See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/11608526

Blue-Shifting Hydrogen Bonds

ARTICLE in CHEMICAL REVIEWS · DECEMBER 2000

Impact Factor: 46.57 · DOI: 10.1021/cr990050q · Source: PubMed

CITATIONS READS
1,084 37

2 AUTHORS:

Pavel Hobza

Academy of Sciences of the Czech Republic **314** PUBLICATIONS **17,971** CITATIONS

SEE PROFILE

Zdenek Havlas

Academy of Sciences of the Czech Republic

179 PUBLICATIONS 5,050 CITATIONS

SEE PROFILE

Available from: Zdenek Havlas Retrieved on: 20 January 2016

WEAK HYDROGEN BONDS AND EXPERIMENTAL BLUE SHIFTS

W.A. HERREBOUT
UNIVERSITY OF ANTWERP

BLUE - SHIFTING HYDROGEN BONDS

PAVEL HOBZA, ZDENEK HAVLAS CHEMICAL REVIEWS 2000, VOL100, PAGE 4253 The nature of the blue shift has been the subject of intense debate.

Surprisingly little experimental information on C-H...X bonded complexes was available

N.S. Golubev, T.D. Kolomiitsova, S.M. Melikova, D.N. Shchepkin, in: 18th Conference on Spectroscopy, Technical Digest, Gorki, Russia, 1977, p. 78.

(Teor. Spektrosk., Izv. Akad. Nauk, SSSR)

G. Trudeau, J.M. Dumas, P. Dupuis, M. Guerin, C. Sandorfy, Topics in Current Chemistry, 93 (1980) 91.

I.E. Boldeskul, I.F. Tsymbal, E.V. Ryltsev, Z. Latajka, A.J. Barnes, J. Mol. Struct. 436 (1997) 167.

B.J. van der Veken, W.A. Herrebout, R. Szostak, D.N. Shchepkin, Z. Havlas, P. Hobza, J. Am. Chem. Soc. 123 (2001) 12290

SUMMARY

- 1. CRYOSPECTROSCOPY
- 2. CH.O AND CH.N HYDROGEN BONDED COMPLEXES
- 3. PSEUDO-BLUE SHIFTING CH..N HYDROGEN BONDS
- 4. CH., F AND CH., S HYDROGEN BONDED COMPLEXES

FTIR SPECTROSCOPY OF CRYOSOLUTIONS

matrix - isolation infrared spectroscopy

low temperature: 10 - 35 K

inert environment: Ne, Ar, ...

matrix-isolation remains unsurpassed in a variety of studies including, for example, the study of free radicals and other unstable species

disadvantages :

- strong scattering of the infrared beam by thicker matrices
- spectra are often complicated by site-effects:

rotation of the solute molecule in its trapping site presence of different trapping sites in the matrix aggregation of solute molecules

no thermodynamic properties can be derived

replacing the solid matrices by solutions in liquefied inerting gases

advantages :

- relatively low temperatures
- weak solute-solvent interactions
- chemical equilibrium
- transparant in a broad spectral range: far-IR to UV

disadvantages :

- solubility: typical concentration of 1 100 ppm
- limited temperature interval at 1 bar

Phase-diagram for Argon

mp bp

1 atm -188.5 °C -185.2 °C

15 atm -188.5 °C -150.3 °C

experimental set-up is not straightforward!

Vacuum shroud

vacuum

 $... < 10^{-4} \, \text{mbar}$

Cryosolution

High pressure

10 < ... < 175 bar

No leaks at room temperature and at lower temperatures!!

M.O. Bulanin, In: Handbook of Vibrational Spectroscopy; J.M. Chalmers and P.R. Griffiths, Eds.; J; Wiley & Sons: Chichester, 2002; Vol. 2, p 1329.

liquid cell: low-pressure design (1 = 10.0 mm)

liquid cell: high-pressure design (1 = 70 mm)

CH..O AND CH..N HYDROGEN BONDED COMPLEXES

Complexes of Dimethyl Ether with CHCl_xF_y

Experiment	HCF ₃ HCCIF ₂ HCCI ₂ F HCCI ₃
$\Delta v_{\text{C-H}} / \text{cm}^{-1}$	17.7 14.0 4.8 -8.3

Ab initio	HCF ₃ HCClF ₂ HCCl ₂ F HCCl ₃
$\Delta v_{\text{C-H}} / \text{cm}^{-1}$	40.8 21.9 8.2 -4.1

B.J. van der Veken, W.A. Herrebout, R. Szostak, D.N. Shchepkin, Z. Havlas, P. Hobza, *J. Am. Chem. Soc.* 123 (2001) 12290.

S.N. Delanoye, W.A. Herrebout, B.J. van der Veken, J. Am. Chem. Soc. 124 (2002) 7490.

