2022-2023学年秋季学期

课程名称: 信息安全数学基础

英文名称: Mathematical Foundations

for Information Security

授课团队: 胡磊、许军、王丽萍

助 教:郭一

2022-2023秋 课程编码: 083900M01003H 课程名称: 信息安全数学基础 授课团队: 胡磊、许军、王丽萍

信息安全数学基础

Mathematical Foundations for Information Security

[第 3 次课] 同余与模幂运算

授课教师: 胡磊

授课时间: 2022年9月7、14日

2022-2023秋 课程编码: 083900M01003H 课程名称: 信息安全数学基础 授课团队: 胡磊、许军、王丽萍

概要

- 同余的概念及其性质
- 剩余类及完全剩余类
- 简化剩余系与欧拉函数
- 欧拉定理和费马小定理
- 重复平方—乘法法及其变型(一般模幂运算)
- Montgomery模幂运算

同余的概念及基本性质

定义:对m作带余除法(余数范围固定),如果整数a,b被m除的余数相同,则称a,b模m 同余,记作 $a \equiv b$ (modm),否则叫做模m不同余,记作

 $a \not\equiv b \pmod{m}$

定理: 两个整数a, b叫做模m同余 $\Longleftrightarrow m|a-b$ $\iff a=b+km, k \in \mathbb{Z}$

a=mq + r, $0 \le r < m$, b=mq' + r', $0 \le r' < m$,

因此,m|a-b的充分必要条件是 m|r-r'. 但因为 $0 \le |r-r'| < m$, 且 m|r-r' 的充分必要条件是 r-r'=0, 所以 m|a-b 的充分必要条件是 r-r'=0. 这就是定理的结论,证毕.

定理: 如果 $a_1 \equiv b_1 \pmod{m}$, $a_2 \equiv b_2 \pmod{m}$, 则

(i)
$$a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$$

(ii)
$$a_1 a_2 \equiv b_1 b_2 \pmod{m}$$

证

$$a_1=b_1+k_1m$$
, $a_2=b_2+k_2m$,
 $a_1+a_2=b_1+b_2+(k_1+k_2)m$
 $a_1a_2=b_1b_2+(k_1b_2+k_2b_2+k_1k_2m)m$

• 同余保持加、减、乘运算。

定理 5 若
$$x \equiv y \pmod{m}$$
, $a_i \equiv b_i \pmod{m}$, $0 \le i \le k$, 则 $a_0 + a_1 x + \dots + a_k x^k \equiv b_0 + b_1 y + \dots + b_k y^k \pmod{m}$.

定理 6 设 $n = a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 10 + a_0, \ 0 \le a_i < 10.$ 则 $3|n \Leftrightarrow 3|a_k + \dots + a_0$,而 $9|n \Leftrightarrow 9|a_k + \dots + a_0$.

if $a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 10 + a_0 \equiv a_k + \dots + a_0 \pmod{3}$.

因此, $a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 10 + a_0 \equiv 0 \pmod{3}$ 的充分必要条件是 $a_k + \dots + a_0 \equiv 0 \pmod{3}$. 结论对于 m = 3 成立.

例 7 设 n = 5874192, 则 3|n, 9|n.

解
$$a_k + \cdots + a_0 = 5 + 8 + 7 + 4 + 1 + 9 + 2 = 36$$
, 又 $3|36$, $9|36$, 故 $3|n$, $9|n$.

例 8 设 n = 637693, 则 n 被 3 整除, 但不被 9 整除.

解
$$a_k + \cdots + a_0 = 6 + 3 + 7 + 6 + 9 + 3 = 30 = 3 \cdot 10$$
, 又 $3|3 \cdot 10$, 9 $\cancel{|} 3 \cdot 10$, 故 $3|n$, 9 $\cancel{|} n$.

定理 7 设 $n = a_k 1000^k + \cdots + a_1 1000 + a_0$, $0 \le a_i < 1000$. 则 7或11,或13 $|n \Leftrightarrow 7$ 或11,或13 $|(a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots)$.

证因为 $1000 = 7 \cdot 11 \cdot 13 - 1 \equiv -1 \pmod{7}$, 所以有 $1000 \equiv 1000^3 \equiv \cdots \equiv -1 \pmod{7}$, $1000^2 \equiv 1000^4 \equiv \cdots \equiv 1 \pmod{7}$. 进而,

$$a_k 1000^k + a_{k-1} 1000^{k-1} + \dots + a_1 1000 + a_0 \equiv (a_0 + a_2 + \dots) - (a_1 + a_3 + \dots) \pmod{7}$$
.

