Digitaltechnik

Andrej Scheuer ascheuer@student.ethz.ch 31. Oktober 2020

AND

AND aus NOR

0 0

OR

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

NOR

OR aus NAND

Weitere Gates

		O NAND	NOR	вох Е	HONX F
A	В	C	D	E	F
0	0	1	1	0	1
0	1	1	0	1	0
1	0	1	0	1	0
1	1	0	0	0	1

$$XOR = (A \wedge \overline{B}) \vee (\overline{A} \wedge B)$$
$$XNOR = (A \wedge B) \vee (\overline{A \wedge B})$$

XOR aus NAND

XOR aus NOR: Gleiches Schema wie NAND + 1 Inverter

XNOR aus NAND: Gleiches Schema wie XOR aus NOR

XNOR aus NOR: Gleiches Schema wie XORaus NAND

Es versteht sich natürlich, dass wenn von "Gleichem Schema wie..." gesprochen wird, die Gates trotzdem getauscht werden müssen

PMOS

CMOS

NMOS

G	Schalter	Y
0	offen	1
1	zu	0
		•

G	Schalter	Y
0	zu	1
1	offen	0

Konstruktion von CMOS-Gates

Regeln für CMOS-Schaltungen

- 1. CMOS-Gates bestehen aus gleich vielen NMOS und PMOS.
- 2. m Eingänge: m NMOS und m PMOS.
- 3. NMOS in Serie \rightarrow PMOS parallel
- 4. NMOS parallel \rightarrow PMOS Serie

Allg. Aufbau CMOS

Umwandlung Pull-up zu Pull-down

- 1. Teilbereiche (Blöcke) identifizieren.
- 2. Schritt 1 wiederholen, bis nur noch einzelne Transistoren vorkommen.
- 3. Falls Pull-down:
 - Von GND aus mit äusserstem Block beginnen.
 - PMOS \rightarrow NMOS
- 4. Falls Pull-up:
 - Von V_{DD} aus mit äusserstem Block beginnen.
 - NMOS → PMOS.

Funktionsgleichung

parallel: \vee	Pull-Up: $y = 1$	alle $I: 0 \to I$ invert.
Serie: ∧	Pull-Down: $y = 0$	alle I : $1 \rightarrow Gl$. inver

Boolsche Algebra

Grundregeln

Kommutativität

$$A \wedge B = B \wedge A$$
$$A \vee B = B \vee A$$

Assoziativität

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$
$$A \vee (B \vee C) = (A \vee B) \vee C$$

Distributivität

$$(A \land B) \lor (A \land C) = A \land (B \lor C)$$
$$(A \lor B) \land (A \lor C) = A \lor (B \land C)$$

Nicht	$\overline{\overline{A}} = A$	
Null-Th.	$A \lor 0 = A$	$A \wedge 0 = 0$
Eins-Th.	$A\vee 1=1$	$A \wedge 1 = A$
Idempotenz	$A \lor A = A$	$A \wedge A = A$
V. Komp.	$A \vee \overline{A} = 1$	$A\wedge \overline{A}=0$
Adsorp.	$A \vee (\overline{A} \wedge B)$	$= A \vee B$
	$A \wedge (\overline{A} \vee B)$	$= A \wedge B$
Adsorp.	$A \lor (A \land B)$	=A
	$A \wedge (A \vee B)$	=A
Nachbar.G.	$(A \wedge B) \vee (\overline{A})$	$\overline{A} \wedge B) = B$
	$(A \vee B) \wedge (\overline{A})$	$\bar{A} \vee B) = B$

De Morgan

- $\overline{A \wedge B} = \overline{A} \vee \overline{B}$ 1. Regel
- 2. Regel $\overline{A \vee B} = \overline{A} \wedge \overline{B}$

Regeln gelten auch für n verknüpfte Terme.

Normalformen

Minterm Maxterm AND-Ausdruck OR-Ausdruck
AND-Ausdruck OR-Ausdruck
TITE TRANSPORT
Output: 1 Output: 0
n Schaltvar. $\rightarrow 2^n$ mögl. n Schaltvar. $\rightarrow 2^n$ mögl. Maxterme.
nicht-invertierte Var: 1 nicht-invertierte Var: 0
invertierte Var: 0 invertierte Var: 0

Disjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 1
- 2. Minterme für diese Zeilen aufstellen
- 3. Minterme mit **OR** verknüpfen

Konjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 0
- 2. Maxterme für diese Zeilen aufstellen
- 3. Maxterme mit AND verknüpfen

