

GOAL

- Introduce different types of Neural networks.
 - MLP
 - CNN
- Why do we need different Networks?:
 - Ineffectiveness of Existing Ones, New Needs
 - Solution Architecture
 - Effectiveness of Proposed Network , Performance Comparison
- 2 Competitions
 - One on Numerical Data and other on Image Data
- 2 Paper Implementation

PRE-REQS AND TIME REQS

- Googling Skills
- Python, Basic Linear Algebra, Differentiation (MTH 102): Matrix Multiplication, Calculus etc.
- Deep Learning by Andrew Ng, Coursera: Week 6: Familiarity With linear and logistic Regression, Minimal familiarity with ML terminology
- 8-10 hours/week
- Reading material : Notes , Articles, Documentation
- Practice Material: Theory(Minimal), Programming: Colab Tutorials: NO SUBMISSION

MINIMAL

- Regression And Shallow NN Using Python Week 1-2
 - Hackathon 1: Classification On Numerical Data
- NN With Pytorch Week 2
- Intro To CNN Week 2-3
 - **Hackathon 1 Ends**
 - **Hackathon 2: Classification On RGB-images**
 - Paper 1: Alexnet/VGG/Inception/Xception : Choose One You Want
- Optimization Methods Week 4-5
 - **Hackathon 2 Ends**
 - **Submit Paper 1 Implementation**
- GAN + Autoencoders/Any Advanced Concept Week 5-6
 - (Y20) Paper 2: GAN/Any Advanced Paper
- Collaborate With Others For Implementing More Architecture
 - Submit Paper 2 at the end of project

RATIFICATION

- At Least 2 different submissions in each Hackathon:
 - Hackathon 1 : Regression, NN
 - Hackathon 2: Baseline CNN model, LeNet (Or any Other deep architecture), Transfer learning:
- 2 Paper Implementation for Y19 and 1 for Y20 (Optional)
- 3 Github Repo: All your work (Practice + Theory/Notes): As a backup: If you fail to complete the above two show us your previous work.

1. Setup

- Colab,kaggle(Recommended)
 - Training Large Models, Free GPU
 - kaggle api for datasets
- Local System : Anaconda
 - Conda to install packages and manage environment
 - Recommended for low training requirements and Good laptops

CONTINUED

- 2. Numerical data: Multi layer Perceptron (MLP): Week 1-2
 - Regression : Week 1 : : Python Implementation
 - Gradient Descent, relu layer, MSE loss
 - Binary Classification, sigmoid layer, BCE loss
 - Multiclass Classification, softmax layer, NLL loss
 - MLP + PyTorch : Week 1-2
 - Linear Algebra, Single Layer NN, Training, Inference and Validation: Illustrated Through Pytorch
 - Implement 1-hidden layer NN using PyTorch but train in python.

Hackathon 1 Classification On Numerical Data Starts

CONTINUED

- 3. Intro to CNN: Week 2-3
- Simple Feed-forward Network : Week 2-3
 - Flatten image first and then treat as numerical data
- Convolutional Neural Networks : Week 3
 - Use Spatial Information
- Compare results with MLP on MNIST data
- LeNet : Week 3
 - Convolution + [Pooling] + Fully connected layers

Hackathon 1 Ends

Hackathon 2 : Image Classification Starts

Paper 1: SOTA Model Implementation

CONTINUED

- 4. Optimization of Neural Nets: Week 4-5
 - Optimizer variation :
 - SGD with Momentum, Nesterov and Adam
 - Overfitting and Regularization
 - **L**1, L2
 - Batch-Norm
 - Hyperparameter tuning
 - Variable learning rate,
 - Weight Initalization : Xavier, He Normal

Hackathon 2 Ends Paper 1 Submission

CONTINUED

- 5. Advanced Topics: Week 5-6
 - Autoencoders
 - Convert High dimension to Low dimension data
 - Should be able to convert Low to high with minimum error
 - MLP:
 - First flatten images i.e. convert to numerical data
 - As a (ineffective) compression method
 - Convolution :
 - For Denoising images
 - Uses Transposed Convolutions

CONTINUED

- 5. Advanced Topics: Week 5-6
 - Generative Adversarial networks : (¥20)
 - Generate new data points as efficiently possible
 - Generator : Genearate fake data
 - Discriminator : Recognize fake data and penalize Genearator
 - Generator and Discriminator Compete with Each Other !!!

Paper 2 Implementation : Start from Week $5\frac{1}{2}$ Itself Submit In the End

COLLOBORATION & GENERAL

- Form a group and implement one more paper/architecture if you have time: Week 6
- We will help in gathering resources for the same.
- Github repo
 - minimal clean code in jupyter notebook format.
 - Do not print large outputs.
 - Proper Folder, File structure (For both your and our convenience)
- Google

THANK YOU