Table 1: Empirical results with the Cardiotocography data set (three classes), KPC-A.

$M \cup -M$.					
Method	\mathbf{L}	NMI	ARI	DBI	SSE
RNG(530)	NA	0.094 ± 0.021	0.155 ± 0.051	1.707 ± 0.031	976 ± 5
RNG(1060)	NA	0.103 ± 0.015	0.179 ± 0.032	1.693 ± 0.018	$\boldsymbol{974 \pm 4}$
KPC-A(RNG)	50	0.098 ± 0.018	0.167 ± 0.040	1.701 ± 0.024	975 ± 4
KPC-A(RNG)	150	0.098 ± 0.018	0.166 ± 0.040	1.703 ± 0.024	975 ± 4
KPC-A(RNG)	250	0.098 ± 0.018	0.166 ± 0.040	1.703 ± 0.023	$\boldsymbol{974 \pm 4}$
KFCM(530)	NA	0.102 ± 0.018	0.181 ± 0.040	1.689 ± 0.026	976 ± 4
KFCM(1060)	NA	0.106 ± 0.012	0.190 ± 0.018	1.685 ± 0.008	973 ± 4
KPC-A(KFCM)	50	0.105 ± 0.013	0.188 ± 0.024	1.685 ± 0.014	$\boldsymbol{974 \pm 4}$
KPC-A(KFCM)	150	0.105 ± 0.013	0.186 ± 0.024	1.688 ± 0.013	$\boldsymbol{974 \pm 4}$
KPC-A(KFCM)	250	0.105 ± 0.013	0.186 ± 0.024	1.688 ± 0.013	$\boldsymbol{974 \pm 4}$
KKM(530)	NA	0.097 ± 0.020	0.165 ± 0.048	1.702 ± 0.031	976 ± 5
KKM(1060)	NA	0.103 ± 0.014	0.181 ± 0.030	1.691 ± 0.016	$\boldsymbol{974 \pm 4}$
KPC-A(KKM)	50	0.100 ± 0.017	0.172 ± 0.038	1.698 ± 0.023	975 ± 4
KPC-A(KKM)	150	0.099 ± 0.017	0.170 ± 0.038	1.699 ± 0.022	974 ± 4
KPC-A(KKM)	250	0.099 ± 0.017	0.170 ± 0.038	1.700 ± 0.022	$\boldsymbol{974 \pm 4}$

Table 2: Empirical results with the MiniBooNE data set (two classes), KPC-A. Method L NMI ARI DBI

Table 2. Empirical	resure	s with the milliboor	TE data set (two c	$1asscs_j$, $111 \circ -11$.	
Method	L	NMI	ARI	DBI	SSE
RNG(500)	NA	0.246 ± 0.030	0.312 ± 0.069	1.869 ± 0.020	61710 ± 92
RNG(1000)	NA	0.255 ± 0.024	0.335 ± 0.059	1.864 ± 0.021	61574 ± 67
RNG(1500)	NA	0.258 ± 0.016	0.345 ± 0.051	1.864 ± 0.020	61526 ± 27
KPC-A(RNG)	50	0.267 ± 0.014	0.372 ± 0.035	1.862 ± 0.011	61814 ± 31
KPC-A(RNG)	150	0.260 ± 0.011	0.346 ± 0.029	1.869 ± 0.006	61590 ± 25
KPC-A(RNG)	250	0.259 ± 0.011	0.343 ± 0.029	1.870 ± 0.006	61555 ± 25
KFCM(500)	NA	0.255 ± 0.031	0.347 ± 0.073	1.856 ± 0.029	61701 ± 96
KFCM(1000)	NA	0.265 ± 0.018	0.373 ± 0.050	1.849 ± 0.028	61565 ± 44
KFCM(1500)	NA	0.267 ± 0.014	0.379 ± 0.042	1.849 ± 0.026	61521 ± 27
KPC-A(KFCM)	50	0.276 ± 0.012	0.406 ± 0.026	1.845 ± 0.015	61808 ± 32
KPC-A(KFCM)	150	0.271 ± 0.010	0.390 ± 0.024	1.856 ± 0.010	61580 ± 24
KPC-A(KFCM)	250	0.27 ± 0.01	0.386 ± 0.024	1.858 ± 0.009	61545 ± 24
KKM(500)	NA	0.250 ± 0.043	0.336 ± 0.084	1.861 ± 0.027	61718 ± 137
KKM(1000)	NA	0.26 ± 0.03	0.359 ± 0.062	1.857 ± 0.025	61574 ± 95
KKM(1500)	NA	0.262 ± 0.026	0.365 ± 0.054	1.858 ± 0.022	61528 ± 78
KPC-A(KKM)	50	0.268 ± 0.013	0.375 ± 0.035	1.861 ± 0.011	61813 ± 33
KPC-A(KKM)	150	0.262 ± 0.010	0.353 ± 0.027	1.868 ± 0.007	61587 ± 25
KPC-A(KKM)	250	0.262 ± 0.010	0.351 ± 0.027	1.868 ± 0.006	61552 ± 24

