STAT211 Mandatory Homework 6

Yapi Donatien Achou

March 4, 2019

Contents

1 Problem 6.6 2

1 Problem 6.6

Let \mathbf{P}_k be the linear projection onto

$$\mathbf{S}_k = span\{X_1, \cdots, X_k\} \tag{1}$$

and

$$e_k = \frac{X_k - \hat{X}_k}{\nu_{k-1}}. (2)$$

 $\{e_1, \dots, e_n\}$ is orthonormal basis for \mathbf{S}_n if $\{e_1, \dots, e_n\}$ is a linearly independent subset of \mathbf{S}_n that span \mathbf{S}_n , and for any e_j, e_i in $\{e_1, \dots, e_n\}$ the inner product of e_j and e_i is zero and any e_i as norm 1.

Proof. • Linearly independence. Assume that

$$a_1e_1 + \dots + a_ne_n = 0 \tag{3}$$

where a_i are real numbers. The we have

$$a_1 e_1 + \dots + a_n e_n = 0$$

$$a_1 \frac{X_1 - \hat{X}_1}{\nu_0} + \dots + a_n \frac{X_n - \hat{X}_n}{\nu_{n-1}} = 0$$

$$\frac{a_1}{\nu_0} (X_1 - \hat{X}_1) + \dots + \frac{a_n}{\nu_{n-1}} (X_n - \hat{X}_n) = 0$$

$$(4)$$

The last expression in (4) holds true if

$$X_1 - \hat{X}_1 = 0, \cdots, X_n - \hat{X}_n = 0$$
 (5)

But from (2) we know that

$$X_k - \hat{X}_k = e_k \nu_{k-1}. {(6)}$$

Therefor equation (4) is true if

$$\frac{a_1}{\nu_1} = \dots = \frac{a_n}{\nu_{n-1}} = 0 \tag{7}$$

equivalently

$$a_1 = \dots = a_n = 0 \tag{8}$$

This means that $\{e_1, \dots, e_n\}$ is a linearly independent

• $\{e_1, \dots, e_n\}$ span \mathbf{S}_n . We want to show that any vector in \mathbf{S}_n can be written as a linear combination of $\{e_1, \dots, e_n\}$. Let $Z \in \mathbf{S}_n$. Since $\mathbf{S}_n = span\{X_1, \dots, X_n\}$, we have

$$Z = b_1 X_1 + \dots + b_n X_n \tag{9}$$

where b_i are real numbers. Then we have

$$Z = b_1 X_1 + \dots + b_n X_n$$

$$Z = b_1 (\nu_0 e_1 + \hat{X}_1) + \dots + b_n (\nu_{n-1} e_n + \hat{X}_n)$$

$$Z = b_1 \nu_0 e_1 + \dots + b_n \nu_{n-1} e_n + \underbrace{b_1 \hat{X}_1 + \dots + b_n \hat{X}_n}_{Z'}$$

$$\underbrace{Z - Z'}_{Z''} = \underbrace{b_1 \nu_0}_{\alpha_1} e_1 + \dots + \underbrace{b_n \nu_{n-1}}_{\alpha_n} e_n$$

$$(10)$$

Since $Z'' \in \mathbf{S}_n$ We have

$$Z'' = \alpha_1 e_1 + \dots + \alpha_n e_n \tag{11}$$

• Horthogonality Let Z_1, Z_2 be two arbitrarily vectors in \mathbf{S}_n

$$\langle Z_1, Z_2 \rangle = \langle \alpha_1 e_1 + \dots + \alpha_n e_n, \beta_1 e_1 + \dots + \beta_n e_n \rangle$$

= $\alpha_1 \beta_1 + \dots + \alpha_n \beta_n$ (12)

References

[1] Petter J. Brockwell. Richard A. Davis Introduction to Time Series and Forecasting. Springer. Second edition. 2001