Statistiques pour les sciences (MAT-4681)

Arthur Charpentier

11 - Tests d'hypothèse

été 2022

Affirmations

- le candidat A sera réélu aux élections ce dimanche
- les femmes aiment autant regarder le hockey à la télévision que les hommes
- le médicament A est aussi efficace que le médicament B pour soigner les migraines
- ▶ 80% des gens qui prennent l'avion ont peur
- ▶ au moins 80% des gens qui prennent l'avion ont peur
- une digue de 2 mètres protège contre les crues centenaires

Affirmation I

le candidat A sera réélu aux élections ce dimanche

On peut interroger n personnes; pour $i=1,2,\cdots,n$, $y_i = \begin{cases} 1 \text{ si } i \text{ annonce qu'il votera pour A} \\ 0 \text{ si } i \text{ annonce qu'il ne votera pas pour A} \end{cases}$ $Y = \mathbf{1}_A \text{ suit une loi de Bernoulli } \mathcal{B}(p)$ A sera réélu si (et seulement si) p > 50% on peut utiliser $\hat{p} = \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ on peut légitimement croire que A sera élu si \hat{p} ... est grand

Affirmation II

les femmes aiment autant regarder le hockey à la télévision que les hommes

On peut interroger des femmes (m) et des hommes (n)

$$x_i = \begin{cases} 1 \text{ si la femme } i \text{ aime regarder le hockey} \\ 0 \text{ si la femme } i \text{ n'aime pas regarder le hockey} \end{cases}$$

$$y_j = \begin{cases} 1 \text{ si l'homme } j \text{ aime regarder le hockey} \\ 0 \text{ si l'homme } j \text{ n'aime pas regarder le hockey} \end{cases}$$

$$X = \mathbf{1}_{NHL}$$
 suit une loi de Bernoulli $\mathcal{B}(p_x)$

$$Y = \mathbf{1}_{NHL}$$
 suit une loi de Bernoulli $\mathcal{B}(p_y)$

les femmes aiment autant regarder le hockey à la télévision que les hommes si (et seulement si) $p_x \ge p_v$

on peut utiliser
$$\hat{p}_x = \overline{x} = \frac{1}{m} \sum_{i=1}^m x_i$$
 et $\hat{p}_y = \overline{x} = \frac{1}{n} \sum_{i=1}^n y_i$

Affirmation III

le médicament A est aussi efficace que le médicament B pour soigner les migraines

On peut interroger des personnes qui ont pris A (m) et B (n)

$$x_i = \begin{cases} 1 \text{ si } i \text{ a pris A et a eu une migraine} \\ 0 \text{ si } i \text{ a pris A et n'a pas eu de migraine} \end{cases}$$

$$y_j = \begin{cases} 1 \text{ si } j \text{ a pris B et a eu une migraine} \\ 0 \text{ si } j \text{ a pris B et n'a pas eu de migraine} \end{cases}$$

 $X = \mathbf{1}_{\Delta}$ suit une loi de Bernoulli $\mathcal{B}(p_{x})$

$$Y = \mathbf{1}_{\mathsf{B}}$$
 suit une loi de Bernoulli $\mathcal{B}(p_{\mathsf{v}})$

A est aussi efficace que B pour soigner les migraines si (et seulement si) $p_x \ge p_v$

on peut utiliser
$$\hat{p}_x = \overline{x} = \frac{1}{m} \sum_{i=1}^m x_i$$
 et $\hat{p}_y = \overline{x} = \frac{1}{n} \sum_{i=1}^n y_i$

Affirmation IV

80% des gens qui prennent l'avion ont peur

On peut interroger *n* personnes; pour $i = 1, 2, \dots, n$,

$$y_i = \begin{cases} 1 \text{ si } i \text{ a peur en avion} \\ 0 \text{ si } i \text{ n'a pas peur en avion} \end{cases}$$

 $Y = \mathbf{1}_A$ suit une loi de Bernoulli $\mathcal{B}(p)$

80% des gens qui prennent l'avion ont peur si (et seulement si) p = 80%

on peut utiliser
$$\hat{p} = \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

on peut légitimement croire que 80% des gens qui prennent l'avion ont peur si \hat{p} ... est "proche" de 80%

Affirmation V

▶ au moins 80% des gens qui prennent l'avion ont peur

On peut interroger *n* personnes; pour $i = 1, 2, \dots, n$,

$$y_i = \begin{cases} 1 \text{ si } i \text{ a peur en avion} \\ 0 \text{ si } i \text{ n'a pas peur en avion} \end{cases}$$

 $Y = \mathbf{1}_A$ suit une loi de Bernoulli $\mathcal{B}(p)$

80% des gens qui prennent l'avion ont peur si (et seulement si) $p \ge 80\%$

on peut utiliser
$$\hat{p} = \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

on peut légitimement croire que plus de 80% des gens qui prennent l'avion ont peur si \hat{p} ... est plus grand que 80% ?

Affirmation VI

une digue de 2 mètres protège contre les crues centenaires

On peut observer le niveau annuel maximal d'un fleuve $i = 1, 2, \dots, n,$

y; désigne le niveau de dépassement d'un fleuve

Y a une loi F, inconnue. La digue de niveau s protège avec une probabilité $1 - \alpha$ si $\mathbb{P}[Y > s] = 1 - F(s) \le 1 - \alpha$

La digue de niveau s protège contre les crues centenaires si $F(s) \ge 99\%$

on peut utiliser
$$\hat{F}(y) = \frac{1}{n} \sum_{i=1}^{n} y_i$$

on peut légitimement croire que protège contre les crues centenaires si $\hat{F}(2) \ge 99\%$, non ?

Inférence Ponctuelle & Intervalle de Confiance

XXXXX

Hypothèse nulle & hypothèse alternative

▶ 80% des gens qui prennent l'avion ont peur

Cette affirmation sera l'hypothèse nulle, notée H_0 .

Mais il convient de spécifier, si cette hypothèse n'est pas vérifiée, ce que pourrait être l'hypothèse alternative...

- ▶ 80% des gens qui prennent l'avion n'ont pas peur
- ▶ 75% des gens qui prennent l'avion ont peur
- ▶ il n'y a pas 80% des gens qui prennent l'avion qui ont peur
- moins de 80% des gens qui prennent l'avion ont peur

Cette affirmation sera l'hypothèse alternative, notée H_1 .

