

Indirect Volume Visualization

Scientific Visualization – Summer Semester 2021

Jun.-Prof. Dr. Michael Krone

Contents

- Contour tracing
- Cuberille approach
- Marching cubes
- Marching tetrahedra
- Dividing cubes
- Optimization (Discretized MC, octree-based, range query)

Focus: Second step of visualization pipeline

Overview – Volume Visualization

Isosurface Rendering

- Via direct volume rendering / ray casting
 - March along ray (front-to-back) until and check the value at each sample point and compare it to the value of the previous sample point

```
if (value < isovalue): do nothing</pre>
if (value ≥ isovalue):
   Check if (previous value < isovalue): draw surface
```

- → Same procedure the other way round (i.e., leaving the isosurface)
- → Linearly interpolate exact location of isosurface between samples
- Surface normal at isosurface via central differences
- Pros:
 - High quality (if step size is sufficiently small)
- Cons:
 - · View-dependent, costly per-pixel ray marching, no surface mesh for further computations

= above isovalue

= below isovalue

Cuberille Approach

- Cuberille (opaque cubes) approach [Herman 1979]
 - Binarization of the volume with respect to the isovalue
 - Find all boundary front-faces
 - All faces where the normal points towards the viewpoint $(N \bullet V > 0)$ and where normal points outwards the cell
 - Render these faces as shaded polygons (cubes)
- "Voxel" point of view: **NO** interpolation within cells

Contour Tracing

- Find isosurfaces from 2D contours
 - Segmentation: find closed contours in 2D slices (polylines)
 - Labeling: identify different structures (isovalue of higher-order characteristics)
 - Tracing: connect contours of the same object from adjacent slices via triangles
 - Rendering: display triangles
- Choose topological or geometrical reconstruction
- Problems:
 - Sometimes there are many contours in each slice or there is a high variation between slices
 - → Tracing (assignment) becomes very difficult

 Better approximation of the "real" isosurface by the Marching-Cubes (MC) algorithm

[Lorensen, Cline 1987]

- 3D analog to Marching Squares
- Works on the original data
- Approximates the surface by a triangle mesh
- Surface is found by linear interpolation along cell edges
- Uses gradients (e.g., central diff.) as the normal vectors of the isosurface
- Efficient computation by means of lookup tables
- **The** standard geometry-based isosurface extraction algorithm
 - → more than 17,000 citations!

I'm the Marching Cube!

- The core MC algorithm
 - Cell consists of 8 node values: $(i+[0,1], j+[0,1], k+[0,1]) \rightarrow$ cube
 - 1. Consider a cell
 - 2. Classify each vertex as inside or outside
 - 3. Build an index
 - 4. Get edge list from table[index]
 - 5. Interpolate the edge location
 - 6. Compute gradients (optional)
 - 7. Consider ambiguous cases (optional)
 - 8. 8. Go to next cell

Step 1: Consider a hexahedral cell with eight node values

- Step 2: Classify each node according to whether it lies
 - Outside the surface (value > isosurface value)
 - Inside the surface (value ≤ isosurface value)

Step 3: Use the binary labeling of each node to create an index

- Step 4: For a given index, access an array storing a list of edges
 - All 256 cases can be derived from 1+14=15 base cases due to symmetries
 - Lookup table (LUT) stores all 256 cases
 - Each case creates at most 5 triangles (dual cases for inverted signs)

- Step 4 cont.: Get triangle list from table
 - Example for index = 10110001

```
triangle count = 4
```

```
triangle 1 = e4,e7,e11
triangle 2 = e1, e7, e4
triangle 3 = e1, e6, e7
triangle 4 = e1, e10, e6
```


- Face normals encoded implicitly by order of vertices
- Normal points to higher (or lower) values of the field -> inside/outside

 Step 5: For each triangle edge, find the vertex locations along the cell edges using linear interpolation of the node values

$$x = i + (c - v[i]) / (v[i + 1] - v[i])$$

if all edge lengths = 1

$$x = [(v[i+1]-c)x[i] + (c-v[i])x[i+1]] / (v[i+1]-v[i])$$
 of

otherwise

- Step 6: Calculate the normal at each node (central differences)
 - $G_x = V_{x+1,y,z} V_{x-1,y,z}$ $G_y = V_{x,y+1,z} - V_{x,y-1,z}$ $G_z = V_{x,y,z+1} - V_{x,y,z-1}$
 - Use linear interpolation and normalization to compute the normal at the vertex
 - **Alternative** (OpenGL/WebGL): compute central differences at vertex position (3D texture lookup)

- Step 7: Consider ambiguous cases
 - Ambiguous cases: 3, 6, 7, 10, 12, 13
 - Adjacent vertices: different states
 - Diagonal vertices: same state
 - Resolution: choose one case (the right one!)

