Cota superior de complejidad temporal en peor caso por estructura

Operación	Lista Enlazada	Lista Enlazada Ordenada	ABB (BST)	AVL	Heap	Trie
Pertenece	O(n)	O(n)	O(n)	$O(\log n)$	O(n)	O(k)
Inserción	$O(1)^{\dagger}$	$O(1)^{\dagger}$	O(n)	$O(\log n)$	$O(\log n)$	O(k)
Borrado	$O(1)^{\dagger}$	$O(1)^{\dagger}$	O(n)	$O(\log n)$	O(n)	O(k)
Buscar Mínimo	O(n)	$O(1)^{\ddagger}$	O(n)	$O(\log n)$	$O(1)^{\ddagger}$	O(n)
Borrar Mínimo	O(n)	$O(1)^{\dagger \ddagger}$	O(n)	$O(\log n)$	$O(\log n)^{\ddagger}$	O(k)

Siendo n la cantidad de elementos presentes en la colección. Y, en el caso del trie, siendo |k| el largo de la clave (key).

En caso de la lista enlazada, significa que está ordenada de forma ascendente. En cambio, si se trata de un heap, entonces es un min-heap.

[†]Considerando que, dado un iterador (puntero) al elemento, la inserción/remoción como tal –es decir, reacomodar los punteros de la estructura– se realiza en O(1). Buscar el elemento es O(n).

[‡]Considerando que la estructura preserva el orden total de *menor o igual.* ($\bullet \leqslant \bullet$). Es decir, dados a, b elementos pertenecientes a la estructura, a aparece antes que b si y sólo si a < b. Si a = b entonces b podría aparecer antes que a.