2.12 Trimester Exam: Polynomial functions

A1-A.APR.1 Add, subtract, and multiply polynomials

1. Evaluate each polynomial for the given value of x.

(a)
$$f(x) = x^3 + 2x^2 - 7x + 8$$

(b)
$$g(x) = 5x^2 - 3x + 11$$

$$f(0) =$$

$$g(1) =$$

2. Find the sum in standard form $(3x^3 + 2x^2 - 9x + 1) + (x^3 + 4x^2 - x - 7)$

3. Find the difference f(x) - g(x) as a polynomial in standard form, with $f(x) = 7x^3 - 3x + 5$ and $g(x) = x^3 - 2x^2 - 1$.

4. Multiply the two polynomials $f(x) = 2x^2 + 4$ and $g(x) = x^2 - 3x + 5$. First complete the grid and then collect terms to find the product as a polynomial in standard form.

	x^2	-3x	+5
$2x^2$			
+4			

A1-A.APR.3 Identify zeros of polynomials when factorizations are available.

5. Select all solutions to the equation (x-6)(2x+6) = 0.

(a)
$$x = -3$$

(c)
$$x = \frac{1}{6}$$

(e)
$$x = -6$$

(b)
$$x = 6$$

(d)
$$x = -\frac{1}{3}$$

(f)
$$x = -\frac{6}{2}$$

6. Select all of the expressions that are equivalent to $x^2 - x - 6$.

(a)
$$(x-2)(x+3)$$

(d)
$$(x+2)(x-3)$$

(b)
$$(x-2)(x-3)$$

(e)
$$(x+2)(x+3)$$

(c)
$$(x-1)(x+6)$$

(f)
$$x^2 + x + 6$$

7. Write down the solutions to the equation x(x-5)(3x-9)(x+1)=0.

8. Identify all of the polynomials having zeros of x = 0, -2, 4, 7.

(a)
$$2(x-2)(x+4)(x+7)$$

(d)
$$2(x+2)(x-4)(x-7)$$

(b)
$$2x(x-2)(x+4)(x+7)$$

(e)
$$2x(x+2)(x-4)(x-7)$$

(c)
$$x(x-2)(x+4)(x+7)$$

(f)
$$x(x+2)(x-4)(x-7)$$

A2-F.IF.7c Graph polynomials, identify zeros, end behavior

9. Here is the graph of a quadratic function. Which of the following could be its equation?

(a)
$$y = (x+3)(x-4)$$

(b)
$$y = (x-3)(x+4)$$

(c)
$$y = (x+3)(x+4)$$

(d)
$$y = (x-3)(x-4)$$

BECA / Huson / Algebra 2: Polynomials 10 October 2024

Name:

10. Given f(x) = x(x-3)(x+7)(x+11). Select the true statements.

(a)
$$f(3) = 0$$

- (b) f is a 4th degree polynomial.
- (c) One of the roots of f is 7.
- (d) An ordered pair satisfying the equation is (-11,0)
- (e) f(0) = 0

11. Below is a graph of the polynomial f(x).

What is the degree of the function?

Which of the following could be its equation?

(a)
$$f(x) = (x+2)(x-3)^2$$

(b)
$$f(x) = (x-2)(x+3)^2$$

(c)
$$f(x) = (x+3)(x-2)^2$$

(d)
$$f(x) = (x-3)(x+2)^2$$

12. The polynomial $g(x) = -x^4 - 3x^3 + 9x^2 + 27x$ is graphed below.

- (b) What are roots of the function?
- (c) What factor has a multiplicity of 2?
- (d) Write down the y-intercept as an ordered pair.

A2-F.BF.2 Write arithmetic and geometric sequences with recursive formulas

13. Write a recursive formula for each sequence. Use subscript notation.

(a)
$$1, 3, 5, 7, 9, \dots$$

(b)
$$+\frac{3}{1}, -\frac{3}{2}, +\frac{3}{4}, -\frac{3}{8}, \dots$$

14. Write a recursive definition of the arithmetic sequence a.

n	a_n
1	8
2	-2
3	-12

15. Write a recursive definition of the geometric sequence $a_1=1,\,\ldots,\,a_3=9,\,a_4=27,\ldots$

16. The polynomial function A, shown below, is used to model the value of an investment account. Three deposits were made which earned interest annually.

$$A(x) = 300x^4 + 100x^3 + 250x^2$$

- (a) How much was the first deposit, and how long ago was it made?
- (b) If the polynomial is evaluated for x = 1.06, what interest rate would that represent as a percentage?
- (c) Find the value of A(1.06) to the nearest cent.