

密级状态: 绝密() 秘密() 内部资料() 公开(√)

RK_ISP10_Camera_User_Manual

s 文件状态:	文件标识:	_ ~
[] 草稿 [] 正式发布	当前版本:	2.1
[✓] 正在修改	作 者:	邓达龙、钟以崇、欧阳亚凤、张云龙、叶志明、黄春成
	完成日期:	2017-10-24

福州瑞芯微电子股份有限公司
Fuzhou Rockchips Electronics Co., Ltd (版本所有,翻版必究)

历史版本

版本	日期	描述	作者	审核
V1.0	2015-3-17	建立文档,主要介绍	张云龙	
		RK3288/RK3368Camera 的注意事项		
V2. 0	2016-8-19	添加 RK3399 Camera 的注意事项	黄春成	
V2. 1	2017-10-24	添加 camera 驱动移植指导	张云龙	
			/	
			۸. ۱۱	7
		X		

目录

1.	文档	省适用平台	5
	1.1.	平台说明	5
	1)	RK3288	
	ź)	RK3368	5
	<i>3</i>)	RK3399	
2.	硬件	+说明	5
	2.1.	DVP SOC CAMERA SENSOR	/\
	2.1. 1)	RK3288	5
	2)	RK3368	
	3)	RK3399	
	2.2.	MIPI CAMERA SENSOR	5
	2.3.	2 个 CAMERA SENSOR 同时工作的限制说明	
	1)	RK3288、RK3368	
	-, 2)	RK3399	
	2.4.	RAW CAMERA SENSOR 选型说明	6
3.	\	· 目录说明	-
Э.	人口	「日本机力	
4.	版本	~ 3 从 0 口	-
	4. 1.	版本获取方式	7
5.	如何	版本获取方式	8
	5. 1.	SENSOR 注册信息	g
	5. 2.	VCM 注册信息	12
	5. 3.	软件功能配置信息	
	5. 4.	- TI	
	5. 5.	CAM_BOARD.XML 支持多个 SENSOR 配置	
	5. 6.	如何测试 CTS_VERIFY FOV	
	5. 7.	如何解决开启 CAMERA 最初几帧的偏色问题	
	5. 8.	CAMERA 插值说明	
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
6.		SENSOR 支持列表	
7.	SENS	SOR 驱动移植指导	20
	7.1 基	本概念	20
	- 1/	1 MIPI	
		2 Lane	
		用数据类型	
		1 IsiRegisterFlags_t	
		2 IsiRegDescription_t	
		3 IsiSensorHandle_t	
		4 IsiSensorConfig_t	
		5 IsiAfpsInfo_t	
		参考 + t- m	
		直步骤	
		<i>协目录结构</i>	
		<i>5工作</i>	
	开始	台移植	28

寄存器配置.......30

1. 文档适用平台

该文档适用于 RK3288、RK3368 和 RK3399 平台。

1.1. 平台说明

1) RK3288

两个 PHY, PHY0 以及 PHY1 都支持 1lane、2lane、4lane,最大支持 13M pixel raw sensor。

2) RK3368

一个 PHY, PHY 支持 1lane、2lane、4lane, 最大支持 8M pixel raw sensor。

3) RK3399

两个 PHY,PHY 支持 1lane、2lane、4lane,最大支持 13M pixel raw sensor。

2. 硬件说明

2.1. DVP SOC Camera Sensor

1) RK3288

建议将该类 Sensor 输出的 YUV 数据 bit0-bit7 对应连接至 RK3288 CIF D2 - CIF D9

2) RK3368

建议将该类 Sensor 输出的 YUV 数据 bit0-bit7 对应连接至 RK3368 CIF_D4 - CIF_D11

3) RK3399

建议将该类 Sensor 输出的 YUV 数据 bit0-bit7 对应连接至 RK3399 CIF DO - CIF D7

2.2. MIPI Camera Sensor

(模组的 MIPI Lane 数 >= PHY 支持的 MIPI Lane 数)满足这一条件都可以连接到对应的 PHY,但是最后实际使用的 Lane 数以 PHY 支持的 Lane 数为准;

MIPI Camera Sensor 在选用时,建议事先查阅 RockChip 的认证列表:《RKISPV1_Camera_Module_AVL》,确认是否调试通过.

2.3. 2 个 Camera Sensor 同时工作的限制说明

- 1) RK3288, RK3368
 - 1、2 个 Sensor 只能有一个是 RAW Sensor:
 - 2、必须有一个是 MIPI Sensor;

2) RK3399

1、2 个 Sensor 都为 RAW Sensor 或者 mipi sensor;

2.4. RAW Camera Sensor 选型说明

- 1、事先获取 RockChip 的认证列表: 《RKISPV1_Camera_Module_AVL》;
- 2、列表中已经有相关型号,并且状态显示 Ready,那么建议按照列表中的模组配置信息让模组厂进行打样;
- 3、列表中没有相关型号,或是想选择不同配置(镜头、VCM)的模组,那么建议填写《RockChip 摄像头模组调试需求申请表》,同时发给 RockChip。
 - 注: RAW Camera Sensor 调试周期在 4 周左右;模组配置更换调试周期在 3 周左右;

3. 文件目录说明

```
3288 Android:
     | hardware\rk29\camera
        |CameraHal
                                         CameraHal 源码
                                         Camera 配置文件信息及 isp 库
        |Config <
        |SiliconImage
                                         ISP 库相关头文件信息
                                         Sensor 驱动源码
           |isi\drv
             IOV8825\calib
                                         Sensor 模组 tunning 参数
3368 Android:
     | hardware\rockchip\camera
                                         CameraHal 源码
        |CameraHal
                                         Camera 配置文件信息及 isp 库
        |Config
                                         ISP 库相关头文件信息
        |SiliconImage
           |isi\drv
                                         Sensor 驱动源码
```



```
IOV8825\calib
                                           Sensor 模组 tunning 参数
 Kernel:
     |drivers\media\video\rk camsys
                                            CamSys 驱动源码
     |include\media\camsys head.h
3399 Android:
      | hardware\rockchip\camera
                                           CameraHal 源码
         |CameraHal
                                           Camera 配置文件信息及 isp 库
         |Config
        |SiliconImage
                                           ISP 库相关头文件信息
                                           Sensor 驱动源码
           |isi\drv
                                           Sensor 模组 tunning 参数
             |OV8825\calib
 Kernel:
     |drivers\media\video\rk_camsys
                                            CamSys 驱动源码
     |include\media\camsys_head.h
```

