[PTKB] Kolokwium 2 - opracowanie

1 Kolokwium 2 z PTKB (11.01.2012)

1.1 Zadanie 1.

Treść: Ile razy trzeba wykonać protokół uwierzytelniania Fiata-Shamira by prawdopodobieństwo oszustwa było mniejsze od 10^{-1000} ?

Rozwiązanie: Prawdopodobieństwo udanego oszustwa po wykonaniu n eksperymentów wynosi $(\frac{1}{2})^n$. Rozwiązujemy równanie $(\frac{1}{2})^x = 10^{-1000}$.

$$\begin{array}{rcl} (\frac{1}{2})^x & = & 10^{-1000} \\ 2^x & = & 10^{1000} \\ x & = & \log_2 10^{1000} \\ x & = & 1000 \log_2 10 \\ x & \simeq & 3321.928 \end{array}$$

Wybieramy $\lceil x \rceil = 3322$.

1.2 Zadanie 2.

Treść: Skonstruować system podpisów cyfrowych ElGamala "dla małych liczb". Przyjąć odpowiedni klucz publiczny i prywatny. Podpisać dowolną wybraną wiadomość m i zweryfikować podpis.

Rozwiązanie:

1. ElGamal:

Generowanie klucza: wybieramy dowolną liczbę pierwszą p, dowolny generator α podgrupy multiplikatywnej, tzn. taki element, którego rząd jest równy p-1, oraz dowolne k takie, że: 1 < k < p. Liczymy β : $\beta = \alpha^k \mod p$, co potrafimy zrobić szybko za pomocą potęgowania przez podnoszenie do kwadratu.

Następnie publikujemy (p, α, β) jako klucz publiczny i zachowujemy (p, α, β, k) jako klucz prywatny.

Szyfrowanie: mając do zaszyfrowania wiadomość m, przedstawiamy ją jako element grupy [1 < m < p-1], wybieramy losowo liczbę x i liczymy (modulo p) $(\alpha^x, m \times \beta^x)$

Deszyfrowanie: podnosimy otrzymane α^x do potęgi k: $(\alpha^x)^k = \alpha^{kx} = (\alpha^k)^x = \beta^x$ Następnie znajdujemy odwrotność β^x (nadal modulo p) rozszerzonym algorytmem Euklidesa:

$$\gamma \beta^x + \delta p = 1$$

$$\gamma \beta^x \equiv 1 \mod p$$
$$\gamma \equiv (\beta^x)^{-1} \mod p$$

W końcu dzielimy $m \times \beta^x$ przez β^x , czyli mnożymy przez jej odwrotność – γ : $(m \times \beta^x) \times \gamma \equiv m \times (\beta^x \times \gamma) \equiv m \times 1 \equiv m$

 $(m \times \beta^x) \times \gamma \equiv m \times (\beta^x \times \gamma) \equiv m \times 1 \equiv m \mod p$

- 2. Ustanawianie systemu. Wybieramy liczbę pierwszą np. p=13. Jako generator grupy multiplikatywnej Z_{13}^* można wybrać g=2, ponieważ $2^1(mod13)=2$, $2^2(mod13)=4$, $2^3(mod13)=8$, $2^4(mod13)=3$, $2^5(mod13)=6$, $2^6(mod13)=12$, $2^7(mod13)=11$, $2^8(mod13)=9$, $2^9(mod13)=5$, $2^{10}(mod13)=10$, $2^{11}(mod13)=7$, $2^{12}(mod13)=1$ Jako klucz prywatny wybieramy losowo dowolną liczbę $x\in <2$, p-2>. Wybierzmy np. x=3. Będzie to tajemnica strony podpisującej wiadomość. Ujawniamy klucz publiczny $y=g^x(modp)=2^3(mod13)=8$.
- 3. Podpis cyfrowy: Klucz jest generowany w ten sam sposób. Żeby wygenerować podpis wiadomości m, losujemy liczbę r i liczymy:

 $y = \alpha^r \pmod{p}$ $s = (H(m) - ky)r^{-1} \pmod{(p-1)}$, gdzie H jest funkcją skrótu. Podpisem jest para (y, s).

