机器学习实验报告 (四)

目录

实验	实验环境														
问题	描述与分析	2													
2.1	MNIST 数据集	2													
2.2	BP 神经网络	3													
2.3	激活函数	5													
	2.3.1 Sigmoid 函数	5													
	2.3.2 Tanh 函数	6													
2.4	目标	6													
具体	实现过程	6													
3.1	MNIST 数据集的导入	6													
3.2	bp 神经网络的实现	7													
结果分析															
4.1	隐含层层数对比	12													
4.2	隐含层神经元个数对比	13													
4.3		14													
4.4	学习率对比	15													
	问题 2.1 2.2 2.3 2.4 具体 3.1 3.2 4.1 4.2 4.3	2.2 BP 神经网络 2.3 激活函数 2.3.1 Sigmoid 函数 2.3.2 Tanh 函数 2.4 目标 具体实现过程 3.1 MNIST 数据集的导入 3.2 bp 神经网络的实现 结果分析 4.1 隐含层层数对比 4.2 隐含层神经元个数对比 4.3 激活函数对比													

5	总结	与收	荻																			18
	4.7	不足	<u>.</u>								•	•		•		•	•	•	•	•	•	17
	4.6	效果	₹ .																			17
	4.5	正贝	引化	对	比																	16

实验环境 1

操作系统 win10

编程语言 python3 编程环境 Jupyter Jupyter Notebook

报告编写 latex

问题描述与分析 2

问题描述:实现 bp 神经网络来测试 MNIST 手写数字训练集,并在不 同方面对 bp 模型做性能对比。

2.1 MNIST 数据集

MNIST 是一个简单的视觉计算数据集,其中包括类似如下的手写数字 图片信息(60000 张训练集与 10000 张测试集):

图 1 MNIST 数据集示例

每张图片都是 28*28 大小,除了包含的像素信息以外,每张图片还有一个标签标识所代表的数字。因此我们的首先从处理该数据集入手。

2.2 BP 神经网络

BP 神经网络,是 1986 年由 Rumelhart 和 McClelland 为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络。BP 算法是一种有效的多层神经网络学习方法,通过向信号前向输出层传递,误差向输入层反馈,不断调节网络权重值,使得网络的最终输出与期望输出尽可能接近,以达到训练的目的。一般来说,一个多层神经网络由输入层,若干隐含层,输出层构成。

我们定义下标 i, j, k, 其中 j 为隐含层神经元, i 与 k 分别为其左右相邻的神经元下标。 $e_j(n)$ 为第 j 个神经元在第 n 次迭代的误差, $d_j(n)$ 为第 j 个神经元在第 n 次迭代的期望输出值, $y_j(n)$ 为第 j 个神经元在第 n 次迭代的实际输出值,则的输出层的误差函数如下:

$$e_{j}(n) = d_{j}(n) - y_{j}(n)$$

$$(1)$$

瞬时误差 E(n) 定义为

$$E(n) = \frac{1}{2} \sum_{j \in C} e_j^2(n)$$
 (2)

可以知道,每个神经元的输入,等于其上一层各个神经元输出与权重的乘积和,经过激活函数的值即

$$y_{j}(n) = \varphi_{j}(v_{j}(n)) \tag{3}$$

其中

$$v_{j}(n) = \sum_{i=0}^{p} w_{ji}(n) y_{i}(n)$$

$$(4)$$

为了调整权重降低误差,我们需要求出误差 E(n) 对于权重的偏导 $\frac{\partial E(n)}{\partial w_{ji}(n)}$,结合 (1)(2) 式,由链式法则可得到

$$\frac{\partial E(n)}{\partial w_{ji}(n)} = \frac{\partial E}{\partial v_j} \frac{\partial v_j}{\partial w_{ji}(n)} \tag{5}$$

又因为(4)式,我们可以得到:

$$\frac{\partial v_j(n)}{\partial w_{ii}(n)} = \frac{\partial \left[\sum_{i=0}^p w_{ji}(n) y_i(n)\right]}{\partial w_{ii}(n)} = y_i(n)$$
(6)

