《微积分 1》(第一层次)期末试卷 2014.1.2

一、计算下列各题(本题满分6分×8=48分):

1. 计算
$$I = \int x \sqrt{1 + x^2} dx$$
. 2. 计算广义积分 $I = \int_0^{+\infty} \frac{1 - x}{1 + x^3} dx$.

3. 计算
$$I = \int_0^{\pi/2} \sin^3 x dx$$
. 4. 求极限 $\lim_{x \to 0} \frac{1}{\tan x^2} \int_{x/2}^x \frac{e^{xt} - 1}{t} dt$.

5. 求极限
$$I = \lim_{n \to \infty} \frac{1}{n} \sqrt[n]{n(n+1)(n+2)\cdots(2n-1)}$$
.

6. 求连续函数
$$f(x)$$
, 使得 $f(x) = x \arctan x + \frac{1}{1+x^2} \int_0^1 f(x) dx$.

7. 求曲线 $\rho = \sqrt{\sin \theta} (0 \le \theta \le \pi)$ 所围图形的面积.

8. 已知向量
$$\overrightarrow{AB}$$
 = (3,4,0), \overrightarrow{AC} = (5,2,-14), 求等分 $\angle BAC$ 的单位向量.

二、(本题满分 10 分) 1. 证明:
$$f(x) = \frac{x}{\sin x}$$
 为 $(0, \frac{\pi}{2})$ 上的单调增加函数;

2. 证明不等式
$$\frac{\pi^2}{9} < \int_{\pi/6}^{\pi/2} \frac{x}{\sin x} dx < \frac{\pi^2}{6}$$
.

三、(本题满分 10 分)求旋轮线
$$\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t). \end{cases}$$
 $(0 \le t \le 2\pi)$ 与 x 轴所围曲边梯形绕 x 轴

旋转一周所得的旋转体的体积.

四、(本题满分 10 分)设 f(x)为[a,b]上连续单调增加的函数,求证:

$$\int_a^b x f(x) dx \ge \frac{a+b}{2} \int_a^b f(x) dx.$$

五、(本题满分 14 分) 讨论函数 $y = x^{-2}e^{-\frac{1}{x}}$ 的定义域,单调区间,极值,凹向与拐点,渐近线,并作出草图.

六、(本题为非商学院同学做,满分8分)已知函数 f(x)为R上的一阶连续可微的周期函

数,最小正周期为 2π ,且 $|f'(x)| \le 1$,证明:

1. 对任意的连续函数
$$g(x)$$
,有 $\left| \int_0^1 g(x) f'(2\pi x) dx \right| \le \max_{x \in [0,1]} g(x) - \min_{x \in [0,1]} g(x)$;

2. 若 g(x) 满足对任意的 $x_1, x_2 \in [0,1]$,有 $|g(x_1) - g(x_2)| \le |x_1 - x_2|^{1/2}$,则有

$$\lim_{n\to\infty}\int_0^1 g(x)f'(nx)dx = 0$$

七、(本题为商学院同学做,满分8分)设f(x)为R上二阶连续可微函数,且 $f''(x) \ge 0$,

证明: 1. 对任意的 $x, p \in R$, 有 $f(x) \ge f(p) + f'(p)(x-p)$;

2.
$$\exp\left(\int_0^1 (1+f^2(x))dx\right) \le \int_0^1 \exp(1+f^2(x))dx$$
.

《微积分 1》(第一层次)期末试卷 2015.1.7

一、填空(本题满分 7×3=21 分)

1. 吕知
$$\lim_{x\to 0} \frac{\int_0^{x^2} t \arctan(at)dt}{x^6} = 2$$
,则 $a =$ _____;

2. 设
$$f(x) = \int_{1}^{\sqrt{x}} e^{-t^2} dt$$
,则 $\int_{0}^{1} \frac{f(x)}{\sqrt{x}} dx =$ _____ ;

$$3. \int \frac{x \cos x}{\sin^3 x} dx = \underline{\qquad} ;$$

- 4. 设一平面过原点及M(6,-3,2)且与4x-y+2z=8垂直,则该平面的方程为______;
- 5. 己知三点 A(1,0,2), B(2,1,-1), C(0,2,1) ,则三角形 ABC 的面积 $S_{\Delta ABC}$ = ______ ;

6.
$$\lim_{x \to -\infty} (\sqrt{x^2 + 3x + 2} - \sqrt{x^2 - 7x + 5}) =$$
 ;

- 7. 已知广义积分 $\int_{2}^{+\infty} \frac{dx}{x \ln^{k} x}$ 收敛,则 k 的最大取值范围为_____.
- 二、计算下列各题(本题满分 8×5=40 分)

1.
$$\Re \lim_{n\to\infty} \frac{1}{n} \sqrt[n]{n(n+1)(n+2)\cdots(2n-1)}$$
;

2. 设直线 L 的方程为: $\frac{x+1}{4} = \frac{y-2}{-1} = \frac{z-1}{5}$,平面 Π 的方程为: 3x+y+2z+20=0,求直线 L 与平面 Π 的夹角和交点 M;

