Constrained Problems

Christos Dimitrakakis

March 18, 2024

Outline

Introduction

General optimisation problems

Constraint optimisation

Introduction Constraint Satisfaction

Constrained Optimisation Problemss

Logical constraints

Logic

Logic as states

Logic and constraints

Optimisation on graphs

Discrete optimisation

- ► Shortest path.
- Meeting scheduling.
- Travelling salesman.
- Graph colouring.
- ► Bipartite matching.
- Spanning trees

Continuous optimisation

- ► Maximum flow: inequality constraints
- Minimum-cost flow: equality constraints.

Constrained Problems

Introduction

General optimisation problems

Constraint optimisation

Introduction
Constraint Satisfaction

 $Constrained \ Optimisation \ Problemss$

Logical constraints

Logic
Logic as states

Logic and constraints

Constrained Satisfaction Problems

Variables

- ▶ A set of variables $\{x_1, ..., x_n\} \in X$
- ▶ Each variable can take values in $x_i \in X_i$ (it's domain)

Binary constraints

- $c_{i,j}: X_i \times X_j \to \{0,1\}.$
- ▶ A constraint $c_{ii}(x_i)$ is violated when it has the value 1.

Graph representation

▶ Goal: Find $x \in \prod_i X_i$ so that c = 0.

General constraints

Example: Meeting scheduling

- Let x_1, x_2, x_3 be the time three people decide to go to a meeting.
- ▶ They can only meet if $x_1 = x_2$ and $x_2 = x_3$ and $x_3 = x_1$
- Instead of 3 binary constraints, use one constraint: $c = \mathbb{I} \{ \neg (x_1 = x_2 = x_3) \}.$

Here the constraint c is linked to all

variables it affects.

Example: Sudoku

Constraints exist between (a) all numbers in a square (b) all numbers in a row (c) all numbers in a column.

Constrained optimisation Problems

Variables

- ightharpoonup A set of variables $\{x_1,\ldots,x_n\}$
- **Each** variable can take values in $x \in X_i$, with $X \in \prod_i X_i$.

Binary constraints

 $c_{i,j}: X_i \times X_j \to \{0,1\}.$

Objective function

ightharpoonup Maximise $u: X \to \mathbb{R}$.

Special cases:

- $\blacktriangleright u(X) = \sum_i u_i(x_i)$

Network Flow

- ▶ Graph G = (N, E), $s, t \in N$ being the source and sink.
- ▶ Edge capacity $c: E \to \mathbb{R}_+$

Flow $f: E \to \mathbb{R}$

The total flow from source to sink is

$$|f| = \sum_{(s,i)\in E} f_{si} = \sum_{(j,t)\in E} f_{jt}$$

Flow constraints

The flow satisfies the following constraints:

- ▶ Capacity constraint: $f_{ij} \leq c_{ij}$
- Conservation of flows:

$$\forall n \in N \setminus \{s,t\} \sum_{i:(i,j) \in E, f_{ij} > 0} f_i j = \sum_{j:(i,j) \in E, f_{ji} > 0} f_j i.$$

The maximum network flow problem

Maximise |f| while satisfying the capacity and conservation constraints.

Logic and constraints

Introduction

General optimisation problems

Constraint optimisation

Introduction Constraint Satisfaction Constrained Optimisation Problems

Logical constraints

Logic Logic as states Logic and constraints

Logic

Statements

A statement A may be true or false

Unary operators

▶ negation: $\neg A$ is true if A is false (and vice-versa).

Binary operators

- ightharpoonup or: $A \lor B$ (A or B) is true if either A or B are true.
- ▶ and: $A \land B$ is true if both A and B are true.
- ▶ implies: $A \Rightarrow B$: is false if A is true and B is false.
- ▶ iff: $A \Leftrightarrow B$: is true if A, B have equal truth values.

Operator precedence

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

Set theory

- ightharpoonup First, consider some universal set Ω .
- ightharpoonup A set A is a collection of points x in Ω .
- ▶ $\{x \in \Omega : f(x)\}$: the set of points in Ω with the property that f(x) is true.

Unary operators

Binary operators

- ► $A \cup B$ if $\{x \in \Omega : x \in A \lor x \in B\}$ (c.f. $A \lor B$)
- ► $A \cap B$ if $\{x \in \Omega : x \in A \land x \in B\}$ (c.f. $A \land B$)

Binary relations

- $ightharpoonup A \subset B \text{ if } x \in A \Rightarrow x \in B \text{ (c.f. } A \Longrightarrow B)$
- $ightharpoonup A = B \text{ if } x \in A \Leftrightarrow x \in B \text{ (c.f. } A \Leftrightarrow B)$

Knowledge base

- ► Syntax: How to construct sentences
- ► Semantics: What sentences mean

Truth

▶ A statement A is either true or false in any model $m \in \Omega$.

Model

ightharpoonup M(A) the set of all models where A is true.

Entailment

- $ightharpoonup A \models B$ means that B is true whenever A is true.
- ▶ $A \models B$ if and only if $M(A) \subseteq M(B)$.

Knowledge-Base

A set of sentences that are true.

Inference

▶ $KB \vdash_{\pi} A$: Algorithm π can derive A from KB.

Propositional logic syntax

```
-Sentence \rightarrow Atomic | Complex -Atomic \rightarrow True | False | A | B | C | ...-Complex \rightarrow (Sentence) | [Sentence]
```

- ► | ¬ Sentence (not)
- ► | Sentence ∧ Sentence (and)
- ► | Sentence ∨ Sentence (or)
- ► | Sentence ⇒ Sentence (implies)
- ▶ | Sentence ⇔ Sentence (if and only if)

Precedence: $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$

Set theory semantics of propositional logic

Atoms as sets

- \blacktriangleright Let Ω be the universal set.
- ightharpoonup Any atom A is a subset of Ω .
- ightharpoonup Any model ω is an element of Ω .

For any model ω :

- $ightharpoonup \neg P$ is true iff P is false in ω .
- ▶ $P \land Q$ is true iff P, Q are true in ω .
- ▶ $P \lor Q$ is true iff either P or Q is true in ω .
- $ightharpoonup P \Rightarrow Q$ is true unless P is true and Q is false in ω .
- ▶ $P \Leftrightarrow Q$ if P, Q are both true or both false in ω .
- ▶ If $A \subset B$ then, for every $\omega \in A$, $\omega \in B$.
- ▶ If $\omega \in A \cap B$ then $\omega \in A$.

Factored state representation

Predicates for coffee-making

- $ightharpoonup x_c$ (machine has cup)
- \triangleright x_g (machine has grains)
- \triangleright x_m (machine is on)
- $\triangleright x_w$ (machine has water)

To make coffee, $x_c \wedge x_g \wedge x_m \wedge x_w$ must be true.

From n-ary to binary constraints

Take meeting scheduling as an example. The constraint $c = \mathbb{I} \{ \neg (x_1 = x_2 = x_3) \}$ can be rewritten using the fact that $\neg (A \land B) = (\neg A) \lor (\neg B)$:

$$\neg(x_1 = x_2 = x_3) = \neg(x_1 = x_2 \land x_2 = x_3 \land x_3 = x_1)$$

= $x_1 \neq x_2 \lor x_2 \neq x_3 \lor x_3 \neq x_1.$

This leads to:

$$c = \mathbb{I}\{x_1 \neq x_2\} + \mathbb{I}\{x_2 \neq x_3\} + \mathbb{I}\{x_3 \neq x_1\}.$$

Since any constraint can be decomposed into the form

$$c = c_1 + c_2 + \cdots + c_n$$

we can always rewrite n-ary constraints as a collection of binary constraints.