Zusammenfassung Analysis 1

Sascha Schleef

24.01.2011

1 Reelle Zahlen

- (1.1) $\forall x, y, z \in \mathbb{R} : (x+y) + z = x + (y+z)$ (Asoziativgesetz)
- (1.2) $\forall x, y \in \mathbb{R} : x + y = y + x$ (Kommutativgesetz)
- (1.3) $\exists 0 \in \mathbb{R} \ \forall x \in \mathbb{R} : \ x + 0 = x \ (0 \text{ heißt Null})$
- (1.4) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : \ x + y = 0 \ (y \text{ heißt Negatives von } x \text{ kurz } -x)$
- (1.5) $\forall x, y, z \in \mathbb{R} : (x \cdot y) \cdot z = x \cdot (y \cdot z)$ (Asoziativgesetz)
- (1.6) $\forall x, y \in \mathbb{R} : x \cdot y = y \cdot x$ (Kommutativgesetz)
- $(1.7) \ \exists 1 \in \mathbb{R} \ \forall x \in \mathbb{R} : \ x \cdot 1 = x \ (1 \text{ heißt Eins})$
- (1.8) $\forall x \in \mathbb{R}, x \neq 0 \ \exists y \in \mathbb{R} : x \cdot y = 1 \ (y \text{ heißt Inverses von } x \text{ kurz } x^{-1})$
- (1.9) $\forall x, y, z \in \mathbb{R} : x \cdot (y + z) = x \cdot y + x \cdot z$ (Distributivgesetz)
- (1.37) **Beispiel**: Regeln angewandt auf x^2 , komplexe Zahlen, \mathbb{F}_2

Vollständige Induktion:

Zz: $\forall n \in \mathbb{N}A(m)$ richtig.

IA: A(1) richtig.

IV: $\exists n \in \mathbb{N}A(m)$ richtig.

IS: $A(n) \Rightarrow A(n+1)$

- (1.38) **Definition**: Menge K mit den Regeln ist ein Körper (Körperaxiome).
- (1.39) Satz: Anzahl verschiedener Permutationen: $n! = \prod_{i=1}^{n} i$ Anzahl verschiedener k-elementiger Teilmengen: $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$
- $(1.40) \quad (a) \quad \binom{n}{k} = \binom{n}{n-k}$
 - (b) $\binom{n}{1} = n$, $\binom{n}{0} = 0$
 - (c) $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$, $\binom{n}{-k} = \binom{n}{n+k} = 0$
- (1.41) <u>Binomischer Lehr**Satz**</u>: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$

2 Axiome der Anordnung

- (2.1) Trichotomie: $\forall x \in \mathbb{N}$: x > 0 positiv, x = 0 (Null), x < 0 (negativ)
- (2.2) Abgeschlossenheit(+) $x > 0 \land y > 0 \Rightarrow x + y > 0$
- (2.3) Abgeschlossenheit(·) $x > 0 \land y > 0 \Rightarrow x \cdot y > 0$
- (2.4) **Definition**: $x>y:\Leftrightarrow x-y>0$ Rest analog Für zwei $x,y\in\mathbb{N}$ gilt genau eine Relation: $x< y,\, x=y,\, x>y$
- (2.5) Transitivität (";"): $x < y \land y < z \Rightarrow x > z$
- (2.6) Translations invarianz: $x < y \Rightarrow a + x < a + y, a \in \mathbb{N}$
- (2.7) Spiegelung: $x < y \Rightarrow (-x) > (-y)$
- $(2.8) \ x < y \land a < b \Rightarrow a + x < y + b$
- (2.9) $x < y \land a > 0 \Rightarrow a \cdot x < a \cdot y$
- $(2.10) \ 0 \le x < y \land 0 \le a < b \Rightarrow a \cdot x < b \cdot y$
- $(2.11) \ \ x < y \land a < 0 \Rightarrow a \cdot x > a \cdot y$
- (2.12) $\forall x \neq 0 : x^n > 0, n \in \mathbb{N}$ insbesondere 1 > 0
- $(2.13) \ x > 0 \Leftrightarrow x^{-1} > 0$
- $(2.14) \ 0 < x < y \Rightarrow x^{-1} > y^{-1}$
- (2.15) **Definition**: Körper mit obigen Axiomen heißt: angeordneter Körper
 - (a) $\mathbb{F}_2 = \{0, 1\}$ nicht angeordnet
 - (b) Wenn K angeordnet, so enthält er ganz \mathbb{N}_0
 - (c) Sei dazu \mathcal{N} kleinste Teilmenge von K mit: $0 \in \mathcal{N}, x \in \mathcal{N} \Rightarrow x+1 \in \mathcal{N}$
- (2.16) **Definition**: Peamo-Axiome

Sei $\mathcal N$ eine Menge $0\in\mathcal N$ und einer Nachfolgeabbildung $\nu:\mathcal N\to\mathcal N$

- (a) $x \neq y \Rightarrow \nu(x) \neq \nu(y)$
- (b) $0 \notin \nu(\mathcal{N} = \{x \in \mathcal{N} | x = \nu(y), y \in \mathcal{N}\}$
- (c) (Induktions axiom): $\mathcal{M} \subset \mathcal{N} \colon 0 \in \mathcal{M} \land x \in \mathcal{M} \Rightarrow \nu(x) \in \mathcal{M}$
- (2.17) **Definition**: Absolutbetrag:

(a)
$$|x| = x \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

- (b) $|x| = \max(x, -x)$
- (2.18) Satz: Der Absolutbetrag erfüllt:
 - (a) $|x| \ge 0 \land \forall x \in \mathbb{R} |x| = 0 \Rightarrow x = 0$

- (b) $|x \cdot y| = |x| \cdot |y|$
- (c) Δ -Ungleichung: $|x + y| \le |x| + |y|$
- (2.19) **Definition**: Körper K mit $\begin{array}{ccc} K & \to & K \\ x & \mapsto & |x| \end{array}$ heißt <u>bewerteter Körper</u>. $x \mapsto |x|$ heißt Bewertung.
- (2.20) Folgerung:
 - (a) $|-x| = |x| \forall x \in K$
 - (b) $x, y \in \mathbb{R}, y \neq 0$: $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$
 - (c) $|x-y| \ge |x| |y| \ |x-y| \ge |y| |x|$ $\Big\} |x-y| \ge ||x| |y||$
- (2.21) <u>Archimediches Axiom</u>: Zu je 2 reellen Zahlen x,y>0 gibt es eine natürliche Zahl $n\in\mathbb{N}$ mit: $n\cdot x>y$
 - \mathbb{R}, \mathbb{Q} sind archimedisch geordnet.

Körper die angeordnet sind, müssen nicht archimedisch geordnet sein.

- (2.22) Folgerung
 - (a) $\forall x \in \mathbb{R} \exists n_1, n_2 \in \mathbb{N} : n_1 > x \land n_2 < x$
 - (b) <u>Gaußklammer</u>: $\forall x \in \mathbb{N} \ \exists n \in \mathbb{N} : n \leq x < n+1$: floor $(x)=\lfloor x \rfloor \ \forall x \in \mathbb{N} \ \exists m \in \mathbb{N} : m-1 < x \leq m$: ceil $(x)=\lceil x \rceil$
- (2.23) $\forall \varepsilon > 0 \ \exists n \in \mathbb{N}, n > 0 : \frac{1}{n} < \varepsilon$
- (2.24) **Satz**: Bernulli-Ungleichung: $\forall x \in \mathbb{R}, x \ge -1 \land \forall n \in \mathbb{N}$: $(1+x)^n \ge 1+n \cdot x$
- (2.25) (a) $\forall b \in \mathbb{R}, b > 0 \exists n \in \mathbb{N} : b^n > K$
 - (b) 0 < b < 1: $\forall \varepsilon > 0 \exists n \in \mathbb{N}$: $b^n < \varepsilon$

3 Folgen und Grenzwerte

- (3.1) **Definition**: Seinen A, B zwei nichtleere Mengen:
 - (a) Abbildung $f: A \to B$ ist Vorschrift, die **zu jedem** $a \in A$ **genau ein** $f(a) \in B$ zuordnet. A: Argumentbereich, B: Bildbereich.
 - (b) $f(A) := \{ b \in B | \exists a \in A : b = f(a) \}$
 - (c) f heißt surjektiv, falls: B = f(A).
 - (d) f heißt injektiv, falls: $a \neq b \Rightarrow f(a) \neq f(b)$, $a, b \in A$
 - (e) f heißt bijektiv, falls f surjektiv und injektiv
- (3.3) **Definition**: Eine Abbildung $f: \mathbb{N} \to \mathbb{R}$ mit $f(n) := a_n \in \mathbb{R}$, $n \in \mathbb{N}$ heißt Folge reller Zahlen. Argumentbereich heißt Indexmenge. Auflistung $(a_n)_{n \in \mathbb{N}} = (a_1, a_2, \dots, a_n)$ heißt unendliches Tupel. (Auch andere Indexmengen möglich)
- (3.4) **Definition**:
 - (a) Folge $(a_n)_{n\in\mathbb{N}}$ heißt konvergent gegen $a\in\mathbb{R}$, falls: $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N : \ |a_n a| < \varepsilon$ N hängt von ε ab! $(a_n)_{n\in\mathbb{N}}$ heißt konvergent, wenn es ein soles a gibt.

