

UDESC – Universidade do Estado de Santa Catarina

Centro de Ciências Tecnológicas Departamento de Ciência da Computação

Roteiro-Relatório da Experiência "AMPOP – inversor e conversor A/D"

1 OBJETIVOS

Analisar e compreender o funcionamento do AMPOP como inversor e como conversor D/A.

2 PARTE TEORICA

Para analisar e compreender o funcionamento do AMPOP como inversor e como conversor D/A, iniciamos relembrando seu funcionamento como inversor que é dado na Figura 1.

$$\frac{Vo}{Vi} = -\frac{R2}{R1}$$

Figura 1 - Circuito inversor

O conversor DA (DAC) aceita como entrada dados digitais e produz uma saída analógica, a qual é relacionada com o código digital de entrada. Uma das maneiras de se obter um conversor D/A é utilizando o AMPOP em sua configuração inversora, como segue na Figura 2.

UDESC – Universidade do Estado de Santa Catarina

Centro de Ciências Tecnológicas Departamento de Ciência da Computação

Deve-se demonstrar as equações nas Figuras 1 e 2 e então, escolher resistores adequados para operação do conversor D/A na Figura 2.

MATERIAIS UTILIZADOS

- Fonte de tensão variável (DC Power Suply).
- Resistores
- Multímetro (Voltímetro, Amperímetro e ohmímetro).
- Protoboard.
- AMPOP LM741

3 PARTE EXPERIMENTAL

Com a ajuda do software LTSpice ou Tinkercad, montar e simular as configurações nas Figuras 1 e 2.

UDESC – Universidade do Estado de Santa Catarina

Centro de Ciências Tecnológicas Departamento de Ciência da Computação

Configuração inversora Figura 1	$A_{v} = \frac{V_{0}}{Vi}$
Valor	
Calculado	
Valor Medido	

Conversor D/A		R	R_0	+Vcc	-Vcc
Figura2					
Escolhido					

Conversor D/A								
A_1	A_2	A_3	A_4	Figura 2 V _s calculado	V_s medido			
0	0	0	0					
0	0	0	1					
0	0	1	0					
0	0	1	1					
0	1	0	0					
0	1	0	1					
0	1	1	0					
0	1	1	1					
1	0	0	0					
1	0	0	1					
1	0	1	0					
1	0	1	1					
1	1	0	0					
1	1	0	1					
1	1	1	0					
1	1	1	1					

UDESC – Universidade do Estado de Santa Catarina

Centro de Ciências Tecnológicas Departamento de Ciência da Computação

4 ENTREGA DO RELATÓRIO

O relatório é individual ou em dupla e deve conter, no mínimo, os seguintes pontos:

- Capa
- Introdução
- Cálculo teórico dos circuitos
 - À mão (tirar foto/scanear e incluir como anexo). Caso a imagem seja ilegível, a entrega dos cálculos será desconsiderada.
- Resultados de simulação
 - o Apresentar o circuito simulado
 - o Imagens com os resultados de cada experimento
 - Comentários sobre os resultados, comparando com o cálculo teórico
- Conclusão.