Volume Rendering

Pramook Khungurn

December 11, 2019

1 The Equation of Transfer

- When light travels in a participating medium, there are three processes which can change the radiance.
 - Absorption light collides with particles and is converted to other types of energy.
 - Emission the material itself adds light to the environment.
 - Scattering light collides with particles and changes direction.
- The equation of transfer is an integro-differential equation that describes the change of radiance as light travels through participating media. From 10 miles above, the equation looks like:

change of radiance = absorption term
$$+$$
 emission term $+$ scattering term. (1)

We will discuss each of the terms in turn.

• The "change of radiance" term is modeled as the directional derivative of the radiance function $L(x,\omega)$.

change of radiance =
$$\omega \cdot \nabla L(x, \omega)$$
.

Here, x is a position in 3D, and ω is a direction, i.e. a unit vector. This directional derivative can be thought of as differentiation with respect to distance along direction ω . That is,

$$\omega \cdot \nabla L(x, \omega) = \frac{\mathrm{d}L(x + s\omega, \omega)}{\mathrm{d}s},$$

where s denotes distance along the ω direction.

• The "absorption term" seeks to model the absorption process as a Poisson process.

The probability of an absorption event occurring while the light travels an infinitesimal distance ds around x in direction ω is given by $\sigma_a(x,\omega)ds$, where $\sigma_a(x,\omega)$ is the absorption cross section.

When an absorption event occur, all the radiance is taken away. Thus, we have that

$$\frac{\mathrm{d}L(x+s\omega,\omega) = -(\sigma_a(x,\omega)\mathrm{d}s)L(x,\omega)}{\mathrm{d}L(x+s\omega,\omega)} = -\sigma_a(x,\omega)L(x,\omega)$$

Thus, we have that

absorption term =
$$-\sigma_a(x,\omega)L(x,\omega)$$
.

Note that as the absorption cross section gives the probability that absorption occurs per unit distance. Hence, its unit is m^{-1} .

• The "emission term" is modeled by a function $Q(x,\omega)$:

emission term =
$$Q(x, \omega)$$
.

The function Q gives additional radiance per unit distance. Therefore, its unit is W m⁻³ sr⁻¹, which is basically the unit of radiance divided by distance.

• The "scattering term" is the most complicated. There are two components: the *out-scattering* and *in-scattering*.

scattering term = out-scattering term + in-scattering term

- Scattering is, again, modeled as a Poisson process. When a scattering event occurs, both outscattering and in-scattering occur at the same time. The *scattering coefficient* $\sigma_s(x,\omega)$ gives the probability that a scattering event occurs per unit length. (So, the unit is m⁻¹.)
- The out-scattering term accounts for the event that light traveling along direction ω change its direction to another direction. The event removes all the radiance and thus looks pretty much like the absorption term.

out-scattering term =
$$-\sigma_s(x,\omega)L(x,\omega)$$
.

- The in-scattering term accumulates light that changes direction from other direction to ω . The probability that light from direction ω' change its direction to ω is accounted by the *phase function* $p(x, \omega' \to \omega)$. So,

in-scattering term =
$$\sigma_s(x,\omega) \int_{S^2} p(x,\omega' \to \omega) L(x,\omega') d\omega'$$

Here, S^2 is the unit sphere in 3D. The unit of the phase function is sr^{-1} .

In conclusion,

scattering term =
$$-\sigma_s(x,\omega)L(x,\omega) + \int_{S^2} p(x,\omega'\to\omega)L(x,\omega') d\omega'$$

• Writing the transfer equation in full, we have

$$\omega \cdot \nabla L(x,\omega) = -(\sigma_a(x,\omega) + \sigma_s(x,\omega))L(x,\omega) + Q(x,\omega) + \int_{S^2} p(x,\omega' \to \omega)L(x,\omega) \ d\omega'.$$

We usually combine the absorption cross section and the scattering coefficient to one extinction coefficient:

$$\sigma_t(x,\omega) = \sigma_a(x,\omega) + \sigma_s(x,\omega).$$

So, the widely used form of the transfer equation is

$$\omega \cdot \nabla L(x,\omega) = -\sigma_t(x,\omega)L(x,\omega) + Q(x,\omega) + \int_{S^2} p(x,\omega' \to \omega)L(x,\omega) \ d\omega'.$$

2 Solutions to Some Special Cases

2.1 Extinction Only

• Extinction only: In this case, only the extinction (absorption and out-scattering) term has effect.

• Let x_0 and x_1 be points in space, surrounded by a medium. We shall find the radiance traveling along direction ω , starting from x_0 .

