Introducción a las Transformaciones Lineales

Pablo Dario

03/01/2024

La diferencia entre una ecuación matricial $A\mathbf{x} = \mathbf{b}$ y la ecuación vectorial asociada $x_1\mathbf{a_1} + \cdots + x_n\mathbf{a_n} = \mathbf{b}$ es tan solo cuestión de notación. Sin embargo, es posible encontrar una ecuación matricial $A\mathbf{x} = \mathbf{b}$ en álgebra lineal que no esté directamente relacionada con combinaciones lineales de vectores. Esto sucede cuando se piensa en la matriz A como un objeto que "actúa" sobre un vector \mathbf{x} multiplicándolo para producir un nuevo vector $A\mathbf{x}$.

$$\begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix} y \begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 (1)

Así podemos observar que la multiplicación por la primera matriz transforma al primer vector en otro, y transforma al segundo vector en el vector cero.

Figure 1: Transformación de vectores por medio de multiplicación matricial

Así bien, desde este punto de vista resolver la ecuación $A\mathbf{x} = \mathbf{b}$ equivale a encontrar todos los vectores \mathbf{x} en \mathbb{R}^4 que se transforman en el vector \mathbf{b} en \mathbb{R}^2 como resultado de la acción de la multiplicación por A.

La correspondencia de \mathbf{x} a $A\mathbf{x}$ es una **función** de un conjunto de vectores a otro. Este concepto generaliza la noción común de una función como una regla que transforma un número real en otro. Así bien una **transformación** puede verse como una **función o mapeo**.

Una transformación T de \mathbb{R}^n a \mathbb{R}^m es una regla que asigna a cada vector \mathbf{x} en \mathbb{R}^n un vector $T(\mathbf{x})$ en \mathbb{R}^m . El conjunto de \mathbb{R}^n se llama dominio de T, y \mathbb{R}^m se llama el codominio de T.

La notación $T: \mathbb{R}^n \to \mathbb{R}^m$ indica que el dominio T es \mathbb{R}^n y que el codominio es \mathbb{R}^m . Para \mathbf{x} en \mathbb{R}^n , el vector $T(\mathbf{x})$ en \mathbb{R}^m es la **imagen** de \mathbf{x} (bajo la acción o transformación de T). El **conjunto de todas las imágenes** $T(\mathbf{x})$ es el **rango** de T.

Figure 2: Dominio, codominio y rango de $T: \mathbb{R}^n \to \mathbb{R}^m$

Transformaciones Matriciales

Para cada \mathbf{x} en \mathbb{R}^n , $T(\mathbf{x})$ se calcula como $A\mathbf{x}$, donde A es una matriz de $m \times n$. Para simplificar, algunas veces esta transformación matricial se denota como $\mathbf{x} \longmapsto A\mathbf{x}$. El dominio de T es \mathbb{R}^n cuando A tiene n columnas y el codominio de T es \mathbb{R}^m cuando las columnas de A tienen m entradas. El rango de T es el conjunto de todas las combinaciones lineales de las columnas de A porque cada imagen $T(\mathbf{x})$ es de la forma $A\mathbf{x}$.

Ejemplo 1

Sean
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$

defina una transformación $T: \mathbb{R}^2 \to \mathbb{R}^3$ por $T(\mathbf{x}) = A\mathbf{x}$, así bien obtenemos

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & -3x_2 \\ 3x_1 & +5x_2 \\ -x_1 & +7x_2 \end{bmatrix}$$

1.- Encuentre $T(\mathbf{u})$, la imagen de \mathbf{u} bajo la transformación de T

$$T(\mathbf{u}) = A\mathbf{u} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ -9 \end{bmatrix}$$

2.- Encuentre una ${\bf x}$ en \mathbb{R}^2 cuya imagen bajo T sea ${\bf b}$

Para ello, debemos resolver $T(\mathbf{x}) = \mathbf{b}$. Es decir $A\mathbf{x} = \mathbf{b}$

$$\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & -.5 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1.5 \\ 0 & 1 & -.5 \\ 0 & 0 & 0 \end{bmatrix}$$

Figure 3: Imagen de

Así que
$$x_1 = 1.5, x_2 = -0.5$$
 y $\mathbf{x} = \begin{bmatrix} 1.5 \\ -0.5 \end{bmatrix}$ La imagen de este vector \mathbf{x} bajo T es el vector \mathbf{b} dado

Ahora nos preguntamos si hay más de una \mathbf{x} cuya imagen bajo T sea \mathbf{b} o bien ¿Es \mathbf{b} la imagen de una única \mathbf{x} en \mathbb{R}^n ?; si vemos el vector anterior \mathbf{x} nos daremos cuenta que no hay variables libres y por lo tanto la solución es única, es decir hay exactamente una \mathbf{x} cuya imagen es \mathbf{b} .

