Equilibria in the cr3bp

Equilibria

Also called "Lagrange points"

Equilibria

- Also called "Lagrange points"
- Locations where, if
 - The body with neglible mass, m₃, has zero velocity
 - No net acceleration acts on m_3 It will stay stationary *w.r.t.* the rotating frame R(x,y,z) Trace out an orbit *w.r.t.* the inertial frame I(X,Y,Z)

- Also called "Lagrange points"
- Locations where, if
 - o The body with neglible mass, m₃, has zero velocity
 - No net acceleration acts on m_3 It will stay stationary *w.r.t.* the rotating frame R(x,y,z) Trace out an orbit *w.r.t.* the inertial frame I(X,Y,Z)

$$\ddot{\mathbf{r}} = -2\mathbf{\omega} \times \dot{\mathbf{r}} - \nabla U$$

- Also called "Lagrange points"
- Locations where, if
 - o The body with neglible mass, m₃, has zero velocity
 - No net acceleration acts on m_3 It will stay stationary *w.r.t.* the rotating frame R(x,y,z) Trace out an orbit *w.r.t.* the inertial frame I(X,Y,Z)

$$= -2\omega \times -\nabla U$$

$$= 0$$

- Also called "Lagrange points"
- Locations where, if
 - The body with neglible mass, m₃, has zero velocity
 - No net acceleration acts on m₃ It will stay stationary w.r.t. the rotating frame R(x,y,z)Trace out an orbit w.r.t. the inertial frame I(X,Y,Z)

$$= -2\omega \times -\nabla U$$

$$= 0$$

$$\nabla U = \mathbf{0}$$

$$U = -\left(\frac{1-\mu}{r_1} + \frac{\mu}{r_2}\right) - \frac{1}{2}(x^2 + y^2)$$

Lagrange points are located where

$$\nabla U = \mathbf{0}$$

$$\frac{\partial U}{\partial x} = 0$$

$$x - \frac{1 - \mu}{r_1^3} (x + \mu) - \frac{\mu}{r_2^3} [x - (1 - \mu)] = 0$$

$$\frac{\partial U}{\partial y} = 0$$

$$y \left(1 - \frac{1 - \mu}{r_1^3} - \frac{\mu}{r_2^3} \right) = 0$$

$$z \left(\frac{1 - \mu}{r_1^3} + \frac{\mu}{r_2^3} \right) = 0$$

$$z = 0$$

Lagrange points are located in the (x,y)-plane

Lagrange points are located where

$$\nabla U = \mathbf{0}$$

$$\frac{\partial U}{\partial x} = 0$$

$$x - \frac{1 - \mu}{r_1^3} (x + \mu) - \frac{\mu}{r_2^3} [x - (1 - \mu)] = 0$$

$$\frac{\partial U}{\partial y} = 0$$

$$y \left(1 - \frac{1 - \mu}{r_1^3} - \frac{\mu}{r_2^3} \right) = 0$$

$$z \left(\frac{1 - \mu}{r_1^3} + \frac{\mu}{r_2^3} \right) = 0$$

$$z = 0$$

- Lagrange points are located in the (x,y)-plane
- Five solutions

Five solutions

- Five solutions
- Known from "Fundamentals of Astrodynamics"
 - Triangular (L₄, L₅) on equilateral triangles

- Five solutions
- Known from "Fundamentals of Astrodynamics"
 - Triangular (L₄, L₅) on equilateral triangles

- Five solutions
- Known from "Fundamentals of Astrodynamics"
 - Triangular (L₄, L₅) on equilateral triangles
 - o Colinear (L_1 , L_2 , L_3) along x-axis where y = 0

- Five solutions
- Known from "Fundamentals of Astrodynamics"
 - Triangular (L₄, L₅) on equilateral triangles
 - Ocolinear (L_1 , L_2 , L_3) along x-axis where y = 0

$$\frac{\partial U}{\partial x} = 0 \qquad x - \frac{1-\mu}{r_1^3} \left(x + \mu \right) - \frac{\mu}{r_2^3} \left[x - \left(1 - \mu \right) \right] = 0$$

- Five solutions
- Known from "Fundamentals of Astrodynamics"
 - Triangular (L₄, L₅) on equilateral triangles
 - o Colinear (L_1 , L_2 , L_3) along x-axis where y = 0

$$\frac{\partial U}{\partial x} = 0 \qquad x - \frac{1-\mu}{r_1^3} \left(x + \mu \right) - \frac{\mu}{r_2^3} \left[x - \left(1 - \mu \right) \right] = 0 = f_{\mu} \left(x \right)$$

- Five solutions
- Known from "Fundamentals of Astrodynamics"
 - Triangular (L₄, L₅) on equilateral triangles
 - Ocolinear (L_1 , L_2 , L_3) along x-axis where y = 0

$$\frac{\partial U}{\partial x} = 0 \qquad x - \frac{1 - \mu}{r_1^3} (x + \mu) - \frac{\mu}{r_2^3} [x - (1 - \mu)] = 0 = f_{\mu}(x)$$

 Use Newton's method for finding the x-coordinate of the colinear Lagrange points

$$x_{i+1} = x_i - \frac{f_{\mu}(x_i)}{f_{\mu}'(x_i)}$$

- Five solutions
- Known from "Fundamentals of Astrodynamics"
 - Triangular (L₄, L₅) on equilateral triangles
 - o Colinear (L_1 , L_2 , L_3) along x-axis where y = 0

$$\frac{\partial U}{\partial x} = 0 \qquad x - \frac{1-\mu}{r_1^3} \left(x + \mu \right) - \frac{\mu}{r_2^3} \left[x - \left(1 - \mu \right) \right] = 0 = f_{\mu} \left(x \right)$$

 Use Newton's method for finding the x-coordinate of the colinear Lagrange points

$$x_{i+1} = x_i - \frac{f_{\mu}(x_i)}{f_{\mu}'(x_i)}$$

• With good initial guess, x_0 , method converges in few iterations

- Five solutions
- Known from "Fundamentals of Astrodynamics"
 - Triangular (L₄, L₅) on equilateral triangles
 - o Colinear (L_1 , L_2 , L_3) along x-axis where y = 0

$$\frac{\partial U}{\partial x} = 0 \qquad x - \frac{1-\mu}{r_1^3} \left(x + \mu \right) - \frac{\mu}{r_2^3} \left[x - \left(1 - \mu \right) \right] = 0 = f_{\mu} \left(x \right)$$

 Use Newton's method for finding the x-coordinate of the collinear Lagrange points

$$x_{i+1} = x_i - \frac{f_{\mu}(x_i)}{f_{\mu}'(x_i)}$$

- With good initial guess, x_0 , method converges in few iterations
- Assignment
 - Compute colinear Lagrange points

Equilibria - utility

- From introductory workshop
 - Missions at Sun-Earth L₁ for solar and Earth observation
 - SOHO (ESA/NASA)
 - WIND (NASA)
 - ACE (NASA)
 - DSCOVR (NASA)
 - Missions at Sun-Earth L₂ for astronomy
 - GAIA (ESA)
- Missions to Sun-Earth L₅ for heliophysics
 - Lagrange (ESA)
- Understanding natural Solar-System dynamics
 - Trojan asteroids in Sun-Jupiter / Sun-Earth systems

End of video

