Numerické metody řešení soustav lineárních rovnic

Obecný tvar soustavy lineárních rovnic

Jaké soustavy zde budeme řešit

V této kapitole se budeme zabývat pouze soustavami, kde je stejný počet rovnic jako neznámých, tj. matice soustavy je čtvercová:

$$a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n = b_1$$

 $a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n = b_2$
 \vdots
 $a_{n1} x_1 + a_{n2} x_2 + \cdots + a_{nn} x_n = b_n$

Maticový tvar:

$$A\overline{x}=\overline{b}.$$

Jaké metody řešení už znáte a proč to nestačí

- dosazovací vhodné jen pro malé, přehledné soustavy
- Cramerovo pravidlo (podíly determinantů) vhodné pro malé soustavy a symbolické výpočty
- Gaussova eliminace (GEM, úprava na schodovitý tvar) univerzální, ale má i svoje nevýhody

V praxi se objevují případy, kdy je nutno řešit obrovský systém lineárních rovnic. Často se přitom v každé rovnici vyskytuje jen několik málo neznámých. Takováto soustava pak má tzv. řídkou (angl. sparse) matici – většina jejích prvků je nulová. Řídké matice se do paměti počítače ukládají ve speciálních formátech, jiných než pro ukládání "klasických" matic. Pro soustavy s řídkou maticí existují metody, které mohou být vhodnější než GEM.

Kde se berou velké řídké matice

Řídké matice se vyskytují např. při hledání rozložení nějaké fyzikální veličiny na určité oblasti. Oblast pokryjeme sítí uzlů a hledáme přibližné hodnoty řešení v nich.

Typy metod

Metody řešení soustav lineárních rovnic

Přímé

- po konečném počtu matematických operací dojdeme přímo k "přesnému" řešení. (Řešení ve skutečnosti kvůli zaokrouhlovacím chybám přesné být nemusí.)
 - Cramerovo pravidlo
 - Gaussova eliminační metoda
 - LU-rozklad
 - ... (existuje řada dalších metod)

Iterační

 zvolíme počáteční aproximaci řešení a postupně ji zlepšujeme. K přesnému řešení bychom se obecně dostali až v limitě (tj. nekonečným počtem kroků).

Gaussova eliminační metoda

Soustavu pomocí elementárních úprav převedeme na trojúhelníkový tvar, ze kterého se řešení snadno spočítá pomocí tzv. zpětného chodu.

Původní soustava:

$$a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n = b_1$$

 $a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n = b_2$
 \vdots
 $a_{n1} x_1 + a_{n2} x_2 + \cdots + a_{nn} x_n = b_n$

Upravená soustava:

$$\tilde{a}_{11} x_1 + \tilde{a}_{12} x_2 + \cdots + \tilde{a}_{1n} x_n = \tilde{b}_1
\tilde{a}_{22} x_2 + \cdots + \tilde{a}_{2n} x_n = \tilde{b}_2
\vdots
\tilde{a}_{nn} x_n = \tilde{b}_n$$

Příklad na GEM – hrajeme si na počítač

Příklad

Gaussovou eliminační metodou najděte řešení soustavy

$$\begin{array}{rclrcrcr}
2x & - & 3y & + & z & = & 5 \\
-3x & + & 5y & + & 2z & = & -4 \\
x & + & 2y & - & z & = & 1
\end{array}$$

$$\begin{pmatrix} 2 & -3 & 1 & | & 5 \\ -3 & 5 & 2 & | & -4 \\ 1 & 2 & -1 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & -3 & 1 & | & 5 \\ 0 & 0,5 & 3,5 & | & 3,5 \\ 0 & 3,5 & -1,5 & | & -1,5 \end{pmatrix} \begin{array}{c} II - (-\frac{3}{2})I \\ III - \frac{1}{2}I \end{array}$$

Postupně: z = 1, y = 0, x = 2

Algoritmus Gaussovy eliminační metody

Zabýváme se pouze situací, kdy je matice regulární, tj. existuje jediné řešení. V opačném případě výpočet ukončíme.

Algoritmus GEM

Pro
$$i = 1, 2, ..., n - 1$$
:

Je-li
$$a_{ii} = 0$$
:

Najdi mezi řádky k = i + 1, ..., n první takový, kde $a_{ki} \neq 0$. Jestliže se takový řádek našel, vyměň k-tý a i-tý řádek. Jestliže nenašel, je matice singulární, konec.

