首先什么是万有覆盖,一个图形,他的直径小于等于1. 那么他叫一个覆盖. 直径的意思就是图形上距离最远的两个点的距离 万有覆盖是包含任意覆盖的图形. 求万有覆盖的上界最小是多少. 这个定理说的是上界一定比正六边形小.

6.1. Theorem (Radon's Theorem). Let $S = \{x_1, x_2, ..., x_r\}$ be any finite set of points in E^n . If $r \ge n + 2$, then S can be partitioned into two disjoint subsets S_1 and S_2 such that $\operatorname{conv} S_1 \cap \operatorname{conv} S_2 \ne \emptyset$.

IEFF:
$$P = \{P_1 - \cdots P_{n+2}\}$$

$$Q = \{P_2 - P_1, \dots - \cdots, P_{n+2} - P_1\}$$

$$P_2 - P_1 = \sum_{i=3}^{n+2} \beta_i (P_i - P_1)$$

$$(\beta_3 + \beta_4 + \cdots \beta_{n+2} - 1) P_1 + (-\beta_3 \beta_3 + \cdots + \beta_{n+2} P_{n+2}) + P_2 = 0$$

$$Q_1 = \beta_3 + \beta_4 + \cdots + \beta_{n+2} - 1$$

$$Q_2 = 1$$

$$Q_2 = 1$$

$$Q_2 = -\beta_i (\beta_3 \leq i \leq n+2)$$

$$Q_3 = -\beta_i (\beta_3 \leq i \leq n+2)$$

$$Q_4 = -\beta_i (\beta_4 \leq i \leq n+2)$$

$$Q_4 = -\beta_i (\beta_4 \leq i \leq n+2)$$

$$Q_5 = -\beta_i (\beta_5 \leq i \leq n+2)$$

$$Q_6 = -\beta_i (\beta_6 \leq i \leq n+2)$$

$$Q_7 = -\beta_i (\beta_6 \leq i \leq n+2)$$

因为星式子我们有

6.2. Theorem (Helly's Theorem). Let $\mathfrak{F} \equiv \{B_1, \ldots, B_r\}$ be a family of r convex sets in \mathbb{E}^n with $r \ge n+1$. If every subfamily of n+1 sets in \mathfrak{F} has a nonempty intersection, then $\bigcap_{i=1}^r B_i \ne \emptyset$.

意思就是2维空间我们有4个园,他们任意三个的交不是空.那么4个的交一定也不是空.

对于这n个点,根据radon定理我们有存在一个划分A1,A2,和一个点p属于conv(A1)交conv(A2)

对于x1,假设他在A1中.我们有x1一定不在A2中.那么A2一定是B1的子集.这是显然的因为A2里面没有x1,而这些A2里面的这些点集都属于B1.所以A2是B1的子集.所以p这个点属于B1.我们归纳下去即可.所以p这个点属于所有的Bi

6.3. Theorem (Helly's Theorem). Let \mathcal{F} be a family of compact convex subsets of \mathbb{E}^n containing at least n+1 members. If every n+1 members of \mathcal{F} have a point in common, then all the members of \mathcal{F} have a point in common.

这就是上面定理的换一种说法

- **1.20.** Definition. A subset A of E^n is said to be <u>compact</u> if it is closed and bounded.
 - **1.16.** Definition. If $A, B \subset E^n$ and $\lambda \in R$, we define

$$A + B \equiv \{x + y : x \in A \text{ and } y \in B\}$$

 $\lambda A \equiv \{\lambda x : x \in A\}.$

If A consists of a single point, $A \equiv \{x\}$, then we often write x + B for A + B. The set x + B is called a **translate** of B. The set λA is called a **scalar multiple** of A. If $\lambda \neq 0$, the set $x + \lambda A$ is said to be **homothetic** to A.

6.4. Theorem. Let $\mathfrak{F} \equiv \{A_{\alpha} : \alpha \in \mathfrak{C}\}$ be a family of compact convex subsets of E^n containing at least n+1 members. Suppose K is a compact convex subset of E^n such that the following holds: For each subfamily of n+1 sets in \mathfrak{F} , there exists a translate of K that is contained in all n+1 of them. Then there exists a translate of K that is contained in all the members of \mathfrak{F} .

