ĐAO HÀM - VI PHÂN HÀM NHIỀU BIẾN - Ý NGHĨA

Câu 1. Tìm tọa độ điểm M(x, y, z) trên mặt cong S có phương trình $x^2 - y^2 - z^2 = 1$ sao cho tiếp diện tại Mcủa mặt (S) song song với mặt phẳng z = x + y.

A. (1, 1, 1).

B. (1, 0, 0).

C. Các câu khác sai.

D. (1, -1, 1).

Câu 2. Cho hàm số $f(x, y) = 1 - 2x^2 - 3y^2$ có đồ thi là mặt cong (S). Mặt phẳng y = 1 cắt mặt cong (S) theo giao tuyến (C). Hê số góc tiếp tuyến của (C) tai điểm M(1, 1, -4) bằng bao nhiêu?

A. -5.

B. Đáp án khác.

C. -6.

Câu 3. Cho hai điểm A, B và bản đồ đường mức của một hàm số f(x, y) như hình vẽ. Khẳng định nào sau đây đúng:

A. $f'_{v}(A) < 0, f'_{v}(B) > 0$. **B.** $f'_{x}(A) > 0, f'_{x}(B) < 0$. **C.** $f'_{x}(A) < 0, f'_{v}(B) < 0$. **D.** $f'_{v}(A) > 0, f'_{x}(B) > 0$.

Câu 4. Viết phương trình mặt phẳng tiếp diện của mặt trụ paraboloid $y+z^2-2=0$ tại điểm $M_0(1,-2,2)$.

A. y + 2z - 2 = 0.

B. Các câu khác sai.

C. x + y + 4z - 6 = 0. **D.** y + 4z - 6 = 0.

Câu 5. Điểm cao nhất trên giao tuyến giữa mặt cong $z = f(x, y) = (xy)^6$ và mặt trụ $x^2 + \frac{y^2}{4} = 1$ có hoành độ là x_0 . Tính x_0^2

A. 1.

Câu 6. Cho hàm số f(x,y) có đạo hàm riêng liên tục và các điểm A(1,3), B(3,3), C(1,7), D(6,15). Nếu $\frac{\partial f}{\partial \vec{AB}}(A) = 3, \frac{\partial f}{\partial \vec{AC}}(A) = 26 \text{ thì } \frac{\partial f}{\partial \vec{AD}}(A) \text{ bằng:}$ **A.** 327. **B.** $\frac{171}{2}$.

 $C. \frac{327}{12}$.

D. $\frac{171}{26}$.

Câu 7. Cho các hàm $f(x, y) = x^2 + y^2$, $g(x, y) = \sqrt{x^2 + y^2}$, $h(x, y) = 2 - x^2 - y^2$. Đồ thị của hàm nào có giao tuyến với mặt phẳng (P): z = 1 không là đường tròn $x^2 + y^2 = 1$

A. Hàm h(x, y).

B. Môt hàm khác.

C. Hàm g(x, y).

D. Hàm f(x, y).

Câu 8. Cho hàm $f(x, y, z) = x^2y + 2y^2 - 3x + 1$ và các điểm M(1, 2), A(1, 3), B(2, 2). Tìm đẳng thức sai: **A.** $\nabla f(M) = (1, 9)$. **B.** $f'_{\vec{MR}}(A) = 2$. **C.** $f'_{\vec{MA}}(M) = 9$. **D.** $f'_{\vec{MR}}(M) = 1$.

Câu 9. Đạo hàm theo hướng vecto \vec{u} của hàm $f(x,y) = \frac{x+y}{z}$ tại điểm M(1,-2,2) có giá trị nhỏ nhất khi:

A. $\vec{u} = (-1, -1, -2)$. **B.** $\vec{u} = (1, 1, 2)$.

C. $\vec{u} = (-2, -2, -1)$. **D.** $\vec{u} = (2, 2, 1)$.

Câu 10. Cho hàm số $f(x, y) = \ln\left(3 + \frac{y}{x}\right)$. Tìm đẳng thức đúng:

A. $f'_x(x, y) + \frac{y}{x} f'_y(x, y) = 1$. **C.** $f'_x(x, y) + f'_y(x, y) = 0$.

B. $f'_x(x, y) + \frac{y}{x} f'_y(x, y) = 0.$ **D.** $f'_x(x, y) - f'_y(x, y) = 0.$

Câu 11. Miền xác định của hàm $f(x,y) = \sqrt{\frac{|x|}{1-x^2-y^2}}$ có hình vẽ là hình nào dưới đây?

- **A.** Hình 2.
- B. Một hình khác.
- **C.** Hình 1.
- **D.** Hình 3.

Câu 12. Cho hàm $f(x, y, z) = x^3y + 2x - 3y + z^2$ và các điểm $M_0(1, 2, -1), A(1, 0, 0), B(0, 2, 0), C(0, 0, 3)$. Tìm đạo hàm của f tại điểm M_0 theo hướng vecto \vec{u} biết vecto \vec{u} tạo với các vecto \vec{OA} , \vec{OB} , \vec{OC} những góc nhọn bằng nhau.

