Topic#1 - Kalman filter

...

About Kalman filter

Advantages: ...

Disadvantages - the following factors have a negative impact on the results of the Kalman filter algorithms:

- significant nonlinearities in the dynamics of the system
- high dimensionality of the system
- observability of a system
- sample spacing, noise intensity etc.

Let's consider a linear dynamical system with discrete time

$$X_{i+1} = \Phi_i X_i + u_i + \xi_i , \qquad (1.01)$$

$$Y_i = C_i X_i + \eta_i \,, \tag{1.02}$$

where $X = \begin{bmatrix} x & z & V_x & V_z \end{bmatrix}^T$ is state vector;

 ξ_i , η_i are discrete stochastic white noise;

 $X_{i+1} = \Phi \cdot X_i$ is dynamic equation of the UAV;

$$\Phi(\Delta t) = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 is transition matrix of the UAV;

 $Y_i = [y_{1i} \ y_{2i}]^T = [x_i \ z_i]^T$ is measurement vector;

 $Y_i = C_i X_i + \eta_i$ is measurement equation;

$$C_i = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{2\times 4}$$
 is measurement matrix;

$$K_{\xi_i} = \begin{bmatrix} D_\xi & 0 & 0 & 0 \\ 0 & D_\xi & 0 & 0 \\ 0 & 0 & D_\eta & 0 \\ 0 & 0 & 0 & D_\eta \end{bmatrix} \text{ is covariance matrix of initial state of the}$$

dynamic system;

$$K_{\eta_{i}} = \begin{bmatrix} D_{\eta} & 0 \\ 0 & D_{\eta} \end{bmatrix}$$
 is covariance matrix of measurement errors.

Case study - Input data

X = [3000;500;10;-10] (m),(m),(m/s),(m/s)

$$D_{\bar{R}_0} = 900 \ (m^2) \ , \ D_{\bar{V}_0} = 25 \ (m^2 \ / \ s^2)$$

$$\Delta t = 5 \ (s), \ N = 25.$$

Case study - Simulation results

Figure 1.01 State estimation using Kalman filter

Figure 1.02 Estimation of position errors

Figure 1.03 Estimation of velocity errors

References

•••