HARJOITUKSIA

1. Tee laskelma, jolle annetaan lähtöarvoina mekaanisen värähtelijän

massa m, jousivakio k, alkupaikka x_0 ja alkunopeus v_0 , ja joka laskee sen kulmataajuuden $\omega = \sqrt{k/m}$, jakson $T = 2\pi/\omega$, amplitudin A ja vaihekulman ϕ

ja piirtää sen paikan $x = A \sin(\omega t + \phi)$ kuvaajan kolmen jakson ajalta eli välillä $t = 0 \dots 3T$.

 ${\bf 2.}$ Tee laskelma, jolle annetaan lähtöarvoina RLC-piirin R,L,C,ω ja I

ja joka laskee jännitteiden

$$u_R = RI\sin(\omega t)$$

$$u_L = \omega L I \sin(\omega t + \pi/2)$$

$$u_C = \frac{I}{\omega C} \sin(\omega t - \pi/2)$$

summan

$$u = u_R + u_L + u_C = A\sin(\omega t + \theta)$$

amplitudin A ja vaihekulman θ

ja piirtää allaolevan näköiset kuvat:

3. Tee laskelma, jolle annetaan kulmataajuus ω ja pisteet $[t_1,y_1]$ ja $[t_2,y_2]$, ja joka etsii niiden kautta kulkevan sinikäyrän

$$y = A\sin(\omega t + \phi)$$

amplitudin A ja vaihekulman ϕ , ja piirtää allaolevan näköisen kuvan.

ohje: Etsi sinikäyrä ensin muodossa

$$y = C\cos(\omega t) + D\sin(\omega t)$$

eli etsi kertoimet C ja D ratkaisemalla yhtälöpari

$$\begin{cases} C\cos(\omega t_1) + D\sin(\omega t_1) = y_1 \\ C\cos(\omega t_2) + D\sin(\omega t_2) = y_2 \end{cases}$$

Amplitudin A ja vaihekulman ϕ saat sitten allaolevan kuvan mukaisesti:

Kyseessä on sinikäyrien yhteenlasku:

$$C\cos(\omega t) + D\sin(\omega t)$$

$$= C\sin(\omega t + \pi/2) + D\sin(\omega t)$$

$$= A\sin(\omega t + \phi)$$