

$$\beta_{M} \leftarrow - ? \qquad (1)$$

$$\Sigma_{1}(k+1) - \Sigma_{1}(k) = -\alpha_{12} \Sigma_{1}(k)$$

$$+ \alpha_{21} \Sigma_{2}(k) + \alpha_{1}(k)$$

$$\Sigma_{2}(k+1) - \Sigma_{2}(k) = \alpha_{12} \Sigma_{1}(k)$$

$$- \alpha_{21} \Sigma_{2}(k)$$

$$\beta_{1}(k+1) = \Sigma_{1}(k) - \alpha_{12} \Sigma_{1}(k) + \alpha_{21} \Sigma_{2}(k)$$

$$+ \alpha_{1}(k)$$

$$\Sigma_{2}(k+1) = \alpha_{12} \Sigma_{1}(k) + \Sigma_{2}(k) - \alpha_{21} \Sigma_{2}(k)$$

$$\beta_{1}(k+1) = \alpha_{12} \Sigma_{1}(k) + \alpha_{21} \Sigma_{2}(k) + \alpha_{11}(k)$$

$$\Sigma_{2}(k+1) = \alpha_{12} \Sigma_{1}(k) + (\lambda - \alpha_{21}) \Sigma_{2}(k)$$

$$+ \alpha_{11} \Sigma_{2}(k)$$

$$\begin{bmatrix} x_{1}(\kappa+1) \\ x_{2}(\kappa+1) \end{bmatrix} = \begin{bmatrix} (1-d_{12}) & \alpha_{21} \\ \alpha_{12} & (1-d_{21}) \end{bmatrix} \begin{bmatrix} x_{2}(\kappa) \\ x_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} 1 \\ u_{1}(\kappa) \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ u_{1}(\kappa) \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ \alpha_{21} & (1-d_{21}) \end{bmatrix} \begin{bmatrix} x_{2}(\kappa) \\ x_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} 1 \\ u_{1}(\kappa) \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ \alpha_{21} & (1-d_{21}) \end{bmatrix} \begin{bmatrix} x_{2}(\kappa) \\ x_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} 1 \\ u_{1}(\kappa) \\ u_{2}(\kappa) \end{bmatrix} = \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ \alpha_{21} & (1-d_{21}) \end{bmatrix} \begin{bmatrix} x_{2}(\kappa) \\ x_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} 1 \\ u_{1}(\kappa) \\ u_{2}(\kappa) \end{bmatrix} = \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ \alpha_{21} & (1-d_{21}) \end{bmatrix} \begin{bmatrix} x_{2}(\kappa) \\ x_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} 1 \\ u_{1}(\kappa) \\ u_{2}(\kappa) \end{bmatrix} = \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ \alpha_{21} & (1-d_{21}) \end{bmatrix} \begin{bmatrix} x_{2}(\kappa) \\ x_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} 1 \\ u_{1}(\kappa) \\ u_{2}(\kappa) \end{bmatrix} = \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ \alpha_{21} & (1-d_{21}) \end{bmatrix} \begin{bmatrix} x_{2}(\kappa) \\ x_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} 1 \\ u_{1}(\kappa) \\ u_{2}(\kappa) \end{bmatrix} = \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ \alpha_{21} & (1-d_{21}) \end{bmatrix} \begin{bmatrix} x_{2}(\kappa) \\ x_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} 1 \\ u_{1}(\kappa) \\ u_{2}(\kappa) \end{bmatrix} = \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ \alpha_{21} & (1-d_{21}) \end{bmatrix} \begin{bmatrix} x_{2}(\kappa) \\ x_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} 1 \\ u_{1}(\kappa) \\ u_{2}(\kappa) \end{bmatrix} = \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ \alpha_{21} & (1-d_{21}) \end{bmatrix} \begin{bmatrix} x_{2}(\kappa) \\ x_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} 1 \\ u_{1}(\kappa) \\ u_{2}(\kappa) \end{bmatrix} = \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ \alpha_{21} & (1-d_{21}) \end{bmatrix} \begin{bmatrix} x_{2}(\kappa) \\ x_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} 1 \\ u_{1}(\kappa) \\ u_{2}(\kappa) \end{bmatrix} = \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ \alpha_{21} & (1-d_{21}) \end{bmatrix} \begin{bmatrix} x_{2}(\kappa) \\ x_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} 1 \\ u_{1}(\kappa) \\ u_{2}(\kappa) \end{bmatrix} = \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{21}) \\ u_{2}(\kappa) \end{bmatrix} + \\ \begin{bmatrix} \alpha_{12} & (1-d_{2$$

VARIA	3161	o sser	SVABIC	ı, ı	ISCITE	
	S	INON	וחו	•		
VARIAT		DIDE	NO ENT	r1 S	TA ZO	
MAKIRO						
	31	NONI	N I			
VARIA	3(८)	INDIF	ENDE	NT(,	INGRE	122
	SI	NON	ιΩι			
SCOLT		101 2	AP.DA	VETT	PRIAL	
20K1110	RA		014111	VUPL	OCAC	
DELLE						
	VARI	W 310				
DELCE Jy (k	VARI					
DELLE	VARI	W 310				
DELCE Jy (k	VARI	W 310				
DELCE Jack	VARI	H 3/U				
DELCE Jack	VARI	H 3/U				
DELCE Jack	VARI	H 3/U				DC, CK)
DELCE Jack	VARI	H 3/U				

$$\begin{array}{c}
O \\
U_{A}(k) \\
U_{A}(k)
\end{array} = \begin{bmatrix}
1 & 1 \\
0 & U_{A}(k)
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
0 & U_{A}(k)
\end{bmatrix} = \begin{bmatrix}
0 & U_{A}(k)
\end{bmatrix} =$$

A
$$\in \mathbb{R}^{n \times n}$$
 HATRICE DINATICA

B $\in \mathbb{R}^{n \times m}$ HATRICE DINGRESSI

C $\in \mathbb{R}^{p \times n}$ HATRICE DI USCITA

D $\in \mathbb{R}^{p \times m}$ TATRICE INGRESSO - USCITA

 $\begin{array}{c} \alpha_{A2} \\ \alpha_{A2} \\ \alpha_{A2} \\ \alpha_{A3} \\ \alpha_{A4} \\ \alpha_{A4} \\ \alpha_{A5} \\$

$$\begin{bmatrix} \alpha' ij \end{bmatrix} \rightarrow \begin{bmatrix} Sec^{-1} J \end{bmatrix} Costant I$$

$$\begin{bmatrix} \beta_{ij} \end{bmatrix} \rightarrow \begin{bmatrix} Lec^{-1} J \end{bmatrix}$$

$$\begin{bmatrix} \dot{x}_{1}(61) \\ \dot{x}_{2}(61) \end{bmatrix} = \dot{x}(6)$$

$$\dot{x}(6) = A \times (6) + B \cdot 4 +$$