Berechnung von Dirichletzellen kristallographischer Gruppen mittels endlicher Wortlänge

Lukas Schnelle

Grüppchen 2025 In Zusammenarbeit mit Alice C. Niemeyer und Reymond Akpanya

Kristallographische Gruppen

Seien $v, w \in \mathbb{R}^n$ Vektoren.

Kristallographische Gruppen

Seien $v,w\in\mathbb{R}^n$ Vektoren. Dann bezeichnen wir mit d(v, w) := ||v - w|| die Euklidische Distanz.

Kristallographische Gruppen

•00000000000

Seien $v, w \in \mathbb{R}^n$ Vektoren. Dann bezeichnen wir mit d(v, w) := ||v - w|| die Euklidische Distanz.

Definition

Sei $n \in \mathbb{N}$ und $\varphi : \mathbb{R}^n \to \mathbb{R}^n$. Dann bezeichnen wir φ also *Isometrie*, falls für alle $v, w \in \mathbb{R}^n$ gilt, dass:

$$d(v^{\varphi}, w^{\varphi}) = d(v, w).$$

Kristallographische Gruppen

•00000000000

Seien $v, w \in \mathbb{R}^n$ Vektoren. Dann bezeichnen wir mit d(v, w) := ||v - w|| die Euklidische Distanz.

Definition

Sei $n \in \mathbb{N}$ und $\varphi : \mathbb{R}^n \to \mathbb{R}^n$. Dann bezeichnen wir φ also *Isometrie*, falls für alle $v, w \in \mathbb{R}^n$ gilt, dass:

$$d(v^{\varphi}, w^{\varphi}) = d(v, w).$$

Die Menge aller Isometrien zu einem festen n bezeichnen wir mit E(n).

Kristallographische Gruppen

00000000000

Sei $n \in \mathbb{N}$ fest. Dann ist die Menge aller Isometrien E(n) eine Gruppe mit der Konkatenation von Abbildungen als Gruppenoperation. Diese Gruppe bezeichnen wir als die *euklidische Gruppe*. Die Gruppe operiert auf \mathbb{R}^n durch die Anwendung eines Gruppenelements als Abbildung.

$$E(n) \cong O(n) \ltimes \mathbb{R}^n$$

Kristallographische Gruppen

00000000000

$$E(n) \cong O(n) \ltimes \mathbb{R}^n$$

Notation

Sei $\varphi \in E(n)$. Dann bezeichnen wir mit der Isomorphie von oben

$$\varphi = (\varphi_o, \varphi_t),$$

wobei $\varphi_o \in O(n)$ als orthogonaler Anteil bezeichnet wird und $\varphi_t \in \mathbb{R}^n$ als translatiorischer Anteil.

Betrachte $v \in \mathbb{R}^n$. Dann ist die Gruppenoperation von φ auf vgegeben durch

$$v^{(\varphi_o,\varphi_t)}=v^{\varphi_o}+\varphi_t.$$

Beispiel

Kristallographische Gruppen 00000000000

Betrachte die Gruppe erzeugt als

$$\langle \pi, \tau_1, \tau_2 \rangle$$

wobei

$$\pi = \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right),$$

Beispiel

Kristallographische Gruppen

00000000000

Betrachte die Gruppe erzeugt als

$$\langle \pi, \tau_1, \tau_2 \rangle$$

wobei

$$\pi = \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right),$$
$$\tau_1 = \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right),$$

Beispiel

Kristallographische Gruppen

00000000000

Betrachte die Gruppe erzeugt als

$$\langle \pi, \tau_1, \tau_2 \rangle$$

wobei

$$\pi = \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix},$$

$$\tau_1 = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix},$$

$$\tau_2 = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}.$$

Kristallographische Gruppen

00000000000

Sei $\Gamma \leq E(n)$ eine kristallographische Gruppe. Dann wird der Translationennormalteiler von □ definiert als

$$\mathcal{T}(\Gamma) := \{ (\varphi_o, \varphi_t) \in \Gamma \mid \varphi_o = Id \}.$$

 $\mathcal{T}(\Gamma)$ ist ein Normalteiler von Γ .

