Complex Analysis

Notes by Albert Zhang

May 27, 2020

I wrote these set of notes to review some of the concepts from the latter half of the course. The Riemann Mapping Theorem is hard.

Contents

1	Argument Principle & Corollaries	2
2	Conformal Mappings	4
	2.1 The Disc & Upper Half Plane	5
	2.2 Automorphisms of the Disc & Upper Half Plane	5
	2.3 The Riemann Mapping Theorem	7

1 Argument Principle & Corollaries

Theorem 1.1 (Argument Principle)

Suppose f is meromorphic in an open set containing a circle C and its interior. If f has no poles nor zeros on C, then

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = (\# \text{ of zeros of } f \text{ inside } C)$$
$$- (\# \text{ poles of } f \text{ inside } C)$$

Proof. Suppose f has a zero of order N at, say, 0. Then we can write

$$f(z) = z^N g(z)$$

for some holomorphic g non-vanishing in a neighborhood of 0. Then

$$\frac{f'(z)}{f(z)} = \frac{Nz^{N-1}g(z) + z^N g'(z)}{z^N g(z)} = \frac{N}{z} + \frac{g'(z)}{g(z)}.$$

Note that the quotient g'(z)/g(z) is holomorphic in a neighborhood of 0. Similarly, if there were a pole of order N at 0, we'd have

$$\frac{f'(z)}{f(z)} = \frac{-N}{z} + \frac{h'(z)}{h(z)}.$$

Now, since f is meromorphic, we have accounted for all the poles of f'/f, which are simple with residues corresponding to the orders of the zeros and poles of f. Therefore, an application of the residue formula gives us the desired result.

Corollary 1.2 (Rouche's Theorem)

Suppose f and g are holomorphic in an open set containing a circle C and its interior. If

$$|f(z)| > |g(z)| \quad \forall z \in C,$$

then f and f + g have the same number of zeros inside the circle C.

Proof. For $t \in [0, 1]$, define

$$f_t(z) = f(z) + tg(z).$$

Let n_t denote the number of zeros of f_t inside the circle, counting multiplicities. In particular, $n_t \in \mathbb{Z}$ for all t. By the Argument Principle, we have

$$n_t = \frac{1}{2\pi i} \int_C \frac{f_t'(z)}{f_t(z)} dz.$$

Our method of proof will be to show that n_t is a continuous function of t, hence implying that it must be constant. Denote $h_t(z) = f'_t(z)/f_t(z)$. Since $C \times [0,1]$ is a compact set and $h_t(z)$ is a continuous function of t and z, we may apply the Bounded Convergence Theorem to get

$$\lim_{s \to t} \left| \int_C h_t(z) - h_s(t) dz \right| \le \lim_{s \to t} \int_C |h_t(z) - h_s(z)| dz = 0.$$

This implies that n_t is continuous, so that $f_0 = f$ and $f_1 = f + g$ have the same number of zeros inside C.

Corollary 1.3 (Open Mapping Theorem)

If $f: \Omega \to \mathbb{C}$ is holomorphic a nonconstant, then it is an *open mapping*, i.e. it sends open sets to open sets.

Proof. Let $U \subset \Omega$ be an open set, and $w_0 = f(z_0)$ for $z_0 \in U$. Then we must show that for all points w close to w_0 , that w also belongs to f(U). Choose $\delta > 0$ sufficiently small so that the disc $D_{\delta}(z_0)$ is contained in U and $f(z) \neq w_0$ on the circle $C = \partial D_{\delta}(z_0)$. Note that if we were unable to pick such a δ , then f would have a sequence of zeros limiting to z_0 , enforcing $f \equiv 0$, contradicting our nonconstant assumption.

