## 1. Abstract

The purpose of this research was to review various deep learning architectures for NLP and various text pre-processing techniques to determine the best possible model and data pre-processing steps that can be used to automate document text classification in an organization. I worked with the AG News Subset data from TensorFlow, which consists of 127600 news articles categorized in 4 classes. I experimented with various vocabulary setup and hyperparameters for a Simple RNN and with LTSM layers (both unidirectional and bidirectional) and worked with a 1-dimensional CNN to determine the best algorithm and vocabulary setup for this data. Results from my experiment suggest that LSTM and CNN models perform better than RNN models; however, the CNN model had the best test accuracy and took the least amount of training time.

## 2. Introduction

The bulk of data generated today is unstructured data; therefore, it's important that organizations find ways to manage and analyze it. Organizations receive a lot of unstructured text data in documents they need to classify so that it is easier to manage. With a manual approach, staff would need to sort through each text and assign a label or category to it individually. The problem is that manual classification can be time-consuming, error-prone, and cost-prohibitive.

Looking at the success of chat bots that use NLP for text classification, a company has consulted me to develop a natural language processing (NLP) classifier to automate the classification of their text documents into one of several predefined categories.

### 3. Literature review

Deep learning-based models have outperformed various classical machine-learning-based approaches in various text classification tasks, including sentiment analysis, news categorization, question answering, and natural language inference (Minaee et al, 2021).

RNNs (or LSTMs) have been established as advanced approaches for natural language processing. CNNs are generally used in computer vision; however, they've recently been applied to various NLP tasks with promising results.

However, attention-based models have outperformed simpler RNN based model (Glassi et al, 2021). Attention based models such as BERT and XLNet currently have the best performance for NLP tasks. However, attention-based models significantly increase the parameters of the model which make them computationally expensive to train.

## 4. Methods

### Research design and modeling methods

For this research, Recurring Neural network, Long Short-Term Memory (LSTM) and Convolutional Neural Net models are analyzed and compared with varying architectures for each.

Recurring Neural networks are feedforward artificial neural networks that can deal with sequential data and can be trained to hold the knowledge about the past. Long Short-Term Memory (LSTM) networks that

are a type of recurrent neural network capable of handling long-term dependencies in sequence prediction problems and Convolutional Neural Net are designed to learn spatial hierarchies of features. CNN can extract local and position-invariant features. On the other hand, an RNN-LSTM learns order dependencies in sequence.

I have experimented with several vocabulary sizes, output sequence length, layers of RNN, LSTM and CNN models and Regularization techniques.

All models use the ReLU activation function in the dense and convolution layers, which is one of the popular activation functions in neural networks because it is computationally efficient and fixes the problem of vanishing gradient. I used validation Accuracy as the metric to evaluate the performance. Finally, I used Sparse categorical cross entropy to measure the loss between labels and predictions and SoftMax activation function for the output layer.

### Data preparation, exploration, visualization

The dataset used in this research is the AG's news topic classification dataset which is constructed by choosing the 4 largest classes from the original AG news corpus that contains more than 1 million news articles. Each class contains 30,000 training samples and 1,900 testing samples. The total number of training samples is 120,000 and has 7,600 testing samples. The training data was split to create a validation data set of 6000

The 4 classes in the dataset are 'World', 'Sports', 'Business', 'Sci/Tech'
Some examples of news article in tabular form:

AMD #39,9 new dual-core Opteron chip is designed mainly for corporate computing applications, including databases, Web services, and financial transactions.

(Sci/Tech)
Reuters - Major League BaseballiMonday announced a decision on the appeal filed by Chicago Cubs/pitcher Kerry Wood regarding a suspension stemming from anvincident earlier this season.

(Sci/Tech)
Reuters - Major League BaseballiMonday announced a decision on the appeal filed by Chicago Cubs/pitcher Kerry Wood regarding a suspension stemming from anvincident earlier this season.

(Sci/Tech)
Entire in Will rout of leading sciencies duclates on is improved, says Professor Colin Pillinger.

London, England (Sports Network) - England midfielder Steven Gerrard injured his groin late in Thursday #39,s training session, but is hopeful he will be ready for Saturday #39,s World Cup qualifier against Austria.

(Sci/Tech)
CNCYO - Sony Corp. is banking on the \(\frac{1}{2}\) Sullino deal to acquire Hollywood studio Metro-Goldwyn-Mayer inc.

