Chapter 3 Vector Spaces

Section 3.6 Row Space and Column Space (Extra)

Theorem Let A be an $m \times n$ matrix.

- 1. $\operatorname{rank}(A) + \dim N(A) = n$.
- 2. $rank(A) = rank(A^T)$ [The dimension of column space is the rank].
- 3. $0 \leq \operatorname{rank}(A) \leq \min(n, m)$.
- 4. rank(A) = 0 if and only if A = O.

Theorem Let A be an $m \times n$ matrix.

- 1. $\operatorname{rank}(A) + \dim N(A) = n$.
- 2. $rank(A) = rank(A^T)$ [The dimension of column space is the rank].
- 3. $0 \leq \operatorname{rank}(A) \leq \min(n, m)$.
- 4. rank(A) = 0 if and only if A = O.

We are going to show

Theorem Let A be an $m \times n$ matrix.

- 5. $\operatorname{rank}(A) = \operatorname{rank}(A^T A) = \operatorname{rank}(AA^T)$.
- 6. If P is $m \times m$, Q is $n \times n$, and both P and Q are nonsingular, then rank(PAQ)=rank(A).
- 7. For any $m \times n$ matrix B, $rank(A + B) \le rank(A) + rank(B)$.
- 8. For any $n \times r$ matrix B, $rank(AB) \leq min\{rank(A), rank(B)\}$.

Theorem (5) Let A be an $m \times n$ matrix. rank $(A) = \text{rank}(A^T A) = \text{rank}(AA^T)$.

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
.

Then
$$A^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $A^T A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $AA^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

 $\operatorname{rank}(A) = 2$, $\operatorname{rank}(A^T A) = 2$, $\operatorname{rank}(AA^T) = 2$.

Theorem (6) Let A be an $m \times n$ matrix. If P is $m \times m$, Q is $n \times n$, and both P and Q are nonsingular, then $\operatorname{rank}(PAQ) = \operatorname{rank}(A)$.

Example Let
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \end{pmatrix}$$
, $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $Q = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,

$$R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Note that P, Q are nonsingular because det(P) = -1 = det(Q). But R is singular because det(R) = 0.

Then
$$PAI = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$$
, $IAQ = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$, $IAR = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5 & 0 \end{pmatrix}$.

rank(A) = 2, rank(PAI) = rank(A) = 2, rank(IAQ) = rank(A) = 2, $rank(IAR) = 1 \neq rank(A)$.

Theorem (5) Let A be a matrix. $rank(A) = rank(A^T A) = rank(AA^T)$.

Proof of $rank(A) = rank(A^T A)$

Let $\mathbf{x} \in N(A)$. Then $A\mathbf{x} = \mathbf{0}$ and $(A^TA)\mathbf{x} = A^T(A\mathbf{x}) = A^T\mathbf{0} = \mathbf{0}$. So $\mathbf{x} \in N(A^TA)$. Hence N(A) is a subspace in $N(A^TA)$. Let $\mathbf{y} \in N(A^TA)$ and $\mathbf{z} = A\mathbf{y}$. Then $(A^TA)\mathbf{y} = \mathbf{0}$ and

$$\mathbf{z}^T\mathbf{z} = (A\mathbf{y})^T(A\mathbf{y}) = (\mathbf{y}^TA^T)A\mathbf{y} = \mathbf{y}^T(A^TA\mathbf{y}) = \mathbf{y}^T\mathbf{0} = \mathbf{0}.$$

Note the $\mathbf{y}^T \mathbf{0}$ is the 1×1 matrix $\mathbf{0}$. Since \mathbf{z} is a column vector such that $\mathbf{z}^T \mathbf{z} = \mathbf{0}$, we have $A\mathbf{y} = \mathbf{z} = \mathbf{0}$ (why?). So $\mathbf{y} \in N(A)$, and $N(A^T A)$ is a subspace of N(A).

So $N(A^TA) = N(A)$. By the Rank-Nullity Theorem, $rank(A^TA) = n - dim(N(A^TA)) = n - dim(N(A)) = rank(A)$.

Theorem (Half of 6) Let A be an $m \times n$ matrix, P be $m \times m$ nonsingular matrix. Then rank(PA) = rank(A).

Proof

Let $\mathbf{x} \in \mathcal{N}(A)$. Then $PA\mathbf{x} = P\mathbf{0} = \mathbf{0}$ and hence $\mathbf{x} \in \mathcal{N}(PA)$. Thus $\mathcal{N}(A)$ is a subspace of $\mathcal{N}(PA)$.