4. 版本说明

4.1. 版本获取方式

```
在机器的 shell 中执行以下命令:
   root@rk3288:/ # getprop
   [sys_graphic.cam_camboard.ver]: [0.2.0]
                                                支持 cam board. xml
                                                                   的版
本
   [sys_graphic.cam_drv_camsys.ver]: [0.8.0]
                                                camsys 驱动版本
   [sys graphic.cam hal.ver]: [0.9.0]
                                                CameraHal 版本
   [sys_graphic.cam_isi.ver]: [0.1.0]
                                                ISI 接口版本
   [sys graphic.cam libisp.ver]: [0.4.0]
                                                ISP 库版本
   [sys graphic. 0V8825. ver]: [0.9.0]
                                              sensor 驱动版本号
```

由于各个源码以及库之间版本需要匹配使用,所以在代码中已经做了版本校验规则,如果出现 panic 等信息,麻烦先关注是否是版本之间的不匹配导致!!

```
例如:
```

D/CameraHal (1739): CamSys Head. h Version Check:

D/CameraHal(1739): Kernel camsys_head.h: v0.6.0
D/CameraHal(1739): Kernel camsys_drv: v0.8.0
D/CameraHal(1739): CameraHal camsys_head.h: v0.7.0
D/CameraHal(1739):
D/CameraHal(1739):
D/CameraHal(1739):
F/CameraHal(1739): static int
camera_board_profiles::RegisterSensorDevice(rk_cam_total_info*):
F/CameraHal(1739): VERSION-WARNING: camsys_head.h version isn't
match in Kernel and CameraHal

5. 如何注册 DVP/MIPI Sensor

注册 DVP/MIPI Sensor 方式通过填写 cam_board. xml 来实现,该文件使用简要说明如下:

注: 如果机器中没有 DVP/MIPI Sensor, 删除 cam board. xml 文件即可;

<BoardXmlVersion version="v0.2.0">

以上标识的为当前 xml 文件的版本号,如果与 sys_graphic.cam_camboard.ver 不一致,可能导致错误,麻烦更新 cam_board.xml。

5.1. Sensor 注册信息

<SensorName name="0V8858" ></SensorName>

填写 Sensor 名字, 该名字必须与 Sensor 驱动的名字一致, 目前提供的 Sensor 驱动如下:

libisp_isi_drv_TC358749XBG.so
libisp_isi_drv_OV8858.so
libisp_isi_drv_SP2518.so
libisp_isi_drv_GC0308.so
libisp_isi_drv_GC2035.so
libisp_isi_drv_GC2155.so
libisp_isi_drv_GS8604.so
libisp_isi_drv_HM2057.so
libisp_isi_drv_IMX214.so
libisp_isi_drv_NT99252.so
libisp_isi_drv_OV2659.so
libisp_isi_drv_OV2680.so
libisp_isi_drv_OV2685.so
libisp_isi_drv_OV5640.so
libisp_isi_drv_OV5645.so
ibisp_isi_drv_OV5648.so bibisp_isi_drv_OV8820.so
libisp_isi_drv_OV8825.so
libisp_isi_drv_OV13850.so
libisp_isi_drv_OV13860.so
libisp_isi_drv_OV2710.so
libisp_isi_drv_HM5040.so

<SensorLens name="LG-9569A2"></SensorLens>

填写模组所配置的镜头型号, 镜头型号必须根据模组实际配置填写, 这个将直接影响到最后的成像质量。

注意:非 OTP 模组及有 OTP 但读取不到 1ens ID 则以这里配置的为准;有 OTP 且能读取到 1ens ID 则以读取到的镜头型号为准。

目前 tuning 过的 sensor 及可配置镜头型号如下:

OV8825:

LG-5008A7

0V8820:

LG-5008A7

OV8858:

SUNNY-3813A

LG-9569A2

R5AV08

OV5648:

CHT-842B-MD

XY-LE001B1

<SensorDevID IDname="CAMSYS_DEVID_SENSOR_1A"></sensorDevID>

填写 Sensor 软件 ID, 注册的 ID 只需要不一致即可,可填写以下值: CAMSYS_DEVID_SENSOR_1A

本文档为瑞芯微电子成员撰写及提供,不得用于工作之外的使用及交流。

CAMSYS_DEVID_SENSOR_1B CAMSYS_DEVID_SENSOR_2

〈SensorI2cBusNum busnum="3"></SensorI2cBusNum> 填写 Sensor 所连接的主控 I2C 通道号

⟨SensorI2cRate rate="100000"⟩⟨/SensorI2cRate⟩ 填写 Sensor 的 I2C 频率,单位: Hz

〈SensorAvdd name="NC" min="28000000" max="28000000" delay="0">⟨/SensorAvdd⟩ 填写 Sensor AVDD 的 PMU LDO 名称,如果不是连接到 PMU,那么只需填写 NC

<SensorDovdd name="NC" min="18000000" max="18000000"
delay="5000"></SensorDovdd>

填写 Sensor DOVDD 的 PMU LDO 名称,如果不是连接到 PMU,那么只需填写 NC,注意 min 以及 max 值必须填写,这决定了 Sensor 的 IO 电压; RK3399 中有 delay,调整上电时序;

<SensorDvdd name="NC" min="12000000" max="12000000" delay="0"></SensorDvdd>
填写 Sensor DVDD 的 PMU LDO 名称,如果不是连接到 PMU,那么只需填写 NC

<SensorGpioPwdn ioname="RK30_PIN1_PC2" active="0"
delay="0"></SensorGpioPwdn>

填写 Sensor PowerDown 引脚,直接填写名称即可, active 填写休眠的有效电平; RK3399 中 phy0、phy1 有单独的 "SensorGpioPwdn",分别 为"SensorGpioPwdn0"、"SensorGpioPwdn 1";

⟨SensorGpioPwen ioname="NC" active="1" delay="1000">⟨/SensorGpioPwen⟩
填写 Sensor Power 引脚,直接填写名称即可, active 填写电源有效电平

<SensorFacing facing="front"></SensorFacing>

填写 Sensor 作为前置还是后置,可填写如下值:

front

back

<SensorInterface mode="CCIR601"></SensorInterface>

填写 Sensor 的接口方式,可填写如下值:

