Portion Size Effect for Children at High and Low Familial Risk for Obesity (Food and Brain Study)

Contents

1	Demographics	2
2	Meal Liking2.1 Chicken Nuggets2.2 Mac and Cheese2.3 Grapes2.4 Broccoli	. 6 . 7
3	Portion Size Effect	9
	3.1 Total Intake	9
	3.2 Intake by Food	
	3.3 Base Model - Test Quadratic Effect	
	3.4 Risk Status x Portion Size (linear effect)	12
	3.5 Exploratory Analyses: Effect of BMI	19
4	Exploratory Analyses: Individual Foods	20
	4.1 Chicken Nuggets	. 20
	4.2 Mac and Cheese	24
	4.3 Grapes	28
	4.4 Broccoli	32
5	Exploratory Analyses: Mediated Moderation	36
	5.1 Grams	36
	5.2 kcal	37

1 Demographics

Table 1: Demographics

	Risk Groups					
Characteristic	Low Risk, $N = 50$		$\frac{\text{Overall}}{\text{N} = 86}$			
Sex	,	,				
Male	29 (58%)	16 (44%)	45 (52%)			
Female	21 (42%)	20 (56%)	41 (48%)			
Age, yr	7.8 (0.7)	7.7 (0.5)	7.8 (0.6)			
Ethnicity	, ()	,,, (0,0)	(0.0)			
Not Hispanic/Lantinx	50 (100%)	36 (100%)	86 (100%)			
Race	, ,	, ,	, ,			
0	47 (94%)	36 (100%)	83 (97%)			
2	3(6.0%)	0 (0%)	3(3.5%)			
Income						
< \$51,000	4 (8.2%)	7 (21%)	11 (13%)			
>\$100,000	23 (47%)	7 (21%)	30 (36%)			
\$51,000 - \$100,000	22 (45%)	20 (59%)	42 (51%)			
Unknown	1	$\stackrel{\cdot}{2}$	3			
BMI %tile	41.2 (24.4)	$56.1\ (24.3)$	47.4 (25.3)			
Satiety Responsiveness	2.8 (0.6)	3.1 (0.6)	2.9(0.6)			
Mother's Education	01 (4907)	F (1407)	00 (0107)			
> Bachelor Degree	21 (43%)	5 (14%)	26 (31%)			
AA/Technical Degree Bachelor Degree	3 (6.1%)	6 (17%)	9 (11%)			
Bachelor Degree	22 (45%)	19 (53%)	41 (48%)			
High School/GED	3(6.1%)	6 (17%)	9 (11%)			
Unknown	1	0	1			
Father's Education						
> Bachelor Degree	27 (54%)	3(9.4%)	30 (37%)			
AA/Technical Degree	3(6.0%)	11 (34%)	14 (17%)			
Bachelor Degree	14 (28%)	12 (38%)	26 (32%)			
High School/GED	6 (12%)	5 (16%)	11 (13%)			
Other/NA	0 (0%)	1(3.1%)	1 (1.2%)			
Unknown	0	4	4			

¹ n (%); Mean (SD)

Age - t-test

Welch Two Sample t-test

data: age_yr by risk_status_mom

t = 0.50681, df = 82.343, p-value = 0.6136

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-0.1939215 0.3265215

sample estimates:

##BMI Percentile - t-test

Welch Two Sample t-test

data: bmi_percentile by risk_status_mom
t = -2.8105, df = 75.711, p-value = 0.006292

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-25.551839 -4.356339

sample estimates:

mean in group Low Risk mean in group High Risk 41.15980 56.11389

Low Risk High Risk 24.38858 24.30838

Sex - χ^2

Pearson's Chi-squared test with Yates' continuity correction

data: r01_intake\$sex and r01_intake\$risk_status_mom
X-squared = 1.0462, df = 1, p-value = 0.3064

Income - χ^2

Pearson's Chi-squared test

data: r01_intake\$income and r01_intake\$risk_status_mom
X-squared = 6.9633, df = 2, p-value = 0.03076

Mom Education - Fisher test

Fisher's Exact Test for Count Data

data: r01_intake\$mom_ed and r01_intake\$risk_status_mom

p-value = 0.01375

alternative hypothesis: two.sided

2 Meal Liking

Table 2: Regression Table: Portion Size for Liking

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	3.154	0.893	81.796	3.533	0.001
$\overline{\text{preFF}}$	-0.002	0.001	307.001	-2.302	0.022
bmi	0.028	0.052	80.948	0.539	0.591
sexFemale	0.118	0.128	80.620	0.924	0.358
$\operatorname{cebq}\operatorname{\underline{\hspace{1em}sr}}$	0.065	0.102	80.440	0.642	0.522
meal_order	0.018	0.014	254.676	1.275	0.203
risk_status_momHigh Risk	0.006	0.139	81.047	0.045	0.964
ps_prop	0.023	0.044	254.705	0.520	0.603

2.1 Chicken Nuggets

Table 3: Regression Table: Portion Size for Liking of Chicken Nuggets

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	2.830	1.196	82.536	2.365	0.020
preFF	-0.002	0.001	320.946	-1.476	0.141
bmi	0.057	0.069	81.394	0.820	0.415
sexFemale	-0.163	0.171	80.969	-0.949	0.345
cebq _sr	0.173	0.136	80.736	1.273	0.207
meal_order	0.037	0.023	255.055	1.636	0.103
$risk_status_momHigh Risk$	0.027	0.186	81.521	0.145	0.885
ps_prop	0.029	0.069	255.094	0.422	0.673

2.2 Mac and Cheese

Table 4: Regression Table: Portion Size for Liking of Mac and Cheese

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	2.265	1.383	82.781	1.638	0.105
preFF	-0.002	0.001	324.116	-1.344	0.180
bmi	0.098	0.080	81.557	1.228	0.223
sexFemale	0.217	0.198	81.106	1.095	0.277
$cebq_sr$	-0.028	0.157	80.860	-0.180	0.858
meal_order	0.006	0.027	255.202	0.217	0.829
risk_status_momHigh Risk	0.165	0.215	81.692	0.769	0.444
ps_prop	-0.027	0.083	255.242	-0.322	0.748

