229879 numer albumu

Michał Gebel imię i nazwisko 229908 numer albumu

Antoni Karwowski imię i nazwisko

kierunek Informatyka Stosowana czwartek semestr III 14:00-15:30 rok akademicki 2020/21 4

akaueiiiicki ZUZU/ZI 4
numer zespołu

Laboratorium elektroniki

Ćwiczenie E-08 Wzmacniacze Operacyjne

17.12.2020r. data wykonania pomiarów

17.12.2020r.

data oddania raportu

Uwaga!!! sprawozdanie jest niekompletne, nie posiada:

- 1) wykresów dla wzmacniacza w układzie nieodwracającym
- 2) obliczeń rezystancji wyjściowych i wejściowych oraz ich niepewności a także niektórych obliczeń dla współczynnika wzmocnienia

wszelkie brakujące punkty zostaną dodane w najbliższym czasie, zwracam się z uprzejmą prośbą, aby w przypadku zarejestrowania nowej wersji sprawozdania przed jego sprawdzeniem od razu przystąpić do sprawdzania wersji najnowszej.

1. Cel ćwiczenia

1.1 Sformułowanie celu ćwiczenia

Celem ćwiczenia jest poznanie właściwości wzmacniaczy operacyjnych oraz możliwości wykorzystania ich do realizacji bloków funkcjonalnych poprzez dobór odpowiednich sprzężeń zwrotnych.

1.2 Wstęp teoretyczny

1.2.0 Oznaczenia

U_{wy} [V] – napięcie wejściowe

Uwe [V] – napięcie wyjściowe

k_u [1] – współczynnik wzmocnienia

k_u ^t [1] – teoretyczny współczynnik wzmocnienia

k_u^A [dB] – współczynnik wzmocnienia amplitudowego

k_u^{At} [dB] –teoretyczny współczynnik wzmocnienia amplitudowego

f [Hz] – częstotliwość

 $R_{we}[\Omega]$ – rezystancja (opór) wejściowa

 $R_{wv}[\Omega]$ – rezystancja (opór) wyjściowa

 $\Delta R_{we}[\Omega]$ – niepewność rezystancji wejściowej

 $\Delta R_{wy}[\Omega]$ – niepewność rezystancji wyjściowej

1.2.1 charakterystyka przejściowa wzmacniacza operacyjnego:

$$U_{W_{v}} = f(U_{W_{e}}) \tag{0}$$

1.2.2 współczynnik wzmocnienia (rzeczywisty i teoretyczny)

$$k_u^t = \frac{-R_2}{R_1}$$
 $k_u = \frac{U_{We}}{U_{Wv}}$ (1a, 1b)

1.2.3 współczynnik wzmocnienia Amplitudowego (rzeczywisty i teoretyczny)

$$k_u^{At} = 20 \log_{10} \left| \frac{R_2}{R_1} \right| \qquad k_u^A = 20 \log_{10} \left| \frac{U_{We}}{U_{Wy}} \right|$$
 (2a, 2b)

1.2.4 Rezystancja wejściowa i wyjściowa dla wzmacniacza nieodwracającego

$$\mathbf{R}_{\text{WE}} = \frac{\mathbf{R}_{\text{S3}}}{\mathbf{U}_{\text{WY}}} - 1; \quad \mathbf{R}_{\text{WY}} = \mathbf{R}_{\text{L}} \left(\frac{\mathbf{U}_{\text{WY}}}{\mathbf{U}_{\text{WY}RL}} - 1 \right)$$
(3a, 3b)

1.2.3 Rezystancja wejściowa i wyjściowa dla wzmacniacza odwracającego

$$R_{WE} = \frac{R_{Si}}{U_{WY}} - 1 = R_{WE}(x, y) = \frac{R_{Si}}{x} - 1$$

$$R_{WY} = R_L \cdot \left(\frac{U_{WY}}{U_{WY}RL} - I\right) = R_{WY}(x, z) = R_L \cdot \left(\frac{x}{z} - I\right)$$
gdzie:
$$x = U_{WY}; \quad y = U_{WY}R_{Si}; \quad z = U_{WY}RL$$
(4a, 4b)

1.2.4 niepewność Rezystancji wejściowej i wyjściowej

$$u_{C}(R_{WY}) = R_{L} \cdot \left(\frac{1}{z}\right) \cdot \sqrt{u^{2}(x) + \left(\frac{x}{z}\right)^{2} \cdot u^{2}(z)}$$

$$u_{C}(R_{WE}) = \frac{R_{SI}}{\left(\frac{x}{y} - I\right)^{2}} \cdot \left(\frac{I}{y}\right) \cdot \sqrt{u^{2}(x) + \left(\frac{x}{y}\right)^{2} \cdot u^{2}(y)}$$

