Datasheet 5SYA 1465-03, 10-2020

5SNA 1000G650300 HiPak IGBT module

- $V_{CE} = 6500 \text{ V}$
- $I_C = 1000 \text{ A}$
- Ultra-low-loss, rugged SPT++ chip-set
- Exceptional ruggedness and highest current rating
- High insulation package
- AlSiC base-plate and AlN substrate for low thermal resistance and high power cycling capability
- Recognized under UL1557, File E196689

Maximum rated values 1)

Parameter	Symbol	Conditions	min	max	Unit
Collector-emitter voltage	V _{CES}	V _{GE} = 0 V, T _{vj} ≥ 25 °C		6500	٧
DC collector current	Ic	T _C = 110 °C, T _{vj} = 150 °C		1000	А
Peak collector current	I _{CM}	$t_p = 1 \text{ ms}$		2000	А
Gate-emitter voltage	V_{GES}		-20	20	V
DC forward current	I _F			1000	Α
Peak forward current	I _{FRM}	t _p = 1 ms		2000	Α
Surge current	I _{FSM}	$V_R = 0 \text{ V}, T_{vj} = 150 \text{ °C},$ $t_p = 10 \text{ ms}, \text{ half-sinewave}$		11000	А
IGBT short circuit SOA	t _{psc}	$V_{CC} = 4500 \text{ V}, V_{CEM CHIP} \le 6500 \text{ V}$ $V_{GE} \le 15 \text{ V}, T_{vj} \le 150 \text{ °C}$		10	μs
Isolation voltage	V_{isol}	1 min, f = 50 Hz		10200	V
Junction temperature	T_{vj}			175	°C
Junction operating temperature	$T_{vj(op)}$		-40	150	°C
Case temperature	T _C		-50	125	°C
Storage temperature	T _{stg}		-50	125	°C
	Ms	Base-heatsink, M6 screws	4	6	
Mounting torques	M _{t1}	Main terminals, M8 screws	8	10	Nm
	M _{t1}	Auxiliary terminals, M4 screws	2	3	

¹⁾ Maximum rated values indicate limits beyond which damage to the device may occur per IEC 60747

IGBT characteristic values 2)

