TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

Some Information Theory

Why Information Theory?

The fundamental equation involves cross-entropy.

Cross-entropy is an information-theoretic concept.

Information theory arises in many places and many forms in deep learning.

Entropy of a Distribution

The entropy of a distribution P is defined by

$$H(P) = E_{y \sim P} [-\ln P(y)]$$
 in units of "nats"

$$H_2(P) = E_{y \sim P} \left[-\log_2 P(y) \right]$$
 in units of bits

Why Bits?

Why is $-\log_2 P(y)$ a number of bits?

Example: Let P be a uniform distribution on 256 values.

$$E_{y\sim P} \left[-\log_2 P(y) \right] = -\log_2 \frac{1}{256} = \log_2 256 = 8 \text{ bits} = 1 \text{ byte}$$

1 nat =
$$\frac{1}{\ln 2}$$
 bits ≈ 1.44 bits

Shannon's Source Coding Theorem

Why is $-\log_2 P(y)$ a number of bits?

A prefix-free code for \mathcal{Y} assigns a bit string c(y) to each $y \in \mathcal{Y}$ such that no code string is prefix of any other code string.

For a probability distribution P on \mathcal{Y} we consider the average code length $E_{y\sim P}$ [|c(y)|].

Theorem: For any c we have $E_{y \sim P} |c(y)| \ge H_2(P)$.

Theorem: There exists c with $E_{y \sim P} |c(y)| \leq H_2(P) + 1$.

Cross Entropy

Let P and Q be two distribution on the same set.

$$H(P,Q) = E_{y \sim P} \left[-\ln Q(y) \right]$$

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \ H(\operatorname{Pop}, P_{\Phi})$$

H(P,Q) also has a data compression interpretation.

H(P,Q) can be interpreted as 1.44 times the number of bits used to code draws from P when using the imperfect code defined by Q.

Entropy, Cross Entropy and KL Divergence

Let P and Q be two distribution on the same set.

Entropy:
$$H(P) = E_{y \sim P} \left[-\ln P(y) \right]$$

CrossEntropy:
$$H(P,Q) = E_{y \sim P} [-\ln Q(y)]$$

KL Divergence :
$$KL(P,Q) = H(P,Q) - H(P)$$

$$= E_{y \sim P} \quad \ln \frac{P(y)}{Q(y)}$$

We have $H(P,Q) \ge H(P)$ or equivalently $KL(P,Q) \ge 0$.

The Universality Assumption

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} H(\operatorname{Pop}, P_{\Phi}) = \underset{\Phi}{\operatorname{argmin}} H(\operatorname{Pop}) + KL(\operatorname{Pop}, P_{\Phi})$$

Universality assumption: P_{Φ} can represent any distribution and Φ can be fully optimized.

This is clearly false for deep networks. But it gives important insights like:

$$P_{\Phi^*} = \text{Pop}$$

This is the motivatation for the fundamental equation.

Asymmetry of Cross Entropy

Consider

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \ H(\operatorname{Pop}, Q_{\Phi}) \quad (1)$$

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \ H(Q_{\Phi}, \operatorname{Pop}) \quad (2)$$

We cannot use (2) because we cannot calculate Pop(y|x).

In any case, (2) produces mode collapse — Q_{Φ} is concentrated on the most likely values.

Asymmetry of KL Divergence

Consider

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} KL(\operatorname{Pop}, Q_{\Phi})$$

$$= \underset{\Phi}{\operatorname{argmin}} H(\operatorname{Pop}, Q_{\Phi})$$
(1)

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} KL(Q_{\Phi}, \operatorname{Pop})$$

$$= \underset{\Phi}{\operatorname{argmin}} H(Q_{\Phi}, \operatorname{Pop}) - H(Q_{\Phi}) \quad (2)$$

We cannot use (2) because we cannot calculate Pop(y|x).

In any case, in practice (2) tends to produce mode collapse.

Proving $KL(P,Q) \ge 0$: Jensen's Inequality

For f convex (upward curving) we have

$$E[f(x)] \ge f(E[x])$$

Proving $KL(P,Q) \ge 0$

$$KL(P,Q) = E_{y \sim P} \left[-\ln \frac{Q(y)}{P(y)} \right]$$

$$\geq -\ln E_{y \sim P} \frac{Q(y)}{P(y)}$$

$$= -\ln \sum_{y} P(y) \frac{Q(y)}{P(y)}$$

$$= -\ln \sum_{y} Q(y)$$

$$= 0$$

Summary

 $\Phi^* = \operatorname{argmin}_{\Phi} H(\operatorname{Pop}, P_{\Phi}) \text{ unconditional}$

 $\Phi^* = \operatorname{argmin}_{\Phi} E_{x \sim \operatorname{Pop}} H(\operatorname{Pop}(y|x), P_{\Phi}(y|x)) \text{ conditional}$

Entropy: $H(P) = E_{y \sim P} \left[-\ln P(y) \right]$

CrossEntropy: $H(P,Q) = E_{y \sim P} [-\ln Q(y)]$

KL Divergence : KL(P,Q) = H(P,Q) - H(P)

$$= E_{y \sim P} \quad \ln \frac{P(y)}{Q(y)}$$

 $H(P,Q) \geq H(P), \quad KL(P,Q) \geq 0, \quad \mathrm{argmin}_Q \ H(P,Q) = P$

\mathbf{END}