

Phystech@DataScience

Блок 2: линейные модели

Регуляризация

Классификация
Задача классификации
Логистическая регрессия
Градиентный спуск

Проблема: мультиколлинеарность

Мультиколлинеарность — наличие большого числа *линейно-зависимых* признаков.

Пример: среди признаков много таких, которые связаны с размером котика. Они все зависят друг от друга и несут *избыточную* информацию.

В модели линейной регрессии:

если для
$$\varepsilon=y-\widehat{y}$$
 матрица ковариаций $\Sigma=\sigma^2I_n$, то $D\widehat{\theta}=\sigma^2(X^TX)^{-1}$.

Если признаки мультиколлинеарны, то X^TX почти вырождена и дисперсия огромна.

Решение: регуляризация.

Ô

Ridge-регрессия

Задача МНК:

$$||Y - X\theta||_2 \to \min_{\theta}$$

Задача Ridge-регрессии:

$$||Y - X\theta||_2 + \lambda ||\theta||_2 \to \min_{\theta}, \lambda > 0$$

Ограничиваем коэффициенты, не позволяем им «разбрасываться».

Замечание. Предварительно необходимо

- ightharpoonup центрировать отклик $Y:=Y-\overline{Y}$ или не накладывать ограничение на коэффициент при константе;
- стандартизовать признаки вычесть среднее, поделить на корень из дисперсии.

Решение задачи

Решением задачи является

$$\widehat{\theta} = (X^T X + \lambda I_d)^{-1} X^T Y$$

За счет добавки λI_d матрица стала менее вырожденной.

Вопрос в бот: посмотрите на формулу и скажите, почему признаки ОБЯЗАТЕЛЬНО надо стандартизировать?

У них могут быть разные размерности и масштаб!

Свойства

- $\lambda = 0 \implies MHK; \lambda = \infty \implies \widehat{\theta} = 0;$
- ▶ При $\lambda \ge 0$ решение $\exists !;$
- $ightharpoonup \widehat{ heta}$ может быть найдёна *итеративными* методами;
- ▶ Пусть $E\varepsilon = 0$. Оценка смещенная $E\hat{\theta} = (X^TX + \lambda I_d)^{-1}X^TX\theta$;
- ▶ Пусть $D\varepsilon = \sigma^2 I_n$. Дисперсия уменьшилась: $D\hat{\theta} = \sigma^2 (X^T X + \lambda I_d)^{-1} X^T X (X^T X + \lambda I_d)^{-1}$

Lasso-регрессия

Задача МНК:

$$||Y - X\theta||_2 \to \min_{\theta}$$

Задача Lasso-регрессии:

$$||Y - X\theta||_2 + \lambda ||\theta||_1 \to \min_{\theta}, \lambda > 0,$$
$$||\theta||_1 = |\theta_1| + |\theta_2| + \dots + |\theta_d|.$$

Свойства

- Решается только итеративными методами;
- Lasso-регрессия зануляет коэффициенты с ростом λ , может использоваться для отбора признаков.

Регуляризация

Классификация
Задача классификации
Логистическая регрессия

Градиентный спуск

Ô

Классификация

 \mathscr{X} — пространство объектов,

 \mathscr{Y} — конечное множество классов.

Истинное правило классификации:

неизвестная функция $f: \mathscr{X} \to \mathscr{Y}$.

Пространство $\mathscr X$ разбивается на подпространства (decision regions) $\mathscr X_y = \{x \in \mathscr X \mid f(x) = y\}$, границы которых называются разделяющими поверхностями (decision surfaces).

Классификация

Часто $\mathscr{X} \subset \mathbb{R}^d$, в т.ч. могут быть *категориальные*.

Типы классификации

- 1. Двухклассовая.
- $\mathscr{Y}=\{0,1\}$ или $\mathscr{Y}=\{-1,1\}.$
- Многоклассовая.

$$\mathscr{Y}=\{1,...,K\}$$
 или $\mathscr{Y}=\{(1,0,...,0),(0,1,...,0),...,(0,0,...,1)\}.$

Задача классификации:

предложить оценку $\widehat{f}: \mathscr{X} \to \mathscr{Y}$ правила классификации на основе обуч. выборки $(x_1, Y_1), ..., (x_n, Y_n)$, где $x_i = (x_{i1}, ..., x_{id}) \in \mathscr{X}$, $Y_i \in \mathscr{Y}$, как можно точнее приближающую неизвестное правило классиф-ции.

