北京邮电大学 物理实验报告

实验名称 太阳能电池特性与测量

实验目的:

- 1. 了解硅太阳能电池的结构及工作原理;
- 2. 学习测定硅太阳能电池的开路电压、短路电流及暗伏安特性曲线:
- 3. 理解硅太阳能电池最佳负载的定义与应用意义。

实验原理与操作步骤[基本物理思想、实验设计原理、物理公式及其意义、电路图(光路图)等;主要操作步骤]实验原理:

当光照射在距太阳能电池表面很近的PN结时,只要入射光子的能量大于半导体材料的禁带宽度 E_g ,则在p区、n区和结区光子被吸收会产生电子-空穴对(如图1)。那些在PN结附近n区中产生的少数载流子由于存在浓度梯度而要扩散。只要少数载流子离PN结的距离小于它的扩散长度,总有一定几率的载流子扩散到结界面处。在p区与n区交界面的两侧即结区,存在空间电荷区,也称为耗尽区。在耗尽区中,正负电荷间形成电场,电场方向由n区指向p区,这个电场称为内建电场。这些扩散到结界面处的少数载流子(空穴)在内电场的作用下被拉向p区。同样,在PN结附近p区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速拉向n区。结区内产生的电子-空穴对在内电场的作用下分别移向n区和p区。这导致在n区边界附近有光生电子积累,在p区边界附近有光生空穴积累。它们产生一个与PN结的内建电场方向相反的光生电场,在PN结上产生一个光生电动势,其方向由p区指向n区。这一现象称为光伏效应。

图1 太阳能电池的工作原理

太阳能电池的工作原理是基于光伏效应的。当光照射太阳电池时,将产生一个由n区到p区的光生电流。同时,由于PN结二极管的特性,存在正向二级管电流,此电流方向从p区到n区,与光生电流相反。因此,实际获得的电流为两个电流之差:

$$I = I_s(\Phi) - I_D U \tag{1}$$

如果连接一个负载电阻,电流可以被认为是两个电流之差,即取决于辐照度的负方向电流,以及取决于端电压的正方向电流 $I_{\mathrm{D}}U$ 。

由此可以得到太阳能电池伏安特性的典型曲线(见图2)。在负载电阻小的情况下,太阳能电池可以看成一个恒流源,因为正向电流 I_DU 可以被忽略。在负载电阻大的情况下,太阳能电池相当于一个恒压源,因为如果电压变化略有下降那么电流 I_DU 迅速增加。

当太阳电池的输出端短路时,可以得到短路电流,它等于光生电流 I_s 。当太阳电池的输出端开路时,可以得到开路电压 U_0 。

在固定的光照强度下,光电池的输出功率取决于负载电阻R。太阳能电池的输出功率在负载电阻为 R_{max} 时达到一个最大功率 P_{max} ,即 R_{max} 近似等于太阳能电池的内阻 R_i 。

$$R_i = \frac{U_0}{I_s} \quad (2)$$

这个最大的功率比开路电压和短路电流的乘积小(见图2),它们之比为

$$R_i = \frac{P_{max}}{U_0 * I_s} \quad (3)$$

F称为填充因数。

此外,太阳能电池的输出功率P = U * I是负载电阻 $R = \frac{U}{I}$ 的函数

我们经常用几个太阳能电池组合成一个太阳能电池。串联会产生更大的开路电压 U_0 ,而并联会产生更大的短路电流 I_S 。在本实验中,把2个太阳能电池串联,分别记录在四个不同的光照强度时电流和电压特性。光照强度通过改变光源的距离和电源的功率来实现。

操作步骤:

- 0. 据实验原理,连接实验线路。
- (1). 把太阳能电池插到插件板上,用两个桥接插头把上边的负极和下面的正极连接起来,串 联起 2 个太阳能电池。
 - (2). 插上电位器作为一个可变电阻, 然后用桥接插头把它连接到太阳能电池上。
 - (3). 连接电流表, 使它和电池、可变电阻串联。选择测量范围: 直流 200mA。
 - (4)连接电压表使之与电池并联,选择量程:直流 3V。
 - (5)连接卤素灯与稳压源,使灯与电池成一线,以使电池均匀受光。
- 1. 接通电路,将可变电阻器阻值调为最小以实现短路,并改变卤素灯的距离和调节电源输出功
- 率, 使短路电流大约 45mA。
- 2. 逐步改变负载电阻值降低电流,分别读取电流和电压值,记入表格。

- 3. 断开电路,测量并记录开路电压。
- 4. 调节电源功率,分别使短路电流约为 35mA, 25mA 和 15mA,并重复上述测量。
- 5. 在不同照度下,测定太阳能电池的输出功率 P 和负载电阻 R 的函数关系。

实验仪器名称:

太阳能电池两块,插件板,稳压源,卤素灯,万用表

实验数据处理与分析[实验数据计算、不确定公式推导与计算、结果表示、误差分析、结果讨论]

