

Correlation-based Malware Detection for Cognitive Radio Networks

Yanzhi Dou, Ph.D. Student Advisor: Dr. Yaling Yang

Introduction:

- Flexibility of CR introduces challenging security and information assurance issues.
- Existing proposals for CR security all have their limitations.
- We propose a new mechanism, called CoMDCR, to enhance the security of CR device itself by monitoring CR applications' behaviors.

Attack Model:

Malicious modification to CR software during download, initialization, and runtime.

System Design

Evaluation Method

- A lack of real malware cases in the field.
- Adopt mutation testing techniques to artificially generate malware-infected versions of CR application programs.

Mutation	Original	Processed	Description
Operator	Number	Number	
JMP	92	74	Reverse Jump Condition
JPT	476	460	Randomize Jump Target
VAR	462	449	Change Variable Value
ARI	799	734	Replace Arithmetic Operator
CMP	308	231	Replace Comparison Operator

Prototype & Evaluation

Conclusion

This paper presents *CoMDCR*, the first approach to learn correlations of CR program's internal behavior to detect malware for cognitive radio networks. It is a new perspective focused on individual CR device for enhancing CR network security.

Data Processing in Behavior Profiler

