Lectures 5: Class demo

Contents

- Imports
- Incorporating text features in the Spotify dataset
- (Optional) Incorporating text features in the restaurant survey dataset

Imports

```
# import the libraries
import os
import sys
sys.path.append(os.path.join(os.path.abspath(".."), (".."), "code"))
from plotting functions import *
from utils import *
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.compose import make column transformer
from sklearn.feature extraction.text import CountVectorizer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
%matplotlib inline
pd.set_option("display.max_colwidth", 200)
DATA DIR = os.path.join(os.path.abspath(".."), (".."), "data/")
pd.set_option("display.max_colwidth", 200)
```

Incorporating text features in the Spotify dataset

Recall that we had dropped song_title feature when we worked with the Spotify dataset in Lab 1.

Let's try to include it in our pipeline and examine whether we get better results.

```
spotify_df = pd.read_csv(DATA_DIR + "spotify.csv", index_col=0)
X_spotify = spotify_df.drop(columns=["target"])
y_spotify = spotify_df["target"]
```

```
X_train, X_test, y_train, y_test = train_test_split(
     X_spotify, y_spotify, test_size=0.2, random_state=123
)
```

```
X_train.shape
```

```
(1613, 15)
```

X_train

	acousticness	danceability	duration_ms	energy	instrumentalness	key
1505	0.004770	0.585	214740	0.614	0.000155	10
813	0.114000	0.665	216728	0.513	0.303000	0
615	0.030200	0.798	216585	0.481	0.000000	7
319	0.106000	0.912	194040	0.317	0.000208	6
320	0.021100	0.697	236456	0.905	0.893000	6
•••						•••
2012	0.001060	0.584	274404	0.932	0.002690	1
1346	0.000021	0.535	203500	0.974	0.000149	10
1406	0.503000	0.410	256333	0.648	0.000000	7
1389	0.705000	0.894	222307	0.161	0.003300	4
1534	0.623000	0.470	394920	0.156	0.187000	2

1613 rows × 15 columns

X_train.columns

Dummy model

```
from sklearn.dummy import DummyClassifier

results = {}
dummy_model = DummyClassifier()
# mean_std_cross_val_scores is defined in ../code/utils.py
results['dummy'] = mean_std_cross_val_scores(dummy_model, X_train, y_train, re
pd.DataFrame(results)
```

	dummy
fit_time	0.000 (+/- 0.000)
score_time	0.000 (+/- 0.000)
test_score	0.508 (+/- 0.001)
train_score	0.508 (+/- 0.000)

Feature categorization

```
X_train.columns
```

```
X_train["key"].value_counts()
```

```
key
1
      200
7
      169
0
      166
9
      152
2
      145
11
      143
      141
5
6
      127
10
      122
8
      110
4
        88
3
        50
Name: count, dtype: int64
```

```
X_train["time_signature"].value_counts()
```

```
time_signature
4.0 1514
3.0 76
5.0 22
1.0 1
Name: count, dtype: int64
```

```
X_train["mode"].value_counts()
```

```
mode
1 1002
0 611
Name: count, dtype: int64
```

Let's look at the distribution of values in the song_title column.

```
X_train["song_title"].value_counts()
```

```
song_title
Pyramids
                                               2
Look At Wrist
                                               2
Baby
                                               2
The One
                                               2
Best Friend
                                               2
City Of Dreams - Radio Edit
                                               1
Face It
                                               1
The Winner Is - from Little Miss Sunshine
                                               1
History
                                               1
Blue Ballad
                                               1
Name: count, Length: 1579, dtype: int64
```

- Most of the song titles are unique, which makes sense.
- What would happen if we apply one-hot encoding to this feature?
- How about encoding this as a text feature?

```
X_train["artist"].value_counts()
```

```
artist
Drake
                    14
Disclosure
                    12
Rick Ross
                    11
WALK THE MOON
                    10
Crystal Castles
                    . .
Classixx
                     1
Jordan Feliz
                     1
Travis Hayes
                     1
The Silvertones
                     1
Phil Woods
Name: count, Length: 1131, dtype: int64
```


Note that unlike other feature types we are defining text_feature as a string and not as a list.

