

Sensors

Distance

*. Ultrasonic distance : Ping(29.9\$) vs HC-SR04(0.85\$)

cons: soft pillow, inclined plane

Distance

- *. Using Infrared: Compound Eye
 - More reliable than ultrasonic but less versatile.
 - https://www.youtube.com/watch?v=kmTzTchwa1k

IR compound eye

Assembly Instructions:

- 1. Install the resistors and 7 pin header first.
- 2. Install the 4 IR LEDs (clear colour) in the center. Be careful of their polarity.
- 3. Install the PN100 transistor.
- 4. Install the 8 IR phototransistors (black colour).

Calibration: (should be done at night to reduce ambiant IR from sunlight).

- 1. Connect to 1 digital output and 4 analog inputs of your micro controller.
- 2. Write code to make digital output high and display analog inputs.
- 3. Place small pieces of heatshrink (about 3mm wide) on IR LEDs.
- 4. With sensor facing away from all objects, adjust position of heatshrink so all reading are similar.
- 5. Place a white object 100mm away from all sensors. Adjust heatshrink if required.
- 6. When calibrated gently heat the heatshrink so it maintains position on LEDs.

Gas and Smoke

Q Sensor	Gases detected
MQ-2	Flammable gas and smoke
MQ-3, MQ-303A	Alcohol (ethanol)
MQ-4	Methane (CH4)
MQ-7	Carbon monoxide
MQ-8	Hydrogen
MQ-9	Carbon monoxide, methane, LPG (propane or butane)

Gas and Smoke

- *. CO2 sensor : MH-Z19 detects CO2 (0~5000ppm). cf) 400ppm in the air
 - Nondispersive Infrared (NDIR): The key components are an <u>infrared</u> source, a <u>light</u> tube, an interference (wavelength) filter, and an infrared detector. The gas is pumped or diffuses into the light tube, and the electronics measures the absorption of the characteristic <u>wavelength</u> of light

Touch

*. QT113 touch sensor : detect touch then output pin become to low

Touch

*. FlexiForce(37\$), FSR402(13\$): The more you squeeze, the lower the resistance.

Movement Detect

*. Tilt sensor : 1 axis(< 1\$)

3 axis accelerator using MMA7455 (1.68\$)

Vibration Detect

*. SW-420 (0.75\$): Using LM393 voltage comparator

Light

*. Flame detector (0.81\$): detect IR emitted by the flame

*. LDR: Light Dependent Resistor (~0.2 \$)

Light

*. TCRT5000 line detector (0.9\$):

Line detectors light the surface below with light, usually infrared. The surface is considered "white" if enough light is reflected back; anything else is considered a line.

*. TCS230 color recognition (2.25\$)

PA	ARAMETER	TEST CONDITIONS	CLEAR PHOTODIODE S2 = H, S3 = L		BLUE PHOTODIODE S2 = L, S3 = H			GREEN PHOTODIODE S2 = H, S3 = H			RED PHOTODIODE S2 = L, S3 = L			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
		$E_e = 45.6 \mu\text{W/cm}^2$, $\lambda_p = 470 \text{nm}$	16	20	24	11.2	16.4	21.6							kHz
fo	Output	$E_e = 39.2 \mu W/cm^2$, $\lambda_p = 524 \text{ nm}$	16	20	24				8	13.6	19.2				kHz
	frequency	$E_e = 32.8 \mu W/cm^2$, $\lambda_p = 635 \text{ nm}$	16	20	24							14	19	24	kHz
		E _e = 0		2	12		2	12		2	12		2	12	Hz

Acceleration

Sensor	Measures	Meaning	Unit	Gravity
Accelerometer	Acceleration	Change of velocity, speeding up or braking	$m/s / s = m/s^2$	Yes, 1 g down
Gyroscope	Angular velocity	Change of angle, spinning	rad/s (SI), often deg/s or RPM	Ignores gravity

*. MPU-6050 (1.75\$): 3-Axis Acceleometer + gyroscope module

*. MPU-9150 (16.86\$) : MPU-6050 + Magnetometer(compass)

web: http://playground.arduino.cc/Main/MPU-6050

*. Wii Nuchunk with I2C (3.43\$)

Identifying

*. Fingerprint scanner module (25.7\$)

https://github.com/adafruit/Adafruit-Fingerprint-Sensor-Library

GT-511C3 (43\$)

Identifying

*. RFID : MFRC-522 (1.85\$)

http://playground.arduino.cc/Learning/MFRC522

Electricity and Magnetic Field

*. AttoPilot voltage current sensor (3.82\$)

*. KY-024 Linear Magnetic Hall Switches Speed Counting Sensor (0.83\$)

A Hall effect sensor measures a magnetic field. Hall effect sensors are used in bike speedometers, where a magnet on the wheel helps the sensor count revolutions.

Sound

*. FZ0475 : Voice recognition module (20\$)

http://www.elechouse.com/elechouse/images/product/VR3/VR3_manual.pdf

- Support maximum 80 voice commands, with each voice 1500ms (one or two words speaking)
- Maximum 7 voice commands effective at same time
- Arduino library is supplied

*. FC-04: Voice Sound Detection Sensor Module (0.53\$)

Climate and Temperature

*. LM35 Temp Sensor (0.5\$)

Temperature C	Voltage V	Comment
2 C	0.02 V	Minimum measured temperature
20 C	0.2 V	Room temperature
100 C	1.0 V	Boiling water
150 C	1.5 V	Maximum measured temperature

*. DTH11 Humidity (0.9\$)

*. BMP180 : Digital Pressure sensor (2.25\$)

*. MLX90614: Contactless Temp sensor (5.4\$)