2023~2024 学年上学期高三年级 9 月联考卷・数学 参考答案、提示及评分细则

- 1. D $A = \{x \mid x(x-1)(x-2)=0\} = \{0,1,2\}$,因为 $B \subseteq A$,所以满足条件的集合 B 的个数为 $2^3 = 8$. 故选 D.
- 2. C 因为 $\frac{3}{(2-i)i} = \frac{3}{1+2i} = \frac{3(1-2i)}{(1+2i)(1-2i)} = \frac{3-6i}{5} = \frac{3}{5} \frac{6}{5}i$,其共轭复数是 $\frac{3}{5} + \frac{6}{5}i$. 故选 C.
- 3. A 若 $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,则 $\cos \alpha > 0$ 成立,故充分性成立;若 $\cos \alpha > 0$,则 $2k\pi \frac{\pi}{2} < \alpha < 2k\pi + \frac{\pi}{2}$ $(k \in \mathbb{Z})$,不 一定为 $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,故必要性不成立. 所以" $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ "是" $\cos \alpha > 0$ "的充分不必要条件. 故选 A.
- 4. C 因为 f(x)为 R 上的奇函数,所以 f(0)=0, f(4)=-f(-4)=13,所以 f(0)+f(4)=13. 故选 C.
- 5. A 因为 $(x-y)^6$ 的展开式的通项为 $T_{r+1} = C_6^2 x^{6-r} (-y)^r = C_6^2 (-1)^r x^{6-r} y^r$,所以 $\left(1 \frac{2x}{y}\right) (x-y)^6 = (x-y)^6 \frac{2x}{y} (x-y)^6$,展开式中 $x^4 y^2$ 的系数为 $C_6^2 (-1)^2 2C_6^3 (-1)^3 = 55$. 故选 A.
- 6. B 由题意得当 x=9 时,P=50%,则 $\frac{\mathrm{e}^{-0.9+9k}}{1+\mathrm{e}^{-0.9+9k}}=50\%$,得 $\mathrm{e}^{-0.9+9k}=1$,所以 9k-0.9=0,得 k=0.1,所以

$$P(x) = \frac{e^{-0.9+0.1x}}{1 + e^{-0.9+0.1x}}. \ \ \underline{\sharp} \ \ x = 5 \ \text{Bt}, P(x) = \frac{e^{-0.9+0.1 \times 5}}{1 + e^{-0.9+0.1 \times 5}} = \frac{e^{-0.4}}{1 + e^{-0.4}} \approx \frac{\frac{2}{3}}{1 + \frac{2}{3}} = 40\%. \ \text{放选 B.}$$

- 7. C 函数 $f(x) = x \frac{1}{3} \sin 2x + a \sin x$ 的导数为 $f'(x) = 1 \frac{2}{3} \cos 2x + a \cos x$, 由题意可得 $f'(x) \geqslant 0$ 恒成立,设 $t = \cos x (-1 \leqslant t \leqslant 1)$,即有 $5 4t^2 + 3at \geqslant 0$,所以 $5 4 + 3a \geqslant 0$,且 $5 4 3a \geqslant 0$,解得 a 的取值范围是 $\left[-\frac{1}{3}, \frac{1}{3} \right]$. 故选 C.
- 8. B 如图,设圆心为 F,则 F 为抛物线 $y^2 = 8x$ 的焦点,该抛物线的准线方程为 x = -2,设 P(x,y),由抛物线的定义得 |PF| = x + 2,要使 $\frac{|PM|}{|PQ|}$ 最小,则 |PQ| 需最大,如图,|PQ| 最大时,经过圆心 F,且圆 F 的半径为 1, $|PQ|_{\max}$ = |PF| + 1 = x + 3,且 $|PM| = \sqrt{(x 4)^2 + y^2} = \sqrt{(x 4)^2 + 8x} = \sqrt{x^2 + 16}$, 所以 $\frac{|PM|}{|PQ|} = \frac{\sqrt{x^2 + 16}}{x + 3}$. 令 x + 3 = t $(t \geqslant 3)$,则 x = t 3,所以 $\frac{|PM|}{|PQ|} = \sqrt{x^2 + 16}$

