Short Seminar about DRPM Model exploring the full conditionals and the structural possibilities

Federico Angelo Mor, assisted by Profs. Alessandra Guglielmi and Alessandro Carminati

Politecnico of Milano Thesis development

May 30, 2024

DRPM revision 1 / 33

Contents

- Introduction
- Full conditionals derivation Updating ϕ_0 Updating θ_t Updating μ_{it}^{\star} Updating α_t
- Model variations Distributions Covariates
- 4 What's next

DRPM

Garritt L. Page, Fernando A. Quintana, David B. Dahl (2022) Dependent Modeling of Temporal Sequences of Random Partitions. Journal of Computational and Graphical Statistics, 31:2, 614-627.

The main objective of the authors was to define a spatio-temporal model capable of performing "smooth" clusterings; a model that would favour a gentle evolution in time of the clusters, rather than rough (and therefore less interpretable) changes in them.

Their original model was just focused on time, but the authors showed how it could easily include space by re-defining the random partition model. The goal of the thesis will be to update the model to also account for covariates, deciding where and how to include them, and finally testing it on a real dataset.

DRPM revision 3 / 33

Classical derivation method

$$f(\heartsuit|\text{all the rest}) = \frac{f(\heartsuit, \text{all the rest})}{f(\text{all the rest})} \propto f(\heartsuit, \text{ all the rest}) \propto \dots$$

$$Y_{it}|Y_{it-1}, \boldsymbol{\mu}_t^{\star}, \boldsymbol{\sigma}_t^{2\star}, \boldsymbol{\eta}, \boldsymbol{c}_t \overset{\text{ind}}{\sim} \mathcal{N}(\boldsymbol{\mu}_{c_{it}t}^{\star} + \eta_{1i}Y_{it-1}, \boldsymbol{\sigma}_{c_{it}t}^{2\star}(1 - \eta_{1i}^2))$$

$$i = 1, \dots, n \quad \text{and} \quad t = 2, \dots, T$$

$$Y_{i1} \overset{\text{ind}}{\sim} \mathcal{N}(\boldsymbol{\mu}_{c_{i1}1}^{\star}, \boldsymbol{\sigma}_{c_{i1}1}^{2\star})$$

$$\xi_i = \text{Logit}(\frac{1}{2}(\eta_{1i} + 1)) \overset{\text{ind}}{\sim} \text{Laplace}(a, b)$$

$$(\boldsymbol{\mu}_{jt}^{\star}, \boldsymbol{\sigma}_{jt}^{\star}) \overset{\text{ind}}{\sim} \mathcal{N}(\boldsymbol{\theta}_t, \boldsymbol{\tau}_t^2) \times \mathcal{U}(0, A_{\sigma})$$

$$\boldsymbol{\theta}_t|\boldsymbol{\theta}_{t-1} \overset{\text{ind}}{\sim} \mathcal{N}((1 - \phi_1)\phi_0 + \phi_1\boldsymbol{\theta}_{t-1}, \lambda^2(1 - \phi_1^2))$$

$$(\boldsymbol{\theta}_1, \boldsymbol{\tau}_t) \sim \mathcal{N}(\phi_0, \lambda^2) \times \mathcal{U}(0, A_{\tau})$$

$$(\phi_0, \phi_1, \lambda) \sim \mathcal{N}(m_0, s_0^2) \times \mathcal{U}(-1, 1) \times \mathcal{U}(0, A_{\lambda})$$

$$\{\boldsymbol{c}_t, \dots, \boldsymbol{c}_T\} \sim \text{tRPM}(\boldsymbol{\alpha}, M) \quad \text{with} \quad \alpha_t \overset{\text{iid}}{\sim} \text{Beta}(\boldsymbol{a}_{\alpha}, b_{\alpha})$$