Pro
$$j = i + 1, ..., n$$
:

Od j-tého řádku odečti (a_{ji}/a_{ii}) -násobek i-tého řádku.

Je-li $a_{nn} = 0$, je matice singulární, konec.

Pro
$$i = n, n - 1, ..., 1$$
:

Vypočítej *i*-tou neznámou.

Další příklad na GEM – hrajeme si na počítač ještě víc

Příklad

Gaussovou eliminační metodou najděte řešení soustavy

$$\begin{array}{rcl}
0,0001x & + & y & = & 1 \\
x & + & y & = & 2.
\end{array}$$

a) Počítejte přesně; b) Zaokrouhlujte na 3 platné číslice.

Další příklad na GEM – hrajeme si na počítač ještě víc

Příklad

Gaussovou eliminační metodou najděte řešení soustavy

$$\begin{array}{rcl}
0,0001x & + & y & = & 1 \\
x & + & y & = & 2.
\end{array}$$

a) Počítejte přesně; b) Zaokrouhlujte na 3 platné číslice.

$$\begin{pmatrix} 0,0001 & 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 0,0001 & 1 & 1 \\ 0 & -9\,999 & -9\,998 \\ 0 & -1,00\cdot10^4 & -1,00\cdot10^4 \end{pmatrix} \begin{array}{c} II - 10\,000I \\ II - 1,00\cdot10^4I \end{array}$$

Přesný výpočet:
$$y = \frac{9998}{9999} \doteq 0,9999$$
; $x = \frac{10000}{9999} \doteq 1,0001$
S průběžným zaokrouhlováním: $y = 1,00$; $x = 0,00$

Nevýhody GEM; GEM s výběrem hlavního prvku

Nevýhody Gaussovy eliminační metody

- Výpočet je časově náročný, potřebných aritmetických operací je řádově $n^3/3$.
- Při výpočtu se mohou hromadit zaokrouhlovací chyby.

Eliminace s částečným výběrem hlavního prvku (pivotováním)

Slouží ke zmenšení zaokrouhlovacích chyb.

Pro eliminaci prvků v k-tém sloupci používáme násobky toho řádku (vybíráme z k-tého až n-tého řádku), ve kterém má číslo v k-tém sloupci největší absolutní hodnotu.

Příklad na GEM s částečným výběrem hlavního prvku

Příklad

Pomocí eliminace s částečným výběrem hlavního prvku najděte řešení soustavy

Příklad na GEM s výběrem hlavního prvku – řešení

$$\begin{pmatrix} -1 & 7.5 & 0 & | & 16 \\ 2 & -2 & 2 & | & -4 \\ \hline -10 & -5 & -8 & | & -8 \end{pmatrix} \rightarrow \begin{pmatrix} -10 & -5 & -8 & | & -8 \\ 2 & -2 & 2 & | & -4 \\ -1 & 7.5 & 0 & | & 16 \end{pmatrix} \rightarrow \begin{pmatrix} \cdot \frac{2}{10} & / \cdot \left(-\frac{1}{10} \right) \\ -\frac{1}{10} & / \cdot \left($$

$$\begin{pmatrix} -10 & -5 & -8 & | & -8 \\ 0 & -3 & 0.4 & | & -5.6 \\ 0 & \boxed{8} & 0.8 & | & 16.8 \end{pmatrix} \leftarrow \begin{pmatrix} -10 & -5 & -8 & | & -8 \\ 0 & 8 & 0.8 & | & 16.8 \\ 0 & -3 & 0.4 & | & -5.6 \end{pmatrix} / \cdot \frac{3}{8} \sim$$

$$\begin{pmatrix} -10 & -5 & -8 & | & -8 \\ 0 & 8 & 0.8 & | & 16.8 \\ 0 & 0 & 0.7 & | & 0.7 \end{pmatrix}$$

$$-10x - 5y - 8z = -8$$

$$8y + 0.8z = 16.8$$

$$0.7z = 0.7 \Rightarrow z = 1$$

$$\Rightarrow x = -1$$

Algoritmus GEM s částečným výběrem hlavního prvku

Opět se zabýváme pouze situací, kdy je matice regulární. Změna oproti tradiční GEM je vyznačena červeně.

