9. Жёсткие задачи Коши для систем обыкновенных дифференциальных уравнений

Вспоминая способы построения методов высокого порядка на примере явных методов Рунге–Кутты, важно отметить следующее:

- используя Липшиц-непрерывность функции f(x, u), можно доказать, что методы P–K устойчивы, т.е. численное решение будет сходится к точному с порядком аппроксимации;
- методика позволяет построить метод любого порядка точности;
- явный метод Рунге-Кутты вычислительно реализуется в виде последовательного (s раз) вычисления функции правой части при разных значениях аргументов – это «дешёвые» операции.

Кажется, что указанные пункты позволяют закрыть тему численных методов для решения задачи Коши. Однако это не так.

Рассмотрим задачу Коши:

$$u'(t) = -\sin t, u(0) = 1, t \in [0, 2]$$
(59)

с точным решением

$$u(t) = \cos t. \tag{60}$$

Применим для решения этой задачи явный метод Эйлера. Локальная ошибка (невязка):

$$r(t) = \frac{1}{2}h^2u''(t) + O(h^3) = -\frac{1}{2}h^2\cos t + O(h^3).$$
 (61)

Функция $f(t) = -\sin t$ не зависит от u, можно получить такую оценку для глобальной ошибки:

$$|E| \le \frac{T}{h} ||r||_{\infty} = h \max_{t \in [0,2]} |\cos t| = h.$$
 (62)

Если мы хотим вычислить решение с точностью $|E| \leq 10^{-3}$, нужно взять $h=10^{-3}$, и мы получим нужное решение после T/h=2000 шагов. Действительно, вычисления дают $u_{2000}=-0.415692$ с ошибкой $E^{2000}=u_{2000}-\cos(2)=0.4548\times 10^{-3}$.

Теперь изменим уравнение

$$u'(t) = \lambda(u - \cos t) - \sin t, u(0) = 1.$$
(63)

Точное решение этой задачи по-прежнему $u(t)=\cos t$. Так как невязка r^n зависит только от точного решения (и не зависит от уравнения), мы по-прежнему надеемся получить нужную точность, взяв шаг $h=10^{-3}$. Возьмём $\lambda=-10$, получается значение $u_{2000}=-0.416163$ с ошибкой $E^{2000}=0.161\times 10^{-4}$.

Теперь возьмём $\lambda=-2100$. Точное решение не изменяется, локальная ошибка тоже. Но теперь, если мы выполним расчёт с $h=10^{-3}$, получим $u_{2000}=-0.2453\times 10^{77}$ с ошибкой величины 10^{77} . Решение ведёт себя «неустойчиво», ошибка растёт экспоненциально со временем.

Итак, мы знаем, что явный метод Эйлера устойчив, и, следовательно, численное решение сходится к точному. И, разумеется, с достаточно маленькими шагами мы получим хорошие результаты. В чём же дело?

Для данного линейного уравнения запишем, как меняется глобальная ошибка от шага к шагу:

$$E^{n+1} = (1 + h\lambda)E^n - r_n. (64)$$

Это выражение проясняет причину экспоненциального роста ошибки: на каждом шаге предыдущая ошибка умножается на $(1+h\lambda)$. Для случая $\lambda=-2100,\ h=10^{-3}$ получается $1+h\lambda=-1.1,$ следовательно ошибка на шаге m увеличится в $(-1.1)^{n-m}$ раз по выполнении n шагов. $(-1.1)^{2000}\approx 10^{82},$ что соответствует полученному в расчёте значению. Когда $\lambda=-10,\ 1+h\lambda=0.99$ и ошибка убывает. Благодаря этому и получился хороший результат.

Важно понять, что экспоненциальный рост ошибки не противоречит устойчивости метода (и сходимости).

9.1. А-устойчивость (Absolute stability)

Вся дальнейшая теория строится на основе модельного уравнения

$$u'(t) = \lambda u(t). \tag{65}$$

Где $\lambda \in \mathbb{C}$ – комплексная константа. Случай $Re(\lambda) > 0$ соответствует экспоненциально растущим решениям, т.е. неустойчивым; он рассматриваться не будет.

