Workshop: Conversion of Units and Transposing Equations

The Learning Enhancement Team, UEA

Conversion of units

- 1. Convert each of the following into grams, writing each answer in standard form:
 - a. 1 kg
 - b. 1 mg
 - c. 1 mcg
 - d. 5 kg
 - e. 250 kg
 - f. 3500 mg
- 2. Convert each of the following into the given unit, writing each answer in standard form:
 - a. 120 ml into mcl
 - b. 4500 mcg into nanograms
 - c. 2.2 l into ml
 - d. 0.56 g into mg
 - e. 0.000235 g into mcg
- 3. Convert each of the following into the given unit, writing each answer in standard form:
 - a. 54000 mg into g
 - b. 250000 mg into kg
 - c. 0.25 ml into l
 - d. 6250000 nanograms into mg
- 4. Convert each of the following into the given unit, writing each answer in standard form:
 - a. 1.25×10^{14} mg into g
 - b. 9.5×10^{20} kW into W

- c. 650×10^{15} mcg into kg
- d. 1.224×10^{-12} ml into l
- e. 1.5×10^{-6} MJ into mJ
- f. 56×10^4 cm into km

Transposing equations

- 5. Make *x* the subject of each of the following:
 - a. 5x = b
 - b. z = a + x
 - c. y = mx + c
 - d. y 10 = 3(x 2)
 - e. $\frac{x+5}{p} = q$
- 6. In each of the following, make the give variable [in brackets] the subject:
 - a. $C_1V_1 = C_2V_2$ [V_1]
 - b. $E = h \frac{c}{\lambda}$ [h]
 - c. $I = \frac{m}{h^2}$ [h]
 - $d. A = \frac{\sqrt{HM}}{60} \qquad [M]$

Mixed Questions

7. The body mass index (BMI) of a person is calculated as:

$$BMI = \frac{Mass (Kg)}{(Height (m))^2}$$

Find the height of a person in centimetres, given that they have a body mass index of 22.5 and a mass of 90000 g.

8. The wavelength of a light wave (λ), in m, can be calculated using the speed of light (c) and the frequency (v):

$$\lambda = \frac{c}{v}$$

It is found that a light wave has a wavelength of $1.5\times10^{-5}~mm.$ The speed of light is $3\times10^8~ms^{-1}$

- a. Convert the wavelength into metres
- b. By rearranging the equation, and using your answer to part a, find the frequency of the light wave.