		Page 1	
Nam	ie:		IIT Kanpur CS771 Intro to ML
Roll	No.:	Dept.:	End-semester Examination Date: November 29, 2018
Inst	ructio	ons:	Total: 120 marks
3	2. Ple 3. Yo 4. Im to	ais question paper contains a total of 10 pages (10 sides of pages write your name, roll number, department on every sides and write your answers using pencil but your handwriting aportant: Please do not give derivations/elaborate steps unuse standard results (e.g., solution of least squares regression are last page of the question paper lists some formulae if you	de of every sheet of this booklet. g should be bold and prominently visible lless specifically asked for it. Feel free n) without deriving them from scratch.
Secti	on 1 (True or False: $12 \times 1 = 12$ marks). For each of the following	g simply write T or F in the box.
1.	-	The kernel SVM weight vector \boldsymbol{w} can be written explicitly when using a linear kernel (assuming we aren't using any ϵ	
2.	F	Learning a single hidden layer neural network with infinite learning a kernelized model with an RBF kernel.	e many hidden units is equivalent to
3.	T	Both alternating optimization (ALT-OPT), as well as the algorithm, are sensitive to initialization.	ne expectation maximization (EM)
4.	T	It is possible to get closed form solutions for all the parametrial classification model with Gaussian class-conditionals.	eters of a fully supervised generative
5.	F	A K -nearest neighbors classifier that uses Euclidean distantial boundary regardless of the value of K .	nces can only learn a linear decision
6.	T	A depth-1 decision tree will usually have a higher bias than is used in the sense of this word as in the bias-variance tra	Activity and a second s
7.	F	If the training inputs and test inputs for a classification distribution then the test error of the learned model will b	
8.	F	Iteration $t + 1$ of Adaboost is faster than iteration t because the misclassified examples from iteration t .	use iteration $t+1$ trains only using
9.	F	MAP estimation for a parameter, when using a Gaussian covariance, is equivalent to doing MLE for the parameter.	prior with zero mean and spherical
10.	T	If the gap between training and test error is large for a molarger training set may reduce the gap.	odel then retraining the model with
11.	F	Probabilistic PCA with noise variance equal to zero and cla for the projection matrix, assuming mean-centered data for	-
12.	F	A feedforward neural network's output layer computes a conthe last hidden layer nodes.	onvex combination of the outputs of
	•	MCQ: $12 \times 2 = 24$ marks). Tick-mark \square all the options to question will be awarded only when all correct options (and	-
	D Fe	of these can be used for regression? Decision Tree, Edforward neural network, E Logistic regression.	
		of these can be kernelized? M K -nearest neighbors, B D incipal Component Analysis, E Prototype based classificat	
3.	Which Fis	of these are linear dimensionality reduction methods: A sher Discriminant Analysis, D, Stochastic Neighbor Embed	Probabilistic PCA, Standard PCA, Iding, E Locally linear embedding.
4.	— Which	of these objectives are non-differentiable? \blacksquare Squared loss, \blacksquare Hinge loss with ℓ_1 reg., \blacksquare Huber loss with ℓ_2 reg., \blacksquare	with ℓ_1 regularizer, $\boxed{\mathbb{B}}$ Hinge loss with

