Category 6 Power and Root Test

- 1. If $a^5 = 9(25)(45)(75)$, then a =
 - (A) 5
 - **(B)** 9
 - (C) 10
 - **(D)** 15
 - **(E)** 25

- 2. If $(124)^2 = 15,376$, what is (124)(248)?
 - **(A)** $(15,376)^3$
 - **(B)** $(15,376\times2)^2$
 - (C) $(15,376)^2$
 - **(D)** 15,376 + 2
 - **(E)** $15,376 \times 2$

- 3. If $36.15 \times 10^3 = n \times 10^6$, then n =
 - (A) 0.03615
 - (B) 0.3615
 - (C) 3.615
 - (D) 3,615
 - (E) 36,150

4.
$$5^{12} + 5^{13} =$$

- (A) 5^{25}
- **(B)** 10^{25}
- (C) $6(5^{12})$
- **(D)** $10^{12} + 5$
- **(E)** $2(5^{12}) + 5$

$$\begin{bmatrix} 1 - \left(\frac{1}{2}\right)^3 \end{bmatrix}^2 =$$
5.

- (A) $\frac{1}{64}$
- **(B)** $\frac{25}{36}$
- (C) $\frac{49}{64}$
- **(D)** $\frac{35}{36}$
- **(E)** $\frac{63}{64}$

$$(0.01)^2(0.014) + (0.01)(0.0026) =$$

- (A) 0.0000166
- (B) 0.0000274
- (C) **0.00004**
- (D) 0.000166
- (E) 0.0004

- 7. Which of the following is greatest?
 - **(A)** $5^2 + 1$
 - **(B)** $5^4 + 1$
 - (C) $5^6 1$
 - **(D)** $5^3 \times 5^2$
 - **(E)** $5^8 \div 5^2$

- 8. For positive integers k and n, if k < n and $x \ne 0$, then $\frac{x^k x^{n-k}}{x^n} =$
 - (A) 0
 - **(B)** 1
 - (C) x^k
 - **(D)** x^{n-k}
 - **(E)** $x^{2(n-k)}$

- 9. $18x^6y^2 2x^2y^4 =$
 - (A) (3x y)(3x + y)
 - **(B)** 2(3y-x)(3y+x)
 - (C) $2x^2y^2(3x^2-y)^2$
 - **(D)** $9x^4y^2(3x-y)^2$
 - (E) $2x^2y^2(3x^2+y)(3x^2-y)$

- 10. If x = -1, the $\frac{1}{x^4} + \frac{1}{x^3} + \frac{1}{x^2} + \frac{1}{x} \frac{1}{5} =$
 - (A) $\frac{12}{5}$
 - **(B)** $\frac{4}{5}$
 - (C) $-\frac{1}{15}$
 - **(D)** $-\frac{1}{5}$
 - **(E)** $-\frac{21}{5}$
- 11. Which of the following values of x will make the equation $x^{40} + x^{39} = 0$ true?
 - I. -1
 - II. 0
 - III. 1
 - (A) II only
 - (B) I and II only
 - (C) I and III only
 - (D) II and III only
 - (E) I, II, and III
- 12. If $2^{2x+6} = 4$, then x =
 - (A) 2
 - **(B)** 1
 - (C) 0
 - **(D)** 1
 - **(E)** -2

- 13. 2^{16} is
 - (A) 2 more than 2^{15}
 - **(B) 16 more than** 2^{15}
 - (C) $\frac{1}{2}$ of 2^{32}
 - (D) 2 times 2^8
 - **(E)** 2 times 2¹⁵

- 14. $40^2 + 2(5)(40) + 5^2$ is the square of
 - (A) 35
 - (B) 37.5
 - (C) 41
 - (D) 42.5
 - **(E)** 45

- 15. What is the units digit of $(13)^4(17)^2(29)^3$?
 - (A) 9
 - **(B)** 7
 - (C) 5
 - **(D)** 3
 - **(E)** 1

