Importing Libraries

```
In [2]: import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import math as m
   import numpy as np
```

Reading dataset

```
In [3]: df=pd.read_csv("C:/Users/Hp/Downloads/insurance.csv")
In [183]: pd.options.mode.chained_assignment = None
```

Understanding Dataset

The insurance dataset typically refers to a dataset containing information about individuals and their health insurance-related attributes. It's a common dataset used for analysis

In [199]:	df							
Out[199]:		age	sex	bmi	children	smoker	region	charges
	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	NaN	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520
	1333	50	male	30.970	3	no	northwest	10600.54830
	1334	18	female	31.920	0	no	northeast	2205.98080
	1335	18	female	36.850	0	no	southeast	1629.83350
	1336	21	female	25.800	0	no	southwest	2007.94500
	1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

Data types of coloumn

```
In [56]:
         df.dtypes
Out[56]: age
                       int64
                      object
         sex
                     float64
         bmi
                       int64
         children
         smoker
                      object
         region
                      object
         charges
                     float64
         dtype: object
In [57]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1338 entries, 0 to 1337
         Data columns (total 7 columns):
          #
              Column
                        Non-Null Count Dtype
                        -----
          0
                        1338 non-null
                                        int64
              age
                        1338 non-null
          1
                                       object
              sex
          2
              bmi
                        1332 non-null
                                      float64
                                      int64
          3
              children 1338 non-null
          4
                       1338 non-null
                                      object
              smoker
          5
              region
                        1338 non-null
                                        object
              charges
                       1338 non-null
                                        float64
         dtypes: float64(2), int64(2), object(3)
         memory usage: 73.3+ KB
```

Number of rows and column

```
In [58]: df.shape
Out[58]: (1338, 7)
In [59]: df.head()
Out[59]: age sex bmi children smoker region charges
```

_		age	sex	bmi	children	smoker	region	charges
_	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	NaN	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520

	age	sex	bmi	children	smoker	region	charges
1333	50	male	30.97	3	no	northwest	10600.5483
1334	18	female	31.92	0	no	northeast	2205.9808
1335	18	female	36.85	0	no	southeast	1629.8335
1336	21	female	25.80	0	no	southwest	2007.9450
1337	61	female	29.07	0	yes	northwest	29141.3603

```
In [61]: df.sample()
```

Out[61]:		age sex		bmi children		smoker	region	charges
	1115	55	male	32.67	1	no	southeast	10807.4863

Cleaning Dataset

```
In [62]: df.dtypes

Out[62]: age     int64
     sex     object
     bmi     float64
     children     int64
     smoker     object
     region     object
     charges     float64
     dtype: object
```

```
In [63]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):

#	Column	Non-Null	Count	Dtype
0	age	1338 non	-null	int64
1	sex	1338 non	-null	object
2	bmi	1332 non	-null	float64
3	children	1338 non	-null	int64
4	smoker	1338 non	-null	object
5	region	1338 non	-null	object
6	charges	1338 non	-null	float64
dtyp	es: float6	4(2), int	64(2),	object(3)
memo	ry usage:	73.3+ KB		

```
In [64]: df.isnull()
```

Out[64]:

	age	sex	bmi	children	smoker	region	charges
0	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False
2	False	False	True	False	False	False	False
3	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False
1333	False	False	False	False	False	False	False
1334	False	False	False	False	False	False	False
1335	False	False	False	False	False	False	False
1336	False	False	False	False	False	False	False
1337	False	False	False	False	False	False	False

1338 rows × 7 columns

lets check the null values in dataset

checking the count of values in children column

```
In [71]: df.bmi.value_counts()
Out[71]: 32.300
                    13
         28.310
                     9
          30.875
                     8
          28.880
                     8
          30.800
                     8
         46.700
                     1
         46.200
                     1
         23.800
                     1
         44.770
                     1
          30.970
         Name: bmi, Length: 548, dtype: int64
```

here we remove the null value of column 'bmi' with mean value of columns

lets check the bmi column

understanding columns

Age: It contains distribution of age.

Sex: Gender (male or female).

BMI (Body Mass Index): A measure of body fat based on height and weight.

Children: Number of children covered by the insurance.

Smoker: Number of individual is a smoker or non-smoker.

Region: The geographical region of individual (southeast, southwest, northeast, northwest).

Charges: The insurance cost by the individual.

Categorical Data:

sex

smoker

region

Quantitative Data:

age

bmi

children

charges

(1) sex

