Makine Öğrenmesi Destek Vektör Makinalar

Doç.Dr. İlhan AYDIN

- SVM, lineer sınıflandırma makine öğrenme metodudur
- Son derecede basit; aynı zamanda gerçek uygulamalarda Yapay Sınır Ağlarına yakın performans gösteren güçlü bir yöntemdir

- Spam mesajları yakalamak
- Erken olarak hastaları bulmak
- Aday işine uygunluğu belirlemek
- Konuşmadaki sözün var olduğunu belirtmek
- Resimdeki belirli türden nesne bulmak
- Haber mesajının belirli insan için ilginç olabilmesi belirlemek

"Tüm karşı bir" birkaç sınıflı sınıflandırma;

Notasyon

- x'ler özellikler (bir özellik vektörü veya dizisi)
- y'ler sonuçlar (sınıf etiketleri, evet/hair, 1/0, vb)
- n özelliklerin sayısı (x'in boyutu)
- − x_i − j. özellik
- (xⁱ,yⁱ) bir örnek, önceden var olan özellikler için sonuç
- m –örneklerin sayısı
- bütün (xⁱ,yⁱ) –"eğitim kümesi"

SVM – "Support Vector Machine" yada "Destek Vektör Makinesi", önce görülen lojistik regresyona benzer bir lineer sınıflandırma metodudur;

 "pozitif" (y=+1) ve "negatif" (y=-1) örnekler için, bu örnekleri doğru şekilde bölen lineer karar sınırı buluyor

Karar sınırı:

Lojistik regresyon böyle sınırı bulmak için, özel maliyet fonksiyonunu azaltılma sorunu formülleştirdi:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (-y^{i} \log h_{\theta}(x^{i}) - (1 - y^{i}) \log(1 - h_{\theta}(x^{i})))$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T} \cdot x}} \quad \text{model}$$

$$y^{i} = \{0,1\}$$
gereken çıktılar

SVM, bu sınırı farklı açıdan buluyor ...

"Büyük Kenar Prensibi"

 Büyük Kenar Prensibine göre, karar sınırı pozitif ve negatif örneklerin arasında en büyük kenarı alır. Diğer bir deyişle iki sınıf arasındaki marjini maksimum yapar.

Karar kenarı:

En büyük karar kenarı?

En büyük karar kenarı?

En büyük karar kenarı!

"Büyük Kenar Prensibi"

- En büyük kenarı, en gürbüz kararlar demektir!
- Örneklerde gürültü varsa, en büyük kenarıyla en gürbüz karar verme yapılabilir

Az kenarlı karar sınırı, gürültü tarafından kolayca etkilenebilir *Positif örnekler: y=1*

Büyük kenarlı karar sınırı, en gürbüz karar verme demektir! *Positif örnekler: y=1*

SVM karar sınırı bu şekilde çözülür:

$$\min_{\theta} C \sum_{i=1}^{m} H_{y^{i}}(\theta^{T} \cdot x^{i}) + \frac{1}{2} \sum_{j=1}^{m} \theta_{j}^{2},$$

$$H_{y}(z) = \begin{cases} 0, & y \cdot z \ge 1\\ 1 - y \cdot z, & y \cdot z < 1 \end{cases}$$

$$y^{i} = \pm 1$$

Fark edilecek önemli nokta:

• Eğer bütün örneklerde $y^i \cdot (\theta^T \cdot x^i) \ge 1$, H-terimi sıfırdır

$$\min_{\theta} C \sum_{i=1}^{m} H_{y^{i}}(\theta^{T} \cdot x^{i}) + \frac{1}{2} \sum_{j=1}^{m} \theta_{j}^{2},$$

$$H_{y}(z) = \begin{cases} 0, & y \cdot z \ge 1 \\ 1 - y \cdot z, & y \cdot z < 1 \end{cases}$$

$$y^{i} = \pm 1$$

Fark edilecek önemli nokta:

• Bu durumda sadece $\frac{1}{2}\sum \theta_j^2$ azaltmaya çalışıyoruz

$$\min_{\theta} \frac{1}{2} \sum_{\theta_j} \theta_j^2,$$

$$H_y(z) = \begin{cases} 0, & y \cdot z \ge 1 \\ 1 - y \cdot z, y \cdot z < 1 \end{cases}$$

$$y^i = \pm 1$$

SVM her zaman, mümkünse, pozitif örnekleri bir tarafa ("+1" üstüne) negatif örnekler diğer tarafa ("-1" altına) çekmeye çalışıyor

$$\min_{\theta} C \sum_{j=1}^{m} H_{x^{i}}(\theta^{T} \cdot x^{i}) + \frac{1}{2} \sum_{j=1}^{m} \theta_{j}^{2},$$

$$H_{y}(z) = \begin{cases} 0, & y \cdot z \ge 1\\ 1 - y \cdot z, y \cdot z < 1 \end{cases}$$

$$y^{i} = \pm 1$$

 Bütün pozitif örnekler "+1" üstüne ve negatif örnekler "-1" altına çekilebilirse, soruna "doğrusal olarak ayrılabilir bir sorun" diye diyoruz

