

Chapter 7-8 Work and Energy

§ 1 Work and Power

Work done by a constant force

$$W = \overrightarrow{F} \cdot \overrightarrow{\Delta r} = F \mid \overrightarrow{\Delta r} \mid \cos \theta$$

W is positive when θ < 90°

W is negative when $\theta > 90^{\circ}$

W is zero when $\theta = 90^{\circ}$

Work

- Work done by a varying force along a curve path
 - ightharpoonup Divide the path into a large number of small displacement $d\vec{l}$

$$W = \int_{L} \vec{F} \cdot d\vec{l}$$

Line integral or path integral

The SI unit of work: Newton•meter or Joule

- Work is a process quantity.
- Calculation of work relates to the reference frame.

Work and Power

Work done by multiple forces.

Total work done is the scalar addition of the work done by each force.

$$W_{net} = \int_{A}^{B} \overrightarrow{F}_{net} \cdot d\overrightarrow{l} = \int_{A}^{B} \left(\sum_{i} \overrightarrow{F}_{i} \right) \cdot d\overrightarrow{l} = \sum_{i} \int_{A}^{B} \overrightarrow{F}_{i} \cdot d\overrightarrow{l} = \sum_{i} W_{i}$$

- The power: The rate at which work is done (P186)
 - Average power:

$$\overline{P} = \frac{\Delta W}{\Delta t}$$

→ Instantaneous power:

$$P = \frac{dW}{dt} = \frac{\overrightarrow{F} \cdot d\overrightarrow{r}}{dt} = \overrightarrow{F} \cdot \overrightarrow{v}$$

→ SI unit: watt.

A force acting on a particle moving in the xy plane is given by

$$\vec{F} = 2y\hat{i} + x^2\hat{j} \qquad (SI)$$

The particle moves from the origin to a final position C (5.00m, 5.00m). Calculate the work done by \vec{F} along (1) OC, (2) OAC, (3) OBC.

Example (continued)

Solution:

$$\vec{F} \cdot d\vec{l} = (F_x \hat{i} + F_y \hat{j}) \cdot (dx \hat{i} + dy \hat{j})$$

$$= F_x dx + F_y dy$$

$$\vec{F} = 2y\hat{i} + x^2 \hat{j}$$

$$\vec{F} \cdot d\vec{l} = 2ydx + x^2 dy$$

(1) Along path *OC*:

$$\int_{OC} \vec{F} \cdot d\vec{l} = \int_{OC} (2ydx + x^2dy) = \int_0^5 2xdx + \int_0^5 x^2dx = 66.7 \text{ J}$$

$$OC: y = x$$

$$\vec{F} = 2y\hat{i} + x^2\hat{j}$$

$$\vec{F} \cdot d\vec{l} = F_x dx + F_y dy$$

$$= 2ydx + x^2dy$$

(2) Along path *OAC*:

$$\int_{OAC} \vec{F} \cdot d\vec{l} = \int_{OA} \vec{F} \cdot d\vec{l} + \int_{AC} \vec{F} \cdot d\vec{l}$$

$$= \int_{OA} (2ydx + x^2dy) + \int_{AC} (2ydx + x^2dy)$$

$$= \int_{OA} x^2dy = \int_0^5 5^2 dy = 125 \text{ J}$$

Example (continued)

$$\vec{F} = 2y\hat{i} + x^2\hat{j}$$

$$\vec{F} \cdot d\vec{l} = F_x dx + F_y dy$$
$$= 2y dx + x^2 dy$$

(3) Along path *OBC*:

$$\int_{OBC} \vec{F} \cdot d\vec{l} = \int_{OB} \vec{F} \cdot d\vec{l} + \int_{BC} \vec{F} \cdot d\vec{l}$$

$$= \int_{OB} (2ydx + x^2dy) + \int_{BC} (2ydx + x^2dy)$$

$$= \int_{OC} 2ydx = \int_{0}^{5} (2 \times 5)dx = 50 \text{ J}$$

Variable force F is maintained tangent to a frictionless semicircular surface. By a slowly varying force F, a block with mass of m is moved, and spring to which it is attached is stretched from position 1 (unstretched length) to position 2 (θ). The spring has negligible mass and force constant k. The end of the spring moves in an arc of radius a. Calculate the work done by the force F from position 1 to 2.

