

FIG 2A

FIG 2A(I) FIG 2A(II)

PILFLPLGLALGLLSPWL PLLFFPLLWALPLLGPV Putative Transmembrane Domain QPRVVPQTQESQPDSNLCGSHLAFSSAPAGGLLR ---PS---W

--KLMAQSGMSQPD-

HELA2

prostasin

S-S

ylg-N|. * * * * * .

SEH

FIG 2B

In vitro transcription / translation of HELA2 (Testisin)

FIG 3

FIG 3(i)

FIG 3(ii)

FIG 3(iii)

FIG 3(i)

HELA2 (Testisin) Short Isoform

HELA2 (Testisin) Long Isoform

HELA2 (Testisin) Restriction Enzyme Map

F1G 3(iii

FIG 4

<u>FIG 4(ii)</u>

<u>FIG 4(iii)</u>

FIG 4(i)

F16 4(11

F16 4(iii

FIG 5 14/62

A. Expression of recombinant Testisin in E. coli.

B. Western blot of recombinant Testisin

FIG 6(I)

FIG 6(II)

FIG 6(III)

FIG 6

09

ద

ഗ

ტ

Q

M

വ

3

ద

ෆ

الا

口

D

田

. ე

139

20

니

ෆ

Ø

ĸ

Ø

Ц

Ы

ᆸ

ď

IJ

口

ц

Ø

ტ

ĸ

ď

(I)9

FIGURE

19

GCCGCGGGAGAGGAGGCC

A TGGGCGCGCGCGCGCGCTGCTGCTGCCGCTGCTGCTCGGCTCGGGCTGGACTCAGGAAG

CCGGAGTCGCAGGAGGCGCCCGTTATCAGGACCATGCGGCCGACGGGTCATCACGTCG

40

Н

凶

凶

Ŋ

U

Д

Ċ

ഗ

口

Д

Ø

Ø

团

Õ

ഗ

臼

79

80

A L

RW

Н

ഗ

SLL

 \mathcal{C}

>

田

ഗ

199

259

100 GCGCACTGCTTTGAAACCTATAGTGACCTTAGTGATCCCTCCGGGTGGATGGTCCAGTTT ഥ \mathbb{Z} Z ტ ഗ വ О ഗ D L ഗ × H Ы ഥ ر ر H

CTGTGGGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGGCACTCACGGCG

CGCATCGTGGGTGGAGAGGACGCCGAACTCGGGCGTTGGCCGTGGCAGGGGAGCCTGCGC

120 GGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTACTACACCCGTTACTTC × × Ø Ø ᆸ ഗ Z Щ Ŋ Д Z S 319

GTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCTATGACATTGCCTTG Д Д ഗ Z ტ Ц \succ 召 щ ഗ Ц × Н Z ഗ 379

all 10 of the track of the state of the stat the street with street was street with

FIGURE 6 (II)

- 160 GTGAAGCTGTCTGCACCTGTCACCTACACTAAACACATCCAGCCCATCTGTCTCTGCAGGCC Ø U Н Д Ø Н 口 又 드 × Н > Д ď ഗ Ы K 439
- 180 **O** 3 Ċ Н > 3 ر ا Ω Н 公 Z 口 ſΞι 口 499
- 200 GAGGATGAGGCACTGCCATCTCCCCACACCCTCCAGGAAGTTCAGGTCGCCATCATAAAC Z Н Ø > Ŏ \triangleright 口 ٥ ᆈ (단) н Д ഗ Д Ц Ø 口 臼 559
- 220 AACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTTCCGCAAGGACATCTTTGGAGAC ტ Д X 召 ഥ ഗ \succ × 口 ഥ Ы 田 Z ပ Ξ ഗ 619

17/62

- 240 ATGGTTTGTGCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGTGGA U Ċ ഗ Д Ċ С . Щ Ø О X ഗ Ŋ Ø Ø Z ധ ď ပ > 619
- 260 CCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGAGTG G 3 ഗ > > G Н Q × ⋈ Ц Ċ Z X Z ט Д 739
- 280 GGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCCAATATCAGCCACCACTTTGAGTGG 闰 二 出 ഗ Н Z 드 \succ \gt U Д 召 Z Д ĸ G Ö Ċ 799

