MAS242 해석학 II Notes

한승우

April 10, 2024

CONTENTS

CHAPTER	Differentiation	Page 2	
1.1	Higher order partial derivatives	2	
1.2	Extreme Values of differentiable Functions	3	
Chapter	Inverse Function Theorem	Page 5	
2.1	Jacobian	5	
2.2	The Inverse Function Theorem	5	
2.3	Implicit Function Theorem	8	
2.4	Applications of IMFT: Lagrange's Method	9	
Chapter	Series of Vectors	Page 12	
3.1	Preliminaries	12	
3.2	Finite Dimensional Banach Spaces	13	
3.3	Conditional Convergence	14	
3.4	The Cauchy Product	15	
3.5	Series on Infinite Dimensional Banach Spaces	16	
Chapter	Analysis for Series Functions	Page 18	
4.1	Calculus of Series Functions	18	
Chapter	Applications of Improper Integrals	Page 22	
	Functions Defined by Improper Integrals	22	
	The Laplace Transform	24	
	Applications of Laplace Transforms	28	
	1		

Chapter 1

Differentiation

1.1 Higher order partial derivatives

Definition 1.1.1

Given $f: U \to \mathbb{R}$ where U is an open set in \mathbb{R}^m , define $\partial_{ij} \triangleq \partial_i(\partial_j f)(x)$ for each $i, j \in [m]$ to be *2nd order partial derivatives*. Any higher order partial derivatives can be defined inductively.

Definition 1.1.2: C^k -regularity

 $f: U \to \mathbb{R}$ is C^k -regular if all partial derivatives up to order k and they are continuous.

Theorem 1.1.3

 $f: U(\subseteq \mathbb{R}^2) \to \mathbb{R}$ is C^2 at a point $c \in U$, i.e., $\exists \delta > 0$, f is C^2 in $B_{\delta}(c)$. Then, $\partial_{12} f(c) = \partial_{21} f(c)$.

Proof. Let $|h| < \delta$. Define $A(h) \triangleq f(c_1 + h_1, c_2 + h_2) - f(c_1 + h_1, c_2) - f(c_1, c_2 + h_2) + f(c_1, c_2)$. Define $u(x_1) \triangleq f(x_1, c_2 + h_2) - f(x_1, c_2)$ and $v(x_2) \triangleq f(c_1 + h_1, x_2) - f(c_1, x_2)$. Note that u and v are differentiable.

Then, $A(h) = u(c_1 + h_1) - u(c_1)$ and $A(h) = v(c_2 + h) - v(c_2)$. By MVT, $\exists c_1^* \in (c_1, c_1 + h_1)$ and $c_2^* \in (c_2, c_2 + h_2)$ s.t. $A(h) = u'(c_1^*)h_1 = h_1(\partial_1 f(c_1^*, c_2 + h) - \partial_1 f(c_1^*, c_2)) = h_1 h_2 \partial_{21} f(c_1^*, c_2^*)$ Similarly, $\exists c_1^{**}, c_2^{**}$ such that $A(h) = h_1 h_2 \partial_{12} f(c_1^{**}, c_2^{**})$. $\partial_{21} f(c_1^*, c_2^*) = \partial_{12} f(c_1^{**}, c_2^{**})$. Hence, as $|h| \to 0$, due to the continuity, $\partial_{21}(c) = \partial_{12}(c)$.

Corollary 1.1.4

Suppose $f: U(\subseteq \mathbb{R}^m) \to \mathbb{R}$ is C^k at $c \in U$. Then $\partial_{j_1 j_2 \cdots j_k} f(c) = \partial_{j'_1 j'_2 \cdots j'_k}$ where $j'_1 \cdots$ are a permutation of $j_1 \cdots$.

1.2 Extreme Values of differentiable Functions

Definition 1.2.1: Hessian

Let $f: U(\subseteq \mathbb{R}^m) \to \mathbb{R}$ be C_2 in U. Suppose $p \in U$ is a critical point of f, i.e., $\nabla f(p) = 0$. Define

$$\mathcal{H}f(x) \triangleq \begin{pmatrix} \partial_{11}f(x) & \partial_{21}f(x) & \cdots & \partial_{m1}f(x) \\ \partial_{12}f(x) & \partial_{22}f(x) & \cdots & \partial_{m2}f(x) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{1m}f(x) & \partial_{2m}f(x) & \cdots & \partial_{mm}f(x) \end{pmatrix}.$$

(Sometimes $\mathcal{H}f(x) = D^2f(x)$.)

Define $D(x) = \det \mathcal{H}f(x)$. (Note that $\mathcal{H}f(x)$ is symmetric when f is C^2 by the theorem above.)

Theorem 1.2.2 2nd-order derivative test for two variable functions.

When m = 2 and f is C^2 , a critical point p is

- a local maximum if D(p) > 0 and $\partial_{11} f(p) > 0$ (or $\partial_{22} f(p) > 0$).
- a local minimum if D(p) > 0 and $\partial_{11} f(p) < 0$ (or $\partial_{22} f(p) < 0$).
- a saddle point if D(p) < 0.

The test fails when D(p) = 0.

Proof. Given a unit vector $\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2$, $D_{\mathbf{u}} f = \nabla f \cdot \mathbf{u} = u_1 \partial_1 f + u_2 \partial_2 f$, and thus

$$D_{\mathbf{u}}^{2}f = (u_{1}\partial_{1} + u_{2}\partial_{2})(u_{1}\partial_{1}f + u_{2}\partial_{2}f) = u_{1}^{2}\partial_{11}f + u_{1}u_{2}(2\partial_{12}f) + u_{2}^{2}\partial_{22}f.$$

WLOG, $u_1 \neq 0$. Set $z = u_2/u_1$. Then,

$$D_{\mathbf{u}}^{2}f(p) = u_{1}^{2}(\partial_{11}f(p) + 2\partial_{12}f(p)z + \partial_{22}f(p)z^{2}).$$

Note that, if D(p) > 0, $D_{\mathbf{n}}^2 f(p)$ has no real root.

- If D(p) > 0 and $\partial_{11} f(p) < 0$, Then, $D^2 \mathbf{u} < 0$ for all unit vector \mathbf{u} .
- If D(p) > 0 and $\partial_{11} f(p) > 0$, Then, $D^2 \mathbf{u} > 0$ for all unit vector \mathbf{u} .
- If D(p) < 0, D_u²f(p) has different signs depending on u.
 For general m?

$$D_{\mathbf{u}}(D_{\mathbf{u}}f) = D_{\mathbf{u}} \sum_{j=1}^{m} \partial_{j} f u_{j} = \sum_{j=1}^{m} ((\nabla \partial_{j} f) \cdot \mathbf{u}) u_{j} = \sum_{j=1}^{m} \sum_{k=1}^{m} u_{k} u_{j} \partial_{kj} f.$$

Hence,

$$D_{\mathbf{u}}^{2}f(p) = \mathbf{u}^{\mathrm{T}} \cdot D^{2}f(p) \cdot \mathbf{u}$$

Since $D^2f(p)$ is symmetric, its eigenvalues $\lambda_1, \dots, \lambda_m$ exists and they are real numbers. Also, there exists an $m \times m$ orthogonal matrix \mathcal{O} such that $D^2f(p) = \mathcal{O}\Lambda(p)\mathcal{O}^T$ where $\Lambda(p)$ is the diagonal matrix with entries are the eigenvalues.

Then, we can write $D_{\mathbf{u}}^2 f(p) = \mathbf{u} \mathcal{O} \Lambda(p) \mathcal{O}^{\mathsf{T}} \mathbf{u}^{\mathsf{T}} = (\mathbf{u} \mathcal{O}) \Lambda(p) = (\mathbf{u} \mathcal{O})^{\mathsf{T}}$. Since \mathcal{O} is orthogonal, $\mathbf{u} \mathcal{O}$ is another arbitrary unit vector.

Theorem 1.2.3 Generalized 2nd order partial derivatives test

When f is C^2 , a critical point p is

• a local maximum if all eigenvalues of $D^2 f(p)$ are negative.

- a local minimum if all eigenvalues of D²f(p) are positive.
 a saddle point if there are both negative eigenvalues and positive eigenvalues.
 The test fails when there are zero eigenvalues.

Chapter 2

Inverse Function Theorem

2.1 Jacobian

Definition 2.1.1: Jacobian

Let $f: U(\subseteq \mathbb{R}^m) \to \mathbb{R}^n$ be differentiable. The function $J_f: U \to \mathbb{R}$ defined by

$$J_{\mathbf{f}}(\mathbf{x}) = \det \begin{bmatrix} \partial_1 f_1(\mathbf{x}) & \cdots & \partial_n f_1(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \partial_1 f_n(\mathbf{x}) & \cdots & \partial_n f_n(\mathbf{x}) \end{bmatrix}$$

is called the Jacobian of f at x.

Lemma 2.1.2

If $f: V(\subseteq \mathbb{R}^n) - \mathbb{R}$ and $g: U \to V$ are differentiable, then

$$J_{f \circ g}(\mathbf{x}) = J_f(\mathbf{g}(\mathbf{x})) \cdot J_{\mathbf{g}}(\mathbf{x}).$$

Note:-

The linear mapping df(c) is invertible if and only if $J_f(c)$ is nonzero.

2.2 The Inverse Function Theorem

Lemma 2.2.1 Contraction Mapping Principle

Let (X,d) be a complete metric space. Let $\varphi: X \to X$. Suppose that there exists $M \in$ [0,1) such that $d(\varphi(x_1), \varphi(x_2)) \leq Md(x_1, x_2)$. (We call it a contraction mapping.) Then, there uniquely exists $x_* \in X$ such that $\varphi(x_*) = x_*$.

Proof. Fix any $x_0 \in X$. Since $\{x_j\}_{j \in \mathbb{Z}_+}$, where $x_j = \varphi(x_{j-1})$ for each $j \in \mathbb{Z}_+$, is continuous. It converges to some x_* . As φ is continuous, we have $\varphi(x_*) = x_*$. The uniqueness follows trivially.

Note:-

- For each $v \in \mathbb{R}^n \setminus \{0\}$, $|Av| = |v| \cdot \left| A \frac{v}{|v|} \right| \le ||A||_L \cdot |v|$. The result is trivial when v = 0. For each $u \in \mathbb{R}^n$ with |u| = 1, $|ABu| \le ||A||_L ||Bu| \le ||A||_L ||B||_L$. Hence, $||AB||_L = ||A|| ||B||$.
- Given invertible $A \in L(\mathbb{R}^n, \mathbb{R}^n)$, $A^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is linear. Moreover, $||A||_L > 0$.

Lemma 2.2.2

Given two linear mappings $A, B : \mathbb{R}^n \to \mathbb{R}^n$ with invertibility of A,

$$||A - B||_L \cdot ||A^{-1}||_L < 1 \implies B$$
 is invertible.

