Algoritmo di minimizzazione (Quine-McCluskey)

Forma SOP:

- Raccolta degli implicanti primi: Determinare tutti e 1. soli gli implicanti primi della funzione combinatoria, tramite le mappe di Karnaugh.
- Copertura della funzione: Effettuare una scelta di 2. implicanti primi che:
 - coprano tutti i mintermini della funzione a)
 - siano di costo minimo (secondo il criterio di b) costo dei letterali)

Forma POS:

- Raccolta degli implicanti primi: Determinare tutti e 1. soli gli implicati primi della funzione combinatoria, tramite le mappe di Karnaugh.
- 2. Copertura della funzione: Effettuare una scelta di implicati primi che:
 - coprano tutti i Maxtermini della funzione a)
 - siano di costo minimo (secondo il criterio di b) costo dei letterali)

Osservazione: le forme minime a due livelli SOP e POS di una stessa funzione combinatoria possono avere costi differenti.

In generale, le forme minime SOP e POS non sono uniche!

Quine-McCluskey - Raccolta degli implicanti primi

$$f(x, y, u, v) = \Sigma (0, 1, 2, 4, 5, 7, 10, 14, 15)$$

Enumerazione dei mintermini

		u v								
ху	00	01	11	10						
00	0	1	3	2						
01	4	5	7	6						
11	12	13	15	14						
10	8	9	11	10						

Mappa di Karnaugh - Raccolta degli implicanti primi

Elenco degli implicanti primi:

$p_1 = /x \cdot /u$	copre: 0, 1, 4, 5	costa: 2
$p_2 = /x \cdot y \cdot v$	copre: 5, 7	costa: 3
$p_3 = y \cdot u \cdot v$	copre: 7, 15	costa: 3
$p_4 = x \cdot y \cdot u$	copre: 14, 15	costa: 3
$p_5 = x \cdot u \cdot /v$	copre: 10, 14	costa: 3
$p_6 = /y \cdot u \cdot /v$	copre: 10, 2	costa: 3
$p_7 = /x \cdot /y \cdot /v$	copre: 0, 2	costa: 3

Quine-McCluskey - Copertura della funzione

$$f(x, y, u, v) = \Sigma (0, 1, 2, 4, 5, 7, 10, 14, 15)$$

Copertura ottima:

$$f = p_1 + p_3 + p_5 + p_7$$

$$f = /x \cdot /u + y \cdot u \cdot v + x \cdot u \cdot /v + /x \cdot /y \cdot /v$$

$$costo = 2 + 3 + 3 + 3 = 11$$

Un'altra copertura ottima:

$$f = p_1 + p_2 + p_4 + p_6$$
$$costo = 2 + 3 + 3 + 3 = 11$$

Una copertura non-ottima:

$$f = p_1 + p_2 + p_3 + p_4 + p_5 + p_6$$

$$costo = 2 + 3 + 3 + 3 + 3 + 3 = 17$$

Quine-McCluskey - Tabella di Copertura - Definizione

La Tabella di Copertura riporta:

- in colonna i mintermini della funzione
- in riga gli implicanti primi della funzione

Una casella della tabella va marcata se e solo se l'implicante primo relativo copre il mintermine relativo.

					mir	nter	min	i de	ella	fun	zior	ne f				
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
p_1	×	×			×	×										
p_2						×		×								
p_3								×								×
p_4															×	×
p_5											×				×	
 p₃ p₄ p₅ p₆ p₇ 			×								×					
p_7	×		×													

Implicante primo essenziale: è l'unico a coprire un determinato mintermine.

Gli implicanti primi essenziali si scoprono cercando le colonne che contengono una solo marca.

Se un implicante primo è essenziale, è indispensabile usarlo per la copertura della funzione!

Quine-McCluskey - Tabella di Copertura - Funzione f

Estrazione degli implicanti essenziali

p₁ è essenziale: andrà usato nella copertura di f Si estraggono la riga p₁ e le colonne 0, 1, 4 e 5

·	2	3	6	7	8	9	10	11	12	13	14	15
p_2				×								
p₃p₄p₅p₆				×								×
p_4											×	×
p_5							×				×	
p_6	×						×					
p_7	×											

Quine-McCluskey - Tabella di copertura - Funzione f

Relazione di dominanza: l'implicante primo ph domina l'implicante primo p_k se e solo se la riga p_h contiene tutte le marche presenti nella riga pk.

