# Can we implement good quantum LDPC codes on near-term hardware?

Maxime Tremblay<sup>1</sup>, Michael Beverland<sup>2</sup>, Nicolas Delfosse<sup>2</sup>



Arute et al. Nature 574, 505-510 (2019)

#### The IBM Quantum heavy hex lattice

As of August 8, 2021, the topology of all active IBM Quantum devices will use the heavy-hex lattice, including the IBM Quantum System One's Falcon processors installed in Germany and Japan.



# Near-term quantum computers will be locally connected.



It that enough to achieve large scale fault-tolerant quantum computing?

### Tradeoffs for reliable quantum information storage in 2D systems

Sergey Bravyi, <sup>1</sup> David Poulin, <sup>2</sup> and Barbara Terhal <sup>1</sup>

<sup>1</sup>IBM Watson Research Center, Yorktown Heights NY 10598, USA

<sup>2</sup>Département de Physique, Université de Sherbrooke, Québec, Canada

(Dated: September 11, 2018)

# Long range interactions from local operations



1

# Long range interactions from local operations





1

# Long range interactions from local operations



8

#### References

- Bounds on stabilizer measurement circuits and obstructions to local implementations of quantum LDPC codes arXiv 2109.14599
- Constant-overhead quantum error correction with thin planar connectivity arXiv 2109.14609

#### **Outline**

- 1. Quick review of stabilizer codes
- 2. Graphs, graphs and more graphs
- 3. Proof of the main theorem
- 4. Circuit implementations