OBIM:A computational model to estimate brand image from online consumer review

2021144276 장은준

Brand image는 마켓팅 전략에 굉장히 중요.

Brand image는 소비자들의 Brand association 에 의해서 만들어진다.

즉 소비자들이 브랜드를 생각하면 떠오르는 연상들로 브랜드 이미지가 정의 내려진다.

favourability, strength, unique

What is OBIM:

브랜드 이미지를 구성하는 3가지 연상들을 수치화하고 이를 활용하여 브랜드 이미지 점수를 만드는 모델.

extract favourability, strength, uniqueness(quantify) calulate 3 values

- Favourability
 - 1. Aspect (double propagate technique) 추출
 - 2. 사전 기반 감성 분석을 이용해서 각 Aspect에 관한 점수를 매긴다.
- Strength, Uniqueness
 - 1. Aspects 추출
 - 2. co-word network

Favourability:

- 1. Aspects 추출
- 기본적으로 단어를 기준으로 Aspect로 선정
 - o ex) Nice phone with amazing performance
 - o "Nice", "phone", "with", "amazing", "performance"
- 상품과 관련된 단어들을 Aspect로 선정
 - "Nice","Phone","amazing","performance"
- dependency parser 원리에 의거해 Aspect 선정
 - o Double propagation approach rules 사용
 - o Opinion word Aspect word 쌍 보관.

Fig 2. The output of Dependency Parser.

Favourability:

- 2. 추출된 Aspect에 감성분석 값 매기기
- lexicon based VADER 방식 사용.
- 앞서 구한 opinion aspect pair 사용.
 - (Nice,phone) -> Nice 관한 감성값 구하기.
 - 특정 aspect의 모든 opinion aspect pair 에 감성값을 부여하고 평균을 구하면 Favourability.

Strength:

Co-word network 사용

- favourability 를 구할 때 얻은 Aspects 들을 사용.
- Co-occurrence matrix C를 만든다.
 - C(i,j): i와 j가 동시에 출현한 빈도
 - wc(i): i 단어가 전체 문서에서 등장한 빈도.
 - V: corpus 내에 unique 단어들의 개수
- C(i,j) 를 Normalization 해서 NC(i,j) 를 얻음.
 - penalty
 - NC(i,j) 는 i,j 노드의 weight 로 간주됨.
- NC(i,j) 값들을 이용해서 Strength 구함.

$$NC(i, j) = \begin{cases} \frac{1}{V} & \text{if } \frac{C(i, j)}{WC(i)} = 1\\ \frac{C(i, j)}{WC(i)} & \text{otherwise} \end{cases}$$

$$S_i = \frac{\sum_{j=1}^{n} NC(i, j)}{n_i}$$

Uniqueness:

- 1. Co-word network 사용
- 2. DIL(Degree and Importance of Lines)
- local data 사용 (neighborhood node, node값, weight 활용)
- i,j 노드의 weight을 importance로 간주. (NC(i,j)
- contribution u_ij 계산
- u_ij 들을 이용해서 i_node importance 구함. (uniqueness value)

$$\mu_{i,j} = \begin{cases} NC(i,j) * \frac{n_i - 1}{n_i + n_j - 2} \\ NC(i,j) \text{ if } n_i = 1 \text{ or } n_i + n_j = 2 \end{cases}$$

$$I_{node} = \bar{n}_i + \sum_{j \in N} \mu_{i,j}$$

Computation of brand image score:

- 1. OBIM value(F * S * U)
- 2. OBIM score, sum (F * S * U)

$$=\sum_{k=1}^n F_k * S_k * U_k$$

Aspect	F	S	U	(F*S*U)
phone	0.43	0.30	0.69	0.089
camera	0.44	0.33	0.44	0.063
battery	0.51	0.11	0.22	0.012
purchase	0.44	0.11	0.22	0.010
		OBIM	Score =	= 0.174

1. Description of the dataset

- o Samsung, Coolpad, Lenovo, Motorola and Huawei from Amazon 핸드폰 리뷰 사용
- o 1월부터 5월까지 데이터 사용
- 이 데이터들 내에서 3~4개 이상의 문장들로 구성된 리뷰들만 채택
- Standard 한 Preprocessing 과정을 거침

2. Computing favorability, strength, and uniqueness scores

○ 앞서 설명한 방식으로 favourability, strength and uniqueness scores 구한다.

1. Comparision based on brand imagpe attributes

- 월별로 favourability, strength, uniqueness 를 속성으로 두고 scatter 를 찍으면 각 브랜드들을 시간대별로 performance를 비교할 수 있다.
- 그리고 그래프로 scatter 를 확인할 수 있지만, 각 속성별로 표를 만들어서 그것대로 비교해도 유의미하다.