Algoritmus GEM s pivotováním

Pro i = 1, 2, ..., n - 1:

Najdi mezi řádky k = i, ..., n ten, kde je $|a_{ki}|$ maximální.

Jestliže je nalezené maximum 0, je matice singulární, konec.

Řádek obsahující maximální hodnotu vyměň s i-tým řádkem.

Pro
$$j = i + 1, ..., n$$
:

Od j-tého řádku odečti (a_{ii}/a_{ii}) -násobek i-tého řádku.

Je-li $a_{nn} = 0$, je matice singulární, konec.

Pro
$$i = n, n - 1, ..., 1$$
:

Vypočítej i-tou neznámou.

Metoda *LU* rozkladu – příprava

Připomeňme několik věcí:

• Řádkové úpravy lze provádět pomocí násobení maticí, např.

$$\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 3 & 4 & 5 \end{pmatrix} II - 2I$$

Inverze bere zpět, co původní matice způsobila:

$$\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ +2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Součin matic tohoto typu:

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -4 & 1 \end{pmatrix}$$

LU rozklad

Při eliminaci původní matici A násobíme postupně maticemi E_1, E_2, \ldots , které realizují elementární řádkové úpravy, dokud nedostaneme horní trojúhelníkovou matici U:

$$A \sim U \quad \Leftrightarrow \quad E_m \cdots E_1 A = U, \quad \text{tj.} \quad A = \underbrace{E_1^{-1} \cdots E_m^{-1}}_{I} U$$

V matici L je "schovaná cesta zpět" od trojúhelníkového tvaru U k původní matici A.

Výpočet matic L a U

Matici *A* tradičním způsobem upravujeme na trojúhelníkový tvar. Prvky matice *L* doplňujeme postupně po sloupcích:

- nad diagonálou jsou nuly
- na diagonále jsou jedničky
- prvky pod diagonálou: Jestliže např. ke třetímu řádku matice A přičítáme 4-násobek druhého řádku, pak $\ell_{32}=-4$ pozor, změna znaménka!

Matice U je pak horní trojúhelníková matice, která nám vyšla eliminací.

Problém: Někdy je při eliminaci potřeba vyměnit řádky – co pak?

Obecný tvar LU rozkladu

Obecný tvar *LU* rozkladu

Pro každou čtvercovou matici A typu $n \times n$ platí

$$PA = LU$$
,

kde L je dolní a U horní trojúhelníková matice a matice P je tzv. permutační matice, která zprostředkuje výměny řádků.

LU rozklad s výběrem hlavního prvku

Pro zmírnění vlivu zaokrouhlovacích chyb lze při výpočtu LU rozkladu eliminaci provádět s pivotováním. Výměny řádků jsou pak zohledněny v matici P.

Na co je *LU* rozklad dobrý

Řešení soustavy pomocí LU rozkladu

Řešíme soustavu

$$A\overline{x} = \overline{b}$$
, tj. $LU\overline{x} = \overline{b}$.

Označme $\overline{y} = U\overline{x}$.

Nejprve najdeme řešení soustavy $L\overline{y} = \overline{b}$. Soustava má trojúhelníkovou matici, takže je to snadné.

Pak vyřešíme soustavu $U\overline{x}=\overline{y}$. Ta má opět trojúhelníkovou matici. Tato metoda je výhodná například tehdy, když potřebujeme řešit více soustav, vždy se stejnou maticí A, ale jinou pravou stranou \overline{b} . Rozklad provedeme pouze jednou a řešení soustavy s danou pravou stranou je pak rychlé.

Příklad na LU rozklad

Příklad

Najděte LU rozklad matice

$$A = \begin{pmatrix} 2 & -3 & 1 \\ -3 & 5 & 2 \\ 1 & 2 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -3 & 1 \\ -3 & 5 & 2 \\ 1 & 2 & -1 \end{pmatrix} \sim \begin{pmatrix} 2 & -3 & 1 \\ 0 & 0.5 & 3.5 \\ 0 & 3.5 & -1.5 \end{pmatrix} \begin{matrix} II+1.5I \\ III-0.5I \end{matrix} \qquad L = \begin{pmatrix} 1 & ? & ? \\ -1.5 & ? & ? \\ +0.5 & ? & ? \end{pmatrix}$$

$$\sim \begin{pmatrix} 2 & -3 & 1 \\ 0 & 0.5 & 3.5 \\ 0 & 0 & -26 \end{pmatrix} III - 7I \qquad L = \begin{pmatrix} 1 & 0 & ? \\ -1.5 & 1 & ? \\ +0.5 & +7 & ? \end{pmatrix}$$

