MATH 325 Q1: LINEAR ALGEBRA III, PART 9

Hermitian and unitary linear maps

Notation. Throughout this section all matrices etc. are viewed over the complex numbers \mathbb{C} . As usual, we denote by \bar{z} the complex conjugate of $z \in \mathbb{C}$. We will be considering \mathbb{C}^n as the inner product space with the usual Euclidean scalar product $\langle -, - \rangle$. We let A^T be the transpose and by \bar{A} the complex conjugate of a matrix $A = (a_{ij})$, i.e. the $i\bar{j}$ -entry of \bar{A}^T is a_{ji} and of \bar{A} is \bar{a}_{ij} .

Note that with this notation we have

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}^T = (x_1 \dots x_n)$$

and

$$\overline{\left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)} = \left(\begin{array}{c} \bar{x}_1 \\ \vdots \\ \bar{x}_n \end{array}\right)$$

for a vector $\begin{pmatrix} x_1 \\ \vdots \\ x \end{pmatrix} \in \mathbb{C}^n$. In particular we have then

$$\langle x, y \rangle = \sum x_i \bar{y}_i = x^T \cdot \bar{y}$$

for all $x, y \in \mathbb{C}^n$.

The adjoint linear map

Let $(V, \langle -, - \rangle)$ be an inner product space, and let $\alpha : V \to V$ be a \mathbb{C} -linear map. Then for a fixed vector $w \in V$ the map

$$f_w: V \longrightarrow \mathbb{C}, v \longmapsto \langle \alpha(v), w \rangle$$

is \mathbb{C} -linear (because α is \mathbb{C} -linear and because of (L1)). Therefore there exists a unique vector $y = y(w) \in V$ (depending on w) such that

$$f_w(v) = \langle v, y \rangle$$
.

We define $\alpha^*(w) := y = y(w)$ for $w \in V$. This defines a map

$$\alpha^*: V \longrightarrow V, w \longmapsto \alpha^*(w),$$

such that

$$\langle \alpha(v), w \rangle = \langle v, \alpha^*(w) \rangle$$

for all $v, w \in V$.

In two lemmas below we summarize main properties of α^* .

Lemma. The map α^* is \mathbb{C} -linear.

Proof. Let $w_1, w_2 \in V$ and $\lambda_1, \lambda_2 \in \mathbb{C}$. Then we have:

$$f_{\lambda_1 w_1 + \lambda_2 w_2}(v) = \langle \alpha(v), \lambda_1 w_1 + \lambda_2 w_2 \rangle$$

$$= \bar{\lambda}_1 \cdot \langle \alpha(v), w_1 \rangle + \bar{\lambda}_2 \cdot \langle \alpha(v), w_2 \rangle \quad \text{by } (\mathbf{L2})$$

$$= \bar{\lambda}_1 \cdot \langle v, \alpha^*(w_1) \rangle + \bar{\lambda}_2 \cdot \langle v, \alpha^*(w_2) \rangle \quad \text{by definition of } \alpha^*$$

$$= \langle v, \lambda_1 \cdot \alpha^*(w_1) + \lambda_2 \cdot \alpha^*(w_2) \rangle \quad \text{by } (\mathbf{L2}).$$

On the other hand by the definition of the map α^* we have also

$$f_{\lambda_1 w_1 + \lambda_2 w_2}(v) = \langle \alpha(v), \lambda_1 w_1 + \lambda_2 w_2 \rangle = \langle v, \alpha^* (\lambda_1 w_1 + \lambda_2 w_2) \rangle,$$
 and so

$$\langle v, \alpha^*(\lambda_1 w_1 + \lambda_2 w_2) \rangle = \langle v, \lambda_1 \cdot \alpha^*(w_1) + \lambda_2 \cdot \alpha^*(w_2) \rangle$$
.

This implies that

$$\alpha^*(\lambda_1 w_1 + \lambda_2 w_2) = \lambda_1 \cdot \alpha^*(w_1) + \lambda_2 \cdot \alpha^*(w_2),$$

as required.

