(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年1 月29 日 (29.01.2004)

PCT

(10) 国際公開番号 WO 2004/009551 A1

(51) 国際特許分類7:

401/04, 405/04, 409/04, 413/04, 417/04

. . .

C07D 213/22.

(21) 国際出願番号:

PCT/JP2003/009317

(22) 国際出願日:

2003年7月23日(23.07.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2002-214097

2002年7月23日(23.07.2002) JF

- (71) 出願人 (米国を除く全ての指定国について): 株式会 社クラレ (KURARAY CO., LTD.) [JP/JP]; 〒710-8622 岡山県 倉敷市 酒津1621番地 Okayama (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 小役丸 健一 (KOYAKUMARU,Kenichi) [JP/JP]; 〒710-0801 岡山県

倉敷市 酒津 2 0 4 5 番地の 1 株式会社クラレ内 Okayama (JP). 松尾 佳美 (MATSUO,Yoshimi) [JP/JP]; 〒710-0801 岡山県 倉敷市 酒津 2 0 4 5 番地の 1 株 式会社クラレ内 Okayama (JP).

- (74) 代理人: 高島 (TAKASHIMA,Hajime); 〒541-0044 大阪府 大阪市 中央区伏見町四丁目 2番 1 4号 藤村 大和生命ビル Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(広域): ARIPO 特許(GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB,

/続葉有/

(54) Title: PROCESS FOR PRODUCING 2-SUBSTITUTED PYRIDINE DERIVATIVE

(54) 発明の名称: 2位置換ピリジン誘導体の製造方法

$$R^4$$
 R^3
 R^2
 R^5
 R^5
 R^5
 R^1

$$(Y^{1}-X^{1})_{m}$$
 $(Y^{2}-X^{2})_{n}$
 Z

(II)

$$R^{4}$$
 R^{2}
 $(X^{1}-Y^{1})_{m}$
 $(X^{2}-Y^{2})_{n}$

(III)

(57) Abstract: A process by which a pyridine derivative having a substituent of a heterocyclic structure in the 2-position can be easily produced with satisfactory selectivity. The process, which is for producing a pyridine derivative which has a substituent of a heterocyclic structure in the 2-position and is represented by, e.g., the general formula (III), is characterized by reacting a 2-sulfonylpyridine derivative represented by the general formula (I) with an organometallic compound represented by, e.g., the general formula (II). (I) (II) (III) (In the formulae, the symbols are the same as defined in the description.)

WO 2004/009551 A1 |||

GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

添付公開書類:

一 国際調査報告書

(57) 要約:

本発明は、2位に複素環構造の置換基を有するピリジン誘導体を簡便にかつ選択性よく製造し得る方法を提供する。本発明は、一般式(I)で示される2-スルホニルピリジン誘導体を一般式(II)などで示される有機金属化合物と反応させることを特徴とする一般式(III)などで示される2位に複素環構造の置換基を有するピリジン誘導体の製造方法に関する。

$$R^4$$
 R^3
 R^2
 $(Y^1-X^1)_m$
 C^1-M
 Z
 (I)
 (II)
 (II)
 R^3
 R^4
 R^2
 $(Y^2-X^2)_n$
 (III)
 (III)

(上記式中、各記号は明細書中で定義したとおり。)

Re: PTO 24 JAN 2005

明細書

2位置換ピリジン誘導体の製造方法

技術分野

本発明は2位に複素環構造の置換基を有するピリジン誘導体の製造方法に関する。本発明により得られる2位が複素環構造の置換基で置換されたピリジン誘導体は、抗真菌剤の合成中間体として有用である(米国特許第5,693,611号明細書参照)。

背景技術

従来、2位に複素環構造の置換基を有するピリジン誘導体を製造する 方法として、(1)複素環構造を有する有機金属化合物と2-ハロゲン 10 化ピリジン誘導体を遷移金属触媒の存在下に反応させる方法[シンセシ ス (Synthesis)、1号、128頁 (2001年);ジャーナ ル オブ オーガニック ケミストリー (Journal of Or ganic Chemistry)、66卷4号、1500頁(200 1年);WO01/04076公報など参照]、(2)2-ピリジル有 15 機金属化合物とハロゲン化複素環化合物を遷移金属触媒の存在下に反応 させる方法 [テトラヘドロン レターズ (Tetrahedron L etters)、41巻10号、1653頁(2000年);WO99 /65896公報;テトラヘドロン(Tetrahedron)、52 巻15号、5625頁(1996年)など参照]、(3)2-ピリジル 20 スルホキシドと複素環構造を有するグリニヤール試薬を反応させる方法 [リービッヒ アナーレン/レクエイル (Liebigs Annal en/Recueil)、2巻、297頁(1997年);プレティン オブ ザ ケミカル ソサエティー オブ ジャパン (Bulleti n of the Chemical Society of Jap 25 an)、62巻、3848頁(1989年)など参照]などが知られて いる。

上記の方法(1)および(2)では、高価でかつ廃液面で問題のある

遷移金属触媒の使用が必須であり、該触媒なしでは反応は進行しない。 方法(3)では、副生成物としてホモカップリング反応によるビピリジン誘導体が生成するために反応の選択性が低い。

発明の開示

5 本発明の目的は、2位に複素環構造の置換基を有するピリジン誘導体 を簡便にかつ選択性よく製造し得る方法を提供することにある。

本発明は、

10

15

20

「1] 一般式(I)

(式中、R¹は置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基を表し、R²、R³、R⁴およびR⁵はそれぞれ水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアシルオキシ基、置換基を有していてもよいアシルチオ基、置換基を有していてもよい保護されたアミノ基、ニトロ基、シアノ基、置換基を有していてもよいアシル基、置換基を有していてもよいアルバモイル基または置換基を有していてもよいスルホニル基を表し、または、R²とR³、R³とR⁴およびR⁴とR⁵はそれぞれそれらが結合する炭素原子と一緒になって置換基を有していてもよい環を形成していてもよい。)

で示される2-スルホニルピリジン誘導体 [以下、これを2-スルホニ

ルピリジン誘導体 (I) と略称する] を一般式 (II')

$$(Y^{1}-X^{3}-Y^{3})_{m}$$

 $(Y^{2}-X^{4}-Y^{4})_{n}$
 (II')

(式中、mおよびnはそれぞれ1以上の整数を表し、 $m+n=3\sim8$ の関係にあり、

5 C¹は炭素原子を表し、

20

Mは水素原子を除く周期表1族、2族、12族または13族に属する元素の原子を表し、

Zは水素原子、置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基を表し、

 X^3 は炭素原子、酸素原子、窒素原子または硫黄原子を表し、 X^4 は炭素原子、酸素原子、窒素原子または硫黄原子を表し、但し、 X^3 と X^4 の少なくとも1つは酸素原子、窒素原子または硫黄原子であり、また、 X^3 が窒素原子である場合は該 X^3 に結合する Y^3 は存在せず、 X^3 が酸素原子または硫黄原子である場合は Y^1 および Y^3 は存在せず、 X^4 が窒素原子である場合は X^4 に結合する Y^4 は存在せず、 X^4 が酸素原子または硫黄原子である場合は Y^2 および Y^4 は存在せず、

Y¹、Y²、Y³およびY⁴はそれぞれ水素原子、ハロゲン原子、置換基を 有していてもよいアルキル基、置換基を有していてもよいアリール基、 置換基を有していてもよいアルコキシル基、置換基を有していてもよい アリールオキシ基、置換基を有していてもよいアシルオキシ基、置換基 を有していてもよいアルキルチオ基、置換基を有していてもよいアリー ルチオ基、置換基を有していてもよいアシルチオ基、置換基を有してい てもよい保護されたアミノ基、ニトロ基、シアノ基、置換基を有してい てもよいアシル基、置換基を有していてもよいアルコキシカルボニル基

、置換基を有していてもよいカルバモイル基または置換基を有していて もよいスルホニル基を表し、または、

 Y^1 、 Y^2 およびZはそれぞれそれが結合する X^3 、 X^4 または C^1 が隣接する X^3 または X^4 が有する Y^1 または Y^2 と結合して二重結合または環構造を形成していてもよく、または、

 Y^1 および Y^3 が一緒になって酸素原子を表し X^3 と二重結合で結合していてもよく、 Y^2 および Y^4 が一緒になって酸素原子を表し X^4 と二重結合で結合していてもよい。)

で示される有機金属化合物 [以下、これを有機金属化合物 (II')) と 10 略称する] と反応させることを特徴とする一般式 (III')

$$R^{4}$$
 R^{2}
 $(Y^{3}-X^{3}-Y^{1})_{m}$
 (III')
 Z
 $(Y^{4}-X^{4}-Y^{2})_{n}$

(式中、R²、R³、R⁴、R⁵、m、n、C¹、Z、X³、X⁴、Y¹、Y
²、Y³およびY⁴は上記定義のとおりである。)

で示される 2 位に複素環構造の置換基を有するピリジン誘導体 [以下、 15 これを 2 位置換ピリジン誘導体 (III') と略称する]の製造方法、 [2] Y^1 はそれが結合する X^3 が隣接する X^4 が有する Y^2 と結合して二 重結合を形成し、かつ該 X^3 に結合する Y^3 および該 Y^4 に結合する Y^4 の 少なくとも一方が置換基を有していてもよいアルキル基である、上記 [1] 記載の製造方法、