On the other hand, if $\mathbf{y} \in N(PA)$, then $P(Ay) = PA\mathbf{y} = \mathbf{0}$ and hence $A\mathbf{y} \in N(P)$. But $N(P) = \{\mathbf{0}\}$ since P is nonsingular. Therefore $A\mathbf{y} = \mathbf{0}$ and hence $\mathbf{y} \in N(A)$. Thus N(PA) is a subspace of N(A).

Now, N(PA) = N(A). It follows from the Rank-Nullity Theorem that rank(A) = n - dimN(A) = n - dimN(PA) = rank(PA).

Theorem (7) Let A be an $m \times n$ matrix. Let B be an $n \times r$ matrix. Then $rank(AB) < min\{rank(A), rank(B)\}$.

Example Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$. $AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ rank $(A) = 2$, rank $(B) = 2$, rank $(AB) = 1$.

Example Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$. $AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ rank $(A) = 1$, rank $(B) = 2$, rank $(AB) = 1$.

Example Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$. $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ rank $(A) = 2$, rank $(B) = 2$, rank $(AB) = 2$.

Theorem (8) Let A, B be $m \times n$ matrices. Then $rank(A + B) \le rank(A) + rank(B)$.

Example Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. $A + B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ rank $(A) = 2$, rank $(B) = 2$, rank $(A + B) = 2$.

Example Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. $A + B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ rank $(A) = 2$, rank $(B) = 1$, rank $(A + B) = 3$.

Theorem (7) Let A be an $m \times n$ matrix. Let B be an $n \times r$ matrix. Then $rank(AB) \le min\{rank(A), rank(B)\}$.

Proof

Let Col(A), Col(AB) be the column space of A and AB respectively.

Let $\mathbf{d} \in Col(AB)$. By Theorem (*), $\mathbf{d} = AB\mathbf{x}$ for some $\mathbf{x} \in \mathbf{R}^r$. Let $\mathbf{y} = B\mathbf{x}$. Since $\mathbf{d} = A\mathbf{y}$, it follows that \mathbf{d} is in Col(A) by Theorem (*). Hence Col(AB) is a subspace of Col(A). Hence $Col(AB) = \dim(Col(AB)) < \dim(Col(AB)) = \operatorname{rank}(A)$.

$$\operatorname{rank}(AB) = \operatorname{rank}((AB)^T)$$
 dim. of col. sp.=rank
$$= \operatorname{rank}(B^TA^T)$$

$$\leq \operatorname{rank}(B^T)$$
 we have just shown $\operatorname{rank}(CD) \leq \operatorname{rank}(C)$

$$= \operatorname{rank}(B)$$
 dim. of col. sp.=rank

Theorem (81) Let A, B be $m \times n$ matrices. Then $rank(A + B) \le rank(A) + rank(B)$.

Proof Let $Col(A) + Col(B) = \{ \mathbf{x} + \mathbf{y} | \mathbf{x} \in Col(A), \mathbf{y} \in Col(B) \}.$ Let $\mathbf{d} \in Col(A+B)$. Then $(A+B)\mathbf{x} = \mathbf{d}$ for some \mathbf{x} . Then $\mathbf{d} = A\mathbf{x} + B\mathbf{x}$. Since $A\mathbf{x}$ is in Col(A) and $B\mathbf{x}$ is in Col(B), we have $\mathbf{d} \in Col(A) + Col(B)$. So Col(A + B) is a subspace of Col(A) + Col(B). Hence. rank(A+B) $= \dim(Col(A+B))$ $< \dim(Col(A) + Col(B))$ $= \dim(Col(A)) + \dim(Col(B)) - \dim(Col(A) \cap Col(B))$ by the dimension theorem at the end of the slides $< \dim(Col(A)) + \dim(Col(B))$ =rank(A) + rank(B)

Theorem (8) Let A, B be $m \times n$ matrices. Then $rank(A + B) \le rank(A) + rank(B)$.

Proof 2 Let $Q = \begin{pmatrix} A & O \\ \hline O & B \end{pmatrix}$. Then rank(Q) = rank(A) + rank(B). (You can see this by converting Q into row-echelon form).

Since Q and
$$Q' = \begin{pmatrix} A & O \\ \hline A & B \end{pmatrix}$$
 are row equivalent, $rank(Q) = rank(Q')$.