Schreibweisen: $\lim_{n \to \infty} a_n = a$, kurz: $\lim_n a_n = a$ ∞ ist formale Erweiterung von $\mathbb R$ durch: $\overline{\mathbb R} : \mathbb R \cup \{-\infty, +\infty\}$ $, -\infty < x < +\infty \forall x \in \mathbb R$

- (b) $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N : \ a_n \in [a \varepsilon, a + \varepsilon$ d.h. alle a_n , bis auf endlich viele, liegen in diesem Intervall.
- (c) Folge $(a_n)_{n\in\mathbb{N}}$, die nicht gegen irgendein $a\in\mathbb{R}$ konvergiert heißt divergent.
- (3.6) **Definition**: Folge $(a_n)_{n\in\mathbb{N}}$ heißt beschränkt nach oben/unten, wenn $\exists K \in \mathbb{R}: a_n \leq K \forall n \in \mathbb{N} / a_n \geq K \forall n \in \mathbb{N}$ ($a_n)_{n\in\mathbb{N}}$ beschränkt, wenn nach oben und unten beschränkt.
- (3.7) Satz: Eindeutigkeit des Limes: $\lim_{n} a_n = a \wedge \lim_{n} a_n = b \Rightarrow a = b$
- (3.8) **Satz**: Jede konvergente Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen ist beschränkt.
- (3.10) **Satz**: Summen und Produkte konvergenter Folgen $(a_n)_{n\in\mathbb{N}}$ bzw. $(b_n)_{n\in\mathbb{N}}$ konvergent mit a bzw b:
 - (a) $\lim_{n \to \infty} (a_n + b_n) = a + b$
 - (b) $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
- (3.11) Folgerung: <u>Linearkombination</u>

 $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}$ konvergent und $\alpha, \beta \in \mathbb{R}$. Dann konvergiert $(\alpha \cdot a_n + \beta \cdot b_n)_{n\in\mathbb{N}}$ mit: $\lim_{n\to\infty} (\alpha \cdot a_n + \beta \cdot b_n) = \alpha \cdot \lim_{n\to\infty} (a_n) + \beta \cdot \lim_{n\to\infty} (b_n)$

(3.12) **Satz**: Quotienten reller Folgen $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}} \text{ konvergent. Dann } \exists n_0 \in \mathbb{N} : b_n \neq 0 \forall n \geq n_0$ $\left(\frac{a_n}{b_n}\right)_{n > n_0}, \text{ mit } \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$

(3.14) Satz: Vergleich reeller Folgen

 $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}$ konvergent mit $a_n \leq b_n \forall n \in \mathbb{N}$

- (a) $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$ (b) $A \le a_n \le B \forall n \in \mathbb{N} \Rightarrow A \le \lim_{n \to \infty} a_n \le B$
- (3.15) **Definition**: Reihe:
 - (a) $(S_m)_{m\in\mathbb{N}_0} = \sum_{n=0}^m a_n$ heißt Reihe mit Gliedern a_n .
 - (b) $(S_m)_{m\in\mathbb{N}_0} = \sum_{n=0}^{\infty} a_n$ heißt unendleihe Reihe. Konvergiert diese wird ihr Grendwert mit $\sum_{n=0}^{\infty} a_n$
- (3.15) Bemerkung: Teleskopsumme:

Jede Folge $(\overline{a_n})_{n\in\mathbb{N}}$ lässt sich als Folge von Partialsummen darstellen, denn:

$$a_n = a_0 + \sum_{k=1}^{n} (a_k - a_{k-1})$$
 , $n \in \mathbb{N}$

(3.17) Beispiel: unendliche geometrische Reihe

Für
$$|x| < 1$$
 gilt: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$

Für |x| < 1 gilt: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ Partialsumme: $\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$

- (3.19) **Definition**: bestimmte Divergenz: $(a_n)_{n\in\mathbb{N}}$ heißt:
 - (a) bestimmt divergent gegen $+\infty$, falls $\forall K \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall n \geq N : |a_n| > K$
 - (b) bestimmt divergent gegen $-\infty$, falls $(-a_n)$ bestimmt divergent gegen $+\infty$

Man schreibt: $\lim_{n\to\infty} a_n = +\infty$ bzw. $\lim_{n\to\infty} a_n = -\infty$. Sie sind <u>uneigentlich konvergent</u> gegen $\pm\infty$.

- (a) $(a_n)_{n\in\mathbb{N}}$ bestimmt divergent gegen $\pm\infty$. Dann $\exists N\in\mathbb{N}: a_n\neq 0 \forall n\geq N$ und $\lim_{n\to\infty}\frac{1}{a_n}=0$
 - (b) $(a_n)_{n\in\mathbb{N}}$ Nullfolge, d.h. $\lim_{n\to\infty}a_n=0$ mit $a_n>0 \forall n$ bzw. $a_n<0 \forall n$.

Dann divergiert $(\frac{1}{a_n})_{n\in\mathbb{N}}$ bestimmt gegen $+\infty$ bzw. -infty.

4 Vollständigkeit der reellen Zahlen

- (4.1) Satz: $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : |a_n a_m| < \varepsilon \ \forall m, n \ge N$
- (4.2) **Definition**: Cauchy-Folge: Folge $(a_n)_{n\in\mathbb{N}}$ mit (4.1)
- (4.3) **Definition**: $a, b \in \mathbb{R}, a < b$ Dann ist $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$ das abgeschlossene Intervall mit Endpunkten a, b. [a, b] hat die Länge/Durchmesser(Diameter): diam([a, b]) = b a
- (4.4) **Definition**: Monotonie: $(a_n)_{n \in \mathbb{N}_0}$ heißt:
 - (a) monoton wachsend falls $a_n \leq a_{n+1} \forall n \in \mathbb{N}_0$
 - (b) streng monoton wachsend falls $a_n < a_{n+1} \forall n \in \mathbb{N}_0$
 - (c) monoton fallend falls $a_n \ge a_{n+1} \forall n \in \mathbb{N}_0$
 - (d) streng monoton fallend falls $a_n > a_{n+1} \forall n \in \mathbb{N}_0$
- (4.5) Satz: Für $x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x_n})$ $n \in \mathbb{N}_0$ mit $a, x_0 \in \mathbb{R}_+^*$ gilt:
 - (a) $x_n > 0$ und $x_n \in \mathbb{Q}$, falls $a \in \mathbb{Q}$ und $x_0 \in \mathbb{Q}$
 - (b) $\frac{a}{x_n} \le a \le x_n^2$, $n \in \mathbb{N}$
 - (c) $\frac{a}{\frac{a}{x_n}} \leq \frac{a}{x_{n+1}} \leq x_{n+1} \leq x_n$ d.h. $(x_n)_{n \in \mathbb{N}}$ monoton fallend und $(\frac{a}{x_n})_{n \in \mathbb{N}}$ monoton wachsend. Für abgeschlossene Intervalle $I_n = [\frac{x_n}{x_n}, x_n]$ gilt: $I_{n+1} \subset I_n, n \in \mathbb{N}$
 - (d) diam $(I_n) = x_n \frac{a}{x_n}$ ist monoton fallend mit: $\lim_{n \to \infty} \text{diam}(I_n) = 0$.
- (4.6) **Definition**: Intervallschachtelung: Sei $I_0 \subset I_1 \subset ... \subset I_n \subset I_{n+1}$ eine absteigende Folge abgeschlossener Intervallein \mathbb{R} mit $\lim_{n \to \infty} \operatorname{diam}(I_n) = 0$.
- (4.7) Axiom: Vollständigkeit von \mathbb{R} Jede Cauchy-Folge konvergiert in \mathbb{R}
- (4.8) Satz: Die Aussagen
 - (a) R ist vollständig (Axiom 4.7)
 - (b) $\forall (I_n)_{n\in\mathbb{N}} \exists ! x \in \mathbb{R} \ \forall n \in \mathbb{N} : \ x \in I_n \ (Intervallschachtellungsprinzip)$

sind äquivalent.

(4.9) **Definition**: <u>b-adischer Bruch</u>:

$$\pm \sum_{n=-k}^{\infty} a_n \cdot b^{-n} \quad , b \in \mathbb{N}, \ b \ge 2, \ k \in \mathbb{N}_0, \ 0 \ge a_n \ge b-1$$
 oft geschrieben:
$$\pm \underbrace{a_{-k}a_{-k+1} \dots a_0}_{Vorkomma}, \underbrace{a_1a_2a_3 \dots}_{Nachkomma}$$

(4.10) **Satz**: Sei $b \in \mathbb{N}$, $b \ge 2$ dann gilt:

- (a) Jeder b-adische Bruch ist eine Cauchy-Folge, d.h. konvergiert gegen eine reelle Zahl.
- (b) Jede reelle Zahl lässt sich in einem b-adischen Bruch entwickeln (iA. nicht eindeutig).
- (4.11) **Definition**: Teilfolge: Sei $(a_n)_{n \in \mathbb{N}_0}$ Folge und $(n_0 < n_1 < \ldots)$ eine aufsteigende Folge natürlicher Zahlen, dann heißt $(a_{n_k})_{k \in \mathbb{N}_0} = (a_{n_0}, a_{n_1}, \ldots)$ Teilfolge von $(a_n)_{n \in \mathbb{N}_0}$.

- (4.12) **Proposition**: Ist $(a_n)_{n\in\mathbb{N}}$ konvergent mit Limes $a\in\mathbb{R}$ dann konvergiert auch jede Teilfolge (sofern existent) von (a_n) gegen a,
- (4.13) Satz: Bolzano-Weierstraß

Jede beschränkte Folge reeller Zahlen hat eine konvergente Teilfolge.

- (4.14) Satz: Jede beschränkte, monotone Folge (wachsend oder fallend) reeller Zahlen konvergiert.
- (4.15) **Definition**: Häufungspunkt Eine Zahl $a \in \mathbb{R}$ heit HP einer Folge $(a_n)_{n \in \mathbb{N}}$ wenn es eine Teilfolge von (a_n) gibt, die gegen a konvergiert.
- (4.16) Bemerkung: Die reellen Zahlen sind durch:
 - (a) Körperaxiome (1.1)-(1.9)
 - (b) Anordnungsaxiome (2)
 - (c) archimedisches Axiom (2)
 - (d) Vollständikeitsaxiom

eindeutig bestimmt.

(4.17) Satz: Cauchys-Konvergenzkriterium:

Sei $(a_n)_{n\in\mathbb{N}}$ Folge reeller Zahlen, dann gilt:

(a)
$$\sum_{n=0}^{\infty} a_n$$
 konvergiert $\iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n, m \geq N : \ |\sum_{k=m}^n a_k| < \varepsilon$

(b) Sei
$$a_n \ge 0 \forall n \in \mathbb{N}$$
: $\sum_{n=0}^{\infty} a_n$ konvergiert $\iff S_n := \sum_{k=0}^n a_k < K$ (Partialsumme beschränkt)

(4.18) **Beispiel**: <u>harmonische Reihe</u>:

Sei
$$a_n = \frac{1}{n}$$
, $n \in \mathbb{N}$ Dann divergiert $\sum_{n=0}^{\infty} a_n$

(4.19) Satz: Leibnitz-Kriterium für alternierende Reihen: Sei $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Nullfolge $(a_n\geq 0 \land \lim_{n\to\infty} a_n=0)$.