Column transformer without song_title and artist features

Visualizing the transformed data

```
transformed_no_text = preprocessor_no_text.fit_transform(X_train)
transformed_no_text.shape

(1613, 26)

preprocessor_no_text

ColumnTransformer
standardscaler
passthrough
StandardScaler
passthrough
OneHotEncoder

OneHotEncoder

OneHotEncoder
```

```
ohe_feat_names = preprocessor_no_text.named_transformers_["onehotencoder"].get
ohe_feat_names
```

```
['time_signature_1.0',
 'time_signature_3.0',
 'time_signature_4.0',
 'time_signature_5.0',
 'key_0',
 'key_1',
 'key_2',
 'key_3',
 'key_4',
 'key_5',
 'key_6',
 'key_7',
 'key_8',
 'key_9',
 'key_10',
 'key_11']
```

```
feat_names = numeric_feats + passthrough_feats + ohe_feat_names
```

pd.DataFrame(transformed_no_text, columns=feat_names)

	acousticness	danceability	energy	instrumentalness	liveness	loud
0	-0.697633	-0.194548	-0.318116	-0.492359	-0.737898	0.39
1	-0.276291	0.295726	-0.795552	0.598355	-0.438792	-0.05
2	-0.599540	1.110806	-0.946819	-0.492917	-0.399607	-0.87
3	-0.307150	1.809445	-1.722063	-0.492168	-0.763368	-1.46
4	-0.634642	0.491835	1.057468	2.723273	-0.458384	-0.17
•••	•••	•••	•••			
1608	-0.711944	-0.200676	1.185100	-0.483229	-0.393077	0.9
1609	-0.715953	-0.500969	1.383637	-0.492380	0.482038	0.92
1610	1.224228	-1.267021	-0.157395	-0.492917	0.194687	36.0
1611	2.003419	1.699134	-2.459489	-0.481032	0.802042	-1.87
1612	1.687114	-0.899316	-2.483125	0.180574	-0.556344	-2.58

1613 rows × 26 columns

Building models

```
models = {
    "Decision Tree": DecisionTreeClassifier(),
    "KNN": KNeighborsClassifier(),
    "SVM": SVC()
}

for (name, model) in models.items():
    pipe_model = make_pipeline(preprocessor_no_text, model)
    results[name + " (no_text)"] = mean_std_cross_val_scores(pipe_model, X_trapd.DataFrame(results).T
```

	fit_time	score_time	test_score	train_score
dummy	0.000 (+/-	0.000 (+/-	0.508 (+/-	0.508 (+/-
	0.000)	0.000)	0.001)	0.000)
Decision Tree (no_text)	0.011 (+/-	0.001 (+/-	0.693 (+/-	1.000 (+/-
	0.000)	0.000)	0.029)	0.000)
KNN (no_text)	0.002 (+/-	0.012 (+/-	0.676 (+/-	0.788 (+/-
	0.000)	0.022)	0.028)	0.009)
SVM (no_text)	0.024 (+/-	0.011 (+/-	0.737 (+/-	0.806 (+/-
	0.001)	0.000)	0.017)	0.011)

Incorporating "song_title" feature

Let's incorporate bag-of-words representation of "song_title" feature in our column transformer.

```
numeric_feats
```

```
['acousticness',
  'danceability',
  'energy',
  'instrumentalness',
  'liveness',
  'loudness',
  'speechiness',
  'tempo',
  'valence']
```

```
text_feat
```

```
'song_title'
```

```
# Transform the data
transformed = preprocessor.fit_transform(X_train)
```

preprocessor

ColumnTransformer

```
# Get the vocabulary
vocab = preprocessor.named_transformers_['countvectorizer'].get_feature_names_
```

column_names = numeric_feats + passthrough_feats + ohe_feat_names + vocab.toli
len(column_names)

