

LAB#8

CSE-202L Digital Logic Design Lab Fall 2022

SUBMITTED BY:

Ali Asghar(21PWCSE2059)
Suleman Shah(21PWCSE1983)
Abu Bakar(21PWCSE2004)

DATED:

7th January, 2023

SUBMITTED TO:

Engr. Rehmat Ullah

Lab #8: Magnitude comparators

Objective: · Realization of 1-bit comparator using

logicgates.

Realization and implementation of 2-bit comparator using logic gates on breadboard. · Implementation of 4-bit magnitude comparator on breadboard using IC 7485.

Components Required:

- · Breadboard.
- · IC Type 7486 Quadruple 2-input XOR gates.
- · IC Type 7408 Quadruple 2-input AND gates.
- · IC Type 7400 Quadruple 2-input NAND gates.
- · IC Type 7410 Triple 3-input NAND gates.
- · IC Type 74L85 4-bit magnitude comparator.
- · Switches for inputs and
- · LED displays for outputs.

Theory:

Magnitude comparator is a combinational logic circuit that compares between two binary numbers A and B and determines their relative magnitudes. The output of the circuit is specified by three binary variables whether: A>B, A=B or A<B.

1-bit Magnitude Comparator:

A comparator used to compare two 1-bit binary numbers. It has two binary inputs A, B and three binary outputs: greater than, equal and less than relations. Figure 2 below shows the block diagram and truth table of a 1-bit magnitude comparator.

(b) Truth table

1	Inp	uts		Outputs			
	В	А	A > B	A = B	A < B		
	0	0	0	1	0		
	0	1	1	0	0		
	1	0	0	0	1		
	1	1	0	1	0		

(a)Block diagram

The Boolean functions describing the 1-bit magnitude comparator according to the truth table are: (A > B)

= A'B (A = B) = A'B' + AB= $B \oplus A$)(' (A < B) = AB' The logic diagram for 1-bit binary comparator implemented by XOR and basic logic gates is shown below in figure 3.

So we conclude that digital comparators actually use **Exclusive-NOR** gates within their design for comparing their respective pairs of bits.

2-bit Magnitude Comparator

A comparator used to compare two 2-bit numbers. It has 4 binary inputs number A: A_1A_0 , number B: B_1B_0) and 3 binary outputs: greater than, equal and less than relations. Figure 4 below shows the block diagram and truth table of a 2-bit magnitude comparator.

Inputs			Outputs			
A_1	Ag	Bi	Bo	A>B	A-B	A <b< th=""></b<>
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

(a)Block diagram (b) Truth table

Using key-map, the simplified Boolean function for the outputs A>B, A=B and A<B is shown below:

A=B:
=
$$A_1$$
 ' A_0 ' B_1 ' B_0 '+ A_1 ' A_0B_1 ' B_0 +
 A_1 A_0 ' B_1 B_0 '+ $A_1A_0B_1B_0$ =(A_1
' B_1 '+ A_1B_1) (A_0 ' B_0 '+ A_0B_0) =
($A_1 \bigoplus B_1$) ' ($A_0 \bigoplus B_0$) '
= $X_1.X_0$

A>B:

$$=A_1B_1'+A_1'A_0B_1'B_0'+A_1A_0B_1B_0'$$

 $=A_1B_1'+A_0B_0'(A_1'B_1'+A_1B_1) =$
 $A_1B_1'+A_0B_0'(A_1 \bigoplus B_1)'$
 $=A_1B_1'+X_1.A_0B_0'$

A < B: $= A_1'B_1 + A_1'A_0'B_1'B_0 + A_1A_0'B_1B_0$ $= A_1'B_1 + A_0'B_0(A_1'B_1' + A_1B_1) =$ $A_1'B_1 + A_0'B_0(A_1 \bigoplus B_1)' = A_1$ $B_1 + A_1'B_1 + A_1'B_0'B_0$

2 Based on the simplified Boolean functions for the three outputs A>B, A=B and A<B, the logic diagram of the 2-bit magnitude comparator is shown below:

Figure 5: Logic Diagram of 2-bit Comparator

4-bit Magnitude Comparator:

A comparator used to compare two 4-bit words. The two 4-bit numbers are word A: A $_3A_2A_1A_0$, and word B: $B_3B_2B_1B_0$) So the circuit has 8 inputs and 3 binary outputs: A>B, A=B and A<B.

(a)Block diagram (b) Pin description for IC 7485

Figure 6 shows the block diagram and pin configuration of IC 7485 for 4-bit magnitude comparator.

Three inputs are available for cascading comparators.

This comparator generates an output of 1 at one of three comparison outputs such that:

- · If word A is bigger than word B; A>B output (pin 5) is "1",
- · If word A is smaller than word B; A<B output (pin 7) is "1",
- · If word A is equal to word B; A=B output (pin 6) is "1".

3 This IC can be used to compare two 4-bit binary words by grounding the cascade inputs A<B (pin 2) and A>B (pin 4) and connecting the cascade input A=B (pin 3) to Vcc.

How does a 4-bit comparator work?

<u>Equality</u>:

Word A equal word B iff: $A_3=B_3$, $A_2=B_2$, $A_1=B_1$, $A_0=B_0$.

Inequality:

- · If A3 = 1 and B3 = 0, then A is greater than B (A>B). Or
- · If A3 and B3 are equal, and if A2 = 1 and B2 = 0, then A > B. Or
- · If A3 and B3 are equal & A2 and B2 are equal, and if A1 = 1, and B1 = 0, then A>B. Or · If A3 and B3 are equal, A2 and B2 are equal and A1 and B1 are equal, and if A0 = 1 and B0 = 0, then A > B.
- · If A3 = 0 and B3 = 1, then A is less than B (A<B). Or
- · If A3 and B3 are equal, and if A2 = 0 and B2 = 1, then A < B. Or
- · If A3 and B3 are equal & A2 and B2 are equal, and if A1 = 0, and B1 = 1, then A<B. Or · If A3 and B3 are equal, A2 and B2 are equal and A1 and B1 are equal, and if A0 = 0 and B0 = 1, then A < B.

Part A: Lab Tasks

Procedure:

- 1. Check all the components for their working.
- 2. Insert the appropriate ICs into the IC base.
- 3. Make connections as shown in the circuit diagram in figure 5.
- 4. Verify the Truth Table and observe the outputs.
- 5. Repeat the same steps but for the circuit diagram in figure 6 and apply inputs in the following table. Record the outputs for the given values of A and B.

Inp	Outputs			
A	В	A <b< td=""><td>A=B</td><td>A>B</td></b<>	A=B	A>B
00001100	00001100	0	1	0
00001010	00010001	1	0	0
00001111	00000101	0	0	1
00011000	00011000	0	1	0

Design an 8-bit comparator using two chips of IC 7485. The connections are given below. 2. Verifythe given truth table.

PIN DIAGRAM FOR IC 7485

LOGIC DIAGRAM 8 BIT MAGNITUDE COMPARATOR

TRUTH TABLE

A	В	A>B	A=B	A <b< th=""></b<>
0000 0000	0000 0000	0	1	0
0001 0001	0000 0000	1	0	0
0000 0000	0001 0001	0	0	1

1 Bit Comparator

2 Bit Comparator

4 Bit Comparator

8 Bit Comparator