```
In [91]: df.sex.unique()
Out[91]: array(['female', 'male'], dtype=object)
In [92]: df.sex.value_counts()
Out[92]: male    676
    female    662
    Name: sex, dtype: int64
```

(2) age

```
In [99]: df.age.unique()
Out[99]: array([19, 18, 28, 33, 32, 31, 46, 37, 60, 25, 62, 23, 56, 27, 52, 30, 34, 59, 63, 55, 22, 26, 35, 24, 41, 38, 36, 21, 48, 40, 58, 53, 43, 64, 20, 61, 44, 57, 29, 45, 54, 49, 47, 51, 42, 50, 39], dtype=int64)
```

```
In [100]:
           df.age.value_counts()
Out[100]: 18
                  69
           19
                  68
           50
                  29
           51
                  29
           47
                  29
           46
                  29
           45
                  29
           20
                  29
           48
                  29
           52
                  29
            22
                  28
           49
                  28
           54
                  28
           53
                  28
           21
                  28
           26
                  28
           24
                  28
            25
                  28
           28
                  28
           27
                  28
           23
                  28
           43
                  27
           29
                  27
           30
                  27
           41
                  27
           42
                  27
           44
                  27
           31
                  27
                  27
           40
           32
                  26
            33
                  26
           56
                  26
            34
                  26
            55
                  26
           57
                  26
            37
                  25
            59
                  25
            58
                  25
            36
                  25
            38
                  25
            35
                  25
           39
                  25
           61
                  23
           60
                  23
           63
                  23
           62
                  23
                  22
           64
           Name: age, dtype: int64
```

localhost:8888/notebooks/FIREBLAZE/Project (Insurance) case study .ipynb

```
In [101]:
          df.age.describe()
Out[101]: count
                    1338.000000
           mean
                      39.207025
           std
                      14.049960
           min
                      18.000000
           25%
                      27.000000
           50%
                      39.000000
           75%
                      51.000000
                      64.000000
           max
           Name: age, dtype: float64
In [277]: | df['age'].aggregate(['max'])
Out[277]: max
                  64
           Name: age, dtype: int64
In [279]: |df['age'].aggregate(['min'])
Out[279]: min
                  18
           Name: age, dtype: int64
```

(3) bmi

```
In [106]:
          df.bmi.unique()
                             , 33.77
                                                                   , 28.88
Out[106]: array([27.9
                                           30.6651952, 22.705
                               33.44
                                           27.74
                                                                     25.84
                  25.74
                                                      , 29.83
                                                                   , 42.13
                  26.22
                               26.29
                                           34.4
                                                       39.82
                                                                   , 36.005
                  24.6
                             , 30.78
                                           23.845
                                                      , 40.3
                                                                   , 27.72
                             , 34.1
                                                      , 28.025
                  32.4
                                           31.92
                  23.085
                               32.775
                                           17.385
                                                      , 36.3
                                                                     35.6
                             , 28.6
                                                      , 36.4
                  26.315
                                           28.31
                                                                     20.425
                  32.965
                             , 20.8
                                           36.67
                                                      , 39.9
                                                                     26.6
                  36.63
                               21.78
                                           30.8
                                                        37.05
                                                                     37.3
                  38.665
                               34.77
                                           24.53
                                                      , 35.2
                                                                     35.625
                  33.63
                             , 28.
                                         , 34.43
                                                      , 28.69
                                                                   , 36.955
                                                                   , 27.36
                             , 31.68
                                          , 22.88
                                                      , 37.335
                  31.825
                  33.66
                               24.7
                                           25.935
                                                      , 22.42
                                                                     28.9
                             , 36.19
                                                      , 24.75
                  39.1
                                           23.98
                                                                     28.5
                             , 32.01
                                         , 27.4
                                                      , 34.01
                                                                   , 29.59
                  28.1
                  35.53
                             , 39.805
                                                      , 38.285
                                                                   , 37.62
                                           26.885
                                                      , 31.16
                  41.23
                               34.8
                                           22.895
                                                                     27.2
                            , 39.49
                                                      , 31.3
                                                                   , 38.28
                  26.98
                                           24.795
                             , 19.3
                                          , 31.6
                                                      , 25.46
                                                                   , 30.115
                  19.95
```