(Sci/Tech)
VILNIUS, Lithuania - Lithuania #39,s main parties formed an alliance to try to keep a Russian-born tycoon and his populist promises out of the government in Sunday #39,s second round of parliamentary elections in this Baltic country.

(World)
Witnesses in the trial of a US soldier charged with abusing prisoners at Abu Ghraib have told the court that the CIA sometimes directed abuse and orders were received from military command to toughen interrogations.

(Sports)

(World)

On ON Deen of Ponte Vedra Beach, Fla, shot at -7 under 65 Thursday to take a one-solt lead after two rounds of the Your Found rounament.

### Preprocessing data:

There are 95976 unique words in the vocabulary of the total dataset and if we reduce the vocabulary to 3 distinct levels 1000, 2000 and 3000 we get the following out of vocabulary distribution.



"the" is in the vocabulary.

"dog" is \*not\* in the vocabulary.

"ran" is in the vocabulary.

"a" is in the vocabulary.

"a" is in the vocabulary.

"a" is in the vocabulary.

"ball" is in the vocabulary.

"ball is in the vocabulary.

"it" is in the vocabulary.

"it" is in the vocabulary.

"by" is in the vocabulary.

"by" is in the vocabulary.

"the" is in the vocabulary.

"hat" is in the vocabulary.

"hat" is in the vocabulary.

"hat" is in the vocabulary.

"on" is in the vocabulary.

"the" is in the vocabulary.

"the" is in the vocabulary.

With vocabulary size 3000 we still loose key words in our documents as seen in this example at the left.

#### Output sequence length:



There are 123 unique words per news article, but the majority of news articles have between 40 to 60 unique words. This can be used to set the output sequence length for some experiments.

Analysis of most and least frequent words show that the least frequent words don't add a lot of meaning to the news article.

#### 20 most frequent words in the Vocabulary:

```
['', '[UNK]', 'the', 'a', 'to', 'of', 'in', 'and', 'on', 'for',
  'that', '39s', 'with', 'its', 'as', 'at', 'is', 'said', 'by', 'it']
```

#### 20 least frequent words in the Vocabulary:

```
['0133', '0125', '0121', '012', '011micron', '0119', '01112004', '011104', '01102004', '011', '0100', '008s', '007percent', '007', '005', '004', '0013', '000th', '000strong', '000660se'],
```

#### Implementation and programming

Model research was done using Python programming language and TensorFlow. TensorFlow is a free and open-source software library for machine learning and artificial intelligence and TensorFlow can be implemented in python by Keras. Keras is a deep learning API written in Python, running on top of the machine learning platform TensorFlow which is extremely user-friendly.

Train, validation and test data set was loaded using TensorFlow load function which loads data as a tensor object.

I used the sci-kit learn library which has functions to create a confusion matrix and report on precision, accuracy and F1 score.

Additionally, I used NumPy and Pandas library for data for EDA and finally, I also used seaborn package and matplotlib library to visualize the data and results.

## 5. Results

#### Experiments:

33 models were evaluated by conducting. See Appendix A to see the results of all the models.

The experiments were done by varying model architecture, vocabulary lengths, output sequence length and regulation methods.

