RULES

- No books or notes or calculators allowed.
- No bathroom breaks until after you have completed and turned in your test.
- Out of consideration for your classmates, do not make disturbing noises during the exam.
- Phones and other electronic devices must be off or in silent mode.

Cheating will not be tolerated. If there is any indication that a stude received unauthorized aid on this test, the case will be handed over to dicial Affairs. When you finish the exam, please sign the following statut you understand this policy:	o the ISU	U Office of Ju-
	, have	neither given
Signature:	_ Date:	2016-04-05

Page	Points	Score
3	11	
4	12	
5	16	
6	11	
7	10	
Total:	60	

	1. Let $A \in \mathbb{R}^{m \times n}$ be an $m \times n$ real matrix. Given precise definitions of the four fundamental subspaces $R(A)$, $C(A)$, $N(A)$, $N(A^{\top})$. Give both a symbolic definition as well as an English sentence . Also, in the blank space provided, insert the name of the space of which the given set is a subspace. The first part is done for you as an example.
(2pts)	(a) The row space of A is the subspace of \mathbb{R}^n defined by
	(English)the set of all linear combinations of rows of A .
	(symbols) $R(A) = \{ \mathbf{v} \in \mathbb{R}^n \mid \exists \mathbf{u} \in \mathbb{R}^m \text{ such that } \mathbf{v} = \mathbf{u}A \}.$
(2pts)	(b) The $column\ space$ of A is the subspace of defined by
	(English)
	$(symbols) \mathrm{C}(A) = \{$
(2pts)	(c) The $null\ space$ of A is the subspace of defined by
	(English)
	$(symbols) N(A) = \{$
(2pts)	(d) The <i>left null space</i> of A is the subspace of defined by
	(English)
	$(symbols) \mathrm{N}(A^{ op}) = ig\{$
(3pts)	(e) We learned a theorem that gives identities involving the four fundamental subspaces and their orthogonal complements. Two of these are $C(A) = N(A^{\top})^{\perp}$ and $C(A)^{\perp} = N(A^{\top})$. What are the other two?

- 2. Consider the matrix $A = \begin{bmatrix} 1 & -2 & 1 & 0 \\ 2 & -4 & 3 & -1 \end{bmatrix}$. For the first two parts of this problem, circle the best answer. For the last part, write down the basis.
- (3pts) (a) The rank of A is

(i) 1

(ii) 2

(iii) 3

(iv) 4

(4pts) (b) A basis for the column space C(A) is given by which columns of A?

(i) columns 1 and 2

(iii) columns 1 and 4

(v) column 4 only

(ii) columns 1 and 3

(iv) column 1 only

(5pts) (c) Find a basis for the nullspace, N(A).

- (16pts) 3. Answer any $\underline{\mathbf{two}}$ questions on this page. Clearly mark the answers you want graded.
 - (a) Prove that if $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m$ are vectors in \mathbb{R}^n , and if there is a matrix A such that the set $\{A\mathbf{x}_1, A\mathbf{x}_2, \dots, A\mathbf{x}_m\}$ is linearly independent, then $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ is linearly independent.
 - (b) Prove that if V is a vector space with inner product $\langle \cdot, \cdot \rangle$ and orthonormal basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, then the \mathcal{B} -basis representation of the vector $\mathbf{x} \in V$ is given by $[\mathbf{x}]_{\mathcal{B}} = (\langle \mathbf{x}, \mathbf{v}_1 \rangle, \langle \mathbf{x}, \mathbf{v}_2 \rangle, \dots, \langle \mathbf{x}, \mathbf{v}_n \rangle)$.
 - (c) Either find a matrix A for which N(A) contains $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ and R(A) contains

 $\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$, or explain why no such matrix exists.

- 4. Suppose $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for V, and $\mathbf{x} \in V$ is an arbitrary vector.
- (3pts) (a) Denote the \mathcal{B} -basis representation of \mathbf{x} by $[\mathbf{x}]_{\mathcal{B}}$. What does this mean? (i.e., interpret $[\mathbf{x}]_{\mathcal{B}} = (c_1, c_2, \dots, c_n)$ in terms of the vector \mathbf{x} and the vectors \mathbf{v}_i .)

(3pts) (b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x_1, x_2) = (x_1 + 2x_2, 3x_2)$. Write down the standard matrix for T. (i.e., find the \mathcal{E} -basis representation of T).

(3pts) (c) Suppose $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\} = \{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\}$. Write down the change-of-basis matrix P that maps a \mathcal{B} -basis representation (e.g., $[\mathbf{x}]_{\mathcal{B}}$) to a standard basis representation (e.g., $\mathbf{x} = [\mathbf{x}]_{\mathcal{E}}$); then find the inverse P^{-1} (that goes from \mathcal{E} to \mathcal{B}).

(2pts) (d) Use the matrices from the previous part to find the \mathcal{B} -basis representation of T. That is, find $[T]_{\mathcal{B}}$, the matrix representation of T relative to the basis \mathcal{B} .

Score for this page: _____ out of 11

