### **GROUP 82**

## Esha Kolte(180020031) & Jyotirmoy Roy(180020044)

#### Introduction

The peptides that distinguish grade I meningioma from higher grades are still not properly discovered. In other diseases, normal statistical methods like fold change criteria and p values help in finding the differentially expressed proteins for that disease. However in meningioma samples, the variations in the samples are so much that normal statistical tests do not give reliable results. So we used unsupervised clustering in the form of PCA to find the topmost features and then used these topmost peptides in designing the ML model to separate a severe patient from a mild patient.

#### **Features Used:**

matplotlib,pandas,tensorflow,sklearn,seaborn

## **Implementation Details**

#### For SM\_MV dataset:

Loading of the Dataset

```
import pandas as pd
  import numpy as np
  from sklearn.preprocessing import StandardScaler
  import matplotlib.pyplot as plt
  from matplotlib.cm import register_cmap
  from scipy import stats
  from sklearn.decomposition import PCA
  import seaborn
] from google.colab import drive
  drive.mount('/content/drive')
  Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
 path = "drive/My Drive/SM_MV_.csv"
  df1 = pd.read_csv(path)
] df1.head(3)
      Sample LFQ_Int_CP35491 LFQ_Int_CP10882 LFQ_Int_CN06567 LFQ_Int_CP16894 LFQ_Int_CP22324 LFQ_Int_CH10571 LFQ_Int_CN30310
                    High Grade
       Label
                                     High Grade
                                                      High Grade
                                                                       High Grade
                                                                                        High Grade
                                                                                                         High Grade
                                                                                                                          High Grade
   1 000170
                      1002400
                                     264920000
                                                       77973000
                                                                        53329000
                                                                                         35962000
                                                                                                          29680000
                                                                                                                           27150000
   2 000203
                     19582000
                                     277510000
                                                       70955000
                                                                        44511000
                                                                                         46226000
                                                                                                          90544000
                                                                                                                           49622000
```

### Scaling of Dataset

[29] df\_robust = pd.DataFrame(StandardScaler().fit\_transform(df1), columns=df1.columns)
 df\_robust.head(3)

| Sample | 000170    | 000203    | 000233    | 000264    | 000299    | 014773    | 014818    | 015143    | 015144    | 015145    | 015173    | 015230    | 043143    |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0      | -0.897577 | -0.638089 | -0.918204 | -0.759059 | -0.993980 | -0.936530 | -0.557747 | -0.920684 | -1.180337 | -0.833066 | -0.770158 | -0.619115 | -0.716727 |
| 1      | 3.611132  | 2.980736  | -0.698088 | 0.101923  | 1.098640  | 2.444960  | 1.515920  | 2.173013  | 2.018392  | 2.415767  | 1.681002  | 3.690813  | 2.838743  |
| 2      | 0.417371  | 0.082693  | 0.119870  | 0.715721  | 1.200521  | 1.223655  | 1.067382  | 0.121267  | 1.167368  | 0.434553  | 0.228584  | -0.245229 | 0.103807  |

3 rows × 2797 columns

## Principal Component Analysis

#### Covariance matrix

```
[[ 1.05
              0.90736153 0.2911117 ... 0.59821483
                                                     0.01100223
 -0.07060035]
[ 0.90736153 1.05
                          0.47043016 ... 0.62413063 -0.03268425
 -0.09215782]
 0.2911117
              0.47043016 1.05
                                     ... 0.5934488
                                                     0.05320153
 -0.16789642
 0.59821483 0.62413063
                          0.5934488
                                         1.05
                                                    -0.17401709
 -0.27470341]
 0.01100223 -0.03268425 0.05320153 ... -0.17401709
                                                     1.05
  0.94057355]
 [-0.07060035 -0.09215782 -0.16789642 ... -0.27470341 0.94057355
  1.05
            11
```