- 16. Four hours from now, the population of a colony of bacteria will reach 1.28×10^6 . If the population of the colony doubles every 4 hours, what was the population 12 hours ago?
 - (A) 6.4×10^2
 - **(B)** 8.0×10^4
 - (C) 1.6×10^5
 - **(D)** 3.2×10^5
 - **(E)** 8.0×10^6

- 17. The volume of a box with a square base is 54 cubic centimeters. If the height of the box is twice the width of the base, what is the height, in centimeters?
 - (A) 2
 - **(B)** 3
 - (C) 4
 - **(D)** 6
 - **(E)** 9

- 18. $\sqrt{18} + \sqrt{32} =$
 - (A) 25
 - **(B)** $5\sqrt{2}$
 - (C) $7\sqrt{2}$
 - **(D)** $13\sqrt{2}$
 - **(E)** $25\sqrt{2}$

19.
$$\sqrt{0.0016} =$$

- (A) 0.08
- (B) 0.04
- (C) 0.004
- (D) 0.0008
- (E) 0.0004

$$\frac{1}{\sqrt{2}} \cdot \frac{3}{\sqrt{2}} \cdot \frac{2^5}{10^2} =$$

- (A) $\frac{12}{25}$
- **(B)** $\frac{3}{20}$
- (C) $\frac{\sqrt{2}}{6}$
- **(D)** $\frac{\sqrt{2}}{10}$
- **(E)** $\quad \frac{\sqrt{2}}{100}$
- 21. Of the following, which is the closest approximation to $\sqrt{\frac{8.9(198.7)}{18}}$?
 - (A) 3
 - **(B)** 7
 - (C) 10
 - (D) 30
 - (E) 100

22.
$$\sqrt{784} =$$

- (A) 28
- **(B)** 32
- (C) 38
- (D) 56
- (E) 112

23.
$$(\sqrt{3}+2)(\sqrt{3}-2)=$$

- **(A)** $\sqrt{3} 4$
- **(B)** $\sqrt{6} 4$
- **(C)** −1
- **(D)** 1
- (E) 2

24.
$$\sqrt{7} - \sqrt{63} =$$

- **(A)** $-8\sqrt{7}$
- **(B)** $-3\sqrt{7}$
- (C) $-2\sqrt{7}$
- **(D)** $2\sqrt{7}$
- **(E)** $3\sqrt{7}$

25. If p = 0.2 and n = 100, then $\sqrt{\frac{p(1-p)}{n}} =$

- (A) $-\sqrt{0.002}$
- **(B)** $\sqrt{0.02} 0.02$
- (C) 0
- (D) 0.04
- **(E)** 0.4

26. If y > 0, which of the following is equal to $\sqrt{48y^3}$?

- $(A) \quad 4y\sqrt{3y}$
- **(B)** $3y\sqrt{4y}$
- (C) $2\sqrt{12y}$
- **(D)** $3\sqrt{8y}$
- **(E)** $16y\sqrt{3y}$

27. If $x \neq 0$ and $x = \sqrt{4xy - 4y^2}$, then, in terms of y, x =

- (A) 2y
- **(B)** y
- (C) $\frac{y}{2}$
- **(D)** $\frac{-4y^2}{1-4y}$
- $(\mathbf{E}) 2y$

- 28. Of the following numbers, which one is third greatest?
 - **(A)** $2\sqrt{2}-1$
 - **(B)** $\sqrt{2} + 1$
 - (C) $1 \sqrt{2}$
 - **(D)** $\sqrt{2} 1$
 - (E) $\sqrt{2}$

$$q = 3\sqrt{3}$$

$$r = 1 + 2\sqrt{3}$$

$$s = 3 + \sqrt{3}$$

- 29. If q, r, and s are the numbers shown above, which of the following shows their order from greatest to least?
 - (A) q, r, s
 - **(B)** q, s, r
 - (C) r, q, s
 - **(D)** s,q,r
 - **(E)** s, r, q
- $\sqrt{463}$ is between
 - (A) 21 and 22
 - (B) 22 and 23
 - (C) 23 and 24
 - (D) 24 and 25
 - (E) 25 and 26

