Universidad de Guadalajara

CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS

Práctica 3. Efecto de la temperatura en la hidrólisis del acetato de etilo

Mojica Muñoz Erika Patricia [213402515]
Pedraza Herrera Leonardo Daniel [216784893]
INGENIERÍA QUÍMICA | - LABORATORIO DE REACTORES QUÍMICOS
4 de octubre de 2021

Profersor: Alejandro Nava Tellez

ÍNDICE

 1. Objetivos
 1

 2. Prerreporte
 1

 2.1. Materiales y reactivos
 2

 2.2. Procedimiento
 2

 2.3. Diagrama
 3

 3. Cálculos
 3

 4. Conclusión
 9

A partir de observaciones experimentales, Arrhenius estableció la dependencia que la constante de velocidad específica de una reacción tiene con la temperatura:

$$k = Aexp\left(\frac{-E_a}{RT}\right)$$

Donde k es la constante de velocidad, A el denominado factor de frecuencia, E_a la energía de activación, R la constante de los gases y T la temperatura expresada en Kelvin. Si se realizan experimentos a diferentes temperaturas, se pueden determinar los parámetros A y E_a a partir de la representación lineal de la ecuación de Arrhenius en su forma logarítmica:

$$lnk = lnA - \frac{E_a}{R} \frac{1}{T}$$

1. OBJETIVOS

Analizar el efecto de la temperatura y determinar los parámetros de la ecuación de Arrhenius: energía de activación y factor de frecuencia.

2. Prerreporte

- 1. ¿Cuáles son las características de una reacción exotérmica y de una endotérmica?
 - Exotérmica:

Durante una reacción exotérmica el calor *sale* o fluye *hacia afuera* del sistema, es decir, hacia el entorno.

 $\Delta H < 0$

Endotérmica:

Durante una reacción endotérmica, el calor fluye hacia dentro del sistema desde su entorno.

 $\Delta H > 0$

- 2. Que representan el factor de frecuencia y la enería de activación.
 - Factor de frecuencia:

El factor de frecuencia "*A*.es una relación empírica entre la temperatura y el coeficiente de velocidad.

Energía de activación:

Es la energía mínima que necesita un sistema antes de poder iniciar la reacción.

3. ¿Cuál es el efecto de la temperatura en una reacción química?

La temperatura influye directamente en la velocidad de reacción. Mientras mayor sea la temperatura mayor es el número de choques entre las moléculas y mayor la velocidad de la reacción.

2.1. Materiales y reactivos

Para el desarrollo de esta práctica se requiere un reactor esférico con 3 bocas esmeri- ladas de 250 mL, un soporte universal, una pinza de 3 dedos, dos tapones de hule, un condensador, manguera, un cronómetro y dos probetas de 100 mL, 2 vasos de precipitados de 100 mL, una propipeta, un conductímetro, una pizeta, dos matraces aforados de 100 mL, una espátula, un termómetro, un agitador magnético y una barra de agitación magnética. Además se requieren 100 mL de una solución de 0.2 M de NaOH y 100 mL de una solución 0.2 M de acetato de etilo. Y también se necesita

2.2. Procedimiento

Preparar las soluciones de NaOH y de acetato de etilo. En el reactor perfectamente limpio y seco, colocar 100 mL de solución de NaOH 0.2 M. Fijar el reactor al soporte universal e introducir en el baño térmico ajustando la temperatura de reacción. Medir con la probeta 100 mL de acetato de etilo y vaciarlos a un vaso de precipitados. Colocar el termómetro y el conductimetro en el reactor. Vaciar la solución medida de acetato de etilo al reactor, agitar vigorosamente durante unos segundos con ayuda del agitador magnético y poner en marcha el cronómetro. Hacer medidas de conductividad para la reacción a los siguientes tiempos: 0.5, 1, 1.5, 2, 3, 5, 7, 10, 13 y 18. Una vez realizadas las mediciones anteriores, vaciar la muestra en un frasco de vidrio, cierre y deje enfriar a temperatura ambiente. Este procedimiento se deberá realizar para las siguientes temperaturas: 35, 50, 65 y 80 °C. Deberán obtenerse las curvas de calibración a cada temperatura.

2.3. Diagrama

Figura 1: Diagrama de la práctica

3. CÁLCULOS

1. Expresar la ley de velocidad para la reacción. Para este caso A es acetato de etilo y B es el Hidróxido de sodio.

$$-r_a = k[A][B]$$

2. Elaborar una gráfica de conductividad en función del tiempo y extrapolar a t = 0.

Figura 2: Diagrama de la práctica

3. Plantear las ecuaciones de conductividad en función del tiempo. A partir de estas ecuaciones, determinar las concentraciones de los productos que se han formado a cualquier tiempo

t, en función de la conductividad.

Con los siguientes datos se elabora una gráfica de calibración para obtener las concentraciones a cualquier tiempo.

