Data Analysis Basics

Prof. Dr. Renato Pajarola
Visualization and MultiMedia Lab
Department of Informatics
University of Zürich

Copyrights

- Most figures of these slides are copyright protected and come from the various indicated sources
- You understand that the slides contain copyright protected material and therefore the following conditions of use apply:
 - ▶ The slides may be used for personal teaching purposes only
 - Publishing the slides to any public web site is not allowed
 - Sharing the slides with other persons or institutions is prohibited

Overview

- 1. Review of variable types
- 2. Univariate data analysis
- 3. Distance metrics
- 4. Dissimilarity and similarity measures

Review of Variables Types

- Continuous variables
 - Positive or negative numeric values
 - age in years, weight, wind speed, temperature, concentrations of pollutants and other measurements
 - Always of ordinal character
- Categorical variables
 - Information that can be sorted into categories
 - Categorical variables can be
 - ordinal
 - nominal
 - dichotomous (binary)

Ordinal Variables

- A variable with some intrinsic order or numeric value
 - Can be categorical if some canonic order can be given
- Examples of ordinal variables:
 - Education
 - no high school degree, high school degree, some university education, university degree
 - Agreement
 - strongly disagree, disagree, neutral, agree, strongly agree
 - Rating
 - excellent, good, fair, poor
 - Frequency
 - always, often, sometimes, never
 - Age group
 - $\le 10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, > 70$

Nominal Variables

- Categorical variable without an intrinsic order
- Examples of nominal variables:
 - Where a person lives (Switzerland, Italy, France, Germany, etc.)
 - Gender (male, female)
 - ▶ Employment sector (Industry, Finance, ICT, Agriculture, etc.)
 - Favorite pet (dog, cat, horse, fish, etc.)

Dichotomous Variables

- Categorical (binary) variable with only 2 levels of categories
 - Often represents the answer to a yes or no question
- For example:
 - "Did you attend the information event on May 24?"
 - Did you eat potato salad at the dinner?"
 - Anything with only 2 categories

Data Cleaning

- One of the first steps in analyzing data is to "clean" it of any obvious data entry errors:
 - Outliers? (e.g. really high or low numbers)
 - Example: Age = 110 (really 10 or 11?)
 - Value entered that doesn't exist for variable?
 - Example: 2 entered where 1=male, 0=female
 - Missing values?
 - Did the person not give an answer? Was answer accidentally not entered into the database?

Data Cleaning (cont.)

- May be able to set defined limits when entering data
 - Prevents entering a 2 when only 1, 0, or missing are acceptable values
- Limits can be set for continuous and nominal variables
 - Examples:
 - Only allowing 3 digits for age
 - Limiting words that can be entered
 - Assigning field types (e.g. formatting dates as mm/dd/yyyy or specifying numeric values or text)
- Many data entry systems allow "double-entry"
 - i.e., entering the data twice and then comparing both entries for discrepancies
- Univariate data analysis is a useful way to check the quality of the data

Univariate Data Analysis

- Univariate data analysis explores each variable, attribute in a data set separately
 - Serves as a good method to check the quality of the data
 - Inconsistencies or unexpected results should be investigated using the original data as the reference point
 - can help you identify data cleaning problems
- Examining variables can give you important information
 - Do all subjects have data, or are values missing?
 - Are most values clumped together, or is there a lot of variation?
 - Are there outliers?
 - Do the minimum and maximum values make sense, or could there be mistakes in the coding?

Common Descriptive Statistics

- Measures of central tendency
 - Mean
 - Median
 - Mode
 - Range
- Measures of data variation
 - Standard deviation
 - Variance
 - Kurtosis, Skewness
 - Percentiles
- Counting data
 - Histogram
 - Frequency distributions
 - Percentage distributions

Measures of Central Tendency

- Commonly used statistics with univariate analysis of continuous variables
 - Mean average of all values x_i of this $\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i$ variable in the dataset
 - Median the middle of the distribution, the number where half of the values are above and half are below
 - for n ordered values x_i with i=0...n-1 $\tilde{x} = \begin{cases} x_{\frac{n-1}{2}} & \text{, if } \frac{n}{2} \neq 0 \\ (x_{\frac{n}{2}-1} + x_{\frac{n}{2}})/2 & \text{, else} \end{cases}$
 - Mode the value that occurs the most times
 - has highest probability $x_{Mo} = \operatorname*{argmax}_{i} P(x_{i})$
 - Range of values from minimum value to maximum value

© Creative Commons Attribution-Share Alike 3.0 Unported license.

Means and Medians

Math	98
English	96
History	95
Music	94
Biology	93
Latin	92
Gym	40

40	92	93	94	95	96	98	ן iviean = 87 Median = 94
							- Median - 34

Means and Medians

Math	100
English	94
History	55
Music	100
Biology	100
Latin	50
Gym	40

40	50	55	94	100	100	100	Mean = 77 Median = 94
							iviculali – 34

Means and Medians

Math	100	98
English	94	96
History	55	95
Music	100	94
Biology	100	93
Latin	50	92
Gym	40	40

Standard Deviation

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Second standardized statistical central moment

Narrowly distributed age values (SD = 7.6)

Widely distributed age values (SD = 20.4)

Histograms

- Graphical representation of the distribution of numerical data
- Estimate of the probability distribution of a continuous variable (quantitative variable)
- Construction:
 - First bin the range of values
 - divide the entire range of values into a series of intervals
 - bins are usually specified as consecutive, non-overlapping intervals of a variable
 - must be adjacent, and are often (but are not required to be) of equal size
 - Count how many values fall into each bin

Heights of Black Cherry Trees ∞ Frequency 9 7 90 Height (feet)

© Creative Commons Attribution-Share Alike 3.0 Unported license

normal

underexposed

overexposed

Percentiles and Skewness

- Percentiles the percent of the distribution that is equal to or below a certain value
 - Median is the 50th percentile

- Skewness whether most values occur low in the range, high in the range, or grouped in the middle
 - Third standardized statistical moment

Distribution curves for variable AGE

Correlation

- Measuring statistical association between two scalar variables $x_i \in X$ and $y_i \in Y$ (data columns)
 - Possibly, but not necessarily, involving causality

xkcd.com/552/

Review of Correlation

- Broad class of statistical relationships, often referring to how close variables are to a linear relationship
- Pearson correlation coefficient, most common but sensitive only to a linear relationship
 - lacktriangle Based on the covariance between sets X and Y and their std-deviations σ

$$\rho_{X,Y} = corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

$$cov(X, Y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_X)(y_i - \mu_Y)$$

Linear Regression

- Given two scalar variables $x_i \in X$ and $y_i \in Y$
 - E.g. zero mean weights and heights
 - with means $\mu_x = 61.125 \text{kg}$ and $\mu_y = 162.625 \text{cm}$
- Plot y_i against x_i
- Find (best) scalar factor a such that for all $i: y_i = a x_i$
 - but this is overdetermined
- Matrix form y = a x with solution $a = \frac{x^T y}{x^T x}$
 - x^Ty and x^Tx are scalars

Anscombe's Quartet

- Linear regression may be the same for strongly varying sample data distribution
 - Even having identical means, standard deviation and correlations
- General problem of models fitted to discrete data

© Licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license

Dominant Line

- Given two scalar variables $x_i \in X$ and $y_i \in Y$ organized into data matrix $\mathbf{D} = \begin{pmatrix} x_1 & y_1 \\ \vdots & \vdots \\ x_N & y_N \end{pmatrix}$
 - ▶ N mean-centered, zero-mean data values
- Eigenvector of largest eigenvalue of $\mathbf{D}^T\mathbf{D}$ describes the *dominant line*
 - $\mathbf{D}^T\mathbf{D}$ covariance matrix
 - Different from the linear regression

Interactive Data Visualization

24

Regression and Dominant Lines

- Regression and dominant lines solve two different optimization problems
 - Regression finds line which minimizes the vertical offsets of data points
 - The dominant line minimizes the *perpendicular* distances of the data points

Interactive Data Visualization

25

Measures of Similarity and Dissimilarity

- Defining how (dis)similar two data points p and q are is important in basic data analysis tasks
 - Two rows of data matrix, viewed as individual (K-dimensional) data vectors
- Dissimilarity measure: numerical measure of how different p and q are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Similarity measure: numerical measure of how alike p and q are
 - Higher when objects are more alike
 - Often falls into normalized range [0,1]

Similarity Measures

- Measures proximity of data points p and $q \in \mathbb{R}^K$ as function s(p,q)
 - Satisfies properties:

$$-s(\boldsymbol{p},\boldsymbol{q})=s(\boldsymbol{q},\boldsymbol{p})$$

$$-s(p,q) \le s(p,p)$$

Other typical properties:

$$-s(p,q)=1 \Leftrightarrow p=p$$

$$-s(\boldsymbol{p},\boldsymbol{q}) \ge 0$$

• Normalized similarity if s(p, p) = 1

• Cosine
$$s(p,q) = \frac{p^T q}{\sqrt{p^T p \cdot \sqrt{q^T q}}}$$

• Overlap
$$s(\boldsymbol{p}, \boldsymbol{q}) = \frac{\boldsymbol{p}^T \boldsymbol{q}}{\min \left(\boldsymbol{p}^T \boldsymbol{p}, \boldsymbol{q}^T \boldsymbol{q}\right)}$$

• Dice
$$s(p,q) = \frac{2 \cdot p^T q}{p^T p + q^T q}$$

• Pruducts $v^T w$ correspond to the scalar or dot-product between vectors v and w

Similarity and Dissimilarity Measures

- Dissimilarity: numerical measure d(p, q) of how different two data objects p and q are
 - Common range from 0 (objects are alike) to ∞ (objects are different)
 - possibly within a restricted specific range [d_{min} , d_{max}]
 - May be defined also on non-numerical input data points
 - weighted sum of edge link connections between nodes in graph
 - edit distance between strings
- A similarity measure can be formed from a dissimilarity d(p, q):
 - s(p, q) = 1 d(p, q)

if d is in the range [0, 1]

s(p, q) = 1 / (1 + d(p, q))

if d is in the range $[0, \infty]$

 $S(p, q) = e^{-d(p, q)}$

if d is in the range $[0, \infty]$

 $> s(p, q) = 1 - (d(p, q) - d_{min}) / (d_{max} - d_{min})$ if d is in the range $[d_{min}, d_{max}]$

Distance Metric

- Distance metric d(p,q) between data points p and $q \in \mathbb{R}^K$
 - Satisfies properties:

$$-d(\boldsymbol{p},\boldsymbol{q})=d(\boldsymbol{q},\boldsymbol{p})$$

$$-d(p,q)=0 \Leftrightarrow p=q$$

$$-d(\boldsymbol{p},\boldsymbol{q}) \leq d(\boldsymbol{p},\boldsymbol{r}) + d(\boldsymbol{r},\boldsymbol{q})$$

$$-d(\boldsymbol{p},\boldsymbol{q}) \ge 0$$

- Norm II.II as distance metric defined on p q, thus $d(p,q) = \|p q\|$
 - Satisfies properties:

$$-||p|| = 0 \iff p = (0, 0, \dots 0)$$

$$-\|a \cdot \boldsymbol{p}\| = |a| \cdot \|\boldsymbol{p}\|$$

$$-\|p+q\| \le \|p\| + \|q\|$$

$$-||p|| \ge 0$$

• Minkowski or p-norm on vector $v \in \mathbb{R}^K$

$$p = 2$$
 Euclidean norm

$$\|\mathbf{v}\|_p = \sqrt{\sum_{i=1}^K |v_i|^p}$$

$$p = 1$$
 Manhattan norm

$$||\boldsymbol{v}||_1 = \sum_i ||v_i||$$

▶
$$p = \pm \infty$$
 infinity norms

$$||v||_{\pm\infty} = \max/\min|v_i|$$

- supremum/infimum

Recap

- Review of variable types: nominal categorical, ordinal ranked or numerical
- Univariate data analysis: descriptive statistics; mean, median, mode, standard deviation, histograms, percentiles and skewness
- · Correlation: Pearson correlation, linear regression, Anscombe's quartet, dominant line
- Distance and similarity: distance metric and norm; cosine, overlap and dice similarity measures; similarity from dissimilarity
- Required textbook Chapter(s): 12.1 12.3