

Outline

- Space systems
 - Brief history since 1957
 - Elements of a space system
 - Applications based on space systems
- Satellite orbit
 - Kepler's laws of planetary / satellite motion
 - Orbit of a satellite
 - Two Line Element (TLE) data and orbital coordinate systems
- Telecommunication satellite
 - Platform & telecom payload
 - Project management
 - Supply chain and business plan

History

Satellite: Natural or artificial object that revolves around a larger astronomical object, as a planet

- 1945 Publication of Arthur C. Clarke's essay about "Extra Terrestrial Relays"
- 1957 1st satellite Sputnik-1 (USSR)
- 1958 1st American orbital launch Explorer-1 (USA)
- 1959 1st human made satellite to orbit the moon Luna-1 (USSR)
- 1960 1st weather satellite Tiros-1 (USA)
- 1961 1st man in space Vostok-1 Yuri Gagarin (USSR)
- 1962 1st live transatlantic telecast with Telstar-1 (USA)
- 1965 1st French orbital launch Asterix (France)
- 1965 1st commercial geostationary satellite Intelsat-1 (240 phone channels or 1 TV channel)
- 1966 1st spacecraft to soft-land on the moon Luna-9 (USSR)
- 1968 1st staffed spacecraft to orbit the moon Apollo-8 (USA)
- 1969 1st staffed soft landing and walk on the moon Apollo-11 Neil Armstrong (USA)
- 1970 1st Japanese orbital launch Osumi (Japan) and 1st Chinese orbital launch DFH-1 (China)
- 1971 1st space station Salyut-1 (USSR)
- 1975 1st international docking Apollo-18/Soyuz-19 (USA/USSR), European Space Agency (ESA)

Satellite Orbits for Telecommunications

- Geostationary orbit (GEO) 35768km with zero inclination
 - Satellite speed ~ 3km/sec with orbital period 24 hours
 - + Limited number of satellites, Large footprint, Fixed antenna positions
 - Low elevation in areas with latitude above 60°, High transmit power, High latency (275ms)
- Low Earth Orbit (LEO) 160-2000km / Medium Earth Orbit (MEO) 2000km -35786km
 - Satellite speed 8km/sec to 3 km/sec with orbital period 90 min to 24h
 - $+ \ Global\ coverage, Low\ consumption\ equipment, Low\ latency\ (5\text{-}10\text{ms}\ for\ LEO,\ 70\text{-}80\text{ms}\ for\ MEO)$
 - High number of satellites, Satellite handover, Pointing due to varying elevation
- High Elliptical Orbit (HEO) with apogee above 35786km
 - + Regional coverage with 3 satellites, High elevation even at high latitudes
 - Power and latency similar to GEO, Pointing due to varying elevation, Van Allen Belts crossing

Kepler's Laws

- History
 - Extensive astronomical planetary measurements performed by Tycho Brahe (until 1601)
 - Publication by Johannes Kepler of planetary motion laws in solar system (1609, 1618)
 - Newton's theory of gravity in *Philosophiæ Naturalis Principia Mathematica* (1687)

$$1. r = \frac{p}{1 + e\cos(\phi)}$$

2. $r \times \frac{dr}{dt} = \text{const}$ 3. $\frac{T^2}{a^3} = \text{const}$

$$3. \qquad \frac{T^2}{a^3} = \cos \theta$$

e: eccentricity p: semi - latus rectum

T: period a: semi - major axis

Gravitational force / Newton's 2nd law

$$\mathbf{F} = -\frac{GM_E m\mathbf{r}}{r^3} \qquad \mathbf{F} = m\mathbf{a} = m\frac{d^2\mathbf{r}}{dt^2}$$

 $G = 6.672 \times 10^{-11} \text{Nm}^2/\text{kg}^2$ $M_E = 5.98 \times 10^{24} \text{kg}$

$$\frac{d^2\mathbf{r}}{dt^2} + \frac{\mathbf{r}}{r^3}\mu = 0$$

 $p = \frac{h^2}{\mu} \quad \mu = 3.983 \times 10^5 \,\text{km}^3/\text{s}^2 \quad h : \text{angular moment}$

