Lasso Regression:

Regularization for feature selection

CSE 446: Machine Learning

Emily Fox

University of Washington

January 18, 2017

©2017 Emily Fo

Feature selection task

©2017 Emily Fox

1

Why might you want to perform feature selection?

Efficiency:

- If size(w) = 100B, each prediction is expensive
- If w sparse, computation only depends on # of non-zeros

many zeros

Interpretability:

- Which features are relevant for prediction?

3

©2017 Emily Fox

CSE 446: Machine Learning

Sparsity: Housing application

Lot size
Single Family
Year built
Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft

Unfinished sqft
Finished basement sqft
floors

Flooring types

Parking type Parking amount Cooling

Heating
Exterior materials
Roof type

Roof type Structure style

@2017 Emily E

Garbage disposal Microwave Range / Oven Refrigerator

Refrigerator Washer Dryer

Dishwasher

Laundry location Heating type Jetted Tub

Deck Fenced Yard

Lawn Garden

Sprinkler System

Option 1: All subsets or greedy variants

Exhaustive approach: "all subsets"

Consider all possible models, each using a subset of features How many models were evaluated?each indexed by features included

```
2^8 = 256
                                                                          [0 0 0 ... 0 0 0]
y_i = \varepsilon_i
                                                                                                                     2^{30} = 1,073,741,824
                                                                                                                     2^{1000} = 1.071509 \times 10^{301}
                                                                          [1 0 0 ... 0 0 0]
y_i = w_0 h_0(\mathbf{x}_i) + \boldsymbol{\epsilon}_i
                                                                                                                     2<sup>100B</sup> = HUGE!!!!!!
y_i = w_1 h_1(\mathbf{x}_i) + \varepsilon_i
                                                                          [0 1 0 ... 0 0 0]
                                                                                                           2<sup>D</sup>
                                                                          [110...000]
y_i = w_0 h_0(\mathbf{x}_i) + w_1 h_1(\mathbf{x}_i) + \epsilon_i
                                                                                                                             Typically,
                                                                                                                     computationally
y_i = w_0 h_0(\mathbf{x}_i) + w_1 h_1(\mathbf{x}_i) + ... + w_D h_D(\mathbf{x}_i) + \varepsilon_i [111 ... 111]
                                                                                                                             infeasible
                                                                                                                                  CSE 446: Machine Learn
```

Choosing model complexity?

Option 1: Assess on validation set

Option 2: Cross validation

Option 3+: Other metrics for penalizing model complexity like BIC...

7

©2017 Emily Fox

CSE 446: Machine Learning

Greedy algorithms

Forward stepwise:

Starting from simple model and iteratively add features most useful to fit

Backward stepwise:

Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:

In forward algorithm, insert steps to remove features no longer as important

Lots of other variants, too.

8

©2017 Emily Fox

Option 2: Regularize

Ridge regression: L_2 regularized regression

Total cost =

measure of fit +
$$\lambda$$
 measure of magnitude of coefficients

$$||\mathbf{w}||_{2}^{2} = w_{0}^{2} + ... + w_{D}^{2}$$

Encourages **small weights** but not exactly 0

10 ©2017 Emily Fox CSE 446: Machine Learning

Using regularization for feature selection

Instead of searching over a **discrete** set of solutions, can we use regularization?

- Start with full model (all possible features)
- "Shrink" some coefficients exactly to 0
 - i.e., knock out certain features
- Non-zero coefficients indicate "selected" features

12 ©2017 Emily Fox

Thresholding ridge coefficients?

Why don't we just set small ridge coefficients to 0?

©2017 Emily F

CSE 446: Machine Learning

Thresholding ridge coefficients?

Selected features for a given threshold value

14

2017 Emily Fox

Thresholding ridge coefficients?

Let's look at two related features...

Nothing measuring bathrooms was included!

15

©2017 Emily Fox

CSE 446: Machine Learning

Thresholding ridge coefficients?

If only one of the features had been included...

16

2017 Emily Fox

Thresholding ridge coefficients?

Would have included bathrooms in selected model

Can regularization lead directly to sparsity?

17

©2017 Emily Fox

CSE 446: Machine Learning

Try this cost instead of ridge...

Total cost =

measure of fit + λ measure of magnitude of coefficients

RSS(**w**) $||\mathbf{w}||_1 = |w_0| + ... + |w_D|$

Leads to sparse solutions!

