LIST OF DEFINITIONS

```
*1·01.
                                                                                    *13·03.
                                                                                                       x = y = z
                 p \supset q
                                                                                                       [(\mathbf{7}x)(\phi x)] \cdot \psi(\mathbf{7}x)(\phi x)
 *2·33.
                  p \lor q \lor r
                                                                                    *14·01.
                                                                                                       \mathbf{E}!(\mathbf{7}x)(\phi x)
 *3·01.
                                                                                    *14·02.
                 p \cdot q
 *3·02.
                                                                                    *14·03.
                                                                                                       [(\boldsymbol{\imath}x)(\phi x), (\boldsymbol{\imath}x)(\psi x)] \cdot f\{(\boldsymbol{\imath}x)(\phi x),
                 p \supset q \supset r
 *4·01.
                                                                                                           (\mathbf{7}x)(\psi x)
                 p \equiv q
 *4·02.
                 p \equiv q \equiv r
                                                                                    *14·04.
                                                                                                       [(\boldsymbol{\eta}x)(\psi x)] \cdot f\{(\boldsymbol{\eta}x)(\phi x), (\boldsymbol{\eta}x)(\psi x)\}
 *4·34.
                 p \cdot q \cdot r
                                                                                    *20·01.
                                                                                                       f\{\hat{z}(\psi z)\}
 *9·01.
                 \sim \{(x) \cdot \phi x\}
                                                                                                       x \epsilon (\phi!\hat{z})
                                                                                    *20·02.
 *9.011. \sim(x).\phi x
                                                                                    *20·03.
                                                                                                       Cls
 *9·02.
                  \sim \{(\mathbf{T}x) \cdot \phi x\}
                                                                                    *20·04.
                                                                                                       x, y \epsilon \alpha
 *9.021. \sim (\mathbf{T}x) \cdot \phi x
                                                                                    *20·05.
                                                                                                      x, y, z \epsilon \alpha
 *9·03.
                  (x) \phi x \lor p
                                                                                    *20·06.
                                                                                                       x \sim \epsilon \alpha
 *9·04.
                 p \lor (x) \phi x
                                                                                    *20·07.
                                                                                                       (\alpha) f\alpha
 *9.05.
                  (\mathbf{T}x) \cdot \phi x \cdot \mathbf{V} \cdot p
                                                                                    *20·071.
                                                                                                       (\mathbf{H}\alpha) \cdot f\alpha
 *9.06.
                  p \lor (\mathbf{T}x) \cdot \phi x
                                                                                    *20·072.
                                                                                                       [(\boldsymbol{\eta}\alpha)(\phi\alpha)] \cdot f(\boldsymbol{\eta}\alpha)(\phi\alpha)
 *9·07.
                  (x) \phi x \lor (\pi y) \psi y
                                                                                    *20·08.
                                                                                                       f\{\hat{\alpha}(\psi\alpha)\}
                  (\mathbf{T}y) \cdot \psi y \cdot \mathbf{V} \cdot (x) \cdot \phi x
 *9·08.
                                                                                    *20.081. \alpha \epsilon \psi! \alpha
*10·01.
                  (\mathbf{\pi}x) \cdot \phi x
                                                                                    *21·01.
                                                                                                       f\{\hat{x}\hat{y}\psi(x,y)\}
*10·02.
                  \phi x \supset_x \psi x
                                                                                    *21·02.
                                                                                                      a\{\phi!(\hat{x},\hat{y})\}b
                  \phi x \equiv_x \psi x
*10·03.
                                                                                    *21·03.
                                                                                                       Rel
                  (x,y) \cdot \phi(x,y)
*11·01.
                                                                                    *21.07.
                                                                                                       (R) fR
                  (x,y,z) \cdot \phi(x,y,z)
*11·02.
                                                                                    *21·071.
                                                                                                      (\mathbf{g}R) fR
                                                                                    *21·072.
                                                                                                      [(\mathbf{7}R)(\phi R)] \mathbf{1} f(\mathbf{7}R)(\phi R)
*11·03.
                 (\mathbf{T}x,y)\cdot\phi(x,y)
                                                                                                       f\{\hat{R}\hat{S}\psi(R,S)\}
*11·04.
                 (\mathbf{T}x,y,z) \cdot \phi(x,y,z)
                                                                                    *21·08.