				Page	2	
Nam	e:					IIT Kanpur CS771 Intro to ML
Roll	No	o . :		Dept.:		End-semester Examination Date: November 29, 2018
	Which of these can only learn linear decision boundaries? A SVM with quadratic kernel, B Decision tree classifier, Prototype based classification with Euclidean distances, D Single hidden layer neural net with ReLU activations, Logistic regression with score being linear combination of the features. Which of these learning problems/sub-problems require constrained optimization? Solving for the					
	mi	xin	ng proportion weights in a mixture mearning the kernel SVM, E Value-	nodel, BL	earning the standa	rd Perceptron, C Learning PPCA,
7.	be	con	h of the following are true? $\boxed{\text{A}}$ Whenes ineffective, $\boxed{\text{B}}$ ℓ_1 norm is non-consing a Laplace prior is equivalent to	$\mathrm{nvex}, \boxed{\mathbb{C}} \ell_2$	norm is convex, Γ	am. tends to infinity, regularization 0 , ℓ_1 norm promotes non-negativity,
8.	NA.	F	output of a matrix factorization moderated ind other users similar to a given using items to new users, Learn cl	ser, B Fin	d other items simil	ar to a given item, C Recommend
9.	How can we turn a linear classifier into a nonlinear one? A First project the inputs to a low-dim space using PCA, B First project the inputs to a low-dim space using Fisher Discriminant Analysis, C Use it as a base learner in Adaboost, D Use scores of $K > 1$ such classifiers to get K new features and learn another linear classifier on those features. \Box Cluster inputs and learn a linear classifier for each cluster.					
10.	Posterior can be computed in closed form for: A Linear regression with Gaussian likelihood, zero mean Gaussian prior, and fixed hyperparams, B Linear regression with Gaussian likelihood, non-zero mean Gaussian prior, and fixed hyperparams C Logistic regression with Gaussian prior, D Bernoulli coin-toss model with Beta prior on coin's bias, E Gaussian mean estimation with Gaussian prior on mean.					
11.	inc	crea	h of the following are true about ases, C Have zero error on training raining them is computationally ver	data, D	Equivalent to prote	time, \square Tends to underfit as K etype based classification for $K=1$,
12.	tre	ees aini	th of the following is true about sup at test time, B Multiclass SVMs ing example is a support vector, D of SVM weight vector, E Increasing	are equiva Maximizi	lent to softmax reg ng the SVM margi	gression, $\lfloor C \rfloor$ For linear SVM, every $_1$ is equivalent to maximizing the ℓ_2
Secti	on	3	(Short Answer: $8 \times 4 = 32$ marks).	Write your	answers precisely	and concisely in the provided box.
	Co fea ma	ons atu any	ider a generative model for binary or re takes one of 5 possible values and parameters would we need to learn	classification the second for this g	on. Suppose each i d feature is binary. enerative classifica	nput has 2 features, where the first With naive Bayes assumption, how tion model. Justify your answer.
			$X = [X_1, X_2]$ $P(X_1 Y=0) = \text{multinoulli}(X_1 Y=0) = \text{Bern}(\mu^{(0)})$ Likewise for $P(X_1 Y=1)$ and $P(Y) = \text{Bern}(0) \Rightarrow 1$ hus total = $2 \times 6 + 1 = 1$ so acceptable: $2 \times (4+1) + 1$	$\Rightarrow 1$ $\Rightarrow 1$ $\Rightarrow 1$	$ y=0) \Rightarrow 5$	(actually 4 are Sufficient since)
			P(4) = Bern(0) = 1	param		*** / · [C ==]
	,	7	hus total = 2×6+1=	13		8
		Al	so acceptable: 2x(++1)+	1=11		

		Page 3
Nam	e: [IIT Kanpur CS771 Intro to ML
Roll	No.:	Dept.: End-semester Examination Date: November 29, 2018
	and a	are given N inputs $\{x_1, x_2, \dots, x_N\}$. Suppose, for each $x_n \in \mathbb{R}^D$, you want to obtain a K dimensional non-sparse feature vector z_n , where the sum of the K features is one. Briefly describe how you would not such feature vectors $\{z_1, z_2, \dots, z_N\}$, using a K -means clustering algorithm on this data? Compute Soft assignment for each x_n (just like soft K -means E -means
3.	Cons effect	ider a linear model with a regularizer $R(\boldsymbol{w}) = \boldsymbol{w} ^2 + \sum_{d=1}^D \sum_{d'=d+1}^D (w_d - w_{d'})^2$. What will be the of such a regularizer on \boldsymbol{w} when minimizing the objective $\sum_{n=1}^N \ell(y_n, \boldsymbol{w}^{T} \boldsymbol{x}_n) + \lambda R(\boldsymbol{w})$ w.r.t. \boldsymbol{w} ?
		It will promote w's entries to not just be small but also similar to each other. Note: Suppose someone gave us a graph A (DXD binary matrix) will Add = I denoting that features d and d' are similar then we can use R(w) = w ^2 + \(\sum_{\text{Add'}} (Wd-Wd')^2 \)
	In at can b	most 1-3 sentences (preferably only words, no equations!), describe how additional unlabeled data be utilized within an algorithm for learning the parameters of a generative classification model. Let can use something like EM or ALT-OPT to learn the
	Can	we compute the squared ℓ_2 norm $ w ^2$ of the kernel ridge regression weights $w = \sum_{n=1}^N \alpha_n \phi(x_n)$,
		ning ϕ to be the feature mapping of an RBF kernel? If yes, show how it can be done. If no, clearly why it can't be done. Also answer the same question if we want to compute the ℓ_1 norm of w .
	Th	why it can't be done. Also answer the same question if we want to compute the ℓ_1 norm of ω . $ \psi ^2 = \psi ^2 = \chi = (\sum_{n=1}^{\infty} \langle x_n \phi(x_n) \rangle)^{-1} (\sum_{n=1}^{\infty} \langle x_n \phi(x_n) \rangle)^{-1} = \sum_{n=1}^{\infty} \langle x_n \phi(x_n) \rangle = \chi ^2 \chi ^2 \chi ^2 = \chi ^2 = \chi ^2 \chi ^2 = $
10	exam to be p_1 . V	me a model f applied to a two-class data. Suppose the PDF of scores $s \in (-\infty, \infty)$ of f on positive ples is $p_1(s)$, whereas the PDF of f 's scores on nagative examples is $p_0(s)$ (assume positive examples 1 and negative examples to be 0). Suppose F_0 denotes the CDF of p_0 and F_1 denotes the CDF of f what's the false negative rate (FNR) and the true negative rate (TNR) of f ?
## P	F	$4R = F_0(\theta)$ $4R = F_0(\theta)$

