

Atividade: Círculo trigonométrico no GeoGebra

Abra uma tela nova no GeoGebra e exiba os eixos coordenados. Construa os pontos A(0,0) e B(1,0) e construa o círculo de centro A que passa por B.

- a) Qual o raio dessa circunferência?
- b) Quais os pontos de interseção entre a circunferência e os eixos coordenados? Quanto mede cada um dos arcos compreendidos entre esses pontos?
- c) Os pontos que se localizam na circunferência cujas coordenadas são positivas são pontos que estão no 1° quadrante. Faça uma figura indicando onde estão esses pontos. Da mesma forma, indique onde se localizam os que estão no 2° quadrante (abscissa negativa e ordenada positiva), no 3° quadrante (coordenadas negativas) e no 4° quadrante (abscissa positiva e ordenada negativa).
- d) Considere a reta real "enrolada" na circunferência conforme vimos no exercício anterior, com a mesma unidade dos eixos coordenados. Em que quadrante fica o número real 1? E o número real -1? E o número real $\sqrt{2}$?
- e) Marque um ponto C sobre a circunferência de forma que o ângulo $B\hat{A}C$ meça 60° . Que número real está associado ao ponto C?

Solução:

- a) O raio da circunferência é 1.
- b) Os pontos são (0,1), (1,0), (-1,0), (0,-1). Os arcos podem ser 0 rad, $\frac{\pi}{2}$ rad, π rad ou $\frac{3\pi}{2}$ rad, de acordo com quais pares de pontos estamos trabalhando.
- c) Nesse item, espera-se que o aluno identifique os quadrantes.

Realização:

OLIMPÍADA BRASILEIRA
DE MATEMÁTICA
DAS ESCOLAS PÚBLICAS

Patrocínio:

- d) Podemos nos orientar, para responder a esse item, no valor decimal de π como 3,14. Então, dessa forma, temos:
 - 1 está entre 0 e $\frac{\pi}{2}$, logo, está no 1° quadrante;
 - -1 está entre $\frac{-\pi}{2}$ e 0, logo, está no $4^{\rm o}$ quadrante ;
 - π não está em nenhum quadrante pois está no eixo horizontal.
 - $-\sqrt{2}$ vale aproximadamente -1,4, ou seja, está entre $-\frac{\pi}{2}$ e zero, portanto o quarto quadrante.
- e) O ângulo de 60° equivale a $\frac{1}{6}$ da volta inteira na circunferência, o que em radianos representa $\frac{1}{6}$ de 2π , ou seja, $\frac{\pi}{3}$.

OLIMPÍADA BRASILEIRA

O J DE MATEMÁTICA

DAS ESCOLAS PÚBLICAS

