Exercises on Chapter 5

Beau De Clercq

November 2019

Question

Depict a GNBA G over the alphabet $\Sigma = 2^{\{a,b,c\}}$ such that $L_{\omega} = Words((\Box \diamondsuit a \to \Box \diamondsuit b) \land \neg a \land (\neg aWc))$

Answer

Question

Let $\psi = \Box(a \leftrightarrow \bigcirc \neg a)$ and $AP = \{a\}$.

- Show that ψ can be transformed into the following equivalent basic LTL formula $\varphi = \neg[\text{true} \cup (\neg(a \land \bigcirc \neg a) \land \neg(\neg a \land \neg \bigcirc \neg a))].$
- Compute all elementary sets with respect to $closure(\varphi)$.
- Construct the GNBA G_{φ} with $L_{\omega}(G_{\varphi}) = Words(\varphi)$. To that end:
 - Define its set of initial states and its acceptance component.
 - For each elementary set B, define $\delta(B, B \cap AP)$.

Answer

$$\begin{array}{ll}
5.17 & 0 \\
& = D((0 + 0 - 0 - 0)) \wedge (0 - 0 - 0) \\
& = D((-10 \times 0 - 0)) \wedge (-1(0 - 0) \times 0)) \\
& = -10 - ((-10 \times 0 - 0)) \wedge (-1(0 - 0) \times 0)) \\
& = -10 - ((-10 \times 0 - 0)) \wedge (-1(0 - 0) \times 0)) \\
& = -10 - ((-10 \times 0 - 0)) \wedge (-10 \times 0 - 0)) \\
& = -10 - (-10 \times 0 - 0) \wedge (-10 \times 0 - 0)) \\
& = -10 - (-10 \times 0 - 0) \wedge (-10 \times 0 - 0))
\end{array}$$

c)
$$Q = \{B_1, B_2, B_3, B_4, B_5, E_6\}$$
 $I = \{B_1, B_2, B_3, B_4, B_5, E_6\}$
 $J = \{B_1, A_2, B_3, B_5\}$
 $J = \{B_2, A_3, B_5\}$
 $J = \{B_3, B_6\}$
 $J = \{B_4, B_6\}$
 $J = \{B$

Question

Let $AP = \{a\}$ and $\varphi = (a \wedge \bigcirc a) \cup \neg a$ an LTL formula over AP.

- Compute all elementary sets with respect to φ .
- Construct the GNBA G_{φ} such that $L_{\omega}(G_{\varphi}) = Words(\varphi)$.

Answer

Question

We consider the LTL formula $\varphi = \Box(a \to (\neg b \cup (a \land b)))$ over the set $AP = \{a,b\}$ of atomic propositions and we want to check $TS \models \varphi$ for TS outlined below.

- To check $TS \models \varphi$, convert $\neg \varphi$ into an equivalent LTL formula ψ which is constructed according to the following grammar: $\phi ::= \text{true}|a|b|\phi \wedge \phi|\neg\phi|\bigcirc\phi|\phi \cup \phi$. Then construct $closure(\psi)$.
- Give the elementary sets w.r.t. $closure(\psi)!$
- Construct the GNBA G_{ψ} .
- Construct an NBA $A_{\neg \varphi}$ directly from $\neg \varphi$, i.e., without relying on G_{ψ} . (Four states suffice).
- Construct $TS \otimes A_{\neg \varphi}$.

Answer

Question

Which of the following LTL formulae φ_i are representable by a determinstic Büchi automaton?

$$\varphi_1 = \Box(a \to \Diamond b), \varphi_2 = \neg \varphi_1$$

Explain your answer.

Answer

Both formulae are representable by a DBA: both φ_1 and φ_2 have the same closure.

Question

Check for the following LTL formula whether they are (i) satisfiable, and/or (ii) valid:

- $\bullet \bigcirc \bigcirc a \implies \bigcirc a$
- $\bullet \bigcirc (a \lor \Diamond a) \implies \Diamond a$
- $\bullet \ \Box a \implies \neg \bigcirc (\neg a \land \Box \neg a)$
- $\bullet \ (\Box a) \cup (\Diamond b) \implies \Box (a \cup \Diamond b)$
- $\bullet \ \diamondsuit b \implies (a \cup b)$

Answer

• Both satisfiable and valid

• Both satisfiable and valid

 $\bullet\,$ Both satisfiable and valid

- $\bullet\,$ Both satisfiable and valid
- Both satisfiable and valid