Proof. Let $||A^{-1}||_L = 1/\alpha$ and $||B - A||_L = \beta$ so that $\beta < \alpha$. Then, for every $\mathbf{x} \in \mathbb{R}^n$,

$$\alpha |\mathbf{x}| = \alpha |A^{-1}A\mathbf{x}| \le \alpha ||A^{-1}|| \cdot |A\mathbf{x}|$$

= $|A\mathbf{x}| \le |(A - B)\mathbf{x}| + |B\mathbf{x}| \le \beta |\mathbf{x}| + |B\mathbf{x}|$;

hence $(\alpha - \beta)|\mathbf{x}| \le |B\mathbf{x}|$ where $\mathbf{x} \in \mathbb{R}^n$ is arbitrary. As $\alpha > \beta$, it holds that $B\mathbf{x} = 0 \implies \mathbf{x} = 0$.

Corollary 2.2.3

The set $\Omega \subseteq L(\mathbb{R}^n, \mathbb{R}^n)$ of invertible linear transformations is open.

Lemma 2.2.4

The mapping from Ω onto Ω defined by $A \mapsto A^{-1}$ is continuous.

Proof. Let A and B be invertible linear transformations from \mathbb{R}^n to \mathbb{R}^n . Let $||A^{-1}|| = 1/\alpha$ and $||B-A||_L = \beta$. We have $(\alpha-\beta)|\mathbf{x}| \le |B\mathbf{x}|$ by the same reasoning as in the proof of Lemma 2.2.2. Hence, the following holds.

$$\forall \mathbf{y} \in \mathbb{R}^n$$
, $(\alpha - \beta)|B^{-1}\mathbf{y}| \le |BB^{-1}\mathbf{y}| = |\mathbf{y}|$

This shows that $||B^{-1}||_L \leq (\alpha - \beta)^{-1}$.

Hence, we have

$$||B^{-1} - A^{-1}||_L \le ||B^{-1}||_L ||A - B||_L ||A^{-1}||_L \le \frac{\beta}{\alpha(\alpha - \beta)}.$$

This implies that $||B^{-1} - A^{-1}||_L \to 0$ as $B \to A$.

Theorem 2.2.5 Inverse Function Theorem

Let $\mathbf{f} \colon E(\subseteq \mathbb{R}^n) \to \mathbb{R}^n$ be C^1 in E and $\mathbf{c} \in E$. Suppose that $J_{\mathbf{f}}(\mathbf{c}) \neq 0$. Then, the following hold.

- (i) There exists a neighborhood U of **a** such that $\mathbf{f}|_{U}$ is bijective and $V \triangleq \mathbf{f}(U)$ is open.
- (ii) The inverse map of $\mathbf{f}|_{U}$ is C^{1} in V.

Proof. Let $A \triangleq \mathrm{d}\mathbf{f}(\mathbf{c})$. Define $\lambda \in \mathbb{R}_+$ by $2\lambda \|A^{-1}\|_L = 1$. Since d**f** is continuous, there exists a neighborhood U of **c** such that $\|\mathrm{d}\mathbf{f}(\mathbf{x}) - A\|_L < \lambda$ for each $\mathbf{x} \in U$.

Given a point $\mathbf{y} \in \mathbb{R}^n$, we define $\varphi(\cdot; \mathbf{y})$ by

$$\varphi(\cdot; \mathbf{y}) : B_{\delta}(\mathbf{c}) \longrightarrow \mathbb{R}^{n}$$
$$\mathbf{x} \longmapsto \mathbf{x} + A^{-1}(\mathbf{y} - \mathbf{f}(\mathbf{x}))$$

Note that \mathbf{x} is a fixed point of $\varphi(\cdot; \mathbf{y})$ if and only if $A^{-1}(\mathbf{y} - \mathbf{f}(\mathbf{x})) = 0$, i.e., $\mathbf{y} = \mathbf{f}(\mathbf{x})$. Note also that φ is differentiable and $d\varphi(\mathbf{x}; \mathbf{y}) = \mathrm{Id} - A^{-1} d\mathbf{f}(\mathbf{x}) = A^{-1}(A - d\mathbf{f}(\mathbf{x}))$ for each $\mathbf{x} \in U$.

Hence, for all $\mathbf{x} \in U$,

$$\| d\varphi(\mathbf{x}; \mathbf{y}) \|_{L} = \| A^{-1} (A - d\mathbf{f}(\mathbf{x})) \|_{L} \le \| A^{-1} \|_{L} \cdot \| A - d\mathbf{f}(\mathbf{x}) \|_{L} < 1/(2\lambda) \cdot \lambda = 1/2.$$

Thus, MVT gives

$$|\varphi(\mathbf{x}_1;\mathbf{y}) - \varphi(\mathbf{x}_2;\mathbf{y})| \le \frac{1}{2}|\mathbf{x}_1 - \mathbf{x}_2|$$

whenever $\mathbf{x}_1, \mathbf{x}_2 \in U$. Note that this implies there is at most one fixed point of $\varphi(\cdot; \mathbf{y})$ in U, i.e., $\mathbf{f}|_{U}$ is bijective.

Now, we shall show that $V = \mathbf{f}(U)$ is open. Take any $\mathbf{y}_0 \in V$. There (uniquely) exists $\mathbf{x}_0 \in U$ such that $\mathbf{y}_0 = \mathbf{f}(\mathbf{x}_0)$. Fix any $r \in \mathbb{R}_+$ such that $\overline{B} \subseteq U$ where $B = B_r(\mathbf{x}_0)$. Take any $\mathbf{y} \in B_{\lambda r}(\mathbf{y}_0)$. Then,

$$|\varphi(\mathbf{x}_0; \mathbf{y}) - \mathbf{x}_0| = |A^{-1}(\mathbf{y} - \mathbf{y}_0)| < ||A^{-1}||_L \lambda r = \frac{r}{2}.$$

Moreover, for any $x \in \overline{B}$,

$$|\varphi(\mathbf{x};\mathbf{y}) - \mathbf{x}_0| \le |\varphi(\mathbf{x};\mathbf{y}) - \varphi(\mathbf{x}_0;\mathbf{y})| + |\varphi(\mathbf{x}_0;\mathbf{y}) - \mathbf{x}_0| \le \frac{1}{2}|\mathbf{x} - \mathbf{x}_0| + \frac{r}{2} < r.$$

This directly implies that $\varphi(\overline{B}; y) \subseteq B \subseteq \overline{B}$. Hence, $\varphi(\cdot, y)$ is a contraction mapping on a complete metric space \overline{B} . By Lemma 2.2.1, there exists a fixed point $\mathbf{x} \in \overline{B}$, which satisfies y = f(x). Thus, $y \in f(\overline{B}) \subseteq f(U) = V$. Hence, $B \subseteq V$, V is open. This proves (i).

Now, let $\mathbf{g}: V \to U$ be the local inverse map of $\mathbf{f}|_{U}$. Take any $\mathbf{y} \in V$ and $\mathbf{y} + \mathbf{k} \in V$. There are unique $x \in U$ and $x + h \in U$ such that y = f(x) and y + k = f(x + h). Then, we have

$$\varphi(x + h; y) - \varphi(x; y) = h + A^{-1}(f(x) - f(x + h)) = h - A^{-1}k,$$

which implies $|\mathbf{h} - A^{-1}\mathbf{k}| \le |h|/2$. Hence, $|A^{-1}\mathbf{k}| \ge |h|/2$ is obtained by the triangle inequality; $|\mathbf{h}| \le 2||A^{-1}||_L |\mathbf{k}| = \lambda^{-1} |\mathbf{k}|.$

Then, since $\|df(\mathbf{x}) - A\|_L \|A^{-1}\|_L < \lambda \cdot 1/(2\lambda) = 1/2$, Lemma 2.2.2 implies that $df(\mathbf{x})$ is invertible. Let $T \triangleq df(x)$. Then, we have

$$g(y+k)-g(y)-T^{-1}k = h-T^{-1}k = -T^{-1}(f(x+h)-f(x)-Th),$$

and thus

$$\frac{|\mathbf{g}(\mathbf{y}+\mathbf{k}) - \mathbf{g}(\mathbf{y}) - T^{-1}\mathbf{k}|}{|\mathbf{k}|} \le \frac{||T^{-1}||_L}{\lambda} \cdot \frac{|\mathbf{f}(\mathbf{x}+\mathbf{h}) - \mathbf{f}(\mathbf{x}) - T\mathbf{h}|}{|\mathbf{h}|}.$$

The equation implies that **g** is differentiable on *V*, and that $d\mathbf{g}(\mathbf{y}) = T^{-1} = d\mathbf{f}(\mathbf{g}(\mathbf{y}))^{-1}$. Since dg is a composition of continuous functions, dg itself is continuous.

Corollary 2.2.6 Let $\mathbf{f}: E(\subseteq \mathbb{R}^n) \to \mathbb{R}^n$ be C^1 in E and $J_{\mathbf{f}}(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in E$. Then, for every open set $W \subseteq E$, $\mathbf{f}(W)$ is open.

Proof. This directly follows from (i) of Theorem 2.2.5.

Implicit Function Theorem 2.3

Definition 2.3.1

- If $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $\mathbf{y} = (y_1, \dots, y_m) \in \mathbb{R}^m$, let us write (\mathbf{x}, \mathbf{y}) for the point $(x_1, \dots, x_n, y_1, \dots, y_m) \in \mathbb{R}^{n+m}.$ • Every $A \in L(\mathbb{R}^{n+m}, \mathbb{R}^n)$ can be split into $A_x \in L(\mathbb{R}^n)$ and $A_y \in L(\mathbb{R}^m, \mathbb{R}^n)$ where
- $A(\mathbf{h}, \mathbf{k}) = A_x \mathbf{h} + A_y \mathbf{k}$ for each $\mathbf{h} \in \mathbb{R}^n$ and $\mathbf{k} \in \mathbb{R}^m$.

Lemma 2.3.2

If $A \in L(\mathbb{R}^{n+m}, \mathbb{R}^n)$ and if A_x is invertible, then

$$\forall \mathbf{k} \in \mathbb{R}^m, \exists ! \mathbf{h} \in \mathbb{R}^n, A(\mathbf{h}, \mathbf{k}) = \mathbf{0}.$$

Proof. $A(\mathbf{h}, \mathbf{k}) = A_{\mathbf{r}} \mathbf{h} + A_{\mathbf{r}} \mathbf{k} = \mathbf{0}$ if and only if $\mathbf{h} = -(A_{\mathbf{r}})^{-1} A_{\mathbf{r}} \mathbf{k}$.

Theorem 2.3.3 Implicit Function Theorem

Let $\mathbf{f}: E \to \mathbb{R}^n$ be a C^1 mapping where E is an open set in \mathbb{R}^{n+m} . Let $(\mathbf{a}, \mathbf{b}) \in E$ satisfy f(a,b) = 0. Let A = df(a,b) and suppose A_x is invertible. Then, there exist open sets $U \subseteq \mathbb{R}^{n+m}$ and $W \subseteq \mathbb{R}^m$ that satisfy the following.

- (i) $(\mathbf{a}, \mathbf{b}) \in U$ and $\mathbf{b} \in W$.
- (ii) $\forall \mathbf{y} \in W, \exists ! \mathbf{x} \in \mathbb{R}^n, (\mathbf{x}, \mathbf{y}) \in U \land \mathbf{f}(\mathbf{x}, \mathbf{y}) = 0.$
- (iii) If the unique **x** in (ii) is denoted by $\mathbf{g}(\mathbf{y})$, then $\mathbf{g}: W \to \mathbb{R}^n$ is C^1 on W.
- (iv) Moreover, $dg(b) = -(A_x)^{-1}A_y$.

