Heuristic Analysis

Introduction

This analysis is a companion to the "Implement a Planning Search" Project as part of Udacity's Artificial Intelligence NanoDegree. In this project, there were three problems, defined in classical Planning Domain Definition Language (PDDL), in the Air Cargo Domain, where there are three possible actions: Load(Cargo, Plane, Airport), Unload(Cargo, Plane, Airport) and Fly(Plane, From, To). The Goals in each problem were to have specific Cargo instances Unloaded at specific Airports.

Air Cargo Problem #1:

Initial State:

Cargo 1, Plane 1 at SFO; Cargo 2, Plane 2 at JFK.

Goals:

Cargo 1 at JFK; Cargo 2 at SFO.

Best Plan (6 Actions):

Load(C1, P1, SFO) Fly(P1, SFO, JFK) Unload(C1, P1, JFK) Load(C2, P2, JFK) Fly(P2, JFK, SFO) Unload(C2, P2, SFO)

PROBLEM 1	EXPANSIONS	GOAL TESTS	NEW NODES	TIME ELAPSED (SECONDS)	PLAN LENGTH	OPTIMAL PLAN?
BREADTH FIRST SEARCH	43	56	180	0.044	6	<mark>Yes</mark>
BREADTH FIRST TREE SEARCH	1458	1459	5960	1.369	6	Yes
DEPTH FIRST GRAPH SEARCH	21	22	84	0.022	20	No
DEPTH LIMITED SEARCH	101	271	414	0.137	50	No
UNIFORM COST SEARCH	55	57	224	0.058	6	<mark>Yes</mark>
RECURSIVE BEST FIRST SEARCH WITH H_1	4229	4230	17023	4.15	6	Yes
GREEDY BEST FIRST GRAPH SEARCH WITH H_1	7	9	28	0.008	6	<mark>Yes</mark>
A* SEARCH WITH H_1	55	57	224	0.056	6	Yes
A* SEARCH WITH H_IGNORE_PREC ONDITIONS	41	43	170	0.061	6	<mark>Yes</mark>
A* SEARCH WITH H_PG_LEVELSU M	11	13	50	0.814	6	Yes

For Problem #1, 8 out of the 10 Search Algorithm/Heuristic Combinations found the optimal solution (plan length == 6). Depth First Graph Search and Depth Limited Search both returned non-optimal solutions (plan length > 6). The best-performing algorithm was Greedy Best First Graph Search with h_1, which returned the optimal plan in ~0.008 seconds after completing 7 expansions, performing 9 goal tests, and exploring 28 nodes. Recursive Best First Search with h_1 took the longest to return the optimal plan at ~4.150 seconds (~519 x longer) after completing 4229 expansions, performing 4230 goal tests, and exploring 17023 nodes. Breadth First Search, Uniform Cost Search, and all of the A* Searches would all also be reasonable methods to solve this problem, as they all returned the optimal solution in less than 1 second.

Air Cargo Problem #2:

Initial State:

Cargo 1, Plane 1 at SFO; Cargo 2, Plane 2 at JFK; Cargo 3, Plane 3 at ATL.

Goals:

Cargo 1 at JFK; Cargo 2 at SFO; Cargo 3 at SFO.

Best Plan (9 Actions):

Load(C1, P1, SFO)

Fly(P1, SFO, JFK)

Unload(C1, P1, JFK)

Load(C2, P2, JFK)

Fly(P2, JFK, SFO)

Unload(C2, P2, SFO)

Load(C3, P3, ATL)

Fly(P3, ATL, SFO)

Unload(C3, P3, SFO)

PROBLEM 2	EXPANSIONS	GOAL TESTS	NEW NODES	TIME ELAPSED (SECONDS)	PLAN LENGTH	OPTIMAL PLAN?
BREADTH FIRST SEARCH	3343	4609	30509	19.089	9	<mark>Yes</mark>
BREADTH FIRST TREE SEARCH	Failed	Failed	Failed	> 10 Minutes	Failed	No
DEPTH FIRST GRAPH SEARCH	624	625	5602	4.622	619	No
DEPTH LIMITED SEARCH	Failed	Failed	Failed	> 10 Minutes	Failed	No
UNIFORM COST SEARCH	4852	4854	44030	17.06	9	<mark>Yes</mark>
RECURSIVE BEST FIRST SEARCH WITH H_1	Failed	Failed	Failed	> 10 Minutes	Failed	<mark>No</mark>
GREEDY BEST FIRST GRAPH SEARCH WITH H_1	990	992	8910	3.39	15	No
A* SEARCH WITH H_1	4852	4854	44030	17.522	9	Yes
A* SEARCH WITH H_IGNORE_PREC ONDITIONS	1450	1452	13303	6.306	9	<mark>Yes</mark>
A* SEARCH WITH H_PG_LEVELSU M	86	88	841	69.861	9	Yes

