### **Heart Disease Risk Assessment - API Reference**

#### **Base URL**

Production: https://heartdisease.duminduthushan.com API Docs: https://heartdisease.duminduthushan.com/docs

#### **Overview**

RESTful API for cardiovascular risk assessment using machine learning ensemble models. All endpoints return JSON responses with comprehensive error handling.

#### **Authentication**

Currently open access for demonstration purposes. JWT authentication framework ready for implementation.

## **Rate Limiting**

- Standard Rate: 100 requests per minute per IP address
- Batch Processing: Limited to 100 patients per request
- Concurrent Connections: Up to 50 simultaneous connections

## **Content Type**

All requests and responses use (Content-Type: application/json)

# **API Endpoints**

#### **Health Check**

Monitor service health and system status.

http

GET /health

### **Response Example:**

json

```
"status": "healthy",
"timestamp": "2025-08-30T15:30:00Z",
"version": "1.0.0",
"model_loaded": true,
"database_connected": true,
"uptime_seconds": 86400
}
```

#### **Response Fields:**

- (status): Service health status (healthy/degraded/unhealthy)
- (timestamp): Current server timestamp in ISO format
- (version): API version identifier
- (model\_loaded): ML model availability status
- (database\_connected): Database connectivity status
- (uptime\_seconds): Service uptime in seconds

#### **Model Information**

Retrieve detailed information about the ML model and its performance.

```
http

GET /model/info
```

### **Response Example:**

json

```
"model_name": "EnsembleClassifier",
"model_version": "v1.0.0",
"training_date": "2025-08-30",
"performance_metrics": {
 "accuracy": 0.8689,
 "precision": 0.8125,
 "recall": 0.9286,
 "f1_score": 0.8667,
 "auc_roc": 0.9535
"feature_names": [
 "age", "sex", "cp", "trestbps", "chol", "fbs",
 "restecg", "thalach", "exang", "oldpeak",
 "slope", "ca", "thal", "age_group",
 "bp_category", "chol_category", "hr_reserve",
 "age_chol_interaction", "bp_age_interaction",
 "composite_risk"
],
"total_features": 20,
"training_dataset_size": 303
```

# **Single Patient Prediction**

Assess cardiovascular risk for an individual patient.

```
http

POST /predict
Content-Type: application/json
```

### **Request Body:**

| json |  |
|------|--|
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |

```
"age": 63,
"sex": 1,
"cp": 3,
"trestbps": 145,
"chol": 233,
"fbs": 1,
"restecg": 0,
"thalach": 150,
"exang": 0,
"oldpeak": 2.3,
"slope": 0,
"ca": 0,
"thal": 1
```

#### **Parameter Definitions:**

- (age): Patient age (18-120 years)
- (sex): Biological sex (0=Female, 1=Male)
- (cp): Chest pain type (0=Typical angina, 1=Atypical angina, 2=Non-anginal pain, 3=Asymptomatic)
- (trestbps): Resting blood pressure (80-250 mm Hg)
- (chol): Serum cholesterol (100-600 mg/dl)
- (fbs): Fasting blood sugar (0=≤120 mg/dl, 1=>120 mg/dl)
- (restecg): Resting ECG (0=Normal, 1=ST-T abnormality, 2=LVH)
- (thalach): Maximum heart rate achieved (60-220 bpm)
- (exang): Exercise induced angina (0=No, 1=Yes)
- (oldpeak): ST depression induced by exercise (0.0-10.0 mm)
- (slope): Peak exercise ST segment slope (0=Upsloping, 1=Flat, 2=Downsloping)
- (ca): Number of major vessels (0-4)
- (thal): Thalassemia (1=Normal, 2=Fixed defect, 3=Reversible defect)

### **Response Example:**

json

```
"prediction": 1,
"probability": 0.7845,
"risk_percentage": 78.45,
"risk_category": "high",
"confidence": 89.23,
"interpretation": {
 "sex": "Male",
 "cp": "Asymptomatic",
 "age_risk": "Advanced age (>65) - Higher risk factor",
 "cholesterol_risk": "High cholesterol (>240) - Major risk factor",
 "bp_risk": "High blood pressure (>140) - Major risk factor"
},
"recommendations": [
 "High risk detected - immediate medical consultation recommended",
 "Consider comprehensive cardiac evaluation",
 "High blood pressure detected - consult physician for management",
 "High cholesterol (>240) - Major risk factor",
 "Regular moderate exercise beneficial for heart health",
 "Maintain healthy diet rich in fruits and vegetables"
```

#### **Response Fields:**

- (prediction): Binary prediction (0=No disease risk, 1=Disease risk)
- (probability): Probability of heart disease (0.0-1.0)
- (risk\_percentage): Risk percentage (0-100%)
- (risk\_category): Risk stratification (low/medium/high)
- (confidence): Model confidence score (0-100%)
- (interpretation): Medical interpretation of key risk factors
- (recommendations): Personalized health recommendations

#### **Batch Patient Prediction**

Process multiple patients simultaneously for population health analysis.

```
http

POST /predict/batch

Content-Type: application/json
```

### **Request Body:**

```
{
    "patients": [
    {
        "age": 63, "sex": 1, "cp": 3, "trestbps": 145, "chol": 233,
        "fbs": 1, "restecg": 0, "thalach": 150, "exang": 0,
        "oldpeak": 2.3, "slope": 0, "ca": 0, "thal": 1
    },
    {
        "age": 37, "sex": 0, "cp": 0, "trestbps": 110, "chol": 180,
        "fbs": 0, "restecg": 0, "thalach": 170, "exang": 0,
        "oldpeak": 0.5, "slope": 1, "ca": 0, "thal": 2
    }
    l,
        "return_detailed": true
}
```

