Unit - 2 & 3 Regular Languages and Finite Automata Lexical Analysis

Topics to be covered

- Interaction of scanner & parser
- Token, Pattern & Lexemes
- Input buffering
- Specification of tokens
- Regular expression & Regular definition
- Transition diagram
- Hard coding & automatic generation lexical analyzers
- Finite automata
- Regular expression to NFA using Thompson's rule
- Conversion from NFA to DFA using subset construction method
- DFA optimization
- Conversion from regular expression to DFA
- An Elementary Scanner Design & It's Implementation

Interaction with Scanner & Parser

Interaction of scanner & parser

- ▶ Upon receiving a "Get next token" command from parser, the lexical analyzer reads the input character until it can identify the next token.
- Lexical analyzer also stripping out comments and white space in the form of blanks, tabs, and newline characters from the source program.

Why to separate lexical analysis & parsing?

- 1. Simplicity in design.
- 2. Improves compiler efficiency.
- 3. Enhance compiler portability.

Token, Pattern & Lexemes

Token, Pattern & Lexemes

Token

A **token** is a pair consisting of a token name and an optional attribute value.

The token name is an abstract symbol representing a kind of lexical unit

Categories of Tokens:

- 1. Identifier
- 2. Keyword
- 3. Operator
- 4. Special symbol
- 5. Constant

Pattern

A **pattern** is a description of the form that the lexemes of a token may take.

Example: "non-empty sequence of digits", "letter followed by letters and digits"

Lexemes

The sequence of character in a source program matched with a pattern for a token is called lexeme.

Example: Rate, DIET, count, Flag

Example: Token, Pattern & Lexemes

Example: total = sum + 45

Lexemes

Lexemes of identifier: total, sum

Lexemes of operator: =, +

Lexemes of constant: 45

Example: Token, Pattern & Lexemes

TOKEN	Informal Description	SAMPLE LEXEMES
if	characters i, f	if
${f else}$	characters e, 1, s, e	else
comparison	<pre>< or > or <= or >= or !=</pre>	<=, !=
id	letter followed by letters and digits	pi, score, D2
${f number}$	any numeric constant	3.14159, 0, 6.02e23
literal	anything but ", surrounded by "'s	"core dumped"

Input buffering

Input buffering

- ▶ There are mainly two techniques for input buffering:
 - 1. Buffer pairs
 - 2. Sentinels

Buffer Pair

- ▶ The lexical analysis scans the input string from left to right one character at a time.
- ▶ Each buffer is of the same size N, and N is usually the size of a disk block, e.g., 4096 bytes.
- ▶ Using one system read command we can read N characters inio a buffer, rather than using one system call per character. If fewer than N characters remain in the input file, then a special character, represented by eof, marks the end of the source file.

Buffer pairs

- ▶ Two pointers to the input are maintained:
 - → Pointer lexemeBegin, marks the beginning of the current lexeme, whose extent we are attempting to determine.
 - → **Pointer forward** scans ahead until a pattern match is found

Sentinels

- In buffer pairs we must check, each time we move the forward pointer that we have not moved off one of the buffers.
- ▶ Thus, for each character read, we make two tests.
- We can combine the buffer-end test with the test for the current character.
- ▶ We can reduce the two tests to one if we extend each buffer to hold a sentinel character at the end.
- ▶ The sentinel is a special character that cannot be part of the source program, and a natural choice is the character **EOF**.

Specification of tokens

Strings and Languages

- Regular expressions are an important notation for specifying lexeme patterns.
- An **alphabet** is any finite set of symbols.
- Typical examples of symbols are letters, digits, and punctuation. The set {0,1) is the binary alphabet
- A **string** over an alphabet is a finite sequence of symbols drawn from that alphabet.
- ▶ The length of a string s, usually written Isl, is the number of occurrences of symbols in s.
- ▶ For example, banana is a string of length six.
- The empty string, denoted ∈, is the string of length zero.
- A language is any countable set of strings over some fixed alphabet.
- ▶ Abstract languages like \emptyset , the empty set, or $\{\in\}$, the set containing only the empty string, are languages under this definition.

Strings and languages

Term	Definition	
Prefix of s	A string obtained by removing zero or more trailing symbol of string S.	
	e.g., ban is prefix of banana.	
Suffix of S	A string obtained by removing zero or more leading symbol of string S.	
	e.g., nana is suffix of banana.	
Sub string of S	A string obtained by removing prefix and suffix from S. e.g., nan is substring of banana	
Proper prefix, suffix and substring of S	Any nonempty string x that is respectively proper prefix, suffix or substring of S, such that s≠x.	
Subsequence of S	A string obtained by removing zero or more not necessarily contiguous symbol from S.	
	e.g., baaa is subsequence of banana.	

Operations on languages

Operation	Definition	
Union of L and M Written L U M	$LUM = \{s \mid s \text{ is in } L \text{ or } s \text{ is in } M \}$	
Concatenation of L and M Written LM	$LM = \{ st \mid s \text{ is in } L \text{ and } t \text{ is in } M \}$	
Kleene closure of L Written L*	L^{st} denotes "zero or more concatenation of" L .	
Positive closure of L Written L ⁺	L^{+} denotes "one or more concatenation of" L .	

Regular Expression & Regular Definition

Regular expression

A regular expression is a sequence of characters that define a pattern.