Un implicante primo dominato si può sempre scartare, perché copre meno mintermini del suo implicante dominante e pertanto ha costo non superiore a quello del suo implicante dominante.

Eliminazione degli implicanti dominati

	2	3	6	7	8	9	10	11	12	13	14	15
p ₂				×								
p₃p₄p₅p₆p₇				×								×
p_4											×	×
p_5							×				×	
p_6	×						×					
p ₇	×											

p₂ è dominato da p₃

p₇ è dominato da p₆

p₂ e p₇ sono dominati: non andaranno usati per coprire f

Si estraggono le righe p₂ e p₇

·	2	3	6	7	8	9	10	11	12	13	14	15
p_3				×								×
p_4											×	×
p_5							×				×	
p_6	×						×					

Quine-McCluskey - Tabella di copertura - Funzione f

Estrazione degli implicanti essenziali secondari

p₃ e p₆ sono essenziali secondari

p₃ e p₆ andranno usati nella copertura di f

Si estraggono le righe p₃ e p₆, e le colonne 2, 7, 10 e 15

	3	6	8	9	11	12	13	14
p_4								×
p_5								×

Quine-McCluskey - Tabella di copertura - Funzione f

Eliminazione degli implicanti dominati secondari

p₅ è dominato da p₄ e p₄ è dominato da p₅

p₄ e p₅ sono equivalenti

si può eliminarne arbitrariamente uno, p. es. p₅

Estrazione degli implicanti essenziali terziari

p₄ è essenziale terziario

p₄ andrà usato nella copertura di f

La tabella non ha più righe avanzate: FINE

Quine-McCluskey - Riassunto - Funzione f

Ruolo degli implicanti primi

Implicante primo	Ruolo
p ₁	essenziale
p_2	dominato da p ₃
p_3	essenziale (2° livello)
p_4	essenziale (3° livello)
p ₅	equivalente a p ₄
p_6	essenziale (2º livello)
p ₇	dominato da p ₆

Gli implicanti p₁, p₃, p₄ e p₆ vanno usati per coprire f. Essi sono anche sufficienti a coprire f.

Forma minima SOP:
$$f = p_1 + p_3 + p_4 + p_6$$

$$costo = 2 + 3 + 3 + 3 = 11$$

Infatti:

- p₁ è essenziale
- p₃ e p₆ sono essenziali (di 2º livello)
- p₄ è essenziale (di 3° livello)
- la somma di p₁ + p₃ + p₄ + p₆ copre tutti gli 1 della funzione

Nota bene: l'algoritmo di Quine-McCluskey ha prodotto una forma minima SOP, ma ne possono esistere altre, egualmente minime.

Nota bene: quanto fatto per trovare la forma minima SOP non implica nulla circa la forma minima POS.

Unicità della forma minima

Condizione sufficiente per l'unicità della forma minima: se la funzione f ammette una copertura formata solo da implicanti primi essenziali di 1º livello, allora la forma di costo minimo è unica (questa condizione è sufficiente, ma non necessaria).

Sufficienza della condizione

Esiste una copertura formata da soli imp. primi essenziali: e₁, e₂ ed e₃ - La forma minima è unica!

Non necessità della condizione

Non esiste una copertura formata da soli imp. primi essenziali - Ma la forma minima è unica! (e₁, p₂ ed e₂)

Matrice ciclica

L'algortimo delle tabelle di copertura non conduce sempre alla forma minima. Talvolta la tabella di copertura può essere irriducibile.

Esempio:

non ci sono implicanti essenziali

nessun implicante domina nessun altro implicante

la matrice è irriducibile

Copertura: occorre fare delle scelte arbitrarie, p. es.:

$$q_1 + q_2$$
 oppure

$$q_2 + q_3$$
 oppure

$$q_3 + q_1$$

tenendo comunque conto del costo degli implicanti.

In generale, in caso di matrici cicliche si utilizzano metodi di "branch-and-bound" (ricerca operativa) per trovare le possibili coperture.