

Electrical and Electronic Circuits

chapter 3. Node and Mesh Analysis

Afarghadan@aut.ac.ir

Objectives of the Lecture

➤ Provide step-by-step instructions for nodal analysis, which is a method to calculate node voltages and currents that flow through components in a circuit.

➤ Provide step-by-step instructions for mesh analysis, which is a method to calculate voltage drops and mesh currents that flow around loops in a circuit.

Circuit Analysis

right as circuits get more complicated, we need an organized method of applying KVL, KCL, and Ohm's

▶nodal analysis assigns *voltages* to each node, and then we apply *KCL*

mesh analysis assigns currents to each mesh, and then we apply KVL

The Nodal Analysis Method

Technique to find currents at a node using Ohm's Law and the potential differences between nodes.

* First result from nodal analysis is the determination of node voltages (voltage at nodes referenced to ground).

Second result is the calculation of the currents.

The Nodal Analysis Method

• Assign voltages to every node relative to a reference node

• In this example, there are three nodes

Choosing the Reference Node

- as the bottom node, or
- as the ground connection, if there is one, or
- a node with many connections

• assign voltages relative to reference

Apply KCL to Find Voltages

 \triangleright Apply KCL to node 1 (Σ out = Σ in) and Ohm's law to each resistor:

Note: the current flowing out of node 1 through the 5 Ω resistor is

$$v_1 - v_2 = i5$$

Steps in Node Analysis

- Steps in Nodal Analysis
 - 1. Pick one node as a reference node
 - 2. Label the voltage at the other nodes
 - 3. Label the currents flowing through each of the components in the circuit
 - 4. Use Kirchoff's Current Law
 - 5. Use Ohm's Law to relate the voltages at each node to the currents flowing in and out of them.
 - 6. Solve for the node voltage
 - 7. Once the node voltages are known, calculate the currents.

Example: Nodal Analysis

Find the current *i* in the circuit.

Answer: i = 0 (since $v_1 = v_2 = 20 \text{ V}$)

Nodal Analysis: Dependent Source Example

Determine the power supplied by the dependent source.

Key step: eliminate i_1 from the equations using $v_1 = 2i_1$

Answer: 4.5 kW

Voltage Sources and the Supernode

> What is the current through a voltage source connected between nodes?

We can eliminate the need for introducing a current variable by applying KCL to the supernode.

The Supernode

- •Apply KCL at Node 1.
- •Apply KCL at the supernode.
- •Add the equation for the voltage source inside the supernode.

$$\frac{v_1 - v_3}{4} + \frac{v_1 - v_2}{3} = -3 - 8$$

$$\frac{v_2}{1} + \frac{v_2 - v_1}{3} + \frac{v_3}{5} + \frac{v_3 - v_1}{4} = -(-25) - (-3)$$

$$v_3 - v_2 = 22$$

Dependent Source Example

Find i_1

Answer: $i_1 = -250 \text{ mA}$.

Mesh Analysis: Nodal Alternative

- > a mesh is a loop which does not contain any other loops within it
- in mesh analysis, we assign currents and solve using KVL
- >assigning mesh currents automatically ensures KCL is followed
- >this circuit has four meshes:

The Mesh Analysis Method

Mesh: Apply KVL

Apply KVL to mesh 1 (Σ drops=0):

Apply KVL to mesh 2 (Σ drops=0):

$$-42 + 6i_1 + 3(i_1 - i_2) = 0$$

$$3(i_2-i_1)+4i_2-10=0$$

Example: Mesh Analysis

Determine the power supplied by the 2 V source.

Applying KVL to the meshes:

$$-5 + 4i_1 + 2(i_1 - i_2) - 2 = 0$$

$$+2 + 2(i_2 - i_1) + 5i_2 + 1 = 0$$

Solve:
$$i_1$$
=1.132 A, i_2 = -0.1053 A.

Answer: 2.474 W

A Three Mesh Example

$$-7 + 1(i_1 - i_2) + 6 + 2(i_1 - i_3) = 0$$

$$1(i_2 - i_1) + 2i_2 + 3(i_2 - i_3) = 0$$

$$2(i_3 - i_1) - 6 + 3(i_3 - i_2) + 1i_3 = 0$$
Simplify
$$3i_1 - i_2 - 2i_3 = 1$$

$$-i_1 + 6i_2 - 3i_3 = 0$$

$$-2i_1 - 3i_2 + 6i_3 = 6$$

Follow each mesh clockwise

Solve the equations:

$$i_1 = 3 \text{ A}$$
, $i_2 = 2 \text{ A}$, and $i_3 = 3 \text{ A}$.

Current Sources and the Supermesh

What is the voltage across a current source in between two meshes?

We can eliminate the need for introducing a voltage variable by applying KVL to the *supermesh* formed by joining mesh 1 and mesh 3.

The Supermesh

Apply KVL to mesh 2:

$$1(i_2 - i_1) + 2i_2 + 3(i_2 - i_3) = 0$$

Apply KVL supermesh 1/3:

$$-7 + 1(i_1 - i_2) + 3(i_3 - i_2) + 1i_3 = 0$$

Add the current source:

$$7 = i_1 - i_3$$

Dependent Source Example

Find the currents.

Key step:

$$\frac{v_x}{9} = i_3 - i_1$$

Answer: $i_1 = 15 A$, $i_2 = 11 A$, and $i_3 = 17 A$

Node or Mesh: How to Choose?

- use the one with fewer equations, or
- use the method you like best, or
- use both (as a check), or

Steps in Mesh Analysis

- 1. Identify all of the meshes in the circuit
- 2. Label the currents flowing in each mesh
- 3. Label the voltage across each component in the circuit
- 4. Use Kirchoff's Voltage Law
- 5. Use Ohm's Law to relate the voltage drops across each component to the sum of the currents flowing through them.
- 6. Solve for the mesh currents
- 7. Once the voltage across all of the components are known, calculate the mesh currents.

Practice 1

Determine v_x with node analysis

- identify the nodes & supernodes
- write KCL at each node (except the reference)

Practice 2

Determine v_x with mesh analysis

- identify the mesh & supermeshs
- write KVL at each mesh

Thanks