Less Is More: Picking Informative Frames for Video Captioning

Yangyu Chen¹, Shuhui Wang², Weigang Zhang³ and Qingming Huang^{1,2}

¹University of Chinese Academy of Science, ²Key Lab of Intelligence Information Processing, Institute of Computing Technology, CAS, ³Harbin Institute of Technology yangyu.chen@vipl.ict.ac.cn, wangshuhui@ict.ac.cn, wgzhang@hit.edu.cn, qmhuang@ucas.ac.cn

webpage: https://yugnaynehc.github.io/picknet

Motivation

Existing study:

• models frame-level appearance and motion on equal interval frame sampling

But it:

- may bring about redundant visual information
- will be sensitivity to content noise
- leads to unnecessary computation cost

(a) Equally sampled 30 frames from a video

(b) Informative frames
Figure 1: Equally sampled frames contain redundancy.

We propose a plug-and-play PickNet to perform informative frame picking in video captioning.

Figure 2: The architecture of PickNet.

• PickNet produces a Bernoulli distribution for selecting decision:

$$\mathbf{s}_t = W_2(\max(W_1 \text{vec}(\mathbf{d}_t) + \mathbf{b}_1, \mathbf{0})) + \mathbf{b}_2 \qquad (1)$$

$$a_t \sim \operatorname{softmax}(\mathbf{s}_t)$$
 (2)

Figure 3: The framework. \mathcal{F} denotes PickNet, E is the encoder unit and \mathbf{v} is the encoded video representation.

Method

Rewards

• Visual diversity reward: the average cosine distance of each frame pairs.

$$r_{v}(\mathcal{V}_{i}) = \frac{1}{\binom{N_{p}}{2}} \sum_{k=1}^{N_{p}-1} \sum_{m>k}^{N_{p}} \left(1 - \frac{\mathbf{x}_{k}^{\mathbf{T}} \mathbf{x}_{m}}{\|\mathbf{x}_{k}\|_{2} \|\mathbf{x}_{m}\|_{2}}\right)$$
(3)

- $\triangleright \mathcal{V}_i$ is a set of picked frames, N_p is the number of picked frames, and \mathbf{x}_k is the feature of k-th picked frame.
- Language reward: the semantic similarity between generated sentence and ground-truth.

$$r_l(\mathcal{V}_i, S_i) = \text{CIDEr}(c_i, S_i)$$
 (4)

- $\triangleright S_i$ is a set of annotated sentences, and c_i is the generated sentence.
- Picking limitation: the final reward $r(\mathbf{a}^s)$ =

$$\begin{cases} \lambda_l r_l(\mathcal{V}_i, S_i) + \lambda_v r_v(\mathcal{V}_i) & N_p \in [N_{\min}, N_{\max}] \\ R^- & \text{otherwise,} \end{cases}$$

▶ N_p is the number of picked frames, R^- is the punishment, and $\mathcal{V}_i = \{\mathbf{x}_t | a_t^s = 1, \forall a_t^s \in \mathbf{a}^s\}$.

• Supervision stage: training encoder-decoder.

$$L_{\mathbf{X}}(\mathbf{y}; \omega) = -\sum_{t=1}^{m} \log(p_{\omega}(\mathbf{y}_t | \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \dots \mathbf{y}_1, \mathbf{v}))$$
(6)

- ▶ $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_m)$ is an annotated sentence, \mathbf{v} is the encoded result and ω is the parameter of encoder-decoder.
- Reinforcement stage: training PickNet.

$$L_R(\mathbf{a}^s; \theta) = -\mathbb{E}_{\mathbf{a}^s \sim p_{\theta}} [r(\mathcal{V}_i)] = -\mathbb{E}_{\mathbf{a}^s \sim p_{\theta}} [r(\mathbf{a}^s)]$$
(7)

- ▶ \mathbf{a}^s is the action sequence and θ is the parameter of PickNet.
- ▶ Using REINFORCE algorithm to estimate gradient:

$$\nabla_{\theta} L_R(\mathbf{a}^s; \theta) = -\mathbb{E}_{\mathbf{a}^s \sim p_{\theta}} \left[r(\mathbf{a}^s) \nabla_{\theta} \log p_{\theta}(\mathbf{a}^s) \right] \tag{8}$$

$$\approx -\sum_{t=1}^{T} r(\mathbf{a}^s) (p_{\theta}(a_t^s) - \mathbf{1}_{a_t^s}) \frac{\partial \mathbf{s}_t}{\partial \theta}$$
 (9)

• Adaptation stage: training both modules.

$$L = L_{X}(\mathbf{y}; \omega) + L_{R}(\mathbf{a}^{s}; \theta)$$
 (10)

Visualization

Ours: a person is playing a video game GT: a game is being played

Ours: there is a woman is talking with a woman GT: it is a movie

Figure 4: Example results on the test set of MSR-VTT. The green boxes indicate picked frames.

a man is a sword \rightarrow a boy is doing a \rightarrow a man with a sword stabs a target \rightarrow a man is stabbing a silhouette with a sword $\times 2$ Figure 5: Example results of online video captioning.

Performance

Model	BLEU4	ROUGE-L	METEOR	CIDEr	Time					
Previous Work										
LSTM-E	45.3	_	31.0	_	5x					
p-RNN	49.9	_	32.6	65.8	5x					
HRNE	43.8	_	33.1	_	33x					
BA	42.5	_	32.4	63.5	12x					
Baseline Models										
Full	44.8	68.5	31.6	69.4	5x					
Random	35.6	64.5	28.4	49.2	2.5x					
k-means (k =6)	45.2	68.5	32.4	70.9	1x					
Hecate	43.2	67.4	31.7	68.8	1x					
Our Models										
$PickNet\;(V)$	46.3	69.3	32.3	75.1	1x					
$PickNet\ (L)$	49.9	69.3	32.9	74.7	1x					
$PickNet\ (V{+}L)$	52.3	69.6	33.3	76.5	1x					

Table 1: Experiment results on MSVD. L denotes using language reward and V denotes using visual diversity reward. k is set to the average number of picks \bar{N}_p on MSVD. $(\bar{N}_p \approx 6)$

Model	BLEU4	ROUGE-L	METEOR	CIDEr	Time					
Previous Work										
ruc-uva	38.7	58.7	26.9	45.9	4.5x					
Aalto	39.8	59.8	26.9	45.7	4.5x					
DenseVidCap	41.4	61.1	28.3	48.9	10.5x					
MS-RNN	39.8	59.3	26.1	40.9	10x					
Baseline Models										
Full	36.8	59.0	26.7	41.2	3.8x					
Random	31.3	55.7	25.2	32.6	1.9x					
k-means (k =8)	37.8	59.1	26.9	41.4	1x					
Hecate	37.3	59.1	26.6	40.8	1x					
Our Models										
PickNet (V)	36.9	58.9	26.8	40.4	1x					
$PickNet\ (\mathrm{L})$	37.3	58.9	27.0	41.9	1x					
$PickNet\ (V{+}L)$	39.4	59.7	27.3	42.3	1x					
PickNet (V+L+C)	41.3	59.8	27.7	44.1	1x					

Table 2: Experiment results on MSR-VTT. C denotes using the provided category information. k is set to the average number of picks \bar{N}_p on MSR-VTT. $(\bar{N}_p \approx 8)$

Conclusion

- Flexibility. A plug-and-play RL-based PickNet is designed to select informative frames for video understanding tasks.
- Efficiency. The PickNet can largely cut down the convolution operations and makes this method more applicable for real-world video processing.
- Effectiveness. Experiment shows that our model can achieve comparable performance compared to state-of-the-art with less frames.