Corrigé du TD16 : Couples de variables aléatoires, indépendance

A faire en priorité

Corrigé de l'exercice 1. 1. Étant donné que l'on choisit l'urne au hasard, X suit la loi uniforme sur [1; n].

On a
$$X(\Omega) = [1; n]$$
 et $\forall i \in X(\Omega), \ \mathbb{P}(X = i) = \frac{1}{n}$.

- 2. Soit $i \in X(\Omega)$ fixé. On a $Y(\Omega) = [1; n]$. Soit $j \in Y(\Omega)$.
 - Si j>i alors $\mathbb{P}_{[X=i]}([Y=j])=0$ car il est impossible de tirer une boule numérotée j dans l'urne i lorsque j>i.
 - Si $j \leq i$ alors $\mathbb{P}_{[X=i]}(Y=j) = \frac{1}{i}$, car le choix des boules est équiprobable.
- 3. D'après la formule des probabilités totales avec le système complet d'événements $([X=i])_{i\in[1;n]}$

$$\mathbb{P}(Y = j) = \sum_{i=1}^{n} \mathbb{P}([X = i]) \mathbb{P}_{[X = i]}(Y = j) = \sum_{i=j}^{n} \frac{1}{n} \times \frac{1}{i} = \frac{1}{n} \sum_{i=j}^{n} \frac{1}{i}$$

Y est une variable aléatoire réelle discrète finie donc elle admet une espérance et on a :

$$E(Y) = \sum_{j=1}^{n} j \mathbb{P}(Y = j) = \sum_{j=1}^{n} \sum_{i=j}^{n} \frac{j}{in} = \sum_{(i,j) \in [1;n]^{2}, i \leqslant j} \frac{j}{ni} = \sum_{i=1}^{n} \sum_{j=1}^{i} \frac{j}{in} = \sum_{i=1}^{n} \frac{1}{in} \times \frac{i(i+1)}{2}$$
$$= \frac{1}{2n} \sum_{i=1}^{n} (i+1) = \frac{1}{2n} \times \left(\frac{(n+1)(n+2)}{2} - 1\right) = \frac{n+3}{4}.$$

- 4. On remarque que $\mathbb{P}([X=1] \cap [Y=2]) = 0$, mais $\mathbb{P}(X=1) \times \mathbb{P}(Y=2) = \frac{1}{n} \times \frac{1}{n} \sum_{i=2}^{n} \frac{1}{i} \neq 0$. Donc X et Y ne sont pas indépendantes.
- 5. On $a: \mathbb{P}(X=Y) = \sum_{i=1}^{n} \mathbb{P}([X=i] \cap [Y=i]) = \sum_{i=1}^{n} \frac{1}{n^{i}}$

Corrigé de l'exercice 2.

Corrigé de l'exercice 3. 1. On a $(X = Y) = \bigcup_{k=1}^{n} ((X = k) \cap (Y = k))$ (réunion disjointe), donc

$$\mathbb{P}(X=Y) = \sum_{k=1}^{n} \mathbb{P}((X=k) \cap (Y=k)).$$

Puisque X et Y sont indépendantes et suivent la même loi, on a

$$\mathbb{P}(X = Y) = \sum_{k=1}^{n} \mathbb{P}(X = k)^{2} = \sum_{k=1}^{n} \frac{1}{n^{2}} = \frac{1}{n}.$$

De la même façon, on a $(X \geq Y) = \bigcup_{k=1}^{n} ((Y = k) \cap (X \geq k))$ (réunion également disjointe), donc par indépendance

$$\mathbb{P}(X \geq Y) = \sum_{k=1}^n \mathbb{P}(Y = k) \times \mathbb{P}(X \geq k) = \sum_{k=1}^n \frac{1}{n} \sum_{j=k}^n \mathbb{P}(X = j) = \sum_{k=1}^n \frac{n-k+1}{n^2} = \frac{n+1}{2n}.$$

