Contingency Table and Correlations

Bolun

12/1/2020

Warming up and Reviewing

- ► The basic logic of hypothesis test.
- What can you say based on a hypothesis test.
- Some reflection on the p-values.
- From a single variable to the relations between different variables.

The Idea of Correlation

Correlation is one of the most common relations between two variables. It is **any** statistical relationship between two random variables.

It is a statistical relationship. Thus, it is conceptually different from causality. Usually, social science research would like to step into the realm of causality. In quantitative research, we see a robust sub-field focusing on causal inference. But still, causality identification is more about research design.

Group Discussion

- People usually claim that correlation is different from causality. How do you understand it? Could you give an example that confuses correlation and causality?
- In your current knowledge, how would you address such a confusion?

Contingency table

- Contingency table is a tool to represent and examine relations between two categorical variables.
- ▶ In terms of format, it is no different from the table we studied previously in the previous sections.
- An example:

sex	demo	indep	repub	total
Females	573	516	422	1511
Males	386	475	399	1260
Total	959	991	821	2772

Usually, the columns should be the dependent variable you suggest.

Conditional distributions

We can in term calculate the row percentage, which is called conditional distribution.

sex	demo	indep	repub	total
Females	38%	34%	28%	100%
Males	31%	38%	32%	101%

▶ If the two variables are independent from each other, we should see similar row percentage in each columns.

But how to test it statistically?

- We guessed that there is a relationship between the gender and party identification.
- ▶ But to what extent we are sure about it?
- Statisticians found Chi-square statistics for us.

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

- \triangleright O_i is the observed value and E_i is the expected value.
- review: how do you calculate the expected value of each cell?

Chi-square test

- ▶ The Chi-square statistics follows a chi-square distribution with a degree of freedom $(number\ of\ rows-1)(number\ of\ columns-1)$
- ▶ We won't simulate this, instead, we use functions to calculate the critical area.

Group Activity

- Find two categorical variables in GSS.
- ▶ Produce a contingency table/cross-tabulation.
- Calculate the Chi-square and test it with probable degree of freedom

Direction of the Correlation

► For 2*2 table, for example, two independent events, we can know the direction of the correlation using the odds ratio

Review

- Now we get to know whether there is a correlation between two variables.
- What we still do not know: the direction and the intensity of such correlation.
- OLS regression, and regression in general would help us to approach it.