

Franciszek Seredynski
PJWSTK
sered@pjwstk.edu.pl

Literatura

- D. P. Agrawal, Q.-A. Zeng, *Introduction to Wireless and Mobile Systems*, 2e,
 Thomson, 2006
- W. Stallings, Wireless Communications and Networks, 2e, Pearson Prentice Hall, 2005
- M. Ilyas, I. Mahgoub (eds.), *Mobile* Computing Handbook, Auerbach 2005

Wprowadzenie

Podtrzymywanie bezprzewodowego połączenia telefonicznego między urządzeniami mobilnymi poruszajacymi się w obszarze geograficznym

Technologie bezprzewodowe

- Sieci komórkowe
- Systemy satelitarne, GPS
- Sieci ad hoc (doraźne) i sieci sensorowe
- Bezprzewodowe WPAN (wireless personal area networks):
- 802.15.4, 802.15.1 Bluetooh
- Bezprzewodowe WLAN (wireless local area networks):
 - -802.11
 - 802.11b (WiFi)
 - 802.11g
 - 802.11a HiperLAN
- Bezprzewodowe WMAN (wireless metropolitan area networks):

The History of Mobile Radio Communication (1/3)

- 1880: Hertz Initial demonstration of practical radio communication
- 1897: Marconi Radio transmission to a tugboat over an 18 mi path
- 1921: Detroit Police Department: -- Police car radio dispatch (2 MHz frequency band)
- 1933: FCC (Federal Communications Commission) Authorized four channels in the 30 to 40 MHz range
- 1938: FCC Ruled for regular service
- 1946: Bell Telephone Laboratories 152 MHz (Simplex)
- 1956: FCC 450 MHz (Simplex)
- 1959: Bell Telephone Laboratories Suggested 32 MHz band for high capacity mobile radio communication
- 1964: FCC 152 MHz (Full Duplex)
- 1964: Bell Telephone Laboratories Active research at 800 MHz
- 1969: FCC 450 MHz (Full Duplex)
- 1974: FCC 40 MHz bandwidth allocation in the 800 to 900 MHz range
- 1981: FCC Release of cellular land mobile phone service in the 40 MHz bandwidth in the 800 to 900 MHz range for commercial operation

The History of Mobile Radio Communication (2/3)

- 1981: AT&T and RCC (Radio Common Carrier) reach an agreement to split 40 MHz spectrum into two 20 MHz bands. Band A belongs to nonwireline operators (RCC), and Band B belongs to wireline operators (telephone companies). Each market has two operators.
- 1982: AT&T is divested, and seven RBOCs (Regional Bell Operating Companies) are formed to manage the cellular operations
- 1982: MFJ (Modified Final Judgment) is issued by the government DOJ. All the operators were prohibited to (1) operate long-distance business, (2) provide information services, and (3) do manufacturing business
- 1983: Ameritech system in operation in Chicago
- 1984: Most RBOC markets in operation
- 1986: FCC allocates 5 MHz in extended band
- 1987: FCC makes lottery on the small MSA and all RSA licenses
- 1988: TDMA (Time Division Multiple Access) voted as a digital cellular standard in North America
- 1992: GSM (Groupe Speciale Mobile) operable in Germany D2 system

The History of Mobile Radio Communication (3/3)

- 1993: CDMA (Code Division Multiple Access) voted as another digital cellular standard in North America
- 1994: American TDMA operable in Seattle, Washington
- 1994: PDC (Personal Digital Cellular) operable in Tokyo, Japan
- 1994: Two of six broadband PCS (Personal Communication Service) license bands in auction
- 1995: CDMA operable in Hong Kong
- 1996: US Congress passes Telecommunication Reform Act Bill
- 1996: The auction money for six broadband PCS licensed bands (120 MHz) almost reaches 20 billion US dollars
- 1997: Broadband CDMA considered as one of the third generation mobile communication technologies for UMTS (Universal Mobile Telecommunication Systems) during the UMTS workshop conference held in Korea
- 1999: ITU (International Telecommunication Union) decides the next generation mobile communication systems (e.g., W-CDMA, cdma2000, etc)

