System Verification and Validation Plan for SFWRENG 4G06 - Capstone Design Project

Team #7, Wardens of the Wild Felix Hurst Marcos Hernandez-Rivero BoWen Liu Andy Liang

October 8, 2025

Revision History

Date	Version	Notes
Date 1	1.0	Notes
Date 2	1.1	Notes

[The intention of the VnV plan is to increase confidence in the software. However, this does not mean listing every verification and validation technique that has ever been devised. The VnV plan should also be a **feasible** plan. Execution of the plan should be possible with the time and team available. If the full plan cannot be completed during the time available, it can either be modified to "fake it", or a better solution is to add a section describing what work has been completed and what work is still planned for the future. —SS]

[The VnV plan is typically started after the requirements stage, but before the design stage. This means that the sections related to unit testing cannot initially be completed. The sections will be filled in after the design stage is complete. the final version of the VnV plan should have all sections filled in.—SS]

Contents

1	Syn	Symbols, Abbreviations, and Acronyms				
2	Ger	neral Information	1			
	2.1	Summary	1			
	2.2	Objectives	1			
	2.3	Challenge Level and Extras	1			
	2.4	Relevant Documentation	2			
3	Pla	\mathbf{n}	2			
	3.1	Verification and Validation Team	2			
	3.2	SRS Verification	2			
	3.3	Design Verification	3			
	3.4	Verification and Validation Plan Verification	3			
	3.5	Implementation Verification	3			
	3.6	Automated Testing and Verification Tools	3			
	3.7	Software Validation	4			
4	Svs	tem Tests	4			
	4.1	Tests for Functional Requirements	4			
		4.1.1 Area of Testing1	5			
		4.1.2 Area of Testing2	5			
	4.2	Tests for Nonfunctional Requirements	6			
		4.2.1 Area of Testing1	6			
		4.2.2 Area of Testing2	7			
	4.3	Traceability Between Test Cases and Requirements	7			
5	Uni	t Test Description	7			
•	5.1	Unit Testing Scope	7			
	5.2	Tests for Functional Requirements	8			
	0.2	5.2.1 Module 1	8			
		5.2.2 Module 2	9			
	5.3	Tests for Nonfunctional Requirements	9			
	0.0	5.3.1 Module?	9			
		5.3.2 Module ?	9			
	5 4	Traceability Between Test Cases and Modules	10			

6	Appendix		
	6.1	Symbolic Parameters	11
	6.2	Usability Survey Questions?	11
\mathbf{L}	ist	of Tables	
	[Rer	move this section if it isn't needed —SS]	
\mathbf{L}	ist	of Figures	
	[Rer	move this section if it isn't needed —SS	

1 Symbols, Abbreviations, and Acronyms

symbol	description
T	Test

[symbols, abbreviations, or acronyms — you can simply reference the SRS (Author, 2019) tables, if appropriate —SS]

[Remove this section if it isn't needed —SS]

This document ... [provide an introductory blurb and roadmap of the Verification and Validation plan —SS]

2 General Information

2.1 Summary

[Say what software is being tested. Give its name and a brief overview of its general functions. —SS]

2.2 Objectives

[State what is intended to be accomplished. The objective will be around the qualities that are most important for your project. You might have something like: "build confidence in the software correctness," "demonstrate adequate usability." etc. You won't list all of the qualities, just those that are most important. —SS]

[You should also list the objectives that are out of scope. You don't have the resources to do everything, so what will you be leaving out. For instance, if you are not going to verify the quality of usability, state this. It is also worthwhile to justify why the objectives are left out. —SS]

[The objectives are important because they highlight that you are aware of limitations in your resources for verification and validation. You can't do everything, so what are you going to prioritize? As an example, if your system depends on an external library, you can explicitly state that you will assume that external library has already been verified by its implementation team. —SS

2.3 Challenge Level and Extras

[State the challenge level (advanced, general, basic) for your project. Your challenge level should exactly match what is included in your problem statement. This should be the challenge level agreed on between you and the course instructor. You can use a pull request to update your challenge level (in TeamComposition.csv or Repos.csv) if your plan changes as a result of the VnV planning exercise. —SS]

[Summarize the extras (if any) that were tackled by this project. Extras can include usability testing, code walkthroughs, user documentation, formal proof, GenderMag personas, Design Thinking, etc. Extras should have already been approved by the course instructor as included in your problem statement. You can use a pull request to update your extras (in TeamComposition.csv or Repos.csv) if your plan changes as a result of the VnV planning exercise. —SS]

