Aula 13

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

Anuidades Diferidas

- Na prática, para benefícios de aposentadoria, o plano é comprado anos antes do início dos recebimentos das anuidades.
 - > Anuidades diferidas são pagas passado um determinado prazo, diferentemente das anuidades imediatas.
 - caso o participante faleça antes do início do recebimento da anuidade (antes de aposentadoria) a seguradora não terá que pagar nada ao segurado (considerando que não existe reversão para pensão).

Anuidades Diferidas

- \triangleright Pensemos no caso em que estamos no instante t=0 (pagamento antecipado).
 - \blacktriangleright O segurado irá receber a primeira parcela daqui a m anos.
 - \triangleright Suponha que o segurado tenha recebido 3 (b = 1u.m.) parcelas e tenha falecido.
 - > O valor de hoje gasto com este segurado será:

Anuidades Diferidas

➤ Utilizando o resultado anterior, pode-se dizer que o valor gasto com esse segurado foi:

$$\ddot{a}_{\overline{m+2|}}$$

Considerando que o segurado tenha recebido t parcelas da anuidade e tenha falecido.

Então:

$$\ddot{a}_{\overline{m+t|}}$$

- ➤ Variável aleatória tempo *T* , **discreta**.
- \triangleright O gasto médio de com uma anuidade vitalícia paga para uma pessoa com idade x será então de (considerando que o usuário sobreviverá ao período de diferimento):
 - \triangleright VPA de uma anuidade vitalícia diferida com pagamento Antecipado, b=1~u.~m.

$$E(\ddot{a}_{\overline{T+m+1|}}) = \sum_{t=m}^{\infty} {}_{t}E_{x} = \sum_{t=m}^{\infty} v^{t} {}_{t}p_{x} = {}_{m|}\ddot{a}_{x}$$

$$E(\ddot{a}_{\overline{T+m+1|}}) = \sum_{t=m}^{\infty} v^{t} _{t} p_{x} = \sum_{t=0}^{\infty} v^{t+m} _{t+m} p_{x}$$

 \triangleright Lembrando que $_{t+m}p_x=_mp_x*_tp_{x+m}$

$$E(\ddot{a}_{\overline{T+m+1|}}) = \sum_{t=0}^{\infty} v^t v^m \,_{m} p_x \,_{t} p_{m+x}$$

$$E(\ddot{a}_{\overline{T+m+1|}}) = v^m {}_{m} p_x \sum_{t=0}^{\infty} v^t {}_{t} p_{m+x}$$

$$E(\ddot{a}_{\overline{T+m+1|}}) = {}_{m}E_{x}\ddot{a}_{x+m}$$

$$m \ddot{a}_{x} = {}_{m} E_{x} \ddot{a}_{x+m}$$

> Exemplo 1

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalícia diferida por 20 anos, que paga 1 u.m. com pagamento **antecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$_{20|}\ddot{a}_{40} = \sum_{t=20}^{\infty} v^t _t p_{40}$$

$$|z_{0}|\ddot{a}_{40} = z_{0} E_{40} \ddot{a}_{60} = v^{20} z_{0} p_{40} \left(\sum_{t=0}^{\infty} v^{t} p_{60} \right)$$

> Exemplo 1

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalicia diferida por 20 anos, que paga 1 u.m. com pagamento **antecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$20|\ddot{a}_{40} = \sum_{t=20}^{\infty} v^t _{t} p_{40}$$
 n <- tamanho.tabua
$$v <- 1/1.05$$
 pxx <-cumprod(px[41:n])
$$1 <-length(pxx)$$
 pxx <-pxx[20:n1]
$$1 <-c(20:n1)$$
 bx <- sum(v^(t)*pxx)
$$20|\ddot{a}_{40} = 20 E_{40} \ddot{a}_{60} = v^{20} _{20} p_{40} \left(\sum_{t=0}^{\infty} v^t _{t} p_{60} \right)$$
 n <- tamanho.tabua
$$v <- 1/1.05$$
 pxx <- cumprod(px[41:n])
$$E <-(v^2 20)*pxx[20]$$
 pxx <- c(1,cumprod(px[61:n]))
$$1 <-length(pxx)$$
 t <- (0:(n-1))
$$1 <-length(pxx)$$
 t <- (0:(n-1)) bx <- E*sum(v^(t)*pxx)

$$a_{20} \ddot{a}_{40} = 4,820667$$

Anuidades vitalícias Diferidas, pagamento postecipado

$$E(a_{\overline{T+m|}}) = \sum_{t=m+1}^{\infty} v^{t} _{t} p_{x} = \sum_{t=1}^{\infty} v^{t+m} _{t+m} p_{x}$$

