MTH 385 2022-01-19 Worksheet

Exercise 1. As you may recall, the proof that $\sqrt{2}$ is irrational is often used to teach an important proof technique. What is that proof technique? And, how does it work?

Exercise 2. State the Well-Ordering Principle. (And, look for its appearance in the following.)

Exercise 3. The proof recounted in our textbook uses the fact that any (positive) rational number can be written as the ratio of two realtively prime (positive) integers. Prove this fact.

Exercise 4. The proof recounted in our textbook also uses the fact that, if the square of a positive integer is even, then that positive integer is also even. Prove this fact.

Exercise 5. Do Exercise 1.5.1: Writing an arbitrary odd number m in the form 2q + 1, for some integer q, show that m^2 also has the form 2r + 1, which shows that m^2 is also odd.

Exercise 6. What happens if we replace 2 by 3 in Exercise 1.5.1? Write m = 3q + 1, for some integer q, does m^2 also have the form 3r + 1?

Exercise 7. What happens if we replace 2 by 4 in Exercise 1.5.1? Write m = 4q + 1, for some integer q, does m^2 also have the form 4r + 1?

Exercise 8. What happens if we replace 2 by 5 in Exercise 1.5.1? Write m = 5q + 1, for some integer q, does m^2 also have the form 5r + 1?

Exercise 9. What, if anything, can be said if we replace 2 in Exercise 1.5.1 by an arbitrary (positive) integer?

Exercise 10. The proof that $\sqrt{2}$ is irrational is an early instance of the recurring interplay between geometry on the one hand and arithmetic/algebra on the other. Are there other examples of such interplay between streams of mathematical thought in the 100-level and 200-level courses at UM-Flint? If so, list some.