

OHBM 2024 JUNE 23~27, SEOUL, KOREA

PET Imaging of Neurotransmitter Systems: Preprocessing

Martin Norgaard

University of Copenhagen, Denmark National Institute of Mental Health, USA

I have no disclosures

Demo here

Short link:

https://shorturl.at/aWc3z

petprep_hmc:

github.com/mnoergaard/petprep_hmc

petprep_extract_tacs:

github.com/mnoergaard/petprep_extract_tacs

petsurfer:

https://github.com/openneuropet/PET_pipelines/tree/main/pyPetSurfer

PET Brain Receptor Imaging 101

Motion correction

Without motion correction

Frame #0

L R

y=220 x=0

Co-registration between PET and MRI

Segmentation

Partial Volume Correction

Extraction of Time Activity Curves

Quality of real PET data (example 1)

Quality of real PET data (example 2)

Differences between the two videos

Tracer	[11C]DASB (serotonin transporter)	[11C]DASB (serotonin transporter)		
Scanner	Siemens HR+	Siemens High Resolution Research Tomograph		
Resolution	5-8 mm	2-3 mm		
Framing (s)	[3x20, 3x60, 3x120, 2x300, 10x600] (120min)	[6x5, 10x15, 4x30, 5x120, 5x300, 8x600] (90min)		
Recon	Filtered Back Projection	Ordered Subset Expectation Maximization		
High uptake	Thalamus, putamen, caudate	Thalamus, putamen, caudate		

Note: Standard least-squares intensity cost function has been criticized, due to signal bias from task activation and outliers (Freire & Mangin, 2001; Orchard & Atkins, 2003).

- 1. Differences in resolution between frames (FIX: smoothing to boost SNR)
- 2. First frames have very little spatial information (FIX: assume motion to be similar for first frames < 2min)
- 3. Remove signal (noise) from outside of the brain (FIX: threshold individual frames)
- 4. What is a good reference frame? Mean across frames? Frame with high SNR?

Robust head motion correction using petprep_hmc

PETPrep Robust Head Motion Correction

```
docker run -it --rm \
    -v /path/to/bids_input:/data/input \
    -v /path/to/bids_output:/data/output \
    -v /path/to/freesurfer_license:/opt/freesurfer/license.txt \
    martinnoergaard/petprep_hmc:latest \
    --bids_dir /data/input \
    --output_dir /data/output \
```


https://github.com/mnoergaard/petprep_hmc

Without motion correction

With motion correction

PETPrep Robust Head Motion Correction

∂ Usage

To run the PETPrep Head Motion Correction BIDS App, use the following command:

python3 run.py --bids_dir /path/to/bids_input --output_dir /path/to/bids_output --analysis_level
participant [--participant_label PARTICIPANT_LABEL]

- --bids_dir: Path to the input BIDS dataset
- --output_dir: Path to the output directory for preprocessed data
- --analysis_level: Level of the analysis that will be performed. Multiple participant level analyses can be run
 independently (in parallel) using the same output_dir.
- --participant_label: (Optional) A single participant label or a space-separated list of participant labels to process. If not provided, all participants in the dataset will be processed.
- --mc_start_time: (Optional) Start time for when to perform motion correction (subsequent frame will be chosen) in seconds (default = 120 seconds).
- --mc_fwhm: (Optional) FWHM for smoothing of frames prior to estimating motion (default = 10mm).
- --mc_thresh: (Optional) Threshold below the following percentage (0-100) of framewise ROBUST RANGE prior to estimating motion correction (default = 20).
- -n_procs : (Optional) Number of processors allocated to be used when running the workflow.
- --no_resample: (Optional) Whether or not to resample the motion corrected PET data to lowest x/y/z dim in original data (default = False).
- --skip_bids_validator : (Optional) Whether or not to perform BIDS dataset validation.

For example, to process participant sub-01, use the following command:

python3 run.py --bids_dir /data/bids_input --output_dir /data/bids_output --participant_label 01

https://github.com/mnoergaard/petprep_hmc

Extraction of time activity curves using petprep_extract_tacs

Preprocessing of PET Data

PET-BIDS Derivatives

OHBM 2024

Α	В	С	D	E	F	G	н
frame_start	frame_end	Left-Cerebra	Left-Cerebell	Left-Cerebell	Left-Thalamı	Left-Caudate	Left-Putame
0	30	6866.52539	7235.44873	8969.10156	9735.34668	8669.91406	11645.9854
30	60	13811.9033	14901.3398	17751.4023	18644.668	17031.3867	22109.6504
60	90	20499.3574	21455.3691	26245.1621	27601.4766	26851.1777	32925.0625
90	120	23324.3906	25101.5078	30721.8594	31450.2871	29055.1387	37790.4922
120	150	23012.5625	24511.457	30327.9531	31907.2344	29424.7578	38484.6484
150	180	22583.6953	23887.7949	29040.2891	30596.5215	28588.4609	35319.0586
180	240	21920.5078	23092.6621	28177.375	30316.7148	26556.3223	34635.6836
240	300	21264.5898	22498.9141	26931.8555	28885.8203	26385.748	33001.4883
300	360	20591.5059	22225.1855	25665.7324	28628.6074	23686.5215	31514.9082
360	480	19826.3145	21095.0605	24489.5352	27689.3379	22836.1699	30335.8203
480	600	19140.0547	20643.0879	23034.6289	26379.2676	21410.5684	27782.6289
600	900	18197.5605	19615.7695	21048.1074	24872.5566	19252.1289	25828.6895
900	1200	17103.1348	18642.3789	18713.6113	22844.4023	16763.9766	22610.5859
1200	1500	16238.7354	17576.0762	16855.5391	21207.2676	15096.3691	20343.1836
1500	1800	15554.3008	16921.4766	15346.9375	20047.4824	13649.3164	18766.2363
1800	2100	14981.748	16038.3965	14192.249	18693.3496	13339.0029	17638.5566
2100	2400	14400.5654	15329.2148	13186.4043	17651.9375	12062.5557	16014.2148
2400	2700	13912.416	14271.0635	12196.5059	16132.6172	11287.1133	15143.123
2700	3000	13359.9053	13994.5146	11341.1719	15533.9941	10319.9619	14722.2334
3000	3300	12783.9551	13390.7637	10728.9131	14353.1494	9781.65234	12956.96
3300	3600	12233.8984	12523.6553	9733.04297	13791.1279	9580.76953	12535.2705
3600	3900	11801.665	12096.9326	9276.30566	12831.8213	9058.38477	11513.748
3900	4200	11478.7266	11764.1572	8873.22656	12073.3232	8916.43848	11422.7646
4200	4500	11047.7393	11474.3057	8453.29395	11052.2646	8203.42285	10289.8643
4500	4800	10904.3496	11254.168	8032.7749	11055.085	7901.18262	10351.2354
4800	5100	10510.7881	10504.1016	7652.05273	10762.8164	8110.64209	9596.25977
5100	5400	10287.3877	10612.5967	7399.45557	10249.3252	7968.80029	9226.31738

100 regions ... can be loaded into PMOD

Thalamic nuclei segmentation ... can be loaded into PMOD

Hippocampal subfield segmentation ... can be loaded into PMOD

Derivatives data pushed to OpenNeuro

https://openneuro.org/datasets/ds004869/versions/1.0.1

To the demo...

Short link:

https://shorturl.at/aWc3z

OHBM 2024 JUNE 23~27, SEOUL, KOREA