Associations		January	February	March	April	May
camera	Favourability	0.6894	0.6537	0.61	X	0.6364
	Strength	0.0986	0.0992	0.14	X	0.0915
	Uniqueness	0.0632	0.0618	0.05	X	0.1456
performance	Favourability	0.7693	0.6814	0.7202	0.7663	0.7502
	Strength	0.1692	0.1323	0.4586	0.1638	0.0874
	Uniqueness	0.0300	0.0466	0.0146	0.0796	0.1260
features	Favourability	X	X	X	0.5852	0.7898
	Strength	X	X	X	0.1093	0.1298
	Uniqueness	X	X	X	0.0753	0.0452
experience	Favourability	0.2289	X	X	0.8125	0.7981
S-425 (4 540)	Strength	0.0034	X	X	0.1835	0.2436
	Uniqueness	0.0010	X	X	0.0655	0.0516
quality	Favourability	X	0.2617	X	0.5642	0.6700
	Strength	X	0.1788	X	0.1563	0.1157
	Uniqueness	X	0.0230	X	0.1060	0.0546

OBIM Scores for five mobile brands across five months.

Brand	January	February	March	April	May
A	0.0525	0.0744	0.1336	0.1582	0.3118
В	0.0885	0.1010	0.0966	0.2664	0.1631
C	0.1548	0.1388	0.0678	0.0560	0.0971
D	0.2894	0.6218	0.2111	0.1936	0.2703
E	0.1726	0.6297	0.8772	0.3967	0.2070

SWOT analysis of January for Brand A.

Strength	Weakness	
camera, performance, product, service,	storage, battery, resolution, experience, screen	
Opportunities	Threats	
experience, camera, performance	money, price, screen, battery	

1. Association based SWOT analysis: A technique for market positioning

- SWOT(Strength, Weaknesses, Opprotunities, and Threats) 전략에 OBIM SCORE 사용
- SWOT은 회사의 강점을 탐구하고, 기회들을 탐구하고, 약점을 최소화하면서 위협에 대책한다.
- OBIM VALUE (각 ASPECT에 대한) 를 오름차순으로 정렬. 그러면 상위 5개 하위 5개의 OBIM VALUE 에 관한 ASPECT 추출 가능하다. 상위 5개는 강점으로, 하위 5개는 약점으로 선정.
- OBIM VALUE 가 낮은 ASPECT에 대해서 향상 시키는 것이, 브랜드의 내부 강점과 외부 기회에 좋다.
- 그리고 나브랜드의 위협은 브랜드의 약점으로부터 올 수 있는데, 다른 브랜드에서는 약점이 아니지만 그 브랜드에서는 그 ASPECT 가 약점인 경우에는 그게 브랜드의 위협이 될 수 있다.

- 1. Senti-Concept Mapper: A technique to analyze the sentiment of hidden concepts
 - o Senti-Concept Mapper 는 구조화된Concept을 brand association 들의 연결로본다.
 - o Senti-Concept Mapper는 숨겨진 concept 을 발견하거나, 이미 드러난 concept 의 감정 수치를 계산한다.
 - o Concept의 감정이 시간이 지나감에 따라서 어떻게 변화는지 분석할 수 있게 해준다.
 - Concept identification
 - 1. Camera의 performance 를 중심으로개념을발굴하는데"resolution","performance","battery" 를 고려해서발굴할수 있다.
 - 2. concept 에 새로운association 을 집어 넣는데 제약이 없다. association "resolution" 은 새로운 연상인 "screen" 을 추가할수 있다.
- 2. Sentiment of identified concepts.
 - o concepts 의 구성물로채택된 association 각각의 favourability 값들의 평균이 컨셉의 감정값으로본다.

Conclusion

Conclusion

1. 한계

- 현재 product review 에 대해서만 obim score를 적용했는데, online review 에 대해서 적용을 하면 obim score 가 더 좋게 수정될 수 있을 것.
- 수동적인 swot분석과 senti concept mapper 방식인데, 나중에 자동화된 모델이 나올 수 있다.
- 만일 문장에 감정에 영향을 주는 외부적 요소가 들어간다면, obim score 에 영향을 줄 수 있다.(사회적, 정치적, 경제적 요소 등등)
- 마지막으로, 소비자 관점들은 프로모션과 광고 같은 마켓팅 노력에 의해서 편향되어질 수 있는데, 그러한 편향을 잡는게 모델의 발전을 이루어낼 수 있다.