Doğrusal olarak ayrılabilir sorun

Positif örnekler: y=1

• Doğrusal olarak ayrılabilir sorunlar için, SVM'de karar sınırı uygun seçimle, H-terim sıfıra eşit yapılabilir ve sadece $\sum \theta_j^2$ teriminin azaltılması gerekiyor

$$\min_{\theta} C \sum_{i=1}^{m} H_{y^{i}}(\theta^{T} \cdot x^{i}) + \frac{1}{2} \sum_{j=1}^{m} \theta_{j}^{2},$$

$$min$$

$$H_{y}(z) = \begin{cases} 0, & y \cdot z \ge 1 \\ 1 - y \cdot z, & y \cdot z < 1 \end{cases} = \mathbf{0}$$

$$y^{i} = \pm 1$$

• Aslında, en düşük $\sum \theta_j^2$ en büyük kenarlı doğrusal karar sınırı vermektedir

 Şu gösterilebilir ki, SVM problemin çözümü her zaman bu şekilde olmaktadır;

$$\theta_j = \sum \alpha^i \cdot y^i \cdot x_j^i$$

• Doğrusal karar sınırının θ -parametresi, örneklerin x-özellik-vektörlerinden oluşturulur ... ama ...

$$\theta_j = \sum \alpha^i \cdot y^i \cdot x^i_j$$

- Bütün örnekler bu toplama girmez, genellikle sadece birkaç alfa sıfırdan farklı ve sadece o x-özellik-vektörler θ -parametresine girir
 - Tipik olarak, 1000 örneklerinden sadece 20-50 örnek
 θ -parametresine girebilir

- Bu şekilde katkısı olan orijinal örneklere "destek vektörleri" denir
- Sadece o örnekler θ -parametresini, ve bu anlamda SVM kararlarını, etkiliyor;
- Tüm diğer örnekler karar verme için önemli değil (SVM kararlarına etkilemez)

Destek vektörleri:

Positif örnekler: y=1

Önemsiz örnekler; şunlar yoksa, karar⁴ sınırı değişmez

Önemli örnekler, bunlar karar sınırı belirtir; destek vektörleri bu

"Destek vektör makineleri" bu nedenle diyoruz

SVM optimizasyon sorununun 2. hali;

- Örnekler doğrusal olarak ayrılamaz
- Bu durumda, H-terim sıfıra konulmaz, ve SVM'de hem H-terimi hem de θ -terimi azaltılması lazım

$$\min_{\theta} C \sum_{i=1}^{m} H_{y^{i}}(\theta^{T} \cdot x^{i}) + \frac{1}{2} \sum_{j=1}^{m} \theta_{j}^{2},$$

$$H_{y}(z) = \begin{cases} 0, & y \cdot z \ge 1 \\ 1 - y \cdot z, & y \cdot z < 1 \end{cases}$$

$$y^{i} = \pm 1$$

SVM optimizasyon sorununun 2. şekil;

- Bu durumda, C-sabiti önemli oluyor
- C-sabiti yanlış örneklerin maliyetteki ağırlığını belirtiyor

$$\min_{\theta} C \sum_{i=1}^{m} H_{y^{i}}(\theta^{T} \cdot x^{i}) + \frac{1}{2} \sum_{j=1}^{m} \theta_{j}^{2},$$

$$H_{y}(z) = \begin{cases} 0, & y \cdot z \ge 1 \\ 1 - y \cdot z, y \cdot z < 1 \end{cases}$$

$$0 \text{ in a problem of the problem of the problem}$$

$$y^{i} = \pm 1$$

- Büyük C için, SVM oldukça az yanlış karar yapmaya çalışacak
- Düşük C için, SVM daha çok yanlış karar yapılabilir ama oldukça büyük karar kenarı sağlamaya çalışacak

$$\min_{\theta} C \sum_{i=1}^{m} H_{y^{i}}(\theta^{T} \cdot x^{i}) + \frac{1}{2} \sum_{i=1}^{m} \theta_{j}^{2},$$

$$H_{y}(z) = \begin{cases} 0, y \cdot z \ge 1 \\ 1 - y \cdot z, y \cdot z < 1 \end{cases}$$

$$\theta = \sum_{i=1}^{m} \alpha^{i} y^{i} x^{i}$$

- SVM, kavramsal basit (yani, == en büyük karar kenarı) aynı zamanda makine öğrenme en güçlü metodlarından biridir
- El yazısı karakter tanıma (posta), yüz tanıma (facebook), metin sınıflandırma (haber seçme) uygulamalarında çok ileri yapay sınır ağları gibi yaklaşımlarla karşılaştırılabilir yada daha iyi perfomansı tipik olarak gösterir

- Bu anda SVM yaklaşımı, makine öğrenme yaklaşımları olarak altın standart rolünde bulunmaktadır
- Daha ileri okuma için,
 - SVM, Vladimir Vapnik ve Alexey Chernovenkis tarafından istatistiksel öğrenme teorisi kullanarak türetilmiş
 - İstatistiksel öğrenme teorisi ve SVM ile ilgili
 İnternette birçok (ingilizce) kaynak var