#### **Results Top 10 Models**

|            | Туре | Architecture                                                           | Vocabulary Size | Output Sequence len | Regularization                                   | Train Accuracy | Valid Accuracy | Test Accuracy | Time        |
|------------|------|------------------------------------------------------------------------|-----------------|---------------------|--------------------------------------------------|----------------|----------------|---------------|-------------|
| Name       |      |                                                                        |                 |                     |                                                  |                |                |               |             |
| Model 3C   | CNN  | 1 layer CON1d 64 Kernel, MaxPool1D,<br>3, 1 Dense layer 64 Nodes       | Max             | 60                  | Early stopping + DropoutEarly stopping + Dropout | 94.25          | 91.08          | 90.68         | 1 min 37s   |
| Model 4D   | LSTM | 1 Layer LSTM _Bldirectional 128 Cells<br>+ 1 Dense Layer 128 Nodes     | Max             | 60                  | Early stopping + Dropout                         | 8.29           | 92.6           | 89.63         | 3 min 2 S   |
| Model 4B   | LSTM | 1 Layer LSTM _Bldirectional 128 Cells<br>+ 1 Dense Layer 128 Nodes     | 3000            | 60                  | Early stopping + Dropout                         | 86.07          | 89.38          | 88.86         | 12 min 38s  |
| Model 3A   | CNN  | 1 layer CON1d 64 Kernel, MaxPool1D,<br>3, 1 Dense layer 64 Nodes       | 3000            | 40                  | Early stopping                                   | 89.91          | 89.15          | 88.83         | 4 min 42 s  |
| Model 1BBB | LSTM | 2 Layer LSTM _Bldirectional 64 + 32 Cells<br>+ 1 Dense Layer 64 Nodes  | 3000            | Defualt             | Early stopping + Dropout                         | 89.03          | 89.12          | 88.71         | 4 min 0 s   |
| Model 1AAA | LSTM | 1 Layer LSTM _Bldirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes       | 3000            | Defualt             | Early stopping                                   | 90.02          | 88.9           | 88.64         | 4 min 27 s  |
| Model 4C   | LSTM | 1 Layer LSTM _Bldirectional 64 + 32 Cells<br>+ 1 Dense Layer 128 Nodes | 3000            | 40                  | Early stopping + Dropout                         | 92.46          | 90.42          | 88.52         | 11 min 50 s |
| Model 1CCC | LSTM | 1 Layer LSTM _Unidirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes      | 3000            | Defualt             | Early stopping                                   | 90.19          | 88.97          | 88.44         | 3 min 24 s  |
| Model 2AAA | RNN  | 1 Layer RNN _Bldirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes        | 3000            | Defualt             | Early stopping                                   | 90.81          | 88.75          | 88.39         | 36 min 17 s |
| Model 4A   | LSTM | 1 Layer LSTM _Bidirectional 128 Cells<br>+ 1 Dense Layer 128 Nodes     | 1000            | 60                  | Early stopping + Dropout                         | 87.38          | 87             | 88.36         | 5 min 4 s   |

## Key Findings:

#### Vocabulary size and output sequence:

Higher vocabulary size provided better performance to the model. Limiting the output sequence length that covers roughly 68% of tokens in vocabulary provides good results.

### Early Stopping and dropout:

Overfitting was observed with models that had multiple LSTM, RNN and Con1D layers and early stopping and dropout did reduce the overfitting. Simpler models did not exhibit any significant overfitting and did not require dropout.

#### LSTM Models:

I experimented with single layers and multi-LSTM bidirectional and unidirectional layer models. The bidirectional had a slight edge over unidirectional models but there was not any significant improvement in performance by adding more layers or cell in the LSTM model which made the model overfit and added a lot of parameters that increased training time. The improvement in performance comes from setting the vocabulary length and output sequence size which standardized the length of all the new articles.

The best LSTM model received test accuracy of 89.63%. The accuracy for all LSTM models ranged from 84.64% to 89.63%

#### RNN Models:

I also conducted experiments on Simple Recurrent Neural Networks. RNN models performed better than expected with the best test accuracy of 88.39 in Model 2AAA. Increasing the complexity of the model reduced its performance. The RNN model seemed to hit a performance ceiling and could not improve with additional hyperparameter tuning.

Compared to both our CNN and LSTM models, RNN models performed less well and test accuracy ranged from 81.74% to 88.39%.

#### CNN Models:

I experimented with a variety of CNN models with different combinations of Conv/Max Pool Layer counts, number of filters, hidden layer counts, and hidden layer sizes. Of all of these models, the model with 1 Conv/Max Pool layer with 30% dropout had the highest test accuracy. Adding layers did not improve performance of the network but increasing the vocabulary size or setting vocabulary size to maximum and setting output sequence to cover majority new article length (60) provided the best performance.

The best LSTM model (Model 3C) received test accuracy of 90.68%. The accuracy for all LSTM models ranged from 88.75% to 90.68%

Best, Model 3C: 1 Layer Con1D with vocabulary set to maximum and output sequence to 60 tokens.

