Named Entity Recognition на лексических признаках с учётом всех вхождений упоминания в текст

Латыпов Зуфар Московский Физико-Технический Институт

Abstract

Статья по распознаванию именованных сущностей.

1 BSNLP

BSNLP (Balto-Slavic Natural Language Processing) - конференция по языконезависимой обработке естественного языка, в котором участники работают с славянскими и балтийскими языками - (Croatian, Czech, Polish, Russian, and Slovene, slovak, Ukrainian). В 2017 году общей задачей конференции стало выделение именованных сущностей, их нормализация и межязыковое связывание.

1.1 Описание корпуса

Организаторами были подготовлены два датасета, первый содержит документы, относящиеся к Дональду Трампу, текущему президенту США, а второй - документы, упоминающие Европейскую Комиссию. Документы для датасетов были созданы следующим образом: для каждой из тем были произведены поисковые запросы в Google на каждом из семи языков, результаты запроса были очищены от дубликатов и обработаны HTML парсером для извлечения текста (большинство ресурсов были новостями или фрагментами их). Полученный набор частично очищенных документов был использован для отбора 20-25 документов для каждого языка и темы для подготовки финального тестового датасета. Аннотации в основном были сделаны носителями языков, межязыковое связывание носителями двух языков.

Организаторы не предоставляли данных для

обучения алгоритмов, участники были вынуждены решать этот вопрос самостоятельно. Входные данные были представлены в следующем формате:

<DOCUMENT-ID>
<LANGUAGE>
<CREATION-DATE>
<URL>
<TITLE>
<TEXT>

В качестве выходных данных от участников ожидались документы с выделенными и нормализованными именованными сущностями, указанием их типов и межъязыковых идентификаторов:

<DOCUMENT-ID>
<MENTION> TAB <BASE> TAB <CAT> TAB <ID>

16
Podlascy Czeczeni Podlascy Czeczeni PER 1
ISIS ISIS ORG 2
Rosji Rosja LOC 3
Rosja Rosja LOC 3
Polsce Polska LOC 4
Warszawie Warszawa LOC 5
Magazynu Kuriera Porannego Magazyn Kuriera\
Porannego ORG 6

1.2 Итоги соревнования

В соревновании приняли участие более 11 команд, но только 2 из них сумели предоставить свое решение в поставленный организаторами срок. В связи с этим соревнование было продлено, и на данный момент сайт конференции содержит информацию о четырех различных системах: JHU, Liner2, LexiFlexi, Sharoff. Приведем краткое описание этих систем и достигнутых ими результатов.

1.2.1 JHU

Авторы системы JHU приняли участие только в задачах по выделению и межъязыковому связыванию именованных сущностей. Для создания своей модели они проделали следующие шаги:

- 1. Получили из публично доступных датасетов параллельные тексты для языков соревнования и английского
- 2. Применили к текстам на английском уже готовую модель выделения именованных сущностей (Illinois Named Entity Tagger)
- 3. Спроецировали полученные результаты с английских текстов на целевые языки при помощи ${\rm Giza}++$
- 4. На полученных датасетах обучили SVMLattice named entity recognizer
- 5. Использовали систему Kripke для межъязыкового связывания

Система показала хорошие результаты во всех трех задачах соревнования, заняв первые - вторые места практически во всех языках.

Таблица 1: F1 scores by type and language

	PER	ORG	LOC	MISC
ces	53.30	21.77	68.12	0.00
hrv	60.10	29.36	63.19	3.39
pol	35.29	13.19	68.73	0.00
rus	41.77	14.55	65.03	0.00
slk	57.52	18.67	63.20	2.94
slv	55.92	18.18	65.63	0.00
ukr	29.56	6.45	56.83	0.00
all	49.26	18.16	64.80	1.08

1.2.2 Liner2

Авторы модели использовали фреймворк Liner2, который предоставляет набор модулей, основанных на статистических моделях, словарях, правилах и эвристиках и аннотирующих различные типа фраз. Команда работала только с польским языком, и сумела достичь лучших результатов в задачах выделения и нормализации именованных сущностей. Результаты работы системы можно увидеть ниже в таблице.

Таблица 2: Liner2 Results

Task	P	R	F
Names matching			
Relaxed partial	66.24	63.27	64.72
Relaxed exact	65.40	62.78	64.07
Strict	71.10	58.81	66.61
Normalization	75.50	44.44	55.95
Coreference			
Document level	7.90	42.71	12.01
Language level	3.70	8.00	5.05
Cross-language level	n/a	n/a	n/a

1.2.3 LexiFlexi

К сожалению, авторы системы не предоставили статьи о своей системе, поэтому приходится довольствоваться ее кратким описанием. LexiFlexi применяет 3 лексико-семантических ресурса ко входному тексту в следующем порядке:

- 1. Сопоставляет имена из базы данных JRC Variant Names
- 2. Сопоставляет имена из огромной коллекции названий сущностей на различных языках полу-автоматически полученной из применения BabelNet к еще не обработанному тексту
- 3. Сопоставляет топонимы из газетира GeoNames в еще не обработанном тексте

В конце работы системы применяются несколько языко-независимых эвристик для нахождения вариантов (аббревиатур) именованных сущностей, распознанных на предыдущих шагах.

Данная модель показала средние результаты в задачах выделения и нормализации сущностей, однако заняла практически все первые места в задаче межъязыкового связывания на уровне документов, и половину первых мест - на уровне языка.

1.2.4 Sharoff

Система Сергея Шарова - пример применения метода адаптации языка к задаче выделения именованных сущностей. Автор модели создал мультиязычное пространство embedding-ов для слов, основываясь на модели Dinu [] с добавлением взвешенного расстояния Левенштейна. Это пространство было использовано для обучения NER таггера, созданного при помощи нейронной сети, базируясь на Словенском NER корпусе. Простыми словами, главная идея - если мы можем адаптировать модель отзывов к фильмам для работы с

отзывами к отелями, то наверное мы можем адаптировать модель для NER одного языка к работе с родственными языками.

Модель добилась неплохих результатов в задачах выделения и нормализации именных сущностей, заняла первые места на чешском и словенском языках, заметны также и сильные падения качества на русском и украинском. На задаче межъязыкового связывания система проявила себя не очень хорошо, везде осталась на последних местах.

1.3 Выводы

На мой взгляд, на данной конференции были показаны две интересные системы - система Сергея Шарова и система JHU. Система Liner2 была применена только к польскому языку, а система LexiFlexi, если верить ее описанию, просто работает с большим набором газетиров. Результаты, достигнутые системой Шарова и системой JHU, показывают применимость методов адаптации языка и параллельной обработки текстов к задачам NER.

Список литературы