Żeby zweryfikować podpis, sprawdzamy równanie: $\beta^y y^s = \alpha^{H(m)}$

Dla prawidłowego podpisu będzie się zgadzać: $\alpha^{ky}\alpha^{rs} = \alpha^{ky+r\left((H(m)-ky)r^{-1}\right)} = \alpha^{ky+H(m)-ky} = \alpha^{H(m)}$

Ważne jest zachowanie tajności wylosowanego r. Jeśli r byłoby znane, to można by odzyskać klucz prywatny z podpisu:

$$y^{-1}(H(m) - sr) = y^{-1}(H(m) - (H(m) - ky)r^{-1}r) = y^{-1}ky = k$$

4. Podpisywanie wiadomości (dokumentu) przez stronę dysponującą tajnym kluczem prywatnym x. Wybieramy jako wiadomość podpisywaną dowolna liczbę $m \in Z_{p-1}$ czyli w naszym przypadku $m \in Z_{12}$. Wiadomość jawna m jest więc jednym z elementów zbioru $0,1,2,\cdots,11$. Wybierzmy jako wiadomość podpisywaną m=4. Mając m=4 i x=3 tworzymy teraz podpis wiadomości m=4 czyli odpowiednią parę uporządkowaną $(a,b) \in Z_p^* \times Z_{p-1}$. Losujemy

 $k \in Z_{p-1}$ takie, że NWD(k,p-1)=1. Niech to będzie k=5. Obliczamy k^{-1} w pierścieniu Z_{p-1} czyli w pierścieniu Z_{12} . Łatwo sprawdzić, że $k^{-1}=5$. Obliczamy $a \in Z_p^*$ jako $g^k(modp)$, mamy więc $2^5(mod13)=6$. Obliczamy teraz $b \in Z_{p-1}$ jako $b=k^{-1}\otimes_{p-1}(m-1_2x\otimes [a]_{p-1})$. Przy przyjętych i obliczonych wartościach mamy więc $b=5\otimes_{12}(4-1_23\otimes_{12}6)=2$. Zatem podpis (a,b) wiadomości m=4 ma postać pary uporządkowanej (6,2) a podpisywana wiadomość 4 z podpisem to para uporządkowana (4,(6,2)).

 Weryfikacja podpisu. Równanie weryfikacyjne dla podpisów ElGamala ma postać:

$$y^a \otimes_p a^b = g^m$$

gdzie podnoszenie do potęgi jest jak pierścieniu Z_p . Musimy sprawdzić dla y=8, a=6, b=2, m=4 i g=2 czy równanie (*) jest spełnione.

$$L = y^a \otimes_p a^b = 8^6 \cdot 2(mod13) = 3$$

$$P = g^m = 2^4(mod13) = 3$$

Mamy więc L = P i równanie weryfikacyjne (*) jest spełnione, zatem przedstawiony do weryfikacji podpis akceptujemy.

1.3 Zadanie 3.

Treść: Wykazać, że charakterystyka ciała skończonego (czyli najmniejsza taka liczba n, że spełniona jest równość $\underbrace{1+1+1+\cdots+1}_{n}=0$) jest zawsze

liczbą pierwszą.

Rozwiązanie: Załóżmy, że charK = n i liczba $n = m_1 m_2$, gdzie $m_1, m_2 \in \mathbb{N}$, a więc $n \cdot 1 = (m_1 m_2) \cdot 1 = 0$. Z łączności dodawania i rozdzielności mnożenia względem dodawania w ciele K mamy $(m_1 m_2) \cdot 1 = (m_1 \cdot 1)(m_2 \cdot 1)$, zatem:

$$(m_1 \cdot 1)(m_2 \cdot 1) = 0$$

Jeśli $m_1 < n$ to z definicji charakterystyki dostajemy, że $m_1 \cdot 1 \neq 0$, zatem istnieje element odwrotny $(m_1 \cdot 1)^{-1}$ do $m_1 \cdot 1$. Mnożąc lewostronnie równość $(m_1 \cdot 1)(m_2 \cdot 1) = 0$ przez $(m_1 \cdot 1)^{-1}$ dostajemy $m_2 \cdot 1 = 0$, ponieważ jednak $1 \leq m_2 \leq n$ to biorąc pod uwagę definicję charakterystyki ciała musimy mieć $m_2 = n$. Wynika stąd, że liczba n nie jest podzielna przez żadną liczbę różną od n i 1, a zatem jest liczbą pierwszą.

Można też rozumować nieco inaczej. Załóżmy, że charK=n i liczba n daje się przedstawić w postaci $n=m_1m_2$, gdzie $m_1,m_2\in\mathbb{N}$ i $m_1,m_2\geqslant 2$, czyli n nie jest liczbą pierwszą. Wówczas $n\cdot 1=(m_1m_2)\cdot 1=(m_1\cdot 1)(m_2\cdot 1)=0$. Ponieważ $m_1\cdot 1\neq 0$

i $m_2 \cdot 1 \neq 0$ oraz $(m_1 \cdot 1)(m_2 \cdot 1) = 0$ co nie jest możliwe, bo ciało nie ma niezerowych dzielników zera. Zatem założenie, że n nie jest liczbą pierwszą prowadzi do sprzeczności.

1.4 Zadanie 4.

Treść: Podać przykład liczby pseudopierwszej przy podstawie 2 i 3 jednocześnie. Czy takie liczby w ogóle istnieją?

Rozwiązanie: Liczba naturalna jest liczbą Carmichaela wtedy i tylko wtedy, gdy:

- 1. Jest liczbą złożoną.
- 2. Dla każdego $a \in \mathbb{N}$ z przedziału 1 < a < n, względnie pierwszej z n, liczba $(a^{n-1} 1)$ jest podzielna przez n.

Patrząc na najmniejsze liczby Carmichaela:

$$561 = 3 \cdot 11 \cdot 17$$

 $1105 = 5 \cdot 13 \cdot 17$

widzimy, że liczba Carmichaela 1105 jest względnie pierwsza zarówno z 2, jak również 3. Liczba 1105 jest więc pseudopierwsza jednocześnie przy podstawie 2 oraz 3.

1.5 Zadanie 5.

Treść: Podać przykład ciała $GF(3^2)$, czyli ciała o 9 elementach.

Rozwiązanie: Ciało $GF(p^n)$, gdzie p jest liczbą pierwszą oraz $n \in \mathbb{N}$, można wygenerować:

- Znajdując wielomian f(x) stopnia n nierozkładalny w pierścieniu GF(p)[x].
- Znajdując wszystkie możliwe reszty z dzielenia wielomianu f(x) w pierścieniu GF(p)[x].
- Wykorzystując działania dodawania i mnożenia wielomianów modulo f(x).

Wielomianem drugiego stopnia nierozkładalnym w ciele G(3)[x] jest x^2+1 (patrz: Zadanie 7.). Wszystkie możliwe reszty z dzielenia tego wielomianu w pierścieniu G(3)[x] to: 2x+2, 2x+1, 2x, x+2, x+1, x, x, x, x.

1.6 Zadanie 6.

Treść: Podać przykład szyfru Rabina "dla małych liczb". Podać przykład szyfrowania i deszyfracji.

Rozwiązanie: Generacja pary kluczy przebiega następująco:

- uproszczenia można wybrać liczby, które spełniają warunek $p \equiv q \equiv 3 \mod 4$.
- Obliczamy klucz publiczny $n = p \cdot q$.

Żeby zaszyfrować wiadomość potrzebny jest wyłącznie klucz publiczny n. Żeby odczytać wiadomość potrzebny jest również rozkład klucza na czynniki pierwsze p i q. Przykładowe wartości "dla małych liczb" - p = 7, q = 11, n = 77.

