Decision Analysis of Laptop Selection with the Analytical Hierarchy Process (AHP) Method

Pontiselly^{1*}, Dwima Ardhia P.², and Benedictus Kenny T.³

¹²³Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

*Corresponding author: teresaselly.2810@email.com

ABSTRACT — Technology has become a basic need, such as a laptop. Some laptop manufacturers compete to create the best specification of laptop that suits their target market. Many brands and types of laptops sold on the market also make consumers feel confused. The purpose of this study is to determine the best alternatives and laptop specifications that ITS FSAD students preferred when using the AHP method. The data used in this research is primary data from questionnaires distributed to 31 students of the Faculty of Science and Data Analytics (FSAD) of the Sepuluh Nopember Institute of Technology (ITS) on October 10–17, 2022. All criteria levels have a Consistency Ratio (CR) value of less than 0.1. That means the preferences of the respondents are constant. The alternative rankings that are preferred by respondents are ASUS, LENOVO, HP, and ACER. In criteria level 2, respondents prefer RAM greater than 8GB, a processor greater than Intel i5, SSD type internal storage, and a price less than a million rupiah. While in criteria level 1, price is the most preferred by respondents. Based on these four alternatives, the price is less than ten million rupiah and SSD type internal storage is more preferred by respondents.

Keywords - Analytical Hierarchy Process (AHP), Consistency Ratio (CR), Laptop, Matrix, Weights

I. INTRODUCTION

A. Backgrounds

Technology is one thing that can't be separated from life in the current modern era. There are lots of activities that require a laptop for technological support. Laptops are computer-like items that are more flexible because they can be used anywhere. The laptop's components are the same as those on computers, but they are generally lighter and smaller in size, which means they can be put in a bag easily. Nowadays, laptops can be considered one of the basic needs of society, both to support the course of their education and their respective jobs.

The development of advanced technology also affects the development of laptops in terms of types, specifications, functions, and prices. This makes laptop manufacturers compete to create the best products that suit their target market because the laptops needed for each level of education and different types of work are also not the same. Some examples of specifications that are considered by potential consumers in general are the size of the laptop, Random Access Memory (RAM), processor, battery life, internal memory, and laptop design. On the other hand, the many brands and types of laptops sold on the market also make potential consumers feel confused, because choosing the right laptop according to consumer needs is not easy, especially when it comes to adjusting to their budget. There are still many potential consumers who often buy laptops with specifications that do not match their needs. For example, there is a student who is going to buy a laptop with high specifications for graphic design even though he is an accounting student who is not familiar with design matters, unless he has a passion for design in addition to his college major.

Based on some of the problems above, the authors are interested in conducting research and analysis related to the decision-making system for choosing a laptop for students of the Faculty of Science and Data Analytics (FSAD) at Institut Teknologi Sepuluh Nopember (ITS) Surabaya. The title that has been determined by the author of this study is "Decision Analysis of Laptop Selection with the Analytical Hierarchy Process (AHP) Method." According to Ivan J. Aziz (2010:65), the AHP method itself does have advantages over several other methods because it can solve complex and unstructured problems by organizing the groups into a hierarchy. Therefore, the author conducted this analysis to find out what kinds of laptop specifications and alternatives are in demand by ITS Surabaya FSAD students.

B. Problems

The problems in this study are as follows.

- 1) What are the alternative laptop specifications that ITS FSAD students prefer?
- 2) What is the best laptop alternative with these specifications for ITS FSAD students to buy?

C. Goals

The goals of this study are as follows.

- 1) To know the alternative laptop specifications that ITS FSAD students prefer.
- 2) To determine the best laptop specifications alternative for ITS FSAD students to purchase.

D. Benefits

The benefits of this study are as follows.

1) Can provide the right alternative solution in the process of selecting a laptop that suits the needs of potential

1

Received: October 28th 2022

Revised: October 28th 2022

Accepted: October 28th 2022

consumers.

2) Can expand understanding and knowledge of decision-making systems with the Analytical Hierarchy Process (AHP) method.

II. LITERATURE REVIEW

A. Decision Making

Decision-making is a method for choosing one from several available alternatives. Decision-making is not easy because there are many considerations for every possibility that exists, so literature study and further analysis are needed before making the best decision. The purpose of decision-making is to solve an existing problem by finding the best solution. Several processes must be followed in decision-making. There is the problem-finding stage, the problem-solving stage (state of nature), and the decision-making stage (payoff). Over time, the decision-making stage is continuously improved to promote a more systematic thinking concept. The following is a tabulation of opinion stages in decision-making according to Herber A. Simon, Richard I. Levin, and Sir Francis Bacon [1].

Herber A. Simon Opinions	Richard I. Levin Opinions	Francis Bacon Opinions	
Observing the environment and looking for conditions that need to be improved	Observating stage	Formulating and defining the problem	
Finding, developing and analyzing possible alternatives	Analyzing and problem recogniting stage	Collecting relevant information	
Selecting a specific alternative from all available alternatives	Model developing stage	Looking for alternative actions	
Evaluating the selected options	Choosing data stage	Alternative analyzing	
	Formulating and testing stage	Choosing the best alternative	
	Problem solving	Implementing the decisions and evaluating the results	

B. Descriptive Statistics

Descriptive statistics is a type of statistical knowledge that studies how to collect, compile, summarize, and present data [2]. Descriptive statistics will describe the data in a form that is easier to read and understand. The function of this method is limited to providing a description or general description of the object's characteristics. The results of these descriptive statistics can be summarized in the form of tables and/or visualized in the form of appropriate diagrams or graphs. In this study, pie charts and bar charts were used to visualize the data.