                                                                                   *21.081. P\{\phi!(\hat{R},\hat{S})\}Q
                  \phi(x,y) \supset_{x,y} \psi(x,y)
*11·05.
                                                                                    *21.082. f\{\hat{R}(\psi R)\}
                \phi(x,y) = \equiv_{x,y} \psi(x,y)
*11.06.
*13·01.
                                                                                    *21.083. R \epsilon \phi! \hat{R}
                  x = y
*13·02.
                                                                                    *22·01.
                                                                                                       \alpha \subset \beta
                  x \neq y
                                                                                    *22·02.
                                                                                                       \alpha \cap \beta
```

- *22.03. $\alpha \cup \beta$
- *22.04. $-\alpha$
- *22.05. $\alpha \beta$
- *22.53. $\alpha \cap \beta \cap \gamma$
- *22.71. $\alpha \cup \beta \cup \gamma$
- *23.01. R **⊂** S
- *23·02. R ∴ S
- *23.03. R S
- *****23**·**04. **∸***R*
- *****23**·**05. *R* **∸** *S*
- *23.53. R \(\disp S \) \(\disp T\)
- *23.71. R S T
- *24.01. V
- *24·02. \(\Lambda\)
- *24.03. $\mathbf{3!} \alpha$
- *25.01. **V**
- *25.02. **\hat{\Lambda}**
- *25.03. **†!** R
- *30.01. R'y
- *30.02. R'S'y
- *31.01. Cnv
- *31.02. **\vec{P}**
- *32.01. \overrightarrow{R}
- *32.02. \overleftarrow{R}
- *32.03. sg
- *32.04. gs
- *33·01. D
- *33.02. **U**
- *33·03. C
- *33.04. F
- *00 OT. I
- *34.01. R | S
- *34.02. R^2

- *34.03. R^3
- *35.01. $\alpha \mid R$
- *35.02. $R \upharpoonright \beta$
- *35.03. $\alpha \upharpoonright R \upharpoonright \beta$
- *35.04. $\alpha \uparrow \beta$
- *35.05. $R'x \uparrow \beta$
- *35.24. $\alpha \mid R \mid S$
- *35·25. $S \mid R \mid \alpha$
- *****36**·**01. *P* ↾ α
- *37.01. R"\beta
- *37.02. R_{ϵ}
- *37.03. \breve{R}_{ϵ}
- *37.04. $R^{66}\kappa$
- *37.05. Ε!! R"β
- *38.01. x q
- *****38**·**02. ♀*y*
- *38.03. $\alpha \circ y$
- *****40**·**01. *p***'**κ
- *40.02. $s^{6}\kappa$
- *41.01. \dot{p} $\dot{\lambda}$
- *41.02. $\dot{s}^{\iota}\lambda$
- *43.01. R || S
- *50.01. I
- *50·02. J
- *****51**·**01. ℓ
- *****52**·**01. 1
- *****54**·**01. 0
- *****54**·**02. 2
- *55.01. $x \downarrow y$
- *55.02. $R^4x \downarrow y$
- *56.01. **2**
- *56.02. 2_r

- *56.03. 0_r
- *60.01. Cl
- *60.02. Cl ex
- *60.03. Cls²
- *60.04. Cls³
- *61.01. R1
- *61.02. Rl ex
- *61.03. Rel²
- *61.04. Rel³
- *63.01. *t***x*
- *63.011. t^{1}
- *63.02. t_0 ' α
- *63.03. t_1 ' κ
- *63.04. $t^{26}\kappa$
- *63.041. t^{3} κ
- *63.05. t_2 κ
- *63.051. t_3 ' κ
- *64.01. t_{00} ' α
- *64.011. t^{11} 6.
- *64.012. t^{12}
- *64.013. t^{21} 4.