一、在不同光照强度下测量太阳能电池的输出电压U和输出电流I

(1)、短路电流 Is= 45mA; 开路电压 Uo(V)=_____2.05

内容	1	2	3	4	5	6	7	8	9	10
R/Ω	<u>0. 2</u>	<u>10. 4</u>	<u>20. 7</u>	<u>30. 9</u>	<u>41. 0</u>	<u>51. 1</u>	<u>61. 4</u>	<u>71. 6</u>	<u>81. 6</u>	91.4
I/mA	<u>45. 0</u>	<u>45. 0</u>	<u>45. 0</u>	<u>45. 0</u>	<u>42. 0</u>	<u>35. 4</u>	<u>30. 3</u>	<u>26. 4</u>	<u>23. 4</u>	<u>21. 0</u>
U/V	<u>0. 01</u>	0.47	<u>0. 93</u>	<u>1. 39</u>	<u>1.72</u>	<u>1.81</u>	<u>1.86</u>	<u>1.89</u>	<u>1. 91</u>	1. 92
P/mW	<u>0. 45</u>	<u>21. 15</u>	41.85	<u>62. 55</u>	<u>72. 24</u>	64.07	<u>56. 36</u>	49.90	44.69	40. 32
										l I
内容	11	12	13	14	15	16	17	18	19	20
内容 R/Ω	11 102. 1	12 112. 1	13 132. 4	14 153. 5	15 172. 2	16 193. 2	17 215. 1	18 235. 3	19 254. 4	20 315. 6
R/Ω	<u>102. 1</u>	<u>112. 1</u>	<u>132. 4</u>	<u>153. 5</u>	<u>172. 2</u>	<u>193. 2</u>	<u>215. 1</u>	<u>235. 3</u>	<u>254. 4</u>	<u>315. 6</u>

实验过程截图贴至此处(包括连线框图,实验时间,电流表电压表对应上表任意测量值)

(1.)实验连线

(2.) 45mA 时的某一测量值

(3.)实验结束时间

(2)、短路电流 Is= 35mA; 开路电压 Uo(V)= 2.03

内容	1	2	3	4	5	6	7	8	9	10
R/Ω	0.3	<u>10. 3</u>	<u>20. 3</u>	<u>30. 4</u>	<u>40. 4</u>	<u>50. 5</u>	<u>60. 7</u>	<u>70. 6</u>	<u>81. 0</u>	90. 7
I/mA	34.9	<u>34. 9</u>	<u>34. 9</u>	<u>34. 9</u>	<u>34. 9</u>	<u>33. 1</u>	<u>29. 0</u>	<u>25. 5</u>	<u>22. 6</u>	<u>20. 4</u>
U/V	<u>0. 01</u>	<u>0. 36</u>	<u>0.71</u>	<u>1. 06</u>	<u>1.41</u>	<u>1. 67</u>	<u>1. 76</u>	<u>1.80</u>	<u>1.83</u>	<u>1.85</u>
P/mW	<u>0.35</u>	<u>12. 56</u>	<u>24. 78</u>	<u>36. 99</u>	49. 21	<u>55. 28</u>	<u>51. 04</u>	45. 90	41. 36	<u>37. 74</u>
内容	11	12	13	14	15	16	17	18	19	20
R/Ω	<u>101. 1</u>	<u>111. 2</u>	<u>131. 0</u>	<u>151. 2</u>	<u>172. 3</u>	<u>192. 1</u>	<u>210. 9</u>	<u>232. 1</u>	<u>250. 0</u>	<u>272. 2</u>
I/mA	<u>18. 5</u>	<u>16. 9</u>	<u>14. 5</u>	<u>12. 7</u>	<u>11. 2</u>	<u>10. 1</u>	9.2	8.4	<u>7.8</u>	7.2
U/V	1.87	1.88	<u>1. 90</u>	<u>1. 92</u>	<u>1. 93</u>	<u>1. 94</u>	<u>1. 94</u>	<u>1. 95</u>	<u>1. 95</u>	<u>1. 96</u>
P/mW	34.60	31.77	<u>27. 55</u>	<u>24. 38</u>	21.62	<u>19. 59</u>	<u>17. 85</u>	<u>16. 38</u>	<u>15. 21</u>	<u>14. 11</u>

