Práctica con Home Assistant

Autor: Alberto López del Amo Gorgojo

Profesor de prácticas MAES albertolag@correo.ugr.es

Assistant ESP32 y ESPHome Sensores y Actuadores Automatizaciones Node-RED y Telegram Procedimiento a seguir Conclusión

Table of Contents

- Home Assistant
- ESP32 y ESPHome
- Sensores y Actuadores
- 4 Automatizaciones
- S Node-RED y Telegram
- 6 Procedimiento a seguir
- Conclusión

Home Assistant

Home Assistant

- Software gratuito y de código abierto.
- Se utiliza para la automatización del hogar.
- La instalación se hace centralizada mediante un único hub a través de WiFi.

Home Assistant

Home Assistant ESP32 y ESPHome Sensores y Actuadores Automatizaciones Node-RED y Telegram Procedimiento a seguir Conclusión

Raspberry Pi 4

 Para centralizar la instalación domótica, se va a utilizar una *Raspberry Pi 4* como *hub*. Estas placas se denominan *single-board computer*: "Ordenadores de una sola placa". Tienen gran potencia e infinidad de aplicaciones.

Placa ESP32

- Funcionalidad similar al Arduino UNO, con compatibilidad con la mayoría de las funciones.
- Es más potente y versátil con conectividad WiFi y Bluetooth.
- Para más de sus características:

Características ESP32 STEAMaker

ESP32 v ESPHome

FSPHome

- Es un sistema de control para ESP8266 y ESP32 que, con archivos de configuración sencillos, pueden ser usados para crear automatizaciones con programas como *Home Assistant*.
- Tiene preparadas las configuraciones de la mayoría de sensores y actuadores que se pueden utilizar.
- Es perfecto para domotizar una vivienda si se tienen ciertos conocimientos de domótica y programación.

Flame sensor binary sensor:

> - platform: gpio pin:

> > number: GPT014 inverted: true

name: Flame

April 30, 2023

Sensor	Tipo	Características	Imagen	
DHT11	Temperatura Humedad	Pines GND, V, señal digital. Medidas relativas.		
LDR	Luz ADC*	Pines GND, V, señal analógica. Se debe escalar la salida.	A. A.	
Botón capacitivo	Binario (0 1)	Pines GND, V, señal digital. Interruptor muy sensible.		
PIR	Presencia IR	Pines GND, V, señal digital. Detecta <80° horiz. v <55° vertical.	*	

Flame	Binario (0 1)	Pines GND, V, señal digital. Detecta la llama hasta a 1 metro.	
Vapor	Binario (0 1)	Pines GND, V, señal digital. Detecta el vapor de agua.	
Foto interruptor	Binario (0 1)	Pines GND, V, señal digital. Detecta cuando la señal IR se interrumpe.	
Vibración	Binario (0 1)	Pines GND, V, señal digital. Detecta vibración	

Actuadores a utilizar en la práctica

Actuador	Tipo	Características	Imagen	
LED	Luz LED	Pines GND, V, señal digital.		
LED RGB	Luz LED modificable.	Pines V, Red, Blue, Green. Se programan como 3 separados.		
Relé	Interruptor "Switch"	Entradas: Señal digital, GND, V Salida conmutada.		
Ventilador	Motor	Pines V, GND y null. Requiere >4,5V.		

Servomotor	Servo	Pines V, GND y señal digital. Requiere >4,5V.	
Motor	Motor	Pines V y GND. Requiere >4,5V.	AT JUST
Buzzer activo	Buzzer	Pines V, GND v señal digital.	

Automatizaciones

¿Qué podemos hacer?

- Deberéis crear, al menos, una automatización coherente con el equipo de trabajo, premiando a las que ayuden a reducir el consumo.
- Podréis juntaros con otros grupos para obtener diversas combinaciones.

Node-RED y Telegram ¿Quién se atreve?

- Para realizar una automatización con *Telegram*, se necesita:
 - Instalación y configuración de Node-RED.
 - Bot de *Telegram*: chat ID
 -704553654.

