

Wine Quality Predictive

Elijah M Raffo Jiazhou Li Xunyi Jiang

Introduction

- Primary data is from Analytic Vidhya
- Find out what makes good quality wine
- 2 datasets: red and white wine

Variables:

- Fixed acidity,
- volatile acidity,
- citric acid,
- residual sugar,
- chlorides,
- free sulfur dioxide,
- total sulfur dioxide,
- density,
- pH (scale 0 to 14),
- sulphates,
- alcohol

Target Variable:

Quality

(score between 0 to 10)

Both red wine and white wine

```
wine=pd.read csv('winequality.csv')
In [681:
             wine.describe()
Out[68]:
                                       volatile
                                                                  residual
                                                                                           free sulfur
                                                                                                        total sulfur
                                                                                                                                          рΗ
                     fixed acidity
                                                   citric acid
                                                                              chlorides
                                                                                                                        density
                                                                                                                                                 sulphates
                                                                                                                                                                 alcohol
                                        acidity
                                                                    sugar
                                                                                             dioxide
                                                                                                           dioxide
                                                                           6497.000000
                     6497.000000
                                  6497.000000
                                                6497.000000
                                                                                                                    6497.000000
                                                                                                                                 6497.000000
                                                                                                                                               6497.000000
                                                                                                                                                            6497.000000
                                                              6497.000000
                                                                                         6497.000000
                                                                                                      6497.000000
              count
                                                   0.318633
                                                                              0.056034
                                                                                           30.525473
                                                                                                       115,744728
                        7.215307
                                      0.339666
                                                                 5.443235
                                                                                                                       0.994697
                                                                                                                                     3.218501
                                                                                                                                                  0.531268
                                                                                                                                                               10.491801
              mean
                        1.296434
                                      0.164636
                                                   0.145318
                                                                 4.757804
                                                                              0.035034
                                                                                           17.749313
                                                                                                        56.521751
                                                                                                                       0.002999
                                                                                                                                    0.160787
                                                                                                                                                  0.148806
                                                                                                                                                               1.192712
                std
                        3.800000
                                      0.080000
                                                   0.000000
                                                                 0.600000
                                                                              0.009000
                                                                                            1.000000
                                                                                                         6.000000
                                                                                                                       0.987110
                                                                                                                                    2.720000
                                                                                                                                                  0.220000
                                                                                                                                                                8.000000
               min
                        6.400000
                                      0.230000
                                                   0.250000
                                                                 1.800000
                                                                              0.038000
                                                                                           17.000000
                                                                                                                       0.992340
                                                                                                                                    3.110000
                                                                                                                                                               9.500000
               25%
                                                                                                        77.000000
                                                                                                                                                  0.430000
               50%
                        7.000000
                                      0.290000
                                                   0.310000
                                                                 3.000000
                                                                              0.047000
                                                                                           29.000000
                                                                                                       118.000000
                                                                                                                       0.994890
                                                                                                                                    3.210000
                                                                                                                                                  0.510000
                                                                                                                                                               10.300000
                        7.700000
                                      0.400000
                                                   0.390000
                                                                 8.100000
                                                                              0.065000
                                                                                           41.000000
                                                                                                       156.000000
                                                                                                                       0.996990
                                                                                                                                     3.320000
                                                                                                                                                  0.600000
                                                                                                                                                               11.300000
               75%
                       15.900000
                                                   1.660000
                                                                                                                       1.038980
                                                                                                                                                  2.000000
                                                                                                                                                               14.900000
                                      1.580000
                                                                65.800000
                                                                              0.611000
                                                                                          289.000000
                                                                                                       440.000000
                                                                                                                                     4.010000
               max
```

- Raw data:

```
In [50]: wine.shape
Out[50]: (6497, 13)
```

- No missing data

	In [49]:	wine.	dropna()												
П		6486	red	7.2	0.660	0.33	2.50	0.068	34.0	102.0	0.99414	3.27	0.78	12.8	6
ш		6487	red	6.6	0.725	0.20	7.80	0.073	29.0	79.0	0.99770	3.29	0.54	9.2	5
ш		6488	red	6.3	0.550	0.15	1.80	0.077	26.0	35.0	0.99314	3.32	0.82	11.6	6
ш		6489	red	5.4	0.740	0.09	1.70	0.089	16.0	26.0	0.99402	3.67	0.56	11.6	6
ш		6490	red	6.3	0.510	0.13	2.30	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
ш		6491	red	6.8	0.620	0.08	1.90	0.068	28.0	38.0	0.99651	3.42	0.82	9.5	6
ш		6492	red	6.2	0.600	0.08	2.00	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
ш		6493	red	5.9	0.550	0.10	2.20	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
ш		6494	red	6.3	0.510	0.13	2.30	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
ш		6495	red	5.9	0.645	0.12	2.00	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
		6496	red	6.0	0.310	0.47	3.60	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6
L		6497 ro	ws × 13 colu	mns											