2.3 Grapes

Table 5: Regression Table: Portion Size for Liking of Grapes

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	2.871	1.252	82.589	2.293	0.024
preFF	-0.001	0.001	325.998	-1.032	0.303
bmi	0.031	0.072	81.313	0.422	0.674
sexFemale	0.177	0.179	80.847	0.989	0.325
cebq _sr	0.272	0.142	80.593	1.910	0.060
meal_order	0.009	0.026	254.949	0.336	0.737
$risk_status_momHigh Risk$	0.094	0.194	81.453	0.482	0.631
ps_prop	-0.004	0.077	254.991	-0.054	0.957

2.4 Broccoli

Table 6: Regression Table: Portion Size for Liking of Broccoli

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	4.667	1.998	81.135	2.336	0.022
preFF	-0.002	0.001	292.736	-1.534	0.126
bmi	-0.075	0.116	80.537	-0.646	0.520
sexFemale	0.241	0.287	80.297	0.838	0.404
cebq _sr	-0.155	0.228	80.166	-0.681	0.498
meal_order	0.022	0.027	254.329	0.809	0.419
$risk_status_momHigh Risk$	-0.258	0.311	80.609	-0.831	0.409
ps_prop	0.092	0.081	254.351	1.143	0.254

3 Portion Size Effect

Note - Portion Size was coded in ps_prop as the proportion increase in amount served: Portion Size 1=0, Portion Size 2=0.33, Portion Size 3=0.66, and Portion Size 4=0.99. This means that a 1 unit increase is equal to a 100% increase in amount served – the difference between Portion Size 1 and Portion Size 4.

3.1 Total Intake

Table 7: Intake by Portion Size

	Risk	Overall	
Characteristic	Low Risk, N = 50	High Risk, N = 36	N = 86
ps1_total_g	406.6 (170.2)	408.9 (165.6)	407.5 (167.3)
$ps1_total_kcal$	469.7 (201.2)	493.7 (197.2)	479.8 (198.7)
$ps1_avg_vas$	3.8(0.6)	3.9(0.6)	3.8(0.6)
$ps2_total_g$	466.7 (174.3)	393.4 (160.9)	436.0 (171.8)
$ps2_total_kcal$	535.6 (208.9)	485.4 (217.3)	514.6 (212.7)
$ps2_avg_vas$	3.8(0.6)	3.8 (0.7)	3.8(0.6)
$ps3_total_g$	484.8 (191.5)	432.7 (189.3)	463.0 (191.2)
$ps3_total_kcal$	581.9 (239.1)	530.2 (287.2)	560.3 (260.0)
ps3_avg_vas	3.8(0.6)	3.8(0.7)	3.8(0.6)
$ps4_total_g$	496.4 (192.8)	425.3 (168.4)	466.6 (185.4)
$ps4_total_kcal$	616.7 (249.1)	568.9 (253.5)	596.7 (250.6)
ps4_avg_vas	3.8 (0.7)	3.9 (0.6)	3.9 (0.6)

¹ Mean (SD)

3.2 Intake by Food

Table 8: High Risk: Intake by Portion Size

Characteristic	PS-1 , $N = 36$	PS-2 , $N = 36$	PS-3 , $N = 36$	PS-4 , $N = 36$
chnug_grams	64.8 (45.8)	64.3 (54.0)	77.1 (62.2)	85.6 (65.3)
chnug_kcal	162.1 (114.6)	160.7 (134.9)	192.7 (155.6)	214.1 (163.2)
mac_grams	133.0 (106.3)	132.8 (112.4)	136.1 (132.4)	142.5 (125.3)
mac_kcal	226.1 (180.8)	225.7 (191.1)	231.4 (225.1)	242.2 (213.1)
$grape_grams$	84.1 (65.6)	93.4 (76.2)	96.3 (88.7)	104.5 (91.4)
grape_kcal	58.4 (45.6)	64.9 (53.0)	66.9 (61.7)	72.6 (63.5)
broc_grams	32.7(53.7)	23.1(29.3)	24.6 (38.1)	23.9 (37.6)
broc_kcal	32.8(53.9)	23.1 (29.4)	24.7 (38.2)	24.0 (37.7)
mac_vas	4.2 (0.8)	3.9 (1.1)	3.9 (1.1)	4.0 (1.0)
chnug_vas	4.3 (1.0)	4.2 (1.0)	4.1(1.2)	4.3 (0.9)
broc_vas	2.9(1.7)	2.8 (1.5)	2.8(1.5)	2.9 (1.6)
$grape_vas$	4.2(0.8)	4.4(0.9)	4.4 (0.9)	4.4 (0.8)

¹ Mean (SD)

Table 9: Low Risk: Intake by Portion Size

Characteristic	PS-1 , $N = 50$	PS-2 , $N = 50$	PS-3 , $N = 50$	PS-4 , $N = 50$
chnug_grams	68.1 (42.0)	80.3 (49.0)	91.4 (59.9)	104.0 (67.9)
chnug_kcal	170.3 (104.9)	200.8 (122.6)	228.5 (149.8)	260.0 (169.7)
mac_grams	115.2 (91.8)	129.7 (103.8)	139.8 (116.9)	133.3 (108.7)
mac_kcal	195.8 (156.1)	220.5 (176.5)	237.7 (198.7)	226.6 (184.7)
${\tt grape_grams}$	95.9 (82.5)	105.5 (87.4)	105.8 (93.5)	117.9 (105.2)
grape_kcal	66.7 (57.3)	73.3 (60.7)	73.5 (65.0)	81.9 (73.1)
broc_grams	27.2(41.3)	29.9 (55.2)	30.0 (55.4)	36.2 (66.6)
broc_kcal	27.3(41.4)	30.0 (55.4)	30.1 (55.6)	36.3 (66.8)
mac_vas	3.6 (1.0)	3.7 (1.0)	3.8 (1.1)	3.7(1.0)
chnug_vas	4.1 (0.9)	4.3(0.7)	4.2(0.7)	4.2(0.9)
broc_vas	3.2 (1.2)	3.1 (1.1)	3.2 (1.2)	3.3 (1.3)
grape_vas	4.2 (0.9)	4.2 (1.0)	4.1 (1.1)	4.1 (1.0)

¹ Mean (SD)

3.3 Base Model - Test Quadratic Effect

All intake models are currently controlling for: pre-meal Freddy Fullness, child BMI, average VAS liking rating for the meal foods conducted at each meal, and meal order.

