Chapter 1

The Riemann Integral

1.1 Partitions

Definition 1.1.1. Let X be a subset of . We say that X is connected iff X is nonempty and the following property is true: whenever x, y are elements in X such that x < y, the bounded interval [x, y] is a subset of X (i.e., every number between x and y is also in X).

Lemma 1.1.2. Let X be a subset of the real line. Then the following two statements are logically equivalent:

- 1. X is bounded and either connected or empty.
- 2. X is a bounded interval.

Proof. Both statements are logically equivalent when $X = \emptyset$ (which is vacuously true). So suppose that $X \neq \emptyset$.

We first show that X is bounded and connected implies X is a bounded interval. Since X is bounded, by i:5.5.9 we know that $\inf(X), \sup(X) \in .$ Thus, $X \subseteq [\inf(X), \sup(X)]$. Now we split into four cases:

- If $\sup(X) \in X$ and $\inf(X) \in X$, then by i:11.1.1 X is connected implies $[\inf(X), \sup(X)] \subseteq X$. Thus, by i:3.1.18 we have $X = [\inf(X), \sup(X)]$.
- If $\sup(X) \in X$ and $\inf(X) \notin X$, then we claim that $(\inf(X), \sup(X)] \subseteq X$. This is true since X is connected and by i:11.1.1 we have $(a, \sup(X)] \subseteq X$ for every $a \in X$.
- If $\sup(X) \notin X$ and $\inf(X) \in X$, then we claim that $[\inf(X), \sup(X)] \subseteq X$. This is true since X is connected and by i:11.1.1 we have $[\inf(X), b] \subseteq X$ for every $b \in X$.
- If $\sup(X) \notin X$ and $\inf(X) \notin X$, then we claim that $(\inf(X), \sup(X)) \subseteq X$. This is true since X is connected and by i:11.1.1 we have $(a,b) \subseteq X$ for every $a,b \in X$ and a < b.

From all cases above, we conclude that X is a bounded interval.

Now we show that X is a bounded interval implies X is bounded and connected. Obviously X is bounded. Let $a, b \in$. Then X can be one of (a, b), [a, b], (a, b], [a, b), and by i:11.1.1 all of which are connected.

Remark 1.1.3. Recall that intervals are allowed to be singleton points, or even the empty set.

Corollary 1.1.4. If I and J are bounded intervals, then the intersection $I \cap J$ is also a bounded interval.

Proof. If $I \cap J = \emptyset$, then $I \cap J$ is bounded interval. So suppose that $I \cap J \neq \emptyset$. Since I, J are bounded intervals, by i:11.1.4 we know that I, J are bounded and connected. Since I, J are bounded, $\exists M_1, M_2 \in \text{such that } I \subseteq [-M_1, M_1] \text{ and } J \subseteq [-M_2, M_2]$. Let $M = \min(M_1, M_2)$. Then we have $I \cap J \subseteq [-M, M]$ and thus $I \cap J$ is bounded. Let $x, y \in I \cap J$ and x < y. Since I is connected and $I \cap J \subseteq I$, we have $[x, y] \subseteq I$. Similarly, since J is connected and $I \cap J \subseteq J$, we have $[x, y] \subseteq J$. Thus, $[x, y] \subseteq I \cap J$ and by i:11.1.1 $I \cap J$ is connected. Since $I \cap J$ is bounded and connected, by i:11.1.4 $I \cap J$ is bounded interval.

Definition 1.1.5 (Length of intervals). If I is a bounded interval, we define the length of I, denoted I as follows. If I is one of the intervals [a,b], (a,b), [a,b), or (a,b] for some real numbers a < b, then we define Ib - a. Otherwise, if I is a point or the empty set, we define I = 0.

Definition 1.1.6 (Partitions). Let I be a bounded interval. A partition of I is a finite set \mathbf{P} of bounded intervals contained in I, such that every x in I lies in exactly one of the bounded intervals J in \mathbf{P} .

Remark 1.1.7. Note that a partition is a set of intervals, while each interval is itself a set of real numbers. Thus, a partition is a set consisting of other sets.

Theorem 1.1.8 (Length is finitely additive). Let I be a bounded interval, n be a natural number, and let \mathbf{P} be a partition of I of cardinality n. Then

$$I = \sum_{J \in \mathbf{P}} J.$$

Proof. We prove this by induction on n. More precisely, we let P(n) be the property that whenever I is a bounded interval, and whenever \mathbf{P} is a partition of I with cardinality n, that $I = \sum_{J \in \mathbf{P}} J$.

