

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14080067803

FCC REPORT (WIFI)

Applicant: MOVILTELCO TRADE, S.L.

Address of Applicant: C/ ABTAO, 25-10 A MADRID (28007) SPAIN

Equipment Under Test (EUT)

Product Name: mobile phone

Model No.: A26

Trade mark: mtt

FCC ID: 2ACQKTELCO003

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 18 Aug., 2014

Date of Test: 18 Aug., to 12 Sep., 2014

Date of report issued: 12 Sep., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Report No: CCIS13070021903

Version No.	Date	Description
00	12 Sep., 2014	Original

Prepared by: Date: 12 Sep., 2014

Reviewed by: 12 Sep., 2014 Date:

Project Engineer

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

			Page
1	COV	/ER PAGE	1
2	VFR	SION	
3		ITENTS	
_			
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	8
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1 6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	76
8		CONSTRUCTIONAL DETAILS	
O	LUI	OUNDING HONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	MOVILTELCO TRADE, S.L
Address of Applicant:	C/ ABTAO, 25-1º A MADRID (28007) SPAIN
Manufacturer:	REACH CHANCE INTERNATIONAL LIMITED
Address of Manufacturer:	7/F KIN ON COMMERCIAL BUILDING
	49-51 JERVOIS STREET SHEUNG WAN, HK

5.2 General Description of E.U.T.

Product Name:	mobile phone
Model No.:	A26
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-0.8 dBi
AC adapter:	Input:100-240V AC,50/60Hz 0.2A Output:5.0V DC MAX600mA
Power supply:	Rechargeable Li-ion Battery DC3.7V- 1350mAh

Operation Frequency each of channel For 802.11b/g/n(H20)									
Channel Frequency Channel Frequency Channel Frequency Channel Frequency									
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz		
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz		
3	2422MHz	6	2437MHz	9	2452MHz				

Operation Frequency each of channel For 802.11n(H40)										
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency									
		4	2427MHz	7	2442MHz					
		5	2432MHz	8	2447MHz					
3										

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2014	June 08 2015	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 25 2014	May 24 2015	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 25 2014	May 24 2015	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015	
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015	
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015	
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2014	Mar. 31 2015	
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015	
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015	
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2014	June 08 2015	
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015	
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015	
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 25 2014	May. 24 2015	
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2014	Mar. 31 2015	
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2014	Aug. 11 2015	
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	May. 25 2014	May. 24 2015	
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	May. 25 2014	May. 24 2015	

Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2014	June 08 2015
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2014	May 24 2015
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2014	Mar. 31 2015
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is-0.8 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207					
•	ANSI C63.4: 2003					
Test Method:						
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Frequency range (MHz)	Limit (c	dBuV)			
	, , , ,	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30 * Decreases with the logarithm	60	50			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 					
Test setup:	LISN 40cm		er — AC power			
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : GSM Mobile Phone Condition EUT

Model : A26

Test Mode : WIFI Mode
Power Rating : AC120 V/ 60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Garen

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	dB	dBu₹	−dBuV	<u>dB</u>	
1	0.162	36.10	0.25	10.77	47.12	65.34	-18.22	QP
2	0.162	22.24	0.25	10.77	33.26	55.34	-22.08	Average
3	0.262	24.54	0.26	10.75	35.55	51.38	-15.83	Average
1 2 3 4 5 6 7 8 9	0.358	35.73	0.25	10.73	46.71		-12.07	
5	0.361	30.40	0.25	10.73	41.38	48.69	-7.31	Average
6	0.385	32.41	0.25	10.72	43.38		-14.79	
7	0.454	23.06	0.27	10.74	34.07	46.80	-12.73	Average
8	0.589	20.17	0.24	10.77	31.18	46.00	-14.82	Average
9	2.066	29.43	0.29	10.96	40.68	56.00	-15.32	QP
10	2.077	21.74	0.29	10.96	32.99	46.00	-13.01	Average
11	2.736	28.78	0.29	10.93	40.00	56.00	-16.00	QP
12	4.158	27.35	0.29	10.88	38.52	56.00	-17.48	QP

Line:

Trace: 11

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT GSM Mobile Phone

Model A26 : WIFI Mode Test Mode

Power Rating: AC120 V/ 60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Garen

