Structural Loading of Cross Deck Connections for Trimaran Vessels

by

Jason L. Rhoads

B.S. Nuclear Engineering B.S. Materials Science & Engineering University of California, Berkeley, 1995

Submitted to the Department of Ocean Engineering and the Department of Civil and Environmental Engineering in Partial Fulfillment of the Requirements for the Degrees of

Naval Engineer

and

Master of Science in Civil and Environmental Engineering

at the Massachusetts Institute of Technology

June 2004

© 2004 Jason L. Rhoads. All rights reserved.

The author hereby grants to MIT and the U.S. Government permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part.

Signature of Aut	hor	rols
S		Department of Ocean Engineering and the
Certified by	David V Bu	Department of Civil and Environmental Engineering May 7, 2004
Certified by	Jetome	David V. Burke, Senior Lecturer Department of Ocean Engineering Thesis Supervisor
\$	Jerome J. Co	nnor, Professor of Civil and Environmental Engineering
Accepted by	Her L'	Department of Civil and Environmental Engineering Thesis Reader
	Heidi Nepf, Ass	ociate Arofessor of Civil and Environmental Engineering
Accepted by	MILL	Chairman, Department Committee on Graduate Studies Department of Civil and Environmental Engineering
		Michael Triantafyllou, Professor of Ocean Engineering
·		Chairman, Department Committee on Graduate Studies
		Department of Ocean Engineering

DISTRIBUTION STATEMENT A

Approved for Public Release Distribution Unlimited

20040830 035

Page Intentionally Left Blank

Structural Loading of Cross Deck Connections for Trimaran Vessels by Jason L. Rhoads

Submitted to the Department of Ocean Engineering and the Department of Civil and Environmental Engineering in Partial Fulfillment of the Requirements for the Degrees of

Naval Engineer

and

Master of Science in Civil and Environmental Engineering

ABSTRACT

This work investigates the fundamental relationships of wave loading on cross deck structures for trimaran vessels. In contrast with a monohull ship, trimaran vessels experience several possible structural loading cases including: longitudinal bending, transverse bending, torsional bending, spreading and squeezing of hulls, inner and outer hull slam pressures, wet deck slam pressures, loading from ship's motions, and whipping of slender hulls. This work investigates wave loading cases that result in transverse and torsional bending of the cross deck structure.

The wave loading cases investigated include: side hull troughing and cresting in longitudinal waves, side hull torsion in longitudinal waves, and transverse hogging and sagging. For each of these load cases, a design load using a fully statistical sea state was derived using an analytical model of a trimaran represented by rigidly connected box barges. The design loadings with a reliability index of 5 for almost 500 trimaran configurations were calculated varying main hull length, side hull length, side hull transverse placement, and side hull longitudinal placement. The design loadings were curve fit to a fourth order polynomial in the three independent variables.

The load predictions of the analytical box model of a trimaran were applied to a trimaran vessel with a realistic hull form using the finite element ship structural analysis program MAESTRO. Given the number of approximations and assumptions in the analytical model, the forces predicted by analytical model agreed closely with the finite element model's results.

The fitted curve of design loadings allows an initial design stage loading estimate for cross deck structural loading, given general characteristics of length and spacing of a trimaran's hulls. This estimate of structural loading combined with other characteristics of good trimaran design including stability, roll, and resistance characteristics will aid in optimizing an overall trimaran ship design.

Thesis Supervisor: David V. Burke

Title: Senior Lecturer, Department of Ocean Engineering

Thesis Reader: Jerome J. Connor

Title: Professor of Civil and Environmental Engineering

Table of Contents

Chapter 1	Introduction	
1.1	Thesis and general approach	
1.2	Background	11
Chapter 2	General Trimaran Characteristics	12
Chapter 3	Theory	14
3.1	Wave Loading CasesLongitudinal Bending	14
3.1.1		
3.1.2	Coincident Side Hull Troughing and Cresting in Longitudinal Waves	
3.1.3	Side Hull Torsion in Longitudinal Waves	16
3.1.4	Transverse Bending Other Possible Loading Cases	18
3.1.5	Other Possible Loading Cases	19
Chapter 4	Analysis Tools Analytical Trimaran Model Analytical Model Parts	21
4.1	Analytical Trimaran Model	21
4.1.1	Analytical Model Parts	22
4.2	Finite Flement/ MAESTRO Analysis	41
4.2.1	Finite Element/ MAESTRO Analysis	41
4.2.2	Statistically Significant Waves for the MAESTRO Model	44
4.2.3	MAESTRO Structural Failure Modes	47
4.2.4	MAESTRO Structural Failure Modes	49
4.2.5	MAESTRO Verification of Analytical Trimaran Model Predicted Forces	51
Chapter 5	Results	
5.1	Statistical Analysis of Analytical Trimaran Model Using JMP	52
5.1.1	Analytical Model Results for Longitudinal Side Hull Troughing	
5.1.2		
5.1.3	Analytical Model Results for Longitudinal Positive Phase Twisting	
5.1.4	Analytical Model Results for Longitudinal Negative Twisting	
5.1.5		
5.1.6		
5.2	Comparison and Discussion of Analytical and MAESTRO Results	
Chapter 6	Conclusions	
Chapter 7	Recommendations for Future Work	66
List of Refere	nces	67
A A A	MathCAD Analytical Model	71

Appendix B.	MathCAD Analytical Results Tables	83
Appendix C.	Wave Height Matching Reliability Index of Five	109
Appendix D.	Fit Parameters for Analytical Thesis Model	111
Appendix E.	Comparison of Results for Longitudinal Troughing	117
Appendix F.	Comparison of Results for Longitudinal Cresting	127
Appendix G.	Comparison of Results for Longitudinal Positive Twisting	137
Appendix H.	Comparison of Results for Longitudinal Negative Twisting	147
Appendix I.	Comparison of Results for Transverse Hogging	157
Appendix J.	Comparison of Results for Transverse Sagging	167

List of Figures	
	9
Figure 1 – RV Triton [2]	15
Figure 2 I angitudinal Creeting with Side Hulls Amidehing	15
Figure 4 – Longitudinal Troughing with Side Hulls Aft	16
Figure 5 – Longitudinal Troughing with Side Hills Amidships	In
Figure 6 – Negative Phase Twisting with Side Hulls Aft	17
Figure 7 – Positive Phase Twisting with Side Hulls Aft	17
Figure 7 – Positive Phase Twisting with Side Hulls Aft	17
Figure 9 – Transverse Sagging	18
Figure 10 – Transverse Hogging	19
Figure 11 – Analytical Model Coordinate System	28
Figure 12 - Transverse Sagging Applying Upward Buoyant Force on Cross Structure	
Figure 13 – Positive Phase Twisting with Side Hulls Aft	
Figure 14 – Analytical Model Position of Calculated Forces	35
Figure 15 – Profile View of 100m Trimaran Balanced on a Wave of Long Wavelength	
Figure 16 – Starboard Bow Perspective of a MAESTRO Trimaran Half Model	
Figure 17 – Aft Body Plan View of a MAESTRO Trimaran Half Model with Water Line	
Figure 18 – Port Bow Perspective of a MAESTRO Trimaran Half Model	
Figure 19 – Reliability Index Wave Heights of 5 verses Wavelength	
Figure 20 – Organizational Structure of a General MAESTRO Model [20]	
Figure 21 – Organization for the Specific MAESTRO Model Analyzed	
Figure 22 – MAESTRO Model Organization of Trimaran Cross-Deck Structure	
Figure 23 – Longitudinal Wave Side Hull Troughing Independent Variable Interaction	
Figure 24 – Longitudinal Wave Side Hull Cresting Independent Variable Interaction	
Figure 25 – Longitudinal Wave Side Hull Positive Twisting Independent Variable Interaction	
Figure 26 – Longitudinal Wave Side Hull Negative Twisting Independent Variable Interaction	
Figure 27 – Transverse Sagging Wave Side Hull Independent Variable Interaction	
List of Tables	
Table 1 – Principal characteristics of UCL trimaran studies [1]	10
Table 2 – Additional characteristics of UCL trimaran studies	. 13
Table 3 –Structural Loading from sections 3.1.2, 3.1.3, and 3.1.4	. 21
Table 4 – Relevant Trimaran Parameters Affecting Design Loading.	
Table 5 - Joint Probability Mass Table of Significant Wave Height and Period	
Table 6 – Joint Probability Mass Table of Significant Wave Height and Period	
Table 7 – Joint Probability of True Wave Height and Period (3-11 second periods)	4 1 4
Table 8 – Joint Probability of True Wave Height and Period (12-22 second periods)	
Table 9 – Deep Water Wavelengths	. 21
Table 10 – Parameters varied for Trimaran Design Space	. 39
Table 11 – Parameters Held in Fixed Relations for Trimaran Design Space	
Table 12 – Particular Dimensions of Real Ship Model Used	.41
Table 13 – Analytical Model Predictions for Comparison to MAESTRO	
Table 14 – Equivalent Wave Height for Reliability Index of 5	
Table 15 – Panel Failure Modes Table 16 – Frame Failure Modes	
Lable to - crame calinte Modes	4/

	rder Failure Modes	47
	lequacy Parameters with analytically Predicted Forces (Longitudinal Trough	
	lequacy Parameters with MAESTRO Wave Balance (Longitudinal Trough	
	ructural Loading from Sections 3.1.2, 3.1.3, and 3.1.4	
Table 21 – Re	levant Trimaran Parameters Affecting Design Loading	64
List of Ter	rms	
Dist of Tel		,
$\mathbf{B_m}$	main hull's beam	
\mathbf{B}_{s}	side hull's beam	
$\mathrm{FB}_{\mathrm{lg}}$	vertical force on cross-structure in longitudinal waves (troughing and cre	sting)
FB_{tr}	vertical force in transverse waves (transverse hogging/sagging)	
$\mathbf{F_m}$	main hull's freeboard (also side hull freeboard)	*
g	gravitational constant	•
\mathbf{H}_{s}	observed significant wave height	
$h_{\mathbf{w}}$	actual wave height	
$H_{ m wave_lg}$	longitudinal wave amplitude	
H_{wave_tr}	transverse wave amplitude	
$\mathbf{L}_{\mathbf{m}}$	main hull's length	
\mathbf{L}_{s}	side hull's length	
$\mathrm{MB}_{\mathrm{lg}}$	moment on cross-structure in longitudinal waves (longitudinal twisting)	
$ abla_{ m still}$	original still water displacement	
p	index of the wave height	•
\mathbf{p}_{ray}	Rayleigh probability distribution	
\mathbf{q}	index of the wavelength	
t	index of the observed significant wave height	
\mathbf{T}	wave period	
T_{m}	main hull's draft	
Trim _{still}	original still water trim (assumed to be zero)	•
T_s	side hull's draft	
X	longitudinal position	
X_{cf}	longitudinal position of the entire ship's center of floatation	
X_s	longitudinal position of the side hull with respect to main hull amidships	
У	transverse position	•
\mathbf{Y}_{s}	transverse position of the side hull with respect to main hull centerline	
ΔΤ	change in heave of the ship due to the wave	-
$\Theta_{ m pitch}$	change in pitch of the ship due to the longitudinal wave	
λ	wavelength of the wave	
· m	phase of the wave applied for each loading condition	

Page Intentionally Left Blank

Chapter 1 Introduction

Over recent decades a growing demand for higher speed ships has led to the development of several new hull form concepts. These hull forms include catamarans, surface effects (SES) ships, small waterplane twin-hull (SWATH) ships, pentamaran, and trimaran ships to name a few. Of these 'new' hull forms the multi-hull vessel's origins can be traced to back several centuries to many seagoing peoples with outrigger canoes. In more recent times the multi-hull ships have been used in several racing, pleasure, and commercial vessels.

The benefits of the trimaran hull form have been studied extensively over the past several years at the University College London (UCL) [1]. In 2000 the RV TRITON, Figure 1 below, a trimaran demonstrator project for the United Kingdom's Royal Navy, was launched to test the trimaran hull form [2].

Figure 1 – RV Triton [2]

While much work in the area of trimaran hull form design has been accomplished by the UCL studies, the structural loading experienced by the cross-deck structure of the trimaran hull form is still largely unknown. Classification societies such as the American Bureau of Shipping (ABS) [3] or Det Norske Veritas (DNV) [4] currently have design codes for a traditional monohull's design loadings in terms of the ship's relevant dimensions and a sea-state coefficient dependent on ships dimensions to provide sufficient design margin for the life of a ship.

However, currently no such design codes exists for trimarans in general or specifically their cross-deck structures. The goal of this work is to be able to state similar design loadings based on the relevant parameters of a trimaran ship.

The trimaran's structural loading will depend strongly on the longitudinal extent as well as the longitudinal and transverse location of the outer hulls. These parameters of the outer hulls, by necessity, depend on the operational requirements and uses of the ship. In contrast with a conventional mono-hull ship, the structural loading of the trimaran potentially involves several additional loading cases not experienced by mono-hull ships. These loading cases may include longitudinal bending, transverse bending, torsional bending, spreading and squeezing of hulls, inner and outer hull slam pressures, wet deck slam pressures, loading from ship's motions, and whipping of slender hulls.

1.1 Thesis and general approach

Of the above-mentioned loading cases this work will focus on the structural loading in the longitudinal, transverse, and torsional wave loading cases that affect the cross-structure between the main and outer hulls of a trimaran. As previously mentioned, the loading of the cross structure between the hulls of a trimaran will depend strongly on the longitudinal extent and location of the trimaran's side hulls. This work will quantify the effects of various outer hull placements and sizes on the trimaran's cross-deck structural loading. Once the structural loading as functions of placement and size are determined, this information could be used in conjunction with other trimaran design parameters such as stability, roll, and resistance characteristics to optimize an overall trimaran ship design.

The approach for this study will be to first determine analytical approximations to the trimaran cross-deck structural loading using simple and symmetric box-type hull shapes for each of the three hulls. These analytical solutions will account for worst-case statistical sea state for various outer hull placement and size. Next these analytical approximations will be compared with quasi-finite element solutions obtained using the ship structural design program Method for Analysis Evaluation and Structural Optimization (MAESTRO) on hull forms more closely resembling actual hulls of trimarans. Comparison of these two approaches will provide an estimate the validity of the analytical approximations for various combinations of sea state and different trimaran configurations of placement and size of the outer hulls.

1.2 Background

The openly available previous work in the area of trimaran structural design to date has been fairly limited in scope. In general, the previous studies have assumed a worst case deterministic loading level in a few loading cases for specific designs of trimarans. The foci of these studies have been to investigate the cross-structure contribution to primary hull bending and transverse cross-structure bending in rolling conditions. The results of these studies are included in references [5] through [10].

The first of these studies examined the contribution from the side hull and cross deck structure to overall ship structural performance in longitudinal bending for both hogging and sagging [5]. The next study involving trimaran structures focused on performing a detailed structural point design including scantling sizes to estimate the structural weight fraction of a specific frigate-sized trimaran as compared to a monohull [6]. The third study again investigated the contribution of side hull and cross deck structure to the resistance of primary hull bending in hogging and sagging [7]. The next study [8] involved a reevaluation of the contribution to primary bending resistance from the side hulls and cross structure contained in references [5] and [7] with a more refined model of the trimaran hull form.

While references [5] through [8] dealt primarily with longitudinal loading in primary bending, reference [9] investigated the trimaran's structural behavior under transverse loading due to rolling the trimaran's side hulls to complete submergence or broach. The last study in trimaran structural design [10] investigates low weight alternatives to cross structure in loading condition cause by a ship rolling its hulls to complete submergence or broach.

The previous work on trimaran structural design to this point has only scratched the surface of the possible relevant structural design issues of this new hull form. While the previous work has sought to characterize a few deterministic loading scenarios for a small range of ships, this work will characterize the structural wave loading of the trimaran's cross-deck structure subjected to a statistical sea state for a variety of trimaran configurations and sizes.

Chapter 2 General Trimaran Characteristics

The trimaran hull form has been studied extensively over the past several years at the University College London. The results of these studies have produced several variants of the trimaran ship. Some of the relevant characteristics of those designs are shown below in Table 1.

Table 1 - Principal characteristics of UCL trimaran studies [1]

	Small	Offshore					,					
:	Support Vessel		RV TRITON		Canadian Ferry	Corvette	ASW Frigate	ASW Frigate	AAW Destroyer	Cruise Liner	LPH	Small Carrier
Displacement (tonne)	234	514	1117.6	. 1130	1350	1777	4200	4300	4978	9050	11850	16657
Extreme Length (m)	61.04	78.8	98	105	120	112	154.7	156.8	168.6	192	191.5	231.6
Extreme Beam (m)	10.85	13.7	22.5	19.2	25	20	27.5	25.9	25	28	40	43
Depth (m)	4.3	8.5	9	8.5	8	8.85	10.23	12.1	11.1	13.2	23.35	23.5
Main Hull LWL (m)	59.8	76.8	91	99	115	106.7	148.7	149.8	151.3	178.3	177.2	220
Main Hull Beam WL (m)	4.2	4.2	6.848	6.8	6.5	8.5	10.4	10.8	10.8	13	13.5	14.5
Main Hull Draft WL (m)	2.1	3.4	3.2	3.4	3.2	4.25	5.2	5.3	4.8	6.4	8.74	. 8
Side Hull Displacement	4.20%	3.10%	3.70%	4.00%	3.80%	4.30%	5.50%	3.70%	4.70%	3.00%	5.00%	6.80%
Side Hull LWL (m)	19.9	28	34.2	35	30	50	36	56.9	65	71.3	65.2	.82
Side Hull Beam WL (m)	1.06	0.74	1.45	1.5	2	2.7	3	2	2.5	2.8	3.65	4
Side Hull Draft (m)	0.9	2.1	2.31	2	1.5	1.35	3.6	2.8	2.7	2.6	4.37	6.5
Max Speed (knots)	25	25	20	38	36	30	28	28	28	26	18	27
Ps (MW)	2.14	4.3	4	20	20	20	24	26	29	31.5	16.8	70

The general form of the trimaran in these balanced trimaran ship designs is determined by several factors including stability, roll, and resistance characteristics of a trimaran ship. In general the length of the side hulls is determined by intact and damaged stability requirements [1]. The motion characteristics for trimarans have been examined [1]. Another study indicates that outer hull waterplane area strongly affects roll motion [11]. Favorable resistance characteristics of trimaran outer hull placement have also been studied [12].

From the trimaran characteristics of the UCL designs in Table 1, other important characteristics of balanced trimaran ship designs were calculated or derived with the results shown below in Table 2.

Table 2 - Additional characteristics of UCL trimaran studies

	Small Support Vessel		RV TRITON		Canadian Ferry	Corvette	ASW Frigate	ASW Frigate	AAW Destroyer	Cruise Liner	LPH	Small Carrier
Main Hull Relations												
Main Hull L/B	14.24	18.29	13.29	14.56	17.69	12.55	14.30	13.87	14.01	13.72	13.13	15.17
Main Hull B/T	2.00	1.24	2.14	2.00	2.03	2.00	2.00	2.04	2.25	2.03	1.54	1.81
Main Hull D/T	2.05	2.50	2.81	2.50	2.50	2.08	1.97	2.28	2.31	2.06	2.67	2.94
Main-Side Hull Relations												
Side/Main Hull L/L	0.33	0.36	0.38	0.35	0.26	0.47	0.24	0.38	0.43	0.40	0.37	0.37
Side/Main Hull T/T	0.43	0.62	0.72	0.59	0.47	0.32	0.69	0.53	0.56	0.41	0.50	0.81
Side/Main Hull B/B	0.25	0.18	0.21	0.22	0.31	0.32	0.29	0.19	0.23	0.22	0.27	0.28
Side /Main hull y/B	1.17	1.54	1.54	1.30	1.77	1.02	1.18	1.11	1.04	0.97	1.35	1.34
Side Hull Relations												
Side Hull L/B	18.77	37.84	23.59	23.33	15.00	18.52	12.00	28.45	26.00	25.46	17.86	20.50
Side Hull B/T	1.18	0.35	0.63	0.75	1.33	2.00	0.83	0.71	0.93	1.08	0.84	0.62

The trimaran characteristics shown in Table 2 will be used later in section 4.1 for development of the analytical trimaran model to set proper limits governing the range of characteristics for investigation of the applicable trimaran design space.

Chapter 3 Theory

The most accurate way to determine a ship's structural loading is to perform a fully dynamic analysis of the ship in a completely statistical sea state accounting for added mass and damping of the ocean in relation with the ship's motions with provisions to add the effects of the ship's forward speed and heading. However, even with today's advanced computational capabilities, this level of analysis is prohibitive for an investigation of the basic structural loading attributes of a new hull form such as the trimaran. Therefore, the emphasis of this work will study a static analysis of the wave loading of a trimaran, which often is sufficient as a first estimate of structural loading [13].

The cross-deck structural wave loading of the trimaran is affected by two major considerations: the longitudinal and transverse placement of the outer hulls, and the waterplane area (length and beam) of the outer hulls. How each of these outer hull characteristics affect each loading case is detailed below.

3.1 Wave Loading Cases

3.1.1 Longitudinal Bending

The longitudinal bending loading of a traditional monohull ship is generally characterized by two loading cases: hogging and sagging. Similarly, the longitudinal bending loads exerted on the trimaran's cross-deck structure might be expected to be described in terms of the hogging and sagging cases. However, in the case of a trimaran there can be two cases of hogging or sagging. These cases include hogging or sagging of the main hull as well as that of the outer hulls. Longitudinal bending loads in hogging and sagging of the side hulls was investigated in [8] and found to be virtually insignificant. While hogging and sagging of the main hull must be designed for in the overall structural design of a trimaran, the primary bending conditions of the main hull of a trimaran is not significantly different than that of a conventional monohull ship. Additionally, the contribution to resistance of primary bending of the ship due to the addition of the trimaran's cross-structure was investigated with the results in references [5] through [8], and hence the main hull longitudinal hogging and sagging problem is not further investigated in depth in this work.

3.1.2 Coincident Side Hull Troughing and Cresting in Longitudinal Waves

While the longitudinal bending forces incurred from the side hulls experiencing a wave of a wavelength that can produce hogging or sagging on the side hulls are not significant [8], the possibility of the wave crest or trough coinciding with the side hull length can create a significant vertical structural loading. This loading is due to the coincidence of location of the side hulls with a trough or a crest of a wave. While specific wavelengths can create a significant vertical force on the side hulls due to broaching or immersing the side hulls, the overall structural response of the entire ship is minimal compared with the wavelengths associated with primary bending in the trimaran's main hull hogging or sagging. These conditions are shown below in Figure 2 through Figure 5 with the hulls of the trimaran represented by box barges.

Figure 2 – Longitudinal Cresting with Side Hulls Aft

Figure 2 through Figure 5 show profile views of various possible configurations of coincident side hull troughing and cresting for a trimaran of typical proportions as determined from Table 2. The dotted lines show the still water position of the trimaran and waterline, the dashed line shows the wave, and the solid lines show the trimaran's response to the wave.

Figure 3 – Longitudinal Cresting with Side Hulls Amidships

Figure 4 - Longitudinal Troughing with Side Hulls Aft

Figure 5 - Longitudinal Troughing with Side Hulls Amidships

In contrast with the traditional primary bending of hogging and sagging, coincident side hull troughing and cresting creates a vertical loading that increases and decreases the contribution of side hull buoyancy. For example, as can be seen in Figure 5 above, the main hull experiences a partial sagging condition, while the trough of the wave drops out from beneath the side hulls creating a vertical downward force on the cross-structure due to the loss of buoyancy of the side hulls. The troughing situation is especially relevant in the case where the outer hulls are relatively short compared to the main hull. The situation is similar for a cresting wave creating an upward vertical force on the outer hulls due to increased immersion and buoyancy.

The coincident side hull troughing and cresting conditions arise from the configuration of the trimaran's side hulls not being the same length as the main hull. Depending on the length of the main and side hulls, the side hulls could experience radical changes in their buoyant support and contribution while the main hull is relatively unaffected from the view point of a traditional primary bending conditions.

3.1.3 Side Hull Torsion in Longitudinal Waves

As with the case of side hull troughing and cresting, the unequal lengths of the hulls introduces a torsional structural loading on the side hull and cross-deck connection which is not

experienced in traditional monohull ship designs. The side hull torsional loading can be seen below in Figure 6 through Figure 8.

Figure 6 - Negative Phase Twisting with Side Hulls Aft

Figure 7 - Positive Phase Twisting with Side Hulls Aft

Figure 6 through Figure 8 show a profile view of various possible configurations of longitudinal torsional loading for a trimaran of typical proportions as determined from Table 2. The dotted lines show the still water position of the trimaran and waterline, the dashed line shows the wave, and the solid lines show the trimaran's response to the wave.

The longitudinal side hull torsion loading arises from similar conditions as that of side hull troughing and sagging. For certain side hull lengths and corresponding wavelengths produced by a particular sea-state, the side hull and cross-deck structure will experience large torsional forces while the main hull is relatively structurally unaffected when compared to its worst case loading conditions.

Figure 8 – Twisting with Side Hulls Amidships

3.1.4 Transverse Bending

A traditional monohull ship's structural loading is primarily characterized by the longitudinal bending cases of sagging and hogging. However, the form of the trimaran with its outer stabilizing hulls necessarily involves two new cases of structural loading in transverse bending that is not a concern with a traditional monohull design. These could probably be best described as "transverse hogging" and "transverse sagging." The transverse sagging load case is shown below in Figure 9, while transverse hogging is shown in Figure 10. Figure 9 and Figure 10 show an end view of a typical trimaran ship represented with box hulls.

Figure 9 - Transverse Sagging

The dotted lines in the figures show the original still water position of the trimaran, and the heavy lines show the effect on the ship in a transverse beam wave condition. Like the loading conditions previously mentioned, the transverse beam wave condition gives rise to a situation where the side hulls are again gaining or losing buoyancy as compared to the still water case. This change in buoyancy leads to vertical forces applied to the trimaran's cross-deck structure. Depending on the trimaran's outer hull placement and the wavelengths of the beam waves encountered, the side hulls could be completely broached from or immersed in the water.

Figure 10 - Transverse Hogging

The "transverse hogging" case in Figure 10 is in reality an unstable condition, since the trimaran in this loading condition will most likely roll until one of its outer hulls rests in the water. However, the transverse hogging has been presented in its unstable condition because it is equivalent to the limiting load case where the outer hull is completely broached from the water.

3.1.5 Other Possible Loading Cases

The structural loading conditions outlined in sections 3.1.2, 3.1.3, and 3.1.4 above only take into account the limited scenarios where the wave front direction is either completely in a head seas or beam seas orientation. Obviously, the majority of the wave fronts experienced by any ship in its service life time will in general be at some oblique angle to the ship's heading. This oblique angle will contain some of the characteristics of the load cases outline above with additional hydrodynamic forces tending to squeeze and spread the hulls in the transverse direction.

In addition to the transverse hydrodynamic forces, other dynamic loading effects due to the ship's speed and heading will also need to be accounted for to perform a complete analysis. While these other structural loadings and effects are important to the final structural design and integrity of the completed trimaran ship, the complexity involved in accounting for each effect is

staggering. For the scope of this work, investigating the basic loading parameters, the structural loading conditions of coincident side hull troughing and cresting, side hull longitudinal torsion, and transverse hogging/sagging will be studied as to describe the loading conditions to which a trimaran's cross-deck structure is subjected.

Chapter 4 Analysis Tools

4.1 Analytical Trimaran Model

Over the course of this research almost 40 versions of analytical trimaran models were developed with each version adding successively more functionality and detail. However, the core of the analytical thesis model is that it approximates a trimaran as three rigidly connected "box barges" of appropriate dimensions obtained from Table 2. The analytical model then statically balances the trimaran on a wave and calculates the load forces, as described in section 3.1, applied to the cross-deck structure between the hulls. In this section the details of the final analytical thesis model will be discussed. Specific equations from the model will be provided in 0Appendix A. While any programming language would have been perfectly acceptable computational tool, the MathCAD program was used to perform the calculations for the analytical model due to its visually attractive mathematical interface.

Classification societies such as the American Bureau of Shipping (ABS) [3] or Det Norske Veritas (DNV) [4] often state design codes for ships strength in terms of the ship's relevant dimensions and a sea-state coefficient dependent on ships dimensions to provide sufficient design margin for the life of a ship. The goal of the analytical thesis model is to be able to state similar design loadings based on the relevant parameters of a trimaran ship. The design loadings obtained for the load cases described sections 3.1.2, 3.1.3, and 3.1.4 are shown below in Table 3 while the relevant design parameters or the trimaran ship are shown in Table 4.

Table 3 -Structural Loading from sections 3.1.2, 3.1.3, and 3.1.4

FB_{lg}	the vertical force on cross-structure in longitudinal waves (troughing and cresting)
MB_{lg}	the moment on cross-structure in longitudinal waves (longitudinal twisting)
FB _{tr}	the vertical force in transverse waves (transverse hogging/sagging)

Table 4 - Relevant Trimaran Parameters Affecting Design Loading

B_{m}	the main hull's beam
L _m	the main hull's length
T_{m}	the main hull's draft
F _m	the main hull's freeboard (also side hull freeboard)
Bs	the side hull's beam
L _s	the side hull's length
Ts	the side hull's draft
X _s	the longitudinal position of the side hull wrt main hull amidships
Y _s	the transverse position of the side hull wrt main hull centerline

4.1.1 Analytical Model Parts

The analytical model used for this work consists of two major components. These are the calculation of the ships motions and forces and the calculation of the representative sea states.

Each part is described below with its corresponding equation provided in Appendix A.

4.1.1.1 Entry of Statistical Sea State

A joint frequency table in both wave period and significant wave height for the northern North Atlantic Ocean was obtained from [14]. This table was converted to a joint probably table whose results are shown below in Table 5 and Table 6. This joint probability table of wave height and period was used for a statistical representation of the most severe sea state in which the trimaran hull form would be subjected. The data represented in Table 5 and Table 6 is often approximated with well known distributions such as the Brentschneider or other spectra. However, these spectra often described in only a few parameters and do not always fully capture the true nature of the joint probability of the sea state in the wave height and wavelength parameters. Therefore, the observed tabular data was utilized.

Table 5 - Joint Probability Mass Table of Significant Wave Height and Period

Spectral Peak Period (s)

							A11 1 0110 G	(-/			·
		3	4	5	6	7	- 8	9	10	11	
	0.5	0.0006	0.004	0.0106	0.0157	0.0163	0.0136	0.0098	0.0064	0.0039	
	1.5	9E-05	0.0021	0.0123	0.0322	0.0511	0.0581	0.0528	0.041	0.0285	+ 3.1
	2.5	0	8E-05	0.0015	0.0083	0.0229	0.039	0.0471	0.0446	0.0353	ŕ
E	3.5	0	0	6E-05	0.0008	0.0048	0.0137	0.0241	0.0296	0.028	
Ħ	4.5	0	0	0	4E-05	0.0006	0.0031	0.009	0.0156	0.0188	
Height	5.5	0	0	0	0	3E-05	0.0004	0.0021	0.0057	0.0095	
9	6.5	0	: 0	0	0	0	2E-05	0.0003	0.0014	0.0035	
Wave	7.5	0	0	0	0	0	0	2E-05	0.0002	0.0009	
<u>+</u>	8.5	0	.0	0	0	0	- 0	0	2E-05	0.0001	
gu	9.5	0	0	0	0	0	0	0	0	2E-05	4.4
Significant	10.5	0	0	0	0	0	0	0	0	0	. b
Sig	11.5	0	0	0	0	- 0	0	0	0	0	
-	12.5	0	0	0	0	0	0	0	0	0	
	13.5	0	0	0	0	0	_ 0	0	0	0	
	14.5	0	0	0	0	0	0	0	0	0	
	Who	re each w	ava haight	indicated i	o the cent	rofolm	ator rongo	of haiahta			

Where each wave height indicated is the center of a 1 meter range of heights

Table 6 - Joint Probability Mass Table of Significant Wave Height and Period

Spectral Peak Period (s)

_											
. [12	13	14	15	16	17	18	19	21	22
	0.5	0.0023	0.0013	0.0007	0.0004	0.0002	0.0001	7E-05	4E-05	2E-05	2E-05
*	1.5	0.0182	0.011	0.0063	0.0035	0.0019	0.001	0.0006	0.0003	0.0002	0.0002
	2.5	0.0245	0.0154	0.009	0.005	0.0026	0.0013	0.0007	0.0003	0.0002	0.0001
\mathbb{E}	3.5	0.0216	0.0144	0.0085	0.0046	0.0023	0.0011	0.0005	0.0002	1E-04	7E-05
펉	4.5	0.017	0.0123	0.0075	0.004	0.0019	0.0008	0.0003	0.0001	5E-05	3E-05
Height	5.5	0.0107	0.0088	0.0057	0.0031	0.0014	0.0006	0.0002	7E-05	2E-05	1E-05
<u>ө</u>	6.5	0.0053	0.0053	0.0039	0.0022	0.001	0.0004	0.0001	4E-05	1E-05	0
Wave	7.5	0.002	0.0026	0.0023	0.0014	0.0006	0.0002	7E-05	2E-05	0	0
<u>ا ک</u>	8.5	0.0005	0.001	0.0011	0.0008	0.0004	0.0001	4E-05	1E-05	0	0
Significant	9.5	0.0001	0.0003	0.0004	0.0004	0.0002	8E-05	2E-05	1E-05	0	0
nji.	10.5	2E-05	7E-05	0.0001	0.0002	0.0001	5E-05	1E-05	0	0	0
Sig	11.5	0	1E-05	4E-05	6E-05	5E-05	2E-05	1E-05	0	0	0
	12.5	0	0	1E-05	2E-05	2E-05	1E-05	0	0	0	0
	13.5	0	0	0	0	1E-05	0	0	0	0	0
-	14.5	0	0	0	0_	0	0	0	0	0 -	0
	When a should highlight adjusted in the control of 1 materials and a file in the										

Where each wave height indicated is the center of a 1 meter range of heights

4.1.1.2 Conversion of Statistical Sea State

The data represented in Table 5 and Table 6 give the joint probability of a sea state having a given significant wave height and period. However, the data given is for short term observations of a narrow-banded, fully developed sea state reported in terms of significant wave height. However, significant wave height is a one parameter descriptor of the probability distribution for a fully developed sea state. The probability of the peak values of the actual wave amplitudes for a fully developed sea state are described by a Rayleigh distribution with significant wave height as the distribution function parameter. Correspondingly, each entry of Table 5 and Table 6 actually describes the joint probability of a certain Rayleigh distribution occurring. Since the limiting design of the trimaran is concerned with an overall probability of the wave loading conditions encountered, the data in Table 5 and Table 6 was converted to represent an absolute joint probability of actual wave height verses wave period in lieu of significant wave height.

Using [15], equation (1) was derived. Equation (1) is the Rayleigh probability distribution of actual wave height in terms of significant wave height.

$$p_{\text{ray}}(h_{w},t) = 4 \cdot \frac{h_{w}}{\left(H_{s_{t}}\right)^{2}} \cdot e^{-2\left[\frac{h_{w}^{2}}{\left(H_{s_{t}}\right)^{2}}\right]}$$

(1)

Where:

 p_{ray} – the Rayleigh distribution probability as functions of wave height and the index t

hw - the actual wave height

H_s - the observed significant wave height

t - the index of the observed significant wave height in Table 5 and Table 6

Using the Rayleigh probability distribution in equation (1), for each significant observed wave height, the probability of being in each wave height range of Table 5 and Table 6 was calculated by integrating the Rayleigh distribution in one meter segments. The result of the integral was multiplied by the joint probability shown in Table 5 and Table 6 and then added to the other associated probabilities affecting that wave height region. The result is shown in below in Table 7 and Table 8.

Table 7 – Joint Probability of True Wave Height and Period (3-11 second periods)

Spectral Peak Period (s)

					occiiai i c	W. C	. \-/			
	3	4	5	6	7	8	9	10	11	
0.5	0.0006	0.0053	0.0183	0.0371	0.0535	0.0609	0.0584	0.0492	0.0372	
1.5	3E-05	0.0008	0.0054	0.0163	0.0315	0.045	0.0517	0.0502	0.0424	
2.5	3E-06	8E-05	0.0007	0.003	0.0081	0.0152	0.0218	0.0252	0.0245	
3.5	3E-08	5E-06	9E-05	0.0006	0.002	0.0049	0.0085	0.0115	0.0128	
4.5	0	5E-07	1E-05	1E-04	0.0005	0.0014	0.0031	0.005	0.0063	
5.5	0	3E-08	1E-06	2E-05	0.0001	0.0004	0.0011	0.0021	0.003	
6.5	0	0	1E-07	3E-06	3E-05	0.0001	0.0004	0.0008	0.0014	
7.5	0	0	2E-08	5E-07	6E-06	3E-05	0.0001	0.0003	0.0006	
8.5	-0	0	0	6E-08	1E-06	9E-06	4E-05	0.0001	0.0003	
9.5	0	0	0	1E-08	3E-07	2E-06	1E-05	5E-05	0.0001	
10.5	0	0	0	0	3E-08	5E-07	4E-06	2E-05	5E-05	
11.5	0	0	0	0	8E-09	1E-07	1E-06	6E-06	2E-05	
12.5	0	0	0	0	0	2E-08	3E-07	2E-06	7E-06	
13.5	0	0	0	0	0	5E-09	1E-07	7E-07	3E-06	
14.5	0	0	0	0	0	0	1E-08	2E-07	1E-06	
15.5	0	0	0	0	0	0	4E-09	7E-08	4E-07	
16.5	0	0	0	0	0	0	0	1E-08	1E-07	4.
17.5	0	0	0	0	0	0	0	4E-09	5E-08	
18.5	0	0	0	0	0	0	0	0	9E-09	
19.5	0	0	0	0	0	0	0	0	4E-09	
20.5	• 0	0	0	0	0	0	0	0	0	
21.5	0	0	0	0_	0	0	0	0	0	
22.5	0	0	0	0	0	0	0	0	0	
23.5	0	0	0	0	0	0	0	0	0 .	
24.5	0	0	0	0	0	0	0	0	0	
25.5	0	0	0	0	0	0	0	0	0	· · · · · · · · · · · · · · · · · · ·
26.5	0	0	0	0	0	0	0	0	0	
27.5	0	0	0	0	0	0	0	0	0	
28.5	0	0 .	0	0	0	0	0	0	0	
29.5	0	0	0	0	0	0	0	0	0	

Table 8 - Joint Probability of True Wave Height and Period (12-22 second periods)

Spectral Peak Period (s)

		Specifal Feak Fellou (5)									
		12	13	14	15	16	17	.18	19	21	22
Significant Wave Height (m)	0.5	0.0256	0.0163	0.0096	0.0053	0.0028	0.0014	0.0007	0.0004	0.0002	0.0002
	1.5	0.0317	0.0212	0.0128	0.007	0.0036	0.0018	0.0008	0.0004	0.0002	0.0002
	2.5	0.0203	0.0145	0.009	0.005	0.0025	0.0011	0.0005	0.0002	9E-05	7E-05
	3.5	0.0117	0.0089	0.0058	0.0032	0.0016	0.0007	0.0003	0.0001	4E-05	3E-05
	4.5	0.0063	0.0052	0.0035	0.002	0.001	0.0004	0.0001	5E-05	2E-05	1E-05
	5.5	0.0033	0.003	0.0021	0.0012	0.0006	0.0002	8E-05	3E-05	7E-06	4E-06
	6.5	0.0017	0.0016	0.0012	0.0007	0.0004	0.0001	5E-05	1E-05	3E-06	1E-06
	7.5	0.0008	0.0009	0.0007	0.0004	0.0002	8E-05	3E-05	8E-06	1E-06	5E-07
	8.5	0.0004	0.0005	0.0004	0.0003	0.0001	5E-05	1E-05	4E-06	5E-07	1E-07
	9.5	0.0002	0.0002	0.0002	0.0002	8E-05	3E-05	9E-06	2E-06	2E-07	4E-08
	10.5	9E-05	0.0001	0.0001	9E-05	5E-05	2E-05	5E-06	1E-06	8E-08	1E-08
	11.5	4E-05	6E-05	7E-05	5E-05	3E-05	1E-05	3E-06	7E-07	3E-08	3E-09
	12.5	2E-05	3E-05	3E-05	3E-05	2E-05	6E-06	2E-06	4E-07	8E-09	0
	13.5	8E-06	1E-05	2E-05	2E-05	1E-05	4E-06	1E-06	2E-07	2E-09	0
	14.5	3E-06	7E-06	1E-05	9E-06	6E-06	2E-06	6E-07	1E-07	0	0
	15.5	2E-06	3E-06	5E-06	5E-06	3E-06	1E-06	3E-07	5E-08	0	0
	16.5	6E-07	1E-06	2E-06	3E-06	2E-06	7E-07	2E-07	2E-08	0	0
	17.5	3E-07	7E-07	1E-06	1E-06	1E-06	4E-07	1E-07	1E-08	0	0
	18.5	7E-08	3E-07	6E-07	7E-07	6E-07	2E-07	5E-08	4E-09	0 -	0
	19.5	4E-08	1E-07	3E-07	4E-07	4E-07	1E-07	3E-08	2E-09	0	0
	20.5	7E-09	4E-08	1E-07	2E-07	2E-07	6E-08	1E-08	. 0	0	0
	21.5	4E-09	2E-08	7E-08	1E-07	1E-07	4E-08	8E-09	0	0	0
	22.5	• 0	3E-09	2E-08	4E-08	5E-08	2E-08	3E-09	0	0	0,
	23.5	0	2E-09	1E-08	2E-08	3E-08	9E-09	2E-09	0	0	0
	24.5	0	0	3E-09	6E-09	1E-08	3E-09	0	0	0	0
	25.5	0	0	2E-09	3E-09	8E-09	2E-09	0	0	0	0
	26.5	0	0	0	.0	3E-09	0	0	0	0	0
	27.5	0 .	0	0	0	2E-09	0	0	0	0	0
	28.5	0	0	0	0	0	0	0	0	0	0
	29.5	0	0	0	0	0	0	0	0	0	0

4.1.1.3 Equations of Applied Waves

To create the loading conditions discussed above in sections 3.1.2, 3.1.3, and 3.1.4 from the wave height and period data in Table 7 and Table 8, the waves were applied as described below.

First the deep-water wavelength approximation was made by equation (2) for each period in Table 7 and Table 8.

$$\lambda = \frac{g}{2 \cdot \pi} \cdot (T)^2$$

(2)

Where:

 λ – the wavelength of the wave

g – the gravitational constant

T - the wave period from Table 7 and Table 8

Equation (2) applied to each indicated wave period yielded the wavelengths indicated in below Table 9.

Table 9 - Deep Water Wavelengths

Period	Wavelength				
(s)	· (m)				
3	14.05				
4	24.97				
. 5	39.02				
6	56.19				
7	76.48				
8	99.89				
9	126.42				
10	156.08				
11	188.85				
12	224.75				
13	263.77				
14	305.91				
15	351.17				
16	399.56				
17	451.06				
18	505.69				
19	563.44				
21	688.30				
22	755.42				

Next the following wave equations for the longitudinal and transverse directions were applied with the proper phasing to apply the loading conditions described in sections 3.1.2, 3.1.3, and 3.1.4. The coordinate system used for the analytical model was those of traditional ship coordinate systems of x-longitudinal, y-transverse, and z-vertical. The coordinate system of the analytical model is shown below in Figure 11.

Figure 11 - Analytical Model Coordinate System

The wave equations used to create the specific loading conditions are show below in equations (3) and (4).

$$H_{\text{wave_lg}}(x, p, q, \phi, X_s) = \frac{h_{\text{wp}}}{2} \cdot \sin \left[\frac{2 \cdot \pi}{\lambda_q} \cdot (x - X_s) - \phi \right] \qquad \phi_{\text{lg}} = \begin{pmatrix} 0 \\ 90 \\ 180 \\ 270 \end{pmatrix} \cdot \text{deg} \qquad \phi_{\text{lg}} = \begin{pmatrix} \text{pos_twist} \\ \text{trough} \\ \text{neg_twist} \\ \text{crest} \end{pmatrix}$$
(3)

$$H_{\text{wave_tr}}(y, p, q, \phi) := \frac{h_{\text{wp}}}{2} \cdot \cos \left[\frac{2 \cdot \pi}{\lambda_{q}} \cdot (y) - \phi \right] \qquad \phi_{\text{tr}} = \begin{pmatrix} 0 \\ 180 \end{pmatrix} \cdot \deg \qquad \phi_{\text{tr}} = \begin{pmatrix} \log \\ \log \end{pmatrix}$$
(4)

Where:

H_{wave_lg} - is the longitudinal wave amplitude as functions of the shown variables

H_{wave tr} - is the transverse wave amplitude as functions of the shown variables

h_w - the actual wave height from Table 7 and Table 8

x – the longitudinal position

X_s – the longitudinal position of the side hull wrt main hull amidships

y - the transverse position

 λ – the wavelength of the wave

φ – the phase of the wave applied for each loading condition

p - the index of the wave height Table 7 and Table 8

q - the index of the wavelength from Table 9

Equations (3) and (4) define the wave amplitude in the longitudinal and transverse directions respectively. Both equations are functions of the index p which references the wave

heights in Table 7 and Table 8. The wave definition equations are also functions of the index q referencing the wavelengths in Table 9. Additionally equation (3) is defined so that the origin of the wave is longitudinally offset to coincide with the longitudinal center of the side hull, X_s . Equations (3) and (4) are also defined as a function of applied phase angle so that each phase angle can be easily applied to generate the load cases defined in sections 3.1.2, 3.1.3, and 3.1.4. Finally, sinusoidal waves were used to approximate the wave functions rather than trochoidal waves, which more truly represent water waves, since the difference between sinusoidal and trochoidal waves for the wavelengths of concern is relatively small.

4.1.1.4 Calculation of Motion due to Applied Waves

After the waves applied to the trimaran hull form were defined as in equations (3) and (4) above, the next step in finding the load forces on the trimarans cross-structure was to perform a static balance of the ship for a particular wave. For the longitudinal wave cases, the static balance required simultaneously solving for the pitch and heave of the ship. While solving simultaneously equations for heave and pitch of a ship is conceptually simple, the practice of executing this concept is somewhat cumbersome. To perform the static balance, the underwater volume and the first moment of that volume subjected to the wave must balance with the displacement and moment of the ship in the pitched and heaved condition. This process involved iteratively solving equations (5) and (6) below using a modified Newton's method. Equation (5) is the heave equation.

$$\nabla_{\text{still}} = B_{\text{m}} \int_{\frac{-L_{\text{m}}}{2}}^{\frac{L_{\text{m}}}{2}} \left[H_{\text{wave_lg}}(x,\phi) - \Delta T - (x - X_{\text{cf}}) \cdot \sin(\Theta_{\text{pitch}}) \right] dx \dots$$

$$+ 2 \cdot B_{\text{s}} \cdot \int_{X_{\text{s}}}^{X_{\text{s}} + \frac{L_{\text{s}}}{2}} \left[H_{\text{wave_lg}}(x,\phi) - \Delta T - (x - X_{\text{cf}}) \cdot \sin(\Theta_{\text{pitch}}) \right] dx$$

(5)

Where:

ΔT - the change in heave of the ship due to the longitudinal wave

Opitch - the change in pitch of the ship due to the longitudinal wave

H_{wave_lg} - is the longitudinal wave height as functions of position and phase from (3)*

x – the longitudinal position

 φ – the phase of the wave applied for each loading condition

 B_m - the main hull's beam

L_m - the main hull's length

B_s - the side hull's beam

L_s - the side hull's length

X_s - the longitudinal position of the side hull wrt main hull amidships

X_{cf} - the longitudinal position of the entire ship's center of floatation

 ∇_{still} – the original still water displacement

Trim_{still} - the original still water trim (assumed to be zero)

* For simplicity the wave height here is only shown as functions of position and phase with wave height and wavelength indices omitted.

Equation (6) is the heave equation.

$$Trim_{still} = B_{m} \int_{\frac{-L_{m}}{2}}^{L_{m}} \left[H_{wave_lg}(x,\phi) - \Delta T - (x - X_{cf}) \cdot \sin(\Theta_{pitch}) \right] \cdot (x - X_{cf}) dx ...$$

$$+ 2 \cdot B_{s} \cdot \int_{X_{s} - \frac{L_{s}}{2}}^{X_{s} + \frac{L_{s}}{2}} \left[H_{wave_lg}(x,\phi) - \Delta T - (x - X_{cf}) \cdot \sin(\Theta_{pitch}) \right] \cdot (x - X_{cf}) dx$$

$$(6)$$

Where:

The definitions of terms from equation (5) apply.

As with the longitudinal case above, the heave of the trimaran due to transverse waves was calculated in a similar manner. However, since this work does not deal with the affects of roll on the ship and takes as a worst case the "transverse hogging and sagging" described in section 3.1.4, only one integral equation was needed to solve for the ship's heave in transverse waves.

$$\nabla_{\text{still}} = L_{\text{m}} \cdot \int_{\frac{-B_{\text{m}}}{2}}^{\frac{B_{\text{m}}}{2}} \left(H_{\text{wave_tr}}(y, \phi) - \Delta T \right) dy + 2 \cdot L_{\text{s}} \cdot \int_{Y_{\text{s}} - \frac{B_{\text{s}}}{2}}^{Y_{\text{s}} + \frac{B_{\text{s}}}{2}} \left(H_{\text{wave_tr}}(y, \phi) - \Delta T \right) dy$$

(7)

Where:

ΔT - the change in heave of the ship due to the transverse wave

 H_{wave_tr} - is the transverse wave height as functions of position and phase from (4)*

y - the transverse position

φ - the phase of the wave applied for each loading condition

B_m – the main hull's beam

L_m - the main hull's length

B_s - the side hull's beam

L_s - the side hull's length

Y_s - the transverse position of the side hull wrt main hull centerline

 ∇_{still} – the original still water displacement

* For simplicity the wave height here is only shown as functions of position and phase with wave height and wavelength indices omitted.

While equations (5), (6), and (7) display the conditions for a static balance on waves, the motion parameters of heave and pitch (ΔT and Θ_{pitch}) were solved for in terms of a change from the initial still water conditions that were assumed to be zero. The motion parameters of heave and pitch in the analytical model were left as functions of several variables that defined the general characteristics of the trimarans dimensions, so that the motion of several different variations of trimarans could be computed.

4.1.1.5 Calculation of Forces due to Motion in Waves

Once the motions of the trimaran due to the static balance were found as explained section 4.1.1.4, the forces due to those motions were calculated. The motion parameters of the ship in waves in section 4.1.1.4 were determined in reference to the still water condition. Consequently, the force calculation was performed as a change from the still water waterline position of the trimaran's side hulls. For example, if the side hull is more immersed than the still water position as in the "transverse sagging" case shown in Figure 12, then the buoyancy of the water provides an upward force on the cross-structure.

Figure 12 - Transverse Sagging Applying Upward Buoyant Force on Cross Structure

The force calculations for transverse hogging and longitudinal cresting or troughing are similar. In these cases the particular wave height and phase that the trimaran encounters either provides more or less buoyancy to the side hulls and consequently cantilevered type vertical forces are applied to the cross structure.

The twisting force applied to the cross structure of the trimaran was calculated in a similar manner as the vertical forces. The ship was statically balanced on the wave at phases of maximum twisting forces on the cross structure, and then the twisting moment due to the wave was calculated as a change from the still water condition. A case of this twisting situation is shown in Figure 13 which causes a positive twisting moment to be applied to the cross structure.

The position of the calculation of the twisting moment coincided with the longitudinal center of the side hull. The vertical position of the twisting moment was assumed to be at the original vertical position of side hull draft, which is an approximate position due the ships heaving and pitching motions.