On peut tenter de formaliser avec un modèle probabiliste. Ici, on suppose que $Y_i \sim F$ où $F \in \mathcal{F} = \{F_\theta; \theta \in \Theta\}$.

Bien entendu, θ est inconnu, on dispose de $\mathbf{y} = \{y_1, y_2, \dots, y_n\}$.

Hypothèse nulle & hypothèse alternative

- ▶ 80% des gens qui prennent l'avion ont peur H_0 : hypothèse nulle, $\theta = \theta_0$ (où θ_0 est donnée, $\theta_0 = 80\%$)
- ▶ 80% des gens qui prennent l'avion n'ont pas peur
- ▶ 75% des gens qui prennent l'avion ont peur H_1 : hypothèse alternative, $\theta = \theta_1$ (ex: $\theta_1 = 20\%$ ou 75%)
- ▶ il n'y a pas 80% des gens qui prennent l'avion qui ont peur H_1 : hypothèse alternative, $\theta \neq \theta_0$ (ou $\theta_1 \in \Theta_1 = \Theta \setminus \{\theta_0\}$)
- moins de 80% des gens qui prennent l'avion ont peur H_1 : hypothèse alternative, $\theta < \theta_0$ ($\theta_1 \in \Theta_1 = [-\infty; \theta_0)$)

Plus généralement, avec $\Theta_0 \cap \Theta_1 = \emptyset$,

- $\vdash H_0$: hypothèse nulle, $\theta \in \Theta_0$
- \vdash H_1 : hypothèse alternative, $\theta_1 \in \Theta_1$

Les faiseurs de pluie

(histoire inspirée de Saporta (2006))

A partir de relevés obtenus après plusieurs décennies ont permis d'établir que dans une région, le niveau des pluies dans le Beauce, par ans, en mm, est y_i , où $Y_i \sim \mathcal{N}(600, 100^2)$.

Des entrepreneurs, appelés faiseurs de pluie, prétendaient pouvoir augmenter la pluviométrie, de l'ordre de 50 mm par an. Sur 9 années où l'expérience a été tenté, on a obtenu

		2012							
y _i	510	614	780	512	501	534	603	788	650

- La technique des faiseurs de pluie ne marche pas, $H_0: \mu = 600$
- La technique des faiseurs de pluie marche, $H_1: \mu = 650$

Les faiseurs de pluie

Si H_0 était vraie $Y_i \sim \mathcal{N}(600, 100^2)$,

$$\overline{Y} = \frac{1}{9} \sum_{i=2011}^{2019} Y_i \sim \mathcal{N}\left(600, \frac{100^2}{9}\right)$$

Ici. \overline{Y} sera notre statistique de test. On aura (ici) tendance à rejeter H_0 au profit de H_1 si " \overline{y} est trop grand".

On cherche donc un seuil k tel que \mathbb{P} tel que "trop grand" survienne avec 1 chance sur 20, i.e.

$$\mathbb{P}\left(\overline{Y} > k \middle| \overline{Y} \sim \mathcal{N}\left(600, \frac{100^2}{9}\right)\right) = \frac{1}{20}$$

et

- ► Si $\overline{y} > k$ on rejette H_0 , et on retiendra $H_1 : \mu = 650$ (avec 5% de chances de se tromper)
- \triangleright Si $\overline{y} < k$ on retient H_0 , H_0 : $\mu = 600$

Les faiseurs de pluie

Pour finir l'exercice, notons que, comme $\alpha = 5\%$

$$k = 600 + u_{1-\alpha} \sqrt{\frac{100^2}{9}} = 600 + 1.64 \cdot \frac{100}{3} = 655$$

- 1 > 600 + qnorm(.95) * 100/32 [1] 654.8285
 - Comme la règle de décision est
 - ightharpoonup si $\overline{y} > 655$ on rejette H_0 , et on retiendra $H_1: \mu = 650$ (avec 5% de chances de se tromper)
 - \triangleright si \overline{y} < 655 on retient H_0 , H_0 : μ = 600

et que, numériquement, $\overline{y} = 610.2$, on retiendra H_0 , et donc affirmer que les faiseurs ne pluie sont des charlatans.

Mais on peut se tromper....

1. on peut se tromper en rejetant à tort H_0 . Or par construction,

$$\mathbb{P}\left(\overline{Y} > 655 \middle| \overline{Y} \sim \mathcal{N}\left(600, \frac{100^2}{9}\right)\right) = \mathbb{P}[\text{rejet } H_0 \middle| H_0 \text{ vraie}] = 5\%$$

autrement dit, on a contrôlé cette erreur (dont la probabilité est noté α), dite erreur de première espèce.

2. on peut se tromper en acceptant à tort H_0 , ce qui survient avec probabilité

$$\mathbb{P}[\text{accepter } H_0|H_0 \text{ fausse}] = \mathbb{P}[\text{accepter } H_0|H_1 \text{ vraie}]$$

$$= \mathbb{P}\left(\overline{Y} < 655 \middle| \overline{Y} \sim \mathcal{N}\left(650, \frac{100^2}{9}\right)\right) = \Phi\left(\frac{655 - 650}{100/3}\right) = \Phi(0.15) \sim 56\%$$

cette probabilité est noté β , dite erreur de seconde espèce.