Příklad – pokračování

Doplníme poslední sloupec matice *L* a jsme hotovi:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ -1,5 & 1 & 0 \\ 0,5 & 7 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 2 & -3 & 1 \\ 0 & 0,5 & 3,5 \\ 0 & 0 & -26 \end{pmatrix}$$

Pro kontrolu ověřme, že opravdu LU = A:

$$\begin{pmatrix} 1 & 0 & 0 \\ -1,5 & 1 & 0 \\ 0,5 & 7 & 1 \end{pmatrix} \begin{pmatrix} 2 & -3 & 1 \\ 0 & 0,5 & 3,5 \\ 0 & 0 & -26 \end{pmatrix} = \begin{pmatrix} 2 & -3 & 1 \\ -3 & 5 & 2 \\ 1 & 2 & -1 \end{pmatrix}$$

Příklad – použití LU rozkladu

Příklad

Pomocí nalezeného LU rozkladu matice A najděte řešení soustavy

Označme $U[x_1,x_2,x_3]^{\mathrm{T}}=[y_1,y_2,y_3]^{\mathrm{T}}$. Pak platí

$$A\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = LU\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = L\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 5 \\ -4 \\ 1 \end{pmatrix}$$

$$y_1$$
 = 5 \Rightarrow y_1 = 5
-1,5 y_1 + y_2 = -4 \Rightarrow y_2 = 3,5
0,5 y_1 + 7 y_2 + y_3 = 1 \Rightarrow y_3 = -26

Příklad – pokračování

Nyní vyřešíme soustavu $U\overline{x} = \overline{y}$:

$$2x_1 - 3x_2 + x_3 = 5$$
 \Rightarrow $x_1 = 2$
 $0.5x_2 + 3.5x_3 = 3.5$ \Rightarrow $x_2 = 0$
 $- 26x_3 = -26$ \Rightarrow $x_3 = 1$

Iterační metody

Co to je

lterační metody jsou metody postupných aproximací – opakováním určitého výpočtu se postupně přibližujeme k řešení.

U soustav lineárních rovnic se takové metody používají pro řešení velkých soustav rovnic pomocí počítače.

Některé iterační metody pro soustavy lineárních rovnic

- Jacobiho metoda
- Gauss-Seidelova metoda
- Metoda sdružených gradientů
- ... (existuje řada dalších metod)

Konvergence a divergence

Řešení pomocí iteračních metod nemusí být vždy úspěšné. Abychom pomocí vybrané metody přibližné řešení opravdu našli, je zapotřebí, aby soustava rovnic, resp. její matice, splňovala určité podmínky.

Konvergence a divergence – zhruba, ne přesná definice

Jestliže se postupné aproximace k přesnému řešení přibližují (přesněji: přesné řešení je limitou posloupnosti postupných aproximací), řekneme, že metoda konverguje.

Jestliže se k řešení nepřibližují, jdou do nekonečna nebo nějak oscilují, řekneme, že metoda diverguje.

Jacobiho metoda

Použité označení

Řešíme soustavu s neznámými x_1,\ldots,x_n . Index kroku budeme psát nahoru do závorky, např. $x_2^{(3)}$ znamená hodnotu aproximace neznámé x_2 ve třetím kroku výpočtu.

Jestliže na ukázku řešíme jen malou soustavu s neznámými např. x, y, z, můžeme psát index kroku dolů: x_4 pak znamená hodnotu aproximace neznámé x ve čtvrtém kroku.

