

Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian 2016

Petunjuk Teknis

Budidaya Padi Jajar Legowo Super

PENGANTAR

Upaya untuk mewujudkan kedaulatan pangan merupakan komitmen pemerintah yang tiada henti dilakukan melalui peningkatan produksi padi. Strategi peningkatan produksi nasional saat ini dan ke depan ditempuh melalui peningkatan produktivitas (intensifikasi) dan perluasan areal tanam, baik melalui peningkatan Indek Pertanaman (IP) maupun perluasan lahan baku sawah. Upaya tersebut optimis dapat direalisasikan karena tersedianya berbagai inovasi dan teknologi hasil penelitian, terutama yang dihasilkan oleh Badan Penelitian dan Pengembangan Pertanian (Balitbangtan), namun teknologi tersebut baru sebagian yang diterapkan oleh petani.

Saat ini produktivitas padi nasional sudah mencapai angka 5,28 ton/ha. Kementerian Pertanian pada tahun 2016 mentargetkan produksi padi nasional sebesar 76,226 juta ton. Aspek yang menjadi perhatian dalam peningkatan produksi padi tersebut adalah peningkatan efisiensi dan pelestarian lingkungan karena berkaitan dengan daya saing produksi.

Belajar dari pengalaman pengembangan inovasi PTT padi sawah, maka peningkatan produksi padi ke depan diupayakan melalui pengembangan Teknologi Jajar Legowo Super yang diimplementasikan secara terpadu.

Petunjuk Teknis Budidaya Padi Jajar Legowo Super

Petunjuk teknis Teknologi Jajar Legowo Super ini disusun sebagai acuan bagi para pihak yang akan menerapkan teknologi tersebut. Diharapkan petunjuk teknis ini dapat bermanfaat dan kepada semua pihak yang telah menyumbangkan pemikiran dalam penyusunan petunjuk teknis ini disampaikan penghargaan dan terima kasih.

Jakarta, April 2016 Kepala Badan,

Dr. Ir. Muhammad Syakir, MS

DAFTAR ISI

	aman
PENGANTAR	iii
DAFTAR ISI	V
DAFTAR TABEL	vii
DAFTAR GAMBAR	viii
RINGKASAN	ix
PENDAHULUAN	1
TEKNOLOGI JAJAR LEGOWO SUPER	4
Pengertian	4
Komponen Teknologi dan Teknik Budidaya	5
Varietas Unggul dan Benih Bermutu	6
Aplikasi Pupuk Hayati	7
Pesemaian	8
Penyiapan Lahan	10
Aplikasi Pupuk Organik	12
Aplikasi Biodekomposer	12
Tanam	13
Penyulaman	16
Pengairan	16
Penyiangan	17
Pemupukan Anorganik	18
Pengendalian Hama dan Penyakit Terpadu	20
Panen dan Pascapanen	26

Petunjuk Teknis Budidaya Padi Jajar Legowo Super

KEUNGGULAN TEKNOLOGI JAJAR	
LEGOWO SUPER	29
ANALISIS USAHATANI	31
PENUTUP	32
BAHAN BACAAN	34
LAMPIRAN 1. Analisis Usahatani	37
LAMPIRAN 2. Cara Mengubin	39

DAFTAR TABEL

Tabel 1.	Kabupaten sentra produksi padi di 22 provinsi yang mempunyai potensi status hara tanah P dan K sedang sampai tinggi untuk pemupukan	
	berimbang	19
Tabel 2.	Metode pengendalian tikus	25
Tabel 3.	Analisis usahatani padi per hektar Teknologi Jajar Legowo Super. Indramayu. MH 2015/2016	37

DAFTAR GAMBAR

Gambar 1.	Jajar Legowo Super	5
Gambar 2.	Aplikasi pupuk hayati Agrimeth: a) Kemasan pupuk hayati Agrimeth dalam bentuk serbuk/padat; b) Pupuk hayati Agrimeth dicampur merata pada benih padi yang telah ditiriskan; dan c) Benih padi yang telah terselimuti dengan pupuk hayati Agrimeth segera disemai di persemaian	8
Gambar 3.	Persemaian dengan sistem dapog menggunakan kotak dapog (atas) dan disebar secara <i>in situ</i> menggunakan lembaran plastik sebagai media tanam (bawah)	9
Gambar 4.	Penanaman menggunakan jarwo transplanter	14
Gambar 5.	Pembuatan tanda jarak tanam	
Gambar 6.	menggunakan caplak Pengendalian gulma menggunakan: a) gasrok atau landak; b) <i>power</i>	14
	weeder, dan c) herbisida selektif	17
Gambar 7.	Pestisida nabati BioProtector	23
Gambar 8.	Penentuan luas ubinan dengan pola tanam legowo 2:1	
	(25x12,5x50) cm	41

RINGKASAN

Padi telah menjadi bagian dari kehidupan masyarakat Indonesia sehingga tidak dapat dipungkiri bahwa komoditas ini telah turut mempengaruhi tatanan politik dan stabilitas nasional. Selain sebagai makanan pokok lebih dari 95% penduduk, padi juga menjadi sumber mata pencaharian sebagian besar petani di pedesaan. Perhatian khusus harus diberikan untuk meningkatkan hasil per satuan luas dengan menerapkan perbaikan teknologi dalam teknik budidaya tanaman.

Teknologi padi jajar legowo (jarwo) super merupakan teknologi budi daya padi secara terpadu berbasis cara tanam jajar legowo. Dalam implementasinya di lapangan, teknologi padi Jarwo Super menggunakan: (1) benih bermutu varietas unggul baru dengan potensi hasil tinggi, (2) biodekomposer pada saat pengolahan tanah, (3) pupuk hayati sebagai seed treatment dan pemupukan berimbang, (4) teknik pengendalian organisme pengganggu tanaman (OPT) secara terpadu, dan (5) alat mesin pertanian terutama untuk tanam dan panen.

Teknologi Jarwo Super telah diuji keunggulannya pada musim tanam 2016 melalui dem-area seluas 50 ha pada lahan sawah irigasi di Kabupaten Indramayu, Petunjuk Teknis Budidaya Padi Jajar Legowo Super

Jawa Barat. Varietas Inpari-30 Ciherang Sub-1, Inpari-32 HDB, dan Inpari-33 telah berproduksi di atas 10 ton GKG/ha, sedangkan produktivitas varietas Ciherang yang diusahakan petani di luar dem-area hanya 6,0 ton GKG/ha. Analisis usahatani menunjukkan bahwa teknologi Jarwo Super sangat layak dikembangkan pada skala luas.