```
In [107]: df.bmi.value_counts()
Out[107]: 32.300
                     13
           28.310
                      9
                      8
           34.100
           28.880
                      8
           30.875
           46.200
           23.800
                      1
           44.770
           32.120
                      1
           30.970
                      1
           Name: bmi, Length: 549, dtype: int64
In [109]: |df['bmi'].aggregate(['max'])
Out[109]: max
                  53.13
          Name: bmi, dtype: float64
In [111]: |df['bmi'].aggregate(['min'])
Out[111]: min
                  15.96
          Name: bmi, dtype: float64
In [112]: |df['bmi'].aggregate(['mean'])
Out[112]: mean
                   30.665195
           Name: bmi, dtype: float64
           (4) smoker
In [102]: | df.smoker.unique()
Out[102]: array(['yes', 'no'], dtype=object)
In [103]: | df.smoker.value_counts()
Out[103]: no
                  1064
                   274
           yes
           Name: smoker, dtype: int64
           (4) region
In [104]: | df.region.unique()
Out[104]: array(['southwest', 'southeast', 'northwest', 'northeast'], dtype=object)
```

In [105]:

df.region.value_counts()

```
Out[105]: southeast
                        364
          southwest
                        325
          northwest
                        325
          northeast
                        324
          Name: region, dtype: int64
          (5) charges
In [113]: | df.charges.unique()
Out[113]: array([16884.924 ,
                               1725.5523, 4449.462, ..., 1629.8335,
                  29141.3603])
In [114]: | df.charges.value_counts()
Out[114]: 1639.56310
                          2
          16884.92400
                          1
          29330.98315
                          1
          2221.56445
                          1
          19798.05455
          7345.08400
                          1
          26109.32905
                          1
          28287.89766
                          1
          1149.39590
                          1
          29141.36030
                          1
          Name: charges, Length: 1337, dtype: int64
In [115]: |df['charges'].aggregate(['max'])
Out[115]: max
                  63770.42801
          Name: charges, dtype: float64
In [116]: |df['charges'].aggregate(['min'])
Out[116]: min
                  1121.8739
          Name: charges, dtype: float64
In [117]: |df['charges'].aggregate(['mean'])
Out[117]: mean
                   13271.008266
          Name: charges, dtype: float64
```

UNIVARIATE ANALYSIS

categorical data

```
In [4]: df.info()
```

float64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
 # Column Non-Null Count Dtype
--- 0 age 1338 non-null int64
1 sex 1338 non-null object

2 bmi 1332 non-null float64 3 children 1338 non-null int64 4 smoker 1338 non-null object 5 region 1338 non-null object

dtypes: float64(2), int64(2), object(3)

charges 1338 non-null

memory usage: 73.3+ KB

6

```
In [210]: df['sex'].value_counts().plot(kind='bar',color=(['darkred','darkred']))
    plt.title('Gender wise count',size=20,c='red')

    plt.xlabel('Gender',c='red',size=15,fontweight='bold')
    plt.ylabel('Count',c='red',size=15,fontweight='bold')

    plt.text(0,610,'676',color='white',size=15,fontweight='bold')
    plt.text(1,610,'662',color='white',size=15,fontweight='bold')

    plt.xticks(rotation='horizontal',color='red',fontsize=10)
    plt.yticks(color='red',fontsize=10)

    plt.show()
```


Here we can observe number of male are more

```
In [204]: df['smoker'].value_counts().plot(kind='bar',color='darkblue')

plt.title('Smoker wise count',size=20,color='blue')

plt.xticks(rotation='horizontal',color='darkblue')

plt.yticks(color='darkblue')

plt.xlabel('Smoker',c='darkblue',size=15,fontweight='bold')

plt.ylabel('Count',c='darkblue',size=15,fontweight='bold')

plt.text(0,1000,'1064',color='white',size=15,fontweight='bold')

plt.text(1,200,'274',color='white',size=15,fontweight='bold')

plt.show()
```

Smoker wise count

Here we can observe number of no's are more

```
In [208]: df['region'].value_counts().plot(kind='bar',color='green')

plt.title('Region wise count',size=20,color='green')

plt.xticks(rotation='horizontal',color='darkgreen')

plt.yticks(color='darkgreen')

plt.xlabel('Region',c='darkgreen',size=15,fontweight='bold')

