LogicS

Lecture #7: DIY First-Order Logic

Carlos Areces and Patrick Blackburn {carlos.areces,patrick.blackburn}@loria.fr

INRIA Nancy Grand Est Nancy, France

NASSLLI 2010 - Bloomington - USA

- ▶ We saw how we can introduce different operators...
- ▶ ...and 'cook' our own logic.

- We saw how we can introduce different operators...
- ...and 'cook' our own logic.
- Now, we want to talk about First (and Higher) Order Logic tomorrow.

- ▶ We saw how we can introduce different operators...
- ...and 'cook' our own logic.
- Now, we want to talk about First (and Higher) Order Logic tomorrow.
- ▶ What do you think? Can we mix the First Order Recipe?

▶ We'll cook First Order Logic à la NASSLLI10.

- ▶ We'll cook First Order Logic à la NASSLLI10.
- ▶ We will see what we can reuse of what we already have. . .
- ...and extend the language if necessary.

- We'll cook First Order Logic à la NASSLLI10.
- ▶ We will see what we can reuse of what we already have. . .
- ...and extend the language if necessary.
- ► We will then show that the language we obtain is actually equivalent to the 'classical' First Order Language.

We want to define a language equivalent to First Order Logic (with equality and constants, but without function symbols).

- We want to define a language equivalent to First Order Logic (with equality and constants, but without function symbols).
- During the previous lectures we introduced a number of operators.
 - Propositional symbols
 - ► The boolean operators ∧, ¬
 - ▶ The $\langle R \rangle$ operator
 - Constants
 - The : operator
 - ▶ The counting operators $\langle = n R \rangle$
 - ▶ The universal operator [*U*]
 - ▶ The reflexive and transitive closure operator $\langle R^* \rangle$

- We want to define a language equivalent to First Order Logic (with equality and constants, but without function symbols).
- During the previous lectures we introduced a number of operators.
 - Propositional symbols
 - ▶ The boolean operators ∧, ¬
 - ▶ The $\langle R \rangle$ operator
 - Constants
 - ► The : operator
 - ▶ The counting operators $\langle = n R \rangle$
 - ► The universal operator [*U*]
 - ▶ The reflexive and transitive closure operator $\langle R^* \rangle$
- Which one can we use?

- We want to define a language equivalent to First Order Logic (with equality and constants, but without function symbols).
- During the previous lectures we introduced a number of operators.
 - ▶ Propositional symbols √
 - ▶ The boolean operators ∧, ¬
 - ▶ The $\langle R \rangle$ operator
 - Constants
 - The : operator
 - ▶ The counting operators $\langle = n R \rangle$
 - ► The universal operator [*U*]
 - ▶ The reflexive and transitive closure operator $\langle R^* \rangle$
- Which one can we use?

- We want to define a language equivalent to First Order Logic (with equality and constants, but without function symbols).
- During the previous lectures we introduced a number of operators.
 - ▶ Propositional symbols √
 - ▶ The boolean operators \land , \neg \checkmark
 - ▶ The $\langle R \rangle$ operator
 - Constants
 - The : operator
 - ▶ The counting operators $\langle = n R \rangle$
 - ▶ The universal operator [*U*]
 - ▶ The reflexive and transitive closure operator $\langle R^* \rangle$
- Which one can we use?

- We want to define a language equivalent to First Order Logic (with equality and constants, but without function symbols).
- During the previous lectures we introduced a number of operators.
 - ▶ Propositional symbols √
 - ▶ The boolean operators \land , \neg \checkmark
 - ▶ The $\langle R \rangle$ operator $\sqrt{}$
 - Constants
 - The : operator
 - ▶ The counting operators $\langle = n R \rangle$
 - ▶ The universal operator [*U*]
 - ▶ The reflexive and transitive closure operator $\langle R^* \rangle$
- Which one can we use?