### Eigenvectors

```
Eigenvectors
[[ 2.36817545e-02+0.00000000e+00j 1.59173650e-02+0.00000000e+00j
  -1.14564273e-02+0.00000000e+00j ... 4.50371482e-03-3.46751650e-03j
  5.47342212e-03-1.11075501e-05j 5.47342212e-03+1.11075501e-05j
 [ 2.49499986e-02+0.00000000e+00j 3.63859228e-03+0.00000000e+00j
  -1.79440398e-03+0.00000000e+00j ... 1.97050816e-04-3.02417497e-05j
  1.55178288e-04-7.56603169e-05j 1.55178288e-04+7.56603169e-05j]
 [ 1.57833868e-02+0.00000000e+00j -3.40909363e-02+0.00000000e+00j
  1.72288496e-02+0.00000000e+00j ... -8.12826805e-05-2.76845899e-04j
  -3.90688888e-04-1.47802460e-04j -3.90688888e-04+1.47802460e-04j]
 [ 1.82648009e-02+0.00000000e+00j 1.05128091e-03+0.00000000e+00j
  -2.11753707e-02+0.00000000e+00j ... 3.20769323e-03+2.32214580e-02j
  1.52920975e-02-4.05207716e-03j 1.52920975e-02+4.05207716e-03j]
 [ 2.05903348e-03+0.00000000e+00j 2.91035906e-02+0.000000000e+00j
  5.58163862e-02+0.00000000e+00j ... -9.88852053e-03+1.06821345e-02j
   1.55627716e-03-4.28813673e-03j 1.55627716e-03+4.28813673e-03j]
 [-1.72485960e-03+0.00000000e+00j 4.31685081e-02+0.00000000e+00j
  4.88025946e-02+0.00000000e+00j ... 2.42930450e-02+2.51401986e-02j
  4.76628119e-02-1.97499234e-02j 4.76628119e-02+1.97499234e-02j]]
```

## Eigenvalues

#### Eigenvalues

| 0    | 1.415313e+03+0.000000e+00j |
|------|----------------------------|
| 1    | 2.397867e+02+0.000000e+00j |
| 2    | 2.159604e+02+0.000000e+00j |
| 3    | 1.810217e+02+0.000000e+00j |
| 4    | 1.321263e+02+0.000000e+00j |
|      |                            |
| 2792 | 6.799076e-17+0.000000e+00j |
| 2793 | 2.444043e-16+9.906640e-17j |
| 2794 | 2.444043e-16-9.906640e-17j |
| 2795 | 4.656300e-18+2.053894e-16j |
| 2796 | 4.656300e-18-2.053894e-16j |

2797 rows × 1 columns

# Principal Component Analysis

```
pca = PCA(n components=2)
pca.fit transform(df robust)
array([[-2.90640108e+01, -1.85214723e+00],
       [ 9.39183908e+01, 4.37723650e+01],
       [ 1.82420067e+01, -1.04072630e+01],
       [ 7.58310742e+00, -4.24222764e+00],
       [-9.57029076e+00, -2.33869242e+00],
       [-5.79625688e+00, -2.64628453e+00],
       [-1.68723236e+01, -3.04415479e+00],
       [-2.20448330e+01, -5.51630617e-01],
       [-2.74253371e+01, 4.01174959e+01],
       [-2.06657324e+01, -9.81147838e-01],
       [ 1.83237319e+01, -8.89992590e+00],
       [-3.73777171e+01, 1.99914913e+00],
       [-3.99414887e+01, 5.58365210e-01],
       [-2.77796041e+01, 3.64157526e-02],
       [-3.31136443e+01, -1.64713903e-02],
       [ 8.68338280e+01, -2.90476898e+01],
       [-2.02410130e+01, 5.65226193e-01],
       [ 5.40452309e+01, -8.69603352e-01],
       [ 5.46148735e+00, -7.98761778e+00],
       [-2.89605379e+00, -3.50585711e+00],
       [ 8.38052227e+00, -1.06583039e+01]])
```

