Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Aufgabe 16.1 – Lösung

a) **ges:** oberes Druckniveau p_2 (Wärmeabgabe an Umgebung)

$$T_3 = T_a + \Delta T = 25 \,^{\circ}\text{C} + 10 \,\text{K} = 35 \,^{\circ}\text{C}$$
 (1)

$$\implies p_2 = p_3 = p_s(T_3) = 8.87 \,\text{bar} \,\text{(aus Diagramm)}$$
 (2)

b) **ges:** Kompressionsarbeit $w_{t,12}$

1. Hauptsatz:
$$w_{t,12} + \underbrace{q_{12}}_{-0} = \Delta h_{12} \implies w_{t,12} = h_2 - h_1$$
 (3)

$$h_1 = h''(T_1) = h''(0 \,^{\circ}\text{C}) = 398.6 \,\frac{\text{kJ}}{\text{kg}} \text{ (aus Diagramm)}$$
 (4)

$$\eta_{\text{komp.}} = \frac{w_{\text{t,12,rev}}}{w_{\text{t,12}}} = \frac{h_{2s} - h_1}{h_2 - h_1}$$
(5)

$$\implies h_2 = h_1 + \frac{h_{2s} - h_1}{\eta_{\text{komp.}}} \tag{6}$$

$$s_1 = s_{2s} = s''(T_1) = 1.7271 \frac{\text{kJ}}{\text{kg K}}$$
 (7)

$$\implies h_{2s} = h(s_1, p_2) = 421.63 \frac{\text{kJ}}{\text{kg}} \text{ (aus Diagramm)}$$
 (8)

$$\implies h_2 = 398.6 \,\frac{\text{kJ}}{\text{kg}} + \frac{(421.63 - 398.6)\text{kJ/kg}}{0.85} = 425.69 \,\frac{\text{kJ}}{\text{kg}} \tag{9}$$

$$\implies \boxed{w_{\rm t,12}} = (425.69 - 398.6) \frac{\rm kJ}{\rm kg} = \boxed{27.09 \frac{\rm kJ}{\rm kg}} \tag{10}$$

c) **ges:** Wärme Verdampfer q_0

$$q_0 = h_1 - h_4 \tag{11}$$

$$h_4 = h_3 = h'(p_3) = 249.01 \frac{\text{kJ}}{\text{kg}} \text{ (aus Diagramm)}$$
 (12)

$$\implies \boxed{q_0} = (398.6 - 249.01) \frac{\text{kJ}}{\text{kg}} = \boxed{149.59 \frac{\text{kJ}}{\text{kg}}}$$
 (13)

d) ges: Leistungszahl $\epsilon_{\rm Km}$

$$\overline{\epsilon_{\text{Km}}} = \frac{\dot{Q}_0}{P_{\text{el}}} = \frac{q_0}{w_{\text{t},12}} = \frac{149.59 \,\text{kJ/kg}}{27.09 \,\text{kJ/kg}} = \boxed{5.52}$$
(14)

e) **ges:** Antriebsleistung $P_{\rm el}$

$$\epsilon_{\rm Km} = \frac{\dot{Q}_0}{P_{\rm el}} \tag{15}$$

$$\Longrightarrow \boxed{P_{\rm el}} = \frac{\dot{Q}_0}{\epsilon_{\rm Km}} = \frac{1.5 \,\mathrm{kW}}{5.52} = \boxed{0.2717 \,\mathrm{kW}} \tag{16}$$

Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Aufgabe 16.2 – Lösung

T	ρ	h	s	
[°C]	$[\mathrm{kg/m^3}]$	[kJ/kg]	$[\mathrm{kJ/(kgK)}]$	
$p=1.25\mathrm{bar}$				
-21.381*	1362.5	171.85	0.8932	
-21.381**	6.4102	385.70	1.7426	
-21.000	6.3983	386.01	1.7438	
-16.000	6.2482	390.06	1.7597	
-15.000	6.2193	390.87	1.7629	
-14.000	6.1908	391.68	1.7660	
-13.000	6.1625	392.5	1.7691	

Zustand (a) - zwischen den Zeilen				
Zustand 2s -zwischen den Zeilen				
Zustand (3)				
Zustand 4 - zwischen den Zeilen				

T	ρ	h	s		
[°C]	$[\mathrm{kg/m^3}]$	[kJ/kg]	[kJ/(kg K)]		
$p=7.25\mathrm{bar}$					
27.000	1199.2	237.40	1.1293		
27.911*	1195.6	238.71	1.1337		
27.911**	35.289	413.79	1.7152		
41.000	32.703	427.21	1.7588		
42.000	32.531	428.22	1.762		
43.000	32.361	429.22	1.7652		
44.000	32.193	430.23	1.7684		
53.000	30.798	439.21	1.7963		
54.000	30.654	440.21	1.7994		
55.000	30.512	441.20	1.8024		
56.000	30.372	442.20	1.8054		