- We want to define a language equivalent to First Order Logic (with equality and constants, but without function symbols).
- During the previous lectures we introduced a number of operators.
 - ▶ Propositional symbols √
 - ▶ The boolean operators \land , \neg \checkmark
 - ▶ The $\langle R \rangle$ operator $\sqrt{}$
 - ▶ Constants √
 - The : operator
 - ▶ The counting operators $\langle = n R \rangle$
 - ► The universal operator [*U*]
 - ▶ The reflexive and transitive closure operator $\langle R^* \rangle$
- Which one can we use?

- We want to define a language equivalent to First Order Logic (with equality and constants, but without function symbols).
- During the previous lectures we introduced a number of operators.
 - ► Propositional symbols √
 - ▶ The boolean operators \land , \neg \checkmark
 - ▶ The $\langle R \rangle$ operator $\sqrt{}$
 - ► Constants √
 - ▶ The : operator $\sqrt{}$
 - ▶ The counting operators $\langle = n R \rangle$
 - ▶ The universal operator [*U*]
 - ▶ The reflexive and transitive closure operator $\langle R^* \rangle$
- Which one can we use?

- We want to define a language equivalent to First Order Logic (with equality and constants, but without function symbols).
- During the previous lectures we introduced a number of operators.
 - ► Propositional symbols √
 - ▶ The boolean operators \land , \neg \checkmark
 - ▶ The $\langle R \rangle$ operator $\sqrt{}$
 - ► Constants √
 - ▶ The : operator $\sqrt{}$
 - ▶ The counting operators $\langle = n R \rangle$ ×
 - ▶ The universal operator [*U*]
 - ▶ The reflexive and transitive closure operator $\langle R^* \rangle$
- Which one can we use?

- We want to define a language equivalent to First Order Logic (with equality and constants, but without function symbols).
- During the previous lectures we introduced a number of operators.
 - ► Propositional symbols √
 - ▶ The boolean operators \land , \neg \checkmark
 - ▶ The $\langle R \rangle$ operator $\sqrt{}$
 - ► Constants √
 - ▶ The : operator $\sqrt{}$
 - ▶ The counting operators $\langle = n R \rangle$ ×
 - ► The universal operator [*U*] Close, but no cigar!
 - ▶ The reflexive and transitive closure operator $\langle R^* \rangle$
- Which one can we use?

- We want to define a language equivalent to First Order Logic (with equality and constants, but without function symbols).
- During the previous lectures we introduced a number of operators.
 - ► Propositional symbols √
 - ▶ The boolean operators \land , \neg \checkmark
 - ▶ The $\langle R \rangle$ operator $\sqrt{}$
 - ► Constants √
 - ▶ The : operator $\sqrt{}$
 - ▶ The counting operators $\langle = n R \rangle$ ×
 - ► The universal operator [*U*] Close, but no cigar!
 - ▶ The reflexive and transitive closure operator $\langle R^* \rangle$ ×
- Which one can we use?

► Granted: we need universal quantification.

- Granted: we need universal quantification.
- ▶ But the [*U*] operator is not expressive enough.

- Granted: we need universal quantification.
- ▶ But the [*U*] operator is not expressive enough.
 - ▶ We won't prove it here (one way to do it, for example is noting that the language containing [*U*] is still decidable, while full first order logic should be undecidable).

- Granted: we need universal quantification.
- ▶ But the [*U*] operator is not expressive enough.
 - ▶ We won't prove it here (one way to do it, for example is noting that the language containing [U] is still decidable, while full first order logic should be undecidable).
 - ► The universal operator is not fine grained enough: [*U*] says for all

and we need for all x

- Granted: we need universal quantification.
- ▶ But the [*U*] operator is not expressive enough.
 - ▶ We won't prove it here (one way to do it, for example is noting that the language containing [*U*] is still decidable, while full first order logic should be undecidable).
 - ► The universal operator is not fine grained enough: [U] says for all

and we need for all x

► First order quantification gives as a delicate control (via variables) of what we are quantifying on.

