Integrating Machine Learning and Quantum Chemistry for Micro-pK_a Predictions

OMRI ABARBANEL

DR. GEOFFREY HUTCHISON
UNIVERSITY OF PITTSBURGH, DEPARTMENT OF CHEMISTRY

ACS FALL MEETING 2023 AUGUST 14, 2023

Current SOTA

Quantum Mechanical Models

Model	RMSE Range	
Jensen 2017 ¹	0.90-1.00	
Grimme 2018 ²	0.68-1.01	
Grimme 2021 ³	0.84-2.68	

Machine Learning Models

Model	RMSE Range	
Czodrowski 2020 ⁴	0.79-1.51	
Langer 2022 ⁵	0.97-1.13	
Epik 7 2023 ⁶	0.54-1.01	

¹ 10.1021/acs.jpca.6b10990

² 10.1007/s10822-018-0145-7

³ 10.1021/acs.jpca.1c03463

⁴ 10.12688/f1000research.22090.2

⁵ 10.3389/fchem.2022.866585

⁶ 10.1021/acs.jctc.3c00044

Micro-pK_a

$$\begin{array}{c}
O \\
 \hline
NH_2
\end{array}$$

$$\begin{array}{c}
O \\
NH_2
\end{array}$$

$$pK_a = 2.72$$
 NH_2
 NH_3^+

Micro-pK_a

Can we build a more accurate model to predict micro-pK_a values by integrating GFN2 features?

$$pK_a = 2.72$$
 NH_2
 NH_3

Tautomer Search

- Tautomer enumeration using RDKit
- GFN2 optimization
 - ALPB implicit solvation model in water
- Lowest energy tautomer is chosen

Reaction Site Enumeration

- CREST¹ protonation \ deprotonation site search²
- Two surrogate GNN models
 - Protonation site prediction
 - Deprotonation site prediction

¹ 10.1039/C9CP06869D ² 10.1002/jcc.24922

Graph Representation

RDKit Features

GFN2 Features

Atom

- Atom Type
- No. Heavy Neighbors
- Formal Charge
- Hybridization
- Is in Ring
- Is Aromatic

- Atomic Mass
- VDW Radius
- Cov. Radius
- Chirality
- No. Hydrogens
- Is HBA\HBD

- Partial Charge
- Coord. Number
- Polarizability
- Fukui Indices

Bond

- Bond Type
- Is Conjugated

- Is in Ring
- Stereochemistry

Bond Order

Molecule

- Radius of Gyration
- Spherocity
- Aspherocity

- Eccentricity
- sp³ Fraction

- Charge
- $\Delta E_{ionization}$

Site Prediction Models

Micro-pK_a Prediction Model

- Problem Not enough experimental data
 - ~6,000 molecules from the Czodrowski lab
- Solution Transfer Learning using GNN
 - ~1.5 Million molecules from ChEMBL
 - ~2.6 Million ChemAxon predicted pK_a values

Protonation Sites Search

Deprotonation Sites Search

Test Datasets

Test Datasets

⁴ 10.1016/j.apsb.2022.11.010

¹ 10.12688/f1000research.22090.2

² 10.1021/acs.jcim.1c00075

³ 10.3389/fchem.2022.866585

SAMPL Challenges

	SAMPL6 ¹	SAMPL7 ²	SAMPL8 ³
	RMSE	RMSE	RMSE
Best Submission	0.68	0.71	1.45
Our Model	0.47	0.45	1.22

¹ 10.5281/zenodo.2651393, ² 10.5281/zenodo.5637494, ³ 10.5281/zenodo.7535037

Conclusions

- First free, open model with micro-pK_a predictions with RMSE below 0.8
- Adding semi-empirical QM features can help with micro-pK_a predictions
 - Comparisons with ML models (e.g., ANI / AIMNET) to come
- More experimental data is needed (please!)
 - Transfer learning is a viable way to remedy that
- ChemRxiv manuscript, code and data to come soon

Thank You

QUESTIONS?