(5a, 5b)

2. Schematy układów pomiarowych

FG – generator OSC – oscyloskop CH1 i CH2 – wejścia oscyloskopu V – woltomierz

Rys. 1. schemat połączeń dla wzmacniacza operacyjnego w układzie odwracającym – wersja podstawowa

Rys. 2. schemat połączeń dla wzmacniacza operacyjnego w układzie nieodwracającym – wersja podstawowa

Rys. 3. schemat połączeń dla wzmacniacza operacyjnego w układzie nieodwracającym – wersja rozszerzona – wtórnik

3. Wykaz aparatury

Aparatura użyta dla części wzmacniacz w układzie odwracającym oraz wzmacniacz w układzie nieodwracającym

- 1). Moduł doświadczalny W-03
- 2). Zespół Źródeł Sterujących, nr inw. ZŹS-06
- 3). Multimetr UT-804, nr inw. I3/RPO/010/T8/50/1 do pomiaru UWE, zakres 40 V DC
- 4). Multimetr Protek 506, nr inw. WD043.01-005-203 do pomiaru UWY, zakres 40 V DC
- 5). Generator funkcyjny DF1641B, nr inw. WD045.01-007-203
- 6). Oscyloskop cyfrowy SIGLENT SDS 1052DL, nr inw. I3/RPO/010/T8/68/3
- 7). Zasilacz Siglent SPD3303D, nr inw. I3/RPO/010/T8/48/2

Aparatura użyta dla części wzmacniacz w układzie nieodwracającym - wtórnik

- 1). Moduł doświadczalny W-03
- 2). Zespół Źródeł Sterujących, nr inw. ZŹS-06
- 3). Multimetr Protek 506, nr inw. WD043.01-005-203 do pomiaru UWE, zakres 40 V DC
- 4). Multimetr Kemot KT890, nr inw. I3/2.03/2017-K/4 do pomiaru UWY, zakres 20 V DC
- 5). Generator funkcyjny DF1641B, nr inw. WD045.01-007-203
- 6). Oscyloskop cyfrowy SIGLENT SDS 1052DL, nr inw. I3/RPO/010/T8/68/3
- 7). Zasilacz Siglent SPD3303D, nr inw. WD051.02-004-203

4. Stabelaryzowane wyniki pomiarów

model multimetru zakres dgts niepewność graniczna UT-804 40 V 0,001 V $\Delta U = \pm (0,05\% |rdg| + 5 dgts)$ Protek 506 40 V 0,01 V $\Delta U = \pm (0,5\% |rdg| + 2 dgts)$

Tabela 0 Informacje służące do wyliczania niepewności pomiarowych na podstawie dokumentacji użytych mierników

4.1 Wyniki pomiarów dla wzmacniacza operacyjnego w układzie odwracającym – wersja podstawowa

Z 1	$\mathbb{Z}2$	Napięcie wejściowe		Napięcie wyjściowe	
$[k\Omega]$	$[k\Omega]$	UWE [V]	Δ UWE [V]	UWY [V]	$\Delta UWY[V]$
10	20	-12,02	0,01	14,07	0,09
10	20	-11,04	0,01	14,07	0,09
10	20	-10,05	0,01	14,07	0,09
10	20	-9,02	0,01	14,07	0,09
10	20	-8,03	0,01	14,07	0,09
10	20	-7,13	0,01	13,97	0,09
10	20	-6,96	0,01	13,63	0,09
10	20	-6,63	0,01	12,99	0,08
10	20	-6,01	0,01	11,78	0,08
10	20	-5,03	0,01	9,87	0,07
10	20	-4,00	0,01	7,84	0,06
10	20	3,00	0,01	5,88	0,05
10	20	-1,99	0,01	3,90	0,04
10	20	-0,99	0,01	1,94	0,03
10	20	0,04	0,01	-0,07	0,02
10	20	1,06	0,01	-2,08	0,03
10	20	2,04	0,01	-4,00	0,04
10	20	3,00	0,01	-5,94	0,05
10	20	4,07	0,01	-7,97	0,06
10	20	5,01	0,01	-9,82	0,07
10	20	5,72	0,01	-11,20	0,08
10	20	6,06	0,01	-11,87	0,08
10	20	6,48	0,01	-12,69	0,08
10	20	7,06	0,01	-13,04	0,09
10	20	8,03	0,01	-13,04	0,09
10	20	10,13	0,01	-13,04	0,09
10	20	11,92	0,01	-13,04	0,09

