¿Qué es VLSM (Variable Length Subnet Mask)?

VLSM es una técnica de subnetting que permite la creación de subredes con diferentes tamaños de máscara dentro de la misma red principal. A diferencia del subnetting tradicional, donde todas las subredes tienen la misma máscara de subred, VLSM permite usar máscaras de subred de longitud variable para adaptarse mejor a las necesidades específicas de cada subred.

Ventajas de VLSM

- 1. **Optimización de Direcciones IP**: Permite un uso más eficiente del espacio de direcciones IP, especialmente útil en IPv4, donde las direcciones son limitadas.
- 2. **Flexibilidad**: Facilita la creación de subredes de tamaños diversos según los requerimientos específicos de cada segmento de la red.
- 3. **Escalabilidad**: Permite un diseño de red más escalable y adaptable a cambios futuros en la estructura de la red.

Cómo Funciona VLSM

Para entender cómo funciona VLSM, veamos los pasos básicos para implementarlo:

1. **Identificación de Necesidades**: Determinar cuántas subredes se necesitan y cuántas direcciones IP se requieren en cada subred.

- 2. **Asignación de Direcciones IP**: Comenzar con la subred más grande y trabajar hacia las subredes más pequeñas, asignando direcciones IP de manera que se optimice el uso del espacio de direcciones.
- 3. **Cálculo de Máscaras de Subred**: Utilizar diferentes máscaras de subred para cada subred según el número de hosts necesarios.

Ejemplo Práctico

Supongamos que tenemos la red 192.168.1.0/24 y necesitamos crear las siguientes subredes:

- Subred A: 100 hosts
- Subred B: 50 hosts
- Subred C: 25 hosts
- Subred D: 10 hosts

1. Subred A (100 hosts):

- $_{\circ}$ Necesita 128 direcciones (2^7 = 128, ya que 100 + 2 (dirección de red y broadcast)).
- Máscara de subred: /25 (255.255.255.128)
- 。 Rango: 192.168.1.0 192.168.1.127

2. **Subred B (50 hosts)**:

- $_{\circ}$ Necesita 64 directiones (2^6 = 64).
- Máscara de subred: /26 (255.255.255.192)
- 。 Rango: 192.168.1.128 192.168.1.191

3. **Subred C (25 hosts)**:

- $_{\circ}$ Necesita 32 direcciones (2^5 = 32).
- Máscara de subred: /27 (255.255.255.224)
- 。 Rango: 192.168.1.192 192.168.1.223

4. Subred D (10 hosts):

- $_{\circ}$ Necesita 16 direcciones (2⁴ = 16).
- Máscara de subred: /28 (255.255.255.240)
- 。 Rango: 192.168.1.224 192.168.1.239

Ilustración de VLSM

```
192.168.1.0/24

|------|
| Subred A (100 hosts) |
| 192.168.1.0/25 |
| |-----|
| Subred B (50 hosts) |
| 192.168.1.128/26 |
| |-----|
| Subred C (25 hosts) |
| 192.168.1.192/27 |
| |-----|
| Subred D (10 hosts) |
| 192.168.1.224/28 |
```


Consideraciones

- Planificación Cuidadosa: La implementación de VLSM requiere una planificación cuidadosa para evitar el solapamiento de subredes.
- Ruteo Dinámico: Muchas veces se utiliza en combinación con protocolos de enrutamiento dinámico que soportan VLSM, como OSPF y EIGRP.

Conclusión

VLSM es una técnica poderosa para la optimización del uso de direcciones IP, permitiendo una segmentación de red flexible y escalable. Es esencial en redes grandes y en crecimiento, ayudando a maximizar la eficiencia y efectividad de la infraestructura de red.

VLSM (Variable Length Subnet Mask) es una técnica que se creó para hacer un uso más eficiente del espacio de direccionamiento de una red.

VLSM se enfoca en el número de Hosts de cada red, así a cada subred se le asigna una máscara diferente en función del número de hosts que ésta va a conectar.

Los pasos a seguir son:

1. Ordenar las subredes de mayor a menor número de host

Una vez ordenadas las subredes nos centramos ahora en cada una de las subredes empezando por la de mayor número de host y descendiendo de mayor a menor.

2. Calcular el número de bits de host necesarios

Para determinar el número de bits de la parte de host se usa la fórmula:

$$2^n-2\geq H$$

Donde n es el número de bits y H es el número de host de la subred

3. Calcular el número de bits de subred

Para calcular el número de bits de la subred podemos utilizar la siguiente expresión:

$$R = (32 - p) - n$$

Donde 32 es el número de bits de una dirección IP binaria, p es el prefijo de la red.

4. Calcular la nueva máscara de subred:

$$p = p + R$$

El nuevo prefijo de red se obtiene sumándole R al prefijo original.

5. Calcular el salto de red

El salto de red es la diferencia entre dos direcciones de red consecutivas y se calcula como la diferencia de 256 y el **último octeto no nulo** de la máscara.

6. Calcular los parámetros de la subred:

La dirección de la subred será la primera dirección de la subred.

La dirección del primer host se obtiene sumando1 a la dirección de la subred.

La dirección del host se obtiene sumando a la dirección de la subred el número de host de la subred. La dirección de broadcast se obtiene sumando 1 a la dirección del último host.

7. Calcular el resto de las subredes:

Se calculan repitiendo los pasos anteriores.

1. Dada una red, con la siguiente IP:

192.168.0.0/24

Dividirla en 6 subredes, pero con n.º de host variables:

2 subredes de 20 host

1 subred de 80 host

3 subredes de 2 host

Se pide:

- 1. Indicar el rango de direcciones de cada red, así como su máscara.
- 2. Indicar la dirección de red y broadcast de cada subred

2. Dada una red, con la siguiente IP:

172.25.0.0/16

Dividirla en 6 subredes, pero con n.º de host variables:

2 subredes de 1.000 host

1 subred de 2.000 host

1 subred de 5 host

1 subred de 60 host

1 subred de 70 host

Se pide:

- 1. Indicar el rango de direcciones de cada red, así como su máscara.
- 2. Indicar la dirección de red y broadcast de cada subred

3. Dada una red, con la siguiente IP:

172.25.1.0/24

Dividirla en 6 subredes, pero con n.º de host variables:

2 subredes de 60 host

1 subred de 120 host

1 subred de 10host

1 subred de 24 host

Se pide:

- 1. Indicar el rango de direcciones de cada red, así como su máscara.
- 2. Indicar la dirección de red y broadcast de cada subred