Temperatura	30°C	35°C	40°C	45°C
Tomporatura	Conducti	Conducti	Conducti	Conducti
Tiempo	vidad(mS)			vidad(mS)
0.5	181.95	89.82	124.65	128.8
1	163.65	84.74	109.24	116.77
1.5	149.17	80.97	98.64	107.59
2	136.56	77.64	89.3	100.18
3	116.54	72.14	73.6	88.49
5	90.12	65.4	55.33	74.91
7	73.36	61.31	44.29	67.42
10	55.79	56.87	33.14	59.22
13	43.44	54.1	27.1	54.17
18	32.54	51.72	20.2	49.76
30	17.33	48.08	10.95	43.78

Tabla 1: Datos de la práctica

Figura 3: Diagrama de la práctica

Con esta gráfica se tiene el ajuste de polinomio:

Conductividad = m[x] + b

Figura 4: Diagrama de la práctica

T(°C)	Pendiente (m)	Intercepto	r^2
30	2122.7	-9.5334	1
35	540.32	+41.936	1
40	1467.2	-3.84	1
45	1102.7	+33.813	1

Tabla 2: Regresión de las curvas de calibración

Despejando para la concentración tenemos que:

$$[x] = \frac{Conductividad + b}{m}$$

Se calculan las concentraciones siguientes:

Temperatura	30 <i>C</i> °	35 C°	40 C°	45 C°
Tiempo	Concen-	Concen-	Concen-	Concen-
Hempo	tración (M)	tración (M)	tración (M)	tración (M)
0.5	0.09021	0.08862	0.08757	0.08614
1	0.08159	0.07922	0.07707	0.07523
1.5	0.07476	0.07224	0.06985	0.0669
2	0.06882	0.06608	0.06348	0.06018
3	0.05939	0.0559	0.05278	0.04958
5	0.04695	0.04343	0.04033	0.03727
7	0.03905	0.03586	0.0328	0.03047
10	0.03077	0.02764	0.0252	0.02304
13	0.02496	0.02251	0.02109	0.01846
18	0.01982	0.01811	0.01638	0.01446
30	0.01266	0.01137	0.01008	0.00904

Tabla 3: Tabla de concentraciones a diferentes temperaturas

4. Utilizando las concentraciones anteriormente calculadas, determinar el orden de reacción y la constante de velocidad por el método integral gráfico. Para calcular el orden de reacción se gráfica t vs $1/C_a$

Temperatura	30°C	35°C	40°C	45°C
Tiempo	1/ <i>Ca</i>	1/ <i>Ca</i>	1/ <i>Ca</i>	1/Ca
0.5	11.08556	11.28394	11.41879	11.60932
1	12.25695	12.62312	12.97489	13.29291
1.5	13.37526	13.84229	14.31694	14.94700
2	14.52975	15.13332	15.75263	16.61594
3	16.83702	17.88902	18.94628	20.16864
5	21.30083	23.02762	24.79635	26.83360
7	25.60759	27.88892	30.48411	32.81455
10	32.49525	36.18053	39.67550	43.40655
13	40.07105	44.4196	47.42081	54.17608
18	50.4523	55.22486	61.03161	69.16081
30	79.01829	87.94271	99.20216	110.66841

Tabla 4: Inversa de la concentración a las diferentes temperaturas

Figura 5: Diagrama de la práctica

Figura 6: Diagrama de la práctica

T(°C)	Pendiente(m)=k	Intercepto	r^2
30	2.2934	9.8485	0.9998
35	2.5847	10.023	0.9995
40	2.9410	9.8537	0.9993
45	3.3467	9.9221	0.9998

Tabla 5: Constantes a diferentes T

Recordemos que la pendiente es la contante cinética k, por el valor de r^2 podemos decir que la reacción es de **orden II**

5. Calcular el factor de frecuencia (A) y la energía de activación (Ea). Para calcular los parámetros es necesario tomar las constantes y las temperaturas anteriores, aplicando ln(k) y la inversa de la temperatura. Se obtuvo los siguientes datos:

TK	k	1/T	Ln(k)
303	2.2934	0.0033	0.8300
308	2.5847	0.0032	0.9496
313	2.9410	0.0032	1.0787
318	3.3467	0.0031	1.2080

Tabla 6: Datos para ecuación de Arrhenius

Para determinar el parámetro A tenemos que el intercepto b=8.8544=ln(A), despejando tenemos que A=7005.144. Para determinar la energia de activación tenemos que $m=-E_a/R$ despejando tenemos que $E_a=20227.030 J/mol*K$

Figura 7: Diagrama de la práctica

4. Conclusión

Se calcularon y obtuvieron los parámetros A y E_a para la ecuación de Arrhenius. En base a la experimentación y los calculos realizados, se concluyo que el aumento de la temperatura afecto directamente la constante cínetica, esto se hizo evidente en la figura 9, donde se observo que al incrementar la temperatura los valores de k crecieron ligeramente.

REFERENCIAS

- [1] Brown, T., LeMay, H., Bursten, B., Murphy, C., Woodward, P. (2014). *Quimica La Ciencia Central* (12.a ed., Vol. 1). Ciudad de México, México: Pearson Educación.
- [2] Fogler, H. S. (2008). *Elementos de ingenierías de las reacciones químicas* (4.a ed.). Ciudad de México, México: Pearson Educación.
- [3] UNAM. (s. f.-b). Ecuación de Arrhenius Teoría de las Colisiones Teoría del Estado de Transición. Recuperado 20 de octubre de 2020, de http://depa.fquim.unam.mx/amyd/archivero/-apuntesparte7_10181.pdf
- [4] 6.1. Efectos de la Temperatura Enzinetic UPIIG. Recuperado 20 de octubre de 2020, de https://sites.google.com/site/enzineticupiig/efecto-de-la-temperatura
- [5] Díaz, L., Jacobo, Z. (2007). Validación del uso de un reactor modificado de tipo discontinuo para la hidrólisis alcalina del acetato de etilo monitoreada por conductimetría para ser utilizado en estudios de Cinética Química. *Trabajo de Graduación Ing. Química Guatemala, Universidad de San Carlos de Guatemala, Facultad de Ingeniería.*