因此, $7|n \Leftrightarrow 7|(a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots)$.

即结论对于 m = 7 成立. 同理, 结论对于 m = 11 或 13 也成立.

例 9 设 n = 637693, 则 n 被 7 整除, 但不被 11, 13 整除.

解因为 $n = 637 \cdot 1000 + 693$,又

$$(a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots) = 693 - 637 = 56 = 7 \cdot 8.$$

所以 n 被 7 整除, 但不被 11, 13 整除.

例 10 设 n = 75312289, 则 n 被 13 整除, 但不被 7, 11 整除.

解因为 $n = 75 \cdot 1000^2 + 312 \cdot 1000 + 289$,又

$$(a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots) = (289 + 75) - 312 = 52 = 13 \cdot 4.$$

所以 n 被 13 整除, 但不被 7, 11 整除.

* 定理 8 设 $ad \equiv bd \pmod{m}$. 若 (d, m) = 1, 则 $a \equiv b \pmod{m}$.

证 因为 $ad \equiv bd \mod m$,则 $m \mid ad - bd$

 $\mathbf{m}|(a-b)d$

m|(a-b), $m \equiv b \mod m$

* 定理 10 设 $a \equiv b \pmod{m}$. 若 $d \mid (a, b, m)$, 则 $\frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}}$. 证 设 $d \mid (a, b, m)$, 则 a = da', b = db', m = dm'.

又 $a \equiv b \pmod{m}$, 有 a = b + mk, 即 da' = db' + dm'k. 故 a' = b' + m'k. 或 $a' \equiv b' \pmod{m'}$ 或者 $\frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}}$.

* 定理 11 设 $a \equiv b \pmod{m}$. 如果 d|m, 则 $a \equiv b \pmod{d}$.

- * 定理 12 设 $a \equiv b \pmod{m_i}$, i = 1, ..., k, 则 $a \equiv b \pmod{[m_1, ..., m_k]}$.
- 证设 $a \equiv b \pmod{m_i}$,则 $m_i | a b$. 进而 $[m_1, \ldots, m_k] \mid a b$. 即 $a \equiv b \pmod{[m_1, \ldots, m_k]}$.
- * **例 16** 设 p, q 是不同素数. 若 a, b满足 $a \equiv b \pmod{p}$, $a \equiv b \pmod{q}$, 则 $a \equiv b \pmod{pq}$.

定理 13 设 $a \equiv b \pmod{m}$, 则 (a, m) = (b, m).

证 设 $a \equiv b \pmod{m}$, 则存在整数 k 使得 a = b + mk. 根据 §1.3 定理 3, 我们有 (a, m) = (b, m).

剩余类及完全剩余系

对任意整数 a, 令 $C_a = \{c \mid c \in \mathbf{Z}, a \equiv c \pmod{m}\}.$

定理 1 i) 任一整数必包含在一个 C_r 中, $0 \le r \le m-1$.

- ii) $C_a = C_b \Leftrightarrow a \equiv b \pmod{m}$. (1)
- iii) $C_a \cap C_b = \emptyset \Leftrightarrow a \not\equiv b \pmod{m}$.

定义 1 C_a 叫做模 m 的 a 的 **剩余类**. 一个剩余类中的任一数 叫做该类的 **剩余** 或 **代表元**. 若 $r_0, r_1, \ldots, r_{m-1}$ 是 m 个整数,并且其中任何两个数都不在同一个剩余类里,则 r_0, \ldots, r_{m-1} 叫做 模 m 的一个 **完全剩余系**. 模 m 的剩余类有 m 个

$$C_0, C_1, \ldots, C_{m-1}.$$

例 1 对任意整数 a, $C_a = \{a + 10k \mid k \in \mathbb{Z}\}$ 是模 m = 10 的剩余类.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 为模 10 的一个完全剩余系.

定理 2 m 个整数 $r_0, r_1, ..., r_{m-1}$ 为模 m 的一个完全剩余系的充分必要条件是它们模 m 两两不同余.