2.4 Relevant Documentation

[Reference relevant documentation. This will definitely include your SRS and your other project documents (design documents, like MG, MIS, etc). You can include these even before they are written, since by the time the project is done, they will be written. You can create BibTeX entries for your documents and within those entries include a hyperlink to the documents.—SS]

Author (2019)

[Don't just list the other documents. You should explain why they are relevant and how they relate to your VnV efforts. —SS]

3 Plan

[Introduce this section. You can provide a roadmap of the sections to come. —SS]

3.1 Verification and Validation Team

[Your teammates. Maybe your supervisor. You should do more than list names. You should say what each person's role is for the project's verification. A table is a good way to summarize this information. —SS]

3.2 SRS Verification

[List any approaches you intend to use for SRS verification. This may include ad hoc feedback from reviewers, like your classmates (like your primary reviewer), or you may plan for something more rigorous/systematic. —SS]

[If you have a supervisor for the project, you shouldn't just say they will read over the SRS. You should explain your structured approach to the review. Will you have a meeting? What will you present? What questions will you ask? Will you give them instructions for a task-based inspection? Will you use your issue tracker? —SS]

[Maybe create an SRS checklist? —SS]

3.3 Design Verification

```
[Plans for design verification —SS]
[The review will include reviews by your classmates —SS]
[Create a checklists? —SS]
```

3.4 Verification and Validation Plan Verification

[The verification and validation plan is an artifact that should also be verified. Techniques for this include review and mutation testing. —SS]

[The review will include reviews by your classmates —SS] [Create a checklists? —SS]

3.5 Implementation Verification

[You should at least point to the tests listed in this document and the unit testing plan. —SS]

[In this section you would also give any details of any plans for static verification of the implementation. Potential techniques include code walk-throughs, code inspection, static analyzers, etc. —SS]

[The final class presentation in CAS 741 could be used as a code walk-through. There is also a possibility of using the final presentation (in CAS741) for a partial usability survey. —SS]

3.6 Automated Testing and Verification Tools

[What tools are you using for automated testing. Likely a unit testing framework and maybe a profiling tool, like ValGrind. Other possible tools include a static analyzer, make, continuous integration tools, test coverage tools, etc. Explain your plans for summarizing code coverage metrics. Linters are another important class of tools. For the programming language you select,

you should look at the available linters. There may also be tools that verify that coding standards have been respected, like flake9 for Python. —SS

[If you have already done this in the development plan, you can point to that document. —SS]

[The details of this section will likely evolve as you get closer to the implementation. —SS]

3.7 Software Validation

[If there is any external data that can be used for validation, you should point to it here. If there are no plans for validation, you should state that here. —SS]

[You might want to use review sessions with the stakeholder to check that the requirements document captures the right requirements. Maybe task based inspection? —SS]

[For those capstone teams with an external supervisor, the Rev 0 demo should be used as an opportunity to validate the requirements. You should plan on demonstrating your project to your supervisor shortly after the scheduled Rev 0 demo. The feedback from your supervisor will be very useful for improving your project. —SS]

[For teams without an external supervisor, user testing can serve the same purpose as a Rev 0 demo for the supervisor. —SS]

[This section might reference back to the SRS verification section. —SS]

4 System Tests

[There should be text between all headings, even if it is just a roadmap of the contents of the subsections. —SS]

4.1 Tests for Functional Requirements

[Subsets of the tests may be in related, so this section is divided into different areas. If there are no identifiable subsets for the tests, this level of document structure can be removed. —SS]

[Include a blurb here to explain why the subsections below cover the requirements. References to the SRS would be good here. —SS]

4.1.1 Area of Testing1

[It would be nice to have a blurb here to explain why the subsections below cover the requirements. References to the SRS would be good here. If a section covers tests for input constraints, you should reference the data constraints table in the SRS.—SS]

Title for Test

1. test-id1

Control: Manual versus Automatic

Initial State:

Input:

Output: [The expected result for the given inputs. Output is not how you are going to return the results of the test. The output is the expected result. —SS]

Test Case Derivation: [Justify the expected value given in the Output field —SS]

How test will be performed:

2. test-id2

Control: Manual versus Automatic

Initial State:

Input:

Output: [The expected result for the given inputs —SS]

Test Case Derivation: [Justify the expected value given in the Output field —SS]

How test will be performed:

4.1.2 Area of Testing2

. . .

