				el valor del perihelio de un cometa de p ancia máxima del cometa al Sol es (en 10					
	a) 1,56	b) 1,98	c) 3,94	d) 5,91					
2.	radio orbital de 10 ⁴ km, y el trabajo necesario para alejarlo es el doble que el necesario para alejar al segundo satélite. La altura de la órbita de este último será (en km):								
	a) 10223	b) 13630	c) 20445	d) 27260					
3.	gravitatorio es	11,5 N kg ⁻¹ , cae	un meteorito so	a superficie la intensidad de su ca bre su superficie desde una altura lad con la que llegaría al suelo es	igual				
	a) 6,9	b) 8,3	c) 10,1	d) 11,8					
4.	mismo trabajo	cuando en el p	aneta A se sube	ero diferente densidad. Si se reali 1,0 kg a una altura h=R por encim altura es 2R, la relación de densid	na de				
	a) 1/2	b) 2	c) 3/4	d) 4/3					
5.	 5. 5 Las órbitas - una circular y otra elíptica - de dos satélites de la Tierra coinciden en el perigeo de la elíptica, siendo su radio 20 000 km. Si la relación de los períodos de los satélites es 8:1, la relación entre las distancias del apogeo y del perigeo a la Tierra es: a) 8 b) 7 c) 4 d) 3 								
	-, -	6 Con la cantidad de trabajo necesario para subir un cuerpo de 1000 t a la terraza de un edificio de altura aproximada de 400 m, podría ponerse en órbita un satélite de 100 kg en una órbita circular de radio (en km): (Datos: $g_o=9.81 \text{ N kg}^{-1}$, $R_T=6400 \text{ km}$)							
6.	6 Con la cantida de altura aproxin	nada de 400 m, p	odría ponerse en	órbita un satélite de 100 kg en una					
6.	6 Con la cantida de altura aproxin	nada de 400 m, p	odría ponerse en	órbita un satélite de 100 kg en una					
	6 Con la cantida de altura aproxin circular de radio (a) 2134 5. Un planeta e de Gravitación del planeta vien	nada de 400 m, p en km): (Datos: b) 4000 sférico de radio universal, la exp de dada por la ex	odría ponerse en g _o = 9,81 N kg ⁻¹ , R c) 8534 <i>R</i> tiene una deno presión de la ace presión:	órbita un satélite de 100 kg en una _T = 6400 km)	órbita stante				
7.	6 Con la cantida de altura aproxin circular de radio (a) 2134 5. Un planeta e de Gravitación del planeta vien a) $4\pi G\rho$ 6. En un punto intensidad del contensidad del correspondería	b) 4000 sférico de radio universal, la exple dada por la exple exterior a la Ticampo gravitator omo 10,0 Nkg ⁻¹ .	c) 8534 R tiene una densoresión de la acerpresión: $G\rho/R^2$ d) 4 erra que se encuio terrestre es 5,4	orbita un satélite de 100 kg en una $_{T}$ = 6400 km) d) 12834 sidad uniforme ρ . Siendo G la consideración de la gravedad en la supe $\frac{1}{3}(G\pi R\rho)$ e) $\frac{4}{3}(G\pi R\rho)$ e) $\frac{4}{3}(G\pi R^2\rho)$ entra a una distancia x de su cento Nkg ⁻¹ . Tomando el valor del campel valor aproximado del radio tento $\frac{1}{3}(G\pi R^2\rho)$	orbita stante rficie tro la po en				
7.	 6 Con la cantida de altura aproxin circular de radio (a) 2134 5. Un planeta e de Gravitación del planeta vien a) 4π<i>Gρ</i> 6. En un punto intensidad del correspondería a) x/10 7. La velocidad escape para un paroxina 	b) 4000 sférico de radio universal, la exple dada por la ex b) GρR c) exterior a la Ticampo gravitator omo 10,0 Nkg ⁻¹ a: b) x/5 c) de escape de uplaneta de radio	c) 8534 R tiene una densoresión de la acespresión: $G\rho/R^2$ d) 4 erra que se encuio terrestre es 5,0, resultaría que	órbita un satélite de 100 kg en una $_{r}$ = 6400 km) d) 12834 sidad uniforme ρ . Siendo G la consideración de la gravedad en la supe $\frac{1}{2}(G\pi R\rho)$ e) $\frac{1}{2}(G\pi R\rho)$ e) $\frac{1}{2}(G\pi R\rho)$ entra a una distancia x de su cen $\frac{1}{2}(G\pi R\rho)$ entra a una distancia $\frac{1}{2}(G\pi R\rho)$ el valor del campel valor aproximado del radio ten $\frac{1}{2}(G\pi R\rho)$ io $\frac{1}{2}(G\pi R\rho)$ e)	stante rficie tro la po en restre				

