

РЕГУЛИРОВАНИЕ БПЛА

РЕГИСТРАЦИЯ

Постановление Правительства РФ от 25 мая 2019 года № 658.

Дроны от 150 гр. до 30 нужно прислать номер дрона (для сборного - придумать) и его фото.

https://www.gosuslugi.ru/405742

УПРАВЛЕНИЕ

Лицензия пилота на управление и сертификат обучения

НЕ НУЖНЫ

Федеральным агентством воздушного транспорта рассмотрено Ваше обращение от 01.04.2021 о намерении проведения воздушной съемки е квадроконтера на территории города Москвы.

В рамках установленной компетенции сообщаем, что в настоящее время нормативными правовыми актами Российской Федерации не предусмотрено получение сертификата эксплуатанта и свидетельства внешнего пилота физическими лицами для управления беспилотными гражданскими воздушными судами (далее - БВС) с максимальной взлетной массой от 0,25 до 30 кг.

https://habr.com/ru/post/599399/

ПОЛЕТЫ ДО 150 М ВЫСОТОЙ

- Высота до 150 м.
- •Светлое время суток и в пределах видимости БПЛА
- •Вне запретных зон fpln.ru
- •Вне населенных пунктов

РАЗРЕШЕНИЕ НЕ НУЖНО

•В населенных пунктах нужно разрешние администрации, для которого нужно предоставить страховку.

РАЗРЕШЕНИЕ НУЖНО

- •Полеты выше 150м
- •В запрещенных зонах

Получение временного режима для "единоличного использования" в центре Единой системы ОрВД

РАЗРЕШЕНИЕ НА СЪЕМКУ

Нужно получать в минобороне, ФСБ и т.д.

ШТРАФЫ

Несоблюдение правил использовани БПЛА, ст. 11.4 КоАП РФ:

- •20-50 тысяч рублей для граждан;
- •50-150 тысяч рублей для должностных лиц;
- •250-500 тысяч рублей для организаций.

Нарушение право неприкосновенности личной жизни, ст. 137 УК РФ:

штраф до 200 тысяч рублей или лишение свободы сроком до 24 месяцев

РАДИО

РАЗРЕШЕННЫЕ ЧАСТОТЫ

Решение ГКРЧ №07-20-03-001 от 7 мая 2007 года «О выделении полос радиочастот устройствам малого радиуса действия»

Частота, МГц	Мощность	Регистрация	Назначение
26,957-27,283	10мВт		Управление моделями
28,0-28,2, 40,66-40,7 (усил.антенны ЗДб)	1Вт		Управление моделями
40,66-40,70 (усил.антенны ЗДб)	20мВт		Не спецаилизир.уст-ва
433,075-434,79	20мВт		Не спецаилизир.уст-ва
459 - 460	31мВт	Требуется	Не спецаилизир.уст-ва

РАЗРЕШЕННЫЕ ЧАСТОТЫ

Частота, МГц	Мощность	Регистрация	Назначение
864–865, 866–868, 868,7–869,2	25 мВт		Устройства интернета вещей» и сетей транспортной телематики с 1.12.2020 только производства РФ
864-865, 868,7-869,2	25 мВт		Неспециализир.уст-ва
2400 (2400-2483,5)	100 мВт		Устройства малого радиуса действия для передачи данных (Wi-Fi), вне помещений антенна до 10м
5725-5875	25 мВт		Не спецаилизир.уст-ва, антена не выше 5м
5795-5815	200мВт	Требуется	Телематические уст-ва на транспорте
5150-5350	100 мВт		Устройства малого радиуса действия для передачи данных в помещениях
5650-5825	100 мВт		На борут воздуш.судов выше Зкм

КАК РАБОТАЕТ РАДИОКАНАЛ?

Потери передачи сигнала L

$$L = S_{\rm np} \frac{G_{\rm nep}}{4\pi r^2}$$

Где:

- Gпер усиление антенны (направленной)
- Sпр площадь приема антены
- r расстояние от передатчика

Жутяев С.Г. Любительсткая радиостанция УКВ

ЧАСТОТА, ДЛИНА ВОЛНЫ, МОДУЛЯЦИЯ

МОДУЛЯЦИЯ ЦИФРОВОГО СИГНАЛА

Амплитудная, частотная и фазовая модуляции дискретного сигнала

ГАРМОНИКИ

Кратны основной частоте

Частота 144, гармоники:

•1я 288Мгц

•2я 432Мгц

•3я 576Мгц

•4я 720Мгц

•5я 864Мгц

.6я 1008Мгц

.7я 1152Мгц

Первая гармоника

Вторая гармоника

Третья гармоника

...