3.3.1 Grams

```
Data: intake_long
```

Models:

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Table 10: Regression Table: Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	492.559	290.510	82.122	1.695	0.094
preFF	-0.325	0.216	322.260	-1.509	0.132
bmi	17.781	12.120	78.826	1.467	0.146
sexFemale	-11.184	31.661	78.907	-0.353	0.725
age_yr	-23.461	25.849	78.420	-0.908	0.367
cebq _sr	-96.176	24.633	78.572	-3.904	0.000
avg_vas	36.269	15.032	328.597	2.413	0.016
$meal_order$	-5.973	4.135	252.952	-1.445	0.150
ps_prop	59.303	12.509	252.349	4.741	0.000

3.3.2 kcal

Data: intake_long

Models:

kcal_ps_mod: kcal ~ preFF + bmi + sex + age_yr + cebq_sr + avg_vas + meal_order + ps_prop + (1 | sub) kcal_psquad_mod: kcal ~ preFF + bmi + sex + age_yr + cebq_sr + avg_vas + meal_order + ps_prop + ps_prop npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

kcal_ps_mod 11 4456.5 4498.7 -2217.2 4434.5

kcal_psquad_mod 12 4458.5 4504.5 -2217.2 4434.5 0.0189 1

Table 11: Regression Table: Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	592.471	352.195	82.925	1.682	0.096
preFF	-0.866	0.290	330.905	-2.981	0.003
bmi	31.992	14.653	79.316	2.183	0.032
sexFemale	-18.196	38.280	79.391	-0.475	0.636
age_yr	-56.592	31.239	78.835	-1.812	0.074
cebq	-122.042	29.774	78.997	-4.099	0.000
avg_vas	55.753	19.846	311.426	2.809	0.005
$meal_order$	3.506	5.697	253.622	0.615	0.539
ps_prop	118.103	17.240	252.976	6.851	0.000

3.4 Risk Status x Portion Size (linear effect)

3.4.1 Grams

Adding an interaction between Risk Status and Portion Size significantly improved model fit.

Data: intake_long

Models:

grams_ps_mod: grams ~ preFF + bmi + sex + age_yr + cebq_sr + avg_vas + meal_order + ps_prop + (1 | sub)
grams_psxrisk_mod: grams ~ preFF + bmi + sex + age_yr + cebq_sr + avg_vas + meal_order + risk_status_mod
npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

grams_ps_mod 11 4258.4 4300.6 -2118.2 4236.4

grams_psxrisk_mod 13 4254.5 4304.4 -2114.3 4228.5 7.8652 2 0.01959 *

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Table 12: Regression Table: Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	416.084	293.887	81.408	1.416	0.161
preFF	-0.337	0.215	319.184	-1.568	0.118
bmi	23.116	12.744	78.432	1.814	0.074
sexFemale	-6.206	31.750	78.267	-0.195	0.846
age_yr	-26.050	25.813	77.734	-1.009	0.316
$\operatorname{cebq_sr}$	-89.308	25.052	77.786	-3.565	0.001
avg_vas	35.215	14.916	326.701	2.361	0.019
$meal_order$	-5.802	4.095	252.232	-1.417	0.158
risk_status_momHigh Risk	-14.647	36.456	100.512	-0.402	0.689
ps_prop	84.970	16.242	251.743	5.231	0.000
$risk_status_momHigh~Risk:ps_prop$	-61.224	25.096	251.928	-2.440	0.015

Table 13: Estimated Simple Slopes: Risk Status x Linear Portion Size for Grams

risk_status_mom	ps_prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk	0 - 0 . 0		253.379 253.438	0.202	0.000 0.216

Table 14: Estimated Marginal Means: Risk Status x Portion Size for Grams

	Low Risk	High Risk
0	421.319	403.272
0.33	448.423	410.766
0.66	477.006	414.724
0.99	507.665	431.448

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 0.54902, df = 78.638, p-value = 0.5845

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-47.38612 83.47993

mean in group Low Risk mean in group High Risk
421.3193 403.2724

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 1.1393, df = 77.467, p-value = 0.2581

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-28.15189 103.46615

sample estimates:

mean in group Low Risk mean in group High Risk 448.4235 410.7663

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 1.868, df = 76.96, p-value = 0.06557

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-4.109184 128.672336

sample estimates:

mean in group Low Risk mean in group High Risk 477.0060 414.7245

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 2.3409, df = 79.553, p-value = 0.02174

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

11.41789 141.01546

sample estimates:

mean in group Low Risk mean in group High Risk 507.6645 431.4479

3.4.1.1 No Plate Cleaners

Table 15: Regression Table: No Plate Cleaners - Risk x Portion Size for grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	348.213	296.273	79.152	1.175	0.243
preFF	-0.318	0.213	310.668	-1.494	0.136
bmi	20.351	12.901	76.202	1.578	0.119
sexFemale	1.011	31.898	76.191	0.032	0.975
age_yr	-16.131	26.411	75.613	-0.611	0.543
cebq _sr	-76.641	26.108	75.704	-2.936	0.004
avg_vas	32.681	14.912	318.475	2.192	0.029
$meal_order$	-6.462	4.088	246.080	-1.581	0.115
risk_status_momHigh Risk	-19.347	36.823	97.213	-0.525	0.600
ps_prop	87.198	16.184	245.743	5.388	0.000
$risk_status_momHigh~Risk:ps_prop$	-58.461	25.073	245.945	-2.332	0.021

3.4.2 kcal

Adding an interaction between Risk Status and Portion Size (linear effect) significantly improved model fit.