Eccentricity: 0 for circular orbit, in]0,1[for elliptical orbit, 1 for parabolic orbit, > 1 for hyperbolic orbit

Two Line Element Data (TLE)

ISS (ZARYA)
1 25544U 98067A 08264.51782528 -.00002182 00000-0 -11606-4 0 2927
2 25544 51.6416 247.4627 0006703 130.5360 325.0288 15.72125391563537

LINE 1

LINE	2

Field	Columns	Content	Example	Field	Columns	Content	Example
1	01-01	Line number	1	1	01-01	Line number	2
2	03-07	Satellite number	25544	2	03-07	Satellite number	25544
3	08-08	Classification (U=Unclassified)	U	3	09-16	Inclination [Degrees]	51.6416
4	10-11	International Designator (Last two digits of launch year)	98	4	18-25	Right Ascension of the Ascending Node [Degrees]	247.4627
5	12-14	International Designator (Launch number of the year)	067	5	27-33	Eccentricity (decimal point assumed)	0006703
6	15-17	International Designator (Piece of the launch)	A	6	35-42	Argument of Perigee [Degrees]	130.5360
7	19-20	Epoch Year (Last two digits of year)	08	7	44-51	Mean Anomaly [Degrees]	325.0288
8	21-32	Epoch (Day of the year and fractional portion of the day)	264.51782528	,			
9	34-43	First Time Derivative of the Mean Motion divided by two	00002182	8	53-63	Mean Motion [Revs per day]	15.7212539
10	45-52	Second Time Derivative of Mean Motion divided by six (decimal point assumed)	00000-0	9	64-68	Revolution number at epoch [Revs]	56353
11	54-61	BSTAR drag term (decimal point assumed)	-11606-4	10	69-69	Checksum (Modulo 10)	7
12	63-63	The number 0 (Originally this should have been "Ephemeris type")	0				
13	65-68	Element number	292				

Geocentric equatorial coordinate system (GEC)

Fixed rectangular coordinate system (moves through the space, but does not rotate)

 Ω - right ascension – angle from positive x-axis to the point P where satellite comes out of the equatorial plane

i - inclination of the orbit - angle between orbital plane and equatorial plane

<u>ω – argument of perigee</u> – angular distance between perigee and the point P

http://celestrak.com/NORAD/elements/

Example

Calculate rotating coordinates for ISS at the time when TLE data are taken

TLE Data for ISS (obtained on OCT 26, 2013): 1 25544U 98067A 13298.22562148 .00015844 00000-0 27472 -3 0 8812 2 25544 51.6491 184.0276 0002282 77.2230 68.9667 15.4953682854871

TLE data vs. Orbital Mechanics

- Eccentricity (e)
- Mean motion in rev/day (M_m) vs. Semi-major axis (a)
- Mean anomaly (M) vs. Time at the perigee (t_p)
- $\,\,{}^{\scriptscriptstyle \square}\,\,$ Right ascending node angle (Ω)
- Inclination (i)
- Argument of the perigee (ω)

- Ouactions

- Semi-major axis a = ?
- Eccentric anomaly E = ?
- Orbital coordinates $x_0 = ? y_0 = ?$
- \Rightarrow Conversion in rotating coordinates x_p, y_p, z_r

$$T^{2} = \left[\frac{23\text{h} 56\text{min } 4.1\text{sec}}{M_{m}}\right]^{2} = \frac{4\pi^{2}}{\mu} \cdot a^{3}$$

$$M = \eta (t - t_p)$$
 η

$$\tan E \simeq \frac{\sin M}{\cos M - e}$$
 for e small

$$r_0 = a \left[1 - e \cos(E) \right]$$

$$\phi_0 = \cos^{-1} \left[\frac{a(1-e^2) - r_0}{er_0} \right]$$

$$x_0 = r_0 \cos(\phi_0); y_0 = r_0 \sin(\phi_0)$$

Example - Solution

Calculate rotating coordinates for ISS at the time when TLE data are taken

TLE Data for ISS (obtained on OCT 26, 2013): 1 25544U 98067A 13298.22562148 .00015844 00000-0 27472 -3 0 8812