4.2 Tests for Nonfunctional Requirements

[The nonfunctional requirements for accuracy will likely just reference the appropriate functional tests from above. The test cases should mention reporting the relative error for these tests. Not all projects will necessarily have nonfunctional requirements related to accuracy. —SS]

[For some nonfunctional tests, you won't be setting a target threshold for passing the test, but rather describing the experiment you will do to measure the quality for different inputs. For instance, you could measure speed versus the problem size. The output of the test isn't pass/fail, but rather a summary table or graph. —SS]

[Tests related to usability could include conducting a usability test and survey. The survey will be in the Appendix. —SS]

[Static tests, review, inspections, and walkthroughs, will not follow the format for the tests given below. —SS]

[If you introduce static tests in your plan, you need to provide details. How will they be done? In cases like code (or document) walkthroughs, who will be involved? Be specific. —SS]

4.2.1 Area of Testing1

Title for Test

1. test-id1

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input/Condition:

Output/Result:

How test will be performed:

2. test-id2

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

4.2.2 Area of Testing2

• • •

4.3 Traceability Between Test Cases and Requirements

[Provide a table that shows which test cases are supporting which requirements. —SS]

5 Unit Test Description

[This section should not be filled in until after the MIS (detailed design document) has been completed. —SS]

[Reference your MIS (detailed design document) and explain your overall philosophy for test case selection. —SS]

[To save space and time, it may be an option to provide less detail in this section. For the unit tests you can potentially layout your testing strategy here. That is, you can explain how tests will be selected for each module. For instance, your test building approach could be test cases for each access program, including one test for normal behaviour and as many tests as needed for edge cases. Rather than create the details of the input and output here, you could point to the unit testing code. For this to work, you code needs to be well-documented, with meaningful names for all of the tests. —SS]

5.1 Unit Testing Scope

[What modules are outside of the scope. If there are modules that are developed by someone else, then you would say here if you aren't planning on verifying them. There may also be modules that are part of your software, but have a lower priority for verification than others. If this is the case, explain your rationale for the ranking of module importance. —SS]

5.2 Tests for Functional Requirements

[Most of the verification will be through automated unit testing. If appropriate specific modules can be verified by a non-testing based technique. That can also be documented in this section. —SS]

5.2.1 Module 1

[Include a blurb here to explain why the subsections below cover the module. References to the MIS would be good. You will want tests from a black box perspective and from a white box perspective. Explain to the reader how the tests were selected. —SS]

1. test-id1

```
Type: [Functional, Dynamic, Manual, Automatic, Static etc. Most will be automatic —SS]
```

Initial State:

Input:

Output: [The expected result for the given inputs —SS]

Test Case Derivation: [Justify the expected value given in the Output field —SS]

How test will be performed:

2. test-id2

```
Type: [Functional, Dynamic, Manual, Automatic, Static etc. Most will be automatic —SS]
```

Initial State:

Input:

Output: [The expected result for the given inputs —SS]

Test Case Derivation: [Justify the expected value given in the Output field —SS]

How test will be performed:

3. ...

5.2.2 Module 2

...

5.3 Tests for Nonfunctional Requirements

[If there is a module that needs to be independently assessed for performance, those test cases can go here. In some projects, planning for nonfunctional tests of units will not be that relevant. —SS

[These tests may involve collecting performance data from previously mentioned functional tests. —SS]

5.3.1 Module?

1. test-id1

```
Type: [Functional, Dynamic, Manual, Automatic, Static etc. Most will be automatic —SS]
```

Initial State:

Input/Condition:

Output/Result:

How test will be performed:

2. test-id2

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

5.3.2 Module?

...

5.4 Traceability Between Test Cases and Modules

[Provide evidence that all of the modules have been considered. —SS]

References

Author Author. System requirements specification. https://github.com/..., 2019.

6 Appendix

This is where you can place additional information.

6.1 Symbolic Parameters

The definition of the test cases will call for SYMBOLIC_CONSTANTS. Their values are defined in this section for easy maintenance.

6.2 Usability Survey Questions?

[This is a section that would be appropriate for some projects. —SS]

Appendix — Reflection

[This section is not required for CAS 741—SS]

The information in this section will be used to evaluate the team members on the graduate attribute of Lifelong Learning.

Team

3. Thankfully, our team had no disagreements during this deliverable and were all on the same page, so this will serve as a response to everyone's Q3.