Szyfrowanie wiadomości $m \in P = \{0, \dots, n-1\}$ polega na obliczeniu szyfrogramu $c = m^2 \mod n$. Przykładowo, chcąc zakodować wiadomość m=20, obliczamy $c = 20^2 \mod 77 = 400 \mod 77 = 15$. Niestety, szyfrowanie nie jest jednoznaczne, ponieważ ten sam szyfrogram uzyskujemy dla czterech różnych wiadomości $m \in \{13, 20, 57, 64\}$.

Deszyfrowanie wiadomości wymaga obliczenia pierwiastków kwadratowych ze względu na obie części klucza prywatnego p i q.

$$\begin{array}{rcl} m_p & = & \sqrt{c} & \bmod p \\ m_q & = & \sqrt{c} & \bmod q \end{array}$$

Dla przykładowych małych liczb otrzymujemy $m_p = 1$ oraz $m_q = 9$. Następnie, używając rozszerzonego algorytmu Euklidesa, odnajdujemy y_p oraz y_q takie, że $y_p \cdot p + y_q \cdot q = 1.$ Dla przykładowych danych $y_p = -3$ oraz $y_q = 2$. Teraz, korzystając z chińskiego twierdzenia o resztach, odnajdujemy cztery pierwiastki (+r, -r, +s oraz -s) równania $c + n\mathbb{Z} \in \mathbb{Z}/n\mathbb{Z}$:

$$r = (y_p \cdot p \cdot m_q + y_q \cdot q \cdot m_p) \mod n$$

$$-r = n - r$$

$$s = (y_p \cdot p \cdot m_q - y_q \cdot q \cdot m_p) \mod n$$

$$-s = n - s$$

Dla naszego przykładu pierwiastki tego równania przyjmują wartości $m \in \{64, 20, 13, 57\}$. Wśród nich jest zakodowana wiadomość m=20.

1.7 Zadanie 7.

Treść: Wykazać, że wielomian x^2+1 jest nierozkładalny w pierścieniu wielomianów GF(3)[x], a jest rozkładalny w pierścieniu wielomianów GF(2)[x].

Rozwiązanie: Wielomian drugiego stopnia można rozłożyć za pomocą dwóch wielomianów pierwszego stopnia, więc:

$$x^{2} + 1 = (ax + b) * (cx + d)$$

 $x^{2} + 1 = (ac)x^{2} + (ad + bc)x + bd$

Dla ciała GF(3)[x] mamy: $a, b, c, d \in \{0, 1, 2\}$. Aby otrzymać wielomian x^2+1 , muszą być spełnione warunki: $ac \equiv 1 \mod 3$, $bd \equiv 1 \mod 3$. Zatem Zatem:

• Wybieramy dwie liczby pierwsze p i q. Dla a = b = c = d = 1, co daje wielomian $x^2 + 2x + 1$, a nie $x^2 + 1$.

> Dla ciała $GF(2)[x], b, d \in \{0, 1\} \text{ oraz } a, c \in \{1\}.$ Jeżeli $(b+d) \equiv 0 \mod 2 \Rightarrow (b=0 \land d=0) \lor (b=0)$ $1 \wedge d = 1$). Dla drugiego przypadku otrzymujemy w GF(2)[x]:

$$x^2 + 1 \equiv (x+1) * (x+1)$$

Zatem wielomian jest rozkładalny.

1.8 Zadanie 8.

Treść: Wykazać, że w grupie skończonej dla każdego $a \in G$ mamy: $a^{rzG} = 1$, gdzie rzG oznacza rząd grupy G. Wykazać, wykorzystując ten fakt, twierdzenie Eulera. (Wskazówka: wykorzystać twierdzenie Lagrange'a: dla grup skończonych rzad podgrupy jest dzielnikiem rzędu grupy).