- 31. Of the following, which is most nearly equal to $\sqrt{10}$?
 - (A) 3.1
 - **(B)** 3.2
 - (C) 3.3
 - **(D)** 3.4
 - **(E)** 3.5

<High Level Questions>

- 32. In a certain set of weights, for each positive integer n less than 10, there is one weight that weighs 2^n grams. What is the <u>least</u> number of such weights with a combined weight of 108 grams?
 - (A) Three
 - (B) Four
 - (C) Five
 - (D) Six
 - (E) Seven

- **33.** $(2^2 1)(2^2 + 1)(2^4 + 1)(2^8 + 1) = ?$
 - (A) $2^{16} 1$
 - **(B)** $2^{16} + 1$
 - (C) $2^{32} 1$
 - **(D)** $2^{128} 1$
 - (E) $2^{16}(2^{16}-1)$

- 34. If s, u, and v are positive integers and $2^s = 2^u + 2^v$, which of the following must be true?
 - $\mathbf{I.} \qquad s = u$
 - II. $u \neq v$
 - III. s > v
 - (A) None
 - (B) I only
 - (C) II only
 - (D) III only
 - (E) II and III
- **35.** If $t = 2^{x+1}$, then in terms of t, 4^x is
 - (A) t
 - **(B)** $\frac{t}{2}$
 - (C) t^2
 - **(D)** $\frac{t^2}{2}$
 - **(E)** $\frac{t^2}{4}$
- 36. If x is a positive number and $\frac{1}{2}$ the square root of x is equal to 2x, then x =
 - (A) $\frac{1}{16}$
 - **(B)** $\frac{1}{4}$
 - (C) $\frac{1}{2}$
 - (D) 2
 - **(E)** 8

- 37. If $N = 2^3 \cdot 5^7 \cdot 9^3$, what is the <u>sum</u> of the different positive prime factors of N?
 - (A) 17
 - **(B)** 16
 - (C) 15
 - **(D)** 10
 - (E) 7

- 38. If an integer raised to the fifth power is odd, then the integer must be which of the following?
 - I. Odd
 - II. Even
 - III. Positive
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and III
 - (E) II and III

- 39. A computer can perform 1,000,000 calculations per second. At this rate, how many hours will it take this computer to perform the 3.6×10^{11} calculations required to solve a certain problem?
 - (A) 60
 - **(B)** 100
 - (C) 600
 - (D) 1,000
 - (E) 6,000

- 40. If x = 4 and y = 16, then $\sqrt{\frac{x+y}{xy}}$ is closest to which of the following?
- (A) $\frac{1}{3}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) $\frac{7}{8}$
- (E) 1

41. Of the following sums, which is greatest?

(A)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}}$$

(B)
$$\frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2}$$

(C)
$$\frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5}$$

(D)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$$

(E)
$$\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$$

$$\frac{7^4 - 1}{8(7^2 + 1)} = ?$$

- 6 **(A)**
- **(B)** 6.25
- **(C)** 7
- **(D)** 8
- **(E)** 48

Category 6 Power and Root Test

1. If
$$a^5 = 9(25)(45)(75)$$
, then $a =$

$$a^5 = 9(25)(45)(75) = 3^2(5^2)(3^2 \times 5)(3^2 \times 5^2) = 3^5 \times 5^5$$

2. If
$$(124)^2 = 15,376$$
, what is $(124)(248)$?

(A)
$$(15,376)^3$$

(B)
$$(15,376\times2)^2$$

(C)
$$(15,376)^2$$

(E)
$$15,376 \times 2$$

$$(124)(248) = 2(124)^2 = 2 \times 15,376$$

3. If
$$36.15 \times 10^3 = n \times 10^6$$
, then $n =$

- (A) 0.03615
- (B) 0.3615
- (C) 3.615
- (D) 3,615
- (E) 36,150

 $36.15 \times 10^3 = (0.03615 \times 10^3) \times 10^3 = 0.03615 \times 10^{3+3}$

