STAD29: Statistics for the Life and Social Sciences

Lecture notes

Time Series

Section 1

Time Series

Packages

Uses my package mkac which is on Github. Install with:

```
library(devtools)
install_github("nxskok/mkac")
```

Plus these. You might need to install some of them first:

```
library(ggfortify)
library(forecast)
library(tidyverse)
library(mkac)
```

Time trends

- Assess existence or nature of time trends with:
 - correlation
 - regression ideas.
 - (later) time series analysis

World mean temperatures

Global mean temperature every year since 1880: xxx

```
temp=read_csv("temperature.csv")
ggplot(temp, aes(x=year, y=temperature)) +
  geom_point() + geom_smooth()
```


Examining trend

- Temperatures increasing on average over time, but pattern very irregular.
- Find (Pearson) correlation with time, and test for significance:

```
with(temp, cor.test(temperature,year))
```

95 percent confidence interval:

Pearson's product-moment correlation

```
## data: temperature and year
## t = 19.996, df = 129, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0</pre>
```

cor

##

##

0.8203548 0.9059362 ## sample estimates:

Comments

- Correlation, 0.8695, significantly different from zero.
- CI shows how far from zero it is.

Tests for linear trend with normal data.

Kendall correlation

Alternative, Kendall (rank) correlation, which just tests for monotone trend (anything upward, anything downward) and is resistant to outliers:

```
with(temp, cor.test(temperature,year,method="kendall"))
##
## Kendall's rank correlation tau
##
```

z = 11.776, p-value < 2.2e-16

alternative hypothesis: true tau is not equal to 0
sample estimates:

tau

data: temperature and year

0.6992574

Kendall correlation usually closer to 0 for same data, but here P-values comparable. Trend again strongly significant.

Mann-Kendall

\$z

- Another way is via **Mann-Kendall**: Kendall correlation with time.
- Use my package mkac:

```
kendall_Z_adjusted(temp$temperature)
```

```
## [1] 11.77267
##
   $z_star
   [1] 4.475666
##
   $ratio
   [1] 6.918858
##
   $P value
   Γ1 0
##
   $P_value_adj
   [1] 7.617357e-06
```

Comments

- Standard Mann-Kendall assumes observations independent.
- Observations close together in time often correlated with each other.
- Correlation of time series "with itself" called autocorrelation.
- Adjusted P-value above is correction for autocorrelation.

Examining rate of change

- Having seen that there is a change, question is "how fast is it?"
- Examine slopes:
 - regular regression slope, if you believe straight-line regression
 - Theil-Sen slope: resistant to outliers, based on medians

Ordinary regression against time xxx

```
temp.lm=lm(temperature~year, data=temp)
tidy(temp.lm)
```

Slope about 0.006 degrees per year (about this many degrees over course of data; pluck xxx):

```
coef(temp.lm)[2]*130
```

```
## year
## 0.7622068
```

Theil-Sen slope

also from mkac:

```
theil_sen_slope(temp$temperature)
```

[1] 0.005675676

Conclusions

- Slopes:
 - Linear regression: 0.005863
 - Theil-Sen slope: 0.005676
 - Very close.
- Correlations:
 - Pearson 0.8675
 - Kendall 0.6993
 - Kendall correlation smaller, but P-value equally significant (often the case)

Constant rate of change?

Slope assumes that the rate of change is same over all years, but trend seemed to be accelerating:

```
ggplot(temp, aes(x=year, y=temperature)) +
  geom_point() + geom_smooth()
```


Pre-1970 and post-1970:

Theil-Sen slope is very nearly four times as big since 1970 vs. before.

Actual time series: the Kings of England

Parsed with column specification:

 Age at death of Kings and Queens of England since William the Conqueror (1066):

```
kings=read_table("kings.txt", col_names=F)
```

```
## cols(
## X1 = col_double()
## )
```

Data in one long column X1, so kings is data frame with one column.

Turn into ts time series object

```
kings.ts=ts(kings)
kings.ts
## Time Series:
## Start = 1
## End = 42
## Frequency = 1
##
         X 1
##
   [1,] 60
   [2,] 43
##
##
   [3,] 67
## [4,] 50
    [5,] 56
##
##
    [6,] 42
##
    [7,] 50
##
    [8,]
```

Lecture notes

.....

Plotting a time series

autoplot from ggfortify gives time plot:

autoplot(kings.ts)

Comments

- "Time" here is order of monarch from William the Conqueror (1st) to George VI (last).
- Looks to be slightly increasing trend of age-at-death
- but lots of irregularity.

Stationarity

A time series is stationary if:

- mean is constant over time
- variability constant over time and not changing with mean.

Kings time series seems to have:

- non-constant mean
- but constant variability
- not stationary.

Getting it stationary

• Usual fix for non-stationarity is *differencing*: get new series from original one's values: 2nd - 1st, 3rd - 2nd etc.

In R, diff:

kings.diff.ts=diff(kings.ts)

Did differencing fix stationarity?

Looks stationary now:

autoplot(kings.diff.ts)

xxx Births per month in New York City

ny=read_table("nybirths.txt",col_names=F)

from January 1946 to December 1959:

ny

```
## # A tibble: 168 x 1
##
          X1
##
       <dbl>
        26.7
##
##
    2 23.6
##
    3 26.9
##
    4
        24.7
##
    5 25.8
##
    6
        24.4
##
    7 24.5
##
    8 23.9
        23.2
##
   10
        23.2
        with 158 more rows
       Lecture notes
                         STAD29: Statistics for the Life and Social Sc
```

As a time series xxx

```
ny.ts=ts(ny,freq=12,start=c(1946,1))
ny.ts
```

```
##
           Jan
                  Feb
                         Mar
                                       May
                                              Jun
                                Apr
## 1946 26.663 23.598 26.931 24.740 25.806 24.364
## 1947 21.439 21.089 23.709 21.669 21.752 20.761
## 1948 21.937 20.035 23.590 21.672 22.222 22.123
## 1949 21.548 20.000 22.424 20.615 21.761 22.874
## 1950 22,604 20,894 24,677 23,673 25,320 23,583
## 1951 23.287 23.049 25.076 24.037 24.430 24.667
## 1952 23.798 22.270 24.775 22.646 23.988 24.737
## 1953 24.364 22.644 25.565 24.062 25.431 24.635
## 1954 24.657 23.304 26.982 26.199 27.210 26.122
## 1955 24.990 24.239 26.721 23.475 24.767 26.219
## 1956 26.217 24.218 27.914 26.975 28.527 27.139
## 1957 26.589 24.848 27.543 26.896 28.878 27.390
## 1958 27.132 24.924 28.963 26.589 27.931 28.009
## 1959 26.076 25.286 27.660 25.951 26.398 25.565
                         Sep
##
           Jul
                  Aug
                                Oct
                                       Nov
## 1946 24.477 23.901 23.175 23.227 21.672 21.870
## 1947 23.479 23.824 23.105 23.110 21.759 22.073
## 1948 23.950 23.504 22.238 23.142 21.059 21.573
## 1949 24.104 23.748 23.262 22.907 21.519 22.025
```

Comments xxx

Note extras on ts:

- Time period is 1 year
- 12 observations per year (monthly) in freq
- First observation is 1st month of 1946 in start xxx more

Printing formats nicely.

