

MATHEMATICS HIGHER LEVEL PAPER 2

Friday 5	November	2010	(morning)
----------	----------	------	-----------

0 0

Candidate session number

2 hours

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number on each answer sheet, and attach them to this examination paper and your cover sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

			•
1.	[Ma	ximum mark: 6]	
	Tria	ngle ABC has $AB = 5$ cm, $BC = 6$ cm and area 10 cm ² .	
	(a)	Find $\sin \hat{B}$.	[2 marks]
	(b)	Hence , find the two possible values of AC, giving your answers correct to two decimal places.	[4 marks]

2. [Maximum mark: 4]

The company *Fresh Water* produces one-litre bottles of mineral water. The company wants to determine the amount of magnesium, in milligrams, in these bottles.

A random sample of ten bottles is analysed and the results are as follows:

Find unbiased estimates of the mean and variance of the amount of magnesium in the one-litre bottles.

٠.																													
٠.																													
			 -		-		-	 								-			-		-			 -			-	 	
					-			 								•												 	

3. [Maximum mark: 5]

The weight loss, in kilograms, of people using the slimming regime SLIM3M for a period of three months is modelled by a random variable X. Experimental data showed that 67 % of the individuals using SLIM3M lost up to five kilograms and 12.4 % lost at least seven kilograms. Assuming that X follows a normal distribution, find the expected weight loss of a person who follows the SLIM3M regime for three months.

•	•	•	•		•		•	•	•	 	•	•	•	 •		 			•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
										 					 	 															•	•																													
•	•	•	•	•	•	•	•	•		 	•	•	•	 •	 •	 	 •	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	•	٠	٠	•	•	٠	•	•

4.	[Maximum	mark:	7
	1 111 0000 011 000110	million iv.	/

Find the equation of the normal to the cur	rve $x^{3}y^{3} - xy = 0$ at the point (1, 1).

5. [Maximum mark: 5]

Solve the equations

$$\ln \frac{x}{y} = 1$$

$$\ln x^3 + \ln y^2 = 5.$$

-						 				 																		 		

6.	[Maximum	mark:	71

Consider the polynomial $p(x) = x^2 + ax^2 + bx^2 + cx + d$, where $a, b, c, d \in \mathbb{R}$.	
Given that $1+i$ and $1-2i$ are zeros of $p(x)$, find the values of a , b , c and d .	
	•
	•
	•
	•
	•
	•
	•
	•

	7.	[Maximum	mark:	6
--	----	----------	-------	---

(b)

The random variable X follows a Poisson distribution with mean m and satisfies

$$P(X = 1) + P(X = 3) = P(X = 0) + P(X = 2)$$
.

- Find the value of m correct to four decimal places. [4 marks] (a)
- For this value of m, calculate $P(1 \le X \le 2)$. [2 marks]

8. [Maximum mark: 5]

The diagram shows the graphs of a linear function f and a quadratic function g.

On the same axes sketch the graph of $\frac{f}{g}$. Indicate clearly where the *x*-intercept and the asymptotes occur.

٠		 	 						 								 			•	•			•		 						•
		 	 						 								 									 						•
		 	 						 								 									 						•
		 	 						 								 									 						•

7. IMAXIII AIII IIIAI N. O	9.	[Maximum	mark:	8	7
-----------------------------------	----	----------	-------	---	---

Consider the vectors $\mathbf{a} = \sin(2\alpha)\mathbf{i} - \cos(2\alpha)\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = \cos\alpha\mathbf{i} - \sin\alpha\mathbf{j} - \mathbf{k}$, where $0 < \alpha < 2\pi$.

Let θ be the angle between the vectors \boldsymbol{a} and \boldsymbol{b} .

(a) Express $\cos \theta$ in terms of α .

[2 marks]

(b) Find the acute angle α for which the two vectors are perpendicular.

[2 marks]

(c) For $\alpha = \frac{7\pi}{6}$, determine the vector product of **a** and **b** and comment on the geometrical significance of this result.

