Main Memory and the CPU Cache

B Trees

B Trees

- CPU cache
- Unrolled linked lists
- B Trees

CPU Cache

Main Memory and O Notation

- Our model of main memory and the cost of CPU operations has been intentionally simplistic
 - The major focus has been on determining the broad growth rate of running times of algorithms
 - i.e. O notation
- Program running time is determined by
 - Algorithm
 - Hardware speed
 - Programming quality

Simple Hardware Model

Reality

time to access an *int* in RAM is more than 200 times time to compare two *int*s in registers

CPU Cache

- CPU storage consists of
 - Registers
 - CPU cache
- Data to be used must be in a register
 - If it is not in a register
 - Request it from memory
- To request data from memory
 - First check the CPU cache
 A cycle is the time of a CPU operation
 - If it is in the cache (a cache *hit*) takes 2 ... 20 cycles
 - If it is not in the cache (a *miss*) takes approximately 200 cycles

Cache Lines

- Sections of the CPU cache are referred to as cache lines
 - The typical cache line size is 64 bytes
- When data is read from DRAM an entire block of data, the cache line, is copied into the cache
 - So if a 4 byte integer was to be read an entire 64 byte block is copied into the cache
 - This is fast as bandwidth is high
- Data remains in a cache until it is replaced
 - By the cache replacement algorithm
- Implication
 - Data related to a recent request may be copied to the cache if it was physically close to the requested data

CPU Data Cache Effects

- Consider two loops over an array
 - int* arr = new int[1024 * 1024];
- Loop 1: for(int i=0; i < n; i++) arr[i] *=3;</pre>
- Loop 2: for(int i=0; i < n; i+=16) arr[i] *=3;</pre>
- Loop 1 performs sixteen times as much work as loop 2
 - They are both O(n)
- Loop 1 does not take 16 times as long to process
 - Actual times vary but
 - Loop 1 and loop have the same number of RAM accesses
 - i.e. the same number of cache misses

Example: List Traversal

- Consider two different implementations of a list of integers
- Case 1: the list is stored in an array, αrr
 - Elements of αrr are contiguous to their neighbours
- Case 2: the list is stored in a linked list, ls
 - Elements of ls are fragmented they are physically separate from each other in main memory

List Traversal: Array

- Assume the following costs
 - 4 cycles to read from a cache line
 - 200 cycles to read from DRAM
- Time to read from the array
 - 16 elements are read into a cache line at a time
 - The total number of cycles for each 16 elements
 - 200 (read into cache) + 64 (read from cache) = 264
 - Approximately 16 cycles per element

List Traversal: Linked List

- The list is fragmented over main memory
 - List elements are not contiguous
 - The probability that related elements are read into the same cache line is small
 - Therefore every read takes 200 cycles
 - 12.5 times slower than the array
- In practice arrays may be even faster than lists
 - The OS may use a pre-fetching αlgorithm
 - Where it predicts which area of main memory will be read next and fetches it before it is requested

Cache Aware Algorithms

- Cache aware data structures and algorithms are designed to account for cache effects
 - Run time is improved by reducing the number of cache misses
 - We will look at two examples
 - Unrolled linked lists
 - B Trees
- The run-time of cache oblivious algorithms applies is unaffected by cache structure

Unrolled Linked Lists

Unrolled Linked List Introduction

- Linked lists are dynamic data structures
 - Adding a new element when the list is full is very fast
 - O(1)
 - In contrast to adding a new element to an array that is full
 - O(n)
- But traditional linked lists are cache oblivious
 - Since elements may be fragmented across main memory
 - Particularly when the list is constructed node by node over time
- Solution make a list of arrays

Unrolled Linked List

- List nodes contain
 A partially filled array of elements
 A pointer to the next node
 Each node has a size and capacity
 - The size is the current number of elements
 - The capacity is maximum number of elements

Traversing Unrolled Linked Lists

- To traverse an unrolled linked list
 - Traverse the linked list and at each node traverse the occupied part of the array
 - There are frequently cache misses visiting a new node
 - But few or zero cache misses for visiting each element of a single node's arrat
- Each array is at least half full
 - Maintained by the insertion and removal algorithms

