Course 5

The theory of electric circuits - Second part of the course Cap. 1. Basic notions

The electric cincuits can be passive (no sources) plangest transversal dimention of

Penetration depth (conductivity)
(adancime de patrundere) magnetic
permeability Lumped circuit conditions (circuite ou elemente concentrate)

Rength of circuit l ZZ N = C- light speed

xavelength & frequency

(g=50 Hz => N = 6000 km => l ≤ 60 km)

1.1. Ideal circuit elements (Elmente de circuit ideale)

1) Ideal resistor

Ub Paraday law:

ep = dosp

Pezistenta ideala = s R = 0, L=0, C=0

inductivity capacity (inductivitate) (capacitate)

, \$ Sp = L.i = 0 = s ep = 0

Ohm's law: ep = ug - ub

e et = R.i (tensiumea de -a lungul finului conducta)

tensilunea la borne

2) Ideal inductor

 $P = \mu_b, i = R. i^2 > 0$ (Youle law)

Tpower (putere) L
Simbol bobina (cail): _m_ or ____

 $e_{\Gamma} = -\frac{d\phi_{S\Gamma}}{dt}$, $\phi_{S\Gamma} = L \cdot i = , e_{\Gamma} = -L \cdot \frac{di}{dt}$

 $e_{\Gamma} = u_{g} - u_{b}$ $\int_{0}^{\infty} = 0 - L \cdot \frac{di}{dt} = -u_{b} = 0 \quad \text{if } = L \cdot \frac{di}{dt}$ Mg = R. i = 0

P = d Wmg = d (Lil 20

Wing - energie magne tica (aush)

L = 0, R = 0, C= 0

3. Ideal capacitor er = - desp ; der = L.1 = 0 = s er = 0 Mb (The C) Mc et= me+mc-mp => mc=mp $i = \frac{2}{4} = \lambda u_c = \frac{2}{c}$ $i = \frac{2}{dt} = \lambda 2(t) = \int i(t) dt$ 0 R.i. C +0, R=0, L=0 $= \lambda u_b = \frac{2}{c} = \frac{1}{c} \int i(t) \cdot dt$ = $p = \frac{dWd}{dt} = \frac{d}{dt} \left(\frac{c \cdot u^2}{2}\right) \ge 0$ 4. Ideal voltage source (pursa de tensiune) E-constant, indiffrent de ideal characteristic

Treal characteristic valoarea curentului Se cunoaste: valoarea tensiuni furnisate de surse Necunoscut: curentul ce circulo prin sursa (depinde de configuratia circuitului din care face parte sursa) 5. Ideal current source (sursa de curent) I - constant, indifférent de valoares lens real | ideal Simboluri : We know the value of the current given by the source Unknown: the voltage drop on the current source (depends on the circuit's configuration) lapl. Sinusoidal quantities Definitions. Characteristic values. Let i(t) be a periodic function: i(t) = i(t+T) T - perioada semnalului; $g = \frac{1}{T} - fuguency (fucuență)$ $\omega = 2 \text{ Ji } f = \frac{2 \text{ Ji}}{T} = 2 \text{ Ji} \quad \omega = 2 \text{ Ji} \quad \omega = \text{angular frequency (pulsative)}$