Rozwiązanie: W ciągu $a^1, a^2, \cdots, a^{rzG}, a^{rzG+1}$ muszą być dwa elementy równe, tzn. dla pewnych $k',k''\in[1,rzG+1],k'< k''$ musimy mieć $a^{k'}=a^{k''}.$ Zatem $a^{k''-k'}=1.$ Istnieje więc takie $k \in [1, rzG](k = k'' - k')$, że $a^k = 1$. Niech r będzie najmniejszym takim k, że $a^k = 1$, wówczas zbiór $H = \{a^1, a^2, \cdots, a^r\}$ stanowi podgrupę cykliczną rzędu r grupy G. Ponieważ, z twierdzenia Lagrange'a, r jest dzielnikiem rzędu grupy G, więc również $a^{rzG} = 1.$

Twierdzenie Eulera: jeśli $n\in\mathbb{N},\,n\geqslant 2$ i $a\in\mathbb{N}$ oraz NWD(a,n) = 1 to $a^{\phi(n)} \equiv 1 \mod n$, gdzie ϕ jest funkcją Eulera. Rozważmy grupę multiplikatywną Z_n^* . Grupa Z_n^* ma rząd równy $\phi(n)$. Zatem korzystając z $a^{rzG}=1$ dostajemy, że dla każdego $a\in Z_n^*$ mamy $a^{\phi(n)} \equiv 1 \mod n$. Warunek $a \in \mathbb{Z}_n^*$ jest równoznaczny warunkowi NWD(a, n) = 1. Zatem twierdzenie Eulera jest prostym wnioskiem z ogólnego twierdzenia teoriogrupowego $a^{rzG} = 1$.

1.9 Zadanie 9.

Treść: Mamy zapis RNS z modułami $m_1 = 5$, $m_2 = 7, m_3 = 11, m_4 = 13,$ za pomocą którego zapisujemy liczby całkowite ze zbioru $[0, m_1]$. $m_2 \cdot m_3 \cdot m_4 - 1$]. Dodać i pomnożyć dwie liczby a = (3, 5, 9, 11) oraz b = (1, 3, 7, 9) stosując typowy dla RNS algorytm. Czy uzyskane wyniki są popraw-

Rozwiązanie: W RNS można wykonywać operację mnożenia i dodawania według poniższego algorytmu, dla każdego elementu z bazy:

$$\forall i \in M \quad a_i \pm b_i \mod m_i$$

 $\forall i \in M \quad a_i \cdot b_i \mod m_i$

$$(a+b) = (3+1 \mod 5, 5+3 \mod 7, 9+7 \mod 11, 11+9 \mod 13) = = (4,1,5,7)$$

$$(a \cdot b) = (3 \cdot 1 \mod 5, 5 \cdot 3 \mod 7, 9 \cdot 7 \mod 11, 11 \cdot 9 \mod 13) = (3, 1, 8, 8)$$

Aby sprawdzić poprawność tego rozwiązania, musimy wyznaczyć liczby a oraz b. Zapis RNS przedstawia liczby w postaci układu kongruencji w modulo bazy, a więc:

$$a \equiv 3 \mod 5$$

$$a \equiv 5 \mod 7$$

$$a \equiv 9 \mod 11$$

$$a \equiv 11 \mod 13$$

Układ ten można sprowadzić do $a \equiv -2 \mod 5005$. Analogicznie dla b:

$$\begin{array}{cccc} b & \equiv & 1 \mod 5 \\ b & \equiv & 3 \mod 7 \\ b & \equiv & 7 \mod 11 \\ b & \equiv & 9 \mod 13 \end{array}$$

Układ ten można sprowadzić do $b \equiv -4 \mod 5005$. Wyznaczmy sumę a+b.

$$a+b \equiv -6 \mod 5005$$

Wyznaczmy iloczyn $a \cdot b$.

$$a*b \equiv 8 \mod 5005$$

Teraz sprawdźmy poprawność wyników uzyskanych przez algorytmy dodawania i mnożenia w RNS. Dodawanie:

$$\begin{array}{cccc} -6 & \equiv & 4 \mod 5 \\ -6 & \equiv & 1 \mod 7 \\ -6 & \equiv & 5 \mod 11 \\ -6 & \equiv & 7 \mod 13 \end{array}$$

Czyli uzyskaliśmy te same współczynniki. Teraz sprawdzamy poprawność mnożenia:

$$8 \equiv 3 \mod 5$$

$$8 \equiv 1 \mod 7$$

$$8 \equiv 8 \mod 11$$

$$8 \equiv 8 \mod 13$$

Czyli wykorzystane algorytmy dodawania i mnożenia dały poprawne rezultaty.