plt.ylabel('Count',c='darkgreen',size=15,fontweight='bold')

plt.text(0,370,'364',color='black',size=10,fontweight='bold')

plt.text(1,370,'325',color='black',size=10,fontweight='bold')

plt.text(2,370,'325',color='black',size=10,fontweight='bold')

plt.text(3,370,'324',color='black',size=10,fontweight='bold')

plt.show()
```



```
In [244]: df['age'].value_counts().plot(kind='bar',color=['red','yellow'])

plt.xticks(color='blue',size=8)
plt.yticks(color='blue')

plt.title('Age',size=20,c='red')

plt.xlabel('Age',size=15,fontweight='bold')
plt.ylabel('Count',size=15,fontweight='bold')

plt.show()
```


Observations of univariate Analysis

1.In gender column number of male are more.

2.number of non-smokers is more.

3.people are more from southeast.

Bivariate Analysis

Reletion between the age and the charges

```
In [246]: sns.scatterplot(data=df,y='charges',x='age')
    plt.xticks(color='k',size=8)
    plt.yticks(color='k')

    plt.title('Age vs Charges',size=20,c='red',fontweight='bold')

    plt.xlabel('Age',size=15,fontweight='bold')
    plt.ylabel('Charges',size=15,fontweight='bold')

    plt.grid()
    plt.show()
```


Based on the data we observe that there is a positive correlation between age and charges as age increases the charges also increase.

```
In [253]: sns.regplot(data=df,y='charges',x='age')
    plt.title('Age vs Charges',size=20,c='red')
    plt.xlabel('Age',size=15,fontweight='bold')
    plt.ylabel('Charges',size=15,fontweight='bold')
    plt.show()
```


Sex vs Charges

```
In [257]: sns.barplot(data=df,y='charges',x='sex')
    plt.xticks(color='k')
    plt.yticks(color='k')

    plt.title('Sex vs Charges',size=20,c='Blue',fontweight='bold')

    plt.xlabel('Sex',size=15,fontweight='bold')
    plt.ylabel('Charges',size=15,fontweight='bold')

    plt.grid()
    plt.show()
```


Based on the data we observe that there is correlation between sex and charges as count of male is more

```
In [258]: sns.boxplot(data=df,y='charges',x='children')
    plt.xticks(color='k')
    plt.yticks(color='k')

    plt.title('Children vs Charges',size=20,c='Blue',fontweight='bold')

    plt.xlabel('Children',size=15,fontweight='bold')
    plt.ylabel('Charges',size=15,fontweight='bold')

    plt.grid()

    plt.show()
```


Chrages vs Bmi

```
In [259]: sns.scatterplot(data=df,x='charges',y='bmi')
    plt.xticks(color='k')
    plt.yticks(color='k')

    plt.title('Charges vs bmi',size=20,c='Green',fontweight='bold')

    plt.xlabel('Children',size=15,fontweight='bold')
    plt.ylabel('Charges',size=15,fontweight='bold')

    plt.grid()
    plt.show()
```


there is no relation between the bmi, children with charges

Charges vs Smokers

```
In [261]: sns.barplot(data=df,x='charges',y='smoker')

plt.xticks(color='k')
plt.yticks(color='k')

plt.title('Charges vs Smokers',size=20,c='Blue',fontweight='bold')

plt.xlabel('Charges',size=15,fontweight='bold')
plt.ylabel('Smokers',size=15,fontweight='bold')

plt.grid()
plt.show()
```


Based on the data we observe that there is correlation between smokers and charges. smoker have to pay the more charges as compare to non-smokers

Region vs Charges

```
In [264]: sns.jointplot(data=df,x='region',y='charges',color='cyan')
    plt.xticks(color='k')
    plt.yticks(color='k')
    plt.xlabel('Region',size=15,fontweight='bold')
    plt.ylabel('Charges',size=15,fontweight='bold')
    plt.show()
```


In [269]: sns.pairplot(data=df)
 plt.show()

In [195]: sns.pairplot(data=df,hue='smoker')
plt.show()

Observation of Bivariate Analysis

- 1. There is a positive correlation between age and charges as age increases the charges also increase.
- 2. Count of male is more as per insurance charges

Multivariate Analysis

smokers count by region