Predict positive

7. Suppose you have two coins c_1 and c_2 with biases $\pi_1 \in (0,1)$ and $\pi_2 \in (0,1)$, respectively. You have another coin c_3 with bias $\mu \in (0,1)$. You do two coin tosses as follows: First, you toss coin c_3 . If it shows heads, you toss coin c_1 ; otherwise you toss coin c_2 . Denote the outcome of the second toss (i.e., when you toss c_1 or c_2) as $x \in \{0,1\}$. What is the marginal distribution p(x)? Clearly write down its expression.

Mixture of two Bernoulli distributions
$$P(\alpha) = \mu \times \text{Bern}(\alpha|\pi_1) + (1-\mu) \text{Bern}(\alpha|\pi_2)$$

8. Taking the example of a single hidden layer feedforward neural network, show that it is necessary to have nonlinearities in the hidden nodes, in the absence of which the network would reduce to a linear model.

Section 4 (5 problems: $5 \times 8 = 40$ marks). Write your answers precisely and concisely in the provided box.

1. Derive and write down the SGD update (minibatch size = 1) for the linear regression model with squared loss $\sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2$. Using the SGD update equation, formally show that each SGD update does the right thing, i.e., it improves the model's prediction on the current example (\boldsymbol{x}_n, y_n) .

P	9	σc		5
Г	d	ge	,	U

Name:		IIT Kanpur
Name:		CS771 Intro to ML
Roll No.:	Dent	End-semester Examination
Roll No.:	Dept.:	Date: November 29, 2018

2. Consider the prototype based classification model, given training data $\{(x_n, y_n)\}_{n=1}^N$, where input $x_n \in \mathbb{R}^D$ and label $y_n \in \{-1, +1\}$. Suppose we have mapped the inputs to a new feature space ϕ that has an associated kernel function k(.,.). Show that the prediction for a new test input x_* can be written in form of $y_* = \text{sign}[f(x_*)]$ and clearly write down the expression for $f(x_*)$. The expression for $f(x_*)$ must be only in terms of the kernel function k, and must not contain the feature mapping ϕ in it.

In prototype based classification (unkernelized case)

$$y_{*} = \text{Sign} \left[\| x_{*} - \mu_{-} \|^{2} - \| x_{*} - \mu_{+} \|^{2} \right]$$
In the Kernelized case
$$f(x_{*}) = \| \phi(x_{*}) - \phi(\mu_{-}) \|^{2} - \| \phi(x_{*}) - \phi(\mu_{+}) \|^{2}$$
where $\phi(\mu_{-})$ and $\phi(\mu_{+})$ are means of negative and positive examples in the ϕ space, e.g. $\phi(\mu_{-}) = \frac{1}{N} \sum_{n:y_{n=1}} \phi(x_{n})$

$$\text{Substituting and expanding, we get } \frac{1}{N-n:y_{n=1}} \sum_{n:y_{n=1}} \phi(x_{n}) \|^{2}$$

$$f(x_{*}) = \| \phi(x_{*}) - \frac{1}{N-n:y_{n=1}} \sum_{n:y_{n=1}} \phi(x_{n}) \|^{2}$$

$$f(x_{*}) = \| \phi(x_{*}) - \frac{1}{N-n:y_{n=1}} \sum_{n:y_{n=1}} \phi(x_{n}) \phi(x_{n}) + \frac{1}{N-n:y_{n=1}} \sum_{n:y_{n=1}} \phi(x_{n}) \phi(x_{n})$$

