

Technology Arts Sciences TH Köln

GRANULAR ACCESS CONTROL TO KUBERNETES COMPONENT USING OPENID CONNECT

Presenter → Dikshita Kalita

Supervisor → Prof. Dr. Martin Leischner

 $Mentor \longrightarrow Richard\ Clau \$$

Date \rightarrow 20.01.2023

Agenda

- Motivation
- Introduction
- Summary
- Result
- State of art
- Sources

02 Introduction | What is Cryptojacking?

Cyberattack where attackers hijack a target's computer to mine cryptocurrency illegally without the user's awareness

? Why cryptocurrency?

 It is an integral and widely used means of global value transfer.

Which platforms attackers use?

- Through containerized platforms like Docker and Kubernetes
- Cloud infrastructures provide a greater range of computation capacities, hence attackers attack them

Source: [1]

02 Introduction | Recent attack reports

Sources: [2], [3]

02 Introduction | How cryptojacking happens?

Tactics →	Initial access	Execution	Persistence	Privilege escalation	Defense evasion	Credential access	Discovery	Lateral movement	Collection	Impact
Techniques	Using cloud credentials	Exec into container	Backdoor container	Privileged container	Clear container logs	LIst K8s secrets	Access K8s API server	Access cloud resources	Images from private registry	Data destruction
	Compromise d images in registry	Bash/cmd inside container	Writable hostpath mount	Cluster-admin binding	Delete K8s events	Mount service principal	Access Kubelet API	Container service account		Resource hijacking
	Kubeconfig file	New container	Kubernetes CronJob	hostPath mount	Pod/containe r name similarity	Access container service account	Network mapping	Cluster internal networking		Denial of service
	Application vulnerability	Application exploit(RCE)	Malicious admission controller	Access cloud resources	Connect from proxy server	Application credentials in config files	Access kubernetes dashboard	Application credentials in config files		
	Exposed sensitive interfaces	SSH server running inside container				Access managed identity credentials	Instance Metadata API	Writable volume mounts on host		
		Sidecar injection				Malicious admission controller		CoreDNS poisoning		
								ARP poisoning and IP spoofing		

Introduction | Method to analyse

02 Introduction Important security measures

NOTE: Integrating Kubernetes with third party auth providers uses the remote platform's identity guarantees (backed up by things like 2FA) and prevents administrators having to reconfigure the kubernetes API server to add or remove users.

Source: [5], [24], [25]

Introduction | Access control in kubernetes

02 Introduction | Three phases of access control in kubernetes

Reference: [14], [15]

02 Introduction Authentication & Authorization strategies

Authentication Strategies

Static Token

Not scalable

- Client certificates | X509 Client Certificates
 - Long-lived and can't be revoked effectively
- JSON Web Tokens (JWTs) [Rase64UR] encoded JSON objects] Token
 - OpenID Connect
 - 1. Very secure
 - 2. Tokens are short-lived
 - 3. No runtime coupling between OIDC provider and kube-API server

Authorization Modes

- Node
- **ABAC**
- **RBAC**
- Webhooks

02 Introduction | Implementation of access control

CENTRALIZED AUTHENTICATION

at

Ingress controller

Source: [9]

02 Introduction What is centralized authentication?

- This service is also called Single sign-on
- Allows a user to access multiple applications with one set of login credentials

• Built on a concept called *federated identity*

Enables sharing of identity across trusted but independent systems

02 Introduction | Workflow of SSO

02 Introduction | Advantages

- Better administrative control
- 2 Decreased attack surface
- 3 Seamless and secure user access
- 4 Better network security
- SSO as part of an identity and access management (IAM) solution, utilizes a central directory that controls user access to resources at a more granular level

Sources: [20], [21] 15

02 Introduction | Where to position SSO?

Source: [9]

kubernetes API

02 Introduction | Commonly used protocol

Open Authentication / OAuth

openID Connect / OIDC

Security Access Markup Language / SAML

Credit: Medium

Credit: Google Developer

Credit: Wiki sap

Source: [27] 17

02 Introduction | sso in a broader picture

Legends:

FIM	Refers to a trust relationship created between two or more domains or identity management systems.				
SSO	Feature available within FIM architecture				
OAuth2.0	Framework considered to be part of FIM architecture. It focuses on trusted relationship allowing user identity information to be shared across the domains.				
OIDC	Authentication layer built on top of OAuth 2.0 to provide Single Sign-on functionality				
SAML	Security Access Markup Language				

Source: [10] 18

02 Introduction | What is OpenID Connect?

- It adds the missing identity layer to OAuth 2.0
- It provides authentication in the form of ID Tokens

- API security model that controls access to APIs
- Does not provide any (standardized) way for the client to request or control user authentication.

purce: [19]

02 Introduction | Working of OpenID Connect

• OIDC uses the same components and architecture as OAuth, **but to authenticate**.

Source: [18]

Introduction | Overview of authentication workflow in OIDC

02 Introduction Authentication workflow of OIDC in kubernetes

 With the increased used of containerized platforms, implementing security measures at multiple layers is extremely crucial

Possibility of query:

Limitations:

- No security for unmanaged resources
- Not able to protect the system against application logic issues

Eg:

- Vulnerabilities in session maintenance.
- Improper configuration
- HTTP request smuggling

Source: [11], [12], [13]

03 Summary What is HTTP request smuggling?

Source: [26] 24

03 Summary How do vulnerabilities for this smuggling arise?

Research Question:

"How does using OpenID Connect in addition to reverse-proxy add more security to kube API server?"

- ✓ Auto-rotated and easily accessible ID tokens compared to kubernetes secrets
- With OIDC in usage:
- √ Fine granular authentication and authorization management
- ✓ Advanced management of HTTP traffic routing in comparison to ingress
- Authentication of credentials and authorization leads to decreased HTTP request smuggling

04 Result Recommended implementation

05 State of art

- Reverse proxy to authenticate to managed Kubernetes API servers via OIDC by jetstack.io
 (April 2, 2020)
- 2. <u>Securing Kubernetes services with OAuth2/OIDC</u> by Yussuf Burke, Developer at G-Research (January 12, 2021)
- OpenID Connect Authentication for Kubernetes with Okta and NGINX Ingress Controller by Amir Rawdat of F5
 (September 22, 2021)
- 4. OpenID Connect: What Is It And How Does It Work? by Traefiklabs (No date)

06 SOURCES (1/3)

[1] The Chief I/O (Publisher). (no date). Accessed on 23. December 2022

from

https://thechief.io/c/editorial/cryptojacking-attacks-kubernetes-serious-threat-deserves-attention/#:~:text=Cryptojacking%20is%20a%20form%20of,cryptocurrency%20without%20the%20user's%20awareness.

[2] Twain Taylor. (28.07.2020). Accessed on 24. December 2022

from https://techgenix.com/5-kubernetes-security-incidents/

[3] Wei Lien Dang. (02.06.2020). Accessed on 24. December 2022

from https://cloud.redhat.com/blog/cryptojacking-attacks-in-kubernetes-how-to-stop-them

[4] Weaveworks (Publisher). (03.07.2022). Accessed on 25. December 2022

from https://www.weave.works/blog/mitre-attack-matrix-for-kubernetes

[5] Andrew Martin (ControlPlane)(Author). (18.07.2018). Accessed on 26. December 2022

from https://kubernetes.io/blog/2018/07/18/11-ways-not-to-get-hacked/

[6] Traefiklabs (Publisher). (no date). Accessed on 26. December 2022

from https://traefik.io/glossary/openid-connect-everything-you-need-to-know/

[7] jetstack.io (Publisher). (02.04.2020). Accessed on 27. December 2022

from https://github.com/jetstack/kube-oidc-proxy

[8] Yussuf Burke (Author). (12.01.2021). Accessed on 27. December 2022

from https://www.gresearch.co.uk/blog/article/securing-kubernetes-services-with-oauth2-oidc/