Итоговая форма волны

РАЗМЕР АНТЕННЫ И ДЛИНА ВОЛНЫ

НАПРАВЛЕННАЯ И НЕНАПРАВЛЕННАЯ АНТЕННА

Диаграмма направленности

Отличаются коэффициентом усиления — во сколько раз нужно увеличить мощность у не направленной антенны, чтобы получить сигнал той же мощности

ПРИМЕР УКВ АНТЕННЫ ДЛЯ СВЯЗИ ЧЕРЕЗ ЛУНУ

432 Мгц – 128 антен, нужно 25Вт для связи

ПРИМЕНЕНИЕ И ЗАДАЧИ МАССОВОСТИ ИСПОЛЬЗОВАНИЯ

ДРОН — ЭТО НОСИТЕЛЬ

Оснащение дрона:

- •Видео и датчики
- •Крепление для перевозки груза
- •Сброс
- •Распыление
- •Устройства: радиоретранслятор, освещение, съем информации...

ПРИМЕНЕНИЕ

	Видео	Грузовой подвес	Распыление	Сброс	Подвес устройств
Аэрофотосъемка, картография и топографическая съемка	Привязка	✓			
Сельское хозяйство	Распозна вание	✓	✓		✓
Поисково-спасательные работы	Распозна вание			/	/
Обследование инфраструктуры	Распозна вание				
Экологический мониторинг	Распозна вание				
Доставка	Распозна вание зоны	\		/	

ПРИЧИНЫ ПОПУЛЯРНОСТИ

Дешевый носитель (час):

- •«Ан-2» ~30-35 т.р.
- •«Ми-8» ~80-100 т.р.
- •Cамолетный БПЛА 10-30кг ~5-10 т.р.
- •Коптер (без оператора) 0,05-1 т.р.

СЕБЕСТОИМОСТЬ ЧАСА РАБОТЫ 3 КГ КОПТЕРА БЕЗ ОПЕРАТОРА

Расходные материалы на 500 часов работы (500 циклов зарядки 3х аккумуляторов по 20 мин.):

- •Комплект двигателей x1 3 т.р.
- •Аккумулятор x3 9 т.р.
- •Пропеллеры x10 3 т.р.
- •Электричество 500x0.25кВт x 6 руб. = 0.75 т.р.
- •Остальное оборудование, приведенная с 5 тыс. часов к 500 часам стоимость 40 тыс.руб. -> 4 тыс.руб.

19,75 тыс.руб. за 500 часов = 39.5 руб./час

УДЕШЕВЛЕНИЕ — СНИЖЕНИЕ РОЛИ ОПЕРАТОРА

ЗАДАЧИ ИЗ-ЗА МАССОВОГО ИСПОЛЬЗОВАНИЯ

- •Управление трафиком и контроль
- •Противодействие нарушениям и безопасность
- •Автоматическая дозарядка/заправка
- •Обслуживание/ремонт/запчасти
- •Обучение
- •Страхование

СИЛА УДАРА ДРОНА

```
F = m*V/t, m = F/g
```

•2кг * 50км/ч / (0.05 с * 3,6) = 544 Ньютон = 56 кг

•2кг *100км/ч / (0.05 с * 3,6) = 1110 Ньютон = 112 кг

•5кг * 50км/ч / (0.05 c * 3.6) = 1388 Ньютон = 140 кг

•5кг *100км/ч / (0.05 с * 3,6) = 2776 Ньютон = 280 кг

Удар Тайсона 800 кг, среднего боксера 200 кг.