 SVM optimizasyon sorunu çözmek için, dereceli azaltma ve aşağudaki maliyet fonksiyonu kullanılabilir

Yakınsamaya kadar tekrarlayın { bütün j'ler için; $\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ }

- · Daha verimli yöntemleri uygulanabilir
- SVM sorununun özel matematiksel yapısına sahip olması için, özel metodlar geliştirilmiş oldu

$$\min_{\theta} C \sum_{i=1}^{m} H_{y^{i}}(\theta^{T} \cdot x^{i}) + \frac{1}{2} \sum_{j=1}^{m} \theta_{j}^{2},$$

$$H_{y}(z) = \begin{cases} 0, y \cdot z \ge 1 \\ 1 - y \cdot z, y \cdot z < 1 \end{cases}$$

$$\theta = \sum_{j=1}^{m} \alpha^{j} y^{j} x^{j}$$

Bunların arasında;

- Sequential Mimimal Optimization, SMO (Ardışık minimal optimizasyon metodu)
- İnterior point convex optimization metods (Konveks optimizasyonun iç nokta yöntemi)

SVM için hazır yazılım paketleri kullanılmalı;

- SVM-light
- SVM-struct
- mySVM
- LIBSVM

(<u>www.support-vector-machines.org</u> da daha çok yazılım paketleri bulunabilir)

Lineer olmayan sınıflandırma için, lojistik regresyon gibi SVM, ek olan lineer olmayan karmaşık özellikler ile kullanılabilir

Lineer olmayan ilişki:

kırmızı – y=1 örnekleri, mavi – y=-1 örnekleri

Ek olan lineer olmayan yeni karmaşık özellik:

$$x' = g(x_1^2 + x_2^2)$$

Bu özelliğe göre, muhtemelen lineer olmayan karar sınırı bu şekilde üretilebilir:

 $x' = x_1^2 + x_2^2 = 1$

- SVM'de, lineer olmayan özellikler için "kernel" (çekirdek) diye terim kullanılır, K(xⁱ,x^j) sembol ile gösterilir
- Kerneller kullanarak, SVM lineer olmayan sınıflandırma için kullanılabilir

 SVM problemi, bu şekilde de yazılabilir (dual şekli adlandırılan şekil);

$$\max \sum \alpha^{i} - \frac{1}{2} \sum \alpha^{i} \alpha^{j} y^{i} y^{j} (x^{i} \cdot x^{j})$$

$$\sum \alpha^{i} y^{i} = 0$$

$$0 \le \alpha^{i} \le C$$

• Bu SVM problemi, doğrudan α -parametreler (θ -parametreler değil) için yazılır (α , destek vektörlerinin ağırlıkları)

$$\max \sum \alpha^{i} - \frac{1}{2} \sum \alpha^{i} \alpha^{j} y^{i} y^{j} (x^{i} \cdot x^{j})$$

$$\sum \alpha^i y^i = 0$$

$$0 \le \alpha^i \le C$$

$$\theta = \sum \alpha^i y^i x^i$$

 Bu SVM probleminde, x'ler bir skalar çarpım içinde girmektedir

$$\max \sum \alpha^{i} - \frac{1}{2} \sum \alpha^{i} \alpha^{j} y^{i} y^{j} (x^{i} \cdot x^{j})$$

$$\sum \alpha^{i} y^{i} = 0$$

$$0 \le \alpha^{i} \le C$$

$$(x^{i} \cdot x^{j}) = \sum x_{k}^{i} x_{k}^{j}$$

 Kernel şeklini sağlamak için, bu skalar çarpım lineer-olmayan bir şekile değiştirilir:

$$\max \sum \alpha^{i} - \frac{1}{2} \sum \alpha^{i} \alpha^{j} y^{i} y^{j} K(x^{i}, x^{j})$$

$$\sum \alpha^{i} y^{i} = 0$$

$$0 \le \alpha^{i} \le C$$
Skalar çarpım yerine gir

$$0 \le \alpha^i \le C$$

Skalar çarpım yerine giriyor

$$\left| (x^i \cdot x^j) \equiv K(x^i, x^j) \right|$$

 SVM kernel şekli olarak, en çok kullanılan Gauss (radyal) kerneli dir;

$$\max \sum \alpha^{i} - \frac{1}{2} \sum \alpha^{i} \alpha^{j} y^{i} y^{j} K(x^{i}, x^{j})$$

$$K(x^{i}, x^{j}) = e^{-\frac{(x^{i} - x^{j})^{2}}{2\sigma^{2}}}$$

- Diğer popüler seçenekleri;
 - Homojen polinom kerneli

$$K(x^i, x^j) = (x^i \cdot x^j)^d$$

Homojen olmayan polinom kerneli

$$K(x^i, x^j) = (1 + x^i \cdot x^j)^d$$

Hiperbolik tanjant kerneli

$$K(x^{i}, x^{j}) = \tanh(c + kx^{i} \cdot x^{j})$$