西安电子科技大学

考试时间 120 分钟

试

颞

题号	1	11	总分
分数			

- 1. 考试形式: 闭卷■ 开卷□; 2. 本试卷共两大题, 满分 100 分;
- 3. 考试日期: 年 月 日; (答题内容请写在装订线外)
- 一、简答题(每小题6分,共42分)
- (1) 简述数据对象和数据特征的概念以及两者之间的关系。

(2) 简述 k 折交叉验证的步骤及其应用。

(3)	简述分	位数图	(盒图)	和散点图	(散布图)	的构造及	注用途 。	
(a) (b) (c)	簡要概:)) 数词 词频 值	属性。 尔的二元 属性 。		1下属性描	述的对象的	可相异性:		
(5)	阐述频	繁项集、	. 极大绚	繁项集、	闭频 繁 项集	美的定义,	它们的关系	是什么?

- (6) 对于下面的向量 x 和 y, 计算指定的相似度或距离度量。
 - (a)x=(2, -1, 3, 0), y=(-1, 4, 2, 1)计算欧几里得距离
 - (b)x=(0, 1, 1, 0, 1, 1), y=(1, 0, 0, 0, 1, 0) 计算 Jaccard 系数
 - (c)x=(0, 2, 1, -1), y=(3, -1, 1, -2) 计算余弦相似性

(7) 简述 DBSCAN 聚类算法的主要思想和优缺点。

二、计算题(要求写出必要的步骤, 共 58 分)

1. 聚类(12分)

假设数据集 D 含有 9 个数据对象 (用 2 维空间的点表示): A1(3,2), A2(3,9), A3(8,6), B1(9,5), B2(2,4), B3(3,10), C1(2,6), C2(9,6), C3(2,2). 采用 K-均值方法进行聚类,距离函数采用欧几里德距离,取 k=3,假设初始的三个簇质心为 A1,B1,和 C1,求:

- (1) 第一次循环结束时的三个簇及其质心。
- (2) 请简述 K-均值聚类的优缺点。

装

订

线

2. 频繁模式挖掘(14分)

已知一个简单的事务数据库 X,如下表所示:

记录号	购物清单					
1	方便面,尿布,驱蚊水,面包,雨伞					
2	驱蚊水,果汁,洗衣液					
3	方便面,尿布,果汁					
4	方便面,尿布,面包					
5	方便面,果汁,洗衣液					

支持度阈值为60%,置信度阈值为80%

- (1) 使用 Apriori 算法找出 X 中的所有频繁项集。
- (2) 找出 X 中的强关联规则。
- (3) 构建频繁模式树(FP-Tree)。
- (4) 说明支持度-置信度关联模式评估的局限性,并阐述一种其他的评估关联模式的 客观度量

订

装

线

3. 决策树(20分)

考虑下表中的二元分类问题的训练样本集($\log_2 3 = 1.58 \log_2 5 = 2.32$)

- (a) 计算整个训练样本集关于类属性(最后一列)的熵 Entropy;
- (b) 分别计算属性 a1、a2 的信息增益 Gain:
- (c) 根据信息增益进行二分,如何确定属性 a3 的最佳划分点? (给出求解思路, 并列出所有可能的划分点)
- (d) 根据分类错误率 Classification error, 按哪个属性(a1、a2中)划分更佳?
- (e) 根据 Gini 指标,按哪个属性(a1、a2中)划分更佳?

实例	a1	a2	a3	目标类
1	F	F	1.0	-
2	F	F	3.0	+
3	T	T	8.0	-
4	F	F	5.0	+
5	F	T	8.0	-
6	T	T	3.0	+
7	T	F	6.0	-
8	T	F	6.0	+
9	F	T	9.0	-

- 4. 以下两个题目选做一个即可,两道都做以得分高者记录成绩(12分)
- A. 对于下表中给出的数据集:
- (1)分别使用其 3-近邻、5-近邻和 7-近邻计算点 A(2,3)的分类结果。
- (2)KNN 对样例进行分类时一般使用多数表决方法来确定,请简述一种其他的表述方法。

点	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10
X	(1, 1)	(8, 6)	(3, 5)	(2, 2)	(9, 1)	(4, 5)	(6, 7)	(2, 6)	(7, 3)	(6, 6)
у	-	-	+	+	+	-	+	-	+	-

- B. 考虑下表中的二元分类训练集:
 - (1) 估计条件概率 P(A=1|+)、P(A=1|-)、P(B=1|+)和 P(B=1|-)。
 - (2) 使用朴素贝叶斯方法预测样本(A=0,B=0,C=0)的类别。

Id	A	В	С	Class
1	1	0	1	-
2	0	0	1	-
3	1	1	1	-
4	1	0	1	-
5	0	0	1	-
6	1	1	0	+
7	0	0	1	+
8	1	0	0	+
9	0	1	1	+
10	1	0	1	+