A	В	Y	Minterme	Maxterme
0	0	1	$\overline{A} \wedge \overline{B}$	
0	1	0		$A \vee \overline{B}$
1	0	0		$\overline{A} \vee B$
1	1	1	$A \wedge B$	

$$\begin{array}{lll} \mathbf{DNF} & Y = (\overline{A} \wedge \overline{B}) \vee (A \wedge B) & 1 \text{ Mint. erf.} \to & 1 \\ \mathbf{KNF} & Y = (A \vee \overline{B}) \wedge (\overline{A} \vee B) & 1 \text{ Maxt. erf.} \to & 0 \\ \end{array}$$

Schaltung nur aus:

- NOR: KNF \rightarrow De Morgan
- NAND: DNF \rightarrow De Morgan Schaltung nur aus:
 - NOR: KNF \rightarrow De Morgan
 - XNOR: DNF \rightarrow De Morgan

Karnaugh Diagramme (KVD)

CD	00	01	11	10
00	0	1	X	
01				
11				
01				

Hat das Karnaugh Diagramm 5 Dimensionen, wird die 5te Dimension auf zwei Tabellen aufgeteilt.

Don't-Care-Zustände $X \in \{0,1\}$ Redundante, überflüssige oder unmögliche Kombinationen der Eingangsvariablen werden mit einem \boldsymbol{X} markiert.

Päckchen

- Päckchen immer rechteckig (Ausnahme: über Ecken).
- Umfassen möglichst grosse Zweierpotenz.
- Dürfen über Ecken und Grenzen hinausgehen und sich überlappen.

DNF

- KVD ausfüllen.
- 2. Päckchen mit $\mathbf{1}$ uo X.
- 3. Vereinfachte Minterme aufstellen.
- 4. Minterme mit OR verbinden.

KNF

- 1. KVD ausfüllen.
- Päckchen mit 0 uo X.
- 3. Vereinfachte Maxterme aufstellen.
- 4. Maxterme mit AND verbinden.

Hazard

Kurzzeitige, unerwünschte Änderung der Signalwerte, die durch Zeitverzögerung der Gatter entstehen.

Statische Hazards Stellen im KVD, an denen sich Päckchen orthogonal berühren, aber nicht überlappen.

Lösung Berührende Päckchen mit zusätzlichen (möglichst grossen) Päckchen verbinden.

Zahlensysteme

zu berechnende positive Zahl

Basis/Radix von D

Koeffizient

$$D = \sum_{-\infty}^{\infty} b_i \cdot R^i$$

Darstellung D in Basis $R: \ldots b_2 b_1 b_0 . b_{-1} b_{-2} \ldots R$

 $b_i \in \{0, 1, \dots, 9\}$ Dezimal $b_i \in \{0, 1\}$ Dual/Binär 2 Oktal $b_i \in \{0, 1, \dots, 7\}$ Hexa.

Umwandlung Zahlensysteme

1. Ganzzahlige Division mit R: $D/R = Q_0 + r_0$. 2.

$$Q_i/R = Q_{i+1} + r_{i+1}$$

bis $Q_i = 0$.

3. Erste Operation gibt MSB, letze Operation gibt LSB (aka. unten nach oben lesen.)

Für $1 > D \ge 0$

$$D \cdot R = P_0 \quad K_{-1} = \text{floor}(P_0) \quad a_{-1} = P_0 - K_{-1}$$

 $a_{-1} \cdot R = P_{-1} \dots$

 K_i : Koeffizienten für Zahlensystem. Erste Operation gibt MSB, letze Operation gibt LSB (aka von oben nach un-

Byte

Binär zu Hex

0000	0	0100	4	1000	8	1100	C
0001	1	0100 0101 0110 0111	5	1001	9	1101	D
0010	2	0110	6	1010	A	1110	E
0011	3	0111	7	1011	B	1111	F

Zweierkomplement

Sign Bit 0: positiv 1: negativ

Konstruktion

- 1. Zahl |Z| in Binär B umwandeln.
- $2.\ B$ bitweise invertieren
- 3. 1 zu LSB addieren (! Übertrag)
- 4. Sign Bit hinzufügen (zuvorderst).

Ist die Blocklänge länger als Zahl, vorangehende 0(-en) miteinbeziehen.

2^{er}Komplement zu Dezimal

$$D_{(10)} = -b_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} b_i \cdot 2^i$$

Wertebereich 2er-Komp. $\left[-2^{n-1},2^{n-1}-1\right]$

mQn

$$D_{(10)} = -b_m \cdot 2^m + \sum_{i=0}^{m-1} b_i \cdot 2^i + \sum_{i=1}^n b_i \cdot 2^{-i}$$

m: Vorkommabits, n: Nachkommabits

 $b_i \in \{0, 1, \dots, 9, A, B, C, D, E, F\}$ | Sign-Bit muss nur einmal vor dem m codiert werden.