- *64.014. t^{22} 6x
- *64.02. t_{01} ' α
- *64.021. t_{10} ' α
- *64.022. t_{11} α
- *64.03. $t_0^{16} \alpha$
- *64.031. $t_1^{16}\alpha$
- *64.04. ${}^{1}t_{0}$ ${}^{6}\alpha$
- *64.041. ${}^{1}t_{1}$ 6 α
- *65.01. α_x
- *65.02. $\alpha(x)$

- *65.03. R_x
- *65.04. R(x)
- *65·1. $R_{(x,y)}$
- *65·11. $R(x_y)$
- *65·12. R(x,y)
- *70.01. $\alpha \rightarrow \beta$
- *73.01. $\alpha \overline{\text{sm}} \beta$
- *73.02. sm
- *80.01. P_{Δ}
- *84.01. Cls² excl
- *84.02. Clexcl ' γ
- *84.03. Cls ex² excl
- *85.5. $P \downarrow y$
- *88.01. Rel Mult
- *88.02. Cls² Mult
- *88.03. Mult ax
- *90.01. R_*
- *90.02. \ddot{R}_*
- *91.01. $R_{\rm st}$
- *91.02. R_{ts}
- *91.03. Pot'R
- *****91**·**04. Potid**'***R*
- *91.05. R_{po}
- *93·01. B
- *93.02. min_P
- *93.021. max_P
- *93.03. gen'P
- *95.01. *P***Q* **D**ft [*95]
- *96.01. I_R 'x Dft [*96]
- *96.02. J_R 'x Dft [*96]
- *97.01. $\overset{\leftrightarrow}{R}$ 'x
- *100.01. Nc

* 100 · 02.	NC	* 112 · 01.	Σ ϵ
* 102 · 01.	$\mathrm{NC}^eta(lpha)$	* 112 · 02.	Σ Nc' κ
*103.01.	N_0c^*lpha	* 113 · 02.	$\beta \times \alpha$
* 103 · 02.	N_0C	* 113 · 03.	$\mu \times_{\rm c} \nu$
*104.01.	$N^1c^{\epsilon}\alpha$	* 113 · 04.	Nc' $\beta \times_{\rm c} \mu$
*104.011.	N^2 c' α	* 113 · 05.	$\mu \times_{\rm c} {\rm Nc}$
* 104 · 02.	N^1C	* 113 · 511.	$\alpha \times \beta \times \gamma$
* 104 · 021.	N^2C	* 113 · 541.	$\mu \times_{\rm c} \nu \times_{\rm c} \varpi$
* 104 · 03.	$\mu^{(1)}$	* 114 · 01.	ΠNc' $κ$
* 104 · 031.	$\mu^{(2)}$	* 115 · 01.	$Prod^{\boldsymbol{c}}\kappa$
* 105 · 01.	$N_1c^*\alpha$	* 115 · 02.	Cls ³ arithm
* 105 · 011.	N_2 c' α	* 116 · 01.	$\alpha \exp \beta$
* 105 · 02.	N_1C	* 116 · 02.	$\mu^{ u}$
* 105 · 021.	N_2C	* 116 · 03.	$(\mathrm{Nc} {}^{\scriptscriptstyle ullet} lpha)^ u$
* 105 · 03.	$\mu_{(1)}$	* 116 · 04.	$\mu^{ ext{Nc'}eta}$
* 105 · 031.	$\mu_{(2)}$	* 117 · 01.	$\mu > \nu$
* 106 · 01.	$N_{00}c$ 4 α	* 117 · 02.	$\mu > Nc^{\epsilon}\alpha$
* 106 · 011.	N^{11} c' α	* 117 · 03.	$Nc^{\bullet}\alpha > \nu$
* 106 · 012.	$N_{01}c$ 4 α	* 117 · 04.	$\mu < \nu$
* 106 · 02.	$N_0^{-1}c^{\epsilon}\alpha$	* 117 · 05.	$\mu \geqslant \nu$
* 106 · 021.	$^{1}\mathrm{N}_{0}\mathrm{c}^{\centerdot}lpha$	* 117 · 06.	$\mu \leqslant \nu$
* 106 · 03.	$N_{00}C$	* 119 · 01.	$\gamma{\rm c} \nu$
* 106 · 04.	$\mu_{(00)}$	* 119 · 02.	$Nc^{\bullet}\alpha{c} \nu$
* 106 · 041.	$\mu^{(11)}$	* 119 · 03.	γ ${\rm c}$ Nc' β
* 110 · 01.	$\alpha + \beta$	* 120 · 01.	NC induct
* 110 · 02.	$\mu +_{c} \nu$	* 120 · 011.	$N_{\xi}C$ induct
* 110 · 03.	$Nc^{\epsilon}\alpha +_{c} \mu$	* 120 · 02.	Cls induct
* 110 · 04.	μ + _c Nc ⁴ α	* 120 · 021.	Cls_{ε} induct
* 110 · 0561.	$\mu +_{\rm c} \nu +_{\rm c} \varpi$	* 120 · 03.	Infin ax
* 111 · 01.	$\kappa \overline{\mathrm{sm}} \overline{\mathrm{sm}} \lambda$	* 120 · 04.	Infin $ax(x)$
* 111 · 02.	$Crp(S)$ ' β	* 120 · 43.	spec'β
* 111 · 03.	sm sm	* 121 · 01.	P(x-y)

* 121 · 011.	$P(x \rightarrow y)$	* 161 · 213.	$x \leftrightarrow y \leftrightarrow P$
* 121 · 012.	$P(x \vdash y)$	* 162 · 01.	Σ ' P
* 121 · 013.	$P(x \mapsto y)$	* 163 · 01.	Rel ² excl
* 121 · 02.	$P_{ u}$	* 164 · 01.	$P \ \overline{smor} \overline{smor} Q$
* 121 · 03.	finid'P	* 164 · 02.	smor smor
* 121 · 031.	fin'P	* 166 · 01.	$Q \times P$
* 121 · 04.	$ u_P$	* 166 · 421.	$P\times Q\times R$