A pie chart is a diagram presented in the form of a circle that is divided into several areas. Usually, the presentation of a pie chart is in the form of a proportion or percentage of the data studied. A circle will show all the parts that add up to 100%

Figure 2.1 Example of Pie Chart

A bar chart is a diagram that shows data using vertical or horizontal bars that have a height or length that indicates the frequency of the data. Bar charts are used to present data for comparison purposes between one object and another. This chart shows the information through vertical or horizontal bars with separate bars and the same width of bars. Here is an example of a bar chart, both vertical and horizontal.

Figure 2.2 Example of Vertical Bar Chart

Figure 2.3 Example of Horizontal Bar Chart

C. Analytical Hierarchy Process (AHP)

The Analytical Hierarchy Process, or AHP, is a method of making decisions in a more complex system. The AHP method can simplify complex decision-making into simpler ones by changing the system into a simpler hierarchical system so that calculation analysis, both qualitatively and quantitatively, can be carried out systematically by considering several expected criteria [3]. The AHP method uses pairwise comparisons between two alternatives so that it can be seen which alternative is more likely to be chosen. This comparison is made using a numerical preference scale to describe the level of tendency of the chosen alternative compared to other alternatives [4]. The steps in using AHP for decision-making are as follows [5].

1. Identify the problem

2. Develop a hierarchical structure

In this step, each selection will be organized using a hierarchical structure. Each selection has sub-choices that can also be further considered. The following is an example of the hierarchical structure used in the AHP method.

Figure 2.4 Hierarchy Structure

3. Create a pairwise comparison matrix

The structure of a pairwise comparison matrix with criteria is shown below.

Table 2.2 F	Pairwise	compar	rison ma	ıtrix stru	ıcture
Criterion	A_1	A_2	A_3		A_n
A_1	a_{11}	a_{12}	a_{13}		a_{1n}
A_2	a_{21}	a_{22}	a_{23}		a_{2n}
A_3	a_{31}	a_{32}	a_{33}		a_{3n}
A_n	a_{n1}	a_{n2}	a_{n3}		a_{nn}

where,

 A_i = i-th criterion

 a_{ij} = The tendency toward choice obtained from the priority scale

Table 2.3 Priority Scale					
Priority	D				
Scale	Description				
1	The two criteria are equally important				
3	One criterion is a little more important				
5	One of the more important criteria				
7	One criterion is very important				
9	One of the absolute criteria is more				
9	important				
2168	When in doubt between two adjacent				
2,4,6,8	values				

4. Do pairwise comparisons

The next step is to calculate the consistency measure using weights. The weight, in this case, is the average of each row. Table 2.3 is an example of the consistency measure calculation steps.

	Т	able 2.4	Consis	stency n	neasure	calculation	
Factor	A_1	A_2	A_2		A_n	Weight	Consistency
1 actor	n_1	112	113	•••	n	vveigin	measure

A_1 A_2	$a_{11} \\ a_{21}$		$a_{13} \\ a_{23}$	a_{1n} a_{2n}	W_1 W_2	CM_1 CM_2
A_3	a_{31}		a_{23} a_{33}	a_{3n}	W_3	CM_3
A_n	a_{n1}	a_{n2}	a_{n3}	 a_{nn}	W_4	CM_n

where,

$$W_i = \frac{1}{n} \sum_{j=1}^n a_{ij} \tag{1}$$

$$W_{i} = \frac{1}{n} \sum_{j=1}^{n} a_{ij}$$

$$CM_{i} = \frac{1}{W_{i}} \sum_{j=1}^{n} a_{ij} W_{j}$$
(1)

Calculate the eigenvector values for each matrix

Calculate the eigenvector values in the comparison matrix using the following formula.

$$\lambda = \frac{1}{n} \sum_{i=1}^{n} CM_i \tag{3}$$

Calculate the consistency ratio

The consistency index value is needed for calculating the consistency ratio in the comparison matrix. The consistency index equation is as follows:

$$CI = \frac{\lambda - n}{n - 1} \tag{4}$$

Then, the consistency ratio equation is as follows.

$$CR = \frac{CI}{RI} \tag{5}$$

where.

 $RI = Random \ index$ that depends on the values of n.

If CR < 0.1, the analysis process is acceptable and can be continued at the decision-making stage. However, the analysis process must be repeated by reviewing the existing data, The review can be done by asking the respondent whether it is true that the data was obtained based on the respondent's choice or not. If it turns out that the data does not match the respondent's choice, the data can be changed according to the existing reality and then a pairwise comparison analysis can be performed again with the updated data.