Binäre Rechenoperationen

Addition

Subtraktion

Bitweise Addition der Binärzahlen. Leere Slots werden mit 0 aufgefüllt.

0 in Quotient.

Rest behalten.

Hilft Bit-Fehler zu finden.

0 1 0 1 0

1 1 0 1 1

1 0 1 1 1

0 0 1 0

Sendet eines von 2^n

Eingangssignalen an den

Ausgang. Hat n Aus-

Addition via 2^{er}Komp. Übertrag von MSB ignorieren.

Multiplikation

Division

Parity-Bits

Parity-Bit

Even P_E

Odd P_O

Korrekt P_F

Diverses

Multiplexer

wahlbits.

Schaltelemente

 Bitweise Multiplikation des Multiplikanden a mit b_i des Multiplikator

 Sukzessive Multiplikationen werden um ein Bit (0) nach links verschoben.

 Anzahl Nachkommabits ergibt $+b_3 \cdot a \ 0 \ 0 \ 0$ sich aus der Summe der Anzahl Nachk.bits der Operatoren.

1. Identifiziere Teil des Divident > Divisor (Unter-

2. Unterblock - Divisor, 1 an Quotient anhängen,

3. An das Resultat der Subtraktion Bits des Dividen-

Bitsequenz wird in 4 Bits unterteilt. Pro Nibble wird ein

Parity-Bit angefügt. Nach 4 Blöcken folgt ein Prüfwort.

01010 11011 10111 00101 00011

Anz. 1

gerade

gerade

ungerade

ungerade

PB

0

Nibble + PB

0 1 0 1 0

1 1 1 1 1

1 0 1 1 1

0 0 1 0 1

0 0 0 1 1

Sendet 1 Eingangssignal

an einen von 2ⁿ Ausgän-

ge. n Auswahlbits.

gerade

Fehler PE

Demultiplexer

ungerade

ten anhängen. Wiederholen bis Subtraktion 0 er-

block). Für jede Stelle, sodass Divident < Divisor,

$+b_1 \cdot a \ 0$

 $+b_2 \cdot a \ 0 \ 0$

Paralleladdierer (Normalform)

Halbaddierer

Carry-Out.

Volladdierer

Serienaddierer

Addition aller Stellen pro Taktschritt.

Addition einer Stelle pro Taktschritt.

 $SUM = A \oplus B$

Nimmt einen zusätzlichen Input CI entgegen.

Addiert 2 Binärzahlen A und B. Produziert Summe und

 $SUM = (A \oplus B) \oplus CI$ $CO = (A \wedge B) \vee (S_{AB} \wedge CI)$

 $CO = A \wedge B$

- Maximal 3 Grundgatter zwischen Input und Output.
- · Laufzeit ist unabhängig von Stellenzahl der Summanden
- → Schnell aber Schaltungsaufwendig

Ripple-Carry Addierer (Paralleladdierer)

Vorteile

- Durch Kaskadierung einfach skalierbar.
- Schaltungsaufwand linear zur Stellenzahl.

Nachteile

Nachteile

Min-/Maxterme

knüpft werden.

• SUM und CO für die i-te Stelle können erst nach der Berechnung der (i -1)-ten Stelle gebildet werden.

Bei Addition

von n-stelligen Summan-

den müssen $\sim n \cdot 2^{2n-1}$

• Addierzeit linear zu Stellenzahl

Langsamer als Normalformaddierer aber einfacher zu realisieren.

Carry-Look-Ahead Addierer (Paralleladdierer)

Kombination der Vorteile des Normalform- und Ripple- $Carry-Addierer \rightarrow schnelle Schaltung mit begrenztem$ Aufwand.

Praktische Realisierung Addierer werden kaskadiert, Berechnung der Überträge erfolgt parallel zur Summenbildung.

Berechnungsaufwand ist linear zur Stellenzahl, Laufzeit bleibt konstant.

Booth-Algorithmus

Dient der Multiplikation von Binärzahlen (A & B). Berechnung über Zwischenprodukte P_i .

Division durch 2 bedeutet: Verschiebung des Kommas nach links (shift), mit Vorzeichenverdoppelung falls nötig.

a_i	a_{i-1}	Operation
0	0	$P_i = P_{i-1}/2$
0	1	$P_i = (P_{i-1} + B)/2$
1	0	$P_i = (P_{i-1} - B)/2$
1	1	$P_{i} = P_{i-1}/2$

Anfangswerte: $P_{-1} = 0$, $a_{-1} = 0$ Beim letzten Schritt entfällt die Division durch 2.