2. La variable aléatoire D=X-Y prend ses valeurs dans $\{1-n,\cdots,0,\cdots,n-1\}$. On a également une symétrie :

$$\forall k \in \{0, \dots, n-1\}, \qquad \mathbb{P}(D=k) = \mathbb{P}(D=-k),$$

car - D = Y - X suit la même loi que D = X - Y (puisque X et Y suivent la même loi). Il suffit donc de calculer $\mathbb{P}(D = k)$ pour $k \in \{0, \dots, n-1\}$. Pour un tel k:

$$(D = k) = (X = Y + k) = \bigcup_{j=1}^{n} ((Y = j) \cap (X = j + k)),$$

donc (toujours par indépendance de X et Y):

$$\mathbb{P}(D = k) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{P}(X = j + k) = \frac{1}{n} \sum_{l=k+1}^{k+n} \mathbb{P}(X = l).$$

Mais $\mathbb{P}(X=l)=0$ dès que $l \notin \{1, \dots, n\}$, donc, comme $1 \leq k+1 \leq n \leq k+n$, on a

$$\mathbb{P}(D = k) = \frac{1}{n} \sum_{l=k+1}^{n} \mathbb{P}(X = l) = \frac{n-k}{n^2}.$$

 $Par\ symétrie,\ on\ en\ déduit\ la\ loi\ de\ D$:

$$\forall k \in \{1 - n, \dots, 0, \dots, n - 1\}, \qquad \mathbb{P}(D = k) = \frac{n - |k|}{n^2}.$$

Corrigé de l'exercice 4.

Puisque $X(\Omega) = [0, n]$ et $Y(\Omega) = [0, m]$, on a $(X + Y)(\Omega) = [0, n + m]$. Pour $k \in [0, n + m]$ fixé, on a

$$(X+Y=k) = \bigcup_{(i,j) \in [0,n] \times [0,m], \ i+j=k} (X=i) \cap (Y=j),$$

 $donc\ par\ disjonction\ de\ cas\ et\ indépendance\ de\ X\ et\ Y\ :$

$$\mathbb{P}(X+Y=k) = \sum_{(i,j) \in [0,n] \times [0,m], \ i+j=k} \mathbb{P}(X=i) \mathbb{P}(Y=j) = \left(\sum_{(i,j) \in [0,n] \times [0,m], \ i+j=k} \binom{n}{i} \binom{m}{j}\right) p^k (1-p)^{n+m-k}.$$

Ensuite, on peut calculer la somme de plusieurs manières :

• soit de manière combinatoire : le produit $\binom{n}{i}\binom{m}{j}$ est le nombre de parties de la forme (A,B) avec $A \subset \llbracket 1,n \rrbracket$ et $B \subset \llbracket n+1,n+m \rrbracket$, #A=i et #B=j. Lorsque i+j=k, choisir un tel couple (A,B) de parties revient exactement à choisir une partie $C=A \cup B \subset \llbracket 1,n+m \rrbracket$ avec #C=k, et il y a exactement $\binom{n+m}{k}$ parties de ce type. Donc :

$$\sum_{(i,j)\in[0,n]\times[0,m],\ i+j=k}\binom{n}{i}\binom{m}{j}=\binom{n+m}{k}.$$

• soit avec des polynômes : on calcule $(1+X)^n(1+X)^m$ de deux façons. D'une part :

$$(1+X)^{n}(1+X)^{m} = \left(\sum_{i=0}^{n} \binom{n}{i} X^{i}\right) \times \left(\sum_{j=0}^{m} \binom{m}{j} X^{j}\right) = \sum_{i=0}^{n} \sum_{j=0}^{m} \binom{n}{i} \binom{m}{j} X^{i+j}$$
$$= \sum_{k=0}^{n+m} \left(\sum_{(i,j)\in[0,n]\times[0,m],\ i+j=k} \binom{n}{i} \binom{m}{j}\right) X^{k}$$