Endliche Wortlänge

Proposition

Sei $\Gamma \leq E(n)$ eine kristallographische Gruppe. Dann wird der Translationennormalteiler von □ definiert als

$$\mathcal{T}(\Gamma) := \{ (\varphi_o, \varphi_t) \in \Gamma \mid \varphi_o = Id \}.$$

 $\mathcal{T}(\Gamma)$ ist ein Normalteiler von Γ .

Definition

Sei $\Gamma \leq E(n)$ eine kristallographische Gruppe. Dann definieren wir die Punktgruppe von Γ als die Faktorgruppe

$$\mathcal{P}(\Gamma) := \Gamma/\mathcal{T}(\Gamma).$$

Kristallographische Gruppen

00000000000

Sei $\Gamma \leq E(n)$ eine kristallographische Gruppe. Die Menge

$$\mathcal{L}(\Gamma) := \{ \varphi_t \mid \varphi \in \mathcal{T}(\Gamma) \}$$

enthält *n* linear unabhängige Vektoren. Diese bilden ein Gitter der Dimension *n* und spannen sogenannte *Translationszellen* auf.

Kristallographische Gruppen

000000000000

Sei $\Gamma \leq E(n)$ eine Untergruppe und $F \subseteq \mathbb{R}^n$ eine abgeschlossene Menge. Dann heißt F ein Fundamentalbereich von Γ falls

(i)
$$\bigcup_{\gamma \in \Gamma} F^{\gamma} = \mathbb{R}^n$$

Kristallographische Gruppen

00000000000

Sei $\Gamma \leq E(n)$ eine Untergruppe und $F \subseteq \mathbb{R}^n$ eine abgeschlossene Menge. Dann heißt F ein Fundamentalbereich von Γ falls

- (i) $\bigcup_{\gamma \in \Gamma} F^{\gamma} = \mathbb{R}^n$
- (ii) es gibt ein Vertretersystem $V \subseteq \mathbb{R}^n$ von den Bahnen der Operation von Γ auf \mathbb{R}^n , sodass

$$F^{\circ} \subseteq V \subseteq F$$
.

Kristallographische Gruppen

000000000000

Sei $\Gamma \leq E(n)$ eine Untergruppe und $F \subseteq \mathbb{R}^n$ eine abgeschlossene Menge. Dann heißt F ein Fundamentalbereich von Γ falls

- (i) $\bigcup_{\gamma \in \Gamma} F^{\gamma} = \mathbb{R}^n$
- (ii) es gibt ein Vertretersystem $V \subseteq \mathbb{R}^n$ von den Bahnen der Operation von Γ auf \mathbb{R}^n , sodass

$$F^{\circ} \subseteq V \subseteq F$$
.

Definition

Sei $\Gamma \leq E(n)$ eine Untergruppe. Dann heißt Γ kristallographische Gruppe falls Γ eine diskrete Untergruppe ist und ein kompakter Fundamentalbereich von Γ existiert.

In der Literatur werden kristallographische Gruppen (insbesondere der Dimension 3) auch als Raumgruppen bezeichnet.

In 1900 hat Hilbert 23 Probleme bei einem Kongress vorgestellt, die zu diesem Zeitpunkt ungelöst waren.

18. Hilbert Problem

Kristallographische Gruppen

000000000000

Gibt es für festes *n* endlich viele kristallographische Gruppen?

In 1900 hat Hilbert 23 Probleme bei einem Kongress vorgestellt, die zu diesem Zeitpunkt ungelöst waren.

18. Hilbert Problem

Kristallographische Gruppen

00000000000

Gibt es für festes *n* endlich viele kristallographische Gruppen?

Bieberbachsche Sätze (1910)

Ja, für festes $n \in \mathbb{N}$ gibt es nur endlich viele kristallographische Gruppen.