Solution

Solution I: by integration directly

The block is in equilibrium in tangential direction:

$$F = k(a\theta) + mg\cos\theta$$

$$W_{F} = \int_{1}^{2} \vec{F} \cdot d\vec{l} = \int_{1}^{2} F \left| d\vec{l} \right| \cos \phi = \int_{1}^{2} F ds$$

$$= \int_{0}^{\theta} [k(a\theta) + mg\cos \theta] d(a\theta)$$

$$= ka^{2} \int_{0}^{\theta} \theta d\theta + mga \int_{0}^{\theta} \cos \theta d\theta = \frac{1}{2} ka^{2} \theta^{2} + mga \sin \theta$$

§ 2 Work – kinetic energy theorem (P156)

$$W_{net} = \int_{A}^{B} \sum_{i} \vec{F}_{i} \cdot d\vec{r} = \int_{A}^{B} \sum_{i} F_{it} ds = \int_{A}^{B} m \frac{dv}{dt} ds = \int_{v_{A}}^{v_{B}} mv dv = \frac{1}{2} mv_{B}^{2} - \frac{1}{2} mv_{A}^{2}$$

- Kinetic energy: $K = \frac{1}{2}mv^2$ Process quantity

The change of state quantity

Work – kinetic energy theorem:

$$W_{net} = K_f - K_i$$

The work done by the net force on a particle equals the change in kinetic energy (valid in the inertial frame of reference).

TOTAL AND THE SECOND SE

A small object of mass m is suspended from a string of length of L. The object is pulled sideways by a force F that is always horizontal, until the string finally makes an angle ϕ_m . The displacement is accomplished at a very small constant speed. Find the work done by all the forces that act on the object.

Solution

Solution I: Integration directly

x component:
$$F - T \sin \phi = 0$$

y component:
$$T\cos\phi - mg = 0$$

$$F = mg \tan \phi$$

$$W_F = \int_i^f \vec{F} \cdot d\vec{s} = \int_i^f F(\cos \phi) ds$$

$$W_F = \int_0^{\phi_m} (mg \tan \phi) \cos \phi (Ld\phi) = mgL \int_0^{\phi_m} \sin \phi \, d\phi = mgL (1 - \cos \phi_m) = mgh$$

$$W_g = \int_i^f (-mg\hat{j}) \cdot (dx\hat{i} + dy\hat{j}) = \int_0^h -mgdy = -mgh$$

$$W_T = 0$$
 \overrightarrow{T} is perpendicular to the displacement $d\overrightarrow{s}$ at every point of the motion.

Solution II: Work – kinetic energy theorem

$$W_{net} = W_F + W_g + W_T = mgh - mgh + 0 = 0$$

Work - kinetic energy theorem

Work – kinetic energy theorem for the system of particles

For
$$m_1$$
 $W_1 = \int_{a_1}^{b_1} \vec{F_1} \cdot d\vec{r_1} + \int_{a_1}^{b_1} \vec{F_{in1}} \cdot d\vec{r_1}$

$$= \frac{1}{2} m_1 v_{1b}^2 - \frac{1}{2} m_1 v_{1a}^2$$

For
$$m_2$$
 $W_2 = \int_{a_2}^{b_2} \vec{F}_2 \cdot d\vec{r}_2 + \int_{a_2}^{b_2} \vec{F}_{in2} \cdot d\vec{r}_2$

$$a_{1} \xrightarrow{\overrightarrow{v}_{1a}} \overrightarrow{F}_{in1} \xrightarrow{\overrightarrow{F}_{1}} \overrightarrow{v}_{1b}$$

$$\overrightarrow{F}_{in2} \xrightarrow{\overrightarrow{F}_{2}} \overrightarrow{F}_{2}$$

$$a_{2} \xrightarrow{\overrightarrow{v}_{2a}} m_{2} \xrightarrow{d\overrightarrow{r_{2}}} b_{2} \xrightarrow{\overrightarrow{v}_{2b}}$$

$$= \frac{1}{2} m_2 v_{2b}^2 - \frac{1}{2} m_2 v_{2a}^2$$

$$\left(\int_{a_1}^{b_1} \vec{F}_1 \cdot d\vec{r}_1 + \int_{a_2}^{b_2} \vec{F}_2 \cdot d\vec{r}_2 \right) + \left(\int_{a_1}^{b_1} \vec{F}_{in1} \cdot d\vec{r}_1 + \int_{a_2}^{b_2} \vec{F}_{in2} \cdot d\vec{r}_2 \right)$$

$$= \left(\frac{1}{2} m_1 v_{1b}^2 + \frac{1}{2} m_2 v_{2b}^2 \right) - \left(\frac{1}{2} m_1 v_{1a}^2 + \frac{1}{2} m_2 v_{2a}^2 \right)$$

Work – kinetic energy theorem

For a particle

$$W_{net} = K_f - K_i$$

Work – kinetic energy theorem for the system of particles

$$\sum W_{i-\text{external}} + \sum W_{i-\text{internal}} = \sum K_f - \sum K_i$$

→ Generally, the works done by internal forces between particles cannot be canceled (the displacements of particles are different).