Notational shorthand's

- 1. One or more instances: +
- 2. Zero or more instances: *
- 3. Zero or one instances: ?
- 4. Alphabets: Σ

Rules to define regular expression

- 1. \in is a regular expression that denotes $\{\in\}$, the set containing empty string.
- 2. If a is a symbol in Σ then a is a regular expression, $L(a) = \{a\}$
- 3. Suppose rand sare regular expression denoting the languages L(r) and L(s). Then,
 - a. (r)|(s) is a regular expression denoting L(r) U L(s)
 - **b.** (r)(s) is a regular expression denoting L(r)L(s)
 - c. (r)* is a regular expression denoting $(L(r))^*$
 - d. (r) is a regular expression denoting L((r))

The language denoted by regular expression is said to be a regular set.

Regular expression

▶ L = Zero or More Occurrences of a = a*

Regular expression

L = One or More Occurrences of a = a⁺

Precedence and associativity of operators

Operator	Precedence	Associative
Kleene *	1	left
Concatenation	2	left
Union	3	left

```
1. 0 or 1 Strings: 0, 1 R. E = 0 \mid 1
```

2. 0 or 11 or 111

Strings: 0, 11, 111

R. E. = 0 | 11 | 111

String having zero or more a.
 Strings: ε, a, aa, aaa, aaaa
 R. E. = a *

String having one or more a.
 Strings: a, aa, aaa, aaaa
 R. E. = a +

5. Regular expression over $\Sigma = \{a, b, c\}$ that represent all string of length 3.

Strings: abc, bca, bbb, cab, aba R. E = (a|b|c) (a|b|c) (a|b|c)

6. All binary string

Strings: 0, 11, 101, 10101, 11111 ... R. E. = (0 | 1)+

7. 0 or more occurrence of either a or b or both

```
Strings: \epsilon, a, aa, abab, bab ... R. E. = (a \mid b) *
```

8. 1 or more occurrence of either a or b or both

```
Strings: a, aa, abab, bab, bbbaaa ... R. E. = (a \mid b)^{+}
```

9. Binary no. ends with 0

```
Strings: 0, 10, 100, 1010, 11110 ... R. E. = (0 \mid 1)*0
```

10. Binary no. ends with 1

Strings: 1, 101, 1001, 10101, ...
$$R.E. = (0 \mid 1) * 1$$

11. Binary no. starts and ends with 1

```
Strings: 11, 101, 1001, 10101, ... R. E. = 1 (0 | 1) * 1
```

12. String starts and ends with same character

Strings: 00, 101, aba, baab ...
$$R. E. = 1 (0 | 1) * 1 | 0 (0 | 1) * 0$$

 $a (a | b) * a | b (a | b) * b$

13. All string of a and b starting with a

```
Strings: a, ab, aab, abb...
R. E. = a(a \mid b)^*
```

- 14. String of 0 and 1 ends with 00 *Strings*: 00, 100, 000, 1000, 1100... *R. E.* = (0 | 1) * 00
- 15. String ends with abb Strings: abb, babb, ababb... $R. E. = (a \mid b) * abb$
- 16. String starts with 1 and ends with 0 Strings: 10, 100, 110, 1000, 1100... R. E. = 1(0 | 1) * 0
- 17. All binary string with at least 3 characters and 3^{rd} character should be zero Strings: 000, 100, 1100, 1001... R. E. = (0|1)(0|1)0(0|1) *
- 18. Language which consist of exactly two b's over the set $\Sigma = \{a, b\}$ Strings: bb, bab, aabb, abba...

 R. E. = $a^*b a^*b a^*$

19. The language with $\Sigma = \{a, b\}$ such that 3rd character from right end of the string is always a.

```
Strings: aaa, aba, aaba, abb... R. E. = (a | b) * a(a|b)(a|b)
```

- 20. Any no. of a followed by any no. of b followed by any no. of c $Strings: \epsilon, abc, aabbcc, aabc, abb...$ $R. E. = a^*b^*c^*$
- 21. String should contain at least three 1

```
Strings: 111, 01101, 0101110.... R. E. = (0|1)^*1 (0|1)^*1 (0|1)^*1 (0|1)^*
```

22. String should contain exactly two 1

```
Strings: 11, 0101, 1100, 010010, 100100.... R. E. = 0*10*10*
```

23. Length of string should be at least 1 and at most 3

```
Strings: 0, 1, 11, 01, 111, 010, 100.... R.E. = (0|1) | (0|1)(0|1) | (0|1)(0|1)
```

24. No. of zero should be multiple of 3

```
Strings: 000, 010101, 110100, 000000, 100010010.... R.E. = (1*01*01*01*)*
```

```
25. The language with \Sigma = \{a, b, c\} where a should be multiple of 3
    Strings: aaa, baaa, bacaba, aaaaaaa. R. E = ((b|c)^*a(b|c)^*a(b|c)^*a(b|c)^*)^*
26. Even no. of 0
                                           R. E. = (1^*01^*01^*)^*
    Strings: 00, 0101, 0000, 100100....
27. String should have odd length
    Strings: 0, 010, 110, 000, 10010....
                                           R. E. = (0|1) ((0|1)(0|1))^*
28. String should have even length
                                           R. E. = ((0|1)(0|1))^*
    Strings: 00, 0101, 0000, 100100....
29. String start with 0 and has odd length
                                           R. E. = (0) ((0|1)(0|1))^*
    Strings: 0, 010, 010, 000, 00010....
30. String start with 1 and has even length
    Strings: 10, 1100, 1000, 100100....
                                           R. E. = 1(0|1)((0|1)(0|1))^*
31. All string begins or ends with 00 or 11
```