Home Assistant ESP32 y ESPHome Sensores y Actuadores Automatizaciones Node-RED y Telegram Procedimiento a seguir Conclusión

Inicio sesión

- Nos conectamos al WiFi preparado:
 "Albertolag": "holacaracola"
- Tenemos que introducir en el navegador el siguiente enlace para conectarnos a la Raspberry Pi:

http://homeassistant.local:8123/

 Ponemos el usuario y contraseña:
 "Alberry" → "alberry" como se observa en la imagen.

April 30, 2023

Menú de Home Assistant

- Al iniciar sesión, entramos remotamente en la Raspberry Pi con Home Assistant previamente instalado.
- En el menú situado a la izquierda encontramos las diferentes aplicaciones y opciones con las que trabajar.
- Aquí trabajaremos con las pestañas de Resumen,
 ESPHome, Node-RED y Ajustes.

Identificación de la placa

Pestaña de *ESPHome*

ESPHome					■ UPDATE ALL	♠ SECRETS
BlackWidow blackwidow.yaml	ONLINE	Ironman ironman.yaml	ONLINE	Profesor profesor.yaml		ONLINE
EDIT LOGS	:	EDIT LOGS	:	EDIT LOGS		i
ScarlettWitch	ONLINE	Superman superman.yam1	ONLINE	Thor thor.yaml		ONLINE
EDIT LOGS	:	EDIT LOGS	:	EDIT LOGS		i

Configuración del .yaml

¡Programamos los dispositivos!

```
30 captive_portal:
31
32 #Flame
33 binary_sensor:
34 - platform: gpio
35 pin:
36 number: GPIO14
37 inverted: true
38 name: Flame
```

 En la web de ESPHome, buscamos el sensor/actuador que queremos programar y adaptamos el código:

```
https://esphome.io/
```

• Editamos el *yaml* correspondiente a la placa asignada, debajo de *Captative Portal*.

Instalación por WiFi

How do you want to install profesor.yaml on your dev	ice?
Wirelessly Requires the device to be online	>
Plug into this computer For devices connected via USB to this computer	>
Plug into the computer running ESPHome Dashboard For devices connected via USB to the server	>
Manual download nstall it yourself using ESPHome Web or other tools	>

- Arriba a la derecha, guardamos y le damos a instalar.
- De las diferentes opciones, ya que se ha hecho una configuración previa, elegimos la opción Wirelessly y esperamos a que realice la instalación.
- Si falla, se debe volver a intentar. Si aún así no se consigue, avisamos al profesor.
- Una vez hecho esto, se deberá crear una etiqueta en la pestaña de resumen para su uso.

◆□▶ ◆□▶ ◆■▶ ◆■ ● 夕○○

lome Assistant ESP32 y ESPHome Sensores y Actuadores Automatizaciones Node-RED y Telegram Procedimiento a seguir Conclusión
00 0000●000

Conexión de los dispositivos a la ESP32

- Se deberá conectar el dispositivo a la ESP32 según lo programado con el uso de cables y una protoboard.
- Es muy importante saber a qué voltaje trabaja el sensor/actuador y en qué pin lo hemos definido.
- ¿Necesita algún requisito especial?

Automatizaciones

- En la pestaña de ajustes, hacemos click en automatizaciones.
- Aquí deberemos crear una automatización que se compondrá de:
 - Desencadenantes.
 - Condiciones.
 - Acciones

Telegram

Entramos en el grupo creado con el bot

https://t.me/+pRTyOM3ZIwIONWY8

Procedimiento a seguir

Node-RFD

Una vez que estamos dentro del grupo de Telegram v sabemos que el chat ID: **-704553654**, nos vamos a la pestaña de Node-RED e intentamos crear un nuevo

- comando que controle el dispositivo programado desde Telegram.
- Una opción interesante es que el comando "llame" a la automatización previamente configurada.

Cuestionario final

https://forms.gle/amZXgiGHYTZVuV1z8

