Базис и размерност.

Нека V е лиенйно пространство над поле F, а $B\subseteq V$ е система вектори. Казваме, че векторите от B са базис на V, ако B е линейно независима система и $\ell(B)=V$.

Примери:

- 1. В линейното пространство F^n векторите $e_1(1,0,\ldots,0),e_2(0,1,\ldots,0),\ldots,e_n(0,0\ldots,1)$ образуват базис. Наистина, по-рано видяхме, че те са линейно независими, а освен това за произволен векотр $a\in F^n: a(a_1,a_2,\ldots,a_n),$ където $a_i\in F$ имаме представяне от вида $a=a_1e_1+a_2e_2+\cdots+a_ne_n,$ т.е. $\ell(e_1,e_2,\ldots,e_n)=V.$
- 2. В линейното пространство $F^{n+1}[x]$ системата $1, x, \ldots, x^n$ е базис. Вече знаем, че векторите от нея са линейно независими. Също така имаме, че $\ell(1, x, \ldots, x^n) = F^{n+1}[x]$, защото за произволен полином $f(x) \in F^{n+1}[x]$, (deg $f \leq n$) е добре известно представянето $f(x) = a_0.1 + a_1x + \cdots + a_nx^n$ с числа $a_i \in F$, $i = 0, \ldots, n$.
- 3. В линейното пространство F[x] безкрайната система $1, x, \dots, x^n, x^{n+1}, \dots$ е базис.

Казваме, че линейното пространство V е *крайномерно*, ако V има поне един краен базис. В противен случай V се нарича безкрайномерно.

В по-горните примери пространствата F^n и $F^{n+1}[x]$ очевидно са крайномерни, а F[x] е безкрайномерно.

Твърдение 1. Ако V е крайномерно ненулево линейно пространство, то всеки два базиса на V се състоят от един и същ брой вектори.

Доказателство. Щом V е крайномерно, то съществува поне един негов краен базис $a_1, a_2, \ldots, a_n, n \in \mathbb{N}$. Нека B е произволен базис на V. Да допуснем, че B притежава > n на брой вектори и нека векторите

 $b_1, b_2, \ldots, b_{n+1} \in B$. Т.к. a_1, a_2, \ldots, a_n са базис на V, то $b_1, b_2, \ldots, b_{n+1} \in \ell(a_1, a_2, \ldots, a_n)$. Но n+1 > n и според основната лема векторите b_1, \ldots, b_{n+1} са линейно зависими, а оттам и цялата система B. Но тогава B няма как да бъде базис. Достигнахме до противоречие. Следователно B трябва да съдържа $\leq n$ на брой вектори. Нека например $B = \{c_1, \ldots, c_m\}, m \leq n$. Ако допуснем, че m < n, то в комбинация с факта, че $a_1, \ldots, a_n \in \ell(c_1, \ldots, c_m)$ според основната лема получаваме, че векторите a_1, \ldots, a_n са линейно зависими. Но това е невъзможно, т.к. те образуват базис. Следователно остава единствено възможността m = n и B съдържа точно n на брой вектора.

Нека V е крайномерно ненулево пространство. Pазмерносm на V наричаме броя на векторите в кой да е базис на V. Ако V има размерност n като линейно пространство над поле F, то записваме $\dim_F V = n$ или накратко $\dim V = n$, ако F се подразбира. Ясно е, че $\dim V \in \mathbb{N}$. В останалите случаи: ако V е безкрайномерно пишем $\dim V = \infty$; ако $V = \{o\}$ записваме $\dim V = 0$.

В примерите: e_1, e_2, \ldots, e_n е базис на F^n и следователно $\dim F^n = n$. В пространството на полиномите от степен $\leq n$ $F^{n+1}[x]$, базисът е $1, x, \ldots, x^n$ и така $\dim F^{n+1}[x] = n+1$. Както видяхме, F[x] е безкрайномерно пространство и $\dim F[x] = \infty$.

Теорема. а) V е крайномерно $u \dim V = n \Leftrightarrow \varepsilon V$ има n на брой линейно независими вектора u всеки n+1 вектора са линейно зависими. (C други думи n е максималният брой линейно независими вектора εV .) При това, всеки n на брой линейно независими вектора εV образуват негов базис.

б) V е безкрайномерно $\Leftrightarrow \forall n \in \mathbb{N} \ в \ V$ има n линейно независими вектора. (Т.е. в V има безброй много линейно независими вектора).

Доказателство a). \Rightarrow) Нека $\dim V = n$ и a_1, \ldots, a_n е базис на V. Нека още $b_1, \ldots, b_{n+1} \in V$ са произволни векотри. Тогава $b_1, \ldots, b_{n+1} \in \ell(a_1, \ldots, a_n)$ и n+1 > n и от основната лема следва, че векторите b_1, \ldots, b_{n+1} са линейно зависими.