1910

```
df = pd.DataFrame(transformed.toarray(), columns=column_names)
df
```

	acousticness	danceability	energy	instrumentalness	liveness	loud
0	-0.697633	-0.194548	-0.318116	-0.492359	-0.737898	0.39
1	-0.276291	0.295726	-0.795552	0.598355	-0.438792	-0.05
2	-0.599540	1.110806	-0.946819	-0.492917	-0.399607	-0.87
3	-0.307150	1.809445	-1.722063	-0.492168	-0.763368	-1.46
4	-0.634642	0.491835	1.057468	2.723273	-0.458384	-0.17
•••	•••					
1608	-0.711944	-0.200676	1.185100	-0.483229	-0.393077	0.9
1609	-0.715953	-0.500969	1.383637	-0.492380	0.482038	0.92
1610	1.224228	-1.267021	-0.157395	-0.492917	0.194687	0.68
1611	2.003419	1.699134	-2.459489	-0.481032	0.802042	-1.87
1612	1.687114	-0.899316	-2.483125	0.180574	-0.556344	-2.58

1613 rows × 1910 columns

Visualizing the vocabulary

vocab[0:10]

```
array(['000', '10', '100', '10cm', '11', '112', '12', '1208', '144', '18'], dtype=object)
```

```
vocab[500:510]
```

```
array(['duele', 'duet', 'duke', 'dustland', 'dutchie', 'dynamite', 'earth', 'easy', 'echelon'], dtype=object)
```

vocab[1800:1810]

vocab[0::100]

Let's find songs containing the word earth in them.

```
earth_index_vocab = np.where(vocab == "earth")[0][0]
earth_index_vocab
```

```
np.int64(506)
```

```
earth_index_in_df = len(numeric_feats) + len(passthrough_feats) + len(ohe_feater)
earth_index_in_df
```

```
np.int64(532)
```

```
earth_songs = df[df.iloc[:, earth_index_in_df] == 1]
earth_songs.iloc[:, earth_index_in_df - 2 : earth_index_in_df + 2]
```

	dutchie	dynamite	earth	easy
380	0.0	0.0	1.0	0.0
639	0.0	0.0	1.0	0.0

```
earth_songs.index
```

```
Index([380, 639], dtype='int64')
```

```
X_train.iloc[earth_songs.index]["song_title"]
```

```
1851 Softest Place On Earth
1948 Earth Song - Remastered Version
Name: song_title, dtype: object
```

Model building

```
models = {
    "Decision Tree": DecisionTreeClassifier(),
    "KNN": KNeighborsClassifier(),
    "SVM": SVC()
}

for (name, model) in models.items():
    pipe_model = make_pipeline(preprocessor, model)
    results[name + " (text)"] = mean_std_cross_val_scores(pipe_model, X_train, pd.DataFrame(results).T
```

	fit_time	score_time	test_score	train_score
dummy	0.000 (+/-	0.000 (+/-	0.508 (+/-	0.508 (+/-
	0.000)	0.000)	0.001)	0.000)
Decision Tree	0.011 (+/-	0.001 (+/-	0.693 (+/-	1.000 (+/-
(no_text)	0.000)	0.000)	0.029)	0.000)
KNN (no_text)	0.002 (+/-	0.012 (+/-	0.676 (+/-	0.788 (+/-
	0.000)	0.022)	0.028)	0.009)
SVM (no_text)	0.024 (+/-	0.011 (+/-	0.737 (+/-	0.806 (+/-
	0.001)	0.000)	0.017)	0.011)
Decision Tree	0.024 (+/-	0.003 (+/-	0.705 (+/-	1.000 (+/-
(text)	0.001)	0.000)	0.025)	0.000)
KNN (text)	0.007 (+/-	0.013 (+/-	0.682 (+/-	0.786 (+/-
	0.000)	0.002)	0.028)	0.010)
SVM (text)	0.054 (+/-	0.012 (+/-	0.733 (+/-	0.866 (+/-
	0.002)	0.000)	0.027)	0.004)