其中 p 是上一层连接该神经元的个数。定义:

$$\delta_{j}(n) = -\frac{\partial E(n)}{\partial v_{j}(n)} \tag{7}$$

当 j 为输出层时,结合 (1)(2)(3) 式可求出:

$$\delta_{j}(n) = (d_{j}(n) - y_{j}(n)) \varphi_{j}'(v_{j}(n))$$

$$(8)$$

当j为隐含层时,结合(3)式与链式法则可得:

$$\delta_{j}(n) = -\frac{\partial E(n)}{\partial y_{j}(n)} \frac{\partial y_{j}(n)}{\partial v_{i}(n)} = -\frac{\partial E(n)}{\partial y_{j}(n)} \varphi'(v_{j}(n))$$

$$(9)$$

因为(4)(7)式与链式法则,得到:

$$\frac{\partial E(n)}{\partial y_{i}(n)} = \sum_{k} \frac{\partial E(n)}{\partial v_{k}(n)} \frac{\partial v_{k}(n)}{\partial y_{j}(n)} = \sum_{k} \frac{\partial E(n)}{\partial v_{k}(n)} w_{kj}(n) = -\sum_{k} \delta_{k}(n) w_{kj}(n)$$

$$(10)$$

因此, 我们可以得到 $\delta_i(n)$ 表达式为:

$$\delta_{j}(n) = \begin{cases} (d_{j}(n) - y_{j}(n)) \varphi_{j}'(v_{j}(n)) & if j is output layer \\ \varphi_{j}'(v_{j}(n)) \sum_{k} \delta_{k}(n) w_{kj}(n) & others \end{cases}$$
(11)

综上所述,权重的变化 Δw 可通过下式求出:

$$\Delta w_{ji}(n) = \eta \delta_j(n) y_j(n) \tag{12}$$

其中 η 为学习率

2.3 激活函数

激活函数将非线性特性引入到我们的网络中,没有激活函数的每层都相当于矩阵相乘,叠加了若干层之后实质只是矩阵相乘。常用激活函数有 Sigmoid, Tanh, ReLU 函数等, 在此次试验中我们选用了 Sigmoid 和 Tanh 函数进行性能的测试。

2.3.1 Sigmoid 函数

Sigmoid 的公式形式:

$$f(x) = \frac{1}{1 + e^{-x}} \tag{13}$$

其导数形式为 f'(x) = f(x)(1 - f(x))。该函数的取值在 0-1 之间,当 x 趋近于负无穷时,y 趋近于 0;当 x 趋近于正无穷时,y 趋近于 1;当 x= 0 时,y=0.5。在 0.5 处为中心对称,并且越靠近 x=0 的取值斜率越大。也由于其导数的性质,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。

2.3.2 Tanh 函数

Tanh 的公式形式:

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \tag{14}$$

其导数形式为 $f'(x) = 1 - f(x)^2$ 。 Tanh 函数已成为双切正切函数,取值范围为 [-1,1],关于原点中心对称。 tanh 在特征相差明显时的效果会很好,在循环过程中会不断扩大特征效果。与 Sigmoid 相对来说,Tanh 是以 0 为均值的,在实际应用中效果更好一点。