Thermodynamik I Übung 16 Version vom 13. Januar 2025

Fachgebiet Thermodynamik

Fakultät III - Prozesswissenschaften

a) **ges:** Massenstrom \dot{m}

 $4 \rightarrow 1$:

$$\dot{Q}_0 = \dot{m} \cdot \Delta h_{41} \tag{17}$$

$$\implies \dot{m} = \frac{\dot{Q}_0}{\Delta h_{A1}} \tag{18}$$

$$h_4 = h_3 = h(p = 7.25 \,\text{bar}, T = 27\,^{\circ}\text{C}) = 237.4 \,\frac{\text{kJ}}{\text{kg}} \text{ (aus Tabelle)}$$
 (19)

$$h_1 = h(p = 1.25 \,\text{bar}, T = -21 \,^{\circ}\text{C}) = 386.01 \,\frac{\text{kJ}}{\text{kg}} \text{ (aus Tabelle)}$$
 (20)

$$\implies \left[\dot{m} \right] = \frac{300 \cdot 10^{-3} \,\text{kW}}{(386.01 - 237.4) \,\text{kJ/kg}} = \left[2.019 \cdot 10^{-3} \,\frac{\text{kg}}{\text{s}} \right] \tag{21}$$

b) **ges:** Antriebsleistung P_{1a2}

 $(1) \rightarrow (1a)$:

$$\dot{Q}_{11a} = \dot{m} \cdot (h_{1a} - h_1) \tag{22}$$

$$\implies h_{1a} = \frac{\dot{Q}_{11a}}{\dot{m}} + h_1 \tag{23}$$

$$h_{1a} = \frac{10 \cdot 10^{-3} \text{ kW}}{2.019 \cdot 10^{-3} \text{ kg/s}} + 386.01 \frac{\text{kJ}}{\text{kg}} = 390.964 \frac{\text{kJ}}{\text{kg}}$$
(24)

 s_{1a} wird durch lineare Interpolation in der Stoffwerttabelle berechnet:

$$s_{1a} = \frac{(390.964 - 390.87)\text{kJ/kg}}{(391.68 - 390.87)\text{kJ/kg}} \cdot (1.766 - 1.7629)\frac{\text{kJ}}{\text{kg}} + 1.7629\frac{\text{kJ}}{\text{kg}}$$
(25)

$$= 1.7633 \, \frac{kJ}{kg \, K} \tag{26}$$

Fachgebiet Thermodynamik Fakultät III - Prozesswissenschaften

 $s_{2s} = s_{1a} \implies h_{2s}$ wird ebenfalls durch lineare Interpolation bestimmt:

$$h_{2s} = \frac{(1.7633 - 1.762) \text{kJ/(kg K)}}{(1.7652 - 1.762) \text{kJ/(kg K)}} \cdot (429.22 - 428.22) \frac{\text{kJ}}{\text{kg}} + 428.22 \frac{\text{kJ}}{\text{kg}}$$
(27)

$$= 428.61 \, \frac{\text{kJ}}{\text{kg}} \tag{28}$$

$$\eta_{S,V} = \frac{w_{\rm t,1a2,rev.ad}}{w_{\rm t,1a2}}$$
(29)

$$\implies w_{t,1a2} = \frac{w_{t,1a2,rev.ad}}{\eta_{S,V}} = \frac{h_{2s} - h_{1a}}{\eta_{S,V}}$$
 (30)

$$\implies w_{t,1a2} = \frac{(428.61 - 390.964) \text{kJ/kg}}{0.75} = 50.2 \frac{\text{kJ}}{\text{kg}}$$

$$\boxed{P_{1a2}} = \dot{m} \cdot w_{t,1a2} = 2.019 \cdot 10^{-3} \frac{\text{kg}}{\text{s}} \cdot 50.2 \frac{\text{kJ}}{\text{kg}} = \boxed{0.1013 \text{ kW}}$$
(32)

$$P_{1a2} = \dot{m} \cdot w_{t,1a2} = 2.019 \cdot 10^{-3} \frac{\text{kg}}{\text{s}} \cdot 50.2 \frac{\text{kJ}}{\text{kg}} = 0.1013 \,\text{kW}$$
 (32)

c) **ges:** Exergieverluststrom in der Drossel $\Delta \dot{E}_{V,Drossel}$

$$\Delta \dot{E}_{V,\text{Drossel}} = \dot{m} \cdot T_{\text{a}} \cdot \Delta s_{34} \tag{33}$$

$$x_4 = \frac{h_4 - h'(p = 1.25 \,\text{bar})}{h''(p = 1.25 \,\text{bar}) - h'(p = 1.25 \,\text{bar})}$$
(34)

$$= \frac{(237.4 - 171.85)\text{kJ/kg}}{(385.7 - 171.85)\text{kJ/kg}} = 0.3065$$
(35)

$$s_4 = s'(p = 1.25 \,\text{bar}) + x_4 \cdot (s''(p = 1.25 \,\text{bar}) - s'(p = 1.25 \,\text{bar}))$$
(36)

$$= 0.89319 \frac{kJ}{kgK} + 0.3065 \cdot (1.7426 - 0.89319) \frac{kJ}{kgK}$$
 (37)

$$= 1.1535 \, \frac{\text{kJ}}{\text{kg K}} \tag{38}$$

$$s_3 = s(p = 7.25 \,\text{bar}, T = 27\,^{\circ}\text{C}) = 1.1293 \,\frac{\text{kJ}}{\text{kg K}} \text{ (aus Tabelle)}$$
 (39)

$$\implies \boxed{\dot{E}_{V,\text{Drossel}}} = 2.019 \cdot 10^{-3} \, \frac{\text{kg}}{\text{s}} \cdot 295.15 \, \text{K} \cdot (1.1535 - 1.1293) \frac{\text{kJ}}{\text{kg K}}$$
(40)

$$= \boxed{14.42 \,\mathrm{W}} \tag{41}$$