$$\frac{\sqrt{(t-3)^2+16}}{t} = \sqrt{\frac{25}{t^2} - \frac{6}{t} + 1} = \sqrt{25\left(\frac{1}{t} - \frac{3}{25}\right)^2 + \frac{16}{25}}, \\ \text{ 当 } \frac{1}{t} = \frac{3}{25}, \\ \text{ 即 } t = \frac{25}{3} \text{ 时}, \\ \frac{|PM|}{|PQ|} \text{ 取得最小值 $\frac{4}{5}$. 故 洗 B.$$

9. AC 由图象可知, $\frac{T}{2} = \frac{11\pi}{12} - \frac{5\pi}{12} = \frac{\pi}{2}$, $T = \pi$,所以 $\omega = 2$,当 $x = \frac{5\pi}{12}$ 时, $\frac{5\pi}{6} + \varphi = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$,又 $-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$,解得 $\varphi = -\frac{\pi}{3}$,所以 $f(x) = 2\sin\left(2x - \frac{\pi}{3}\right)$,又 $f(x) = 2\sin\left(2x - \frac{\pi}{3}\right) = 2\cos\left[\frac{\pi}{2} - \left(2x - \frac{\pi}{3}\right)\right] = 2\cos\left[\frac{\pi}{2} - \left(2x - \frac{\pi}{3}\right)\right]$

$$2\cos(\frac{5\pi}{6}-2x)=2\cos(2x-\frac{5\pi}{6})$$
. 故选 AC.

有 5 个零点,故 D 正确. 故选 CD.

- 10. ABD 对于 A, $(a^2-bc)-(b^2-ac)=(a^2-b^2)+(ac-bc)=(a-b)(a+b+c)>0$, 故 A 正确; 对于 B, 因为 $a^3>a^2$, $a^2>b^2$, 所以 $a^3>b^2$, 故 B 正确; 对于 C, 当 a=3, b=2, c=5 时, |a-c|<|b-c|, 故 C 错误; 对于 D, 因为 $a+\frac{1}{a}-\left(b+\frac{1}{b}\right)=(a-b)\cdot\frac{ab-1}{ab}>0$, 故 D 正确. 故选 ABD.
- 11. BCD 对于 B, $f'(x) = 3x^2 2$, 令 f'(x) > 0, 得 $x > \frac{\sqrt{6}}{3}$ 或 $x < -\frac{\sqrt{6}}{3}$; 令 f'(x) < 0, 得 $-\frac{\sqrt{6}}{3} < x < \frac{\sqrt{6}}{3}$, 所以 f(x)在 $\left(-\infty, -\frac{\sqrt{6}}{3}\right)$, $\left(\frac{\sqrt{6}}{3}, +\infty\right)$ 上单调递增,在 $\left(-\frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{3}\right)$ 上单调递减,所以 $\pm \frac{\sqrt{6}}{3}$ 是极值点,故 B 正确; 对于 A,由 f(x)的单调性,知极大值 $f\left(-\frac{\sqrt{6}}{3}\right) = \frac{4\sqrt{6}}{9} 2 < 0$,又 f(2) = 2 > 0,所以函数 f(x) 在定义域上有 且仅有一个零点,故 A 错误;对于 C,令 $h(x) = x^3 2x$,该函数的定义域为 \mathbf{R} , $h(-x) = (-x)^3 2(-x) = -x^3 + 2x = -h(x)$,则 h(x) 是奇函数,(0,0)是 h(x)的对称中心,将h(x)的图象向下平移 2 个单位得到 f(x)的图象,所以点(0,-2)是曲线 y = f(x)的对称中心,故 C 正确;对于 D,设切点为 $\left(x_0,y_0\right)$, $f'(x) = 3x^2 2$,则切线的斜率为 $3x_0^2 2$,切线的方程为 $y x_0^3 + 2x_0 + 2 = (3x_0^2 2)(x x_0)$,代人 $\left(-1,0\right)$,可得 $-x_0^3 + 2x_0 + 2 = (3x_0^2 2)(-1 x_0)$,整理并解得 $x_0 = 0$ 或 $x_0 = -\frac{3}{2}$,则过点 $\left(-1,0\right)$ 的切线有两条,故 D 正确。 故选 BCD.
- 12. CD $\del x < -\pi \, \mbox{bl}, x + \pi < 0, \sgn(x + \pi) = -1, f(x) = -\sin x \cos x = -\sqrt{2} \sin \left(x + \frac{\pi}{4}\right), \del x = -\pi \, \mbox{bl},$ $x + \pi = 0, \sgn(x + \pi) = 0, f(x) = \cos 0 = 1, \del x > -\pi \, \mbox{bl}, x + \pi > 0, \sgn(x + \pi) = 1, f(x) = \sin x \cos x = -\pi \, \mbox{bl},$

