# EE236: Experiment 4

## Temperature dependence of Solar Cell I/V Characteristics

### Param Rathour, 190070049 Spring Semester, 2021-22

## Contents

| 1 | Ove | erview        | of the experiment                                                                                                                           | <b>2</b> |
|---|-----|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|
|   | 1.1 | Aim of        | the experiment                                                                                                                              | 2        |
|   | 1.2 | Metho         | ds                                                                                                                                          | 2        |
| 2 | Des | ign           |                                                                                                                                             | 2        |
|   | 2.1 | $I/V \subset$ | haracteristics of Solar Cell                                                                                                                | 2        |
|   | 2.2 | Lighte        | d $I/V$ Characteristics of Solar Cell when used as Power source                                                                             | 3        |
|   | 2.3 | _             | of $\stackrel{'}{R}_s$ and $R_{sh}$                                                                                                         | 3        |
| 3 | Sim | ulation       | results                                                                                                                                     | 4        |
|   | 3.1 | Plots         |                                                                                                                                             | 4        |
|   |     | 3.1.1         | Dark $I/V$ Characteristics of Solar Cell                                                                                                    | 4        |
|   |     | 3.1.2         | Lighted $I/V$ Characteristics of Solar Cell when used as Power source .                                                                     | 4        |
|   |     | 3.1.3         | Effect of $R_s$ and $R_{sh}$                                                                                                                | 6        |
|   | 3.2 | Code S        | Snippets                                                                                                                                    | 7        |
|   |     | 3.2.1         | Dark $I/V$ Characteristics of Solar Cell                                                                                                    | 7        |
|   |     |               | $3.2.1.1$ Temperature = $35^{\circ}$ C                                                                                                      | 7        |
|   |     |               | $3.2.1.2$ Temperature = $45^{\circ}$ C                                                                                                      | 7        |
|   |     |               | $3.2.1.3$ Temperature = $55^{\circ}$ C                                                                                                      | 8        |
|   |     |               | $3.2.1.4$ Temperature = $65^{\circ}$ C                                                                                                      | 8        |
|   |     |               | $3.2.1.5$ Temperature = $75^{\circ}$ C                                                                                                      | 9        |
|   |     | 3.2.2         | Lighted $I/V$ Characteristics of Solar Cell when used as Power source .                                                                     | 9        |
|   |     |               | 3.2.2.1 Temperature = $35^{\circ}$ C                                                                                                        | 9        |
|   |     |               | $3.2.2.2$ Temperature = $45^{\circ}$ C                                                                                                      | 9        |
|   |     |               | $3.2.2.3$ Temperature = $55^{\circ}$ C                                                                                                      | 10       |
|   |     |               | $3.2.2.4$ Temperature = $65^{\circ}$ C                                                                                                      | 10       |
|   |     |               |                                                                                                                                             | 11       |
|   |     | 3.2.3         |                                                                                                                                             | 11       |
|   |     |               | 3.2.3.1 $R_s = 0\Omega$                                                                                                                     | 11       |
|   |     |               | $3.2.3.2  R_s = 10\Omega \dots \dots$ | 12       |
|   |     |               |                                                                                                                                             | 12       |
|   |     | 3.2.4         |                                                                                                                                             | 13       |
|   |     |               | $3.2.4.1  R_{sh} = 100\Omega \dots $  | 13       |
|   |     |               | $3.2.4.2  R_{sh} = 500\Omega \dots $  | 13       |

| 5 | Questions for reflection |        |                                                                                      |    |  |
|---|--------------------------|--------|--------------------------------------------------------------------------------------|----|--|
| 4 | Exp                      | erimen | t completion status                                                                  | 19 |  |
|   |                          | 3.3.4  | Effect of $R_{sh}$                                                                   | 18 |  |
|   |                          | 3.3.3  | Effect of $R_s$                                                                      | 17 |  |
|   |                          | 3.3.2  | Lighted $I/V$ Characteristics of Solar Cell when used as Power source .              | 15 |  |
|   |                          | 3.3.1  | Dark $I/V$ Characteristics of Solar Cell                                             | 14 |  |
|   | 3.3                      | Pythor | Code for Plots                                                                       | 14 |  |
|   |                          |        | $3.2.4.3  R_{sh} = 5k\Omega  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots$ | 14 |  |

### 1 Overview of the experiment

This report contains my approach to the experiment, the circuit's design with the relevant simulation code and output plots.

