Automorphismes de \mathfrak{S}_n

Leçons: 105, 108

Définition 1

Un automorphisme de \mathfrak{S}_n de la forme $\varphi_{\sigma}: \tau \mapsto \sigma \tau \sigma^{-1}$ est appelé automorphisme intérieur. Le groupe des automorphismes intérieurs est noté $\mathrm{Int}(\mathfrak{S}_n)$.

Théorème 2

Si
$$n \neq 6$$
, Aut(\mathfrak{S}_n) = Int(\mathfrak{S}_n).

On va commencer par prouver la proposition suivante :

Proposition 3

Soit $\varphi \in \operatorname{Aut}(\mathfrak{S}_n)$. Si φ envoie les transpositions sur les transpositions, alors $\varphi \in \operatorname{Int}(\mathfrak{S}_n)$.

Démonstration. Soit φ un tel automorphisme. On sait que \mathfrak{S}_n est engendré par les transpositions $\tau_i = (1\,i)$ pour $i \ge 2$. Comme les τ_i ne commutent pas deux à deux, il en va de même des $\varphi(\tau_i)$ donc les $\varphi(\tau_i)$ ne sont pas à supports deux à deux disjoints.

Posons $\varphi(\tau_2) = (\alpha_1 \, \alpha_2)$, alors, par exemple, $\varphi(\tau_3) = (\alpha_1 \, \alpha_3)$. Comme pour i > 3, $\varphi(\tau_i)$ ne commute ni avec $\varphi(\tau_2)$, ni avec $\varphi(\tau_3)$, $\varphi(\tau_i)$ est de la forme $(\alpha_1 \alpha_i)$. De plus, les α_i sont deux à deux distincts donc $\{\alpha_1, \ldots, \alpha_n\} = \{1, \ldots, n\}$. On a ainsi défini une permutation $\alpha \in \mathfrak{S}_n$. De plus, $\forall i \geq 2$, $\alpha \tau_i \alpha^{-1} = (\alpha_1 \, \alpha_i) = \varphi(\tau_i)$, donc φ est intérieur.

Démonstration (du théorème). L'idée générale est de considérer l'action par conjugaison de \mathfrak{S}_n sur lui-même. On note c(s) le centralisateur d'un élément s.

Soit $\varphi \in \operatorname{Aut}(\mathfrak{S}_n)$. Pour $n \geq 2$, $D(\mathfrak{S}_n) = \mathfrak{A}_n^{-1}$ donc comme φ préserve les commutateurs, il envoie \mathfrak{A}_n sur lui-même. Ainsi, l'image d'une transposition par φ est un élément d'ordre 2 donc un produit d'un nombre d'un impair k de transpositions disjointes. Si n < 6, \mathfrak{A}_n ne contient pas de triples transpositions donc k = 1 ce qui conclut. Supposons à présent n > 6.

Soit $\tau = (a b)$. Alors

$$s \in c(\tau) \Leftrightarrow s\tau s^{-1} = \tau \Leftrightarrow (s(a)s(b)) = (ab) \Leftrightarrow s(F) = F$$

où $F=E\setminus\{a,b\}$ et $E=[\![1,n]\!]$. Cela fournit un morphisme surjectif $\ r:\ c(\tau)\ \longrightarrow\ \mathfrak{S}_{n-2}$ $s\ \longmapsto\ s_{|F}$

de noyau $\{1, \tau\}$ donc $\mathfrak{S}_{n-2} \simeq c(\tau)/(\mathbb{Z}/2\mathbb{Z})$.

Supposons que $\varphi(\tau) = \tau'$ soit un produit d'un nombre impair $k \geq 3$ de transpositions disjointes $\tau' = (a_1 a_2) \dots (a_{2k-1} a_{2k})$. On note $\tau_i = (a_{2i-1} a_2 i)$. Les τ_i commutent entre eux deux à deux donc pour tout $i, \ \tau_i \in c(\tau)$. De plus, si $N = \langle \tau_1, \dots, \tau_k \rangle$, N est un sousgroupe distingué de $c(\tau')$: si $s \in c(\tau')$, $s\tau's^{-1} = (s\tau_1 s^{-1}) \dots (s\tau_k s^{-1})$ donc par unicité de la décomposition en cycles à supports disjoints, $\forall i, \exists 1 \leq j \leq k : s\tau_i s^{-1} = \tau_j$. Donc $c(\tau')$ a un sous-groupe distingué N isomorphe à $(\mathbb{Z}/2\mathbb{Z})^k$.

Par ailleurs $c(\tau)$ est isomorphe via φ à $c(\tau')$ donc à $c(\tau)$ de sorte qu'en composant avec r, on obtient un morphisme surjectif $f: c(\tau') \twoheadrightarrow \mathfrak{S}_{n-2}$ de noyau $\{1, \tau'\}$.

^{1.} En effet, pour $n \ge 3$, \mathfrak{A}_n est engendré par les 3-cycles et ceux-ci sont deux à deux conjugués, donc si $\sigma = (abc)$ est un 3-cycle, $\sigma^2 = (acb)$ en est aussi un donc il existe $\tau \in \mathfrak{A}_n$ tel que $\sigma^2 = \tau \sigma \tau^{-1}$ donc σ est un commutateur

Par théorème d'isomorphisme, $f(N) \simeq N/(\ker(f) \cap N)$. Comme $\tau' \in N$, $\ker f \subset N$ et $f(N) \simeq (\mathbb{Z}/2\mathbb{Z})^k/(\mathbb{Z}/2\mathbb{Z}) \simeq (\mathbb{Z}/2\mathbb{Z})^{k-1}$. Or, comme $n-2 \geqslant 5$, les seuls sous-groupes distingués de \mathfrak{S}_{n-2} sont \mathfrak{A}_{n-2} , {id} et lui-même : par un argument de cardinalité, on conclut à une absurdité. Donc k=1 et φ est intérieur.

Remarque. • La preuve peut également se faire par dénombrement en calculant le cardinal du centralisateur de s produit de $k_1 + \cdots + k_n$ cycles disjoints parmi lesquels k_1 cycles d'ordre $1, \ldots, k_n$ d'ordre n, en supposant que $n = k_1 + 2k_2 + \cdots + nk_n$.

• Comme on utilise le fait que \mathfrak{A}_n est le seul sous-groupe distingué non trivial de \mathfrak{S}_n pour $n \ge 5$, il faut aussi savoir le prouver!

Référence: Daniel PERRIN (1996). Cours d'algèbre. Ellipses, pp. 31-32

Gabriel LEPETIT

^{2.} Ici, il me semble qu'il y a une imprécision dans le Perrin qui affirme que le cas $f(N) \simeq (\mathbb{Z}/2\mathbb{Z})^k$ n'est pas exclu.