DLL vs ProbNN PID variables

Outline

- Presentation of the variables
- Muons
- · Kand TID

- Protons
- Conclusion

Thanks to all the people who provided feedback

Presentation of variables

- (Combined) DLL: use information provided by each subsystem
 - Some caveats: definition of DLLs, different range of values for the various DLLs, peculiar structures (spikes), all information not used optimally etc...
- ProbNN: use more information
 - Inputs include basic PID variables from the CALO, MUON and RICH sub-systems + some tracking variables. Combined in TMVA MLP-CE network.
 - Provides consistent set of probability values for each particle hypothesis
- For more details, see e.g :
 - https://indico.cern.ch/getFile.py/access? contribId=1&resId=0&materialId=slides&confId=226062

Muon ID - SL WG

- The probNN variables do significantly better for K-mu separation at a given muon efficiency.
- The improvement is smaller for pi-mu separation.

 They are not yet used in analysis (yet)

Plots from Christos Hadjivasiliou PPTS meeting, October 7, 2013

Muon ID – EW penguin (RD WG)

Gain using ProbNN instead of DLL variables in BDT Need to account for Data-MC discrepancies, however

Muon ID – Charm group

Test performed on the muon ID in B \rightarrow D0(\rightarrow KS (LL) $\pi\pi$) $\mu \nu$

ROC curves (Stefanie Reichert)

B hadrons and Quarkonia

- Ψ polarisation (LHCb-PAPER-2013-043) and Υ @2.76 (LHCb-ANA-2013-048) studies
 - Use of ProbNNmu reduced the background by a factor of 2
- Prompt charm production (V.Belyaev, B&Q, 17/07/2013):

B decays to open charm (1)

$$B^- \to D[K^+K^-\pi^+\pi^-]K^-$$

M. Coombes, J. Dalseno, J. Rademacker, N. Skidmore

$$B^- \to D[K^+K^-\pi^+\pi^-]K^-$$
 sensitive to γ

Most dangerous background with larger branching fraction, $B^- \to D[K^+K^-\pi^+\pi^-]\pi^-$

Bachelor π^- reconstructed with the K^- mass hypothesis

Peaking structure in the reconstructed B candidate mass shifted by $\approx m(K^-) - m(\pi^-)$

Apply all selection criteria except for PID

Need clean $B^- \to DK^-$ sample for Dalitz analysis of $D \to K^+K^-\pi^+\pi^-$

1) Compare built Likelihood ratio

2) Optimize cuts vs $D\pi$ bkg

$$\mathcal{L}_{K/\pi}^{ ext{NN}} \equiv rac{\mathcal{L}_{K}^{ ext{NN}}}{\mathcal{L}_{K}^{ ext{NN}} + \mathcal{L}_{\pi}^{ ext{NN}}}$$

DLL peaks more strongly at 1 for tracks consistent with the kaon hypothesis

$$N_{DK} = 985 \pm 55$$
 $N_{DK} = 1003 \pm 49$ $N_{D\pi} = 119 \pm 30$ $N_{D\pi} = 268 \pm 36$

3) Results : Similar signal yield but background x 2

B decays to open charm (2)

hhh analyses

Illustration for $KK\pi$ 2012 (plots from Irina Nasteva)

- Many studies performed, testing PID against background and cross-feed
- The conclusions are that:
 - KKπ: ProbNN better
 - KKK and KTT : DLL and ProbNN ~ equivalent
 - गरागर : DLL better
- For Kaon ID, ProbNNk seems enough but for Pion ID, we need both ProbNNpi and ProbNNk
- Using combinations of ProbNNs does not bring improvement
- Finally: chose ProbNN to follow the trend of changes, pending possible further improvements

K for ppK (1)

ProbNNk>0.1 & ProbNNpi<0.8

ProbNNk>0.2 & ProbNNpi<0.7

ProbNNk>0.25 & ProbNNpi<0.8

K for ppK (2)

ProbNNk>0.1 & ProbNNpi<0.6

ProbNNk>0.25

π for pp π (1)

150

100

momentum(Pion) MeV/c

150

100

momentum(Pion) MeV/c

Proton (pph)

DLL cut $1/\sqrt{2(p-K+p-\pi)}>10$

ProbNNp>0.2 & ProbNNk<0.8 & ProbNNpi<0.8 (ppK)

For similar efficiency, ProbNN has lower low-momentum misIDed background

Consequence on pph signals

(example with 2011 data, unique BDT cut)

ProbNNp shape in data

Something that has « chocked » many users of calibration samples : more protons < 0.5 than >0.5, no peaking structure near 1

Due to protons of momentum < 20 GeV/c

« Poorly distinguishing» RICH information at low momentum

But still purity vs ProbNNp shows that this variable is sensible and interpretable as a probability (see backup)

n.b : output from MVA, used to be from NeuroBayes

Conclusion

- Use of ProbNN spreads in the collaboration
 - All track types tested/studied except electrons
- The relevance of choosing ProbNN vs DLL depends on the analysis/channel but there are general emerging trends:
 - ProbNNK is « enough » for K ID (i.e ProbNNpi not much useful), does a similar job as DLL(K-v)
 - For dedicated pion-driven cross-feed, DLL seems to be preferred
 - For រូវ ID, one needs ProbNNpi and ProbNNK. DLL(K-រូវ) seems more performant to get rid of kaon-generated cross-feed
 - ProbNN(p,K,兀) helps a lot to remove (low-momentum) background in proton ID:
 ProbNN does better than DLL here, hope for improvements for the efficiency
 - Consensus on ProbNNmu being more performant that DLLmu (in particular for Kaons rejection)
- People are encouraged to use new PID variables to consolidate our experience/understanding and to find the best ways to use them
 - Feedback to PID mailing list is very important both for experts and non-experts

ProbNN training

(from C.Jones 05/2013 presentation)

Input Variables (Long Tracks)

Tracking	TrackP, TrackPt, TrackChi2PerDof, TrackNumDof, TrackLikelihood, TrackGhostProbability, TrackFitMatchChi2, TrackCloneDist, TrackFitVeloChi2, TrackFitVeloNDoF, TrackFitTChi2, TrackFitTNDoF
RICH	RichUsedAero, RichUsedR1Gas, RichUsedR2Gas RichAboveMuThres, RichAboveKaThres, RichDLLe, RichDLLmu, RichDLLk, RichDLLp, RichDLLbt
Muon	MuonBkgLL, MuonMuLL, MuonIsMuon, MuonNShared, InAccMuon, MuonIsLooseMuon
CALO	EcalPIDe, EcalPIDmu, HcalPIDe, HcalPIDmu, PrsPIDe, InAccBrem, BremPIDe
VELO	VeloCharge

Purity vs ProbNNp (plot from C.Jones)

Long Proton Purity V MVA output | Train:Ghosts-Eval:Ghosts | Bck. All NaturalMix AllTracksInEvent ReweightRICH2 | TMVA-NoPreSels-NoGECs | MLP Norm BP NCycles750 CE tanh SF1.2

ProbNN vs proton momentum in calib data

(taken from Till Moritz Karbach, discussion in PID mailing list)

