

IUT GEII - Outils Mathématiques et Logiciels I (OML1)

Trigonométrie

Andrés F. López-Lopera Université Polytechnique Hauts-de-France (UPHF)

Thèmes

- 1. Trigonométrie
- 2. Cercle trigonométrique
- 3. D'autres propriétés remarquables
- 4. Fonctions trigonométriques

1

Trigonométrie

Trigonométrie

- \cdot De nombreux domaines scientifiques font appel à la trigonométrie :
 - Géographie
 - Astronomie
 - Physique

- · Électricité et électronique
- Mécanique
- Et bien d'autres...

$$\tan(\alpha) = \frac{h_1}{S_1} = \frac{h_2}{S_2}$$

$$v(t) = 3\sin(\omega t) \text{ [volt, V]},$$

 $i(t) = \cos(\omega t) \text{ [ampère, A]}.$

Fonctions trigonométriques usuelles

Rappel: $\pi = 180^{\circ}$

$$\begin{split} &\text{angle [rad]} = \text{angle [deg]} \times \frac{\pi}{\text{180}^{\circ}} \\ &\text{angle [deg]} = \text{angle [rad]} \times \frac{\text{180}^{\circ}}{\pi} \end{split}$$

· On note:

 θ : l'angle [degrés ou radians]

a : le côté adjacent à l'angle θ

b: le côté opposé à l'angle θ

h : l'hypoténuse

Fonctions trigonométriques usuelles

· On note:

 θ : l'angle [degrés ou radians]

a : le côté adjacent à l'angle θ

b : le côté opposé à l'angle θ

h : l'hypoténuse

Rappel: $\pi=$ 180 $^{\circ}$

$$\begin{split} &\text{angle [rad]} = \text{angle [deg]} \times \frac{\pi}{\text{180}^{\circ}} \\ &\text{angle [deg]} = \text{angle [rad]} \times \frac{\text{180}^{\circ}}{\pi} \end{split}$$

· Fonctions trigonométriques usuelles :

•
$$cos(\theta) = \frac{a}{h}$$
, $\theta = arccos(\frac{a}{h})$,

•
$$\sin(\theta) = \frac{b}{h}$$
, $\theta = \arcsin\left(\frac{b}{h}\right)$,

•
$$tan(\theta) = \frac{b}{a} = \frac{\sin(\theta)}{\cos(\theta)}, \quad \theta = \arctan\left(\frac{b}{a}\right),$$

Fonctions trigonométriques usuelles

· On note:

 θ : l'angle [degrés ou radians]

a : le côté adjacent à l'angle θ

b: le côté opposé à l'angle θ

h : l'hypoténuse

Rappel: $\pi = 180^{\circ}$

$$\begin{split} &\text{angle [rad]} = \text{angle [deg]} \times \frac{\pi}{\text{180}^{\circ}} \\ &\text{angle [deg]} = \text{angle [rad]} \times \frac{\text{180}^{\circ}}{\pi} \end{split}$$

· Fonctions trigonométriques usuelles :

•
$$cos(\theta) = \frac{a}{h}$$
, $\theta = arccos(\frac{a}{h})$,

•
$$\sin(\theta) = \frac{b}{h}$$
, $\theta = \arcsin\left(\frac{b}{h}\right)$,

•
$$tan(\theta) = \frac{b}{a} = \frac{\sin(\theta)}{\cos(\theta)}, \quad \theta = \arctan\left(\frac{b}{a}\right),$$

•
$$\sec(\theta) = \frac{h}{a} = \frac{1}{\cos(\theta)}$$
, $\theta = \operatorname{arcsec}\left(\frac{h}{a}\right)$,

•
$$\csc(\theta) = \frac{h}{b} = \frac{1}{\sin(\theta)}, \quad \theta = \arccos\left(\frac{h}{b}\right),$$

