# Excited State Dynamics using Libra and SHARC packages

Nathan Jansen

07/22/2022

Cyber Training Workshop 2022





#### Motivation

- LiAlH<sub>4</sub>
  - Common reducing reagent in organic synthesis
  - Converts ketones and esters into alcohols
- 2-Thiouracil
  - Modified nucleobase<sup>1</sup>
    - Gene editing and modification
    - Fluorescent marker
    - Anti-inflammatory drugs
    - Cytotoxic agents





#### Methods

- Libra Package<sup>2</sup>
  - TD-DFT
    - DZVP-MOLOPT-SR-GTH basis
    - PBE Functional
  - NBRA workflow
    - HST and NPI
    - FSSH, IDA, mSDM
- SHARC Package<sup>3</sup>
  - TD-DFT (ORCA)<sup>4</sup>
    - def2-svp basis
    - b3lyp functional
  - LVC
    - 400 trajectories @ 700 fs
    - 3 Singlets 2 Triplets



# LiAlH<sub>4</sub> NAC Distribution



#### LiAlH<sub>4</sub> Excited State Energy vs Time

a. HST b.





# LiAlH<sub>4</sub> NACs

HST







# LiAlH<sub>4</sub> Spectrum





## LiAlH<sub>4</sub> Decoherence



#### LiAlH<sub>4</sub> Dynamics Fits





#### 2-Thiouracil Populations





### Comparison to Literature





|    | S0 | S1   | S2  | T1   | T2  |
|----|----|------|-----|------|-----|
| S0 | 0  | 0    | 0   | 0    | 0   |
| S1 | 0  | 0    | 142 | -131 | -25 |
| S2 | 0  | -142 | 0   | 0    | -2  |
| T1 | 0  | 131  | 0   | 0    | -10 |
| T2 | 0  | 25   | 2   | 10   | 0   |

$$S2 \rightarrow S1 = 10.6 \pm 1.1 \text{ fs}$$

$$S1 \rightarrow T1 = 927.5 \pm 74.7 \text{ fs}$$

$$S1 \rightarrow T2 = 2716.7 \pm 259.3$$
 fs

$$T1 \rightarrow T2 = 1220.2 \pm 536.8 \text{ fs}$$

S. Mai, P. Marquetand, and L. González, Phys. Chem. Lett. 2016

#### 2-Thiouracil Spectrum







V. Vendrell-Criado, et al. Photochem. Photobiol. Sci., 2013



J. A. Sánchez-Rodríguez et al. Phys. Chem. Chem. Phys., 2017







## Acknowledgments

- Alexey Akimov
- SUNY-Buffalo
- Sebastian Mai
- Cyber Training Instructors
- Fellow classmates





#### References

- Akimov, A., *Journal of Computational Chemistry* **2016**, *37* (17), 1626–1649.
- Mai, S.; Marquetand, P.; González, L., Wiley Interdisciplinary Reviews: Computational Molecular Science **2018**, 8 (6), e1370.
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C., The Journal of Chemical Physics 2020, 152 (22), 224108.
- Mai, S.; Marquetand, P.; Gonzaíez, L., J. Phys. Chem. Lett 2016, 7, 56.
- Sánchez-Rodríguez, J. A.; Mohamadzade, A.; Mai, S.; Ashwood, B.; Pollum, M.; Marquetand, P.; González, L.; Crespo-Hernández, C. E.; Ullrich, S., *Physical Chemistry Chemical Physics* **2017**, *19* (30), 19756–19766.
- Vendrell-Criado, V.; Sáez, J. A.; Lhiaubet-Vallet, V.; Cuquerella, M. C.; Miranda, M. A., Photochemical & Photobiological Sciences 2013, 12 (8), 1460–1465