* 122 · 01.	Prog	*170·01.	$P_{ m cl}$
* 123 · 01.	\aleph_0	*170·02.	$P_{ m lc}$
* 123 · 02.	N Dft [*123—4]	*171·01.	P_{df}
* 124 · 01.	Cls refl	*171·02.	P_{fd}
* 124 · 02.	NC refl	*172·01.	Π ' P
* 124 · 021.	$Nc^{\epsilon} \rho \epsilon NC refl$	*173·01.	$\operatorname{Prod}^{\boldsymbol{\epsilon}} P$
* 124 · 03.	NC mult	*174·01.	Rel ³ arithm
* 126 · 01.	NC ind	*176·01.	$P \exp Q$
*150·01.	S; Q	*176·02.	P^Q
*150·02.	$S \dagger Q$	* 180 · 01.	P+Q
*150·03.	Q otin y	* 180 · 02.	$\mu \dotplus \nu$
* 150 · 04.	R $^{\epsilon}S$ $^{\epsilon}Q$	* 180 · 03.	$Nr'P + \nu$
*150·05.	R ; S ; Q	* 180 · 04.	$\mu \dotplus Nr'Q$
* 151 · 01.	$P \overline{\text{smor}} Q$	* 180 · 561.	$\mu \dotplus \nu \dotplus \varpi$
* 151 · 02.	smor	* 181 · 01.	$P \xrightarrow{\cdot} x$
* 152 · 01.	Nr	* 181 · 011.	$x \leftrightarrow P$
* 152 · 02.	NR	* 181 · 02.	$\mu \dotplus \mathbf{i}$
* 153 · 01.	1_s	* 181 · 021.	$\dot{1} \dotplus \mu$
* 154 · 01.	$\operatorname{NR}^{\gamma}(X)$	* 181 · 03.	Nr' $P \dotplus \dot{1}$
*155·01.	N_0 r' P	* 181 · 031.	$\dot{1}\dotplus Nr'P$
*155·02.	N_0R	* 181 · 04.	$\dot{1}\dotplus\dot{1}$
* 160 · 01.	$P \updownarrow Q$	*181·561.	$\mu \dotplus \dot{1} \dotplus \dot{1}$
* 161 · 01.	$P \rightarrow x$	*181·571.	$\dot{1} \dotplus \dot{1} \dotplus \mu$
* 161 · 02.	$x \leftrightarrow P$	*182·01.	Ŷ
* 161 · 212.	$P \rightarrow x \rightarrow y$	*183·01.	Σ Nr'P

* 184 · 01.	$\mu \stackrel{.}{\times} \nu$	* 231 · 01.	$Par{R}_{ m sc}Q$
* 184 · 02.	$Nr'P \times \nu$	* 231 · 02.	$Par{R}_{os}Q$
* 184 · 03.	$\mu \times Nr'Q$	* 232 · 01.	$(P\bar{R}Q)_{\mathrm{sc}}$ ' α
* 184 · 32.	$\mu \stackrel{.}{\times} \nu \stackrel{.}{\times} \varpi$	* 232 · 02.	$(P\bar{R}Q)_{os}$ α
* 185 · 01.	ПNr'P	* 233 · 01.	$(P\bar{R}Q)_{ m lmx}$
* 186 · 01.	$\mu \exp_r \nu$	* 233 · 02.	R(PQ)
* 186 · 02.	$(Nr^{\bullet}P) \exp_r \nu$	* 234 · 01.	$\mathrm{sc}(P,Q)$ ' R
* 186 · 03.	$\mu \exp_r (Nr'Q)$	* 234 · 02.	os(P,Q)' R
* 201 · 01.	trans	* 234 · 03.	$\operatorname{ct}(PQ)$ 'R
* 202 · 01.	connex	* 234 · 04.	contin(PQ) `R
* 204 · 01.	Ser	* 234 · 05.	P contin Q
* 206 · 01.	seq_P	*250·01.	Bord
*206·02.	prec_P	*250·02.	Ω
* 207 · 01.	lt_P	* 251 · 01.	NO
*207·02.	tl_P	* 254 · 01.	less
*207·03.	$limax_P$	* 254 · 02.	$P_{ m sm}$
* 207 · 04.	\lim_{P}	* 255 · 01.	<
* 208 · 01.	cror'P	*255·02.	≽
* 211 · 01.	sect'P	*255·03.	N_0O
* 212 · 01.	ς' P	* 255 · 04.	€
* 212 · 02.	sym'P	* 255 · 05.	≽
* 213 · 01.	P_{ς}	*255·06.	$\mu \lessdot Nr'P$
* 214 · 01.	Ded	* 255 · 07.	N r' P < μ
* 214 · 02.	semi Ded	* 256 · 01.	M Dft [*256]
* 215 · 01.	str ʻ P	* 256 · 02.	N Dft [*256]
* 216 · 01.	δ_P	* 257 · 01.	(R*Q)' x
* 216 · 02.	dense'P	* 257 · 02.	Q_{Rx}
* 216 · 03.	closed P	* 259 · 01.	A Dft [*256]
* 216 · 04.	perf*P	* 259 · 02.	A_W Dft [*256]
* 216 · 05.	∇ ^P	* 259 · 03.	W_A
* 230 · 01.	$Rar{Q}_{ extsf{cn}}lpha$	* 260 · 01.	$P_{ m fn}$
* 230 · 02.	$Q_{ m cn}$	* 261 · 01.	Ser infin

```
\Omega infin
*261.02.
                                                                           T_P
                                                                                           Dft [*276]
                                                            *276·04.
               Ser fin
                                                                           P_{\mathsf{tl}} \kappa