Time plot

• Time plot shows extra pattern:

autoplot(ny.ts)

Comments on time plot

- steady increase (after initial drop)
- repeating pattern each year (seasonal component).
- Not stationary.

Differencing the New York births

Does differencing help here? Looks stationary, but some regular spikes:

```
ny.diff.ts=diff(ny.ts)
autoplot(ny.diff.ts)
```


Decomposing a seasonal time series

A visual (using original data):

```
ny.d <- decompose(ny.ts)
ny.d %>% autoplot()
```

Decomposition of additive time series

Decomposition bits

Shows:

- original series
- a "seasonal" part: something that repeats every year
- just the trend, going steadily up (except at the start)
- random: what is left over ("remainder")

xxx The seasonal part

Fitted seasonal part is same every year, births lowest in February and highest in July:

```
ny.d$seasonal
##
               Jan
                          Feb
                                      Mar
                                                 Apr
## 1946 -0.6771947 -2.0829607
                               0.8625232 -0.8016787
## 1947 -0.6771947 -2.0829607
                               0.8625232 -0.8016787
                               0.8625232 -0.8016787
## 1948 -0.6771947 -2.0829607
## 1949 -0.6771947 -2.0829607
                               0.8625232 -0.8016787
## 1950 -0.6771947 -2.0829607
                               0.8625232 -0.8016787
## 1951 -0.6771947 -2.0829607
                               0.8625232 -0.8016787
## 1952 -0.6771947 -2.0829607
                               0.8625232 -0.8016787
## 1953 -0.6771947 -2.0829607
                               0.8625232 -0.8016787
## 1954 -0.6771947 -2.0829607
                               0.8625232 -0.8016787
## 1955 -0.6771947 -2.0829607
                               0.8625232 -0.8016787
## 1956 -0.6771947 -2.0829607
                               0.8625232 -0.8016787
## 1957 -0.6771947 -2.0829607
                                0.8625232 -0.8016787
## 1958 -0.6771947 -2.0829607
                               0.8625232 -0.8016787
## 1959 -0.6771947 -2.0829607
                               0.8625232 -0.8016787
               May
                           Jun
                                      Jul
         0.2516514 -0.1532556
                                           1.1645938
## 1946
                              1.4560457
## 1947
         0.2516514 -0.1532556
                               1.4560457
                                           1.1645938
## 1948
         0.2516514 -0.1532556
                               1.4560457
                                           1.1645938
## 1949
         0.2516514 -0.1532556
                               1.4560457
                                           1.1645938
## 1950
         0.2516514 -0.1532556
                               1.4560457
                                           1.1645938
## 1951
         0.2516514 -0.1532556
                               1.4560457
                                           1.1645938
## 1952
         0.2516514 -0.1532556
                               1.4560457
                                           1.1645938
## 1953
         0.2516514 -0.1532556
                                1.4560457
                                           1.1645938
         0 2516514 -0 1532556
                               1 4560457
                                    STAD29: Statistics for the Life and Social Sc.
          Lecture notes
```

32 / 131

xxx Time series basics: white noise

Each value independent random normal. Knowing one value tells you nothing about the next. "Random" process. xxx

```
wn=rnorm(100)
wn.ts=ts(wn)
autoplot(wn.ts)
```


Lagging a time series

This means moving a time series one (or more) steps back in time:

```
x=rnorm(5)
tibble(x) %>% mutate(x_lagged=lag(x)) -> with_lagged
with_lagged
```

Gain a missing because there is nothing before the first observation.

Lagging white noise

```
tibble(wn) %>% mutate(wn_lagged=lag(wn)) -> wn_with_lagged
ggplot(wn_with_lagged, aes(y=wn, x=wn_lagged))+geom_point()
```


xxx Correlation with lagged series

If you know about white noise at one time point, you know *nothing* about it at the next. This is shown by the scatterplot and the correlation.

On the other hand, this: tibble(age=kings\$X1) %>%

Lecture notes

```
with(kings_with_lagged, cor.test(age, age_lagged))
##
##
   Pearson's product-moment correlation
##
## data: age and age_lagged
## t = 2.7336, df = 39, p-value = 0.00937
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   0.1064770 0.6308209
## sample estimates:
##
         cor
## 0.4009919
```

STAD29: Statistics for the Life and Social Sc.

36 / 131

mutate(age_lagged=lag(age)) -> kings_with_lagged

xxx Correlation with next value?

```
ggplot(kings_with_lagged, aes(x=age_lagged, y=age)) +
  geom_point()
```


Two steps back:

```
kings with lagged %>%
  mutate(age lag 2=lag(age lagged)) %>%
  with(., cor.test(age, age lag 2))
##
##
   Pearson's product-moment correlation
##
## data: age and age lag 2
## t = 1.5623, df = 38, p-value = 0.1265
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.07128917 0.51757510
## sample estimates:
##
        cor
## 0.245676
```

Still a correlation two steps back, but smaller (and no longer significant).

xxx Autocorrelation

Correlation of time series with *itself* one, two,... time steps back is useful idea, called **autocorrelation**. Make a plot of it with acf and autoplot. Here, white noise: xxx

acf(wn.ts, plot=F) %>% autoplot()

Kings, differenced

acf(kings.diff.ts, plot=F) %>% autoplot()

Comments on autocorrelations of kings series

Negative autocorrelation at lag 1, nothing beyond that.

- If one value of differenced series positive, next one most likely negative.
- If one monarch lives longer than predecessor, next one likely lives shorter.

NY births, differenced

acf(ny.diff.ts, plot=F) %>% autoplot()

Lots of stuff:

- large positive autocorrelation at 1.0 years (July one year like July last year)
- large negative autocorrelation at 1 month.
- smallish but significant negative autocorrelation at 0.5 year = 6 months.
- Other stuff complicated.

xxx Souvenir sales

Monthly sales for a beach souvenir shop in Queensland, Australia:

```
souv=read_table("souvenir.txt", col_names=F)
souv.ts=ts(souv,frequency=12,start=1987)
souv.ts
```

```
##
              Jan
                         Feb
                                   Mar
                                              Apr
                                                         Mav
                                                                   Jun
                                                                              Jul
## 1987
          1664.81
                     2397.53
                               2840.71
                                          3547.29
                                                    3752.96
                                                               3714.74
                                                                          4349.61
                                                                                    356
## 1988
                               7225.14
                                          4806.03
                                                                          6179.12
                                                                                    475
          2499.81
                     5198.24
                                                    5900.88
                                                               4951.34
## 1989
          4717.02
                     5702.63
                               9957.58
                                          5304.78
                                                    6492.43
                                                               6630.80
                                                                          7349.62
                                                                                    817
## 1990
          5921,10
                     5814.58
                              12421.25
                                          6369.77
                                                    7609.12
                                                               7224.75
                                                                          8121,22
                                                                                    797
## 1991
          4826.64
                     6470.23
                               9638.77
                                          8821.17
                                                    8722.37
                                                              10209.48
                                                                         11276.55
                                                                                   1255
## 1992
          7615.03
                     9849.69
                              14558.40
                                         11587.33
                                                    9332.56
                                                              13082.09
                                                                         16732.78
                                                                                   1988
## 1993
         10243.24
                                         17357.33
                                                                                   2858
                    11266.88
                              21826.84
                                                   15997.79
                                                              18601.53
                                                                        26155.15
                                    Nov
##
              Sep
                         Oct
                                              Dec
## 1987
          5021.82
                     6423.48
                               7600.60
                                         19756.21
## 1988
          5496.43
                     5835.10
                              12600.08
                                         28541.72
## 1989
          8573.17
                     9690.50
                              15151.84
                                         34061.01
## 1990
          8093.06
                     8476.70
                              17914.66
                                         30114.41
## 1991
         11637.39
                    13606.89
                              21822.11
                                         45060.69
```

