Exam 1(100 points)

- 1. (15 points) State and prove Gauss-Markov Theorem.
- **2.** (15 points) Let A be symmetric and a $p \times 1$ random vector $Y \sim N_p(0, \Sigma)$. Show that

$$Y^T A Y \sim \sum_{j=1}^r \lambda_j \chi_j^2(1)$$

where $\chi_1^2(1), \chi_2^2(1), \ldots, \chi_r^2(1)r$ are independent Chi-squared random variable with degrees of freedom, df =1, $\chi^2(1)$. Specify r and λ_j exactly.

3. (20 points) Consider $Y = X\beta + \epsilon$ where X is of full rank and $\mathbf{E}(\epsilon) = 0$. Let $\hat{\beta} =$ the ordinary least squares estimate of $\beta = (X^TX)^{-1}X^TY$ with $Cov(\epsilon) = \sigma^2 I$ and $\tilde{\beta} =$ the generalized least squares estimate of $\beta = \tilde{\beta} = (X^T\Sigma^{-1}X)^{-1}X^T\Sigma^{-1}y$ with $Cov(\epsilon) = \sigma^2\Sigma$.

Prove that

$$\hat{\beta} = \tilde{\beta}$$
 if and only if $\mathcal{C}(\Sigma^{-1}X) = \mathcal{C}(X)$

4. (50 points) Let's consider a liner model

$$Y = X\beta + \epsilon, \qquad \epsilon \sim N_n(0, \sigma^2 I_n)$$
 (1)

where the $n \times p(p < n)$ matrix X is full rank. Let's decompose X into $X = (X_0, X_1)$ where $X_0 : n \times q$ and $X_1 : n \times (p - q)$. Let M and M_0 denote the orthogonal projection operator onto $\mathcal{C}(X)$ and $\mathcal{C}(X_0)$ respectively.

(a) (5 points) The model (1) can be rewritten as

$$Y = W\alpha + \epsilon, \qquad \epsilon \sim N_n(0, \sigma^2 I_n)$$

where C(W) = C(X). Let M_W denote the orthogonal projection operator onto C(W). If any, find (a) condition(s) so that $M_W = M$.

(b) (5 points) Show that

$$C(M - M_0) = \mathcal{N}(X_0^T)$$
 with respect to $C(X)$.

(c) (10 points) Explain in detail that in general,

 $M \neq M_0 + M_1$ where M_1 is the orthogonal projection operator onto $C(X_1)$.

What is(are) condition(s) so that $M_0 + M_1$ is orthogonal projection? Suggest X_{1*} so that $\mathcal{C}(X) = \mathcal{C}(X_0) \oplus \mathcal{C}(X_{1*})$ and

 $M = M_0 + M_{1*}$ where M_{1*} is the orthogonal projection operator onto $\mathcal{C}(X_{1*})$.

- (d) (15 points) Find condition(s) so that β_0 is estimable. If β_0 is estimable, derive the test statistic for $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$.
- (e) (15 points) Let p = 2q. Find condition(s) so that $\beta_0 + 2\beta_1$ is estimable. If $\beta_0 + 2\beta_1$ and $Cov(\epsilon) = 5$, develop the test statistic for $H_0: \beta_0 + 2\beta_1 = b$ vs $H_1: \beta_0 + 2\beta_1 \neq b$ where b is known.