BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Gate Driver

Prepared by-

Sagar Kumar Das Ratul Kundu Shuvo Chandra Pall MSc 22, BUET

Submitted to-

Dr. Cheng Zhang Lecturer, University of Manchester

Supervised by-

Dr. Nadim Chowdhury Assistant Professor, BUET

Task:

- 1. Build a half-bridge version with a similar dummy load.
- 2. You may still use the ideal floating sources for the gate drives, but eventually you'll need to look into possible power supply mechanisms, such as bootstrap circuit.
- 3. Do the maths to quantify the relationships among driver IC's output current capabilities, gate resistances, MOSFET's Qg, Ciss, Coss and other parameters, and verify by the simulations.

1.Schematic Diagram:

Here,

V_{in} = 400V (Taken from SOA of MOSFET)

Switching Frequency = 1MHz

Load = 500Ω (Pure resistive)

Load_current=
$$\frac{400}{500}$$
A= 0.8A

$$V_{Pulse} = \begin{cases} \mathbf{0}; Keeps \ gate \ voltage \ low \\ \mathbf{5}; keeps \ gate \ voltage \ high \end{cases}$$

$$\mathbf{V}_{GS} = \begin{cases} \mathbf{0}; & switch\ of\ f \\ \mathbf{6}; & switch\ on \end{cases}$$

2.
$$C_{boot}$$
 (Bootstrap Capacitor) =
$$\begin{cases} 406V ; when Pulse1 is high \\ 6V ; when Pulse1 is low \end{cases}$$

3. Calculation and Output:

Here,

ADuM4121 IC:

FUNCTIONAL BLOCK DIAGRAM

 V_{DD2} is high voltage input side \rightarrow Provide V_{GS} through V_{OUT} V_{OUT} is high voltage output side \rightarrow MOSFET's gate voltage

From Datasheet of ADuM4121:

 I_{OUT} (max) = 2A

 $V_{DD1} = 2.5 \text{ to } 6.5 \text{ V}$

 $V_{DD2} = 4.5 \text{ to } 35 \text{ V}$

From the Datasheet of GS660504B:

Input Capacitance, $C_{ISS} = 130 \text{ pF}$

Output Capacitance, $C_{OSS} = 33 \text{ pF}$

Total gate charge, $Q_G = 3 \text{ nC}$

Rise time, $T_r = 4 \text{ ns}$

Fall Time, $T_f = 5.2$ ns

Here,

IC's output current = MOSFET's gate current

So, Gate input current,
$$I_{G(on)} = \frac{Q_G}{T_r} = \frac{3}{4} = 750 \text{ mA}$$

Gate output current,
$$I_{G(off)} = \frac{Q_G}{T_f} = \frac{3}{5.2} = 576.92 \text{ mA}$$

Gate Resistance Calculation:

Gate on Resistance:

For first charging of gate capacitor, $T_r = R_{g(on)}C_{ISS}$

$$R_{g(on)} = \frac{T_r}{C_{ISS}} = \frac{4 ns}{130 pF} = 30.76 \Omega$$

*Gate off resistance:

Discharging of gate capacitor, $T_f = R_{g(off)} C_{ISS}$

$$R_{g(off)} = \frac{T_f}{C_{ISS}} = \frac{5.2 \, ns}{130 \, pF} = 40 \, \Omega$$

*{But, $R_{g(off)}$ should be less than $R_{g(on)}$. So didn't use in the circuit}

Reference for these equation: https://youtu.be/of_v2N5f788

Simulation:

$I_{G(on)}\ Vs\ time$

Gate charge test From MATLAB:

In a gate pulse we found from MATLAB, gate charge is needed 3.45nC.

From datasheet we find $Q_G = 3$ nC. So, our finding value is very close to datasheet.

Gate charge to Gate capacitance:

We know,

$$C = \frac{dQ}{dV}$$

So, in this case,

$$C_{\rm ISS} = \frac{dQ_G}{dV_{GS}}$$

During charging,

Gate charge, Q_G rises $0 \rightarrow 3.45 \text{ nC}$

$$\Rightarrow dQ_G = 3.45 \text{ nC}$$

And

Gate to sourse voltage, V_{GS} rises $0 \rightarrow 6 \text{ V}$

$$\Rightarrow dV_{GS} = 6 \text{ V}$$

So,

$$C_{ISS} = \frac{3.45 \, nC}{6 \, V} = 575 \, pF$$

From, datasheet we find the value of C_{ISS} is 130 pF which is also close range of founded value from simulation.

$I_{G(off)} \ Vs \ time$

Calculated and simulated value is very close

Gate Resistor VS Gate current:

Both from equation and simulated value we found that if resistance increases, charging time will also increase also power loss will increase.