Оценку правила классификации чаще будем называть моделью.

Вероятностная природа

Часто предполагается случайная принадлежность классу: функция f при повторении эксперимента может отнести один и тот же объект $x \in \mathscr{X}$ как одному классу, так и к другому.

 \implies имеет смысл предсказывать вероятность $P_x(Y = y)$ принадлежности объекта x каждому из классов.

Точечная оценка:
$$\underset{y \in \mathscr{Y}}{\operatorname{arg max}} P_x(Y = y)$$

Если классы неравнозначны: $\underset{y \in \mathscr{Y}}{\text{arg max}} [w_y \, \mathsf{P}_x (Y=y)],$ $w_y -$ приоритетность класса

Признак 1

Примеры:

- 1. $P(Y = 0 \mid X = x_2) = 0.95$, $P(Y = 1 \mid X = x_2) = 0.05$ Уверенное предсказание в пользу класса 0.
- 2. $P(Y = 0 \mid X = x_1) = 0.55$, $P(Y = 1 \mid X = x_1) = 0.45$ Модель не уверена в предсказании.

Ô

Линейные модели

 $y(x) = \theta^T x$ — линейная модель регрессии.

Линейная модель в классификации:

Разделяющая поверхность — линейная $\mathit{гиперплоскость}$ в пр-ве \mathscr{X} .

В многоклассовом случае — при дополнении до гиперплоскости.

Например, при $\mathscr{Y} = \{-1,1\}$ линейна модель $y(x) = \operatorname{sign}(\theta^T x)$.

Замечание

Исходное пр-во признаков может быть предварительно преобразовано с помощью нелинейных функций, в частности можно включить константный признак. В таком случае разделяющая поверхность лин. классификатора не будет линейной в исходном пространстве.

Регуляризация

Классификация

Задача классификации

Логистическая регрессия

Градиентный спуск

Логистическая регрессия

Пространство объектов $x \in \mathscr{X} \subset \mathbb{R}^d$.

Множество классов $\mathscr{Y} = \{0, 1\}.$

Класс объекта x имеет распределение $Bern(p(x)), p(x) \in [0,1].$

Предположение:

$$p_{\theta}(x) = \sigma(\theta^T x),$$

где $\sigma(z) = \frac{1}{1+e^{-z}}$ — логистическая сигмоида.

Ô

Логистическая регрессия

Разделяющая поверхность $\{p_{\theta}(x)=1/2\}=\{\theta^{T}x=0\}$ линейна, а значит логистическая регрессия является линейным классификатором.

Чем больше значение $\theta^T x$, тем более вероятен класс 1.

Свойства:

- 1. $\sigma(-z) = 1 \sigma(z)$. При $z = \theta^T x$ это вероятность класса 0;
- 2. Обратная функция $z(s) = \ln \frac{s}{1-s}$ **логит-функция**;
- 3. $\frac{d\sigma}{dz} = \sigma(z)(1 \sigma(z))$.

Обучение

Пусть дана обучающая выборка $(x_1, Y_1), ..., (x_n, Y_n)$, где $x_i = (x_{i1}, ..., x_{id}) \in \mathscr{X}$ и случайный класс $Y_i \sim Bern(p_{\theta}(x_i))$.

Функция правдоподобия:

$$L_Y(\theta) = \prod_{i=1}^n p_{\theta}(x_i)^{Y_i} (1 - p_{\theta}(x_i))^{1 - Y_i}$$

Что это за зверь? Вспомним формулу Бернулли: $P_n^k = C_n^k p^k (1-p)^{n-k}$ Пусть среди Y_i ровно k единиц. Если выборка уже получена, то индексы от 1 до n фиксированы, и C_n^k не нужно.

Функция правдободобия отражает вероятность получить такую реализацию!

Подробности уже этой весной, не пропустите!

Обучение

$$(x_1, Y_1), ..., (x_n, Y_n)$$
 – реализация обучающей выборки,

$$x_i = (x_{i1}, ..., x_{id}) \in \mathscr{X}$$

$$Y_i \sim Bern(p_{\theta}(x_i))$$
 – случайный класс.

