Plan du cours

I. Rappel : Vocabulaire					
II.	Calcul d'une expression sans parenthèse 1. Enchaînement d'additions et de soustraction 2. Propriétés 3. Sens de variation	2			
111.	La fonction exponentielle 1. Activité de découverte 2. Définition 3. Dérivée de la fonction exponentielle 4. Variation 5. Courbe représentative (1) convexité (2) propriétés	5 5 6 6 7 8 8			
IV.	Exponentielle d'une fonction : $\exp(u)$ 1. Dérivée	11 12 12			

I. Rappel: Vocabulaire

• Une addition est une opération qui permet de calculer une somme.

Exemple : 15 + 23 est la somme de 15 et 23.

15 et 23 sont des termes de la somme.

• Une soustraction est une opération qui permet de calculer une différence.

Exemple: 23 ? 15 est la différence de 23 et 15.

23 et 15 sont des termes de la différence.

• Une multiplication est une opération qui permet de calculer un produit.

Exemple: 100 x 25 est le produit de 100 et 25.

100 et 25 sont deux facteurs du produit.

• Une division est une opération qui permet de calculer un quotient.

Exemple: 24:5 est le quotient de 24 par 5.

Le dividende est 24 et le diviseur est 5. Le quotient est égal à 4,8.

II. Calcul d'une expression sans parenthèse

1. Enchaînement d'additions et de soustraction

Exercice d'application 1

test

test

1 la multiplication et la division sont prioritaires

Définition: test

Définition

test

Remarques:

Exemple:

2. Propriétés

Propriété

Soit q et r deux réels strictement positifs. Pour tous réels a et b, on a :

$$q^{-a} = \frac{1}{q^a}$$

$$\bullet \ (q^a)^b = q^{a \times b}$$

•
$$q^a \times r^a = (q \times r)^a$$

$$q^{a-b} = \frac{q^a}{q^b}$$

Preuve

En effet,
$$q^{x-x}=q^x\times q^{-x}$$
 soit $1=q^x\times q^{-x}$ donc $q^x\neq 0$ et $q^{-x}=\frac{1}{q^x}$. De plus, $q^{x-y}=q^{x+(-y)}=q^x\times q^{-y}=\frac{q^x}{q^y}$

Propriété

Pour tout réel $a, q^a > 0$.

Preuve

En effet, $q^a = q^{\frac{3}{2} + \frac{3}{2}} = q^{\frac{3}{2}} \times q^{\frac{3}{2}} > 0$ soit $q^x = (q^{\frac{3}{2}})^2$ avec $q^a \neq 0$.

3. Sens de variation

En continuité avec les suites numériques, on admet que le sens de variation de la fonction exponentielle de base q avec q > 0 est le même que celui de la suite géométrique associée :

Théorème

- Si 0 < q < 1, la fonction $x \longmapsto q^x$ est strictement décroissante sur \mathbb{R} .
- Si q=1, la fonction $x \longmapsto q^x$ est constante sur \mathbb{R} .
- Si q > 1, la fonction $x \longmapsto q^x$ est strictement croissante sur \mathbb{R} .

Propriété

Si q > 0 et $q \neq 1$, alors pour tous nombres réels a et b: $q^a = q^b$ si, et seulement si, a = b.

Ce résultat est une conséquence de la stricte monotonie et de l'application du théorème des valeurs intermédiaires appliqué aux fonctions strictement monotones.

Propriété

Les fonctions exponentielle de base q sont convexe sur \mathbb{R} .

En résumé, on peut synthétiser ces résultats :

Fonction exponentielle

Exercice 1

Sur cette figure sont représentées quatre fonctions :

 $x \longmapsto 0, 3^x$; $x \longmapsto 0, 5^x$; $x \longmapsto 1, 5^x$; $x \longmapsto 2, 9^x$

Identifier chacune des fonctions en justifiant.

