```
%measure of central tendancy
%mean
Numerical_Analysis_mean=mean(classlist.NumericalAnalysis)
Numerical Analysis mean = 75.4846
ODE_mean=mean(classlist.ODE)
ODE mean = 63.9308
Computational_math_mean=mean(classlist.ComputationalMath)
Computational_math_mean = 67.5846
Real Analysis mean=mean(classlist.RealAnalysis)
Real_Analysis_mean = 65.1154
Fluid_mechanics_mean=mean(classlist.FluidMechanics)
Fluid_mechanics_mean = 68.1154
Computer_graphics_mean=mean(classlist.ComputerGraphics)
Computer_graphics_mean = 67.2385
Linear_Algebra_mean=mean(classlist.LinearAlgebra)
Linear_Algebra_mean = 66.6308
TOE_mean=mean(classlist.TOE)
TOE_mean = 66.1385
%median
Numerical_Analysis_median=median(classlist.NumericalAnalysis)
Numerical_Analysis_median = 75
ODE_median=median(classlist.ODE)
ODE_median = 65
Computational_math_median=median(classlist.ComputationalMath)
Computational_math_median = 68
Real Analysis median=median(classlist.RealAnalysis)
Real_Analysis_median = 65
Fluid_mechanics_median=median(classlist.FluidMechanics)
Fluid_mechanics_median = 70
Computer_graphics_median=median(classlist.ComputerGraphics)
```

Computational_math_std = 18.1077

Real_Analysis_std=std(classlist.RealAnalysis)

Real_Analysis_std = 18.4868

Fluid mechanics std=std(classlist.FluidMechanics)

Fluid_mechanics_std = 18.0901

Computer_graphics_std=std(classlist.ComputerGraphics)

Computer_graphics_std = 19.2977

Linear_Algebra_std=std(classlist.LinearAlgebra)

Linear_Algebra_std = 18.4147

TOE_std=std(classlist.TOE)

 $TOE_std = 19.0645$

%variance

Numerical_Analysis_var=var(classlist.NumericalAnalysis)

Numerical_Analysis_var = 76.0657

ODE var=var(classlist.ODE)

 $ODE_var = 377.7239$

Computational_math_var=var(classlist.ComputationalMath)

Computational_math_var = 327.8881

Real_Analysis_var=var(classlist.RealAnalysis)

Real_Analysis_var = 341.7618

Fluid_mechanics_var=var(classlist.FluidMechanics)

Fluid_mechanics_var = 327.2501

Computer_graphics_var=var(classlist.ComputerGraphics)

Computer_graphics_var = 372.4001

Linear_Algebra_var=var(classlist.LinearAlgebra)

Linear_Algebra_var = 339.1029

TOE_var=var(classlist.TOE)

 $TOE_var = 363.4535$

%range

Numerical_Analysis_range=range(classlist.NumericalAnalysis)

Numerical_Analysis_range = 30

ODE_range=range(classlist.ODE)

 $ODE_range = 63$ Computational_math_range=range(classlist.ComputationalMath) Computational_math_range = 63 Real_Analysis_range=range(classlist.RealAnalysis) Real_Analysis_range = 63 Fluid_mechanics_range=range(classlist.FluidMechanics) Fluid_mechanics_range = 62 Computer_graphics_range=range(classlist.ComputerGraphics) Computer_graphics_range = 63 Linear_Algebra_range=range(classlist.LinearAlgebra) Linear_Algebra_range = 62 TOE_range=range(classlist.TOE) $TOE_range = 63$ %interquatile range Numerical_Analysis_iqr=iqr(classlist.NumericalAnalysis) Numerical_Analysis_iqr = 14 ODE_igr=igr(classlist.ODE) $ODE_iqr = 34$ Computational_math_iqr=iqr(classlist.ComputationalMath) Computational_math_iqr = 32 Real_Analysis_iqr=iqr(classlist.RealAnalysis) Real_Analysis_iqr = 32 Fluid_mechanics_iqr=iqr(classlist.FluidMechanics) Fluid_mechanics_iqr = 31 Computer_graphics_iqr=iqr(classlist.ComputerGraphics) Computer_graphics_iqr = 33 Linear_Algebra_iqr=iqr(classlist.LinearAlgebra) $Linear_Algebra_iqr = 34$

 $TOE_iqr = 34$

TOE_iqr=iqr(classlist.TOE)

```
%test for uniformity in the data set
%numerical analysis uniformity
Numerical_Analysis_Uniformity=classlist.NumericalAnalysis;
[h1,p1]=chi2gof(Numerical_Analysis_Uniformity)

h1 = 1
p1 = 0.0196

if h1==0
    fprintf("uniform distribution with pvalue=p1%0.7f\n",pi)
else
    fprintf("not uniform with pvalue=p1%0.7f.\n",p1)
```

not uniform with pvalue=p10.0195794.

end

end

h2 = 1

%ODE uniformity

```
ODE_Uniformity=classlist.ODE;
[h1,p1]=chi2gof(ODE_Uniformity)

h1 = 1
p1 = 0.0083

if h1==0
    fprintf("uniform distribution with pvalue=p1%0.7f\n",pi)
else
    fprintf("not uniform with pvalue=p1%0.7f.\n",p1)
```

not uniform with pvalue=p10.0083132.

```
%Computational math uniformity
Computational_math_Uniformity=classlist.ComputationalMath;
[h2,p2]=chi2gof(Numerical_Analysis_Uniformity)
```

```
p2 = 0.0196

if h2==0
    fprintf("uniform distribution with pvalue=p1%0.7f\n",pi)
else
    fprintf("not uniform with pvalue=p1%0.7f.\n",p2)
end
```

not uniform with pvalue=p10.0195794.

```
S1=classlist(50,:)
```

S1 = 1x11 table

1	50	"SCM211-0330/2021"	"Njinu Dennis Ngugi"	77
	NO	RegNumber	Name	NumericalAnalysis