Math 135 Homework 4

Alexandre Lipson

January 29, 2024

1. Show that $\sum_{k=0}^{\infty} \frac{\sin k}{2^k}$ converges.

We will demonstrate convergence of the given series via the stronger property of absolute convergence given by a comparison test with a geometric series.

$$\sum \frac{\sin k}{2^k} \le \sum \left| \frac{\sin k}{2^k} \right| \le \sum \frac{1}{2^k} = \sum \left(\frac{1}{2} \right)^k,$$

which converges since $\left|\frac{1}{2}\right| < 1$.

Since $\sum \left| \frac{\sin k}{2^k} \right|$ converges, $\sum \frac{\sin k}{2^k}$ converges absolutely and therefore also converges.

We will use Euler's formula,

$$e^{i\theta} = \cos\theta + i\sin\theta$$
.

The equality provides that,

$$\sum \frac{\cos k}{2^k} + i \sum \frac{\sin k}{2^k} = \sum \frac{e^{ik}}{2^k}.$$

We note that the value of series series at hand is the imaginary part of $\sum \frac{e^{ik}}{2^k}$.

The latter term can be recognized as a particular form of the geometric series,

$$\sum \frac{e^{ik}}{2^k} = \sum \left(\frac{e^i}{2}\right)^k.$$

Since e^i is a complex number of the form $re^{i\theta}$ with r=1, we know that the norm of e^i is one. Thus,

$$\left| \frac{e^i}{2} \right| = \frac{1}{2} < 1.$$

So, the series converges.

We will now consider the value of the geometric series with $\frac{e^i}{2}$ given by the identity $\sum x^k = \frac{1}{1-x}$.

Using Euler's identity,

$$\frac{1}{1 - e^{i}/2} = \frac{2}{2 - e^{i}}$$

$$= \frac{2}{2 - \cos 1 - i \sin 1}$$

$$= \frac{2(2 - \cos 1 + i \sin 1)}{(2 - \cos 1)^{2} - (i \sin 1)^{2}}$$

$$= \frac{4 - 2 \cos 1 + 2i \sin 1}{(2 - \cos 1)^{2} + \sin 1}.$$

Since we are concerned with $\sum \frac{\sin k}{2^k}$, we will consider the imaginary part of this value as noted above.

$$\operatorname{Im}\left[\frac{4 - 2\cos 1 + 2i\sin 1}{(2 - \cos 1)^2 + \sin 1}\right] = \frac{2\sin 1}{(2 - \cos 1)^2 + \sin 1} \approx 0.566.$$

2. Prove by induction that

$$\frac{1}{(1-x)^{k+1}} = \sum_{n=0}^{\infty} \binom{n+k}{k} x^n, \quad \forall |x| < 1.$$

Proof. First, with given by the identity,

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

we simplify the binomial coefficient to

$$\binom{n+k}{k} = \frac{(n+k)!}{k!n!}.$$

We will rewrite the relationship we wish to demonstrate given the above; we will also move the k! term from the denominator of the sum to the left as it does not depend on the summation index n and reindex the sum starting at n = 1.

$$\frac{k!}{\left(1-x\right)^{k+1}} = 1 + \sum_{n=1}^{\infty} \frac{(n+k)!}{n!} x^n, \quad \forall |x| < 1.$$

We will perform induction on $k \geq 0$. We start with the base case k = 0.

$$\frac{0!}{(1-x)^{0+1}} = 1 + \sum_{n=1}^{\infty} \frac{(n+0)!}{n!} x^n$$
$$\frac{1}{1-x} = 1 + \sum_{n=1}^{\infty} x^n = \sum_{k=0}^{\infty} x^n.$$

We recognize this equality to hold as the identity of the geometric series. So, the base case holds as well.