Data: intake_long

Models:

kcal_ps_mod: kcal ~ preFF + bmi + sex + age_yr + cebq_sr + avg_vas + meal_order + ps_prop + (1 | sub)

kcal_psxrisk_mod: kcal ~ preFF + bmi + sex + age_yr + cebq_sr + avg_vas + meal_order + risk_status_mom

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

kcal_ps_mod 11 4456.5 4498.7 -2217.2 4434.5

kcal_psxrisk_mod 13 4455.8 4505.7 -2214.9 4429.8 4.7108 2 0.09486 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Table 16: Regression Table: Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	540.345	359.042	82.117	1.505	0.136
preFF	-0.883	0.291	327.796	-3.038	0.003
bmi	35.304	15.531	78.892	2.273	0.026
sexFemale	-15.074	38.689	78.673	-0.390	0.698
age_yr	-58.194	31.440	78.059	-1.851	0.068
$cebq_sr$	-117.707	30.514	78.106	-3.857	0.000
avg_vas	54.511	19.796	310.431	2.754	0.006
meal_order	3.705	5.663	252.792	0.654	0.514
risk_status_momHigh Risk	7.108	45.181	107.621	0.157	0.875
ps_prop	147.808	22.463	252.262	6.580	0.000
$risk_status_momHigh~Risk:ps_prop$	-70.873	34.706	252.484	-2.042	0.042

Table 17: Estimated Simple Slopes: Risk Status x Linear Portion Size for kcal

risk_status_mom	ps_prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk			253.451 253.545		0.000 0.004

Table 18: Estimated Marginal Means: Risk Status x Portion Size for kcal

	Low Risk	High Risk
0	477.751	481.283
0.33	525.964	506.563
0.66	577.110	525.195
0.99	623.104	565.223

Welch Two Sample t-test

data: $kcal_pred_rxps$ by $risk_status_mom$ t = -0.082564, df = 73.092, p-value = 0.9344

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-88.77734 81.71419

sample estimates:

mean in group Low Risk mean in group High Risk 477.7512 481.2828

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 0.46488, df = 73.817, p-value = 0.6434

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-63.75881 102.56135

sample estimates:

mean in group Low Risk mean in group High Risk 525.9643 506.5631

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 1.1798, df = 70.911, p-value = 0.242

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-35.82425 139.65505

sample estimates:

mean in group Low Risk mean in group High Risk 577.1102 525.1948

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 1.3668, df = 75.617, p-value = 0.1757

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-26.47015 142.23164

sample estimates:

mean in group Low Risk mean in group High Risk 623.1035 565.2228

3.4.2.1 No Plate Cleaners

Table 19: Regression Table: No Plate Cleaners - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	482.921	364.151	79.832	1.326	0.189
preFF	-0.883	0.289	319.094	-3.055	0.002
bmi	33.161	15.818	76.629	2.096	0.039
sexFemale	-8.119	39.111	76.595	-0.208	0.836
age_yr	-49.225	32.366	75.930	-1.521	0.132
cebq sr	-106.411	31.998	76.023	-3.326	0.001
avg_vas	50.994	19.868	302.776	2.567	0.011
meal_order	1.655	5.670	246.627	0.292	0.771
risk_status_momHigh Risk	3.819	45.877	103.776	0.083	0.934
ps_prop	150.398	22.448	246.263	6.700	0.000
$risk_status_momHigh~Risk:ps_prop$	-73.870	34.774	246.508	-2.124	0.035

3.5 Exploratory Analyses: Effect of BMI

After controlling for age and sex, there was a difference in BMI by Risk Status such that the High Risk group had BMI that was 0.73 higher on average.

Table 20: Regression Table: BMI and Risk Status

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	14.008	1.757	7.972	0.000
age_yr	0.184	0.225	0.816	0.417
sexFemale	0.007	0.277	0.024	0.981
$risk_status_momHigh Risk$	0.794	0.280	2.841	0.006

Since BMI was associated with both total grams and kcal intake, I tested if adding a BMI x Poriton Size interaction improved the model.

3.5.1 Grams

Adding a BMI x Portion Size interaction did not improve the model for grams

```
Data: intake_long
Models:
grams_psxrisk_mod: grams ~ preFF + bmi + sex + age_yr + cebq_sr + avg_vas + meal_order + risk_status_mod
grams_psxrisk_psxbmi_mod: grams ~ preFF + bmi + sex + age_yr + cebq_sr + avg_vas + meal_order + risk_st
                        npar
                                AIC
                                       BIC logLik deviance Chisq Df
grams psxrisk mod
                          13 4254.5 4304.4 -2114.3
                                                     4228.5
                         14 4256.4 4310.2 -2114.2
grams_psxrisk_psxbmi_mod
                                                     4228.4 0.1023 1
                        Pr(>Chisq)
grams psxrisk mod
grams_psxrisk_psxbmi_mod
                            0.7491
```

3.5.2 kcal

Adding a BMI x Portion Size interaction did not improve the model for kcal.

Data: intake_long Models: kcal_psxrisk_mod: kcal ~ preFF + bmi + sex + age_yr + cebq_sr + avg_vas + meal_order + risk_status_mom * ps_prop + $(1 \mid \text{sub})$ kcal_psxrisk_psxbmi_mod: kcal ~ preFF + bmi + sex + age_yr + cebq_sr + avg_vas + meal_order + risk_status_mom * ps_prop + bmi * ps_prop + $(1 \mid \text{sub})$ npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) kcal_psxrisk_mod 13 4455.8 4505.7 -2214.9 4429.8 kcal_psxrisk_psxbmi_mod 14 4455.7 4509.5 -2213.9 4427.7 2.046 1 0.1526

4 Exploratory Analyses: Individual Foods

4.1 Chicken Nuggets

4.1.1 Grams

4.1.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

```
Data: intake_long
Models:
grams_chnug_ps_mod: chnug_grams ~ preFF + bmi + sex + age_yr + cebq_sr + chnug_vas + meal_order + ps_pr
grams_chnug_ps_psquad_mod: chnug_grams ~ preFF + bmi + sex + age_yr + cebq_sr + chnug_vas + meal_order
                                        BIC logLik deviance Chisq Df
                                 AIC
                         npar
grams_chnug_ps_mod
                           11 3508.9 3551.2 -1743.5
                                                     3486.9
grams_chnug_ps_psquad_mod 12 3510.6 3556.7 -1743.3
                                                      3486.6 0.2814 1
                         Pr(>Chisq)
grams_chnug_ps_mod
grams_chnug_ps_psquad_mod
                             0.5958
```