On peut noter un lien avec les intervalles de confiance. Un intervalle de confiance bilatéral pour μ , sur la base de \mathbf{y} serait

$$\left[\overline{y} - u_{1-\alpha/2}\sqrt{\frac{100^2}{9}}; \overline{y} + u_{1-\alpha/2}\sqrt{\frac{100^2}{9}}\right] = [544.89; 675.55]$$

ou, comme la variance empirique de y est 12438.69

$$\left[\overline{y} - t_{8,1-\alpha/2}\sqrt{\frac{12439}{9}}; \overline{y} + t_{8,1-\alpha/2}\sqrt{\frac{12439}{9}}\right] = [524.49; 695.95]$$

ou pour une version une unilatérale de la forme $[a, \infty)$,

$$\left[\overline{y} - u_{1-\alpha}\sqrt{\frac{100^2}{9}}; \infty\right] = \left[555.39; \infty\right)$$
ou
$$\left[\overline{y} - t_{8,\alpha}\sqrt{\frac{12439}{9}}; \infty\right] = \left[541.09; \infty\right)$$

Approche sur l'erreur

$$\mathbb{P}\Big(\overline{Y}>k\,\bigg|\,H_0\Big)=\frac{1}{20}$$

$$k = 600 + u_{1-\alpha} \sqrt{\frac{100^2}{9}} = 600 + 1.64 \cdot \frac{100}{3} = 655$$

Intervalle de confiance

$$\mathbb{P}\left(\mu \in \left[\overline{y} - u_{1-\alpha}\sqrt{\frac{100^2}{9}}; \infty\right] \middle| H_1\right) = \left[555.39; \infty\right)$$

mais si
$$\overline{y} \rightarrow \overline{y} + 50$$

Approche sur l'erreur

$$\mathbb{P}(\overline{Y} > k | H_0), k = 600 + u_{1-\alpha} \sqrt{\frac{100^2}{9}} = 655$$

Intervalle de confiance

$$\mathbb{P}\left(\mu \in \left[\overline{y} - u_{1-\alpha}\sqrt{\frac{100^2}{9}}; \infty\right] \middle| H_1\right) = \left[605.39; \infty\right)$$

Dans le premier cas, on accepte que ce sont des faiseurs de pluie si

$$\overline{y} > 600 + u_{1-\alpha} \sqrt{\frac{100^2}{9}}$$

et dans le second cas on accepte que ce sont des faiseurs de pluie si

$$600 < \overline{y} - u_{1-\alpha} \sqrt{\frac{100^2}{9}}$$

... ce qui est équivalent.

On appellera l'intervalle

$$[k,\infty) = \left[600 + u_{1-\alpha}\sqrt{\frac{100^2}{9}},\infty\right]$$

la région critique, notée W, ou zone de rejet.

On va maintenant formaliser ce qu'on vient de faire, en notant qu'ici

- ► H_0 : hypothèse nulle, $\theta \in \Theta_0$ correspondait à $\theta = \theta_0$
- ▶ H_1 : hypothèse alternative, $\theta_1 \in \Theta_1$ correspondait à $\theta = \theta_1$

On avait ici deux hypothèses simples. Le cas général $\theta \in \Theta_0$ où $\Theta_0 \neq \{\theta_0\}$ est appelé hypothèse composite. Les hypothèses compositives classiques sont (souvent)

$$\Theta_1 = \{\theta \in \Theta; \theta < \theta_0\}, \ \{\theta \in \Theta; \theta > \theta_0\} \text{ ou } \{\theta \in \Theta; \theta \neq \theta_0\}.$$

La décision sera aussi binaire, avec deux stratégies possibles

- rejeter l'hypothèse H_0 (au profit de H_1)
- rejeter l'hypothèse H_1 (au profit de H_0)

Pour prendre la décision on utilisera une statistique de test, T.

On va alors déterminer la forme de la région critique W, en fonction de H_1 .

A partir de la probabilité α (souvent 5%), on va déterminer les valeurs des bords de W

On peut ensuite calculer la probabilité d'erreur de seconde espèce β (ou la puissance du test $1 - \beta$)

On calcule t = T(y) à partir des données, et on prend une décision

Sur l'histoire des faiseurs de pluie, la statistique de test utilisée est $T(y) = \overline{y}$, on aurait pu prendre aussi $T(y) = \overline{y} - 600$ ou $T(\mathbf{y}) = \sqrt{9} \frac{\overline{y} - 600}{100}$

Comme les hypothèses que l'on veut tester sont

- La technique des faiseurs de pluie ne marche pas, $H_0: \mu = 600$
- La technique des faiseurs de pluie marche, $H_1: \mu = 650$

la forme de la région critique W sera

$$W = \{t \in \mathbb{R}; t \text{ grand}\} = [k, \infty)$$

Heuristiquement, comme T est la movenne

$$\begin{cases} H_0: \theta = \theta_0 \text{ et } H_1: \theta = \theta_1 > \theta_0 & : W = [k; \infty) \\ H_0: \theta = \theta_0 \text{ et } H_1: \theta > \theta_0 & : W = [k; \infty) \\ H_0: \theta = \theta_0 \text{ et } H_1: \theta = \theta_1 < \theta_0 & : W = (-\infty; k] \\ H_0: \theta = \theta_0 \text{ et } H_1: \theta = \theta_0 & : W = (-\infty; k] \\ H_0: \theta = \theta_0 \text{ et } H_1: \theta \neq \theta_0 & : W = (-\infty; k] \\ \end{bmatrix}$$

Dans le dernier cas

$$H_0: \theta = \theta_0 \text{ et } H_1: \theta \neq \theta_0 : W = (-\infty; k^-] \cup [k^+; \infty)$$

on peut aussi avoir une statistique $T(\mathbf{y}) = |\overline{y} - \theta_0|$ ou $(\overline{y} - \theta_0)^2$, et dans ce cas

$$H_0: \theta = \theta_0 \text{ et } H_1: \theta \neq \theta_0 : W = \lceil k; \infty \rangle$$

A partir de la probabilité α (souvent 5%), on va déterminer les valeurs des bords de W, autrement dit k (ou k^- et k^+ pour un test bilatéral). Pour nous, c'était

$$\mathbb{P}\left(\overline{Y} > k \middle| \overline{Y} \sim \mathcal{N}\left(600, \frac{100^2}{9}\right)\right) = \alpha$$

mais plus généralement,

$$\mathbb{P}(T(\mathbf{Y}) > k | T(\mathbf{Y}) \sim G \text{ si } H_0 \text{ est vraie}) = 1 - G(k) = \alpha$$

soit
$$k = G^{-1}(1 - \alpha)$$
.

