

Semester: V

DATABASE MANAGEMENT SYSTEMS

Category: Professional Core Course (Common to CS,IS, AI, CD,CY)

(Theory and Practice)

Course Code	:	CD252IA	CIE	:	100 + 50 Marks
Credits: L:T:P	:	3:0:1	SEE	:	100 + 50 Marks
Total Hours	:	45L+30P	SEE Duration	:	3.00 + 3.00 Hours

Unit-I 09 Hrs

Introduction to Database Systems -Databases and Database users: Introduction, An example, Characteristics of Database Approach, Data Models, Schemas and Instances, Three-schema Architecture and Data Independence, The Database System Environment.

Data Modeling Using the Entity-Relationship Model- High-Level Conceptual Data Models for Database Design; A Sample Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity Types.

Unit – II 09 Hrs

Refining the ER Design for the COMPANY Database; ER Diagrams, Naming Conventions and Design Issues, ER- to-Relational Mapping.

Relational Model and Relational Algebra-Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update Operations and Dealing with Constraint Violations; Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations: JOIN and DIVISION; Examples of Queries in Relational Algebra.

Unit –III 09 Hrs

Introduction to SQL- SQL Data Definition, Specifying Constraints in SQL, Basic Queries in SQL; Insert, Delete and Update Statements in SQL More Complex SQL Retrieval Queries.

Relational Database Design - Functional Dependencies – Definition, Inference Rules, Equivalence of sets of FD's, Minimal Set of FD's; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form; Properties of Relational Decompositions.

Unit –IV 09 Hrs

Transaction Processing Concepts- Introduction to transaction processing, Transaction states and additional operations, Desirable properties of transaction, Schedules of transactions. Characterizing schedules based on Serializability: Serial, Non serial and Conflict- Serializable schedules, Testing for Conflict serializability of schedule

Concurrency Control Techniques: Two phase locking techniques for concurrency control, types of locks and system lock tables

Unit –V 09 Hrs

Introduction to NoSQL: Aggregate data models: aggregates, key-value and document data models. Distribution models: sharding, master-slave replication, peer-peer replication — combining sharding and replication.

Big Data: Types of data: Structured, semi structured, unstructured. Distributed Architectures: Hadoop, Map Reduce Programming Model

Course Outcomes: After completing the course, the students will be able to: -		
CO 1	Understand and explore the needs and concepts of relational, NoSQL database and Distributed	
	Architecture	
CO 2	Apply the knowledge of logical database design principles to real time issues.	
CO 3	Analyze and design data base systems using relational, NoSQL and Big Data concepts	
CO 4	Develop applications using relational and NoSQL database	
CO 5	Demonstrate database applications using various technologies.	

Refere	ence Books
1.	Elmasri and Navathe: Fundamentals of Database Systems, 6th Edition, Pearson Education, 2011,
	ISBN-13: 978-0136086208.
2.	Pramod J Sdalage, Martin Fowler: NoSQL A brief guide to the emerging world of Polyglot
	Persistence, Addison-Wesley, 2012, ISBN 978-0-321-82662-6,
3.	Raghu Ramakrishnan and Johannes Gehrke: Database Management Systems, 3 rd Edition, McGraw-
	Hill, 2003 ISBN: 978-0072465631.
4.	Seema Acharya and Subhashini Chellappan. Big Data and Analytics. Wiley India Pvt. Ltd. 2 nd
	Edition

LABORATORY COMPONENT

PART – A

Open Ended Mini Project should be implemented and shall be carried out in a batch of two students. The students will finalize a topic in consultation with the faculty. The mini project must be carried out in the college only.

The Mini Project tasks would involve:

- Understand the complete domain knowledge of application and derive the complete data requirement specification of the Mini Project
- Design of the project with Integrated database solution (SQL and NOSQL)
- Normalization of the Relational design up to 3NF.
- Appreciate the importance of security for database systems.
- Documentation and submission of report.
- Recent Trends used (Block chain, NLP, AI, ML, AR, VR etc) and Societal Concern issues addressed

General Guidelines:

- Database management for the project- MySQL, DB2, Oracle, SQL Server, MongoDB (Any NoSQL DB) server or any database management tool.
- Front End for the project Java, VC++, C#, Python, Web Interface (HTML, Java Script)
- Use database Programming such as Embedded SQL,/Dynamic SQL/SQLJ.

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50MARKS	50
	MAXIMUM MARKS FOR THE CIE	150

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q.NO.	CONTENTS	MARKS
PART A		
1	Objective type of questions covering entire syllabus	20
PART B (Maximum of THREE Sub-divisions only)		
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5 & 6	Unit 3: Question 5 or 6	16
7 & 8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

RUBRIC FOR SEMESTER END EXAMINATION (LAB)		
Q.NO.	CONTENTS	MARKS
1	Write Up	10
2	Conduction of the Experiments	20
3	Viva	20
	TOTAL	50