aproximadamente 2,8 veces el de la Luna. Sabiendo que la masa de Júpiter es unas 300 veces la de la Tierra, la relación velocidad de Ganímedes/velocidad de la Luna será:

d) 20

e) 10

c) 29

a) 830

b) 100

11.	5.	Un cometa describe una órbita elíptica alrededor del Sol siendo 7,2 UA la distancia al Sol en el afelio y 0,6 UA en el perihelio. La relación que hay entre el cociente de energías cinéticas afelio-perihelio del planeta respecto al mismo cociente de las energías potenciales es de: a) 0.0067 b) 0.083 c) 12 d) 144								
12.	masa 1 kg pesa 1 N es de:								le	
		a) 13580	b) 20370)	c) 28060		d) 56120			
13. 8. Sean dos planetas homogéneos, uno de radio R y masa <i>M</i> , y otro de radio 3 masa <i>M</i> . Si en el primero un ascensor sube un cuerpo de 1 kg de masa a un superficie y realiza un trabajo W, ¿a qué altura subiría 1 kg en el otro plane mismo trabajo?:									la	
		a) R/2	b) 2R		c) 5R/2		d) 9 <i>R</i> /2			
14.	 14. Un satélite está orbitando alrededor de un planeta con una velocidad de 1,70x10⁴ m/s, en una órbita de radio 5,25x10⁶ m; la energía por unidad de masa mínima para que el satélite escape del campo gravitatorio del planeta es (en 10⁸ J/kg): a) 1,10 b) 1,25 c) 1,30 d) 1,45 									
15.	 15. Dos masas de 10²⁰ kg están situadas en reposo en los puntos (0,10) y (0,-10). El trabajo mínimo necesario para que un cohete de 10⁴ kg se desplace desde el punto (0,0) al punto (20,0) es (en J): (todas las distancias están expresadas en UA). G= 6,7x10⁻¹¹ N m² kg⁻²; 1 UA= 150x10⁹ m. a) 49,4 b) 98,4 c) 147 d) 490 									
16.	ene pote	rgía potencial de encial respecto d acción terrestre s	e un saté de la luna e expresa	lite respect a, la atracc	to del camp ción gravitat	o gravita	torio terrestr	En el punto en el que le es 9 veces la energí a Luna respecto de l d) 3	ía	
17. 7. Una persona pesa en el polo terrestre 981 N. Si se traslada a otro planeta esférico de ig masa que la Tierra pero con una densidad superior a la terrestre en un 15%, su peso en polo planetario sería (expresado en N):								un 15%, su peso en u		
	a)	950	b	1027		c) 107	7	d) 1128		
18 .	8.	En un planeta	la duraci	ón de "su	ı día" es ig	jual al te	errestre, sie	ndo en su polo la		
	ace	eleración de la	gravedad	0,0921	m/s², y en	el ecua	dor nula. E	l radio del planeta es	s:	
		presado en km 8550	•	10175		c) 148	80	d) 17415		
19.	unif	Si a la Tierra, co orme de la mismo a que la gravedad nese R _I = 6400 km)	a densidac d superficio	l media que	e la de la Tie	rra actua	l, el grosor qu	sobre el suelo una cap e debería tener esa cap km, sería:	oa oa	
	a) 6		b) 124		c) 186		d) 248			
20.	20. (Da	La energía mínir atos: G= 6,67x10 ⁻¹	ma necesa ¹ N m² kg ⁻²	ria para exp ; M _T = 5,98x	oulsar a la Lu 10 ²⁴ kg; M _L =	ina de su 7,35x10 ²²	órbita vale (ex kg; r _{orbital lunar m}	xpresada en 10 ²⁷ J): _{edio} = 3,85x10 ⁸ m)		
	a)	19	b)	38	c)	45	d)	76		

21. 22.- El planeta Saturno describe una órbita elíptica alrededor del Sol, con un afelio de

	1,51x10° km y un perihelio de 1,35x10° km. El cociente entre los valores de las energías								
	cinéticas del planeta en el afelio frente al perihelio es:								
	a) 0,80	b) 0,89	c) 1,25	d) 1,56					
22.	1,47x10 ⁸ km	y el afeli		El módulo del mo	cuyo perihelio se encu mento lineal de la Tier				
	a) 4% menor	b) 4% mayor	c) Faltan datos	d) Igual				
23.		ima al Sol	(posición no visibl		50 UA y su período 75 Incia media Tierra-Sol) d) 35 UA	años, la			
24.	diciembre de	2005 en	una órbita a 2325		esto en órbita circular e número de vueltas que (²)				
	a) 17) 24	c) 28	d) 33				
25.	. 23 Galileo descubrió hacia el 1600 los cuatro satélites mayores de Júpiter mirando a través de su anteojo. Hoy día se sabe que uno de ellos, Ganímedes, describe una órbita circular de radio r =1,071x10 ⁶ km, siendo su período de 7,16 días. ¿Cuánto vale la masa del planeta? (Dato: G = 6,67x10 ⁻¹¹ N m² kg ⁻²)								
	a) 1,20x10 ²⁶			c) 1,90x10 ²⁷ kg	d) 2,50x10 ²⁷ kg				
26.	de la Tierra u colocase un s	ın año. Si l atélite arti	a fuerza gravitator	ia fuese proporcional	mica (UA) y el período do a 1/r³ en vez de serlo a n período de 8 años, el ra	$1/r^2$, y se			
	a) 1,7		b) 2,0	c) 2,8	d) 8,0				
	u) 1,7		0) 2,0	c) 2,0	4) 0,0				
27.	masa que rea expresado en .	liza la fue J, es: (D	za de atracción de atos: M_S = 2,0x10 ³⁰	l Sol para llevar al 6 kg, G= 6,67x10 ⁻¹¹ N n	7,20 UA. El trabajo por e cometa desde el afelio al n ² kg ⁻² ; 1 UA= 1,50x10 ⁸ km	perihelio			
	a) 1,24	4x10 ⁸ ;	b) 1,36x10 ⁹	c) 1,49x10 ⁹	d) 1,61x10 ⁶				
28.					velocidad triple que la de etos: $g_0 = 9.81 \text{ m/s}^2$; $R_T = 6$				
	a) 7,9		b) 15,8	c) 21,1	d) 31,6				

29. 14.- Se sabe que Ganímedes el mayor satélite de Júpiter describe una trayectoria circular de radio r= 0,00715 UA siendo su período de 7,16 días. ¿Cuántas veces es mayor la masa

	del sol que la masa de Júpiter?											
	a) 527	7	b) 105	3	c) 1512	2	d) 2100)				
30.		- Se suben 20 t a una altura de 1 km. La altura (en km) a la que hay que subir a realizar el mismo trabajo es (R _{Tierra} = 6400 km):						subir 1	10 kg			
	a) 200	00	b)2889)	c)2909			d) 3140				
31. los	La densi cuerpos se a) 38			_		ngravide	_	n kg/m³		h, y en	su ecua	dor
ecu	32. Si en un planeta homogéneo y esférico la duración de "su" día es de 24 h, y en su ecuador un cuerpo se encuentran en estado de ingravidez, la densidad planetaria tiene un valor (en kg m ⁻³):											
	a) 12,0	6	b) 18,9	b) 18,9		c) 25,2		d) 37,8				
Sol	uciones:											
	1. c)	2. b)	3. b)	4. d)	5. b)	6. c)	7. d)	8. c)	9. d)	10. e)	11. b)	12. a)
	13. d)	14. d)	15. a)	16. a)	17. c)	18. d)	19. b)	20. b)	21. a)	22. b)	23. d)	24. a)
	25. c)	26. c)	27. b)	28. d)	29. b)	30. c)	31. c)	32. b)				