## Step-1

The objective is to find eigenvalues and eigenvectors of matrix A and sketch the ellipse.

## Step-2

Consider an ellipse  $u^2 + 4v^2 = 1$ , which corresponds to the matrix  $A = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$ .

The characteristic equation for the matrix is,

$$\begin{vmatrix} A - \lambda I | = 0 \\ 1 - \lambda & 0 \\ 0 & 4 - \lambda \end{vmatrix} = 0$$
$$(\lambda - 1)(\lambda - 4) = 0$$

So, the Eigen values are  $\lambda_1 = 1$  and  $\lambda_1 = 4$ .

The corresponding vectors are,

$$(A - \lambda_1 I) s_1 = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 4 - 1 \end{bmatrix} s_1$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 3 \end{bmatrix} s_1$$

A eigenvectors is  $s_1 = (0,0)^T$ .

$$(A - \lambda_2 I) s_1 = \begin{bmatrix} 1 - 4 & 0 \\ 0 & 4 - 4 \end{bmatrix} s_1$$

$$= \begin{bmatrix} -3 & 0 \\ 0 & 0 \end{bmatrix} s_1$$

A eigenvectors is  $s_2 = (0,0)^T$ .

The given ellipse equation is centered at origin, its major axis has half-length of,  $\frac{1}{\sqrt{1}} = 1$  and points in the direction of  $\frac{1}{\sqrt{4}} = \frac{1}{2} = 0.5$  and points in the direction of  $\frac{s_1}{\sqrt{4}} = \frac{1}{2} = 0.5$ 

## Step-3

The graph of ellipse is as shown below.

