Circuits RC

Càrrega	Descàrrega
$q(t) = q(0) \left(1 - e^{-\frac{t}{\tau_C}}\right)$	$q(t) = q(0)e^{-\frac{t}{\tau_C}}$
$I(t) = \frac{\epsilon}{R} e^{-\frac{t}{\tau_C}}$	$I(t) = -\frac{V}{R}e^{-\frac{t}{\tau_C}}$

$$\tau_C = RC, q(0) = VC$$

Solenoides

Circuits RL

Càrrega	Descàrrega
$I(t) = \frac{\epsilon}{R} \left(1 - e^{-\frac{t}{\tau_L}} \right)$	$I(t) = \frac{V}{R}e^{-\frac{t}{\tau_L}}$
$ au_L = rac{L}{R}$	

Corrent alterna

<u>f.e.m. alterna</u>: $V(t) = V_0 \cos(\omega t + \varphi)$, $T = \frac{2\pi}{\omega}$, $I(t) = \frac{V(t)}{R} = \frac{V_0}{R} \cos(\omega t + \varphi) = I_0 \cos(\omega t + \varphi)$ <u>Flux</u>: $\Phi = BSN\cos(\omega t + \theta)$, B camp magnètic Llei Faraday: $\epsilon(t) = V_0 \sin(\omega t + \theta_0)$ <u>Voltatge eficaç</u>: $V_{ef} = \frac{V_0}{\sqrt{2}}$ <u>Intensitat eficaç</u>: $I_{ef} = \frac{I_0}{\sqrt{2}}$

Circuit amb condensador

Voltatge: $V(t) = V_0 \cos(\omega t)$ Intensitat: $I(t) = -V_0 \omega C \sin(\omega t) = -I_0 \sin(\omega t)$ $= I_0 \cos(\omega t + \frac{\pi}{2})$ (desfase de $\frac{\pi}{2}$) Sigui $V(t) = V_0 e^{i\omega t}$, llavors, $I(t) = V_0 i\omega C e^{i\omega t}$. Podem reproduir la llei d'Ohm $(V = IR_C)$, $R_C = \frac{1}{i\omega C}$. Reactancia capacitiva: $X_C = |R_C| = \frac{1}{\omega C}$, $R_C = \frac{X_C}{i} = -iX_C$

Circuit amb inducció

 $\begin{array}{l} \underline{\text{Voltatge:}}\ V(t) = V_0 \text{cos}(\omega t) \\ \underline{\text{Autoinducci\'o a la bobina:}}\ \varepsilon_L = -L\frac{\text{d}I}{\text{d}t} \\ \underline{\text{Segona llei Kirchhoff:}}\ V(t) + \varepsilon_L = 0 \Longrightarrow I(t) = \\ \underline{V_0} \sin(\omega t) = I_0 \text{cos}(\omega t - \frac{\pi}{2})\ (\text{desfase de }\frac{\pi}{2}) \\ \underline{\text{Sigui }}\ V(t) = V_0 e^{i\omega t},\ \text{llavors,}\ I = \frac{V_0}{i\omega L} e^{i\omega t}.\ \text{Podem reproduir la llei d'Ohm }V = IR_L,\ R_L = i\omega L. \\ \underline{\text{Reactancia inductiva:}}\ X_L = |R_L| = \omega L,\ R_L = iX_L \end{array}$

Impedància. Llei d'Ohm

Circuit LCR

Angle de fase: $tg(\varphi) = \frac{X_L - X_C}{R}$ Corrent máxim: $I_0 = \frac{\varepsilon_0}{Z}$

Potència

Potència instantània: $P(t) = V(t)I(t) = V_0I_0\cos(\omega t)\cos(\omega t - \varphi)$ Potència mitja: $\frac{V_0I_0}{2\cos(\varphi)} = V_{ef}I_{ef}\cos(\varphi)$

Potència en una resistència

 $\frac{V_0^2}{R}\cos^2(\omega t)$ Potència mitja: $P = \frac{V_0^2}{2R}$ Valors eficaços: $V_{ef} = \frac{V_0}{\sqrt{2}}$, $I_{ef} = \frac{I_0}{\sqrt{2}}$ Potència dissipada: $P = \frac{V_{ef}^2}{R} = RI_{ef}^2$

Potència instanània: $P(t) = V_0 \cos(\omega t) I_0 \cos(\omega t) =$

Pàgina 59 feta