AN EXPLICATION OF EXISTENCE AND UNIQUENESS RESULTS FOR A NONLINEAR SCHRÖDINGER EQUATION

AN INTRODUCTION TO THE SHOOTING METHOD AND STURM COMPARISON THEOREM

Bachelor's Thesis

at Delft University of Technology, written by

Jasper Sebastiaan EENHOORN

Student at Faculty for Applied Physics.

This thesis has been approved by

supervisor: dr. M.V. Gnann

dr. M. Blaauboer

The project was previously supervised by dr. F. Genoud.

Keywords: ...

Printed by: ...

Front & Back: ...

Copyright ©2020 by ...

An electronic version of this dissertation is available at http://repository.tudelft.nl/.

CONTENTS

Summary v								
1	Physics of NLS							
	1.1	Derive the wave equation from Maxwell	1					
	1.2	Validity of plane wave solutions	2					
	1.3	Derive the Helmholtz equation	3					
	1.4	Derive the Linear Schrödinger	3					
	1.5	Polarisation field	3					
	1.6	Nonlinear polarisation	4					
	1.7	Focusing NLS and solitons	4					
	Refe	erences	5					
2	2 Conclusion							
Acknowledgements 9								

SUMMARY

Summary in English...

1

PHYSICS OF NLS

1.1. DERIVE THE WAVE EQUATION FROM MAXWELL

DONE: The propagation of electromagnetic waves in a medium is governed by Maxwell's laws in absence of external charges or currents. Remember that Maxwell's laws for the electric field \mathcal{E} , magnetic field \mathcal{H} , induction electric field \mathcal{D} and induction magnetic field \mathcal{B} are given by:

$$\nabla \times \overrightarrow{\mathcal{E}} = -\frac{\partial \overrightarrow{\mathcal{B}}}{\partial t}, \quad \nabla \times \overrightarrow{\mathcal{H}} = \frac{\partial \overrightarrow{\mathcal{D}}}{\partial t},$$
$$\nabla \cdot \overrightarrow{\mathcal{D}} = 0, \quad \nabla \cdot \overrightarrow{\mathcal{B}} = 0.$$

Unless otherwise specified, these are fields in three-dimensional Cartesian coordinates. For example: $\vec{\mathcal{E}} = (\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3)$ in (x, y, z) coordinates. Besides considering no external charges or currents we consider unitary (relative) permittivities, such that the relation between fields and induction fields (electric or magnetic) are given as:

$$\overrightarrow{\mathcal{B}} = \mu_0 \overrightarrow{\mathcal{H}}, \quad \overrightarrow{\mathcal{D}} = \epsilon_0 \overrightarrow{\mathcal{E}}$$

The notation used here is from [1], for more background on electrodynamics see [2]. This reference work also includes an introduction to the necessary vector calculus.

From these relations and the vector identity for the curl of the curl, a wave equation can be derived. We specifically use $\nabla \cdot \overrightarrow{\mathcal{D}} = \nabla \cdot \epsilon_0 \overrightarrow{\mathcal{E}} = 0$ and $\nabla \times \overrightarrow{\mathcal{B}} = \mu_0 \frac{\partial \overrightarrow{\mathcal{D}}}{\partial t}$ to simplify the equation:

$$\nabla \times \nabla \times \overrightarrow{\mathcal{E}} = \nabla \times (-\frac{\partial \overrightarrow{\mathcal{B}}}{\partial t}) = -\frac{\partial}{\partial t} (\nabla \times \overrightarrow{\mathcal{B}}) = -\mu_0 \frac{\partial^2 \mathcal{D}}{\partial t^2} = -\mu_0 \epsilon_0 \frac{\partial^2 \mathcal{E}}{\partial t^2}, \quad \text{by Maxwell's laws, and}$$

$$\nabla \times \nabla \times \overrightarrow{\mathcal{E}} = \nabla (\nabla \cdot \overrightarrow{\mathcal{E}}) - \nabla^2 \overrightarrow{\mathcal{E}} = \nabla (\nabla \cdot \overrightarrow{\mathcal{E}}) - \Delta \overrightarrow{\mathcal{E}} = -\Delta \overrightarrow{\mathcal{E}}, \quad \text{by vector calculus.}$$

