CHAPTER

Interest Rates and Bond Valuation

Key Concepts and Skills

- Know the important bond features and bond types
- Understand bond values and why they fluctuate
- Understand bond ratings and what they measure
- Understand the impact of inflation on interest rates
- Understand the term structure of interest rates and the determinants of bond yields

Chapter Outline

Government and Corporate Bonds

8.1 Bonds and Bond Valuation

- (SELF-STUDY)
- 8.3 Bond Markets (Partial Self-Study)
- 8.4 Inflation and Interest Rates
- 8.5 Determinants of Bond Yields

8.2

8.1 Bonds and Bond Valuation

- A bond is a legally binding agreement between a borrower and a lender that
 - specifies the principal amount, i.e., par value, face value, or maturity value of the bond
 - Specifies the size and timing of cash flows:
 - Coupon rate → Coupon payment;
 - in dollar terms (fixed-rate borrowing)
 - as a formula (adjustable-rate borrowing)
 - and Maturity Date
- The yield to maturity (YTM) or bond yield is the REQUIRED interest rate on the bond, and hence the discount rate in valuation!

Bond Valuation

- Primary Principle:
 - Value of financial securities = PV of expected future cash flows
- Bond value is, therefore, determined by the present value of the coupon payments and par value.
- Interest rates (YTMs) are inversely related to present (i.e., bond) values.
 - Recall from Chapter 4 that PV and discount rate are inversely related!

Bond Valuation

- Identify the size and timing of cash flows, i.e., coupon payments and principal repayment.
- Discount cash flows at the appropriate discount rate, which is a function of the riskiness of the bond.
 - If you know the price of a bond and the size and timing of cash flows, the *yield to maturity* is the discount rate.
 - If you want to determine the intrinsic value of a bond, use the yield to maturity on similar bonds, in terms of risk (bond rating) and maturity, as the appropriate discount rate in your calculation.

Level-Coupon Bonds

Information needed to value level-coupon bonds:

- Coupon payment dates and time to maturity (T)
- Coupon payment (C) per period and Face value (F)
- Discount rate (R)

Value of a Level-coupon bond

= PV of coupon payment annuity + PV of face value

$$PV = \frac{C}{r} \left| 1 - \frac{1}{(1+r)^{T}} \right| + \frac{F}{(1+r)^{T}}$$

The Bond Pricing Equation

Bond Value =
$$C \left[\frac{1 - \frac{1}{(1+R)^T}}{R} \right] + \frac{FV}{(1+R)^T}$$

Pure Discount Bonds

- Make no periodic interest payments (coupon rate = 0%)
- The entire yield to maturity comes from the difference between the purchase price and the par value.
- Cannot sell for more than par value.
- Sometimes called zeroes, deep discount bonds, or original issue discount bonds (OIDs)
- Treasury Bills and principal-only Treasury Strips are good examples of zeroes.

Pure Discount Bonds

Information needed for valuing pure discount bonds:

- Time to maturity (T) = Maturity date today's date
- Face value (F)
- Discount rate (R)

Present value of a pure discount bond at time 0:

$$PV = \frac{FV}{\left(1 + R\right)^T}$$

Pure Discount Bond: Example

Find the value of a 30-year zero-coupon bond with a \$1,000 par value and a YTM of 6%.

$$PV = \frac{FV}{(1+R)^T} = \frac{\$1,000}{(1.06)^{30}} = \$174.11$$

Pure Discount Bonds: Example

Find the value of a 30-year zero-coupon bond with a \$1,000 par value and a YTM of 6%.

N

30

I/Y

6

PV

174.11

PMT

FV

1,000

Level Coupon Bonds

- Make periodic coupon payments in addition to the maturity value
- The payments are equal each period.
 Therefore, the bond is just a combination of an annuity and a terminal (maturity) value.
- Coupon payments are typically semiannual.

 Effective annual rate (EAR) = (1 + R/m)^m - 1

Level Coupon Bond: Example

- Consider a U.S. government bond with a 6 3/8% coupon that expires in December 2016.
 - The Par Value of the bond is \$1,000.
 - Coupon payments are made semi-annually (June 30 and December 31 for this particular bond).
 - Since the coupon rate is 6 3/8%, the payment is \$31.875.
 - On January 1, 2012 the size and timing of cash flows are:

Level Coupon Bond: Example

On January 1, 2012, the required annual yield is 5%.

$$PV = \frac{\$31.875}{.05/2} \left[1 - \frac{1}{(1.025)^{10}} \right] + \frac{\$1,000}{(1.025)^{10}} = \$1,060.17$$

Bond Example: Calculator

Find the present value (as of January 1, 2012), of a 6 3/8% coupon bond with semi-annual payments, and a maturity date of December 2016 if the YTM is 5%.

