NYU Computer Science Bridge HW2

Summer 2023 Name: Jacky Choi

Question 5:

Exercise 1.12.2 B

- 1. $\neg q$ Hypothesis
- 2. $\neg q \vee \neg r$ Addition, 1
- 3. $\neg (q \wedge r)$ De Morgan, 2
- 4. $p \to (q \land r)$ Hypothesis
- 5. $\neg p$ Modus tollens, 3 4

Exercise $1.12.2~\mathrm{E}$

$$\begin{array}{c}
p \lor q \\
\neg p \lor r \\
\hline
\neg q \\
\hline
\therefore r
\end{array}$$

- 1. $p \lor q$ Hypothesis
- 2. $\neg p \lor r$ Hypothesis
- 3. $q \vee r$ Resolution, 1 2
- 4. $\neg q$ Hypothesis
- 5. r Disjunctive Syllogism, 3 4

Exercise 1.12.3 C

$$\begin{array}{c}
p \lor q \\
\neg p \\
\hline
\vdots q
\end{array}$$

1. $p \lor q$ Hypothesis

2. $\neg(\neg p) \lor q$ Double Negation

3. $\neg p \rightarrow q$ Conditional Identity, 2

4. $\neg p$ Hypothesis

5. q Modus Ponens, 3 4

Exercise $1.12.5~\mathrm{C}$

I will buy a new car and a new house only if I get a job. I am not going to get a job.

∴ I will not buy a new car.

c: I will buy a new car h: I will buy a new house

j: I get a job

Argument is not valid. When both hypotheses are true the conclusion is false: $c=\mathrm{True},\,h$ and $j=\mathrm{False}$

Exercise 1.12.5 D

I will buy a new car and a new house only if I get a job.

I am not going to get a job.

I will buy a new house.

∴ I will not buy a new car.

c: I will buy a new car h: I will buy a new house j: I get a job

$$\begin{array}{c}
j \to (c \land h) \\
\neg j \\
h \\
\hline
\vdots \neg c
\end{array}$$

The argument is valid

1.
$$(c \wedge h) \rightarrow j$$
 Hypothesis

2.
$$\neg (c \land h) \lor j$$
 Conditional Identity

3.
$$j \vee \neg(c \wedge h)$$
 Commutative law, 2

4.
$$\neg j$$
 Hypothesis

5.
$$\neg(c \land h)$$
 Disjunctive Syllogism, 3 4

6.
$$\neg c \lor \neg h$$
 De Morgans, 5

7.
$$\neg h \lor \neg c$$
 Commutative

8.
$$h$$
 Hypothesis

9.
$$\neg \neg h$$
 Double Negation

10.
$$\neg c$$
 Disjunctive Syllogism, 7 9

Exercise 1.13.3 B

$$\exists x (P(x) \lor Q(x)) \\ \exists x \neg Q(x) \\ \therefore \exists x \neg P(x)$$

	Р	Q
a	F	Т
b	F	F

When $\mathbf{x} = \mathbf{a} \exists x (P(x) \lor Q(x))$ is true and when $\mathbf{x} = \mathbf{b} \exists x \neg Q(b)$ is also true, but $\exists x P(x)$ is false proving it is not valid

Exercise 1.13.5 D

Every student who missed class got a detention.

Penelope is a student in the class.

Penelope did not miss class.

∴ Penelope did not get a detention

M(x): x missed class D(x); x got a detention

 $\forall x(M(x) \to D(x))$ Penelope is a student in the class $\neg M(Penelope)$ $\therefore \neg D(Penelope)$

The argument is invalid. If M(Penelope) is false and D(Penelope) is true, then the hypothesis are true and conclusion is false.

Exercise $1.13.5~\mathrm{E}$

Every student who missed class or got a detention did not get an A. Penelope is a student in the class.

Penelope got an A.

... Penelope did not get a detention

M(x): x missed class A(x): x got an A

D(x); x got a detention

 $\forall x (M(x) \lor D(x)) \to A(x)$ Penelope is a student in the class A(Penelope)

 $\therefore \neg D(Penelope)$

1.	Penelope is a student in the class	Hypothesis
2.	$\forall x (M(x) \lor D(x) \to \neg A(x))$	Hypothesis
3.	$M(Penelope) \lor D(Penelope) \to \neg A(Penelope)$	Universal Insatntiation
4.	A(Penelope)	Hypothesis
5.	$\neg(\neg A(Penelope))$	Double negation, 4
6.	$\neg (M(Penelope) \lor D(Penelope))$	Modus Tollens, 3 5
7.	$\neg M(Penelope) \land \neg D(Penelope)$	De Morgan
8.	$\neg D(Penelope) \land \neg M(Penelope)$	cumutative
9.	$\neg D(Penelope)$	simplification

Question 6:

Exercise 2.4.1 D

The product of two odd integers is an odd integer.

