

# Miejsca Obsługi Podróżnych

Wizja, przypadki użycia

Magdalena Grabowska, Michał Kukuła, Klaudia Laks, Przemysław Perkowski

### Zleceniodawcy

Nasz system informatyczny powstanie w ramach projektu "Miejsca parkingowe na MOP" realizowanego przez konsorcjum uczelni Uniwersytet Warszawski, Politechnika Warszawska i Instytutu Transportu Samochodowego. Jego poszczególne elementy będą w założeniu wykorzystywane głównie przez pracowników Generalnej Dyrekcji Dróg Krajowych i Autostrad.





1

# Miejsca obsługi podróżnych - co to?



Teren wydzielony w pasie drogowym poza koroną drogi, wyposażony w miejsca postojowe dla pojazdów oraz w urządzenia służące zaspokajaniu potrzeb podróżnych.

MOP-y są ściśle związane z drogami o ograniczonej dostępności (autostrady i drogi ekspresowe) i znajdują się w pasie drogowym.

# Miejsca obsługi podróżnych w Polsce



# Miejsca obsługi podróżnych w Polsce - problemy

1. Rozmieszczenie nowych MOP

# Miejsca obsługi podróżnych w Polsce - problemy

- 1. Rozmieszczenie nowych MOP
- 2. Liczba miejsc parkingowych

## Miejsca obsługi podróżnych w Polsce - problemy

- 1. Rozmieszczenie nowych MOP
- 2. Liczba miejsc parkingowych
- 3. Szukanie najemców tym się nie zajmujemy ( ale to poważny problem)

· Sieć drogowa (OpenStreetMap)

- · Sieć drogowa (OpenStreetMap)
- Macierze podróży

- · Sieć drogowa (OpenStreetMap)
- · Macierze podróży
  - · Środek transportu
  - · Cel (dom-praca, turystyka...)

- · Sieć drogowa (OpenStreetMap)
- Macierze podróży
  - · Środek transportu
  - · Cel (dom-praca, turystyka...)
- · Średniodobowe Natężenia Ruchu

- Sieć drogowa (OpenStreetMap)
- Macierze podróży
  - · Środek transportu
  - Cel (dom-praca, turystyka...)
- · Średniodobowe Natężenia Ruchu
- · Informacje o istniejących MOPach.

- · Sieć drogowa (OpenStreetMap)
- Macierze podróży
  - Środek transportu
  - Cel (dom-praca, turystyka...)
- · Średniodobowe Natężenia Ruchu
- · Informacje o istniejących MOPach.
- · Dane o wjazdach i wyjazdach z konkretnych MOPów

# Elementy projektu

- 1. Mopnik
- 2. Mopsim
- 3. Aplikacja Mobilna i strona WWW

 Wyznaczanie liczby wolnych miejsc na Miejscach Obsługi Podróżnych

- Wyznaczanie liczby wolnych miejsc na Miejscach Obsługi Podróżnych
- 2. Aplikacja okienkowa

- Wyznaczanie liczby wolnych miejsc na Miejscach Obsługi Podróżnych
- 2. Aplikacja okienkowa
- 3. Użytkownicy: inżynierowie GDDKiA

## Predykcje

Natężenie ruchu

Sieć drogowa

Macierze podróży

Metodyki

Zajetosci MOPów

## Predykcje



#### Predykcje



8

## Metodyki

 $\cdot$  Obecnie: wzory matematyczne

#### Metodyki

- Obecnie: wzory matematyczne
- · Do rozważenia: algorytmy uczenia maszynowego

#### Metodyki

- · Obecnie: wzory matematyczne
- · Do rozważenia: algorytmy uczenia maszynowego
- · Możliwość ręcznego doboru parametrów

· Wczytywanie danych

- · Wczytywanie danych
- Graficzny interfejs

- · Wczytywanie danych
- Graficzny interfejs
  - · Przeglądanie danych na mapach

- · Wczytywanie danych
- Graficzny interfejs
  - · Przeglądanie danych na mapach
  - · Umieszczenie na mapie nowej drogi lub nowego MOPu

#### Rozważane technologie

- · Java (lub C#, C++) całość aplikacji wraz z GUI
- OpenStreetMap, JOSM wprowadzanie danych o strukturze sieci drogowej w postaci plików (.osm), wizualizacja i edycja map