Jacobiho metoda

Z 1. rovnice vyjádříme 1. neznámou, z 2. rovnice 2. neznámou atd. Zvolíme počáteční aproximaci řešení $\overline{x}^{(0)} = (x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)})^T$, a další aproximace počítáme jako:

$$\begin{aligned} x_1^{(k+1)} & = & \frac{1}{a_{11}} \left(b_1 - a_{12} x_2^{(k)} - a_{13} x_3^{(k)} - \dots - a_{1n} x_n^{(k)} \right) \\ x_2^{(k+1)} & = & \frac{1}{a_{22}} \left(b_2 - a_{21} x_1^{(k)} - a_{23} x_3^{(k)} - \dots - a_{2n} x_n^{(k)} \right) \\ & \vdots \\ x_n^{(k+1)} & = & \frac{1}{a_{nn}} \left(b_n - a_{n1} x_1^{(k)} - a_{n2} x_2^{(k)} - \dots - a_{n-n-1} x_{n-1}^{(k)} \right), \end{aligned}$$

Pokračujeme, dokud se všechny složky řešení neustálí, tj. dokud neplatí

$$|x_i^{(k+1)} - x_i^{(k)}| < arepsilon$$
 pro všechna $i = 1, \dots, n,$

kde ε je zvolené malé číslo. Tímto kriteriem ale není zaručeno, že od přesného řešení nejsme dál než o ε .

Příklad na Jacobiho metodu

Příklad

Pomocí Jacobiho metody najděte řešení zadané soustavy rovnic s přesností $\varepsilon=10^{-4}$.

$$\begin{array}{rcl}
 10x & + & y & - & 2z & = & -8 \\
 x & - & 8y & + & 3z & = & -17 \\
 2x & + & y & + & 5z & = & 0
 \end{array}$$

Z první rovnice vyjádříme x, ze druhé y a ze třetí z:

Počáteční aproximaci můžeme zvolit např. $x_0 = 0, y_0 = 0, z_0 = 0$. Další aproximace počítáme podle vztahů

$$x = \frac{1}{10} (-8 - y + 2z)$$

$$y = \frac{1}{8} (17 + x + 3z)$$

$$z = \frac{1}{5} (-2x - y)$$

$$x_{k+1} = \frac{1}{10} (-8 - y_k + 2z_k)$$

$$y_{k+1} = \frac{1}{8} (17 + x_k + 3z_k)$$

$$z_{k+1} = \frac{1}{6} (-2x_k - y_k),$$

Postupně dostáváme:

$$\begin{array}{llll} x_1 &=& (-8-y_0+2z_0)/10 = -0,8 & x_2 &=& (-8-y_1+2z_1)/10 = -1,0125 & \cdots \\ y_1 &=& (17+x_0+3z_0)/8 = 2,125 & y_2 &=& (17+x_1+3z_1)/8 = 2,025 & \cdots \\ z_1 &=& (-2x_0-y_0)/5 = 0 & z_2 &=& (-2x_1-y_1)/5 = -0,105 & \cdots \end{array}$$

Takto pokračujeme, dokud nebude rozdíl postupných aproximací v x,y i v z menší než 10^{-4} . Zde toto nastane po $11~{\rm kroc}$ ích metody a

$$x \doteq -1,0000, \quad y \doteq 2,0000, \quad z \doteq 0,0000$$

Příklad – ukázka divergence Jacobiho metody

Co kdybychom v předchozím příkladu vyjádřili x ze druhé rovnice, y ze třetí a z z první? Iterační vztahy pak jsou

$$x_{k+1} = -17 + 8y_k - 3z_k$$

$$y_{k+1} = -2x_k - 5z_k$$

$$z_{k+1} = \frac{1}{2} (-8 + 10x_k + y_k).$$

Opět zvolíme

$$x_0 = 0, y_0 = 0, z_0 = 0$$

a počítáme obdobně jako minule:

$$x_1 = -17 + 8y_0 - 3z_0 = -17$$
 $x_2 = -17 + 8y_1 - 3z_1 = -29$
 $y_1 = -2x_0 - 5z_0 = 0$ $y_2 = -2x_1 - 5z_1 = 14$
 $z_1 = (-8 + 10x_0 + y_0)/2 = 4$ $z_2 = (-8 + 10x_1 + y_1)/2 = -81$

Je vidět, že metoda diverguje a výpočet dalších aproximací by nám to jen potvrdil.

