Czterobitowy licznik działający zgodnie z ciągiem Fibonacciego

Szymon Borusiewicz, Jakub Zając, Dawid Szłapa, Radosław Szepielak Maj 2025

1 Treść zadania

Korzystając tylko z konkretnego jednego typu przerzutników oraz z dowolnych bramek logicznych, proszę zaprojektować czterobitowy licznik działający zgodnie z ciągiem Fibonacciego (z nieobowiązkowym upraszczającym zastrzeżeniem, że wartość "1"powinna się pojawiać tylko raz w cyklu). Po uruchomieniu licznika, w kolejnych taktach zegara powinien on zatem przechodzić po wartościach:

 $0, 1, 2, 3, 5, 8, 13, 0, 1, 2, 3, 5, 8, 13, 0, 1, \dots$ itd.

Aktualna wartość wskazywana przez licznik powinna być widoczna na wyświetlaczach siedmiosegmentowych.

2 Czarna skrzynka

Układ, do którego dążymy, prezentuje się w następujący sposób:

Rysunek 1

Gdzie wejściami są:

- 1. CLK sygnał z zewnętrznego zegara
- 2. RST sygnał służący zresetowaniu stanu licznika
- 3. OUT0, OUT1, OUT2, OUT3 wyjścia odpowiedzialne za kolejną liczbę

3 Tablica przejść automatu

R	D	С	В	A	Out3	Out2	Out1	Out0
X	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	1
1	0	0	0	1	0	0	1	0
X	0	0	1	0	0	0	1	1
X	0	0	1	1	0	1	0	1
X	0	1	0	1	1	0	0	0
X	1	0	0	0	1	1	0	1
X	1	1	0	1	0	0	0	0

4 Tablice Karnaugh

R	D	C	В	Λ	Out3	Out2	Out1	Out0
X	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	1
1	0	0	0	1	0	0	1	0
X	0	0	1	0	0	0	1	1
X	0	0	1	1	0	1	0	1
X	0	1	0	1	1	0	0	0
X	1	0	0	0	1	1	0	1
X	1	1	0	1	0	0	0	0

Rysunek 2: Tablica Karnaugh dla wyjścia Out
0 $\overline{A}\,+\,B\,+\,\overline{CR}$

R	D	C	В	Λ	Out3	Out2	Out1	Out0
X	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	1
1	0	0	0	1	0	0	1	0
X	0	0	1	0	0	0	1	1
X	0	0	1	1	0	1	0	1
X	0	1	0	1	1	0	0	0
X	1	0	0	0	1	1	0	1
X	1	1	0	1	0	0	0	0

Rysunek 3: Tablica Karnaugh dla wyjścia Out
1 $\overline{A}B + A\overline{BC}R$

R	D	C	В	Λ	Out3	Out2	Out1	Out0
X	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	1
1	0	0	0	1	0	0	1	0
X	0	0	1	0	0	0	1	1
X	0	0	1	1	0	1	0	1
X	0	1	0	1	1	0	0	0
X	1	0	0	0	1	1	0	1
X	1	1	0	1	0	0	0	0

Rysunek 4: Tablica Karnaugh dla wyjścia Out
2 $\frac{AB\,+\,D\overline{C}}{}$

R	D	C	В	Λ	Out3	Out2	Out1	Out0
X	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	1
1	0	0	0	1	0	0	1	0
X	0	0	1	0	0	0	1	1
X	0	0	1	1	0	1	0	1
X	0	1	0	1	1	0	0	0
X	1	0	0	0	1	1	0	1
X	1	1	0	1	0	0	0	0

Rysunek 5: Tablica Karnaugh dla wyjścia Out
3 $\overline{C}D + \overline{C}\overline{D}$

5 Implementacja w programie Multisim

Rysunek 6: Implementacja podukładu SC1 $\overline{A} \, + \, \underline{B} \, + \, \overline{CR}$