- Step 7 *cont*.: Consider ambiguous cases
- Asymptotic Decider [Nielson, Hamann 1991]
 - Assume bilinear interpolation within a face
 - Hence face-intersection of isosurface is a hyperbola
 - Compute the point p where the asymptotes meet
 - Sign of S(p) decides the connectivity (\rightarrow see Marching Squares)

- Summary
 - 256 cases
 - Reduce to 15 cases by symmetry
 - Ambiguity in cases 3, 6, 7, 10, 12, 13
 - Causes holes if arbitrary choices are made
- Up to 5 triangles per cube
- Several isosurfaces
 - Run MC several times with different isovalues
 - Semi-transparent rendering in OpenGL/WebGL requires spatial sorting

(a) Volume data

(c) Polygonal Apploximation

Examples

2 Isosurfaces

3 Isosurfaces

Examples

Marching Tetrahedra

- Primarily used for unstructured grids
 - May split other cell types into tetrahedra
 - → introduces (usually small) error
- Process each tetrahedron similarly to MC algorithm
- Two different cases:
 - One (–) and three (+) (or vice versa)
 - The surface is defined by one triangle
 - Two (–) and two (+)
 - Sectional surface given by a quadrilateral
 - Split quad into two triangles using the shorter diagonal

Marching Tetrahedra

- Properties
 - Fewer cases: 3 instead of 15
 - Linear interpolation within tetrahedra
 - No problems with consistency between adjacent cells
 - Vertex gradient via weighted cell gradients (constant)
 - Number of generated triangles might increase considerably compared to the MC algorithm due to splitting into tetrahedra
 - But, several improvements exist:
 - Hierarchical surface reconstruction
 - View-dependent surface reconstruction
 - Mesh decimation

Dividing Cubes [Cline, Lorensen 1988]

- Uniform grids
- Basic idea
 - Create "surface points" instead of triangles
 - Associate surface normal with each surface element
 - Surface points (when shaded and rendered) are pixel-sized
 - Subdivide cells as necessary
 - View-dependent technique

Dividing Cubes

- Algorithm:
 - Choose a cube
 - Classify, whether an isosurface is passing through it or not
 - if (surface is passing through)
 - Recursively subdivide cube until pixel size
 - Compute normal vectors at each node (e.g., via central differences)
 - Render shaded points (cube centers) with interpolated normal

Dividing Cubes

- Properties
 - View-dependent load balancing
 - Better surface approximation due to interpolation within cells
 - Only good for rendering → no triangle mesh computation
 - Since no surface representation is generated, it does not allow for further computations on the surface
 - Eliminates scan-conversion step (generation of pixels from triangles)
 - Point-cloud rendering of randomly ordered points
 - No topology

- Discretized Marching Cubes (DiscMC) [Montani et al. 1994]
- Accelerate standard MC
- Mixture in-between:
 - Cuberille approach (constant scalar value for each voxel)
 - Marching Cubes (trilinear interpolation in cells)
- Approximation of MC: discrete positions for vertices of isosurface
 - 13 different vertex positions
 - 12 edge-midpoints + 1 centroid

• Finite set of planes on which faces can lie

- Classification of a facet by
 - Plane incidence and
 - shape
- Sign of incidence determines orientation of facet
- Classification of isosurface fragment (facet set)
 - Indices to incidences and shapes

- Lookup table
 - Based on MC LUT
 - Simple reorganization
 - Indices as above
- Vertex positions of facet determined by vertex configuration of cell
- No linear interpolation needed

Algorithm:

- Analogously to MC: traversing the grid
- Normal vectors based on gradients (same as MC)
- Optional postprocessing: merge facets and edges (i.e., adjacent planar triangles)

Advantages:

- Simple classification of facet sets
- Many coplanar facets due to small number of plane incidences
 significantly reduces number of triangles after merge
- No interpolation needed, i.e., only integer arithmetic
- Still quite good visual results (in particular after shading due to gradient-based normals)

Octree-based Isosurface Extraction

- Acceleration of MC (and similar methods)
- Domain search space query

Quadtree

- Octree-based approach [Wilhelms, van Gelder 1992]
 - Spatial hierarchy on grid (tree)
 - Store minimum and maximum scalar values for all children with each node
 - While traversing the octree, skip parts of the tree that cannot contain the specified isovalue (space query)

Octree-based Isosurface Extraction

- What data structure for octree?
- Advantages of full octree:
 - Simple array-like structure and organization
 - No pointers needed
- Number of nodes in full octree:

$$n_{\text{nodes}} = \sum_{i=0}^{\lceil \log_2 s \rceil - 1} 8^i = \frac{8^{\lceil \log_2 s \rceil} - 1}{8 - 1} \approx \frac{s^3 - 1}{7} \approx 0.14 \, n_{\text{data points}}$$

s: resolution in each dimension

 \rightarrow optimal ratio is $n_{\text{nodes}} / n_{\text{data points}} \approx 0.14$

Octree-based Isosurface Extraction

- Problem with memory consumption of complete octree:
 - Ideal: grid size of $2^n \times 2^n \times 2^n$
 - Usually different resolutions that are not powers of two

Example:

- Data set: 320 × 320 × 40
- 4M data points (4,096,000 voxels)
- Full octree:

$$1 + 2^3 + 4^3 + ... + 256^3 = 20M$$
 nodes

2 values per element:
 minimum and maximum values

GPU Implementation of Marching Cubes

- Geometry Shader
 - GPU shader stage between vertex and fragment shader than can create new triangles → not (yet) available in WebGL
 - Input: primitives (points, trianges,...)
 - For each cube $(2\times2\times2 \text{ voxel})$: geometry shader reads 8 voxel values at corners, classifies them and generates the MC triangles (0-5) according to LUT
- Example: Nvidia Demo "Cascades" (2007)
 - Procedurally generated 3D terrain rendered via Geometry Shader Marching Cubes
 - Showcase for Geforce GTX 8000 series

https://developer.nvidia.com/gpugems/gpugems3/part-igeometry/chapter-1-generating-complex-procedural-terrains-using-gpu