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	dB	dB	dBu₹	dBu∀	dB	
0.166	38.18	0.27	10.77	49.22	65.16	-15.94	QP
0.186	23.23	0.28	10.76	34.27	54.20	-19.93	Average
0.190	36.23	0.28	10.76	47.27	64.02	-16.75	QP
0.211	35.92	0.28	10.76	46.96	63.18	-16.22	QP
0.234	34.45	0.27	10.75	45.47	62.30	-16.83	QP
0.253	22.53	0.27	10.75	33.55	51.64	-18.09	Average
0.262	33.96	0.27	10.75	44.98	61.38	-16.40	QP
0.350	33.49	0.27	10.73	44.49	58.96	-14.47	QP
0.350	26.42	0.27	10.73	37.42	48.96	-11.54	Average
0.373	23.82	0.28	10.73	34.83	48.43	-13.60	Average
1.197	18.28	0.25	10.89	29.42	46.00	-16.58	Average
2.066	18.96	0.26	10.96	30.18	46.00	-15.82	Average
	Freq 0.166 0.186 0.190 0.211 0.234 0.253 0.262 0.350 0.350 0.373 1.197	Read Freq Level MHz dBuV 0.166 38.18 0.186 23.23 0.190 36.23 0.211 35.92 0.234 34.45 0.253 22.53 0.262 33.96 0.350 33.49 0.350 33.49 0.350 26.42 0.373 23.82 1.197 18.28	Read LISN Level Factor MHz dBuV dB 0.166 38.18 0.27 0.186 23.23 0.28 0.190 36.23 0.28 0.211 35.92 0.28 0.234 34.45 0.27 0.253 22.53 0.27 0.262 33.96 0.27 0.350 33.49 0.27 0.350 26.42 0.27 0.373 23.82 0.28 1.197 18.28 0.25	Read LISN Cable Freq Level Factor Loss MHz dBuV dB dB	Read LISN Cable Level Factor Loss Level MHz dBuV dB dB dB dBuV 0.166 38.18 0.27 10.77 49.22 0.186 23.23 0.28 10.76 34.27 0.190 36.23 0.28 10.76 47.27 0.211 35.92 0.28 10.76 46.96 0.234 34.45 0.27 10.75 45.47 0.253 22.53 0.27 10.75 45.47 0.253 22.53 0.27 10.75 33.55 0.262 33.96 0.27 10.75 44.98 0.350 33.49 0.27 10.75 44.98 0.350 26.42 0.27 10.73 37.42 0.373 23.82 0.28 10.73 34.83 1.197 18.28 0.25 10.89 29.42	Read LISN Cable Limit Freq Level Factor Loss Level Line MHz dBuV dB dB dB dBuV dBuV 0.166 38.18 0.27 10.77 49.22 65.16 0.186 23.23 0.28 10.76 34.27 54.20 0.190 36.23 0.28 10.76 47.27 64.02 0.211 35.92 0.28 10.76 46.96 63.18 0.234 34.45 0.27 10.75 45.47 62.30 0.253 22.53 0.27 10.75 45.47 62.30 0.253 22.53 0.27 10.75 33.55 51.64 0.262 33.96 0.27 10.75 33.55 51.64 0.262 33.96 0.27 10.75 44.98 61.38 0.350 33.49 0.27 10.73 44.49 58.96 0.350 26.42 0.27 10.73 37.42 48.96 0.373 23.82 0.28 10.73 34.83 48.43 1.197 18.28 0.25 10.89 29.42 46.00	Read LISN Cable Limit Over Lovel Level Factor Loss Level Line Limit MHz dBuV dB dB dB dBuV dBuV dB 0.166 38.18 0.27 10.77 49.22 65.16 -15.94 0.186 23.23 0.28 10.76 34.27 54.20 -19.93 0.190 36.23 0.28 10.76 47.27 64.02 -16.75 0.211 35.92 0.28 10.76 46.96 63.18 -16.22 0.234 34.45 0.27 10.75 45.47 62.30 -16.83 0.253 22.53 0.27 10.75 45.47 62.30 -16.83 0.253 22.53 0.27 10.75 33.55 51.64 -18.09 0.262 33.96 0.27 10.75 44.98 61.38 -16.40 0.350 33.49 0.27 10.73 44.49 58.96 -14.47 0.350 26.42 0.27 10.73 37.42 48.96 -11.54 0.373 23.82 0.28 10.73 34.83 48.43 -13.60 1.197 18.28 0.25 10.89 29.42 46.00 -16.58

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.		