- Not a big difference in the results.
- Seems like there is more overfitting when we included the song_title feature.
- The training score of SVC is much higher when we include all features. Hyperparameter optimization of C and gamma may help.
- What about the artist column?
- Does it make sense to apply BOW encoding to it?
- Let's look at the distribution of values in the artist column.

```
X_train['artist'].value_counts()
```

```
artist
Drake
                   14
Disclosure
                    12
Rick Ross
                    11
WALK THE MOON
                    10
Crystal Castles
Classixx
                     1
Jordan Feliz
                     1
Travis Hayes
                     1
The Silvertones
                     1
Phil Woods
                     1
Name: count, Length: 1131, dtype: int64
```

```
most_frequent = X_train["artist"].value_counts().iloc[:15]
most_frequent
```

```
artist
Drake
                    14
Disclosure
                    12
Rick Ross
                    11
WALK THE MOON
                    10
Crystal Castles
                     8
Big Time Rush
                     8
FIDLAR
                     8
Fall Out Boy
                     8
Demi Lovato
                     7
Kanye West
                     7
Kina Grannis
                     7
Backstreet Boys
                     7
Beach House
                     6
Young Thug
                     6
*NSYNC
                     6
Name: count, dtype: int64
```

```
models = {
    "Decision Tree": DecisionTreeClassifier(),
    "KNN": KNeighborsClassifier(),
    "SVM": SVC()
}

for (name, model) in models.items():
    pipe_model = make_pipeline(preprocessor_artist, model)
    results[name + " (all)"] = mean_std_cross_val_scores(pipe_model, X_train,
pd.DataFrame(results).T
```

	fit_time	score_time	test_score	train_score
dummy	0.000 (+/-	0.000 (+/-	0.508 (+/-	0.508 (+/-
	0.000)	0.000)	0.001)	0.000)
Decision Tree (no_text)	0.011 (+/-	0.001 (+/-	0.693 (+/-	1.000 (+/-
	0.000)	0.000)	0.029)	0.000)
KNN (no_text)	0.002 (+/-	0.012 (+/-	0.676 (+/-	0.788 (+/-
	0.000)	0.022)	0.028)	0.009)
SVM (no_text)	0.024 (+/-	0.011 (+/-	0.737 (+/-	0.806 (+/-
	0.001)	0.000)	0.017)	0.011)
Decision Tree	0.024 (+/-	0.003 (+/-	0.705 (+/-	1.000 (+/-
(text)	0.001)	0.000)	0.025)	0.000)
KNN (text)	0.007 (+/-	0.013 (+/-	0.682 (+/-	0.786 (+/-
	0.000)	0.002)	0.028)	0.010)
SVM (text)	0.054 (+/-	0.012 (+/-	0.733 (+/-	0.866 (+/-
	0.002)	0.000)	0.027)	0.004)
Decision Tree (all)	0.019 (+/-	0.003 (+/-	0.683 (+/-	1.000 (+/-
	0.000)	0.000)	0.019)	0.000)
KNN (all)	0.008 (+/-	0.013 (+/-	0.681 (+/-	0.792 (+/-
	0.000)	0.000)	0.032)	0.008)
SVM (all)	0.041 (+/-	0.010 (+/-	0.741 (+/-	0.833 (+/-
	0.000)	0.000)	0.027)	0.006)

Tiny bit improvement in the mean CV scores but we are still overfitting.

(Optional) Incorporating text features in the restaurant survey dataset

Do you recall the restaurants survey you completed at the start of the course?

Let's use that data for this demo. You'll find a wrangled version in the course repository.

df = pd.read_csv(DATA_DIR + 'cleaned_restaurant_data.csv')

df

	north_america	eat_out_freq	age	n_people	price	food_type	noi
0	Yes	3.0	29	10.0	120.0	Italian	
1	Yes	2.0	23	3.0	20.0	Canadian/American	
2	Yes	2.0	21	20.0	15.0	Chinese	
3	No	2.0	24	14.0	18.0	Other	
4	Yes	5.0	23	30.0	20.0	Chinese	
•••			•••	•••	•••		
959	No	10.0	22	NaN	NaN	NaN	
960	Yes	1.0	20	NaN	NaN	NaN	
961	No	1.0	22	40.0	50.0	Chinese	
962	Yes	3.0	21	NaN	NaN	NaN	
963	Yes	3.0	27	20.0	22.0	Other	

964 rows × 11 columns

df.describe()

	eat_out_freq	age	n_people	price
count	964.000000	964.000000	6.960000e+02	696.000000
mean	2.585187	23.975104	1.439254e+04	1472.179152
std	2.246486	4.556716	3.790481e+05	37903.575636
min	0.000000	10.000000	-2.000000e+00	0.000000
25%	1.000000	21.000000	1.000000e+01	18.000000
50%	2.000000	22.000000	2.000000e+01	25.000000
75%	3.000000	26.000000	3.000000e+01	40.000000
max	15.000000	46.000000	1.000000e+07	1000000.000000