Figure 13 - Positive Phase Twisting with Side Hulls Aft

The analytical model calculated the vertical forces and twisting forces applied to the side hull due to the motion in waves. The model was generalized such that these forces were calculated as functions of many variables so that the model could be used to repetitively calculated forces for different wave states and trimaran configurations. These parameters included those of wave height, wavelength, and wave phase from the wave equations of (3) and (4). The pertinent parameters of the trimaran such as length, beam, draft, hull spacing and freeboard were also included in the force calculations.

The dependent forces variables and there independent variables are shown below in equations (8), (9), and (10) with position of application shown in Figure 14 their full definition of calculation shown in Appendix A.

$$FB_{lg}(p,q,\phi,X_s,X_{cf},T_s,L_s,B_s,F_m,T_m,B_m,L_m)$$
(8)

$$MB_{lg}(p,q,\phi,X_s,X_{cf},T_s,L_s,B_s,F_m,T_m,B_m,L_m)$$
(9)

$$FB_{tr}(p,q,\phi,Y_s,T_s,L_s,B_s,F_m,T_m,B_m,L_m)$$
 (10)

Where:

 FB_{lg} – the vertical force on cross-structure in longitudinal waves (troughing and cresting)

MB_{lg} - the moment on cross-structure in longitudinal waves (longitudinal twisting)

FB_{tr} – the vertical force in transverse waves (transverse hogging/sagging)

p - the index of the wave height Table 7 and Table 8

q - the index of the wavelength from Table 9

φ – the phase of the wave applied for each loading condition

 X_{cf} - the longitudinal position of the entire ship's center of floatation

X_s - the longitudinal position of the side hull wrt main hull amidships

T_m - the main hull's draft

 B_m - the main hull's beam

L_m - the main hull's length

F_m - the main hull's freeboard (also side hull freeboard)

T_s - the side hull's draft

B_s - the side hull's beam

L_s - the side hull's length

Y_s - the transverse position of the side hull wrt main hull centerline

Figure 14 - Analytical Model Position of Calculated Forces

One main assumption for the calculation of forces and moments in the analytical model was that the initial still water position of the side hulls provided a neutrally buoyant displacement. This neutrally buoyant condition enforces a condition that there are no applied forces to the cross structure due to still water buoyancy conditions. While this would seem to be a reasonable design condition, it would not be a necessary condition and any imbalance in the still water forces would require accounted for. For the purpose of this work, however, the still water loading was assumed to be zero so that the nature of the structural loading in waves could be determined by equations (8), (9), and (10).

Another simplification in the analytical model was that wet deck slamming of waves with large wave heights into the trimaran cross-deck structure was not taken into account. While this assumption will eventually need to be restored to fully calculate the structural effects of sea state on trimarans, the effects were not found to be extremely relevant given the scope of this investigation. For example, for a 100m long trimaran of representative dimensions from Table 1, to obtain impact of waves with the trimarans cross deck structure would require significant wave heights on the order of 6 meters. This wave height corresponds to sea states of 6 or 7 [14]. Not only are these sea states very high for a ship of 100 meters, but also these sea states are relatively unlikely probabilistically as can be seen in Table 5 and Table 6. Therefore, discounting the cross-deck slamming for this analysis can be justified for this work.

4.1.1.6 Calculation of Design Forces due to a Full Sea Spectrum

Once the functions used to calculate the forces on the cross deck structure were defined in equations (8), (9), and (10), it was then possible to define a design load that the cross deck structure of a trimaran must withstand. Design loads are often stated in terms of safety factors or design margins. But at the root of a statistical design process design loads can also be stated in terms of the reliability index, which is what was used in this work. The reliability index used for this investigation was 5, which is suggested for naval war ships in [16]. In the strictest sense, the reliability index must take into account the probability distributions of both the load and the strength factors of a design. However, for the purpose of this work only the probability distribution of the sea-state and thus wave loading was used in the calculation of the reliability index. Omitting the probabilistic nature of the strength curves equates to knowing the failure strength deterministically, which is a reasonable simplification when considering steel

manufacturing quality assurance techniques. Once the design loading for a trimaran of general dimensions is determined, the partial safety factors for each possible failure mode could then be calculated if desired [16].

In addition to the reliability index, the other information need to determine the design loading for each load case of defined in sections 3.1.2, 3.1.3, and 3.1.4, was the susceptible wavelength for trimaran of particular dimensions. For example, the United States Naval design standard [17] and [18] for primary hull bending of a monohull ship has been to design for a trochoidal wave as shown in (11).

$$h_{w} = 1.1 \cdot \sqrt{L_{m}}$$
 $\lambda = L_{m}$

(11)

While equation (11) approximates the loadings of a fully statistical sea-state relatively well for traditional naval ships, the formulation does not work well for a trimaran due to the varying lengths and spacing of the trimaran hulls. Therefore, the susceptible wave length for each load case described in sections 3.1.2, 3.1.3, and 3.1.4 was determined by finding the wavelength in which the maximum forces were produced from equations (8), (9), and (10) when considering the fully statistical sea state as described in Table 7 and Table 8.

However, computing the forces produced for each entry in Table 7 and Table 8 requires statically rebalancing the trimaran for each wavelength and wave height in Table 7 and Table 8. The amount of computational effort to solve the static motion balance for all the entries in the statistical sea state is extremely large and essentially unnecessary since the low wave height waves will not produce high forces regardless of wave length. Therefore, to determine the wavelengths to which a trimaran of particular dimensions were susceptible, the forces encountered for each entry of a statistical sea state described in Table 7 and Table 8 were effectively searched for the highest forces. To alleviate the need for calculating every force produced at every possible sea state described in Table 7 and Table 8, two simplifications were made. First, only wavelengths that would have the ability to produce a maximum force were considered. For example, the structural response of a trimaran with a main hull length of 100 meters is minimal on a wave of with a wavelength of 755 meters from Table 9. This situation can be seen in Figure 15. In the case where the wavelength encountered is much longer than the

length of the ship the ship gently rides the wave without experiencing large structural loadings. This concept is also the basis for the Naval design rules in (11).

Figure 15 - Profile View of 100m Trimaran Balanced on a Wave of Long Wavelength

The second method utilized to reduce the computational effort of finding the susceptible wavelengths of a trimaran was to only calculate the forces produced from the maximum wave height for each respective wavelength which had a non-zero statistical probability in Table 7 and Table 8. Once the forces for the maximum wave height for each wavelength were calculated, the forces were compared and the susceptible wavelength was determined from the corresponding maximum force. For example, for the wave periods of 4 and 5 seconds the forces produced for 5.5 and 7.5 meter wave heights were calculated and compared.

Using these methods, the forces for each loading case in sections 3.1.2, 3.1.3, and 3.1.4 were calculated when subjected to applicable portions of the statistical sea state in Table 7 and Table 8. From those calculations, the susceptible wavelength index was set to the wavelength for the corresponding maximum force obtained. Once the susceptible wavelength for a given loading condition was determined, the design loading for that mode of loading could be calculated.

To determine the design loading for the susceptible wavelength, the joint probabilities in Table 7 and Table 8 were converted to a marginal probability distribution at the susceptible wavelength. Next, the force developed at each wave height in Table 7 and Table 8 at the susceptible wavelength was found. Finally, using the marginal probability and the developed forces at one meter wave height increments, the mean and standard deviation of the force distribution at the susceptible wavelength was determined. From there the design loading for each load case was determined using the reliability index of 5 so that the design loading would be 5 standard deviations from the mean loading.

This methodology of determining design loading was based on the joint probability mass function of Table 7 and Table 8. While this method certainly lends insight into the structural

loading of trimarans due to wave motions, the tabular nature of the probability distributions in Table 7 and Table 8 leaves the evaluation of the forces experienced in waves somewhat granular. A more in depth investigation of this subject could be performed using a continuous functions to describe the sea-state probability distribution as in [13], but for the purposes of this work's investigation into the basic structural loading attributes of a trimaran hull for would be unnecessary.

4.1.1.7 Calculation of Design Forces for Varying Sizes of Trimarans

Once the design forces as functions of the relevant parameters of the trimaran could be determined using the methods in section 4.1.1.6, the final component of the analytical thesis model computed the design forces for 468 different variations of trimaran sizes and placement configurations to investigate the possible design space of trimaran hull forms. The inputs that were allowed to vary were main hull length, side hull length, side hull x-location, side hull y-location these are shown in Table 10.

Table 10 - Parameters varied for Trimaran Design Space

L _m	(main hull's length)	60 - 300 meters in 20meter increments
L_{s}	(side hull's length)	0.25 - 0.50 in increments of 0.05 of L _m (main
		hull's length)
X _s	(longitudinal position of the side hull with	Five equally spaced position from aligned
	respect to main hull amidships)	amidships to where aft perpendiculars of side
		and main hulls are aligned
Y _s	(transverse position of the side hull with	1-1.5 of B _m (main hull's beam) in increments
	respect to main hull centerline)	of 0.1

The other relevant parameters needed for the computations, for example side hull beam, were calculated from fixed relations from Table 2 and reference [1] these are shown below in Table 11.

Table 11 - Parameters Held in Fixed Relations for Trimaran Design Space

B _m (main hull's beam)	Maintain $L_m / B_m = 14$
T _m (main hull's draft)	Maintain $B_m / T_m = 2$
D _m (main hull's depth)	Maintain $D_m / T_m = 2.4$
Required to find (F _m , main hull's freeboard)	
V _s (side hull volume)	Maintain at 4% V _m (main hull volume)
B _s (side hull's beam)	Maintain $B_s = T_s$ (side hull's draft)
T _s (side hull's draft)	Fixed by above constraints on V _s L _s B _s

The results of the required design force calculations for the design space are shown in 0Appendix B with an explanation of the analysis of the data provided in section 5.1.

4.2 Finite Element/ MAESTRO Analysis

Once the results from the analytical thesis model were obtained, a more refined model of a trimaran was made. The program used to create a more realistic model of a trimaran was the ship structural design program called Method for Analysis Evaluation and Structural Optimization (MAESTRO). The MAESTRO program, distributed by Proteus Engineering, was developed to analyze ship structures in a quasi-finite element analysis, with large stiffened panels as the elements between the finite element nodes. The utility of using a ship structural program such as MAESTRO is that it allows the ability to automatically balance a floating ship's structure in water utilizing linear wave theory. Naturally, the ability to include all the relevant hydrodynamic forces in the structural design of a ship is critical to accurate and safe ship design. In this case, MAESTRO only performs a static balance of a ship in waves, rather than a full dynamic analysis of the structure interacting with the ocean. However, allowing a static analysis that includes corrections for linear wave theory makes MAESTRO's results that much closer to reality.

4.2.1 Refined Finite Element MAESTRO Model

The complexity of building the MAESTRO model to the individual scantling of each component of the trimaran would be prohibitive for an initial investigation of the previous design space performed in 4.1.1.7. Therefore, one MAESTRO model was made to test the validity of the prediction of the analytical model presented in section 4.1. The particulars of the model in MAESTRO were obtained from [19] and are shown below in Table 12.

Table 12 - Particular Dimensions of Real Ship Model Used

parameter	meters
$L_{\rm m}$	106
$\mathbf{B}_{\mathbf{m}}$	9
T_{m}	5.2
$\mathbf{D_m}$	11.9
L _s	35
B_s	1.8
T _s	1
X _s	-35.5 from
	amidships
Y _s	9

Using the relations in the analytical thesis model developed in section 4.1, the design loadings for longitudinal cresting/troughing, longitudinal twisting, and transverse hogging/sagging from sections 3.1.2, 3.1.3, and 3.1.4, were found. The results of these design values are shown below in Table 13.

Table 13 - Analytical Model Predictions for Comparison to MAESTRO

Load Case	Force / Moment	Susceptible Wavelength (m)		
Longitudinal Troughing	$-5.49 \times 10^5 \text{ N}$	76.5		
Longitudinal Cresting	$5.72 \times 10^5 \mathrm{N}$	76.5		
Positive Longitudinal Twist	9.12 x 10 ⁶ Nm	56.2		
Negative Longitudinal Twist	-1.16 x 10 ⁷ Nm	99.9		
Transverse Sagging	$1.09 \times 10^6 \mathrm{N}$	25.0		
Transverse Hogging	-5.22 x 10 ⁵ N	14.0		

A representative MAESTRO model from [19] using the parameters of Table 12 was simulated using the MAESTRO program. This model is shown below in Figure 16 through Figure 18. The input file of the MAESTRO model is approximately 60 pages of text files, and hence has not been included as an appendix to this work.

Figure 16 - Starboard Bow Perspective of a MAESTRO Trimaran Half Model

Figure 17 – Aft Body Plan View of a MAESTRO Trimaran Half Model with Water Line

Figure 18 – Port Bow Perspective of a MAESTRO Trimaran Half Model

4.2.2 Statistically Significant Waves for the MAESTRO Model

As mentioned previously in section 4.1.1.6 a reliability index of 5 was used in the calculation of the design forces that a trimaran's cross structure should be able to withstand under the various loading cases defined in sections 3.1.2, 3.1.3, and 3.1.4. The use of the reliability index implies that the ship's Response Amplitude Operator (RAO) to a given sea state is known so that the forces produced by a particular sea state on the trimaran structure in particular failure modes can be calculated. Alternatively, as in the case of the analytical model in section 4.1, the forces produced could be calculated directly to response of the fully statistical sea state input without specifically knowing the RAO. However, to adequately compare the design forces predicted by the analytical model to the finite element model in MAESTRO the RAO of the MAESTRO model would have to be known or approximated. However, calculating the RAO of a new ship such as the trimaran would require a fully dynamic analysis including hydrodynamic effects, which is the difficult and largely unknown task in the first place.

This unknown RAO for the trimaran leads to the question of which wave height corresponds to producing a force that has a reliability index of 5, giving a design force of 5 standard deviations over the mean force for the fully statistical sea states described in Table 7 and Table 8. When dealing with ship response to waves, often motion RAO's are unity in the low frequency limit [15], which is exactly the static balance performed by MAESTRO. Therefore, the assumption was made that using wave heights that were five standard deviations above the mean wave height for each wave length would produce a force response in the various load cases described in sections 3.1.2, 3.1.3, and 3.1.4 that are five standard deviations over the mean.

Using the data from Table 7 and Table 8, the wave height to produce a response equivalent to the reliability index of 5 was calculated using the algorithm shown in Appendix C with the results shown below in Table 14.

Table 14 – Equivalent Wave Height for Reliability Index of 5

Wave Period	Wave Length	Mean + 5SD Wave
(sec)	(m)	Height (m)
3	14.05	1.81
4	24.97	2.71
5	39.02	3.48
6	56.19	4.24
7	76.48	5.07
8	99.89	5.98
9	126.42	7.00
10	156.08	8.10
11	188.85	9.26
12	224.75	10.40
13	263.77	11.45
14	305.91	12.32
15	351.17	12.85
16	399.56	12.97
17	451.06	12.30
18	505.69	11.10
19	563.44	9.91
21	688.30	8.13
22	755.42	7.08

The values in Table 14 are also plotted in Figure 19. The shape and magnitude in Figure 19 roughly correspond to the wave coefficient values in the rule based formulas for longitudinal bending in references [3] and [4]. The fact that Figure 19 is so similar to current rule based classification societies wave coefficients implies that the simplification of applying a wave with a wave height that is 5 standard deviations over the mean for a given wavelength is most likely a valid simplification and concurs with current classification society practices.

Mean + 5SD Wave Height (m)

Figure 19 - Reliability Index Wave Heights of 5 verses Wavelength

Using the wave height and length data from Table 14 in conjunction with the load cases defined above in sections 3.1.2, 3.1.3, and 3.1.4, the MAESTRO program was used to compare how well the predicted values of forces from the analytical model match the wave balanced forces of the MAESTRO model.

4.2.3 MAESTRO Structural Failure Modes

The specific failure modes analyzed by MAESTRO from reference [20] are shown below in Table 15 through Table 17. These failure modes are specific to frame stiffened structures such as ships. The theoretical background behind these failure modes is detailed in [13].

Table 15 - Panel Failure Modes

PCSF	Panel Collapse, Stiffener Failure
PCCB	Panel Collapse, Combined Buckling
PCMY	Panel Collapse, Membrane Yield
PCSB	Panel Collapse, Stiffener Flexural/Torsional Buckling
PYTF	Panel Yield, Tension in Flange
PYTP	Panel Yield, Tension in Plate
PYCF	Panel Yield, Compression in Flange
PYCP	Panel Yield, Compression in Plate
PSPB (2 modes)	Panel Serviceability, Plate Bending
PFLB	Panel Failure Local Buckling

Table 16 - Frame Failure Modes

FCPH (3 modes)	Frame Collapse, Plastic Hinge
FYCF (3 modes)	Frame Yield, Compression in Flange
FYTF (3 modes)	Frame Yield, Tension in Flange
FYCP (3 modes)	Frame Yield, Compression in Plate
FYTP (3 modes)	Frame Yield, Tension in Plate

Table 17 - Girder Failure Modes

GCT	Girder Collapse, Tripping
GCCF	Girder Collapse, Compression in Flange
GCCP	Girder Collapse, Compression in Plate
GYCF	Girder Yield, Compression in Flange
GYCP	Girder Yield, Compression in Plate
GYTF	Girder Yield, Tension in Flange
GYTP	Girder Yield, Tension in Plate

MAESTRO measures the structural adequacy of each limiting failure mode using an adequacy parameter g(R) shown in (12).

$$g(R) = \frac{1 - \gamma \cdot R}{1 + \gamma \cdot R}$$

(12)

Instead of using partial safety factors (γ) of 1.25 and 1.5 for the serviceability and collapse failure modes respectively, which are consistent with ship structural design practice, partial safety factors of 1 were used. Using safety factors of one is known as MAESTRO's Forensic Mode. Using MAESTRO in its Forensic Mode allowed the analytical and MAESTRO results to be compared on an equal basis. Where R is the strength ratio defined as the fraction of loading compared to the loading limit as shown in (13).

$$R = \frac{Q}{Q_L} \tag{13}$$

For each failure mode to be satisfied in each loading condition, the adequacy parameter must be above 0 to be above the failure criteria for that given failure mode.

4.2.4 MAESTRO Model Organization

The organizational tree structure of a general MAESTRO Model is shown below in Figure 20.

Figure 20 - Organizational Structure of a General MAESTRO Model [20]

The overall MAESTRO model is broken up in to substructures, modules, strakes, and elements. The specific failure modes mentioned above in Table 15 through Table 17 are analyzed at the strake level. A strake consists of plates, stiffeners, frames, and possibly girders, in which the stiffeners, frames, and girders are often T-shapes for ship structures. This strake evaluation of the failure modes is what makes MAESTRO a macro-finite element program.

For the specific model shown in Figure 16 through Figure 18, the cross-deck structure between the main and side hulls has two substructures and five modules. While the entire

trimaran ship was modeled in eight substructures and several modules, only the substructure and module organization for the cross deck structure is shown below in Figure 21 and Figure 22.

Figure 21 - Organization for the Specific MAESTRO Model Analyzed

Figure 22 - MAESTRO Model Organization of Trimaran Cross-Deck Structure

4.2.5 MAESTRO Verification of Analytical Trimaran Model Predicted Forces

Once the analytical force predictions from Table 13 and the wave heights corresponding to 5 standard deviations above the mean from Table 14 at the applicable susceptible wavelengths were obtained, a basis for comparing and testing the analytical model's results to that obtained by MAESTRO in a full quasi-static linear theory wave balance was established. This comparison was accomplished by applying the analytical model's predicted forces from Table 13 as point forces in the finite element model to the stillwater MAESTRO model of the trimaran shown in Figure 16 through Figure 18, and then measuring as an output the failure modes shown in Table 15 through Table 17. Next, the MAESTRO output using the full quasi-static linear theory wave balance function provided by the MAESTRO program was analyzed. While the full output files from MAESTRO are over 1800 pages, excerpts from these output files are provided in Appendix E through Appendix J. Appendix E through Appendix J show the adequacy parameters calculated for both the analytical force predictions and the full MAESTRO quasistatic linear theory wave balance of the specific strakes from Figure 21 for each possible failure mode from Table 15 through Table 17 of the cross deck structure for the trimaran model. The discussion of the comparison of the analytical model to the MAESTRO Model results is included in section 5.2.

Chapter 5 Results

5.1 Statistical Analysis of Analytical Trimaran Model Using JMP

The tabular results of the analytical box shaped trimaran model for various main hull lengths, side hull lengths, side hull transverse spacing, and side hull longitudinal placement from section 4.1.1.7 are shown in Appendix B. To determine the relations between the various characteristics of trimarans and the forces and moments generated on a trimaran's cross structure, the statistical discovery program JMP, developed by the SAS institute, was used. JMP can be used for virtually any type of statistical analysis. However, in the case of the analytical trimaran model, JMP was used to fit the force and moment data produced to three independent variables in lengths and spacing to a forth order polynomial including all the applicable cross terms between the independent variables.

For each load case the order of polynomial used to fit the predicted data was increased until the R-squared fit parameter and the predicted versus actual parameters were adequate to accurately predict the data in 0Appendix B. The entire fourth order fit equations and the curve fitting statistics are shown in 0Appendix D. The interaction profiles between the independent variables for each case of longitudinal cresting/troughing, longitudinal side hull twisting, and transverse sagging/hogging are shown in the following sections. The interaction plots show the interaction of the independent variables between each other and their contribution to the overall forces. For each polynomial fit obtained an accompanying equation is stated to help predict what forces an early stage structural designer can allot to the cross-structure.

5.1.1 Analytical Model Results for Longitudinal Side Hull Troughing

Figure 23 shows the side hull troughing forces as functions of the three independent variables of main hull length, side hull length as a fraction of main hull length, and side hull longitudinal placement for amidships as a fraction of main hull length.

Figure 23 - Longitudinal Wave Side Hull Troughing Independant Variable Interaction

The interaction plot shows that as main hull length increases the vertical forces produced due to side hull troughing increase. This result is not surprising in view of the rising wave height versus wavelength characteristic of the statistical sea states described in Table 7 and Table 8, since as wave length of the encountered waves increases the statistically possible wave heights increase.

An interesting result from the bottom row of the interaction plot is that as the longitudinal location of the side hulls is moved aft, the trimaran's cross structure is not as susceptible to side hull troughing as when the side hull is placed in the longitudinally symmetric amidships position.

Another result from the middle row of Figure 23 is that vertical forces due to longitudinal troughing are only mildly sensitive to changes in the length of the side hull, but lessen as the length of the side hull increases. Finally, the interaction between variables can be studied as well. For example, having a smaller side hull length produces higher vertical forces when the side hulls are placed further aft than when the same side hull is placed amidships.

One final result from the side hull troughing data is the fit equation provided in (14). This equation gives the downward force as a function of three independent variables. For clarity the equation (14) is only shown to second order with the full fourth order equation included in Appendix D.

$$F_{trough} = 3211000 + -61810L_{m} + 2225000 \frac{L_{s}}{L_{m}} - 10020000 \frac{X_{s}}{L_{m}} - 273.9 (L_{m} - 180)^{2} ...$$

$$+76210 \left(\frac{L_{s}}{L_{m}} - 0.375\right) \cdot (L_{m} - 180) - 136600 \left(\frac{X_{s}}{L_{m}} + 0.3125\right) \cdot (L_{m} - 180) ...$$

$$+-18420000 \left(\frac{L_{s}}{L_{m}} - 0.375\right) \cdot \left(\frac{X_{s}}{L_{m}} + 0.3125\right) - 2475000 \left(\frac{X_{s}}{L_{m}} + 0.3125\right)^{2} ...$$

$$+ third_order_terms + fourth_order_terms$$

$$(14)$$

5.1.2 Analytical Model Results for Longitudinal Side Hull Cresting

The interaction profiles for the upward vertical forces produced during side hull cresting are shown below in Figure 24.

Figure 24 - Longitudinal Wave Side Hull Cresting Independant Variable Interaction

The interaction plots for side hull cresting is analogous to that of side hull troughing, and the relationships between the independent variables are essentially the same as that of side hull troughing.

The fit equation for the upward force on the side hull cross structure is partially shown in equation (15) with the full equation shown in Appendix D.

$$F_{crest} = -2703000 + 58190L_{m} + -3016000 \frac{L_{s}}{L_{m}} + 9039000 \frac{X_{s}}{L_{m}} + 269.00 (L_{m} - 180)^{2} ...$$

$$+ -50870 \left(\frac{L_{s}}{L_{m}} - 0.375\right) \cdot (L_{m} - 180) + 118600 \left(\frac{X_{s}}{L_{m}} + 0.3125\right) \cdot (L_{m} - 180) ...$$

$$+ 19850000 \left(\frac{L_{s}}{L_{m}} - 0.375\right) \cdot \left(\frac{X_{s}}{L_{m}} + 0.3125\right) ...$$

$$+ \text{third_order_terms} + \text{fourth_order_terms}$$

$$(15)$$

5.1.3 Analytical Model Results for Longitudinal Positive Phase Twisting

The polynomial equation fit results for the positive phase twisting of the cross structure in longitudinal waves is shown below in the interaction plot of Figure 25.

Figure 25 - Longitudinal Wave Side Hull Positive Twisting Independant Variable Interaction

Like the interaction plots for longitudinal cresting and troughing, the moments produced in positive phase twisting increases markedly as main hull length increases as is expected from the wavelengths of the susceptible sea states. From the bottom row of Figure 25 it is observed that the longitudinal placement of the side hulls has virtually no effect on the positive phase twisting moments. However, from the second row of the interaction plot, it can be seen that as the length of the side hull increases the twisting moment increases drastically. This result is not unreasonable since the length of the side hull increases the length of the moment arm for positive phase twisting.

The partial fit equation shown for positive phase twisting is shown equation (16) with the full equation shown in Appendix D.

$$M_{pos} = -454800000 + 1990000L_{m} + 507700000 \frac{L_{s}}{L_{m}} + -13040000 \frac{X_{s}}{L_{m}} + 15350 (L_{m} - 180)^{2} ...$$

$$+ 10620000 \left(\frac{L_{s}}{L_{m}} - 0.375 \right) \cdot (L_{m} - 180) + -178900 \left(\frac{X_{s}}{L_{m}} + 0.3125 \right) \cdot (L_{m} - 180) ...$$

$$+ -412500000 \left(\frac{L_{s}}{L_{m}} - 0.375 \right) \cdot \left(\frac{X_{s}}{L_{m}} + 0.3125 \right) ...$$

$$+ \text{third_order_terms} + \text{fourth_order_terms}$$

$$(16)$$

5.1.4 Analytical Model Results for Longitudinal Negative Twisting

The polynomial equation fit results for the negative phase twisting of the cross structure in longitudinal waves is shown below in the interaction plot of Figure 26.

Figure 26 - Longitudinal Wave Side Hull Negative Twisting Independant Variable Interaction

The results for negative phase twisting are analogous to positive phase twisting maintaining similar trends between the independent variables.

The partial fit equation shown for positive phase twisting is shown equation (17) with the full equation shown in Appendix D.

$$M_{\text{neg}} = 470200000 + -1843000 L_{\text{m}} + -549900000 \frac{L_{\text{s}}}{L_{\text{m}}} + 52640000 \frac{X_{\text{s}}}{L_{\text{m}}} + -15260 (L_{\text{m}} - 180)^{2} ...$$

$$+ -10820000 \left(\frac{L_{\text{s}}}{L_{\text{m}}} - 0.375 \right) \cdot \left(L_{\text{m}} - 180 \right) + 741500 \left(\frac{X_{\text{s}}}{L_{\text{m}}} + 0.3125 \right) \cdot \left(L_{\text{m}} - 180 \right) ...$$

$$+ 842000000 \left(\frac{L_{\text{s}}}{L_{\text{m}}} - 0.375 \right) \cdot \left(\frac{X_{\text{s}}}{L_{\text{m}}} + 0.3125 \right) + -430100000 \left(\frac{X_{\text{s}}}{L_{\text{m}}} + 0.3125 \right)^{2} ...$$

$$+ \text{third_order_terms} + \text{fourth_order_terms}$$

$$(17)$$

5.1.5 Analytical Model Results for Transverse Sagging

The results for transverse sagging are shown for the interaction plot below in Figure 27. For clarity the values in Appendix D were converted to utilize transverse dimensions stated in main and side hull beams from the fixed relations in Table 11. The interaction plots indicate that, as suspected, the upward forces on the cross structure due to a transverse sagging condition increases as the outer hull spacing increases. Another result from the interaction profile is that as the side hulls beam widens then forces on the cross structure lessens. Finally, as experienced in the previous loading cases as the size of the overall ship increases the forces experienced increase due to the statistical nature of the sea states.

Figure 27 - Transverse Sagging Wave Side Hull Independant Variable Interaction

The partial fit equation shown for transverse sagging is shown equation (18) with the full equation shown in Appendix D.

$$F_{tr_sag} = -7051000 + 951100B_{m} + -17730000 \frac{B_{s}}{B_{m}} + 3046000 \frac{Y_{s}}{B_{m}} + 55500 (B_{m} - 12.86)^{2} ...$$

$$+ -3537000 \left(\frac{B_{s}}{B_{m}} - 0.2357\right) \cdot (B_{m} - 12.86) + 60540000 \left(\frac{B_{s}}{B_{m}} - 0.2357\right)^{2} ...$$

$$+ 592100 \left(B_{m} - 12.86\right) \cdot \left(\frac{Y_{s}}{B_{m}} - 1.25\right) + -10590000 \left(\frac{B_{s}}{B_{m}} - 0.2357\right) \cdot \left(\frac{Y_{s}}{B_{m}} - 1.25\right) ...$$

$$+ third_order_terms + fourth_order_terms$$
 (18)

5.1.6 Analytical Model Results for Transverse Hogging

A polynomial fit equation for the downward forces produced during transverse hogging was unable to be fitted to the data in Appendix B even using forth order terms. This situation arises from the fact that there is a discontinuity in the downward force applied in a transverse hogging condition. When the transverse wave height is small enough that the outer hulls do not leave the water the loss of buoyancy due to wave height is linear. However, when the wave height becomes large enough, the side hulls leave the water and the loss of buoyancy after that point regardless of the wave height remains constant. Hence, a good fit for an overall downward force due to transverse hogging over a large range of values was not able to be found. Alternatively, the structural designer of a trimaran should design to the standard of the side hulls completely broaching the water as is discussed in references [5] through [10].

5.2 Comparison and Discussion of Analytical and MAESTRO Results

An example of the results of the MAESTRO structural analyses of the analytical force predictions compared to the full quasi-static linear wave theory balance analysis from 4.2.5 is shown below in Table 18 and Table 19 with the full results for all load cases and modules included in Appendix E through Appendix J.

Table 18 - Adequacy Parameters with analytically Predicted Forces (Longitudinal Troughing)

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR. 1

STRAKE	PCSF	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
1	0.826	0.938	0.927	0.933	1.000	1.000	0.965	0.965	1.000	1.000	0.807
2	0.883	0.978	0.939	0.913	1.000	1.000	0.945	0.945	1.000	1.000	0.882
3	0.971	0.996	0.986	0.985	1.000	1.000	0.990	0.990	1.000	1.000	0.923
4	0.939	0.990	0.955	0.991	0.998	0.998	0.995	0.995	1.000	1.000	0.932
5	0.979	1.000	0.983	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.979
6	0.957	0.988	0.976	0.994	1.000	1.000	0.996	0.996	1.000	1.000	0.901
7	0.913	0.990	0.940	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.90

Table 19 - Adequacy Parameters with MAESTRO Wave Balance (Longitudinal Troughing)

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR. 1

STRAKE	PCSF	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
1	0.848	0.943	0.937	0.939	1.000	1.000	0.969	0.969	1.000	1.000	0.831
2	0.898	0.980	0.944	0.918	1.000	1.000	0.948	0.948	1.000	1.000	0.897
3	0.972	0.997	0.988	0.986	1.000	1.000	0.991	0.991	1.000	1.000	0.940
4	0.949	0.987	0.964	0.991	1.000	1.000	0.995	0.995	1.000	1.000	0.944
- 5	0.977	1.000	0.983	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.977
6	0.967	0.986	0.983	0.995	1.000	1.000	0.997	0.997	1.000	1.000	0.923
7	0.918	0.967	0.945	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.908

Appendix E through Appendix J show the adequacy parameters for the panel and frame failure modes for each strake in the cross-deck structure from Figure 21. From the way that the adequacy parameter is defined, a lower adequacy parameter means that the evaluated strake is closer to failure for the analyzed failure mode.

Since a lower adequacy parameter means closer to failure, for the analytical model to be a conservative estimate of the cross-deck structural loading of the trimaran, every adequacy parameter for the analytical model must be less than the corresponding MAESTRO model adequacy parameter. While the adequacy parameters in Appendix E through Appendix J do

compare to a first order, the analytical model is not consistently the conservative estimate for every failure mode for every strake of the cross-deck structure.

The fact that the analytical model does not conservatively predict the failure adequacy parameters is not surprising. Many simplifications to the analytical model were made in order to make it possible to investigate the basic nature of global loading of the cross-deck structural forces experienced by trimarans over a large range of hull sizes and hull spacing configurations. The simplification most affecting the performance of the analytical model compared to the fully wave balanced MAESTRO model was the assumption that the hulls were rigid and rigidly connected. The hull deflections in the realistic fully wave balanced models were the primary source of the difference between the two models.

While it is unfortunate that the analytical model is not a truly conservative estimate of the cross-deck structural loading of trimarans for every loading case and failure mode, the results of the two methods did compare to a first order of magnitude with each other. Since the analytical model can predict forces to a first order of magnitude, it can be a useful tool for early stage design estimates of trimaran cross deck structural loading as functions of the basic hull parameters and dimensions restated again in Table 20 and Table 21.

Table 20 - Structural Loading from Sections 3.1.2, 3.1.3, and 3.1.4

FB_{lg}	the vertical force on cross-structure in longitudinal waves (troughing and cresting)
MB_{lg}	the moment on cross-structure in longitudinal waves (longitudinal twisting)
FB _{tr}	the vertical force in transverse waves (transverse hogging/sagging)

Table 21 - Relevant Trimaran Parameters Affecting Design Loading

B _m	the main hull's beam			75	: .		- : i	
L _m	the main hull's length			* .* .	:			÷
T _m	the main hull's draft				15	٠,	1 4	
F _m	the main hull's freeboard (also sid	e hull fi	eeb	oard)	1.14			
Bs	the side hull's beam				s. 7			
Ls	the side hull's length							
Ts	the side hull's draft				3 , 4			
X _s	the longitudinal position of the sid	e hull v	rt n	nain hul	l amic	Iships	s	
Y _s	the transverse position of the side	hull wrt	ma	in hull o	enter	line	,	

Since the goal of this work was to provide the trimaran designer with a way to estimate the cross-deck structural loading, this work is considered a qualified success.

Chapter 6 Conclusions

This main product of this work was the curve fits in Appendix D that predict trimaran cross-deck structure loading in applicable load cases of longitudinal troughing/cresting, longitudinal positive/negative twisting, and transverse hogging/sagging. These fitted curve of design loadings allows an initial design stage loading estimate for cross deck structural loading given general characteristics of length and spacing of a trimaran's hulls. The actual equations derived from the analytical model are useful for first approximations of loading to the cross-deck structure of a trimaran but are not necessarily always conservative. Flexure of the main hull of the trimaran is the main cause of the analytical model's un-conservative structural loading predictions.

A concurrent result of the fourth order polynomial fitted equations were the interaction profile plots shown in Figure 23 through Figure 27. The interaction profile plots show how the main design variables of the trimaran interact with each other to affect the cross-deck global structural loading. These plots are a useful visual qualitative tool to determine which trimaran configurations experience less cross-deck structural loading.

The fourth order polynomial curve fitted equations and the interaction profile plots combined with other characteristics of good trimaran design including stability, roll, and resistance characteristics will aid the trimaran ship designer in optimizing an overall trimaran ship design.

Chapter 7 Recommendations for Future Work

The first and probably most important area to continue further work in the area of trimaran cross-deck structural design would be to have an analytical model that accounted for forward speed effects of the ship moving through the water. While this is not extremely complicated to perform, it was not included in this work simply because MAESTRO does not have the capability verify the results, and the entire goal of this work was to derive an analytical model for cross-deck structural loading that could be compared with a more rigorous analysis such as finite element analysis.

An improvement to the analytical model in this work would be to account for side hull flare, slamming of waves into the cross deck structure, and incident waves encountered at oblique angles. Accounting for flare in the side hulls would be beneficial because both [1] and [19] reference the need to have side hull flare for stability and sea-keeping reasons. Using triangular side hulls instead of box barge side hulls would be a relatively simple correction to the analytical model and could be done to make side hull flare angle an additional parameter that could be varied while calculating design forces. Wave slamming of cross-deck structures and obliquely angled waves encounters on the other hand is more complicated and would require extensive modifications to the current analytical model.

Finally, general recommendations for study in the area of trimaran structural design in general would be to determine the dynamic whipping response of the relatively long and slender hulls that are characteristic of trimarans. An accompanying topic to the whipping response of slender hulls would be an investigation into active structural control to include the cost and power requirements for very high speed applications.

List of References

- [1] J. Zhang, "Design and Hydrodynamic Performance of Trimaran Displacement ships," PhD Thesis, Dept of Mechanical Engineering, University College London, 1997.
- [2] Unknown, "RV Trimaran Research Ship, United Kingdom", Naval Technology, [Online Journal] [cited 2003 August 14], Available HTTP http://www.naval-technology.com/projects/trimaran/
- [3] American Bureau of Shipping, <u>Rules for Classing and Building Steel Vessels</u>, <u>Part 3</u>. Houston, TX: ABS, 2000.
- [4] Det Norske Veritas, Rules for Classification, Steel Ships. Hovik, Norway: DNV, 1992.
- [5] M. W. Ash, "An Investigation of the Structural Efficiency of the Trimaran Hull Form," MSc. Naval Architecture Dissertation, Dept of Mechanical Engineering, University College London, 1993.
- [6] N. Putnam, "An Trimaran Structural Design," MSc. Naval Architecture Dissertation, Dept of Mechanical Engineering, University College London, 1995.
- [7] A. L. Spragg, "An Investigation of Trimaran Structural Efficiency," MSc. Naval Architecture Dissertation, Dept of Mechanical Engineering, University College London, 1995.
- [8] M. Selfridge, "Investigation of the Structural Efficiency of the Trimaran Hull Form," MSc. Naval Architecture Dissertation, Dept of Mechanical Engineering, University College London, 1996.
- [9] M. S. Khalid, "Investigation on Trimaran Box and Beam Under Transvere Load & Proposed Design Procedure," MSc. Naval Architecture Dissertation, Dept of Mechanical Engineering, University College London, 1998.

- [10] P. J. Kirk, "An Investigation into Low Weight Cross-Beams for Trimaran Ships," MSc. Naval Architecture Dissertation, Dept of Mechanical Engineering, University College London, 1999.
- [11] A. Francescutto, "On the Roll Motion of a Trimaran in Beam Waves," <u>Proceedings of the Eleventh International Offshore and Polar Engineering Conference</u>, vol. 3, pp. 321-325, 2001.
- [12] B. B. Ackers, T. J. Michael, O. W. Tredennick, H. C. Landen, E. R. Miller, J. P. Sodowsky,
- J. B. Hadler, "An Investigation of the Resistance Characteristics of Powered Trimaran Side-Hull Configurations," <u>SNAME Transactions</u>, vol. 105, pp. 349-373, 1997.
- [13] O. F. Hughes, Ship Structural Design: A Rationally-Based, Computer-Aided Optimization Approach. Jersey City, NJ: SNAME, 1988.
- [14] O. M. Faltinsen, <u>Sea Load on Ships and Offshore Structures</u>. New York, NY: Cambridge University Press, 1990.
- [15] E. V. Lewis, <u>Principles of Naval Architecture</u>, Vol III, <u>Motions in Waves and Controllability</u>. Jersey City, NJ: SNAME, 1989.
- [16] B. M. Ayyub, I. A. Assakkaf, J. P Sikora, J.C. Adamchak, K. Atua, W. Melton, and P.E. Hess, "Reliability-Based Load and Resistance Factor Design (LRFD) Guideline for Hull Girder Bending," Naval Engineers Journal, vol 114, no 2, pp.43-68, 2002.
- [17] Naval Ship Engineering Center, <u>Structural Design Manual for Naval Surface Ships</u>,Washington, D.C.: Naval Sea Systems Command, 1976.
- [18] Naval Ship Engineering Center, <u>DDS 100-6</u>, Washington, D.C.: Naval Sea Systems Command, 1976.
- [19] J. L. Rhoads, C. Soultatis, D. Wolfson, "High Speed Corvette," Ship Design Project, Dept of Ocean Engineering, Massachusetts Institute of Technology, 2004.

[20] Optimum Structural Design, Inc., <u>MAESTRO Modeler Manual</u>, Stevensville, MD: Optimum Structural Design, Inc., 1999.

Page Intentionally Left Blank

Appendix A. MathCAD Analytical Model

All the equations and formula required to complete the analytical model of the "box" trimaran are included in this Appendix. The essential explanations of the working of the analytical model are included in section 4.1.1. Where appropriate, each applicable section refers to the main text's explanation.

Explained in section 4.1.1.1

rig 🎏 E																				
ng [30	<i>X</i> ≠0 (19	2	3	4	5	6	7	8	9	10	\mathbf{U}	્ર12	13	14	15	16	17	18
	0	0	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	21
	1	0.5	5.9-10 -4	4.03-10 -3	1.06-10 -2	1.57 10 -2	1.63-10 -2	1.36-10 -2	9.82-10 -3	6.43 10 -3	3.95-10 -3	2.32-10 -3	1.32 10 -3	7.4-10 -4	4.1-10 -4	2.2-10 -4	1.2-10 -4	7-10 -5	4-10 -5	2·10 -5
	2	1.5	9-10-5	2.12-10 -3	1.23-10 -2	3.22 10 -2	5.11-10 -2	5.81-10 -2	5.28·10 -2	4.1-10 -2	2.85-10 -2	1.82-10 -2	1.1-10 -2	6.34-10 -3	3.55-10 -3	1.94 10 -3	1.05-10 -3	5.6 10 -4	3-10 -4	1.6-10 -4
	3	2.5	0	8-10 -5	1.46-10 -3	8.31-10 -3	2.29-10 -2	3.9-10 -2	4.71 10 -2	4.46-10 -2	3,53 10 -2	2.45-10 -2	1,54-10 -2	9.01-10 -3	4.97-10 -3	2.63-10 -3	1.35-10 -3	6.7-10 -4	3.3-10 -4	1.6-10 -4
	4	3.5	0	0	6-10 -5	8.5 10 -4	4.81 10 -3	1.37-10 -2	2.41-10 -2	2.96 10 -2	2.8-10 -2	2.16-10 -2	1.44-10 -2	8.49-10 -3	4.58-10 -3	2.31·10 ·3	1.1-10 -3	5-10 -4	2.2-10 -4	10-10-5
	5	4.5	0	0	0	4-10 -5	5.7-10 -4	3.15·10 ·3	8.98-10 -3	1.56-10 -2	1.88-10 -2	1.7-10 -2	1.23-10 -2	7.48 10 -3	3.98-10 -3	1.91-10 -3	8.4-10 -4	3.5·10 -4	1.3 10 -4	5·10 -5
	6	5.5	0	0	0	0	3-10 -5	3.9 10 -4	2.07-10 -3	5.71-10 -3	9.5-10 -3	1.07-10 -2	8.85-10 -3	5.75·10 •3	3.09 10 -3	1.42-10 -3	5.8 10 -4	2.1-10 -4	7-10 -5	2-10 -5
	7	6.5	0	0	. 0	0	0	2-10 -5	2.7-10 -4	1.36-10 -3	3.47-10 -3	5.28-10 -3	5.33 10 -3	3.87-10 -3	2.17-10 -3	9.8 10 -4	3.7-10 -4	1.2-10 -4	4-10 -5	10-10 -6
	8	7.5	0	0	0	0	0	0	2.10 -5	2.10 -4	8.8-10 -4	1.97-10 -3	2.61-10 -3	2.26 10 -3	1.38-10 -3	6.4-10 -4	2.3-10 -4	7-10 -5	2.10 -5	0
- 1	9	8.5	0	0	0	0	0	0	. 0	2.10 -5	1.5-10 -4	5.4·10 -4	1.01 10 -3	1.11-10 -3	7.8-10 -4	3.9-10 -4	1.4-10 -4	4-10 -5	10-10 -6	0
	o	9.5	. 0	. 0	0	0	, 0	0	0	0	2.10 -5	1.1-10 -4	3 10 -4	4.5 10 -4	3.9 10 -4	2.2·10 -4	8-10-5	2·10 -5	10-10 -6	0
Ì	11	10.5	0	0	0	0	0	7.0	0	0	0	2·10 -5	7.10 -5	1.5 10 -4	1.6-10 -4	1.1-10 -4	5-10 -5	10-10 -6	0	0
	12	11.5	0	0	0	0	0	0	0	0	0	. 0	10-10 -6	4·10 -5	6-10 -5	5-10 -5	2·10 -5	10-10-6	0	0
	13	12.5	0	0	0	0	0	0	0	0	0	0	0	10:10 -6	2.10 -5	2:10 -5	10:10 -6	0	0	0
	14	13.5	.0	0	0	0	0	0	.0	0	0	0	0	0	0	10-10 -6	. 0	0	0	0
	15	14.5	٥	0	0	0	0	. 0	0	0	0	0	-0	0	0	0	. 0	0	0	0
	16																			

Explained in section 4.1.1.2

$$B := (rows(ss_{orig}) - 1)$$

$$D := \left(\cos\left(ss_{orig} \right) - 1 \right)$$

$$t := 1..2B$$

$$r := 1..D$$

$$T_{\lambda} := \text{submatrix}(\text{ss orig}, 0, 0, 0, 19)^{T} \cdot \text{sec}$$

$$h_{W_t} := (t - .5) \cdot m$$

$$\lambda_r := \frac{g}{2 \cdot \pi} \cdot \left(T_{\lambda_r} \right)^2$$

(This equation explained in Section 4.1.1.3)

$$p_{ray}(H,t) := 4 \cdot \frac{H}{\left(h_{w_t}\right)^2} \cdot e^{-2\left[\frac{H^2}{\left(h_{w_t}\right)^2}\right]}$$

$$ss := \begin{bmatrix} new_{2 \cdot B, D} \leftarrow 0 \\ for \ q \in 1..D \\ for \ p \in 1..B \\ if \ ss \ orig_{p, q} \neq 0 \\ \\ for \ n \in 1..2 \cdot p \\ \\ tmp \leftarrow ss \ orig_{p, q} \cdot \int_{h_{w_n} - .5 \cdot m}^{h_{w_n} + .5 \cdot m} p_{ray}(H, p) \, dH \\ \\ new_{n, q} \leftarrow new_{n, q} + tmp \\ \\ 0 \\ new \end{bmatrix}$$

	1	0	1	2	3	4	5	. 6	7	.8		10	111	12	13	14	15	18	17	18	19
0	Π	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
1		0	8.43-10 -4	5.3 10 -3	1.83 10 -2	3.71-10 -2	5.35-10 -2	8.09 10 -2	5.84 10 -2	4.92 10 -2	3.72-10 -2	2.58-10 -2	1.83-10 -2	9.59 10 -3	5.31-10 -3	279 10 -3	1.42-10 -3	7.15-10 -4	26-10-4	1.8-10 -4	1.75-10 -4
2		0	3.48-10 -5	8.48-10 -4	5.39-10 -3	1.63-10 -2	3.15-10 -2	4.5-10 -2	5.17-10 -2	5.02-10 -2	4.24-10 -2	3.17-10 -2	2.12-10-2	1.28-10 -2	7.04-10 -3	3.6-10 -3	1.75-10 -3	8.23-10 -4	3.85 10 -4	1.82 10 4	1.64-10 -4
3					6.89-10 -4										4.96-10 -3			<u> </u>	2.07-10 -4	8.83-10-5	6.84-10 -5
4		0	3.01 10 -5	4.72 10 -5	8.88 10 -5	5.89-10 -4	2.05 10 -3	4.85-10 -3	8.47-10 -3	1.15-10 -2	1.28-10 -2	1.17-10 -2	8.94-10 -3	5.79-10 -3	3.21-10 -3	1.56-10 -3	8.72-10 -4	2.7-10 -4	1,05-10 -4	3.99-10 -5	2.67-10 -5
5	3	0	0	4.51-10 -7	1.16-10 -5	9.97-10 -5	4.75-10 -4	1.44-10 -3									3.98-10 -4		5,32-10 -5		10-10-5
		0	0	2.6-10	1.32-10 -8			4.23-10 -4				}	L-		1.23-10 -3		}		2.78-10-5		3.71-10-8
7	-	0	0		1.48-10 -7			1.21-10 -4							7.33 10 -4						
8		0	0		1.84-10 -8			3.41-10 -5		3.3-10 -4	6.1-10-4				4.39-10 -4					1.33-10 -5	4.51-10 -7
9	-	0	0	0				8.97-10 -8				4.07-10 -4			2.58 10 -4					5.37-10 -7	1.42 10 -7
10	-	0	0	0				2.47-10 -8						2.21-10 -4					2,34-10-6		
11	-	0	0	0				5.04 10 -7							8.65-10 -5						
12	_	0		.0			7.88 10 -9								4.95·10 ·5		1.08-10 -5			2.68-10 -8 7.8-10 -9	2.62-10 -9
= 14	1	0	0	0		0		1.52·10 ·8			7.48-10 -6				1.57-10 -5					7.12 7.2	- 4
15	-	Ö	0	- 0		- 0			1.21-10 -8						8.81 10 -6				9.8-10 -8	2.42-10-5	
16	-	0	0						4.48-10 -9				3.38-10 -6				1.28-10 -8			- 0	 "
177		0	0												2.53-10-6					0	
18		0	0	,		- 0					4.91-10 8		7.04-10 -7	1,3-10-6		1.12-10 -6		1.03 10 -7	1,1-10-8	0	
19		0	0	0	-			- 0							6.96-10 -7					0	-
20		- 0	- 0	0	0	-		-	-		3.88-10 -9				3.83-10 -7				_	0	
21		- 0				0		0	0	-					1.73 10 -7				0		-
22		0	Ö	0	0	0	0	0	0		- 0	3.63-10 -9	1.88-10 -8	6.65-10 -8	9.54-10 -8	1.1-10 -7	3.62-10 -8	7.89-10 -9	0	0	0
23		0	0	0	0	0	0	0	0	0	-	0	3.27-10 -9	2.2-10 -8	3.75-10 -8	5.34-10 -8	1.55-10 -8	3.27-10 -9	0	0	0
24		0	0	0	0	0	0	0	0	0	0	0	1.71-10 -9	1.2-10 -8	2.06-10 -8	3.1-10 -8	8.6-10 -9	1.71-10 -9	0	0	0
25	1	0	0	0	0	0	0	0	. 0	0	0	0	0	2.93-10-9	5.85-10 -9	1.33-10 -8	2.93-10 -9	0	0	. 0	0
20	T	. 0	0	0	0	. 0	0	0	0	0	0	0	0	1.61-10 -9	3.22 10 -9	7,72-10 -9	1.61-10 -9	0	0	0	0
27	1	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	2.65 10 -9	0	0	0	. 0	0
28	1	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	1,52-10 -9	. 0	0	0	0	0
29	1	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	.0	0	0	0	0	0

pmax:= for
$$q \in 1..D$$

for $p \in 1..2B$
 $tmp \leftarrow p$ if $ss_{p,q} \neq 0$
 $pmax_q \leftarrow tmp$
 $pmax$

