

Eigenfaces

Ana Carolina Erthal Tiago Barradas

Reconhecimento facial

Na tecnologia:

Segurança

Imigração, sistemas policiais

Interesse pessoal

Desbloqueio de celulares, organização automática de fotos

O que são eigenfaces?

Autovetores que, quando combinados em diferentes proporções, formam as imagens originais de certo conjunto

"Ingredientes de uma receita"

Labeled Faces in the Wild

Universidade de Massachusetts.

Lemos cada imagem e as vetorizamos como $f_1, f_2, ..., f_k$.

$$F = \begin{bmatrix} - & f_1 & - \\ - & f_2 & - \\ & \vdots & \\ - & f_k & - \end{bmatrix}$$

Criamos a matriz F, em que cada linha representa uma imagem

Iniciamos o processo de PCA, calculando a face média

$$f_{media} = \frac{1}{k} \sum_{i=1}^{k} f_i$$

Criamos a matriz subtraída da face média

$$F_c = \begin{bmatrix} - & f_1 - f_{media} & - \\ - & f_2 - f_{media} & - \\ & \vdots & \\ - & f_k - f_{media} & - \end{bmatrix}$$

Através do cálculo do SVD da matriz subtraída, encontramos seus autovetores, que serão as linhas de V^T

$$F_c = U\Sigma V^T$$

Esses autovetores, se retornados ao seu formato original, são as próprias eigenfaces

 $array([-0.00229346, -0.00217227, -0.00195237, \dots, \\ -0.00098516, -0.00138877, -0.00158355])$

Os autovalores associados a eles nos informam de sua significância, e devem ser ordenados decrescentemente

Redução da dimensionalidade

Selecionamos apenas as M primeiras eigenfaces, que são as que mais contém informação

Tomamos elas como as linhas de E, a matriz de eigenfaces que terá dimensionalidade menor que a matriz de fotos original

As linhas dessa matriz formarão a base ortogonal do chamado "Face Space"

Apesar da menor quantidade de imagens, essa matriz contém informação suficiente para realizar o resto do processo!

A partir dessas eigenfaces, podemos reconstruir imagens!

Recebemos uma nova imagem como input e calculamos sua versão reduzida da imagem média

$$f_m = f_{input} - f_{media}$$

Descobrimos os fatores multiplicativos (pesos) de cada eigenface

$$w_{input} = f_m \cdot E^T$$

Realizamos a projeção da imagem no face space, usando pesos e eigenfaces, e adicionamos a imagem média, obtendo a reconstrução

$$f_r = (w_{input} \cdot E) + f_{media}$$

Reconstruções

Reconstruída

Reconstruções

Original

Reconstruída

Original

Reconstruída

Reconstruções

Original

Reconstruída

Original

Reconstruída

Original

Reconstruída

Além disso, podemos aplicar o reconhecimento facial:

Faremos a projeção de cada linha de F_c no face space

$$W = F_c E^T$$

Em W, cada linha w_i representa os pesos da imagem i de F_c

Recebemos uma nova imagem e fazemos o mesmo processo para encontrar seus pesos

$$w_{input} = (f_{input} - f_{media}) \cdot E^{T}$$

$$p = E^T \cdot w_{input}$$

Realizamos a projeção da nova imagem no face space, usando seus pesos e as eigenfaces.

Distâncias

$$d = ||f_m - p||^2$$

d = distância do vetor da imagem à sua projeção no face space

d>3500 Não representa uma face

d=5709

d=2150

d=1429

Distâncias

$$d' = ||w_{input} - w_i||^2$$

d' = distância da projeção da imagem input e das outras imagens no face space

d'>22.2 Não reconhecido

O menor d' será a imagem que buscamos, revelando a pessoa

	d < 3500	d > 3500
d' < 22.2	Face humana reconhecida	Não é uma face humana
d' > 22.2	Face humana, mas não reconhecida	Não é uma face humana

Há também um método de agrupamento por pessoas!

Utilizando imagens do dataset

100% de sucesso em 434 imagens

Angelina Jolie

Correto d=2149, d'=0

Leonardo di Caprio

Correto d=2454, d'=0

Rubens Barrichello

Correto d=1306, d'=0

Utilizando outras imagens

25,8% de sucesso em 62 imagens: (

Julianne Moore

Incorreto d=2158, d'=20

Luiz Inacio Lula da Silva

Incorreto d=2234, d'=14

Rubens Barrichello

Correto d=1306, d'=13

CRISE. E agora?

Decidimos testar o algoritmo em uma base criada para esse propósito, e repetindo o último teste obtivemos bons resultados:

	LFW	AT&T
Imagens do dataset	100%	100%
Outras imagens	25.8%	92.5%

Assim, julgamos que o problema não estava no algoritmo, e associamos a situação à base de dados

Tentativas notáveis

Salma Hayek

Fernando Henrique Cardoso

Sylvester Stallone

Nicole Kidman

Keanu Reeves

Queen Elizabeth II

Valeu!:)