$$\sqrt{2}\sin\left(x-\frac{\pi}{4}\right), \text{即 } f(x) = \begin{cases} -\sqrt{2}\sin\left(x+\frac{\pi}{4}\right), x < -\pi, \\ 1, x = -\pi, \end{cases}$$
作出 $f(x)$ 的部分图象,如图所示.
$$\sqrt{2}\sin\left(x-\frac{\pi}{4}\right), x > -\pi,$$

由图可知,f(x)不是周期函数,故 A 错误;由图可知,f(x)在 $\left[-2\pi, \frac{\pi}{4}\right]$ 上的值域为 $\left[-\sqrt{2}, 1\right]$,故 B 错误;由图可知,f(x)在 $\left[-\pi, -\frac{\pi}{4}\right]$ 上单调递减,故 C 正确;令 g(x)=2f(x)-1=0,得 $f(x)=\frac{1}{2}$,由图可知,在 $\left[-3\pi, 2\pi\right]$ 上,f(x)的图象与直线 $y=\frac{1}{2}$ 只有 5 个交点,所以 g(x)=2f(x)-1 在 $\left[-3\pi, 2\pi\right]$ 上

【高三年级9月联考卷・数学参考答案 第2页(共6页)】

13.2 因为
$$b \perp (b-2a)$$
,所以 $b \cdot (b-2a) = b^2 - 2a \cdot b = 0$, $a \cdot b = \frac{1}{2} |b|^2 = \frac{1}{2} |b|^2 = 2$,所以 $|a| = \frac{1}{2} |b|^2 = 1$

$$\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{b}| \cos \frac{\pi}{2}} = \frac{2}{2 \times \frac{1}{2}} = 2.$$

最小值 8.

14.
$$\frac{13}{4}$$
 因为 $\tan \frac{\alpha}{2} = 2$,则 $\cos \frac{\alpha}{2} \neq 0$,则 $\frac{2-\cos \alpha}{\sin \alpha} = \frac{2\sin^2 \frac{\alpha}{2} + 2\cos^2 \frac{\alpha}{2} - \left(\cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}\right)}{2\sin \frac{\alpha}{2}\cos \frac{\alpha}{2}} = \frac{2\sin^2 \frac{\alpha}{2} + 2\cos^2 \frac{\alpha}{2} - \left(\cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}\right)}{2\sin \frac{\alpha}{2}\cos \frac{\alpha}{2}}$

$$\frac{3\sin^2\frac{\alpha}{2} + \cos^2\frac{\alpha}{2}}{2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} = \frac{3\tan^2\frac{\alpha}{2} + 1}{2\tan\frac{\alpha}{2}} = \frac{3\times 2^2 + 1}{2\times 2} = \frac{13}{4}.$$

15. 8
$$x^2 + \frac{4}{y(x-y)} \geqslant x^2 + \frac{4}{\left[\frac{y+(x-y)}{2}\right]^2} = x^2 + \frac{16}{x^2}$$
, 当且仅当 $y = x - y$,即 $x = 2y$ 时,等号成立,又 $x^2 + \frac{16}{x^2}$ $\geqslant 2\sqrt{x^2 \times \frac{16}{x^2}} = 8$,当且仅当 $x^2 = \frac{16}{x^2}$,即 $x = 2$ 时,等号成立.综上所述,当 $x = 2y = 2$ 时, $x^2 + \frac{4}{y(x-y)}$ 取得