2 25544 51.6491 184.0276 0002282 77.2230 68.9667 15.4953682854871

■ TLE data vs. Orbital Mechanics

- □ e=0.0002282
- $M_m=15.49536828 \Rightarrow a^3=3.983*10^5/(4*\pi^2)*(86164/15.495)^2 \Rightarrow a=6783.8$ km
- $^{\circ}$ M= 68.9667 $^{\circ}$, t=0.22562148day => t=324.89min, t_o =t- $M*(a^3/3.983*10^5)^{1/2}$ =307.14min
- Ω=184.0276°
- □ *i*=51.6491
- ω=77.223°

Questions

- Eccentric anomaly E= 1.204173
- Orbital coordinates $x_0 = 2430.21$ km, $y_0 = 6332.95$ km
- Probability Rotating coordinates x_r =-4201.9km, y_r =-4428.57km, z_r =2957.01km using Julian Day JD=2456591 => $\Omega_e T_e$ =114.9888894 $^\circ$ [360 $^\circ$]

Satellite Platform Subsystems

- Structure: carriage of the other subsystems
- ⇒ Mechanical functions (rigidity, deployment), Geometric functions (surface, volume), Protection
- Thermal control: equipment qualification limits
 - ⇒ Active devices (heaters), Passive devices (blankets, radiators)
- Electric Power Supply (EPS): platform and payload requirements
- ⇒ Primary sources (Solar cells), Secondary sources for eclipses (Batteries)
- Telemetry, Tracking and Command (TTC): command and control data transmission
- Low data rates with high availability
- On-Board Data Handling (OBDH): command and control data management
- ⇒ Standardized data processed by an on-board computer
- Attitude and Orbit Control Subsystem (AOCS): Spin or 3-axis stabilization
- Attitude sensors, Actuators
- Propulsion system: high power thrusters for orbit changes, low power thrusters for control
- ⇒ Chemical propulsion Electrical propulsion

Satellite Design

- Constraints on the bus to accommodate the customer-specified payload
 - Location of antenna feeds on the Earth deck pre-defined for stability, minimum loss...
 - TWTA mounting locations to adapt to heat pipe panel design
 - Location of OMUX, relatively big in size, to minimize the RF loss up to the antenna
- System performance requirements
 - Mass&Power Budgets (5~10% margin added at the beginning of the design)
 - Thermal Dissipation Budget
 - Link Budget
- Environmental requirements
 - Ground: cleanness, handling
 - Space: thermal sensitivity, vacuum sensitive units, Corona arcing, electrostatic discharge
 - Components for space-based applications

Parameter	cors	Rad-Tolerant	Rad-Hardened
Radiation tolerance	≤ 1 krad (Si)	15 to 50 krad (Si)	≥ 100 krad (Si)
Qualification	Industrial temperature range (-40°C to +85°C)	Characterized for radiation tolerance levels	NASA EEE-INST-002 component qualification
Mission duration	Short	Longer	Extremely long
Mission type	Not used in critical manned missions	Manned	Manned
Orbit	Used in some LEO missions	GEO, MEO, LEO	GEO, MEO, LEO
Cost	Less expensive	More expensive	Significantly more expensive

Source: RF Signal Chain and Components for Space-Based Satcom Applications, B. Chandhoke, Microwave Journal, 2024

Example of Mass & Power Budgets

Payload

Power Allocation

Payload Platform

Margin

Satellite Dry Mass

Helium 15 years MON-1

15 years MMH

Satellite Launch Mass

470

1500

50 2020

7.6

1945.8

1176.6

5150

Platform	799.3	617.5	435.7
Total Power Req.	6103.2	5921.4	5739.6
Battery Charging	758.6	73.7	0.0
PCU Low Level	51.9	51.9	51.9
Total Power Consu	6913.8	6047.1	5791.5
Solar array, EOL	7756.0	7009.8	-
One section failure	323.2	292.1	
Power Margin(W)	519.1	670.6	.
Margin (%)	7.51%	11.09%	-
Battery Capacity @80%DOD, EOL.	ΨY.	M M	7080.0
Harness loss	-		329.0
Power margin (W)	-	:-	959.5
Pattern DOD FOI	.50.	Nominal	67.21%
Battery DOD, EOL	-	Worst Case	69.13%