25391.35

30821.33

23933.38

30505.41

1992

1993

46634.38 104660.67

80721.71

36024.80

Plot of souvenir sales

autoplot(souv.ts)

Several problems:

- Mean goes up over time
- Variability gets larger as mean gets larger
- Not stationary

Problem-fixing:

Fix non-constant variability first by taking logs:

```
souv.log.ts=log(souv.ts)
autoplot(souv.log.ts)
```


Mean still not constant, so try taking differences

souv.log.diff.ts=diff(souv.log.ts)
autoplot(souv.log.diff.ts)

Comments

- Now stationary
- but clear seasonal effect.

Decomposing to see the seasonal effect

souv.d=decompose(souv.log.diff.ts)
autoplot(souv.d)

xxx Comments

Big drop in one month's differences. Look at seasonal component to see which:

```
souv.d$seasonal
```

```
.Jan
                           Feb
                                       Mar
                                                   Apr
                                                               May
                                                                          Jun
                                                                                      Jul
## 1987
                    0.23293343
                                0.49068755 -0.39700942
                                                        0.02410429
                                                                   0.05074206
                                                                               0.13552988
## 1988 -1.90372141
                    0.23293343
                                0.49068755 -0.39700942
                                                        0.02410429
                                                                   0.05074206
                                                                               0.13552988
                    0.23293343
                                                        0.02410429
## 1989 -1.90372141
                                0.49068755 -0.39700942
                                                                   0.05074206
                                                                               0.13552988
## 1990 -1.90372141
                    0.23293343
                                0.49068755 -0.39700942
                                                        0.02410429
                                                                   0.05074206
                                                                               0.13552988
## 1991 -1.90372141
                    0.23293343
                                0.49068755 -0.39700942
                                                       0.02410429 0.05074206
                                                                               0.13552988
                    0.23293343
                                0.49068755 -0.39700942
## 1992 -1.90372141
                                                       0.02410429 0.05074206
                                                                               0.13552988
## 1993 -1.90372141
                    0.23293343
                                0.49068755 -0.39700942
                                                        0.02410429 0.05074206 0.13552988
               Aug
                           Sep
                                       Oct
                                                   Nov
                                                               Dec
## 1987 -0.03710275
                    0.08650584
                                0.09148236
                                           0.47311204
                                                        0.75273614
## 1988 -0.03710275
                    0.08650584
                                            0.47311204
                                0.09148236
                                                        0.75273614
## 1989 -0.03710275
                    0.08650584
                                0.09148236
                                            0.47311204
                                                        0.75273614
## 1990 -0.03710275
                    0.08650584
                                0.09148236
                                            0.47311204
                                                        0.75273614
## 1991 -0.03710275
                    0.08650584
                                0.09148236
                                            0.47311204
                                                        0.75273614
## 1992 -0.03710275
                    0.08650584
                                0.09148236
                                            0.47311204
                                                        0.75273614
## 1993 -0.03710275
                    0.08650584
                                0.09148236
                                           0.47311204
                                                        0.75273614
```

January.

Autocorrelations

acf(souv.log.diff.ts, plot=F) %>% autoplot()

Moving average

- A particular type of time series called a moving average or MA process captures idea of autocorrelations at a few lags but not at others.
- Here's generation of MA(1) process, with autocorrelation at lag 1 but not otherwise:

```
beta=1
tibble(e=rnorm(100)) %>%
  mutate(e_lag=lag(e)) %>%
  mutate(y=e+beta*e_lag) %>%
  mutate(y=ifelse(is.na(y), 0, y)) -> ma
```

The series xxx

ma

```
## # A tibble: 100 x 3
##
             e lag
          е
##
      <dbl> <dbl> <dbl>
##
   1 0.991
           NΑ
                    0
##
   2 0.469 0.991 1.46
##
   3 0.535 0.469
                    1.00
##
   4 -0.244 0.535
                    0.291
##
   5 1.17 -0.244
                    0.928
##
   6 -0.473 1.17
                    0.699
##
  7 1.56 -0.473 1.08
##
   8 -0.355 1.56 1.20
   9 -0.400 -0.355 -0.755
##
## 10 -2.10 -0.400 -2.50
## # ... with 90 more rows
```

Comments

- e contains independent "random shocks".
- Start process at 0.
- Then, each value of the time series has that time's random shock, plus a multiple of the last time's random shock.
- y[i] has shock in common with y[i-1]; should be a lag 1 autocorrelation.
- But y[i] has no shock in common with y[i-2], so no lag 2 autocorrelation (or beyond).

ACF for MA(1) process xxx

Everything beyond lag 1 appears to be just chance:

```
acf(ma$y, plot=F, na.rm=T) %>% autoplot()
```


AR process

Another kind of time series is AR process, where each value depends on previous one, like this (loop):

```
e=rnorm(100)
x=numeric(0)
x[1]=0
alpha=0.7
for (i in 2:100)
{
    x[i]=alpha*x[i-1]+e[i]
}
```

The series

```
х
```

```
##
     [1]
          0.00000000
                       0.69150384 - 0.27156693
##
     ۲4٦
         -1.69374385 -0.04624706 -0.61289729
##
     [7]
          0.26464756
                      -0.21493841 -1.31429232
    Γ10]
##
          0.44277420
                       0.09918044
                                    0.19080999
##
    [13] -1.02379326
                       0.16693770
                                    0.98374525
##
    Г16Т
          0.04866219 1.22331904 -0.04784703
##
    [19] -0.21367820 -0.68228901
                                    0.25079396
##
    [22]
        -0.86025292
                       1.75818244
                                   1.19266409
    [25]
##
          0.30513461
                       2.41224530
                                   1.28151011
##
    [28]
          1.68979182
                       2.01815565 3.53754507
##
    Г31]
          1.85840920
                       2.32513921 1.77111656
##
    Г341
          2.12223993
                       0.91095776 1.58477201
##
    [37]
          2.08225425 1.09623045 -0.76369221
##
    [40] -0.70809836 -1.84439667 -0.38985352
##
         -1.04265756 -0.86988314
                                   -1.14485961
     Lecture notes
                    STAD29: Statistics for the Life and Social Sc.
```

Comments

- Each random shock now only used for its own value of x
- but x[i] also depends on previous value x[i-1]
- so correlated with previous value
- but x[i] also contains multiple of x[i-2] and previous x's
- so all x's correlated, but autocorrelation dying away.