Exercice 2

Ecrire sous la forme q^x les nombres suivants :

(1).
$$2^{1,3} \times 2^{3,4}$$

(3).
$$\frac{1,8^{-2,3}}{1,8^{-1,2}}$$

(2).
$$1,3^{2,6}\times 1,3^{-4,1}$$

(4).
$$0,85^{6,1} \times 0,85^{-4,2} \times 0,85^{-9,5}$$

Exercice 3

En utilisant le sens de variation des fonctions exponentielles, comparer les nombres suivants :

- (1). $1,05^3$ et $1,05^5$
- **(3)**. $0, 4^{1,2}$ et $0, 4^{3,5}$
- (2). 0.25^2 et 0.25^4
- **(4)**. $3^{-2,5}$ et $3^{-1,5}$

Exercice 4

En utilisant une calculatrice, donner une approximation des nombres suivants :

$$2.25^{1.5}$$
 : $1.05^{-2.3}$: $0.45^{-2.8}$: $0.75^{5.7}$: $\pi^{2.5}$

Exercice 5

Écrire chacune des expressions suivantes sous la forme a^x pour a réel strictement positif.

$$a^{1.8} \times a^{2.2}$$
 ; $a^{-3} \times a^{4.5}$; $a^{\sqrt{2}} \times a^2$; $a^{1.05} \times a^{-3.6}$

Exercice 6

Déterminer la fonction f définie sur \mathbb{R} par $f(x) = kq^x$, sachant que f(0) = -3 et f(-1) = -10.

Exercice 7

Soit la fonction f définie sur [-5; 5] par :

$$f(x) = 1,5^x - 3$$

- (1). Afficher sur l'écran d'une calculatrice le tracé de la courbe représentative de f.
- (2). (a) Justifier l'existence et l'unicité d'une unique solution pour l'équation f(x) = 0 sur [0; 3].
 - (b) Utiliser la calculatrice pour donner une approximation à 0,1 près par défaut de cette solution.

Exercice 8

L'étude de la consommation d'une voiture en fonction de sa vitesse conduit à la formule $c=2,8\times1,008^v$, où c est la consommation en litres pour 100 km parcourus et v la vitesse en kilomètres par heure.

- (1). Déterminer la consommation pour une vitesse de 100 km/h.
- (2). À l'aide d'une calculatrice, construire un tableau de valeurs pour *v* variant de 70 à 130 avec un pas de 5.
- (3). Déterminer la vitesse à partir de laquelle la consommation est supérieure à 7 litres pour 100 km.

Exercice 9

Une grande métropole avait 1,3 millions d'habitants le 1^{er} janvier 2009. Le service de recensement a observé que, pendant 10 ans, sa population a augmenté régulièrement de 1,2 % par an. Voici 3 fonctions f, g et h définies sur [0;10] par :

$$f(x) = 1, 3 \times 0,012^{x}; g(x) = 1, 3(1 + 0,012x)$$

et $h(x) = 1, 3 \times 1,012^{x}$

- (1). Laquelle de ces trois fonctions permet d'obtenir la population (exprimée en million d'habitants) au 1^{er} janvier de l'année 2000+x.
- (2). Combien d'habitants comptait la métropole le 1^{er} janvier 2009?

Exercice 10

L'évolution du nombre de centenaire en France depuis 1900 peut être modélisée par la fonction f donnée par $f(x)=69\times 1,05^{\times}$, où x désigne le rang de l'année, en considérant que l'année 1900 est l'année de rang 0.

- (1). À l'aide de cette fonction, estimer le nombre de centenaires en France en 2014, puis en 2015.
- (2). Quels est la pourcentage d'augmentation ds centenaires entre les années 2014 et 2015? Entre les années 1900 et 1901.

III. La fonction exponentielle

1. Activité de découverte

Soit f une fonction dérivable en 0 telle que f'(0) = 1 et vérifiant pour tous réels x et y, $f(x + y) = f(x) \times f(y)$.

- (1). Démontrer que s'il existe un réel a tel que f(a) = 0, alors, pour tout réel x, on a f(x) = 0. En déduire que pour tout réel x, $f(x) \neq 0$.
- (2). En écrivant que f(x+0) = f(x), montrer que f(0) = 1.
- (3). (a) Montrer que pour tout réel x et tout réel h non nul, $\frac{f(x+h)-f(x)}{h}=f(x)\times\frac{f(h)-1}{h}$ (b) En déduire que f est dérivable sur $\mathbb R$ et que pour tout réel x, f'(x)=f(x).

Rappel: Dire que la fonction f est dérivable en 0 et que le nombre dérivé f'(0) = 1 signifie que $\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = 1$.

2. **Définition**

Il est relativement simple de voir que toutes les fonctions exponentielles ont pour image 1 en 0 (car $q^0 = 1$).