What happens with the infrared intensity?

$$I_{\text{complex}}^{\text{corr}} = -\frac{\mathcal{E}_{\text{complex}}}{\mathcal{E}_{\text{monomeer}}} I_{\text{monomeer}}^{\text{corr}} + c$$
 $I_{\text{i}}^{\text{corr}}(T) = I_{\text{i}}(T) \frac{\rho(T_{\text{R}})}{\rho(T)}$

	HCF ₃ HCCIF ₂ HCCI ₂ F HCCI ₃
$\epsilon_{\text{complex}}/\epsilon_{\text{monomeer}}$	0.09(2) 0.89(6) 26(1) 56(3)

	HCF ₃ HCCIF ₂ HCCI ₂ F	HCCI ₃
$\Delta v_{\text{C-H}}/\text{cm}^{-1}$	17.7 14.0 4.8	-8.3

What happens with the other modes?

C-Cl and C-F stretching fundamentals

CHF₂CI

CHFCI₂

CHCl3

other modes

What about the relative stability? determination of the complexation enthalpy

$$\ln \left[\frac{I_{A_m B_n}}{I_A^m \times I_B^n} \right] = -\frac{\Delta H^o}{RT} + c^{st}$$

resulting complexation enthalpies (LKr)

			HCF ₃	HCCIF ₂	HCCI ₂ F	HCCI ₃
ΔH°/	kJ	mol ⁻¹	-12.5(2)	-12.4(1)	-12.0(2)	-11.1(1)

what do these numbers mean?

can we convert the complexation enthalpies into complexation energies?

thermal and zero-point vibrational contributions

Statistical Thermodynamics

solvent effects: $\Delta_{\rm sol} {\sf G}$, $\Delta_{\rm sol} {\sf H}$ and $\Delta_{\rm sol} {\sf S}$

Monte Carlo / Free Energy Perturbation Theory

resulting complexation energies

	HCF ₃ HCCIF ₂	HCCI ₂ F HCCI ₃	
$\Delta E_{\rm exp}$ /kJ mol ⁻¹	-19.5(10) -20.8(9)	-23.2(8) -24.3(5)	

MP2/aug-cc-PVTZ calculations including CP corrections

	HCF ₃ HCCIF ₂ HCCI ₂ F	HCCI ₃
ΔE /kJ mol ⁻¹	-17.9 -18.9 -20.0	-21.2(5)

Similar results are obtained for acetone and oxirane

acetone	HCF ₃	HCCIF ₂	HCCl ₂ F	HCCI ₃
$\Delta v_{\text{C-H}} / \text{cm}^{-1}$	26.7	24.1	15.5	0.6
$\epsilon_{\text{complex}}/\epsilon_{\text{monomer}}$	0.08(1)	0.61(3)	3.8(2)	58(8)
oxirane	HCF ₃	HCCIF ₂	HCCl ₂ F	HCCI ₃
Aven /cm-1	24.1	20.7	14.2	1.3

69(14)

S.N. Delanoye, W.A. Herrebout, B.J. van der Veken, J. Am. Chem. Soc. 124 (2002) 11854.

 $\varepsilon_{\text{complex}}/\varepsilon_{\text{monomer}}$ 0.13(1) 0.48(2) 4.5(1)

complexation energies for acetone

	HCF ₃ HCCIF ₂ HCCI ₂ F HCCI ₃
$\Delta E_{exp} / kJ \text{ mol}^{-1}$	-19.1 (6) -22.1 (4) -24.3 (5) -26.0 (6)
Δ E /kJ mol ⁻¹	-18.6 -19.6 -20.4 -22.6

complexation energies for oxirane

	HCF ₃	HCCIF ₂	HCCl ₂ F	HCCI ₃
$\Delta E_{\rm exp}$ /kJ mol ⁻¹	-20.4 (6)	-21.2 (8)	-23.0 (6)	-23.2(4)
$\Delta E / kJ \text{ mol}^{-1}$	-18.2	-19.6	-20.4	-21.4

W.A. Herrebout, S.N. Delanoye, B.J. van der Veken, J. Phys. Chem. B, submitted

Similar results are obtained for CHF₂CF₃, CHF₂Br, CHF₂I, ...

Some questions remain:

Can we obtain supplementary data by using Raman Spectroscopy?

Can we expand the series of proton donors with other species such as CH_2CI_2 , CH_2F_2 , CH_3F ,?

Can we obtain additional information by using Raman Spectroscopy?

MP2/6-311++G(d,p) ab initio calculations for DME-CHF₃

	monomer	complex
Δv_{CH} / cm ⁻¹	3228.7	3251.1
IR intensity / km mol ⁻¹	34.3	2.3
Raman scattering activity	/ Å ⁴ amu	
	66.1	9/16

Experimental data obtained for a solution in LKr, at 131 K, containing mole fractions of 0.0008 of DME and CHF₃

Can we expand the series of proton donors with other species such as CH_2CI_2 , CH_2F_2 , CH_3F ,?