Proof. Define $F: E \to \mathbb{R}^{n+m}$ by $F(x,y) \triangleq (f(x,y),y)$. Then, F is C^1 . Since f(a,b) = 0, if $\mathbf{r}(\mathbf{h}, \mathbf{k}) \triangleq \mathbf{f}(\mathbf{a} + \mathbf{h}, \mathbf{b} + \mathbf{k}) - A(\mathbf{h}, \mathbf{k})$, we have $\lim_{\mathbf{h}, \mathbf{k} \to \mathbf{0}} |\mathbf{r}(\mathbf{h}, \mathbf{k})| / |(\mathbf{h}, \mathbf{k})| = 0$. Hence, from

$$F(a+h,b+k) - F(a,b) = (f(a+h,b+k),k) = (A(h,k),k) + (r(h,k),0),$$

it is obtained that dF(a,b)(h',k') = (A(h',k'),k') for each $(\mathbf{h'},\mathbf{k'}) \in \mathbb{R}^{n+m}$. If dF(a,b)(h',k') = 0, then $\mathbf{k}' = 0$ and $A(\mathbf{h}', \mathbf{0}) = \mathbf{0}$; thus $\mathbf{h}' = \mathbf{0}$ as A_x is invertible. Hence, $d\mathbf{F}(\mathbf{a}, \mathbf{b})$ is invertible; Theorem 2.2.5 can be applied to F at (a, b).

By Theorem 2.2.5, there exists a neighborhood $U \subseteq E$ of **(a, b)** such that $\mathbf{F}|_U$ is bijective, $\mathbf{F}(U)$ is open, and its inverse is C^1 . Let $W \triangleq \{\mathbf{y} \in \mathbb{R}^m \mid (\mathbf{0}, \mathbf{y}) \in \mathbf{F}(U)\}$. W is open as $\mathbf{F}(U)$ is open. Noting that $\mathbf{b} \in W$, we finish the proof for (i).

Take any $y \in W$. Then, there exists $(x, y) \in U$ such that F(x, y) = (0, y); thus f(x, y) = 0. If \mathbf{x}, \mathbf{x}' are two such point corresponding to \mathbf{y} , then

$$F(x', y) = (f(x', y), y) = (0, y) = (f(x, y), y) = F(x, y).$$

However, as **F** being injective, $\mathbf{x} = \mathbf{x}'$. This proves (ii).

Let $V \triangleq \mathbf{F}(U)$. Let $\mathbf{G}: V \to U$ be the inverse of \mathbf{F} , which is C^1 by Theorem 2.2.5. Hence, for each $y \in W$, from F(g(y), y) = (0, y), we have (g(y), y) = G(0, y). This directly shows that **g** is C^1 as well. This proves (iii).

Let $\Phi: W \to U$ be defined by $\Phi(y) = G(0,y) = (g(y),y)$, which is C^1 , indeed. Then, $d\Psi(y) = (dg(y), I_m)$. Differentiating both sides of the equality $f(\Phi(y)) = 0$, we get

$$df(\Phi(y))d\Phi(y)=0.$$

Putting y := b, as $\Phi(b) = (a, b)$, we get $Ad\Phi(b) = 0$, or

$$A_x \, \mathrm{d}\mathbf{g}(\mathbf{b}) + A_y = 0,$$

i.e.,
$$d\mathbf{g}(\mathbf{b}) = -(A_x)^{-1}A_y$$
.

Definition 2.3.4: C^1 **-norm**

Suppose $\varphi: \mathbb{R}^n \to \mathbb{R}$ is C^1 . Then,

$$\|\varphi\|_{C^0(\overline{\Omega})} \triangleq \sup_{\mathbf{x} \in \Omega} |\varphi(\mathbf{x})|$$

$$\|\varphi\|_{C^{1}(\overline{\Omega})} \triangleq \|\varphi\|_{C^{0}(\overline{\Omega})} + \sum_{j=1}^{n} \|\partial_{j}\varphi\|_{C^{0}(\overline{\Omega})}.$$

This is only for Example 2.3.5.

Example 2.3.5 Level Sets

Define $\Omega \triangleq \{(x_1, x_2) \in \mathbb{R}^2 \mid |x_2| \leq 1\}$. Given two constants, $a, b \in \mathbb{R}$ with a < b, define $\overline{\varphi}(x_1, x_2) = ax_1$ and $\overline{\psi}(x_1, x_2) = bx_1$. Then, $\Gamma_0 = \{\mathbf{x} \in \Omega \mid \overline{\varphi}(\mathbf{x}) - \overline{\psi}(\mathbf{x}) = 0\} = \{\mathbf{x} \in \Omega \mid x_1 = 0\}$.

Suppose that $\varphi, \psi \colon \Omega \to \mathbb{R}$ satisfy

$$\|\varphi - \overline{\varphi}\|_{C^1(\overline{\Omega})} + \|\psi - \overline{\psi}\|_{C^1(\overline{\Omega})} \le \frac{1}{4}|a - b|.$$

Then, what would be the expression for $\Gamma = \{ \mathbf{x} \in \Omega \mid \varphi(\mathbf{x}) - \psi(\mathbf{x}) = 0 \}$?

Observe that $(\varphi - \psi) = (\varphi - \overline{\varphi}) + (\overline{\varphi} - \overline{\psi}) + (\overline{\psi} - \psi)$ and thus $|(\varphi - \psi)(x_1, x_2) - (a - b)x_1| \le |a - b|/4$. This implies $\lim_{x_1 \to \pm \infty} (\varphi - \psi)(x_1, x_2) = \mp \infty$. Hence, for every $x_2 \in [-1, 1]$, there exists $x_1^* \in \mathbb{R}$ such that $(\varphi - \psi)(x_1^*, x_2) = 0$.

Moreover, $\partial_1(\varphi - \psi) = \partial_1(\varphi - \overline{\varphi}) + (a - b) + \partial_1(\overline{\psi} - \psi)$, and thus $|\partial_1(\varphi - \psi)| \ge \frac{3}{4}|a - b| > 0$. Hence, the x_1^* in the previous paragraph is unique. This means that $\Gamma = \{(f(x_2), x_2) \mid x_2 \in \mathbb{R}\}$ for some f.

$$(\varphi-\psi)(f(x_2),x_2)-(\overline{\varphi}-\overline{\psi})(f(x_2),x_2)=-(\overline{\varphi}-\overline{\psi})(f(x_2),x_2)=(b-a)f(x_2).$$
 Hence,

$$f(x_2) = \frac{(\varphi - \overline{\varphi})(f(x_2), x_2) - (\psi - \overline{\psi})(f(x_2), x_2)}{b - a}.$$

This is the implicit representation of f. Moreover, $|f(x_2)| = \frac{|b-a|/4}{|b-a|} = 1/4$.

2.4 Applications of IMFT: Lagrange's Method

Theorem 2.4.1 Optimization Under Multiple Constraints

Let $f, g_1, g_2, \dots, g_k \colon E \to \mathbb{R}$ be C^1 where E is an open set in \mathbb{R}^n and n > k. Let $Z \triangleq \bigcap_{j=1}^k \{ \mathbf{z} \in \mathbb{R}^n \mid g_j(\mathbf{z}) = 0 \}$. Suppose $\mathbf{z}_0 \in Z$ is a local maximum point with respect to f

on Z. Suppose also that

$$\Delta \triangleq \det \begin{bmatrix} \partial_1 g_1(\mathbf{z}_0) & \cdots & \partial_1 g_k(\mathbf{z}_0) \\ \vdots & \ddots & \vdots \\ \partial_k g_1(\mathbf{z}_0) & \cdots & \partial_k g_k(\mathbf{z}_0) \end{bmatrix} \neq 0.$$

Then, there exists $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}$ such that $\nabla f(\mathbf{z}_0) = \sum_{m=1}^k \lambda_m \nabla g_m(\mathbf{z}_0)$.

Proof. Since $\Delta \neq 0$, there exists a unique solution $(\lambda_1, \dots, \lambda_k) \in \mathbb{R}^k$ for the linear system

$$\begin{bmatrix} \partial_1 g_1(\mathbf{z}_0) & \cdots & \partial_1 g_k(\mathbf{z}_0) \\ \vdots & \ddots & \vdots \\ \partial_k g_1(\mathbf{z}_0) & \cdots & \partial_k g_k(\mathbf{z}_0) \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix} = \begin{bmatrix} \partial_1 f(\mathbf{z}_0) \\ \vdots \\ \partial_k f(\mathbf{z}_0) \end{bmatrix}.$$

For each point $\mathbf{z}=(z_1,\cdots,z_n)\in\mathbb{R}^n$, let $\mathbf{x}=(z_1,\cdots,z_k)$ and $\mathbf{y}=(z_{k+1},\cdots,z_n)$. Let $\mathbf{z}_0=(\mathbf{x}_0,\mathbf{y}_0)$. Let $\mathbf{g}\colon E\to\mathbb{R}^k$ be defined by $\mathbf{g}(\mathbf{z})=(g_1(\mathbf{z}),\cdots,g_k(\mathbf{z}))$.

Since \mathbf{g} is C^1 , $\mathbf{g}(\mathbf{z}_0) = 0$, and $\left(d\mathbf{g}(\mathbf{z}_0)\right)_x$ is invertible, by Theorem 2.3.3, there exists an open neighborhood $W \subseteq \mathbb{R}^{n-k}$ of \mathbf{y}_0 and a C^1 function $\mathbf{s} \colon W \to \mathbb{R}^k$ such that $\mathbf{g}(\mathbf{s}(\mathbf{y}), \mathbf{y}) = \mathbf{0}$ for each $\mathbf{y} \in W$. Note that $\mathbf{s}(\mathbf{y}_0) = \mathbf{x}_0$.

Define $F: W \to \mathbb{R}$ by $\mathbf{y} \mapsto f(\mathbf{s}(\mathbf{y}), \mathbf{y})$. As \mathbf{z}_0 is a local maximum point, so is \mathbf{y}_0 . Hence, $\nabla F(\mathbf{y}_0) = \mathbf{0}$. For each $j \in [k]$, define $G_j: W \to \mathbb{R}$ by $\mathbf{y} \mapsto g_j(\mathbf{s}(\mathbf{y}), \mathbf{y})$. As $(\mathbf{s}(\mathbf{y}), \mathbf{y}) \in Z$, we have $G_j = 0$ for each $j \in [k]$. Thus, $\nabla G_j(\mathbf{y}) = \mathbf{0}$.