Lasso regression (a.k.a. L_1 regularized regression)

18

©2017 Emily Fox

Lasso regression: L_1 regularized regression

Just like ridge regression, solution is governed by a continuous parameter $\stackrel{\lambda}{\lambda}$

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1$$
tuning parameter = balance of fit and sparsity

If $\lambda = 0$:

If $\lambda = \infty$:

If λ in between:

19

32017 Emily Fo

Fitting the lasso regression model (for given λ value)

How we optimized past objectives

To solve for $\hat{\mathbf{w}}$, previously took gradient of total cost objective and either:

- 1) Derived closed-form solution
- 2) Used in gradient descent algorithm

23 ©2017 Emily Fo

CSE 446: Machine Learning

Optimizing the lasso objective

Lasso total cost: $RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1$

Issues:

1) What's the derivative of $|w_i|$?

gradients → subgradients

2) Even if we could compute derivative, no closed-form solution

can use subgradient descent

24

©2017 Emily Fox

Aside 1: Coordinate descent

©2017 Fmily Fo

CSE 446: Machine Learning

Coordinate descent

Goal: Minimize some function g

Often, hard to find minimum for all coordinates, but easy for each coordinate

Coordinate descent:

```
Initialize \hat{\mathbf{w}} = 0 (or smartly...) while not converged pick a coordinate j \hat{\mathbf{w}}_i \leftarrow
```


26

©2017 Emily Fox

Comments on coordinate descent

How do we pick next coordinate?

- At random ("random" or "stochastic" coordinate descent), round robin, ...

No stepsize to choose!

Super useful approach for many problems

- Converges to optimum in some cases (e.g., "strongly convex")
- Converges for lasso objective

27 @2017 Emily Fox CSE 4/16: Machine Learning

Aside 2: Normalizing features

©2017 Emily Fox

Normalizing features

Scale training columns (not rows!) as:

$$\underline{h_{j}}(\mathbf{x}_{k}) = \frac{h_{j}(\mathbf{x}_{k})}{\sqrt{\sum_{i=1}^{N} h_{j}(\mathbf{x}_{i})^{2}}} \overset{Normalizer:}{Z_{j}}$$

Apply same training scale factors to test data:

29

02017 Emily Fox

CSE 446: Machine Learning

Aside 3: Coordinate descent for unregularized regression (for normalized features)

©2017 Emily Fox

Optimizing least squares objective one coordinate at a time

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \sum_{j=0}^{D} w_j \underline{h}_j(\mathbf{x}_i))^2$$

Fix all coordinates $\mathbf{w_{-i}}$ and take partial w.r.t. $\mathbf{w_{i}}$

$$\frac{\partial}{\partial w_{j}} RSS(\mathbf{w}) = -2 \sum_{i=1}^{N} \underline{h}_{j}(\mathbf{x}_{i}) \left(y_{i} - \sum_{j=0}^{D} w_{j} \underline{h}_{j}(\mathbf{x}_{i}) \right)$$

31 ©2017 Fmily Fox CSE 446: Machine Learnin

Optimizing least squares objective one coordinate at a time

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \sum_{j=0}^{D} w_j \underline{h}_j(\mathbf{x}_i))^2$$

Set partial = 0 and solve

$$\frac{\partial}{\partial w_j}$$
 RSS(**w**) = $-2\rho_j + 2w_j = 0$

32

©2017 Emily Fox

Coordinate descent for least squares regression

```
Initialize \hat{\mathbf{w}} = 0 (or smartly...) while not converged for j=0,1,...,D residual without feature j compute: \rho_j = \sum_{i=1}^N \underline{h}_j(\mathbf{x}_i)(y_i - \hat{y}_i(\hat{\mathbf{w}}_{-j})) set: \hat{\mathbf{w}}_j = \rho_j prediction without feature j
```

33 ©2017 Emily Fox

Coordinate descent for lasso (for normalized features)

©2017 Emily Fox

Coordinate descent for least squares regression

Initialize
$$\hat{\mathbf{w}} = 0$$
 (or smartly...) while not converged for $j = 0,1,...,D$ residual without feature j compute: $\rho_j = \sum_{i=1}^N \underline{h}_j(\mathbf{x}_i)(y_i - \hat{y}_i(\hat{\mathbf{w}}_{-j}))$ set: $\hat{\mathbf{w}}_j = \rho_j$ prediction without feature j