$$f(x_{*}) = \frac{2}{N+n:y_{n=1}} \sum_{n:y_{n=1}} \phi(x_{n}) \phi(x_{n}) + \frac{1}{N-n:y_{n=1}} \sum_{n:y_{n=1}} \phi(x_{n}) \phi(x_{n})$$

$$f(x_{*}) = \frac{2}{N+n:y_{n=1}} \sum_{n:y_{n=1}} \phi(x_{n}) \phi(x_{n}) + \frac{1}{N-n:y_{n=1}} \sum_{n:y_{n=1}} \phi(x_{n}) \phi(x_{n})$$
Important: $\phi(y_{-})$ is not ϕ simply applied to $\frac{1}{N-n:y_{n=1}} \sum_{n:y_{n=1}} \left(\frac{1}{N-n:y_{n=1}} \left(\frac{1}{N-n:y_{n=1}} \right) \right)$
Unique to $\frac{1}{N-n:y_{n=1}} \sum_{n:y_{n=1}} \phi(x_{n}) \phi(x_{n})$

$$f(x_{*}) = \frac{1}{N-n:y_{n=1}} \sum_{n:y_{n=1}} \phi(x_{n}) \phi(x_{n})$$

$$f(x_{*}) = \frac{1}{N-n:y_{n=1}} \sum_{n:y_{n=1}} \phi(x_{n})$$

$$f(x_{*}) = \frac{1}{N-n:y_{n=1}} \sum_{n:y_{n=1}} \phi(x_{n})$$

$$f(x_{*}) = \frac{1}{N-n:y_{n=1}} \sum_{n:y_{n=1}} \phi(x_{n})$$

$$f(x_{$$

3. Consider K-means clustering where we are trying to learn K means μ_1, \ldots, μ_K , given N observations $\{x_1, \ldots, x_N\}$, with each $x_n \in \mathbb{R}^D$. Suppose we have some a priori information that the K means are "close" to known vectors μ_1^*, \ldots, μ_K^* , respectively. Propose a suitable prior for each mean μ_k that makes use of this information. For any iteration of K-means, given the current observation-to-cluster assignments $\{z_1, \ldots, z_N\}$, and your proposed prior distribution, derive the update equation for each mean.

Name:	

CS771 Intro to ML End-semester Examination Date: November 29, 2018

Roll No.: Dept.:

means the feature x_{nd} was masked/zeroed).

4. Consider learning a linear regression model by minimizing the squared loss functio $\sum_{n=1}^{N} (y_n - \mathbf{w}^{\top} \mathbf{x}_n)^2$. Suppose we decide to mask out or "drop" each feature x_{nd} of each input $\mathbf{x}_n \in \mathbb{R}^D$, independently, with probability 1-p (equivalently, retaining the feature with probability p). Masking or dropping out basically means that we will set the feature x_{nd} to 0 with probability 1-p. Essentially, it would be equivalent to replacing each input \mathbf{x}_n by $\tilde{\mathbf{x}}_n = \mathbf{x}_n \circ \mathbf{m}_n$, where \circ denotes elementwise product and \mathbf{m}_n denotes the $D \times 1$ binary mask vector with $m_{nd} \sim \text{Bernoulli}(p)$ ($m_{nd} = 1$ means the feature x_{nd} was retained; $m_{nd} = 0$

Let us now define a new loss function using these masked inputs as follows: $\sum_{n=1}^{N} (y_n - \mathbf{w}^{\top} \tilde{\mathbf{x}}_n)^2$. Show that minimizing the *expected* value of this new loss function (where the expectation is used since the mask vectors \mathbf{m}_n are random) is equivalent to minimizing a regularized loss function. Clearly write down the

expression of this regularized loss function. (PS: You did something like this in Practice Set 1).

5. Consider the full (not truncated) singular value decomposition (SVD) of an $N \times D$ matrix X. Denote it as $\mathbf{X} = \mathbf{U}\Lambda\mathbf{V}^{\mathsf{T}}$. Show that the left singular vectors $\mathbf{U} = [u_1, \dots, u_N]$ are also the eigenvectors of $\mathbf{X}\mathbf{X}^{\mathsf{T}}$. Also show that the tright singular vectors $\mathbf{V} = [v_1, \dots, v_D]$ are also the eigenvectors of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$.