DRPM revision 4 / 33

Shortcut trough the model graph

(full conditional) \propto (self node distribution) \cdot (parent nodes distributions)

$$Y_{it} \sim \mathcal{N}(\mu_{c_{it}t}^{\star} + \eta_{1i}Y_{it-1}, \sigma_{c_{it}t}^{2\star}(1 - \eta_{1i}^{2}))$$

$$Y_{i1} \sim \mathcal{N}(\mu_{c_{i1}1}^{\star}, \sigma_{c_{i1}1}^{2\star})$$

$$\xi_{i} = \text{Logit}(\frac{1}{2}(\eta_{1i} + 1))$$

$$\sim \text{Laplace}(a, b)$$

$$\mu_{jt}^{\star} \sim \mathcal{N}(\theta_{t}, \tau_{t}^{2})$$

$$\tau_{t} \sim \mathcal{U}(0, A_{\tau})$$

$$\theta_{t} \sim \mathcal{N}((1 - \phi_{1})\phi_{0} + \phi_{1}\theta_{t-1}, \lambda^{2}(1 - \phi_{1}^{2}))$$

$$\theta_{1} \sim \mathcal{N}(\phi_{0}, \lambda^{2})$$

$$\lambda \sim \mathcal{U}(0, A_{\lambda})$$

$$\phi_{0} \sim \mathcal{N}(m_{0}, s_{0}^{2})$$

$$\phi_{1} \sim \mathcal{U}(-1, 1)$$

Deriving the full conditionals

For the Normal variables ϕ_0, θ_t , and μ_t^* the derivation is the standard one involved in Normal-Normal models, where we iterate the application of the identity

$$\sum d_i(z-c_i)^2 \propto \left(\sum d_i\right)(z-c)^2, \quad c = \frac{\sum d_i c_i}{\sum d_i}$$

The other full conditional is obtainable for the parameter α_t , related to the definition of the RPM, which is involved in a Beta-Binomial structure with the parameters γ_{it} , therefore also her derivation is quite straightforward.

Updating ϕ_0

$$Y_{it} \sim \mathcal{N}(\mu_{c_{it}t}^{\star} + \eta_{1i}Y_{it-1}, \sigma_{c_{it}t}^{2\star}(1 - \eta_{1i}^{2}))$$

$$Y_{i1} \sim \mathcal{N}(\mu_{c_{i1}1}^{\star}, \sigma_{c_{i1}1}^{2\star})$$

$$\delta_{jt}^{\star} \sim \mathcal{U}(0, A_{\sigma})$$

$$\xi_{i} = \text{Logit}(\frac{1}{2}(\eta_{1i} + 1))$$

$$\sim \text{Laplace}(a, b)$$

$$\theta_{t} \sim \mathcal{N}((1 - \phi_{1})\phi_{0} + \phi_{1}\theta_{t-1}, \lambda^{2}(1 - \phi_{1}^{2}))$$

$$\theta_{1} \sim \mathcal{N}(\phi_{0}, \lambda^{2})$$

$$\lambda \sim \mathcal{U}(0, A_{\lambda})$$

$$\phi_{0} \sim \mathcal{N}(m_{0}, s_{0}^{2})$$

$$\phi_{1} \sim \mathcal{U}(-1, 1)$$

Updating ϕ_0

$$\begin{split} f(\phi_0|-) &\propto f(\phi_0) \cdot f((\theta_1,\dots,\theta_T)|\phi_0,-) \\ &= \mathcal{L}_{\mathcal{N}(m_0,s_0^2)}(\phi_0) \cdot \\ & \left[\mathcal{L}_{\mathcal{N}(\phi_0,\lambda^2)}(\theta_1) \prod_{t=2}^T \mathcal{L}_{\mathcal{N}((1-\phi_1)\phi_0+\phi_1\theta_{t-1},\lambda^2(1-\phi_1^2))}(\theta_t) \right] \\ &\propto \exp\left\{ -\frac{1}{2s_0^2} (\phi_0 - m_o)^2 \right\} \exp\left\{ -\frac{1}{2\lambda^2} (\phi_0 - \theta_1)^2 \right\} \cdot \\ & \exp\left\{ -\frac{1}{2\frac{\lambda^2(1-\phi_1^2)}{(T-1)(1-\phi_1)^2}} \left(\phi_0 - \frac{(1-\phi_1)(\mathsf{SUM}_t)}{(T-1)(1-\phi_1)^2} \right)^2 \right\} \\ & \text{where } \mathsf{SUM}_t = \sum_{t=2}^T \theta_t - \phi_1\theta_{t-1} \end{split}$$

