и $u_0(\xi,\zeta)\to 0$ при $\xi\to\infty$ может быть решена методом Фурье (разделения переменных) [XII] или при помощи интегрального преобразования либо на отрезке $[\overline{f}_1(0),\overline{f}_2(0)]$, либо в полуограниченном промежутке $[0,\infty]$ [XI]. Формулировки краевых задач для нахождения функций $u_n(\xi,\zeta),\,n\in\mathbb{N}$, входящих в правую часть (6.69), являются более громоздкими, но решение этих задач можно получить теми же методами.

В итоге, согласно принципу суперпозиции решений [XII], функция

$$T(\rho,\zeta) = \widetilde{T}(\rho,\zeta) + \overline{T}(\rho,\zeta) = \widetilde{T}(\rho,\zeta) + u\left(\frac{1-\rho}{\varepsilon},\zeta\right)$$

будет решением исходной краевой задачи (6.56)–(6.58).

6.5. Метод ортогональных проекций

Пусть искомая функция ${m u}$ удовлетворяет one pamop ному уравнению

$$A\mathbf{u} = \mathbf{f},\tag{6.75}$$

где A — линейный непрерывный оператор, области определения D(A) и значений R(A) которого являются всюду плотными подмножествами гильбертова пространства \mathcal{H} со скалярным произведением $\langle \cdot, \cdot \rangle$. Если перенести заданный элемент f в левую часть этого уравнения, то получим равенство

$$Au-f=0,$$

где 0 — нулевой элемент в \mathcal{H} . Выберем в \mathcal{H} счетный базис $\{v_k\}$. Тогда это равенство, согласно теореме 5.1, можно заменить системой эквивалентных равенств

$$\langle A\boldsymbol{u} - \boldsymbol{f}, \boldsymbol{v}_k \rangle = 0, \quad k \in \mathbb{N}.$$
 (6.76)

Пусть последовательность $\{u_n\}$ образует в D(A) счетный базис. Тогда в соответствии с (4.52) искомый элемент $u \in D(A)$

можно единственным образом представить в виде

$$\boldsymbol{u} = \sum_{n=1}^{\infty} a_n \boldsymbol{u}_n, \quad a_n \in \mathbb{R}, \quad \boldsymbol{u}_n \in D(A). \tag{6.77}$$

Подставляя (6.77) в (6.76) и учитывая свойства скалярного ¶произведения и оператора A, получаем

$$\langle A\boldsymbol{u}, \boldsymbol{v}_{k} \rangle = \left\langle A \sum_{n=1}^{\infty} a_{n} \boldsymbol{u}_{n}, \boldsymbol{v}_{k} \right\rangle = \left\langle A \lim_{N \to \infty} \sum_{n=1}^{N} a_{n} \boldsymbol{u}_{n}, \boldsymbol{v}_{k} \right\rangle =$$

$$= \left\langle \lim_{N \to \infty} \sum_{n=1}^{N} a_{n} A \boldsymbol{u}_{n}, \boldsymbol{v}_{k} \right\rangle = \lim_{N \to \infty} \sum_{n=1}^{N} a_{n} \left\langle A \boldsymbol{u}_{n}, \boldsymbol{v}_{k} \right\rangle =$$

$$= \sum_{n=1}^{\infty} a_{n} \left\langle A \boldsymbol{u}_{n}, \boldsymbol{v}_{k} \right\rangle = \left\langle \boldsymbol{f}, \boldsymbol{v}_{k} \right\rangle, \quad k \in \mathbb{N}.$$

Таким образом, система равенств (6.76) равносильна системе

$$\sum_{n=1}^{\infty} a_n \langle A \boldsymbol{u}_n, \boldsymbol{v}_k \rangle = \langle \boldsymbol{f}, \boldsymbol{v}_k \rangle, \quad k \in \mathbb{N},$$
 (6.78)

представляющей собой бесконечную систему линейных алгебраических уравнений относительно координат a_n элемента u в базисе $\{u_n\}$. Если в (6.77) ограничиться первыми N элементами u_n счетного базиса, т.е. приближенно принять

$$\mathbf{u} \approx \widetilde{\mathbf{u}}_N = \sum_{n=1}^N a_n \mathbf{u}_n, \quad \mathbf{u}_n \in D(A),$$
 (6.79)

и в (6.78) ограничиться первыми N равенствами, в которых суммирование выполняется от 1 до N, то получим конечную систему N линейных алгебраических уравнений (СЛАУ)

$$\sum_{n=1}^{N} a_n \langle A \boldsymbol{u}_n, \boldsymbol{v}_k \rangle = \langle \boldsymbol{f}, \boldsymbol{v}_k \rangle, \quad k = \overline{1, N},$$
 (6.80)

относительно N первых координат a_n . Элементами матрицы такой системы будут скалярные произведения (Au_n, v_k) .

