COSC265 — Relational Database Systems

Neville Churcher

Department of Computer Science & Software Engineering University of Canterbury

2021

Data Dependencies

- Real-world facts (semantics) represented as constraints on database
- Some (integrity) constraints depend on attribute values:

Person.Height < 10 meters

IF YearsOfService = 30 THEN Age >= 15

Some support (e.g. SQL domain constraints) but of little help in overall database design.

- ☆ Other constraints are value-independent.
- Functional dependencies (FDs) are an example
- Such data dependencies represent (time-independent) assertions about the real world.
- ☆ Data dependencies cannot be 'proved' but may be enforced by the DBMS

Introducing Functional Dependencies

Definition (Function)

A function is a binary relation between two sets that associates each element of the first set with exactly one element of the second set.

- ☆ FDs are equality-generating constraints between (sets of) attributes
- ightharpoonup Whenever attribute <math>X has the value x, attribute Y has the value y
- $X \to Y : X$ functionally determines Y; Y is functionally dependent on X LHS, RHS in same relation scheme
- \Rightarrow FDs represent facts about intension, valid extensions r(R) must obey the corresponding constraints
- ☆ Birthday → StudentID

UID

das21

Name

Dave

Example

What can we say about these?

M	UID	\rightarrow	N	ar	ne

7.7	Vame —	> UID
-----	--------	-------

$$\Rightarrow$$
 Name, Birthday \rightarrow Phone?

-	,
*	$UID \rightarrow Name$, $Birthday$, $Phone$?

djp54	Dave	21 Feb	351-7683
dsw28	Debby	12 Jan	325-3811
ajd54	Andy	4 Aug	351-7683

Birthday

12 Jan

Phone

325-3811

Functional Dependencies

More formally . . .

Definition (FD)

Given $X \subseteq R$, $Y \subseteq R$, r(R), if the FD $X \to Y$ holds then r cannot have two tuples that agree in their components for the attributes in X but disagree for one or more components of Y.

r satisfies $X \rightarrow Y$ if:

 $\Rightarrow \forall x, \pi_Y(\sigma_{X=x}(r))$ has at most one tuple

Can pronounce ' \rightarrow ' as 'identifies' or 'functionally determines'

Keys & Superkeys

If $X \to R$ then X is a (super)key

Families, Closures & Inference ... Given a set of dependencies, we can infer others

Definition
$$(\mathcal{F})$$

 ${\mathcal F}$ is the family of FDs on R that all permissible states of r(R) satisfy.

Definition (Logical Implication)

$$\mathcal{F} \models X \mathbin{ o} Y$$
 if every relation satisfying \mathcal{F} also satisfies $X \mathbin{ o} Y$

Definition (Closure)

$$\mathcal{F}^+ = \{f | \mathcal{F} \models f\}$$
 is the set of all FDs logically implied by \mathcal{F}

- ightrightarrows If $\mathcal{F}=\mathcal{F}^+$ then \mathcal{F} is a $extit{ full}$ family of FDs
 - $ightharpoonup \mathcal{F}^+$ can be very large, and hard to calculate

Definition (Keys)

Given $R = A_1 A_2 \dots A_n, X \subseteq R$ then X is a key of R if:

- ★ Last term you produced a number of conceptual data models using EER diagrams and other table/relation identification techniques.
- Review the entities (and corresponding relations) from your answers to some of the exercises in tutorials 1 & 2 exercise 6 from tutorial 2 would be a good one to
- start with.

 Identify the FDs that hold between the attributes in the various schemes/tables
- What patterns do you notice?
- vvnat patterns do you notice!

Answering questions about our data model

- \Rightarrow If some members of \mathcal{F}^+ are known, then others may be inferred
- ☆ Inference rules state that, if a relation satisfies certain FDs, then it must also satisfy certain others
- Armstrong's axioms are one such set. They are:

Complete: Given \mathcal{F} , can deduce all $f_i \in \mathcal{F}^+$ Sound: Given \mathcal{F} , can not deduce any $f_i \notin \mathcal{F}^+$

Other inference rules may be derived from these

 $(N.B. \propto \mathcal{F})$ Reflexivity: $\forall Y, Y \subset X \subset \mathcal{U}, \mathcal{F} \models X \rightarrow Y$

Augmentation: $\forall Z \subseteq \mathcal{U}, X \rightarrow Y \models XZ \rightarrow YZ$

Transitivity: $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$

William Ward Armstrong

(given)

(given)

(augment 1 by X)

Union Rule: $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$

Proof.

