Stability Property for the Call-by-Value λ -calculus through Taylor Expansion

Davide Barbarossa

Department of Computer Science

Call-by-Value

2 Resource approximation for Call-by-Value

3 Stability

Call-by-Value

- 2 Resource approximation for Call-by-Value
- Stability

Syntax

$$\Lambda (Terms) \quad M ::= V \mid MM$$

(Values)
$$V ::= x \mid \lambda x.M$$

CbV-operational semantics

Given by a confluent reduction: $(\lambda x.M)N$ is fired only if N is a value.

Example

For $\Delta := \lambda x.xx$, we have:

$$\Delta(Ix) \rightarrow_{CbV} \Delta x \rightarrow_{CbV} xx$$

$$\Delta(Ix) \xrightarrow{\beta} (Ix)(Ix) \xrightarrow{\beta} x(Ix) \xrightarrow{\beta} xx$$

Valid in CbV

Not valid in CbV!

1 Call-by-Value

- 2 Resource approximation for Call-by-Value
- Stability

Syntax

$$\Lambda^r$$
 (Resource Terms) $s ::= [v, \dots, v] \mid ss$
(Resource Values) $v ::= x \mid \lambda x.s$

CbV-operational semantics

Given by a confluent and strongly normalising reduction from terms to finite sets of terms.

Example

For $\delta := [\lambda x.[x][x]]$ and $I := [\lambda x.x]$, we have:

$$\delta[] \to \emptyset$$

$$\delta[I[x]] \to \delta[x] \to \emptyset$$

$$\begin{aligned}
\delta[I[x]] &\to \delta[x] \to \emptyset \\
\delta[I[x], I[y]] &\to \delta[x, y] \to \{[x][y], [y][x]\}
\end{aligned}$$

$$\delta[I[x], I[y]] \xrightarrow{\mathscr{B}} \delta[x, y] \xrightarrow{} \{[x][y], [y][x]\} \\
\delta[I[x], I[y], I[z]] \xrightarrow{\mathscr{B}} \delta[x, y, z] \xrightarrow{} \emptyset$$

but no $\delta[I[x]] \rightarrow [I[x]][I[x]]$

but no $\delta[I[x], I[y]] \rightarrow [I[x]][I[y]]$

but no
$$\delta[I[x], I[y], I[z]] \rightarrow [I[x]][I[y]]$$

It is the map

$$\mathcal{T}:\Lambda\longrightarrow\mathscr{P}(\Lambda^r)$$

defined by induction as:

$$\mathcal{T}(x) := \{[x, \stackrel{(n)}{\ldots}, x] \mid n \in \mathbb{N}\}
\mathcal{T}(\lambda x.M) := \{[\lambda x.s_1, \stackrel{(n)}{\ldots}, \lambda x.s_n] \mid n \in \mathbb{N}, s_1, \dots, s_n \in \mathcal{T}(M)\}
\mathcal{T}(MN) := \{s_1s_2 \mid s_1 \in \mathcal{T}(M_1), s_2 \in \mathcal{T}(M_2)\}$$

Also define

$$NFT : \Lambda \longrightarrow \mathscr{P}(\Lambda^r), \qquad NFT(M) := \bigcup_{s \in \mathcal{T}(M)} nf(s)$$

We have an induced partial preorder on Λ :

$$M \le N$$
 iff $NF\mathcal{T}(M) \subseteq NF\mathcal{T}(N)$

and its induced equivalence.

The quotient $\Lambda/_{NFT}$ is partially preordered by \leq .

Some properties of the Taylor expansion

Monotonicity Property

Contexts $C: \Lambda/_{\mathrm{NF}\mathcal{T}} \times \stackrel{(n)}{\cdots} \times \Lambda/_{\mathrm{NF}\mathcal{T}} \longrightarrow \Lambda/_{\mathrm{NF}\mathcal{T}}$ are always monotone functions

λ -theory

The equivalence NF \mathcal{T} is a λ -theory

Capturing normal forms

If $s \in NF\mathcal{T}(M)$ then $\exists N \text{ s.t. } M \twoheadrightarrow N \text{ and } s \in \mathcal{T}(N)$

Partition Property

 $NF\mathcal{T}(M)$ is partitioned by the family $\{nf(s) \mid s \in \mathcal{T}(M) \text{ and } nf(s) \neq \emptyset\}.$

1 Call-by-Value

- 2 Resource approximation for Call-by-Value
- Stability

Theorem (Stability Property)