▶ I will define a litle piece of notation that I will need in the next slide.

- I will define a litle piece of notation that I will need in the next slide.
- ► As I want it to be very clear, I'll do it here and give an example.

- I will define a litle piece of notation that I will need in the next slide.
- As I want it to be very clear, I'll do it here and give an example.
- Let
 - $M = \langle D, \{R_1, \dots, R_n\}, \{P_1, \dots, P_m\}, \{N_1, \dots, N_k\} \rangle$ be a model,
 - w an element in D ($w \in D$),
 - and n_i a name.

- I will define a litle piece of notation that I will need in the next slide.
- ► As I want it to be very clear, I'll do it here and give an example.
- ▶ Let
 - $M = \langle D, \{R_1, \dots, R_n\}, \{P_1, \dots, P_m\}, \{N_1, \dots, N_k\} \rangle$ be a model,
 - w an element in D ($w \in D$),
 - and n_i a name.
- We write $\mathcal{M}\{n_i \mapsto w\}$ for the model obtained from \mathcal{M} where the only change is that now n_i is interpreted as w (i.e., n_i points to w).

- I will define a litle piece of notation that I will need in the next slide.
- ► As I want it to be very clear, I'll do it here and give an example.
- ▶ Let
 - $M = \langle D, \{R_1, \dots, R_n\}, \{P_1, \dots, P_m\}, \{N_1, \dots, N_k\} \rangle$ be a model,
 - w an element in D ($w \in D$),
 - ightharpoonup and n_i a name.
- ▶ We write $\mathcal{M}\{n_i \mapsto w\}$ for the model obtained from \mathcal{M} where the only change is that now n_i is interpreted as w (i.e., n_i w_2 points to w).

 \mathcal{N}

W₁

 n_1

- ▶ I will define a litle piece of notation that I will need in the next slide.
- ► As I want it to be very clear, I'll do it here and give an example.
- Let
 - $M = \langle D, \{R_1, \dots, R_n\}, \{P_1, \dots, P_m\}, \{N_1, \dots, N_k\} \rangle$ be a model.
 - w an element in D ($w \in D$),
 - \triangleright and n_i a name.
- We write $\mathcal{M}\{n_i \mapsto w\}$ for the model obtained from \mathcal{M} where the only change is that now n_i is interpreted as w (i.e., n_i w_2 points to w).

$$\mathcal{M} \Rightarrow \mathcal{M}\{n_1 \mapsto w_2\}$$

First Order Quantification

First Order Quantification

▶ We introduce the operator $\langle n \rangle$ where n is a name (we will call the operator repoint n) as:

$$\mathcal{M}, w \models \langle \! \langle n \rangle \! \rangle \varphi$$
 iff for some $w' \mathcal{M} \{ n \mapsto w' \}, w \models \varphi$

We introduce the operator $\langle n \rangle$ where n is a name (we will call the operator repoint n) as:

$$\mathcal{M}, w \models \langle n \rangle \varphi$$
 iff for some $w' \mathcal{M} \{ n \mapsto w' \}, w \models \varphi$

► Compare with

$$\mathcal{M}, w \models \langle R \rangle \varphi$$
 iff there is w' s.t. wRw' and $\mathcal{M}, w' \models \varphi$.

We introduce the operator $\langle n \rangle$ where n is a name (we will call the operator repoint n) as:

$$\mathcal{M}, w \models \langle n \rangle \varphi$$
 iff for some $w' \mathcal{M} \{ n \mapsto w' \}, w \models \varphi$

- ► Compare with $\mathcal{M}, w \models \langle R \rangle \varphi$ iff there is w' s.t. wRw' and $\mathcal{M}, w' \models \varphi$.
- ▶ Compare with $\langle U \rangle \varphi := \neg [U] \neg \varphi$ $\mathcal{M}, w \models \langle U \rangle \varphi$ iff for some $w', \mathcal{M}, w' \models \varphi$

