Modeling and Simulation of Charged Molecules with Legendre-Transformed Poisson-Boltzmann Electrostatic Free Energy Functional

Zunding Huang, Li-Tien Cheng, Bo Li, Shuang Liu

UC San Diego

05/21/2022

Outline

- $\hbox{ $ \bullet $ Legendre-Transformed (LT) Poisson-Boltzmann (PB) functional }$
- 2 Applications to interface problem
- Numerical methods and results
- Conclusions

Legendre-Transformed Poisson-Boltzmann functional

Classical Poisson-Boltzmann energy functional

$$I[\phi] = \int_{\Omega} \left[-\frac{\epsilon}{2} |\nabla \phi|^2 + f\phi - B(\phi) \right] dx$$

- $\Omega \subseteq \mathbb{R}^3$: bounded region
- $\phi:\Omega\to\mathbb{R}$: electrostatic potential
- $\epsilon:\Omega\to\mathbb{R}$: dielectric coefficient
- $f:\Omega \to \mathbb{R}$: fixed charge density
- $B: \mathbb{R} \to \mathbb{R}$: strictly convex, B(0) = 0 and $B(\infty) = \infty$. E.g. $B(\phi) = \cosh(\phi)$

The Euler-Lagrange equation of $I[\phi]$ is

PBE:
$$\nabla \cdot \epsilon \nabla \phi - B'(\phi) = -f$$

Legendre-Transformed Poisson-Boltzmann functional

Legendre Transform: For function B, $\forall \xi \in \mathbb{R}, B^*(\xi) = \sup_{s \in \mathbb{R}} (s\xi - B(s))$

LT PB energy functional (Maggs, 2012)

$$J[D] = \int_{\Omega} \left[\frac{1}{2\epsilon}|D|^2 + B^*(f - \nabla \cdot D)\right] dx + \int_{\partial \Omega} gD \cdot ndS$$

 $D: \Omega \to \mathbb{R}^3, D = -\epsilon \nabla \phi$

Equivalence between two functionals (Ciotti & Li, 2018)

 $\forall \phi \in H^1_{\sigma}(\Omega), \forall D \in H(div, \Omega), \text{ we have } I[\phi] \leq J[D]$

- $H_g^1(\Omega) = \{ u \in H^1(\Omega) : u = g \text{ on } \partial\Omega \}$
- $H(div, \Omega) = \{D \in [L^2(\Omega)]^3 : \nabla \cdot D \in L^2(\Omega)\}$

Moreover, we have $D_B = -\epsilon \nabla \phi_B$ and

$$I[\phi_B] = \max_{\phi \in H^1_\sigma(\Omega)} I[\phi] = \min_{D \in H(\mathit{div},\Omega)} J[D] = J[D_B]$$

Applications to interface problem

Classical PB energy functional:

$$I_{\Gamma}[\phi] = \int_{\Omega} \left[-\frac{\epsilon_{\Gamma}}{2} |\nabla \phi|^{2} + f\phi - \chi_{+}B(\phi) \right] dx$$

$$\epsilon_{\Gamma} = \begin{cases} \epsilon_{+} & \text{in } \Omega_{+} \\ \epsilon_{-} & \text{in } \Omega_{-} \end{cases}$$

LT PB energy functional:

$$\begin{split} J_{\Gamma}[D] &= \int_{\Omega} [\frac{1}{2\epsilon_{\Gamma}} |D|^2 + \chi_{+} B^*(f - \nabla \cdot D)] dx + \int_{\partial \Omega} gD \cdot n dS, \forall D \in V_{\Gamma} \\ V_{\Gamma} &= \{D \in H(div, \Omega) : \nabla \cdot D = f \text{ in } \Omega_{-} \} \end{split}$$

Applications to interface problem

Equivalence between two functionals (Ciotti & Li, 2018)

 $\forall \phi \in H^1_{\mathbf{g}}(\Omega), \forall D \in V_{\Gamma}$, we have

$$I_{\Gamma}[\phi] \leq J_{\Gamma}[D]$$

Moreover, we have

$$\mathit{I}_{\Gamma}[\phi_{\Gamma}] = \mathsf{max}_{\phi \in H^1_x(\Omega)} \mathit{I}_{\Gamma}[\phi] = \mathsf{min}_{D \in V_{\Gamma}} \mathit{J}_{\Gamma}[D] = \mathit{J}_{\Gamma}[D_{\Gamma}]$$

Here, $D_{\Gamma} = -\epsilon_{\Gamma} \nabla \phi_{\Gamma}$.

Problem

Convex optimization problem with constraint:

$$\begin{cases} \min J_{\Gamma}[D] \\ \text{s.t. } \nabla \cdot D = f \text{ in } \Omega_{-} \end{cases}$$

Penalty method

Given a penalty coefficient μ , we need to minimize the following:

$$J_{\Gamma,\mu}[D] = J_{\Gamma}[D] + \frac{1}{\mu} \int_{\Omega_{-}} (\nabla \cdot D - f)^2 dx$$

$$= \int_{\Omega} [\frac{1}{2\epsilon_{\Gamma}}|D|^2 + \chi_{+}B^*(f - \nabla \cdot D) + \frac{1}{\mu}\chi_{-}(\nabla \cdot D - f)^2]dx + \int_{\partial\Omega} gD \cdot ndS$$