N

I/Y 2.5

PV - 1,060.17

PMT $31.875 = \frac{1,000 \times 0.06375}{2}$

10

FV 1,000

Bond Pricing with a Spreadsheet

- There are specific formulas for finding bond prices and yields on a spreadsheet.
 - PRICE(Settlement, Maturity, Rate, Yld, Redemption, Frequency, Basis)
 - YIELD(Settlement, Maturity, Rate, Pr, Redemption, Frequency, Basis)
 - Settlement and maturity need to be actual dates
 - The redemption and Pr need to be given as % of par value
- Click on the Excel icon for an example.

Consols

- Not all bonds have a final maturity.
- British consols pay a set amount (i.e., coupon) every period forever.
- These are examples of a perpetuity.

$$PV = \frac{C}{R}$$

Bond Concepts

- Bond prices and interest rates (bond yields or YTMs) move in opposite directions.
- When coupon rate = YTM, price = par value. When coupon rate > YTM, price > par value (premium bond) When coupon rate < YTM, price < par value (discount bond)</p>
- 3. A bond with longer maturity has higher relative (%) price change than one with shorter maturity when interest rate (YTM) changes. All other features are identical.
- 4. A lower coupon bond has a higher relative price change than a higher coupon bond when YTM changes. All other features are identical.

YTM and Bond Value

When the YTM > coupon, the bond trades at a discount.

Interest Rate Risk

- Price Risk
 - Change in price due to changes in interest rates
 - Long-term bonds have more price risk than short-term bonds
 - Low coupon rate bonds have more price risk than high coupon rate bonds.
- Reinvestment Rate Risk
 - Uncertainty concerning rates at which cash flows can be reinvested
 - Short-term bonds have more reinvestment rate risk than long-term bonds.
 - High coupon rate bonds have more reinvestment rate risk than low coupon rate bonds.

Maturity and Bond Price Volatility

Coupon Rate and Bond Price Volatility

Bond Example Revisited

- Using our previous example, now assume that the required yield is 11%.
- How does this change the bond's price?

$$PV = \frac{\$31.875}{.11/2} \left[1 - \frac{1}{(1.055)^{10}} \right] + \frac{\$1,000}{(1.055)^{10}} = \$825.69$$

Computing Yield to Maturity

Yield to maturity is the rate implied by the current bond price.

Finding the YTM requires trial and error if you do not have a financial calculator.

 If you have PV, PMT, and FV, remembering the sign convention convention same sign, PV the opposite sign).

YTM with Annual Coupons

- Consider a bond with a 10% annual coupon rate, 15 years to maturity, and a par value of \$1,000. The current price is \$928.09.
 - Will the yield be more or less than 10%?
 - -N = 15; PV = -928.09; FV = 1,000; PMT = 100
 - -CPTI/Y = 11%

YTM with Semiannual Coupons

- Suppose a bond with a 10% coupon rate and semiannual coupons has a face value of \$1,000, 20 years to maturity, and is selling for \$1,197.93.
 - Is the YTM more or less than 10%?
 - What is the semiannual coupon payment?
 - How many periods are there?
 - N = 40; PV = -1,197.93; PMT = 50; FV = 1,000; CPT I/Y = 4% (Is this the YTM?)
 - -YTM = 4%*2 = 8%

Current Yield vs. Yield to Maturity

- Current Yield = annual coupon / price
- Yield to maturity (YTM) = current yield (CY) + capital gain yield (CGY)
 - CGY = YTM − CY
- Example: 10% coupon bond, with semi-annual coupons, face value of 1,000, 20 years to maturity, \$1,197.93 price
 - Current yield = 100 / 1197.93 = .0835 = 8.35%
 - Price in one year, assuming no change in YTM, = 1,193.68
 - Capital gain yield = (1193.68 1197.93) / 1197.93 = -.0035 = -.35%
 - YTM = 8.35 .35 = 8%, which is the same YTM computed earlier
 - OR CGY = 8% 8.35% = -0.35%

Bond Pricing Theorem

- Bonds of similar risk (and maturity) will be priced to yield about the same return, regardless of the coupon rate.
- If you know the price of one bond, you can estimate its YTM and use that to find the price of the second bond of same risk.
- This is a useful concept that can be transferred to valuing assets other than bonds.

8.2 Government and Corporate Bonds (SELF-STUDY)

- Treasury Securities
 - Federal government debt
 - T-bills pure discount bonds with original maturity less than one year
 - T-notes coupon debt with original maturity between one and ten years
 - T-bonds coupon debt with original maturity greater than ten years
- Municipal Securities
 - Debt of state and local governments
 - Varying degrees of default risk, rated similar to corporate debt
 - Interest received is tax-exempt at the federal level, but the exemption does NOT apply to capital gain!

