Exercice: (4 points)

Somme et factoriel

1 pt Q1- Écrire la fonction factoriel (k) qui reçoit en paramètre un entier positif k et qui renvoie la valeur du factoriel de k : k! = 1 * 2 * 3 * ... * k.

Exemples:

- La fonction factoriel (5) renvoie le nombre : 120 = 1 * 2 * 3 * 4 * 5
- La fonction factoriel (0) renvoie le nombre : 1
- 0.5 pt Q2- Déterminer la complexité de la fonction factoriel (k), et justifier votre réponse.
- 1.5 pt Q3- Écrire la fonction som_fact (L) qui reçoit en paramètre une liste L de nombres entiers positifs. La fonction renvoie la somme des factoriels des éléments de L.

Exemple:

$$L = [5, 3, 0, 6, 1]$$

La fonction som_fact (L) renvoie la valeur de la somme : 5! + 3! + 0! + 6! + 1!

1 pt Q4- Déterminer la complexité de la fonction som fact (L), et justifier votre réponse.

Problème:

Réseau routier

Figure 1 : Extrait du réseau routier du Maroc

Un réseau routier peut être représenté par un dessin qui se compose de points et de traits continus reliant deux à deux certains de ces points : les **points** sont les **villes**, et les **lignes** sont les **routes**. On considère que toutes les routes sont à double sens. Chaque route peut être affectée par une valeur qui peut représenter le temps ou la distance entre deux villes, ...

Étant donné un réseau routier, on pourra s'intéresser à la résolution des problèmes suivants :

- Quel est le plus court chemin entre deux villes ?
- Entre deux villes, quel est le nombre de chemins passant par un nombre de routes donné ?
- Est-il possible de passer par toutes les villes du réseau, sans passer deux fois par une même ville ?, si oui, quel est le plus court chemin ?
- Entre deux villes, quel est le chemin ayant le moindre coût ?

Partie I:

Modélisation d'un réseau routier

On considère un réseau routier composé de n villes (avec $n \ge 2$). Les villes du réseau routier sont numérotées par des entiers allant de 0 à n-1.

Exemple:

Figure 2 : Réseau routier composé de 15 routes, et de 8 villes numérotées de 0 à 7.

Pour plus de clarté, tous les exemples de ce problème seront appliqués sur le réseau routier de la figure 2.

Représentation du réseau routier

Pour représenter un réseau routier de \mathbf{n} villes, on utilise une <u>matrice symétrique \mathbf{R} d'ordre \mathbf{n} </u> (\mathbf{n} lignes et \mathbf{n} colonnes), telle que :

Pour toutes les villes i et j, telles que $0 \le i < n$ et $0 \le j < n$, on a :

- R[i,j]= R[j,i]=1, s'il existe une route qui relie entre la ville i et la ville j;
- \triangleright R[i,j]= R[j,i]=0, sinon.

Exemple:

Le réseau routier de la figure 2 est représenté par la matrice symétrique R, d'ordre 8, suivante :

i/j	0	1	2	3	4	5	6	7
0	0	1	1	1	0	0	0	0
1	1	0	1	0	1	0	0	0
2	1	1	0	1	1	0	0	0
3	1	0	1	0	1	0	1	1
4	0	1	1	1	0	1	1	0
5	0	0	0	0	1	0	1	1
6	0	0	0	1	1	1	0	1
7	0	0	0	1	0	1	1	0

NB : Dans la matrice symétrique R, les lignes i et les colonnes j représentent les villes du réseau routier.

I. 1- Représentation de la matrice du réseau routier en Python

Pour représenter la matrice symétrique ${\bf R}$ d'ordre ${\bf n}$, on utilise une liste composée de ${\bf n}$ listes qui sont toutes de même longueur ${\bf n}$.

Exemple:

La matrice symétrique **R**, du réseau routier de la **figure 2**, est représentée par la liste **R**, composée de **8** listes, de taille **8** chacune :

```
 R = \begin{bmatrix} [0,1,1,1,0,0,0,0], [1,0,1,0,1,0,0,0], [1,1,0,1,1,0,0,0], \\ [1,0,1,0,1,0], [0,1,1,1,0,1,1,0], [0,0,0,0,1,0,1,1], \\ [0,0,0,1,1,1,0,1], [0,0,0,1,0,1,1,0] \end{bmatrix}
```

R[i][j] est l'élément de R, à la ième ligne et la jème colonne.

Exemples: R[0][0] est l'élément: 0, et R[0][2] est l'élément: 1

R[i] est la ligne d'indice i dans R.

Exemple: R[0] est la liste [0,1,1,1,0,0,0,0], qui représente la ligne d'indice 0 dans la matrice R.

Q 1- À partir de la matrice symétrique R de la figure 2, donner les résultats des expressions suivantes :

```
R[4][2] , R[1] , len(R[2]) , len(R)
```

I. 2- Villes voisines

i et j sont deux villes dans un réseau routier représenté par une matrice symétrique R.

Les villes i et j sont voisines, s'il existe une route entre la vaille i et la ville j.

Q 2. a- Écrire la fonction voisines (i, j, R), qui reçoit en paramètres deux villes i et j d'un réseau routier représenté par la matrice symétrique R. La fonction renvoie **True** si les villes i et j sont voisines, sinon, la fonction renvoie **False**.

Exemples:

- La fonction voisines (3, 0, R) renvoie True; (les villes 3 et 0 sont voisines)
- La fonction voisines (3, 5, R) renvoie False. (les villes 3 et 5 ne sont pas voisines)
- **Q** 2. b- Écrire la fonction list_voisines (i, R), qui reçoit en paramètres une ville i d'un réseau routier représenté par la matrice symétrique R. La fonction renvoie la liste de toutes les villes voisines à la ville i.

