INSTITUTO TECNOLÓGICO DE BUENOS AIRES

22.12 - Electrónica III

Trabajo Práctico $N^{\circ}1$

Grupo 4

Bertachini, Germán	58750
Dieguez, Manuel	56273
Galdeman, Agustín	59827
LAGUINGUE, Juan Martín	57430

Profesores:
DEWALD, Kevin
WUNDES, Pablo

Presentado el 5 de Septiembre de 2019

Índice

1.	Implementación de módulos en verilog	2
	1.1. Demultiplexor de 4 salidas	2
	1.2. Codificador de 4 entradas	3
2.	Ejercicio 4 - Conversor a codigo de Gray	4

1. Implementación de módulos en verilog

1.1. Demultiplexor de 4 salidas

A continuación, se analiza la tabla de verdad de un multiplexor de 4 salidas:

I	S_1	S_0	A	B	C	D
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Tabla 1: Tabla de verdad del Demultiplexor

Cada salida distinta nos permitirá diagramar un mapa de Karnaugh propio, los mismos se presentan a continuación:

Figura 1: Mapas de Karnaugh de las salidas del Demultiplexor

Se procede a implementar el circuito hallado mediante los mapas:

Figura 2: Circuito Demultiplexor de 4 salidas

Respecto del diseño en verilog,

1.2. Codificador de 4 entradas

A continuación, se analiza la tabla de verdad de un codificador de 4 entradas:

A	B	C	D	S_1	S_0	E
1	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	1	0	1	0	0
0	0	0	1	1	1	0
X	X	X	X	X	X	1

Tabla 2: Tabla de verdad del Codificador

Cada salida distinta nos permitirá diagramar un mapa de Karnaugh propio. Se contempla el caso de un error cuando las entradas no sean propias a las de un codificador. Los mapas se presentan a continuación:

Figura 3: Mapas de Karnaugh de las salidas del Codificador

Por claridad, se coloca, por un lado, el circuito propio al codificador, y por otro, el utilizado para detectar un error. Sin embargo, los mismos podrían estar integrados. Los circuitos propuestos son los siguientes:

Figura 4: Circuito Codificador de 4 entradas

Figura 5: Circuito detector de error - Encoder

2. Ejercicio 4 - Conversor a codigo de Gray

Para esté ejercicio, realizamos el desarrollo de un circuito lógico capaz de convertir un número binario de 4 bits a su equivalente de código de Gray, esto resulta en la siguiente tabla de verdad:

Entrada				Salida			
X_1	X_2	X_3	X_4	Y_1	Y_2	Y_3	Y_4
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

De la tabla de verdad obtenemos las siguientes ecuaciones en función de los mintérminos:

$$Y_4 = m_1 + m_2 + m_5 + m_6 + m_9 + m_{10} + m_{13} + m_{14}$$

$$Y_3 = m_2 + m_3 + m_4 + m_5 + m_{10} + m_{11} + m_{12} + m_{13}$$

$$Y_2 = m_4 + m_5 + m_6 + m_7 + m_8 + m_9 + m_{10} + m_{11}$$

$$Y_1 = m_8 + m_9 + m_{10} + m_{11} + m_{12} + m_{13} + m_{14} + m_{15}$$

Que al reemplazar cada mintérmino por su correspondiente expresión obtenemos:

$$Y_{4} = \overline{X_{1}} \cdot \overline{X_{2}} \cdot \overline{X_{3}} \cdot X_{4} + \overline{X_{1}} \cdot \overline{X_{2}} \cdot X_{3} \cdot \overline{X_{4}} + \overline{X_{1}} \cdot X_{2} \cdot \overline{X_{3}} \cdot X_{4} + \overline{X_{1}} \cdot X_{2} \cdot X_{3} \cdot \overline{X_{4}} + X_{1} \cdot X_{2} \cdot \overline{X_{3}} \cdot X_{4} + X_{1} \cdot X_{2} \cdot X_{3} \cdot \overline{X_{4}} + X_{1} \cdot X_{2} \cdot \overline{X_{3}} \cdot \overline{X_{4}} + X_{1} \cdot X_{2} \cdot \overline{X_{3}} \cdot \overline{X_{4}} + X_{1} \cdot X_{2} \cdot \overline{X_{3}} \cdot \overline{X_{4}} + \overline{X_{1}} \cdot \overline{X_{2}} \cdot$$

Tenemos unas funciones muy larga y como las tenemos expresadas en mintérminos podemos simplificarlas por medio del mapa de Karnaugh. Ésto nos da a lugar a los siguientes mapas de Karnaugh y funciones de salida simplificadas:

Figura 6: Mapas de Karnaugh de las salidas $Y_1,\,Y_2,\,Y_3$ e Y_4

$$\begin{array}{ccc} Y_4 = X_3 \cdot \overline{X_4} + \overline{X_3} \cdot X_4 & Y_3 = X_2 \cdot \overline{X_3} + \overline{X_2} \cdot X_3 \\ & \text{Formula de } Y_4 & \text{Formula de } Y_3 \\ Y_2 = X_1 \cdot \overline{X_2} + \overline{X_1} \cdot X_2 & Y_1 = X_1 \\ & \text{Formula de } Y_2 & \text{Formula de } Y_1 \end{array}$$

De los valores obtenidos podemos realizar el siguiente circuito conformado por compuertas OR, AND y NOT:

Figura 7: Implementación del conversor a código de Gray