

UNIVERSITÉ DE MONTPELLIER

FACULTÉ DES SCIENCES

Examen final, session 1 Date: 13 janvier 2020 L1 - semestre 1

HLMA101 Algèbre linéaire et analyse 1

Durée de l'épreuve : 3h Documents autorisés : aucun Matériels autorisés : aucun

Le sujet comporte 2 pages et est composé de 8 questions préliminaires et 3 exercices indépendants. La qualité et la précision de la rédaction seront des éléments déterminants de la notation.

Questions préliminaires. Dans les questions Q1 à Q4 (et seulement dans ces questions), aucune justification n'est demandée. Vos réponses doivent être données sur votre copie et pas sur le sujet

- Q1. Donner la table de vérité de l'implication.
- **Q2.** Écrire la négation de l'assertion (P): $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x < y \Rightarrow f(x) < f(y)$.
- Q3. Donner la définition d'une application injective.
- Q4. Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ une application linéaire. Les assertions suivantes sont-elles vraies ou fausses? (Pour cette question, aucune justification n'est demandée.)
 - (a) Si f est injective, alors $n \leq p$.
- (b) Si n = p et si f est injective, alors f est surjective.
- (c) Si $n \le p$ et si f est surjective, alors n = p.
- (d) Si $n \leq p$, alors f est injective.
- (e) Si n = p alors f est bijective.
- (f) Si f est bijective, alors n = p.
- Q5. Les assertions suivantes sont-elles vraies ou fausses? (Justifier.).
- (a) Il existe une fonction $f: \mathbb{R} \to \mathbb{R}$ qui est continue en 0 mais qui n'est pas dérivable en 0.
 - (b) Il existe une fonction $f: \mathbb{R} \to \mathbb{R}$ dérivable sur \mathbb{R} telle que f(-1) = f(1) = 0 et dont la dérivée ne s'annule pas.
 - (c) Si $f: \mathbb{R} \to \mathbb{R}$ admet une limite finie ℓ en $+\infty$ et si pour tout $x \in \mathbb{R}$, f(x) > 0, alors $\ell > 0$.
 - Q6. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction $x \mapsto x^2$. Soit $x_0 \in \mathbb{R}$. Montrer en utilisant seulement la définition de la dérivabilité que f est dérivable en x_0 et que $f'(x_0) = 2x_0$.
 - Q7. Démontrer soigneusement l'énoncé : $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z}, \exists \alpha \in [6, 7[, x = n + \alpha.$
 - Q8. L'ensemble

$$A = \mathbb{N}^* \cup \{ \frac{1}{n} \mid n \in \mathbb{N}^* \}$$

admet-il un maximum? Un minimum? Une borne supérieure? Une borne inférieure? Si oui, les déterminer.

Tournez la page, s.v.p.

Exercice 1 Soit k un nombre réel. On considère le système d'équations (d'inconnues x, y, z):

$$\begin{cases} y + 2kz = 0\\ x + 2y + 6z = 2\\ kx + 2z = 1 \end{cases}$$

Étudier l'existence et l'unicité des solutions en fonction de la valeur de k. (On répondra en particulier aux questions suivantes : pour quelle(s) valeur(s) de k le système admet-il une infinité de solutions? Exactement une solution? Aucune solution?)

Exercice 2 Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire de matrice

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 0 & 2 \\ -1 & 1 & -1 \end{pmatrix}.$$

- (a) Calculer le noyau de f (on en donnera une représentation paramétrique).
- (b) Donner une représentation paramétrique de l'image de f, puis un système d'équations cartésiennes qui caractérise Im f.
- (c) Calculer A^2 et A^3 , puis montrer par récurrence que $A^n = A^2$ pour tout entier $n \ge 2$.
- (d) Montrer que les applications $f \circ f \circ f \circ f$ et $f \circ f$ de \mathbb{R}^3 dans \mathbb{R}^3 sont égales.

Exercice 3 Soit f la fonction d'une variable réelle définie par la formule

$$f(x) = \frac{x^2 - 1}{2x - 1}.$$

- (a) Déterminer les domaines de définition, de continuité et de dérivabilité de f. Calculer sa dérivée.
- (b) Déterminer les limites de f aux bornes de son domaine de définition.
- (c) Étudier les variations de f.
- (d) Étudier la convexité de f.
- (e) Montrer que f admet une asymptote oblique en $+\infty$ et en $-\infty$ et une asymptote verticale dont on déterminera les équations.
- (f) Préciser la position du graphe de f par rapport à l'asymptote oblique, puis tracer l'allure du graphe.
- (g) On note maintenant g la rescriction de f à $]\frac{1}{2}, +\infty[$. Justifier l'existence d'une réciproque à $g:]\frac{1}{2}, +\infty[\to \mathbb{R}$. On notera $g^{-1}:\mathbb{R}\to]\frac{1}{2}, +\infty[$ cette réciproque.
- (h) Justifier que g^{-1} est dérivable sur \mathbb{R} . (On ne demande pas de calculer la dérivée ici.)
- (i) Calculer $g^{-1}(1)$ et $(g^{-1})'(1)$ puis donner l'équation de la tangente au graphe de g^{-1} au point d'abscisse $x_0 = 1$.