The base case P(0) is trivial; the only way that I can be partitioned into an empty partition is if I is itself empty, at which point the claim is easy. The case P(1) is also very easy; the only way that I can be partitioned into a singleton set J is if J = I, at which point the claim is again very easy.

Now suppose inductively that P(n) is true for some $n \ge 1$, and now we prove P(n+1). Let I be a bounded interval, and let \mathbf{P} be a partition of I of cardinality n+1.

If I is the empty set or a point, then all the intervals in \mathbf{P} must also be either the empty set or a point, and so every interval has length zero and the claim is trivial. Thus, we will assume that I is an interval of the form (a, b), (a, b], [a, b), or [a, b].

Let us first suppose that $b \in I$, i.e., I is either (a, b] or [a, b]. Since $b \in I$, we know that one of the intervals K in \mathbf{P} contains b. Since K is contained in I, it must therefore be of the form (c, b], [c, b], or b for some real number c, with $a \le c \le b$ (in the latter case of K = b,

1.1. PARTITIONS 3

we set cb). In particular, this means that the set $I \setminus K$ is also an interval of the form [a, c], (a, c), (a, c], [a, c) when c > a, or a point or empty set when a = c. Either way, we easily see that

$$I = K + I \setminus K$$
.

On the other hand, since **P** forms a partition of I, we see that $P \setminus K$ forms a partition of $I \setminus K$. By the induction hypothesis, we thus have

$$I \setminus K = \sum_{J \in \mathbf{P} \setminus K} J.$$

Combining these two identities (and using the laws of addition for finite sets, see i:7.1.11(e)) we obtain

$$I = \sum_{J \in \mathbf{P}} J$$

as desired.

Now suppose that $b \notin I$, i.e., I is either (a,b) or [a,b). Then one of the intervals K also is of the form (c,b) or [c,b) (see i:ex:11.1.3). In particular, this means that the set $I \setminus K$ is also an interval of the form [a,c], (a,c), (a,c], [a,c) when c > a, or a point or empty set when a = c. The rest of the argument then proceeds as above.

Definition 1.1.9 (Finer and coarser partitions). Let I be a bounded interval, and let P and P' be two partitions of I. We say that P' is finer than P (or equivalently, that P is coarser than P') if for every J in P', there exists a K in P such that $J \subseteq K$.

Remark 1.1.10. There is no such thing as a "finest" partition of some interval I. (recall all partitions are assumed to be finite.) We do not compare partitions of different intervals.

Definition 1.1.11 (Common refinement). Let I be a bounded interval, and let \mathbf{P} and \mathbf{P}' be two partitions of I. We define the common refinement $\mathbf{P} \# \mathbf{P}'$ of \mathbf{P} and \mathbf{P}' to be the set

$$\mathbf{P} \# \mathbf{P}' K \cap J : K \in \mathbf{P} \text{ and } J \in \mathbf{P}'.$$

Corollary 1.1.12. Let I be a bounded interval, and let P, P' be two partitions of I. Then we have $I = \bigcup (P \# P')$.

Proof. Let $x \in I$. By i:11.1.10 we know that $\exists ! \ K \in \mathbf{P}$ such that $x \in K$. Similarly, $\exists ! \ K' \in \mathbf{P}'$ such that $x \in K'$, thus $x \in K \cap K'$. By i:11.1.16 we know that $K \cap K' \in \mathbf{P} \# \mathbf{P}'$, thus $x \in \bigcup (\mathbf{P} \# \mathbf{P}')$. Since x was arbitrary, we have

$$I \subseteq \bigcup (\mathbf{P} \# \mathbf{P}').$$

Let $S \in \mathbf{P} \# \mathbf{P}'$. By i:11.1.16 we know that $\exists J \in \mathbf{P}$ and $\exists J' \in \mathbf{P}'$ such that $S = J \cap J'$. Since $S = J \cap J'$, we have $S \subseteq I$. Since S was arbitrary, we have

$$\bigcup (\mathbf{P} \# \mathbf{P}') \subseteq I.$$

Thus, by i:3.1.18 we have

$$I = \bigcup (\mathbf{P} \# \mathbf{P}').$$

Corollary 1.1.13. Let I be a bounded interval, and let \mathbf{P}, \mathbf{P}' be two partitions of I. Then every element $x \in I$ contains in exactly one of the element $\mathbf{P} \# \mathbf{P}'$. In other words, $\exists ! \ S \in \mathbf{P} \# \mathbf{P}$ such that $x \in S$.

