

文献阅读

谭子萌

Pose estimation

- □ 单人姿态估计:检测关节点,常使用高斯热图回归方法
- □ 肢体变化、遮挡或背景中相似的物体 导致回归出准确的热图困难
- □ 主要考虑应用不同关键点之间的相互关系(结构先验)方面
- 1. 特征层面融合(显式利用)
- 2. GAN结构 (隐式利用)

Structured Feature Learning for Pose Estimation

Xiao Chu Wanli Ouyang Hongsheng Li Xiaogang Wang Department of Electronic Engineering, The Chinese University of Hong Kong

2016CVPR

从特征层面利用关节点间的结构相关性

(特征层面能够保留除了位置信息以外, 其他更为丰富的信息)

不同关节点的不同特征通道上可能具有相关性或反相关性:

3

Method

Contribution:

- 1. 信息传递的方式: geometrical transform kernels
- 2. 信息传递的路径: Bi-directional tree model
- 3. 特征层面,实现端到端的训练,而非后处理

以VGG为骨架,共享fcn6层(4096channel) 其后fcn7层每个关节点分别得到128个特征图 对第k个关节点(x,y)像素位置

$$\mathbf{h}_{fcn7}^{k}(x,y) = f(\mathbf{h}_{fcn6}(x,y) \otimes \mathbf{w}_{fcn7}^{k} + \mathbf{b}_{fcn6}),$$

Geometrical transform kernels

希望用小臂特征图hm减少手肘en的错误响应、加强正确响应

不能单纯地将en与hm相加:存在空间的不匹配性

→不对称的卷积核能够对特征图响应产生几何变换

相邻关节点间的相对空间位置固定,使得几何变换核容易学习到

此外对负相关的情况, 使核为负值来抑制错误的响应

连续3个7×7的变换核 满足变换尺寸需求

Bi-directional tree model

在那些距离较近、关系比较稳定的关节点传递信息 Ak'与Bk' 利用双方向来传递互补的信息: 叶子节点 $\leftarrow \rightarrow$ 根节点 concat 256 Origin fcn7 128 Refined fcn7 feature map 128 Shared fcn6 4096 Score map Input image (1) Part-features (2) Structured feature learning (3) Prediction CNN Joint 3 Score Joint4 Joint6 56 Joint5 1×1 convolution 56 448 (2,a) $\boldsymbol{A}_6 = f(\boldsymbol{h}_{fcn6} \otimes \boldsymbol{w}^{a6})$ $A_6' = A_6$ Upward Direction $A_5' = A_5$ $\mathbf{A}_5 = f(\mathbf{h}_{fcn6} \otimes \mathbf{w}^{a5})$ A_3 $A_4 = f(\mathbf{h}_{fcn6} \otimes \mathbf{w}^{a4})$ $A_4' = f(A_4 + A_5' \otimes w^{a5,a4})$ A_4 B_4 $\mathbf{A_3}' = f(\mathbf{A_3} + \mathbf{A_4}' \otimes \mathbf{w}^{a4,a3})$ $A_3 = f(\mathbf{h}_{fcn6} \otimes \mathbf{w}^{a3})$ A_5 $+A_6'\otimes w^{a6,a3})$ A6到A3的几何变换核

fcn7中节点3的卷积核

Method

Score map: 1×1卷积

$$\mathbf{z}_k = [\mathbf{A'}_k, \mathbf{B'}_k] \otimes \mathbf{w}_{pred}^k.$$

Loss: 分类问题(18个关节点+1个背景)

当(x, y)像素属于第k类时, tk(x, y)=1, 否则=0

为解决类别不均衡问题,引入binary mask来随机采样0.05%的负样本

$$\sum_{x} \sum_{y} m(x,y) \sum_{k} t_{k}(x,y) log(\frac{e^{z_{k}(x,y)}}{\sum_{k'} e^{z_{k'}(x,y)}})$$

后处理:
$$[(dx)^2, (dy)^2]$$
 $dx = (x_i - x_j - x_r)$ $dy = (y_i - y_j - y_r)$

Test image

Score map

Results

Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation*

Yu Chen¹ Chunhua Shen² Xiu-Shen Wei³ Lingqiao Liu² Jian Yang¹ ¹Nanjing University of Science and Technology ²University of Adelaide

³Nanjing University 2017 I CCV

单个关节点的热图估计可能导致出现生物学上不可能的姿态

网络遵循GAN结构,由一个生成器+2个判别器构成

Pose generator G

Multi-task: 输出32channel 16个pose heatmap + 对应的occlusion heatmap

采用stack的方式 均为带有跳接结构的encoder-decoder网络

$$egin{cases} \{m{Y}_n,m{Z}_n,m{X}\} = m{\mathcal{G}}_n(m{Y}_{n-1},m{Z}_{n-1},m{X}) & ext{if} \ n\geqslant 2 \ \{m{Y}_n,m{Z}_n,m{X}\} = m{\mathcal{G}}_n(m{X}) & ext{if} \ n=1 \end{cases}$$