Strings: 00101, 10100, 110, 01011 ... R.E. = (00|11)(0|1) * |(0|1) * (00|11)

32. Language of all string containing both 11 and 00 as substring

```
Strings: 0011, 1100, 100110, 010011 ... R.E. = ((0|1)*00(0|1)*11(0|1)*) | ((0|1)*11(0|1)*00(0|1)*)
```

33. String ending with 1 and not contain 00

Strings: 011, 1101, 1011
$$R. E. = (1|01)^{+}$$

34. Language of identifier

Strings: area, i, redious, grade1
$$R. E. = (+L)(+L+D)^*$$

where L is Letter & D is digit

Regular definition

- A regular definition gives names to certain regular expressions and uses those names in other regular expressions.
- ▶ Regular definition is a sequence of definitions of the form:

```
d_1 \rightarrow r_1
d_2 \rightarrow r_2
.....
d_n \rightarrow rn
```

Where d_i is a **distinct name** & r_i is a **regular expression**.

Example: Regular definition for identifier

```
letter \rightarrow A|B|C|.....|Z|a|b|.....|z
digit \rightarrow 0|1|.....|9|
id \rightarrow letter (letter | digit)*
```

Regular definition example

```
Example: Unsigned Pascal numbers
         3
         5280
        39.37
        6.336E4
         1.894E-4
        2.56E+7
 Regular Definition
        digit \rightarrow 0|1|....|9
        digits → digit digit*
        optional_fraction \rightarrow .digits | \epsilon
        optional_exponent \rightarrow (E(+|-|\epsilon)digits)|\epsilon
        num → digits optional_fraction optional_exponent
```

Transition Diagram

Transition Diagram

▶ A stylized flowchart is called transition diagram.

Transition Diagram: Relational operator

Transition diagram: Unsigned number

5280

39.37

1.894 **E** - 4

2.56 **E +** 7

45 **E** + 6

96 E 2

Finite Automata

Finite Automata

- Finite Automata are recognizers.
 - → FA simply say "Yes" or "No" about each possible input string.
- ▶ Finite Automata is a mathematical model consist of:
 - 1. Set of states S
 - 2. Set of input symbol Σ
 - 3. A transition function **move**
 - 4. Initial state S_0
 - 5. Final states or accepting states F

Finite Automata

- ▶ A finite automaton, or finite state machine is a 5-tuple $(Q, \Sigma, q_0, A, \delta)$ where
 - \rightarrow Q is finite set of states;
 - \rightarrow Σ is finite alphabet of *input symbols*;
 - \rightarrow $q_0 \in Q$ (initial state);
 - \rightarrow $A \subseteq Q$ (the set of accepting states);
 - \rightarrow δ is a function from $Q \times \Sigma$ to Q (the transition function).
- For any element q of Q and any symbol $a \in \Sigma$, we interpret $\delta(q, a)$ as the state to which the FA moves, if it is in state q and receives the input a.

Types of finite automata

▶ Types of finite automata are:

DFA

▶ Deterministic finite automata (DFA): have for each state exactly one edge leaving out for each symbol.

NFA

Nondeterministic finite automata (NFA): There are no restrictions on the edges leaving a state. There can be several with the same symbol as label and some edges can be labeled with ϵ .

Example: Finite Automata

$$M = (Q, \Sigma, q_0, A, \delta)$$

$$\rightarrow$$
 $Q = \{q_0, q_1, q_2\}$

$$\rightarrow$$
 $\Sigma = \{0,1\}$

$$\rightarrow$$
 $q_0 = q_0$

$$\rightarrow$$
 $A = \{q_2\}$

 \rightarrow δ is defined as

δ	In	out
State	0	1
q_0	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_0

Applications of FA

- Lexical analysis phase of a compiler.
- Design of digital circuit.
- ▶ String matching.
- ▶ Communication Protocol for information exchange.

▶ The string with next to last symbol as 0.

▶ The strings ending with 10.

▶ The string with number of 0's and number of 1's are odd

▶ The string ending in 10 or 11

▶ The string corresponding to Regular expression {00}*{11}*

▶ (a+b)*baaa

Extended Transition Function δ^* for FA

Let $M=(Q,\Sigma,q_0,A,\delta)$ be an Finite Automata. We define the function $\delta^*\colon Q\times\Sigma^*\to Q$

as follows:

- 1. For any $q \in Q$, $\delta^*(q, \Lambda) = q$
- 2. For any $q \in Q$, $y \in \Sigma^*$, and $a \in \Sigma$,

$$\delta^*(q,ya) = \delta(\delta^*(q,y),a)$$

δ^* Example

Consider FA

• Calculate $\delta^*(q, abc)$

$$\delta^{*}(q, abc) = \delta(\delta^{*}(q, ab), c)$$

$$= \delta(\delta(\delta^{*}(q, a), b), c)$$

$$= \delta(\delta(\delta^{*}(q, \Lambda a), b), c)$$

$$= \delta(\delta(\delta(\delta^{*}(q, \Lambda), a), b), c)$$

$$= \delta(\delta(\delta(q, a), b), c)$$

$$= \delta(\delta(q_{1}, b), c)$$

$$= \delta(q_{2}, c)$$

$$= q_{3}$$

$\delta^*(q, \wedge)$	= q
$\delta^*(q,ya)$	$=\delta(\delta^*(q,y),a)$

Exercise

Consider following FA

1. calculate $\delta^*(q, XY)$

$\delta^*(q, \wedge)$	= q
$\delta^*(q,ya)$	$=\delta(\delta^*(q,y),a)$

Acceptance by FA

Let $M=(Q,\Sigma,q_0,A,\delta)$ be an FA. A string $x\in\Sigma^*$ is accepted by M if $\delta^*(q_0,x)\in A$. If string is not accepted, we can say it is rejected by M. The language accepted by M, or the language recognized by M, is the set

$$L(M) = \{x \in \Sigma^* | x \text{ is accepted by } M\}$$

If L is any language over Σ , L is accepted or recognized by M if and only if L = L(M).