Explained in Section 4.1.1.3

$$H_{\text{wave_lg}}(x, p, q, \phi, X_s) := \frac{h_{\text{wp}}}{2} \cdot \sin \left[\frac{2 \cdot \pi}{\lambda_q} \cdot (x - X_s) - \phi \right] \qquad \phi_{\text{lg}} := \begin{pmatrix} 0 \\ 90 \\ 180 \\ 270 \end{pmatrix} \cdot \text{deg} \qquad \phi_{\text{lg}} = \begin{pmatrix} \text{pos_twist} \\ \text{trough} \\ \text{neg_twist} \\ \text{crest} \end{pmatrix}$$

$$H_{\text{wave_tr}}(y, p, q, \phi) := \frac{h_{\text{wp}}}{2} \cdot \cos \left[\frac{2 \cdot \pi}{\lambda_{q}} \cdot (y) - \phi \right] \qquad \phi_{\text{tr}} := \begin{pmatrix} 0 \\ 180 \end{pmatrix} \cdot \deg \qquad \phi_{\text{tr}} = \begin{pmatrix} \log \\ \log \\ \log \end{pmatrix}$$

Explained in Section 4.1.1.4

$$\begin{aligned} & \text{motion_tr} \Big(p, q, \phi, Y_s, T_s, L_s, B_s, F_m, T_m, B_m, L_m \Big) \cong \\ & \Delta V \leftarrow 1 \cdot m^3 \\ & \text{count} \leftarrow 0 \\ & \text{while} \left(\left| \Delta V \right| > 10^{-3} \cdot m^3 \right) \end{aligned} \\ & \Delta V \leftarrow L_m \end{aligned} \qquad \begin{aligned} & \frac{B_m}{2} \\ & - T_m & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_m & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \\ & - T_s & \text{if } \left(H_{wave_tr}(y, p, q, \phi) - \Delta T \right) > F_m & \text{dy } \dots \end{aligned}$$

Explained in Section 4.1.1.5

$$FB_{lg}(p,q,\phi,X_s,X_{cf},T_s,L_s,B_s,F_{mr}T_mB_{mr}L_m) := \begin{vmatrix} mot \leftarrow motion_lg(p,q,\phi,X_s,X_{cf},T_s,L_s,B_s,F_{mr}T_m,B_{mr},L_m) \\ \Delta T \leftarrow mot_0 \cdot m \\ \Theta_{pitch} \leftarrow mot_1 \\ B_s \leftarrow \frac{lton}{35 \cdot ft^3} \\ B_s \begin{vmatrix} X_s + \frac{L_s}{2} \\ -T_s & \text{if } \left[H_{wave_lg}(x,p,q,\phi,X_s) - \Delta T - (x-X_{cf}) \cdot \sin(\Theta_{pitch})\right] > F_m \\ -T_s & \text{if } \left[H_{wave_lg}(x,p,q,\phi,X_s) - \Delta T - (x-X_{cf}) \cdot \sin(\Theta_{pitch})\right] < -T_s \\ H_{wave_lg}(x,p,q,\phi,X_s) - \Delta T - (x-X_{cf}) \cdot \sin(\Theta_{pitch})\right] & \text{otherwise} \end{vmatrix}$$

$$\begin{aligned} & \text{MB}_{1g} \Big(p, q, \phi, X_s, X_{cf}, T_s, L_s, B_s, F_m, T_m, B_m, L_m \Big) := \\ & \text{mot} \leftarrow \text{motion_lg} \Big(p, q, \phi, X_s, X_{cf}, T_s, L_s, B_s, F_m, T_m, B_m, L_m \Big) \\ & \Delta T \leftarrow \text{mot}_0 \cdot m \\ & \Theta_{pitch} \leftarrow \text{mot}_1 \\ & MB_s \leftarrow \frac{\text{lton}}{35 \cdot \text{ft}^3} \\ & & \\ &$$

$$FB_{tr}(p,q,\phi,Y_{S},T_{S},L_{S},B_{S},F_{m},T_{m},B_{m},L_{m}) := \begin{vmatrix} mot \leftarrow motion_tr(p,q,\phi,Y_{S},T_{S},L_{S},B_{S},F_{m},T_{m},B_{m},L_{m}) \\ \Delta T \leftarrow mot \cdot m \end{vmatrix}$$

$$FB_{S} \leftarrow \frac{lton}{35 \cdot ft^{3}} \cdot \begin{bmatrix} I_{S} \cdot \begin{bmatrix} Y_{S} + \frac{B_{S}}{2} \\ & & \\ & & \end{bmatrix} \begin{bmatrix} F_{m} & if \left(H_{wave_tr}(y,p,q,\phi) - \Delta T\right) > F_{m} & dy \\ -T_{S} & if \left(H_{wave_tr}(y,p,q,\phi) - \Delta T\right) < -T_{S} \\ \left(H_{wave_tr}(y,p,q,\phi) - \Delta T\right) & otherwise \end{bmatrix}$$

$$FB_{S} \leftarrow \frac{B_{S}}{2} = \frac{B_{S}}{2} \cdot \frac{B_{S}}{2} \cdot$$

Explained in Section 4.1.1.6 $\beta := 5$

$$\begin{aligned} \text{dmax_lg}\big(L_m\big) &:= & \\ \text{for } n \in 1..D \\ \text{dmax} \leftarrow n & \text{if } \lambda_n < L_m \\ \text{dmax} \leftarrow \text{dmax} + 3 \end{aligned}$$

$$q_lg_sag_FB\left(X_s, X_{cf}, T_s, L_s, B_s, F_m, T_m, B_m, L_m\right) := \begin{vmatrix} q_{max} \leftarrow 0 \\ F \leftarrow 0 \\ \text{for } q \in 1... \text{dmax_lg}(L_m) \end{vmatrix}$$

$$\begin{vmatrix} p \leftarrow p \text{max}_q \\ F \text{temp} \leftarrow \begin{vmatrix} FB_{lg}(p, q, \phi_{lg_1}, X_s, X_{cf}, T_s, L_s, B_s, F_m, T_m, B_m, L_m) \end{vmatrix}$$
 if $F \text{temp} > F$
$$\begin{vmatrix} q_{max} \leftarrow q \\ F \leftarrow F \text{temp} \end{vmatrix}$$

$$\begin{vmatrix} q_{max} \leftarrow q \\ F \leftarrow F \text{temp} \end{vmatrix}$$

$$\begin{aligned} \text{design_lg_sag_FB} \ _{s} & \left(\textbf{X}_{s}, \textbf{X}_{cf}, \textbf{T}_{s}, \textbf{L}_{s}, \textbf{B}_{s}, \textbf{F}_{m}, \textbf{T}_{m}, \textbf{B}_{m}, \textbf{L}_{m} \right) \coloneqq \left| \begin{array}{l} \text{mean} \leftarrow 0 \\ \text{m2} \leftarrow 0 \\ \text{design} \leftarrow 0 \\ \text{q} \leftarrow \textbf{q}. \textbf{lg_sag_FB} \left(\textbf{X}_{s}, \textbf{X}_{cf}, \textbf{T}_{s}, \textbf{L}_{s}, \textbf{B}_{s}, \textbf{F}_{m}, \textbf{T}_{m}, \textbf{B}_{m}, \textbf{L}_{m} \right) \\ \text{sum} \leftarrow \sum_{p=1}^{pmax_{q}} \text{ss}_{p,q} \\ \text{pr} = 1.pmax_{q} \\ \text{if} \ \text{ss}_{p,q} \neq 0 \\ \left| \begin{array}{l} \textbf{F} \leftarrow \textbf{FB} \ \text{lg} \left(\textbf{p}, \textbf{q}, \boldsymbol{\phi} \ \text{lg}_{1}, \textbf{X}_{s}, \textbf{X}_{cf}, \textbf{T}_{s}, \textbf{L}_{s}, \textbf{B}_{s}, \textbf{F}_{m}, \textbf{T}_{m}, \textbf{B}_{m}, \textbf{L}_{m} \right) \\ \text{mean} \leftarrow \text{mean} + \left| \textbf{F} \right| \frac{\text{ss}_{p,q}}{\text{sum}} \\ \left| \textbf{m2} \leftarrow \textbf{m2} + \left(\textbf{F} \right)^{2} \frac{\text{ss}_{p,q}}{\text{sum}} \right| \\ \text{design} \leftarrow - \left[\text{mean} + \boldsymbol{\beta} \sqrt{m2} - \left(\text{mean} \right)^{2} \right] \\ \text{design} \\ \text{design} \leftarrow \left| \textbf{F} \leftarrow 0 \\ \text{for} \ \ \text{q} \in 1... \, \text{dmax_lg} \left(\textbf{L}_{m} \right) \\ \left| \begin{array}{l} \textbf{p} \leftarrow \text{pmax}_{q} \\ \text{Ftemp} \leftarrow \left| \textbf{FB} \ \text{lg} \left(\textbf{p}, \textbf{q}, \boldsymbol{\phi} \ \text{lg}_{3}, \textbf{X}_{s}, \textbf{X}_{cf}, \textbf{T}_{s}, \textbf{L}_{s}, \textbf{B}_{s}, \textbf{F}_{m}, \textbf{T}_{m}, \textbf{B}_{m}, \textbf{L}_{m} \right) \right| \\ \text{if} \ \ \text{Ftemp} > \textbf{F} \\ \left| \begin{array}{l} \textbf{q} \ \text{max} \leftarrow 0 \\ \textbf{F} \leftarrow 0 \\ \text{for} \ \ \text{q} \in 1... \, \text{dmax_lg} \left(\textbf{p}, \textbf{q}, \boldsymbol{\phi} \ \text{lg}_{3}, \textbf{X}_{s}, \textbf{X}_{cf}, \textbf{T}_{s}, \textbf{L}_{s}, \textbf{B}_{s}, \textbf{F}_{m}, \textbf{T}_{m}, \textbf{B}_{m}, \textbf{L}_{m} \right) \right| \\ \text{if} \ \ \ \text{Ftemp} > \textbf{F} \\ \left| \begin{array}{l} \textbf{q} \ \text{max} \leftarrow 0 \\ \textbf{p} \leftarrow \textbf{pmax}_{q} \\ \textbf{Ftemp} \leftarrow \left| \textbf{FB} \ \text{lg} \left(\textbf{p}, \textbf{q}, \boldsymbol{\phi} \ \text{lg}_{3}, \textbf{X}_{s}, \textbf{X}_{cf}, \textbf{T}_{s}, \textbf{L}_{s}, \textbf{B}_{s}, \textbf{F}_{m}, \textbf{T}_{m}, \textbf{B}_{m}, \textbf{L}_{m} \right) \right| \\ \text{if} \ \ \ \ \text{Ftemp} \rightarrow \textbf{F} \\ \left| \begin{array}{l} \textbf{q} \ \text{max} \leftarrow q \\ \textbf{p} \leftarrow \textbf{Ftemp} \end{array} \right| \\ \textbf{q} \ \text{max} \leftarrow q \\ \textbf{q} \ \text{max} \\ \textbf{q} \ \text{max} \ \text{q} \\ \textbf{q} \ \text{q} \\ \textbf{$$

```
design\_lg\_hog\_FB_s(X_s, X_{cf}, T_s, L_s, B_s, F_m, T_m, B_m, L_m) := | mean \leftarrow 0
                                                                                                                m2 \leftarrow 0
                                                                                                                 design \leftarrow 0
                                                                                                                q \leftarrow q_lg_bog_FB(X_s, X_{cf}, T_s, L_s, B_s, F_m, T_m, B_m, L_m)
                                                                                                                for p \in 1...pmax
                                                                                                                  if ss_{p,q} \neq 0
                                                                                                                         F \leftarrow FB_{lg} \left( p, q, \phi_{lg_3}, X_s, X_{cf}, T_s, L_s, B_s, F_m, T_m, B_m, L_m \right) 
                                                                                                                         mean \leftarrow mean + |F| \cdot \frac{ss}{sum}
                                                                                                                design \leftarrow mean + \beta \cdot \sqrt{m2 - (mean)^2}
                                                                                                               design
q_twist_MB_pos(X_s, X_{cf}, T_s, L_s, B_s, F_m, T_m, B_m, L_m) := q_{max} \leftarrow 0
                                                                                                          F \leftarrow 0
                                                                                                         for q \in 1...dmax_lg(L_m)
                                                                                                              p \leftarrow pmax_q
                                                                                                               \text{Ftemp} \leftarrow \left| \text{MB}_{1g}\!\!\left( \text{p,q,} \phi_{1g_0}, \text{X}_{\text{S}}, \text{X}_{\text{cf}}, \text{T}_{\text{S}}, \text{L}_{\text{S}}, \text{B}_{\text{S}}, \text{F}_{\text{m}}, \text{T}_{\text{m}}, \text{B}_{\text{m}}, \text{L}_{\text{m}} \right) \right|
                                                                                                               if Ftemp > F
                                                                                                                    q <sub>max</sub>← q
                                                                                                        q max
```

```
design\_twist\_MB\_pos\left(X_{s},X_{cf},T_{s},L_{s},B_{s},F_{m},T_{m},B_{m},L_{m}\right) :=
                                                                                                                     m2 ← 0
                                                                                                                     design ← 0
                                                                                                                     \mathbf{q} \leftarrow \mathbf{q}_{\mathsf{twist\_MB\_pos}} \left(\mathbf{X}_{\mathsf{S}}, \mathbf{X}_{\mathsf{cf}}, \mathbf{T}_{\mathsf{S}}, \mathbf{L}_{\mathsf{S}}, \mathbf{B}_{\mathsf{S}}, \mathbf{F}_{\mathsf{m}}, \mathbf{T}_{\mathsf{m}}, \mathbf{B}_{\mathsf{m}}, \mathbf{L}_{\mathsf{m}}\right)
                                                                                                                      for p \in 1..pmax
                                                                                                                        if ss_{p,q} \neq 0
                                                                                                                             F \leftarrow MB_{lg}(p,q,\phi_{lg_0},X_s,X_{cf},T_s,L_s,B_s,F_m,T_m,B_m,L_m)
                                                                                                                     design \leftarrow mean + \beta \cdot \sqrt{m^2 - (mean)^2}
                                                                                                                    design
q\_twist\_MB\_neg\left(X_{S},X_{Cf},T_{S},L_{S},B_{S},F_{m},T_{m},B_{m},L_{m}\right) := \left[q_{max} \leftarrow 0\right]
                                                                                                             for q \in 1... dmax_lg(L_m)
                                                                                                                  | \text{Ftemp} \leftarrow \left| \text{MB}_{lg} \left( p, q, \phi_{lg_2}, X_s, X_{cf}, T_s, L_s, B_s, F_m, T_m, B_m, L_m \right) \right|
design\_twist\_MB\_neg\left(X_{S},X_{Cf},T_{S},L_{S},B_{S},F_{m},T_{m},B_{m},L_{m}\right) := \left[mean \leftarrow 0\right]
                                                                                                                     design ← 0
                                                                                                                     q \leftarrow q_{twist\_MB\_neg} (X_s, X_{cf}, T_s, L_s, B_s, F_{m'}, T_{m'}, B_{m'}, L_m)
                                                                                                                     for p \in 1...pmax
                                                                                                                     if ss_{p,q} \neq 0
F \leftarrow MB_{lg}(p,q,\phi_{lg_2},X_s,X_{cf},T_s,L_s,B_s,F_m,T_m,B_m,L_m)
                                                                                                                   design
```

$$\begin{aligned} & & & & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

 $dmax_tr(Y_S) := \left[dmax_tr \leftarrow 0\right]$

design

$$q_{tr} = \left(Y_{s}, T_{s}, L_{s}, B_{s}, F_{m}, T_{m}, B_{m}, L_{m} \right) := \left[q_{max} \leftarrow 0 \right.$$

$$F \leftarrow 0$$

$$for \ q \in 1... dmax_{tr}(Y_{s})$$

$$\left[p \leftarrow pmax_{q} \right.$$

$$Ftemp \leftarrow \left[FB_{tr}(p, q, \phi_{tr_{0}}, Y_{s}, T_{s}, L_{s}, B_{s}, F_{m}, T_{m}, B_{m}, L_{m}) \right]$$

$$if \ Ftemp > F$$

$$\left[q_{max} \leftarrow q \right.$$

$$F \leftarrow Ftemp$$

$$q_{max}$$

$$\begin{aligned} \text{design_tr_hog_FB }_s & \big(Y_s, T_s, L_s, B_s, F_m, T_m, B_m, L_m \big) := \\ & \text{mean} \leftarrow 0 \\ & \text{q} \leftarrow 0 \\ & \text{design} \leftarrow 0 \\ & \text{q} \leftarrow q_\text{tr_hog_FB} \left(Y_s, T_s, L_s, B_s, F_m, T_m, B_m, L_m \right) \\ & \text{sum} \leftarrow \sum_{p=1}^{pmax_q} ss_{p,q} \\ & \text{p} = 1 \\ & \text{for } p \in 1...pmax_q \\ & \text{if } ss_{p,q} \neq 0 \\ & \text{F} \leftarrow FB_{tr} \Big(p, q, \phi_{tr_0}, Y_s, T_s, L_s, B_s, F_m, T_m, B_m, L_m \Big) \\ & \text{mean} \leftarrow mean + |F| \cdot \frac{ss_{p,q}}{sum} \\ & \text{mean} \leftarrow mean + |F| \cdot \frac{ss_{p,q}}{sum} \\ & \text{design} \leftarrow - \Big[mean + \beta \sqrt{m2 - (mean)^2} \Big] \\ & \text{design} \end{aligned}$$

Explained in Section 4.1.1.7

file_root := "C:\Documents and Settings\jlrhoads\My Documents\rhoads thesis data\"

$$\begin{aligned} & \text{file_base}\big(L_m\big) \coloneqq \text{num2str}\bigg(\frac{L_m}{m}\bigg) & & \text{file_ext} \coloneqq \text{".prn"} & & \text{cc}(a,b) \coloneqq \text{concat}(a,b) \, \Big| \\ & \text{fullname_lg}\big(L_m\big) \coloneqq \text{file_root} \, \text{cc} \, \Big[\Big[\, \text{file_base}\big(L_m\big) \, \text{cc} \, \big(\text{"_lg"} \, \text{cc} \, \, \text{file_ext} \big) \, \Big] \Big] \Big| \\ & \text{fullname_tr}\big(L_m\big) \coloneqq \text{file_root} \, \text{cc} \, \Big[\Big[\, \text{file_base}\big(L_m\big) \, \text{cc} \, \big(\text{"_tr"} \, \text{cc} \, \, \text{file_ext} \big) \, \Big] \Big] \Big| \end{aligned}$$

```
for j∈ 0..12
   L_m \leftarrow (60 + 20 \text{ j}) \cdot \text{m}
                  r^{\bar{m}}
     B<sub>m</sub>← - 14
                 <u>B</u> m
                  2
     D_{m} \leftarrow 2.4T_{m}
      F_m \leftarrow D_m - T_m
      data lg ← (0 0 0 0 0 0 0 0)
      \text{data}_{tr} \leftarrow (0 \ 0 \ 0 \ 0 \ 0)
      WRITEPRN (fullname_lg (L<sub>m</sub>), data lg)
      WRITEPRN(fullname_tr(L<sub>m</sub>),data <sub>tr</sub>)
       for n ∈ 0..5
          L_s \leftarrow L_{\vec{m}}(0.25 + n \cdot .05)
            B_s \leftarrow T_s
             for i∈ 0..5
                                B_{m}L_{m}Om + 2B_{s}L_{s}X_{s}
                                      \frac{B_{m} \cdot L_{m} + 2B_{s} \cdot L_{s}}{B_{m} \cdot L_{m} + 2B_{s} \cdot L_{s}}
                  data \lg_{0,0} \leftarrow \frac{1}{m}
                  data lg<sub>0,1</sub> ←
                  data <sub>lg<sub>0,2</sub></sub> ←
                                         \frac{\text{design\_lg\_sag\_FB}}{\text{design\_lg\_sag\_FB}} \underbrace{s \Big( X_s, X_{cf}, T_s, L_s, B_s, F_m, T_m, B_m, L_m \Big)}
                                          \frac{\text{design\_twist\_MB\_pos} \left(X_s, X_{cf}, T_s, L_s, B_s, F_m, T_m, B_m, L_m\right)}{\left(X_s, X_{cf}, T_s, L_s, B_s, F_m, T_m, B_m, L_m\right)}
                                          design\_twist\_MB\_neg (X_s, X_{cf}, T_s, L_s, B_s, F_m, T_m, B_m, L_m)
                 APPENDPRN fullname_lg(Lm), data lg)
              for i∈ 0..5
                Y_s \leftarrow B_{\vec{m}}(1 + i \cdot 0.1)
                  _{\text{data}} :_{\text{tr}_{0,0}} \leftarrow \frac{L_{\text{m}}}{\text{m}}
                                        \frac{\text{design\_tr\_sag\_FB }_{s}(Y_{s}, T_{s}, L_{s}, B_{s}, F_{m}, T_{m}, B_{m}, L_{m})}{}
                                        \frac{\text{design\_tr\_hog\_FB }_{s}(Y_{s},T_{s},L_{s},B_{s},F_{m},T_{m},B_{m},L_{m})}{}
                  APPENDPRN(fullname_tr(Lm), data tr)
```

81

Page Intentionally Left Blank

Appendix B. MathCAD Analytical Results Tables

						M_lg_pos	M_lg_neg
Lm (m)	Ls (m)	Bs (m)	Xs (m)	F_lg_sag (N)	F_lg_hog (N)	(Nm)	(Nm)
60	15	1.212	0	-2.63E+05	3.22E+05	8.52E+05	-8.52E+05
60	15	1.212	-4.5	-2.54E+05	2.62E+05	8.48E+05	-7.95E+05
60	15	1.212	-9	-2.28E+05	2.32E+05	8.29E+05	-7.84E+05
60	15	1.212	-13.5	-1.88E+05	1.90E+05	8.05E+05	-7.77E+05
60	15	1.212	-18	-1.48E+05	1.48E+05	7.95E+05	-8.25E+05
60	15	1.212	-22.5	-1.21E+05	1.35E+05	8.02E+05	-8.85E+05
60	18	1.107	0	-2.55E+05	3.31E+05	1.23E+06	-1.23E+06
60	18	1.107	-4.2	-2.47E+05	2.59E+05	1.24E+06	-1.04E+06
60	18	1.107	-8.4	-2.23E+05	2.29E+05	1.22E+06	-1.02E+06
60	. 18	1.107	-12.6	-1.86E+05	1.89E+05	1.18E+06	-1.01E+06
60	18	1.107	-16.8	-1.45E+05	1.46E+05	1.16E+06	-1.21E+06
60	18	1.107	-21	-1.14E+05	1.21E+05	1.14E+06	-1.32E+06
60	21	1.024	0	-3.09E+05	3.33E+05	1.64E+06	-1.64E+06
60	21	1.024	-3.9	-2.93E+05	3.09E+05	1.65E+06	-1.59E+06
60	21	1.024	-7.8	-2.09E+05	2.19E+05	1.64E+06	-1.19E+06
60	21	1.024	-11.7	-1.76E+05	1.84E+05	1.60E+06	-1.17E+06
60	21	1.024	-15.6	-1.37E+05	1.29E+05	1.56E+06	-1.61E+06
60	21	1.024	-19.5	-1.07E+05	1.08E+05	1.53E+06	-1.79E+06
60	24	0.9583	0	-2.99E+05	3.27E+05	2.04E+06	-2.04E+06
60	24	0.9583	-3.6	-2.84E+05	3.06E+05	2.06E+06	-1.99E+06
60	24	0.9583	-7.2	-2.43E+05	2.53E+05	2.06E+06	-1.92E+06
60	24	0.9583	-10.8	-1.59E+05	1.88E+05	2.02E+06	-1.85E+06
60	24	0.9583	-14.4	-1.28E+05	1.29E+05	1.96E+06	-2.00E+06
60	24	0.9583	-18	-9.53E+04	9.63E+04	1.92E+06	-2.24E+06
60	27	0.9035	0	-2.84E+05	3.16E+05	2.42E+06	-2.42E+06
60	27	0.9035	-3.3	-2.71E+05	2.97E+05	2.45E+06	-2.36E+06
60	27	0.9035	-6.6	-2.34E+05	2.50E+05	2.44E+06	-2.28E+06
60	27	0.9035	-9.9	-1.82E+05	1.10E+05	2.40E+06	-2.20E+06
60	27	0.9035	-13.2	-1.26E+05	1.30E+05	2.34E+06	-2.36E+06
60	27	0.9035	-16.5	-1.66E+04	8.86E+04	2.29E+06	-2.65E+06
60	30	0.8571	, O	-8.61E+04	2.99E+05	2.75E+06	-2.75E+06
60	30	0.8571	-3	-7.52E+04	2.83E+05	2.78E+06	-2.68E+06
60	30	0.8571	-6	-4.98E+04	2.42E+05	2.77E+06	-2.60E+06
60	30	0.8571	-9	-2.70E+04	1.87E+05	2.73E+06	-2.50E+06
60	30	0.8571	-12	-1.96E+04	1.31E+05	2.66E+06	-2.69E+06
60	30	0.8571	-15	-2.83E+04	8.55E+04	2.59E+06	-3.00E+06

Lm (m) Ls (m) Bs (m) Ys (m) F_tr_sag (N) F_tr_hog (N) 60 15 1.212 4.286 1.73E+05 -1.69E+05 60 15 1.212 4.714 1.97E+05 -1.90E+05 60 15 1.212 5.143 2.19E+05 -2.09E+05 60 15 1.212 6.252E+05 -2.24E+05 60 15 1.212 6.429 2.62E+05 -2.45E+05 60 18 1.107 4.286 1.87E+05 -1.81E+05 60 18 1.107 4.286 1.87E+05 -1.81E+05 60 18 1.107 5.143 2.38E+05 -2.24E+05 60 18 1.107 5.571 2.58E+05 -2.39E+05 60 18 1.107 6.429 2.84E+05 -2.48E+05 60 18 1.107 6.429 2.84E+05 -2.49E+05 60 11 1.024 4.286 2.00E+05 -1.92E+05 <	r					[
60 15 1.212 4.714 1.97E+05 -1.90E+05 60 15 1.212 5.143 2.19E+05 -2.09E+05 60 15 1.212 5.571 2.38E+05 -2.24E+05 60 15 1.212 6 2.52E+05 -2.37E+05 60 15 1.212 6.429 2.62E+05 -2.45E+05 60 18 1.107 4.286 1.87E+05 -1.81E+05 60 18 1.107 4.714 2.14E+05 -2.04E+05 60 18 1.107 5.143 2.38E+05 -2.24E+05 60 18 1.107 5.571 2.58E+05 -2.39E+05 60 18 1.107 6.429 2.84E+05 -2.48E+05 60 18 1.107 6.429 2.84E+05 -2.49E+05 60 18 1.107 6.429 2.84E+05 -2.49E+05 60 21 1.024 4.286 2.00E+05 -1.92E+05	Lm (m)	Ls (m)	Bs (m)	Ys (m)	F_tr_sag (N)	F_tr_hog (N)
60 15 1.212 5.143 2.19E+05 -2.09E+05 60 15 1.212 5.571 2.38E+05 -2.24E+05 60 15 1.212 6 2.52E+05 -2.37E+05 60 15 1.212 6.429 2.62E+05 -2.45E+05 60 18 1.107 4.286 1.87E+05 -1.81E+05 60 18 1.107 4.714 2.14E+05 -2.04E+05 60 18 1.107 5.143 2.38E+05 -2.24E+05 60 18 1.107 5.571 2.58E+05 -2.39E+05 60 18 1.107 6 2.74E+05 -2.48E+05 60 18 1.107 6 2.74E+05 -2.48E+05 60 18 1.107 6.429 2.84E+05 -2.49E+05 60 21 1.024 4.286 2.00E+05 -1.92E+05 60 21 1.024 5.571 2.76E+05 -2.47E+05						
60 15 1.212 5.571 2.38E+05 -2.24E+05 60 15 1.212 6 2.52E+05 -2.37E+05 60 15 1.212 6.429 2.62E+05 -2.45E+05 60 18 1.107 4.286 1.87E+05 -1.81E+05 60 18 1.107 4.714 2.14E+05 -2.04E+05 60 18 1.107 5.143 2.38E+05 -2.24E+05 60 18 1.107 5.571 2.58E+05 -2.39E+05 60 18 1.107 6 2.74E+05 -2.48E+05 60 18 1.107 6 2.74E+05 -2.48E+05 60 18 1.107 6 2.74E+05 -2.49E+05 60 21 1.024 4.286 2.00E+05 -1.92E+05 60 21 1.024 4.714 2.29E+05 -2.16E+05 60 21 1.024 5.571 2.76E+05 -2.47E+05 <t< td=""><td> </td><td></td><td></td><td></td><td></td><td></td></t<>	 					
60 15 1.212 6 2.52E+05 -2.37E+05 60 15 1.212 6.429 2.62E+05 -2.45E+05 60 18 1.107 4.286 1.87E+05 -1.81E+05 60 18 1.107 4.714 2.14E+05 -2.04E+05 60 18 1.107 5.143 2.38E+05 -2.24E+05 60 18 1.107 6 2.74E+05 -2.39E+05 60 18 1.107 6 2.74E+05 -2.48E+05 60 18 1.107 6 2.74E+05 -2.48E+05 60 18 1.107 6.429 2.84E+05 -2.49E+05 60 21 1.024 4.286 2.00E+05 -1.92E+05 60 21 1.024 4.714 2.29E+05 -2.16E+05 60 21 1.024 5.571 2.76E+05 -2.47E+05 60 21 1.024 6.429 3.04E+05 -2.48E+05 <t< td=""><td>60</td><td>15</td><td>1.212</td><td>5.143</td><td>2.19E+05</td><td>-2.09E+05</td></t<>	60	15	1.212	5.143	2.19E+05	-2.09E+05
60 15 1.212 6.429 2.62E+05 -2.45E+05 60 18 1.107 4.286 1.87E+05 -1.81E+05 60 18 1.107 4.714 2.14E+05 -2.04E+05 60 18 1.107 5.143 2.38E+05 -2.24E+05 60 18 1.107 6 2.74E+05 -2.39E+05 60 18 1.107 6 2.74E+05 -2.48E+05 60 18 1.107 6 2.74E+05 -2.49E+05 60 18 1.107 6.429 2.84E+05 -2.49E+05 60 21 1.024 4.286 2.00E+05 -1.92E+05 60 21 1.024 4.714 2.29E+05 -2.16E+05 60 21 1.024 5.571 2.76E+05 -2.47E+05 60 21 1.024 6 2.93E+05 -2.49E+05 60 21 1.024 6.429 3.04E+05 -2.24E+05 <t< td=""><td>60</td><td>15</td><td>1.212</td><td>5.571</td><td>2.38E+05</td><td>-2.24E+05</td></t<>	60	15	1.212	5.571	2.38E+05	-2.24E+05
60 18 1.107 4.286 1.87E+05 -1.81E+05 60 18 1.107 4.714 2.14E+05 -2.04E+05 60 18 1.107 5.143 2.38E+05 -2.24E+05 60 18 1.107 6 2.74E+05 -2.39E+05 60 18 1.107 6.429 2.84E+05 -2.49E+05 60 18 1.107 6.429 2.84E+05 -2.49E+05 60 21 1.024 4.286 2.00E+05 -1.92E+05 60 21 1.024 4.714 2.29E+05 -2.16E+05 60 21 1.024 5.143 2.54E+05 -2.36E+05 60 21 1.024 6 2.93E+05 -2.47E+05 60 21 1.024 6 2.93E+05 -2.49E+05 60 21 1.024 6 2.93E+05 -2.49E+05 60 21 1.024 6.429 3.04E+05 -2.27E+05 <t< td=""><td>60</td><td>15</td><td>1.212</td><td>6</td><td>2.52E+05</td><td>-2.37E+05</td></t<>	60	15	1.212	6	2.52E+05	-2.37E+05
60 18 1.107 4.714 2.14E+05 -2.04E+05 60 18 1.107 5.143 2.38E+05 -2.24E+05 60 18 1.107 5.571 2.58E+05 -2.39E+05 60 18 1.107 6 2.74E+05 -2.48E+05 60 18 1.107 6.429 2.84E+05 -2.49E+05 60 21 1.024 4.286 2.00E+05 -1.92E+05 60 21 1.024 4.714 2.29E+05 -2.16E+05 60 21 1.024 5.143 2.54E+05 -2.36E+05 60 21 1.024 5.571 2.76E+05 -2.47E+05 60 21 1.024 6.429 3.04E+05 -2.49E+05 60 21 1.024 6.429 3.04E+05 -2.48E+05 60 21 1.024 6.429 3.04E+05 -2.27E+05 60 24 0.9583 4.286 2.12E+05 -2.27E+05	60	15	1.212	6.429	2.62E+05	-2.45E+05
60 18 1.107 5.143 2.38E+05 -2.24E+05 60 18 1.107 5.571 2.58E+05 -2.39E+05 60 18 1.107 6 2.74E+05 -2.48E+05 60 18 1.107 6.429 2.84E+05 -2.49E+05 60 21 1.024 4.286 2.00E+05 -1.92E+05 60 21 1.024 4.714 2.29E+05 -2.16E+05 60 21 1.024 5.143 2.54E+05 -2.36E+05 60 21 1.024 6 2.93E+05 -2.47E+05 60 21 1.024 6 2.93E+05 -2.49E+05 60 21 1.024 6.429 3.04E+05 -2.48E+05 60 21 1.024 6.429 3.04E+05 -2.48E+05 60 24 0.9583 4.714 2.42E+05 -2.27E+05 60 24 0.9583 5.571 2.92E+05 -2.44E+05	60	18	1.107	4.286	1.87E+05	-1.81E+05
60 18 1.107 5.571 2.58E+05 -2.39E+05 60 18 1.107 6 2.74E+05 -2.48E+05 60 18 1.107 6.429 2.84E+05 -2.49E+05 60 21 1.024 4.286 2.00E+05 -1.92E+05 60 21 1.024 4.714 2.29E+05 -2.16E+05 60 21 1.024 5.143 2.54E+05 -2.36E+05 60 21 1.024 6 2.93E+05 -2.47E+05 60 21 1.024 6 2.93E+05 -2.49E+05 60 21 1.024 6 2.93E+05 -2.49E+05 60 21 1.024 6.429 3.04E+05 -2.48E+05 60 21 1.024 6.429 3.04E+05 -2.27E+05 60 24 0.9583 4.286 2.12E+05 -2.27E+05 60 24 0.9583 5.571 2.92E+05 -2.44E+05	60	18	1.107	4.714	2.14E+05	-2.04E+05
60 18 1.107 6 2.74E+05 -2.48E+05 60 18 1.107 6.429 2.84E+05 -2.49E+05 60 21 1.024 4.286 2.00E+05 -1.92E+05 60 21 1.024 4.714 2.29E+05 -2.16E+05 60 21 1.024 5.143 2.54E+05 -2.36E+05 60 21 1.024 6 2.93E+05 -2.47E+05 60 21 1.024 6 2.93E+05 -2.49E+05 60 21 1.024 6.429 3.04E+05 -2.48E+05 60 24 0.9583 4.286 2.12E+05 -2.02E+05 60 24 0.9583 4.714 2.42E+05 -2.27E+05 60 24 0.9583 5.571 2.92E+05 -2.44E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6 3.10E+05 -2.47E+05 <	60	18	1.107	5.143	2.38E+05	-2.24E+05
60 18 1.107 6.429 2.84E+05 -2.49E+05 60 21 1.024 4.286 2.00E+05 -1.92E+05 60 21 1.024 4.714 2.29E+05 -2.16E+05 60 21 1.024 5.143 2.54E+05 -2.36E+05 60 21 1.024 6 2.93E+05 -2.47E+05 60 21 1.024 6 2.93E+05 -2.49E+05 60 21 1.024 6.429 3.04E+05 -2.48E+05 60 24 0.9583 4.286 2.12E+05 -2.02E+05 60 24 0.9583 4.714 2.42E+05 -2.27E+05 60 24 0.9583 5.571 2.92E+05 -2.44E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6 3.10E+05 -2.47E+05 60 24 0.9583 6 3.10E+05 -2.47E+05	60	18	1.107	5.571	2.58E+05	-2.39E+05
60 21 1.024 4.286 2.00E+05 -1.92E+05 60 21 1.024 4.714 2.29E+05 -2.16E+05 60 21 1.024 5.143 2.54E+05 -2.36E+05 60 21 1.024 6 2.93E+05 -2.47E+05 60 21 1.024 6 2.93E+05 -2.49E+05 60 21 1.024 6.429 3.04E+05 -2.48E+05 60 24 0.9583 4.286 2.12E+05 -2.02E+05 60 24 0.9583 4.714 2.42E+05 -2.27E+05 60 24 0.9583 5.143 2.69E+05 -2.44E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6 3.10E+05 -2.47E+05 60 27 0.9035 4.286 2.22E+05 -2.11E+05	60	18	1.107	6	2.74E+05	-2.48E+05
60 21 1.024 4.714 2.29E+05 -2.16E+05 60 21 1.024 5.143 2.54E+05 -2.36E+05 60 21 1.024 6 2.93E+05 -2.47E+05 60 21 1.024 6 2.93E+05 -2.49E+05 60 21 1.024 6.429 3.04E+05 -2.48E+05 60 24 0.9583 4.286 2.12E+05 -2.02E+05 60 24 0.9583 4.714 2.42E+05 -2.27E+05 60 24 0.9583 5.143 2.69E+05 -2.44E+05 60 24 0.9583 6 3.10E+05 -2.49E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6 3.10E+05 -2.47E+05 60 27 0.9035 4.296 2.22E+05 -2.11E+05 <t< td=""><td>60</td><td>18</td><td>1.107</td><td>6.429</td><td>2.84E+05</td><td>-2.49E+05</td></t<>	60	18	1.107	6.429	2.84E+05	-2.49E+05
60 21 1.024 5.143 2.54E+05 -2.36E+05 60 21 1.024 5.571 2.76E+05 -2.47E+05 60 21 1.024 6 2.93E+05 -2.49E+05 60 21 1.024 6.429 3.04E+05 -2.48E+05 60 24 0.9583 4.286 2.12E+05 -2.02E+05 60 24 0.9583 4.714 2.42E+05 -2.27E+05 60 24 0.9583 5.143 2.69E+05 -2.44E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6.429 3.22E+05 -2.47E+05 60 27 0.9035 4.286 2.22E+05 -2.11E+05 60 27 0.9035 5.143 2.83E+05 -2.47E+05 60 27 0.9035 6 3.26E+05 -2.47E+05 <td>60</td> <td>21</td> <td>1.024</td> <td>4.286</td> <td>2.00E+05</td> <td>-1.92E+05</td>	60	21	1.024	4.286	2.00E+05	-1.92E+05
60 21 1.024 5.571 2.76E+05 -2.47E+05 60 21 1.024 6 2.93E+05 -2.49E+05 60 21 1.024 6.429 3.04E+05 -2.48E+05 60 24 0.9583 4.286 2.12E+05 -2.02E+05 60 24 0.9583 4.714 2.42E+05 -2.27E+05 60 24 0.9583 5.143 2.69E+05 -2.44E+05 60 24 0.9583 5.571 2.92E+05 -2.49E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6.429 3.22E+05 -2.47E+05 60 24 0.9583 6.429 3.22E+05 -2.47E+05 60 27 0.9035 4.286 2.22E+05 -2.11E+05 60 27 0.9035 5.143 2.83E+05 -2.47E+05 60 27 0.9035 6.429 3.38E+05 -2.47E+05 <td>60</td> <td>21</td> <td>1.024</td> <td>4.714</td> <td>2.29E+05</td> <td>-2.16E+05</td>	60	21	1.024	4.714	2.29E+05	-2.16E+05
60 21 1.024 6 2.93E+05 -2.49E+05 60 21 1.024 6.429 3.04E+05 -2.48E+05 60 24 0.9583 4.286 2.12E+05 -2.02E+05 60 24 0.9583 4.714 2.42E+05 -2.27E+05 60 24 0.9583 5.143 2.69E+05 -2.44E+05 60 24 0.9583 6 3.10E+05 -2.49E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6.429 3.22E+05 -2.47E+05 60 24 0.9583 6.429 3.22E+05 -2.47E+05 60 27 0.9035 4.286 2.22E+05 -2.11E+05 60 27 0.9035 5.143 2.83E+05 -2.47E+05 60 27 0.9035 5.571 3.07E+05 -2.48E+05 60 27 0.9035 6.429 3.38E+05 -2.46E+05	60	21	1.024	5.143	2.54E+05	-2.36E+05
60 21 1.024 6.429 3.04E+05 -2.48E+05 60 24 0.9583 4.286 2.12E+05 -2.02E+05 60 24 0.9583 4.714 2.42E+05 -2.27E+05 60 24 0.9583 5.143 2.69E+05 -2.44E+05 60 24 0.9583 5.571 2.92E+05 -2.49E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6.429 3.22E+05 -2.47E+05 60 27 0.9035 4.286 2.22E+05 -2.11E+05 60 27 0.9035 4.714 2.55E+05 -2.35E+05 60 27 0.9035 5.571 3.07E+05 -2.47E+05 60 27 0.9035 6 3.26E+05 -2.47E+05 60 27 0.9035 6 3.26E+05 -2.47E+05 60 27 0.9035 6.429 3.38E+05 -2.46E+05	60	21	1.024	5.571	2.76E+05	-2.47E+05
60 24 0.9583 4.286 2.12E+05 -2.02E+05 60 24 0.9583 4.714 2.42E+05 -2.27E+05 60 24 0.9583 5.143 2.69E+05 -2.44E+05 60 24 0.9583 5.571 2.92E+05 -2.49E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6.429 3.22E+05 -2.47E+05 60 27 0.9035 4.286 2.22E+05 -2.11E+05 60 27 0.9035 4.714 2.55E+05 -2.35E+05 60 27 0.9035 5.143 2.83E+05 -2.47E+05 60 27 0.9035 6 3.26E+05 -2.47E+05 60 27 0.9035 6.429 3.38E+05 -2.46E+05 60 27 0.9035 6.429 3.38E+05 -2.20E+05 60 30 0.8571 4.714 2.66E+05 -2.41E+05<	60	21	1.024	6	2.93E+05	-2.49E+05
60 24 0.9583 4.714 2.42E+05 -2.27E+05 60 24 0.9583 5.143 2.69E+05 -2.44E+05 60 24 0.9583 5.571 2.92E+05 -2.49E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6.429 3.22E+05 -2.47E+05 60 27 0.9035 4.286 2.22E+05 -2.11E+05 60 27 0.9035 4.714 2.55E+05 -2.35E+05 60 27 0.9035 5.143 2.83E+05 -2.47E+05 60 27 0.9035 5.571 3.07E+05 -2.48E+05 60 27 0.9035 6 3.26E+05 -2.47E+05 60 27 0.9035 6.429 3.38E+05 -2.26E+05 60 27 0.9035 6.429 3.38E+05 -2.20E+05 60 30 0.8571 4.286 2.33E+05 -2.20E+05<	60	21	1.024	6.429	3.04E+05	-2.48E+05
60 24 0.9583 5.143 2.69E+05 -2.44E+05 60 24 0.9583 5.571 2.92E+05 -2.49E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6.429 3.22E+05 -2.47E+05 60 27 0.9035 4.286 2.22E+05 -2.11E+05 60 27 0.9035 4.714 2.55E+05 -2.35E+05 60 27 0.9035 5.143 2.83E+05 -2.47E+05 60 27 0.9035 5.571 3.07E+05 -2.48E+05 60 27 0.9035 6 3.26E+05 -2.47E+05 60 27 0.9035 6.429 3.38E+05 -2.46E+05 60 27 0.9035 6.429 3.38E+05 -2.20E+05 60 30 0.8571 4.286 2.33E+05 -2.20E+05 60 30 0.8571 5.143 2.96E+05 -2.41E+05<	60	24	0.9583	4.286	2.12E+05	-2.02E+05
60 24 0.9583 5.571 2.92E+05 -2.49E+05 60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6.429 3.22E+05 -2.47E+05 60 27 0.9035 4.286 2.22E+05 -2.11E+05 60 27 0.9035 4.714 2.55E+05 -2.35E+05 60 27 0.9035 5.143 2.83E+05 -2.47E+05 60 27 0.9035 5.571 3.07E+05 -2.48E+05 60 27 0.9035 6 3.26E+05 -2.47E+05 60 27 0.9035 6.429 3.38E+05 -2.46E+05 60 27 0.9035 6.429 3.38E+05 -2.20E+05 60 30 0.8571 4.286 2.33E+05 -2.20E+05 60 30 0.8571 5.143 2.96E+05 -2.41E+05 60 30 0.8571 5.571 3.21E+05 -2.47E+05<	60	24	0.9583	4.714	2.42E+05	-2.27E+05
60 24 0.9583 6 3.10E+05 -2.48E+05 60 24 0.9583 6.429 3.22E+05 -2.47E+05 60 27 0.9035 4.286 2.22E+05 -2.11E+05 60 27 0.9035 4.714 2.55E+05 -2.35E+05 60 27 0.9035 5.143 2.83E+05 -2.47E+05 60 27 0.9035 5.571 3.07E+05 -2.48E+05 60 27 0.9035 6 3.26E+05 -2.47E+05 60 27 0.9035 6.429 3.38E+05 -2.46E+05 60 30 0.8571 4.286 2.33E+05 -2.20E+05 60 30 0.8571 4.714 2.66E+05 -2.41E+05 60 30 0.8571 5.143 2.96E+05 -2.48E+05 60 30 0.8571 5.571 3.21E+05 -2.47E+05 60 30 0.8571 5.571 3.21E+05 -2.47E+05<	60	24	0.9583	5.143	2.69E+05	-2.44E+05
60 24 0.9583 6.429 3.22E+05 -2.47E+05 60 27 0.9035 4.286 2.22E+05 -2.11E+05 60 27 0.9035 4.714 2.55E+05 -2.35E+05 60 27 0.9035 5.143 2.83E+05 -2.47E+05 60 27 0.9035 5.571 3.07E+05 -2.48E+05 60 27 0.9035 6 3.26E+05 -2.47E+05 60 27 0.9035 6.429 3.38E+05 -2.46E+05 60 30 0.8571 4.286 2.33E+05 -2.20E+05 60 30 0.8571 4.714 2.66E+05 -2.41E+05 60 30 0.8571 5.143 2.96E+05 -2.48E+05 60 30 0.8571 5.571 3.21E+05 -2.47E+05 60 30 0.8571 6 3.41E+05 -2.46E+05	60	24	0.9583	5.571	2.92E+05	-2.49E+05
60 27 0.9035 4.286 2.22E+05 -2.11E+05 60 27 0.9035 4.714 2.55E+05 -2.35E+05 60 27 0.9035 5.143 2.83E+05 -2.47E+05 60 27 0.9035 5.571 3.07E+05 -2.48E+05 60 27 0.9035 6 3.26E+05 -2.47E+05 60 27 0.9035 6.429 3.38E+05 -2.46E+05 60 30 0.8571 4.286 2.33E+05 -2.20E+05 60 30 0.8571 4.714 2.66E+05 -2.41E+05 60 30 0.8571 5.143 2.96E+05 -2.48E+05 60 30 0.8571 5.571 3.21E+05 -2.47E+05 60 30 0.8571 6 3.41E+05 -2.46E+05	60	24	0.9583	6	3.10E+05	-2.48E+05
60 27 0.9035 4.714 2.55E+05 -2.35E+05 60 27 0.9035 5.143 2.83E+05 -2.47E+05 60 27 0.9035 5.571 3.07E+05 -2.48E+05 60 27 0.9035 6 3.26E+05 -2.47E+05 60 27 0.9035 6.429 3.38E+05 -2.46E+05 60 30 0.8571 4.286 2.33E+05 -2.20E+05 60 30 0.8571 4.714 2.66E+05 -2.41E+05 60 30 0.8571 5.143 2.96E+05 -2.48E+05 60 30 0.8571 5.571 3.21E+05 -2.47E+05 60 30 0.8571 5.571 3.21E+05 -2.46E+05	60	24	0.9583	6.429	3.22E+05	-2.47E+05
60 27 0.9035 5.143 2.83E+05 -2.47E+05 60 27 0.9035 5.571 3.07E+05 -2.48E+05 60 27 0.9035 6 3.26E+05 -2.47E+05 60 27 0.9035 6.429 3.38E+05 -2.46E+05 60 30 0.8571 4.286 2.33E+05 -2.20E+05 60 30 0.8571 4.714 2.66E+05 -2.41E+05 60 30 0.8571 5.143 2.96E+05 -2.48E+05 60 30 0.8571 5.571 3.21E+05 -2.47E+05 60 30 0.8571 6 3.41E+05 -2.46E+05	60	27	0.9035	4.286	2.22E+05	-2.11E+05
60 27 0.9035 5.571 3.07E+05 -2.48E+05 60 27 0.9035 6 3.26E+05 -2.47E+05 60 27 0.9035 6.429 3.38E+05 -2.46E+05 60 30 0.8571 4.286 2.33E+05 -2.20E+05 60 30 0.8571 4.714 2.66E+05 -2.41E+05 60 30 0.8571 5.143 2.96E+05 -2.48E+05 60 30 0.8571 5.571 3.21E+05 -2.47E+05 60 30 0.8571 6 3.41E+05 -2.46E+05	60	27	0.9035	4.714	2.55E+05	-2.35E+05
60 27 0.9035 6 3.26E+05 -2.47E+05 60 27 0.9035 6.429 3.38E+05 -2.46E+05 60 30 0.8571 4.286 2.33E+05 -2.20E+05 60 30 0.8571 4.714 2.66E+05 -2.41E+05 60 30 0.8571 5.143 2.96E+05 -2.48E+05 60 30 0.8571 5.571 3.21E+05 -2.47E+05 60 30 0.8571 6 3.41E+05 -2.46E+05	60	27	0.9035	5.143	2.83E+05	-2.47E+05
60 27 0.9035 6.429 3.38E+05 -2.46E+05 60 30 0.8571 4.286 2.33E+05 -2.20E+05 60 30 0.8571 4.714 2.66E+05 -2.41E+05 60 30 0.8571 5.143 2.96E+05 -2.48E+05 60 30 0.8571 5.571 3.21E+05 -2.47E+05 60 30 0.8571 6 3.41E+05 -2.46E+05	60	· 27	0.9035	5.571	3.07E+05	-2.48E+05
60 30 0.8571 4.286 2.33E+05 -2.20E+05 60 30 0.8571 4.714 2.66E+05 -2.41E+05 60 30 0.8571 5.143 2.96E+05 -2.48E+05 60 30 0.8571 5.571 3.21E+05 -2.47E+05 60 30 0.8571 6 3.41E+05 -2.46E+05	60	27	0.9035	6	3.26E+05	-2.47E+05
60 30 0.8571 4.714 2.66E+05 -2.41E+05 60 30 0.8571 5.143 2.96E+05 -2.48E+05 60 30 0.8571 5.571 3.21E+05 -2.47E+05 60 30 0.8571 6 3.41E+05 -2.46E+05	60	27	0.9035	6.429	3.38E+05	-2.46E+05
60 30 0.8571 5.143 2.96E+05 -2.48E+05 60 30 0.8571 5.571 3.21E+05 -2.47E+05 60 30 0.8571 6 3.41E+05 -2.46E+05	60	30	0.8571	4.286	2.33E+05	-2.20E+05
60 30 0.8571 5.571 3.21E+05 -2.47E+05 60 30 0.8571 6 3.41E+05 -2.46E+05	60	30	0.8571	4.714	2.66E+05	-2.41E+05
60 30 0.8571 6 3.41E+05 -2.46E+05	60	30	0.8571	5.143	2.96E+05	-2.48E+05
60 30 0.8571 6 3.41E+05 -2.46E+05	60	30	0.8571	5.571	3.21E+05	-2.47E+05
60 30 0.8571 6.429 3.54E+05 -2.45E+05	60	30		6	3.41E+05	-2.46E+05
	60	30	0.8571	6.429	3.54E+05	-2.45E+05

