#Data Science in Marketing: Customer Segmentation Tujuan melakukan Customer Segmentation untuk lebih mengenal pelanggan supaya perusahaan dapat menyusun pesan pemasaran yang lebih sesuai dengan preferensi setiap pelanggan, menghasilkan interaksi yang lebih personal. Hal ini memungkinkan pemahaman yang lebih mendalam terhadap pelanggan secara individual, memungkinkan perusahaan untuk memahami kebutuhan dan preferensi pelanggan secara lebih baik. Dampaknya adalah penurunan biaya pemasaran, karena strategi yang lebih terarah dan efektif dapat diterapkan, mengurangi pengeluaran yang tidak perlu untuk target yang tidak sesuai.

In [1]: # Get the data
pelanggan <- read.csv("https://academy.dqlab.id/dataset/customer_segments.txt", sep="
head(pelanggan)</pre>

A data.frame: 6 × 7

	Customer_ID	Nama.Pelanggan	Jenis.Kelamin	Umur	Profesi	Tipe.Residen	NilaiBelanjaSetahun
	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<int></int>
1	CUST-001	Budi Anggara	Pria	58	Wiraswasta	Sector	9497927
2	CUST-002	Shirley Ratuwati	Wanita	14	Pelajar	Cluster	2722700
3	CUST-003	Agus Cahyono	Pria	48	Professional	Cluster	5286429
4	CUST-004	Antonius Winarta	Pria	53	Professional	Cluster	5204498
5	CUST-005	Ibu Sri Wahyuni, IR	Wanita	41	Wiraswasta	Cluster	10615206
6	CUST-006	Rosalina Kurnia	Wanita	24	Professional	Cluster	5215541

In [6]: install.packages("ggplot2") install.packages("tidyverse")

also installing the dependencies 'lattice', 'colorspace', 'nlme', 'Matrix', 'farve r', 'labeling', 'munsell', 'R6', 'RColorBrewer', 'viridisLite', 'magrittr', 'pkgco nfig', 'gtable', 'isoband', 'MASS', 'mgcv', 'scales', 'tibble', 'withr'

There are binary versions available but the source versions are later:

```
binary source needs_compilation
lattice
             0.21-8 0.22-5
                                         TRUE
            3.1-162 3.1-164
nlme
                                         TRUE
                                         TRUE
Matrix
              1.5-4
                      1.6-3
              0.4.2
                      0.4.3
                                        FALSE
labeling
viridisLite
              0.4.1
                      0.4.2
                                        FALSE
              0.3.3
gtable
                     0.3.4
                                        FALSE
MASS
           7.3-58.3 7.3-60
                                         TRUE
             1.8-42
                     1.9-0
                                        TRUE
mgcv
              1.2.1
                     1.3.0
                                        TRUE
scales
withr
              2.5.0
                      2.5.2
                                        FALSE
ggnln+2
              3 4 2
                      3 4 4
                                        FAISE
```

```
In [7]: library(ggplot2)
       library(tidyverse)
       options(repr.plot.width=12, repr.plot.height=6)
       # Plot Jenis Kelamin
       pelanggan %>%
         ggplot(aes(x = Jenis.Kelamin)) +
         geom_bar(fill = "skyblue", color = "black") +
         labs(title = "Countplot Jenis Kelamin Pelanggan", x = "Jenis Kelamin", y = "Jumlah"
         theme_minimal()
       -- Attaching core tidyverse packages ------
        ----- tidyverse 2.0.0 --
       v dplyr
                 1.1.2
                            v readr
                                        2.1.4
       v forcats 1.0.0
                         v stringr
                                        1.5.1
       v lubridate 1.9.2
                           v tibble
       v purrr
                 1.0.1
                          v tidyr
                                       1.3.0
        -- Conflicts ------
       ----- tidyverse_conflicts() --
       x dplyr::filter() masks stats::filter()
       x dplyr::lag() masks stats::lag()
       i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts
       to become errors
          Countplot Jenis Kelamin Pelanggan
        70 July 20
                                                                 Wanita
                                              Jenis Kelamin
```

Sebagian besar di dominasi oleh kelamin wanita sebanyak 41 dan pria sebanyak 9.

```
In [8]: library(tidyverse)

options(repr.plot.width=12, repr.plot.height=6)
# Plot Jenis Kelamin
pelanggan %>%
    ggplot(aes(x = Profesi)) +
    geom_bar(fill = "skyblue", color = "black") +
    labs(title = "Countplot Jenis Profesi Pelanggan", x = "Profesi", y = "Jumlah") +
    theme_minimal()
```