 \triangleright Lembrando que $_{t+m}p_x=_{m}p_x*_{t}p_{x+m}$

$$E(a_{\overline{T+m|}}) = \sum_{t=1}^{\infty} v^t v^m \,_{m} p_{x \, t} p_{m+x}$$

$$E(a_{\overline{T+m|}}) = v^m {}_{m} p_x \sum_{t=1}^{\infty} v^t {}_{t} p_{m+x}$$

$$E(a_{\overline{T+m|}}) = {}_{m}E_{x}a_{x+m}$$

$$_{m|}a_{x} = {}_{m}E_{x}a_{x+m}$$

ightharpoonup VPA de uma anuidade vitalícia diferida com pagamento Antecipado, b=1~u.~m.

$$m | \ddot{a}_x = m E_x \ddot{a}_{x+m}$$

 \triangleright VPA de uma anuidade vitalícia diferida com pagamento Postecipado, b=1~u.m.

$$m \mid a_x = m E_x a_{x+m}$$

> Exemplo 2

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalícia diferida por 19 anos, que paga 1 u.m. com pagamento **Postecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento diferido.

$$\sum_{t=0}^{\infty} v^{t} _{t} p_{m+x}$$

$$_{19|} a_{40} = _{19} E_{40} a_{59} = v^{19} _{19} p_{40} \left(\sum_{t=1}^{\infty} v^{t} _{t} p_{59} \right)$$

Lembrando que $_{t+m}p_{x}=_{m}p_{x}*_{t}p_{x+m}$

$$_{19|}a_{40} = v^{19} _{19}p_{40} \left(\sum_{t=0}^{\infty} v^{t+1} _{t+1}p_{59} \right) = v^{19} _{19}p_{40} \left(\sum_{t=0}^{\infty} v^{t} v^{1} _{1}p_{59} _{t}p_{59+1} \right)$$

$$_{19|}a_{40} = v^{19} _{19}p_{40}v^{1} _{1}p_{59}\left(\sum_{t=0}^{\infty} v^{t} _{t}p_{59+1}\right) = v^{20} _{19}p_{40} _{1}p_{40+19}\left(\sum_{t=0}^{\infty} v^{t} _{t}p_{59+1}\right)$$

$$a_{19|}a_{40} = v^{20} a_{19|}p_{40} \left(\sum_{t=0}^{\infty} v^t p_{59+1}\right) = a_{19|}\ddot{a}_{40}$$

> Exemplo 2

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalícia diferida por 19 anos, que paga 1 u.m. com pagamento **Postecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento diferido.

$$a_{19|}a_{40} = \sum_{t=19+1}^{\infty} v^t t_t p_{40} = \sum_{t=20}^{\infty} v^t t_t p_{40} = a_{20|} \ddot{a}_{40}$$

> Exemplo 3

Assim usando o resultado do exemplo 52, onde tinham-se que o valor presente pago as anuidade vitalícia diferidas por 20 anos, com pagamentos antecipados para uma pessoa de 40 anos foi igual a $\ddot{a}_{40}=4,820667$ então conclui-se que $_{19|}a_{40}=4,820667$.

```
_{20|\ddot{a}_{40}} = _{20}E_{40}\ddot{a}_{60} = v^{20} _{20}p_{40} \left( \sum_{t=2}^{\infty} v^{t} _{t}p_{60} \right) = _{19|}a_{40}
            |a_{20}|\ddot{a}_{40} = \sum_{t=20}^{\infty} v^t p_{40} = |a_{40}| a_{40}
                                                       n <- tamanho.tabua
n <- tamanho.tabua
                                                      v <- 1/1.05
v < -1/1.05
                                                                  <- cumprod(px[41:n])
                                                      рхх
         <-cumprod(px[41:n])
рхх
                                                                 <-(v^20)*pxx[20]
n1
             <-length(pxx)
                                                      ext{pxx} <- c(1,cumprod( ext{px}[61:n]))
         <-pxx[20:n1]
рхх
                                                                 <-length(pxx)
         <- (20:n1)
                                                                  <- (0:(n-1))
           <- sum(fator.desconto^(t)*pxx)
bx
                                                                   <- E*sum(fator.desconto^(t)*pxx)
                                                      bx
```