	, , , , , , , , , , , , , , , , , , , ,					M_lg_pos	M_lg_neg
Lm (m)	Ls (m)	Bs (m)	Xs (m)	F_lg_sag (N)	F_lg_hog (N)	(Nm)	(Nm)
80	20	1.616	0	-6.02E+05	6.17E+05	2.49E+06	-2.49E+06
80	20	1.616	- 6	-5.72E+05	5.83E+05	2.24E+06	-2.41E+06
80	20	1.616	-12	-4.93E+05	4.97E+05	2.25E+06	-2.22E+06
80	20	1.616	-18	-3.96E+05	3.97E+05	2.26E+06	-1.82E+06
80	20	1.616	-24	-3.23E+05	3.23E+05	2.17E+06	-2.29E+06
80	20	1.616	-30	-2.97E+05	2.97E+05	2.32E+06	-2.47E+06
80	24	1.475	0	-5.97E+05	6.17E+05	3.47E+06	-3.47E+06
80	24	1.475	-5.6	-5.68E+05	5.85E+05	3.31E+06	-3.36E+06
80	24	1.475	-11.2	-4.93E+05	5.01E+05	3.33E+06	-3.08E+06
80	24	1.475	-16.8	-3.98E+05	4.00E+05	3.35E+06	-2.87E+06
80	24	1.475	-22.4	-3.17E+05	3.18E+05	2.93E+06	-3.38E+06
80	24	1.475	-28	-2.78E+05	2.78E+05	3.13E+06	-3.70E+06
80	28	1.366	0	-5.75E+05	5.98E+05	4.39E+06	-4.39E+06
80	28	1.366	-5.2	-6.28E+05	5.69E+05	4.48E+06	-4.25E+06
80	28	1.366	-10.4	-4.78E+05	4.90E+05	4.53E+06	-3.89E+06
80	28	1.366	-15.6	-3.87E+05	3.92E+05	4.56E+06	-3.57E+06
80	28	1.366	-20.8	-3.02E+05	3.04E+05	4.55E+06	-4.54E+06
80	28	1.366	-26	-2.52E+05	2.17E+05	3.78E+06	-5.04E+06
80	32	1.278	0	-6.51E+05	6.88E+05	5.61E+06	-5.61E+06
80	32	1.278	-4.8	-6.16E+05	6.45E+05	5.68E+06	-4.96E+06
80	- 32	1.278	-9.6	-4.50E+05	4.66E+05	5.76E+06	-4.52E+06
80	32	1.278	-14.4	-3.64E+05	3.94E+05	5.80E+06	-5.03E+06
80	32	1.278	-19.2	-2.80E+05	2.67E+05	5.81E+06	-5.71E+06
80	32	1.278	-24	-2.20E+05	1.95E+05	5.76E+06	-6.39E+06
80	36	1.205	0	-6.23E+05	6.65E+05	6.74E+06	-6.74E+06
80	36	1.205	-4.4	-5.92E+05	6.27E+05	6.83E+06	-5.38E+06
80	36	1.205	-8.8	-5.07E+05	5.28E+05	6.93E+06	-6.49E+06
80	36	1.205	-13.2	-1.25E+05	3.97E+05	7.00E+06	-6.46E+06
80	36	1.205	-17.6	-6.85E+04	2.70E+05	7.02E+06	-6.80E+06
80	36	1.205	-22	-4.50E+04	1.80E+05	6.99E+06	-7.63E+06
80	40	1.143	0	-5.84E+05	6.31E+05	7.73E+06	-7.73E+06
80	40	1.143	-4	-5.58E+05	5.99E+05	7.85E+06	-7.57E+06
80	40	1.143	-8	-4.84E+05	4.90E+05	7.96E+06	-7.44E+06
80	40	1.143	-12	-1.28E+05	3.95E+05	8.06E+06	-7.38E+06
80	40	1.143	-16	-8.05E+04	2.74E+05	8.11E+06	-7.75E+06
80	40	1.143	-20	-2.42E+04	1.74E+05	8.10E+06	-8.65E+06

Lm (m)	Ls (m)	Bs (m)	Ys (m)	F_tr_sag (N)	F_tr_hog (N)
80	20	1.616	5.714	4.04E+05	-3.98E+05
80	20	1.616	6.286	4.32E+05	-4.21E+05
80	- 20	1.616	6.857	4.45E+05	-4.32E+05
80	20	1.616	7.429	4.66E+05	-4.29E+05
80	20	1.616	8	5.17E+05	-4.13E+05
80	20	1.616	8.571	5.65E+05	-3.83E+05
80	24	1.475	5.714	4.38E+05	-4.26E+05
80	24	1.475	6.286	4.69E+05	-4.52E+05
80	24	1.475	6.857	4.83E+05	-4.63E+05
80	24	1.475	7.429	5.04E+05	-4.60E+05
80	24	1.475	8	5.60E+05	-4.43E+05
80	24	1.475	8.571	6.12E+05	-4.12E+05
80	28	1.366	5.714	4.68E+05	-4.51E+05
80	28	1.366	6.286	5.02E+05	-4.79E+05
80	28	1.366	6.857	5.17E+05	-4.92E+05
80	28	1.366	7.429	5.39E+05	-4.88E+05
80	.28	1.366	8	5.99E+05	-4.69E+05
80	28	1.366	8.571	6.54E+05	-4.36E+05
80	32	1.278	5.714	4.96E+05	-4.75E+05
80	32	1.278	6.286	5.32E+05	-5.04E+05
80	32	1.278	6.857	5.47E+05	-5.18E+05
80	32	1.278	7.429	5.71E+05	-5.14E+05
80	32	1.278	8	6.34E+05	-4.94E+05
80	32	1.278	8.571	6.93E+05	-4.58E+05
80	36	1.205	5.714	5.22E+05	-4.96E+05
80	36	1.205	6.286	5.59E+05	-5.28E+05
80	36	1.205	6.857	5.76E+05	-5.42E+05
80	36	1.205	7.429	6.00E+05	-5.38E+05
80	36	1.205	8	6.66E+05	-5.16E+05
80	36	1.205	8.571	7.28E+05	-4.79E+05
80	40	1.143	5.714	5.46E+05	-5.17E+05
80	40	1.143	6.286	5.85E+05	-5.49E+05
80	40	1.143	6.857	6.02E+05	-5.65E+05
80	40	1.143	7.429	6.27E+05	-5.61E+05
80	40	1.143	8	6.96E+05	-5.38E+05
80	40	1.143	8.571	7.61E+05	-4.98E+05

Lm	Ls						
(m)	(m)	Bs (m)	Xs (m)	F_lg_sag (N)	F_lg_hog (N)	M_lg_pos (Nm)	M_lg_neg (Nm)
100	25	2.02	0	-1.14E+06	1.17E+06	5.59E+06	-5.59E+06
100	25	2.02	-7.5	-1.07E+06	1.09E+06	5.43E+06	-4.73E+06
100	25	2.02	-15	-8.95E+05	8.99E+05	4.82E+06	-4.85E+06
100	25	2.02	-22.5	-6.95E+05	6.95E+05	4.70E+06	-4.87E+06
100	25	2.02	-30	-5.74E+05	5.74E+05	4.63E+06	-5.05E+06
100	25	2.02	-37.5	-5.80E+05	5.80E+05	4.70E+06	-5.52E+06
100	30	1.844	. 0	-1.15E+06	1.18E+06	8.03E+06	-8.03E+06
100	30	1.844	-7	-1.09E+06	1.11E+06	7.83E+06	-7.80E+06
100	30	1.844	-14	-9.14E+05	9.22E+05	7.15E+06	-6.16E+06
100	30	1.844	-21	-7.10E+05	7.12E+05	7.47E+06	-6.23E+06
100	30	1.844	-28	-5.65E+05	5.66E+05	6.55E+06	-7.44E+06
100	30	1.844	-35	-5.34E+05	5.34E+05	6.76E+06	-8.24E+06
100	35	1.707	0	-1.12E+06	1.16E+06	1.05E+07	-1.05E+07
100	35	1.707	-6.5	-1.07E+06	1.09E+06	1.03E+07	-1.02E+07
100	35	1.707	-13	-9.06E+05	9.20E+05	9.77E+06	-9.51E+06
100	35	1.707	-19.5	-7.07E+05	7.11E+05	1.02E+07	-6.99E+06
100	35	1.707	-26	-5.45E+05	5.46E+05	8.47E+06	-1.01E+07
100	35	1.707	-32.5	-4.79E+05	4.79E+05	8.58E+06	-1.13E+07
100	40	1.597	0	-1.19E+06	1.11E+06	1.29E+07	-1.29E+07
100	40	1.597	-6	-1.02E+06	1.05E+06	1.26E+07	-1.25E+07
100	40	1.597	-12	-8.75E+05	8.95E+05	1.25E+07	-1.17E+07
100	40	1.597	-18	-6.85E+05	6.94E+05	1.31E+07	-1.25E+07
100	40	1.597	-24	-5.15E+05	5.18E+05	1.35E+07	-1.27E+07
100	40	1.597	-30	-4.18E+05	3.21E+05	1.01E+07	-1.43E+07
100	45	1.506	0	-1.15E+06	1.05E+06	1.49E+07	-1.49E+07
100	45	1.506	-5.5	-1.09E+06	1.13E+06	1.46E+07	-1.45E+07
100	45	1.506	-11	-8.20E+05	9.51E+05	1.52E+07	-1.35E+07
100	45	1.506	-16.5	-6.49E+05	7.22E+05	1.59E+07	-1.50E+07
100	45	1.506	-22	-4.77E+05	4.75E+05	1.65E+07	-1.52E+07
100	45	1.506	-27.5	-3.76E+04	3.03E+05	1.68E+07	-1.72E+07
100	50	1.429	0	-1.08E+06	9.57E+05	1.63E+07	-1.63E+07
100	50	1.429	-5	-1.03E+06	1.08E+06	1.70E+07	-1.59E+07
100	50	1.429	-10	-2.19E+05	9.27E+05	1.76E+07	-1.47E+07
100	50	1.429	-15	-1.30E+05	6.79E+05	1.84E+07	-1.72E+07
100	50	1.429	-20	-7.48E+04	4.88E+05	1.91E+07	-1.73E+07
100	50	1.429	-25	-7.57E+04	3.02E+05	1.97E+07	-1.96E+07

Lm (m)	Ls (m)	Bs (m)	Ys (m)	F_tr_sag (N)	F_tr_hog (N)
100	-25	2.02	7.143	6.58E+05	-6.41E+05
100	25	2.02	7.857	7.60E+05	-7.59E+05
100	25	2.02	8.571	8.54E+05	-8.51E+05
100	25	2.02	9.286	9.38E+05	-9.31E+05
100	25	2.02	10	1.01E+06	-9.99E+05
100	25	2.02	10.71	1.06E+06	-1.05E+06
100	30	1.844	7.143	7.13E+05	-6.96E+05
100	30	1.844	7.857	8.23E+05	-6.67E+05
100	30	1.844	8.571	9.25E+05	-9.20E+05
100	30	1.844	9.286	1.02E+06	-1.01E+06
100	30	1.844	10	1.09E+06	-1.08E+06
100	30	1.844	10.71	1.15E+06	-1.13E+06
100	35	1.707	7.143	7.62E+05	-7.44E+05
100	35	1.707	7.857	8.80E+05	-7.14E+05
100	35	1.707	8.571	9.89E+05	-9.81E+05
100	35	1.707	9.286	1.09E+06	-1.07E+06
100	35	1.707	10	1.17E+06	-1.14E+06
100	35	1.707	10.71	1.23E+06	-1.19E+06
100	40	1.597	7.143	8.07E+05	-7.81E+05
100	40	1.597	7.857	9.32E+05	-7.53E+05
100	40	1.597	8.571	1.05E+06	-6.79E+05
100	40	1.597	9.286	1.15E+06	-1.12E+06
100	40	1.597	10	1.24E+06	-1.19E+06
100	40	1.597	10.71	1.30E+06	-1.24E+06
100	45	1.506	7.143	8.48E+05	-8.14E+05
100	45	1.506	7.857	9.80E+05	-7.86E+05
100	45	1.506	8.571	1.10E+06	-7.12E+05
100	45	1.506	9.286	1.21E+06	-1.17E+06
100	45	1.506	10	1.30E+06	-1.24E+06
100	45	1.506	10.71	1.37E+06	-1.29E+06
100	50	1.429	7.143	8.87E+05	-8.46E+05
100	50	1.429	7.857	1.02E+06	-8.17E+05
100	50	1.429	8.571	1.15E+06	-7.42E+05
100	50	1.429	9.286	1.26E+06	-1.21E+06
100	50	1.429	10	1.36E+06	-1.28E+06
100	50	1.429	10.71	1.43E+06	-1.34E+06

						M_lg_pos	M_lg_neg
Lm (m)	Ls (m)	Bs (m)	Xs (m)	F_lg_sag (N)	F_lg_hog (N)	(Nm)	(Nm)
120	30	2.424	0	-1.56E+06	1.94E+06	1.03E+07	-1.03E+07
120	30	2.424	တု	-1.50E+06	1.51E+06	1.01E+07	-9.99E+06
120	30	2.424	-18	-1.45E+06	1.35E+06	9.79E+06	-9.30E+06
120	30	2.424	-27	-1.11E+06	1.11E+06	9.43E+06	-8.17E+06
120	30	2.424	-36	-8.82E+05	8.83E+05	9.24E+06	-9.55E+06
120	30	2.424	-45	-9.39E+05	9.38E+05	9.84E+06	-1.06E+07
120	36	2.213	0	-1.95E+06	1.98E+06	1.50E+07	-1.50E+07
120	36	2.213	-8.4	-1.83E+06	1.85E+06	1.49E+07	-1.38E+07
120	36	2.213	-16.8	-1.51E+06	1.33E+06	1.44E+07	-1.28E+07
120	36	2.213	-25.2	-1.13E+06	1.10E+06	1.39E+07	-1.21E+07
120	.36	2.213	-33.6	-8.75E+05	8.75E+05	1.35E+07	-1.41E+07
120	36	2.213	-42	-8.53E+05	8.53E+05	1.34E+07	-1.58E+07
120	42	2.049	0	-1.92E+06	1.97E+06	2.01E+07	-2.01E+07
120	42	2.049	-7.8	-1.81E+06	1.85E+06	2.00E+07	-1.72E+07
120	42	2.049	-15.6	-1.52E+06	1.53E+06	1.94E+07	-1.58E+07
120	42	2.049	-23.4	-1.15E+06	1.15E+06	1.87E+07	-1.48E+07
120	42	2.049	-31.2	-8.56E+05	8.57E+05	1.81E+07	-1.91E+07
120	42	2.049	-39	-7.59E+05	7.59E+05	1.79E+07	-2.16E+07
120	48	1.917	0	-1.86E+06	1.92E+06	2.53E+07	-2.53E+07
120	48	1.917	-7.2	-1.76E+06	1.81E+06	2.51E+07	-2.48E+07
120	48	1.917	-14.4	-1.49E+06	1.52E+06	2.45E+07	-2.40E+07
120	48	1.917	-21.6	-1.14E+06	1.15E+06	2.36E+07	-2.30E+07
120	48	1.917	-28.8	-8.28E+05	8.30E+05	2.28E+07	-2.60E+07
120	48	1.917	-36	-6.66E+05	6.67E+05	2.23E+07	-2.75E+07
120	54	1.807	0	-1.88E+06	1.83E+06	3.00E+07	-3.00E+07
120	54	1.807	-6.6	-1.78E+06	1.73E+06	2.99E+07	-2.95E+07
120	54	1.807	-13.2	-1.43E+06	1.47E+06	2.92E+07	-2.85E+07
120	54	1.807	-19.8	-1.11E+06	1.12E+06	2.82E+07	-2.73E+07
120	54	1.807	-26.4	-7.91E+05	7.97E+05	2.71E+07	-3.12E+07
120	54	1.807	-33	-9.56E+04	5.82E+05	2.64E+07	-3.30E+07
120	60	1.714	0	-1.78E+06	1.70E+06	3.39E+07	-3.39E+07
120	60	1.714	-6	-1.70E+06	1.62E+06	3.38E+07	-3.33E+07
120	60	1.714	-12	-1.34E+06	1.51E+06	3.31E+07	-3.22E+07
120	60	1.714	-18	-3.60E+05	1.16E+06	3.53E+07	-3.09E+07
120	60	1.714	-24	-2.12E+05	7.87E+05	3.79E+07	-3.58E+07
120	60	1.714	-30	-7.88E+04	4.68E+05	4.00E+07	-3.78E+07

[] ma (ma)	1 = (==)	Do (ma)	\/n /mn\	F + (A1)	F 44 h 24 (NI)
Lm (m)	Ls (m)	Bs (m)	Ys (m)	F_tr_sag (N)	F_tr_hog (N)
120	30	2.424	8.571	1.18E+06	-1.18E+06
120	30	2.424	9.429	1.32E+06	-1.32E+06
120	30	2.424	10.29	1.44E+06	-1.43E+06
120	30	2.424	11.14	1.52E+06	-1.51E+06
120	30	2.424	12	1.56E+06	-1.55E+06
120	30	2.424	12.86	1.56E+06	-1.55E+06
120	36	2.213	8.571	1.28E+06	-1.28E+06
120	36	2.213	9.429	1.43E+06	-1.43E+06
120	36	2.213	10.29	1.56E+06	-1.55E+06
120	36	2.213	11.14	1.64E+06	-1.63E+06
120	36	2.213	12	1.69E+06	-1.68E+06
120	36	2.213	12.86	1.69E+06	-1.68E+06
120	42	2.049	8.571	1.37E+06	-1.37E+06
120	42	2.049	9.429	1.53E+06	-1.53E+06
120	42	2.049	10.29	1.67E+06	-1.65E+06
120	42	2.049	11.14	1.76E+06	-1.74E+06
120	42	2.049	12	1.81E+06	-1.79E+06
120	42	2.049	12.86	1.81E+06	-1.79E+06
120	48	1.917	8.571	1.45E+06	-1.45E+06
120	48	1.917	9.429	1.62E+06	-1.61E+06
120	48	1.917	10.29	1.76E+06	-1.75E+06
120	48	1.917	11.14	1.86E+06	-1.84E+06
120	48	1.917	12	1.91E+06	-1.89E+06
120	48	1.917	12.86	1.91E+06	-1.90E+06
120	54	1.807	8.571	1.53E+06	-1.52E+06
120	54	1.807	9.429	1.71E+06	-1.69E+06
120	54	1.807	10.29	1.85E+06	-1.83E+06
120	54	1.807	11.14	1.96E+06	-1.92E+06
120	54	1.807	12	2.01E+06	-1.97E+06
120	54	1.807	12.86	2.01E+06	-1.97E+06
120	60	1.714	8.571	1.59E+06	-1.58E+06
120	60	1.714	9.429	1.79E+06	-1.77E+06
120	60	1.714	10.29	1.94E+06	-1.91E+06
120	60	1.714	11.14	2.05E+06	-1.99E+06
120	60	1.714	12	2.10E+06	-2.03E+06
120	60	1.714	12.86	2.10E+06	-2.03E+06

						M_lg_pos	M_lg_neg
Lm (m)	Ls (m)	Bs (m)	Xs (m)	F_lg_sag (N)	F_lg_hog (N)	(Nm)	(Nm)
140	35	2.828	0	-2.66E+06	2.68E+06	1.87E+07	-1.87E+07
140	35	2.828	-10.5	-2.51E+06	2.52E+06	1.66E+07	-1.59E+07
140	35	2.828	-21	-2.13E+06	2.14E+06	1.68E+07	-1.60E+07
140	35	2.828	-31.5	-1.70E+06	1.70E+06	1.70E+07	-1.60E+07
140	35	2.828	-42	-1.39E+06	1.39E+06	1.54E+07	-1.79E+07
140	35	2.828	-52.5	-1.30E+06	1.32E+06	1.63E+07	-1.89E+07
140	42	2.582	0	-2.65E+06	2.68E+06	2.68E+07	-2.68E+07
140	42	2.582	-9.8	-2.52E+06	2.54E+06	2.46E+07	-2.60E+07
140	42	2.582	-19.6	-2.15E+06	2.16E+06	2.49E+07	-2.06E+07
140	42	2.582	-29.4	-1.71E+06	1.72E+06	2.52E+07	-2.07E+07
140	42	2.582	-39.2	-1.37E+06	1.37E+06	2.16E+07	-2.66E+07
140	42	2.582	-49	-1.22E+06	1.18E+06	2.26E+07	-2.72E+07
140	49	2.39	0	-3.00E+06	2.61E+06	3.51E+07	-3.51E+07
140	49	2.39	-9.1	-2.82E+06	2.48E+06	3.35E+07	-3.41E+07
140	49	2.39	-18.2	-2.11E+06	2.12E+06	3.39E+07	-3.14E+07
140	49	2.39	-27.3	-1.68E+06	1.69E+06	3.44E+07	-2.35E+07
140	49	2.39	-36.4	-1.31E+06	1.31E+06	3.46E+07	-3.61E+07
140	49	2.39	-45.5	-1.10E+06	1.05E+06	2.83E+07	-3.71E+07
140	56	2.236	0	-2.93E+06	3.00E+06	4.28E+07	-4.28E+07
140	56	2.236	-8.4	-2.76E+06	2.35E+06	4.27E+07	-4.15E+07
140	56	2.236	-16.8	-2.32E+06	2.03E+06	4.33E+07	-3.83E+07
140	56	2.236	-25.2	-1.74E+06	1.61E+06	4.39E+07	-4.27E+07
140	56	2.236	-33.6	-1.21E+06	1.21E+06	4.43E+07	-4.59E+07
140	56	2.236	-42	-9.65E+05	9.32E+05	4.43E+07	-4.73E+07
140	63	2.108	0	-2.85E+06	2.88E+06	4.89E+07	-4.89E+07
140	63	2.108	-7.7	-2.65E+06	2.73E+06	5.16E+07	-4.75E+07
140	63	2.108	-15.4	-2.26E+06	2.30E+06	5.23E+07	-4.38E+07
140	63_	2.108	-23.1	-1.73E+06	1.72E+06	5.31E+07	-5.13E+07
140	63	2.108	-30.8	-1.20E+06	1.20E+06	5.37E+07	-5.51E+07
140	63	2.108	-38.5	-8.32E+05	8.35E+05	5.39E+07	-6.06E+07
140	70	2	0	-2.71E+06	2.72E+06	5.88E+07	-5.88E+07
140	70	2	-7	-2.59E+06	2.58E+06	5.94E+07	-5.14E+07
140	<i>,</i> 70	2	-14	-2.16E+06	2.22E+06	6.03E+07	-5.85E+07
140	70	2	-21	-1.68E+06	1.71E+06	6.13E+07	-5.90E+07
140	70	2	-28	-1.28E+05	1.19E+06	6.21E+07	-6.33E+07
140	70	2	-35	-1.73E+05	7.69E+05	6.26E+07	-6.97E+07

Lm (m)						,
140 35 2.828 11 1.97E+06 -1.97E+06 140 35 2.828 12 2.04E+06 -2.04E+06 140 35 2.828 13 2.11E+06 -2.04E+06 140 35 2.828 14 2.31E+06 -1.97E+06 140 35 2.828 15 2.49E+06 -1.83E+06 140 42 2.582 10 1.99E+06 -1.98E+06 140 42 2.582 11 2.14E+06 -2.13E+06 140 42 2.582 12 2.21E+06 -2.21E+06 140 42 2.582 13 2.29E+06 -2.21E+06 140 42 2.582 13 2.29E+06 -2.13E+06 140 42 2.582 14 2.50E+06 -1.98E+06 140 42 2.582 15 2.69E+06 -1.98E+06 140 49 2.39 10 2.12E+06 -2.12E+06	Lm (m)	Ls (m)	Bs (m)	Ys (m)	F_tr_sag (N)	F_tr_hog (N)
140 35 2.828 12 2.04E+06 -2.04E+06 140 35 2.828 13 2.11E+06 -2.04E+06 140 35 2.828 14 2.31E+06 -1.97E+06 140 35 2.828 15 2.49E+06 -1.83E+06 140 42 2.582 10 1.99E+06 -1.98E+06 140 42 2.582 11 2.14E+06 -2.13E+06 140 42 2.582 12 2.21E+06 -2.21E+06 140 42 2.582 13 2.29E+06 -2.21E+06 140 42 2.582 14 2.50E+06 -2.21E+06 140 42 2.582 15 2.69E+06 -2.13E+06 140 42 2.582 15 2.69E+06 -1.98E+06 140 49 2.39 10 2.12E+06 -2.12E+06 140 49 2.39 13 2.45E+06 -2.28E+06 <	140	35	2.828	10	1.83E+06	-1.83E+06
140 35 2.828 13 2.11E+06 -2.04E+06 140 35 2.828 14 2.31E+06 -1.97E+06 140 35 2.828 15 2.49E+06 -1.83E+06 140 42 2.582 10 1.99E+06 -1.98E+06 140 42 2.582 11 2.14E+06 -2.13E+06 140 42 2.582 12 2.21E+06 -2.21E+06 140 42 2.582 13 2.29E+06 -2.21E+06 140 42 2.582 13 2.29E+06 -2.21E+06 140 42 2.582 15 2.69E+06 -1.98E+06 140 49 2.39 10 2.12E+06 -2.12E+06 140 49 2.39 11 2.29E+06 -2.28E+06 140 49 2.39 12 2.37E+06 -2.36E+06 140 49 2.39 13 2.45E+06 -2.28E+06 <td< td=""><td>140</td><td>35</td><td>2.828</td><td>11</td><td>1.97E+06</td><td>-1.97E+06</td></td<>	140	35	2.828	11	1.97E+06	-1.97E+06
140 35 2.828 14 2.31E+06 -1.97E+06 140 35 2.828 15 2.49E+06 -1.83E+06 140 42 2.582 10 1.99E+06 -1.98E+06 140 42 2.582 11 2.14E+06 -2.13E+06 140 42 2.582 12 2.21E+06 -2.21E+06 140 42 2.582 13 2.29E+06 -2.21E+06 140 42 2.582 13 2.29E+06 -2.21E+06 140 42 2.582 15 2.69E+06 -1.98E+06 140 42 2.582 15 2.69E+06 -1.98E+06 140 49 2.39 10 2.12E+06 -2.12E+06 140 49 2.39 11 2.29E+06 -2.28E+06 140 49 2.39 13 2.45E+06 -2.36E+06 140 49 2.39 14 2.68E+06 -2.12E+06 <td< td=""><td>140</td><td>35</td><td>2.828</td><td>-12</td><td>2.04E+06</td><td>-2.04E+06</td></td<>	140	35	2.828	-12	2.04E+06	-2.04E+06
140 35 2.828 15 2.49E+06 -1.83E+06 140 42 2.582 10 1.99E+06 -1.98E+06 140 42 2.582 11 2.14E+06 -2.13E+06 140 42 2.582 12 2.21E+06 -2.21E+06 140 42 2.582 13 2.29E+06 -2.13E+06 140 42 2.582 14 2.50E+06 -2.13E+06 140 42 2.582 15 2.69E+06 -1.98E+06 140 49 2.39 10 2.12E+06 -2.12E+06 140 49 2.39 11 2.29E+06 -2.28E+06 140 49 2.39 12 2.37E+06 -2.36E+06 140 49 2.39 13 2.45E+06 -2.28E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 49 2.39 15 2.88E+06 -2.12E+06 1	140	35	2.828	13	2.11E+06	-2.04E+06
140 42 2.582 10 1.99E+06 -1.98E+06 140 42 2.582 11 2.14E+06 -2.13E+06 140 42 2.582 12 2.21E+06 -2.21E+06 140 42 2.582 13 2.29E+06 -2.13E+06 140 42 2.582 14 2.50E+06 -2.13E+06 140 42 2.582 15 2.69E+06 -1.98E+06 140 49 2.39 10 2.12E+06 -2.12E+06 140 49 2.39 11 2.29E+06 -2.28E+06 140 49 2.39 12 2.37E+06 -2.36E+06 140 49 2.39 13 2.45E+06 -2.36E+06 140 49 2.39 14 2.68E+06 -2.28E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 49 2.39 15 2.88E+06 -2.12E+06 14	140	35	2.828	14	2.31E+06	-1.97E+06
140 42 2.582 11 2.14E+06 -2.13E+06 140 42 2.582 12 2.21E+06 -2.21E+06 140 42 2.582 13 2.29E+06 -2.21E+06 140 42 2.582 14 2.50E+06 -2.13E+06 140 42 2.582 15 2.69E+06 -1.98E+06 140 49 2.39 10 2.12E+06 -2.12E+06 140 49 2.39 11 2.29E+06 -2.28E+06 140 49 2.39 12 2.37E+06 -2.36E+06 140 49 2.39 13 2.45E+06 -2.36E+06 140 49 2.39 14 2.68E+06 -2.28E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 56 2.236 10 2.25E+06 -2.24E+06 14	140	35	2.828	15	2.49E+06	-1.83E+06
140 42 2.582 12 2.21E+06 -2.21E+06 140 42 2.582 13 2.29E+06 -2.21E+06 140 42 2.582 14 2.50E+06 -2.13E+06 140 49 2.39 10 2.12E+06 -2.12E+06 140 49 2.39 11 2.29E+06 -2.28E+06 140 49 2.39 12 2.37E+06 -2.36E+06 140 49 2.39 13 2.45E+06 -2.36E+06 140 49 2.39 14 2.68E+06 -2.28E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 56 2.236 10 2.25E+06 -2.24E+06 140 56 2.236 12 2.51E+06 -2.41E+06 140	140	42	2.582	10	1.99E+06	-1.98E+06
140 42 2.582 13 2.29E+06 -2.21E+06 140 42 2.582 14 2.50E+06 -2.13E+06 140 42 2.582 15 2.69E+06 -1.98E+06 140 49 2.39 10 2.12E+06 -2.12E+06 140 49 2.39 11 2.29E+06 -2.28E+06 140 49 2.39 12 2.37E+06 -2.36E+06 140 49 2.39 13 2.45E+06 -2.36E+06 140 49 2.39 14 2.68E+06 -2.28E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 56 2.236 10 2.25E+06 -2.24E+06 140 56 2.236 12 2.51E+06 -2.49E+06 140	140	42	2.582	11	2.14E+06	-2.13E+06
140 42 2.582 14 2.50E+06 -2.13E+06 140 42 2.582 15 2.69E+06 -1.98E+06 140 49 2.39 10 2.12E+06 -2.12E+06 140 49 2.39 11 2.29E+06 -2.28E+06 140 49 2.39 12 2.37E+06 -2.36E+06 140 49 2.39 13 2.45E+06 -2.36E+06 140 49 2.39 14 2.68E+06 -2.28E+06 140 49 2.39 15 2.88E+06 -2.28E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 56 2.236 10 2.25E+06 -2.24E+06 140 56 2.236 11 2.42E+06 -2.41E+06 140 56 2.236 12 2.51E+06 -2.50E+06 140 56 2.236 13 2.59E+06 -2.49E+06 14	140	42	2.582	12	2.21E+06	-2.21E+06
140 42 2.582 15 2.69E+06 -1.98E+06 140 49 2.39 10 2.12E+06 -2.12E+06 140 49 2.39 11 2.29E+06 -2.28E+06 140 49 2.39 12 2.37E+06 -2.36E+06 140 49 2.39 13 2.45E+06 -2.36E+06 140 49 2.39 14 2.68E+06 -2.28E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 56 2.236 10 2.25E+06 -2.24E+06 140 56 2.236 11 2.42E+06 -2.41E+06 140 56 2.236 12 2.51E+06 -2.50E+06 140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 15 3.05E+06 -2.24E+06 14	140	42	2.582	13	2.29E+06	-2.21E+06
140 49 2.39 10 2.12E+06 -2.12E+06 140 49 2.39 11 2.29E+06 -2.28E+06 140 49 2.39 12 2.37E+06 -2.36E+06 140 49 2.39 13 2.45E+06 -2.36E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 56 2.236 10 2.25E+06 -2.24E+06 140 56 2.236 11 2.42E+06 -2.41E+06 140 56 2.236 12 2.51E+06 -2.50E+06 140 56 2.236 12 2.51E+06 -2.42E+06 140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 13 2.59E+06 -2.41E+06 140 56 2.236 13 2.59E+06 -2.41E+06 140 56 2.236 13 2.54E+06 -2.41E+06	140	42	2.582	14	2.50E+06	-2.13E+06
140 49 2.39 11 2.29E+06 -2.28E+06 140 49 2.39 12 2.37E+06 -2.36E+06 140 49 2.39 13 2.45E+06 -2.36E+06 140 49 2.39 14 2.68E+06 -2.28E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 56 2.236 10 2.25E+06 -2.24E+06 140 56 2.236 11 2.42E+06 -2.41E+06 140 56 2.236 12 2.51E+06 -2.50E+06 140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 15 3.05E+06 -2.24E+06 140 63 2.108 10 2.37E+06 -2.35E+06	140	42	2.582	15	2.69E+06	-1.98E+06
140 49 2.39 12 2.37E+06 -2.36E+06 140 49 2.39 13 2.45E+06 -2.36E+06 140 49 2.39 14 2.68E+06 -2.28E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 56 2.236 10 2.25E+06 -2.24E+06 140 56 2.236 11 2.42E+06 -2.41E+06 140 56 2.236 12 2.51E+06 -2.50E+06 140 56 2.236 13 2.59E+06 -2.41E+06 140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 14 2.84E+06 -2.41E+06 140 56 2.236 15 3.05E+06 -2.24E+06 140 63 2.108 10 2.37E+06 -2.24E+06 140 63 2.108 11 2.55E+06 -2.53E+06 <td< td=""><td>140</td><td>49</td><td>2.39</td><td>10</td><td>2.12E+06</td><td>-2.12E+06</td></td<>	140	49	2.39	10	2.12E+06	-2.12E+06
140 49 2.39 13 2.45E+06 -2.36E+06 140 49 2.39 14 2.68E+06 -2.28E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 56 2.236 10 2.25E+06 -2.24E+06 140 56 2.236 11 2.42E+06 -2.41E+06 140 56 2.236 12 2.51E+06 -2.50E+06 140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 15 3.05E+06 -2.41E+06 140 63 2.108 10 2.37E+06 -2.24E+06 140 63 2.108 11 2.55E+06 -2.53E+06 140 63 2.108 12 2.64E+06 -2.62E+06 140 63 2.108 13 2.72E+06 -2.53E+06 <t< td=""><td>140</td><td>49</td><td>2.39</td><td>11</td><td>2.29E+06</td><td>-2.28E+06</td></t<>	140	49	2.39	11	2.29E+06	-2.28E+06
140 49 2.39 14 2.68E+06 -2.28E+06 140 49 2.39 15 2.88E+06 -2.12E+06 140 56 2.236 10 2.25E+06 -2.24E+06 140 56 2.236 11 2.42E+06 -2.41E+06 140 56 2.236 12 2.51E+06 -2.50E+06 140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 14 2.84E+06 -2.41E+06 140 56 2.236 15 3.05E+06 -2.24E+06 140 56 2.236 15 3.05E+06 -2.24E+06 140 63 2.108 10 2.37E+06 -2.36E+06 140 63 2.108 11 2.55E+06 -2.53E+06 140 63 2.108 13 2.72E+06 -2.62E+06 140 63 2.108 14 2.98E+06 -2.53E+06 <	140	49	2.39	12	2.37E+06	-2.36E+06
140 49 2.39 15 2.88E+06 -2.12E+06 140 56 2.236 10 2.25E+06 -2.24E+06 140 56 2.236 11 2.42E+06 -2.41E+06 140 56 2.236 12 2.51E+06 -2.50E+06 140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 14 2.84E+06 -2.41E+06 140 56 2.236 15 3.05E+06 -2.24E+06 140 63 2.108 10 2.37E+06 -2.36E+06 140 63 2.108 11 2.55E+06 -2.53E+06 140 63 2.108 12 2.64E+06 -2.62E+06 140 63 2.108 13 2.72E+06 -2.53E+06 140 63 2.108 14 2.98E+06 -2.53E+06 140 63 2.108 15 3.21E+06 -2.53E+06	140	49	2.39	13	2.45E+06	-2.36E+06
140 56 2.236 10 2.25E+06 -2.24E+06 140 56 2.236 11 2.42E+06 -2.41E+06 140 56 2.236 12 2.51E+06 -2.50E+06 140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 14 2.84E+06 -2.41E+06 140 56 2.236 15 3.05E+06 -2.24E+06 140 63 2.108 10 2.37E+06 -2.36E+06 140 63 2.108 11 2.55E+06 -2.53E+06 140 63 2.108 12 2.64E+06 -2.62E+06 140 63 2.108 13 2.72E+06 -2.53E+06 140 63 2.108 14 2.98E+06 -2.53E+06 140 63 2.108 15 3.21E+06 -2.35E+06 140 70 2 10 2.48E+06 -2.46E+06 <td< td=""><td>140</td><td>49</td><td>2.39</td><td>14</td><td>2.68E+06</td><td>-2.28E+06</td></td<>	140	49	2.39	14	2.68E+06	-2.28E+06
140 56 2.236 11 2.42E+06 -2.41E+06 140 56 2.236 12 2.51E+06 -2.50E+06 140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 14 2.84E+06 -2.41E+06 140 56 2.236 15 3.05E+06 -2.24E+06 140 63 2.108 10 2.37E+06 -2.36E+06 140 63 2.108 11 2.55E+06 -2.53E+06 140 63 2.108 12 2.64E+06 -2.62E+06 140 63 2.108 13 2.72E+06 -2.62E+06 140 63 2.108 14 2.98E+06 -2.53E+06 140 63 2.108 15 3.21E+06 -2.35E+06 140 70 2 10 2.48E+06 -2.46E+06 140 70 2 11 2.67E+06 -2.74E+06 140	140	49	2.39	15	2.88E+06	-2.12E+06
140 56 2.236 12 2.51E+06 -2.50E+06 140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 14 2.84E+06 -2.41E+06 140 56 2.236 15 3.05E+06 -2.24E+06 140 63 2.108 10 2.37E+06 -2.36E+06 140 63 2.108 11 2.55E+06 -2.53E+06 140 63 2.108 12 2.64E+06 -2.62E+06 140 63 2.108 13 2.72E+06 -2.53E+06 140 63 2.108 14 2.98E+06 -2.53E+06 140 63 2.108 15 3.21E+06 -2.35E+06 140 70 2 10 2.48E+06 -2.46E+06 140 70 2 11 2.67E+06 -2.64E+06 140 70 2 12 2.76E+06 -2.74E+06 140 <td>140</td> <td>56</td> <td>2.236</td> <td>10</td> <td>2.25E+06</td> <td>-2.24E+06</td>	140	56	2.236	10	2.25E+06	-2.24E+06
140 56 2.236 13 2.59E+06 -2.49E+06 140 56 2.236 14 2.84E+06 -2.41E+06 140 56 2.236 15 3.05E+06 -2.24E+06 140 63 2.108 10 2.37E+06 -2.36E+06 140 63 2.108 11 2.55E+06 -2.53E+06 140 63 2.108 12 2.64E+06 -2.62E+06 140 63 2.108 13 2.72E+06 -2.62E+06 140 63 2.108 14 2.98E+06 -2.53E+06 140 63 2.108 15 3.21E+06 -2.35E+06 140 70 2 10 2.48E+06 -2.46E+06 140 70 2 11 2.67E+06 -2.64E+06 140 70 2 12 2.76E+06 -2.74E+06 140 70 2 13 2.85E+06 -2.74E+06 140	140	56	2.236	11	2.42E+06	-2.41E+06
140 56 2.236 14 2.84E+06 -2.41E+06 140 56 2.236 15 3.05E+06 -2.24E+06 140 63 2.108 10 2.37E+06 -2.36E+06 140 63 2.108 11 2.55E+06 -2.53E+06 140 63 2.108 12 2.64E+06 -2.62E+06 140 63 2.108 13 2.72E+06 -2.62E+06 140 63 2.108 14 2.98E+06 -2.53E+06 140 63 2.108 15 3.21E+06 -2.35E+06 140 70 2 10 2.48E+06 -2.46E+06 140 70 2 11 2.67E+06 -2.64E+06 140 70 2 12 2.76E+06 -2.74E+06 140 70 2 13 2.85E+06 -2.74E+06 140 70 2 14 3.12E+06 -2.64E+06	140	. 56	2.236	12	2.51E+06	-2.50E+06
140 56 2.236 15 3.05E+06 -2.24E+06 140 63 2.108 10 2.37E+06 -2.36E+06 140 63 2.108 11 2.55E+06 -2.53E+06 140 63 2.108 12 2.64E+06 -2.62E+06 140 63 2.108 13 2.72E+06 -2.62E+06 140 63 2.108 14 2.98E+06 -2.53E+06 140 63 2.108 15 3.21E+06 -2.35E+06 140 70 2 10 2.48E+06 -2.46E+06 140 70 2 11 2.67E+06 -2.64E+06 140 70 2 12 2.76E+06 -2.74E+06 140 70 2 13 2.85E+06 -2.74E+06 140 70 2 14 3.12E+06 -2.64E+06	140	-56	2.236	13	2.59E+06	-2.49E+06
140 63 2.108 10 2.37E+06 -2.36E+06 140 63 2.108 11 2.55E+06 -2.53E+06 140 63 2.108 12 2.64E+06 -2.62E+06 140 63 2.108 13 2.72E+06 -2.62E+06 140 63 2.108 14 2.98E+06 -2.53E+06 140 63 2.108 15 3.21E+06 -2.35E+06 140 70 2 10 2.48E+06 -2.46E+06 140 70 2 11 2.67E+06 -2.64E+06 140 70 2 12 2.76E+06 -2.74E+06 140 70 2 13 2.85E+06 -2.74E+06 140 70 2 14 3.12E+06 -2.64E+06	140	56	2.236	14	2.84E+06	-2.41E+06
140 63 2.108 11 2.55E+06 -2.53E+06 140 63 2.108 12 2.64E+06 -2.62E+06 140 63 2.108 13 2.72E+06 -2.62E+06 140 63 2.108 14 2.98E+06 -2.53E+06 140 63 2.108 15 3.21E+06 -2.35E+06 140 70 2 10 2.48E+06 -2.46E+06 140 70 2 11 2.67E+06 -2.64E+06 140 70 2 12 2.76E+06 -2.74E+06 140 70 2 13 2.85E+06 -2.74E+06 140 70 2 14 3.12E+06 -2.64E+06	140	.56	2.236	15	3.05E+06	-2.24E+06
140 63 2.108 12 2.64E+06 -2.62E+06 140 63 2.108 13 2.72E+06 -2.62E+06 140 63 2.108 14 2.98E+06 -2.53E+06 140 63 2.108 15 3.21E+06 -2.35E+06 140 70 2 10 2.48E+06 -2.46E+06 140 70 2 11 2.67E+06 -2.64E+06 140 70 2 12 2.76E+06 -2.74E+06 140 70 2 13 2.85E+06 -2.74E+06 140 70 2 14 3.12E+06 -2.64E+06	140	63	2.108	10	2.37E+06	-2.36E+06
140 63 2.108 13 2.72E+06 -2.62E+06 140 63 2.108 14 2.98E+06 -2.53E+06 140 63 2.108 15 3.21E+06 -2.35E+06 140 70 2 10 2.48E+06 -2.46E+06 140 70 2 11 2.67E+06 -2.64E+06 140 70 2 12 2.76E+06 -2.74E+06 140 70 2 13 2.85E+06 -2.74E+06 140 70 2 14 3.12E+06 -2.64E+06	140	63	2.108	11	2.55E+06	-2.53E+06
140 63 2.108 14 2.98E+06 -2.53E+06 140 63 2.108 15 3.21E+06 -2.35E+06 140 70 2 10 2.48E+06 -2.46E+06 140 70 2 11 2.67E+06 -2.64E+06 140 70 2 12 2.76E+06 -2.74E+06 140 70 2 13 2.85E+06 -2.74E+06 140 70 2 14 3.12E+06 -2.64E+06	140	63	2.108	12	2.64E+06	-2.62E+06
140 63 2.108 15 3.21E+06 -2.35E+06 140 70 2 10 2.48E+06 -2.46E+06 140 70 2 11 2.67E+06 -2.64E+06 140 70 2 12 2.76E+06 -2.74E+06 140 70 2 13 2.85E+06 -2.74E+06 140 70 2 14 3.12E+06 -2.64E+06	140	63	2.108	13	2.72E+06	-2.62E+06
140 70 2 10 2.48E+06 -2.46E+06 140 70 2 11 2.67E+06 -2.64E+06 140 70 2 12 2.76E+06 -2.74E+06 140 70 2 13 2.85E+06 -2.74E+06 140 70 2 14 3.12E+06 -2.64E+06	140	63	2.108	14	2.98E+06	-2.53E+06
140 70 2 11 2.67E+06 -2.64E+06 140 70 2 12 2.76E+06 -2.74E+06 140 70 2 13 2.85E+06 -2.74E+06 140 70 2 14 3.12E+06 -2.64E+06	140	63	2.108	15	3.21E+06	-2.35E+06
140 70 2 12 2.76E+06 -2.74E+06 140 70 2 13 2.85E+06 -2.74E+06 140 70 2 14 3.12E+06 -2.64E+06	140	70	2	10	2.48E+06	-2.46E+06
140 70 2 13 2.85E+06 -2.74E+06 140 70 2 14 3.12E+06 -2.64E+06	140	70	2	11	2.67E+06	-2.64E+06
140 70 2 14 3.12E+06 -2.64E+06	140	70	2	12	2.76E+06	-2.74E+06
	140	70	2	13	2.85E+06	-2.74E+06
140 70 2 15 3.35E+06 -2.46E+06	140	70	2	14	3.12E+06	-2.64E+06
	140	70	2	15	3.35E+06	-2.46E+06

Lm						M_lg_pos	M_lg_neg
(m)	Ls (m)	Bs (m)	Xs (m)	F_lg_sag (N)	F_lg_hog (N)	(Nm)	(Nm)
160	40	3.232	0	-4.08E+06	4.10E+06	2.93E+07	-2.93E+07
160	40	3.232	-12	-3.81E+06	3.82E+06	2.89E+07	-2.82E+07
160	40	3.232	-24	-3.12E+06	2.83E+06	2.77E+07	-2.49E+07
160	40	3.232	-36	-2.39E+06	2.34E+06	2.65E+07	-2.46E+07
160	40	3.232	-48	-1.97E+06	1.97E+06	2.57E+07	-2.88E+07
160	40	3.232	-60	-2.03E+06	2.03E+06	2.75E+07	-3.12E+07
160	48	2.951	0	-4.13E+06	4.17E+06	4.30E+07	-4.30E+07
160	48	2.951	-11.2	-3.87E+06	3.90E+06	4.24E+07	-3.92E+07
160	48	2.951	-22.4	-3.22E+06	3.23E+06	4.08E+07	-3.62E+07
160	48	2.951	-33.6	-2.46E+06	2.46E+06	3.89E+07	-3.01E+07
160	48	2.951	-44.8	-1.94E+06	1.94E+06	3.77E+07	-4.26E+07
160	48	2.951	-56	-1.86E+06	1.86E+06	3.76E+07	-4.67E+07
160	56	2.732	0	-4.06E+06	4.12E+06	5.76E+07	-5.76E+07
160	56	2.732	-10.4	-3.83E+06	3.87E+06	5.70E+07	-4.94E+07
160	56	2.732	-20.8	-3.22E+06	3.24E+06	5.49E+07	-4.53E+07
160	56	2.732	-31.2	-2.47E+06	2.47E+06	5.65E+07	-5.18E+07
160	56	2.732	-41.6	-1.88E+06	1.88E+06	5.05E+07	-5.79E+07
160	56	2.732	-52	-1.67E+06	1.67E+06	4.99E+07	-6.42E+07
160	64	2.556	0	-4.27E+06	3.98E+06	7.22E+07	-7.22E+07
160	64	2.556	-9.6	-4.03E+06	3.76E+06	7.1 <u>5E</u> +07	-7.10E+07
160	64	2.556	-19.2	-3.14E+06	3.17E+06	6.91E+07	-6.83E+07
160	64	2.556	-28.8	-2.43E+06	2.44E+06	7.2 <u>5E</u> +07	-6.50E+07
160	64	2.556	-38.4	-1.80E+06	1.80E+06	7.62E+07	-7.36E+07
160	64	2.556	-48	-1.46E+06	1.46E+06	6.18E+07	-8.22E+07
160	72	2.409	0	-4.11E+06	3.76E+06	8.55E+07	-8.55E+07
160	72	2.409	-8.8	-3.90E+06	3.56E+06	8.47E+07	-8.41E+07
160	72	2.409	-17.6	-3.32E+06	3.04E+06	8.21E+07	-8.09E+07
160_	72	2.409	-26.4	-2.33E+06	2.35E+06	8.82E+07	-8.53E+07
160_	72	2.409	-35.2	-1.69E+06	1.70E+06	9.29E+07	-8.85E+07
160_	72	2.409	-44	-1.26E+06	1.10E+06	9.63E+07	-9.93E+07
160	80	2.286	0	-3.87E+06	3.47E+06	9.63E+07	-9.63E+07
160	80	2.286	-8	-3.69E+06	3.81E+06	9.55E+07	-9.47E+07
160	80	2.286	-16	-3.20E+06	3.27E+06	9.27E+07	-9.12E+07
160	80	2.286	-24	-2.48E+06	2.51E+06	1.02E+08	-9.84E+07
160	80	2.286	-32	-3.66E+05	1.72E+06	1.08E+08	-1.02E+08
160	80	2.286	-40	-1.16E+05	1.06E+06	1.13E+08	-1.14E+08