We claim that the k^{th} case holds by the inductive hypothesis,

$$\frac{k!}{(1-x)^{k+1}} = 1 + \sum_{n=1}^{\infty} \frac{(n+k)!}{n!} x^n, \quad \forall |x| < 1.$$

Then, for the inductive step, we differentiate the relationship given by the inductive hypothesis.

$$\frac{d}{dx} \left[\frac{k!}{(1-x)^{k+1}} \right] = \frac{d}{dx} \left[1 + \sum_{n=1}^{\infty} \frac{(n+k)!}{n!} x^n \right]$$

$$\frac{(k+1)!}{(1-x)^{k+2}} = \sum_{n=1}^{\infty} \frac{(n+k)!}{n!} n x^{n-1}$$

$$\frac{(k+1)!}{(1-x)^{(k+1)+1}} = \sum_{n=1}^{\infty} \frac{(n-k)!}{(n-1)!} x^{n-1}$$

$$= \sum_{j=0}^{\infty} \frac{(j+1+k)!}{(j+1-1)!} x^{j+1-1}$$

$$= \sum_{j=0}^{\infty} \frac{(j+(k+1))!}{j!} x^j$$

$$= 1 + \sum_{j=1}^{\infty} \frac{(j+(k+1))!}{j!} x^j,$$

which is the same as the formula with an index of k+1. So, by induction, the statement holds.

3. (a) Prove the Cauchy Mean Value Theorem 11.5.2

Theorem (Cauchy Mean Value Theorem 11.5.2). For f, g differentiable on (a, b) and continuous on [a, b], with $g' \neq 0$ on (a, b), there exists and r in (a, b) such that

$$\frac{f'(r)}{g'(r)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Proof. Define h(x) = (g(b) - g(a))(f(x) - f(a)) - (f(b) - f(a))(g(x) - g(a)) such that h(a) = h(b) = 0.

Let
$$\underset{[a,b]}{\Delta} f = f(b) - f(a)$$
 and $\underset{[a,b]}{\Delta} g = g(b) - g(a)$.

Since $g' \neq 0$ and the fact that g is continuous on [a,b], then $\underset{[a,b]}{\Delta} g$ cannot be zero by the conditions of Rolle's Theorem that if $g(b) = g(a) \implies \underset{[a,b]}{\Delta} g = 0$, then there would be an r_0 such that $g'(r_0) = 0$. But, this is not the case, so we continue with $\underset{[a,b]}{\Delta} \neq 0$.

Since h is a combination of continuous functions on [a, b], h is continuous on [a, b].

Since h(a) = h(b) = 0 and h is continuous on [a, b], then by the Mean Value Theorem, there exists an r in (a, b) such that h'(r) = 0.

П

Then, with $h'(x) = \sum_{[a,b]} g \cdot f'(x) - \sum_{[a,b]} f \cdot g'(x)$, h'(r) = 0 implies that

$$\underset{[a,b]}{\Delta} f \cdot g'(r) = \underset{[a,b]}{\Delta} g \cdot f'(r).$$

Then, recalling that $g' \neq 0$ on [a, b] and $\underset{[a,b]}{\Delta} g \neq 0$,

$$\frac{f'(r)}{g'(r)} = \frac{\sum\limits_{[a,b]}^{\Delta} f}{\sum\limits_{[a,b]}^{\Delta} g} = \frac{f(b) - f(a)}{g(b) - g(a)}, \quad r \in (a,b).$$

So, the statement holds for some r.

(b) Prove that, for f, g continuous on [a, b], there exists a $c \in [a, b]$ such that,

$$g(c) \int_a^b f(t) dt = f(c) \int_a^b g(t) dt.$$

Proof. Let F'(x) = f(x) and G'(x) = g(x).

By the Cauchy Mean Value Theorem, $\exists c \in (a, b)$ such that,

$$G'(c)[F(b) - F(a)] = F'(c)[G(b) - G(a)]$$

$$g(c)[F(b) - F(a)] = f(c)[G(b) - G(a)].$$

By the Fundamental Theorem of Calculus, for F'(x) = f(x), $F(b) - F(a) = \int_a^b f(t) dt$. The same holds for G'(x).