4.
$$5^{12} + 5^{13} =$$

(A)
$$5^{25}$$

(B)
$$10^{25}$$

$$(c)$$
 $6(5^{12})$

(D)
$$10^{12} + 5$$

(E)
$$2(5^{12}) + 5$$

$$5^{12} + 5^{13} = 5^{12}(1+5)$$

$$\left[1 - \left(\frac{1}{2}\right)^3\right]^2 =$$

(A)
$$\frac{1}{64}$$

(B)
$$\frac{25}{36}$$

$$(C) \frac{49}{64}$$

(D)
$$\frac{35}{36}$$

(E)
$$\frac{63}{64}$$

$$\left[1 - \left(\frac{1}{2}\right)^3\right]^2 = \left[1 - \frac{1}{8}\right]^2 = \left(\frac{7}{8}\right)^2$$

 $(0.01)^2(0.014) + (0.01)(0.0026) =$

- (A) 0.0000166
- (B) 0.0000274
- (C) 0.00004
- (D) 0.000166
- (E) 0.0004

$$(0.01)^{2}(0.014) + (0.01)(0.0026) = \left(\frac{1}{10^{2}}\right)^{2} \left(\frac{14}{10^{3}}\right) + \left(\frac{1}{10^{2}}\right) \left(\frac{26}{10^{4}}\right)$$

(B) .

7. Which of the following is greatest?

- (A) $5^2 + 1$
- **(B)** $5^4 + 1$
- (C) $5^6 1$
- **(D)** $5^3 \times 5^2$
- **(E)** $5^8 \div 5^2$

$$5^3 \times 5^2 = 5^{3+2} = 5^5$$
, $5^8 \div 5^2 = 5^{8-2} = 5^6$

(E) .

8. For positive integers k and n, if k < n and $x \ne 0$, then $\frac{x^k x^{n-k}}{x^n} =$

- (A) 0
- **(B)** 1
- (C) x^k
- **(D)** x^{n-k}
- **(E)** $x^{2(n-k)}$

$$\frac{x^{k}x^{n-k}}{x^{n}} = x^{k+n-k-n} = x^{0}$$

(B) .

9.
$$18x^6y^2 - 2x^2y^4 =$$

(A)
$$(3x - y)(3x + y)$$

(B)
$$2(3y-x)(3y+x)$$

(C)
$$2x^2y^2(3x^2-y)^2$$

(D)
$$9x^4y^2(3x-y)^2$$

$$2x^2y^2(3x^2+y) (3x^2-y)$$

$$18x^{6}y^{2} - 2x^{2}y^{4} = 2x^{2}y^{2}(9x^{4} - y^{2}) = 2x^{2}y^{2}(3x^{2} + y)(3x^{2} - y)$$

(E)

10. If
$$x = -1$$
, the $\frac{1}{x^4} + \frac{1}{x^3} + \frac{1}{x^2} + \frac{1}{x} - \frac{1}{5} =$

- (A) $\frac{12}{5}$ (B) $\frac{4}{5}$ (C) $-\frac{1}{15}$ (D) $-\frac{1}{5}$ (E) $-\frac{21}{5}$

(D)

- 11. Which of the following values of x will make the equation $x^{40} + x^{39} = 0$ true?
 - -1I.
 - 0 Π.
 - 1 III.
 - (A) II only
 - (B) Land II only
 - (C) I and III only
 - (D) II and III only
 - (E) I, II, and III
- ex. $2^2 = 4$, $(-2)^2 = 4$
- ex. $(-2)^3 = -8$, $(-3)^3 = -27$
- (B)

- 12. If $2^{2x+6} = 4$, then x =
 - **(A)**
- **(B)** 1

- (C) 0 (D) -1 (E) -2

 $2^{2x+6} = 2^2$ base

exponent

2x + 6 = 2

(E)