Proof. By i:ac:11.1.1 we know that at least one element in $\mathbf{P}\#\mathbf{P}'$ contains x. Suppose for the sake of contradiction that $\exists S_1, S_2 \in \mathbf{P}\#\mathbf{P}'$ such that $x \in S_1$ and $x \in S_2$ but $S_1 \neq S_2$. By i:11.1.16 we know that $S_1 = K \cap K'$ for some $K \in \mathbf{P}$ and $K' \in \mathbf{P}'$. Similarly, $S_2 = J \cap J'$ for some $J \in \mathbf{P}$ and $J' \in \mathbf{P}'$. We know that $x \in S_1$ implies $x \in K$. Similarly, $x \in S_2$ implies $x \in J$. But by i:11.1.10 we know that K = J, and a similar argument holds for K' = J'. Thus, we must have $S_1 = S_2$, a contradiction.

Corollary 1.1.14. Let I be a bounded interval, and let P, P' be two partitions of I. Then P # P' is finite and every element in P # P' is a bounded interval.

Proof. Let $f: \mathbf{P} \times \mathbf{P}' \to \mathbf{P} \# \mathbf{P}'$ be a function where

$$f(K, K') = K \cap K'$$
 for every $(K, K') \in \mathbf{P} \times \mathbf{P}'$.

By i:11.1.16 we see that f is surjective. By i:11.1.10 we know that both $\#(\mathbf{P}), \#(\mathbf{P}')$ are finite. Thus, by i:3.6.14(e) and i:ex:8.4.3 we have

$$\#(\mathbf{P} \times \mathbf{P}') = \#(\mathbf{P}) \times \#(\mathbf{P}') \ge \#(\mathbf{P} \# \mathbf{P}').$$

This means P # P' is finite.

By i:11.1.16 we know that for every $S \in \mathbf{P} \# \mathbf{P}'$, $S = K \cap K'$ for some $K \in \mathbf{P}$ and $K' \in \mathbf{P}'$. By i:11.1.10 we know that both K, K' are bounded interval, thus by i:11.1.6 we know that S is also a bounded interval. Since S was arbitrary, we conclude that every element in $\mathbf{P} \# \mathbf{P}'$ is a bounded interval.

Lemma 1.1.15. Let I be a bounded interval, and let P and P' be two partitions of I. Then P # P' is also a partition of I, and is both finer than P and finer than P'.

Proof. By i:ac:11.1.1 we know that $I = \bigcup (\mathbf{P} \# \mathbf{P}')$. By i:ac:11.1.2 we know that every element in I contains in exactly one of the element $\mathbf{P} \# \mathbf{P}'$. By i:ac:11.1.3 we know that $\mathbf{P} \# \mathbf{P}'$ is finite and every element in $\mathbf{P} \# \mathbf{P}'$ is a bounded interval. Thus, by i:11.1.10 $\mathbf{P} \# \mathbf{P}'$ is a partition of I.

By i:11.1.16 we know that for every $S \in \mathbf{P} \# \mathbf{P}'$, $S = K \cap K'$ for some $K \in \mathbf{P}$ and $K' \in \mathbf{P}'$. This means $S \subseteq K$ and $S \subseteq K'$, thus by i:11.1.14 $\mathbf{P} \# \mathbf{P}'$ is both finer than \mathbf{P} and finer than \mathbf{P}'

Corollary 1.1.16. Let I be a bounded interval, and let P, P' be two partitions of I such that P' is finer than P. For each $K \in P$, we define P_K as follow:

$$\mathbf{P}_K = K' \in \mathbf{P}' : K' \subseteq K.$$

Then \mathbf{P}_K is a partition of K for every $K \in \mathbf{P}$, and $\bigcup_{K \in \mathbf{P}} \mathbf{P}_K = \mathbf{P}'$.

Proof. Since $\mathbf{P}_K \subseteq \mathbf{P}'$ and \mathbf{P}' is a partition of I, by i:11.1.10 we know the following facts:

1.1. PARTITIONS 5

- \mathbf{P}_K is finite.
- All distinct elements in \mathbf{P}_K are disjoint.
- All elements in \mathbf{P}_K are bounded interval.

