Consumption Portfolio Problem with Stochastic Volatility

Joscha Duchscherer

Abstract

We study an optimal consumption and investment problem under Epstein-Zin preferences in a stochastic volatility setting. Using a finite difference method, we numerically solve the associated Hamilton-Jacobi-Bellman (HJB) equation and analyze the impact of the elasticity of intertemporal substitution (EIS) and return-volatility correlation on optimal strategies.

1 The Model

We consider an investor over a time interval [0, T]. The investor can allocate wealth between a risky asset, represented by the stock S_t , which exhibits stochastic volatility, and a risk-free asset offering a constant return rate r. Following Heston (1993), the dynamics of the stock and its volatility process Y_t are given by

$$dS_t = S_t[(r + \lambda Y_t)dt + \sqrt{Y_t}dW_t]$$

$$dY_t = \kappa(\vartheta - Y_t)dt + \beta\sqrt{Y_t}d\hat{W}_t,$$
(1)

with

$$d\langle W, \hat{W} \rangle_t = \rho,$$

where $\rho \in [-1, 1]$ determines the correlation between the two Brownian motions $W = (W_t)_{0 \le t \le T}$ and $\hat{W} = (\hat{W}_t)_{0 \le t \le T}$. The parameter λ governs the state-dependent market price of risk, i.e., the excess return $\lambda \sqrt{Y_t}$ associated with the Brownian motion W_t . The volatility process $Y = (Y_t)_{0 \le t \le T}$ determines not only the volatility of S_t but also its excess return. Hence, periods of high volatility correspond to higher expected returns, and vice versa. The process Y_t is mean-reverting: $\vartheta > 0$ is the long-term mean, $\kappa > 0$ is the speed of mean reversion, and $\beta > 0$ controls the volatility of Y_t . In addition to investing, the investor also consumes. Given the dynamics in (1), the investor's wealth process $X = (X_t)_{0 \le t \le T}$ evolves as

$$dX_t = X_t[(r + \pi_t \lambda Y_t)dt + \pi_t \sqrt{Y_t}dW_t] - c_t dt, \qquad (2)$$

where π_t is the proportion of wealth invested in the risky asset, the portfolio share, and c_t the consumption rate. We assume the investor has continuous-time Epstein-Zin preferences. With a relative risk aversion parameter $\gamma > 1$, the optimization problem is given by

$$V(t, x, y) = \sup_{(c, \pi) \in \mathcal{A}} E\left[\int_{t}^{T} f(c_s, V_s) ds + \frac{\alpha}{1 - \gamma} X_{T}^{1 - \gamma}\right],$$

where the aggregator f is defined by

$$f(c,v) = \begin{cases} \delta\theta v \left[\left(\frac{c}{([1-\gamma]v)^{\frac{1}{1-\gamma}}} \right)^{1-\frac{1}{\psi}} - 1 \right] & \text{for } \psi \neq 1\\ (1-\gamma)\delta v \ln(c) - \delta v \ln([1-\gamma]v) & \text{for } \psi = 1 \end{cases}$$
(3)

and $\theta = \frac{1-\gamma}{1-\frac{1}{\psi}}$. Here, $\psi > 0$ represents the EIS, and $\delta > 0$ is the time preference-rate. The parameter α caputres the strength of the bequest motive at maturity. Following Kraft et al. (2022), we set

$$\alpha = \epsilon^{\frac{1-\gamma}{\psi-1}} \delta^{\frac{1}{\theta}},\tag{4}$$

which implies that the consumption-wealth ratio at maturity satisfies

$$cw(T, y) = \frac{1}{\epsilon}.$$

Thus, ϵ refers to the fraction of terminal wealth consumed, while the reminaing wealth is left as a bequest. Given this setup, the value function V(t, x, y) solves the following HJB equation:

$$0 = \sup_{(c,\pi)} \{ V_t + [(r + \pi \lambda y)x - c]V_x + 0.5\pi^2 y x^2 V_{xx} + \beta \pi \rho x y V_{xy} + \kappa(\vartheta - y)V_y + 0.5\beta^2 y V_{yy} + f(c, V) \}$$
 (5)

with terminal condition

$$V(T, x, y) = \frac{\alpha}{1 - \gamma} x^{1 - \gamma}.$$

To reduce the HJB equation, we assume that V(t, x, y) has the following form

$$V(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} g(t, y).$$
 (6)

Instead of controlling consumption directly, we introduce the consumption-wealth ratio $cw = \frac{c}{X}$. Substituting (6) into the HJB equation (5) yields the reduced-form HJB equation for g:

$$0 = \inf_{(cw,\pi)} \{ g_t + (1-\gamma)(r + \pi\lambda y - \gamma 0.5\pi^2 y - cw)g + (1-\gamma)\beta\pi\rho y g_y + \kappa(\vartheta - y)g_y + 0.5\beta^2 y g_{yy} + f(cw,g) \}$$
 (7)

with terminal condition

$$g(T, y) = \alpha$$
.

