

Multilingual Speech Processing: Context-Dependent Models

Jiacheng Yao, Tobias Pöppke | February 11, 2015

COGNITIVE SYSTEMS LA

- Context-independent model already trained and available
- Load context-independent model from file
- Calculate paths for the training audio data
- Initialize the context-dependent model with these paths
- Build the context-clustering tree

- Context-independent model already trained and available
- Load context-independent model from file
- Calculate paths for the training audio data
- Initialize the context-dependent model with these paths
- Build the context-clustering tree

- Context-independent model already trained and available
- Load context-independent model from file
- Calculate paths for the training audio data
- Initialize the context-dependent model with these paths
- Build the context-clustering tree

- Context-independent model already trained and available
- Load context-independent model from file
- Calculate paths for the training audio data
- Initialize the context-dependent model with these paths
- Build the context-clustering tree

- Context-independent model already trained and available
- Load context-independent model from file
- Calculate paths for the training audio data
- Initialize the context-dependent model with these paths
- Build the context-clustering tree

Initialization Parameters

Parameter	English 1	English 2	French
Nr. of Gaussians per Model	10	_	10
Clustering Context	1	_	2
Max. number of leaves	2000	_	2000
Min. number of samples	500	_	1000

Training

- Run iterations of training as in the context-independent case
- But only once for the complete context-dependent model
- Number of training iterations:
 - French: 5
 - English: 5

Training

- Run iterations of training as in the context-independent case
- But only once for the complete context-dependent model
- Number of training iterations:
 - French: 5
 - English: 5

Training

- Run iterations of training as in the context-independent case
- But only once for the complete context-dependent model
- Number of training iterations:
 - French: 5
 - English: 5

Decoding

- The decoding process was the same as with the context-independent model
- Average word error rates for English Team:
 - Development Set: 44%
 - Recorded Data: 84%

Decoding

- The decoding process was the same as with the context-independent model
- Average word error rates for English Team:
 - Development Set: 44%
 - Recorded Data: 84%

- Problem 1: Segmentation fault when starting to train the model
- Reason was that the models were not properly initialized
- Problem 2: No path could be found for decoding
- Cause is probably some error during the training

- Problem 1: Segmentation fault when starting to train the model
- Reason was that the models were not properly initialized
- Problem 2: No path could be found for decoding
- Cause is probably some error during the training

- Problem 1: Segmentation fault when starting to train the model
- Reason was that the models were not properly initialized
- Problem 2: No path could be found for decoding
- Cause is probably some error during the training

- Problem 1: Segmentation fault when starting to train the model
- Reason was that the models were not properly initialized
- Problem 2: No path could be found for decoding
- Cause is probably some error during the training

Summary

- It was interesting to train a real acoustic model
- Some problems occured because we didn't know what BioKIT was doing
- It would have been nice to implement some of the used algorithms

Summary

- It was interesting to train a real acoustic model
- Some problems occured because we didn't know what BioKIT was doing
- It would have been nice to implement some of the used algorithms

Summary

- It was interesting to train a real acoustic model
- Some problems occured because we didn't know what BioKIT was doing
- It would have been nice to implement some of the used algorithms

