Materials 12 - tinkering around with policy and expectation formation

Laura Gáti

December 7, 2019

Overview

1	Model summary	1
2	Changes	2
3	IRFs from vector learning: EE and LH, $T = 400, N = 100$	3

1 Model summary

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left((1-\beta) x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n} \right)$$
 (1)

$$\pi_t = \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} \left(\kappa \alpha \beta x_{T+1} + (1-\alpha) \beta \pi_{T+1} + u_T \right)$$
 (2)

$$i_t = \psi_\pi \pi_t + \psi_x x_t + \rho i_{t-1} + \bar{i}_t \tag{3}$$

$$\hat{\mathbb{E}}_t z_{t+h} = \begin{bmatrix} \overline{\pi}_{t-1} \\ 0 \\ 0 \end{bmatrix} + b h_x^{h-1} s_t \quad \forall h \ge 1 \qquad b = g_x \ h_x \qquad \text{PLM}$$
(4)

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t^{-1} \underbrace{\left(\pi_t - (\bar{\pi}_{t-1} + b_1 s_{t-1})\right)}_{\text{fcst error using (4)}} \qquad (b_1 \text{ is the first row of } b)$$
 (5)

$$k_t = \begin{cases} k_{t-1} + 1 & \text{for decreasing gain learning} \\ \bar{g}^{-1} & \text{for constant gain learning.} \end{cases}$$
 (6)

2 Changes

- 1. To policy
 - (a) $\mathbb{E}(\pi)$ instead of π in TR
 - (b) Check the fake $\psi_{\pi} < 1$ exercise.
- 2. To expectation formation
 - (a) Curiosity: check IRFs from Euler equation learning
 - (b) IRFs from vector learning (meaning learn all observables)
 - (c) Different implications from Bayesian learning?

Some reasoning (motivation and results):

- 1. $\mathbb{E}(\pi)$ instead of π in TR: indeed makes overshooting larger in magnitude b/c policy is reacting to something that moves more.
- 2. $\psi_{\pi} \leq 1$: indeed kills the overshooting, but no surprise makes observables unstable (IRFs don't return to steady state). Why does it work to kill the overshooting? B/c the Ball-effect of anticipated interest rate reactions no longer overweighs.
- 3. Townsend (1983) investigates "forecasting the forecasts of others" and finds damped oscillations

 → do higher-order beliefs play a role for causing oscillations in learning? If so, EE learning IRFs should exhibit no oscillations (and indeed they do not!)
- 4. Vector learning: are model implications different when agents learn the LOM of not only inflation but also of the other variables? \rightarrow No. (Note: I'm using the same gain for all variables.)
- 5. Does learning both slope and constant make a difference? \rightarrow Yes, in particular for constant gain learning. 2 effects: 1) less foresight, so i needs to be less expansionary 2) more bumpy IRFs.
 - 1) I think what might be going on here is that the only thing agents now know is h_x . Therefore the Ball-type "disinflationary boom"-effect happens to a lesser extent b/c agents do not internalize movements in the interest rate in response to future inflation as much as they would otherwise.
 - 2) More bumpy because since you're learning b, the loading on shocks, the specific sequence of shocks matters. Increasing the size of the cross-section, N, mitigates this somewhat.

3 IRFs from vector learning: EE and LH, T = 400, N = 100

EE, shock imposed at t=25 LH, shock imposed at t=25 Inflation **Output gap** Int. rate Inflation **Output gap** Int. rate 0.15 -0.2 -0.5 -0.2 -0.5 0.1 0.1 -0.4 -1 -0.4 0.05 0.05 -0.6 -0.6 -1.5 5 5 10 10 0 10 0 5 10 10 5 -Learning -Learning Learning -Learning —Learning —Learning ····RE ····RE ····RE ····RE ···RE ····RE (a) EE, dgain (b) LH, dgain EE, shock imposed at t=25 LH, shock imposed at t=25 Output gap Inflation Inflation **Output gap** Int. rate Int. rate 0 0.2 0.3 0.15 0.5 -0.2 -0.5 0.2 -0.2 0.1 0 -0.5 -0.4 0.05 -0.4 0.1 0 -0.6 -0.6 -1.5 0 0 5 10 5 10 0 5 10 5 10 5 10 0 -Learning -Learning Learning -Learning -Learning -Learning ····RE ····RE ····RE

Figure 1: Learning constant only

(d) LH, cgain

(c) EE, cgain

4 A technical note on the projection facility

Contrary to Liam Graham, I never have explosive path issues for long-horizon learning, but I do sometimes for Euler-equation learning (Graham claims this is never an issue for EE learning). Graham's solution for the projection facility is to check the eigenvalues of the learning matrix ϕ . My silly issue is that ϕ is not square. Therefore what I do is I check the eigenvalues of the following cheating matrix $\phi \phi'^{1/2}$. Thoughts?

5 Investigating IRFs in the data - Valerie Ramey's handbook chapter and the more bumpy local projection IRFs