- 13. 2^{16} is
 - 2 more than 2^{15} (A)
 - 16 more than 2^{15} **(B)**
 - $\frac{1}{2}$ of 2^{32} **(C)**
 - 2 times 2^8 **(D)**
 - 2 times 2^{15} **(E)**

base가

exponent

- $2 \times 2^{15} = 2^{1+15} = 2^{16}$
- (E)
- 14. $40^2 + 2(5)(40) + 5^2$ is the square of
 - (A) 35
- **(B)** 37.5
- **(C)** 41
- **(D)** 42.5
- (E) 45

 $40^2 + 2(5)(40) + 5^2$

(square)

- 가 가
- $40^2 + 2(5)(40) + 5^2$
- 2,025

- $40^2 + 2(5)(40) + 5^2$
- 가 5²
- $40^2 + 2(5)(40) + 5^2$

5

- 가 5 (A), (E)가
- $40^2 + 2(5)(40) + 5^2$ 40^2

 35^2

(E)

- 15. What is the units digit of $(13)^4(17)^2(29)^3$?
 - (A) 9
 - **(B)** 7
 - (C) 5
 - (D) 3
 - (E) 1

"units digit" . $(13)^4(17)^2(29)^3$

(E) .

- 16. Four hours from now, the population of a colony of bacteria will reach 1.28×10^6 . If the population of the colony doubles every 4 hours, what was the population 12 hours ago?
 - **(A)** 6.4×10^2
 - **(B)** 8.0×10^4
 - (C) 1.6×10^5
 - **(D)** 3.2×10^5
 - **(E)** 8.0×10^6

bacteria 7\dagger 4 1.28 $imes10^6$. Bacteria 4 7\dagger . 4 bacteria 7\dagger 1.28 $imes10^6$ 6.4 $imes10^5$.4

가 2 가 . . .

 $\frac{6.4 \times 10^5}{2^3} = 8.0 \times 10^4$

(B) .

- 17. The volume of a box with a square base is 54 cubic centimeters. If the height of the box is twice the width of the base, what is the height, in centimeters?
 - **(A)** 2
- **(B)** 3
- **(C)** 4
- $(\mathbf{D})^{\prime}$ 6
- **(E)** 9

가

(a box with a square base)

54*cm*³ (54 cubic

centimeters)

 $v = l \times h \times w$

가

(l=w)

가

(h=2l)

 $54 = 2l^3$

(D)

 $\sqrt{18} + \sqrt{32} =$

- 25 **(A)**
- $5\sqrt{2}$ **(B)**
- $7\sqrt{2}$ **(C)**
- **(D)** $13\sqrt{2}$
- $25\sqrt{2}$ **(E)**

 $\sqrt{18} + \sqrt{32} = 3\sqrt{2} + 4\sqrt{2} = 7\sqrt{2}$

(C)

 $\sqrt{0.0016} =$

- **(A)** 0.8
- **(B)** 0.4
- **(C)** 0.04
- 0.008 **(D)**
- 0.004 **(E)**

 $\sqrt{0.0016} = \sqrt{\frac{16}{10000}} = \frac{4}{100}$

(C)

$$\frac{1}{\sqrt{2}} \cdot \frac{3}{\sqrt{2}} \cdot \frac{2^5}{10^2} =$$

- (A) $\frac{12}{25}$
- **(B)** $\frac{3}{20}$
- (C) $\frac{\sqrt{2}}{6}$
- **(D)** $\frac{\sqrt{2}}{10}$
- **(E)** $\frac{\sqrt{2}}{100}$

$$\frac{1}{\sqrt{2}} \cdot \frac{3}{\sqrt{2}} \cdot \frac{2^5}{10^2} = \frac{3 \times 2^5}{2 \times 10^2} = \frac{3 \times 2^{5-1}}{2^2 \times 25} = \frac{3 \times 2^{4-2}}{25} = \frac{12}{25}$$
(A)