Exemple:

La fonction list voisines (3, R) renvoie la liste des villes voisines à la ville 3:[0,2,4,6,7]

I. 3- Degré d'une ville

Dans un réseau routier, le degré d'une ville i est le nombre de villes voisines à la ville i.

Q 3- Écrire la fonction **degre** (i, R), qui reçoit en paramètres une ville i d'un réseau routier représenté par la matrice symétrique R. La fonction renvoie le degré de la ville i.

Exemples:

- La fonction degre (3, R) renvoie le nombre : 5 (La ville 3 possède 5 villes voisines)
- La fonction degre (0, R) renvoie le nombre : 3 (La ville 0 possède 3 villes voisines)
- La fonction degre (2, R) renvoie le nombre : 4 (La ville 2 possède 4 villes voisines)

I. 4- <u>Liste des degrés des villes</u>

Q 4. Écrire la fonction liste_degres(R), qui reçoit en paramètre la matrice symétrique R représentant un réseau routier. La fonction renvoie une liste D contenant des tuples. Chaque tuple de D est composé de deux éléments : une ville du réseau routier, et le degré de cette ville.

Exemple:

La fonction liste degres (R) renvoie la liste D suivante :

$$D = [(0,3),(1,3),(2,4),(3,5),(4,5),(5,3),(6,4),(7,3)]$$

I. 5- Tri des villes

Q 5. a- Écrire la fonction tri_degres (D), qui reçoit en paramètre la liste **D** des degrés des villes. La fonction trie les tuples de la liste **D** dans l'ordre décroissant des degrés des villes.

Exemple:

$$D = [(0,3),(1,3),(2,4),(3,5),(4,5),(5,3),(6,4),(7,3)]$$

Après l'appel de la fonction tri degres (D), on obtient la liste suivante :

$$[(3,5),(4,5),(2,4),(6,4),(0,3),(5,3),(1,3),(7,3)]$$

Q 5. b- Écrire la fonction tri_villes(R), qui reçoit en paramètre la matrice symétrique R représentant un réseau routier. La fonction renvoie la liste des villes triées dans l'ordre décroissant des degrés des villes.

Exemple:

La fonction tri villes (R) renvoie la liste des villes triées dans l'ordre décroissant des degrés :

Partie II:

Coloration optimale des villes d'un réseau routier

Une **coloration** des villes du réseau routier est une affectation de couleurs à chaque ville, de façon à ce que deux villes voisines soient affectées par deux couleurs différentes. Le nombre minimum de couleurs nécessaires pour colorier un réseau routier est appelé : **nombre chromatique**.

La recherche du nombre chromatique est une question qui intervient dans beaucoup de problèmes concrets :

- √ L'établissement d'emplois du temps ;
- √ la gestion de ressources partagées ;
- √ la compilation dans l'utilisation efficace des registres ;
- **√** ...

On cherche à construire une liste **C** qui contiendra les couleurs des villes. Ces couleurs seront représentés par des entiers strictement positifs : chaque élément **C[k]** contiendra la couleur de la ville **k** du réseau routier.

Pour construire la liste **C** des couleurs, on propose d'utiliser un algorithme, appelé : **algorithme de glouton**. C'est un algorithme couramment utilisé dans la résolution de ce genre de problèmes, afin d'obtenir des solutions optimales.

Principe de l'algorithme de glouton :

V est la liste des villes triées dans l'ordre décroissant des degrés des villes

C est une liste de même taille que V, initialisée par des 0

Pour toute ville k de V:

 $C[k] \leftarrow$ première couleur non utilisée par les villes voisines à la ville k

Retourner la liste C

II. 6- Premier entier qui n'existe pas dans une liste d'entiers

Q 6- Écrire la fonction **premier_entier(L)**, qui reçoit en paramètre une liste **L** de nombres entiers positifs. La fonction renvoie le premier entier positif qui n'appartient pas à la liste **L**.

Exemple:

La fonction premier_entier ([0,0,3,1,0,1,0,0]) renvoie le nombre : 2

II. 7- Liste des couleurs des villes voisines à une ville

Q 7- Écrire la fonction **couleurs_voisines** (k, C, R), qui reçoit en paramètres une ville k d'un réseau routier représenté par la matrice symétrique R, et la liste C des couleurs des villes du réseau. La fonction renvoie la liste des C[i] telle que i est une ville voisine à la ville k.

Exemples:

- La fonction couleurs_voisines (4, [0, 0, 0, 1, 0, 0, 0, 0], R) renvoie la liste : [0, 0, 1, 0, 0]
- La fonction couleurs_voisines (2, [0, 0, 0, 1, 2, 0, 0, 0], R) renvoie la liste: [0, 0, 1, 2]
- La fonction couleurs_voisines (6, [0, 0, 3, 1, 2, 0, 0, 0], R) renvoie la liste: [1, 2, 0, 0]
- La fonction couleurs_voisines (0, [0, 0, 3, 1, 2, 0, 3, 0], R) renvoie la liste: [0, 3, 1]

II. 8- Coloration des villes

Q 8- Écrire la fonction **couleurs_villes(R)**, qui reçoit en paramètre la matrice symétrique **R** représentant un réseau routier. La fonction renvoie la liste **C** des couleurs des villes, en utilisant le principe de glouton cité ci-dessus.

Exemple:

La fonction couleurs villes (R) renvoie la liste des couleurs : C = [2,1,3,1,2,1,3,2]

Dans cette liste C:

- Les villes 0, 4 et 7 ont la même couleur : 2;
- Les villes 1, 3 et 5 ont la même couleur : 1;
- Les villes 2 et 6 ont la même couleur : 3.

NB: Dans cet exemple, le nombre chromatique est 3.