16.
$$\frac{\sqrt{15}}{7}$$
 因为椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ($a > b > 0$)的离心率为 $e = \frac{c}{a} = \frac{1}{2}$,则 $c = \frac{1}{2}a$,又因为 $AN /\!\!/ MF_2$,即

$$\triangle AF_1N$$
の $\triangle F_2F_1M$,则 $\frac{|AN|}{|MF_2|} = \frac{|NF_1|}{|MF_1|} = \frac{|AF_1|}{|F_1F_2|} = \frac{a-c}{2c} = \frac{a-\frac{1}{2}a}{a} = \frac{1}{2}$,可得 $|AN| = \frac{1}{2}|MF_2|$, $|NF_1| = \frac{1}{2}|MF_1|$,所以 $|AN| + |NF_1| = \frac{1}{2}(|MF_1| + |MF_2|) = a$ ①,又因为 $|AN| + |NF_2| + a + c = \frac{1}{2}(|MF_1| + |MF_2|)$

$$|NF_1| = \frac{1}{2} |MF_1|$$
,所以 $|AN| + |NF_1| = \frac{1}{2} (|MF_1| + |MF_2|) = a①$,又因为 $|AN| + |NF_2| + a + c = \frac{19}{6}a$,可得 $|AN| + |NF_2| = \frac{5}{3}a②$,又因为 $|NF_1| + |NF_2| = 2a③$,由①②③知 $|AN| = \frac{a}{3}$, $|NF_1| = \frac{1}{3}a$

 $\frac{2a}{3}$. 在△ AF_1N 中,由余弦定理可得 $\cos\angle AF_1N = \frac{\frac{1}{4}a^2 + \frac{4}{9}a^2 - \frac{1}{9}a^2}{2 \times \frac{1}{a} \times \frac{2}{a}} = \frac{7}{8} > 0$,可得 $\angle AF_1N$ 为锐角,则

$$\sin\angle AF_1N = \sqrt{1-\cos^2\angle AF_1N} = \frac{\sqrt{15}}{8}$$
,所以 $\tan\angle AF_1N = \frac{\sin\angle AF_1N}{\cos\angle AF_1N} = \frac{\sqrt{15}}{7}$,即直线 MN 的斜率为 $\frac{\sqrt{15}}{7}$.

17. 解:(1)设等差数列 $\{a_n\}$ 的公差为d.