CCIR601

CCIR656,

MIPI,

SMIA

<SensorMirrorFlip mirror="0"></SensorMirrorFlip>

暂不支持

⟨Sensor0rientation orientation="0"⟩⟨/Sensor0rientation⟩

填写 Sensor 的角度信息

<SensorPowerupSequence seq="1234"></SensorPowerupSequence>

暂不支持

<SensorFovParemeter h="60.0" v="60.0"></SensorFovParemeter>

FOV 配置选项, h 代表水平视角度数, v 代表垂直视角度数

理论上,FOV 值可以由模组规格书中获得,由于可能不精确,在测试 Cts_Verify FOV 选项时,可以先测试一张全分辨率照片,查看具体的 FOV 值,然后将测试出的 FOV 值 重新填入该处,重新烧写固件测试。

<SensorAWB Frame Skip fps="15"></SensorAWB Frame Skip>

设置 Camera 进入时,过滤 awb 不稳定的最大帧数

如果 sensor 帧率可以达到 30 帧,建议设置成 15 帧;

如果 sensor 帧率只在 15 帧左右,建议跳桢数减少,避免刚进入黑屏时间较长。

DVP Sensor:

<SensorPhy phyMode="CamSys_Phy_Cif" sensor_d0_to_cif_d ="2" cif_num="0"
sensorFmt="CamSys Fmt Raw 10b"></SensorPhy>

phyMode:

Sensor 接口硬件连接方式,可填写如下值:

CamSys Phy Cif

sensor d0 to cif d:

Sensor DVP 输出数据位 DO 对应连接的主控 DVP 接口的数据位号码

cif num:

Sensor DVP 连接到主控 DVP 接口编号

sensorFmt:

Sensor 输出的数据格式,目前支持 CamSys Fmt Raw 10b 和 CamSys Fmt Raw

 $_{1}2b$

MIPI Sensor:

<SensorPhy phyMode="CamSys_Phy_Mipi" lane="1" phyIndex="0"
sensorFmt="CamSys_Fmt_Raw_10b"></SensorPhy>

phyMode:

Sensor 接口硬件连接方式,可填写如下值: CamSys_Phy_Mipi

lane:

Sensor mipi 接口数据通道数

phyindex:

Sensor mipi 连接的主控 mipi phy 编号 RK3368 仅支持 phyIndex="0"

${\tt sensorFmt}$

Sensor 输出数据格式,目前仅支持 CamSys_Fmt_Raw_10b

5. 2. VCM 注册信息

<VCMDrvName name="NC"></VCMDrvName>

填写马达驱动 IC 的名称,如果 Sensor 集成马达驱动 IC 的话,请填写:BuiltInSensor

<VCMName name="NC"></VCMName>

填写马达的名称

<VCMI2cBusNum busnum="0"></VCMI2cBusNum>

填写马达驱动 IC 的连接的主控 I2C 通道号,一般与 Sensor 同一个通道

<VCMI2cAddrByte byte="0"></VCMI2cAddrByte>

填写马达驱动 IC 的 i2c 地址字节数

<VCMI2cRate rate="0"></VCMI2cRate>

填写马达驱动 IC的 i2c 速率

<VCMVdd name="NC" min="0" max="0"></VCMVdd>

填写模组上连接 AF VCC(马达电源)的 PMU LDO 名称

<VCMGpioPwdn ioname="NC" active="0"></VCMGpioPwdn>

填写模组上马达驱动 IC 的休眠使能 IO, 一般与 Sensor 的休眠使能 IO 一致

<VCMGpioPower ioname="NC" active="0"></VCMGpioPower>

填写使能模组 AF VCC 的使能 IO

本文档为瑞芯微电子成员撰写及提供,不得用于工作之外的使用及交流。

<VCMCurrent start="20" rated="80" vcmmax="100" stepmode="13"
drivermax="100"></VCMCurrent>

填写马达的电流参数:

start: 马达的启动电流 rated: 马达的额定电流 vcmmax: 马达的最大电流

stepmode: 马达驱动 ic 的电流输出方式,该指标关系到马达的移动速度,麻烦参考驱动 icdatasheet:

drivermax: 马达驱动 ic 的最大输出电流

注意事项: start、rated、stepmode 这 3 项指标有可能会导致马达在对焦过程中的异响问题;

如果出现模组对焦远处无法清晰,近处可以清晰,麻烦确认启动电流相对马达实际启动电流是否配置过大;