- \bigcirc $X \rightarrow Y$
- $X \to XY$

- $X \to YZ$

(augment 3 by Y) (transitivity on 2, 4)

... continued

Pseudotransitivity Rule:
$$\{X \to Y, WY \to Z\} \models XW \to Z$$

Proof.

$$\bigcirc$$
 $XW \rightarrow Z$

Decomposition Rule:
$$\forall Z \subseteq Y, X \rightarrow Y \models X \rightarrow Z$$

Equivalently, $X \rightarrow VW \models X \rightarrow V, X \rightarrow W$

(given)

(augment 1 by W)

(given) (transitivity on 2, 3)

Example (Using inference rules)

Given R = ABCD, and $\mathcal{F} = \{A \rightarrow B, AC \rightarrow D, BC \rightarrow A, BC \rightarrow D, CD \rightarrow A\}$, show that $AC \rightarrow D$ is redundant.

Solution 1: Pseudotransitivity rule

$$A \rightarrow B \in \mathcal{F}$$

$$Arr CB \rightarrow D \in \mathcal{F}$$

$$A \rightarrow B, CB \rightarrow D \models AC \rightarrow D$$

$$\Rightarrow$$
 We can infer $AC \rightarrow D$ from other FDs

$$ightharpoonup$$
 Thus $AC o D$ is redundant and can be removed from $\mathcal F$

Example

Past exam question again — solved differently this time

Example (Using inference rules)

Given R = ABCD, and $\mathcal{F} = \{A \rightarrow B, AC \rightarrow D, BC \rightarrow A, BC \rightarrow D, CD \rightarrow A\}$, show that $AC \rightarrow D$ is redundant.

Solution 2: Armstrong's axioms

$$A \to B \in \mathcal{F}$$

$$Arr BC \rightarrow D \in \mathcal{F}$$

$$\Rightarrow$$
 Augmentation: $A \rightarrow B \models AC \rightarrow BC$

$$ightharpoonup$$
 Transitivity: $AC \rightarrow BC, BC \rightarrow D \models AC \rightarrow D$

$$\bigstar$$
 We can infer $AC \rightarrow D$ from other FDs

$$ightharpoonup$$
 Thus $AC o D$ is redundant and can be removed from $\mathcal F$

Computing Closures

- ightharpoonup In general, to tell if $\mathcal{F}\models f$ we must compute \mathcal{F}^+ and see if $f\in\mathcal{F}^+$
- * \mathcal{F}^+ can be very large even for "small" \mathcal{F}
- Arr This is bad news we'll avoid having to compute \mathcal{F}^+ whenever we can
- Arr Consider $\mathcal{F} = \{A \rightarrow B_1, A \rightarrow B_2, \dots A \rightarrow B_n\}$
- \red{A} Additivity (Union Rule) tells us that \mathcal{F}^+ includes all A o Y where $Y \subseteq B_1 \dots B_n$
- n There are $\sum_{i=0}^{n} {^{n}C_{i}} = 2^{n}$ of these!
- Plus all the others . . .
- ☆ Is there a simpler way?

Yes — Attribute Closures

Much better news...

Definition (Attribute Closures)

$$X^+ = \{A_i | \mathcal{F} \models X \rightarrow A_i\}$$

Lemma

 $X \rightarrow Y$ follows from Armstrong's axioms iff $Y \subseteq X^+$

Proof.

Assume $Y \subseteq X^+, Y = A_1 A_2 \dots A_n$

Then, from definition of $X^+, X \to A_i$ and thus $X \to Y$ by the union rule Or,

Assume $X \to Y$ follows from the axioms. Then, by the decomposition rule, $\forall i, i \in \{1 \dots n\}, X \to A_i$ so $Y \subseteq X^+$

Computing X^+

I'll need this for the exam

ightrightarrows Lemma tells us that testing $X
ightarrow Y \in \mathcal{F}^+$ is no harder than computing X^+

Functional dependencies 53

- This is excellent news!
- Algorithm for computing X^+ is O(N) where N is the number of FDs in \mathcal{F} This is also excellent news!
- $\lambda \in \mathcal{C}_{(i)} \times \mathcal{C}_{(i)} \times$
- X Compute the sequence $X^{(0)}, X^{(1)}, \dots X^{(i)}$ until $X^{(i+1)} = X^{(i)} \equiv X^{(i)}$ $X^{(0)} = X$
- $X^{(i+1)} = X^{(i)} \cup A$ where $Y \subseteq X^{(i)}$ and $Y \rightarrow Z \in \mathcal{F}$ and $A \subseteq Z$
- $X^{(i)} = X^{(i)} \cup A \text{ where } Y \subseteq X^{(i)} \text{ and } Y \to Z \in \mathcal{F} \text{ and } A \subseteq X^{(i)} \subset X^{(i+1)}$
- $X_0 \subset X_{0+1}$

Computing X⁺ In plainer language ...