Let s denote the distance along ω . We can think of L and σ_a as functions of s. That is, we can write $L(x,\omega)$ as $L(x_0+s\omega,\omega)$ or simply L(s) or L. In the same way, $\sigma_t(x,\omega)$ becomes $\sigma(x_0+s\omega,\omega)$ or $\sigma_t(s)$. So, the transfer equation becomes

$$\frac{dL}{ds} = -\sigma_t(s)L$$

$$\frac{1}{L} dL = -\sigma_t(s) ds$$

$$\int \frac{1}{L} dL = -\int \sigma_t(s) ds$$

$$\log L = -\int \sigma_t(s)ds + C$$

$$L = Ae^{-\int \sigma_t(s)ds}.$$

Bringing back x_0 and ω , we have

$$L(x_0 + r\omega, \omega) = Ae^{-\int_0^r \sigma_t(x_0 + s\omega, \omega)ds}$$
.

Substituting d=0, we have that $A=L(x_0,\omega)$. Hence,

$$L(x_0 + r\omega, \omega) = L(x_0, \omega)e^{-\int_0^r \sigma_t(x_0 + s\omega, \omega)ds}.$$

- Let $x_1 = x_0 + r\omega$. The integral $\int_0^r \sigma_t(x_0 + s\omega, \omega) ds$ is called the *optical thickness* and is denoted $\tau(x_0 \to x_1)$.
- The quantity $e^{\int_0^r \sigma_t(x_0 + s\omega, \omega)ds}$ is called the beam transmittance and is denoted by $T_r(x_0 \to x_1)$.
- Below are some properties of the optical thickness and the beam transmittance.

$$L(x_1, \omega) = L(x_0, \omega) T_r(x_0 \to x_1) = L(x_0, \omega) e^{-\tau(x_0 \to x_1)}$$
$$T_r(x_0 \to x_2) = T_r(x_0 \to x_1) T_r(x_1 \to x_2)$$
$$\tau(x_0 \to x_2) = \tau(x_0 \to x_1) + \tau(x_1 \to x_2)$$

given that x_0, x_1, x_2 lie in this order along the line whose direction is ω .

• If $\sigma_t(x,\omega)$ is constant, we say that the material is homogeneous. In this case, we have that

$$\tau(x_0 \to x_1) = \sigma_t ||x_1 - x_0||.$$

Hence,

$$T_r(x_0 \to x_1) = e^{-\sigma_t ||x_1 - x_0||}$$

The above equation is called Beer's law.

2.2 Extinction and Emission Only

• In this case, the transfer equation becomes

$$\frac{dL}{ds} = -\sigma_t(s)L + Q(s)$$
$$\frac{dL}{ds} + \sigma_t(s)L = Q(s),$$

which is a first order linear ODE. To solve it, we multiply both sides by $I(s) = e^{\int_0^s \sigma(v) dv}$.

$$I(s)\frac{dL}{ds} + I(s)\sigma_t(s)L = I(s)Q(s)$$

$$\frac{d}{ds}\left\{I(s)L\right\} = I(s)Q(s)$$

$$I(s)L = \int_0^s I(u)Q(u) \ du + C$$

$$L = \frac{\int_0^s I(u)Q(u) \ du + C}{I(s)}$$

$$L = e^{-\int_0^s \sigma(v)dv} \left[\int_0^s e^{\int_0^u \sigma(v)dv}Q(u) \ du + C\right]$$

$$L = \int_0^s e^{\int_0^u \sigma(v)dv - \int_0^s \sigma(v)dv}Q(u) \ du + Ce^{-\int_0^s \sigma(v)dv}$$

$$L = \int_0^s e^{-\int_u^0 \sigma(v)dv - \int_0^s \sigma(v)dv}Q(u) \ du + Ce^{-\int_0^s \sigma(v)dv}$$

$$L = \int_0^s e^{-\int_u^s \sigma(v)dv}Q(u) \ du + Ce^{-\int_0^s \sigma(v)dv}$$

$$L(x_0 + s\omega, \omega) = \int_0^s T_r(x_0 + u\omega \to x_0 + s\omega)Q(x + u\omega, \omega) \ du + CT_r(x_0 \to x_0 + s\omega)$$

Substituting s=0 yields $C=L(x_0,\omega)$. The solution, in full, is then

$$L(x_0 + s\omega, \omega) = \int_0^s T_r(x_0 + u\omega \to x_0 + s\omega)Q(x + u\omega, \omega) \ du + L(x_0, \omega)T_r(x_0 \to x_0 + s\omega).$$

