Deep Learning for Computer Vision

Spring 2019

http://vllab.ee.ntu.edu.tw/dlcv.html (primary)

https://ceiba.ntu.edu.tw/1072CommE5052_ (grade, etc.)

FB: DLCV Spring 2019

Yu-Chiang Frank Wang 王鈺強, Associate Professor Dept. Electrical Engineering, National Taiwan University

Tight (yet tentative) Schedule

Week	Date	Topic	Remarks
0	2/20	Course Logistics + Intro to Computer Vision	
1	2/27	Machine Learning 101	
2	3/06	Image Representation: From Recognition to Tracking	HW #1 out
3	3/13	Intro to Neural Networks + CNN (I)	
4	3/20	Intro to Neural Networks + CNN (II) Tutorial on Python, GitHub, etc.	HW #1 due
5	3/27	Detection & Segmentation	HW #2 out
6	4/03	Spring Break!	
7	4/10	Generative Models	
8	4/17	Visualization and Understanding NNs	HW #3 out, HW #2 due
9	4/24	Transfer Learning for Visual Analysis	
10	5/01	Recurrent NNs and Seq-to-Seq Models (I)	Team Up for Final Projects
11	5/08	Guest Lecture	HW #4 out, HW #3 due
12	5/15	Recurrent NNs and Seq-to-Seq Models (I)	
13	5/22	Learning Beyond Images (2D/3D, depth, etc.)	
14	5/29	Deep Reinforcement Learning for Visual Apps	HW #4 due
15	6/05	Final Project Checkpoint	
16	6/12 or 6/19	Final Presentation	

What's to Be Covered Today...

- From Probability to Bayes Decision Rule
- Brief Review of Linear Algebra & Linear System
- Unsupervised vs. Supervised Learning
 - Clustering & Dimension Reduction
 - Training, testing, & validation
 - Linear Classification

Bayesian Decision Theory

- Fundamental statistical approach to classification/detection tasks
- Example (for a 2-class scenario):
 - Let's see if a student would pass or fail the course of DLCV.
 - Define a probabilistic variable ω describe the case of pass or fail.
 - That is, $\omega = \omega_1$ for pass, and $\omega = \omega_2$ for fail.

Prior Probability

- The **a priori** or **prior** probability reflects the knowledge of how likely we expect a certain state of nature before observation.
- $P(\omega = \omega_1)$ or simply $P(\omega_1)$ as the prior that the next student would pass DLCV.
- The priors must exhibit exclusivity and exhaustivity, i.e.,

Prior Probability (cont'd)

- Equal priors
 - If we have *equal* numbers of students pass/fail DLCV, then the priors are equal; in other words, the priors are uniform.
- Decision rule based on priors only
 - If the only available info is the prior and the cost of any incorrect classification is equal, what is a reasonable decision rule?
 - Decide ω_1 if $\text{otherwise decide } \omega_2 \ .$
 - What's the incorrect classification rate (or error rate) P_e?

Class-Conditional Probability Density (or Likelihood)

• The probability density function (PDF) for input/observation x given a state of nature ω is written as:

• Here's (hopefully) the hypothetical class-conditional densities reflecting the studying time of students who pass/fail DLCV.

Posterior Probability & Bayes Formula

- If we know the prior distribution and the class-conditional density, can we come up with a better decision rule?
- Posterior probability:
 - The probability of a certain state of nature ω given an observable x.
- Bayes formula:

$$P(\omega_j, \mathbf{x})$$

$$P(\omega_j|\mathbf{x})$$

And, we have
$$\sum_{j=1}^{C} P(\omega_j | \mathbf{x}) = 1$$
.

Decision Rule & Probability of Error

• For a given observable **x**, the decision rule will be now based on:

• What's the probability of error P(error) (or P_e)?

From Bayes Decision Rule to Detection Theory

• Hit (or detection), false alarm, miss (or false reject), & correct rejection

- Receiver Operating Characteristics (ROC)
 - To assess the effectiveness of the designed features/classifiers/detectors
 - False alarm (P_{FA}) vs. detection (P_D) rates
 - Which curve/line makes sense? (a), (b), or (c)?