CH...O and CH...N hydrogen bonded complexes of CH₂Cl₂ with Dimethyl Ether and Trimethyl Amine

Solutions in liquid krypton: CH₂Cl₂ with DME-d₆ and TMA-d₉

Solutions in liquid krypton: CD₂Cl₂ with DME and TMA

The results obtained for CH_2CI_2 and CD_2CI_2 are in excellent agreement with the data reported in

G. Trudeau, J.M. Dumas, P. Dupuis, M. Guerin, C. Sandorfy, Topics in Current Chemistry, 93 (1980) 91.

Unfortunately, no separate information on the hydrogen bondend C-H bond and on the 'free' C-H bond is available. These data can be obtained by using the partially deuterated species CHDCl₂.

$$CDCl_3 + Zn + concentrated acetic acid $\xrightarrow{-50 \text{ °C}} CHDCl_2$$$

Solutions in liquid krypton: isolated CH stretches

Solutions in liquid krypton: isolated CD stretches

Similar results are obtained for the complexes of CH₂F₂ and CHDF₂ with Dimethyl ether and Trimethyl amine

Preliminary data are available for some complexes with CH₃F, CHDF₂ and CH₂DF

Can we trust our experimental data?

Is a blue shift always caused by a bond strengthening or can other factors interfere?

CH-X bonded complexes involving C₂HF₃

Equilibrium geometries and predicted frequency shifts *

dimethyl ether $\Delta v_{\text{CH}} = -35 \text{ cm}^{-1}$ acetone $\Delta v_{\text{CH}} = -16 \text{ cm}^{-1}$ oxirane $\Delta v_{\text{CH}} = -11 \text{ cm}^{-1}$

* Obtained using BSSE-corrected gradient techniques, at the MP2/6-31++G(d,p) level

Vibrational Spectra [LKr , -150 °C]

 C_2HF_3

complex

Fermi resonance interaction in monomer trifluoroethylene

D.C. McKean [Spectrochimica Acta A, vol. 31, p. 1167]

... a close Fermi resonance dyad 3170 and 3120 cm⁻¹, one component of which is the combination 1362 + 1788 = 3150. The maximum shift possible is 25 cm^{-1} , the most likely one is about 20 cm^{-1} ...

```
v_1 CH stretch (A') v_2 CC stretch (A') , v_3 CF stretch (A')
```

Accurate analysis of the v_1 ~ v_2+v_3 Fermi dyad in monomer trifluoroethylene and in the complexes requires knowledge of the corresponding cubic force constant α_{123}

FERMI RESONANCE:

Interaction between two or more energy levels which have identical symmetry

Comparison with calculated values

	MP2/6-31++G(d,p)	Liquid Krypton
dimethyl ether	$\Delta v_{\text{CH}} = -35 \text{ cm}^{-1}$	$\Delta v_1^0 = -26.3 \text{ cm}^{-1}$
acetone	$\Delta v_{\text{CH}} = -16 \text{ cm}^{-1}$	$\Delta v_1^{\circ} = -14.7 \text{ cm}^{-1}$
oxirane	$\Delta v_{CH} = -11 \text{ cm}^{-1}$	$\Delta v_1^0 = -16.9 \text{ cm}^{-1}$

PSEUDO BLUE-SHIFTING HYDROGEN BONDS

The complex between ammonia and fluoroform has been the subject of many experimental and theoretical studies.

Experimental details obtained for solutions in LXe are described in

Infrared spectra and relative stability of the CHF₃ / NH₃ hydrogen bonded complex in liquefied xenon

K.S. Rutkowski, W.A. Herrebout, S.M. Melikova, P. Rodziewicz, B.J. van der Veken, A. Koll, Spectrochimica Acta part A 61 (2005) 1595-1602

A cryosolution infrared study of the complexes of fluoroform with ammonia and pyridine: Evidence for a C-H...N pseudo blue-shifting hydrogen bond

W. A. Herrebout, S.M. Melikova, S.N. Delanoye, K.S. Rutkowski, D.N. Shchepkin, B.J. van der Veken, J. Phys. Chem. A 109 (2005) 3038-3044

Survey infrared spectra of CHF₃-NH₃ (top), CHF₃ (middle) and NH₃ (bottom) in LXe, at 172K.

For the complexes with NH₃ and pyridine-d₅ a blue shift is observed!

Reason??

