Due Date: Tuesday May 2 (no extensions possible)

P1. Suppose we insert $n = 2^k - 1$ keys from $1, \ldots, n$ uniformly at random into a binary search tree. Let P_k probability that the tree is *perfectly* balanced: i.e, all paths from root to leaf are of the same length. Derive a recurrence for P_k . Calculate P_5 .

- **P2.** Suppose there are n delicious sweets in front of you that you wish to consume. Each morning you toss a coin for each sweet that is left and consume it if the coin turns up heads or save it for another day if the coin turns up tails.
- (A) What is the probability that after k days of this, there are still candies left. Express your answer as a function of n, k and simplify as much as possible.
- **(B)** What is the expected time taken to consume all the candies?

Hint: For a positive integer valued random variable X we have

$$E(X) = P(X \ge 1) + P(X \ge 2) + P(X \ge 3) + \cdots$$

Express your answer as a function of n, k and simplify as much as possible.

(C) Use Bernoulli's inequality $(1-x)^r \ge 1 + rx$ for any real valued $x \ge -1$ and integer $r \ge 1$ to prove that the expected time to consume all candies is $\le \log_2(n) + c$ for some constant c for $n \ge 4$.