Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2017 ME3CO06 Fluid Mechanics

Programme: B.Tech.

Branch/Specialisation: ME

Duration: 3 Hrs.

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of O.1 (MCOs) should be written in full instead of only a. b. c. or d.

Q.1 (MCQ	s) should be written in full ins	tead of only a,	b, c or d.	
Q.1	i.	The specific gravity of water	·is		1
		(a) 1.4 (b) 1	(c) 1000	(d) 100	
	ii.	The S.I units of kinematic vi	scosity (v) are		1
		(a) $\frac{m^3}{s}$ (b) $\frac{kg}{s}$	(c) $\frac{m^2}{s}$	(d) $\frac{N}{s}$	
	iii. Which property is constant for an incompressible flow?				1
		(a) Density (b) Velocity	(c) Acceleration	on (d) None of these	
i	iv.	Which of the following expressions is correct for a stream function?			1
		(a) $v = \frac{\partial \psi}{\partial y}$	(b) $v = -\frac{\partial \psi}{\partial x}$	dy	
		(c) $u = \frac{\partial \psi}{\partial y}$	(d) $u = -\frac{\partial \psi}{\partial x}$	dy	
	v.	The unit of pressure head is			1
		(a) Pa (b) N	(c) m	(d) N-m	
	vi.	The ratio of area of the jet at	t vena contract	a to area of orifice is known	1
		as			
		(a) Co-efficient of velocity	(b) Co-efficie	ent of contraction	
		(c) Co-efficient of discharge	(d) None of the	nese	
	vii.	The dimensions of surface tension in M-L-T system are given by		1	
		(a) MLT^{-1} (b) LT^{-1}	(c) ML^2T^2	(d) MT^{-2}	
	viii.	The dimensionless number of velocity is	defining the ra	tio of actual velocity to sonic	1
		(a) Froude (b) Mach	(c) Revnold	(d) Euler	

P.T.O.

	1X.	Reynold number is given by	1
	х.	 (a) ρVl/μ (b) ρμVl (c) μ/ρV (d) None of these The Reynold number for a flow comes out to be 230. Which of the following statement is true? (a) The flow is turbulent. (b) The flow is impossible. (c) The flow is laminar. (d) The flow is neither laminar nor turbulent. 	1
Q.2	i.	Define: (a) Compressibility (b) Bulk modulus, along with suitable mathematical expressions.	4
	ii.	A rectangular box with base 2.5 m x 4 m. is filled with kerosene oil of specific gravity 0.8 to a depth of 6 m. Determine the resultant pressure force and its point of application on the base and on each vertical face of box.	6
OR	iii.	A piston of 5cm radius and 12.5 cm long slides vertically down in a 10.05 cm diameter cylinder. The oil filling in the annular space has a viscosity of 0.08 Ns/m ² . Find the speed with which the piston slides down if load on the piston is 10 N.	6
Q.3	i. ii.	Distinguish between uniform flow and non-uniform flow. For the velocity field given by $V = 10xyi + 5x^2j + (t^2x+z)k$, find the velocity and acceleration of a fluid particle at co-ordinates $(1,2,3)$ and at $t=1$ sec.	8
OR	iii.	Check whether the flow defined by the stream function $\psi=2xy$ is irrotational. If so, determine the corresponding velocity potential function.	8
Q.4	i.	Write a short note on Orifice with diagram and how it is used for flow measurement?	4
	ii.	Derive Euler's equation along streamline flow and hence derive Bernoulli's theorem. State assumptions for Bernoulli's theorem and throw light on terms obtained by it.	6

OR	iii.	A 2 m. long water pipeline tapers uniformly from 10 cm diameter to 20	
		cm diameter at its upper end. The pipe centre line slopes upwards at an	
		angle of 30° to the horizontal and the flow direction is from smaller to	
		bigger cross-section, due to motive force of a pump. If the pressures at	
		lower ends and upper ends are 200 kPa and 230 kPa respectively,	
		determine the flow rate	

- Q.5 i. What is the significance of Froude number?
 - ii. With the help of Rayleigh's method of dimensional analysis, express efficiency η of a fan in terms of dimensionless parameters, if η depends on the density ρ , the dynamic viscosity μ , the angular velocity ω , diameter D of rotor, and the discharge Q.
- OR iii. Show by the use of Buckingham's π theorem, that the velocity through an orifice is given by

$$V = \sqrt{2gh} f(\frac{D}{H}, \frac{\mu}{\rho V H}, \frac{\sigma}{\rho V^2 H})$$

Where H is the head causing flow, D is the diameter of the orifice, μ is the coefficient of viscosity, ρ is mass density, σ is the surface tension and g is the gravitational acceleration.

