DATA-DRIVEN IDENTIFICATION

Adrien Leygue, Michel Coret, Erwan Verron, Rian Seghir, Julien Réthoré

Research Institute in Civil Engineering and Mechanic (GeM) Centrale Nantes, France

Find $(\mathbf{u}, \boldsymbol{\sigma})$ such that

Admissibility for u

 $\boldsymbol{u}=\boldsymbol{u}_{\text{d}}$ on Γ_{u} + regularity

 $\operatorname{div}(\boldsymbol{\sigma})=0$

Compatibility

$$\boldsymbol{\varepsilon} = \frac{1}{2}(\nabla \mathbf{u} + \nabla^{\mathsf{T}}\mathbf{u})$$

Balance of external forces

Balance of momentum

$${\pmb \sigma}({\sf n}) = {\sf F}_d \ {\sf on} \ {\sf \Gamma}_{\it F}$$

Regularization

Sample with a geometry such that the solution is unique. Usual specimen geometry for uni-, bi-, tri-axial testing,...

▶ "Engineering" approach

► Validation ?

by G. Portemont at ONERA Lille

► Photomechanics

► Stress calculation

▶ Numerical simulation

► Constitutive Equation Gap [Chrysochoos et al.]

▶ Equilibrium gap [Claire et al., 2004], VFM [Grédiac et al., 2006]

▶ FEMU [Lecompte et al., 2007, Leclerc et al., 2009]...

PARAMETRIC V.S. NON-PARAMETRIC

- ▶ Parametric techniques (using a constitutive equation)
 - + provide for the optimal set of parameters
- +/- tell that the constitutive equation is not correct
 - how to improve it
 - kinematically consistent direct FEA
- ▶ Non-parametric (without using a constitutive equation)

SIMPLE PROBLEM

Problem definition

Compatibility

Balance of momentum

CONSTITUTIVE LAW

RESOLUTION

Expected solution

Non linear problem resolution

CONSTITUTIVE DATA

DATA-DRIVEN COMPUTATIONAL MECHANICS

DATA-DRIVEN SOLVER

INTRISINC DIFFERENCE

Find $(\mathbf{u}, \boldsymbol{\sigma})$ such that:

Admissibility for u

 $\mathbf{u} = \mathbf{u}_d$ on Γ_u + regularity

$div(\boldsymbol{\sigma}) = 0$

Compatibility

$$\boldsymbol{\varepsilon} = \frac{1}{2}(\nabla \mathbf{u} + \nabla^{\mathsf{T}}\mathbf{u})$$

Balance of external forces

Balance of momentum

$$\sigma(\mathsf{n}) = \mathsf{F}_d \; \mathsf{on} \; \mathsf{\Gamma}_{\mathit{F}}$$

Regularization

Sample with a geometry such that the solution is unique. Usual specimen geometry for uni-, bi-, tri-axial testing,...

CONTINUUM MECHANICS

Find $(\mathbf{u}, \boldsymbol{\sigma})$ such that:

Admissibility for u

 $\mathbf{u} = \mathbf{u}_d$ on Γ_u + regularity

Compatibility

$$\boldsymbol{\varepsilon} = \frac{1}{2}(\nabla \mathbf{u} + \nabla^{\mathsf{T}}\mathbf{u})$$

Balance of momentum

$$div(\boldsymbol{\sigma}) = 0$$

Balance of external forces

$$\sigma(\mathsf{n}) = \mathsf{F}_d \; \mathsf{on} \; \mathsf{\Gamma}_{\mathit{F}}$$

Regularization

Constitutive relation

$$\sigma = f(\varepsilon, ...)$$

NON-PARAMETRIC IDENTIFICATION

From a measured **u**, find (σ) such that:

Admissibility for u

 $\mathbf{u} = \mathbf{u}_d$ on Γ_u + regularity

Balance of momentum

 $\operatorname{div}(\boldsymbol{\sigma})=0$

Compatibility

 $\boldsymbol{\varepsilon} = \frac{1}{2} (\nabla \mathbf{u} + \nabla^{\mathsf{T}} \mathbf{u})$

Balance of external forces

 ${\pmb \sigma}({\sf n}) = {\sf F}_{d} \; {\sf on} \; {\sf \Gamma}_{\it F}$

Regularization

Minimizing the deviation (energy norm in the phase space) from the mean response (ϵ^*, σ^*) .