35 ©2017 Emily Fo

Coordinate descent for lasso

```
Initialize \hat{\mathbf{w}} = 0 (or smartly...) while not converged for j=0,1,...,D  \text{compute: } \rho_j = \sum_{i=1}^N \underline{h}_j(\mathbf{x}_i)(y_i - \hat{y}_i(\hat{\mathbf{w}}_{-j}))  set: \hat{\mathbf{w}}_j = \begin{cases} \rho_j + \lambda/2 & \text{if } \rho_j < -\lambda/2 \\ 0 & \text{if } \rho_j \text{ in } [-\lambda/2, \lambda/2] \\ \rho_j - \lambda/2 & \text{if } \rho_j > \lambda/2 \end{cases}
```

36 ©2017 Emily Fox CSE 446: Machine Learning

1/17/17

Soft thresholding

$$\hat{\mathbf{w}}_{j} = \begin{cases} \rho_{j} + \lambda/2 & \text{if } \rho_{j} < -\lambda/2 \\ 0 & \text{if } \rho_{j} \text{ in } [-\lambda/2, \lambda/2] \\ \rho_{j} - \lambda/2 & \text{if } \rho_{j} > \lambda/2 \end{cases}$$

©2017 Emily

CSE 446: Machine Learning

How to assess convergence?

Initialize
$$\hat{\mathbf{w}} = 0$$
 (or smartly...)
while not converged
for j=0,1,...,D

compute:
$$\rho_j = \sum_{i=1}^N \underline{h}_j(\mathbf{x}_i)(\mathbf{y}_i - \hat{\mathbf{y}}_i(\hat{\mathbf{w}}_{-j}))$$

set:
$$\hat{\mathbf{w}}_{j} = \begin{cases} \rho_{j} + \lambda/2 & \text{if } \rho_{j} < -\lambda/2 \\ 0 & \text{if } \rho_{j} \text{ in } [-\lambda/2, \lambda/2] \\ \rho_{j} - \lambda/2 & \text{if } \rho_{j} > \lambda/2 \end{cases}$$

38

©2017 Emily Fox

Convergence criteria

When to stop?

For convex problems, will start to take smaller and smaller steps

Measure size of steps taken in a full loop over all features

- stop when max step < ε

39

2017 Emily Fox

CSE 446: Machine Learning

Other lasso solvers

Classically: Least angle regression (LARS) [Efron et al. '04]

Then: Coordinate descent algorithm [Fu '98, Friedman, Hastie, & Tibshirani '08]

Now:

- Parallel CD (e.g., Shotgun, [Bradley et al. '11])
- Other parallel learning approaches for linear models
 - Parallel stochastic gradient descent (SGD) (e.g., Hogwild! [Niu et al. '11])
 - Parallel independent solutions then averaging [Zhang et al. '12]
- Alternating directions method of multipliers (ADMM) [Boyd et al. '11]

40

©2017 Emily Fox

Coordinate descent for lasso (for unnormalized features)

©2017 Fmily Fo

CSE 446: Machine Learning

Coordinate descent for lasso with normalized features

```
Initialize \hat{\mathbf{w}} = 0 (or smartly...) while not converged for j=0,1,...,D  \text{compute: } \rho_j = \sum_{i=1}^N \underline{h}_j(\mathbf{x}_i)(y_i - \hat{y}_i(\hat{\mathbf{w}}_{-j}))  set: \hat{\mathbf{w}}_j = \begin{cases} \rho_j + \lambda/2 & \text{if } \rho_j < -\lambda/2 \\ 0 & \text{if } \rho_j \text{ in } [-\lambda/2, \lambda/2] \\ \rho_i - \lambda/2 & \text{if } \rho_j > \lambda/2 \end{cases}
```

42

©2017 Emily Fox

Coordinate descent for lasso with unnormalized features

Precompute:
$$z_j = \sum_{i=1}^N h_j(\mathbf{x}_i)^2$$
Initialize $\hat{\mathbf{w}} = 0$ (or smartly...)