Dann konvergiert
$$\sum_{n=0}^{\infty} (-1)^n a_n$$

(4.21) Satz: Majorantenkriterium:

Sei $\sum_{n=0}^{\infty} b_n$ konvergente Reihe mit $b_n \geq 0$ und $(a_n)_{n \in \mathbb{N}}$ eine Folge mit $|a_n| \leq b_n \forall n \in \mathbb{N}$ Dann

konvergiert
$$\sum_{n=0}^{\infty} a_n$$
 und sogar $\sum_{n=0}^{\infty} |a_n|$

$$\sum\limits_{n=0}^{\infty}b_{n}$$
heißt Majorante von $\sum\limits_{n=0}^{\infty}a_{n}$

(4.22) **Definition**: absolute Konvergenz:

 $\sum_{n=0}^{\infty}a_n$ absolut konvergent, falls $\sum_{n=0}^{\infty}|a_n|$ (Reihe über den Betrag der Folge) konvergent.

- (4.23) **Proposition**: zum Majorantenkriterium
 - (a) mit $b_n = |a_n|$ folgt die normale Konvergenz aus der absoluten.
 - (b) Ist $b_n \geq 0$, $\sum_{n=0}^{\infty} b_n$ divergent und $(a_n)_{n \in \mathbb{N}}$ mit $a_n \geq b_n$ so divergiert auch $\sum_{n=0}^{\infty} a_n$

(4.24) **Satz**: Quotienten-Kriterium:

Sei
$$\sum_{n=0}^{\infty} a_n$$
 Reihe mit $\exists N \in \mathbb{N} : a_n \neq 0 \ \forall n \geq N$ dann:

$$\exists q \in \mathbb{R}, \ 0 < q < 1: \ |\frac{a_{n+1}}{a_n}| < q \ \forall n > N \Longleftrightarrow \sum_{n=0}^{\infty} a_n$$
konvergiert absolut

- (4.26) **Definition**: <u>Umordnung</u>: Sei $\sum_{n=0}^{\infty} a_n$ reihe und $s: \mathbb{N}_0 \to \mathbb{N}_0$ bijektive Abbildung. Dann heißt $\sum_{n=0}^{\infty} a_{s(n)}$ Umordnung der Reihe.
- (4.26) Satz: $\underline{\text{Umordnungssatz}}$:

Sei $\sum_{n=0}^{\infty} a_n$ eine absolut konvergente Reihe, dann konvergiert auch jede Umordnung der Reihe gegen denselben Grenzwert.

- (4.27) Beispiel: Eine Umordnung der alternierenden harmonische Reihe divergiert.
- (4.28) **Satz**: Exponentialreihe: $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ \forall x \in \mathbb{R}$ absolut konvergent.
- (4.29) Satz: Cauchy-Produkt von Reihen:

Seien
$$\sum_{n=0}^{\infty} a_n$$
 und $\sum_{n=0}^{\infty} b_n$ absolut konvergente Reihen: Für $n \in \mathbb{N}_0$: $c_n = \sum_{k=0}^{n} a_k \cdot b_{n-k}$ (Achtung: Laufindexwechsel!)

Dann ist auch
$$\sum_{n=0}^{\infty} c_n$$
 absolut konvergent mit: $\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right)$

- (4.30) Satz: Funktionalgleichung für exp
: $\exp(x+y) = \exp(x) \cdot \exp(y) \ \forall x, y \in \mathbb{R}$
- (4.31) Folgerung: $\forall x \in \mathbb{R}$:

(a)
$$\exp(x) > 0$$

(b)
$$\exp(-x) = \frac{1}{\exp(x)}$$

(c)
$$\forall m \in \mathbb{Z} : \exp(m) = e^m$$

4.1 Übungen

- Satz: Wurzelkriterium: $\exists q \in \mathbb{R}, \ 0 < q < 1 \ \forall n \in \mathbb{N}: \ \sqrt{n}|a_n| < q \Longleftrightarrow \sum_{n=1}^{\infty} a_n$ absolut konvergent
- Satz: <u>Sandwich-Theorem</u>:

$$a_n \leq b_n \leq c_n \forall n \geq N : N \in \mathbb{N}$$
 Wenn a_n und c_n konvergent mit $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = a$ dann ist auch b_n konvergent mit $\lim_{n \to \infty} b_n = a$.

5 Teilmengen von \mathbb{R}

- (5.1) **Definition**: Intervalle
 - (a) abgeschlossene: $a, b \in \mathbb{R}, a \le b$ $[a, b] := \{x \in \mathbb{R} | a \le x \le b\}$
 - (b) offene: $a, b \in \mathbb{R}, a \le b$ $|a, b| := \{x \in \mathbb{R} | a < x < b\}$
 - (c) <u>halboffene</u>: $a, b \in \mathbb{R}, a \le b$ $[a, b] := \{x \in \mathbb{R} | a \le x < b\}, \quad [a, b] := \{x \in \mathbb{R} | a < x \le b\}$
 - (d) uneigentliche: $a, b \in \mathbb{R}, a \le b \quad [a, \infty[:= \{x \in \mathbb{R} | x > a\}, \quad] \infty, b] := \{x \in \mathbb{R} | x < b\}$
 - (e) $\mathbb{R}_+ := \{x \in \mathbb{R} | x \ge 0\}, \quad \mathbb{R}^* := \}x \in \mathbb{R} | x \ne 0\{, \quad \mathbb{R}_+^* := \mathbb{R}_+ \cup \mathbb{R}^*\}$
 - (f) Sei $(a_n)_{n\in\mathbb{N}_0}$ eine Folge d.h. eine Abbildung $a:\mathbb{N}_0\to\mathbb{R}$ Dann heißt die Bildmenge $a(\mathbb{N}_0)\subset\mathbb{R}$ die uneigentliche Punktmenge zu (a_n) .
- (5.2) **Definition**: Abzählbarkeit: Eine nichtleere Menge A heißt abzählbar, wenn es eine surjektive Abbildung $s: \mathbb{N}_0 \to A$ gibt.

Die leere Menge sei abzählbar und eine nichtleere Menge heißt <u>überabzählbar</u>, wenn sie nicht abzählbar ist.

- (5.4) **Definition**: abzählbar unendlich: Eine nichtendliche abzählbare Menge.
- (5.5) **Satz**: Sei $M \subset \mathbb{N}_0$, $M \neq \emptyset$. Dann besitzt M ein kleinstes Element.
- (5.6) Satz: Jede Teilmenge von \mathbb{N}_0 ist entweder endlich oder abzählbar unendlich. Im letzteren Fall gibt es eine bijektive Abbildung: $t: M \to \mathbb{N}_0, \ t(m) := \{x \in M | x < m\}$
- (5.7) Satz: Die Vereinigung abzählbar vieler abzählbarer Mengen $M_n, n \in \mathbb{N}_0$ ist wieder abzählbar (Diagonalmuster).
- (5.8) Folgerung: Die Menge \mathbb{Q} ist abzählbar unendlich.
- (5.9) **Satz**: Die Menge \mathbb{R} ist überabzählbar.
- (5.10) Folgerung: Die Menge der irrationalen Zahlen $\mathbb{R} \setminus \mathbb{Q}$ ist überabzählbar.
- (5.11) **Definition**: Sei $A \subset \mathbb{R}$ Teilmenge und $a \in \mathbb{R}$
 - (a) a heißt Berührpunkt von A, wenn in jeder ε -Umgebung von a, d.h. $U_{\varepsilon}(a) :=]a \varepsilon, a + \varepsilon[$, mindestens ein Punkt von A liegt.
 - (b) a heißt Häufungspunkt von A, falls in jeder ε -Umgebung unendlich viele verschiedene Punkte von A liegen.

(5.14) **Definition**:

- (a) Eine Teimenge $A \subset \mathbb{R}$ heißt nach oben bzw. unten beschränkt, wenn es ein $K \in \mathbb{R}$ gibt mit: $x \leq K$ bzw. $x \geq K \ \forall x \in A$
- (b) A heißt beschränkt, wenn A nach oben und unten bschränkt ist.
- (c) Eine Folge ist nach oben/unten beschränkt, wenn die zugrundeliegende Menge nach oben/unten beschränkt ist.
- (d) K heißt kleinste obere Schranke von A falls:
 - $K \in \mathbb{R}$ ist obere Schranke von A
 - Ist K' weitere obere Schranke von A, so gilt: K < K'.
- (e) K heißt Supremum/Infimum von A, falls K kleinste obere/größte untere Schranke von A ist.

Existiert diese, so ist $\sup(A)/\inf(A)$ eindeutig bestimmt.

(5.15) Satz: Jede nichtleere, nach oben/unten beschränkte Teilmenge $A \subset \mathbb{R}$ besitzt ein Supremum/Infimum.

(5.17) **Definition**:

- (a) Sei $A \subset \mathbb{R}$ Falls $\sup(A)$ existiert und $\sup(A) \in A$ gilt, dann heißt $\sup(A)$ Maximum $\max(A)$ von A. (Entsprechend für Minimum $\min(A)$)
- (b) Falls $A \subset \mathbb{R}$ nach oben/unten nicht beschränkt, schreibt man: $\sup(A) = \infty / \inf(A) = -\infty$.
- (c) $(a_n)_{n\in\mathbb{N}}$ Folge reeller Zahlen, dann sei $\lim_{n\to\infty} \sup(a_n) := \lim_{n\to\infty} \sup(\{a_k|k\geq n\})$ und $\lim_{n\to\infty} \inf(a_n) := \lim_{n\to\infty} \sup(\{a_k|k\geq n\})$ Dies wird auuch als $\overline{\lim}_n$ bzw. ... bezeichnet.