因为 $S_4 = S_5$,

联立①②,解得 $a_1 = -8, d = 2$,

【高三年级 9 月联考卷·数学参考答案 第 3 页(共 6 页)】

(2)由(1)知 $S_n = -8n$	$+\frac{n(n-1)}{2} \times 2 = n^2 - 9n,$ 6 分
所以 $\frac{S_n}{a_n}$ <1,即为 $\frac{n^2-9}{2n-3}$	$\frac{\partial n}{\partial 0} < 1$,
当 n<5 时,n ² -9n>2	n-10,解得 n>10(舍)或 n<1(舍);
当 n>5 时,n ² -9n<2	n−10,解得 1 <n<10,所以 5<n<10,<="" td=""></n<10,所以>
所以满足条件的 n 的耳	收值集合为{6,7,8,9} 10 分
18. 解:(1)根据频率分布]	直方图中所有小矩形面积之和为1,
可列等式为(0.0002-	$+0.0013+0.0016+0.0032+0.0034+a)\times100=1,$
所以 a=0.000 3	3分
(2)样本中停车时长在	区间(300,500]内的频率为(0.0016+0.0003)×100=0.19, 5分
所以估计该天停车时十	长在区间(300,500]内的车辆数是500×0.19=95
(3)设免费停车时间长	不超过 y 分钟,又因为(0,100]的频率为 0.13<30%,并且(0,200]的频率为 0.45>
30%,所以 y位于(100	9分
则 0.13+(y-100)×	10.003 2=0.3,所以 y≈153,
所以确定免费停车时士	长为 153 分钟. ······ 12 分
19. 解:(1)因为 a(sin A-	$c\sqrt{2}\sin B) = c\sin C - b\sin B,$
所以由正弦定理得 a2-	$-c^2+b^2=\sqrt{2}ab,$ 2分
所以由余弦定理得 cos	$c_{SC} = \frac{a^2 + b^2 - c^2}{2ab} = \frac{\sqrt{2}ab}{2ab} = \frac{\sqrt{2}}{2}, $ 4 \mathcal{H}
又因为 C∈ (0,π),所	以 $C=\frac{\pi}{4}$. 5分
(2)因为 AD=CD,所l	以 $\angle ACD = A$, $\angle BCD = \frac{\pi}{4} - A$, $B = \frac{3\pi}{4} - A$
在△BCD中,由正弦気	E理得 $\frac{BD}{\sin\angle BCD} = \frac{CD}{\sin B}$,即 $\frac{BD}{\sin(\frac{\pi}{4} - A)} = \frac{2BD}{\sin(\frac{3\pi}{4} - A)}$,
化简得 $\frac{\sqrt{2}}{2}\cos A = \frac{3\sqrt{2}}{2}$	$\sin A$,即 $\tan A = \frac{1}{3}$.
所以 $B=\tan\left(\frac{3\pi}{4}\right)$	$-A = \frac{\tan\frac{3\pi}{4} - \tan A}{1 + \tan\frac{3\pi}{4} \tan A} = \frac{-1 - \frac{1}{3}}{1 - \frac{1}{3}} = -2. $ 12 \Im
20. (1)证明:在正方形 AE	$BCD + CD \perp AD$,
又侧面 PAD⊥底面 A	BCD ,侧面 PAD \cap 底面 $ABCD=AD$, CD \subset 平面 $ABCD$,
所以 CD \bot 平面 PAD ,	2分
又 AM 二平面 PAD ,	f以 CD_AM, 3 分
因为△PAD 是正三角	形,M是PD 的中点,所以AM_PD, 4分

【高三年级9月联考卷・数学参考答案 第4页(共6页)】

又 $CD \cap PD = D$,CD, $PD \subset$ 平面PCD,

所以 AM_平面 PCD. 6 分

(2)解:取AD中点为O,BC中点为N,连接OP,ON,建立如图所示的空间直角

坐标系,不妨设 AD=2,

则
$$A(0,-1,0), D(0,1,0), P(0,0,\sqrt{3}), B(2,-1,0), M(0,\frac{1}{2},\frac{\sqrt{3}}{2}),$$

设平面 PBD 的法向量为 $\mathbf{m} = (x, y, z)$,则

曲
$$\begin{cases} \overrightarrow{PD} \cdot \mathbf{m} = y - \sqrt{3}z = 0, \\ \overrightarrow{BD} \cdot \mathbf{m} = -2x + 2y = 0, \end{cases}$$
 $\begin{cases} y = \sqrt{3}z, \\ y = x, \end{cases}$

取
$$z=1, 则 m=(\sqrt{3}, \sqrt{3}, 1),$$
 9 分
由(1)知平面 PCD 的一个法向量为 $\overrightarrow{AM}=\left(0, \frac{3}{2}, \frac{\sqrt{3}}{2}\right),$ 10 分

设平面 BPD 与平面 PCD 的夹角为 θ ,

则
$$\cos \theta = |\cos\langle \overrightarrow{AM}, \mathbf{m} \rangle| = \frac{|\overrightarrow{AM} \cdot \mathbf{m}|}{|\overrightarrow{AM}| |\mathbf{m}|} = \frac{\left| \left(0, \frac{3}{2}, \frac{\sqrt{3}}{2}\right) \cdot \left(\sqrt{3}, \sqrt{3}, 1\right) \right|}{\sqrt{3} \times \sqrt{7}} = \frac{2\sqrt{3}}{\sqrt{3} \times \sqrt{7}} = \frac{2\sqrt{7}}{7}.$$

(2)不等式
$$f(x) > \ln x$$
, 即 $\frac{m(x-1)}{x+1} > \ln x$, 则 $\ln x - \frac{m(x-1)}{x+1} < 0$.