L'exercice préparatoire nous a permis de mettre en évidence l'existence d'une fonction exponentielle f telle que f'(0) = 1.

On admettra que parmi toutes les fonctions exponentielles de base q il existe **une seule** fonction dont le nombre dérivé en 0 soit égal à 1.

Autrement dit, il existe une seule valeur du réel q telle que la tangente au point A(0; 1) de la courbe représentative de la fonction $x \mapsto q^x$ a pour coefficient directeur 1.

Cette valeur particulière du réel q est notée e.

Le nombre e est un irrationnel une valeur approchée est : $e \approx 2,71828$.

Définition

La fonction $x \mapsto e^x$ s'appelle la fonction exponentielle de base e ou plus simplement exponentielle. On la note exp

$$\exp: x \longmapsto e^x$$

On en déduit les propriétés suivantes :

Propriété

• La fonction exponentielle est définie pour tout réel x par $exp(x) = e^x$

•
$$exp(0) = e^0 = 1$$

$$\exp(1) = e^1 = e,$$

$$\exp(-1) = e^{-1} = \frac{1}{e}$$
 ,

•
$$\exp(0) = e^0 = 1$$
, $\exp(1) = e^1 = e$, $\exp(-1) = e^{-1} = \frac{1}{2}$, $\exp(0, 5) = e^{0.5} = \sqrt{e}$

- La fonction exponentielle est strictement positive sur \mathbb{R} : pour tout nombre réel x, $e^x > 0$
- La fonction exponentielle est dérivable sur $\mathbb R$ et son nombre dérivé en 0 est 1 : $\exp'(0) = 1$
- Pour tous réels x et y, et pour tout entier relatif m

$$e^{x+y} = e^x \times e^y,$$

$$e^{-x} = \frac{1}{e^x},$$

$$e^{x-y} = \frac{e^x}{e^y},$$

$$(e^x)^m = e^{mx}$$

3. Dérivée de la fonction exponentielle

Théorème

La dérivée de la fonction exponentielle est ... la fonction exponentielle. Ainsi, pour tout nombre réel x,

$$\exp'(x) = e^x$$

Remarque: Difficile de faire plus simple;)

Preuve

Pour tout réel x et pour tout réel $h \neq 0$,

$$\frac{\exp(x+h) - \exp(x)}{h} = \frac{e^{x+h} - e^x}{h} = \frac{e^x \times e^h - e^x}{h} = e^x \times \frac{e^h - 1}{h}$$

Or $\exp'(0) = 1$ signifie que $\lim_{h \to 0} \frac{\mathrm{e}^{0+h} - \mathrm{e}^0}{h} = 1$ soit $\lim_{h \to 0} \frac{\mathrm{e}^h - 1}{h} = 1$. Donc pour tout réel x, $\lim_{h \to 0} \frac{\exp(x+h) - \exp(x)}{h} = \lim_{h \to 0} \mathrm{e}^x \times \frac{\mathrm{e}^h - 1}{h} = \mathrm{e}^x$

Variation

Théorème

La fonction exponentielle est strictement croissante sur $\mathbb R$

Preuve

La fonction exponentielle est dérivable sur $\mathbb R$ et est égale à sa dérivée.

Or pour tout réel x, $e^x > 0$. On en déduit que la fonction exponentielle est strictement croissante sur \mathbb{R} .

On en déduit les propriétés suivantes :

Propriété

- Pour tout réel $x \le 0$, $0 < e^x \le 1$
- Pour tout réel $x \ge 0$, $e^x \ge 1$
- Pour tous réels x et y, $e^x = e^y \iff x = y$ et $e^x < e^y \iff x < y$

Exercice d'application 2 -

Résolu

(1). Résoudre dans \mathbb{R} l'inéquation $e^{1-3x} < e^{2x-3}$

$$e^{1-3x} < e^{2x+3} \iff 1 - 3x < 2x + 3 \iff -5x < 2 \iff x > -\frac{2}{5}$$

D'où l'ensemble solution $S = \left] -\frac{2}{5}; +\infty \right[$

(2). Résoudre dans \mathbb{R} l'inéquation $e^{x^2-1} \geqslant 1$

$$e^{x^2-1} \geqslant 1 \iff e^{x^2-1} \geqslant e^0 \iff x^2-1 \geqslant 0$$

D'où l'ensemble solution $S =]-\infty; -1] \cup [1; +\infty[$

5. Courbe représentative

(1) convexité

Théorème

La fonction exponentielle est convexe sur $\ensuremath{\mathbb{R}}$

Preuve

La fonction exponentielle est dérivable sur $\mathbb R$ et est égale à sa dérivée. Par conséquent, la dérivée seconde est $\exp''(x) = e^x$ donc $\exp''(x) > 0$.