Since
$$Q'^T = \begin{pmatrix} A^T & A^T \\ \hline O & B^T \end{pmatrix}$$
 and $Q'' = \begin{pmatrix} A^T & A^T \\ \hline A^T & A^T + B^T \end{pmatrix}$ are row equivalent, $\operatorname{rank}(Q'^T) = \operatorname{rank}(Q'')$.

Since dimension of the column space of a matrix equals the rank, $rank(Q) = rank(Q') = rank(Q'^T) = rank(Q''^T)$.

Note that Q''^T has a submatrix A + B. Since the rank of a submatrix cannot exceed the rank of the whole matrix (why?), $\operatorname{rank}(A + B) < \operatorname{rank}(Q) = \operatorname{rank}(A) + \operatorname{rank}(B)$.

Dimension Theorem Let U, V be subspaces of a vector space W. Let $U+V=\{\mathbf{u}+\mathbf{v}|\mathbf{u}\in U,\mathbf{v}\in V\}$. Then $\dim(U)+\dim(V)=\dim(U+V)+\dim(U\cap V)$. Example $U=\{(x,y,0)^T|x,y\in\mathbf{R}\}$ $V=\{(0,0,z)^T|z\in\mathbf{R}\}$ $U\cap V=\{\mathbf{0}\},$ $U+V=\mathbf{R}^3$ $\dim U=2$

 $\dim V = 1$

 $\dim(U \cap V) = 0$ $\dim(U + V) = 3$

Dimension Theorem Let U, V be subspaces of a vector space W. Let $U+V=\{\mathbf{u}+\mathbf{v}|\mathbf{u}\in U,\mathbf{v}\in V\}$. Then

Example

$$U = \{(0, y, 0)^T | y \in \mathbf{R}\}\$$

$$V = \{(0, 0, z)^T | z \in \mathbf{R}\}\$$

$$U \cap V = \{\mathbf{0}\}, \qquad U + V = \{(0, y, z)^T | y, z \in \mathbf{R}\}\$$

$$\dim U = 1, \dim V = 1$$

$$\dim(U \cap V) = 0, \dim(U + V) = 2$$

 $\dim(U) + \dim(V) = \dim(U + V) + \dim(U \cap V).$

Dimension Theorem Let U, V be subspaces of a vector space W.

Let
$$U + V = \{\mathbf{u} + \mathbf{v} | \mathbf{u} \in U, \mathbf{v} \in V\}$$
. Then $\dim(U) + \dim(V) = \dim(U + V) + \dim(U \cap V)$.

Example

$$U = \{(0, y, 0)^T | y \in \mathbf{R}\}\$$

$$V = \{(0, 0, z)^T | z \in \mathbf{R}\}\$$

$$U \cap V = \{\mathbf{0}\}, \qquad U + V = \{(0, y, z)^T | y, z \in \mathbf{R}\}\$$

$$\dim U = 1, \dim V = 1$$

$$\dim(U \cap V) = 0, \dim(U + V) = 2$$

Example

Example
$$U = \{(x, y, 0)^T | x, y \in \mathbf{R}\}\$$
 $V = \{(0, y, z)^T | y, z \in \mathbf{R}\}\$ $U \cap V = \{(0, y, 0)^T | y, 0 \in \mathbf{R}\},$ $U + V = \mathbf{R}^3$ dim $U = 2$, dim $V = 2$ dim $(U \cap V) = 1$, dim $(U + V) = 3$

Dimension Theorem Let U, V be subspaces of a vector space W. Let $U + V = \{\mathbf{u} + \mathbf{v} | \mathbf{u} \in U, \mathbf{v} \in V\}$. Then $\dim(U) + \dim(V) = \dim(U + V) + \dim(U \cap V)$.

Idea of a proof Let $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ be a basis for $U \cap V$. Then we can extend $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ to a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{y}_1, \dots, \mathbf{y}_\ell\}$ of U and $\{\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{z}_1, \dots, \mathbf{z}_m\}$ of V.

Do some work (next two slides) to argue $\{\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{y}_1, \dots, \mathbf{y}_\ell, \mathbf{z}_1, \dots, \mathbf{z}_m\}$ is a basis of U + V. So

$$\dim(U) + \dim(V) = (k + \ell) + (k + m) = (k + \ell + m) + k$$

= $\dim(U + V) + \dim(U \cap V)$.