DRPM revision 8 / 33

Updating ϕ_0

$$\begin{split} &\Longrightarrow f(\phi_0|-) \propto \text{kernel of a } \mathcal{N}\big(\mu_{\phi_0(\mathsf{post})}, \sigma^2_{\phi_0(\mathsf{post})}\big) \text{ with} \\ &\sigma^2_{\phi_0(\mathsf{post})} = \frac{1}{\frac{1}{s_0^2} + \frac{1}{\lambda^2} + \frac{(T-1)(1-\phi_1)^2}{\lambda^2(1-\phi_1^2)}} \\ &\mu_{\phi_0(\mathsf{post})} = \sigma^2_{\phi_0(\mathsf{post})} \left[\frac{m_0}{s_0^2} + \frac{\theta_1}{\lambda^2} + \frac{1-\phi_1}{\lambda^2(1-\phi_1^2)} \left(\sum_{t=2}^T \theta_t - \phi_1 \theta_{t-1} \right) \right] \end{split}$$

DRPM revision 9 / 33

Updating θ_t

$$\begin{aligned} & Y_{it} \sim \mathcal{N}(\mu_{c_{it}}^{\star} + \eta_{1i}Y_{it-1}, \sigma_{c_{it}}^{2\star}(1 - \eta_{1i}^2)) \\ & Y_{i1} \sim \mathcal{N}(\mu_{c_{i1}}^{\star}, \sigma_{c_{i1}}^{2\star}) \end{aligned} \qquad \qquad \xi_{i} = \text{Logit}(\frac{1}{2}(\eta_{1i} + 1)) \\ & \sim \text{Laplace}(a, b) \end{aligned}$$

$$\qquad \qquad \psi_{jt}^{\star} \sim \mathcal{N}(\theta_{t}, \tau_{t}^{2}) \qquad \qquad \tau_{t} \sim \mathcal{U}(0, A_{\tau})$$

$$\qquad \theta_{t} \sim \mathcal{N}((1 - \phi_{1})\phi_{0} + \phi_{1}\theta_{t-1}, \lambda^{2}(1 - \phi_{1}^{2})) \qquad \qquad \lambda \sim \mathcal{U}(0, A_{\lambda})$$

$$\qquad \qquad \phi_{0} \sim \mathcal{N}(m_{0}, s_{0}^{2}) \qquad \qquad \phi_{1} \sim \mathcal{U}(-1, 1)$$

Updating θ_t

Due to the different law at the first time instant and to the autoregressive component, for this parameter we need to distinguish three cases:

$$f(\theta_t|-) \propto f(\theta_t) f(\theta_{t+1}|\theta_t) f(\boldsymbol{\mu}_t^*|\theta_t, \tau_t^2) \qquad t = 1$$

$$f(\theta_t|-) \propto f(\theta_t) f(\theta_{t+1}|\theta_t) f(\boldsymbol{\mu}_t^*|\theta_t, \tau_t^2) \qquad 1 < t < T$$

$$f(\theta_t|-) \propto f(\theta_t) f(\boldsymbol{\mu}_t^*|\theta_t, \tau_t^2) \qquad t = T$$

Updating θ_t for t=T

$$\begin{split} f(\theta_t|-) &\propto f(\theta_t) f(\boldsymbol{\mu}_t^{\star}, -) = f(\theta_t) \prod_{j=1}^{k_t} f(\boldsymbol{\mu}_{jt}^{\star}|\theta_t, -) \\ &= \mathcal{L}_{\mathcal{N}((1-\phi_1)\phi_0 + \phi_1\theta_{t-1}, \lambda^2(1-\phi_1^2))}(\theta_t) \prod_{j=1}^{k_t} \mathcal{L}_{\mathcal{N}(\theta_t, \tau_t^2)}(\boldsymbol{\mu}_{jt}^{\star}) \\ &\propto \exp\left\{-\frac{1}{2(\lambda^2(1-\phi_1^2))} \Big(\theta_t - ((1-\phi_1)\phi_0 + \phi_1\theta_{t-1})\Big)^2\right\} \cdot \\ &\exp\left\{-\frac{k_t}{2\tau_t^2} \left(\theta_t - \frac{\sum_{j=1}^{k_t} \boldsymbol{\mu}_{jt}^{\star}}{k_t}\right)\right\} \end{split}$$