(en regroupant les couples (i, j) selon la valeur de la somme k = i + j). D'autre part :

$$(1+X)^n(1+X)^m = (1+X)^{n+m} = \sum_{k=0}^{n+m} \binom{n+m}{k} X^k.$$

Donc en identifiant les coefficients de ces deux polynômes égaux, on obtient :

$$\sum_{\substack{(i,j)\in[0,n]\times[0,m],\ i+j=k}} \binom{n}{i} \binom{m}{j} = \binom{n+m}{k}.$$

Finalement, on a donc $\mathbb{P}(X+Y=k)=\binom{n+m}{k}p^k(1-p)^{n+m-k}$, ce qui montre que X+Y suit la loi binomiale $\mathcal{B}(n+m,p)$.

Corrigé de l'exercice 5.

Corrigé de l'exercice 6. 1. On a ici $X(\Omega) = [1; n-1]$ et $Z(\Omega) = [2; n]$. Soit $k \in X(\Omega)$ et $j \in Z(\Omega)$.

- $Si \ k \geqslant j \ alors \ \mathbb{P}([X=k] \cap [Z=j]) = 0.$
- Si k < j alors on peut écrire $[X = k] \cap [Z = j] = R_1 \cap \cdots \cap R_{k-1} \cap B_k \cap R_{k+1} \cap \cdots \cap R_{j-1} \cap B_j$ et donc, d'après la formule des probabilités composées :

$$\mathbb{P}([X=k] \cap [Z=j]) = \frac{n-2}{n} \times \frac{n-3}{n-1} \times \dots \times \frac{n-2-(k-2)}{n-(k-2)} \times \frac{2}{n-(k-1)} \times \frac{n-2-(k-1)}{n-k} \times \dots \times \frac{n-2-(j-3)}{n-(j-2)} \times \frac{1}{n-(j-1)} = \frac{(n-2)(n-3)\cdots(n-k)\times 2\times (n-k-1)\cdots(n-j+1)}{n(n-1)(n-2)\cdots(n-j+1)} = \frac{2}{n(n-1)}.$$

2. D'après la formule des probabilités totales utilisée avec le système complet d'événements $([X=k])_{k\in X(\Omega)}$, on a pour tout $j\in Z(\Omega)$:

$$\mathbb{P}(Z=j) = \sum_{k=1}^{n-1} \mathbb{P}([X=k] \cap [Z=j]) = \sum_{k=1}^{j-1} \mathbb{P}([X=k] \cap [Z=j] + \sum_{k=j}^{n-1} \mathbb{P}([X=k] \cap [Z=j])$$

$$= \sum_{k=1}^{j-1} \frac{2}{n(n-1)} + \sum_{k=j}^{n-1} 0 = \frac{2(j-1)}{n(n-1)}.$$

Corrigé de l'exercice 7. 1.

y_i	0	1	4
$\mathbb{P}(Y=y_i)$	1/6	1/2	1/3

X	0	1	4
-2	0	0	1/6
-1	0	1/4	0
0	1/6	0	0
1	0	1/4	0
2	0	0	1/6

- 2. $\mathbb{P}([X=1] \cap [Y=0]) = 0$ et $\mathbb{P}(X=1)\mathbb{P}(Y=0) \neq 0$ donc les variables ne sont pas indépendantes.
- 3. E(X) = 0, $E(Y) = \frac{11}{6}$ et $E(XY) = \sum xy \mathbb{P}([X = x] \cap [Y = y]) = 0$ donc cov(X, Y) = 0. Les variables ne sont pas indépendantes et pourtant elles ont une covariance nulle.

Corrigé de l'exercice 8. 1. On a $Y_i(\Omega) = \{0;1\}$ et $\mathbb{P}(Y_i = 1) = \mathbb{P}([X_i = 1] \cap [X_{i+1} = 1]) = p \times p = p^2$ car les variables X_i sont indépendantes. Donc on a $\mathbb{P}(Y_i = 0) = 1 - p^2$. Y_i suit une loi de Bernoulli de paramètre p^2 .