ПЕЛЕНГАЦИЯ ДРОНА

Высота 3 км					
Высота 1,5 км					
Характеристика	Радиочастотное обнаружение (сканирование радиоэфира)	Радиолокационные станции (эффект Доплера)	Лидар (лазерный радар)	Визуальное обнаружение (видеоаналитика)	Обнаружение по звуку (аудиоаналитика)
Дальность	1,5 км	3 км	до 400 м	1,2 км	100 м
Достоинства	Зона обнаружения купол	Возможность обнаружения дронов в режиме радиомолчания			
Недостатки	Невозможность обнаружения дронов в	Угол 60 градусов, уязвимы для	Уязвимы для всех	Критически малая дальность и высота	Уязвимы для всех

https://www.electronika.ru/upload/medialibrary/fce/fce796f9baf6da23bdcb0b4978c08628.pdf

Обнаружение дронов летящих на высоте от 1,5 км		•	×	×	×
Одновременное обнаружение нескольких дронов	~	~	V	×	~
Помехоустойчивость к птицам	*	×	•	•	~
Устойчивость к другим помехам	*	~	~	•	×
Автоматическое распознавание цели дрон/птица	✓	•	~	•	~
Возможность автоматической нейтрализации дронов без визуальной верификации оператором	~	×	×	×	×
Автоматическая классификация типа/модели дрона для выбора наилучшей тактики нейтрализации	~	×	×	•	•
Определение координат дрона с целеуказанием для камеры и средств нейтрализации		~	~	•	×
Определение координат пилота	•	×	×	×	×
Выявление дрона в режиме радиомолчания	×	~	~	~	~
Обнаружение ночью	~	~	*	(6)	V
Отсутствие радиоизлучения и необходимости проверки на электромагнитную совместимость	~	×	~	✓	~
У Выполняется Выполн	Выполняется с ограничениями		×	Не выполняется	
	https://www.electr	ronika.ru/upload/	medialibrary/fce	/fce796f9baf6da23bdcb0b49	978c08628.pdf

РАДИОЧАСТОТНОЕ

ОБНАРУЖЕНИЕ

ХАРАКТЕРИСТИКА

Обнаружение дронов летящих на удалении от 1,5 км

ЛИДАР

(«лазерный

радар»)

×

РЛС

1

ВИЗУАЛЬНОЕ

ОБНАРУЖЕНИЕ

X

ОБНАРУЖЕНИЕ

по звуку

X

ПЕРЕХВАТ

Радиоэлектронные

- 1. Постановка помех с целью прерывания канала управления дроном с наземной станцией
- 2. Постановка помех с целью прерывания связи дрона со спутниками навигационных систем
- 3. GPS/ГЛОНАСС спуфинг (фальсификация навигационных координат)
- 4. Перехват управления дроном

Физические

- 1. Уничтожение с применением оружия
- 2. Применение дрона или дрессированной крупной хищной птицы службой ТБ

типы и особенности

КОНСТРУКЦИЯ

- •БПЛА самолетного типа
- •Привязные БПЛА
- •БПЛА вертолетного типа
- •Конвертопланы
- •Радиоуправляемые планеры
- •Мультикоптеры

Высота, время полета и вес

• БиКоптер

• Три-коптер

• Квадрокоптер

• Гексакоптер

• Октокоптер

УПРАВЛЕНИЕ

ТАНГАЖ, РЫСКАНЬЕ, КРЕН

УПРАВЛЕНИЕ ДВИГАТЕЛЯМИ

СИГНАЛЫ

УСТРОЙСТВО

PAMA - 2TP

ПУЛЬТ 10тр

- •Протокол связи:
- •FlySky, ELRS
- •Расширяемость
- •Настраиваемость

OPEN TX

- •ПО для радиопередатчиков
- •OpenTX Companion эмуляторы для радиканалов

ЭНЕРГИЯ

АККУМУЛЯТОР 2.5тр

1S - 3.7v, 3S - 11.1

Емкость $2,2Ah \times 11,1v = 22$ Вт.