20 [3] 2-スルホニルピリジン誘導体 (I) を一般式 (II)

(式中、mおよびnはそれぞれ1以上の整数を表し、m+n=3~8の 関係にあり、

C¹は炭素原子を表し、

15

20

5 Mは水素原子を除く周期表 1 族、 2 族、 1 2 族または 1 3 族に属する元素の原子を表し、

Zは水素原子、置換基を有していてもよいアルキル基または置換基を有 していてもよいアリール基を表し、

 X^1 は炭素原子、CH、酸素原子、窒素原子または硫黄原子を表し、 X^2 10 は炭素原子、CH、酸素原子、窒素原子または硫黄原子を表し、但し、 X^1 と X^2 の少なくとも1つは酸素原子、窒素原子または硫黄原子であり

X¹またはX²が炭素原子、CHまたは窒素原子である場合、Y¹および Y²はそれぞれ水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよいアシルチオ基、置換基を有していてもよい保護されたアミノ基、ニトロ基、シアノ基、置換基を有していてもよいアシル基、置換基を有していてもよいアンル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいカルバモイル基または置換基を有していてもよいスルホニル基を表し、または、

Y¹、Y²およびZはそれぞれそれが結合するX¹、X²またはC¹が隣接

する X^1 または X^2 が有する Y^1 または Y^2 と結合して二重結合または環構造を形成していてもよく、または、

 X^1 または X^2 が炭素原子である場合、 Y^1 または Y^2 はそれぞれ酸素原子を表し、 X^1 または X^2 と二重結合で結合していてもよい。)

5 で示される有機金属化合物 [以下、これを有機金属化合物 (II) と略称する] と反応させることを特徴とする一般式 (III)

$$R^{4}$$
 R^{2}
 R^{5}
 R^{5}
 R^{5}
 R^{2}
 $(X^{1}-Y^{1})_{m}$
 $(X^{2}-Y^{2})_{n}$

(式中、 R^2 、 R^3 、 R^4 、 R^5 、m、n、 C^1 、Z、 X^1 、 X^2 、 Y^1 および Y^2 は上記定義のとおりである。)

10 で示される2位に複素環構造の置換基を有するピリジン誘導体 [以下、これを2位置換ピリジン誘導体 (III) と略称する]の製造方法、[4]有機金属化合物 (II) が芳香族複素環を有する化合物である上記[3]に記載の製造方法、

[5]芳香族複素環がピリジン環、ピリミジン環、ピリダジン環、ピラジン環、チオフェン環、フラン環、ピロール環、イミダゾール環、ピラゾール環、チアゾール環、オキサゾール環またはイソオキサゾール環である上記[4]に記載の製造方法、

[6]一般式 (II) において、Mがリチウム原子、ナトリウム原子、カリウム原子、マグネシウム原子、カルシウム原子、亜鉛原子、ホウ素原子またはアルミニウム原子を表す有機金属化合物である上記[3]~[5]のいずれかの項に記載の製造方法、

[7]一般式 (II) において、Mがリチウム原子またはマグネシウム原子を表す有機金属化合物である上記[3]~[5]のいずれかの項に記載の

15

20

25

製造方法、に関する。

本発明の好適な実施形態において、有機金属化合物(II)、(II')として、芳香族複素環を有する化合物、特にピリジン環、ピリミジン環、ピリダジン環、ピラジン環、チオフェン環、フラン環、ピロール環、イミダゾール環、ピラゾール環、チアゾール環、オキサゾール環またはイソオキサゾール環を有する化合物が使用され、かつ、一般式(II)、(II')において、Mがリチウム原子、ナトリウム原子、カリウム原子、マグネシウム原子、カルシウム原子、亜鉛原子、ホウ素原子またはアルミニウム原子を表す有機金属化合物(II)、(II')、特にMがリチウム原子またはマグネシウム原子を表す有機金属化合物(II)、(II')が使用される。

発明の詳細な説明

本明細書中において、複素環とは、環系を構成する原子の中に炭素原子以外の原子を1個以上含有する環構造を意味し、芳香族複素環とは、基本的に環系に二重結合を3個有する6員環構造または環系に二重結合を2個有する5員環構造を意味する。

上記の一般式中、R¹、R²、R³、R⁴、R⁵、Y¹、Y²、Y³、Y⁴
およびZがそれぞれ表すアルキル基、R²、R³、R⁴、R⁵、Y¹、Y²
、Y³およびY⁴がそれぞれ表すアルコキシル基、アシルオキシ基(アルキルカルボニルオキシ基)、アルキルチオ基、アシルチオ基(アルキルカルボニルチオ基)、アシル基(アルキルカルボニル基)、アルコキシカルボニル基およびスルホニル基(特にアルキルスルホニル基、アルコキシスルホニル基、アルキル基などで置換されたスルファモイル基)が有するアルキル基、ならびにR²、R³、R⁴、R⁵、Y¹、Y²、Y³およびY⁴がそれぞれ表す保護されたアミノ基およびカルバモイル基が置換基として有していてもよいアルキル基は、直鎖状、分岐状または環状のいずれでもよく、その炭素数は1~12であるものが好ましい。アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル

基、ブチル基、イソプチル基、tertーブチル基、ヘキシル基、オクチル基、ドデシル基、シクロペンチル基、シクロヘキシル基などが挙げられる。

R²とR³、R³とR⁴およびR⁴とR⁵がそれぞれそれらが結合する炭素原子と一緒になって形成する環としては、特に限定されないが、例えば脂肪族炭素環などが挙げられ、環の炭素数は4~10であるのが好ましい。かかる環としては、例えばシクロペンタン環、シクロヘキサン環、シクロデカン環などが挙げられる。

上記のアルキル基および環は置換基を有していてもよい。置換基とし ては、例えば、フェニル基、トリル基、メトキシフェニル基、クロロフ 10 ェニル基、プロモフェニル基、ニトロフェニル基、ナフチル基、アント ラセニル基、ピリジル基、フリル基、チエニル基などの炭素数が4~1 5 であり、窒素原子、酸素原子、硫黄原子などの複素原子を環構造に任 意に含んでいてもよい、好ましくは環員数5~14であるアリール基; ビニル基、1-メチルビニル基などの例えば炭素数2~3であるアルケ 15 ニル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン 原子:メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブ トキシ基、イソプトキシ基、tert-ブトキシ基、ヘキシルオキシ基 、オクチルオキシ基、ドデシルオキシ基、シクロペンチルオキシ基、シ クロヘキシルオキシ基、アリルオキシ基、ベンジルオキシ基などの直鎖 20 状、分岐状または環状の炭素数が1~12であるアルコキシル基;フェ ノキシ基、クロロフェノキシ基、プロモフェノキシ基、ニトロフェノキ シ基、ナフチルオキシ基、アントラセニルオキシ基、ピリジルオキシ基 、フリルオキシ基、チエニルオキシ基などの炭素数が4~15であり、 窒素原子、酸素原子、硫黄原子などの複素原子を環構造に任意に含んで 25 いてもよい、好ましくは環員数5~14であるアリールオキシ基;水酸 基:アセチルオキシ基、プロパノイルオキシ基、ブチリルオキシ基、イ ソブチリルオキシ基、バレリルオキシ基、イソバレリルオキシ基、ピバ

ロイルオキシ基、ヘキサノイルオキシ基、オクタノイルオキシ基、クロ ロアセチルオキシ基、トリフルオロアセチルオキシ基、シクロペンタン カルボニルオキシ基、シクロヘキサンカルボニルオキシ基、ベンソイル オキシ基、メトキシベンゾイルオキシ基、クロロベンゾイルオキシ基な どの直鎖状、分岐状または環状の炭素数が1~15であるアシルオキシ 基;メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ 基、ブチルチオ基、イソブチルチオ基、tert-ブチルチオ基、ヘキ シルチオ基、オクチルチオ基、ドデシルチオ基、シクロペンチルチオ基 、シクロヘキシルチオ基、アリルチオ基、ベンジルチオ基などの直鎖状 、分岐状または環状の炭素数が1~12であるアルキルチオ基;フェニ 10 ルチオ基、トリルチオ基、メトキシフェニルチオ基、クロロフェニルチ オ基、ブロモフェニルチオ基、ニトロフェニルチオ基、ナフチルチオ基 、アントラセニルチオ基、ピリジルチオ基、フリルチオ基、チエニルチ オ基などの炭素数が4~15であり、窒素原子、酸素原子、硫黄原子な どの複素原子を環構造に任意に含んでいてもよい、好ましくは環員数5 15 ~14であるアリールチオ基;アセチルチオ基、プロパノイルチオ基、 ブチリルチオ基、イソブチリルチオ基、バレリルチオ基、イソバレリル チオ基、ピバロイルチオ基、ヘキサノイルチオ基、オクタノイルチオ基 、クロロアセチルチオ基、トリフルオロアセチル基、シクロペンタンカ ルボニルチオ基、シクロヘキサンカルボニルチオ基、ベンゾイルチオ基 20 、ナフトイルチオ基、アントラセノイルチオ基、メトキシベンゾイルチ オ基、クロロベンゾイルチオ基などの直鎖状、分岐状または環状の炭素 数が1~15であるアシルチオ基;アセチル基、ベンゾイル基、メタン スルホニル基、p-トルエンスルホニル基、tert-ブトキシカルボ ニル基、ベンジルオキシカルボニル基、アリルオキシカルボニル基など 25 の保護基で保護されており、窒素原子が有する水素原子がメチル基、エ チル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、 t e rtープチル基、ヘキシル基、オクチル基、ドデシル基、シクロペンチ