 $\mathbf{M} \mathbf{2} \mathbf{0} \mathbf{0} \mathbf{0} \mathbf{0} \mathbf{0} \mathbf{0}$

- i) 0, 1, ..., *m* 1 是模 *m* 的一个完全剩余系, 叫做模 *m* 的 **最 小非负完全剩余系**;
- ii) 1, ..., *m* 1, *m* 是模 *m* 的一个完全剩余系, 叫做模 *m* 的**最小正完全剩余系**;

- iii) -(m-1), ..., -1, 0 是模 m 的一个完全剩余系,叫做模 m 的 **最大非正完全剩余系**;
- $(v)_{-m, -(m-1), ..., -1}$ 是模 m 的一个完全剩余系,叫做模 m 的 最大负完全剩余系:
- v) 当 m 分别为偶数时, -m/2, -(m-2)/2, ..., -1, 0, 1, ..., (m-2)/2, $\overline{\mathbf{g}}$ -(m-2)/2, ..., -1, 0, 1, ..., (m-2)/2, m/2, 是模 m 的一个完全剩余系;

当 m 分别为奇数时,

$$-(m-1)/2, \ldots, -1, 0, 1, \ldots, (m-1)/2$$

是模 m 的一个<mark>完全剩余</mark>系,上述两个完全剩余系统称为模 m 的一个<mark>绝对值最小完全剩余系</mark>。

定理 3 设 (a, m) = 1, b 是任意整数. 若 x 遍历模 m 的一个完全剩余系,则 ax + b 也遍历模 m 的一个完全剩余系.

证 根据定理 2, 只需证明: 当 a_0 , a_1 , ..., a_{m-1} 是模 m 的一个 完全剩余系时, m 个整数 $aa_0 + b$, $aa_1 + b$, ..., $aa_{m-1} + b$ 模 m 两不同余. 事实上,若存在 a_i 和 a_j ($i \neq j$) 使得

$$aa_i + b \equiv aa_j + b \pmod{m}$$
,
则 $m|a(a_i - a_j)$. 因为 $(a, m) = 1$
$$m|a_i - a_j$$

这说明 a_i 与 a_j 模 m 同余,与假设矛盾.

因此, ax + b 也遍历模 m 的一个完全剩余系.

定理 4 设 $(m_1, m_2) = 1$. 若 x_1, x_2 分别遍历模 m_1, m_2 的完全剩余系,则 $m_2x_1 + m_1x_2$ 遍历模 m_1m_2 的完全剩余系.

证 因为 x_1 , x_2 分别遍历 m_1 , m_2 个数时, $m_2x_1 + m_1x_2$ 遍历 m_1m_2 个整数,所以只需证明这 m_1m_2 个整数模 m_1m_2 两两不同 余. 事实上,若整数 x_1 , x_2 和 y_1 , y_2 满足

$$m_2x_1 + m_1x_2 \equiv m_2y_1 + m_1y_2 \pmod{m_1m_2},$$

 $\iiint m_2 x_1 + m_1 x_2 \equiv m_2 y_1 + m_1 y_2 \pmod{m_1}$

 $m_2x_1 \equiv m_2y_1 \pmod{m_1}$ 所以 $m_1|x_1 - y_1$

故 x_1 与 y_1 模 m_1 同余.

同理, x_2 与 y_2 模 m_2 同余. 因此, 定理是成立的.

例 3 设 p, q 是不同的素数, n = pq. 则对任意整数 c, 存在惟一的一对整数 x, y 满足 $qx + py \equiv c \pmod{n}$, $0 \le x < p$, $0 \le y < q$.

证 因为 p, q 是两个不同的素数, 所以 p, q 是互素的. 根据定理 4 及其证明, 知 x, y 分别遍历模 p, q 的完全剩余系时, qx + py 遍历模 n = pq 的完全剩余系. 因此, 存在惟一的一对整数 x, y 满足

$$qx + py \equiv c \pmod{n}, \qquad 0 \le x < p, \ 0 \le y < q.$$

简化剩余类及欧拉函数

定义 1 设 m 是一个正整数. 则 m 个整数 0, 1, ..., m-1 中与 m 互素的整数的个数,记作 $\varphi(m)$,通常叫做 **欧拉** (Euler) **函数**.

例 1 设 m = 10. 则 10 个整数 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 中与 10 互素的整数为 1, 3, 7, 9, 所以 $\varphi(10) = 4$.

