In4073 Embedded Real-Time Systems

Electrical Model Quad Rotor UAV

System HW view

QR: Frames & Main Variables

QR Variables: Euler Angles

QR: Actuators

rotor 1 – rotor 4 through RPM, denoted by Ω

driven by ES signals ae1 - ae4

ae =
$$0 \times 00000 \rightarrow \Omega = 0$$

ae = 0×0 FFF $\rightarrow \Omega = max$

(body axes)

QR Dynamics (in hover)

$$\begin{split} T_i &= \text{rotor thrust} = f(\Omega_i) \\ mg &= \text{gravity} \\ h &= \text{rotor distance ref. center of gravity} \\ I_v &= \text{heli rotation inertia in Y-axis} \end{split}$$

dq/dt = M / I_Y
du/dt = X / m
accelerated
rotation & xlation!

QR: Rotor Actuators

In general

$$Z = -b(\Omega_1^2 + \Omega_2^2 + \Omega_3^2 + \Omega_4^2)$$

$$L = b(\Omega_4^2 - \Omega_2^2)$$

$$M = b(\Omega_1^2 - \Omega_3^2)$$

$$N = d(\Omega_2^2 + \Omega_4^2 - \Omega_1^2 - \Omega_3^2)$$

So compute Ω_i (i.e., ae_i) from desired lift (Z), roll rate (L), pitch rate (M), and yaw rate (N) (see qrsim for example!)

QR: Gyro Sensor

Invensense IDG500

Top View

28-pin, 4mm x 5mm x 1.2mm QFN Package This is a dual-axis rotational-rate sensing device. It produces a positive output voltage for rotation about the X-or Y-axis, as shown in the figure below.

Orientation of Axes of Sensitivity and Polarity of Rotation

QR: Accelerometer Sensor

STMicroelectronics LIS344AL

(TOP VIEW)
DIRECTIONS OF THE
DETECTABLE
ACCELERATIONS

 $ax = sin\Theta g \sim \Theta g$

System SW view

QR Control Circuit


```
control loop example (roll rate):

eps = roll - sp; // measure deviation

L_needed = PID(eps); // compute ctl action

ae1 .. ae4 = f(L_needed); // actuate, see slide 8
```

Calibration

- real p, q, r, .. are sensed in terms of sp, sq, sr, ..
- sp, sq, .. have a (voltage) bias (are not zero at rest)
- so need to calibrate all 6 sensors at rest:
 - let sp0 be sensor output at rest
 - real estimate of p are given by (z for zeroed)
 zp = sp sp0

Filtering

- signals also need to be filtered to remove noise
- filtered signal input to embedded controller

Controller Modes

- controller mode: manual
- controller model: calibrate
- controller mode: control (yaw, pitch, roll)

