Summary: Lecture 11

Summary for the chapter 13.1 up to page 307. [1, 2]

Title

Content

Approximation

- to solve function problems
- optimization problems: find less than perfect answers
- ϵ for how many percent are *perfect*
- PTAS: how much do you care about the result? algorithm will adapt time to this

$$\frac{c(M(x)) - \mathrm{OPT}(x)}{c(M(x))} \le \epsilon$$

Node Cover: Decision problem

Given: Graph G = (V, E) and $k \in \mathbb{N}$

Is there a subset $V' \subseteq V$ with $|V'| \le k$ such that every edge $e \in E$ contains a node from the subset V'?

Node Cover: Optimization problem

Given: Graph G = (V, E) and $k \in \mathbb{N}$

Something else:D

Maximum Cut: Decision problem

Given: Graph G = (V, E) and $k \in \mathbb{N}$

Is there a subset $V' \subseteq V$ such that there are at least k edges between $V \setminus V'$ and V'?

Maximum Cut: Optimization problem

Given: Graph G = (V, E)

Find the subset $V' \subseteq V$ such that there is the maximum number of edges between $V \setminus V'$ and V'?

TODO

Questions:

References

- [1] Martin Berglund. Lecture notes in Computational Complexity.
- [2] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.