Tabela 1a Wyniki pomiarów charakterystyki przejściowej wzmacniacza operacyjnego

			pięcie		Napięcie	
RS1	RL	wej	jściowe	,	wyjściowe	
				ΔUWE		ΔUWY
$[\mathrm{k}\Omega]$	$[k\Omega]$	UV	VE [V]	[V]	UWY [V]	[V]
-		∞	-5,03	0,01	9,85	0,07
10		∞	-5,03	0,01	4,98	0,04

Tabela 1b Wyniki pomiarów rezystancji wejściowej wzmacniacza operacyjnego

		Napięcie		Napięcie	
RS1	RL	wejściowe		wyjściowe	
			ΔUWE		ΔUWY
$[\mathrm{k}\Omega]$	$[k\Omega]$	UWE [V]	[V]	UWY [V]	[V]
-	\propto	-6,13	0,01	12,00	0,08
-	20	-6,13	0,01	12,00	0,08
-	10	-6,13	0,01	12,00	0,08
-	5	-6,13	0,01	12,00	0,08
-	2	-6,13	0,01	12,00	0,08

Tabela 1c Wyniki pomiarów rezystancji wyjściowej wzmacniacza operacyjnego

f	UWE	UWY
[kHz]	[V]	[V]
0,3010	0,172	1,68
105,5	0,176	0,840
171,9	0,176	0,552
222,6	0,174	0,424
281,0	0,174	0,332
325,1	0,174	0,284
427,6	0,174	0,208
499,8	0,176	0,180
527,1	0,174	0,162

Tabela 1d Wyniki pomiarów pasma przenoszenia wzmacniacza operacyjnego

Z 1	Z 2	UWE	UWY
$[k\Omega]$	$[\mathrm{k}\Omega]$	[mV]	[mV]
5	10	124	236
10	20	124	232
15	50	130	396
25	20	148	130
25	10	224	106
15	100	224	1480
30	100	228	760

Tabela 1e Wyniki pomiarów współczynnika wzmocnienia wzmacniacza operacyjnego

4.2 Wyniki pomiarów dla wzmacniacza operacyjnego w układzie nieodwracającym – wersja podstawowa

Z1	Z2	Napięcie wejściowe		Napięcie wyjściowe	
[kΩ]	[kΩ]	UWE [V]	ΔUWE [V]	UWY [V]	ΔUWY [V]
10	20	-12,05	0,01	-13,05	0,09
10	20	-11,06	0,01	-13,05	0,09
10	20	-10,04	0,01	-13,05	0,09
10	20	-8,98	0,01	-13,05	0,09
10	20	-8,05	0,01	-13,05	0,09
10	20	-7,92	0,01	-13,05	0,09
10	20	-5,95	0,01	-13,05	0,09
10	20	-4,96	0,01	-13,05	0,09
10	20	-4,24	0,01	-12,51	0,08
10	20	-4,11	0,01	-12,17	0,08
10	20	-3,99	0,01	-11,81	0,08
10	20	-3,62	0,01	-10,72	0,07
10	20	-3,19	0,01	-9,43	0,07
10	20	-1,96	0,01	-5,82	0,05
10	20	-1,06	0,01	-3,14	0,04
10	20	0,01	0,01	0,17	0,02
10	20	1,02	0,01	3,02	0,04
10	20	1,98	0,01	5,87	0,05
10	20	3,01	0,01	8,91	0,06
10	20	4,02	0,01	11,90	0,08
10	20	4,16	0,01	12,31	0,08
10	20	4,33	0,01	13,56	0,09
10	20	4,58	0,01	14,09	0,09
10	20	4,81	0,01	14,09	0,09
10	20	6,70	0,01	14,10	0,09
10	20	9,11	0,01	14,10	0,09
10	20	10,06	0,01	14,10	0,09
10	20	12,02	0,01	14,10	0,09

Tabela 2a Wyniki pomiarów charakterystyki przejściowej wzmacniacza operacyjnego

RS2/RS3	RL	Napięcie wejściowe		Napięcie wyjściowe	
		•	ΔUWE		ΔUWY
$[\mathrm{k}\Omega]$	$[\mathrm{k}\Omega]$	UWE [V]	[V]	UWY [V]	[V]
-	C	∞ 3,03	0,01	8,99	0,07
300	C	× 3,03	0,01	8,98	0,06
10000	c	∞ 3.03	0.01	8.74	0.06

