(1) Japanese Patent Application Laid-Open No. 2000-355766 "DEVICE AND METHOD FOR PROCESSING SUBSTRATE"

5

10

The following is English translation of [SOLUTION] from the above-identified document relevant to the present application.

[SOLUTION] The device for processing substrate of the present invention comprises a first susceptor 16 and a second susceptor 17 provided on the first susceptor 16 having concave portions 31 and 32 at its upward and downward surfaces, respectively. A wafer 5 is mounted on top of the concave portion 31 at the upward surface of the second susceptor 17 to be thermally processed.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-355766 (P2000-355766A)

(43)公開日 平成12年12月26日(2000.12.26)

(51) Int.Cl.7	識別記号	FΙ		Ŧ-	マコード(参考)
C 2 3 C	16/44	C 2 3 C	16/44	Н	4G077
C 3 0 B	25/14	C 3 0 B	25/14		4 K 0. 3 0
H01L	21/205	HOIL	21/205		5 F O 4 5

	•	審査請求	未請求 請求項の数2 OL (全 5 頁)		
(21)出願番号	特願平11-168313	(71)出願人	000001122 株式会社日立国際電気		
(22)出願日	平成11年6月15日(1999.6.15)	東京都中野区東中野三丁目14番20号			
		(72)発明者	池田 文秀 東京都中野区東中野三丁目14番20号 国際 電気株式会社内		
		(72)発明者	田辺 光朗 東京都中野区東中野三丁目14番20号 国際 電気株式会社内		
		(74)代理人	100097250 弁理士 石戸 久子 (外3名)		
			最終頁に続く		

(54) 【発明の名称】 基板処理装置及び基板処理方法

(57)【要約】

【課題】 スリップ発生要因であるサセプタのたわみと うねりとザグリ加工精度不足に起因するウェハの温度均 一性の悪化を防止し、且つウェハ内温度均一性悪化によ る膜厚、抵抗率均一性悪化を改善する。

【解決手段】 この基板処理装置は、第1のサセプタ1 6と、第1のサセプタ16上に設けられ、表裏面のそれ ぞれに凹部31、32を有する第2のサセプタ17とを 備え、第2のサセプタ17の表面凹部31にウェハ5を 載置して加熱処理するようにした。

【特許請求の範囲】

【請求項1】 第1のサセプタと、前記第1のサセプタ 上に設けられ、表裏而のそれぞれに凹部を有する第2の サセプタとを備え、前記第2のサセプタの表面凹部に基 板を載置して加熱処理する基板処理装置。

【請求項2】 第1のサセプタ上に第2のサセプタを設 け、該第2のサセプタ上に基板を載置して加熱処理する 基板処理方法において、

前記第2のサセプタの表裏面には凹部を設け、第2のサ セプタの表面の凹部に基板を載置して基板を加熱処理す 10 るようにした基板処理方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、サセプタ上に基板 を支持し、加熱処理として例えばエピタキシャル成長を 行うようにした基板処理装置及び基板処理方法に関する ものである。

[0002]

【従来の技術】従来、サセプタ上に基板を支持し、加熱 処理としてエピタキシャル成長を行うようにした基板処 20 その際に、支持ピンの外径側と内径側とで自重にうねり 理装置として、例えば、髙周波誘導加熱方式を用いるバ ッチ式パンケーキ型エビ装置のエピタキシャル成長装置 が知られている。

【0003】このような基板処理装置では、基板である 半導体ウェハ上に、そのウェハの結晶格子に倣って結晶 膜を堆積させるため、所定の処理ガスの雰囲気の下、高 周波誘導によりウェハを加熱処理する。このような基板 処理に際して、基板を支持するためにサセプタが用いら れる。

【0004】図3は上述した基板処理装置を示す断面側 30 面図である。この装置は、覗窓1が設けられたステンレ ス製ベルジャ2と、このステンレスベルジャ2内に設け られた石英ベルジャ3と、これらベルジャ2,3を支持 し、排気口4aやパージガス導入口4bが設けられると 共に、ガス導入管4cが挿入され、回転可能に支持され た底蓋部4と、底蓋部4上に水平に設けられウェハ5を 支持するサセプタ6と、サセプタ6の下側に設けられた 高周波誘導コイル7及びこのコイル7を覆うコイルカバ -8を備えて構成される。

【0005】ガス導入管4cは回転軸9中を通り、その 40 先端にノズル10が設けられている。サセプタ6の表面 にはSiCコーティングが施され、また、図4に示すよ ろに、基板としてのウェハ5外径より少し大きい凹部で あるザグリ11が設けられ、これらのザグリ11にウェ ハ5を支持するための支持部11aが設けられている。 なお、図4において、12はエピ膜厚,抵抗率モニタ用 のSiチップ用ザグリである。