Let $\mathbf{s} = (s_1, s_2, \dots, s_k)$ where each $s_i : W \to \mathbb{R}$. Since

$$\nabla F(\mathbf{y}) = \mathrm{d}f(\mathbf{s}(\mathbf{y}), \mathbf{y}) \, \mathrm{d}(\mathbf{s}(\mathbf{y}), \mathbf{y})$$

$$= \left[\partial_1 f(\mathbf{s}(\mathbf{y}), \mathbf{y}) \quad \cdots \quad \partial_n f(\mathbf{s}(\mathbf{y}), \mathbf{y}) \right] \begin{bmatrix} \partial_1 s_1(\mathbf{y}) & \partial_2 s_1(\mathbf{y}) & \cdots & \partial_{n-k} s_1(\mathbf{y}) \\ \partial_1 s_2(\mathbf{y}) & \partial_2 s_2(\mathbf{y}) & \cdots & \partial_{n-k} s_2(\mathbf{y}) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_1 s_k(\mathbf{y}) & \partial_2 s_k(\mathbf{y}) & \cdots & \partial_{n-k} s_k(\mathbf{y}) \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix},$$

 $\nabla F(\mathbf{y}_0) = \mathbf{0}$ implies

$$\partial_{k+j} f(\mathbf{z}_0) + \sum_{i=1}^k \partial_i f(\mathbf{z}_0) \partial_j s_i(\mathbf{y}_0) = 0$$

for each $j \in [n-k]$. Similarly, $\nabla G_m(\mathbf{y}_0) = \mathbf{0}$ for each $m \in [k]$ implies that

$$-\lambda_m \left[\partial_{k+j} g_m(\mathbf{z}_0) + \sum_{i=1}^k \partial_i g_m(\mathbf{z}_0) \partial_j s_i(\mathbf{y}_0) \right] = 0$$

for each $j \in [n-k]$ and $m \in [k]$.

Adding the k + 1 equations together for each $j \in [n - k]$,

$$0 = \left[\partial_{k+j} f(\mathbf{z}_0) - \sum_{m=1}^k \lambda_m \partial_{k+j} g_m(\mathbf{z}_0)\right] + \sum_{i=1}^k \left[\partial_i f(\mathbf{z}_0) - \sum_{m=1}^k \lambda_m \partial_i g_m(\mathbf{z}_0)\right] \partial_j s_i(\mathbf{y}_0).$$

By the definition of $\lambda_1, \dots, \lambda_k$, we are left with only

$$\partial_j f(\mathbf{z}_0) = \sum_{m=1}^k \lambda_m \partial_j g_m(\mathbf{z}_0)$$

for each $j \in \{k+1, \dots, n\}$. For $j \in [k]$, the same equation holds by the definition of $\lambda_1, \dots, \lambda_k$. Hence, we have $\nabla f(\mathbf{z}_0) = \sum_{m=1}^k \lambda_m \nabla g_m(\mathbf{z}_0)$.

Chapter 3

Series of Vectors

3.1 Preliminaries

Definition 3.1.1: Normed Vector Space

Let *V* be a (real/complex) vector space equipped with a norm $\|\cdot\|$, i.e., the space $(V, \|\cdot\|)$ satisfies the following properties.

- (i) $0 \in V$
- (ii) $\|\mathbf{x}\| \ge 0$ for all $x \in V$ and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$. (positive definiteness)
- (iii) $\|\beta \mathbf{x}\| = |\beta| \cdot \|\mathbf{x}\|$ for all $\mathbf{x} \in V$ and $\beta \in \mathbb{R}$. (absolute homogeneity)
- (iv) $||x_1 + x_2|| \le ||x_1|| + ||x_2||$ for all $x_1, x_2 \in V$. (triangle inequality)

Note:-

Note that $(V, \|\cdot\|)$ is naturally a metric space with the metric function $d(\mathbf{x}_1, \mathbf{x}_2) = \|\mathbf{x}_1 - \mathbf{x}_2\|$.

Definition 3.1.2: Banach Space

A normed vector space $(V, \|\cdot\|)$ is called a *Banach space* if, for every Cauchy sequence $\{x_j\}_{j\in\mathbb{N}}$, there exists a unique $\mathbf{x}_* \in V$ such that $\lim_{n\to\infty} \|\mathbf{x}_n - \mathbf{x}_*\| = 0$.

Example 3.1.3

Let *A* be a compact subset of \mathbb{R}^n . $(V, \|\cdot\|)$ where $V = \{f : A \to \mathbb{R} \mid f \text{ is continuous}\}$ and $\|f\| = \sup_{x \in A} |f(x)|$ forms a Banach space.

Note:-

A Banach space is a normed vector space whose naturally induced metric space is complete.

Definition 3.1.4: Series

Let $(V, \|\cdot\|)$ be a normed vector space. Given a sequence $\{x_j\}_{j\in\mathbb{N}}\subseteq V$, define $S_k\triangleq\sum_{j=1}^kx_j$ for each $k\in\mathbb{N}$. Then, each S_k is called a *partial sum* of $\{x_j\}$. If $\{S_k\}_{k\in\mathbb{N}}$ converges to S_k with respect to $\|\cdot\|$, then we write

$$S_* = \sum_{j=1}^{\infty} x_j.$$

If the limit S_* exists, we symbolically say that " $\sum_{j=1}^{\infty} x_j$ converges."

Lemma 3.1.5

Let $(V, \|\cdot\|)$ be a normed vector space. Let $\{x_j\}_{j\in\mathbb{N}}\subseteq V$ be a sequence. If a series $\sum_{j=1}^{\infty}x_j$ converges, then $\lim_{k\to\infty}\|\mathbf{x}_k\|=0$.

Proof. $\{S_k\}_{k\in\mathbb{N}}$ is a Cauchy sequence. Hence, $\lim_{k\to\infty} \|\mathbf{x}_k\| = \lim_{k\to\infty} \|S_{k+1} - S_k\| = 0$.

Lemma 3.1.6

Let $(V, \|\cdot\|)$ be a Banach space. Let $\{x_j\}_{j\in\mathbb{N}}\subseteq V$ be a sequence. A series $\sum_{j=1}^{\infty}x_j$ converges if and only if $\{S_k\}_{k\in\mathbb{N}}$ is Cauchy.

Proof. The definition of Banach spaces.

3.2 Finite Dimensional Banach Spaces

Theorem 3.2.1 Comparison Test

Given two real sequence $\{a_j\}$ and $\{b_j\}$, suppose $0 \le a_j \le b_j$ for all $j \ge k_0$ where $k_0 \in \mathbb{N}$ is a fixed constant. Then, if $\sum_{j=1}^{\infty} b_j$ converges, then $\sum_{j=1}^{\infty} a_j$ converges.

Proof. Let $S_k = \sum_{j=k_0}^k a_j$ and $T_k = \sum_{j=k_0}^\infty b_j$. Then, $0 \le S_n - S_m = \sum_{j=m+1}^n a_j \le \sum_{j=m+1}^n b_j = T_n - T_m$ whenever $n \ge m \ge k_0$. As $\{T_k\}_{k \in \mathbb{N}}$ is Cauchy, $\{S_k\}_{k \in \mathbb{N}}$ is Cauchy as well. As $(\mathbb{R}, \|\cdot\|)$ is a Banach space, $\sum a_j$ converges.

Theorem 3.2.2 Absolute Convergence Test

Let $(V, \|\cdot\|)$ be a Banach space. Let $\{\mathbf{x}_j\}_{j\in\mathbb{N}}\subseteq V$ be a sequence. If $\sum_{j=1}^{\infty}\|\mathbf{x}_j\|$ converges (in \mathbb{R}), then $\sum_{j=1}^{\infty}\mathbf{x}_j$ converges.

Proof. Let $S_k = \sum_{j=1}^k \mathbf{x}_j \in V$ and $T_k = \sum_{j=1}^k \|\mathbf{x}_j\| \in \mathbb{R}$. Then, $\|S_n - S_m\| = \|\sum_{j=m+1}^n \mathbf{x}_j\| \le \sum_{j=m+1}^n \|\mathbf{x}_j\| = T_n - T_m$ whenever $n \ge m$. As $\{T_k\}$ is Cauchy, $\{S_k\}$ is Cauchy as well. Hence, $\sum \mathbf{x}_j$ converges.

Theorem 3.2.3 Summation by Parts

Let $\{a_j\}$ and $\{b_j\}$ be two real sequences. If $\sum a_j$ converges and $\{b_j\}$ is monotonic and convergent, then $\sum_{j=1}^\infty a_j b_j$ converges.

Proof. Let $S_k = \sum_{j=1}^k a_j b_j \in V$ and $A_k = \sum_{j=1}^k a_j \in \mathbb{R}$. $(A_0 = 0.)$ Then, $S_k = \sum_{j=1}^k (A_j - A_{j-1}) b_j = 0$ $\textstyle \sum_{j=1}^k A_j b_j - \sum_{j=0}^k A_0 b_{j+1} + A_k b_{k+1} = A_k b_{k+1} - \sum_{j=1}^k A_j (b_{j+1} - b_j).$ Let $T_k = \sum_{j=1}^k |A_j(b_{j+1} - b_j)|$. Then, whenever n < m, we have

$$0 \le T_m - T_n \le M \sum_{j=n+1}^m |b_{j+1} - b_j| = M|b_{m+1} - b_{n+1}| \to 0,$$

 $\{T_k\}$ is Cauchy, and thus converges; $\{S_k\}$ converges as well.

Conditional Convergence 3.3

Definition 3.3.1: Conditional Convergence

Given a real sequence $\{a_j\}_{j\in\mathbb{N}}\subseteq\mathbb{R}$, if $\sum a_j$ converges, and if $\sum |a_j|$ does not converge, then we say that $\sum a_i$ converges conditionally.

Theorem 3.3.2 Alternating Series Test

Let $\{a_j\}_{j\in\mathbb{N}}\subseteq\mathbb{R}$ be a real sequence. If $a_j\geq 0$ for all $j\in\mathbb{N}$, and if $\lim_{j\to\infty}a_j=0$, then $\sum (-1)^{j} a_{i}$ converges.

Proof. MAS101.

Example 3.3.3

 $\sum (-1)^{j}/j$ conditionally converges.

🛉 Note:- 🛉

Given, a real sequence $\{a_i\}$, we shall use the following definition for now.

For $j \in \mathbb{N}$, define

$$a_j^+ \triangleq \frac{|a_j| + a_j}{2} = \begin{cases} a_j & \text{if } a_j \ge 0\\ 0 & \text{if } a_j < 0 \end{cases}$$
 and $a_j^- \triangleq \frac{|a_j| - a_j}{2} = \begin{cases} 0 & \text{if } a_j \ge 0\\ -a_j & \text{if } a_j < 0 \end{cases}$.

Then, $a_j^+, a_j^- \ge 0$, $|a_j| = a_j^+ + a_j^-$, and $a_j = a_j^+ - a_j^-$.

Lemma 3.3.4

- Let $\{a_j\}_{j\in\mathbb{N}}$ be a real sequence. (i) If $\sum a_j$ converges absolutely, then both $\sum a_j^+$ and $\sum a_j^-$ converge. Moreover, $\sum a_j = \sum a_j^+ - \sum a_j^-.$ (ii) If $\sum a_j$ converges conditionally, then both $\sum a_j^+$ and $\sum a_j^-$ diverge.

Proof.