Lm (m) Ls (m) Bs (m) Ys (m) F_tr_sag (N) F_tr_hog (N) 160 40 3.232 11.43 2.51E+06 -2.51E+06 160 40 3.232 12.57 2.58E+06 -2.56E+06 160 40 3.232 13.71 2.88E+06 -2.49E+06 160 40 3.232 14.86 3.15E+06 -3.37E+06 160 40 3.232 17.14 3.54E+06 -3.53E+06 160 40 3.232 17.14 3.54E+06 -3.53E+06 160 48 2.951 11.43 2.73E+06 -2.72E+06 160 48 2.951 12.57 2.79E+06 -2.78E+06 160 48 2.951 14.86 3.42E+06 -2.70E+06 160 48 2.951 14.86 3.42E+06 -2.50E+06 160 48 2.951 17.14 3.83E+06 -2.64E+06 160 56 2.732 11.43 2.92E+06 <th></th> <th></th> <th></th> <th></th> <th>т</th> <th>·</th>					т	·
160 40 3.232 12.57 2.58E+06 -2.56E+06 160 40 3.232 13.71 2.88E+06 -2.49E+06 160 40 3.232 14.86 3.15E+06 -3.15E+06 160 40 3.232 16 3.37E+06 -3.53E+06 160 40 3.232 17.14 3.54E+06 -3.53E+06 160 48 2.951 11.43 2.73E+06 -2.72E+06 160 48 2.951 12.57 2.79E+06 -2.70E+06 160 48 2.951 14.86 3.42E+06 -2.50E+06 160 48 2.951 16 3.66E+06 -3.64E+06 160 48 2.951 17.14 3.83E+06 -3.82E+06 160 48 2.951 17.14 3.83E+06 -3.82E+06 160 48 2.951 17.14 3.83E+06 -3.82E+06 160 56 2.732 12.57 2.98E+06 -2.92E+0	Lm (m)	Ls (m)	Bs (m)	Ys (m)	F_tr_sag (N)	F_tr_hog (N)
160 40 3.232 13.71 2.88E+06 -2.49E+06 160 40 3.232 14.86 3.15E+06 -3.15E+06 160 40 3.232 16 3.37E+06 -3.37E+06 160 40 3.232 17.14 3.54E+06 -3.53E+06 160 48 2.951 11.43 2.73E+06 -2.72E+06 160 48 2.951 12.57 2.79E+06 -2.70E+06 160 48 2.951 13.71 3.12E+06 -2.70E+06 160 48 2.951 16 3.66E+06 -2.50E+06 160 48 2.951 16 3.66E+06 -3.64E+06 160 48 2.951 17.14 3.83E+06 -3.82E+06 160 56 2.732 11.43 2.92E+06 -2.92E+06 160 56 2.732 13.71 3.34E+06 -2.68E+06 160 56 2.732 14.86 3.65E+06 -2.68E+06 </td <td>160</td> <td>40</td> <td>3.232</td> <td>11.43</td> <td>2.51E+06</td> <td>-2.51E+06</td>	160	40	3.232	11.43	2.51E+06	-2.51E+06
160 40 3.232 14.86 3.15E+06 -3.15E+06 160 40 3.232 16 3.37E+06 -3.37E+06 160 40 3.232 17.14 3.54E+06 -3.53E+06 160 48 2.951 11.43 2.73E+06 -2.72E+06 160 48 2.951 12.57 2.79E+06 -2.70E+06 160 48 2.951 13.71 3.12E+06 -2.70E+06 160 48 2.951 14.86 3.42E+06 -2.50E+06 160 48 2.951 16 3.66E+06 -3.64E+06 160 48 2.951 17.14 3.83E+06 -3.82E+06 160 48 2.951 17.14 3.83E+06 -2.92E+06 160 56 2.732 11.43 2.92E+06 -2.92E+06 160 56 2.732 13.71 3.34E+06 -2.98E+06 160 56 2.732 14.86 3.65E+06 -2.68E+0	160	40	3.232	12.57	2.58E+06	-2.56E+06
160 40 3.232 16 3.37E+06 -3.37E+06 160 40 3.232 17.14 3.54E+06 -3.53E+06 160 48 2.951 11.43 2.73E+06 -2.72E+06 160 48 2.951 12.57 2.79E+06 -2.70E+06 160 48 2.951 13.71 3.12E+06 -2.70E+06 160 48 2.951 14.86 3.42E+06 -2.50E+06 160 48 2.951 16 3.66E+06 -3.64E+06 160 48 2.951 17.14 3.83E+06 -3.82E+06 160 48 2.951 17.14 3.83E+06 -2.92E+06 160 56 2.732 11.43 2.92E+06 -2.92E+06 160 56 2.732 13.71 3.34E+06 -2.98E+06 160 56 2.732 14.86 3.65E+06 -2.68E+06 160 56 2.732 17.14 4.10E+06 -4.08E+0	160	40	3.232	13.71	2.88E+06	-2.49E+06
160 40 3.232 17.14 3.54E+06 -3.53E+06 160 48 2.951 11.43 2.73E+06 -2.72E+06 160 48 2.951 12.57 2.79E+06 -2.78E+06 160 48 2.951 13.71 3.12E+06 -2.70E+06 160 48 2.951 14.86 3.42E+06 -2.50E+06 160 48 2.951 16 3.66E+06 -3.64E+06 160 48 2.951 17.14 3.83E+06 -3.82E+06 160 56 2.732 11.43 2.92E+06 -2.92E+06 160 56 2.732 12.57 2.98E+06 -2.98E+06 160 56 2.732 13.71 3.34E+06 -2.98E+06 160 56 2.732 14.86 3.65E+06 -2.68E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 56 2.732 17.14 4.10E+06 -3.09	160	40	3.232	14.86	3.15E+06	-3.15E+06
160 48 2.951 11.43 2.73E+06 -2.72E+06 160 48 2.951 12.57 2.79E+06 -2.78E+06 160 48 2.951 13.71 3.12E+06 -2.70E+06 160 48 2.951 14.86 3.42E+06 -2.50E+06 160 48 2.951 16 3.66E+06 -3.64E+06 160 48 2.951 17.14 3.83E+06 -3.82E+06 160 48 2.951 17.14 3.83E+06 -3.82E+06 160 56 2.732 11.43 2.92E+06 -2.92E+06 160 56 2.732 12.57 2.98E+06 -2.98E+06 160 56 2.732 14.86 3.65E+06 -2.68E+06 160 56 2.732 14.86 3.65E+06 -2.68E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 56 2.732 17.14 4.10E+06 -3.09	160	40	3.232	16	3.37E+06	-3.37E+06
160 48 2.951 12.57 2.79E+06 -2.78E+06 160 48 2.951 13.71 3.12E+06 -2.70E+06 160 48 2.951 14.86 3.42E+06 -2.50E+06 160 48 2.951 16 3.66E+06 -3.64E+06 160 48 2.951 17.14 3.83E+06 -3.82E+06 160 56 2.732 11.43 2.92E+06 -2.92E+06 160 56 2.732 12.57 2.98E+06 -2.98E+06 160 56 2.732 13.71 3.34E+06 -2.90E+06 160 56 2.732 14.86 3.65E+06 -2.68E+06 160 56 2.732 16 3.91E+06 -3.89E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 56 2.732 17.14 4.10E+06 -3.09E+06 160 64 2.556 11.43 3.09E+06 -3.09E+0	160	40	3.232	17.14	3.54E+06	-3.53E+06
160 48 2.951 13.71 3.12E+06 -2.70E+06 160 48 2.951 14.86 3.42E+06 -2.50E+06 160 48 2.951 16 3.66E+06 -3.64E+06 160 48 2.951 17.14 3.83E+06 -3.82E+06 160 56 2.732 11.43 2.92E+06 -2.92E+06 160 56 2.732 12.57 2.98E+06 -2.92E+06 160 56 2.732 13.71 3.34E+06 -2.90E+06 160 56 2.732 14.86 3.65E+06 -2.68E+06 160 56 2.732 16 3.91E+06 -3.89E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 56 2.732 17.14 4.10E+06 -3.09E+06 160 64 2.556 11.43 3.09E+06 -3.09E+06 160 64 2.556 12.57 3.16E+06 -3.16E+0	160	48	2.951	11.43	2.73E+06	-2.72E+06
160 48 2.951 14.86 3.42E+06 -2.50E+06 160 48 2.951 16 3.66E+06 -3.64E+06 160 48 2.951 17.14 3.83E+06 -3.82E+06 160 56 2.732 11.43 2.92E+06 -2.92E+06 160 56 2.732 12.57 2.98E+06 -2.99E+06 160 56 2.732 13.71 3.34E+06 -2.90E+06 160 56 2.732 14.86 3.65E+06 -2.90E+06 160 56 2.732 16 3.91E+06 -3.89E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 64 2.556 11.43 3.09E+06 -3.09E+06 160 64 2.556 12.57 3.16E+06 -3.16E+06 160 64 2.556 14.86 3.87E+06 -2.84E+0	160	48	2.951	12.57	2.79E+06	-2.78E+06
160 48 2.951 16 3.66E+06 -3.64E+06 160 48 2.951 17.14 3.83E+06 -3.82E+06 160 56 2.732 11.43 2.92E+06 -2.92E+06 160 56 2.732 12.57 2.98E+06 -2.99E+06 160 56 2.732 13.71 3.34E+06 -2.90E+06 160 56 2.732 14.86 3.65E+06 -2.68E+06 160 56 2.732 16 3.91E+06 -3.89E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 64 2.556 11.43 3.09E+06 -3.09E+06 160 64 2.556 12.57 3.16E+06 -3.16E+06 160 64 2.556 13.71 3.54E+06 -2.84E+06 160 64 2.556 14.86 3.87E+06 -2.84E+0	160	48	2.951	13.71	3.12E+06	-2.70E+06
160 48 2.951 17.14 3.83E+06 -3.82E+06 160 56 2.732 11.43 2.92E+06 -2.92E+06 160 56 2.732 12.57 2.98E+06 -2.99E+06 160 56 2.732 13.71 3.34E+06 -2.90E+06 160 56 2.732 14.86 3.65E+06 -2.68E+06 160 56 2.732 16 3.91E+06 -3.89E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 56 2.732 17.14 4.10E+06 -3.09E+06 160 64 2.556 11.43 3.09E+06 -3.09E+06 160 64 2.556 12.57 3.16E+06 -3.07E+06 160 64 2.556 13.71 3.54E+06 -3.07E+06 160 64 2.556 14.86 3.87E+06 -2.84E+06 160 64 2.556 17.14 4.34E+06 -4.11	160	48	2.951	14.86	3.42E+06	-2.50E+06
160 56 2.732 11.43 2.92E+06 -2.92E+06 160 56 2.732 12.57 2.98E+06 -2.99E+06 160 56 2.732 13.71 3.34E+06 -2.90E+06 160 56 2.732 14.86 3.65E+06 -2.68E+06 160 56 2.732 16 3.91E+06 -3.89E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 64 2.556 11.43 3.09E+06 -3.09E+06 160 64 2.556 12.57 3.16E+06 -3.07E+06 160 64 2.556 13.71 3.54E+06 -3.07E+06 160 64 2.556 14.86 3.87E+06 -2.84E+06 160 64 2.556 17.14 4.34E+06 -4.11E+06 160 64 2.556 17.14 4.34E+06 -3.25E+06 160 72 2.409 11.43 3.26E+06 -3.23	160	48	2.951	16	3.66E+06	-3.64E+06
160 56 2.732 12.57 2.98E+06 -2.98E+06 160 56 2.732 13.71 3.34E+06 -2.90E+06 160 56 2.732 14.86 3.65E+06 -2.68E+06 160 56 2.732 16 3.91E+06 -3.89E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 64 2.556 11.43 3.09E+06 -3.09E+06 160 64 2.556 12.57 3.16E+06 -3.07E+06 160 64 2.556 13.71 3.54E+06 -3.07E+06 160 64 2.556 14.86 3.87E+06 -2.84E+06 160 64 2.556 17.14 4.34E+06 -4.11E+06 160 64 2.556 17.14 4.34E+06 -4.30E+06 160 72 2.409 11.43 3.26E+06 -3.25E+06 160 72 2.409 13.71 3.72E+06 -3.32	160	48	2.951	17.14	3.83E+06	-3.82E+06
160 56 2.732 13.71 3.34E+06 -2.90E+06 160 56 2.732 14.86 3.65E+06 -2.68E+06 160 56 2.732 16 3.91E+06 -3.89E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 64 2.556 11.43 3.09E+06 -3.09E+06 160 64 2.556 12.57 3.16E+06 -3.16E+06 160 64 2.556 13.71 3.54E+06 -3.07E+06 160 64 2.556 14.86 3.87E+06 -2.84E+06 160 64 2.556 14.86 3.87E+06 -2.84E+06 160 64 2.556 17.14 4.34E+06 -4.11E+06 160 64 2.556 17.14 4.34E+06 -4.30E+06 160 72 2.409 11.43 3.26E+06 -3.25E+06 160 72 2.409 13.71 3.72E+06 -2.61	160	56	2.732	11.43	2.92E+06	-2.92E+06
160 56 2.732 14.86 3.65E+06 -2.68E+06 160 56 2.732 16 3.91E+06 -3.89E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 64 2.556 11.43 3.09E+06 -3.09E+06 160 64 2.556 12.57 3.16E+06 -3.16E+06 160 64 2.556 13.71 3.54E+06 -3.07E+06 160 64 2.556 14.86 3.87E+06 -2.84E+06 160 64 2.556 16 4.14E+06 -4.11E+06 160 64 2.556 17.14 4.34E+06 -4.30E+06 160 72 2.409 11.43 3.26E+06 -3.25E+06 160 72 2.409 12.57 3.32E+06 -3.23E+06 160 72 2.409 14.86 4.07E+06 -2.98E+06 160 72 2.409 16 4.35E+06 -2.61E+06 </td <td>160</td> <td>56</td> <td>2.732</td> <td>12.57</td> <td>2.98E+06</td> <td>-2.98E+06</td>	160	56	2.732	12.57	2.98E+06	-2.98E+06
160 56 2.732 16 3.91E+06 -3.89E+06 160 56 2.732 17.14 4.10E+06 -4.08E+06 160 64 2.556 11.43 3.09E+06 -3.09E+06 160 64 2.556 12.57 3.16E+06 -3.16E+06 160 64 2.556 13.71 3.54E+06 -3.07E+06 160 64 2.556 14.86 3.87E+06 -2.84E+06 160 64 2.556 16 4.14E+06 -4.11E+06 160 64 2.556 17.14 4.34E+06 -4.30E+06 160 72 2.409 11.43 3.26E+06 -3.25E+06 160 72 2.409 12.57 3.32E+06 -3.23E+06 160 72 2.409 13.71 3.72E+06 -3.23E+06 160 72 2.409 14.86 4.07E+06 -2.98E+06 160 72 2.409 17.14 4.56E+06 -2.61E+0	160	56	2.732	13.71	3.34E+06	-2.90E+06
160 56 2.732 17.14 4.10E+06 -4.08E+06 160 64 2.556 11.43 3.09E+06 -3.09E+06 160 64 2.556 12.57 3.16E+06 -3.16E+06 160 64 2.556 13.71 3.54E+06 -3.07E+06 160 64 2.556 14.86 3.87E+06 -2.84E+06 160 64 2.556 16 4.14E+06 -4.11E+06 160 64 2.556 17.14 4.34E+06 -4.30E+06 160 72 2.409 11.43 3.26E+06 -3.25E+06 160 72 2.409 12.57 3.32E+06 -3.32E+06 160 72 2.409 13.71 3.72E+06 -3.23E+06 160 72 2.409 14.86 4.07E+06 -2.98E+06 160 72 2.409 17.14 4.56E+06 -2.61E+06 160 80 2.286 11.43 3.41E+06 -3.39	160	56	2.732	14.86	3.65E+06	-2.68E+06
160 64 2.556 11.43 3.09E+06 -3.09E+06 160 64 2.556 12.57 3.16E+06 -3.16E+06 160 64 2.556 13.71 3.54E+06 -3.07E+06 160 64 2.556 14.86 3.87E+06 -2.84E+06 160 64 2.556 16 4.14E+06 -4.11E+06 160 64 2.556 17.14 4.34E+06 -4.30E+06 160 72 2.409 11.43 3.26E+06 -3.25E+06 160 72 2.409 12.57 3.32E+06 -3.32E+06 160 72 2.409 13.71 3.72E+06 -3.23E+06 160 72 2.409 14.86 4.07E+06 -2.98E+06 160 72 2.409 16 4.35E+06 -2.61E+06 160 72 2.409 17.14 4.56E+06 -4.50E+06 160 80 2.286 11.43 3.41E+06 -3.39E+0	160	-56	2.732	16	3.91E+06	-3.89E+06
160 64 2.556 12.57 3.16E+06 -3.16E+06 160 64 2.556 13.71 3.54E+06 -3.07E+06 160 64 2.556 14.86 3.87E+06 -2.84E+06 160 64 2.556 16 4.14E+06 -4.11E+06 160 64 2.556 17.14 4.34E+06 -4.30E+06 160 72 2.409 11.43 3.26E+06 -3.25E+06 160 72 2.409 12.57 3.32E+06 -3.32E+06 160 72 2.409 13.71 3.72E+06 -3.23E+06 160 72 2.409 14.86 4.07E+06 -2.98E+06 160 72 2.409 16 4.35E+06 -2.61E+06 160 72 2.409 17.14 4.56E+06 -4.50E+06 160 80 2.286 11.43 3.41E+06 -3.39E+06 160 80 2.286 12.57 3.47E+06 -3.46E+0	160	56	2.732	17.14	4.10E+06	-4.08E+06
160 64 2.556 13.71 3.54E+06 -3.07E+06 160 64 2.556 14.86 3.87E+06 -2.84E+06 160 64 2.556 16 4.14E+06 -4.11E+06 160 64 2.556 17.14 4.34E+06 -4.30E+06 160 72 2.409 11.43 3.26E+06 -3.25E+06 160 72 2.409 12.57 3.32E+06 -3.32E+06 160 72 2.409 13.71 3.72E+06 -3.23E+06 160 72 2.409 14.86 4.07E+06 -2.98E+06 160 72 2.409 16 4.35E+06 -2.61E+06 160 72 2.409 17.14 4.56E+06 -4.50E+06 160 80 2.286 11.43 3.41E+06 -3.39E+06 160 80 2.286 12.57 3.47E+06 -3.46E+06 160 80 2.286 13.71 3.89E+06 -3.37E+0	160	64	2.556	11.43	3.09E+06	-3.09E+06
160 64 2.556 14.86 3.87E+06 -2.84E+06 160 64 2.556 16 4.14E+06 -4.11E+06 160 64 2.556 17.14 4.34E+06 -4.30E+06 160 72 2.409 11.43 3.26E+06 -3.25E+06 160 72 2.409 12.57 3.32E+06 -3.32E+06 160 72 2.409 13.71 3.72E+06 -3.23E+06 160 72 2.409 14.86 4.07E+06 -2.98E+06 160 72 2.409 16 4.35E+06 -2.61E+06 160 72 2.409 17.14 4.56E+06 -4.50E+06 160 80 2.286 11.43 3.41E+06 -3.39E+06 160 80 2.286 12.57 3.47E+06 -3.46E+06 160 80 2.286 13.71 3.89E+06 -3.37E+06 160 80 2.286 14.86 4.25E+06 -3.12E+0	160	64	2.556	12.57	3.16E+06	-3.16E+06
160 64 2.556 16 4.14E+06 -4.11E+06 160 64 2.556 17.14 4.34E+06 -4.30E+06 160 72 2.409 11.43 3.26E+06 -3.25E+06 160 72 2.409 12.57 3.32E+06 -3.32E+06 160 72 2.409 13.71 3.72E+06 -3.23E+06 160 72 2.409 14.86 4.07E+06 -2.98E+06 160 72 2.409 16 4.35E+06 -2.61E+06 160 72 2.409 17.14 4.56E+06 -4.50E+06 160 80 2.286 11.43 3.41E+06 -3.39E+06 160 80 2.286 12.57 3.47E+06 -3.46E+06 160 80 2.286 13.71 3.89E+06 -3.37E+06 160 80 2.286 14.86 4.25E+06 -3.12E+06 160 80 2.286 14.86 4.25E+06 -2.73E+0	160	64	2.556	13.71	3.54E+06	-3.07E+06
160 64 2.556 17.14 4.34E+06 -4.30E+06 160 72 2.409 11.43 3.26E+06 -3.25E+06 160 72 2.409 12.57 3.32E+06 -3.32E+06 160 72 2.409 13.71 3.72E+06 -3.23E+06 160 72 2.409 14.86 4.07E+06 -2.98E+06 160 72 2.409 16 4.35E+06 -2.61E+06 160 72 2.409 17.14 4.56E+06 -4.50E+06 160 80 2.286 11.43 3.41E+06 -3.39E+06 160 80 2.286 12.57 3.47E+06 -3.46E+06 160 80 2.286 13.71 3.89E+06 -3.37E+06 160 80 2.286 14.86 4.25E+06 -3.12E+06 160 80 2.286 14.86 4.25E+06 -2.73E+06	160	64	2.556	14.86	3.87E+06	-2.84E+06
160 72 2.409 11.43 3.26E+06 -3.25E+06 160 72 2.409 12.57 3.32E+06 -3.32E+06 160 72 2.409 13.71 3.72E+06 -3.23E+06 160 72 2.409 14.86 4.07E+06 -2.98E+06 160 72 2.409 16 4.35E+06 -2.61E+06 160 72 2.409 17.14 4.56E+06 -4.50E+06 160 80 2.286 11.43 3.41E+06 -3.39E+06 160 80 2.286 12.57 3.47E+06 -3.46E+06 160 80 2.286 13.71 3.89E+06 -3.37E+06 160 80 2.286 14.86 4.25E+06 -3.12E+06 160 80 2.286 16 4.55E+06 -2.73E+06	160	64	2.556	16	4.14E+06	-4.11E+06
160 72 2.409 12.57 3.32E+06 -3.32E+06 160 72 2.409 13.71 3.72E+06 -3.23E+06 160 72 2.409 14.86 4.07E+06 -2.98E+06 160 72 2.409 16 4.35E+06 -2.61E+06 160 72 2.409 17.14 4.56E+06 -4.50E+06 160 80 2.286 11.43 3.41E+06 -3.39E+06 160 80 2.286 12.57 3.47E+06 -3.46E+06 160 80 2.286 13.71 3.89E+06 -3.37E+06 160 80 2.286 14.86 4.25E+06 -3.12E+06 160 80 2.286 16 4.55E+06 -2.73E+06	160	64	2.556	17.14	4.34E+06	-4.30E+06
160 72 2.409 13.71 3.72E+06 -3.23E+06 160 72 2.409 14.86 4.07E+06 -2.98E+06 160 72 2.409 16 4.35E+06 -2.61E+06 160 72 2.409 17.14 4.56E+06 -4.50E+06 160 80 2.286 11.43 3.41E+06 -3.39E+06 160 80 2.286 12.57 3.47E+06 -3.46E+06 160 80 2.286 13.71 3.89E+06 -3.37E+06 160 80 2.286 14.86 4.25E+06 -3.12E+06 160 80 2.286 16 4.55E+06 -2.73E+06	160	72	2.409	11.43	3.26E+06	-3.25E+06
160 72 2.409 14.86 4.07E+06 -2.98E+06 160 72 2.409 16 4.35E+06 -2.61E+06 160 72 2.409 17.14 4.56E+06 -4.50E+06 160 80 2.286 11.43 3.41E+06 -3.39E+06 160 80 2.286 12.57 3.47E+06 -3.46E+06 160 80 2.286 13.71 3.89E+06 -3.37E+06 160 80 2.286 14.86 4.25E+06 -3.12E+06 160 80 2.286 16 4.55E+06 -2.73E+06	160	72	2.409	12.57	3.32E+06	-3.32E+06
160 72 2.409 16 4.35E+06 -2.61E+06 160 72 2.409 17.14 4.56E+06 -4.50E+06 160 80 2.286 11.43 3.41E+06 -3.39E+06 160 80 2.286 12.57 3.47E+06 -3.46E+06 160 80 2.286 13.71 3.89E+06 -3.37E+06 160 80 2.286 14.86 4.25E+06 -3.12E+06 160 80 2.286 16 4.55E+06 -2.73E+06	160	72	2.409	13.71	3.72E+06	-3.23E+06
160 72 2.409 17.14 4.56E+06 -4.50E+06 160 80 2.286 11.43 3.41E+06 -3.39E+06 160 80 2.286 12.57 3.47E+06 -3.46E+06 160 80 2.286 13.71 3.89E+06 -3.37E+06 160 80 2.286 14.86 4.25E+06 -3.12E+06 160 80 2.286 16 4.55E+06 -2.73E+06	160	72	2.409	14.86	4.07E+06	-2.98E+06
160 80 2.286 11.43 3.41E+06 -3.39E+06 160 80 2.286 12.57 3.47E+06 -3.46E+06 160 80 2.286 13.71 3.89E+06 -3.37E+06 160 80 2.286 14.86 4.25E+06 -3.12E+06 160 80 2.286 16 4.55E+06 -2.73E+06	160	72	2.409	16	4.35E+06	-2.61E+06
160 80 2.286 12.57 3.47E+06 -3.46E+06 160 80 2.286 13.71 3.89E+06 -3.37E+06 160 80 2.286 14.86 4.25E+06 -3.12E+06 160 80 2.286 16 4.55E+06 -2.73E+06	160	72	2.409	17.14	4.56E+06	-4.50E+06
160 80 2.286 13.71 3.89E+06 -3.37E+06 160 80 2.286 14.86 4.25E+06 -3.12E+06 160 80 2.286 16 4.55E+06 -2.73E+06	160	80	2.286	11.43	3.41E+06	-3.39E+06
160 80 2.286 14.86 4.25E+06 -3.12E+06 160 80 2.286 16 4.55E+06 -2.73E+06	160	80	2.286	12.57	3.47E+06	-3.46E+06
160 80 2.286 16 4.55E+06 -2.73E+06	160	80	2.286	13.71	3.89E+06	-3.37E+06
	160	80	2.286	14.86	4.25E+06	-3.12E+06
160 80 2.286 17.14 4.77E+06 -4.69E+06	160	80	2.286	16	4.55E+06	-2.73E+06
	160	80	2.286	17.14	4.77E+06	-4.69E+06

						M_lg_pos	M_lg_neg
Lm (m)	Ls (m)	Bs (m)	Xs (m)	F_lg_sag (N)	F_lg_hog (N)	(Nm)	(Nm)
180	45	3.637	0	-5.14E+06	5.82E+06	4.65E+07	-4.65E+07
180	45	3.637	-13.5	-4.86E+06	4.87E+06	4.21E+07	-4.04E+07
180	45	3.637	-27	-4.15E+06	4.15E+06	4.24E+07	-3.93E+07
180	45	3.637	-40.5	-3.31E+06	3.31E+06	4.26E+07	-3.91E+07
180	45	3.637	-54	-2.70E+06	2.70E+06	3.83E+07	-4.29E+07
180	45	3.637	-67.5	-2.48E+06	2.71E+06	4.03E+07	-4.74E+07
180	54	3.32	0	-5.12E+06	5.96E+06	6.69E+07	-6.69E+07
180	54	3.32	-12.6	-5.51E+06	4.88E+06	6.24E+07	-6.49E+07
180	54	3.32	-25.2	-4.18E+06	4.19E+06	6.28E+07	-5.19E+07
180	54	3.32	-37.8	-3.34E+06	3.34E+06	6.31E+07	-5.13E+07
180	54	3.32	-50.4	-2.66E+06	2.66E+06	6.31E+07	-6.33E+07
180	54	3.32	-63	-2.33E+06	2.45E+06	5.60E+07	-7.09E+07
180	63	3.073	0	-5.88E+06	5.95E+06	8.81E+07	-8.81E+07
180	63	3.073	-11.7	-5.52E+06	4.75E+06	8.49E+07	-8.55E+07
180	63	3.073	-23.4	-4.57E+06	4.10E+06	8.55E+07	-7.92E+07
180	63	3.073	-35.1	-3.40E+06	3.27E+06	8.60E+07	-5.99E+07
180	63	3.073	-46.8	-2.54E+06	2.48E+06	8.62E+07	-8.60E+07
180	63	3.073	-58.5	-2.11E+06	2.18E+06	8.57E+07	-9.72E+07
180	72	2.875	0	-5.87E+06	5.81E+06	1.08E+08	-1.08E+08
180	72	2.875	-10.8	-5.40E+06	5.47E+06	1.08E+08	-1.05E+08
180	72	2.875	-21.6	-4.54E+06	3.90E+06	1.09E+08	-9.70E+07
180	72	2.875	-32.4	-3.42E+06	3.43E+06	1.10E+08	-1.08E+08
180	72	2.875	-43.2	-2.43E+06	2.43E+06	1.10E+08	-1.18E+08
180	72	2.875	-54	-1.92E+06	1.39E+06	1.10E+08	-1.24E+08
180	81	2.711	0	-5.70E+06	5.56E+06	1.30E+08	-1.30E+08
180	81	2.711	-9.9	-5.40E+06	5.26E+06	1.31E+08	-1.21E+08
180	81	2.711	-19.8	-4.40E+06	4.46E+06	1.32E+08	-1.12E+08
180	81	2.711	-29.7	-3.37E+06	3.39E+06	1.33E+08	-1.30E+08
180	81	2.711	-39.6	-2.36E+06	2.37E+06	1.33E+08	-1.42E+08
180	81	2.711	-49.5	-1.69E+06	1.69E+06	1.33E+08	-1.50E+08
180	90	2.571	0	-5.21E+06	5.22E+06	1.49E+08	-1.49E+08
180	90	2.571	-9	-5.16E+06	4:96E+06	1.50E+08	-1.31E+08
180	90	2.571	-18	-4.46E+06	4.26E+06	1.52E+08	-1.48E+08
180	90	2.571	-27	-3.25E+06	3.29E+06	1.53E+08	-1.49E+08
180	90	2.571	-36	-2.28E+06	2.30E+06	1.54E+08	-1.64E+08
180	90	2.571	-45	-3.27E+05	1.52E+06	1.54E+08	-1.73E+08

Lm (m)	Ls (m)	Bs (m)	Ys (m)	F_tr_sag (N)	F_tr_hog (N)
180	45	3.637	12.86	3.27E+06	-3.08E+06
180	45	3.637	14.14	3.69E+06	-3.69E+06
180	45	3.637	15.43	4.05E+06	-4.04E+06
180	45	3.637	16.71	4.32E+06	-4.31E+06
180	45	3.637	18	4.49E+06	-4.49E+06
180	45	3.637	19.29	4.48E+06	-4.56E+06
180	54	3.32	12.86	3.55E+06	-3.35E+06
180	54	3.32	14.14	4.00E+06	-4.00E+06
180	54	3.32	15.43	4.39E+06	-4.38E+06
180	54	3.32	16.71	4.68E+06	-4.67E+06
180	54	3.32	18	4.87E+06	-4.86E+06
180	54	3.32	19.29	4.85E+06	-4.93E+06
180	63	3.073	12.86	3.79E+06	-3.59E+06
180	63	3.073	14.14	4.28E+06	-3.41E+06
180	63	3.073	15.43	4.69E+06	-4.68E+06
180	63	3.073	16.71	5.00E+06	-4.99E+06
180	63	3.073	18	5.21E+06	-5.19E+06
180	63	3.073	19.29	5.19E+06	-5.27E+06
180	72	2.875	12.86	4.02E+06	-3.80E+06
180	72	2.875	14.14	4.53E+06	-3.61E+06
180	72	2.875	15.43	4.97E+06	-4.96E+06
180	72	2.875	16.71	5.30E+06	-5.28E+06
180	72	2.875	18	5.51E+06	-5.49E+06
180	72	2.875	19.29	5.49E+06	-5.58E+06
180	81	2.711	12.86	4.22E+06	-4.00E+06
180	81	2.711	14.14	4.77E+06	-3.80E+06
180	. 81	2.711	15.43	5.22E+06	-5.21E+06
180	81	2.711	16.71	5.57E+06	-5.55E+06
180	81	2.711	18	5.80E+06	-5.77E+06
180	81	2.711	19.29	5.78E+06	-5.86E+06
180	90	2.571	12.86	4.41E+06	-4.19E+06
180	90	2.571	14.14	4.98E+06	-3.98E+06
180	90	2.571	15.43	5.46E+06	-5.44E+06
180	90	2.571	16.71	5.83E+06	-5.79E+06
180	90	2.571	18	6.06E+06	-6.02E+06
180	- 90	2.571	19.29	6.04E+06	-6.10E+06

l m /m)	Ls (m)	Bs (m)	Xs (m)	F_lg_sag (N)	F_lg_hog (N)	M_lg_pos (Nm)	M_lg_neg (Nm)
Lm (m) 200	50	4.041	0	-7.41E+06	7.44E+06	6.70E+07	-6.70E+07
200	50	4.041	-15	-6.92E+06	6.94E+06	6.53E+07	-6.45E+07
200	50	4.041	-30	-5.69E+06	5.17E+06	6.29E+07	-5.69E+07
200	50	4.041	-45	-4.37E+06	4.27E+06	6.04E+07	-5.72E+07
200	50	4.041	-60	-3.60E+06	3.60E+06	5.69E+07	-6.64E+07
200	50	4.041	-75	-3.70E+06	3.70E+06	6.12E+07	-7.12E+07
200	60	3.689	0	-7.50E+06	7.54E+06	9.43E+07	-9.43E+07
200	60	3.689	-14	-7.04E+06	7.07E+06	9.59E+07	-9.09E+07
200	60	3.689	-28	-5.85E+06	5.86E+06	9.26E+07	-8.33E+07
200	60	3.689	-42	-4.49E+06	4.49E+06	9.44E+07	-7.26E+07
200	60	3.689	-56	-3.55E+06	3.55E+06	8.62E+07	-9.85E+07
200	60	3.689	-70	-3.40E+06	3.40E+06	8.59E+07	-1.07E+08
200	70	3.415	0	-7.97E+06	7.45E+06	1.31E+08	-1.31E+08
200	70	3.415	-13	-7.46E+06	7.01E+06	1.29E+08	-1.16E+08
200	70	3.415	-26	-5.85E+06	5.87E+06	1.25E+08	-1.06E+08
200	70	3.415	-39	-4.50E+06	4.51E+06	1.29E+08	-1.28E+08
200	70	3.415	-52	-3.44E+06	3.44E+06	1.16E+08	-1.34E+08
200	70	3.415	-65	-3.04E+06	3.04E+06	1.14E+08	-1.47E+08
200	80	3.194	0	-7.67E+06	7.18E+06	1.64E+08	-1.64E+08
200	80	3.194	-12	-7.37E+06	6.78E+06	1.62E+08	-1.38E+08
200	80	3.194	-24	-5.71E+06	5.74E+06	1.58E+08	-1.25E+08
200	80	3.194	-36	-4.41E+06	4.42E+06	1.66E+08	-1.63E+08
200	80	3.194	-48	-3.27E+06	3.28E+06	1.74E+08	-1.71E+08
200	80	3.194	-60	-2.66E+06	2.66E+06	1.42E+08	-1.89E+08
200	90	3.012	0	-7.47E+06	6.76E+06	1.95E+08	-1.95E+08
200	90	3.012	-11	-7.13E+06	7.23E+06	1.93E+08	-1.92E+08
200	90	3.012	-22	-6.05E+06	5.48E+06	1.88E+08	-1.86E+08
200	90	3.012	-33	-4.57E+06	4.25E+06	2.01E+08	-1.97E+08
200	90	3.012	-44	-3.11E+06	3.08E+06	2.12E+08	-2.06E+08
200	90	3.012	-55	-2.29E+06	2.09E+06	2.19E+08	-2.29E+08
200	100	2.857	0	-7.15E+06	6.22E+06	2.20E+08	-2.20E+08
200	100	2.857	-10	-5.65E+06	6.89E+06	2.18E+08	-2.17E+08
200	100	2.857	-20	-4.89E+06	5.91E+06	2.22E+08	-2.10E+08
200	100	2.857	-30	-4.51E+06	4.55E+06	2.34E+08	-2.27E+08
200	100	2.857	-40	-3.10E+06	3.12E+06	2.46E+08	-2.38E+08
200	100	2.857	-50	-3.80E+05	1.97E+06	2.56E+08	-2.65E+08

Lm (m)	Ls (m)	Bs (m)	Ys (m)	F_tr_sag (N)	F_tr_hog (N)
200	50	4.041	14.29	4.49E+06	-4.49E+06
200	50	4.041	15.71	4.96E+06	-4.95E+06
200	50	4.041	17.14	5.29E+06	-5.29E+06
200	50	4.041	18.57	5.47E+06	-5.47E+06
200	50	4.041	20	5.70E+06	-5.50E+06
200	50	4.041	21.43	6.14E+06	-5.36E+06
200	60	3.689	14.29	4.87E+06	-4.87E+06
200	60	3.689	15.71	5.37E+06	-5.37E+06
200	60	3.689	17.14	5.73E+06	-5.73E+06
200	60	3.689	18.57	5.93E+06	-5.93E+06
200	60	3.689	20	6.17E+06	-5.96E+06
200	60	3.689	21.43	6.65E+06	-5.81E+06
200	70	3.415	14.29	5.21E+06	-5.21E+06
200	70	3.415	15.71	5.75E+06	-5.75E+06
200	70	3.415	17.14	6.13E+06	-6.13E+06
200	70	3.415	18.57	6.35E+06	-6.34E+06
200	70	3.415	20	6.60E+06	-6.37E+06
200	70	3.415	21.43	7.11E+06	-6.22E+06
200	80	3.194	14.29	5.52E+06	-5.51E+06
200	80	3.194	15.71	6.09E+06	-6.08E+06
200	80	3.194	17.14	6.50E+06	-6.49E+06
200	80	3.194	18.57	6.73E+06	-6.71E+06
200	80	3.194	20	6.99E+06	-6.74E+06
200	80	3.194	21.43	7.53E+06	-6.58E+06
200	90	3.012	14.29	5.80E+06	-5.80E+06
200	90	3.012	15.71	6.40E+06	-6.39E+06
200	90	3.012	17.14	6.84E+06	-6.82E+06
200	90	3.012	18.57	7.07E+06	-7.05E+06
200	90	3.012	20	7.35E+06	-7.08E+06
200	90	3.012	21.43	7.92E+06	-6.91E+06
200	100	2.857	14.29	6.07E+06	-6.06E+06
200	100	2.857	15.71	6.70E+06	-6.68E+06
200	100	2.857	17.14	7.15E+06	-7.12E+06
200	100	2.857	18.57	7.40E+06	-7.37E+06
200	100	2.857	20	7.68E+06	-7.40E+06
200	100	2.857	21.43	8.27E+06	-7.22E+06

						M_lg_pos	M_lg_neg
Lm (m)	Ls (m)	Bs (m)	Xs (m)	F_lg_sag (N)	F_lg_hog (N)	(Nm)	(Nm)
220	55	4.445	0	-8.92E+06	9.98E+06	9.69E+07	-9.69E+07
220	55	4.445	-16.5	-8.42E+06	8.43E+06	9.42E+07	-8.70E+07
220	55	4.445	-33	-7.15E+06	7.16E+06	8.87E+07	-7.74E+07
220	55	4.445	-49.5	-5.70E+06	5.70E+06	8.96E+07	-7.61E+07
220	55	4.445	-66	-4.65E+06	4.65E+06	8.23E+07	-9.10E+07
220	55	4.445	-82.5	-4.34E+06	4.69E+06	8.36E+07	-1.00E+08
220	66	4.057	0	-1.02E+07	1.02E+07	1.40E+08	-1.40E+08
220	66	4.057	-15.4	-9.47E+06	8.47E+06	1.30E+08	-1.19E+08
220	66	4.057	-30.8	-7.73E+06	7.24E+06	1.32E+08	-1.11E+08
220	66	4.057	-46.2	-5.75E+06	5.76E+06	1.33E+08	-9.25E+07
220	66	4.057	-61.6	-4.58E+06	4.58E+06	1.33E+08	-1.35E+08
220	.66	4.057	-77	-4.06E+06	4.25E+06	1.17E+08	-1.50E+08
220	77	3.756	0	-1.01E+07	1.02E+07	1.86E+08	-1.86E+08
220	77	3.756	-14.3	-9.48E+06	8.26E+06	1.77E+08	-1.81E+08
220	77	3.756	-28.6	-7.85E+06	7.10E+06	1.79E+08	-1.36E+08
220	77	3.756	-42.9	-5.85E+06	5.65E+06	1.81E+08	-1.80E+08
220	77	3.756	-57.2	-4.38E+06	4.39E+06	1.82E+08	-1.83E+08
220	77	3.756	-71.5	-3.67E+06	3.78E+06	1.82E+08	-2.05E+08
220	- 88	3.514	0	-1.01E+07	9.94E+06	2.30E+08	-2.30E+08
220	88	3.514	-13.2	-9.27E+06	9.36E+06	2.26E+08	-2.24E+08
220	88	3.514	-26.4	-7.79E+06	7.83E+06	2.29E+08	-2.10E+08
220	88	3.514	-39.6	-5.87E+06	5.39E+06	2.32E+08	-2.28E+08
220	88	3.514	-52.8	-4.19E+06	4.19E+06	2.33E+08	-2.48E+08
220	88	3.514	-66	-3.32E+06	3.32E+06	2.33E+08	-2.63E+08
220	99	3.313	0	-9.35E+06	9.50E+06	2.67E+08	-2.67E+08
220	99	3.313	-12.1	-9.28E+06	8.99E+06	2.74E+08	-2.60E+08
220	99	3.313	-24.2	-7.56E+06	7.62E+06	2.77E+08	-2.44E+08
220	99	3.313	-36.3	-5.78E+06	5.80E+06	2.80E+08	-2.75E+08
220	99	3.313	-48.4	-4.07E+06	4.07E+06	2.83E+08	-3.00E+08
220	99	3.313	-60.5	-2.92E+06	2.93E+06	2.84E+08	-3.19E+08
220	110	3.143	0	-8.98E+06	8.90E+06	3.13E+08	-3.13E+08
220	110	3.143	-11	-7.78E+06	8.46E+06	3.15E+08	-2.87E+08
220	110	3.143	-22	-6.72E+06	7.73E+06	3.19E+08	-2.69E+08
220	110	3.143	-33	-5.89E+06	5.62E+06	3.23E+08	-3.16E+08
220	110	3.143	-44	-3.99E+06	3.93E+06	3.27E+08	-3.47E+08
220	110	3.143	-55	-4.37E+05	2.61E+06	3.29E+08	-3.68E+08

Lm (m)	Ls (m)	Bs (m)	Ys (m)	F_tr_sag (N)	F_tr_hog (N)
220	55	4.445	15.71	5.84E+06	-5.84E+06
220	55	4.445	17.29	6.27E+06	-6.27E+06
220	55	4.445	18.86	6.32E+06	-6.48E+06
220	55	4.445	20.43	6.96E+06	-6.46E+06
220	55	4.445	22	7.52E+06	-6.21E+06
220	55	4.445	23.57	7.96E+06	-7.96E+06
220	66	4.057	15.71	6.33E+06	-6.33E+06
220	66	4.057	17.29	6.80E+06	-6.80E+06
220	66	4.057	18.86	6.85E+06	-7.03E+06
220	66	4.057	20.43	7.55E+06	-7.01E+06
220	66	4.057	22	8.14E+06	-6.73E+06
220	66	4.057	23.57	8.63E+06	-6.23E+06
220	77	3.756	15.71	6.77E+06	-6.77E+06
220	77	3.756	17.29	7.27E+06	-7.27E+06
220	77	3.756	18.86	7.32E+06	-7.52E+06
220	77	3.756	20.43	8.07E+06	-7.50E+06
220	77	3.756	22	8.71E+06	-7.20E+06
220	77	3.756	23.57	9.22E+06	-6.66E+06
220	88	3.514	15.71	7.18E+06	-7.17E+06
220	. 88	3.514	17.29	7.71E+06	-7.71E+06
220	88	3.514	18.86	7.75E+06	-7.97E+06
220	88	3.514	20.43	8.54E+06	-7.94E+06
220	88	3.514	22	9.22E+06	-7.63E+06
220	88	3.514	23.57	9.77E+06	-7.06E+06
220	:99	3.313	15.71	7.55E+06	-7.54E+06
220	99	3.313	17.29	8.11E+06	-8.10E+06
220	99	3.313	18.86	8.15E+06	-8.38E+06
220	99	3.313	20.43	8.98E+06	-8.35E+06
220	99	3.313	22	9.70E+06	-8.03E+06
220	99	3.313	23.57	1.03E+07	-7.42E+06
220	110	3.143	15.71	7.89E+06	-7.89E+06
220	110	3.143	17.29	8.48E+06	-8.47E+06
220	110	3.143	18.86	8.52E+06	-8.75E+06
220	110	3.143	20.43	9.39E+06	-8.73E+06
220	110	3.143	22	1.01E+07	-8.39E+06
220	110	3.143	23.57	1.07E+07	-7.76E+06

						M_lg_pos	M_lg_neg
Lm (m)	Ls (m)	Bs (m)	Xs (m)	F_lg_sag (N)	F_lg_hog (N)	(Nm)	(Nm)
240	60	4.849	0	-1.22E+07	1.22E+07	1.33E+08	-1.33E+08
240	60	4.849	-18	-1.14E+07	1.14E+07	1.27E+08	-1.28E+08
240	60	4.849	-36	-9.33E+06	8.63E+06	1.24E+08	-1.11E+08
240	60	4.849	-54	-7.13E+06	7.07E+06	1.20E+08	-1.11E+08
240	60	4.849	-72	-5.87E+06	5.87E+06	1.18E+08	-1.30E+08
240	60	4.849	-90	-6.06E+06	6.06E+06	1.18E+08	-1.39E+08
240	72	4.426	. 0	-1.24E+07	1.24E+07	1.90E+08	-1.90E+08
240	72	4.426	-16.8	-1.16E+07	1.16E+07	1.87E+08	-1.83E+08
240	72	4.426	-33.6	-9.61E+06	9.61E+06	1.82E+08	-1.46E+08
240	72	4.426	-50.4	-7.34E+06	7.34E+06	1.77E+08	-1.45E+08
240	.72	4.426	-67.2	-5.80E+06	5.80E+06	1.73E+08	-1.93E+08
240	72	4.426	-84	-5.56E+06	5.56E+06	1.61E+08	-2.09E+08
240	84	4.098	0	-1.30E+07	1.23E+07	2.54E+08	-2.54E+08
240	84	4.098	-15.6	-1.22E+07	1.15E+07	2.53E+08	-2.38E+08
240	84	4.098	-31.2	-9.63E+06	9.64E+06	2.47E+08	-2.18E+08
240	84	4.098	-46.8	-7.38E+06	7.38E+06	2.53E+08	-2.51E+08
240	84	4.098	-62.4	-5.62E+06	5.62E+06	2.34E+08	-2.63E+08
240	84	4.098	-78	-4.97E+06	4.97E+06	2.31E+08	-2.88E+08
240	96	3.833	0	-1.25E+07	1.18E+07	3.21E+08	-3.21E+08
240	96	3.833	-14.4	-1.20E+07	1.12E+07	3.19E+08	-2.87E+08
240	96	3.833	-28.8	-1.00E+07	9.44E+06	3.13E+08	-2.63E+08
240	96	3.833	-43.2	-7.41E+06	7.26E+06	3.25E+08	-3.21E+08
240	96	3.833	-57.6	-5.36E+06	5.36E+06	3.42E+08	-3.36E+08
240	96	3.833	-72	-4.35E+06	4.35E+06	2.90E+08	-3.70E+08
240	108	3.614	0	-1.21E+07	1.12E+07	3.83E+08	-3.83E+08
240	108	3.614	-13.2	-1.15E+07	1.18E+07	3.81E+08	-3.79E+08
240	108	3.614	-26.4	-9.86E+06	9.03E+06	3.74E+08	-3.71E+08
240	108	3.614	-39.6	-7.44E+06	6.99E+06	3.95E+08	-3.88E+08
240	108	3.614	-52.8	-5.07E+06	5.05E+06	4.17E+08	-4.07E+08
240	108	3.614	-66	-3.75E+06	3.42E+06	4.33E+08	-4.18E+08
240	120	3.429	0	-9.46E+06	1.18E+07	4.35E+08	-4.35E+08
240	120	3.429	-12	-1.03E+07	1.12E+07	4.34E+08	-4.31E+08
240	120	3.429	-24	-7.81E+06	9.59E+06	4.26E+08	-4.22E+08
240	120	3.429	-36	-7.33E+06	7.38E+06	4.59E+08	-4.49E+08
240	120	3.429	-48	-5.05E+06	5.07E+06	4.85E+08	-4.70E+08
240	120	3.429	-60	-6.92E+05	3.21E+06	5.07E+08	-5.21E+08