PENDAHULUAN

Pemerintahan Kabinet Kerja terus berupaya mewujudkan kedaulatan pangan, agar Indonesia mampu mengatur dan memenuhi kebutuhan pangan seluruh lapisan masyarakat secara berdaulat. Kedaulatan pangan dicerminkan oleh kekuatan dalam mengelola dan mengatasi masalah pangan secara mandiri, yang didukung oleh: 1) ketahanan pangan, terutama kemampuan mencukupi kebutuhan pangan dalam negeri; 2) pengaturan kebijakan pangan oleh bangsa sendiri; dan 3) kemampuan melindungi dan mensejahterakan pelaku utama pembangunan pertanian tanaman pangan, terutama petani.

Lahan sawah merupakan media utama produksi padi dengan produktivitas yang relatif lebih baik dari pada lahan kering dan lahan rawa. Saat ini produktivitas padi sawah di Indonesia menduduki peringkat ke-10 dari 30 negara utama penghasil beras dunia dan peringkat ke-3 di Asia setelah China dan Vietnam.

Badan Penelitian dan Pengembangan Pertanian (Balitbangtan) telah menghasilkan berbagai teknologi guna mewujudkan ketahanan pangan, khususnya program peningkatan produksi padi nasional. Teknologi tersebut antara lain varietas unggul baru (VUB), sistem

tanam Jajar Legowo, biodekomposer yang mampu mempercepat pengomposan jerami, pupuk hayati dan pemupukan berimbang, pestisida hayati dan alat mesin pertanian.

Terkait dengan upaya peningkatan produksi padi nasional, Balitbangtan pada tahun 2008 telah menghasilkan inovasi Pengelolaan Tanaman Terpadu (PTT) padi sawah. Inovasi ini kemudian diadopsi dan dikembangkan oleh Direktorat Jenderal Tanaman Pangan dan diimplementasikan dalam bentuk Sekolah Lapang PTT (SL-PTT). Komponen teknologi penyusun PTT terus disempurnakan dari waktu ke waktu. Berbagai komponen teknologi yang dihasilkan dirakit menjadi paket teknologi yang disebut "Teknologi Padi Jajar Legowo Super".

Teknologi Jajar Legowo Super telah diuji keunggulannya melalui Demarea seluas 50 ha di lahan sawah irigasi di Kabupaten Indramayu, Jawa Barat, pada musim tanam 2016, dengan melibatkan Gapoktan setempat. Berdasarkan panen ubinan Tim Terpadu BPS Indramayu, Peneliti Balitbangtan, Badan Ketahanan Pangan dan Penyuluhan Pertanian Indramayu, UPTD Kecamatan Bangodua, dan Gapoktan peserta Demarea, varietas Inpari 30 Ciherang Sub-1 ternyata mempunyai potensi produksi 13,9 ton GKP/ha, varietas Inpari 32 HDB 14,4 ton GKP/ha, dan varietas Inpari 33

12,4 ton GKP/ha, sedangkan produktivitas varietas Ciherang yang diusahakan petani di luar Demarea hanya 7,0 ton GKP/ha.

Penerapan Teknologi Jajar Legowo Super secara utuh oleh petani diyakini mampu memberikan hasil minimal 10 ton GKG/ha per musim, sementara hasil padi yang diusahakan dengan sistem jajar legowo hanya 6 ton GKG/ha. Dengan demikian terdapat penambahan produktivitas padi sebesar 4 ton GKG/ha per musim.

Luas lahan sawah irigasi di Indonesia saat ini sekitar 4,8 juta ha. Bila diasumsikan Teknologi Jajar Legowo Super diimplementasikan secara utuh pada 20% lahan sawah irigasi, maka akan diperoleh tambahan produksi padi sekitar 3,8 juta ton GKG per musim atau 7,6 juta ton GKG per tahun.

Petunjuk teknis ini menyajikan budidaya padi sawah irigasi dengan Teknologi Jajar Legowo Super, mulai dari persiapan lahan sampai dengan panen dan pascapanen.

TEKNOLOGI JAJAR LEGOWO SUPER

Pengertian

Teknologi Jajar Legowo Super adalah teknologi budidaya terpadu padi sawah irigasi berbasis tanam jajar legowo 2:1. Teknologi ini dihasilkan oleh Balitbangtan setelah melalui penelitian dan pengkajian pada berbagai lokasi di Indonesia. Selain menggunakan sistem tanam jajar legowo 2:1 sebagai basis penerapan di lapangan, bagian penting dari Teknologi Jajar Legowo Super adalah:

- a. Varietas unggul baru potensi hasil tinggi,
- b. Biodekomposer, diberikan bersamaan dengan pengolahan tanah (pembajakan ke dua)
- Pupuk hayati diberikan pada benih diaplikasikan melalui (seed treatment) dan pemupukan berimbang berdasarkan Perangkat Uji Tanah Sawah (PUTS),
- d. Pengendalian organisme pengganggu tanaman (OPT) menggunakan pestisida nabati dan pestisida anorganik berdasarkan ambang kendali, serta
- e. Alat dan mesin pertanian, khususnya untuk tanam (jarwo transplanter) dan panen (combine harvester)

Gambar 1. Padi yang ditanam dengan Teknologi Jajar Legowo Super.

Komponen Teknologi dan Teknik Budidaya

Keberhasilan penerapan Teknologi Jajar Legowo Super ditentukan oleh komponen teknologi dan teknik budidaya yang digunakan.

Varietas Unggul dan Benih Bermutu

Varietas unggul merupakan salah satu komponen utama teknologi yang terbukti mampu meningkatkan produktivitas padi dan pendapatan petani. Pemerintah telah melepas ratusan varietas unggul padi, sehingga petani dapat lebih leluasa memilih varietas yang sesuai dengan teknik budidaya dan kondisi lingkungan setempat. Ketersediaan berbagai alternatif pilihan varietas unggul pada suatu wilayah akan berdampak terhadap stabilitas produksi sebagai representasi dari keunggulan adaptasi dan ketahanan atau toleransi terhadap cekaman biotik dan abiotik di wilayah tersebut. Varietas unggul yang digunakan adalah varietas yang memiliki potensi hasil tinggi.

Benih bermutu adalah benih dengan tingkat kemurnian dan vigor yang tinggi. Benih varietas unggul berperan tidak hanya sebagai pengantar teknologi tetapi juga menentukan potensi hasil yang bisa dicapai, kualitas gabah yang akan dihasilkan, dan efisiensi produksi. Penggunaan benih bersertifikat atau benih dengan vigor tinggi menghasilkan bibit yang sehat dengan perakaran lebih banyak, sehingga pertumbuhan tanaman lebih cepat dan merata.