Computing X^+

- Start with X itself as the initial attribute set $X^{(0)}$
- 2 Look for an FD in $\mathcal F$ whose LHS is X or a subset of X
- If you find one, then add its RHS to the working set
- Repeat steps 2 and 3 until no more changes can be made
- Now you're done!

Previous Example

Past exam question — yet again

Example (Using inference rules)

Given R = ABCD, and $\mathcal{F} = \{A \rightarrow B, AC \rightarrow D, BC \rightarrow A, BC \rightarrow D, CD \rightarrow A\}$. show that $AC \rightarrow D$ is redundant.

Solution 3: Attribute Closure

Show
$$\mathcal{F}' = \mathcal{F} \setminus AC \rightarrow D \models AC \rightarrow D$$

Consider X = AC $X^{(0)} = AC$

look for dependencies in \mathcal{F}' with LHS (Y) of

A, C, or AC and find $A \rightarrow B$ $X^{(1)} = ABC$ find $BC \rightarrow D$

 $X^{(2)} = X^{(+)} = ABCD$ All attributes, AC is candidate key

 \square Have shown $AC \rightarrow D$ since $AC \subseteq X^+$ so it is redundant and can be removed from \mathcal{F}

Bigger Example (Compute BD^+)

$$R = ABCDEG$$

Consider
$$X = BD$$

 $X^{(0)} = BD$

 $X^{(1)} = BDFG$

 $X^{(2)} = BCDFG$

 $CG \rightarrow BD$. $CE \rightarrow AG$ $X^{(3)} = X^+ = ABCDEG$ All attributes

B. D. BD and find $D \rightarrow EG$

find $D \rightarrow EG$ and $BE \rightarrow C$

add $C \rightarrow A$, $BC \rightarrow D$,

look for dependencies in \mathcal{F} with LHS (Y) of

 $\mathcal{F} = \left\{ egin{array}{ll} AB
ightarrow C & D
ightarrow EG \ C
ightarrow A & BE
ightarrow C \ BC
ightarrow D & CG
ightarrow BD \ ACD
ightarrow B & CE
ightarrow AG \end{array}
ight\}$

Continued (B^+, D^+)

R = ABCDEG

$$B^{(0)} = B^+$$
 No more attributes can be added $D^{(0)} = D$ find $D \rightarrow FG$ only

 $\mathcal{F} = \left\{ egin{array}{ll} AB
ightarrow C & D
ightarrow EG \ C
ightarrow A & BE
ightarrow C \ BC
ightarrow D & CG
ightarrow BD \ ACD
ightarrow B & CE
ightarrow AG \end{array}
ight\}$

$$B^{(0)}=B^+$$
 No more attributes can be a $D^{(0)}=D$ find $D o EG$ only $D^{(1)}=D^+=DEG$ Nothing more can be added

$$D^+ = DEG$$
 tells us that $D \to G \in \mathcal{F}^+, D \to DE \in \mathcal{F}^+$ etc.

Conclusion

 $BD^+ = R, B^+ \neq R, D^+ \neq R$ means that:

- ☆ BD is a candidate key for R
- \Rightarrow Neither B nor D is a candidate key

A Big Issue

If $\mathcal F$ is so important, how do we know we've got it right?

Real-world example

- 🖈 Ron and Hermione each model the same domain
- ightharpoonup They each deliver a set of FDs \mathcal{F}_{Ron} and $\mathcal{F}_{Hermione}$
- \star \mathcal{F}_{Ron} contains 23 FDs; $\mathcal{F}_{Hermione}$ contains 19
- $ightharpoonup^{*}$ Some FDs are in both \mathcal{F}_{Ron} and $\mathcal{F}_{Hermione}$; others are in only one

What to do?

Ron: I modelled the domain accurately — you must have done something wrong

Hermione: No, I modelled it accurately too — it's you that must be wrong

Ron: Maybe we're both right?

Hermione: No way! Even if we were, my ${\mathcal F}$ has fewer FDs in it than yours so it's obviously better

Ron: How are we going to settle this — there must be a way

Hermione: I know, how about this? I'll take your \mathcal{F} , and if I can use it to infer every FD in mine then I'll believe yours is as good

Ron: OK, I'll do the same.