Sebanyak 20 pelangan berprofesi sebagai pegawai swasta, kemudian Profesional sebanyak 16, Ibu Rumah Tangga sebanyak 7, Pelajar sebanyak 4 pelanggan, dan terakhir adalah mahasiswa sebanyak 2.

```
In [9]: # Plotting Umur Pelanggan
library(ggplot2)
library(tidyverse)

# # Membuat boxplot umur berdasarkan jenis kelamin
# ggplot(pelanggan, aes(x = Profesi, y = Umur, fill = Profesi)) +
# geom_boxplot() +
# Labs(title = "Boxplot Umur Berdasarkan Jenis Kelamin", x = "Jenis Kelamin", y = "Umur")

options(repr.plot.width=12, repr.plot.height=6)
# Memplot boxplot umur berdasarkan jenis kelamin dan profesi
pelanggan %>%
ggplot(aes(x = Profesi, y = Umur, fill = Profesi)) +
geom_boxplot() +
labs(title = "Boxplot Umur Berdasarkan Profesi", x = "Profesi", y = "Umur") +
facet_wrap(~ Jenis.Kelamin, scales = "free")
```


Data Profesi pria hanya terdapat 2 yaitu Profesional dengan rata-rata 42 tahun dan wiraswasta dengan rata-rata berumur 60 tahun. Sedangkan profesi wanita lebih bervariasi seperti Ibu Rumah Tangga dengan rata-rata berumur 40 tahun, Mahasiswa dengan rata-rata berumur 19 tahun, Pelajar dengan rata-rata berumur, Professional dengan rata-rata berumur 35 tahun, dan Wiraswasta dengan rata-rata berumur 35 tahun.

```
In [10]: # Menghitung rata-rata NilaiBelanjaSetahun berdasarkan Profesi
rata_rata_per_profesi <- pelanggan %>%
    group_by(Profesi) %>%
    summarize(Rata_Rata_NilaiBelanja = mean(NilaiBelanjaSetahun))

# Menampilkan hasil rata-rata NilaiBelanjaSetahun per Profesi
rata_rata_per_profesi
```

A tibble: 5 × 2

Profesi	Rata	Rata	_NilaiBelar	ηja

<chr></chr>	<dbl></dbl>
Ibu Rumah Tangga	5802199
Mahasiswa	3045350
Pelajar	2827133
Professional	5451321
Wiraswasta	10009124

####Preparation the Data for Machine Learning Algorithms

In [11]: # Preparation the Data

pelanggan_matrix <- data.matrix(pelanggan[c("Jenis.Kelamin", "Profesi", "Tipe.Residen
head(pelanggan_matrix)</pre>

A matrix: 6×3 of type int

Jenis.Kelamin	Profesi	Tipe.Residen
1	5	2
2	3	1
1	4	1
1	4	1
2	5	1
2	4	1

In [12]: # Menggabungkan hasil konversi

pelanggan <- data.frame(pelanggan, pelanggan_matrix)
head(pelanggan)</pre>

A data.frame: 6 × 10

	Customer_ID	Nama.Pelanggan	Jenis.Kelamin	Umur	Profesi	Tipe.Residen	NilaiBelanjaSetahun	J
	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	
1	CUST-001	Budi Anggara	Pria	58	Wiraswasta	Sector	9497927	
2	CUST-002	Shirley Ratuwati	Wanita	14	Pelajar	Cluster	2722700	
3	CUST-003	Agus Cahyono	Pria	48	Professional	Cluster	5286429	
4	CUST-004	Antonius Winarta	Pria	53	Professional	Cluster	5204498	
5	CUST-005	Ibu Sri Wahyuni, IR	Wanita	41	Wiraswasta	Cluster	10615206	
6	CUST-006	Rosalina Kurnia	Wanita	24	Professional	Cluster	5215541	

In [13]: # Mengecek teks kategori dikonversi menjadi angka numerik berapa
unique(pelanggan[c("Profesi", "Profesi.1")])
unique(pelanggan[c("Jenis.Kelamin", "Jenis.Kelamin.1")])
unique(pelanggan[c("Tipe.Residen", "Tipe.Residen.1")])

A data.frame: 5 × 2

	Profesi	Profesi.1
	<chr></chr>	<int></int>
1	Wiraswasta	5
2	Pelajar	3
3	Professional	4
17	Ibu Rumah Tangga	1
31	Mahasiswa	2

