HKUST

MATH1014 Calculus II

Midterm Examination (White Version)	Name:	
30th Mar 2014	Student ID:	
10:15-11:45	Lecture Section:	

Directions:

- This is a closed book examination. No Calculator is allowed in this examination.
- DO NOT open the exam until instructed to do so.
- Turn off all phones and pagers, and remove headphones. All electronic devices should be kept in a bag away from your body.
- Write your name, ID number, and Tutorial Section in the space provided above, and also in the **Multiple Choice Item Answer Sheet** provided.
- Check that the version of your **Multiple Choice Item Answer Sheet** matches the color version of your exam paper: Green, Orange, Yellow, or White (if no color version printed on the MC answer sheet).
- Answer all questions. Show an appropriate amount of work for each long problem. If you do not show enough work, you will get only partial credit.
- DO NOT use any of your own scratch paper. Write your name on every scratch paper supplied by the examination, and do not take any scratch paper away after the examination.
- When instructed to open the exam, please check that you have **7** pages of questions in addition to the cover page. There are two blank pages and a **formula sheet** attached which can be used as scratch paper.
- You may write on the backside of the pages, but if you use the backside, clearly indicate that you have done so.
- Cheating is a serious violation of the HKUST Academic Code. Students caught cheating will receive a zero score for the examination, and will also be subjected to further penalties imposed by the University.

Please read the following statement and sign your signature.

I have neither given nor received any unauthorized aid during this examination. The answers submitted are my own work.

I understand that sanctions will be imposed, if I am found to have violated the University's regulations governing academic integrity.

Student's Signature:

Question No.	Points	Out of
Q. 1-10		60
Q. 11		10
Q. 12		15
Q. 13		15
Total Points		100

Part I: Answer all of the following multiple choice questions.

- Do not forget to write your name and student ID number on your Multiple Choice Item Answer Sheet. Mark also your student ID number in the I. D. No. box there.
- Use an HB pencil to mark your answers to the MC questions on the Multiple Choice Item Answer Sheet provided.
- Enter also your MC answers to the following boxes for back-up use only. The marking will be completely based on the answers on the Multiple Choice Item Answer Sheet.

Question	1	2	3	4	5	6	7	8	9	10
Answer										

Each of the following MC questions is worth 6 points. No partial credit.

1. The oil in an oil reserve is being extracted at a rate of

$$r(t) = \frac{t^2(30-t)}{100}$$
 millions of barrels/year

for $0 \le t \le 30$ (in years). How much oil (in millions of barrels) is extracted from t = 0 to t = 20year?

- (a) 200
- (b) 250
- (c) 300
- (d) 350
- (e) 400

2. Find the area of the region enclosed by the curves $x = 4y^4 - 2y^2$ and $x = 2y^2$.

- (a) $\frac{9}{5}$ (b) $\frac{12}{5}$ (c) $\frac{14}{5}$ (d) $\frac{8}{15}$ (e) $\frac{16}{15}$

- 3. The base of a solid sitting on the xy-plane is enclosed by the ellipse defined by the equation $x^2 + \frac{y^2}{4} = 1$. Cross sections of the solid perpendicular to the base and parallel to the x-axis are equilateral triangles (i.e., triangles with equal side length). Find the volume of the solid.

 - (a) $\frac{8\sqrt{3}}{3}$ (b) $\frac{12\sqrt{3}}{5}$ (c) $\frac{16\sqrt{3}}{5}$ (d) $\frac{5\sqrt{3}}{3}$ (e) $\frac{16\sqrt{3}}{3}$

- 4. Evaluate the integral $\int_0^{\frac{\pi}{8}} 4 \tan^3(2x) \sec^2(2x) dx$.
 - (a) 2
- (b) $\frac{1}{2}$
 - (c) $\frac{3}{2}$
- (d) $\frac{5}{2}$
- (e) $\frac{5}{4}$

- 5. Evaluate the integral $\int_0^{\frac{\pi}{3}} 3\cos^2(3x)\cos(6x) dx$.
 - (a) $\frac{\pi}{3}$
- (b) $\frac{2\pi}{3}$ (c) $\frac{\pi}{4}$
- (e) $\frac{5\pi}{6}$