(3)、短路电流 Is= 25mA; 开路电压 Uo(V)= 1.97

内容	1	2	3	4	5	6	7	8	9	10
----	---	---	---	---	---	---	---	---	---	----

R/Ω	<u>0. 4</u>	<u>10. 4</u>	<u>20. 3</u>	<u>30. 7</u>	<u>40. 6</u>	<u>50. 6</u>	<u>60. 7</u>	<u>70.8</u>	80.8	90. 7
I/mA	<u>25. 1</u>	<u>25. 0</u>	<u>23. 6</u>	<u>21. 4</u>	<u>19. 4</u>					
U/V	<u>0.01</u>	<u>0. 26</u>	<u>0. 51</u>	<u>0. 77</u>	<u>1. 02</u>	<u>1. 27</u>	<u>1. 52</u>	<u>1. 67</u>	<u>1. 73</u>	<u>1. 76</u>
P/mW	0. 25	<u>6. 53</u>	<u>12. 80</u>	<u>19. 33</u>	<u>25. 60</u>	31.88	38.00	<u>39. 41</u>	<u>37. 02</u>	34. 14
内容	11	12	13	14	15	16	17	18	19	20
R/Ω	<u>101. 1</u>	<u>111. 0</u>	<u>130. 7</u>	<u>150. 4</u>	<u>171. 6</u>	<u>191. 8</u>	<u>212. 4</u>	<u>231. 7</u>	<u>253. 3</u>	<u>272. 9</u>
I/mA	<u>17. 7</u>	<u>16. 3</u>	<u>14. 0</u>	<u>12. 3</u>	<u>10. 9</u>	9.8	<u>8. 9</u>	8. 2	<u>7. 5</u>	<u>7. 0</u>
U/V	<u>1. 79</u>	1.81	1.83	<u>1.85</u>	<u>1.87</u>	1.88	<u>1.89</u>	<u>1. 90</u>	<u>1. 90</u>	1.91
P/mW	31.68	<u>29. 50</u>	<u>25. 62</u>	<u>22. 76</u>	<u>20. 38</u>	18. 42	<u>16.82</u>	<u>15. 58</u>	14. 25	<u>13. 37</u>

(4)、短路电流 Is= 15mA; 开路电压 Uo(V)= 1.90 (本组测量及对应数据处理为选作)

内容	1	2	3	4	5	6	7	8	9	10
R/Ω	<u>10. 6</u>	<u>20. 5</u>	<u>30. 5</u>	<u>40. 4</u>	<u>50. 3</u>	<u>60. 3</u>	<u>70. 9</u>	80.8	90. 7	<u>100. 7</u>
I/mA	<u>15. 1</u>	<u>15. 0</u>								
U/V	<u>0. 16</u>	<u>0.34</u>	0.46	<u>0.61</u>	<u>0. 76</u>	<u>0. 91</u>	<u>1. 07</u>	<u>1. 22</u>	<u>1. 37</u>	1. 51
P/mW	<u>2. 42</u>	4.68	<u>6. 95</u>	9. 21	11.48	<u>13. 74</u>	<u>16. 16</u>	<u>18. 42</u>	<u>20. 69</u>	<u>22. 65</u>
内容	11	12	13	14	15	16	17	18	19	20
R/Ω	<u>111. 0</u>	<u>121. 2</u>	<u>131. 0</u>	<u>141. 3</u>	<u>161. 1</u>	<u>182. 5</u>	<u>202. 3</u>	<u>221. 0</u>	<u>240. 0</u>	<u>262. 3</u>
I/mA	<u>14. 5</u>	<u>13. 7</u>	<u>12. 9</u>	<u>12. 1</u>	<u>10.8</u>	<u>9. 7</u>	8.8	<u>8. 1</u>	<u>7. 5</u>	<u>6. 9</u>
U/V	<u>1. 61</u>	<u>1. 66</u>	<u>1. 68</u>	<u>1.71</u>	<u>1. 74</u>	<u>1. 77</u>	<u>1. 78</u>	<u>1. 79</u>	<u>1.80</u>	1.81
P/mW	23. 35	22.74	21.80	20.69	18. 79	<u>17. 17</u>	<u>15. 66</u>	14. 50	13. 50	12. 49

二、计算光电池在不同光照条件下内阻值 Ri,并寻找对应最大输出功率负载电阻 Rmax。

测量值/组数	(1)	(2)	(3)	(4)(选作)
Ri/Ω	<u>45. 6</u>	<u>58. 2</u>	<u>78. 5</u>	<u>125. 8</u>
Rmax/Ω	41.0	<u>50. 5</u>	<u>70. 8</u>	<u>111. 0</u>
Rmax/Ri	0.8990	0.8674	0. 9016	0.8824

三、计算最大功率 Pmax 和开路电压与短路电流乘积比较

测量值/组数	(1)	(2)	(3)	(4)(选作)
Pmax/mW	<u>72. 24</u>	<u>55. 28</u>	<u>39. 41</u>	<u>23. 35</u>
(Uo*Is)/ mW	<u>82. 25</u>	<u>70.85</u>	<u>49. 45</u>	28.69
F=Pmax/(Uo*Is)	<u>0. 7831</u>	0.7802	<u>0. 7971</u>	0.8137

四、在同一坐标系下,绘制不同光照条件下的太阳能电池输出特性曲线(P输出-R负载曲线)。 将图贴至下方。通过分析比较以及前面的计算结果,得出实验结论。

结论:

随着阻值增大,电流减小(减小的越来越快),电压增大(增大的越来越慢),功率逐渐增大,达到最高点时开始减小;随着电流的减小,最大功率逐渐降低。

回答问题:

试举例: 生活中的太阳能电池

<u>临时交通灯警示灯、铁路信号灯、农村载波电话、太阳能水泵、光伏背包、路灯、节能灯、汽车</u>空调等

教师指导意见: