Vyhodnocení uživatelského rozhraní

Vítězslav Beran

Poznámky z

Preece J. et al. Human-Computer Interaction, Addison-Wesley, Wokingham, UK, 1995, ISBN 0-201-62769-8

Obsah

1 Metafory rozhraní

- 1.1 Slovní metafora
- 1.2 Metafora Virtuálním rozhraním
- 1.3 Smíšené metafory
- 1.4 Konceptuální model

2 Vyhodnocení

- 2.1 Cíle
- 2.2 Metody
- 2.3 Pilotní studie
- 2.4 Práva testerů

3 Pozorování uživatele

- 3.1 Přímé pozorování
- 3.2 Nepřímé pozorování
- 3.3 Verbální protokol protokol hlasitého myšlení
- 3.4 Odložený verbální popis
- 3.5 Záznam aktivity

4 Uživatelské názory

- 4.1 Pohovor
- 4.2 Dotazník a průzkum

5 Experimenty a testy

- 5.1 Návrh experimentu
- 5.2 Řešení použitelnosti
- 5.3 Měřené úlohy (benchmark tests)
- 5.4 Uživatelské názory
- 5.5 Kompromisy

6 Interpretační vyhodnocení

- 6.1 Kontextuální průzkum
- 6.2 Společné vyhodnocení
- 6.3 Etnografie

7 Prediktivní vyhodnocení

- 7.1 Simulace využití
- 7.2 Heuristické vyhodnocení
- 7.3 Procházka
- 7.4 Modelování stisků kláves

8 Přehled a srovnání metod

9 Návrh postupu

- 9.1 Postup návrhu řešení čehokoliv
- 9.2 Postup pro vyhodnocení produktu
- 9.3 Co se dá vyhodnocovat

1 Metafory rozhraní

1.1 Slovní metafora

- Popis/pochopení systému pomocí přirovnání k reálnému světu
- Ukázalo se, že takto poučený uživatel mnohem lépe pochopí chování systému

1.2 Metafora Virtuálním rozhraním

- Rozhraní je zobrazeno jako objekty reálného světa
- Kombinuje systém a objekty známé z reálného světa v jednu entitu

1.3 Smíšené metafory

- Možnosti systému jsou větší než možnosti objektů reálného světa, proto systém přináší nové prvky/funkce pro objekty
- Rozšíření představy pracovní plochy o nabídky menu či okna

1.4 Konceptuální model

- Způsoby, jak může být systém chápán různými lidmi (dva základní pohledy: návrhářův a uživatelův)
- Obvykle si uživatel udělá svůj částečný pohled na systém a pak nemůže využít možnosti systému zcela

2 Vyhodnocení

2.1 **Cíle**

- Porozumění reálnému světu
 - Jak uživatel využívá technologii na pracovišti?
 - Můžeme (a jak) vylepšit UI, aby lépe sedělo pracovnímu prostředí?
- Porovnání řešení
 - o Je-li více návrhů, různého rozložení prvků, apod.
- Zaměření na cíl
 - o Je to (cíl) dostatečně dobré?
 - o Často se jedná o konkrétní věc (např. cílový stav), kterou je třeba dosáhnout.
 - o Zlepšení problematických prvků
 - o "Nechť x% nováčků je schopno vytisknout dokument napoprvé."

- Standardizace
 - Srovnání se standardem
 - Odpovídá produkt standardům?

2.2 Metody

	Porozumění reálnému světu	Porovnání řešení	Zaměření na cíl	Standardizace
Pozorování uživatele	•	•	•	
Uživatelské názory	•	•	•	
Experimenty a testy		•	•	•
Interpretační vyhodnocení	•			
Prediktivní vyhodnocení		•	•	

2.3 Pilotní studie

- Menší studie, pomůže se poučit z chyb před provedením hlavní studie
- Zjištění problému, nejasností, nevhodně položených otázek
- Nacvičení technik pro sběr dat (lepší konzistence dat, apod.)

2.4 Práva testerů

- Informovat je o průběhu testu a o využití informací
- Informovat je, že nejsou hodnoceni oni jako testeři, ale produkt (obavy z kritiky)
- Anonymní přístup

3 Pozorování uživatele

- Hlavní problém pozorování může změnit to, co je pozorované (při pozorování "nevidíme" skutečnost, ale naše "vidění" skutečnosti)
- Přímé a nepřímé pozorování

3.1 Přímé pozorování

• Zapisování poznámek, přímá měření časů sekvence akcí

- Výhoda snadná a levná metoda
- Nevýhoda dotěrná metoda, uživatel se nechová přirozeně, je si vědom neustálého sledování
- Nevýhoda pouze jedna možnost pozorování, důležité předem jasně rozhodnout, co se bude sledovat, aby to neuniklo
- Vhodné pro počáteční analýzu neformální zpětná vazba, získání obrazu o způsobu práce

3.2 Nepřímé pozorování

- Využití nahrávacího zařízení video, apod. případná synchronizace s nahrávacím zařízením stisků kláves či interakce
- Promyslet, co chci zjistit různé nastavení nahrávání
 - Kategorizace aktivit celý den po několik týdnů
 - o Hlubší analýza interakce stovky krátkých vzorků
- Opět problém s "pocitem sledování" umístit nahrávací zařízení dostatečně předem, aby si uživatel zvykl na jeho přítomnost
- Problém analýza dat je často časově značně náročná
- Tři typy analýzy
 - o Neformální ukázka existence problémů, konkretizace problémů
 - Analýza zvládnutí úkolu kde leží problémy, co se dá upravit
 - Analýza provedení úkolu měření
 - Frekvence správně zvládnutých úkolů
 - Doba zvládnutí úkolu
 - Frekvence chyb uživatele
 - Čas ztracený různými poznávacími aktivitami (prohlížení si informací na displeji, odpočívání mezi úkony, ...)

3.3 Verbální protokol – protokol hlasitého myšlení

- Uživatel popisuje svoje pozorování, myšlenkové pochody
- Využití více informací tón hlasu, pocity
- Problém zvyšuje zátěž uživatele
- Výzkum ukazuje, že člověk dokáže dělit pozornost pouze na krátkou dobu (do několika minut)
- Nutná podpora uživatele
- Možné řešení spolupráce dvou uživatelů sdílející své myšlenky

3.4 Odložený verbální popis

- Verbální protokol je tvořen až po skončení úkolu, např. komentování záznamu
- Vhodné pro úkoly, kde je potřeba vysoká koncentrace uživatele nebo kde je čas kritický element (např. správa vzdušného prostoru)
- Nutno si uvědomit, že obsah odloženého popisu nebude odpovídat Verbálnímu protokolu

- Bude již zahrnovat vzpomínky, které nebyly při řešení známy
- Uživatel při popisu více racionalizuje

3.5 Záznam aktivity

- Nástroje pro zaznamenávání aktivity uživatele posloupnost událostí (stisk kláves, pohyb myši, aktivita na dotykovém displeji)
- Výhoda neruší uživatele, umožní záznam mnoha dat, možnost analýzy dat rychle a automaticky
- Nevýhoda cena (dost drahé), mnoho dat vede k vágnímu zaměření vyhodnocení, etické problémy

4 Uživatelské názory

4.1 Pohovor

- Strukturovaný předem připravené otázky
- Polo-strukturovaný připravené podotázky, když je třeba rozvést téma
- Přizpůsobivý připraveno několik témat, tazatel následuje osobní postoj dotazovaného

4.2 Dotazník a průzkum

- Otázky uzavřené předdefinovaná množina odpovědí (ano/ne, 1-10, výčet, ...)
- Otázky otevřené dává dotazovanému možnosti odpovědět po svém
- Dotazník by měl být dobře promyšlený a odzkoušený (pilotním průzkumem)
 - o Před tím než bude vyhodnocen větším počtem respondentů
- Před-a-po dotazník uživatel vyplní dotazník před realizaci úkolu (vyjadřuje očekávání) a pak po realizaci úkolu
 - Sledování změn postojů a výkonnosti
- Otázky by měly být jednoznačné a jasně položené
- Úměrná délka dotazníku

5 Experimenty a testy

 Účel experimentu – podle účelu navrhnout, které proměnné se mění, které zůstanou konstantní a které se budou měřit

- Umožňuje studovat vlivy proměnných na navržené řešení
- Hypotéza musí být formulována tak, aby se dala ověřit
- Jaké statistické testy budou využity pro zpracování dat a proč
- Pilotní studie k ověření navrženého experiment ještě před masivním rozšířením

Proměnné

- Nezávislé vstupy uživatele (věk, ...)
- Závislé výstupy uživatele (doba realizace úkolu, počet chyb, ...)

5.1 Návrh experimentu

- Výběr uživatelů tak, aby byly jejich vlastnosti, které jsou důležité pro experiment, rovnoměrně rozloženy (muži/ženy, věk 10/20/30/40 apod.)
- Mějme dvě varianty úloh A a B lišící se v experimentálních podmínkách
- Způsoby přiřazování uživatelů a variant úloh
 - Nezávislé náhodné přiřazování k variantám a úlohám
 - Propojené máme skupinky (pro dvě varianty např. páry) a uživatelé jsou náhodně přiřazování k variantám v rámci skupinky
 - Opakované každý uživatel realizuje všechny varianty
 - Problémy získání zkušeností s úlohou, únava

Revize experimentu

- Nutné podívat se na experiment z pohledu uživatelů
- Při plánování experimentu dbát na
 - Přípravu uživatelů
 - Vliv změny proměnných na výkon uživatelů
 - Složitost struktury úlohy a jejímu porozumění
 - Doba realizace úlohy (vliv únavy a vyčerpání)

Revize výsledků

- Jaká je reálná hodnota/vliv naměřených rozdílů, co to ve skutečnosti znamená?
- Alternativní interpretace výsledků pokusit se nalézt jiná vysvětlení, jiné vlivy
- Konzistence závislých proměnných zjištěná nekonzistence výsledků může znamenat nutnost udělat další, komplexnější testy
- Pozor na přílišné zobecňování výsledků

5.2 Řešení použitelnosti

- Metody vedoucí k produktu, jehož použitelnost je definovaná kvantitativně a předem
- Produkt je pak možno vyhodnotit, splňuje-li definovaná kritéria či nikoliv
 - o Definice cílů použitelnosti pomocí předem jasně definovaných metrik
 - Nastavení úrovně použitelnosti, které je třeba dosáhnout

- o Analýza vlivu navrženého možného řešení
- o Zapracování uživatelovy zpětné vazby do návrhu produktu
- Opakování cyklu návrh-vyhodnocení-návrh dokud není dosažena plánovaná úroveň použitelnosti
- Užitečná platforma pro komunikaci napříč profesemi návrhář, programátor, zákazník, ...
- Problém experimentální podmínky jsou umělé a nerepresentují stav reálného světa

Specifikace použitelnosti (příklad)

Atribut	Koncept měření	Metoda měření	Nejhorší úroveň	Plánovaná úroveň	Nejlepší úroveň	Aktuální stav
První použití	Realizace úlohy	Počet úspěšných realizací	1-2	3-4	8-10	?
Občasné použití	Po 1-2 týdnech	Procento chyb	stejné	50% lepší	Žádné chyby	?
Rychlost učení	Realizace úlohy	První/druhá polovina vyhodnocení	stejné	Druhá lepší	Mnohem lepší	Ş
Zvýhodnění před řešením X	Dotazník	Poměr hodnot	Stejné jako X		Nikdo nechce X	ý

5.3 Měřené úlohy (benchmark tests)

- Pečlivě vystavěné úlohy
- Zaměření pouze na několik málo proměnných
- Ostatní proměnné (prostředí, apod.) je třeba maximálně eliminovat

5.4 Uživatelské názory

• Dotazníky, rozhovory – škála postojů uživatelů, apod.

5.5 Kompromisy

- Definice priorit co může mít vysoký standard na úkor čeho
- Analýza vlivu prvků
 - o Seznam atributů použitelnosti společně s navrženými prvky řešení
 - Procentuální vyjádření důležitosti atributů použitelnosti (to ohodnotí i jednotlivé prvky řešení)
 - Hodnoty ukážou silné a slabé stránky prvků řešení navázaných na konkrétní atributy

6 Interpretační vyhodnocení

- Interpretace je důležitější než holá data
- Vědomosti žijí v praktickém jednání (v akci)
- Konání dostává smysl až v určitém kontextu
- Odklon od objektivního vyhodnocení k subjektivní interpretaci uživatele v kontextu studie
 - o Namísto definice jasných cílů a způsobů jejich měření
 - Užitečnost výsledků vyhodnocení pro lidi pracující s produktem
- Porozumění komplexním interakcím a vlivům
- Uživatel a výzkumník spolupracují na nalezení a porozumění problémům použitelnosti ve skutečném pracovním prostředí

6.1 Kontextuální průzkum

- Problémy použitelnosti v reálném pracovním prostředí
 - o Namísto přesně definovaného uzavřeného systému při laboratorních experimentech
- Rozdíly mezi reálným a laboratorním prostředím z pohledu uživatele
 - Obsah v běžném životě se obsah úlohy může lišit o laboratorní situace
 - o Čas uživatel si může volit kroky řešení podle sebe, ne podle zadavatele
 - o Motivace prostor k vyjednávání a seberealizaci v laboratoři není
 - Sociální v laboratoři není sociální spolupráce a podpora
- Co nás může zajímat?
 - Struktura a jazyk používaný v reálném prostředí (v práci)
 - o Individuální a skupinové záměry a konání
 - Kultura ovlivňující práci
 - Vnitřní a vnější stránka práce

6.2 Společné vyhodnocení

- Uživatel je zahrnut do procesu rozhodování o tom, co a jak bude vyhodnoceno
- Experiment probíhá tak, že zadavatel diskutuje s uživatelem
 - Rovnou zjišťuje, jak a co uživatel vnímá
 - o Radí, pomáhá, doporučuje
- Úloha odpovídá skutečné situaci, zadává si ji uživatel
- Uživatel během práce rovnou říká problémy použitelnosti
- Po skončení proběhne rekapitulace a ověření zaznamenaných poznámek (bylo poznamenáno to, co uživatel skutečně myslel?)

6.3 Etnografie

Získání vhledu do problémů práce ve skutečném prostředí uživatele

- Porozumění situace z pohledu uživatele
- Např. mnohonásobná analýza videozáznamu, jednotlivec či ve skupině, více verzí popisu situace, ...
- Databáze aktivit pro jejich klasifikaci či kategorizaci

7 Prediktivní vyhodnocení

- Inspektor je expert v HCI i v aplikaci a není součástí projektu
- Získání osobních zpráv k nalezeným problémům
 - Strukturovaný report inspektor specifikuje problémy, jejich zdroj, vliv a případná opatření
 - Nestrukturovaný report pouze výsledky sledování, kategorizace je provedena později
 - Předdefinované kategorie zpráva obsahuje výskyty problémů v předdefinovaných kategoriích

7.1 Simulace využití

- Cílem je dohledání problémů užitelnosti systému
- Experti simulují chování méně poučených uživatelů

7.2 Heuristické vyhodnocení

- Zkusmé řešení problému
- Využití expertního odhadu
- Sledované atributy
 - Využití jazyka uživatele, přirozenost a jednoduchost jazyka
 - o Minimální zátěž na uživatelovu paměť
 - o Konzistence
 - Poskytování zpětné vazby
 - o Poskytování chybových hlášek, klávesových zkratek
 - o Inspekce přechodů z obrazovky na obrazovku

7.3 Procházka

- popisuje úvahy o procesu na abstraktní úrovni
- pečlivá definice úloh podle specifikace systému nebo makety obrazovky

7.4 Modelování stisků kláves

- Vyžaduje přesnou specifikaci funkčnosti sytému, nebo alespoň analyzované části systému
- Analýza úlohy, seznám úkonů a jejich rozdělení do pod-úkonů
- Měření časů provedení atomických kroků
 - Stisk klávesy, zacílení myši, začátek (např. položení ruky na myš), tažení myši, přemýšlení, odezva systému
- Z průměrných (známých) časů těchto kroků se dá odhadnout časová cena úkonů navrhovaného rozhraní

8 Přehled a srovnání metod

• Vyřešení požadovaného cíle: stačí to?

• Srovnání různých návrhů: který je lepší?

• Porozumění skutečné situaci: jak se řešení chová v reálném světě?

• Splňuje produkt standard?

	Pozorování uživatele	Experimenty a testy	Uživatelské názory	Interpretační vyhodnocení	Prediktivní vyhodnocení
Účel	Porozumění skutečnému prostředí, porovnání řešení, řešení požadovaného cíle	Srovnání se standardem, porovnání řešení, řešení požadovaného cíle	Využitelné pro mnoho různých účelů	Pouze porozumění přirozenému použití	Řešení požadovaného cíle, test na přizpůsobivost
Fáze vývoje rozhraní	Jakákoliv fáze vývoje	Alespoň funkční prototyp	Kdykoliv	Funkční systém	Obvykle, existuje-li specifikace nebo model
Účast uživatele	Ano, navíc spolupráce na řízení úkonů	Ano, ale žádná nebo minimální spolupráce řízení	Ano, ale bez spolupráce řízení	Ano, ale bez spolupráce řízení	Ne
Typ dat	Analýza záznamů (video, audio), kvantitavní (čísla) i kvalitativní (názory) data	Důraz na kvantitativní data	Důraz na kvantitativní data (dotazníky), ale i kvalitativní (rozhovory)	Kvalitativní data	Občas kvalitativní, ale především kvantitativní
Praktická kritéria	Výhodné (ne nezbytné) mít	Laboratorní podmínky	Žádné	Není třeba vybavení, může	Žádné

	speciální vybavení	výhodou		se využít video	
Výhody	Široce využitelné, zdůrazní potíže	Výsledky měření pro řízení návrhu	Levné	Odhaluje, co se skutečně děje na pracovišti	Většinou nevyžaduje funkční systém
Nevýhody	Ovlivňuje chování uživatele	Vyžaduje drahé vybavení	Můžou mít nízkou vypovídající hodnotu	Vyžaduje sociologickou expertízu	Některé formy mají velmi úzké zaměření

9 Návrh postupu

9.1 Postup návrhu řešení čehokoliv

- Cílový stav co je cílem Vašeho konání, čeho chcete docílit
 - o Představte si, že se nacházíte v budoucnu a cíl je dávno perfektně splněn/vyřešen.
 - Jak vypadá tento cíl/stav? Jak vypadá toto skvělé řešení?
 - Odprostěte se od toho, co je teď, od dosavadních omezení
 - Zpracujte cíle do seznamu cílových stavů
- Současný stav zaměřte se nyní na realitu, jaká je skutečnost, kde se nacházíte na cestě k cíli
 - Co teď máte k dispozici? Co se děje teď? Jaký je aktuální stav?
 - Můžete využít číselné ohodnocení jednotlivých témat (např. 0-10, 0 úplně na začátku, 10 – cílový stav)
- Možnosti sepište, jaké jsou možnosti, aby se současný stav alespoň o kousek posunul k cílovému stavu
 - o Co se dá udělat? Co můžete udělat Vy? Co může udělat někdo jiný?
 - Vaše myšlenky nerecenzujte, zaznamenávejte cokoliv Vás napadne, detailní možnosti stejně jako zcela obecné, i blbosti, vše
 - o Můžete uvést, jaké jsou výhody či cena jednotlivých možností
- Akce nakonec je potřeba vydefinovat konkrétní akční kroky vedoucí k cíli
 - Sepište seznam konkrétních kroků
 - U každého kroku uveďte, kdy a kým bude krok realizován
 - Je dobré zmínit, co nebo kdo může pomoci krok realizovat

9.2 Postup pro vyhodnocení produktu

Příklad postupu využití technik vyhodnocení. Nejedná se o univerzální postup. Není správnější než jinak navržené postupy.

- Náhled/nadhled na produkt
 - o Pilotní studie formou Interpretační vyhodnocení
 - o Kdo jsou uživatelé produktu?
 - Jak uživatel chápe produkt? Jak ho používá? Co je pro něj na produktu stěžejní?
 - o Techniky Prediktivní vyhodnocení
- Příprava a návrh
 - o Cíle (funkce) produktu, jejich priority
 - o Prvky rozhraní realizující cíle produktu
- Experimenty a testy
 - Dotazy jak na experta, tak na uživatele
 - Popis úlohy, cíle produktu
 - Popis skupin uživatelů produktu
 - První cíle a kroky
 - Seznam akcí
 - Pozorování uživatele (v pracovním prostředí), Uživatelské názory (laboratoř i reálné prostředí), Měřené úlohy (benchmark tests) (v laboratoři)

0

9.3 Co se dá vyhodnocovat

Typy na možné testy a experimenty, různé cíle vyhodnocení, apod.

• Důležitost zaučení uživatele, kdy se vyplatí udělat trénink a na jaké téma, vztah výkonnosti mezi skupinou a úlohou (které skupině uživatelů jdou jaké úlohy lépe či hůře)

•