Union, Intersection & Complement of Languages

Suppose $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ and $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$ accepts languages L_1 and L_2 , respectively. Let M be an FA defined by $M = (Q, \Sigma, q_0, A, \delta)$, where

$$Q = Q_1 \times Q_2$$
$$q_0 = (q_1, q_2)$$

and the transition function δ is defined by the formula

$$\delta((p,q),a) = (\delta_1(p,a),\delta_2(q,a))$$

for any $p \in Q_1$ and $q \in Q_2$ and $a \in \Sigma$ then

- 1. if $A = \{(p, q) \mid p \in A_1 \text{ or } q \in A_2\}$, M accepts the language $L_1 \cup L_2$;
- 2. if $A = \{(p,q) \mid p \in A_1 \text{ and } q \in A_2\}$, M accepts the language $L_1 \cap L_2$;
- 3. if $A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}$, M accepts the language $L_1 L_2$;

Example

Draw Finite Automata for following languages:

- 1. L1= $\{x/x \ 00 \text{ is not substring of } x, x \in \{0,1\}^*\}$
- 2. L2= $\{x/x \text{ ends with } 01, x \in \{0,1\}^*\}$

Draw FA for $L_1 \cup L_2$, $L_1 \cap L_2$ and $L_1 - L_2$

Computation for $L_1 \cup L_2$, $L_1 \cap L_2$ and $L_1 - L_2$

- ▶ Here $Q_1 = \{A, B, C\}$ and $Q_2 = \{P, Q, R\}$
- So, $Q = Q_1 \times Q_2 = \{AP, AQ, AR, BP, BQ, BR, CP, CQ, CR\}$
- $q_0 = (q_1, q_2) = (A, P)$
- **ightharpoonup** Computing Transition Function δ

$$\delta((A, P), 0) = (\delta(A, 0), \delta(P, 0))$$

$$= BQ$$

$$\delta((A, P), 1) = (\delta(A, 1), \delta(P, 1))$$

$$= AP$$

Computation for $L_1 \cup L_2$, $L_1 \cap L_2$ and $L_1 - L_2$

$$\delta((B,Q),0) = (\delta(B,0),\delta(Q,0))$$

$$= CQ$$

$$\delta((B,Q),1) = (\delta(B,1),\delta(Q,1))$$

$$= AR$$

$$\delta((C,Q),0) = (\delta(C,0),\delta(Q,0))$$

$$= CQ$$

$$\delta((C,Q),1) = (\delta(C,1),\delta(Q,1))$$

$$= CR$$

$$\delta((A,R),0) = (\delta(A,0),\delta(R,0))$$

$$= BQ$$

$$\delta((A,R),1) = (\delta(A,1),\delta(R,1))$$

$$= AP$$

$$M_1$$

Computation for $L_1 \cup L_2$, $L_1 \cap L_2$ and $L_1 - L_2$

$$\delta((C,R),0) = (\delta(C,0),\delta(R,0))$$

$$= CQ$$

$$\delta((C,R),1) = (\delta(C,1),\delta(R,1))$$

$$= CP$$

$$\delta((C,P),0) = (\delta(C,0),\delta(P,0))$$

$$= CQ$$

$$\delta((C,P),1) = (\delta(C,1),\delta(P,1))$$

$$= CP$$

Removing Unconnected States

$$L_1 \cup L_2$$

$$A_1 = \{A, B\}$$
$$A_2 = \{R\}$$

As per theorem stated earlier, the states which consists A or B or R will be Accepting states in the resultant FA.

Accepting States $A = \{AP, AR, BQ, CR\}$

$$L_1 \cap L_2$$

$$A_1 = \{A, B\}$$
$$A_2 = \{R\}$$

Therefore, as per theorem stated earlier, the states which consists (A and R) and (B and R) will be Accepting states in the resultant FA.

Accepting States $A = \{AR\}$

$$L_1 - L_2$$

$$A_1 = \{A, B\}$$
$$A_2 = \{R\}$$

Therefore, as per theorem stated earlier, the states which consists A or B but should not contain R with them will be Accepting states in the resultant FA.

Accepting States $A = \{AP, BQ\}$

Exercise

Draw Finite Automata for following languages:

- 1. L1= $\{x/x \ 11 \ \text{is not substring of } x, x \in \{0,1\}^*\}$
- 2. L2= $\{x/x \text{ ends with } 10, x \in \{0,1\}^*\}$

Draw FA for $L_1 \cup L_2$, $L_1 \cap L_2$ and $L_1 - L_2$.

Nondeterministic Finite Automata (NFA)

▶ A nondeterministic finite automaton is a 5-tuple $M = (Q, \Sigma, q_0, A, \delta)$ where Q and Σ are nonempty finite sets, $q_0 \in Q$, $A \subseteq Q$ and

$$\delta: Q \times \Sigma \to 2^Q$$

Q is the set of states, Σ is the alphabet, q_0 is the initial state and A is the set of accepting states.