Para determinar si \mathbf{c} está en el rango de la transformación T, debemos verificar si \mathbf{c} es la imagen vectorial de alguna \mathbf{x} en \mathbb{R}^2 es decir si $T(\mathbf{x}) = \mathbf{c}$ para alguna \mathbf{x} . Esto es otra manera de preguntar si el sistema $A\mathbf{x} = \mathbf{c}$ es consistente. Al reducir la matriz aumentada obtenemos:

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 14 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & -35 \end{bmatrix}$$

La tercera ecuación nos indica que el sistema es inconsistente, por lo tanto \mathbf{c} no está en el rango de T.

Ejemplo 2

Si $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, entonces la transformación $\mathbf{x} \longmapsto A\mathbf{x}$ proyecta puntos de \mathbb{R}^3 sobre el plano x_1x_2 porque

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

Figure 4: Una transformación proyección

Transformaciones Lineales

Si A es de $m \times n$ entonces la transformación $\mathbf{x} \longmapsto A\mathbf{x}$ tiene las propiedades

$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$
 y $A(c\mathbf{u}) = cA\mathbf{u}$

para toda \mathbf{u}, \mathbf{v} en \mathbb{R}^{\times} y todos los escalares c

Propiedades

Una transformación o (mapeo) T es **lineal** si:

- 1.- $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ para todas las \mathbf{u} , \mathbf{v} en el dominio de T.
- 2.- $T(c\mathbf{u}) = cT(\mathbf{u})$ para todos los escalares c y para todos las \mathbf{u} en el dominio de T.

Cada transformación matricial es una transformación lineal; estas preservan las operaciones de suma vectorial y multiplicación escalar. Las propiedades anteriormente mencionadas conducen fácilmente a los siguientes útiles resultados

Propiedades

Si T es una transformación lineal, entonces

$$T(0) = 0$$

у

$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$$

para todos los vectores \mathbf{u} , \mathbf{v} en el dominio de T y para todos los escalares c, d.

La segunda se puede generalizar, obteniendo

$$T(c_1\mathbf{v_1} + \dots + c_p\mathbf{v_p}) = c_1T\mathbf{v_1} + \dots + c_pT\mathbf{v_p}$$

conocido también como principio de superposición.

Ejemplo 3

Dado un escalar r defina $T: \mathbb{R}^2 \to \mathbb{R}^2$ por $T(\mathbf{x}) = r(\mathbf{x})$. T se llama contracción cuando $0 \le r \le 1$ y una dilatación cuando r > 1. Sea r = 3 y demuetsre que T es una Transformación lineal.

Sea **u** y **v** en \mathbb{R}^2 y sean c, d escalares, obtenemos:

$$T(c\mathbf{u} + d\mathbf{v}) = 3(c\mathbf{u} + d\mathbf{v})$$
$$= c(3\mathbf{u}) + d(3\mathbf{v})$$
$$= cT(\mathbf{u}) + cT(\mathbf{v})$$

Así T es una transformación lineal porque satisface

$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$$

Figure 5: Transformación de Dilatación

Ejemplo 4

Defina una transformación $T: \mathbb{R}^2 \to \mathbb{R}^2$ mediante

$$T(\mathbf{x}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}$$

Encuentre las imágenes bajo T de $\mathbf{u}=\begin{bmatrix}4\\1\end{bmatrix}$, $\mathbf{v}=\begin{bmatrix}2\\3\end{bmatrix}$, $\mathbf{u}+\mathbf{v}=\begin{bmatrix}6\\4\end{bmatrix}$

Por lo tanto las Transformaciones quedarían de la siguiente manera:

$$T(\mathbf{u}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$$

$$T(\mathbf{v}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$T(\mathbf{u} + \mathbf{v}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} -4 \\ 6 \end{bmatrix}$$

Podemos observar que $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$. Es claro que T hace girar a \mathbf{u} , \mathbf{v} y $\mathbf{u} + \mathbf{v}$ en el sentido antihorario en torno al origen en un ángulo de 90 grados. (Lay, 2012)

Figure 6: Transformación de Rotación

Resumen

- Una transformación T de \mathbb{R}^n a \mathbb{R}^m es una regla que asigna a cada vector \mathbf{x} en \mathbb{R}^n un vector $T(\mathbf{x})$ en \mathbb{R}^m .
- El dominio de T es \mathbb{R}^n cuando A tiene n columnas y el codominio de T es \mathbb{R}^m cuando las columnas de A tienen m entradas.
- Los vectores que se van a transformar bajo T de \mathbb{R}^n a \mathbb{R}^m tienen n entradas y los vectores resultantes tienen m entradas.

References

Lay, D. C. (2012). Álgebra lineal y sus aplicaciones. Pearson Educación, México.