FIGURE 6 (III)

- 300 ATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCCAGACCCCTCCTGGCCGCTACTC ß ഗ വ О Д Ø ഗ × Ŋ ഗ Ø Ø I. Q K 859
- TITITICCCTCTTCTCTGGGCTCTCCCACTCCTGGGGCCGGTCTGAGCCTACCTGAGCCCA 314 ധ ᄓ ᆸ Д Ц Ø 口 Ц 919
- AAAAAAAAAAAAAAAAA 1039 1099 979

Western blot of GST-Testisin using anti-Testisin peptide T175 antibody

FIG 7

FIG 8

FIG 8(i)

FIG 8(ii)

FIG 8(iii)

FIG 8(i)

FIG 8(ii)

FIG 9

FIG 9(i)	FIG 9(ii)
FIG 9(iii)	FIG 9(iv)

mammary gland salivary gland-

26/62

FIG 12

Testisin (HELA2) is located on human chromosome 16p13.3

A. Northern Blot

438 623 655 798

N T N T N T N T

HELA2
(Testisin) -

B. Immunohistochemistry

FIG 16

FI	G	16	(j)

FIG 16(ii)

FIG 16(iii)

FIG 16(iv)

FIG 16(v)

FIG 16(vi)

and the first test to the first test of the first test of the first test of the first test of the first test of

agtgagtctc ctgcctcagc ctcccaagta gctgggactt caggtgtgtg	aattt ttttttttt ttttttttg agaaggagtc 100	ygctg gagtgcagtg gcgcgatctt ccaggcccca 150	ygcct tgcctacctg ctttaagggg actcctggct 200	ygtgc tggaggaggt ggtgggtgga gggcagggggg	sagga cccccgggct gcagacaaga aaaggactgt 300	/+1EXON 1	eggge cacatcaagg aatgtggttg aagacccgcc	GCCAGG GCGCTACCAG GCCTGAGAGG CCCCAAACAG	FGGGA GGATTAAGCT GGAGCTCCCA ACCCGCCCTG 450	CCCCGG GCCCGGCGC AGAGGAGGCA GAGGGGGCGT 500	11 CCCECCECCE CCCCCCCCC CCCCCCCCCCCCCCC	らつらつらら T せつ	CAIGGGCGCG CGCGGCGC IGCIGGC 55	CAIGGGCGC CGCGGGCGC 135 / INTRON A GACTCAGGAA GCCGGGtgag ctcggggcgc 60
tttttttt		gagtgcagtg	tgcctacctg	tggaggaggt		/+1EXON 1		GCGCTACCAG GCCTGAGAG	GGATTAAGCT	GCCCGGCGCG AGAGGAGG				GACTCAGGAA GCCGGgtga
ctgcctcagc	cagctaattt	gcccaggctg	aggaaggcct	cccctggtgc	gcagccagga		gggtctgggc	GAAAGCCAGG	TGGTTTGGGA	GCGACCCCGG	GAGAGGAGGC			GCTCGGGCTG
agtgagtctc	ccaccatcct	ttgctctgtc	ccgggccctc	cagggccagg	caccaagcgg		ggggtccacc	CTTAGGAGCT GAAA	CCCTTGGGCC	CCCCCAGGGG GCGA	CAGGCCGCGG			GCTGCTG GCTC

37/62

FIG 16(

EXON 2...

700	750	850	900	1000	1050	1100	1150	1200
GAGGCGGCGC	gggccgttgg ctttactgct	ggaaagtaac	cgtgggagga gaccctgggt	aagggagagg	ctgaccatcc	GGGTGGAGAG	GCCTGTGGGA	GCACTCACGG
agAGTCGCAG GAGGCGGCGC	attectgeca		ctgcagagca cacgcgaggg	gaaggggaga	agcagttcct	CGCGCATCGT	GGGAGCCTGC	CCACCGCTGG GCACTCACGG
tgtctcccgc	aggacgcgcg qtqaqqqqqt		tgggcgggcc ctgctgcaca	ggacggggtt	cccgcggctc	GTCATCACGT	GCCGTGGCAG	GCCTGCTCAG
ggccgcgggg agtcacttct tgtctcccgc/INTRON B	CGTTATCAGg tagggcgccc qccqaqqtqq acqqqqqqcq	555555555	taacggacgc tggaggggga tctccagtgt cacctacttc	gtgctttccc	tegggettgg ggggetgeet/EXON 3	gagGACCATG CGGCCGACGG	GACGCCGAAC TCGGGCGTTG	TICCCACGIA IGCGGAGIGA GCCIGCICAG
,	CGTTATCAGg	ctctcgcccc	taacggacgc tctccagtgt	gggcaaaaac	tcgggcttgg ggg /EXON 3	gagGACCATG	GACGCCGAAC	TTCCCACGTA