DDI implementation

October 9, 2025

1 How DDI Works?

Authors: Outlaw Group, Centrale Nantes, France

[Leygue et al., Data-based derivation of material response, CMAME 2018]

1.1 Basics and an illustrative example

1.1.1 DDI at a glance

Data Driven Identification (DDI) aims at computing stresses on a structure where displacement field (u) and applied forces (f) are known but not the mechanical behaviour law. DDI gives us, first, the **balanced stress field** (σ) in the structure (stress tensor in each element) and second, a **Strain-Stress data set** $(\varepsilon^{\star}, \sigma^{\star})$. The Strain-Stress data set is needed to solve the ill-posed problem of equilibrium in the absense of a material law, its size, (N_{ss}) , is smaller than the number of elements (N_e) of the structure. This data set can also be seen as an attractor allowing the minimisation of the variance of the stress field.

Input * 2D mesh of a structure * Node displacement field u of size N_e - Typically from DIC * Applied net forces - Typically from a load cell

Output* Stress field (σ) - preserving balance of momentum * Clusturized Strain-Stress data base $(\varepsilon^\star,\sigma^\star)$ of size N_{ss}

Parameters 1. r: clustering ratio [no unit] $\left(r = \frac{N_e}{N_{ss}}\right)$ 2. \mathcal{C}_0 : Algorithmic stiffness [Pa]

1.2 Definitions, Problem & Equations to be solved

1.2.1 1. Definitions:

- The Clustering is the pairing between each couple $(\varepsilon, \sigma)_e$ of an element e with a couple i of the data-set $(\varepsilon^*, \sigma^*)_i$. $(\varepsilon^*, \sigma^*)_i$ is a weighted average of a subset of (ε, σ) . Obviously, $N_e > N_{ss}$.
- Clusterization is defined by the pairing operator S such as $\sigma_e^* = P_{ie}\sigma_i^*$. S is an unknown of the problem.
- Illustration of S:

• \mathcal{C}_0 **norm** is define on a couple (\mathbf{a}, \mathbf{b}) of tensors of order 2 (typically a strain and a stress) by the definition :

 $\|\mathbf{a},\mathbf{b}\|_{\mathcal{C}_0} = \left[\mathbf{a}:\mathcal{C}_0:\mathbf{a}+\mathbf{b}:\mathcal{C}_0^{-1}:\mathbf{b}\right]^{\frac{1}{2}}, \quad \mathcal{C}_0 \text{ a 4th order symmetric positive definite tensor.}$

1.2.2 2. Problem:

 ε and f being known, find $(\sigma, \varepsilon^{\star}, \sigma^{\star}, S)$ minimizing the \mathcal{C}_0 norm between (ε, σ) and $(\varepsilon^{\star}, \sigma^{\star})$ and which preserve the equilibrium of the structure.

$$\|\varepsilon - S\varepsilon^\star, \sigma - S\sigma^\star\|_{\mathcal{C}_0} = \left[(\varepsilon - S\varepsilon^\star) : \mathcal{C}_0 : (\varepsilon - S\varepsilon^\star) + (\sigma - S\sigma^\star) : \mathcal{C}_0^{-1} : (\sigma - S\sigma^\star) \right]^{\frac{1}{2}},$$

and $\operatorname{div} \sigma = f$, $\forall M \in \text{Structure}$

 \mathcal{C}_0 has the dimension of a stiffness tensor.

That can be rewritten in a variational form:

Find, $(\sigma, \varepsilon^*, \sigma^*, \eta)$ that make the following functional stationary, for a given S

$$\mathcal{E}(\sigma, \boldsymbol{\varepsilon^{\star}}, \boldsymbol{\sigma^{\star}}, \boldsymbol{S}, \boldsymbol{\eta}) = \frac{1}{2} \int_{V} \left[\| \boldsymbol{\varepsilon} - \boldsymbol{S} \boldsymbol{\varepsilon^{\star}}, \sigma - \boldsymbol{S} \boldsymbol{\sigma^{\star}} \|_{\mathcal{C}_{0}}^{2} - \left(\operatorname{div} \sigma - f \right) \boldsymbol{\eta} \right] dV$$

With η a Lagrange Multiplier (dimension of a displacement vector in [m]).