Equinox

GEO EOL

Summer

Solstice

Eclipse

Source: Nigcomsat-1, CAST, 2006

10

Development Phases Pre-Phase A Concept Studies: draft mission, desired system, technology needs ⇒ Feasible system concepts with study reports, simulations, analysis, models, mockups Phase A Concept and Technology Development: final mission, system-level requirements, technology developments System concept definition with simulations, analysis, models, mockups, trade study definition Phase B Preliminary Design and Technology Completion: initial baseline, preliminary design Specification, interface documents, trade study results, end products with mockups, prototypes Phase C Final Design and Fabrication: final designs, hardware fabrication, software code **⇒** End product detailed designs, end product component fabrication, software development Phase D System Assembly, Integration and Test, Launch: transition to use Operations-ready system end product with supporting related enabling products Phase E Operations and Sustainment: mission operations plan Desired system Phase F Closeout: Systems decommissioning, analyses of the returned data Product closeout

Space Economy

Investors

- Governments as operator or consumer for public services, human space flight, science and exploration, security and defense
- Private industry for the development of commercial platforms, small launchers, personal spaceflight systems
- Venture capital funds and business angels for technology startups and new space companies
- Equity funds for the acquisition and consolidation of the telecommunications operators
- Banks through loans to operators or industry

Business models

- Institutional business model for programs of strategic or political importance where agencies are procuring space systems from the manufacturing industry (e.g. exploration)
- Government owned, company operated (GOCO) where operations of the system and sale of the services
 are granted to an operator through a convention of use (e.g. China Satcom)
- Private funded initiative where the private operator invests for the infrastructure and sales the services to the public partner in the frame of a concession contract (e.g. Skynet 5)
- Co-ownership model where the public and the private partners jointly invest and own a space system
 addressing both the public needs and the commercial market (e.g. TerraSAR-X)
- Private business (e.g. telecommunications)
- Value Added Services model with free of charge satellite data (e.g. GPS)

Supply Chain for Satellite Communication | Content Studios & Media services | DTH Platforms | SP - Enterprise | SP - Enterprise | SP - Enterprise | SP - Enterprise | SP - Aero | Airlines | SP - Consumer BB | SP - Aero | Airlines | SP - Consumer BB | SP - Aero | Airlines | SP - Aero | SE - Aero | Airlines | SP - Aero | Airlines | Airlines | SP - Aero | Airlines | Airlines | SP - Aero | Airlines | Airlin

Constellation Cost per Subscriber CAPEX: Ground segment, Digital infrastructure, Spectrum, Regulation fees OPEX: Operational staff, R&D, Marketing and customer acquisition, launch&satellite amortization Digital Infrastructure Capex Cost of Operational Staff | Opex ons from SES ions from SES 60 ions from SES Cost Overhead per R&D Opex Opex Opex 5-Year Net Present Value Total Cost of Ownership (NPV TCO) per subscriber 1% of user adoption rate (1/20 active user) kg GHz GHz GHz K dBm dBi km Deg m APSK Source: A Techno-Economic Framework for Satellite Networks Applied to Low Earth Orbit Constellations: Assessing Starlink, OneWeb and Kuiper, O. B. Osoro & all, IEEEAccess 2021

Example of Satellite Backhauling Business Plan

CAPEX

- Teleport with redundancy (2 HUB, Installation) 600k\$
- 100 cells with eNodeB (30/70% new/existing site at 60/20k\$) and VSAT (4k\$) 3600k\$

Monthly traffic

- 230 subscribers per cell (population 1500, share 17%, penetration 90%)
- 483GB of monthly output traffic per cell (user package 3.5GB, mean consumption 60%)
- 1.44Mbps of output data rate per cell on peak hour (60% of users, 28 days/30, 16 hours/24)
- 160~170Mbps of total data rate (output to input ratio 10 for LTE, 5 for small cell)

OPEX per month

- Equipment amortization on 5 years (20% of the CAPEX) 70k\$/month
- Maintenance (15% of the CAPEX) 52.5k\$/month
- Network operation (24*7) 17.5k\$/month
- 74MHz satellite bandwidth 100k\$/month and teleport connection to network core 20k\$/month

Revenues per month

Expenses of 260k\$/month with an HTS for revenues of 552k\$/month (ARPU 24\$/month)