Example of NFA for $\{11,110\}^*\{0\}$

$$M = (Q, \Sigma, q_0, A, \delta)$$

- \rightarrow $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- \rightarrow $\Sigma = \{0,1\}$
- \rightarrow $q_0 = q_0$
- \rightarrow $A = \{q_4\}$
- \rightarrow δ is defined as

δ	Inp	out
State	0	1
q_0	$\{q_4\}$	$\{q_1,q_2\}$
q_1	Ø	$\{q_0\}$
q_2	Ø	{q ₃ }
q_3	$\{q_{0}\}$	Ø
q_4	Ø	Ø

Nonrecursive Definition of δ^* for NFA

For an NFA $M=(Q,\Sigma,q_0,A,\delta)$, and any $p\in Q,\delta^*(p,\Lambda)=\{p\}$. For any $p\in Q$ and any $x=a_1a_2\dots a_n\in \Sigma^*$ (with $n\geq 1$), $\delta^*(p,x)$ is the set of all states q for which there is a sequence of states $p=p_0,p_1,\dots,p_{n-1},p_n=q$ satisfying $p_i\in \delta(p_{i-1},a_i)$ for each i with $1\leq i\leq n$

Recursive Definition of δ^* for NFA

- ▶ Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA. The function $\delta^*: Q \times \Sigma^* \to 2^Q$ is defined as follows.
 - 1. For any $q \in Q$, $\delta^*(q, \Lambda) = \{q\}$.
 - 2. For any $q \in Q$, $y \in \Sigma^*$, and $a \in \Sigma$,

$$\delta^*(q,ya) = \mathcal{L} \quad \delta(r,a)$$

$$r \in \delta^*(q,y)$$

Acceptance by NFA

Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA. The string $x \in \Sigma *$ is accepted by M if $\delta * (q_0, x) \cap A \neq \emptyset$. The language recognized, or accepted, by M is the set L(M) of all string accepted by M. For any language $L \subseteq \Sigma *$, L is recognized by M if L = L(M).

$$M = (Q, \Sigma, q_0, A, \delta)$$

$$\rightarrow$$
 $Q = \{q_0, q_1, q_2, q_3\}$

$$\rightarrow$$
 $\Sigma = \{0,1\}$

$$\rightarrow$$
 $q_0 = q_0$

$$\rightarrow$$
 $A = \{q_3\}$

 \rightarrow δ is defined as

δ	Input	
State	0	1
q_0	$\{q_o\}$	$\{q_0, q_1\}$
q_1	$\{q_2\}$	$\{q_2\}$
q_2	$\{q_3\}$	$\{q_3\}$
q_3	Ø	Ø

$$\delta^*(q_0, 0) = \mathcal{L} \quad \delta(r, 0)$$

$$r \in \delta^*(q_0, \Lambda)$$

$$= \mathcal{E}(r, 0)$$

$$r \in \{q_0\}$$

$$= \delta(q_0, 0)$$

$$= \{q_0\}$$

$\delta^*(q, \wedge)$	= q
$\delta^*(q,ya)$	$=$ $\delta(r,a)$
	$r \in \delta^*(q,y)$

$$\delta^*(q_0, 1) = \mathcal{L} \quad \delta(r, 1)$$

$$r \in \delta^*(q_0, \Lambda)$$

$$= \delta(r, 1)$$

$$r \in \{q_0\}$$

$$= \delta(q_0, 1)$$

$$= \{q_0, q_1\}$$

$\delta^*(q, \wedge)$	= q
$\delta^*(q,ya)$	$=$ \mathcal{L} $\delta(r,a)$
	$r \in \delta^*(q,y)$

$$\delta^{*}(q_{0}, 11) = \mathcal{L} \quad \delta(r, 1)$$

$$r \in \delta^{*}(q_{0}, 1)$$

$$= \mathcal{L} \quad \delta(r, 1)$$

$$r \in \{q_{0}, q_{1}\}$$

$$= \delta(q_{0}, 1) \cup \delta(q_{1}, 1)$$

$$= \{q_{0}, q_{1}\} \cup \{q_{2}\}$$

$$= \{q_{0}, q_{1}, q_{2}\}$$

$\delta^*(q, \wedge)$	= q
$\delta^*(q,ya)$	$=$ \mathcal{L} $\delta(r,a)$ $r \in \delta^*(q,y)$

$$\delta^*(q_0, 01) = \mathcal{L} \quad \delta(r, 1)$$

$$r \in \delta^*(q_0, 0)$$

$$= \mathcal{S}(r, 1)$$

$$r \in \{q_0\}$$

$$= \delta(q_0, 1)$$

$$= \{q_0, q_1\}$$

$\delta^*(q, \wedge)$	= q
$\delta^*(q,ya)$	$=$ $\delta(r,a)$
	$r \in \delta^*(q,y)$

$$\delta^{*}(q_{0}, 111) = \mathcal{L} \quad \delta(r, 1)$$

$$r \in \delta^{*}(q_{0}, 11)$$

$$= \mathcal{L} \quad \delta(r, 1)$$

$$r \in \{q_{0}, q_{1}, q_{2}\}\}$$

$$= \delta(q_{0}, 1) \cup \delta(q_{1}, 1) \cup \delta(q_{2}, 1)$$

$$= \{q_{0}, q_{1}, q_{2}, q_{3}\}$$

$$\delta^{*}(q_{0}, 011) = \mathcal{L} \quad \delta(r, 1)$$

$$r \in \delta^{*}(q_{0}, 01)$$

$$= \delta(q_{0}, 1) \cup \delta(q_{1}, 1)$$

$$= \{q_{0}, q_{1}, q_{2}\}$$

$\delta^*(q, \wedge)$	= q
$\delta^*(q,ya)$	$=$ $\delta(r,a)$
	$r \in \delta^*(q,y)$