On peut ensuite calculer la probabilité d'erreur de seconde espèce β (ou la puissance du test $1 - \beta$).

$$\beta = \mathbb{P}\Big(\overline{Y} < k \Big| \overline{Y} \sim \mathcal{N}\Big(650, \frac{100^2}{9}\Big)\Big)$$
 où $k = 600 + u_{1-\alpha} \frac{100}{\sqrt{9}}$, soit, avec $\overline{Y} \sim \mathcal{N}\Big(650, \frac{100^2}{9}\Big)$,
$$\beta = \mathbb{P}\Big(\underbrace{\sqrt{9} \frac{\overline{Y} - 650}{100}}_{Z \sim \mathcal{N}(0,1)} < \sqrt{9} \frac{k - 650}{100}\Big) = \Phi\Big(u_{1-\alpha} + \sqrt{9} \frac{600 - 650}{100}\Big)$$

- $_{1} > pnorm(qnorm(.95) + sqrt(9) * (600 650) / 100)$
- 2 [1] 0.5575868

Plus généralement, on peut tracer la puissance du test, en fonction de θ_1 (pour $\theta_1 > \theta_0$),

On calcule t = T(y) à partir des données, et on prend une décision.

Ici $\overline{y} = 610.22$, et comme k = 655, donc on ne rejette pas H_0 car $\overline{v} \notin W = [k, \infty).$

Théorie de la décision

	H_0 est vraie	H_1 est vraie	
rejeter l'hypothèse H_1	bonne décision	erreur de second type	
rejeter l'hypothèse H_0	erreur de premier type	bonne décision	

On note

 $\triangleright \alpha$ la probabilité d'erreur de première espèce,

$$\alpha = \mathbb{P}\big[T(\boldsymbol{Y}) \in W \big| H_0\big]$$

 \triangleright β la probabilité d'erreur de seconde espèce,

$$\beta = \mathbb{P}\big[T(\mathbf{Y}) \notin W \big| H_1\big]$$

et $1 - \beta$ sera la puissance du test.

p-value ou probabilité critique

Probabilité critique (p-value)

La probabilité critique (p-value) associéee à une statistique de test est la probabilité d'observer des valeurs aussi ou plus extrêmes que la valeur observée dans l'échantillon sachant que H_0 est vraie.

Elle est le plus petit seuil auquel on peut rejeter H_0 . Pour faire simple, c'est le (plus petit) risque à encourir pour rejeter H_0 et accepter H_1 .

En fonction de celle-ci, la règle de décision peut se réécrire de la façon suivante : on rejete H_0 (ou on accepte H_1) si p-valeur< α .

p-value ou probabilité critique

lci, concrètement, on suppose H_0 vérifiée

$$p = \mathbb{P}\left(\overline{Y} > \overline{y} \middle| \overline{Y} \sim \mathcal{N}\left(600, \frac{100^2}{9}\right)\right) = \mathbb{P}\left(\underbrace{\sqrt{9} \frac{\overline{Y} - 600}{100}}_{Z \sim \mathcal{N}(0, 1)} > \sqrt{9} \frac{\overline{y} - 600}{100}\right)$$

soit

- > 1-pnorm(sqrt(9)*(mean(y)-600)/100)
- 2 [1] 0.3795486

Comme $p = 37.95\% > \alpha = 5\%$, on ne rejette pas H_0 .

Si
$$\overline{y} = 654.8$$
, $p = 5\%$

- 1 > 1-pnorm(sqrt(9)*(654.8-600)/100)
- 2 [1] 0.050

autrement dit, si $\overline{y} > 654.8$ (soit k), on rejette H_0 .

α et β

En bleu, on a la distribution de \overline{Y} si H_0 est vraie; et en rouge, on a la distribution de \overline{Y} si H_1 est vraie

Si on veut réduire β , on le paye sur α .

Quelle statistique de test ?

Dans le cas des faiseurs de pluie, on a naturellement considéré $T(\mathbf{y}) = \overline{\mathbf{y}}$. On peut aussi considérer Neyman & Pearson (1933)

Neyman-Pearson

Pour un test de la forme $H_0: \theta = \theta_0$ contre $H_1: \theta = \theta_1$, on considérera

$$T = \frac{\mathcal{L}(\theta_0; \boldsymbol{y})}{\mathcal{L}(\theta_1; \boldsymbol{y})}$$

et la région de rejet sera $W = (-\infty, \gamma]$.

Ici on a un modèle Gaussien (par hypothèse), $\mathcal{L}(\theta; \mathbf{v})$ vaut

$$\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \theta)^2}{\sigma^2}\right) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \theta)^2\right)$$

Quelle statistique de test ?

$$T = \frac{\mathcal{L}(\theta_0; \mathbf{y})}{\mathcal{L}(\theta_1; \mathbf{y})} = \exp\left(-\frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \theta_0)^2 + \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \theta_1)^2\right)$$

soit

$$T = \exp\left(\frac{1}{\sigma^2} \left[\sum_{i=1}^n (y_i - \theta_1)^2 - \sum_{i=1}^n (y_i - \theta_0)^2 \right] \right)$$
$$T = \exp\left(\frac{1}{\sigma^2} \left[\sum_{i=1}^n 2y_i (\theta_0 - \theta_1) + (\theta_1^2 - \theta_0^2) \right] \right)$$

Aussi, $T < \gamma$ signifie $\log(T) < \log(\gamma)$,

$$\sum_{i=1}^n 2y_i(\theta_0-\theta_1) < \sigma^2\log(k) - n(\theta_1^2-\theta_0^2)$$

$$2(\theta_0 - \theta_1)\overline{y} < \frac{\sigma^2}{n}\log(k) - (\theta_1^2 - \theta_0^2)$$

Quelle statistique de test ?

$$2(\theta_0 - \theta_1)\overline{y} < \frac{\sigma^2}{n}\log(k) - (\theta_1^2 - \theta_0^2)$$

donc.

- \triangleright si $\theta_1 < \theta_0$, $T < \gamma$ signifie $\overline{V} < k$
- \triangleright si $\theta_1 > \theta_0$, $T < \gamma$ signifie $\overline{V} > k$

où k est de la forme

$$\frac{\sigma^2 \log(k)}{2n|\theta_1 - \theta_0|} + (\theta_1 + \theta_0)$$

Dans le cas d'un modèle Gaussien, un test sur la moyenne à la Neyman-Pearson revient à regarder la valeur de \overline{y} .

Modèle Gaussien avec variance connue (σ^2)

Test $H_0: \mu = \mu_0$ contre $H_1: \mu = \mu_1, \mathcal{N}(\mu, \sigma^2)$

Soit $\mathbf{x} = \{x_1, \dots, x_n\}$ de loi $\mathcal{N}(\mu, \sigma^2)$.