So, for some c in (a, b),

$$g(c) \int_a^b f(t) dt = f(c) \int_a^b g(t) dt.$$

(c) Prove that, for ϕ , h continuous on [a, b], with $h(t) \neq 0$ for all $t \in [a, b]$, then,

$$\int_a^b \phi(t)h(t) dt = \phi(c) \int_a^b h(t) dt.$$

If $h(t) \neq 0$ for all $t \in (a, b)$, then h(t) > 0 or h(t) < 0 for all $t \in (a, b)$.

With $h(t) \ge 0$, the Second Mean Value Theorem for Integrals 5.9.3 applies to demonstrate that there is a c in (a, b) such that the statement holds.

Similarly, for $h(t) \leq 0$, the proof of 5.9.3 can be altered with the use of -h, so that the minimum and maximum values attained by h on [a, b] are flipped.

(d) Prove that, for some c between a and x,

$$\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} dt = \frac{f^{(n+1)}(c)(x-a)^{n+1}}{(n+1)!}, \qquad (x-t)^{n} \neq 0, \quad \forall t \in (a,x),$$

which is the remainder in Taylor's theorem.

Proof. By (c), there exists an $c \in (a, x)$ such that,

$$\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} dt = \frac{f^{(n+1)}(c)}{n!} \int_{a}^{x} (x-t)^{n} dt$$

$$= \frac{f^{(n+1)}(c)}{n!} \left[\frac{-(x-t)^{n+1}}{n+1} \Big|_{a}^{x} \right]$$

$$= \frac{f^{(n+1)}(c)}{(n+1)!} \left((x-a)^{n+1} - (x-x)^{n+1} \right)$$

$$= \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}.$$

(e) Show that,

$$\frac{1}{10\sqrt{2}} < \int_0^1 \frac{x^9}{\sqrt{1+x}} \, dx < \frac{1}{10}.$$

Let $f(x) = \frac{1}{\sqrt{1+x}}$; f is decreasing on the interval [0, 1].

Then, the local extrema can be determined by the endpoints, $\min_{[0,1]} f = \frac{1}{\sqrt{2}}$ and $\max_{[0,1]} f = 1$.

So,

$$\frac{1}{\sqrt{2}} < \frac{1}{\sqrt{1+x}} < 1, \quad \forall x \in [0,1].$$

Then, with $x^9 > 0$ for all x in closed positive unit interval [0, 1],

$$\frac{x^9}{\sqrt{2}} < \frac{x^9}{\sqrt{1+x}} < x^9.$$

We then integrate on the interval [0, 1],

$$\int_0^1 \frac{x^9}{\sqrt{2}} dx < \int_0^1 \frac{x^9}{\sqrt{1+x}} dx < \int_0^1 x^9 dx$$
$$\frac{1}{10\sqrt{2}} < \int_0^1 \frac{x^9}{\sqrt{1+x}} dx < \frac{1}{10}.$$

4. (a) Prove the triangle identity in \mathbb{C} ,

$$|z + \omega| < |z| + |\omega|$$
.

Proposition (*). The square of the norm of a number is the product of a number and its conjugate,

$$|z|^2 = z\bar{z}.$$

Proof of (*). Let $z = \alpha + \beta i$.

So,
$$|z| = \sqrt{\alpha^2 + \beta^2}$$
 and $|z|^2 = \alpha^2 + \beta^2$.

Then, $z\bar{z} = (\alpha + \beta i)(\alpha - \beta i) = \alpha^2 - \beta^2 i^2 = \alpha^2 + \beta^2$.

It is now clear that $|z|^2 = z\bar{z}$.