(5.19) **Definition**:

- (a) Eine Menge $A \subset \mathbb{R}$ heißt abgeschlossene Menge, wenn für jede konvergente Folge $(a_n)_{n \in \mathbb{N}}$ von Elementen $a_n \in A$ gilt: $\lim_{n \to \infty} a_n \in A$.
- (b) Eine Menge heißt offene Menge wenn $\mathbb{R} \setminus U$ abgeschlossen ist.
- (c) $K \in \mathbb{R}$ heißt kompakte Menge, falls jede Folge $(a_n)_{n \in \mathbb{N}}$ von Elementen $a_n \in K$ eine konvergente Teilfolge mit Limes in K besitzt.

(5.20) Satz:

- (a) $U \subset \mathbb{R}$ offen $\iff \forall a \in U \ \exists \varepsilon > 0 : |a \varepsilon, a + \varepsilon| \subset U$
- (b) $K \subset \mathbb{R}$ kompakt $\iff K$ ist beschränkt und abgeschlossen.
- (c) Vereinigungen offener Mengen sind wieder offen und Durchschnitte abgeschlossene Mengen sind wieder abgeschlossen.
- (d) Endliche Durchschnitte offener Mengen sind wieder offen und endliche Vereeinigungen abgschlossener Mengen sin wieder abgschlossen.

6 Stetige Funktionen

Seien $M, N \subset \mathbb{R}$ nichtleere Teilmengen.

• Eine Funktion $f: M \to N$ heißt stetig im Punkt $m \in M$, falls

 $\begin{array}{l} \forall \varepsilon > 0 \exists \delta > 0 \forall x : |x-m| < \delta : |f(x)-f(m)| < \varepsilon \\ \text{Zu einer Umgebung } U_{\varepsilon}\left(f(m)\right) := \{x \in N | |x-f(m)| < \varepsilon \} \\ \text{gibt es eine Umgebung } U_{\delta}\left(m\right) := \{x \in M | |x-m| < \delta \} \\ \text{sodass } f\left(U_{\delta}(m)\right) \subset U_{\varepsilon}\left(f(m)\right) \end{array}$

(6.1) Beispiele

- (a) $id: \mathbb{R} \to \mathbb{R} id(x) = x$ ist stetig auf \mathbb{R} . Wähle $\delta = \varepsilon = 0$
- (b) $f: \mathbb{R} \to \mathbb{R}, f(x) = c \in \mathbb{R} \forall x \in \mathbb{R}$ (konstant) ist stetig.
- (c) Der Betrag $||: \mathbb{R} \to \mathbb{R}_+ \cup \{0\}$ ist stetig, da für $m \in \mathbb{R}$ und alle $\varepsilon > 0$ gilt mit $\delta = \varepsilon$: $|x m| < \delta \Rightarrow ||x| |m|| \le |x m| < \varepsilon = \delta$
- (d) $\exp(x)$ ist stetig in x = 0Abschätzung für $N \ge 0$: $\left| exp(x) = \left(1 + \frac{x}{1!} + \ldots + \frac{x^N}{N!} \right) \right|$
- (6.2) Satz: Folgenkriterium für Stetigkeit

Sei $f: \overline{M \to N, M, N \subset \mathbb{R}}$ nichtleere Teilmengen.

f stetig in $m \in M$

 \iff Für jede Folge $(x_n)_{n\in\mathbb{R}}$, $x_n\in M$ mit Limes $\lim_{n\to\infty}x_n=m\in M$ gilt: $\lim_{n\to\infty}f(x_n)=f(m)$

- (6.3) Satz: Seien $f, g: M \to N \subset \mathbb{R}, M \subset \mathbb{R}, M \neq \emptyset$ stetig in M. Ferner seinen $c, d \in \mathbb{R}$. Dann gilt:
 - (a) $c \cdot f + d \cdot g$ und $f \cdot g$ sind wieder stetig in m
 - (b) Ist $g(m) \neq 0$, so ist auch $\frac{f}{g}$ in m stetig.
 - (c) Sei ferner $N' \subset \mathbb{R}$ mit $g: N \to N$ Dann ist die Komposition $g \circ f: M \to N'$ in m stetig, wo $(g \circ f)(x) = g(f(x)), x \in M$, wenn f in $m \in M$ stetig ist und g in $f(m) \in N$ stetig ist.
 - (d) $\min(f,g): M \to \mathbb{R}$, wo $f,g: M \to N$ stetig in $m \in M$ $\max(f,g): M \to \mathbb{R}$, wo $f,g: M \to N$ stetig in $m \in M$ ist, sind wieder in $m \in M$ stetig. Hier ist $\min(f,g)(x) := \min(f(x),g(x))$ und $\max(f,g)(x) := \max(f(x),g(x))$
- (6.4) Die Funktionen $f: \mathbb{R} \to \mathbb{R}$, definiert durch $f(x) := c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 + x + c_0$, wo $c_j \in \mathbb{R}$ und $c_n \neq 0$ heißen Polynomfunktionen. Es gilt:
 - (a) Polynomfunktionen sind auf \mathbb{R} stetig.
 - (b) Sind P und Q Polynome und $Q(m) \neq 0$, so ist $x \to \frac{P(x)}{Q(x)}$ in x = m stetig.
- (6.5) Satz: Zwischenwertsatz

Sei $f: [a, b] \to \mathbb{R}$ stetig, a < b, $a, b \in \mathbb{R}$. Ferner sei $c \in \mathbb{R}$ mit f(a) < c < f(b). Dann gibt es mindestens ein $x \in [a, b]$ mit f(x) = c

Graph einer Funktion $f: G(f) := \{(x, f(x)) | x \in M\} \subset M \times N$

- (6.6) **Folgerung:** Jede Polynomfunktion $f(x) := c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 + x + c_0$ mit ungeraden Grad $n \in \mathbb{N}$ und Koeffizienten $c_j \mathbb{R}$ besitzt mindestens eine Nullstelle in \mathbb{R} .
- (6.7) **Folgerung:** Sei $I \subset \mathbb{R}$ ein Intervall (eigentlich oder uneigentlich) und $f: I \to \mathbb{R}$ stetig. Dann ist $f(I) \subset \mathbb{R}$ wieder ein Intervall.
- (6.8) **Definition:** Folgenbeschränktheit

Eine Funktion $f: M \to \mathbb{R}$ heißt beschränkt, wenn $f(M) \subseteq \mathbb{R}$ beschränkt ist.

d.h.: $\exists K \in \mathbb{R}_+ : |f(x)| \le K \forall x \in M$

(6.9) Satz: angenommenes Supremum/Infimum

Sei $M \subset \mathbb{R}$ kompakt (z.B. $M = [a, b], -\infty < a < b < \infty$) und $F : M \to \mathbb{R}$ stetig. Dann ist f(M) kompakt und die Funktion f nimmt ihr Supremum b und Infimum a.

d.h. $\exists x_{max} \in M, x_{min} \in M : f(x_{max}) = \sup(f(M)), f(x_{min}) = \inf(f(M))$

- (6.10) Satz: Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ stetig und monoton wachsend/fallend. Dann bildet f das Intervall I bijektiv auf das Intervall J := f(I) ab und die Umkehrfunktion $f^{-1}: J \to \mathbb{R}$ ist ebenfalls stetig und streng monoton wachsend/fallend.
- (6.11) Satz: Wurzeln und Logarithmen
 - (a) Sei $k \geq 2, k \in \mathbb{N}$ Dann ist $f : \mathbb{R}_+ \to \mathbb{R}$, $f(x) = x^k$ streng monoton wachsend und stetig, also eine Bijektion von $\mathbb{R}_+ \to \mathbb{R}_+$ \Longrightarrow Die Umkehrfunktion $f^{-1} : \mathbb{R}_+ \to \mathbb{R}_+$, $f^{-1}(x) = \sqrt[k]{x}$ ist stren monoton wachsend und stetig
 - (b) Falls k ungerade ist, ist durch $f(x) = x^k$ eine strang monoton wachsende. stetige Bijektion von $\mathbb{R} \to \mathbb{R}$ definiert und entsprechend ist die Umkehrfunktion $f^{-1}(x) = -\sqrt[k]{x}$ eine stetige streng monoton wachsende Funktion von $\mathbb{R} \to \mathbb{R}$.
 - (c) Die Funktion exp : $\mathbb{R} \to \mathbb{R}_+^*$ ist streng monoton wachsend und eine stetige Bijektion mit streng monoton wachsender, stetiger Umkehrfunktion: $\log : \mathbb{R}_+^* \to \mathbb{R}, \quad x \mapsto \log(x)$ Es gilt $\forall x, y \in \mathbb{R}, x, y > 0 : \quad \log(x \cdot y) = \log(x) + \log(y)$
- (6.12) **Definition:** Allgemeine Potenzen

Für die Basis a > 0 definiere die Funktion $a^{\square} : \mathbb{R} \to \mathbb{R}$ durch $a^x := \exp(x \cdot \log(a))$

- (6.13) Satz: Die Funktion $a^{\square} : \mathbb{R} \to \mathbb{R}$ ist stetig und es gilt:
 - (a) $a^{x+y} = a^x \cdot a^y$
 - (b) $a^n, n \in \mathbb{Z}$ ist die in §1 definierte Potenz.
 - (c) $a^{\frac{p}{q}} = \sqrt[q]{a^p}, \quad p \in \mathbb{Z}, q \in \mathbb{N}, q > 2$
- (6.14) Satz: Potenzregeln Seien $ab, \in \mathbb{R}_+^*, x, y \in \mathbb{R}$
 - (a) $a^{x+y} = a^x \cdot a^y$
 - (b) $(a^x)^y = a^{x \cdot y}$
 - (c) $a^x \cdot b^x = (a \cdot b)^x$
 - (d) $(\frac{1}{a})^x = a^{-x}$
- (6.15) **Definition:** Sei $D \neq 0$ und $f: D \to \mathbb{R}$. Eine Funktion heißt:
 - (a) gleichmäßig stetig in D, falls $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in D, |x y| < \delta: \quad |f(x) f(y)| < \varepsilon$