Are there any unusual values in this data that you notice? Let's get rid of these outliers.

```
upperbound_price = 200
lowerbound_people = 1
df = df[~(df['price'] > 200)]
restaurant_df = df[~(df['n_people'] < lowerbound_people)]
restaurant_df.shape</pre>
```

(942, 11)

restaurant_df.describe()

	eat_out_freq	age	n_people	price
count	942.000000	942.000000	674.000000	674.000000
mean	2.598057	23.992569	24.973294	34.023279
std	2.257787	4.582570	22.016660	29.018622
min	0.000000	10.000000	1.000000	0.000000
25%	1.000000	21.000000	10.000000	18.000000
50%	2.000000	22.000000	20.000000	25.000000
75%	3.000000	26.000000	30.000000	40.000000
max	15.000000	46.000000	200.000000	200.000000

Data splitting

We aim to predict whether a restaurant is liked or disliked.

```
# Separate `X` and `y`.

X = restaurant_df.drop(columns=['target'])
y = restaurant_df['target']
```

Below I'm perturbing this data just to demonstrate a few concepts. Don't do it in real life.

```
X.at[459, 'food_type'] = 'Quebecois'
X['price'] = X['price'] * 100
```

```
# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rando
```

EDA

X_train.hist(bins=20, figsize=(12, 8));

Do you see anything interesting in these plots?

```
X_train['food_type'].value_counts()
```

```
food_type
0ther
                      189
Canadian/American
                      131
Chinese
                      102
Indian
                       36
Italian
                       32
Thai
                       20
Fusion
                       18
Mexican
                       17
fusion
                        3
Quebecois
Name: count, dtype: int64
```

Error in data collection? Probably "Fusion" and "fusion" categories should be combined?

```
X_train['food_type'] = X_train['food_type'].replace("fusion", "Fusion")
X_test['food_type'] = X_test['food_type'].replace("fusion", "Fusion")
```

```
X_train['food_type'].value_counts()
```

```
food type
0ther
                      189
Canadian/American
                      131
Chinese
                      102
Indian
                       36
Italian
                       32
Fusion
                       21
Thai
                       20
Mexican
                       17
Quebecois
                        1
Name: count, dtype: int64
```

Again, usually we should spend lots of time in EDA, but let's stop here so that we have time to learn about transformers and pipelines.

Dummy Classifier

```
from sklearn.dummy import DummyClassifier

results_df = {}
dummy = DummyClassifier()
results_df['dummy'] = mean_std_cross_val_scores(dummy, X_train, y_train, retur
pd.DataFrame(results_df)
```

	dummy
fit_time	0.000 (+/- 0.000)
score_time	0.000 (+/- 0.000)
test_score	0.515 (+/- 0.002)
train_score	0.515 (+/- 0.000)

We have a relatively balanced distribution of both 'like' and 'dislike' classes.

Preprocessing

How can we horizontally stack

- preprocessed numeric features,
- preprocessed binary features,
- · preprocessed ordinal features, and
- preprocessed categorical features?

Let's define a column transformer.

```
numeric_feats = ['age', 'n_people', 'price'] # Continuous and quantitative fea
categorical_feats = ['north_america', 'food_type'] # Discrete and qualitative
binary_feats = ['good_server'] # Categorical features with only two possible v
ordinal_feats = ['noise_level'] # Some natural ordering in the categories
noise_cats = ['no music', 'low', 'medium', 'high', 'crazy loud']
drop_feats = ['comments', 'restaurant_name', 'eat_out_freq'] # Dropping text f
```

```
X_train['noise_level'].value_counts()
```

```
noise_level
medium 232
low 186
high 75
no music 37
crazy loud 18
Name: count, dtype: int64
```

```
noise_levels = ["no music", "low", "medium", "high", "crazy loud"]
```

```
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import OrdinalEncoder
from sklearn.compose import make column transformer
numeric transformer = make pipeline(SimpleImputer(strategy="median"),
                                    StandardScaler())
binary_transformer = make_pipeline(SimpleImputer(strategy="most_frequent"),
                                    OneHotEncoder(drop="if binary"))
ordinal_transformer = make_pipeline(SimpleImputer(strategy="most_frequent"),
                                    OrdinalEncoder(categories=[noise_levels]))
categorical_transformer = make_pipeline(SimpleImputer(strategy="most_frequent"
                                    OneHotEncoder(sparse output=False, handle
preprocessor = make_column_transformer(
    (numeric_transformer, numeric_feats),
    (binary_transformer, binary_feats),
    (ordinal_transformer, ordinal_feats),
    (categorical_transformer, categorical_feats),
    ("drop", drop_feats)
)
```