*261·03.
                                                            *276·05.
                                                                                           Dft [*276]
*261.04.
               \Omega fin
                                                            *300·01.
                                                                           U
*261·05.
               \Omega induct
                                                            *300.02.
                                                                           Rel num
               NO fin
                                                                           Rel num id
*262·01.
                                                            *300·03.
*262·02.
              NO infin
                                                            *301·01.
                                                                                           Dft [*301]
                                                                           R_p
*262·03.
                                                            *301.02.
                                                                           num(R)
                                                                                          Dft [*301]
               \mu_r
*263·01.
                                                            *301.03.
                                                                           R^{\sigma}
               \omega
               N
*263·02.
                       Dft [*263]
                                                            *302·01.
                                                                           Prm
                                                                           (\rho, \sigma) \operatorname{Prm}_{\tau} (\mu, \nu)
*264·01.
               P_{\mathsf{pr}}
                      Dft [*263]
                                                            *302·02.
              \dot{\mathbf{1}} \dot{\mathbf{x}} \alpha
                                                                           (\rho, \sigma) Prm (\mu, \nu)
*264·429.
                                                            *302·03.
*265·01.
                                                            *302·04.
                                                                           hcf(\mu, \nu)
               oldsymbol{\omega}_1
*265·02.
               \aleph_1
                                                            *302·05.
                                                                           lcm(\mu, \nu)
*265·03.
                                                            *303·01.
                                                                           \mu \mid \nu
               oldsymbol{\omega}_2
*265·04.
               \aleph_2
                                                            *303·02.
                                                                           0_q
*265·05.
              M
                       Dft [*265]
                                                            *303·03.
                                                                           \infty_q
*265·06.
