Laplace Transform

- It turns out that many problems are greatly simplified when converted to the complex frequency domain.
- For example, integration and differentiation in the time domain become simple algebraic expressions in the complex frequency domain.
- The Laplace transform converts a problem between these two domains.
- This type of calculation can be done entirely in the time domain, but it requires solving differential equations, which is challenging and time-consuming.
- The Laplace transform technique is a huge improvement over working directly with differential equations.

Laplace Transform

- The *Laplace* transform of f(t) is denoted F(s)
- f(t) is a function in the time domain
- F(S) is the function in the complex frequency domain that corresponds to F(s)
- The Laplace transform operator is denoted \mathscr{L}

Laplace Transforms

• We will use a set of tables of *Laplace* transforms.

Compute the Laplace transforms of the time domain function f(t)

$$f(t) = t^4$$

Table: Laplace Transforms Tables

f(t)	F(s)
	•••
t^n	$\frac{n!}{s^{n+1}}$
	•••

Compute the Laplace transforms of the time domain function f(t)

$$f(t) = 4\sin(2t)$$

Table: Laplace Transforms Tables

f(t)	F(s)
sin (at)	$\frac{a^2}{s^2 + a^2}$
	• • •

Compute the Laplace transforms of the time domain function f(t)

$$f(t) = \frac{e^{-t}}{2}$$

Table: Laplace Transforms Tables

f(t)	F(s)
	•••
e^{at}	$\frac{1}{s-a}$
•••	•••