Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2022

Erzeugte Sprachen, Mehrdeutige Grammatiken und Sprachen,

Entfernen von ε -Produktionen

Prof. Dr. David Sabel

LFE Theoretische Informatik

Wiederholung: Die Chomsky-Hierarchie

Sei $G = (V, \Sigma, P, S)$ eine Grammatik.

G ist vom Typ 0

G ist automatisch vom Typ 0.

G ist vom Typ 1 (kontextsensitive Grammatik), wenn ...

für alle $(\ell \to r) \in P$: $|\ell| \le |r|$.

G ist vom Typ 2 (kontextfreie Grammatik), wenn ...

G ist vom Typ 1 und für alle $(\ell \to r) \in P$ gilt: $\ell = A \in V$

G ist vom Typ 3 (reguläre Grammatik), wenn ...

G ist vom Typ 2 und für alle $(A \to r) \in P$ gilt: r = a oder r = aA' für $a \in \Sigma, A' \in V$ (die rechten Seiten sind Worte aus $(\Sigma \cup (\Sigma V))$)

Beispiel (kontextsensitive Grammatik)

$$G = (\{S, B, C\}, \{a, b, c\}, P, S)$$
 mit

$$P = \{S \rightarrow aSBC, \ S \rightarrow aBC, \ CB \rightarrow BC, \ aB \rightarrow ab, \ bB \rightarrow bb, \ bC \rightarrow bc, \ cC \rightarrow cc\}$$

Beispiel-Ableitung:

$$\Rightarrow aaaabCBCBCBC \Rightarrow aaaabBCCBCBC \Rightarrow aaaabbCCBCBC$$

$$\Rightarrow aaaabbCBCCBC \Rightarrow aaaabbBCCCBCC$$

$$\Rightarrow aaaabbBCBCCC \Rightarrow aaaabbBCCCCC$$

$$\Rightarrow aaaabbBCCCC \Rightarrow aaaabbBCCCC$$

 $S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaSBCBCBC \Rightarrow aaaaBCBCBCBC$

 $\Rightarrow aaaabbbbcCCCC \Rightarrow aaaabbbbcCCCC \Rightarrow aaaabbbbccCCC$

 $\Rightarrow aaaabbbbcccC \Rightarrow aaaabbbbcccc$

Steckengebliebene Folge von Ableitungsschritten:

$$S \Rightarrow aSBC \Rightarrow aaBCBC \Rightarrow aabCBC \Rightarrow aabcBC$$

Satz

$$\begin{array}{l} L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\} \text{ für } G = (\{S,B,C\},\{a,b,c\},P,S) \text{ mit } \\ P = \{S \rightarrow aSBC,S \rightarrow aBC,CB \rightarrow BC,aB \rightarrow ab,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\} \end{array}$$

Satz

$$\begin{array}{l} L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\} \text{ für } G = (\{S,B,C\},\{a,b,c\},P,S) \text{ mit } \\ P = \{S \rightarrow aSBC,S \rightarrow aBC,CB \rightarrow BC,aB \rightarrow ab,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\} \end{array}$$

" ": Zeige $a^nb^nc^n\in L(G)$ für alle $n\in\mathbb{N}_{>0}$

Satz

$$\begin{split} L(G) &= \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\} \text{ für } G = (\{S,B,C\},\{a,b,c\},P,S) \text{ mit } \\ P &= \{S \rightarrow aSBC,S \rightarrow aBC,CB \rightarrow BC,aB \rightarrow ab,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\} \end{split}$$

- " \supseteq ": Zeige $a^nb^nc^n\in L(G)$ für alle $n\in\mathbb{N}_{>0}$
 - ullet Wende n-1 mal S o aSBC und dann einmal S o aBC an:

$$S \Rightarrow^* a^{n-1}S(BC)^{n-1} \Rightarrow a^n(BC)^n$$

Satz

$$\begin{split} L(G) &= \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\} \text{ für } G = (\{S,B,C\},\{a,b,c\},P,S) \text{ mit } \\ P &= \{S \rightarrow aSBC,S \rightarrow aBC,CB \rightarrow BC,aB \rightarrow ab,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\} \end{split}$$

