Math 557 Oct 13

Homogeneous Structures

Recall: We have seen that DLO is ω -categorical, meaning up to isomorphism there is only one countable model. Since there are no finite models, by Vaught's test, DLO is complete.

Question: Are there other examples like this?

Let \mathcal{L} be a language and \mathcal{M} be an \mathcal{L} -structure.

Definition 0.1.

For $A \subseteq M$, we denote by $\langle A \rangle^{\mathcal{M}}$ the smallest substructure of \mathcal{M} whose domain contains A.

We say $\mathcal{N} \subseteq \mathcal{M}$ is finitely generated if $\mathcal{N} = \langle A \rangle^{\mathcal{M}}$ for some finite $A \subseteq M$.

Definition 0.2.

We say \mathcal{M} is *homogeneous* if any isomorphism between finitely generated substructures of \mathcal{M} can be extended to an automorphism of \mathcal{M} .

Let $\mathcal{L} = \{<\}$ and $\mathcal{M} = (\mathbb{Q}, <)$. The finitely generated substructures coincide with the finite substructures.

The age of a structure

In the back-and-forth proof of ω -categoricity of DLO, we used a homogeneity property, similarly for the proof that $(\mathbb{Q}, <) \cong (\mathbb{R}, <)$.

Definition 0.3.

The age of \mathcal{M} , denoted age(\mathcal{M}), is the class of all finitely generated \mathcal{L} -structures isomorphic to a substructure of \mathcal{M} .

 $age(\mathbb{Q}, <)$ is the class of all finite linear orders.

Lemma 0.1.

Any two countable homogeneous structures with the same age are isomorphic.

Sketch. Let $\mathcal{A} \subseteq \mathcal{M}$ and $\mathcal{B} \subseteq \mathcal{N}$ be finitely generated, and let $\pi : \mathcal{A} \to \mathcal{B}$ be an isomorphism.

Let $a \in M \setminus A$. We need to show that π can be extended to an isomorphism $\mathcal{A} \cup \{a\} \to \mathcal{B}'$. This suffices, since we can then use the back-and-forth argument (remember our structures are countable) to extend everything to an automorphism of \mathcal{M} .

Suppose $\mathcal{A} = \langle E \rangle^{\mathcal{M}}$ and $\mathcal{B} = \langle F \rangle^{\mathcal{N}}$.

Let $\mathcal{A}' = \langle E \cup \{a\} \rangle^{\mathcal{M}} \subseteq \mathcal{M}$. Since \mathcal{M} and \mathcal{N} have the same age, there exists $\mathcal{C} \subseteq \mathcal{N}$ finitely generated such that $\mathcal{A}' \cong \mathcal{C}$ via some isomorphism g.

The map g is uniquely determined by its values on $E \cup \{a\}$. The restriction $g|_E$ induces an isomorphism $\langle E \rangle^{\mathcal{M}} \xrightarrow{\cong} \langle g(E) \rangle^{\mathcal{N}}$.

Therefore, $\pi \circ (g|_E)^{-1}$ is an isomorphism $\langle g(E) \rangle^{\mathcal{N}} \xrightarrow{\cong} \mathcal{B}$. Call this map τ . Note that $\langle g(E) \rangle^{\mathcal{N}}$ is a finitely generated subset of \mathcal{N} . Since \mathcal{N} is homogeneous, τ extends to an automorphism $\bar{\tau} : \mathcal{N} \to \mathcal{N}$. Let \mathcal{B}' be the image of \mathcal{C} under $\bar{\tau}$. By definition of $\bar{\tau}$, $\mathcal{B} \subset \mathcal{B}'$ and \mathcal{A}' is isomorphic to \mathcal{B}' via the map $\bar{\tau} \circ q$.

Question

What do ages of countable homogeneous structures look like?