What's to Be Covered Today...

- From Probability to Bayes Decision Rule
- Brief Review of Linear Algebra & Linear System
- Unsupervised vs. Supervised Learning
 - Dimension Reduction & Clustering
 - Linear Classification
 - Training, testing, & validation

Why Review Linear Systems?

- Aren't DL models considered to be non-linear?
- Yes, but there are lots of things (e.g., problem setting, feature representation, regularization, etc.) in the fields of learning and vision starting from linear formulations.

Rank of a Matrix

• Consider **A** as a *m* x *n* matrix, the rank of matrix **A**, or rank(**A**), is determined as the maximum number of linearly independent row/column vectors.

- Thus, we have $rank(\mathbf{A}) = rank(\mathbf{A}^T)$ and $rank(\mathbf{A}) \le or \ge (?) min(m, n)$.
- If rank(A) = min(m, n), A is a full-rank matrix.
- If $m = n = \text{rank}(\mathbf{A})$ (i.e., \mathbf{A} is a squared matrix and full-rank), what can we say about \mathbf{A}^{-1} ?
- If m = n but rank(A) < m, what can we do to compute A^{-1} in practice?

Solutions to Linear Systems

- Let A x = b, where A is a m x n matrix, x is n x 1 vector (to be determined),
 and b is a m x 1 vector (observation).
- We consider $\mathbf{A} \mathbf{x} = \mathbf{b}$ as a linear system with m equations & n unknowns.

• If m = n & rank(A) = m, we can solve x by Gauss Elimination, or simply $x = A^{-1}b$. (A^{-1} is the inverse matrix of A.)

Pseudoinverse of a Matrix (I)

- Given **A x** = **b**, if m < n & rank(**A**) = m...
 - We have more # of unknowns than # of equations, i.e., underdetermined.
 - Which **x** is typically desirable?
 - Ever heard of / used the optimization technique of Lagrange multipliers?

Pseudoinverse of a Matrix (II)

- Given $\mathbf{A} \mathbf{x} = \mathbf{b}$, if $m > n \& rank(\mathbf{A}) = n...$
 - We have more # of equations than # of unknowns, i.e., overdetermined.
 - How to get a desirable x?

What's to Be Covered Today...

- From Probability to Bayes Decision Rule
- Brief Review of Linear Algebra & Linear System
- Unsupervised vs. Supervised Learning
 - Clustering & Dimension Reduction
 - Training, testing, & validation
 - Linear Classification

Clustering

- Clustering is an unsupervised algorithm.
 - Given: a set of N unlabeled instances $\{x_1, ..., x_N\}$; # of clusters K
 - Goal: group the samples into K partitions
- Remarks:
 - High within-cluster (intra-cluster) similarity
 - Low between-cluster (inter-cluster) similarity
 - But...how to determine a proper similarity measure?

Similarity is NOT Always Objective...

Clustering (cont'd)

- Similarity:
 - A key component/measure to perform data clustering
 - Inversely proportional to distance
 - Example distance merrics:
 - Euclidean distance (L2 norm): $d(x,z) = ||x-z||_2 = \sqrt{\sum_{i=1}^{D} (x_i z_i)^2}$
 - Manhattan distance (L1 norm): $d(x,z) = ||x-z||_1 = \sum_{i=1}^{D} |x_i-z_i|$
 - Note that *p*-norm of *x* is denoted as:

Clustering (cont'd)

- Similarity:
 - A key component/measure to perform data clustering
 - Inversely proportional to distance
 - Example distance metrics:
 - Kernelized (non-linear) distance:

$$d(x,z) = \|\Phi(x) - \Phi(z)\|_2^2 = \|\Phi(x)\|_2^2 + \|\Phi(z)\|_2^2 - 2\Phi(x)^T \Phi(z)$$

• Taking Gaussian kernel for example: $K(x,z) = \Phi(x)^T \Phi(z) = exp\left(-\frac{\|x-z\|_2^2}{2\sigma^2}\right)$, we have

And, distance is more sensitive to larger/smaller σ . Why?