(2) propriétés

Quelques résultats qu'il faut connaitre :

Propriété

- (1). Équation de la tangente au point d'abscisse 0: y = x + 1
- (2). Équation de la tangente au point d'abscisse $1: y = \exp'(1) \times (x-1) + \exp(1)$ Soit $y = \exp(1) \times (x-1) + \exp(1)$

Propriété

La courbe représentative de la fonction exponentielle est située au dessus de la droite Δ d'équation y=x. (*Voir l'exercice nº 3*)

EXERCICES

Exercice 1

Simplifier les écritures suivantes :

$$A = (e^{x})^{2} - \frac{1}{e^{-2x}}; \qquad B = (e^{x} + e^{-x})^{2} - (e^{x} - e^{-x})^{2}; \qquad C = e^{-x} \left(e^{2x} - \frac{1}{e^{x}}\right); \qquad D = \frac{e^{2x+1}}{e^{1-x}}; \qquad E = \frac{\left(e^{x+2}\right)^{2}}{e^{2x-1}}.$$

$$C = e^{-x} \left(e^{2x} - \frac{1}{e^x} \right);$$

$$D=\frac{\mathrm{e}^{2x+1}}{\mathrm{e}^{1-x}}\,;$$

$$E = \frac{\left(e^{x+2}\right)^2}{e^{2x-1}}.$$

Exercice 2

Résoudre dans $\mathbb R$ les équations et inéquations suivantes :

1.
$$e^{x^2+x-1}=1$$

$$2. \quad \frac{e^{3x+5}}{e^{3-2x}} = e^{2x^2-1}$$

3.
$$2e^{2x} - e^x - 1 = 0$$

4.
$$e^{\frac{1}{x}} \geqslant e$$

5.
$$e^{2x} \leqslant e^x$$

6.
$$e^{2x}e^{x^2} < 1$$

Exercice 3

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^x - x$.

- (1). Déterminer f'(x).
- (2). Étudier les variations de f, en déduire que f admet un minimum.
- (3). Justifier que pour tout réel x on a : $e^x > x$.

Exercice 4

Dans chacun des cas suivants, calculer la dérivée de la fonction f

(1).
$$f$$
 est définie sur $]0; +\infty[$ par $f(x) = \frac{e^x + 1}{x}$

(2).
$$f$$
 est définie sur \mathbb{R} par $f(x) = (2x - 1)e^x$

(3).
$$f$$
 est définie sur \mathbb{R} par $f(x) = e^x - \frac{1}{e^x}$

Exercice 5

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{4}{1 + e^x} - 2$. On a tracé ci-dessous, la courbe \mathcal{C}_f représentant la fonction f et les droites \mathcal{D}_1 et \mathcal{D}_2 d'équations respectives y = -2 et y = 2

- (1). Étudier les positions relatives de la courbe C_f avec les droites \mathcal{D}_1 et \mathcal{D}_2 .
- (2). Étudier les variations de la fonction f.
- (3). Étudier la convexité de la fonction f.
- (4). La courbe C_f admet-elle un point d'inflexion?

Exercice 6

Soit f la fonction définie sur \mathbb{R} par $f(x) = \left(x^2 - \frac{5}{2}x + 1\right)e^x$.

Sa courbe représentative notée C_f est donnée ci-dessous.

- (1). On note f' la fonction dérivée de la fonction f.
 - (a) Calculer f'(x).
 - (b) Étudier le signe de f'(x) selon les valeurs de x.
 - (c) Dresser le tableau de variations de f.
- (2). Déterminer une équation de la tangente T à la courbe C_f au point d'abscisse 0. Tracer la droite T sur le graphique précédent.
- (3). Montrer que l'équation f(x)=40 admet une solution unique α dans l'intervalle [2; 3]. À l'aide de la calculatrice, déterminer la valeur arrondie à 10^{-2} près de α .