Updating θ_t for t = T

$$\Rightarrow f(\theta_t|-) \propto \text{kernel of a } \mathcal{N}\big(\mu_{\theta_t(\mathsf{post})}, \sigma^2_{\theta_t(\mathsf{post})}\big) \text{ with}$$

$$\sigma^2_{\theta_t(\mathsf{post})} = \frac{1}{\frac{1}{\lambda^2(1-\phi_1^2)} + \frac{k_t}{\tau_t^2}}$$

$$\mu_{\theta_t(\mathsf{post})} = \sigma^2_{\theta_t(\mathsf{post})} \left[\frac{\sum_{j=1}^{k_t} \mu_{jt}^\star}{\tau_t^2} + \frac{(1-\phi_1)\phi_0 + \phi_1\theta_{t-1}}{\lambda^2(1-\phi_1^2)} \right]$$

for t = T.

Updating θ_t for 1 < t < T

$$\begin{split} f(\theta_t|-) &\propto \underbrace{f(\theta_t) f(\boldsymbol{\mu}_t^\star, -)}_{\text{as in the case } t = T} f(\theta_{t+1}|\theta_t, -) \\ &= \mathcal{L}_{\mathcal{N}(\mu_{\theta_t(\mathsf{post})}, \sigma^2_{\theta_t(\mathsf{post})})}(\theta_t) \mathcal{L}_{\mathcal{N}((1-\phi_1)\phi_0 + \phi_1\theta_t, \lambda^2(1-\phi_1^2))}(\theta_{t+1}) \\ &\propto \exp\left\{-\frac{1}{2\sigma^2_{\theta_t(\mathsf{post})}} \left(\theta_t - \mu_{\theta_t(\mathsf{post})}\right)^2\right\} \cdot \\ &\exp\left\{-\frac{1}{2\frac{\lambda^2(1-\phi_1^2)}{\phi_1^2}} \left(\theta_t - \frac{\theta_{t+1} - (1-\phi_1)\phi_0}{\phi_1}\right)^2\right\} \end{split}$$

DRPM revision 14 / 33

Updating θ_t for 1 < t < T

for 1 < t < T.

$$\Rightarrow f(\theta_t|-) \propto \text{kernel of a } \mathcal{N}(\mu_{\theta_t(\mathsf{post})}, \sigma^2_{\theta_t(\mathsf{post})}) \text{ with}$$

$$\sigma^2_{\theta_t(\mathsf{post})} = \frac{1}{\frac{1+\phi_1^2}{\lambda^2(1-\phi_1^2)} + \frac{k_t}{\tau_t^2}}$$

$$\mu_{\theta_t(\mathsf{post})} = \sigma^2_{\theta_t(\mathsf{post})} \left[\frac{\sum_{j=1}^{k_t} \mu_{jt}^{\star}}{\tau_t^2} + \frac{\phi_1(\theta_{t-1} + \theta_{t+1}) + \phi_0(1-\phi_1)^2}{\lambda^2(1-\phi_1^2)} \right]$$

DRPM revision 15 / 33

Updating θ_t for t=1

$$\begin{split} f(\theta_t|-) &\propto f(\theta_t) f(\theta_{t+1}|\theta_t,-) f(\boldsymbol{\mu}_t^\star|\theta_t,-) \\ &= \mathcal{L}_{\mathcal{N}(\phi_0,\lambda^2)}(\theta_t) \mathcal{L}_{\mathcal{N}((1-\phi_1)\phi_0+\phi_1\theta_{t-1},\lambda^2(1-\phi_1^2))}(\theta_{t+1}) \prod_{j=1}^{k_t} \mathcal{L}_{\mathcal{N}(\theta_t,\tau_t^2)}(\boldsymbol{\mu}_{jt}^\star) \\ &\propto \exp\left\{-\frac{1}{2\lambda^2}(\theta_t-\phi_0)^2\right\} \cdot \\ &\exp\left\{-\frac{1}{2\frac{\lambda^2(1-\phi_1^2)}{\phi_1^2}} \left(\theta_t-\frac{\theta_{t+1}-(1-\phi_1)\phi_0}{\phi_1}\right)^2\right\} \cdot \\ &\exp\left\{-\frac{k_t}{2\tau_t^2} \left(\theta_t-\frac{\sum_{j=1}^{k_t} \boldsymbol{\mu}_{jt}^\star}{k_t}\right)\right\} \end{split}$$