We introduce the operator $\langle n \rangle$ where n is a name (we will call the operator repoint n) as:

$$\mathcal{M}, w \models \langle n \rangle \varphi$$
 iff for some $w' \mathcal{M} \{ n \mapsto w' \}, w \models \varphi$

- ► Compare with $\mathcal{M}, w \models \langle R \rangle \varphi$ iff there is w' s.t. wRw' and $\mathcal{M}, w' \models \varphi$.
- ► Compare with $\langle U \rangle \varphi := \neg [U] \neg \varphi$ $\mathcal{M}, w \models \langle U \rangle \varphi$ iff for some $w', \mathcal{M}, w' \models \varphi$
- ▶ Actually, using $\langle n \rangle$ and : together we can define [U]:

$$[U]\varphi \text{ iff } \neg \langle n \rangle (n:\neg \varphi)$$

We introduce the operator $\langle n \rangle$ where n is a name (we will call the operator repoint n) as:

$$\mathcal{M}, w \models \langle n \rangle \varphi$$
 iff for some $w' \mathcal{M} \{ n \mapsto w' \}, w \models \varphi$

- ► Compare with $\mathcal{M}, w \models \langle R \rangle \varphi$ iff there is w' s.t. wRw' and $\mathcal{M}, w' \models \varphi$.
- ► Compare with $\langle U \rangle \varphi := \neg [U] \neg \varphi$ $\mathcal{M}, w \models \langle U \rangle \varphi$ iff for some $w', \mathcal{M}, w' \models \varphi$
- ▶ Actually, using $\langle n \rangle$ and : together we can define [U]:

$$[U]\varphi$$
 iff $\neg \langle \! \langle n \rangle \! \rangle (n:\neg \varphi)$ (for n not in φ)

▶ We will now show that we can capture all First Order Logic using: the $\langle R \rangle$ language, names, : and $\langle n \rangle$.

- ▶ We will now show that we can capture all First Order Logic using: the $\langle R \rangle$ language, names, : and $\langle n \rangle$.
- We will (recursively) define a translation that will assign to each formula of the First Order Language, an equivalent formula in our language

- ▶ We will now show that we can capture all First Order Logic using: the $\langle R \rangle$ language, names, : and $\langle n \rangle$.
- We will (recursively) define a translation that will assign to each formula of the First Order Language, an equivalent formula in our language

$$Tr(s=t) = s:t$$

- ▶ We will now show that we can capture all First Order Logic using: the $\langle R \rangle$ language, names, : and $\langle n \rangle$.
- We will (recursively) define a translation that will assign to each formula of the First Order Language, an equivalent formula in our language

$$Tr(s = t) = s:t$$

 $Tr(P(s)) = s:p$

- ▶ We will now show that we can capture all First Order Logic using: the $\langle R \rangle$ language, names, : and $\langle n \rangle$.
- We will (recursively) define a translation that will assign to each formula of the First Order Language, an equivalent formula in our language

$$Tr(s = t) = s:t$$

 $Tr(P(s)) = s:p$
 $Tr(R(s,t)) = s:\langle R \rangle t$

- ▶ We will now show that we can capture all First Order Logic using: the $\langle R \rangle$ language, names, : and $\langle n \rangle$.
- We will (recursively) define a translation that will assign to each formula of the First Order Language, an equivalent formula in our language

$$Tr(s = t) = s:t$$

 $Tr(P(s)) = s:p$
 $Tr(R(s,t)) = s:\langle R \rangle t$
 $Tr(\neg \varphi) = \neg Tr(\varphi)$