2. On $a \ E(Y_i Y_j) = \mathbb{P}(Y_i Y_j = 1) = \mathbb{P}([X_i = 1] \cap [X_{i+1} = 1] \cap [X_j = 1] \cap [X_{j+1} = 1]).$ $Si \ j \neq i+1 \ alors \ E(Y_i Y_j) = p^4 \ et \ si \ j = i+1, \ E(Y_i Y_j) = p^3.$ $Donc \ si \ j \neq i+1 \ alors \ cov(Y_i, Y_j) = 0 \ et \ si \ j = i+1, \ cov(Y_i, Y_{i+1}) = p^3(1-p).$ Corrigé de l'exercice 9.

Corrigé de l'exercice 10.

Corrigé de l'exercice 11.

Pour $1 \le i \le 1000$, on note X_i le résultat du i^e dé. Les variables $(X_i)_{1 \le i \le 1000}$ sont mutuellement indépendantes et suivent toutes la loi uniforme $\mathcal{U}\{1,\cdots,6\}$.

On note $S = X_1 + \cdots + X_{1000}$. On veut majorer $\mathbb{P}(S \ge 4000)$, et on a :

$$E(S) = 1000E(X_1) = 3500,$$
 $V(S) = 1000V(X_1) = 1000\frac{6^2 - 1}{12} = 1000 * \frac{35}{12}.$

En utilisant l'inégalité de Bienaymé Tchebychev :

$$\mathbb{P}(S \ge 4000) \le \mathbb{P}(|S - E(S)| \ge 500) \le \frac{V(S)}{500^2} \le \frac{6}{500} = 0,012.$$

Corrigé de l'exercice 12.

Corrigé de l'exercice 13.

II Exercices supplémentaires

Corrigé de l'exercice 14.

Corrigé de l'exercice 15.

Corrigé de l'exercice 16. 1. On a $X(\Omega) = [1;n]$ et comme il y a $1+2+\cdots+n = \frac{n(n+1)}{2}$ boules dans l'urne en tout, pour tout $k \in X(\Omega)$ on a $\mathbb{P}(X=k) = \frac{k}{n(n+1)/2} = \frac{2k}{n(n+1)}$. X est une variable discrète finie donc elle admet une espérance et

$$E(X) = \sum_{k=1}^{n} k \mathbb{P}(X=k) = \sum_{k=1}^{n} \frac{2k^2}{n(n+1)} = \frac{2}{n(n+1)} \frac{n(n+1)(2n+1)}{6} = \frac{2n+1}{3}.$$

2. (a) T_1 suit la même loi que X.

Donc
$$T_1(\Omega) = [1; n]$$
 et $\forall k \in [1; n], \ \mathbb{P}(T_1 = k) = \frac{2k}{n(n+1)}$.

(b) On a $T_1(\Omega) = T_2(\Omega) = [1; n]$. Soit k et j deux éléments de [1; n].

— Si $k \neq j$, on a

$$\mathbb{P}([T_1 = k] \cap [T_2 = j]) = \mathbb{P}(T_1 = k)\mathbb{P}_{[T_1 = k]}(T_2 = j) = \frac{2k}{n(n+1)} \times \frac{j}{n(n+1)/2 - 1}$$
$$= \frac{4kj}{n(n+1)(n^2 + n - 2)}.$$

- Si k = j, on a

$$\mathbb{P}([T_1 = k] \cap [T_2 = k]) = \mathbb{P}(T_1 = k)\mathbb{P}_{[T_1 = k]}(T_2 = k) = \frac{2k}{n(n+1)} \times \frac{k-1}{n(n+1)/2 - 1}$$
$$= \frac{4k(k-1)}{n(n+1)(n^2 + n - 2)}.$$

