Lecturer: Alex B. Grilo

Lecture # 04 - Simon's algorithm, QFT and Shor's algorithm

Quantum Fourier transform

1. Show that QFT_N is unitary.

Solution: We have that
$$QFT_N = \frac{1}{\sqrt{N}} \begin{pmatrix} 1 & 1 & \dots & 1 & \dots & 1 \\ 1 & \omega & \dots & \omega^{j-1} & \dots & \omega^{N-1} \\ & & & \dots & & \\ 1 & \omega^{i-1} & \dots & \omega^{(i-1)(j-1)} & \dots & \omega^{i(N-1)} \\ & & & \dots & & \\ 1 & \omega^{N-1} & \dots & \omega^{(N-1)(j-1)} & \dots & \omega^{(N-1)^2} \end{pmatrix}$$

and

$$QFT_N^\dagger = \frac{1}{\sqrt{N}} \begin{pmatrix} 1 & 1 & \dots & 1 & \dots & 1 \\ 1 & \omega^{-1} & \dots & \omega^{-j+1} & \dots & \omega^{-N+1} \\ & & & \dots & & \\ 1 & \omega^{-i+1} & \dots & \omega^{-(i-1)(j-1)} & \dots & \omega^{-i(N-1)} \\ & & & \dots & & \\ 1 & \omega^{-N-1} & \dots & \omega^{-(N-1)(j-1)} & \dots & \omega^{-(N-1)^2} \end{pmatrix}.$$

Let $A = QFT_NQFT_N^{\dagger}$.

We have that

$$A_{i,i} = \frac{1}{N} \sum_{j \in [N]} \omega^{(i-1)(j-1)} \omega^{-(j-1)(i-1)} = \frac{1}{N} \sum_{j \in [N]} \omega^0 = 1.$$

Morefore, for $i \neq k$, we have that

$$A_{i,k} = \frac{1}{N} \sum_{i \in [N]} \omega^{(i-1)(k-1)} \omega^{-(k-1)(j-1)} = \frac{1}{N} \sum_{i \in [N]} \omega^{(j-1)(i-k)} = \frac{1}{N} \sum_{i \in [N]} \omega^{(j-1)} = 0,$$

where in the third equality we use the fact that for some fixed $i \neq k$, we are summing up all roots of unity, which is equal to 0.

2. In this exercise we will show how to compute QFT_N for $N=2^n$ with a gateset composed of H, $SWAP^1$ and the controlled version of one-qubit gates of the form

$$R_s = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^s} \end{pmatrix}.$$

(a) Show that for every string $x \in \{0,1\}^n$, we have that $QFT_N|x\rangle$ is equal to

$$\left(\frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi ik/2}|1\rangle\right)\right) \otimes \left(\frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi ik/2^2}|1\rangle\right)\right) \otimes \dots \otimes \left(\frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi ik/2^n}|1\rangle\right)\right). \tag{1}$$

¹Remember that SWAP is the two-qubit gate such that $SWAP|a\rangle|b\rangle=|b\rangle|a\rangle$.

Solution:

$$QFT_N|x\rangle = \frac{1}{\sqrt{N}} \sum_{y \in N} e^{2\pi i x y/N} |y\rangle \tag{2}$$

$$= \frac{1}{\sqrt{N}} \sum_{y \in N} e^{2\pi i (\sum_{k=1}^{n} y_k 2^{-k}) x} |y\rangle \tag{3}$$

$$= \frac{1}{\sqrt{N}} \sum_{y \in N} \prod_{k=1}^{n} e^{2\pi i y_k x/2^k} |y\rangle$$
 (4)

$$= Equation (1), (5)$$

where in the second equality we denote y_k as the k-th bit of y, written in binary.

(b) What is the output of the following circuit on input $|x\rangle$. ²

Solution: The first qubit of the output is

$$R_n^{x_n}...R_2^{x_2}H|x_1\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x_1}e^{2\pi ix_2/4}...e^{2\pi ix_n/2^n}|1\rangle) = \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi ix/2^n}),$$

where we use the fact that $(-1)^{x_1} = e^{2\pi i x_1/2}$ and that $\sum_j x_j/2^j = x/2^n$. Similarly, we have that the j-th output qubit is

$$R_{n-j+1}^{x_{n-j+1}}...R_2^{x_2}H|x_1\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x_j}e^{2\pi ix_{j+1}/4}...e^{2\pi ix_n/2^{n-j+1}}|1\rangle) = \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi ix/2^{n-j+1}}|1\rangle),$$

where we use the fact that for $a = b \pmod{c}$, we have that $e^{2\pi ib/c} = e^{2\pi ia/c}$.

- (c) What is the difference between the answer of Exercise 2b and Equation 1? **Solution:** The qubits have an inverse order.
- (d) Can you propose a quantum circuit to compute QFT_N ?

 Solution: We can apply the circuit of Exercise 2b and SWAP qubits i and n-j+1.
- (e) **Pour aller plus loin...** Show that R_s can be approximated using H, R_1 , R_2 and R_3 .