 \triangleright VPA de uma anuidade vitalícia diferida com pagamento Antecipado, b=1~u.m.

$$m | \ddot{a}_x = {}_m E_x \ddot{a}_{x+m}$$

> VPA de uma anuidade vitalícia diferida com pagamento Postecipado, b = 1 u.m.

$$m \mid a_x = m E_x a_{x+m}$$

$$_{m+1|}\ddot{a}_{x} = _{m|} a_{x}$$

Anuidades Temporárias Diferidas

- > Para o caso temporário a notação fica:
- > VPA de uma anuidade temporária por n anos, diferida por m anos com pagamento antecipado, $b=1\ u.m.$

$$m|n\ddot{a}_x = {}_{m}E_x\ddot{a}_{x+m:\overline{n|}} = {}_{m}E_x\sum_{t=0}^{n-1}v^t {}_{t}p_{x+m}$$

> VPA de uma anuidade temporária por n anos, diferida por m anos com pagamento postecipado, $b=1 \ u.m.$

$$a_{m|n}a_{x} = {}_{m}E_{x}a_{x+m:\bar{n}|} = {}_{m}E_{x}\sum_{t=1}^{n}v^{t}{}_{t}p_{x+m}$$

Anuidades Temporárias Diferidas

> Exemplo 4

Seja uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 u.m. no período de 3 anos. No entanto essa anuidade é diferida por 3 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., Calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento diferido, antecipado e postecipado.

×	qx	рх	lx
35	0,000792	0,999208	978890,5
36	0,000794	0,999206	978115,2
37	0,000823	0,999177	977338,6
38	0,000872	0,999128	976534,2
39	0,000945	0,999055	975682,7
40	0,001043	0,998957	974760,7
41	0,001168	0,998832	973744
42	0,001322	0,998678	972606,7
43	0,001505	0,998495	971320,9
44	0,001715	0,998285	969859
45	0,001948	0,998052	968195,7
46	0,002198	0,997802	966309,7
47	0,002463	0,997537	964185,7
48	0,00274	0,99726	961810,9
49	0,003028	0,996972	959175,6
50	0,00333	0,99667	956271,2
51	0,003647	0,996353	953086,8
52	0,00398	0,99602	949610,9
53	0,004331	0,995669	945831,5
54	0,004698	0,995302	941735,1
55	0,005077	0,994923	937310,8

Exemplo 4

\triangleright Pagamento Antecipado , b=1 u.m, m=3, i=0.05

x	qx	рх	lx
35	0,000792	0,999208	978890,5
36	0,000794	0,999206	978115,2
37	0,000823	0,999177	977338,6
38	0,000872	0,999128	976534,2
39	0,000945	0,999055	975682,7
40	0,001043	0,998957	974760,7
41	0,001168	0,998832	973744
42	0,001322	0,998678	972606,7
43	0,001505	0,998495	971320,9
44	0,001715	0,998285	969859
45	0,001948	0,998052	968195,7
46	0,002198	0,997802	966309,7
47	0,002463	0,997537	964185,7
48	0,00274	0,99726	961810,9
49	0,003028	0,996972	959175,6
50	0,00333	0,99667	956271,2
51	0,003647	0,996353	953086,8
52	0,00398	0,99602	949610,9
53	0,004331	0,995669	945831,5
54	0,004698	0,995302	941735,1
55	0,005077	0,994923	937310,8

$$_{3|3}\ddot{a}_{40} = _{m}E_{x}\ddot{a}_{x+m:\overline{n}|}$$

$$_{3|3}\ddot{a}_{40} = _{3}E_{40}\ddot{a}_{43:\overline{3}|}$$

$$_{3|3}\ddot{a}_{40} = v^{3} _{3}p_{40} \sum_{t=0}^{3-1} v^{t} _{t}p_{43}$$

$$_{3|3}\ddot{a}_{40} = v^{3} _{3}p_{40}(1 + v p_{43} + v^{2} _{2}p_{43})$$

$$_{3|3}\ddot{a}_{40} = \left(\frac{1}{1,05}\right)^{3} p_{40}p_{41}p_{42}\left(1 + \left(\frac{1}{1,05}\right)p_{43} + \left(\frac{1}{1,05}\right)^{2}p_{43}p_{44}\right)$$