| Name  | Туре | Architecture                                                     | Vocabulary Size | Output Sequence len | Regularization                                   | Train Accuracy | Valid Accuracy | Test Accuracy | Time      |
|-------|------|------------------------------------------------------------------|-----------------|---------------------|--------------------------------------------------|----------------|----------------|---------------|-----------|
| Model | CNN  | 1 layer CON1d 64 Kernel, MaxPool1D,<br>3, 1 Dense layer 64 Nodes | Max             | 60                  | Early stopping + DropoutEarly stopping + Dropout | 94.25          | 91.08          | 90.68         | 1 min 37s |



| Classificatio | on Report<br>precision | recall | f1-score | support |
|---------------|------------------------|--------|----------|---------|
| 0             | 0.91                   | 0.91   | 0.91     | 1900    |
| 1             | 0.95                   | 0.97   | 0.96     | 1900    |
| 2             | 0.89                   | 0.86   | 0.87     | 1900    |
| 3             | 0.88                   | 0.88   | 0.88     | 1900    |
|               |                        |        | 0.04     | 7500    |
| accuracy      |                        |        | 0.91     | 7600    |
| macro avg     | 0.91                   | 0.91   | 0.91     | 7600    |
| weighted avg  | 0.91                   | 0.91   | 0.91     | 7600    |

Accuracy Score: 0.9080263157894737 Root Mean Square Error: 0.5276561879022921

Model: "sequential"

| Layer (type)                                                                                | Output | Shape   | Param # |
|---------------------------------------------------------------------------------------------|--------|---------|---------|
| text_vectorization (TextVect                                                                | (None, | 60)     | 0       |
| embedding (Embedding)                                                                       | (None, | 60, 64) | 5811200 |
| conv1d (Conv1D)                                                                             | (None, | 60, 64) | 12352   |
| max_pooling1d (MaxPooling1D)                                                                | (None, | 20, 64) | 0       |
| flatten (Flatten)                                                                           | (None, | 1280)   | 0       |
| dense (Dense)                                                                               | (None, | 128)    | 163968  |
| dense_1 (Dense) Total params: 5,988,036 Trainable params: 6,988,036 Non-trainable params: 0 | (None, | 4)      | 516     |

## 6. Conclusions

The results of the 33 experiments show that CNN performs better than LSTM and RNN. Compared to LSTM and RNN models, it was also computationally efficient. The intuition behind CNN performing better could be because the news articles are not too long where the maximum token count is 123; CNN

can extract one-dimensional spatial structure in the sequence of words and maybe it is also able to pick out invariant features in the different categories. The experiments also proved that adding layers in a CNN model or LSTM and RNN model did not improve accuracy significantly and deep models tended to overfit and take more time to train, especially for LSTM and RNN. CNN, LSTM and RNN models all had an inherent characteristic to overfit the data and needed regularization to reduce the variance.

Setting the optimum Vocabulary size and output sequence were key to improving performance of all the models and additional model performance gain could be accomplished if we remove the stop words from the corpus.

In conclusion, because of the highest test accuracy and relative computational efficiency, I recommend the CNN model 3C for document classification.

#### **References:**

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M.A., & Gao, J. (2021). Deep Learning-based Text Classification. *ACM Computing Surveys (CSUR)*, *54*, 1 - 40.

Y. Luan and S. Lin, "Research on Text Classification Based on CNN and LSTM," *2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)*, 2019, pp. 352-355, doi: 10.1109/ICAICA.2019.8873454.

Galassi, A., Lippi, M., & Torroni, P. (2021). Attention in Natural Language Processing. *IEEE Transactions on Neural Networks and Learning Systems*, *32*, 4291-4308.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun: Deep Residual Learning for Image Recognition, Dec 2015, DOI: <a href="https://arxiv.org/abs/1512.03385">https://arxiv.org/abs/1512.03385</a>

Francois, C. (2018). Deep Learning with Python. Shelter Island, New York: Manning Publications Co.

Geiron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build intelligent systems (2nd ed.). O'Reilly.