 $10000 \quad \infty \quad 3,03 \quad 0,01 \quad 8,74 \quad 0,06$ **Tabela 2b** Wyniki pomiarów rezystancji wejściowej wzmacniacza operacyjnego

		Napięcie		Napięcie	
RS2/RS3	RL	wejściowe		wyjściowe	
			ΔUWE		ΔUWY
$[\mathrm{k}\Omega]$	$[k\Omega]$	UWE [V]	[V]	UWY [V]	[V]
-	∞	4,06	0,01	12,02	0,08
-	20	4,06	0,01	12,02	0,08
-	10	4,06	0,01	12,02	0,08
-	5	4,06	0,01	12,02	0,08
-	2	4,06	0,01	12,02	0,08

Tabela 2c Wyniki pomiarów rezystancji wyjściowej wzmacniacza operacyjnego

f	UWE	UWY
[kHz]	[V]	[V]
0,2990	152	1500
117,2	152	720
176,7	148	504
245,6	148	354
297,1	150	304
364,0	150	244
466,1	150	180
496,5	150	176
576,0	150	148

Tabela 2d Wyniki pomiarów pasma przenoszenia wzmacniacza operacyjnego

Z 1	Z 2	UWE	UWY
$[k\Omega]$	$[k\Omega]$	[V]	[V]
5	10	146	408
10	20	148	408
15	50	146	600
25	20	146	252
25	10	148	200
15	100	154	1100
30	100	150	616
25	1000	148	5600

Tabela 2e Wyniki pomiarów współczynnika wzmocnienia wzmacniacza operacyjnego

4.3 Wyniki pomiarów dla wzmacniacza operacyjnego w układzie nieodwracającym – wersja rozszerzona - wtórnik

		Napięcie		Napięcie	
Z1	Z 2	wejściowe		wyjściowe	
			ΔUWE		ΔUWY
$[k\Omega]$	$[k\Omega]$	UWE [V]	[V]	UWY [V]	[V]
∞	0,0	-12,63	0,01	-12,55	0,08
∞	0,0	-10,52	0,01	-10,54	0,07
∞	0,0	-8,42	0,01	-8,44	0,06
∞	0,0	-6,37	0,01	-6,39	0,05
∞	0,0	-4,25	0,01	-4,26	0,04
∞	0,0	-2,15	0,01	-2,16	0,03
∞	0,0	-1,04	0,01	-1,04	0,03
∞	0,0	0,00	0,01	0,00	0,02
∞	0,0	1,00	0,01	1,00	0,03
∞	0,0	2,16	0,01	2,16	0,03
∞	0,0	4,22	0,01	4,23	0,04
∞	0,0	6,49	0,01	6,51	0,05
∞	0,0	10,60	0,01	10,63	0,07
∞	0,0	12,76	0,01	12,79	0,08

Tabela 3a Wyniki pomiarów charakterystyki przejściowej wzmacniacza operacyjnego

RS2/RS3	RL		Napięcie wejściowe		Napięcie wyjściowe	
				ΔUWE		ΔUWY
$[\mathrm{k}\Omega]$	$[k\Omega]$		UWE [V]	[V]	UWY [V]	[V]
-		∞	10,57	0,01	10,60	0,07
300		∞	10,57	0,01	10,60	0,07
10000		∞	10,57	0,01	10,58	0,07

Tabela 3b Wyniki pomiarów rezystancji wejściowej wzmacniacza operacyjnego

RS2/RS3	RL	Napięcie wejściowe		Napięcie wyjściowe	
			ΔUWE		ΔUWY
$[\mathrm{k}\Omega]$	$[k\Omega]$	UWE [V]	[V]	UWY [V]	[V]
-	∞	10,57	0,01	10,60	0,07
-	20	10,57	0,01	10,60	0,07
-	10	10,57	0,01	10,60	0,07
-	5	10,57	0,01	10,60	0,07
-	2	10,57	0,01	10,60	0,07

Tabela 3c Wyniki pomiarów rezystancji wyjściowej wzmacniacza operacyjnego

f	UWE	UWY
[kHz]	[mV]	[mV]
0,2963	18,8	20,0
2,951	18,8	20,4
30,12	18,4	20,0
310,0	18,8	20,4
634,1	18,8	20,4
814,2	18,8	19,6
910,0	18,4	19,2
999,3	18,4	17,6
1101	18,4	16,8
1201	18,0	15,6
1300	18,4	14,8
1401	18,0	13,6
1451	18,4	13,2
1508	18,4	12,8

