High-dimensional minimum variance portfolio estimation based on high frequency data **Journal of Econometrics (2020)**

Author: T. Tony Cai¹ Jianchang Hu² Yingying Li³ Xinghua Zheng⁴

January 10, 2023

¹Department of Statistics, The Wharton School, University of Pennsylvania

²Department of Statistics, University of Wisconsin, Madison

³Department of ISOM and Department of Finance, Hong Kong University of Science and Technology

⁴Department of ISOM, Hong Kong University of Science and Technology

- Background and Research Questions
- Estimation Methods and Asymptotic Properties
 - High-frequency Data Model
 - High-frequency Case with no Microstructure Noise
 - High-frequency Case with Microstructure Noise
 - Estimating the Minimum Risk
- Estimation with Factors
- Conclusions

Zhiming Read Papers January 10, 2023

Background

Estimation of MVP

We want to find out the estimation of high-dimensional MVP using high-frequency data, i.e., given p assets, we aim to find ω such that

$$\arg\min_{\omega} \boldsymbol{\omega}^T \boldsymbol{\Sigma} \boldsymbol{\omega}$$
 subject to $\boldsymbol{\omega}^T \mathbf{1} = 1$ (1)

where $\boldsymbol{\omega}=(\omega_1,\ldots,\omega_p)^T$ represents the weights put on different assets. And the optimal solution is given by

$$\omega_{opt} = \frac{\Sigma^{-1}1}{1^T \Sigma^{-1}1} \tag{2}$$

which also yields the minimum risk

$$R_{min} = \boldsymbol{\omega_{opt}^T \Sigma \omega_{opt}} = \frac{1}{\mathbf{1}^T \Sigma^{-1} \mathbf{1}}$$
 (3)

Zhiming Read Papers January 10, 2023 3 / 27

Background

Since we do not have true covariance, we use the sample covariance instead. This leads to several issues.

- The actual risk of the "plug-in" portfolio (the portfolio that uses the sample covariance) can be devastatingly higher than the theoretical minimum risk.
- The perceived risk can be lower than the theoretical minimum risk.

To solve these problems, Fan et al (2012, [3]) add a gross-exposure constraint

$$\underset{w}{\operatorname{arg\,min}} \boldsymbol{w}^{\top} \boldsymbol{\Sigma} \boldsymbol{w}$$
 subject to $\boldsymbol{w}^{\top} \mathbf{1} = 1$ and $\| \boldsymbol{w} \|_{1} \leq \lambda$ (4)

where $||w||_i = \sum_{i=1}^p |w_i|$ and λ is a chosen constant.

Zhiming Read Papers January 10, 2023

Background

Since the difference between the risk of an estimated portfolio and the minimum risk going to zero **may not be sufficient to guarantee** optimality. (under rather general assumptions, the minimum risk $R_{\min} = 1/\mathbf{1}^T \Sigma^{-1} \mathbf{1}$ may go to zero as the number of assets $p \to \infty$.

Based on this consideration, we turn to find \hat{w} which satisfies a stronger sense of consistency in that the ratio between the risk of the estimated portfolio and the minimum risk goes to 1, i.e.,

$$\frac{R(\hat{m{w}})}{R_{min}} \stackrel{p}{\longrightarrow} 1 \quad \text{as} \quad p \to \infty$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Zhiming Read Papers January 10, 2023 5 / 27

Research Questions

- What is the estimator of minimum variance portfolio that can accommodate stochastic volatility and market microstructure noise?
- What is the estimator of the minimum risk?

Zhiming Read Papers January 10, 2023 6 / 27

High-frequency Data Model

We assume that the latent p-dimensional log-price process (X_t) follows a diffusion model:

$$d\mathbf{X}_t = \boldsymbol{\mu}_t dt + \Theta_t d\mathbf{W}_t, \quad \text{for } t \ge 0$$
 (5)

where μ_t is the drift process, Θ_t is a $p \times p$ matrix-valued process called co-volatility process, and W_t is a p-dimensional Brownian motion.