1. Program do symulacji ruchu pojazdów na sieci dróg krajowych i autostrad w Polsce

- 1. Program do symulacji ruchu pojazdów na sieci dróg krajowych i autostrad w Polsce
- 2. Aplikacja okienkowa

- 1. Program do symulacji ruchu pojazdów na sieci dróg krajowych i autostrad w Polsce
- 2. Aplikacja okienkowa
- 3. Użytkownicy: inżynierowe GDDKiA

- 1. Wprowadzanie danych: struktura sieci drogowej, macierze podróży, natężenia ruchu
- 2. Przeprowadzanie symulacji
- 3. Prezentacja Danych wspólne GUI z programem Mopnik

# Model symulacyjny

Połączenie modeli mikro- mezo- i makroskopowych:

# Model symulacyjny

Połączenie modeli mikro- mezo- i makroskopowych:

Każdy pojazd to agent (mikro)

- Każdy pojazd to agent (mikro)
- Model kolejkowy

- Każdy pojazd to agent (mikro)
- Model kolejkowy
- · Symulacje ruchu na pojedynczym MOPie (mikro)

- · Każdy pojazd to agent (mikro)
- Model kolejkowy
- · Symulacje ruchu na pojedynczym MOPie (mikro)
- · Skrzyżowania, wjazdy na autostrady (mezo)

- · Każdy pojazd to agent (mikro)
- Model kolejkowy
- · Symulacje ruchu na pojedynczym MOPie (mikro)
- · Skrzyżowania, wjazdy na autostrady (mezo)
- · Ruch na drogach krajowych i autostradach (makro)

· sieć drogowa Polski - 110120 wierzchołków i 179515 krawędzi

- · sieć drogowa Polski 110120 wierzchołków i 179515 krawędzi
- dane z Krajowego Modelu Ruchu (ŚDRR, Wskaźniki wzrostu ruchu)

- · sieć drogowa Polski 110120 wierzchołków i 179515 krawędzi
- dane z Krajowego Modelu Ruchu (ŚDRR, Wskaźniki wzrostu ruchu)
- · dane z Generalnego Pomiaru Ruchu, m.in.:

- · sieć drogowa Polski 110120 wierzchołków i 179515 krawędzi
- dane z Krajowego Modelu Ruchu (ŚDRR, Wskaźniki wzrostu ruchu)
- · dane z Generalnego Pomiaru Ruchu, m.in.:
  - Średni Dobowy Ruch Roczny

- · sieć drogowa Polski 110120 wierzchołków i 179515 krawędzi
- dane z Krajowego Modelu Ruchu (ŚDRR, Wskaźniki wzrostu ruchu)
- · dane z Generalnego Pomiaru Ruchu, m.in.:
  - · Średni Dobowy Ruch Roczny
  - · wskaźniki wzrostu ruchu

## Generowanie tras przejazdu

· Kierowca zazwyczaj wybiera najkrótszą lub najszybszą trasę

## Generowanie tras przejazdu

- · Kierowca zazwyczaj wybiera najkrótszą lub najszybszą trasę
- · Algorytm Dijkstry

#### Generowanie tras przejazdu

- Kierowca zazwyczaj wybiera najkrótszą lub najszybszą trasę
- Algorytm Dijkstry
- Algorytm heurystyczny A\* czas to odległość między punktami \* średnia prędkość na trasie

Generowanie wykresów

- · Generowanie wykresów
- · Generowanie raportów

- · Generowanie wykresów
- · Generowanie raportów
- Eksport danych do pliku

- Generowanie wykresów
- · Generowanie raportów
- · Eksport danych do pliku
- Eksport do bazy danych (SQLite)

- Generowanie wykresów
- · Generowanie raportów
- · Eksport danych do pliku
- Eksport do bazy danych (SQLite)

1. Wprowadzanie danych, ustawianie wartości parametrów.

- 1. Wprowadzanie danych, ustawianie wartości parametrów.
- 2. Przeglądanie danych na mapie.

- 1. Wprowadzanie danych, ustawianie wartości parametrów.
- 2. Przeglądanie danych na mapie.
- 3. Edycja sieci drogowej.