To show that \mathbf{P}_K is a partition of K, by i:11.1.10 it suffices to show that $K = \bigcup \mathbf{P}_K$.

Let $x \in K$. By i:11.1.10 we know that $x \in I$, thus $\exists ! \ K' \in \mathbf{P}'$ such that $x \in K'$. Since \mathbf{P}' is finer than \mathbf{P} , we must have $K' \subseteq K$. If not, then we have some $J \in \mathbf{P}$ such that $K' \subseteq J$, but $x \in J$ implies J = K, a contradiction. Since $K' \in \mathbf{P}'$ and $K' \subseteq K$, we have $K' \in \mathbf{P}_K$. Since x was arbitrary, we have $K \subseteq \bigcup \mathbf{P}_K$. By the definition of \mathbf{P}_K we know that $\bigcup \mathbf{P}_K \subseteq K$, thus by i:3.1.18 we have $K = \bigcup \mathbf{P}_K$.

Now we show that $\bigcup_{K \in \mathbf{P}} \mathbf{P}_K = \mathbf{P}'$. We know that $\bigcup_{K \in \mathbf{P}} \mathbf{P}_K \subseteq \mathbf{P}'$. Let $K' \in \mathbf{P}'$. By i:11.1.18 we know that \mathbf{P}' is finer than \mathbf{P} . By i:11.1.14 we know that $K' \subseteq K$ for some $K \in \mathbf{P}$. Thus, we have $K' \in \mathbf{P}_K$. Since K' was arbitrary, we have $\mathbf{P}' \subseteq \bigcup_{K \in \mathbf{P}} \mathbf{P}_K$. Thus, by i:3.1.18 we have $\bigcup_{K \in \mathbf{P}} \mathbf{P}_K = \mathbf{P}'$.

Corollary 1.1.17. Let I, J be bounded intervals such that $I \neq \emptyset$ and $I \subseteq J$, and let \mathbf{P} be a partition of I. Let I_1, I_2 be the sets

$$I_1 = x \in J : (x \le \inf(I)) \land (x \notin I)$$

and

$$I_2 = x \in J : (x \ge \sup(I)) \land (x \notin I).$$

Then $\mathbf{P} \cup I_1, I_2$ is a partion of J.

Proof. First, we claim that I_1 is a bounded interval. If $I_1 = \emptyset$, then I_1 is a bounded interval. So suppose that $I_1 \neq \emptyset$. We know that $\inf(I) \in J$ since if $\inf(I) \notin J$, then by definition we would have $I_1 = \emptyset$, a contradiction. We must have $\inf(I_1) = \inf(J)$. If not, then we have $\inf(J) < \inf(I_1) \leq \inf(I)$. Since J is a bounded interval, we have $\inf(J) < x < \inf(I_1) \leq \inf(I)$ for some $x \in J$. But $x \in J$ and $x < \inf(I)$ implies $x \in I_1$, which contradict to $\inf(I_1) \leq x$. So we have $\inf(I_1) = \inf(J)$. Now we split into four cases:

- If $\inf(J) \in J$ and $\inf(I) \in I$, then $I_1 = [\inf(J), \inf(I))$.
- If $\inf(J) \in J$ and $\inf(I) \notin I$, then $I_1 = [\inf(J), \inf(I)]$.
- If $\inf(J) \notin J$ and $\inf(I) \in I$, then $I_1 = (\inf(J), \inf(I))$.
- If $\inf(J) \notin J$ and $\inf(I) \notin I$, then $I_1 = (\inf(J), \inf(I)]$.

From all cases above, we conclude that I_1 is a bounded interval.

Next we claim that I_2 is a bounded interval. If $I_2 = \emptyset$, then I_2 is a bounded interval. So suppose that $I_2 \neq \emptyset$. We know that $\sup(I) \in J$ since if $\sup(I) \notin J$, then by definition we would have $I_2 = \emptyset$, a contradiction. We must have $\sup(I_2) = \sup(J)$. If not, then we have $\sup(J) > \sup(I_2) \ge \sup(I)$. Since J is a bounded interval, we have $\sup(J) > x > \sup(I_2) \ge \sup(I)$ for some $x \in J$. But $x \in J$ and $x > \sup(I)$ implies $x \in I_2$, which contradict to $\sup(I_2) \ge x$. So we have $\sup(I_2) = \sup(J)$. Now we split into four cases:

- If $\sup(J) \in J$ and $\sup(I) \in I$, then $I_2 = (\sup(I), \sup(J)]$.
- If $\sup(J) \in J$ and $\sup(I) \notin I$, then $I_2 = [\sup(I), \sup(J)]$.
- If $\sup(J) \notin J$ and $\sup(I) \in I$, then $I_2 = (\sup(I), \sup(J))$.
- If $\sup(J) \notin J$ and $\sup(I) \notin I$, then $I_2 = [\sup(I), \sup(J))$.