(Span) Let $\mathbf{w} \in U + V$. Then $\mathbf{w} = \mathbf{u} + \mathbf{v}$ for some $\mathbf{u} \in U$ and $\mathbf{v} \in V$. Since $\mathbf{u} \in U$ and $\{\mathbf{x}_1, \cdots, \mathbf{x}_k, \mathbf{y}_1, \cdots, \mathbf{y}_\ell\}$ is a basis of U, we have $\mathbf{u} = a_1\mathbf{x}_1 + \cdots + a_k\mathbf{x}_k + a_{k+1}\mathbf{y}_1 + \cdots + a_{k+\ell}\mathbf{y}_\ell$ for some a_i 's. Since $\mathbf{v} \in V$ and $\{\mathbf{x}_1, \cdots, \mathbf{x}_k, \mathbf{z}_1, \cdots, \mathbf{z}_m\}$ is a basis of V, we have $\mathbf{v} = b_1\mathbf{x}_1 + \cdots + b_k\mathbf{x}_k + b_{k+1}\mathbf{z}_1 + \cdots + b_{k+m}\mathbf{z}_m$ for some b_i 's. So,

$$\begin{aligned} \mathbf{w} &= \mathbf{u} + \mathbf{v} \\ &= a_1 \mathbf{x}_1 + \dots + a_k \mathbf{x}_k + a_{k+1} \mathbf{y}_1 + \dots + a_{k+\ell} \mathbf{y}_{\ell} \\ &\quad + b_1 \mathbf{x}_1 + \dots + b_k \mathbf{x}_k + b_{k+1} \mathbf{z}_1 + \dots + b_{k+m} \mathbf{z}_m \\ &= (a_1 + b_1) \mathbf{x}_1 + \dots + (a_k + b_k) \mathbf{x}_k + a_{k+1} \mathbf{y}_1 + \dots + a_{k+\ell} \mathbf{y}_{\ell} \\ &\quad + b_{k+1} \mathbf{z}_1 + \dots + b_{k+m} \mathbf{z}_m \\ &\in \mathsf{Span} \{ \mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{y}_1, \dots, \mathbf{y}_{\ell}, \mathbf{z}_1, \dots, \mathbf{z}_m \} \end{aligned}$$

(Linear independence) Let
$$a_1, \dots, a_k, b_1, \dots, b_\ell, c_1, \dots, c_m$$
 such that $a_1 \mathbf{x}_1 + \dots + a_k \mathbf{x}_k + b_1 \mathbf{y}_1 + \dots + b_\ell \mathbf{y}_\ell + c_1 \mathbf{z}_1 + \dots + c_m \mathbf{z}_m = \mathbf{0}$.

Then the vector

$$\mathbf{v} = a_1 \mathbf{x}_1 + \dots + a_k \mathbf{x}_k + b_1 \mathbf{y}_1 + \dots + b_\ell \mathbf{y}_\ell \qquad --(1)$$

= $-c_1 \mathbf{z}_1 - \dots - c_m \mathbf{z}_m \qquad --(2)$

is in both U (by (1)) and in V (by (2)), and so $\mathbf{v} \in U \cap V$ and

$$\mathbf{v} = d_1 \mathbf{x}_1 + \dots + d_k \mathbf{x}_k. \text{ So,}
-c_1 \mathbf{z}_1 - \dots - c_m \mathbf{z}_m = d_1 \mathbf{x}_1 + \dots + d_k \mathbf{x}_k - -(3)
a_1 \mathbf{x}_1 + \dots + a_k \mathbf{x}_k + b_1 \mathbf{y}_1 + \dots + b_\ell \mathbf{y}_\ell = d_1 \mathbf{x}_1 + \dots + d_k \mathbf{x}_k - -(4)$$

Since $\{\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{z}_1, \dots, \mathbf{z}_m\}$ is a basis, it is a linearly independent set, and so (3) implies $d_1 = \dots = d_k = -c_1 = \dots = -c_m = 0$. Since $\{\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{y}_1, \dots, \mathbf{y}_\ell\}$ is a basis, it is a linearly independent set, and

so (4) implies $d_1 - a_1 = \cdots = d_k - a_k = -b_1 = \cdots = -b_\ell = 0$.

Since $d_1 = \cdots = d_k = 0$ and $d_1 - a_1 = \cdots = d_k - a_k = 0$, we have $a_1 = \cdots = a_k = 0$.