

09/646624

Rec'd PCT/PTO 20 AUG 2002

SEQUENCE LISTING

<110> Claudine Elvire Marie BRUCK
Jean-Pol CASSART

Thierry COCHE
Carlotta Vinals Y de BASSOLS

<120> Human CASB12, Polypeptide, A Human
Protease

<130> BC45203

<140> 09/646,624

<141>

<150> 9806095.7

<151> 1998-03-20

<160> 4

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1106

<212> DNA

<213> Homo Sapiens

<400> 1

tcgggttccg	cagatgcaga	ggttgaggtg	gctgcgggac	tggaagtcat	cgggcagagg	60
tctcacagca	gccaaggAAC	ctggggcccg	ctccctccccc	ctccaggcca	tgaggattct	120
gcagttaatc	ctgcttgctc	tggcaacagg	gcttgtaggg	ggagagacca	ggatcatcaa	180
ggggttcag	tgcaaggcctc	actcccagcc	ctggcaggca	gccctgttcg	agaagacgcg	240
gctactctgt	ggggcgacgc	tcatcgcccc	cagatggctc	ctgacagcag	cccactgcct	300
caagccccgc	tacatagttc	acctggggca	gcacaacctc	cagaaggagg	aggctgtga	360
gcagacccgg	acagccactg	agtccccc	ccacccggc	ttcaacaaca	gcctcccaa	420
caaagaccac	cgcaatgaca	tcatgctgg	gaagatggca	tcgcccagtct	ccatcacctg	480
ggctgtgcga	cccctcaccc	tccctcacg	ctgtgtca	gctggcacca	gctgcctcat	540
ttccggctgg	ggcagcacgt	ccagccccc	gttacgcctg	cctcacact	tgcgatgcgc	600
caacatcacc	atcattgagc	accagaagt	tgagaacgcc	tacccggca	acatcacaga	660
caccatgg	tgtgccagcg	tgcaggaagg	ggcaaggac	tcctgccagg	gtgactccgg	720
gggcctctg	gtctgttaacc	agtctttca	aggcattatc	tcctggggcc	aggatccgt	780
tgcgatcacc	cgaaagcctg	gtgtctacac	gaaagtctgc	aaatatgtgg	actggatcca	840
ggagacgtg	aagaacaatt	agactggacc	cacccaccac	agcccatcac	cctccatttc	900
cacttgg	ttggttctg	ttcactctgt	taataagaaa	ccctaagcca	agaccctcta	960
cgaacattct	ttgggcctcc	tggactacag	gagatgctgt	cacttaataa	tcaacctggg	1020
gttcgaaatc	agtgagacct	ggattcaa	tctgccttga	aatattgtga	ctctggaaat	1080
gacaacac	ggtttgttct	ctgttg				1106

<210> 2
<211> 282
<212> PRT
<213> Homo Sapiens

<400> 2
Met Gln Arg Leu Arg Trp Leu Arg Asp Trp Lys Ser Ser Gly Arg Gly
1 5 10 15
Leu Thr Ala Ala Lys Glu Pro Gly Ala Arg Ser Ser Pro Leu Gln Ala
20 25 30
Met Arg Ile Leu Gln Leu Ile Leu Leu Ala Leu Ala Thr Gly Leu Val
35 40 45
Gly Gly Glu Thr Arg Ile Ile Lys Gly Phe Glu Cys Lys Pro His Ser
50 55 60
Gln Pro Trp Gln Ala Ala Leu Phe Glu Lys Thr Arg Leu Leu Cys Gly
65 70 75 80
Ala Thr Leu Ile Ala Pro Arg Trp Leu Leu Thr Ala Ala His Cys Leu
85 90 95
Lys Pro Arg Tyr Ile Val His Leu Gly Gln His Asn Leu Gln Lys Glu
100 105 110
Glu Gly Cys Glu Gln Thr Arg Thr Ala Thr Glu Ser Phe Pro His Pro
115 120 125
Gly Phe Asn Asn Ser Leu Pro Asn Lys Asp His Arg Asn Asp Ile Met
130 135 140
Leu Val Lys Met Ala Ser Pro Val Ser Ile Thr Trp Ala Val Arg Pro
145 150 155 160
Leu Thr Leu Ser Ser Arg Cys Val Thr Ala Gly Thr Ser Cys Leu Ile
165 170 175
Ser Gly Trp Gly Ser Thr Ser Ser Pro Gln Leu Arg Leu Pro His Thr
180 185 190
Leu Arg Cys Ala Asn Ile Thr Ile Ile Glu His Gln Lys Cys Glu Asn
195 200 205
Ala Tyr Pro Gly Asn Ile Thr Asp Thr Met Val Cys Ala Ser Val Gln
210 215 220
Glu Gly Gly Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val
225 230 235 240
Cys Asn Gln Ser Leu Gln Gly Ile Ile Ser Trp Gly Gln Asp Pro Cys
245 250 255
Ala Ile Thr Arg Lys Pro Gly Val Tyr Thr Lys Val Cys Lys Tyr Val
260 265 270
Asp Trp Ile Gln Glu Thr Met Lys Asn Asn
275 280