Both μ_t and Θ_t are stochastic, càdlàg, and dependent on W_t , all defined on a common filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0})$

Zhiming Read Papers January 10, 2023 7 / 27 Let

$$oldsymbol{\Sigma}_t = oldsymbol{\Theta}_t oldsymbol{\Theta}_t^ op := \left(\sigma_t^{ij}
ight)$$

be the spot covariance matrix process. The ex-post integrated covariance (ICV) matrix over an integral, say [0,1], is

$$\mathbf{\Sigma}_{\mathrm{ICV}} = \mathbf{\Sigma}_{\mathrm{ICV},1} = \left(\sigma^{ij}\right) := \int_{0}^{1} \mathbf{\Sigma}_{t} dt$$

And in this slide, the inverse of $\Sigma_{\rm ICV}$ is denoted as $\Omega_{\rm ICV}$, i.e.,

$$\mathbf{\Omega}_{\mathrm{ICV}} := \mathbf{\Sigma}_{\mathrm{ICV}}^{-1}$$

Zhiming Read Papers January 10, 2023 8 / 27

High-frequency Data Model

 $\Sigma_{\rm ICV}$ is only measurable to \mathcal{F}_1 , and so is $R_{\rm min}$. So it is impossible to construct a portfolio that is measurable to \mathcal{F}_0 to achieve the minimum risk $R_{\rm min}$

The **practical implementation of MVP** relies on making forecasts of Σ_{ICV} based on historical data.

The simplest approach is to assume $\Sigma_{\text{ICV},\,t}\approx \Sigma_{\text{ICV},t+1}$, where $\Sigma_{\text{ICV},t}$ stands for the ICV matrix in period [t-1,t]. (The volatility process is often found to be nearly unit root, in which case the one-step ahead prediction is approximately the current value)

If we can construct a portfolio \boldsymbol{w} based on the observations during [t-1,t] that can approximately minimize the **ex-post** risk $\boldsymbol{w}^T \Sigma_{\mathsf{ICV},\mathsf{t}} \boldsymbol{w}$, then if we hold the portfolio during the next period [t,t+1], the actual risk is **still approximately minimized**.

Zhiming Read Papers January 10, 2023 9 / 27

Intuitive approach: We use the constrained ℓ_1 – minimization for inverse matrix estimation (CLIME, Cai et al, [2])(under i.i.d. observation setting) to estimate the MVP. Denote the covariance matrix as Σ . Let $\Omega := \Sigma^{-1}$ be the precision matrix. The CLIME estimator is defined as,

$$\widehat{\boldsymbol{\Omega}}_{\text{CLIME}} := \mathop{\arg\min}_{\Omega'} \left\| \boldsymbol{\Omega}' \right\|_1 \text{ subject to } \left\| \widehat{\boldsymbol{\Sigma}} \boldsymbol{\Omega}' - \mathbf{I} \right\|_{\infty} \le \lambda \tag{6}$$

where $\hat{\Sigma}$ is the sample covariance matrix. The λ is a tuning parameter and is usually chosen via cross-validation.

Zhiming Read Papers January 10, 2023 10 / 27

The CLIME method is designed for the following uniformity class of precision matrices. For any $0 \le q < 1, s_0 = s_0(p) < \infty$ and $M = M(p) < \infty$, let

$$\mathcal{U}(q, s_0, M) = \{ \mathbf{\Omega} = (\mathbf{\Omega}_{ij})_{p \times p} : \mathbf{\Omega} \text{ positive definite,}$$

$$\|\mathbf{\Omega}\|_{L_1} \le M, \max_{1 \le i \le p} \sum_{j=1}^p |\mathbf{\Omega}_{ij}|^q \le s_0 \}$$
(7)

When the observations are i.i.d. sub-Gaussian and Ω belongs to $\mathcal{U}(q,s_0(p),M(p))$, this method establishes consistency of $\hat{\Omega}_{\mathsf{CLIME}}$ when $M^{2-2q}s_0(\log p/n)^{(1-q)/2} \to 0$ holds.

However, in the high-frequency setting, the returns are not *i.i.d.*, so **the results above cannot apply**.

Zhiming Read Papers January 10, 2023 11/27

Sparsity Assumption

The sparsity assumption $\Omega = \Sigma^{-1} \in \mathcal{U}(q, s_0, M)$ (See Equation (7)) appears to be reasonable in financial applications. The following gives an example.