Tabela 3d Wyniki pomiarów pasma przenoszenia wzmacniacza operacyjnego

5. Wykresy

Wykres 1a wykres charakterystyki przejściowej wzmacniacza operacyjnego w układzie odwracającym z zaznaczonym fragmentem wykorzystanym do wyznaczenia wzmocnienia napięciowego **(obliczenia w 6.1)**

Wykres 1b Wykres zależności amplitudowego współczynnika wzmocnienia wzmacniacza odwracającego od częstotliwości wzmacnianego zmiennego napięcia dla ustalonej kombinacji $Z1=5~\mathrm{k}\Omega$ oraz $Z2=50~\mathrm{k}\Omega$

Wykres 2a wykres charakterystyki przejściowej wzmacniacza operacyjnego w układzie nieodwracającym z zaznaczonym fragmentem wykorzystanym do wyznaczenia wzmocnienia napięciowego

Wykres 3 wykres charakterystyki przejściowej wzmacniacza operacyjnego w układzie nieodwracającym - wtórnik

6. Analiza wyników

				Współczynnik	Rzeczywisty
				wzmocnienia	współczynnik
Z 1	Z2	Napięcie wejściowe	Napięcie wyjściowe	teoretycznego	wzmocnienia
$[k\Omega]$	$[k\Omega]$	UWE [V]	UWY [V]	$K_u^{\ t}$	K_{u}
10	20	-7,13	13,97	-2	-1,96
10	20	-6,96	13,63	-2	-1,96
10	20	-6,63	12,99	-2	-1,96
10	20	-6,01	11,78	-2	-1,96
10	20	-5,03	9,87	-2	-1,96
10	20	-4,00	7,84	-2	-1,96
10	20	-3,00	5,88	-2	-1,96
10	20	-1,99	3,90	-2	-1,96
10	20	-0,99	1,94	-2	-1,96
10	20	0,04	-0,07	-2	-2
10	20	1,06	-2,08	-2	-1,96
10	20	2,04	-4,00	-2	-1,96
10	20	3,00	-5,94	-2	-1,98
10	20	4,07	-7,97	-2	-1,96
10	20	5,01	-9,82	-2	-1,96
10	20	5,72	-11,20	-2	-1,96
10	20	6,06	-11,87	-2	-1,96
10	20	6,48	-12,69	-2	-1,96

Tabela 6.1 przedstawienie wyników obliczeń współczynnika wzmocnienia teoretycznego i rzeczywistego dla wzmacniacza operacyjnego w układzie odwracającym

f	$ m U_{WE}$	U_{WY}	K_u^{tA}	K_u^A
[kHz]	[V]	[V]	[dB]	[dB]
0,30	0,17	1,68	20,00	19,80
105,50	0,18	0,84	20,00	13,58
171,90	0,18	0,55	20,00	9,93
222,60	0,17	0,42	20,00	7,74
281,00	0,17	0,33	20,00	5,61
325,10	0,17	0,28	20,00	4,26
427,60	0,17	0,21	20,00	1,55
499,80	0,18	0,18	20,00	0,20
527,10	0,17	0,16	20,00	-0,62

Tabela 6.2 przedstawienie wyników obliczeń amplitudowego rzeczywistego i teoretycznego współczynnika wzmocnienia wzmacniacza dla wzmacniacza operacyjnego w układzie odwracającym

7. Wnioski

8. Literatura

- [1] M. Rusek, J. Pasierbiński, Elementy i układy elektroniczne w pytaniach i odpowiedziach, WNT, Warszawa, 1999.
- [2] M. Nadachowski, Z. Kulka, Scalone układy analogowe, WKiŁ, Warszawa, 1985.
- [3] Z. Nosal, J. Baranowski, Układy elektroniczne. Cz. I. Układy analogowe liniowe Seria Podr ę czniki Akademickie, (Elektronika, Informatyka, Telekomunikacja), WNT, Warszawa, 2003.
- [4] A. Filipowski, Układy elektroniczne analogowe i cyfrowe, Seria Podr ę czniki Akademickie, (Elektronika, Informatyka, Telekomunikacja), WNT, Warszawa, 2005.
- [5] P. Horowitz, W. Hill, Sztuka elektroniki. Cz. 1., (tłum. ang.), WKiŁ, Warszawa, 2003.
- [6] Instrukcje obsługi do multimetrów, zasilacza laboratoryjnego, generatora funkcyjnego i oscyloskopu dost ę pne s ą na stronie internetowej:

 https://fizyka.p.lodz.pl/pl/dla-studentow/podstawy-elektroniki-laboratorium/zasoby/
- [7] Ł. Piskorski, Wyznaczanie niepewności pomiarów , Skrypt PŁ, Łód ź , 2019 (WIKAMP, Pracownia Fizyczna): https://ftims.edu.p.lodz.pl/mod/resource/view.php?id=62256
- [8] E08IS Instrukcja wykonania zadania E08 Instytut Fizyki WFTIMS