Pour tester $H_0: \mu = \mu_0$ contre $H_1: \mu = \mu_1$, on utilise

$$Z = \sqrt{n} \; \frac{\overline{x} - \mu_0}{\sigma}$$

- \blacktriangleright si $\mu_1 > \mu_0$, on rejette H_0 si $z > \Phi^{-1}(1 \alpha) = u_{1-\alpha}$
- \blacktriangleright si $\mu_1 < \mu_0$, on rejette H_0 si $z < \Phi^{-1}(\alpha) = u_{\infty}$

Pour illustrer, simulons un échantillon $\mathcal{N}(0,1)$

```
> set.seed(1)
_2 > x = rnorm(30)
3 > mean(x)
4 [1] 0.08245817
```

1 > pnorm(z)

La statistique de test est z

2 [1] -Inf -1.644854

```
z > (z = sqrt(30)*(mean(x)-0)/1)
2 [1] 0.451642
```

Si on teste $H_0: \mu = 0$ contre $H_0: \mu = \mu_1 < 0$, la *p*-value est

```
2 [1] 0.6742365
 et W = (-\infty; -1.64] si \alpha = 5\%
_{1} > qnorm(c(0,.05))
```

- \triangleright Comme $z \notin W$, on ne rejette pas H_0
- \triangleright Comme $p > \alpha$, on ne rejette pas H_0 (avec un niveau de confiance $\alpha = 5\%$

La statistique de test est z

```
z > (z = sqrt(30)*(mean(x)-0)/1)
2 [1] 0.451642
```

Si on teste $H_0: \mu = 0$ contre $H_0: \mu = \mu_1 > 0$, la p-value est

```
1 > 1-pnorm(z)
2 [1] 0.3257635
```

et
$$W = [1.64; +\infty)$$
 si $\alpha = 5\%$

- $_{1} > qnorm(c(.95,1))$ 2 [1] 1.644854 Tnf
 - \triangleright Comme $z \notin W$, on ne rejette pas H_0
 - \triangleright Comme $p > \alpha$, on ne rejette pas H_0 (avec un niveau de confiance $\alpha = 5\%$

Modèle Gaussien avec variance connue (σ^2)

Test
$$H_0: \mu = \mu_0$$
 contre $H_1: \mu \neq \mu_0$, $\mathcal{N}(\mu, \sigma^2)$

Soit $\mathbf{x} = \{x_1, \dots, x_n\}$ de loi $\mathcal{N}(\mu, \sigma^2)$.

Pour tester $H_0: \mu = \mu_0$ contre $H_1: \mu \neq \mu_0$, on utilise

$$Z = \sqrt{n} \; \frac{\overline{x} - \mu_0}{\sigma}$$

• on rejette H_0 si $|z| > \Phi^{-1}(1 - \alpha/1) = u_{1-\alpha/2}$

On utilise le même échantillon. La statistique de test reste

```
z = sqrt(30)*(mean(x)-0)/1)
[1] 0.451642
```

Si on teste $H_0: \mu = 0$ contre $H_0: \mu \neq 0$, la p-value est

$$p = \mathbb{P}[|Z| > |z|] = 2 \cdot (\mathbb{P}[Z > |z|]) = 2 \cdot (1 - \mathbb{P}[Z \le |z|]) = 2 \cdot (1 - \Phi(|z|))$$

Inf

- 1 > 2*(1-pnorm(abs(z)))
 2 [1] 0.6515269
- [1] 0.0313209

et
$$W = (-\infty; -1.96] \cup [1.96; +\infty)$$
 si $\alpha = 5\%$, i.e.

- 1 > qnorm(c(0,.025,.975,1))
- 2 [1] -Inf -1.959964 1.959964
 - ▶ Comme $z \notin W$, on ne rejette pas H_0
 - Comme $p > \alpha$, on ne rejette pas H_0 (avec un niveau de confiance $\alpha = 5\%$

On peut simuler quelques échantillons suivant des lois $\mathcal{N}(0,1)$

```
> simu = function(i){
2 +
   set.seed(i)
x = rnorm(30)
z = sqrt(30)*(mean(x)-0) /1
5 +
        p = c(mean(x), z, pnorm(z), 1-pnorm(z), 2*(1-pnorm(z), 2)
     abs(z))))
        names(p) = c("movenne", "z", "<0", ">0", "<>0")
        p
8 + }
 > simu(1)
                                <0
                                            >0
10
     movenne
                                                      <>0
  0.08245817 0.45164200 0.67423655 0.32576345 0.65152691
```

Parfois, on va rejeter à tort H_0 (car on simule vraiment des échantillons de moyenne 0)

On peut simuler beaucoup d'échantillons suivant des lois $\mathcal{N}(0,1)$

```
1 > S = Vectorize(simu)(1:1e4)
2 > hist(S[1,])
3 > hist(S[2,])
```


- 1 > hist(S[3,])
- 2 > hist(S[4,])
- 3 > hist(S[5,])

Modèle Gaussien avec variance connue (σ^2)

Test
$$H_0: \mu_x - \mu_y = \mu_0$$
 contre $H_1: \mu_x - \mu_y = \mu_1$, $\mathcal{N}(\mu_x, \sigma^2)$

Soient $\mathbf{x} = \{x_1, \dots, x_m\}$ de loi $\mathcal{N}(\mu_x, \sigma_x^2)$ et $\mathbf{y} = \{y_1, \dots, y_n\}$ de loi $\mathcal{N}(\mu_{\mathbf{v}}, \sigma_{\mathbf{v}}^2)$.