One good optimization algorithm is the limited-memory BFGS method.

$$J_{\Gamma,\mu}[D] = J_{\Gamma}[D] + \frac{1}{\mu} \int_{\Omega_{-}} (\nabla \cdot D - f)^{2} dx$$

$$= \int_{\Omega} \left[\frac{1}{2\epsilon_{\Gamma}} |D|^{2} + \chi_{+} B^{*}(f - \nabla \cdot D) + \frac{1}{\mu} \chi_{-} (\nabla \cdot D - f)^{2} \right] dx + \int_{\partial \Omega} gD \cdot ndS$$

Convergence theorem of penalty method

- **①** For each μ , there exists a unique $D_{\Gamma,\mu}$ which minimizes $J_{\Gamma,\mu}[D]$
- 2 min $J_{\Gamma,\mu}[D] \to \min_{D \in V_{\Gamma}} J_{\Gamma}[D]$ as $\mu \to 0$

Computational region $\Omega = [-1, 1]^3$.

Particular solution

For Γ which is a sphere in \mathbb{R}^3 , one particular solution $D_{\Gamma,\mu}$ is given by

$$D_{\Gamma,\mu}(r) = \begin{cases} \frac{\epsilon_{+} \exp(-\lambda r)(\lambda r + 1)}{r^{3}} \mathbf{v} & \text{in } \Omega_{+} \\ -2C\epsilon_{-}\mathbf{v} & \text{in } \Omega_{-} \end{cases}$$

Here $\mathbf{v}=(x,y,z)$, r is the distance to the origin, C is a constant to be decided in terms of μ , $\lambda=\sqrt{\frac{1}{\epsilon_+}}$ is also a constant.

Figure 2: Computational domain

In numerical test, constants include

- Radius $R = 1/\sqrt{2}$
- Tolerance for the norm of the gradient = $3 * 10^{-6}$

Parameters include

- Number of intervals on each direction N
- ullet Penalty coefficient μ

Result for $\mu = 1$, change N

N	L1 rel. error	L2 rel. error	Time	Epoch	Order
10	0.6250	0.6286	5s	1131	-
20	0.2944	0.4386	1m	1910	0.6119
40	0.1296	0.3046	20m	3867	0.5858
80	0.0657	0.2110	2h	5895	0.5564
120	0.0445	0.1716	14h	8439	0.5222

Table 1: Result for $\mu = 1$

The minimal value of the functional is approximately $1.23*10^4$. The order of convergence is approximately 0.5.

Result for $\mu = 1$, change N

Figure 3: Result for $\mu = 1$

Result for $\mu = 10^{-2}$, change N

N	L1 rel. error	L2 rel. error	Time	Epoch	Order
10	0.6209	0.6250	30s	10983	-
20	0.2938	0.4371	13m	23582	0.6068
40	0.1298	0.3043	3.5h	56498	0.5818
80	0.0657	0.2109	3d8h	128958	0.5551

Table 2: Result for $\mu=10^{-2}$

The minimal value of the functional is approximately $1.19*10^4$. The order of convergence is approximately 0.5.

Result for $\mu = 10^{-2}$, change N

Figure 4: Result for $\mu = 10^{-2}$

1/5

Result for $\mu = 10^{-5}$, change N

N	L1 rel. error	L2 rel. error	Time	Epoch	Order
10	0.6209	0.6250	2m	5576	-
20	0.2938	0.4371	40m	80235	0.6067
40	0.1298	0.3043	5d	928830	0.5817

Table 3: Result for $\mu = 10^{-5}$

The minimal value of the functional is approximately $1.15*10^4$. The order of convergence is approximately 0.5.

Result for $\mu = 10^{-5}$, change N

Figure 5: Result for $\mu = 10^{-5}$

Result for N=40, change μ

μ	L1 rel. error	L2 rel. error	Time	Epoch	Value
10 ⁵	1.4923	2.4879	30m	2150	2.92*10 ⁷
10 ⁴	0.9509	1.5560	10m	3018	2.92*10 ⁶
10 ³	0.3119	0.5732	10m	3003	3.02*10 ⁵
10 ²	0.1456	0.3360	5m	2588	4.05*10 ⁴
10	0.1296	0.3077	10m	2520	1.44*10 ⁴
1	0.1296	0.3046	20m	3867	1.18*10 ⁴
10^{-1}	0.1297	0.3043	1h	11960	1.15*10 ⁴
10^{-2}	0.1298	0.3043	3h30m	56498	1.15*10 ⁴
10^{-5}	0.1298	0.3043	5d	928830	1.15*10 ⁴

Table 4: Result for N = 40

Test for constraint

Numerical quadrature in Ω_-

As $\mu
ightarrow 0$,

$$E(D) = \int_{\Omega_{-}} (\nabla \cdot D - f)^{2} dx \to 0$$

N	μ	E(D)	Min Value of LT PB functional
20	1	262.2015	1.1317*10 ⁴
20	10^{-2}	0.0262	1.1039*10 ⁴
20	10^{-5}	$2.6250*10^{-8}$	1.1036*10 ⁴

Table 5: Result for numerical quadrature in Ω_{-}

Conclusions

- LT PB functional: A novel convex functional for electrostatic energy.
- Penalty method converges: Theoretical proof and numerical test.
- Further improvement: Combine the model with the level-set method for molecular dynamics.