Andy Liang

- 1. Creating our development plan was crucial for several reasons specific to our ambitious project. First, our game involves complex technical challenges - procedural destructible environments, intelligent slime mold traversal, and physics-based interactions that could compound into performance issues. Without a clear plan, we could easily get lost trying to solve these problems simultaneously. The plan helped us identify our main risk early: ensuring the slime mold behavior works as intended while maintaining performance when combined with our voxel-based destructible environment. By recognizing this upfront, we can focus our proof of concept demonstration on exactly this integration challenge. Additionally, with our diverse team roles (Art Director, Character Artist, Environment Artist, Programmer, Music Director, Composer), coordination is essential. The plan establishes clear communication channels through Discord and GitHub, defines our workflow using pull requests and code reviews, and sets expectations for CI/CD implementation. Without this structure, our different specializations could easily work in isolation and create integration nightmares later. The scheduling aspect also forces us to think realistically about deliverable deadlines and break down our complex technical goals into manageable milestones.
- 2. Early Issue Detection: Given our concern about compounding errors between procedural systems and physics, automated testing can catch integration problems before they become major headaches. Team Coordination: With multiple people working on different systems (art, code, audio), CI/CD ensures everyone's work integrates properly and nobody breaks someone else's features. Code Quality Assurance: Our plan includes unit testing, security checks, and formatting verification,

which is essential when working with C# and Unit.y Performance Monitoring: Since performance is a key risk with our procedural and physics systems, automated performance testing can flag issues early.

BoWen Liu

- 1. Creating a development plan prior to starting the project is essential in aligning the team's goal, and workflow in order to have an realistic and feasible starting point and roadmap on how to proceed in this project.
- 2. CI/CD improves traceability and accountability in one's work both in terms of intra/inter team development as well as for upper management in a business context. The disadvantages to using CI/CD could be low quality of work to meet rigorous and sometimes unrealistic weekly milestones as well as adding unnecessary overhead when committing deliverables.

Felix Hurst

- 1. Creating a development plan prior to starting a project ensures many aspects of proper organization. Everyone in the team knows what tasks they are responsible for, so different team members do not end up trying to do the same work, and know who to contact to ask questions about specific modules. The team has expectations set, including activity, quality, self-imposed deadlines, and meeting schedules. The team is ultimately guided by the development plan in nearly everything they do while working on the project. Without this kind of structure, team members would be spending a lot more time asking questions, causing delays in development. Or, they may underperform compared to the other team members' internal expectations. It is important that everyone is on the same page to minimize the need for future questions and minimize the possibility of conflict within the team.
- 2. The advantages of using CI/CD include:
 - Pull requests could be verified to meet specified tests. This ensures poorly written code is not accepted into the repository.
 - New code could be automatically built into a testable version of the project, making it faster to test.

The disadvantages of using CI/CD include:

- It takes time to set it up and write tests, especially those that are intended to be universal across all newly accepted code.
- It may slow down the process of merging pull requests for minor changes that don't need extra testing.

Marcos Hernandez-Rivero

- 1. Creating a development plan before starting a software engineering group project is essential because it provides a clear roadmap for the team, defining goals, scope, roles, and timelines to keep everyone aligned. It helps prevent confusion, overlap, or missed tasks by assigning responsibilities, establishes coding and documentation standards for consistency, and outlines milestones to manage time effectively. A development plan also anticipates risks to project success, and ideally sets strategies to address them.
- 2. CI/CD allows teams to integrate code frequently, and catch many errors early and automatically, which in the long run improves software quality and reduces the amount of bugs either on release or later down the production workflow. Some notable disadvantages though, are that it requires setting up and maintaining the CI/CD system, which can be time-consuming and/or confusing to many individuals. Additionally, any automated tests need to be thorough so that they act as a reliable tool to ensure code quality.
- 1. What went well while writing this deliverable?
- 2. What pain points did you experience during this deliverable, and how did you resolve them?
- 3. What knowledge and skills will the team collectively need to acquire to successfully complete the verification and validation of your project? Examples of possible knowledge and skills include dynamic testing knowledge, static testing knowledge, specific tool usage, Valgrind etc. You should look to identify at least one item for each team member.
- 4. For each of the knowledge areas and skills identified in the previous question, what are at least two approaches to acquiring the knowledge

or mastering the skill? Of the identified approaches, which will each team member pursue, and why did they make this choice?