 \Leftarrow) Нека $c_1, \ldots, c_n \in V$ са линейно независими и всеки n+1 вектора в V са линейно зависими. Да допуснем, че $\ell(c_1, \ldots, c_n) \subsetneq V$. Тогава съществува вектор $c \in V, c \notin \ell(a_1, \ldots, a_n)$. Така векторите c_1, \ldots, c_n, c са линейно независими и са n+1 на брой, което е противоречие. Следователно $\ell(c_1, \ldots, c_n) = V$ и в допълнение с линейната им независимост

достигаме до извода, че те образуват базис на V.

Нека сега dim V=n и $e_1, 2, \ldots, e_n \in V$ са произволни линейно независими вектори. Нека $v \in V$ е друг произволен вектор. Ако $v \notin \ell(e_1, \ldots, e_n)$, то e_1, \ldots, e_n, v са линейно независими и са n+1 на брой, което е невъзможно понеже dim V=n. Следователно остава единствено $v \in \ell(e_1, \ldots, e_n)$, което означава, че $\ell(e_1, \ldots, e_n) = V$, а оттук може да заключим, че e_1, \ldots, e_n е базис на V.

Нека $\dim V = n$ и e_1, e_2, \ldots, e_n е базис. За всеки вектор $v \in V$ \exists числа $\lambda_1, \lambda_2, \ldots, \lambda_n \in F$, такива че $v = \lambda_1 e_1 + \cdots + \lambda_n e_n$. Освен това n—торката $(\lambda_1, \ldots, \lambda_n)$ е единствена: ако $\mu_1, \ldots, \mu_n \in F$ и $v = \mu_1 e_1 + \cdots + \mu_n e_n$, то след като извадим второто равенство от първото получаваме

$$o = (\lambda_1 - \mu_1)e_1 + \dots + (\lambda_n - \mu_n)e_n.$$

Но e_1, \ldots, e_n са линейно независими, понеже са базис и $(\lambda_1 - \mu_1) = \cdots = (\lambda_n - \mu_n) = 0$, т.е. $\lambda_1 = \mu_1, \ldots, \lambda_n = \mu_n$. Числата $\lambda_1, \lambda_2, \ldots, \lambda_n$ се наричат координати на вектора v спрямо базиса e_1, e_2, \ldots, e_n .

Твърдение 2. Нека $\dim V = n \ u \ b_1, \ldots, b_k \in V$ са линейно независими вектори $(1 \le k \le n)$. Тогава (при k < n) \exists вектори $b_{k+1}, \ldots, b_n \in V$: $b_1, \ldots, b_k, b_{k+1}, \ldots, b_n$ са базис на V.

Доказателство. Ако $\ell(b_1,\ldots,b_k)=V$, то b_1,\ldots,b_k е базис на V и k=n. Нека сега $\ell(b_1,\ldots,b_k)\varsubsetneq V$. Тогава \exists вектор $b_{k+1}\in V,b_{k+1}\notin \ell(b_1,\ldots,b_k)$ и при това b_1,\ldots,b_k,b_{k+1} са линейно независими. Ако $\ell(b_1,\ldots,b_k,b_{k+1})=V$, то b_1,\ldots,b_k,b_{k+1} е базис. Ако $\ell(b_1,\ldots,b_k,b_{k+1})\varsubsetneq V$, то $\exists b_{k+2}\in V,bk+2\notin \ell(b_1,\ldots,b_k,b_{k+1})$ и $b_1,\ldots,b_k,b_{k+1},b_{k+2}$ са линейно независими. След n-k такива стъпки получаваме векторите $b_k,b_{k+1},\ldots,b_n\in V$, такива че системата от n на брой вектори b_1,\ldots,b_n е линейно независима. Понеже $\dim V=n$, то b_1,\ldots,b_n е базис на V.

Твърдение 3. Нека $\dim V = n$ и $U \leq V$. Тогава U също е крайномерно пространство и $\dim U \leq n$. При това $\dim U = n \Leftrightarrow U = V$.

Доказателство. Т.к. $\dim V = n$, то в V има точно n на брой линейно независими вектора. Тогава в U може да има най-много n на брой линейно независими вектора и според теоремата оттук следва, че $\dim U \leq n$. Ако U = V, то $\dim U = \dim V = n$. Обратно, нека $\dim U = n$ и нека u_1, \ldots, u_n

е базис на U. u_1,\ldots,u_n са n на брой линейно независими вектора в линейното пространство V с размерност n и като такива образуват негов базис. Така от една страна $U \leq V$, а от друга $V = \ell(u_1,\ldots,u_n)$ и $V \leq U$. Следователно U = V.