

iGEM 2012

The bacterial Eyespot

Bordeaux Team (France)

Embassy of France in the United States Office for Science and Technology

The 2012 Bordeaux Team

Cécile Ouéré

Plan

- Introduction: The idea
- Chapter 1: The project
- Chapter 2: The simulation
- Chapter 3: The labwork
- Conclusion: The prospect

INTRODUCTION THE IDEA

Where our project came from?

When I went to school, they asked me what I wanted to be when I grew up. I wrote down 'happy'. They told me I didn't understand the assignment, and I told them they didn't understand life. "John Lennon

Introduction

Chapter 1
Chapter 2
Chapter 3
Conclusion

Introduction

Introduction

Chapter 1
Chapter 2
Chapter 3
Conclusion

Introduction

Zebra (Equus quagga)

Various pattern can be observed in nature

Leopard (Panthera pardus)

Introduction Chapter 1 Chapter 2

Chapter 3

Conclusion

Introduction

Inachis io

Eyespots can be observed on some butterflies wings

The idea

A bacteria strain drawing concentric circles on a Petri dish

CHAPTER 1 THE PROJECT

How to make it real?

"A man who is no longer able to marvel at practically stopped living" Albert Einstein

The project

- Bacterial Lawn (One enginereed strain)
- 3 colored states (Operon-based differenciation)
- Quorum-sensing signalisation

Operon-based cell Differenciation

3 operons with:

A visible phenotype (LacZ/mCherry/GFP)

Operon-based cell Differenciation

3 operons with:

A quorum-sensing activated Promoter

Operon-based cell Differenciation

3 operons with:

A quorum-sensing signalling molecule producer

Cell-to-cell communication

Cell-to-cell communication

Cell-to-cell communication

Cell-to-cell communication

Cell-to-cell communication

 The necessity to use repressors to avoid signalisation conflict

Operon-based cell Differenciation

3 operons with:

- A repressor of the 2 other operons
- Two repressing sites in the promoter

Regulation within the bacteria Operon I inhibits operons II and III

Operon I activates operon II in the neighboring bacteria

CHAPTER 2 THE SIMULATION

What can computer teach us?

"They didn't know it was impossible, so they did it." Mark Twain

The simulation

Models our genetic regulatory network Includes eventual promoter leakage, mutation, etc... Python programming language

The simulation

Everything is fine

Operon I not signaling

The simulation

Everything is fine

The simulation

Everything is fine

Operon III not signaling And promoter leakage

CHAPTER 3 THE LABWORK

Where are we now?

"Science, my lad, is made up of mistakes, but they are mistakes which it is useful to make, because they lead little by little to the truth" Jules Verne, Journey to the Center of the Earth

Assembly

Operon I: 3 assemblies left

Assembly

Operon II complete

Assembly

• Operon III: 2 assemblies left

Assembly

Operon IV: 3 assemblies left

Assembly

What is left?10/20 assemblies completed.

Assembly

- Moving to a simpler system:
- 2 colored state (3 operons)

CONCLUSION THE PROSPECT

What could came out of this project?

"You should aim higher with your fantasies" Lem, Veridian Dynamics

The prospect

Constitutive expression driven by biobrick J23100 aka « Pink Promoter »

Multiple Quorum-sensing Responsive bacteria

The prospect

Naive state

The prospect

E. Glowli Project (2010 Cambridge)

The prospect

(2010 Cambridge) Eau d'E.coli Project (2006 MIT)

(2010 Cambridge)

The prospect

The prospect

E. Glowli Project (2010 Cambridge)

The prospect

1X signal

If number of ring/circles dependant of the amount of initial signal:

Easy-to-read visible readout for chemical input

The prospect

If number of ring/circles dependant of the amount of initial signal:

Easy-to-read visible readout for chemical input

The prospect

If number of ring/circles dependant of the amount of initial signal:

Easy-to-read visible readout for chemical input

The prospect

Coupling with other iGEM project:
Arsenic biosensor project (2006 Edinburgh)

Image source:

http://www.thelensflare.com/imgs/eyespot-butterfly_47484.html http://artistjerrybennett.deviantart.com/art/Robot-and-Butterfly-

215933149

http://en.wikipedia.org/wiki/File:Zebra in Mikumi.JPG

http://en.wikipedia.org/wiki/File:Slleo1.jpg

http://fr.wikipedia.org/wiki/Fichier:Inachis_io_LC0131.jpg

http://fr.wikipedia.org/wiki/Fichier:Junonia_coeniaPCCA20051015-

1147B.jpg

Institut Européen de Chimie et Biologie

Embassy of France in the United States Office for Science and Technology

The sponsors

Thank you for your time!

The world is my country, science is my religion.' – Christiaan Huygens, Dutch Physicist (1629-1695)