" \supseteq ": Zeige $a^nb^nc^n\in L(G)$ für alle $n\in\mathbb{N}_{>0}$

- Wende n-1 mal $S \to aSBC$ und dann einmal $S \to aBC$ an: $S \Rightarrow^* a^{n-1}S(BC)^{n-1} \Rightarrow a^n(BC)^n$
- Wende $CB \to BC$ solange an, bis es kein Teilwort CB mehr gibt. $a^n(BC)^n \Rightarrow^* a^n B^n C^n$

Satz

$$\begin{split} L(G) &= \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\} \text{ für } G = (\{S,B,C\},\{a,b,c\},P,S) \text{ mit } \\ P &= \{S \rightarrow aSBC,S \rightarrow aBC,CB \rightarrow BC,aB \rightarrow ab,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\} \end{split}$$

". Zeige $a^nb^nc^n\in L(G)$ für alle $n\in\mathbb{N}_{>0}$

- Wende n-1 mal $S \to aSBC$ und dann einmal $S \to aBC$ an: $S \Rightarrow^* a^{n-1}S(BC)^{n-1} \Rightarrow a^n(BC)^n$
- Wende $CB \to BC$ solange an, bis es kein Teilwort CB mehr gibt. $a^n(BC)^n \Rightarrow^* a^n B^n C^n$
- Wende $aB \to ab$ und anschließend n-1 mal $bB \to bb$ an. $a^n B^n C^n \Rightarrow a^n b B^{n-1} C^n \Rightarrow^* a^n b^n C^n$

Satz

$$\begin{split} L(G) &= \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\} \text{ für } G = (\{S,B,C\},\{a,b,c\},P,S) \text{ mit } \\ P &= \{S \rightarrow aSBC,S \rightarrow aBC,CB \rightarrow BC,aB \rightarrow ab,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\} \end{split}$$

". Zeige $a^nb^nc^n\in L(G)$ für alle $n\in\mathbb{N}_{>0}$

- Wende n-1 mal $S \to aSBC$ und dann einmal $S \to aBC$ an: $S \Rightarrow^* a^{n-1}S(BC)^{n-1} \Rightarrow a^n(BC)^n$
- Wende $CB \to BC$ solange an, bis es kein Teilwort CB mehr gibt. $a^n(BC)^n \Rightarrow^* a^n B^n C^n$
- Wende $aB \to ab$ und anschließend n-1 mal $bB \to bb$ an. $a^n B^n C^n \Rightarrow a^n b B^{n-1} C^n \Rightarrow^* a^n b^n C^n$
- Wende einmal $bC \to bc$ und anschließend n-1 mal $cC \to cc$ an $a^n b^n C^n \Rightarrow a^n b^n c C^{n-1} \Rightarrow^* a^n b^n c^n$

Satz

$$\begin{split} L(G) &= \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\} \text{ für } G = (\{S,B,C\},\{a,b,c\},P,S) \text{ mit } \\ P &= \{S \rightarrow aSBC,S \rightarrow aBC,CB \rightarrow BC,aB \rightarrow ab,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\} \end{split}$$

" \supseteq ": Zeige $a^nb^nc^n\in L(G)$ für alle $n\in\mathbb{N}_{>0}$

- Wende n-1 mal $S \to aSBC$ und dann einmal $S \to aBC$ an: $S \Rightarrow^* a^{n-1}S(BC)^{n-1} \Rightarrow a^n(BC)^n$
- Wende $CB \to BC$ solange an, bis es kein Teilwort CB mehr gibt. $a^n(BC)^n \Rightarrow^* a^n B^n C^n$
- Wende $aB \to ab$ und anschließend n-1 mal $bB \to bb$ an. $a^nB^nC^n \Rightarrow a^nbB^{n-1}C^n \Rightarrow^* a^nb^nC^n$
- Wende einmal $bC \to bc$ und anschließend n-1 mal $cC \to cc$ an $a^nb^nC^n \Rightarrow a^nb^ncC^{n-1} \Rightarrow^* a^nb^nc^n$

Zusammensetzen aller Ableitungsschritte zeigt $S \Rightarrow^* a^n b^n c^n$.