Представим одношаговый метод, применённый к уравнению (65), в виде

$$u_{n+1} = R(h\lambda)u_n. (66)$$

Функция R(z) называется функцией устойчивости данного метода. Функцию устойчивости можно истолковать как численное решение на первом шаге по времени задачи Коши для уравнения (65) с начальными данными $u_0=1, z=\lambda h$. Или более подробно: точное решение задачи Коши имеет вид $e^{\lambda t}$ для $\lambda\in\mathbb{R}, \lambda<0$ — это экспоненциально убывающее решение. Численное решение: $R(z)^n$. Если |R(z)|<1, то численное решение убывает и моделирует поведение точного. Если же |R(z)|>1, численное решение экспоненциально растёт и вообще не приближает точное. Требование, чтобы численное решение было ограниченно $\forall t$ (при фиксированном шаге h!), приводит к следующим определениям:

Область $S=\{z\in\mathbb{C}, |R(z)|\leq 1\}$ называется областью устойчивости метода с функцией устойчивости R(z). Если $\lambda h\in S$, решение (и ошибка) экспоненциально убывает со временем.

Как мы видели, условие $|R(z)|=|1+h\lambda|\leq 1$ для явного метода Эйлера приводит к сильному ограничению на шаг по времени:

$$h \le \frac{2}{|\lambda|},\tag{67}$$

при больших значениях $|\lambda|$ метод становится непригодным для вычислений.

В связи с этим, существует потребность в методах, для которых не возникает таких жёстких ограничений на шаг. Естественно, лучше, если не возникает никаких ограничений. Эту простую идею выразил Далквист в 1963 году, когда ввёл следующее понятие: метод называется A-устойчивым, если при его применении к уравнению $u' = \lambda u$ ($Re(\lambda) < 0$) отсутствуют ограничения на шаг, связанные с устойчивостью. Это определение распространяется и на многошаговые методы.

Для одношаговых методов можно сформулировать это определение в терминах функции устойчивости: метод, имеющий область устойчивости

$$S \supset \mathbb{C}^- = \{ z, Re(z) \le 0 \} \tag{68}$$

(т.е. область устойчивости целиком содержит левую полуплоскость), называется А-устойчивым.

Напомним, как формулируется класс одношаговых неявных методов Pynze-Kymmu в общем случае. Пусть s>0 — число стадий или

этапов, a_{ij}, b_i, c_i – вещественные коэффициенты. Тогда метод

$$k_1 = f(t_n + c_1 h, u_n + h(a_{11}k_1 + \dots + a_{1s}k_s)),$$
 (69)

$$k_2 = f(t_n + c_2 h, u_n + h(a_{21}k_1 + \dots + a_{2,s}k_s)),$$
 (70)

$$k_3 = f(t_n + c_3 h, u_n + h(a_{31}k_1 + \dots + a_{3.s}k_s)),$$
 (71)

$$\dots$$
 (72)

$$k_s = f(t_n + c_s h, u_n + h(a_{s1}k_1 + \dots + a_{s.s}k_s)),$$
 (73)

$$u_{n+1} = u_n + h(b_1 k_1 + \dots + b_s k_s) \tag{74}$$

называется s-стадийным неявным методом Рунге-Кутты.

Следующие формулы показывают связь функции устойчивости метода Рунге–Кутты с его коэффициентами. Функция устойчивости неявного (в общем случае) метода Рунге–Кутты выражается через коэффициенты так:

$$R(z) = 1 + z\boldsymbol{b}^{T}(\boldsymbol{I} - z\boldsymbol{A})^{-1}\boldsymbol{e}, \tag{75}$$

где ${m A}=[a_{ij}], {m b}=[b_1,\ldots,b_s]^T, {m e}=[1,1,\ldots,1]^T, {m I}$ — единичная матрица. Или так

$$R(z) = \frac{\det(\mathbf{I} - z\mathbf{A} + z\mathbf{e}b^{T})}{\det(\mathbf{I} - z\mathbf{A})}.$$
 (76)

Задача 31 (функция и область устойчивости метода Рунге–Кутты). Для решения задачи Коши для системы ОДУ

$$\begin{cases} \dot{u} = -800u + 0.04v + 0.02w, \\ \dot{v} = -5v - 3w, \\ \dot{w} = v - w, \\ u(0) = 0, v(0) = 4, w(0) = 6. \end{cases}$$

используется метод Рунге-Кутты с таблицей Бутчера:

Получите для него функцию и условие устойчивости. Найдите по-казатель жесткости.