Tris cally box carried as the control of the contro

Name:	
Roll No.:	Dept.:

IIT Kanpur CS771 Intro to ML **End-semester Examination** Date: November 29, 2018

Section 5 (1 problem: 12 marks). Write your answers precisely and concisely in the provided box.

1. Assume you are given N examples $\{(x_n, y_n)\}_{n=1}^N$, with each $x_n \in \mathbb{R}^D$ and $y_n \in \mathbb{R}$. Assume the following generative story for each (x_n, y_n) : (1) Generate $z_n \sim \text{multinoulli}(\pi_1, \dots, \pi_K)$, (2) Generate the inputs $x_n \sim \mathcal{N}(\mu_{z_n}, \Sigma_{z_n})$, and (3) Generate the outputs as $y_n \sim \mathcal{N}(\boldsymbol{w}_{z_n}^{\top} \boldsymbol{x}_n, \beta^{-1})$.

Your goal is to estimate the parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k, \boldsymbol{w}_k\}_{k=1}^K$ of this model. Assume β to be fixed.

- You have to derive an EM algorithm to compute the posterior distribution over unknowns $\mathbf{Z} =$ $\{z_1,\ldots,z_N\}$ and point estimate (MLE) of unknowns Θ . To do so, first write down the expression for the complete-data log-likelihood (CLL) for the model, and simplify it (ignore the constants).
- Now derive the necessary expressions that you would need for the EM algorithm for this model. If some of these derivations are obvious/familiar to you, you can skip those and directly write down the final expressions (but these expressions better be correct; no partial marks can be given for incorrect expressions in such a case:)). Also give a brief sketch of the overall EM algorithm.

• Assuming $\pi_k = 1/K$, $\forall k$, derive the ALT-OPT algorithm for this model (you may use the results from the above EM algorithm to get the ALT-OPT algorithm directly, without deriving from scratch). The ALT-OPT algorithm will compute point estimates for both \mathbf{Z} and Θ . Also give a brief sketch of the overall ALT-OPT algorithm.

= log TT TT [P(xn|Zn=K)P(yn|Zn=K,xn)P(zn=K)] $=\sum_{n=1}^{N}\sum_{k=1}^{N}\sum_{n=1}^{N}\sum_{k=1}^{N}\sum_{n=1}^{N}\sum_{n=1}^{N}\sum_{k=1}^{N}\sum_{n=1}^{N}\sum_{k=1}^{N}\sum_{n=1}^{N}\sum_{k=1}^{N}\sum_{n=1}^{N}\sum_{k=1}^{N}\sum_{n=1}^{N}\sum_{k=1}^{N}\sum_{n=1}^{N}\sum_{k=1}^{N}\sum_{n=1}^$ $H(x_n|\mu_k, \overline{\Sigma}_k)$ $M(x_n|\mu_k, \overline{\Sigma}_n, \overline{\beta}')$ = \frac{1}{\sum_{\text{K=1}}} \frac{1}{\sum_{\text{K=1}}} \frac{1}{\sum_{\text{K=1}}} \left[-\frac{1}{2} \left[\alpha_{\text{N}} \right] -\frac{1}{2} \left(\alpha_{\text{N}} - \mu_{\text{K}} \right) - \frac{1}{2} \left(\dag{\text{N}}_{\text{N}} - \mu_{\text{K}} \alpha_{\text{N}} \right) - \frac{1}{2} \left(\dag{\text{N}}_{\text{N}} - \mu_{\text{K}} \right) - \frac{1}{2} \left(\dag{\text{N}}_{\text{N}} - \mu_{\text{N}} \right) - \frac{1}{2} \left(\dag{\text{N}_{\text{N}} - \mu_{\text{N}} \right) - \frac{1}{2} \left(\dag{\text{N}}_{\text{N}} - \mu_{\text{N}} \right) - \frac{1}{2} \left(\dag{\text{N}_{\text{N}} - \mu_{\text{N}} \right) - \frac{1}{2} \left(\dag{\text{N}_{\text{N}} - \mu_{\text{N}} \right) - \frac{1}{2} \left(\dag{\text{N}_{\text{N}} - \mu_{\text{N}} \r We need expected CLL. The only expectation we need is E [Znx] which is the same as the postesior probability of Znx=1; P(Znk=1) Xn, yn, O) \(\times P(Znk=1) P(\times n) P(\times n) P(\times n) \) \(\times Unlike GMM \) or standard mixture of experts.

