

Digital Systems 18B11EC213

Module 1: Boolean Function Minimization Techniques and Combinational Circuits-8

Dr. Saurabh Chaturvedi

Logic Gates

Logic Gates

NOT Gate (Inverter)

AND Gate

OR Gate

NAND Gate

NOR Gate

EX-OR (Exclusive-OR) Gate

EX-NOR (Exclusive-NOR) Gate

- Drawing Logic Circuits
- Analysing Logic Circuits
- Universal Gates

❖ NOT Gate (Inverter)

Α	Α'
0	1
1	0

Application of the inverter: complement

❖ AND Gate

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

❖ OR Gate

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

❖ NAND Gate

Α	В	(A.B)'
0	0	1
0	1	1
1	0	1
1	1	0

$$\begin{array}{ccc}
A & & & \\
B & & & \\
\end{array}$$

$$\begin{array}{ccc}
A & & & \\
\end{array}$$

$$\begin{array}{ccc}
A'+B' \\
\end{array}$$

$$\begin{array}{ccc}
A'+B' \\
\end{array}$$

$$\begin{array}{cccc}
A''+B' \\
\end{array}$$

NOR Gate

Α	В	(A+B)'
0	0	1
0	1	0
1	0	0
1	1	0

❖ XOR Gate

$$A \oplus B = A'.B + A.B'$$

Α	В	$A \oplus B$
0	0	0
0	1	1
1	O	1
1	1	0

❖ XNOR Gate

$$(A \oplus B)' = A.B + A'.B'$$

Α	В	(A ⊕ B) '
0	0	1
0	1	0
1	0	0
1	1	1

Drawing Logic Circuits

 When a Boolean expression is provided, we can easily draw the logic circuit.

Example-1:

$$F1(x, y, z) = x.y.z'$$

Note the use of a 3-input AND gate.

Example-2:

$$F2(x, y, z) = x + y'.z$$

We can assume that the variables and their complements are available.

Example-3:

$$F3 = xy' + x'z$$

Analysing Logic Circuits

• When a logic circuit is given, we can analyse the circuit to obtain the logic expression.

Example: What is the Boolean (logic) expression of F4?

$$F4 = (A'B'+C)' = (A+B).C'$$

Universal Gates: NAND and NOR

 AND/OR/NOT gates are sufficient for building any Boolean (logic) functions.

• We call the set {AND, OR, NOT} a complete set of logic.

- ☐ NAND Gate
- NAND gate is self-sufficient, i.e., it can implement any logic circuit with it.
- Therefore, {NAND} is also a complete set of logic.
- It can be used to implement AND/OR/NOT.
- Implementing an inverter (NOT gate) using NAND gate:

Implementing AND gate using NAND gates:

Implementing OR gate using NAND gates:

$$x \longrightarrow x'$$
 $((xx)'(yy)')' = (x'y')'$ Idempotency
 $= (x')'+(y')'$ DeMorgan
 $= x+y$ Involution

- ☐ NOR Gate
- NOR gate is also self-sufficient.
- Therefore, {NOR} is also a complete set of logic.
- It can be used to implement AND/OR/NOT.
- Implementing an inverter (NOT gate) using NOR gate:

$$x \longrightarrow x'$$
 $(x+x)' = x'$ Idempotency

Implementing AND gate using NOR gates:

Implementing OR gate using NOR gates:

$$(x+y)' = (x+y)' = (x+y)' = (x+y)' = (x+y)'$$

$$= (x+y)$$
 Involution

Implementation Using NAND Gates

• It is possible to implement any Boolean expression using NAND gates.

Procedure:

Step-1: Obtain the sum-of-products (SOP) Boolean expression.

Let the Boolean function is F3(x, y, z) = xy'+x'z

Step-2: Use the DeMorgan's theorem to obtain the expression using two-level NAND gates.

$$F3 = ((xy')'.(x'z)')' = xy' + x'z$$

Implementation Using NOR Gates

 It is possible to implement any Boolean expression using NOR gates.

Procedure:

Step-1: Obtain the product-of-sums (POS) Boolean expression.

Let the Boolean function is F6 = (x+y').(x'+z)

Step-2: Use the DeMorgan's theorem to obtain the expression using two-level NOR gates.

Given F6 =
$$(x+y').(x'+z)$$

= $(((x+y').(x'+z))')'$ Involution
=> F6 = $((x+y')'+(x'+z)')'$ DeMorgan

$$F6 = ((x+y')'+(x'+z)')' = (x+y').(x'+z)$$

Implementation of SOP Expressions

- Sum-of-Products (SOP) expressions can be implemented using:
 - Two-level AND-OR logic circuits
 - Two-level NAND logic circuits
- AND-OR logic circuit

- ❖ NAND-NAND circuit (by circuit transformation)
 - a) Add double bubbles
 - b) Change OR-withinverted-inputs to NAND and bubbles at inputs to their complements

Implementation of POS Expressions

- Product-of-Sums (POS) expressions can be implemented using:
 - ❖ Two-level OR-AND logic circuits
 - Two-level NOR logic circuits
- OR-AND logic circuit

Let
$$G = (A+B).(C+D).E$$

- NOR-NOR circuit (by circuit transformation):
 - a) Add double bubbles
 - b) Change AND-withinverted-inputs to NOR and bubbles at inputs to their complements

References

- M. M. Mano, *Digital Logic and Computer Design*, 5th ed., Pearson Prentice Hall, 2013.
- R. P. Jain, *Modern Digital Electronics*, 4th ed., Tata McGraw-Hill Education, 2009.