21:19

February 7, 2023

11.1 Subgroups

For a group G with operation  $\cdot$ , if  $H\subseteq G$ , and it's a group with the same operation  $\cdot$ , then H is a subgroup

Notation: If *H* is a subgroup of *G*:  $H \le G$ , H < G (if  $H \ne G$ )

11.2 Subgroup Test

Suppose H is a subset of G, then if:

- $H \neq \emptyset$
- $x, y \in H \rightarrow x \cdot y \in H$
- $x \in H \rightarrow x^{-1} \in H$

Then *H* is a subgroup

+ Theorems

- ▶ If  $H \leq G$ , then  $\epsilon_G \in H$  and  $\epsilon_H = \epsilon_G$
- ▶ If  $H_1 \le G$  and  $H_2 \le G$ , then  $H_1 \cap H_2 \le G$
- ▶ If  $K \le H_1$  and  $K \le H_2$ , then  $K \le H_1 \cap H_2$
- For  $H_1 \le G$  and  $H_2 \le G$ : If  $H_1 \cup H_2 \le G$ , then  $H_1 \le H_2$  or  $H_2 \le H_1$

11.3 Product Set

If  $S \subseteq G$ , then  $\langle S \rangle$  is the set of all possible products of elements in S and their inverses

+ Theorems

- $S \subseteq G \to \langle S \rangle \leq G$
- ▶ If  $H_1 \le K$  and  $H_2 \le K$ , then  $\langle H_1 \cup H_2 \rangle \le K$

11.3 Lattices

It's a diagram of subgroups, where each line connecting H and K (with K vertically higher than H in the diagram) means  $H \leq K$ 

Note: If  $H \le K$ , and we have some subgroup F such that  $H \le F \le K$ , then F = H or F = K

**Lattice Example:** 