- (b) Lipschitz-stetig in D, falls $\exists L \in \mathbb{R} \quad \forall x, y \in D$: $|f(x f(y))| < L \cdot |x y|$ (L heißt Lipschitz-Konstante)
- (6.16) Beispiel/Bemerkung:
 - (a) f Lipschitz-stetig mit $L \Rightarrow f$ gleichmäßig stetig (wähle $\delta = \frac{\varepsilon}{L}$)
 - (b) $x \mapsto |x|$ ist Lipschitz-stetig (L=1)
 - (c) Polynome sind auf beschränkten Mengen D Lipschitz-stetig.
 - (d) $f:]0,1] \to \mathbb{R}$, $x \mapsto \frac{1}{x}$ ist stetig, aber nicht gleichmäßig stetig, denn: $\left|\frac{1}{x} \frac{1}{y}\right| = \frac{x-y}{xy} > K(x-y)$, falls $|xy| < \frac{1}{K}$
- (6.17) Satz: Sei $D \subset \mathbb{R}$ kompakt (z.B. $D = [a, b], a < b, a, b \in \mathbb{R}$) Dann gilt: $f: D \to \mathbb{R}$ stetig in $D \Rightarrow f$ ist gleichmäßig stetig.
- (6.18) **Bemerkung:** In vielen Fällen ist es möglich eine stetige Funktion $f: M \to \mathbb{R}$ auf eine größere Menge $\overline{M} \supset M$ zu einer Funktion f^* festzusetzen, sodass auch $f^* : \overline{M} \to \mathbb{R}$ stetig ist.
- (6.18) **Beispiel:** $f: \mathbb{R}^* \to \mathbb{R}, \ f(x) = \frac{(e^x 1)^2}{x}$ wird mithilfe einer Folgenkonvergenz auf $f^*: \mathbb{R} \to \mathbb{R}$ erweitert. (Zusammenfassung)
- (6.19) **Definition:** Sei $f: M \to \mathbb{R}, M \leq \emptyset, M \subset \mathbb{R}$ eine Funktion und m ein Häufungspunkt in M.
 - (a) Dann hat f(x) in x=m einen Grenzwert b, falls für alle Folgen $(x_n)_{n\in\mathbb{N}},\ x_n\in M\setminus\{m\}$ $\lim_{n\to\infty}(x_n)=m$ und $\lim_{n\to\infty}f(x_n)=b$ gilt. Hier muss m nicht aus M sein. Man schreibt dafür: $\lim_{x\to m}=b$
 - (b) Falls f(x) in x=m einen Grenzwert b nur für Folgen $x_n \in M \setminus \{m\}$ mit $x_n < m, \ n \in \mathbb{N}$ (bzw. $x_n < m, \ n \in \mathbb{N}$) besitzt, so schreibt man: $\lim_{x \nearrow m} f(x) = b \qquad \text{(bzw. } \lim_{x \searrow m} f(x) = b)$
- (6.20) **Proposition:** Sei $f: M \to \mathbb{R}, m \in \mathbb{R}$ ein Häufungspunkt in M. Es gilt:
 - (a) $f^*: M \cup \{m\} \to \mathbb{R}$ mit $f^*(x) = \left\{ \begin{array}{c|c} f(x) & x \in M \setminus \{m\} \\ b & x = m \end{array} \right.$ ist genau dann stetig in x = m, falls f den Grenzwert b in m hat. \underline{f}^* heißt dann stetige Fortsetzung von f in m.
 - $\text{(b) } \lim f(x) = b \quad \Longleftrightarrow \quad \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in M, 0 < |x-m| < \delta: \quad |f(x)-b| < \varepsilon$
 - (c) $\lim f(x)$ existiert $\iff \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in M, 0 < |x-m| < \delta, 0 < |y-m| < \delta : \quad |f(x)-f(y)| < \varepsilon$ $\lim f(x)$ existiert $\iff \forall \exists_{\varepsilon > 0} \forall_{\delta > 0} \forall_{x,y \in M}, 0 < |y-m| < \delta : \quad |f(x)-f(y)| < \varepsilon$

7 Differenzierbare Funktionen

Sei $f:\mathbb{R}\to\mathbb{R}$ eine Funktion und sei $\{(x,f(x))|x\in\mathbb{R}\}\subset\mathbb{R}^2$ der Graph von f

Gleichung der Sekante: Gerade durch die Punkte $(x_0, f(x_0))$ und $(x_1, f(x_1))$

$$y = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} \cdot (x - x_0)$$
 (7.1)

Sei x_0 fest gewählt und betrachte x_1 als variabel.

Als Funktion von $x_1 \in \mathbb{R} \setminus \{x_0\}$ ist die Sekantensteigung: $x_1 \to s(x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$

ist $s(x_1)$ in dem Punkt $x_1 = x_0$ stetig fortsetzbar, d.h. hat $s(x_1)$ einen Grenzwert $x_1 \to x_0$ so heißt die Gerade

$$y = f(x_0) + s(x - x_0) (7.2)$$

Grenzgerade der Sekanten oder <u>Tangente</u> an den Graphen von f in $(x_0, f(x_0))$.

- (7.1) **Definition:** Sei $f: M \to N, M, N \subset \mathbb{R}, M \neq \emptyset$. f heißt in $m \in M$ differenzierbar, falls
 - (a) m ist Häufungspunkt von M.
 - (b) $c := \lim_{x \to \infty} \left(\frac{f(x) f(m)}{x m} \right)$ existiert.

 $s: M \setminus \{m\} \to \mathbb{R}, \ s(x) = \frac{f(x) - f(m)}{x - m} \text{ heißt } \underline{\text{Differenzenquotient}}$

 $c:=\lim_{x\to m}\left(\frac{f(x)-f(m)}{x-m}\right)$ heißt Differenzialquotient oder Ableitung von f am Punkt $m\in M$ und wird mit f'(m) oder $\frac{\mathrm{d}f}{\mathrm{d}x}(m)$ bezeichnet.

- (7.2) **Proposition:** <u>alternative Definition</u>
 - $m \in M$ Häufungspunkt von M $f: M \to N \subset \mathbb{R}$, $M \subset \mathbb{R}$ differenzierbar. \iff der Differenzialquotient s(x) aus (7.3) ist in x = m eindeutig stetig fortsetzbar.
 - $f: M \to N, m \in M$ besitzt eine sich "anschmiegende" lineare Approximation in einer Umgebung von m bzw. der Graph von f besitzt eine Tangente in $(m, f(m)) \in \mathbb{R}^2$ d.h.

$$f: M \to N \text{ in } m \in M \text{ differenzierbar}$$

 $\Leftrightarrow \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists \delta > 0: \ |x - m| < \delta \ \forall x \in M$ (7.3)

$$|f(x) - (f(m) + (x - m))| < \varepsilon \cdot |x - m| \tag{7.4}$$

Hier ist $x \to f(m) + c \cdot (x - m)$ die lineare Tangentenfunktion.

- (7.4) **Definition:** f heißt <u>differenzierbar in M</u>, wenn f in jedem Punkt von M differenzierbar ist.
- (7.5) **Proposition:** Sei f differenzierbar in $m \in M$, dann ist f stetig in $m \in M$
- (7.6) Beispiel:
 - (a) $id_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}$, $id_{\mathbb{R}}(x) := x$ ist in \mathbb{R} difference $id_{\mathbb{R}}(x) = 1$ and $id_{\mathbb{R}(x)}(x) = 1$ and $id_{\mathbb{R}($
 - (b) konstante Funktion $x\mapsto c$ ist differenzierbar mit Ableitung 0

- (c) $||: \mathbb{R} \to \mathbb{R}, \ x \mapsto |x| \text{ ist in } \mathbb{R} \setminus \{0\} \text{ differenzierbar, also nicht in } x = 0.$ Für $x \neq 0$: $\frac{|x| 0}{x 0} = \frac{|x|}{x} = \left\{ \begin{array}{c|c} 1 & x > 0 \\ -1 & x < 0 \end{array} \right.$
- (d) $f(x) := |x|x^2$ ist differenzierbar in \mathbb{R} $\lim_{x \to 0} \frac{|x|x^2}{x} = \lim_{x \to 0} |x|x = 0$
- (7.7) Satz: Rechenregeln für Ableitungen

Seien $\overline{f,g:M\to N}$ differenzierbar in $m\in M$

- (a) <u>Linearität:</u> Seien $c, d \in \mathbb{R}$ Dann ist cf + dg differenzierbar in m mit Ableitung (cf + dg)'(m) = cf'(m) + dg'(m)
- (b) Produktregel: (fg)'(m) = f'(m)g(m) + f(m)g'(m)
- (c) Quotientenregel: Ist $g(x) \neq 0 \forall x \in M$ mit $|x m| < \delta$ So ist $\frac{f}{g}$ in x = m differenzierbar und $\left(\frac{f}{g}\right)' = \frac{f'(m)g(m) f(m)g'(m)}{g(m)^2}$
- (d) Kettenregel: Seien $f: M \to N, g: N \to N', M, N, N' \subset \mathbb{R}$ differenzierbar in $m \in M$ bzw. $\overline{\text{in } n := f(m)} \in N$. Dann ist $f \circ g: M \to N'$ in x = m differenzierbar und $(f \circ g)'(m) = (g(f(m)))' = g'(f(m)) \cdot f'(m) = g'(n) \cdot f'(m)$
- (7.8) Korollar:
 - (a) Die Ableitung der Polynomfunktion

$$P(x) = \sum_{k=0}^{n} a_k x^k$$
 ist $P'(x) = \sum_{k=1}^{n} k \cdot a_k x^{k-1}$