R.M.S. (Root mean square) value $= \frac{1}{t_2 - t_1} \int_{t_1} i(t) \cdot dt = \frac{1}{t_1} \int_{t_1} i(t) \cdot dt - \frac{1}{t_1} \int_{t_1} i(t) \cdot d$ Now, let i(t) be a sinusoidal function: $i(t) - I_m \cdot \sin(\omega t + \delta)$ = the phase of the quantity (current)
epoch angle or initial phase (fasa initials a semnalului) For a sinusoidal quantity: $= \frac{1}{T} \int_{A} i(t) \cdot dt = \frac{1}{T} \int_{A} I_{m} \sin(\omega t + \delta) \cdot dt =$ $= -\frac{Im}{\omega T} \cdot \cos(\omega t + 8) \Big|_{t_1}^{t_1 + T} = \frac{Im}{\omega t} \Big[-\cos(\omega t_1 + \omega T + 8) + \frac{1}{\omega t} \Big]_{t_1}^{t_1 + T} = \frac{Im}{\omega t} \Big[-\cos(\omega t_1 + \omega T + 8) + \frac{1}{\omega t} \Big]_{t_1 + T}^{t_1 + T} = \frac{Im}{\omega t} \Big[-\cos(\omega t_1 + \omega T + 8) + \frac{1}{\omega t} \Big]_{t_1 + T}^{t_1 + T} = \frac{Im}{\omega t} \Big[-\cos(\omega t_1 + \omega T + 8) + \frac{1}{\omega t} \Big]_{t_1 + T}^{t_1 + T}$ $I' = \frac{1}{T} \int I_m^2 \sin^2(\omega t + 8) dt = \frac{1}{T} \cdot I_m^2 \cdot \int [1 - \cos(2\omega t + 2\delta)] dt = \frac{1}{T} \cdot \int I_m^2 \cdot \int [1 - \cos(2\omega t + 2\delta)] dt = \frac{1}{T} \cdot \int I_m^2 \cdot \int [1 - \cos(2\omega t + 2\delta)] dt = \frac{1}{T} \cdot \int I_m^2 \cdot \int [1 - \cos(2\omega t + 2\delta)] dt = \frac{1}{T} \cdot \int I_m^2 \cdot \int [1 - \cos(2\omega t + 2\delta)] dt = \frac{1}{T} \cdot \int I_m^2 \cdot \int [1 - \cos(2\omega t + 2\delta)] dt = \frac{1}{T} \cdot \int I_m^2 \cdot \int [1 - \cos(2\omega t + 2\delta)] dt = \frac{1}{T} \cdot \int I_m^2 \cdot \int [1 - \cos(2\omega t + 2\delta)] dt = \frac{1}{T} \cdot \int I_m^2 \cdot \int [1 - \cos(2\omega t + 2\delta)] dt = \frac{1}{T} \cdot \int I_m^2 \cdot \int [1 - \cos(2\omega t + 2\delta)] dt = \frac{1}{T} \cdot \int I_m^2 \cdot \int [1 - \cos(2\omega t + 2\delta)] dt = \frac{1}{T} \cdot \int [1 - \cos(2\omega t +$ $= \frac{\prod_{n=1}^{\infty} \left[\int_{0}^{\infty} dt + \int_{0}^{\infty} \cos(2\omega t + 2\delta) dt \right]}{2} = \frac{\prod_{n=1}^{\infty}}{2}$ val med pe o perioado = 0 => $i(t) = \sqrt{2.1} \cdot \sin(\omega t + 8)$ This form will be used from now on!

```
3/12= 81-82 phase shift (defazaj inte i, sii)
                       igt)
                          re(t)
                                         is - lead (defasat mainte)
                                        iz - lags (defasat in wrma)
                                      in(t) = I1. 52. sin (wt + 51)
                                     iz(t) = Iz. V2. sin (wt+ 82)
                                    812 - the two currents are in phase (sunt in faxa)
                                  812 = ± JT - the two are in oposite phase
   Sin (wt+81)=0
                                                   ( sunt in antifază)
  =>wt+81=0
                                   8/12 = I - quadrature ( anadraturo)
    => 81 = -wt
    => for t 20=> 5/>0!
2.1 Mathematical operations with sinusoidal quantities
a) Multiplication by a scalar (insultire cu un scalar)
    a. ilt) = a. I. 12. sin (wt+8)
     i_1(t) = I_1 \sqrt{2} \sin (\omega t + \delta_1)

i_2(t) = I_2 \sqrt{2} \sin (\omega t + \delta_2) => i(t) = i_1 + i_2 = I. (2 \sin (\omega t + \delta))
b) Addition (adunare)
  with [ I = [I12+ I2+2 I1 I2cos (81-82)
              tg 8= I 1 sin 81 + I2 sin 82
I1. cos 81 + I2. cos 82
  c) berivation (derivare)
        di = d [I 12 sin(wt+8)] = wI. V2. eas (wt+8) = \( \tau \times \) with \( \times \)
         Los leads the initial value by I (accesto mainime e defasata ou II inaintea continue initial)
    d) Integration (integrare)
        Si(t) dt = \int I \sqrt{2} \sin(\omega t + \delta) dt = \frac{I \cdot \sqrt{2}}{\omega} \cdot \cot(\omega t + \delta) = \frac{I \sqrt{2}}{\omega} \cdot \sin(\omega t + \delta - \frac{JI}{2})
                                                                   -\cos d = \sin \left( \frac{1}{2} \right)
          the amplitude is a times smaller
           Lo lags behind the initial value by J
             ( defasat în urma cu JI)
    RLC revies circuit (circuit RLC revie)
                                  u(t) = uR + UL + UC - Ohm's Row
                                    u(t) = U\sqrt{2}\sin(\omega t + \delta_u)
                                     : (+) = I 52 sin (wt + 8i)
```


$$i(t) = \sqrt{2} \cdot \text{I} \cdot \cos(\omega t + \delta) + j \cdot \sqrt{1} \cdot \text{I} \cdot \sin(\omega t + \delta) \quad \text{Euller} : e^{j \cdot \omega} = \cos(\omega t) \cdot \sin(\omega t)$$

$$= \text{i}(t) = \sqrt{1} \text{ in } \left\{ i(t) \right\} \quad \text{imaginary part}$$

$$i(t) = \sqrt{1} \text{ in } \left\{ i(t) \right\} \quad \text{imaginary part}$$

$$i(t) = \omega \cdot \text{i}(t) \Rightarrow i_1(t) + i_2(t)$$

$$i_1(t) + i_3(t) \Rightarrow i_1(t) \Rightarrow i_2(t) \Rightarrow i_2(t) \Rightarrow i_3(t) \Rightarrow i_3(t$$

3) $u(t) = 3.\sqrt{2}$, $aim(\omega t + J)$ $\longrightarrow U = 3.e^{3J} = -3$