DRPM revision 16 / 33

Updating θ_t for t=1

$$\implies f(\theta_t|-) \propto \text{kernel of a } \mathcal{N}(\mu_{\theta_t(\mathsf{post})}, \sigma^2_{\theta_t(\mathsf{post})}) \text{ with}$$

$$\sigma^2_{\theta_t(\mathsf{post})} = \frac{1}{\frac{1}{\lambda^2} + \frac{\phi_1^2}{\lambda^2(1-\phi_1^2)} + \frac{k_t}{\tau_t^2}}$$

$$\mu_{\theta_t(\mathsf{post})} = \sigma^2_{\theta_t(\mathsf{post})} \left[\frac{\phi_0}{\lambda^2} + \frac{\phi_1(\theta_{t+1} - (1-\phi_1)\phi_0)}{\lambda^2(1-\phi_1^2)} + \frac{\sum_{j=1}^{k_t} \mu_{jt}^{\star}}{\tau_t^2} \right]$$

for t = 1.

Updating μ_{it}^{\star}

$$Y_{it} \sim \mathcal{N}(\mu_{c_{it}t}^{\star} + \eta_{1i}Y_{it-1}, \sigma_{c_{it}t}^{2\star}(1 - \eta_{1i}^{2}))$$

$$Y_{i1} \sim \mathcal{N}(\mu_{c_{i1}1}^{\star}, \sigma_{c_{i1}1}^{2\star})$$

$$\delta_{jt}^{\star} \sim \mathcal{U}(0, A_{\sigma})$$

$$\xi_{i} = \text{Logit}(\frac{1}{2}(\eta_{1i} + 1))$$

$$\sim \text{Laplace}(a, b)$$

$$\theta_{t} \sim \mathcal{N}((1 - \phi_{1})\phi_{0} + \phi_{1}\theta_{t-1}, \lambda^{2}(1 - \phi_{1}^{2}))$$

$$\theta_{1} \sim \mathcal{N}(\phi_{0}, \lambda^{2})$$

$$\lambda \sim \mathcal{U}(0, A_{\lambda})$$

$$\phi_{0} \sim \mathcal{N}(m_{0}, s_{0}^{2})$$

$$\phi_{1} \sim \mathcal{U}(-1, 1)$$

Updating μ_{jt}^{\star} for t=1

$$\begin{split} f(\mu_{jt}^{\star}|-) &\propto f(\mu_{jt}^{\star}) f(\boldsymbol{Y}_{t}|-) \\ &= \mathcal{L}_{\mathcal{N}(\theta_{1},\tau_{t}^{2})}(\mu_{jt}^{\star}) \prod_{i \in S_{jt}} \mathcal{L}_{\mathcal{N}(\mu_{jt}^{\star},\sigma_{jt}^{2\star})}(Y_{i1}) \\ &\propto \exp\left\{-\frac{1}{2\tau_{t}^{2}}(\mu_{jt}^{\star}-\theta_{t})^{2}\right\} \exp\left\{-\frac{1}{2\sigma_{jt}^{2\star}}\left[\sum_{i \in S_{jt}}(\mu_{jt}^{\star}-Y_{i1})^{2}\right]\right\} \\ &\propto \exp\left\{-\frac{1}{2\tau_{t}^{2}}(\mu_{jt}^{\star}-\theta_{t})^{2}\right\} \exp\left\{-\frac{|S_{jt}|}{2\sigma_{jt}^{2\star}}\left(\mu_{jt}^{\star}-\frac{\mathsf{SUM}_{y}}{|S_{jt}|}\right)^{2}\right\} \\ &\text{where $\mathsf{SUM}_{y} = \sum_{i \in S_{jt}} Y_{i1}} \end{split}$$

