Introducción al Análisis Exploratorio de Datos (EDA) en R Módulo 2

2024-03-16

- 1 Continuación de EDA univariante: supuestos
- 2 Introducción al EDA multivariante

Continuación de EDA univariante: supuestos

Distribución normal univariada

Una variable aleatoria continua X está normalmente distribuida si su función de densidad sigue la forma:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left\{\frac{-1}{2\sigma^2}(x-\mu)^2\right\}$$

donde

$$f(x) \ge 0$$

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

$$\int_{a}^{b} f(x)dx = P(a \le x \le b)$$

Parámetros de la distribución: media (μ) y varianza (σ^2) de la distribución.

Figure 1: Áreas bajo la curva normal

Normalidad univariada

El gráfico **cuantil-cuantil** (gráfico Q-Q) compara dos distribuciones de probabilidad usando sus cuantiles. Usando la librería car, comparamos la distribución de probabilidad de una muestra aleatoria con la distribución normal.

Normalidad univariada (cont.)

La intuición del método gráfico es verificada mediante pruebas formales. Usando la librería nortest:

variable	Anderson-Darling	Lilliefors (Kolmogorov-Smirnov)	Pearson chi-square		
ingreso	0	0	0		
edad	0	0	0		
horas_semana	0	0	0		
t_actual	0	0	0		
t_viaje	0	0	0		

Se examinan las siguientes transformaciones

log(x)	A-D	K-S)	Р	sqrt(x)	A-D	K-S)	Р	cuberoot(x)	A-D	K-S)	Р
ingreso	0	0	0	ingreso	0	0	0	ingreso	0	0	0
edad	0	0	0	edad	0	0	0	edad	0	0	0
horas_semana	0	0	0	horas_semana	0	0	0	horas_semana	0	0	0
t_actual	0	0	0	t_actual	0	0	0	t_actual	0	0	0
t_viaje	0	0	0	t_viaje	0	0	0	t_viaje	0	0	0

Normalidad univariada (cont.)

Considérese el análisis sobre las transformacions del ingreso laboral (miles \$). Como se verificó en el **Módulo 2**, la transformación logarítmica reduce la influencia de los valores atípicos. En lo sucesivo, nuestro análisis emplea el **logaritmo del ingreso laboral**.

Resumen descriptivo (mediana e IQR)

Se verificó que las variables continuas no siguen una distribución normal y, en consecuencia, el resumen descriptivo reporta la mediana y el rango intercuartílico.

Área	Ingreso	Edad	Horas (semana)	Tiempo actual	Tiempo de viaje
Total	1200000 (1100000 - 2e+06)	39 (29 - 51)	48 (40 - 48)	36 (12 - 108)	25 (15 - 40)
Barranguilla	1200000 (1160000 - 1875000)	36 (29 - 47.5)	48 (47.25 - 48)	33 (11.25 - 81)	30 (20 - 45)
Bogota	1360000 (1160000 - 2337500)	42 (28 - 50)	48 (42 - 56)	36 (11 - 84)	40 (20 - 60)
Bucaramanga	1250000 (1160000 - 2e+06)	38 (29 - 50.5)	47 (40 - 48)	47 (12 - 120)	28 (15 - 30)
Cali	1160000 (1112500 - 1675000)	40.5 (31 - 54)	47 (40 - 48)	36 (12 - 114)	30 (20 - 45)
Cartagena	1200000 (9e+05 - 2e+06)	39 (29 - 53)	48 (40 - 48)	60 (24 - 120)	20 (15 - 30)
Cucuta	1160000 (8e+05 - 1487500)	38 (31 - 48)	48 (40 - 60)	24 (8 - 86)	20 (15 - 30)
Ibague	1450000 (1160000 - 3400000)	40 (27 - 46)	48 (40 - 48)	28 (11 - 120)	20 (10 - 30)
Manizales	1200000 (1160000 - 2e+06)	42 (32 - 53)	48 (42 - 48)	36 (12 - 108)	20 (15 - 30)
Medellin	1303000 (1160000 - 2e+06)	36.5 (28 - 48)	48 (47 - 48)	24 (10 - 108)	35 (20 - 48.75)
Monteria	1160000 (780000 - 2050000)	37 (28 - 47)	47 (40 - 48)	36 (12 - 73.5)	15 (11 - 20)
Pasto	1200000 (9e+05 - 1820000)	44 (32.5 - 54)	48 (40 - 50)	36 (12 - 144)	20 (10 - 30)
Pereira	1275000 (1160000 - 2e+06)	38 (30 - 47)	48 (40 - 48)	36 (12 - 72)	20 (12 - 40)
Villavicencio	1225500 (1160000 - 2e+06)	43 (28 - 55)	48 (47 - 54)	24 (4 - 120)	25 (15 - 30)

Introducción al EDA multivariante

EDA multivariante

El **EDA multivariante** está fundamentado en la exploración, de manera simultánea, de dos o más características (variables) medidas en un conjunto de casos (Kachigan, 1991). El análisis univariante se centra en la variación, mientras que el análisis multivariante se centra en la **covariación** y **correlaciones** que refleja un conjunto de variables.

El análisis multivariante no sólo incluye estrategias de análisis exploratorio; sino, además, las siguientes técnicas:

- Componentes principales
- Análisis factorial
- Regresión múltiple
- Análisis discriminante múltiple
- Análisis multivariante de varianza
- Análisis cluster
- Análisis de correspondencias
- etc.

Independencia de variables catégoricas

La siguiente gráfica representa la asociación entre el nivel educativo máximo alcanzado por el trabajador (educación) y el área metropolitana en que reside.

Tabla de contingencia

La tabla de contingencia permite resumir la información reportada en la figura anterior:

	Doctorado	Especialización	Maestría	Ninguno	Primaria	Secundaria	Técnico o tecnológico	Universi
Barranquilla	0	4	1	0	19	33	20	
Bogota	0	11	2	0	9	28	19	
Bucaramanga	0	5	4	0	11	40	8	
Cali	0	2	2	3	27	38	21	
Cartagena	0	4	0	0	14	36	19	
Cucuta	0	4	0	1	30	30	8	
Ibague	0	5	2	0	7	16	8	
Manizales	0	7	3	0	22	31	16	
Medellin	1	5	4	1	17	33	19	
Monteria	0	5	1	0	12	20	5	
Pasto	0	6	3	1	22	24	9	
Pereira	0	2	2	1	17	34	18	
Villavicencio	0	2	0	2	17	28	7	
Sum	1	62	24	9	224	391	177	

La conclusión es verificada mediante la implementación de una prueba χ^2 de independencia

AQUÍ VA LA DESCRIPCIÓN FORMAL DE LA PRUEBA CHI-2 DE INDEPENDENCIA

```
## Pearson's Chi-squared test
```

data: dataset\$area and dataset\$edu

data: datasetparea and datasetpedu ## X-squared = 109.12. df = 84. p-value = 0.03415

Tabla de contingencia (cont.)

Resumen: independencia de variables categóricas

Resumen: independencia de variables categóricas

La siguiente es una forma útil de incluir la prueba χ^2 de independencia en la visualización de los datos:

```
## ## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
##
## mutate
## Warning in chisq.test(dataset$sexo, dataset$posic): Chi-squared approximation
## may be incorrect
```