Generacje telefonii komórkowej (1)

- Generacja I (1G) systemy oparte na technice analogowej,
 - świadczą głównie zwykłe rozmowy telefoniczne
 - funkcjonują na częstotliwości rzędu 450MHz,
- Generacja II (2G) systemy oparte na technice cyfrowej,
 - funkcjonują na częstotliwości rzędu 900MHz,
 - w ramach systemu GSM dostępne są między innymi usługi takie, jak: poczta głosowa, przeniesienie połączenia, blokowanie połączeń, oczekiwanie na połączenie, zawieszenie połączenia, połączenie konferencyjne, identyfikacja rozmówcy, biling (szczegółowy rachunek), możliwość przesyłania danych komputerowych i faksów, przesyłanie wiadomości tekstowych, w 1997 r. poprawiono funkcjonalność sieci dodano dwie szybsze technologie transmisji danych: HSCSD (High Speed Circuit Swiched Data) do 115kb/s i GPRS (General Packed Radio Service) do 170kb/s;

Generacje telefonii komórkowej (2)

- Generacja III (3G) systemy cyfrowe, zapewniają korzystanie z bardzo dużego zakresu usług, w tym multimedialnych w skali wykraczającej poza możliwości systemów drugiej generacji (GSM) oraz zdolność do połączenia możliwości korzystania z komponentów naziemnych i satelitarnych o globalnym zasięgu, umożliwia integrację wszystkich systemów radiokomunikacyjnych, zaprojektowany pod kątem jak największej wydajności w transmitowaniu danych (384Kb/s 2Mb/s).
- Generacja IV (2010 ?)

Od pewnego okresu trwają badania nad nową technologią - 4G. Komercyjny debiut tej sieci jest przewidywany na rok 2010. Definicja 4G przyjęta przez Międzynarodową Unię Telekomunikacyjną ITU mówi, że pobieranie danych w takich sieciach powinno odbywać się z prędkością 1Gb/s w sytuacji gdy telefon jest nieruchomy oraz około 100Mb/s podczas szybkiego przemieszczanie się abonenta.

First Generation Cellular Systems and Services

1970s	Developments of radio and computer technologies for 800/900 MHz mobile communications
1976	WARC (World Administrative Radio Conference) allocates spectrum for cellular radio
1979	NTT (Nippon Telephone & Telegraph) introduces the first cellular system in Japan
1981	NMT (Nordic Mobile Telephone) 900 system introduced by Ericsson Radio System AB and deployed in Scandinavia
1984	AMPS (Advanced Mobile Phone Service) introduced by AT&T in North America

Second Generation Cellular Systems and Services

1982	CEPT (Conference Europeenne des Post et Telecommunications) established GSM to define future Pan-European Cellular Radio Standards
1990	Interim Standard IS-54 (USDC) adopted by TIA (Telecommunications Industry Association)
1990	Interim Standard IS-19B (NAMPS) adopted by TIA
1991	Japanese PDC (Personal Digital Cellular) system standardized by the MPT (Ministry of Posts and Telecommunications)
1992	Phase I GSM system is operational
1993	Interim Standard IS-95 (CDMA) adopted by TIA
1994	Interim Standard IS-136 adopted by TIA
1995	PCS Licenses issued in North America
1996	Phase II GSM operational
1997	North American PCS deploys GSM, IS-54, IS-95
1999	IS-54: North America
	IS-95: North America, Hong Kong, Israel, Japan, China, etc
	GSM: 110 countries

Third Generation Cellular Systems and Services (1/2)

IMT-2000 (International Mobile Telecommunications-2000):

- Fulfill one's dream of anywhere, anytime communications a reality.