How does the transformed data look like?

```
transformed = preprocessor.fit_transform(X_train)
transformed.shape
```

```
(753, 17)
```

preprocessor

```
ColumnTransformer

pipeline-1

pipeline-2

SimpleImputer

SimpleImputer

OneHotEncoder

OrdinalEncoder
```

Getting feature names from a column transformer
ohe_feat_names = preprocessor.named_transformers_['pipeline-4']['onehotencoder
ohe_feat_names

```
["north_america_Don't want to share",
   'north_america_No',
   'north_america_Yes',
   'food_type_Canadian/American',
   'food_type_Chinese',
   'food_type_Fusion',
   'food_type_Indian',
   'food_type_Italian',
   'food_type_Mexican',
   'food_type_Other',
   'food_type_Quebecois',
   'food_type_Thai']
```

numeric_feats

```
['age', 'n_people', 'price']
```

```
feat_names = numeric_feats + binary_feats + ordinal_feats + ohe_feat_names
```

transformed

```
pd.DataFrame(transformed, columns = feat_names)
```

	age	n_people	price	good_server	noise_level	north_america_ want to
0	-0.669417	0.310295	-0.368406	0.0	3.0	
1	-0.669417	0.310295	-0.054225	1.0	1.0	
2	-0.895154	0.823364	-0.250588	1.0	2.0	
3	-0.669417	-0.202775	-0.250588	1.0	2.0	
4	0.007794	-0.202775	-0.054225	1.0	3.0	
•••						
748	0.685006	-0.715845	-0.643315	1.0	2.0	
749	0.007794	-0.613231	-0.918224	1.0	2.0	
750	-0.895154	-0.972379	-0.643315	0.0	1.0	
751	-0.895154	-0.202775	-0.250588	1.0	2.0	
752	-0.895154	1.336434	-0.054225	1.0	3.0	

753 rows × 17 columns

We have new columns for the categorical features. Let's create a pipeline with the preprocessor and SVC.

	fit_time	score_time	test_score	train_score
dummy	0.000 (+/-	0.000 (+/-	0.515 (+/-	0.515 (+/-
	0.000)	0.000)	0.002)	0.000)
Decision Tree (numeric-only)	0.003 (+/-	0.001 (+/-	0.501 (+/-	0.833 (+/-
	0.002)	0.000)	0.033)	0.010)
KNN (numeric-only)	0.002 (+/-	0.004 (+/-	0.525 (+/-	0.674 (+/-
	0.000)	0.000)	0.034)	0.015)
SVM (numeric-only)	0.006 (+/-	0.003 (+/-	0.587 (+/-	0.623 (+/-
	0.000)	0.000)	0.033)	0.006)

```
for (name, model) in models.items():
    pipe_model = make_pipeline(preprocessor, model)
    results_df[name + '(non-text feats)'] = mean_std_cross_val_scores(pipe_mod
pd.DataFrame(results_df).T
```