Parameter	Symbol	Conditions		min	typ.	max	Unit
Collector (-emitter) breakdown		Tvj = 15		6500			V
	$V_{(BR)CES}$	VGE = 0 V, IC = 10 mA	Tvj = 25 °C	6500			V
voltage			Tvj = -40 °C	6000			V
			T _{vj} = 25 °C		3.1	3.6	V
Collector-emitter ³⁾ saturation voltage	V _{CE sat}	I _C = 1000 A, V _{GE} = 15 V	T _{vj} = 125 °C		4.1	4.7	V
Saturation voitage			T _{vj} = 150 °C		4.4		V
			T _{vj} = 25 °C			1	mA
Collector cut-off current	I _{CES}	$V_{CE} = 6500 \text{ V}, V_{GE} = 0 \text{ V}$	T _{vj} = 125 °C		25	70	mA
			T _{vj} = 150 °C		95		mA
Gate leakage current	I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}, T_{vj} = 150 \text{ °C}$		-500		500	nA
Gate-emitter threshold voltage	$V_{GE(TO)}$	I _C = 240 mA, V _{CE} = V _{GE} , T _{vj} = 25 °C		5.5		7.5	V
Gate charge	Q _{ge}	I _C = 1000 A, V _{CE} = 3600 V, V _{GE} = -15	V +15 V		8.3		μC
Input capacitance	C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}, T_{vj} = 0 \text{ V}$	= 25 °C		101		nF
Internal gate resistance	R _{Gint}				0.74		
Turn-on delay time	t _{d(on)}	$V_{CC} = 3600 \text{ V, } I_{C} = 1000 \text{ A,} \\ R_{G} = 1.5 \Omega, C_{GE} = 220 \text{ nF,} \\ V_{GE} = \pm 15 \text{ V,} \\ L_{\sigma} = 150 \text{ nH, inductive load} \\$	T _{vj} = 25 °C		520		ns
			T _{vj} = 125 °C		500		ns
			T _{vj} = 150 °C		500		ns
	t _r		T _{vj} = 25 °C		155		ns
Rise time			T _{vj} = 125 °C		160		ns
			T _{vj} = 150 °C		160		ns
			T _{vj} = 25 °C		5000		ns
Turn-off delay time	$t_{d(off)}$	V _{CC} = 3600 V, I _C = 1000 A,	T _{vj} = 125 °C		5650		ns
		$R_{G} = 15 \Omega$, $C_{GE} = 220 \text{ nF}$,	T _{vj} = 150 °C		5900		ns
		V_{GE} = ±15 V, L_{σ} = 150 nH, inductive load	T _{vj} = 25 °C		380		ns
Fall time	t_f		T _{vj} = 125 °C		460		ns
			T _{vj} = 150 °C		500		ns
		$V_{CC} = 3600 \text{ V}, I_C = 1000 \text{ A},$	T _{vj} = 25 °C		4100		mJ
Turn-on switching energy	Eon	$R_G = 1.5 \Omega$, $C_{GE} = 220 \text{ nF}$, $V_{GE} = \pm 15 \text{ V}$,	T _{vj} = 125 °C		5250		mJ
		$L_{\sigma} = 150 \text{ nH}$, inductive load	T _{vj} = 150 °C		5800		mJ
		V _{CC} = 3600 V, I _C = 1000 A,	T _{vj} = 25 °C		4200		mJ
Turn-off switching energy	E _{off}	$R_G = 15 \Omega$, $C_{GE} = 220 \text{ nF}$, $V_{GE} = \pm 15 \text{ V}$,	T _{vj} = 125 °C		5400		mJ
		$L_{\sigma} = 150 \text{ nH}$, inductive load	T _{vj} = 150 °C		5650		mJ
Short circuit current	I _{SC}	$t_{psc} \le 10 \ \mu s, \ V_{GE} = 15 \ V,$ $V_{CC} = 4500 \ V,$ $V_{CEMCHIP} \le 6500 \ V$	T _{vj} = 150 °C		4800		А

²⁾ Characteristic values according to IEC 60747 – 9
3) Collector-emitter saturation voltage is given at chip level

Diode characteristic values 4)

Parameter	Symbol	Conditions		min	typ.	max	Unit
			T _{vj} = 25 °C		3.05	3.5	V
Forward voltage 5)	V_{F}	I _F = 1000 A	T _{vj} = 125 °C		3.4	3.9	V
			T _{vj} = 150 °C		3.35		V
			T _{vj} = 25 °C		1710		А
Reverse recovery current	I _{rr}		T _{vj} = 125 °C		2230		А
			T _{vj} = 150 °C		2490		А
	Q _{rr}	$V_{CC} = 3600 \text{ V},$ $I_F = 1000 \text{ A},$ $V_{GE} = \pm 15 \text{ V},$	T _{vj} = 25 °C		1210		μC
Recovered charge			T _{vj} = 125 °C		1950		μC
			T _{vj} = 150 °C		2260		μC
		$R_G = 1.5 \Omega$, $C_{GF} = 220 \text{ nF}$,	T _{vj} = 25 °C		1400		ns
Reverse recovery time	t _{rr}	L_{σ} = 150 nH inductive load	T _{vj} = 125 °C		1400		ns
			T _{vj} = 150 °C		1380		ns
Reverse recovery energy	E _{rec}		T _{vj} = 25 °C		2300		mJ
			T _{vj} = 125 °C		4150		mJ
			T _{vj} = 150 °C		4900		mJ

Package properties 6)

