Quantum Engineering and Technology (QET)

Developed by Luca Dal Negro

Course Syllabus

Shall I refuse my dinner because I do not fully understand the process of digestion? No, not if I am satisfied with the result. (O. Heaviside, Electromagnetic Theory, vol. 2, 1899)

1. General introduction to the course (2 lectures)

- 1.1.1. The quantum manifesto
- 1.1.2. Quantum technology in industry
- 1.1.3. Quantum engineers
- 1.2. Thinking and questioning in quantum mechanics
 - 1.2.1. The logic of quantum mechanics through examples
 - 1.2.1.1. Stern-Gerlach (SG) and double slit experiments
 - 1.2.1.2. Sequential choice experiments
 - 1.2.1.3. Wheeler's delayed-choice experiment
 - 1.2.2. Excerpts from the Bohr–Einstein debate

2. A toolbox for quantum engineers (8 lectures)

- 2.1. Description of physical systems in quantum mechanics
 - 2.1.1. Classical versus quantum systems
 - 2.1.2. Dynamical variables
 - 2.1.3. State description approach
- 2.2. The algebra of quantum mechanics
 - 2.2.1. Linear algebra in Dirac notation
 - 2.2.2. Hilbert Space and function spaces
 - 2.2.3. Linear operators and spectral decompositions
- 2.3. Operator representations: discrete and continuous bases
 - 2.3.1. Quantum dynamics
 - 2.3.2. Commutators and general uncertainty relations
- 2.4. Measurements in quantum mechanics
 - 2.4.1. Noise and decoherence
 - 2.4.2. Detector back-action and Rabi spectroscopy
 - 2.4.3. Quantum non-demolition (QND) measurements
 - 2.4.4. Weak measurements and the quantum Zeno effect

3. Quantum principles in action (4 lectures)

- 3.1. *Interfering probabilities*
 - 3.1.1. Superposition of quantum amplitudes
 - 3.1.2. Uncertainty description and the density operator
- 3.2. Quantum oscillations
 - 3.2.1. Harmonic oscillators
 - 3.2.2. General two-level systems
 - 3.2.3. Examples using quantum spin and polarization
- 3.3. Light matter interaction
 - 3.3.1. The Fermi golden rule
 - 3.3.2. Strong coupling
- 3.4. Composite systems
 - 3.4.1. Entangled states
 - 3.4.2. Quantum correlations
 - 3.4.3. Bell's theorem

4. Quantum technology (5 lectures)

- 4.1. Quantum metrology and sensing
 - 4.1.1. Interferometry with matter waves
 - 4.1.2. Quantum imaging and lithography
 - 4.1.3. Remote sensing
 - 4.1.4. Quantum radars
- 4.2. Quantum communication and cryptography
 - 4.2.1. Classical logic and computation
 - 4.2.2. Qubits in quantum computation
- 4.3. Quantum gates and circuits
 - 4.3.1. Universal quantum gates
 - 4.3.2. The no- theorems
 - 4.3.3. Quantum key distribution
- 4.4. Quantum programming
 - 4.4.1. The IBM Quantum Experience
- 4.5. A survey of quantum technology in industry
 - 4.5.1. Google AI Sycamore quantum processor
 - 4.5.2. The IBM Q System One
 - 4.5.3. The Quantum Artificial Intelligence Lab
 - 4.5.4. D-Wave Systems

5. Photons and atoms as quantum information carriers (4 lectures)

- 5.1. Photons and single-photon sources
 - 5.1.1. Entangled photon sources
 - 5.1.2. Quantum communication with single photons
- 5.2. Solid-state quantum qubits
 - 5.2.1. Quantum memories
 - 5.2.2. Quantum networks
- 5.3. Physical implementations of quantum devices
 - 5.3.1. Photons and spin systems
 - 5.3.2. High Q optical cavities and photon circuits
 - 5.3.3. Quantum transport in low dimensional structures
 - 5.3.4. Quantum noise and decoherence
- 5.4. Emerging directions for quantum supremacy
 - 5.4.1. Quantum metamaterials and transmission lines
 - 5.4.2. Adiabatic quantum computing (AQC)
 - 5.4.3. Quantum engines
 - 5.4.4. Quantum learning

Topics for final projects

- 1.1. EPR and non-locality
 - 1.1.1. Local realism
 - 1.1.2. Testing non-locality
- 1.2. Superconducting quantum circuits
- 1.3. Quantum neural networks
- 1.4. Industry and quantum technology
 - 1.4.1. Rigetti Computing
 - 1.4.2. The Quantum Artificial Intelligence Lab
- 1.5. The quantum internet
- 1.6. Quantum imaging
- 1.7. Low-dimensional quantum devices
- 1.8. Quantum algorithms
 - 1.8.1. The BB84 protocol
 - 1.8.2. Deutsch's algorithm
 - 1.8.3. Shor's algorithm
 - 1.8.4. Grover's searches
 - 1.8.5. Super-dense coding

Textbook

Quantum Engineering: Theory and Design of Quantum Coherent Structures, by A. M. Zagoskin, Cambridge University Press. 2011

Notes prepared by the instructor will be distributed.

Additional references

- *Introduction to Optical Quantum Information Processing*, by Pieter Kok and Brendon W. Lovett, Cambridge University Press, 2010
- Quantum Mechanics: Fundamentals and applications to technology, by J. Singh, John Wiley and Sons, 1997
- Quantum computation and information, by Michael A. Nielsen and Isaak L. Chuang, Cambridge University Press, 2011
- Quantum computing for everyone, by Chris Bernhardt, MIT Press, 2019
- Quantum Mechanics: The theoretical minimum by L. Susskind and A Friedman, Basic Books 2014 (attention: strongly advised to read this book independently before the beginning of the course)

Prerequisites: CAS MA 225 (Multivariate Calculus), Linear Algebra, ENG EK 127/128 (Engineering Computation), ENG EK 102/CAS MA 142 (Intro linear algebra), CAS PY 313 / 314 (Waves and Modern Physics). Background knowledge in classical electrodynamics, semiconductors physics, and quantum mechanics. Talk to the instructor before registering if unsure.