Vanshika Sharma

+1 862-433-9846 | vanshika.sh3143@gmail.com | LinkedIN | GitHub | TowardsDataScience

Summary

A Machine Learning Engineer with an extensive experience of 5 years in leveraging Generative AI models, frameworks like LLMs, Dall-e, LlamaIndex, Langchain, Retrieval Augmented Generation (RAG); creating end-to-end data modeling pipelines through Azure and AWS. Specialized in Software Development and ML Algorithms with a Master's degree in Computer Science, with a curriculum focused in Data Science.

Technical Skills

Programming: Python, PyTorch, TensorFlow, Keras, PySpark, Natural Language Processing, Statistics, SQL Technologies: Azure Cloud, Git, AWS Sagemaker, Generative AI, LLMs, Azure Datbricks, Azure Data Factory, MLFlow

Packages: Scikit-Learn, OpenCV, NLTK, SpaCy, Transformers, Docker, Kubernetes, MLflow, PyTorch Lightning

Work Experience

Machine Learning Engineer

Jan 2023-Present

Nagarro Inc.

- Atlanta, GA, USA• Leveraged LLMs to extract precise database insights through chatbots developed for a major Automotive Client's
- Warranty data domain, fine-tuned models via PEFT, and deployed with Azure ML • Worked on devising and executing end-to-end LLM pipelines using RAG and Prompt Engineering to extract

valuable insights from client-specific data sources with over 90 percent tested credibility

• Contributed to a 6-member team in design and construction of an Azure Data Factory pipeline integrated with Databricks PySpark scripts to perform seamless Data Migration between two different database platforms

Research Assistant (Machine Learning)

May 2022-Sept 2023

SUNY Stony Brook University

New York, USA

- Performed accurate conditional Lung CT Image Generation using Denoising Probabilistic Diffusion Models to build high resolution augmented, conditioned datasets used for diagnosis model training and validation
- Incorporated a conditioned element by fine-tuning the model based on organ size into the image generation process, achieving an 80 percent accuracy rate in generating condition-specific images
- Integrated Visual (CCTV) and Sensor (IMU) Tracking to perform real-time indoor pedestrian tracking with over 90 percent accuracy using YOLOV3 models and Transformers

Machine Learning Engineer

Jun 2019-Aug 2021

TMotions Global Ltd.

New Delhi, India

- Orchestrated and managed end-to-end Machine Learning Dev pipelines from development to deployment on AWS for Portuguese Government's traffic management system
- Utilized Amazon SageMaker for model training and hosting, Docker for containerization, and AWS Lambda for serverless computing, used CloudWatch for real-time model performance monitoring
- Developed a Few-Shot Learning Model for an E-commerce website using Siamese Neural Networks to classify over 5000 jewellery designs, reducing manual effort by over 2 hours, streamlining cataloging processes
- Leveraged BERT, a state-of-the-art transformer model, for document parsing and Named Entity Recognition (NER), efficiently extracting structured information from unstructured data sources for Portuguese Government's traffic management system
- Gathered requirements directly from clients, proposed and developed end-to-end solutions, ensuring alignment with client needs and satisfaction

EDUCATION

Stony Brook University, State University of New York

Aug 2021-May 2023

Masters in Computer Science, specializing in Data Science/ML Domain

Birla Institute of Technology and Science Pilani

Aug 2015-Jun 2019

Bachelor's in Engineering, Computer Science

Lung CT Image Generation | Pytorch/GPU

Jan 2022 - May 2022

- Generated accurate Lung CT Images using Denoising Probabilistic Diffusion Models, enhanced by 90 percent
- Incorporated a conditioned element by fine-tuning the model based on organ size into the image generation process, achieving an 80 percent accuracy rate in generating condition-specific images
- Link to project and results: | LINK |

IMU and Visual Sensor Pedestrian Tracking | Tensorflow/Pose Estimator

Jan 2022 - May 2022

- Real-time Indoor Pedestrian Tracking system using IMU data and CCTV feed, achieving 90 percent accuracy.
- Integrated Dead Reckoning using transformers with YOLOV3 for seamless tracking in dynamic environments.
- Link to project and results: | LINK |