LECTURE 2

BOOK CHAPTER 4

Projectile Motion

Projectile Motion:

A particle moves in a vertical plane with some initial velocity \vec{v}_0 but its acceleration is always the freefall acceleration \vec{g} , which is downward. Such a particle is called a projectile (meaning that it is projected or launched), and its motion is called projectile motion.

Examples: A batted baseball, a thrown football, a package dropped from an airplane, and a bullet shot from a rifle are all projectiles.

Sketch of the path taken in projectile motion:

Sketch of the path taken in projectile motion (Step-by-Step):

Figure: The *projectile motion* of an object launched into the air at the origin of a coordinate system and with launch velocity \vec{v}_0 at angle θ_0 . The motion is a combination of vertical motion (constant acceleration) and horizontal motion (constant velocity), as shown by the velocity components.

The adjacent Figure shows two balls with different x-motion but identical y-motion; one is dropped from rest and the other projected horizontally, but both balls fall the same distance in the same time.

Richard Megna/Fundamental Photographs

The Horizontal Motion:

Type equation here.

At any time t, the projectile's horizontal displacement $x-x_0$ from an initial position x_0 is given by

$$x - x_0 = v_{0x} t + \frac{1}{2} a_x t^2$$

Where acceleration along x - axis, $a_x = 0$

Using $v_{0x} = v_0 \cos \theta_0$ we can write

$$x - x_0 = (v_0 \cos \theta_0) t$$

At any time t, the projectile's horizontal velocity $v_{0x} = v_x$

The Vertical Motion:

At any time t, the projectile's vertical displacement $y-y_0$ from an initial position y_0 is given by

$$y - y_0 = v_{0y} t - \frac{1}{2} g t^2$$
 [where, $a_y = -g$]
 $y - y_0 = (v_0 \sin \theta_0) t - \frac{1}{2} g t^2$ [where, $v_{0y} = v_0 \sin \theta_0$]
.....(2)

At any time t, the projectile's vertical velocity

$$v_{y} = v_{0} \sin \theta_{0} - gt \qquad [v = u + at]$$

And also we can express v_v as

$$v_y^2 = (v_0 \sin \theta_0)^2 - 2 g(y - y_0)$$
 [v² = u² + 2as]

☐ Show that the path of a projectile is a parabola.

From equation (1) we can write

$$t = \frac{x - x_0}{v_0 \cos \theta_0}$$

Using the value of t in equation (2), we get

$$y - y_0 = v_0 \sin \theta_0 \frac{x - x_0}{v_0 \cos \theta_0} - \frac{1}{2} g \left(\frac{x - x_0}{v_0 \cos \theta_0} \right)^2$$

For simplicity, we let $x_0 = 0$ and $y_0 = 0$.

Therefore, the equation becomes

$$y = (\tan \theta_0) x + \frac{1}{2} g \left(-\frac{1}{v_0 \cos \theta_0} \right)^2 x^2$$
 (3)

$$a = \tan \theta_0 \qquad b = \frac{1}{2}g\left(-\frac{1}{v_0\cos\theta_0}\right)^2$$

Where θ_0 , g and v_0 are constants.

Equation (3) is of the form $y = ax + bx^2$, where a and b are constants.

This is the equation of a parabola, so the path is *parabolic*.

Equation of the projectile's path: y = ax+6x2 Vo= Vox i + Voy j V. = V. 650, i+V. sino, j Vox= Vocaso. +2 Equation of motion along y-axis, y-y = Voyt - = 2 gt 2 - . 2 = (V. sino.) t- = gt2 Equation of motion along x-axis, X-X = Voxt t= x-x. = x-x. : y-y = (v. sin 0.) (2-x.)- 27 (2-x.) = (\frac{5 in0.}{cos0.} (x-x.) + \frac{7}{2 \tau_1^2 \cos^2 0.} y= (lan 0.) x + (-y=

Type equation

Maximum height:
$$y = \frac{v_0^2 \sin^2\theta_0}{2g}$$
 $y - a \times is$:

 $y - y = (V_0 \sin \theta_0)t - \frac{1}{2}gt^2 \cdot \frac{1}{2g}$

At maximum height, $V_0 = 0$
 $V_0 = V_0 \cos \theta_0$
 $V_0 = V_0 \cos \theta_0$
 $V_0 = V_0 \sin \theta_0$
 $V_0 = V_0 \cos \theta_0$
 $V_0 = V$

☐ Equations for the horizontal range and the maximum horizontal range of a projectile:

The *horizontal range R* of the projectile is the *horizontal* distance the projectile has traveled when it returns to its initial height (the height at which it is launched). That is $x - x_0 = R$ when $y - y_0 = 0$.

Using $x - x_0 = R$ in equation (1) and $y - y_0 = 0$ in equation (2), we get

$$R = (v_0 \cos \theta_0) t \qquad [From equation (1)]$$

And
$$0 = (v_0 \sin \theta_0) t - \frac{1}{2}gt^2$$
 [From equation (2)]

or
$$(v_0 \sin \theta_0) \ t = \frac{1}{2}gt^2$$
 or $t = \frac{2v_0 \sin \theta_0}{g}$

$$or \quad (v_0 \sin \theta_0) \ t = \frac{1}{2}gt^2 \qquad or \quad t = \frac{2v_0 \sin \theta_0}{g}$$
 Therefore,
$$R = (v_0 \cos \theta_0) \ \frac{2v_0 \sin \theta_0}{g} = \frac{v_0^2 \ (2 \sin \theta_0 \cos \theta_0)}{g}$$

$$R = \frac{v_0^2 \sin 2\theta_0}{g}$$
(3) Caution: This equation does not give the horizontal distance traveled by a projectile when the final height is not the launch height.

Horizontal range: R= v. sinzo. x-x = V x t 2-70=(v. 650.)t Vox= V. 438 . R= (v. cso.)t - -0 7- 70 = Voy t - 1 gt 2 0 = (v.sino.) t - 2 gt2 t (Vosino . - 1 gt) = 0 V. sino .- 2 2t = 0 : t=0 v. sindo= 2 st : t = 2 v. sino. $R = \frac{V. \cos 0.}{2} \left(\frac{2 v. \sin 0.}{g} \right) = \frac{v}{2}$ v. 2(2 sino. 650.) $R = \frac{v_0^2}{J}(1) = \frac{v_0^2}{J}$ R has its maximum Value when Sin 20. = 1 $Sin 20. = Sin 90^{\circ}$ $20. = 90^{\circ}$ $\therefore 0. = 45^{\circ}$

The horizonfal range R is maximum for a Launch angle of 45.

The value of R is maximum in equation (3) when $\sin 2\theta_0 = 1$

or
$$Sin 2\theta_0 = Sin 90$$

or $2\theta_0 = 90^0$

Maximum horizontal range,
$$R = \frac{v_0^2}{a}$$

The Effects of the Air (in the projectile motion):

	Path I (Air)	Path II (Vacuum)
Range	98.5 m	177 m
Maximum height	53.0 m	76.8 m
Time of flight	6.6 s	7.9 s

The launch angle is 60° and the launch speed is 44.7 m/s.