- (i) By the definition of a_i^+ and a_i^- .
- (ii) If one of $\sum a_j^+$ or $\sum a_j^-$ converges, since $a_j = a_j^+ a_j^-$, the other converges as well. If they both converge, as $|a_j| = a_j^+ + a_j^-$, $\sum a_j$ converges absolutely.

Definition 3.3.5: Rearrangement of Series

Let $\phi: \mathbb{N} \to \mathbb{N}$ be bijective. Given a sequence $\{a_i\}_{i\in\mathbb{N}}$, the series $\sum a_{\phi(i)}$ is called a rearrangement of $\sum a_i$.

Theorem 3.3.6 Riemann's Rearrangement Theorem

Let $\{a_j\}_{j\in\mathbb{N}}$ be a conditionally convergent real sequence. Then, for any given $-\infty\leq$ $\alpha \leq \beta \leq \infty$ ($\pm \infty$ is allowed for α and β), there exists a rearrangement $\phi : \mathbb{N} \to \mathbb{N}$ such that $\liminf_{k\to\infty} \sum_{i=1}^k a_{\phi(i)} = \alpha$ and $\limsup_{k\to\infty} \sum_{i=1}^k a_{\phi(i)} = \beta$.

Proof. Let $\{P_j\}_{j\in\mathbb{N}}$ and $\{Q_j\}_{j\in\mathbb{N}}$ be nonnegative terms and absolute value of negative terms of $\{a_i\}_{i\in\mathbb{N}}$. Then, since they differ from $\{a_i^+\}$ and $\{a_i^-\}$ by zero terms, they are also divergent by Lemma 3.3.4.

Let $\{\alpha_\ell\}_{\ell\in\mathbb{N}}$ and $\{\beta_\ell\}_{\ell\in\mathbb{N}}$ be real sequences such that $\lim_{\ell\to\infty}\alpha_\ell=\alpha$ and $\lim_{\ell\to\infty}\beta_\ell=\beta$. Let $k_1, m_1 \in \mathbb{N}$ be the smallest integers such that

- $S_1 \triangleq P_1 + \dots + P_{k_1} > \beta_1$ and
- $T_1 \triangleq S_1 (Q_1 + \dots + Q_{m_1}) < \alpha_1$.

Inductively, define $\{k_\ell\}_{\ell\in\mathbb{N}}$ and $\{m_\ell\}_{\ell\in\mathbb{N}}$ by

- $k_{\ell+1} \triangleq \min \left\{ k \in \mathbb{N}_{>k_{\ell}} \mid T_{\ell} + \sum_{j=k_{\ell}+1}^{k} P_{j} > \beta_{\ell+1} \right\}$
- $S_{\ell+1} \triangleq T_{\ell} + \sum_{j=k_{\ell}+1}^{k_{\ell+1}} P_{j}$

rearrangement $\phi: \mathbb{N} \to \mathbb{N}$.

By the construction, we have $|S_{\ell} - \beta_{\ell}| \leq P_{k_{\ell}}$ and $|T_{\ell} - \alpha_{\ell}| \leq Q_{m_{\ell}}$ for each $\ell \in \mathbb{N}$. As $P_j, Q_j \to 0$ as $j \to \infty$, we have $S_\ell \to \beta$ and $T_\ell \to \alpha$ as $\ell \to \infty$; α and β are cluster points of $\left\{\sum_{j=1}^{k} a_{\phi(j)}\right\}_{k\in\mathbb{N}}$ (as long as they are finite).

Moreover, for every sufficiently large $n \in \mathbb{N}$, we have $k_{\ell} + m_{\ell} \le n < k_{\ell+1} + m_{\ell+1}$ for some $\ell \in \mathbb{N}$, and thus $\min\{T_{\ell}, T_{\ell+1}\} \leq \sum_{j=1}^{n} a_{\phi(j)} \leq S_{\ell+1}$. This, or some more rigorous explanation using arbitrary $\varepsilon \in \mathbb{R}_+$, implies that there do not exist cluster points smaller than α or greater than β .

The Cauchy Product 3.4

Definition 3.4.1: Cauchy Product

Given two real sequences $\{a_j\}_{j=0}^{\infty}$ and $\{b_j\}_{j=0}^{\infty}$, define

$$C_k \triangleq \sum_{j=0}^k a_j b_{k-j}.$$

The series $\sum_{k=1}^{\infty} C_k$ is called the *Cauchy product* of $\sum_{j=0}^{\infty} a_j$ and $\sum_{j=0}^{\infty} b_j$.

Theorem 3.4.2

Let $\{a_j\}_{j=0}^{\infty}$ and $\{b_j\}_{j=0}^{\infty}$ be two real sequences. Let $\sum_{k=0}^{\infty} C_k$ be the Cauchy product of

- (i) If $\sum a_j$ converges absolutely, and if $\sum b_j$ converges, then $\sum C_k$ converges to $(\sum a_j)(\sum b_j)$. (ii) If both $\sum a_j$ and $\sum b_j$ converge absolutely, $\sum C_k$ converges absolutely as well.

Proof. (ii) directly follows from the inequality $\sum_{k=0}^{n} |C_k| \le \left(\sum_{j=0}^{n} |a_j|\right) \left(\sum_{j=0}^{n} |b_j|\right)$ as long as (i) is proven.

Let $S_n \triangleq \sum_{k=0}^n C_k$, $A_n \triangleq \sum_{j=0}^n a_j$, and $B_n \triangleq \sum_{j=0}^n b_j$. Let $B \triangleq \lim_{n \to \infty} B_n$ and $\mu_n \triangleq B_n - B$. Then,

$$S_n = \sum_{k=0}^n C_k = \sum_{k=0}^n \sum_{j=0}^k b_{k-j} = \sum_{j=0}^n a_j \sum_{k=j}^n b_{k-j}$$
$$= \sum_{j=0}^n a_j B_{n-j} = \sum_{j=0}^n a_j (B + \mu_{n-j}) = B \sum_{j=0}^n a_j + \sum_{j=0}^n a_j \mu_{n-j}.$$

Claim. $\lim_{n\to\infty}\sum_{j=0}^n a_j\mu_{n-j}=0.$ Take any $\varepsilon\in\mathbb{R}_+$ so there exists $N\in\mathbb{N}$ such that

- $|\mu_n| < \varepsilon$ for all $n \ge N$ (by $\mu_n \to 0$) and
- $\sum_{j=n+1}^{m} |a_j| < \varepsilon$ for all $m > n \ge N$ (by $\sum_{j=0}^{k} |a_j|$ being Cauchy). As μ_n converges, there exists $\mu^* \triangleq \sup_{n \in \mathbb{N}} |\mu_n|$. Let $K_n \triangleq \sum_{j=0}^{n} a_j \mu_{n-j}$. Whenever n > 2N,

$$|K_n| \le \sum_{j=0}^n |a_j| \cdot |\mu_{n-j}| = \sum_{j=0}^{N-1} |a_j| \cdot |\mu_{n-j}| + \sum_{j=N}^n |a_j| \cdot |\mu_{n-j}|$$

$$\le \varepsilon \sum_{j=0}^{N-1} |a_j| + \mu^* \sum_{j=N}^n |a_j| \le \varepsilon \left[\sum_{j=0}^n |a_j| + \mu^* \right].$$

Hence, $\lim_{n\to\infty} K_n = 0$; thus $\lim_{n\to\infty} S_n = (\sum a_i)(\sum b_i)$.

Series on Infinite Dimensional Banach Spaces 3.5

Definition 3.5.1: Uniform Convergence of Series

Fix a domain $\Omega \subseteq \mathbb{R}^n$. Given a sequence $\{f_j : \Omega \to \mathbb{R}\}_{j \in \mathbb{N}}$, define $F_n : \Omega \to \mathbb{R}$ by

$$F_n(x) := \sum_{j=1}^n f_j(x)$$

for each $x \in \Omega$ and $n \in \mathbb{N}$.

- (i) If $\lim_{n\to\infty} F_n(x)$ exists for all $x\in\Omega$, then the series $\sum_{j=1}^{\infty} f_j$ is said to *converge* pointwise on Ω .
- (ii) Suppose $\sum_{j=1}^{\infty} f_j(x)$ converges pointwise on Ω and let $F(x) \triangleq \lim_{n \to \infty} F_n(x)$. The series $\sum_{j=1}^{\infty} f_j$ is said to *converge uniformly on* Ω if $\{F_n\}_{n=1}^{\infty}$ uniformly converges to

Theorem 3.5.2

If $\{f_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}^{\Omega}$ is a sequence of continuous functions and converges uniformly, then $\lim_{n\to\infty}f_n$ is continuous as well.

Proof. MAS241. □

Definition 3.5.3: Uniform Cauchy

A sequence of function $\{f_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}^{\Omega}$ is said to be *uniformly Cauchy on* Ω if

 $\forall \varepsilon \in \mathbb{R}_+, \exists N_* \in \mathbb{N}, \forall n, m \ge N_*, \forall x \in \Omega, |f_n(x) - f_m(x)| < \varepsilon.$

Lemma 3.5.4

A sequence of function $\{f_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}^\Omega$ uniformly converges on Ω if and only if $\{f_n\}_{n\in\mathbb{N}}$ is uniformly Cauchy on Ω .

Proof. (\Rightarrow) Let $f(x) = \lim_{n \to \infty} f_n(x)$. Take any $\varepsilon \in \mathbb{R}_+$. Then, there exists $N_* \in \mathbb{N}$ such that, if $n \ge N_*$, then $|f_n(x) - f(x)| < \varepsilon/2$ for all $x \in \Omega$. Consequently, whenever $n, m \ge N_*$, $|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \varepsilon$.

(⇐) For each $x \in \mathbb{R}$, the sequence $\{f_n(x)\}_{n \in \mathbb{N}} \subseteq \mathbb{R}$ is Cauchy. As $(\mathbb{R}, |\cdot|)$ is a Banach space, there uniquely exists the limit $f \triangleq \lim_{n \to \infty} f_n$. Take any $\varepsilon \in \mathbb{R}_+$. Then, there exists $N_* \in \mathbb{N}$ such that $|f_m(x) - f_n(x)| < \varepsilon/2$ for all $n, m \ge N_*$ and $x \in \Omega$. From this, we get $f_n(x) - \varepsilon/2 \le \lim_{m \to \infty} f_m(x) = f(x) \le f_n(x) + \varepsilon/2$. Hence, $|f_n(x) - f(x)| \le \varepsilon/2 < \varepsilon$ holds for all $n \ge N_*$ and $x \in \Omega$.

Note:-

Lemma 3.5.4 holds for arbitrary sequence of functions from Ω to any Banach space.

Lemma 3.5.5

Let $\{f_j\}_{j\in\mathbb{N}}\subseteq\mathbb{R}^\Omega$ be a series of continuous functions. If $\sum_{j=1}^\infty f_j$ converges uniformly on Ω , then $\sum_{j=1}^\infty f_j$ is continuous on Ω .

Proof. Lemma 3.5.4.

Chapter 4

Analysis for Series Functions

Calculus of Series Functions 4.1

Theorem 4.1.1

Given a sequence $\{f_i\}_{i\in\mathbb{N}}\subseteq\mathbb{R}^{(a,b)}$ of differentiable functions, suppose the following.

