Universidad del Valle de Guatemala Guatemala agosto de 2016

Mini proyecto 2

Ejercicio 1 - Función acumulada ponderada:

Suponiendo que es simple generar variables aleatorias con función de probabilidad acumulada Fi(x) para i de 1 a n, tenemos V (variable aleatoria) con función de probabilidad acumulada:

$$F(x) = \sum_{i=1}^{n} p_i F_i(x)$$

Donde pi constituye una distribución probabilística.

Tasks:

- Describa un algoritmo para generar V
- Demuestre que el algoritmo genera adecuadamente V

Ejercicio 2 - Función acumulada ponderada (programa):

Escriba un programa tal que, dada una función de masa de probabilidad (pi, para i de 1 a n), proporcione como salida el valor de una variable aleatoria con esta función de masa. Haga un histograma para alguna distribución de ejemplo.

Ejercicio 3 - Valor presente neto:

Usted es un gerente de proyecto en Inversiones Gruesas S. A. Y debe elegir entre dos proyectos a realizar, la construcción de un Hotel o la construcción de un Centro Comercial. Los flujos de caja esperados para cada proyecto son los siguientes:

Proyecto Hotel

Tlempo	Vt
0	-800
1	normal(-800,50)
2	normal(-800,100)
3	normal(-700,150)
4	normal(300,200)
5	normal(400,200)
6	normal(500,200)
7	uniform(200,8440)

Proyecto Centro Comercial

Tlempo	Vt
0	-900
1	normal(-600,50)
2	normal(-200,50)
3	normal(-600,100)
4	normal(250,150)
5	normal(350,150)
6	normal(400,150)
7	uniform(1600,6000)
3 4 5	normal(-600,100) normal(250,150) normal(350,150) normal(400,150)

Si el parámetro que quiere utilizar para comparar ambos proyectos es el Valor Presente Neto al 10% de costo de capital, considere:

Tasks:

 Realice tres simulaciones para determinar cuál de los proyectos es el más rentable. Utilice 100, 1000 y 10000 iteraciones.

Ejercicio 4 - Repartidor de periódicos:

Usted es un voceador que quiere saber si le conviene más comprar diariamente 9, 10 u 11 periódicos. Además, sabe que el 30% de los días le piden 9, el 40% de los días le piden 10 y el 30% de los días le piden 11. Si usted compra los periódicos para luego venderlos, y paga \$1.50 por periódico, lo vende a \$2.50, y por cada periódico no vendido se le reembolsa \$0.50, ¿cuál es la cantidad que más le conviene comprar todos los días? Simule para un mes, un año y diez años.