•

The work done by a pair of internal forces

The work done by a pair of internal forces

$$\vec{f}_{12} = -\vec{f}_{21}$$

For a infinitesimal process

$$\begin{aligned} \mathbf{d}W &= \vec{f}_{12} \cdot d\vec{r}_{1} + \vec{f}_{21} \cdot d\vec{r}_{2} \\ &= \vec{f}_{21} \cdot (d\vec{r}_{2} - d\vec{r}_{1}) = \vec{f}_{21} \cdot d(\vec{r}_{2} - \vec{r}_{1}) \\ &= \vec{f}_{21} \cdot d\vec{r}_{21} \end{aligned}$$

→ The calculation of net work done by a pair of internal forces on two particles is equivalent to — in the reference frame of particle 1, the calculation of work done by one force acting on particle 2.

The displacement of 2 relative to 1

A bullet coming from left is shot into a wooden block and passes through a length of S' in the block. The system of bullet-block comes to a halt after sliding a distance of S. Calculate the net work done by a pair of friction forces f_s and f_s' between the bullet and the block.

-

Example

$$\vec{f}_s = -\vec{f}_s', \qquad |\vec{f}_s| = |\vec{f}_s'| = f_s$$

Solution I:

For the block:

$$W_s = f_s S$$

For the bullet:

The net work:

$$W_s^{\text{net}} = W_s + W_{s'} = f_s S - f_s (S + S') = -f_s S'$$

S

Solution II, III:

Calculate the net works done respectively by a pair of normal forces N and N', f_s and f'_s between the block and the wedge. Neglecting the frictions except f_s and f'_s .

Solution: The normal force \vec{N} acting on the block is not perpendicular to the displacement of the block $\Delta \vec{r}$

Therefore: $W_N \neq 0$

The normal force \vec{N}' acting on the wedge is not perpendicular to the displacement of the wedge $\Delta \vec{S}$. Therefore:

$$W_{N'} \neq 0$$

$$\Delta \vec{r} = -\Delta x \,\hat{i} - \hat{h} \,\hat{j}, \qquad \vec{N} = -N \sin \theta \,\hat{i} + N \cos \theta \,\hat{j}$$

$$\Delta \vec{S} = (l - \Delta x)\hat{i}, \qquad \vec{N}' = N \sin \theta \hat{i} - N \cos \theta \hat{j}$$

$$W_N = \vec{N} \cdot \Delta \vec{r} = \Delta x N \sin \theta - h N \cos \theta, \quad \tan \theta = \frac{h}{l}, \quad h \cos \theta = l \sin \theta$$

$$W_{N'} = \vec{N}' \cdot \Delta \vec{S} = lN \sin \theta - \Delta x N \sin \theta,$$

$$W_N^{\text{net}} = W_N + W_{N'} = 0$$

Example (continued)

$$\Delta \vec{r} = -\Delta x \,\hat{i} - h \,\hat{j}$$

$$\Delta \vec{S} = (l - \Delta x)\,\hat{i}$$

$$\vec{f}_s = f_s \cos\theta \,\hat{i} + f_s \sin\theta \,\hat{j}$$

$$\vec{f}' = -f_s \cos\theta \,\hat{i} - f_s \sin\theta \,\hat{j}$$

$$W_{f_s} = \vec{f}_s \cdot \Delta \vec{r} = -\Delta x \, f_s \cos \theta - h \, f_s \sin \theta$$

$$W_{f_s'} = \vec{f}_s' \cdot \Delta \vec{S} = -l f_s \cos \theta + \Delta x f_s \cos \theta$$

$$W_{f_s}^{\text{net}} = W_{f_s} + W_{f_s'} = -(l\cos\theta + h\sin\theta)f_s$$
$$= -(L\cos^2\theta + L\sin^2\theta)f_s = -f_sL$$

§ 3 Conservative Forces and Potential Energy

$$W = \int_{(L)} \overrightarrow{F} \cdot d\overrightarrow{r}$$

Work done by a force is a line integral or path integral. Generally, depends on the path followed by the particle. Different path corresponds to different work done by the same force.