Now, choose $\epsilon > 0$ small enough so that $|f(z) - w_0| > \epsilon$ for $z \in C$ (we can do this since f is continuous, and C is compact). Then for $w \in D_{\epsilon}(w_0)$, define

$$g(z) = f(z) - w = (f(z) - w_0) + (w_0 - w) = F(z) + G(z).$$

We have that F and G are holomorphic on U containing $D_{\delta}(z_0)$, and that

$$|F(z)| = |f(z) - w_0| > \epsilon > |w_0 - w|,$$

for all $z \in C$. So, by Rouche's Theorem, we see that F and F+G have the same number of zeros inside C. Since F has at least one zero, i.e. $F(z_0) = 0$, there exists a $z \in U$ such that f(z) = w, as desired.

Corollary 1.4 (Maximum Modulus Principle)

If f is a non-constant holomorphic function on an open domain Ω , then f cannot achieve a maximum in Ω . Furthermore, if $\overline{\Omega}$ is compact, and f is continuous on $\overline{\Omega}$, then f achieves its maximum on $\partial\Omega$.

Proof. Suppose f achieves a maximum at $z_0 \in \Omega$. Then since f is an open mapping, we see that the image of a neighborhood of z_0 is open, and in particular contains points z such that $|f(z)| > |f(z_0)|$, a contradiction.

Furthermore, if $\overline{\Omega}$ is compact and f is continuous on $\overline{\Omega}$, then $f(\overline{\Omega})$ is compact, and in particular achieves its maximum somewhere in $\overline{\Omega} \setminus \Omega = \partial \Omega$.

2 Conformal Mappings

Essentially the homeomorphisms of topology, *conformal mappings* are holomorphic bijections. It will turn out that the inverse mapping is also holomorphic.

Proposition 2.1

If $f: U \to V$ is holomorphic and injective, then $f'(z) \neq 0$ for $z \in U$.

Proof. Suppose for sake of contradiction that $f'(z_0) = 0$ for some $z_0 \in U$. Then, considering the Taylor expansion, we may write

$$f(z) - f(z_0) = a(z - z_0)^k + G(z),$$

where $a \neq 0$, $k \geq 2$, and G is holomorphic vanishing at z_0 with order k + 1. Now, pick $\delta > 0$ small enough so that

- $f'(z) \neq 0$ for $z \neq z_0$ and $|z z_0| \leq \delta$.
- $|a\delta^k|/2 > |G(z)|$ for $|z z_0| = \delta$.

Then set $\epsilon = a\delta^k/2$, so that by Rouche's Theorem,

$$|a(z-z_0)^k| = a\delta^k > \epsilon$$

implies that $a(z-z_0)^k$ and $a(z-z_0)^k + \epsilon$ have the same number of roots in $B_{\delta}(z_0)$, i.e. they both have two roots. Furthermore, if we let $F(z) = a(z-z_0)^k + \epsilon$, then

$$|F(z)| \ge |a(z - z_0)^k| - |\epsilon| = |a\delta^k|/2 > |G(z)|$$

for all $|z-z_0|=\delta$. So, by another application of Rouche's Theorem, we see that $F(z)+G(z)=f(z)+f(z_0)+\epsilon$ has two roots in $B_{\delta}(z_0)$. Furthermore, these two roots are distinct, since we chose δ so that $f'(z)\neq 0$ in the δ vicinity. But then $f(z)+f(z_0)+\epsilon$ is not injective, so neither is f(z), a contradiction.

Corollary 2.2

The inverse of a conformal mapping $f: U \to V$ is holomorphic.

Proof. Let $g = f^{-1}$ denote the inverse of f. Let $w_0 \in V$ and $w \to w_0$. We write $w_0 = f(z_0)$ and w = f(z). Then if $w \neq w_0$, we have

$$\frac{g(w) - g(w_0)}{w - w_0} = \frac{1}{\frac{f(z) - f(z_0)}{z - z_0}}.$$

Since $f'(z_0) \neq 0$, we may take the limit and deduce that g is holomorphic at w_0 with

$$g'(w_0) = \frac{1}{f'(g(w_0))}.$$

2.1 The Disc & Upper Half Plane

We use $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ to denote the unit disc and $\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ to denote the upper half plane.

Theorem 2.3

There exists a conformal mapping between \mathbb{H} and \mathbb{D} .