### 1.1 Aim of the experiment

- To plot and understand I/V characteristics of solar cell at different temperatures and calculate ideality factor
- To plot and understand lighted I/V characteristics of solar cell when used as power source at different temperatures and calculate fill factor
- To understand the effect of  $R_s$  and  $R_{sh}$  on I/V characteristics of solar cell

#### 1.2 Methods

First, a comparison between parameters  $(V_D, \eta)$  was made by simulating the circuit at 5 different temperatures from the Dark I/V characteristics of Solar Cell.

Then, Lighted I/V and P/V characteristics of Solar Cell when using as a power source to calculate and compare fill factor,  $V_D$ ,  $V_{\rm OC}$  for the below temperatures.

Lastly, the effect of series resistance and shunt resistance was observed on Solar Cells by changing the provided solar cell model file and using that as a power source.

All parameters were calculated using python by exporting the vectors generated by NGSPICE.

The circuit was simulated at following temperatures (35°C, 45°C, 55°C, 65°C, 75°C).

## 2 Design

### 2.1 I/V Characteristics of Solar Cell

I/V characteristics circuit was taken from experiment 3 handout (Figure 1a). Voltage was varied from -2 to +2.





(a) Dark I/V characteristics and  $\eta$ 

(b) Lighted I/V characteristics when used as a power source

Figure 1: I/V characteristics and measurement of parameter of Solar Cell

Analytically,

$$I = I_0 \left( e^{\frac{q \cdot V_D}{\eta kT}} - 1 \right) - I_L \tag{1}$$

By taking natural logarithm of I and neglecting -1, we get  $\log(I+I_L)/V$  characteristics

$$\ln\left(I + I_L\right) = \ln(I_0) + \frac{q \cdot V}{\eta k T} \quad \to \quad \ln(I + I_L) = \underbrace{\frac{q}{\eta k T}}_{slope} \cdot V + \underbrace{\ln(I_0)}_{y-intercept} \tag{2}$$

This graph is a straight line in some range of I, V. Also,  $I_L = 0$  for Dark characteristics. We can calculate its slope to get  $\eta$  and y-intercept by interpolating that straight line.

slope = 
$$\frac{\ln I_2 - \ln I_1}{V_2 - V_1} = \frac{1}{\eta V_T} \to \eta = \frac{1}{V_T} \left( \frac{V_{D_2} - V_{D_1}}{\ln I_2 - \ln I_1} \right)$$
 (3)

The voltage  $V_D$  at a current  $(I_D)$  was found using binary search (python's bisect library). Then, 2 consecutive  $I_D$ 's gave 2 consecutive  $V_D$ 's of the simulation with which slope is calculated using the above equation.

#### Lighted I/V Characteristics of Solar Cell when used as Power 2.2source

Then, the circuit for measurement of  $V_{OC}$  and  $I_{SC}$  was also taken from experiment 3 slides (Figure 1b) with  $I_L = 8mA$ . R was varied from 1 to 500 $\Omega$ .

 $I_{SC}$  is maximum current through the cell.

 $V_{OC}$  is maximum voltage across the cell.

$$V_{OC}$$
 is maximum voltage across the cent.  $I_{MP},\,V_{MP}$  and  $P_{MP}$  were taken from  $P_R-V_D$  graph. Fill Factor  $=\frac{I_{\mathrm{MP}}\cdot V_{\mathrm{MP}}}{I_{\mathrm{SC}}\cdot V_{\mathrm{OC}}}$ 

#### 2.3 Effect of $R_s$ and $R_{sh}$

Again, the same circuit ((Figure 1b)) was used.

The values of  $R_s$  and  $R_{sh}$  were changed one by one and keeping the other at default value (i.e.  $R_s$  varies and  $R_{sh} = 1k\Omega$ ,  $R_{sh}$  varies and  $R_s = 10\Omega$ ).  $I_L = 8mA$  for all cases.