If the returns follow a conditional multivariate normal distribution matrix Σ , then the (i, j)-th element in Ω being 0 is equivalent to that the returns of the i-th and i-th assets are conditionally independent given the other asset returns. And for stocks in different sectors, many pairs might be conditionally independent or only weak dependent.

Zhiming Read Papers January 10, 2023 12/27

CLIME Method in the High-Frequency Setting

Our goal is to estimate $\Omega_{\text{ICV}} := \Sigma_{\text{ICV}}^{-1}$. And we use $\hat{\Sigma}$ in Equation (6). When the true log-price are observed, one of the most commonly used estimators for Σ_{ICV} is the realized covariance matrix (RCV).

For each asset i, the observations at stage n are $(x_{t^{i,n}}^{i})$, where $0 = t_0^{i,n} < t_1^{i,n} < \cdots < t_{N_i}^{i,n} = 1$ are the observation times. The ncharacterizes the observation frequency. As $n \to \infty$, $N_i \to \infty$. The synchronous observation case corresponds to

$$t_\ell^{i,n} \equiv t_\ell^n$$
 for all $i = 1, \dots, p$

which reduces to.

$$t_{\ell}^{i,n} = t_{\ell}^{n} = \ell/n, \ell = 0, 1, \dots, n$$
 (8)

Zhiming Read Papers January 10, 2023 13 / 27

The **resulting MVP estimator** is,

$$\widehat{w}_{\text{CLIME-SV}} = \frac{\widehat{\Omega}_{\text{CLIME-SV}} \mathbf{1}}{\mathbf{1}^{\top} \widehat{\Omega}_{\text{CLIME-SV}} \mathbf{1}} \tag{9}$$

which is associated with a risk of,

$$R_{\text{CLIME-SV}} = \widehat{\boldsymbol{w}}_{\text{CLIME-SV}}^{\top} \boldsymbol{\Sigma}_{\text{ICV}} \widehat{\boldsymbol{w}}_{\text{CLIME-SV}}$$

$$= \frac{\left(\widehat{\boldsymbol{\Omega}}_{\text{CLIME-SV}} \boldsymbol{1}\right)^{\top} \boldsymbol{\Sigma}_{\text{ICV}} \left(\widehat{\boldsymbol{\Omega}}_{\text{CLIME-SV}} \boldsymbol{1}\right)}{\left(\boldsymbol{1}^{\top} \widehat{\boldsymbol{\Omega}}_{\text{CLIME-SV}} \boldsymbol{1}\right)^{2}}$$
(10)

Zhiming Read Papers January 10, 2023 14 / 27

Induction of MVP Estimator in Equation (9)

In the synchronous observation (Equation 8), let

$$\Delta \boldsymbol{X}_{\ell} := \boldsymbol{X}_{t^n_{\ell}} - \boldsymbol{X}_{t^n_{\ell-1}}$$

be the log-return vector over the time period $[t_{\ell-1}^n, t_{\ell}^n]$. Then, the RCV matrix is defined as,

$$\widehat{\mathbf{\Sigma}}_{\mathrm{RCV}} = \sum_{\ell=1}^{n} \Delta \mathbf{X}_{\ell} \left(\Delta \mathbf{X}_{\ell} \right)^{\top}$$
(11)

We now can conduct the constrained ℓ_1 -minimization for inverse matrix estimation with stochastic volatility (CLIME-SV), $\Omega_{\text{CLIME-SV}}$,

$$\widehat{\boldsymbol{\Omega}}_{\mathrm{CLIME-SV}} := \mathop{\arg\min}_{\boldsymbol{\Omega'}} \left\| \boldsymbol{\Omega'} \right\|_{1} \text{ subject to } \left\| \widehat{\boldsymbol{\Sigma}}_{\mathrm{RCV}} \boldsymbol{\Omega'} - \mathbf{I} \right\|_{\infty} \leq \lambda \quad \text{(12)}$$

Zhiming Read Papers January 10, 2023 15 / 27

High-frequency Case with Microstructure Noise

However, in general, the observation prices are believed to be contaminated by microstructure noise. The true log-price $(X^i_{t^{i,n}_\ell})$, for each asset i, at stage n are

$$Y_{t_{\ell}^{i,n}}^{i} = X_{t_{\ell}^{i,n}}^{i} + \varepsilon_{\ell}^{i} \tag{13}$$

where the last term, ε_ℓ^i 's represent microstructure noise.