•
$$\cot(\theta) = \frac{a}{b} = \frac{1}{\tan(\theta)}, \ \theta = \operatorname{arccot}\left(\frac{a}{b}\right).$$

Autres relations entre fonctions trigonométriques

· Théorème de Pythagore :

$$h^2 = a^2 + b^2, \tag{1}$$

d'où l'on déduit les relations suivantes [exercices] :

$$\begin{split} &\cos^2(\theta) + \sin^2(\theta) = 1, \\ &1 + \tan^2(\theta) = \sec^2(\theta), \\ &\cot^2(\theta) + 1 = \csc^2(\theta). \end{split}$$

Rappel:

$$\sin(\theta) = \frac{b}{h}, \quad \cos(\theta) = \frac{a}{h},$$

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}, \quad \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}, \quad \sec(\theta) = \frac{1}{\cos(\theta)}, \quad \csc(\theta) = \frac{1}{\sin(\theta)}.$$

Cercle trigonométrique

Construction du cercle trigonométrique

· En utilisant le théorème de Pythagore, on peut construire le triangle :

 \cdot Pour $\theta \in$]0; $\frac{\pi}{2}$ [, on obtient un quart de cercle trigonométrique :

θ [deg]	0	30°	45°	60°	90°
[rad]	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 - 2	0
sin(heta)	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$tan(\theta)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-

Cercle trigonométrique

 \cdot Le quart de cercle trigonométrique se généralise à un cercle complet :

Propriétés. Pour $k \in \mathbb{Z}$, on obtient :

•
$$-1 \le \cos(\theta) \le 1$$

•
$$\cos(\theta \pm 2k\pi) = \cos(\theta)$$

•
$$-1 < \sin(\theta) < 1$$

•
$$\sin(\theta \pm 2k\pi) = \sin(\theta)$$

Cercle trigonométrique – lien avec le 4ème cadran

Propriétés. Pour $k \in \mathbb{Z}$, on obtient :

•
$$cos(-\theta) = cos(\theta)$$

•
$$cos(-\theta) = cos(\theta)$$
 • $cos(-\theta \pm 2k\pi) = cos(-\theta)$

•
$$\sin(-\theta) = -\sin(\theta)$$

•
$$\sin(-\theta) = -\sin(\theta)$$
 • $\sin(-\theta \pm 2k\pi) = \sin(-\theta)$

Cercle trigonométrique – lien avec le 2ème cadran

Propriétés.

•
$$\cos(\pi - \theta) = -\cos(\theta)$$

•
$$cos(\pi - \theta) = -cos(\theta)$$
 • $cos(-\pi - \theta) = cos(\pi - \theta)$

•
$$\sin(\pi - \theta) = \sin(\theta)$$

•
$$\sin(\pi - \theta) = \sin(\theta)$$
 • $\sin(-\pi - \theta) = \sin(\pi - \theta)$

Cercle trigonométrique – lien avec le 3ème cadran

Propriétés.

•
$$cos(\pi + \theta) = -cos(\theta)$$

•
$$cos(\pi + \theta) = -cos(\theta)$$
 • $cos(-\pi + \theta) = cos(\pi + \theta)$

•
$$\sin(\pi + \theta) = -\sin(\theta)$$

•
$$\sin(\pi + \theta) = -\sin(\theta)$$
 • $\sin(-\pi + \theta) = \sin(\pi + \theta)$

Cercle trigonométrique – déphasage de $\pi/2$

Propriétés.

•
$$\cos(\frac{\pi}{2} + \theta) = -\sin(\theta)$$
 • $\cos(\frac{\pi}{2} - \theta) = \sin(\theta)$

•
$$\sin(\frac{\pi}{2} + \theta) = \cos(\theta)$$
 • $\sin(\frac{\pi}{2} - \theta) = \cos(\theta)$

Cercle trigonométrique – valeurs remarquables

Cercle trigonométrique

Relations trigonométriques de la fonction tangente

- $tan(-\theta) = -tan(\theta)$
- $tan(\pm 2k\pi + \theta) = tan(\theta)$
- $tan(\pi \pm \theta) = \pm tan(\theta)$
- $tan(\frac{\pi}{2} \pm \theta) = \mp \cot(\theta)$

Exercices. Démontrer les relations précédentes.