	fit_time	score_time	test_score	train_score
dummy	0.000 (+/-	0.000 (+/-	0.515 (+/-	0.515 (+/-
	0.000)	0.000)	0.002)	0.000)
Decision Tree (numeric-only)	0.003 (+/-	0.001 (+/-	0.501 (+/-	0.833 (+/-
	0.002)	0.000)	0.033)	0.010)
KNN (numeric-only)	0.002 (+/-	0.004 (+/-	0.525 (+/-	0.674 (+/-
	0.000)	0.000)	0.034)	0.015)
SVM (numeric-only)	0.006 (+/-	0.003 (+/-	0.587 (+/-	0.623 (+/-
	0.000)	0.000)	0.033)	0.006)
Decision Tree(non-	0.007 (+/-	0.003 (+/-	0.606 (+/-	0.889 (+/-
text feats)	0.000)	0.000)	0.041)	0.008)
KNN(non-text feats)	0.006 (+/-	0.003 (+/-	0.600 (+/-	0.736 (+/-
	0.000)	0.000)	0.024)	0.007)
SVM(non-text feats)	0.010 (+/-	0.005 (+/-	0.687 (+/-	0.733 (+/-
	0.000)	0.000)	0.011)	0.008)

We are getting better results when we include numeric, categorical, binary, ordinal features.

Incorporating text features

We haven't incorporated the comments feature into our pipeline yet, even though it holds significant value in indicating whether the restaurant was liked or not.

X_train

	north_america	eat_out_freq	age	n_people	price	food_type	n
80	No	2.0	21	30.0	2200.0	Chinese	
934	Yes	4.0	21	30.0	3000.0	Canadian/American	
911	No	4.0	20	40.0	2500.0	Canadian/American	
459	Yes	5.0	21	NaN	NaN	Quebecois	
62	Yes	2.0	24	20.0	3000.0	Indian	
•••	•••	•••	•••	•••	•••		
106	No	3.0	27	10.0	1500.0	Chinese	
333	No	1.0	24	12.0	800.0	Other	
393	Yes	4.0	20	5.0	1500.0	Canadian/American	
376	Yes	5.0	20	NaN	NaN	NaN	
525	Don't want to share	4.0	20	50.0	3000.0	Chinese	

753 rows × 10 columns

Let's create bag-of-words representation of the comments feature. But first we need to impute the rows where there are no comments. There is a small complication if we want to put SimpleImputer and CountVectorizer in a pipeline.

- SimpleImputer takes a 2D array as input and produced 2D array as output.
- CountVectorizer takes a 1D array as input.

To deal with this, we will use sklearn's FunctionTransformer to convert the 2D output of SimpleImputer into a 1D array which can be passed to CountVectorizer as input.

```
np.float64(0.6493951434878588)
```

Pretty good scores just with text features! Let's examine the transformed data.

```
transformed = text_transformer.fit_transform(X_train[['comments']], y_train)
```

transformed

```
<Compressed Sparse Row sparse matrix of dtype 'int64'
    with 1841 stored elements and shape (753, 548)>
```

It's a sparse matrix. Let's explore the the vocabulary.

```
vocab = text_transformer.named_steps["countvectorizer"].get_feature_names_out(
vocab[:10]
```

```
array(['18', '30', '40mins', '65', 'actually', 'addition', 'affordable', 'alcohol', 'ale', 'allergic'], dtype=object)
```

```
vocab[0:10]
```

```
array(['18', '30', '40mins', '65', 'actually', 'addition', 'affordable', 'alcohol', 'ale', 'allergic'], dtype=object)
```

vocab[200:210]

vocab[500:600]

vocab[0::20]

Do we get better scores if we combine all features? Let's define a column transformer which carries out

- imputation and scaling on numeric features
- imputation and one-hot encoding with drop="if binary" on binary features

- imputation and one-hot encoding with handle_unknown="ignore" on categorical
- imputation, reshaping, and bag-of-words transformation on the text feature

```
from sklearn.feature_extraction.text import CountVectorizer
text_feat = ['comments']

preprocessor_all = make_column_transformer(
          (numeric_transformer, numeric_feats),
          (binary_transformer, binary_feats),
          (ordinal_transformer, ordinal_feats),
          (categorical_transformer, categorical_feats),
          (text_transformer, text_feat),
          ("drop", drop_feats)
)
```

```
preprocessor_all.fit_transform(X_train)
```

```
<Compressed Sparse Row sparse matrix of dtype 'float64'
    with 6927 stored elements and shape (753, 565)>
```

```
for (name, model) in models.items():
    pipe_model = make_pipeline(text_transformer, model)
    results_df[name + '(text)'] = mean_std_cross_val_scores(pipe_model, X_trai
pd.DataFrame(results_df).T
```