38/62

/INTRON C..

CGGCGCACTG	CTTTGAAACg	tgagtggggg	tgcgaacgga	ggggtgcggg	125
gacgggcagg	aacagggctg	gagggagtgc	caccgaactt	tacctctggt	130
ctgatgccag	acttgggcgt	gaaagttgtg	cgtggatgcg	gcctggtgtt	135
ctcctgagcc	ccaggctgtg	ctgcagccgg	ttacacccac	tccagttccc	140
tttgggtctc	ctggagggaa	ccctgttcag	gttattccag	aatgttcttc	145
cagaacattt	ccacacactt	ttgggtattc	tctccctttt	tctttcaacc	150
caaagttcac	cactgaccat	cccaccctca	tececettee	tggtggacgg	155
tgcggtacag	tgtggggcac	tgagccaagg	ccagcacccc	cgggccgctg	160
tgtggactcc	atcctgccaa	tcccacattg	gcgtggtgca	tctccccatt	165
cctccttggg	ctgcatgggg	gtgcccctgg	aggccttggc	tcaatgcaag	170
gctccttggg	acagctctgg	gaggtgacaa	gaccccaccc	ttctgctgca	175
ggagcaggtc	ctaggacttt	ggttgtggtc	tgtctgggct	ccttcatttc	180
tgcaggggac	cctgggtgtt	agcaagtagc	agcaacacca	cagtttcccc	185
tcctgcactg	gaccccagtt	gtgctcaggt	agccagccct	ccatccaggg	190

39/62

F1G 16(iii

/EXON 4...

cccctgactg	ctctcttctc	ccctgactg ctctcttctc ttctgccagc tatagTGACC TTAGTGATCC	tat <u>ag</u> TGACC	TTAGTGATCC	1950
CTCCGGGTGG	ATGGTCCAGT	CTCCGGGTGG ATGGTCCAGT TTGGCCAGCT GACTTCCATG CCATCCTTCT	GACTTCCATG	CCATCCTTCT	2000
GGAGCCTGCA	GGCCTACTAC	GGAGCCTGCA GGCCTACTAC ACCCGTTACT TCGTATCGAA TATCTATCTG	TCGTATCGAA	TATCTATCTG	2050
AGCCCTCGCT	ACCTGGGGAA	AGCCCTCGCT ACCTGGGGAA TTCACCCTAT GACATTGCCT TGGTGAAGCT	GACATTGCCT	TGGTGAAGCT	2100
GTCTGCACCT	GTCACCTACA	GTCTGCACCT GTCACCTACA CTAAACACAT CCAGCCCATC TGTCTCCAGG	CCAGCCCATC	TGTCTCCAGG	2150
CCTCCACATT	TGAGTTTGAG	CCTCCACATT TGAGTTTGAG AACCGGACAG ACTGCTGGGT GACTGGCTGG	ACTGCTGGGT	GACTGGCTGG	2200
		/INTRON	D		

40/62

2250	2300	2350	2400	2450	2500	2550
gggtcaggga	tagccccctg	tctctcctca	caggggctgt	gcaagcctgt	cataaacctc	gctcaccaat
GGGTACATCA AAGAGGATGA GGgtgaggct ggggacaggc gggtcaggga	ttgttcacct gttcccctgc ataggcacaa tagcccctg	gggtgcaggc tatgcccctc ttgcttgcag tctctcctca	ctctcccttc caggggctgt	ccagtttggc gcaagcctgt	gggtggtgcg gtggtggagg ggttctggag ggcttggcga cataaacctc	atacttggat ttattcctgc atctttccac ctcccccagt gctcaccaat
GGgtgaggct	gttcccctgc	tatgcccctc	acacccagtt	gagaggagg	ggttctggag	atctttccac
AAGAGGATGA	ttgttcacct	gggtgcaggc	cagggaccaa acacccagtt	aggagagtgt gagagggagg	gtggtggagg	ttattcctgc
GGGTACATCA	ggaactgtct	cttggtctgg	cctgccaggg	gggggccaga	gggtggtgcg	atacttggat