Table 3: Empirical results with the Pen data set (ten classes), KPC-A.

Method	L	NMI	ÀRI	DBI	SSE
RNG(500)	NA	0.702 ± 0.026	0.595 ± 0.043	1.436 ± 0.034	2326 ± 42
RNG(1000)	NA	0.726 ± 0.022	0.632 ± 0.036	1.417 ± 0.027	2277 ± 32
RNG(1500)	NA	0.732 ± 0.020	0.642 ± 0.032	1.412 ± 0.026	2263 ± 30
KPC-A(RNG)	50	0.739 ± 0.018	0.649 ± 0.031	1.410 ± 0.023	2278 ± 25
KPC-A(RNG)	150	0.736 ± 0.016	0.647 ± 0.029	1.415 ± 0.022	2265 ± 23
KPC-A(RNG)	250	0.736 ± 0.016	0.647 ± 0.028	1.416 ± 0.021	2263 ± 22
KFCM(500)	NA	0.701 ± 0.024	0.580 ± 0.046	1.407 ± 0.035	2322 ± 43
KFCM(1000)	NA	0.714 ± 0.022	0.600 ± 0.045	1.398 ± 0.030	2284 ± 39
KFCM(1500)	NA	0.718 ± 0.020	0.605 ± 0.045	1.395 ± 0.028	2273 ± 36
KPC-A(KFCM)	50	0.724 ± 0.020	0.614 ± 0.043	1.388 ± 0.028	2285 ± 31
KPC-A(KFCM)	150	0.723 ± 0.018	0.613 ± 0.042	1.395 ± 0.028	2272 ± 29
KPC-A(KFCM)	250	0.723 ± 0.019	0.613 ± 0.043	1.396 ± 0.028	2271 ± 29
KKM(500)	NA	0.681 ± 0.029	0.547 ± 0.051	1.418 ± 0.037	2362 ± 60
KKM(1000)	NA	0.699 ± 0.025	0.571 ± 0.051	1.402 ± 0.035	2311 ± 53
KKM(1500)	NA	0.706 ± 0.024	0.582 ± 0.049	1.399 ± 0.034	2297 ± 52
KPC-A(KKM)	50	0.717 ± 0.020	0.604 ± 0.044	1.389 ± 0.030	2294 ± 38
KPC-A(KKM)	150	0.714 ± 0.020	0.601 ± 0.043	1.395 ± 0.031	2283 ± 37
KPC-A(KKM)	250	0.714 ± 0.020	0.600 ± 0.044	1.396 ± 0.029	2282 ± 39

