Howrey Docket No.: 01339.0009.NPUS01

Cal Tech Ref. No.: CIT-3398

AMENDMENTS TO THE CLAIMS:

The following claims will replace all prior claims in the application. Kindly cancel claims 1, 4 and 12, and amend claims 2, 5, 7-11 and 13 as follows:

Listing of Claims:

- 1. (canceled)
- 2. (currently amended) The A method of claim 1 tangibly embodied on or in a memory for deriving barycentric coordinates for a point p within an n-sided polygon, wherein, for a particular coordinate w_j , corresponding to a vertex q_j , the method embodies a formula which may be expressed as follows:

$$w_{j} = \frac{\cot(\gamma_{j}) + \cot(\delta_{j})}{\|\mathbf{p} - \mathbf{q}_{j}\|^{2}}$$

where δ_i and γ_i are adjacent angles to the edge $\mathbf{pq_i}$ at the vertex $\mathbf{q_i}$.

- 3. (original) The method of claim 2 wherein a series of instructions or program code embodying the method is stored in a memory.
- 4. (canceled)
- 5. (currently amended) The \underline{A} method of claim 4 tangibly embodied on or in a memory for deriving weights w_{ij} for expressing a vertex $\underline{\mathbf{q}}_i$ in a mesh representation of an object surface in terms of its one-ring neighbors $\underline{\mathbf{q}}_i$, $\forall j \in N(i)$, wherein, for a particular weight w_{ij} , corresponding to a vertex $\underline{\mathbf{q}}_i$, the method embodies a formula which may be expressed as follows:

$$w_{ij} = \frac{\cot(\gamma_j) + \cot(\delta_j)}{\|\mathbf{q_i} - \mathbf{q_j}\|^2}$$

where δ_i and γ_i are adjacent angles to the edge $\mathbf{q}_i\mathbf{q}_i$ at the vertex \mathbf{q}_i .

Howrey Docket No.: 01339.0009.NPUS01

Cal Tech Ref. No.: CIT-3398

6. (original) The method of claim 5 wherein a series of instructions or program code embodying the method is stored in a memory.

7. (currently amended) A <u>processor readable medium tangibly embodying a method of</u> parameterizing a mesh representation of an object surface, the method comprising the steps of:

for one or more vertices $\mathbf{q_i}$ of the mesh representation, computing for one or more of its one-ring neighbors $\mathbf{q_i}$, $\forall j \in N(i)$, a weight $\mathbf{w_{ij}}$ in accordance with the following formula:

$$w_{ij} = \frac{\cot(\gamma_j) + \cot(\delta_j)}{\|\mathbf{q_i} - \mathbf{q_j}\|^2}$$

where δ_i and γ_i are adjacent angles to the edge $\mathbf{q}_i\mathbf{q}_j$ at the vertex \mathbf{q}_j ; and

responsive to one or more of the weights w_{ij} determined in the foregoing step, determining the parameterized coordinates of one or more of the vertices of the mesh representation.

- 8. (currently amended) The method medium of claim 7 wherein the method further emprising comprises fixing the positions of one or more boundary vertices in parameter space.
- 9. (currently amended) The method medium of claim 8 wherein the method further emprising comprises assigning each of these vertices a position on a fixed boundary \mathbf{C} , where the position on the fixed boundary \mathbf{C} assigned to a vertex i may be referred to as $\mathbf{C}_{\mathbf{u}}$.
- 10. (currently amended) The method medium of claim 9 wherein the method further comprising comprises solving the following system of linear equations in order to derive the parameterization of the mesh representation:

$$\forall i, i \in [1...n], \left\{ \begin{aligned} \sum_{j \in N(i)} w_{ij} \left(\mathbf{u}_{i} - \mathbf{u}_{j} \right) &= 0 & \text{if } i \text{ is an interior vertex} \\ \mathbf{u}_{i} &= \mathbf{C}_{\mathbf{u}_{i}} & \text{if } i \text{ is a boundary vertex} \end{aligned} \right\}$$

where \mathbf{u}_i is the vertex i in parameter space (and \mathbf{u}_j is the vertex j in parameter space), and $\mathbf{C}_{\mathbf{u}_i}$ is the boundary position in parameter space assigned to the boundary vertex i.

Howrey Docket No.: 01339.0009.NPUS01

Cal Tech Ref. No.: CIT-3398

11. (currently amended) A <u>processor readable medium tangibly embodying a method of parameterizing a mesh representation of an object surface, the method comprising the steps of:</u>

a step for computing, for one or more vertices $\mathbf{q_i}$ of the mesh representation and one or more of its one-ring neighbors $\mathbf{q_j}$, $\forall j \in N(i)$, a weight $\mathbf{w_{ij}}$ in accordance with the following formula:

$$w_{ij} = \frac{\cot(\gamma_j) + \cot(\delta_j)}{\|\mathbf{q}_i - \mathbf{q}_j\|^2}$$

where δ_i and γ_i are adjacent angles to the edge $\mathbf{q_i}\mathbf{q_i}$ at the vertex $\mathbf{q_i}$; and

a step for determining, responsive to one or more of the weights $\mathbf{w_{ij}}$ determined in the foregoing step, the parameterized coordinates of one or more of the vertices of the mesh representation.

- 12. (canceled)
- 13. (currently amended) The medium of elaim 12 any of claims 7-11 wherein the method is embodied as instructions or program code stored in a memory.
- 14. (previously presented) The medium of claim 13 wherein the memory is selected from the group comprising RAM, ROM, PROM, EPROM, EEPROM, hard disk, floppy disk, CD-ROM, DVD, and flash memory.