<210> 3
<211> 1158
<212> DNA
<213> Homo Sapiens

<400> 3
ggcacgaggg aaagccaagg gaagggacct aactgaaaac aaacaagctg ggagaagcag 60
gaatctgcgc tcgggttccg cagatgcaga ggttgaggtg gctgcgggac tggaagtcat 120

cgggcagagg	tctcacagca	gccaaaggaaac	ctggggcccg	ctccctcccc	ctccaggcca	180
tgaggattct	gcagttaatc	ctgcttgctc	tggcaacagg	gctttaggg	ggagagacca	240
ggatcatcaa	ggggttcgag	tgcaagcctc	actcccagcc	ctggcaggca	gccctgttcg	300
agaagacgag	gctactctgt	ggggcgacgc	tcatcgcccc	cagatggctc	ctgacagcag	360
cccactgcct	caagccccgc	tacatagttc	acctggggca	gcacaacctc	cagaaggagg	420
agggctgtga	gcagacccgg	acagccactg	agtccctccc	ccaccccgcc	ttcaacaaca	480
gcctcccaa	caaagaccac	cgcaatgaca	tcatgctgg	gaagatggca	tcgcccagtct	540
ccatcacctg	ggctgtgcga	cccctcaccc	tctcctcact	ctgtgtca	gctggcacca	600
gctgcctcat	ttccggctgg	ggcagcacgt	ccagccccca	ttacgcctg	cctcacacct	660
tgcgtatgcgc	caacatcacc	atcattgagc	accagaagtg	tgagaacgcc	taccccgcca	720
acatcacaga	caccatggtg	tgtgccagcg	tgcaaggaagg	gggcaaggac	tcctgcccagg	780
gtgactccgg	gggcctctg	gtctgttaacc	agtctcttca	aggcattatc	tcctggggcc	840
aggatccgtg	tgcgtatcacc	cgaaagcctg	gtgtctacac	gaaagtctgc	aatatgttgg	900
actggatcca	ggagacgatg	aagaacaatt	agactggacc	caccacccac	agcccatcac	960
cctccatttc	cacttggtgt	ttggttcctg	ttcaactctgt	taataagaaa	ccctaagcca	1020
agaccctcta	cgAACATTCT	ttgggcctcc	tggactacag	gagatgttgt	cacttaataa	1080
tcaacctggg	gttcgaaatc	agtgagacct	ggattcaat	tctgccttga	aatattgtga	1140
ctctqqqaat	qacaacac					1158

```
<210> 4
<211> 281
<212> PRT
<213> Homo Sapiens
```

```

<400> 4
Met Gln Arg Leu Arg Trp Leu Arg Asp Trp Lys Ser Ser Gly Arg Gly
1 5 10 15
Leu Thr Ala Ala Lys Glu Pro Gly Ala Arg Ser Ser Pro Leu Gln Ala
20 25 30
Met Arg Ile Leu Gln Leu Ile Leu Leu Ala Leu Ala Thr Gly Leu Val
35 40 45
Gly Gly Glu Thr Arg Ile Ile Lys Gly Phe Glu Cys Lys Pro His Ser
50 55 60
Gln Pro Trp Gln Ala Ala Leu Phe Glu Lys Thr Arg Leu Leu Cys Gly
65 70 75 80
Ala Thr Leu Ile Ala Pro Arg Trp Leu Leu Thr Ala Ala His Cys Leu
85 90 95
Lys Pro Arg Tyr Ile Val His Leu Gly Gln His Asn Leu Gln Lys Glu
100 105 110
Glu Gly Cys Glu Gln Thr Arg Thr Ala Thr Glu Ser Phe Pro His Pro
115 120 125
Gly Phe Asn Asn Ser Leu Pro Asn Lys Asp His Arg Asn Asp Ile Met
130 135 140
Leu Val Lys Met Ala Ser Pro Val Ser Ile Thr Trp Ala Val Arg Pro
145 150 155 160
Leu Thr Leu Ser Ser Arg Cys Val Thr Ala Gly Thr Ser Cys Leu Ile
165 170 175
Ser Gly Trp Gly Ser Thr Ser Ser Pro Gln Leu Arg Leu Pro His Thr
180 185 190
Leu Arg Cys Ala Asn Ile Thr Ile Ile Glu His Gln Lys Cys Glu Asn
195 200 205

```

Ala Tyr Pro Gly Asn Ile Thr Asp Thr Met Val Cys Ala Ser Val Gln
210 215 220
Glu Gly Gly Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val
225 230 235 240
Cys Asn Gln Ser Leu Gln Gly Ile Ile Ser Trp Gly Gln Asp Pro Cys
245 250 255
Ala Ile Thr Arg Lys Pro Gly Val Tyr Thr Lys Val Cys Lys Tyr Val
260 265 270
Asp Trp Ile Gln Glu Thr Met Lys Asn
275 280