D. Laptop

An alphanumeric keyboard and screen make up a compact, portable personal computer (PC) known as a laptop, laptop computer, or notebook computer. The screen is normally installed on the inside of the upper lid of laptops, while the keyboard is often mounted on the inside of the lower lid. Regarding the usage of laptops in higher education, numerous studies have been conducted on a variety of topics, including general use, communication, attitudes of students toward learning, student achievement, and distractions. According to Demb, Erickson, and Hawkins-Wilding (2004), 16% of all laptop usage involved typing papers and taking notes. According to Arend's (2004) research, most laptop use was for extracurricular activities, including completing group projects, utilizing software to write papers, and conducting internet searches. According to McVay, Snyder, and Graetz (2005), students reported utilizing their laptops on average for five hours per day, with 36% of that time going toward educational pursuits [6]. There are several alternative laptop brands for students, namely as follows:

- 1. **ASUS**
- 2. **ACER**
- HP 3
- 4. **LENOVO**

III. METHODOLOGY

A. Data Sources

The data used in this study is primary data. Primary data was obtained by distributing questionnaires to 31 students of the Faculty of Science and Data Analytics (FSAD) of the Sepuluh Nopember Institute of Technology (ITS) on October 10-17, 2022, using the Google Forms platform. The following is a breakdown of the respondents in each department of the Faculty of Science and Analytics.

Table 3.1 Number of respondens from each departments

Department	Total Respondent
Physics	5
Chemistry	6
Biology	4
Statistics	6
Mathematics	6
Actuarial Science	4

B. Research Variables

The research variables used are level 1, 2, and 3 criteria listed in the following table.

	Table 3.2 Research Variables	
iteria Level 1	Criteria Level 2	Criteria Level 3
RAM	<= 8 CB	ASUS

		ACER
		HP
		LENOVO
•		ASUS
	0 GP	ACER
	> 8 GB	HP
		LENOVO
		ASUS
	E ' 1 I .110	ACER
	Equivalent to Intel i3	HP
		LENOVO
		ASUS
D	Eminate Latel :	ACER
Processor	Equivalent to Intel i5	HP
		LENOVO
		ASUS
	Better than Intel i5	ACER
	better than intel 15	HP
		LENOVO
		ASUS
	HDD	ACER
	HDD	HP
Internal Characa		LENOVO
Internal Storage		ASUS
	SSD	ACER
	33D	HP
		LENOVO
		ASUS
	<= 10 million	ACER
	<= 10 million	HP
Price		LENOVO
TITC		ASUS
	> 10 million	ACER
	> 10 mmon	HP
		LENOVO

C. Hierarchy of Criteria Level 1, 2, and 3 (Alternatives)

Figure 3.1 Hierarchy Structure of Criteria Level 1, 2, and 3 (Alternatives)

D. Step of Analysis

The analysis steps used in this research are as follows.

- 1. Defining the problem or topic to be analyzed
- 2. Defining alternative or initial decision criteria
- 3. Defining uncertain events in each alternative initial decision
- 4. Defining alternative decision criteria
- 5. Determining the limits of the research and the sample size
- 6. Determining a descriptive statistical analysis from the profiles of the respondents who supported the research
- 7. Determining weight calculations and analysis using the AHP method

- a. Creating a pairwise comparison matrix from survey results for criteria 1, 2, and 3
- b. Normalizing the pairwise comparison matrix for criteria 1, 2, and 3
- c. Calculating consistency measure (CM)
- d. Calculating consistency index (CI)
- e. Determine the random index (RI) to be used
- f. Calculating consistency ratio (CR)
- g. Summarizing the results of the partial weight calculation
- h. Calculating weights for level 3 criteria
- i. Calculating weights for level 2 criteria
- j. Calculating weights for level 1 criteria
- k. Analyzing level 3 criteria
- 1. Analyzing the ranking of the criteria at levels 2 and 3
- m. Analyzing respondents' perceptions of each alternative
- 8. Make conclusions and suggestions

IV. RESULTS AND DISCUSSIONS

A. Descriptive Statistics

To find out the respondents' characteristics from this study, pie charts and bar charts can be used. The pie chart can be used to see the proportion of respondents' gender.

Figure 4.1 Pie Chart of Respondents' Gender

Figure 4.1 shows that the proportion of respondents by gender is almost the same. It's only different by 1 person. Of a total of 31 people, 15 respondents were male and 16 were female. Then, here is a bar chart to see a comparison between the respondents' departments.

Figure 4.2 Bar Chart of Respondents' Department

Figure 4.2 shows that most of the respondents' departments were the Departments of Mathematics, Statistics, and Chemistry, which each had six people. This calculation is obtained based on the number of each student quota in the department and compared to the total student quota at the ITS Faculty of Science and Data Analytics (FSAD) and then multiplied by the initial target of respondents, which is 30.

B. Analysis Hierarchy Process (AHP)

The AHP method is used to make decisions on what kind of laptop is most suitable for students in the ITS Faculty of Science and Data Analytics. Based on the answers of 31 respondents from the survey, the results of the pairwise comparison matrix for criteria level 1 are as follows.

Table 4.1 Pairwise Comparison Matrix Criteria Level 1						
	RAM	PROCESSOR	INTERNAL STORAGE	PRICE		
RAM	1.0000	0.4423	3.0232	0.3765		
PROCESSOR	2.2611	1.0000	4.8705	0.6040		
INTERNAL STORAGE	0.3308	0.2053	1.0000	0.3876		
PRICE	2.6564	1.6555	2.5797	1.0000		

In the next step, the comparison matrix above will be normalized. After normalization, calculations were performed to

obtain the average value for each row, consistency measure (CM), consistency index (CI), and consistency ratio (CR). Here are the results of the calculation.