- ▶ We will now show that we can capture all First Order Logic using: the $\langle R \rangle$ language, names, : and $\langle n \rangle$.
- We will (recursively) define a translation that will assign to each formula of the First Order Language, an equivalent formula in our language

$$Tr(s = t) = s:t$$

 $Tr(P(s)) = s:p$
 $Tr(R(s,t)) = s:\langle R \rangle t$
 $Tr(\neg \varphi) = \neg Tr(\varphi)$
 $Tr(\varphi \wedge \psi) = Tr(\varphi) \wedge Tr(\psi)$

- ▶ We will now show that we can capture all First Order Logic using: the $\langle R \rangle$ language, names, : and $\langle n \rangle$.
- We will (recursively) define a translation that will assign to each formula of the First Order Language, an equivalent formula in our language

$$Tr(s = t) = s:t$$
 $Tr(P(s)) = s:p$
 $Tr(R(s,t)) = s:\langle R \rangle t$
 $Tr(\neg \varphi) = \neg Tr(\varphi)$
 $Tr(\varphi \wedge \psi) = Tr(\varphi) \wedge Tr(\psi)$
 $Tr(\exists s.\varphi) = \langle \! \langle s \rangle \rangle Tr(\varphi)$

- ▶ We will now show that we can capture all First Order Logic using: the $\langle R \rangle$ language, names, : and $\langle n \rangle$.
- ► We will (recursively) define a translation that will assign to each formula of the First Order Language, an equivalent formula in our language

$$Tr(s = t) = s:t$$
 $Tr(P(s)) = s:p$
 $Tr(R(s,t)) = s:\langle R \rangle t$
 $Tr(\neg \varphi) = \neg Tr(\varphi)$
 $Tr(\varphi \wedge \psi) = Tr(\varphi) \wedge Tr(\psi)$
 $Tr(\exists s.\varphi) = \langle s \rangle Tr(\varphi)$
 $Tr(\forall s.\varphi) = \neg \langle s \rangle \neg Tr(\varphi) = \llbracket s \rrbracket Tr(\varphi) \rangle$