- 1. Wprowadzanie danych, ustawianie wartości parametrów.
- 2. Przeglądanie danych na mapie.
- 3. Edycja sieci drogowej.
- 4. Przeprowadzanie symulacji.

- 1. Wprowadzanie danych, ustawianie wartości parametrów.
- 2. Przeglądanie danych na mapie.
- 3. Edycja sieci drogowej.
- 4. Przeprowadzanie symulacji.
- 5. Zapisywanie danych, wyników edycji i analiz.

- 1. Wprowadzanie danych, ustawianie wartości parametrów.
- 2. Przeglądanie danych na mapie.
- 3. Edycja sieci drogowej.
- 4. Przeprowadzanie symulacji.
- 5. Zapisywanie danych, wyników edycji i analiz.
- 6. Generowanie raportów.

# A może jest już coś takiego?



#### MATSim - co to?

- napisany w Javie opensource'owy framework służący do symulacji ruchu drogowego w dużej skali
- · zapoczątkowany w 2004 przez profesora ETH Kaia Nagla
- · rozwijany głównie na politechnikach w Zurychu i Berlinie
- składa się z kilku modułów, funkcjonalności każdego mogą być wykorzystywane oddzielnie lub łączone
- · łatwo modyfikowalne moduły, publiczne repozytorium

## MATSim - przykłady



Symulacja ruchu w Berlinie



Symulacja ruchu w Niemczech



sieć drogowa



ludzie + ich obowiązki, plany i wybory



sieć drogowa



ludzie + ich obowiązki, plany i wybory





sieć drogowa



ludzie + ich obowiązki, plany i wybory

↓ symulacja ruchu

zadowolenie ludzi z podjętych decyzji...



sieć drogowa



ludzie + ich obowiązki, plany i wybory

symulacja ruchu



zadowolenie ludzi z podjętych decyzji...



...które wpływa na ich kolejne decyzje, a zatem też kolejne symulacje

## MATSim - podział na funkcjonalności



- · initial demand początkowe ustawienia konfiguracyjne
- · mobsim moduł odpowiedzialny za samą symulację
- scoring obliczanie zadowolenia poszczególnych agentów z przeprowadzonej symulacji
- · replanning modyfikowanie planów niezadowolonych agentów
- analyses dostarczanie danych analitycznych, możliwych do wykorzystania m.in. w Vio (programie do tworzenia animacji ruchu drogowego)

#### MATSim - początkowa konfiguracja

#### 3 główne pliki konfiguracyjne:

- · Metadane o symulacji
- · Informacje o populacji
- · Informacje o sieci drogowej

#### OpenStreetMap i JOSM - przydatne narzędzia

Przydatne do tworzenia pliku konfiguracyjnego sieci drogowej mogą się okazać serwis OpenStreetMap i aplikacja JOSM - MATSim posiada wbudowane narzędzia do konwersji map .osm.







OpenStreetMaps

## MATSim - symulacja (mobsim)

- 1. każdy agent wybiera losowo plan
- 2. agenci odbywają zajęcia zgodnie z ustalonym planem
- 3. Ich podróże odbywają się, uwzględniając ruch innych pasażerów i pojemność dróg
- 4. Na koniec dla każdego z agentów obliczane jest zadowolenie

## MATSim - scoring

$$U^{total} = U^{perform} - U^{travel} - U^{wait} - U^{late}$$
 (1)

- 1. Dla każdego z agentów obliczana jest użyteczność
- Brane pod uwage są wykonane aktywności, od których odejmujemy to co straciliśmy na długich podróżach, czekaniu lub spóźnieniach
- 3. Uzyskana użyteczność jest podstawą do ponownego planowania

# MATSim - replaning

Można wyróżnić 3 główne strategie replaningu:

- 1. Wybieranie z większym prawdopodobieństwem tych planów, od których oczekujemy wysokiej użyteczności
- 2. Modyfikowanie planu dnia tak, aby uniknąć spóźnień, korków, itp.
- 3. Szukanie szybszych dróg



## MATSim - kolejne iteracje

Po fazie ponownego planowania po raz kolejny uruchamiana jest symulacja. Kolejne iteracje zwykle przynoszą zadowalający wzrost wartości funkcji użyteczności.

## MATSim - analyses

Wynikiem działania programu jest szereg plików z danymi dotyczącymi każdej iteracji i wykresami. Dane te mogą zostać wykorzystane do wizualizacji lub dalszych analiz.