- (b) Die Ableitung $f(x) := \exp(x)$ ist $f'(x) = \exp(x)$
- (7.9) Definition & Proposition
 - (a) Sei $m \in M$ ein Häufungspunkt von $M \subset \mathbb{R}$. Eine Funktion $f: M \to \mathbb{R}$ heißt k-mal in $m \in M$ differenzierbar, wenn $K \in \mathbb{N}, K \geq 2$, wenn f in M differenzierbar ist und die Ableitung $f': M \to \mathbb{R}$ ist (k-1)-mal differenzierbar in m.
 - (b) f heißt $\underline{k\text{-mal differenzierbar in } m \in M}$, falls f k-mal differenzierbar ist in M und $x \mapsto f^{(k)}(x)$ stetig in x = m ist.
 - (c) f heißt \underline{k} -mal stetig differenzierbar in \underline{M} , wenn f in jedem Punkt $m \in M$ k-mal stetig differenzierbar ist.
- (7.10) **Satz:** Sei $f: I \to M$ auf dem offenen Intervall $I \subset \mathbb{R}$ differenzierbar und streng monoton (wachsend oder fallend). J := f(I) ist nach nach Folgerung 6.7 ein offenes Intervall. Ist $f'(x) \neq 0 \forall x \in I$, so ist die <u>Umkehrfunktion</u> von $f: g: J \to I$ mit $f \circ g(y) = y$: $g'(y) = \frac{1}{f'(x)} = \frac{1}{f'(g(y))}$
- (7.11) Korollar:
 - (a) Die Funktion $g(y):=\sqrt[n]{y}, n\in\mathbb{N}$ ist differenzierbare Bijektion $\mathbb{R}_+\mathbb{R}_+$ mit Ableitung: $g'(y)=\frac{1}{n(\sqrt[n]{y})^{n-1}}=\frac{\sqrt[n]{y}}{n\cdot y}=\frac{1}{n}y^{\frac{1}{n}-1}, \text{ denn } f(x):=x^n \text{ ist streng monoton wachsend und } f'(x)\neq 0, x>0$
 - (b) $f((x) = \exp(x))$ streng monoton wachsend auf \mathbb{R} $f'(x) = \exp(x) \neq 0$ auf \mathbb{R} $\log : \mathbb{R}_+ \to \mathbb{R}$ ist differenzierbare Bijektion mit Ableitung $(\log(y))' = \frac{1}{\exp(\log(y))} = \frac{1}{y}, y > 0$
 - (c) $f(x) = x^3$ ist streng monotone Bijektion von $\mathbb{R} \to \mathbb{R}$, f'(0) = 0 daher ist $\left(\frac{\mathrm{d}}{\mathrm{d}x}f^{-1}\right)(y) = \frac{1}{3}y^{\frac{1}{3}-1}, y \neq 0$, aber $f^{-1}(y)$ ist in y = 0 nicht differenzierbar.

- (7.12) **Definition:** Extrema $m \in I \subset \mathbb{R}$, I Intervall, m nicht Endpunkt von I
 - (a) f hat ein lokales Maximum (bzw. Minimum) in m, falls es ein $\delta > 0$ gibt mit $f(m) \ge f(x)$ (bzw. $f(m) \le f(x)$) für alle $x \in [m \delta, m + \delta] \subset I$
 - (b) gilt f(m) > f(x) (bzw. f(m) < f(x)) für alle $x \in]m \delta, m + \delta[\subset I, x \neq m \text{ so heißt } m \text{ strenges lokales Maximum (bzw. Minimum)}.$
 - (c) f hat globales Maximum (bzw. Minimum) auf I in m, falls $f(m) \ge f(x)$ (bzw. $f(m) \le f(x)$) für alle $x \in I$.
 - (d) entsprechend strenges globales Maximum/Minimum. Maxima und Minima heißen Extremalpunkte.
- (7.13) **Satz:** Sei $m \in I$ siehe Def. 7.11 ein lokales Extremum von $f: I \to \mathbb{R}$ und sei f differenzierbar in m. Dann ist f'(m) = 0.
- (7.14) Satz von Rolle: Sei $f : [a, b] \to \mathbb{R}$, a < b stetig und in]a, b[differenzierbar. Sei f(a) = f(b) dann gibt es ein a < c < b mit f'(c) = 0
- (7.15) Satz: Mittelwertsatz der Diffentialrechnung Sei $f:[a,b] \to \mathbb{R}, \ a < b$ stetig und in]a,b[differenzierbar, dann gibt es ein $c \in]a,b[$, sodass $f'(c) = \frac{f(b) f(a)}{b a}$ (mittlere Steigung).
- (7.16) Satz: Sei $f:[a,b]\to\mathbb{R}$ stetig und auf [a,b] differenzierbar
 - (a) Gilt $f'(x) \ge 0$ (bzw. f'(x) > 0, $f'(x) \le 0$, f'(x) < 0) für alle $x \in]a, b[$, so ist f auf [a, b] monoton wachsend (bzw. streng monoton wachsend, monoton fallend, streng monoton fallend).
 - (b) Ist f monoton wachsend (bzw. fallend), so ist $f'(x) \ge 0$ (bzw. $f'(x) \le 0$ für alle $x \in]a, b[$).
 - (c) Ist f in $m \in]a, b[$ zweimal stetig differenzerbar und $f'(m) = 0 \land f''(m) < 0$ (bzw. f''(m) > 0), so hat f in m ein strenges lokales Makimum (bzw. Minimum).
 - (d) Falls für $m \le M$, $m, M \in \mathbb{R}$ gilt: $f'(x) \in [m, M] \forall x \in]a, b[$, so folgt: $m(y_2 y_1) \le f(x_1) f(x_2) \le M(y_2 y_1) \forall x_1, x_2 \in [a, b], \ x_1 < x_2$
- (7.17) **Bemerkung:** f streng monoton wachsend $\not\gg f'(x) > 0 \forall x \in]x_1, x_2[$ Beispiel: $f(x) = x^3$ in x = 0
- (7.18) **Folgerung:** Falls $f:[a,b] \to \mathbb{R}$ stetig und in]a,b[differenzierbar mit $f'(x) = 0, x \in]a,b[$, so ist f konstant.
- (7.19) Lemma:
 - (a) Sei $f:]a, b[\to \mathbb{R}$ differenzierbar mit $\lim_{x \searrow 0} f(x) = 0$ und $\lim_{x \searrow 0} f'(x) = c \in \mathbb{R}$, dann $\lim_{x \searrow 0} \frac{f(x)}{x} = c$
 - (b) Sei $f:]a, \infty[\to \mathbb{R}$ differenzierbar, $\lim_{x \to \infty} f'(x) = 0$, dann $\lim_{x \to \infty} \frac{f(x)}{x} = c$
- (7.20) Satz: Regeln von de l'Hospital

Seien $\overline{f,g:I\to\mathbb{R}}$ differenzierbare Funktionen auf $I=]a,b[,-\infty\leq a\leq b\leq\infty.$ Sei $g(x)\neq 0 \forall x\in I$ und $\lim_{x\to b}\frac{f'(x)}{g'(x)}=c\in\mathbb{R}$ existiert, dann:

- (a) Falls $\lim_{x \to b} g(x) = \lim_{x \to b} f(x) = 0$, so ist $g(x) = 0 \forall x \in I$ und $\lim_{x \to b} \frac{f(x)}{g(x)} = c$
- (b) Falls $\lim_{x \to b} g(x) = \pm \infty$, so ist $g(x) \neq 0, x \geq x_0, x_0 \in]a, b[$ und $\lim_{x \to b} \frac{f(x)}{g(x)} = c$

(c) Analoge Definition für $x \searrow a$.

(7.21) **Definition:** Die Hyperbelfunktionen

$$\begin{split} \cosh(x) &:= \frac{\exp(x) + \exp(-x)}{2} = \frac{e^x + e^{-x}}{2} \\ \sinh(x) &:= \frac{\exp(x) - \exp(-x)}{2} = \frac{e^x - e^{-x}}{2} \\ \tanh(x) &:= \frac{\sinh(x)}{\cosh(x)} \\ \coth(x) &:= \frac{\cosh(x)}{\sinh(x)} \\ \cosh(0) &= 1, \ \sinh(x) = -\sinh(-x), \ \cosh(x) = \cosh(-x) \end{split}$$

(7.22) **Bemerkung:** Mittels $\exp'(x) = \exp(x) : \cosh'(x) = \sinh(x), \sinh'(x) = \cosh(x)$

8 Komplexe Zahlen und trigonometrische Funktionen

$$x^2 + 1 \ge 1 > 0 \forall x \in \mathbb{R} \tag{8.1}$$

d.h. $x^2 + 1 = 0$ ist nicht lösbar in \mathbb{R} daher wird $i = \sqrt{-1}$ als Lösung von (8.1) definiert.

$$z := a + \sqrt{-1}b = a + bi, \ a, b \in \mathbb{R}$$

$$(8.2)$$

8.1 Vergleich mit Kapitel 1

 $\varphi: \mathbb{R}^2 \to \mathbb{C}, \ (a,b) \mapsto a+b$ i ist ein Isomorphismus von Körpern:

$$1 \in \mathbb{C} \cong (1,0) \in \mathbb{R}^2$$

$$\mathbf{i} \in \mathbb{C} \cong (0,1) \in \mathbb{R}^2$$

$$a = \text{Re}(a+b\mathbf{i}) = \Re(a+b\mathbf{i})$$

$$b = \text{Im}(a+b\mathbf{i}) = \Im(a+b\mathbf{i})$$

$$\text{conj}(a+b\mathbf{i}) = \overline{a+b\mathbf{i}} := a-b\mathbf{i}$$

$$|a+b\mathbf{i}| = |z| = \sqrt{a^2+b^2}$$
konjugiert Komplexes

Dann gilt für $z, w \in \mathbb{C}$:

$$z = |z| \frac{z}{|z|} = |z|\epsilon_z, \ |\epsilon_z| = 1$$
(8.3)

$$|z^2| = z \cdot \overline{z}, \ \overline{z \cdot w} = \overline{z} \cdot \overline{w}, \ \overline{z + w} = \overline{z} + \overline{w}, \ \overline{\overline{z}} = z, \ \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}, z \neq 0$$
 (8.4)

Bemerkung:
$$\frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}} = \frac{\overline{z}}{|z|^2}, \quad z \neq 0$$

Vergleiche Betragseigenschaft in Satz 2.4 und Definition 2.5

$$|z+w| \le |z| + |w|$$
 (Δ -Ungleichung) (8.5)

$$|z \cdot w| = |z| \cdot |w|$$
 (Multiplikativität) (8.6)

 \mathbb{C} ist ein bewerteter Körper mit: $z \mapsto |z| = \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$

$$z + \overline{z} = 2\operatorname{Re}(z), \quad z - \overline{z} = 2\operatorname{Im}(z)i$$
 (8.7)

$$|\operatorname{Re}(z)| \le |z| \le \operatorname{Im}(z)$$
 (8.8)

Durch Ersetzen der Betragsfunktion können alle Definitionen für die Konvergenz von Folgen aus (3.) auf \mathbb{C} erweitert werden.