ル基、シクロヘキシル基などの直鎖状、分岐状もしくは環状の炭素数が 1~12であるアルキル基、アリル基などの例えば炭素数2~3である アルケニル基またはベンジル基などの例えばアリール部分の炭素数が4 ~15でありアルキル部分の炭素数が1~12であるアラルキル基など で置換されていてもよいアミノ基;ニトロ基;シアノ基;アセチル基、 プロパノイル基、ブチリル基、イソブチリル基、バレリル基、イソバレ リル基、ピバロイル基、ヘキサノイル基、オクタノイル基、クロロアセ チル基、トリフルオロアセチル基、シクロペンタンカルボニル基、シク ロヘキサンカルボニル基、ベンゾイル基、ナフトイル基、アントラセノ イル基、メトキシベンゾイル基、クロロベンゾイル基などの直鎖状、分 10 岐状または環状の炭素数が1~15であるアシル基;メトキシカルボニ ル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキ シカルボニル基、プトキシカルボニル基、イソブトキシカルボニル基、 tertープトキシカルボニル基、ヘキシルオキシカルボニル基、オク 15 チルオキシカルボニル基、ドデシルオキシカルボニル基、シクロペンチ ルオキシカルボニル基、シクロヘキシルオキシカルボニル基、アリルオ キシカルボニル基、ベンジルオキシカルボニル基などの直鎖状、分岐状 または環状の炭素数が2~13であるアルコキシカルボニル基;窒素原 子が有する任意の水素原子が、例えばメチル基、エチル基、プロピル基 、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ヘ 20 キシル基、オクチル基、ドデシル基、シクロペンチル基、シクロヘキシ ル基などの直鎖状、分岐状もしくは環状の炭素数が1~12であるアル キル基、アリル基などの例えば炭素数2~3であるアルケニル基、ベン ジル基などの例えばアリール部分の炭素数が4~15でありアルキル部 分の炭素数が1~12であるアラルキル基またはフェニル基、トリル基 25 、メトキシフェニル基、クロロフェニル基、プロモフェニル基、ニトロ フェニル基、ナフチル基、アントラセニル基、ピリジル基、フリル基、 チェニル基などの炭素数が4~15であり、窒素原子、酸素原子、硫黄

原子などの複素原子を環構造に任意に含んでいてもよい、好ましくは環員数5~14であるアリール基などで置換されていてもよいカルバモイル基;メタンスルホニル基、エタンスルホニル基、トリフルオロメタンスルホニル基などのアルキル部分の炭素数が例えば1~12であるアルキルスルホニル基、ベンゼンスルホニル基、pートルエンスルホニル基、メトキシベンゼンスルホニル基、クロロベンゼンスルホニル基などのアリール部分の炭素数が例えば4~15であるアリールスルホニル基、メトキシスルホニル基、エトキシスルホニル基などのアルコキシル部分の炭素数が例えば1~12であるアルコキシスルホニル基、スルファモイル基、N、N・ジメチルスルファモイル基、N・フェニルスルファモイル基などの例えば炭素数1~12のアルキル基、例えば炭素数4~15のアリール基などで置換されていてもよいスルファモイル基などのスルホニル基などが挙げられる。

R²、R³、R⁴、R⁵、Y¹、Y²、Y³およびY⁴がそれぞれ表す置換 基を有していてもよいアルコキシル基の代表例としては、メトキシ基、 15 エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブト キシ基、tert-ブトキシ基、ヘキシルオキシ基、オクチルオキシ基 、シクロペンチルオキシ基、シクロヘキシルオキシ基、アリルオキシ基 、ベンジルオキシ基などが挙げられ、置換基を有していてもよいアルキ ルチオ基の代表例としては、メチルチオ基、エチルチオ基、プロピルチ 20 オ基、イソプロピルチオ基、プチルチオ基、イソプチルチオ基、ter t-ブチルチオ基、ヘキシルチオ基、オクチルチオ基、シクロペンチル チオ基、シクロヘキシルチオ基、アリルチオ基、ベンジルチオ基などが 挙げられ、置換基を有していてもよいアルコキシカルボニル基の代表例 としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシ 25 カルボニル基、イソプロポキシカルボニル基、プトキシカルボニル基、 イソプトキシカルボニル基、tert-プトキシカルボニル基、ヘキシ ルオキシカルボニル基、オクチルオキシカルボニル基、シクロペンチル

15

20

25

オキシカルボニル基、シクロヘキシルオキシカルボニル基、アリルオキシカルボニル基、ベンジルオキシカルボニル基などが挙げられる。

 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 Y^1 、 Y^2 、 Y^3 、 Y^4 およびZ がそれぞれ表すアリール基、 R^2 、 R^3 、 R^4 、 R^5 、 Y^1 、 Y^2 、 Y^3 および Y^4 がそれぞれ表すアリールオキシ基、アシルオキシ基(アリールカルボニルオキシ基)、アリールチオ基、アシルチオ基(アリールカルボニルチオ基)、アシル基(アリールカルボニル基)またはスルホニル基(特にアリールスルホニル基、アリール基などで置換されたスルファモイル基)が有するアリール基、ならびに R^2 、 R^3 、 R^4 、 R^5 、 Y^1 、 Y^2 、 Y^3 および Y^4 がそれぞれ表すアミノ基またはカルバモイル基が置換基として有していてもよいアリール基は、窒素原子、酸素原子、硫黄原子などの複素原子を環構造に任意に含んでいてもよく、その炭素数は $4\sim15$ であるものが好ましい。環員数は $5\sim14$ が好ましい。アリール基としては、例えばフェニル基、ナフチル基、アントラセニル基、ピリジル基、フリル基、チエニル基などが挙げられる。

上記のアリール基は置換基を有していてもよい。置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tertーブチル基、ヘキシル基、オクチル基、ドデシル基、シクロペンチル基、シクロヘキシル基などの直鎖状、分岐状または環状の炭素数が1~12であるアルキル基;フェニル基、トリル基、メトキシフェニル基、クロロフェニル基、ブロモフェニル基、ニトロフェニル基、ナフチル基、アントラセニル基、ピリジル基、フリル基、チエニル基などの炭素数が4~15であり、窒素原子、酸素原子、硫黄原子などの複素原子を環構造に任意に含んでいてもよい、好ましくは環員数5~14であるアリール基;フッ素原子、塩素原子、臭素原子、コウ素原子などのハロゲン原子;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソプトキシ基、tertープトキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基、シクロ

ペンチルオキシ基、シクロヘキシルオキシ基、アリルオキシ基、ベンジ ルオキシ基などの直鎖状、分岐状または環状の炭素数が1~12である アルコキシル基;フェノキシ基、クロロフェノキシ基、プロモフェノキ シ基、ニトロフェノキシ基、ナフチルオキシ基、アントラセニルオキシ 基、ピリジルオキシ基、フリルオキシ基、チエニルオキシ基などの炭素 5 数が4~15であり、窒素原子、酸素原子、硫黄原子などの複素原子を 環構造に任意に含んでいてもよい、好ましくは環員数5~14であるア リールオキシ基;水酸基;アセチルオキシ基、プロパノイルオキシ基、 ブチリルオキシ基、イソプチリルオキシ基、バレリルオキシ基、イソバ レリルオキシ基、ピバロイルオキシ基、ヘキサノイルオキシ基、オクタ 10 ノイルオキシ基、クロロアセチルオキシ基、トリフルオロアセチル基、 シクロペンタンカルボニルオキシ基、シクロヘキサンカルボニルオキシ 基、ベンゾイルオキシ基、ナフトイル基、アントラセノイル基、メトキ シベンゾイルオキシ基、クロロベンゾイルオキシ基などの直鎖状、分岐 状または環状の炭素数が1~15であるアシルオキシ基;メチルチオ基 15 、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基 、イソブチルチオ基、tert-ブチルチオ基、ヘキシルチオ基、オク チルチオ基、ドデシルチオ基、シクロペンチルチオ基、シクロヘキシル チオ基、アリルチオ基、ベンジルチオ基などの直鎖状、分岐状または環 状の炭素数が1~12であるアルキルチオ基;フェニルチオ基、トリル 20 チオ基、メトキシフェニルチオ基、クロロフェニルチオ基、ブロモフェ ニルチオ基、ニトロフェニルチオ基、ナフチルチオ基、アントラセニル チオ基、ピリジルチオ基、フリルチオ基、チエニルチオ基などの炭素数 が4~15であり、窒素原子、酸素原子、硫黄原子などの複素原子を環 構造に任意に含んでいてもよい、好ましくは環員数5~14であるアリ 25 ールチオ基;アセチルチオ基、プロパノイルチオ基、ブチリルチオ基、 イソプチリルチオ基、バレリルチオ基、イソバレリルチオ基、ピバロイ ルチオ基、ヘキサノイルチオ基、オクタノイルチオ基、クロロアセチル