Table 21: Chicken Nugget - Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	29.789	80.022	74.312	0.372	0.711
preFF	-0.214	0.074	334.475	-2.909	0.004
$_{ m bmi}$	4.207	3.342	71.386	1.259	0.212
sexFemale	-13.502	8.714	71.106	-1.549	0.126
age_yr	-7.990	7.137	71.286	-1.120	0.267
cebq	-11.151	6.797	71.337	-1.641	0.105
$chnug_vas$	17.939	3.311	315.760	5.418	0.000
$meal_order$	1.311	1.489	245.142	0.881	0.379
ps_prop	29.889	4.499	244.045	6.643	0.000

4.1.1.2 Risk x Portion Size

Table 22: Chicken Nugget - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	5.787	80.814	73.601	0.072	0.943
preFF	-0.211	0.074	332.237	-2.860	0.005
bmi	5.890	3.508	70.885	1.679	0.098
sexFemale	-11.959	8.720	70.345	-1.371	0.175
age_yr	-8.820	7.110	70.426	-1.240	0.219
$cebq_sr$	-9.026	6.894	70.316	-1.309	0.195
chnug_vas	17.877	3.298	312.486	5.420	0.000
meal_order	1.346	1.485	244.269	0.906	0.366
ps_prop	35.695	5.882	243.198	6.069	0.000
$risk_status_momHigh~Risk$	-7.236	10.453	107.589	-0.692	0.490
ps_prop:risk_status_momHigh Risk	-13.836	9.088	243.500	-1.522	0.129

4.1.2 kcal

kcal_chnug_ps_psquad_mod

4.1.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

Table 23: Chicken - Nugget Portion Size for kcal

0.5958

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	74.473	200.056	74.312	0.372	0.711
preFF	-0.535	0.184	334.475	-2.909	0.004
$_{ m bmi}$	10.517	8.356	71.386	1.259	0.212
sexFemale	-33.754	21.785	71.106	-1.549	0.126
age_yr	-19.975	17.843	71.286	-1.120	0.267
cebq	-27.878	16.993	71.337	-1.641	0.105
$chnug_vas$	44.847	8.278	315.760	5.418	0.000
$meal_order$	3.279	3.723	245.142	0.881	0.379
ps_prop	74.722	11.248	244.045	6.643	0.000

Table 24: Chicken - Nugget Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	14.468	202.035	73.601	0.072	0.943
preFF	-0.528	0.184	332.237	-2.860	0.005
bmi	14.724	8.770	70.885	1.679	0.098
sexFemale	-29.896	21.800	70.345	-1.371	0.175
age_yr	-22.049	17.776	70.426	-1.240	0.219
$cebq_sr$	-22.566	17.236	70.316	-1.309	0.195
chnug_vas	44.693	8.246	312.486	5.420	0.000
meal_order	3.365	3.713	244.269	0.906	0.366
ps_prop	89.237	14.705	243.198	6.069	0.000
$risk_status_momHigh~Risk$	-18.091	26.134	107.589	-0.692	0.490
$_ps_prop:risk_status_momHigh \ Risk$	-34.590	22.721	243.500	-1.522	0.129

4.1.2.2 Risk x Portion Size

4.2 Mac and Cheese

4.2.1 Grams

4.2.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

Data: intake_long
Models:
grams_mac_ps_mod: mac_grams ~ preFF + bmi + sex + age_yr + cebq_sr + mac_vas + meal_order + ps_prop + (
grams_mac_ps_psquad_mod: mac_grams ~ preFF + bmi + sex + age_yr + cebq_sr + mac_vas + meal_order + ps_p
npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
grams_mac_ps_mod 11 3850.8 3893.1 -1914.4 3828.8
grams_mac_ps_psquad_mod 12 3851.8 3897.9 -1913.9 3827.8 0.979 1 0.3224

Table 25: Mac and Cheese - Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(>\! t)$
(Intercept)	233.348	171.571	76.877	1.360	0.178
preFF	-0.117	0.117	310.347	-0.993	0.321
$_{ m bmi}$	12.913	7.265	76.887	1.777	0.079
sexFemale	11.601	18.940	76.475	0.613	0.542
age_yr	-32.364	15.466	76.001	-2.093	0.040
$cebq_sr$	-51.125	14.725	75.954	-3.472	0.001
mac_vas	21.635	4.567	329.059	4.737	0.000
$meal_order$	2.282	2.222	249.352	1.027	0.305
ps_prop	16.150	6.737	249.408	2.397	0.017

Table 26: Mac and Cheese - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	234.334	175.744	76.092	1.333	0.186
preFF	-0.120	0.118	307.064	-1.015	0.311
bmi	12.840	7.720	75.902	1.663	0.100
sexFemale	11.560	19.211	75.480	0.602	0.549
age_yr	-32.329	15.625	75.018	-2.069	0.042
cebq _sr	-51.241	15.154	74.918	-3.381	0.001
mac_vas	21.379	4.606	327.256	4.642	0.000
meal_order	2.297	2.226	248.348	1.032	0.303
ps_prop	18.148	8.853	248.608	2.050	0.041
$risk_status_momHigh\ Risk$	3.182	21.853	93.587	0.146	0.885
ps_prop:risk_status_momHigh Risk	-4.798	13.739	249.669	-0.349	0.727

4.2.1.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 27: Mac and Cheese - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	234.743	175.621	76.179	1.337	0.185
preFF	-0.117	0.118	307.847	-0.994	0.321
bmi	12.836	7.714	75.998	1.664	0.100
sexFemale	11.542	19.198	75.576	0.601	0.549
age_yr	-32.328	15.614	75.115	-2.070	0.042
$cebq_sr$	-51.238	15.143	75.015	-3.384	0.001
mac_vas	21.533	4.575	327.886	4.707	0.000
$meal_order$	2.283	2.222	249.439	1.027	0.305
ps_prop	16.146	6.736	249.492	2.397	0.017
$risk_status_momHigh Risk$	0.750	20.699	75.790	0.036	0.971

