DAY 7 APPLICATIONS OF SUM OF n TERMS of AP

1. If the sum of first n terms of an A.P. is $4n - n^2$, what is the first term? What is the sum of first two terms? What is the second term? Find the 3^{rd} , 10^{th} and n^{th} terms.

[Ex 5.2, Q 11]

Sol:- Given
$$S_n = 4n - n^2$$

Put $n = 1, 2, 3, 4 \dots$ we get
For $n = 1, S_1 = 4(1) - (1)^2 = 4 - 1 = 3$
 $n = 2, S_2 = 4(2) - (2)^2 = 8 - 4 = 4$
Now First term $a = S_1 = 3$
 $S_2 = 4$
 $a_2 = S_2 - S_1 = 4 - 3 = 1$ (By $S_n = t_n - t_{n-1}$)
 $\Rightarrow a + d = 1$ $\Rightarrow 3 + d = 1$
 $\Rightarrow d = 1 - 3 = -2$
 $a_3 = a + 2d = 3 + 2(-2) = 3 - 4 = -1$
 $a_{10} = a + 9d = 3 + 9(-2) = 3 - 18 = -15$

- 2. How many terms the A.P. 24, 21, 18,must be taken so that sum is 78? [Example 13]
 - **Sol :-** A.P. 24,21,18, ... with a = 24, d = 21 24 = -3 and $S_n = 78$ Here we have to find number of terms so Let the number of terms in A.P. be n

Now
$$S_n = \frac{n}{2} \{ 2a + (n-1)d \}$$

 $\Rightarrow 78 = \frac{n}{2} \{ 2 \times 24 + (n-1)(-3) \}$
 $\Rightarrow 78 \times 2 = n \{ 48 - 3n + 3 \}$ $\Rightarrow 156 = n(51 - 3n)$
 $\Rightarrow 156 = 51n - 3n^2$ or $n^2 - 17n + 52 = 0$ (Divide by -3)
 $\Rightarrow n^2 - 4n - 13n + 52 = 0$ $\Rightarrow n(n-4) - 13(n-4) = 0$
 $\Rightarrow (n-4)(n-13) = 0$ $\Rightarrow n-4 = 0$ or $n-13 = 0$
 $\Rightarrow n = 4,13$

Both values are acceptable. So the numbers of terms is either 4 or 13.

3. Find the sum of first 1000 positive numbers? [Example 14]

Sol:- First 1000 positive integers are 1,2,3,4, ,1000

Here
$$a = 1$$
, $d = 2 - 1 = 1$ and $n = 1000$

Now
$$S_n = \frac{n}{2} \{a + l\} = \frac{1000}{2} \{1 + 1000\} = 500 \times 1001 = 500500$$

4. Find the sum of first 15 multiples of 8?

[Ex 5.3 Q 13]

Sol:- first 15 multiples of 8 = 8, 16, 24,, 120
Here
$$a = 8$$
, $d = 16 - 8 = 8$, $l = 120$ and $n = 15$
Now $S_n = \frac{n}{2} \{a + l\} = \frac{15}{2} (8 + 120) = \frac{15}{2} \times 128 = 15 \times 64 = 960$

- 5. A manufacturer of radio sets, produced 600 units in the third year and 700 units in the 7th year. Assuming the production uniformly increases by a fixed number every year, find a) The production of the first year b)The total production in 7 years and c) The production in 10th year. [Example 16]
 - **Sol:-** a) Given the production uniformly increases by a fixed number every year. So the production in different years forms an AP.

Given conditions:

Production in 3rd year
$$(a_3) = 600 \implies a + 2d = 600 \dots \dots i)$$

Production in 7th year $(a_7) = 700 \implies a + 6d = 700 \dots ii)$

Subtracting i) from ii), we get

$$(a + 6d) - (a + 2d) = 700 - 600$$
 $\Rightarrow 4d = 100$
 $\Rightarrow d = \frac{100}{4} = 25$ Put this value in i), we get
i) $\Rightarrow a + 2(25) = 600$ $\Rightarrow a = 600 - 50 = 550$

b) The total production in 7 years =
$$S_7 = S_n = \frac{n}{2} \{2a + (n-1)d\}$$

= $\frac{7}{2} \{2 \times 550 + (7-1)50\} = \frac{7}{2} \{1100 + 6 \times 25\}$
= $\frac{7}{2} \times 1250 = 7 \times 625 = 4375$

- c) The production in 10th year = $a_{10} = a + 9d$ = $550 + 9 \times 25 = 550 + 225 = 775$
- 6. A sum of ₹700 is to be used to give cash prizes to students of a school for their overall academic performance. If each prize is 20 less than its preceding prize, find the value of the prizes.

Sol:- Given: Total prize money for 7 prizes = 700 $\Rightarrow S_7 = 700$ and each prize is 20 less than its preceding prize so d = -20

Now
$$\Rightarrow S_7 = 700 \Rightarrow \frac{7}{2} \{2a + 6d\} = 700$$

 $\Rightarrow \frac{7}{2} \times 2a + \frac{7}{2} \times 6d = 700 \Rightarrow 7a + 21d = 700$
 $\Rightarrow 7a + 21(-20) = 700 \Rightarrow 7a = 700 + 42 = 1120$

$$\Rightarrow a = \frac{1120}{7} = 160$$

Hence value of each prize is 160, 140, 120, 100, 80, 60, 40

EXERCISE

1. Ex **5.3**, **Q** 14,15,17,18,19,20

come-become-educated