A Comparison

- Assume the following
 - 5 cycles for a cache hit
 - 200 cycles for a cache miss
 - Traversal time in CPU instructions = 5n + 200 * cache misses
 - Item size is 4 bytes
- We will compare three structures
 - Array
 - Simple linked list
 - Unrolled linked list

Array

- The number of cache misses for an array is
 - 4*n* / 64 = *n* / 16
 - i.e. the number of times data has to be read into a cache line
 - Ignores the effects of pre-fetching
- Traversal time in CPU instructions
 - $5n + 200n / 16 \approx 17.5n$

Simple Linked List

- The number of cache misses for a simple linked list is the number of nodes
 - n
- Traversal time in CPU instructions
 - 5*n* + 200n = 205*n*

Unrolled Linked List

- The number of cache misses for an unrolled linked list is affected by two factors
 - Occupancy of the arrays, assume ½ full
 - Additional overhead per node, assume
 - 8 byte pointer
 - 4 byte size variable
 - 4 byte metadata
 - Cache misses = (2n/16) * ((4*16 + 16) / 64) = 5n / 32
- Traversal time in CPU instructions
 - 5n + 200n / 7 ≈ 34n

Summary

- Traversal time in CPU instructions
 - Array: 17.5n
 - Unrolled linked list 34n
 - Simple linked list 205n
 - All are O(n) with different leading constants
- All calculations are both approximate and simplistic and assume the worst case
 - But do indicate actual performance

Memory Hierarchy Revisited

B Trees

B Tree Introduction

- External indexes are optimized to minimize disk reads
 - Since reading disk from a hard disk is very slow
 - Many times slower than reading data from DRAM into a register
 - Known as B trees
 - They can be adapted to work with cache lines
- B trees have two desirable properties
 - They are multiple level indexes that maintain as many levels as are required for the file being indexed
 - Space on tree blocks is managed so that each block is at least ½ full

B Tree Structure

- B trees are balanced structures
 - All paths from the root to a leaf have the same length
 - Most B trees have a small number of levels
 - Any number of levels is possible
- B trees are similar to binary search trees
 - Except that B tree nodes have more than two children
 - That is, they have greater fαn-out
 - In an exterior structure a single B tree node maps to a single disk block
 - As a main memory structure nodes map to cache lines

B+ Tree Node Structure

- We will look at a variant of B trees called B+ trees
- The number of data entries in a node is determined by the size of the search key
 - Up to n search key values and n + 1 pointers
 - Choose n to be as large as possible while still allowing n search keys and n + 1 pointers to fit in a cache line
 - n is therefore determined by the size of
 - Search key values
 - Pointers
 - Cache lines

Interior Nodes

- In interior nodes, pointers point to next level nodes
 - Label the search keys K_1 to K_n , and pointers p_0 to p_n
 - Pointer p_0 points to nodes whose search key values are less than K_1
 - Other pointers, p_i , point to nodes with search keys greater than or equal to K_i and less than K_{i+1}
 - An interior node must use at least $\lceil (n+1)/2 \rceil$ pointers

Leaf Nodes

- Leaf nodes contain data or pointers to data
 - The leaf nodes contain the keys in order
 - The left most n pointers point to data objects
 - A leaf node must use at least $\lfloor (n + 1)/2 \rfloor$ of these pointers
 - i.e. contain at least $\lfloor (n + 1)/2 \rfloor$ key values
 - The right most pointer points to the next leaf

Example B+Tree

Searching a B+Tree

- The B+ tree search algorithm is similar to a binary search tree
 - To search for a value K start at the root and end at a leaf
 - If the node is a leaf and the ith key has the value K then follow the ith pointer to the data
 - If the node is an interior node follow the appropriate pointer to the next (interior or leaf) node
- Searching a B+ tree visits a number of nodes equal to the number of levels of the tree (height + 1)
 - Each node entails a cache miss