ACF for AR(1) series

acf(x, plot=F) %>% autoplot()

xxx Partial autocorrelation function

This cuts off for an AR series: xxx

PACF for an MA series decays slowly

pacf(ma\$y, plot=F) %>% autoplot()

The old way of doing time series analysis

Starting from a series with constant variability (eg. transform first to get it, as for souvenirs):

- Assess stationarity.
- If not stationary, take differences as many times as needed until it is.
- Look at ACF, see if it dies off. If it does, you have MA series.
- Look at PACF, see if that dies off. If it does, have AR series.
- If neither dies off, probably have a mixed "ARMA" series.
- Fit coefficients (like regression slopes).
- Do forecasts.

The new way of doing time series analysis (in R)

- Transform series if needed to get constant variability
- Use package forecast.
- Use function auto.arima to estimate what kind of series best fits data.
- Use forecast to see what will happen in future.

Anatomy of auto.arima output

Series: ma\$y ## ARIMA(0,0,1) with zero mean ## ## Coefficients: ## ma1 ## 0.9070 ## s.e. 0.0617

ATC=287.29 ATCc=287.41 BTC=292.5

Comments over.

##

auto.arima(ma\$y)

sigma^2 estimated as 0.9878: log likelihood=-141.64

Comments

- ARIMA part tells you what kind of series you are estimated to have:
 - first number (first 0) is AR (autoregressive) part
 - second number (second 0) is amount of differencing here
 - third number (1) is MA (moving average) part
- Below that, coefficients (with SEs)
- AICc is measure of fit (lower better)

What other models were possible?

Run auto.arima with trace=T:

auto.arima(ma\$y,trace=T)

```
##
##
   ARIMA(2,0,2) with non-zero mean : Inf
##
   ARIMA(0,0,0) with non-zero mean: 345.2328
##
   ARIMA(1,0,0) with non-zero mean : 313.9535
##
   ARIMA(0,0,1) with non-zero mean : 287.9463
##
   ARIMA(0,0,0) with zero mean : 346.0889
##
   ARIMA(1,0,1) with non-zero mean : 290.112
##
   ARIMA(0,0,2) with non-zero mean : 290.1128
   ARIMA(1,0,2) with non-zero mean : 291.7865
##
   ARIMA(0,0,1) with zero mean : 287.4124
##
   ARIMA(1,0,1) with zero mean : 289.4909
##
##
   ARIMA(0,0,2) with zero mean : 289.4993
   ARIMA(1,0,0) with zero mean : 312.7625
##
   ARIMA(1,0,2) with zero mean : 290.6071
##
##
```

Doing it all the new way: white noise

```
wn.aa=auto.arima(wn.ts)
wn.aa

## Series: wn.ts
## ARIMA(0,0,0) with zero mean
##
## sigma^2 estimated as 1.111: log likelihood=-147.16
## AIC=296.32 AICc=296.36 BIC=298.93
Best fit is white noise (no AR, no MA, no differencing).
```

xxx Forecasts:

forecast(wn.aa)

```
##
      Point Forecast Lo 80 Hi 80
                                        Lo 95
                                                     Hi 95
## 101
                    0 -1.350869 1.350869 -2.065975 2.065975
## 102
                    0 -1.350869 1.350869 -2.065975 2.065975
## 103
                    0 -1.350869 1.350869 -2.065975 2.065975
## 104
                    0 -1.350869 1.350869 -2.065975 2.065975
## 105
                    0 -1.350869 1.350869 -2.065975 2.065975
## 106
                    0 -1.350869 1.350869 -2.065975 2.065975
## 107
                    0 -1.350869 1.350869 -2.065975 2.065975
## 108
                    0 -1.350869 1.350869 -2.065975 2.065975
## 109
                    0 -1.350869 1.350869 -2.065975 2.065975
## 110
                    0 -1.350869 1.350869 -2.065975 2.065975
```

Forecasts all 0, since the past doesn't help to predict future.

MA(1)

```
y.aa=auto.arima(ma$y)
y.aa
## Series: ma$y
## ARIMA(0,0,1) with zero mean
##
## Coefficients:
##
           ma1
## 0.9070
## s.e. 0.0617
##
## sigma^2 estimated as 0.9878: log likelihood=-141.64
## ATC=287.29 ATCc=287.41 BTC=292.5
y.f=forecast(y.aa)
```

Plotting the forecasts for MA(1)

autoplot(y.f)

AR(1)

```
x.aa=auto.arima(x)
x.aa
## Series: x
## ARIMA(0,1,1)
##
## Coefficients:
##
            ma1
##
      -0.3544
## s.e. 0.1062
##
## sigma^2 estimated as 0.979: log likelihood=-138.99
## AIC=281.97 AICc=282.1 BIC=287.16
```

Oops! Thought it was MA(1), not AR(1)!

Fit right AR(1) model:

x.arima

##

x.arima=arima(x,order=c(1,0,0))

```
## Call:
## arima(x = x, order = c(1, 0, 0))
##

## Coefficients:
## ar1 intercept
## 0.7758 -0.3646
## s.e. 0.0611 0.4220
##

## sigma^2 estimated as 0.957: log likelihood = -140.16, aid
```

Forecasts for x

forecast(x.arima) %>% autoplot()

Comparing wrong model:

forecast(x.aa) %>% autoplot()

Kings

```
kings.aa
## Series: kings.ts
## ARIMA(0,1,1)
##
## Coefficients:
##
            ma1
## -0.7218
## s.e. 0.1208
##
## sigma^2 estimated as 236.2: log likelihood=-170.06
## AIC=344.13 AICc=344.44 BIC=347.56
```

kings.aa=auto.arima(kings.ts)

Kings forecasts:

```
kings.f=forecast(kings.aa)
kings.f
```

```
Lo 80
                                 Hi 80
                                          Lo 95
                                                     Hi 95
##
      Point Forecast
## 43
            67.75063 48.05479 87.44646 37.62845 97.87281
## 44
            67.75063 47.30662 88.19463 36.48422 99.01703
## 45
            67.75063 46.58489 88.91637 35.38042 100.12084
## 46
            67.75063 45.88696 89.61429 34.31304 101.18822
## 47
            67.75063 45.21064 90.29062 33.27869 102.22257
## 48
            67.75063 44.55402 90.94723 32.27448 103.22678
            67.75063 43.91549 91.58577 31.29793 104.20333
## 49
## 50
            67.75063 43.29362 92.20763 30.34687 105.15439
## 51
            67.75063 42.68718 92.81408 29.41939 106.08187
## 52
            67.75063 42.09507 93.40619 28.51383 106.98742
```

Kings forecasts, plotted

autoplot(kings.f) + labs(x="index", y= "age at death")

