STANISLAS Thème

Calcul de $\zeta(2)$ Deux démonstrations

PSI2020-2021

On cherche dans cet exercice à calculer $\lim_{n\to\infty}\sum_{k=1}^{n}\frac{1}{k^2}$.

Partie I: Avec des polynômes

Pour tout entier naturel n, on pose

$$Q_n = \frac{1}{2i} \left[(X+i)^{2n+1} - (X-i)^{2n+1} \right].$$

Dans tout ce problème, n désigne un entier naturel non nul.

- **1. a)** Montrer que $Q_n \in \mathbb{R}[X]$.
 - **b)** Déterminer le degré, le coefficient dominant et la parité de Q_n .
- **2. a)** Déterminer les racines de Q_n .
 - **b)** En déduire que

$$Q_n = (2n+1) \prod_{k=1}^n \left(X^2 - \cot^2 \left(\frac{k\pi}{2n+1} \right) \right).$$

3. Une somme de sinus.

- **a)** Montrer que $Q_n = \sum_{k=0}^{n} (-1)^k \binom{2n+1}{2k+1} X^{2n-2k}$. **b)** En déduire que $\sum_{n=0}^{n} \cot^2 \left(\frac{k\pi}{2n+1}\right) = \frac{n(2n-1)}{3}$. **c)** Montrer que $\sum_{k=1}^{n} \frac{1}{\sin^2 \left(\frac{k\pi}{2n+1}\right)} = \frac{2n(n+1)}{3}$.

4. Calcul de la limit

- a) Montrer que pour tout $x \in]0, \frac{\pi}{2}[$, cotan $x < \frac{1}{x} < \frac{1}{\sin x}$.
- **b)** En déduire $\lim_{n\to\infty}\sum_{k=1}^{\infty}\frac{1}{k^2}$.
- 5. Approximations.

- **a)** Montrer que $0 \le \frac{\pi^2}{6} \sum_{k=1}^{n} \frac{1}{k^2} \le \frac{\pi^2}{2(2n+1)}$.
- **b**) Écrire, en Python, une fonction approx(p) qui prend comme argument un entier naturel p et renvoie une valeur approchée de $\frac{\pi^2}{6}$ à 10^{-p} près.

Partie II: Avec la fonction cotangente

On rappelle que:

- * la fonction cotangente est le rapport cotan = $\frac{\cos}{\sin}$. * Soient $n \in \mathbb{N}$, $(a_0, \dots, a_n) \in \mathbb{C}^{n+1}$ tel que $a_n \neq 0$ et P(x) = $a_n x^n + \sum_{k=0}^{n-1} a_k x^k$ un polynôme de degré n. Le polynôme P possède au plus n racines et si ζ_1, \ldots, ζ_n sont les racines du polynôme P, alors $P(x) = a_n \prod_{k=1}^n (x - \zeta_k)$. 6. Étude de fonction.

- a) Déterminer le domaine de définition puis la parité de la fonction cotan.
- b) Déterminer le domaine de dérivabilité puis la valeur de la dérivée de la fonction cotan.
- c) En déduire le tableau de variations de la fonction cotan sur $]-\pi,\pi[$, puis sa représentation graphique dans un repère orthonormé.
- 7. Identifier les fonctions f à valeurs réelles deux fois dérivables solutions de l'équation différentielle $y''-2y=2\cot^3 x$ sur $]0,\pi[$ telles que $f(\frac{\pi}{2})=$

8. Quelques formules trigonométriques. Soient x, y deux réels.

- a) Exprimer $\cot a(x+y)$ en function de $\cot ax$ et $\cot ay$, lorsque ces quantités sont définies.
- **b)** Exprimer $\cot x 2\cot x = \cot x$ en fonction de $\tan x$, lorsque ces quantités sont définies.

9. Bijection réciproque.

8

a) Justifier l'existence d'une bijection réciproque de la fonction cotangente à valeurs dans $]0,\pi[$. Préciser son domaine de définition et sa monotonie. Celle-ci sera notée Acotan.

Thème IV PSI

- b) Préciser le domaine de définition et la valeur de la dérivée de la fonction Acotan.
- c) Pour tout $x \in]-\pi,\pi[\setminus\{0\}, d$ éterminer les valeurs $\cot a(A\cot a(x))$ et $A\cot(\cot(x))$.
 - **d)** Pour tout $x \in \mathbb{R}$, calculer $\sin \operatorname{Acotan}(x)$.
- **10. Calcul d'un produit.** Dans toute la suite, n désigne un entier naturel non nul et x un réel positif n'appartenant pas à l'ensemble $\{\frac{k\pi}{n}, k \in$ $\{0,\ldots,n-1\}\}.$
- a) Pour tout nombre complexe $\lambda = e^{2inx}$ de module 1, déterminer l'ensemble des nombres complexes z tels que $(z-1)^n - \lambda(1+z)^n = 0$.
 - **b)** En déduire, en fonction de la parité de n, la valeur de

$$\prod_{k=0}^{n-1} \cot \left(x + \frac{k\pi}{n}\right).$$

11. Calcul de $\zeta(2)$.

Soit m un entier naturel et x un réel.

a) Montrer que

$$\sin\{(2m+1)x\} = (\sin x)^{2m+1} \sum_{k=0}^{m} {2m+1 \choose 2k+1} (-1)^k (\cot x)^{2m-2k}.$$

b) On considère le polynôme : $P_m = \sum_{k=0}^{m} {2m+1 \choose 2k+1} (-1)^k X^{m-k}$.

Déterminer le terme de plus haut degré de P_m puis démontrer que l'ensemble des racines de P_m est $\left\{\cot^2 \frac{k\pi}{2m+1}, k \in [1, m]\right\}$.

c) En déduire que

$$\sum_{k=1}^{m} \cot^2 \frac{k\pi}{2m+1} = \frac{2m(2m-1)}{6}.$$

- $\boldsymbol{d})$ En définissant la fonction cosécante par $\csc=\frac{1}{\sin},$ en déduire que $\sum_{k=1}^{m} \csc^2 \frac{k\pi}{2m+1} = \frac{m(2m+2)}{3}.$
 - e) Montrer que pour tout $y \in]0, \frac{\pi}{2}[$, on a $\cot^2 y < \frac{1}{v^2} < \csc^2 y$.

 - f) En déduire un encadrement de $\sum_{k=1}^{m} \frac{1}{k^2}$.

 g) Déterminer la limite de la suite $\left(\sum_{k=1}^{m} \frac{1}{k^2}\right)_{m \in \mathbb{N}^k}$.