Programa de Pós-graduação em Engenharia Mecatrônica - Universidade de Brasília Disciplina: Sistemas Bioinspirados Aplicados a Engenharia (período 2017.2) Professores: Daniel M. Muñoz Arboleda; Carlos H. Llanos, e-mail: damuz@unb.br; llanos@unb.br Monitor: Carlos Eduardo da Silva Santos, e-mail: carlosedu@ifto.edu.br

Terceira Lista de Exercícios Aplicações de Algoritmos Bioinspirados Data de entrega (17 de Novembro de 2017)

Nota: A lista é individual. Usar template LaTeX da IEEE conference. Enviar via moodle os arquivos Matlab e o relatório em PDF.

Primeira Questão: Escolha uma das seguintes aplicações vistas em sala de aula. Use as implementações dos algoritmos PSO, O-PSO, DE e O-DE para resolver a aplicação selecionada.

Escolha o tamanho de enxame. A dimensionalidade do problema é determinada pela aplicação. Configure os algoritmos conforme explicado na primeira e segunda listas de exercícios. Execute a aplicação 32 vezes (32 experimentos). Apresente os dados estatísticos na seguinte tabela e para o melhor resultado apresente a solução do problema de otimização (posição do ponto mínimo encontrado). Observe-se que dos 32 experimentos, aquele ponto que apresente o valor mínimo da função custo representa a melhor solução do problema. Apresente também as curvas de convergência.

Tabela 1. Resultados de convergência para a função (32 runs).

Algoritmo		Média	Mediana	Mínimo	Desvio Padrão	goals/32
S= N=	PSO					
	O-PSO					
	DE					
	O-DE					

Segunda Questão: Realize as comparações de desempenho entre os algoritmos usando testes não paramétricos. Para isto aplique a seguinte metodologia:

- A) Verifique se os resultados de cada algoritmo seguem uma distribuição normal usando o teste de Kolmogorov-Smirnov.
- B) Aplique o teste de Kruskal-Wallis para determinar se os resultados dos algoritmos seguem distribuições de probabilidade com medianas iguais.
- C) Aplique o teste de Wilconxon entre o algoritmo com melhor mediana e os outros algoritmos, verificando se os mesmos seguem distribuições de probabilidade diferentes.
- D) É possível afirmar qual é o melhor algoritmo? Apresente conclusões.
- E) Para todos os testes use um nível de confiança de 95%.

Bom trabalho!