Aplikasi Pupuk Hayati

Pupuk hayati merupakan pupuk berbasis mikroba non-patogenik yang berfungsi meningkatkan kesuburan dan kesehatan tanah melalui beberapa aktivitas yang dihasilkan oleh mikroba tersebut, diantaranya menambat nitrogen, melarutkan fosfat sukar larut dan menghasilkan fitohormon (zat pemacu tumbuh tanaman).

Selain mengandung mikroba penambat N dan pelarut P, pupuk hayati Agrimeth juga mengandung mikroba yang memiliki aktivitas enzimatik serta fitohormon yang telah teruji berpengaruh positif terhadap pengambilan hara makro dan mikro tanah, memacu pertumbuhan, pembungaan, pemasakan biji, pematahan dormansi, meningkatkan vigor dan viabilitas benih, efisiensi penggunaan pupuk NPK anorganik dan produktivitas tanaman.

Pupuk hayati Agrimeth diaplikasikan hanya satu kali, yakni pada saat benih akan disemai, dengan cara sebagai berikut:

- Benih padi yang telah direndam dan diperam selama 24 jam, kemudian ditiriskan (kondisi lembab) kemudian dicampur dengan pupuk hayati.
- Pencampuran benih dengan pupuk hayati dilakukan di tempat yang teduh.

Gambar 2. Aplikasi pupuk hayati Agrimeth: a) Kemasan pupuk hayati Agrimeth dalam bentuk serbuk/padat; b) Pupuk hayati Agrimeth dicampur merata pada benih padi yang telah ditiriskan; dan c) Benih padi yang telah terselimuti dengan pupuk hayati Agrimeth segera disemai di persemaian.

- Benih padi yang telah dicampur pupuk hayati segera disemai, upayakan tidak ditunda lebih dari 3 jam dan tidak terkena paparan sinar matahari agar tidak mematikan mikroba yang telah melekat pada permukaan benih.
- 4. Sisa pupuk hayati yang tidak melekat pada benih padi disebarkan di persemaian.
- Benih yang telah terselimuti pupuk hayati disebar di persemaian pada kondisi tidak hujan.

Persemaian

Dalam Teknologi Jajar Legowo Super, dianjurkan menggunakan persemaian sistem dapog karena bibit ditanam menggunakan alat tanam mesin *jarwo transplanter*.

Persemaian dengan sistem dapog diawali dengan perendaman dan pemeraman benih padi masingmasing selama 24 jam kemudian ditiriskan, lalu benih dicampur dengan pupuk hayati dengan takaran 500 gram/25 kg benih, atau setara untuk 1 ha lahan. Benih disebar pada media dalam kotak dapog berukuran 18 cm x 56 cm dengan jumlah benih sekitar 100-125 gram/kotak.

Gambar 3. Persemaian dengan sistem dapog menggunakan kotak dapog (atas) dan disebar secara *in situ* menggunakan lembaran plastik sebagai media tanam (bawah).

Dapog juga dapat dibuat secara *in situ* menggunakan plastik lembaran dengan media tanam yang terdiri atas campuran tanah dan pupuk kandang dengan perbandingan 3:2.

Pada saat bibit berumur 14-17 hari setelah semai (HSS), atau tanaman sudah tumbuh dengan tinggi 10-15 cm dan memiliki 2-3 helai daun, bibit dari persemaian dapog ditanam ke sawah menggunakan alat mesin *Indojarwo transplanter*. Kebutuhan bibit antara 200-230 dapog untuk setiap hektar lahan.

Bila menggunakan persemaian biasa, benih padi yang telah direndam dan diperam masing-masing selama 24 jam dan telah diaplikasi pupuk hayati langsung disebar merata di persemaian. Bibit ditanam saat berumur 15-18 hari setelah sebar.

Penyiapan Lahan

Kegiatan utama dari penyiapan lahan adalah pelumpuran tanah hingga kedalaman lumpur minimal 25 cm, pembersihan lahan dari gulma, pengaturan pengairan, perbaikan struktur tanah, dan peningkatan ketersediaan hara bagi tanaman. Pada tanah yang sudah terolah dengan baik, penanaman bibit lebih mudah dan pertumbuhannya menjadi optimal.

Olah Tanah Basah

Lima tahapan penyiapan lahan dengan cara basah adalah:

- Lahan sawah digenangi setinggi 2-5 cm di atas permukaan selama 2-3 hari sebelum tanah dibajak,
- Pembajakan tanah pertama sedalam 15-20 cm menggunakan traktor bajak singkal, kemudian tanah diinkubasi selama 3-4 hari,
- Perbaikan pematang yang dibuat lebar untuk mencegah terjadinya rembesan air dan pupuk; sudut petakan dan sekitar pematang dicangkul sedalam 20 cm; lahan digenangi selama 2-3 hari dengan kedalaman air 2-5 cm,
- Pembajakan tanah ke dua bertujuan untuk pelumpuran tanah, pembenaman gulma dan aplikasi biodekomposer, dan
- Perataan tanah menggunakan garu atau papan yang ditarik tangan, sisa gulma dibuang, tanah dibiarkan dalam kondisi lembab dan tidak tergenang.

Olah Tanah Kering

Olah tanah kering menggunakan traktor roda empat yang dilengkapi dengan bajak piringan (disk plow) dan garu piringan (disk harrow). Tahapan

penyiapan lahan dengan cara kering adalah tanah dibajak sedalam 20 cm, kemudian digaru untuk menghancurkan bongkahan tanah dan diratakan pada saat air tersedia.

Aplikasi Pupuk Organik

Sumber pupuk organik terdiri dari jerami segar dan pupuk kandang. Pemberian pupuk kandang yang sudah matang dengan takaran 1-2 ton/ha dilakukan sebelum pengolahan tanah pertama atau bersamaan dengan pengolahan tanah kedua.

Aplikasi Biodekomposer

Biodekomposer adalah komponen teknologi perombak bahan organik, diaplikasikan 2-4 kg/ha untuk mendekomposisi 2-4 ton jerami segar yang dicampur secara merata dengan 400 liter air bersih. Setelah itu larutan biodekomposer disiramkan secara merata pada tunggul dan jerami pada petakan sawah, kemudian digelebeg dengan traktor, tanah dibiarkan dalam kondisi lembab dan tidak tergenang minimal 7 hari.

Biodekomposer M-Dec mampu mempercepat pengomposan jerami secara insitu dari 2 bulan menjadi 3-4 minggu. Pengomposan jerami dengan aplikasi biodekomposer mempercepat residu organik menjadi bahan organik tanah dan membantu meningkatkan ketersediaan hara NPK di dalam tanah, sehingga meningkatkan efisiensi pemupukan dan menekan perkembangan penyakit tular tanah.