(i) $\{f_j(x_0)\}_{j\in\mathbb{N}}\subseteq\mathbb{R}$ converges for some $x_0\in(a,b)$. (ii) $\{f_j'\}_{j\in\mathbb{N}}\subseteq\mathbb{R}^{(a,b)}$ uniformly converges on (a,b). Then, $f_j\rightrightarrows f$ for some $f:(a,b)\to\mathbb{R}$ on (a,b). Furthermore, f is differentiable on (a,b)and $\forall x \in (a, b), f'(x) = \lim_{i \to \infty} f'_i(x).$

Proof. We shall first show the uniform convergence of $\{f_i\}$. Take any $\varepsilon \in \mathbb{R}_+$. Then, there exists $N \in \mathbb{N}$ such that, for all $j, k \geq N$,

$$\left(|f_i(x_0) - f_k(x_0)| < \varepsilon/2\right) \wedge \left(\forall x \in (a, b), |f_i'(x) - f_k'(x)| < \varepsilon/2(b - a)\right).$$

By MVT, for all $x, \tilde{x} \in (a, b)$ with $x \neq \tilde{x}$, there exists $x_* \in (a, b)$ such that

$$(f_j - f_k)(x) - (f_j - f_k)(\tilde{x}) = (f_j - f_k)'(x_*) \cdot (x - \tilde{x})$$

Hence, $|(f_j - f_k)(x) - (f_j - f_k)(\tilde{x})| < \varepsilon/2$. Therefore, $|(f_j - f_k)(x)| < \varepsilon$ by triangle inequality obtained by setting $\tilde{x} = x_0$. This directly implies that $\{f_i\}$ is uniformly Cauchy and thus uniformly converges by Lemma 3.5.4. √

Let $f_i \to f$. Fixing $x \in (a, b)$, define

$$\psi_j(t) \triangleq \frac{f_j(t) - f_j(x)}{t - x}$$
 and $\psi(t) \triangleq \frac{f(t) - f(x)}{t - x}$

for $t \in (a, b)$ and $t \neq x$. Now, we claim that $\{\psi_j\}_{j \in \mathbb{N}}$ is uniformly Cauchy. Take any $\varepsilon \in \mathbb{R}_+$. Then, for $j, k \ge N$,

$$|\psi_j(t)-\psi_k(t)|=\left|\frac{(f_j-f_k)(t)-(f_j-f_k)(x)}{t-x}\right|<\frac{\varepsilon}{2(b-a)}.$$

Hence, $\{\psi_i\}$ uniformly converges by Lemma 3.5.4, and $\psi_i \to \psi$ as $f_i \to f$.

Let $A_i \triangleq \lim_{t \to x} \psi_i(t) = f_i'(x)$. By the supposition (ii), we have convergence of $\{A_i\}_{i \in \mathbb{N}}$. Now, we claim that $\lim_{t\to x} \psi(t) = \lim_{j\to\infty} A_j$. Let $A_j \to A$. Take any $\varepsilon \in \mathbb{R}_+$. There exists $N' \in \mathbb{N}$ such that, if $j \ge N'$, we have $|\psi(t) - \psi_j(t)| < \varepsilon/3$ for all $t \in (a, b) \setminus \{x\}$ and $|A_j - A| < \varepsilon/3$. In addition, from the definition of A_j , there exists $\delta \in \mathbb{R}_+$ such that, whenever $0 < |t-x| < \delta$, we have $|\psi_{N'}(t) - A_{N'}| < \varepsilon/3$. Now, we have

$$|\psi(t) - A| \le |\psi(t) - \psi_{N'}(t)| + |\psi_{N'}(t) - A_{N'}| + |A_{N'} - A| < \varepsilon$$

for $0 < |t - x| < \delta$. Hence, $f'(x) = \lim_{t \to x} \psi(t) = \lim_{t \to \infty} f'_i(x)$.

Corollary 4.1.2 Term-by-Term Differentiation

Given a sequence $\{f_j\}_{j\in\mathbb{N}}\subseteq\mathbb{R}^{(a,b)}$ of differentiable functions, let $F_n=\sum_{j=1}^n f_j$. Suppose the following.

- (i) $\{F_n(x_0)\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ converges for some $x_0\in(a,b)$.
- (ii) $\{F'_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}^{(a,b)}$ uniformly converges on (a,b).

Then, $\{F_n\}$ converges uniformly to a function $F:(a,b)\to\mathbb{R}$ on (a,b). Furthermore, F is differentiable on (a,b) and $\forall x\in(a,b),\,F'(x)=\sum_{j=1}^{\infty}f_j'(x)$.

Example 4.1.3

Let $f_j(x) = \sin(x/j^2)$ for -1 < x < 1 and $F_n = \sum_{j=1}^n f_j$.

For $x_0=0$, the sequence $\{F_n(x_0)\}_{n\in\mathbb{N}}$ converges (to zero). Now, we have $F'_n(x)=\sum_{j=1}^n\cos(x/j^2)/j^2$. Then, for $n,m\in\mathbb{N}$ with $m\geq n$, $|F'_m(x)-F'_n(x)|\leq \sum_{j=n+1}^m1/j^2\to 0$ as $n,m\to\infty$. Hence, $\{F'_n\}$ is uniformly Cauchy; and thus it converges uniformly by Lemma 3.5.4. Hence, Corollary 4.1.2 guarantees the uniform convergence and differentiability of $\sum_{j=1}^\infty f_j$.

Theorem 4.1.4

Given a sequence $\{f_j\}_{j\in\mathbb{N}}\subseteq\mathbb{R}^{(a,b)}$ of functions Riemann integrable on (a,b), if $f_j\rightrightarrows f$ on (a,b), then f is Riemann integrable on (a,b). Furthermore, $\int_a^b f(x) dx = \lim_{j\to\infty} \int_a^b f_j(x) dx$.

Proof.

Corollary 4.1.5 Term-by-Term Integration

Given a sequence $\{f_j\}_{j\in\mathbb{N}}\subseteq\mathbb{R}^{(a,b)}$ of functions Riemann integrable on (a,b), suppose $\sum f_j \rightrightarrows F$ for some $F:(a,b)\to\mathbb{R}$. Then, $\int_a^b F(x) \,\mathrm{d}x = \lim_{n\to\infty} \int_a^b \sum_{j=1}^n f_j(x) \,\mathrm{d}x$.

Theorem 4.1.6

Given a power series $\sum_{j=0}^{\infty} c_j x^j$, let

$$\alpha \triangleq \limsup_{n \to \infty} \sqrt[n]{|c_n|}, \quad R \triangleq \frac{1}{\alpha}.$$

(If $\alpha = 0$, put $R = \infty$; if $\alpha = \infty$, put R = 0.) Then, $\sum c_j x^j$ converges if |x| < R, and diverges if |x| > R.

Proof. We have

$$\limsup_{n\to\infty}\sqrt[n]{|c_nx^n|}=\alpha|x|,$$

therefore the result follows from the root test.

Theorem 4.1.7

Given a power series $P(x) = \sum_{j=0}^{\infty} c_j x^j$, let R be the radius of convergence. Then, for any $\varepsilon \in (0,R)$, P(x) uniformly converges on $[-R+\varepsilon,R-\varepsilon]$.

Note:-

TODO: write proofs for

- Radius of convergence of P'(x) equals the radius of convergence of P(x).
 For all |x x₀| < R, we have P^(k)(x) = ∑_{j=k}[∞] j(j-1)···(j-k+1)(x-x₀)^{j-k}.

Theorem 4.1.8 Taylor's Theorem

Suppose a function f(x) is represented as a power series $f(x) = \sum_{j=0}^{\infty} c_j x^j$ and that the radius of convergence is $R \in [0, \infty]$. Then, for any $x \in (-R, R)$,

$$|x-a| < R-|a| \implies f(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(a)}{j!} (x-a)^{j}.$$

Proof. Fix $a \in (-R,R)$. Suppose that $f(x) = \sum_{j=0}^{\infty} \mu_j (x-a)^j$. By corollary, $f^{(k)}(x) = \sum_{j=0}^{\infty} \mu_j (x-a)^j$. $\sum_{i=k}^{\infty} j(j-1) \cdots (j-k+1) \mu_j (x-x_0)^{j-k}.$

$$f(x) = \sum_{j=0}^{\infty} c_j ((x-a) + a)^j$$

$$= \sum_{j=0}^{\infty} \sum_{k=0}^{j} c_j {j \choose k} a^{j-k} (x-a)^k = \sum_{k=0}^{\infty} \left[\sum_{j=k}^{\infty} c_j {j \choose k} a^{j-k} \right] (x-a)^k.$$

The rearrangement is valid when $T(x) = \sum_{j=0}^{\infty} \sum_{k=0}^{j} |c_{j}(x-a)^{k}| = \sum_{k=0}^{\infty} |c_{k}|(|x-a|+|a|)^{j}$ converges, i.e., when $\limsup_{j\to\infty} \{|c_j|(|x-a|+|a|)^j\}^{1/j} = (|x-a|+|a|)/R < 1$. Hence, f(x) = (|x-a|+|a|)/R < 1. $\sum_{j=0}^{\infty} \mu_j (x-a)^j \text{ converges when } |x-a| < R - |a|.$

Theorem 4.1.8 implies that every series function is C^{∞} and analytic.

Note:-

We do not have a reliable method to determine the convergence at the boundary points, we have at least a theorem for the situation in which the convergence is given.

Theorem 4.1.9

Let $P(x) = \sum_{j=0}^{\infty} c_j (x - x_0)^j$ be a power series and let $0 < R < \infty$ be its radius of convergence. If P(x) converges at $x = x_0 + R$, then, P(x) uniformly converges on $[x_0, x_0 + R].$

Proof. For convenience, rescale P(x) by setting $Q\left(\frac{x-x_0}{R}\right) = P(x)$, so $Q(z) = \sum_{j=0}^{\infty} R^j c_j z^j$, and the radius of convergence of Q is 1 and Q(z) converges at z=1. Hence, we are left to prove the uniform convergence of Q(z) on [0,1].

Let $\tilde{c}_j = R^j c_j$ so $Q(z) = \sum_{j=0}^{\infty} \tilde{c}_j z^j$. Let $Q_n(z) = \sum_{j=0}^n \tilde{c}_j z^j$ and $S_n = Q_n(1) = \sum_{j=0}^n \tilde{c}_j$. Take any $\varepsilon \in \mathbb{R}_+$. Then, there exists $N \in \mathbb{N}$ such that $|S_j - S_k| < \varepsilon/3$ for all $j, k \ge N$. For $n, m \in \mathbb{N}$

with m > n,

$$\begin{split} Q_m(z) - Q_n(z) &= \left(S_m z^{m+1} - \sum_{j=0}^m S_j(z^{j+1} - z^j)\right) - \left(S_n z^{n+1} - \sum_{j=0}^n S_j(z^{j+1} - z^j)\right) \\ &= \sum_{j=n+1}^m S_j(z^j - z^{j+1}) + \left(S_m z^{m+1} - S_n z^{n+1}\right) \\ &= \sum_{j=n+1}^m S_j(z^j - z^{j+1}) - S_n \sum_{j=n+1}^m (z^j - z^{j+1}) + \left(S_m - S_n\right) z^{m+1} \\ &= \sum_{j=n+1}^m (S_j - S_n)(z^j - z^{j+1}) + \left(S_m - S_n\right) z^{m+1}. \end{split}$$

Hence, for all $m > n \ge N$ and $z \in [0, 1]$,

$$|Q_m(z)-Q_n(z)| \leq \sum_{j=n+1}^m (\varepsilon/3)(z^j-z^{j+1}) + \varepsilon/3 = (\varepsilon/3)(z^{n+1}-z^{m+1}) + \varepsilon/3 < \varepsilon.$$

Hence, Q(z) uniformly converges on [0,1] by Lemma 3.5.4.