Satz

$$\begin{split} L(G) &= \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\} \text{ für } G = (\{S,B,C\},\{a,b,c\},P,S) \text{ mit } \\ P &= \{S \rightarrow aSBC,S \rightarrow aBC,CB \rightarrow BC,aB \rightarrow ab,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\} \end{split}$$

" \subseteq ": Zeige, dass alle von G erzeugten Worte von der Form $a^nb^nc^n$ sind.

Satz

$$\begin{split} L(G) &= \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\} \text{ für } G = (\{S,B,C\},\{a,b,c\},P,S) \text{ mit } \\ P &= \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\} \end{split}$$

" \subseteq ": Zeige, dass alle von G erzeugten Worte von der Form $a^nb^nc^n$ sind.

 \bullet Für $S\Rightarrow_G^* u$ mit u Satzform zeigen die Regeln:

$$\#_a(u) = \#_b(u) + \#_B(u) = \#_c(u) + \#_C(u)$$

Satz

$$L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\} \text{ für } G = (\{S,B,C\},\{a,b,c\},P,S) \text{ mit } P = \{S \rightarrow aSBC,S \rightarrow aBC,CB \rightarrow BC,aB \rightarrow ab,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\}$$

" \subseteq ": Zeige, dass alle von G erzeugten Worte von der Form $a^nb^nc^n$ sind.

- Für $S \Rightarrow_G^* u$ mit u Satzform zeigen die Regeln: $\#_a(u) = \#_b(u) + \#_B(u) = \#_c(u) + \#_C(u)$
- Für $S\Rightarrow_G^* w$ mit $w\in\{a,b,c\}^*$ gilt: a's werden ganz links erzeugt, d.h. $w=a^nw'$ mit $w'\in\{b,c\}^*$ und $n=\#_b(w')=\#_c(w')$

Satz

$$L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\} \text{ für } G = (\{S,B,C\},\{a,b,c\},P,S) \text{ mit } P = \{S \rightarrow aSBC,S \rightarrow aBC,CB \rightarrow BC,aB \rightarrow ab,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\}$$

". Zeige, dass alle von G erzeugten Worte von der Form $a^n b^n c^n$ sind.

- Für $S \Rightarrow_C^* u$ mit u Satzform zeigen die Regeln: $\#_{c}(u) = \#_{b}(u) + \#_{B}(u) = \#_{c}(u) + \#_{C}(u)$
- Für $S \Rightarrow_c^* w$ mit $w \in \{a, b, c\}^*$ gilt: a's werden ganz links erzeugt, d.h. $w = a^n w'$ mit $w' \in \{b, c\}^*$ und $n = \#_b(w') = \#_c(w')$
- Es gilt $w' = bw_1$, da jedes auf a folgende Symbol durch $aB \to ab$ erzeugt wird und die Regeln keine Terminalsymbole vertauschen.

Grammatik, die $\{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}$ erzeugt (3)

Satz

$$\begin{split} L(G) &= \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\} \text{ für } G = (\{S,B,C\},\{a,b,c\},P,S) \text{ mit } \\ P &= \{S \rightarrow aSBC,S \rightarrow aBC,CB \rightarrow BC,aB \rightarrow ab,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\} \end{split}$$

". Zeige, dass alle von G erzeugten Worte von der Form $a^n b^n c^n$ sind.