Measurement Data

T O	Max	kimum Conduct	Limit/dDay)	D !!		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	12.37	8.30	8.28	7.47		
Middle	13.00	11.06	11.15	9.90	30.00	Pass
Highest	13.60	9.70	9.79	8.36		

Test plot as follows:

Highest channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

O.I.)		5		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.10	16.51	17.88	36.55		
Middle	10.26	16.51	17.88	36.79	>500	Pass
Highest	10.26	16.51	17.80	36.79		

		99% Occupy		5 "		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.91	16.59	17.64	35.95		
Middle	12.99	16.43	17.64	35.95	N/A	N/A
Highest	13.15	16.59	17.64	35.95		

Test plot as follows:

Highest channel

Center 2.462 GHz

21.AUG.2014 14:55:47

Highest channel

Center 2.462 GHz

20.AUG.2014 11:29:33

Highest channel

20.AUG.2014 11:33:39

Highest channel

20.AUG.2014 11:38:40

Highest channel

20.AUG.2014 11:49:53

Highest channel

Center 2.462 GHz

Test mode: 99% OBW

Report No: CCIS14080067803

Highest channel

Test mode: 99% OBW

Report No: CCIS14080067803

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

		Power Spec		5		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	1.33	-4.58	-4.90	-8.94		
Middle	2.00	-3.20	-3.33	-8.33	8.00	Pass
Highest	2.51	-2.39	-2.90	-7.94		

Test plot as follows:

Test mode:

Report No: CCIS14080067803

Highest channel

Test mode:

Report No: CCIS14080067803

Highest channel

Test mode:

Report No: CCIS14080067803

Highest channel

Highest channel

20.AUG.2014 12:08:50

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	2.3GHz to 2.5GHz				
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency Above 1GHz	Detector Peak Peak	RBW 1MHz 1MHz	VBW 3MHz 10Hz	Remark Peak Value Average Value
Limit:	Freque Above 1	ncy	Limit (dBuV/ 54.0 74.0	′m @3m) 0	Remark Average Value Peak Value
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 				
Test setup:	Sheet. Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Mobile phone EUT Model : A26 Test mode: Wifi B-L MODE
Power Rating: AC120V/60Hz
Environment: Temp:25.5°C H
Test Engineer: Garen

Huni:55%

REMARK

1 2

Freq		Antenna Factor						
MHz	dBuV	<u>dB</u> /m	ā <u>ā</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
2390.000 2390.000		770 V. S. V.		0.00 0.00				

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile phone

Condition EUT

: A26
Test mode : Wifi B-L MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK :

المالاد	200		Antenna Factor						
4	MHz	—dBuV	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000				0.00 0.00				

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile phone Condition

EUT

Model : A26

Test mode : Wifi B-H MODE Power Rating : AC120V/60Hz Environment : Temp:25.5°C H

Huni:55%

Test Engineer: Garen REMARK :

				Cable Loss					Remark
	MHz	dBu₹	<u>dB</u> /π	<u>dB</u>	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	
100	2483.500 2483.500	A Part of the Control	The second secon						

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile phone Condition EUT

Model : A26

Test mode : Wifi B-H MODE Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

Freq			tenna Cable: actor Loss:			Line	Limit	
 MHz	dBu∜		<u>d</u> B	dBuV/m				
		27.52 27.52		0.00				Peak Average

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Mobile phone EUT Model : A26

Test mode : Wifi G-L MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

CHENIC									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u> /m	<u>dB</u>	<u>ab</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000		75,900 TO 50,000 TO				74.00 54.00		Peak Average

Vertical:

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Mobile phone EUT ## Model : Model ## Model ## Model ## Model ## Mode ## Model ##

REMARK

	Freq				Preamp Factor	Level			
-	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
	2390.000 2390.000						74.00 54.00		

Test channel: Highest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Mobile phone EUT Model : A26 Test mode : Wifi G-H MODE Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK

		Read	Antenna	Cable	Preamp		Limit		
	Freq		Factor						Remark
	MHz	—dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBu√/m	$\overline{dBuV/m}$	<u>dB</u>	
7656	2483.500				- T120 T120				
2	2483.500	15.05	27.52	5, 70	U. 00	48. 27	54.00	-5.73	Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile phone Condition

