Real Analysis - P1

Learning Theory and Applications Group

Academic Year 2024-2025

Contents

Ι	Lebesgue Intergration	1
	The Real Number: Sets, Sequences, and Functions	1
	1.1 The Field, Positivity, and Completeness Axioms	1
	1.1.1 Excercise	1
	1.2 The Natural and Rational Numbers	2
	1.2.1 Excercise	2
	1.3 The Countable and Uncountable Sets	2
	1.3.1 Excercise	2

Part I

Lebesgue Intergration

Key definitions here:

1 The Real Number: Sets, Sequences, and Functions

1.1 The Field, Positivity, and Completeness Axioms

1.1.1 Excercise

Ex 1. For $a \neq 0$ and $b \neq 0$, show that $(ab)^{-1} = a^{-1}b^{-1}$

$$(a^{-1}b^{-1})(ab) = a^{-1}b^{-1}ba = a^{-1}1a = 1$$

As a result, $a^{-1}b^{-1} = (ab^{-1})$

Ex 2. Verify the following:

- For each real number $a \neq 0$, $a^2 > 0$. In particular, 1 > 0 since $1 \neq 0$ and $1 = 1^2$
- For each positive number a, its multiplicative inverse a^{-1} also is positive
- If a > b, then

$$ac > bc$$
 if $c > 0$ and $ac < bc$ if $c < 0$

For the first point, we first need to prove that, for any a, then -a = (-1)a,

$$a + (-a) = 0 = (1 + (-1))a = a + (-1)a$$

Next, for each $a \neq 0$, if a is positive, then a^2 is positive by definition of positiveness. On the other hand, if a < 0, then let a = -b with b > 0,

$$a^{2} = (-b)^{2} = (-1)b(-1)b = (-1)(-b)b = (-1)^{2}b^{2} > 0$$
(1)

For the second point, assuming by contradiction that $a^{-1} < 0$ for any a > 0, then let $a^{-1} = -b$ with b > 0. then

$$1 = a(a^{-1}) = a(-b) = (-1)ab < 0$$

Here ab > 0 since both a and b are positive, and we know from previous point that 0 > -(ab) = (-1)abThe last point is straighforward from the definition of >.

$$ac - bc = \underbrace{(a - b)}_{>0} \underbrace{c}_{>0} > 0$$

$$ac - bc = \underbrace{(a-b)}_{>0} \underbrace{c}_{<0} = (-1) \underbrace{(a-b)}_{>0} \underbrace{d}_{>0} < 0 \text{ with } d = -c$$

Ex 3. For a nonempty set of real numbers E, show that $\inf E = \sup E$ if and only if E consists of a single point.

If the set E has a single element, then the least upper bound equal to that single element. This similarly applies to lowerbound. In other word, its sup and inf coincides.

On the other direction, if a set E has its sup and inf equal, and assuming by contradiction that E has at least 2 distinct elements, then the gap between these two points $\neq 0$. The difference between sup and inf is lowerbounded by this gap, so they cannot equal.

Ex 4. Let a

1.2 The Natural and Rational Numbers

Hoang Anh:

1.2.1 Excercise

1.3 The Countable and Uncountable Sets

Quan:

1.3.1 Excercise