Matemática IV- 2020 TP2 - Diferenciabilidad

1. Encontrar las derivadas parciales primeras de las siguientes funciones, indicando sus dominios:

a)
$$f(x,y) = 3x^2y + y^3$$

b)
$$f(x, y, z) = x^2 + 2y^2 - z^2$$

c)
$$f(x,y) = e^{xy} + \sin(x^2 + y)$$

d)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$

$$e) \ f(x, y, z) = x^2 \log(y + z)$$

$$f) f(x,y,z) = \sqrt{z^2 - x^2 - y^2}$$

2. Calcular las derivadas parciales primeras de las siguientes funciones en los puntos indicados:

a)
$$f(x,y) = xe^{x^2y}$$
 en $(1, \log(2))$

b)
$$f(x,y) = \sqrt{x^2 + y^2}$$
 en $(-4,3)$

3. Hallar las derivadas parciales primeras utilizando la definición:

a)
$$f(x,y) = x.y^2$$
 en $(2,3)$

b)
$$f(x,y) = x - y + 2$$
 en $(0,1)$

4. Analizar diferenciabilidad en \mathbb{R}^2 de las siguientes funciones:

$$a) \ f(x,y) = sen(x^2 + y^2)$$

b)
$$f(x,y) = e^{x^2 + y^2}$$

c)
$$f(x,y) = \begin{cases} \frac{x}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

d) $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$

d)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

e)
$$f(x,y) = \begin{cases} \frac{x \cdot y^2}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

f)
$$f(x,y) = \begin{cases} cos(x^2 + y^2) & \text{si} \quad (x,y) \neq (0,0) \\ 1 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

g)
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

- 5. Hallar, en caso de que exista, el plano tangente a la gráfica de la función $f(x,y) = e^{x^2+y^2}$ en el punto (-1,1,f(-1,1)). De ser posible, con ayuda de un software a su elección, muestre las gráficas de la función y el plano tangente.
- 6. Encontrar la aproximación lineal de la función $f(x,y) = x^2 + y^4 + e^{xy}$ en (1,0) y utilizarla para estimar aproximadamente f(0,98,0,05).

 Grafique con ayuda de software la función y su aproximación lineal.
- 7. Para interpretar intuitivamente el cálculo de las derivadas por definición genere un código similar al que realizó en el ej. 5 del TP1 que muestre como los límites se van acercando a las derivadas parciales (calculadas por regla) evaluadas en un punto. Utilice las funciones (y los puntos) del Ej. 3

Ejercicios Adicionales

1. Analizar en qué región del plano las siguientes funciones son diferenciables:

a)
$$f(x,y) = 3x^2y + y^3$$

$$b) \ f(x,y) = xy$$

c)
$$f(x,y) = \frac{x^2 - y^2 - 1}{x^2 + y^2 + 1}$$

d)
$$f(x,y) = \sqrt{1 + x^2 + y^2}$$

$$e) f(x,y) = e^{-(x^2+y^2)}$$

$$f) \ f(x,y) = \sqrt{1 - x^2 - y^2}$$

2. Hallar, en caso que exista, una ecuación del plano tangente a la gráfica de la función en dicho punto.

a)
$$f(x,y) = xy$$
 en $(0,0)$

b)
$$f(x,y) = x^2 + y^2$$
 en $(1,2)$

c)
$$f(x,y) = e^y(x^2 + y^2)$$
 en $(1,0)$

d)
$$f(x,y) = \sqrt{1 - (x^2 + y^2)}$$
 en $(1,1)$

$$e)$$
 $f(x,y) = e^x \cos(xy)$ en $(0,0)$

3. Encontrar, si existe, la linealización L(x,y) de la función en el punto indicado:

a)
$$f(x,y) = \sqrt{1+x^2 \cdot y^2}$$
 en $(0,2)$

b)
$$f(x,y) = \frac{y}{x+y}$$
 en (1,2)