

Exam 1: Review Questions

Last Name:	First Name and Initial:
Course Name:	Number:
Real Analysis 1	MATH 6301
Instructor:	Due Date:
Wieslaw Krawcewicz	October 3, 2022
E-mail Address:	Student's Signature:

Problem 1. Let X and Y be two non-empty sets, $f: X \to Y$ a function and $\mathscr{S} \subset \mathscr{P}(X)$ a σ -algebra. Show that the family of sets given by

$$\mathscr{C} := \{ F \subset Y : f^{-1}(F) \in \mathscr{S} \}$$

is a σ -algebra.

Problem 2: Let X and Y be two non-empty sets, $f: X \to Y$ a function and $\mathscr{S} \subset \mathscr{P}(X)$ a σ -algebra. Suppose that $\mathscr{K} \subset \mathscr{P}(Y)$ is a given family of sets in Y and denote by $\mathscr{S}(\mathscr{K})$ the smallest σ -algebra generated by \mathscr{K} . Show that, if

$$\forall_{B \in \mathscr{K}} \quad f^{-1}(B) \in \mathscr{S},$$

then

$$\forall_{F \in \mathscr{S}(\mathscr{K})} \quad f^{-1}(F) \in \mathscr{S},$$

Problem 3: Consider the following family of intervals in \mathbb{R}

$$\mathcal{K} := \{(-\infty, a] : a \in \mathbb{R}\}$$

Show that $\mathscr{S}(\mathscr{K})=\mathscr{B}(\mathbb{R}),$ i.e. \mathscr{K} generates the σ -algebra of Borel sets in $\mathbb{R}.$

Problem 4: Suppose $\mathcal{N}\subset \mathscr{P}(X)$ is a monotone family of sets and let $\mathscr{L}\subset \mathscr{P}(X)$ be an arbitrary class of sets. Show that the class

$$\mathscr{J}(\mathscr{L}) := \{ E \in \mathscr{P}(X) : \forall_{F \in \mathscr{L}} \ E \cup F, \ E \setminus F, \ F \setminus E \in \mathscr{N} \}$$

is monotone.

Problem 5: Consider a subset A in X, $A \neq X$, \emptyset and the family $\mathcal{K} := \{A\}, \{A^c\}\}$. Describe the σ -algebra

$$\mathscr{S}(\mathscr{K}\times\mathscr{K}),$$

i.e. the smallest σ -algebra generated by $\mathscr{K} \times \mathscr{K}.$

Problem 6: Let $X = \mathbb{R}$ and consider the following collection of sets $\mathcal{A} := \{\{n\} : n \in \mathbb{N}\}$. Show that

$$\mathscr{S}(\mathcal{A}) := \{ \mathbb{R} \setminus S : S \subset \mathbb{N} \} \cup \{ S : S \subset \mathbb{N} \}.$$

Problem 7: Let $\mathscr{S} \subset \mathscr{P}(X)$ be a σ -algebra and $f, g: X \to \mathbb{R}$ be \mathscr{S} -measurable functions. Show that $f+g: X \to \mathbb{R}$ is a \mathscr{S} -measurable function.

Problem 8: Let $\mathscr{S} \subset \mathscr{P}(X)$ be a σ -algebra and $f_n: X \to \mathbb{R}, n \in \mathbb{N}$, be a sequence of \mathscr{S} -measurable functions. Show that $f: X \to \overline{\mathbb{R}}$ given by

$$f(x) := \sup_{n \in \mathbb{N}} f_n(x)$$

a \mathscr{S} -measurable function.

Problem 9: Let $\mathscr{S} \subset \mathscr{P}(X)$ be a σ -algebra and $f, g: X \to \mathbb{R}$ be \mathscr{S} -measurable functions. Show that $fg: X \to \mathbb{R}$ is a \mathscr{S} -measurable function.

Problem 10: Let $\mathscr{S} \subset \mathscr{P}(X)$ be a σ -algebra and $f, g: X \to \mathbb{R}$ be two \mathscr{S} -measurable functions. Show that the set $\{x \in X : f(x) = g(x)\}$ is measurable (i.e bel;ongs to \mathscr{S} .

Problem 11: Let $\mathscr{S} \subset \mathscr{P}(X)$ be a σ -algebra and $f, g: X \to \mathbb{R}, g(x) \neq 0$ for all $x \in X$, be two \mathscr{S} -measurable functions. Show that $\frac{f}{g}: X \to \mathbb{R}$ is a \mathscr{S} -measurable function.

Problem 12: Let (X,d) be a metric space and assume that $\mathscr{S} := \mathbb{B}(X)$ (i.e. \mathscr{S} stands for Borel sets in X). Show that every continuous function $f: X \to \mathbb{R}$ is \mathscr{S} -measurable.

Problem 13: Let (X,d) be a metric space and assume that $\mathscr{S} := \mathbb{B}(X)$ (i.e. \mathscr{S} stands for Borel sets in X). Show that if $f: X \to \mathbb{R}$ is continuous, except for a finite number of discontinuity points $N = \{x_1, x_2, \dots, x_n\}$, then f is \mathscr{S} -measurable.

Problem 14: Let (X,d) be a metric space and A a closed set in X, show that there exists a sequence of continuous functions $f_n: X \to [0,\infty)$ such that

- (a) for all $x \in X$ one has $\ldots \geq f_{n+1}(x) \geq f_n(x) \geq \chi_A(x)$, where χ_A stands for the characteristic function of A.
- (b) for all $x \in X$ one has

$$\chi_A(x) = \lim_{n \to \infty} f_n(x).$$