チオ基、トリフルオロアセチルチオ基、シクロペンタンカルボニルチオ 基、シクロヘキサンカルボニルチオ基、ベンソイルチオ基、ナフトイル チオ基、アントラセノイルチオ基、メトキシベンソイルチオ基、クロロ ベンソイルチオ基などの直鎖状、分岐状または環状の炭素数が1~15 であるアシルチオ基;アセチル基、ベンゾイル基、メタンスルホニル基 5 、p-トルエンスルホニル基、tert-プトキシカルボニル基、ベン ジルオキシカルボニル基、アリルオキシカルボニル基などの保護基で保 護されており、窒素原子が有する水素原子がメチル基、エチル基、プロ ピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル 基、ヘキシル基、オクチル基、ドデシル基、シクロペンチル基、シクロ 10 ヘキシル基などの直鎖状、分岐状もしくは環状の炭素数が1~12であ るアルキル基、アリル基などの例えば炭素数2~3であるアルケニル基 またはベンジル基などの例えばアリール部分の炭素数が4~15であり アルキル部分の炭素数が1~12であるアラルキル基などで置換されて いてもよいアミノ基;ニトロ基;シアノ基;アセチル基、プロパノイル 15 基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバ ロイル基、ヘキサノイル基、オクタノイル基、クロロアセチル基、トリ フルオロアセチル基、シクロペンタンカルボニル基、シクロヘキサンカ ルボニル基、ベンゾイル基、ナフトイル基、アントラセノイル基、メト キシベンゾイル基、クロロベンゾイル基などの直鎖状、分岐状または環 20 状の炭素数が1~15であるアシル基;メトキシカルボニル基、エトキ シカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル 基、プトキシカルボニル基、イソブトキシカルボニル基、tert-ブ トキシカルボニル基、ヘキシルオキシカルボニル基、オクチルオキシカ ルボニル基、ドデシルオキシカルボニル基、シクロペンチルオキシカル 25 ボニル基、シクロヘキシルオキシカルボニル基、アリルオキシカルボニ ル基、ベンジルオキシカルボニル基などの直鎖状、分岐状または環状の 炭素数が2~13であるアルコキシカルボニル基;窒素原子が有する任

意の水素原子が、例えばメチル基、エチル基、プロピル基、イソプロピ ル基、ブチル基、イソブチル基、tert-ブチル基、ヘキシル基、オ クチル基、ドデシル基、シクロペンチル基、シクロヘキシル基などの直 鎖状、分岐状もしくは環状の炭素数が1~12であるアルキル基、アリ ル基などの例えば炭素数2~3であるアルケニル基、ベンジル基などの 5 例えばアリール部分の炭素数が4~15でありアルキル部分の炭素数が 1~12であるアラルキル基またはフェニル基、トリル基、メトキシフ エニル基、クロロフェニル基、ブロモフェニル基、ニトロフェニル基、 ナフチル基、アントラセニル基、ピリジル基、フリル基、チエニル基な どの炭素数が4~15であり、窒素原子、酸素原子、硫黄原子などの複 10 素原子を環構造に任意に含んでいてもよい、好ましくは環員数5~14 であるアリール基などで置換されていてもよいカルバモイル基;メタン スルホニル基、エタンスルホニル基、トリフルオロメタンスルホニル基 などのアルキル部分の炭素数が例えば1~12であるアルキルスルホニ ル基、ベンゼンスルホニル基、p-トルエンスルホニル基、メトキシベ 15 ンゼンスルホニル基、クロロベンゼンスルホニル基などのアリール部分 の炭素数が例えば4~15であるアリールスルホニル基、メトキシスル ホニル基、エトキシスルホニル基などのアルコキシル部分の炭素数が例 えば1~12であるアルコキシスルホニル基、スルファモイル基、N, N-ジメチルスルファモイル基、N-フェニルスルファモイル基などの 20 例えば炭素数1~12のアルキル基、例えば炭素数4~15のアリール 基などで置換されていてもよいスルファモイル基などのスルホニル基な どが挙げられる。

R²、R³、R⁴、R⁵、Y¹、Y²、Y³およびY⁴がそれぞれ表すアリ 25 ールオキシ基の代表例としては、フェノキシ基、クロロフェノキシ基、 プロモフェノキシ基、ニトロフェノキシ基、ナフチルオキシ基、ピリジ ルオキシ基、フリルオキシ基、チエニルオキシ基などが挙げられ、アリ ールチオ基の代表例としては、フェニルチオ基、クロロフェニルチオ基

、ブロモフェニルチオ基、ニトロフェニルチオ基、ナフチルチオ基、ピリジルチオ基、フリルチオ基、チエニルチオ基などが挙げられ、ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。

R²、R³、R⁴、R⁵、Y¹、Y²、Y³およびY⁴がそれぞれ表す置換基を有していてもよい保護されたアミノ基において、保護基としては、例えばアセチル基、ベンゾイル基、メタンスルホニル基、pートルエンスルホニル基、tertーブトキシカルボニル基、ベンジルオキシカルボニル基、アリルオキシカルボニル基などが挙げられ、窒素原子が有する水素原子の置換基としては、上記のとおり定義したアルキル基またはアリール基のいずれでもよい。また、該置換基としてはアルケニル基、アラルキル基なども用いられる。かかるアミノ基の代表例としては、NーメチルーNーtertーブトキシカルボニルアミノ基、NーエチルーNーベンジルオキシカルボニルアミノ基、NーベンジルーNーアセチルアミノ基、NーアリルーNーベンゾイルアミノ基、NーフェニルーNーメタンスルホニルアミノ基などが挙げられる。

R²、R³、R⁴、R⁵、Y¹、Y²、Y³およびY⁴がそれぞれ表す置換基を有していてもよいカルバモイル基において、窒素原子が有する任意の水素原子の置換基としては、上記のとおり定義したアルキル基または20 アリール基のいずれでもよく、また、アルケニル基、アラルキル基などでもよく、かかるカルバモイル基の代表例としては、N, Nージメチルカルバモイル基、N,Nージイソプロピルカルバモイル基、NーメチルーNーフェニルカルバモイル基、NーベンジルーNーフェニルカルバモイル基、NーアリルーNーナフチルカルバモイル基、N, Nージフェニルカルバモイル基などが挙げられる。

R²、R³、R⁴、R⁵、Y¹、Y²、Y³およびY⁴がそれぞれ表すアシル基としては、上記のとおり定義したアルキルカルボニル基またはアリールカルボニル基のいずれでもよく、かかるアシル基の代表例としては

20

25

、アセチル基、プロパノイル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、ドデカノイル基、クロロアセチル基、トリフルオロアセチル基、シクロペンタンカルボニル基、シクロヘキサンカルボニル基、ベンゾイル基、ナフトイル基、アントラセノイル基、メトキシベンゾイル基、クロロベンゾイル基などが挙げられる。

R²、R³、R⁴、R⁵、Y¹、Y²、Y³およびY⁴がそれぞれ表すアシルオキシ基としては、上記のとおり定義したアルキルカルボニルオキシ基またはアリールカルボニルオキシ基のいずれでもよく、かかるアシル10 オキシ基の代表例としては、アセチルオキシ基、プロパノイルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、バレリルオキシ基、イソバレリルオキシ基、ピバロイルオキシ基、ヘキサノイルオキシ基、オクタノイルオキシ基、ドデカノイルオキシ基、クロロアセチルオキシ基、トリフルオロアセチルオキシ基、シクロペンタンカルボニルオキシ基、ナフトイルオキシ基、アントラセニルオキシ基、メトキシベンゾイルオキシ基、クロロベンゾイルオキシ基などが挙げられる。

R²、R³、R⁴、R⁵、Y¹、Y²、Y³およびY⁴がそれぞれ表すアシルチオ基としては、上記のとおり定義したアルキルカルボニルチオ基またはアリールカルボニルチオ基のいずれでもよく、かかるアシルチオ基の代表例としては、アセチルチオ基、プロパノイルチオ基、ブチリルチオ基、イソブチリルチオ基、バレリルチオ基、イソバレリルチオ基、ピバロイルチオ基、ヘキサノイルチオ基、オクタノイルチオ基、ドデカノイルチオ基、クロロアセチルチオ基、トリフルオロアセチルチオ基、シクロペンタンカルボニルチオ基、シクロヘキサンカルボニルチオ基、ベンゾイルチオ基、ナフトイルチオ基、アントラセノイルチオ基、メトキシベンゾイルチオ基、クロロベンゾイルチオ基などが挙げられる。

R²、R³、R⁴、R⁵、Y¹、Y²、Y³およびY⁴がそれぞれ表すスル

10

15

20

25

ホニル基としては、例えばアルキルスルホニル基、アリールスルホニル基、アルコキシスルホニル基、アルキル基またはアリール基などで置換されていてもよいスルファモイル基などが挙げられ、例えばメタンスルホニル基、エタンスルホニル基、トリフルオロメタンスルホニル基などのアルキル部分の炭素数が例えば1~12であるアルキルスルホニル基、メトキシベンゼンスルホニル基、クロロベンゼンスルホニル基などのアリール部分の炭素数が例えば4~15であるアリールスルホニル基、メトキシスルホニル基などのアルコキシル部分の炭素数が例えば1~12であるアルコキシスルホニル基、スルファモイル基、N,Nージメチルスルファモイル基、Nーフェニルスルファモイル基などの例えば炭素数1~12のアルキル基、例えば炭素数4~15のアリール基などで置換されていてもよいスルファモイル基などが挙げられる。