5

- Q.6 Write short notes on any two: Support your answers with diagrams and mathematical expressions:
 - i. Reynold's experiment
 - Navier-Stokes equations of motion
 - iii. Hydrodynamic lubrication

ME3CO06 Fluid Mechanics

Marking Scheme

Q.1	i.	The specific gravity of water is (b) 1		1
ii.		The S.I units of kinematic viscosity (v) are (c) $\frac{m^2}{a}$		1
iv. v. vi. vii.	iii.	Which property is constant for an incompressible fl (a) Density	ow?	1
	iv.	Which of the following expressions is correct for a (c) $u = \frac{\partial \psi}{\partial y}$	stream function?	1
	v.	The unit of pressure head is (c) m.		1
	vi.	The ratio of area of the jet at vena contracta to known as (b) Co-efficient of contraction	area of orifice is	1
	vii.	The dimensions of surface tension in M-L-T system are given by (d) MT^{-2}		
	viii	The dimensionless number defining the ratio of a sonic velocity is (b) Mach	actual velocity to	1
	ix.	Reynold number is given by (a) $\rho V l/\mu$		1
х.		The Reynold number for a flow comes out to be 2 following statement is true? (c) The flow is laminar	230. Which of the	1
Q.2	i.	Definition of compressibility Formula Definition of bulk modulus Formula	- 1 mark - 1 mark - 1 mark - 1 mark	4
	ii.	Ans: On base : $F = 470880 \text{ N}$ $C_p = 6 \text{ m. from free surface}$ On vertical faces $4 \times 6 \text{ m.}$ $F = 353160 \text{ N}$ $C_p = 4 \text{ m. from free surface}$ On vertical faces $2.5 \times 6 \text{ m.}$	- 1 mark - 1 mark - 1 mark - 1 mark	6

		F = 565056 N $C_p = 4 \text{ m. from free surface}$	- 1 mark - 1 mark	
OR	iii.	Step marking should be given Ans.: formula of Newton's law of viscosity speed = 0.796 m/s Step marking should be given	– 2 marks - 4 marks	6
Q.3	i.	Difference b/w two flows		2
	ii.	Ans: formula of velocity	- 1 mark	8
		Velocity = 21 units	- 3 marks	
		Formula of acceleration	- 1 mark	
		Accelaration = 493.13 units	- 3 marks	
		Step marking should be given		
OR	iii.	, ,	- 4 marks	8
		Vel potential $\Phi = x^2 - y^2 + const$	- 4 marks	
Q.4	i.	Short note on Orifice and mouth piece	- 3 marks	4
		Diagram	- 1 mark	
	ii.	Derivation of Eulers equation	- 2 marks	6
		Derivation of Bernoulli's theorem	- 2 marks	
		Assumptions	- 1 mark	
		Interpretation of terms	- 1 mark	
OR	iii.	Formula: Bernoulli's theorem	- 2 marks	6
		Discharge Q formula (continuity equation)	- 1 mark	
		Ans: 0.0723 m ³ /s (Step marking should be given)	- 3 marks	
Q.5	i.	Significance of Froude number with mathematical	expression)	2
	ii.	Ans: $\eta = f(\frac{\mu}{\rho \omega D^2}, \frac{Q}{\omega D^3})$ (Step marking should be	e given	8
OR	iii.			8
		Formulation of π terms	- 4 marks	
		Obtaining the final expression	- 4 marks	
Q.6		Write short notes on (any two):		5
		Each note with diagram and suitable expressions (5	5 marks each)	