Lm (m) Ls (m) Bs (m) Ys (m) F_tr_sag (N) F_tr_hog (N) 240 60 4.849 17.14 7.22E+06 -7.22E+06 240 60 4.849 18.86 7.39E+06 -7.50E+06 240 60 4.849 20.57 8.22E+06 -7.46E+06 240 60 4.849 22.29 8.92E+06 -8.92E+06 240 60 4.849 22.71 9.82E+06 -9.46E+06 240 60 4.849 25.71 9.82E+06 -9.82E+06 240 72 4.426 17.14 7.83E+06 -7.83E+06 240 72 4.426 20.57 8.91E+06 -8.14E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 25.71 1.07E+07 -1.06E+07 240 84 4.098 17.14 8.38E+06 <th>F</th> <th></th> <th></th> <th></th> <th></th> <th></th>	F					
240 60 4.849 18.86 7.39E+06 -7.50E+06 240 60 4.849 20.57 8.22E+06 -7.46E+06 240 60 4.849 22.29 8.92E+06 -8.92E+06 240 60 4.849 24 9.46E+06 -9.46E+06 240 60 4.849 25.71 9.82E+06 -9.82E+06 240 72 4.426 17.14 7.83E+06 -7.83E+06 240 72 4.426 18.86 8.01E+06 -8.14E+06 240 72 4.426 20.57 8.91E+06 -8.10E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 24 1.03E+07 -1.06E+07 240 84 4.098 18.86 8.57E+06 -8.72E+06 240 84 4.098 20.57 9.53E+06 -8.67E+0	Lm (m)	Ls (m)	Bs (m)	Ys (m)	F_tr_sag (N)	F_tr_hog (N)
240 60 4.849 20.57 8.22E+06 -7.46E+06 240 60 4.849 22.29 8.92E+06 -8.92E+06 240 60 4.849 24 9.46E+06 -9.46E+06 240 60 4.849 25.71 9.82E+06 -9.82E+06 240 72 4.426 17.14 7.83E+06 -7.83E+06 240 72 4.426 18.86 8.01E+06 -8.14E+06 240 72 4.426 20.57 8.91E+06 -8.10E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 24 1.03E+07 -1.03E+07 240 72 4.426 25.71 1.07E+07 -1.06E+07 240 84 4.098 17.14 8.38E+06 -8.38E+06 240 84 4.098 20.57 9.53E+06 -8.67E+0				17.14		-7.22E+06
240 60 4.849 22.29 8.92E+06 -8.92E+06 240 60 4.849 24 9.46E+06 -9.46E+06 240 60 4.849 25.71 9.82E+06 -9.82E+06 240 72 4.426 17.14 7.83E+06 -7.83E+06 240 72 4.426 18.86 8.01E+06 -8.14E+06 240 72 4.426 20.57 8.91E+06 -8.10E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 25.71 1.07E+07 -1.06E+07 240 84 4.098 17.14 8.38E+06 -8.38E+06 240 84 4.098 18.86 8.57E+06 -8.72E+06 240 84 4.098 20.57 9.53E+06 -8.67E+06 240 84 4.098 22.29 1.03E+07 -1.10	240	60	4.849	18.86	7.39E+06	-7.50E+06
240 60 4.849 24 9.46E+06 -9.46E+06 240 60 4.849 25.71 9.82E+06 -9.82E+06 240 72 4.426 17.14 7.83E+06 -7.83E+06 240 72 4.426 18.86 8.01E+06 -8.14E+06 240 72 4.426 20.57 8.91E+06 -8.10E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 24 1.03E+07 -1.03E+07 240 72 4.426 25.71 1.07E+07 -1.06E+07 240 84 4.098 17.14 8.38E+06 -8.38E+06 240 84 4.098 20.57 9.53E+06 -8.67E+06 240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 25.71 1.14E+07 -1.14E+0	240	60	4.849	20.57	8.22E+06	-7.46E+06
240 60 4.849 25.71 9.82E+06 -9.82E+06 240 72 4.426 17.14 7.83E+06 -7.83E+06 240 72 4.426 18.86 8.01E+06 -8.14E+06 240 72 4.426 20.57 8.91E+06 -8.10E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 24 1.03E+07 -1.03E+07 240 72 4.426 25.71 1.07E+07 -1.06E+07 240 84 4.098 17.14 8.38E+06 -8.38E+06 240 84 4.098 20.57 9.53E+06 -8.67E+06 240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 25.71 1.14E+07 -1.14E+07 240 84 4.098 25.71 1.14E+07 -1.14	240	60	4.849	22.29	8.92E+06	-8.92E+06
240 72 4.426 17.14 7.83E+06 -7.83E+06 240 72 4.426 18.86 8.01E+06 -8.14E+06 240 72 4.426 20.57 8.91E+06 -8.10E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 24 1.03E+07 -1.03E+07 240 72 4.426 25.71 1.07E+07 -1.06E+07 240 84 4.098 17.14 8.38E+06 -8.38E+06 240 84 4.098 18.86 8.57E+06 -8.72E+06 240 84 4.098 20.57 9.53E+06 -8.67E+06 240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 24 1.10E+07 -1.10E+07 240 84 4.098 25.71 1.14E+07 -1.14E+07 240 96 3.833 17.14 8.89E+06 -8.88E+0	240	60	4.849	24	9.46E+06	-9.46E+06
240 72 4.426 18.86 8.01E+06 -8.14E+06 240 72 4.426 20.57 8.91E+06 -8.10E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 24 1.03E+07 -1.06E+07 240 84 4.098 17.14 8.38E+06 -8.38E+06 240 84 4.098 18.86 8.57E+06 -8.72E+06 240 84 4.098 20.57 9.53E+06 -8.67E+06 240 84 4.098 20.57 9.53E+06 -8.67E+06 240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 22.1 1.10E+07 -1.10E+07 240 84 4.098 24 1.10E+07 -1.14E+07 240 84 4.098 25.71 1.14E+07 -1.14E+07 240 96 3.833 17.14 8.89E+06 -8.88E+06	240	60	4.849	25.71	9.82E+06	-9.82E+06
240 72 4.426 20.57 8.91E+06 -8.10E+06 240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 24 1.03E+07 -1.03E+07 240 72 4.426 25.71 1.07E+07 -1.06E+07 240 84 4.098 17.14 8.38E+06 -8.38E+06 240 84 4.098 18.86 8.57E+06 -8.72E+06 240 84 4.098 20.57 9.53E+06 -8.67E+06 240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 24 1.10E+07 -1.14E+07 240 84 4.098 25.71 1.14E+07 -1.14E+07 240 96 3.833 17.14 8.89E+06 -8.88E+06 240 96 3.833 20.57 1.01E+07 -9.19E+0	240	72	4.426	17.14	7.83E+06	-7.83E+06
240 72 4.426 22.29 9.67E+06 -7.71E+06 240 72 4.426 24 1.03E+07 -1.03E+07 240 72 4.426 25.71 1.07E+07 -1.06E+07 240 84 4.098 17.14 8.38E+06 -8.38E+06 240 84 4.098 18.86 8.57E+06 -8.72E+06 240 84 4.098 20.57 9.53E+06 -8.67E+06 240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 24 1.10E+07 -1.10E+07 240 84 4.098 25.71 1.14E+07 -1.14E+07 240 96 3.833 17.14 8.89E+06 -8.88E+06 240 96 3.833 20.57 1.01E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -9.19E+06 240 96 3.833 25.71 1.21E+07 -1.20E+0	240	72	4.426	18.86	8.01E+06	-8.14E+06
240 72 4.426 24 1.03E+07 -1.03E+07 240 72 4.426 25.71 1.07E+07 -1.06E+07 240 84 4.098 17.14 8.38E+06 -8.38E+06 240 84 4.098 18.86 8.57E+06 -8.72E+06 240 84 4.098 20.57 9.53E+06 -8.67E+06 240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 24 1.10E+07 -1.10E+07 240 84 4.098 24 1.10E+07 -1.14E+07 240 84 4.098 25.71 1.14E+07 -1.14E+07 240 96 3.833 17.14 8.89E+06 -8.88E+06 240 96 3.833 20.57 1.01E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -8.74E+06 240 96 3.833 25.71 1.21E+07 -1.20E+07 </td <td>240</td> <td>72</td> <td>4.426</td> <td>20.57</td> <td>8.91E+06</td> <td>-8.10E+06</td>	240	72	4.426	20.57	8.91E+06	-8.10E+06
240 72 4.426 25.71 1.07E+07 -1.06E+07 240 84 4.098 17.14 8.38E+06 -8.38E+06 240 84 4.098 18.86 8.57E+06 -8.72E+06 240 84 4.098 20.57 9.53E+06 -8.67E+06 240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 24 1.10E+07 -1.10E+07 240 84 4.098 24 1.10E+07 -1.14E+07 240 84 4.098 25.71 1.14E+07 -1.14E+07 240 96 3.833 17.14 8.89E+06 -8.88E+06 240 96 3.833 20.57 1.01E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -8.74E+06 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 96 3.833 25.71 1.21E+07 -1.20E+0	240	72	4.426	22.29	9.67E+06	-7.71E+06
240 84 4.098 17.14 8.38E+06 -8.38E+06 240 84 4.098 18.86 8.57E+06 -8.72E+06 240 84 4.098 20.57 9.53E+06 -8.67E+06 240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 24 1.10E+07 -1.10E+07 240 84 4.098 25.71 1.14E+07 -1.14E+07 240 96 3.833 17.14 8.89E+06 -8.88E+06 240 96 3.833 18.86 9.07E+06 -9.24E+06 240 96 3.833 20.57 1.01E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -8.74E+06 240 96 3.833 25.71 1.21E+07 -7.92E+06 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 108 3.614 17.14 9.35E+06 -9.3	240	72	4.426	24	1.03E+07	-1.03E+07
240 84 4.098 18.86 8.57E+06 -8.72E+06 240 84 4.098 20.57 9.53E+06 -8.67E+06 240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 24 1.10E+07 -1.10E+07 240 84 4.098 25.71 1.14E+07 -1.14E+07 240 96 3.833 17.14 8.89E+06 -8.88E+06 240 96 3.833 18.86 9.07E+06 -9.24E+06 240 96 3.833 20.57 1.01E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -8.74E+06 240 96 3.833 25.71 1.21E+07 -7.92E+06 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 108 3.614 17.14 9.35E+06 -9.3	240	72	4.426	25.71	1.07E+07	-1.06E+07
240 84 4.098 20.57 9.53E+06 -8.67E+06 240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 24 1.10E+07 -1.10E+07 240 84 4.098 25.71 1.14E+07 -1.14E+07 240 96 3.833 17.14 8.89E+06 -8.88E+06 240 96 3.833 18.86 9.07E+06 -9.24E+06 240 96 3.833 20.57 1.01E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -8.74E+06 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 108 3.614 17.14 9.35E+06 -9.34E+06 240 108 3.614 20.57 1.06E+07 -9.	240	84	4.098	17.14	8.38E+06	-8.38E+06
240 84 4.098 22.29 1.03E+07 -8.25E+06 240 84 4.098 24 1.10E+07 -1.10E+07 240 84 4.098 25.71 1.14E+07 -1.14E+07 240 96 3.833 17.14 8.89E+06 -8.88E+06 240 96 3.833 18.86 9.07E+06 -9.24E+06 240 96 3.833 20.57 1.01E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -9.19E+06 240 96 3.833 24 1.16E+07 -7.92E+06 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 108 3.614 17.14 9.35E+06 -9.34E+06 240 108 3.614 18.86 9.54E+06 -9.72E+06 240 108 3.614 22.29 1.15E+07 -9.67	240	84	4.098	18.86	8.57E+06	-8.72E+06
240 84 4.098 24 1.10E+07 -1.10E+07 240 84 4.098 25.71 1.14E+07 -1.14E+07 240 96 3.833 17.14 8.89E+06 -8.88E+06 240 96 3.833 18.86 9.07E+06 -9.24E+06 240 96 3.833 20.57 1.01E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -8.74E+06 240 96 3.833 24 1.16E+07 -7.92E+06 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 108 3.614 17.14 9.35E+06 -9.34E+06 240 108 3.614 18.86 9.54E+06 -9.72E+06 240 108 3.614 22.29 1.15E+07 -9.20E+06 240 108 3.614 24 1.22E+07 -8.34E+	240	84	4.098	20.57	9.53E+06	-8.67E+06
240 84 4.098 25.71 1.14E+07 -1.14E+07 240 96 3.833 17.14 8.89E+06 -8.88E+06 240 96 3.833 18.86 9.07E+06 -9.24E+06 240 96 3.833 20.57 1.01E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -8.74E+06 240 96 3.833 24 1.16E+07 -7.92E+06 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 108 3.614 17.14 9.35E+06 -9.34E+06 240 108 3.614 18.86 9.54E+06 -9.72E+06 240 108 3.614 22.29 1.15E+07 -9.20E+06 240 108 3.614 22.29 1.15E+07 -9.20E+06 240 108 3.614 25.71 1.27E+07	240	84	4.098	22.29	1.03E+07	-8.25E+06
240 96 3.833 17.14 8.89E+06 -8.88E+06 240 96 3.833 18.86 9.07E+06 -9.24E+06 240 96 3.833 20.57 1.01E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -8.74E+06 240 96 3.833 24 1.16E+07 -7.92E+06 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 108 3.614 17.14 9.35E+06 -9.34E+06 240 108 3.614 18.86 9.54E+06 -9.72E+06 240 108 3.614 20.57 1.06E+07 -9.67E+06 240 108 3.614 22.29 1.15E+07 -9.20E+06 240 108 3.614 24 1.22E+07 -8.34E+06 240 108 3.614 25.71 1.27E+07 -1.27E+07 240 120 3.429 17.14 9.78E+06 -	240	84	4.098	24	1.10E+07	-1.10E+07
240 96 3.833 18.86 9.07E+06 -9.24E+06 240 96 3.833 20.57 1.01E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -8.74E+06 240 96 3.833 24 1.16E+07 -7.92E+06 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 108 3.614 17.14 9.35E+06 -9.34E+06 240 108 3.614 18.86 9.54E+06 -9.72E+06 240 108 3.614 20.57 1.06E+07 -9.67E+06 240 108 3.614 22.29 1.15E+07 -9.20E+06 240 108 3.614 24 1.22E+07 -8.34E+06 240 108 3.614 25.71 1.27E+07 -1.27E+07 240 120 3.429 17.14 9.78E+06 -9.77E+06 240 120 3.429 18.86 9.97E+06	240	84	4.098	25.71	1.14E+07	-1.14E+07
240 96 3.833 20.57 1.01E+07 -9.19E+06 240 96 3.833 22.29 1.10E+07 -8.74E+06 240 96 3.833 24 1.16E+07 -7.92E+06 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 108 3.614 17.14 9.35E+06 -9.34E+06 240 108 3.614 18.86 9.54E+06 -9.72E+06 240 108 3.614 20.57 1.06E+07 -9.67E+06 240 108 3.614 22.29 1.15E+07 -9.20E+06 240 108 3.614 24 1.22E+07 -8.34E+06 240 108 3.614 24 1.27E+07 -1.27E+07 240 120 3.429 17.14 9.78E+06 -9.77E+06 240 120 3.429 18.86 9.97E+06 -1.02E+07 240 120 3.429 20.57 1.11E+07 -1	240	96	3.833	17.14	8.89E+06	-8.88E+06
240 96 3.833 22.29 1.10E+07 -8.74E+06 240 96 3.833 24 1.16E+07 -7.92E+06 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 108 3.614 17.14 9.35E+06 -9.34E+06 240 108 3.614 18.86 9.54E+06 -9.72E+06 240 108 3.614 20.57 1.06E+07 -9.67E+06 240 108 3.614 22.29 1.15E+07 -9.20E+06 240 108 3.614 24 1.22E+07 -8.34E+06 240 108 3.614 25.71 1.27E+07 -1.27E+07 240 120 3.429 17.14 9.78E+06 -9.77E+06 240 120 3.429 18.86 9.97E+06 -1.02E+07 240 120 3.429 20.57 1.11E+07 -1.01E+07 240 120 3.429 22.29 1.20E+07 <t< td=""><td>240</td><td>96</td><td>3.833</td><td>18.86</td><td>9.07E+06</td><td>-9.24E+06</td></t<>	240	96	3.833	18.86	9.07E+06	-9.24E+06
240 96 3.833 24 1.16E+07 -7.92E+06 240 96 3.833 25.71 1.21E+07 -1.20E+07 240 108 3.614 17.14 9.35E+06 -9.34E+06 240 108 3.614 18.86 9.54E+06 -9.72E+06 240 108 3.614 20.57 1.06E+07 -9.67E+06 240 108 3.614 22.29 1.15E+07 -9.20E+06 240 108 3.614 24 1.22E+07 -8.34E+06 240 108 3.614 25.71 1.27E+07 -1.27E+07 240 120 3.429 17.14 9.78E+06 -9.77E+06 240 120 3.429 18.86 9.97E+06 -1.02E+07 240 120 3.429 20.57 1.11E+07 -1.01E+07 240 120 3.429 22.29 1.20E+07 -9.62E+06 240 120 3.429 22.29 1.20E+07 <	240	96	3.833	20.57	1.01E+07	-9.19E+06
240 96 3.833 25.71 1.21E+07 -1.20E+07 240 108 3.614 17.14 9.35E+06 -9.34E+06 240 108 3.614 18.86 9.54E+06 -9.72E+06 240 108 3.614 20.57 1.06E+07 -9.67E+06 240 108 3.614 22.29 1.15E+07 -9.20E+06 240 108 3.614 24 1.22E+07 -8.34E+06 240 108 3.614 25.71 1.27E+07 -1.27E+07 240 120 3.429 17.14 9.78E+06 -9.77E+06 240 120 3.429 18.86 9.97E+06 -1.02E+07 240 120 3.429 20.57 1.11E+07 -1.01E+07 240 120 3.429 22.29 1.20E+07 -9.62E+06 240 120 3.429 24 1.28E+07 -8.72E+06	240	96	3.833	22.29	1.10E+07	-8.74E+06
240 108 3.614 17.14 9.35E+06 -9.34E+06 240 108 3.614 18.86 9.54E+06 -9.72E+06 240 108 3.614 20.57 1.06E+07 -9.67E+06 240 108 3.614 22.29 1.15E+07 -9.20E+06 240 108 3.614 24 1.22E+07 -8.34E+06 240 108 3.614 25.71 1.27E+07 -1.27E+07 240 120 3.429 17.14 9.78E+06 -9.77E+06 240 120 3.429 18.86 9.97E+06 -1.02E+07 240 120 3.429 20.57 1.11E+07 -1.01E+07 240 120 3.429 22.29 1.20E+07 -9.62E+06 240 120 3.429 24 1.28E+07 -8.72E+06	240	96	3.833	24	1.16E+07	-7.92E+06
240 108 3.614 18.86 9.54E+06 -9.72E+06 240 108 3.614 20.57 1.06E+07 -9.67E+06 240 108 3.614 22.29 1.15E+07 -9.20E+06 240 108 3.614 24 1.22E+07 -8.34E+06 240 108 3.614 25.71 1.27E+07 -1.27E+07 240 120 3.429 17.14 9.78E+06 -9.77E+06 240 120 3.429 18.86 9.97E+06 -1.02E+07 240 120 3.429 20.57 1.11E+07 -1.01E+07 240 120 3.429 22.29 1.20E+07 -9.62E+06 240 120 3.429 24 1.28E+07 -8.72E+06	240	96	3.833	25.71	1.21E+07	-1.20E+07
240 108 3.614 20.57 1.06E+07 -9.67E+06 240 108 3.614 22.29 1.15E+07 -9.20E+06 240 108 3.614 24 1.22E+07 -8.34E+06 240 108 3.614 25.71 1.27E+07 -1.27E+07 240 120 3.429 17.14 9.78E+06 -9.77E+06 240 120 3.429 18.86 9.97E+06 -1.02E+07 240 120 3.429 20.57 1.11E+07 -1.01E+07 240 120 3.429 22.29 1.20E+07 -9.62E+06 240 120 3.429 24 1.28E+07 -8.72E+06	240	108	3.614	17.14	9.35E+06	-9.34E+06
240 108 3.614 22.29 1.15E+07 -9.20E+06 240 108 3.614 24 1.22E+07 -8.34E+06 240 108 3.614 25.71 1.27E+07 -1.27E+07 240 120 3.429 17.14 9.78E+06 -9.77E+06 240 120 3.429 18.86 9.97E+06 -1.02E+07 240 120 3.429 20.57 1.11E+07 -1.01E+07 240 120 3.429 22.29 1.20E+07 -9.62E+06 240 120 3.429 24 1.28E+07 -8.72E+06	240	108	3.614	18.86	9.54E+06	-9.72E+06
240 108 3.614 24 1.22E+07 -8.34E+06 240 108 3.614 25.71 1.27E+07 -1.27E+07 240 120 3.429 17.14 9.78E+06 -9.77E+06 240 120 3.429 18.86 9.97E+06 -1.02E+07 240 120 3.429 20.57 1.11E+07 -1.01E+07 240 120 3.429 22.29 1.20E+07 -9.62E+06 240 120 3.429 24 1.28E+07 -8.72E+06	240	108	3.614	20.57	1.06E+07	-9.67E+06
240 108 3.614 25.71 1.27E+07 -1.27E+07 240 120 3.429 17.14 9.78E+06 -9.77E+06 240 120 3.429 18.86 9.97E+06 -1.02E+07 240 120 3.429 20.57 1.11E+07 -1.01E+07 240 120 3.429 22.29 1.20E+07 -9.62E+06 240 120 3.429 24 1.28E+07 -8.72E+06	240	108	3.614	22.29	1.15E+07	-9.20E+06
240 120 3.429 17.14 9.78E+06 -9.77E+06 240 120 3.429 18.86 9.97E+06 -1.02E+07 240 120 3.429 20.57 1.11E+07 -1.01E+07 240 120 3.429 22.29 1.20E+07 -9.62E+06 240 120 3.429 24 1.28E+07 -8.72E+06	240	108	3.614	24	1.22E+07	-8.34E+06
240 120 3.429 18.86 9.97E+06 -1.02E+07 240 120 3.429 20.57 1.11E+07 -1.01E+07 240 120 3.429 22.29 1.20E+07 -9.62E+06 240 120 3.429 24 1.28E+07 -8.72E+06	240	108	3.614	25.71	1.27E+07	-1.27E+07
240 120 3.429 20.57 1.11E+07 -1.01E+07 240 120 3.429 22.29 1.20E+07 -9.62E+06 240 120 3.429 24 1.28E+07 -8.72E+06	240	120	3.429	17.14	9.78E+06	-9.77E+06
240 120 3.429 22.29 1.20E+07 -9.62E+06 240 120 3.429 24 1.28E+07 -8.72E+06	240	120	3.429	18.86	9.97E+06	-1.02E+07
240 120 3.429 24 1.28E+07 -8.72E+06	240	120	3.429	20.57	1.11E+07	-1.01E+07
	240	120	3.429	22.29	1.20E+07	-9.62E+06
240 120 3.429 25.71 1.33E+07 -1.32E+07	240	120	3.429	24	1.28E+07	-8.72E+06
	240	120	3.429	25.71	1.33E+07	-1.32E+07

	. , .					M_lg_pos	M_lg_neg
Lm (m)	Ls (m)	Bs (m)	Xs (m)	F_lg_sag (N)	F_lg_hog (N)	(Nm)	(Nm)
260	65	5.253	0	-1.43E+07	1.56E+07	1.73E+08	-1.73E+08
260	65	5.253	-19.5	-1.35E+07	1.35E+07	1.74E+08	-1.67E+08
260	65	5.253	-39	-1.13E+07	1.13E+07	1.65E+08	-1.47E+08
260	65	5.253	-58.5	-8.95E+06	8.95E+06	1.67E+08	-1.48E+08
260	65	5.253	-78	-7.35E+06	7.35E+06	1.50E+08	-1.76E+08
260	65	5.253	-97.5	-7.06E+06	7.29E+06	1.61E+08	-1.83E+08
260	78	4.795	0	-1.59E+07	1.60E+07	2.60E+08	-2.60E+08
260	78	4.795	-18.2	-1.48E+07	1.36E+07	2.54E+08	-2.33E+08
260	78	4.795	, -36.4	-1.21E+07	1.15E+07	2.43E+08	/ -2.14E+08
260	78	4.795	-54.6	-9.08E+06	9.08E+06	2.48E+08	-1.88E+08
260	78	4.795	-72.8	-7.23E+06	7.23E+06	2.51E+08	-2.47E+08
260	78	4.795	-91	-6.57E+06	6.59E+06	2.21E+08	-2.74E+08
260	91	4.439	0	-1.59E+07	1.60E+07	3.47E+08	-3.47E+08
260	91	4.439	-16.9	-1.49E+07	1.33E+07	3.40E+08	-2.96E+08
260	91	4.439	-33.8	-1.23E+07	1.14E+07	3.31E+08	-2.71E+08
260	91	4.439	-50.7	-9.13E+06	8.95E+06	3.39E+08	-3.37E+08
260	91	4.439	-67.6	-6.94E+06	6.94E+06	3.44E+08	-3.36E+08
260	91	4.439	-84.5	-5.93E+06	5.86E+06	2.88E+08	-3.76E+08
260	104	4.153	0	-1.47E+07	1.56E+07	4.32E+08	-4.32E+08
260	104	4.153	-15.6	-1.48E+07	1.47E+07	4.16E+08	-4.24E+08
260	104	4.153	-31.2	-1.22E+07	1.09E+07	4.24E+08	-4.02E+08
260	104	4.153	-46.8	-9.18E+06	8.61E+06	4.33E+08	-4.28E+08
260	104	4.153	-62.4	-6.53E+06	6.53E+06	4.41E+08	-4.60E+08
260	104	4.153	-78	-5.16E+06	5.16E+06	4.44E+08	-4.83E+08
260	117	3.915	0	-1.44E+07	1.49E+07	5.08E+08	-5.08E+08
260	117	3.915	-14.3	-1.44E+07	1.41E+07	5.04E+08	-4.98E+08
260	117	3.915	-28.6	-1.22E+07	1.19E+07	5.13E+08	-4.74E+08
260	117	3.915	-42.9	-9.06E+06	9.08E+06	5.25E+08	-5.17E+08
260	117	3.915	-57.2	-6.35E+06	6.36E+06	5.36E+08	-5.57E+08
260	117	3.915	-71.5	-4.55E+06	4.55E+06	5.42E+08	-5.86E+08
260	130	3.714	0	-1.38E+07	1.40E+07	5.67E+08	-5.67E+08
260	130	3.714	-13	-1.18E+07	1.33E+07	5.82E+08	-5.57E+08
260	130	3.714	-26	-1.02E+07	1.19E+07	5.93E+08	-5.30E+08
260	130	3.714	-39	-9.12E+06	9.16E+06	6.07E+08	-5.96E+08
260	130	3.714	-52	-6.17E+06	6.15E+06	6.20E+08	-6.44E+08
260	130	3.714	-65	-7.55E+05	4.07E+06	6.30E+08	-6.78E+08

	,	,			
Lm (m)	Ls (m)	Bs (m)	Ys (m)	F_tr_sag (N)	F_tr_hog (N)
260	65	5.253	18.57	8.34E+06	-8.52E+06
260	65	5.253	20.43	9.41E+06	-9.41E+06
260	65	5.253	22.29	1.03E+07	-1.03E+07
260	65	5.253	24.14	1.10E+07	-1.10E+07
260	- 65	5.253	26	1.14E+07	-1.14E+07
260	65	5.253	27.86	1.19E+07	-1.16E+07
260	78	4.795	18.57	9.04E+06	-9.25E+06
260	78	4.795	20.43	1.02E+07	-9.26E+06
260	78	4.795	22.29	1.12E+07	-1.12E+07
260	78	4.795	24.14	1.19E+07	-1.19E+07
260	78	4.795	26	1.24E+07	-1.24E+07
260	78	4.795	27.86	1.29E+07	-1.26E+07
260	91	4.439	18.57	9.67E+06	-9.91E+06
260	91	4.439	20.43	1.09E+07	-9.91E+06
260	91	4.439	22.29	1.20E+07	-1.19E+07
260	91	4.439	24.14	1.27E+07	-1.27E+07
260	91	4.439	26	1.32E+07	-1.32E+07
260	91	4.439	27.86	1.38E+07	-1.34E+07
260	104	4.153	18.57	1.02E+07	-1.05E+07
260	104	4.153	20.43	1.16E+07	-1.05E+07
260	104	4.153	22.29	1.27E+07	-9.96E+06
260	104	4.153	24.14	1.35E+07	-1.35E+07
260	104	4.153	26	1.40E+07	-1.40E+07
260	104	4.153	27.86	1.46E+07	-1.42E+07
260	117	3.915	18.57	1.08E+07	-1.11E+07
260	117	3.915	20.43	1.22E+07	-1.11E+07
260	117	3.915	22.29	1.33E+07	-1.05E+07
260	117	3.915	24.14	1.42E+07	-1.42E+07
260	117	3.915	26	1.47E+07	-1.47E+07
260	117	3.915	27.86	1.53E+07	-1.49E+07
260	130	3.714	18.57	1.13E+07	-1.16E+07
260	130	3.714	20.43	1.27E+07	-1.16E+07
260	130	3.714	22.29	1.39E+07	-1.10E+07
260	130	3.714	24.14	1.48E+07	-1.48E+07
260	130	3.714	26	1.54E+07	-1.54E+07
260	130	3.714	27.86	1.60E+07	-1.56E+07

Lm (m)	Ls (m)	Bs (m)	Xs (m)	F_lg_sag (N)	F_lg_hog (N)	M_lg_pos (Nm)	M_lg_neg (Nm)
280	70	5.657	0	-1.86E+07	1.86E+07	2.37E+08	-2.37E+08
280	70	5.657	-21	-1.73E+07	1.73E+07	2.21E+08	-2.10E+08
280	70	5.657	-42	-1.41E+07	1.34E+07	2.18E+08	-1.88E+08
280	70	5.657	-63	-1.47E+07	1.08E+07	2.15E+08	-1.86E+08
280	70	5.657	-84	-8.67E+06	8.78E+06	2.00E+08	-2.26E+08
280	70	5.657	-105	-9.17E+06	9.17E+06	2.05E+08	-2.42E+08
280	84	5.164	0	-1.89E+07	1.89E+07	3.41E+08	
280	84	5.164	-19.6	-1.77E+07	1.77E+07		-3.41E+08
280	84	5.164	-39.2	-1.77E+07 -1.46E+07	1.77E+07 1.34E+07	3.26E+08 3.23E+08	-3.31E+08
280	84	5.164	-58.8	-1.46E+07			-2.69E+08
280	84	5.164	-56.6 -78.4		1.08E+07	3.18E+08	-2.30E+08
280	84	5.164	-76.4 -98	-8.67E+06	8.67E+06	3.14E+08	-3.35E+08
				-8.39E+06	8.39E+06	2.85E+08	-3.63E+08
280	98 98	4.781	-18.2	-1.86E+07	1.88E+07	4.50E+08	-4.50E+08
1		4.781		-1.82E+07	1.76E+07	4.42E+08	-4.37E+08
280	98	4.781	-36.4	-1.47E+07	1.47E+07	4.39E+08	-4.05E+08
280	98	4.781	-54.6	-1.12E+07	1.12E+07	4.33E+08	-4.42E+08
280	98	4.781	-72.8	-8.43E+06	8.14E+06	4.27E+08	-4.58E+08
280	98	4.781	-91	-7.48E+06	7.48E+06	4.23E+08	-5.01E+08
280	112	4.472	0	-1.84E+07	1.82E+07	5.51E+08	-5.51E+08
280	112	4.472	-16.8	-1.80E+07	1.71E+07	5.62E+08	-5.36E+08
280	112	4.472	-33.6	-1.50E+07	1.44E+07	5.57E+08	-4.97E+08
280	112	4.472	-50.4	-1.11E+07	1.10E+07	5.71E+08	-5.47E+08
280	112	4.472	-67.2	-8.09E+06	8.09E+06	6.05E+08	-5.86E+08
280	112	4.472	-84	-6.56E+06	6.56E+06	5.37E+08	-6.46E+08
280	126	4.216	0	-1.79E+07	1.86E+07	6.75E+08	-6.75E+08
280	126	4.216	-15.4	-1.70E+07	1.76E+07	6.75E+08	-6.18E+08
280	126	4.216	-30.8	-1.48E+07	1.39E+07	6.70E+08	-5.73E+08
280	126	4.216	-46.2	-1.11E+07	1.07E+07	6.95E+08	-6.57E+08
280	126	4.216	-61.6	-7.56E+06	7.67E+06	7.39E+08	-7.10E+08
280	126	4.216	-77	-5.68E+06	5.68E+06	7.73E+08	-7.86E+08
280	140	4	0	-1.71E+07	1.76E+07	7.73E+08	-7.73E+08
280	140	4	-14	-1.49E+07	1.67E+07	7.72E+08	-7.69E+08
280	140	4	-28	-1.29E+07	1.43E+07	7.68E+08	-7.61E+08
280	140	4	-42	-1.08E+07	1.10E+07	8.07E+08	-7.93E+08
280	140	4	-56	-7.54E+06	7.56E+06	8.60E+08	-8.21E+08
280	140	4	-70	-4.74E+06	4.76E+06	9.05E+08	-9.12E+08

	Ls		<u> </u>		
Lm (m)	(m)	Bs (m)	Ys (m)	F_tr_sag (N)	F_tr_hog (N)
280	70	5.657	20	1.05E+07	-1.05E+07
280	70	5.657	22	1.16E+07	-1.16E+07
280	70	5.657	24	1.25E+07	-1.25E+07
280	70	5.657	26	1.30E+07	-1.30E+07
280	70	5.657	28	1.37E+07	-1.32E+07
280	70	5.657	30	1.47E+07	-1.31E+07
280	84	5.164	20	1.13E+07	-1.13E+07
280	84	5.164	22	1.26E+07	-1.26E+07
280	84	5.164	24	1.35E+07	-1.35E+07
280	84	5.164	26	1.41E+07	-1.41E+07
280	84	5.164	28	1.49E+07	-1.43E+07
280	84	5.164	30	1.59E+07	-1.42E+07
280	98	4.781	20	1.21E+07	-1.12E+07
280	98	4.781	22	1.35E+07	-1.35E+07
280	98	4.781	24	1.45E+07	-1.45E+07
280	98	4.781	26	1.51E+07	-1.51E+07
280	98	4.781	28	1.59E+07	-1.53E+07
280	98	4.781	30	1.70E+07	-1.52E+07
280	112	4.472	20	1.28E+07	-1.19E+07
280	112	4.472	22	1.43E+07	-1.43E+07
280	112	4.472	24	1.53E+07	-1.53E+07
280	112	4.472	26	1.60E+07	-1.60E+07
280	112	4.472	28	1.68E+07	-1.63E+07
280	112	4.472	30	1.80E+07	-1.61E+07
280	126	4.216	20	1.35E+07	-1.25E+07
280	126	4.216	22	1.50E+07	-1.19E+07
280	126	4.216	24	1.61E+07	-1.61E+07
280	126	4.216	26	1.68E+07	-1.68E+07
280	126	4.216	28	1.77E+07	-1.71E+07
280	126	4.216	30	1.90E+07	-1.69E+07
280	140	4	20	1.41E+07	-1.31E+07
280	140	4	22	1.57E+07	-1.25E+07
280	140	4	24	1.69E+07	-1.69E+07
280	140	4	26	1.76E+07	-1.76E+07
280	140	4	28	1.85E+07	-1.79E+07
280	140	4	30	1.98E+07	-1.76E+07

						M_lg_pos	M_lg_neg
Lm (m)	Ls (m)	Bs (m)	Xs (m)	F_lg_sag (N)	F_lg_hog (N)	(Nm)	(Nm)
300	75	6.061	0	-2.15E+07	2.27E+07	3.02E+08	-3.02E+08
300	75	6.061	-22.5	-2.10E+07	2.02E+07	2.93E+08	-2.91E+08
300	75	6.061	-45	-1.68E+07	1.68E+07	2.82E+08	-2.52E+08
300	75	6.061	-67.5	-1.31E+07	1.31E+07	2.83E+08	-2.52E+08
300	75	6.061	-90	-1.08E+07	1.08E+07	2.56E+08	-2.95E+08
300	75	6.061	-112.5	-1.07E+07	1.07E+07	2.69E+08	-3.02E+08
300	90	5.533	0	-2.32E+07	2.32E+07	4.30E+08	-4.30E+08
300	90	5.533	-21	-2.16E+07	2.04E+07	4.30E+08	-4.15E+08
300	90	5.533	-42	-1.71E+07	1.71E+07	4.14E+08	-3.32E+08
300	90	5.533	-63	-1.33E+07	1.33E+07	4.20E+08	-3.30E+08
300	90	5.533	-84	-1.06E+07	1.06E+07	3.85E+08	-4.39E+08
300	90	5.533	-105	-9.90E+06	9.90E+06	3.84E+08	-4.50E+08
300	105	5.122	0	-2.27E+07	2.32E+07	5.86E+08	-5.86E+08
300	105	5.122	-19.5	-2.17E+07	2.01E+07	5.79E+08	-5.38E+08
300	105	5.122	-39	-1.79E+07	1.70E+07	5.55E+08	-4.92E+08
300	105	5.122	-58.5	-1.32E+07	1.33E+07	5.75E+08	-5.72E+08
300	105	5.122	-78	-1.02E+07	1.02E+07	5.91E+08	-6.01E+08
300	105	5.122	-97.5	-8.90E+06	8.90E+06	5.10E+08	-6.18E+08
300	120	4.792	0	-2.24E+07	2.27E+07	7.37E+08	-7.37E+08
300	120	4.792	-18	-2.11E+07	2.14E+07	7.28E+08	-6.47E+08
300	120	4.792	-36	-1.78E+07	1.65E+07	7.10E+08	-7.02E+08
300	120	4.792	-54	-1.33E+07	1.29E+07	7.37E+08	-7.30E+08
300	120	4.792	-72	-9.40E+06	9.65E+06	7.60E+08	-7.70E+08
300	120	4.792	-90	-7.79E+06	7.79E+06	7.73E+08	-7.95E+08
300	135	4.518	0	-2.18E+07	2.18E+07	8.74E+08	-8.74E+08
300	135	4.518	-16.5	-2.06E+07	2.06E+07	8.65E+08	-8.63E+08
300	135	4.518	-33	-1.74E+07	1.75E+07	8.63E+08	-8.35E+08
300	135	4.518	-49.5	-1.32E+07	1.32E+07	8.94E+08	-8.83E+08
300	135	4.518	-66	-9.20E+06	9.21E+06	9.25E+08	-9.33E+08
300	135	4.518	-82.5	-6.52E+06	6.52E+06	9.46E+08	-9.67E+08
300	150	4.286	0	-1.69E+07	2.05E+07	9.87E+08	-9.87E+08
300	150	4.286	-15	-1.61E+07	1.95E+07	9.78E+08	-9.75E+08
300	150	4.286	-30	-1.59E+07	1.67E+07	9.99E+08	-9.44E+08
300	150	4.286	-45	-1.22E+07	1.29E+07	1.04E+09	-1.02E+09
300	150	4.286	-60	-8.82E+06	8.96E+06	1.07E+09	-1.08E+09
300	150	4.286	-75	-5.86E+06	5.87E+06	1.10E+09	-1.12E+09

	r · · · · · · · · · · · · · · · · · · ·				·
Lm (m)	Ls (m)	Bs (m)	Ys (m)	F_tr_sag (N)	F_tr_hog (N)
300	75	6.061	21.43	1.27E+07	-1.27E+07
300	75	6.061	23.57	1.39E+07	-1.39E+07
300	75	6.061	25.71	1.47E+07	-1.47E+07
300	75	6.061	27.86	1.55E+07	-1.49E+07
300	75	6.061	30	1.67E+07	-1.48E+07
300	75	6.061	32.14	1.77E+07	-1.41E+07
300	90	5.533	21.43	1.38E+07	-1.38E+07
300	90	5.533	23.57	1.51E+07	-1.51E+07
300	90	5.533	25.71	1.59E+07	-1.59E+07
300	90	5.533	27.86	1.68E+07	-1.62E+07
300	90	5.533	30	1.81E+07	-1.60E+07
300	90	5.533	32.14	1.92E+07	-1.53E+07
300	105	5.122	21.43	1.48E+07	-1.48E+07
300	105	5.122	23.57	1.61E+07	-1.61E+07
300	105	5.122	25.71	1.70E+07	-1.70E+07
300	105	5.122	27.86	1.79E+07	-1.73E+07
300	105	5.122	30	1.94E+07	-1.71E+07
300	105	5.122	32.14	2.05E+07	-1.64E+07
300	120	4.792	21.43	1.56E+07	-1.56E+07
300	120	4.792	23.57	1.71E+07	-1.71E+07
300	120	4.792	25.71	1.80E+07	-1.80E+07
300	120	4.792	27.86	1.90E+07	-1.84E+07
300	120	4.792	30	2.05E+07	-1.81E+07
300	120	4.792	32.14	2.17E+07	-1.73E+07
300	135	4.518	21.43	1.65E+07	-1.65E+07
300	135	4.518	23.57	1.80E+07	-1.80E+07
300	135	4.518	25.71	1.89E+07	-1.89E+07
300	135	4.518	27.86	2.00E+07	-1.93E+07
300	135	4.518	- 30	2.16E+07	-1.91E+07
300	135	4.518	32.14	2.28E+07	-1.82E+07
300	150	4.286	21.43	1.72E+07	-1.72E+07
300	150	4.286	23.57	1.88E+07	-1.88E+07
300	150	4.286	25.71	1.98E+07	-1.98E+07
300	150	4.286	27.86	2.09E+07	-2.02E+07
300	150	4.286	30	2.25E+07	-1.99E+07
300	150	4.286	32.14	2.39E+07	-1.91E+07

Appendix C. Wave Height Matching Reliability Index of Five

Where the required variables in this algorithm are contained in Appendix A

```
\begin{split} \text{design\_wave} &:= & \text{new}_{1,\,D} \leftarrow 0 \cdot m \\ \text{for } q \in 1..D \\ & \text{mean} \leftarrow 0 \\ & \text{m2} \leftarrow 0 \\ & \text{design} \leftarrow 0 \\ & \text{h} \leftarrow 0 \\ & \text{sum} \leftarrow \sum_{p=1}^{p\text{max}_q} \text{ss}_{p,\,q} \\ & \text{for } p \in 1..2B \\ & \text{if } \text{ss}_{p,\,q} \neq 0 \\ & \text{h} \leftarrow h_{\,W_p} \\ & \text{mean} \leftarrow \text{mean} + |h| \cdot \frac{\text{ss}_{p,\,q}}{\text{sum}} \\ & \text{m2} \leftarrow \text{m2} + (h)^2 \cdot \frac{\text{ss}_{p,\,q}}{\text{sum}} \\ & \text{design} \leftarrow \left[ \text{mean} + \beta \cdot \sqrt{\text{m2} - (\text{mean})^2} \right] \\ & \text{new}_{1,\,q} \leftarrow \text{design} \\ & \text{new} \end{split}
```

Page Intentionally Left Blank

Appendix D. Fit Parameters for Analytical Thesis Model

Actual by Predicted Plot Longitudinal

-20000000 -10000000 0 F_lg_sag Predicted P0.0000 RSq=1.00 RMSE=340056

Summary of Fit Longitudinal Troughing

RSquare	0.996193
RSquare Adj	0.995996
Root Mean Square Error	340056
Mean of Response	-5293391
Observations (or Sum Wgts)	468

$$\begin{split} F_{trough} &= 3211000 + -61810 L_m + 2225000 \frac{L_s}{L_m} - 10020000 \frac{X_s}{L_m} - 273.9 \left(L_m - 180\right)^2 \dots \\ &+ 76210 \left(\frac{L_s}{L_m} - 0.375\right) \cdot \left(L_m - 180\right) - 136600 \left(\frac{X_s}{L_m} + 0.3125\right) \cdot \left(L_m - 180\right) \dots \\ &+ -18420000 \left(\frac{L_s}{L_m} - 0.375\right) \cdot \left(\frac{X_s}{L_m} + 0.3125\right) - 2475000 \left(\frac{X_s}{L_m} + 0.3125\right)^2 \dots \\ &+ -0.2781 \left(L_m - 180\right)^3 + 408.3 \left(L_m - 180\right)^2 \cdot \left(\frac{L_s}{L_m} - 0.375\right) + 491600 \left(\frac{L_s}{L_m} - 0.375\right)^2 \cdot \left(L_m - 180\right) \dots \\ &+ -371.6 \left(L_m - 180\right)^2 \cdot \left(\frac{X_s}{L_m} + 0.3125\right) - 105500 \left(L_m - 180\right) \cdot \left(\frac{L_s}{L_m} - 0.375\right) \cdot \left(\frac{X_s}{L_m} + 0.3125\right) \dots \\ &+ 26770 \left(\frac{X_s}{L_m} + 0.3125\right)^2 \cdot \left(L_m - 180\right) + 170200000 \left(\frac{L_s}{L_m} - 0.375\right)^3 \dots \\ &+ 21070000 \left(\frac{X_s}{L_m} + 0.3125\right)^2 \cdot \left(\frac{L_s}{L_m} - 0.375\right) + 37440000 \left(\frac{X_s}{L_m} + 0.3125\right)^3 \dots \\ &+ 1225 \left(L_m - 180\right)^2 \cdot \left(\frac{L_s}{L_m} - 0.375\right)^2 + 483500 \left(\frac{L_s}{L_m} - 0.375\right)^2 \cdot \left(L_m - 180\right) \cdot \left(\frac{X_s}{L_m} + 0.3125\right) \dots \\ &+ 416000 \left(\frac{X_s}{L_m} + 0.3125\right)^3 \cdot \left(L_m - 180\right) + 1911000000 \left(\frac{L_s}{L_m} - 0.375\right)^4 \dots \\ &+ 285700000 \left(\frac{L_s}{L_m} - 0.375\right)^2 \cdot \left(\frac{X_s}{L_m} + 0.3125\right)^2 + 28010000 \left(\frac{X_s}{L_m} + 0.3125\right)^4 \end{split}$$

Actual by Predicted Plot Longitudinal

Cresting

Summary of Fit Longitudinal Cresting

 RSquare
 0.998383

 RSquare Adj
 0.998295

 Root Mean Square Error
 221269.5

 Mean of Response
 5328974

 Observations (or Sum Wgts)
 468

$$\begin{split} F_{crest} &= -2703000 + 58190 L_m + -3016000 \frac{L_s}{L_m} + 9039000 \frac{X_s}{L_m} + 269.00 \left(L_m - 180\right)^2 ... \\ &+ -50870 \left(\frac{L_s}{L_m} - 0.375\right) \cdot \left(L_m - 180\right) + 118600 \left(\frac{X_s}{L_m} + 0.3125\right) \cdot \left(L_m - 180\right) ... \\ &+ 19850000 \left(\frac{L_s}{L_m} - 0.375\right) \cdot \left(\frac{X_s}{L_m} + 0.3125\right) + 0.3331 \cdot \left(L_m - 180\right)^3 ... \\ &+ -327.5 \left(L_m - 180\right)^2 \cdot \left(\frac{L_s}{L_m} - 0.375\right) + -255700 \left(\frac{L_s}{L_m} - 0.375\right)^2 \cdot \left(L_m - 180\right) ... \\ &+ 451.3 \left(L_m - 180\right)^2 \cdot \left(\frac{X_s}{L_m} + 0.3125\right) + 157300 \left(L_m - 180\right) \cdot \left(\frac{L_s}{L_m} - 0.375\right) \cdot \left(\frac{X_s}{L_m} + 0.3125\right) ... \\ &+ -11470000 \left(\frac{X_s}{L_m} + 0.3125\right)^2 \cdot \left(\frac{L_s}{L_m} - 0.375\right) + -36160000 \left(\frac{X_s}{L_m} + 0.3125\right)^3 ... \\ &+ -0.8241 \left(L_m - 180\right)^3 \cdot \left(\frac{L_s}{L_m} - 0.375\right) + -1240 \left(L_m - 180\right)^2 \cdot \left(\frac{L_s}{L_m} - 0.375\right)^2 ... \\ &+ 0.5652 \left(L_m - 180\right)^3 \cdot \left(\frac{X_s}{L_m} + 0.3125\right)^2 + 934.7 \left(L_m - 180\right)^2 \cdot \left(\frac{X_s}{L_m} + 0.3125\right) \cdot \left(\frac{L_s}{L_m} - 0.375\right) ... \\ &+ 143.3 \left(L_m - 180\right)^2 \cdot \left(\frac{X_s}{L_m} + 0.3125\right)^2 + 364600 \left(\frac{L_s}{L_m} - 0.375\right)^2 \cdot \left(L_m - 180\right) \cdot \left(\frac{X_s}{L_m} + 0.3125\right) ... \\ &+ -122200 \left(\frac{X_s}{L_m} + 0.3125\right)^2 \cdot \left(L_m - 180\right) \cdot \left(\frac{L_s}{L_m} - 0.375\right) + -310300 \left(\frac{X_s}{L_m} + 0.3125\right)^3 \cdot \left(L_m - 180\right) ... \\ &+ -640300000 \left(\frac{L_s}{L_m} - 0.375\right)^4 + -1573000000 \left(\frac{X_s}{L_m} + 0.3125\right)^3 \cdot \left(\frac{L_s}{L_m} - 0.375\right) \\ &+ -1573000000 \left(\frac{X_s}{L_m} + 0.3125\right)^3 \cdot \left(\frac{X_s}{L_m} - 0.375\right) + -310300 \left(\frac{X_s}{L_m} - 0.375\right) \\ &+ -640300000 \left(\frac{L_s}{L_m} - 0.375\right)^4 + -1573000000 \left(\frac{X_s}{L_m} + 0.3125\right)^3 \cdot \left(\frac{L_s}{L_m} - 0.375\right) \\ &+ -1573000000 \left(\frac{X_s}{L_m} + 0.3125\right)^3 \cdot \left(\frac{L_s}{L_m} - 0.375\right) \\ &+ -1573000000 \left(\frac{X_s}{L_m} + 0.3125\right)^3 \cdot \left(\frac{L_s}{L_m} - 0.375\right) \\ &+ -1573000000 \left(\frac{X_s}{L_m} + 0.3125\right)^3 \cdot \left(\frac{L_s}{L_m} - 0.375\right) \\ &+ -1573000000 \left(\frac{X_s}{L_m} + 0.3125\right)^3 \cdot \left(\frac{L_s}{L_m} - 0.375\right) \\ &+ -1573000000 \left(\frac{X_s}{L_m} + 0.3125\right)^3 \cdot \left(\frac{L_s}{L_m} - 0.375\right) \\ &+ -1573000000 \left(\frac{X_s}{L_m} + 0.3125\right)^3 \cdot \left(\frac{L_s}{L_m} - 0.375\right) \\ &+ -1573000000 \left(\frac{X_s}{L_m} + 0.3125\right) \cdot \left(\frac{L_s}{L_m} - 0.375\right) \\ &+ -1573000000 \left(\frac{X_s}{L_m} + 0.3125\right)$$

Actual by Predicted Plot Positive Twisting

Summary of Fit Positive Twisting

$$\begin{split} \mathbf{M}_{pos} &= -454800000 + 1990000 \mathbf{L}_{m} + 507700000 \frac{\mathbf{L}_{s}}{\mathbf{L}_{m}} + -13040000 \frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 15350 \left(\mathbf{L}_{m} - 180\right)^{2} \dots \\ &+ 10620000 \left(\frac{\mathbf{L}_{s}}{\mathbf{L}_{m}} - 0.375\right) \cdot \left(\mathbf{L}_{m} - 180\right) + -178900 \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right) \cdot \left(\mathbf{L}_{m} - 180\right) \dots \\ &+ -412500000 \left(\frac{\mathbf{L}_{s}}{\mathbf{L}_{m}} - 0.375\right) \cdot \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right) + 48.54 \left(\mathbf{L}_{m} - 180\right)^{3} \dots \\ &+ 76560 \left(\mathbf{L}_{m} - 180\right)^{2} \cdot \left(\frac{\mathbf{L}_{s}}{\mathbf{L}_{m}} - 0.375\right) + 5028000 \left(\frac{\mathbf{L}_{s}}{\mathbf{L}_{m}} - 0.375\right)^{2} \cdot \left(\mathbf{L}_{m} - 180\right) \dots \\ &+ -1562 \left(\mathbf{L}_{m} - 180\right)^{2} \cdot \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right) + -5227000 \left(\mathbf{L}_{m} - 180\right) \cdot \left(\frac{\mathbf{L}_{s}}{\mathbf{L}_{m}} - 0.375\right) \cdot \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right) \dots \\ &+ 367400 \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right)^{2} \cdot \left(\mathbf{L}_{m} - 180\right) + -4038000000 \left(\frac{\mathbf{L}_{s}}{\mathbf{L}_{m}} - 0.375\right)^{3} \dots \\ &+ -2110000000 \left(\frac{\mathbf{L}_{s}}{\mathbf{L}_{m}} - 0.375\right)^{2} \cdot \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right) + 347900000 \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right)^{3} \dots \\ &+ 0.04053 \left(\mathbf{L}_{m} - 180\right)^{4} + 228.9 \left(\mathbf{L}_{m} - 180\right)^{3} \cdot \left(\frac{\mathbf{L}_{s}}{\mathbf{L}_{m}} - 0.375\right) \dots \\ &+ 26720 \left(\mathbf{L}_{m} - 180\right)^{2} \cdot \left(\frac{\mathbf{L}_{s}}{\mathbf{L}_{m}} - 0.375\right)^{2} \cdot \left(\mathbf{L}_{m} - 180\right) + -36190000 \left(\frac{\mathbf{L}_{s}}{\mathbf{L}_{m}} - 0.375\right)^{2} \cdot \left(\mathbf{L}_{m} - 180\right) \cdot \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right) \cdot \left(\mathbf{L}_{m} - 180\right) \cdot \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right)^{3} \cdot \left(\mathbf{L}_{m} - 180\right) + 3429000000 \left(\frac{\mathbf{L}_{s}}{\mathbf{L}_{m}} - 0.375\right)^{2} \cdot \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right)^{2} \cdot \dots \\ &+ 3328000000 \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right)^{3} \cdot \left(\mathbf{L}_{m} - 180\right) + 3429000000 \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} - 0.375\right)^{2} \cdot \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right)^{4} \\ &+ 3328000000 \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right)^{3} \cdot \left(\mathbf{L}_{m} - 180\right) + 3256800000 \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right)^{4} \\ &+ 3328000000 \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right)^{3} \cdot \left(\mathbf{L}_{m} - 0.375\right) + -256800000 \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right)^{4} \\ &+ 3328000000 \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right)^{3} \cdot \left(\mathbf{L}_{m} - 0.375\right) + -256800000 \left(\frac{\mathbf{X}_{s}}{\mathbf{L}_{m}} + 0.3125\right)^{4} \\ &+ 3328$$