Definition. The linear map α^* is is called the adjoint of α (with respect to the inner product $\langle -, - \rangle$).

We collect some more elementary properties of the adjoint in the following lemma.

Lemma. Let $(V, \langle - \rangle)$ be an inner product space. Then:

- (i) $(\mathrm{id}_V)^* = \mathrm{id}_V$.
- (ii) $(\alpha^*)^* = \alpha$ for all linear maps $\alpha : V \longrightarrow V$.

(iii)

$$(\lambda_1 \cdot \alpha_1 + \lambda_2 \cdot \alpha_2)^* = \bar{\lambda}_1 \cdot \alpha_1^* + \bar{\lambda}_2 \cdot \alpha_2^*$$

for all linear maps $\alpha_1, \alpha_2 : V \longrightarrow V$ and all scalars $\lambda_1, \lambda_2 \in \mathbb{C}$.

 $\text{(iv) } (\beta \circ \alpha)^* = \alpha^* \circ \beta^* \text{ for all linear maps } \alpha, \beta : V \, \longrightarrow \, V.$

The assertions (i) and (iv) imply in particular that if $\alpha: V \longrightarrow V$ is an isomorphism then also α^* is an isomorphism and

$$(\alpha^*)^{-1} = (\alpha^{-1})^*$$
.

Proof. (i) follows directly form the definition.

For (ii): we will repeatedly use below the following property:

 \mathcal{P} : if w is a vector such that $\langle v, w \rangle = 0$ for all vectors v then w = 0; or equivalently if w_1, w_2 are vectors such that $\langle v, w_1 \rangle = \langle v, w_2 \rangle$ for all vectors v then $w_1 = w_2$.

We have using axiom (H) and the definition of α^* :

$$\langle \alpha^*(v), w \rangle \, = \, \overline{\langle w, \alpha^*(v) \rangle} \, = \, \overline{\langle \alpha(w), v \rangle} \, = \, \langle v, \alpha(w) \rangle$$

for all $v, w \in V$. On the other hand we also have

$$\langle \alpha^*(v), w \rangle = \langle v, (\alpha^*)^*(w) \rangle$$

and so by property \mathcal{P} we have

$$\alpha(w) = (\alpha^*)^*(w)$$

for all vectors w and this implies $\alpha = (\alpha^*)^*$.

For (iii) we have

$$\langle \lambda_1 \cdot \alpha_1(v) + \lambda_2 \cdot \alpha_2(v), w \rangle = \lambda_1 \cdot \langle \alpha_1(v), w \rangle + \lambda_2 \cdot \langle \alpha_2(v), w \rangle \quad \text{by } (\mathbf{L1})$$

$$= \lambda_1 \cdot \langle v, \alpha_1^*(w) \rangle + \lambda_2 \cdot \langle v, \alpha_2^*(w) \rangle \quad \text{def. adj.}$$

$$= \langle v, \bar{\lambda}_1 \cdot \alpha_1^*(w) + \bar{\lambda}_2 \cdot \alpha_2^*(w) \rangle \quad \text{by } (\mathbf{L2})$$

for all $v, w \in V$. On the other hand side we have by definition that

$$\langle \lambda_1 \cdot \alpha_1(v) + \lambda_2 \cdot \alpha_2(v), w \rangle = \langle v, (\lambda_1 \cdot \alpha_1 + \lambda_2 \cdot \alpha_2)^*(w) \rangle$$

The property \mathcal{P} then implies

$$\bar{\lambda}_1 \cdot \alpha_2^* + \bar{\lambda}_2 \cdot \alpha_2^* = (\lambda_1 \cdot \alpha_1 + \lambda_2 \cdot \alpha_2)^*,$$

as required.