### 3 Simulation results

#### 3.1 Plots

#### 3.1.1 Dark I/V Characteristics of Solar Cell

| Temperature | $V_D \ (I_D = 1mA)$ | $V_D \ (I_D = 2mA)$ | $V_D \ (I_D = 5mA)$ | $\eta \ (I_D = 1mA)$ | $\eta \ (I_D = 2mA)$ | $\eta \ (I_D = 5mA)$ |
|-------------|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------|
| (in °C)     | (in V)              | (in V)              | (in V)              |                      |                      |                      |
| 35          | 0.29496092          | 0.3470438           | 0.42974029          | 3.01526176           | 3.12787909           | 4.09260234           |
| 45          | 0.26653333          | 0.31912922          | 0.40482576          | 2.99364881           | 3.15392024           | 4.16613286           |
| 55          | 0.23820773          | 0.29415421          | 0.37812199          | 2.96076854           | 3.1939794            | 4.20767881           |
| 65          | 0.21432451          | 0.26638577          | 0.35322061          | 2.92465729           | 3.20568068           | 4.2757691            |
| 75          | 0.1865106           | 0.23878679          | 0.3265640           | 2.8571428            | 3.20316681           | 4.30818336           |

Table 1:  $V_D$ ,  $\eta$  at different temperature and  $I_D$  values



Figure 2: Temperature Dependence of Solar Cell

As visible in Figure 2, the variation of both Diode Voltage and  $\eta$  with Temperature is approximately linear.

The values decreases as temperature increases except when  $I_D = 5mA$  ( $\eta$  increases). For higher currents, diode voltage is higher and  $\eta$  is lower.

#### 3.1.2 Lighted I/V Characteristics of Solar Cell when used as Power source

| $Temperature (in \ ^{\circ}C)$ | $I_{SC}$ (in $mA$ )  | $V_{OC}$ (in $V$ )  | Fill Factor         |
|--------------------------------|----------------------|---------------------|---------------------|
| 35                             | 0.39245622           | 7.898107899999999   | 0.5150015044548059  |
| 45                             | 0.367912146          | 7.88487317000000005 | 0.49390802180148974 |
| 55                             | 0.343345655          | 7.861959720000001   | 0.4721343180554779  |
| 65                             | 0.318778073999999997 | 7.82385279          | 0.44993563412103377 |
| 75                             | 0.294242195          | 7.76296307          | 0.427657857218279   |

Table 2: Parameter values obtained from the characteristics



Figure 3: Temperature Dependence of Solar Cell as a Power Source

As shown in figure 3, the fill factor, open circuit voltage and  $V_D$  have linear variation whereas short circuit current has a non linear change (like a parabolic trajectory). They all reduce with increase in temperature.

### 3.1.3 Effect of $R_s$ and $R_{sh}$



Figure 4: Effect of  $R_s$  on Solar Cell at Different Temperatures



Figure 5: Effect of  $\mathcal{R}_{sh}$  on Solar Cell at Different Temperatures

Figure 4 shows by using higher series resistance the I/V Characteristics becomes flatter (the bulge reduces, also evident in P/V Characteristics). Hence, cell performance degrades. Figure 5 shows by using higher shunt resistance the I/V Characteristics becomes curvier (the bulge increases, also evident in P/V Characteristics). Hence, cell performance improves. Fill factor, open circuit voltage and short circuit all changes (reduces) as  $R_s$  increases, but in the case of  $R_{sh}$ , all 3 increases but the rate of increase decreases, i.e. even for large changes in  $R_{sh}$ , there is very small change in the values (especially in the case of short circuit current 0.01mA when  $R_{sh}$  increases from 500 to 5K).

#### 3.2 Code Snippets

#### 3.2.1 Dark I/V Characteristics of Solar Cell

#### 3.2.1.1 Temperature = $35^{\circ}$ C

```
Param Rathour (190070049), I/V characteristics of Solar Cell
.include Solar_Cell.txt
                                     ; Includes Solar Cell Model
R1 mid out 100
X1 out gnd solar cell IL val = 0 ; Solar Cell
                                     ; DC source Vin
Vin in gnd dc 0
Vdummy in mid 0
.dc Vin -2 2 0.01
                                     ; DC Analysis
.control
set temp = 35
run
let I D = I(Vdummy)
let V D = V(out)
plot I D vs V D
plot log(abs(I_D)) vs V_D
wrdata 11.txt I_D vs V_D
.endc
.end
```

