Rev. A3, Mar.5 2024

Security Classification: General

YSP96-8503M

Features

- ✓ Up to 10.6Gbps data links
- √ 850nm VCSEL Laser and PIN photo-detector
- ✓ Up to 300m on 50/125µm MMF(OM3)
- ✓ Duplex LC receptacle optical interface compliant
- ✓ Hot pluggable
- ✓ All-metal housing for superior EMI performance
- √ RoHS6 compliant (lead free)
- ✓ Operating case temperature:

Commercial: -5°C to +70°C Extended: -20°C to +80°C Industrial: -40°C to +85°C

Applications

- ✓ 10GBASE-SR/SW
- ✓ Other optical links

Standards

- ✓ Compliant with SFP+ MSA
- ✓ Compliant with SFF-8472
- ✓ Compatible with IEEE802.3ae

Description

The SFP+ SR transceivers are designed for use in 10-Gigabit Ethernet links up to 300m over Multimode Mode Fiber (OM3).

Maximum Supported Distances						
Fiber Type	Minimum modal bandwidth@850nm	Min.	Typical	Max.	Unit	
CO Firm NAME	160MHz*km	2		26	m	
62.5µm MMF	OM1:200MHz*km	2		33	m	
	400MHz*km	2		66	m	
50µm MMF	OM2:500MHz*km	2		82	m	
	OM3:2000MHz*km	2		300	m	
	OM4:4700MHz*km	2		400	m	

The transceivers are compatible with SFP+ MSA and SFF-8472. For further information, please refer to SFP+ MSA and SFF-8472.

Module Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit
Power Supply Voltage	Vcc	0		3.6	V
Storage Temperature	Ts	-40		+85	°C
Relative Humidity	RH	0		85	%
RX Input Average Power	P _{max}	-		1.5	dBm

Recommended Operating Environment

Parameter		Symbol	Min.	Typical	Max.	Unit
Power Supply Voltage		Vcc	3.13	3.3	3.46	V
Power Supply Current		I _{CC}			300	mA
	Commercial		-5		+70	
Operating Case Temperature	Extended	Tc	-20		+80	°C
	Industrial		-40		+85	
Data Rate				10.3125		Gbps

Rev. A3, Mar.5 2024 Security Classification: General

Electrical Characteristics

Parameter	Symbol	Min.	Typical	Max.	Unit	Note
Transmitter Section	Transmitter Section					
Input Differential Impedance	R _{in}	90	100	110	Ω	
Differential Data Input Swing	V _{in PP}	180		700	mV	1
Transmit Disable Voltage	V_D	V _{cc} – 1.3		V _{cc}	V	
Transmit Enable Voltage	V _{EN}	V _{ee}		V _{ee} + 0.8	V	
Receiver Section						
Differential Data Output Swing	V _{out PP}	300		850	mV	
LOS Fault	V _{los fault}	V _{cc} – 0.5		V _{cc_host}	V	2
LOS Normal	V _{los norm}	V _{ee}		V _{ee} +0.5	V	2

Notes:

- 1. Connected directly to TX data input pins. AC coupling from pins into laser driver IC.
- 2. LOS is an open collector output. Should be pulled up with $4.7k\Omega 10k\Omega$ on the host board. Normal operation is logic 0; loss of signal is logic 1.

Optical Parameters

Parameter	Symbol	Min.	Typical	Max.	Unit	Note
Transmitter Section		•				
Centre Wavelength	λс	840	850	860	nm	
Spectral Width (RMS)	σ			0.45	nm	
Average Optical Power (avg.)	P _{out}	-7		-1	dBm	1
Laser Off Power	Poff	-	-	-30	dBm	
Extinction Ratio	ER	3.5	-	-	dB	2
Relative Intensity Noise	RIN	-	-	-128	dB/Hz	
Optical Rise/Fall Time	t _r / t _f		-	50	ps	3
Optical Return Loss Tolerance		-	-	12	dB	
Output Optical Eye	Compliant with IEEE802.3ae eye masks when filtered					2
Receiver Section						
Receiver Center Wavelength	λс	840		860	nm	
Receiver Sensitivity in Average Power	Sen	-11.1		-1	dBm	4
Los Assert	LOS_A	-30	-	-	dBm	
Los Dessert	LOSD	-	-	-13	dBm	
Los Hysteresis	LOS _H	0.5	-	5	dB	
Overload	P _{in-max}	-	-	-1	dBm	4
Receiver Reflectance		-	-	-12	dB	
Receiver power (damage)		-	-	1.5	dBm	

Rev. A3, Mar.5 2024 Security Classification: General

Notes:

- 1. The optical power is launched into 50/125µm MMF.
- 2. Measured with a PRBS 2³¹-1 test pattern @10.3125Gbps.
- 3. Unfiltered, 20-80%. Measured with a PRBS 2³¹-1 test pattern @10.3125Gbps.
- 4. Measured with a PRBS 2^{31} -1 test pattern @10.3125Gbps, ER=4dB, BER <10⁻¹².