Using the aggregator defined in (3), the first-order conditions yield the optimal policies:

$$cw^{*}(t,y) = \begin{cases} \delta^{\psi}(g(t,y))^{-\frac{\psi}{\theta}} & \text{for } \psi \neq 1\\ \delta & \text{for } \psi = 1 \end{cases}$$

$$\pi^{*}(t,y) = \frac{\lambda}{\gamma} + \frac{\beta\rho}{\gamma} \frac{g_{y}(t,y)}{g(t,y)}$$
(8)

Using these optimal policies, we solve the reduced-from HJB equation (7) numerically.

2 Numerical Method

2.1 Computing the Reduced-Form Value Function q(t,y)

We solve (7) using an explicit finite differences scheme and set up an equally spaced grid in the (t, y)-space using the grid points

$$\{(t_n, y_i) | n = 0, 1, \dots, N, i = 0, 1, \dots, I\},\$$

where $t_n = n\Delta t$ and $y_i = y_{min} + i\Delta y$, with Δt and Δy denoting the respective grid spacings in each direction. In the code, we specify the upper bounds of the gird and the number of grid points, implying $\Delta t = \frac{T}{N}$ and $\Delta y = \frac{y_{max} - y_{min}}{I}$. Given the terminal condition, we compute g approximately at each grid point by iteratively stepping backward through the grid. At any time t_n with n < N, the value

of $g_{n,i} \triangleq g(t_n, y_i)$ for $1 \leq i \leq I - 1$, can be approximated out of the known values at t_{n+1} using the discretized reduced-form HJB equation:

$$0 = \frac{g_{n+1,i} - g_{n,i}}{\Delta t} + (1 - \gamma)(r + \pi_{n+1,i}^* \lambda y_i - \gamma 0.5(\pi_{n+1,i}^*)^2 y_i - cw_{n+1,i}^*) g_{n+1,i} + f(cw_{n+1,i}^*, g_{n+1,i}) + \frac{g_{n+1,i+1} - g_{n+1,i-1}}{2\Delta y} \left((1 - \gamma)\beta \rho y_i \pi_{n+1,i}^* + \kappa(\vartheta - y_i) \right) + \frac{\beta^2 y_i}{2} \frac{g_{n+1,i+1} - 2g_{n+1,i} + g_{n+1,i-1}}{(\Delta y)^2}.$$

We use central differences to approximate the first- and second-order derivatives and evaluate them at time step n+1. Since optimal policies typically vary slowly, we evaluate the controls $cw_{n+1,i}^* \triangleq cw^*(t_{n+1}, y_i)$ and $\pi_{n+1,i}^* \triangleq \pi^*(t_{n+1}, y_i)$ at t_{n+1} . Reordering the equation gives:

$$g_{n,i} = a_{n+1,i}g_{n+1,i-1} + b_{n+1,i}g_{n+1,i} + c_{n+1,i}g_{n,i+1} + \Delta t f(cw_{n+1,i}^*, g_{n+1,i}),$$

where the coefficients are given by

$$a_{n+1,i} = \frac{\Delta t}{2} \left[-(1-\gamma)\beta \rho y_i \frac{\pi_{n+1,i}^*}{\Delta y} - \frac{\kappa(\vartheta - y_i)}{\Delta y} + \frac{\beta^2 y_i}{(\Delta y)^2} \right],$$

$$b_{n+1,i} = 1 + \Delta t \left[(1-\gamma)(r + \pi_{n+1,i}^*) \lambda y_i - \gamma 0.5(\pi_{n+1,i}^*)^2 y_i - c w_{n+1,i}^*) - \frac{\beta^2 y_i}{(\Delta y)^2} \right],$$

$$c_{n+1,i} = \frac{\Delta t}{2} \left[(1-\gamma)\beta \rho y_i \frac{\pi_{n+1,i}^*}{\Delta y} + \frac{\kappa(\vartheta - y_i)}{\Delta y} + \frac{\beta^2 y_i}{(\Delta y)^2} \right].$$