1.10 Zadanie 10.

Treść: Załóżmy, że mamy dwie niezależne zmienne losowe X_1 oraz X_2 o wartościach w zbiorze $Z_2 = \{0,1\}$. Wykazać, że jeśli X_1 ma rozkład równomierny, to również $X_1 \oplus X_2$ ma rozkład równomierny. Ten fakt jest podstawą protokołu o nazwie "rzut monetą przez telefon".

Rozwiązanie: Najpierw wykażemy, że odwzorowanie $Y=X_1\otimes X_2$ jest zmienną losową. Ogólnie rzecz biorąc, jeśli (Ω,\mathfrak{M}) jest przestrzenią mierzalną, $(E_t,\mathfrak{F}_t)_{t\in T}$ jest dowolną rodziną przestrzeni mierzalnych, a odwzorowania $f_t:\Omega\to E_t$ są $(\mathfrak{M},\mathfrak{F}_t)$ mierzalne dla każdego $t\in T$ to odwzorowanie $P_tf_t:\Omega\to P_tE_t$ jest $(\mathfrak{M},P_t\mathfrak{F}_t)$ mierzalne. Stosując ten ogólny fakt do naszej sytuacji stwierdzamy, że odwzorowanie (X_1,X_2) jest $(\mathfrak{M},2^{\{0,1\}}\otimes 2^{\{0,1\}})$ mierzalne. Odwzorowanie $S:\{0,1\}\times\{0,1\}\ni (x_1,x_2)\to x_1\oplus x_2\in\{0,1\}$ jest oczywiście $(2^{\{0,1\}}\otimes 2^{\{0,1\}},2^{\{0,1\}})$ mierzalne, zatem $Y=X_1\oplus X_2$ jako superpozycja odwzorowań mierzalnych (X_1,X_2) i S jest $(\mathfrak{M},2^{\{0,1\}})$ mierzalne, jest więc zmienną losową.

Udowodnimy teraz równomierność rozkładu zmiennej losowej $Y=X_1\oplus X_2.$ Oznaczmy:

$$\begin{array}{lcl} A_0 & = & \left\{ \omega \in \Omega; X_1(\omega) = 0, X_2(\omega) = 0 \right\}, \\ A_1 & = & \left\{ \omega \in \Omega; X_1(\omega) = 1, X_2(\omega) = 0 \right\}, \\ B_0 & = & \left\{ \omega \in \Omega; X_1(\omega) = 1, X_2(\omega) = 1 \right\}, \\ B_1 & = & \left\{ \omega \in \Omega; X_1(\omega) = 0, X_2(\omega) = 1 \right\}. \end{array}$$

Wówczas zdarzenia A_0 , A_1 , B_0 , B_1 są parami rozłączne. Stąd i z niezależności zmiennych losowych X_1 i X_2 oznaczając $P(X_1=0)=p_0$, $P(X_1=1)=p_1$ dostajemy:

$$P(Y = 1) = P(A_1 \cup B_1) = P(A_1) + P(B_1) =$$

$$= P(X_1 = 1) \cdot P(X_2 = 0) +$$

$$+P(X_1 = 0) \cdot P(X_2 = 1) =$$

$$= p_1 \cdot \frac{1}{2} + p_2 \cdot \frac{1}{2} = \frac{1}{2}$$

ponieważ $p_0 + p_1 = 1$. Podobnie:

$$P(Y = 0) = P(A_0 \cup B_0) = P(A_0) + P(B_0) =$$

$$= P(X_1 = 0) \cdot P(X_2 = 0) +$$

$$+P(X_1 = 1) \cdot P(X_2 = 1) =$$

$$= p_1 \cdot \frac{1}{2} + p_2 \cdot \frac{1}{2} = \frac{1}{2}$$

a więc istotnie zmienna losowa $Y = X_1 \oplus X_2$ ma rozkład równomierny.