- . . .
- Ebenso können die Terminalsymbole des Wortes $w' \in \{b, c\}^*$ nur durch $bB \to bb$, $bC \to bc$ und $cC \to cc$ erzeugt worden sein. Diese Produktionen erlauben nur einen Wechsel von b zu c und keine Wechsel von c zu b. Auch ein Umordnen der Terminalsymbole ist nicht möglich (da es keine Produktion dafür gibt).
- Daher gilt $w' = b^i c^j$ und mit $n = \#_b(w') = \#_c(w')$ sogar $w' = b^n c^n$.

Grammatik, die $\{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}$ erzeugt (3)

Satz

$$\begin{array}{l} L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\} \text{ für } G = (\{S,B,C\},\{a,b,c\},P,S) \text{ mit } \\ P = \{S \rightarrow aSBC,S \rightarrow aBC,CB \rightarrow BC,aB \rightarrow ab,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\} \end{array}$$

". Zeige, dass alle von G erzeugten Worte von der Form $a^n b^n c^n$ sind.

- . . .
- Ebenso können die Terminalsymbole des Wortes $w' \in \{b, c\}^*$ nur durch $bB \to bb$, $bC \to bc$ und $cC \to cc$ erzeugt worden sein. Diese Produktionen erlauben nur einen Wechsel von b zu c und keine Wechsel von c zu b. Auch ein Umordnen der Terminalsymbole ist nicht möglich (da es keine Produktion dafür gibt).
- Daher gilt $w' = b^i c^j$ und mit $n = \#_b(w') = \#_c(w')$ sogar $w' = b^n c^n$.

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

Eine Ableitung:

S

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow T$$

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$$$

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$$$

Grammatik
$$G=(\{S,T,A,B,\$\},\{a,b\},P,S)$$
 mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$ \Rightarrow \$aAaAbB\$$$

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$ \Rightarrow \$aAaAbB\$ \Rightarrow \$aAAAbB\$$$

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$ \Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aaAbAB\$$$

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aaAbAB\$$

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$
$$\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aaAbAB\$$$
$$\Rightarrow \$aabAA\$b$$

Grammatik
$$G=(\{S,T,A,B,\$\},\{a,b\},P,S)$$
 mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$
$$\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aabAAB\$$$
$$\Rightarrow \$aabAA\$b \Rightarrow \$aabA\$ab$$

Grammatik
$$G=(\{S,T,A,B,\$\},\{a,b\},P,S)$$
 mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$
$$\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aaAbAB\$ \Rightarrow \$aabAAB\$$$
$$\Rightarrow \$aabAA\$b \Rightarrow \$aab\$aab$$

Grammatik
$$G=(\{S,T,A,B,\$\},\{a,b\},P,S)$$
 mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$
$$\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aabAAB\$$$
$$\Rightarrow \$aabAA\$b \Rightarrow \$aabA\$ab \Rightarrow \$aab\$aab \Rightarrow a\$ab\$aab$$

Grammatik
$$G=(\{S,T,A,B,\$\},\{a,b\},P,S)$$
 mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$
$$\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aaAbAB\$ \Rightarrow \$aabAAB\$$$
$$\Rightarrow \$aabAA\$b \Rightarrow \$aabA\$ab \Rightarrow \$aab\$aab \Rightarrow a\$ab\$aab$$
$$\Rightarrow aa\$b\$aab$$

Grammatik
$$G=(\{S,T,A,B,\$\},\{a,b\},P,S)$$
 mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aabAAB\$$
 $\Rightarrow \$aabAA\$b \Rightarrow \$aabA\$ab \Rightarrow \$aab\$aab \Rightarrow a\$ab\aab
 $\Rightarrow aa\$b\$aab \Rightarrow aab\$\aab

Grammatik
$$G=(\{S,T,A,B,\$\},\{a,b\},P,S)$$
 mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aabAAB\$$
 $\Rightarrow \$aabAA\$b \Rightarrow \$aabA\$ab \Rightarrow \$aab\aab
 $\Rightarrow aa\$b\$aab \Rightarrow aab\$\$aab \Rightarrow aabaab$

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \\ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

Eine Ableitung:

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$
$$\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aaAbAB\$ \Rightarrow \$aabAAB\$$$
$$\Rightarrow \$aabAA\$b \Rightarrow \$aabA\$ab \Rightarrow \$aab\$aab \Rightarrow a\$ab\$aab$$
$$\Rightarrow aa\$b\$aab \Rightarrow aab\$\$aab \Rightarrow aabaab$$

Beachte: $L(G) = \{ww \mid w \in \{a, b\}^*\}$ und L(G) ist Typ 1-Sprache

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

Begründung dafür, dass $L(G) = \{ww \mid w \in \{a,b\}^*\}$ gilt:

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

Begründung dafür, dass $L(G) = \{ww \mid w \in \{a, b\}^*\}$ gilt:

• Mit $S \to \$T\$$ wird zunächst eine Umrahmung mit \$\$ erzeugt

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

Begründung dafür, dass $L(G) = \{ww \mid w \in \{a, b\}^*\}$ gilt:

- Mit $S \to \$T\$$ wird zunächst eine Umrahmung mit \$\$ erzeugt
- Mit $T \to aAT$, $T \to bBT$, $T \to \varepsilon$ wird ein Wort aus 2er Blöcken aA und bB erzeugt

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

Begründung dafür, dass $L(G) = \{ww \mid w \in \{a, b\}^*\}$ gilt:

- Mit $S \to \$T\$$ wird zunächst eine Umrahmung mit \$\$ erzeugt
- Mit $T \to aAT$, $T \to bBT$, $T \to \varepsilon$ wird ein Wort aus 2er Blöcken aA und bB erzeugt
- Mit $Aa \rightarrow aA$, $Ab \rightarrow bA$, $Ba \rightarrow aB$, $Bb \rightarrow bB$ werden A's und B's bis vor \$ geschoben

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

Begründung dafür, dass $L(G) = \{ww \mid w \in \{a, b\}^*\}$ gilt:

- Mit $S \to \$T\$$ wird zunächst eine Umrahmung mit \$\$ erzeugt
- Mit $T \to aAT$. $T \to bBT$. $T \to \varepsilon$ wird ein Wort aus 2er Blöcken aA und bB erzeugt
- Mit $Aa \rightarrow aA$, $Ab \rightarrow bA$, $Ba \rightarrow aB$, $Bb \rightarrow bB$ werden A's und B's bis vor \$ geschoben
- Mit $A\$ \to \a und $B\$ \to \b werden die A's und B's in a's und b's verwandelt, indem sie über das rechte \$ hüpfen.

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

Begründung dafür, dass $L(G) = \{ww \mid w \in \{a,b\}^*\}$ gilt:

- Mit $S \to \$T\$$ wird zunächst eine Umrahmung mit \$\$ erzeugt
- Mit $T \to aAT$, $T \to bBT$, $T \to \varepsilon$ wird ein Wort aus 2er Blöcken aA und bB erzeugt
- Mit $Aa \rightarrow aA, Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB$ werden A's und B's bis vor \$ geschoben
- Mit $A\$ \to \a und $B\$ \to \b werden die A's und B's in a's und b's verwandelt, indem sie über das rechte \$ hüpfen.
- Mit $\$a \to a\$$, $\$b \to b\$$ wird das linke \$ zum rechten geschoben, mit $\$\$ \to \varepsilon$ werden sie dann eliminiert.

Grammatik $G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow \$T\$, \ T \rightarrow aAT, \ T \rightarrow bBT, \ T \rightarrow \varepsilon, \ \$a \rightarrow a\$, \ \$b \rightarrow b\$, \ Aa \rightarrow aA, \ Ab \rightarrow bA, \ Ba \rightarrow aB, \ Bb \rightarrow bB, \ A\$ \rightarrow \$a, \ B\$ \rightarrow \$b, \ \$\$ \rightarrow \varepsilon\}$$

Begründung dafür, dass $L(G) = \{ww \mid w \in \{a,b\}^*\}$ gilt:

- Mit $S \to \$T\$$ wird zunächst eine Umrahmung mit \$\$ erzeugt
- Mit $T \to aAT$. $T \to bBT$. $T \to \varepsilon$ wird ein Wort aus 2er Blöcken aA und bB erzeugt
- Mit $Aa \rightarrow aA$, $Ab \rightarrow bA$, $Ba \rightarrow aB$, $Bb \rightarrow bB$ werden A's und B's bis vor \$ geschoben
- Mit $A\$ \to \a und $B\$ \to \b werden die A's und B's in a's und b's verwandelt, indem sie über das rechte \$ hüpfen.
- Mit $\$a \to a\$$, $\$b \to b\$$ wird das linke \$ zum rechten geschoben, mit $\$\$ \to \varepsilon$ werden sie dann eliminiert.
- Bei allen Schritten wird die relative Lage aller a zu b sowie aller A zu B nicht geändert.

Mehrdeutige Grammatiken

Beispiel:

$$(E, \{*, +, 1, 2\}, \{E \to E * E, E \to E + E, E \to 1, E \to 2\}, E)$$

Zwei Ableitungen für 1 + 2 * 1:

- $\bullet E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow 1 + E * E \Rightarrow 1 + 2 * E \Rightarrow 1 + 2 * 1$
- $E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow 1 + E * E \Rightarrow 1 + 2 * E \Rightarrow 1 + 2 * 1$.

Syntaxbäume dazu:

Mehrdeutige Grammatiken (2)

Mehrdeutige Grammatik

Eine Typ 2-Grammatik ist mehrdeutig, wenn es verschieden strukturierte Syntaxbäume für dasselbe Wort w gibt.

Inhärent mehrdeutige Sprache

Eine Typ 2-Sprache ist inhärent mehrdeutig, wenn es nur mehrdeutige Grammatiken gibt, die diese Sprache erzeugen.

Die Sprache

$$\{a^m b^m c^n d^n \mid m, n \in \mathbb{N}_{>0}\} \cup \{a^m b^n c^n d^m \mid m, n \in \mathbb{N}_{>0}\}$$

ist inhärent mehrdeutig (Beweis z.B. in Hopcroft, Motwani, Ullman, 2006)

ε -Regel für Typ 1,2,3-Grammatiken

• Das leere Wort ε kann bisher nicht für Typ 1,2,3 Grammatiken erzeugt werden:

Produktion $S \to \varepsilon$ erfüllt die Typ 1-Bedingung $|S| \le |\varepsilon|$ nicht. Daher Sonderregel:

ε -Regel für Typ 1-Grammatiken

Eine Grammatik $G=(V,\Sigma,P,S)$ vom Typ 1 darf eine Produktion $(S\to\varepsilon)\in P$ enthalten, vorausgesetzt, dass keine rechte Seite einer Produktion in P, die Variable Senthält.

Sonderregel erlaubt nicht:

$$G = (\{S\}, \{a\}, \{S \rightarrow \varepsilon, S \rightarrow aSa\}, S)$$

Sonderregel erlaubt:

$$G = (\{S', S\}, \{a\}, \{S' \rightarrow \varepsilon, S' \rightarrow aSa, S' \rightarrow aa, S \rightarrow aSa, S \rightarrow aa\}, S')$$

Leeres Wort hinzufügen geht mit Sonderregel immer

Satz

Sei $G=(V,\Sigma,P,S)$ vom Typ $i\in\{1,2,3\}$ mit $\varepsilon\not\in L(G)$. Sei $S'\not\in V$. Dann erzeugt $G'=(V\cup\{S'\},\Sigma,P\cup\{S'\to\varepsilon\}\cup\{S'\to r\mid S\to r\in P\},S')$ die Sprache $L(G')=L(G)\cup\{\varepsilon\}$ und G' erfüllt die ε -Regel für Typ 1,2,3-Grammatiken und G' ist vom Typ i.

