Lecture-9 Main Points

•	Completing the completeness proof
	Define canonical valuation $\llbracket \cdot \rrbracket_{\mathcal{A}}$ in Lindenbaum BA \mathcal{A} as,
	$[\![P]\!]_{\mathcal{A}} = [P]$, for all atomic propositions P .
	- Lemma (canonical valuation): For all propositions P , $[\![P]\!]_{\mathcal{A}} = [\![P]\!]$. Proof: By a simple induction on P . \square
	Let $\Gamma \vdash A$ be true in all $(B, \llbracket \cdot \rrbracket_B)$.
	$\Rightarrow \Gamma \vdash A \text{ is true in } (\mathcal{A}, \llbracket \cdot \rrbracket_{\mathcal{A}}).$
	$\Rightarrow \llbracket \Gamma \rrbracket_{\mathcal{A}} \leq_{\mathcal{A}} \llbracket A \rrbracket_{\mathcal{A}}$
	[by def. of truth of $\Gamma \vdash A$ in $(\mathcal{A}, \llbracket \cdot \rrbracket_{\mathcal{A}})$]
	$\Rightarrow [\![A_1 \wedge \ldots \wedge A_m]\!]_{\mathcal{A}} \leq_{\mathcal{A}} [\![A]\!]_{\mathcal{A}},$
	[letting $\Gamma \equiv A_1, \dots, A_m$]
	$\Rightarrow [A_1 \land \ldots \land A_m] \leq_{\mathcal{A}} [A]$
	(By canonical valuation Lemma)
	$\Rightarrow A_1 \wedge \ldots \wedge A_m \vdash_{\mathbf{Nc}} A$
	(By definition of $\leq_{\mathcal{A}}$)
	$\Rightarrow A_1, \dots, A_m \vdash_{\mathbf{Nc}} A$
	(easy to see)
	$\Rightarrow \Gamma \vdash_{\mathbf{Nc}} A$

This shows completeness. \Box

- A stronger completeness
 - **Theorem 1:** Following are equivalent.
 - 1. $\vdash_{\mathbf{Nc}} A$
 - 2. A is true in BA $\mathbf{2}$.
 - 3. A is true in all BA.
 - We show this using a result known as Stone's theorem, stated below.
- Stone's representation theorem for BA.
 - Theorem (Stone): Any BA is isomorphic to a sub-algebra of a power-set Boolean algebra.
 - We won't prove it here. A proof may be found in chapter 4 [1].
- Proof of Theorem 1.
 - We only need to show $(2) \Rightarrow (3)$ in the statement of Theorem 1. We show this by proving the contrapositive.

For some BA B, and valuation $[\![\cdot]\!]_B$, let $[\![A]\!]_B \neq 1$.

By stone's theorem, we may assume B to be a sub-algebra of P(X), for some X.

As BA P(X) and BA 2^X are isomorphic, we may assume B to be a sub-algebra of 2^X .

- $\Rightarrow [A]_B(x) \neq 1$, for some $x \in X$.
- $\Rightarrow [\![A]\!]_2 \neq 1, \text{ where valuation } [\![.]\!]_2 \text{ is given as } [\![P]\!]_2 = [\![P]\!]_B(x).$

[Exercise: Show by induction on A, that $[A]_B(x) = [A]_2$, where $[\cdot]_B$ and $[\cdot]_2$ are as above.]

 $\Rightarrow A$ is not true in BA 2. \square

References

[1] J. L. Bell and M. Machover: A Course in Mathematical Logic. Published by North-Holland Publishing Company, 1977.