2.4 目标

本次实验准备实现一个较为通用的 bp 神经网络,层数及每层的神经元的个数可以随意设置。通过改变层数,改变神经元个数,改变激活函数的方面来比较该网络的性能。

3 具体实现过程

3.1 MNIST 数据集的导入

在导入所需要的库依赖之后,我们首先要做的就是讲 MNIST 数据集读入。通过参考网上相关资料,我在这定义了 $load_m nist_t rain(path)$ 和 $load_m nist_t est(path)$ 两个方法,分别用于加载训练集与测试集

```
# 加载数据

def load_mnist_train(path):

labels_path = os.path.join(path,'train-labels.idx1-ubyte')

images_path = os.path.join(path, 'train-images.idx3-ubyte')

with open(labels_path, 'rb') as lbpath:

magic, n = struct.unpack('>II',lbpath.read(8))

labels = np.fromfile(lbpath, dtype=np.uint8)
```

```
with open(images_path, 'rb') as imgpath:
          magic, num, rows, cols = struct.unpack('>IIII',
          imgpath.read(16))
          images = np.fromfile(imgpath,
11
          dtype=np.uint8).reshape(len(labels), 784)
12
      return images, labels
13
  def load mnist test(path):
      labels_path = os.path.join(path,'t10k-labels.idx1-ubyte')
15
      images path = os.path.join(path, 't10k-images.idx3-ubyte')
16
      with open(labels_path, 'rb') as lbpath:
          magic, n = struct.unpack('>II',lbpath.read(8))
          labels = np.fromfile(lbpath, dtype=np.uint8)
      with open(images_path, 'rb') as imgpath:
20
          magic, num, rows, cols = struct.unpack('>IIII',
          imgpath.read(16))
          images = np.fromfile(imgpath,
          dtype=np.uint8).reshape(len(labels), 784)
      return images, labels
26 X_train,Y_train = load_mnist_train('E:\学习\大三\机器学习\MNIST')
27 X test,Y test = load mnist test('E:\学习\大三\机器学习\MNIST')
```

3.2 bp 神经网络的实现

首先我们先定义激活函数及其导数,为接下来做准备。首先定义 Tanh 函数及导数

```
def tanh(x):
    return (np.exp(x)-np.exp(-1*x))/(np.exp(x)+np.exp(-1*x))
def dtanh(y):
    return 1.0 - y*y
```

同时我们定义 Sigmoid 函数及导数,对比使用。

```
1 def sigmoid(x):
2     return 1.0 / (1.0 + np.exp(-1*x))
3 def dsigmoid(y):
4     return y*(1-y)
```

然后定义 trans(li) 函数,输入为具体数字,便于将 lable 转换为我们将要用到的 10×1 维的向量。

```
def trans(li):
    re_list =[0.0]*10
    re_list[li]=1
    return re_list
```

接下来定义神经网络类 NN,在第一次实现中,权重的更新等操作均采用的 for 循环来实现的,发现运算速度很慢,于是在第二次实现中将所有显示 for 循环均替换成矩阵运算,大大提高了运算速度,以下是替换后的第二版本。

```
1 class NN:
```

```
def __init__(self, ni, nh_li, no):
    # 输入层、隐藏层列表、输出层
    self.ni = ni
    self.nh_li = nh_li
    self.nh_len = len(nh_li)
    self.no = no
    # 输入层到第一层隐含层, 。。。,最后一层隐含层到输出层
    # 总长度为 nh_len+1
    self.w = []

self.w.append(np.random.normal(0.0,
```

```
pow(self.nh_li[0],-0.5), (self.nh_li[0],self.ni)))
13
          for i in range(self.nh len-1):
              self.w.append(np.random.normal(0.0,
15
                 pow(self.nh_li[i+1],-0.5),
16
                  (self.nh li[i+1], self.nh li[i])))
17
          self.w.append(np.random.normal(0.0,
                 pow(self.no,-0.5),
19
                  (self.no,self.nh li[self.nh len-1])))
20
21
      def oneRound(self, inputs, targets, N):
          targets = np.array(targets,ndmin=2).T
          # 激活输入层
          inputs = np.array(inputs,ndmin=2).T/255
          # 隐含层输出
26
          # 输入层到第一个隐含层,。。。,最后一个隐含层到输出层
          #总长度为 nh len+1
          outputs = []
          outputs.append(tanh(np.dot(self.w[0],inputs)))
          for i in range(self.nh len-1):
              outputs.append(tanh(np.dot(self.w[i+1],outputs[i])))
          # 输出层输出
          outputs.append(tanh(np.dot(self.w[self.nh len],
34
          outputs[self.nh len-1])))
35
         #输出层, 最后一个隐含层。。。 第一个隐含层
          #总长度为 nh len+1
          deltas = []
          #计算输出层的误差
          output deltas = dtanh(outputs[self.nh len])*
```

```
(targets - outputs[self.nh_len])
42
          deltas.append(output deltas)
          for i in range(self.nh_len):
              deltas.append(dtanh(outputs[self.nh_len-1-i])*
45
                       np.dot(self.w[self.nh len-i].T, deltas[i]))
46
          for i in range(self.nh len):
              self.w[self.nh len-i] += N*np.dot(deltas[i],
                       np.transpose(outputs[self.nh_len-i-1]))
50
          self.w[0] += N*np.dot(deltas[self.nh len],
                  np.transpose(inputs))
          return outputs[self.nh_len]
54
55
      def test(self, inputs list,Y):
56
          le = len(Y)
57
          ans = 0
          for i in range(le):
               inputs = np.array(inputs list[i],ndmin=2).T/255
              # 输入层到第一个隐含层,。。。,最后一个隐含层到输出层
              #总长度为 nh len+1
              outputs = []
63
              outputs.append(tanh(np.dot(self.w[0],inputs)))
64
              for j in range(self.nh len-1):
65
                   outputs.append(tanh(np.dot(self.w[j+1],outputs[j])))
66
              # 输出层输出
              outputs.append(tanh(np.dot(self.w[self.nh_len],
                        outputs[self.nh_len-1])))
              if np.argmax(outputs[self.nh len]) == Y[i]:
```

```
ans+=1
71
           print('准确率',ans/le)
           return ans/le
74
      def weights(self):
75
           return self.w
76
      def train(self, X, Y,iterations=100, N=0.01):
78
           len_total = len(Y)
79
           for i in range(iterations):
               print("第",i,"轮")
               for p in range(len total):
                    inputs = X[p]
83
                   target = Y[p]
                   targets = trans(target)
                    self.oneRound(inputs, targets, N)
```

