# Ordered Neurons: Integrating Tree Structures Into Recurrent Neural Networks

Ким Алёна

ниу вшэ

10 октября, 2019

## План

- строение языка, структурирование
- ▶ что такое ordered neurons
- cumax()
- LSTM vs. ON-LSTM
- эксперименты
  - language modeling
  - unsupervised constituency parsing
  - targeted syntactic evaluation
- результаты

### Естественные языки

- не строго последовательны
- имеют древоподобную структуру
- можно выделить так называемые составляющие "constituents"



#### Естественные языки

### Интеграция древовидной структуры:

- иерархическое представление с увеличивающимся уровнем абстракции
- композиционные эффекты языка
- долгосрочные зависимости

## Подходы

#### Supervised syntactic parser:

- мало разметки
- синтаксические правила в некоторых областях нарушаются (tweets)
- язык меняется, а вместе с ним правила

RNN - работают хорошо, но есть некоторые проблемы:

- не прослеживают долгосрочные зависимости
- способность к обобщению
- учитывание отрицания

LSTM потенциально могут кодировать в скрытых состояниях древовидную структуру языка

### Ordered Neurons



- заканчивается большая составляющая, значит заканчиваются все меньшие составляющие
- ▶ обновляется high-ranking neuron, значит все lower ranking neurons должны обновиться

## Long Short Term Memory



# cumax()



$$cumax(\cdot) = cumsum(softmax(\cdot))$$
  $g = (0,...,0,1,...,1)$   $d$  - позиция первой единицы в  $g$   $p(d) = softmax(\cdot)$   $(d \le k) = (d = 0) \lor (d = 1) \lor ... \lor (d = k)$   $p(g_k = 1) = p(d \le k) = \sum_{i \le k} p(d = i)$   $p(d \le k) = cumsum(softmax(\cdot)) = \mathbb{E}[g_k]$   $\hat{g} = \mathbb{E}[g]$ 

## Structure Gating Mechanism



- Master Forget Gate  $\widetilde{f}_t = cumax(W_{\widetilde{f}}x_t + U_{\widetilde{f}}h_{t-1} + b_{\widetilde{f}})$
- Master Input Gate  $\widetilde{i}_t = 1 cumax(W_{\widetilde{i}}x_t + U_{\widetilde{i}}h_{t-1} + b_{\widetilde{i}})$
- $\begin{array}{c} \blacktriangleright \ \, \mathsf{Overlap} \\ \omega_t = \widetilde{f}_t \circ \widetilde{i}_t \end{array}$

# Structure Gating Mechanism



# Experiments. Language Modeling

| Model                                                         | Parameters | Validation       | Test             |
|---------------------------------------------------------------|------------|------------------|------------------|
| Zaremba et al. (2014) - LSTM (large)                          | 66M        | 82.2             | 78.4             |
| Gal & Ghahramani (2016) - Variational LSTM (large, MC)        | 66M        | _                | 73.4             |
| Kim et al. (2016) - CharCNN                                   | 19M        | _                | 78.9             |
| Merity et al. (2016) - Pointer Sentinel-LSTM                  | 21M        | 72.4             | 70.9             |
| Grave et al. (2016) - LSTM                                    | _          | _                | 82.3             |
| Grave et al. (2016) - LSTM + continuous cache pointer         | _          | _                | 72.1             |
| Inan et al. (2016) - Variational LSTM (tied) + augmented loss | 51M        | 71.1             | 68.5             |
| Zilly et al. (2016) - Variational RHN (tied)                  | 23M        | 67.9             | 65.4             |
| Zoph & Le (2016) - NAS Cell (tied)                            | 54M        | _                | 62.4             |
| Shen et al. (2017) - PRPN-LM                                  | _          | _                | 62.0             |
| Melis et al. (2017) - 4-layer skip connection LSTM (tied)     | 24M        | 60.9             | 58.3             |
| Merity et al. (2017) - AWD-LSTM - 3-layer LSTM (tied)         | 24M        | 60.0             | 57.3             |
| ON-LSTM - 3-layer (tied)                                      | 25M        | $58.29 \pm 0.10$ | $56.17 \pm 0.12$ |
| Yang et al. (2017) - AWD-LSTM-MoS*                            | 22M        | 56.5             | 54.4             |