Table 4.2 Normalized Pairwise Comparison Matrix Criteria Level 1

	RAM	PROCESSOR	INTERNAL STORAGE	PRICE	WEIGHT	CM
RAM	0.1600	0.1339	0.2635	0.1590	0.1791	4.2009
PROCESSOR	0.3619	0.3027	0.4245	0.2551	0.3361	4.2381
INTERNAL STORAGE	0.0529	0.0622	0.0872	0.1637	0.0915	4.0685
PRICE	0.4251	0.5012	0.2248	0.4223	0.3934	4.2237

Table 4.3 Value of	Table 4.3 Value of CI, RI, and CR for Criteria Level 1				
CI	RI	CR			
0.0609	0.9	0.0677			

Table 4.3 shows that the value of the consistency ratio is 0.0677, which is less than 0.1. So, it can be concluded that the preferences of the respondents are consistent. The next step is to calculate the pairwise comparison matrix, determine the normalization pairwise comparison matrix, and calculate the value of the consistency measure (CM), consistency index (CI), and consistency ratio (CR) for criteria level 2.

Table 4.4 Pairw	Table 4.4 Pairwise Comparison Matrix of RAM Subcriteria					
	≤8 GB	>8 GB				
≤8 GB	1.0000	0.8136				
>8 GB	1.2291	1.0000				

Table 4.5 Normalized Pairwise Comparison Matrix of RAM Subcriteria

	≤8 GB	>8 GB	WEIGHT	CM
≤8 GB	0.4486	0.4486	0.4486	2.0000
>8 GB	0.5514	0.5514	0.5514	2.0000

Table 4.6 Value	Table 4.6 Value of CI, RI, and CR for RAM Subcriteria				
CI	RI	CR			
0.0000	0.0000	0.0000			

Based on Table 4.6, the value of RAM subcriteria CR is 0 because the value of RI with n = 2 is 0. That value is less than 0.1, so it can be concluded that the preferences of the respondents about laptop RAM are consistent.

Table 4.7 Pairwise Comparison Matrix of Processor Subcriteria					
	Equivalent to Intel i5	Better Than Intel i5			
Equivalent to Intel i3	1.0000	0.2227	0.2472		
Equivalent to Intel i5	4.4907	1.0000	0.4384		
Better Than Intel i5	4.0452	2.2810	1.0000		

 Table 4.8 Normalized Pairwise Comparison Matrix of Processor Subcriteria

	Equivalent to Intel i3	Equivalent to Intel i5	Better Than Intel i5	WEIGHT	СМ
Equivalent to Intel i3	0.1049	0.0636	0.1467	0.1050	3.0274
Equivalent to Intel i5	0.4709	0.2854	0.2601	0.3388	3.1117
Better Than Intel i5	0.4242	0.6510	0.5933	0.5562	3.1535

Table 4.9 Value of 0	CI, RI, and CR for P	rocessor Subcriteria
CI	RI	CR

0.0488 0.5800 0.0841

Based on Table 4.9, the value of processor subcriteria CR is 0.0841, which means that the value is less than 0.1. So, it can be concluded that the preferences of the respondents about laptop processor are consistent.

Table 4.10 Pairwise Comparison Matrix of Internal Storage Subcriteria

	HDD	SSD
HDD	1.0000	0.2297
SSD	4.3542	1.0000

Table 4.11 Normalized Pairwise Comparison Matrix of Internal Storage Subcriteria

	HDD	SSD	WEIGHT	CM
HDD	0.1868	0.1868	0.1868	2.0000
SSD	0.8132	0.8132	0.8132	2.0000

Table 4.12 Value of CI, RI, and CR for Internal Storage Subcriteria

 CI	RI	CR
 0.0000	0.0000	0.0000

Based on table 4.12, the value of internal storage subcriteria CR is 0 because the value of RI with n = 2 is 0. That value is less than 0.1, so it can be concluded that the preferences of the respondents about laptop internal storage are consistent.

Table 4.13 Pairwise Comparison Matrix of Price Subcriteria ≤10 million rupiah >10 million rupiah ≤10 million rupiah 1.0000 1.3553 >10 million rupiah 0.7378 1.0000

Table 4.14 Normalized Pairwise Comparison Matrix of Price Subcriteria

	≤10 million rupiah	>10 million rupiah	WEIGHT	СМ
≤10 million rupiah	0.5754	0.5754	0.5754	2.0000
>10 million rupiah	0.4246	0.4246	0.4246	2.0000

1 able 4.15	value of CI,	RI, and	CR for Price	Subcriteria	
CI		RI		CR	

	CI	RI	CR
·	0.0000	0.0000	0.0000

Based on table 4.15, the value of price subcriteria CR is 0 because the value of RI with n = 2 is 0. That value is less than 0.1, so it can be concluded that the preferences of the respondents about laptop prices are consistent. The next step is to calculate the pairwise comparison matrix, determine the normalization pairwise comparison matrix, and calculate the value of the consistency measure (CM), consistency index (CI), and consistency ratio (CR) for criteria level 3. Here is the comparison matrix of alternative subcriteria at criteria level 3.