Combining these and using $\mu_0 \varepsilon_0 = 1/c^2$ we arrive at the vector wave equation:

$$\Delta \vec{\mathcal{E}} = \frac{1}{c^2} \frac{\partial^2 \vec{\mathcal{E}}}{\partial t^2}.$$
 (1.1)

2

1.2. VALIDITY OF PLANE WAVE SOLUTIONS

DONE: Stuyding the left and right hand sides of equation (1.1), we see that the vector wave equation is in fact a system of three scalar wave equations.

$$\begin{split} \Delta \overrightarrow{\mathcal{E}} &= \Delta \begin{bmatrix} \mathcal{E}_x \\ \mathcal{E}_y \\ \mathcal{E}_z \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 \mathcal{E}_x}{\partial x^2} + \frac{\partial^2 \mathcal{E}_x}{\partial y^2} + \frac{\partial^2 \mathcal{E}_x}{\partial z^2} \\ \frac{\partial^2 \mathcal{E}_y}{\partial x^2} + \frac{\partial^2 \mathcal{E}_y}{\partial y^2} + \frac{\partial^2 \mathcal{E}_y}{\partial z^2} \\ \frac{\partial^2 \mathcal{E}_z}{\partial x^2} + \frac{\partial^2 \mathcal{E}_z}{\partial y^2} + \frac{\partial^2 \mathcal{E}_z}{\partial z^2} \end{bmatrix} = \frac{1}{c^2} \begin{bmatrix} \frac{\partial^2 \mathcal{E}_x}{\partial t^2} \\ \frac{\partial^2 \mathcal{E}_y}{\partial t^2} \\ \frac{\partial^2 \mathcal{E}_z}{\partial t^2} \end{bmatrix} \\ \Delta \mathcal{E}_j &= \sum_{j=1}^3 \begin{bmatrix} \frac{\partial^2 \mathcal{E}_j}{\partial x_j^2} \\ \frac{\partial^2 \mathcal{E}_j}{\partial x_j^2} \end{bmatrix} = \frac{1}{c^2} \frac{\partial^2 \mathcal{E}_j}{\partial t^2}. \end{split}$$

This motivates the following ansatz (educated guess) for the solutions to such a scalar wave equation:

$$\mathcal{E}_i = E_c e^{i(k_0 z - \omega_0 t)},\tag{1.2}$$

which are so called plane wave solutions. NEW: This plane wave travels in the positive z-direction for positive wavenumber k_0 and vice versa. Note that the solution does not depend on x or y. As a result, for a fixed z', the electric field \mathcal{E} is constant in the (x, y, z')-plane. Taking the necessary derivatives of 1.2 in equation (1.1)

$$\Delta \mathcal{E}_{j} = \frac{\partial^{2}}{\partial x^{2}} \mathcal{E}_{j} + \frac{\partial^{2}}{\partial y^{2}} \mathcal{E}_{j} + \frac{\partial^{2}}{\partial z^{2}} \mathcal{E}_{j} = \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathcal{E}_{j}$$
$$\frac{\partial^{2}}{\partial z^{2}} \mathcal{E}_{j} = k_{0}^{2} \cdot E_{c} e^{i(k_{0}z - \omega_{0}t)} = \frac{1}{c^{2}} \omega_{0}^{2} \cdot E_{c} e^{i(k_{0}z - \omega_{0}t)}$$

yields the dispersion relation

$$k_0^2 = \frac{\omega_0^2}{c^2}. (1.3)$$

Dispersion (spreading out) is a result of different frequencies propagating at different speeds. Of course, other plane waves exist. In general, let wavevector $\vec{k_0} = (k_x, k_y, k_z)$ satisfy the dispersion relation $\left| \vec{k_0} \right|^2 = \frac{w_0^2}{c^2}$. The wavenumber $\vec{k} = (k_x, k_y, k_z)$ signifies the direction of propagation. For a plane wave with $\vec{k} = (0,0,k_0)$, we say the plane wave travels in the positive *z*-direction if k_0 is positive.