EUT

: A26
Test mode : Wifi G-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK :

June							Limit		<u> </u>	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu₹	dB/m	<u>ab</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	dB		
	2483.500 2483.500									

802.11n (H20) Test channel: Lowest Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Modile phone Condition

EUT

Model : A26

: Wifi N20-L MODE Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Garen REMARK :

1 2

7	Lan.										
	F	req		Antenna Factor							
		MHz	—dBu₹	$\overline{-dB/m}$	<u>d</u> B	<u>d</u> B	$\overline{dB} \overline{uV/m}$	$\overline{dB}\overline{uV/m}$	<u>d</u> B		
				27.58 27.58						Peak Average	

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Mobile phone EUT

Model

: A26 : Wifi N20-L MODE Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Garen REMARK:

CHIMA	r :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						
9	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBu√/m	<u>dB</u>	
1	2390.000	35.87	27.58	5.67	0.00	69.12	74.00	-4.88	Peak
2	2390, 000	17.61	27, 58	5, 67	0.00	50, 86	54,00	-3.14	Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile phone Condition

: Mobile phone

Model : A26
Test mode : Wifi N20-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK :

יוטוונים	n .	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	$\overline{dB}/\overline{m}$	<u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500				0.00				

Vertical:

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Mobile phone

Model : A26
Test mode : Wifi N20-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

EMAR	r :	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500					63.54 47.72			

802.11n (H40) Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile phone

: A26 Model

Test mode: Wifi N40-L MODE
Power Rating: AC120V/60Hz
Environment: Temp: 25.5°C Huni: 55%
Test Engineer: Garen

SJIGH.			Antenna Factor					Remark
	MHz	dBu₹	dB/m	 	dBuV/m	dBuV/m		
100	2390.000 2390.000				64.83 52.63		A Prince of the Paris of the Pa	Peak Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile phone Condition

EUT

Model : A26

Test mode : Wifi N40-L MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

1 2

m_{IJ}										
	Freq		Antenna Factor				Limit Line		Remark	
-	MHz	dBuV		<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>d</u> B		
	2390.000	31.44	27.58	5.67	0.00	64.69	74.00	-9.31	Peak	
	2390.000	19.51	27.58	5.67	0.00	52.76	54.00	-1.24	Average	

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile phone Condition

EUT

Model : A26

: Wifi N40-H MODE Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

		Antenna Factor						Remark
MHz	dBuV	dB/m	dB	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	dB	
2483.500 2483.500						74.00 54.00		

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mobile phone

: A26 Model

: Wifi N40-H MODE Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

4,	•	Read	Ant enna	Cable	Preamn		Limit	Over		
	Freq		Factor							
	MHz	dBuV	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
	2483, 500 2483, 500				0.00				Peak Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode: 802.11b

Lowest channel

Date: 27.AUG.2014 14:54:58

30MHz~25GHz

Middle channel

Date: 27.AUG.2014 14:56:20

30MHz~25GHz

Highest channel

Date: 27.AUG.2014 14:56:39

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 27.AUG.2014 14:58:28

30MHz~25GHz

Middle channel

Date: 27.AUG.2014 14:59:09

30MHz~25GHz

Highest channel

Date: 27.AUG.2014 15:00:06

30MHz~25GHz

Test mode: 802.11n(H20)