Podmínky konvergence pro Jacobiho metodu

Diagonálně dominantní matice

Matice A se nazývá řádkově ostře diagonálně dominantní, jestliže je v každém řádku absolutní hodnota prvku na diagonále větší než součet absolutních hodnot všech ostatních prvků v onom řádku neboli jestliže

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$$
 pro $i = 1, \dots, n$

Podobně definujeme sloupcově ostře diagonálně dominantní matici:

$$|a_{jj}|>\sum_{i=1,i
eq j}^n|a_{ij}|\quad \mathsf{pro}\ j=1,\dots,n.$$

V předchozím příkladu matice byla řádkově ostře diagonálně dominantní:

$$|10| > |1| + |-2|; \quad |-8| > |1| + |3|; \quad |5| > |2| + |1|$$

Podmínky konvergence pro Jacobiho metodu

Podmínky konvergence pro Jacobiho metodu

Je-li matice A ostře řádkově nebo sloupcově diagonálně dominantní, pak Jacobiho metoda konverguje pro libovolnou počáteční aproximaci $\overline{x}^{(0)}$.

Jestliže matice není diagonálně dominantní, Jacobiho metoda konvergovat může a nemusí.

Nutnou a dostatečnou podmínku konvergence si řekneme později.

Jak diagonální dominance dosáhnout?

Někdy stačí rovnice přerovnat nebo provést jednoduchou úpravu (součet dvou rovnic apod.). Toto se však týká spíše malých příkladů na ukázku. U velkých systémů se to podaří jen těžko.

Gauss-Seidelova metoda

Gauss-Seidelova metoda

Počítáme podobně jako u Jacobiho metody, ale v každém kroku použijeme nejnovější hodnoty neznámých:

$$x_{1}^{(k+1)} = \frac{1}{a_{11}} \left(b_{1} - a_{12} x_{2}^{(k)} - a_{13} x_{3}^{(k)} - \dots - a_{1n} x_{n}^{(k)} \right)$$

$$x_{2}^{(k+1)} = \frac{1}{a_{22}} \left(b_{2} - a_{21} x_{1}^{(k+1)} - a_{23} x_{3}^{(k)} - \dots - a_{2n} x_{n}^{(k)} \right)$$

$$x_{3}^{(k+1)} = \frac{1}{a_{33}} \left(b_{3} - a_{31} x_{1}^{(k+1)} - a_{32} x_{2}^{(k+1)} - \dots - a_{3n} x_{n}^{(k)} \right)$$

$$\vdots$$

$$x_{n}^{(k+1)} = \frac{1}{a_{nn}} \left(b_{n} - a_{n1} x_{1}^{(k+1)} - a_{n2} x_{2}^{(k+1)} - \dots - a_{nn-1} x_{n-1}^{(k+1)} \right)$$

Příklad na Gauss-Seidelovu metodu

Příklad

Pomocí Gauss-Seidelovy metody najděte řešení zadané soustavy rovnic s přesností $\varepsilon=10^{-4}$

$$\begin{array}{rcl}
 10x & + & y & - & 2z & = & -8 \\
 x & - & 8y & + & 3z & = & -17 \\
 2x & + & y & + & 5z & = & 0
 \end{array}$$

Z první rovnice vyjádříme x, ze druhé y a ze třetí z. Oproti Jacobiho metodě se v iteračních vztazích změní indexy:

$$\begin{array}{rcl} x_{k+1} & = & \dfrac{1}{10} \left(-8 - y_k + 2 z_k \right) \\ \\ y_{k+1} & = & \dfrac{1}{8} \left(17 + x_{k+1} + 3 z_k \right) \\ \\ z_{k+1} & = & \dfrac{1}{5} \left(-2 x_{k+1} - y_{k+1} \right), \end{array}$$

Jestliže opět zvolíme $x_0 = 0$, $y_0 = 0$, $z_0 = 0$, další aproximace budou:

$$x_1 = (-8 - y_0 + 2z_0)/10 = -0.8$$
 $x_2 = (-8 - y_1 + 2z_1)/10 = -1.0195$ \cdots
 $y_1 = (17 + x_1 + 3z_0)/8 = 2.025$ $y_2 = (17 + x_2 + 3z_1)/8 = 1.9657$ \cdots
 $z_1 = (-2x_1 - y_1)/5 = -0.085$ $z_2 = (-2x_2 - y_2)/5 = 0.0147$ \cdots

Takto pokračujeme, dokud nebude rozdíl postupných aproximací v x, y i v z menší než 10^{-4} . Zde toto nastane po 8 krocích metody a $x \doteq -1.0000, y \doteq 2.0000, z \doteq 0.0000$

Ke stejné přesnosti jsme dospěli rychleji než u Jacobiho metody, což je typické, ale nemusí to tak být úplně vždy

Podmínky konvergence pro Gauss-Seidelovu metodu

Podmínky konvergence pro Gauss-Seidelovu metodu

Je-li matice A ostře řádkově nebo sloupcově diagonálně dominantní, pak Gauss-Seidelova metoda konverguje pro libovolnou počáteční aproximaci $\overline{x}^{(0)}$.