9. Otrzymany dokument z wynikami

Ćwiczenie E08IS "Wzmacniacz operacyjny" - wyniki pomiarów, zestaw 4

Aparatura użyta w częściach 5.1 i 5.2:

- 1). Moduł doświadczalny W-03
- 2). Zespół Źródeł Sterujących, nr inw. ZŹS-06
- 3). Multimetr UT-804, nr inw. I3/RPO/010/T8/50/1 do pomiaru UWE, zakres 40 V DC
- 4). Multimetr Protek 506, nr inw. WD043.01-005-203 do pomiaru UWY, zakres 40 V DC
- 5). Generator funkcyjny DF1641B, nr inw. WD045.01-007-203
- 6). Oscyloskop cyfrowy SIGLENT SDS 1052DL, nr inw. I3/RPO/010/T8/68/3
- 7). Zasilacz Siglent SPD3303D, nr inw. I3/RPO/010/T8/48/2
- 5.1. Wzmacniacz w układzie odwracającym
- 5.1.1. Wyznaczenie charakterystyki przejściowej wzmacniacza operacyjnego

Z 1	Z2	Napięcie wejściowe			Napięcie wyjściowe	
$[k\Omega]$	$[k\Omega]$	UWE [V]	ΔUWE	$\mathbb{E}[V]$	UWY [V]	Δ UWY [V]
10	20	-12,015	0,011	14,07	0,090	
10	20	-11,039	0,011	14,07	0,090	
10	20	-10,047	0,010	14,07	0,090	
10	20	-9,023 0,010	14,07	0,090		
10	20	-8,033 0,009	14,07	0,090		
10	20	-7,131 0,009	13,97	0,090		
10	20	-6,960 0,008	13,63	0,088		
10	20	-6,634 0,008	12,99	0,085		
10	20	-6,011 0,008	11,78	0,079		
10	20	-5,032 0,008	9,87	0,069		
10	20	-3,999 0,007	7,84	0,059		
10	20	3,003 0,007	5,88	0,049		
10	20	-1,990 0,006	3,90	0,040		
10	20	-0,991 0,005	1,94	0,030		
10	20	0,035 0,005	-0,07	0,020		
10	20	1,062 0,006	-2,08	0,030		
10	20	2,039 0,006	-4,00	0,040		
10	20	3,003 0,007	-5,94	0,050		
10	20	4,070 0,007	-7,97	0,060		
10	20	, ,	-9,82	0,069		
10	20	5,716 0,008	-11,20	0,076		
10	20	6,061 0,008	-11,87	0,079		
10	20	6,475 0,008	-12,69	-		
10	20	7,058 0,009		•		
10	20		-13,04	0,085		
10	20	10,128 0,010	-13,04	0,085		

5.1.2. Pomiar rezystancji wejściowej wzmacniacza operacyjnego.

RS1	RL	Napięcie wejściowe			Napięcie wyj	ściowe
$[k\Omega]$	$[k\Omega]$	UWE [V]	ΔUWI	E [V]	UWY [V]	$\Delta UWY[V]$
-	∞	-5,030 0,008	9,85	0,069		
10	∞	-5,030 0,008	4,98	0,045		

5.1.3. Pomiar rezystancji wyjściowej wzmacniacza operacyjnego

RS1	RL	Napięcie wejściowe			Napięcie wy	jściowe
$[\mathrm{k}\Omega]$	$[\mathrm{k}\Omega]$	UWE [V]	ΔUWE	$\mathbb{E}\left[\mathbf{V} ight]$	UWY [V]	$\Delta UWY [V]$
-	∞	-6,126 0,008	12,00	0,080		
-	20	-6,126 0,008	12,00	0,080		
-	10	-6,126 0,008	12,00	0,080		
-	5	-6,126 0,008	12,00	0,080		
-	2	-6,126 0,008	12,00	0,080		