定义 2 一个模 m 的剩余类叫做 **简化剩余类**, 如果该类中存在一个与 m 互素的剩余.

定理 1 设 r_1 , r_2 是同一模 m 剩余类的两个剩余,则 r_1 与 m 互素的充分必要条件是 r_2 与 m 互素.

证 依题设,有 $r_1 = r_2 + km$. 进而 $(r_1, m) = (r_2, m)$. 因此, $(r_1, m) = 1 \Leftrightarrow (r_2, m) = 1$.

_

定义 3 在模 m 的所有不同简化剩余类中,从每个类任取一个数组成的整数的集合,叫做模 m 的一个 **简化剩余系**.

模m的简化剩余系的元素个数为 $\varphi(m)$.

例 3 1, 3, 7, 9 是模 10 的简化剩余系, $\varphi(10) = 4$.

例 4 1, 7, 11, 13, 17, 19, 23, 29 是模 30 的简化剩余系, $\varphi(30) = 8$.

例 5 1, 2, 3, 4, 5, 6 是模 7 的简化剩余系, $\varphi(7) = 6$.

例 6 当 m = p 为素数时, 1, 2, ..., p - 1 是模 p 的简化剩余系,所以 $\varphi(p) = p - 1$.

定理 2 若 $r_1, \ldots, r_{\varphi(m)}$ 是 $\varphi(m)$ 个与 m 互素的整数,并且两两模 m 不同余,则 $r_1, \ldots, r_{\varphi(m)}$ 是模 m 的一个简化剩余系.

定理 3 设 (a,m) = 1. 如果 x 遍历模 m 的一个简化剩余系,则 ax 也遍历模 m 的一个简化剩余系.

证 因为 (a,m) = 1, (x,m) = 1, 所以 (ax,m) = 1. 这说明 ax 是简化剩余类的剩余. 又 $ax_1 \equiv ax_2 \pmod{m}$ 时,有 $x_1 \equiv x_2 \pmod{m}$. 因此,x 遍历模 m 的一个简化剩余系时,ax 遍历 $\varphi(m)$ 个数,且它们两两模 m 不同余. 根据定理 2, ax 遍历模 m 的一个简化剩余系.

例 7 已知 1, 7, 11, 13, 17, 19, 23, 29 是模 30 的简化剩余系, (7,30) = 1. 所以

$$7 \cdot 1 \equiv 7$$
, $7 \cdot 7 = 49 \equiv 19$, $7 \cdot 11 = 77 \equiv 17$, $7 \cdot 13 = 91 \equiv 1$, $7 \cdot 17 = 119 \equiv 29$, $7 \cdot 19 = 133 \equiv 13$, $7 \cdot 23 = 161 \equiv 11$, $7 \cdot 29 = 203 \equiv 23 \pmod{30}$.

因此, 7·1, 7·7, 7·11, 7·13, 7·17, 7·19, 7·23, 7·29 是模 30 的简化剩余系.

例 8 设 m = 7.

$a \setminus x$	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

定理 4 设 (a, m) = 1. 则存在整数 a', $1 \le a' < m$ 使得

 $aa' \equiv 1 \pmod{m}$.

证一 (存在性证明). 因为 (a, m) = 1, 根据定理 3, x 遍历模 m 的一个最小简化剩余系时, ax 也遍历模 m 的一个简化剩余系. 因此,存在整数 x = a', $1 \le a' < m$ 使得 aa' 属于 1 的剩余类,即 $aa' \equiv 1 \pmod{m}$. 证毕.

证二 (构造性证明). 因为 (a,m) = 1, 根据 §1.3 定理 5, 运用广义欧几里得除法,可找到整数 s, t 使得 sa + tm = (a,m) = 1. 因此,整数 $a' = s \pmod{m}$ 满足 $aa' \equiv 1 \pmod{m}$.

定理 5 设 $(m_1, m_2) = 1$. 如果 x_1, x_2 分别遍历模 m_1 和模 m_2 的简化剩余系,则 $m_2x_1 + m_1x_2$ 遍历模 m_1m_2 的简化剩余系.

证先证明:
$$(x_1, m_1) = 1$$
, $(x_2, m_2) = 1$ 时, $(m_2x_1 + m_1x_2, m_1m_2) = 1$.