1. For \in , construct the NFA

2. For a in Σ , construct the NFA

3. For regular expression st

Ex: ab

4. For regular expression s|t

5. For regular expression s^*

a*b

▶ b*ab

Exercise

Convert following regular expression to NFA:

- 1. abba
- 2. bb(a)*
- 3. (a|b)*
- 4. a* | b*
- 5. a(a)*ab
- 6. aa*+ bb*
- 7. (a+b)*abb
- 8. 10(0+1)*1
- 9. (a+b)*a(a+b)
- 10. (0+1)*010(0+1)*
- 11. (010+00)*(10)*
- **12**. 100(1)*00(0+1)*

Conversion from NFA to DFA using subset construction method

Subset construction algorithm

Input: An NFA N.

Output: A DFA D accepting the same language.

Method: Algorithm construct a transition table Dtran for D. We use the following operation:

OPERATION	DESCRIPTION
$\in -closure(s)$	Set of NFA states reachable from NFA state s on \in – transition alone.
$\in -closure(T)$	Set of NFA states reachable from some NFA state s in T on \in – transition alone.
M ove (T, a)	Set of NFA states to which there is a transition on input symbol α from some NFA state s in T .

Subset construction algorithm

```
initially \in -closure(s_0) be the only state in Dstates and it is unmarked;
while there is unmarked states T in Dstates do begin
        mark T;
              for each input symbol a do begin
                     U = \epsilon - closure(move(T, a));
                      if U is not in Dstates then
                             add U as unmarked state to Dstates;
                      Dtran[T,a] = U
              end
       end
```

(a|b)*abb

$$\epsilon$$
- Closure(0)=
= {0,1,2,4,7} ---- A

States	a	b
A = {0,1,2,4,7}		
B = {1,2,3,4,6,7,8}		

Move(A,a) =
$$\{3,8\}$$

States	а	b
A = {0,1,2,4,7}	В	
B = {1,2,3,4,6,7,8}		
C = {1,2,4,5,6,7}		

Move(A,b) =
$$\epsilon$$
- Closure(Move(A,b)) = = {1,2,4,5,6,7} ---- **C**

States	a	b
A = {0,1,2,4,7}	В	С
B = {1,2,3,4,6,7,8}		
C = {1,2,4,5,6,7}		

$$B = \{1, 2, 3, 4, 6, 7, 8\}$$

Move(B,a) =
$$\{3,8\}$$

$$\epsilon$$
- Closure(Move(B,a))

States	a	b
A = {0,1,2,4,7}	В	С
B = {1,2,3,4,6,7,8}	В	
C = {1,2,4,5,6,7}		
D = {1,2,4,5,6,7,9}		

B= {1, 2, 3,
$$4$$
, 6, 7, 8 }
Move(B,b) = {5,9}
 ϵ - Closure(Move(B,b))
= {1,2,4,5,6,7,9} ---- **D**

States	а	b
A = {0,1,2,4,7}	В	С
B = {1,2,3,4,6,7,8}	В	D
C = {1,2,4,5,6,7}		
D = {1,2,4,5,6,7,9}		

C=
$$\{1, 2, 4, 5, 6, 7\}$$

Move(C,a) = $\{3,8\}$
 ϵ - Closure(Move(C,a))
= $\{1,2,3,4,6,7,8\}$ ---- B

States	а	b
A = {0,1,2,4,7}	В	С
B = {1,2,3,4,6,7,8}	В	D
C = {1,2,4,5,6,7}	В	
D = {1,2,4,5,6,7,9}		

$$\epsilon$$
- Closure(Move(C,b))=

States	а	b
A = {0,1,2,4,7}	В	С
B = {1,2,3,4,6,7,8}	В	D
C = {1,2,4,5,6,7}	В	С
D = {1,2,4,5,6,7,9}		

D=
$$\{1, 2, 4, 5, 6, 7, 9\}$$

Move(D,a) = $\{3,8\}$
 ϵ - Closure(Move(D,a))
= $\{1,2,3,4,6,7,8\}$ ---- B

States	а	b
A = {0,1,2,4,7}	В	С
B = {1,2,3,4,6,7,8}	В	D
C = {1,2,4,5,6,7}	В	С
D = {1,2,4,5,6,7,9}	В	
E = {1,2,4,5,6,7,10}		

D= {1, 2, <u>4</u> , 5, 6, 7, <u>9</u> }		
$Move(D,b) = \{5,10\}$		
ϵ - Closure(Move(D,b))	,	
	= {1,2,4,5,6,7,10}	-

States	a	b
A = {0,1,2,4,7}	В	С
B = {1,2,3,4,6,7,8}	В	D
C = {1,2,4,5,6,7}	В	С
D = {1,2,4,5,6,7,9}	В	E
E = {1,2,4,5,6,7,10}		

Move(E,a) =
$$\{3,8\}$$

$$\epsilon$$
- Closure(Move(E,a))