FERMI RESONANCE in monomer CHF₃

coupling parameter W?

$$\Delta^2 = \kappa^2 - 4 W^2$$

The potential energy for CHF_3 as a function of Q_1 , X_4 and Y_4 can be written as

$$V/hc = \frac{1}{2}\omega_1 Q_1^2 + \frac{1}{2}\omega_4 (X_4^2 + Y_4^2) + \alpha_{111}Q_1^3 + \alpha_{144}Q_1(X_4^2 + Y_4^2)$$

$$+\beta_{1111}Q_1^4+\beta_{1144}Q_1^2(X_4^2+Y_4^2)+\beta_{4444}(X_4^2+Y_4^2)^2+...$$

$$W = \langle 10|V|02^{0} \rangle = -\frac{1}{\sqrt{2}} \alpha_{144}$$

$$v_{1} (A_{1}) \quad 2v_{4} (A_{1})$$

How does the v_1 / $2v_4$ Fermi resonance influence the redor blue-shifting properties of v_1 ?

The perturbed frequencies for v_1 and $2v_4$ observed for monomer CHF₃ and those observed for the complexes can be converted into their unperturbed frequencies $v_1^{\,0}$ and $2v_4^{\,0}$ if the cubic force constant α_{144} is known accurately.

ammonia - fluoroform

$$\Delta v_1 = + 7.6 \text{ cm}^{-1}$$

$$\Delta v_1^0 = -0.3 (6) \text{ cm}^{-1}$$

pyridine – fluoroform

$$\Delta v_1 = + 3.0 \text{ cm}^{-1}$$

$$\Delta v_1^0 = -6.0 (6) \text{ cm}^{-1}$$

pseudo - blue-shifting hydrogen bond

dimethyl ether – fluoroform

$$\Delta v_1 = + 18.1 \text{ cm}^{-1}$$

$$\Delta y_1^0 = +15.1 (4) \text{ cm}^{-1}$$

trimethyl amine - fluoroform

$$\Delta v_1 = -22.8 \text{ cm}^{-1}$$

$$\Delta v_1^0 = -43.5 \text{ (6) cm}^{-1}$$

SO FAR, WE HAVE CONCENTRATED ON CH... O AND CH... N HYDROGEN BONDED SPECIES

CAN SIMILAR DATA BE OBTAINED FOR OTHER CH... X INTERACTIONS?

CAN WE INCLUDE DATE FROM THE NEAR INFRARED?

Complexes of Fluoroform with CD₃F

K.S. Rutkowski, P. Rodziewicz, S.M. Melikova, W.A. Herrebout, B.J. van der Veken, A. Koll, *Chem. Phys.* 313 (2005) 225-243.

Complexes of Chloroform with CD₃F

K.S. Rutkowski, P. Rodziewicz, S.M. Melikova, W.A. Herrebout, B.J. van der Veken, A. Koll, *Chem. Phys.* 313 (2005) 225-243.

Complexes of CHF₃ and CHCl₃ with CD₃SCD₃

By correcting for the $v_1/2v_4$ Fermi resonance in CHF₃, the observed blue shift of 3.8 cm⁻¹ is converted into a red shift of -3 cm⁻¹

evidence for a pseudo blue shifting CH...S hydrogen bond ??

So far, the experimental data for DMS-CHF₃ strongly contrast with theoretical derived from ab initio calculations

	DMS-CHF ₃	DMS-CHCl ₃
MP2/6-31G(d,p)	+24.4	-12.6
MP2/6-31++G(d,p)	+19.4	-13.7
MP2/6-31++G(2d,2p)	+19.6	-31.7
MP2/6-311G(d,p)	+22.3	-14.6
MP2/6-311++G(d,p)	+21.4	-15.4
MP2/6-311++G(2d,2p)	+15.1	-39.3
Experimental value *	-3 (1)	-34 (1)

^{*} Values obtained after correction for the $v_1/2v_4$ Fermi resonance in CHF₃.

The experimental data obtained for DMS-CHF₃ and DMS-CHCl₃ are in line with preliminary data obtained for the mixed haloforms CHF₂Cl and CHFCl₂

	before correction	after correction
DMS-CHF ₃	+3.8 cm ⁻¹	-3 (1) cm ⁻¹
DMS-CHF ₂ Cl	-4.4 cm ⁻¹	
DMS-CHFCI ₂	-15.6 cm ⁻¹	
DMS-CHCl ₃	-32.8 cm ⁻¹	-34 (1) cm ⁻¹

ACKNOWLEDGMENT

PROF. DR. BEN VAN DER VEKEN PROF. DR. BERT MAES DR. TOM VAN DEN KERKHOF DR. SOFIE DELANOYE DR. KOSTIA RUTKOWSKI DR. SONIA MELIKOVA JEF VAN GILS AZAT GATIN DIETER HAUCHECORNE BART MICHIELSEN

FUND FOR SCIENTIFIC RESEARCH - FLANDERS (FWO-VLAANDEREN)

FLEMISH COMMUNITY

BIJZONDER ONDERZOEKSFONDS IMPULSFINANCIERING GROTE APPARATUUR 2004

UNIVERSITY OF ANTWERP
KLEINE PROJECTEN