Actual by Predicted Plot Negative Twisting

Summary of Fit Negative Twisting

 RSquare
 0.99804

 RSquare Adj
 0.99792

 Root Mean Square Error
 10575155

 Mean of Response
 -1.849e8

 Observations (or Sum Wgts)
 468

$$\begin{split} M_{neg} &= 470200000 + -1843000L_{m} + -549900000\frac{L_{s}}{L_{m}} + 52640000\frac{X_{s}}{L_{m}} + -15260\left(L_{m} - 180\right)^{2} \dots \\ &+ -10820000\left(\frac{L_{s}}{L_{m}} - 0.375\right) \cdot \left(L_{m} - 180\right) + 741500\left(\frac{X_{s}}{L_{m}} + 0.3125\right) \cdot \left(L_{m} - 180\right) \dots \\ &+ 842000000\left(\frac{L_{s}}{L_{m}} - 0.375\right) \cdot \left(\frac{X_{s}}{L_{m}} + 0.3125\right) + -430100000\left(\frac{X_{s}}{L_{m}} + 0.3125\right)^{2} + -47.46\left(L_{m} - 180\right)^{3} \dots \\ &+ -78110\left(L_{m} - 180\right)^{2} \cdot \left(\frac{L_{s}}{L_{m}} - 0.375\right) + -5926000\left(\frac{L_{s}}{L_{m}} - 0.375\right)^{2} \cdot \left(L_{m} - 180\right) \dots \\ &+ 2805\left(L_{m} - 180\right)^{2} \cdot \left(\frac{X_{s}}{L_{m}} + 0.3125\right) + 7941000\left(L_{m} - 180\right) \cdot \left(\frac{L_{s}}{L_{m}} - 0.375\right) \cdot \left(\frac{X_{s}}{L_{m}} + 0.3125\right) \dots \\ &+ -3490000\left(\frac{X_{s}}{L_{m}} + 0.3125\right)^{2} \cdot \left(L_{m} - 180\right) + 683300000\left(\frac{L_{s}}{L_{m}} - 0.375\right)^{3} \dots \\ &+ -338275456\left(\frac{X_{s}}{L_{m}} + 0.3125\right)^{3} + -224.6\left(L_{m} - 180\right)^{3} \cdot \left(\frac{L_{s}}{L_{m}} - 0.375\right) \dots \\ &+ 38050\left(L_{m} - 180\right)^{2} \cdot \left(\frac{X_{s}}{L_{m}} + 0.3125\right) \cdot \left(\frac{L_{s}}{L_{m}} - 0.375\right) + -14060\left(L_{m} - 180\right)^{2} \cdot \left(\frac{X_{s}}{L_{m}} + 0.3125\right) \dots \\ &+ 79630000\left(\frac{L_{s}}{L_{m}} - 0.375\right)^{3} \cdot \left(L_{m} - 180\right) \cdot \left(\frac{X_{s}}{L_{m}} + 0.3125\right)^{2} \cdot \left(L_{m} - 180\right) \cdot \left(\frac{X_{s}}{L_{m}} + 0.3125\right) \dots \\ &+ -8802000\left(\frac{L_{s}}{L_{m}} - 0.375\right) \cdot \left(L_{m} - 180\right) \cdot \left(\frac{X_{s}}{L_{m}} + 0.3125\right)^{2} \cdot \left(L_{m} - 180\right) \cdot \left(\frac{X_{s}}{L_{m}} + 0.3125\right)^{2} \cdot \left(L_{m} - 180\right) \cdot \left(\frac{X_{s}}{L_{m}} + 0.3125\right)^{2} \cdot$$

Actual by Predicted Plot Transverse Sagging

Summary of Fit Transverse Sagging

RSquare	0.999459
RSquare Adj	0.999435
Root Mean Square Error	136868.7
Mean of Response	6480962
Observations (or Sum Wgts)	468

$$\begin{split} F_{tr_sag} &= -7051000 + 951100B_m + -17730000 \frac{B_s}{B_m} + 3046000 \frac{Y_s}{B_m} + 55500 \left(B_m - 12.86\right)^2 \dots \\ &+ -3537000 \left(\frac{B_s}{B_m} - 0.2357\right) \cdot \left(B_m - 12.86\right) + 60540000 \left(\frac{B_s}{B_m} - 0.2357\right)^2 \dots \\ &+ 592100 \left(B_m - 12.86\right) \cdot \left(\frac{Y_s}{B_m} - 1.25\right) + -10590000 \left(\frac{B_s}{B_m} - 0.2357\right) \cdot \left(\frac{Y_s}{B_m} - 1.25\right) \dots \\ &+ 1055 \left(B_m - 12.86\right)^3 + -216600 \left(B_m - 12.86\right)^2 \cdot \left(\frac{B_s}{B_m} - 0.2357\right) + 12750000 \left(\frac{B_s}{B_m} - 0.2357\right)^2 \cdot \left(B_m - 12.86\right) \dots \\ &+ 38890 \left(B_m - 12.86\right)^2 \cdot \left(\frac{Y_s}{B_m} - 1.25\right) + -2246000 \left(B_m - 12.86\right) \cdot \left(\frac{B_s}{B_m} - 0.2357\right) \cdot \left(\frac{Y_s}{B_m} - 1.25\right) \dots \\ &+ -143000 \left(\frac{Y_s}{B_m} - 1.25\right)^2 \cdot \left(B_m - 12.86\right) + 35.06 \left(B_m - 12.86\right)^4 \dots \\ &+ -3806 \left(B_m - 12.86\right)^3 \cdot \left(\frac{B_s}{B_m} - 0.2357\right) + 740600 \left(B_m - 12.86\right)^2 \cdot \left(\frac{B_s}{B_m} - 0.2357\right)^2 \dots \\ &+ -135100 \left(B_m - 12.86\right)^2 \cdot \left(\frac{B_s}{B_m} - 0.2357\right) \cdot \left(\frac{Y_s}{B_m} - 1.25\right) + 1063000 \left(\frac{Y_s}{B_m} - 1.25\right)^3 \cdot \left(B_m - 12.86\right) \dots \\ &+ -17961988 \left(\frac{Y_s}{B_m} - 1.25\right)^4 \end{split}$$

Page Intentionally Left Blank

Appendix E. Comparison of Results for Longitudinal Troughing

Analytical Troughing

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
T	1 0.826 0.938	0.938	0.927	0.933	1.000	1.000	0.965	0.965	1.000	1.000	0.807
5	0.883	0.978	0.939	0.913	1.000	1.000	0.945	0.945	1.000	1.000	0.882
m ———	0.971	966.0	0.986	0.985	1.000	1.000	0.990	0.990	1.000	1.000	0.923
4	0.939	0.990	0.955	0.991	0.998	0.998	0.995	0.995	1.000	1,000	0.932
2	0.979	1.000	0.983	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.979
φ 	0.957	0.988	0.976	0.994	1.000	1.000	966.0	966.0	1.000	1.000	0.901
	0.913	0.913 0.990	0.940	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.906

MAESTRO Troughing

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

	 !						
PFLB	0.831	0.897	0.940	0.944	0.977	0.923	0.908
PSPBT PSPBL PFLB	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PSPBT	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PYCP	0.969	0.948	0.991	0.995	1.000	0.997	1.000
PYCF PYCP	0.969	0.948	0.991	0.995	1.000	0.997	1.000
PYTP	1.000 1.000	1.000	1.000	1,000	1,000	1.000	1.000
PCSB PYTF PYTP	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PCSB	0.939	0.918	0.986	0.991	1.000	0.995	1.000
PCMY	0.937	0.944	0.988	0.964	0.983	0.983	0.945
PCCB	0.943	0.980	0.997	0.987	1.000	0.986	0.967
STRAKE PCSF PCCB	1 0.848 0.943	0.898	0.972	0.949	0.977	0.967	0.918
STRAKE		2	m	4	2	9	

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	FCPH1	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
 	0.896	0.842	0.842 0.965	1 0.896 0.842 0.965 0.862 1.000 1.000 0.772 0.939 1.000 0.955 0.977 0.956 1.000 1.000	1.000	1.000	1.000	0.772	0.939	1.000	0.955	0.977	0.956	1.000	1.000
7	0.784	0.964	0.898	0.784 0.964 0.898 0.714 1.000 0.864 1.000 0.933 1.000 1.000 0.980 1.000 0.935 1.000 0.969	1.000	0.864	1.000	0.933	1.000	1.000	0.980	1.000	0.935	1.000	0.969
m n	0.840	0.851	0.993	0.840 0.851 0.993 0.755 1.000 0.974 1.000 0.760 1.000 1.000 0.960 1.000 0.960 1.000 0.953 1.000 0.974	1,000	0.974	1.000	092.0	1.000	1.000	0.960	1.000	0.953	1.000	0.974
4	0.939	0.939	0.992	0.939 0.939 0.992 1.000 0.901 0.985 0.899 1.000 0.977 0.974 1.000 0.978 1.000 0.975 1.000	0.901	0.985	0.899	1.000	0.977	0.974	1.000	0.978	1.000	0.975	1.000
2	0.975	0.985	0.982	0.975 0.985 0.982 0.961 0.977 0.969 1.000 1.000 1.000 1.000 1.000 0.983 0.984 0.984	0.977	0.969	1.000	1.000	1.000	1.000	1.000	1.000	0.983	0.984	0.984
9	0.842	0.852	0.994	0.842 0.852 0.994 1.000 0.767 1.000 0.753 1.000 0.973 0.953 1.000 0.974 1.000 0.958 1.000	0.767	1.000	0.753	1.000	0.973	0.953	1.000	0.974	1.000	0.958	1.000
7	0.878	0.882	0.878 0.882 0.981	0.878 0.882 0.981 0.793 1.000 0.871 1.000 0.798 1.000 1.000 0.869 0.871 0.870 1.000 0.884	1,000	0.871	1.000	0.798	1.000	1.000	0.869	0.871	0.870	1.000	0.884

MAESTRO Troughing

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

	TRAKE	FCPH1	FCPH2	FCPH3	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF3 FYTF1 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	FYCF2	FYCF3	FYTF1	FYTF2	FYTE3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
<u> </u>	 	0.935	0.884	0.969	1 0.935 0.884 0.969 0.915 1.000 1.000 0.830 0.946 1.000 0.969 0.984 0.971 1.000 1.000	1.000	1.000	1.000	0.830	0.946	1.000	0.969	0.984	0.971	1.000	1.000
<u> </u>	7	0.820	0.973	0.918	0.820 0.973 0.918 0.764 1.000 0.897 1.000 0.946 1.000 1.000 0.984 1.000 0.984 1.000 0.949 1.000 0.975	1.000	0.897	1.000	0.946	1.000	1.000	0.984	1.000	0.949	1.000	0.975
	m	0.876	0.884	0.995	3 0.876 0.884 0.995 0.810 1.000 0.980 1.000 0.811 0.983 1.000 0.971 1.000 0.963 1.000 0.980	1.000	0.980	1.000	0.811	0.983	1.000	0.971	1.000	0.963	1.000	0.980
	4	0.945	0.958	0.985	4 0.945 0.958 0.985 1.000 0.931 1.000 0.909 1.000 0.972 0.979 1.000 0.982 1.000 0.980 1.000	0.931	1,000	0.909	1.000	0.972	0.979	1.000	0.982	1.000	0.980	1.000
F .	Ŋ	0.984	0.991	0.989	5 0.984 0.991 0.989 0.974 0.985 0.980 1.000 1.000 1.000 0.994 1.000 0.987 0.988 0.988	0.985	0.980	1.000	1.000	1.000	1.000	0.994	1.000	0.987	0.988	0.988
1-1-1 1-1-1	ø	0.882	0.892	0.994	6 0.882 0.892 0.994 1.000 0.828 1.000 0.813 1.000 0.979 0.965 1.000 0.981 1.000 0.970 1.000	0.828	1.000	0.813	1.000	0.979	0.965	1.000	0.981	1.000	0.970	1.000
	7	0.913	0.883	0.981	7 0.913 0.883 0.981 0.839 1.000 1.000 0.807 0.888 1.000 0.887 0.890 0.889 1.000 1.000	1.000	1.000	1.000	0.807	0.888	1.000	0.887	0.890	0.889	1.000	1.000

2 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	STRAKE PCSF PCCB		PCMY PCSB PYTF	PYTF	PYTP	PYTP PYCF	PYCP	PSPBT	PSPBL	PFLB .
; ; ; ;	0.817	0.817 0.945	0.907	0.951	0.992	0.992	0.975	0.975	1.000	1.000	0.797
7	0.894	0.981	0.897	0.959	0.999	0.999	0.975	0.975	1.000	1.000	0.884
٣	0.877	0.779	0.924	0.983	1.000	1.000	066.0	0.990	1.000	1.000	0.753
4	0.935	0.911	0.954	0.990	0.986	0.986	0.994	0.994	1.000	1.000	0.861
'n,	0.823	0.992	0.867	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.824
9	0.838	0.693	906.0	0.980	1.000	1,000	0.988	0.988	1.000	1.000	0.657
7	0.585	0.941	0.693	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.583

MAESTRO Troughing

2 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYTP PYCF PYCP	PYCP		PSPBT PSPBL	PFLB
	0.843	0.843 0.941	0.929	0.956	0.929 0.956 0.994	0.994	0.994 0.977 0.977	0.977	1.000	1.000 1.000	0.823
2	0.911	0.983	0.919	0.958	1.000	1.000	0.974	0.974	1.000	1.000	0.903
m	0.903	0.825	0.941	0.987	1.000	1.000	0.992	0.992	1.000	1.000	0.803
4	0.947	0.930	0.962	0.992	0.989	0.989	0.995	0.995	1.000	1.000	0.891
ស	0.873	0.972	0.907	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.873
9	0.870	0.752	0.926	0.985	1.000	1.000	0.991	0.991	1.000	1.000	0.719
2	0.658	0.963	0.750	1.000	1.000 1.000	1.000	1.000	1.000	1,000	1.000	0.657

CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. CONSTRAINT SUPPRESSED. STRAKE NOT EVALUATED.

Analytical Troughing

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP2 FYTP3 FYTP3 FYTP3 FYTP2 FYTP3 FYTP4 FYTP4 FYTP4 FYTP5 FYTP5	(0.982 0.985 0.963 1.000 0.989)		FYCF1 FYCF2 FYCF3 0.963 1.000 0.989	FYCF2 FYCF3 1.000 0.989	FYCF3 0.989		FYTF1 1,000	FYTF2 0.971	FYTF3 1.000	FYCP1 0.995	FYCP2 0.9881	FYCP3	FYTP1 0.977	FYTP2	FYTP3
0.932 0.932 0.997 0.897 1.000 1.000 0.985 0.886 0.937 1.000 0.981 0.992 0.925 0.937 0.931	0.932 0.997 0.897 1.000	0.997 0.897 1.000	0.897 1.000 1	1.000		1.000	0.985	0.886	0.937	1.000	0.981	0.992	0.925	0.937	0.931
0.890 0.900 0.994 0.829 0.986 0.937 1.000 0.843 1.000 0.945 0.933 0.939 0.972 1.000 0.984	0.900 0.994 0.829 0.986	0.994 0.829 0.986	0.829 0.986	0.986	_	0.937	1,000	0.843	1.000	0.945	0.933	0.939	0.972	1.000	0.984
0.988 0.976 0.986 0.975 0.976 0.976 0.984 0.967 0.980 0.976 0.976 0.976 1.000 1.000 1.000	0.976 0.986 0.975 0.976	0.986 0.975 0.976	0.975 0.976	0.976		0.976	0.984	0.967	0.980	0.976	0.976	0.976	1.000	1.000	1.000
0.962 0.987 0.981 0.961 0.971 0.968 0.942 0.899 0.924 0.986 0.985 0.986 0.878 0.891 0.884	0.987 0.981 0.961 0.971	0.981 0.961 0.971	0.961 0.971	0.971		0.968	0.942	0.899	0.924	0.986	0.985	0.986	0.878	0.891	0.884
0.888 0.896 0.993 0.982 0.833 0.938 0.829 1.000 0.984 0.918 0.929 0.923 1.000 0.976 1.000	1 0.896 0.993 0.982 0.833	0.993 0.982 0.833	0.982 0.833	0.833		0.938	0.829	1.000	0.984	0.918	0.929	0.923	1.000	0.976	1.000
7 0.892 0.918 0.974 0.820 1.000 0.896 0.853 0.787 0.819 0.929 0.897 0.923 0.830 0.840 0.835	0.918 0.974 0.820 1.000	0.974 0.820 1.000	0.820 1.000	1.000		0.896	0.853	0.787	0.819	0.929	0.897	0.923	0.830	0.840	0.835

MAESTRO Troughing

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

1 1 1 1 1 1									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1111111			+
STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
	0.971 0.987 0.988 0.968 1.000 0.989 1.000 0.978 0.994 0.994 0.990 0.992 0.984 0.993 0.989	0.987	0.988	0.968	1.000	0.989	1.000	0.978	0.994	0.994	0.990	0.992	0.984	0.993	0.989
2	0.950	0.950	0.950 0.950 0.998 0.924 1.000 1.000 0.989 0.914 0.951 1.000 0.986 0.994 0.942 0.951 0.946	0.924	1.000	1.000	0.989	0.914	0.951	1.000	0.986	0.994	0.942	0.951	0.946
m	0.915 0.923 0.996 0.868 0.990 0.951 1.000 0.876 1.000 0.957 0.948 0.952 0.978 1.000 0.988	0.923	0.996	0.868	0.990	0.951	1.000	0.876	1.000	0.957	0.948	0.952	0.978	1.000	0.988
4	0.982 0.984 0.988 0.987 0.975 0.981 0.973 0.978 0.983 0.983 0.980 0.982 0.981 1.000 1.000 1.000	0.984	0.988	0.987	0.975	0.981	0.973	0.978	0.983	0.980	0.982	0.981	1.000	1.000	1.000
Ŋ	0.970 0.993 0.988 0.972 0.981 0.976 0.960 0.934 0.951 0.990 0.989 0.989 0.913 0.923 0.918	0.993	0.988	0.972	0.981	0.976	0.960	0.934	0.951	0.990	0.989	0.989	0.913	0.923	0.918
φ	0.918 0.927 0.995 0.988 0.881 0.950 0.873 1.000 0.988 0.936 0.945 0.940 1.000 0.983 1.000	0.927	0.995	0.988	0.881	0.950	0.873	1.000	0.988	0.936	0.945	0.940	1.000	0.983	1.000
	7 0.926 0.909 0.986 0.866 1.000 0.947 0.882 0.847 0.864 0.943 0.910 0.912 0.865 0.870 0.867	0.909	0.986	0.866	1.000	0.947	0.882	0.847	0.864	0.943	0.910	0.912	0.865	0.870	0.867

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

Ϋ́	J.	STRAKE PCSF PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT PSPBL	PSPBL	PFLB
	0.865	0.865 0.969	0.921	0.922	1.000	1.000	0.928	0.928	1.000	1.000 1.000 0.864	0.864
	0.674	0.896	0.835	0.835 0.674	1.000	1.000	0.876	0.876	1.000	1.000	0.677
	0.528	0.671	0.746	0.915	1.000	1.000	0.958	0.958	1.000	1.000	0.507
	0.440	0.348	0.748	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.440
	0.870	0.975	0.948	0.947	0.988	0.988	0.951	0.951	1.000	1.000	0.823

MAESTRO Troughing

1 OF SUBSTR INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

	יודאר ראוארר אטרעטא	בוטדואר ראורב אטבעטאלו ראנאייבובה יאבטבט	ובה לאבטב.	FICEULE	5	3					
PCSF		<u> </u>	PCMY	PCSB	PYTF	рүте рүтр	PYCF	PYCP	PSPBT	PSPBL	PFLB
0.897	397	0.897 0.976	0.931	0.941	0.999	0.999	0.945	0.945	1.000	1.000	0.839
0.	0.717	0.929	0.870	0.769	1.000	1.000	0.915	0.915	1.000	1.000	0.720
0	0.557	0.759	0.761	0.985	0.995	0.995	0.993	0.993	1.000	1.000	0.541
0	.462	0.462 0.377	0.762	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.463
0	.890	0.890 0.985	0.952	0.958	0.986	0.986	0.961	0.961	1.000	1.000	0.859

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP3 FYTP1 FYTP2 FYTP3	0.837 0.813 0.986 1.000 0.650 0.837 0.736 1.000 1.000 0.843 1.000 0.848 1.000 0.846 1.000	0.757 0.785 0.976 0.660 1.000 1.000 1.000 0.556 0.786 1.000 1.000 1.000 0.767 0.798 0.786	3 0.916 0.918 0.948 0.974 0.893 0.968 0.921 0.930 0.974 0.968 1.000 0.977 0.865 0.899 0.882	0.929 0.982 0.955 0.919 0.954 0.937 0.851 0.857 0.854 0.957 0.952 0.955 0.855 0.872 0.870 0.871	6 0.837 0.801 0.979 0.695 1.000 0.939 1.000 0.671 0.842 0.983 0.839 0.940 0.839 1.000 0.843
FYTP1 F	1.000	0.767	0.865	0.872	0.839
FYCP3	0.848	1.000	0.977	0.955	0.940
FYCP2	1.000	1.000	1.000	0.952	0.839
FYCP1	0.843	1.000	0.968	0.957	0.983
FYTE3	1.000	0.786	0.974	0.854	0.842
FYTF2	1.000	0.556	0.930	0.857	0.671
FYTE1	0.736	1.000	0.921	0.851	1.000
FYCF3	0.837	1.000	0.968	0.937	0.939
FYCF2	0.650	1.000	0.893	0.954	1.000
FYCF1	1.000	099.0	0.974	0.919	0.695
FCPH3	0.986	0.976	0.948	0.955	0.979
FCPH2	0.813	0.785	0.918	0.982	0.801
FCPH1 FCPH2 FCPH3 FYC	0.837	0.757	0.916	0.929	0.837
STRAKE FCPH1 FCPH2 FCPH3 FYCF	Н	. 2	ĸ	2	9

MAESTRO Troughing

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3.	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
-	1 0.865 0.841 0.986 1.000 0.693 0.859 0.784 1.000 1.000 0.868 0.990 0.872 1.000 0.871 1.000	0.841 0.986	0.986	1.000	0.693	0.859	0.784	1.000	1.000	0.868	0.990	0.872	1.000	0.871	1.000
7	0.790	0.819	0.790 0.819 0.976 0.706 1.000 1.000 1.000 0.614 0.818 1.000 1.000 1.000 0.793 0.824 0.811	0.706	1.000	1.000	1.000	0.614	0.818	1.000	1.000	1.000	0.793	0.824	0.811
m	0.943	0.923	0.943 0.923 0.964 1.000 0.894 0.965 0.931 0.942 0.970 0.973 1.000 0.980 0.894 0.916 0.905	1.000	0.894	0.965	0.931	0.942	0.970	0.973	1.000	0.980	0.894	0.916	0.905
ហ	0.929	0.987	0.929 0.987 0.958 0.916 0.954 0.934 0.890 0.873 0.881 0.958 0.953 0.956 0.873 0.881 0.877	0.916	0.954	0.934	0.890	0.873	0.881	0.958	0.953	0.956	0.873	0.881	0.877
9	6 0.864 0.829 0.980 0.736 1.000 0.947 1.000 0.719 0.866 0.983 0.864 0.950 0.863 1.000 0.867	0.829	0.980	0.736	1.000	0.947	1.000	0.719	0.866	0.983	0.864	0.950	0.863	1.000	0.867

2 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTF PYTP PYCF	PYCF	PYCP	PSPBT PSPBL	PSPBL	PFLB
 	1 0.716 0.873	0.716 0.873	0.864	0.897	1.000	1.000	0.946	0.946	1.000	1.000	0.701
7	0.800	0.952	0.871	0.828	1.000	1.000	0.888	0.888	1.000	1,000	0.801
m 	0.950	0.979	0.984	0.982	0.999	0.999	0.989	0.989	1.000	1,000	0.924
	0.963	0.981	0.970	0.985	0.987	0.987	0.995	0.995	1.000	1.000	0.958
- - -	0.890	0.959	0.897	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.888
9	0.953	0.983	0.964	0.997	0.982	0.982	1.000	1.000	1.000	1.000	0.873
	0.814	0.814 0.956	0.856	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.815

MAESTRO Troughing

2 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

TRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
	1 0.743 0.880	0.880	0.874	0.874 0.921	1.000	1.000	0.959	0.959	1.000	1.000	0.730
2	0.832	096.0	0.907	0.875	1.000	1.000	0.921	0.921	1.000	1.000	0.833
m	0.964	0.998	0.981	0.992	066.0	0.990	0.995	0.995	1.000	1.000	0.922
4	0.971	1.000	0.968	1.000	0.982	0.982	1.000	1.000	1.000	1.000	0.961
ъ	0.903	0.946	0.905	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.902
9	0.965	1.000	0.964	0.998	0.978	0.978	1.000	1.000	1.000	1.000	0.888
7	0.822	0.948	0.864	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.823

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

AKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
i 	0.950 0.981 0.968 0.941 0.989 0.965 0.969 0.944 0.957 0.987 0.980 0.983 0.962 0.978 0.972	0.981	0.968	0.941	0.989	0.965	0.969	0.944	0.957	0.987	0.980	0.983	0.962	0.978	0.972
7	0.871	0.883	0.986	0.871 0.883 0.986 0.825 1.000 1.000 1.000 0.799 0.966 1.000 0.972 0.987 0.942 1.000 0.972	1.000	1.000	1.000	0.799	0.966	1.000	0.972	0.987	0.942	1.000	0.972
m	0.835	0.842	0.994	0.835 0.842 0.994 0.777 1.000 0.978 1.000 0.774 0.976 1.000 0.956 0.958 0.939 1.000 0.974	1,000	0.978	1.000	0.774	0.976	1.000	0.956	0.985	0.939	1.000	0.974
4	0.879	0.919	0.971	0.879 0.919 0.971 1.000 0.639 1.000 0.624 1.000 0.652 0.652 1.000 0.653 1.000 0.653 0.961	0.639	1.000	0.624	1.000	0.652	0.652	1.000	0.653	1.000	0.653	0.961
·	0.972	0.977	0.975	0.972 0.977 0.975 0.957 0.964 0.961 0.973 0.953 0.964 0.990 0.990 0.990 0.932 0.938 0.935	0.964	0.961	0.973	0.953	0.964	0.990	0.990	0.990	0.932	0.938	0.935
9	0.828	0.832	0.994	0.828 0.832 0.994 1.000 0.762 0.975 0.765 1.000 0.978 0.940 1.000 0.975 1.000 0.949 1.000	0.762	0.975	0.765	1.000	0.978	0.940	1.000	0.975	1:000	0.949	1.000
7	0.918	0.918	0.946	0.918 0.918 0.946 0.854 1.000 0.911 0.969 0.860 0.932 0.967 0.907 0.911 0.911 1.000 0.942	1.000	0.911	0.969	0.860	0.932	0.967	0.907	0.911	0.911	1.000	0.942

MAESTRO Troughing

INITIAL FRAME ADEQUACY PARAMETER VALUES

	+	<u></u>			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	: ·	<u> </u>
	FYTP3	0.978	0.978	0.980	0.964	0.945	1.000	0.958
	FYTP2	0.981	1.000	1.000	0.674	0.947	0.962	1.000
	FYTP1	0.976	0.956	0.952	1.000	0.942	1.000	0.926
2	YCP3	0.984	0.988	0.985	0.674	0.988	0.979	0.925
	YCP2	0.982	0.976	0.963	1,000	0.988	0.992	0.921
	YCP1 F	0.986	1.000	1.000	0.673	0.987	0.950	0.979
	YTF3 F	0.962	0.975	0.981	0.673	0.971	0.983	0.925
7	YTF2 F	0.952	0.828	0.814	1.000	0.962	1.000	0.869
SUBSIK	YTF1	0.972	1.000	1.000	0.646	0.978	0.812	0.966
70.7	-YCF3 F	0.976	1.000	0.982	1.000	0.968	0.980	0.958
- MODOLE	-YCF2 F	0.990	1.000	1.000	0.662	0.968	0.807	1.000
ALUES .	-YCF1	0.962	0.838	0.817	1.000	0.968	1.000	0.890
WEIEK	-сьн3	0.979	0.986	966.0	0.976	0.984	0.995	0.951
ACT PAR	-срн2	0.984	0.908	0.870	0.925	0.984	0.865	0.918
ADECO.	FCPH1 F	1 0.969 0.984 0.979 0.962 0.990 0.976 0.972 0.952 0.962 0.986 0.982 0.984 0.976 0.981 0.978	0.885 0.908 0.986 0.838 1.000 1.000 1.000 0.828 0.975 1.000 0.976 0.988 0.956 1.000 0.978	0.866 0.870 0.996 0.817 1.000 0.982 1.000 0.814 0.981 1.000 0.963 0.985 0.952 1.000 0.980	4 0.891 0.925 0.976 1.000 0.662 1.000 0.646 1.000 0.673 0.673 1.000 0.674 1.000 0.674 0.964	0.984 0.984 0.984 0.968 0.968 0.968 0.978 0.962 0.971 0.987 0.988 0.988 0.942 0.947 0.945	6 0.862 0.865 0.995 1.000 0.807 0.980 0.812 1.000 0.983 0.950 0.992 0.979 1.000 0.962 1.000	0.944
INTITAL FRAME ADECOACT PARAMETER VALUES - MODULE 2 OF SUBSIK. 2	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF3 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3		2	·m	4	Ŋ	9	7 0.944 0.918 0.951 0.890 1.000 0.958 0.966 0.869 0.925 0.979 0.921 0.925 0.926 1.000 0.958
 	 	, , ,		,	<u>. </u>	·		- -

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 3 OF SUBSTR.

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCF PYCP	PSPBT	PSPBL	PFLB
1	0.782	0.782 0.919	0.943	006.0	1.000	1.000	0.948	0.948 0.948	1.000	1.000 1.000	0.775
2	0.836	0.956		0.862	1.000	1.000	0.910	0.910	1.000	1.000	0.836
m	0.964	0.995	0.981	0.978	1.000	1.000	0.986	0.986	1.000	1.000	0.922
4	0.949	0.990	0.969	0.981	1.000	1.000	0.988	0.988	1,000	1,000	0.939
ъ	0.967	0.996	0.977	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.965
9	0.968	0.984	0.982	0.992	1.000	1.000	0.995	0.995	1.000	1.000	0.893
_	0.929	0.929 0.947	0.958	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.904

MAESTRO Troughing

3 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE PCSF PCCB PCMY	_ [PCMY	i	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	<u>а</u> і	PFLB
<u> </u>	6	0.819 0.920	0.954	0.921	1.000	1.000	0.959	0.959	1.000	1.000	0.811
0.867		0.962	0.931	0.892	1.000	1.000	0.930	0.930	1.000	1.000	0.865
0.970		966.0	0.985	0.982	1.000	1.000	0.989	0.989	1.000	1.000	0.939
0.962		0.986	0.978	0.986	1.000	1.000	0.992	0.992	1,000	1.000	0.953
0.965		0.986	0.978	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.965
0.970		0.984	066.0	0.994	0.998	0.998	0.997	0.997	1.000	1.000	0.907
0.939		0.933	0.967	1.000	1,000	1.000	1,000	1.000	1.000	1.000	0.904

SATISFIED. | THESE VALUES ARE NORMALIZED VIOLATED. | BETWEEN +1. AND -1. NOT RELEVANT OR NULLIFIED BY USER. SUPPRESSED. EVALUATED. CONSTRAINT S CONSTRAINT V CONSTRAINT N CONSTRAINT S STRAKE NOT E POSITIVE NUMBER: NEGATIVE NUMBER: 1.000 : -2.000 : 0

125

3 OF SUBSTR. 2 INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE

STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYCF3 FYTF1 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP3	0.914 0.921 0.983 0.897 1.000 0.986 1.000 0.878 0.964 1.000 0.977 0.987 0.959 1.000 0.979	0.891 0.900 0.985 0.857 1.000 0.989 1.000 0.850 0.987 1.000 0.978 0.990 0.956 1.000 0.983	0.814 0.822 0.994 0.748 1.000 0.974 1.000 0.748 0.973 1.000 0.948 1.000 0.933 1.000 0.972	0.907 0.864 0.976 1.000 0.811 0.953 0.862 1.000 0.965 0.957 1.000 0.968 1.000 0.944 0.962	0.978 0.983 0.984 0.963 0.977 0.970 1.000 1.000 1.000 0.994 0.986 0.994 0.985 0.985 0.986	0.811 0.816 0.993 1.000 0.746 1.000 0.739 1.000 0.972 0.938 1.000 0.973 1.000 0.939 1.000	CO C
FT FYCF2' F	897 1.000	857 1.000	748 1.000	000 0.811	963 0.977	000 0.746	
FCPH3 FYC	1 0.983 0	0 2882 0	2 0.994 0	4 0.976 1	3 0.984 0	6 0.993 1	L 00
FCPH1 FCPH2	.914 0.92	.891 0.900	.814 0.82	.907 0.86	.978 0.983	.811 0.816	0000
STRAKE FCI	1 0	2 0	0 %	4	2	9	· · ·

MAESTRO Troughing

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 3 OF SUBSTR.

+					1 1 1 1 1 1 1 1	1 1 1	1	1 1 1 1 1 1 1		** *** *** *** *** *** *		1 1 1 1 1 1	1			1 11 11 11 11 11
	STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
	.	0.946	0.946 0.940 0.980 0.937 1.000 0.992 1.000 0.908 0.963 0.993 0.982 0.989 0.973 1.000 0.985	0.980	0.937	1.000	0.992	1.000	0.908	0.963	0.993	0.982	0.989	0.973	1.000	0.985
	7	0.911	0.911 0.921 0.986 0.885 1.000 0.989 1.000 0.878 0.991 1.000 0.983 0.992 0.963 1.000 0.985	0.986	0.885	1.000	0.989	1,000	0.878	0.991	1.000	0.983	0.992	0.963	1.000	0.985
	m	0.856	0.856 0.860 0.996 0.804 1.000 0.980 1.000 0.800 0.979 1.000 0.960 1.000 0.948 1.000 0.978	966.0	0.804	1.000	0.980	1.000	0.800	0.979	1.000	096.0	1.000	0.948	1.000	0.978
12 -	4	4 0.916 0.891 0.979 1.000 0.848 0.965 0.876 1.000 0.960 0.963 1.000 0.975 1.000 0.954 0.968	0.891	0.979	1.000	0.848	0.965	0.876	1.000	0.960	0.963	1.000	0.975	1.000	0.954	0.968
	2	0.986	0.986 0.988 0.989 0.975 0.985 0.980 1.000 1.000 1.000 0.995 0.989 0.995 0.989 0.990 0.989	0.989	0.975	0.985	0.980	1.000	1.000	1.000	0.995	0.989	0.995	0.989	0.990	0.989
. 1	9	0.856	0.856 0.861 0.993 1.000 0.806 1.000 0.799 1.000 0.979 0.954 1.000 0.980 1.000 0.955 1.000	0.993	1.000	0.806	1.000	0.799	1.000	0.979	0.954	1.000	0.980	1.000	0.955	1.000
	7	7 0.919 0.873 0.973 0.844 1.000 1.000 1.000 0.798 0.885 1.000 0.886 0.889 0.889 1.000 0.944	0.873	0.973	0.844	1.000	1.000	1.000	0.798	0.885	1.000	0.886	0.889	0.889	1.000	0.944

CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. CONSTRAINT SUPPRESSED. STRAKE NOT EVALUATED. POSITIVE NUMBER: C 1.000 C 2.000 C 5.5000 C 5.50

Appendix F. Comparison of Results for Longitudinal Cresting Analytical Cresting

STRAKE PCSF	PCSF	STRAKE PCSF PCCB		PCSB	PYTF	PCMY PCSB PYTF PYTP PYCF PYCP PSPBT PSPBL	PYCF	PYCP	PSPBT	PSPBL	PFLB
	0.858	0.858 0.934	0.944	0.943	0.944 0.943 1.000	1.000	0.971	0.971	1.000	1.000 1.000	0.841
2	0.917	0.982	0.951	0.926	1.000	1.000	0.953	0.953	1,000	1.000	0.915
m	0.974	0.997	0.988	0.987	1.000	1.000	0.992	0.992	1.000	1.000	0.972
4	0.953	0.983	0.970	0.986	1.000	1.000	0.992	0.992	1.000	1.000	0.936
12	0.950	0.931	0.983	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.950
9	0.967	0.982	0.980	0.992	1.000	1.000	0.995	0.995	1.000	1.000	0.952
7	0.928	0.928 0.950	0.961	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.922

MAESTRO Cresting

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR. 1

PYCF PYCP PSPBT PSPBL PFLB	0.973 0.973 1.000 1.000 0.825	0.947 0.947 1.000 1.000 0.901	0.991 0.991 1.000 1.000 0.961	0.995 0.995 1.000 1.000 0.942	1.000 1.000 1.000 0.966	0.998 0.998 1.000 1.000 0.949	1 000 1 000 1 000 1
PYTP	1.000	1.000	1.000	0.999	1.000	1.000	,
PYTF	1,000	1.000	1.000	0.999	1.000	1.000	,
PCSB	0.947	0.916	0.986	0.991	1.000	0.997	•
PCMY	0.925	0.945	0.980	0.958	0.987	0.969	
PCCB	0.970	0.979	0.986	0.998	0.968	0.999	
STRAKE PCSF PCCB	0.834 0.970	0.902	0.969	0.942	0.966	0.957	
STRAKE	—-	2	m	4	rù	9	•

POSITIVE NUMBER: CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED NEGATIVE NUMBER: CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. 1.000 : CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. -2.000 : CONSTRAINT SUPPRESSED.

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	FCPH1 FCPH2 FCPH3	FСРН2	FСРНЗ	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
H	1 0.979 0.948 0.981 0.9	0.948	0.981	0.979 0.948 0.981 0.974 1.000 1.000 1.000 0.922 0.968 0.994 0.984 0.990 0.993 1.000 1.000	1.000	1.000	1.000	0.922	0.968	0.994	0.984	0.990	0.993	1.000	1.000
2	0.895	0.987	0.952	0.895 0.987 0.952 0.868 1.000 0.948 1.000 0.963 1.000 1.000 0.992 1.000 0.972 0.996 0.985	1.000	0.948	1.000	0.963	1.000	1.000	0.992	1.000	0.972	0.996	0.985
m :	0.958	0.965	0.996	0.958 0.965 0.996 0.936 1.000 0.994 1.000 0.938 1.000 1.000 0.993 1.000 0.993 1.000 0.995	1.000	0.994	1,000	0.938	1.000	1.000	0.993	1.000	0.987	1.000	0.993
4	0.962	0.925	0.980	0.962 0.925 0.980 0.936 1.000 1.000 1.000 0.878 0.961 1.000 0.974 0.978 0.977 1.000 1.000	1.000	1.000	1.000	0.878	0.961	1.000	0.974	0.978	0.977	1.000	1.000
ın.	0.988	0.992	0.990	0.988 0.992 0.990 1.000 1.000 1.000 0.986 0.991 0.988 0.988 0.991 0.989 1.000 1.000 1.000 1.000	1.000	1.000	0.986	0.991	0.988	0.988	0.991	0.989	1,000	1.000	1.000
9	0.960	0.970	0.995	0.960 0.970 0.995 1.000 0.949 1.000 0.937 1.000 0.991 0.987 1.000 0.993 1.000 0.993 1.000	0.949	1.000	0.937	1.000	0.991	0.987	1.000	0.993	1.000	0.993	1.000
	0.924	0.904	0.988	0.924 0.904 0.988 0.862 1.000 1.000 1.000 0.842 0.907 1.000 0.906 0.908 0.908 1.000 1.000	1.000	1.000	1.000	0.842	0.907	1.000	0.906	0.908	0.908	1.000	1.000

MAESTRO Cresting

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR. 1

						:	
FYTP3	0.987	0.983	0.996	0.973	0.979	0.985	0.913
FYTP2	1.000	1.000	1.000	0.964	0.997	0.973	0.908
FYTP1	0.956	0.966	0.990	0.975	0.976	1.000	0.916
FYCP3	0.972	1.000	0.993	1.000	0.976	0.994	1.000
FYCP2	0.955	0.988	0.988	0.980	926.0	1.000	1.000
FYCP1	1.000	1.000	1.000	0.975	0.989	0.984	1.000
FYTF3	1.000	1.000	1.000	1,000	1.000	000 0.857 0.979 0.886 1.000 1.000 0.984 1.000 0.994 1.000 0.973 0.985	865 0.721 0.806 1.000 1.000 1.000 1.000 1.000 1.000 0.916 0.908 0.913
FYTF2	0.802	0.937	0.939	0.951	1.000	1.000	1.000
FYTF1	1.000	1.000	1.000	1.000	1.000	0.886	1.000
FYCF3	0.953	0.944	0.990	0.884	0.934	0.979	0.806
FYCF2	1.000	1.000	1.000	0.791	0.947	0.857	0.721
FYCF1	0.742	0.837	0.928	0.902	0.921	1.000	0.865
FCPH3	0.972	0.947	0.994	0.930	0.960	0.988	0.873
FCPH2	0.860	0.871 0.970 0.947 0.837 1.000 0.944 1.000 0.937 1.000 1.000 0.988 1.000 0.966 1.000 0.983	0.962	0.868	0.971	0.909	0.805
FCPH1	0.812 0.860 0.972 0.742 1.000 0.953 1.000 0.802 1.000 1.000 0.955 0.952 0.956 1.000 0.987	0.871	0.956 0.962 0.994 0.928 1.000 0.990 1.000 0.939 1.000 1.000 0.988 0.993 0.990 1.000 0.996	0.932 0.868 0.930 0.902 0.791 0.884 1.000 0.951 1.000 0.975 0.980 1.000 0.975 0.964 0.973	0.950 0.971 0.960 0.921 0.947 0.934 1.000 1.000 1.000 0.989 0.976 0.976 0.976 0.997 0.979	0.931 0.909 0.988 1.	7 0.903 0.805 0.873 0.
STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	ਜ	7	m	4	ıΩ	9	

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

	0.884	0.947	0.887	0.945	0.929	0.819	0.926
PFLB							
PSPBL	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PSPBT	1.000	1.000	1.000	1.000	1,000	1.000	1.000
PYCP	0.985	0.981	0.997	0.999	1.000	0.993	1.000
PYCF	0.985	0.981	0.997	0.999	1.000	0.993	1.000
PYTP	966.0	1.000	1.000	0.992	1.000	1.000	1.000
PYTF	966.0	1.000	1.000	0.992	1.000	1.000	1.000
PCSB	0.971	0.969	0.994	0.999	1.000	0.989	1.000
PCMY	0.957	0.960	0.970	0.973	0.947	0.955	0.963
PCCB	0.899 0.952	0.991	0.897	0.965	0.928 0.956	0.846	0.934 0.931
STRAKE PCSF PCCB	0.899 0.952	0.950	0.947	0.962	0.928	0.924	0.934
STRAKE	1	2	ĸ	4	Ń	9	

MAESTRO Cresting

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

	•										
STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYTP PYCF	PYCP	PSPBT	PSPBL	PFLB
 	0.881 0.975	0.975	0.935	0.971	0.993	0.993	0.985	0.985	1.000	1.000 1.000	0.877
2	0.945	0.991	0.949	0.971	1.000	1.000	0.982	0.982	1.000	1.000	0.942
<u>۳</u>	0.936	0.871	0.962	0.994	1.000	1.000	966.0	966.0	1.000	1.000	098.0
4	0.951	0.955	0.971	0.999	0.988	0.988	1.000	1.000	1.000	1.000	0.920
2	0.861	0.981	0.895	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.861
9	0.909	0.805	0.943	0.985	1.000	1.000	0.991	0.991	1,000	1.000	0.777
_	0.846	0.846 0.777	0.940	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.846

CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. CONSTRAINT SUPPRESSED. STRAKE NOT EVALUATED. POSITIVE NUMBER: ONEGATIVE NUMBER: OF 1.000 CONTRACTOR OF 1.000 CO

Analytical Cresting

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR. 1

_	FCPH2	FCPH3	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
1	.986 0.994 0.9	0.994	0.986 0.994 0.994 0.985 1.000 0.995 0.995 0.992 0.994 0.994 0.994 0.994 0.993 0.997 0.995	1.000	0.995	0.995	0.992	0.994	0.994	0.994	0.994	0.993	0.997	0.995
	0.978	0.998	0.977 0.978 0.998 0.967 1.000 1.000 0.995 0.959 0.977 1.000 0.994 0.997 0.972 0.977 0.974	1.000	1.000	0,995	0.959	0.977	1.000	0.994	0.997	0.972	0.977	0.974
	0.980	0.997	0.973 0.980 0.997 0.958 0.981 0.971 1.000 0.966 1.000 0.975 0.972 0.973 0.992 1.000 0.996	0.981	0.971	1.000	0.966	1.000	0.975	0.972	0.973	0.992	1.000	0.996
	0.946	0.989	0.967 0.946 0.989 0.944 1.000 0.991 1.000 0.914 0.976 0.990 0.979 0.982 0.982 1.000 1.000	1.000	0.991	1.000	0.914	0.976	0.990	0.979	0.982	0.982	1.000	1.000
	0.991	0.989	0.987 0.991 0.989 0.994 0.995 0.995 0.986 0.976 0.981 0.990 0.991 0.991 0.958 0.961 0.960	0.995	0.995	0.986	0.976	0.981	0.990	0.991	0.991	0.958	0.961	096.0
	0.985	0.995	0.976 0.985 0.995 0.984 0.951 0.968 0.964 1.000 0.995 0.962 0.966 0.964 1.000 0.997 1.000	0.951	0.968	0.964	1.000	0.995	0.962	0.966	0.964	1.000	0.997	1.000
	0.918	7 0.939 0.918 0.988 0.8	0.885	885 0.997 0.959 1.000 0.866 0.922 0.959 0.921 0.923 0.923 0.981 0.981	0.959	1.000	0.866	0.922	0.959	0.921	0.923	0.923	0.981	0.981

MAESTRO Cresting

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR. 1

<u> </u>	87	- 29	97	 00 00	50		
FYTP.	9.0	9.0	6.0	1.0	0.9	1.0	0.9
FYTP2	0.991	0.970	1,000	1.000	0.922	0.993	1.000
FYTP1	0.984	0.964	0.995	0.962	0.917	1.000	0.922
FYCP3	0.995	0.996	996.0	0.965	0.997	0.952	0.969
FYCP2	0.990	0.992	0.965	0.958	0.988	0.954	0.923
FYCP1	1.000	1.000	0.967	0.983	0.997	0.951	0.971
FYTF3	0.996	0.971	0.954 0.969 0.962 1.000 0.978 1.000 0.967 0.965 0.966 0.995 1.000 0.997	0.961	0.943	0.997	1.000
FYTF2	0.985	0.942	0.978	0.842	0.933	1.000	0.904
FYTF1	1.000	0.994	1.000	1.000	0.952	0.947	1.000
FYCF3	0.980	1.000	0.962	0.982	0.974	0.959	0.900
FYCF2	1.000	1.000	0.969	1.000	0.980	0.943	1.000
FYCF1	0.951	0.953	0.954	0.871	0.967	0.972	0.829
FCPH3	0.986	0.998	0.994	0.988	0.986	0.997	0.949
FCPH2	0.991	0.968	0.986	0.900	0.991	0.966	0.953
FCPH1	0.963 0.991 0.986 0.951 1.000 0.980 1.000 0.985 0.996 1.000 0.990 0.995 0.984 0.991 0.987	0.968 0.968 0.998 0.953 1.000 1.000 0.994 0.942 0.971 1.000 0.992 0.996 0.964 0.970 0.967	0.975 0.986 0.994	0.922 0.900 0.988 0.871 1.000 0.982 1.000 0.842 0.961 0.983 0.958 0.965 0.962 1.000 1.000	0.980 0.991 0.986 0.967 0.980 0.974 0.952 0.933 0.943 0.997 0.988 0.997 0.917 0.922 0.920	0.965 0.966 0.997 0.972 0.943 0.959 0.947 1.000 0.997 0.951 0.954 0.952 1.000 0.993 1.000	0.888 0.953 0.949 0.829 1.000 0.900 1.000 0.904 1.000 0.971 0.923 0.969 0.922 1.000 0.923
STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3		2	, ĥ	4	2	ဖ	

1 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
1	0.908	1 0.908 0.983	0.955	0.952	1.000	1.000	0.956	0.956	1.000	1.000	0.907
2	0.657	006.0	0.856	0.692	1.000	1.000	0.881	0.881	1.000	1.000	0.654
M	0.648	0.716	0.848	0.869	1.000	1.000	0.935	0.935	1.000	1.000	0.613
72	0.651	0.575	0.853	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.651
Ç	0.913	0.913 0.984	0.977	0.975	0.990	0.990	0.977	0.977	1.000	1.000	0.882

MAESTRO Cresting

1 OF SUBSTR INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

PFLB	0.863	0.500	0.471	0.676	0.850
	1.000	1.000	1.000	1.000	1.000
PSPBT PSPBL	1.000 1.000	1.000	1.000	1.000	1.000
PYCP	0.942	0.817	0.883	1.000	0.973 0.973 1.000
PYCF	1.000 1.000 0.942 0.942	0.817	0.883	1.000	0.973
PYTP PYCF	1.000	1.000	1.000	1.000	0.992
PYTF	1.000	1.000	1.000	1.000	0.992
PCSB	0.937	0.585	0.772	1.000	0.970
PCMY	0.941	0.775	0.840	0.857	0.973
STRAKE PCSF PCCB	0.976	0.855	0.627	0.594	0.893 0.972
STRAKE PCSF PCCB	0.866 0.976	0.503	0.514	929.0	0.893
STRAKE	————————————————————————————————————	7	m	2	9

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTE3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
Н	1 0.904 0.890 0.992 1.000 0.790 0.906 0.835 1.000 1.000 0.907 1.000 0.911 1.000 0.909 0.994	0.890	0.992	1.000	0.790	0.906	0.835	1.000	1.000	0.907	1,000	0.911	1.000	0.909	0.994
7	0.853 0.881 0.978 0.787 1.000 1.000 1.000 0.736 0.880 1.000 1.000 1.000 0.874 0.885 0.882	0.881	0.978	0.787	1.000	1.000	1.000	0.736	0.880	1.000	1.000	1.000	0.874	0.885	0.882
m	0.913 0.963 0.948 0.947 0.957 0.988 0.948 0.952 0.984 0.959 0.990 0.985 0.886 0.923 0.904	0.963	0.948	0.947	0.957	0.988	0.948	0.952	0.984	0.979	0.990	0.985	0.886	0.923	0.904
Ŋ	5 0.950 0.988 0.974 0.964 0.978 0.971 0.847 0.901 0.875 0.978 0.975 0.923 0.903 0.913	0.988	0.974	0.964	0.978	0.971	0.847	0.901	0.875	0.978	0.975	0.977	0.923	0.903	0.913
9	0.902 0.886 0.991 0.814 1.000 0.967 1.000 0.801 0.908 0.989 0.905 0.908 0.906 1.000 1.000	0.886	0.991	0.814	1.000	0.967	1.000	0.801	0.908	0.989	0.905	0.908	0.906	1,000	1,000

MAESTRO Cresting

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR. 2

STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	ГЕСРИЗ ГЕСРИ	FCPH3	3 FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
H	0.893 0.882 0.992 1.000 0.782 0.901 0.812 1.000 0.988 0.899 1.000 0.903 0.988 0.901 0.984	0.882 0.	0.992	1.000	0.782	0.901	0.812	1.000	0.988	0.899	1.000	0.903	0.988	0.901	0.984
7	0.839	0.871	0.977	0.839 0.871 0.977 0.767 1.000 1.000 1.000 0.715 0.869 1.000 0.872 1.000 0.869 0.961 0.874	1.000	1.000	1.000	0.715	0.869	1.000	0.872	1.000	0.869	0.961	0.874
m	0.878 0.970 0.926 0.911 0.974 0.974 0.942 0.946 0.974 0.974 0.986 0.980 0.854 0.906 0.880	0.970	0.926	0.911	0.974	0.974	0.942	0.946	0.974	0.974	0.986	0.980	0.854	906:0	0.880
Ŋ	0.913 0.985 0.956 0.972 0.981 0.978 0.790 0.875 0.834 0.982 0.979 0.980 0.899 0.874 0.888	0.985	0.956	0.972	0.981	0.978	0.790	0.875	0.834	0.982	0.979	0.980	0.899	0.874	0.888
9	0.893 0.882 0.994 0.8	0.882	0.994	0.806	1.000	0.966	1.000	0.788	0.902	806 1.000 0.966 1.000 0.788 0.902 0.990 0.899 0.903 0.901 1.000 1.000	0.899	0.903	0.901	1.000	1,000

THESE VALUES ARE NORMALIZED BETWEEN +1. AND -1. OR NULLIFIED BY USER. CONSTRAINT SATISFIED. CONSTRAINT VIOLATED. CONSTRAINT NOT RELEVANT OCUSTRAINT SUPPRESSED. STRAKE NOT EVALUATED. POSITIVE NUMBER: C 1.000 : C

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

010124 211-112022 2020 2142 1112 1121 - 121-121				1	5						1
STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PCMY PCSB PYTF PYTP PYCF	PYCF	PYCP	PSPBT	PSPBT PSPBL	PFLB
I I I I I I	0.773 0.869	698.0	0.940	•	1.000	0.907 1.000 1.000 0.952	0.952	0.952	1.000	1.000	0.756
5	0.801	0.959	0.878	0.839	1.000	1.000	0.894	0.894	1.000	1.000	0.795
<u>κ</u>	0.957	0.995	0.981	0.978	1.000	1.000	0.986	0.986	1.000	1.000	0.954
4	0.936	0.66.0	0.971	0.961	1.000	1.000	0.986	0.986	1.000	1.000	0.938
<u>د</u>	0.934	0.898	0.946	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.934
9	096.0	0.980	0.975	0.992	0.991	0.991	0.995	0.995	1.000	1.000	0.925
	0.910	0.910 0.923	0.926	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.911

MAESTRO Cresting

2 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
T	0.718	0.718 0.870	0.915	0.915 0.876	1.000	1.000	0.935	0.935	1.000	1.000	969.0
2	0.703	0.941	0.830	0.778	1.000	1.000	0.853	0.853	1.000	1.000	0.695
m	0.930	0.990	0.969	096.0	1.000	1.000	0.975	0.975	1.000	1.000	0.928
4	0.898	0.982	0.953	0.934	1.000	1.000	0.977	0.977	1.000	1.000	006.0
Ŋ	0.930	0.924	0.942	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.921
9	0.942	0.973	0.967	0.985	0.996	966.0	0.991	0.991	1.000	1.000	0.919
. 7	906.0	0.906 0.924	0.939	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.906

Analytical Cresting

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
H	0.979	0.979 0.977 0.978 0.975 0.973 0.974 0.981 0.967 0.974 0.984 0.982 0.983 0.985 0.984 0.985	0.978	0.975	0.973	0.974	0.981	0.967	0.974	0.984	0.982	0.983	0.985	0.984	0.985
7	0.921	0.921 0.945 0.987 0.904 1.000 1.000 1.000 0.875 0.969 1.000 0.986 1.000 0.964 0.987 0.975	0.987	0.904	1.000	1.000	1.000	0.875	0.969	1,000	0.986	1.000	0.964	0.987	0.975
m	0.947	0.947 0.952 0.995	0.995	0.932	1.000	0.994	1.000	0.922	0.932 1.000 0.994 1.000 0.922 0.990 1.000 0.990 1.000 0.974 1.000 0.987	1.000	0.990	1.000	0.974	1.000	0.987
4	0.934	0.934 0.955 0.980 1.000 0.773 1.000 0.769 0.945 0.785 0.785 0.991 0.785 0.990 0.785 0.983	0.980	1.000	0.773	1.000	0.769	0.945	0.785	0.785	0.991	0.785	0.990	0.785	0.983
S	0.988	0.988 0.997 0.994 0.984 0.980 0.983 0.980 0.966 0.973 0.979 0.984 0.982 0.955 0.958 0.957	0.994	0.984	0.980	0.983	0.980	0.966	0.973	0.979	0.984	0.982	0.955	0.958	0.957
9	0.945	0.945 0.949 0.997 1.000 0.923 0.993 0.925 1.000 0.993 0.993 0.993 0.995 0.995 0.995 1.000 0.987 1.000	0.997	1.000	0.923	0.993	0.925	1.000	0.993	0.979	0.995	0.991	1.000	0.987	1.000
7	7 0.954 0.951 0.973 0.915 1.000 0.949 0.979 0.918 0.979 0.959 0.946 0.948 0.949 1.000 0.968	0.951	0.973	0.915	1.000	0.949	0.979	0.918	0.979	0.959	0.946	0.948	0.949	1.000	0.968

MAESTRO Cresting

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

STRAKE FCPH1 FCPH2	STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYCF3 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP3 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTE1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
 	0.931	0.931 0.969 0.950 0.918 0.970 0.944 0.987 0.964 0.975 0.988 0.979 0.984 0.979 0.970 0.960	0.950	0.918	0.970	0.944	0.987	0.964	0.975	0.988	0.979	0.984	0.949	0.970	096.0
7	0.919	0.919 0.942 0.987 0.912 1.000 1.000 1.000 0.860 0.955 1.000 0.986 1.000 0.952 0.959 0.966	0.987	0.912	1.000	1.000	1.000	0.860	0.955	1.000	0.986	1.000	0.952	0.979	0.966
m	0.955	0.955 0.964 0.992 0.942 1.000 1.000 1.000 0.930 0.991 1.000 0.994 1.000 0.973 0.993 0.984	0.992	0.942	1.000	1.000	1.000	0.930	0.991	1.000	0.994	1.000	0.973	0.993	0.984
7	0.946	0.946 0.913 0.972 0.916 0.848 1.000 0.843 0.844 0.855 0.855 0.937 0.987 0.936 0.855 0.855	0.972	0.916	0.848	1.000	0.843	0.844	0.855	0.855	0.937	0.987	0.936	0.855	0.855
2	0.976 0.983 0.979 0.971 0.975 0.973 0.975 0.955 0.965 0.989 0.989 0.989 0.945 0.950 0.948	0.983	0.979	0.971	0.975	0.973	0.973	0.955	0.965	0.989	0.989	0.989	0.945	0.950	0.948
ဖ	0.942	0.942 0.939 0.997 1.000 0.913 0.991 0.917 1.000 0.993 0.982 0.995 0.991 1.000 0.981 0.992	0.997	1.000	0.913	0.991	0.917	1.000	0.993	0.982	0.995	0.991	1.000	0.981	0.992
7	7 0.907 0.960 0.944 0.855 0.957 0.916 1.000 0.986 0.986 0.951 0.932 0.934 0.966 0.962	096.0	0.944	0.855	0.957	0.916	1.000	0.919	0.986	0.951	0.932	0.934	0.934	0.966	0.962

CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. CONSTRAINT SUPPRESSED. STRAKE NOT EVALUATED.