A data.frame: 2 × 2

Jenis.Kelamin Jenis.Kelamin.1

	<chr></chr>	<int></int>
1	Pria	1
2	Wanita	2

A data.frame: 2 × 2

Tipe.Residen Tipe.Residen.1

	<chr></chr>	<int></int>
1	Sector	2
2	Cluster	1

Kelihatan kalau Wiraswasta dikonversi menjadi angka 5, Pelajar menjadi angka 3, Professional menjadi angka 4, Ibu Rumah Tangga menjadi angka 1, dan satu lagi adalah Mahasiswa yang dikonversi menjadi angka 2 (tidak terlihat disini).

Kita akan menormalisasikan NilaiBelanjaSetahun agar perhitungan lebih sederhana dan mudah dicerna, namun tidak mengurangi akurasi. karena ketika kolom ini digunakan untuk clustering, perhitungan sum of squared errors akan menjadi sangat besar

In [14]: # Menormalisasikan Nilai Belanja pelanggan\$NilaiBelanjaSetahun <- pelanggan\$NilaiBelanjaSetahun / 1000000 head(pelanggan)</pre>

A data.frame: 6 × 10

	Customer_ID	Nama.Pelanggan	Jenis.Kelamin	Umur	Profesi	Tipe.Residen	NilaiBelanjaSetahun	J
	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<dbl></dbl>	
1	CUST-001	Budi Anggara	Pria	58	Wiraswasta	Sector	9.497927	
2	CUST-002	Shirley Ratuwati	Wanita	14	Pelajar	Cluster	2.722700	
3	CUST-003	Agus Cahyono	Pria	48	Professional	Cluster	5.286429	
4	CUST-004	Antonius Winarta	Pria	53	Professional	Cluster	5.204498	
5	CUST-005	Ibu Sri Wahyuni, IR	Wanita	41	Wiraswasta	Cluster	10.615206	
6	CUST-006	Rosalina Kurnia	Wanita	24	Professional	Cluster	5.215541	
4								

####Membuat Data Master

```
In [15]: #Membuat Data Master
Profesi <- unique(pelanggan[c("Profesi","Profesi.1")])
Jenis.Kelamin <- unique(pelanggan[c("Jenis.Kelamin","Jenis.Kelamin.1")])
Tipe.Residen <- unique(pelanggan[c("Tipe.Residen","Tipe.Residen.1")])</pre>
```

####MODELLING Karena kita akan melakukan segmentasi pelanggan, maka kita akan mengclusterkan pelanggan yang dimana membagi pelanggan kedalam beberapa kelompok berdasarkan tingkat kemiripan antara satu pelanggan dengan yang lainnya. Disini menggunakan algoritma machine learning K-Means untuk mengclusterkan pelanggan.

```
In [16]: set.seed(100)

# Kolom yang digunakan
field_yang_digunakan <- c("Jenis.Kelamin.1", "Umur", "Profesi.1", "Tipe.Residen.1", "I
segmentasi <- kmeans(x=pelanggan[field_yang_digunakan], centers=5, nstart=25)
segmentasi</pre>
```

K-means clustering with 5 clusters of sizes 5, 12, 14, 9, 10

Cluster means:

```
Jenis.Kelamin.1
                        Umur Profesi.1 Tipe.Residen.1 NilaiBelanjaSetahun
             1.40 61.80000 4.200000 1.400000
                                                                     8.696132
             1.75 31.58333 3.916667
                                                                      7.330958
2
                                               1.250000
3
             2.00 20.07143 3.571429
                                               1.357143
                                                                     5.901089

      2.00 42.33333
      4.000000
      1.555556

      1.70 52.50000
      3.800000
      1.300000

4
            2.00 42.33333 4.000000
                                                                     8.804791
5
                                                                     6.018321
```

Clustering vector:

```
[1] 1 3 5 5 4 3 1 5 2 2 5 5 1 1 3 2 2 1 2 3 4 5 2 4 2 5 2 4 5 4 3 4 3 3 4 2 3 4 [39] 3 3 3 2 2 3 3 3 5 4 2 5
```

```
Within cluster sum of squares by cluster:

[1] 58.21123 174.85164 316.73367 171.67372 108.49735

(between_SS / total_SS = 92.4 %)
```

Available components:

Terdapat 5 kelompok data yang telah dibagi ke dalam klaster berdasarkan beberapa kriteria.

Klaster pertama memiliki 5 data dengan rata-rata usia 61 tahun, dimana 40% dari mereka berjenis kelamin pria dan 60% berjenis kelamin wanita. Mayoritas dari kelompok ini adalah profesional atau pekerja swasta, dengan pengeluaran tahunan rata-rata sekitar 8.7 juta.

Klaster kedua terdiri dari 12 data dengan rata-rata usia 31 tahun, dimana mayoritas hampir semuanya berjenis kelamin wanita. Mayoritas dari mereka berprofesi sebagai profesional, dengan pengeluaran tahunan rata-rata sekitar 7.3 juta.

Klaster ketiga terdiri dari 14 data dengan rata-rata usia 20 tahun dan mayoritas berjenis kelamin wanita. Mayoritas dari mereka adalah pelajar atau profesional, dan mereka menghabiskan rata-rata belanja tahunan hampir mencapai 6 juta.

Klaster keempat terdiri dari 9 data dengan rata-rata usia 42 tahun, semuanya berjenis kelamin wanita, mayoritas dari mereka bekerja sebagai profesional, dan mereka memiliki pengeluaran tahunan rata-rata sebesar 8.8 juta.

Terakhir, klaster kelima memiliki 10 data dengan rata-rata usia 52 tahun, dimana mayoritas juga berjenis kelamin wanita. Sebagian besar dari kelompok ini berprofesi sebagai profesional dan memiliki pengeluaran tahunan sekitar 6 juta.

Analisa Hasil Model K Means:

- Berdasarkan cluster, nilai 58.211228098358 adalah SS untuk cluster ke-1, nilai 174.851640331072 adalah SS untuk cluster ke-2, nilai 316.733666810598 adalah SS untuk cluster ke-3, nilai 171.673715890372 adalah SS untuk cluster ke-4, dan nilai 108.497347873209 adalah SS untuk cluster ke-5. Semakin kecil nilainya berpotensi semakin baik.
- total_SS: adalah SS untuk seluruh titik terhadap nilai rata-rata global, bukan untuk per cluster. Nilai ini selalu tetap dan tidak terpengaruh dengan jumlah cluster.

- between SS: adalah total SS dikurangi dengan jumlah nilai SS seluruh cluster.
- (between_SS / total_SS) adalah rasio antara between_SS dibagi dengan total_SS. Semakin besar persentasenya, umumnya semakin baik. Karena di sini rasionya cukup besar (92.4%), maka kemungkinan hasilnya akan semakin baik.

```
In [17]: # Simulasi Jumlah Cluster dan SS
sse <- sapply(1:10, function(param_k) {kmeans(pelanggan[field_yang_digunakan], param_l
sse</pre>
```

```
10990.9740325902 · 3016.56115098999 · 1550.87245258579 · 1064.4186744681 · 829.967599003609 · 625.146176215474 · 508.156812409351 · 431.697737230219 · 374.109472124797 · 317.942393960025
```

```
Warning message:
```

"Continuous limits supplied to discrete scale.

i Did you mean `limits = factor(...)` or `scale_*_continuous()`?"

Dari grafik yang kita hasilkan ini, kita melihat bahwa untuk cluster ke-1 hingga ke-2, penurunan nilai Sum of Squares nya lebih besar dari cluster-cluster lainnya, begitu juga untuk cluster ke 2–3. Namun, saat memasuki cluster 3–4 dan 4–5, penurunan nilai SSE nya tidak terlalu signifikan, sehingga dari grafik ini sudah terlihat jelas bahwa kita bisa memilih 4 atau 5 sebagai jumlah cluster optimal yang bisa kita pilih.

```
In [19]: library(cluster)
         library(ggplot2)
         # Simulasi Jumlah Cluster dan SS
         sse <- sapply(2:10, function(param_k) {</pre>
           km_model <- kmeans(pelanggan[field_yang_digunakan], param_k, nstart = 25)</pre>
           km_model$tot.withinss
         })
         # Menghitung Silhouette Score
         silhouette_vals <- vector(mode = "numeric", length = 10)</pre>
         for (i in 0:9) {
           km_model <- kmeans(pelanggan[field_yang_digunakan], i, nstart = 25)</pre>
           silhouette_vals[i] <- mean(silhouette(km_model$cluster, dist(pelanggan[field_yang_d</pre>
         }
         # Plot Sum of Squared Errors (SSE)
         jumlah_cluster_max <- 10</pre>
         ssdata <- data.frame(cluster = 1:jumlah_cluster_max, sse = c(NA, sse)) # Menambahkan</pre>
         plot_sse <- ggplot(ssdata, aes(x = cluster, y = sse)) +</pre>
           geom_line(color = "red") +
           geom_point() +
           ylab("Within Cluster Sum of Squares") +
           xlab("Jumlah Cluster") +
           geom_text(aes(label = format(round(sse, 2), nsmall = 2)), hjust = -0.2, vjust = -0.
           scale_x_continuous(breaks = seq(1, jumlah_cluster_max, 1))
         # Plot Silhouette Score
         plot_silhouette <- ggplot(data.frame(cluster = 2:10, silhouette_score = silhouette_val</pre>
           geom_line(color = "blue") +
           geom_point() +
           ylab("Silhouette Score") +
           xlab("Jumlah Cluster") +
           geom_text(aes(label = format(round(silhouette_score, 2), nsmall = 2)), hjust = -0.2
           scale_x_continuous(breaks = seq(2, jumlah_cluster_max, 1))
         # Menampilkan kedua plot dalam satu grid
         library(gridExtra)
         grid.arrange(plot_sse, plot_silhouette, nrow = 2)
```

Error in library(cluster): there is no package called 'cluster'
Traceback:

1. library(cluster)

In [20]: # Menggabungkan hasil segmentasi ke data utama
 pelanggan\$cluster <- segmentasi\$cluster
 head(pelanggan[c("Customer_ID", "Nama.Pelanggan", "Jenis.Kelamin", "Umur", "Profetation")</pre>

A data.frame: 6 × 8

	Customer_ID	Nama.Pelanggan	Jenis.Kelamin	Umur	Profesi	Tipe.Residen	NilaiBelanjaSetahun	cl
	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<dbl></dbl>	
1	CUST-001	Budi Anggara	Pria	58	Wiraswasta	Sector	9.497927	
2	CUST-002	Shirley Ratuwati	Wanita	14	Pelajar	Cluster	2.722700	
3	CUST-003	Agus Cahyono	Pria	48	Professional	Cluster	5.286429	
4	CUST-004	Antonius Winarta	Pria	53	Professional	Cluster	5.204498	
5	CUST-005	Ibu Sri Wahyuni, IR	Wanita	41	Wiraswasta	Cluster	10.615206	
6	CUST-006	Rosalina Kurnia	Wanita	24	Professional	Cluster	5.215541	

In [21]: # Melihat data pada cluster ke (Misal cluster 1)
pelanggan[which(pelanggan\$cluster == 1),]

A data.frame: 5 × 11

	Customer_ID	Nama.Pelanggan	Jenis.Kelamin	Umur	Profesi	Tipe.Residen	NilaiBelanjaSetahun	J
	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<dbl></dbl>	
1	CUST-001	Budi Anggara	Pria	58	Wiraswasta	Sector	9.497927	
7	CUST-007	Cahyono, Agus	Pria	64	Wiraswasta	Sector	9.837260	
13	CUST-013	Cahaya Putri	Wanita	64	Wiraswasta	Cluster	9.333168	
14	CUST-014	Mario Setiawan	Pria	60	Wiraswasta	Cluster	9.471615	
18	CUST-018	Nelly Halim	Wanita	63	Ibu Rumah Tangga	Cluster	5.340690	
4								•

Memberi nama segmen

Cluster 1 : Diamond Senior Member: alasannya adalah karena umurnya rata-rata adalah 61 tahun dan pembelanjaan di atas 8 juta.

Cluster 2 : Gold Young Professional: alasannya adalah karena umurnya rata-rata adalah 31 tahun, professional dan pembelanjaan cukup besar.

Cluster 3 : Silver Youth Gals: alasannya adalah karena umurnya rata-rata adalah 20, wanita semua, profesinya bercampur antar pelajar dan professional serta pembelanjaan sekitar 6 juta.

Cluster 4 : Diamond Profesional: alasannya adalah karena umurnya rata-rata adalah 42 tahun, pembelanjaan paling tinggi dan semuanya berprofesi professional.

Cluster 5 : Silver Mid Professional: alasannya adalah karena umurnya rata-rata adalah 52 tahun dan pembelanjaan sekitar 6 juta.