事实上,因为
$$(m_1, m_2) = 1$$

事实上,因为
$$(m_1, m_2) = 1$$
 $(m_2x_1 + m_1x_2, m_1) = (m_2x_1, m_1) = (x_1, m_1) = 1$

$$(m_2x_1 + m_1x_2, m_2) = (m_1x_2, m_2) = (x_2, m_2) = 1.$$

得到 $(m_2x_1+m_1x_2,m_1m_2)=1$

其次,证明模 m_1m_2 的任一简化剩余可表示为 $m_2x_1 + m_1x_2$,

其中 $(x_1, m_1) = 1$, $(x_2, m_2) = 1$

模 m_1m_2 的任一剩余 可以表示为 $m_2x_1 + m_1x_2$

因此, 当 $(m_2x_1+m_1x_2,m_1m_2)=1$ 时

$$(x_1, m_1) = (m_2x_1, m_1) = (m_2x_1 + m_1x_2, m_1) = 1$$

同理, $(x_2, m_2) = 1$. 结论成立.

定理 6 设 m, n 是互素的两个正整数. 则 $\varphi(mn) = \varphi(m)\varphi(n)$

证 根据定理 5, 当 x 遍历模 m 的简化剩余系, 共 $\varphi(m)$ 个整数 以及 y 遍历模 n 的简化剩余系, 共 $\varphi(m)$ 个整数时, ym + xn 遍历模 mn 的简化剩余系, 其整数个数为 $\varphi(m)\varphi(n)$. 但模 mn 的简化剩余系的元素个数又为 $\varphi(mn)$. 因此, 所以 $\varphi(mn) = \varphi(m)\varphi(n)$.

例 11 $\varphi(77) = \varphi(7)\varphi(11) = 6 \cdot 10 = 60$.

例 12 $\varphi(30) = \varphi(2)\varphi(3)\varphi(5) = 1 \cdot 2 \cdot 4 = 8$

定理 7 设 n 有标准因数分解式为 $n = \prod_{p|n} p^{\alpha} = p_1^{\alpha_1} \cdots p_k^{\alpha_s}$. 则

$$\varphi(n) = n \, \pi_{p|n} (1 - \frac{1}{p}) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_k}).$$

证 当 $n = p^{\alpha}$ 为素数幂时,模 n 的完全剩余系为

$$0, 1, \ldots, p-1, \ldots$$
 $p(p^{\alpha-1}-1), p(p^{\alpha-1}-1)+1, \ldots, p^{\alpha}-1$

共有 $n = p^{\alpha}$ 个整数,其中与 n 不互素的整数为

$$p \cdot 0, p \cdot 1, \dots, p(p^{\alpha-1}-1),$$

共有 $p^{\alpha-1}$ 个整数. 因此, 模 $n=p^{\alpha}$ 的简化剩余系的元素个数为

$$p^{\alpha} - p^{\alpha - 1}$$
. 即 $\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha - 1}$. 根据定理 6 , 我们有
$$\varphi(n) = \prod_{p \mid n} \varphi(p^{\alpha}) = \prod_{p \mid n} (p^{\alpha} - p^{\alpha - 1}) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{24})$$

推论 设 p, q 是不同的素数.则 $\varphi(pq) = pq - p - q + 1$.

证明 由定理 7, 有
$$\varphi(pq) = \varphi(p)\varphi(q) = (p-1)(q-1) = pq-p-q+1$$
.

例 13 设正整数 n 是两个不同素数的乘积. 如果知道 n 和欧拉函数值 $\varphi(n)$, 则可求出 n 的因数分解式.

证考虑未知数 p, q 的方程组:

$$\begin{cases} p+q = n+1-\varphi(n) \\ p\cdot q = n. \end{cases}$$

根据多项式的根与系数之间的关系,我们可以从二次方程

$$z^2 - (n+1-\varphi(n))z + n = 0$$

求出 n 的因数 p,q.

定理 8 设 n 是一个正整数. 则 $\Sigma_{d|n}\varphi(d) = n$.