Lowest channel

Date: 27.AUG.2014 15:03:08

30MHz~25GHz

Middle channel

Date: 27.AUG.2014 15:02:40

30MHz~25GHz

Highest channel

Date: 27.AUG.2014 15:03:31

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 27.AUG.2014 15:04:25

30MHz~25GHz

Middle channel

Date: 27.AUG.2014 15:04:48

30MHz~25GHz

Highest channel

Date: 27.AUG.2014 15:05:15

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205						
Test Method:	ANSI C63.4:200)3							
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	istance: 3m							
Receiver setup:									
·	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	7.0010 101.1	Peak	1MHz	10Hz	Average Value				
Limit:				/ 00)					
	Frequency Limit (dBuV/m @3m) Remark								
	30MHz-88MHz 40.0 Quasi-peak Value								
	88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value								
	960MHz-9		54.0 54.0		Quasi-peak Value				
			54.0		Average Value				
	Above 1	GHz	74.0		Peak Value				
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antenrathe ground Both horizon make the numbers and to find the number should be specified Euther in the limit spof the EUT have 10dB	at a 3 meter come the position was set 3 meter which was mount a height is varied to determine to the and vertice measurement. If the rota table maximum read ceiver system and width with sion level of the ecified, then te would be reported to the position of the would be reported to the terminal than the sion level of the ecified, then the would be reported to the terminal than the sion level of the ecified, then the would be reported to the terminal than the sion level of the would be reported to the terminal than the sion level of the would be reported to the terminal than the sion level of the would be reported to the terminal than the sion level of the would be reported to the terminal than the sion level of the would be reported to the terminal than the sion level of the terminal than the sion level of the would be reported to the terminal than the sion level of the world than the w	the top of a reamber. The famber. The famber. The famber is away from the don the total famber in the maximum and polarizations in the EU was turned famber in peasing could borted. Otherwas be re-tested	otating table table was restradiation. The interferop of a variate meter to for a value of the ons of the art to heights from 0 degreak Detect old Mode. It was arranged and the estopped arise the emitone by one	e 0.8 meters above otated 360 degrees rence-receiving able-height antenna our meters above the field strength. Intenna are set to a set to				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : Mobile Phone Condition

EUT

: A26 : WIFI Mode Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: REMARK :

THUTTE									
	Freq		Antenna Factor						
	MHz	dBu₹	$\overline{-dB/m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1	37.945	41.98	13.06	0.50	29.92	25.62	40.00	-14.38	QP
2	81.783	40.21	9.28	0.86	29.63	20.72	40.00	-19.28	QP
2 3 4 5	187.753	37.28	10.32	1.37	28.92	20.05	43.50	-23.45	QP
4	231.718	37.39	11.72	1.54	28.64	22.01	46.00	-23.99	QP
5	306.754	37.30	13.15	1.79	28.47	23.77	46.00	-22.23	QP
6	382, 588	42.30	14 68	2.06	28, 70	30, 34	46,00	-15.66	OP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : Mobile Phone Condition

EUT

: A26

Test mode : WIFI Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer:
REMARK :

	Freq		Antenna Factor						
_	MHz	dBu₹		<u>d</u> B	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	38.212	52.80	13.15	0.51	29.92	36.54	40.00	-3.46	QP
2	43.812	47.18	13.56	0.55	29.87	31.42	40.00	-8.58	QP
3	75.446	41.34	7.91	0.82	29.68	20.39	40.00	-19.61	QP
4	110.957	39.14	12.04	1.05	29.45	22.78	43.50	-20.72	QP
5	144.842	43.05	8.23	1.29	29.25	23.32	43.50	-20.18	QP
6	313, 276	39.83	13.24	1.82	28.48	26.41	46.00	-19.59	QP

Above 1GHz

Test mode: 80	Test mode: 802.11b			el: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	46.19	31.53	8.90	40.24	46.38	74.00	-27.62	Vertical
4824.00	46.76	31.53	8.90	40.24	46.95	74.00	-27.05	Horizontal

Test mode: 80	02.11b		Test channe	el: Lowest		Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	36.03	31.53	8.90	40.24	36.22	54.00	-17.78	Vertical
4824.00	36.19	31.53	8.90	40.24	36.38	54.00	-17.62	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	2.11b		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	46.19	31.58	8.98	40.15	46.60	74.00	-27.40	Vertical
4874.00	45.75	31.58	8.98	40.15	46.16	74.00	-27.84	Horizontal

Test mode: 80	2.11b		Test channe	el: Middle		Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	36.46	31.58	8.98	40.15	36.87	54.00	-17.13	Vertical
4874.00	35.57	31.58	8.98	40.15	35.98	54.00	-18.02	Horizontal

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802	Test mode: 802.11b			el: Highest		Remark: P	eak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4924.00	45.29	31.69	9.08	40.03	46.03	74.00	-27.97	Vertical	
4924.00	46.10	31.69	9.08	40.03	46.84	74.00	-27.16	Horizontal	

Test mode: 802	2.11b		Test channe	el: Highest		Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.24	31.69	9.08	40.03	35.98	54.00	-18.02	Vertical
4924.00	36.01	31.69	9.08	40.03	36.75	54.00	-17.25	Horizontal