DRPM revision 19 / 33

Updating μ_{it}^{\star} for t=1

$$\Rightarrow f(\mu_{jt}^{\star}|-) \propto \text{ kernel of a } \mathcal{N}(\mu_{\mu_{jt}^{\star}(\mathsf{post})}, \sigma_{\mu_{jt}^{\star}(\mathsf{post})}^{2}) \text{ with}$$

$$\sigma_{\mu_{jt}^{\star}(\mathsf{post})}^{2} = \frac{1}{\frac{1}{\tau_{t}^{2}} + \frac{|S_{jt}|}{\sigma_{jt}^{2\star}}}$$

$$\mu_{\mu_{jt}^{\star}(\mathsf{post})} = \sigma_{\mu_{jt}^{\star}(\mathsf{post})}^{2} \left[\frac{\theta_{t}}{\tau_{t}^{2}} + \frac{\mathsf{SUM}_{y}}{\sigma_{jt}^{2\star}} \right]$$

for t = 1.

Updating μ_{it}^{\star} for t>1

$$\begin{split} f(\mu_{jt}^{\star}|-) &\propto f(\mu_{jt}^{\star}) f(\textbf{\textit{Y}}_{t}|-) \\ &= \mathcal{L}_{\mathcal{N}(\theta_{1},\tau_{t}^{2})}(\mu_{jt}^{\star}) \prod_{i \in \mathcal{S}_{jt}} \mathcal{L}_{\mathcal{N}(\mu_{jt}^{\star}+\eta_{1i}Y_{i,t-1},\sigma_{jt}^{2\star}(1-\eta_{1i}^{2}))}(Y_{it}) \\ &\propto \exp\left\{-\frac{1}{2\tau_{t}^{2}}(\mu_{jt}^{\star}-\theta_{t})^{2}\right\} \cdot \\ &\exp\left\{-\frac{1}{2\sigma_{jt}^{2\star}}\left[\sum_{i \in \mathcal{S}_{jt}} \frac{1}{1-\eta_{i1}^{2}}\left(\mu_{jt}^{\star}-(Y_{it}-\eta_{1i}Y_{i,t-1})\right)^{2}\right]\right\} \\ &\propto \exp\left\{-\frac{1}{2\tau_{t}^{2}}(\mu_{jt}^{\star}-\theta_{t})^{2}\right\} \exp\left\{-\frac{\text{SUM}_{e2}}{2\sigma_{jt}^{2\star}}\left(\mu_{jt}^{\star}-\frac{\text{SUM}_{y}}{\text{SUM}_{e2}}\right)^{2}\right\} \\ &\text{where $\text{SUM}_{y}=\sum_{i \in \mathcal{S}_{it}} \frac{Y_{it}-\eta_{1i}Y_{i,t-1}}{1-\eta_{1i}^{2}}, \text{ $\text{SUM}_{e2}=\sum_{i \in \mathcal{S}_{it}} \frac{1}{1-\eta_{1i}^{2}}} \end{split}$$

DRPM revision 21/33

Updating μ_{it}^{\star} for t > 1

$$\Rightarrow f(\mu_{jt}^{\star}|-) \propto \text{ kernel of a } \mathcal{N}(\mu_{\mu_{jt}^{\star}(\mathsf{post})}, \sigma_{\mu_{jt}^{\star}(\mathsf{post})}^{2}) \text{ with}$$

$$\sigma_{\mu_{jt}^{\star}(\mathsf{post})}^{2} = \frac{1}{\frac{1}{\tau_{t}^{2}} + \frac{\mathsf{SUM}_{e2}}{\sigma_{jt}^{2\star}}}$$

$$\mu_{\mu_{jt}^{\star}(\mathsf{post})} = \sigma_{\mu_{jt}^{\star}(\mathsf{post})}^{2} \left[\frac{\theta_{t}}{\tau_{t}^{2}} + \frac{\mathsf{SUM}_{y}}{\sigma_{jt}^{2\star}} \right]$$

for t > 1.

