Fraud Detection

Problem

Fraud in online transactions:

- Loss of revenue
- Decreased customer satisfaction

Solution

Fraud detection system:

- Accurate fraud prediction
- Less false alarms

Data

- IEEE Computational Intelligence Society Fraud Detection
- Vesta Corporation's real-world e-commerce transactions

Data Overview

- Two datasets: transaction and identity data
- 590540 observations, 434 variables

Workflow

I. Data Preparation:

- Data Cleaning
- Exploratory Data Analysis
- Feature Engineering

II. Modeling:

- Class Imbalance
- Model Optimization
- Model Evaluation

- Address missing data
- Limit values of outliers
- Transform variables
- Reduce dimensionality

- Continuous variables:
 - Transaction time deltas
 - Transaction amount
 - Distance
 - Vesta engineered features

- Categorical variables:
 - Product codes
 - Payment card information
 - Address
 - Email domains
 - Identity information

- Target: isFraud
- 3.6%
- Class Imbalance

Transaction Time Deltas

Transaction Amount

Data Preparation: Product Code

Product Codes

Payment Card Information

Address

Distance

Email domains

Vesta-engineered features:

- C variables
- D variables
- M variables
- V variables

Correlation of C Features

Correlation of D Features

Principal Component Analysis

• 292 variables

• reduced to 25 features

Identity/Device Information:

• Over 75% of missing values

Data Preparation Summary

- Data is numeric
- 91 features
- Some features are highly correlated
- Some variables had a lot of missing values

Class Imbalance:

- Random Undersampling
- Synthetic Majority Oversampling Technique (SMOTE)

Evaluation Metrics:

- Area under Receiver Operating Characteristic curve
- Precision
- Recall

- Model Selection and Tuning:
 - Logistic Regression
 - Decision Tree
 - Gradient Boosting Classifier
 - Random Forest Classifier

Logistic Regression

• AUC: 0.7597

• Precision: 0.08

Decision Tree

• AUC: 0.7288

• Precision: 0.17

Gradient Boosting Classifier

• AUC: 0.8759

• Precision: 0.14

Random Forest (300 trees)

• AUC: 0.9329

• Precision: 0.21

Random Forest (SMOTE)

• AUC: 0.9315

• Precision: 0.92

Important Features (>= 0.03):

- I (V-feature)
- Transaction Time Deltas
- Transaction Amount
- Card I
- CI3
- CI4
- 10 (V-feature)

Model	AUC	Precision	Recall
Random Forest (300)	0.9327	0.21	0.84
Random Forest (SMOTE)	0.9315	0.92	0.55

Q&A