A data.frame: 5 × 2

Nama.Segmen	cluster
<chr></chr>	<dbl></dbl>
Diamond Senior Member	1
Gold Young Professional	2
Silver Youth Gals	3
Diamond Professional	4
Silver Mid Professional	5

```
In [24]: # Menyimpan Objek dalam Bentuk File
saveRDS(Identitas.Cluster, "cluster.rds")
```

Mengoperasionalkan Model K-Means

A data.frame: 1 × 7

NilaiBelanjaSetahun	Tipe.Residen	Profesi	Jenis.Kelamin	Umur	Nama.Pelanggan	Customer_ID
<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>
3.5	Cluster	Pelaiar	Pria	20	Rudi Wilamar	CUST-100

```
In [26]: # Memuat Objek Clustering dari File
         Identitas.Cluster <- readRDS(file="cluster.rds")</pre>
         Identitas.Cluster
         $Profesi
                     Profesi Profesi.1
         1
                  Wiraswasta
         2
                                     3
                     Pelajar
                Professional
                                     4
         17 Ibu Rumah Tangga
                                    1
                   Mahasiswa
                                     2
         $Jenis.Kelamin
           Jenis.Kelamin Jenis.Kelamin.1
                    Pria
         2
                  Wanita
                                       2
         $Tipe.Residen
           Tipe.Residen Tipe.Residen.1
                 Sector
         2
                Cluster
                                     1
         $Segmentasi
         K-means clustering with 5 clusters of sizes 5, 12, 14, 9, 10
         Cluster means:
           Jenis.Kelamin.1
                               Umur Profesi.1 Tipe.Residen.1 NilaiBelanjaSetahun
         1
                      1.40 61.80000 4.200000
                                                    1.400000
                                                                       8.696132
                      1.75 31.58333 3.916667
         2
                                                    1.250000
                                                                        7.330958
         3
                      2.00 20.07143 3.571429
                                                    1.357143
                                                                        5.901089
         4
                      2.00 42.33333 4.000000
                                                    1.555556
                                                                        8.804791
         5
                      1.70 52.50000 3.800000
                                                    1.300000
                                                                        6.018321
         Clustering vector:
          [1] 1 3 5 5 4 3 1 5 2 2 5 5 1 1 3 2 2 1 2 3 4 5 2 4 2 5 2 4 5 4 3 4 3 3 4 2 3 4
         [39] 3 3 3 2 2 3 3 3 5 4 2 5
         Within cluster sum of squares by cluster:
         [1] 58.21123 174.85164 316.73367 171.67372 108.49735
          (between_SS / total_SS = 92.4 %)
         Available components:
                                           "totss"
         [1] "cluster"
                            "centers"
                                                          "withinss"
                                                                          "tot.withinss"
         [6] "betweenss"
                            "size"
                                           "iter"
                                                          "ifault"
         $Segmen.Pelanggan
           cluster
                               Nama.Segmen
         1
                     Diamond Senior Member
         2
                 2 Gold Young Professional
         3
                 3
                         Silver Youth Gals
         4
                 4
                      Diamond Professional
         5
                 5 Silver Mid Professional
         $field_yang_digunakan
                                   "Umur"
         [1] "Jenis.Kelamin.1"
                                                          "Profesi.1"
```

"NilaiBelanjaSetahun"

[4] "Tipe.Residen.1"

```
In [27]: # Merge dengan Data Referensi
    databaru <- merge(databaru, Identitas.Cluster$Profesi)
    databaru <- merge(databaru, Identitas.Cluster$Jenis.Kelamin)
    databaru <- merge(databaru, Identitas.Cluster$Tipe.Residen)
    databaru</pre>
```

A data.frame: 1 × 10

```
Tipe.Residen Jenis.Kelamin Profesi Customer_ID Nama.Pelanggan Umur NilaiBelanjaSetahun Profesi.1
      <chr>
                     <chr>
                             <chr>
                                           <chr>
                                                            <chr> <dbl>
                                                                                       <dbl>
                                                                                                  <int>
                                                                                                     3
     Cluster
                       Pria
                            Pelajar
                                       CUST-100
                                                      Rudi Wilamar
                                                                      20
                                                                                          3.5
```

A data.frame: 1 × 2

3

cluster Nama.Segmen
<dbl> <chr>
3 Silver Youth Gals

Data baru yang telah masuk ternyata masuk ke dalam kelompok Silver Youth Gals

Type $\it Markdown$ and LaTeX: $\it \alpha^2$

```
In [ ]:
```