1.2.3 3. Derivation of variational equation:

The derivation of the above functional = 0 gives us the following equations needed to find the unknowns $(\sigma, \varepsilon^*, \sigma^*, \eta)$:

$$\begin{array}{llll} \delta \varepsilon^{\star} & \quad \Rightarrow & \int_{V} \mathcal{C}_{0} : \left(\varepsilon - S \varepsilon^{\star} \right) dV & = 0 & \forall V & (1) \\ \delta \sigma^{\star} & \quad \Rightarrow & \int_{V} \mathcal{C}_{0}^{-1} : \left(\sigma - S \sigma^{\star} \right) dV & = 0 & \forall V & (2) \\ \delta \eta & \quad \Rightarrow & \int_{V} \left(\operatorname{div} \sigma - f \right) dV & = 0 & \forall V & (3) \\ \delta \sigma & \quad \Rightarrow & \left(\sigma - S \sigma^{\star} \right) = \mathcal{C}_{0} : \operatorname{grad}^{s}(\eta) & \forall M & (4) \end{array}$$

- Equations 1 and 2 state that ε^* (resp. σ^*) is a weighted average of a cluster of ε (resp. σ)
- Equation 3 is the standard balance of momentum equation on the whole structure.
- Equation 4 states the distance between σ and σ^* is proportional to the gradient of \$ grad^s()\$ (a kind of strain)

1.3 Discrete format

In 1D using bar elements (instead 2D elements): > - (ε, σ) become scalar (instead of tensors) > - \mathcal{C}_0 is just a scalar C_0 > - Only one snapshot is considered > - the bar elements are assigned a unit heigh > - the unit for length is pixel

The variational form can be rewritten as:

$$\begin{split} \mathcal{E}(S_e, \boldsymbol{E^{\star}}, \boldsymbol{S^{\star}}, \boldsymbol{S}, \boldsymbol{L}) = & \frac{1}{2} C_0 \left[E_e - \boldsymbol{S} \ \boldsymbol{E^{\star}} \right]^T \ W \ \left[E_e - \boldsymbol{S} \ \boldsymbol{E^{\star}} \right] \\ + \frac{1}{2} C_0^{-1} \left[S_e - \boldsymbol{S} \ \boldsymbol{S^{\star}} \right]^T \ W \ \left[S_e - \boldsymbol{S} \ \boldsymbol{S^{\star}} \right] \\ - \left[\boldsymbol{B}^T \ W \ \boldsymbol{S_e} - \boldsymbol{F_{ext}} \right]^T \ \boldsymbol{L} \end{split}$$

where B is such that $E_e = B U$, U being a vector collecting the nodal displacements (data), W is a diagonal matrix collecting the surface of each bar element (E_e, S_e) are vectors collecting the strain and stress in each element, (S^*, S^*) are vectors containing the values of $(\varepsilon^*, \sigma^*)$ and L a vector collecting the value of nodal Lagrange multipliers. The stationarity conditions recast as:

$$\delta E^{\star} \qquad \Rightarrow (S^T \ S)E^{\star} = S^T \ E_e \tag{I}$$

$$\delta S^{\star} \qquad \qquad \Rightarrow \quad (S^T \; S) S^{\star} = S^T \; S_e \qquad \qquad (II)$$

$$\delta L \qquad \qquad \Rightarrow \quad B^T \ W \ S_e = F_{ext} \qquad \qquad (III)$$

$$\delta S_e \qquad \qquad \Rightarrow \quad C_0^{-1} W \left(S_e - S \ S^\star \right) + W \ B \ L = 0 \tag{IV}$$

In practice the full F_{ext} vector is not known. Only one component of the resulting force applied on one side of the sample can be measured. A two matrices D and D_c are introduced.

$$D = B^T W$$
 $D_c = \Lambda B^T W$

where Λ is such that: >- the lines of D corresponding to vanishing nodal forces are kept, >- the lines of D corresponding to non-vanishing nodal forces are removed, >- lines corresponding to measuring resulting force (sum of one component of nodal forces along one edge e.g.) are added. The external force vector is modified accordingly and named \bar{F}_{ext} .

