CUDRILÁTERO I

- DEFINICIÓN
- TEOREMAS GENERALES
- CLASIFICACIÓN
- TRAPEZOIDE Y TRAPECIO

SIMETRÍA EN LAS CONSTRUCCIONES

CONSTRUCCIONES INCAICAS QORICANCHA VENTANAS TRAPECIALES

PIRAMIDES DE MAYAS DE MEXICO

CUADRILÁTERO I

DEFINICIÓN:

Es aquella figura geométrica formada por cuatro segmentos de recta no colineales donde los únicos puntos en común son sus extremos.

ELEMENTOS:

Vértices: A,B,C y D

Lados: \overline{AB} , \overline{BC} , \overline{CD} y \overline{AD} Diagonales: \overline{AC} y \overline{BD}

 $\theta + \alpha + \omega + \phi = 360^{\circ}$

CLASIFICACIÓN:

Según su forma

Cuadrilátero convexo

Del grafico, calcule X 100° В 140°

a+b

RESOLUCION:

Nos piden X

En el ΔAPD por suma de medidas internas:

$$X + \theta + \alpha = 180^{\circ}...(1)$$

- En el cuadrilátero ABCD: $2\theta + 2\alpha + 140^{\circ} + 100^{\circ} = 360^{\circ}$
 - $\theta + \alpha = 60^{\circ}...(2)$
- Reemplazando 2 en 1:

OTRA OPCIÓN:

CUADRILÁTERO I

Según el paralelismo de sus lados

TRAPEZOIDE

Cuadrilátero de lados opuestos no paralelos.

Si $\overline{AB} \not \parallel \overline{CD}$ y $\overline{BC} \not \parallel \overline{AD}$

ABCD: trapezoide asimétrico

TRAPEZOIDE SIMÉTRICO

Del grafico, si AD=AB+BC y BC=CD. Calcule X

Aprovechando el 60°, construimos un triángulo equilátero.

Trazamos \overline{CP} tal que el ΔPCD es equilátero:

$$m \angle CPD = 60^{\circ}$$

 $CP = PD = b$
 $AP = a$

Como AB=AP=a y BC=CP=b Entonces el cuadrilátero ABCP es simétrico o bi isósceles:

$$\therefore X = 120^{\circ}$$

CUADRILÁTERO I

TRAPECIO

Es aquel cuadrilátero de dos lados opuestos paralelos.

Si $\overline{BC} \parallel \overline{AD} \vee \overline{AB} \nparallel \overline{CD}$

ABCD: Trapecio

ELEMENTOS:

- Bases: \overline{BC} y \overline{AD}
- Laterales: \overline{AB} y \overline{CD}
- Base media: \overline{MN}
- Altura: \overline{CH}

TEOREMAS:

Si \overline{MN} es base media:

 $\overline{MN} // \overline{AD}$

$$X = \frac{a+b}{2}$$

Si M y N son puntos medios de las diagonales:

DEMOSTRACIÓN

а

a+b

m

M

m

DEMOSTRAR QUE:

$$\overline{MN}$$
 // \overline{AD}

$$X = \frac{a+b}{2}$$

- Trazamos \overline{BN} tal que interseque a \overrightarrow{AD} en P.
- EI \triangle BCN \cong \triangle PDN (ALA):

En el \triangle ABP por base media:

$$\overline{MN} // \overline{AP} :: \overline{MN} // \overline{AD}$$

$$:: X = \frac{a+b}{2}$$

Del grafico, si AM=MB=3 y CN=NB=4. Calcule PQ

RESOLUCIÓN:

Nos piden PQ=X

El ΔABC y ΔMBN notable de 37° y 53°:

- Por la observación, prolongamos \overline{MP} y \overline{NQ}
- En los triángulos MAD y NCE isósceles:

AD=3 CE=4
$$\Rightarrow$$
 DE=3

En MDEN trapecio, por base media:

$$X = \frac{5+3}{2}$$

$$\therefore X = 4$$

CLASIFICACIÓN DE TRAPECIO

TRAPECIO ESCALENO:

Si a ≠ b

ABCD: trapecio escaleno

TRAPECIO RECTÁNGULOS:

Además:

Si M es punto medio de \overline{CD} .

 $m \triangleleft DAM = m \triangleleft CBM = \theta$

Del grafico, ABCD es un trapecio rectángulo recto en A y B. Si AM=PB=4. Calcul PM.

Como ABCD es trapecio rectángulo, por teorema:

$$AM=MB=4$$
 $m \not\sim DAM = m \not\sim CBM=0$

En el vértice B:

$$\theta + \alpha = 90^{\circ}$$

Entonces $m \not\sim PBM = \theta + \alpha = 90^{\circ}$ El $\triangle PBM$ es un triangulo rectángulo notable de 45°:

$$\therefore X = 4\sqrt{2}$$

TRAPECIO ISOSCELES

Si AB=CD

ABCD: trapecio isósceles

OBSERVACIONES:

En un trapecio isósceles ABCD (\overline{BC} // \overline{AD}), se traza \overline{BH} perpendicular a \overline{AC} en H, tal que m \sphericalangle HBC=2(m \sphericalangle BAH). Si BH=6, calcule la distancia entre los puntos medios de \overline{AC} y \overline{BD} .

RESOLUCIÓN:

Nos piden, distancia entre los puntos medios de \overline{AC} y \overline{BD} :

 $Y = \frac{a-b}{2}$

Si AD=a y BC=b

En el ΔAHB:

Por teorema de la bisectriz:

AP=AH y PB=HB=6
Desde B trazamos
$$\overline{BQ} \perp \overline{AD}$$

Se forma APBQ rectángulo:

Por teorema en el trapecio isósceles:

$$6 = \frac{a-b}{2} \qquad \qquad \therefore Y = 6$$