	fit_time	score_time	test_score	train_score
dummy	0.000 (+/-	0.000 (+/-	0.515 (+/-	0.515 (+/-
	0.000)	0.000)	0.002)	0.000)
Decision Tree (numeric-only)	0.003 (+/-	0.001 (+/-	0.501 (+/-	0.833 (+/-
	0.002)	0.000)	0.033)	0.010)
KNN (numeric-only)	0.002 (+/-	0.004 (+/-	0.525 (+/-	0.674 (+/-
	0.000)	0.000)	0.034)	0.015)
SVM (numeric-only)	0.006 (+/-	0.003 (+/-	0.587 (+/-	0.623 (+/-
	0.000)	0.000)	0.033)	0.006)
Decision Tree(non-	0.007 (+/-	0.003 (+/-	0.606 (+/-	0.889 (+/-
text feats)	0.000)	0.000)	0.041)	0.008)
KNN(non-text feats)	0.006 (+/-	0.003 (+/-	0.600 (+/-	0.736 (+/-
	0.000)	0.000)	0.024)	0.007)
SVM(non-text feats)	0.010 (+/-	0.005 (+/-	0.687 (+/-	0.733 (+/-
	0.000)	0.000)	0.011)	0.008)
Decision Tree(text)	0.005 (+/-	0.001 (+/-	0.629 (+/-	0.735 (+/-
	0.000)	0.000)	0.031)	0.004)
KNN(text)	0.003 (+/-	0.004 (+/-	0.572 (+/-	0.646 (+/-
	0.000)	0.000)	0.023)	0.026)
SVM(text)	0.008 (+/-	0.002 (+/-	0.649 (+/-	0.728 (+/-
	0.000)	0.000)	0.022)	0.005)

```
for (name, model) in models.items():
    pipe_model = make_pipeline(preprocessor_all, model)
    results_df[name + '(all)'] = mean_std_cross_val_scores(pipe_model, X_train
pd.DataFrame(results_df).T
```

	fit_time	score_time	test_score	train_score
dummy	0.000 (+/-	0.000 (+/-	0.515 (+/-	0.515 (+/-
	0.000)	0.000)	0.002)	0.000)
Decision Tree (numeric-only)	0.003 (+/-	0.001 (+/-	0.501 (+/-	0.833 (+/-
	0.002)	0.000)	0.033)	0.010)
KNN (numeric-only)	0.002 (+/-	0.004 (+/-	0.525 (+/-	0.674 (+/-
	0.000)	0.000)	0.034)	0.015)
SVM (numeric-only)	0.006 (+/-	0.003 (+/-	0.587 (+/-	0.623 (+/-
	0.000)	0.000)	0.033)	0.006)
Decision Tree(non-	0.007 (+/-	0.003 (+/-	0.606 (+/-	0.889 (+/-
text feats)	0.000)	0.000)	0.041)	0.008)
KNN(non-text feats)	0.006 (+/-	0.003 (+/-	0.600 (+/-	0.736 (+/-
	0.000)	0.000)	0.024)	0.007)
SVM(non-text feats)	0.010 (+/-	0.005 (+/-	0.687 (+/-	0.733 (+/-
	0.000)	0.000)	0.011)	0.008)
Decision Tree(text)	0.005 (+/-	0.001 (+/-	0.629 (+/-	0.735 (+/-
	0.000)	0.000)	0.031)	0.004)
KNN(text)	0.003 (+/-	0.004 (+/-	0.572 (+/-	0.646 (+/-
	0.000)	0.000)	0.023)	0.026)
SVM(text)	0.008 (+/-	0.002 (+/-	0.649 (+/-	0.728 (+/-
	0.000)	0.000)	0.022)	0.005)
Decision Tree(all)	0.012 (+/-	0.004 (+/-	0.620 (+/-	0.893 (+/-
	0.001)	0.000)	0.021)	0.006)
KNN(all)	0.008 (+/-	0.005 (+/-	0.631 (+/-	0.755 (+/-
	0.000)	0.000)	0.020)	0.015)
SVM(all)	0.018 (+/-	0.006 (+/-	0.699 (+/-	0.786 (+/-
	0.000)	0.000)	0.017)	0.008)

Some improvement when we combine all features!