

Generalized Hough Transform

16-385 Computer Vision

Hough Circles

Finding Circles by Hough Transform

Equation of Circle:

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

If radius is known: (2D Hough Space)

Accumulator Array A(a,b)

$$(x-a)^2 + (y-b)^2 = r^2$$
variables

parameters $(x-a)^{2} + (y-b)^{2} = r^{2} \qquad (x-a)^{2} + (y-b)^{2} = r^{2}$ variables

Image space

Parameter space

$$(x-a)^2 + (y-b)^2 = r^2$$
variables

$$(x-a)^2 + (y-b)^2 = r^2 \qquad (x-a)^2 + (y-b)^2 = r^2$$
 variables

Finding Circles by Hough Transform

Equation of Circle:

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

If radius is not known: 3D Hough Space!

Use Accumulator array A(a,b,r)

What is the surface in the hough space?

Finding Circles by Hough Transform

Equation of Circle:

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

If radius is not known: 3D Hough Space!

Use Accumulator array A(a,b,r)

What is the surface in the hough space?

Using Gradient Information

Gradient information can save lot of computation:

Edge Location
$$(x_i, y_i)$$

Edge Direction ϕ_i

Assume radius is known:

$$a = x - r \cos \phi$$

$$b = y - r \sin \phi$$

Need to increment only one point in accumulator!!

Can you use Hough Transforms for other objects, beyond lines and circles?

Generalized Hough Transform

Ø-Table

Edge Direction	元 = (れ,べ)
ϕ_{1}	元, 元, 元,
Φ2	元,元。元。
ø:	元: たっ
j.	元",元"

Generalized Hough Transform

Find Object Center (x_c, y_c) given edges (x_i, y_i, ϕ_i)

Create Accumulator Array $A(x_c, y_c)$

Initialize:
$$A(x_c, y_c) = 0 \quad \forall (x_c, y_c)$$

For each edge point (x_i, y_i, ϕ_i)

For each entry \bar{r}_k^i in table, compute:

$$x_c = x_i + r_k^i \cos \alpha_k^i$$

$$y_c = y_i + r_k^i \sin \alpha_k^i$$

Increment Accumulator: $A(x_c, y_c) = A(x_c, y_c) + 1$

Find Local Maxima in $A(x_c, y_c)$

Scale & Rotation:

Use Accumulator Array:

A[xe, ye, S, 07

Use:

$$X_{c} = X_{i} + H_{K}^{i} S \cos \left(x_{K}^{i} + \theta \right)$$

$$Y_{c} = Y_{i} + H_{K}^{i} S \sin \left(x_{K}^{i} + \theta \right)$$

A (xc, yc, s, 0) = A (xc, yc, s, 0) +1.

Do you have to use edge detectors to vote in Hough Space?

A. Train phase:

- 1.Get features
- 2. Store all displacements of feature from center
- B. Test phase:
 - 1. Get features & lookup displacements
 - 2. Vote for center location

Template

A. Train phase:

- 1.Get features
- 2.Store all displacements of feature from center
- B. Test phase:
 - 1. Get features & lookup displacements
 - 2. Vote for center location

Template

A. Train phase:

- 1.Get features
- 2.Store all displacements of feature from center

B. Test phase:

- 1. Get features & lookup displacements
- 2. Vote for center location

Application of Hough Transforms

Detecting shape features

F. Jurie and C. Schmid, Scale-invariant shape features for recognition of object categories, CVPR 2004

Original images

Laplacian circles

Hough-like circles

Which feature detector is more consistent?

Robustness to scale and clutter

Object detection

Index displacements by "visual codeword"

visual codeword with displacement vectors

training image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

Train phase

1. get features

Train phase

2. store displacements

Test phase

The Hough transform ...

Deals with occlusion well?

Detects multiple instances?

Robust to noise?

Good computational complexity?

Easy to set parameters?