$$\forall y. Man(y) \rightarrow \exists x. (Woman(x) \land Loves(y, x)))$$

$$Tr(\forall y.Man(y) \rightarrow \exists x.(Woman(x) \land Loves(y, x))))$$

$$Tr(\forall y. Man(y) \rightarrow \exists x. (Woman(x) \land Loves(y, x))))$$

 $\llbracket y \rrbracket (Tr(Man(y) \rightarrow \exists x. (Woman(x) \land Loves(y, x))))$

```
Tr(\forall y.Man(y) \rightarrow \exists x.(Woman(x) \land Loves(y, x))))

\llbracket y \rrbracket (Tr(Man(y) \rightarrow \exists x.(Woman(x) \land Loves(y, x))))

\llbracket y \rrbracket (Tr(Man(y)) \rightarrow Tr(\exists x.(Woman(x) \land Loves(y, x))))
```

```
Tr(\forall y. Man(y) \rightarrow \exists x. (Woman(x) \land Loves(y, x))))

\llbracket y \rrbracket (Tr(Man(y) \rightarrow \exists x. (Woman(x) \land Loves(y, x))))

\llbracket y \rrbracket (Tr(Man(y)) \rightarrow Tr(\exists x. (Woman(x) \land Loves(y, x))))

\llbracket y \rrbracket (y: Man \rightarrow Tr(\exists x. (Woman(x) \land Loves(y, x))))
```

```
Tr(\forall y.Man(y) \rightarrow \exists x.(Woman(x) \land Loves(y,x))))

\llbracket y \rrbracket (Tr(Man(y) \rightarrow \exists x.(Woman(x) \land Loves(y,x))))

\llbracket y \rrbracket (Tr(Man(y)) \rightarrow Tr(\exists x.(Woman(x) \land Loves(y,x))))

\llbracket y \rrbracket (y:Man \rightarrow Tr(\exists x.(Woman(x) \land Loves(y,x))))

\llbracket y \rrbracket (y:Man \rightarrow \langle\!\langle x \rangle\!\rangle (Tr((Woman(x) \land Loves(y,x)))))
```

```
Tr(\forall y.Man(y) \rightarrow \exists x.(Woman(x) \land Loves(y, x))))

\llbracket y \rrbracket (Tr(Man(y) \rightarrow \exists x.(Woman(x) \land Loves(y, x))))

\llbracket y \rrbracket (Tr(Man(y)) \rightarrow Tr(\exists x.(Woman(x) \land Loves(y, x))))

\llbracket y \rrbracket (y:Man \rightarrow Tr(\exists x.(Woman(x) \land Loves(y, x))))

\llbracket y \rrbracket (y:Man \rightarrow \langle\!\langle x \rangle\!\rangle (Tr((Woman(x)) \land Tr(Loves(y, x))))

\llbracket y \rrbracket (y:Man \rightarrow \langle\!\langle x \rangle\!\rangle (Tr(Woman(x)) \land Tr(Loves(y, x))))
```

```
Tr(\forall y.Man(y) \rightarrow \exists x.(Woman(x) \land Loves(y,x)))) \\ \llbracket y \rrbracket (Tr(Man(y) \rightarrow \exists x.(Woman(x) \land Loves(y,x)))) \\ \llbracket y \rrbracket (Tr(Man(y)) \rightarrow Tr(\exists x.(Woman(x) \land Loves(y,x)))) \\ \llbracket y \rrbracket (y:Man \rightarrow Tr(\exists x.(Woman(x) \land Loves(y,x)))) \\ \llbracket y \rrbracket (y:Man \rightarrow \langle\!\langle x \rangle\!\rangle (Tr((Woman(x) \land Loves(y,x))))) \\ \llbracket y \rrbracket (y:Man \rightarrow \langle\!\langle x \rangle\!\rangle (Tr(Woman(x)) \land Tr(Loves(y,x)))) \\ \llbracket y \rrbracket (y:Man \rightarrow \langle\!\langle x \rangle\!\rangle (x:Woman \land y:\langle Loves \rangle x)) \\ \end{cases}
```

$$\forall y. Man(y) \rightarrow \exists x. (Woman(x) \land Loves(y, x)))$$
$$[\![y]\!](y: Man \rightarrow \langle\!\langle x\rangle\!\rangle(x: Woman \land y: \langle Loves \rangle\!\rangle x))$$

▶ Of course, we can do the translation in the other direction as well.

- ▶ Of course, we can do the translation in the other direction as well.
- ▶ We only need to realize that the semantic definition of all the operators we introduced can be defined in first-order logic.

- ► Of course, we can do the translation in the other direction as well.
- ▶ We only need to realize that the semantic definition of all the operators we introduced can be defined in first-order logic.

$$\mathcal{M}, w \models \langle R \rangle \varphi$$
 iff there is w' s.t. wRw' and $\mathcal{M}, w' \models \varphi$

- ▶ Of course, we can do the translation in the other direction as well.
- ▶ We only need to realize that the semantic definition of all the operators we introduced can be defined in first-order logic.

$$\mathcal{M}, w \models \langle R \rangle \varphi$$
 iff there is w' s.t. wRw' and $\mathcal{M}, w' \models \varphi$

$$Tr(\langle R \rangle \varphi) = \exists w'. (R(w, w') \land Tr(\varphi))$$

- Of course, we can do the translation in the other direction as well.
- We only need to realize that the semantic definition of all the operators we introduced can be defined in first-order logic.

$$\mathcal{M}, w \models \langle R \rangle \varphi$$
 iff there is w' s.t. wRw' and $\mathcal{M}, w' \models \varphi$
$$Tr(\langle R \rangle \varphi) = \exists w'. (R(w, w') \land Tr(\varphi))$$

- ▶ Of course, we can do the translation in the other direction as well.
- ▶ We only need to realize that the semantic definition of all the operators we introduced can be defined in first-order logic.