Let $C: \Lambda/_{\mathrm{NF}\mathcal{T}} \times \stackrel{(n)}{\cdots} \times \Lambda/_{\mathrm{NF}\mathcal{T}} \longrightarrow \Lambda/_{\mathrm{NF}\mathcal{T}}$ be a context. Let $\mathcal{X}_1, \ldots, \mathcal{X}_n$ non-empty sets of values bounded in $\Lambda/_{\mathrm{NF}\mathcal{T}}$ by a value. If all inf \mathcal{X}_i 's are definable in $\Lambda/_{\mathrm{NF}\mathcal{T}}$ ^a by a value, then in $\Lambda/_{\mathrm{NF}\mathcal{T}}$ we have:

$$C\langle \inf_{N_1 \in \mathcal{X}_1} N_1, \dots, \inf_{N_n \in \mathcal{X}_n} N_n \rangle = \inf_{\substack{N_1 \in \mathcal{X}_1 \\ \dots \\ N_n \in \mathcal{X}_n}} C\langle N_1, \dots, N_n \rangle.$$

^aI.e. there is $V \in \Lambda$ s.t. $NF\mathcal{T}(V) = \bigcap_{N \in \mathcal{X}_i} NF\mathcal{T}(N)$.

Theorem (Stability Property)

Let $C: \Lambda/_{\mathrm{NF}\mathcal{T}} \times \cdots \times \Lambda/_{\mathrm{NF}\mathcal{T}} \longrightarrow \Lambda/_{\mathrm{NF}\mathcal{T}}$ be a context. Let $\mathcal{X}_1, \ldots, \mathcal{X}_n$ non-empty sets of values bounded in $\Lambda/_{\mathrm{NF}\mathcal{T}}$ by a value. If all inf \mathcal{X}_i 's are definable in $\Lambda/_{\mathrm{NF}\mathcal{T}}$ by a value, then in $\Lambda/_{\mathrm{NF}\mathcal{T}}$ we have:

$$C\langle \inf_{N_1 \in \mathcal{X}_1} N_1, \dots, \inf_{N_n \in \mathcal{X}_n} N_n \rangle = \inf_{\substack{N_1 \in \mathcal{X}_1 \\ \dots \\ N_n \in \mathcal{X}_n}} C\langle N_1, \dots, N_n \rangle.$$

^aI.e. there is $V \in \Lambda$ s.t. $NF\mathcal{T}(V) = \bigcap_{N \in \mathcal{X}_i} NF\mathcal{T}(N)$.

Corollary (No parallel-or)

There is no term por with the following specification in $\Lambda/_{NFT}$:

$$\begin{cases} \textit{por}(M,N) = \textit{True} & \textit{if } M \neq \Omega \textit{ or } N \neq \Omega \\ \textit{por}(M,N) = \Omega & \textit{if } M = \Omega = N \end{cases}$$

Stability

Theorem (Stability Property)

Let $C: \Lambda/_{NFT} \times \stackrel{(n)}{\cdots} \times \Lambda/_{NFT} \longrightarrow \Lambda/_{NFT}$ be a context.

Let $\mathcal{X}_1, \ldots, \mathcal{X}_n$ non-empty sets of values bounded in $\Lambda/_{NF\mathcal{T}}$ by a value.

If all inf \mathcal{X}_i 's are definable in $\Lambda/_{NFT}^a$ by a value, then in $\Lambda/_{NFT}$ we have:

$$C\langle \inf_{N_1 \in \mathcal{X}_1} N_1, \dots, \inf_{N_n \in \mathcal{X}_n} N_n \rangle = \inf_{\substack{N_1 \in \mathcal{X}_1 \\ \dots \\ N_n \in \mathcal{X}_n}} C\langle N_1, \dots, N_n \rangle.$$

^aI.e. there is $V \in \Lambda$ s.t. $NF\mathcal{T}(V) = \bigcap_{N \in \mathcal{X}_i} NF\mathcal{T}(N)$.

Proof sketch for n=1.

Hypotheses: $\exists L \text{ value s.t. NF}\mathcal{T}(N) \subseteq \text{NF}\mathcal{T}(L) \ \forall N \in \mathcal{X}$ and $\exists V$ value s.t. $NF\mathcal{T}(V) = \bigcap NF\mathcal{T}(N)$.

If suffices to prove that: $NF\mathcal{T}(C\langle V\rangle) = \bigcap NF\mathcal{T}(C\langle N\rangle)$.

 (\subseteq) : immediate by Monotonicity. (\supset) : non-trivial.

Proof sketch of:
$$t \in \bigcap_{N \in \mathcal{X}} \operatorname{NF} \mathcal{T}(C\langle N \rangle) \Rightarrow t \in \operatorname{NF} \mathcal{T}(C\langle V \rangle)$$

·

$$\mathcal{T}(C\langle N \rangle) \ni c_N \langle \vec{v}_N \rangle \longrightarrow \operatorname{nf}(c_N \langle \vec{v}_N \rangle) \ni t$$

$$\mathcal{T}(C\langle N \rangle) \ni c_N \langle \vec{v}_N \rangle \longrightarrow \inf(c_N \langle \vec{v}_N \rangle) \ni t$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Fix $N \in \mathcal{X}$.