【0006】基板処理時には、このサセプタ6のザグリ 11にウェハ5を置いて、サセプタ6を回転させ、髙周 ジャ3の中がパージガスによって排気された後、処理用 のガスをノズル10より噴出させ、ウェハ5上に所望の エピ膜を成長させる。

[0007]

【発明が解決しようとする課題】上述の基板処理装置に 置いて、使用されるサセプタ6のザグリ形状は、図4に 示すように、0.3~2.0mmの段差11Aと段差底 部から30~400 µmの深さの球面凹形状11Bが用 いられているが、サセプタ6の自重によるたわみ(図5 参照) により、サセプタ表面にうねりや反りを発生させ る結果、サセプタに形成されたザグリ形状が変形してし まう(図6参照)。

【0008】また、サセプタ6はその表面にSiCコー ティングがなされているが、そのSiCコート時に発生 するうねりにより理想的な球面形状が得られない。すな わち、サセプタは例えば外径が950mm、内径が15 0mm、厚さが18mm、重量が30数キログラムあ り、SiCコート時にその複数点を支持ピンにより水平 'に支持してCVD法によりコーティング処理を行うが、 が発生する(図7参照)。

【0009】さらに、球面ザグリの加工精度が±30~ ±50μmであるため、複数のザグリにおいて深さ及び 形状のバラツキが大きく、スリップ発生の原因となって いる。更にまた、ザグリ形状の変形やバラツキにより、 ウェハにも自重による応力集中が生じ、ウェハが破損し 易くなったり、たわみが生じる。そしてまた、これら要 因によりウェハ内温度均一性が悪くなり、膜厚と抵抗率 均一性の向上に限界がある。

【0010】本発明の目的は、従来技術の問題点である スリップ発生要因であるサセプタのたわみとうねりとザ グリ加工精度不足に起因するウェハの温度均一性の悪化 を防止し、且つウェハ内温度均一性悪化による膜厚、抵 抗率均一性悪化を改善することができる基板処理装置及 び基板処理法法を提供することにある。

[0011]

【課題を解決するための手段】上述した課題を解決する ため、本発明に係る装置は、第1のサセプタと、前記第 1のサセプタ上に設けられ、表裏面のそれぞれに凹部を 有する第2のサセブタとを備え、前記第2のサセブタの 表面凹部に基板を載置して加熱処理するようにしたもの である。

【0012】また、本発明に係る方法は、第1のサセブ タ上に第2のサセプタを設け、該第2のサセプタ上に基 板を載置して加熱処理する基板処理方法において、前記 第2のサセプタの表裏面には凹部を設け、第2のサセプ タの表面の凹部に基板を載置して基板を加熱処理するよ うにしたものである。

【0013】実施の形態においては、第1のサセプタ1 波誘導コイル7によりウェハ5を加熱させる。石英ベル 50 6上にウェハ5の外径より大きい第2のサセプタ17を

載せ、その上にウェハ径より少し大きいザグリ(凹部3 1)を設けてウェハ5を載置するようにしている。ま た、第2のサセプタ17は円形状をなし、厚みが2~7 mmであり、SiC又はSiCコートカーボンで作成さ れている。第2のサセプタ17の上面に設けらている凹 部31は、ウェハ5の面内の温度を均一にするよう作用 する。第2のサセプター7の裏面には、外周所定3箇所 に支持点を設け、第1のサセプタ16の表面に凹凸があ っても三点支持が達成できる構造とされている。なお、 実施の形態においては、第1のサセプタ17上、第2の 10 サセプタ16を載置する位置にも凹部21が設けられて いる。

[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面 を用いて説明する。図1は本発明に係る基板処理装置及 び基板処理方法に用いられるサセプタを示す平面図、図 2は図1の要部拡大図であり、(a)は平面図、(b) は正面図、(c)は底面図である。なお、基板処理装置 としての全体外観構成図は図3に示したものと同じであ り、ここでの説明は省略する。

【0015】本発明の実施の形態におけるサセプタ16 は、高周波誘導コイル(図3の7)の上に水平に支持さ れ、複数の凹部21がザグリとして、その周辺部近傍に 等間隔に設けられた円盤上の第1のサセプタ16と、こ の第1のサセプタ16上の各凹部21に載置され、それ ぞれの表裏面に凹部31,32を有し、その表面の凹部 31にウェハ5を支持する第2のサセプタ17とを備え て構成されている。

【0016】第1のサセプタ16は、円形をなし、例え ば外径が950mm、内径が150mm、厚さが18m m、重量が30数キログラムあり、その円周部近傍に1 0個の凹部21を有する。第2のサセプタ(サブサセプ タ) 17は、円形をなし、その直径がウェハの直径より $63\sim15$ mm程度大きく、厚みが $2\sim7$ mmであり、 SiCまたはSiCコートカーボンが設けられている。 【0017】第2のサセプタ17の表面(上面)に設け られた凹部31は、その表面最外径がウェハ5の外径よ りも若干大きく、この凹部31においてウェハ5を支持 することにより、ウェハ面内の温度を均一にするための もであり、球面ザグリにより形成されている。また、第 40 2のサセプタの裏面(下面)にも、凹部32が球面ザグ リにより形成されている。約1000℃以上の高温処理 になると、ウェハの表裏面の温度差により凹形状に反っ米

