Contents

Day 14	1
Continuous Random Variables	2
Properties	2
Properties of $f(x)$	2

Day 14

Continuous Random Variables

Can take any real number (IR) value within any given interval.

We cannot use a probability mass function so we will instead use a probability density function (PDF) denoted as f(x)

Properties

• The probability of being in an interval (a, b] is:

$$\int_{a}^{b} f(x)dx = \int_{-\infty}^{b} f(x) - \int_{-\infty}^{a} f(x)dx$$

- This is considered the area under the curve between a and b

• $P(X = x) = 0 \ \forall x$

$$-P(X \le x) = P(X < x)$$

- $P(X \ge x) = P(X > x)$

$$-P(X \ge x) = P(X > x)$$

f(x) is displayed graphically as a density curve

Properties of f(x)

• $\forall x \in \mathbb{R}, f(x) \ge 0$

– Density never goes below x-axis • $\int_{-\infty}^{\infty} f(x)dx = 1$

Mean of continuous random variable: $\mu_x = \int_{-\infty}^{\infty} x \times f(x) dx$

Variance of continous random variable is $\sigma^2 = \int_{-\infty}^{\infty} (X = \mu_x)^2 f(x) dx$