Exercice 7

Soit f la fonction définie pour tout réel x par $f(x) = e^x + \frac{1}{e^x}$.

- (1). On note f' la dérivée de la fonction f.
 - (a) Calculer f'(x).
 - (b) Donner le tableau de variations de f.
 - (c) En déduire que pour tout réel x, $e^x + e^{-x} \ge 2$.
- (2). On note f'' la dérivée seconde de la fonction f.
 - (a) Montrer que pour tout réel x, f''(x) = f(x).
 - (b) Étudier la convexité de la fonction f.

IV. Exponentielle d'une fonction : exp(u)

On considère une fonction u définie sur un intervalle I.

La composée de la fonction u suivie de la fonction exponentielle est la fonction f notée $f = e^u$.

Exemples:

- La fonction f définie pour tout réel x par $f(x) = e^{0.5x-3}$ est la composée de la fonction affine u définie sur \mathbb{R} par u(x) = 0.5x 3 suivie de la fonction exponentielle, $f = e^u$.
- La fonction g définie pour tout réel x par g(x) = 0, $5e^x 3$ est la composée la fonction exponentielle suivie de la fonction affine u définie sur \mathbb{R} par u(x) = 0, 5x 3

1. Dérivée

Définition

Soit u une fonction définie et dérivable sur un intervalle I. La fonction e^u est dérivable sur I et

$$(e^u)' = u' \times e^u$$

Exemples:

- Soit f la fonction définie pour tout réel x par f(x) = e^{-x}.
 Pour tout réel x, on pose u(x) = -x. u est dérivable sur ℝ et u'(x) = -1.
 Donc f est dérivable sur ℝ et f'(x) = -e^{-x}.
- Soit f la fonction définie pour tout réel x par $f(x) = e^{0.5x^2 2x + 1}$. Pour tout réel x, posons u(x) = 0, $5x^2 - 2x + 1$. u est dérivable sur \mathbb{R} et u'(x) = x - 2. Donc f est dérivable sur \mathbb{R} et $f'(x) = (x - 2)e^{0.5x^2 - 2x + 1}$.

2. Variation

Théorème

Les fonctions u et e^u ont les mêmes variations sur tout intervalle I où u est définie.

Preuve

Soient a < b deux réels de l'intervalle I

- Si u est croissante sur l alors u(a) < u(b)
 De la stricte croissance de la fonction exponentielle on en déduit que si u(a) < u(b) alors e^{u(a)} < e^{u(b)}
 Donc si u est croissante sur l alors la fonction e^u est croissante sur l.
- Si u est décroissante sur l alors u(b) < u(a)
 Or la fonction exponentielle est strictement croissante donc si u(b) < u(a) alors e^{u(b)} < e^{u(a)}
 Par conséquent, si u est décroissante sur l alors la fonction e^u est décroissante sur l.

Remarque:

Si u est dérivable sur I, alors la fonction $f = e^u$ est dérivable sur I et pour tout réel $x \in I$, $f'(x) = u'(x)e^{u(x)}$. Or pour tout réel $x \in I$, $e^{u(x)} > 0$ donc f'(x) est du même signe que u'(x).

3. Exemples types

(1) Les fonctions $f_k : x \mapsto e^{-kx}$, avec k > 0.

Ces fonctions sont de la forme e^u avec u(x) = -kx. Comme k est positif, on en déduit que la fonction u est décroissante sur \mathbb{R} , et donc que les fonctions f_k le sont également sur \mathbb{R} .

Par ailleurs, $f_k(0) = 1$ pour toute valeur de k. Donc les courbes représentatives des fonctions f_k passent toutes par le point de coordonnées (0; 1).

(2) Les fonctions $g_k : x \mapsto e^{-kx}$, avec k > 0.

Ces fonctions sont de la forme e^u avec $u(x) = -kx^2$. On en déduit donc que $g'_k(x) = -2kxe^{-kx^2}$. Le signe de $g'_k(x)$ dépend donc du signe de -2kx. Comme k > 0, on peut assez facilement déterminer le tableau de variation de la fonction g_k :

X	$-\infty$		0		$+\infty$
$g'_k(x)$		+	0	_	
$g_k(x)$			1		

Tout comme pour les fonctions f_k , $g_k(0) = 1$ pour toute valeur de k. Donc les courbes représentatives des fonctions g_k passent toutes par le point de coordonnées (0;1).