Leeres Wort hinzufügen geht mit Sonderregel immer

Satz

Sei $G=(V,\Sigma,P,S)$ vom Typ $i\in\{1,2,3\}$ mit $\varepsilon\not\in L(G)$. Sei $S'\not\in V$. Dann erzeugt $G'=(V\cup\{S'\},\Sigma,P\cup\{S'\to\varepsilon\}\cup\{S'\to r\mid S\to r\in P\},S')$ die Sprache $L(G')=L(G)\cup\{\varepsilon\}$ und G' erfüllt die ε -Regel für Typ 1,2,3-Grammatiken und G' ist vom Typ i.

Beweis:

- ullet Da S' neu, kommt S' auf keiner rechten Seite vor.
- Da $S \to r \in P$ vom Typ i, sind auch $S' \to r$ vom Typ i
- Da $S' \Rightarrow \varepsilon$, gilt $\varepsilon \in L(G')$
- Für $w \neq \varepsilon$ gilt: $S \Rightarrow_G^* w$ g.d.w. $S' \Rightarrow_{G'}^* w$ Der jeweils erste Ableitungsschritt muss ausgetauscht werden, d.h. $S \Rightarrow_G r$ vs. $S' \Rightarrow_{G'} r$

ε -Produktionen für Typ 2- und Typ 3-Grammatiken

Sonderregel für Typ 2- und Typ 3-Grammatiken:

ε-Produktionen in kontextfreien und regulären Grammatiken

In Grammatiken des Typs 2 und des Typs 3 erlauben wir Produktionen der Form $A \to \varepsilon$ (sogenannte ε -Produktionen).

Das ist keine echte Erweiterung, denn:

Satz (Entfernen von ε -Produktionen)

Sei $G=(V,\Sigma,P,S)$ eine kontextfreie (bzw. reguläre) Grammatik mit $\varepsilon \not\in L(G)$. Dann gibt es eine kontextfreie (bzw. reguläre) Grammatik G' mit L(G)=L(G') und G' enthält keine ε -Produktionen.

Beweis: Algorithmus auf der nächsten Folie.

Algorithmus 1: Entfernen von ε -Produktionen

```
Eingabe: Typ i-Grammatik G = (V, \Sigma, P, S) mit \varepsilon \notin L(G), i \in \{2, 3\}
Ausgabe: Typ i-Grammatik G' ohne \varepsilon-Produktionen, sodass L(G) = L(G')
Beginn
    finde die Menge W \subseteq V aller Variablen A für die gilt A \Rightarrow^* \varepsilon:
    Beginn
        W := \{A \mid (A \to \varepsilon) \in P\}:
        wiederhole
             füge alle A zu W hinzu mit A \to A_1 \dots A_n \in P und \forall i : A_i \in W;
        bis sich W nicht mehr ändert:
    Ende
    P' := P \setminus \{A \to \varepsilon \mid (A \to \varepsilon) \in P\}:
                                                                                             /* lösche Regeln A \to \varepsilon */
    wiederhole
        für alle Produktionen A' \to uAv \in P' mit |uv| > 0 und A \in W tue
             füge die Produktion A' \rightarrow uv zu P' hinzu;
             /* für A' \to u'Av'Aw' gibt es (mindestens) zwei Hinzufügungen: Für das Vorkommen von A nach u' als
                auch für das Vorkommen direkt vor wi
        Ende
    bis sich P' nicht mehr ändert:
    gebe G' = (V, \Sigma, P', S) als Ergebnisgrammatik aus:
```