Updating α_t

The parameter α_t operates in the definition of the distribution of the clusters. Indeed, in the model we had

$$\{m{c}_t, \dots, m{c}_T\} \sim \mathsf{tRPM}(m{lpha}, m{M}) \quad \mathsf{with} \quad m{lpha}_t \stackrel{\mathsf{iid}}{\sim} \mathsf{Beta}(m{a}_{\!lpha}, m{b}_{\!lpha})$$

where the α_t are linked to the critical parameters γ_{it} , which were the ones deciding how to reallocate units inside the clusters:

$$\gamma_{it} = \begin{cases} 1 & \text{if unit } i \text{ is not reallocated when moving from } t-1 \text{ to } t \\ & \text{(that is, when } c_{i,t-1} = c_{i,t} \text{)} \\ 0 & \text{otherwise} \end{cases}$$

The $\gamma_{it} \stackrel{\text{ind}}{\sim} \text{Ber}(\alpha_t)$ and so the full conditional derivation follows the classical Beta-Binomial model.

DRPM revision 23 / 33

Updating α_t

If time specific α_t :

$$egin{aligned} lpha_t & \overset{ ext{iid}}{\sim} \operatorname{Beta}(a_lpha,b_lpha) \ \gamma_t = (\gamma_{1t},\ldots,\gamma_{nt}) \sim \operatorname{Bin}(n,lpha_t) \ & \Longrightarrow \ f(lpha_t|-) \sim \operatorname{Beta}\left(a_lpha + \sum_{i=1}^n \gamma_{it},b_lpha + n - \sum_{i=1}^n \gamma_{it}
ight) \end{aligned}$$

If time independent α_t (i.e. $\alpha_t = \alpha \ \forall t$):

$$egin{aligned} &lpha \sim \mathsf{Beta}(a_lpha,b_lpha) \ &\gamma = (\gamma_{11},\dots,\gamma_{nT}) \sim \mathsf{Bin}(nT,lpha) \ \implies f(lpha|-) \sim \mathsf{Beta}\left(a_lpha + \sum_{i=1}^n \sum_{t=1}^T \gamma_{it},b_lpha + nT - \sum_{i=1}^n \sum_{t=1}^T \gamma_{it}
ight) \end{aligned}$$

Model variations

The model framework is quite adjustable: the relevant (and most complex) part is just the partition sampling scheme, while the surrounding structure is fairly flexible.

Therefore, it allows easily for possible variations or extensions, about

- changes in the distribution of some parameters;
- definition of where and how to include covariates.

DRPM revision 25 / 33

Distribution choices

Some parameters are updated in the original sampling algorithm through a Metropolis step. However, we could change their distribution to recover also for them a full conditional. This may also speed up the computation.

DRPM revision 26 / 33

Covariates modeling

The partition model proposed originally was able to generate spatial informed clusters evolving over time. The thesis goal is to extend this model to account also for covariates, mainly inside the clusters definition, by updating the EPPF as

$$P(\rho_t|M,\nu_0,X_t) \propto \prod_{i=1}^{k_t} c(S_{jt}|M)g(\boldsymbol{s}_{jt}^{\star}|\nu_0)g(X_{jt}^{\star})$$

but possibly also inside the likelihood of the model; for example acting on the cluster specific parameters, by moving from scalars μ_{jt}^{\star} , which gave

$$Y_{it} \sim \mathcal{N}(\mu_{c_{it},t}^{\star} + \eta_{1i}Y_{i,t-1},\ldots)$$

to regression vectors eta_{it}^{\star} , resulting in

$$Y_{it} \sim \mathcal{N}(\beta_{c_{it},t}^{\star T} \mathbf{x}_{it} + \eta_{1i} Y_{i,t-1}, \ldots)$$

DRPM revision 27 / 33

There are several choices on how to design $g(X_{it}^{\star})$ in

$$P(\rho_t|M,\nu_0,X_t) \propto \prod_{i=1}^{k_t} c(S_{jt}|M)g(\boldsymbol{s}_{jt}^{\star}|\nu_0)g(X_{jt}^{\star})$$

where X_{jt}^{\star} is a $C \times |S_{jt}|$ matrix (seen as set of vectors) of values the covariates for the units in cluster j at time t. In the case of multiple covariates, We can split $g(\cdot)$ into a product of many $g(\cdot)$ s:

$$g(X_{jt}^{\star}) = \prod_{c=1}^{C} g_{(c)}(\mathbf{x}_{(c)jt}^{\star})$$

where $\mathbf{x}_{(c)jt}^{\star}$ is the *c*th row of X_{jt}^{\star} , storing the $|S_{jt}|$ values of the *c*th covariate for units of cluster j at time t. This split possibly could allow to assign different weights on different covariates.