[4 marks]

							 		 	 	-	 -																					
							 		 	 																			•				
							 		 	 																			-				
							 		 	 																			•				
							 		 	 																			-				

.....

10.	[Maximum	mark:	71

The line y = m(x-m) is a tangent to the curve (1-x)y = 1.

Determine m and the coordinates of the point where the tangent meets the curve.

 	•	• •	•	• •	•	•	•	•	•	•	•	• •	•	•	•	•	•	•		•	•	•	•	•	• •	•	•	• •	•	•	 •	• •	•	•		•	•	•	•	•	•	•	•	 •
 	٠		•		•	•		•	•		•		•	•		•	•	•	•	٠	•		•	•		•	•		•	•	 •		٠	•	• •	•	•		•	•		•	•	 •
																																								•		•	•	 •
																																							•	•		٠	•	 •
																																							•	•		•	•	 ٠
 	٠		•					٠																					٠														•	 ٠
 	•		-																																									 ٠
 								•																•					•	•										•				
 																																											-	

Do **NOT** write solutions on this page. Any working on this page will **NOT** be marked.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

11. [Maximum mark: 21]

Tim throws two identical fair dice simultaneously. Each die has six faces: two faces numbered 1, two faces numbered 2 and two faces numbered 3. His score is the sum of the two numbers shown on the dice.

- (a) (i) Calculate the probability that Tim obtains a score of 6.
 - (ii) Calculate the probability that Tim obtains a score of at least 3.

[3 marks]

Tim plays a game with his friend Bill, who also has two dice numbered in the same way. Bill's score is the sum of the two numbers shown on his dice.

- (b) (i) Calculate the probability that Tim and Bill **both** obtain a score of 6.
 - (ii) Calculate the probability that Tim and Bill obtain the same score.

[4 marks]

- (c) Let X denote the largest number shown on the four dice.
 - (i) Show that $P(X \le 2) = \frac{16}{81}$.
 - (ii) Copy and complete the following probability distribution table.

x	1	2	3
P(X=x)	$\frac{1}{81}$		

(iii) Calculate E(X) and $E(X^2)$ and hence find Var(X).

[10 marks]

(d) Given that X = 3, find the probability that the sum of the numbers shown on the four dice is 8.

[4 marks]

Do **NOT** write solutions on this page. Any working on this page will **NOT** be marked.

12. [Maximum mark: 20]

The diagram shows a cube OABCDEFG.

Let O be the origin, (OA) the *x*-axis, (OC) the *y*-axis and (OD) the *z*-axis. Let M, N and P be the midpoints of [FG], [DG] and [CG], respectively. The coordinates of F are (2, 2, 2).

(a) Find the position vectors \overrightarrow{OM} , \overrightarrow{ON} and \overrightarrow{OP} in component form.

[3 marks]

(b) Find $\overrightarrow{MP} \times \overrightarrow{MN}$.

[4 marks]

- (c) Hence,
 - (i) calculate the area of the triangle MNP;
 - (ii) show that the line (AG) is perpendicular to the plane MNP;
 - (iii) find the equation of the plane MNP.

[7 marks]

(d) Determine the coordinates of the point where the line (AG) meets the plane MNP.

[6 marks]

Do NOT write solutions on this page. Any working on this page will NOT be marked.

13. [Maximum mark: 19]

Let $f(x) = \frac{a + be^x}{ae^x + b}$, where 0 < b < a.

- (a) Show that $f'(x) = \frac{(b^2 a^2)e^x}{(ae^x + b)^2}$. [3 marks]
- (b) **Hence** justify that the graph of f has no local maxima or minima. [2 marks]
- (c) Given that the graph of f has a point of inflexion, find its coordinates. [6 marks]
- (d) Show that the graph of f has exactly two asymptotes. [3 marks]
- (e) Let a = 4 and b = 1. Consider the region R enclosed by the graph of y = f(x), the y-axis and the line with equation $y = \frac{1}{2}$.

Find the volume V of the solid obtained when R is rotated through 2π about the x-axis. [5 marks]