B+ Tree Searches

Range Searches

- B+ trees can be used to retrieve a range of values range queries
- Assume we wish to retrieve values from x to y
 - Search the tree for the leaf that should contain value x
 - Follow the leaf pointers until a key greater than y is found
 - The tree can also be used to satisfy queries that have no lower bound or no upper bound

B+ Tree Insertions 1

- Insert the value in the appropriate place in a leaf node of the index
 - Use the search algorithm to find the leaf node
 - Insert value, if it fits the process is complete
- If the target leaf node is full then split it into two nodes
 - The first $\lceil (n + 1) / 2 \rceil$ values stay in the original node
 - Create a new node to the right of the original node with the remaining $\lfloor (n + 1) / 2 \rfloor$ values
 - Insert the first search key value from the new leaf and a pointer to the leaf in its parent node

B+ Tree Insertions 2

- Adding a value to an interior node may cause it to split
 - If so, after inserting a new entry there will be n + 1 keys and n + 2 pointers
 - The first $\lceil (n+2) / 2 \rceil$ pointers stay in the original node
 - Create a new node with the remaining $\lfloor (n + 2) / 2 \rfloor$ pointers to the right of the original node
 - Leave the first $\lceil n \mid 2 \rceil$ keys in the original node and move the last $\lfloor n \mid 2 \rfloor$ keys to the new node
 - The remaining key 's value falls between the values in the original and new node
- This left over key is inserted into the parent of the node along with a pointer to the new interior node

B+Tree Insertions 3

- Moving a value to a higher, interior level of the tree, may again cause a split
 - The same process is repeated until no further splits are required, or until a new root node has been created
- If a new root is created it will initially have just one key and two children
 - So will be less than half full
 - This is permitted for the root (only)

B+ Tree Insertion Example

insert 2, 21 and 11

n = 3

the values are maintained in order in the index pages

Note that leaf nodes may just contain values, rather than pointers to values – it depends on what is being stored in the tree

So a leaf might have this structure (only values):

2 11 21

create new root with the first value of the new leaf node

2 8

11 21

create a new node with the last ½ of the values

chain the new node to the

original node

... inserting 23 ...

n = 3

the same tree ...

n = 3

insert 7

n = 3

B+Tree Removals

- Find the value in the leaf node and delete it
 - This may result in there being too few entries in the node
 - If so select an adjacent sibling of the node and
- Redistribute values between the two nodes
 - So that both nodes have enough entries
 - If this is not possible
- Coalesce the two nodes
 - Delete the appropriate value and pointer in the parent node

Redistributing Values

- A value and pointer are removed from an adjacent sibling and inserted in the node with insufficient entries
 - The sibling can be the left or the right sibling, although it makes a slight difference to the process
 - The chosen node *must be α sibling* to ensure that only a single parent node is affected
- After redistribution, one of the two nodes will have a different first search key value
 - The corresponding value in the parent node must be changed to this value
- If the node's sibling(s) have insufficient entries redistribution may not be possible

Coalescing Nodes

- When redistribution is not possible, two nodes can be combined (aka coalesced)
 - Keep track of the value in the parent between the pointers to the two nodes to be combined
 - Insert all of the values (and pointers) from one node into the other
 - Re-connect links between leaves (if the nodes are leaves)
- Make a recursive call to the removal process, removing the identified value in the parent node
 - This, in turn, may require non-leaf nodes to be coalesced

B+ Tree Removals Notes

- The removal algorithm requires a choice to be made between siblings
 - Such a choice has to be implemented in the algorithm
- Coalescing nodes requires more work
 - It may result in making changes up the tree, but
 - The tree height may be reduced
- Redistributing nodes requires less work, but does not impact the height of the tree

B+ Tree Efficiency

- Splitting and merging of index blocks is rare
 - Typically the value of n will be greater than 3!
 - Most splits or merges are limited to two leaves and one parent
- The number of cache misses is based on the tree height
 - If capacity = 16, a B+ tree would contain approximately one billion values
 - Assuming nodes are half full
 - The number of cache misses is equal to
 - log_{capacity/2} (number of value in tree)