GEOMETRÍA II. Convocatoria de junio

 Doble Grado en Ingeniería Informática y Matemáticas – Curso 2015/16

Nombre:

- 1. En cada caso, probar la afirmación o dar un ejemplo de que es falsa
 - (a) Si $A, C \in \mathcal{M}_2(\mathbb{R})$ son diagonalizables, entonces AC es diagonalizable.
 - (b) En (\mathbb{R}^3, g_L) , si $\{e_1, e_2\}$ es una base conjugada de un subespacio de dimensión 2, entonces se puede extender a una base conjugada de (\mathbb{R}^3, g_L) .
 - (c) Si U es un subespacio vectorial de un espacio euclídeo (V,g), entonces $V=U\oplus U^{\perp}$.
- 2. En \mathbb{R}^3 , sea $B = \{(1, 1, -1), (0, 1, 0), (2, 1, -1)\}$ y la métrica g y el endomorfismo f dados por

$$M(f,B) = \begin{pmatrix} 9 & 0 & a \\ 5 & 4 & 10 \\ -5 & 0 & -6 \end{pmatrix}, \qquad M_B(g) = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 1 & 1 \\ 3 & 1 & 6 \end{pmatrix}.$$

Para los valores de a para que f sea autoadjunto respecto de g, hallar una base ortonormal de vectores propios.

- 3. En \mathbb{R}^3 , se considera la recta U=<(1,2,3)> y $W=\{(x,y,z)\in\mathbb{R}^3:x-2y+z=0\}$. Hallar, si es posible, $M_{B_u}(g)$ de una métrica no degenerada g en \mathbb{R}^3 con $W=U^{\perp}$.
- 4. En (\mathbb{R}^3, g_u) , hallar $M(f, B_u)$ de una isometría f que lleve $U = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ en $W = \{(x, y, z) \in \mathbb{R}^3 : x y + 2z = 0\}$.

Importante: razonar todas las respuestas

Soluciones

- 1. (a) Falsa. Sean $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$ y $C = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Entonces A y C son diagonalizables porque sus (dos) valores propios son diferentes, pero el producto es la matriz $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ que no es diagonalizable.
 - (b) Falsa. Se sabe que g_L es no degenerada. Si U = <(1,0,0), (0,1,1)>, esta base es conjugada de U porque la expresión matricial es $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ y no se puede extender a una base conjugada de g_L , porque sería de la forma +1,0,?.
 - (c) Verdadero. Hecho en teoría (hacer).
- 2. Llamando A y G las matrices del endomorfismo y de la métrica, f es autoadjunto si GA es simétrica, dando a = 10. Para este valor, se diagonaliza A, obteniendo que los valores propios son $\{-1,4,4\}$ y los subespacios propios, $V_{-1} = <(-1,-1,1) > y$ $V_4 = <(-2,0,1),(0,1,0) >$. Queda por ortonormalizar con la métrica g la base $B = \{(-1,-1,1),(-2,0,1),(0,1,0)\}$ donde se sabe que el primero es perpendicular a los otros dos.
- 3. El subespacio U está contenido en W.
 - (a) (primera forma: directamente) Sea $M_{B_u}(g) = G = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$ y hacemos que todos los vectores de U sean perpendiculares a los de W. Basta para hacerlo para una base. Como $W = \langle (2,1,0), (1,0,-1) \rangle$, entonces

$$\left(\begin{array}{ccc} 1 & 2 & 3\end{array}\right)G\left(\begin{array}{c} 2\\1\\0\end{array}\right)=\left(\begin{array}{ccc} 1 & 2 & 3\end{array}\right)G\left(\begin{array}{c} 1\\0\\-1\end{array}\right)=0,$$

luego

$$2a + 5b + 6c + 2d + 3e = 0$$
, $a + 2b + 2c - 2e - 3f = 0$.

Al tener tanta libertad, podemos tomar muchos 0, sólo con que la matriz sea no degenerada. Tomamos a = -d = 1, b = c = e = 0 y f = -1/3. Entonces

$$G = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -\frac{1}{3} \end{array}\right).$$

Con esto se tiene probado que $W \subset U^{\perp}$. Pero como es no degenerada, $dim(U^{\perp}) = 3 - dim(U) = 2$, luego hay igualdad.

(b) (segunda forma) Llamamos $B = \{e_1, e_2, e_3\}$ una base de \mathbb{R}^3 con $U = \langle e_1 \rangle$ y $W = \langle e_1, e_2 \rangle$. En coordenadas respecto de B, $e_1 = (1, 0, 0)$ y $W \equiv z = 0$. Por tanto,

$$U^{\perp} = \{(x,y,z): \left(\begin{array}{ccc} x & y & z\end{array}\right) G \left(\begin{array}{c} 1 \\ 0 \\ 0\end{array}\right) = 0\} = \{(x,y,z): \left(\begin{array}{ccc} x & y & z\end{array}\right) \left(\begin{array}{c} g_{11} \\ g_{21} \\ g_{31} \end{array}\right) = 0\}.$$

Como queremos que esta ecuación sea z=0, tomamos $g_{11}=g_{21}=0$ y $g_{31}=1$, quedando $G=\begin{pmatrix}0&0&1\\0&g_{22}&g_{23}\\1&g_{32}&g_{33}\end{pmatrix}$. Finalmente, ya que G debe ser no degenerada, basta

tomar $g_{22} = 1$. El resto tomamos 0 (o simétrica). Por tanto una posible métrica es

$$M_B(g) = \left(egin{array}{ccc} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{array}
ight).$$

4. Tomar una base ortonormal $\{e_1, e_2\}$ de U y otra $\{v_1, v_2\}$ de W. Extender las dos a bases ortonormales del espacio: $B = \{e_1, e_2, e_3\}$, $B' = \{v_1, v_2, v_3\}$. Se define la aplicación lineal f con $f(e_i) = v_i$. Entonces $f(U) = f(\langle e_1, e_2 \rangle) = \langle f(e_1), f(e_2) \rangle = \langle v_1, v_2 \rangle = W$, y como lleva bases ortonormales en bases ortonormales, f es una isometría. Basta hacer un cambio de bases:

$$M(f, B_u) = M(1_V, B', B_u)I_3M(1_V, B_u, B).$$