               N
                       Dft [*265]
                                                            *303·04.
                                                                           Rat
*270·01.
               Comp
                                                                           Rat def
                                                            *303.05.
                                                                           X <_r Y
*271·01.
               med
                                                            *304·01.
*272·01.
                                                                           H
               T_{PQ}
                                                            *304·02.
*273·01.
                                                            *304·03.
                                                                           H'
               \eta
                                                                          X \times_s Y
              R_{SPO}'T
*273·02.
                               Dft [*273]
                                                            *305·01.
              (RS)_{PQ}
                                                                           X +_{s} Y
*273·03.
                               Dft [*273]
                                                            *306·01.
*273·04.
               T_{RSPQ}
                               Dft [*273]
                                                            *307·01.
                                                                           Rat_n
*274·01.
               P_{\eta}
                                                            *307·011.
                                                                           Rat_a
*274·02.
              P_m'\kappa
                           Dft [*274]
                                                            *307·02.
                                                                           <_n
*274·03.
              m{\check{T}}_P'\kappa
                            Dft [*274]
                                                            *307·021.
                                                                           >_n
               M_P \kappa
*274·04.
                            Dft [*274]
                                                            *307·03.
                                                                           \leq_g
*275·01.
               \theta
                                                            *307·031.
                                                                           >_q
*276·01.
               P_{\theta}
                                                            *307·04.
                                                                           H_n
*276·02.
              \boldsymbol{A}
                            Dft [*276]
                                                            *307·05.
                                                                           H_a
                                                                           X -_{s} Y
              P_m'\lambda
*276·03.
                            Dft [*276]
                                                            *308·01.
```

* 308 · 02.	$X +_g Y$	* 334 · 01.	$\operatorname{trs}^{ullet} \kappa$
* 309 · 01.	$X \times_g Y$	* 334 · 02.	FM trs
* 310 · 01.	Θ	* 334 · 03.	FM connex
* 310 · 011.	Θ'	* 334 · 04.	FM sr
* 310 · 02.	Θ_n	* 334 · 05.	FM asym
* 310 · 021.	Θ_n'	* 335 · 01.	$init$ ⁴ κ
* 310 · 03.	Θ_g	* 335 · 02.	FM init
* 311 · 01.	$\operatorname{concord}(\mu, \nu, \ldots)$	* 336 · 01.	V_{κ}
* 311 · 02.	$\mu +_p \nu$	* 336 · 011.	U_{κ}
* 312 · 01.	$\mup \nu$	* 336 · 02.	A_a
* 312 · 02.	$\mu +_a \nu$	* 351 · 01.	FM subm
* 313 · 01.	$\mu \times_a \nu$	* 352 · 01.	T_{κ}
* 314 · 01.	$X +_r Y$	* 352 · 02.	$T_{\kappa\iota}$
* 314 · 02.	$X \times_r Y$	* 353 · 01.	FM rt
* 314 · 03.	ď	* 353 · 02.	FM cx
* 314 · 04.	$M +_{\sigma} N$	* 353 · 03.	FM rt cx
* 314 · 05.	$M \times_{\sigma} N$	* 354 · 01.	κ_g
* 330 · 01.	$\operatorname{cr}^{\boldsymbol{\cdot}} \alpha$	* 354 · 02.	cx_a ' λ
* 330 · 02.	Abel	* 354 · 03.	FM grp
* 330 · 03.	fm ' α	* 356 · 01.	X_{κ}
* 330 · 04.	FM	* 370 · 01.	FM cycl
* 330 · 05.	κ_ι	* 370 · 02.	K_{κ}
* 331 · 01.	conx ⁴ κ	* 370 · 03.	I_{κ}
* 331 · 02.	FM conx	* 371 · 01.	W_{κ}
* 332 · 01.	$\operatorname{rep}_{\kappa} P$	* 372 · 01.	$ u_{\kappa}$
* 333 · 01.	κ_{∂}	* 373 · 01.	$M_{\nu\kappa}$ Dft [*373—5]
* 333 · 011.	$\kappa_{\iota\partial}$	* 373 · 02.	Prime
* 333 · 02.	FM ap	* 373 · 03.	(S, ν) Dft [*373—5]
* 333 · 03.	FM ap conx	* 375 · 01.	$(\mu \mid \nu)_{\kappa}$