# Appendix A

## All Experiment Results

|            | Туре | Architecture                                                           | Vocabulary Size | Output Sequence len | Regularization                                   | Train Accuracy | Valid Accuracy | Test Accuracy | Time        |
|------------|------|------------------------------------------------------------------------|-----------------|---------------------|--------------------------------------------------|----------------|----------------|---------------|-------------|
| Name       |      | 1 Layer LSTM _Bldirectional 64 Cells                                   |                 |                     |                                                  |                |                |               |             |
| Model 1A   | LSTM | + 1 Dense Layer 64 Nodes 2 Layer LSTM _Bldirectional 64 + 32 Cells     | 1000            | Defualt             | Early stopping                                   | 86.36          | 88.55          | 85.34         | 4 min 9 s   |
| Model 1B   | LSTM | + 1 Dense Layer 64 Nodes                                               | 1000            | Defualt             | Early stopping + Dropout                         | 85.61          | 87.03          | 85.69         | 3 min 16 s  |
| Model 1C   | LSTM | 1 Layer LSTM _Unidirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes      | 1000            | Defualt             | Early stopping                                   | 86.11          | 86.05          | 84.96         | 5 min 19s   |
| Model 1D   | LSTM | 2 Layer LSTM _Unidirectional 64 + 32 Cells<br>+ 1 Dense Layer 64 Nodes | 1000            | Default             | Early stopping + Dropout                         | 84.77          | 88.35          | 85.03         | 6 min 3 s   |
| Model 1AA  | LSTM | 1 Layer LSTM _Bldirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes       | 2000            | Defualt             | Early stopping                                   | 88.59          | 88.07          | 87.69         | 18 min 42 s |
| Model 1BB  | LSTM | 2 Layer LSTM _Bldirectional 64 + 32 Cells<br>+ 1 Dense Layer 64 Nodes  | 2000            | Defualt             | Early stopping + Dropout                         | 88.54          | 88.85          | 87.29         | 23 min 29 s |
| Model 1CC  | LSTM | 1 Layer LSTM _Unidirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes      | 2000            | Defualt             | Early stopping                                   | 85.31          | 85.47          | 84.64         | 6 min 12 s  |
| Model 1DD  | LSTM | 2 Layer LSTM _Unidirectional 64 + 32 Cells<br>+ 1 Dense Layer 64 Nodes | 2000            | Default             | Early stopping + Dropout                         | 83.3           | 88.96          | 87.43         | 10 min 23 s |
| Model 1AAA | LSTM | 1 Layer LSTM _Bidirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes       | 3000            | Defualt             | Early stopping                                   | 90.02          | 88.9           | 88.64         | 4 min 27 s  |
| Model 1BBB | LSTM | 2 Layer LSTM _Bldirectional 64 + 32 Cells<br>+ 1 Dense Layer 64 Nodes  | 3000            | Defualt             | Early stopping + Dropout                         | 89.03          | 89.12          | 88.71         | 4 min 0 s   |
| Model 1CCC | LSTM | 1 Layer LSTM_Unidirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes       | 3000            | Defualt             | Early stopping                                   | 90.19          | 88.97          | 88.44         | 3 min 24 s  |
| Model 1DDD | LSTM | 2 Layer LSTM _Unidirectional 84 + 32 Cells<br>+ 1 Dense Layer 84 Nodes | 3000            | Default             | Early stopping + Dropout                         | 83.62          | 89.48          | 88.05         | 2 min 12s   |
| Model 2A   | RNN  | 1 Layer RNN _Bldirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes        | 1000            | Defualt             | Early stopping                                   | 86.26          | 86.3           | 85.22         | 9 min 55 s  |
| Model 2B   | RNN  | 2 Layer RNN _Bidirectional 64 + 32 Cells<br>+ 1 Dense Layer 64 Nodes   | 1000            | Defualt             | Early stopping + Dropout                         | 84.29          | 86.15          | 83.61         | 7 min 7 s   |
| Model 2C   | RNN  | 1 Layer RNN _Unidirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes       | 1000            | Defualt             | Early stopping                                   | 86.38          | 85.92          | 84.4          | 9 min 17 s  |
| Model 2D   | RNN  | 2 Layer RNN _Unidirectional 64 + 32 Cells<br>+ 1 Dense Layer 64 Nodes  | 1000            | Default             | Early stopping + Dropout                         | 81.5           | 84.01          | 81.74         | 10 min 2 s  |
| Model 2AA  | RNN  | 1 Layer RNN _Bldirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes        | 2000            | Defualt             | Early stopping                                   | 87.9           | 89.16          | 87.54         | 42 min 32 s |