Plot of cumulative explained variance vs number of components

```
pca = PCA(n_components=0.9).fit(X_std)
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('no of components')
plt.ylabel('cumulative explained variance')
plt.show()
```



```
pca.n_components_
```

12

Features in the order of their importance

|        | Sum      |
|--------|----------|
| Sample |          |
| O43175 | 0.330887 |
| P09471 | 0.329201 |
| Q5THK1 | 0.327736 |
| Q86UU1 | 0.326203 |
| P60201 | 0.315361 |
|        |          |
| O14683 | 0.237077 |
| Q13976 | 0.236923 |
| P00966 | 0.236838 |
| O75122 | 0.236779 |
| Q14161 | 0.236706 |

## 2D PCA Scatter Plot

300 rows × 1 columns





## For DB\_MV dataset:

#### **Loading of Dataset**



```
[ ] df_robust = pd.DataFrame(scaler.fit_transform(df1), columns=df1.columns)
    df robust.head(3)
    Sample
             E9PAV3
                      000170 000231 000232
                                               000264
                                                       000299
                                                                000410
                                                                         000429
                                                                                        1.017513
            0.423966 \quad 1.270458 \quad 1.671208 \quad 1.288838 \quad 0.386745 \quad 1.441948 \quad 10.597874 \quad 2.540299 \quad 1.717557
                                                                                                 1.553079
                                                                                                          1.581909
           -0.803971 -1.083556 0.302380 2.170666 -0.614010 0.585462
                                                              -0.333148 -0.094388 -0.366166 -0.319752
           0.000000
```

## **Principal Component Analysis**

#### Covariance matrix

```
[[1.04166667 0.80544836 0.60631416 ... 0.47576788 0.6711079 0.57232503]
[0.80544836 1.04166667 0.54434854 ... 0.16517416 0.67518013 0.29013842]
[0.60631416 0.54434854 1.04166667 ... 0.23606174 0.8207803 0.6519101 ]
...
[0.47576788 0.16517416 0.23606174 ... 1.04166667 0.46464102 0.14195845]
[0.6711079 0.67518013 0.8207803 ... 0.46464102 1.04166667 0.42230647]
[0.57232503 0.29013842 0.6519101 ... 0.14195845 0.42230647 1.04166667]]
```

#### Eigenvectors

```
Eigenvectors
[ 2.36911945e-02+0.j
                              -5.14638372e-03+0.j
                              ... -1.43144597e-02+0.00159898j
   3.14410817e-02+0.j
  -1.43144597e-02-0.00159898j
                              1.31431056e-02+0.j
 2.16919239e-02+0.j
                               1.26867676e-02+0.j
                              ... -5.66399342e-04-0.00026668i
   1.40846847e-02+0.j
  -5.66399342e-04+0.00026668j
                              3.74968565e-04+0.j
 [ 2.70407587e-02+0.j
                               1.68382977e-02+0.j
   5.82707306e-03+0.j
                                   3.45746443e-04-0.00062978j
   3.45746443e-04+0.00062978j -6.69889938e-04+0.j
 [ 1.73993030e-02+0.j
                              -4.40323446e-02+0.j
  -1.34476023e-03+0.j
                              ... 8.18504560e-05+0.00415748j
  8.18504560e-05-0.00415748j
                              2.14053820e-02+0.j
 2.89088532e-02+0.j
                               3.03204255e-03+0.j
  -8.64988533e-03+0.j
                                   1.95802319e-02+0.00283252j
   1.95802319e-02-0.00283252j -2.73359155e-02+0.j
 [ 1.64707707e-02+0.j
                               7.27793538e-03+0.j
   2.54563282e-02+0.j
                                   5.84377718e-03+0.00218779j
   5.84377718e-03-0.00218779j
                               2.53742504e-03+0.j
```