Für n = 2 gibt es 17, für n = 3 gibt es 230.

Für bis niedrige Dimensionen sind alle dieser Gruppen bekannt, z.B. für n < 4 hier: [1].

Theorem

Kristallographische Gruppen

000000000000

Sei Γ eine kristallographische Gruppe mit Fundamentalbereich Fund Translationszelle C. Dann gilt

$$vol(F) = \frac{vol(C)}{|\mathcal{P}(\Gamma)|}$$

Problem

Kristallographische Gruppen

Gegeben eine kristallographische Gruppe $\Gamma \leq E(n)$ durch ein endliches Erzeugendensystem. Wie kann ein Fundamentalbereich berechnet werden?

Problem

Kristallographische Gruppen

Gegeben eine kristallographische Gruppe $\Gamma \leq E(n)$ durch ein endliches Erzeugendensystem. Wie kann ein Fundamentalbereich berechnet werden?

Antwort

Dirichletzellen

Seien $u, v \in \mathbb{R}^n$ Vektoren. Wir nennen

$$H^+(u,v) := \{ w \in \mathbb{R}^n \mid d(u,w) \le d(v,w) \}$$

den Halbraum von u und v.

Seien $u, v \in \mathbb{R}^n$ Vektoren. Wir nennen

$$H^+(u,v) := \{ w \in \mathbb{R}^n \mid d(u,w) \le d(v,w) \}$$

den Halbraum von u und v.

Definition

Sei $O \subseteq \mathbb{R}^n$ eine diskrete Menge und $u \in O$ ein Punkt. Dann nennen wir

$$D(u, O) := \{ v \in \mathbb{R}^n \mid \forall w \in O \setminus \{u\} : d(v, u) \leq d(v, w) \}$$

die Dirichletzelle von u und O.

Seien $u, v \in \mathbb{R}^n$ Vektoren. Wir nennen

$$H^+(u,v) := \{ w \in \mathbb{R}^n \mid d(u,w) \le d(v,w) \}$$

Endliche Wortlänge

den Halbraum von u und v.

Definition

Sei $O \subseteq \mathbb{R}^n$ eine diskrete Menge und $u \in O$ ein Punkt. Dann nennen wir

$$D(u, O) := \{ v \in \mathbb{R}^n \mid \forall w \in O \setminus \{u\} : d(v, u) \le d(v, w) \}$$

die Dirichletzelle von u und O.

Oft nutzen wir die äquivalente Formulierung

$$D(u, O) = \bigcap_{w \in O, w \neq u} H^+(u, w).$$

•	•	•
•	•	•
•	•	•

Definition

Kristallographische Gruppen

Sei $\Gamma \leq E(n)$ eine kristallographische Gruppe und $\nu \in \mathbb{R}^n$ ein Vektor. Wir nennen *v* in *spezieller Lage* bzgl. Γ, falls

$$Stab_{\Gamma}(v) \neq \{Id\},\$$

sonst nennen wir ihn in allgemeiner Lage.

Definition

Sei $\Gamma \leq E(n)$ eine kristallographische Gruppe und $v \in \mathbb{R}^n$ ein Vektor. Wir nennen v in spezieller Lage bzgl. Γ , falls

$$Stab_{\Gamma}(v) \neq \{Id\},\$$

sonst nennen wir ihn in allgemeiner Lage.

Theorem ([2, Thm. III.11 (ii)])

Sei $\Gamma \leq E(n)$ eine kristallographische Gruppe und $u \in \mathbb{R}^n$ in allgemeiner Lage. Dann ist $D(u, u^{\Gamma})$ ein Fundamentalbereich von Γ .

Definition

Sei $\Gamma \leq E(n)$ eine kristallographische Gruppe und $v \in \mathbb{R}^n$ ein Vektor. Wir nennen v in spezieller Lage bzgl. Γ , falls

$$Stab_{\Gamma}(v) \neq \{Id\},\$$

sonst nennen wir ihn in allgemeiner Lage.