The first two systems of equations (I, II):

$$(S^T S)E^* = S^T E_e \tag{2}$$

$$(S^T \ S)S^{\star} = S^T \ S_e \tag{3}$$

(4)

(1)

are easily solved independently as $(S^T S)$ is diagonal. In the following they will be solved together when updating S the selection matrix obtained from the labelling of a k-means algorithm.

The two next lines (III, IV) are included in the following linear system

$$\begin{bmatrix} C_0^{-1}W & D_c^T \\ D_c & 0 \end{bmatrix} \begin{bmatrix} S_e \\ L \end{bmatrix} = \begin{bmatrix} C_0^{-1}W & S & S^* \\ \bar{F}_{ext} \end{bmatrix}$$

The resolution is performed by computing first the Lagrange multipliers L:

$$(Dc~W^{-1}~Dc^T)L = Dc~S~S^{\star} - \bar{F}_{ext}$$

and then the stress:

$$S_e = S \ S^{\star} - C_0 \ W^{-1} \ D_c^T \ L$$

The following algorithm is used latter on >- #### While > - Update S using k-means > - Solve $(S^T\ S)E^\star = S^T\ E_e$ > - Solve $(S^T\ S)S^\star = S^T\ S_e$ > - Solve $(Dc\ W^{-1}\ Dc^T)L = Dc\ S\ S^\star - \bar{F}_{ext}$ > - Update \$\$S_e=\$S_c-c_0_w-(-1)^D_c^TL\$\$

Note that the three steps could be performed in a single one but, usually k-means function use a L_2 norm for evaluating the distance between clusters and samples. Here the norm for this distance is $\|\mathbf{a}, \mathbf{b}\|_{C_0}$. K-means is thus called with $(E_e \sqrt{C_0}, S_e / \sqrt{C_0})$ instead of (E_e, S_e) as input. The coordinates of the clusters (E^\star, S^\star) are thus not a direct output of kmeams. Their are udpated by solving systems (I, II) suing the new S.

1.4 Numerical implementation

```
[1]: # Import Libraries
  import numpy as np
  import matplotlib.pyplot as plt
  import scipy
  from scipy import ndimage
  from scipy.sparse import csr_matrix as smatrix
  import scipy.sparse.linalg as splinalg
  import h5py
  import scipy.io as sio
  from sklearn.cluster import KMeans
  import fem
```

1.4.1 Application parameters

```
[2]: # Units m->pixel=m/pix2m
# Pa=kg/m/s^2->kg/pixel/s^2=Pa*pix2m
# N = kg.m/s^2->kg.pixel/s^2=N/pix2m
# N/m = kg/s^2->kg/s^2=N/m
stdu=0.1 # noise level displacement in pixel
stdf=.0 # N noise level on force
pix2m=25.e-6; # pixel to m conversion
thickness=3e-3 # specimen thicness in m
```

1.4.2 DDI parameters

```
[3]: Ns=50 # number of material states
     inp='dic-coarse.res'# input file
     (X,conn)=fem.readDICmesh(inp)# loading the mesh
     model=fem.FEModel() # instantiating a model
     model.X=X # Nodes
     model.conn=conn # Connectivity
     Nnodes=X.shape[0]
     Nelems=conn.shape[0]
     model.Assemble() # Assembly
     W=model.W # Weighting matrix
     B=model.B # B matrix for computing strain from displacement
     npz=np.load('fem-from-dic.npz')
     U=npz['U'] # Input displacement from FE simulation
     Fres=(npz['Fres']+stdf)/thickness # Input force from FE simulation
     Sref=npz['Sref']*pix2m # Stress field from the FE simulation used as imput data
     E_e=B.dot(U) # Input strain
     Eref=E_e # considered as the reference
     dE_e=B.dot(stdu*np.random.randn(U.size))# noise
     E_e=Eref+dE_e # strain to be considered as imput for DDI
```

```
# Setting the algorithmic stiffness
L=max(X[:,1])-min(X[:,1])
dL=np.max(U[Nnodes::])-np.min(U[Nnodes::])
section=max(X[:,0])-min(X[:,0])
Co=(Fres/section)/(dL/L)*pix2m

# Display the sample
plt.plot(X[conn,0].T,X[conn,1].T,'b-');
plt.axis('equal');
```