5.3. 软件功能配置信息

<AWB>

<AWB Auto support="1"></AWB Auto>

<AWB_Incandescent support="1"></AWB_Incandescent>

<AWB_Fluorescent support="1"></AWB_Fluorescent>

<AWB_Warm_Fluorescent support="1"></AWB_Warm_Fluorescent>

<AWB Daylight support="1"></AWB Daylight>

<AWB Cloudy Daylight support="1"></AWB Cloudy Daylight>

<AWB_Twilight support="1"></AWB_Twilight>

AWB Shade>

</AWB>

配置 AWB 模式

- 1: 使能该功能
- 0: 屏蔽该功能

<Sence>

<Sence Mode Auto support="1"></Sence Mode Auto>

<Sence_Mode_Action support="1"></Sence_Mode_Action>

<Sence_Mode_Portrait support="1"></Sence_Mode_Portrait>

<Sence Mode Landscape support="1"></Sence Mode Landscape>

<Sence Mode Night support="1"></Sence Mode Night>

<Sence_Mode_Night_Portrait support="1"></Sence_Mode_Night_Portrait>

<Sence_Mode_Theatre support="1"></Sence_Mode_Theatre>

<Sence_Mode_Beach support="1"></Sence_Mode_Beach>

<Sence_Mode_Snow support="1"></Sence Mode Snow>

<Sence_Mode_Sunset support="1"></Sence_Mode_Sunset>

<Sence_Mode_Steayphoto support="1"></Sence_Mode_Steayphoto>

<Sence Mode Pireworks support="1"></Sence Mode Pireworks>

<Sence Mode Sports support="1"></Sence_Mode_Sports>


```
<Sence_Mode_Party support="1"></Sence_Mode_Party>
   <Sence Mode Candlelight support="1"></Sence Mode Candlelight>
   <Sence Mode Barcode support="1"></Sence Mode Barcode>
   <Sence Mode HDR support="1"></Sence Mode HDR>
</Sence>
    配置 Scence 功能, 暂不支持
<Effect>
   <Effect None support="1"></Effect None>
   <Effect_Mono support="1"></Effect_Mono>
   <Effect Solarize support="1"></Effect Solarize>
   <Effect Negative support="1"></Effect Negative>
   <Effect_Sepia support="1"></Effect_Sepia>
   <Effect Posterize support="1"></Effect Posterize>
   <Effect_Whiteboard support="1"></Effect_Whiteboard>
   <Effect Blackboard support="1"></Effect Blackboard>
   <Effect_Aqua support="1"></Effect_Aqua>
</Effect>
   配置 Effect 功能, 暂不支持
<FocusMode>
   <Focus Mode Auto support="1"></Focus Mode Auto>
   暂不支持
   <Focus_Mode_Infinity support="1"></Focus_Mode_Infinity>
   暂不支持
   <Focus_Mode_Marco support="1">/Focus_Mode_Marco>
   暂不支持
   <Focus Mode Fixed support="1"></Focus Mode Fixed>
   暂不支持
   <Focus Mode Edof support="1"></Focus Mode Edof>
   暂不支持
   <Focus_Mode_Continuous_Video support="1"></Focus_Mode_Continuous_Video>
   配置是否使能录像时预览界面的连续对焦功能
   1: 使能该功能
   0: 屏蔽该功能
   <Focus Mode Continuous Picture</pre>
support="1"></Focus_Mode_Continuous Picture>
   配置是否使能拍照预览界面的连续对焦功能
   1:
      使能该功能
      屏蔽该功能
   0:
</FocusMode>
<FlashMode>
   <Flash Mode Off support="1"></Flash Mode Off>
```


<Flash_Mode_On support="1"></Flash_Mode_On>

<Flash_Mode_Torch support="1"></Flash_Mode_Torch>

<Flash_Mode_Auto support="1"></Flash_Mode_Auto>

<Flash_Mode_Red_Eye support="1"></Flash_Mode_Red_Eye>

</FlashMode>

配置 Flash 功能, 暂不支持

<AntiBanding>

<Anti_Banding_Auto support="1"></Anti_Banding_Auto>

<Anti_Banding_50HZ support="1"></Anti_Banding_50HZ>

<Anti Banding 60HZ support="1"></Anti Banding 60HZ>

<Anti Banding Off support="1"></Anti Banding Off>

</AntiBanding>

配置 AntiBanding 功能, 暂不支持

<HDR support="0"></HDR>

配置 HDR 功能, 暂不支持

<ZSL support="0"></ZSL>

配置 ZSL 功能, 暂不支持

<DigitalZoom support="1"></DigitalZoom>

配置是否使能数码变焦功能

- 1: 使能该功能
- 0: 屏蔽该功能

<Continue_SnapShot support="1"></Continue_SnapShot>

配置是否使能连拍功能

- 1: 使能该功能
- 0: 屏蔽该功能

<InterpolationRes resolution="0"></InterpolationRes>

配置插值分辨率,目前支持的插值像素 1M/2M/3M/5M/8M。 比如想插值到 5M,那么设置 resolution="5000000"。

<PreviewSize width="0" height="0"></PreviewSize>

配置客户强制需求的预览分辨率,一般来说,宽高各设置成 0,由系统来进行选择;但是有可能系统选择出来的分辨率帧率过低,那么可以指定你所需要的分辨率;

注:目前 ov8825,建议将该项设置成 1920x1080;

<FaceDetect support="1" MaxNum="1"></FaceDetect>

配置是否支持人脸检测功能

- 1: 使能该功能
- 0: 屏蔽该功能

<Cproc support="1" contrast="1.1" saturation="1.0" hue="0"
brightness="0"></Cproc>

配置是否调整色彩效果;

1: 使能该功能

0: 屏蔽该功能

Contras(对比度): (0.0, 1.992)

Saturation(饱和度): (0.0, 1.992)

Hue (色相): (-90, 87.188)

Brightness (亮度): (-128, 127)

5. 4. FLASH 注册信息

<FlashName name="Internal"></FlashName>

Flash 的名称,采用默认值

<FlashI2cBusNum busnum="0"></FlashI2cBusNum>

暂不支持

<FlashI2cAddrByte byte="0"></FlashI2cAddrByte>

暂不支持

<FlashI2cRate rate="0"></FlashI2cRate>

暂不支持

<FlashTrigger ioname="NC" active="0"></FlashTrigger>

填写 ISP 的 FLASHTRIGOUT 使能的有效电平

rk3288: 对应 GPIO7-B5

rk3368: 对应 GPIO3-C4

rk3399: 对应 GPIO1-A3

<FlashEn ioname="NC" active="0"></FlashEn>

填写 ISP 的 PRILIGHTTRIG 使能的有效电平

rk3288: 对应 GPIO7-B6

rk3368: 对应 GPIO3-C5

rk3399: 对应 GPIO1-A4

<FlashLuminance luminance="0"></FlashLuminance>

暂不支持

<FlashColorTemp colortemp="0"></FlashColorTemp>

暂不支持

<FlashModeType mode="1"></FlashModeType>

填写 Flash 的工作方式, 目前支持以下两种 flash 工作模式:

Mode 1:

该模式下 prelight trig 和 flash trig 的时序图如下:

prelight_trig 为高,flash_trig 为低时进入 movie/torch mode; prelight_trig 为低,flash_trig 为高时进入 flash mode。

以 SGN3780 芯片为例:

ENF <----> FlashTrigger <----> GPIO7-B5

ENM <----> FlashEn <----> GPIO7-B6

ENM 为低, ENF 为高时进入 flash 模式; ENM 为高, ENF 为低时进入 Movie/Torch 模式。

Mode 2:

该模式下 prelight trig 和 flash trig 的时序图如下:

prelight_trig 为高,flash_trig 为低进入 movie/torch mode; prelight_trig 为高,flash_trig 为高时进入 flash mode。

以 SGM3140 芯片为例:

FLASH <----> FlashTrigger<----> GPIO3-C4

EN <----> FlashEn <----> GPIO3-C5

EN 为高,FLASH 为高时进入 flash 模式; EN 为高,FLASH 为低时进入 torch 模式。

注意: 在 mode2 情况下,FlashTrigger 和 FlashEn 的有效电平须配置一致,否则会导致 panic 错误。

5. 5. cam_board.xml 支持多个 sensor 配置

Cam_board.xml 支持多个 sensor device 配置,在 xml 里添加自己可能用到的 <CamDevie>,填写上面所述相应所需的硬件信息即可。 例如下图:

5. 6. 如何测试 CTS_Verify FOV

麻烦参考 5.1 章节(Sensor 注册信息)中关于<SensorFovParameter>的说明

5. 7. 如何解决开启 Camera 最初几帧的偏色问题

麻烦参考 5.1 章节(Sensor 注册信息)中关于<SensorAWB_Frame_Skip >的说明;

5. 8. Camera 插值说明

麻烦参考 5.3 章节(软件功能配置信息)中关于〈InterpolationRes〉的说明。

6. SOC Sensor 支持列表

			1					
Camera Sensor	Type	Optical format	VCM	VCM driver	IR-cut filter	Dimensio n(mm)	Lens	Module Vendor and Module number
raw sensor	参见文	C件《RKISP\	/1_Camera_	Module_AVL	》			
MIPI soc SE	NSOR							
2Mega								
Ov2685								
GC2155								
DVP soc SE	DVP soc SENSOR							
5Mega								
OV5640								
HM5065								
2Mega	2Mega							
GC2035								

HM2057				
NT99252				
SP2518				
OV2659				
0.3Mega				
GC0308				

7. Sensor 驱动移植指导

7.1 基本概念

7.1.1 MIPI

MIPI 的全称是 Mobile Industry Processor Interface(移动行业处理器接口),本文描述的 MI PI 接口特指物理层使用 D-PHY 传输规范,协议层使用 CSI-2 的通信接口。

7.1.2 Lane

用于连接发送端和接收端的一对高速差分线,既可以是时钟 Lane,也可以是数据 Lane。

7.2 常用数据类型

7.2.1 IsiRegisterFlags_t

【说明】

寄存器配置结构体中的 Flag 枚举类型

【定义】

```
typedef enum IsiRegisterFlags_e

// basic features
eTableEnd = 0x00, /**< special flag for end of register table */
eReadable = 0x01,
eWritable = 0x02,
eVolatile = 0x04, /**< register can change even if not written by I2C */
eDelay = 0x08, /**< wait n ms */
eReserved = 0x10,
eNoDefault = 0x20, /**< no default value specified */
eTwoBytes = 0x40, /**< SMIA sensors use 8-, 16- and 32-bit registers */
eFourBytes = 0x80, /**< SMIA sensors use 8-, 16- and 32-bit registers */
```



```
// combined features
    eReadOnly
                         eReadable,
    eWriteOnly
                         = eWritable,
    eReadWrite
                        = eReadable | eWritable,
                         = eReadable | eWritable | eDelay,
    eReadWriteDel
                          = eReadable | eWritable | eVolatile,
    eReadWriteVolatile
                          = eReadable | eWritable | eNoDefault,
    eReadWriteNoDef
                          = eReadable | eWritable | eVolatile | eNoDefault,
    eReadWriteVolNoDef
    eReadVolNoDef
                          = eReadable | eVolatile | eNoDefault,
    eReadOnlyVolNoDef
                         = eReadOnly | eVolatile | eNoDefault,
    // additional SMIA features
    eReadOnly 16
                              = eReadOnly
                                                     | eTwoBytes,
    eReadWrite 16
                              = eReadWrite
                                                     | eTwoBytes,
    eReadWriteDel 16
                             = eReadWriteDel
                                                    eTwoBytes,
    eReadWriteVolatile 16
                             = eReadWriteVolatile | eTwoBytes,
                                                     | eTwoBytes,
    eReadWriteNoDef 16
                              = eReadWriteNoDef
    eReadWriteVolNoDef 16
                              = eReadWriteVolNoDef | eTwoBytes,
    eReadOnlyVolNoDef 16
                              = eReadOnly_16 | eVolatile | eNoDefault,
    eReadOnly 32
                              = eReadOnly
                                                    eFourBytes,
    eReadWrite 32
                              = eReadWrite
                                                     l eFourBytes,
    eReadWriteVolatile_32
                             = eReadWriteVolatile | eFourBytes,
    eReadWriteNoDef 32
                              = eReadWriteNoDef
                                                     | eFourBytes,
    eReadWriteVolNoDef 32
                              = eReadWriteVolNoDef | eFourBytes
} IsiRegisterFlags_t;
7.2.2 IsiRegDescription_t
【说明】
寄存器配置信息结构体
【定义】
typedef struct IsiRegisterFlags_s
    uint32 t
                Addr; /* register address */
    uint32 t
                DefaultValue; /* register value */
    const char
               * pName;
                Flags; /*see IsiRegisterFlags t */
    uint32 t
} IsiRegDescription_t;
7.2.3 IsiSensorHandle t
【说明】
    Sensor 驱动 handle 的定义
【定义】
```


typedef void *IsiSensorHandle_t;

7.2.4 IsiSensorConfig_t

【说明】

Sensor 配置信息结构体

【定义】

```
typedef struct IsiSensorCaps_s
         uint32_t BusWidth;
                                                /**< supported bus-width */
                                                 /**< supported operating modes */
         uint32_t Mode;
                                                 /**< sample fields */
         uint32_t FieldSelection;
         uint32_t YCSequence;
         uint32_t Conv422;
                                                /**< bayer pattern */
         uint32_t BPat;
                                                /**< horizontal polarity */
         uint32 t HPol;
         uint32_t VPol;
                                                /**< vertical polarity */
                                                 /**< sample edge */
         uint32_t Edge;
         uint32_t Bls;
                                                /*< black level substraction */
                                                  /**< gamma */
         uint32_t Gamma;
         uint32_t CConv;
         uint32 t Resolution;
                                                **< supported resolutions */
         uint32 t DwnSz;
         uint32_t BLC;
         uint32_t AGC;
         uint32_t AWB;
         uint32 t AEC;
         uint32_t DPCC;
         uint32_t CieProfile;
         uint32_t SmiaMode;
         uint32_t MipiMode;
         uint32_t AfpsResolutions;
                                              /**< resolutions supported by Afps */
         uint32_t SensorOutputMode;
         uint32_t Index;
} IsiSensorCaps_t;
```

【成员】

–			
	字段名称	可用取值	
		ISI_BUSWIDTH_8BIT_ZZ	
		ISI_BUSWIDTH_8BIT_EX	
	BusWidth	ISI_BUSWIDTH_10BIT_EX	
		ISI_BUSWIDTH_10BIT_ZZ	
		ISI_BUSWIDTH_12BIT	