For Problem #2, 5 out of the 10 Search Algorithm/Heuristic Combinations found the optimal solution (plan length == 9). Depth First Graph Search and Greed Best First Graph Search with h_1 both returned non-optimal solutions (plan length > 9). Breadth First Tree Search, Depth Limited Search and Recursive Best First Graph Search with h_1 did not return any solutions within a 10 minute time frame. The best-performing algorithm was A* Search with h_ignore_preconditions, which returned the optimal plan in ~6.306 seconds after completing 1450 expansions, performing 1452 goal tests, and exploring 13303 nodes. A* Search with h_pg_levelsum took the longest to return the optimal plan at ~69.861 seconds (~11 x longer) after completing 86 expansions, performing 88 goal tests, and exploring 841 nodes. So despite the fact that it explored fewer nodes, the h_pg_levelsum heuristic did not return a result faster, as it is much more computationally expensive when compared to the h_ignore_preconditions heuristic.

Air Cargo Problem #3:

Initial State:

Cargo 1, Plane 1 at SFO; Cargo 2, Plane 2 at JFK; Cargo 3 at ATL; Cargo 4 at ORD.

Goals:

Cargo 1, Cargo 3 at JFK; Cargo 2, Cargo 4 at SFO.

Best Plan (12 Actions):

Load(C1, P1, SFO)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P1 ATL, JFK)

Unload(C1, P1, JFK)

Unload(C3, P1, JFK)

Load(C2, P2, JFK)

Fly(P2, JFK, ORD)

Load(C4, P2, ORD)

Fly(P2, ORD, SFO)

Unload(C2, P2, SFO)

Unload(C4, P2, SFO)

PROBLEM 3	EXPANSIONS	GOAL TESTS	NEW NODES	TIME ELAPSED (SECONDS)	PLAN LENGTH	OPTIMAL PLAN?
BREADTH FIRST SEARCH	14663	18098	129631	139.126	12	<mark>Yes</mark>
BREADTH FIRST TREE SEARCH	Failed	Failed	Failed	> 10 Minutes	Failed	No
DEPTH FIRST GRAPH SEARCH	408	409	364	2.533	392	No
DEPTH LIMITED SEARCH	Failed	Failed	Failed	> 10 Minutes	Failed	No
UNIFORM COST SEARCH	18235	18237	159716	74.771	12	<mark>Yes</mark>
RECURSIVE BEST FIRST SEARCH WITH H_1	Failed	Failed	Failed	> 10 Minutes	Failed	No
GREEDY BEST FIRST GRAPH SEARCH WITH H_1	5614	5616	49429	22.892	22	No
A* SEARCH WITH H_1	18235	18237	159716	74.046	12	<mark>Yes</mark>
A* SEARCH WITH H_IGNORE_PREC ONDITIONS	5040	5042	44944	23.717	12	<mark>Yes</mark>
A* SEARCH WITH H_PG_LEVELSUM	315	317	2902	332.739	12	<mark>Yes</mark>

For Problem #3, 5 out of the 10 Search Algorithm/Heuristic Combinations found the optimal solution (plan length == 12). As in Problem #2, Depth First Graph Search and Greed Best First Graph Search with h_1 both returned non-optimal solutions (plan length > 9), and Breadth First Tree Search, Depth Limited Search and Recursive Best First Graph Search with h_1 did not return any solutions within a 10 minute time frame. Once again, **the best-performing algorithm was A* Search with h_ignore_preconditions,** which returned the optimal plan in ~23.717 seconds after completing 5040 expansions, performing 5042 goal tests, and exploring 44944 nodes. A* Search with h_pg_levelsum took the longest to return the optimal plan at ~332.739 seconds (~14 x longer) after completing 315 expansions, performing 317 goal tests, and exploring 2902 nodes.

Summary:

The best performing Search Algorithm/Heuristic Combination across all three problems was the A* Search with h_ignore_preconditions, which always returned the optimal solution in either the shortest time frame and/or a reasonable time frame. A* Search with h_1(no heuristic) and A* Search with h_pg_levelsum also always returned the optimal solution, but h_1 took longer because it always expanded more nodes, and levelsum took longer because it was more computationally expensive. Out of the "Uninformed" Search Algorithms, Breadth First Search and Uniform Cost Search also always returned the optimal solution, and were comparable to A* Search with h_1 in time elapsed. As the problems became more complex, Uniform Cost Search began to outperform Breadth First Search as it expanded less nodes.