

Brain age prediction

Morgan Gautherot 03/02/2022

Brain development

1000 Marjoy, Paulet al. (2007). Neuroimaging of White Motter in Aging and Dementia. The Clinical
Bartzokke@r@eskeloologisty.PH1.NG8elt@glein KH, Edwards N, Mintz J. Age-Related Changes in Frontal and Temporal Lobe Volumes in Men: A Magnetic Resonance Imaging St. (2007). Neuroimaging St. (2007).

Hedman AM et al. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. *Hum Brain Mapp*. 2012;33(8):1987-2002. doi:10.1002/hbm.21334

Le score d'âge cérébral

Classic machine learning

Data

Extraction of characteristics

Raw data

Grey matter

White matter

Cerebral spinal fluid

Cortical thickness

Cortical surface

Sub-cortical volumes

Prediction

Gaussian Processes Regression

Cole, J., et al. Prediction of Brain Age Suggests Accelerated Atrophy after Traumatic Brain Injury. Ann. Neurol. 77:571–581, 2015.

Naive bayes

Lancaster, J., et al. Optimization for Neuroimaging Pre-processing in Brain Age Prediction. Front. Aging Neurosci. 10:28, 2018.

Relevance Vector Machine

Franke, K., et al. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters. NeuroImage 50:883–892, 2010.

Random forest

Liem, F., et al., Predicting brain-age from multimodal imaging data captures cognitive impairment. NeuroImage 148:179–188, 2017.

Performance

MAE* 4.66

MAE* 5.08

MAF* 4.98

MAE* 4.83

MAE* = Mean absolute error

Healthcare in the age of Big Data

Etude	n	Sujet	Age moyen ± écart type (année)	Tranche d'âge, min-max (année)	Femme, n (%)	Constructeur
IXI	561	561	48.11 ± 16.73	19-86	312 (55%)	Philips
НСР	1783	1113	28.76 ± 3.7	22-37	815 (45%)	Siemens
COBRE	238	94	38.18 ± 11.53	18-65	64 (26%)	Siemens
MCIC	264	95	33.59 ± 12.21	18-60	80 (30%)	Siemens
NmorphCH	141	44	31.37 ± 8.42	20-46	66 (46%)	Siemens
NKIRS	824	671	34.91 ± 20.83	6-85	505 (61%)	Siemens
РРМІ	248	149	60.90 ± 11.30	30-83	85 (34%)	General Electric / Philips / Siemens
ADNI	3686	579	74.90 ± 6.87	55-95	1954 (53%)	Philips / Siemens
ABIDE	519	519	16.81 ± 7.49	6-48	92 (17%)	General Electric / Philips / Siemens
ІСВМ	208	208	26.52 ± 6.29	18-44	112 (53%)	Philips / Siemens

Deep learning

Bashyam VM, et al. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain. 2020 Jul 1;143(7):2312-2324.

7

Prétraitements

Training the model

Cross validation

Nombre de validation	1	2	3	4	5	Moyenne \pm écart type
MAE validation (année)	3.85	2.74	3.06	2.77	3.48	3.18±0.43

Testing set

Fig. 10. Shown are box plots with BrainAGE scores (in years) for the two samples from the ADNI database (AD with CDR = 1, NO with CDR = 0). The gray boxes contain the values between the 25th and 75th percentiles of the samples, including the median (dashed line). Lines extending above and below each box symbolize data within 1.5 times the interquartile range (outliers are displayed with a+). The width of the boxes depends on the sample size.

Franke K, et al. Alzheimer's Disease Neuroimaging Initiative. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage. 2010 Apr 15;50(3):883-92

brain age and mental health score

Brain age in psychatric diseases

