Some LATEXExamples

D. Seabold

February 7, 2018

Common symbols: $\in \not\in \subset \subseteq \not\subseteq \cup \cap \bigcup \cap \times \mid \equiv \not\equiv \vee \land \implies \longleftrightarrow \longrightarrow \circ$

- 1. Given any two real numbers x and y with x < y, there is a real number z such that x < z < y.
- 2. If $a, b \in \mathbb{N}$ and $b \neq 0$, then $\frac{a}{b} \in \mathbb{Q}$.
- 3. My fraction doesn't have to be cramped $(\frac{x^3-3x+1}{x^2-2})$. It can look like $\left(\frac{x^3-3x+1}{x^2-2}\right)$ instead. Check out the code for the large parentheses.
- 4. For every $x \in \mathbb{R}$,
 - x < 0,
 - x = 0, or
 - x > 0.
- 5. For every $x \in \mathbb{R}$,
 - (a) x < 0,
 - (b) x = 0, or
 - (c) x > 0.
- 6. For any two sets A and B

$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$

7. I can also typeset that like this:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

8. Suppose A_1 , A_2 , A_3 , are sets. Distinguish between the union of two sets

$$A_1 \cup A_2$$

and the union of infinitely many sets:

$$\bigcup_{i=1}^{\infty} A_i.$$

- 9. Suppose that $A \subseteq B$. Then if $x \notin B$, it follows that $x \notin A$.
- 10. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable, then it is continuous.
- 11. If both $f:A\longrightarrow B$ and $g:B\longrightarrow C$ are bijections, then their composition $g\circ f$ and the inverse f^{-1} are bijections as well.
- 12. If $n \equiv 3 \pmod{4}$ then $n^2 \equiv 1 \pmod{4}$. Of course, this implies that $n^2 \not\equiv 2 \pmod{4}$.
- 13. If n is a prime number and $n \mid ab$ then either $n \mid a$ or $n \mid b$. Hence if $n \nmid a$ then $n \mid b$.
- 14. Two sets, A and B, are said to be disjoint if

$$A \cap B = \emptyset$$
.

- 15. If $0 \le a \le b$ then $a^2 \le b^2$.
- 16. Let $S = \{n \in \mathbb{Z} : n^2 + 3n 1 \ge 0\}.$
- 17. Let $T = \{2, 4, 8, 16, \dots, 1024\}.$
- 18. For every $\epsilon > 0$ there is a $\delta > 0$ such that $|f(x) f(y)| < \epsilon$ whenever $|x y| < \delta$.

Lemma 1. If 0 < x then there exists a y such that 0 < y < x.

Proof. Let
$$y = x/2$$
.

Lemma 2. For every positive integer
$$n$$
, $1 \cdot 3 \cdot 5 \cdots (2n-1) = \frac{(2n)!}{2^n \cdot n!}$.

Proof. Left to the reader. (Hint: Use induction.)
$$\hfill\Box$$