Rappel:

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}, \qquad \sin(-\theta) = -\sin(\theta), \qquad \cos(-\theta) = \cos(\theta),$$

$$\cos(\theta \pm 2k\pi) = \cos(\theta), \quad \sin(\theta \pm 2k\pi) = \sin(\theta),$$

$$\cos(\pi \pm \theta) = -\cos(\theta), \quad \sin(\pi \pm \theta) = \mp\sin(\theta),$$

$$\cos\left(\frac{\pi}{2} \pm \theta\right) = \mp\sin(\theta), \quad \sin\left(\frac{\pi}{2} \pm \theta\right) = \cos(\theta).$$

Cercle trigonométrique

Solution.

•
$$tan(-\theta) = \frac{sin(-\theta)}{cos(-\theta)} = \frac{-sin(\theta)}{cos(\theta)} = -tan(\theta)$$

•
$$\tan(\pm 2k\pi + \theta) = \frac{\sin(\pm 2k\pi + \theta)}{\cos(\pm 2k\pi + \theta)} = \frac{\sin(\theta)}{\cos(\theta)} = \tan(\theta)$$

•
$$tan(\pi - \theta) = \frac{sin(\pi - \theta)}{cos(\pi - \theta)} = \frac{sin(\theta)}{-cos(\theta)} = -tan(\theta)$$

•
$$\tan(\pi + \theta) = \frac{\sin(\pi + \theta)}{\cos(\pi + \theta)} = \frac{-\sin(\theta)}{-\cos(\theta)} = \tan(\theta)$$

•
$$\tan(\frac{\pi}{2} - \theta) = \frac{\sin(\frac{\pi}{2} - \theta)}{\cos(\frac{\pi}{2} - \theta)} = \frac{\cos(\theta)}{\sin(\theta)} = \cot(\theta)$$

•
$$\tan(\frac{\pi}{2} + \theta) = \frac{\sin(\frac{\pi}{2} + \theta)}{\cos(\frac{\pi}{2} + \theta)} = \frac{\cos(\theta)}{-\sin(\theta)} = -\cot(\theta)$$

Relations associées à l'addition des angles

- $cos(a \pm b) = cos(a) cos(b) \mp sin(a) sin(b)$
- $\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$

Application GEII

· Considérons les tensions :

$$V_R(t) = 4\cos(\omega t),$$

$$V_L(t) = 3\sin(\omega t).$$

 \cdot Sachant que $v(t)=v_{R}(t)+v_{L}(t)$, on obtient :

$$v(t) = 4\cos(\omega t) + 3\sin(\omega t).$$

Application GEII - circuit RL

· La tension $v(t)=4\cos(\omega t)+3\sin(\omega t)$ peut être réécrite sous la forme :

$$\cos(a)\cos(b)+\sin(a)\sin(b)=\cos(a-b).$$

 \cdot En réécrivant v(t) comme

$$v(t) = A \left[\frac{4}{A} \cos(\omega t) + \frac{3}{A} \sin(\omega t) \right],$$

et en comparant les deux expressions, on identifie que :

$$\cos(b) = \frac{4}{A}, \quad \sin(b) = \frac{3}{A}, \quad \cos(a) = \cos(\omega t), \quad \sin(a) = \sin(\omega t).$$

