# **Clustering Lecture 14**

David Sontag
New York University

Slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

#### Clustering:

- Unsupervised learning
- Requires data, but no labels
- Detect patterns e.g. in
  - Group emails or search results
  - Customer shopping patterns
  - Regions of images
- Useful when don't know what you're looking for
- But: can get gibberish

令人费解的话,莫名其妙的 话,胡扯;混字;无意义数据



- Basic idea: group together similar instances
- Example: 2D point patterns



- Basic idea: group together similar instances
- Example: 2D point patterns



- Basic idea: group together similar instances
- Example: 2D point patterns



- What could "similar" mean?
  - One option: small Euclidean distance (squared)

$$\operatorname{dist}(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||_2^2$$

 Clustering results are crucially dependent on the measure of similarity (or distance) between "points" to be clustered

# Clustering algorithms

- Partition algorithms (Flat)
  - K-means
  - Mixture of Gaussian
  - Spectral Clustering





- Hierarchical algorithms
  - Bottom up agglomerative
  - Top down divisive



# Clustering examples

#### Image segmentation

Goal: Break up the image into meaningful or perceptually similar regions



# Clustering examples

Clustering gene expression data



#### K-Means

- An iterative clustering algorithm
  - Initialize: Pick K random points as cluster centers
  - Alternate:
    - 1. Assign data points to closest cluster center
    - 2. Change the cluster center to the average of its assigned points
  - Stop when no points' assignments change

#### K-Means

- An iterative clustering algorithm
  - Initialize: Pick K random points as cluster centers
  - Alternate:
    - 1. Assign data points to closest cluster center
    - 2. Change the cluster center to the average of its assigned points
  - Stop when no points' assignments change





 Pick K random points as cluster centers (means)

Shown here for *K*=2



#### **Iterative Step 1**

 Assign data points to closest cluster center



#### Iterative Step 2

 Change the cluster center to the average of the assigned points



Repeat until convergence







### Properties of K-means algorithm

Guaranteed to converge in a finite number of iterations

- Running time per iteration:
  - Assign data points to closest cluster center O(KN) time
  - 2. Change the cluster center to the average of its assigned points

O(N)

# What properties should a distance measure have?

- Symmetric
  - -D(A,B)=D(B,A)
  - Otherwise, we can say A looks like B but B does not look like A
- Positivity, and self-similarity
  - D(A,B)≥0, and D(A,B)=0 iff A=B
  - Otherwise there will different objects that we cannot tell apart
- Triangle inequality
  - $D(A,B)+D(B,C) \ge D(A,C)$
  - Otherwise one can say "A is like B, B is like C, but A is not like C at all"

#### **Kmeans Convergence**

#### **Objective**

$$\min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$$

1. Fix  $\mu$ , optimize *C*:

Step 1 of kmeans

$$\min_{C} \sum_{i=1}^{k} \sum_{x \in C_{i}} |x - \mu_{i}|^{2} = \min_{C} \sum_{i}^{n} |x_{i} - \mu_{x_{i}}|^{2}$$

2. Fix C, optimize  $\mu$ :

$$\min_{u} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$$

– Take partial derivative of  $\mu_i$  and set to zero, we have

$$\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

Step 2 of kmeans

Kmeans takes an alternating optimization approach, each step is guaranteed to decrease the objective – thus guaranteed to converge

#### Example: K-Means for Segmentation

K=2



Goal of Segmentation is to partition an image into regions each of which has reasonably homogenous visual appearance.







## Example: K-Means for Segmentation

K=2



K=3



Original







### **Example: K-Means for Segmentation**

















#### **Example: Vector quantization**



**FIGURE 14.9.** Sir Ronald A. Fisher (1890 – 1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a  $1024 \times 1024$  grayscale image at 8 bits per pixel. The center image is the result of  $2 \times 2$  block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

[Figure from Hastie et al. book]

#### Initialization

- K-means algorithm is a heuristic
  - Requires initial means
  - It does matter what you pick!
  - What can go wrong?
  - Various schemes for preventing this kind of thing: variance-based split / merge, initialization heuristics



# K-Means Getting Stuck

#### A local optimum:



Would be better to have one cluster here



### K-means not able to properly cluster



# Changing the features (distance function) can help



- Agglomerative clustering:
  - First merge very similar instances
  - Incrementally build larger clusters out of smaller clusters
- Algorithm:
  - Maintain a set of clusters
  - Initially, each instance in its own cluster
  - Repeat:
    - Pick the two closest clusters
    - Merge them into a new cluster
    - Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram





 How should we define "closest" for clusters with multiple elements?



- How should we define "closest" for clusters with multiple elements?
- Many options:
  - Closest pair (single-link clustering)
  - Farthest pair (complete-link clustering)
  - Average of all pairs
- Different choices create different clustering behaviors



 How should we define "closest" for clusters with multiple elements?

Closest pair (single-link clustering)



Farthest pair (complete-link clustering)



[Pictures from Thorsten Joachims]

# **Clustering Behavior**



Mouse tumor data from [Hastie et al.]

#### Agglomerative Clustering Questions

- Will agglomerative clustering converge?
  - To a global optimum?
- Will it always find the true patterns in the data?
- Do people ever use it?
- How many clusters to pick?

## Reconsidering "hard assignments"?



- Clusters may overlap
- Some clusters may be "wider" than others
- Distances can be deceiving!

#### Extra

- K-means Applets:
  - http://home.dei.polimi.it/matteucc/Clustering/ tutorial html/AppletKM.html
  - <a href="http://www.cs.washington.edu/research/">http://www.cs.washington.edu/research/</a> <a href="mailto:imagedatabase/demo/kmcluster/">imagedatabase/demo/kmcluster/</a>