Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

1. Max. molecular weight - 1000 g/mol

2. Popularity - 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

2 Paths

2 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 250.22

Figure 1: Outline of path 1

2.1.1 Appel Reaction

Substrates:

1. 2,3-Dibromoallyl alcohol - available at Sigma-Aldrich

Products:

1. 1,2,3-tribrom-propen

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1021/ja800574m and 10.1016/j.tet.2012.05.010 and

10.1016/j.tet.2004.09.021 (experimental)

Retrosynthesis ID: 9990037

${\bf 2.1.2}\quad {\bf HWE/Wittig\ Olefination}$

Substrates:

- 1. 1,2,3-tribrom-propen
- 2. Methyl 2-ketobutyrate available at Sigma-Aldrich

Products:

1. CCC(=CC(Br)=CBr)C(=O)OC

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde

Protections: none

Reference: 10.1002/anie.200705005 and 10.1021/ol052106a and 10.1021/jo00075a064 and 10.1021/ol3027297

Retrosynthesis ID: 24425

2.1.3 Reduction of nitriles to aldehydes

Substrates:

1. g-hydroxybut-2-ynenitrile

Products:

1. 4-hydroxy-but-2-ynal

Typical conditions: DIBALH.DCM

Protections: none

Reference: 10.1016/j.bmc.2006.01.061 and 10.1016/j.tet.2012.07.022 and 10.1016/j.bmcl.2009.01.075 and 10.1016/j.bmcl.2007.09.081 and 10.1021/jo000502v

Retrosynthesis ID: 31406

2.1.4 Allylic Oxidation of Alkenes

Substrates:

1.
$$CCC(=CC(Br)=CBr)C(=O)OC$$

Products:

1.
$$COC(=O)C(=CC(Br)=CBr)C(C)=O$$

Typical conditions: tBuOOH.Pd(OH)2/C or PhI(OAc)2 or SeO2

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and 10.1016/j.tetlet.2016.05.063 (Scheme 2)

Retrosynthesis ID: 2583

2.1.5 Acid catalyzed transesterification

Substrates:

1. 4-hydroxy-but-2-ynal

2. COC(=O)C(=CC(Br)=CBr)C(C)=O

Products:

1. CC(=O)C(=CC(Br)=CBr)C(=O)OCC#CC=O

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

Retrosynthesis ID: 50438

2.1.6 Reduction of alkynes to alkenes

Substrates:

1. CC(=O)C(=CC(Br)=CBr)C(=O)OCC#CC=O

Products:

1. CC(=O)C(=CC(Br)=CBr)C(=O)OCC=CC=O

Typical conditions: H2.Lindlar's catalyst

Protections: none

Reference: 10.1021/ja054487t (SI) AND 10.1021/jm9810912

2.1.7 Diels-Alder

Substrates:

$$1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}(=\mathrm{CC}(\mathrm{Br})=\mathrm{CBr})\mathrm{C}(=\mathrm{O})\mathrm{OCC}=\mathrm{CC}=\mathrm{O}$$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}12\mathrm{C} = \mathrm{C}(\mathrm{Br})\mathrm{C}(\mathrm{Br})\mathrm{C}(\mathrm{C}=\mathrm{O})\mathrm{C}1\mathrm{C}\mathrm{O}\mathrm{C}2 = \mathrm{O}$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z AND <math>10.1021/ja062508t

Retrosynthesis ID: 18116

2.1.8 Takai olefination

Substrates:

- 1. 1,1-Diiodoethane available at Sigma-Aldrich
- $2. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}12\mathrm{C} = \mathrm{C}(\mathrm{Br})\mathrm{C}(\mathrm{Br})\mathrm{C}(\mathrm{C}=\mathrm{O})\mathrm{C}1\mathrm{C}\mathrm{O}\mathrm{C}2 = \mathrm{O}$

Products:

1. C/C=C/C1C(Br)C(Br)=CC2(C(C)=O)C(=O)OCC12

Typical conditions: CrCl2.THF.DMF

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

Retrosynthesis ID: 10942

2.1.9 Alkylation of amines with alkyl bromides

Substrates:

 $\begin{array}{ll} 1. \ \ 2\text{-}(\text{p-Toluenesulfonylamino}) \text{phenylboronic acid pinacol ester} - & \textit{available} \\ \textit{at Sigma-Aldrich} \end{array}$

 $2. \ C/C = C/C1C(Br)C(Br) = CC2(C(C) = O)C(=O)OCC12$

Products:

Typical conditions: K2CO3 or other base

Protections: none

Reference: 10.1016/j.tetlet.2007.09.110

${\bf 2.1.10} \quad {\bf Suzuki\ coupling\ of\ arylboronic\ pinacol\ esters\ with\ vinyl\ Bromides}$

Substrates:

Products:

 $1. \ \ C/C=C/C1C2C(=CC3(C(C)=O)C(=O)OCC13)c1ccccc1N2S(=O)(=O)c1ccc(C)cc1$

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 10695

2.2 Path 2

Score: 269.29

Figure 2: Outline of path 2

2.2.1 Oxidation of primary alcohols with DMP

Substrates:

1. 2,3-Dibromoallyl alcohol - available at Sigma-Aldrich

Products:

1. 2,3-dibromo-propenal

Typical conditions: DMP.DCM.0-25 C

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and 10.1021/acs.jmedchem.8b01878 SI p. S43

Retrosynthesis ID: 50426

2.2.2 Aldol Condensation

Substrates:

- $1. \ \ 3, 3, 3\text{-trimethoxybutan-2-one}$
- 2. 2,3-dibromo-propenal

Products:

1. COC(OC)(OC)C(=CC(Br)=CBr)C(C)=O

Typical conditions: NaOEt.base

Protections: none

Reference: 10.1080/00397911.2016.1206938

Retrosynthesis ID: 10049

2.2.3 Synthesis of carboxylic acids from acetals

Substrates:

1. COC(OC)(OC)C(=CC(Br)=CBr)C(C)=O

Products:

1. CC(=O)C(=CC(Br)=CBr)C(=O)O

Typical conditions: HCl.H2O

Protections: none

Reference: 10.1016/j.tetasy.2010.12.014

Retrosynthesis ID: 25207

2.2.4 Opening of epoxides with carboxylic acids

Substrates:

1. ethynyl-oxirane

2.
$$CC(=O)C(=CC(Br)=CBr)C(=O)O$$

Products:

1. C#CC(O)COC(=O)C(=CC(Br)=CBr)C(C)=O

 $\textbf{Typical conditions:} \ \textbf{RCOOH.} \textbf{catalyst}$

Protections: none

Reference: 10.1021/ol051051+ AND 10.1016/j.tet.2005.05.050 and US2011/86912 A1 (P.13) and 10.1055/s-2003-42416 and 10.5012/bkcs.2013.34.8.2286

Retrosynthesis ID: 15151

2.2.5 Meyer-Schuster Rearrangement

Substrates:

1.
$$C\#CC(O)COC(=O)C(=CC(Br)=CBr)C(C)=O$$

Products:

1.
$$CC(=O)C(=CC(Br)=CBr)C(=O)OCC=CC=O$$

Typical conditions: H+

Protections: none

Reference: 10.1021/cr60273a001 Retrosynthesis ID: 10143

2.2.6 Diels-Alder

Substrates:

1. CC(=O)C(=CC(Br)=CBr)C(=O)OCC=CC=O

Products:

1. CC(=O)C12C=C(Br)C(Br)C(C=O)C1COC2=O

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

ANIE1668>3.0.CO;2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.2.7 Takai olefination

Substrates:

1. 1,1-Diiodoethane - available at Sigma-Aldrich

 $2. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}12\mathrm{C} = \mathrm{C}(\mathrm{Br})\mathrm{C}(\mathrm{Br})\mathrm{C}(\mathrm{C} = \mathrm{O})\mathrm{C}1\mathrm{C}\mathrm{O}\mathrm{C}2 = \mathrm{O}$

Products:

 $1. \ C/C = C/C1C(Br)C(Br) = CC2(C(C) = O)C(=O)OCC12$

Typical conditions: CrCl2.THF.DMF

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

2.2.8 Alkylation of amines with alkyl bromides

Substrates:

 $1. \ 2 \hbox{-} (\hbox{p-Toluenesulfonylamino}) \hbox{phenylboronic acid pinacol ester -} \quad \ \ \underbrace{available}_{at \ Sigma-Aldrich}$

2. C/C=C/C1C(Br)C(Br)=CC2(C(C)=O)C(=O)OCC12

Products:

Typical conditions: K2CO3 or other base

Protections: none

Reference: 10.1016/j.tetlet.2007.09.110

Retrosynthesis ID: 7668

2.2.9 Suzuki coupling of arylboronic pinacol esters with vinyl Bromides

Substrates:

Products:

 $1. \ \ C/C = C/C1C2C(=CC3(C(C) = O)C(=O)OCC13)c1ccccc1N2S(=O)(=O)c1ccc(C)cc1$

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H