In this case, if we simply plug $(Y^i_{t^{i,n}_\ell})$ into the formula of RCV in Equation (11), the resulting estimator is not **consistent** even when the dimension p is fixed.

Zhiming Read Papers January 10, 2023 16/27

Consistent Estimators in the Univariate Case

- Two-scales realized volatility (TSRV, Zhang et al. (2005))
- Multi-scale realized volatility (MSRV, Zhang (2006))
- Pre-averaging estimator (PAV, Jacod et al. (2009), Podolskij and Vetter (2009) and Jacod et al. (2019))
- Realized kernels (RK, Barndorff-Nielsen et al. (2008))
- Quasi-maximum likelihood estimator (QMLE, Xiu (2010))
- Estimated-price realized volatility (ERV, Li et al. (2016))
- Unified volatility estimator (UV, Li et al. (2018))

Note: These estimators are **not consistent** in the high-dimensional setting.

In this paper, we choose to work with **PAV**, with the equidistant time setting (8). **Asynchronicity** can be dealt with by using existing data synchronization techniques.

Zhiming Read Papers January 10, 2023 17 / 27

Implementation of PAV Estimator

To implement PAV estimator, we fix a constant $\theta > 0$ and let $k_n = [\theta n^{1/2}]$ be the window length over which the averaging takes place. Define

$$\overline{\mathbf{Y}}_{k}^{n} = \frac{\sum_{i=k_{n}/2}^{k_{n}-1} \mathbf{Y}_{t_{k+i}} - \sum_{i=0}^{k_{n}/2-1} \mathbf{Y}_{t_{k+i}}}{k_{n}}$$

The PAV with weight function $g(x) = x \wedge (1-x)$ for $x \in (0,1)$ is defined as,

$$\widehat{\mathbf{\Sigma}}_{\text{PAV}} = \frac{12}{\theta\sqrt{n}} \sum_{k=0}^{n-k_n+1} \overline{\mathbf{Y}}_k^n \cdot \left(\overline{\mathbf{Y}}_k^n\right)^{\top} - \frac{6}{\theta^2 n} \operatorname{diag}\left(\sum_{k=1}^n \left(\Delta Y_{t_k}^i\right)^2\right)_{i=1,\dots,p} \tag{14}$$

We now define the **constrained** ℓ_1 -minimization for inverse matrix estimation with stochastic volatility and microstructure noise, $\widehat{\Omega}_{
m CLIME-SVMN}$, as

$$\widehat{\mathbf{\Omega}}_{\mathrm{CLIME-SVMN}} := \operatorname*{arg\,min}_{\mathbf{\Omega}'} \left\| \mathbf{\Omega}' \right\|_1 \text{ subject to } \left\| \widehat{\mathbf{\Sigma}}_{\mathrm{PAV}} \mathbf{\Omega}' - \mathbf{I} \right\|_{\infty} \le \lambda$$
 (15)

Zhiming Read Papers January 10, 2023 18 / 27

Minimum Risk with CLIME Based Estimators with Sparsity Assumption

Recall Equation (3), $R_{min} = \omega_{opt}^T \Sigma \omega_{opt} = \frac{1}{1^T \Sigma^{-1} 1}$. Our estimator under sparsity assumption with no microstructure noise is,

$$\widehat{R}_{\mathsf{CLIME-SV}} = \frac{1}{\mathbf{1}^{\top} \widehat{\Omega}_{\mathsf{CLIME-SV}} \mathbf{1}} \tag{16}$$

where $\widehat{\Omega}_{\text{CLIME-SV}}$ is given in Equation (12). If there's microstructure noise, we have the corresponding minimum risk,

$$\widehat{R}_{\mathsf{CLIME-SVMN}} = \frac{1}{\mathbf{1}^{\top} \widehat{\Omega}_{\mathsf{CLIME-SVMN}} \mathbf{1}}$$
 (17)

where $\widehat{\Omega}_{\mathsf{CLIME-SVMN}}$ is given in Equation (15)

Zhiming Read Papers January 10, 2023 19/27

Without Sparsity Assumption: Low-Frequency i.i.d. Returns

This estimator is hence more suitable for the **low-frequency setting** and can be used to estimate the minimum risk over a long time period.