while not converged for $j = 0, 1, ..., D$

compute: $\rho_j = \sum_{i=1}^N h_j(\mathbf{x}_i)(y_i - \hat{y}_i(\hat{\mathbf{w}}_{-j}))$

set: $\hat{\mathbf{w}}_j = \begin{cases} (\rho_j + \lambda/2)/z_j & \text{if } \rho_j < -\lambda/2 \\ 0 & \text{if } \rho_j \text{ in } [-\lambda/2, \lambda/2] \\ (\rho_j - \lambda/2)/z_j & \text{if } \rho_j > \lambda/2 \end{cases}$

43 ©2017 Emily Fox CSE 446: Mar

How to choose λ

©2017 Emily Fox

If sufficient amount of data... Training set Validation Test set fit $\hat{\mathbf{w}}_{\lambda}$ test performance of $\hat{\mathbf{w}}_{\lambda}$ to select λ^* assess generalization error of $\hat{\mathbf{w}}_{\lambda^*}$

Summary for feature selection and lasso regression

Impact of feature selection and lasso

Lasso has changed machine learning, statistics, & electrical engineering

But, for feature selection in general, be careful about interpreting selected features

- selection only considers features included
- sensitive to correlations between features
- result depends on algorithm used
- there are theoretical guarantees for lasso under certain conditions

47 ©2017 Emily Fox CSE 446: Machine Learning

What you can do now...

- Describe "all subsets" and greedy variants for feature selection
- Analyze computational costs of these algorithms
- Formulate lasso objective
- Describe what happens to estimated lasso coefficients as tuning parameter λ is varied
- Interpret lasso coefficient path plot
- Contrast ridge and lasso regression
- Estimate lasso regression parameters using an iterative coordinate descent algorithm

48 ©2017 Emily Fox CSE 446: Machine Learning

Optimizing lasso objective one coordinate at a time

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1 = \sum_{i=1}^{N} (y_i - \sum_{j=0}^{D} w_j h_j(\mathbf{x}_i))^2 + \lambda \sum_{j=0}^{D} |w_j|$$

Fix all coordinates $\mathbf{w_{-i}}$ and take partial w.r.t. $\mathbf{w_{i}}$

derive without normalizing features

50

©2017 Emily Fox

Part 1: Partial of RSS term

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1 = \sum_{i=1}^{N} \left(y_i - \sum_{j=0}^{D} w_j h_j(\mathbf{x}_i) \right)^2 + \lambda \sum_{j=0}^{D} |w_j|$$

$$\frac{\partial}{\partial W_{j}} RSS(\mathbf{w}) = -2 \sum_{i=1}^{N} h_{j}(\mathbf{x}_{i}) \left(y_{i} - \sum_{j=0}^{D} W_{j} h_{j}(\mathbf{x}_{i}) \right)$$

$$= -2 \sum_{i=1}^{N} h_{j}(\mathbf{x}_{i}) \left(y_{i} - \sum_{k \neq j} W_{k} h_{k}(\mathbf{x}_{i}) - W_{j} h_{j}(\mathbf{x}_{i}) \right)$$

$$= -2 \sum_{i=1}^{N} h_{j}(\mathbf{x}_{i}) \left(y_{i} - \sum_{k \neq j} W_{k} h_{k}(\mathbf{x}_{i}) + 2 W_{j} \sum_{k=1}^{N} h_{j}(\mathbf{x}_{i})^{2} \right)$$

$$= -2 P_{0} + 2 W_{0} E_{j}$$

51

CSE 446: Machine Learning

Part 2: Partial of L₁ penalty term

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1 = \sum_{i=1}^{N} (y_i - \sum_{j=0}^{D} w_j h_j(\mathbf{x}_i))^2 + \lambda \sum_{j=0}^{D} |w_j|$$

$$\lambda \frac{\partial}{\partial w_j} |w_j| = ???$$

52

y Fox CSE 446: Machine L

Subgradients of convex functions

Gradients lower bound convex functions:

$$g(b) \geq g(a) * \overline{\nabla}g(a)(b-a)$$

unique at x if function differentiable at x

Subgradients: Generalize gradients to non-differentiable points:

- Any plane that lower bounds function

Ve
$$\partial g(x)$$
 subgradiant of g at x

if

 $g(b) \ge g(a) + V(b-a)$

©2017 Fmily Fox

CSE 446: Machine Learning

Part 2: Subgradient of L₁ term

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1 = \sum_{i=1}^{N} \left(y_i - \sum_{j=0}^{D} w_j h_j(\mathbf{x}_i) \right)^2 + \lambda \sum_{j=0}^{D} |w_j|$$

$$\lambda \partial_{w_j} |w_j| = \begin{cases} -\lambda & \text{when } w_j < 0 \\ [-\lambda, \lambda] & \text{when } w_j = 0 \\ \lambda & \text{when } w_j > 0 \end{cases}$$