#### Eigenvalues

|                       | Peptides | Eigen_values |  |  |  |
|-----------------------|----------|--------------|--|--|--|
| 0                     | E9PAV3   | 1.046284e+03 |  |  |  |
| 1                     | O00170   | 3.414690e+02 |  |  |  |
| 2                     | O00231   | 1.535777e+02 |  |  |  |
| 3                     | O00232   | 1.389698e+02 |  |  |  |
| 4                     | O00264   | 1.311891e+02 |  |  |  |
|                       |          |              |  |  |  |
| 2404                  | Q9UL45   | 1.663060e-16 |  |  |  |
| 2405                  | Q9UNF1   | 1.663060e-16 |  |  |  |
| 2406                  | Q9UPA5   | 7.884231e-17 |  |  |  |
| 2407                  | Q9Y512   | 7.884231e-17 |  |  |  |
| 2408                  | Q9Y657   | 1.861487e-16 |  |  |  |
| 2400 rows × 2 columns |          |              |  |  |  |

2409 rows × 2 columns

#### **Principal Component Analysis**

```
pca = PCA(n components=2)
pca.fit transform(df robust)
array([[-4.35292582e+00, -8.32087986e+01],
       [-9.87338124e+01, -2.63247033e+01],
       [-2.95021874e+01, 2.93936901e+02],
       [-1.34764314e+02, -1.73162827e+01],
       [-1.41751076e+02, -9.57427669e+00],
       [-1.41361666e+02, -6.56291916e+00],
       [-1.38486819e+02, 8.48283752e+00],
       [-1.41937316e+02, -6.03470678e+00],
       [-1.44860476e+02, -9.74378774e+00],
        3.02996470e+03, -6.05360429e+00],
       [-1.39704098e+02, -8.56891511e+00],
       [-1.38045166e+02, -1.46390953e+01],
       [-1.38854407e+02, -4.06979716e+00],
       [-1.18036074e+02, -1.79300401e+01],
       [-1.46253148e+02, -5.20707957e+00],
       [-1.36510820e+02, -2.07434301e+00],
       [-1.41276548e+02, -1.20124507e+01],
       [-1.40265336e+02, -1.02425150e+01],
       [-1.07177625e+02, -1.85550207e+01],
       [-1.42435696e+02, -8.37660741e+00],
       [-1.43240326e+02, -8.40760854e+00],
       [-1.40226403e+02, -9.53447716e+00],
       [-1.40712886e+02, -1.11047331e+01],
       [-1.45829436e+02, -4.34534587e+00],
       [-1.35646142e+02, -2.53263027e+00]])
```

Plot of cumulative explained variance vs number of components

```
pca = PCA(n_components=0.9).fit(X_std)
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('no of components')
plt.ylabel('cumulative explained variance')
plt.show()
```



```
pca.n_components_
```

13

Features in the relative order of their importance

Sum

| Sample                     |                      |
|----------------------------|----------------------|
| P00915                     | 0.370568             |
| P11277                     | 0.369063             |
| P68871                     | 0.360195             |
| P35523                     | 0.356413             |
| P02042                     | 0.355986             |
|                            |                      |
|                            |                      |
| Q9BTT0                     | 0.268464             |
|                            | 0.268464<br>0.268406 |
| Q9BTT0                     |                      |
| Q9BTT0<br>O15127           | 0.268406             |
| Q9BTT0<br>O15127<br>Q13542 | 0.268406<br>0.268306 |