• For example, L2 or kernelized distance metrics for the following two cases?

- Input: N examples $\{x_1, \ldots, x_N\}$ $(x_n \in \mathbb{R}^D)$; number of partitions K
- Initialize: K cluster centers μ_1, \ldots, μ_K . Several initialization options:
 - Randomly initialize μ_1, \ldots, μ_K anywhere in R^D
 - Or, simply choose any K examples as the cluster centers
- Iterate:
 - Assign each of example x_n to its closest cluster center
 - Recompute the new cluster centers μ_k (mean/centroid of the set C_k)
 - Repeat while not converge
- Possible convergence criteria:
 - Cluster centers do not change anymore
 - Max. number of iterations reached
- Output:
 - K clusters (with centers/means of each cluster)

• Example (K = 2): Initialization, iteration #1: pick cluster centers

• Example (K = 2): iteration #1-2, assign data to each cluster

• Example (K = 2): iteration #2-1, update cluster centers

• Example (K = 2): iteration #2, assign data to each cluster

• Example (K = 2): iteration #3-1

• Example (K = 2): iteration #3-2

• Example (K = 2): iteration #4-1

• Example (K = 2): iteration #4-2

• Example (K = 2): iteration #5, cluster means are not changed.

K-Means Clustering (cont'd)

• Proof in 1-D case if time permits...

K-Means Clustering (cont'd)

- Limitation
 - Sensitive to initialization; how to alleviate this problem?
 - Sensitive to outliers; possible change from K-means to...
 - Hard assignment only. Mathematically, we have...

• Preferable for round shaped clusters with similar sizes

- Remarks
 - Speed-up possible by hierarchical clustering
 - Expectation-maximization (EM) algorithm

What's to Be Covered Today...

- From Probability to Bayes Decision Rule
- Brief Review of Linear Algebra & Linear System
- Unsupervised vs. Supervised Learning
 - Clustering & Dimension Reduction
 - Training, testing, & validation
 - Linear Classification

Dimension Reduction

- Principal Component Analysis (PCA)
 - Unsupervised & linear dimension reduction
 - Related to Eigenfaces, etc. feature extraction and classification techniques
 - Still very popular despite of its simplicity and effectiveness.
 - Goal:
 - Determine the projection, so that the variation of projected data is maximized.

34

Formulation & Derivation for PCA

- Input: a set of instances x without label info
- Output: a projection vector ω maximizing the variance of the projected data
- In other words, we need to maximize $var(\boldsymbol{\omega}^T \boldsymbol{x})$ with $\|\boldsymbol{\omega}\| = 1$.

Formulation & Derivation for PCA (cont'd)

• Lagrangian optimization for PCA

Eigenanalysis & PCA

- Eigenanalysis for PCA...find the eigenvectors e_i and the corresponding eigenvalues λ_i
 - In other words, the direction e_i captures the variance of λ_i .
 - But, which eigenvectors to use though? All of them?
- A d x d covariance matrix contains a maximum of d eigenvector/eigenvalue pairs.
 - Do we need to compute all of them? Which e_i and λ_i pairs to use?
 - Assuming you have N images of size M x M pixels, we have dimension $d = M^2$.
 - What is the rank of ∑?
 - Thus, at most non-zero eigenvalues can be obtained.
 - How dimension reduction is realized? how to reconstruct the input data?

Eigenanalysis & PCA (cont'd)

- A d x d covariance matrix contains a maximum of d eigenvector/eigenvalue pairs.
 - Assuming you have N images of size M x M pixels, we have dimension $d = M^2$.
 - With the rank of Σ as , we have at most non-zero eigenvalues.
 - How dimension reduction is realized? how to reconstruct the input data?

