COMP9121: Design of Networks and Distributed Systems

Week 5: Network Layer 2

Wei Bao

School of Computer Science

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

Tunneling

The University of Sydney IPv4 IPv4

Routing and forwarding

Routing: selecting best paths in a network.

Forwarding: sending the packet to the next-hop toward its destination

Link Cost

i: i-th node (router).

 C_{ij} : link cost between i and j

 $C_{ij} = infinity if i and j are not connected$

Aim: Shortest path.

Classification

Global or decentralized information?

Global:

- all routers have complete topology, link cost info
- "link state" algorithms

Decentralized:

- router only knows physically-connected neighbors, link costs to neighbors
- distance vector algorithms

Link State Algorithm: Dijkstra

Link-State Algorithm

- Basic idea: **two step** procedure
 - 1 Each source node gets a map of all nodes and link costs of the entire network
 - 2 Find the shortest path on the map from the source node to all destination nodes
- Step 1: Broadcast of link-state information
 - Every node i in the network broadcasts to every other node in the network:
 - ID's of its neighbors: \mathcal{N}_i =set of neighbors of i
 - Distances to its neighbors: $\{C_{ij} \mid j \in N_i\}$
 - Flooding is a popular method of broadcasting packets

Step 2: Dijkstra

Dijkstra Algorithm: Finding shortest paths in order

Find shortest paths from source s to all other destinations

Closest node to s is 1 hop away 2^{nd} closest node to s is 1 hop away from s or w"

Dijkstra Algorithm: Finding shortest paths in order

Find shortest paths from source s to all other destinations

Closest node to s is 1 hop away 2^{nd} closest node to s is 1 hop away from s or w" 3^nd closest node to s is 1 hop away from s, w", or x

- C_{ii} : distance/cost from i to j
- D_i : current shortest distance from s to j
- N: set of nodes for which shortest path already found
- Initialization: (Start with source node s)
 - $N = \{s\}$, $D_s = 0$, "s is distance zero from itself"
 - $D_i = C_{si}$ for all $i \neq s$, distances of directly-connected neighbors

- Step A: (Find next closest node i)
 - Find $i \notin N$ such that
 - $-D_i = \min D_i$ for $i \notin N$
 - Add i to N
 - If N contains all the nodes, stop

- (node i was added to N last step)
- Other nodes may find a better way via the newly added
- Step B: (update minimum costs)
 - For each node $j \notin N$
 - $D_i = \min (D_i, D_i + C_{ii})$

Minimum distance from s to j through node i in N

- N: set of nodes for which shortest path already found
- Initialization: (Start with source node s)
 - $-N = \{s\}, D_s = 0$, "s is distance zero from itself"
 - $D_i = C_{si}$ for all $i \neq s$, distances of directly-connected neighbors
- Step A: (Find next closest node i)
 - Find $i \notin N$ such that
 - $-D_i = \min D_i$ for $i \notin N$
 - Add i to N
 - If N contains all the nodes, stop
- Step B: (update minimum costs)
 - For each node $j \notin N$
 - $D_i = \min (D_i, D_i + C_{ii})$
 - Go to Step A

Find the shortest path from 1 to all other nodes.

Iteration	Tree	N ₂	N ₃	N ₄	N ₅	N ₆
Initial						
1						
2						
3						
4						
5						

(next node/last node, cost D_j)

Iteration	Tree	N_2	N_3	N ₄	N_5	N_6
Initial	{1}	(1,3)	(1,2)	(1,5)	(-1,∞)	(-1,∞)
1						
2						
3						
4						
5						

(next node/last node, cost)

Iteration	Tree	N_2	N ₃	N ₄	N ₅	N_6
Initial	{1}	(1,3)	(1,2)	(1,5)	(-1,∞)	(-1,∞)
1	{1, 3}					
2						
3						
4						
5						

Iteration	Tree	N_2	N_3	N ₄	N_5	N_6
Initial	{1}	(1,3)	(1,2)	(1,5)	(-1,∞)	(-1,∞)
1	{1,3}	(1,3)		(3,4)	(-1,∞)	(3,3)
2						
3						
4						
5						

Iteration	Tree	N_2	N_3	N_4	N_5	N_6
Initial	{1}	(1,3)	(1,2)	(1,5)	(-1,∞)	(-1,∞)
1	{1,3}	(1,3)		(3,4)	(-1,∞)	(3,3)
2	{1,2,3}					
3						
4						
5						

Iteration	Tree	N_2	N_3	N_4	N_5	N_6
Initial	{1}	(1,3)	(1,2)	(1,5)	(-1,∞)	(-1,∞)
1	{1,3}	(1,3)		(3,4)	(-1,∞)	(3,3)
2	{1,2,3}			(3,4)	(2,7)	(3,3)
3						
4						
5						

Iteration	Tree	N ₂	N_3	N_4	N_5	N_6
Initial	{1}	(1,3)	(1,2)	(1,5)	(-1,∞)	(-1,∞)
1	{1,3}	(1,3)		(3,4)	(-1,∞)	(3,3)
2	{1,2,3}			(3,4)	(2,7)	(3,3)
3	{1,2,3,6}					
4						
5						

