circ}C$		2.0	3.3	mA
Davis Canaratia	T _A = +125° C		45	75	mW
Power Consumption	T _A = -55° C		60	100	mW

TYPICAL PERFORMANCE CURVES FOR μ A741A AND μ A741

μA741E

ELECTRICAL CHARACTERISTICS: $V_S = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless otherwise specified.

CHARACTERISTICS (see definitions)		CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage		R _S ≤ 50Ω		0.8	3.0	mV
Average Input Offset	Voltage Drift				15	μV/°C
Input Offset Current				3.0	30	nA
Average Input Offset	Current Drift				0.5	nA/°C
Input Bias Current				30	80	nA
Power Supply Reject	ion Ratio	$V_S = +10, -20; V_S = +20, -10V, R_S = 50\Omega$		15	50	μV/V
Output Short Circuit	Current		10	25	40	mA
Power Dissipation		V _S = ±20V		80	150	mW
Input Impedance		V _S = ±20V	1.0	6.0		MΩ
Large Signal Voltage	Gain	$V_S = \pm 20V, R_L = 2k\Omega, V_{OUT} = \pm 15V$	50			V/mV
Transient Response	Rise Time			0.25	0.8	μs
(Unity Gain)	Overshoot			6.0	20	%
Bandwidth (Note 4)	-		.437	1.5		MHz
Slew Rate (Unity Gain)		V _{IN} = ±10V	0.3	0.7		V/µs
The following	specifications apply	for 0°C ≤ T _A ≤ 70°C				
Input Offset Voltage					4.0	mV
Input Offset Current					70	nA
Input Bias Current					210	nA
Common Mode Rejec	tion Ratio	$V_S = \pm 20V$, $V_{IN} = \pm 15V$, $R_S = 50\Omega$	80	95		dB
Adjustment For Inpu	t Offset Voltage	V _S = ±20V	10			mV
Output Short Circuit	Current	,	10		40	mA
Power Dissipation		V _S = ±20V			150	mW
Input Impedance		V _S = ±20V	0.5			МΩ
0		$V_S = \pm 20V$, $R_L = 10k\Omega$ $R_1 = 2k\Omega$	±16			V
Output Voltage Swin	g	$V_S = \pm 20V$, $R_L = 2k\Omega$	±15			V
L 0:! \/-!:	C-:-	$V_S = \pm 20V, R_L = 2k\Omega, V_{OUT} = \pm 15V$	32			V/mV
Large Signal Voltage	Gain	$V_S = \pm 5V, R_L = 2k\Omega, V_{OUT} = \pm 2V$	10			V/mV

FAIRCHILD • μA741

μA741C

ELECTRICAL CHARACTERISTICS: $V_S = \pm 15 \text{ V}$, $T_A = 25^{\circ} \text{C}$ unless otherwise specified.

CHARACTERISTICS (see definitions)		CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage		R _S ≤ 10 kΩ		2.0	6.0	mV
Input Offset Current				20	200	nA
Input Bias Current				80	500	nΑ
Input Resistance			0.3	2.0		MΩ
Input Capacitance				1.4		pF
Offset Voltage Adjustment F	Range			±15		mV
Input Voltage Range			±12	±13		V
Common Mode Rejection Ratio		R _S ≤ 10 kΩ	70	90		dB
Supply Voltage Rejection Ratio		R _S ≤ 10 kΩ		30	150	μV/V
Large Signal Voltage Gain		R _L ≥ 2 kΩ, V _{OUT} = ±10 V	20,000	200,000		
Output Voltage Swing		R _L ≥ 10 kΩ	±12	±14		V
Output Voltage Swing		R _L ≥ 2 kΩ	±10	±13		V
Output Resistance				, 75		Ω
Output Short Circuit Curren	t			25		mA
Supply Current				1.7	2.8	mA
Power Consumption				50	85	mW
Transient Response (Unity Gain)	ise time	$V_{1N} = 20 \text{ mV}, R_1 = 2 \text{ k}\Omega, C_1 \le 100 \text{ pF}$		0.3		μς
	vershoot			5.0	L	%
Slew Rate		R _L ≥ 2 kΩ		0.5		V/μs

The following specifications apply for 0° C \leq T_A \leq +70° C:

Input Offset Voltage				7.5	mV
Input Offset Current				300	nA
Input Bias Current				800	nA
Large Signal Voltage Gain	R _L ≥ 2 kΩ, V _{OUT} = ±10 V	15,000			
Output Voltage Swing	R _L ≥ 2 kΩ	±10	±13		V

TYPICAL PERFORMANCE CURVES FOR μ A741E AND μ A741C

TYPICAL PERFORMANCE CURVES FOR μΑ741Α, μΑ741, μΑ741Ε AND μΑ741C

Э

TYPICAL PERFORMANCE CURVES FOR μ A741A AND μ A741

TYPICAL PERFORMANCE CURVES FOR μ A741E AND μ A741C

TRANSIENT RESPONSE

TRANSIENT RESPONSE TEST CIRCUIT

COMMON MODE REJECTION RATIO AS A FUNCTION OF

FREQUENCY CHARACTERISTICS AS A FUNCTION OF

VOLTAGE OFFSET NULL CIRCUIT

VOLTAGE FOLLOWER

TYPICAL APPLICATIONS

UNITY-GAIN VOLTAGE FOLLOWER

$$\begin{aligned} & \text{R}_{\text{IN}} = 400 \text{ M}\Omega \\ & \text{C}_{\text{IN}} = 1 \text{ pF} \\ & \text{R}_{\text{OUT}} < < 1 \text{ }\Omega \\ & \text{B.W.} = 1 \text{ MHz} \end{aligned}$$

NON-INVERTING AMPLIFIER

10	1 kΩ	9 kΩ 100	kHz 400 MΩ
100 1	00 Ω 9.	9 kΩ 10	kHz 280 MΩ
1000 1	00 Ω 99.	9 kΩ 1	kHz 80 MΩ

INVERTING AMPLIFIER

GAIN	R1	R2	ВW	R _{IN}
1	10 kΩ	10 kΩ	1 MHz	10 kΩ
10	1 kΩ	10 kΩ	100 kHz	1 kΩ
100	1 kΩ	100 kΩ	10 kHz	1 kΩ
1000	100 Ω	100 kΩ	1 kHz	ີ 100 Ω

CLIPPING AMPLIFIER

$$\frac{\mathsf{E}_{\mathsf{OUT}}}{\mathsf{E}_{\mathsf{IN}}} = \frac{\mathsf{R2}}{\mathsf{R1}} \mathsf{if} \mid \mathsf{E}_{\mathsf{OUT}} \mid \leq \mathsf{V}_{\mathsf{Z}} + \mathsf{0.7} \; \mathsf{V}$$

$$\mathsf{where} \; \mathsf{V}_{\mathsf{Z}} = \mathsf{Zener} \; \mathsf{breakdown} \; \mathsf{voltage}$$

TYPICAL APPLICATIONS (Cont'd)

SIMPLE INTEGRATOR

$$E_{OUT} = -\frac{1}{R_1C_1}\int E_{IN}dt$$

SIMPLE DIFFERENTIATOR

$$E_{OUT} = -R2C$$
 $\frac{dE_{IN}}{dt}$

LOW DRIFT LOW NOISE AMPLIFIER

Voltage Gain = 10^3 Input Offset Voltage Drift = $0.6 \mu V/^{\circ}C$ Input Offset Current Drift = $2.0 \text{ pA}/^{\circ}C$

HIGH SLEW RATE POWER AMPLIFIER

NOTCH FILTER USING THE μ A741 AS A GYRATOR