在实现多层神经网络时,我采用列表来存储隐含层的信息,包括权重、误差、权重变化值等。self.w = [] 存储各节点间的权重,outputs = [] 存储各节点的输出,deltas = [] 存储变化值。

在初始函数中,传入参数为输入层、隐含层、输出层神经元个数,其中 隐含层为列表的形式。我先将各个层所包含的神经元个数记录下来,并使 用 np.random.normal 方法对权重初始化。

oneRound(self,inputs,targets,N) 函数为一次权重更新的完整过程。 首先将输入 inputs 与 targets 转换为我们需要的格式,通过前面推导的 (3) 式求出每个神经元的输出,存储到 outputs 中,通过 (11) 式求出 δ 存入 到 deltas 中,通过 (12) 式求出 Δw 并更新权值。

 $test(self, inputs_list, Y)$ 方法通过输入测试集与对应标签,计算输出,最终返回准确率

weights(self) 方法较为简单,将权重返回

train(self, X, Y, iterations = 100, N = 0.01) 方法用于训练神经网络,调用了 oneRound 方法。这里采用 Stochasticon - line 方法进行权重更新。具体的调用方法示例如下 (两层隐含层):

- 1 num=60000
- $_{2}$ n = NN(784, [100,40], 10)
- 3 n.train(X_train[:num],Y_train[:num],iterations=10)
- 4 n.test(X test, Y test)

4 结果分析

结果将从层数、神经元个数、激活函数、输入归一化、学习率等方面来进行对比。我们约定神经网络的层数为隐含层与输出层之和,即当只有输入层、一层隐含层、输出层时,我们说该神经网络的层数为 2。相关数据放在附录中

4.1 隐含层层数对比

我们尝试了当激活函数及学习率相同时,层数和分别为 2(隐含层为 [90])、3(隐含层为 [100,40])、4(隐含层为 [100,50,20]) 层时,训练一轮(即 60000 个数据)后,在测试集上的准确率,整理得到如下图像:

图 2 神经网络为 2、3、4 层,训练准确率对比

为便于观察,这里我们下标定为从 10000 开始。可以很清晰的看到,当我们的训练次数增大时,我们的准确率在波动提高;并且在训练次数相同时,层数大的神经网络得到的准确率更高一些。因为有三层网络时准确率已经很高,当我们增加到四层时提高的幅度不是很大。不难理解,当层数较大时,网络更加复杂,能学习到的东西也更多。因训练次数较少,并没有出现过拟合现象。