显然满足Helly定理. 所以存在一个平移使得K能被 包含

6.5. Theorem. Let \mathcal{F} be a family of compact convex subsets of \mathbb{E}^n containing at least n+1 members. Suppose K is a compact convex subset of \mathbb{E}^n such that for each subfamily of n+1 sets in \mathcal{F} , there exists a translate of K that contains all n+1 of them. Then there exists a translate of K that contains all the members of \mathcal{F} .

6.5在二维空间的说法就是: 一堆单点集组成的集合,因为单点集也是凸集,假设K能平移覆盖其中任意的三个点.那么K就能覆盖这个整体集合

12.2. Theorem. The smallest square that is a universal cover in E^2 has sides of length one.

PROOF. Let S be a subset of E^2 having diameter 1 and let K be a square of side length 1. To prove that K is a universal cover, it suffices by Theorem 6.5 to show that given any three points, say x_1, x_2, x_3 , of S, there exists a translate of K that covers $\{x_1, x_2, x_3\}$. Now since the diameter of S is 1, it follows that $\{x_1, x_2, x_3\}$ is contained in a Reuleaux triangle T of width 1. But a Reuleaux triangle of width 1 can be rotated through 360° inside a square of side 1. Therefore, no matter what the orientation of T and K, there must be a translate of K that covers T and thus also covers $\{x_1, x_2, x_3\}$. Clearly, no smaller square can be a universal cover since it would not cover a circle of diameter 1.

12.3. Theorem. The smallest circle that is a universal cover in E^2 has radius $1/\sqrt{3}$.

PROOF. The proof that a circle of radius $1/\sqrt{3}$ is a universal cover in E^2 is similar to that of Theorem 12.2 and is left to the reader (Exercise 12.2). No smaller circle can be a universal cover since it would not cover an equilateral triangle of side 1.

12.4. Theorem. The smallest regular hexagon which is a universal cover in E^2 has sides of length $1/\sqrt{3}$.

PROOF. Let S be a set of diameter 1. We begin by circumscribing a rhombus, say abcd, about S so that the angle at a is 60° . (See Figure 12.1.)

Figure 12.1.

The two support lines perpendicular to the diagonal \overline{ac} of the rhombus cut off two triangles, say aef and cgh, from abcd. If \overline{ef} has the same length as \overline{gh} , then the hexagon efbhgd is regular and circumscribes S. If not, then we claim that some rotation of the rhombus about S will yield the desired regular hexagon.

If a'b'c'd' is another circumscribed rhombus about S, let α be the counterclockwise angle betten the diagonal \overline{ac} and the diagonal $\overline{a'c'}$. Let $m(\alpha)$ denote the length of the support line $\overline{e'f'}$ and $n(\alpha)$ the length of the support line $\overline{g'h'}$. Then $m(\alpha)$ and $n(\alpha)$ are continuous functions of α .

If \overline{ef} and \overline{gh} are not the same length, then $m(0) \neq n(0)$, and we may assume without loss of generality that m(0) - n(0) > 0. But the rhombus corresponding to $\alpha = \pi$ will yield the same hexagon as efbhgd, except that the sides \overline{ef} and \overline{gh} will be interchanged. Thus $m(\pi) - n(\pi) < 0$. Since the difference $m(\alpha) - n(\alpha)$ is a continuous function of α , it follows from the Intermediate Value Theorem that there exists an α between 0 and π such that $m(\alpha) - n(\alpha) = 0$. For this α , the corresponding circumscribing hexagon will be regular. $\rightarrow \text{Rep}(\pi)$

Since S has diameter 1, its maximum width is 1 (Theorem 11.3), and so the regular hexagon circumscribed about S will have sides of length at most $1/\sqrt{3}$. No smaller regular hexagon can be a universal cover since it would not cover a circle of diameter 1.

至于他为什么是一个万有覆盖,因为他能放下乐罗三角和单位圆即可.