At each iteration step, we first update the value function using the expression above. We then compute the boundary values. Since boundary conditions at $y = y_{min}$ and $y = y_{max}$ are not explicitly given, we use linear extrapolation to estimate them. Finally, we compute the optimal consumption and investment strategy by discretizing (8) using central differences

$$cw_{n,i}^* = \begin{cases} \delta^{\psi}(g_{n,i})^{-\frac{\psi}{\theta}} & \text{for } \psi \neq 1\\ \delta & \text{for } \psi = 1 \end{cases}$$
$$\pi_{n,i}^* = \frac{\lambda}{\gamma} + \frac{\beta \rho}{\gamma} \frac{g_{n,i+1} - g_{n,i-1}}{2\Delta y} \frac{1}{g_{n,i}}$$

We also apply linear extrapolation to compute $\pi_{n,0}^*$ and $\pi_{n,I}^*$.

3 Results

In the attached code, we follow Liu & Pan (2003) and solve the model using the following parameter values:

$$r = 0.02$$
, $\gamma = 10$, $\delta = 0.015$, $\lambda = 4$, $\kappa = 5$, $\vartheta = 0.0169$, $\beta = 0.25$, and $\epsilon = 2$.

For the grid, we set:

$$T = 100, N = 1.000.000, y_{min} = 0.0025, y_{max} = 0.5$$
and $I = 100,$

which implies a grid spacing of $\Delta t = 0.0001$ and $\Delta y = 0.0049975$. First, we calculate the value function and optimal strategies for three different values of the EIS. Figure 1 presents the value function and policy functions at t = 0 for $\psi = 0.5$ (black), $\psi = 1.0$ (green), and $\psi = 1.5$ (purple), with the correlation coefficient fixed $\rho = -0.4$. Next, we analyze the impact of different correlation coefficients ρ on the results. Figure 2 displays the corresponding value function and policy functions at t = 0 for $\rho = -0.4$ (black), $\rho = 0$ (green), and $\rho = 0.4$ (purple), while holding $\psi = 0.5$.

Figure 1: Value function, Optimal Consumption-Wealth Ratio and Optimal Portfolio Share for a varying EIS. The left figure depicts the logarithm of $g(0,Y_t)$ at t=0 for three different values of EIS, $\psi=0.5$ (black), $\psi=1.0$ (green), and $\psi=1.5$ (purple). The right figure shows the corresponding optimal consumption-wealth ratio $cw(0,Y_t)$ and the figure below the corresponding optimal portfolio share $\pi(0,Y_t)$. All outputs are normalized to the corresponding value at $Y_t=0$. We set the parameters to r=0.02, $\gamma=10$, $\delta=0.015$, $\lambda=4$, $\kappa=5$, $\vartheta=0.0169$, $\beta=0.25$, $\epsilon=2$, T=100 and $\rho=-0.4$.

Figure 2: Value function, Optimal Consumption-Wealth Ratio and Optimal Portfolio Share for a varying ρ . The left figure depicts the logarithm of $g(0,Y_t)$ at t=0 for three different values of ρ , $\psi=-0.4$ (black), $\rho=0$ (green), and $\rho=0.4$ (purple). The right figure shows the corresponding optimal consumption-wealth ratio $cw(0,Y_t)$ and the figure below the corresponding optimal portfolio share $\pi(0,Y_t)$. All outputs are normalized to the corresponding value at $Y_t=0$. We set the parameters to r=0.02, $\gamma=10$, $\delta=0.015$, $\lambda=4$, $\kappa=5$, $\vartheta=0.0169$, $\beta=0.25$, $\epsilon=2$, T=100 and $\psi=0.5$.

References

Heston, S. L. (1993), 'A closed-form solution for options with stochastic volatility with applications to bond and currency options', *The Review of Financial Studies* **6**(2), 327–343.

Kraft, H., Munk, C. & Weiss, F. (2022), 'Bequest motives in consumption-portfolio decisions with recursive utility', *Journal of Banking and Finance* **138**, 106428.

Liu, J. & Pan, J. (2003), 'Dynamic derivative strategies', Journal of Financial Economics 69(3), 401–430.