

USCS3P01: U	SCS303-Operating System(OS) Practical-03	Date: 28/7/2021
Roun	d-Robin Scheduling algorithm	
Contents		
USCS3P01: USCS303-Operating Sys	stem(OS) Practical-03	
Aim	1	
Algorithm	2	
Flow Chart	3	
Example	4	
Gnatt Chart	5	
Implementation	6	
Input	7	
Output	8	
Sample Output	9	

Aim: Round-Robin Scheduling algorithm **Algorithm:**

Content:

CPU scheduling algorithm where each process is assigned a fixed time slot in a cyclic way.

Process:

Input the number of process and time quantum or slice required .

Calculate the finish time, Turn around time and waiting time for each process.

Calculate Average Waiting Time and Average Turn Around Time required by CPU to scheduling given set Of process using RR.

Prior Knowledge:

Basic of java programming language, Cyclic queue traveling, average.

Round-robin (RR) scheduling algorithm is mainly designed for time -sharing system.

This algorithm is similar to FCFS scheduling, but in round robin scheduling, preemption is added which Enables the system to switch between processes.

- **Step 1:**Input the number of process and time quanta or time slice required to be scheduling using RR, burst time for each process.
- **Step 2:** Choose the first process in the ready queue, set a timer to interrupt it after quantum and dispatches it. Check if any other process has arrived. if a process request arrives during the quantum time in which another process is executed then add the new process to the ready queue.
- Step 3: After the quantum time has passed, check for any processes in the ready queue . if the ready queue is empty

Then continue the current process . if the queue not empty and the current process is not complete , then add

Add the current process to the end of the queue.

- Step 4: Take the first process from the ready queue and start executing it. Calculate the Turn Around Time and
- Wating Time for each process using RR.
- **Step 5:** Repeat all step above from Step 2 to Step 4.
- **Step 6:** If the process is complete and ready queue is empty then the task is complete.
- **Step 7:** Calculate the Average Waiting Time and Average Turn Around Time.

Step 8:Stop.

Example 1: Consider the following example containing three processes arriving at time t=0 ms.

Process ID	Burst Time
P0	24
P1	3
P2	3

Assume time Quanta: 4 ms.

Step 1: Consider the time Quanta / time slice = 4ms.

Step 2: Following show the scheduling and execution of process.

Step 2.1: P0 process arrive at 0 with 24 me as the burst time which is greater than time quanta = 4 ms. So p0 execute for 4 ms and goes in waiting queue.

System Time	0	
•		
Process scheduling	P0	
Damaining Time	24-4=20	
Remaining Time	24-4=20	
Waiting Time	0-0=0	
Turn Around Time	0+4=4	

Step 2.2: Next P1 process execute for 3 ms which is greater than quanta time. So P1 executes and get terminated.

System Time	7
Process scheduling	P0,P1
Remaining Time	3-4=-1=0
Waiting Time	4-0=4
Turn Around Time	4+3=7

Step 2.3: Next P2 process execute for 3 ms which is greater than quanta time. So P2 execute and gets terminated .

System Time	7
Process scheduling	P0,P1,P2
Remaining Time	3-4=-1=0
Waiting Time	7-0=7

Turn Around Time	7+3=10	

Step 2.4: Now p0 turn comes again and it's the only process for execute so for 4 ms quanta it gets executed.

System Time	10
System Time	10
Process scheduling	P0,P1,P2,P0
1 Tocos senedumg	10,11,12,10
finish Time	20-4=16
	10.1.
Waiting Time	10-4=7
Turn Around Time	10+4=14
Turn Around Time	10+4-14

Step 2.5: Again p0 continue to execute for next 4 ms. Waiting for p0 will be zero.

System Time	14
Process scheduling	P0,P1,P2,P0,P0
Finish Time	16-4=12
Waiting Time	0
Turn Around Time	14+4=18

Step 2.6: P0 continue execute for next 4 ms.				
System Time	18			
Process scheduling	P0,P1,P2,P0,P0,P0			
Finish Time	12-4=8			
Waiting Time	0			
Turn Around Time	18+4=22			

Step 2.7: P0 continue to execute for next 4 ms.

System Time	22
Process scheduling	P0,P1,P2,P0,P0,P0,P0
Finish Time	8-4=4
Waiting Time	0
Turn Around Time	22+4=26

Step	2.8:	P0	continue	to	executed	for	next 4 m	ıs.
------	------	----	----------	----	----------	-----	----------	-----

System Time	26
Process scheduling	P0,P1,P2,P0,P0,P0,P0,P0
Finish Time	4-4=0
Waiting Time	0
Turn Around Time	26+4=30

Step 3: Calculate Average waiting Time and Average Turn Around Time.

Average Waiting time =6+4+7/3 =17/3 = 5.666667

Average turn around time=30+7+10/3 = 47/3 = 15.666667

Process Id	Burst time	Turn Around time	Waiting Time	
P0	24	30-0=30	30-24=6	
P1	3	4+3=7	7-3=4	
P2	3	7+3=10	10-3=7	
Average		15.666667	5.666667	
Process Id	Burst time	Turn Around time 30-0=30	Waiting Time 30-24=6	
D()	24	30-0=30	30-24=6	
P0				
P1	3	4+3=7	7-3=4	
	3	7+3=10	7-3=4	
P1				
P1 P2 Average	3	7+3=10	10-3=7 5.666667	

Example 2: Consider the following example containing three process arrive at same time having slice 1ms.