A category of forces which have the special property, that the work done by such a force is independent of the path —— are conservative forces.

Work done by weight

$$\vec{G} = m\vec{g}$$

$$dW = \overrightarrow{G} \cdot d\overrightarrow{r} = G \cos \theta \, ds$$

$$= mg \cos(\pi - \alpha) ds$$

$$= -mg ds \cos \alpha = -mg \, dy$$

$$W = \int_{a}^{b} dW = \int_{y_{a}}^{y_{b}} -mg \, dy = -(mgy_{b} - mgy_{a})$$

Only depends on the initial and final positions, and does not depend on the path taken by the particle.

Work done by the universal gravitational force

$$\vec{f} = -G \frac{Mm}{r^2} \hat{r}$$

$$W = \int_a^b \vec{f} \cdot d\vec{r} = -\int_{r_a}^{r_b} G \frac{Mm}{r^2} \hat{r} \cdot d\vec{r}$$

$$= -\int_{r_a}^{r_b} G \frac{Mm}{r^2} |d\vec{r}| \cos \theta = -\int_{r_a}^{r_b} G \frac{Mm}{r^2} dr$$

$$= -\left[\left(-G \frac{Mm}{r_b} \right) - \left(-G \frac{Mm}{r_a} \right) \right]$$

$$\frac{dr}{r} = r \cdot dr$$

 Only depends on the initial and final positions, and does not depend on the path taken by the particle.

Work done by the spring force

$$\overrightarrow{F}_s = -kx\,\hat{i}$$

$$W = \int_{x_a}^{x_b} \overrightarrow{F}_s \cdot d\overrightarrow{r} = \int_{x_a}^{x_b} \left(-kx\,\hat{i}\right) \cdot \left(dx\,\hat{i}\right)$$
$$= -\int_{x_a}^{x_b} kx \, dx = -\left(\frac{1}{2}kx_b^2 - \frac{1}{2}kx_a^2\right)$$

Only depends on the initial and final positions, and does not depend on the path taken by the particle.

The conservative force and non-conservative force

- The total work done by a conservative force is zero as the particle moves along a round trip.
- But when the particle moves along a round trip, the total work done by a nonconservative force is not zero.

For the force of gravity:

$$W_{\text{round trip}} = 0$$

For the friction force:

$$W_{f \text{ round trip}} = -2\pi R \mu_k mg$$

The conservative force

- Conclusion: The conservative force has properties that
 - → The work done by a conservative force dose not depend on the path followed by the particle, and depends only on the initial and final positions.

$$W = \int_{a}^{b} \overrightarrow{F_{c}} \cdot d\overrightarrow{r} = -\left[U(\overrightarrow{r_{b}}) - U(\overrightarrow{r_{a}})\right]$$

Equivalent statement:

→ The total work done by a conservative force is zero, as the particle moves around a close path and returns to its starting point (round trip).

$$\int_{acb} \vec{F_c} \cdot d\vec{r} = \int_{adb} \vec{F_c} \cdot d\vec{r}$$

$$\int_{acb} \vec{F_c} \cdot d\vec{r} - \int_{adb} \vec{F_c} \cdot d\vec{r} = \int_{acb} \vec{F_c} \cdot d\vec{r} + \int_{bda} \vec{F_c} \cdot d\vec{r} = 0$$

$$\oint_{acb} \vec{F_c} \cdot d\vec{r} = 0$$

How to get the absolute value of potential energy?

 $U(\vec{r_b}) - U(\vec{r_a}) = -\int_a^b \vec{F_c} \cdot d\vec{r}$ the definition of potential energy only gives the change in potential energy, or the relative value of potential energy. We can choose a position $\vec{r}_0 = \vec{r}_a$ as the reference point, define $U(\vec{r}_0) = 0$ at the reference point. The choice of reference point is arbitrarily.