```
In [170]: df[['region','smoker']].value_counts().plot(kind='pie',autopct='%0.2f%%')
    plt.grid()
    plt.show()
```



```
In [120]: data=df.groupby(['region','smoker']).size().unstack()
    print(data)
```

smoker	no	yes
region		
northeast	257	67
northwest	267	58
southeast	273	91
southwest	267	58

```
In [275]: data.plot(kind='bar')
    plt.title('Smokers count by Region',size='20')
    plt.xticks(color='k',rotation='horizontal')
    plt.yticks(color='k')

    plt.xlabel('Region',size=15,fontweight='bold')
    plt.ylabel('Count',size=15,fontweight='bold')

    plt.grid()
    plt.show()
```


this is the distribution.

Distribution between the charges and region

```
In [173]:
          data5=df[['region','charges']]
          print(data5)
                    region
                                charges
                southwest 16884.92400
          0
          1
                southeast 1725.55230
          2
                southeast
                          4449.46200
          3
                northwest 21984.47061
                northwest 3866.85520
          1333
                northwest 10600.54830
          1334
                northeast
                           2205.98080
                southeast
                             1629.83350
          1335
          1336
                southwest
                             2007.94500
          1337 northwest 29141.36030
          [1338 rows x 2 columns]
In [175]:
          data5.aggregate(['max'])
Out[175]:
                  region
                            charges
           max southwest 63770.42801
          data5.aggregate(['min'])
Out[177]:
                 region
                         charges
           min northeast 1121.8739
```

```
In [276]: sns.barplot(data=df,x='region',y='charges')
    plt.title("Region vs Charges",size=20)
    plt.xticks(color='k',rotation='horizontal')
    plt.yticks(color='k')
    plt.xlabel('Region',size=15,fontweight='bold')
    plt.ylabel('Charges',size=15,fontweight='bold')
    plt.grid()
    plt.show()
```


number of people from southeast's pay more charges and you can observe distribution .

southwest - maximum insurance charge

northeast - minimum insurance charges

Age wise smokers count

smoker	no	yes	
age			
18	57	12	
19	50	18	
20	20	9	
21	26	2	
22	22	6	
23	21	7	
24	22	6	
25	23	5	
26	25	3	
27	19	9	
28	25	3	
29	21	6	
30	18	9	
31	22	5	
32	21	5	
33	20	6	
34	21	5	
35	20	5	
36	19	6	
37	16	9	
38	23	2	
39	19	6	
40	22	5	
41	25	2	
42	19	8	
43	15	12	
44	21	6	
45	24	5	
46	24	5	
47	19	10	
48	24	5	
49	24	4	
50	25	4	
51	23	6	
52	23	6	
53	23	5	
54	23	5	
55	24	2	
56	22	4	
57	22	4	
58	24	1	
59	21	4	
60	18	5	
61	17	6	
62	19	4	
63	18	5	
64	15	7	
J .		,	

In [184]: df.corr()

C:\Users\Hp\AppData\Local\Temp\ipykernel_14280\1134722465.py:1: FutureWarn
ing: The default value of numeric_only in DataFrame.corr is deprecated. In
a future version, it will default to False. Select only valid columns or s
pecify the value of numeric_only to silence this warning.
 df.corr()

Out[184]:

	age	bmi	children	charges
age	1.000000	0.109516	0.042469	0.298970
bmi	0.109516	1.000000	0.012513	0.198433
children	0.042469	0.012513	1.000000	0.068073
charges	0.298970	0.198433	0.068073	1.000000

In [185]: sns.heatmap(df.corr(),annot=True)

C:\Users\Hp\AppData\Local\Temp\ipykernel_14280\4277794465.py:1: FutureWarn
ing: The default value of numeric_only in DataFrame.corr is deprecated. In
a future version, it will default to False. Select only valid columns or s
pecify the value of numeric_only to silence this warning.
 sns.heatmap(df.corr(),annot=True)

Out[185]: <Axes: >


```
In [151]: data1.plot(kind='bar')
    plt.title('Smokers count by age',size='20')
    plt.show()
```


Obesrvations on Mutivariate Analysis

- 1.It show that southeast people smoke more .
- 2.number of people from southeast's pay more charges and you can observe distribution .
- 3.southwest maximum insurance charge
- 4.northeast minimum insurance charges
- 5.teenagers smoke more and large number of non-smokers also belong to teenagers.