Proposition (**). The conjugate of a sum of two numbers is equal to the sum of their conjugates,

$$\overline{z+\omega}=\bar{z}+\bar{\omega}.$$

Proposition (***). The conjugate of a product of two numbers is equal to the product of their conjugates,

$$\overline{z}\overline{\omega} = \bar{z}\bar{\omega}.$$

Proposition (****). The sum of a number and its conjugate is equal to twice the real part of the number,

$$z + \bar{z} = 2 \operatorname{Re}[z].$$

Proof of (****). Let $z = \alpha + \beta i$. Then $\text{Re}[z] = \alpha$.

With
$$\bar{z} = \alpha - \beta i$$
, $z + \bar{z} = \alpha + \beta i + \alpha - \beta i = 2\alpha = 2 \operatorname{Re}[z]$.

Proposition (*****). The norm of a number is equal to the norm of its conjugate,

$$|z| = |\bar{z}|$$
.

Proposition (*****). The norm of a product of two numbers is equal to the product of their norms,

$$|z\omega| = |z||\omega|.$$

Proof of (******). Let z = a + bi and $\omega = x + yi$.

Then,

$$z\omega = ax + ayi + bxi + byi^{2}$$
$$= (ax - by) + (ay + bx)i.$$

So,

$$\begin{split} |z\omega| &= \sqrt{ax - by^2 + ay + bx^2} \\ &= \sqrt{a^2x^2 - 2abxy + b^2y^2 + a^2y^2 + 2abxy + b^2x^2} \\ &= \sqrt{a^2x^2 + b^2y^2 + a^2y^2 + b^2x^2} \\ &= \sqrt{(a^2 + b^2)(x^2 + y^2)}. \end{split}$$

With
$$|z|=\sqrt{a^2+b^2}$$
 and $|\omega|=\sqrt{x^2+y^2}$, then
$$|z||\omega|=\sqrt{(a^2+b^2)(x^2+y^2)}.$$

So, the proposition holds.

Lemma.

$$z\bar{\omega} + \bar{z}\omega \le 2|z||\omega|$$
.

Proof of Lemma. Since $\overline{z\overline{\omega}} = \overline{z}\omega$ by (***), then $z\overline{\omega} + \overline{z}\omega = 2\operatorname{Re}[z\overline{\omega}]$ by (****).

Since $\operatorname{Re}[z] \leq z$, then $2\operatorname{Re}[z\bar{\omega}] \leq 2|z\bar{\omega}|$.

But, $2|z\bar{\omega}| = 2|z||\omega|$ by (****) and (*****).

So, $z\bar{\omega} + \bar{z}\omega \leq 2|z||\omega|$ and the Lemma holds.

Proof of statement. We begin with

$$|z + \omega|^2 = (z + \omega)(\bar{z} + \bar{\omega}) \text{ by (*) and (**)}$$

$$= z\bar{z} + z\bar{\omega} + \bar{z}\omega + \omega\bar{\omega}$$

$$= |z|^2 + z\bar{\omega} + \bar{z}\omega + |\omega|^2 \text{ by (*)}$$

$$\leq |z|^2 + 2|z||\omega| + |\omega|^2 \text{ by the Lemma}$$

$$= (|z| + |\omega|)^2.$$

Since

$$|z + \omega|^2 \le (|z| + |\omega|)^2,$$

then,

$$|z+\omega| \leq |z| + |\omega|$$

holds as well.

Figure 1: Proof of triangle inequality in the complex plane.

(b) Prove that,

$$|z + \omega|^2 + |z - \omega|^2 = 2(|z|^2 + |\omega|^2).$$

Proof. We proceed with the propositions (*) and (**) above,

$$\begin{aligned} |z+\omega|^2 + |z-\omega|^2 &= (z+\omega)(\bar{z}+\bar{\omega}) + (z-\omega)(\bar{z}-\bar{\omega}) \\ &= z\bar{z} + \bar{z}\omega + z\bar{\omega} + \omega\bar{\omega} + z\bar{z} - \bar{z}\omega - \bar{\omega}z + \omega\bar{\omega} \\ &= 2z\bar{z} + 2\omega\bar{\omega} \\ &= 2\left(|z|^2 + |\omega|^2\right). \end{aligned}$$