Process ID	Burst Time
P0	2
P1	1
P2	6

Step 4 : After scheduling of all provided processes.

Process Id	Burst time	Turn Around time	Waiting Time
P0	2	4	2
P1	1	2	1
P2	6	9	3
Average		5.000000	2.000000

Gantt chart			
Process Id	Burst time	Turn Around time	Waiting Time
P0	24	30-0=30	30-24=6
P1	3	4+3=7	7-3=4
P2	3	7+3=10	10-3=7
Average		15.666667	5.666667
0 1 2 2 4 5 6 7 8	0 10 11 12 13 14 15	16 17 19 10 20 21 22	23 24 25 26 27 28 29 30
PO P1	P2 P0	P0 P0	PO PO

Example 3: Consider the following example containing three process arrive at same time . Time quanta =3.

Process ID	Burst Time
P0	7
P1	3
P2	2
Р3	10
P4	8

Step 4: After scheduling of all provided processes.

Process ID	Burst Time	Waiting Time	Turn Around Time
PO	7	17	24
P1	3	3	6
P2	2	6	8
Р3	10	20	30
P4	8	21	29
average		13.400000	19.400000

Gantt chart			
Process ID	Burst Time	Waiting Time	Turn Around Time
P0	7	17	24
P1	3	3	6
P2	2	6	8
P3	10	20	30
P4	8	21	29
average		13.400000	19.400000

P0	P1	P2	Р3	P4	P0	P0	P0	P0	P0

```
Implementation:
//Name: Navjit Nair
//Batch: b2
// PRN: 2020016400786916
//Date: 28/7/2021
//Prac-03: Round-Robin Scheduling Algorithm
import java.util.Scanner;
class P3_RR_PD
public static void main(String args[]){
Scanner input=new Scanner(System.in);
int i,j,k,q,sum=0;
System.out.print("Enter number of
process:"); int n=input.nextInt(); int
burstTime[]=new int[n]; int
waitingTime[]=new int[n]; int
turnAroundTime[]=new int[n]; int a[]=new
int[n];
System.out.println("Enter the burst time of each process: ");
for(i=0;i< n;i++){
System.out.print("enter the burst time for process-p"+(i+1)+":");
burstTime[i]=input.nextInt();
a[i]=burstTime[i];
}
System.out.print("Enter time quantum: ");
```

```
q=input.nextInt();
for(i=0;i<n;i++)
waitingTime[i]=0; int timer=0;
do\{ for(i=0;i< n;i++) \{
if(burstTime[i]>q){ timer +=q;
burstTime[i] -=q;
for(j=0;j< n;j++)\{if((j!=i)\&\&
(burstTime[j]!=0))
waiting Time [j] += q;
} } else{ timer
+=burstTime[i];
for(j=0;j< n;j++) \{ if((j!=i) \&\&
(burstTime[j]!=0))
waitingTime[j]
+=burstTime[i];
burstTime[i]=0;
}
sum=0; for(k=0;k <
n;k++) sum
+=burstTime[k];
}while(sum!=0);
for(i=0;i<n;i++)
turnAroundTime[i]=waitingTime[i]+a[i]; float total=0;
for(int m: waitingTime) { total += m;
}
float averageWaitingTime=total/n;
total=0;
```

```
for(int m:turnAroundTime){
total +=m;
}
float averageTurnAroundTime=total/n;
System.out.println(" RR Algorithm:");
System.out.format ("\%20s\%20s\%20s\%20s\n", "ProcessId", "BurstTime"
,"WaitingTime","TurnAroundTime");
for( i=0;i<n;i++){
System.out.format("\%20s\%20d\%20d\%20d\n", "p"+(i+1), a[i], waitingTime[i], turnAroundTime[i]);
System.out.format("%40s%20f%20f\n",
"Average", averageWaitingTime, averageTurnAroundTime);
}
```

Input:

```
C:\Users\SD CONSULTANTS\OneDrive\Desktop>java P3_RR_PD.java
Enter number of process:
Enter the burst time of each process:
enter the burst time for process-p1:24
enter the burst time for process-p2:3
enter the burst time for process-p3:3
Enter time quantum: 4
PR Algorithm:
```

Output:

```
RR Algorithm:

ProcessId BurstTime WaitingTime TurnAroundTime

p1 24 6 30

p2 3 4 7

p3 3 7 10

Average 5.666667 15.666667

C:\Users\SD CONSULTANTS\OneDrive\Desktop>
```

Sample output:

Input: C:\Users\SD CONSULTANTS\OneDrive\Desktop>java P3_RR_PD.java Enter number of process:3 Enter the burst time of each process: enter the burst time for process-p1:2 enter the burst time for process-p2:1 enter the burst time for process-p3:6 Enter time quantum: 1 RR Algorithm:

Output:

2	2	4	
1	1	2	
6	3	9	
erage	2.000000	5.000000	
			6 3 9

Sample output:

Name: Navjit Nair Batch:b2

Input: :\Users\SD CONSULTANTS\OneDrive\Desktop>java P3_RR_PD.java C:\Users\SD CONSULTANTS\OneDrive\Deskto Enter number of process:5 Enter the burst time of each process: enter the burst time for process-p1:7 enter the burst time for process-p2:3 enter the burst time for process-p3:2 enter the burst time for process-p4:10 enter the burst time for process-p5:8 Enter time quantum: 3 **Output:** BurstTime WaitingTime TurnAroundTime p1 p2 p3 p4 p5 :\Users\SD CONSULTANTS\OneDrive\Desktop>_ **Sample output:**