Introduction to OpenFOAM

Vachan Potluri

April 2023

What

- ► CFD software (but without GUI)
- ► Open source Field Operation And Manipulation
- lackbox Open source \Longrightarrow source code is given to user

What

- ► CFD software (but without GUI)
- ► Open source Field Operation And Manipulation
- ▶ Open source ⇒ source code is given to user

What

- ► CFD software (but without GUI)
- ► Open source Field Operation And Manipulation
- ▶ Open source ⇒ source code is given to user

No GUI \implies hard to learn

Why

- ► Free
- ► Fast
- User customisable

Case 1

Heat conduction in a square plate

$$\frac{\partial T}{\partial t} = D_T \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

Other settings

- ► $D_T = 1 \, \text{m}^2/\text{s}$
- ► *L* = 1 m
- ► End time 5 s

Case 1

Heat conduction in a square plate

$$\frac{\partial T}{\partial t} = D_T \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

Other settings

- $D_T = 1 \, \text{m}^2/\text{s}$
- $ightharpoonup L = 1 \,\mathrm{m}$
- ► End time 5 s

- ▶ laplacianFoam is the "solver" to be used for heat conduction equation
- ► Visualise using paraFoam
 - Mesh representation
 - Data array selection
 - Navigating times

OpenFOAM's simulation setup

OpenFOAM's simulation setup

- Every simulation is setup using certain "setting" files
- ► These files are grouped into 3 folders: 0/, constant/ and system/
- ► All are text files

OpenFOAM's simulation setup

- Every simulation is setup using certain "setting" files
- ► These files are grouped into 3 folders: 0/, constant/ and system/
- ► All are text files
- Only mandatory files are shown here, there can be additional files also
- When a simulation is done, OpenFOAM generates additional time files
- We will learn about these files by doing some variations of the square plate simulation

Change the thermal diffusivity

- lacktriangle In constant/physicalProperties, you can change $D_{\mathcal{T}}$
- ► Things to note
 - FoamFile "header"
 - Units of D_T
- ► Try
 - Reduce D_T to $0.01 \,\mathrm{m}^2/\mathrm{s}$ and see the solution evolution
- ► Tips
 - foamListTimes -rm deletes all time folders other than 0/
 - Reload files in ParaView by right-clicking

Change the boundary conditions

- ► In 0/T you can set initial condition (IC) and boundary conditions (BCs)
- ► Things to note
 - internalField ⇒ IC
 - Names of different boundaries
 - ullet type of different boundaries \Longrightarrow type of BC
- ► Special BC type empty
 - By default OpenFOAM does 3d simulations
 - Check this in ParaView
 - empty BC in a direction tells OpenFOAM to not consider that direction
- ► Try
 - Change bottom BC to $-100\,^{\circ}$ C
 - Change IC
 - Do a 1d simulation by setting top and bottom boundaries as empty
 - Verify the solution using "Plot Over Line" in ParaView or gradTx value

Change time settings

- system/controlDict contains all the main controls of the simulation
- ► Things to note
 - startFrom, stopAt
 - startTime, endTime
 - deltaT
 - writeControl, writeInterval
- ► For heat conduction equation
 - "Stable" time step value (Δt_s) satisfies $D_T \frac{\Delta t_s}{\Delta x^2} < 1$
 - To determine end time (t_e) , compare it with diffusion time scale

$$t_e\gg rac{L^2}{D_T}\implies {\sf Steady\ state\ reached}$$

- ► Try
 - Increase D_T to $10 \,\mathrm{m}^2/\mathrm{s}$
 - For correct simulation, time step and end time also have to be changed

Change the mesh