Finally we prove (iv). Using the definition of the adjoint map we compute:

$$\langle v, (\beta \circ \alpha)^*(w) \rangle = \langle \beta(\alpha(v)), w \rangle = \langle \alpha(v), \beta^*(w) \rangle = \langle v, \alpha^*(\beta^*(w)) \rangle.$$

As above this implies

$$(\beta \circ \alpha)^* = \alpha^* \circ \beta^*.$$

For the last assertion, we if $\alpha: V \longrightarrow V$ is an isomorphism then there exists α^{-1} , such that $\alpha^{-1} \circ \alpha = \mathrm{id}_V$, and so by (i) and (iv) we have

$$\mathrm{id}_V = \mathrm{id}_V^* = (\alpha^{-1} \circ \alpha)^* = \alpha^* \circ (\alpha^{-1})^*.$$

But this implies since V is finite dimensional that also α^* is invertible and the inverse is $(\alpha^{-1})^*$.

Example. Let $A = (a_{ij})$ be a complex $n \times n$ -matrix, and

$$\alpha_A: \mathbb{C}^n \longrightarrow \mathbb{C}^n, \ v \mapsto A \cdot v$$

be the linear map defined by A. We want to compute the matrix of the adjoint linear map α_A^* with respect to the standard basis. Recall that we consider \mathbb{C}^n as the inner Euclidean product space with the usual scalar product.

Let $x, y \in \mathbb{C}$. Then

$$\langle \alpha_A(x), y \rangle = \langle Ax, y \rangle = (Ax)^T \cdot \bar{y} = x^T \cdot A^T \cdot \bar{y} = x^T \cdot (\overline{A}^T \cdot y) = x^T \cdot \overline{A}^* y = \langle x, A^* y \rangle,$$

where we have set $A^* := \bar{A}^T$. But also, we have

$$\langle \alpha_A(x), y \rangle = \langle x, \alpha^*(y) \rangle.$$

It follows by property \mathcal{P} that $\alpha^*(y) = A^*y$ for all vectors y, hence the matrix of α_A^* with respect to the standard basis is $A^* = \bar{A}^T$.

Definition. The matrix $A^* = \bar{A}^T$ is called the adjoint matrix of A.

Example. Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Then

$$A^* = \bar{A}^T = \left(\begin{array}{cc} \bar{a} & \bar{c} \\ \bar{b} & \bar{d} \end{array}\right).$$

Lemma. (i) One has $(A^*)^* = A$.

(ii) Let $A, B \in M_n(\mathbb{C})$. Then $(AB)^* = B^*A^*$.

Proof. This is obvious.

Definition. Let $(V, \langle -, \rangle)$ be an inner product space and $\alpha : V \longrightarrow V$ be a \mathbb{C} -linear map. Then:

- (i) α is a called hermitian or self-adjoint if $\alpha = \alpha^*$.
- (ii) α is a called unitary if $\alpha^* \circ \alpha = id_V$. Note that then one also has $\alpha \circ \alpha^* = id_V$.

Definition. We call a $n \times n$ -matrix A hermitian (respectively unitary) if α_A is hermitian (respectively unitary), where we consider \mathbb{C}^n as an inner product space with the usual Euclidean inner product.

Remark. Since A^* is the matrix of α_A^* we see that A is hermitian if and only if $A = A^*$, and unitary if and only if $A \cdot A^* = A^* \cdot A = I_n$.

Lemma. Let $(V, \langle -, - \rangle)$ be an inner product space and $\alpha : V \longrightarrow V$ a linear map. Let further $W \subseteq V$ an α -invariant subspace, i.e. $\alpha(w) \in W$ for all $w \in W$. If α is hermitian then $\alpha|_W$ is also hermitian.

Proof. The subspace W with the restriction of the inner product $\langle -, - \rangle$ is also an inner product space. The adjoint of the linear map

$$\alpha|_W: W \longrightarrow W, w \longmapsto \alpha(w)$$

is the unique map $\beta: W \longrightarrow W$, such that

$$\langle \alpha(v), w \rangle = \langle v, \beta(w) \rangle$$

for all $v, w \in W$. If α is hermitian then $\alpha^*(w) = \alpha(w) \in W$ for all $w \in W$, and so $\beta = \alpha|_W$ has this property. Consequently, $(\alpha|_W)^* = \alpha|_W$, i.e. $\alpha|_W$ is hermitian.