Key Features of IMT-2000 include:

- High degree of commonality of design worldwide;
- Compatibility of services within IMT-2000 and with the fixed networks;
 - High quality;
 - Small terminal for worldwide use;
 - Worldwide roaming capability;
 - Capability for multimedia applications, and a wide range of services and terminals.

Third Generation Cellular Systems and Services (2/2)

- **Important Component of IMT-2000 is ability to provide high** bearer rate capabilities:
 - 2 Mbps for fixed environment;
 - 384 Kbps for indoor/outdoor and pedestrian environments;
 - 144 kbps for vehicular environment.

Standardization Work:

- Release 1999 specifications
- In processing

Scheduled Service:

- Started in October 2001 in Japan (W-CDMA)

Wzrost liczby abonentów

Aspekt pokrycia w mobilnych komunikacyjnych systemach 3 generacji

Prędkości transmisji

Prędkości transmisji jako funkcja mobilności w niektórych systemach o dostępie radiowym

np. zastosowania medyczne

Możliwości konsultacji na odległość

np. zastosowanie w ruchu drogowym

Sieci komórkowe

Pojedyńcza komórka sieci ze stacjami mobilnymi (MS) oraz stacją bazową (BS)

Pojedyńcza komórka

- W każdej komórce wielu użytkowników jest obsługiwanych przez pojedyńczą BS
- Jeżeli zamierza się powiększyć obszar komórki to dodatkowe BS-y są umieszczane w tych obszarach
- ograniczony zakres częstotliwości jest przydzielony do obsługi komórki
- Żeby zwiększyć efektywność systemu pewne techniki multipleksowania są używane

- Pojemność medium transmisyjnego przekracza zwykle pojemność wymaganą
- Multipleksowanie przenoszenie wielu sygnałów w pojedyńczym medium
 - Bardziej efektywne użycie medium transmisyjnego

Techniki multipleksowania

- FDMA (Frequency Division Multiple Access)
- TDMA (Time Division Multiple Access)
- CDMA (Code Division Multiple Access)
- OFDM (Orthogonal Frequency Division Multiplexing)
- Nowa technika SDMA (Space Division Multiple Access) jest również aktualnie testowana z użyciem anten mikrofalowych

FDMA (Frequency Division Multiple Access)

(multipleksowanie z podziałem częstotliwości)

- w systemach 1G
- Pasmo częstotliwości jest dzielone na podpasma nazywane kanałami
- Pojedyńczy kanał jest przydzielany przez BS do uzytkownika

Struktura pasma w FDMA

Przydział kanału w FDMA

Urządzenia mobilne

Stacja bazowa

TDMA (Time Division Multiple Access)

w większości systemów 2G

częstotliwość

i.:

i.:

i.:

i.:

czas

TDMA

- Czas dzielony jest na ramki o stałej długości
- Każda ramka składa się ze stałej liczby sczelin czasowych
- Dla danego połączenia BS przydziela jedną szczelinę czasową – tę samą w kolejnych ramkach

Struktura ramki TDMA

Ilustracja ramki TDMA dla wielu użytkowników

CDMA (Code Division Multiple Access)

(multipleksowanie z podziałem kodu)

niektóre 2G, większość 3G
 częstotliwość

Transmitowane i odbierane sygnały w systemie CDMA

OFDM (Orthogonal Frequency Division Multiplexing)

- Pojawiła się niedawno pozwala na równoległą transmisję danych z użyciem wielu kanałów
- Używa technik transmisji wielonośnikowych, aby efektywnie redukować odbicia sygnałów radiowych w terenie

- Istnieje szereg technik będących wariantami i kombinacjami znanych już technik
- Jedną z nich jest tzw. frequency hopping technika oparta na przeskokach częstotliwości (kombinacja FDMA i TDMA):
 - pojedyńczy użytkownik wykorzystuje jeden kanał przez określony czas, a następnie zmienia kanał na inny
 - każdy użytkownik ma określoną własną sekwencję zmian kanałów
 - ta technika oryginalnie była opracowana dla wojska w związku z problem, aby skutecznie przesyłać informację jeżeli nieprzyjaciel zagłusza określony zakres częstotliwości

