Basic conventions						
Minkowski metric tensor	Totally antisymmetric tensor	Four-momentum	Four-momentum norm	Massive rest-frame		
$\eta_{\mu u}$	$\epsilon \eta_{\mu \nu ho \sigma}$	k^{μ}	$k^2 == k_{\mu} k^{\mu}$	$n^{\mu} == \frac{k^{\mu}}{k}$		

Fundamental field | Symmetries

	,	1	1
$\omega_{lphaeta\chi}$		$\frac{1}{2} \eta_{\beta\chi} \omega_{1^{-}\alpha}^{\sharp 1} + \frac{1}{2} \eta_{\alpha\chi} \omega_{1^{-}\beta}^{\sharp 1} + \frac{4}{3} \omega_{2^{-}\alpha\beta\chi}^{\sharp 1} + \frac{1}{3} \eta_{\beta\chi} \omega_{0^{+}}^{\sharp 1} n_{\alpha} + \omega_{1^{+}\beta\chi}^{\sharp 1} n_{\alpha} + \omega_{2^{+}\beta\chi}^{\sharp 1} n_{\alpha^{-}\frac{1}{3}} \eta_{\alpha\chi} \omega_{0^{+}}^{\sharp 1} n_{\beta^{-}} \\ \omega_{1^{+}\alpha\chi}^{\sharp 1} n_{\beta^{-}} \omega_{2^{+}\alpha\chi}^{\sharp 1} n_{\beta} + \omega_{1^{+}\alpha\beta}^{\sharp 2} n_{\chi^{-}\frac{1}{2}} \omega_{1^{-}\beta}^{\sharp 1} n_{\alpha} n_{\chi^{-}} \omega_{1^{-}\beta}^{\sharp 2} n_{\alpha} n_{\chi^{+}\frac{1}{2}} \omega_{1^{-}\alpha}^{\sharp 1} n_{\beta} n_{\chi^{+}} \omega_{1^{-}\alpha}^{\sharp 2} n_{\beta} n_{\chi^{-}\frac{1}{6}} \epsilon \eta_{\alpha\beta\chi\delta} \omega_{0^{-}}^{\sharp 1} n^{\delta} $	$\sigma_{lphaeta\chi}$
SO(3) irrep	Symmetries	Expansion in terms of the fundamental field	Source
$\omega_{0}^{\#1}$	Symmetry[0, $\omega_{0^{+}}^{\#1}$, {}, StrongGenSet[{}, GenSet[]]]	$\omega_{\alpha\beta}^{\beta} n^{\alpha}$	$\sigma_{0^{+}}^{#1}$
$\omega_0^{#1}$	Symmetry[0, $\omega_0^{\#1}$, {}, StrongGenSet[{}, GenSet[]]]	$-\epsilon \eta_{\alpha\beta\chi\delta} \omega^{\beta\chi\delta} n^{\alpha}$	$\sigma_0^{\#1}$
$\omega_{1^{+}lphaeta}^{\sharp1}$	Symmetry[2, $\omega_{1^+}^{\#1 \bullet 1 \bullet 2}$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$-\frac{1}{2} \omega_{\alpha \chi \beta} n^{\chi} + \frac{1}{2} \omega_{\beta \chi \alpha} n^{\chi} - \frac{1}{2} \omega_{\beta \chi \delta} n_{\alpha} n^{\chi} n^{\delta} + \frac{1}{2} \omega_{\alpha \chi \delta} n_{\beta} n^{\chi} n^{\delta}$	$\sigma_{1^{+}lphaeta}^{\sharp1}$
$\omega_{1^{+}lphaeta}^{\#2}$	Symmetry[2, $\omega_{1^+}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\omega_{\alpha\beta\chi} \ n^{\chi} + \omega_{\beta\chi\delta} \ n_{\alpha} \ n^{\chi} \ n^{\delta} - \omega_{\alpha\chi\delta} \ n_{\beta} \ n^{\chi} \ n^{\delta}$	$\sigma_{1}^{\#2}{}_{lphaeta}$
$\overline{\omega_{1-\alpha}^{\sharp 1}}$	Symmetry[1, $\omega_{1}^{\#1} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]	$] - \omega_{\alpha\beta}^{\beta} + \omega_{\beta\chi}^{\chi} n_{\alpha} n^{\beta} + \omega_{\alpha\beta\chi} n^{\beta} n^{\chi}$	$\sigma_{1-\alpha}^{\#1}$