- Expanding a signal via eigenvectors as bases
 - With symmetric matrices (e.g., covariance matrix), eigenvectors are orthogonal.
 - They can be regarded as unit basis vectors to span any instance in the d-dim space.

Practical Issues in PCA

- Assume we have N = 100 images of size 200 x 200 pixels (i.e., d = 40000).
- What is the size of the covariance matrix? What's its rank?
- What can we do? Gram Matrix Trick!

Let's See an Example (CMU AMP Face Database)

- Let's take 5 face images x 13 people = 65 images, each is of size 64 x 64 = 4096 pixels.
- # of eigenvectors are expected to use for perfectly reconstructing the input = 64.
- Let's check it out!

What Do the Eigenvectors/Eigenfaces Look Like?

All 64 Eigenvectors, do we need them all?

Use only 1 eigenvector, MSE = 1233

MSE=1233.16

Use 2 eigenvectors, MSE = 1027

MSE=1027.63

Use 3 eigenvectors, MSE = 758

MSE=758.13

Use 4 eigenvectors, MSE = 634

Use 8 eigenvectors, MSE = 285

With 20 eigenvectors, MSE = 87

MSE=87.93

With 30 eigenvectors, MSE = 20

MSE=20.55

With 50 eigenvectors, MSE = 2.14

With 60 eigenvectors, MSE = 0.06

All 64 eigenvectors, MSE = 0

Final Remarks

- Linear & unsupervised dimension reduction
- PCA can be applied as a feature extraction/preprocessing technique.
 - E.g,, Use the top 3 eigenvectors to project data into a 3D space for classification.

Final Remarks (cont'd)

- How do we classify? For example...
 - Given a test face input, project into the same 3D space (by the same 3 eigenvectors).
 - The resulting vector in the 3D space is the feature for this test input.
 - We can do a simple Nearest Neighbor (NN) classification with Euclidean distance, which calculates the distance to all the projected training data in this space.
 - If NN, then the label of the closest training instance determines the classification output.
 - If k-nearest neighbors (k-NN), then k-nearest neighbors need to vote for the decision.

Demo available at http://vision.stanford.edu/teaching/cs231n-demos/knn/

Final Remarks (cont'd)

- If labels for each data is provided → Linear Discriminant Analysis (LDA)
 - LDA is also known as Fisher's discriminant analysis.
 - Eigenface vs. Fisherface (IEEE Trans. PAMI 1997)
- If linear DR is not sufficient, and non-linear DR is of interest...
 - Isomap, locally linear embedding (LLE), etc.
 - t-distributed stochastic neighbor embedding (t-SNE) (by G. Hinton & L. van der Maaten)

What's to Be Covered Today...

- From Probability to Bayes Decision Rule
- Brief Review of Linear Algebra & Linear System
- Unsupervised vs. Supervised Learning
 - Clustering & Dimension Reduction
 - Training, testing, & validation
 - Linear Classification

Hyperparameters in ML

- Recall that for k-NN, we need to determine the k value in advance.
 - What is the best k value?
 - And, what is the best distance/similarity metric?
 - Similarly, take PCA for example, what is the best reduced dimension number?
- **Hyperparameters**: choices about the learning model/algorithm of interest
 - We need to determine such hyperparameters instead of learn them.
 - Let's see what we can do and cannot do...

57

How to Determine Hyperparameters?

- Idea #1
 - Let's say you are working on face recognition.
 - You come up with your very own feature extraction/learning algorithm.
 - You take a dataset to train your model, and select your hyperparameters based on the resulting performance.

Dataset

How to Determine Hyperparameters? (cont'd)

- Idea #2
 - Let's say you are working on face recognition.
 - You come up with your very own feature extraction/learning algorithm.
 - For a dataset of interest, you split it into training and test sets.
 - You train your model with possible hyperparameter choices, and select those work best on test set data.

