

Licence d'Informatique 3ème année Analyse de Données Programmeur (C5-160512) ACP – Solution Mathématique

Carl FRÉLICOT – Dpt Info / Lab MIA

Le problème de l'Analyse en Composantes Principales est un problème d'optimisation sous constrainte(s). Il s'agit de trouver pour la 1ère composante (puis la 2ème, etc), le vecteur directeur u_1 unitaire (puis u_2 , etc) qui la définit, le critère à optimiser étant : la variance projetée qu'il faut maximiser.

On utilise pour cela la méthode de Lagrange qui permet 1, par substitution, d'optimiser une fonction à valeurs dans \mathbb{R} de plusieurs variables² sous contrainte(s) d'égalité c.

Par exemple, le problème : $\max_u \{g(u) | c(u) = 0\}$ est substitué par $\max_{u,\lambda} \{L(u,\lambda) = g(u) - \lambda c(u)\}$ où $\lambda \in \mathbb{R}$ est appelé multiplicateur de Lagrange. La solution est alors tout à fait standard³:

$$\begin{cases} \frac{d}{du}L(u,\lambda) = 0\\ \frac{d}{d\lambda}L(u,\lambda) = 0 = c(u) \end{cases}$$

 $\begin{cases} \frac{d}{du}L(u,\lambda)=0\\ \frac{d}{d\lambda}L(u,\lambda)=0=c(u) \end{cases}$ où $\frac{d}{dx}$ représente la dérivée par rapport à x. Si x est un vecteur, sa dérivée (vectorielle) est le vecteur des dérivées par rapport à chacune de ses composantes ; on l'appelle alors gradient et on le note parfois ∇ . Dans notre cas, $\frac{d}{du}L = [\frac{d}{du_i}L]_{i=1,p}$. On montre⁴ que :

- si a est un vecteur constant de \mathbb{R}^p et $u \in \mathbb{R}^p$, alors $\frac{d}{du}(tau) = a$
- si u et $v \in \mathbb{R}^p$, et M une matrice carrée d'ordre p, alors $\frac{d}{d\,u}\,({}^tu\,M\,v) = M\,v$ et $\frac{d}{d\,u}\,({}^tv\,M\,u) = {}^tM\,v$
- en conséquence, pour une forme quadratique $\frac{d}{du}(^tu\,M\,u)=M\,u+^tM\,u,$
- et si de plus M est symétrique, il vient $\frac{d}{du}({}^tu\,M\,u)=2\,M\,u$.

Notez que vous connaissez ces formules en dimension p=1, c'est-à-dire lorsque u est un scalaire, et M=m également. Par ex. la dernière devient $(m u^2)' = 2 m u$.

Pour l'ACP, on doit tout d'abord trouver u_1 qui maximise $g(u_1) = {}^tu_1 V u_1$, à valeurs dans \mathbb{R} , où V est la matrice de covariance⁵, sous la contrainte $||u_1|| = 1$ que l'on écrit $c(u_1) = ||u|| - 1 = ||u||^2 - 1 = {}^tu_1 u_1 - 1 = 0$. On substitue donc par la recherche de u_1 qui maximise $L(u_1, \lambda_1) = {}^tu_1 V u_1 - \lambda_1 ({}^tu_1 u_1 - 1)$. La solution est alors :

$$\begin{cases} \frac{d}{du_1}L(u_1,\lambda_1) = 0 \\ \frac{d}{d\lambda_1}L(u_1,\lambda_1) = 0 \end{cases} \Leftrightarrow \begin{cases} 2Vu_1 - 2\lambda_1u_1 = 0 \\ {}^tu_1u_1 - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} Vu_1 = \lambda_1u_1 \\ {}^tu_1u_1 = 1 \end{cases}$$

Dans la 2ème équation on retrouve la contrainte (u unitaire), et la 1ère indique que u_1 est vecteur propre⁶ de V associé à la (plus grande, voir mon CM) valeur propre λ_1 .

On doit ensuite trouver u_2 qui maximise $g(u_2) = {}^tu_2 V u_2$ sous les contraintes $||u_2|| = 1$ et $u_2 \perp u_1 \Leftrightarrow u_2 \vee u_1 = 0$. Il suffit d'introduire deux multiplicateurs de Lagrange (un par contrainte) pour substituer le problème par la recherche de u_2 qui maximise $L(u_2, \lambda_1, \lambda_2) = {}^tu_2 V u_2 - \lambda_2 ({}^tu_2 u_2 - 1) - \lambda_1 ({}^tu_2 V u_1)$. La solution est alors :

$$\begin{cases} \frac{d}{du_2}L(u_2,\lambda_1,\lambda_2) = 0 \\ \frac{d}{d\lambda_1}L(u_1,\lambda_1,\lambda_2) = 0 \\ \frac{d}{d\lambda_2}L(u_2,\lambda_1,\lambda_2) = 0 \end{cases} \Leftrightarrow \begin{cases} 2\,V\,u_2 - 2\lambda_2\,u_2 - \lambda_1\,V\,u_1 = 0 \\ {}^tu_2\,u_2 - 1 = 0 \\ {}^tu_2\,V\,u_1 = 0 = {}^tu_1\,V\,u_2 \end{cases}$$

Comme u_1 est vecteur propre de V, la 3ème équation peut s'écrire : ${}^tu_2(\lambda u_1) = 0 \Leftrightarrow \lambda {}^tu_2 u_1 = 0 \Rightarrow {}^tu_2 u_1 = 0$.

Pré-multiplions la 1ère par tu_1 : ${}^tu_1(2Vu_2-2\lambda_2u_2-\lambda_1Vu_1)=0 \Leftrightarrow 2{}^tu_1Vu_2-2\lambda_2{}^tu_1u_2-\lambda_1{}^tu_1Vu_1=0$. Le deux premiers termes étant nuls, il faut que $\lambda_1 = 0$.

Ce qui donne dans la 1ère équation : $2Vu_2 - 2\lambda_2u_2 = 0 \Leftrightarrow Vu_2 = \lambda_2u_2$, c'est-à-dire que u_2 est aussi vecteur propre de V, associé à la valeur propre λ_2 . Comme u_2 doit maximiser ${}^tu_2Vu_2=\lambda_2\,{}^tu_2u_2=\lambda_2$, il s'agit de prendre le vecteur propre associé à la 2ème plus grande valeur propre de V.

Et ainsi de suite jusqu'à la p-ième composante dont le vecteur directeur u_p est vecteur propre de V associé à la p-ième plus grande valeur propre, c'est-à-dire la plus petite. Les composantes principales d'un nuage X sont ainsi définies par les vecteurs propres de sa matrice de covariance, dans l'ordre décroissant des valeurs propres.

¹sous conditions non développées ici, en particulier : dérivabilité par rapport à toutes les variables

 $^{^2}$ un vecteur $u \in \mathbb{R}^p$ est un objet constitué de p variables

³ faites appel à vos souvenirs sur la recherche d'extrema d'une fonction f(x)

⁴dans un cours sur les dérivées vectorielles des formes quadratiques

⁵symétrique par définition

⁶voir un cours sur les éléments propres d'une matrice