Suppose we observe n i.i.d. returns X_1,\ldots,X_n (at low frequency). Let S be the sample covariance matrix, and $w_p=\frac{S^{-1}\mathbf{1}}{\mathbf{1}^TS^{-1}\mathbf{1}}$ be the "plug-in" portfolio. The corresponding perceived risk is $\hat{R_p}=w_p^TSw_p$.

We have the following results on the relationship between \hat{R}_p and the minimum risk R_{\min} based on which a **consistent estimator** of the minimum risk is constructed.

Zhiming Read Papers January 10, 2023 20 / 27

Relationship between $\hat{R_p}$ and R_{\min}

Suppose that the returns $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \Sigma)$. Suppose that both n and $p \to \infty$, in such a way that $p_n := p/n \to \rho \in (0,1)$. Then

$$\left| \frac{\widehat{R}_p}{R_{\min}} - (1 - \rho_n) \right| \xrightarrow{p} 0 \tag{18}$$

Therefore, if we define

$$\widehat{R}_{\min} = \frac{1}{1 - \rho_n} \widehat{R}_p \tag{19}$$

then, we have

$$\frac{\widehat{R}_{\min}}{R_{\min}} \xrightarrow{p} 1 \tag{20}$$

and furthermore,

$$\sqrt{n-p}\left(\frac{\widehat{R}_{\min}}{R_{\min}} - 1\right) \Rightarrow \mathcal{N}(0,2)$$
(21)

Zhiming Read Papers January 10, 2023 21 / 27

Interpretation of above Relationship

Convergence (18) explains why the perceived risk is systematically lower than the minimum risk.

Convergence (21) shows the "blessing" of dimensionality: the higher the dimension, the more accurate the estimation.

In Basak et al (2009, [1]), it is shown that the risk of the "plug-in" portfolio is on average a higher-than-one multiple of the minimum risk. Since n and $p\to\infty$ and $p_n:=p/n\to\rho\in(0,1)$ their result can be strengthened to be that the risk of the "plug-in" portfolio is, with probability approaching one, a larger-than-one multiple of the minimum risk.

Using the results of Basak et al, we can show that,

$$\frac{R(\boldsymbol{w}_p)}{R_{\min}} \xrightarrow{p} \frac{1}{1-\rho} \tag{22}$$

where $R(\boldsymbol{w}_p) = \boldsymbol{w}_p^T \boldsymbol{\Sigma} \boldsymbol{w}_p$ is the risk of the "plug-in" portfolio.

Zhiming Read Papers January 10, 2023 22 / 27

Let $r_k = (r_{k,1}, \dots, r_{k,p})^T, k = 1, \dots, n$ be asset returns, which can either be high-frequency or low-frequency returns. Assume r_k admits a factor structure as follows.

$$\mathbf{r}_k = \alpha + \Gamma \mathbf{f}_k + \mathbf{z}_k \tag{23}$$

where α is a $p \times 1$ unknown vector, Γ is a $p \times m$ unknown matrix, $\mathbf{f}_k = (f_{k,1}, \dots, f_{k,m})^T$ are factor returns, and \mathbf{z}_k is $p \times 1$ random vector with mean 0 and covariance matrix $\mathbf{\Sigma}_{k,0} = (\sigma_{i,i}^{k,0})$

We assume that, for each k, f_k 's and z_k 's are independent, and the pairs (r_k, f_k) are mutually independent. Let $\Sigma_{r,k} = \mathsf{Cov}(r_k)$ and $\Sigma_{f,k} = \mathsf{Cov}(f_k)$, and let them be dependent on the time index k, to accommodate the stochastic (co-)volatility.

