

spring coust "stiffness"	$F_{net} = ma = m \frac{d^2x}{dt^2}$
leel [m]	$F_5 = m \frac{d^2 \kappa}{dt^2}$
x=0 DE	$F_{S} = m \frac{d^{2}x}{dt^{2}}$ $-kx = m \frac{d^{2}x}{dt^{2}} $ Last time $(x(t) = x \cos(\omega t) + \frac{v_{0}}{\omega} \sin(\omega t))$
	$(x(t) = x_0 \cos(\omega t) + \frac{y_0}{\omega} \sin(\omega t))$
new!	
$-kx + \frac{d^2x}{dt^2} = m \frac{d^2x}{dt^2}$	Fix = ux mg constant
	's = µs mg
Flamp must change $Fdamp = -bV = -b$	w/ velocity dx at
$-kx - b \frac{dx}{dt} = m \frac{d^2x}{dt^2}$	
damping coeff	
$\frac{d^2 \times}{d \xi^2} = \overset{2}{\times} \overset{\text{dev}}{}$	-kx -bx = m x
de ²	$\ddot{x} + \frac{b}{m}\dot{x} + \frac{\kappa}{m}x = 0$
$\frac{d\times}{dt} = \dot{x}$	$W = \sqrt{\frac{\kappa}{m}} \rightarrow \frac{\kappa}{m} \approx \omega^2$
x=x[t]	7 - <u>b</u>
	gamma' dampiling term
$\ddot{x} + \Box \dot{x} + \omega^2 x = 0$	
$\times + \omega^2 X = 0 (\text{no damping}) \xrightarrow{\text{soln ?}} X \mid t \mid =$	$\times_0 \cos(wt) + \frac{v_0}{w} \sin(wt)$
$\ddot{x} + \Gamma \dot{x} + \omega^2 x = 0$	
Ansatz (german for approach) → quess	
×(t)= Aext+ ф	

$\ddot{\times} + \Box \dot{\times} + \omega^2 \times = 0$	
$ x = Ae^{\lambda t + \phi}$	
×= Aλ e λtr φ	
$\ddot{x} = A \lambda^2 e^{\lambda t + \Phi}$	
AX2 ext+ + TAX ext+ + w2 Ae	xt+0 = 0
ž ž	
$\lambda^2 + \Gamma \lambda + \omega^2 = 0$	
what is λ ?	$ \begin{array}{c c} \pm \sqrt{\Gamma^2 - 4\omega^2} \\ 2 \end{array} $
- I	1 2 1
= ~ \frac{1}{2}	$\pm \frac{1}{z} \sqrt{\Gamma^2 - u_{loc}^2}$ $\pm \sqrt{\frac{\Gamma^2}{y} - \omega^2}$
	$\frac{1}{\sqrt{1-\left(\omega^2-\frac{\Gamma^2}{4}\right)}}$
2 -1	$\begin{bmatrix} \frac{1}{2} + \sqrt{-1} & \sqrt{\omega^2 - \frac{\Gamma^2}{4}} \end{bmatrix}$
	$-\Gamma_{2} \pm i \sqrt{\omega^{2} - \Gamma_{4}^{2}}$
	3 Scenario damping 1) w² > Tu underdamped
	2) $\omega^2 < \frac{\Gamma^2}{4}$ overdamped
	3) $w^2 = \frac{\Gamma^2}{4}$ critically damped
	$\omega = \underset{\omega}{\operatorname{argular freq}}, \ \square \equiv \underset{\omega}{\operatorname{clamping}}$ $\omega = \underset{\omega}{\operatorname{br}} \longleftrightarrow \square = \underset{\omega}{\operatorname{br}}$
	aliffness,
Ae A+t+	ф
$\times (t') = Ae^{\lambda t + \phi} Ae^{\lambda - t + \phi}$	
11.40	
x(t) = Ae Att + Ae X-++4	
superposition (t) = Ae A+t+ + Ae A-t+ +	\\ \tag{\tag{\tag{\tag{\tag{\tag{\tag{
$x(t) = Ae^{A+t+\phi} + Ae^{A-t+\phi}$ $x(t) = Ae^{\left(-\frac{\Gamma}{2} + i \sqrt{\omega^2 \cdot \frac{\Gamma^4}{4}}\right)}$	
$x(t) = Ae^{\left(-\frac{T^2}{2} + i \sqrt{W^2 - \frac{T^2}{4}}\right)}$	$\left(-\frac{\Gamma}{\Gamma}-i\right)\left(\frac{\omega^{2}-E^{2}}{2}\right) + + \phi$
$x(t) = Ae^{\left(-\frac{r}{2} + i\sqrt{\omega^2 - \frac{r}{\alpha}}\right)}$	$\left(-\frac{\Gamma}{\Gamma}-i\right)\left(\frac{\omega^{2}-E^{2}}{2}\right) + + \phi$

$Ae^{-\frac{\Gamma}{2}t}\left(e^{i\omega dt+\phi}+e^{i\omega dt+\phi}\right)$	
Euler's equation	
Ever's equation $e^{i\theta} = \cos\theta + i\sin\theta$	
$Ae^{-\frac{1}{2}t}\left(\cos(\omega_{d}t+\phi)+i\sin(\omega_{d}t+\phi)+c\cos(\omega_{d}t+\phi)\right)$	os (watro) Oi sin livet + o)
1st cap	zndaxp
$x(t) = Ae^{-\frac{\pi}{2}t} 2\cos(\omega_{d}t + \phi)$	
D= 2A	
e Tt Cos (wit - p) amp	phase form
1 trig identities	
$\times (t) = e^{-\frac{17}{2}t} \left(a \cos(w_{a}t) + b \right)$	sin(w.tt)
	Last time ×, ros(wt) + vo a) swlut)
	a b
f(t) g(t) insert	initial conditions
$x/t) = e^{\frac{r}{2}t} \left(x_{\circ}\cos(\omega_{0}t) + b\sin(\omega_{0}t)\right)$	
$x_0 = x(t=0) = a + 0 = a = x_0$	
v(t=0)= × (t=0) =?	
$v(t) = \dot{x}(t) = \dot{f}(t) g(t) + f(t)$	ġ(t) ·
$= \left(-\frac{\Gamma}{2}e^{-\frac{\Gamma}{2}t}\right)\left(\times \cos t\right)$	wath + b sin(wath)
	(wit) + wild coolwat)
† e ' (*	
$\forall v = v(t = 0) = \dot{x}(t = 0) = \left(-\frac{1}{2}e^{-\frac{1}{2}t}\right)\left(x_0\cos \frac{1}{2}\right)$	s(wat) - b sin(wat)
+ e - T t ~ Waxo sin	(wit) + wab cos(wat)
<u>'z</u> ×o :	+ 1 (0+ wab)
$V_0 = -\frac{1}{2} \times_0 + \omega$	ab
	Vo - \frac{17}{2} \times 0
	wd