Catatan:

- Bila seluruh jerami dikembalikan ke dalam tanah maka diperkirakan terdapat 4-5 ton jerami/ha, sehingga dibutuhkan 4-5 kg biodekomposer

Tanam

Kerapatan tanam merupakan salah satu komponen penting dalam teknologi budidaya untuk memanipulasi tanaman dan mengoptimalkan hasil. Sistem tanam jajar legowo 2:1 merupakan sistem tanam pindah antara dua barisan tanaman terdapat lorong kosong memanjang sejajar dengan barisan tanaman dan dalam barisan menjadi setengah jarak tanam antar baris. Sistem tanam jajar legowo bertujuan untuk peningkatan populasi tanaman per satuan luas, perluasan pengaruh tanaman pinggir dan mempermudah pemeliharaan tanaman.

Penerapan sistem tanam jajar legowo 2:1 dengan jarak tanam 25 cm x 12,5 cm x 50 cm meningkatkan

Gambar 4. Penanaman menggunakan jarwo transplanter.

Gambar 5. Pembuatan tanda jarak tanam menggunakan caplak.

populasi tanaman menjadi 213.333 rumpun/ha atau meningkat 33,3% dibandingkan dengan sistem tanam tegel 25 cm x 25 cm dengan populasi 160.000 rumpun per ha.

Penanaman dapat menggunakan mesin tanam jarwo transplanter atau secara manual. Kondisi air pada saat tanam macak-macak untuk menghindari selip roda dan memudahkan pelepasan bibit dari alat tanam. Jika diperlukan, populasi tanaman dapat disesuaikan dengan mengatur jarak tanam dalam barisan dan jarak antar legowo.

Penanaman secara manual dilakukan dengan bantuan caplak. Pencaplakan dilakukan untuk membuat "tanda" jarak tanam yang seragam dan teratur. Ukuran caplak menentukan jarak tanam dan populasi tanaman per satuan luas. Jarak antar baris dibuat 25 cm, kemudian antar dua barisan dikosongkan 50 cm. Jarak tanam dalam barisan dibuat sama dengan setengah jarak tanam antar baris (12,5 cm). Tanam dengan cara manual menggunakan bibit muda (umur 15-18 hari setelah sebar), ditanam 2-3 batang per rumpun.

Penyulaman

Jumlah rumpun tanaman optimal menghasilkan lebih banyak malai per satuan luas dan berperan besar untuk mendapatkan target hasil lebih tinggi. Pertumbuhan tanaman sehat dan seragam akan mempercepat penutupan muka tanah, dapat memperlambat pertumbuhan gulma dan meningkatkan ketahanan tanaman terhadap hama dan penyakit.

Apabila terjadi kehilangan rumpun tanaman akibat serangan OPT maupun faktor lain, maka dilakukan penyulaman untuk mempertahankan populasi tanaman pada tingkat optimal. Penyulaman harus selesai 2 minggu setelah tanam (MST), atau sebelum pemupukan dasar.

Pengairan

Tata kelola air berhubungan langsung dengan penguapan air tanah dan tanaman, sekaligus untuk mengurangi dampak kekeringan. Pengelolaan air dimulai dari pembuatan saluran pemasukan dan pembuangan. Tinggi muka air 3-5 cm harus dipertahankan mulai dari pertengahan pembentukan anakan hingga satu minggu menjelang panen untuk mendukung periode pertumbuhan aktif tanaman. Saat pemupukan, kondisi air dalam macak-macak.

Penyiangan

Pengendalian gulma menjadi sangat penting pada periode awal sampai 30 hari setelah tanam. Pada periode tersebut, gulma harus dikendalikan secara manual, gasrok, maupun herbisida.

Gulma yang sering dijumpai di lahan sawah antara lain adalah *Echinochloa crus-galli* (Jajagoan), *Cyperus difformis*, *C. iria*, *Ageratum conyzoides* L. (wedusan), *Mimosa pudica* (putri malu), *Cynodon dactylon* (rumput grinting).

Pada lahan sawah irigasi, penyiangan gulma dilakukan pada saat tanaman berumur 21 hari setelah tanam (HST) dan 42 HST, baik secara manual maupun dengan gasrok, terutama bila kanopi tanaman belum menutup. Penyiangan dengan gasrok dapat dilakukan pada saat gulma telah berdaun 3-4 helai, kemudian digenangi selama 1 hari agar akar gulma mati.

Gambar 6. Pengendalian gulma menggunakan: a) gasrok atau landak; b) power weeder, dan c) herbisida selektif.

Petunjuk Teknis Budidaya Padi Jajar Legowo Super

Aplikasi herbisida selektif digunakan untuk pengendalian gulma jenis tertentu. Herbisida yang digunakan di lokasi Demarea adalah jenis herbisida pratumbuh berbahan aktif pendimethalin dan metil metsulfuron.

Pemupukan Anorganik

Untuk mendapatkan produktivitas >10 ton GKG/ha diperlukan pemberian pupuk dengan dosis masingmasing minimal urea 200 kg/ha dan NPK Phonska 300 kg/ha. Pupuk Phonska diaplikasikan 100% pada saat tanam dan pupuk urea masing-masing 1/3 pada umur 7-10 HST, 1/3 bagian pada umur 25-30 HST, dan 1/3 bagian pada umur 40-45 HST.

Penerapan teknologi penanaman padi sistem Jarwo Super mempunyai target produksi yang tinggi. Untuk mencapainya, sistem ini cocok untuk tanah sawah irigasi dengan kadar P (fosfat) dan K (kalium) sedang sampai tinggi, serta mempunyai kapasitas tukar kation (KTK) kategori sedang sampai tinggi. Penetapan status hara tanah hara P dan K diukur dengan Perangkat Uji Tanah Sawah (PUTS). Daerah yang mempunyai potensi untuk dikembangkan budidaya jajar legowo super yang memiliki status hara P dan K sedang sampai tinggi di sentra produksi padi, sebagaimana terdapat pada Tabel 1.

Tabel 1. Kabupaten sentra produksi padi di 22 provinsi yang mempunyai potensi status hara tanah P dan K sedang sampai tinggi untuk pemupukan berimbang.