Table 4.16 Pairwise Comparison Matrix of RAM Subcriteria 1 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	1.0000	1.8545	1.2593	0.8068
ACER	0.5392	1.0000	0.7429	0.5665
HP	0.7941	1.3461	1.0000	0.6365
LENOVO	1.2395	1.7653	1.5711	1.0000

Table 4.17 Pairwise Comparison Matrix of RAM Subcriteria 2 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	1.0000	2.1554	1.1287	0.8996

ACER	0.4639	1.0000	0.6754	0.5692
HP	0.8860	1.4806	1.0000	0.6825
LENOVO	1.1116	1.7570	1.4652	1.0000

Table 4.18 Pairwise Comparison Matrix of Processor Subcriteria 1 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	1.0000	1.8323	0.9883	0.9682
ACER	0.5458	1.0000	0.6259	0.5048
HP	1.0118	1.5978	1.0000	0.6922
LENOVO	1.0328	1.9811	1.4446	1.0000

Table 4.19 Pairwise Comparison Matrix of Processor Subcriteria 2 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	1.0000	2.3859	1.2631	0.9732
ACER	0.4191	1.0000	0.5559	0.4439
HP	0.7917	1.7988	1.0000	0.6762
LENOVO	1.0276	2.2528	1.4789	1.0000

Table 4.20 Pairwise Comparison Matrix of Processor Subcriteria 3 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	1.0000	2.2691	1.4852	1.0768
ACER	0.4407	1.0000	0.7165	0.4539
HP	0.6733	1.3956	1.0000	0.7969
LENOVO	0.9286	2.2030	1.2548	1.0000

Table 4.21 Pairwise Comparison Matrix of Internal Storage Subcriteria 1 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	1.0000	1.9700	1.4350	0.9680
ACER	0.5076	1.0000	0.8723	0.5599
HP	0.6968	1.1464	1.0000	0.6138
LENOVO	1.0331	1.7862	1.6293	1.0000

Table 4.22 Pairwise Comparison Matrix of Internal Storage Subcriteria 2 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	1.0000	2.5392	1.7890	1.3537
ACER	0.3938	1.0000	0.6716	0.4746
HP	0.5590	1.4889	1.0000	0.6269
LENOVO	0.7387	2.1070	1.5951	1.0000

Table 4.23 Pairwise Comparison Matrix of Price Subcriteria 1 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	1.0000	2.6477	1.3959	1.1608
ACER	0.3777	1.0000	0.9330	0.6192
HP	0.7164	1.0718	1.0000	0.6066
LENOVO	0.8615	1.6151	1.6486	1.0000

Table 4.24 Pairwise Comparison Matrix of Price Subcriteria 2 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	1.0000	1.9039	1.5420	1.1436
ACER	0.5252	1.0000	0.6221	0.4684
HP	0.6485	1.6076	1.0000	0.6895
LENOVO	0.8745	2.1347	1.4503	1.0000

In the next step, the comparison matrix above will be normalized. After normalization, calculations were performed to obtain the average value for each row, consistency measure (CM), consistency index (CI), and consistency ratio (CR). Here are the summary results of the calculation.

Criteria Level 1	Criteria Level 2	Criteria Level 3	Weight	CM	CI	RI	CR
		ASUS	0.2835	4.0071			
	40 CP	ACER	0.1673	4.0048	0.0000	0.0000	0.000
	≤8 GB	HP	0.2195	4.0076	0.0023	0.9000	0.0026
D.116		LENOVO	0.3297	4.0082			
RAM		ASUS	0.2940	4.0154			
	- 0 CP	ACER	0.1573	4.0106	0.0040	0.0000	0.005
	>8 GB	HP	0.2346	4.0170	0.0048	0.9000	0.005
		LENOVO	0.3141	4.0144			
		ASUS	0.2940	4.0154			
	E . 1 1.1.2	ACER	0.1573	4.0106	0.0025	0.9000	0.0039
	Equivalent to Intel i3	HP	0.2346	4.0170	0.0035		
		LENOVO	0.3141	4.0144			
Processor		ASUS	0.3095	4.0029			
	Equivalent to Intel i5	ACER	0.1342	4.0028	0.0044	0.9000	0.0013
		HP	0.2344	4.0037	0.0011		
		LENOVO	0.3219	4.0041			
		ASUS	0.3290	4.0045			
	B., d. 1.15	ACER	0.1469	4.0033	0.004=	0.0000	0.0017
	Better than Intel i5	HP	0.2221	4.0042	0.0015	0.9000	
		LENOVO	0.3020	4.0059			
		ASUS	0.3104	4.0044			
	1100	ACER	0.1703	4.0032	0.004.0	0.0000	0.0014
	HDD	HP	0.2018	4.0040	0.0013	0.9000	
Internal		LENOVO	0.3175	4.0035			
Storage		ASUS	0.3683	4.0053			
	007	ACER	0.1392	4.0035	0.001:	0.0000	0.003
	SSD	HP	0.1989	4.0024	0.0014	0.9000	0.0015
		LENOVO	0.2937	4.0052			
Price	≤10 million rupiah	ASUS	0.3449	4 0469	0.0116	0.9000	0.012

	ACER	0.1640 4.0275	j
	HP	0.1979 4.0353	
	LENOVO	0.2932 4.0290)
	ASUS	0.3238 4.0112	!
>10 million rupiah	ACER	0.1499 4.0055	0.0030 0.9000 0.0034
	HP	0.2200 4.0089	
	LENOVO	0.3063 4.0106	j