$$\mathcal{M}, w \models \langle R \rangle \varphi$$
 iff there is w' s.t. wRw' and $\mathcal{M}, w' \models \varphi$

$$Tr_{w}(\langle R \rangle \varphi) = \exists w'.(R(w, w') \wedge Tr_{w'}(\varphi))$$

- ► Of course, we can do the translation in the other direction as well.
- ▶ We only need to realize that the semantic definition of all the operators we introduced can be defined in first-order logic.

$$\mathcal{M}, w \models \langle R \rangle \varphi$$
 iff there is w' s.t. wRw' and $\mathcal{M}, w' \models \varphi$

$$Tr_{w}(\langle R \rangle \varphi) = \exists w'.(R(w, w') \wedge Tr_{w'}(\varphi))$$

▶ The w in Tr_w keeps track of where we are evaluating the formula in the model.

▶ Let's see the details. Assume that we have a formula in the $\langle R \rangle$ language extended with constants, and the : and $\langle n \rangle$ operators.

▶ Let's see the details. Assume that we have a formula in the $\langle R \rangle$ language extended with constants, and the : and $\langle n \rangle$ operators.

We will (recursively) define an equivalent first order formula:

▶ Let's see the details. Assume that we have a formula in the $\langle R \rangle$ language extended with constants, and the : and $\langle n \rangle$ operators.

$$Tr_{x}(p) = P(x)$$

▶ Let's see the details. Assume that we have a formula in the $\langle R \rangle$ language extended with constants, and the : and $\langle n \rangle$ operators.

$$Tr_x(p) = P(x)$$

 $Tr_x(n) = (n = x)$

▶ Let's see the details. Assume that we have a formula in the $\langle R \rangle$ language extended with constants, and the : and $\langle n \rangle$ operators.

$$Tr_X(p) = P(x)$$

 $Tr_X(n) = (n = x)$
 $Tr_X(\neg \varphi) = \neg Tr_X(\varphi)$

▶ Let's see the details. Assume that we have a formula in the $\langle R \rangle$ language extended with constants, and the : and $\langle n \rangle$ operators.

$$Tr_X(p) = P(x)$$

 $Tr_X(n) = (n = x)$
 $Tr_X(\neg \varphi) = \neg Tr_X(\varphi)$
 $Tr_X(\varphi \wedge \psi) = Tr_X(\varphi) \wedge Tr_X(\psi)$

▶ Let's see the details. Assume that we have a formula in the $\langle R \rangle$ language extended with constants, and the : and $\langle n \rangle$ operators.

$$Tr_{x}(p) = P(x)$$

 $Tr_{x}(n) = (n = x)$
 $Tr_{x}(\neg \varphi) = \neg Tr_{x}(\varphi)$
 $Tr_{x}(\varphi \wedge \psi) = Tr_{x}(\varphi) \wedge Tr_{x}(\psi)$
 $Tr_{x}(\langle R \rangle \varphi) = \exists x. (R(x, y) \wedge Tr_{y}(\varphi))$ for y a new variable

▶ Let's see the details. Assume that we have a formula in the $\langle R \rangle$ language extended with constants, and the : and $\langle n \rangle$ operators.

$$Tr_X(p) = P(x)$$

 $Tr_X(n) = (n = x)$
 $Tr_X(\neg \varphi) = \neg Tr_X(\varphi)$
 $Tr_X(\varphi \wedge \psi) = Tr_X(\varphi) \wedge Tr_X(\psi)$
 $Tr_X(\langle R \rangle \varphi) = \exists x. (R(x, y) \wedge Tr_y(\varphi))$ for y a new variable
 $Tr_X(n:\varphi) = Tr_n(\varphi)$

▶ Let's see the details. Assume that we have a formula in the $\langle R \rangle$ language extended with constants, and the : and $\langle n \rangle$ operators.