Simplifying the notation by letting $x_1 = x_0 + s\omega$ and integrating points on the line between x_0 and x_1 , we have

$$L(x_1, \omega) = T_r(x_0 \to x_1)L(x_0, \omega) + \int_{x_0}^{x_1} T_r(x \to x_1)Q(x, \omega) \ dx.$$

The above equation has a very nice interpretation. To compute radiance at x_1 , we need to sum all contribution from emission from every point x along the line from x_0 to x_1 . The emission $Q(x,\omega)$ at x gets attenuated by a factor of $T_r(x \to x_1)$, so its contribution is $T_r(x \to x_1)Q(x,\omega)dx$. Lastly, the outgoing radiance from x_0 gets attenuated by a factor of $T_r(x_0 \to x_1)$ before it reaches x_1 .

2.3 Single Scattering

- In this case, we assume there is a point light source at position x_L whose intensity is given by $I_L(x_L,\omega)$.
- Again, we are interested in finding the radiance $L(x_1, \omega)$ in terms of radiance $L(x_0, \omega)$ where ω is the unit vector pointing from x_0 to x_1 .
- However, we assume that light from the light source scatters once into the direction ω . That is, for any point x along the segment from x_0 to x_1 , light travels from x_L to x, being attenuated along the way, and then scatters into direction ω .

Let ω_L be the direction from x_L to x, we have that incoming radiance due to the light source is $L(x,\omega') = V(x_L,x)T_r(x_L \to x)I_L(x_L,\omega_L)\delta(x_L,\omega)$ where $V(x_L,x)$ is the visibility between x_L and x, and δ is the Dirac delta function.

As such, the scattering integral simplifies to

$$\int_{\mathbb{S}^2} p(\omega' \to \omega) L(x, \omega') d\omega' = p(\omega_L \to \omega) V(x_L, x) T_r(x_L \to x) I_L(x_L, \omega_L),$$

and the transfer equation becomes

$$\omega \cdot \nabla L(x,\omega) = -\sigma_t(x,\omega)L(x,\omega) + Q(x,\omega) + \sigma_s(x,\omega)p(\omega_L \to \omega)V(x_L,x)T_r(x_L \to x)I_L(x_L,\omega_L).$$

Notice that the scattering term can be written as a function of s. So, the equation is a first-order ODE, which can be solved in the same way as the last case. Hence, the solution is

$$L(x_1,\omega) = T_r(x_0 \to x_1) L(x_0,\omega) + \int_{x_0}^{x_1} T_r(x \to x_1) \Big(Q(x,\omega) + p(\omega_L \to \omega) V(x_L,x) T_r(\omega_L \to \omega) I_L(x_L,\omega_L) \Big) \, dx.$$

3 Diffusion Approximation

- The diffusion approximation gives a low-frequency approximation of the radiance field. The approximation works in practice because, in highly scattering media, light distribution becomes blurred very quickly.
- The radiance field is approximated as follows:

$$L(x,\omega) = \frac{1}{4\pi}\phi(x) + \frac{3}{4\pi}\omega \cdot E(x)$$

where

- $\phi(x) = \mu_0[L] = \int_{S^2} L(x,\omega) \ d\omega$ is the fluence, and
- $-E(x) = \mu_1[L] = \int_{S^2} L(x,\omega)\omega \ d\omega$ is the vector irradiance.

See the "Angular Moments" note for more details.

• Substituting the approximation into the transfer equation we have:

$$\omega \cdot \nabla \left[\frac{1}{4\pi} \phi(x) + \frac{3}{4\pi} \omega \cdot E(x) \right] + \sigma_t(x, \omega) \left[\frac{1}{4\pi} \phi(x) + \frac{3}{4\pi} \omega \cdot E(x) \right]$$

$$= Q(x, \omega) + \sigma_s(x, \omega) \int_{S^2} p(\omega' \to \omega) \left[\frac{1}{4\pi} \phi(x) + \frac{3}{4\pi} \omega' \cdot E(x) \right] d\omega'$$
(2)