NY births

Very complicated:

```
ny.aa=auto.arima(ny.ts)
ny.aa
## Series: ny.ts
## ARIMA(2,1,2)(1,1,1)[12]
##
## Coefficients:
          ar1 ar2
                          ma1 ma2 sar1 sma1
##
## 0.6539 -0.4540 -0.7255 0.2532 -0.2427 -0.8451
## s.e. 0.3003 0.2429 0.3227 0.2878 0.0985 0.0995
##
## sigma^2 estimated as 0.4076: log likelihood=-157.45
## AIC=328.91 AICc=329.67 BIC=350.21
```

xxx NY births forecasts

Not *quite* same every year:

```
ny.f=forecast(ny.aa,h=36)
ny.f
```

Lecture notes

```
##
            Point Forecast
                               Lo 80
                                        Hi 80
                                                  Lo 95
## Jan 1960
                  27.69056 26.87069 28.51043 26.43668 28.94444
## Feb 1960
                  26.07680 24.95838 27.19522 24.36632 27.78728
## Mar 1960
                  29.26544 28.01566 30.51523 27.35406 31.17683
## Apr 1960
                  27.59444 26.26555 28.92333 25.56208 29.62680
## May 1960
                  28.93193 27.52089 30.34298 26.77392 31.08995
## Jun 1960
                  28.55379 27.04381 30.06376 26.24448 30.86309
                  29.84713 28.23370 31.46056 27.37960 32.31466
## Jul 1960
## Aug 1960
                  29.45347 27.74562 31.16132 26.84155 32.06539
  Sep 1960
                  29.16388 27.37259 30.95517 26.42433 31.90342
## Oct 1960
                  29.21343 27.34498 31.08188 26.35588 32.07098
## Nov 1960
                  27, 26221 25, 31879 29, 20563 24, 29000 30, 23441
                  28.06863 26.05137 30.08589 24.98349 31.15377
## Dec 1960
   Jan 1961
                  27.66908 25.59684 29.74132 24.49986 30.83830
  Feb 1961
                  26.21255 24.08615 28.33895 22.96051 29.46460
                        STAD29: Statistics for the Life and Social Sc.
```

Plotting the forecasts

81 / 131

80 95

Log-souvenir sales

```
souv.aa=auto.arima(souv.log.ts)
souv.aa
## Series: souv.log.ts
## ARIMA(2,0,0)(0,1,1)[12] with drift
##
## Coefficients:
##
                          sma1 drift
           ar1 ar2
##
      0.3470 0.3516 -0.5205 0.0238
## s.e. 0.1092 0.1115 0.1700 0.0031
##
## sigma^2 estimated as 0.02953:
                                log likelihood=24.54
## ATC=-39.09 ATCc=-38.18 BTC=-27.71
```

souv.f=forecast(souv.aa,h=27)

xxx The forecasts

souv.f

Differenced series showed low value for January (large drop). December highest, Jan and Feb lowest:

```
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
##
                9.578291 9.358036 9.798545 9.241440 9.915141
## Jan 1994
## Feb 1994 9.754836 9.521700 9.987972 9.398285 10.111386
## Mar 1994 10.286195 10.030937 10.541453 9.895811 10.676578
## Apr 1994 10.028630 9.765727 10.291532 9.626555 10.430704
## May 1994 9.950862 9.681555 10.220168 9.538993 10.362731
## Jun 1994 10.116930 9.844308 10.389551 9.699991 10.533868
## Jul 1994 10.369140 10.094251 10.644028 9.948734 10.789545
## Aug 1994 10.460050 10.183827 10.736274 10.037603 10.882498
## Sep 1994 10.535595 10.258513 10.812677 10.111835 10.959356
## Oct 1994 10.585995 10.308386 10.863604 10.161429 11.010561
## Nov 1994 11.017734 10.739793 11.295674 10.592660 11.442807
## Dec 1994 11.795964 11.517817 12.074111 11.370575 12.221353
## Jan 1995
             9.840884 9.540241 10.141527 9.381090 10.300678
## Feb 1995 10.015540 9.711785 10.319295 9.550987 10.480093
## Mar 1995 10.555070 10.246346 10.863794 10.082918 11.027222
## Apr 1995 10.299676 9.989043 10.610309 9.824604 10.774749
          10.225535 9.913326 10.537743 9.748053 10.703017
## May 1995
```

Plotting the forecasts

autoplot(souv.f)

Global mean temperatures, revisited

```
temp.ts=ts(temp$temperature,start=1880)
temp.aa=auto.arima(temp.ts)
temp.aa
## Series: temp.ts
## ARIMA(1,1,3) with drift
##
## Coefficients:
##
           ar1
               ma1 ma2 ma3 drift
## -0.9374 0.5038 -0.6320 -0.2988 0.0067
## s.e. 0.0835 0.1088 0.0876 0.0844
                                        0.0025
##
## sigma^2 estimated as 0.008939:
                                log likelihood=124.34
## AIC=-236.67 AICc=-235.99 BIC=-219.47
```

Forecasts

Lecture notes

```
temp.f=forecast(temp.aa)
autoplot(temp.f)+labs(x="year", y="temperature")
```


STAD29: Statistics for the Life and Social Sc

Section 2

Multiway frequency tables

Packages

library(tidyverse)

Multi-way frequency analysis

A study of gender and eyewear-wearing finds the following frequencies:

Gender	Contacts	Glasses	None
Female	121	32	129
Male	42	37	85

- Is there association between eyewear and gender?
- Normally answer this with chisquare test (based on observed and expected frequencies from null hypothesis of no association).
- Two categorical variables and a frequency.
- We assess in way that generalizes to more categorical variables.

The data file

```
gender contacts glasses none
female 121
            32
                      129
male 42
            37
                      85
```

This is not tidy!

##

• Two variables are gender and eyewear, and those numbers all frequencies.

my url <- "http://www.utsc.utoronto.ca/~butler/d29/eyewear.tx

```
eyewear
```

eyewear <- read delim(my url, " ")

```
## # A tibble: 2 x 4
##
    gender contacts glasses
    <chr>
              <dbl> <dbl> <dbl>
```

1 female 121 129 Lecture notes STAD29: Statistics for the Life and Social Sc.

Tidying the data

```
eyes <- eyewear %>%
  gather(eyewear, frequency, contacts:none)
eyes
## # A tibble: 6 \times 3
##
     gender eyewear frequency
##
     <chr> <chr>
                          <dbl>
## 1 female contacts
                            121
## 2 male contacts
                           42
                           32
## 3 female glasses
                             37
## 4 male glasses
## 5 female none
                            129
## 6 male none
                             85
xt <- xtabs(frequency ~ gender + eyewear, data = eyes)</pre>
xt
```

Modelling

- Last table on previous page is "reconstituted" contingency table, for checking.
- Predict frequency from other factors and combos. glm with poisson family.

```
eyes.1 <- glm(frequency ~ gender * eyewear,
  data = eyes,
  family = "poisson"
)</pre>
```

def

Called log-linear model.