$$_{3|3}\ddot{a}_{40} = 2,457604$$

Exemplo 5

\blacktriangleright Pagamento Postecipado, b=1~u.m,~m=3,~n=3,~i=0.05

X	qx	рх	lx
35	0,000792	0,999208	978890,5
36	0,000794	0,999206	978115,2
37	0,000823	0,999177	977338,6
38	0,000872	0,999128	976534,2
39	0,000945	0,999055	975682,7
40	0,001043	0,998957	974760,7
41	0,001168	0,998832	973744
42	0,001322	0,998678	972606,7
43	0,001505	0,998495	971320,9
44	0,001715	0,998285	969859
45	0,001948	0,998052	968195,7
46	0,002198	0,997802	966309,7
47	0,002463	0,997537	964185,7
48	0,00274	0,99726	961810,9
49	0,003028	0,996972	959175,6
50	0,00333	0,99667	956271,2
51	0,003647	0,996353	953086,8
52	0,00398	0,99602	949610,9
53	0,004331	0,995669	945831,5
54	0,004698	0,995302	941735,1
55	0,005077	0,994923	937310,8

Exemplo 5

\triangleright Pagamento Postecipado, b=1 u.m, m=3, i=0.05

X	qx	рх	lx
35	0,000792	0,999208	978890,5
36	0,000794	0,999206	978115,2
37	0,000823	0,999177	977338,6
38	0,000872	0,999128	976534,2
39	0,000945	0,999055	975682,7
40	0,001043	0,998957	974760,7
41	0,001168	0,998832	973744
42	0,001322	0,998678	972606,7
43	0,001505	0,998495	971320,9
44	0,001715	0,998285	969859
45	0,001948	0,998052	968195,7
46	0,002198	0,997802	966309,7
47	0,002463	0,997537	964185,7
48	0,00274	0,99726	961810,9
49	0,003028	0,996972	959175,6
50	0,00333	0,99667	956271,2
51	0,003647	0,996353	953086,8
52	0,00398	0,99602	949610,9
53	0,004331	0,995669	945831,5
54	0,004698	0,995302	941735,1
55	0,005077	0,994923	937310,8

$$m|n a_{x} = {}_{m}E_{x}a_{x+m:\bar{n}}|$$

$$3|3 a_{40} = {}_{3}E_{40}a_{43:\bar{3}}|$$

$$3|3 a_{40} = v^{3} {}_{3}p_{40} \sum_{t=1}^{3} v^{t} {}_{t}p_{43}$$

$$3|3 a_{40} = v^{3} {}_{3}p_{40}(v p_{43} + v^{2} {}_{2}p_{43} + v^{3} {}_{3}p_{43})$$

$$3|3 a_{40} = \left(\frac{1}{1,05}\right)^{3} p_{40}p_{41}p_{42}\left(\left(\frac{1}{1,05}\right)p_{43} + \left(\frac{1}{1,05}\right)^{2} p_{43}p_{44} + \left(\frac{1}{1,05}\right)^{3} p_{43}p_{44}p_{45}\right)$$

$$3|3 a_{40} = 0,8591533 \times 2,71444$$

$$3|3 a_{40} = 2,33212$$

Relação matemática importante

Consideramos um seguro de vida inteiro com tempo discreto (seguro pago no final do ano da morte):

$$A_{\mathcal{X}} = \sum_{t=0}^{\infty} v^{t+1} {}_{t} p_{\mathcal{X}} q_{\mathcal{X}+t}$$

Assim:

$$A_x = \sum_{t=0}^{\infty} v^{t+1} {}_t p_x q_{x+t} = \sum_{t=0}^{\infty} v^{t+1} {}_t p_x (1 - p_{x+t})$$

$$A_{x} = \sum_{t=0}^{\infty} v^{t+1} {}_{t} p_{x} - \sum_{t=0}^{\infty} v^{t+1} {}_{t} p_{x} p_{x+t}$$

$$A_x = \sum_{t=0}^{\infty} v^{t+1} {}_t p_x - \sum_{t=0}^{\infty} v^{t+1} {}_{t+1} p_x$$