Minimal R for Intro Stats

Randall Pruim

September 12, 2013

"Less volume, more creativity."

Mike McCarthy, Head Coach, Green Bay Packers

Mike McCarthy had signs proclaiming his "Less volume, more creativity" mantra hung on the office walls of all of his coordinators during one off-season. When asked about it, he said, "A lot of times you end up putting in a lot more volume, because you are teaching fundamentals and you are teaching concepts that you need to put in, but you may not necessarily use because they are building blocks for other concepts and variations that will come off of that ... In the offseason you have a chance to take a step back and tailor it more specifically towards your team and towards your players."

Statistics instructors using R face a similar dilemma. R is capable of so much that it is tempting to include this, and then that, and then the other, and then one more thing. Vectors and lists and recycling and coercion and functions and ...It all seems so fundamental to the way R works. And when mastered, these concepts do become building blocks for other concepts and variations.

But when looking back at the end of a term, we have to admit that some of these things really aren't necessary to get the job done, and may do more harm than good for beginners. We too need to take a step back and tailor things toward our students and their abilities and needs. The colored commands on the next page are sufficient for an Introductory Statistics course that includes ANOVA, regression, and resampling techniques. The others are optional extras. This is followed by a 1-page sampler showing usage examples for some of the functions.

Note: These pages are intended as a guide for instructors, not as a reference card for students. Although they may also be useful for students, they would need supplementing with additional details.

The list of functions we present are not the only sufficient set of functions, but they were carefully chosen to fit as much as possible into a small number of paradigms. In particular,

1. We make use of the "formula interface" whenever possible.

Students will need the formula interface to do regression an ANOVA. Since we are going to teach it anyway, we use formulas as consistently and as often as we can. In some cases, my colleagues and I have written new functions or expanded the use of existing functions to serve this end. These functions are available in the mosaic package and are indicated in the comments in our palette.

2. We use lattice graphics.

R has three separate high level plotting libraries (base, lattice, and ggplot2). Each has its advantages, but we choose lattice because it uses the same formula interface use elsewhere and because it encourages students to things about disaggregating data according to the values of covariates by making this very easy to do.

Whether you use this list or some other list, we encourage you to make a complete list of the commands you want your students to learn over the course of a semester. Organize them by topic. Organize them again by syntactic structure. Ask yourself how they look as a whole. Have you chosen a set of functions that fit well together? And most importantly: What is your creativity to volume quotient?

Help

```
apropos()
?
??
example()
```

Arithmetic

Basic arithmetic is very similar to a calculator.

```
# basic ops: + - * / ^ ( )
log()
exp()
sqrt()
```

```
log10()
abs()
choose()
factorial()
uniroot() # root finder
```

Randomization/Simulation

```
rflip() # mosaic
do() # mosaic
sample() # mosaic augmented
resample() # with replacement
shuffle() # mosaic
rbinom()
rnorm() # etc, if needed
```

Formula Theme

The following syntax (often with some parts omitted) is used for graphical summaries, numerical summaries, and inference procedures.

For plots

- y: is y-axis variable
- x: is x-axis variable
- z: conditioning variable (separate panels)
- groups: conditioning variable (overlaid graphs)

For other things 'y $\sim x \mid z$ ' can usually be read 'y' is modeled by (or depends on) 'x' differently for each 'z'. See the sampler for examples.

Distributions

```
pbinom(); pnorm();
pchisq(); pt()
qbinom(); qnorm();
qchisq(); qt()
xpnorm() # mosaic
plotDist() # mosaic
```

Numerical Summaries

These functions have a formula interface to match plotting.

```
mean()
             # mosaic augmented
             # mosaic augmented
median()
sd()
             # mosaic augmented
var()
             # mosaic augmented
quantile()
             # mosaic augmented
favstats()
             # mosaic
tally()
             # mosaic
prop()
             # mosaic
perc()
             # mosaic
rank()
IQR()
             # mosaic augmented
min(); max() # mosaic augmented
```

Graphics (mostly lattice)

```
bwplot()
xyplot()
histogram() # mosaic augmented
qqmath()
densityplot()
plotFun()
            # mosaic
ladd()
                # mosaic
dotPlot()
                # mosaic
                # mosaic
bargraph()
mosaic()
               # in vcd package
xqqmath()
                # mosaic
```

Interactive Graphics (RStudio)

```
mPlot(data=HELPrct, 'scatter')
mPlot(data=HELPrct, 'boxplot')
mPlot(data=HELPrct, 'histogram')
```

Inference

```
binom.test() # mosaic augmented
prop.test()
              # mosaic augmented
chisq.test()
t.test()
              # mosaic augmented
model <- lm() # linear models</pre>
anova( model )
summary( model )
makeFun( model )
                   # mosaic
resid( model )
plot( model )
TukeyHSD( model ) # mosaic aug
plot( TukeyHSD( model ) )
confint()
               # mosaic augmented
pval()
               # mosaic
```

```
confint()  # mosaic augmented
pval()  # mosaic
confint()  # mosaic augmented
fisher.test()
xchisq.test()  # mosaic
power.t.test()
power.prop.test()
wilcox.test()
```

Data

```
read.file() # mosaic
summary()
names()
head()
subset()
factor()
c()
cbind()
rbind()
merge()
```

```
rflip(10)
Flipping 10 coins [ Prob(Heads) = 0.5 ] ...
THTHHTHHT
Result: 6 heads.
do(2) * rflip(10)
   n heads tails
1 10
         8
2 10
results <- do(1000) * rflip(10)
tally(~heads, data = results)
    1
                3
                            5
                                  6
   12
         46
              116
                    225
                          236
                                200
    7
          8
                9 Total
         31
  125
                   1000
tally(~(heads > 8 | heads < 2), data = results)</pre>
 TRUE FALSE Total
        979 1000
histogram(~heads, data = results, width = 1)
```

```
tally("substance + sex, data = HELPrct)
substance female male Total
  alcohol
               36 141
                         177
  cocaine
              41
                  111
                         152
  heroin
                   94
                         124
  Total
             107
                  346
                         453
mean(age ~ substance, data = HELPrct)
alcohol cocaine heroin
  38.20
          34.49
                   33.44
sd(age ~ substance, data = HELPrct)
alcohol cocaine heroin
 7.652 6.693 7.986
densityplot(~age | sex, groups = substance,
    data = HELPrct, auto.key = TRUE)
                    alcohol
                    cocaine
                    heroin
                         10 20 30 40 50 60 70
            10 20 30 40 50 60 70
```


bwplot(age ~ substance | sex, data = HELPrct)

```
pval(binom.test(~sex, data = HELPrct))
  p.value
1.932e-30

confint(t.test(~age, data = HELPrct))

mean of x lower upper level
  35.65 34.94 36.37 0.95
```

```
model <- lm(age ~ sex + substance,
                        data=HELPrct )
anova( model )
Analysis of Variance Table
Response: age
           Df Sum Sq Mean Sq F value
sex
                  50
                                0.91
substance
            2
                1997
                         999
                               18.06
Residuals 449 24823
                          55
           Pr(>F)
             0.34
sex
substance 2.8e-08
Residuals
```

```
xyplot(Sepal.Length ~ Sepal.Width, data = iris,
  groups = Species)
```

