HKN ECE 120 Midterm 1 Worksheet

Binary Representations

Problem 1

Write these conversions in decimal. Truncate if necessary.

- a. Convert 100101_2 to a 6-bit unsigned integer.
- b. Convert 100101_2 to a 6-bit signed magnitude integer.
- c. Convert 100101_2 to a 6-bit 2's complement integer.
- d. Convert 011101110_2 to a 9-bit unsigned integer.
- e. Convert 011101110_2 to a 9-bit 2's complement integer.
- f. Convert 100100101101_2 to a 11-bit unsigned integer.
- g. Convert 100100101101_2 to a 9-bit 2's complement integer.
- h. Convert 00101101_2 to a 12-bit unsigned integer.
- i. Convert 10111₂ to a 16-bit signed integer.

Problem 2

Write these conversions in binary. Truncate if necessary.

- a. Convert 51_{10} to a 8-bit unsigned integer.
- b. Convert 51_{10} to a 8-bit signed magnitude integer.
- c. Convert 51_{10} to a 8-bit 2's complement integer.
- d. Convert -240_{10} to a 9-bit unsigned integer.
- e. Convert -240_{10} to a 9-bit 2's complement integer.
- f. Convert 1171_{10} to a 11-bit unsigned integer.
- g. Convert 1171_{10} to a 11-bit 2's complement integer.
- h. Convert 65_{10} to a 12-bit unsigned integer.
- i. Convert -23309_{10} to a 16-bit signed integer.

Other Representations

Problem 1

Convert these binary values to hexadecimal.

- a. 00101011010101110
- b. 1001010010001111
- c. 0011110000010010
- d. 10111111011101111
- e. 1111000000001101

Problem 2

Convert these hexadecimal values to binary.

- a. x37A5
- b. x2009
- c. x1F06
- d. x2FFE
- e. xDEADBEEF

Problem 3

Convert these hexadecimal values to ASCII.

- a. x4A
- b. x2F
- c. x0D
- d. x4045
- e. x6E6F

Problem 4

Convert these ASCII characters to binary.

- a. 'h'
- b. '#'
- c. 'M'
- d. '!'
- e. "bob"

Problem 5

True or False?

- a. An integer with 11 hexadecimal values is at most a 88-bit integer.
- b. The shortest hexadecimal string that we can encode any 69-bit unsigned integer into is 18 characters long.
- c. All uppercase letters in ASCII start with the binary string 0100.
- d. All lowercase letters in ASCII start with the binary string 011.
- e. There is an ASCII character that corresponds with x8A.
- f. ASCII characters are usually stored as signed 8-bit integers.
- g. The control characters in ASCII were originally used as special codes for teletypes, keyboards used for electrical telegraphs.

Binary Operations

Problem 1

Perform the following operations.

- a. 1_2 AND 0_2
- b. 1_2 OR 0_2
- c. 10010010_2 AND 01111011_2
- d. 001010_2 OR 111101_2
- e. x8618 AND x7507
- f. 1_2 XOR 1_2
- g. xCA09 XOR x0990
- h. NOT 1001110100110101 $_2$
- i. $1001001101_2 \ \mathrm{NAND} \ 01101011110_2$
- j. 100011_2 NOR 001000_2
- k. x908 NXOR xA51

Problem 2

Perform the following operations on unsigned integers. Assume the number of bits given. Indicate when there is an overflow.

- a. $100100_2 + 010101_2$
- b. $11011010_2 011010110_2$
- c. $1001_2 1010_2$
- $\mathrm{d.}\ 011101_2 + 111011_2$
- e. $1111000_2 \ll 2$
- f. $1111000_2 \gg 2$
- g. $000100_2 \gg 2$

Problem 3

Perform the following operations on signed integers. Assume the number of bits given. Indicate when there is an overflow.

- a. $110010_2 + 110001_2$
- b. $11011010_2 + 011010110_2$
- c. $1001_2 1010_2$
- $d. \ 011101_2 111011_2$
- e. $1111000_2 \ll 2$
- f. $1111000_2 \gg 2$
- g. $000100_2 \gg 2$

Problem 4

Bitmasks.

- a. Suppose you have a 6-bit unsigned integer. What does applying AND 110000_2 return? What does it indicate?
- b. Suppose you have a 8-bit signed integer. What does applying AND 10000000_2 return? What does it indicate?

Suppose you have a 6-bit unsigned integer that represents 6 lights (1 = on, 0 = off).

- c. What operation and what mask should we use to enable a single light?
- d. What operation and what mask should we use to disable a single light?
- e. What operation and what mask should we use to toggle a single light?
- f. What operation can we use on these masks to form a new mask if we wanted to toggle more than one light?

K-maps and Optimization

Problem 1

Find the minimal SOP and POS expressions for the following table.

A	В	С	S
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Problem 2

Find the minimal SOP and POS expressions for the following table.

A	В	С	S
0	0	0	0
0	0	1	1
0	1	0	X
0	1	1	X
1	0	0	1
1	0	1	0
1	1	0	X
1	1	1	X

Problem 3

Find the minimal SOP and POS expressions for the following table.

A	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Problem 4

Find the minimal SOP and POS expressions for the following table.

A	В	С	D	S
0	0	0	0	X
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	X
0	1	0	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Problem 5

Find the area and delay heuristics for the following expressions. Do not include NOT gates.

a.
$$ABC + A'B'C + C'$$

b.
$$A + B + C + D(A + B)$$

c.
$$ABCDEFGHIJKLMNOPQRSTUVWXY + Z$$

d.
$$(AB)'(A+B)'(CD)$$

Problem 6

Implement the following expressions using AND and OR gates, then using NAND and NOR gates only.

a.
$$AB + C$$

b.
$$A'B + AB' + ABC' + ABD'$$

c.
$$(A+B+C')(A'+B+C)(A+B'+C)$$

d.
$$(A+D)(B'+C'+A)$$

IEEE 754 Floating Point

Problem 1

a. item 1

C Basics

Problem 1

a. item 1

C Programming

Problem 1

a. item 1