2836 datas are in the quality score 6

```
In [98]: wine['quality_reg'].value_counts()

Out[98]: 6    2836
    5    2138
    7   1079
    4    216
    8   193
    3    30
    9    5
    Name: quality_reg, dtype: int64
```


KNN4 acc on train: 0.269 KNN4 acc on test: 0.160 LIN acc on train: 0.297 LIN acc on test: 0.291 LOG acc on train: 0.541 LOG acc on test: 0.533 Lasso acc on train: 0.290 Lasso acc on test: 0.285 SVM2 acc on train: 0.297 SVM2 acc on test: 0.290 SVM2 acc on train: 0.321 SVM2 acc on test: 0.282 RF acc on train: 0.931 RF acc on test: 0.527

KNN of 1 acc on train: 1.000
KNN of 1 acc on test: 0.734
LOR acc on train: 0.742
LOR acc on test: 0.745
LSVM C=.01 acc on train: 0.727
LSVM C=.01 acc on test: 0.718
SVM Gamma=.1 acc on train: 0.912
SVM Gamma=.lacc on test: 0.725
DT Leafs=15 acc on train: 0.765
DT leafs=15 acc on test: 0.738
RF of 50 acc on train: 1.000
DE ++ 0 00F
RF of 50 acc on test: 0.825

	importance
alcohol	0.151985
volatile acidity	0.115596
density	0.097970
chlorides	0.086533
free sulfur dioxide	0.085907
total sulfur dioxide	0.083196
sulphates	0.081278
residual sugar	0.079440
citric acid	0.075513
рН	0.070515
fixed acidity	0.064437
type_white	0.003838
type_red	0.003790

Wine Classification

count	4898.000000
mean	5.877909
std	0.885639
min	3.000000
25%	5.000000
50%	6.000000
75%	6.000000
max	9.000000

count	1599.000000
mean	5.636023
std	0.807569
min	3.000000
25%	5.000000
50%	6.000000
75%	6.000000
max	8.000000

White Wine

Red Wine

Tests	Wine	Red	White
KNN	73.4% [1]	68.8% [30]	68.2% [10]
Logistic Regressor	74.5%	75.7%	73.2%
Lin SVM [C]	71.8% [.01]	74.5% [.1]	70.5% [.01]
Supoort Vector Machine [Gamma]	72.5% [.1]	71.0% [.01]	72.7% [1]
Decision Tree [leaf node]	73.8% [15]	73.5% [20]	75% [30]
Random Forest [n_estimator]	82.5% [50]	81.0% [50]	82.5% [100]

Wine Classification

	importance
alcohol	0.143505
volatile acidity	0.115256
density	0.107909
free sulfur dioxide	0.102896
total sulfur dioxide	0.086073
residual sugar	0.081336
citric acid	0.081118
chlorides	0.080260
рН	0.071636
sulphates	0.065095
fixed acidity	0.064916

	importance
alcohol	0.183169
sulphates	0.137991
volatile acidity	0.108503
total sulfur dioxide	0.097881
density	0.088560
рН	0.068507
chlorides	0.068428
citric acid	0.066616
fixed acidity	0.066316
free sulfur dioxide	0.059956
residual sugar	0.054072

White Wine

Red Wine

	White Classification		Red Regression
KNN	69.3%	KNN	3.8%
Logistic Regressor	71.9%	Logistic Regressionn	77.1%
Lin SVM	70.4%	Lasso	15.5%
Supoort Vector Machine	79.4.%	Ridge	15.6%
Decision Tree	73.9%	Decision Tree	8.0%
Random Forest	83.8%	Random Forest	33.0%

Decison Tree

Red wine

Alcohol= 8.8 Sulphates= 0.45

Class bad

White Wine

alcohol= 10.1 free sulfur dioxide= 30 volatile acidity= 0.28

Class Good

Findings

- -Making a "good" wine is possible
- -The characteristics of red and white
- -Decision Tree is useful and accurate

For a Better Accuracy

- -More Descriptive Data
- -Domain Knowledge

Using the Findings

-Optimizing wine blends

THANK YOU