Wichtiger Unterschied: C ist nicht angeordnet!

In den Definitionen ersetze offenes ε -Intervall $]a - \varepsilon, a + \varepsilon[\subset \mathbb{R} \text{ um } a \in \mathbb{R} \text{ durch:} \{x \in \mathbb{R} | |x - a| < \varepsilon\} \rightarrow \{z \in \mathbb{C} | |z - a| < \varepsilon\}, a \in \mathbb{C} \text{ Es gelten: Def.: } 3.4, 3.6; \text{ Satz: } 3.7, 3.10, 3.11, 3.12, 3.15; \text{ Bsp.: } 3.17, 3.18$

- (8.1) **Definition:** $(z_n)_{n\in\mathbb{N}}$ Cauchy-Folge in $\mathbb{C} \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n,m \geq N : |z_n z_m| < \varepsilon$
- (8.2) **Satz:**
 - (a) C ist bezüglich | | vollständig.
 - (b) Jede beschränkte Folge in $\mathbb C$ besitzt mindestens einen Häufungspunkt. $(z_n)_{n\in\mathbb N}$ beschränkt $\Leftrightarrow \exists K>0 \ \forall n\in\mathbb N: \ |z_n|\leq K$

Es gelten: Satz: 4.17, (4.18 NICHT!), 4.21(Majorante), 4.22 (absolute K.), 4.24, 4.26, 4.29 **Definition 5.19:** offene/abgeschlossene/kompakte Mengen gelten auch für C. Ferner gilt Satz 5.20b)d) Satz 5.20i) mit: $a - \varepsilon, a + \varepsilon$ ersetzt durch $K_{\varepsilon}(a)$

(8.3) **Definition:** Die Exponentialfunktion $\exp : \mathbb{C} \to \mathbb{C}$ ist definiert durch die absolut konvergenze Reihe: $\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$ (Quotientenkriterium)

Die Konvergenzabschätzung 6.1d) gilt genauso: $\left|\exp(z) - \sum_{j=0}^N \frac{z^j}{j!}\right| \leq 2 \frac{|z|^{N+1}}{N+1}$ für $|z| < \frac{N+2}{2}$

Die Definitionen für Stetigkeit und Differenzierbarkeit von Funktionen $f: M \to N, M, N \subset \mathbb{C}$ ist analog zu Def. 6.1. Sätze 6.2, 6.3 gelten analog. Def.: 6.8, 6.15; Satz: 6.9, 6.17 gelten in $\mathbb C$ auch. Zwischenwertsatz (Satz 6.5) gilt nicht!

(8.5) **Definition:** Für $x \in \mathbb{R}$ sei:

 $\cos(x) := \operatorname{Re}(\exp(\mathrm{i}x)) = \frac{\exp(\mathrm{i}x) + \exp(-\mathrm{i}x)}{2}$ $\sin(x) := \operatorname{Im}(\exp(\mathrm{i}x)) = \frac{\exp(\mathrm{i}x) - \exp(-\mathrm{i}x)}{2\mathrm{i}}$ Dann sind sin : $\mathbb{R} \to \mathbb{R}$, $\cos : \mathbb{R} \to \mathbb{R}$ mit $x \mapsto \sin(x)$, $x \mapsto \cos(x)$ also stetig.

Analog zu Satz 4.30 gilt für $z, w \in \mathbb{C}$:

$$\exp(z+w) = \exp(z) \cdot \exp(w) \tag{8.9}$$

$$\exp(z) \neq 0 \forall z \in \mathbb{C} \tag{8.10}$$

- (8.6) **Satz**:
 - (a) $\exp : \mathbb{C} \to \mathbb{C}$ ist komplex differenzierbar
 - (b) $\overline{\exp(z)} = \exp(\overline{z}), z \in \mathbb{C}$
- (8.6) **Definition:** Mit den Definitionen von sin und cos gilt für $x \in \mathbb{R}$:

$$\exp(ix) = \cos(x) + i\sin(x)$$
 Eulerische Formel (8.11)

$$|\exp(ix)|^2 = \exp(ix)\overline{\exp(ix)}$$

$$= \exp(ix)\exp(-ix)$$

$$= \exp(ix - ix) = \exp(0) = 1$$
nach Satz 8.5 (8.12)

$$i^{n} = \begin{cases} 1 & n = 4m \\ i & n = 4m + 1 \\ -1 & n = 4m + 2 \\ -i & n = 4m + 3 \end{cases}, m \in \mathbb{N}_{0}$$

$$(8.13)$$

- (8.7) **Satz:** $\forall x, y \in \mathbb{R}$ gilt:
 - (a) $\cos(-x) = \cos(x)$, $\sin(-x) = -\sin(x)$
 - (b) $\sin^2(x) + \cos^2(x) = 1$
 - (c) $\cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y)$ $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$

(d)
$$\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$

$$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

- (e) $x \mapsto \sin(x)$, $x \mapsto \cos(x)$ sind differentiation in \mathbb{R} mit: $\sin'(x) = \cos(x)$, $\cos'(x) = -\sin(x)$
- (f) Bemerkung: Hierraus folgt: sin(0) = 0, cos(0) = 1
- (8.8) **Satz:**
 - (a) $x \mapsto \cos(x)$ besitzt in [0, 2] genau eine Nullstelle τ mit $\pi = 2\tau$
 - (b) $\forall x \in \mathbb{R}$ gilt: $\sin(x + \frac{\pi}{2}) = \cos(x), \quad \sin(x + \pi) = -\sin(x)$ $\cos(x + \frac{\pi}{2}) = -\sin(x), \quad \cos(x + \pi) = -\cos(x)\sin(x + 2\pi) = \sin(x)\cos(x + 2\pi) = \cos(x)$ 2π heißt Periode von \sin / \cos . Sie $\sin 2\pi$ -periodisch $(\exp(\mathrm{i}(x + 2\pi))) = \exp(\mathrm{i}x)$
- (8.9) Korollar: $\pi \mathbb{Z} := \{ x \in \mathbb{R} | \sin(x) = 0 \} = \{ k\pi | k \in \mathbb{Z} \}$ $\frac{\pi}{2} + \pi \mathbb{Z} := \{ x \in \mathbb{R} | \cos(x) = 0 \} = \{ k\pi + \frac{\pi}{2} | k \in \mathbb{Z} \}$
- (8.10) **Definition:** $\tan : \mathbb{R} \setminus \{\frac{\pi}{2} + \pi \mathbb{Z}\} \to \mathbb{R}, \ \tan(x) := \frac{\sin(x)}{\cos(x)}$ $\cot : \mathbb{R} \setminus \{\pi \mathbb{Z}\} \to \mathbb{R}, \ \tan(x) := \frac{\cos(x)}{\sin(x)}$
- (8.11) Die Funktionen
 - $[0, \pi] \to [-1, 1], \quad x \to \cos(x)$
 - $\bullet \ [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1], \quad x \to \sin(x)$
 - $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}, \quad x \to \tan(x)$
 - $[0,\pi] \to \mathbb{R}, \quad x \to \cot(x)$

sind bijektiv. Ihre Umkehrfunktionen heißen arccos, arcsin, arctan, arccot (Arcus-Funktionen)

9 Das Riemann-Integral

Problem:

Die Fläche F_A unter einer Funktion f bestimmen. Ist das für jede Funktion möglich?

Antwort:

Ja, zumindest, wenn f stetig ist.

Das Riemannintegral, benannt nach Bernhard Riemann (1826-1866)

(9.1) **Definition:** Zerlegung, feinere Zerlegung, Zerlegungsintervall, gemeinsame Verfeinerung

Sei $a < b, \ a,b \in \mathbb{R}$ I = [a,b] kompaktes Intervall

- Eine Zerlegung von I ist ein (n+1)-Tupel: $Z = (x_0, x_1, x_2, \dots, x_n), \ n \in \mathbb{N}, \ a = x_0 < x_1 < \dots < x_n = b.$
- Eine weitere Zerlegung $Z'=(x_0',x_1',x_2',\ldots,x_n')$ heißt feiner als Z, falls gilt:

 $\{x_0, \dots, x_n\} \subseteq \{x'_0, \dots, x'_n\}.$ Wir schreiben $Z' \ge Z$ (partielle Ordnung).