Timing Characteristics

Parameter	Symbol	Min.	Typical	Max.	Unit
TX_Disable Assert Time	t_off			100	us
TX_Disable Negate Time	t_on			2	ms
Time to Initialize	t_start_up			300	ms
Tx_Fault Assert	t_fault_on			1	ms
Tx_Fault Reset	t_reset	10			us
Rx_LOS Assert Delay	t_los_on			100	us
Rx_LOS Negate Delay	t_los_off			100	us
Clock Frequency	f _{SCL}	0		400	kHz

Digital Diagnostic Monitor Characteristics (DDM)

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF8472 Rev10.2 with internal calibration mode. For external calibration mode please contact our sales stuff.

Parameter	Symbol	Min.	Max.	Unit
Temperature Monitor Absolute Error	DMI_Temp	-3	3	°C
Laser Power Monitor Absolute Error	DMI_TX	-3	3	dB
RX Power Monitor Absolute Error	DMI_RX	-3	3	dB
Supply Voltage Monitor Absolute Error	DMI_VCC	-3%	3%	V
Bias Current Monitor Absolute Error	DMI_lbias	-10%	10%	mA

Digital Diagnostic Memory Map (Compliant with SFF-8472)

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following (For further information, please refer to SFF-8472).

Pin Definitions

SFP+ module contact assignment

Rev. A3, Mar.5 2024 Security Classification: General

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	VeeT	Module Transmitter Ground	1	1
2	TX FAULT	Module Transmitter Fault	3	
3	TX Disable	Transmitter Disable; Turns off transmitter laser output	3	
4	SDA	2-Wire Serial Interface Data Line	3	2
5	SCL	2-Wire Serial Interface Clock	3	2
6	Mod_ABS	Module Definition, Grounded in the module	3	
7	RS0	Receiver Rate Select (not used)	3	
8	LOS	Receiver Loss of Signal Indication Active LOW	3	
9	RS1	Transmitter Rate Select (not used)	3	
10	VeeR	Module Receiver Ground	1	1
11	VeeR	Module Receiver Ground	1	1
12	RD-	Receiver Inverted Data Output	3	
13	RD+	Receiver Non-Inverted Data Output	3	
14	VeeR	Module Receiver Ground	1	1
15	VccR	Module Receiver 3.3 V Supply	2	
16	VccT	Module Transmitter 3.3 V Supply	2	
17	VeeT	Module Transmitter Ground	1	1
18	TD+	Transmitter Non-Inverted Data Input	3	
19	TD-	Transmitter Inverted Data Input	3	
20	VeeT	Module Transmitter Ground	1	1

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1. Module ground pins GND are isolated from the module case.
- 2. Shall be pulled up with 4.7K-10Kohms to a voltage between 3.15V and 3.45V on the host board.

Recommended Power Interface Circuit

Host Board Power Supply Filters Circuit

Security Classification: General

Recommended Interface Circuit

Mechanical Dimensions

10Gbps 300m Duplex LC SFP+ Transceiver

Rev. A3, Mar.5 2024

Security Classification: General

Ordering information

Part Number	Product Description
YSP96-8503M	850nm, 10Gbps, 300m, Duplex LC SFP+ Transceiver, -5°C ~ +70°C, With DDM.
YSP96-8503ME	850nm, 10Gbps, 300m, Duplex LC SFP+ Transceiver, -20°C ~ +80°C, With DDM.
YSP96-8503MT	850nm, 10Gbps, 300m, Duplex LC SFP+ Transceiver, -40°C ~ +85°C, With DDM.

References

- 1. "Specifications for Enhanced Small Form Factor Pluggable Module SFP+", SFF-8431, Rev 4.1, July 6, 2009.
- 2. "Improved Pluggable Form factor", SFF-8432, Rev 4.2, Apr 18, 2007.
- 3. "Diagnostic Monitoring Interface for Optical Transceivers" SFF-8472, Rev 10.2, June 1, 2007.
- 4. IEEE802.3ae 2002.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by YOUTHTON before they become applicable to any particular order or contract. In accordance with the YOUTHTON policy of continuous improvement specifications may change without notice. The publication of information in this data sheet does not imply freedom from patent or other protective rights of YOUTHTON or others. Further details are available from any YOUTHTON sales representative.

Contact Information

SHENZHEN YOUTHTON TECHNOLOGY CO., LTD.

ADD: ROOM 601, BUILDING A6, ZHU'AO INDUSTRIAL PARK, GUXING COMMUNITY, XIXIANG STREET,

BAO'AN DISTRICT, SHENZHEN, CHINA

EMAIL: info@youthton.com