Lecture Summary: Affine Subspaces and Affine Mappings

Source: Lec45.pdf

Key Points

• Definition of Affine Subspace:

- An affine subspace L of a vector space V is a subset of V defined as:

$$L = v + U$$
,

where:

- * $v \in V$ is a fixed vector.
- * U is a vector subspace of V.
- L is formed by translating the subspace U by the vector v.

• Dimension of Affine Subspace:

- If U is n-dimensional, the corresponding affine subspace L is also considered n-dimensional.
- The subspace U associated with L is unique.

• Affine Subspaces in \mathbb{R}^n :

- In \mathbb{R}^2 , affine subspaces include:
 - * Points (shifting the origin by a vector).
 - * Lines (translating a line passing through the origin).
 - * The entire plane \mathbb{R}^2 (a subspace translated by 0).
- In \mathbb{R}^3 , affine subspaces include:
 - * Points.
 - * Lines.
 - * Planes.
 - * The entire space \mathbb{R}^3 .

• Affine Subspace as Solution Sets:

- For a linear system Ax = b, the solution set L is:

$$L = v + n(A),$$

where:

- * n(A) is the null space of A.
- * v is any particular solution to Ax = b.
- If b = 0, the system is homogeneous, and L = n(A) is a subspace.
- If $b \neq 0$ and lies in the column space of A, the solution set L is an affine subspace.

• Affine Mappings:

- Let L and L' be affine subspaces of V and W, respectively.
- A function $f: L \to L'$ is an **affine mapping** if:

$$f(v+u) = f(v) + T(u),$$

where:

- * $T: U \to U'$ is a linear transformation.
- * $v \in L$, $u \in U$, and $f(v) \in L'$.
- Every affine mapping can be decomposed as a translation followed by a linear transformation.
- Example: Affine Mapping in \mathbb{R}^3 :
 - Define f(x, y, z) = (2x + 3y + 2, 4x 5y + 3).
 - This is not a linear transformation since $f(0,0,0) \neq (0,0)$.
 - However, f can be written as:

$$f(x, y, z) = (2, 3) + (2x + 3y, 4x - 5y),$$

where the second term is a linear transformation.

- Therefore, f is an affine mapping.

Simplified Explanation

Affine Subspace Affine subspaces generalize vector subspaces by allowing translation:

- Example in \mathbb{R}^2 : A line not passing through the origin is an affine subspace obtained by translating a line passing through the origin.
- Solution sets of non-homogeneous systems Ax = b are affine subspaces when b lies in the column space of A

Affine Mapping Affine mappings allow linear transformations with a translation:

• Example: f(x,y) = (2x+1,y-1) translates by (1,-1) and scales (x,y) by linear rules.

Conclusion

In this lecture, we:

- Introduced affine subspaces as translations of vector subspaces.
- Showed how solution sets of linear equations form affine subspaces.
- Defined affine mappings and demonstrated their decomposition into translations and linear transformations.

Affine subspaces and mappings extend linear algebra concepts, particularly in solving non-homogeneous systems and transformations in affine geometry.