3. 设连续函数
$$f(x)$$
 满足 $f(x) = x + x^2 \int_0^1 f(x) dx + x^3 \int_0^2 f(x) dx$, 求 $f(x)$;

4. 计算积分
$$\int_0^1 \frac{xe^x}{(1+x)^2} dx$$
; 5. 求曲线 $y = x(1-x^2)$ 与 x 轴所围平面图形的面积;

7. 设
$$\vec{a}$$
, \vec{b} 为非零向量, $|\vec{b}|=1, <\vec{a}$, $\vec{b}>=\pi/3$,求 $\lim_{x\to 0} \frac{|\vec{a}+x\vec{b}|-|\vec{a}|}{x}$;

8. 计算积分
$$\int \frac{1}{\sqrt{1+e^x}} dx$$
.

三、(本题满分 15 分)讨论函数 $f(x) = \left(\frac{1+x}{1-x}\right)^4$ 的定义域,单调区间,极值,凹向与拐点,渐近线,并作出草图.

四、(本题满分 10 分) 求曲线 $y = \ln x$ 的一条切线,使得这条切线与原曲线以及直线 $x = 1, x = e^2$ 所围成的图形面积最小.

六、(本题满分 6 分)设函数 f(x) 是[1,+ ∞)上的可微函数,并且满足 f(1)=1,

$$f'(x) = \frac{1}{x^2 + [f(x)]^2}$$
. 证明: $\lim_{x \to +\infty} f(x)$ 存在并且满足 $\lim_{x \to +\infty} f(x) \le 1 + \frac{\pi}{4}$.

《微积分 1》(第一层次)期末试卷 2016.1.5

一. 计算下列各题(本题满分 10 分×5=50 分)

1. 求极限
$$\lim_{x \to \infty} \left(\sin \frac{1}{x^2} + \cos \frac{1}{x^2} \right)^{3x^2}$$
. 2. 计算积分 $\int x^2 (\ln x)^2 dx$.

3. 计算极限
$$\lim_{x\to 0} \frac{\int_{x^2}^x \frac{\sin xt}{t} dt}{x^2}$$
. 4. 计算积分 $\int_0^1 \ln(x+\sqrt{x^2+1}) dx$.

5. 求过原点且经过两平面
$$\begin{cases} 2x - y + 3z = 8; \\ x + 5y - z = 2 \end{cases}$$
的交线的平面方程 .

6. 计算广义积分
$$\int_0^{+\infty} \frac{\arctan x}{(1+x^2)^{3/2}} dx$$
. 7. 计算极限 $\lim_{n\to\infty} \sin \frac{\pi}{n} \sum_{k=1}^n \frac{n}{n+k}$.

8. 求心脏线
$$r = a(1 + \cos \theta)$$
 的全长 . 9. 设 $f(x) = \frac{1}{x^2 - 2x - 8}$, 求 $f^{(n)}(x)$.

10. 已知
$$|\vec{a}|=4, |\vec{b}|=1, <\vec{a}, \vec{b}>=\frac{\pi}{3}$$
. 求 $\vec{A}=2\vec{a}+\vec{b}, \vec{B}=-\vec{a}+3\vec{b}$ 的夹角 .

二、设
$$f(\ln x) = \frac{\ln(1+x)}{x}$$
, 计算 $\int f(x)dx$. (10分)

三、(本题满分 10 分)已知当 $x \to 0$ 时, $e^x - \frac{1+ax}{1+bx}$ 是关于 x 的 3 阶无穷小, 求常数 a,b 之值.

四、(本题满分 14 分) 讨论函数 $f(x) = \frac{x^3}{(x-1)^2}$ 的定义域,单调区间,极值,凹向与拐点,并作出草图.

五、(本题满分 10 分) 设
$$S(x) = \int_0^x |\cos t| dt$$
,

1. 当n为正整数,且 $n\pi \le x \le (n+1)\pi$ 时证明不等式 $2n \le S(x) \le 2(n+1)$;

2.
$$\Re \lim_{x\to +\infty} \frac{S(x)}{x}$$
.

六、(本题满分 6 分)设函数 f(x) 在[0,1]上连续,在(0,1)内可导,并且存在 M > 0 使得

$$|f'(x)| \le M$$
. 设 n 是正整数, 证明: $\left| \sum_{k=0}^{n-1} \frac{f(k/n)}{n} - \int_0^1 f(x) dx \right| \le \frac{M}{2n}$.

13 级: 一、1.
$$\frac{1}{3}(1+x^2)^{3/2}+C$$
; 2. 0; 3. 2/3; 4. 1/2; 5. 2/e;

6.
$$x \arctan x + \frac{\pi - 2}{4 - \pi} \cdot \frac{1}{1 + x^2}$$
; 7. 1; 8. $\pm \frac{1}{\sqrt{3}} (1, 1, -1)$.