Решение: функция устойчивости получается по одной из формул (75) или (76):

$$R(z) = \frac{1 + 0.6z + 0.14z^2}{1 - 0.4z + 0.04z^2}. (77)$$

Поскольку правая часть системы ОДУ линейная с постоянными коэффициентам, то заменой переменных можно представить систему ОДУ как три независимых модельных уравнения вида (65) с собственными числами матрицы, составленной из коэффициентов правой части, в качестве множителей λ . Эти собственные числа будут $\lambda_1=-2, \lambda_2=-4$ и $\lambda_3=-800$. Так как $z=\lambda h$, то и функцию устойчивости достаточно исследовать на действительной оси. Условие устойчивости определяется областью устойчивости $|R(z)|\leq 1$. После решения неравенства получается, что условие устойчивости $z(1+z/10)\leq 0$. Проверяя его для всех λ , получаем h, который удовлетворяет всем случаям: $h\in \left(0,\frac{10}{800}\right)$. Показатель жесткости – отношение максимального и минимального по модулю собственного числа $s=\frac{800}{2}=400$.

9.2. L-устойчивость, монотонность

А-устойчивость гарантирует, что $\forall \lambda, Re(\lambda) < 0$ численное решение «затухает» с ростом времени (числа шагов). Однако может оказаться, что |R(z)| близко к единице и затухание происходит медленно. Это частично объясняет потребность в следующем определении: метод называется L-устойчивым, если он A-устойчив и

$$\lim_{z \to \infty} R(z) = 0. \tag{78}$$

Полезно помнить, что для рациональной функции (какой и является функции устойчивости) верно (i – мнимая единица):

$$\lim_{z \to -\infty} R(z) = \lim_{z \to \infty} R(z) = \lim_{z = iy, y \to \infty} R(z).$$
 (79)

Ещё одно желательное свойство – монотонность. Точное решение тестовой задачи Коши $e^{\lambda t} > 0$ – монотонно убывающая функция, поэтому разумно потребовать этого от численного решения: метод называется монотонным, если $\forall y \in \mathbb{R}, y < 0$, выполняется 0 < R(y) < 1.

Задача 32 (ОДУ второго порядка). Для решения задачи Коши для ОДУ второго порядка:

$$\begin{cases} y'' = -\frac{19}{4}y - 10y', \\ y(0) = -9, y'(0) = 0 \end{cases}$$
 (80)

используется метод трапеции. Найти показатель жесткости задачи и исследовать на L-устойчивость. Решение: сначала сведем ОДУ второго порядка к системе первого порядка:

$$\mathbf{u}' = -A\mathbf{u}, \mathbf{u}(0) = (-9, 0)^T.$$

Здесь $\mathbf{u} = (y_1, y_2)^T$, $y = y_1' = y_2$, а матрица

$$A = \begin{pmatrix} 0 & -1 \\ \frac{19}{4} & 10 \end{pmatrix}. \tag{81}$$

Собственные числа матрицы $\lambda_1 = -1/2$, $\lambda_2 = -19/2$. Тогда показатель жесткости s = 19. Разностное уравнение метода трапеции имеет вид

$$\frac{u_{n+1} - u_n}{h} = \frac{f_n + f_{n+1}}{2}. (82)$$

Применяя его для модельного уравнения, получим функцию устойчивости $R(z) = \frac{2+z}{2-z}$. Несложно видеть, что область устойчивости метода – вся левая комплексная полуплоскость. Значит метод А-устойчивый. Но он не будет L-устойчивым, так как условие (78) не выполняется.

9.3. А-устойчивость многошаговых методов

Для исследования многошагового метода на A-устойчивость можно воспользоваться, например, теоремой, которая называется ϵ ворой барьер Далквиста: любой A-устойчивый многошаговый метод должен иметь порядок $p \leq 2$.

Чтобы найти порядок многошагового метода вида

$$\alpha_k y_{l+k} + \alpha_{k-1} y_{l+k-1} + \dots + \alpha_0 y_l = h(\beta_k f_{l+k} + \beta_{k-1} f_{l+k-1} + \dots + \beta_0 f_l),$$
(83)

где $f_i=f(x_i,y_i), \alpha_k\neq 0, |\alpha_0|+|\beta_0|>0,$ можно воспользоваться условием порядка. Многошаговый метод имеет порядок p, если

$$\sum_{j=0}^{k} \alpha_j = 0, \sum_{j=0}^{k} \alpha_j j^q = q \sum_{j=0}^{k} \beta_j j^{q-1}, q = 1, \dots, p.$$
 (84)

Задача 33 (А-устойчивость многошагового метода). Найти порядок метода и исследовать его на А-устойчивость:

$$\frac{x_n + x_{n-1} - 2x_{n-2}}{3\tau} = \frac{1}{12}f_n + \frac{4}{6}f_{n-1} + \frac{3}{12}f_{n-2}.$$
 (85)

Решение: воспользуемся условием порядка для многошагового метода и получим, что p=3. По второму барьеру Далквиста метод не может быть А-устойчивым. ■