FIG 16(iv)

41/62

FIG 16(v)

aggettgget	gate	ggaggaggag	gatgtgcacc cagtctacc	cagtctaccc	×4263 ×4313
agccccatag			NOX3/	. decreacter	↑ ↑ ↑
gcccaggct	gccccaggct gacctcagcc	ccgctgctcc	ccagGGTGAC TCAGGTGGAC	TCAGGTGGAC	≈4363
CCTTGGCCTG	TAACAAGAAT	GGACTGTGGT	ATCAGATTGG AGTCGTGAGC	AGTCGTGAGC	≈4413
regegagtes	TGGGGAGTGG GCTGTGGTCG	GCCCAATCGG	CCCGGTGTCT	ACACCAATAT	≈4463
CAGCCACCAC	CAGCCACCAC TTTGAGTGGA	TCCAGAAGCT	GATGGCCCAG	AGTGGCATGT	≈4513
CCAGCCAGA	CCCAGCCAGA CCCCTCCTGG	CCGCTACTCT	TTTTCCCTCT	TCTCTGGGCT	≈4563
TCCCACTCC	CTCCCACTCC TGGGGCCGGT	CTGAGCCTAC	CTGAGCCCAT	GCAGCCTGGG	≈4613
SCCACTGCCA	GCCACTGCCA AGTCAGGCCC	TGGTTCTCTT	CTGTCTTGTT	TGGTAATAAA	≈4663
CACATTCCAG	TTGATGCCTT	GCAGGGCATT	CTTCAaaagc	agtggcttca	≈4713
tggacagctc	attctctctt	gtgcagacag	cctgtctgtg	cccctggctc	≈4763
acacccacat	ctgttctgca	ccatagaacc	atctggttat	ttcqatcaga	≈4813
aagagaattg	tgtgttgccc	aggctggtct	tgaacgccta	gggtgtctcg	≈4863
atc					≈4866

42/62

-16 16(v

Н

Τ

Υ

2

D

D

FIGURE 17

FIG 18 (AI)

FIG 18 (AII)

FIG 18(A)

FIGURE 18 (AI)

- 20 О ტ Н ĸ ഗ Д Н ЕН ĸ H Ċ ပ Д ტ ഗ ᄓ
- 40 TGATGCTGAGCTTGGCCGCTGGCCGTGGCAAGGGAGCCTGCGTGTATGGGGCAACCACTT Z > 召 ᆸ ഗ Ŋ Õ ß Д R Ċ Ц 口 Ø 61
- 09 ATGTGGCGCAACCTTGCTCAACCGCCGCTGGGTGCTTACAGCTGCCCACTGCTTCCAAAA 田 Ą ď H ᄓ > 3 足 ĸ L N ᆸ Е Ø ල 121
- 80 니 GGATAACGATCCTTTTGACTGGACAGTCCAGTTTGGTGAGCTGACTTCCAGGCCATCTCT ഗ Ц 闰 ෆ ഥ Ø > 든 Z Д ſъ Д О Z 181
- 100 CTGGAACCTACAGGCCTATTCCAACCGTTACCAAATAGAAGATATTTTCCTGAGCCCCAA ᆸ ഥ Д ப Н Ø × 召 z ഗ × Ø Q Ц Z 241
- GTACTCGGAGCAGTATCCCAATGACATAGCCCTGCTGAAGCTGTCATCTCCAGTCACCTA ഗ ഗ ᄓ X Ц Ц ď Н Д P N × Ø 禸 Ŋ 301
- 140 CAATAACTTCATCCAGCCCATCTGCCTCCTGAACTCCACGTACAAGTTTGAGAACCGAAC ഥ Н വ Z L ပ П Q Н ſτι Z 361
- 160 TGACTGCTGGGTGACCGGCTGGGGGGCTATTGGAGAAGATGAGAGTCTGCCATCTCCCAA П Ŋ 口 口 Ŋ Н ď Ċ S G H \gt S 421