Je-li matice A symetrická pozitivně definitní (viz dál), pak Gauss-Seidelova metoda konverguje pro libovolnou počáteční aproximaci $\overline{x}^{(0)}$.

Jestliže matice nemá žádnou z uvedených vlastností, Gauss-Seidelova metoda konvergovat může a nemusí.

Nutnou a dostatečnou podmínku konvergence si řekneme později.

Pozitivně definitní matice

Pozitivně definitní matice

Symetrická matice A se nazývá pozitivně definitní, jestliže pro každý nenulový sloupcový vektor $\overline{x} = (x_1, \dots, x_n)^T$ platí

$$\overline{x}^T A \overline{x} > 0$$

Příklad

Rozhodněte, zda jsou matice A, B pozitivně definitní, jestliže

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix}.$$

Obě matice jsou symetrické. Pro matici A a libovolné $\overline{x} = [x_1, x_2]^T \in \mathbb{R}^2$ platí:

$$[x_1, x_2]$$
 $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 2x_1x_2 + 2x_2^2 = (x_1 + x_2)^2 + x_2^2 > 0$

Matice A je pozitivně definitní.

Pro B dostáváme

$$[x_1, x_2]$$
 $\begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -2x_1^2 + 2x_1x_2 + x_2^2$

Jestliže za \overline{x} dosadíme např. $[1,0]^{\mathrm{T}}$, je výsledek záporný. B pozitivně definitní není.

Ještě o pozitivně definitních maticích

Kritérium pro pozitivní definitnost

Symetrická matice je pozitivně definitní právě tehdy, když jsou všechny hlavní rohové minory matice A kladné. Hlavní rohové minory jsou determinanty z "vyříznutých levých horních rohů", přesná definice bude později.

U velkých matic by zkoumání této vlastnosti bylo velice pracné a zcela nepraktické. Naštěstí u mnoha soustav popisujících chování fyzikálních veličin vyjde matice symetrická pozitivně definitní "sama od sebe".

Jak zaručit konvergenci Gauss-Seidelovy metody

Někdy je to jednoduché

Občas stačí rovnice přeskládat nebo provést jednoduchou úpravu, pomocí které vznikne matice diagonálně dominantní. Toto se však vztahuje spíš na školní příklady...

Toto zabere vždy, ale konvergence může být pomalá

Vynásobíme-li původní soustavu $A\overline{x}=\overline{b}$ s regulární maticí A maticí A^{T} , dostaneme novou soustavu

$$A^{\mathrm{T}}A\overline{x} = A^{\mathrm{T}}\overline{b},$$

která má stejné řešení jako původní soustava a jejíž matice je pozitivně definitní, tzn. konvergence Gauss-Seidelovy metody je zaručena. Po provedení této úpravy však konvergence může být dosti pomalá.

Na závěr této kapitoly

Na jaké soustavy se Jacobiho a Gauss-Seidelova metoda hodí

Jacobiho a Gauss-Seidelova metoda se hodí pro velké soustavy rovnic s řídkou maticí.

Existuje řada dalších, důmyslnějších metod

Na řešení velkých soustav lineárních rovnic se používá řada dalších metod, např.

- Choleského rozklad metoda použitelná pro symetrické pozitivně definitní matice, A rozložíme na součin LL^T, kde L je dolní trojúhelníková matice.
- Metoda sdružených gradientů opět pro symetrické pozitivně definitní matice, m.j. se v ní využívá Gram-Schmidtův ortogonalizační proces vzhledem k jinému než standardnímu skalárnímu součinu. Více viz např. https://www.cs.cmu. edu/~quake-papers/painless-conjugate-gradient.pdf