What can we get rid of?

```
drop1(eyes.1, test = "Chisq")
## Single term deletions
##
## Model:
## frequency ~ gender * eyewear
                 Df Deviance AIC LRT Pr(>Chi)
##
## <none>
                      0.000 47.958
## gender:eyewear 2 17.829 61.787 17.829 0.0001345 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
def }
```

Conclusions

- drop1 says what we can remove at this step. Significant = must stay.
- Cannot remove anything.
- Frequency depends on gender-wear combination, cannot be simplified further.
- Gender and eyewear are associated.
- Stop here.

prop.table

```
Original table:
xt
##
          eyewear
## gender contacts glasses none
    female
##
                121
                         32 129
    male
         42
                         37 85
##
 Calculate eg. row proportions like this:
prop.table(xt, margin = 1)
##
           eyewear
```

```
## gender contacts glasses none
## female 0.4290780 0.1134752 0.4574468
## male 0.2560976 0.2256098 0.5182927
```

No association

• Suppose table had been as shown below:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/eyewear2.tr
eyewear2 <- read_table(my_url)
eyes2 <- eyewear2 %>% gather(eyewear, frequency, contacts:none
xt2 <- xtabs(frequency ~ gender + eyewear, data = eyes2)
xt2
## eyewear</pre>
```

```
## female 150 30 120
## male 75 16 62
prop.table(xt2, margin = 1)
```

gender contacts glasses none

```
## eyewear

## gender contacts glasses none

## female 0.5000000 0.1000000 0.4000000

Lecture notes STAD29: Statistics for the Life and Social Sc
```

Analysis for revised data

```
eyes.2 <- glm(frequency ~ gender * eyewear,
  data = eyes2,
  family = "poisson"
drop1(eyes.2, test = "Chisq")
## Single term deletions
##
## Model:
## frequency ~ gender * eyewear
```

Df Deviance AIC LRT Pr(>Chi)

No longer any association. Take out interaction.

gender:eyewear 2 0.047323 43.515 0.047323

##

<none>

0.000000 47.467

0.9766

No interaction

```
eyes.3 <- update(eyes.2, . ~ . - gender:eyewear)
drop1(eyes.3, test = "Chisq")
## Single term deletions
##
## Model:
## frequency ~ gender + eyewear
##
          Df Deviance AIC LRT Pr(>Chi)
              0.047 43.515
## <none>
## gender 1 48.624 90.091 48.577 3.176e-12 ***
## eyewear 2 138.130 177.598 138.083 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Lecture notes

More females (gender effect)

STAD29: Statistics for the Life and Social Sc

Chest pain, being overweight and being a smoker

- In a hospital emergency department, 176 subjects who attended for acute chest pain took part in a study.
- Each subject had a normal or abnormal electrocardiogram reading (ECG), were overweight (as judged by BMI) or not, and were a smoker or not.
- How are these three variables related, or not?

The data

In modelling-friendly format:

```
ecg bmi smoke count
abnormal overweight yes 47
abnormal overweight no 10
abnormal normalweight yes 8
abnormal normalweight no 6
normal overweight yes 25
normal overweight no 15
normal normalweight yes 35
normal normalweight no 30
```

First step

##

<none>

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/ecg.txt"
chest <- read_delim(my_url, " ")</pre>
chest.1 <- glm(count ~ ecg * bmi * smoke,
  data = chest,
  family = "poisson"
drop1(chest.1, test = "Chisq")
## Single term deletions
##
## Model:
```

0.0000 53.707

ecg:bmi:smoke 1 1.3885 53.096 1.3885 0.2387

Df Deviance AIC LRT Pr(>Chi)

That 3-way interaction comes out.

count ~ ecg * bmi * smoke

1.3885 53.096

Removing the 3-way interaction

Single term deletions

```
chest.2 <- update(chest.1, . ~ . - ecg:bmi:smoke)</pre>
drop1(chest.2, test = "Chisq")
```

```
##
## Model:
## count ~ ecg + bmi + smoke + ecg:bmi + ecg:smoke + bmi:smoke
            Df Deviance AIC LRT Pr(>Chi)
##
```

ecg:bmi 1 29.0195 78.727 27.6310 1.468e-07 *** ## ecg:smoke 1 4.8935 54.601 3.5050 0.06119 . ## bmi:smoke 1 4.4689 54.176 3.0803 0.07924 .

STAD29: Statistics for the Life and Social Sc.

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '

At $\alpha = 0.05$. bmi:smoke comes out.

<none>

ecg:smoke has become significant. So we have to stop.

Removing bmi:smoke

```
chest.3 <- update(chest.2, . ~ . - bmi:smoke)</pre>
drop1(chest.3, test = "Chisq")
## Single term deletions
##
## Model:
## count ~ ecg + bmi + smoke + ecg:bmi + ecg:smoke
            Df Deviance AIC LRT Pr(>Chi)
##
## <none>
               4.469 54.176
## ecg:bmi 1 36.562 84.270 32.094 1.469e-08 ***
## ecg:smoke 1 12.436 60.144 7.968 0.004762 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '
```

Understanding the final model

- \bullet Thinking of ecg as "response" that might depend on anything else.
- What is associated with ecg? Both bmi on its own and smoke on its own, but *not* the combination of both.
- ecg:bmi table:

```
xtabs(count ~ ecg + bmi, data = chest)
## bmi
```

```
## bmi
## ecg normalweight overweight
## abnormal 14 57
## normal 65 40
```

 Most normal weight people have a normal ECG, but a majority of overweight people have an abnormal ECG. That is, knowing about BMI says something about likely ECG.

ecg:smoke

• ecg:smoke table:

```
xtabs(count ~ ecg + smoke, data = chest)
```

```
## smoke

## ecg no yes

## abnormal 16 55

## normal 45 60
```

- Most nonsmokers have a normal ECG, but smokers are about 50–50 normal and abnormal ECG.
- Don't look at smoke: bmi table since not significant.

Simpson's paradox: the airlines example

	Alaska Airlines		America West	
Airport	On time	Delayed	On time	Delayed
Los Angeles	497	62	694	117
Phoenix	221	12	4840	415
San Diego	212	20	383	65
San Francisco	503	102	320	129
Seattle	1841	305	201	61
Total	3274	501	6438	787

Use status as variable name for "on time/delayed".

- Alaska: 13.3% flights delayed (501/(3274 + 501)).
- America West: 10.9% (787/(6438 + 787)).
- America West more punctual, right?

Arranging the data

 Can only have single thing in columns, so we have to construct column names like this: \begin{small}

```
aa_ontime aa_delayed aw_ontime aw_delayed
airport
LosAngeles
             497
                            62
                                     694
                                                 117
Phoenix
             221
                            12
                                    4840
                                                 415
SanDiego
           212
                            20
                                     383
                                                  65
SanFrancisco 503
                           102
                                     320
                                                 129
                                                  61
Seattle
             1841
                          305
                                     201
\end{small}
```

 Some tidying gets us the right layout, with frequencies all in one column and the airline and delayed/on time status separated out:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/airlines.tx
airlines <- read_table2(my_url)</pre>
```