- Zur Zerlegung Z gehören die Zerlegungsintervalle $I_k = [x_{k-1}, x_k], k = 1, \ldots, n.$ Dann gilt für die Zerlegungsintervalle I_j von $Z' \geq Z$: Zu jedem j gibt es ein k(j) mit $I_j \subset I_{k(j)}$.
- Zu Zerlegungen Z,Z' von I gibt es stets eine feinere Zerlegung Z'' mit $Z'' \geq Z' \wedge Z'' \geq Z$

(9.2) **Definition:** Riemannsche Obersumme/Untersumme

Sei I ein Intervall wie in Def 9.1 und $f: I \to \mathbb{R}$ beschränkt und Z eine Zerlegung von I. Dann heißen:

$$O_Z(f) = \sum_{i=1}^n \left((x_i - x_{i-1}) \sup \left(\{ f(x) | x_{i-1} \le x \le x_i \} \right) \right)$$

$$U_Z(f) = \sum_{i=1}^n \left((x_i - x_{i-1}) \inf \left(\{ f(x) | x_{i-1} \le x \le x_i \} \right) \right)$$

Riemannsche Obersumme bzw. Untersumme bezüglich der Zerlegung ${\cal Z}.$

Man approximiert f also von oben bzw. unten durch stückweise konstante Funktionen auf I_j

(9.2) Bezeichnungen:

- $|I_k| := x_k x_{k-1}$ (Länge des Intervalls)
- $\bullet \sup_{A} f := \sup \left(\left\{ f(x) | x \in A \right\} \right)$
- $\bullet \inf_{A} f := \inf \left(\left\{ \left. f(x) \right| x \in A \right\} \right)$
- $\bullet \ O_Z(f) = \sum_{i=1}^n |I_k| \sup_{I_k} f$
- $U_Z(f) = \sum_{i=1}^n |I_k| \inf_{I_k} f$

- (9.3) Satz: Seien I=[a,b] wie oben, $f,g:I\to\mathbb{R}$ beschränkt, Z,Z' Zerlegungen von I:
 - (a) $U_Z(f) + U_Z(g) \le U_Z(f+g) \le O_Z(f+g) \le O_Z(f) + O_Z(g)$
 - (b) Für $\lambda > 0$: $U_Z(\lambda f) = \lambda U_Z(f)$; $O_Z(\lambda f) = \lambda O_Z(f)$
 - (c) Falls $|f(x)| \le c \forall x \in I, c \in \mathbb{R}$: $|U_Z(f)| \le c|I| = c(b-a)$; $|O_Z(f)| \le c|I| = c(b-a)$
 - (d) Aus $Z' \geq Z$ folgt $U_Z(f) \leq U_{Z'}(f) \leq O_{Z'}(f) \leq O_Z(f)$. D.h. Untersummen sind monoton wachsend in Z und Obersummen sind monoton fallend in Z.
 - (e) Für beliebige Zerlegungen Z, Z' gilt: $U(f) \leq O_{Z'}(f)$
- (9.4) **Definition:**Riemann-Ober-/Unterintegral, Riemannintegral

Sei $f:[a,b] \to \mathbb{R}$ beschränkt, I=[a,b]. Dann heißt:

 $U(f) := \sup \{ U_Z(f) | Z \text{ Zerlegung von } I \}$

 $O(f) := \inf \{ U_Z(f) | Z \text{ Zerlegung von } I \}$

das Riemann-Unter-Oberintegral von f, es gilt: $U(f) \leq O(f)$

Falls O(f) = U(f), so heißt dieser Wert das Riemannintegral von f und man schreibt: $\int_a^b f(x) dx = O(f) = U(f)$ und sagt: f ist R(iemann)-integrierbar.

- (9.4) **Schreibweise:** Ist f R-integriebar und a < b setze:
 - $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$, $\int_{a}^{a} f(x) dx = 0$
 - $U_a^b(f) = \sup (\{U_Z(f) | Z \text{ Zerlegung von } [a, b]\})$
 - $O_a^b(f) = \inf (\{U_Z(f) | Z \text{ Zerlegung von } [a, b]\})$
- (9.6) Satz: Seien $f, g: I \to \mathbb{R}$ beschränkt, $\lambda \geq 0$ Dann:
 - (a) $U_a^b(f) + U_a^b(g) \le U_a^b(f+g) \le O_a^b(f) + O_a^b(g)$
 - (b) $U_a^b(\lambda f) = \lambda U_a^b(f), \quad O_a^b(\lambda f) = \lambda O_a^b(f)$
 - (c) $U_a^b(-f) = -O_a^b(f)$
 - (d) Für a < c < b: $U^c_a(f) + U^b_c(f) = U^b_a(f), \ O^c_a(f) + O^b_c(f) = O^b_a(f)$
- (9.7) **Satz:** Die R-integrierbaren Funktionen bilden einen <u>reellen Vektorraum</u> \mathcal{R} und $f \mapsto \int_a^b f(x) dx$ ist eine liniare Abbildung $\mathcal{R} \to \mathbb{R}$ mit: $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_a^b f(x) dx$, $a \le c \le b$
- (9.8) **Satz:** $f:[a,b] \to \mathbb{R}$ sei beschränkt, $a \le c \le b$: f ist auf [a,b] R-integrierbar $\iff f_{|[a,c]}$ R-integierbar und $f_{|[c,b]}$ R-integierbar
- (9.9) Satz: Integrabilitätskriterium

 $f:[a, \overline{b}] \to \mathbb{R}$ beschränkt.

f R-integrierbar $\iff \forall \varepsilon > 0 \ \exists Z_{[a,b]} : \ O_Z(f) - U_Z(f) < \varepsilon$

- (9.10) **Satz:** Seien $f, g : [a, b] \to \mathbb{R}$ R-integierbar
 - (a) Dann sind auch |f|, $\max(f,g)$, $\min(f,g)$, $f \cdot g$, $|f|^p$, $1 \le p \le \infty$ R-inegrierbar
 - (b) Falls $f(x) \le g(x) \forall x \in [a, b]$, so ist $\int_a^b f(x) dx \le \int_a^b g(x) dx$, $\left| \int_a^b f(x) dx \right| \le \int_a^b |g(x)| dx$
 - (c) f stetig auf $[a, b] \Rightarrow f$ ist R-integrierbar

10 Hauptsatz der Differenzial- und Integralrechnung

(10.1) Satz: Mittelwertsatz/Zwischenwertsatz der Integralrechnung

Sei $f:[a,b]\to\mathbb{R}$ stetig. Dann gibt es ein $c\in[a,b]$ mit $\int\limits_a^b f(x)\mathrm{d}x=(b-a)\cdot f(c)$

(10.2) Satz: Hauptsatz

Sei $I \subseteq \mathbb{R}$ ein Intervall $I = [a, b], \ a < b \text{ und } F : I \to \mathbb{R}$ stetig. Die Funktion $F(x) = \int\limits_a^b f(x) \mathrm{d}x, x \in I, \quad F : I \to \mathbb{R}$ ist $\forall x \in I$ differenzierbar mit: F'(x) = f(x).

- (10.2) **Bemerkung:** Satz 10.2 liefert: Die Abbildung $f\mapsto \int\limits_0^\circ f=F$ ist eine lineare Abbildung vom vektorraum der k-mal differenzierbaren Funktionen $\varrho^k(I)$ in den Vektorraum der (k+1)-mal differenzierbaren Funktionen $\varrho^{k+1}(I)$ mit $\frac{\mathrm{d}}{\mathrm{d}x}\circ \int\limits_0^\circ = id: \varrho^k(I) \to \varrho^k(I)$
- (10.3) **Definition:** Stammfunktion, unbestimmtes Integral

Sei $f:[a,b] \to \mathbb{R}$ eine Funktion $F:[a,b] \to \mathbb{R}$ heißt Stammfunktion von f, falls F auf [a,b] differenzierbar und F'=f ist.

F:[a,b] heißt unbestimmtes Intagral von f, falls f auf jedem teilintervall $[x_o,x]\subset I$ Rintegrierbar ist und $F(x)=\int\limits_{x_0}^x f(x)\mathrm{d}x=F(x)-F(x_0)$ gilt. Schreibe dafür: $\int\limits_{x_0}^x f(x)\mathrm{d}x$

- (10.4) **Satz:**
 - (a) Seien $F;G:[a,b]\to\mathbb{R}$ Stammfunktionen zu $f:[a,b]\mathbb{R}$, wobei f stetig. Dann gilt: $F(x)=G(x)+c\forall x\in[a,b]$
 - (b) Sei $f \in \varrho^1([a,b])$. Dann gilt $\forall x_0, x \in [a,b], x < x : \int_{x_0}^x f'(t) dt = f(x) f(x_0)$
 - (c) Sei $f:[a,b]\to\mathbb{R}$ stetig. Dann gilt: F Stammfunktion zu $f\Longleftrightarrow F$ uneigentliches Integral zu f
- (10.4) **Beispiel:** Betrachte die unstetige Funktion $f(x) = \left\{ \begin{array}{c|c} 0 & x \leq 0 \\ 1 & x > 0 \end{array} \right.$

Diese Funktion ist R-integrierbar auf jedem kompakten Intervall $F(x) = \begin{cases} 0 & x \le 0 \\ x & x > 0 \end{cases}$ F ist jedoch keine Stammfunktion zu f, da F in x = 0 nicht differenzierbar ist.

(10.5) Beispiel:

•	f(x)	Stammfunktion
	$(x-a)^n$	$\frac{1}{1-n}(x-a)^{n+1}, \ n \in \mathbb{Z} \setminus \{1\}$
	$\exp(x)$	$\exp(x)$
	$\sin(x)$	$-\cos(x)$
	$\cos(x)$	$\sin(x)$
	$\frac{1}{x-a}$	$\log(x-a), \ x \neq a$
	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x), x \in \mathbb{R}$
	$\frac{1}{\sqrt{1+x^2}}$	$\operatorname{arsinh}(x), \ x \in \mathbb{R}$
	$\frac{1}{1+x^2}$	$\arctan(x), x \in \mathbb{R}$
	1	$\int \operatorname{artanh}(x) \mid x < 1$
	$\frac{1}{1-x^2}$	$\left \begin{array}{c c} \operatorname{arcot}(x) & x > 1 \end{array} \right $

(10.6) Satz: Partielle Integration, Substitutions
regel

- (a) Sei $I \subseteq \mathbb{R}$ Intervall $f, g \in \varrho^1(I) \forall a, b \in I$. $\int\limits_a^b f(x) \cdot g'(x) \mathrm{d}x = \left. (f \cdot g) \right|_a^b \int\limits_a^b f'(x) \cdot g(x) \mathrm{d}x, \quad h|_a^b = h(b) h(a)$ Für unbestimmtes Integral: $\int\limits_a^b fg' = fg \int\limits_a^b f'g$
- (b) Sei $I \subseteq \mathbb{R}$ Intervall $f: I \to \mathbb{R}$ stetig, $g: [c,d] \to I, \ c,d \in \mathbb{R}, \ c < d$ stetig differenzierbar. Dann gilt:

$$\int_{c}^{d} f(g(x)) \cdot g'(x) dx = \int_{g(c)}^{g(d)} f(y) dy$$