No.	Provinsi	Kabupaten
1.	Nangroe Aceh Darussalam	Pidie, Aceh Utara
2.	Sumatera Utara	Langkat, Deli Serdang
3.	Sumatera Barat	Pesisir Selatan, Agam
4.	Riau	Indragiri Hilir, Kuantan Sengingi
5.	Jambi	Tanjung Jabung Timur
		Tanjung Jabung Barat
6.	Bengkulu	Bengkulu Selatan,
		Rejanglebong
7.	Sumatera Selatan	Musi Banyuasin, Banyuasin
8.	Lampung	Lampung Selatan
		Lampung Timur
9.	Banten	Tangerang, Serang
10.	Jawa Barat	Indramayu, Karawang
11.	Jawa Tengah	Grobogan, Pati
	DI Jogjakarta	Sleman, Bantul
13.	Jawa Timur	Jember, Bojonegoro
14.	Kalimantan Selatan	Barito Kuala, Banjar
15.	Bali	Tabanan, Gianyar
16.	Pulau Lombok	Lombok Tengah, Lombok Timur
17.	Sulawesi Selatan	Bone, Luwu
18.	Sulawesi Tenggara	Konawe, Konawe Selatan
19.	Sulawesi Barat	Polewali Mandar, Mamuju
20.	Sulawesi Tengah	Banggai, Parigimoutong
21.	Gorontalo	Boalemo, Gorontalo
22.	Sulawesi Utara	Bolaang Mongondow Minahasa Selatan

Sumber: Peta Status Hara P dan K (2014)

Pemupukan dilakukan tiga kali yaitu 1/3 pada umur 7-10 HST, 1/3 bagian pada umur 25-30 HST, dan 1/3 bagian pada umur 40-45 HST. Kecukupan N dikawal dengan bagan warna daun (BWD) setiap 10 hari hingga menjelang berbunga. Untuk memperbaiki dan meningkatkan kesuburan lahan, selain dengan pupuk kimia juga dapat diaplikasikan pupuk kandang yang telah matang sempurna dengan dosis 2 t/ha atau pupuk organik Petroganik dengan dosis 1 t/ha, yang diberikan pada saat pengolahan tanah kedua.

Pengendalian Hama dan Penyakit Terpadu

Hama utama tanaman padi adalah wereng batang cokelat (WBC), penggerek batang padi (PBP), dan tikus. Sedangkan penyakit penting adalah blas, hawar daun bakteri, dan tungro. Pengendalian hama dan penyakit diutamakan dengan tanam serempak, penggunaan varietas tahan, pengendalian hayati, biopestisida, fisik dan mekanis, feromon, dan mempertahankan populasi musuh alami. Penggunaan insektisida kimia selektif adalah cara terakhir jika komponen pengendalian lain tidak mampu mengendalikan hama penyakit. Komponen pengendalian hama dan penyakit tanaman padi adalah sebagai berikut:

- 1. Tanam serempak dan pergiliran varietas
- 2. Penggunaan varietas berpotensi hasil tinggi dan tahan hama penyakit antara lain Inpari 30 Ciherang Sub 1, Inpari 32 HDB, dan Inpari 33.
- Mempertahankan keberadaan musuh alami di lingkungan setempat.
- 4. Pemantauan populasi hama dan penyakit secara rutin.
- Pengendalian hama wereng sedini mungkin, ketika populasinya pada pertanaman merupakan generasi ke-1. Pada umumnya, keberhasilan pengendalian wereng cokelat jika sudah memasuki generasi ke-2 atau ke-3 akan sangat kecil, bahkan mengalami kegagalan.
- 6. Penggunaan pupuk N sesuai anjuran (tidak berlebihan)
- 7. Pengendalian dengan pestisida secara tepat (dosis, sasaran, waktu, cara dan bahan aktif).
- 8. Penyebaran penyakit tungro dapat dihambat melalui penekanan aktivitas pemencaran wereng hijau, dengan modifikasi sebaran tanaman dengan tanam jajar legowo dan mengatur kondisi pengairan (menggenangi sawah yang terserang tungro).
- Sanitasi lingkungan untuk menghilangkan sumber inokulum penyakit dan memutus siklus hidup hama melalui eradikasi ratun/singgang.

- 10. Berdasarkan tangkapan wereng batang cokelat dan penggerek batang padi:
 - Apabila tangkapan WBC imigran (makroptera) pada lampu perangkap terdiri atas satu generasi (seragam), maka persemaian hendaknya dilakukan 15 hari setelah puncak tangkapan.
 - b. Apabila populasi WBC beragam generasi (tumpang tindih), maka persemaian dilakukan 15 hari setelah puncak tangkapan ke-2.
 - Waktu tanam yang dianjurkan adalah 15 hari setelah puncak penerbangan ngengat PBP generasi pertama.
 - d. Apabila generasi PBP di lapangan tumpang tindih, waktu tanam dianjurkan 15 hari setelah puncak penerbangan ngengat generasi berikutnya.
- 11. Pestisida nabati yang digunakan pada demarea Jarwo Super di Indramayu adalah BioProtector yang berbahan aktif senyawa eugenol, sitronelol, dan geraniol. Hasil penelitian sebelumnya menerangkan bahwa senyawa tersebut efektif mengendalikan berbagai hama penting pada tanaman padi seperti wereng batang cokelat, keong mas, dan walang sangit. Eugenol yang

Gambar 7. Pestisida nabati BioProtector.

terkandung di dalam formula juga bersifat fungisidal sehingga diharapkan mampu menekan pertumbuhan penyakit yang disebabkan oleh jamur pathogen.

Bahan aktif pestisida nabati yang diaplikasikan ke pertanaman beberapa waktu kemudian akan terurai terutama setelah terkena cahaya/sinar matahari dan selanjutnya akan berfungsi sebagai pupuk organik sehingga secara langsung mampu memperbaiki pertumbuhan tanaman padi. Hasil penelitian

sebelumnya telah membuktikan bahwa aplikasi BioProtector mampu meningkatkan produksi tanaman 10 hingga 15%. Pestisida nabati umumnya memiliki daya racun rendah sehingga pemakaiannya aman bagi manusia dan hewan ternak. Aplikasi pestisida nabati dapat menjaga kelestarian serangga berguna seperti serangga penyerbuk dan musuh alami.

Aplikasi BioProtector sebaiknya dilakukan sekitar seminggu setelah bibit tanaman padi dipindahkan ke lapang. Aplikasi BioProtector selanjutnya diulang dua kali dengan selang waktu 7-10 hari kemudian. Aplikasi terakhir dilakukan satu atau dua kali saat tanaman padi sudah memasuki vase generatif dimana bulir-bulir padi mulai terisi. Aplikasi pada vase tersebut dilakukan untuk mengendalikan populasi walang sangit sekaligus untuk menyediakan hara setelah bahan organik tanaman yang berperan sebagai bahan aktif pestisida terurai terkena sinar matahari.

Pengendalian hama tikus dilakukan sebagai berikut:

Di daerah endemik tikus, penerapan TBS (*Trap Barrier System*) dan tanaman perangkap dilakukan 3 minggu lebih awal untuk monitoring dan pengendalian. TBS berukuran 25 m x 25 m dapat mengamankan tanaman padi dari serangan tikus seluas 8-10 ha di sekelilingnya.