300 rows × 1 columns

## 2D PCA Scatter Plot



## 3D PCA Scatter Plot





### Top 40 important features on which Random Forest algorithm was applied

### **Random Forest Algorithm on Combined Dataset**

### **Loading of Dataset**

```
import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn
from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
path = "drive/My Drive/CombinedInput.xlsx"
 df = pd.read_excel(path)
df.head(3)
                              Unnamed:
                                                                                                               A0A0B4J1X5
                                                                                                                                                                                                                                     000592
                                                                                                                                                                                                                                                                                                                     015438
                                                                                                                                                                                                                                                                                                                                                                                                       075884
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       095816
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       P00747
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         P00966
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         P01861
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         P02652
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           P02671
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           P02675
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           P02679
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             P02730
                                                                                                                                      0.482161 \quad 0.473002 \quad 0.509935 \quad 0.545214 \quad 0.535377 \quad 0.507855 \quad 0.62768 \quad 0.62768 \quad 0.572704 \quad 0.622162 \quad 0.646808 \quad 0.630159 \quad 0.551593 \quad 0.646808 \quad 
                                                                                                                                        0.611093 \quad 0.495021 \quad 0.611706 \quad 0.464316 \quad 0.585244 \quad 0.585918 \quad 0.557084 \quad 0.703404 \quad 0.624437 \quad 0.724484 \quad 0.753363 \quad 0.746158 \quad 0.619233 \quad 0.746158 
                                                                                                                                      0.544422 \quad 0.508639 \quad 0.699819 \quad 0.467568 \quad 0.505753 \quad 0.667078 \quad 0.624651 \quad 0.662358 \quad 0.723317 \quad 0.772431 \quad 0.778523 \quad 0.775723 \quad 0.738656
```

#### Random Forest Classifier

### Classification Report with accuracy

| Classificatio |           |        | <i>c</i> . |         |
|---------------|-----------|--------|------------|---------|
|               | precision | recall | f1-score   | support |
| 0             | 0.58      | 0.88   | 0.70       | 8       |
| 1             | 0.50      | 0.17   | 0.25       | 6       |
| accuracy      |           |        | 0.57       | 14      |
| macro avg     | 0.54      | 0.52   | 0.48       | 14      |
| weighted avg  | 0.55      | 0.57   | 0.51       | 14      |

Accuracy: 0.5714285714285714

#### Metrics for Random Forest model evaluation

```
from sklearn.metrics import accuracy_score
scores_classification = accuracy_score(y_test, y_pred)
print(scores_classification)
```

#### 0.5714285714285714

```
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
```

```
[[7 1]
[5 1]]
```

```
from sklearn.metrics import mean_squared_error
from math import sqrt
train_preds = classifier.predict(X_train)
mse = mean_squared_error(y_train, train_preds)
rmse = sqrt(mse)
rmse
```

#### 0.1767766952966369

```
test_preds = classifier.predict(X_test)
mse = mean_squared_error(y_test, test_preds)
rmse = sqrt(mse)
rmse
```

#### 0.6546536707079771

## **KNN Algorithm on Combined Dataset**

#### Model and its metrics

```
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=3)

print(classifier.score(X_test, y_test))
```

0.35714285714285715

```
scores_classification = accuracy_score(y_test, y_pred)
print(scores_classification)
```

0.6

```
cm = confusion_matrix(y_test, y_pred)
print(cm)
```

[[6 0] [4 0]]

```
train_preds = classifier.predict(X_train)
mse = mean_squared_error(y_train, train_preds)
rmse = sqrt(mse)
rmse
```

0.34860834438919813

```
test_preds = classifier.predict(X_test)
mse = mean_squared_error(y_test, test_preds)
rmse = sqrt(mse)
rmse
```

0.6107502542086028



# Heatmap



# Boxplot for High Grade Vs Low Grade for Peptide O00529:



1:High Grade 2:Low Grade

### **Results:**

- •40 important peptides were identified which were common across the datasets using the concept of PCA and eigenvectors
- •These features were used to train Random forest and KNN model to classify the grade of brain tumor correctly.
- •In both cases an accuracy of 57.14% was obtained.
- •Although the results aren't satisfactory, this was a marked improvement from the traditional statistical analysis (using pvalue and fold change)
- •The number of important common peptides identified **increased by 4 folds** and accuracy of Machine learning models using these
  features **increased from 35% to 57.14%**