Proof. Consider the map $F: \mathbb{H} \to \mathbb{D}$ given by

$$F(z) = \frac{i-z}{i+z},$$

as well as the inverse map $G: \mathbb{D} \to \mathbb{H}$ given by

$$G(w) = i\frac{1-w}{1+w}.$$

2.2 Automorphisms of the Disc & Upper Half Plane

Lemma 2.4 (Schwarz)

Let $f: \mathbb{D} \to \mathbb{D}$ be holomorphic with f(0) = 0. Then

- (i) $|f(z)| \le |z|$ for all $z \in \mathbb{D}$.
- (ii) If for some $z_0 \neq 0$ we have $|f(z_0)| = |z_0|$, then f is a rotation.
- (iii) $|f'(0)| \leq 1$, and if equality holds, then f is a rotation.

Proof. Since f(0) = 0, there exists a holomorphic function $g : \mathbb{D} \to \mathbb{C}$ nonvanishing at 0 such that f(z) = zg(z). For 0 < |z| = r < 1, we have

$$|g(z)| = \left| \frac{f(z)}{z} \right| < \frac{1}{r}.$$

By the Maximum Modulus Principle, we have $|g(z)|\langle \frac{1}{r} \text{ for } z \in B_r(0)$. Taking $r \to 1$, we get $|g(z)| \le 1$ for $z \in \mathbb{D}$. It follows that $|f(z)| \le |z|$ in \mathbb{D} .

Next, if $|z_0| = |f(z_0)|$, then g achieves its maximum at $z_0 \in \mathbb{D}$. By the Maximum Modulus Principle, we deduce that g is constant, so in particular f(z) = cz for some $c \in \mathbb{C}$. Plugging in the condition at z_0 , we get |c| = 1. It follows that f is a rotation.

Finally, note that

$$f'(0) = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = \lim_{z \to 0} g(z),$$

and so $|f'(0)| \le 1$ since $|g(z)| \le 1$ for all $z \in \mathbb{D}$. If equality holds then |g(0)| = 1, so by the Maximum Modulus Principle, g(z) = c with |c| = 1. It follows that f is a rotation.

We are concerned with automorphisms of the unit disc, i.e. conformal mappings from a set to itself. Two notable ones are rotations,

$$r_{\theta}: z \mapsto e^{i\theta}z,$$

and

$$\psi_{\alpha}: z \mapsto \frac{\alpha - z}{1 - \overline{\alpha}z}, \quad \alpha \in \mathbb{D}.$$

It can easily be shown that $\psi_{\alpha}^2 = I$, and it interchanges α and 0:

$$\psi_{\alpha}(0) = \alpha$$
 and $\psi_{\alpha}(\alpha) = 0$.

It turns out that all automorphisms of the disc can be described using these two mappings, as the next theorem suggests.

Theorem 2.5

If f is an automorphism of the disc, then there is $\theta \in [0, 2\pi)$ and $\alpha \in \mathbb{D}$ such that

$$f(z) = r_{\theta}(\psi_{\alpha}(z)) = e^{i\theta} \frac{\alpha - z}{1 - \overline{\alpha}z}.$$

Proof. If $f \in \operatorname{aut}(\mathbb{D})$, then there is a unique $\alpha \in \mathbb{D}$ such that $f(\alpha) = 0$. Consider the mapping $g = f \circ \psi_{\alpha}$. Schwarz Lemma gives

$$|g(z)| \le |z| \tag{1}$$

for all $z \in \mathbb{D}$. Note further that $g^{-1}(0) = \psi_{\alpha}^{-1}(f^{-1}(0)) = 0$, so applying Schwarz Lemma again to g^{-1} , we have

$$|g^{-1}(w)| \le |w| \tag{2}$$

for all $w \in \mathbb{D}$. Combining (1) and (2), we have

$$|z| = |g^{-1}(g(z))| \le |g(z)| \le |z|,$$

which implies |g(z)|=|z| for all $z\in\mathbb{D}$. From (ii) of Schwarz Lemma, we see that $g(z)=e^{i\theta}z$ for some $\theta\in[0,2\pi)$. Using the fact that $\psi_{\alpha}^2=I$, we see that

$$f(z) = f(\psi_{\alpha}^{2}(z)) = r_{\theta}(\psi_{\alpha}(z)) = e^{i\theta} \frac{\alpha - z}{1 - \overline{\alpha}z},$$

as desired. \Box

Corollary 2.6

If f is an automorphism of the disc which fixes 0, then f is a rotation.