Hermione: And if you can use my $\mathcal F$ to infer every FD in yours then we might as well use mine because it has fewer FDs in it

Ron: OK, let's do that ...

More formally . . .

Let \mathcal{F}, \mathcal{G} be sets of dependencies

$$\red{\mathcal{F}}$$
 \mathcal{F} covers \mathcal{G} if if every FD in \mathcal{G} can be inferred from \mathcal{F} (i.e., if $\mathcal{G}^+\subseteq \mathcal{F}^+$)

$*$
 If ${\cal F}^+={\cal G}^+$ then ${\cal F}$ covers ${\cal G}$ and ${\cal G}$ covers ${\cal F}$

for each FD
$$X \to Y$$
 in \mathcal{F}
compute X^+ using \mathcal{G}
test that $Y \subseteq X^+$ (i.e. $X \to Y \in \mathcal{G}^+$)

Then repeat for each FD in G

Example

Example (Are
$$\mathcal{F}_R$$
 and \mathcal{F}_H equivalent?)

$$R = ABCDEG; \ \mathcal{F}_H = \{A \to CD, E \to AG\} \ \mathcal{F}_R = \{A \to C, AC \to D, E \to AD, E \to G\}$$

Does \mathcal{F}_{P} cover \mathcal{F}_{H} ?

$$\forall f_i \in \mathcal{F}_H \text{ does } \mathcal{F}_R \models f_i?$$

$$A^{(0)} = A$$
 look for FDs in \mathcal{F}_{R} with LHS A and find $A \to C$

$$A^+$$
 $A^{(1)} = AC$ find $AC \rightarrow D$

$$A^{(2)} = X^{(+)} = ACD$$
 : $A \rightarrow CD$

$$E^{(0)} = E$$
 look for FDs in \mathcal{F}_R with LHS E and find $E \to G$.

$$E^+$$
 $E \rightarrow AD$

$$E^{(1)} = E^{(+)} = ADEG$$
 : $E \rightarrow AG \checkmark$

$$\therefore \mathcal{F}_R$$
 covers \mathcal{F}_H

Example (Are \mathcal{F}_R and \mathcal{F}_H equivalent?)

$$R = ABCDEG; \ \mathcal{F}_H = \{A \to CD, E \to AG\} \ \mathcal{F}_R = \{A \to C, AC \to D, E \to AD, E \to G\}$$

Does \mathcal{F}_{H} cover \mathcal{F}_{R} ?

$$\forall f_i \in \mathcal{F}_R \text{ does } \mathcal{F}_H \models f_i$$
?

$$A^{+}$$
 $A^{(0)} = A$ look for FDs in \mathcal{F}_H with LHS A and find $A \to CD$ $A^{(+)} = ACD$ $A \to C$

$$A^{(+)} = ACD \quad \therefore A \rightarrow C \checkmark$$

$$AC^{+} \begin{array}{c} AC^{(0)} = AC \\ AC^{(+)} = ACD \end{array} \quad \begin{array}{c} \text{FDs in } \mathcal{F}_{H} \text{ with LHS } A, C, AC \longrightarrow \text{find } A \rightarrow C \\ AC^{(+)} = ACD \\ \therefore AC \rightarrow D \checkmark \end{array}$$

$$E^{(0)} = E$$
 look for FDs in \mathcal{F}_H with LHS E and find $E \to AG$ E^+ $E^{(1)} = AEG$ find $A \to CD$

$$E^{(+)} = AEG$$
 find $A \to CD$
 $E^{(+)} = ACDEG$ $\therefore E \to G, E \to AD \checkmark$

$$E \rightarrow AD$$

 $\therefore \mathcal{F}_H$ covers \mathcal{F}_R . Have already shown \mathcal{F}_R covers \mathcal{F}_H so $\mathcal{F}_R, \mathcal{F}_H$ are equivalent

More on Covers

Lemma

Every $\mathcal F$ is covered by some $\mathcal G$ in which no RHS has more than one attribute.

Proof.