Przeskoki częstotliwości: kombinacja FDMA i TDMA

Ewolucja infrastruktura systemów komórkowych

Wczesne systemy bezprzewodowe: Duża strefa

System komórkowy: mała pojedyńcza strefa

MS (mobile station), BS (base station), BSC (BSController), MSC (mobile switch center), and PSTN (public switched telephone network)

- BS składa się z odbiornika bazy (BTS) oraz kontrolera BS (BSC)
- Wieża i antena są częściami BS, podczas gdy pozostały sprzęt należy do BSC
- HLR (home location register) oraz VLR (visitor location register) to dwa zbiory wskaźników, które zapewniają mobilność i używanie tego samego numeru na całym świecie
- HLR jest ulokowany w MSC, w którym urządzenie mobilne jest zarejestrowane i gdzie informacja o początkowym jego położeniu oraz o bilingu jest przechowywana
- VLR zawiera informacje o wszystkich MS odwiedzających obszar danego MSC

- Do obsługi każdego komórkowego (mobilnego) urządzenia potrzebne są 4 kanały zapewniające wymianę danych lub synchronizację między BS i MS
 - 2 kanały kontrolne: wymiana danych dotyczących uwierzytelnienia, danych o abonencie, ...
 - 2 kanały informacyjne do celów transmisji danych

Kanały kontrolne i informacyjne

pracy kanału informacyjnego między MS a BS (handshake steps)

Kroki kanału kontrolnego poprzedzające rozpoczęcie pracy kanału informacyjnego między BS a MS (handshake steps)

Uproszczony bezprzewodowy system komunikacyjny

Systemy satelitarne

- Tradycyjne zastosowania
 - Satelity do prognozowania pogody
 - Transmisje radiowe i TV
 - satelity militarne
- Zastosowania telekomunikacyjne
 - Globalne połączenia telefoniczne
 - szkielet sieci globalnej
 - GPS

Sieci ad hoc

- Składają się z urządzeń mobilnych wyposażonych w karty do komunikacji bezprzewodowej (w jednym określonym standardzie)
- Każde urządzenie potrafi "rozmawiać" z każdym znajdującym się w jego radiowym "polu widzenia"

Komunikacja typu multi hop

- Węzeł A komunikuje się z węzłem M
- W tym celu wykorzystuje węzły pośredniczące, E, H, L

Zastosowanie sieci ad hoc w przemyśle motoryzacyjnym

- Firma BMW pracuje nad projektem inteligentnego auta wykorzystującego m.in. sieci ad hoc.
- Zastosowanie sieci ad hoc w samochodach umożliwia wymianę informacji pomiędzy samochodami. Przykładowo mogą to być ostrzeżenia o zagrożeniach, korkach itp.

Ostrzeżenie przed niebezpieczeństwem

Zastosowania sieci ad hoc

- Private Area Networks, projekt -cypernetycznego domu – brak kabli, samokonfigurowalne, wymiana dokumentów i gier, "sterowanie mikserem"
- Akcje ratunkowe
- Konferencje
- Operacje militarne

Bezprzewodowe sieci sensorowe

Ważniejsze technologie sieci bezprzewodowych

■ IEEE 802.11, 30m

Peer-to-peer połączenia

- HiperLAN, 30m
- Sieci ad hoc, >500m
- Sieci sensorowe, 2m
- Home RF, 30m
- Ricochet, 30m
- Sieci Bluetooh, 10m

- Lotniska, sprzęt AGD
- Pole walki, zagrożenia
- Fabryki chemiczne, nuklearne
- Domy
- Lotniska, biura
- biura

Wprowadzenie-koniec