CS-671: DEEP LEARNING AND ITS APPLICATIONS Lecture: 12 Single Shot Multi Box Detector (SSD)

Aditya Nigam, Assistant Professor
School of Computing and Electrical Engineering (SCEE)
Indian Institute of Technology, Mandi
http://faculty.iitmandi.ac.in/ãditya/ aditya@iitmandi.ac.in

Presentation for CS-671@IIT Mandi (26 March, 2019)

February - May, 2019

RCNN

Fast RCNN

Faster RCNN

YOLO - You only Look Once

Architecture

- Base network of VGG-16.
- Auxiliary structure for detection.

Architecture

Architecture

- Convolutional layers in Auxiliary network are 1x1 convolution with stride 2.
- They create feature maps with decreasing sizes.
- These varying sizes feature maps are used for scale variance of objects.
- Detector and classifier will be applied on each feature map.
- Let a feature map be of size mxnxp

The detector will be a convolutional layer with filter of 3x3xp.

• SSD input is a image having ground truth boxes.

• SSD input is a image having ground truth boxes.

• For a particular feature map from auxiliary network.

- There will be huge number of bounding boxes.
- We handle them by matching.
- ullet The i^{th} default box is matched to j^{th} ground truth box using Jaccard Index that is IOU (Intersection over Union).

If
$$IOU > 0.5$$
, $x_{ij} = 1$
Else, $x_{ij} = 0$

• Corresponding every default box d_i , we calculate a predicted box l_i having 4 parameters cx, cy, w and h

cx = Centre x coordinate

cy = Centre y coordinate

w = width

h =height

Every box also contains class scores.

Let there be p class scores

Total number of parameters per box= p + 4

• Let a feature map be mxn size. Total number of parameters = (p + 4).m.n.# default boxes

- Let N be the number of total boxes with Jaccard Index > 0.5.
- We have 2 losses
 - Location Loss
 - Confidence Loss

•
$$L(x, c, l, g) = \frac{1}{N}[L_{conf}(x, c) + \alpha L_{loc}(x, l, g)]$$

- N = number of matched boxes
- x = pixel under consideration
- c = class scores
- I = predicted boxes
- g = Ground truth boxes

• Calculate Smooth L1 loss between each parameter of Predicted box l_i and Ground Truth box g_j .

$$(I_i^{cx} - g_j^{cx})$$
SmoothL1 $(I_i^{cy} - g_j^{cy})$ SmoothL1 $(I_i^{h} - g_j^{h})$ SmoothL1 $(I_i^{h} - g_j^{h})$ SmoothL1

- Multiply each with $x_{ij} = 0, 1$ and add all.
- Repeat above steps $\forall i \in Pos$

Normalization: First we will normalize the box parameters.

$$\hat{g}_j^{cx} = \frac{(g_j^{cx} - d_i^{cx})}{d_i^w} \qquad \qquad \hat{g}_j^{cy} = \frac{(g_j^{cy} - d_i^{cy})}{d_i^h}$$

$$\hat{g}_j^w = log(\frac{g_j^w}{d_i^w})$$
 $\hat{g}_j^h = log(\frac{g_j^h}{d_i^h})$

- d = Default boxes
- cx, cy = Centre of boxes
- w, h = Width and height of boxes
- Similarly we will normalize the parameters of predicted box $\hat{l}^{cx}_i, \hat{l}^{cy}_i, \hat{l}^w_i, \hat{l}^h_i$

• Calculate Smooth L1 loss between each parameter of Normalised Predicted box $\hat{l_i}$ and Normalised Ground Truth box $\hat{g_j}$.

$$\begin{array}{ll} (\hat{l}_i^{cx} - \hat{g}_j^{cx}) SmoothL1 & (\hat{l}_i^{cy} - \hat{g}_j^{cy}) SmoothL1 \\ (\hat{l}_i^{w} - \hat{g}_j^{w}) SmoothL1 & (\hat{l}_i^{h} - \hat{g}_j^{h}) SmoothL1 \end{array}$$

- Multiply each with $x_{ij} = 0, 1$ and add all.
- Repeat above steps $\forall i \in Pos$

• Confidence loss: For each box i, we have p confidence scores c_i^p , where,

 c_i^1 = Confidence of class 1 c_i^2 = Confidence of class 2 c_i^p = Confidence of class p

Softmax loss over

$$c_{i}^{p}: \hat{c}_{i}^{p} = \frac{e^{(c_{i}^{p})}}{\sum_{p} e^{(c_{i}^{p})}}$$

- We have to maximize confidence of matched predictions (Pos).
- At same time minimize the confidence of remaining predictions (Neg).

$$L_{conf}(x,c) = -\sum_{i \in Pos}^{N} x_{ij}^{p} log(\hat{c}_{i}^{p}) - \sum_{i \in Neg} log(\hat{c}_{i}^{0})$$

Choosing Scales

- Let there be m feature maps. m = 6 in paper.
- k be the map we want to find the scale of box in $k \in [1, m]$.
- Let S_k be scale at k^{th} map
- $S_{min} = Minimum Scale = 0.2$

 $S_{max} = Maximum Scale = 0.9$

$$S_k = S_{min} + \frac{S_{max} - S_{min}}{m - 1}(k - 1)$$

Aspect Ratio

• For k^{th} scale, we have, $w_k^1, w_k^2, ..., w_k^a$ widths

$$h_k^1, h_k^2, ..., h_k^a$$
 heights

• Choose a value of a_r such that $a_r \in [1,2,3,\frac{1}{2},\frac{1}{3}]$

$$h_k^a = \frac{S_k}{\sqrt{a_r}} \qquad \qquad w_k^a = S_k \sqrt{a_r}$$

• Let $a_r = 1$ $h_k^a = \frac{S_k}{\sqrt{3}} = S_k$

$$w_k^a = S_k \sqrt{1} = S_k$$

Aspect Ratio = 1

• Let
$$a_r = 2$$

$$h_k^a = \frac{S_k}{\sqrt{2}}$$

$$w_k^a = S_k \sqrt{2}$$

Aspect Ratio = 2:1

Number of Default Boxes

- For a given scale we can choose 5 different aspect ratios.
- ullet For aspect ratio =1, we add another box having $S_k'=\sqrt{S_kS_{k+1}}$
- Hence, we have 6 Default Boxes per feature map location.

Hard Negative Mining

- Number of negative samples will be much greater than positive samples.
- Sort the negative samples using confidence score for each default box.
- Pick the top ones to keep the ratio of negative to positive to atmost
 3:1

Non Maximum Suppression

- Sort all boxes of a class using confidence scores.
- Calculate Jaccard Index of first box with every other box.
 - If overlap > 0.45, remove the other box.
 - Otherwise keep the other box.
- Repeat the above process for each box in sorted order.

Results on VOC

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

Thank You. Any Questions.