Not all plane waves are physical (in agreement with Maxwell's laws), for example the wave with electric field $\overrightarrow{\mathcal{E}} = (p, p, p)$ with plane wave component $p = E_c e^{i(k_0 z - \omega_0 t)}$.

Claim: this violates Maxwell's law for the divergence of the electric field: $\nabla \cdot \overrightarrow{\mathcal{E}} = 0$. Substituting the mentioned plane wave yields

$$\nabla \cdot \overrightarrow{\mathcal{E}} = \frac{\partial \mathcal{E}_x}{\partial x} + \frac{\partial \mathcal{E}_y}{\partial y} + \frac{\partial \mathcal{E}_z}{\partial z}$$
$$= 0 + 0 + i k_0 E_c e^{i(k_0 z - \omega_0 t)} \neq 0$$

The nonzero *z*-component is troublesome in light of the Maxwell divergence law for the electric field.

However, the electric field $\overrightarrow{\mathcal{E}}=(p,p,0)$ does satisfy Maxwell's law. This field is perpendicular to the wavevector $\overrightarrow{k}=(0,0,k_0)$. In fact, this relation holds more generally. Plane waves with wavevector $\overrightarrow{k}=(k_x,k_y,k_z)$ are physical when the electric field and wavevector are perpendicular. TODO: show that the general wavevector solves the divergence law when perpendicular to the field... Or maybe more clear through taking the Fourier transform of the divergence law? https://www.theochem.ru.nl/files/dbase/groenenboom-qed-2005.pdf...

1.3. Derive the Helmholtz equation

NEW: Considering time-harmonic solutions to the scalar wave equation (1.1)

$$\mathcal{E}_{i}(x, y, z, t) = e^{i\omega_{0}t}E(x, y, z) + \text{c.c.}$$

$$\tag{1.4}$$

These are continuous wave (cw) beam solutions as opposed to pulsed output beams. TODO: include example of pulsed wave expr and sth about pulsed vs continuous For more information on the operating principles of lasers, refer to [3].

Substituting (1.4) in equation (1.1) shows that E should satisfy the scalar linear Helmholtz equation

$$\Delta E(x, y, z) + k_0^2 E = 0, (1.5)$$

where k_0 is given by the dispersion relation (1.3). The plane waves **??** solve equation (1.5) with

$$E = E_c e^{i(k_x x + k_y y + k_z z)}$$

with $k_x^2 + k_y^2 + k_z^2 = k_0^2$.

TODO: insert writings on laser beam as superposition of plane waves, each solving HH

1.4. DERIVE THE LINEAR SCHRÖDINGER

NEW: Most of the plane wave modes in $\ref{eq:modes}$ are nearly parallel to the z-axis. These paraxial plane waves satisfy

$$k_{\perp}^2 << k_z^2, \quad k_{\perp}^2 = k_x^2 + k_y^2.$$

Since $k_0^2 = k_x^2 + k_y^2 + k_z^2 = k_\perp^2 + k_z^2$, we have $k_0^2 \approx k_z^2$.

1.5. POLARISATION FIELD

NEW: Polarisation describes the effect of an electric field on the centers of the electrons of the medium. In our consideration, the medium is isotropic and homogenous. The polarisation field \overrightarrow{P} contributes to the induction eletric field

$$\overrightarrow{\mathcal{D}} = \epsilon_0 \overrightarrow{\mathcal{E}} + \overrightarrow{\mathcal{P}}.$$

In the following, we assume that the electric field is linearly polarised, that is,

$$\overrightarrow{\mathcal{E}} = (\mathcal{E}, 0, 0), \ \overrightarrow{\mathcal{P}} = (\mathcal{P}, 0, 0), \ \overrightarrow{\mathcal{D}} = (\mathcal{D}, 0, 0),$$

where the electric field \mathcal{E} is the cw electric field

$$\mathcal{E}(x, y, z, t) = e^{-i\omega_0 t} E(x, y, z, t) + \text{c.c.}.$$

First we consider linear polarisation effects. The electric fields affects the medium and induces a polarisation proportional to the electric field

