Spring 2012 / Exercise session ?? / Example Solution

Exercise (Random self-reducibility of CDH). Let \mathbb{G} be a finite group such that all elements $y \in \mathbb{G}$ can be expressed as powers of $g \in \mathbb{G}$. Then the Computational Diffie-Hellman (CDH) problem is following. Given $x = g^a$ and $y = g^b$, find a group element $z = g^{ab}$.

1. Show that Computational Diffie-Hellman problem is random self-reducible, i.e., for any algorithm B that achieves advantage

$$\mathsf{Adv}^{\mathsf{cdh}}_{\mathbb{G}}(\mathcal{B}) \doteq \Pr\left[x, y \xleftarrow{u} \mathbb{G} : \mathcal{B}(x, y) = g^{\log_g x \log_g y}\right]$$

there exists an oracle algorithm $\mathcal{A}^{\mathcal{B}}$ that for any input $x,y \in \mathbb{G}$ outputs the correct answer with the probability $\operatorname{Adv}^{\operatorname{cdh}}_{\mathbb{G}}(\mathfrak{B})$ and has roughly the same running time.

2. Given that the CDH problem is random self-reducible, show that the difficulty of CDH instances cannot wary a lot. Namely, let $\mathbb B$ be a t-time algorithm that achieves maximal advantage $\mathsf{Adv}^{\mathsf{cdh}}_{\mathbb G}(\mathbb B)$. What can we say about worst-case advantage

$$\min_{x,y \in \mathbb{G}} \Pr \left[\mathcal{A}(x,y) = g^{\log_g x \log_g y} \right] ?$$

Can there be a large number of pairs (x,y) for which the CDH problem is easy?

3. Show how to amplify the success rate of $\mathbb B$ by repetitions. Sketch the corresponding time-success profile $\varepsilon(t)$. What does this say about time-success profile of CDH problem in general?

Solution. RANDOM SELF-REDUCIBILITY. Given an original adversary \mathcal{B} against computational Diffie-Hellman problem we can construct the following algorithm:

$$\begin{split} \mathcal{A}^{\mathcal{B}}(x,y) \\ \begin{bmatrix} a,b & \leftarrow \mathbb{Z}_{|\mathbb{G}|} \\ c & \leftarrow \mathbb{B}(x \cdot g^a, y \cdot g^b) \\ \mathbf{return} \ c \cdot x^{-b} \cdot y^{-a} \cdot g^{-ab} \end{bmatrix}. \end{split}$$

For the analysis, let $\alpha = \log_g x$ and $\beta = \log_g y$. Then by the definition, the tuple $x \cdot g^a, y \cdot g^b, c$ is a valid Diffie-Helmann tuple only if

$$c = q^{(\alpha+a)(\beta+b)} \iff c = q^{\alpha\beta} \cdot q^{\alpha b} \cdot q^{ab} \cdot q^{\beta a}$$
.

From this we can conclude

$$c = q^{(\alpha+a)(\beta+b)} \iff q^{\alpha\beta} = c \cdot (q^{\alpha})^{-b} \cdot (q^{\beta})^a \cdot q^{ab}$$

which itself implies that the adversary $\mathcal{A}^{\mathcal{B}}$ succeed if and only if \mathcal{B} produces a Diffie-Helmann tuple:

$$c = g^{(\alpha + a)(\beta + b)} \quad \Longleftrightarrow \quad g^{\alpha \beta} = c \cdot x^{-b} \cdot y^{-a} \cdot g^{-ab} \ .$$

Hence, the advantage of $\mathcal{A}^{\mathcal{B}}$ can be calculated as follows:

$$\Pr\left[\mathcal{A}^{\mathcal{B}}(x,y) = g^{\alpha\beta}\right] = \Pr\left[a, b \leftarrow \mathbb{Z}_{|\mathbb{G}|} : \mathcal{B}(x \cdot g^a, y \cdot g^b) = g^{(\alpha+a) \cdot (\beta+b)}\right] .$$

Now it is easy to see that for any $\forall \alpha, \beta \in \mathbb{Z}_{|\mathbb{G}|}$, the group elements $x \cdot g^a$ and $y \cdot g^b$ are independent and have uniform distribution. Hence, the adversary \mathcal{B} inside $\mathcal{A}^{\mathcal{B}}$ gets correctly formed CDH challenges and we thus we can conclude

If \mathcal{B} runs in t-time, $\mathcal{A}^{\mathcal{B}}$ runs in $(t + \delta)$ -time, where δ is a small time required to perform element sampling and multiplications.

UNIFORMITY. Because \mathcal{A} reduces each problem instance to a random one, $\Pr\left[\mathcal{A}(x,y) = g^{\log_g x \log_g y}\right]$ is equal to $\mathsf{Adv}^{\mathsf{cdh}}_{\mathbb{G}}(\mathcal{B})$ for each pair (x,y). Therefore, the worst-case advantage of \mathcal{A} is the same as advantage of \mathcal{B} and if there are a lot of CDH instances, which are easy for \mathcal{B} , the performance of \mathcal{A} is good on any instance.

AMPLIFICATION EFFECTS. To be added