[9] Amir Rawdat of F5 (Author). (22.09.2021). Accessed on 27 December 2022

 $from \ \underline{https://www.nginx.com/blog/implementing-openid-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller/linear-connect-authentication-kubernetes-okta-and-nginx-ingress-controller-connect-authentication-kubernetes-okta-and-nginx-ingress-controller-connect-authentication-kubernetes-okta-and-nginx-ingress-controller-connect-authentication-kubernetes-okta-and-nginx-ingress-controller-connect-authentication-kubernetes-authentication-kubernetes-okta-and-nginx-ingress-connect-authentication-kubernetes-aut$

[10] Onelogin (Publisher). (no date). Accessed on 27 December 2022

from https://www.onelogin.com/learn/how-single-sign-on-works#:~:text=With%20SSO%2C%20meaning%20Single%20Sign,also%20called%20a%20login%20portal)

06 SOURCES (2/3)

[11] Zpedla (Publisher). (no date). Accessed on 28 December 2022

from https://www.zscaler.de/resources/security-terms-glossary/what-is-reverse-proxy

[12] Cem Dilmegani (Author). (14.11.2022). Accessed on 28 December 2022

from https://research.aimultiple.com/reverse-proxy/#:~:text=Though%20it%20provides%20security%2C%20there,run%20by%20a%20malicious%20party

[13] Traefiklabs (Publisher). (no date). Accessed on 28. December 2022

from https://traefik.io/blog/improve-application-security-using-a-reverse-proxy/

[14] Kubernetes (Publisher). (09.07.2022). Accessed on 29. December 2022

from https://kubernetes.io/docs/concepts/security/controlling-access/

[15] Alibaba Cloud Native Community (Publisher). (22.06.2020). Accessed on 29. December 2022

from https://www.alibabacloud.com/blog/getting-started-with-kubernetes-%7C-access-control-a-security-measure-in-kubernetes 596331

[16] Alicia Townsend (Author). (22.04.2021). Accessed on 29. December 2022

from https://www.onelogin.com/blog/real-difference-saml-oidc

[17] Virag Mody (Author). (06.08.2020). Accessed on 29. December 2022

from https://goteleport.com/blog/how-oidc-authentication-works/

[18] NHS Digital (Publisher). (17.08.2021). Accessed on 30. December 2022

from

https://digital.nhs.uk/services/identity-and-access-management/nhs-care-identity-service-2/care-identity-authentication/guidance-for-developers/openid-connect-overview

[19] Curity (Publisher). (no date). Accessed on 30. December 2022

from https://curity.io/resources/learn/openid-connect-overview/

[20] Dineshchandgr (Author). (08.07). Accessed on 30. December 2022

from https://medium.com/javarevisited/single-sign-on-sso-saml-oauth2-oidc-simplified-cf54b749ef39

06 SOURCES (3/3)

[21] Onelogin (Publisher). (no date). Accessed on 30. December 2022

from

https://www.onelogin.com/learn/why-sso-important#:~:text=Security%20and%20compliance%20benefits%20of%20SSO&text=SSO%20reduces%20the%20number%20of,%20C%20they%20usually%20don't.

[22] Kubernetes (Publisher). (no date). Accessed on 31. December 2022

from https://kubernetes.io/docs/reference/access-authn-authz/authentication

[23] NHS Digital (Publisher). (17.08.2021). Accessed on 31. December 2022

from

https://digital.nhs.uk/services/identity-and-access-management/nhs-care-identity-service-2/care-identity-authentication/guidance-for-developers/openid-connect-overview

[24] Judith Kahrer (Author). (02.08.2022). Accessed on 31. December 2022

from https://thenewstack.io/best-practices-for-api-security-in-kubernetes/

[25] Gilad David Maayan (Author). (21.04.2022). Accessed on 31. December 2022

from https://nordicapis.com/securing-the-kubernetes-api-server-critical-best-practices/

[26] PortSwigger (Publisher). (no date). Accessed on 06. January 2023

from https://portswigger.net/web-security/request-smuggling

[27] Daniel Lu (Author). (19.02.2021). Accessed on 08. January 2023

from https://www.okta.com/blog/2021/02/single-sign-on-sso/

