Vorlesung 7.5

Peter Nejjar

Hier wird der Inhalt der Vorlesung vom 21.5 wiedergegeben. Insofern sich die Vorlesung an [?] orientierte, werden die Inhalte anhand der dortigen Bezeichnungen/Nummern nur kurz genannt.

Kapitel 3.3

Wir berechnen den Erwartungswert einiger Zufallsvariablen. Voran eine allgemeine Beobachtung : Ist $(\Omega, \mathcal{E}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, und es sei $X : \Omega \to \Omega$ mit $X(\omega) = \omega$, X ist also die Identität. Dann ist das von X induzierte Wahrscheinlichkeitsmaß gleich \mathbb{P} , also es gilt $\mathbb{P}_X = \mathbb{P}$. Daher können wir vom Erwartungswert des Wahrscheinlichkeitsmaßes \mathbb{P} sprechen (z.B. der Gleichverteilung, geometrischen Verteilung etc.), und meinen damit den Erwartungswert einer Zufallsvariablen X, für die $\mathbb{P}_X = \mathbb{P}$ gilt.

In den folgenden Beispielen ist stets $X: \Omega \to \Omega$ mit $X(\omega) = \omega$.

- Bernoulliverteilung Es sei $\Omega = \{0, 1\}$ und $\mathbb{P}(\{1\}) = p \in [0, 1]$. Dann ist $\mathbb{E}(X) = 0 + p * 1 = p$.
- Poissonverteilung mit Parameter λ : Es ist $\Omega=\mathbb{N}$ versehen mit der Poissonverteilung. Es ist

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} n * \frac{\lambda^n}{n!} e^{-\lambda} = \lambda \sum_{n=1}^{\infty} \frac{\lambda^{n-1}}{(n-1)!} e^{-\lambda} = \lambda.$$

• Geometrische Verteilung mit Parameter q: Es ist $\Omega = \mathbb{N}$ versehen mit der geometrischen Verteilung. Es ist

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} n * q^{n-1} (1 - q) = (1 - q) \sum_{n=1}^{\infty} \frac{d}{dq} q^n$$

$$= (1 - q) \frac{d}{dq} \sum_{n=1}^{\infty} q^n$$

$$= (1 - q) \frac{d}{dq} \left(\frac{1}{1 - q} - 1 \right) = \frac{1}{1 - q}.$$

• Gleichverteilung auf $\Omega = \{1, \dots, n\}$: Es ist

$$\mathbb{E}(X) = \sum_{i=1}^{n} \frac{i}{n} = \frac{n(n+1)}{2n} = \frac{n+1}{2}.$$

• Erwartungswerte müssen nicht existieren: Sei $\Omega = \mathbb{N}, \alpha > 1$. Sei $Z = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, es ist $Z < \infty$ da $\alpha > 1$. Definiere \mathbb{P} durch $\mathbb{P}(\{n\}) = \frac{1}{Z} \frac{1}{n^{\alpha}}$. Der Erwartungswert $\mathbb{E}(X) = \frac{1}{Z} \sum_{n=1}^{\infty} \frac{1}{n^{\alpha-1}}$ ist aber nur dann endlich, wenn $\alpha > 2$ ist!

1

Anschließend wurde der Erwartungswert für Zufallsvariablen mit Dichten (Definition 3.3.3) behandelt . Definition 3.3.3 wurde wie folgt verallgemeinert (siehe die Bemerkung im Buch nach Def. 3.3.3) ,

Definition. (Definition 3.3.3 verallgemeinert) Es sei $(\Omega, \mathcal{E}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, $\Omega \subseteq \mathbb{R}$, und \mathbb{P} habe eine Dichte f. Es sei $X : \Omega \to \mathbb{R}$ eine Zufallsvariable. Wir setzen voraus, dass das Integral $\int_{\Omega} dx |X(x)| f(x)$ existiert. Der Erwartungswert von $X : \Omega \to \mathbb{R}$ ist dann definiert als

$$\mathbb{E}(X) := \int_{\Omega} \mathrm{d}x X(x) f(x). \tag{1}$$

Beispiele 1 und 2 von Seite 83 wurden behandelt. Es wurde Satz 3.3.4 besprochen, und es wurde ebenso die Ungleichung von Tschebycheff (Satz 8.2.2) aus dem späteren Kapitel 8 besprochen und auch bewiesen. Diese motiviert nämlich, warum wir uns für $\mathbb{E}((X - \mathbb{E}(X))^2)$ interessieren. Dies ist gerade die Varianz von X, die wir wie in Def. 3.3.8 definiert haben. Da $\mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$ gilt, kann mithilfe von Satz 3.3.4 (iii) gezeigt werden, dass stets $\mathbb{E}(X^2) \geq \mathbb{E}(X)^2$ gilt. Hierzu setzen wir $X = 0, Y = (X - \mathbb{E}(X))^2$ in Satz 3.3.4 (iii).