

PipeRat

A high-throughput python package to perform and visualize large-scale genetic association analysis

Thiago Sanches, Apurva Chitre, Oksana Polleskaya, Elaine Keug, Benjamin Johnson, Gravilla Ang, Montana Lara, Abraham Palmer

Department of Psychiatry University of California San Diego

The NIDA Center of Excellence for Genetics, Genomics, and Epigenetics of Substance Use Disorders in Outbred Rats centralizes

- 10s of projects
- 100s of traits
- 10000s of genotypes
- Standardize data analysis

What is the PipeRat?

1. Is a python package

- a. To Curate traits
- b. To do Genetic Analysis
 - i. for any species
- c. To visualize the results
 - i. Manuscript ready figures
- d. To find target genes
- e. To facilitate future analysis

Data curation

We interactively visualize data with collaborators to curate, filter and log the changes

Regressing out covariates

- Autoremoves covariates with low PVE (2% in our case)
- Allows regressing out sites|sexes separately
- Allows time series regressing out
- Output always a normal distribution

```
pipe.regressout_groupby(data_dictionary=dic,
groupby_columns=groupby_animals)
```

or

pipe.regressout_timeseries(data_dictionary= dic, groupby_columns=groupby_animals)

Heritability

- How much genetic relatedness explains the variance in the traits
- GCTA for estimation
- Plotly for plotting

pipe.SubsetAndFilter()
pipe.generateGRM()
pipe.snpHeritability()

Heritability

SNP Heritability Estimates h2

SIVP haritability (often reported as h²) is the fraction of phenotypic variance that can be explained by the genetic variance measured from the Billalic SIVPS called by the genotyping pipeline. for each text by GCTB-GERIAL, which uses the phenotypes and genetic relatedness matrix (GRM) as inputs. Tails with higher SIVP heritability are more likely to produce significant GMS results. Note that N for each that may differ from tails to tail due to mission data for each trait.

Column definitions

- trait: trait of interest
- . N: number of samples (rats) containing a non-NA value for this trait
- . heritability: quantifies the proportion of phenotypic variance of a trait that can be attributed to genetic variance
- . heritability_se: standard error, variance that is affected by N and the distribution of trait values
- . pval: probability of observing the estimated heritability under the NULL hypothesis (that the SNP heritability is 0)

Genetic correlation

- Correlation between traits through the GRM
- GCTA greml bivariate
- Correlation without overlap

pipe.genetic_correlation_matrix()

Genetic Correlation Matrix @

Genetic correlation is a statistical concept that quantifies the extent to which two traits share a common genetic basis. The estimation of genetic correlation can be accomplished using Genome-wide Complex Trait Analysis (GCTA), between pairs of traits. CGTA implements a method that decomposes the total phenotypic covariance between two traits into genetic and environmental components, providing an estimate of the genetic correlation between the into the biological mechanisms underkino complex traits and disease.

For the figure, the upper triangle represents the genetic correlation (ranges from [-1:1]), while the lower triangle represents the phenotypic correlation. Meanwhile the diagonal displays the heritability (ranges from [0:1]) of the traits. dendrogram where color coding for clusters depends on a distance threshold set to 70% of the maximum linkage distance. Asterisks means that test failed, for genetic relationship the main failure point is if the 2 traits being tested

GWAS

- Using GCTA in parallel using dask
- Holoviews for plotting billions of points in seconds

pipe.callQTLs()
pipe.porcupineplot()

GWAS

pipe.porcupineplot()

- Using GCTA in parallel using dask
- Holoviews for plotting billions of points in seconds

~ QTL

Summary of QTLs

The genome-wide significance threshold (-log 10p):

- mRatBN7.2:10.2.1 10%; 5.39
- mRateN7.2:10.2.1 10%; s.39
 mRateN7.2:10.2.1 5%; 5.73

The values shown in the table below pass the mRatBN7.2:10.2.1 suggestive threshold.

Quantitative trait loci (QTLs) are regions in the genome that contain single nucleotide polymorphisms (SNPs) that correlate with a complex trait.

If there are multiple CTL in a given chromosome, then the top SIP from the most significant QTL is used as a covariate for another QNIS analysis within the chromosome. If the analysis results in another SIP with a p-value that exceeds the permutation-derived threshold to the product of the

- TopSNP. SNPs with lowest p-value whithin an independent QTL. SNP name is defined by the location of the top SNP on the chromosome. Read it as follows chromosome: position, so 10:10486551 would be chromosome 10, location on the chromosome at 10486551.
- beta: effect size of topSNP
- betase: standard error of effect size of topSNP
- . Log 10(p): statistical significance of the association between the trait variability and the top SNP, displayed as -log 10(p-value). The log-transformed p-value used in all figures and tables in this report
- . trait: trait in which the snp was indentified
- . F344, BUF, MR, MS20, WN, BN, ACI, WKY: genotypes of founders at the topSNP