$$Tr_X(p) = P(x)$$
 $Tr_X(n) = (n = x)$
 $Tr_X(\neg \varphi) = \neg Tr_X(\varphi)$
 $Tr_X(\varphi \land \psi) = Tr_X(\varphi) \land Tr_X(\psi)$
 $Tr_X(\langle R \rangle \varphi) = \exists x. (R(x, y) \land Tr_y(\varphi)) \text{ for } y \text{ a new variable}$
 $Tr_X(n:\varphi) = Tr_n(\varphi)$
 $Tr_X(\langle n \rangle \varphi) = \exists n. Tr_X(\varphi)$

▶ Let's see the details. Assume that we have a formula in the $\langle R \rangle$ language extended with constants, and the : and $\langle n \rangle$ operators.

$$Tr_X(p) = P(x)$$
 $Tr_X(n) = (n = x)$
 $Tr_X(\neg \varphi) = \neg Tr_X(\varphi)$
 $Tr_X(\varphi \land \psi) = Tr_X(\varphi) \land Tr_X(\psi)$
 $Tr_X(\langle R \rangle \varphi) = \exists x. (R(x, y) \land Tr_y(\varphi)) \text{ for } y \text{ a new variable}$
 $Tr_X(n:\varphi) = Tr_n(\varphi)$
 $Tr_X(\langle n \rangle \varphi) = \exists n. Tr_X(\varphi)$
 $Vec can think of n as an FO variable now.$

▶ In a way, the reason for today's talk was to show that there is nothing special about first order logic.

- ▶ In a way, the reason for today's talk was to show that there is nothing special about first order logic.
- ▶ It can be obtained in a natural way, following the ideas that we introduced in previous lectures.

- ▶ In a way, the reason for today's talk was to show that there is nothing special about first order logic.
- ▶ It can be obtained in a natural way, following the ideas that we introduced in previous lectures.
- Students have told me I undestand PL, but I would never get how FOL works.

- ▶ In a way, the reason for today's talk was to show that there is nothing special about first order logic.
- ▶ It can be obtained in a natural way, following the ideas that we introduced in previous lectures.
- ► Students have told me
 I undestand PL, but I would never get how FOL works.

 NONSENSE!!

- ▶ In a way, the reason for today's talk was to show that there is nothing special about first order logic.
- ▶ It can be obtained in a natural way, following the ideas that we introduced in previous lectures.
- ► Students have told me
 I undestand PL, but I would never get how FOL works.

 NONSENSEII
- ▶ As we saw today, they are not as different. You only need to look at them from the right perspective.

- ▶ In a way, the reason for today's talk was to show that there is nothing special about first order logic.
- ▶ It can be obtained in a natural way, following the ideas that we introduced in previous lectures.
- ► Students have told me
 I undestand PL, but I would never get how FOL works.

 NONSENSEII
- ▶ As we saw today, they are not as different. You only need to look at them from the right perspective.
- ▶ If you really understand how one works, you already know how the other does.

► As we mentioned in the first lecture one of the first polytheistic logicians was Arthur Prior.

- As we mentioned in the first lecture one of the first polytheistic logicians was Arthur Prior.
- ▶ Prior is the father of Tense Logic, a logic that include the operators *F* and *P* to talk about the future and the past.

- As we mentioned in the first lecture one of the first polytheistic logicians was Arthur Prior.
- ▶ Prior is the father of Tense Logic, a logic that include the operators *F* and *P* to talk about the future and the past.
- He was a strong advocate of the bottom up way of viewing first-order logic that we presented today.

- As we mentioned in the first lecture one of the first polytheistic logicians was Arthur Prior.
- ▶ Prior is the father of Tense Logic, a logic that include the operators *F* and *P* to talk about the future and the past.
- He was a strong advocate of the bottom up way of viewing first-order logic that we presented today.

Prior, Arthur (1967). Chapter V.6 of Past, Present and Future. Clarendon Press, Oxford

The Next Lecture

We Like it Complete and Compact (and We have a Soft Spot for Löwenheim-Skolem)