

7049149481

09/05/2025 10:27

Nome: Matrícula: _____

Disciplina: ARA0301 / PROGRAMAÇÃO DE MICROCONTROLADORES

Data: ___ /___/___

Período: **2025.1/SM1** Turma: **3018** NSQ: **13383225**

Leia com atenção as questões antes de responder.

É proibido o uso de equipamentos eletrônicos portáteis e consulta a materiais de qualquer natureza durante a realização da prova.

Boa prova.

_____ de **0,10**

Qual o nome do componente abaixo que podemos inserir em um projeto de automação em arduino:

▲□ Resistor

B Buzzer

□ Módulo de Comunicação

■ Motor

E □ Potenciômetro

2. ____ de **0,10**

Arduino é uma plataforma de eletrônica aberta para a criação de protótipos baseada em software e hardware livres, flexíveis e fáceis de usar. O Arduino pode adquirir informação do ambiente através de seus pinos de entrada, para isso uma completa gama de sensores pode ser usada. Por outro lado, o Arduino pode atuar no ambiente controlando luzes, motores ou outros atuadores. Os campos de atuação para o controle de sistemas são imensos, podendo ter aplicações na área de impressão 3D, robótica, engenharia de transportes, engenharia agronômica, musical, moda e tantas outras. O microcontrolador da placa Arduino é programado mediante a linguagem de programação Arduino, baseada em *Wiring*, e o ambiente de desenvolvimento (IDE) está baseado em *Processing*, uma linguagem de programação de código aberto.

Em relação à programação do Arduino, a primeira coluna apresenta as três partes principais em que um programa pode ser dividido e a segundacoluna, exemplo de cada uma das partes. Numere a segunda coluna de acordo com a primeira.

- 1- Estrutura
- 2-Variáveis
- 3- Funções

Assinale a sequência correta.	
A□ 1, 2, 3 B□ 3, 2, 1 c□ 2, 1, 3 D□ 2, 3, 1	
E ■ 3, 1, 2	
de 0	,10
Um sensor é um dispositivo que faz a detecção e responde com eficiência a algumas entradas provenientes de um ambier físico. Essas entradas podem ser: uma luz, o calor, um movimento, umidade, pressão ou qualquer variável detectável em u ambiente. A Figura abaixo representa um sensor. Selecione a opção que descreve corretamente o Sensor e seu funcionamento.	
 A□ O sensor é o de Pressão também é conhecido como barômetro, tem como finalidade fazer a medição de pressão atmosférica e temperatura. 	
B ☐ O sensor é o de Batimentos Cardíacos, que é um dispositivo óptico que tem a capacidade de medir os batimentos cardíacos.	
© O sensor é o de líquido de superfície, pode ser empregado para proteger subpisos de sala de telefone e computador, tanques de armazenamento de água, tubulações de aquecedor de água, banheiros, lavanderias, ar condicionado e bandeja coletora de geladeira quando a água ou outro líquido entrar em contato.	
O sensor se trata do <i>Light Dependent Resistor</i> (LDR) que tem a capacidade de variar a sua resistência em função da intensidade de luz que incide sobre ele.	
O sensor é o PIR, que é capaz de detectar movimento de objetos que exalam calor e que estejam dentro do seu ra de detecção.	io
4de 0	,10
A linguagem C/C++ é muita utilizada em sistemas embarcados para a programação de microcontroladores e processador digitais de sinais. Analise o código abaixo em C/C++:	es
#include	
using namespace std;	
int main() {	
const int max = 3; int $x[6]=\{0\}$;	

() pinMode() () while () HIGH | LOW

int z, i;