5.1.4. Pomiar pasma przenoszenia wzmacniacza operacyjnego

$Z1 = 5 \text{ k}\Omega$, $Z2 = 50 \text{ k}\Omega$

f	UWE	UWY	Uwaga:
[kHz]	[V]	[V]	napięcia UWE i UWY zmierzone jako międzyszczytowe.
0,3010	0,172	1,68	
105,5	0,176	0,840	
171,9	0,176	0,552	
222,6	0,174	0,424	
281,0	0,174	0,332	
325,1	0,174	0,284	
427,6	0,174	0,208	
499,8	0,176	0,180	
527,1	0,174	0,162	

5.1.5. Pomiar wsp. wzmocnienia wzmacniacza operacyjnego dla zmiennych napięć

Z 1	Z2	UWE	UWY	Uwaga:
$[\mathrm{k}\Omega]$	$[\mathrm{k}\Omega]$	[mV]	[mV]	napięcia UWE i UWY zmierzone jako
międz	yszczyt	owe.		
5	10	124	236	
10	20	124	232	
15	50	130	396	

25	20	148	130
25	10	224	106
15	100	224	1480
30	100	228	760

- 5.2. Wzmacniacz w układzie nieodwracającym5.2.1. Wyznaczenie charakterystyki przejściowej wzmacniacza operacyjnego

Z 1	Z 2	Napięcie wej	ściowe	Napięcie wyjściowe		
$[\mathrm{k}\Omega]$	$[\mathrm{k}\Omega]$	UWE [V]	Δ UWE [V]	UWY [V]	$\Delta UWY[V]$	
10	20	-12,052	0,011 -13,05	0,085		
10	20	-11,062	0,011 -13,05	0,085		
10	20	-10,036	0,010 -13,05	0,085		
10	20	-8,982 0,009	-13,05 0,085			
10	20	-8,054 0,009	-13,05 0,085			
10	20	-7,920 0,009	-13,05 0,085			
10	20	-5,949 0,008	-13,05 0,085			
10	20	-4,963 0,007	-13,05 0,085			
10	20	-4,235 0,007	-12,51 0,083			
10	20	-4,114 0,007	-12,17 0,081			
10	20	-3,991 0,007	-11,81 0,079			
10	20	-3,622 0,007	-10,72 0,074			
10	20	-3,187 0,007	-9,43 0,067			
10	20	-1,964 0,006	-5,82 0,049			
10	20	-1,061 0,006	-3,14 0,036			
10	20	0,005 0,005	0,17 0,021			
10	20	1,019 0,006	3,02 0,035			
10	20	1,981 0,006	5,87 0,049			
10	20	3,008 0,007	8,91 0,065			
10	20	4,018 0,007	11,90 0,080			
10	20	4,158 0,007	12,31 0,082			
10	20	4,333 0,007	13,56 0,088			
10	20	4,582 0,007	14,09 0,090			
10	20	4,806 0,007	14,09 0,090			
10	20	6,701 0,008	14,10 0,091			
10	20	9,105 0,010	14,10 0,091			
10	20	10,055 0,010	14,10 0,091			
10	20	12,020 0,011	14,10 0,091			

5.2.2. Pomiar rezystancji wejściowej wzmacniacza operacyjnego.

RS2/RS3		RL	Napię	cie wej	ściowe	Napięcie wyjściowe		
$[k\Omega]$	$[k\Omega]$	UWE [V]		Δ UWE [V]		UWY [V]	$\Delta UWY[V]$	
-	∞	3,034	0,007	8,99	0,065			
300	∞	3,034	0,007	8,98	0,065			
10000	∞	3,034	0,007	8,74	0,064			

5.2.3. Pomiar rezystancji wyjściowej wzmacniacza operacyjnego

RS2/RS3		RL	Napię	cie wej	ściowe	Napięcie wyjściowe		
$[k\Omega]$	$[\mathrm{k}\Omega]$	UWE	[V]	$\Delta UWE[V]$		UWY [V]	$\Delta UWY [V]$	
-	∞	4,060	0,007	12,02	0,080			
-	20	4,060	0,007	12,02	0,080			
-	10	4,060	0,007	12,02	0,080			
-	5	4,060	0,007	12,02	0,080			
-	2	4,060	0,007	12,02	0,080			

5.2.4. Pomiar pasma przenoszenia wzmacniacza operacyjnego

$$Z1 = 5 k\Omega$$
, $Z2 = 50 k\Omega$

f	UWE	UWY	Uwaga:
[kHz]	[V]	[V]	napięcia UWE i UWY zmierzone jako międzyszczytowe.
0,2990	152	1500	
117,2	152	720	
176,7	148	504	
245,6	148	354	
297,1	150	304	
364,0	150	244	
466,1	150	180	
496,5	150	176	
576,0	150	148	