Pour tester $H_0: \mu_{\mathsf{x}} - \mu_{\mathsf{y}} = \mu_0$ contre $H_1: \mu_{\mathsf{x}} - \mu_{\mathsf{v}} = \mu_1$, on utilise

$$Z = \frac{(\overline{x} - \overline{y}) - \mu_0}{\sqrt{\frac{\sigma_x^2}{m} + \frac{\sigma_y^2}{n}}}$$

- \blacktriangleright si $\mu_1 > \mu_0$, on rejette H_0 si $z > \Phi^{-1}(1 \alpha) = u_{1-\alpha}$
- \blacktriangleright si $\mu_1 < \mu_0$, on rejette H_0 si $z < \Phi^{-1}(\alpha) = u_{\alpha}$

On simule ici deux échantillons, $\mathcal{N}(0, 0.5^2)$ et $\mathcal{N}(0, 1.5^2)$

```
_1 > set.seed(1)
2 > x = rnorm(30,0,.5)
3 > mean(x)
 [1] 0.04122909
 > y = rnorm(20,0,1.5)
6 > mean(y)
 [1] 0.1911502
```


La statistique de test est z

```
z = (mean(x) - mean(y))/sqrt(.5^2/30 + 1.5^2/20))
2 [1] -0.4312899
 Si on teste H_0: \mu_x - \mu_y = 0 contre H_0: \mu_x - \mu_y = \mu_1 > 0, la
 p-value est
1 > 1-pnorm(z)
2 [1] 0.6668712
 et W = [1.64; +\infty) si \alpha = 5\%
_{1} > qnorm(c(.95,1))
2 [1] 1.644854
                        Tnf
```

- \triangleright Comme $z \notin W$, on ne rejette pas H_0
- \triangleright Comme $p > \alpha$, on ne rejette pas H_0 (avec un niveau de confiance $\alpha = 5\%$

Si on teste $H_0: \mu_x - \mu_y = 0$ contre $H_0: \mu_x - \mu_y = \mu_1 < 0$, la p-value est

```
_1 > pnorm(z)
2 [1] 0.3331288
 et W = (-\infty, -1.64] si \alpha = 5\%
_{1} > qnorm(c(0,.05))
```

 \triangleright Comme $z \notin W$, on ne rejette pas H_0

2 [1] -Inf -1.644854

 \triangleright Comme $p > \alpha$, on ne rejette pas H_0 (avec un niveau de confiance $\alpha = 5\%$

Modèle Gaussien avec variance connue (σ^2)

Test
$$H_0: \mu_x - \mu_y = \mu_0$$
 contre $H_1: \mu_x - \mu_y \neq \mu_0, \mathcal{N}(\mu_0, \sigma^2)$

Soient $\mathbf{x} = \{x_1, \dots, x_m\}$ de loi $\mathcal{N}(\mu_x, \sigma_x^2)$ et $\mathbf{y} = \{y_1, \dots, y_n\}$ de loi $\mathcal{N}(\mu_{\nu}, \sigma_{\nu}^2)$.

Pour tester $H_0: \mu_x - \mu_y = \mu_0$ contre $H_1: \mu_x - \mu_y \neq \mu_0$, on utilise

$$Z = \frac{(\overline{x} - \overline{y}) - \mu_0}{\sqrt{\frac{\sigma_x^2}{m} + \frac{\sigma_y^2}{n}}}$$

• on rejette H_0 si $|z| > \Phi^{-1}(1 - \alpha/2) = u_{1-\alpha/2}$

La statistique de test est (toujours) z

```
z = (mean(x) - mean(y))/sqrt(.5^2/30 + 1.5^2/20))
2 [1] -0.4312899
 Si on teste H_0: \mu_x - \mu_y = 0 contre H_0: \mu_x - \mu_y \neq > 0, la p-value
 est
1 > 2*(1-pnorm(abs(z)))
2 [1] 0.6662576
 et W = (-\infty; -1.96] \cup [1.96; +\infty) si \alpha = 5\%, i.e.
_{1} > qnorm(c(0,.025,.975,1))
2 [1]
            -Inf -1.959964 1.959964
                                                   Tnf
```

- \triangleright Comme $z \notin W$, on ne rejette pas H_0
- \triangleright Comme $p > \alpha$, on ne rejette pas H_0 (avec un niveau de confiance $\alpha = 5\%$

Mais dans la vraie vie, σ est rarement connue...

Modèle Gaussien avec variance inconnue

Test
$$H_0: \mu = \mu_0$$
 contre $H_1: \mu = \mu_1$, $\mathcal{N}(\mu, \sigma^2)$

Soit $\mathbf{x} = \{x_1, \dots, x_n\}$ de loi $\mathcal{N}(\mu, \sigma^2)$.

Pour tester $H_0: \mu = \mu_0$ contre $H_1: \mu = \mu_1$, on utilise

$$T = \sqrt{n} \frac{\overline{x} - \mu_0}{s}, \ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

- si $\mu_1 > \mu_0$, on rejette H_0 si $t > T_{n-1}^{-1}(1-\alpha)$
- \blacktriangleright si $\mu_1 < \mu_0$, on rejette H_0 si $t < T_{n-1}^{-1}(\alpha)$

où T_{ν} est la fonction de répartition de la loi de Student $\mathcal{S}\mathsf{td}(\nu)$.


```
1 > set.seed(1)
2 > x = rnorm(30)
3 > mean(x)
4 [1] 0.08245817
```

La statistique de test est t

```
1 > (t = sqrt(30)*(mean(x)-0)/sd(x))
2 [1] 0.4887261
```

Si on teste $H_0: \mu = 0$ contre $H_0: \mu = \mu_1 < 0$, la p-value est

```
_{1} > pt(t, df = 30-1)
2 [1] 0.6856444
```

et
$$W = (-\infty; -1.7]$$
 si $\alpha = 5\%$

- ▶ Comme $z \notin W$, on ne rejette pas H_0
- \triangleright Comme $p > \alpha$, on ne rejette pas H_0 (avec un niveau de confiance $\alpha = 5\%$)

On peut aussi calculer l'intervalle de confiance (asymmétrique) pour μ , l'espérance de Y

$$\left(-\infty; \overline{x} + T_{n-1}^{-1}(1-\alpha)\sqrt{\frac{s^2}{n}}\right], \ s^2 = \frac{1}{n-1}\sum_{i=1}^n \left(x_i - \overline{x}\right)^2$$

- > mean(x)+qt(.95,df=29)*sd(x)/sqrt(30)
- [1] 0.3691359

 $\mu_0 = 0$ est dans cet intervalle $(-\infty, 0.37]$,

 \triangleright Comme $0 \in IC_{\alpha}$, on ne rejette pas H_0 (avec un niveau de confiance $\alpha = 5\%$)

On peut aussi utiliser t.test,

```
> t.test(x, mu=0, alternative = "less")
2
   One Sample t-test
3
4
5 data: y
6 t = 0.48873, df = 29, p-value = 0.6856
7 alternative hypothesis: true mean is less than 0
8 95 percent confidence interval:
    -Inf 0.3691359
9
```

L'option alternative = "less" signifie $\mu_1 < \mu_0$.

