High Availability on Linux

SUSE way

Leap

Roger Zhou zzhou@suse.com

openSUSE.Asia Summit 2015

Agenda

- HA architectural components
- Use case examples
- Future outlook & Demo

What is Cluster?

- HPC (super computing)
- Load Balancer (Very high capacity)
- High Availability
 - -99.999% = 5 m/year MTTR
 - -SPOF(single point of failure)
 - -Murphy's Law

"Everything that can go wrong will go wrong"

"HA", widely used, often confusing

- VMWare vSphere HA
 - hypervisor and hardware level. Close-source.
 - Agnostic on Guest OS inside the VM.
- SUSE HA
 - Inside Linux OS.
 - That said, Windows need Windows HA solution.
- Different Industries
 - We are Enterprise.
 - HADOOP HA (dot com)
 - OpenStack HA (paas)
 - OpenSAF (telecom)

History of HA in Linux OS

- 1990s, Heartbeat project. Simply two nodes.
- Early 2000s, Heartbeat 2.0 too complex.
 - Industry demands to split.
 - 1) one for cluster membership
 - 2) one for resource management
- Today, ClusterLabs.org
 - A completely different solution in early days,
 pacemaker + corosnc
 - While merged Heartbeat project.
 - 2015 HA Summit

Typical HA Problem - Split Brain

- Clustering
 - multiple nodes share the same resources.
- Split partitions run the same service
 - It just breaks data integrity !!!
- Two key concepts as the solution:
 - Fencing

Cluster doesn't accept any confusing state.

STONITH - "shoot the other node in the head".

- Quorum

It stands for "majority". No quorum, then no actions, no resource management, no fencing.

HA Hardware Components

- Multiple networks
 - A user network for end user access.
 - A dedicated network for cluster communication/heartbeat.
 - A dedicated storage network infrastructure.
- Network Bonding
 - aka. Link Aggregation
- Fencing/STONITH devices
 - remote "powerswitch"
- Shared storage
 - NAS(nfs/cifs), SAN(fc/iscsi)

Architectural Software Components

"clusterlabs.org"

- Corosync
- Pacemaker
- Resource Agents
- Fencing/STONITH Devices
- UI(crmsh and Hawk2)
- Booth for GEO Cluster

Outside of "clusterlabs.org"

- LVS: Layer 4, ip+port, kernel space.
- HAproxy: Layer 7/ HTTP, user space.
- Shared filesystem: OCFS2 / GFS2
- Block device replication:
 - DRBD, cLVM mirroring, cluster-md
- Shared storage:
 - SAN (FC / FCoE / iSCSI)
- Multipathing

Software Components in details

Corosync: messaging and membership

- Consensus algorithm
 - "Totem Single Ring Ordering and Membership protocol"
- Closed Process Group
 - Analogue "TCP/IP 3-way hand shaking"
 - Membership handling.
 - Message ordering.
- A quorum system
 - notifies apps when quorum is achieved or lost.
- In-memory object database
 - for Configuration engines and Service engines.
 - Shared-nothing cluster.

Pacemaker: the resources manager

- The brain of the cluster.
- Policy engine for decision making.
 - To start/stop resources on a node according to the score.
 - To monitor resources according to interval.
 - To restart resources if monitor fails.
 - To fence/STONITH a node if stop operation fails.

Shoot The Other Node In The Head

DON'T ANYBODY MOVE ...

- Data integrity does not tolerate any confusing state. Before migrating resources to another node in the cluster, the cluster must confirm the suspicious node really is down.
- STONITH is mandatory for *enterprise* Linux HA clusters.

Popular STONITH devices

- APC PDU
 - network based powerswitch
- Standard Protocols Integrated with Servers
 - Intel AMT, HP iLO, Dell DRAC, IBM IMM, IPMI Alliance
- Software libraries
 - to deal with KVM, Xen and VMware Vms.
- Software based
 - SBD (STONITH Block Device) to do self termination.
 - The last implicit option in the fencing topology.
- NOTE: Fencing devices can be chained.

Resources Agents (RAs)

- Write RA for your applications
- LSB shell scripts: start / stop / monitor
- More than hundred contributors in upstream github.

Cluster Filesystem

- · OCFS2 / GFS2
 - On the shared storage.
 - Multiple nodes concurrently access the same filesystem.

Cluster Block Device

DRBD

- network based raid1.
- high performance data replication over network.

cLVM2 + cmirrord

- Clustered lvm2 mirroring.
- Multiple nodes can manipulate volumes on the shared disk.
- clvmd distributes LVM metadata updates in the cluster.
- Data replication speed is way too slow.

Cluster md raid1

- multiple nodes use the shared disks as md-raid1.
- High performance raid1 solution in cluster.

Cluster Examples

NFS Server (High Available NAS)

Cluster Example in Diagram

HA iSCSI Server (Active/Passive)

Cluster Example in Diagram

Cluster FS - OCFS2 on shared disk

Cluster Example in Diagram

Future outlook

- Upstream activities
 - OpenStack: from the control plane into the compute domain.
 - Scalability of corosync/pacemaker
 - Docker adoption
 - "Zero" Downtime HA VM

- ...

Join us (all *open-source*)

- Play with Leap 42.1: http://www.opensuse.org
 Doc: https://www.suse.com/documentation/sle-ha-12/
- Report and Fix Bugs: http://bugzilla.opensuse.org
- Discussion: opensuse-ha@opensuse.org

- HA ClusterLabs: http://clusterlabs.org/
- General HA Users: users@clusterlabs.org

Demo + Q&A + Have fun