证 对于正整数 d|n, 记

$$C_d = \{m \mid 1 \le m \le n, \ (m, n) = d\}.$$

因为 (m,n)=d 的充要条件是 $(\frac{m}{d},\frac{n}{d})=1$, 所以 C_d 中元素 m 的形

式为
$$C_d = \{ m = dk \mid 1 \le k \le \frac{n}{d}, (k, \frac{n}{d}) = 1 \}$$

因此, C_d 中的元素个数为 $\varphi(\frac{n}{d})$. 因为整数 $1, \ldots, n$ 中的每个整数

属于且仅属于一个类 Cd, 所以

#(C) =
$$\sum_{d|n} \#(C_d)$$
 或 $n = \sum_{d|n} \varphi(\frac{n}{d})$ 故 $n = \sum_{d|n} \varphi(\frac{n}{d})$ 的 $n = \sum_{d|n} \varphi(\frac{n}{d}) = \sum_{d|n} \varphi(d)$

26

例 14 设整数 n = 50. 则 n 的正因数为 d = 1, 2, 5, 10, 25, 50. 这时,定理 8 的分类为:

$$C_2 = \{2, 4, 6, 8, 12, 14, 16, 18, 22, 24, 26, 28, 32, 34, 36, 38, 42, 44, 46, 48\};$$

$$C_5 = \{5, 15, 35, 45\};$$
 $c_{10} = \{10, 20, 30, 40\};$ $C_{25} = \{25, \};$ $C_{50} = \{50\}.$

$$\#(C_1) = \varphi(50) = 20, \quad \#(C_2) = \varphi(25) = 20,$$

$$\#(C_5) = \varphi(10) = 4, \qquad \#(C_{10}) = \varphi(5) = 4,$$

$$\#(C_{25}) = \varphi(2) = 1, \qquad \#(C_{50}) = \varphi(1) = 1.$$

$$50 = \varphi(50) + \varphi(25) + \varphi(10) + \varphi(5) + \varphi(2) + \varphi(1) = \mathop{\Sigma}_{d|50} \varphi(d).$$

欧拉定理 费马小定理

定理 1 (Euler) 如果 (a, m) = 1,则 $a^{\varphi(m)} \equiv 1 \pmod{m}$.

证 取 $r_1, ..., r_{\varphi(m)}$ 为模 m 的一个最小正简化剩余系,则当 a 是满足 (a,m)=1 的整数时, $ar_1, ..., ar_{\varphi(m)}$ 也为模 m 的一个简化剩余系, 这就是说, $ar_1, ..., ar_{\varphi(m)}$ 模 m 的最小正剩余是 $r_1, ..., r_{\varphi(m)}$ 的一个排列.

$$(ar_1)\cdots(ar_{\varphi(m)})\equiv r_1\cdots r_{\varphi(m)}\ (\mathrm{mod}\ m).$$

 $r_1\cdots r_{\varphi(m)}\ (a^{\varphi(m)}-1)\equiv 0\ (\mathrm{mod}\ m).$

因为
$$(r_1 \cdots r_{\varphi(m)}, m) = 1$$
 $a^{\varphi(m)} - 1 \equiv 0 \pmod{m}.$

例 3 设 m = 11, a = 2. 则 (2,11) = 1, $\varphi(11) = 10$. 故 $2^{10} \equiv 1 \pmod{11}$.

定理 2 (Fermat) 设 p 是一个素数. 则对任意整数 a, 我们有 $a^p \equiv a \pmod{p}$.

证 i) 若 a 被 p 整数,则同时有 $a \equiv 0 \pmod{p}$ 和 $a^p \equiv 0 \pmod{p}$. 因此, $a^p \equiv a \pmod{p}$.

ii) 若 a 不被 p 整数,则 (a,p) = 1 (见 §1.3 例 4). 根据定理 1, $a^{p-1} \equiv 1 \pmod{p}.$

$$a^p \equiv a \pmod{p}$$
.

RSA的CRT解密运算使用约减的指数

例 5 设 p, q 是两个不同的奇素数,n = pq, a 是与 pq 互素的整数. 如果整数 e 满足 $1 < e < \varphi(n)$, $(e, \varphi(n)) = 1$, 那么存在整数 d, $1 \le d < \varphi(n)$, 使得

$$ed \equiv 1 \pmod{\varphi(n)}$$
.

而且,对于整数 $a^e \equiv c \pmod{n}$, $1 \leq c < n$,有 $c^d \equiv a \pmod{n}$.