$\mathbf{2}$ Zadania przygotowujące do kolokwium #2 z PTKB

Zadanie 2. 2.1

Treść: Ile razy trzeba wykonać protokoł uwierzytelniania Fiata-Shamira by prawdopodobieństwo oszustwa było mniejsze od 10^{-100} .

Rozwiązanie: Patrz 1.1

2.2 Zadanie 3.

Treść: Pokazać jak musi spreparować protokół Fiata-Shamira Prover nie znający tajemnicy (a wieęc oszust lub zapominalski) by zawsze na wyzwanie e=1 odpowiadać prawidłowo.

Rozwiązanie:

- 1. Porver nie znający tajemnicy s prawdziwego Provera (czyli nie znający klucza prywatnego) losuje liczbę $r \in Z_n, r \neq 0, 1.$ Podnosi do kwadratu modulo n (przypominamy, że n = pq, gdzie p,q są różnymi liczbami pierwszymi) i przesyła w pierwszym kroku protokołu do Verifiera liczbę x = $(r^2(modn)(s^2(modn))^{-1})(modn)$, gdzie $s \in Z_n$ jest tajemnica (kluczem prywatnym) prawdziwego Provera, $s^2(modn) \in \mathbb{Z}$, kluczem publicznym a odwrotność jest n brana w pierścieniu Z_n .
- 2. Jeśli Verifier żąda w drugim kroku protokołu odpowiedzi na pytanie e = 1 to Prover wysyła do Verifiera liczbę y = r
- 3. Verifier sprawdza teraz równanie weryfikacyjne sprawdzając czy:

$$y^2(modn) = (x * s^2)(modn)$$

Równanie to jest dla y = r i x = $(r^2(modn)(s^2(modn))^{-1})(modn)$ wi udało się dobrze odpowiedzieć na pytanie e=1 Verifiera.

2.3 Zadanie 9.

 $\mathbf{Tre\acute{s}\acute{c}}$: Niech G będzie skończoną grupą cykliczną rzędu n, a $g \in G$ generatorem tej grupy. Pokazać, że dla każdego $d \in \mathbb{N}$ g^d jest generatorem grupy Gwtedy i tylko wtedy, gdy NWD(d, n) = 1.

Rozwiązanie: 1. Wynikanie w lewo. Niech NWD(d,n) = 1. Jeśli $(g^d)^{r_1} = (g^d)^{r_2}$ dla pewnych $r_1, r_2 \in \mathbb{N}$ to $g^{d(r_1-r_2)} = 1$. Z uwagi na fakt, że g jest generatorem grupy G musimy mieć $d(r_1-r_2) \equiv$ $0 \pmod{n}$ co oznacza, że $d(r_1 - r_2)$ jest wielokrotnością n. Wynika stąd, że jeśli $r_1, r_2 \in [1, n]$ to z czego wynika, że $x^n (\text{mod}(x^4 + 1)) = x^{n (\text{mod}4)}$.

 $r_1 = r_2$. Kolejne potęgi $(g^d)^r$ dla $r = 1, 2, \cdots, n$ są więc parami różne, co dowodzi faktu, że g^d jest generatorem.

2. Wynikanie w prawo. Niech NWD(d, n) = r > 1, wówczas istnieją takie $k_1, k_2 \in \mathbb{N}$, że $n = k_1 \cdot r$ oraz $d = k_2 \cdot r$. Oczywiście, ponieważ r > 1 musimy mieć $k_1 < n$. Zatem $(g^d)^{k_1} = (g^{k_2 \cdot r})^{k_1} = (g^{k_1 \cdot r})^{k_2} =$ $(g^n)^{k_2} = 1$. Stąd wynika, że rząd elementu g^d jest co najwyżej równy k_1 , a więc jest mniejszy od n, a więc g^d nie jest generatorem grupy G.

