

Fundamental of Mobile Robot **AUT-710**

Exercise 5

Widhi Atman 17.3.2023, **RN201**, 10:15 - Finish

General Plan for Exercises

Exercise 4: Implementation of model + Basic Control

10 point

- Exercise 5: Collision Avoidance with SI model
 - Point obstacle switching behavior with obstacle avoidance
 - non-point obstacle switching behavior with wall-following
 - Point obstacles QP-based controller

20 point

Deadline: Monday 10.4.2023 at 23:59

- Exercise 6: Control of Unicycle
- Mini Projects (optional)

Bonus up to 20 point

Flowchart of Simulator

If you are interested in implementing this to ROS

Subscribe to all required information (state, sensor, etc.)

Compute control input *u*

Publish *u* to robot / low level controller

Specifications (for Exercise 5)

Time sampling T = 10ms

Robot's radius = 0.21 m

Max translational vel. $(v_x^2 + v_y^2)^{\frac{1}{2}} = 0.5$ m/s Max rotational vel. $(|\omega|) = 5$ rad/s

Exercise 5.1 – Scenario

Model: omnidirectional mobile robot (single-integrator model)

Initial Position: $x[0] = [-2 \quad 0.5 \quad 0]^T$

Goal: static at $x^d = \begin{bmatrix} 2 & -1 & * \end{bmatrix}^T$.

Key Scenario:

- We assume the robot/controller can identify a **circular obstacle** (centroid and radius) once it is near. Here, the obstacle is centered at $p_x^o = 0$, $p_y^o = 0$ with radius 0.5m.

Control Objective:

 Reach the goal while avoiding contact/collision with obstacle

^{*} Can be any orientation at goal position

Exercise 5.1 – Task

By taking account of the robot's size and limitation, design and implement the following switched controller

$$||x - x_o|| < d_{safe}$$

$$||x - x_o|| \ge d_{safe} + \epsilon$$

Describe your approach in designing u_{gtg} , u_{avo} , d_{safe} , and ϵ , as well as your observation on the resulting controller.

Show the result by plotting:

- time series of control input u and $(v_x^2 + v_y^2)^{0.5}$
- time series of error $(x^d x)$,
- time series of distance to obstacle $||x x_o||$
- time series of state trajectory x vs x^a , and
- XY **trajectory** of the robot (or final snapshot of the simulator).

Deadlock issue: Try to set the initial position to $x[0] = [-2 \ 1 \ 0]^T$ and see what happen.

Exercise 5.2 – Scenario

Model: omnidirectional mobile robot (single-integrator model)

Initial Position: $x[0] = \begin{bmatrix} -2 & 1 & 0 \end{bmatrix}^T$

Goal: static at $x^d = \begin{bmatrix} 2 & 0 & * \end{bmatrix}^T$.

* Can be any orientation at goal position

Key Scenario:

- An obstacle presents in the field, but *unknown* to the robot/controller.
- The obstacle is detected by the reading from range sensor (< 1 m) Assume accurate readings from sensors.

Control Objective:

Reach the goal while avoiding contact/collision with obstacle

Exercise 5.2 – Task

10 points

By taking account of the robot's size and limitation, design and implement wall-following behavior to your switching controller in 5.1.

Describe your approach in designing u_{wf}^c , u_{wf}^{cc} , and computing x_o (and u_{avo}) from sensor readings as well as your observations on the resulting controller.

Show the result by plotting:

- time series of control input u and $\left(v_x^2 + v_y^2\right)^{0.5}$
- time series of error $(x^d x)$,
- time series of minimum reading distance from the sensor
- *time series* of state trajectory x vs x^d , and
- XY trajectory of the robot (or final snapshot of the simulator).

IMPORTANT TIPS:

- Use visualization to help debug (e.g., the $u_{gtg},\,u_{avo},\,u_{wf}^c,\,u_{wf}^{cc},\,$ etc.)
- Print every time the state changes

Exercise 5.3 – Scenario

Model: omnidirectional mobile robot (**single-integrator model**)

Initial Position: $x[0] = [-2 \quad -1 \quad 0]^T$

Goal: static at $x^d = \begin{bmatrix} 2 & 1 & * \end{bmatrix}^T$.

