5.2

 $\Delta w_i = \eta(y-\hat{y})x_i$ [推导]:此处感知机的模型为: $y=f(\sum_i w_i x_i-\theta)$ 将 θ 看成哑结点后,模型可化简为: $y=f(\sum_i w_i x_i)=f(\mathbf{w}^T \mathbf{x})$ 其中f为阶跃函数。 根据《统计学习方法》§2可知,假设误分类点集合为M, $\mathbf{x}_i \in M$ 为误分类点, \mathbf{x}_i 的真实标签为 y_i ,模型的预测值为 \hat{y}_i ,对于误分类点 \mathbf{x}_i 来说,此时 $\mathbf{w}^T \mathbf{x}_i > 0$, $\hat{y}_i = 1$, $y_i = 0$ 或 $\mathbf{w}^T \mathbf{x}_i < 0$, $\hat{y}_i = 0$, $y_i = 1$,综合考虑两种情形可得: $(\hat{y}_i - y_i)\mathbf{w}\mathbf{x}_i > 0$ 所以可以推得损失函数为: $L(\mathbf{w}) = \sum_{\mathbf{x}_i \in M} (\hat{y}_i - y_i)\mathbf{w}\mathbf{x}_i$ 损失函数的梯度为: $\nabla_w L(\mathbf{w}) = \sum_{\mathbf{x}_i \in M} (\hat{y}_i - y_i)\mathbf{x}_i$ 随机选取一个误分类点 (\mathbf{x}_i, y_i) ,对 \mathbf{w} 进行更新: $\mathbf{w} \leftarrow \mathbf{w} - \eta(\hat{y}_i - y_i)\mathbf{x}_i = \mathbf{w} + \eta(y_i - \hat{y}_i)\mathbf{x}_i$ 显然式5.2为 \mathbf{w} 的第i个分量 w_i 的变化情况

5.12

所以
$$\Delta heta_j = -\eta rac{\partial E_k}{\partial heta_j} = -\eta g_j$$

5.13

$$\Delta v_{ih} = \eta e_h x_i$$
 [推导]:因为 $\Delta v_{ih} = -\eta rac{\partial E_k}{\partial v_{ih}}$ 又

$$\begin{split} \frac{\partial E_k}{\partial v_{ih}} &= \sum_{j=1}^l \frac{\partial E_k}{\partial \hat{y}_j^k} \cdot \frac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot \frac{\partial \beta_j}{\partial b_h} \cdot \frac{\partial b_h}{\partial \alpha_h} \cdot \frac{\partial \alpha_h}{\partial v_{ih}} \\ &= \sum_{j=1}^l \frac{\partial E_k}{\partial \hat{y}_j^k} \cdot \frac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot \frac{\partial \beta_j}{\partial b_h} \cdot \frac{\partial b_h}{\partial \alpha_h} \cdot x_i \\ &= \sum_{j=1}^l \frac{\partial E_k}{\partial \hat{y}_j^k} \cdot \frac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot \frac{\partial \beta_j}{\partial b_h} \cdot f'(\alpha_h - \gamma_h) \cdot x_i \\ &= \sum_{j=1}^l \frac{\partial E_k}{\partial \hat{y}_j^k} \cdot \frac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot w_{hj} \cdot f'(\alpha_h - \gamma_h) \cdot x_i \\ &= \sum_{j=1}^l (-g_j) \cdot w_{hj} \cdot f'(\alpha_h - \gamma_h) \cdot x_i \\ &= -f'(\alpha_h - \gamma_h) \cdot \sum_{j=1}^l g_j \cdot w_{hj} \cdot x_i \\ &= -b_h (1 - b_h) \cdot \sum_{j=1}^l g_j \cdot w_{hj} \cdot x_i \\ &= -e_h \cdot x_i \end{split}$$

5.14

所以 $\Delta \gamma_h = -\eta e_h$