# Machine Learning from Data

Lecture 22: Spring 2021

# Today's Lecture

- Neural Networks and Overfitting
  - Approximation Vs Generalization
  - Regularization and Early Stopping
  - Minimizing in-sample error more efficiently

## RECAP: Neural Networks and Fitting the Data

#### Forward Propagation:

$$\mathbf{x} = \mathbf{x}^{(0)} \xrightarrow{\mathbf{w}^{(1)}} \mathbf{s}^{(1)} \xrightarrow{\theta} \mathbf{x}^{(1)} \xrightarrow{\mathbf{w}^{(2)}} \mathbf{s}^{(2)} \cdots \xrightarrow{\mathbf{w}^{(L)}} \mathbf{s}^{(L)} \xrightarrow{\theta} \mathbf{x}^{(L)} = h(\mathbf{x})$$

$$\mathbf{s}^{(\ell)} = (\mathbf{W}^{(\ell)})^{\mathsf{T}} \mathbf{x}^{(\ell-1)} \qquad \mathbf{x}^{(\ell)} = \begin{bmatrix} 1 \\ \theta(\mathbf{s}^{(\ell)}) \end{bmatrix}$$

(Compute h and  $E_{\rm in}$ )

Choose  $W = \{W^{(1)}, W^{(1)}, \dots, W^{(L)}\}$  to minimize  $E_{in}$ 

#### Gradient descent:

$$W(t+1) \leftarrow W(t) - \eta \nabla E_{in}(W(t))$$

$$\text{Compute gradient} \longrightarrow \text{need } \frac{\partial \mathsf{e}}{\partial \mathbf{W}^{(\ell)}} \longrightarrow \text{need } \pmb{\delta}^{(\ell)} = \frac{\partial \mathsf{e}}{\partial \mathbf{s}^{(\ell)}}$$

$$\frac{\partial \mathsf{e}}{\partial \mathbf{W}^{(\ell)}} = \mathbf{x}^{(\ell-1)} (\boldsymbol{\delta}^{(\ell)})^{\mathrm{T}}$$

Backpropagation:

$$oldsymbol{\delta}^{(1)} \longleftarrow oldsymbol{\delta}^{(2)} \, \cdots \, \longleftarrow oldsymbol{\delta}^{(L-1)} \, \longleftarrow oldsymbol{\delta}^{(L)}$$

$$\boldsymbol{\delta}^{(\ell)} = \theta'(\mathbf{s}^{(\ell)}) \otimes \left[ \mathbf{W}^{(\ell+1)} \boldsymbol{\delta}^{(\ell+1)} \right]_1^{d^{(\ell)}}$$





The Neural Network has a Tunable Transform (x) = (1, 0, 0), (2, 0), (3, 0) $h(\mathbf{x}) = \theta \left( w_0 + \sum_{j=1}^m w_j \theta \left( \mathbf{v_j}^{\mathrm{T}} \mathbf{x} \right) \right)$  $h(\mathbf{x}) = \theta \left( w_0 + \sum_{j=1}^{\bar{d}} w_j \Phi_j(\mathbf{x}) \right)$ Z Ein X Eout

approximation

Regression
Ein= O(In)



MLP:

$$d_{\text{VC}} = O(md\log(md))$$

$$m = \sqrt{N}$$

(convergence to optimal for MLP, just like k-NN)

semi-parametric because you still have to learn parameters.

tanh:

$$d_{\rm VC} = O(md(m+d))$$

Ein & O(Im)

Ein & O(Im)

Ein & O(Im)

Four & Ein + O(Idre WgN), m= IN Semi-parametur c method.

 $\mathcal{A} \longrightarrow \left(h_1(\mathcal{A}) \ h_2(\mathcal{A}) \dots h_m(\mathcal{A})\right)$  $h(x) = h_c(h_1(x) h_c(x))$ # 6) dichotomics

1)  $h_2(x_N) - h_m(x_n) \rightarrow Z_m$   $h_1(x_N) h_2(x_N) - h_m(x_n) \rightarrow Z_m$   $h_2(x_N) - h_m(x_N) \rightarrow Z_m$   $h_2$  Lemma:  $N^{p} \leq 2^{n}$ ,  $N \in \mathcal{S}_{2}(D \log D)$   $N > 2 D \log_{2} D$  hun  $m(N) \geq 2^{n} \approx d_{i} \leq 2 D \log D$  $D \left( \geq d_{i} + d_{i} \right) \log \left( \sum d_{i} + d_{i} \right)$ 