上記一般式(II')、(III')において、 X^3 および X^4 はそれぞれ炭素原子、酸素原子、窒素原子または硫黄原子を表すが、但し、 X^3 と X^4 の少なくとも1つは酸素原子、窒素原子または硫黄原子であり、 X^3 が窒素原子である場合は該 X^3 に結合する Y^3 は存在せず、 X^3 が酸素原子または硫黄原子である場合は Y^1 および Y^3 は存在せず、 X^4 が窒素原子である場合は X^4 に結合する Y^4 は存在せず、 X^4 が酸素原子または硫黄原子である場合は Y^2 および Y^4 は存在しない。

上記一般式(II)、(III)において、 X^1 および X^2 はそれぞれ 炭素原子、CH、酸素原子、窒素原子または硫黄原子を表すが、但し X^1 と X^2 の少なくとも1つは酸素原子、窒素原子または硫黄原子であり、 X^1 が酸素原子または硫黄原子である場合は該 X^1 に結合する Y^1 は存在せ ず、 X^2 が酸素原子または硫黄原子である場合は該 X^2 に結合する Y^2 は存在しない。

また、上記一般式(II)、(II')、(III)および(III ')において、mが 2以上であるとき、2以上のX 1 は互いに同一または

10

異なっていてもよく、2以上の Y^1 は互いに同一または異なっていてもよく、2以上の X^3 は互いに同一または異なっていてもよく、および2以上の Y^3 は互いに同一または異なっていてもよい。同様に、nが2以上であるとき、2以上の X^2 、 Y^2 、 X^4 および Y^4 は、それぞれ、互いに同一または異なっていてもよい。

しかして、有機金属化合物(II)、(II')は複素環を有する。 複素環としては、例えばアゼチジン環、ピロリジン環、ピペリジン環、 テトラヒドロフラン環、テトラヒドロピラン環、テトラヒドロチオフェ ン環などの脂肪族複素環などが挙げられる。これらの複素環を構成する 炭素原子および窒素原子は、上記の Y^1 、 Y^2 およびZが表す原子または 置換基を有することができる。有機金属化合物(II')においては該 炭素原子はさらに、 Y^3 および Y^4 が表す原子または置換基を有すること ができる。該複素環を構成する酸素原子および硫黄原子は、上記の Y^1 、 Y^2 、 Y^3 および Y^4 が表す原子または置換基を有することはない。

上記一般式 (II) において、Y¹、Y²およびZはそれぞれそれが結 15 合する X¹、 X²または C¹が 隣接する X¹または X²が有する Y¹または Y²と結合して二重結合を形成していてもよい。上記一般式(II')に おいて、Y¹、Y²およびZはそれぞれそれが結合するX³、X⁴またはC 1が隣接する X 3または X 4が有する Y 1または Y 2と結合して二重結合 を形成していてもよい。かかる二重結合が形成された複素環としては、 20 例えば、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、1, 2, 4-トリアジン環、1, 3, 5-トリアジン環、チオフェン環、フ ラン環、ピロール環、イミダゾール環、ピラゾール環、チアゾール環、 オキサゾール環、イソオキサゾール環、1,2,3ートリアゾール環、 1, 2, 4-トリアゾール環、テトラゾール環などの芳香族複素環;1 25 , 2, 3, 6-テトラヒドロピリジン、1, 2, 3, 4-テトラヒドロ ピリジン、2,3-ジヒドロフラン、2,5-ジヒドロフラン、3,4 -ジヒドロー2H-ピラン、5,6-ジヒドロー2H-ピラン、2,5

ージヒドロピロール、イミダブリン、チアゾリン、オキサブリンなどの 脂肪族複素環などが挙げられる。

上記一般式 (II) において、X¹またはX²が炭素原子である場合、 Y¹またはY²はそれぞれ酸素原子であってもよく、X¹またはX²と二重 結合で結合していてもよい。上記一般式(II')において、Y1および 5 Y³が一緒になって酸素原子を表しX³と二重結合で結合していてもよ く、Y²およびY⁴が一緒になって酸素原子を表しX⁴と二重結合で結合 していてもよい。かかる二重結合が形成された複素環としては、例えば 、γープチロラクトン、2,5-ジヒドロフラン-2-オン、テトラヒ ドロピラン-2-オン、5,6-ジヒドロ-2H-ピラン-2-オン、 10 2 (5 H) -フラノンなどのラクトン; 2-アゼチジノン、2-ピロリ ジノン、2-ピペリジノン、1,2,5,6-テトラヒドロピリジンー 2-オン、2,5-ジヒドロピロールー2-オンなどのラクタム;コハ ク酸無水物、マレイン酸無水物、グルタル酸無水物などの環状酸無水物 ; コハク酸イミド、マレイン酸イミド、グルタル酸イミドなどのイミド 15 ; 2-イミダソリジノン、2-オキサゾリジノン、2-チアゾリジノン 、3,4,5,6ーテトラヒドロー2(1H)ーピリミジノン、ヒダン トインなどが挙げられる。

また、上記一般式(II)において、Y¹、Y²およびZはそれぞれそ
20 れが結合するX¹、X²またはC¹が隣接するX¹またはX²が有するY¹
またはY²と結合して環構造を形成していてもよい。また、上記一般式(II')において、Y¹、Y²およびZはそれぞれそれが結合するX³、
X⁴またはC¹が隣接するX³またはX⁴が有するY¹またはY²と結合して環構造を形成していてもよい。かかる環構造としては、窒素原子、酸
25 素原子、硫黄原子などの複素原子を環構造に任意に含んでいてもよく、
好ましくは環員数4~14であり、1または2以上のオキソ基などで置換されていてもよい、芳香族または脂肪族の炭素環または複素環などが挙げられる。かかる環構造としては、例えば、ベンゼン、ナフタレン、

アントラセンなどの芳香族炭素環;シクロペンタン、シクロヘキサン、 シクロヘプタンなどの脂肪族炭素環;ピリジン、ピリミジン、ピリダジ ン、ピラジン、1, 2, 4ートリアジン、1, 3, 5ートリアジン、チ オフェン、フラン、ピロール、イミダゾール、ピラゾール、チアゾール 、オキサゾール、イソオキサゾール、1,2,3-トリアゾール、1, 2, 4-トリアゾール、テトラゾールなどの芳香族複素環;アゼチジン 、ピロリジン、ピペリジン、テトラヒドロフラン、テトラヒドロピラン 、テトラヒドロチオフェンなどの脂肪族複素環;γープチロラクトン、 2, 5-ジヒドロフラン-2-オン、テトラヒドロピラン-2-オン、 5, 6-ジヒドロー2H-ピラン-2-オン、2(5H)-フラノンな 10 どのラクトン環;2-アゼチジノン、2-ピロリジノン、2-ピペリジ ノン、1, 2, 5, 6ーテトラヒドロピリジンー2ーオン、2, 5ージ ヒドロピロールー2-オンなどのラクタム環;コハク酸無水物、マレイ ン酸無水物、グルタル酸無水物などの酸無水物環;コハク酸イミド、マ レイン酸イミド、グルタル酸イミドなどのイミド環;2-イミダソリジ 15 ノン、2-オキサゾリジノン、2-チアゾリジノン、3,4,5,6-テトラヒドロー2 (1 H) ーピリミジノン、ヒダントインなどの環など が挙げられる。

有機金属化合物(II)、(II')としては、芳香族複素環を有す 20 る化合物、特にピリジン環、ピリミジン環、ピリダジン環、ピラジン環 、チオフェン環、フラン環、ピロール環、イミダゾール環、ピラゾール 環、チアゾール環、オキサゾール環またはイソオキサゾール環を有する 化合物が好ましい。

有機金属化合物(II)、(II')として、上記一般式(II)、
25 (II')において、Mがリチウム原子、ナトリウム原子、カリウム原子、マグネシウム原子、カルシウム原子、亜鉛原子、ホウ素原子またはアルミニウム原子を表す有機金属化合物が好ましく、Mがリチウム原子またはマグネシウム原子を表す有機金属化合物がより好ましい。

10

20

25

反応は溶媒の存在下に行うのが好ましい。溶媒としては、反応に悪影響を与えない限り特に制限されないが、例えば、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレンなどの芳香族炭化水素;テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、tertーブチルメチルエーテル、1,2ージメトキシエタン、1,4ージオキサン、ジグリムなどのエーテルなどが挙げられる。これらのうち、テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、tertーブチルメチルエーテル、1,2ージメトキシエタン、1,4ージオキサン、ジグリムなどのエーテルが好ましく、特にテトラヒドロフランが好ましい。溶媒は単独で、また2種以上を組合わせて使用することができる。溶媒の使用量は、2ースルホニルピリジン誘導体(I)に対して、通常0.5~100重量倍の範囲であり、好ましくは1~20重量倍の範囲である

15 有機金属化合物 (II)、(II')の使用量は、2-スルホニルピリジン誘導体 (I)に対して0.1~10当量の範囲であるのが好ましく、0.5~3当量の範囲であるのがより好ましい。

反応温度は、-100 \mathbb{C} \sim 100 \mathbb{C} の範囲であるのが好ましく、-8 0 \mathbb{C} \sim 50 \mathbb{C} の範囲であるのがより好ましい。反応時間は通常0.1 \sim 40 時間の範囲であり、好ましくは0.5 \sim 20 時間の範囲である。