L'option alternative = "greater" signifie $\mu_1 > \mu_0$.

- ▶ Comme $p > \alpha$, on ne rejette pas H_0
- Comme $0 \in IC_{\alpha}$, on ne rejette pas H_0 (avec un niveau de confiance $\alpha = 5\%$)

Modèle Gaussien avec variance inconnue

Test $H_0: \mu = \mu_0$ contre $H_1: \mu \neq \mu_0$, $\mathcal{N}(\mu, \sigma^2)$

Soit $\mathbf{x} = \{x_1, \dots, x_n\}$ de loi $\mathcal{N}(\mu, \sigma^2)$.

Pour tester $H_0: \mu = \mu_0$ contre $H_1: \mu \neq \mu_0$, on utilise

$$T = \sqrt{n} \frac{\overline{x} - \mu_0}{s}, \ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

• on rejette H_0 si $|t| > T_{n-1}^{-1}(1 - \alpha/1)$

où T_{ν} est la fonction de répartition de la loi de Student $\mathcal{S}\mathsf{td}(\nu)$.

Là encore, on peut utiliser la fonction t.test

```
1 > t.test(x, mu=0, alternative = "two.sided")
2
 One Sample t-test
4
5 data: v
6 t = 0.48873, df = 29, p-value = 0.6287
7 alternative hypothesis: true mean is not equal to 0
8 95 percent confidence interval:
9 -0.2626142 0.4275306
```

Notons au passage qu'on a un intervalle de confiance (bilatéral) pour μ ,

$$\left[\overline{x} - T_{n-1}^{-1} (1 - \alpha/2) \sqrt{\frac{s^2}{n}}; \overline{x} + T_{n-1}^{-1} (1 - \alpha/2) \sqrt{\frac{s^2}{n}} \right]$$

```
_{1} > qt(.975, df = 29)
2 [1] 2.04523
```

Modèle Gaussien avec variances inconnues (mais égales)

Test
$$H_0: \mu_x - \mu_y = \mu_0$$
 contre $H_1: \mu_x - \mu_y = \mu_1, \mathcal{N}(\mu_x, \sigma^2)$

Soient $\mathbf{x} = \{x_1, \dots, x_m\}$ de loi $\mathcal{N}(\mu_x, \sigma_x^2)$ et $\mathbf{y} = \{y_1, \dots, y_n\}$ de loi $\mathcal{N}(\mu_{\nu}, \sigma_{\nu}^2)$.

Pour tester $H_0: \mu_{\mathsf{x}} - \mu_{\mathsf{y}} = \mu_0$ contre $H_1: \mu_{\mathsf{x}} - \mu_{\mathsf{v}} = \mu_1$, on utilise

$$T = \frac{(\overline{x} - \overline{y}) - \mu_0}{s\sqrt{\frac{1}{m} + \frac{1}{n}}}, \ s^2 = \frac{(m-1)s_x^2 + (n-1)s_y^2}{m+n-2}$$

- \blacktriangleright si $\mu_1 > \mu_0$, on rejette H_0 si $z > T_{m+n-2}^{-1}(1-\alpha)$
- ▶ si $\mu_1 < \mu_0$, on rejette H_0 si $z < T_{m+n-2}^{-1}(\alpha)$

Ofreakonometrics (a) freakonometrics (b) freakonometrics.hypotheses.org

Là encore, on peut utiliser la fonction t.test.

Si on veut tester $H_0: \mu_x - \mu_y = 0$ contre $H_1: \mu_x - \mu_y < 0$

```
1 > t.test(x, y, mu=0, alternative = "less")
2
  Welch Two Sample t-test
3
4
5 data: x and y
6 t = -0.37905, df = 37.551, p-value = 0.3534
7 alternative hypothesis: true difference in means is
     less than 0
8 95 percent confidence interval:
    -Inf 0.3749006
10 sample estimates:
mean of x mean of y
12 0.08245817 0.19115017
```

 $H_1: \mu_x - \mu_y < 0$ se traduit par true difference in means is less than 0

Là encore, on peut utiliser la fonction t.test.

On peut aussi tester $H_0: \mu_x - \mu_y = 0$ contre $H_1: \mu_x - \mu_y > 0$

```
1 > t.test(x, y, mu=0, alternative = "greater")
2
   Welch Two Sample t-test
4
5 data: x and y
6 t = -0.37905, df = 37.551, p-value = 0.6466
7 alternative hypothesis: true difference in means is
     greater than 0
8 95 percent confidence interval:
9 -0.5922846
                   Tnf
10 sample estimates:
mean of x mean of y
12 0.08245817 0.19115017
```

 $H_1: \mu_x - \mu_y > 0$ se traduit par true difference in means is greater than 0

On note que quelle que soit l'hypothèse alternative H_1 $(H_1: \mu_x - \mu_y < 0 \text{ ou } H_1: \mu_x - \mu_y > 0),$

- \triangleright Comme $p > \alpha$, on ne rejette pas H_0
- \triangleright Comme $0 \in IC_{\alpha}$, on ne rejette pas H_0 (avec un niveau de confiance $\alpha = 5\%$)

Si les deux variances σ_x^2 et σ_y^2 sont inconnues (soyons réaliste), mais qu'on peut supposer égales on peut proposer un autre test.

Modèle Gaussien avec variances inconnues (mais égales)

Test
$$H_0: \mu_x - \mu_y = \mu_0$$
 contre $H_1: \mu_x - \mu_y \neq \mu_0$, $\mathcal{N}(\mu_x, \sigma^2)$

Soient $\mathbf{x} = \{x_1, \dots, x_m\}$ de loi $\mathcal{N}(\mu_x, \sigma^2)$ et $\mathbf{y} = \{y_1, \dots, y_n\}$ de loi $\mathcal{N}(\mu_y, \sigma^2)$ (avec la même variance σ^2).