# Weight Decay with Digits Data



$$W = \begin{cases} W^{(1)}, W^{(2)} - W^{(1)} \end{cases}$$

$$W = \begin{cases} W^{(1)}, W^{(2)} - W^{(1)} \end{cases}$$

$$Eang = Ein + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$

$$\frac{\partial Eang}{\partial W^{(1)}} = \frac{\gamma Ein}{\partial W^{(1)}} + \frac{\lambda}{N} \sum_{i,j} (\omega_{i,j})^2$$



Hypothesis

 $M_1 \subseteq M_2 \subseteq M_3 \dots \subseteq M_m$  $d_1 \leq d_2 \leq d_3 \dots \leq d_m$ 

## Early Stopping

#### Gradient Descent



$$\mathcal{H}_1 = \{ \mathbf{w} : \| \mathbf{w} - \mathbf{w}_0 \| \le \eta \}$$



$$\mathcal{H}_2 = \mathcal{H}_1 \cup \{\mathbf{w}: \ \|\mathbf{w} - \mathbf{w}_1\| \leq \eta\}$$



$$\mathcal{H}_3 = \mathcal{H}_2 \cup \{\mathbf{w}: \|\mathbf{w} - \mathbf{w}_2\| \le \eta\}$$

Each iteration explores a larger  ${\mathcal H}$ 

$$\mathcal{H}_1 \subset \mathcal{H}_2 \subset \mathcal{H}_3 \subset \mathcal{H}_4 \subset \cdots$$





# Early Stopping on Digits Data



# Minimizing $E_{in}$

- 1. Use regression for classification
- 2. Use better algorithms than gradient descent



# i) Direction (re of the grad) ii) Step size (y)

Determine the gradient  ${\bf g}$ 



1) Start, take a strip, check if Ein improves.

N -> nx some factor (B=1.03) 2) Take a bigger step & improve Fin. f. 3) If you worker Fin them 3) If you worker Fin them  $\eta \rightarrow \eta \times \alpha(\langle 1 \rangle)$ You may backtrack. vaniable n -> GD

# Steepest Descent - Line Search

- 1: Initialize w(0) and set t = 0;
- 2: while stopping criterion has not been met do
- Let  $\mathbf{g}(t) = \nabla E_{\text{in}}(\mathbf{w}(t))$ , and set  $\mathbf{v}(t) = -\mathbf{g}(t)$ .
- Let  $\eta^* = \operatorname{argmin}_{\eta} E_{\text{in}}(\mathbf{w}(t) + \eta \mathbf{v}(t))$
- 5:  $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta^* \mathbf{v}(t)$ .
- 6: Iterate to the next step,  $t \leftarrow t + 1$ .
- 7: end while

How to accomplish the line search (step 4)? ✓ Simple bisection (binary search) suffices in practice



- U Shalid Punary screech In praviue 5-10 (9)

|            |                                                       |        | Jumzauon         | _ |
|------------|-------------------------------------------------------|--------|------------------|---|
| A ~        | $\operatorname{Method}$                               | 10 sec | $1,000~{ m sec}$ |   |
| ~ 1        | Gradient Descent                                      | 0.079  | 0.0206           |   |
| COD MAN.   | Stochastic Gradient Descent                           | 0.0213 | 0.00278          |   |
| > %        | Variable Learning Rate                                | 0.039  | 0.014            |   |
| C(D)       | Steepest Descent                                      | 0.043  | 0.0189           |   |
| SUD AND    |                                                       |        |                  | ( |
|            |                                                       |        |                  |   |
| Steepert ? | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |        | _                |   |
|            |                                                       |        |                  |   |

Figure 7.4: Gradient descent, variable learning rate and steepest descent using digits data and a 5 hidden unit 2-layer neural network with linear output. For variable learning rate,  $\alpha=1.1$  and  $\beta=0.8$ .

Optimization Time  $50,000 \, \text{sec}$ 0.00144 0.0000220.000100.000012



new grad I prev. line search dir



d-stes.

## Conjugate Gradients

- 1. Line search just like steepest descent.
- 2. Choose a better direction than  $-\mathbf{g}$





|                             | Optimization Time |                       |                         |
|-----------------------------|-------------------|-----------------------|-------------------------|
| Method                      | 10  sec           | $1,000  \sec$         | 50,000  sec             |
| Stochastic Gradient Descent | 0.0203            | 0.000447              | $1.6310 \times 10^{-5}$ |
| Steepest Descent            | 0.0497            | 0.0194                | 0.000140                |
| Conjugate Gradients         | 0.0200            | $1.13 \times 10^{-6}$ | $2.73 \times 10^{-9}$   |

# Thanks!