Серия 34. Конфигурации прямых

- **1.** Дано n прямых, не все из которых параллельны. Найдите наименьшее количество частей, на которые эти прямые разбивают плоскость.
- **2.** На плоскости проведены n прямых общего положения (то есть никакие две прямые не параллельны и никакие три не пересекаются в одной точке). Рассмотрим части, на которые эти прямые разбивают плоскость. Через K обозначим число частей, являющихся треугольниками.
 - (а) Докажите, что $K \geqslant 2$ при $n \geqslant 4$.
 - **(b)** Докажите, что $K \ge (2n-3)/3$ при $n \ge 3$.
 - (c) Для всех n приведите пример, в котором K = n 2.

Факт: всегда верно $K \geqslant n-2$.

- **3.** Можно ли провести на плоскости 50 синих и 50 красных прямых так, чтобы никакие три прямые не проходили через одну точку и чтобы точек пересечения одноцветных прямых было больше, чем точек пересечения разноцветных?
- **4.** На плоскости проведены n>2 прямых общего положения. Эти прямые разрезали плоскость на несколько частей. Какое
 - **(а)** наименьшее;
 - **(b)** наибольшее

количество внутренностей углов может быть среди этих частей?

- **5.** Плоскость разбита на части N прямыми общего положения. Докажите, что в этих частях можно расставить ненулевые не превосходящие по модулю N целые числа так, чтобы сумма чисел в каждой полуплоскости относительно любой прямой была нулевой.
- 6. На плоскости расположено $n \geqslant 2$ отрезков так, что любые два из них пересекаются по внутренней точке, а никакие три из них не имеют общей точки. Иван выбирает один из концов каждого отрезка и сажает в него лягушку лицом к другому концу этого отрезка. Затем он n-1 раз хлопает в ладоши. При каждом хлопке каждая из лягушек немедленно прыгает вперёд в следующую точку пересечения на её отрезке. Лягушки никогда не меняют направления своих прыжков. Иван хочет изначально рассадить лягушек так, чтобы никакие две из них никогда не оказались в одной точке пересечения одновременно.
 - (a) Докажите, что Иван всегда может добиться желаемого, если n нечётно.
 - (b) Докажите, что Иван никогда не сможет достичь желаемого, если n чётно.