With a complete description of the automorphisms of the disc, we may also describe those of the upper half plane. This is done by conjugation, with mapping

$$\Gamma : \operatorname{aut}(\mathbb{D}) \to \operatorname{aut}(\mathbb{H}),$$

where $\Gamma(\varphi) = F^{-1} \circ \varphi \circ F$, where $F : \mathbb{H} \to \mathbb{D}$ is the conformal map from before. It's easy to verify that Γ is a group isomorphism, and compute that elements of aut(\mathbb{H}) consist of the fractional linear transformations:

$$f_M: z \mapsto \frac{az+b}{cz+d}.$$

There is a close correspondence between maps f_M and matrices $M \in SL_2(\mathbb{R})$, the special linear group, given by

$$SL_2(\mathbb{R}) = \left\{ M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{R}$$
 and $det(M) = 1 \right\}.$

Theorem 2.7

The automorphisms of \mathbb{H} can be characterized by

$$\operatorname{aut}(\mathbb{H}) = \{ f_M : M \in SL_2(\mathbb{R}) \}.$$

2.3 The Riemann Mapping Theorem

We are now concerned with the problem of whether there exists a conformal map $F: \Omega \to \mathbb{D}$, given some open set Ω . First note that necessary conditions for existence are:

- Ω must be proper, i.e. cannot be all of \mathbb{C} and cannot be empty.
- Ω must be connected.
- Ω must be simply connected.

It turns out that these conditions are also sufficient for existence:

Theorem 2.8 (Riemann Mapping Theorem)

Suppose Ω is proper, connected, and simply connected. If $z_0 \in \Omega$, then there is a unique conformal map $F: \Omega \to \mathbb{D}$ such that

$$F(z_0) = 0$$
 and $F'(z_0) > 0$.

Corollary 2.9

Any two proper, connected, and simply connected open sets Ω_1 and Ω_2 of \mathbb{C} are conformally equivalent.

Proof of Uniqueness. Suppose F and G are conformal maps satisfying the conditions of Theorem refrmt. Then $H = F \circ G^{-1}$ is an automorphism of the disc fixing zero, so $H(z) = e^{i\theta}z$. But since $H'(0) = F'(G^{-1}(0)) \cdot \frac{1}{G'(G^{-1}(0))} > 0$, we must have $e^{i\theta} = 1$. Thus F = G.

The proof for existence is much more long-winded. The main idea is to consider all injective holomorphic maps $f: \Omega \to \mathbb{D}$ with $f(z_0) = 0$. Among these pick an f whose image maps surjectively onto all of \mathbb{D} , by making $f'(z_0)$ as large as possible. The chosen f will be obtained as a functional limit, which is what the next theorem deals with.

We say a family \mathcal{F} of holomorphic functions on Ω is normal if every sequence in \mathcal{F} has a subsequence that converges uniformly on every compact subset of Ω (compare this to the definition of a T_4 space in topology). The family \mathcal{F} is said to be equicontinuous on a compact set K if given $\epsilon > 0$, there is a $\delta > 0$ such that whenever $z, w \in K$ and $|z - w| < \delta$, we have $|f(z) - f(w)| < \epsilon$ for all $f \in \mathcal{F}$. This condition can be thought of as uniform continuity, uniformly in the family.

Theorem 2.10 (Montel)

If \mathcal{F} is a family of holomorphic functions on Ω that are uniformly bounded on every compact subset of Ω , then:

- (i) \mathcal{F} is equicontinuous on every compact subset of Ω .
- (i) \mathcal{F} is a normal family.