Facultad de la Energía, las Industrias y los Recursos Naturales no Renovables CARRERA DE INGENIERÍA EN SISTEMAS

Lenguaje Ensamblador

La memoria

René Guamán-Quinche

rguaman@unl.edu.ec

- ✓ La unidad básica es el byte
- ✓ Un computador con 32 megabyte de memoria de puede almacenar aproximadamente 32 millones de byte de información
- ✓ Cada byte está etiquetado por un número único conocido como dirección

✓ Cada byte está etiquetado por un número único conocido como dirección

Dirección	0	1	2	3	4	5	6	7
Memoria	2A	45	B8	20	8F	CD	12	2E

Figura 1.4: Direcciones de Memoria

✓ La memoria se usa en trozos más grandes que un byte. En la arquitectura del PC, los nombres que se le han dado a estas secciones de memoria son

inglés	unidad	español
word	2 bytes	palabra
double word	4 bytes	palabra doble
quad word	8 bytes	palabra cuádruple
paragraph	16 bytes	párrafo

Cuadro 1.2: Unidades de memoria

- ✓ Todos los datos en la memoria son numéricos.
- ✓ Los caracteres son almacenados usando un código de caracteres que traduce un número en un carácter.
- ✓ Uno de los códigos de caracteres más conocido es el ASCII (American Standar Code for Information Interchange)
- ✓ Un nuevo código, más completo, que está reemplazando al ASCII es el Unicode

- ✓ Una diferencia clave entre los dos códigos es que el ASCII usa un byte para codificar un carácter, pero Unicode usa dos bytes (o una palabra) por carácter
- ✓ Por ejemplo ASCII decodifica el byte 41_{16} (65_{10}) como la A mayúscula. Unicode la codifica con la palabra 0041 16 . Ya que ASCII usa un byte está limitado a sólo 256 caracteres diferentes

✓ Unicode amplía los valores ASCII a palabras y permite que se representen muchos más caracteres. Esto es importante para representar los caracteres de todas las lenguas del mundo

- ✓ La memoria lógica se numera por bytes
- ✓ Cuando direccionan una palabra de 16 bits en memoria se acceden a dos bytes consecutivos

- ✓ La memoria lógica se numera por bytes
- ✓ Cuando direccionan una palabra de 16 bits en memoria se acceden a dos bytes consecutivos
- ✓ Ejemplo:
 - La palabra en la localidad 00122H se almacena en los bytes 00122H y 00123H
 - El byte menos significativo se almacena en 00122H

¿Qué pasa si trabajamos con una doble palabra?

- ✓ Los procesadores poseen dos tipos de MI:
 - Memoria de acceso aleatorio (RAM)
 - Memoria de sólo lectura (ROM)
- ✓ Los bytes en memoria se numera de forma consecutiva, iniciando de 00
- ✓ Cada localidad tiene un número único

Inicio	Dirección	Uso	
Dec 960K	Hex F0000	64K sistema base de ROM	
768K	C0000	192K área de expansión de memoria(ROM)	Memoria superior
640K	A0000	128K área de despliegue de video(RAM)	
Cero	00000	160K memoria (RAM)	Memoria convencional

Mapa de memoria física

- ✓ Mapa físico de memoria de una pc 8086
- ✓ Del primer megabyte de memoria, los primero 640K los ocupa la RAM, la mayor parte está disponible

ROM

- ✓ Es un chip especial de memoria que sólo puede ser leida
- ✓ Las instrucciones están guardadas permanentemente en un chio ROM, no pueden ser alteradas
- ✓ El sistema básico de E/S (BIOS) de ROM inicia con la dirección 768 K y maneja dispositivos de E/S como un controlador de disco duro

ROM

- ✓ La ROM que inicia 960K controla las funciones básicas de la computadora:
 - Auto prueba de encender
 - Patrones de puntos para gráficos
 - Autocargador del disco
- ✓ Cuando la PC se enciende, la ROM realiza ciertas verificaciones y carga desde el disco duro, los datos especiales del sistema que envía la RAM

RAM

- ✓ Memoria de lectura y escritura
- ✓ Se dispones al almacenamiento temporal y ejecución de programas
- ✓ El contenido de la RAM se pierde al apagar la PC
- ✓ Debe reservar almacenamiento externo para guardar programas y datos

RAM

- ✓ El procedimiento de arranque en ROM cuando carga el programa COMMAND.COM en RAM
- ✓ Después se pide al COMMAND.COM realiza acciones como cargar programas de disco a la RAM
- ✓ COMMAND.COM ocupa RAM pero existe espacio para otros programas
- ✓ Nuestro programa se ejecuta en RAM por lo que produce salidas en pantalla, a la impresora o a un disco

Direccionamiento de localidades de memoria

- ✓ El procesador puede acceder uno o dos bytes de memoria a la vez
- ✓ Supongamos un número décimal $1025_{10} \rightarrow 0401H$ requiere dos byte o una palabra de memoria

Localidad 5613 Byte más significativo

- ✓ Consta de un byte de orden alto(más significativo) 04
- ✓ Consta de un byte de orden bajo(menos significativo)
 01

Direccionamiento de localidades de memoria

✓ El sistema almacena en memoria estos dos byte en secuencia inversa

Localidad 5613 Byte más significativo

✓ El procesador transferiría 0401 de un registro de localidades en memoria 5612 y 5613