| Model 2BB  | RNN  | 2 Layer RNN _Bidirectional 64 + 32 Cells<br>+ 1 Dense Layer 64 Nodes   | 2000            | Defualt             | Early stopping + Dropout                         | 87.17          | 86.98          | 85.92         | 37 min 17 s |
| Model 2CC  | RNN  | 1 Layer RNN _Unidirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes       | 2000            | Defualt             | Early stopping                                   | 88.92          | 87.8           | 87.17         | 26 min 43 s |
| Model 2DD  | RNN  | 2 Layer RNN _Unidirectional 64 + 32 Cells<br>+ 1 Dense Layer 64 Nodes  | 2000            | Default             | Early stopping + Dropout                         | 86.13          | 87.5           | 85.2          | 22 min 5 s  |
| Model 2AAA | RNN  | 1 Layer RNN _Bidirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes        | 3000            | Defualt             | Early stopping                                   | 90.81          | 88.75          | 88.39         | 38 min 17 s |
| Model 2BBB | RNN  | 2 Layer RNN _Bldirectional 64 + 32 Cells<br>+ 1 Dense Layer 64 Nodes   | 3000            | Defualt             | Early stopping + Dropout                         | 90.08          | 88.02          | 86.78         | 25 min 42 s |
| Model 2CCC | RNN  | 1 Layer RNN _Unidirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes       | 3000            | Defualt             | Early stopping                                   | 90.59          | 88.72          | 87.91         | 16 min 28 s |
| Model 2DD  | RNN  | 2 Layer RNN _Unidirectional 64 + 32 Cells<br>+ 1 Dense Layer 64 Nodes  | 3000            | Default             | Early stopping + Dropout                         | 79.21          | 86.98          | 86.96         | 7 min 2 s   |
| Model 3A   | CNN  | 1 layer CON1d 64 Kernel, MaxPool1D,<br>3, 1 Dense layer 64 Nodes       | 3000            | 40                  | Early stopping                                   | 89.91          | 89.15          | 88.83         | 4 min 42 s  |
| Model 3B   | CNN  | 0.1 0.0 N/4 0.4 - 400 - 0.50 K I M D I/D                               | 3000            | 40                  | Early stopping + Dropout                         | 90.43          | 88.75          | 87.81         | 16 min 12s  |
| Model 3C   | CNN  | 1 layer CON1d 64 Kernel, MaxPool1D,<br>3, 1 Dense layer 64 Nodes       | Max             | 60                  | Early stopping + DropoutEarly stopping + Dropout | 94.25          | 91.08          | 90.68         | 1 min 37s   |
| Model 4A   | LSTM | 1 Layer LSTM_Bidirectional 128 Cells<br>+ 1 Dense Layer 128 Nodes      | 1000            | 60                  | Early stopping + Dropout                         | 87.38          | 87             | 88.36         | 5 min 4 s   |
| Model 4B   | LSTM | 1 Layer LSTM _BIdirectional 128 Cells<br>+ 1 Dense Layer 128 Nodes     | 3000            | 60                  | Early stopping + Dropout                         | 86.07          | 89.38          | 88.86         | 12 min 38s  |
| Model 4C   | LSTM | 1 Layer LSTM _Bldirectional 84 + 32 Cells<br>+ 1 Dense Layer 128 Nodes | 3000            | 40                  | Early stopping + Dropout                         | 92.46          | 90.42          | 88.52         | 11 min 50 s |
| Model 4D   | LSTM | 1 Layer LSTM _Bldirectional 128 Cells<br>+ 1 Dense Layer 128 Nodes     | Max             | 60                  | Early stopping + Dropout                         | 8.29           | 92.6           | 89.63         | 3 min 2 S   |
| Model 5A   | RNN  | 1 Layer RNN _Bldirectional 64 Cells<br>+ 1 Dense Layer 64 Nodes        | 3000            | 40                  | Early stopping + Dropout                         | 90.26          | 88.78          | 87.1          | 8 min 25 s  |
| Model 5B   | RNN  | 2 Layer RNN _Bldirectional 64 + 32 Cells<br>+ 1 Dense Layer 64 Nodes   | 3000            | 40                  | None                                             | 81.71          | 88.23          | 87.6          | 21 min 8 s  |
|            |      |                                                                        |                 |                     |                                                  |                |                |               |             |

## Appendix B

### BEST model 3C





## Appendix C

#### LSTM best Model 4D





Model: "sequential"

| Layer (type)                 | Output | Shape    | Param #  |
|------------------------------|--------|----------|----------|
| text_vectorization (TextVect | (None, | 60)      | 0        |
| embedding (Embedding)        | (None, | 60, 128) | 11622400 |
| bidirectional (Bidirectional | (None, | 256)     | 263168   |
| dropout (Dropout)            | (None, | 256)     | 0        |
| dense (Dense)                | (None, | 128)     | 32896    |
| dropout_1 (Dropout)          | (None, | 128)     | 0        |
| dense_1 (Dense)              | (None, | 4)       | 516      |

Total params: 11,918,980 Trainable params: 11,918,980 Non-trainable params: 0