Proof. By Direct proof: Let x, y be odd integers. Then $\exists x | x = 2k+1$ for some integer k and $\exists y | y = 2j+1$ for some integer j. Then

$$xy = (2k+1)(2j+1)$$

$$= 4kj + 2k + 2j + 1$$

$$= 2(2kj + k + j) + 1$$

Since (2kj + k + j) is an integer in xy = 2(2kj + k + j) + 1, the product of xy is also an odd integer.

Exercise 2.4.3 B

If x is a real number and $x \le 3$, then $12 - 7x + x^2 \ge 0$.

Proof. By direct proof: Let x be a real number and $x \leq 3$

$$12 - 7x + x^2 = x^2 - 7x + 12 \ge 0$$
$$= (x - 3)(x - 4) \ge 0$$

Since $x \le 3$, $x - 3 \le 0$ and $x - 4 \le 0$, then $(x - 3)(x - 4) \ge 0$

Question 7:

Exercise 2.5.1 D

For every integer n, if $n^2 - 2n + 7$ is even, then n is odd

Proof. By Contrapositive: Assume n is an even integer such that n = 2k for some integer k. Show $n^2 - 2n + 7$ is an odd integer.

$$n^{2} - 2n + 7 = (2k)^{2} - 2(2k) + 7$$
$$= 4k^{2} - 4k + 7$$
$$= 2(2k^{2} - 2k + 3) + 1$$

Since k is an integer, then $(2k^2 - 2k + 3)$ is also an integer in $2(2k^2 - 2k + 3)$. Therefore, $n^2 - 2n + 7 = 2k + 1$ is an odd integer.

Exercise 2.5.4 A

For every pair of real numbers x and y, if $x^3 + xy^2 \le x^2y + y^3$ then $x \le y$

Proof. By contrapositive: Assume for every pair of real numbers x and y, x > y. Show $x^3 + xy^2 > x^2y + y^3$

$$x^3 + xy^2 = x(x^2 + y^2)$$

> $y(x^2 + y^2)$ by substitution $x > y$
= $x^2y + y^3$

Exercise 2.5.4 B

For every pair of real numbers x and y, if x + y > 20 then x > 10 or y > 10.

Proof. By Contrapositive: Assume for every pair of real numbers x and y, $x \le 10$ and $y \le 10$. Show $x + y \le 20$

$$x \le 10 + y \le 10$$
$$= x + y \le 20$$

Exercise 2.5.5 C

For every non-zero real number x, if x is irrational then 1/x is irrational

Proof. By Contrapostive: Assume x is a real number and 1/x is not irrational. Show that x is rational for every non zero real number.

Since 1/x is a real number and not irrational, then it has to be a rational number. There exists an a and b such that a and b are integers.

$$1/x = a/b \ (a \neq 0 \text{ and } b \neq 0)$$

 $x = b/a$

Since x is a ratio of two integers, a and b, x is rational.

Question 8:

Exercise 2.6.6 C

The average of three real numbers is greater than or equal to at least one of the numbers.

Proof. By Contradiction: Assume x, y, z are real numbers. Show the average of the three real numbers is less than all thee numbers.

$$\frac{x+y+z}{3} < x, \frac{x+y+z}{3} < y, \frac{x+y+z}{3} < z$$

$$\frac{x+y+z}{3} + \frac{x+y+z}{3} + \frac{x+y+z}{3} < x+y+z$$

$$\frac{3x+3y+3z}{3} < x+y+z$$

$$x+y+z < x+y+z$$

Since $x + y + z \not< x + y + z$, then the average of three real numbers is greater than or equal to at least one of the three numbers.

Exercise 2.6.6 D

There is no smallest integer

Proof. By Contradiction: Assume There is a smallest integer. Let smallest integer be k. Since k is an integer, subtracting k by 1 will give us an integer k-1. Since (k-1) < k, there exists a smaller integer.

... There is no smallest integer.

8

Question 9:

Exercise 2.7.2 B

If integers x and y have the same parity, then x + y is even. The parity of a number tells whether the number is odd or even. If x and y have the same parity, they are either both even or both odd.

Proof. By Cases:

Case 1: x and y are even integers. If x and y are even, x=2k and y=2j for some integer $k,\,j$

$$x + y = 2k + 2j$$
$$= 2(k+j)$$

Since k and j are integers, there exists an integer l such that l = k + j. Since x + y = 2l, x + y is even

Case 2: x and y are odd integers. If x and y are odd, x = 2m + 1 and y = 2n + 1 for some integer m, n

$$x + y = 2m + 1 + 2n + 1$$

= $2m + 2n + 2$
= $2(m + n + 1)$

Since m, n, and 1 are integers, there exists an integer z, such that z = (m + n + 1), Since x + y = 2z, x + y is even.