Let
$$\mathcal{G} = \{X \to A_i | A_i \subset Y \land X \to Y \in \mathcal{F}\}\$$

 $X \to Y \models X \to A_i$
 $\therefore \mathcal{G} \subseteq \mathcal{F}^+$
 $\{X \to A_1, X \to A_2, \ldots\} \models X \to Y$

(union rule)

(decomposition rule)

$$\therefore \mathcal{F} \subseteq \mathcal{G}^+$$

$$\mathcal{G} \subseteq \mathcal{F}^+, \mathcal{F} \subseteq \mathcal{G}^+ \Rightarrow \mathcal{F}^+ = \mathcal{G}^+$$

$$\cdot \mathcal{G} \text{ covers } \mathcal{F}$$

Minimal Covers

- $\overset{\star}{\sim}$ Can also prove that every \mathcal{F} is equivalent to an \mathcal{F}' which is minimal
- $\Rightarrow \mathcal{F}$ is minimal if:
 - ★ RHS of every $f \in \mathcal{F}$ is a single attribute (no redundant RHS attributes)
 - ★ $\nexists X \rightarrow A$ where $X \rightarrow A \in \mathcal{F}$ and $\{\mathcal{F} X \rightarrow A\}^+ = \mathcal{F}^+$ (no redundant dependencies)
 - ★ $\sharp X \to A, Z \subset X$ where $(\{\mathcal{F} X \to A\} \cup \{Z \to A\})^+ = \mathcal{F}^+$ (no redundant LHS attributes)
- ☆ Minimal cover is not unique
 - ★ may have different FDs
 - ★ may nave different numbers of FDs
- A Main I de amerene nambers en 1 be
- Minimal covers are a useful starting point for database design

Revisit previous example

$$R = ABCDEG$$

$$\mathcal{F} = \left\{ \begin{array}{ll} AB \to C & D \to \mathbf{EG} \\ C \to A & BE \to C \\ BC \to D & CG \to BD \\ ACD \to B & CE \to \mathbf{AG} \end{array} \right\}$$

Split RHS so every FD has single-attribute RHS

$$\mathcal{F} = \left\{ \begin{array}{cccc} AB \to C & BE \to C & C \to A & CG \to B \\ BC \to D & CG \to D & ACD \to B & CE \to A \\ D \to E & CE \to G & D \to G \end{array} \right\}$$

remove redundant dependencies

$$\mathcal{F} = \left\{ \begin{array}{cccc} AB \to C & BE \to C & C \to A & CG \to B \\ BC \to D & CG \to D & ACD \to B & CE \to A \\ D \to E & CE \to G & D \to G \end{array} \right\}$$

 ${}^{\tiny{f f ar B}}$ ${}^{\tiny{f CE}}
ightarrow {}^{\tiny{f A}}$ is redundant — remove

$$CE \rightarrow AE$$

(given)

$$\mathcal{F} = \left\{ \begin{array}{cccc} AB \to C & BE \to C & C \to A & CG \to B \\ BC \to D & CG \to D & ACD \to B & D \to E \\ CE \to G & D \to G & \end{array} \right\}$$

$$CG \rightarrow B$$
 is redundant — remove

Compute CG⁺ $CG^{(0)} = CG$

$$CG^{(1)} = ACDG$$

 \therefore can get $CG \rightarrow B$ indirectly

$$\therefore$$
 can get $CG \rightarrow B$ indirectly

add
$$CG \rightarrow D, C \rightarrow A$$

add $ACD \rightarrow B$

Remove redundant LHS attributes

$$\mathcal{F} = \left\{ \begin{array}{cccc} AB \to C & BE \to C & C \to A & BC \to D & CG \to D \\ ACD \to B & D \to E & CE \to G & D \to G \end{array} \right\}$$

 \blacksquare A is redundant in $ACD \rightarrow B$ so replace by $CD \rightarrow B$

- If we have $CD \rightarrow B$, can we show $ACD \rightarrow B$?
- \triangle ACD \rightarrow AB
- \bigcirc ACD \rightarrow B

(decomposition)

(augmentation)

Finally. . . We started with (after splitting RHS):

 $\mathcal{F} = \left\{ \begin{array}{cccc} AB \to C & BE \to C & C \to A & CG \to B \\ BC \to D & CG \to D & ACD \to B & CE \to A \\ D \to E & CE \to G & D \to G \end{array} \right\}$

Removed 2 redundant FDs and 1 LHS attribute to get one minimal cover of
$$\mathcal{F}$$

$$\mathcal{F}' = \left\{ \begin{array}{cccc} AB \to C & BE \to C & C \to A \\ BC \to D & CG \to D & CD \to B \\ D \to E & CE \to G & D \to G \end{array} \right\}$$

Another minimal cover of
$$\mathcal{F}$$
 is (DIY)
$$\mathcal{F}'' = \left\{ \begin{array}{ccc} AB \to C & BE \to C & C \to A & CG \to B \\ BC \to D & D \to E & D \to G & CE \to G \end{array} \right\}$$

Note that \mathcal{F}' and \mathcal{F}'' contain different numbers of dependencies and have arisen from the elimination of dependencies in different orders.