

Lehrstuhl für Energiehandel und Finanzdienstleistungen

Prof. Dr. Rüdiger Kiesel Ya Wen

Quantitative Climate Finance

Übungsblatt 3

Aufgabe 2 (Martingal in diskreter Zeit)

In Emissionsmodellen betrachten wir manchmal die Entwicklung der CO_2 -Preise $(X_n)_{n\in\mathbb{N}_0}$ als ein Martingal.

- (a) Wie ist der Begriff des diskreten Martingals definiert?
- (b) Sei $(X_n)_{n\in\mathbb{N}_0}$ ein Martingal und m< n. Beweisen Sie die Formel $\mathbb{E}[X_n|X_0,X_1,...,X_m]=X_m$ mit Hilfe der Tower-Eigenschaft.
- (c) Was ist ein Sub- bzw. Supermartingal?

Aufgabe 2 (Binomial-Modell für CO₂-Zertifikate-Preise)

Wir betrachten ein Binomialmodell für den Spot-Preis der CO_2 -Zertifikate in diskreter Zeit. Der Anfangspreis zum Zeitpunkt k=0 sei mit S_0 bezeichnet. Zu jedem nächsten Zeitpunkt steigt der Preis entweder mit einem Faktor u, oder sinkt mit einem Faktor d. Wir bezeichnen jedes Ereignis der Preissteigerung mit H und jedes Ereignis der Preissenkung mit T. Die Wahrscheinlichkeit für das Eintreten von H ist p und die Wahrscheinlichkeit für T ist q=1-p.

Nun betrachten wir ein dreistufiges Beispiel (d.h. die Preise S_0 bis S_3 für die Zeitpunkte k=0,1,2,3) und bezeichnen mit Ω die Menge der gesamten möglichen Ergeignisse bis zum Zeitpunkt k=3.

- (a) Wie sieht Ω aus? Wie kann man die Anzahl der Elemente in Ω bestimmen?
- (b) Wie viele mögliche Zustände gibt es für S_k , k = 0, 1, 2, 3?
- (c) Zeichnen Sie den Binomialbaum der CO₂-Zertifikate-Preise.
- (d) Berechnen Sie den Erwartungswert von S_1 und S_2 sowie die Varianz von S_1 .

Aufgabe 3 (Binomial-Modell für CO₂-Zertifikate-Preise - Teil 2)

Alle Bedingungen bleiben gleich wie in Aufgabe 2.

- (a) Berechnen Sie $\mathbb{E}[S_2|H]$ bzw. $\mathbb{E}[S_3|HT]$.
- (b) Berechnen Sie $\mathbb{E}[S_3|H]$.

Man sieht in (a), dass $\mathbb{E}[S_2|H] = (up+dq)S_1(H)$ und $\mathbb{E}[S_3|HT] = (up+dq)S_2(HT)$ gilt. Sei \mathcal{F}_k die von S_k erzeugte σ -Algebra, k=0,1,2,3. Das heißt, \mathcal{F}_k enthält alle Informationen, die bis zum Zeitpunkt k erhältlich sind. Ohne Beweis kann ab jetzt verwendet werden, dass: $\mathbb{E}[S_2|\mathcal{F}_1] = (up+dq)S_1$ und $\mathbb{E}[S_3|\mathcal{F}_2] = (up+dq)S_2$.

- (c) Beweisen Sie: $\mathbb{E}[S_3|\mathcal{F}_1] = (up + dq)^2 S_1$.
- (d) Unter welcher Bedingung ist $(S_k)_{k=0,1,2,3}$ ein Martingal (bzw. ein Sub- oder Supermartingal)?

Aufgabe 4 (Symmetrische Besteuerung)

Ein Unternehmen unterliege sowohl einer CO_2 -Steuer t als auch einem Cap-and-Trade System mit CO_2 -Preis p>0. In diesem System muss das Unternehmen die Steuer auf jede seiner Emissionseinheiten zahlen und zusätzlich alle Emissionen durch Zertifikate abdecken.

Seien e_0 die ursprünglichen Emissionen des Unternehmens und e bezeichne die Emissionen nach Emissionsminderungs-Maßnahmen. Das Unternehmen reduziere demnach $a=e_0-e$ seiner Emissionen. Die Minderungskosten seien definiert durch:

$$c(a) = \exp(5a) - 1.$$

- (a) Stellen Sie das zugehörige Optimierungsproblem des oben genannten Unternehmens auf.
- (b) Lösen Sie das Optimierungsproblem aus (a). Wie sieht das optimale Emissionsniveau aus?

Ab jetzt bezeichne e^* das optimale Emissionsniveau des einzelnen Unternehmens.

(c) Berechnen Sie die partielle Ableitung des optimalen Emissionsniveaus e^* nach der Steuer t (d.h. $\partial e^*/\partial t$) und interpretieren Sie das Ergebnis.

Der gesamte Markt bestehe aus n indentischen Unternehmen. Der Regulator lege ein Cap in Höhe von

$$E = n \cdot e^*$$

fest.

- (d) Berechnen Sie das totale Differential dE des Caps.
- (e) Setzen Sie dE = 0 und berechnen Sie dp/dt. Interpretieren Sie das Ergebnis.