After-tax Yields

- A taxable bond has a yield of 8%, and a municipal bond has a yield of 6%.
 - If you are in a 40% tax bracket, which bond do you prefer?
 - 8%*(1 .40) = 4.8%
 - The after-tax return on the corporate bond is 4.8%, compared to a 6% return on the municipal
 - At what tax rate would you be indifferent between the two bonds?
 - 8%*(1 T) = 6%
 - T = 25%

Corporate Bonds

- Greater default risk relative to government bonds
- The promised yield (YTM) may be higher than the expected return due to this added default risk

Bond Ratings – Investment Quality

- High Grade
 - Moody's Aaa and S&P AAA capacity to pay is extremely strong
 - Moody's Aa and S&P AA capacity to pay is very strong
- Medium Grade
 - Moody's A and S&P A capacity to pay is strong, but more susceptible to changes in circumstances
 - Moody's Baa and S&P BBB capacity to pay is adequate, adverse conditions will have more impact on the firm's ability to pay

Bond Ratings - Speculative

- Low Grade
 - Moody's Ba and B
 - S&P BB and B
 - Considered speculative with respect to capacity to pay.
- Very Low Grade
 - Moody's C
 - S&P C & D
 - Highly uncertain repayment and, in many cases, already in default, with principal and interest in arrears.

8.3 Bond Markets

- Primarily over-the-counter transactions with dealers connected electronically
- Extremely large number of bond issues, but generally low daily volume in single issues
- Makes getting up-to-date prices difficult, particularly on a small company or municipal issues
- Treasury securities are an exception

Treasury Quotations

8 Nov 28

132:23

132:24

-12 5.14

- What is the coupon rate on the bond?
- When does the bond mature?
- What is the bid price? What does this mean?
- What is the ask price? What does this mean?
- How much did the price change from the previous day?
- What is the yield based on the ask price?

Clean versus Dirty Prices

- Clean price: quoted price
- <u>Dirty price</u>: price actually paid = quoted price plus accrued interest
- Example: Consider T-bond in previous slide, assume today is July 15, 2012
 - Number of days since last coupon = 61
 - Number of days in the coupon period = 184
 - Accrued interest = (61/184)(.08/2*1,000) = 13.26
- Prices (based on ask):
 - Clean price = 1,327.50
 - Dirty price = 1,327.50 + 13.26 = 1,340.76
- So, you would actually pay \$1,340.76 for the bond.

8.4 Inflation and Interest Rates

 Real rate of interest – change in purchasing power

 Nominal rate of interest – quoted rate of interest, change in purchasing power and inflation

 The ex ante nominal rate of interest includes our desired real rate of return plus an adjustment for expected inflation.

Real versus Nominal Rates

The Fisher Equation (Recall Chapter 6)

- (1 + R) = (1 + r)(1 + h), where
 - R = nominal rate
 - -r = real rate
 - h = expected inflation rate

- Approximation
 - -R=r+h

Inflation-Linked Bonds

Most government bonds face inflation risk

- TIPS (Treasury Inflation-Protected Securities), however, eliminate this risk by providing promised payments specified in real, rather than nominal, terms
 - Adjustment for inflation rate via the Par value!

The Fisher Effect: Example

- If we require a 10% real return and we expect inflation to be 8%, what is the nominal rate?
- R = (1.1)*(1.08) 1 = .188 = 18.8%
- Approximation: R = 10% + 8% = 18%

 Because the real return and expected inflation are relatively high, there is a significant difference between the actual Fisher Effect and the approximation.

8.5 Determinants of Bond Yields

- Term structure is the relationship between time to maturity and yields, all else equal.
- It is important to recognize that we control for the effect of default risk, different coupons, etc.
- Yield curve graphical representation of the term structure
 - Normal upward-sloping, long-term yields are higher than short-term yields
 - Inverted downward-sloping, long-term yields are lower than short-term yields

Factors Affecting Required Return

- Required Return = Real Interest Rate + Expected Inflation Rate + Risk Premiums
- Real interest rate compensation for foregoing immediate gratification; f(real economic growth)
- Inflation premium compensation for erosion of purchasing power; f(economic condition)
- Interest rate (or maturity) risk premium compensation for price risk; more for longer-term bonds
- Default risk premium compensation for default risk
- Taxability premium compensation for risk of unfavorable tax law changes
- Liquidity premium bonds that have more frequent trading will generally have lower required returns (remember bid-ask spreads)

Quick Quiz

- How do you find the value of a bond, and why do bond prices change?
- What are bond ratings, and why are they important?
- How does inflation affect interest rates?
- What is the term structure of interest rates?
- What factors determine the required return on bonds?