Long short-term Memory (LSTM)

Mathematical formulation

- Suppose that there are h hidden units, a batch size n, and d inputs
- $X_t \in \mathbb{R}^{n \times d}$ and $H_{t-1} \in \mathbb{R}^{n \times h}$
- · We get the following gate values

$$\begin{aligned} & I_t = \sigma(X_t W_{xi} + H_{t-1} W_{hi} + b_i) \\ & F_t = \sigma(X_t W_{xf} + H_{t-1} W_{hf} + b_f) \\ & O_t = \sigma(X_t W_{xo} + H_{t-1} W_{ho} + b_o) \end{aligned}$$

- $W_{x.} \in \mathbb{R}^{d \times h}$
- $W_h \in \mathbb{R}^{h \times h}$
- $I_t, F_t, O_t \in \mathbb{R}^{n \times h}$

 σ = Sigmoid

⊙ = element-wise product

Memory cell state

• Let us define the memory cell state $C_t \in \mathbb{R}^{n \times h}$ for timestep t

$$C_t = F_t \odot C_{t-1} + I_t \odot \widetilde{C}_t$$

- F_t addresses how much of the old cell internal state C_{t-1} we retain
- I_t governs how much we take new data into account via \widetilde{C}_t
- If $F_t = \mathbf{1}$ and $I_t = \mathbf{0}$ the memory cell remains constant $(C_t = C_{t-1})$

Input node

- $\widetilde{\boldsymbol{C}}_t \in \mathbb{R}^{n \times h}$
- Its computation is equivalent to the one of three gates but with a tanh activation $\widetilde{C}_t = \tanh(X_t W_{xc} + H_{t-1} W_{hc} + b_c)$

Link with the input gate

 The value of the input node interacts with the input gate to decide what should be added to the current internal state

Output gate and internal state

• Finally, we have to define the output H_t of the memory cell using both O_t and C_t

$$\boldsymbol{H}_t = \boldsymbol{O}_t \odot \tanh(\boldsymbol{C}_t)$$

- When o_t is close to 0, current memory does not impact the subsequent layer of the network
- When O_t is close to 1, current memory adds information to the next layer

Gated Recurrent Units (GRU)

$$R_t = \sigma(X_t W_{xr} + H_{t-1} W_{hr} + b_r)$$

$$Z_t = \sigma(X_t W_{xz} + H_{t-1} W_{hz} + b_z)$$

Candidate Hidden State

$$\widetilde{\boldsymbol{H}}_t = \tanh(\boldsymbol{X}_t \boldsymbol{W}_{xh} + (\boldsymbol{R}_t \odot \boldsymbol{H}_{t-1}) \boldsymbol{W}_{hh} + \boldsymbol{b}_h)$$

Hidden State

• Finally, we incorporate the effect of the update gate \boldsymbol{Z}_t on the hidden state \boldsymbol{H}_t

$$H_t = Z_t \odot H_{t-1} + (1 - Z_t) \odot \widetilde{H}_t$$

Stacking recurrent cells

Bi-directional RNN:

Convolutional RNN:

All matrix products are replaced by convolutional operations. Inputs, hiddens states, memory states are not of shape n x d but n x channels x height x width.