1.4.3 Boundary conditions

The internal force vector is 0 everywhere except: >- on the bottom where the distribution of its x component is unknown >- on the top where the distribution of its x component is unknown >- on the top where the distribution of its x component is unknown >- on the top where the sum of the distribution of its y component equals the measured load

```
[4]: top=X[:,1]>max(X[:,1])*0.99
bot=X[:,1]<max(X[:,1])*0.01

nodes_index=np.arange(Nnodes)
top_nodes=nodes_index[top]</pre>
```

```
ntop=top_nodes.size
free=np.logical_not(np.logical_or(top, bot))
free_nodes=nodes_index[free]
nfree=free_nodes.size
Free_x=smatrix((np.ones(nfree),(np.
 ⇒arange(nfree),free_nodes)),shape=(2*nfree+1,2*Nnodes))
Free_y=smatrix((np.ones(nfree),(np.
 →arange(nfree)+nfree,free_nodes+Nnodes)),shape=(2*nfree+1,2*Nnodes))
Const_y=smatrix((np.ones(ntop),(2*nfree*np.
 ⇔ones(ntop),top_nodes+Nnodes)),shape=(2*nfree+1,2*Nnodes))
plt.plot(X[conn,0].T,X[conn,1].T,'b-');
plt.plot(X[top,0],X[top,1].T,'ro');
plt.plot(X[bot,0],X[bot,1].T,'ro');
plt.axis('equal');
ff=plt.figure()
plt.plot(E_e,Sref/pix2m*1.e-6,'bo',label='Mechanical states')
plt.plot(Eref,Sref/pix2m*1.e-6,'k.',label='Reference constitutive law');
plt.xlabel('Strain')
plt.ylabel('Stress [MPa]');
plt.title('Noise level U %g pixel, F %g N' % (stdu,stdf))
plt.legend();
```



```
[5]: # Operator assembly
D=B.T*W
Dc=(Free_x+Free_y+Const_y)*(B.T*W)
Fext=np.zeros(2*nfree+1)
Fext[-1]=Fres

iW=scipy.sparse.spdiags(1/W.diagonal(),0,Nelems,Nelems)
C=Dc*(iW*Dc.T)
LU=splinalg.splu(C)
```

/tmp/ipykernel_81593/876515232.py:9: SparseEfficiencyWarning: splu converted its
input to CSC format
 LU=splinalg.splu(C)

1.4.4 Resolution

```
[6]:
# Initialisation
E_e=B.dot(U)
S_e=np.zeros(Nelems)
```

```
E_e=Eref+dE_e
#ff=plt.figure()
#plt.yscale('log')
#plt.ylabel('DDI norm')
#plt.xlabel('Number of iteration')
ic=0
for resampling in range(5):
    ## selection matrix from k-means
    samples=np.c_[np.squeeze(E_e*np.sqrt(Co)),np.squeeze(S_e/np.sqrt(Co))]
   kmeans = KMeans(Ns).fit(samples)
    #.reshape(-1,1))
   ie=kmeans.labels_
   val=np.ones(Nelems)
   ii=np.arange(Nelems)
   S=smatrix((val,(ii,ie)),shape=(Nelems,Ns))
   STS=S.T*S
   STS=STS.diagonal()
    ## Material states
   Estar=S.T.dot(E_e)/STS
   Sstar=S.T.dot(S_e)/STS
   ff=plt.figure()
   plt.subplot(121)
   plt.plot(E e,S e/pix2m*1.e-6,'bo',label='Mechanical states')
   plt.plot(Estar,Sstar/pix2m*1.e-6,'r+',label='Material states');
   plt.xlabel('Strain')
   plt.ylabel('Stress [MPa]');
   plt.title('Iteration %d after clustering' % (resampling))
   plt.legend();
    # Projection
   Estar_e=S.dot(Estar)
   Sstar_e=S.dot(Sstar)
   b=Dc.dot(Sstar_e)-Fext
   Lag=LU.solve(b)
   S_e=Sstar_e-iW*(Dc.T.dot(Lag))
   Estar_e=S.dot(Estar)
   Sstar e=S.dot(Sstar)
   ddi_norm=0.5*(Co*np.dot(E_e-Estar_e,W.dot(E_e-Estar_e))+1/Co*np.
 →dot(S_e-Sstar_e,W.dot(S_e-Sstar_e)))
   print('***DDI loop Iteration %02d: DDI norm %6.3e ***' %
 ⇒(resampling,ddi_norm))
   plt.subplot(122)
   plt.plot(E_e,S_e/pix2m*1.e-6,'bo',label='Mechanical states')
   plt.plot(Estar,Sstar/pix2m*1.e-6,'r+',label='Material states');
   plt.xlabel('Strain')
```

```
plt.ylabel('Stress [MPa]');
plt.title('Iteration %d after projection' % (resampling))
plt.legend();
```

```
***DDI loop Iteration 00: DDI norm 2.619e+12 ***

***DDI loop Iteration 01: DDI norm 9.214e+08 ***

***DDI loop Iteration 02: DDI norm 7.138e+08 ***

***DDI loop Iteration 03: DDI norm 6.544e+08 ***

***DDI loop Iteration 04: DDI norm 6.437e+08 ***
```