Pour tester $H_0: \mu_x - \mu_y = \mu_0$ contre $H_1: \mu_x - \mu_y \neq \mu_0$, on utilise

$$T = \frac{(\overline{x} - \overline{y}) - \mu_0}{s\sqrt{\frac{1}{m} + \frac{1}{n}}}, \ s^2 = \frac{(m-1)s_x^2 + (n-1)s_y^2}{m+n-2}$$

• on rejette H_0 si $|z| > T_{m+n-2}^{-1}(1-\alpha/2) = u_{1-\alpha/2}$

Dans la fonction t.test, il est possible d'utiliser l'option
var.equal = TRUE

```
\rightarrow set.seed(1)
2 > x = rnorm(30,0,1)
y = rnorm(20,0,1)
> t.test(x, y, mu=0, alternative = "two.sided", var.
      equal = TRUE)
5
   Two Sample t-test
6
8 data: x and y
9 t = -0.18554, df = 48, p-value = 0.8536
10 alternative hypothesis: true difference in means is
      not equal to 0
11 95 percent confidence interval:
12 -0.5323591 0.4424086
13 sample estimates:
14 mean of x mean of y
15 0.08245817 0.12743344
```

Modèle Gaussien

Test
$$H_0: \sigma^2 = \sigma_0^2$$
 contre $H_1: \sigma^2 = \sigma_1^2$, $\mathcal{N}(\mu, \sigma^2)$

Soit $\mathbf{x} = \{x_1, \dots, x_n\}$ de loi $\mathcal{N}(\mu, \sigma^2)$. Pour tester $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 = \sigma_1^2$, on utilise

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}, \ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

- ightharpoonup si $\sigma_1^2 > \sigma_0^2$, on rejette H_0 si $\chi^2 > Q_{n-1}^{-1}(1-\alpha)$
- \triangleright si $\sigma_1^2 > \sigma_0^2$ on rejette H_0 si $\chi^2 < Q_{p,1}^{-1}(\alpha)$

où Q_{ν} est la fonction de répartition de la loi du chi-deux, $\chi^2(\nu)$.

 $H_0: \sigma^2 = \sigma_0^2$ peut se tester avec la fonction varTest de library(EnvStats). $H_0: \sigma^2 = 1$ contre $H_1: \sigma^2 > 1$

```
1 > EnvStats::varTest(x, alternative="greater", conf.
      level = 0.95, sigma.squared = 1)
2 $statistic
3 Chi-Squared
     24.76598
4
6 $p.value
  [1] 0.6903324
8
  $estimate
  variance
  0.8539993
  $conf.int
     LCI.
                   UCI.
15 0.5819489
                   Inf
16 attr(, "conf.level")
```

5

8

12

14

```
H_0: \sigma^2 = \sigma_0^2 peut se tester avec la fonction varTest de
  library(EnvStats). H_0: \sigma^2 = 1 contre H_1: \sigma^2 < 1
1 > EnvStats::varTest(x, alternative="less", conf.level
      = 0.95, sigma.squared = 1)
2 $statistic
3 Chi-Squared
      24.76598
6 $p.value
7 [1] 0.3096676
  $estimate
  variance
  0.8539993
13 $conf.int
       LCL
                   UCI.
```

15 0.000000 1.398547

Modèle Gaussien

Test
$$H_0: \sigma^2 = \sigma_0^2$$
 contre $H_1: \sigma^2 \neq \sigma_0^2$, $\mathcal{N}(\mu, \sigma^2)$

Soit $\mathbf{x} = \{x_1, \dots, x_n\}$ de loi $\mathcal{N}(\mu, \sigma^2)$. Pour tester $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 \neq \sigma_0^2$, on utilise

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}, \ s^2 = \frac{1}{n-1} \sum_{i=1}^{n-1} (x_i - \overline{x})^2$$

 \blacktriangleright on rejette H_0 si $\chi^2 < Q_{n-1}^{-1}(\alpha/2)$ ou $\chi^2 > Q_{n-1}^{-1}(1-\alpha/2)$

où Q_{ν} est la fonction de répartition de la loi du chi-deux, $\gamma^2(\nu)$.

8

12

14

```
H_0: \sigma^2 = \sigma_0^2 peut se tester avec la fonction varTest de
  library (EnvStats). H_0: \sigma^2 = 1 contre H_1: \sigma^2 \neq 1
1 > EnvStats::varTest(x, alternative="two.sided", conf.
      level = 0.95, sigma.squared = 1)
2 $statistic
3 Chi-Squared
      24.76598
6 $p.value
7 [1] 0.6193352
  $estimate
  variance
  0.8539993
13 $conf.int
       LCL
                   UCI.
15 0.541661 1.543333
```

Modèle Gaussien

Test
$$H_0: \sigma_x^2 = \sigma_y^2$$
 contre $H_1: \sigma_x^2 \neq \sigma_y^2$, $\mathcal{N}(\mu, \sigma^2)$

Soient $\mathbf{x} = \{x_{1,1}, \dots, x_m\}$ de loi $\mathcal{N}(\mu_x, \sigma_x^2)$ et $\mathbf{y} = \{y_1, \dots, y_n\}$ de loi $\mathcal{N}(\mu_{\mathbf{v}}, \sigma_{\mathbf{v}}^2)$.

Pour tester $H_0: \sigma_x^2 = \sigma_y^2$ contre $H_1: \sigma_x^2 \neq \sigma_y^2$, on utilise

$$F = \frac{s_x^2}{s_y^2}, \ s_x^2 = \frac{1}{m-1} \sum_{i=1}^m (x_i - \overline{x})^2, \ s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2$$

 \blacktriangleright on rejette H_0 si F < ----

où F_{ν_1,ν_2} est la fonction de répartition de la loi de Fisher, $\mathcal{F}(\nu_1,\nu_2)$.

 $H_0: \sigma_x^2 = \sigma_y^2$ signifie que ratio = 1 dans var.test,

```
_{1} > set.seed(1)
2 > x = rnorm(30,0,1)
y = rnorm(20,0,1)
> var.test(x, y, ratio = 1, alternative = "two.sided")
5
  F test to compare two variances
7
8 data: x and y
9 F = 1.7871, num df = 29, denom df = 19, p-value =
     0.1896
10 alternative hypothesis: true ratio of variances is not
      equal to 1
11 95 percent confidence interval:
0.7440377 3.9875896
13 sample estimates:
14 ratio of variances
      1.787136
15
```