

 \mathfrak{R}

ALL

(1)

1

2

_

3

2. Sprint Training

Pat is an ordinary kid who works hard to be a great runner. As part of training, Pat must run sprints of different intervals on a straight trail. The trail has numbered markers that the coach uses as goals. Pat's coach provides a list of goals to reach in order. Each time Pat starts at, stops at, or passes a marker it is considered a *visit*. Determine the lowest numbered marker that is visited the most times during Pat's day of training.

Example

n = 5 sprints = [2, 4, 1, 3]

if the number of markers on the trail, n=5, and assigned sprints=[2,4,1,3], Pat first sprints from position $2\to 4$. The next sprint is from position $4\to 1$, and then $1\to 3$. A marker numbered position p is considered to be visited each time Pat either starts or ends a sprint there and each time it is passed while sprinting. The total number of visits to each position in the example is calculated like so:

	Total Visits Per Position											
Sprint	1	2	3	4	5							
2 → 4		⊕→	\rightarrow	→ 9								
<i>4</i> → <i>1</i>	⊕←	←	←	← ⊕								
<i>1</i> → <i>3</i>	⊕	\rightarrow	→ 9									
Total Visits	2	3	3	2	0							

Pat has visited markers 2 and 3 a total of 3 times each. Since 2 < 3, the lowest numbered marker that is visited the most times during Pat's day of training is 2.

Function Description

Complete the function getMostVisited in the editor below.

getMostVisited has the following parameter(s):

int n: an integer denoting the number of markers along the trail

int sprints[m]: an array of integers denoting the sequence of markers to reach, beginning at the marker shown in sprints[0].

Returns

int: an integer denoting Pat's *most visited* position on the trail after performing all m-1 sprints. If there are multiple such answers, return the smallest one.

Constraints

- 1 ≤ n ≤ 10⁵
- $2 \le m \le 10^5$
- $1 \le sprints[i] \le m$ (where $0 \le i < m$)
- sprints[i-1] ≠ sprints[i] (where 0 < i < m)

▼ Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the function.

The first line contains an integer *n*, the number of markers along the path.

The second line contains an integer m, the number of markers in the list of goals.

The next m lines each contain an element sprints[i] where $0 \le i \le m$.

▼ Sample Case 0

Sample Input 0

STDIN	Function Parameters						
10 →	n = 10						
4 →	sprints[] size m = 4						
1 →	sprints = [1, 5, 10, 3]						
5							
10							
3							

Sample Output 0

5

Explanation 0

Given *sprints* = [1, 5, 10, 3], Pat performs the following sequence of sprints:

Sprint	1	2	3	4	5	6	7	8	9	10
<i>1</i> → <i>5</i>	⊕→	\rightarrow	\rightarrow	\rightarrow	→ ©					
5 → 10					⊕→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	→ 😊

```
Language Python 3
                                                     ③ ?

    Autocomplete Ready ①
 1 > #!/bin/python3 ···
10
11
     # Complete the 'getMostVisited' function below.
12
13
14
     # The function is expected to return an INTEGER.
15
     # The function accepts following parameters:
     # 1. INTEGER n
16
     # 2. INTEGER_ARRAY sprints
17
18
19
     def getMostVisited(n, sprints):
20
21
         # Write your code here
22
23 > if __name__ == '__main__': --
                                                      Line: 10 Col: 1
   Test
                Custom
                              Run Code
                                            Run Tests
                                                           Submit
 Results
                 Input
```

10 → 3			⊚←	←	←	←	←	←	←	← 😊
Total Visits	1	1	2	2	3	2	2	2	2	2

In the table above, Pat visited marker 5 the most.

▼ Sample Case 1

Sample Input 1

```
STDIN Function Parameters
-----

5 → n = 5
2 → sprints[] size m = 2
1 → sprints = [1, 5]
5
```

Sample Output 1

1

Explanation 1

Given *sprints = [1, 5]*, Pat performs the following sprint:

Sprint	1	2	3	4	5
1 → 5	⊕→	→	\rightarrow	→	→ ©
Total Visits	1	1	1	1	1

In the table above, every marker is visited the same number of times. Return the smallest of these, which is $\it 1$.

▼ Sample Case 2

Sample Input 2

```
STDIN Function Parameters
-----
9 → n = 9
4 → sprints[] size m = 4
9 → sprints = [9, 7, 3, 1]
7
3
1
```

Sample Output 2

3

Explanation 2

Given *sprints* = [9, 7, 3, 1], Pat performs the following sequence of sprints:

Sprint	1	2	3	4	5	6	7	8	9
<i>9</i> → <i>7</i>							⊕←	←	← ⊕
7 → 3			⊚ ←	←	←	←	← ©		
<i>3</i> → <i>1</i>	⊕ ←	←	← ©						
Total Visits	1	1	2	1	1	1	2	1	1

In the table above, Pat visited positions ${\it 3}$ and ${\it 7}$ the most. Return the smallest of these, which is ${\it 3}$.