2022 年粒子物理(I) 期末考试题

姓名:

学号:

单位:

一、(10分)根据夸克模型,赝标介子八重态和重子八重态在SU(3)权图上标记为

请写出赝标量介子八重态和重子八重态的夸克组分和量子数(对于纯中性粒子,请写出其 $I^G I^{PC}$ 量子数,对于普通介子请写出其 $I^G I^P$ 量子数,对于奇异粒子和重子,请写出其 (I,I_3,S) 量 子数。

二、选择题(20分)

- 1. 在认识强相互作用的过程中,颜色自由的引入是为了解决()的问题
 - A) 轻子-核子非弹性散射 B) 重子波函数的自旋-统计关系危机 C) 幺正性破坏
 - D) 味道对称性的破坏
- 2. 以下哪个(些)过程是中性流弱过程()(可多选)
 - A) $v_u e \rightarrow v_u e$ B) $e^- p \rightarrow v_e X$ (电子核子深度非弹) C) $v_u N \rightarrow v_u X$ (中微子核子深度非弹)
 - D) $\mu^- \rightarrow e^- \bar{v}_e v_\mu$
- 3. D_s 介子(夸克组分 $c\bar{s}$)的纯轻子衰变 $D_s \to \mu^+ \nu_\mu$ 和 CKM 矩阵元()有关
 - A) V_{cd}
- B) V_{us}
- $C)V_{ud}$ D) V_{cs}
- 4. I/ψ ($I^GI^{PC} = 0^-1^{--}$) 粒子可以衰变到以下哪(几)种正反K介子末态
 - A) $K^{+}K^{-}$ B) $K_{L}K_{L}$
- C) K_SK_S
- D) $K_L K_S$
- 5. 预言粲夸克存在以消除树图水平上的味道改变中性流的理论是(
 - A) GIM 机制 B) OZI 规则 C) Cabibbo 理论 D) CP 破坏
- 6. 六味夸克由轻到重的顺序应该是()
 - A) udscbt
- B) duscbt
- C) udcstb
- D) 以上都不对
- 7. Higgs 粒子和重费米子耦合强于和轻费米子耦合的原因是(
 - A) 重费米子的相空间大 B) Yukawa 耦合常数与费米子质量成正比 C) Higgs 耦合与费米 子质量成反比。
- 8. QCD 有渐近自由的性质是指,随着相互作用动量平方增加时,强相互作用耦合常数 α_s (
 - A) 减小
- B) 不变
- C) 变大
- D) 先变大后减小

三、计算题(20分)

1. (10 分) 坐落在德国汉堡的 HERA 对撞机是一个电子-质子对撞机。实验坐标系中,电子能量是 27.5GeV, 质子能量是 920GeV。那么它们的对撞质心系能量是多少?要达到同样的质心系能量, 如果质子处于静止状态,我们需要把电子加速到多少能量。(电子质量取为0,质子质量取为

1GeV,另有 $\sqrt{10.12} \approx 3.18119$)

2. (10分)试说明 LHC 上和下一代 Higgs 工厂(正负电子对撞机)上 Higgs 玻色子产生的主要过 程分别是什么?

四、分析题(30)

- 1. (10 分) 讨论两个 π 介子组成的中性系统($\pi^0\pi^0$ 和 $\pi^+\pi^-$)的所有可能的 C, P, G 量子数。
- 2. (5 分) 粲偶素 J/ψ ($I^GJ^{PC}=0^-1^{--}$) 辐射衰变过程 $J/\psi \to \gamma X$ (这里 X 指由u,d,s 夸克-反夸克 构成的轻强子)是研究轻强子性质的重要场所,其中轻强子X是通过 I/ψ 中 $c\bar{c}$ 在放出一个光子 γ 后 湮灭成若干胶子,然后胶子再强子化而成轻强子X。考虑到胶子是味道单态(同位旋单态),则从过 程 I/ψ → γX 可以确定X的哪些量子数?
- 3. $(5 \, \text{分})$ 续上题,一般来说X都是强子共振态,比如它是在过程 $I/\psi \to \gamma \pi \pi$ 的 $\pi \pi$ 不变质量谱中观测 到的,即 $I/\psi \rightarrow \gamma X \rightarrow \gamma \pi \pi$,那么X 的量子数都有哪些可能?
- 4.(10 分)BESIII 合作组 2022 年大年初一公布了一个重要的发现: 在 I/ψ 辐射衰变过程 $I/\psi \to \gamma m n'$ 的 $\eta\eta'$ 的不变质量谱中看到一个 $I^GI^{PC}=0^+1^{-+}$ 的共振结构 $\eta_1(1855)$,该发现的重要性在于首 次观察到具有奇特量子数 $I^{PC} = 1^{-+}$ 的同位旋单态强子(这里奇特量子数是指夸克模型中 $q\bar{q}$ 不能 具有的量子数)。请问,能在 $\eta\eta$ 系统和 $\eta'\eta'$ 系统观察到 $\eta_1(1855)$ 吗,为什么 $(\eta$ 和 η' 的量子 数见附表)?你还知道有哪些 $q\bar{q}$ 不具备的奇特强子数,说出两三个就好。
- 五、根据各种相互作用的对称性和守恒定律,判断如下几个过程能否发生,如果能够发生,是通过什么 相互作用进行的? 为什么? (20分)

 - $1) \quad e^+e^- \to \nu_e\nu_e, \qquad 2) \quad J/\psi \to \pi^+\pi^-, \qquad 3) \quad p \to e^+\gamma, \quad 4) \quad f_0 \to \pi^0\eta, \quad 5) \quad \phi \to \pi^0\pi^+\pi^-$
- 6) $K_L \to \pi^+ \pi^-$ 7) $\Delta^+ \to p \pi^0$, 8) $W^- \to \mu \bar{\nu}_\mu$, 9) $H \to \gamma \gamma$ (H 是 Higgs 粒子)
- 10) $\Omega \to \Xi^0 K^-$

(附:有关粒子的量子数)

粒子	Ω	K_L	p	J/ψ	Δ^{+}	φ	f_0	\mathcal{E}^0	η	η'
$I^{(G)}$	0			0-	3/2	0-	0+		0+	0+
$J^{P(C)}$	3/2+			1	3/2+	1	0++		0-+	0-+
质量(MeV)	1672	495	938	3097	1235	1020	1710	1315	547	958