²In this picture, the gates are described using circles instead of rectangles, but that is just a different notation.

- 3. Let U be an m-qubit unitary and $|\psi\rangle$ is an m-qubit quantum state such that $U|\psi\rangle = e^{2\pi i\theta}|\psi\rangle$ for some $\theta = [0,1)$ (i.e. $|\psi\rangle$ is an eigenvector of U with eigenvalue $e^{2\pi i\theta}$). In this exercise we show that using QFT, we can estimate the eigenvalue $e^{i\theta}$ (or equivalently, that we can compute θ). For simplicity, we assume that θ can be computed with n bits of precision (meaning that $2^n\theta$ is an integer number).
 - (a) Show that $U^j|\psi\rangle = e^{2\pi i\theta j}|\psi\rangle$. Solution: We show by induction. The basis case j=0 is trivial.

Let us assume then that $U^{j-1}|\psi\rangle = e^{2\pi i\theta(j-1)}|\psi\rangle$, and we will show that $U^{j}|\psi\rangle = e^{2\pi i\theta j}|\psi\rangle$. For that notice that

$$U^{j}|\psi\rangle = U(U^{j-1}|\psi\rangle) = U(e^{2\pi i\theta(j-1)}|\psi\rangle) = e^{2\pi i\theta(j-1)}U|\psi\rangle = e^{2\pi i\theta j}|\psi\rangle,$$

where in the second equality we use our induction hypothesis.

(b) Compute the state of the following computation at phases 1,2,3 and 4.

Solution:

Phase 1: $\frac{1}{\sqrt{2^n}} \sum_{x} |x\rangle |\psi\rangle$.

Phase 2: Notice that for a fixed $|x\rangle$, the controlled unitaries of phase 2 implement the operation $|x\rangle|\psi\rangle \to |x\rangle U^x|\psi\rangle = e^{2\pi i\theta x}|x\rangle|\psi\rangle$. By linearity, we have that the state at the end of phase 2 is then

$$\frac{1}{\sqrt{2^n}} \sum_{x} e^{2\pi i \theta x} |x\rangle |\psi\rangle = \left(\frac{1}{\sqrt{2^n}} \sum_{x} e^{2\pi i \theta x} |x\rangle\right) \otimes |\psi\rangle.$$

Phase 3: Notice that $\frac{1}{\sqrt{2^n}} \sum_x e^{2\pi i \theta x} |x\rangle = QFT_{2^n} |2^n \theta\rangle$. Therefore

$$(QFT^{\dagger} \otimes I) \left(\frac{1}{\sqrt{2^n}} \sum_{x} e^{2\pi i \theta x} |x\rangle \right) = (QFT^{\dagger} QFT |2^n \theta\rangle) \otimes |\psi\rangle = |2^n \theta\rangle |\psi\rangle.$$

Phase 4: By measuring the first register of the state of phase 3 gives us the value of $2^n\theta$, which allows us to compute the eigenvalue $e^{2\pi i\theta}$ which is the eigenvalue of U associated with the eigenvector $|\psi\rangle$.

Shor's algorithm

- 4. Let us consider the function $f = 7^x \pmod{10}$.
 - (a) What is the period of this function?

Solution:

- $7^1 \pmod{10} = 7$
- $7^2 \pmod{10} = 9$
- $7^3 \pmod{10} = 3$
- $7^4 \pmod{10} = 1$
- $7^5 \pmod{10} = 7$

The period is 4.

(b) Compute the state corresponding to each step of the period finding algorithm with q=128. Give an example of measurement outcome ℓ that would allow you to compute the period (i.e. $\frac{\ell}{a}=\frac{k}{r}$ in its lowerst terms).

Solution: Recall that the period finding algorithm is the following:

After the first step the state is

$$\frac{1}{8\sqrt{2}}\sum_{i=0}^{127}|i\rangle|0\rangle.$$

After the second step the state is

$$\frac{1}{8\sqrt{2}} \sum_{i=0}^{127} |i\rangle |7^{i} \pmod{10}\rangle
= \frac{1}{8\sqrt{2}} \left(\sum_{j=0}^{31} |4j\rangle |1\rangle + \sum_{j=0}^{31} |1 + 4j\rangle |7\rangle + \sum_{j=0}^{31} |2 + 4j\rangle |9\rangle + \sum_{j=0}^{31} |3 + 4j\rangle |3\rangle \right).$$

After the third step the state is

$$\frac{1}{4} \left(\sum_{j=0}^{3} |32j\rangle |1\rangle + \sum_{j=0}^{3} e^{2\pi i (1+32j)/128} |1+32j\rangle |7\rangle
+ \sum_{j=0}^{3} e^{2\pi i 2(2+32j)/128} |2+32j\rangle |9\rangle + \sum_{j=0}^{3} e^{2\pi i 3(3+32j)/128} |3+32j\rangle |3\rangle \right).$$

One example of measurement outcome that would allow us to compute the period is $\frac{32}{128}$ because it is equal to $\frac{1}{4}$ in its lowest terms.