1 ^{re} S.T.M.G.	Mercredi 12 novembre 2 013	Suites
CONTRÔLE DE MATHÉMATIQUES		
Nom:		
Prénom:		
Note et observations:		

La qualité et la précision de la rédaction seront prises en compte dans l'appréciation des copies. Le barème est indicatif.

Tous les calculs doivent être détaillés.

Exercice 1: (1+1+1+1+1=5 pts)

- 1°) Calculer les quatre premiers termes de chacune des suites suivantes :
 - (a) La suite (u_n) est définie pour tout nombre entier naturel n par $u_n = n^2 + 4n$.
 - **(b)** La suite (v_n) est définie pour tout nombre entier naturel $n \neq 0$ par $v_n = \frac{2}{n} + 3n$.

 - (c) La suite (w_n) est définie pour tout nombre entier naturel n par $\begin{cases} w_0 = -2 \\ w_{n+1} = 2w_n 4 \end{cases}$ (d) La suite (x_n) est définie pour tout nombre entier naturel $n \neq 0$ par $\begin{cases} x_1 = 2 \\ x_{n+1} = (x_n)^2 1 \end{cases}$
- **2°**) À l'aide de la calculatrice, donner la valeur de u_{200} et w_{13} .

Exercice 2: (3 + 3 = 6 pts)

- 1°) (a_n) est la suite arithmétique de premier terme $a_0 = -2$ et de raison r = 3.
 - (a) Calculer a_1 et a_2 .
 - **(b)** Donner l'expression de a_{n+1} en fonction de a_n .
 - (c) Donner l'expression de a_n en fonction de a_0 .
 - (d) En détaillant précisément les calculs et à l'aide de la question précédente, donner la valeur exacte de a_{100} .
 - (e) La suite (a_n) est-elle croissante ou décroissante? Justifier précisément en utilisant une propriété du cours.
- **2°)** (b_n) est la suite géométrique de premier terme $b_0 = 4\,000\,000$ et de raison q = 0.5.
 - (a) Calculer b_1 et b_2 .
 - **(b)** Donner l'expression de b_{n+1} en fonction de b_n .
 - (c) Donner l'expression de b_n en fonction de b_0 .
 - (d) En détaillant précisément les calculs et à l'aide de la question précédente, donner la valeur exacte de b_{10} .
 - (e) La suite (b_n) est-elle croissante ou décroissante? Justifier précisément en utilisant une propriété du cours.

Exercice 3: (1+2+2+1+1+1+1=9 pts)

La population d'une ville augmente de 7 200 habitants chaque année. En 2 010, la ville comptait 105 400 habitants. On note p_0 le nombre d'habitants en 2 010 et p_n le nombre d'habitants en (2 010 + n).

- 1°) Quelle est la valeur de p_0 ?
- **2°**) Calculer p_1 et p_2 . Interpréter les résultats.
- **3°)** Quelle est la nature de la suite (p_n) ? Donner une réponse précise.
- **4°)** Expliquer pourquoi $p_n = 105400 + 7200n$.
- 5°) À l'aide de la question précédente, calculer p_{10} . Interpréter le résultat.
- 6°) À l'aide de la calculatrice :
 - (a) déterminer le nombre d'habitants en 2 033;
 - (b) déterminer au bout de combien d'années le nombre d'habitants aura au moins doublé.