- 21. Of the following, which is the closest approximation to $\sqrt{\frac{8.9(198.7)}{18}}$?
 - (A) 3
- **(B)** 7
- (C) 10
- (D) 30
- **(E)** 100

$$\sqrt{\frac{8.9(198.7)}{18}} \cong \sqrt{\frac{9 \times 200}{18}}$$

(C)

$$22. \quad \sqrt{784} =$$

- (A) 28
- (B) 32
- (C) 38
- (D) 56
- (E) 112

$$784 = 2^4 \times 7^2$$
 , $\sqrt{784} = 2^2 \times 7 = 28$

(A) .

http://www.vstudy.co.kr, help@vstudy.co.kr, 02-538-5999, Page 22

23.
$$(\sqrt{3}+2)(\sqrt{3}-2)=$$

(A)
$$\sqrt{3}-4$$
 (B) $\sqrt{6}-4$ (C) -1 (D) 1

(B)
$$\sqrt{6}$$
 – 4

$$(C)$$
 -1

$$(\sqrt{3}+2)(\sqrt{3}-2) = (\sqrt{3})^2 - 4 = -1$$

24.
$$\sqrt{7} - \sqrt{63} =$$

(A)
$$-8\sqrt{7}$$

(B)
$$-3\sqrt{7}$$

(c)
$$-2\sqrt{7}$$

(D)
$$2\sqrt{7}$$

(E)
$$3\sqrt{7}$$

$$\sqrt{7} - \sqrt{3^2 \times 7} = \sqrt{7} - 3\sqrt{7} = -2\sqrt{7}$$

25. If
$$p = 0.2$$
 and $n = 100$, then $\sqrt{\frac{p(1-p)}{n}} =$

(A)
$$-\sqrt{0.002}$$

(B)
$$\sqrt{0.02} - 0.02$$

$$\sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.2 \times 0.8}{100}} = \sqrt{\frac{0.16}{100}} = \frac{0.4}{10}$$

26. If y > 0, which of the following is equal to $\sqrt{48y^3}$?

- $(A) \quad 4y\sqrt{3y}$
- **(B)** $3y\sqrt{4y}$
- (C) $2\sqrt{12y}$
- **(D)** $3\sqrt{8y}$
- **(E)** $16y\sqrt{3y}$

$$\sqrt{48y^3} = \sqrt{2^4 \times 3 \times y^3} = 2^2 y \sqrt{3y} =$$

(A)

27. If $x \neq 0$ and $x = \sqrt{4xy - 4y^2}$, then, in terms of y, x =

- (A) 2y
- **(B)** *y*
- (C) $\frac{y}{2}$
- **(D)** $\frac{-4y^2}{1-4y}$
- **(E)** -2y

 $(x)^2 = (\sqrt{4xy - 4y^2})^2$ $x^2 = 4xy - 4y^2$ $x^2 - 4xy + 4y^2 = 0$ $(x - 2y)^2 = 0$

(A)

28. Of the following numbers, which one is third greatest?

- (A) $2\sqrt{2}-1$
- **(B)** $\sqrt{2} + 1$
- (C) $1 \sqrt{2}$
- **(D)** $\sqrt{2} 1$
- $\langle \mathbf{E} \rangle \sqrt{2}$

$$\sqrt{2}+1 > 2\sqrt{2}-1 > \sqrt{2} > \sqrt{2}-1 > 1-\sqrt{2}$$

₩ (E) . **₩**

$$q = 3\sqrt{3}$$

$$r = 1 + 2\sqrt{3}$$
$$s = 3 + \sqrt{3}$$

29. If q, r, and s are the numbers shown above, which of the following shows their order from greatest to least?

- (A) q, r, s
- (\mathbf{R}) q, s, r
- (C) r, q, s
- **(D)** s,q,r
- **(E)** s, r, q

q r

.

$$q-r = 3\sqrt{3} - (1+2\sqrt{3}) = \sqrt{3} - 1, \sqrt{3}$$

q > r .

$$r-s=1+2\sqrt{3}-(3+\sqrt{3})=\sqrt{3}-2$$
, 2 $\sqrt{4}$. $r-s$

$$q-s=3\sqrt{3}-(3+\sqrt{3})=2\sqrt{3}-3$$
, $2\sqrt{3}$ $\sqrt{12}$, 3 $\sqrt{9}$ $q-s$

q > r . q > s > r .