Table 4.25 provides information about weight, CM, CI, RI, and CR of criteria level 3. First, the CR value for alternative RAM subcriteria for \leq 8 GB and >8 GB subcriteria is 0.026 and 0.0053, which means that both values are less than 0.1. It can be concluded that the preferences of the respondents about alternative RAM subcriteria are consistent. Second, the CR values of alternative processor subcriteria equivalent to Intel i3, equivalent to Intel i5, and better than Intel i5 are 0.0039, 0.0013, and 0.0017, which means that all values are less than 0.1. It can be concluded that the preferences of the respondents about rhe alternative processor subcriteria are consistent. Third, the CR values of the alternative internal storage subcriteria HDD and SSD are 0.0014 and 0.0015, respectively, which means that both values are less than 0.1. It can be concluded that the preferences of the respondents about alternative internal storage subcriteria are consistent. Finally, the CR value of alternative price subcriteria for ≤10 million and >10 million sub-criteria is 0.0128 and 0.0034, which means that both values are less than 0.1. It can be concluded that the preferences of the respondents about alternative price subcriteria are consistent.

The next step is to calculate the partial weights for the criteria at level 1, level 2, and alternatives. The partial widths are obtained from the average row normalized matrix. The partial weight is to be used to calculate the level 3 weight value with the following calculation results:

Table 4.26 Partial Weight and Weight Level 3

Criteria Level 1	Partial Weight 1	Criteria Level 2	Partial Weight and W Partial Weight 2	Alternatives	Partial Weight 3	Weight 3
RAM				ASUS	0.2835	0.0228
		DAM <0.CD	0.4404	ACER	0.1673	0.0134
		RAM ≤8 GB	0.4486	HP	0.2195	0.0176
	0.1791			LENOVO	0.3297	0.0265
	0.1791			ASUS	0.2940	0.0290
		RAM >8 GB	0 FE14	ACER	0.1573	0.0155
		KAIVI >8 GD	0.5514	HP	0.2346	0.0232
				LENOVO	0.3141	0.0310
	0.3361	Equivalent to Intel i3	0.1050	ASUS	0.2784	0.0098
				ACER	0.1554	0.0055
				HP	0.2490	0.0088
				LENOVO	0.3171	0.0112
		Equivalent to Intel i5	0.3388	ASUS	0.3095	0.0352
				ACER	0.1342	0.0153
PROCESSOR	0.3361		0.3388	HP	0.2344	0.0267
				LENOVO	0.3219	0.0366
				ASUS	0.3290	0.0615
		Better than	0.5562	ACER	0.1469	0.0275
		Intel i5	0.3362	HP	0.2221	0.0415
				LENOVO	0.3020	0.0564
	0.0915	HDD	0.1868	ASUS	0.3104	0.0053

				ACER	0.1703	0.0029
				HP	0.2018	0.0034
INTERNAL STORAGE				LENOVO	0.3175	0.0054
				ASUS	0.3683	0.0274
		CCD	0.0122	ACER	0.1392	0.0104
		SSD	0.8132	HP	0.0148	
				LENOVO	0.2937	0.0218
		≤10 million rupiah	0.5754	ASUS	0.3449	0.0781
				ACER	0.1640	0.0371
			0.5754	HP	0.1979	0.0448
PRICES	0.3934			LENOVO	0.2932	0.0664
FRICES	0.3934			ASUS	0.3238	0.0541
		>10 million	0.4246	ACER	0.1499	0.0250
		rupiah	0.4240	HP	0.2200	0.0368
				LENOVO	0.3063	0.0512

Criteria Level 1	Weight 1	Criteria Level 2	Weight 2
RAM	0.1791	≤ 8 GB	0.0803
KAM	0.1791	> 8 GB	0.0988
		Equivalent to Intel i3	0.0353
PROCESSOR	0.3361	Equivalent to Intel i5	0.1139
		Better than Intel i5	0.1869
INTERNAL STORAGE	0.0915	HDD	0.0171
INTERNAL STORAGE	0.0915	SSD	0.0744
DDICEC	0.2024	≤10 million rupiah	0.2264
PRICES	0.3934	>10 million rupiah	0.1670

Column Weight 1 in Table 4.27 shows that the laptop prices have the greatest weight. So, it can be concluded that price is the preferred criteria for respondents when choosing a laptop. The second place is the processor, RAM, and internal storage. While at criteria level 2 on the RAM subcriteria, respondents prioritize >8 GB RAM over \leq 8 GB RAM. Respondents prefer Intel i5 processors over other options. Within the internal storage subcriteria, respondents prioritize SSD over HDD. Finally, at price subcriteria, respondents prioritize \leq 10 million rupiah over >10 million rupiah.

Alternatives	Total of Weight	Rank
ASUS	0.3232	1
ACER	0.1526	4
HP	0.2176	3
LENOVO	0.3066	2

Based on Table 4.28, the best laptop alternative is the ASUS, with a weight of 0.3232. Then, followed by LENOVO with a weight of 0.3066, HP with a weight of 0.2176, and ACER with a weight of 0.1526. After that, there are some results of the criteria level 3 weight analysis for the four alternatives available in this research.