DRPM revision 28 / 33

We now list a possible set of cohesion functions, and wlog we assume to be working with a single covariate vector $\mathbf{x}_{it}^{\star} = \{x_i : i \in S_{jt}\}.$

(1) Auxiliary similarity function: to deal with covariates as if they were random objects.

$$g(\mathbf{x}_{jt}^{\star}) = \int \underbrace{\prod_{i \in S_{jt}} q(\mathbf{x}_i | \mathbf{\xi}_j^{\star}) q(\mathbf{\xi}_j^{\star}) d\mathbf{\xi}_j^{\star}}_{\text{"likelihood" of the covariates}}$$

(2) Double dipper similarity: as in (1) but we use the posterior predictive distribution.

$$g(\mathbf{x}_{jt}^{\star}) = \int \prod_{i \in S_{t}} q(x_i | \boldsymbol{\xi}_j^{\star}) q(\boldsymbol{\xi}_j^{\star} | \mathbf{x}_{jt}^{\star}) d\boldsymbol{\xi}_j^{\star}$$

DRPM revision 29 / 33

(3) Cluster variance/entropy similarity function: this allows easily to account also for categorical covariates.

$$g(\mathbf{x}_{jt}^{\star}) = \exp\left\{-\alpha H(\mathbf{x}_{jt}^{\star})\right\}$$
 continuous
$$H(\mathbf{x}_{jt}^{\star}) = \frac{1}{|S_{jt}|} \sum_{l \in S_{jt}} (x_l - \bar{x}_j)^2$$
 categorical
$$H(\mathbf{x}_{jt}^{\star}) = -\sum_{r=1}^{R} \hat{p}_r \log(\hat{p}_r)$$

where \bar{x}_j is the mean of the values inside x_{jt}^* , while \hat{p}_r is the proportion of values of x_{it}^* belonging to category r.

(4) Total Grower dissimilarity: this and the following can directly work comparing the vectors of covariates.

$$g(X_{jt}^{\star}) = \exp \left\{ -\alpha \sum_{l,k \in S_{jt}: l \neq k} d(\mathbf{x}_{lt}, \mathbf{x}_{kt}) \right\}$$

(5) Average Grower dissimilarity:

$$g(X_{jt}^{\star}) = \exp\left\{-\frac{2\alpha}{|S_{jt}|(|S_{jt}|-1)}\sum_{l,k\in S_{jt}:l\neq k}d(\mathbf{x}_{lt},\mathbf{x}_{kt})\right\}$$

DRPM revision 31 / 33

What's next, and tentative work plan

1 Finishing to understand the partition sampling method ("complex" due to the time dependence introduced by the parameters γ_{it}). july/august?

After that, starting to implement the model with code, choosing

- between Julia or C/C++. july/august/september?
- 3 In the end, testing it on the air pollution dataset. september/october?

As a (not-so)side note, why Julia could suit better?

- more flexible, scalable, readable, and faster (or at least with equal performance, being it also a compiled language) than C/C++.
- support from existing libraries such as Distributions, MCMCChains, Plots, or DataFrames.
- easier exporting procedure on R trough JuliaCall.

DRPM revision 32 / 33

What's next, and tentative work plan

Moreover, Julia has a syntax closer to the mathematical writing.

```
sumg = 0;
for(j = 0; j < *nsubject; j++){}
    for(t = 1; t < *ntime; t++){}
        sumg = sumg + gamma_iter[j*ntime1 + t];
astar = (double) sumg + a;
bstar = (double) ((*nsubject)*(*ntime-1) - sumg) + b;
alpha tmp = rbeta(astar, bstar);
                Figure: C++ code :/
# we can even write math characters
sumg = sum(\gamma_{iter}[j,t]) for j in 1:n, t in 1:T)
astar = a + sumg
bstar = b + n*T - sumg
\alpha \text{ tmp} = rand(Beta(astar, bstar))
```

Figure: Julia code :)