$\omega_{1}^{#2}$ α	Symmetry[1, $\omega_1^{\#2} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]] $\omega_{lphaeta\chi} \ n^{eta} \ n^{\chi}$	$\sigma_{1-\alpha}^{\#2}$
$\omega_{2^{+}lphaeta}^{\sharp1}$	Symmetry[2, $\omega_{2^+}^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$-\frac{1}{2} \omega_{\alpha\chi\beta} n^{\chi} - \frac{1}{2} \omega_{\beta\chi\alpha} n^{\chi} - \frac{1}{3} \eta_{\alpha\beta} \omega_{\chi\delta}^{\delta} n^{\chi} + \frac{1}{3} \omega_{\chi\delta}^{\delta} n_{\alpha} n_{\beta} n^{\chi} + \frac{1}{2} \omega_{\beta\chi\delta} n_{\alpha} n^{\chi} n^{\delta} + \frac{1}{2} \omega_{\alpha\chi\delta} n_{\beta} n^{\chi} n^{\delta}$	$\sigma_{2^{+}lphaeta}^{\sharp1}$
$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$	Symmetry[3, $\omega_2^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\frac{1}{2} \omega_{\alpha\beta\chi} + \frac{1}{4} \omega_{\alpha\chi\beta} - \frac{3}{8} \eta_{\beta\chi} \omega_{\alpha}^{\ \delta} - \frac{1}{4} \omega_{\beta\chi\alpha} + \frac{3}{8} \eta_{\alpha\chi} \omega_{\beta}^{\ \delta} - \frac{3}{8} \omega_{\beta}^{\ \delta} n_{\alpha} n_{\chi} + \frac{3}{8} \omega_{\alpha}^{\ \delta} n_{\beta} n_{\chi} + \frac{1}{4} \omega_{\beta\chi\delta} n_{\alpha} n^{\delta} + \frac{1}{2} \omega_{\beta\delta\chi} n_{\alpha} n^{\delta} + \frac{1}{2} \omega_{\beta\delta\chi} n_{\alpha} n^{\delta} + \frac{1}{2} \omega_{\alpha\beta\chi} n_{\beta} n^{\delta} - \frac{1}{2} \omega_{\alpha\delta\chi} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\ \epsilon} n_{\beta} n^{\delta} - \frac{1}{2} \omega_{\alpha\beta\delta} n_{\chi} n^{\delta} - \frac{1}{2} \omega_{\alpha\beta\delta} n_{\chi} n^{\delta} - \frac{1}{2} \omega_{\alpha\delta\chi} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\beta\delta\epsilon} n^{\delta} n^{\delta} - \frac{3}{8} \omega_{\alpha\delta\epsilon} n_{\beta} n^{\delta} - \frac{1}{2} \omega_{\alpha\beta\delta} n_{\chi} n^{\delta} - \frac{1}{2} \omega_{\alpha\beta\delta} n_{\chi} n^{\delta} - \frac{1}{2} \omega_{\alpha\delta\beta} n_{\chi} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\beta\delta\epsilon} n^{\delta} n^{\delta} - \frac{3}{8} \omega_{\beta\delta\epsilon} n^{\delta} n^{\delta} - \frac{3}{8} \omega_{\beta\delta\epsilon} n^{\delta} n^{\delta} n^{\epsilon} - \frac{3}{8} \omega_{\beta\delta\epsilon} n^{\delta} n^{\delta} n^{\delta} n^{\epsilon} - \frac{3}{8} \omega_{\beta\delta\epsilon} n^{\delta} n^{\delta}$	$\sigma_{2}^{\sharp 1}{}_{lphaeta\chi}$

Source

Decomposition in SO(3) irreps