	•			Download table											
qtla.csv															
index -	TopSNP -	Freq -	beta -	betase -	-Log10(p) -	significance_level	- trait -	F344 -	MR -	BUF -	WN -	M520 -	BN -	ACI -	WKY -
	Similarity	Enter 0	Enter 0	Enter m 0	Enter minin 🗘	Similarity	Similarity	Similarit	Similar	Similarit	Similari	Similarity	Simila	Similar	Similarity
0	1:141548316	0.41	-0.198	0.043	5.466	10%	rt_peropfalsealarm_males	СС	TT	TT	TT	СС	СС	CC	TT
1	1:141548771	0.416	-0.153	0.031	6.199	5%	rt_peropfalsealarm	AA	GG	GG	GG	AA	AA	AA	GG
2	2:36107011	0.507	-0.141	0.03	5.499	10%	rt_corr	GG	GG	AA	GG	GG	GG	AA	AA
3	2:36107011	0.507	-0.141	0.03	5.499	10%	rt_leftcorr	GG	GG	AA	GG	GG	GG	AA	AA
4	2:36107011	0.507	-0.141	0.03	5.524	10%	rt_lefttrials	GG	GG	AA	GG	GG	GG	AA	AA
5	2:36107011	0.507	-0.141	0.03	5.524	10%	rt_totaltrials	GG	GG	AA	GG	GG	GG	AA	AA
6	2:71214697	0.589	-0.216	0.045	5.899	5%	rt_sdrt_females	AA	GG	GG	GG	AA	AA	GG	AA
7	2:71222161	0.587	-0.154	0.032	5.922	5%	rt_sdrt	СС	TT	TT	TT	СС	СС	TT	СС
8	2:72763104	0.705	0.763	0.14	7.323	5%	pc1	GG	GG	GG	GG	GG	TT	GG	TT
9	2:72770503	0.559	-0.32	0.06	7.008	5%	umap1	AΑ	СС	СС	СС	AA	АА	СС	АА
10	2:75843434	0.702	0.229	0.047	6.014	5%	rt_devmedrt_females	СС	СС	AA	CC	СС	AA	CC	CC
11	2:141010376	0.244	-0.18	0.035	6.686	5%	rt_ommisions	СС	СС	СС	СС	СС	СС	CC	GG
12	3:50051576	0.521	0.198	0.042	5.572	10%	rt_falsealarm_auc_females	СС	TT	СС	СС	TT	СС	TT	СС
13	4:24731426	0.544	0.147	0.031	5.714	10%	rt_corr	AA	AA	AA	AA	AA	GG	GG	GG
14	4:24731426	0.544	0.147	0.031	5.714	10%	rt_leftcorr	AA	AA	AA	AA	AA	GG	GG	GG
											First	Prev 1	2 3	4 Ne	ct Last

Zooming in each QTL

 Colocalization of QTL topsnps and eQTLs | sQTLs

pipe.locuszoom()

mean_ili SNP 2:66689626

Resources for genes in QTL

Annotations

 Uses VEP offline for annotation

 GTF and GFF files from NCBI datasets

pipe.annotQTL()

Phewas

Colocalization of QTL topsnps and QTLs from other traits

Available online for all traits in 1 473 473 473
 lab

pipe.phewas()

PheWAS: Lowest P-values for other phenotypes in a 3Mb window of rt_peropfalsealarm_males 1:141548316 for phewasdb_rn7_metabolites_named.parquet.gz

PheWAS: Lowest P-values for other phenotypes in a 3Mb window of rt peropfalsealarm males 1:141548316 for phewasdb rn7 g102.parquet.gz

e/sQTL

Colocalization of QTL topsnps and eQTLs | sQTLs

pipe.eQTL() pipe.sQTL()

RatGTEx Portal

eQTL: Lowest P-values for eqtls in a 3Mb window of rt_peropfalsealarm_males 1:141548316 Enter filename Download table egtl_rt_peropfalsealarm_males1_141548316.csv SNP_eqtldb -Log10(p)_eqtldb - slope - af -Enter 0 Er 0 C Similarity En C Ent C Similarity Similarity 1:142543149 0.718 0.989 Me3 ENSRNOG00000017311 -0.391 0.436 1:141827145 25.202 Brain ENSRNOG00000016429 -0.399 0.432 0.99 0.995 Grm5 1:142540545 6.519 NAcc2 0.719 0.989 Prss23 ENSRNOG00000017307 -0.269 0.43 1:141162048 4.97 PL 0.976 0.995 Ctsc ENSRNOG00000016496 0.662 0.395 1:142536428 8.463 PL2 0.719 0.989 Me3 ENSRNOG00000017311 -0.528 0.438 sQTL: Lowest P-values for splice qtls in a 3Mb window of rt_peropfalsealarm_males 1:141548316 Enter filename Download table sqtl_rt_peropfalsealarm_males1_141548316.csv SNP_sqtldb -Log10(p)_sqtldb R2 - DP - slope - af -C Similarity En C Ent C Similarity Similarity 1:142540545 6.127 BLA 0.719 0.989 Me3 ENSRNOG00000017311 0.542 0.432 1:142540545 4.136 NAcc2 0.719 0.989 Me3 ENSRNOG0000001731

0.719 0.989 Me3

ENSRNOG00000017311

0.472 0.43

4.62 PL2

1:142540545

3 lines of code to download

git clone https://github.com/sanchestm/GWAS-pipeline.git cd GWAS-pipeline conda env create -n gwas -f environment.yml

6 lines of code to run

P50DA037844 | P30DA060810 Palmer Lab All collaborators that made this possible

Experimental

Latent Spaces

PCA | UMAP | NMF

consequence	aminoacids -	codons	refallele -	putative_impact =	distancetofeature -	strand ^	gene
Similarity	Similarity	Similarity	Similarity	Similarity	Similarity	Similarity	Similarity
intergenic_variant	NaN	NaN	С	MODIFIER	0bp	NaN	NaN
intron_variant	NaN	NaN	T	MODIFIER	0bp	1	Zdhhc13
intron_variant	NaN	NaN	С	MODIFIER	0bp	1	Grm5
intron_variant	NaN	NaN	T	MODIFIER	0bp	1	Cdh12
downstream_gene_variant	NaN	NaN	С	MODIFIER	23.75Kb	-1	LOC120101334

Experimental Graph operations

- Steiner tree
- Closest drug to network
- Gene enrichment

Combine all results into a single report