Функция правдоподобия для полученных чисел:

$$L_Y(\theta) = \prod_{i=1}^n p_{\theta}(x_i)^{Y_i} (1 - p_{\theta}(x_i))^{1 - Y_i}$$

Фиксируем какое-нибудь θ .

Чем больше $L_Y(\theta)$, тем «правдободобнее» это самое θ .

Будем максимизировать $L_Y(\theta)$ численно с помощью *градиентного* подъема.

Регуляризация

Классификация
Задача классификации
Логистическая регрессия

Градиентный спуск

Градиентный спуск

Пусть задача оптимизации имеет вид

$$f(\theta) \to \min_{\theta}$$
,

где $f(\theta)$ — дифференцируемая функция;

Итеративные методы оптимизации последовательно приближают текущее значение параметра θ к оптимальному θ^* .

Наблюдение (матан 1 курс): В малой окрестности точки направление скорейшего роста функции — ее градиент $\nabla_{\theta}f(\theta)$, направление скорейшего убывания — антиградиент $-\nabla_{\theta}f(\theta)$.

Градиентный спуск

Итерация:

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} f(\theta_t).$$

Антиградиент вычитается с заданным малым коэффициентом η , который часто называют коэффициентом скорости обучения или learning rate. Подбор η осуществляется пользователем.

Критерии останова:

- 1. Лимит на число итераций.
- 2. Early stopping. Не происходит уменьшения $f(\theta)$ в течение какого-то зафиксированного числа шагов.
- 3. Ограничение на норму невязки. Норма невязки: $\|f(\theta_{t+1}) - f(\theta_t)\|$ становится ниже порога.

Максимизация $\ell_Y(\theta)$

$$\ell_Y(\theta) = \log L_Y(\theta) = \sum_{i=1}^n \left[Y_i \log \sigma(\theta^T x_i) + (1 - Y_i) \log \left(1 - \sigma(\theta^T x_i) \right) \right]$$

Ее производная равна

$$\frac{\partial \ell_{Y}(\theta)}{\partial \theta} = \sum_{i=1}^{n} \left[Y_{i} - \sigma(\theta^{T} x_{i}) \right] x_{i}.$$

Получаем формулу градиентного подъема:

$$\theta_{t+1} = \theta_t + \eta \underbrace{\sum_{i=1}^{n} \left[Y_i - \sigma(\theta_t^T x_i) \right] x_i}_{\nabla_{\theta} f(\theta_t)}$$

Максимизация $\ell_Y(\theta)$

Можно также проводить **стохастический** градиентный подъем (спуск), выбирая случайный индекс i:

$$\theta_{t+1} = \theta_t + \eta \left[Y_i - \sigma(\theta_t^T x_i) \right] x_i$$

Вектор параметров сдвигается вдоль направления выбранного объекта x_i настолько, насколько модель ошибается на этом объекте.

Обозначения:

- ▶ Градиентный спуск Gradient descent GD;
- Стохастический градиентный спуск Stochastic GD SGD.

Компромисс между ними – Batch gradient descent (BGD), когда градиент на очередном шаге считается по *подмножеству* выборки (т.е. по батчу).

Переобучение модели

Пусть

- Классы линейно разделимы;
- Среди признаков есть константа;
- $m{ heta}$: $\{ m{ heta}^T x = 0 \}$ в точности разделяет два класса.

Тогда $\forall c>0 \; \{c\theta^Tx=0\}$ в точности разделяет два класса.

Ho
$$L_Y(c\theta) = \prod_{i=1}^n \sigma(c\theta^T x_i)^{Y_i} \left(1 - \sigma(c\theta^T x_i)\right)^{1-Y_i} \to 1$$
 при $c \to \infty$.

При конечном θ максимум функции правдоподобия не достигается.

Проблемы

- Предсказания вероятностей классов близки к 0 или 1, что не информативно при решении реальных задач.
- Может быть выбрана произвольная гиперплоскость, в точности разделяющая два класса. При разных запусках один и тот же объект между классами может относится с вероятностью 1 как к одному классу, так и к другому.

В качестве решения проблемы обычно используют регуляризацию.

