数学Ⅱ・数学B 「第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 4 問 (選択問題) (配点 20)

a を 0 < a < 1 を満たす定数とする。三角形 ABC を考え、辺 AB を 1:3 に 内分する点を D, 辺 BC を a:(1-a) に内分する点を E, 直線 AE と直線 CD の交点を F とする。 $\overrightarrow{FA} = \overrightarrow{p}$, $\overrightarrow{FB} = \overrightarrow{q}$, $\overrightarrow{FC} = \overrightarrow{r}$ とおく。

(1) $\overrightarrow{AB} = \boxed{7}$ \overrightarrow{c} \overrightarrow{b}

$$|\overrightarrow{AB}|^2 = |\overrightarrow{p}|^2 - \boxed{1} \overrightarrow{p} \cdot \overrightarrow{q} + |\overrightarrow{q}|^2$$
 ①

である。ただし、 $oldsymbol{7}$ については、当てはまるものを、次の $oldsymbol{0}$ \sim $oldsymbol{3}$ のうち から一つ選べ。

- $\bigcirc \overrightarrow{p} + \overrightarrow{q} \qquad \qquad \bigcirc \overrightarrow{p} \overrightarrow{q} \qquad \qquad \bigcirc \overrightarrow{q} \overrightarrow{p} \qquad \qquad \bigcirc \bigcirc \overrightarrow{q} \overrightarrow{p}$
- (2) \overrightarrow{FD} を \overrightarrow{b} と \overrightarrow{a} を用いて表すと

である。

(数学Ⅱ・数学B第4問は次ページに続く。)

(3) s, t をそれぞれ $\overrightarrow{\mathrm{FD}} = s\overrightarrow{r}$, $\overrightarrow{\mathrm{FE}} = t\overrightarrow{p}$ となる実数とする。s と t を a を用いて表そう。

$$\overrightarrow{PD} = \overrightarrow{sr}$$
 であるから、② により $\overrightarrow{q} = \boxed{ + \cancel{p} } \overrightarrow{p} + \boxed{ \cancel{p} } \overrightarrow{sr}$ ③

である。また、 $\overrightarrow{FE} = t \overrightarrow{p}$ であるから

$$\vec{q} = \frac{t}{\Box \Box - \Box \forall} \vec{p} - \frac{\vec{y}}{\Box \Box - \Box \forall} \vec{r} \qquad \cdots \qquad \textcircled{4}$$

である。③と④により

である。

(4) $|\overrightarrow{AB}| = |\overrightarrow{BE}|$ とする。 $|\overrightarrow{p}| = 1$ のとき, \overrightarrow{p} と \overrightarrow{q} の内積を a を用いて表そう。

$$|\overrightarrow{AB}|^2 = 1 - \boxed{1} \overrightarrow{p} \cdot \overrightarrow{q} + |\overrightarrow{q}|^2$$

である。また

$$|\overrightarrow{BE}|^2 = \boxed{y} \left(\boxed{J} - \boxed{y} \right)^2 + \boxed{\overline{\tau}} \left(\boxed{J} - \boxed{y} \right) \overrightarrow{p} \cdot \overrightarrow{q} + |\overrightarrow{q}|^2$$

である。したがって

である。

2019

数学Ⅱ・数学B 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 4 問 (選択問題) (配点 20)

四角形 ABCD を底面とする四角錐 OABCD を考える。四角形 ABCD は、辺 AD と辺 BC が平行で、AB = CD、 ∠ABC = ∠BCD を満たすとする。さらに、

$$\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}, \overrightarrow{OC} = \overrightarrow{c} \succeq \mathcal{V} \subset$$

$$|\overrightarrow{a}| = 1, \qquad |\overrightarrow{b}| = \sqrt{3}, \qquad |\overrightarrow{c}| = \sqrt{5}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = 1, \qquad \overrightarrow{b} \cdot \overrightarrow{c} = 3, \qquad \overrightarrow{a} \cdot \overrightarrow{c} = 0$$

であるとする。

(1)
$$\angle AOC =$$
 アイ 。 により、三角形 OAC の面積は $\frac{\sqrt{\dot{D}}}{\Box}$ である。

(2)
$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \boxed{\texttt{オカ}}$$
, $|\overrightarrow{BA}| = \sqrt{\boxed{\texttt{‡}}}$, $|\overrightarrow{BC}| = \sqrt{\boxed{\texttt{夕}}}$ であるから, $\angle ABC = \boxed{\texttt{\backsim J}}$ ° である。さらに,辺 AD と辺 BC が平行であるから, $\angle BAD = \angle ADC = \boxed{\texttt{\backsim J}}$ ° である。よって, $\overrightarrow{AD} = \boxed{\texttt{セ}}$ \overrightarrow{BC} であり $\overrightarrow{OD} = \overrightarrow{a} - \boxed{\texttt{\backsim J}}$ $\overrightarrow{b} + \boxed{\texttt{\backsim J}}$ \overrightarrow{c}

(数学 II ・数学 B 第 4 問は次ページに続く。)

(3) 三角形 OAC を底面とする三角錐 BOAC の体積 V を求めよう。

3点 O, A, C の定める平面 α 上に、点 H を $\overrightarrow{BH} \perp \overrightarrow{a} \succeq \overrightarrow{BH} \perp \overrightarrow{c}$ が成り立つようにとる。 $|\overrightarrow{BH}|$ は三角錐 BOAC の高さである。H は α 上の点であるから、実数 s、t を用いて $\overrightarrow{OH} = s \overrightarrow{a} + t \overrightarrow{c}$ の形に表される。

(4) (3)の V を用いると、四角錐 OABCD の体積は \centcolored \centcolored

2019

数学Ⅱ・数学B (注) この科目には,選択問題があります。(15ページ参照。)

第 1 問 (必答問題) (配点 30)

[1] 関数 $f(\theta) = 3\sin^2\theta + 4\sin\theta\cos\theta - \cos^2\theta$ を考える。

(1)
$$f(0) = \boxed{\mathbf{r}}$$
イ , $f\left(\frac{\pi}{3}\right) = \boxed{\mathbf{r}} + \sqrt{\mathbf{I}}$ である。

る。さらに、 $\sin 2\theta$ 、 $\cos 2\theta$ を用いて $f(\theta)$ を表すと

となる。

(数学Ⅱ・数学B第1問は次ページに続く。)

(3) θ が $0 \le \theta \le \pi$ の範囲を動くとき、関数 $f(\theta)$ のとり得る最大の整数の値 m とそのときの θ の値を求めよう。

三角関数の合成を用いると、①は

$$f(\theta) = \boxed{ } \sqrt{\boxed{ } \forall } \sin \left(2 \theta - \frac{\pi}{\boxed{ } \flat} \right) + \boxed{ } \mathcal{F}$$

また, $0 \le \theta \le \pi$ において, $f(\theta) =$ ス となる θ の値は, 小さい

順に, $\frac{\pi}{2}$, $\frac{\pi}{2}$ である。

(数学 II・数学B第1問は次ページに続く。)