	ISI_BUSWIDTH_10BIT(ISI_BUSWIDTH_10BIT_EX)
	ISI_MODE_BT601
	ISI_MODE_BT656
	ISI_MODE_BAYER
	ISI_MODE_DATA
Mode	ISI_MODE_PICT
	ISI_MODE_RGB565
	ISI_MODE_MIPI
	ISI_MODE_BAY_BT656
	ISI_MODE_RAW_BT656
	ISI_FIELDSEL_BOTH
FieldSelection	ISI_FIELDSEL_EVEN
	ISI_FIELDSEL_ODD
	ISI_YCSEQ_YCBYCR
YCSequence	ISI_YCSEQ_YCRYCB
resequence	ISI_YCSEQ_CBYCRY
	ISI_YCSEQ_CRYCBY
	ISI_CONV422_COSITED
Conv422	ISI_CONV422_INTER
	ISI_CONV422_NOCOSITED
	ISI_BPAT_RGRGGBGB
BayerPatttern	ISI_BPAT_GRGRBGBG
Bayerrattlerii	ISI_BPAT_GBGBRGRG
	ISI_BPAT_BGBGGRGR
	ISI_HPOL_SYNCPOS
HPolarity	ISI_HPOL_SYNCNEG
Th dianty	ISI_HPOL_REFPOS
X\-	ISI_HPOL_REFNEG
VPolarity	ISI_VPOL_POS
Violatity	ISI_VPOL_NEG
Edge	ISI_EDGE_RISING
Luge	ISI_EDGE_FALLING
Bls	ISI_BLS_OFF only now
Gamma	ISI_GAMMA_OFF only now
ColorConv	ISI_CCONV_OFF only now
	Such as ISI_RES_2592_1944P30
	所有已支持的分辨率可以在 hardware/rockchi
Resolution	p/camera/SiliconImage/include/isi/isi_common.
	h 中查看。如果没有你想要的分辨率,请联系
	我们添加(自行在/isi_common.h 中添加是不够
	的)。
	ISI_DWNSZ_SUBSMPL
DwnSz	ISI_DWNSZ_SCAL_BAY
	ISI_DWNSZ_SCAL_COS

BLC	ISI_BLC_OFF
AGC	ISI_AGC_OFF
AWB	ISI_AWB_OFF
AEC	ISI_AEC_OFF
DPCC	ISI_DPCC_OFF
AFPS	ISI_AFPS_NOTSUPP
Index	Default 0

更多信息请查看 hardware/rockchip/camera/SiliconImage/include/isi/isi_common.h。

```
【说明】
Sensor 的 AFPS 配置信息结构体
【定义】
typedef struct lsiAfpsInfo_s
{
    float AecMinGain; /**< minimum gain for AEC in Afps mode */
    float AecMaxGain; /**< maximum gain for AEC in Afps mode */
    float AecMinIntTime; /**< minimum integration time for AEC in Afps mode */
    float AecMaxIntTime; /**< maximum integration time for AEC in Afps mode */
    uint32_t AecSlowestResolution; /**< slowst resolution for AEC in Afps mode */
    lsiAfpsResInfo_t Stage[ISI_NUM_AFPS_STAGES]; /**< the list of supported
```

IsiAfpsResInfo_t Stage[ISI_NUM_AFPS_STAGES]; /**< the list of supported resolutions with .MaxIntTime in ascending(!) order; Resolution = 0 marks end of list if not all array elements are used */

```
uint32_t CurrResolution; /**< current resolution */
float CurrMinIntTime; /**< minimum integration time of current resolution */
float CurrMaxIntTime; /**< maximum integration time of current resolution */
} IsiAfpsInfo_t;</pre>
```

7.3 API 参考

7.2.5 IsiAfpsInfo_t

	static RESULT OV8858_IsiCreateSensorIss
Prototype	
Params	configuration structure to create the
Tatattis	instance
Function	creates a new sensor instance handle

	RET_SUCCESS
Return	RET_NULL_POINTER
	RET_OUTOFMEM

Prototype	static RESULT OV8858_IsiReleaseSensorIss (
Params	sensor instance handle
Function	destroys/releases an sensor instance
Return	RET_SUCCESS
	RET_WRONG_HANDLE

	113	
Prototype	static RESULT OV8858_IsiGetCapsIssInternal (
Params	param1 ->pointer to sensor capabilities structure Param2 ->mipi lane num	
Function	fills in the correct pointers for the sensor des cription struct	
Return	RET_SUCCESS RET_NULL_POINTER	

Prototype	RESULT OV8858_SetupOutputFormat (OV8858_Context_t *pOV8858Ctx, const IsiSensorConfig_t *pConfig)
Params	param1 ->sensor instance handle Param2 ->pointer to sensor configuration structure
Function	Setup of the image sensor considering the giv en configuration.
Return	RET_SUCCESS RET_NULL_POINTER

	int OV8858_get_PCLK
Prototype	OV8858 Context t *pOV8858Ctx,

	int XVCLK	
Params	param1 ->pointer to sensor capabilities structure Param2 ->input clock from master to sensor	
Function	Get pclk of sensor output	
Return	Clock frequency	

Prototype	RESULT OV8858_SetupOutputWindowInternal (OV8858_Context_t *pOV8858Ctx, const IsiSensorConfig_t *pConfig, bool_t set2Sensor, bool_t res_no_chg)	
Params	Param1 ->pointer to sensor capabilities structure Param2 ->pointer to sensor configuration structure Param3 ->set to sensor or not Param4 ->change resolution or not	
Function	Setup of the image sensor considering the given configuration.	
Return	RET_SUCCESS RET_NULL_POINTER	

Prototype	RESULT OV8858_SetupImageControl (OV8858_Context_t *pOV8858Ctx, const IsiSensorConfig_t *pConfig)
Params	Param1 ->sensor instance handle Param2 ->pointer to sensor configuration structure
Function	Sets the image control functions (BLC, AGC, A WB, AEC, DPCC)
Return	RET_SUCCESS RET_NULL_POINTER

	RESULT OV8858_AecSetModeParameters (
Prototype	OV8858_Context_t *pOV8858Ctx,	
	const IsiSensorConfig_t *pConfig	
Params	Param1	
	->sensor instance handle	
	Param2	
	->pointer to sensor configuration structure	
	fills in the correct parameters in sensor i	
Function	nstances according to AEC mode selection in I	
	siSensorConfig_t.	
Return	RET_SUCCESS	
	RET_NULL_POINTER	