反応操作としては、予め調製された所定量の有機金属化合物(II)、(II')に2ースルホニルピリジン誘導体(I)を添加するか、または2ースルホニルピリジン誘導体(I)の溶液中に有機金属化合物(II)、(II')を添加する。添加する際に、有機金属化合物(II)、(II')または2ースルホニルピリジン誘導体(I)は上記の反応溶媒で希釈されていてもよい。希釈濃度は特に限定されないが、有機金属化合物(II)、(II')または2ースルホニルピリジン誘導体(I)が1~80重量%となる範囲であるのが好ましく、5~50重量

10

15

%となる範囲であるのがより好ましい。添加速度は特に制限されないが、好ましい反応成績を発現できる温度に制御し得る速度であるのが好ましい。

本発明により製造される2位置換ピリジン誘導体(III)、(III)は、通常の有機化合物の単離・精製に用いられる方法により単離・精製することができる。例えば、反応混合物に水を加え、次いで、ヘキサン、トルエン、キシレン、テトラヒドロフラン、ジイソプロピルエーテル、tertーブチルメチルエーテル、酢酸エチル、酢酸ブチルなどの有機溶媒を加えて抽出し、抽出液を濃縮し、得られる粗生成物を必要に応じて蒸留、再結晶、クロマトグラフィーなどにより精製する。

実施例

以下、本発明を実施例により具体的に説明するが、本発明はこれらの 20 実施例により何ら制限されるものではない。

実施例1

2,4'ービピリジンの合成

窒素置換した内容積 5 0 m 1 のフラスコに、テトラヒドロフラン(1 0 m 1)を仕込み、- 7 8 ℃に冷却した後、 n ープチルリチウムのへキ 25 サン溶液(1.6 M、10.3 m 1、16.4 m m o 1)を仕込んだ。 その溶液に、4 ープロモピリジン(2.5 9 g、16.4 m m o 1)を テトラヒドロフラン(3 m 1)に溶かして得られた溶液を10分間かけ て滴下した。反応混合物を1時間攪拌した後、2 ーベンゼンスルホニル

ピリジン (3.00g、13.7mmol) をテトラヒドロフラン (5ml) で溶かして得られた溶液を10分間かけて滴下した。反応混合物を3時間攪拌した後、同温度でイソプロパノール (1ml) を添加して反応を停止させた。

5 得られた反応混合物を水に加え、酢酸エチル(15m1×2回)を用いて抽出した。抽出液を濃縮した後、シリカゲルクロマトグラフィーで精製し、下記の物性値を有する標記化合物(1.75g、2-ベンゼンスルホニルピリジンを基準として収率81%)を白色固体として得た。

¹H-NMRスペクトル(CDC13)δ:7.33-7.37(m,

10 1H) , 7. 80-7. 91 (m, 4H) , 8. 72-8. 76 (m, 3H)

実施例2

25

4-メチル-2-(2'-ピリジル)ピリジンの合成

窒素置換した内容積50m1のフラスコに、テトラヒドロフラン(10m1)およびイソプロピルマグネシウムクロリド(2.0M、7.7m1、15.5mmol)を仕込み、次いで、2ーブロモピリジン(2.45g、15.5mmol)をテトラヒドロフラン(3ml)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を1時間攪拌した後、4-メチル-2-ベンゼンスルホニルピリジン(3.00g、

20 12.9 m m o l) をテトラヒドロフラン (5 m l) に溶かして得られた溶液を 10分間かけて滴下した。反応混合物を室温で 5 時間攪拌した後、イソプロパノール (1 m l) を添加して反応を停止させた。

得られた反応混合物を水に加え、酢酸エチル(15m1×2回)を用いて抽出した。抽出液を濃縮した後、シリカゲルクロマトグラフィーで精製し、下記の物性値を有する標記化合物(1.51g、4-メチルー2-ベンゼンスルホニルピリジンを基準として収率89%)を白色固体として得た。

 $^{1}H-NMR$ \mathcal{A}^{2} \mathcal{A}^{2} \mathcal{A}^{3} \mathcal{A}^{3}

. 06 (d, 1 H, J = 5. 0 H z), 7. 20-7. 25 (m, 1 H), 7. 69-7. 74 (m, 1 H), 8. 16 (s, 1 H), 8. 3
2 (d, 1 H, J = 8. 0 H z), 8. 46 (d, 1 H, J = 4. 6 H)
z), 8. 57-8. 63 (m, 1 H)

5 実施例3

2. 3'ービピリジンの合成

室素置換した内容積 5 0 m 1 のフラスコに、テトラヒドロフラン(1 0 m 1)およびイソプロピルマグネシウムクロリド(2.0 M、8.2 m 1、16.4 m m o 1)を仕込み、次いで、3 ープロモピリジン(2 10 .5 9 g、16.4 m m o 1)をテトラヒドロフラン(3 m 1)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を1時間攪拌した後、2 ーベンゼンスルホニルピリジン(3.00 g、13.7 m m o 1)をテトラヒドロフラン(5 m 1)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を室温で5時間攪拌した後、イソプロパノール(1 m 1)を添加して反応を停止させた。

得られた反応混合物を水に加え、酢酸エチル(15m1×2回)を用いて抽出した。抽出液を濃縮した後、シリカゲルクロマトグラフィーで精製し、下記の物性値を有する標記化合物(1.65g、2ーベンゼンスルホニルピリジンを基準として収率91%)を無色オイルとして得た

 $^{1}H-NMR$ \mathcal{A} $\mathcal{$

25 実施例4

20

6-クロロ-2-(2'-チエニル)ピリジンの合成

窒素置換した内容積50mlのフラスコに、テトラヒドロフラン(15ml)およびマグネシウム(480mg、19.7mmol)を仕込

み、次いで、2-プロモチオフェン(2.67g、16.4mmol)をテトラヒドロフラン(3ml)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を1時間攪拌した後、6-クロロー2-ベンゼンスルホニルピリジン(3.00g、13.7mmol)をテトラヒドロフラン(5ml)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を室温で5時間攪拌した後、イソプロパノール(1ml)を添加して反応を停止させた。

得られた反応混合物を水に加え、酢酸エチル(15m1×2回)を用いて抽出した。抽出液を濃縮した後、シリカゲルクロマトグラフィーで10 精製し、下記の物性値を有する標記化合物(1.72g、6-クロロー2-ベンゼンスルホニルピリジンを基準として収率78%)を無色オイルとして得た。

 $^{1}H-NMRスペクトル (CDC1₃) \delta:7.12-7.17 (m, 2H)、7.47-7.55 (m, 2H)、7.62-7.74 (m, 2H)$

実施例5

5

15

2-(3'-チエニル)ピリジンの合成

窒素置換した内容積50mlのフラスコに、テトラヒドロフラン(10ml)を仕込み、-78℃に冷却した後、n-ブチルリチウムのへキ20 サン溶液(1.6M、10.3ml、16.4mmol)を仕込んだ。その溶液に、3-ブロモチオフェン(2.67g、16.4mmol)をテトラヒドロフラン(3ml)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を30分間攪拌した後、2-ベンゼンスルホニルピリジン(3.00g、13.7mmol)をテトラヒドロフラン(5ml)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を3時間攪拌した後、同温度でイソプロパノール(1ml)を添加して反応を停止させた。

得られた反応混合物を水に加え、酢酸エチル(15m1×2回)を用

いて抽出した。抽出液を濃縮した後、シリカゲルクロマトグラフィーで精製し、下記の物性値を有する標記化合物(1.83g、2ーベンゼンスルホニルピリジンを基準として収率83%)を無色のオイルとして得た。

5 ¹H-NMRスペクトル (CDCl₃) δ: 7. 14-7. 19 (m, 1H)、7. 39 (dd, 1H, J=3. 2Hz, 5. 0Hz)、7. 60-7. 73 (m, 3H)、7. 90 (dd, 1H, J=0. 8Hz, 3. 2Hz)、8. 60-8. 63 (m, 1H) 実施例 6

10 2-(2'-フリル) ピリジンの合成

窒素置換した内容積 5 0 m 1 のフラスコに、テトラヒドロフラン(1 0 m 1)を仕込み、-78℃に冷却した後、n ープチルリチウムのへキサン溶液(1.6 M、10.3 m 1、16.4 m m o 1)を仕込んだ。その溶液に、2 ープロモフラン(2.38g、16.4 m m o 1)をテトラヒドロフラン(3 m 1)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を30分間攪拌した後、2 ーベンゼンスルホニルピリジン(3.00g、13.7 m m o 1)をテトラヒドロフラン(5 m 1)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を3時間攪拌した後、同温度でイソプロパノール(1 m 1)を添加して20 反応を停止させた。

得られた反応混合物を水に加え、酢酸エチル(15m1×2回)を用いて抽出した。抽出液を濃縮した後、シリカゲルクロマトグラフィーで精製し、下記の物性値を有する標記化合物(1.45g、2ーベンゼンスルホニルピリジンを基準として収率73%)を無色のオイルとして得た。

 1 H-NMRスペクトル(CDCl $_{3}$) δ : 6.50-6.63 (m, 1H)、6.84-7.23 (m, 2H)、7.50-7.83 (m, 3H)、8.58-8.73 (m, 1H)

実施例7

5

10

15

20

25

2-(1',-ベンジルオキシ-5',-ピラゾリル)ピリジンの合成 室素置換した内容積50mlのフラスコに、テトラヒドロフラン(10ml)を仕込み、-78℃に冷却した後、n-ブチルリチウムのヘキサン溶液(1.6M、10.3ml、16.4mmol)を仕込んだ。その溶液に、1-ベンジルオキシピラゾール(2.86g、16.4mmol)をテトラヒドロフラン(3ml)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を30分間攪拌した後、2-ベンゼンスルホニルピリジン(3.00g、13.7mmol)をテトラヒドロフラン(5ml)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を3時間攪拌した後、同温度でイソプロパノール(1ml)を添加して反応を停止させた。