4.2.2 kcal

4.2.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

Data: intake_long

Models:

kcal_mac_ps_mod 11 4215.9 4258.1 -2096.9 4193.9

kcal_mac_ps_psquad_mod 12 4216.9 4263.0 -2096.4 4192.9 0.979 1 0.3224

Table 28: Mac and Cheese - Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	396.692	291.671	76.877	1.360	0.178
preFF	-0.198	0.199	310.347	-0.993	0.321
bmi	21.952	12.350	76.887	1.777	0.079
sexFemale	19.721	32.197	76.475	0.613	0.542
age_yr	-55.019	26.291	76.001	-2.093	0.040
mac_vas	36.780	7.764	329.059	4.737	0.000
cebq	-86.912	25.032	75.954	-3.472	0.001
$meal_order$	3.880	3.778	249.352	1.027	0.305
ps_prop	27.454	11.453	249.408	2.397	0.017

Table 29: Mac and Cheese - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	398.367	298.765	76.092	1.333	0.186
preFF	-0.204	0.201	307.064	-1.015	0.311
bmi	21.828	13.123	75.901	1.663	0.100
sexFemale	19.652	32.659	75.480	0.602	0.549
age_yr	-54.960	26.562	75.018	-2.069	0.042
$\operatorname{cebq_sr}$	-87.110	25.761	74.918	-3.381	0.001
mac_vas	36.345	7.830	327.256	4.642	0.000
$meal_order$	3.904	3.784	248.348	1.032	0.303
ps_prop	30.852	15.050	248.608	2.050	0.041
$risk_status_momHigh\ Risk$	5.409	37.151	93.587	0.146	0.885
ps_prop:risk_status_momHigh Risk	-8.156	23.356	249.669	-0.349	0.727

4.2.2.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 30: Mac and Cheese - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	399.064	298.556	76.179	1.337	0.185
preFF	-0.199	0.200	307.847	-0.994	0.321
bmi	21.821	13.114	75.998	1.664	0.100
sexFemale	19.622	32.636	75.576	0.601	0.549
age_yr	-54.957	26.544	75.115	-2.070	0.042
$cebq_sr$	-87.104	25.744	75.015	-3.384	0.001
mac_vas	36.606	7.778	327.886	4.707	0.000
$meal_order$	3.881	3.778	249.439	1.027	0.305
ps_prop	27.449	11.452	249.492	2.397	0.017
$risk_status_momHigh Risk$	1.275	35.188	75.790	0.036	0.971

4.3 Grapes

4.3.1 Grams

4.3.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

```
Data: intake_long
Models:
grams_grape_ps_mod: grape_grams ~ preFF + bmi + sex + age_yr + cebq_sr + grape_vas + meal_order + ps_pr
grams_grape_ps_psquad_mod: grape_grams ~ preFF + bmi + sex + age_yr + cebq_sr + grape_vas + meal_order
                         npar
                                       BIC logLik deviance Chisq Df
                                AIC
                           11 3739.5 3781.7 -1858.7
grams_grape_ps_mod
                           12 3741.4 3787.5 -1858.7
grams_grape_ps_psquad_mod
                                                      3717.4 0.0106 1
                         Pr(>Chisq)
grams_grape_ps_mod
grams_grape_ps_psquad_mod
                             0.9179
```

Table 31: Grapes - Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	68.593	151.670	76.184	0.452	0.652
preFF	-0.058	0.099	305.768	-0.588	0.557
bmi	-9.059	6.407	75.600	-1.414	0.162
sexFemale	-10.045	16.734	75.659	-0.600	0.550
age_yr	23.039	13.674	75.337	1.685	0.096
$cebq_sr$	-11.878	13.077	76.434	-0.908	0.367
$grape_vas$	9.859	4.185	323.249	2.356	0.019
$meal_order$	-5.167	1.866	248.615	-2.769	0.006
ps_prop	18.675	5.656	248.610	3.302	0.001

Table 32: Grapes - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	67.207	155.119	75.441	0.433	0.666
preFF	-0.060	0.100	302.512	-0.598	0.550
bmi	-9.023	6.803	74.860	-1.326	0.189
sexFemale	-10.028	16.950	74.741	-0.592	0.556
age_yr	23.018	13.794	74.416	1.669	0.099
$\operatorname{cebq_sr}$	-11.843	13.428	75.275	-0.882	0.381
grape_vas	9.940	4.220	321.743	2.356	0.019
meal_order	-5.159	1.870	247.649	-2.759	0.006
ps_prop	20.120	7.445	248.015	2.702	0.007
$risk_status_momHigh~Risk$	1.349	19.159	90.590	0.070	0.944
ps_prop:risk_status_momHigh Risk	-3.455	11.543	248.650	-0.299	0.765

4.3.1.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 33: Grapes - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	68.214	155.225	75.454	0.439	0.662
preFF	-0.058	0.099	303.404	-0.581	0.561
bmi	-9.009	6.809	74.927	-1.323	0.190
sexFemale	-9.985	16.965	74.807	-0.589	0.558
age_yr	23.021	13.806	74.489	1.667	0.100
$cebq_sr$	-11.797	13.440	75.337	-0.878	0.383
grape_vas	9.769	4.190	322.226	2.331	0.020
$meal_order$	-5.167	1.866	248.725	-2.769	0.006
ps_prop	18.675	5.655	248.719	3.302	0.001
$risk_status_momHigh\ Risk$	-0.370	18.293	75.040	-0.020	0.984

4.3.2 kcal

4.3.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

Table 34: Grapes - Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	47.672	105.411	76.184	0.452	0.652
preFF	-0.040	0.069	305.768	-0.588	0.557
bmi	-6.296	4.453	75.600	-1.414	0.162
sexFemale	-6.981	11.630	75.659	-0.600	0.550
age_yr	16.012	9.503	75.337	1.685	0.096
cebq _sr	-8.255	9.088	76.434	-0.908	0.367
$grape_vas$	6.852	2.909	323.249	2.356	0.019
$meal_order$	-3.591	1.297	248.615	-2.769	0.006
ps_prop	12.979	3.931	248.610	3.302	0.001