5.2.5. Pomiar wsp. wzmocnienia wzmacniacza operacyjnego dla zmiennych napięć

Z 1	Z 2	UWE	UWY	Uwaga:
$[\mathrm{k}\Omega]$	$[k\Omega]$	[V]	[V]	napięcia UWE i UWY zmierzone jako
między	szczyto	owe.		
5	10	146	408	
10	20	148	408	
15	50	146	600	
25	20	146	252	
25	10	148	200	
15	100	154	1100	
30	100	150	616	
25	1000	148	5600	

5.3. Wzmacniacz w układzie nieodwracającym – wtórnik

Aparatura użyta w części 5.3:

- 1). Moduł doświadczalny W-03
- 2). Zespół Źródeł Sterujących, nr inw. ZŹS-06
- 3). Multimetr Protek 506, nr inw. WD043.01-005-203 do pomiaru UWE, zakres 40 V DC
- 4). Multimetr Kemot KT890, nr inw. I3/2.03/2017-K/4 do pomiaru UWY, zakres 20 V DC
- 5). Generator funkcyjny DF1641B, nr inw. WD045.01-007-203
- 6). Oscyloskop cyfrowy SIGLENT SDS 1052DL, nr inw. I3/RPO/010/T8/68/3
- 7). Zasilacz Siglent SPD3303D, nr inw. WD051.02-004-203
- 5.3.1. Wyznaczenie charakterystyki przejściowej wzmacniacza operacyjnego

Z 1	Z 2	Napię	cie wej	ściowe	Napięcie wyj	ściowe	
$[k\Omega]$	$[\mathrm{k}\Omega]$	UWE	[V]	ΔUWE	E [V]	UWY [V]	$\Delta UWY[V]$
∞	0,0	-12,63	0,011	-12,55	0,083		
∞	0,0	-10,52	0,010	-10,54	0,073		
∞	0,0	-8,42	0,009	-8,44	0,062		
∞	0,0	-6,37	0,008	-6,39	0,052		
∞	0,0	-4,25	0,007	-4,26	0,041		
∞	0,0	-2,15	0,006	-2,16	0,031		
∞	0,0	-1,04	0,006	-1,04	0,025		
∞	0,0	0,00	0,005	0,00	0,020		
∞	0,0	1,00	0,006	1,00	0,025		
∞	0,0	2,16	0,006	2,16	0,031		
∞	0,0	4,22	0,007	4,23	0,041		
∞	0,0	6,49	0,008	6,51	0,053		
∞	0,0	10,60	0,010	10,63	0,073		
∞	0,0	12,76	0,011	12,79	0,084		

5.3.2. Pomiar rezystancji wejściowej wzmacniacza operacyjnego.

RS2/RS3		RL	Napię	cie wej	ściowe	Napięcie wyjściowe		
$[k\Omega]$	$[k\Omega]$	UWE [V]		Δ UWE [V]		UWY [V]	$\Delta UWY[V]$	
-	∞	10,57	0,010	10,60	0,073			
300	∞	10,57	0,010	10,60	0,073			
10000	∞	10,57	0,010	10,58	0,073			

5.3.3. Pomiar rezystancji wyjściowej wzmacniacza operacyjnego

RS2/RS3		RL	Napięcie wejściowe			Napięcie wyjściowe		
$[k\Omega]$	$[k\Omega]$	UWE [V]		$\Delta UWE[V]$		UWY [V]	ΔUWY [V]	
-	∞	10,57	0,010	10,60	0,073			
-	20	10,57	0,010	10,60	0,073			
-	10	10,57	0,010	10,60	0,073			
-	5	10,57	0,010	10,60	0,073			

- 2 10,57 0,010 10,60 0,073

5.3.4. Pomiar pasma przenoszenia wzmacniacza operacyjnego

$$Z1 = \infty$$
, $Z2 = 0 \text{ k}\Omega$

UWE UWY f [kHz] [mV] [mV]0,2963 18,8 20,0 2,951 18,8 20,4 30,12 18,4 20,0 310,0 18,8 20,4 634,1 18,8 20,4 814,2 18,8 19,6 910,0 18,4 19,2 999,3 18,4 17,6 1101 18,4 16,8 1201 18,0 15,6 1300 18,4 14,8 1401 18,0 13,6 1451 18,4 13,2 1508 18,4 12,8