3.1 Isotropic Homogeneous Material

- In this section, we assume that the material is homogeneous. That is, $\sigma_t(x,\omega)$ and $\sigma_s(x,\omega)$ are constant for all x and ω .
- We also assume that the material is isotropic. That is, $p(\omega' \to \omega)$ only depends on the angle between ω' and ω . In other words, $p(\omega' \to \omega) = p(\omega' \cdot \omega)$.
- With these assumptions, equation 2 becomes

$$\omega \cdot \nabla \left[\frac{1}{4\pi} \phi(x) + \frac{3}{4\pi} \omega \cdot E(x) \right] + \sigma_t \left[\frac{1}{4\pi} \phi(x) + \frac{3}{4\pi} \omega \cdot E(x) \right]$$

$$= Q(x, \omega) + \sigma_s \int_{S^2} p(\omega' \to \omega) \left[\frac{1}{4\pi} \phi(x) + \frac{3}{4\pi} \omega' \cdot E(x) \right] d\omega'$$

$$\frac{1}{4\pi} \omega \cdot \nabla \phi(x) + \frac{3}{4\pi} \omega \cdot \nabla(\omega \cdot E(x)) + \frac{\sigma_t}{4\pi} \phi(x) + \frac{3\sigma_t}{4\pi} \omega \cdot E(x)$$

$$= Q(x, \omega) + \frac{\sigma_s}{4\pi} \phi(x) \int_{S^2} p(\omega' \cdot \omega) d\omega' + \frac{3\sigma_s}{4\pi} \int_{S^2} p(\omega' \cdot \omega) \omega' \cdot E(x) d\omega'$$
(3)

- Equation 3 can be simplified in a number of ways. First, notice that since p, the phase function, is a probability distribution on both ω and ω' . We have that $\int_{S^2} p(\omega' \cdot \omega) \ d\omega' = 1$ for all ω .
- Second, consider the term $\omega \cdot \nabla(\omega \cdot E(x))$. We have that

$$\omega \cdot \nabla(\omega \cdot E(x)) = \omega^T \nabla(\omega \cdot E(x)) = \omega^T \nabla(E(x))^T \omega = \omega^T (E(x) \nabla^T)^T \omega.$$

Now, $E(x)\nabla^T$ is just the Jacobian $J_E(x)$. Hence, $\omega \cdot \nabla(\omega \cdot E) = \omega^T (J_E(x))^T \omega$.

• With the above simplifications, Equation 3 becomes

$$\frac{1}{4\pi}\omega \cdot \nabla \phi(x) + \frac{3}{4\pi}\omega^T (J_E(x))^T \omega + \frac{\sigma_t}{4\pi}\phi(x) + \frac{3\sigma_t}{4\pi}\omega \cdot E(x)$$

$$= Q(x,\omega) + \frac{\sigma_s}{4\pi}\phi(x) + \frac{3\sigma_s}{4\pi} \int_{S^2} p(\omega' \cdot \omega)\omega' \cdot E(x) \, d\omega' \tag{4}$$

- In order to get a solvable equation, we will take the 0th moment of both sides of the above equation. Let us do it term by term.
 - First term of LHS:

$$\mu_0 \left[\frac{1}{4\pi} \omega \cdot \nabla \phi(x) \right] = \frac{1}{4\pi} \mu_0 [\omega \cdot \nabla \phi(x)] = 0$$
 (Lemma 3.4 of Angular Moments note)

- Second term of LHS:

$$\mu_0 \left[\frac{3}{4\pi} \omega^T (J_E(x))^T \omega \right] = \frac{3}{4\pi} \mu_0 \left[\omega^T (J_E(x))^T \omega \right]$$

$$= \frac{3}{4\pi} \cdot \frac{4\pi}{3} \operatorname{tr}(J_E(x)^T) \qquad \text{(Lemma 3.6 of Angular Moments note)}$$

$$= \frac{\mathrm{d}E_1(x)}{\mathrm{d}x_1} + \frac{\mathrm{d}E_2(x)}{\mathrm{d}x_2} + \frac{\mathrm{d}E_3(x)}{\mathrm{d}x_3}$$

$$= \nabla \cdot E(x).$$

- Third term of LHS:

$$\mu_0 \left[\frac{\sigma_t}{4\pi} \phi(x) \right] = \frac{\sigma_t}{4\pi} \phi(x) \mu_0[1] = \sigma_t \phi(x).$$

- Fourth term of LHS:

$$\mu_0 \left[\frac{3\sigma_t}{4\pi} \omega \cdot E(x) \right] = \frac{3\sigma_t}{4\pi} \mu_0 [\omega \cdot E(x)] = 0$$
 (Lemma 3.4 of Angular Moments note).

So, the LHS becomes $\nabla \cdot E(x) + \sigma_t \phi(x)$. However, we still have the RHS to work on.