Algorithmus 1: Entfernen von ε -Produktionen

```
Eingabe: Typ i-Grammatik G = (V, \Sigma, P, S) mit \varepsilon \notin L(G), i \in \{2, 3\}
Ausgabe: Typ i-Grammatik G' ohne \varepsilon-Produktionen, sodass L(G) = L(G')
Beginn
    finde die Menge W \subseteq V aller Variablen A für die gilt A \Rightarrow^* \varepsilon:
    Beginn
                                                                      Die neuen Produktionen nehmen den
        W := \{A \mid (A \to \varepsilon) \in P\}:
                                                                      Ableitungsschritt A \to \varepsilon vorweg.
        wiederhole
             füge alle A zu W hinzu mit A \to A_1 \dots A_n \in I
                                                                      Für reguläre Produktion A' \rightarrow aA wird
        bis sich W nicht mehr ändert:
                                                                      A' \rightarrow a hinzugefügt (bleibt regulär!)
    Ende
    P' := P \setminus \{A \to \varepsilon \mid (A \to \varepsilon) \in P\}:
                                                                                              /* lösche Regeln A \to \varepsilon */
    wiederhole
        für alle Produktionen A' \to uAv \in P' mit |uv| > 0 und A \in W tue
             füge die Produktion A' \rightarrow uv zu P' hinzu:
             /* für A' \rightarrow u'Av'Aw' gibt es (mindestens) zwei Hinzufügungen: Für das Vorkommen von A nach u' als
                auch für das Vorkommen direkt vor wi
        Ende
    bis sich P' nicht mehr ändert:
    gebe G' = (V, \Sigma, P', S) als Ergebnisgrammatik aus:
```

$$G=(\{A,B,C,D,S\},\{0,1\},P,S) \text{ mit}$$

$$P=\{S\to 1A,\ A\to AB,\ A\to DA,\ A\to \varepsilon,\ B\to 0,$$

$$B\to 1,\ C\to AAA,\ D\to 1AC\}.$$

$$G=(\{A,B,C,D,S\},\{0,1\},P,S) \text{ mit}$$

$$P=\{S\rightarrow 1A,\ A\rightarrow AB,\ A\rightarrow DA,\ A\rightarrow \varepsilon,\ B\rightarrow 0,$$

$$B\rightarrow 1,\ C\rightarrow AAA,\ D\rightarrow 1AC\}.$$

• Menge W der Variablen, die ε herleiten:

$$W = \{A, C\}$$
 da $A \to \varepsilon$ und $C \to AAA$

$$G=(\{A,B,C,D,S\},\{0,1\},P,S) \text{ mit}$$

$$P=\{S\rightarrow 1A,\ A\rightarrow AB,\ A\rightarrow DA,\ A\rightarrow \varepsilon,\ B\rightarrow 0,$$

$$B\rightarrow 1,\ C\rightarrow AAA,\ D\rightarrow 1AC\}.$$

• Menge W der Variablen, die ε herleiten:

$$W = \{A,C\} \text{ da } A \to \varepsilon \text{ und } C \to AAA$$

Starte mit

$$P' = \{S \to 1A, A \to AB, A \to DA, B \to 0, B \to 1, C \to AAA, D \to 1AC\}.$$

$$G=(\{A,B,C,D,S\},\{0,1\},P,S) \text{ mit}$$

$$P=\{S\rightarrow 1A,\ A\rightarrow AB,\ A\rightarrow DA,\ A\rightarrow \varepsilon,\ B\rightarrow 0,$$

$$B\rightarrow 1,\ C\rightarrow AAA,\ D\rightarrow 1AC\}.$$

• Menge W der Variablen, die ε herleiten:

$$W = \{A, C\}$$
 da $A \to \varepsilon$ und $C \to AAA$

Starte mit

$$P' = \{S \to 1A, A \to AB, A \to DA, B \to 0, B \to 1, C \to AAA, D \to 1AC\}.$$

Hinzufügen von Produktionen für Vorkommen von A und C

$$P' = \{S \rightarrow 1A, S \rightarrow 1, A \rightarrow AB, A \rightarrow B, A \rightarrow DA, A \rightarrow D, B \rightarrow 0, B \rightarrow 1, C \rightarrow AAA, C \rightarrow AA, C \rightarrow A, D \rightarrow 1AC, D \rightarrow 1A, D \rightarrow 1C, D \rightarrow 1\}.$$

15/15