证

$$ed = 1 + k\varphi(n)$$

$$c^{d}=a^{ed}=a^{1+k\varphi(n)}=a(a^{\varphi(n)})^{k}=a\cdot 1^{k}=a \pmod{n}$$

模重复平方计算法

$$b^{n} \pmod{m}$$

$$b^{n} \equiv (b^{n-1} \pmod{m}) \cdot b \pmod{m}$$

$$n = n_0 + n_1 2 + \dots + n_{k-1} 2^{k-1}$$

其中
$$n_i \in \{0,1\}$$
, $i = 0,1,\ldots,k-1$. 则 $b^n \pmod{m}$ 的计算可归纳为
$$b^n \equiv \underbrace{b^{n_0}(b^2)^{n_1}\cdots(b^{2^{k-2}})^{n_{k-2}}\cdot(b^{2^{k-1}})^{n_{k-1}}}_{\text{mod }m).$$

我们最多作 2[log₂ n] 次乘法. 这个计算方法叫做 "模重复平方计算

具体算法如下:

$$b^{n} \equiv \underbrace{b^{n_0}(b^2)^{n_1} \cdot \dots \cdot (b^{2^{k-2}})^{n_{k-2}} \cdot (b^{2^{k-1}})^{n_{k-1}} \pmod{m}}.$$

具体算法如下:

0). 令
$$a = 1$$
, 并将 n 写成二进制: $n = n_0 + n_1 2 + \cdots + n_{k-1} 2^{k-1}$

- 1). 计算 $a_0 \equiv a \cdot b^{n_0} \pmod{m}$. 再计算 $b_1 \equiv b^2 \pmod{m}$.

k-1). 计算
$$a_{k-2} \equiv a_{k-3} \cdot b_{k-2}^{n_{k-2}} \pmod{m}$$
. $b_{k-1} \equiv b_{k-2}^2 \pmod{m}$.

k). 计算 $a_{k-1} \equiv a_{k-2} \cdot b_{k-1}^{n_{k-1}} \pmod{m}$.

最后, a_{k-1} 就是 $b^n \pmod{m}$.

- RSA加解密运算使用重复平方法
- 上述重复平方法是从低位到高位进行计算
- 重复平方法还有从高位到低位计算的次序 计算复杂度相同,但存储略有不同(从高位到 低位略好)
- 其他进制表示法: 预计算 + 从低位到高位

NAJ表达式

- 重复平方法对任意群适用
- 如果群里求逆无需代价(如椭圆曲线),则 可用带负号二进制表达式

$$n = n_0 + n_1 2 + \dots + n_{k-1} 2^{k-1}$$

其中, 系数为1, 0, -1

- 任意n总有一个NAJ表达式: 相邻两个系数有一个为0
- NAJ表达式的平均重量为log_2(n)/3
- 常规二进制表达式的平均重量为log_2(n)/2

带负号二进制算法

• 对于某些群,如椭圆曲线的点群,群元素的逆可能非常容易求得,这时可以将的二进制表示改变为 $a = \sum a_i 2^i, a_i \in \{-1,0,1\}$ 则 $g^a = (\prod_{a=1}^n g^{2^i}) \cdot (\prod_{a=1}^n (g^{2^i})^{-1})$

•
$$2^{i-1} + 2^{i-2} + \dots + 2 + 1 = 2^{i} - 1$$

 $a = (1101011111100010111101)_{2}$
 $a = (10-101-1000-10010-100-101)_{2}$

Shamir's trick

- · 计算gahb 的快速算法
- · 在DSA数字签名标准算法中出现
- 双基链: $k = \sum s_i 2^{ai} 3^{bi}$, 其中 s_i 为土1或0, $\{a_i\}$ 单调递增, a_i - a_{i-1} 小, $\{b_i\}$ 单调递增, b_i - b_{i-1} 小, 2P和3P容易计算
- 多基链

例: 计算度37h20如下

$$37 = (1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1)_{2}$$

$$20 = (0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0)_{2}$$

$$^{2} \quad 1 \quad g^{2} \quad g^{4}h^{2} \quad g^{8}h^{4} \quad g^{18}h^{10} \quad g^{36}h^{20}$$

$$g \quad g \quad g^{37}h^{20}$$

$$h \quad g^{2}h$$

$$g^{9}g^{5}$$

Montgomery Form

- Consider to compute ab (mod N)
- Instead of a and b, we work with fast computing abR (mod N) from
 - $a' = aR \pmod{N}$ and $b' = bR \pmod{N}$
- The numbers a' and b' are said to be in Montgomery form
- Where we take $R := 2^k > N$ and gcd(R,N) = 1 for free mod R and div R operations
- Also, find R' and N' so that RR' NN' = 1 with 0 < N' < R, 0 < R' < N < R,