STAD29: Statistics for the Life and Social Sc

The data frame punctual

```
A tibble: 20 \times 4
##
                      airline status
       airport
                                          freq
                      <chr>
       <chr>
                               <chr>>
                                        <dbl>
##
##
    1 LosAngeles
                               ontime
                                           497
                      aa
##
    2 Phoenix
                                           221
                               ontime
                      aa
##
    3 SanDiego
                                           212
                               ontime
                      aa
##
      SanFrancisco
                                           503
                      aa
                               ontime
##
    5 Seattle
                                          1841
                               ontime
                      aa
##
    6 LosAngeles
                               delayed
                                            62
                      aa
                                            12
##
    7 Phoenix
                               delayed
                      ลล
##
      SanDiego
                               delayed
                                            20
                      aa
##
      SanFrancisco
                               delayed
                                           102
##
   10 Seattle
                               delayed
                                           305
                      ลล
   11 LosAngeles
                               ontime
                                           694
                      aw
   12 Phoenix
                               ontime
                                          4840
                      aw
                                           383
   13 SanDiego
                               ontime
                      aw
                      STAD29: Statistics for the Life and Social Sc.
```

Proportions delayed by airline

• Two-step process: get appropriate subtable:

```
xt <- xtabs(freq ~ airline + status, data = punctual)
xt</pre>
```

```
## airline delayed ontime
## aa 501 3274
## aw 787 6438
```

status

##

• and then calculate appropriate proportions:

```
prop.table(xt, margin = 1)
```

```
## status

## airline delayed ontime

## aa 0.1327152 0.8672848

## aw 0.1089273 0.8910727
```

Proportion delayed by airport, for each airline

```
xt <- xtabs(freq ~ airline + status + airport, data = punctual
xp <- prop.table(xt, margin = c(1, 3))
ftable(xp,
   row.vars = c("airport", "airline"),
   col.vars = "status"
)</pre>
```

delayed

ontime

20512 0 71260/00

```
## airport
              airline
                                0.11091234 0.88908766
## LosAngeles
                ลล
##
                aw
                                0.14426634 0.85573366
                                0.05150215 0.94849785
## Phoenix
                ลล
##
                                0.07897241 0.92102759
                aw
                                0.08620690 0.91379310
## SanDiego
                aa
##
                                0.14508929 0.85491071
                aw
## SanFrancisco aa
                                0.16859504 0.83140496
```

STAD29: Statistics for the Life and Social Sc.

status

##

##

Simpson's Paradox

Airport	Alaska	America West
Los Angeles	11.4	14.4
Phoenix	5.2	7.9
San Diego	8.6	14.5
San Francisco	16.9	28.7
Seattle	14.2	23.2
Total	13.3	10.9

- America West more punctual overall,
- but worse at every single airport!
- How is that possible?
- Log-linear analysis sheds some light.

Model 1 and output

```
punctual.1 <- glm(freq ~ airport * airline * status,</pre>
  data = punctual, family = "poisson"
drop1(punctual.1, test = "Chisq")
## Single term deletions
##
## Model:
## freq ~ airport * airline * status
##
                          Df Deviance AIC LRT Pr(>Chi)
## <none>
                               0.0000 183.44
## airport:airline:status 4 3.2166 178.65 3.2166
                                                       0.5223
def
```

Remove 3-way interaction

Single term deletions

```
punctual.2 <- update(punctual.1, ~ . - airport:airline:status)
drop1(punctual.2, test = "Chisq")</pre>
```

```
##
## Model:
## freq ~ airport + airline + status + airport:airline + airport
```

```
## airline:status
## Df Deviance AIC IRT Pr(>Chi)
```

```
## Df Deviance AIC LRT Pr(>Chi)
## <none> 3.2 178.7
## airport:airline 4 6432.5 6599.9 6429.2 < 2.2e-16 ***
```

```
## airport:status 4 240.1 407.5 236.9 < 2.2e-16 ***
## airline:status 1 45.5 218.9 42.2 8.038e-11 ***
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

Understanding the significance

• airline:status:

```
xt <- xtabs(freq ~ airline + status, data = punctual)
prop.table(xt, margin = 1)</pre>
```

```
## status
## airline delayed ontime
## aa 0.1327152 0.8672848
## aw 0.1089273 0.8910727
```

- More of Alaska Airlines' flights delayed overall.
- Saw this before.

Understanding the significance (2)

• airport:status:

```
xt <- xtabs(freq ~ airport + status, data = punctual)
prop.table(xt, margin = 1)</pre>
```

```
##
                status
                    delayed ontime
  airport
    LosAngeles 0.13065693 0.86934307
##
    Phoenix
            0.07780612 0.92219388
##
    SanDiego 0.12500000 0.87500000
##
##
    SanFrancisco 0.21916509 0.78083491
    Seattle
                 0.15199336 0.84800664
##
```

- Flights into San Francisco (and maybe Seattle) are often late, and flights into Phoenix are usually on time.
- Considerable variation among airports.

Understanding the significance (3)

• airport:airline:

```
xt <- xtabs(freq ~ airport + airline, data = punctual)
prop.table(xt, margin = 2)</pre>
```

```
airline
##
  airport
                          aa
                                     aw
    LosAngeles 0.14807947 0.11224913
##
##
    Phoenix
             0.06172185 0.72733564
    SanDiego 0.06145695 0.06200692
##
##
    SanFrancisco 0.16026490 0.06214533
##
    Seattle
                 0.56847682 0.03626298
```

- What fraction of each airline's flights are to each airport.
- Most of Alaska Airlines' flights to Seattle and San Francisco.
- Most of America West's flights to Phoenix.

The resolution

- Most of America West's flights to Phoenix, where it is easy to be on time.
- Most of Alaska Airlines' flights to San Francisco and Seattle, where it is difficult to be on time.
- Overall comparison looks bad for Alaska because of this.
- But, comparing like with like, if you compare each airline's performance to the same airport, Alaska does better.
- Aggregating over the very different airports was a (big) mistake: that was the cause of the Simpson's paradox.
- Alaska Airlines is *more* punctual when you do the proper comparison.

Ovarian cancer: a four-way table

- Retrospective study of ovarian cancer done in 1973.
- Information about 299 women operated on for ovarian cancer 10 years previously.
- Recorded:
- stage of cancer (early or advanced)
- type of operation (radical or limited)
- X-ray treatment received (yes or no)
- 10-year survival (yes or no)
- Survival looks like response (suggests logistic regression).
- Log-linear model finds any associations at all.

The data

after tidying:

```
stage operation xray survival freq
early radical no no 10
early radical no yes 41
early radical yes no 17
early radical yes yes 64
early limited no no 1
early limited no yes 13
early limited yes no 3
early limited yes yes 9
advanced radical no no 38
advanced radical no yes 6
advanced radical yes no 64
advanced radical yes yes 11
advanced limited no no 3
advanced limited no yes 1
advanced limited yes no 13
advanced limited yes yes 5
```

Stage 1

hopefully looking familiar by now:

A tibble: 16×5

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/cancer.txt"
cancer <- read_delim(my_url, " ")
cancer %>% print(n = 6)
```

```
##
    stage operation xray survival
                                   freq
##
  <chr> <chr> <chr> <chr>
                                  <dbl>
## 1 early radical no
                                      10
                          no
## 2 early radical no
                                     41
                          yes
## 3 early radical yes
                                     17
                          no
## 4 early radical
                                     64
                   yes
                          yes
## 5 early limited
                    no
                          no
## 6 early limited
                                      13
                    no
                          yes
## # ... with 10 more rows
```

Output 1

def

See what we can remove:

```
drop1(cancer.1, test = "Chisq")
## Single term deletions
##
## Model:
## freq ~ stage * operation * xray * survival
##
                                 Df Deviance ATC
                                                         I.R.T
## <none>
                                     0.00000 98.130
## stage:operation:xray:survival 1 0.60266 96.732 0.60266
##
                                 Pr(>Chi)
## <none>
                                   0.4376
## stage:operation:xray:survival
```

Non-significant interaction can come out. Lecture notes

121 / 131

Stage 2

##

Model:

Lecture notes

```
cancer.2 <- update(cancer.1, ~ .
- stage:operation:xray:survival)
drop1(cancer.2, test = "Chisq")
## Single term deletions</pre>
```

xray:survival + stage:operation:xray + stage:operation
stage:xray:survival + operation:xray:survival
Df Deviance ATC LRT Pr(>Ch:

122 / 131

stage:operation:xray 1 2.33739 90.467 1.73493 0.163 ## stage:operation:survival 1 1.17730 95.307 0.57465 0.444 ## stage:xray:survival 1 0.95577 95.085 0.35311 0.552

STAD29: Statistics for the Life and Social Sc.

Take out stage:xray:survival

Single term deletions

```
cancer.3 <- update(cancer.2, . ~ . - stage:xray:survival)</pre>
drop1(cancer.3, test = "Chisq")
```

```
##
## Model:
## freq ~ stage + operation + xray + survival + stage:operation
```

stage:xray + operation:xray + stage:survival + operation ## xray:survival + stage:operation:xray + stage:operation

operation:xray:survival ## ## Df Deviance ATC LRT Pr(>Ch: 0.95577 95.085 ## <none> 1 3.08666 95.216 2.13089 0.144 ## stage:operation:xray

stage:operation:survival 1 1.56605 93.696 0.61029 ## operation:xray:survival 1 1.55124 93.681 0.59547

operation:xray:survival comes out next. Lecture notes STAD29: Statistics for the Life and Social Sc 0.434

0.440

Remove operation:xray:survival

```
cancer.4 <- update(cancer.3, . ~ . - operation:xray:survival)</pre>
drop1(cancer.4, test = "Chisq")
```

Single term deletions ## ## Model:

freq ~ stage + operation + xray + survival + stage:operation ## stage:xray + operation:xray + stage:survival + operation

xray:survival + stage:operation:xray + stage:operation

Df Deviance AIC LRT Pr(>Chi)

1.5512 93.681 ## <none> ## xray:survival 1 1.6977 91.827 0.1464 0.70196

stage:operation:xray 1 6.8420 96.972 5.2907 0.02144

stage:operation:survival 1 1.9311 92.061 0.3799 0.53768 ## ---

STAD29: Statistics for the Life and Social Sc.

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ## Signif. codes:

Comments

- stage:operation:xray has now become significant, so won't remove that.
- Shows value of removing terms one at a time.
- There are no higher-order interactions containing both xray and survival, so now we get to test (and remove) xray:survival.

Remove xray: survival

Single term deletions

```
cancer.5 <- update(cancer.4, . ~ . - xray:survival)
drop1(cancer.5, test = "Chisq")</pre>
```

```
##
## Model:
## from r grang + energian + wrow + gurvivel + grange energian
```

freq ~ stage + operation + xray + survival + stage:operatio
stage:xray + operation:xray + stage:survival + operation

```
## stage:operation:xray + stage:operation:survival
## Df Deviance AIC LRT Pr(>Chi
```

stage:operation:xray 1 6.9277 95.057 5.2300 0.0222 ## stage:operation:survival 1 2.0242 90.154 0.3265 0.567

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

1.6977 91.827

<none>

Remove stage: operation: survival

```
cancer.6 <- update(cancer.5, . ~ . - stage:operation:survival)</pre>
drop1(cancer.6, test = "Chisq")
## Single term deletions
```

```
##
## Model:
## freq ~ stage + operation + xray + survival + stage:operation
```

stage:xray + operation:xray + stage:survival + operation ## stage:operation:xray

Df Deviance AIC LRT Pr(>Chi) ## 2.024 90.154 ## <none>

stage:survival 1 135.198 221.327 133.173 <2e-16 ***

operation:survival 1 4.116 90.245 2.092 0.1481

0.0222 > ## stage:operation:xray 7.254 93.384 5.230

127 / 131

Lecture notes

Last step?

```
Remove operation:survival.
```

```
cancer.7 <- update(cancer.6, . ~ . - operation:survival)</pre>
drop1(cancer.7, test = "Chisq")
```

```
## Single term deletions
##
```

Model:

freq ~ stage + operation + xray + survival + stage:operation

4.116 90.245

AIC LRT Pr(>Chi)

0.0222 *

stage:survival 16 ***

<none>

##

##

stage:operation:xray 1 9.346 93.475 5.23 ## ---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' Lecture notes STAD29: Statistics for the Life and Social Sc. 128 / 131

Conclusions

##

- What matters is things associated with survival (survival is "response").
- Only significant such term is stage:survival:

```
xt <- xtabs(freq ~ stage + survival, data = cancer)
prop.table(xt, margin = 1)</pre>
```

```
## stage no yes
## advanced 0.8368794 0.1631206
## early 0.1962025 0.8037975
```

survival

- Most people in early stage of cancer survived, and most people in advanced stage did not survive.
- This true regardless of type of operation or whether or not X-ray treatment was received. These things have no impact on survival.

What about that other interaction?

stage

```
xt <- xtabs(freq ~ operation + xray + stage, data = cancer)</pre>
ftable(prop.table(xt, margin = 3))
```

advanced

early

```
## limited
                         0.02836879 0.08860759
             no
                         0.12765957 0.07594937
##
             yes
## radical
                         0.31205674 0.32278481
             no
##
                         0.53191489 0.51265823
             yes
```

- Out of the people at each stage of cancer (since margin=3 and stage was listed 3rd).
- The association is between stage and xray only for those who had the limited operation.
- For those who had the radical operation, there was no association between stage and xray. STAD29: Statistics for the Life and Social Sc.

operation xray

##

General procedure

- Start with "complete model" including all possible interactions.
- drop1 gives highest-order interaction(s) remaining, remove least non-significant.
- Repeat as necessary until everything significant.
- Look at subtables of significant interactions.
- Main effects not usually very interesting.
- Interactions with "response" usually of most interest: show association with response.

```
## Error in FUN(X[[i]], ...): invalid 'name' argument
```