Решения СЛАУ (6.80) при различных N естественно рассматривать как приближения неизвестного решения уравнения (6.75). Если, в частности, $\{v_k\}$ является ортонормированным базисом в \mathcal{H} , то решению СЛАУ (6.80) соответствует решение $\widetilde{\boldsymbol{u}}_N$ вида (6.79) уравнения $A_N\boldsymbol{u}=\widetilde{\boldsymbol{f}}_N$, где A_N — оператор, действующий из N-мерного подпространства $D_N(A)$, совпадающего с линейной оболочкой системы $\{\boldsymbol{u}_n\}_N$, в N-мерное подпространство $R_N(A)$, совпадающее с линейной оболочкой системы $\{\boldsymbol{v}_k\}_N$. При этом $A_N\boldsymbol{u}$ совпадает с N-й частичной суммой разложения элемента $A\boldsymbol{u}$ по базису $\{\boldsymbol{v}_k\}$, а $\widetilde{\boldsymbol{f}}_N$ является N-й частичной суммой ряда $\boldsymbol{f}=\sum_{k=1}^\infty f_k\boldsymbol{v}_k$, где $f_k=\langle \boldsymbol{f},\boldsymbol{v}_k\rangle$.

Однако в случае произвольного базиса $\{v_k\}$, даже если определитель матрицы СЛАУ (6.80) отличен от нуля, нельзя утверждать, что последовательность $\{\widetilde{\boldsymbol{u}}_N\}$ приближенных решений вида (6.79) при $N\to\infty$ сходится к классическому \boldsymbol{u}_0 или слабому \boldsymbol{u}_* решениям уравнения (6.75). При некоторых ограничениях ответ на вопрос о сходимости $\{\widetilde{\boldsymbol{u}}_N\}$ к \boldsymbol{u}_0 или к \boldsymbol{u}_* удается решить теоретическим путем (см. $\boldsymbol{\mathcal{J}}$.6.1). Однако на практике часто приходится ограничиваться лишь сравнением между собой нескольких приближенных решений.

Описанная схема построения приближенного решения уравнения (6.75), приводящая к СЛАУ (6.80), лежит в основе большой группы приближенных аналитических методов, которые обычно объединяют под общим названием **метод ортогональных проекций**. Такое название объясняется тем, что равенства (6.80) представляют собой условия ортогональности элемента $A\tilde{u}_N - f$ всем базисным элементам v_k N-мерного подпространства $R_N(A)$. При этом **функции и**n, $n = \overline{1, N}$, которые используют для представления приближенного решения (6.79), называют базисными, а **функции v** $_k$ в СЛАУ (6.80) — проекционными.

Метод ортогональных проекций является частным случаем проекционного метода, в котором условия равенства нулю проекций невляки $A\tilde{u}_N - f$ операторного уравнения на элементы v_k , $k = \overline{1,N}$, базиса N-мерного подпространства $\mathcal{H}_N \subset R(A)$ имеют более общий вид (см. $\mathcal{A}.6.1$). Если $R(A) \subset \mathcal{L}_2(\mathbb{R})$, то чаще метод ортогональных проекций называют методом взвешенных невляок. В этом случае счетный базис в R(A) будет образован последовательностью $\{v_k\}$ действительных функций v_k , $k \in \mathbb{N}$, так что (6.80) можно рассматривать как N условий равенства нулю определенного в $L_2(\mathbb{R})$ скалярного произведения невязки операторного уравнения и весовых функций v_k , $k = \overline{1,N}$. Иногда процедуру применения (6.80) называют методом моментов, или методом Галеркина — Петрова*.

Особенности каждого конкретного метода в группе методов, определяемых условиями (6.80), зависят от выбора счетных базисов в D(A) и R(A). Такие методы рассмотрены ниже.

6.6. Коллокации в подобластях и в точках

Рассмотрим один из наиболее простых приемов нахождения приближенного решения операторного уравнения Au = f (6.75). Пусть области определения D(A) и значений R(A) оператора A, входящего в (6.75), являются всюду плотными подмножествами гильбертова пространства $L_2(V)$ функций, суммируемых (интегрируемых по Лебегу) с квадратом в области $V \subset \mathbb{R}^m$.

Разобьем V на N подобластей $V_k,\ k=\overline{1,N},\ {
m так},\ {
m чтобы}$ выполнялось равенство

$$\bigcup_{k=1}^{N} V_k = V_0,$$

^{*}Б.Г. Галёркин (1871—1945) — российский инженер и ученый в области механики. Г.И. Петров (1912—1987) — российский ученый в области механики.