Rysunek 7: Implementacja podukładu SC2 $\overline{AB} + A\overline{BC}R$

Rysunek 8: Implementacja podukładu SC3 $\frac{AB}{} + D\overline{C}$

Rysunek 9: Implementacja podukładu SC4 $\overline{{\cal C}D} + \overline{{\cal C}\overline{D}}$

Rysunek 10: Implementacja podukładu CNT

Rysunek 11: Implementacja podukładu Fibonacci

D	\mathbf{C}	В	A	Q	D_o
0	0	0	0	X	0
0	0	0	1	0	0
0	0	0	1	1	1
0	0	1	0	X	0
0	0	1	1	X	0
0	1	0	1	X	0
1	0	0	0	X	0
1	1	0	1	X	0

Tabela 1: Tabela prawdy dla układu bramek U44, U43, U42

CLK	D	SET	RESET	Q_{n+1}
\uparrow	0	0	0	0
\uparrow	1	0	0	1
X	X	0	0	Q_n
X	X	1	0	1
X	X	0	1	0
X	X	1	1	X

Tabela 2: Tabela prawdy dla przerzutnika D

Rysunek 12: Implementacja transkodera

In3	In2	In1	In0	A1	B1	C1	D1	A2
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0
0	0	1	0	0	0	1	0	0
0	0	1	1	0	0	1	1	0
0	1	0	1	0	1	0	1	0
1	0	0	0	1	0	0	0	0
1	1	0	1	0	0	1	1	1

Tabela 3: Tabela prawdy dla układu bramek U21, U22... U28

Wejścia układu U20 to A1, B1, C1, D1, natomiast wejście układu U19 to A2

 $A_1 = \overline{\text{In}0 \cdot \text{In}2 \cdot \text{In}3} \cdot \text{In}0 + \text{In}0 \cdot \text{In}2 \cdot \text{In}3$

 $B_1 = \overline{\text{In}0 \cdot \text{In}2 \cdot \text{In}3} \cdot \text{In}1 + \text{In}0 \cdot \text{In}2 \cdot \text{In}3$

 $C_1 = \overline{\text{In}0 \cdot \text{In}2 \cdot \text{In}3} \cdot \text{In}2$

 $D_1 = \overline{\text{In}0 \cdot \text{In}2 \cdot \text{In}3} \cdot \text{In}3$

 $A_2 = \text{In}0 \cdot \text{In}2 \cdot \text{In}3$

In3	In2	In1	In0	A 0	A1	A2	A3	A4	A5	A 6	B0	B1	B2	В3	B4	B5	B6
0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	1
0	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1	0	1
			0														
0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	1	0
0	1	0	1	1	1	1	1	1	1	1	0	0	1	0	0	1	0
1	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
1	1	0	1	0	1	1	1	1	0	1	1	0	0	0	0	1	0

Tabela 4: Tabela prawdy dla całego transkodera

6 Układ testujący

Układ testujący analizuje dane wyjściowe pochodzące z naszego układu i porównuje je z przewidywanymi kolejnymi liczbami, które powinny się pojawić w naszym wyświetlaczu 7-segmentowym.

Rysunek 13: Schemat układu testującego

Rysunek 14: Schemat układu testującego

W generatorze słowa są postaci: 0000000000000000

0 – Bit resetujący 00000000000 – Bity nieużywane 0000 – Bity testujące poprawność

Układ testujący najpierw porównuje bit otrzymany z podukładu Fibonacci z bitem przewidywanym przez XWG-1. Wykorzystaliśmy tutaj bramki XOR ($\sim (A \Leftrightarrow B)$).