二、略,三、 $5\pi^2$,四、略,五、定义域 $x \neq 0$,单调增区间 $(-\infty,0),(0,\frac{1}{2})$,减区间 $(\frac{1}{2},+\infty)$,最大值 $f(1/2) = 4e^{-2}$,四区间 $(-\infty,0),(0,\frac{3-\sqrt{3}}{6}),(\frac{3+\sqrt{3}}{6},+\infty)$, 凸区间 $(\frac{3-\sqrt{3}}{6},\frac{3+\sqrt{3}}{6})$, 拐点为 $(\frac{3\pm\sqrt{3}}{6},6(2\mp\sqrt{3})e^{-(3\mp\sqrt{3})})$, 渐近线 x=0,y=0 . 图略. 六、七、略

14 级: —、1. 6; 2.
$$e^{-1} - 1$$
; 3. $-\frac{1}{2}(x\csc^2 x + \cot x) + C$; 4. $2x + 2y - 3z = 0$; 5. $\sqrt{50} / 2$; 6. -5 ; 7. $(1, +\infty)$

三、1. 4/e; 2.
$$\pi/3$$
, $M(-5,3,-4)$; 3. $f(x) = x + \frac{3}{8}x^2 - x^3$; 4. $\frac{e}{2} - 1$; 5. $\frac{1}{2}$; 6. $\frac{n!}{(1-x)^{n+1}}$; 7. $\frac{1}{2}$; 8. $\ln \left| \frac{\sqrt{1+e^x} - 1}{\sqrt{1+e^x} + 1} \right| + C$. 三、略.

四、切线方程为:
$$y = \frac{2}{e^2 + 1}x + \ln \frac{e^2 + 1}{2} - 1$$
.

五、设 $x_0 \in [0,1]$,由泰勒公式有: $f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\varsigma)}{2}(x - x_0)^2$,其中 ς 在x与 x_0 之间.将x = 0, x = 1分别代人上式,得

$$0 = f(0) = f(x_0) - f'(x_0)x_0 + \frac{f''(\xi_1)}{2}x_0^2, \ \xi_1 \in (0, x_0) \quad (1)$$

$$0 = f(1) = f(x_0) + f'(x_0)(1 - x_0) + \frac{f''(\xi_2)}{2}(1 - x_0)^2, \ \xi_2 \in (x_0, 1) \quad (2)$$

$$(2) - (1) \quad \langle \exists f'(x_0) = \frac{f''(\xi_1)}{2}x_0^2 - \frac{f''(\xi_2)}{2}(1 - x_0)^2, |f'(x_0)| \leq \frac{M}{2}[x_0^2 + (1 - x_0)^2] \leq \frac{M}{2}.$$

六、因为 $f'(x) = \frac{1}{x^2 + [f(x)]^2} > 0$,所以 f(x) 在 $[1, +\infty)$ 上为严格单调增加函数,当 x > 1 时,

$$f(x) > f(1) = 1$$
,所以 $f'(x) = \frac{1}{x^2 + [f(x)]^2} < \frac{1}{x^2 + 1}$,而 $f(x) = f(1) + \int_1^x f'(t) dt$ $< 1 + \int_1^x \frac{1}{1 + t^2} dt < 1 + \int_1^{+\infty} \frac{1}{1 + t^2} dt = 1 + \frac{\pi}{4}$.故 $f(x)$ 在 $[1, +\infty)$ 上为单调增加有界函数,所以 $\lim_{x \to +\infty} f(x)$ 存在并且满足 $\lim_{x \to +\infty} f(x) \le 1 + \frac{\pi}{4}$.

15级:

$$-1.e^{3}; 2.\frac{1}{3}x^{3} \ln^{2} x - \frac{2}{9}x^{3} \ln x + \frac{2}{27}x^{3} + C; 3.1; 4. \ln(1+\sqrt{2}) - \sqrt{2} + 1;$$

$$5.2x + 21y - 7z = 0; 6.\frac{\pi}{2} - 1; 7.\pi \ln 2; 8.8a; 9.(-1)^{n} \frac{n!}{6} (\frac{1}{(x-4)^{n+1}} - \frac{1}{(x+2)^{n+1}});$$

10.
$$\arccos \frac{-19}{\sqrt{73\times13}}$$
. Ξ , $x - (1 + e^{-x}) \ln(1 + e^{x}) + C$; Ξ , $a = 0.5, b = 0.5$

四、定义域 $x \neq 1$,单调增区间为($-\infty$,1),(3,+ ∞),减区间为 (1 3),极小值f(3) = 27 / 4; 凹区间为 (0,1),(1,+ ∞),凸区间为 ($-\infty$,0),拐点 (0 0),渐近线x=1,y=x+2. 图略

$$\left| \sum_{k=0}^{n-1} \frac{f(k/n)}{n} - \int_{0}^{1} f(x) dx \right| = \left| \sum_{k=0}^{n-1} \left(\frac{f(k/n)}{n} - \int_{k/n}^{(k+1)/n} f(x) dx \right) \right|$$

$$\leq \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} \left| \frac{f(k/n)}{n} - f(x) \right| dx \leq \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} \left| f'(\xi_n)(x - \frac{k}{n}) \right| dx$$

$$\leq M \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} (x - \frac{k}{n}) dx = \frac{M}{2n}.$$