(B) .

 $\sqrt{463}$ is between

- (A) 21 and 22
- (B) 22 and 23
- (C) 23 and 24
- (D) 24 and 25
- (E) 25 and 26

$$\sqrt{463}$$
 463 . 463 . 463 . 21² = 441, 22² = 484 . 21 $\sqrt{463}$ < 22 . (A) .

31. Of the following, which is most nearly equal to $\sqrt{10}$?

3.2

- (A) 3.1
- **(B)**
- (C) 3.3
- (D) 3.4
- (E) 3.5

<High Level Questions>

- 32. In a certain set of weights, for each positive integer n less than 10, there is one weight that weighs 2^n grams. What is the <u>least</u> number of such weights with a combined weight of 108 grams?
 - (A) Three
- (B) Four
- (C) Five
- (D) Six
- (E) Seven

```
2^n \operatorname{gram}
  (weight)
                                                                           10
                  2^{1}, 2^{2}, 2^{3}, \dots, 2^{9}
(1,2.3,.9).
                                             가 가
                                                                                          108 gram
                                                2.2^2.2^3....2^9 gram
                                                   2^7 = 128
                                                                 2^{8}, 2^{9}
가
         108gram
                                                                                   108
(2^2 = 4) + (2^3 = 8) + (2^5 = 32) + (2^6 = 64) = 108
H
           (B)
```

http://www.vstudy.co.kr, help@vstudy.co.kr, 02-538-5999, Page 26

- **33.** $(2^2 1)(2^2 + 1)(2^4 + 1)(2^8 + 1) = ?$
 - (4) $2^{16}-1$
 - **(B)** $2^{16} + 1$
 - (C) $2^{32}-1$
 - **(D)** $2^{128} 1$
 - **(E)** $2^{16}(2^{16}-1)$
- : $(a+b)(a-b) = a^2 b^2 \Rightarrow (2^2 1)(2^2 + 1) = 2^4 1 \Rightarrow (2^4 1)(2^4 + 1) = 2^8 1 \Rightarrow (2^8 1)(2^8 + 1) = 2^{16} 1$
- (A)
- 34. If s, u, and v are positive integers and $2^s = 2^u + 2^v$, which of the following must be true?
 - I. s = u
 - II. $u \neq v$
 - III. s > v
 - **(A)** None
 - **(B)** I only
 - **(C)** II only
 - **(D)** III only
 - **(E)** II and III
 - s, u, and v > 10s, u, and v 가s > vtrue
- H (D)
- **35.** If $t = 2^{x+1}$, then in terms of t, 4^x is

- (A) t (B) $\frac{t}{2}$ (C) t^2 (D) $\frac{t^2}{2}$ (E) $\frac{t^2}{4}$
- $t = 2^x \times 2 \Rightarrow 2^x = \frac{t}{2} \Rightarrow 4^x = \left(\frac{t}{2}\right)^2$, \uparrow
- $\left(2^{x}\right)^{2} = 2^{2x} \Rightarrow 4^{x}$
- H (E)
- , http://www.vstudy.co.kr, help@vstudy.co.kr, 02-538-5999, Page 27

- 36. If x is a positive number and $\frac{1}{2}$ the square root of x is equal to 2x, then x =
 - (A) $\frac{1}{16}$ (B) $\frac{1}{4}$ (C) $\frac{1}{2}$ (D) 2 (E) 8

square root of $2 = \sqrt{2}$? the square root of $x = \sqrt{x}$?