Unitary matrices and orthonormal bases

Let u_1, \ldots, u_n be an orthonormal basis of \mathbb{C}^n (not necessary standard) with respect to the usual scalar product. By definition we have

$$u_i^T \cdot \bar{u}_j = \langle u_i, u_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 (1)

Let
$$u_i = \begin{pmatrix} u_{1i} \\ u_{2i} \\ \vdots \\ u_{ni} \end{pmatrix}$$
 and $U := (u_{ij})$, i.e. the *i*th column of U is u_i . Thus

U is the base change matrix from the basis u_1, \ldots, u_n to the standard one.

Lemma. The matrix U is unitary.

Proof. Using (1) we conclude that $U^T \cdot \bar{U} = I_n$, and so since $\bar{I}_n = I_n$ we get

$$\mathbf{I}_n \,= \overline{\mathbf{I}}_n \,=\, \overline{U^T \cdot \bar{U}} \,=\, \bar{U}^T \cdot U \,=\, U^* \cdot U \,,$$

i.e. U is an unitary matrix.

Remark. Going this reasoning backwards we see that if U is unitary then the columns of U are an orthonormal basis of \mathbb{C}^n .

Remark. Using that $U^* = \bar{U}^T$ one can easily see that the rows of an unitary matrix are an orthonormal basis of \mathbb{C}^n and vice versa.

Theorem. Let $(V, \langle -, \rangle)$ be an inner product space and $\alpha : V \longrightarrow V$ a \mathbb{C} -linear map. Then the following assertions are equivalent:

- (i) $\|\alpha(v)\| = \|v\|$ for all $v \in V$.
- (ii) $\langle \alpha(v), \alpha(w) \rangle = \langle v, w \rangle$ for all $v, v \in V$.
- (iii) α is unitary.

(iv) If v_1, \ldots, v_n is an orthonormal basis of V then also $\alpha(v_1), \ldots, \alpha(v_n)$ is an orthonormal basis.

This implies in particular, that if α is unitary and $W \subseteq V$ is a α -invariant subspace then also the restriction

$$\alpha|_W: W \longrightarrow W, w \longmapsto \alpha(w)$$

is unitary.

Proof. (i) implies (ii): We have by (i) that

$$\langle v + w, v + w \rangle = \langle \alpha(v + w), \alpha(v + w) \rangle$$

and so since also $\|\alpha(v)\| = \|v\|$ and $\|\alpha(w)\| = \|w\|$ we get by **(L1)**, **(L2)** and **(H)**:

$$\langle \alpha(v), \alpha(w) \rangle + \overline{\langle \alpha(v), \alpha(w) \rangle} = \langle v, w \rangle + \overline{\langle v, w \rangle},$$

i.e. the real part of $\langle \alpha(v), \alpha(w) \rangle$ and $\langle v, w \rangle$ coincide for all $v, w \in V$. Setting $i := \sqrt{-1} \in \mathbb{C}$ we get from

$$\langle v + i \cdot w, v + i \cdot w \rangle = \langle \alpha(v + i \cdot w), \alpha(v + i \cdot w) \rangle$$

by the same reasoning and using the equality $||i \cdot v|| = |i| \cdot ||v|| = ||v||$, we see that

$$-i\langle \alpha(v), \alpha(w) \rangle + i\overline{\langle \alpha(v), \alpha(w) \rangle} = -i\langle v, w \rangle + i\overline{\langle v, w \rangle},$$

and so that also the imaginary parts of $\langle \alpha(v), \alpha(w) \rangle$ and $\langle v, w \rangle$ coincide. Therefore we have proven

$$\langle \alpha(v), \alpha(w) \rangle = \langle v, w \rangle$$

for all $v, w \in V$.

(ii) implies (iii): We have $\langle v, w \rangle = \langle \alpha(v), \alpha(w) \rangle$ by (ii) and therefore

$$\langle v, w \rangle = \langle \alpha(v), \alpha(w) \rangle = \langle v, \alpha^*(\alpha(w)) \rangle$$

for all $v, w \in V$. Using the property \mathcal{P} we conclude that $\alpha^* \circ \alpha = \mathrm{Id}_V$.