54

©2017 Emily Fox

Putting it all together...

$$\begin{aligned} &\mathsf{RSS}(\mathbf{w}) + \lambda ||\mathbf{w}||_1 = \sum_{i=1}^N \left(y_i - \sum_{j=0}^D w_j h_j(\mathbf{x}_i) \right)^2 + \lambda \sum_{j=0}^D |w_j| \\ &\boldsymbol{\delta}_{w_j}[\mathsf{lasso} \; \mathsf{cost}] = 2z_j w_j - 2\rho_j + \begin{cases} -\lambda & \mathsf{when} \; w_j < 0 \\ [-\lambda, \; \lambda] \; \mathsf{when} \; w_j = 0 \\ \lambda & \mathsf{when} \; w_j > 0 \end{cases} \\ &= \begin{cases} 2z_j w_j - 2\rho_j - \lambda & \mathsf{when} \; w_j < 0 \\ [-2\rho_j - \lambda, \; -2\rho_j + \lambda] & \mathsf{when} \; w_j = 0 \\ 2z_j w_j - 2\rho_j + \lambda & \mathsf{when} \; w_j > 0 \end{cases} \end{aligned}$$

Optimal solution: Set subgradient = 0

$$\boldsymbol{\delta}_{w_{j}}[\text{lasso cost}] = \begin{cases} 2z_{j}w_{j} - 2\rho_{j} - \lambda & \text{when } w_{j} < 0\\ [-2\rho_{j} - \lambda, -2\rho_{j} + \lambda] & \text{when } \boldsymbol{0}_{j} = 0\\ 2z_{j}w_{j} - 2\rho_{j} + \lambda & \text{when } w_{j} > 0 \end{cases}$$

©2017 Emily Fox CSE 446: Machine Learning

Optimal solution: Set subgradient = 0

$$\partial_{w_j}[\text{lasso cost}] = \begin{cases} 2z_j w_j - 2\rho_j - \lambda & \text{when } w_j < 0 \\ [-2\rho_j - \lambda, -2\rho_j + \lambda] & \text{when } w_j = 0 \\ 2z_j w_j - 2\rho_j + \lambda & \text{when } w_j > 0 \end{cases} = 0$$

$$\hat{\mathbf{w}}_{j} = \begin{cases} (\rho_{j} + \lambda/2)/z_{j} & \text{if } \rho_{j} < -\lambda/2 \\ 0 & \text{if } \rho_{j} \text{ in } [-\lambda/2, \lambda/2] \\ (\rho_{j} - \lambda/2)/z_{j} & \text{if } \rho_{j} > \lambda/2 \end{cases}$$

57 ©2017 Emily Fox CSE 446: Machine Learning

Soft thresholding

$$\hat{\mathbf{w}}_{j} = \begin{cases} (\rho_{j} + \lambda/2)/z_{j} & \text{if } \rho_{j} < -\lambda/2 \\ 0 & \text{if } \rho_{j} \text{ in } [-\lambda/2, \lambda/2] \\ (\rho_{j} - \lambda/2)/z_{j} & \text{if } \rho_{j} > \lambda/2 \end{cases}$$

©2017 Emily Eqv. CSE 446: Machina Lagraiga

Coordinate descent for lasso

Precompute:
$$z_j = \sum_{i=1}^N h_j(\mathbf{x}_i)^2$$
Initialize $\hat{\mathbf{w}} = 0$ (or smartly...)
while not converged
for $j = 0,1,...,D$

$$compute: \ \rho_j = \sum_{i=1}^N h_j(\mathbf{x}_i)(y_i - \hat{y}_i(\hat{\mathbf{w}}_{-j}))$$
set: $\hat{\mathbf{w}}_j = \begin{cases} (\rho_j + \lambda/2)/z_j & \text{if } \rho_j < -\lambda/2 \\ 0 & \text{if } \rho_j \text{ in } [-\lambda/2, \lambda/2] \\ (\rho_j - \lambda/2)/z_j & \text{if } \rho_j > \lambda/2 \end{cases}$

59

02017 Emily Fo