Parameter	Symbol	Conditions	min	typ.	max	Unit
IGBT thermal resistance junction to case	$R_{th(j-c)IGBT}$				0.0098	K/W
Diode thermal resistance junction to case	R _{th(j-c)DIODE}				0.016	K/W
IGBT thermal resistance ²⁾ case to heatsink	$R_{th(c-s)IGBT}$	IGBT per switch, λ grease = 1W/m x K		0.008		K/W
Diode thermal resistance ²⁾ case to heatsink	R _{th(c-s)DIODE}	Diode per switch, λ grease = 1W/m x K		0.011		K/W
Partial discharge voltage	V _e	f = 50 Hz, Q _{PD} ≤ 10pC (acc. to IEC 61287)	5100			V
Comparative tracking index	CTI		600			V
Module stray inductance	L _{o CE}			18		nH
		T _C = 25	°C	0.07		mΩ
Resistance, terminal-chip	R _{CC'+EE'}	$T_{C} = 125$	°C	0.1		mΩ
		T _C = 150	°C	0.11		mΩ

Mechanical properties 6)

Parameter	Symbol	Conditions			typ.	max	Unit
Dimensions	LxWxH	Typical	190 x 140 x 48			mm	
		According to IEC 60664-1 and EN	Term. to base:	40			mm
Clearance distance in air	d _a		Term. to term:	26			mm
2 5	d	According to IEC 60664-1 and EN 50124-1	Term. to base:	64			mm
Surface creepage distance	d _s		Term. to term:	56			mm
Mass	m				1330		g

⁴⁾ Characteristic values according to IEC 60747 – 2 ⁵⁾ Forward voltage is given at chip level

 $[\]underline{}$ $\underline{}$ $^{6)}$ Package and mechanical properties according to IEC 60747 – 15

Electrical configuration

Outline drawing (mm)

Note: This is an electrostatic sensitive device, please observe the international standard IEC 60747-1, chapter VIII. This product has been designed and qualified for industrial level.

Fig. 1 Typical on-state characteristics, chip level

Fig. 3 Typical output characteristics, chip level

Fig. 5 Typical switching energies per pulse vs. collector current

Fig. 2 Typical transfer characteristics, chip level

Fig. 4 Typical output characteristics, chip level

Fig. 6 Typical switching energies per pulse vs. gate resistor

Fig. 7 Typical switching times vs. collector current

Fig. 9 Typical gate charge characteristics

Fig. 11 Typicial diode forward characteristics chip level

Fig. 8 Typical switching times vs. gate resistor

Fig. 10 Turn-off safe operating area (RBSOA)

Fig. 12 Typical reverse recovery characteristics vs. forward current

Fig. 13 Typical reverse recovery characteristics vs. di/dt

Fig. 15 Thermal impedance vs. time

Fig. 14 Safe operating area diode (SOA)

Analytical function of the transient thermal resistance

$$Z_{th(j-c)}(t) = \sum_{i=1}^{n} R_i (1 - e^{-t/\tau_i})$$

IGBT	i	1	2	3	4	5
	R _i (K/kW)	0.9	2.35	4.84	1.68	
	τ _i (ms)	3609	364	51	3.7	
DIODE	R _i (K/kW)	1.95	6.11	5.9	2.06	
	τ _i (ms)	2283	160	32	2.7	

Related documents:

- 5SYA 2039 Mounting Instructions for HiPak modules
- 5SYA 2042 Failure rates of IGBT modules due to cosmic rays
- 5SYA 2043 Load cycle capability of HiPaks
- 5SYA 2045 Thermal runaway during blocking
- 5SYA 2053 Applying IGBT
- 5SYA 2058 Surge currents for IGBT diodes
- 5SYA 2093 Thermal design of IGBT modules
- 5SYA 2098 Paralleling of IGBT modules

- 5SZK 9111 Specification of environmental class for HiPak Storage
- 5SZK 9112 Specification of environmental class for HiPak Transportation
- 5SZK 9113 Specification of environmental class for HiPak Operation (Industry)
- 5SZK 9120 Specification of environmental class for HiPak

ABB Power Grids Switzerland Ltd, Semiconductors A Hitachi ABB Joint Venture

Fabrikstrasse 3 CH-5600 Lenzburg Switzerland

www.hitachiabb-powergrids.com/semiconductors

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent. Copyright 2020 Hitachi Powergrids. All rights reserved.