New definition of potential energy:
$$U(\vec{r}) = U(\vec{r}) - 0 = -\int_{\vec{r}_0}^{\vec{r}} \overrightarrow{F_c} \cdot d\vec{r} = \int_{\vec{r}}^{\vec{r}_0} \overrightarrow{F_c} \cdot d\vec{r}$$

For gravitational potential energy near the Earth's surface, it is accustomed to choose the reference point $y_0=0$ as surface of the Earth.

$$U(y) = mgy$$

For gravitational potential energy associate with two particles, it is accustomed to take $U(r_0 = \infty) = 0$.

$$U(r) = -G\frac{Mm}{r}$$

For elastic potential energy, it is accustomed to choose the reference position to be that in which the spring is in its relaxed state.

$$U(x) = \frac{1}{2}kx^2$$

Why introduce potential energy?

$$\Delta U = U(\vec{r}_b) - U(\vec{r}_a) = -W = -\int_a^b \overrightarrow{F}_c \cdot d\vec{r}$$

- The work done by a conservative force can be represented in terms of the change in potential energy.
- Notice:
 - → The potential energy belongs to the **system**. We should properly speak of "the elastic potential energy of the block-spring system" or "the gravitational potential energy of the ball-Earth system", not "the elastic potential energy of the spring" or "the gravitational energy of the ball".
 - → The potential energy *U* is the energy associated with the configuration of a system. Here "*configuration*" means how the parts of a system are located or arranged with respect to one another (the compression or stretching of the spring in the block-spring system, or height of the ball in the ball-Earth system.)

§ 4 The conservative force and potential energy

The conservative force and potential energy

For an infinitesimal process,

n infinitesimal process,
$$F_{x} = -\frac{\partial U}{\partial x} - dU = -\left(\frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy + \frac{\partial U}{\partial z} dz\right), \qquad \begin{cases} F_{x} = -\frac{\partial U}{\partial x} \\ F_{y} = -\frac{\partial U}{\partial y} \end{cases}$$

$$-dU = \overrightarrow{F} \cdot d\overrightarrow{r} = F_x dx + F_y dy + F_z dz,$$

$$\begin{cases} F_{x} = -\frac{\partial U}{\partial x} \\ F_{y} = -\frac{\partial U}{\partial y} \\ F_{z} = -\frac{\partial U}{\partial z} \end{cases}$$

$$|\vec{F}| = -\left(\hat{i}\frac{\partial U}{\partial x} + \hat{j}\frac{\partial U}{\partial y} + \hat{k}\frac{\partial U}{\partial z}\right) = -\nabla U$$

means the **gradient** of the potential-energy function. The gradient of a scalar function is a vector function. ∇ is a gradient operator.

$$\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$$

Energy Diagrams

For force of gravity

$$U(y) = mgy, \quad F_{y} = -\frac{\partial U}{\partial y} = -mg$$

■ For universal gravitational force

$$U(r) = -\frac{GMm}{r}, \quad F_r = -\frac{\partial U}{\partial r} = -\frac{GMm}{r^2}$$

For spring force

$$U(x) = \frac{1}{2}kx^2$$
, $F_x = -\frac{\partial U}{\partial x} = -kx$

The force is equal to the negative of the slope of U(x)

- Because of conservation of mechanical energy, E as a function of x is a straight horizontal line E = K + U
- > The glider can only move in the range between $x=\pm A$, since the kinetic energy in this range is positive.
- At x=0, the slope of U(x) and the force are zero, so it is an equilibrium position.

Stable and unstable equilibrium

The particle is in stable equilibrium (left) and in unstable equilibrium (right).

- Any minimum in a potential-energy curve is a stable equilibrium position.
 - Points x_1 and x_3 are stable equilibrium points. When the particle is displaced to either side, the force pushes back toward the equilibrium point.
- Any maximum in a potential-energy curve is an unstable equilibrium position.
 - Points x_2 and x_4 are unstable equilibrium points. When the particle is displaced to either side, the force pushes away from the equilibrium point.

A commonly used potential function to describe the interaction between the two atoms in a diatomic molecule is the Lennard-Jones 6-12 potential

$$U(x) = \varepsilon \left[\left(\frac{x_0}{x} \right)^{12} - 2 \left(\frac{x_0}{x} \right)^6 \right]$$

Find (a) the equilibrium separation between the atoms, (b) the force between the atoms, (c) the minimum energy necessary to break the molecule apart.

$$U(x) = \varepsilon \left[\left(\frac{x_0}{x} \right)^{12} - 2 \left(\frac{x_0}{x} \right)^6 \right]$$