	RESULT OV8858_IsiSetupSensorIss
Prototype	IsiSensorHandle t handle,
	const IsiSensorConfig_t *pConfig
Params	Param1
	->sensor instance handle
	Param2
	->pointer to sensor configuration structure
Function	Setup of the image sensor considering the giv
	en configuration.
Return	RET_SUCCESS
	RET_NULL_POINTER

	RESULT OV8858_IsiChangeSensorResolutionIss	
	(
Prototype	IsiSensorHandle_t handle,	
	uint32_t Resolution,	
	uint8_t *pNumberOfFramesToSkip	
)	
Params	Param1	
	->sensor instance handle	
	Param2	
	->new resolution ID	
	Param3	
	-> reference to storage for number of frames	

	to skip	
Function	Change image sensor resolution while kee ping all other static settings. Dynamic settings li ke current gain & integration time are kept as close as possible. Sensor needs 2 frames to engage (first 2 frames are not correctly expose d!)	
Return RET_SUCCESS RET_NULL_POINTER		

7.4 移植步骤

驱动目录结构

以 OV8858 的驱动为例:

 $hardware \verb|\camera| Silicon Image \verb|\isi| drv \verb|\OV8858|$

```
|--calib
|--OV8858_lens_LG-9569A2.xml
|--include_priv
|--OV8858_MIPI_priv.h
|--source
|--OV8858_MIPI.c
|--OV8858_tables.c
|--Android.mk
```

准备工作

开始移植驱动之前, 你需要拿到以下资料:

- 1.摄像头模组规格书。
- 2.VCM driver-IC datasheet(如果摄像头模组带 VCM)。
- 3.摄像头 sensor datasheet 和 application note(例如,OV 一般会提供)。
- 4.所需要的分辨率的寄存器配置表。

开始移植

你可以从零开始,新建文件、添加函数...等,但是我建议最好是以 SDK 中已有的驱动为模板进行移植。例如,如果你当前你要驱动的摄像头是 DVP 接口的,那么可以参考

OV2659/GC2155 等;如果是 MIPI RAW 的,可以参考 OV5648/OV8858/IMX214 等;如果是 MIPI YUV 的,可以参考 OV2685。

下面以 OV8858 为例:

首先从 OV8858 目录拷贝一份,重命名成你要驱动的 sensor 名字,目录内的各个文件名、源码中引用的 sensor 名都要进行修改,包括 Android.mk 中引用的文件名以及生成库的名字。

代码中涉及到的宏:

1、四个分次到的公:	
名称	说明
OV8858 MODE SELECT	Stream(enable)控制寄存器、使能寄存
OV8838_IVIODE_SELECT	器
OV8858_MODE_SELECT_OFF	Stream off 的寄存器值
OV8858_MODE_SELECT_ON	Stream on 的寄存器值
OV8858_SOFTWARE_RST	Software reset 寄存器
OV8858_SOFTWARE_RST_VALUE	Software reset 使能的寄存器值
OV8858_CHIP_ID_HIGH_BYTE	Chip id(或 Model id)的 high-byte 寄存器 (如果有)
OV8858_CHIP_ID_HIGH_BYTE_DEFAULT	默认的 high-byte 的寄存器值(用以跟实际读出的值进行校对)
OV8858_CHIP_ID_MIDDLE_BYTE	Chip id(或 Model id)的 middle-byte 寄存器(如果有)
OV8858_CHIP_ID_MIDDLE_BYTE_DEFAULT	默认的 middle-byte 寄存器值
OV8858_CHIP_ID_LOW_BYTE	CHIP ID 的 low-byte 寄存器
OV8858_CHIP_ID_LOW_BYTE_DEFAULT	默认的 low-byte 寄存器值
OV8858_AEC_AGC_ADJ_H	Analog gain 寄存器的 high-byte
OV8858_AEC_AGC_ADJ_L	Analog gain 寄存器的 low-byte
OV8858_AEC_EXPO_H	Integration time 寄存器的 high-byte
OV8858_AEC_EXPO_M	Integration time 寄存器的 middle-byte
OV8858_AEC_EXPO_L	Integration time 寄存器的 low-byte
OV8858_SLAVE_ADDR	IIC address
20	IIC addres(同一款 sensor,模组硬件接
OV8858_SLAVE_ADDR2	法不同,会有不同的 address,作为备
	选)
OV8858_SLAVE_AF_ADDR	VCM driver IC 的 slave address
Sensor_OTP_SLAVE_ADDR	读取 OTP 信息的 slave address
OV8858_MAXN_GAIN	
OV8858_MIN_GAIN_STEP	
OV8858_MAX_GAIN_AEC	
MAX_VCMDRV_CURRENT	
MAX_VCMDRV_REG	
OV8858_I2C_NR_ADR_BYTES	寄存器地址的字节数
OV8858_I2C_NR_DAT_BYTES	寄存器值的字节数

以上宏在代码中的赋值,需要阅读相关的数据手册进行修改。

注意:如果寄存器没有分 hight-byte、middle-byte、low-byte 的话,那么只使用 low-byte 即可,当然,你也完全可以根据自己的喜好进行修改。

寄存器配置

Sensor 的寄存器配置序列需要从 sensor 的 datasheet 或者由原厂提供的寄存器配置文件中整理后应用在代码中。

根据应用场景及 sensor 的支持情况,寄存器序列可分为 1lane,2lane,4lane 三组,每组有一个 global setting 或者叫 initial setting,然后还有 binning size 和 full size 的 setting (OV 的 sensor 一般是这样),以 ov8858 2lane 为例:

Global setting:

Bining size setting:

```
const IsiRegDescription t OV8858 g 1632x1224 twolane[] =
    {0x030e, 0x00, "0x0100", eReadWrite}, // pll2_rdiv
    {0x030f, 0x09, "0x0100", eReadWrite}, // pll2_divsp
    (0x0312, 0x01, "0x0100", eReadWrite), // pll2_pre_div0, pll2_r_divdac
    {0x3015, 0x01, "0x0100", eReadWrite}, /
    {0x3501, 0x4d, "0x0100", eReadWrite}, // exposure M
    {0x3502, 0x40, "0x0100", eReadWrite}, // exposure L
    {0x3706, 0x35, "0x0100", eReadWrite}, /
    {0x370a, 0x00, "0x0100", eReadWrite},
    {0x370b, 0xb5, "0x0100", eReadWrite},
    {0x3778, 0x1b, "0x0100", eReadWrite}, /
    {0x3808, 0x06, "0x0100", eReadWrite}, // x output size H
    {0x3809, 0x60, "0x0100", eReadWrite}, // x output size L
    (0x380a, 0x04, "0x0100", eReadWrite), // y output size H
    {0x380b, 0xc8, "0x0100", eReadWrite}, // y output size L
    {0x380c, 0x07, "0x0100", eReadWrite}, // HTS H
    (0x380d, 0x88, "0x0100", eReadWrite), // HTS L
    {0x380e, 0x04, "0x0100", eReadWrite}, // VTS H
    {0x380f, 0xdc, "0x0100", eReadWrite}, // VTS L
    {0x3814, 0x03, "0x0100", eReadWrite}, // x odd inc
    {0x3821, 0x67, "0x0100", eReadWrite}, // mirror on, bin on
    {0x382a, 0x03, "0x0100", eReadWrite}, // y odd inc
    {0x0000 ,0x00, "eTableEnd", eTableEnd}
};
```


Full size setting:

```
const IsiRegDescription t OV8858 g 3264x2448 twolane[] =
      {0x030e, 0x02, "0x0100", eReadWrite}, // pll2_rdiv
      {0x030f, 0x04, "0x0100", eReadWrite}, // pll2_divsp
{0x0312, 0x03, "0x0100", eReadWrite}, // pll2_pre_div0, pll2_r_divdac
      {0x3015, 0x00, "0x0100", eReadWrite}, /
      (0x3501, 0x9a, "0x0100", eReadWrite), //
(0x3502, 0x20, "0x0100", eReadWrite), //
      {0x3706, 0x6a, "0x0100", eReadWrite}, /
      {0x370a, 0x01, "0x0100", eReadWrite}, // (0x370b, 0x6a, "0x0100", eReadWrite}, //
      {0x3778, 0x32, "0x0100", eReadWrite}, /
      {0x3808, 0x0c, "0x0100", eReadWrite}, // x output size H
      (0x3809, 0xc0, "0x0100", eReadWrite), // x output size L
      {0x380a, 0x09, "0x0100", eReadWrite}, // y output size H
      {0x380b, 0x90, "0x0100", eReadWrite}, // y output size L
      {0x380c, 0x07, "0x0100", eReadWrite}, // HTS H
      {0x380d, 0x94, "0x0100", eReadWrite}, // HTS L
      {0x380e, 0x09, "0x0100", eReadWrite}, // VTS H
      {0x380f, 0xaa, "0x0100", eReadWrite}, // VTS L
      {0x3814, 0x01, "0x0100", eReadWrite}, // x odd inc
{0x3821, 0x46, "0x0100", eReadWrite}, // mirror on, bin off
      {0x382a, 0x01, "0x0100", eReadWrite}, // y odd inc
      . . .
      {0x0000 ,0x00, "eTableEnd", eTableEnd}
Fpschg setting:
 通过设定不同的 VTS 寄存器的值来调整帧率。
 const IsiRegDescription t DV8858 g 1632x1224P30 twolane fpschg[] =
       {0x380e, 0x04, "0x0100", eReadWrite}, // VTS H
      {0x380f, 0xdc, "0x0100", eReadWrite}, // VTS L {0x0000 ,0x00, "eTableEnd", eTableEnd}
 );
 const IsiRegDescription t OV8858 g 1632x1224P25 twolane fpschg[] =
      {0x380e, 0x05, "0x0100", eReadWrite}, // VTS H
      (0x380f, 0xd4, "0x0100", eReadWrite), // VTS L (0x0000 ,0x00, "eTableEnd", eTableEnd)
 3:
 const IsiRegDescription_t OV8858_g_1632x1224P20_twolane_fpschg[] =
       {0x380e, 0x07, "0x0100", eReadWrite}, // VTS H
      {0x380f, 0x4a, "0x0100", eReadWrite}, // VTS L
{0x0000 ,0x00, "eTableEnd", eTableEnd}
```

计算方法: 例如,初始化序列帧率为 30fps,VTS 为 0x04dc 时,那么 25fps 时的 VTS 为 0x04dc*30/25=0x05d4。

注意:

- 1、数组要以{0x0000, 0x00, "eTableEnd",eTableEnd}为结束标志。
- 2、如果寄存器值是两个字节,那么 IsiRegDescription_t 结构体的 Flags 值应为 eReadWrite 16,如:

```
//XVCLK=24Mhz, SCLK=4x120Mhz, MIPI 640Mbps, DACCLK=240Mhz
{0x0103 ,0x10120 ,"0x0100", eReadWrite_16},// sc ctrl (software reset)
{0x3638 ,0x20102 ,"0x0100", eReadWrite_16},//
{0x0300 ,0x30230 ,"0x0100", eReadWrite_16},// PLL CTRL 0(pll1_pre_div)
```

3、特别要注意的是,由于主控时序的要求,任何一个寄存器 setting 数组里面都不要 stream on sensor 或者叫 wake up sensor, 比如,一般 OV 的 sensor 的 stream 寄存器

是 0x0100, 那么寄存器 setting 数组里不要对 0x0100 寄存器置 1, 驱动的 IsiSensorSetStreamingIss 函数中会去操作 stream 寄存器,其他厂商的 sensor 的 stream 寄存器请参阅其 datasheet。

4、如果序列中需要延时操作,可以使用 eDelay 标志,如:

```
{0x3706, 0x6a, "0x0100", eReadWrite}, //
{0x370a, 0x01, "0x0100", eReadWrite}, //
{0x370b, 0x6a, "0x0100", eReadWrite}, //
{0x0000, 0x05, "0x0100", eDelay}, //delay 5ms
{0x3808, 0x0c, "0x0100", eReadWrite}, // x output size H
{0x3809, 0xc0, "0x0100", eReadWrite}, // x output size L
{0x380a, 0x09, "0x0100", eReadWrite}, // y output size H
{0x380b, 0x90, "0x0100", eReadWrite}, // y output size L
```

- 5、关于结构体的更多信息参见《常用数据类型》章节中的相关说明。
- 6、有的 sensor 比如 sony 的,没有 global setting,这样的话将数组留空即可:

此外,驱动代码中函数 OV8858_IsiRegReadIss 和 OV8858_IsiRegWriteIss 对其的使用要考虑修改。