- 6. Evaluate the integral $\int_0^{\ln 3} \frac{e^x 3}{(e^x + 1)(e^x + 3)} dx.$
 - (a) $2 \ln 2 3 \ln 3$
- (b) $3 \ln 2 2 \ln 3$ (c) $3 \ln 2 + 2 \ln 3$
- (d) $3 \ln 2 5 \ln 3$ (e) $3 \ln 2 + 5 \ln 3$

- 7. Evaluate the integral $\int_{-1}^{2} \frac{1}{\sqrt{x^2 + 2x + 5}} dx$
 - (a) $\ln(\sqrt{13} + 3)$
- (b) $2\ln(\sqrt{13}+3)$ (c) $\ln\frac{\sqrt{13}+3}{2}$

- (d) $2 \ln \frac{\sqrt{13}+3}{2}$ (e) $\frac{3}{2} \ln \frac{\sqrt{13}+3}{2}$

- 8. Find the arc length of the graph of the function defined by $y = \int_0^x \sqrt{e^t 1} dt$, where $0 \le x \le 1$.
- (a) e-1 (b) e (c) $2\sqrt{e-1}$ (d) $\sqrt{e}-1$ (e) $2\sqrt{e}-2$

9. The area in the given figure is rotated about the x-axis to generate a solid. Use Simpson's Rule on 4 subintervals to find an approximate value of the volume of the solid.

- 10. A curve in the xy-plane is defined by the polar equation $r = \theta \sin \theta$. Find the slope of the tangent line to the curve at the point with angular coordinate $\theta = \frac{\pi}{4}$.
 - (a) $\frac{1+\pi}{2}$
- (b) $\frac{2}{1-\pi}$

- (c) $\frac{2}{2+\pi}$ (d) $\frac{2+\pi}{2}$ (e) $\frac{1-\pi}{2}$

Part II: Answer each of the following questions.

11. [10 pts] The region enclosed by the curve defined by $y = x^2 \sin(\frac{x^2}{4})$, the line defined by $x = \sqrt{2\pi}$ and the x-axis is revolved about the y-axis to generate a solid. Find the volume of the solid.

- 12. [15 pts] The shape of a container is given by rotating the curve $y = \frac{2x^2}{1+x^2}$ about the y-axis, where $-2 \le x \le 2$. Suppose the container is filled with water up to a depth of 1 m.
 - (a) Express the volume of the water as a definite integral.

[5 pts]

Do not need to calculate the integral.

(b) Express the work required to pump all water to the top of the container as a definite integral. (Water density: 1000 kg/m³, gravity acceleration: $g = 9.8 \text{ m/s}^2$) [5 pts] Do not need to calculate the integral.

(c) Express the surface area of the whole container as a definite integral. Do not need to calculate the integral.

[5 pts]

- 13. $[15 \ pts]$ A curve C defined by the polar equation $r = 1 \sin \theta$ is plotted in the given figure together with the circle defined by the polar equation $r = -3 \sin \theta$.
 - (a) Find the rectangular coordinates of the points on curve C with the following angular coordinates: [2 pts]

	$\theta = \pi + \frac{\pi}{3}$	$\theta = -\frac{\pi}{4}$
x coordinate		
y coordinate		

- (b) Find the rectangular coordinates of the intersection points of the two curves.
- [4 pts]

(c) Find the area of the region lying inside curve C but outside the circle.

[9 pts]

Math1014 Midterm Exam Formula Sheet

Trigonometric Identities

$$\cos^2\theta + \sin^2\theta = 1$$

$$1 + \tan^2\theta = \sec^2\theta$$

$$1 + \cot^2\theta = \csc^2\theta$$

$$\sin(A - B) = \sin A \cos B + \sin B \cos A$$

$$\cos(A - B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\sin A \cos B = \frac{1}{2} \left(\sin(A + B) + \sin(A - B) \right)$$

$$\cos 2\theta = 2 \cos^2\theta - 1 = 1 - 2 \sin^2\theta$$

$$\cos A \cos B = \frac{1}{2} \left(\cos(A + B) + \cos(A - B) \right)$$

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2\theta}$$

$$\sin A \sin B = \frac{1}{2} \left(\cos(A - B) - \cos(A + B) \right)$$

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

$$\int \cos^n x dx = \frac{1}{n} \sin x \cos^{n-1} x + \frac{n-1}{n} \int \cos^{n-2} x dx$$

$$\int \sin^n x dx = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} \int \sin^{n-2} x dx$$