$$\mathcal{P} = \mathcal{P}_{\text{lin}} = c\mathcal{E}$$

for some real number c. In fact, we can write

$$\mathcal{P} = \epsilon_0 \chi^{(1)}(\omega_0) \mathcal{E},$$

where $\chi^{(1)}$ is the first-order optical susceptibility, whose value depends on the frequency ω_0 . Then the induction electric field is given by

$$\mathcal{D} = \epsilon_0 \mathcal{E} + \mathcal{P}_{\mathrm{lin}} = \epsilon_0 n_0^2(\omega_0) \mathcal{E}, \quad n_0^2(\omega_0) := 1 + \chi^{(1)}(\omega_0),$$

where n_0 is the linear index of refraction (or refractive index) of the medium.

TODO: Leads to linear Helmholtz with adjusted k_0 ...

1.6. NONLINEAR POLARISATION...

NEW: The linear polarisation field is an approximation and we wish to study the nonlinear effects too. Consider the nonlinear polarisation field \mathcal{P}_{nl} as

$$\mathcal{P} = \mathcal{P}_{lin} + \mathcal{P}_{nl}$$
.

TODO: Write about Taylor expansion of the nonlinear term, show that the even terms are not relevant and study the cubic (Kerr) term

1.7. FOCUSING NLS AND SOLITONS

NEW: (General NLS) Substituting $E = e^{ik_0z}\psi$ in the NLH **??** and applying the paraxial approximation $\psi_{zz} << k_0\psi_z$, we obtain the nonlinear Schrödinger equation (NLS)

$$2i\,k_0\psi_z(z,\bar{x}) + \Delta_\perp\psi + k_0^2\frac{4\,n^2}{n_0}|\psi|^2\psi = 0. \eqno(1.6)$$

(Focusing NLS) The previous results lead to the focusing NLS given by

$$i\psi_z(z,\bar{x}) + \Delta\psi + |\psi|^{2\sigma}\psi = 0. \tag{1.7}$$

REFERENCES 5

Considering envelopes of constant shape (solitons) with

$$\psi_{\omega}^{\text{soliton}} = e^{i\omega z} R_{\omega}(\bar{x})$$

leads to an equation in $R_{\omega}(\bar{x})$ by the following steps

1.
$$i\psi_z(z,\bar{x}) = i\left(i\omega e^{i\omega z}R_\omega(\bar{x})\right) = -\omega e^{i\omega z}R_\omega(\bar{x})$$

2.
$$\Delta \psi = (\Delta e^{i\omega z}) R_{\omega}(\bar{x}) + e^{i\omega z} (\Delta R_{\omega}(\bar{x}))$$

3.
$$|\psi|^{2\sigma}\psi = \left|e^{i\omega z}R_{\omega}(\bar{x})\right|^{2\sigma}e^{i\omega z}R_{\omega}(\bar{x}) = |R_{\omega}(\bar{x})|^{2\sigma}e^{i\omega z}R_{\omega}(\bar{x})$$

4. such that

5.
$$e^{i\omega z} \left[-\omega R_{\omega}(\bar{x}) + \Delta R_{\omega}(\bar{x}) + |R_{\omega}(\bar{x})|^{2\sigma} R_{\omega}(\bar{x}) \right] = 0$$

6. and

7.
$$\Delta R_{\omega}(\bar{x}) - \omega R_{\omega}(\bar{x}) + |R_{\omega}(\bar{x})|^{2\sigma} R_{\omega}(\bar{x}) = 0$$

REFERENCES

- [1] G. Fibich, *The nonlinear Schrödinger equation*, Applied Mathematical Sciences, Vol. 192 (Springer, Cham, 2015) p. 862, singular solutions and optical collapse.
- [2] D. Griffiths, Introduction to Electrodynamics, Pearson international edition (Prentice Hall, 1999).
- [3] A. Siegman, *Lasers* (University Science Books, 1986).

2

CONCLUSION

This is a concluding chapter explaining the scientific and technical implications for society of the research findings in considerable detail.

ACKNOWLEDGEMENTS

This is an optional chapter containing acknowledgements.