- ◆ LTBS berupa bentangan pagar plastik/terpal setinggi 60 cm, ditegakkan dengan ajir bambu setiap jarak 1 m, dilengkapi bubu perangkap setiap jarak 20 m dengan pintu masuk berselang-seling arah. LTBS dipasang di perbatasan daerah tikus atau pada saat ada migrasi tikus. Pemasangan LTBS dipindahkan setelah tidak ada tangkapan tikus atau sekurang-kurangnya dipasang selama 3 malam berturut-turut.
- Metode pengendalian tikus berdasarkan stadia tanaman padi dapat dilihat pada Tabel 2.

Tabel 2. Metode pengendalian tikus.

Matada		Sta	adia ta	ınamar	n padi		
Metode pengendalian	Br	ОТ	Sm	Tnm	Tns	Btg	Mtg
Tanam serempak			+	+			+
Sanitasi habitat	+	++	+			+	
Gropyok missal	+	++	+				
Fumigasi						++	++
LTBS	++	+			+	++	
TBS		++	+				
Rodentisida	+						

Keterangan:

+ = dilakukan; ++ = difokuskan; Br = bera; OT = Olah tanah; Sm = Semai; Tnm = Tanam; Tns = Tunas; Btg = Bunting; Mtg = Matang

Panen dan Pascapanen

Panen merupakan kegiatan akhir dari proses produksi padi di lapangan dan faktor penentu mutu beras, baik kualitas maupun kuantitas.

a. Penentuan umur panen

Panen dilakukan pada saat tanaman matang fisiologis yang dapat diamati secara visual pada hamparan sawah, yaitu 90-95% bulir telah menguning atau kadar air gabah berkisar 22-27%. Padi yang dipanen pada kondisi tersebut menghasilkan gabah berkualitas baik dan rendemen giling yang tinggi.

b. Panen

Panen dilakukan menggunakan alat dan mesin panen. Untuk mengatasi keterbatasan tenaga kerja di pedesaan, telah dikembangkan mesin pemanen seperti *stripper, reaper,* dan *combine harvester*. *Combine harvester* merupakan alat pemanen produk Balitbangtan yang didesain khusus untuk kondisi sawah di Indonesia. Kapasitas kerja mesin ini 5 jam per hektar dan *ground pressure* 0,13 kg/cm², dioperasikan oleh 1 orang operator dan 2 asisten operator, sehingga mampu menggantikan tenaga kerja panen sekitar 50 HOK/ha (BB Mektan, 2013). *Combine harvester*

menggabungkan kegiatan pemotongan, pengangkutan, perontokan, pembersihan, sortasi, dan pengantongan gabah menjadi satu rangkaian yang terkontrol. Penggunaan *combine harvester* menekan kehilangan hasil gabah kurang dari 2%, sementara kehilangan hasil jika dipanen secara manual rata-rata 10% (BB Padi, 2014).

c. Pengangkutan

Gabah perlu dikemas untuk menghindari tercecernya gabah selama pengangkutan. Pengangkutan gabah umumnya menggunakan truk, bak terbuka, gerobak dorong, sepeda motor atau sepeda.

d. Pengeringan

Pengeringan dapat dilakukan di bawah sinar matahari langsung atau dengan mesin pengering. Penjemuran sebaiknya beralas terpal dengan tebal lapisan gabah 5-7 cm dan dilakukan pembalikan setiap 2 jam sekali. Penjemuran dihentikan setelah kadar air gabah mencapai 14% (Gabah Kering Giling/GKG). Suhu pengeringan benih jika menggunakan *dryer* tidak melebihi 40-45°C, sedangkan untuk gabah konsumsi tidak melebihi 50-55°C.

e. Pengemasan

Gabah dikemas dalam karung atau kantung plastik yang berfungsi sebagai wadah, melindungi gabah dari kontaminasi, dan mempermudah pengangkutan.

f. Penyimpanan

Penyimpanan dengan teknik yang benar dapat memperpanjang umur simpan gabah/benih serta mencegah kerusakan beras. Proses respirasi yang masih berlangsung pada gabah dapat menyebabkan kerusakan seperti tumbuh jamur sehingga mutu gabah turun. Ruang penyimpanan sebaiknya bebas dari hama dan penyakit. Fumigasi dan pemasangan kawat berperan penting untuk menghindari kerusakan gabah dari serangan tikus, burung dan kutu. Ruang penyimpanan perlu memiliki ventilasi yang cukup agar tidak lembab. Gabah atau benih yang telah dikemas dalam kantung atau karung disusun dan ditempatkan diatas palet kayu.

KEUNGGULAN TEKNOLOGI JAJAR LEGOWO SUPER

Kerapatan tanam merupakan salah satu komponen penting dalam teknologi budidaya untuk memanipulasi tanaman dan mengoptimalkan hasil. Sistem tanam jajar legowo 2:1 merupakan sistem tanam pindah antara dua barisan tanaman terdapat lorong kosong memanjang sejajar dengan barisan tanaman dan dalam barisan menjadi setengah jarak tanam antar baris. Sistem tanam jajar legowo bertujuan untuk peningkatan populasi tanaman per satuan luas, perluasan pengaruh tanaman pinggir, dan mempermudah pemeliharaan tanaman.

Penggunaan jarak tanam tidak beraturan menurunkan hasil padi 20-30%. Penggunaan jasa tanam dengan sistem borongan seringkali tidak menjamin optimalisasi kerapatan tanam. Salah satu komponen teknologi dalam inovasi PTT padi sawah adalah sistem tanam jajar legowo.

Teknologi Jajar Legowo Super merupakan implementasi terpadu teknologi budidaya padi berbasis cara tanam jajar legowo 2:1 yang meliputi: 1) penggunaan benih bermutu dari VUB potensi hasil tinggi; 2) pemberian biodekomposer; 3) pemberian

pupuk hayati dan pemupukan berimbang; 4) pengendalian organisme pengganggu tanaman (OPT) secara terpadu; dan 5) penggunaan alat mesin pertanian terutama untuk tanam dan panen.

Beberapa keunggulan yang melengkapi cara tanam jajar legowo super adalah: 1) pemberian biodekomposer pada saat pengolahan tanah ke dua mampu mempercepat pengomposan jerami; 2) pemberian pupuk hayati sebagai seed treatment yang dapat menghasilkan fitohormon (pemacu tumbuh tanaman), menambat nitrogen dan melarutkan fosfat yang sukar larut serta mpeningkatan kesuburan dan kesehatan tanah; 3) pestisida nabati yang efektif dalam pengendalian hama tanaman padi seperti WBC dan 4) penggunaan alsintan untuk penghematan biaya tenaga kerja serta pengurangan kehilangan hasil panen.

