Capitulo #7. Fundamentos de Maquinas de Corriente Directa.

Objetivos:

-> Como se induce voltaje en una espira giratoria

→ Ecracieres de veltaje inducido y por inducido en magninas de col. → Proceso de Commutation y sus problemas → Diagrama de flujos de potencia.

· ·
Delga: conductor que une la bopina o espira
Delga: conductor que une la bapina o espira
Cind = Koww
AA & velocidad del eje
Leone tria de la maquina
L'écouse tria de la moquina
Conductores = 2 Nc C
No Bobina No: # de uveltas (espiras)
Countador y segmentos
abcd
BRUSH
Ara elictrico F2 Terminal
2. Producción de Fuerzay Par Mecanico:
$\vec{F} = i (\vec{\ell} \times \vec{8})$
Tind = Fxd1 = rsent F
Tiul = 2 pi debajo del polo
Tind = $\frac{2}{\pi}$ \$\psi_i\$, debajo del polo Tind = 0, frera del polo
· V

Escaneado con CamScanner

Diferentes configuraciones del cet de Commutation:

- a) Bobina Imbricada
- b) Bobina Oudolada
- C) Bobina Pate de lana

a) Pobina Imbricada: en paralelo. las hobinas se disponen

* la barra de equilibrio evita que fluyan Conjentes Eirenatorias a traves de las brochas.

* las corrientes circulatorias * Reduce la producción gredan atrapadas de chispovreteo en el equiliter parque tiene men or resistencia de Reduce il deterioro

que las bobinas.

de las brochas y de los seguentos de Cobre * Este bobinudo es usado del Connectator, en motores de porque hay mas caminos de Corrientes.

Æ Se obtiene mayor voltaje, por lo que se vsa para generadores de ⇒ máspokacias

Lus bobinas estain en serie.

ción de las bobinas imbricada y ondule de

exthinime el problem de las Corrientes Ierec

*No requiere de Equilizer. Serie

oudulado y

Escaneado con CamScanner

Hm=180° vua rotación de vu N.

$$f_e = \frac{P}{120} n_{pe}$$

nu: velocidad de votacion del eje de flecha en velovaiones/min. (rpm).

Factor de paso: es la distancia en grados eléctricos de los extremos de las bobinas sobre el anillo del estator.

FRACTIONAL PITCH:

A FLIMINAR LOS ARMONICOS PEBIDO A LA DISTRUBUCION ESPACIAL DE LAS BOBINAS.

* SON USADOS EN TODOS LOS TIPOS DE MAQUINAS