Evolutionäre Verfahren

Sudoku

Marius Huke

TU Ilmenau

Gliederung

- 1. Allgemeines
- 2. Kodierung
- 3. Initialisierung
- 4. Fitnessfunktion
- 5. Selektionsmethode
- 6. Mutation
- 7. Crossover
- 8. Zusammensetzung
- 9. Auswertung

Allgemeines

	6		2		9			
				3			1	
1			6					9
4	2		5				9	
		5	3		2	8	6	
	8	3	1				2	4
8	7		9		6		3	5
3	4			5		2	7	
2		6		7	3			1

- 9x9 Gitter mit Zahlen von 1 bis 9
- leere Felder so ausfüllen, dass jede Zahl in jeder Zeile, jeder Spalte und jedem 3x3-Block genau
 1-mal vorkommt
- verschiedene Schwierigkeitsgrade in Abhängigkeit von Anzahl gegebener Felder
- weitere Varianten wie z.B. 25x25
- geschrieben in C++ und Python

Kodierung

- Verwendung von shared_ptr
- leere Felder = 0
- Reihenrepräsentation \rightarrow 1D-Array
- Gitterrepräsentation
 → 2D-Array

Initialisierung

- zufällige Initialisierung leerer Felder
- einfache Methode: keine doppelten in Blöcken
- intelligente Initialisierung: möglichst keine doppelten in Zeilen

Fitnessberechnung

9(2)	6(1)	3(1)	2	1	9	2	4	6
5(1)	2(1)	7(1)	8	3	5	7	1	3
1(0)	8(2)	4(1)	6	4	7	8	5	9
4	2	1	5	4	9	1	9	5
6	7	5	3	6	2	8	6	3
9	8	3	1	7	8	7	2	4
8	7	1	9	8	6	4	3	5
3	4	5	4	5	2	2	7	8
2	9	6	1	7	3	6	9	1

- Berechnen der individuellen Kollisionen
- Anlegen eines
 "Fitness-Sudokus"
 zur Speicherung der
 Werte → Mutation
 (s. Block 0)
- Kollisionszahl als Fitnesswert (=86)
- 0 als Idealwert entspricht gelöstem Sudoku

Selektion

Elitismus:

- Wahl der besten
 x-Prozent der Individuen
- Vorteil: schnelles
 Erreichen des (lokalen)
 Minimums
- Nachteil: eventuell globales Minimum schwerer zu erreichen

Glücksradauswahl (universelles Stitchprobenziehen):

- Skalierung der Fitness, sodass die Summe der Fitnesswerte 1 ergibt
- hintereinander reihen der Individuen mit ihren Fitnesswerten
- Auswahl von Individuen in gleichmäßigen Abständen (angepasst an Selektionsrate)
- Vorteil: höhere Diversität
- Nachteil: langsamere Konvergenz

Mutation

- Ausführung blockweise
- gegebene Felder werden ignoriert
- Auswählen von Kollisionszellen (beliebige Chance für andere Zellen)
- zufälliges paarweises Austauschen der gewählten Zellen

2-Punkt-Crossover

Diagonales-Crossover

9	6	3	2	1	9	2	4	6		2	6	9	2	1	9	2	3	4		5	6	7	2	1	9	2	8	5
5	2	7	8	3	5	7	1	3		7	3	5	7	3	5	6	1	7		9	2	8	7	3	5	4	1	3
1	8	4	6	4	7	8	5	9		1	4	8	6	4	6	8	5	9		1	4	3	6	8	4	7	6	9
4	2	1	5	4	9	1	9	5		4	2	1	5	7	6	1	9	5		4	2	9	5	8	9	1	9	7
6	7	5	3	6	2	8	6	3		3	9	5	3	4	2	8	6	3		7	1	5	3	4	2	8	6	3
9	8	3	1	7	8	7	2	4		7	8	6	1	9	8	7	2	4		3	8	6	1	7	6	5	2	4
8	7	1	9	8	6	4	3	5		8	7	1	9	4	6	8	3	5		8	7	1	9	8	6	9	3	5
3	4	5	4	5	2	2	7	8		3	4	5	2	5	8	2	7	9		3	4	9	4	5	1	2	7	8
2	9	6	1	7	3	6	9	1		2	9	6	1	7	3	4	6	1		2	5	6	2	7	3	4	6	1
9	6	3	2	1	9	2	4	6	ľ	2	6	9	2	1	9	2	3	4	ľ	5	6	7	2	1	9	2	8	5
5	2	7	8	3	5	7	1	3		7	3	5	7	3	5	6	1	7		9	2	8	7	3	5	4	1	3
1	8	4	6	4	7	8	5	9		1	4	8	6	4	6	8	5	9		1	4	3	6	8	4	7	6	9
4	2	1	5	7	6	1	9	5		4	2	9	5	8	9	1	9	7		4	2	1	5	4	9	1	9	5
3	9	5	3	4	2	8	6	3		7	1	5	3	4	2	8	6	3		6	7	5	3	6	2	8	6	3
7	8	6	1	9	8	7	2	4		3	8	6	1	7	6	5	2	4		9	8	3	1	7	8	7	2	4
8	7	1	9	8	6	9	3	5		8	7	1	9	8	6	4	3	5		8	7	1	9	4	6	8	3	5
3	4	9	4	5	1	2	7	8		3	4	5	4	5	2	2	7	8		3	4	5	2	5	8	2	7	9
2	5	6	2	7	3	4	6	1		2	9	6	1	7	3	6	9	1		2	9	6	1	7	3	4	6	1

Zusammensetzung

beste Zusammensetzung (empirisch):

- 1. Standard-Initialisierung (effizienter)
- 2. Fitnessberechnung
- 3. Selektion (20%)
- 4. Mutation $(\frac{1}{9}$ Wahrscheinlichkeit für nicht kollidierende Felder)
- 5. diagonales Crossover (größere Diversität)

Abbruchkriterium: 25 Generation ohne Verbesserung des Fitnesswertes

Auswertung

Test auf 40 Sudokus (10 aus jeder Schwierigkeitsstufe (Leicht, Mittel, Schwer, Extrem)):

Populationsgröße 100:

Schwierigkeit	gelöst (%)	durchschnittliche	durchschnittliche	durchschnittliche			
		Zeit (ms)	Generationen	Zeit(Abbruch) (ms)			
Leicht	100	1102	7.2	-			
Mittel	60	2721	18.8	6381			
Schwer	0	-	32.3	9412			
Experte	0	-	33.4	9583			

Populationsgröße 500:

Schwierigkeit	gelöst (%)	durchschnittliche	durchschnittliche	durchschnittliche				
		Zeit (ms)	Generationen	Zeit(Abbruch) (ms)				
Leicht	100	4662	5.6	-				
Mittel	90	13222	11	35048				
Schwer	50	25979	32,4	53385				
Experte	0	-	40.1	51216				

Auswertung

Populationsgröße 1000:

Schwierigkeit	gelöst (%)	durchschnittliche	durchschnittliche	durchschnittliche			
		Zeit (ms)	Generationen	Zeit(Abbruch) (ms)			
Leicht	100	9208	5.3	-			
Mittel	100	24384	14.8	-			
Schwer	60	43039	25.5	87460			
Experte	20	91698	54,5	123294			