_	
۲	ĺ
۲	į
(AT	i
α)
_	ł
TITE E	ļ
E	•
-	•
F	ı
Ŀ	ı

- K 180 CACTCTCCAGGAAGTGCAGGTAGCTATTATCAACAACAGCATGTGTAACCATATGTACAA × 出 N N ა გ E V Q V A I I N N Ø I L 481
- E G 200 AAAGCCAGACTTCCGCACGAACATCTGGGGAGACATGGTTTGCGCTGGCACTCCTGAAGG P D F R T N I W G D M V C A G T P 541
- KDACFGDSGGPLACDQDTV220 TGGCAAGGATGCCTGCTTTGGTGACTCGGGAGGACCCTTGGCCTGCGACCAGGATACGGT 601
- GTGGTATCAGGTTGGAGTTGTGAGCTGGGGAATAGGCTGTGGTCGCCCCAATCGCCCTGG W Y Q V G V V S W G I G C G R P N R P G 240 661

46/62

- R N G 260 AGTCTATACCAACATCAGTCACTACAACTGGATCCAGTCAACCATGATCCGCAATGG IMISOIMNAHHSINTAA 721
- 280 GCTGCTCAGGCCTGACCCAGTCCCCTTGCTACTGTTTCTTACTCTGGCCTGGGCTTCCTC L L R P D P V P L L L 781
 - 285 TTTGCTGAGGCCTGCCTGAGCCCACACGTGTACGTCACACCTGTGAGGTCAGGGTGTGTC 841
- 901

47/62

FIG 20A(AI)

FIG 20A(AII)

FIG 20A(AIII)

FIG 20A(A)

240

召

ᄓ

Ø

C D

Ø

ტ

团

X

ß

ഗ

×

>

പ

田

闰

81

The state of the s

FIGURE 20A (AI)

- 09 CTGAACCGGGTTGTGGGCGGCGAGGACAGCACTGACGGGGTGGCCCTGGATCGTGAGCL N R ∇V V G G E D S T D S E W P W I V S
- 120 ATCCAGAAGAATGGGACCCACCACTGCGCAGGTTCTCTGCTCACCAGCCGCTGGGTGATC Z ഗ ⊱ 口 Ц ഗ ტ Ø Ü 田 二 ⊱ ტ Z 区 Q 21
- 180 ACTGCTGCCCACTGTTTCAAGGACAACCTGAACAAACCATACCTGTTCTGTGCTGCTG
 - ᆸ ഗ ഥ ᆸ \succ Д X Z ᆸ z Ω X ഥ \Box \equiv Ø 41

- 300 GAGCCCCACCCTGTGTATTCCTGGAAGGAAGGTGCCTGTGCAGACATTGCCCTGGTGCGT Z Ø > ტ > × Q ഗ 召 വ Ö Д Z L G Q M ď 61
- 360 CTCGAGCGCTCCATACAGTTCTCAGAGCGGGTCCTGCCCATCTGCCTACCTGATGCCTCT Ŋ ø Ц \Box Н Д L V 召 口 ഗ ഥ Ŏ Н ഗ 吆 禸 101
- ATCCACCTCCCTCCAAACACCCCACTGCTGGATCTCAGGCTGGGGGGAGCATCCAAGATGGA Ö Ø ഗ r S U Ŋ Н Z Ü 口 z Д Д H

the first fact that the first fact to the first fact the fact the first fact the

FIGURE 20A (AII)

GTTCCCTTGCCCCACCCTCAGACCCTGCAGAAGCTGAAGGTTCCTATCATCGACTCGGGAA 480 ഗ О Н VPLPHPQTLQKLKVPI 141

540 GTCTGCAGCCATCTGTACTGGCGGGGAGCAGGACAGGGACCCCATCACTGAGGACATGCTG 口 R G A G Q G P I T SHLYW _ا 161

TGTGCCGGCTAACTTGGAGGGGGGGCGGATGCTTGTCTGGGCGACTCCGGGGGCCCCCTC 600 \square A G Y L E G E R D A \square L G D \square G G G P L 181

