ข้อเสนอโครงการ

การส่งทีมหุ่นยนต์ฮิวมานอยด์เข้าร่วมแข่งขันหุ่นยนต์ชิงแชมป์โลก RoboCup Bangkok 2022 Humanoid League

ณ ประเทศไทย วันที่ 11 - 17 กรกฎาคม 2565

ชื่อโครงการ การส่งทีมหุ่นยนต์ฮิวมานอยด์เข้าร่วมแข่งขันหุ่นยนต์ชิงแชมป์โลก

RoboCup Bangkok 2022

Humanoid League

ณ ประเทศไทย วันที่ 11 - 17 กรกฎาคม 2565

หน่วยงานเจ้าของโครงการ สถาบันวิทยาการหุ่นยนต์ภาคสนาม

หัวหน้าโครงการ อาจารย์บัณฑูร ศรีสุวรรณ

E-mail: bantoon.sri@gmail.com

1. หลักการและเหตุผล

ในปัจจุบันทั่วโลกได้ให้ความสำคัญต่อการพัฒนาเทคโนโลยีด้านหุ่นยนต์ให้มีความก้าวหน้าอย่างต่อเนื่อง นอกจาก การพัฒนาหุ่นยนต์ใพ่อนำมาประยุกต์ใช้กับงานอุตสาหกรรมด้านต่างๆแล้ว การพัฒนาหุ่นยนต์ให้มีความสามารถทำกิจกรรม ต่างๆ ได้เหมือนมนุษย์กำลังเป็นสิ่งที่นักวิจัยให้ความสนใจเป็นอย่างยิ่ง เพราะนอกจากจะเป็นการสร้างความคุ้นเคยกันระหว่าง มนุษย์กับหุ่นยนต์แล้วยังเป็นการพัฒนาเทคโนโลยีขึ้นสูงของหุ่นยนต์ขึ้นอีกด้วย ด้วยเหตุนี้เอง จึงทำให้เกิดแนวคิดในการ จัดการแข่งขันหุ่นยนต์เพื่อเป็นการกระตุ้นให้เกิดแรงจูงใจในการพัฒนาหุ่นยนต์ให้มากยิ่งขึ้น ซึ่งที่ผ่านมาได้จัดการแข่งขัน หุ่นยนต์โดยใช้ชื่อว่า RoboCup: the World Championship on Robotics เป็นการแข่งขันหุ่นยนต์ที่ได้รับการยอมรับและ เข้าร่วมจากสถาบันการศึกษาและหน่วยงานวิจัยต่างๆ ทั่วโลก โดยมีวัตถุประสงค์หลักของการแข่งขันคือ การพัฒนาให้เกิดทีม ฟุตบอลหุ่นยนต์ที่สามารถลงสนามแข่งขันกับทีม FIFA World Champion ของมนุษย์ในปี ค.ศ.2050 ได้ ซึ่งนอกจากจะ จัดการแข่งขันฟุตบอลหุ่นยนต์แล้ว ยังมีการจัดการแข่งขันในประเภทอื่นๆ เช่น หุ่นยนต์กู้ภัย หุ่นยนต์ผู้ช่วยภายในบ้าน และ การแข่งขันเขียนโปรแกรมจำลองหุ่นยนต์ในรูปแบบต่างๆ เป็นต้น ซึ่งนอกจากเป็นการแข่งขันแล้ว ยังเป็นงานที่ผู้เข้าแข่งขัน ต่างๆ ได้ร่วมแลกเปลี่ยนเทคโนโลยีซึ่งกันและกันที่จะพัฒนาความสามารถของหุ่นยนต์ให้เป็นไปตามวัตถุประสงค์ของการ จัดการแข่งขันอีกด้วย

(ภาพตัวอย่างงานการแข่งขัน RoboCup 2013 ที่ประเทศเนเธอร์แลนด์)

(ภาพตัวอย่างงานการแข่งขัน RoboCup 2013 ที่ประเทศเนเธอร์แลนด์)

(ภาพตัวอย่างงานการแข่งขัน RoboCup 2013 ที่ประเทศเนเธอร์แลนด์)

(ภาพตัวอย่างงานการแข่งขัน RoboCup 2013 ที่ประเทศเนเธอร์แลนด์)