- **A.** $\frac{2\sqrt{3}}{3}$.
- **B.** $\frac{4\sqrt{3}}{2}$.

D. 1.

Câu 13. Tìm điểm A(x, y, z) trên mặt Paraboloid $(P): y = x^2 + z^2$ mà tại đó tiếp diện của (P) song song với mặt phẳng $x + 2y + 3z = \mathbf{0}$ **A.** A $\left(\frac{1}{4}, -\frac{5}{8}, \frac{3}{4}\right)$. **B.** A $\left(\frac{1}{4}, \frac{5}{8}, \frac{3}{4}\right)$. **C.** A $\left(-\frac{1}{4}, \frac{5}{8}, -\frac{3}{4}\right)$. **D.** A $\left(-\frac{1}{4}, \frac{5}{8}, \frac{3}{4}\right)$.

Câu 14. Cho hàm số $f(x, y) = 2x^2 + y^2$. Đường mức của hàm số f ứng với đô cao z = 2 có dang nào?

- **A.** Đường thẳng.
- **B.** Đường parabol.
- C. Đường ellipse.
- D. Đường tròn.

Câu 15. Cho hàm $f(x, y) = x^2 - y^2 + 2x + y$. Tìm tất cả điểm $M_0(x_0, y_0)$ mà tốc độ thay đổi nhanh nhất của hàm tại những điểm đó là hướng của vecto $\vec{u} = (2, 1)$.

- **A.** M_0 thuộc đường thẳng $x^2 + y^2 = 4$.
- **B.** M_0 thuộc đường thẳng x + 2y = 0.
- C. M_0 thuộc đường thẳng $x^2 + 4y^2 = 4$.
- **D.** M_0 thuôc đường thẳng 2x + 3y = 0.

Câu 16. Cho hàm z = f(x, y) có các đạo hàm riêng liên tục và các điểm A(1, 1), B(4, 1), C(1, 0), D(4, 5). Cho biết tại điểm A, đạo hàm của hàm f theo hướng \overrightarrow{AB} là 4 và theo hướng \overrightarrow{AC} là 7. Tính đạo hàm tại A của hàm f theo hướng AD.

- A. Đáp án khác.
- **B.** 8.

- $C_{\bullet} \frac{16}{5}$.
- **D.** -16.

Câu 17. Cho hàm $f(x, y) = x^2 y + e^{x-y}$. Tìm đẳng thức đúng **A.** $f''_{yy} = e^{x-y}$. **B.** $f''_{xx} = y + e^{x-y}$. **C.** $f''_{xx} = 2 + e^{x-y}$. **D.** $f''_{yy} = x^2 + e^{x-y}$.

Câu 18. Cho hàm số $f(x, y) = 4 + x^2 + 3y^2$. Đường mức của hàm số f ứng với độ cao z = 5 có dạng đường nào?

- A. Đường parabol.
- **B.** Đường thẳng.
- C. Đường hyperrbol.
- D. Đường ellipse.

Câu 19. Tập hợp nào dưới đây là miền xác định của hàm $f(x,y) = \sqrt{1-x^2} + \sqrt{1-y^2}$

- **A.** Hình vuông ABCD với A(1,0), B(0,1), C(-1,0), D(0,-1).
- **B.** Hình tròn tâm O(0,0), bán kính R=1.
- C. Phần nằm ngoài đường tròn tâm O(0,0), bán kính R=1.
- **D.** Hình vuông ABCD với A(1, 1), B(-1, 1), C(-1, -1), D(1, -1).

Câu 20. Miền xác định của hàm $f(x, y) = \ln(y - \sqrt{2x - x^2})$ là:

- **A.** Phần mặt phẳng Oxy nằm ngoài đường trong $x^2 + y^2 = 2x$.
- **B.** Phần mặt phẳng Oxy nằm phía trên đường trong $x^2 + y^2 = 2x$ ứng với 0 < x < 2.
- **C.** Phần mặt phẳng Oxy nằm phía trên đường trong $x^2 + y^2 = 2x$.
- **D.** Phần mặt phẳng Oxy nằm phía trên đường trong $x^2 + y^2 = 2x$ ứng với $0 \le x \le 2$.

- **Câu 21.** Hàm số z = z(x, y) xác định bởi phương trình: $x^2 + y^2 + z^2 2x + 4y 6z 11 = 0$. Tìm $z'_y(1, -2)$ n'eu z(1, -2) = 8.
 - **A.** -2.

- D. Đáp án khác.
- **Câu 22.** Cho hàm $f(x, y) = \arctan \frac{y}{x}$. Tìm đẳng thức đúng: **A.** $f''_{xy} = \frac{2xy}{(x^2 + y^2)^2}$. **B.** $f''_{xx} = \frac{-2xy}{(x^2 + y^2)^2}$. **C.** $f''_{yy} = \frac{-2xy}{(x^2 + y^2)^2}$. **D.** $f''_{yy} = \frac{2xy}{(x^2 + y^2)^2}$.