Макс. токоотдача 30c: 30 x 2,2 Ah = 66A

ЗАРЯДКА 2тр

РАСПРЕДЕЛЕНИЕ ПИТАНИЯ 0.3тр

МОДУЛЬ ПИТАНИЯ АРМ 0.4тр

Питает контроллер и датчики. Для севроприводов и моторов отдельный

- •Разъем
- •Макс. напряжение 4S

Есть совмещенные с распределением питания Зтр

ПРОВОДА

Выбор сечения автомобильного провода

Номинальное сечение, мм²	Сила тока в одиночном проводе, А при длительной нагрузке температуре окружающей среды, °C					
	20 °C	30 °C	50 °C	80 °C		
0,5 mm ²	17,5 A	16,5 A	14 A	9,5 A		
0,75 mm ²	22,5 A	21,5 A	17,5 A	12,5 A		
1,0 mm ²	26,5 A	25 A	21,5 A	15 A		
1,5 mm²	33,5 A	32 A	27 A	19 A		
2,5 mm ²	45,5 A	43,5 A	37,5 A	26 A		
4,0 mm ²	61,5 A	58,5 A	50 A	35,5 A		
6,0 mm ²	80,5 A	77 A	66 A	47 A		
16,0 mm ²	149 A	142,5 A	122 A	88,5 A		

ПАДЕНИЕ НАПРЯЖЕНИЯ ОТ ТОКА

 $R = (\rho I) / S$

Медь: 0,0175 Ом·мм²/м

U = I * R

I,A \ S,mm²	1	1,5	2,5	4	6	10	16	25
1	0,0175	0,0117	0,0070	0,0044	0,0029	0,0018	0,0011	0,0007
2	0,0350	0,0233	0,0140	0,0088	0,0058	0,0035	0,0022	0,0014
3	0,0525	0,0350	0,0210	0,0131	0,0088	0,0053	0,0033	0,0021
4	0,0700	0,0467	0,0280	0,0175	0,0117	0,0070	0,0044	0,0028
5	0,0875	0,0583	0,0350	0,0219	0,0146	0,0088	0,0055	0,0035
6	0,1050	0,0700	0,0420	0,0263	0,0175	0,0105	0,0066	0,0042
7	0,1225	0,0817	0,0490	0,0306	0,0204	0,0123	0,0077	0,0049
8	0,1400	0,0933	0,0560	0,0350	0,0233	0,0140	0,0088	0,0056
9	0,1575	0,1050	0,0630	0,0394	0,0263	0,0158	0,0098	0,0063
10	0,1750	0,1167	0,0700	0,0438	0,0292	0,0175	0,0109	0,0070
15	0,2625	0,1750	0,1050	0,0656	0,0438	0,0263	0,0164	0,0105
20	0,3500	0,2333	0,1400	0,0875	0,0583	0,0350	0,0219	0,0140
25	0,4375	0,2917	0,1750	0,1094	0,0729	0,0438	0,0273	0,0175
30	0,5250	0,3500	0,2100	0,1313	0,0875	0,0525	0,0328	0,0210
35	0,6125	0,4083	0,2450	0,1531	0,1021	0,0613	0,0383	0,0245
50 50	28750	0,5833	0,3500	0,2188	0,1458	0,0875	0,0547	0,0350
100	1,7500	1,1667	0,7000	0,4375	0,2917	0,1750	0,1094	0,0700

ДВИГАТЕЛИ

ДВИГАТЕЛИ 2,5тр

- •KV rpm/V 920KV
- •Тип бесщеточный
- •Направление вращения CW/CCW
- •Hапряжение 2-3S
- •Bec 27г
- •Тяга 420 гр
- •Пропеллер М5х12мм
- •Макс ток
- •Мощность
- •Эффективность g/W

NB Сечение провода и пайка. Перегрев может привести к возгоранию

ПРОПЕЛЛЕРЫ — 0.4тр

- •9443 94мм х 4.3 мм шаг
- •1045 10мм х 4.5мм шаг
- •1205 12 мм x 5мм шаг
- •Направление CW, CCW

ECS electronic speed control - 0,8TP

- •Tok 20A
- Макс ток 25A
- •Hапряжение 2-4S
- Вес 28гр
- •Выход 2A/5V
- •Настраиваемость

https://github.com/bitdump/BLHeli

СВЯЗЬ

СХЕМА УПРАВЛЕНИЯ

Pilot's RC Transmitter

RC RECIEVER: ПРИЕМ УПРАВЛЯЮЩИХ СИГАЛОВ - 1тр

- •Протокол, частота, выход:
 - ExpressLRS (2,4Ггц) PPM Rx
 - FlySky (2,4Ггц) требует РРМ Encoder

PPM ENCODER — 0.5Tp

Кодер РРМ позволяет кодировать до 8 сигналов РWM (с широтно-импульсной модуляцией) в один сигнал РРМ (с позиционной модуляцией импульса).

Channel 1	Roll	Set to center (1500 µs)
Channel 2	Pitch	Set to center (1500 μs)
Channel 3	Throttle	Set to low (900 µs)
Channel 4	Yaw	Set to center (1500 μs)
Channel 5	***	Remain at last value
Channel 6		Remain at last value
Channel 7	***	Remain at last value
Channel 8	920	Remain at last value

ELRS С ЭНКОДЕРОМ

ПЕРЕДАЧА/ПРИЕМ ТЕЛЕМЕТРИИ **5тр**

Опционально — можно передавать через видеоканал OSD

SiK Telemetry Radio

Скорость передачи: до 250кБод, типовая 112Кбод

https://github.com/ArduPilot/SiK

https://ardupilot.org/copter/docs/common-sik-telemetry-radio.html

https://docs.px4.io/v1.9.0/en/telemetry/sik_radio.html

GPS МОДУЛЬ С КРЕПЛЕНИЕМ 1,5тр

ВИДЕО

KAMEPA + OSD 2TP

OSD - on screen display

ПЕРЕДАТЧИК ВИДЕОСИГНАЛА — 1,5тр

-Частота — 5,8ГГц

•Мощность: 10мВт/25мВт/200мВт/

500 MBT/1BT

•Кол-во каналов — 40 шт.

•Способ настройки каналов и мощности

ОТОБРАЖЕНИЕ ВИДЕО СИГНАЛА

- •Очки 40тр
- •Телефон
- •Экран 4тр

ПРИЕМНИК ВИДЕОСИГНАЛА 2тр

КОНТРОЛЛЕР, АВТОПИЛОТ И КОМПОНЕНТЫ

Holybro pix32 / PixHawk 2.4.8 — 7,5_{Tp}

168 MHz FMUv2

https://github.com/pixhawk/Hardware

ARM: Ardupilot/Arducopter — 4 Tp

PixHawk 6x/6c

6x — 35 тр. (7тр без модуля)

6с — 20 тр.

Процессор STM32H753/STM32H743 480МГц, 2МБ Flash, 1МБ RAM

6c — нет шины для внешнего блока автопилота

Pixhawk 6x + Cube

~35 тр.

Чип STM32H753 (крипто сопроцессор)

ПО автопилотов: ArduPilot, PX4 Autopilot

PX4 Pixhawk + CUAV V5/X7

~35тр

ПО автопилотов: ArduPilot, PX4 Autopilot

	V5+	X7	
Processor	STM32F765 +STM32F1	STM32H743	
Frequency	216MHZ	480MHZ	
RAM	512K	1024K	
Flash	2048K	2048K	

HobbyEagle A3 Pro

1,5 тр
Настраиваемый контроллер

BeagleBone

~7 тр

AM335x 1GHz ARM Cortex-A8

Графический ускоритель SGX530 2x PRU 32-бит 200 МГц PRUs

512 M6 DDR3 800 МГц RAM

4 Гб встроенной флэш-памяти еММС

ПО автопилотов: Ardupilot, PX4 experimental

СПАГГЕТИ НЕ ТОЛЬКО В JavaScript

ПРОТОКОЛЫ УПРАВЛЕНИЯ/ТЕЛЕМЕТРИИ/ ВИДЕО

	range	open source	commercial	2.4 GHz Lora/SX128x	processor	mostly targeted at	radio link	bi-directional link
DragonLink	LR		commercial			drone	full	yes
RFD900	LR		commercial			drone	full	yes
Dronee Zoon	LR		commercial			drone	?	yes
SiK	short	open source	commercial			drone	no	yes
CrossFire	LR		commercial		PIC	all ?	full	yes*
Tracer	short		commercial	SX128x	PIC	FPV racer	full	_
Ghost	*		commercial	SX128x	STM32	FPV racer/flier	full	7
Siyi FM30	*		commercial	SX128x	STM32*	drone	full	yes
UltimateLRS	medium		hobby				full	yes
Qczek LRS	LR		hobby				?	=
OpenLRSng		open source	hobby				?	
ExpressLRS	LR	open source	hobby & commercial	SX128x	ESP*	FPV racer	very narrow	no
+ video systems: DJI, EZWifiBroadcast, OpenHD, DroneBridge, Ruby,						© www.olliw.eu		

ExpressLRS

- •Oсновано на LoRa чипсете Semtech SX127x/SX1280 с Espressif или STM32 Процессором
- •ELRS 2.4 GHz or 900 Mhz, до 1000Hz пакет (200 Hz для 900Мгц)
- •Телеметрия (Betaflight Lua Compatibility)
- •Обновления через Wifi
- •Джойстик, дисплей
- •Керамические антенны
- •Регулирование частоты через скрипт на Lua
- •Скорость: 115 200bps, 400 000bps

https://github.com/ExpressLRS/ExpressLRS

mLRS (LoRa для IoT)

- •Частоты и скорость:
 - 2.4 ГГц 50Гц 3,5кбайт/с
 - 915/868/433 МГц МГц
 - 31Гц 2,5 кбайт/с
 - . 19Гц 1 кбайт/с
- •He интегрирована с MAVLink для OpenTx
- •Разрешенная мощность 25мВт
- 10-30 км, 2Вт до 240 байт/с, антена 2м (8тр)

https://github.com/olliw42/mLRS

https://www.thethingsnetwork.org/docs/lorawan/

https://github.com/sandeepmistry/arduino-LoRa

ЗАЯВЛЕНО: для 20 dBm/100 мВт

Антены 2

dBi	50 Hz	31 Hz	19 Hz
2.4 GHz	7 km	10 km	15 km
868/915 MHz	-	26 km	42 km

Из паспорта для LoRa TX/TX

RF Parameter	Value	Remark		
Working frequency	433 MHz	Default: 433MHz		
Transmitting power	20 dBm	Default: 20dBm(About 100mW)		
Receiving sensitivity	-146 dBm	Air data rate: 0.3kbps		
Air data rate	0.3k~19.2kbps	Default: 2.4kbps		
Test distance	3000 meter	In open and clear air, with maximum power, 5dBi antenna gain, height of 2m, air data rate: 2.4kbps		

LoRa БОЛЬШИЕ ДИСТАНЦИИ

- •50 км радиомодем XZ-DT25-HX: 20 тр
 - 25Вт
 - 8dBi антена выше 2м
 - частота ~140/230/430МГц
- •70-100 км передатчик XZ-DT25-H-50: 28тр
 - 50 BT
 - направленная антена выше 2 м
 - частоты ~140/230/430МГц
 - Вес 0.5кг

OpenLRSng

Ultimate LRS

Частоты433/868/915

Скорость ТX = 57600, RX = 19200

•Последний коммит 5 лет назад •На алиэкспресс есть orangeTx 1Вт 433Мгц

•Оборудование на алиэкспресс нет

https://github.com/openLRSng/openLRSng

https://openIrsng.org/

http://www.itluxembourg.lu/site/ultimate-lrs/

LTE

- •Частоты в Европе 450, 700, 800, 900, 1500, 1800, 2100, 2300, 2600, 3500, 3700
- •Теоретический предел скорости 1 Гбит/сек от 3,2 км (2600 МГц) до 19,7 км (450 Мгц)
- 5 мс задержка для маленьких IP-пакетов в оптимальных условиях
- •Терминал, движущийся со скоростью 350 км/ч или 500 км/ч
- **.**До 100 км
- •Модификацию LTE вероятно применяет DJI

ВИДЕО: Ez-WifiBroadcast EZ-WifiBroadcast

- •Задержка glass-to-glass ~125ms.
- •Raspberry Pi V1 и V2 камеры
- •HDMI камеры через HDMI-CSI адаптеры
- •До 1920x1080p 30fps разрешение и 12Mbit битрейт
- •Поддержка 2.3/2.4/2.5Ghz и 5.2Ghz to 5.8Ghz
- •Диапазон от 300m до 3km. Специальными настройками достигается до 30км.

https://github.com/rodizio1/EZ-WifiBroadcast

ВИДЕО: OpenHD Digital FPV

- •SBC (контроллер) в виде Raspberry Pi, есть специализированные
- •Адаптер WiFi 2.3/2.4/2.5GHz, 5.2-5.8GHz.
- •Видео, управление, телеметрия
- •Wifi адаптер до 800мВт (несколько километров с направленной антенной)

ВИДЕО: Ruby FPV

- •Oт 2т.р. на Raspberry 3b
- •Wifi адаптер до 800мВт (несколько километров с направленной антенной)

ВИДЕО: DroneBridge

•300 м - 14+ км диапазон (500 м - 2 м стандартные адаптеры)

.1080p

•Двунаправленный

Основано на Wifibroadcast — трансляция HD video используя wifi radios. 8 лет назад последний коммит

ТРЕНАЖЕРЫ

LIFTOFF: FPV Drone Racing

FPV Freerider Recharged

по автопилотов

Часть Linux Foundation

Не привязанная к поставщикам

Проекты:

PX4 autopilot

- •Контролер полетов дронов, но также: роверы, корабли, роботы
- •Автопилот

QGroundControl

- •Маршруты •Прием
- •прием телеметрии
- •Обновление

PX4 Development

- •На устройстве
- •Софтверная эмуляция

https://docs.px4.io/main/en/development/development.html https://github.com/PX4/PX4-Devguide

ArduPiliot

Copter -- Plane --Rover -- Sub --Antenna Tracker

https://ardupilot.org/

Mission Planner

- •Протокол сообщений для коммуникации с дроном
- •Протокол сообщения на шине с контроллером полета

Clover - Клевер

- •Конструктор + симулятор
- •Готовый Raspberry Pi образ для запуска
- •Документация
- •Сообщество

ЭМУЛЯТОРЫ

MAVSDK

Коллекция библиотк для различных языков для взаимодействия с MAVLink системами:

- •контроллерами дронов,
- •эмуляторами,
- •камерами
- •наземными системами

https://mavsdk.mavlink.io/

Установить окружение https://github.com/PX4/PX4-Autopilot/blob/main/Tools/setup/ubuntu.sh

PX4 Firmware

```
[logger] Start file log (type: full)
      [logger] [logger] ./log/2023-02-17/14_15_59.ulg
      [logger] Opened full log file: ./log/2023-82-17/14_15_59.ulg
      [mevlink] MAVLink only on localhost (set param MAV_(1)_BROADCAST
      [mewlink] MAVLink only on localhost (set param MAV_(1)_BROADCAST.
      [px4] Startup script returned successfully
oxh- INFO [health and arming checks] Profitight Fall: No manual control
axh> INFO [tone_slarm] notify negative
    [bealth and orning checks] Freflight Fall: No manual control impot [bealth and arming checks] Freflight Fall: No manual control imput [toos_ulara] hore set
     [health and arming checks] Freflight Fall: No manual control imput
     Thealth and arming checks! Freflight Fail: No manual control imput
     [navigator] Using minimum takeoff altitude: 2.50 m
      [bealth and orming checks] Preflight Fail: No manual control input
      [commander] Takeoff detected
```

wget https://github.com/PX4/PX4-Autopilot/blob/main/Tools/setup/ubuntu.sh wget https://github.com/PX4/PX4-Autopilot/blob/main/Tools/setup/requirements.txt ./ubuntu.sh pip3 -r requirements.txt git clone https://github.com/PX4/Firmware.git PX4_Firmware

CXEMA

Control signals / Telemetry

Simulator

Sensor and other message

- HIL SENSOR
- HIL_GPS
- HIL_OPTICAL_FLOW
- HIL_RC_INPUTS_RAW
- HIL STATE QUTERNION

jMAVSim with SITL: quadro

```
Waiting for drune to have a global position estimate ...
  Timed position setimate in
Status: INCO: Armed by external command
Status: INFO: [laguer] /les/2021-82-17/15.83.00.utu
Staton: INFO: Union wisions takeness wititods: 2.58 w
Status: INFO: Using minimum tumouff attitude: 2.50 m
Status: INFO: Iskent# detector
Status: INFO: Immenff detected Taxenff detected
```

cd PX4_Firmware make px4_sitl jmavsim

Gazebo: Quadrotor, Plane, VTOL

https://gazebosim.org/home

https://github.com/jonasvautherin/px4-gazebo-headless

GAZEBO + DOCKER + PYTHON

Docker: https://github.com/jonasvautherin/px4-gazebo-headless

Примеры: https://github.com/mavlink/MAVSDK-Python/tree/master/examples

GAZEBO + QGroundControl

ДРУГИЕ СИМУЛЯТОРЫ

- •FlightGear Simulation погода
- JSBSim: Plane, Quadrotor, Hexarotor Сложное моделирование полетной динамики (включая ротацию земли)
- AirSim Unreal Engine

ЗАДАЧИ РАЗРАБОТКИ В ДРОНАХ

РАЗРАБОТКА В ОПЕНСОРС

- •Полетный контроллер РХ4
- •Пульты OpenTX
- ·Настройка дрона QgroundControl
- •Проткол связи с дроном ELRS/mLRS
- •Протокол коммуникации MAVLINK
- •Протоколы передачи видео OpenHD/Ez-WifiBroadcast
- •Симуляторы

РАЗРАБОТКА ДЛЯ ДРОНОВ

- •ПО используемое в беспилотниках и управлении ими
- •ПО для работы с навесным оборудованием и обработки его результатов

МАШИННОЕ ЗРЕНИЕ

- •Детекция и управление в точке посадки
- •Детекция и управление к объекту в полете
- •Детекция и управление к объекту на земле
- •Следование маршруту в сложном рельефе или погодных условиях

МАШИННОЕ ОБУЧЕНИЕ

- •Распознавание дронов: радио, видео, аудио, лидар
- •Оптимизация маршрутов: погода, рельеф, нормативные требования
- •Сервисные модели со сбором статистики и прогнозирование отказов

ПРЕДМЕТНЫЕ ML МОДЕЛИ

- •Детекции неисправностей объектов
- •3D Маршруты обследования стационарных объектов (вышки, здания)
- •Коррекция искажений результатов обследования дронов с существующими метрологически выверенными моделями

ЗАДАЧА СЕТИ УПРАВЛЕНИЯ

Вариант:

- •Протокол связи LoRa, сеть LoRaWan
- •Шлюзы по сотовой модели
- •Управление коммутацией
- •Передача разных видов трафика, шифрование,
- •Транспондеры
- •Принудительное управление от доверенных центров (аэропорт)

вопросы?

Андрей Куминов http://github.com/akumidv

Сообщество devDV (Хабаровск) http://t.me/devDV

Использованные материалы

- •Bak Разрешение на полет дрона в 2022-м https://habr.com/ru/post/599399/
 •Ларин Е.А. Качалин А.М. Беспилотные летательные аппараты. Квадрокоптеры.

 https://sch1794s.mskobr.ru/files/Razdelyi_sayta/Kadetyi/PREDPROF_ekzamen/Презентация.pptx.pdf

 •Bett328 Дрон для любителя: устройство и принципы программирования https://habr.com/ru/company/leader-
- •Овченков Н. Технические аспекты использования систем обнаружения и противодействия БПЛА на объектах гражданской авиации https://www.electronika.ru/upload/medialibrary/fce/fce796f9baf6da23bdcb0b4978c08628.pdf
 •Unnamed.ru "Перспективы создания систем автоматической посадки БПЛА на надводный корабль с

использованием интеллектуальной системы технического зрения https://fcpir.ru/upload/iblock/4ca/corebofs000080000l2n4tcf82av2bro presentation.pdf

id/blog/491770/

- •Кирсанов РАЗРАБОТКА СИСТЕМЫ УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ПО
- ЗАДАННОЙ ТРАЕКТОРИИ https://nsu.ru/xmlui/bitstream/handle/nsu/395/Presentation KusainovAA.pdf
- •Любительская служба Частоты, решения ГКРЧ https://grfc.ru/grfc/zayav/radioservice/amateur-service/frequency-solutions-of-the-gkrch
- •Фиксированная служба Частоты, системы, стандарты, технологии, решения ГКРЧ https://grfc.ru/grfc/zayav/radioservice/fixed-service/frequencies-system-standards-solutions-of-the-gkrch/
- •Paзрешенные и безлицензионные частоты радиостанций https://combat-radio.ru/blog/detail/freq/
- •Вход в Aeronet: запуск автономного квадрокоптера в виртуальной среде https://habr.com/ru/post/434220/