It's impossible to estimate individual $\Sigma_{r,k}$ and $\Sigma_{f,k}$, but it's possible to estimate their means $\Sigma_{\mathbf{r}} = \frac{1}{n} \sum_{k=1}^{n} \Sigma_{\mathbf{r},k}, \Sigma_{\mathbf{f}} = \frac{1}{n} \sum_{k=1}^{n} \Sigma_{\mathbf{f},k}$, and $\Sigma_{0} = \frac{1}{n} \sum_{k=1}^{n} \Sigma_{k,0}$, and the corresponding $\Omega_{0} = \sum_{0}^{n-1} \Sigma_{0}$

> **Zhiming** Read Papers January 10, 2023 23 / 27

Target: Estimate the precision matrix $\Omega_r := \Sigma_r^{-1}$

We define the **constrained** ℓ_1 -minimization for inverse matrix estimation adjusted for factor (CLIME-F), $\hat{\Omega}_{CLIMF-F}$, as

$$\widehat{\mathbf{\Omega}}_{\mathsf{CLIME-F}} = \widehat{\mathbf{\Omega}}_0 - \widehat{\mathbf{\Omega}}_0 \widehat{\boldsymbol{\Gamma}} \left(\mathbf{S}_{\mathbf{f}}^{-1} + \widehat{\boldsymbol{\Gamma}}^{\top} \widehat{\mathbf{\Omega}} \widehat{\boldsymbol{0}} \widehat{\boldsymbol{\Gamma}} \right)^{-1} \widehat{\boldsymbol{\Gamma}}^{\top} \widehat{\mathbf{\Omega}}_0$$
 (24)

where S_f is the sample covariance of f_k . And also, the **MVP estimator** is

$$\widehat{w}_{\mathrm{CLIME-F}} = \frac{\widehat{\Omega}_{\mathrm{CLIME-F}} \mathbf{1}}{\mathbf{1}^{\top} \widehat{\Omega}_{\mathrm{CLIME-F}} \mathbf{1}}$$
 (25)

Zhiming Read Papers January 10, 2023 24 / 27

Induction of CLIME Method in Factor Structure

To estimate the model, we calculate the least square estimators of α and Γ , denoted by $\hat{\alpha}$ and $\hat{\Gamma}$. The residuals are $e_k := r_k - \hat{\alpha} - \hat{\Gamma} f_k$. Then we have the CLIME estimator of Ω_0 , denoted by $\hat{\Omega_0}$ based on residuals.

$$\widehat{\mathbf{\Omega}}_0 := \underset{\Omega'}{\operatorname{arg\,min}} \|\mathbf{\Omega}'\|_1 \text{ subject to } \|\mathbf{S}_{\mathbf{e}}\mathbf{\Omega}' - \mathbf{I}\|_{\infty} \le \lambda \tag{26}$$

where S_e is the sample covariance matrix of residuals. Note that, $\Sigma_{\mathbf{r}} = \Gamma \Sigma_{\mathbf{f}} \Gamma^{\top} + \Sigma_{0}$, we have.

$$\mathbf{\Omega_r} = \left(\Gamma \mathbf{\Sigma_f} \Gamma^\top + \mathbf{\Sigma_0}\right)^{-1} = \mathbf{\Omega_0} - \mathbf{\Omega_0} \Gamma \left(\mathbf{\Sigma_f}^{-1} + \Gamma^\top \mathbf{\Omega_0} \Gamma\right)^{-1} \Gamma^\top \mathbf{\Omega_0} \quad (27)$$

Therefore, we can define the CLIME-F in (24)

Zhiming Read Papers January 10, 2023 25 / 27

Conclusions

Conclusions

- Propose estimators of the MVP in the high-dimensional setting based on high-frequency data.
- Propose consistent estimators of minimum risk with and without sparsity assumption

Note: For the details of simulation studies and empirical studies, please refer to Sections (4) and (5) in High-dimensional minimum variance portfolio estimation based on high-frequency data.

Zhiming Read Papers January 10, 2023 26 / 27

References I

- [1] Gopal K Basak, Ravi Jagannathan, and Tongshu Ma. "Jackknife estimator for tracking error variance of optimal portfolios". In: *Management Science* 55.6 (2009), pp. 990–1002.
- [2] Tony Cai, Weidong Liu, and Xi Luo. "A constrained 1 minimization approach to sparse precision matrix estimation". In: *Journal of the American Statistical Association* 106.494 (2011), pp. 594–607.
- [3] Jianqing Fan, Jingjin Zhang, and Ke Yu. "Vast portfolio selection with gross-exposure constraints". In: *Journal of the American Statistical Association* 107.498 (2012), pp. 592–606.

ロト 4 個 ト 4 豆 ト 4 豆 ト 豆 り 9 0 0

Zhiming Read Papers January 10, 2023 27 / 27