Table 4: Empirical results with the Gas data set (six classes), KPC-A.					
Method	\mathbf{L}	NMI	ARI	DBI	SSE
RNG(500)	NA	0.351 ± 0.032	0.214 ± 0.031	1.521 ± 0.044	3559 ± 97
RNG(1000)	NA	0.361 ± 0.029	0.217 ± 0.028	1.500 ± 0.037	3493 ± 85
RNG(1500)	NA	0.366 ± 0.026	0.220 ± 0.025	1.497 ± 0.033	3472 ± 79
KPC-A(RNG)	50	0.381 ± 0.027	0.229 ± 0.025	1.483 ± 0.038	3471 ± 76
KPC-A(RNG)	150	0.382 ± 0.027	0.231 ± 0.025	1.487 ± 0.036	3457 ± 76
KPC-A(RNG)	250	0.381 ± 0.027	0.230 ± 0.024	1.486 ± 0.037	3454 ± 76
KFCM(500)	NA	0.355 ± 0.030	0.198 ± 0.030	1.472 ± 0.049	3535 ± 103
KFCM(1000)	NA	0.358 ± 0.030	0.198 ± 0.027	1.465 ± 0.047	3492 ± 102
KFCM(1500)	NA	0.360 ± 0.031	0.203 ± 0.028	1.463 ± 0.044	3477 ± 95
KPC-A(KFCM)	50	0.380 ± 0.027	0.218 ± 0.028	1.439 ± 0.043	3457 ± 86
KPC-A(KFCM)	150	$\boldsymbol{0.381 \pm 0.028}$	0.216 ± 0.028	$\boldsymbol{1.442 \pm 0.044}$	3442 ± 88
KPC-A(KFCM)	250	$\boldsymbol{0.381 \pm 0.028}$	0.215 ± 0.028	1.445 ± 0.044	3442 ± 88
KKM(500)	NA	0.350 ± 0.034	0.198 ± 0.033	1.481 ± 0.049	3603 ± 121
KKM(1000)	NA	0.357 ± 0.030	0.201 ± 0.030	1.466 ± 0.049	3539 ± 107
KKM(1500)	NA	0.363 ± 0.031	0.205 ± 0.031	1.461 ± 0.048	3512 ± 112
KPC-A(KKM)	50	0.383 ± 0.030	0.221 ± 0.030	1.449 ± 0.044	3469 ± 88
KPC-A(KKM)	150	0.383 ± 0.028	0.217 ± 0.030	1.452 ± 0.045	3458 ± 90
KPC-A(KKM)	250	0.384 ± 0.029	0.217 ± 0.031	1.452 ± 0.044	3456 ± 91

Table 5: Empiric	al resu	lts with the Activity	y data set (five cla	usses), KPC-A.	
Method	${ m L}$	NMI	ARI	DBI	SSE
RNG(500)	NA	0.385 ± 0.033	0.202 ± 0.033	1.48 ± 0.08	57766 ± 1480
RNG(1000)	NA	0.392 ± 0.030	0.202 ± 0.031	1.442 ± 0.077	56927 ± 1340
RNG(1500)	NA	0.397 ± 0.030	0.204 ± 0.032	1.428 ± 0.076	56572 ± 1301
KPC-A(RNG)	50	0.405 ± 0.026	0.214 ± 0.030	1.440 ± 0.053	56397 ± 871
KPC-A(RNG)	150	0.402 ± 0.022	0.201 ± 0.026	$\boldsymbol{1.404 \pm 0.062}$	55918 ± 815
KPC-A(RNG)	250	0.399 ± 0.022	0.199 ± 0.025	1.411 ± 0.067	55936 ± 819
KFCM(500)	NA	0.390 ± 0.031	0.199 ± 0.031	1.417 ± 0.063	57093 ± 1284
KFCM(1000)	NA	0.393 ± 0.033	0.202 ± 0.033	1.408 ± 0.056	56613 ± 1306
KFCM(1500)	NA	0.393 ± 0.030	0.201 ± 0.031	1.405 ± 0.058	56372 ± 1216
KPC-A(KFCM)	50	0.400 ± 0.025	0.200 ± 0.027	1.383 ± 0.051	56189 ± 836
KPC-A(KFCM)	150	0.395 ± 0.024	0.188 ± 0.027	1.346 ± 0.045	55861 ± 874
KPC-A(KFCM)	250	0.395 ± 0.025	0.189 ± 0.027	1.348 ± 0.046	55871 ± 900
KKM(500)	NA	0.381 ± 0.035	0.194 ± 0.034	1.449 ± 0.086	57742 ± 1624
KKM(1000)	NA	0.389 ± 0.034	0.197 ± 0.036	1.418 ± 0.069	57012 ± 1405
KKM(1500)	NA	0.390 ± 0.032	0.196 ± 0.034	1.408 ± 0.063	56809 ± 1371
KPC-A(KKM)	50	0.408 ± 0.026	0.211 ± 0.029	1.391 ± 0.054	56170 ± 908
KPC-A(KKM)	150	0.404 ± 0.025	0.206 ± 0.028	1.382 ± 0.048	55861 ± 869

 $0.404 \pm 0.026 \quad 0.207 \pm 0.029$

 $55\,809\pm861$

 1.385 ± 0.049

Table 6: Empirical results with the Cardiotocography data set (three classes), SKC.