* てしまい、平坦なサセプタ上に載置している時には、サ セプタに接触している部分と、そうでない部分とが存在 し、結果、熱応力、自重応力によりスリップが発生する ので、サセプタにウェハの反り形状と略同形状の凹部3 1を設けることで、上記問題を防ぎ、スリップ発生を防 ぐ事が可能となる。また、凹部32は、サブサセプタの 表裏温度差により凹形状に反った時に、メインサセプタ と平行になるようにし、第2のサセプタが(延いてはウ ェハが) 第1のサセプタから均一に加熱される様に作用

【0018】そして、さらに第2のサセプタ17裏面の 凹部32の外周部3カ所の等間隔位置(中心角で120 度毎)には、突起部から形成される支持点33が設けら れている。そして、これら支持点33により、第1のサ セプタ16の裏面に凹凸があっても、三点支持により第 2のサセプタ17を安定して支持できる構造となってい る。これにより、例えば、第1のサセプタ16のたわみ とうねりにより第1のサセプタ16と第2のサセプタ1 7の接触状態を安定させることができる。

【0019】ととで、第2のサセプタ17の表面に設け 20 られた凹部31である球面ザグリの寸法は、最外径がウ ェハの外径より若干大きく、ウェハ外径より1~5mm 程度大きく、また第2のサセプタ17の裏面に設けられ た凹部32である球面ザグリの寸法は表面のそれとほぼ 同じか若干大きく形成されている。これらザグリの深さ は共に等しくされ0~400μm程度の深さとされてい るが、表面と裏面でその深さは異なっても良い。

【0020】以上のように、本実施の形態によれば、サ セプタを第1のサセプタとこの第1サセプタに載せられ る第2のサセプタとに分け、従来のサセプタの自重たわ みとうねりの影響を防ぐ構造とされている。そして、第 2サセプタの形状を小型とすることにより、その凹部の 加工精度を上げることができ、加工精度は±50μmか ら±10μm程度に向上できる。また、ウェハ面内の温 度均一性の向上を図れることから、±1%以下の膜厚、 抵抗率均一性を確保できる。そして、処理ウェハ種と処 理温度に応じたサブサセプタ表裏のザグリ深さを最適化 することにより1200℃までスリップフリーを実現で きる。尚、ウェハ種とザグリ深さの好適例の組み合わせ を下記テーブルに示しておく。

[0021]

【表1】

ウェハ	5 <i>*</i>	6″	8~	
ザグリ深さ (μm)	30~80	50~110	85~180	

によれば、第1のサセプタと、前記第1のサセプタ上に 設けられ、表裏面のそれぞれに凹部を有する第2のサセ プタとを備え、前記第2のサセプタの表面凹部に基板を 載置して加熱処理するようにしたので、従来技術の問題 点であるスリップ発生要因であるサセプタのたわみとう ねりとザグリ加工精度不足に起因するウェハの温度均一 性の悪化を防止し、且つウェハ内温度均一性悪化による 膜厚、抵抗率均一性悪化を改善することができるという 効果を奏する。

【図面の簡単な説明】

【図1】実施の形態における第1のサセプタを示す平面 図である。

【図2】図 Lの要部の詳細を示す図であり、(a)は平 面図、(b)は正面図、(c)は底面図である。

【図3】基板処理装置を示す断面側面図である。

*【図4】従来のサセプタ構造を示す図であり、(a)は 全体平面図、(b)は各凹部の断面側面図である。

【図5】サセプタ半径方向の自重たわみを示す計算例で ある。

【図6】ザグリ円周のうねりを示す計算例である。

【図7】サセプタ外周のうねりの一例を示す図である。 【符号の説明】

5 ウェハ

16 第1のサセプタ

17 第2のサセプタ

21 第1のサセプタの凹部

31 第2のサセプタの表面凹部

32 第2のサセプタの裏面凹部

33 支持点

【図1】

【図2】

【図4】

【図5】

サセプタ半径方向の外周のたわみ(計算)

-0.2 (mm) -0.3

【図6】

(図7)

8 ~ ざぐり円周のうねり (計算)

フロントページの続き

(72)発明者 笠次 克尚

東京都中野区東中野三丁目14番20号 国際

電気株式会社内

(72)発明者 三部 誠

東京都中野区東中野三丁目14番20号 国際

電気株式会社内

(72)発明者 髙見 哲

東京都中野区東中野三丁目14番20号 国際

電気株式会社内

Fターム(参考) 4G077 AA03 DB01 DB15 EG03 TG07

4K030 BB02 CA12 FA10 GA02 KA46 5F045 BB02 BB13 EM02 EM09