# Unsupervised Constituency Parsing

| Model                                                               | Training<br>Data                                             | Training<br>Object | Vocab<br>Size     | WSJ1<br>μ (σ)                                        | Parsi<br>0<br>max           | ng F1 WSJ $\mu(\sigma)$                              | max                         | Depth<br>WSJ               | Accura<br>ADJP              |                              | WSJ<br>PP                 | by Tag<br>INTJ               |
|---------------------------------------------------------------------|--------------------------------------------------------------|--------------------|-------------------|------------------------------------------------------|-----------------------------|------------------------------------------------------|-----------------------------|----------------------------|-----------------------------|------------------------------|---------------------------|------------------------------|
| PRPN-UP<br>PRPN-LM                                                  | AllNLI Train<br>AllNLI Train                                 |                    | 76k<br>76k        |                                                      |                             | 38.3 (0.5)<br>35.0 (5.4)                             | 39.8<br>42.8                | 5.8<br>6.1                 | 28.7<br>37.8                | 65.5<br>59.7                 | 32.7<br><b>61.5</b>       | 0.0<br><b>100.0</b>          |
| PRPN-UP<br>PRPN-LM                                                  | WSJ Train<br>WSJ Train                                       | LM<br>LM           | 15.8k<br>10k      | 62.2 (3.9)<br>70.5 (0.4)                             |                             | 26.0 (2.3)<br>37.4 (0.3)                             | 32.8<br>38.1                | 5.8<br>5.9                 | 24.8<br>26.2                | 54.4<br><b>63.9</b>          | 17.8<br>24.4              | 0.0<br>0.0                   |
| ON-LSTM 1st-layer<br>ON-LSTM 2nd-layer<br>ON-LSTM 3rd-layer         | WSJ Train<br>WSJ Train<br>WSJ Train                          | LM<br>LM<br>LM     | 10k<br>10k<br>10k | 65.1 (1.7)                                           | 66.8                        | 20.0 (2.8)<br>47.7 (1.5)<br>36.6 (3.3)               | 49.4                        | 5.6<br>5.6<br>5.3          | 38.1<br><b>46.2</b><br>44.8 | 23.8<br>61.4<br>57.5         | 18.3<br>55.4<br>47.2      | 0.0<br>0.0<br>0.0            |
| 300D ST-Gumbel<br>w/o Leaf GRU<br>300D RL-SPINN<br>w/o Leaf GRU     | AllNLI Train<br>AllNLI Train<br>AllNLI Train<br>AllNLI Train | NLI<br>NLI         | -<br>-<br>-       | -<br>-<br>-<br>-                                     | -<br>-<br>-<br>-            | 19.0 (1.0)<br>22.8 (1.6)<br>13.2 (0.0)<br>13.1 (0.1) |                             | -<br>-<br>-<br>-           | 15.6<br>18.9<br>1.7<br>1.6  | 18.8<br>24.1<br>10.8<br>10.9 | 9.9<br>14.2<br>4.6<br>4.6 | 59.4<br>51.8<br>50.6<br>50.0 |
| CCM<br>DMV+CCM<br>UML-DOP                                           | WSJ10 Full<br>WSJ10 Full<br>WSJ10 Full                       | _<br>_<br>_        | -<br>-<br>-       | -<br>-<br>-                                          | 71.9<br>77.6<br><b>82.9</b> | -<br>-<br>-                                          | -<br>-<br>-                 | -<br>-<br>-                | -<br>-<br>-                 | -                            | -<br>-<br>-               | -                            |
| Random Trees<br>Balanced Trees<br>Left Branching<br>Right Branching | _<br>_<br>_                                                  | -<br>-<br>-        | -<br>-<br>-<br>-  | 31.7 (0.3)<br>43.4 (0.0)<br>19.6 (0.0)<br>56.6 (0.0) | 43.4<br>19.6                |                                                      | 18.6<br>24.5<br>9.0<br>39.8 | 5.3<br>4.6<br>12.4<br>12.4 | 17.4<br>22.1<br>-<br>-      | 22.3<br>20.2<br>-<br>-       | 16.0<br>9.3<br>-<br>-     | 40.4<br>55.9<br>-            |

## Unsupervised Constituency Parsing

|                                                          | ON-LSTM | LSTM |
|----------------------------------------------------------|---------|------|
| Short-Term Dependency                                    |         |      |
| SUBJECT-VERB AGREEMENT:                                  |         |      |
| Simple                                                   | 0.99    | 1.00 |
| In a sentential complement                               | 0.95    | 0.98 |
| Short VP coordination                                    | 0.89    | 0.92 |
| In an object relative clause                             | 0.84    | 0.88 |
| In an object relative (no that)                          | 0.78    | 0.81 |
| REFLEXIVE ANAPHORA:                                      |         |      |
| Simple                                                   | 0.89    | 0.82 |
| In a sentential complement                               | 0.86    | 0.80 |
| NEGATIVE POLARITY ITEMS:                                 |         |      |
| Simple (grammatical vs. intrusive)                       | 0.18    | 1.00 |
| Simple (intrusive vs. ungrammatical)                     | 0.50    | 0.01 |
| Simple (grammatical vs. ungrammatical)                   | 0.07    | 0.63 |
| Long-Term Dependency                                     |         |      |
| SUBJECT-VERB AGREEMENT:                                  |         |      |
| Long VP coordination                                     | 0.74    | 0.74 |
| Across a prepositional phrase                            | 0.67    | 0.68 |
| Across a subject relative clause                         | 0.66    | 0.60 |
| Across an object relative clause                         | 0.57    | 0.52 |
| Across an object relative (no that)                      | 0.54    | 0.51 |
| REFLEXIVE ANAPHORA:                                      |         |      |
| Across a relative clause                                 | 0.57    | 0.58 |
| NEGATIVE POLARITY ITEMS:                                 |         |      |
| Across a relative clause (grammatical vs. intrusive)     | 0.59    | 0.95 |
| Across a relative clause (intrusive vs. ungrammatical)   | 0.20    | 0.00 |
| Across a relative clause (grammatical vs. ungrammatical) | 0.11    | 0.04 |

## References

- [1]. https://arxiv.org/pdf/1810.09536.pdf
- [2]. https://colah.github.io/posts/2015-08-Understanding-LSTMs/