 $\frac{1}{2}\sqrt{x} = 2x \Rightarrow x = \frac{1}{16}$

- H (A)
- 37. If $N = 2^3 \cdot 5^7 \cdot 9^3$, what is the <u>sum</u> of the different positive prime factors of N?
- (B) 16
- (C) 15
- (D) 10
- (E) 7

 $N=2^3\cdot 5^7\cdot 9^3,$

(prime factors)

 $9^3 = 3^6$

2, 3, 5

10.

H (D)

- 38. If an integer raised to the fifth power is odd, then the integer must be which of the following?
 - **(I)** Odd
 - **(II)** Even
 - **(III) Positive**
 - (A) **I** only
- (B) II only
- (C) III only
- (D) I and III
- (E) II and III

5

가

5

H (A)

- 39. A computer can perform 1,000,000 calculations per second. At this rate, how many hours will it take this computer to perform the 3.6×10^{11} calculations required to solve a certain problem?
 - **(A)** 60
- (B) 100
- (C) 600
- (D) 1,000
- (E) 6,000

 $1.000.000 = 10^6$ 1

$$\frac{3.6 \times 10^{11}}{10^6} = 3.6 \times 10^5 \text{ per second.}$$

 3.6×10^{5}

가 3.6×10¹¹

hours

- $\frac{3.6 \times 10^5}{60 \times 60} = 100 \text{ hours}$
- (B)
- 40. If x = 4 and y = 16, then $\sqrt{\frac{x+y}{xy}}$ is closest to which of the following?

 - (A) $\frac{1}{3}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) $\frac{7}{8}$

$$\sqrt{x} + \sqrt{y} \neq \sqrt{x + y}$$

$$\sqrt{\frac{x+y}{xy}} = \sqrt{\frac{1}{x} + \frac{1}{y}}, \qquad x = 4 \qquad y = 16$$
 $\frac{\sqrt{5}}{4}$ $\sqrt{5} \approx 2.24$

$$x = 4 \qquad y = 16$$

$$\frac{\sqrt{5}}{4}$$

H

(B)

- 41. Of the following sums, which is greatest?
 - (A) $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}}$
 - **(B)** $\frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2}$
 - (C) $\frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5}$
 - **(D)** $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4}$
 - (E) $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$

가 가 가 가

(A)가 .

(A)

 $\frac{7^4 - 1}{8(7^2 + 1)} =$

H

(A) 6 (B) 6.25 (C) 7 (D) 8 (E) 48

 $7^4 - 1 = (7^2 - 1)(7^2 + 1) = (7 + 1)(7 - 1)(7^2 + 1)$

(A)

<Power and roots of numbers

$$\bullet \quad \mathbf{x}^{m} = \mathbf{x} \cdot \mathbf{x} \cdot \cdots \mathbf{x} (\mathbf{X}^{7} \mathbf{m})$$

$$\bullet \quad \mathbf{x}^m \quad \mathbf{x}^n = \mathbf{x}^{m+n}$$

$$\bullet \quad \frac{\sqrt[m]{a}}{\sqrt[m]{b}} = \sqrt[m]{\frac{a}{b}}$$

$$\bullet \quad \frac{x^{m}}{x^{n}} = \begin{cases} x^{m-n}, m > n \\ 1, m = n \\ \frac{1}{x^{n-m}}, m < n \end{cases}$$

$$\bullet \quad (\sqrt[n]{a})^m = \sqrt[n]{a^m}$$

$$\bullet \qquad \sqrt[np]{a^{mp}} = \sqrt[n]{a^m}$$

$$\bullet \qquad (\mathbf{x}\mathbf{y})^m = x^m y^m$$

•
$$\mathbf{x}^0 = 1$$
, $(\mathbf{x}^1 \ \mathbf{0})$; $\mathbf{x}^{-n} = \frac{1}{\mathbf{x}^n}$

$$\bullet \quad \mathbf{a}^{\frac{m}{n}} = \sqrt[n]{a^m}$$