สถาบันวิทยาการหุ่นยนต์ภาคสนาม (ฟีโบ้) ได้ทำการวิจัยและพัฒนาหุ่นยนต์ฮิวมานอยด์ มาตั้งแต่ปี พ.ศ. 2543 จนเป็นที่ยอมรับในวงการหุ่นยนต์ทั้งในและนอกประเทศอย่างกว้างขวาง โดยเฉพาะการแข่งขันฟุตบอลหุ่นยนต์ฮิวมานอยด์ ทางสถาบันฯ ได้ส่งหุ่นยนต์เข้าร่วมการแข่งขันในรายการต่างๆ และได้รับรางวัลมาแล้วมากมาย เช่น รางวัลชนะเลิศในประเทศ 3 ปีซ้อน (2553-2555) ในรุ่น Kid Size และได้รับเกียรติเป็นตัวแทนประเทศไทยเพื่อไปร่วมในการแข่งขัน RoboCup 2010, RoboCup 2011, RoboCup 2013, RoboCup 2014 และ RoboCup 2019 ซึ่งผลงานที่ดีที่สุดคือการเข้าถึงรอบ 8 ทีม สุดท้ายจากทีมทั้งหมดที่ได้ผ่านการคัดเลือกในรอบแรกจำนวน 25-30 ทีมทั่วโลก รางวัลรองชนะเลิศการแข่งขันฟุตบอลหุ่นยนต์ฮิวมานอยด์ ชิงแชมป์โลก World Robocup 2011 ในรุ่น Teen Size ซึ่งในแต่ละปีของการแข่งขันฟุตบอลหุ่นยนต์ฮิว มานอยด์ในรายการ RoboCup แต่ละทีมที่เข้าทำการแข่งขันได้มีการอับเกรดระดับความสามารถของหุ่นยนต์เพิ่มขึ้นและ กติการการแข่งขัน ที่ปรับให้เข้าใกล้กับการแข่งขันฟุตบอลมนุษย์ทั่วไปอย่างรวดเร็ว

(1) รางวัลชนะเลิศการแข่งฟุตบอลหุ่นยนต์ฮิวมานอยด์ชิงแชมป์ประเทศไทย ประจำปี 2553 (ทีม Team KMUTT) (2) รางวัลชนะเลิศการแข่งฟุตบอลหุ่นยนต์ฮิวมานอยด์ชิงแชมป์ประเทศไทย ประจำปี 2554 (ทีม Phoenix)

- (3) รางวัลรองชนะเลิศการแข่งฟุตบอลหุ่นยนต์ฮิวมานอยด์ชิงแชมป์โลก ณ ประเทศตุรกี (Team KMUTT Kickers)

 Robocup 2011 (Humanoid League : Teen size)
- (4) รางวัลชนะเลิศการแข่งฟุตบอลหุ่นยนต์ฮิวมานอยด์ชิงแชมป์ประเทศไทย ประจำปี 2555 (ทีม Hanuman FC) และรางวัลความสามารถพิเศษ "วิ่งเร็ว"

(5) รางวัลชนะเลิศการแข่งฟุตบอลหุ่นยนต์ฮิวมานอยด์ชิงแชมป์ประเทศไทย ประจำปี 2556 (ทีม Hanuman FC) กับรางวัลความสามารถพิเศษผู้ทำประตูยอดเยี่ยมและผู้รักษาประตูยอดเยี่ยม

แต่ในช่วงหลายปีที่ผ่านมานี้ รายการแข่งขันในประเทศไทยได้ยุติลง ประกอบกับงบประมาณในการพัฒนาหุ่นยนต์ นั้นสูงมากเพื่อให้ตอบรับกับกติกาที่ปรับเปลี่ยนให้หุ่นยนต์มีขนาดใกล้เคียงกับมนุษย์และจำนวนที่มากขึ้น รวมถึงงบในการส่ง ทีมเข้าแข่งขันในต่างประเทศที่สูง ทำให้การหาทุนสนับสนุนในการพัฒนาทีมต่อนั้นเป็นไปได้ยาก ประกอบกับการเป็นช่วง เปลี่ยนทีมผู้พัฒนาจากระดับบัณฑิตศึกษาที่จบการศึกษากันไป มาเป็นระดับนักศึกษาปริญญาตรี ที่เข้ามาใหม่ จึงทำให้เกิดช่วง การขาดการต่อยอดทางเทคโนโลยีให้ต่อเนื่องกันไป

แต่ในปีนี้ ประเทศไทยได้รับเกียรติให้เป็นเจ้าภาพในการจัดการแข่งขัน RoboCup 2022 ซึ่งเป็นโอกาสอันดีที่ทีม นักศึกษาปริญญาตรีจะสามารถนำผลงานการพัฒนาหุ่นยนต์ฮิวมานอยด์เข้าร่วมการแข่งขันได้โดยใช้งบประมาณในการเดินทาง ที่น้อยลง และสามารถนำหุ่นยนต์และอุปกรณ์ที่มีอยู่แล้วเข้าร่วมการแข่งขันได้

โดยทางทีมนักศึกษาได้ทำการส่งใบสมัครและวีดีโอเพื่อเข้าร่วมในการคัดเลือกทีมเข้าแข่งขันรอบแรกตั้งแต่ช่วง เดือน ธันวาคม 2564 และได้รับผลตอบรับผ่านการคัดเลือกเข้าแข่งขันเป็นที่เรียบร้อยแล้ว แต่ในการเข้าร่วมการแข่งขันยังมี ค่าใช้จ่ายในการลงทะเบียน ที่ทางทีมนักศึกษามีความประสงค์ในการขอรับการสนับสนุนจากทางสถาบันวิทยาการหุ่นยนต์ ภาคสนาม ในการเข้าร่วมการแข่งขันครั้งนี้

2. วัตถุประสงค์

- 1. เพื่อนำทีมหุ่นยนต์ฮิวมานอยด์ขนาดเล็กเข้าร่วมการแข่งขันหุ่นยนต์ชิงแชมป์โลก RoboCup 2022 ณ ประเทศไทย
- 2. เพื่อนำตัวแทนนักศึกษาและเข้าร่วมในการแลกเปลี่ยนความรู้และเทคโนโลยีกับผู้เข้าร่วมการแข่งขันจากทั่วโลก
- 3. เพื่อนำมาซึ่งชื่อเสียงของประเทศไทย สถาบันวิทยาการหุ่นยนต์ภาคสนามและมหาวิทยาลัยเทคโนโลยีพระจอมเกล้า ธนบุรี ในการแข่งขันหุ่นยนต์ระดับโลก

3. แผนการดำเนินงาน

จากการเข้าร่วมการแข่งขัน RoboCup 2019 ที่ประเทศออสเตรเลีย เราพบว่าปัญหาหลักในทีมคือระบบการมองเห็น (Vision System) ที่คอมพิวเตอร์ที่ใช้งานตอนนั้นคือ Odroid-XU4 ไม่สามารถประมวลผลจับภาพตามความเร็วในการแข่งขัน และสภาพแวดล้อมได้ หลังจากจบการแข่งขัน ทางทีมได้รับการสนับสนุนคอมพิวเตอร์สำหรับหุ่นยนต์ชุดใหม่เป็น Nvidia Jetson Tx2 ที่ มีประสิทธิภาพเพียงพอในการแข่งขัน ดังนั้นการดำเนินงานพัฒนาส่วนใหญ่จึงเป็นเรื่องการการพัฒนาชุดโปรแกรมส่วนของการมองเห็นเพื่อใช้ร่วมกับ Jetson Tx2 เป็นหลัก และดำเนินการ ออกแบบและสร้างหุ่นยนต์ตัวที่ 5

รายการดำเนินงาน	ความสมบูรณ์	2564		2565						
9 IOII IANI IRRINIR		พ.ย.	ธ.ค.	ม.ค.	ก.พ.	มี.ค.	เม.ษ.	พ.ค.	ີ່ ມີ.ຍ.	ก.ค.
1. ส่วนดำเนินการสมัครและเข้าร่วมการแข่งขัน										
1.1. จัดเตรียมหุ่นยนต์และโปรแกรมสำหรับดำเนินการสมัครรอบคัดเลือก	100%									
1.2. จัดส่งข้อมูลสมัครรอบคัดเลือก	100%									
1.3. แจ้งผลพิจารณารอบคัดเลือก	100%									
1.4. แจ้งผลสรุปกติกาใหม่ที่เพิ่มเติมในการแข่งขัน	50%									
1.5. ลงทะเบียนรอบ Early registration (15 พฤษภาคม 2565)	0%									
1.6. เข้าร่วมการแข่งขัน (11-17 กรกฎาคม 2565)	0%									
2. ส่วนดำเนินการพัฒนาหุ่นยนต์										
2.1. พัฒนาระบบการมองเห็นใหม่ เพื่อใช้ร่วมกับ Jetson Tx2, Nx	80%									
2.2. ซ่อมบำรุงและปรับปรุงโครงสร้างหุ่นยนต์ตัวที่ 1-4	80%									
2.3. ออกแบบและสั่งทำชิ้นงานสำหรับหุ่นยนต์ตัวที่ 5	80%									
2.4. รวมระบบการมองเห็นที่พัฒนาขึ้นมาใหม่เข้ากับหุ่นยนต์	0%									
2.5. ซ้อมระบบการแข่งขัน	0%									