ANALISIS USAHATANI

Berdasarkan panen ubinan tim terpadu terdiri dari BPS Indramayu, Peneliti Balitbangtan, Badan Ketahanan Pangan dan Penyuluhan Pertanian Indramayu, UPTD Kecamatan Bangodua, TNI dari Koramil Bangodua, dan Gapoktan peserta Demarea diketahui produktivitas padi yang dikembangkan di Demarea seluas 50 ha di daerah tersebut di atas 10 ton/ha dengan hasil rata-rata 13,6 t/ha.

Hasil analisis usahatani menunjukkan bahwa pendapatan bersih usahatani padi dengan penerapan Teknologi Jajar Legowo Super mencapai Rp 42.487.222 per ha (Lampiran 1). Dari sisi kelayakan usahatani, Teknologi Jajar Legowo Super memberikan nilai B/C ratio yang layak sebesar 2,66, lebih tinggi dibanding cara petani dengan B/C ratio 1,48.

Berdasarkan hasil analisis dan kelayakan usahatani, Teknologi Jajar Legowo Super layak secara finansial dan dapat disarankan untuk dikembangkan secara luas oleh petani, sehingga Teknologi Jajar Legowo Super ini menjadi pendongkrak produksi padi nasional.

PENUTUP

Pemerintah melalui Kementerian Pertanian terus berupaya melakukan terobosan dalam peningkatan produksi, sebagai pengejewantahan dari program Upaya Khusus (UPSUS), terutama untuk memacu peningkatan produksi padi. Melalui pengkajian yang mendalam di lapangan, produksi padi dapat ditingkatkan di atas 60% melalui penerapan Teknologi Jajar Logowo Super.

Teknologi Jajar Legowo Super dicirikan oleh penggunaan varietas unggul baru (VUB) yang memiliki potensi hasil tinggi dan didukung oleh penggunaan biodekomposer saat pengolahan tanah, pupuk hayati sebagai seed treatment dan pemupukan berimbang, pengendalian organisme pengganggu tanaman (OPT) menggunakan pestisida nabati, percepatan tanam menggunakan alsintan serta panen dengan combine harvester yang memperkecil kehilangan hasil.

Melalui Demarea di Indramayu, Jawa Barat, penerapan Teknologi Jajar Legowo Super mampu menghasilkan gabah 13,9 t/ha dari varietas Inpari, sementara produktivitas pertanaman petani di luar Demarea hanya 7 t/ha.

Petunjuk Teknis Budidaya Padi Jajar Legowo Super

Hasil analisis usahatani menunjukkan bahwa biaya yang diperlukan dalam penerapan Teknologi Jajar Legowo Super sebesar Rp 15.992.778/ha, 35,2% lebih relatif lebih tinggi dibandingkan dengan sistem tanam jajar legowo biasa (Rp11.831.667/ha), namun demikian memberikan keuntungan sebesar 141,8% untuk rata-rata semua varietas.

B/C ratio penerapan Teknologi Jajar Legowo Super sebesar 2,66, sedangkan jajar legowo biasa hanya 1,48. Angka ini menunjukkan bahwa Teknologi Jajar Legowo Super sangat layak dikembangkan secara luas.

BAHAN BACAAN

- Abdulrachman, S., M.J. Mejaya, N. Agustiani, I. Gunawan, P. Sasmita, dan A. Guswara. 2013. Sistem Tanam Legowo. BB Padi. Badan Penelitian dan Pengembangan Pertanian. 25 hal.
- Abdulrachman, S., Z. Susanti dan Suhana. 2004. Efisiensi penggunaan pupuk pada tanaman padi selama dua musim berturut-turut. Penelitian Pertanian Tanaman Pangan 23(2): 65-72.
- Abdulrachman, S., Z. Susanti, Pahim, A. Djatiharti, A. Dobermann, and C. Witt. 2004. Site-Specific Nutrient Management in Intensive Irrigated Rice Systems of West Java, Indonesia. Increasing Productivity of Intensive Rice Systems Through Site-Specific Nutrient Management 2004. p.171-192.
- Badan Litbang Pertanian. 2014a. Petunjuk Teknis Lapang Pengelolaan Tanaman Terpadu (PTT) Padi Sawah Irigasi. Badan Litbang Pertanian. Kementerian Pertanian. 46 hal.
- Badan Litbang Pertanian. 2014b. Sistem Tanam Legowo. Badan Litbang Pertanian. Kementerian Pertanian. 24 hal.
- Badan Litbang Pertanian. 2015. Deskripsi Varietas Unggul Baru Padi. Badan Litbang Pertanian. Kementerian Pertanian.

- Badan Pusat Statistik. 2015. Berita Resmi Statistik. Produksi Padi, Jagung, dan Kedelai (Angka Ramalan II Tahun 2015). Jakarta: Badan Pusat Statistik.
- Dobermann A and Fairhurst T. 2000. Nutrient disorders and nutrient management. International Rice Research Institute (IRRI) and Potash & Phosphate Institute (PPI), Phosphate Institute of Canada (PPIC).
- Erythrina dan Z. Zaini. 2013. Indonesia ricecheck procedure: An approach for accelerating the adoption of ICM. Palawija 30(1): 6-8.
- Erythrina dan Z. Zaini. 2014. Budidaya padi sawah sistem tanam jajar legowo: Tinjauan metodologi untuk mendapatkan hasil optimal. J. Litbang Pert. 33(2): 79-86.
- Heong, K.L., H.V. Chien, M.M. Escalada, and G. Trebuil. 2013. Reducing insecticide use in Southeast Asian irrigated rice fields: from experimental ecology to large scale change in practices. Cah. Agric. 22(5): 378-384.
- Kementerian Pertanian. 2015. Rencana Strategis Kementerian Pertanian. Biro Perencanaan, Sekretariat Jenderal. Kementerian Pertanian. Jakarta. 339 hal.

- Kropff, M.J. and L.A.P. Lotz. 1992. Systems Approaches to Quantity Crop-Weed. Interaction and Their Application. In Weed Management. P.S. Teng and F. Penning de Vries (Ed.), Systems Approaches for Agricultural Development. Elsevier Appl. Sci., London. Vol.40: 265-282.
- Makarim, A.K. dan Ikhwani. 2012. Teknik Ubinan, Pendugaan Produktivitas Padi Menurut Jarak Tanam. Puslitbang Tanaman Pangan. 44 halaman.
- Nayak, B.N.S., M.M. Khan, K. Moshaand, and P. Rani. 2014. Plant spacing and weed management techniques influence weed competitiveness of drum seeded rice (*Oryza sativa* L.). Int. J. Appl. Biol. Pharm. Technol. 5(3): 13-22.
- Sofyan, A., Nurjaya, dan A. Kasno. 2004. Status hara tanah sawah untuk rekomendasi pemupukan. Dalam Tanah Sawah dan Teknologi Pengelolaannya. Pusat Penelitian dan Pengembangan Tanah dan Agroklimat. Badan Litbang Pertanian. hal. 83-114.