ASUS Alternatives					
Category	Subcategory	Weight 3			
RAM	≤ 8 GB	0.0228			
KAM	>8 GB	0.0290			
	Equivalent to Intel i3	0.0098			
PROCESSOR	Equivalent to Intel i5	0.0352			
	Better than Intel i5	0.0615			
INTERNAL STORAGE	HDD	0.0053			
INTERNAL STORAGE	SSD	0.0274			
PRICES	≤ 10 million	0.0781			
1 NICES	> 10 million	0.0541			

Figure 4.3 Respondent's Perceptions of ASUS Alternatives

Based on Figure 4.3, the respondents' preferences for ASUS laptops are those with the following specifications: RAM greater than 8GB, a processor greater than an Intel i5, SSD type internal storage, and a price less than ten million rupiah.

Table 4.30 Weight Level 3 Alternative ACER

ACER Alternatives					
Category	Subcategory	Weight 3			
RAM	<= 8 GB	0.0134			
	> 8 GB	0.0055			
	Equivalent to Intel i3	0.0153			
PROCESSOR	Equivalent to Intel i5	0.0275			
	Better than Intel i5	0.0029			
INTERNAL STORAGE	HDD	0.0104			
INTERNAL STORAGE	SSD	0.0371			
PRICES	<= 10 million	0.0371			
1 MCES	> 10 million	0.0250			

Figure 4.4 Respondent's Perceptions of ACER Alternatives

Based on Figure 4.3, the respondents' preferences for ACER laptops are those with the following specifications: RAM lower than or equal to 8GB, a processor equivalent to an Intel i5, SSD-type internal storage, and a price less than ten million rupiah.

Table 4.31 Weight Level 3 Alternative HP HP Alternatives					
Category	Subcategory	Weight 3			
RAM	<= 8 GB	0.0176			
IV/ VIVI	> 8 GB	0.0232			
	Equivalent to Intel i3	0.0088			
PROCESSOR	Equivalent to Intel i5	0.0267			
	Better than Intel i5	0.0415			
INTERNAL STORAGE	HDD	0.0034			
111214111201014102	SSD	0.0148			
PRICES	<= 10 million	0.0448			
	> 10 million	0.0368			

Figure 4.5 Respondent's Perceptions of HP Alternatives

Based on Figure 4.3, the respondents' preferences for HP laptops are those with the following specifications: RAM greater than 8GB, a processor greater than an Intel i5, SSD type internal storage, and a price less than ten million rupiah.

Table 4.32 Weight Level 3 Alternative LENOVO

LENOVO Alternatives					
Category	Subcategory	Weight 3			
RAM	<= 8 GB	0.0265			
IVAIVI	> 8 GB	0.0310			

	Equivalent to Intel i3	0.0112
PROCESSOR	Equivalent to Intel i5	0.0366
	Better than Intel i5	0.0564
INTERNAL STORAGE	HDD	0.0054
	SSD	0.0218
	<= 10 million	0.0664
PRICES	> 10 million	0.0512

Based on Figure 4.3, the respondents' preferences for HP laptops are those with the following specifications: RAM greater than 8GB, a processor greater than an Intel i5, SSD type internal storage, and a price less than ten million rupiah.

V. CONCLUSIONS AND SUGGESTIONS

Based on the analysis, it can be concluded that all criteria levels have a Consistency Ratio (CR) value less than 0.1. This value shows that the preferences of the respondents are constant. The alternative rankings that were preferred by respondents are ASUS, LENOVO, HP, and ACER. Respondent's preferences in criteria level 2 are: RAM greater than 8GB, a processor greater than Intel i5, SSD type internal storage, and a price less than ten million rupiah. While in criteria level 1, price is more preferred by respondents than RAM, processor, and internal storage. The analysis of respondents perceptions of each alternative shows that respondents prefer RAM greater than 8GB, a processor greater than Intel i5, SSD type internal storage, and a price less than ten million rupiah for ASUS, HP, and LENOVO. For an ACER laptop, respondents prefer RAM less than 8GB, processor that equivalent to Intel i5, SSD type internal storage, and a price less than ten million rupiah. Based on these four alternatives, it can be concluded that prices less than ten million rupiah and SSD-type internal storage is more preferred by respondents. Suggestions for the authors on the next research are to pay more attention to the respondent sampling process and be more careful in analyzing and conducting literature studies.

Overall, from the four alternatives, the price of less than ten million rupiah is preferred by the respondents.

REFERENCES

- [1] D. Sunarko, "Study Decision Tree/Pohon Keputusan Sebagai Sebuah Alat Bantu Pendukung Sistem Dalam Proses Pengambilan Keputusan Penjualan pada CV.Khan Setia Utama, Pondok Cabe-Depok," *Jurnal Ilmiah Teknologi dan Informasi ASIA*, 2002.
- [2] R. E. Walpole, R. H. Myers, S. L. Myers and K. Ye, Probability & Statistics for Engineers & Scientists, Ninth Edition., United States of America: Pearson Education Inc, 2012.
- [3] T. L. Saaty, "Decision Making with The Analytic Hierarchy Process," 2008.
- [4] B. Nabi and M. Tavakkoli, "Selection of Wastewater Treatment Process Based on The Analytical Hierarchy Process and Fuzzy Analytical Hierarchy Process Methods," 2011.
- [5] O. Erol, "An Energy Source Policy Assessment Using Analytical Hierarchy Process," 2012.
- [6] L. Sharon and R. Kay, "Assessing Laptop Use in Higher Education Classrooms: The Laptop Effectiveness Scale (LES)," Australasian Journal of Educational Technology, 2010.