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11g			: Lowest		Remark: F	Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4824.00	45.40	31.53	8.90	40.24	45.59	74.00	-28.41	Vertical	
4824.00	44.69	31.53	8.90	40.24	44.88	74.00	-29.12	Horizontal	

Test mode: 802.11g			Test channel	: Lowest		Remark: A	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	35.32	31.53	8.90	40.24	35.51	54.00	-18.49	Vertical
4824.00	34.57	31.53	8.90	40.24	34.76	54.00	-19.24	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802	2.11g		Test chann	el: Middle		Remark: P	eak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	45.52	31.58	8.98	40.15	45.93	74.00	-28.07	Vertical
4874.00	45.45	31.58	8.98	40.15	45.86	74.00	-28.14	Horizontal

Test mode: 802	2.11g		Test chann	el: Middle		Remark: A	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	35.47	31.58	8.98	40.15	35.88	54.00	-18.12	Vertical
4874.00	35.36	31.58	8.98	40.15	35.77	54.00	-18.23	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	Test mode: 802.11g			el: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	46.46	31.69	9.08	40.03	47.20	74.00	-26.80	Vertical
4924.00	46.39	31.69	9.08	40.03	47.13	74.00	-26.87	Horizontal

Test mode: 8	Test mode: 802.11g		Test channe	el: Highest		Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	36.22	31.69	9.08	40.03	36.96	54.00	-17.04	Vertical
4924.00	36.35	31.69	9.08	40.03	37.09	54.00	-16.91	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.	Test mode: 802.11n(H20)			el: Lowest		Remark: P	'eak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	46.17	31.53	8.90	40.24	46.36	74.00	-27.64	Vertical
4824.00	46.59	31.53	8.90	40.24	46.78	74.00	-27.22	Horizontal

Test mode: 802	.11n(H20)		Test chann	el: Lowest		Remark: A	Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4824.00	35.86	31.53	8.90	40.24	36.05	54.00	-17.95	Vertical	
4824.00	35.96	31.53	8.90	40.24	36.15	54.00	-17.85	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802	Test mode: 802.11n(H20)			el: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	45.78	31.58	8.98	40.15	46.19	74.00	-27.81	Vertical
4874.00	46.17	31.58	8.98	40.15	46.58	74.00	-27.42	Horizontal

Test mode: 802	.11n(H20)		Test channe	el: Middle		Remark: A	Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4874.00	35.54	31.58	8.98	40.15	35.95	54.00	-18.05	Vertical	
4874.00	36.63	31.58	8.98	40.15	37.04	54.00	-16.96	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test chann	el: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	45.87	31.69	9.08	40.03	46.61	74.00	-27.39	Vertical
4924.00	46.24	31.69	9.08	40.03	46.98	74.00	-27.02	Horizontal

Test mode: 802.11n(H20)			Test chann	el: Highest		Remark: Average			
ı	Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
	4924.00	34.16	31.69	9.08	40.03	34.90	54.00	-19.10	Vertical
	4924.00	36.26	31.69	9.08	40.03	37.00	54.00	-17.00	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	45.46	31.53	8.90	40.24	45.65	74.00	-28.35	Vertical
4844.00	46.01	31.53	8.90	40.24	46.20	74.00	-27.80	Horizontal

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	35.47	31.53	8.90	40.24	35.66	54.00	-18.34	Vertical
4844.00	36.19	31.53	8.90	40.24	36.38	54.00	-17.62	Horizontal

Remark:

- 1、 Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channe	el: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	45.78	31.58	8.98	40.15	46.19	74.00	-27.81	Vertical
4874.00	45.35	31.58	8.98	40.15	45.76	74.00	-28.24	Horizontal

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	35.46	31.58	8.98	40.15	35.87	54.00	-18.13	Vertical
4874.00	35.67	31.58	8.98	40.15	36.08	54.00	-17.92	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test chann	el: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	47.00	31.69	9.08	40.03	47.74	74.00	-26.26	Vertical
4904.00	46.07	31.69	9.08	40.03	46.81	74.00	-27.19	Horizontal

Test mode: 802.11n(H40)			Test chann	el: Highest		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4904.00	37.26	31.69	9.08	40.03	38.00	54.00	-16.00	Vertical	
4904.00	36.34	31.69	9.08	40.03	37.08	54.00	-16.92	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.