#### 3.2.1.2 Temperature = $45^{\circ}$ C

```
Param Rathour (190070049), I/V characteristics of Solar Cell
.include Solar_Cell.txt ; Includes Solar Cell Model
R1 mid out 100
X1 out gnd solar_cell IL_val = 0 ; Solar Cell
Vin in gnd dc 0 ; DC source Vin
Vdummy in mid 0
.dc Vin -2 2 0.01 ; DC Analysis
.control
set temp = 45
run
let I_D = I(Vdummy)
let V_D = V(out)
```

```
plot I_D vs V_D
plot log(abs(I_D)) vs V_D
wrdata 12.txt I_D vs V_D
.endc
.end
```

#### 3.2.1.3 Temperature = 55°C

```
Param Rathour (190070049), I/V characteristics of Solar Cell
.include Solar Cell.txt
                                   ; Includes Solar Cell Model
R1 mid out 100
X1 out gnd solar_cell IL_val = 0 ; Solar Cell
                                   ; DC source Vin
Vin in gnd dc 0
Vdummy in mid 0
.dc Vin -2 2 0.01
                             ; DC Analysis
.control
set temp = 55
run
let I D = I(Vdummy)
let V D = V(out)
plot I_D vs V_D
plot log(abs(I_D)) vs V_D
wrdata 13.txt I D vs V D
.endc
.end
```

#### 3.2.1.4 Temperature = 65°C

```
Param Rathour (190070049), I/V characteristics of Solar Cell
.include Solar Cell.txt
                              ; Includes Solar Cell Model
R1 mid out 100
X1 out gnd solar_cell IL_val = 0 ; Solar Cell
                                   ; DC source Vin
Vin in gnd dc 0
Vdummy in mid 0
.dc Vin -2 2 0.01
                                    ; DC Analysis
.control
set temp = 65
let I_D = I(Vdummy)
let V_D = V(out)
plot I_D vs V_D
plot log(abs(I D)) vs V D
wrdata 14.txt I_D vs V_D
.endc
.end
```

#### 3.2.1.5 Temperature = 75°C

```
Param Rathour (190070049), I/V characteristics of Solar Cell
                                    ; Includes Solar Cell Model
.include Solar_Cell.txt
R1 mid out 100
X1 out gnd solar_cell IL_val = 0 ; Solar Cell
Vin in gnd dc 0
                                   ; DC source Vin
Vdummy in mid 0
.dc Vin -2 2 0.01
                                   ; DC Analysis
.control
set temp = 75
run
let I D = I(Vdummy)
let V D = V(out)
plot I D vs V D
plot log(abs(I D)) vs V D
wrdata 15.txt I D vs V D
.endc
.end
```

#### 3.2.2 Lighted I/V Characteristics of Solar Cell when used as Power source

#### 3.2.2.1 Temperature = 35°C

```
Param Rathour (190070049), Lighted I/V characteristics of Solar Cell
.include Solar_Cell.txt
                                   ; Includes Solar Cell Model
R1 in out 0
X1 out gnd solar cell IL val = 8e-3; Solar Cell
Vdummy in gnd 0
.dc R1 1 500 0.1
                                     ; DC Analysis
.control
set temp = 35
run
let I D = -I(Vdummy)
let V D = V(out)
plot I D vs V D
wrdata 21.txt I D vs V D
.endc
.end
```

#### 3.2.2.2 Temperature = $45^{\circ}$ C

```
Param Rathour (190070049), Lighted I/V characteristics of Solar Cell
.include Solar_Cell.txt ; Includes Solar Cell Model
R1 in out 0
X1 out gnd solar_cell IL_val = 8e-3 ; Solar Cell
```

```
Vdummy in gnd 0
.dc R1 1 500 0.1 ; DC Analysis
.control
set temp = 45
run
let I_D = -I(Vdummy)
let V_D = V(out)
plot I_D vs V_D
wrdata 22.txt I_D vs V_D
.endc
.end
```

#### 3.2.2.3 Temperature = 55°C

```
Param Rathour (190070049), Lighted I/V characteristics of Solar Cell
                                   ; Includes Solar Cell Model
.include Solar Cell.txt
R1 in out 0
X1 out gnd solar_cell IL_val = 8e-3 ; Solar Cell
Vdummy in gnd 0
.dc R1 1 500 0.1
                                    ; DC Analysis
.control
set temp = 55
run
let I D = -I(Vdummy)
let V_D = V(out)
plot I_D vs V_D
wrdata 23.txt I_D vs V_D
.endc
.end
```