APPENDIX

Appendix 1 Overview of The Questionnaire

Perbedaan op	otion untuk jenis	Internal	Storage					
	, , , , , , , , , , , , , , , , , , , ,							
Per	nbeda		HDD		SSE)		
	g dibutuhkan		-7 watt		2-3 wa			
-	pasitas		pada laptop	500 GB		oada laptop		
	membuka file		ih lambat		Cepa			
	ın copy data		120MB/s		200-5501 Lebih m	,		
Harg	a per GB	Leb	ih murah		Lebin in	anai		
Berikut ketent	tuan nilai untuk	pertanya	an yang berup	a skala lir	near.			
Nilai			Keterang					
1	Kriteria/Alter	natif A sa	ama penting o	lengan kr	iteria/al	ternatif B		
3	A sedikit lebil	n penting	g dari B					
5	A jelas lebih p	penting o	lari B					
7	A sangat jelas	A sangat jelas lebih penting dari B						
9	Mutlak lebih	penting	dari B					
2,4,6,8	Apabila ragu-	ragu ant	ara dua nilai	yang bero	dekatan			
Kriteria RAM : baru? <= 8 GB > 8 GB	seperti apa yang	g akan Ar	ıda pilih ketika	membeli	sebuah	laptop *		

Kriteria	13									
Jika Anda memutuskan untuk membeli laptop dengan spesifikasi RAM <= 8 Gb, * merk laptop manakah yang akan Anda pilih?									*	
O AS	SUS									
O AC	CER									
Sebera	pa pent	tingkah	kriteria į	pilihan A	Anda di a	itas?*				
	1	2	3	4	5	6	7	8	9	
	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	
merk la	Jika Anda memutuskan untuk membeli laptop dengan spesifikasi RAM <= 8 Gb, * merk laptop manakah yang akan Anda pilih? ASUS HP							*		
Sebera	pa pent	tingkah	kriteria į	pilihan A	Anda di a	itas?*				
	1	2	3	4	5	6	7	8	9	
	0	0	0	0	0	0	0	0	0	
				membe		o denga	n spesifi	kasi RA	M <= 8 Gb,	*

Appendix 2 Normalized Matrix of RAM Subcriteria 1 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	0.2799	0.3108	0.2754	0.2681
ACER	0.1509	0.1676	0.1624	0.1882
HP	0.2223	0.2256	0.2187	0.2115
LENOVO	0.3469	0.2959	0.3435	0.3323

Appendix 3 Normalized Matrix of RAM Subcriteria 2 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	0.2889	0.3372	0.2644	0.2855
ACER	0.1340	0.1564	0.1582	0.1806
HP	0.2559	0.2316	0.2342	0.2166
LENOVO	0.3211	0.2748	0.3432	0.3173

Appendix 4 Normalized Matrix of Processor Subcriteria 1 Alternative

_		ASUS	ACER	HP	LENOVO
	ASUS	0.2785	0.2858	0.2435	0.3059
	ACER	0.1520	0.1560	0.1542	0.1595
	HP	0.2818	0.2492	0.2464	0.2187
I	LENOVO	0.2877	0.3090	0.3559	0.3159

Appendix 5 Normalized Matrix of Processor Subcriteria 2 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	0.3088	0.3208	0.2939	0.3146
ACER	0.1294	0.1345	0.1293	0.1435
HP	0.2445	0.2419	0.2327	0.2186
LENOVO	0.3173	0.3029	0.3441	0.3233

Appendix 6 Normalized Matrix of Processor Subcriteria 3 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	0.3287	0.3304	0.3333	0.3236
ACER	0.1448	0.1456	0.1608	0.1364
HP	0.2213	0.2032	0.2244	0.2395
LENOVO	0.3052	0.3208	0.2816	0.3005

Appendix 7 Normalized Matrix of Internal Storage Subcriteria 1 Alternative

	ASUS	ACER	HP	LENOVO
ASUS	0.3089	0.3338	0.2907	0.3081
ACER	0.1568	0.1694	0.1767	0.1782
HP	0.2152	0.1942	0.2026	0.1954
LENOVO	0.3191	0.3026	0.3300	0.3183

Appendix 8 Normalized Matrix of Internal Storage Subcriteria 2 Alternative

_		ASUS	ACER	HP	LENOVO
I	ASUS	0.3715	0.3559	0.3539	0.3918
	ACER	0.1463	0.1402	0.1328	0.1374
	HP	0.2077	0.2087	0.1978	0.1814
	LENOVO	0.2745	0.2953	0.3155	0.2894

Appendix 9 Normalized Matrix of Price Subcriteria 1 Alternative

MATRIKS 13	ASUS	ACER	HP	LENOVO
ASUS	0.3383	0.4180	0.2804	0.3428
ACER	0.1278	0.1579	0.1874	0.1828
HP	0.2424	0.1692	0.2009	0.1791
LENOVO	0.2915	0.2550	0.3312	0.2953

Appendix 10 Normalized Matrix of Price Subcriteria 2 Alternative

MATRIKS 14	ASUS	ACER	HP	LENOVO
ASUS	0.3281	0.2865	0.3342	0.3464
ACER	0.1723	0.1505	0.1348	0.1419
HP	0.2127	0.2419	0.2167	0.2089
LENOVO	0.2869	0.3212	0.3143	0.3029