Chapter 5

Applications of Improper Integrals

5.1 Functions Defined by Improper Integrals

Example 5.1.1

Fix a constantt r > 0. On \mathbb{R} , define

$$F(x) \triangleq \int_0^\infty e^{-rt} \frac{\sin xt}{t} dt = \int_0^\infty f(t, x) dt$$

where $f(t,x) = e^{-rt} \frac{\sin xt}{t}$.

(Is it well-defined?) We need to check if $\lim_{R\to\infty}\int_0^R f(t,x)\,dt$ exists for all $x\in\mathbb{R}$. As f(t,x) is continuous with respect to t, we have $F(x)=\lim_{n\to\infty}F_n(x)$ we may only consider the sequence $F_n(x)=\int_0^n f(t,x)\,dt$. (Proof?) For $m,n\in\mathbb{N}$ for m>n,

$$|F_m(x) - F_n(x)| \le \int_n^m \left| e^{rt} \frac{\sin xt}{t} \right| dt \le |x| \int_n^m e^{rt} dt \to 0$$

as $m, n \to \infty$. Hence, $\{F_n(x)\}_{n \in \mathbb{N}}$ is Cauchy, and thus is convergent for all $x \in \mathbb{R}$. (*Is it continuous?*)

$$|F(x_1) - F(x_2)| \le \int_0^\infty \frac{e^{-rt}}{t} |\sin x_1 t - \sin x_2 t| dt \le \frac{|x_1 - x_2|}{r}$$

Hence, *F* is Lipschitz continuous (and thus uniformly continuous).

(*Is it differentiable?*) If we have differentiability and uniform convergence of F_n , by Theorem 4.1.1, we have differentiability of F and $F' = \lim_{n \to \infty} F'_n$.

$$F'_n(x) \stackrel{?}{=} \int_0^n \frac{\partial}{\partial x} f(t, x) dt = \int_0^n e^{-rt} \cos xt dt$$

Assuming this, we have, for all m > n, $|F'_m(x) - F'_n(x)| \le \int_n^m e^{-rt} dt \to 0$, hence $\{F'_n\}_{n \in \mathbb{N}}$ is uniformly convergent. Therefore, by Theorem 4.1.1,

$$F'(x) = \lim_{n \to \infty} \frac{-e^{-rt} \cos(xt)/r + xe^{-rt} \sin(xt)/r^2}{1 + (x/r)^2} \bigg|_{t=0}^{n} = \frac{r}{r^2 + x^2}.$$

Moreover, F(0) = 0; hence $F(x) = \arctan(x/r)$.

Note:-

If $g_h(t) = \frac{f(t,x+h)-f(t,x)}{h}$ converges to $\partial_x f(t,x)$ uniformly with respect to $t \in [0,n]$, then $F'(x) = \int_0^n \partial_x f(t,x) dt$.

Example 5.1.2

Fix $x \in \mathbb{R}$ and let $G(r) = \int_0^\infty e^{-rt} \frac{\sin xt}{t} dt$ for r > 0. Then,

$$\int_0^\infty \frac{\sin xt}{t} dt = G(0) = \lim_{r \to 0^+} \arctan\left(\frac{x}{r}\right) = \begin{cases} \pi/2 & \text{if } x > 0\\ 0 & \text{if } x = 0\\ -\pi/2 & \text{if } x < 0 \end{cases}$$

Example 5.1.3

Now, repeat with $g(t,x) = t^{x-1}e^{-t}$ and $G(x) = \int_0^1 g(t,x) dt$. Hence, define $G_n(x) = \int_{1/n}^n g(t,x) dt$. For $n \in \mathbb{N}$ and $\sigma \in \mathbb{R}_+$, we have

$$\left| G_n(x) - \int_{\sigma}^{1} t^{x-1} e^{-t} \right| \le \left| \int_{1/n}^{\sigma} t^{x-1} e^{-t} \, \mathrm{d}x \right| = \frac{\sigma^x - (1/n)^x}{x} \to 0$$

as $n \to \infty$ and $\sigma \to 0^+$. Hence, $G(x) = \lim_{n \to \infty} G_n(x)$. G(x) is well-defined for 0 < x < 1.

$$G'_n(x) \stackrel{?}{=} \int_{1/n}^1 \partial_x g(t, x) dt = \int_{1/n}^1 t^{x-1} \ln t e^{-t} dt$$

as $\partial_x g(t,x)$ is uniformly continuous on [1/n,1]. (The interchange of limit holds since $(g(t,x+h)-g(t,x))/h \rightrightarrows \partial_x g(t,x)$.)

We claim that, for any fixed $k \in \mathbb{N}$ with k > 2, $\{G'_n(x)\}_{n \in \mathbb{N}}$ is uniformly Cauchy on $I_k = [2/k, 1)$. If the claim is proven, then Theorem 4.1.1, $G'(x) = \int_0^1 t^{x-1} \ln t e^{-t} dt$ for all $x \in [2/k, 1)$.

Define an auxiliary function $H_k(t) \triangleq kt^{-1/k} - |\ln t|$ for 0 < t < 1. Then, $H_k'(t) = t^{-1}(1 - 1/t^{1/k}) < 0$. As $H_k(1) = k$, $H_k(t) > 0$. If $x \in [2/k, 1)$, we have $t^{x-1}|\ln t|e^{-t} \le t^{x-1} \cdot kt^{-1/k} = kt^{x-1/k-1} \le kt^{1/k-1}$. Therefore, for all $x \in I_k$,

$$|G'_n(x) - G'_m(x)| \le \int_{1/n}^{1/m} kt^{1/k-1} dt = k^2 \{ (1/m)^{1/k} - (1/n)^{1/k} \} \to 0$$

as $m, n \to \infty$. $(\{G'_n(x)\}_{n \in \mathbb{N}})$ is uniformly Cauchy on I_k .)

Definition 5.1.4: Gamma Function

The function $\Gamma \colon \mathbb{R}_+ \to \mathbb{R}$ defined by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t$$

is called the Gamma function.

Note:-

(Well-defined?) For x > 1,

$$|t^{x-1}e^{-t}| = t^{x-1} \cdot \frac{1}{\sum_{j=0}^{\infty} t^j/j!} \le t^{x-1} \cdot \frac{1}{t^{\lceil x \rceil + 1}/(\lceil x \rceil + 1)!}.$$

Theorem 5.1.5 Properties of the Gamma Function

Let Γ be the Gamma function.

- (i) $\Gamma(x+1) = x\Gamma(x)$ for each $x \in \mathbb{R}_+$.
- (ii) $\Gamma(n+1) = n!$ for each $n \in \mathbb{Z}_{\geq 0}$.
- (iii) $\ln \Gamma(x)$ is a convex function.

Proof.

(i)

$$\Gamma(x+1) = \lim_{R \to \infty} \int_0^R t^x e^{-t} dt$$
$$= \lim_{R \to \infty} \left[-t^x e^{-t} \Big|_{t=0}^R + \int_0^R x t^{x-1} e^{-t} dt \right] = x \Gamma(x)$$

- (ii) Corollary of (i).
- (iii) Hölder's Inequality says that $\int |fg| dx \le \left(\int |f|^p\right)^{1/p} \left(\int |g|^q\right)^{1/q}$ whenever 1/p + 1/q = 1. Now, take any x, y > 0 and p, q > 1 such that 1/p + 1/p = 1.

$$\Gamma\left(\frac{x}{p} + \frac{y}{q}\right) = \int_{0}^{\infty} t^{\frac{x}{p} + \frac{y}{q} - \left(\frac{1}{p} + \frac{1}{q}\right)} e^{-t} dt = \int_{0}^{\infty} \left(t^{\frac{x-1}{p}} e^{-t/p}\right) \left(t^{\frac{y-1}{q}} e^{-t/q}\right) dt$$

$$\leq \left[\int_{0}^{\infty} t^{x-1} e^{-t} dt\right]^{1/p} \left[\int_{0}^{\infty} t^{y-1} e^{-t} dt\right]^{1/q} = \Gamma(x)^{1/p} \Gamma(y)^{1/q},$$

Hence $\ln \Gamma(x/p + y/q) \le (1/p)\Gamma(x) + (1/q)\Gamma(y)$.

5.2 The Laplace Transform

Definition 5.2.1: Laplace Transform

For a function $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ and for $s \in \mathbb{R}$, define

$$\mathcal{L}f(s) \triangleq \int_0^\infty e^{-st} f(t) dt = \lim_{\substack{R \to \infty \\ \sigma \to 0^+}} \int_{\sigma}^R e^{-st} f(t) dt$$

be the Laplace transform of f evaluated at s. The operator $\mathcal{L}: f \mapsto \mathcal{L}f$ is called the Laplace transform operator.

Example 5.2.2

Take f(t) = 1 for all $t \in \mathbb{R}_+$. Then,

$$\mathcal{L}f(s) = \int_0^\infty e^{-st} dt = \begin{cases} 1/s & \text{if } s > 0\\ \text{undefined} & \text{if } s \le 0 \end{cases}.$$

Example 5.2.3

Take $f(t) = e^{ct}$ for all $t \in \mathbb{R}_+$. Then,

$$\mathcal{L}f(s) = \int_0^\infty e^{-st} \, \mathrm{d}t = \begin{cases} 1/(s-c) & \text{if } s > c \\ \text{undefined} & \text{if } s \le c \end{cases}.$$

Example 5.2.4

Take $f(t) = t^x$ for x > -1 and t > 0. Then, for s > 0,

$$\mathcal{L}f(s) = \int_{0}^{\infty} e^{-st} t^{x} dt = \frac{1}{s^{x+1}} \int_{0}^{\infty} e^{-u} u^{x} du = \frac{\Gamma(x+1)}{s^{x+1}}.$$

 $\mathcal{L}f(s)$ is undefined for $s \leq 0$.

Notation 5.2.5: Translation

For $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ and $c \in \mathbb{R}_+$, we simply define

$$\tilde{f}(t-c) = \begin{cases} f(t-c) & \text{if } t > c \\ 0 & \text{otherwise} \end{cases}.$$

Lemma 5.2.6

Let $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ be a continuous function. Suppose that $\mathcal{L}f(s)$ is well-defined for $s > r_0$ for some $r_0 \in \mathbb{R}$. Fix some $c \in \mathbb{R}$.