4. งบประมาณที่ขอรับการสนับสนุน

ลำดับ	รายการ	จำนวนเงิน		
1	ค่าลงทะเบียนทีม (\$790)	~ 28,000		
2	ค่าลงทะเบียนนักศึกษา (\$380) จำนวน 7 คน (\$2660)	~ 92,000		
3	ค่าเช่ารถตู้สำหรับเดินทาง 2,500 บาทต่อวัน จำนวน 7 วัน	17,500		
	รวม	137,500		

^{*}หมายเหตุ ขอถั่วเฉลี่ยทุกรายการ

5. สมาชิกทีม

5.1 อาจารย์ที่ปรึกษา

อาจารย์บัณฑูร ศรีสุวรรณ

5.2 สมาชิกที่เข้าร่วมงานการแข่งขันวันที่ 11-17 กรกฎาคม 2565

ลำดับ	ชื่อ – นามสกุล	ระดับชั้น	งานที่รับผิดชอบ
1	นายธีรเมธ รัศมีเจริญชัย	ปี 4	หัวหน้าทีม, โปรแกรมเมอร์ระบบและส่วนของการมองเห็น
2	นายปพน เจียรบริวาร	ปี 4	โปรแกรมเมอร์หุ่นยนต์ผู้เล่น
3	นายปัณณธร บงกชอำพน	ปี 4	โปรแกรมเมอร์หุ่นยนต์ผู้เล่น
4	นายอิสรา ภิยโยดิลกชัย	ปี 4	โปรแกรมเมอร์หุ่นยนต์ผู้รักษาประตู
5	นายพีรวิชญ์ สีลพิพัฒน์	ปี 4	ระบบควบคุมการเคลื่อนไหวพื้นฐานของหุ่นยนต์
6	นายธรรมภณ นุ่มสารพัดนึก	ปี 4	ระบบควบคุมการเคลื่อนไหวพื้นฐานของหุ่นยนต์
7	นายวิษณุ จูธารี	ป.เอก	พี่เลี้ยง, ฮาร์ดแวร์

5.3 สมาชิกที่ไม่ได้เข้าร่วมงาน (ติดฝึกงาน)

ลำดับ	ชื่อ - นามสกุล	ระดับชั้น	งานที่รับผิดชอบ
1	นายชยณัฐ รัศมีเจริญชัย	ปี 3	โปรแกรมเมอร์ส่วนคอนโทรลเลอร์และเซนเซอร์
2	นายรัศพัชร์ ลีลาวัฒนเกียรติ	ปี 3	ออกแบบและดูแลโครงสร้างหุ่นยนต์, ฮาร์ดแวร์
3	นายนชต วงศ์วีรธร	ปี 3	ออกแบบและดูแลโครงสร้างหุ่นยนต์, ฮาร์ดแวร์
4	นางสาวณัฐนันท์ ติรสุขวงศา	ปี 3	ออกแบบและดูแลวงจรอิเล็กทรอนิกส์
5	นายธรรมศิลป์ พัฒนาศิริ	ปี 3	ออกแบบและดูแลวงจรอิเล็กทรอนิกส์
6	นายพชรพล แช่ฉั่น	ปี 3	ดูแลโครงสร้างหุ่นยนต์, ฮาร์ดแวร์ และอิเล็กทรอนิกส์
7	นายธัชภูมิ ธัญธนาวรโชต	ปี 3	ดูแลโครงสร้างหุ่นยนต์, ฮาร์ดแวร์ และอิเล็กทรอนิกส์

6. ประโยชน์ที่จะได้รับ

- 1. ได้องค์ความรู้ในการพัฒนาหุ่นยนต์ฮิวมานอยด์ และประสบการณ์ในการแข่งขันระดับนานาชาติ
- 2. ได้เห็นแนวทางในการพัฒนาหุ่นยนต์ทั้งประเภทเดียวกันและประเภทอื่นๆในระดับนานาชาติ
- 3. สร้างชื่อเสียงให้กับประเทศไทย และมหาวิทยาลัยในระดับนานาชาติ และประชาสัมพันธ์ให้กับหน่วยงานที่ ให้การสนับสนุน