N M

 $\mathcal{L}_G(\Theta) = rac{1}{2MN} \sum_{n=1}^N \sum_{i=1}^M \left(\left\| oldsymbol{y}^i - \hat{oldsymbol{y}}_n^i
ight\|^2 + \left\| oldsymbol{z}^i - \hat{oldsymbol{z}}_n^i
ight\|^2
ight)$

MPII数据集

N:stack

M:data number

Pose Discriminator P

区分那些不满足人体关节点约束的pose 为保证对输入图片姿态合理,需要同时送入输入图片

$$\begin{split} \mathcal{L}_P(G,P) &= \mathbb{E}[\log P(\boldsymbol{y},\boldsymbol{z},\boldsymbol{x})] + \\ &\mathbb{E}[\log (1-|P(G(\boldsymbol{x}),\boldsymbol{x})-\boldsymbol{p}_{\text{fake}}|)] \,. \end{split}$$

传统的gt=0/1会导致训练困难 → 对16个关节点分别分析 在传统GAN中pfake=0 → 可以认为那些和真实姿态接近的预测结果为真样本 (当一个关节点偏离真值很远时,会导致整个姿态出错)

$$\boldsymbol{p}_{\mathrm{fake}}^i = egin{cases} 1 & \mathrm{if}\ d_i < \delta \ 0 & \mathrm{if}\ d_i \geqslant \delta \end{cases}$$

δ为normalized distance

Confidence Discriminator C

区分输出热图的low-confidence与high-confidence(Gaussian centered)

即网络在所预测位置是否confident

输入为pose + occlusion heatmap

$$\mathcal{L}_C(G, C) = \mathbb{E}[\log C(\boldsymbol{y}, \boldsymbol{z})] + \\ \mathbb{E}[\log(1 - |C(G(\boldsymbol{x})) - \boldsymbol{c}_{\text{fake}}|)].$$

传统的gt=0/1会导致训练困难 → 对16个关节点分别分析 在传统GAN中cfake=0

→可以认为当prediction与gt heatmap较像时为真样本

$$\boldsymbol{c}_{\text{fake}}^{i} = \begin{cases} 1 & \text{if } \|\boldsymbol{y}_{i} - \hat{\boldsymbol{y}}_{i}\| < \varepsilon \\ 0 & \text{if } \|\boldsymbol{y}_{i} - \hat{\boldsymbol{y}}_{i}\| \geqslant \varepsilon \end{cases}$$

生成器G的训练

$$\mathcal{L}_{G}(\Theta) = rac{1}{2MN} \sum_{n=1}^{N} \sum_{i=1}^{M} \left(\left\| oldsymbol{y}^{i} - \hat{oldsymbol{y}}_{n}^{i}
ight\|^{2} + \left\| oldsymbol{z}^{i} - \hat{oldsymbol{z}}_{n}^{i}
ight\|^{2}
ight)$$

$$\begin{split} \mathcal{L}_P(G,P) &= \mathbb{E}[\log P(\boldsymbol{y},\boldsymbol{z},\boldsymbol{x})] + \\ &\mathbb{E}[\log (1 - |P(G(\boldsymbol{x}),\boldsymbol{x}) - \boldsymbol{p}_{\text{fake}}|)] \,. \end{split}$$

$$\mathbf{p}_{\text{fake}}^i = \begin{cases} 1 & \text{if } d_i < \delta \\ 0 & \text{if } d_i \geqslant \delta \end{cases}$$

$$\begin{split} \mathcal{L}_C(G,C) &= \mathbb{E}[\log C(\boldsymbol{y},\boldsymbol{z})] + \\ &\mathbb{E}[\log (1 - |C(G(\boldsymbol{x})) - \boldsymbol{c}_{\text{fake}}|)] \,. \end{split}$$

$$oldsymbol{c}_{ ext{fake}}^i = egin{cases} 1 & ext{if } \|oldsymbol{y}_i - \hat{oldsymbol{y}}_i\| < arepsilon \ 0 & ext{if } \|oldsymbol{y}_i - \hat{oldsymbol{y}}_i\| \geqslant arepsilon \end{cases}$$

总Loss:

$$\arg\min_{G} \max_{P,C} \mathcal{L}_{G}(\Theta) + \alpha \mathcal{L}_{C}(G,C) + \beta \mathcal{L}_{P}(G,P).$$

当cfake=creal时 α=0

当pfake=freal时 β=0

排除可能训练得不好的判别器的影响

Results

谢谢大家!