#### 3.2.2.4 Temperature = $65^{\circ}$ C

```
Param Rathour (190070049), Lighted I/V characteristics of Solar Cell
.include Solar_Cell.txt ; Includes Solar Cell Model
R1 in out 0
X1 out gnd solar_cell IL_val = 8e-3 ; Solar Cell
Vdummy in gnd 0
.dc R1 1 500 0.1 ; DC Analysis
.control
set temp = 65
run
let I_D = -I(Vdummy)
let V_D = V(out)
plot I_D vs V_D
wrdata 24.txt I_D vs V_D
```

```
.endc
.end
```

#### 3.2.2.5 Temperature = $75^{\circ}$ C

```
Param Rathour (190070049), Lighted I/V characteristics of Solar Cell
                                    ; Includes Solar Cell Model
.include Solar_Cell.txt
R1 in out 0
X1 out gnd solar_cell IL_val = 8e-3 ; Solar Cell
Vdummy in gnd 0
.dc R1 1 500 0.1
                                     ; DC Analysis
.control
set temp = 75
run
let I_D = -I(Vdummy)
let V_D = V(out)
plot I D vs V D
wrdata 25.txt I_D vs V_D
.endc
.end
```

#### 3.2.3 Effect of $R_s$

#### **3.2.3.1** $R_s = 0\Omega$

```
Param Rathour (190070049), Effect of R S on I/V characteristics of Solar Cell
.include Solar_Cell.txt ; Includes Solar Cell Model
R1 in out 0
IL gnd temp dc 8e-3
d1 temp gnd diode
.model diode d (is=(1e-13) n=1)
d2 temp gnd diode2
.model diode2 d (is=(2e-6) n=2)
rs temp out 0
rsh temp gnd 1e3
Vdummy in gnd 0
.dc R1 1 500 0.1
                                   ; DC Analysis
.control
run
let I_D = -I(Vdummy)
let V D = V(out)
plot I_D vs V_D
wrdata 3a1.txt I_D vs V_D
.endc
.end
```

#### **3.2.3.2** $R_s = 10\Omega$

```
Param Rathour (190070049), Effect of R_S on I/V characteristics of Solar Cell
.include Solar_Cell.txt
                            ; Includes Solar Cell Model
R1 in out 0
IL gnd temp dc 8e-3
d1 temp gnd diode
.model diode d (is=(1e-13) n=1)
d2 temp gnd diode2
.model diode2 d (is=(2e-6) n=2)
rs temp out 0
rsh temp gnd 1e3
Vdummy in gnd 0
.dc R1 1 500 0.1
                             ; DC Analysis
.control
run
let I D = -I(Vdummy)
let V_D = V(out)
plot I_D vs V_D
wrdata 3a1.txt I_D vs V_D
.endc
.end
```

#### **3.2.3.3** $R_s = 30\Omega$

```
Param Rathour (190070049), Effect of R_S on I/V characteristics of Solar Cell
.include Solar_Cell.txt ; Includes Solar Cell Model
R1 in out 0
IL gnd temp dc 8e-3
d1 temp gnd diode
.model diode d (is=(1e-13) n=1)
d2 temp gnd diode2
.model diode2 d (is=(2e-6) n=2)
rs temp out 10
rsh temp gnd 1e3
Vdummy in gnd 0
.dc R1 1 500 0.1
                                  ; DC Analysis
.control
run
let I D = -I(Vdummy)
let V_D = V(out)
plot I_D vs V_D
wrdata 3a2.txt I_D vs V_D
.endc
.end
```

#### 3.2.4 Effect of $R_{sh}$

#### **3.2.4.1** $R_{sh} = 100\Omega$

```
Param Rathour (190070049), Effect of R_Sh on I/V characteristics of Solar Cell
                            ; Includes Solar Cell Model
.include Solar Cell.txt
R1 in out 0
IL gnd temp dc 8e-3
d1 temp gnd diode
.model diode d (is=(1e-13) n=1)
d2 temp gnd diode2
.model diode2 d (is=(2e-6) n=2)
rs temp out 10
rsh temp gnd 100
Vdummy in gnd 0
.dc R1 1 500 0.1
                                ; DC Analysis
.control
run
let I D = -I(Vdummy)
let V_D = V(out)
plot I_D vs V_D
wrdata 3b1.txt I_D vs V_D
.endc
.end
```