得られた反応混合物を水に加え、酢酸エチル($15m1 \times 2$ 回)を用いて抽出した。抽出液を濃縮した後、シリカゲルクロマトグラフィーで精製し、下記の物性値を有する標記化合物(2.90g、 $2-ベンゼンスルホニルピリジンを基準として収率84%)を白色固体として得た。<math>^1H-NMRスペクトル(CDC1_3)δ:5.30(s,2H)、6.68(d,1H,J=2.4Hz))、7.19-7.18(m,6H)、7.37(d,1H,J=2.4Hz)、7.64-7.77(m,2H)、8.62(dd,1H,J=1.8Hz,4.8Hz)実施例8$

2-(4, -メチル-2, -オキサゾリル) ピリジンの合成 窒素置換した内容積50mlのフラスコに、テトラヒドロフラン(1 0ml)を仕込み、-78℃に冷却した後、n-ブチルリチウムのヘキ サン溶液(1.6M、10.3ml、16.4mmol)を仕込んだ。 その溶液に、4-メチルオキサゾール(1.36g、16.4mmol))をテトラヒドロフラン(3ml)に溶かして得られた溶液を10分間 かけて滴下した。反応混合物を30分間攪拌した後、2-ベンゼンスル

ホニルピリジン(3.00g、13.7mmol)をテトラヒドロフラン(5ml)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を3時間攪拌した後、同温度でイソプロパノール(1ml)を添加して反応を停止させた。

5 得られた反応混合物を水に加え、酢酸エチル(15m1×2回)を用いて抽出した。抽出液を濃縮した後、シリカゲルクロマトグラフィーで精製し、下記の物性値を有する標記化合物(1.51g、2-ベンゼンスルホニルピリジンを基準として収率69%)を白色固体として得た。

 $^{1}H-NMR$ $\nearrow \sim \uparrow \uparrow \nu$ (CDCl₃) δ : 2. 29 (d, 3H, J=1.6Hz), 7. 39-7. 45 (m, 1H), 7. 62 (q, 1H, J=1.6Hz), 7. 86-7. 92 (m, 1H), 8. 17-8. 23 (m, 1H), 8. 82-8. 86 (m, 1H)

実施例9

10

2-(2'-チアゾリル)ピリジンの合成

2素置換した内容積50mlのフラスコに、テトラヒドロフラン(10ml)を仕込み、-78℃に冷却した後、n-ブチルリチウムのヘキサン溶液(1.6M、10.3ml、16.4mmol)を仕込んだ。その溶液に、チアゾール(1.40g、16.4mmol)をテトラヒドロフラン(3ml)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を30分間攪拌した後、2-ベンゼンスルホニルピリジン(3.00g、13.7mmol)をテトラヒドロフラン(5ml)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を3時間攪拌した後、同温度でイソプロパノール(1ml)を添加して反応を停止させた。

25 得られた反応混合物を水に加え、酢酸エチル(15ml×2回)を用いて抽出した。抽出液を濃縮した後、シリカゲルクロマトグラフィーで精製し、下記の物性値を有する標記化合物(1.22g、2-ベンゼンスルホニルピリジンを基準として収率55%)を淡黄色固体として得た

ö

5

 $^{1}H-NMR$ \nearrow 2

実施例10

1 ーベンゼンスルホニルー2ー(4ーメチルー2ーピリジル)インドールの合成

窒素置換した内容積 5 0 m 1 のフラスコに、テトラヒドロフラン(1 0 m 1)を仕込み、-78℃に冷却した後、n-ブチルリチウムのヘキサン溶液(1.6 M、10.3 m 1、16.4 m m o 1)を仕込んだ。その溶液に1-ベンゼンスルホニルインドール(4.22g、16.4 m m o 1)をテトラヒドロフラン(7 m 1)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を30分間攪拌した後、4-メチル-2-ベンゼンスルホニルピリジン(3.00g、12.9 m m o 1)をテトラヒドロフラン(5 m 1)に溶かして得られた溶液を10分間かけて滴下した。反応混合物を3時間攪拌した後、同温度でイソプロパノール(1 m 1)を添加して反応を停止させた。

得られた反応混合物を水に加え、酢酸エチル(15m1×2回)を用20 いて抽出した。抽出液を濃縮した後、シリカゲルクロマトグラフィーで精製し、下記の物性値を有する標記化合物(3.25g、4ーメチルー2ーベンゼンスルホニルピリジンを基準として収率71%)を淡黄色固体として得た。

¹H-NMRスペクトル (CDCl₃) δ: 2. 47 (s, 3H)、6
25 . 85 (s, 1H)、7. 17 (d, 1H, J=5. 0Hz)、7. 1
9-7. 33 (m, 5H)、7. 47 (d, 1H, J=7. 4Hz)、
7. 56 (s, 1H)、7. 64-7. 68 (m, 2H)、8. 18 (d, 1H, J=8. 0Hz)、8. 60 (d, 1H, J=5. 2Hz)

産業上の利用可能性

本発明によれば、2位置換ピリジン誘導体(III)および(III ')を簡便にかつ選択性よく製造することができる。

5 本出願は、日本で出願された特願2002-214097を基礎としており、その内容は本明細書に全て包含されるものである。

請求の範囲

1. 一般式(I)

5

10

20

$$R^4$$
 R^3
 R^2
 O
 R^5
 N
 O
 R^1

(式中、R¹は置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基を表し、R²、R³、R⁴およびR⁵はそれぞれ水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアルオキシ基、置換基を有していてもよいアルオーチオ基、

- 置換基を有していてもよいアリールチオ基、置換基を有していてもよいアシルチオ基、置換基を有していてもよい保護されたアミノ基、ニトロ基、シアノ基、置換基を有していてもよいアシル基、置換基を有していてもよいカルバモ
 イル基または置換基を有していてもよいスルホニル基を表し、または、
- 15 R²とR³、R³とR⁴およびR⁴とR⁵はそれぞれそれらが結合する炭素原子と一緒になって置換基を有していてもよい環を形成していてもよい。)

で示される2-スルホニルピリジン誘導体を一般式(II')

(式中、mおよびnはそれぞれ1以上の整数を表し、m+n=3~8の

関係にあり、

C¹は炭素原子を表し、

Mは水素原子を除く周期表1族、2族、12族または13族に属する元素の原子を表し、

5 Zは水素原子、置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基を表し、

X³は炭素原子、酸素原子、窒素原子または硫黄原子を表し、X⁴は炭素原子、窒素原子、酸素原子または硫黄原子を表し、但し、X³とX⁴の少なくとも1つは酸素原子、窒素原子または硫黄原子であり、また、X³

10 が窒素原子である場合は該 X^3 に結合する Y^3 は存在せず、 X^3 が酸素原子または硫黄原子である場合は Y^1 および Y^3 は存在せず、 X^4 が窒素原子である場合は該 X^4 に結合する Y^4 は存在せず、 X^4 が酸素原子または硫黄原子である場合は Y^2 および Y^4 は存在せず、

Y¹、Y²、Y³およびY⁴はそれぞれ水素原子、ハロゲン原子、置換基を 有していてもよいアルキル基、置換基を有していてもよいアリール基、 置換基を有していてもよいアルコキシル基、置換基を有していてもよい アリールオキシ基、置換基を有していてもよいアシルオキシ基、置換基 を有していてもよいアルキルチオ基、置換基を有していてもよいアリー ルチオ基、置換基を有していてもよいアシルチオ基、置換基を有してい てもよい保護されたアミノ基、ニトロ基、シアノ基、置換基を有してい てもよいアシル基、置換基を有していてもよいアルコキシカルボニル基 、置換基を有していてもよいカルバモイル基または置換基を有していて もよいスルホニル基を表し、または、

 Y^1 、 Y^2 およびZはそれぞれそれが結合する X^3 、 X^4 または C^1 が隣接 25 する X^3 または X^4 が有する Y^1 または Y^2 と結合して二重結合または環 構造を形成していてもよく、または、

Y¹およびY³が一緒になって酸素原子を表しX³と二重結合で結合していてもよく、Y²およびY⁴が一緒になって酸素原子を表しX⁴と二重結

合で結合していてもよい。)

で示される有機金属化合物と反応させることを特徴とする一般式 (II)

5 (式中、R²、R³、R⁴、R⁵、m、n、C¹、Z、X³、X⁴、Y¹、Y²、Y³およびY⁴は上記定義のとおりである。)

で示される2位に複素環構造の置換基を有するピリジン誘導体の製造方法。

- 2. Y¹はそれが結合する X³が隣接する X⁴が有する Y²と結合して 10 二重結合を形成し、かつ該 X³に結合する Y³および該 X⁴に結合する Y⁴ の少なくとも一方が置換基を有していてもよいアルキル基である、請求 項1記載の製造方法。
 - 3. 一般式(I)

$$R^4$$
 R^3
 R^2
 O
 R^5
 O
 R^1

15 (式中、R¹は置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基を表し、R²、R³、R⁴およびR⁵はそれぞれ水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ

10

ル基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアシルオキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアシルチオ基、置換基を有していてもよい保護されたアミノ基、ニトロ基、シアノ基、置換基を有していてもよいアシル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいカルバモイル基または置換基を有していてもよいスルホニル基を表し、または、R²とR³、R³とR⁴およびR⁴とR⁵はそれぞれそれらが結合する炭素原子と一緒になって置換基を有していてもよい環を形成していてもよい。)

で示される2-スルホニルピリジン誘導体を一般式(II)

(式中、mおよびnはそれぞれ1以上の整数を表し、m+n=3~8の 関係にあり、

15 C¹は炭素原子を表し、

Mは水素原子を除く周期表1族、2族、12族または13族に属する元素の原子を表し、

Zは水素原子、置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基を表し、

20 X¹は炭素原子、CH、酸素原子、窒素原子または硫黄原子を表し、X² は炭素原子、CH、酸素原子、窒素原子または硫黄原子を表し、但し、X¹と X²の少なくとも 1 つは酸素原子、窒素原子または硫黄原子であり

X¹またはX²が炭素原子、CHまたは窒素原子である場合、Y¹および

10

15

Y²はそれぞれ水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアルカキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよい保護されたアミノ基、ニトロ基、シアノ基、置換基を有していてもよいアシル基、置換基を有していてもよいアシル基、置換基を有していてもよいアルカルボニル基、置換基を有していてもよいアルカルボニル基、置換基を有していてもよいアルカルボニル基を表し、または、

 Y^1 、 Y^2 およびZはそれぞれそれが結合する X^1 、 X^2 または C^1 が隣接する X^1 または X^2 が有する Y^1 または Y^2 と結合して二重結合または環構造を形成していてもよく、または、

 X^1 または X^2 が炭素原子である場合、 Y^1 または Y^2 はそれぞれ酸素原子を表し、 X^1 または X^2 と二重結合で結合していてもよい。)

で示される有機金属化合物と反応させることを特徴とする一般式(III)

$$R^{4}$$
 R^{2}
 R^{2}
 $(X^{1}-Y^{1})_{m}$
 $(X^{2}-Y^{2})_{n}$

(式中、R²、R³、R⁴、R⁵、m、n、C¹、Z、X¹、X²、Y¹およ
 びY²は上記定義のとおりである。)

で示される2位に複素環構造の置換基を有するピリジン誘導体の製造方法。

4. 一般式(II)で示される有機金属化合物が芳香族複素環を有する

化合物である請求項3に記載の製造方法。

- 5. 芳香族複素環がピリジン環、ピリミジン環、ピリダジン環、ピラジン環、チオフェン環、フラン環、ピロール環、イミダゾール環、ピラゾール環、チアゾール環、オキサゾール環またはイソオキサゾール環である請求項4に記載の製造方法。
- 6. 一般式 (II) において、Mがリチウム原子、ナトリウム原子、カリウム原子、マグネシウム原子、カルシウム原子、亜鉛原子、ホウ素原子またはアルミニウム原子を表す有機金属化合物である請求項3~5のいずれかの項に記載の製造方法。
- 10 7. 一般式(II)において、Mがリチウム原子またはマグネシウム原子を表す有機金属化合物である請求項3~5のいずれかの項に記載の製造方法。

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/09317

	CATION OF SUBJECT MATTER C07D213/22, 401/04, 405/04	, 409/04, 413/04, 417/0	4		
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEA	ARCHED				
Minimum docum Int.Cl ⁷	nentation searched (classification system followed b C07D213/22, 401/04, 405/04)	y classification symbols) , 409/04, 413/04, 417/0	4		
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) REGISTRY (STN), CAPLUS (STN)					
1	VTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.		
0: A. & &	S 5693611 A (ELI LILLY AND 0 2 December, 1997 (02.12.97), 11 references EP 881907 A & AU GB 9603151 A & WO CA 2244238 A & JP	1851797 A	1-7		
0 A C & &	DE 19636995 A & WO	448158 B	1-7		
× Further do	ocuments are listed in the continuation of Box C.	See patent family annex.			
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 07 October, 2003 (07.10.03)			
	tember, 2003 (18.09.03)		J1.10.03)		
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer			
Facsimile No.		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/09317

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	BONNET, V.; MONGIN, F.; TRECOURT, F.; QUEGUINER, G.; KNOCHEL, P., Synthesis of substituted pyridines, quinolines and diazines via palladium-catalized cross-coupling of aryl Grignard reagents., Tetrahedron, Vol.58, No.22, 20 May, 2002 (20.05.02), Vol.58, No.22, pages 4429 to 4438; particularly, page 4429, right column, 5th line from the bottom to page 4430, right column, line 5; Schem 2	1-7
Y	JP 2000-80082 A (Kuraray Co., Ltd.), 21 March, 2000 (21.03.00), All references; particularly, Claims; Par. No. [0013] (Family: none)	1-7
A	HEIRTZLER, F.; NEUBURGER, M.; ZEHNDER, M.; CONSTABLE, E.C., Preparation and Characterization of Oligo (2,2-bipyridy) pyrazines, Liebigs Ann./Recueil, 1997, pages 297 to 301, all references; particularly, page 297, Scheme 1	1-7
A	WO 98/07700 A1 (BASF AG.), 26 February, 1998 (26.02.98), All references; particularly, description, pages 36 to 37 & AU 4118397 A & DE 19633746 A & EP 920415 A & JP 2000-517303 A	1-7
A	WAKABAYASHI, S.; TANAKA, T.; KUBO, J.; UENISHI, J.; OAE, S.; A Cross-coupling Reaction of Methylsulfinylarene., Bull.Chem.Soc.Jon., 1989, Vol.62, No.12, pages 3848 to 3850, all references	1-7
		. ·

国際調查報告

国際出願番号 PCT/JP03/09317

				
A. 発明の属する分野の分類(国際特許分類(IPC))				
Int. Cl' C07D213/22, 401/04, 40	05/04, 409/04, 413/04	, 417/04		
B. 調査を行った分野				
調査を行った最小限資料(国際特許分類(IPC))				
Int. Cl' C07D213/22, 401/04, 40	05/04, 409/04, 413/04	, 417/04		
最小限資料以外の資料で調査を行った分野に含まれるもの				
·				
国際調査で使用した電子データベース (データベースの名称、 REGISTRY (STN), CAPLUS (STN)	、調査に使用した用語)			
C. 関連すると認められる文献 引用文献の	·	関連する		
カテゴリー* 引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	関連する 請求の範囲の番号		
Y US 5693611 A (ELI LILLY AND COMPA	ANY) 1997. 12. 02	1-7		
全文献を参照。	0 0600161 x 0 wo 07/07004 44			
& EP 881907 A & AU 1851797 A & GI & CA 2244238 A & JP 2001-503015 A				
·				
Y US 6169184 B1 (BASF AKTIENGESELL)	·	1-7		
全文献、特に、第2-6欄、第10章 & AU 4456497 A & TW 448158 B & DI				
. WO 98/11069 A1 & EP 931068 A &				
& JP 13-500140 A		·		
X C欄の続きにも文献が列挙されている。	── パテントファミリーに関する別	紙を参照。		
		- 1110		
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示す	の日の後に公表された文献 「丁」国際出願日又は優先日後に公表 8	された文献であって		
出願と矛盾するものではなく、発明の原理又は理論				
以後に公表されたもの 「X」特に関連のある文献であって、当該文				
「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1				
文献(理由を付す) 上の文献との、当業者にとって自明である組合せに				
「O」ロ頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献				
国際調査を完了した日 18.09.03 国際調査報告の発送日 07.10.03				
18.09.03	U /.] (U. U 3		
国際調査機関の名称及びあて先	特許庁審査官(権限のある職員)	4P 9164		
日本国特許庁 (ISA/JP) 郵便番号100-8915	齋藤 恵			
東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3490		

国際調査報告

国際出願番号 PCT/JP03/09317

用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	BONNET, V.; MONGIN, F.; TRECOURT, F.; QUEGUINER, G.; KNOCHEL, P. Synthesis of substituted pyridines, quinolines and diazines via palladium-catalized cross-coupling of aryl Grignard reagents. Tetrahedron, Vol. 58, No. 22, 20 May 2002, Vol. 58, No. 22, p. 4429-4438 (特に、p. 4429右欄下から 5 行目からp. 4430右欄第 5 行およびスキーム 2 などを参照。)	1-7
Y	JP 2000-80082 A(株式会社クラレ)2000.03.21 全文献、特に、クレーム、および段落番号0013などを参照。 (ファミリーなし)	1-7
A	HEIRTZLER, F.; NEUBURGER, M.; ZEHNDER, M.; CONSTABLE, E. C. Preparation and Characterization of Oligo(2,2-bipyridy) pyrazines Liebigs Ann. /Recueil, 1997, p. 297-301 全文献、特に、p. 297のScheme 1. などを参照。	1-7
A	WO 98/07700 A1 (BASF AKTIENGESELLSCHAFT) 1998.02.26 全文献、特に、明細書第36-37頁などを参照。 & AU 4118397 A & DE 19633746 A & EP 920415 A & JP 2000-517303 A	1-7
A	WAKABAYASHI, S.; TANAKA, T.; KUBO, J.; UENISHI, J.; OAE, S. A Cross-coupling Reaction of Methylsulfinylarene. Bull. Chem. Soc. Jon., 1989, Vol.62, No.12, p.3848-3850 全文献を参照。	1-7
	·	