099 ATGTGCCAGGTGGACGGCGCCTGGCTGGCCGGCATCATCAGCTGGGGCGAGGGCTGT S C O V D G A W L L A G I I 201

720 GCCGAGCGCAACAGGCCCGGGGTCTACATCAGCCTCTCTGCGCACCGCTCCTGGGTGGAG A E R N R P G V Y I S L S A [H] R S W V E 221 780 AAGATCGTGCAAGGGGTGCAGCTCCGCGGGCGCGCTCAGGGGGGTGGGGCCCTCAGGGCCA R A Q G G G A L R I V Q G V Q L R G 241

CCGAGCCAGGGCTCTGGGGCCCGCGCGCGCTCCTAGGGGCCCCAGCGGGACGCGGGGCTCGG 840 Ŋ S G A A A R ෆ დ 8 261

900 ATCTGAAAGGCGGCCAGATCCACATCTGGATCTGGATCTGCGGCGGCCTCGGGCGGTTTC CCCCGCCGTAAATAGGCTCATCTACCTCTACCTCTGGGGGCCCCGGACGGCTGCTGCGGAA

FIGURE 20A (AIII)

1020 1080 1140 CCGCCCAACGGCCTCATGTCCCCGCCCCCACGACTTCCGGCCCCCGGGCCCCAGCG AGGAAACCCCCCCCGACCCGCCCGACGGCCTCAGGCCCCCGCCTCCAAGGCATCAGGCC CTTTTGTGTATATAAATGTTAATGATTTTTTATAGGTATTTGTAACCCTGCCACATATCT TATTTATTCCTCCAATTTCAATAAA

FIG 20B(AI)

FIG 20B(AII)

FIG 20 B (A)

(AI) FIGURE 20B

9 Н Ω Ø G Ċ > $R \nabla I$ Ċ ď 凶 K ഗ H

Ċ Ċ Ü > 耳 U > ഗ H П 3 니 Ċ > Q 3 3 21

180 TCATCCACCCACGCTGGGTGCTCACAGCCGCCCACTGCTTCCTGAGGTCTGAGGATCCCG 41

口 Ŋ ĸ Ы ഥ <u>ں</u> \boxplus ď Ø \vdash IJ > ⋈ 召 工

240 GGCTCTACCATGTTAAAGTCGGAGGGCTGACACCCTCACTTTCAGAGCCCCACTCGGCCT ഗ 耳 Д 口 ഗ Н വ Д Н C C ഗ > 저 田 口 61

300 TGGTGGCTGTGAGGAGGCTCCTGGTCCACTCCTCATACCATGGGACCACCACCAGCGGGG G വ \vdash Ŋ 田 ഗ വ 田 L L V 吆 ద \gt 81

360 ACATTGCCCTGATGGAGCTGGACTCCCCTTGCAGGCCTCCCAGTTCAGCCCCATCTGCC ഗ ഥ Ø ഗ Ø Ø П വ ഗ Д 口 闰 Z Ľ Ø 101

TCCCAGGACCCCAGACCCCCTCGCCATTGGGACCGTGTGCTGGGTAAACGGGCTGGGGG G Z ⋈ U > Ç Н ø 니 Д Ø ტ Д 121

TCCACTCAGGAGGGCCCTGGCGAGTGTCCTTCAGGAGGTGGCTGTGCCCCTCCTGGACT Ц Ø > 团 Ø Ц Ŋ Þ 口 闰 G ഗ 口 141

calle fault three is not good to the start three is all the start of the start is a start of the the first that the first that the