Iteration	Tree	N ₂	N_3	N_4	N_5	N_6
Initial	{1}	(1,3)	(1,2)	(1,5)	(-1,∞)	(-1,∞)
1	{1,3}	(1,3)		(3,4)	$(-1,\infty)$	(3,3)
2	{1,2,3}			(3,4)	(2,7)	(3,3)
3	{1,2,3,6}			(3,4)	(6,5)	
4						
5						

Iteration	Tree	N_2	N_3	N_4	N_5	N_6
Initial	{1}	(1,3)	(1,2)	(1,5)	(-1,∞)	(-1,∞)
1	{1,3}	(1,3)		(3,4)	(-1,∞)	(3,3)
2	{1,2,3}			(3,4)	(2,7)	(3,3)
3	{1,2,3,6}			(3,4)	(6,5)	
4	{1,2,3,4,6}				(6,5)	

Iteration	Tree	N_2	N_3	N_4	N_5	N ₆
Initial	{1}	(1,3)	(1,2)	(1,5)	(-1,∞)	(-1,∞)
1	{1,3}	(1,3)		(3,4)	(-1,∞)	(3,3)
2	{1,2,3}			(3,4)	(2,7)	(3,3)
3	{1,2,3,6}			(3,4)	(6,5)	
4	{1,2,3,4,6}				(6,5)	
5	{1,2,3,4,5,6}	(1,3)	(1,2)	(3,4)	(6,5)	(3,3)

Forwarding table

For presentation convenance Destination can be: Node name, IP address, IP prefix, etc.

routing algorithm

local forwarding table at 1

Destination Next Node

2 2
3 3
4 3
5 3
6 3

Destination can be: Node name, IP address, interface, etc.

Reaction to Failure

- If a link fails,
 - Router sets link distance to infinity & floods the network with an update packet
 - All routers immediately update their link database & recalculate their shortest paths
 - Recovery very quick
- But watch out for old update messages
 - Add time stamp or sequence # to each update message
 - Check whether each received update message is new
 - If new, add it to database and broadcast
 - If older, send update message on arriving link

Dijkstra's algorithm, discussion

Algorithm complexity: n nodes

- each iteration: need to check all nodes, w, not in N
- operations: $O(n^2)$
- more efficient implementations possible: O(nlogn)
 - Using a heap to find the min.

Important Concepts

- Link-state is a two-step procedure
 - Learn the map (by flooding)
 - Find the shortest path (use Dijkstra)
- LS is centralized!

Distance Vector Algorithm

Shortest Path to SJ

Focus on how nodes find their shortest paths to a given destination node, i.e. SJ San

But we don't know the shortest paths

Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)

Define

 $D_x(y) := cost of shortest path from x to y$

Then

$$D_{x}(y) = \min_{v} \{C(x,v) + D_{v}(y)\}$$

where min is taken over all neighbors v of x

Destination node 6

```
D1 = min { 3+D2 , 2+D3 , 5+D4 }
D2 = min { 3+D1 , 1+D4 , 4+D5 }
D3 = min { 2+D1 , 2+D4 , 1 }
D4 = min { 5+D1 , 1+D2 , 2+D3 , 3+D5 }
D5 = min { 4+D2 , 3+D4 , 2 }
```

How to solve: Use an iterative procedure!
Use this Bellman-ford equation every round, until convergence.

Iteration	Node 1	Node 2	Node 3	Node 4	Node 5
Initial	(-1, ∞)	(-1, ∞)	(-1,∞)	(-1, ∞)	(-1, ∞)
1					
2					
3					

Table entry
@ node 1
for dest SJ

Table entry
@ node 3
for dest SJ

Iteration	Node 1	Node 2	Node 3	Node 4	Node 5
Initial	(-1, ∞)	(-1, ∞)	(-1,∞)	(-1,∞)	(-1,∞)
1	(-1, ∞)	(-1, ∞)	(6,1)	(-1, ∞)	(6,2)
2					
3					

Iteration
Initial
1
2
3

Node 2
(-1,∞)
(-1,∞)
(5,6)

Node 3
(-1,∞)
(6,1)
(6, 1)

Node 4
(-1,∞)
(-1,∞)
(3,3)

Node 5
(-1,∞)
(6,2)
(6,2)

Node 2
(-1, ∞)
(-1, ∞)
(5,6)

Node 3
(-1,∞)
(6,1)
(6, 1)

Node 4
(-1, ∞)
(-1, ∞)
(3,3)

Node 5
(-1, ∞)
(6,2)
(6,2)

Iteration	Node 1
Initial	(-1,∞)
1	(-1, ∞)
2	(3,3)
3	(3,3)

Node 2
(-1, ∞)
(-1, ∞)
(5,6)
(4,4)

Node 3
(-1,∞)
(6,1)
(6, 1)
(6, 1)

Node 4
(-1,∞)
(-1,∞)
(3,3)
(3,3)

