Übungen zum Ferienkurs Analysis II 2014

Kurven und Kurvenintegrale

4.1 Kreisumfang

Berechnen Sie den Umfang U des Kreises um (0,0) mit Radius r¿0. Betrachten Sie dazu das Kurvenintegral $4\int_k 1ds$, bei dem k der Viertelkreisbogen ist. Wählen Sie eine geeignete Parametrisierung und berechnen Sie das Integral.

4.2 Kurvenintegral über Ellipse

Berechnen Sie das Kurvenintegral

$$\int_{k} \sqrt{\frac{a^{2}y^{2}}{b^{2}} + \frac{b^{2}x^{2}}{a^{2}}} ds$$

über die Ellipse k

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Wählen Sie für die Ellipse eine geeignete Parametrisierung.

4.3 Kettenlinie

Ein ideales Seil wird über einen 2km breiten Abgrund gespannt und wird durch die Kurve $\gamma: [-1,1] \to \mathbb{R}^2$ mit $\gamma(x) = (x, f(x))$ und $\gamma(x) = \frac{1}{a}(\cosh(ax) - \cosh(a))$ mit $\alpha > 0$ beschrieben (Einheit 1km).

- a) Berechnen Sie die Länge des Seils in Abhängigkeit von a.
- b) Berechnen Sie die Krümmung des Seils am Scheitel und an den Rändern.
- c) Wie stark hängt das Seil in erster Näherung durch, wenn es 1mm, 10cm, bzw. 1m zu lang ist?

4.4 Schraubenlinie

Die Kurve $\gamma(t) := (r\cos(t), r\sin(t), r\sin(t))$ mit c,r ξ 0 heißt Schaubenlinie.

- a) Parametrisieren Sie γ nach der Bogenlänge. (Verwenden Sie $R^2=c^2+r^2)$
- b) Berechnen Sie Tangentialeinheitsvektor, Normalenvektro und Krümmung der nach der Bogenlänge parametrisierten Kurve.

4.5 Kurvenlänge

- a) $\gamma(t) := (t \sin(t), 1 \cos(t))$ heißt Zykloide. Berechnen Sie die Länge der Kurve $\gamma|_{[-\pi,\pi]}$.
- b) Finden Sie die singulären Punkte der Kurve $\gamma:[0,2\pi]\to\mathbb{R}^2,\quad \gamma(t):=(\cos^3(t)\sin(t),\sin^3(t))$ und berechnen Sie ihre Bogenlänge.

4.6 logarithmische Spirale

Als logarithmische Spirale bezeichnet man die Kurve $\gamma_c(t) := (e^{ct}cos(t), e^{ct}sin(t)), \ c > 0.$

- a) Berechnen Sie die Länge L von γ_c auf $[0,4\pi]$
- b) Parametrisieren Sie $\gamma_c|_{[0,4\pi]}$ nach der Bogenlänge