Training set Test set

How to Determine Hyperparameters? (cont'd)

- Idea #3
 - Let's say you are working on face recognition.
 - You come up with your very own feature extraction/learning algorithm.
 - For the dataset of interest, it is split it into training, validation, and test sets.
 - You train your model with possible hyperparameter choices, and select those work best on the validation set.

Training set	Validation set	Test set	
Training set	Validation set	Test set	

How to Determine Hyperparameters? (cont'd)

- Idea #3.5
 - What if only training and test sets are given, not the validation set?
 - Cross-validation (or k-fold cross validation)
 - Split the training set into k folds with a hyperparameter choice
 - Keep 1 fold as validation set and the remaining k-1 folds for training
 - After each of k folds is evaluated, report the average validation performance.
 - Choose the hyperparameter(s) which result in the highest average validation performance.
 - Take a 4-fold cross-validation as an example...

Training set			Test set	
Fold 1	Fold 2	Fold 3	Fold 4	Test set
Fold 1	Fold 2	Fold 3	Fold 4	Test set
Fold 1	Fold 2	Fold 3	Fold 4	Test set
Fold 1	Fold 2	Fold 3	Fold 4	Test set

Minor Remarks on NN-based Methods

- In fact, k-NN (or even NN) is not of much interest in practice. Why?
 - Choice of distance metrics might be an issue. See example below.
 - Measuring distances in high-dimensional spaces might not be a good idea.
 - Moreover, NN-based methods require lots of and !
 (That is why NN-based methods are viewed as data-driven approaches.)

All three images have the same Euclidean distance to the original one.

What's to Be Covered Today...

- From Probability to Bayes Decision Rule
- Brief Review of Linear Algebra & Linear System
- Unsupervised vs. Supervised Learning
 - Clustering & Dimension Reduction
 - Training, testing, & validation
 - Linear Classification

Linear Classification

- Linear Classifier
 - Can be viewed as a parametric approach. Why?
 - Assuming that we need to recognize 10 object categories of interest
 - E.g., CIFAR10 with 50K training & 10K test images of 10 categories. And, each image is of size 32 x 32 x 3 pixels.

Linear Classification (cont'd)

- Linear Classifier
 - Can be viewed as a parametric approach. Why?
 - Assuming that we need to recognize 10 object categories of interest (e.g., CIFAR10).
 - Let's take the input image as \mathbf{x} , and the linear classifier as \mathbf{W} . We hope to see that $\mathbf{y} = \mathbf{W}\mathbf{x} + \mathbf{b}$ as a 10-dimensional output indicating the score for each class.

Linear Classification (cont'd)

- Linear Classifier
 - Can be viewed as a parametric approach. Why?
 - Assuming that we need to recognize 10 object categories of interest (e.g., CIFAR10).
 - Let's take the input image as x, and the linear classifier as W. We hope to see
 that y = Wx + b as a 10-dimensional output indicating the score for each class.
 - Take an image with 2 x 2 pixels & 3 classes of interest as example: we need to learn linear transformation/classifer W and bias b, so that desirable outputs y = Wx + b can be expected.

Some Remarks

- Interpreting y = Wx + b
 - What can we say about the learned W?
 - The weights in W are trained by observing training data X and their ground truth Y.
 - Each column in W can be viewed as an exemplar of the corresponding class.
 - Thus, **Wx** basically performs inner product (or correlation) between the input **x** and the exemplar of each class. (Signal & Systems!)

From Binary to Multi-Class Classification

- How to extend binary classifiers for solving multi-class classification?
 - 1-vs.-1 (1-against-1) vs. 1-vs.-all (1-against-rest)

Linear Classification

- Remarks
 - Starting points for many multi-class or complex/nonlinear classifier
 - How to determine a proper loss function for matching y and Wx+b, and thus how to learn the model W (including the bias b), are the keys to the learning of an effective classification model.

What We Learned Today...

- From Probability to Bayes Decision Rule
- Brief Review of Linear Algebra & Linear System
- Unsupervised vs. Supervised Learning
 - Dimension Reduction, Clustering
 - Training, testing, & validation
 - Linear Classification