Lampiran 1. Analisis Usahatani

Tabel 3. Analisis Usahatani padi per hektar Teknologi Jajar Legowo Super. Indramayu. MH 2015/2016.

		Volume			Biaya	
Kegiatan	Cara petani (manual)	Jarwo Super (Full Mekanisasi)	Satuan	Harga (Rp/ satuan)	Cara petani	Janvo Super
A Biaya Sarana Produksi 1. Benih (kg) 2. Pupuk (kg) a. Urea b. NPK (Pupuk Majemuk) c. Dekomposer (M-Dec) d. Pupuk kandang + aplikasi 3. Pupuk hayati (Agrimeth) 4. Pestisida (Rp) a. Kimia b. Nabati	25 300 200	25 200 300 4 2.000 10	kg kg kg kg bks paket	10.000 2.000 2.700 17.500 600 24.000	250.000 600.000 540.000 2.100.000 3.490.000	250.000 400.000 810.000 1.200.000 240.000 900.000 600.000
B. Biaya Tenaga Kerja 1. Pembersihan lahan dan pematang	Borongan	Borongan	Paket	600.000	000.009	000.009

Tabel 3. Lanjutan.

		Volume			Biaya	
Kegiatan	Cara petani (manual)	Jarwo Super (Full Mekanisasi)	Satuan	Harga (Rp/ satuan)	Cara petani	Jarwo Super
2. Pembuatan pesemaian 3. Pengolahan tanah	2 Borongan	8 Borongan	HOK Paket	75.000	150.000	600.000
(Tritation) 4. Tanam 5. Penvulaman	Borongan 10	7 10	Paket	100.000	900.000	700.000
6.Penyiangan 7.Pemupukan	20 2	5 4 6	ŽŽŽ	50.000	1.000.000	700.000
8. Penyemprotan 9. Panen dan perontokan Jumlah	7 Bawon	7 Combine	Ä%	75.000	525.000 3.266.667 8.341.667	525.000 6.497.778 11.522.778
Total Biaya (A + B) Harga ingloabab	4 200	4 300	Ro/kg		11.831.667	15.992.778
Pendapatan kotor rata-rata Pendapatan bersih (Rp/ha) B/C	7.000	13.600	g S		29.400.000 17.568.333 1,48	58.480.000 42.487.222 2,66

Lampiran 2. Cara Mengubin

Untuk mengetahui tingkat produktivitas tanaman dapat dilakukan antara lain dengan panen ubinan. Ubinan dibuat agar dapat mewakili hasil hamparan. Oleh sebab itu diperlukan langkah-langkah sebagai berikut:

- 1. Pilih pertanaman yang seragam dan dapat mewakili penampilan hamparan, baik dalam segi pertumbuhan, kepadatan tanaman, maupun kondisi terakhir yang ada di lapangan.
- 2. Tentukan luasan ubinan, minimal dua set jajar legowo yang berdekatan. Luas ubinan paling sedikit dibuat 10 m² dengan menempatkan batasbatas ubinan ke arah legowo (memanjang) setengah jarak legowo dan ke arah lebar setengah jarak tanam dalam barisan. Jarak tanam dengan pola legowo berbeda dengan sistem tegel. Oleh karena itu ada beberapa alternatif yang dapat digunakan. Jika menggunakan pola tanam legowo 2:1 (25 x 12,5 x 50) cm, maka alternatif plot ubinan sebagai berikut:

Petunjuk Teknis Budidaya Padi Jajar Legowo Super

Alternatif 1	2 set tanaman legowo sepanjang 10 m	= (6 x 0,25 m) x 8 m = 12 m ² atau setara dengan 256 rumpun
Alternatif 2	4 set tanaman legowo sepanjang 4 m	= (12 x 0,25 m) x 4 m = 12 m ² atau setara dengan 256 rumpun

Secara lebih skematis dapat dilihat pada Gambar 8.

- 3. Tandai batas-batas luasan yang akan diubin menggunakan ajir.
- 4. Untuk jarak tanam dan ukuran ubinan yang berbeda, tentukan perkiraan jumlah rumpun yang seharusnya ada dalam ubinan dengan cara menghitung luas ubinan (m²) dibagi dengan 10.000 m² dikalikan dengan total populasi per hektar sesuai dengan jarak tanam yang digunakan.
- 5. Laksanakan panen pada luasan ubinan tersebut, rontokkan gabahnya, dan bersihkan dari kotoran.
- 6. Ulangi pelaksanaan ubinan dengan menggunakan minimal 3 atau lebih ulangan.
- 7. Timbang gabah dan ukur kadar air saat panen.
- Konversikan hasil ubinan per ha berdasarkan ukuran luasan maupun jumlah rumpun, kemudian konversikan kembali hasil gabah yang diperoleh dalam kadar air 14% (gabah kering giling atau GKG).

Gambar 8. Penentuan luas ubinan dengan pola tanam legowo 2:1 (25x12,5x50) cm

 Untuk mendapatkan data ubinan perlu dilakukan langkah-langkah kegiatan seperti pada skema berikut:

Daftar Narasu	Daftar Narasumber Pengawalan Teknis Teknologi Jarwo Super	eknis Teknolo	gi Jarwo Super
	Narasumber	Instansi	Hp/Email
Biodekomposer	Prof. Rasti Saraswati	Balittanah	0811112362/
Pupuk Hayati	Dr. Etty Pratiwi	Balittanah	rastisaraswati@yahoo.com 08161179079/
Benih/VUB	Dr. Priatna Sasmita	BB Padi	ettypratiwi@yahoo.com 0812944746/
Jarwo	Dr. Abi Prabowo	BB Mektan	priatnasasmita@yahoo.com 081227832138/
Tranplanter	- -	- -	harimurtipuspo@gmail.com
Femupukan	Ur. Ladıyanı Retno Widowati	Balittanan	U81283447U6/ Iadiyaniwidowati@gmail.com
Persemaian	Agus Guswara	BB Padi	08129598503/
Dapog			guswara_bbpadi@yahoo.com
Sistem Tanam Legowo	Prof. Zulkifli Z.	Puslitbang TP	081288223727/z.zaini@irri.org
Hama	Dr. Nyoman Widiarta	Puslitbang TP	08128112585/
			manwidiarta@yahoo.com
Penyakit	Dr. R. Heru Praptana	Puslitbang TP	081342019601/ bernink/@yaboo com
Bioprotektor	Dr. Wiratno	Balittanah	081382222452/
			wiratno02@yahoo.com

Petunjuk Teknis Budidaya Padi Jajar Legowo Super