- First term of RHS: We have $\mu_0[Q(x,\omega)]$, which we shall abbreviate as $Q_0(x)$.
- Second term of RHS:

$$\mu_0 \left[\frac{\sigma_s}{4\pi} \phi(x) \right] = \frac{\sigma_s}{4\pi} \phi(x) \mu_0[1] = \sigma_s \phi(x).$$

- Third term of RHS:

$$\mu_0 \left[\frac{3\sigma_s}{4\pi} \int_{S^2} p(\omega' \cdot \omega)(\omega' \cdot E(x)) \, d\omega' \right] = \frac{3\sigma_s}{4\pi} \int_{S^2} \int_{S^2} p(\omega' \cdot \omega)(\omega' \cdot E(x)) \, d\omega' d\omega$$

$$= \frac{3\sigma_s}{4\pi} \int_{S^2} (\omega' \cdot E(x)) \left(\int_{S^2} p(\omega' \cdot \omega) \, d\omega \right) \, d\omega'$$

$$= \frac{3\sigma_s}{4\pi} \int_{S^2} (\omega' \cdot E(x)) \, d\omega'$$

$$= 0.$$

The reason we could remove $\int_{S^2} p(\omega' \cdot \omega) d\omega$ was because p is a probability distribution over ω . Also, notice that we applied Lemma 3.4 of the Angular Moments note.

Hence, the RHS becomes $Q_0(x) + \sigma_s \phi(x)$. Hence, the equation becomes

$$\nabla \cdot E(x) + \sigma_t \phi(x) = Q_0(x) + \sigma_s \phi(x), \text{ or }$$
$$\nabla \cdot E(x) = Q_0(x) - \sigma_a \phi(x).$$

- We will also take the 1st moment of both sides. We'll do it term by term again.
 - First term of LHS:

$$\mu_1 \left[\frac{1}{4\pi} \omega \cdot \nabla \phi(x) \right] = \frac{1}{4\pi} \mu_1 [\omega \cdot \nabla \phi(x)]$$

$$= \frac{1}{4\pi} \cdot \frac{4\pi}{3} \nabla \phi(x)$$
(Lemma 3.8 of Angular Moments note)
$$= \frac{1}{3} \nabla \phi(x)$$

- Second term of LHS:

$$\mu_1 \left[\frac{3}{4\pi} \omega^T (J_E(x))^T \omega \right] = \frac{3}{4\pi} \mu_1 \left[\omega^T (J_E(x))^T \omega \right]$$

$$= 0 \qquad \text{(Lemma 3.10 of}$$

(Lemma 3.10 of Angular Moments note)

- Third term of LHS:

$$\mu_0 \left[\frac{\sigma_t}{4\pi} \phi(x) \right] = \frac{\sigma_t}{4\pi} \phi(x) \mu_1[1] = 0.$$
 (Lemma 3.7 of Angular Moments note)

- Fourth term of LHS:

$$\mu_1 \left[\frac{3\sigma_t}{4\pi} \omega \cdot E(x) \right] = \frac{3\sigma_t}{4\pi} \mu_1 [\omega \cdot E(x)] = \frac{3\sigma_t}{4\pi} \cdot \frac{4\pi}{3} E(x) \qquad \text{(Lemma 3.8 of Angular Moments note)}$$
$$= \sigma_t E(x).$$

So, the LHS becomes $\frac{1}{3}\nabla\phi(x) + \sigma_t E(x)$. We work on RHS next.

- First term of RHS: We have $\mu_1[Q(x,\omega)]$, which we shall abbreviate as $Q_1(x)$.
- Second term of RHS:

$$\mu_1 \left[\frac{\sigma_s}{4\pi} \phi(x) \right] = \frac{\sigma_s}{4\pi} \phi(x) \mu_1[1] = 0.$$
 (Lemma 3.7 of Angular Moments note)

- Third term of RHS:

$$\mu_1 \left[\frac{3\sigma_s}{4\pi} \int_{S^2} p(\omega' \cdot \omega)(\omega' \cdot E(x)) \, d\omega' \right] = \frac{3\sigma_s}{4\pi} \int_{S^2} \omega \int_{S^2} p(\omega' \cdot \omega)(\omega' \cdot E(x)) \, d\omega' d\omega$$

$$= \frac{3\sigma_s}{4\pi} \int_{S^2} (\omega' \cdot E(x)) \left(\int_{S^2} p(\omega' \cdot \omega) \, d\omega \right) \, d\omega'$$

$$= \frac{3\sigma_s}{4\pi} \int_{S^2} (\omega' \cdot E(x)) \, d\omega'$$

$$= 0$$

The reason we could remove $\int_{S^2} p(\omega' \cdot \omega) d\omega$ was because p is a probability distribution over ω . Also, notice that we applied Lemma 3.4 of the Angular Moments note.