FIGURE 20B (AII

540 G ᆸ. ഗ Д 口 ტ 口 H × Σ П 口 Ü \mathbb{Z} Z ഗ 161

TCCAGGACGACATGCTCTGTGCTGGCTCTGTCCAGGGCAAGAAAAAACTCCTGCCAGGGTG Ŏ Ü ഗ Д × × ෆ O_i > ഗ Ċ ď Ü Ц Z Д Д Ø 181

099 ACTCCGGGGGGCCCCTGGTCTGCCCCATCAATGATACGTGGATCCAGGCCGGCATTGTGA

G Ø Ŏ Н 3 E О Z Н Д Ü > ᆸ գ. U ტ (V) 201

GCTGGGGATTCGGCTGTGCCCGGCCTTTCCGGCCTGGTGTCTACACCCCAGGTGCTAAGCT 720 Ц Ø \succ \gt ტ Д 召 ഥ Д 民 Ø Ü Ŋ ტ 3

ď G Ŋ ⋈ ტ ഗ 工 ഗ 闰 ď ᆸ E-1 ĸ Q Н S 241

口 П 口 > Д 田 ഗ ø ഗ Е ტ Ŋ 耳 ഗ Ŋ Д ď G Д 261 TGTTGACCGTATGCTTGCGTCCCTGTGAACCATGAGCCATGGAGTCCGGGATCCCC S T Ö ᆸ П Ö > 281

TTTCTGGTAGGATTGATGGAATCTAATAAAA

FIG 20C(AI)

FIG 20C(AII)

FIG 20C(A)

FIGURE 20C (AI)

9 闰 Ø ⊱₁ Ω ŏ ෆ ෆ > N RVM 긔 M 召 Д 民 ෆ Ü

AGTGGCCCTGGCAAGTCAGCATCCAGCGCAACGGAAGCCACTTCTGCGGGGGGCAGCCTCA ഗ r ტ Ü 田 വ Ö Z Q R Н ഗ \gt Q Z ζ 闰 21

180 TCGCGGAGCAGTCCTGACGGCTGCTGCTTCCGCAACACCTCTGAGACGTCCC I A E Q W V L T A A H $\boxed{\mathbb{C}}$ F R N T S E T S 41

Ø

240 田 Д ტ Д Q L V Ø 召 Ø V L L G Q LY 61

300 CCCGGGTGAGGCAGGTGGAGCAACCCCCTGTACCAGGGCACGGCCTCCAGCGCTGACG ഗ Ø D G LY Д z ഗ N E O ഷ 吆 Ø 81

360 TGGCCCTGGTGGAGCTGGAGGCACCAGTGCCCTTCACCAATTACATCCTCCCCGTGTGCC 口 Z H Р V Ø 团 ᆸ ഠ > A L 101

420 Ç Z _ا Z Z ტ ᆮ 田 ഥ Н > ഗ Д Д Д 口 121

480 GCCCCAGTGAGGAAGACCTCCTGCCGGAACCGCGGATCCTGCAGAAACTCGCTGTGCCCA Ы ď 召 团 Ц Ц 口 回 ഗ Ŋ 141

FIGURE 20C (AII

540 TCATCGACACCCCAAGTGCAACCTGCTCTACAGCAAAGACACCGAGTTTGGCTACCAAC IDTPKCNLLY 161

009 CCAAAACCATCAAGAATGACATGCTGTGCGCCGGCTTCGAGGAGGGCAAGAAGGATGCCT × X G 团 口 D Fr K N D M L C A ᅜ 181

GCAAGGGCGACTCGGGCCGCCCCCTGGTGTGCCTCGTGGGTCAGTCGTGGCTGCAGGCGG 660 Q A M W ഗ Ø ტ C C G P L V K G D S G 201

GGGTGATCAGCTGGGGTGAGGGCTGTGCCCCGCCAGAACCGCCCAGGTGTCTACATCCGTG 720 ტ ტ പ C A R Q N R 田 の r D Ŋ ෆ 221

Ø K L Q F RIIP H Н M · N H 田 Ø 241

840 GGTTGGGCCGCCAGAAGTGAGACCCCCGGGGCCAGGAGCCCCTTGAGCAGAGCTCTGCAC ß ഗ Ø ഥ PL ы Õ G Q K * D P R G Ċ 니 261

CCAGCCTGCCCGCCCACACCATCCTGCTGGTCCTCCCAGCGCTGCTGTTGCACCTGTGAG 900 H A L L L LLVLP H H Ø വ മ 281

CCCCACCAGACTCATTTGTAAATAGCGCTCCTTCCTCCCCTCTCAAATACCCTTATTTA 960 TTTATGTTTCTCCCAATAAA

FIG 21