### **Request Parameters:**

- (patients): Array of patient objects (max 100 patients)
- (return\_detailed): Include detailed analysis in response (optional, default: true)

### **Response Example:**



```
"total_patients": 2,
"predictions": [
  "prediction": 1,
  "probability": 0.7845,
  "risk_percentage": 78.45,
  "risk_category": "high",
  "confidence": 89.23,
  "interpretation": { /* detailed interpretation */ },
  "recommendations": [ /* personalized recommendations */]
  "prediction": 0,
  "probability": 0.1234,
  "risk_percentage": 12.34,
  "risk_category": "low",
  "confidence": 91.56,
  "interpretation": { /* detailed interpretation */ },
  "recommendations": [/* personalized recommendations */]
"summary": {
 "total_processed": 2,
 "average_risk": 45.4,
 "risk_distribution": {
  "low": 1,
  "medium": 0,
  "high": 1
 "high_risk_count": 1,
 "high_risk_percentage": 50.0
```

# **Sample Data Endpoint**

Retrieve sample patient data for testing and integration.

```
http

GET /predict/sample
```

### **Response Example:**

```
json
 "sample_input": {
  "age": 63,
  "sex": 1,
  "cp": 3,
  "trestbps": 145,
  "chol": 233,
  "fbs": 1,
  "restecg": 0,
  "thalach": 150,
  "exang": 0,
  "oldpeak": 2.3,
  "slope": 0,
  "ca": 0,
  "thal": 1
 "prediction": {
  "prediction": 1,
  "risk_percentage": 78.45,
  "risk_category": "high"
```

## **Error Handling**

#### **HTTP Status Codes**

- (200 OK): Successful request
- (400 Bad Request): Invalid input parameters
- 422 Unprocessable Entity: Validation errors
- (429 Too Many Requests): Rate limit exceeded
- (500 Internal Server Error): Server processing error
- (503 Service Unavailable): Service temporarily unavailable

## **Error Response Format**

```
json
```

```
"error": "validation_error",
"message": "Age must be between 18 and 120 years",
"details": {
    "field": "age",
    "value": 150,
    "constraint": "must be <= 120"
},
"timestamp": "2025-08-30T15:30:00Z"
}</pre>
```

# **Common Error Types**

- (validation\_error): Invalid input parameter values
- (rate\_limit\_exceeded): Too many requests
- (model\_unavailable): ML model loading error
- (processing\_error): Internal prediction error

# **Integration Examples**

## **Python Integration**



```
import requests
import json
def predict_heart_disease_risk(patient_data):
  """Predict heart disease risk for a patient."""
  url = "https://heartdisease.duminduthushan.com/predict"
  try:
    response = requests.post(url, json=patient_data, timeout=10)
    response.raise_for_status()
    return response.json()
  except requests.exceptions.RequestException as e:
    print(f"API request failed: {e}")
    return None
# Example usage
patient = {
  "age": 65,
  "sex": 1,
  "cp": 3,
  "trestbps": 160,
  "chol": 280,
  "fbs": 1,
  "restecg": 0,
  "thalach": 140,
  "exang": 1,
  "oldpeak": 2.5,
  "slope": 2,
  "ca": 1,
  "thal": 2
result = predict_heart_disease_risk(patient)
if result:
  print(f"Risk: {result['risk_percentage']:.1f}%")
  print(f"Category: {result['risk_category']}")
```

# **JavaScript Integration**

javascript

```
async function predictHeartDiseaseRisk(patientData) {
 try {
  const response = await fetch('https://heartdisease.duminduthushan.com/predict', {
   method: 'POST',
   headers: {
    'Content-Type': 'application/json',
   body: JSON.stringify(patientData)
  });
  if (!response.ok) {
   throw new Error(`HTTP error! status: ${response.status}`);
  const result = await response.json();
  return result;
 } catch (error) {
  console.error('API request failed:', error);
  return null;
// Example usage
const patient = {
 age: 65,
 sex: 1,
 cp: 3,
 // ... other parameters
};
predictHeartDiseaseRisk(patient)
 .then(result => {
  if (result) {
   console.log(`Risk: ${result.risk_percentage.toFixed(1)}%`);
   console.log(`Category: ${result.risk_category}`);
  }
 });
```

## **cURL Examples**

bash

```
# Health check
curl -X GET "https://heartdisease.duminduthushan.com/health"
# Single prediction
curl -X POST "https://heartdisease.duminduthushan.com/predict" \
  -H "Content-Type: application/json" \
  -d '{
    "age": 65,
    "sex": 1,
    "cp": 3,
    "trestbps": 160,
    "chol": 280,
    "fbs": 1,
    "restecg": 0,
    "thalach": 140,
    "exang": 1,
    "oldpeak": 2.5,
    "slope": 2,
    "ca": 1,
    "thal": 2
  }'
# Model information
curl -X GET "https://heartdisease.duminduthushan.com/model/info"
```

# **Performance Specifications**

- Response Time: <2 seconds for single predictions
- **Batch Processing**: <1 second per patient
- **Availability**: 99.9% uptime SLA
- Throughput: 100+ concurrent requests supported

# **Security Considerations**

- All communications encrypted with TLS 1.3
- Input validation prevents malicious payloads
- Rate limiting prevents abuse
- No patient data stored permanently
- CORS configured for web applications

# **Support and Feedback**

For technical support, integration assistance, or to report issues:

- API Documentation: <a href="https://heartdisease.duminduthushan.com/docs">https://heartdisease.duminduthushan.com/docs</a>
- Interactive testing available in Swagger UI
- Monitor service status via health endpoint