4.2 隐含层神经元个数对比

在此我们选择了单层隐含层时且学习率相同时,300,89,30 个隐含神经元,训练一轮(即 60000 个数据)后,在测试集上的准确率,整理得到如下图像:

图 2 单层隐含层为 300, 89,30 时, 训练准确率对比

很明显可以看出,在 [0,5000] 区间内,随着神经元个数的提高,模型的学习的效率也在增加。在 200 个隐含神经元模型中,在训练 5000 个样本后准确率就达到 0.8 的水平,而在 30 个隐含神经元模型中需要训练 60000 个样本后才能到达。相对于学习速度,相同隐含层不同神经元模型接近稳定时的准确率差别不大。

4.3 激活函数对比

在此我们选择了单层隐含层时且学习率相同时,使用 *sigmoid* 函数与 *tanh* 函数作为激活函数,训练一轮(即 60000 个数据)后,在测试集上的准确率,整理得到如下图像:

图 2 不同激活函数,训练准确率对比

通过上图可以看出,在测试集中,使用 sigmoid 函数或 tanh 函数作为激活函数求准确率效果比较接近,但可以注意到,相对 sigmoid 函数来说,使用 tanh 函数作为激活函数所求准确率波动较大,不稳定。经过搜查资料与思考,猜测是因为不同的激活函数对于学习率的要求也不同,样例中所设定的学习率 $\eta=0.01$,这对 sigmoid 函数似乎不错,但对 tanh 函数来说可能偏大,于是接下来对用不同学习率对 tanh 函数进行试验。

4.4 学习率对比

为了探究上面的疑问,我设置单层隐含层,激活函数为 tanh 函数的模型在 $\eta = 0.01~0.005, 0.001$ 下,训练一轮(即 60000 个数据)后,在测试集上的准确率,整理得到如下图像:

图 2 不同 η 下, 训练准确率对比

通过上图可以发现,随着学习率的降低,得到的准确率的图像也越来越平滑,准确率也越来越稳定。不过也可以发现,当准确率较大时,我们可以更快的到达较高的准确率水平,因此,我们可以通过动态改变学习率来提高模型的性能,比如随着准确度的提高而减小学习率的值,让其更快的稳定下来。

4.5 正则化对比

可以注意到,我在处理输入层时,对输入进行了如下处理,以提高整个模型的性能。

inputs = np.array(inputs,ndmin=2).T/255

其中 255 为输入值得最大值,这样将输入规范到 [0,1]。下图为是否进行这样规范处理,训练一轮(即 60000 个数据)后,在测试集上的准确率,整理得到如下图像:

图 2 是否规范化输入,训练准确率对比

可以看到,当将输入规范以后,在收敛速度,稳定性,准确率方面都有着很好的表现。因为我们激活函数使用的为 sigmoid 函数与 tanh 函数,当输入值过大时,输出值非常接近于 1,并且导数值非常接近于 0,出现梯度消失现象。这非常不利于我们之后的梯度下降法来更新权重。

4.6 效果

综和以上发现的问题,最终使用输入层 784 个神经元,三层隐含层 [100,50,20] 个神经元,输出层 10 个神经元,学习率 $\eta=0.005$,tanh 函数作为激活函数,训练 200 轮左右可以达到 0.99 的准确率。

4.7 不足

经过查资料,发现对于多分类问题一般使用 softmax 函数,本次试验并未使用。同时,训练方法使用的 Stochasticon – line 方法,可以在后续工作中尝试使用 minibatch 等方法。激活函数尝试使用其他函数。

5 总结与收获

通过这次实验,我对神经网络有了更加深刻地认识,对各种优化方法 也有了一些自己的见解。手写数字识别在之前看来是一件非常复杂而高深 的事情,然而在自己实现并的到较好的结果后发现其实原理并不复杂,也 增强了自己的信心。