Table 35: Grapes - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	46.709	107.807	75.441	0.433	0.666
preFF	-0.041	0.069	302.512	-0.598	0.550
bmi	-6.271	4.728	74.860	-1.326	0.189
sexFemale	-6.969	11.780	74.741	-0.592	0.556
age_yr	15.997	9.587	74.416	1.669	0.099
$\operatorname{cebq_sr}$	-8.231	9.333	75.275	-0.882	0.381
grape_vas	6.908	2.933	321.743	2.356	0.019
meal_order	-3.586	1.300	247.649	-2.759	0.006
ps_prop	13.984	5.175	248.015	2.702	0.007
$risk_status_momHigh\ Risk$	0.938	13.316	90.590	0.070	0.944
ps_prop:risk_status_momHigh Risk	-2.401	8.023	248.650	-0.299	0.765

4.3.2.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 36: Grapes - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	47.409	107.882	75.455	0.439	0.662
preFF	-0.040	0.069	303.404	-0.581	0.561
bmi	-6.262	4.733	74.927	-1.323	0.190
sexFemale	-6.940	11.791	74.807	-0.589	0.558
age_yr	15.999	9.596	74.489	1.667	0.100
$cebq_sr$	-8.199	9.341	75.337	-0.878	0.383
grape_vas	6.789	2.912	322.226	2.331	0.020
$meal_order$	-3.591	1.297	248.725	-2.769	0.006
ps_prop	12.979	3.930	248.719	3.302	0.001
$risk_status_momHigh Risk$	-0.257	12.714	75.040	-0.020	0.984

4.4 Broccoli

4.4.1 Grams

4.4.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

```
Data: intake_long
Models:
grams_broc_ps_mod: broc_grams ~ preFF + bmi + sex + age_yr + cebq_sr + broc_vas + meal_order + ps_prop_grams_broc_ps_psquad_mod: broc_grams ~ preFF + bmi + sex + age_yr + cebq_sr + broc_vas + meal_order + p_npar AIC BIC logLik deviance Chisq Df
grams_broc_ps_mod 11 3444.5 3486.8 -1711.3 3422.5
grams_broc_ps_psquad_mod 12 3445.8 3491.9 -1710.9 3421.8 0.7715 1
Pr(>Chisq)
grams_broc_ps_mod
grams_broc_ps_psquad_mod 0.3797
```

Table 37: Broccoli - Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-63.830	86.368	71.997	-0.739	0.462
preFF	0.008	0.066	321.770	0.116	0.908
bmi	-1.264	3.638	71.018	-0.347	0.729
sexFemale	9.429	9.484	70.770	0.994	0.324
age_yr	14.050	7.750	70.500	1.813	0.074
cebq _sr	-1.137	7.389	70.761	-0.154	0.878
$broc_vas$	1.280	2.320	287.682	0.552	0.582
$meal_order$	-1.106	1.274	243.932	-0.868	0.387
ps_prop	1.268	3.866	244.203	0.328	0.743

Table 38: brocs - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-71.439	88.487	70.906	-0.807	0.422
preFF	0.001	0.066	317.467	0.017	0.986
bmi	-0.836	3.873	70.129	-0.216	0.830
sexFemale	9.907	9.644	69.940	1.027	0.308
age_yr	13.868	7.843	69.522	1.768	0.081
$\operatorname{cebq_sr}$	-0.576	7.612	69.578	-0.076	0.940
broc_vas	0.943	2.323	289.836	0.406	0.685
meal_order	-1.059	1.266	242.904	-0.836	0.404
ps_prop	7.819	5.032	243.345	1.554	0.122
$risk_status_momHigh~Risk$	3.669	11.111	91.839	0.330	0.742
ps_prop:risk_status_momHigh Risk	-15.580	7.766	243.044	-2.006	0.046

4.4.1.2 Risk x Portion Size Unlike other models, none of the control variables were associated with broccoli intake.

There was a significant interaction between Risk Status and Portion Size.

Table 39: Estimated Simple Slopes: Risk Status x Portion Size for Broccoli grams

risk_status_mom ps_	_prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk	7.819 -7.762	5.032 5.925	$253.961 \\ 253.503$	1.554 -1.310	$0.121 \\ 0.191$
contrast	estimate	SE	df	t.ratio	p.value
Low Risk - High Risk	15.58	7.766	253.684	2.006	0.046

4.4.2 kcal

4.4.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

Table 40: Broccoli - Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-64.022	86.627	71.997	-0.739	0.462
preFF	0.008	0.066	321.770	0.116	0.908
bmi	-1.268	3.649	71.018	-0.347	0.729
sexFemale	9.457	9.512	70.770	0.994	0.324
cebq _sr	-1.141	7.411	70.761	-0.154	0.878
$broc_vas$	1.284	2.327	287.682	0.552	0.582
age_yr	14.093	7.773	70.500	1.813	0.074
$meal_order$	-1.109	1.278	243.932	-0.868	0.387
ps_prop	1.272	3.877	244.203	0.328	0.743

Table 41: brocs - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-71.654	88.752	70.906	-0.807	0.422
preFF	0.001	0.066	317.467	0.017	0.986
bmi	-0.839	3.885	70.129	-0.216	0.830
sexFemale	9.937	9.673	69.940	1.027	0.308
age_yr	13.910	7.867	69.522	1.768	0.081
$\operatorname{cebq_sr}$	-0.578	7.635	69.578	-0.076	0.940
broc_vas	0.946	2.330	289.836	0.406	0.685
meal_order	-1.062	1.269	242.904	-0.836	0.404
ps_prop	7.842	5.047	243.345	1.554	0.122
$risk_status_momHigh~Risk$	3.680	11.144	91.839	0.330	0.742
ps_prop:risk_status_momHigh Risk	-15.627	7.790	243.044	-2.006	0.046

4.4.2.2 Risk x Portion Size Unlike other models, none of the control variables were associated with broccoli intake.

There was a significant interaction between Risk Status and Portion Size.