#### **3.2.4.2** $R_{sh} = 500\Omega$

```
Param Rathour (190070049), Effect of R S on I/V characteristics of Solar Cell
.include Solar_Cell.txt ; Includes Solar Cell Model
R1 in out 0
IL gnd temp dc 8e-3
d1 temp gnd diode
.model diode d (is=(1e-13) n=1)
d2 temp gnd diode2
.model diode2 d (is=(2e-6) n=2)
rs temp out 0
rsh temp gnd 500
Vdummy in gnd 0
.dc R1 1 500 0.1
                                  ; DC Analysis
.control
run
let I_D = -I(Vdummy)
let V D = V(out)
plot I_D vs V_D
wrdata 3b2.txt I_D vs V_D
.endc
```

#### **3.2.4.3** $R_{sh} = 5k\Omega$

```
Param Rathour (190070049), Effect of R S on I/V characteristics of Solar Cell
.include Solar_Cell.txt
                                     ; Includes Solar Cell Model
R1 in out 0
IL gnd temp dc 8e-3
d1 temp gnd diode
.model diode d (is=(1e-13) n=1)
d2 temp gnd diode2
.model diode2 d (is=(2e-6) n=2)
rs temp out 0
rsh temp gnd 5k
Vdummy in gnd 0
.dc R1 1 500 0.1
                                     ; DC Analysis
.control
run
let I D = -I(Vdummy)
let V D = V(out)
plot I_D vs V_D
wrdata 3b3.txt I_D vs V_D
.endc
.end
```

#### 3.3 Python Code for Plots

```
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import math
import pandas as pd
import bisect
```

#### 3.3.1 Dark I/V Characteristics of Solar Cell

```
temp = [(i) for i in range(35,85,10)]
I_D = [1e-3, 2e-3, 5e-3]
V_D = np.zeros((len(temp), len(I_D)))
eta = np.zeros((len(temp), len(I_D)))
for i in range(5):
    data = pd.read_csv('E:\Program_Files\Spice64\EE236\Lab4\\1' + str(i+1)
    + '.txt', header = None, skipinitialspace=True, delim_whitespace=True)
    idx = [bisect.bisect_left(data[1], j) for j in I_D]
    V_D[i] = ([data[0][j] for j in idx])
```

```
slope = [(math.log(data[1][j]) - math.log(data[1][j-1]))
    /((data[0][j]) - (data[0][j-1])) for j in idx]
    eta[i] = [1/(26/1000*j) \text{ for } j \text{ in } slope]
    print("V_D for I_D =", str(I_D), "mA and Temperature =", temp[i], "°C",
    V D[i])
   print("eta for I D =", str(I D), "mA and Temperature =", temp[i], "°C" ,
    eta[i])
fig1, ax1 = plt.subplots()
ax1.set xlabel('Temperature (in °C)')
ax1.set ylabel('$V D$ (in V)')
ax1.set_title('Diode Voltage vs Temperature')
for j in range(len(I_D)):
    ax1.plot(temp, V D[:,j], '-o', markersize=5)
ax1.legend(I_D, fontsize = 'x-small')
fig2, ax2 = plt.subplots()
ax2.set_xlabel('Temperature (in °C)')
ax2.set ylabel('$\eta$ (in V)')
ax2.set_title('$\eta$ vs Temperature')
for j in range(len(I_D)):
    ax2.plot(temp, eta[:,j], '-o', markersize=5)
ax2.legend(I_D, fontsize = 'x-small')
fig1.savefig('11.pdf')
fig2.savefig('12.pdf')
```