Node 5
(-1,∞)
(6,2)
(6,2)
(6,2)

Distance vector algorithm

Basic idea:

- From time-to-time (ex. 30 sec), each node sends its own distance vector estimate to neighbours
- Distance vector: (Current shortest distance to 1, Current shortest distance to 2, ... Current shortest distance to N)
- When a node x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{C(x,v) + D_v(y)\}$$
 for each node $y \in N$

 \square Under minor, natural conditions, the estimate $D_x(y)$ converges to the actual least cost $d_x(y)$

Example

Consider the following network in which distance vector routing is used. Each node in this network sends its routing table using a vector of size 6 where each entity of the vector represents the cost to the corresponding node, i.e. (Cost-to-Node1, Cost-to-Node2, Cost-to-Node3, Cost-to-Node4, Cost-to-Node5, Cost-to-Node6).

The following cost yectors have just arrived at router 1 from its neighbours:

from 2: (2,027,4,1)

from 3: (3 2 0 3 1,4)

from 5: (1,3,1,4,0,3).

The link costs between node 1 and nodes 2, 3, and 5 are 2, 3, and 1, respectively. What is the routing table at node 1?

Cost	Next	N 1 I -
(AST	NOYT	1/1/1/1/0
C C C C C C C C C C	1 167 1	1 1000

For Node 2:
$$\min \{2+0, 3+2, 1+3\} = 2$$

For Node 3:
$$\min \{2+2, 3+0, 1+1\} = 2$$

For Node 4:
$$\min \{2+7, 3+3, 1+4\} = 5$$

For Node 5:
$$\min \{2+4, 3+1, 1+0\} = 1$$
 5

For Node 6:
$$\min \{2+1, 3+4, 1+3\} = 3$$

Iteration	Node 1	Node 2	Node 3	Node 4	Node 5
Initial	(3,3)	(4,4)	(6, 1)	(3,3)	(6,2)
1	(3,3)	(4,4)	((4, 5))	(3,3)	(6,2)
2					
3					

Network disconnected; Loop created between nodes 3 and 4

Iteration	Node 1	Node 2	Node 3	Node 4	Node 5
Initial	(3,3)	(4,4)	(6, 1)	(3,3)	(6,2)
1	(3,3)	(4,4)	(4, 5)	(3,3)	(6,2)
2	(3,7)	(4,4)	(4, 5)	(5,5)	(6,2)
3					

Node 4 could have chosen 2 as next node because of tie

Iteration	Node 1	Node 2	Node 3	Node 4	Node 5
Initial	(3,3)	(4,4)	(6, 1)	(3,3)	(6,2)
1	(3,3)	(4,4)	(4, 5)	(3,3)	(6,2)
2	(3,7)	(4,4)	(4, 5)	(5,5)	(6,2)
3	(3,7)	(4,6)	(4,7)	(5,5)	(6,2)

Node 2 could have chosen 5 as next node because of tie

Iteration	Node 1	Node 2	Node 3	Node 4	Node 5
1	(3,3)	(4,4)	(4, 5)	(3,3)	(6,2)
2	(3,7)	(4,4)	(4, 5)	(2,5)	(6,2)
3	(3,7)	(4,6)	(4, 7)	(5,5)	(6,2)
4	((2,9))	(4,6)	(4, 7)	(5,5)	(6,2)

Node 1 could have chosen 3 as next node because of tie

Counting to Infinity Problem

Nodes believe best path is through each other

(Destination is node 4)

Update	Node 1	Node 2	Node 3
Before break	(2,3)	(3,2)	(4, 1)
After break	(2,3)	(3,2)	(2)3)
1	(2,3)	(3,4)	(2,3)
2	(2,5)	(3,4)	(2,5)
3	(2,5)	(3,6)	(2,5)
4	(2,7)	(3,6)	(2,7)
5	(2,7)	(3,8)	(2,7)
•••		•••	•••

Problem: Bad News Travels Slowly

Remedies

- Split Horizon
 - Do not report route to a destination to the neighbor from which route was learned
- Poisoned Reverse
 - Report route to a destination to the neighbor from which route was learned, but with infinite distance

Split Horizon with Poison Reverse

Don't learn from 1Don't learn from 2

Nodes believe best

path is through

Node 3 Update Node 1 Node 2 Before break (2, 3)(3, 2)(4, 1)(2, 3)(3, 2)Node 2 advertizes its route to 4 to After break $(-1, \infty)$ node 3 as having distance infinity; node 3 finds there is no route to 4 $(-1, \infty)$ Node 1 advertizes its route to 4 to (2, 3) $(-1, \infty)$ node 2 as having distance infinity; node 2 finds there is no route to 4 2 $(-1, \infty)$ Node 1 finds there is no route to 4 $(-1, \infty)$ $(-1, \infty)$

Important Concepts

- ☐ Link State is centralized
 - Dijkstra
- ☐ Distance Vector is <u>decentralized</u>
 - ☐ Split Horizon/Poison Reverse