Table 42: Estimated Simple Slopes: Risk Status x Portion Size for Broccoli kcal

risk_status_mom ps_	prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk		5.047 5.943			$0.121 \\ 0.191$
contrast	estimate	SE	df	t.ratio	p.value
Low Risk - High Risk	15.627	7.79	253.684	2.006	0.046

5 Exploratory Analyses: Mediated Moderation

Since broccoli was the only food showing a Risk Status x Portion Size interaction, I tested whether broccoli intake mediates the overall Risk x Potion Size interaction using a mediated moderation model.

5.1 Grams

lavaan 0.6-12 ended normally after 149 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	26
Number of observations	344
Number of clusters [sub]	86

Model Test User Model:

	Standard	Robust
Test Statistic	10.786	4.956
Degrees of freedom	3	3
P-value (Chi-square)	0.013	0.175
Scaling correction factor		2.176
Yuan-Bentler correction (Mplus variant)		
Information	Observed	

Parameter Estimates:

Standard errors	Robust.cluster
Information	Expected
Information saturated (h1) model	Structured

Regressions:

egressions.					
	E	stimate	Std.Err	z-value	P(> z)
grams ~					
sub		-0.325	0.323	-1.004	0.315
${ t preFF}$		-0.996	0.320	-3.115	0.002
bmi		18.698	10.922	1.712	0.087
sex		-35.195	29.546	-1.191	0.234
age_yr		-43.664	20.271	-2.154	0.031
cebq_sr		-87.590	21.695	-4.037	0.000
avg_vas		58.006	24.524	2.365	0.018
${\tt meal_order}$		-4.726	4.341	-1.088	0.276
rsk_stts_m		-4.773	34.350	-0.139	0.889
ps_prop		75.545	14.913	5.066	0.000
psxrisk_nt	(c)	-46.716	24.408	-1.914	0.056
broc_grams ~					
preFF		-0.078	0.073	-1.062	0.288
bmi		-0.398	2.457	-0.162	0.871
sex		6.735	8.468	0.795	0.426
age_yr		13.140	8.410	1.562	0.118
cebq_sr		1.144	3.875	0.295	0.768
broc_vas		12.008	2.843	4.224	0.000

<pre>meal_order rsk_stts_m ps_prop psxrisk_nt (grams ~ broc_grams (</pre>	-1.261 7.565 6.533 a) -15.363 b) 1.193	5.764	1.133	0.390 0.382 0.257 0.040			
Intercepts:							
•	Estimate	Std.Err	z-value	P(> z)			
.grams	591.576	259.996	2.275	0.023			
.broc_grams	-122.070	70.433	-1.733	0.083			
Variances:							
	Estimate	Std.Err	z-value	P(> z)			
.grams	20227.764	2068.553	9.779	0.000			
.broc_grams	2055.589	714.576	2.877	0.004			
Defined Parameters:							
	Estimate	Std.Err	z-value	P(> z)			
ab	-18.321	9.314	-1.967	0.049			
total	-65.037	26.584	-2.446	0.014			

There was a significant level indirect effect (p = 0.036) indicating that broccoli intake mediated the interaction between risk status and portion size for gram intake.

5.2 kcal

lavaan 0.6-12 ended normally after 139 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	26
Number of observations	344
Number of clusters [sub]	86

Model Test User Model:

	Standard	Robust
Test Statistic	17.042	7.853
Degrees of freedom	3	3
P-value (Chi-square)	0.001	0.049
Scaling correction factor		2.170
Yuan-Bentler correction (Mplus variant)		
Information	Observed	

Parameter Estimates:

Standard errors	Robust.cluster
Information	Expected
Information saturated (h1) model	Structured

Regressions:

		Estimate	Std.Err	z-value	P(> z)		
kcal ~							
sub		-0.082	0.465	-0.177	0.860		
preFF		-1.551	0.371	-4.182	0.000		
bmi		32.467	14.797	2.194	0.028		
sex		-37.265	37.687	-0.989	0.323		
age_yr		-74.153	27.428	-2.704	0.007		
cebq_sr		-117.122	24.910	-4.702	0.000		
avg_vas		74.543	27.752	2.686	0.007		
meal_order		4.909	5.935	0.827	0.408		
rsk_stts_m		14.209	41.394	0.343	0.731		
ps_prop		137.932	22.045	6.257	0.000		
psxrisk_nt	(c)	-55.389	36.438	-1.520	0.128		
broc_kcal ~							
preFF		-0.078	0.074	-1.062	0.288		
bmi		-0.399	2.465	-0.162	0.871		
sex		6.756	8.493	0.795	0.426		
age_yr		13.179	8.435	1.562	0.118		
cebq_sr		1.147	3.887	0.295	0.768		
broc_vas		12.044	2.851	4.224	0.000		
meal_order		-1.265	1.470	-0.860	0.390		
rsk_stts_m		7.587	8.674	0.875	0.382		
ps_prop		6.553	5.781	1.133	0.257		
psxrisk_nt	(a)	-15.409	7.511	-2.052	0.040		
kcal ~							
broc_kcal	(b)	1.260	0.310	4.069	0.000		
Intercepts:							
_		Estimate	Std.Err	z-value	P(> z)		
.kcal		653.614	386.457	1.691	0.091		
.broc_kcal		-122.437	70.644	-1.733	0.083		
Variances:							
		Estimate	Std.Err	z-value	P(> z)		
.kcal		33977.227	3636.876	9.342	0.000		
.broc_kcal		2067.941	718.870	2.877	0.004		
Defined Parameters:							
2011HOW TUTUMOU	. 51 5	Estimate	Std.Err	z-value	P(> z)		
ab		-19.423	10.173	-1.909	0.056		
total		-74.812	37.914	-1.973	0.048		
00041		, 1.012	0011	1.0.0	0.010		

There was a significant level indirect effect (p=0.048) indicating that broccoli intake mediated the interaction between risk status and portion size for kcal intake.