设
$$h(x) = \ln x - \frac{m(x-1)}{x+1}, x \in (1, +\infty)$$
,依题意,存在 $x \in (1, +\infty)$, $h(x) < 0$,......5分

$$\vec{m} h'(x) = \frac{1}{x} - \frac{2m}{(x+1)^2} = \frac{x^2 + 2(1-m)x + 1}{x(x+1)^2}, h(1) = 0,$$

当 0x^2+2(1-m)x+1=0 的判别式
$$\Delta=4(1-m)^2-4=4m(m-2)<0$$
,

即
$$h'(x) > 0$$
 在 $(1, +\infty)$ 上恒成立,则 $h(x)$ 在 $(1, +\infty)$ 上单调递增,

当
$$m>2$$
时,令 $h'(x)=0$,得 $x_1=m-1-\sqrt{(m-1)^2-1}$, $x_2=m-1+\sqrt{(m-1)^2-1}$,

由 $x_2 > 1$ 和 $x_1 x_2 = 1$,得 $0 < x_1 < 1 < x_2$,则当 $x \in (1, x_2)$ 时,h'(x) < 0,h(x)在 $(1, x_2)$ 上单调递减,

此时 h(x) < h(1) = 0.

因此,当 $m \in (2,+\infty)$ 时,存在 $x \in (1,+\infty)$,使得不等式 h(x) < 0 成立, …… 11 分

(2)因为F(1,0),直线l的斜率不为零,所以可设其方程为x=my+1.

结合
$$b^2 = 1 - a^2 (0 < a < 1)$$
,

联立
$$\begin{cases} x = my + 1, \\ \frac{x^2}{a^2} - \frac{y^2}{1 - a^2} = 1, \end{cases}$$
 得 $[a^2 (m^2 + 1) - m^2] y^2 + 2m(a^2 - 1) y - (a^2 - 1)^2 = 0,$

设
$$A(x_1,y_1)$$
, $B(x_2,y_2)$,由韦达定理,得
$$\begin{cases} y_1+y_2=\frac{-2m(a^2-1)}{a^2(m^2+1)-m^2}, & \dots \\ y_1y_2=\frac{-(a^2-1)^2}{a^2(m^2+1)-m^2}, & \dots \end{cases}$$
 6分

由于A,B两点均在C的右支上,

故
$$y_1 y_2 < 0 \Rightarrow a^2 (m^2 + 1) - m^2 > 0$$
,即 $m^2 < \frac{a^2}{1 - a^2}$. 7 分

则 $\overrightarrow{OA} \cdot \overrightarrow{OB} = x_1 x_2 + y_1 y_2 = (my_1 + 1) (my_2 + 1) + y_1 y_2$

$$= (m^2+1) y_1 y_2 + m (y_1 + y_2) + 1$$

$$= (m^2+1) \cdot \frac{-(a^2-1)^2}{a^2(m^2+1)-m^2} + m \cdot \frac{-2m(a^2-1)}{a^2(m^2+1)-m^2} + 1$$

$$=\frac{m^2a^2(1-a^2)-a^4+3a^2-1}{a^2(m^2+1)-m^2}.$$
 9 \(\frac{\phi}{2}\)

由 $\angle AOB$ 恒为锐角,得对 $\forall m^2 < \frac{a^2}{1-a^2}$,均有 $\overrightarrow{OA} \cdot \overrightarrow{OB} > 0$,

即 $m^2a^2(1-a^2)-a^4+3a^2-1>0$ 恒成立. 10 分

由于 $a^2(1-a^2)>0$,因此不等号左边是关于 m^2 的增函数,

所以只需
$$m^2 = 0$$
 时, $-a^4 + 3a^2 - 1 > 0$ 成立即可,解得 $\frac{\sqrt{5} - 1}{2} < a < \frac{\sqrt{5} + 1}{2}$,