KPC-A(KKM)

250

SNU.					
Method	La.	NMI	ARI	DBI	SSE
RNG(1060)	0	0.103 ± 0.015	0.179 ± 0.032	1.693 ± 0.018	974 ± 4
SKC(RNG)	0.05	0.176 ± 0.050	0.312 ± 0.077	1.620 ± 0.098	1016 ± 17
SKC(RNG)	0.1	0.174 ± 0.041	0.322 ± 0.058	1.607 ± 0.081	1000 ± 14
SKC(RNG)	0.3	0.163 ± 0.025	0.322 ± 0.035	1.571 ± 0.045	987 ± 9
KFCM(1060)	0	0.106 ± 0.012	0.190 ± 0.018	1.685 ± 0.008	973 ± 4
SKC(KFCM)	0.05	0.175 ± 0.048	0.313 ± 0.071	1.598 ± 0.098	1016 ± 16
SKC(KFCM)	0.1	0.172 ± 0.039	0.322 ± 0.057	1.584 ± 0.080	1000 ± 14
SKC(KFCM)	0.3	0.163 ± 0.025	0.322 ± 0.036	1.558 ± 0.042	987 ± 9
KKM(1060)	0	0.103 ± 0.014	0.181 ± 0.030	1.691 ± 0.016	974 ± 4
SKC(KKM)	0.05	0.170 ± 0.049	0.305 ± 0.081	1.600 ± 0.095	1017 ± 17
SKC(KKM)	0.1	0.173 ± 0.041	0.32 ± 0.06	1.599 ± 0.079	1001 ± 14
SKC(KKM)	0.3	0.163 ± 0.024	0.322 ± 0.035	1.570 ± 0.044	986 ± 9

Table 7: Empirical results with the MiniBooNE data set (two classes), SKC.

Method	La.	NMI	ARI	DBI	SSE
RNG(1000)	0	0.255 ± 0.024	0.335 ± 0.059	1.864 ± 0.021	61574 ± 67
SKC(RNG)	0.05	0.286 ± 0.035	0.420 ± 0.051	1.822 ± 0.045	63090 ± 332
SKC(RNG)	0.1	0.303 ± 0.026	0.443 ± 0.036	1.821 ± 0.040	62335 ± 160
SKC(RNG)	0.3	0.308 ± 0.018	0.450 ± 0.025	1.811 ± 0.031	61792 ± 54
KFCM(1000)	0	0.265 ± 0.018	0.373 ± 0.050	1.849 ± 0.028	61565 ± 44
SKC(KFCM)	0.05	0.284 ± 0.036	0.416 ± 0.054	1.818 ± 0.048	63091 ± 335
SKC(KFCM)	0.1	0.301 ± 0.027	0.439 ± 0.039	1.817 ± 0.042	62336 ± 160
SKC(KFCM)	0.3	0.305 ± 0.019	0.447 ± 0.027	1.805 ± 0.033	61795 ± 56
KKM(1000)	0	0.26 ± 0.03	0.359 ± 0.062	1.857 ± 0.025	61574 ± 95
SKC(KKM)	0.05	0.264 ± 0.049	0.384 ± 0.077	1.794 ± 0.053	63139 ± 379
SKC(KKM)	0.1	0.296 ± 0.027	0.434 ± 0.041	1.810 ± 0.042	62344 ± 167
SKC(KKM)	0.3	0.307 ± 0.018	0.450 ± 0.025	1.810 ± 0.031	61792 ± 54

Table 8: Empirical results with the Pen data set (ten classes), SKC.

Method	La.	NMI	ARI	DBI	SSE
RNG(1000)	0	0.726 ± 0.022	0.632 ± 0.036	1.417 ± 0.027	2277 ± 32
SKC(RNG)	0.05	0.699 ± 0.034	0.595 ± 0.056	1.478 ± 0.039	2795 ± 137
SKC(RNG)	0.1	0.743 ± 0.023	0.667 ± 0.036	1.449 ± 0.027	2519 ± 75
SKC(RNG)	0.3	0.769 ± 0.013	0.705 ± 0.018	1.418 ± 0.012	2341 ± 30
KFCM(1000)	0	0.714 ± 0.022	0.600 ± 0.045	1.398 ± 0.030	2284 ± 39
SKC(KFCM)	0.05	0.687 ± 0.034	0.577 ± 0.056	1.466 ± 0.037	2812 ± 150
SKC(KFCM)	0.1	0.732 ± 0.025	0.650 ± 0.039	1.437 ± 0.026	2526 ± 82
SKC(KFCM)	0.3	0.763 ± 0.015	0.697 ± 0.021	1.413 ± 0.013	2342 ± 31
KKM(1000)	0	0.699 ± 0.025	0.571 ± 0.051	1.402 ± 0.035	2311 ± 53
SKC(KKM)	0.05	0.652 ± 0.036	0.523 ± 0.056	1.452 ± 0.042	2926 ± 174
SKC(KKM)	0.1	0.707 ± 0.030	0.611 ± 0.049	1.431 ± 0.033	2599 ± 114
SKC(KKM)	0.3	0.757 ± 0.019	0.688 ± 0.028	1.415 ± 0.017	2362 ± 53