(c) Soit $j \in T_2(\Omega)$. D'après la formule des probabilités totales avec le système complet d'événements $([T_1 = k])_{k \in [1;n]}$ on a

$$\begin{split} \mathbb{P}(T_2 = j) &= \sum_{k=1}^n \mathbb{P}([T_1 = k] \cap [T_2 = j]) \\ &= \sum_{k=1}^{j-1} \mathbb{P}([T_1 = k] \cap [T_2 = j]) + \mathbb{P}([T_1 = j] \cap [T_2 = j]) + \sum_{k=j+1}^n \mathbb{P}([T_1 = k] \cap [T_2 = j]) \\ &= \sum_{k=1}^{j-1} \frac{4kj}{n(n+1)(n^2+n-2)} + \frac{4j(j-1)}{n(n+1)(n^2+n-2)} + \sum_{k=j+1}^n \frac{4kj}{n(n+1)(n^2+n-2)} \\ &= \frac{4j}{n(n+1)(n^2+n-2)} \left(\sum_{k=1}^{j-1} k + j - 1 + \sum_{k=j+1}^n k \right) \\ &= \frac{4j}{n(n+1)(n^2+n-2)} \left(\sum_{k=1}^n k - 1 \right) \\ &= \frac{4j}{n(n+1)(n^2+n-2)} \left(\frac{n(n+1)}{2} - 1 \right) \\ &= \frac{2j}{n(n+1)}. \end{split}$$

On peut remarquer ici que T_2 a la même loi que T_1 ce qui peut paraître surprenant...

(d) On a $\mathbb{P}([T_1 = 1] \cap [T_2 = 1]) = 0$ et $\mathbb{P}(T_1 = 1) \times \mathbb{P}(T_2 = 1) = \frac{4}{n^2(n+1)^2} \neq 0$ donc les variables T_1 et T_2 ne sont pas indépendantes.

(e)
$$E(T_1 + T_2) = E(T_1) + E(T_2) = 2E(X) = \frac{2(2n+1)}{3}$$
.

Corrigé de l'exercice 17.

Corrigé de l'exercice 18.

Corrigé de l'exercice 19.

Corrigé de l'exercice 20. 1. Z_p compte le nombre de boules blanches tirées au cours des p premiers tirages.

- 2. X_1 vaut 1 lorsque la boule tirée est blanche et 0 sinon. Donc X_1 suit une loi de Bernoulli de paramètre $\frac{1}{2}$. Donc on a $E(X_1)=\frac{1}{2}$.
- 3. Pour déterminer la loi d'un couple il faut calculer les différents $\mathbb{P}([X_1 = i] \cap [X_2 = j])$. On peut présenter les résultats sous forme d'un tableau :

	X_1 X_2	0	1
	0	$\frac{1}{2} \times \frac{c+1}{c+2}$	$\frac{1}{2} \times \frac{1}{c+2}$
	1	$\frac{1}{2} \times \frac{1}{c+2}$	$\frac{1}{2} \times \frac{c+1}{c+2}$
π.	D/Exr ol	- [xr 0])	

Pour calculer, par exemple, $\mathbb{P}([X_1 = 0] \cap [X_2 = 0])$ on a utilisé la formule des probabilités composées $\mathbb{P}(X_1 = 0)\mathbb{P}_{[X_1 = 0]}(X_2 = 0)$ et on a remarqué que, sachant que l'on a obtenu une boule noire au premier tirage ($[X_1 = 0]$), il y a avant le deuxième tirage c + 2 boules dans

l'urne dont c+1 qui sont noires donc $\mathbb{P}_{[X_1=0]}(X_2=0)=\frac{c+1}{c+2}$.

On a raisonné de même pour les autres probabilités.

— D'après la formule des probabilités totales avec le système complet d'événements $([X_1=0],[X_1=1])$ on a

$$\mathbb{P}(X_2=1) = \mathbb{P}([X_1=0] \cap [X-2=1]) + \mathbb{P}([X_1=1] \cap [X-2=1]) = \frac{c+1}{2(c+2)} + \frac{1}{2(c+2)} = \frac{1}{2}.$$

Et donc X_2 suit une loi de Bernoulli de paramètre $\frac{1}{2}$ et ainsi $E(X_2) = \frac{1}{2}$.

4.
$$Z_2 = X_1 + X_2$$
. Donc $Z(\Omega) = \{0, 1, 2\}$. On a:

$$\mathbb{P}(Z_2 = 0) = \mathbb{P}([X_1 = 0] \cap [X_2 = 0]) = \frac{1}{2} \times \frac{c+1}{c+2}.$$

$$\mathbb{P}(Z_2 = 1) = \mathbb{P}([X_1 = 0] \cap [X_2 = 1]) + \mathbb{P}([X_1 = 1] \cap [X_2 = 0]) = \frac{1}{2} \times \frac{1}{c+2} + \frac{1}{2} \times \frac{1}{c+2} = \frac{1}{c+2}.$$

$$- \mathbb{P}(Z_2 = 2) = \mathbb{P}([X_1 = 1] \cap [X_2 = 1]) = \frac{1}{2} \times \frac{c+1}{c+2}$$

k	0	1	2
$\mathbb{P}(Z_2 = k)$	$\frac{1}{2} \times \frac{c+1}{c+2}$	$\frac{1}{c+2}$	$\frac{1}{2} \times \frac{c+1}{c+2}$

- 5. On ajoute p chiffres qui valent chacun 0 ou 1 donc $Z_{\mathbb{P}}(\Omega) = [0; p]$.
- 6. (a) L'événement $[Z_p = k]$ signifie qu'au cours des p premiers tirages, on a tiré k boules blanches et donc p-k boules noires. On a donc mis dans l'urne kc boules blanches et (p-k)c boules noires supplémentaires. Il y a donc avant le tirage p+1, pc+2 boules dans l'urne dont kc+1 blanches:

$$\mathbb{P}_{[Z_p=k]}(X_{p+1}=1) = \frac{kc+1}{pc+2}.$$

(b) À l'aide de la formule des probabilités totales avec le système complet d'événements $[Z_p=0],\cdots,[Z_p=p]$ on a :

$$\begin{split} \mathbb{P}(X_{p+1} = 1) &= \sum_{k=0}^{p} \mathbb{P}(Z_p = k) \mathbb{P}_{[Z_p = k]}(X_{p+1} = 1) \\ &= \sum_{k=0}^{p} \mathbb{P}(Z_p = k) \frac{kc + 1}{pc + 2} \\ &= \frac{1}{pc + 2} \left(c \sum_{k=0}^{p} k \mathbb{P}(Z_p = k) + \sum_{k=0}^{p} \mathbb{P}(Z_p = k) \right) \\ &= \frac{cE(Z_p) + 1}{pc + 2}. \end{split}$$

- (c) Montrons, par récurrence, que la propriété « $\mathcal{P}(p): X_1, ..., X_p$ suivent des lois de Bernoulli de paramètre $\frac{1}{2}$ » est vraie pour tout $p \in \{1, \cdots, n\}$.
 - Pour $p = \overline{1}$ la propriété est vraie d'après la question 2.
 - Supposons $\mathcal{P}(p)$ vraie. Alors $E(Z_p) = \sum_{i=1}^p E(X_i) = \sum_{k=1}^p \frac{1}{2} = \frac{p}{2}$.

On obtient donc $\mathbb{P}(X_{p+1}=1)=\frac{pc/2+1}{pc+2}=\frac{1}{2}$ et donc X_{p+1} suit une loi de Bernoulli de paramètre $\frac{1}{2}$. $\mathcal{P}(p+1)$ est donc vraie.

Ainsi, pour tout $p \in \{1, \dots, n\}$, X_p suit une loi de Bernoulli de paramètre $\frac{1}{2}$.