5. _____ de **0,10**

Observe o protótipo abaixo desenvolvido em um simulador. Sobre o projeto para que ele execute a função de ao apertar o botão estabeleça o ascender do led, precisamos de uma variável para ler o valor do pino onde está localizado a conexão do botão na entrada/saída digital e armazenar em uma variável que irá controlar o estado do botão (HIGH ou LOW, ou ainda, 1 ou 0). Se as variáveis citadas recebem, respectivamente, os nomes: botaoPin e estadoBotao. Qual a linha abaixo que deve ser inserida no código para esta ação?


```
    A□ botãoPin = digitalRead(estadoBotao)
    B□ estadoBotao = digitalWrite(botaoPin)
    c□ botãoPin = digitalWrite(estadoBotao)
```

■ estadoBotao = digitalRead(botaoPin)

6. _____ de **0,10**

O Tinkercad é uma ferramenta disponibilizada na Internet, de forma totalmente gratuita, pela Autodesk. Por meio dele, é possível montar e simular vários circuitos eletrônicos, sendo possível inclusive empregar o Arduino como componente ne sses circuitos. Dentre todas as suas aplicações e vantagens, é possível afirmar que o Tinkercad é uma alternativa adequada para o aprendizado de circuitos eletrônicos, porque:

▲☐ não permite implementação de código com a linguagem C++

■ impede um aprendizado mais rápido, dinâmico e sem riscos de queimar componentes.				
possibilita impor limites em seus componentes				
permite um aprendizado mais lento e com risco de queimar componentes.				
permite um aprendizado rápido, prático e sem riscos de queimar componentes				
7. de 0,1 0				
obre os microcontroladores, assinale a alternativa correta.				
O microcontrolador é destinado apenas à execução de operações matemáticas, para armazenamento de dados, deve-se utilizar memórias externas.				
A arquitetura RISC é caracterizada por um conjunto de instruções extenso, o qual permite maior flexibilidade na programação do microcontrolador.				
Devido ao alto custo dos microcontroladores não é possível utilizá-los em projetos de baixo custo.				
□ ■ Na arquitetura de Von Neuman, uma única área de memória pode ser destinada para o armazenamento de dados				
(variáveis) e do programa a ser executado (software).				
Ao ocorrer uma interrupção externa e a chamada de uma função auxiliar, o fluxo do programa principal se altera e, quando essa função termina, o fluxo retorna para a primeira linha do programa principal.				
8de 0,1 0				
um componente responsável por permitir o armazenamento de carga elétricas. Utilizado em produtos eletrônicos para nanter o fluxo de corrente elétrica continuo. Sua unidade de medida é a Farad. Este componente é:				
Fotoresistor Transistor CX Capacitor Display de LCD E Servo motor				
9 de 0,1 0				
nalise o código a seguir.				
nt meu_sensor = 8; nt i = 0;				
oid setup() { pinMode(meu_sensor, OUTPUT);				
oid loop() { for (i; i < 5; i++) { tone(meu_sensor, 1500); delay(500); noTone(meu_sensor); delay(500);				
pós analisar o código acima, você precisa identificar qual sensor foi utilizado, representado no código pela variável neu_sensor e o que ele faz ao ser executado.				
O sensor utilizado foi um relé. Este projeto aciona este componente em uma determinada frequência e intervalo de tempo gerando um corte de corrente.				

B O sensor utilizado foi um ldr. Este projeto aciona este componente em uma determinada frequência e intervalo de

C O sensor utilizado foi uma solenoide. Este projeto aciona este componente em uma determinada frequência e

intervalo de tempo fazendo a abertura e fechamento automaticamente.

tempo gerando um alerta luminoso.

D X	de tempo gerando um som.		
10.		de 0,10	
Em um	a associação de resistores em série, a resistência elétrica equivalente é obtida:		
AX BC DD E	da soma das resistências individuais. do quadrado das resistências individuais. da raiz quadrada das resistências individuais. da divisão das resistências individuais. do produto das resistências individuais.		
Campu POLO I	s: UNIRUY PARALELA - SALVADOR - BA	Prova Impressa em 09/05/2025 por HELENO CARDOSO DA SILVA FILHO	
Ref.: 7	049149481	Prova Montada em 25/04/2025	