From all cases above, we conclude that I_2 is a bounded interval.

Next we show that $I \cap I_1 = I \cap I_2 = I_1 \cap I_2 = \emptyset$. By definition we know that $I \cap I_1 = I \cap I_2 = \emptyset$. So we only need to show that $I_1 \cap I_2 = \emptyset$. If $(I_1 = \emptyset) \vee (I_2 = \emptyset)$, then we have $I_1 \cap I_2 = \emptyset$. So suppose that $(I_1 \neq \emptyset) \wedge (I_2 \neq \emptyset)$. Suppose for the sake of contradiction that $I_1 \cap I_2 \neq \emptyset$. Let $x \in I_1 \cap I_2$. Then we have $x \leq \inf(I) \leq \sup(I) \leq x$. Now we split into two cases:

- If $\inf(I) = \sup(I)$, then I = a for some $a \in$. But $x \le a \le x$ implies x = a and $x \in I$, which contradict to $x \notin I$.
- If $\inf(I) < \sup(I)$, then we have x < x, a contradiction.

From all cases above, we conclude that $I_1 \cap I_2 = \emptyset$.

Let $\mathbf{P}_J = \mathbf{P} \cup I_1, I_2$. By definition we know that $\bigcup \mathbf{P}_J \subseteq J$. Let $x \in J$. Now we split into two cases:

- If $x \in I$, then we have $x \in \bigcup \mathbf{P}$.
- If $x \notin I$, then we have $(x \leq \inf(I)) \vee (x \geq \sup(I))$. Thus, $(x \in I_1) \vee (x \in I_2)$ and $x \in \bigcup \mathbf{P}$.

From all cases above, we conclude that $x \in \bigcup \mathbf{P}_J$. Since x was arbitrary, we have $J \subseteq \bigcup \mathbf{P}_J$. By i:3.1.18 we have $J = \bigcup \mathbf{P}_J$.

From the proofs above we have showed that $J = \bigcup \mathbf{P}_J$, all distinct element in \mathbf{P}_J are disjoint, and all elements in \mathbf{P}_J are bounded interval. Since \mathbf{P}_J is finite (#(\mathbf{P}_J) = 3), by i:11.1.10 \mathbf{P}_J is a partition of J.

Exercises

11.1.1 Prove i:11.1.4.

$$i:ex:11.1.1$$
. See i:11.1.4.

11.1.2 Prove i:11.1.6.

$$i:ex:11.1.2$$
. Prove i:11.1.6.

11.1.3 Let I be a bounded interval of the form I = (a, b) or I = [a, b) for some real numbers a < b. Let I_1, \ldots, I_n be a partition of I. Prove that one of the intervals I_j in this partition is of the form $I_j = (c, b)$ or $I_j = [c, b)$ for some $a \le c \le b$.

1.1. PARTITIONS 7

i:ex:11.1.3. Let $\mathbf{P} = I_1, \ldots, I_n$. If c = b, then $(c,b) = \emptyset$, and thus by i:11.1.10 $\mathbf{P} \cup \emptyset$ is a partition of I. So we only need to proof the cases where $a \leq c < b$. Suppose for the sake of contradiction that every interval I_j in the partition \mathbf{P} is not of the form (c,b) or [c,b). By i:11.1.10 this means for every $j \in 1,\ldots,n, \ x \in I_j$ implies $x \geq b$ or x < c. Since I = (a,b) or I = [a,b), we cannot have $x \geq b$, thus we must have x < c. This means $\sup(I_j) \leq c < b$ for every $j \in 1,\ldots,n$. But then we have $\sup(I) = b > \max\sup(I_j) : j \in 1,\ldots,n$, a contradiction. Thus, we must have one interval $I_j \in \mathbf{P}$ such that $I_j = (c,b)$ for some $a \leq c < b$.

11.1.4 Prove i:11.1.18.

i:ex:11.1.4. Prove i:11.1.18.