Key Scenario:

- We assume the robot/controller can identify a circular obstacle (centroid and radius) once it is near. Here, 3 obstacle presents:
 - 1. centered at $p_x^{o1} = -0.85$, $p_y^{o1} = 0$ with radius 0.3m.
 - 2. centered at $p_x^{o2} = 0.3$, $p_y^{o2} = -0.1$ with radius 0.3m.
 - 3. centered at $p_x^{o3} = 1.05$, $p_y^{o3} = 0.8$ with radius 0.3m.

Control Objective:

 Reach the goal while avoiding contact/collision with obstacle

^{*} Can be any orientation at goal position

Exercise 5.3

By taking account of the robot's limitation, implement the QP-based controller as follows

$$u = \arg\min_{u^*} \|u_{gtg} - u^*\|^2$$
s.t. $\left(\frac{\partial h_{o1}}{\partial x}\right)^T u^* \ge -\gamma(h_{o1}(x))$ with $h_{oi} = \left\| \begin{bmatrix} p_x \\ p_y \end{bmatrix} - \begin{bmatrix} p_{oi}^{oi} \\ p_{y}^{oi} \end{bmatrix} \right\|^2 - R_{si}^2$

$$\left(\frac{\partial h_{o2}}{\partial x}\right)^T u^* \ge -\gamma(h_{o2}(x))$$

$$\left(\frac{\partial h_{o3}}{\partial x}\right)^T u^* \ge -\gamma(h_{o3}(x))$$
 Use $R_{si} = 0.51$ for all obstacles.

NOTE: u_{gtg} still need to comply with the robot's max speed. You can use u_{ata} from 5.1.

Then, test the controller for $\gamma(h)=0.2h$, $\gamma(h)=10h$, and $\gamma(h)=10h^3$ and describe your observation on what does the variation affects.

Show the result by comparing the plot for each γ function variation via:

- Time series comparison of control input $u_{
 m gtg}$ vs u (plot only $v_{
 m x}$ and $v_{
 m y}$)
- Time series comparison of function h_{o1} , h_{o2} , and h_{o3}
- Comparison of XY **trajectory** of the robot

How to show obstacle on Simulator?

Plot using the axis object in the sim_mobile_robot class → sim_visualizer.ax

Option 1: using patch in matplotlib (for simple shape: circle, rectangle, etc.)

```
if IS_SHOWING_2DVISUALIZATION: # Initialize Plot
    sim_visualizer = sim_mobile_robot( 'omnidirectional' ) # Omnidirectional Icon
    #sim_visualizer = sim_mobile_robot( 'unicycle' ) # Unicycle Icon
    sim_visualizer.set_field( field_x, field_y ) # set plot area
    sim_visualizer.show_goal(desired_state)
    sim_visualizer.ax.add_patch( plt.Circle( (0, 0), 0.5, color='r' ) )
    sim_visualizer.ax.add_patch( plt.Circle( (0, 0), d_safe, color='r', fill=False) )
    sim_visualizer.ax.add_patch( plt.Circle( (0, 0), d_safe + eps, color='g', fill=False) )
```

Example for 5.1

Draw (full) red circle for obstacle Draw empty red circle for d_{safe} Draw empty green circle for $d_{safe} + \epsilon$

Option 2: by defining obstacle's vertices and use line plot

Example for 5.2

How to implement QP for 5.3?

$$u = \underset{u^*}{\operatorname{arg \, min}} \|u_{gtg} - u^*\|^2$$
s.t.
$$\left(\frac{\partial h_{o1}}{\partial x}\right)^T u^* \ge -\gamma(h_{o1}(x))$$

$$\left(\frac{\partial h_{o2}}{\partial x}\right)^T u^* \ge -\gamma(h_{o2}(x))$$

$$\left(\frac{\partial h_{o3}}{\partial x}\right)^T u^* \ge -\gamma(h_{o3}(x))$$

Refer to lecture 10 on 22.3.2023

$$\min_{z} \frac{1}{2} z^{T} Q z + c^{T} z$$

s.t. $Hz \leq b$

import cvxopt Require cvxopt python package

two lines to the appropriate values

 $z = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$

NOTE: These code only compute the linear velocity (x and y) which is sufficient for 5.3.

Question?

- Consult them via
 - Exercise sessions on 17.3.2023, 24.3.2023, and 31.3.2023
 - Teams channel