#### 3.3.2 Lighted I/V Characteristics of Solar Cell when used as Power source

```
temp = [(i) \text{ for } i \text{ in } range(35,85,10)]
ID = [1e-3, 2e-3, 5e-3]
V D = np.zeros((len(temp), len(I D)))
\Lambda OC = []
ISC = []
P MAX = []
FF = []
fig1, ax1 = plt.subplots()
ax1.set xlabel('Voltage (in V)')
ax1.set ylabel('Current (in mA)')
ax1.set_title('I/V Characteristics of Solar Cell at Different Temperatures')
fig2, ax2 = plt.subplots()
ax2.set xlabel('Voltage (in V)')
ax2.set ylabel('Power (in mW)')
ax2.set_title('P/V Characteristics of Solar Cell at Different Temperatures')
fig3, ax3 = plt.subplots()
ax3.set_xlabel('Temperature (in °C)')
ax3.set_ylabel('Fill Factor')
ax3.set title('Fill Factor vs Temperature')
fig4, ax4 = plt.subplots()
```

```
ax4.set xlabel('Temperature (in °C)')
ax4.set_ylabel('V_D (in V)')
ax4.set title('Diode Voltage vs Temperature')
fig5, ax5 = plt.subplots()
ax5.set xlabel('Temperature (in °C)')
ax5.set ylabel('$V {OC}$ (in V)')
ax5.set title('Open Circuit Voltage vs Temperature')
fig6, ax6 = plt.subplots()
ax6.set xlabel('Temperature (in °C)')
ax6.set ylabel('$I {SC}$ (in mA)')
ax6.set_title('Short Circuit Current vs Temperature')
for i in range(5):
   data = pd.read csv('E:\Program Files\Spice64\EE236\Lab4\\2' + str(i+1)
   + '.txt', header = None, skipinitialspace=True, delim_whitespace=True)
   V = data[0]
    I = 1000*data[1]
   P = I*V
   V_OC.append(max(abs(V)))
    I SC.append(max(abs(I)))
   P MAX.append(max(abs(P)))
   FF.append(P_MAX[-1]/(V_OC[-1]*I_SC[-1]))
   idx = [bisect.bisect_left(I, -1000*j) for j in I_D]
   V_D[i] = ([V[j] for j in idx])
   ax1.plot(V, I, '-o', markersize=1) #, color = colour[j]
    ax2.plot(V, P, '-o', markersize=1) #, color = colour[j]
ax1.legend(temp, fontsize = 'x-small')
ax2.legend(temp, fontsize = 'x-small')
print("V_OC for Temperature =", str(temp), "°C is" , V_OC, "in V")
print("I_SC for Temperature =", str(temp), "°C is" , I_SC, "in mA")
print("Fill Factor for Temperature =", str(temp), "°C is" , FF)
ax3.plot(temp, FF, '-o', markersize=5)
for j in range(len(I_D)):
    ax4.plot(temp, V_D[:,j], '-o', markersize=5)
ax4.legend(I_D, fontsize = 'x-small')
ax5.plot(temp, V_OC, '-o', markersize=5)
ax6.plot(temp, I_SC, '-o', markersize=5)
fig1.savefig('21.pdf')
fig2.savefig('22.pdf')
fig3.savefig('23.pdf')
fig4.savefig('24.pdf')
fig5.savefig('25.pdf')
fig6.savefig('26.pdf')
```

#### 3.3.3 Effect of $R_s$

```
RS = [0, 10, 30]
\Lambda OC = []
I SC = []
P MAX = []
FF = []
fig1, ax1 = plt.subplots()
ax1.set xlabel('Voltage (in V)')
ax1.set_ylabel('Current (in mA)')
ax1.set title('I/V Characteristics of Solar Cell at Different Series
Resistances')
fig2, ax2 = plt.subplots()
ax2.set xlabel('Voltage (in V)')
ax2.set ylabel('Power (in mW)')
ax2.set title('P/V Characteristics of Solar Cell at Different Series
Resistances')
fig3, ax3 = plt.subplots()
ax3.set xlabel('Series Resistance (in \Omega)')
ax3.set ylabel('Fill Factor')
ax3.set title('Fill Factor vs Series Resistances')
fig4, ax4 = plt.subplots()
ax4.set xlabel('Series Resistance (in \Omega)')
ax4.set ylabel('$V {OC}$ (in V)')
ax4.set_title('Open Circuit Voltage vs Series Resistances')
fig5, ax5 = plt.subplots()
ax5.set xlabel('Series Resistance (in \Omega)')
ax5.set_ylabel('$I_{SC}$ (in mA)')
ax5.set_title('Short Circuit Current vs Series Resistances')
for i in range(len(R S)):
    data = pd.read csv('E:\Program Files\Spice64\EE236\Lab4\\3a' + str(i+1)
    + '.txt', header = None, skipinitialspace=True, delim_whitespace=True)
    V = data[0]
    I = 1000*data[1]
    P = I*V
    V OC.append(max(abs(V)))
    I_SC.append(max(abs(I)))
    P MAX.append(max(abs(P)))
    FF.append(P MAX[-1]/(V OC[-1]*I SC[-1]))
    ax1.plot(V, I, '-o', markersize=1) #, color = colour[j]
    ax2.plot(V, P, '-o', markersize=1) #, color = colour[j]
ax1.legend(R S, fontsize = 'x-small')
ax2.legend(R_S, fontsize = 'x-small')
print("V_OC for Series Resistance =", str(R_S), "\Omega is", V_OC, "in V")
print("I SC for Series Resistance =", str(R S), "Ω is", I SC, "in mA")
print("Fill Factor for Series Resistance =", str(R S), "\Omega is", FF)
ax3.plot(R_S, FF, '-o', markersize=5)
```

```
ax4.plot(R_S, V_OC, '-o', markersize=5)
ax5.plot(R_S, I_SC, '-o', markersize=5)
fig1.savefig('3a1.pdf')
fig2.savefig('3a2.pdf')
fig3.savefig('3a3.pdf')
fig4.savefig('3a4.pdf')
fig5.savefig('3a5.pdf')
```