The Idea

- Have $a' = aR \pmod{N}$ and $b' = bR \pmod{N}$
- $abR = a'b'R^{-1} \pmod{N}$
- Let $X = a' \cdot b'$. Then $abR = XR^{-1} \pmod{N}$
- We try to find an integer X+mN, s.t. it is a multiple of R. Then $XR^{-1} = (X+mN)/R \pmod{N}$
- What is m?

```
X + mN = 0 \pmod{R}
XN' + mNN' = 0 \pmod{R}
XN' + m(RR'-1) = 0 \pmod{R}
XN' = m \pmod{R}
```

• Further, (X+mN)/R can be not far away from N

Key Step

- Compute $x = XR^{-1} \pmod{N}$ from $0 < X < N^2$
- Montgomery reduction

```
m = ((X \bmod R) \cdot N') \bmod R \qquad (1 \textbf{ integer mul})
x = (X + m \cdot N)/R \qquad (1 \textbf{ integer mul})
if \ x \ge N \ then \qquad (Claim: 0 < x < 2N)
x = x - N \ /\! / \text{ extra reduction}
end if
```

- return x
- Claim: $0 < x < N \text{ and } x = XR^{-1} \pmod{N}$

Proof

• X+mN is a multiple of R.

$$XN' = m \pmod{R}$$

$$XN' + m(RR'-1) = 0 \pmod{R}$$

$$XN' + mNN' = 0 \pmod{R}$$

$$X + mN = 0 \pmod{R}$$

- It is clear that $x = a'b'R^{-1} \pmod{N}$ since $x = (X + m \cdot N)/R$
- 0 < x < 2N ?

$$X < N^2$$
, $m < N$, $N < R$, $(X + m \cdot N)/R < (N^2 + N \cdot N)/N = 2N$

Montgomery Reduction

- Have 0 < a' < N and 0 < b' < N
- Compute $X = a' \cdot b'$ (1 integer multiplication)
- Montgomery reduction

```
m = ((X \mod R) \cdot N') \mod R \qquad (1 \text{ integer mul})
x = (X + m \cdot N)/R \qquad (1 \text{ integer mul})
if x \ge N then
x = x - N \text{ // extra reduction}
end if
```

- return x
- Claim: 0 < x < N and $x = a'b'R^{-1} \pmod{N}$

Montgomery Exponentiation mod N

- Given odd number N, index e, and 0<a<N, to compute a^e (mod N)
- Take $R = 2^k > N$, find 0 < N' < R s.t. $NN' = -1 \pmod{R}$

(a precomputation for *N*)

- Compute $a' = aR \pmod{N}$ (an extra operation)
- Compute y=a^eR (mod N) according to Montgomery multiplication in any repeated-squaring-and-multiplication way (In each iteration, 3 multiplications of integers are involved, no mod N operations)
- Compute $a^e = yR^{-1} \pmod{N}$ (2 muls of integers)

Example

- Montgomery operator: $a' \bigstar b' = a'b'R^{-1} \pmod{N}$ $(aR) \bigstar (bR) = (ab)R \pmod{N}$ Write $(a')^{\bigstar 2} = a' \bigstar a'$
- $e=13=8+4+1=(1101)_2$, $a^{13} = ((a)^2 a)^2 \cdot 1)^2 a \pmod{N}$
- Compute $a' = aR \pmod{N}$ (an extra operation)
- Compute $a^{13}R = ((a')^{*2} \bigstar a')^{*2} \bigstar R)^{*2} \bigstar a' \pmod{N}$ (Note: $a' \bigstar R = a'$, do nothing)
- Compute $a^{13}=(a^{13}R)\cdot R'\pmod N$ (another extra operation)

Montgomery 模幂运算

· 模多项式的Montgomery 模幂运算完全 类似

2022-2023秋 课程编码: 083900M01003H 课程名称: 信息安全数学基础 授课团队: 胡磊、许军、王丽萍