(iii) implies (iv): That α is unitary means in particular that α is an isomorphism and so $\alpha(v_1), \ldots, \alpha(v_n)$ is also a basis of V if v_1, \ldots, v_n is one. Hence we are left to show that $\alpha(v_1), \ldots, \alpha(v_n)$ are pairwise orthogonal and have length 1.

But by the definition of the adjoint map we have

$$\langle \alpha(v_i), \alpha(v_i) \rangle = \langle v_i, \alpha^*(\alpha(v_i)) \rangle = \langle v_i, v_i \rangle$$

(the latter since $\alpha^* \circ \alpha = \mathrm{id}_V$), and so $\langle \alpha(v_i), \alpha(v_j) \rangle = 1$ if i = j and is 0 if $i \neq j$ since v_1, \ldots, v_n is an orthonormal basis.

(iv) implies (i): Let $v_1 = \frac{v}{\|v\|}$. Its length is equal to 1. By the Gram-Schmidt process we can complete it to an orthonormal basis $\{v_1, \ldots, v_n\}$ of V. Then by (iv) we have

$$\langle \alpha \left(\frac{v}{\|v\|} \right), \alpha \left(\frac{v}{\|v\|} \right) \rangle = \langle \alpha(v_1), \alpha(v_1) \rangle = 1$$

implying

$$\langle \alpha(v), \alpha(v) \rangle = ||v||^2 = \langle v, v \rangle,$$

as required.

The last assertion of the theorem is a consequence of (ii) \iff (iii): The map α is unitary if and only if $\langle v, w \rangle = \langle \alpha(v), \alpha(w) \rangle$ for all $v, w \in V$, and so in particular for all v, w in the subspace W. Hence also the restriction $\alpha|_W$ is unitary.

Corollary. Let $(V, \langle -, - \rangle)$ be an inner product space and $\alpha : V \to V$ a unitary \mathbb{C} -linear map. Then for all eigenvalues λ of α one has $|\lambda| = 1$.

Proof. Let v be an eigenvector for the eigenvalue λ . Then we have by (i) in the theorem above

$$||v|| = ||\alpha(v)|| = ||\lambda \cdot v|| = |\lambda| \cdot ||v||,$$

and so $|\lambda| = 1$ since $||v|| \neq 0$.

For hermitian maps we have the following.

Lemma. Let $(V, \langle -, - \rangle)$ be an inner product space and $\alpha : V \longrightarrow V$ a hermitian \mathbb{C} -linear map. Then all eigenvalues of α are real.

Proof. Let λ be an eigenvalue of α with corresponding eigenvector $0 \neq v \in V$. We want to show that $\lambda \in \mathbb{R}$. For this we observe first that

$$\alpha(\alpha(v)) = \alpha(\lambda v) = \lambda^2 \cdot v$$

and so v is an eigenvectors of $\alpha \circ \alpha$ for the eigenvalue λ^2 . Using this we compute:

$$(\lambda \cdot \bar{\lambda}) \cdot \langle v, v \rangle = \langle \lambda v, \lambda v \rangle \qquad \text{by (L1) and (L2)}$$

$$= \langle \alpha(v), \alpha(v) \rangle \qquad \text{since } v \text{ is eigenvector for } \lambda$$

$$= \langle v, \alpha^*(\alpha(v)) \rangle \qquad \text{since } \alpha^* \text{ is the adjoint of } \alpha$$

$$= \langle v, \alpha(\alpha(v)) \rangle \qquad \text{since } \alpha^* = \alpha$$

$$= \langle v, \lambda^2 \cdot v \rangle \qquad \text{by the remark above}$$

$$= \bar{\lambda}^2 \cdot \langle v, v \rangle \qquad \text{by (L2)}.$$

Since $v \neq 0$ we have $\langle v, v \rangle > 0$ by **(P)** and so the above equation implies $\lambda \cdot \bar{\lambda} = \bar{\lambda}^2$ and therefore $\lambda = \bar{\lambda}$, *i.e.* $\lambda \in \mathbb{R}$.