· Grâce au théorème de Pythagore, on a :

$$A = \sqrt{4^2 + 3^2} = 5,$$

$$b = \arctan\left(\frac{3}{4}\right) \approx 0.64.$$

· Finalement, on obtient :

$$v(t) = A\cos(a - b) = 5\cos(\omega t - 0.64).$$

Relations relatives au produit de sinus et cosinus

•
$$\sin(a)\sin(b) = \frac{1}{2}[\cos(a-b) - \cos(a+b)]$$

•
$$\sin(a)\cos(b) = \frac{1}{2}[\sin(a-b) + \sin(a+b)]$$

•
$$\cos(a)\cos(b) = \frac{1}{2}[\cos(a-b) + \cos(a+b)]$$

Relations relatives à la somme de sinus et cosinus

•
$$\sin(a) \pm \sin(b) = 2\sin\left(\frac{a \pm b}{2}\right)\cos\left(\frac{a \mp b}{2}\right)$$

•
$$cos(a) + cos(b) = 2 cos\left(\frac{a+b}{2}\right) cos\left(\frac{a-b}{2}\right)$$

•
$$cos(a) - cos(b) = -2 sin\left(\frac{a+b}{2}\right) sin\left(\frac{a-b}{2}\right)$$

Linéarisation

· La linéarisation consiste à exprimer des fonctions trigonométriques élevées à une puissance donnée sous forme de fonctions trigonométriques de degré un :

•
$$\cos^2\theta = \frac{1}{2}(1+\cos(2\theta))$$

•
$$\sin^2\theta = \frac{1}{2}(1-\cos(2\theta))$$

•
$$\cos^3 \theta = \frac{3}{4} \cos(\theta) + \frac{1}{4} \cos(3\theta)$$

•
$$\sin^3 \theta = \frac{3}{4} \sin(\theta) - \frac{1}{4} \sin(3\theta)$$

Exercices. Démontrer les relations énoncées précédemment.

Solution.

$$\begin{aligned} \cos^2\theta &= \frac{1}{2}(1+\cos(2\theta)) \\ &\cos(2\theta) = \cos(\theta+\theta) = \cos(\theta)\cos(\theta) - \sin(\theta)\sin(\theta) \\ &= \cos^2(\theta) - \frac{\sin^2(\theta)}{1-\cos^2(\theta)} \\ &= 2\cos^2(\theta) - 1. \end{aligned}$$

$$\begin{aligned} \cos^3\theta &= \frac{3}{4}\cos(\theta) + \frac{1}{4}\cos(3\theta) \\ \cos^3(\theta) &= \cos(\theta)\cos^2(\theta) = \frac{1}{2}\cos(\theta)(1+\cos(2\theta)) \\ &= \frac{1}{2}\cos(\theta) + \frac{1}{2}\cos(2\theta)\cos(\theta) \\ &= \frac{1}{2}\cos(\theta) + \frac{1}{2}\left[\frac{1}{2}(\cos(2\theta-\theta) + \cos(2\theta+\theta))\right] \\ &= \frac{1}{2}\cos(\theta) + \frac{1}{4}(\cos(\theta) + \cos(3\theta)) \\ &= \frac{3}{4}\cos(\theta) + \frac{1}{4}\cos(3\theta). \end{aligned}$$

Résolution d'équations trigonométriques

- · Il s'agit de trouver les solutions de certaines égalités :
 - $\cos a = \cos b$ donne les solutions :

$$a=b+2k\pi, \quad \text{ou} \quad a=-b+2k\pi, \quad \text{avec } k\in\mathbb{Z}.$$
 [figure]

• $\sin a = \sin b$ donne les solutions :

$$a=b+2k\pi, \quad \text{ou} \quad a=\pi-b+2k\pi, \quad \text{avec } k\in\mathbb{Z}.$$
 [figure]

· Pour les autres cas, il convient de les ramener à l'une de ces deux formes.

Fonctions trigonométriques

Fonctions trigonométriques

 \cdot En génie électrique, les tensions (v) et les courants électriques (i) sont modélisés à l'aide de fonctions trigonométriques, par exemple :

$$v(t) = 3\sin(\omega t)$$
 [volt, V], $i(t) = \cos(\omega t)$ [ampère, A]. $v(t) = i(t)$

- · Ici, l'argument de la fonction trigonométrique est donné par ωt :
 - $t \in \mathbb{R}$: une variable représentant le temps (secondes [s]),
 - $\omega \in \mathbb{R}^+$: la pulsation du signal électrique [rad/s].

Lien avec le cercle trigonométrique

Fonction sinus

[animation 1]
[animation 2]

Remarque. $f(t) = \sin(t)$ est une fonction périodique de période $T = 2\pi$:

$$f(t+T)=f(t).$$

Fonctions trigonométriques classiques

Remarque.

 $f(t) = \sin(t)$ et $f(t) = \tan(t)$ sont des fonctions impaires, c'est-à-dire :

$$f(-t)=-f(t).$$

 $f(t) = \cos(t)$ est une fonction paire, c'est-à-dire :

$$f(-t)=f(t).$$

Représentation des signaux électriques

 \cdot De manière générale, une fonction trigonométrique peut être de la forme :

$$f_1(t) = A\cos(\omega t \pm \varphi), \quad f_2(t) = A\sin(\omega t \pm \varphi),$$

οù

- $t \in \mathbb{R}$: le temps [s],
- $\omega \in \mathbb{R}^+$: la pulsation du signal [rad/s],
- A ∈ ℝ⁺: l'amplitude du signal [volt ou ampère],
- $\varphi \in \mathbb{R}$: le déphasage [rad].
- · Les deux premières formes sont utilisées pour la représentation des signaux électriques.

$$egin{aligned} \mathbf{v_1}(t) &= 3\sin(\omega t) \ [V], \ \mathbf{v_2}(t) &= 3\sin\left(\omega t - rac{\pi}{2}
ight) \ [V], \ i(t) &= \cos(\omega t) \ [A]. \end{aligned}$$

Représentation des signaux électriques

Transformation en somme de termes non déphasés

· Il est toujours possible de décomposer des signaux électriques en une somme de sinus et de cosinus non déphasés :

$$A\cos(\omega t - \varphi) = A[\alpha\cos(\omega t) + \beta\sin(\omega t)].$$

· En utilisant la relation cos(a-b) = cos(a) cos(b) + sin(a) sin(b), on obtient :

$$\cos(\omega t - \varphi) = \cos(\omega t) \underbrace{\cos(\varphi)}_{\alpha} + \sin(\omega t) \underbrace{\sin(\varphi)}_{\beta}.$$

· Finalement, on a:

$$A\cos(\omega t - \varphi) = a\cos(\omega t) + b\sin(\omega t),$$

οù

$$a = A\cos(\varphi), \qquad b = A\sin(\varphi).$$

Transformation inverse

· Ici, on part de l'expression

$$f(t) = a\cos(\omega t) + b\sin(\omega t) = A\cos(\omega t - \varphi).$$

 \cdot La fonction f peut être écrite sous la forme :

$$f(t) = A \left[\frac{a}{A} \cos(\omega t) + \frac{b}{A} \sin(\omega t) \right].$$

· En sachant que $\cos(\omega t - \varphi) = \cos(\omega t)\cos(\varphi) + \sin(\omega t)\sin(\varphi)$, on obtient :

$$cos(\varphi) = \frac{a}{A}, \quad sin(\varphi) = \frac{b}{A}.$$

· Grâce au théorème de Pythagore, on peut montrer :

Références

Frédéric Guegnard and Marc Bourcerie.

Mathématiques IUT GEII 1ère Année.

Ellipses, 2017.

Jean Duveau, Marcel Pasquinelli, and Michel Tholomier.

Électronique : IUT 1ère Année GEII - GMP.

DUNOD, 2e édition, 2017.

Geogebra outils et ressources.

https://www.geogebra.org/?lang=fr.

Accessed: 2023-07.