Thus T(Z) T \(\times n \) \(\times Thus [E[Znx] or Tx N(26) Hx, Zx) N(80) Wx 260, pot) (which can be easily normalized), It one for In, one suppose I'm = [E[ZnK], NK = For yn for yn Given I'm from the Estep, the M step is straightforward. The updates are just like GMM updates of these,

(if needed, you may continue the answer in the box on the next page)

	Page 8	
Name:		CS
Roll No.:	Dept.:	End-semes

Roll No.:

IIT Kanpur 771 Intro to ML ster Examination Date: November 29, 2018

We is also like the standard mixture of The update of UK = (\(\frac{\times \gamma_{nk} \times \times \gamma_n \times \) with ALT- OPT with The - will be identical, except that we don't need to estimate TX In will be computed an follows V Zn= arginin 1 - log P(xn/Zn=k) - log P(yn/Zn=k, xn) = argmin [= log | In + = (am Mx) Ex (an Ax) KERI. KR (Note that this is the same as Zn = arg max P(Zn=K|Xn, Yn, O) = arg max P(xn, yn |Zn=k, 0) P(Zn=k)0 = argmin - | tog P(Xn, Yn | Zn=K,O) we can use the optimal value of In to ereate a one-hot vector To= [To. Tox) Updates of Mr, Ex, Wx will have an identical form as in the EM case but since in is a one-hot vector, only the points with the (Recall HW 3 problem on mixture of experts). Skipping the ALT-OPT & EM sketch (Obvious!)

	Page 9	
Name:]
Roll No.:	Dept.:	_

CS771 Intro to ML End-semester Examination Date: November 29, 2018

Some formulae you might need

- Bernoulli: Bernoulli $(x|p) = p^x(1-p)^{1-x}$. Expectation $\mathbb{E}[x] = p$, Variance var[x] = p(1-p)
- Univariate Gaussian PDF: $\mathcal{N}(x|\mu, \lambda^{-1}) = \sqrt{\frac{\lambda}{2\pi}} \exp(-\frac{\lambda}{2}(x-\mu)^2), \, \mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$
- Multivariate Gaussian PDF: $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\{-\frac{1}{2}(\boldsymbol{x} \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} \boldsymbol{\mu})\}$. Trace-based representation: $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\{-\frac{1}{2} \operatorname{trace} [\boldsymbol{\Sigma}^{-1} \mathbf{S}] \}$, $\mathbf{S} = (\boldsymbol{x} \boldsymbol{\mu})(\boldsymbol{x} \boldsymbol{\mu})^\top$.
- For $x_k \in \{0, N\}$ and $\sum_{k=1}^K x_k = N$, multinomial $(x_1, \dots, x_K | N, \pi) = \frac{N!}{x_1! \dots x_K!} \pi_1^{x_1} \dots \pi_K^{x_K}$, where $\pi = [\pi_1, \dots, \pi_K]$, s.t. $\sum_{k=1}^K \pi_k = 1$. The multinoulli is the same as multinomial with N = 1.
- $\frac{\partial x^{\top}a}{\partial x} = \frac{\partial a^{\top}x}{\partial x} = a$, quadratic form: $\frac{\partial}{\partial x}(x-s)^{\top}\mathbf{W}(x-s) = 2\mathbf{W}(x-s)$
- $\bullet \ \ \tfrac{\partial}{\partial \boldsymbol{\mu}}[\boldsymbol{\mu}^{\top}\mathbf{A}\boldsymbol{\mu}] = [\mathbf{A} + \mathbf{A}^{\top}]\boldsymbol{\mu}, \ \tfrac{\partial}{\partial \mathbf{A}}\log|\mathbf{A}| = \mathbf{A}^{-\top}, \tfrac{\partial}{\partial \mathbf{A}}\mathrm{trace}[\mathbf{A}\mathbf{B}] = \mathbf{B}^{\top}$
- ullet For a random variable vector $oldsymbol{x},\, \mathbb{E}[oldsymbol{x}oldsymbol{x}^{ op}] = \mathbb{E}[oldsymbol{x}]\mathbb{E}[oldsymbol{x}]^{ op} + \mathrm{cov}[oldsymbol{x}]$
- For a random scalar x, $var[x] = \mathbb{E}[x^2] \mathbb{E}[x]^2$

	Page 10	UT Vannus
Name:		IIT Kanpur CS771 Intro to ML
		End-semester Examination
Roll No.:	Dept.:	Date: November 29, 2018