- **Câu 23.** Điểm cao nhất của phần mặt phẳng z = x 3y 1 bên trong phần mặt trụ tạo bởi các mặt x = 1 và $x = y^2$ có tung độ là:
 - **A.** $y = \frac{3}{2}$.
- **B.** y = 1.
- $C_{\cdot} \frac{3}{2}$.

- **Câu 24.** Cho hai điểm A, B và bản đồ mức của một hàm số f(x, y) như hình vẽ. Khẳng định nào sau đây là đúng?

- **A.** $f'_x(A) < 0, f'_y(B) < 0$. **B.** $f'_x(A) > 0, f'_y(B) > 0$. **C.** $f'_y(A) < 0, f'_x(B) < 0$. **D.** $f'_y(A) < 0, f'_x(B) > 0$.
- **Câu 25.** Hình vẽ (không tính gốc tọa độ O(0,0)), miền xác định của hàm $f(x,y) = \sqrt{1 \frac{x^2}{v^2} + \sqrt{4 y^2}}$ là miền nào trong những hình sau:

- **A.** Hình 1.
- **B.** Không có hình nào.
- **C.** Hình 2.
- **Câu 26.** Hàm số z = z(x, y) xác định bởi phương trình: $x^2 y^2 + z^2 3x + 4y + z 8 = 0$. Tìm $z'_x(-1, 2)$, nêu z(-1, 2) = -1
- **A.** -2.

B. -5.

- C. Đáp án khác.
- **D.** -3.
- **Câu 27.** Gọi A là đạo hàm của hàm f = f(x, y) tại điểm $M_0(x_0, y_0)$ theo hướng của vecto $\vec{i} = (1, 0)$. Khẳng định nào sau đây luôn đúng?
 - $\mathbf{A.} A = \frac{\partial f}{\partial y}(M_0).$
- **B.** $A = -\frac{\partial f}{\partial x}(M_0)$. **C.** Các câu khác sai. **D.** $A = \frac{\partial f}{\partial x}(M_0)$.
- Câu 28. Biết tiếp diện của mặt paraboloid elliptic $z = x^2 + y^2$ tại điểm M có vecto pháp tuyến là $\vec{n} =$ (2,4,-1). Tìm tọa độ điểm M?
 - **A.** M(-1,-2,5).
- **B.** M(1,-2,5).
- **C.** M(1,2,5).
- **D.** M(-1,2,5).

Câu 29. Cho hàm $f(x, y) = \arctan \frac{y}{x}$. Tìm đẳng thức SAI. **A.** $xf'_x + yf'_y = 0$. **B.** $xf'_x + yf'_y = 1$. **C.** y

$$\mathbf{A.} \ xf_x' + yf_y' = 0.$$

B.
$$xf'_x + yf'_y = 1$$

C.
$$f'_x(1,0) + f'_y(1,0) = 1$$
. **D.** $yf'_x - xf'_y = -1$.

Câu 30. Miền xác định của hàm số $f(x, y) = \arcsin(2\sqrt{x^2 + y^2})$

 \mathbf{A} . \mathbb{R}^2 .

- **B.** Hình tròn tâm (0,1), bán kính R = 0.5.
- C. Hình tròn tâm (0,0), bán kính R = 0.5.
- **D.** Hình tròn tâm (0,0), bán kính R = 1.

Câu 31. Cho hàm $f(x, y) = \ln(x^2 + y^2)$. Tìm đẳng thức đúng. **A.** $yf'_x + xf'_y = 2$. **B.** $xf'_x + yf'_y = 2$. **C.** $yf'_x - xf'_y = 2$.

A.
$$yf'_x + xf'_y = 2$$

B.
$$xf'_{x} + yf'_{y} = 2$$

C.
$$yf'_x - xf'_y = 2$$
.

D.
$$xf'_{x} - yf'_{y} = 2$$
.

Câu 32. Cho điểm A và bản đồ của một hàm số f(x, y) như hình vẽ. Giá trị của f(A) là:

A. 500.

B. 600.

C. 200.

D. 400.

Câu 33. Cho hàm số f(x, y) có đạo hàm riêng liên tục và các điểm A(2, 3), B(3, 3), C(2, 7), D(8, 11). Nếu $\frac{\partial f}{\partial \vec{AB}}(A) = 3, \frac{\partial f}{\partial \vec{AD}}(A) = \frac{33}{5} \text{ thì } \frac{\partial f}{\partial \vec{AC}}(A) \text{ bằng:}$

- C. Đáp án khác.
- **D.** $\frac{-57}{40}$.

ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

								Mã đề thi 2031a	
1. C	2. D	3. B	4. D	5. D	6. C	7. B	8. B	9. C	10. B
11. A	12. B	13. C	14. C	15. B	16. C	17. A	18. D	19. D	20. D
21. B	22. C	23. D	24. D	25. C	26. B	27. D	28. C	29. B	30. C
31. B	32. D	33. B							