

Slimme toepassingen met Unmanned Aerial Vehicles (UAV's)

Studie dag Big Data Aansluitingsnetwerk vo-ho Fryslân 24 juni 2016

> Jaap van de Loosdrecht Lector Computer Vision Kenniscentrum Computer Vision NHL Hogeschool Leeuwarden

Overzicht

- Wat is Computer Vision?
- NHL Kenniscentrum Computer Vision
- Drones of Unmanned Aerial Vehicles (UAVs)
- Conclusie

Inspectie petrischalen

23rd European Congress of Clinical Microbiology and Infectious Diseases, Berlin 27-30 April 2013

End-user trainable automatic antibiotic-susceptibility testing by disc diffusion using machine vision

K. Dijkstra¹, M. Berntsen², J. van de Loosdrecht¹ and W. J. Jansen¹

1) NHL University of Applied Sciences, Center of Expertise Computer Vision, Leeuwarden, The Netherlands. 2) BD, Drachten, The Netherlands.

Objectives

BD Kiestra provides a workflow where digital images of Petri-dishes used in antibiotic susceptibility testing by disc diffusion can be automatically analyzed using machine vision algorithms.

The objective of this study is to develop and test a system which automatically optimizes a zone measurement algorithm to vield results close to zone measurements of a human end-user.

Methods

The main design principle is that the lab technician does not have to know anything about machine vision to train the system. Technical configuration is handled by Artificial Intelligence.

Three digital image sets of Petri-dishes using different illuminations from two European microbial laboratories have been selected from the daily routine to test the system. Evaluation is performed using a two-fold cross-validation.

Results

Blue and red circles are manual and automatic measurements respectively. Crossed circles are automatically rejected measurements.

Pearson Correlation: 0.93

Conclusions

An end-user trainable machine vision system for measuring zones is presented and compared to manual zone measurements.

The proposed method shows excellent correlation between manually and automatically measured zones.

In low contrast image environments the system adapts by automatically rejecting more zones maintaining high Pearson correlation.

Cattle Care

LapVas (LIMIS, MCL)

Doel: verminderen naadlekkage bij darmoperaties

Meten kwaliteit van weefsel van de darmwand (microcirculatie)

NHL Kenniscentrum Computer Vision

- Gestart in 1996
- Onderdeel NHL Hogeschool, Instituut Techniek
- 1 Lector (1 fte)
- 1 Onderzoeker (1 fte)
- 5 Project engineers (6.4 fte)
- Stagiairs / afstudeerders
 Totaal, vanaf start: 450 uit Nederland en 45 uit buitenland

NHL Kenniscentrum Computer Vision

Kernactiviteit

Computer Vision

Optiek, belichting, camera techniek, algoritmiek en het embedden in toepassingen

Speerpunten

Data Science (Big Data)

Patroonherkenning en optimalisatie technieken (Kunstmatige Intelligentie en Statistiek)

Parallel Computing

Versnellen van sequentiële algoritmen door deze te parallelliseren voor commodity parallelle hardware, zoals multi-core CPU en/of GPU systemen

Sensor Fusion

Data afkomstig van meerdere, en mogelijk van verschillend type, sensoren te combineren tot informatie

Video Smart Vision for UAVs

Drones in civiele toepassingen met camera's

- Commerciële operators die diensten aanbieden met drones bestuurt door grondpiloten mbv GPS-waypoints
- Commodity producten, bijvoorbeeld: DJI Phantom

Geautomatiseerd vliegen mbv GPS way-points

Van GPS positie naar GPS positie met gespecificeerde hoogte en snelheid

Smart Visions for UAVs

- RAAK SIA MKB project
- September 2014 September 2016
- 15 bedrijven en instellingen
- Marktvragen:
 - Wind turbine inspectie
 - Detectie en inspectie van vuurhaarden
 - Inspectie van landbouwgronden
 - Schouwen van sloten

Wind turbine inspectie

Smart Vision for UAVs

Onderzoeksvragen:

- Kunnen met behulp van UAVs voldoende kwalitatief goede opnames worden gemaakt om de gevraagde inspectie uit te voeren?
- Kan de beoordeling van deze beelden worden geautomatiseerd en in welke mate?
- Kan het vliegproces worden ondersteund en/of geautomatiseerd?
- Kan worden voldaan aan de wettelijke regelgeving met betrekking tot het bedrijfsmatig gebruik van UAVs?

Elektromagnetisch spectrum

Camera's for breed-spectrum experiment

Landbouwgrond inspectie

Detectie aardappelziekte

NHL Twirre architecture

Local Positioning System

COMPUTER VISION

Twirre architecture for automated UAVs using interchangeable commodity components

Uitganspunten

- Alle intelligentie on-board
- Geen ontwikkeling hardware, UAVs en flight controllers
- Geen ontwikkeling software flight controllers
- Standaard componenten
 - Goedkoop
 - Uitwisselbaar
 - Uitbreidbaar
- Betrouwbare interventie manuele besturing

Hexa-copter

COMPUTER VISION

Twirre

Architecture for autonomous mini-UAVs using interchangeable commodity components

J. van de Loosdrecht, K. Dijkstra, J.H. Postma, W. Keuning and D. Bruin NHL University of Applied Sciences, Centre of Expertise Computer Vision (www.nhlcomputervision.nl)

Objectives

All sensors and processing on-board

signals

flight controller

GPS

- Low-cost components
- Upgradable and extendable
- · Useful in multiple applications
- · Instantly and reliably switch between manual and autonomous control

Cascade control system processor board · High level: transmitter cameras simulation of human stick control softwa inputs usb · Low level: exchangeable flight controller protocol software receiver sensors microcontroller Autonomy switch manual / · In hardware only, autonomous no software involved autonomy switch Software

Architecture

Conclusions

- Low-cost multi-copters are implemented
- · Successfully tested in GPS-deprived environment
- Autonomy switch is safe and reliable

Example implementation Camera + Gimbal IDS uEve **Platform** Custom gimbal Processor board DJI 550 Core i7, USB 3.0 Gyro, accelerometer, Microcontroller magnetometer, barometer, Arduino, USB, ultrasonic sensor, GPS PWM outputs Flight Controller Transmitter and Receiver NAZA-M V2 Autonomy switch Dual receiver controlle

Result of experiments State machine · Hovering & Searching · Approaching Point of Interest · Facing Point of Interest earch for PO

- · Twirre architecture has been derived from objectives

motors

Future work

- Extract reusable software components
- Add extra sensors for increased robustness
- Extend state machine
- · Release system software to public domain

International Micro Air Vehicle Conference and Competition (IMAV 2014)

Zie IMAV 2014 paper: www.nhlcomputervision.nl

· Mission and high level control

system

Portable C(++)

DJI S1000+

MTOW = 11 kg Payload = 5 kg Flight time = 30 min

Conclusie

The sky is the limit!?

Vragen?

Meer informatie:

Jaap van de Loosdrecht

Lector Computer Vision
Kenniscentrum Computer Vision
NHL Hogeschool
Rengerslaan 10
Postbus 1080
8900 CB Leeuwarden
j.van.de.loosdrecht@nhl.nl
www.nhlcomputervision.nl
www.nhl.nl/computervision
NL (0)6 – 1394 9207