Rysunek 15: Tabela prawdy dla bramki XOR

Następnie wyjście z bramek XOR przekazujemy do bramki OR:

\mathbf{A}	В	\mathbf{C}	\mathbf{D}	О
0	0	0	0	0
0	0	0	1 0	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1 0 1 0 1 0	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1 0 1 0	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1	0	$\begin{array}{c} 1 \\ 0 \\ 1 \end{array}$	1
1	1	1	0	1
1	1	1	1	1

Tabela 5: Tabela prawdy i symbol dla bramki 4-wejściowej OR

Sygnał błędu jeśli błąd wystąpił w jakimkolwiek teście rejestrowany jest przez przerzutnik synchroniczny RS (dodatkowe wejście CLK) i zapalana jest dioda X1.

Rysunek 16: Przerzutnik RS

CLK	\mathbf{S}	R	Q_{n+1}	$-Q_{n+1}$
\uparrow	0	0	Q_n	$-Q_n$
↑	0	1	0	1
↑	1	0	1	0
 	1	1	X	X
X	X	X	Q_n	$-Q_n$

Tabela 6: Tabela prawdy przerzutnika RS

Natomiast sygnał błędu jeśli błąd wystąpił w danym teście rejestrowany jest przez przerzutnik synchroniczny D i zapalana jest dioda X2:

Rysunek 17: Przerzutnik D

CLK	D	SET	RESET	Q_{n+1}
\uparrow	0	0	0	0
\uparrow	1	0	0	1
X	X	0	0	Q_n
X	X	1	0	1
X	X	0	1	0
X	X	1	1	X

Tabela 7: Tabela prawdy dla przerzutnika D

Rysunek 18: Uszkodzony układ

Rysunek 19: Testowanie uszkodzonego układu 1

Rysunek 20: Testowanie uszkodzonego układu 1

7 Schemat całego układu

Rysunek 21: Schemat całego układu

Rysunek 22: Wykres analizatora XLA1

Rysunek 23: Wykres analizatora XLA2 dla nieuszkodzonego podukładu CNT

8 Przykłady zastosowania

Poniżej znajdują się przykładowe zastosowania naszego układu.

8.1 Automatyczny termostat

Układ możemy zastosować do sterowania temperaturą panującą w domu w ciągu dnia. W nocy oraz gdy nikogo nie ma w domu temperatura może być niższa, natomiast przed wstawaniem oraz w ciągu dnia temperatura może zostać podwyższona w celu zapewnienia domownikom komfortu.

Rysunek 24: Termostat

8.2 Oświetlenie przydomowe

Możemy zastosować układ do sterowania oświetleniem obok domu dostosowując je do wschodów i zachodów słońca. W ten sposób możemy zapewnić nastrojowe oświetlenie w ciągu wieczoru, minimalne w ciągu nocy, a w ciągu dnia zrezygnować z niego całkowicie.

Rysunek 25: Oświetlenie przydomowe

9 Wnioski

W trakcie realizacji projektu wykorzystanie narzędzi do analizy tablic Karnaugh znacząco ułatwiło optymalizację funkcji logicznych.

Zdecydowaliśmy się wprowadzić modyfikację polegającą na rozszerzeniu zbioru wejść — poprzez dodanie jednej z jedynek do ciągu — co rozszerzyło liczbę wymaganych wejść do pięciu.

W projekcie kluczową rolę odegrały przerzutniki typu D oraz RS, jednak można go przekształcić do realizacji za pomocą samych bramek logicznych co upraszczałoby układ bez zmiany jego funkcjonalności jednak znacząco zmniejszając jego czytelność i przejrzystość. Zaletą takiego podejścia byłałby możliwość fizycznego odwzorowania układu z użyciem popularnych komponentów, co zwiększa jego dostępność i praktyczność.

Co można było zrobić inaczej?

Przy projektowaniu układu testującego zaczęliśmy od zaprojektowania go z użyciem jednego przerzutnika typu D, jednak dodaliśmy jeszcze przerzutnik RS aby osobno skutecznie reprezentować sytuację wystąpienia błędu w danym kroku zegara oraz wystąpienia go kiedykolwiek wcześniej.