2.4 Zadanie 11.

Treść: Niech $GF(2^k)[x]$ będzie pierścieniem wielomianów o współczynnikach w ciele $GF(2^k)$. Wykazać, że dla każdego wielomianu x^n (gdzie $n \in \mathbb{N}$) z pierścienia $GF(2^k)[x]$ mamy:

$$x^n(\operatorname{mod}(x^4+1)) = x^{n(\operatorname{mod}4)}$$

Rozwiązanie: 1. W ciele $Z_2 = \{0, 1\}$ dodawanie jest zwykłą sumą modulo 2 (oznaczaną symbolem $\oplus).$ Również odejmowanie w \mathbb{Z}_2 jest sumą modulo 2, bo mamy $1\oplus 1=0$ i $0\oplus 0=0,$ więc-a=adla $a \in \mathbb{Z}_2$ oraz $a -_2 b = a \oplus b$ dla $a, b \in \mathbb{Z}_2$, gdzie $-_2$ jest odejmowaniem modulo 2 w \mathbb{Z}_2 .

2. W ciele $GF(2^k)$, którego elementami sa słowa binarne o długości k, definiujemy działanie dodawania standardowo jako sumę wielomianów. W naszej sytuacji jest to jednocześnie suma modulo 2 po współrzędnych, tzn. jeśli $a = (a_1, a_2, \cdots, a_k) \in$ $GF(2^k)$, gdzie $a_i \in \{0,1\}$ oraz $b = (b_1, b_2, \dots, b_k) \in$ $GF(2^k)$, gdzie $b_i \in \{0,1\}$ to:

$$a+b=(a_1\oplus b_1,a_2\oplus b_2,\cdots,a_k\oplus b_k)$$

oraz:

$$a -_2 b = (a_1 -_2 b_1, a_2 -_2 b_2, \cdots, a_k -_2 b_k) =$$

= $(a_1 \oplus b_1, a_2 \oplus b_2, \cdots, a_k \oplus b_k)$

Dla n < 4 wzór jest zawsze prawdziwy (przypadek trywialny). Dla $n \ge 4$ istnieje takie $q \in \mathbb{N}$, że $n = q \cdot 4 + r$ i $0 \le r < 4$, gdzie $r = n \pmod{4}$. Zauważmy jak przebiega dzielenie wielomianu x^n dla $n \ge 4$. Uwzględniając, że w ciele modulo 2 operacje dodawania i odejmowania sa tożsame, mamy:

$$\frac{x^{n-4} + x^{n-8} + \cdots + x^{n-q\cdot 4}}{x^n} : x^4 + 1$$

$$\frac{x^n + x^{n-4}}{x^{n-4}} + x^{n-8}$$

$$\vdots x^4 + 1$$

$$\frac{x^{n-4} + x^{n-8}}{x^n}$$

2.5 Zadanie 33.

Treść: Obliczyć wartość symbolu Legendre'a: a) $(\frac{35}{7})$ b) $(\frac{64}{5})$ **Rozwiązanie**:

1.
$$(\frac{35}{7}) = (\frac{5}{7})(\frac{7}{7}) = 0$$

2.
$$(\frac{64}{5}) = (\frac{4}{5}) = (\frac{2 \cdot 2}{5}) = 1$$

Symbol Legendre'a to funkcja $\left(\frac{a}{p}\right)$ (p musi być liczbą pierwszą większą od 2) zwracająca: 0, jeśli a jest wielokrotnością p1, jeśli istnieje takie b, że $b^2=a \mod p$ -1, jeśli nie istnieje żadne b, żeby $b^2 = a \mod p$

2.6 Zadanie 10.

Rozwiązanie: Patrz 1.10