Theorem ([2, Thm. III.11 (ii)])

Sei $\Gamma \leq E(n)$ eine kristallographische Gruppe und $u \in \mathbb{R}^n$ in allgemeiner Lage. Dann ist $D(u, u^{\Gamma})$ ein Fundamentalbereich von Γ .

Erinnerung:

$$D(u, O) = \bigcap_{w \in O, w \neq u} H^+(u, w).$$

Kristallographische 000000000000	Gruppen	Dirichletzellen 00000●0	Endliche Wortlänge 00000	Motivation	References
				_	
	•		•	•	
				_	
			•	•	

Endliche Wortlänge ●0000

Problem

 u^{Γ} ist unendlich.

Idee

Kristallographische Gruppen

Halbräume die von zwei weit entfernten Punkten aufgespannt werden, haben weniger Einfluss als Halbräume, die von nahe beieinander liegenden Punkten aufgespannt werden.

00000

Idee

Halbräume die von zwei weit entfernten Punkten aufgespannt werden, haben weniger Einfluss als Halbräume, die von nahe beieinander liegenden Punkten aufgespannt werden.

00000

Ansatz

Betrachte nur Isometrien, die einen Punkt nicht "zu weit weg" operieren.

Theorem

Sei $\Gamma \leq E(n)$ kristallographische Gruppe und $u \in \mathbb{R}^n$. Dann existiert ein $A \in \mathbb{N}$ sodass die Dirichletzelle $D(u, u^{\Gamma})$ berechnet werden kann, als Schnitt der Halbräume $H^+(u,u^\gamma)$ für $\gamma\in\Gamma$ Wörter der Länge maximal A+1.

00000

Theorem

Sei $\Gamma \leq E(n)$ kristallographische Gruppe und $u \in \mathbb{R}^n$. Dann existiert ein $A \in \mathbb{N}$ sodass die Dirichletzelle $D(u, u^{\Gamma})$ berechnet werden kann, als Schnitt der Halbräume $H^+(u, u^{\gamma})$ für $\gamma \in \Gamma$ Wörter der Länge maximal A+1.

Damit haben wir einen Zugang, um Fundamentalbereiche in endlichen Schritten (algorithmisch) zu bestimmen. Leider ist A im Allgemeinen nicht einfach bestimmbar.

Algorithm 3.1: Dirichlet Cell

Data: eine kristallographische Gruppe $\Gamma \leq E(n)$ und $u \in \mathbb{R}^n$, ein Punkt in allgemeiner Lage, sowie eine Menge gens an Erzeugern von Γ .

Endliche Wortlänge

00000

Result: *triangularComplex*, ein Fundamentalbereich.

fundamentalVolume ← Volumen eines Fundamentalbereichs;

 $currentWords \leftarrow gens$

currentElementsInOrbit $\leftarrow [u^{\gamma} \mid \gamma \in gens]$;

 $currentHalfspaces \leftarrow Halbräume H_{u,v}$ für alle $v \in currentElementsInOrbit$;

 $fundamentalDomainCandidate \leftarrow gegeben durch Schnitt von currentHalfspaces;$

while *vol*(*fundamentalDomainCandidate*) < *fundamentalVolume* **do**

 $currentWords \leftarrow [currentWords, [word \cdot gen \mid word \in currentWords, gen \in gens]];$

for $\gamma \in currentWords$ do

Add(currentElementsInOrbit, u^{γ});

end

 $currentHalfspaces \leftarrow Halbräume H_{u,v}$ für alle $v \in currentWords$;

fundamentalDomainCandidate ← gegeben durch Schnitt von currentHalfspaces;

end

return fundamentalDomainCandidate:

Kristallographische Gruppen

- [1] H Brown et al. Crystallographic Groups of Four-dimensional Space. John Wiley & Sons Inc, 1978. ISBN: 978-0471030959.
- Wilhelm Plesken. Kristallographische Gruppen, Summer [2] semester, 1994.