## Via - program do wizualizacji

- 1. Program firmy Senozon związanej z twórcami MATSim
- 2. Płatny, bezpłatna wersja posiada ograniczenie do 500 agentów
- 3. Polega na układaniu odpowiednich warstw na podstawie danych zwróconych przez MATSim



## MATSim - czy na pewno tak idealny?

Symulacja na dużą skalę wymaga dużej mocy obliczeniowej. MAT-Sim, oparty na agentach system symulacji, powoli staje się nieefektywny dla mniej wydajnych jednostek obliczeniowych. Rozwiązaniem problemu może być skalowanie scenariuszy, np. poprzez zmniejszenie populacji. Pojawiają się także pomysły makroskopijnych symulacji.

# Rozważane technologie

- · MatSim + zrównoleglanie obliczeń.
- TensorFlow + ApacheSpark

# Aplikacja Mobilna i strona WWW

## Aplikacja Mobilna i strona WWW

- Informowanie o zajętości konkretnego MOPa w danej chwili i w niedalekiej przyszłości
- · Korzysta z sytemów Mopnik i Mopsim
- · Użytkownicy: użytkownicy dróg ekspresowych i autostrad

# Przypadki użycia

 Sprawdzenie liczby wolnych miejsc parkingowych na danym MOPie w czasie rzeczywistym

# Przypadki użycia

- Sprawdzenie liczby wolnych miejsc parkingowych na danym MOPie w czasie rzeczywistym
- Sprawdzenie przewidywanej liczby wolnych miejsc parkingowych na danym MOPie w danym (niezbyt odległym) czasie

# Technologie

### Aplikacja mobilna:

· React Native - framework do tworzenia aplikacji mobilnych

# Technologie

#### Aplikacja mobilna:

· React Native - framework do tworzenia aplikacji mobilnych

#### Strona WWW:

- · D3.JS biblioteka javascriptowa do wizualizacji danych
- Django

#### **React Native**



#### **React Native**

- · Język: JavaScript
- · Aplikacja zbudowana z komponentów, które są renderowane
- · Hot Reloading
- Ten sam kod dla wielu platform przeniesienie aplikacji z Androida na iOS wymaga tylko dodania jednego pliku konfiguracyjnego i zmian w stylowaniu
- · Stylowanie w JS, zbliżone do CSS

#### **React Native**

```
import React, { Component } from 'react';
   import { Text, View } from 'react-native';
3
   class WhyReactNativeIsSoGreat extends Component {
5
     render() {
6
       return (
          <View>
8
            <Text>
9
              You just use native components like 'View' and 'Text',
10
              instead of web components like 'div' and 'span'.
11
            </Text>
12
          </View>
13
14
15
```

Listing 1: Przykład

https://facebook.github.io/react-native/

## React Native - style

- · Język: JavaScript
- · Nazwy i wartości takie jak w CSS
- · Camel case: backgroundColor zamiast background-color

## React Native - style

```
import React, { Component } from 'react';
   import { AppRegistry, StyleSheet, Text, View } from 'react-
       native':
3
   export default class LotsOfStyles extends Component {
     render() {
5
6
       return (
         <View>
8
           <Text style={styles.red}>just red</Text>
9
           <Text style={styles.bigblue}>just bigblue</Text>
           <Text style={[styles.bigblue, styles.red]}>bigblue, then
10
                 red</Text>
           <Text style={[styles.red, styles.bigblue]}>red, then
11
                bigblue</Text>
12
         </View>
13
14
15
```

Listing 2: Przykład stylowania

## React Native - style

```
const styles = StyleSheet.create({
     bigblue: {
     color: 'blue',
    fontWeight: 'bold',
    fontSize: 30,
   },
   red: {
     color: 'red',
    },
   });
11
   AppRegistry.registerComponent('
12
       AwesomeProject', () => LotsOfStyles);
          Listing 3: Przykład stylowania c.d.
```

https://facebook.github.io/
react-native/docs/style.html







Facebook



Instagram













Facebook



Instagram



Airbnb



Skype







Instagram



Airbnb



Skype



Tesla



Facebook



Instagram



Airbnb



Skype



Tesla



UberEATS



https://d3js.org/