#### 3.3.4 Effect of $R_{sh}$

```
R Sh = [100, 500, 5000]
\Lambda OC = []
ISC = []
P MAX = []
FF = []
fig1, ax1 = plt.subplots()
ax1.set_xlabel('Voltage (in V)')
ax1.set ylabel('Current (in mA)')
ax1.set title('I/V Characteristics of Solar Cell at Different Shunt
Resistances')
fig2, ax2 = plt.subplots()
ax2.set xlabel('Voltage (in V)')
ax2.set ylabel('Power (in mW)')
ax2.set title('P/V Characteristics of Solar Cell at Different Shunt
Resistances')
fig3, ax3 = plt.subplots()
ax3.set xlabel('Series Resistance (in \Omega)')
ax3.set ylabel('Fill Factor')
ax3.set title('Fill Factor vs Shunt Resistances')
fig4, ax4 = plt.subplots()
ax4.set xlabel('Series Resistance (in \Omega)')
ax4.set_ylabel('$V_{OC}$ (in V)')
ax4.set title('Open Circuit Voltage vs Shunt Resistances')
fig5, ax5 = plt.subplots()
ax5.set_xlabel('Series Resistance (in <math>\Omega)')
ax5.set ylabel('$I {SC}$ (in mA)')
ax5.set title('Short Circuit Current vs Shunt Resistances')
for i in range(len(R_Sh)):
    data = pd.read_csv('E:\Program_Files\Spice64\EE236\Lab4\\3b' + str(i+1)
    2+ '.txt', header = None, skipinitialspace=True, delim whitespace=True)
    V = data[0]
    I = 1000*data[1]
    P = I*V
    V OC.append(max(abs(V)))
    I_SC.append(max(abs(I)))
    P MAX.append(max(abs(P)))
```

```
FF.append(P MAX[-1]/(V OC[-1]*I SC[-1]))
    ax1.plot(V, I, '-o', markersize=1) #, color = colour[j]
    ax2.plot(V, P, '-o', markersize=1) #, color = colour[j]
ax1.legend(R_Sh, fontsize = 'x-small')
ax2.legend(R Sh, fontsize = 'x-small')
print("V OC for Shunt Resistance =", str(R Sh), "\Omega is", V OC, "in V")
print("I\_SC for Shunt Resistance =", str(R_Sh), "\Omega is", I_SC, "in mA")
print("Fill Factor for Shunt Resistance =", str(R_Sh), "Ω is" , FF)
ax3.plot(R Sh, FF, '-o', markersize=5)
ax4.plot(R_Sh, V_OC, '-o', markersize=5)
ax5.plot(R_Sh, I_SC, '-o', markersize=5)
fig1.savefig('3b1.pdf')
fig2.savefig('3b2.pdf')
fig3.savefig('3b3.pdf')
fig4.savefig('3b4.pdf')
fig5.savefig('3b5.pdf')
```

### 4 Experiment completion status

Completed everything in Lab successfully.

### 5 Questions for reflection

Please see my Design and Simulation Result sections for my comments. Overall, the lab was good.

Thanks!