Solution: (a) Equilibrium occurs at the position where U(x) is minimum which is found from

$$\left(\frac{dU(x)}{dx}\right)_{x=x_m} = 0, \quad \varepsilon \left(-12\frac{x_0^{12}}{x_m^{13}} + 12\frac{x_0^6}{x_m^7}\right) = 0$$

$$\mathcal{X}_m = \mathcal{X}_0$$

(b)
$$F(x) = -\frac{dU(x)}{dx} = 12\varepsilon \left(\frac{x_0^{12}}{x^{13}} - \frac{x_0^6}{x^7}\right)$$

(c) The minimum energy needed to break up the molecule into separate atoms is called dissociation energy, E_d .

$$U(x_0) + E_d = 0, E_d = -U(x_0) = \varepsilon$$

4

§ 5 Work-Energy Theorem and

Conservation of Mechanical Energy

Starting with work – kinetic energy theorem for the system of particles

$$\sum W_{i-\text{external}} + \sum W_{i-\text{internal}} = K_f - K_i$$

The internal forces can be divided into conservative and nonconservative.

$$\sum W_{i-\text{external}} + \sum W_{i-\text{internal-conserv}} + \sum W_{i-\text{internal-nonconserv}} = K_f - K_i$$

→ The work done by conservative forces can be described by the change in potential energy $\sum W_{i-\text{internal-conserv}} = -(U_f - U_i)$

$$\sum W_{i-\text{external}} + \sum W_{i-\text{internal-nonconserv}} = (K_f + U_f) - (K_i + U_i)$$

- ightharpoonup Define $E_{\rm mech} = K + U$ to be total mechanical energy of the system.
- Work energy theorem:

$$\sum W_{i-\text{external}} + \sum W_{i-\text{internal-nonconserv}} = \Delta E_{\text{mech}}$$

→The work done by all the external forces and internal forces other than internal conservative forces acting in a system of particles equals the change in total mechanical energy of the system.

Conservation of Mechanical Energy

- Conservation of Mechanical Energy
 - For a system, if $\sum W_{i-\text{external}} + \sum W_{i-\text{internal-nonconserv}} = 0$ then $\Delta E_{\text{mech}} = 0$ or $K_f + U_f = K_i + U_i = \text{constant}$
 - ▶ In a system in which only internal conservative forces act, the total mechanical energy remains constant.
 - When $\Delta E_{\rm mech}$ =0, it is the internal conservative forces acting within the system that change kinetic into potential or potential into kinetic energy.

$$U \xrightarrow{W_{\text{conservative}} > 0} K$$

Variable force F is maintained tangent to a frictionless semicircular surface. By a slowly varying force F, a block with mass of m is moved, and spring to which it is attached is stretched from position 1 to position 2. The spring has negligible mass and force constant k. The end of the spring moves in an arc of radius a. Calculate the work done by the force F from position 1 to $2 \cdot (\theta)$

Solution

Solution II: by using work-energy theorem.

External force: F;

Internal forces:

N (non-conservative);

mg and F_s (conservative).

Choose the reference point at position 1 both for gravitational and elastic energy of block-spring-Earth system.

$$W_F = \Delta E = \Delta U = \frac{1}{2}ks^2 + mga\sin\theta = \frac{1}{2}ka^2\theta^2 + mga\sin\theta$$

A block of mass M slide along a horizontal table with speed v_0 . At x=0 it hits a spring with spring constant k and begins to experience a friction force. The coefficient of friction is variable and is given by $\mu = bx$, where b is a constant. Find the loss in mechanical energy when the block has first come

momentarily to rest.

 v_0 M M x

Solution

Take block-spring-Earth as a system. No external force exists.

Internal conservative forces: spring force, gravitational force

Internal non-conservative forces: normal force (does no work), friction force.

Using work-energy theorem: $W_{f_s} = E_f - E_i = -E_{loss}$

Suppose the block's position is x_f at the moment when it first come to rest.

$$W_{f_s}(x=0 \to x_f) = \int_0^{x_f} -bxMg \, dx = -\frac{1}{2}bMgx_f^2$$

$$-\frac{1}{2}bMgx_f^2 = \frac{1}{2}kx_f^2 - \frac{1}{2}Mv_0^2, \quad x_f^2 = \frac{Mv_0^2}{k+bMg}$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$E_{loss} = E_i - E_f = -W_{f_s} = \frac{1}{2}bMgx_f^2 = \frac{bgM^2v_0^2}{2(k+bMg)}$$

Problem

- Ch7 (P164)
 - **38, 69, 70**
- -Ch8 (P194)
 - **35, 67, 79**