=
$$\{1,2,3,4,6,7,8\}$$
 ---- **B**

States	a	b
A = {0,1,2,4,7}	В	С
B = {1,2,3,4,6,7,8}	В	D
C = {1,2,4,5,6,7}	В	С
D = {1,2,4,5,6,7,9}	В	E
E = {1,2,4,5,6,7,10}	В	

Move(E,b)=
$$\epsilon$$
- Closure(Move(E,b))=
$$= \{1,2,4,5,6,7\} \quad ---- \quad \mathbf{C}$$

States	a	b
A = {0,1,2,4,7}	В	С
B = {1,2,3,4,6,7,8}	В	D
C = {1,2,4,5,6,7}	В	С
D = {1,2,4,5,6,7,9}	В	E
E = {1,2,4,5,6,7,10}	В	С

Transition Table

Note:

- Accepting state in NFA is 10
- 10 is element of E
- So, E is acceptance state in DFA

Exercise

- ▶ Convert following regular expression to DFA using subset construction method:
 - 1. (a+b)*a(a+b)
 - 2. (a+b)*ab*a

- 1. Construct an initial partition Π of the set of states with two groups: the accepting states F and the non-accepting states S-F.
- 2. Apply the repartition procedure to Π to construct a new partition Πnew .
- 3. If $\Pi new = \Pi$, let $\Pi final = \Pi$ and continue with step (4). Otherwise, repeat step (2) with $\Pi = \Pi new$.

for each group G of Π **do begin**

partition G into subgroups such that two states s and t of G are in the same subgroup if and only if for all input symbols a, states s and t have transitions on a to states in the same group of Π .

replace G in Πnew by the set of all subgroups formed.

end

- 4. Choose one state in each group of the partition $\Pi final$ as the representative for that group. The representatives will be the states of M'. Let s be a representative state, and suppose on input a there is a transition of M from s to t. Let t be the representative of t's group. Then M' has a transition from t to t on t and let the start state of t be the representative of the group containing start state t of t and let the accepting states of t be the representatives that are in t.
- 5. If M' has a dead state d, then remove d from M'. Also remove any state not reachable from the start state.

- Now no more splitting is possible.
- If we chose A as the representative for group (AC), then we obtain reduced transition table

States	a	b
Α	В	С
В	В	D
С	В	С
D	В	Е
Е	В	С

States	а	b
Α	В	Α
В	В	D
D	В	E
E	В	Α

Optimized Transition Table

Rules to compute nullable, firstpos, lastpos

- ▶ nullable(n)
 - \rightarrow The subtree at node n generates languages including the empty string.
- ▶ firstpos(n)
 - \rightarrow The set of positions that can match the first symbol of a string generated by the subtree at node n.
- ▶ lastpos(n)
 - \rightarrow The set of positions that can match the last symbol of a string generated be the subtree at node n.
- ▶ followpos(i)
 - \rightarrow The set of positions that can follow position i in the tree.

Rules to compute nullable, firstpos, lastpos

Node n	nullable(n)	firstpos(n)	lastpos(n)
A leaf labeled by ϵ	true	Ø	Ø
A leaf with position i	false	{i}	{i}
c_1 c_2	nullable(c_1) or nullable(c_2)	firstpos(c_1) U firstpos(c_2)	lastpos(c ₁) U lastpos(c ₂)
c_1 c_2	nullable(c_1) and nullable(c_2)	if (nullable(c_1)) thenfirstpos(c_1) \cup firstpos(c_2) else firstpos(c_1)	if (nullable(c_2)) then lastpos(c_1) \cup lastpos(c_2) else lastpos(c_2)
n *	true	firstpos(c ₁)	lastpos(c ₁)

Rules to compute followpos

- 1. If n is **concatenation** node with left child c1 and right child c2 and *i* is a position in lastpos(c1), then all position in firstpos(c2) are in followpos(i)
- 2. If n is \star node and i is position in lastpos(n), then all position in firstpos(n) are in followpos(i)

Step 1: Construct Syntax Tree

Step 2: Nullable node

A leaf labeled by $\varepsilon = \mathbf{True}$ A leaf with position $\boldsymbol{i} = \mathbf{false}$

Step 3: Calculate firstpos

A leaf with position $i = \{i\}$

Step 3: Calculate lastpos

A leaf with position $i = \{i\}$

Step 4: Calculate followpos

Position	followpos
5	
4	
3	
2	1,2,
1	1,2,

$$\{1,2\}$$
 $\stackrel{\star}{(1,2)}$ $\{1,2\}$

$$i = lastpos(n) = \{1,2\}$$

 $firstpos(n) = \{1,2\}$
 $followpos(1) = \{1,2\}$
 $followpos(2) = \{1,2\}$

Rule:

If n is * node and *i* is position in lastpos(n), then all position in firstpos(n) are in followpos(i)

Step 4: Calculate followpos

Position	followpos
5	
4	
3	
2	1,2,3
1	1,2,3

$$i = lastpos(c_1) = \{1,2\}$$

 $firstpos(c_2) = \{3\}$
 $followpos(1) = \{3\}$
 $followpos(2) = \{3\}$

Rule:

Position	followpos
5	
4	
3	4
2	1,2,3
1	1,2,3

$\{1,2,3\}$ c_1 $\{3\}$ $\{4\}$ c_2 $\{4\}$

$$i = lastpos(c_1) = \{3\}$$

 $firstpos(c_2) = \{4\}$
 $followpos(3) = \{4\}$

Rule:

Step 4: Calculate followpos

Position	followpos
5	
4	5
3	4
2	1,2,3
1	1,2,3

$\{1,2,3\}$ c_1 $\{4\}$ $\{5\}$ c_2 $\{5\}$

$$i = lastpos(c_1) = \{4\}$$

 $firstpos(c_2) = \{5\}$
 $followpos(4) = \{5\}$

Rule:

Step 4: Calculate followpos

Position	followpos
5	6
4	5
3	4
2	1,2,3
1	1,2,3

$\{1,2,3\}$ c_1 $\{5\}$ $\{6\}$ c_2 $\{6\}$

$$i = lastpos(c_1) = \{5\}$$

 $firstpos(c_2) = \{6\}$
 $followpos(5) = \{6\}$

Rule:

Initial state = firstpos of root = $\{1,2,3\}$ ---- A

State A

$$\delta((1,2,3),a) = \text{followpos}(1) \text{ U followpos}(3)$$

=(1,2,3) U (4) = {1,2,3,4} ----- B

$$\delta((1,2,3),b) = \text{followpos}(2)$$

=(1,2,3) ----- A

Position	followpos
5	6
4	5
3	4
2	1,2,3
1	1,2,3

States	a	b
A={1,2,3}		
B={1,2,3,4}		

State B

$$\delta((1,2,3,4),a) = \text{followpos}(1) \text{ U followpos}(3)$$

=(1,2,3) U (4) = {1,2,3,4} ----- B

$$\delta((1,2,3,4),b) = \text{followpos}(2) \cup \text{followpos}(4)$$

=(1,2,3) \(\mu\) (5) = \{1,2,3,5\} ----- \(\mathcal{C}\)

State C

$$\delta((1,2,3,5),a) = \text{followpos}(1) \text{ U followpos}(3)$$

=(1,2,3) U (4) = {1,2,3,4} ----- B

$$\delta((1,2,3,5),b) = \text{followpos}(2) \cup \text{followpos}(5)$$

=(1,2,3) \(\mu\) (6) = \{1,2,3,6\} -----\(\mu\)

Position	followpos
5	6
4	5
3	4
2	1,2,3
1	1,2,3

States	a	b
A={1,2,3}	В	Α
B={1,2,3,4}		
C={1,2,3,5}		
D={1,2,3,6}		

State D

$$\delta((1,2,3,6),a) = \text{followpos}(1) \text{ U followpos}(3)$$

=(1,2,3) U (4) = {1,2,3,4} ----- B

$$\delta((1,2,3,6),b) = \text{followpos}(2)$$

=(1,2,3) ----- A

Position	followpos	
5	6	
4	5	
3	4	
2	1,2,3	
1	1,2,3	

Stat	tes	a	b
A={1,	2,3}	В	Α
B={1,2	2,3,4}	В	С
C={1,2	2,3,5}	В	D
D={1,2	2,3,6}		

An Elementary Scanner Design & It's Implementation

An Elementary Scanner Design & It's Implementation

Tasks of Scanner

- 1. The main purpose of the scanner is to return the next input token to the parser.
- 2. The scanner must identify the complete token and sometimes differentiate between keywords and identifiers.
- 3. The scanner may perform symbol-table maintenance, inserting identifiers, literals, and constants into the tables.
- 4. The scanner also eliminate the white spaces.

Regular Expression: Tokens can be Specified using regular expression.

Example: id → letter(letter | digit)*

Transition Diagram: Finite-state diagrams or transition diagrams are often used to recognize a token

Implementation of Lexical Analyzer (Lex)

- Lex is tool or a language which is useful for generating a lexical Analyzer and it specifies the regular expression
- Regular expression is used to represent the patterns for a token.

Creating Lexical Analyzer with LEX

Structure of Lex Program

- ▶ Any lex program contains mainly three sections
 - 1. Declaration
 - 2. Translation rules
 - 3. Auxiliary Procedures

Structure of Program

```
Declaration

It is used to declare variables constant & regular definition
Syntax: Pattern {Action}

Example:
%%

Translation rule 

pattern1 {Action1}

pattern2 {Action2}

pattern3 {Action3}

Auxiliary Procedures

All the function needed are specified over here.
```

Example: Lex Program

▶ Program: Write Lex program to recognize identifier, keywords, relational operator and numbers

```
/* Translation rule */
/* Declaration */
%{
                                                                   %%
                                                                             {printf("%s is an identifier",yytext);}
                                                                  {ld}
          /* Lex program for recognizing tokens */
                                                                             {printf("%s is a keyword",yytext);}
                                                                  If
%}
                                                                             {printf("%s is a keyword",yytext);}
                     [a-z A-z]
                                                                  else
Letter
                                                                  "<"
                                                                             {printf("%s is a less then operator",yytext);}
Digit
                     [0-9]
                                                                   ">="
                                                                             {printf("%s is a greater then equal to operator",yytext);}
Id
                     {Letter}({Letter}|{Digit})*
                                                                  {Numbers} {printf("%s is a number",yytext);}
                     {Digit}+ (.{Digit}+)? (E[+ -]? Digit+)?
Numbers
                                                                  %%
/* Auxiliary Procedures */
                                                                                               Input string: If year < 2021
install_id()
          /* procedure to lexeme into the symbol table and return a pointer */
```

References

Books:

1. Compilers Principles, Techniques and Tools, PEARSON Education (Second Edition)

Authors: Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman

2. Compiler Design, PEARSON (for Gujarat Technological University)

Authors: Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman