* Experiment No. 6 +

	Aim: To perform DPCM Modulation and
	Ocmodulation using matlab simulink.
	U ,
	Apparatus: Matlab Simulink.
	Theory:
	- Differential pulse code modulation is a
	singal encoder that uses the baseline of 101
	1. L add some functionalities hased on the
	prediction of the samples of signal. The input can be analog signal or Digital signal.
	san le analog signal or Digital signal.
	(an se analy
	the DPCM Techniques encodes the signal to form
	a digital value.
	The Differential pulse code modulation works on the
)	The Differential form
	principle of prediction
ža –	The prediction may not be exact but very dose
)	The prediction may not be that
	to actual value.
	This technique is efficient for tossless compression -
)	This technique is efficient in select medical
	This technique is efficient tor rossiess compression and implementation of lossless medical image - compression
	image - compression
	U

* Procedure: 1) Open simulink from the MATLAB software 2) Create a blank model 3) Add the following blocks. i) pulse generator (T= 1/400)

ii) Sine wave (A=3, f=2pix20)

iii) Sample of hold iv) Quantizer vi) Delay vi) Add vii) Uniform enoder ix) Analog filter design 4) Do connections as shown. 5) Connections 6) Set stop timer =1 7) Run 8) check the graphs. fig 2 -) Output of Sine wave

fig 3 -> Output of sample & nold

fig 4 -> Output of error signal

fig 5 -> Output of prom modulated signal Observations . * after quantizer and uniform encoder fig 6 -> Output of open demodulated signal along with initial sihe wave

THE TOOK TOOK TO

Conclusion 3 1) From is reduced 2) No. of bits required is low. 3) Error signal is calculated using the present signal along with previous signal in the Result: We have successfully completed the Got the graphs on simulation.

100 V

*	Observation:
	1) fig 1), Shows for normal threshold andition
	2 fig (i), shows for slope overload noise \$20.05
	(3) fig (ii), shows for granular noise, D=0.1
	Conclusion:
	sumple and output of pm adds some noise and it can be eliminated by using Adaptive Delta Modulation.
	Result:
	Hence, we have successfully performed
	delta modulation using matlas and
	in this system.
-	
_	Vach,
	1/04/23

Experiment No.8. Aim: To perform modulation and demodulation of OPSK using MATLAB. Apparatus : MATLAR Theory: OPSK is Quandrature phase Ghift keying Phase of the carrier takes on one of form equally spaced values such as to, 3th 5K, 7K $\frac{\text{Silt}}{\text{Silt}} = \frac{2E_b}{\text{Tb}} \cos \left[\frac{2xf}{\text{Cos}} + \left(\frac{2i-1}{\text{T}} \right) \right]$ L968tET6 EL - Energy transmitted per symbol. To - s bit duration. Thus, the gray encoded bit set of dibits: 10,00,01,11 Silt = 2 Eb cos (2i-1) 7 cos (2xfct) - [2fb sih]

Page No. Dale
There are two orthonormal basis functions.
$\Phi_{1}(t) = \int_{0}^{2} \cos 2\pi f dt,$
$\Phi_2 = \int_{-\infty}^{\infty} \sinh(2\pi f_2 t).$
Aug probability of error. Pe = 0 [2Eb] The bihary wave is demultiplexed into two separate binary waves consisting of odd and even numbered ilp bits denoted
procedure :
① Open MATLAB software ② Write the code and set phase difference of I blw ilp signals.
(3) Pun the program and observe graphs (4) set phase difference of I and
(5) fun the program and observe the graph
Teacher's Signature

 \prod

Page No. Date
Observation:
i) fig (i) shows optimized output when phase difference is to
ii) fig (ii) shows when phase diff is to
iii) fig (ii) shows output when phase diff is same. (onclusion: apsk modulation transmits 2 bits (onclusion: apsk modulation transmits 2 bits
Conclusion: Opsic modulation transmis 2 per symbol as command to BPSK and has bandwidth efficiency twile as that of BPSK. Hence, it is also called as DSBSC.
Pesult: Hence, we have successfully performed modulation and demodulation of OPSIC signal using MATLAB.
Teacher's Signature