2 Comparison with reference

```
[7]: ff=plt.figure()
    plt.plot(E_e,S_e/pix2m*1.e-6,'bo',label='Mechanical states')
    plt.plot(Eref,Sref/pix2m*1.e-6,'k.',label='Reference constitutive law');
    plt.plot(Estar,Sstar/pix2m*1.e-6,'r+',label='Material states');
    plt.xlabel('Strain')
    plt.ylabel('Stress [MPa]');
    plt.title('Noise level U %g pixel, F %g N' % (stdu,stdf))
    plt.legend();
```

Noise level U 0.1 pixel, F 0 N

2.1 Illustrations

```
[8]: STS=S.T*S
    iSTS=STS.diagonal()
    ff=plt.figure()
    plt.scatter(Estar,Sstar/pix2m*1.e-6,c=iSTS);
    plt.xlabel('Strain')
    plt.ylabel('Stress [MPa]');
    plt.title('Material states colored with the numbers of neighboors')
    plt.colorbar();

    Xg=0.5*(X[conn[:,0]]+X[conn[:,1]])
    ff=plt.figure();
    plt.scatter(Xg[:,0],Xg[:,1],c=ie,s=5);
    plt.colorbar();
    plt.axis('equal');
    plt.title('Labelling')
```

[8]: Text(0.5, 1.0, 'Labelling')


```
[9]: Sref=2e8*(1-np.exp(-np.abs(Estar)/0.2))*np.sign(Estar)*pix2m
plt.scatter(iSTS,np.abs(Sref-Sstar)/pix2m*1.e-6);
plt.xlabel('Number of neighboors')
plt.ylabel('Stress Error[MPa]');
```


[]:

Class's references i

Claire, D., Hild, F., and Roux, S. (2004). A finite element formulation to identify damage fields: The equilibrium gap method. International Journal for Numerical Methods in Engineering, 61:189–208.

Dalémat, M., Coret, M., Leygue, A., and Verron, E. (2019). Measuring stress field without constitutive equation. Mechanics of Materials, 136:103087.

Grédiac, M., Pierron, F., Avril, S., and Toussaint, E. (2006). The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain, 42(4):233–253.

Kirchdoerfer, T. and Ortiz, M. (2016). Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering, 304:81–101.

Langlois, R., Coret, M., and Réthoré, J. (2022). Non-parametric stress field estimation for history-dependent materials: Application to ductile material exhibiting piobert-lüders localization bands. Strain, page e12410.

Leclerc, H., Perie, J., Roux, S., and Hild, F. (2009). <u>Computer Vision/Computer Graphics CollaborationTechniques</u>, chapter Integrated Digital Image Correlation for the Identification of Mechanical Properties. Springer, Berlin.

Class's references ii

Lecompte, D., Smits, A., Sol, H., Vantomme, J., and Van Hemelrijck, D. (2007). Mixed numerical–experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens. International Journal of Solids and Structures, 44(5):1643–1656.

Leygue, A., Coret, M., Réthoré, J., Stainier, L., and Verron, E. (2018). **Data-based derivation of material response.** Computer Methods in Applied Mechanics and Engineering, 331:184–196.

Leygue, A., Seghir, R., Réthoré, J., Coret, M., Verron, E., and Stainier, L. (2019). Non-parametric material state field extraction from full field measurements. <u>Computational Mechanics</u>, 64(2):501–509.