Table 9: Empirical results with the Gas data set (six classes), SKC.

Method	La.	NMI	ARI	DBI	SSE
RNG(1000)	0	0.361 ± 0.029	0.217 ± 0.028	1.500 ± 0.037	3493 ± 85
SKC(RNG)	0.05	0.406 ± 0.030	0.265 ± 0.043	1.538 ± 0.058	4194 ± 166
SKC(RNG)	0.1	0.420 ± 0.025	0.276 ± 0.039	1.533 ± 0.056	3920 ± 119
SKC(RNG)	0.3	0.420 ± 0.018	0.267 ± 0.029	1.510 ± 0.049	3707 ± 88
KFCM(1000)	0	0.358 ± 0.030	0.198 ± 0.027	1.465 ± 0.047	3492 ± 102
SKC(KFCM)	0.05	0.402 ± 0.031	0.260 ± 0.042	1.521 ± 0.059	4242 ± 186
SKC(KFCM)	0.1	0.420 ± 0.025	0.271 ± 0.039	1.515 ± 0.057	3967 ± 124
SKC(KFCM)	0.3	0.424 ± 0.020	0.258 ± 0.032	1.504 ± 0.051	3733 ± 104
KKM(1000)	0	0.357 ± 0.030	0.201 ± 0.030	1.466 ± 0.049	3539 ± 107
SKC(KKM)	0.05	0.381 ± 0.038	0.244 ± 0.047	1.503 ± 0.060	4311 ± 203
SKC(KKM)	0.1	0.414 ± 0.029	0.269 ± 0.042	1.509 ± 0.054	3994 ± 140
SKC(KKM)	0.3	0.425 ± 0.021	0.267 ± 0.034	1.509 ± 0.051	3744 ± 103

Table 10: Empirical	l results with the	Activity data set	(five classes) SKC	

Method	La.	NMI	ARI	DBI	SSE
RNG(1000)	0	0.392 ± 0.030	0.202 ± 0.031	1.442 ± 0.077	56927 ± 1340
SKC(RNG)	0.05	0.413 ± 0.050	0.249 ± 0.080	1.659 ± 0.063	70361 ± 2566
SKC(RNG)	0.1	0.441 ± 0.041	0.273 ± 0.064	1.702 ± 0.052	66690 ± 2084
SKC(RNG)	0.3	0.464 ± 0.030	0.292 ± 0.047	1.700 ± 0.052	63051 ± 1963
KFCM(1000)	0	0.393 ± 0.033	0.202 ± 0.033	1.408 ± 0.056	56613 ± 1306
SKC(KFCM)	0.05	0.396 ± 0.053	0.220 ± 0.077	1.643 ± 0.064	70135 ± 2581
SKC(KFCM)	0.1	0.422 ± 0.042	0.242 ± 0.065	1.673 ± 0.059	66338 ± 2212
SKC(KFCM)	0.3	0.445 ± 0.030	0.258 ± 0.047	1.634 ± 0.065	62355 ± 1826
KKM(1000)	0	0.389 ± 0.034	0.197 ± 0.036	1.418 ± 0.069	57012 ± 1405
SKC(KKM)	0.05	0.318 ± 0.057	0.125 ± 0.065	1.544 ± 0.068	71781 ± 2981
SKC(KKM)	0.1	0.392 ± 0.049	0.204 ± 0.068	1.590 ± 0.068	67254 ± 2479
SKC(KKM)	0.3	$\boldsymbol{0.440 \pm 0.032}$	0.250 ± 0.048	1.608 ± 0.071	63042 ± 2061