Feuille d'exercice n° 07 : Intégration pour les équations différentielles - fiche d'entraînement

Exercice 1 Calculer les primitives suivantes :

1.
$$\int x^3 \sqrt{4 + x^4} \, dx$$
 11. $\int Arcsin(x) \, dx$ 2. $\int \frac{dx}{x \ln x}$ 12. $\int Arcsin^2(x) \, dx$ 13. $\int Arctan(x) \, dx$ 14. $\int \frac{\sqrt{9 - x^2}}{x^2} \, dx$ 15. $\int \frac{dx}{x\sqrt{1 - x^2}}$ 6. $\int x^2 \ln x \, dx$ 16. $\int \frac{dx}{x\sqrt{a^2 + x^2}}$ 7. $\int x^n \ln x \, dx$ (avec $n \in \mathbb{Z}$) 17. $\int \sqrt{4 + x^2} \, dx$ 18. $\int \frac{dx}{a^2 - x^2}$ 19. $\int \frac{dx}{x^2} \, dx$ 10. $\int x^3 \sqrt{1 + x^2} \, dx$ 20. $\int \frac{dx}{(a^2 + x^2)^2}$

Exercice 2 En notant g une primitive de f, et h une primitive de g, calculer :

1.
$$\int x^3 f(x^2) dx$$
 2. $\int x^{2n-1} f(x^n) dx$

Exercice 3 Dans les primitives suivantes, trouver un entier n qui permette un calcul par changement de variable, et calculer la primitive :

$$1. \int x^n \sqrt{1 - x^4} \, \mathrm{d}x$$

2.
$$\int \frac{x^n}{\sqrt{1-x^4}} dx$$
 (il y a deux choix naturels possibles pour n)

3.
$$\int \frac{x^n}{1+x^{10}} dx$$
 (il y a deux choix naturels possibles pour n)

4.
$$\int \frac{x^6}{1+x^n} dx$$
 (il y a deux choix naturels pos-

sibles pour n)

$$5. \int x^n e^{-x^2} dx$$

$$6. \int x^n e^{2x^5} dx$$

$$7. \int x^5 \sqrt{1 - x^n} \, \mathrm{d}x$$

8.
$$\int \frac{x^6}{\sqrt{1-x^n}} dx$$
 (il y a deux choix naturels possibles pour n)

9.
$$\int \frac{\mathrm{d}x}{x^n \ln x}$$

$$10. \int \frac{\mathrm{d}x}{x^n (\ln x)^7}$$

11.
$$\int x^n \sin(x^6) \, \mathrm{d}x$$

$$12. \int \frac{\sin^n x \cos x}{\sqrt{3 + \sin^4 x}} \, \mathrm{d}x$$

$$13. \int \frac{\sin^3 x \cos x}{\sqrt{3 + \sin^n x}} \, \mathrm{d}x$$