תכנות פייתון – תרגיל בית 4

תאריך הגשה: 27.06.22

הנחיות להגשה:

- ההגשה היא ביחידים בלבד, דרך המודל
- סןובץ שאינו רץ או אינו בפורמט הנכון לא ייבדק ויקבל ציון 0
 - ניתן להשתמש בספריות פייתון
 - :פורמט

יש להגיש כל שאלה וכל סעיף **בקובץ פייתון נפרד** ולאחד לzip בשם "ex3_ID" עבור כל השאלות בתרגיל.

- שם כל קובץ הוא מספר השאלה ,מספר הסעיף ותעודת הזהות של הסטודנט.
 לדוגמא, עבור שאלה 1 סעיף א שם הקובץ הוא Q1_A_ID.py
- עבור שאלה ללא סעיפים שם הקובץ הוא מספר השאלה ותעודת זהות הסטודנט. о לדוגמא, עבור שאלה 2 שם הקובץ הוא Q2_ID.py

יש לרשום את שמות הפונקציות ומחלקות **בדיוק** לפי הרשום בשאלה (וודאו כי האיות נכון בכל שאלה)

שימו לב, אם בשאלה רשום: def solve(A) פונקציה הרשומה (def Solve(A) אינה בפורמט
 הנכון ותקבל ציון 0.

<u>הערה:</u> רצוי להריץ את הדוגמאות ולראות שאכן הקוד מחזיר פתרון נכון.

נתון עץ חיפוש T בו הוחלפו 2 ערכים כך שהעץ אינו תקין.

- 2 המקבלת כקלט את Check_tree(A) א. כתבו תוכנית check_tree המקבלת כקלט את A השורש של העץ המצאת מוצאת את בתרכים שהוחלפו ומחזירה את ערכים אלו.
- ב. כתבו תוכנית correct_tree(A) המקבלת כקלט את A השורש של העץ מתקנת את העץ ומחזירה עץ חיפוש תקין ואת מספר ההחלפות שצריך לבצע כדי לתקן את העץ.

:עץ מוגדר ע"י האובייקט הבא

1

3

```
# class TreeNode:
 self.left = None
 self.right = None
                                                                              :לדוגמא קלט
                                                                            T שורש העץ A
                                                                                A.val = 1
                                                                                A.left = 2
                                                                               A.right = 3
                                                                           T = 1
                                                                              / \
                                                                              2 3
                                                                              :פלט סעיף א
                                                                                    [1, 2]
                                                                              :פלט סעיף ב
                                                                                        1
                                                                                  2
                                                                               / \
```

מנהל מלון צריך לקבל N הזמנות חדרים לעונת הקיץ. במלון יש C חדרים. הזמנה כוללת תאריך הגעה N הנהל מלון צריך לקבל אוכנת הקיץ. במלון יש hotel_schedule(A,B,C) הבודקת אם יש מספיק חדרים במלון ותאריך יציאה מהמלון. עליכם לכתוב תוכנית כקלט, מערך מספרים A המיצג תאריכי הגעה, מערך מספרים B לענות על כל ההזמנות. התוכנית מקבלת כקלט, מערך מספרים A המייצג תאריכי יציאה, וC מספר החדרים במלון. התוכנית מחזירה True אם יש מספיק חדרים וPalse אין.

עליכם לכתוב תוכנית שרצה בזמן ריצה (NlogN)

:לדוגמא

:קלט

A = [1, 3, 5]

B = [2, 6, 8]

C = 1

:פלט

False

:הסבר

ביום החמישי יש 2 אנשים במלון אך יש למלון רק חדר אחד.

- א. נתון כקלט לוח סודוקו מלא חלקית בצורה של רשימה של מחרוזות, כתוב תוכנית check_sudoku(A) הבודקת אם הלוח תקין. אם כן, החזר 1 אחרת החזר 0. לוח תקין לא חייב להיות עם פתרון.
 - הלוח נתון כמטריצה בה משבצות ריקות נתונות כ"."
- ב. בהינתן לוח סודו תקין, כתוב תוכנית solve_sudoku(A) אשר פותרת את הלוח ומחזירה את הפתרון המלא.

:לדוגמא

לוח סודוקו:

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

:מיוצג כקלט ע"י

["53..7....", "6..195...", ".98....6.", "8...6...3", "4..8.3..1", "7...2...6", ".6....28.", "....419...5", "....8..79"]

לאחר פתרון הסודוקו:

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	თ	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	80	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

:מיוצג כפלט ע"י

[[534678912], [672195348], [198342567], [859761423], [426853791], [713924856], [961537284], [287419635], [345286179]]

נתון כקלט גרף מכוון G כרשימת שכנות (adjacency list).

- א. כתוב תוכנית connected_comp(G) אשר מקבלת את הגרף G כקלט ומחזירה את מספר המקושר הרכיבים המקושרים בגרף (connected components) ואת מספר הקודקודים ברכיב המקושר הכי גדול. עשה זאת ללא שימוש בספריות.
 - ב. כעט כתוב את אותה תוכנית כאשר אתה מבצע שימוש בספריית networkx.

:קלט

[[1,3],[0],[3],[2,0],[]]

:פלט

([[4],[2,3,1,0]],4)

- אשר מקבלת כקלט את גודל המבוך הנדרש N maze_generate(N,M) א. כתבו תוכנית בשם Mat מספר השורות וM הוא מספר העמודות. התוכנית תחזיר את המבוך כמטריצה mat של 0 ו1, מספר השורות וB הוא מספר העמודות כניסה למבוך S ונקודת יציאה E. וודאו שניתן לפתור את המבוך.
- ב. ישנו מבוך הנתון כמטריצה NXM עם כניסה ויציאה אחת, בדומה למבוך מסעיף א. כתוב תוכנית maze_solver(mat,S,E,K) אשר פותרת את המבוך אך בכל צעד חייבים לבצע K צעדים. נניח כי אנו נמצאים בנקודה (i,j) אז הצעדים המותרים הם (i+k,j),(i,j+k),(i-k,j),(i,j-k) לא ניתן לבצע צעד באלכסון.
 - האלגוריתם צריך להחזיר את הדרך הכי קצרה לפתרון המבוך. אם אין דרך כזאת החזר 1-.

המבוך צריך להיות מיוצג ע"י מטריצה.

:דוגמא

:קלט סעיף א

N = 9, M=10

:פלט סעיף א

:קלט סעיף ב

maze_solver(mat, S, E, 2)

המבוך בדוגמא נלקח מדוגמא סעיף א.

:פלט סעיף ב

11