- (i) $\mathcal{L}(e^{ct}f(t))(s) = \mathcal{L}f(s-c)$ for $s > r_0 + c$.
- (ii) $\mathcal{L}(\tilde{f}(t-c))(s) = e^{-cs}\mathcal{L}f(s)$ for $s > r_0$.
- (iii) For c > 0, $\mathcal{L}(f(ct))(s) = (1/c)\mathcal{L}f(s/c)$ for $s > r_0$.

Proof. Simple calculation.

Lemma 5.2.7

Given two functions $f_1, f_2 \in \mathbb{R}_{\geq 0} \to \mathbb{R}$, suppose that $\mathcal{L}f_1(s)$ and $\mathcal{L}f_2(s)$ are well-defined for $s > r_0$ for some $r_0 \in \mathbb{R}$. Then, $\mathcal{L}(c_1f_1 + c_2f_2)(s) = c_1\mathcal{L}f_1(s) + c_2\mathcal{L}f_2(s)$. That is, \mathcal{L} is a linear operator.

Note:-

Suppose that $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ is k times differentiable and that $\forall t \geq 0$, $|f^{(k)}(t)| \leq Ae^{Rt}$ for

some A, R > 0. Then,

$$|f^{(k-1)}(t)| \le |f^{(k-1)}(0)| + \int_0^t Ae^{R\tau} d\tau.$$

Thus, there exists $\tilde{A} > 0$ such that $|f^{(k-1)}(t)| \le \tilde{A}e^{Rt}$ for all $t \ge 0$. By induction, we have, for each $j \in \{0, 1, \dots, k-1\}$, there exists $A_j \in \mathbb{R}_+$ such that $|f^{(j)}(t)| \le A_j e^{Rt}$ for all $t \ge 0$. Hence, $\mathcal{L}(f^{(j)})(s)$ is well-defined for s > R.

Lemma 5.2.8

Suppose that $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ is differentiable and that $\forall t \geq 0$, $|f'(t)| \leq Ae^{Rt}$ for some A, R > 0. Then, we have $\mathcal{L}(f')(s) = s\mathcal{L}f(s) - f(0)$ for s > R.

Proof. Integration by parts.

Corollary 5.2.9

Suppose that $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ is k times differentiable and that $\forall t \geq 0$, $|f^{(k)}(t)| \leq Ae^{Rt}$ for some A, R > 0. Then, $\mathcal{L}(f^{(k)})(s) = s^k \mathcal{L}f(s) - \sum_{j=0}^{k-1} s^{k-1-j} f^{(j)}(0)$ for s > R.

Proof. Induction using Lemma 5.2.8.

Example 5.2.10

Solve y'' - y' - 2y = 0, y(0) = 2, y'(0) = 3 for y.

Let $\eta(s) \triangleq \mathcal{L}y(s)$. Applying the Laplace transform to the both sides (without justifying the well-definedness), we get

$$0 = \mathcal{L}(y'') - \mathcal{L}(y') - 2\mathcal{L}(y)$$

= $s^2 \eta - (2s + 3) - (s\eta - 2) - 2\eta$.

Thus,

$$\mathcal{L}y(s) = \eta(s) = \frac{2s+1}{(s-2)(s+1)} = \frac{5}{3} \cdot \frac{1}{s-2} + \frac{1}{3} \cdot \frac{1}{s+1}$$

and it is well-defined for s > 2. From Example 5.2.3,

$$\mathcal{L}y(s) = \mathcal{L}\left(\frac{5}{3}e^{2t} + \frac{1}{3}e^{-t}\right).$$

Now, we shall discuss the *injectivity* of \mathcal{L} .

Theorem 5.2.11

Given a continuous function $f \in \mathbb{R}_{\geq 0} \to \mathbb{R}$, suppose that $\mathcal{L}f(s) = 0$ for all s > R for some $R \in \mathbb{R}$. Then, f = 0.

Proof. The proof is so sophisticated that it is not discussed in MAS242. :(

Note:-

Actually, the restrictions on the functions in Theorem 5.2.11 can be relaxed to not requiring continuity.

Definition 5.2.12: Convolution

• Given two functions $\phi, \psi : \mathbb{R} \to \mathbb{R}$, we define $\phi * \psi$ by

$$(\phi * \psi)(t) \triangleq \int_{-\infty}^{\infty} \phi(x)\psi(t-x) dx.$$

 $\phi * \psi$ is called the *convolution of* ϕ *and* ψ .

• Given two functions $\Phi, \Psi \colon \mathbb{R}_{\geq 0} \to \mathbb{R}$, we define $\Phi * \Psi \colon \mathbb{R}_{\geq 0} \to \mathbb{R}$ by

$$(\Phi * \Psi)(t) \triangleq = \int_0^t \Phi(x) \Psi(t-x) \, \mathrm{d}x.$$

 $\Phi * \Psi$ is called the *convolution of* Φ *and* Ψ .

🛉 Note:- 🛉

Convolution is commutative, i.e., $\phi * \psi = \psi * \phi$.

Theorem 5.2.13

Given two continuous functions $f, g: \mathbb{R}_{\geq 0} \to \mathbb{R}$, suppose that

$$\exists A, R > 0, \ \forall t \ge 0, \ \max\{|\phi(t)|, |\psi(t)|\} \le Ae^{Rt}.$$

Then,

$$\forall s > R$$
, $\mathcal{L}(\phi * \psi)(s) = \mathcal{L}\phi(s) \cdot \mathcal{L}\psi(s)$.

Heuristic Proof. Extend ϕ , ψ to \mathbb{R} where $\phi(t) = \psi(t) = 0$ for t < 0.

$$\mathcal{L}(\phi * \psi)(s) = \int_0^\infty e^{-st} (\phi * \psi)(t) dt$$

$$= \int_0^\infty e^{-st} \int_0^t \phi(x) \psi(t-x) dx dt = \int_0^\infty e^{-st} \int_0^\infty \phi(x) \psi(t-x) dx dt$$

$$= \lim_{\kappa_1 \to \infty} \int_0^{\kappa_1} e^{-st} \lim_{\kappa_2 \to \infty} \int_0^{\kappa_2} \phi(x) \psi(t-x) dx dt$$

$$\stackrel{?}{=} \lim_{\kappa_1 \to \infty} \lim_{\kappa_2 \to \infty} \int_0^{\kappa_1} e^{-st} \int_0^{\kappa_2} \phi(x) \psi(t-x) dx dt$$

$$= \lim_{\kappa_1 \to \infty} \lim_{\kappa_2 \to \infty} \int_0^{\kappa_2} e^{-st} \phi(x) \psi(t-x) dt dx$$

$$= \lim_{\kappa_1 \to \infty} \lim_{\kappa_2 \to \infty} \int_0^{\kappa_2} e^{-sx} \phi(x) \int_0^{\kappa_1} e^{-s(t-x)} \psi(t-x) dt dx$$

$$= \lim_{\kappa_2 \to \infty} \int_0^{\kappa_2} e^{-sx} \phi(x) \lim_{\kappa_1 \to \infty} \int_x^{\kappa_1} e^{-s(t-x)} \psi(t-x) dt dx$$

$$= \lim_{\kappa_2 \to \infty} \int_0^{\kappa_2} e^{-sx} \phi(x) [\mathcal{L}\psi(s)] dx = \mathcal{L}\phi(s) \cdot \mathcal{L}\psi(s)$$

Example 5.2.14

Solve y'' - y' - 2y = f(t), y(0) = 2, y'(0) = 3 for y. In the same way as in Example 5.2.10, we have

$$\mathcal{L}y(s) = \mathcal{L}\left(\frac{5}{3}e^{2t} + \frac{1}{3}e^{-t}\right) + \mathcal{L}f(s) \cdot \mathcal{L}\left(\frac{1}{3}e^{2t} + \frac{1}{3}e^{-t}\right).$$

By Theorem 5.2.13, we get

$$y(t) = \frac{5}{3}e^{2t} + \frac{1}{3}e^{-t} + \int_0^t f(x) \left[\frac{1}{3}e^{2(t-x)} - \frac{1}{3}e^{-(t-x)} \right] dx.$$

5.3 Applications of Laplace Transforms

Note:-

Reference: Partial Differential Equations, Walter Strauss

Definition 5.3.1: Laplace Transform

Let $u: I \times \mathbb{R}_{\geq 0} \to \mathbb{R}$ where I is an interval on \mathbb{R} . We define

$$\mathcal{L}u(x,s) \triangleq \int_0^\infty e^{-st} u(x,t) \, \mathrm{d}t$$

be the *Laplace transform of u*.

Notation 5.3.2

$$U(x,s) = \mathcal{L}u(x,s)$$

Question 1: 1-D Heat Equation

Solve the following partial differential equation

$$\partial_t u = \partial_{xx} u$$
 for $0 < x < 1$ and $t > 0$

where

- u(0, t) = u(1, t) = 1 for all $t \ge 0$ and
- $u(x,0) = 1 + \sin \pi x$ for all $0 \le x \le 1$.

Solution: By Lemma 5.2.8,

$$\mathcal{L}(\partial_{xx}u)(x,s) = \mathcal{L}(\partial_{t}u)(x,s) = s\mathcal{L}u(x,s) - u(x,0) = sU(x,s) - (1+\sin\pi x).$$

Also,

$$\mathcal{L}(\partial_{xx}u)(x,s) = \int_0^\infty e^{-st} \partial_{xx}u(x,t) dt \stackrel{?}{=} \partial_{xx} \int_0^\infty e^{-st}u(x,t) dt = \partial_{xx}U(x,s).$$

From the boundary condition, we have U(0,s) = U(1,s) = 1/s. We now notice that we are left with a non-homogeneous second-order ordinary differential equation for U(x,s) with

respect to x:

$$U_{xx} - sU = -(1 + \sin \pi x).$$

Let U^h be the homogeneous solution and U^p be the particular solution for the ODE (as

usual) so $U = U^h + U^p$ is the general solution. (Assume s > 0. Why?) It is known that $U^h = c_1 \cosh(\sqrt{s}x) + c_2 \sinh(\sqrt{s}x)$ where $c_1, c_2 \in \mathbb{R}$ is the homogeneous solution from the functional analysis. And, from some calculation, we get

$$U^p = \frac{1}{s} + \frac{1}{\pi^2 + s} \sin \pi x.$$

Hence,

$$U(x,s) = c_1 \cosh(\sqrt{s}x) + c_2 \sinh(\sqrt{s}x) + \frac{1}{s} + \frac{1}{\pi^2 + s} \sin \pi x$$

is the general solution. From the boundary condition, we have

$$\frac{1}{s} = U(0,s) = c_1 + \frac{1}{s}$$

$$\frac{1}{s} = U(1,s) = c_2 \sinh(\sqrt{s}) + \frac{1}{s};$$

hence $c_1 = 0$ and $c_2 = 0$, we get

$$U(x,s) = \frac{1}{s} + \frac{1}{\pi^2 + s} \sin \pi x = \mathcal{L} \left(1 + e^{-\pi^2 t} \sin \pi x \right) (s),$$

i.e., $u(x, t) = 1 + e^{-\pi^2 t} \sin \pi x$. $\sqrt{}$