Analytical Cresting

3 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTF PYTP PYCF	PYCF	PYCP	PSPBT	PSPBL	PFLB
1	0.812	0.812 0.905	0.944	0.911	0.911 1.000	1.000	0.954	0.954	1.000	1.000	0.793
2	0.862	0.967	0.920	0.878	1.000	1.000	0.921	0.921	1.000	1.000	0.861
e C	996.0	0.994	0.981	0.977	1.000	1.000	0.986	0.986	1.000	1.000	0.964
4	0.950	0.987	0.969	0.978	1.000	1.000	0.986	0.986	1.000	1.000	0.947
ъ	0.935	0.900	0.982	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.935
9	0.964	0.981	0.979	0.988	1.000	1.000	0.993	0.993	1.000	1.000	0.948
7	0.917	0.923	0.956	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.908

MAESTRO Cresting

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 3 OF SUBSTR.

PSPBL PFLB	1.000 0.737	1.000 0.811	1.000 0.953	1.000 0.924	1.000 0.931	1.000 0.942	1.000 0.894
PSPBT	1.000	1.000	1.000	1.000	1.000	1.000	1,000
PYCP	0.939	0.894	0.977	0.978	1.000	0.989	1 000
PYCF	0.939	0.894	0.977	0.978	1.000	0.989	1 000
PYTP	1.000 1.000	1,000	1.000	1.000	1.000	1.000	000
PYTF	1,000	1.000	1.000	1.000	1.000	1.000	1
PCSB	0.884	0.838	0.963	0.967	1.000	0.983	
PCMY	0.911	0.891	0.973	0.948	0.962	0.966	0.030
PCCB	0.927	0.957	0.989	0.992	0.925	0.993	0 803 0
STRAKE PCSF PCCB	0.756 0.927	0.812	0.955	0.926	0.931	0.949	0 803
STRAKE	—-	2	m	₹,	Ŋ	9	^

Analytical Cresting

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 3 OF SUBSTR. 2

FYTP3	0.993	0.986	0.991	0.995	1.000	1.000	1.000
FYTP2	0.989 0.971 0.987 0.989 0.995 0.992 0.993 0.954 0.976 0.991 0.986 0.989 0.992 0.994 0.993	0.936 1.000 1.000 1.000 0.915 0.983 1.000 0.992 0.996 0.972 1.000 0.986	0.949 0.955 0.996 0.931 1.000 1.000 1.000 0.926 0.992 1.000 0.990 1.000 0.980 1.000 0.991	0.981 0.946 0.980 0.970 1.000 1.000 1.000 0.907 0.960 1.000 0.982 0.984 0.984 0.997 0.995	0.986 0.992 0.991 0.998 0.995 0.997 0.984 0.990 0.988 0.984 0.988 0.988 1.000 1.000 1.000 1.000	0.950 0.957 0.995 1.000 0.934 1.000 0.925 1.000 0.991 0.984 1.000 0.992 1.000 0.987 1.000	0.932 0.913 0.989 0.872 1.000 1.000 1.000 0.857 0.916 1.000 0.913 0.916 0.916 1.000 1.000
FYTP1	0.992	0.972	0.980	0.984	1.000	1.000	0.916
FYCP3	0.989	0.996	1.000	0.984	0.986	0.992	0.916
FYCP2	0.986	0.992	0.990	0.982	0.988	1.000	0.913
FYCP1	0.991	1.000	1.000	1.000	0.984	0.984	1.000
FYTF3	0.976	0.983	0.992	096.0	0.988	0.991	0.916
FYTF2	0.954	0.915	0.926	0.907	0.990	1.000	0.857
FYTF1_	0.993	1.000	1.000	1,000	0.984	0.925	1.000
FYCF3	0.992	1.000	1.000	1,000	0.997	1.000	1.000
FYCF2	0.995	1.000	1,000	1.000	0.995	0.934	1.000
FYCF1	0.989	0.936	0.931	0.970	0.998	1,000	0.872
FCPH3	0.987	0.946 0.949 0.991	0.996	0.980	0.991	0.995	0.989
FCPH2	0.971	0.949	0.955	0.946	0.992	0.957	0.913
FCPH1	0.989	0.946	0.949	0.981	0.986	0.950	0.932
STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	н	2	m	₫	25	9	7 0.932 0.913 0.989 0.

MAESTRO Cresting

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 3 OF SUBSTR, 2

TP3	.964	.984	.992	.961	.978	.985	.913
2 FY	0 100	0	0	41 0	81 0	65 0	0 / 0
FYTP	1.0	1.0	1.0	0.9	0.9	0.0	0.0
FYTP1	0.933	0.964	0.984	0.971	0.975	1.000	0.917
FYCP3	0.982	0.993	0.993	1.000	0.977	0.991	1.000
FYCPZ	0.970	0.985	0.985	1.000	0.977	1.000	0.975
FYCP1	1.000	1.000	1.000	0.970	0.981	0.979	0.914
FYTF3	1.000	0.970	0.993	1.000	1.000	1.000	1.000
FYTF2	0.909	0.875	0.933	1.000	1.000	1.000	1.000
FYTF1.	1.000	1,000	1.000	0.969	1.000	0.884	1.000
FYCF3	0.926	1.000	0.992	0.874	0.935	0.980	0.811
FYCF2	1.000	1.000	1.000	0.761	0.947	0.857	0.724
FYCF1	0.784	0.911	0.926	0.959	0.923	1.000	0.892
FCPH3	0.936	0.994	0.995	0.912	0.963	0.988	0.881
FCPH2	0.938	0.921	0.952	0.828	0.973	0.923 0.900 0.988 1.000 0.857 0.980 0.884 1.000 1.000 0.979 1.000 0.991 1.000 0.965 0.985	0.810
STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	0.835 0.938 0.936 0.784 1.000 0.926 1.000 0.909 1.000 1.000 0.970 0.982 0.933 1.000 0.964	0.928 0.921 0.994 0.911 1.000 1.000 1.000 0.875 0.970 1.000 0.985 0.993 0.964 1.000 0.984	0.948 0.952 0.995 0.926 1.000 0.992 1.000 0.933 0.993 1.000 0.985 0.993 0.984 1.000 0.992	0.971 0.828 0.912 0.959 0.761 0.874 0.969 1.000 1.000 0.970 1.000 0.971 0.971 0.961 0.961	0.953 0.973 0.963 0.923 0.947 0.935 1.000 1.000 1.000 0.981 0.977 0.977 0.975 0.981 0.978	0.923	0.926 0.810 0.881 0.892 0.724 0.811 1.000 1.000 1.000 0.914 0.975 1.000 0.917 0.907 0.913
TRAKE		2	m	4	Ŋ	ဖ	7

POSITIVE NUMBER: CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED NEGATIVE NUMBER: CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. 1.000 : CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. -2.000 : CONSTRAINT SUPPRESSED. : STRAKE NOT EVALUATED.

Appendix G. Comparison of Results for Longitudinal Positive Twisting Analytical Positive Twist

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
 	0.888	0.888 0.943	996.0	0.954	1.000	1.000	0.976	0.976	1.000	1.000	0.875
2	0.923	0.986	096.0	0.942	1.000	1.000	0.964	0.964	1.000	1.000	0.921
٣	0.974	0.998	0.987	066.0	1.000	1.000	0.994	0.994	1.000	1.000	0.954
4	0.968	0.988	0.979	0 994	1.000	1.000	966.0	966.0	1.000	1.000	0.966
2	0.978	0.991	0.995	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.978
9	0.969	0.982	0.985	0.994	1.000	1.000	0.996	966.0	1.000	1.000	0.925
7	0.962	0.974	926.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.938

MAESTRO Positive Twist

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	STRAKE PCSF PCCB	l PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
	0.893	0.953	0.956	996 0	1.000	1.000	0.983	0.983	1.000	1.000	0.880
2	0.933	0.989	0.964	0.955	1.000	1,000	0.972	0.972	1.000	1.000	0.930
m	0.976	0.999	0.988	0.994	1.000	1.000	0.997	0.997	1.000	1.000	0.955
4	996.0	0.993	0.976	0.997	0.999	0.999	0.998	0.998	1.000	1.000	0.957
2	0.980	0.998	0.988	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.980
9	0.968	0.985	0.981	966.0	1.000	1.000	0.997	0.997	1.000	1,000	0.934
	096.0	0.960 0.993	0.973	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.947

Analytical Positive Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCPI	FYCP2	FYCP3	FYIPI	FYTP2	FYTP3
; ; ; ; — ;	0.934 0.891 0.972 0.912 1.000 1.000 1.000 0.843 0.953 1.000 0.968 0.984 0.971 1.000 1.000	0.891	0.972	0.912	1.000	1.000	1.000	0.843	0.953	1.000	0.968	0.984	0.971	1.000	1.000
7	0.836	0.973	0.836 0.973 0.925 0.782 1.000 0.902 1.000 0.954 1.000 1.000 0.987 1.000 0.957 1.000 0.950 1.000 0.977	0.782	1.000	0.902	1.000	0.954	1.000	1.000	0.987	1.000	0.950	1.000	0.977
m	0.894	0.905	0.894 0.905 0.994 0.842 1.000 0.984 1.000 0.848 1.000 1.000 0.972 1.000 0.963 1.000 0.983	0.842	1.000	0.984	1.000	0.848	1.000	1.000	0.972	1.000	0.963	1.000	0.983
4	0.983	0.978	0.983 0.978 0.986 1.000 0.992 1.000 0.976 0.962 0.976 0.994 0.994 0.996 1.000 0.996 1.000	1.000	0.992	1.000	0.976	0.962	0.976	0.994	0.994	0.996	1.000	0.996	1.000
٠	0.991	0.993	0.991 0.993 0.993 0.983 0.990 0.987 1.000 1.000 1.000 0.992 0.992 0.992 0.995 0.995 0.995	0.983	0.990	0.987	1.000	1,000	1.000	0.992	0.992	0.992	966.0	0.995	0.996
9	0.898	0.908	0.898 0.908 0.994 1.000 0.856 1.000 0.842 1.000 0.983 0.965 1.000 0.984 1.000 0.972 1.000	1.000	0.856	1.000	0.842	1.000	0.983	0.965	1.000	0.984	1.000	0.972	1.000
7	0.896 0.881 0.987 0.818 1.000 1.000 1.000 0.803 0.882 1.000 0.880 0.883 0.881 1.000 1.000	0.881	0.987	0.818	1.000	1.000	1.000	0.803	0.882	1.000	0.880	0.883	0.881	1.000	1.000

MAESTRO Positive Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	FCPH1	CPH1 FCPH2 FCPH3	STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYTF3 FYTF3 FYTF3 FYTF3 FYCF1 FYTF9 FYTF9 FYTF9 FYTF9	FYCF1	FYCE2	FYCE3	EVTE1	EVTE2	EVTE3	EVCP1	EVCP2 1	EVČB3	EVTP1	EVTD2	CVTD3
1 1 1 1 1															
	906.0	0.876	0.906 0.876 0.978 0.870 1.000 1.000 1.000 0.823 0.961 1.000 0.968 0.981 0.971 1.000 1.000 1.000	0.870	1.000	1.000	1.000	0.823	0.961	1.000	0.968	0.981	0.971	1.000	1.000
~	0.828	0.974	0.828 0.974 0.922 0.768 1.000 0.896 1.000 0.952 1.000 1.000 0.986 1.000 0.955 1.000 0.979	0.768	1.000	0.896	1.000	0.952	1.000	1.000	0.986	1.000	0.955	1.000	0.979
m	0.907	0.919	0.907 0.919 0.993 0.855 1.000 0.984 1.000 0.867 1.000 1.000 0.980 1.000 0.973 1.000 0.985	0.855	1.000	0.984	1.000	0.867	1.000	1.000	0.980	1.000	0.973	1.000	0.985
4		0.953	0.969 0.953 0.992 0.948 1.000 0.991 1.000 0.923 0.980 1.000 0.983 0.985 0.984 1.000 0.995	0.948	1.000	0.991	1.000	0.923	0.980	1.000	0.983	0.985	0.984	1.000	0.995
2	0.988	0.994	0.988 0.994 0.992 0.978 0.987 0.983 1.000 1.000 1.000 1.000 0.991 0.991 0.992 0.997 0.997	0.978	0.987	0.983	1.000	1.000	1.000	1.000	0.991	0.991	0.992	0.997	0.997
9	0.904	0.911	0.904 0.911 0.995 1.000 0.855 1.000 0.849 1.000 0.984 0.973 1.000 0.985 1.000 0.977 1.000	1.000	0.855	1.000	0.849	1.000	0.984	0.973	1.000	0.985	1.000	0.977	1,000
	0.874	0.894	0.874 0.894 0.977 0.794 1.000 0.877 1.000 0.815 1.000 1.000 0.876 0.880 0.876 1.000 0.878	0.794	1.000	0.877	1.000	0.815	1.000	1.000	0.876	0.880	0.876	1.000	0.878

SALISFIED. | THESE VALUES ARE NORMALIZED VIOLATED. | BETWEEN +1. AND -1. NOT RELEVANT OR NULLIFIED BY USER. CONSTRAINT SATISFIED.
CONSTRAINT VIOLATED.
CONSTRAINT NOT RELEVANT
CONSTRAINT SUPPRESSED.
STRAKE NOT EVALUATED. POSITIVE NUMBER: ONEGATIVE NUMBER: 0 1.000 -2.000

Analytical Positive Twist

INI	TIAL PANE	IL ADEQUA	INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSIK: 1	TER VALUES	S - MODULE	2 40 2	UBSIK. 1		1 1 1			+
		PCSE	PCCB	PCMY	PCSB	PYTF	PCSB PYTF PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
	1	0.843	1 0 843 0 953	0.918		0.993	0.993	0.978	0.978	1.000	1.000	0.837
	1 0	0.907	0.983				1.000	0.981	0.981	1.000	1.000	0.907
	1 ~	0 891	0.809		0.983	1.000	1.000	066.0	0.990	1.000	1.000	0.782
	n ×	# K C C			066.0	06.0	0.990	0.993	0.993	1.000	1.000	0.875
	ֆ ո	0.930		0.863	1,000	1.000	1.000	1.000	1 000	1.000	1.000	0.821
	າ ແ	0.854		0.917	0.984	1.000	1.000	066.0	066.0	1,000	1.000	969.0
ì	- -	0.583		069.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.581

MAESTRO Positive Twist

PYCF PYCP PSPBT PSPBL P 0.984 0.984 1.000 1.000 0.985 0.985 1.000 1.000 0.997 0.997 1.000 1.000 1.000 1.000 1.000 0.990 0.990 1.000 1.000 1.000 1.000 1.000	INI	TIAL PANE	EL ADEQUAC	INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR. 1	TER VALUES	MODULE	: 2 OF S	UBSTR. 1			 		1 1 1
5 0.925 0.970 0.993 0.993 0.984 0.984 1.000 1.000 19 0.929 0.975 0.999 0.998 0.985 0.985 1.000 1.000 14 0.950 0.990 1.000 1.000 0.994 0.994 1.000 1.000 19 0.970 0.996 0.988 0.988 0.997 0.997 1.000 1.000 10 0.879 1.000 1.000 1.000 1.000 1.000 10 0.932 0.984 1.000 1.000 1.000 1.000 1.000 10 0.878 1.000 1.000 1.000 1.000 1.000	÷	STRAKE	PCSF	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
0.989 0.929 0.999 0.985 0.985 1.000 1.000 0.844 0.950 0.990 1.000 1.000 0.994 1.000 1.000 0.939 0.970 0.988 0.988 0.997 0.997 1.000 1.000 0.989 0.879 1.000 1.000 1.000 1.000 1.000 0.770 0.932 0.984 1.000 1.000 1.000 1.000 0.992 0.878 1.000 1.000 1.000 1.000 1.000	·	1	0.859	0.965	0.925		0.993	0.993	0.984	0.984	1.000		
0.844 0.950 0.990 1.000 1.000 0.994 0.994 1.000 1.000 0.939 0.970 0.996 0.988 0.988 0.997 0.997 1.000 1.000 0.989 0.879 1.000 1.000 1.000 1.000 1.000 0.770 0.932 0.984 1.000 1.000 1.000 1.000 1.000 0.992 0.878 1.000 1.000 1.000 1.000 1.000		2	0.932		0.929		0.999	0.999	0.985	0.985	1.000	1.000	0.926
0.939 0.970 0.996 0.988 0.988 0.997 0.997 1.000 <th< td=""><td></td><td>m</td><td>0.918</td><td></td><td>0.950</td><td>066.0</td><td>1.000</td><td>1.000</td><td>0.994</td><td>0.994</td><td>1.000</td><td>1.000</td><td>0.830</td></th<>		m	0.918		0.950	066.0	1.000	1.000	0.994	0.994	1.000	1.000	0.830
0.989 0.879 1.000		4	0.952		0.970	966.0	0.988	0.988	0.997	0.997	1.000	1.000	0.905
0.770 0.932 0.984 1.000 1.000 0.990 0.990 1.000 1.000 0.992 0.878 1.000 1.000 1.000 1.000 1.000 1.000		٠ ١٠	0.840		0.879	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.841
0.992 0.878 1.000 1.000 1.000 1.000 1.000 1.000 1.000	. — —	. 9	0.886		0.932	0.984	1.000	1.000	0.990	0.990	1.000	1.000	0.740
			0.827		0.878		1.000		1.000	1.000	1.000		0.828

POSITIVE NUMBER: CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED NEGATIVE NUMBER: CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. 1.000 : CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. -2.000 : CONSTRAINT SUPPRESSED. -- : STRAKE NOT EVALUATED.

Analytical Positive Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

STRAKE	STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
 	0.964	0.986	0.964 0.986 0.985 0.969 1.000 0.992 1.000 0.974 0.993 0.996 0.992 0.994 0.972 0.985 0.978	0.969	1.000	0.992	1.000	0.974	0.993	0.996	0.992	0.994	0.972	0.985	0.978
2	0.947	0.947	0.947 0.947 0.998 0.917 1.000 1.000 0.992 0.906 0.948 1.000 0.985 0.993 0.937 0.948 0.943	0.917	1.000	1.000	0.992	0.906	0.948	1.000	0.985	0.993	0.937	0.948	0.943
m	0.915	0.923	0.915 0.923 0.995 0.868 0.993 0.946 1.000 0.877 1.000 0.954 0.942 0.948 0.978 1.000 0.988	0.868	0.993	0.946	1.000	0.877	1.000	0.954	0.942	0.948	0.978	1.000	0.988
4	0.988	0.979	0.988 0.979 0.986 0.990 0.965 0.978 0.987 0.968 0.979 0.977 0.980 0.979 1.000 1.000 1.000	0.990	0.965	0.978	0.987	0.968	0.979	0.977	0.980	0.979	1.000	1.000	1.000
2	0.961	0.991	0.961 0.991 0.985 0.980 0.986 0.985 0.938 0.893 0.918 0.998 0.987 0.988 0.869 0.882 0.876	0.980	0.986	0.985	0.938	0.893	0.918	0.998	0.987	0.988	0.869	0.882	0.876
ဖ	0.918	0.929	0.918 0.929 0.994 0.989 0.883 0.945 0.874 1.000 0.988 0.928 0.939 0.934 1.000 0.985 1.000	0.989	0.883	0.945	0.874	1.000	0.988	0.928	0.939	0.934	1,000	0.985	1.000
7	0.916	0.893	0.916 0.893 0.981 0.847 1.000 0.947 0.842 0.807 0.824 0.925 0.895 0.898 0.828 0.834 0.831	0.847	1.000	0.947	0.842	0.807	0.824	0.925	0.895	0.898	0.828	0.834	0.831

MAESTRO Positive Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

+	STRAKE	STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYCF3 FYTF1 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTE1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 0												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	⊣	0.973	0.988	0.988	0.973 0.988 0.988 0.971 1.000 0.991 1.000 0.981 1.000 0.996 0.996 0.991 0.994 0.980 0.989 0.985	1.000	0.991	1.000	0.981	1.000	966.0	0.991	0.994	0.980	0.989	0.985
	7	0.954 0.954 0.998 0.930 1.000 1.000 0.990 0.923 0.957 1.000 0.987 0.995 0.949 0.957 0.953	0.954	0.998	0.930	1.000	1.000	066:0	0.923	0.957	1.000	0.987	0.995	0.949	0.957	0.953
	m	0.939	0.949	0.995	0.939 0.949 0.995 0.904 0.980 0.955 1.000 0.917 1.000 0.962 0.955 0.958 0.984 1.000 0.992	0.980	0.955	1.000	0.917	1.000	0.962	0.955	0.958	0.984	1.000	0.992
	4	0.966	0.940	0.987	0.966 0.940 0.987 0.940 1.000 0.984 1.000 0.905 0.973 0.984 0.977 0.981 0.981 1.000 1.000	1.000	0.984	1.000	0.905	0.973	0.984	0.977	0.981	0.981	1.000	1.000
	ιΛ	0.975	0.994	0.990	0.975 0.994 0.990 0.978 0.981 0.979 0.950 0.917 0.934 0.998 0.992 0.898 0.906 0.902	0.981	0.979	0.950	0.917	0.934	0.998	0.992	0.992	0.898	0.906	0.902
· ·	9	0.938	0.946	0.995	0.938 0.946 0.995 0.980 0.910 0.953 0.905 1.000 0.991 0.940 0.947 0.944 1.000 0.989 1.000	0.910	0.953	0.905	1.000	0.991	0.940	0.947	0.944	1.000	0.989	1.000
	7	0.899	0.919	0.989	0.899 0.919 0.989 0.832 1.000 0.902 0.961 0.856 0.934 0.949 0.901 0.903 0.902 0.936 0.930	1.000	0.902	0.961	0.856	0.934	0.949	0.901	0.903	0.902	0.936	0.930

Analytical Positive Twist

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE PCSF	STRAKE PCSF PCCB	PCCB	PCMY PCSB	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
	1 0.910 0.981	0.910 0.981	i .	0.951 0.948	1.000	1.000	0.952	0.952	1.000	1.000	1.000 0.909
2	0.726	0.922	0.881	0.750	1,000	1.000	0.906	906.0	1.000	1,000	0.727
m	0.702	0.750	0.849	0.903	1.000	1.000	0.952	0.952	1.000	1.000	0.680
Ŋ	0.632	0.547	0.847	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.633
ی	0.920	0.920 0.982	0.971	0.968	0.996	0.996	0.971	0.971	1.000	1.000	0.885

MAESTRO Positive Twist

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE PCSF PCCB	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF PYTP	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
1	1 0.911 0.981	0.911 0.981	0.949	0.947	1.000 1.000	1.000	0.951	0.951	1.000	1.000	0.910
2	0.751	0.926	0.880	0.761	1.000	1.000	0.910	0.910	1.000	1,000	0.753
m	0.682	0.749	0.837	0.913	1.000	1.000	0.957	0.957	1.000	1.000	0.661
Ŋ	0.619	0.531	0.841	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.619
G	0.926	0.978	0.970	0.968	0.990	0.990	0.970	0.970 0.970	1.000	1.000	0.891

Analytical Positive Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
1 1 1 1 - 1	0.894	0.878	0.878 0.992 1.0	1.000	0.768	0.896	0.820	1.000	1.000	0.898	1.000	0.901	1.000	0.900	1.000
7	0.840 0.868 0.978 0.767 1.000 1.000 1.000 0.712 0.868 1.000 1.000 1.000 0.857 0.873 0.868	0.868	0.978	0.767	1.000	1.000	1.000	0.712	0.868	1.000	1.000	1.000	0.857	0.873	0.868
m	0.934 0.956 0.960 0.963 0.946 0.986 0.945 0.962 0.986 0.979 1.000 0.986 0.910 0.939 0.925	0.956	0.960	0.963	0.946	0.986	0.945	0.962	0.986	0.979	1.000	0.986	0.910	0.939	0.925
<u>د</u>	0.965 0.988 0.976 0.960 0.977 0.970 0.897 0.924 0.911 0.979 0.975 0.977 0.941 0.930 0.935	0.988	0.976	0.960	0.977	0.970	0.897	0.924	0.911	0.979	0.975	0.977	0.941	0.930	0.935
9	0.892 0.873 0.989 0.796 1.000 0.963 1.000 0.780 0.898 0.991 0.896 0.898 0.896 1.000 1.000	0.873	0.989	0.796	1.000	0.963	1.000	0.780	0.898	0.991	0.896	0.898	0.896	1.000	1.000

MAESTRO Positive Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
	1 0.857 0.841 0.991 1.000 0.706 0.864 0.758 1.000 1.000 0.865 1.000 0.869 1.000 0.867 1.000	0.841	0.991	1.000	0.706	0.864	0.758	1.000	1.000	0.865	1.000	0.869	1.000	0.867	1.000
7	0.805 0.835 0.977 0.714 1.000 1.000 0.654 0.838 1.000 1.000 1.000 0.824 0.837 0.837	0.835	0.977	0.714	1.000	1.000	1.000	0.654	0.838	1.000	1.000	1.000	0.824	0.843	0.837
m	3 0.932 0.951 0.961 0.961 0.938 0.985 0.938 0.955 0.984 0.978 1.000 0.985 0.908 0.940 0.924	0.951	0.961	0.961	0.938	0.985	0.938	0.955	0.984	0.978	1.000	0.985	0.908	0.940	0.924
2	5 0.964 0.983 0.973 0.960 0.976 0.968 0.891 0.911 0.901 0.980 0.977 0.979 0.937 0.929 0.933	0.983	0.973	096.0	0.976	0.968	0.891	0.911	0.901	0.980	0.977	0.979	0.937	0.929	0.933
9	6 0.855 0.834 0.988 0.733 1.000 0.950 1.000 0.717 0.865 0.989 0.862 0.865 0.863 1.000 1.000	0.834	0.988	0.733	1.000	0.950	1.000	0.717	0.865	0.989	0.862	0.865	0.863	1,000	1.000

Analytical Positive Twist

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
. ——— ! ! ! ————————————————————————————	0.822	0.822 0.887	0.935	0.931	1,000	1.000	0.964	0.964	1.000	1.000	0.811
2	0.846	0.968	0.905	0.873	1.000	1.000	0.917	0.917	1.000	1.000	0.845
m	096.0	0.988	0.988	0.987	1.000	1.000	0.992	0.992	1.000	1.000	0.955
4	0.970	0.982	0.989	0.988	966.0	966.0	0.996	966.0	1.000	1.000	0.971
ν.	0.941	0.923	0.947	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.936
9	0.964	0.985	0.982	966.0	0.992	0.992	0.998	0.998	1.000	1.000	0.925
7	0.922	0.955	0.938	1.000	1.000	1.000	1.000	1.000	1,000	1.000	0.898

MAESTRO Positive Twist

2 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

)						
STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP PYCF	PYCF	PYCP	PSPBT	PSPBL	PFLB
. H	1 0.826 0.987	0.987	0.925	0.938	1.000	1.000	896.0	0.968	1.000	1.000	0.818
2	0.864	0.970	0.910	0.880	1.000	1.000	0.922	0.922	1.000	1.000	0.864
m 	0.965	0.981	0.989	0.990	1.000	1.000	0.994	0.994	1.000	1.000	0.936
 4·	0.978	1.000	0.988	1.000	0.993	0.993	1.000	1.000	1.000	1.000	0.973
<u>ب</u>	0.918	0.998	0.922	1,000	1.000	1.000	1.000	1.000	1.000	1.000	0.916
9	0.963	1.000	0.972	0.996	0.985	0.985	1.000	1.000	1.000	1.000	0.915
7	0.949	0.994	0.953	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.840

Analytical Positive Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTFI	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FY 1 P3
	0.966 0.988 0.978 0.955 0.986 0.971 0.994 0.971 0.982 0.988 0.981 0.985 0.979 0.992 0.986	0.988	0.978	0.955	0.986	0.971	0.994	0.971	0.982	0.988	0.981	0.985	0.979	0.992	0.986
7	0.908	0.930	0.908 0.930 0.987 0.877 1.000 1.000 1.000 0.863 0.975 1.000 0.984 1.000 0.962 0.993 0.980	0.877	1.000	1.000	1,000	0.863	0.975	1.000	0.984	1.000	0,962	0.993	0.980
m	0.914	0.922	0.914 0.922 0.994 0.885 1.000 0.989 1.000 0.883 0.988 1.000 0.981 0.993 0.967 1.000 0.986	0.885	1.000	0.989	1.000	0.883	0.988	1.000	0.981	0.993	0.967	1.000	0.986
4	0.943	0.946	0.943 0.946 0.973 0.969 0.877 1.000 0.857 0.908 0.874 0.877 0.968 0.878 0.969 0.878 0.996	0.969	0.877	1.000	0.857	0.908	0.874	0.877	0.968	0.878	0.969	0.878	0.996
'n	0.990	0.991	0.990 0.991 0.991 0.975 0.976 0.976 0.986 0.975 0.981 0.985 0.985 0.985 0.965 0.969 0.968	0.975	0.976	0.976	0.986	0.975	0.981	0.985	0.985	0.985	0.966	0.969	0.968
9	0.908	0.912	0.908 0.912 0.997 1.000 0.873 0.987 0.873 1.000 0.988 0.988 0.968 0.995 0.987 1.000 0.975 1.000	1.000	0.873	0.987	0.873	1.000	0.988	0.968	0.995	0.987	1.000	0.975	1.000
7	0.915	0.942	0.915 0.942 0.978 0.855 1.000 0.918 1.000 0.893 0.969 0.952 0.920 0.922 1.000 0.937	0.855	1.000	0.918	1.000	0.893	0.969	0.952	0.920	0.922	0.922	1.000	0.937

MAESTRO Positive Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR. 2

STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF3 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	0.821 0.983 0.906 0.775 1.000 0.884 1.000 0.965 0.986 1.000 0.966 1.000 0.880 0.966 0.927	0.888 0.900 0.987 0.843 1.000 1.000 1.000 0.825 0.972 1.000 0.977 0.989 0.959 1.000 0.981	0.902 0.913 0.990 0.857 1.000 0.977 1.000 0.882 1.000 1.000 0.967 0.986 0.974 1.000 1.000	0.937 0.931 0.951 0.864 0.930 0.913 0.910 0.851 0.885 0.917 0.884 0.885 0.996 0.997	0.835 0.899 0.873 0.788 0.847 0.819 0.976 0.963 0.970 1.000 1.000 1.000 0.854 0.886 0.871	000 0.733 0.956 0.777 1.000 1.000 0.957 1.000 0.989 1.000 0.928 0.969	0.861 0.629 0.740 0.759 0.492 0.620 1.000 0.916 1.000 0.937 0.920 0.922 0.844 0.830 0.839
L FYTP	0.9	9 1.00	74 1.00	86 0.9	0.8	0.9%	0 8
FYTP]	0 0.88	9 0.95	6 0.97	5 0.88	0 0.85	9 1.00	2 0.84
FYCP3	5 1.00	7 0.98	7 0.98	1 0.88	0 1.00	0.98	0.92
FYCP2	96.0 j	0.97	0.96	0.88	1.00	1.00	0.92
FYCP1	1.000	1.000	1.000	0.917	1.000	0.957	0.937
FYTF3	986.0	0.972	1.000	0.885	0.970	1.000	1.000
FYTE2	0.965	0.825	0.882	0.851	0.963	1.000	0.916
FYTF1	1.000	1.000	1.000	0.910	0.976	0.777	1.000
FYCF3	0.884	1.000	0.977	0.913	0.819	0.956	0.620
FYCF2	1.000	1.000	1.000	0.930	0.847	0.733	0.492
FYCF1	0.775	0.843	0.857	0.864	0.788	1,000	0.759
FCРН3	0.906	0.987	0.990	0.951	0.873	0.975	0.740
FCPH2	0.983	0.00	0.913	0.931	0.899	0.846 0.805 0.975 1.	0.629
FCPH1	0.821	0.888	0.902	0.937	0.835	0.846	0.861
STRAKE	H	2	m	4	'n	9	. /

T VIOLATED. | THESE VALUES ARE NORMALIZED T VIOLATED. | BETWEEN +1. AND -1. SUPPRESSED. EVALUATED. CONSTRAINT S
CONSTRAINT V
CONSTRAINT N
CONSTRAINT S
STRAKE NOT E POSITIVE NUMBER: C NEGATIVE NUMBER: C 1.000 : C

Analytical Positive Twist

3 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
H	0.856	0.856 0.916	896.0	0.934	1.000	1.000	996.0	996 0	1.000	1.000	0.846
2	0.898	0.977	0.938	0.906	1.000	1.000	0.939	0.939	1.000	1.000	0.897
ń	0.970	0.997	0.986	0.986	1.000	1.000	0.992	0.992	1.000	1.000	0.953
4	0.972	0.992	0.987	0.989	1.000	1.000	0.993	0.993	1.000	1.000	0.970
2	0.955	0.937	0.986	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.955
9	0.972	0.984	0.989	0.993	1.000	1.000	966.0	0.996	1.000	1.000	0.929
7	0.961	0.951	0.987	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.930

MAESTRO Positive Twist

3 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYTF PYTP PYCF	PYCP	PSPBT	PSPBL	PFLB
 	0.851	0.851 0.974	0.952	0.949	1.000	1.000	1.000 0.974 0.974	0.974	1.000	1.000	0.846
7	0.893	0.973	0.947	0.917	1.000	1.000	0.946	0.946	1.000	1.000	0.891
m	0.967	0.979	0.987	0.994	1.000	1.000	966.0	966.0	1.000	1.000	0.929
4	0.975	0.999	0.972	966.0	0.995	0.995	0.998	0.998	1.000	1.000	0.974
. L S	0.977	0.977 0.992	0.969	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.975
9	0.976	1.000	086.0	0.999	0.994	0.994	1.000	1.000	1.000	1.000	0.934
7.	0.950	0.950 0.991	0.952	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.950

Analytical Positive Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 3 OF SUBSTR.

0			とコロレコー	נונאנו	こしくい	ことに		C1170	בינלנ		- (0///	0000	-	200	-
94	-	7 7 7 7 7 1			- 71711	- 61717	71111	FT1F2	- 64177	- בלבו בלבו	FYCPZ	TYCP3	FYIPL	FYIPZ	FY P3
	948	0.948	0.990	0.936	1.000	0.992	1.000	0.924	0.982	0.993	0.980	0.988	0.978	1.000	066.0
	922	0.933	0.922 0.933 0.989 0.897 1.000 0.993 1.000 0.897 0.989 1.000 0.986 0.984 0.969 1.000 0.988	0.897	1.000	0.993	1.000	0.897	0.989	1.000	0.986	0.994	0.969	1.000	0.988
	883	0.891	0.883 0.891 0.995 0.841 1.000 0.984 1.000 0.843 1.000 1.000 0.970 1.000 0.958 1.000 0.983	0.841	1.000	0.984	1.000	0.843	1,000	1.000	0.970	1.000	0.958	1,000	0.983
	972	0.957	0.972 0.957 0.990 1.000 0.940 0.986 0.957 0.966 0.981 0.988 0.994 0.995 0.995 0.982 0.988	1.000	0.940	986.0	0.957	996.0	0.981	0.988	0.994	0.995	0.995	0.982	0.988
	993	0.994	0.993 0.994 0.996 0.983 0.988 0.987 1.000 1.000 1.000 0.991 0.991 0.991 0.996 0.995 0.996	0.983	0.988	0.987	1.000	1.000	1.000	0.991	0.991	0.991	0.996	0.995	0.996
	882	0.890	0.882 0.890 0.995 1.000 0.845 1.000 0.836 1.000 0.983 0.962 1.000 0.984 1.000 0.965 1.000	1,000	0.845	1,000	0.836	1.000	0.983	0.962	1.000	0.984	1.000	0.965	1.000
	903	0.903 0.898 0.99	0.903 0.898 0.992 0.828 1.000 0.897 1.000 0.828 0.893 1.000 0.890 0.893 0.892 1.000 1.000	0.828	1.000	0.897	1.000	0.828	0.893	1.000	0.890	0.893	0.892	1.000	1.000

MAESTRO Positive Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 3 OF SUBSTR. 2

4	1								١.							
	STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
3"	Н	1 0.785 0.899 0.935 0.702 1.000 0.900 1.000 0.860 1.000 1.000 0.958 0.981 0.957 1.000 0.973	0.899	0.935	0.702	1.000	0.900	1.000	0.860	1.000	1.000	0.958	0.981	0.957	1.000	0.973
	2	0.912 0.916 0.994 0.870 1.000 0.992 1.000 0.854 0.980 1.000 0.978 0.989 0.970 1.000 0.989	0.916	0.994	0.870	1.000	0.992	1.000	0.854	0.980	1.000	0.978	0.989	0.970	1.000	0.989
	m	0.891 0.901 0.994 0.839 1.000 0.982 1.000 0.850 1.000 1.000 0.970 0.983 0.963 1.000 0.985	0.901	0.994	0.839	1.000	0.982	1.000	0.850	1.000	1.000	0.970	0.983	0.963	1.000	0.985
:	4	0.935 0.699 0.866 0.990 0.543 0.770 0.863 1.000 1.000 0.901 1.000 1.000 0.991 0.884 0.900	0.699	0.866	0.600	0.543	0.770	0.863	1.000	1.000	0.901	1.000	1.000	0.991	0.884	0.900
	2	0.912	0.912 0.936 0.928 0.865 0.893 0.884 1.000 1.000 1.000 0.963 0.984 0.962 0.967 0.962	0.928	0.865	0.893	0.884	1.000	1.000	1.000	1.000	0.963	0.984	0.962	0.967	0.962
	9	0.864	0.864 0.827 0.978 1.000 0.735 0.961 0.780 1.000 0.983 0.962 1.000 0.983 1.000 0.947 0.971	0.978	1.000	0.735	0.961	0.780	1.000	0.983	0.962	1.000	0.983	1.000	0.947	0.971
	7	7 0.893 0.683 0.809 0.824 0.553 0.696 1.000 0.920 1.000 0.930 1.000 0.835 0.835 0.835 0.832	0.683	0.809	0.824	0.553	0.696	1.000	0.920	1.000	1.000	0.930	1.000	0.835	0.825	0.832

| THESE VALUES ARE NORMALIZED | BETWEEN +1. AND -1. OR NULLIFIED BY USER. CONSTRAINT SATISFIED.
CONSTRAINT VIOLATED.
CONSTRAINT NOT RELEVANT O
CONSTRAINT SUPPRESSED.
STRAKE NOT EVALUATED. POSITIVE NUMBER: 0 1.000 : 0

Appendix H. Comparison of Results for Longitudinal Negative Twisting Analytical Negative Twist

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

1 0.771 0.923 2 0.867 0.972 3 0.969 0.995						ב	- ב	ומוני	- ה ה ה	
	.923	0.899	0.917	1.000	1.000	0.957	1.000 0.957 0.957 1.000 1.000	1.000	1.000	0.750
	0.972	0.924	0.890	1.000	1.000	1.000 0.930	0.930	1.000	1.000	0.862
	0.995	0.984	086.0	1.000	1.000	0.987	0.987	1.000	1.000	0.946
4 0.919 0	0.983	0.943	0.983	0.998	0.998	0.600	066.0	1.000	1.000	0.915
5 0.955 0	0.972	0.971	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.954
6 0.954 0	0.988	0.969	0.991	1.000	1.000	0.994	0.994	1.000	1.000	0.923
7 0.875 0	0.961	0.918	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.874

MAESTRO Negative Twist

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTE PYTP PYCF	PYCF	PYCP	PSPBT	PSPBL PFLB	PFLB
T	0.735 0.930	0.930	0.889	0.881	0.881 1.000 1.000	1.000	0.938	0.938	1.000	1.000	0.717
2	0.819	0.951	0.895	0.836	1.000	1.000	0.895	0.895	1.000	1.000	0.818
m	0.952	0.970	0.971	096.0	1.000	1.000	0.975	0.975	1.000	1.000	0.950
4	0.904	0.989	0.936	0.959	1,000	1.000	0.975	0.975	1.000	1.000	0.902
ιΛ	0.926	0.913	0.963	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.926
	0.936	0.994	0.958	0.978	1.000	1.000	986.0	0.986	1.000	1.000	0.934
7	0.860	0.940	0.912	1.000	1.000	1.000	1.000	1,000	1.000	1.000	0.861

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

FYTP3	1.000	0.977	0.982	1.000	1.000	1.000	0.931
FYTP2	1.000	0.836 0.976 0.926 0.792 1.000 0.916 1.000 0.940 1.000 1.000 0.984 1.000 0.957 0.994 0.977	0.892 0.901 0.995 0.834 1.000 0.983 1.000 0.835 1.000 1.000 0.976 1.000 0.968 1.000 0.982	0.967 0.963 0.984 0.967 0.970 1.000 0.943 0.940 0.972 0.988 0.987 0.990 0.990 0.990 1.000	0.988 0.997 0.994 0.979 0.987 0.984 1.000 1.000 1.000 0.988 0.987 0.988 1.000 1.000 1.000 1.000	0.895 0.905 0.995 1.000 0.847 1.000 0.833 1.000 0.982 0.972 1.000 0.984 1.000 0.975 1.000	0.905 0.896 0.984 0.833 1.000 0.903 1.000 0.824 0.893 1.000 0.891 0.893 0.892 1.000 0.931
FYTP1	0.979	0.957	0.968	0.990	1.000	1.000	0.892
FYCP3	0.984	1.000	1.000	0.990	0.988	0.984	0.893
FYCP2	0.972	0.984	0.976	0.987	0.987	1.000	0.891
FYCP1	1.000	1.000	1.000	0.988	0.988	0.972	1.000
FYTF3	0.949	1.000	1.000	0.972	1.000	0.982	0.893
FYTF2	0.843	0.940	0.835	0.940	1.000	1.000	0.824
FYTF1	1.000	1.000	1.000	0.943	1,000	0.833	1.000
FYCF3	1.000	0.916	0.983	1,000	0.984	1.000	0.903
FYCF2	1.000	1.000	1.000	0.970	0.987	0.847	1.000
FYCF1	0.923	0.792	0.834	296.0	0.979	1.000	0.833
ЕСРН3	0.972	0.926	0.995	0.984	0.994	0.995	0.984
FCPH2	0.894	0.976	0.901	0.963	0.997	0.905	0.896
FCPH1	0.940 0.894 0.972 0.923 1.000 1.000 1.000 0.843 0.949 1.000 0.972 0.984 0.979 1.000 1.000	0.836	0.892	0.967	0.988	0.895	0.905
STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYCF3 FYTF1 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	Н	7	m	4	Ŋ	9	7

MAESTRO Negative Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

Y.	STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYCF3 FYTF1 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3 1.000 0.972 1.000 0.983 0.964 0.757 1.000 0.945 1.000 0.887 0.982 1.000 0.961 0.978 0.933 1.000 0.972	FCPH2 0.886	FCPH3 0.964	FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYCF3 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3 0.823 0.886 0.964 0.757 1.000 0.945 1.000 0.887 0.982 1.000 0.961 0.978 0.933 1.000 0.972	FYCF2 1.000	6.945	EYTF1 1.000	6.837	FYTF3 0.982	FYCP1	FYCP2 0.961	FYCP3	6.933	1.000	6.0
7	0.900	0.973	0.900 0.973 0.957 0.	0.897	1.000	0.978	1,000	0.934	897 1.000 0.978 1.000 0.934 1.000 1.000 0.988 0.996 0.966 0.996 0.982	1.000	0.988	0.996	0.966	0.996	0.0
ന	0.975	0.979	0.975 0.979 0.996	0.958	1.000	0.989	1.000	0.969	0.958 1.000 0.989 1.000 0.969 0.997 0.996 0.986 0.992 0.994 1.000 0.997	0.996	0.986	0.992	0.994	1.000	6.0
4	0.957	0.859	0.918	0.957 0.859 0.918 0.933 0.774 0.873 1.000 0.948 1.000 0.973 0.986 1.000 0.980 0.957 0.971	0.774	0.873	1.000	0.948	1.000	0.973	0.986	1.000	0.980	0.957	0.9
υ.	0.949	0.964	096.0	0.949 0.964 0.960 0.919 0.946 0.933 1.000 0.988 1.000 0.986 0.973 0.973 0.973 0.981 0.979	0.946	0.933	1.000	0.988	1.000	0.986	0.973	.0.973	0.973	0.981	0.9
9	0.944	0.911	0.944 0.911 0.982 1	1.000	0.880	0.978	0.916	1.000	.000 0.880 0.978 0.916 1.000 0.995 0.986 1.000 0.996 1.000 0.967 0.986	0.986	1.000	0.996	1.000	0.967	0.9
7	0.931	0.735	0.844	0.931 0.735 0.844 0.870 0.650 0.771 1.000 0.957 1.000 0.884 0.961 1.000 0.874 0.846 0.864	0.650	0.771	1.000	0.957	1.000	0.884	0.961	1.000	0.874	0.846	0.8

2 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE PCSF PCCB	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
H	0.822	0.822 0.945	0.910	0.964	0.995	0.995	0.981	0.981	1.000	1.000 1.000	0.808
2	0.919	0.989	0.953	0.956	0.999	0.999	0.973	0.973	1.000	1.000	0.914
m	0.934	0.868	0.961	0.995	1.000	1.000	0.997	0.997	1.000	1.000	0.857
4	0.924	1.000	0.945	1.000	0.987	0.987	1,000	1.000	1.000	1.000	906.0
2	0.946	0.948	0.962	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.943
9	0.910	0.810	0.943	0.985	1.000	1.000	0.991	0.991	1.000	1.000	0.781
	0.897	0.844	0.929	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.895

MAESTRO Negative Twist

2 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYTP PYCF PYCP	PYCP	PSPBT	PSPBL	PFLB
 - - - - - -	1 0.835 0.986	986.0	0.918	0.918 0.957	0.994	0.994	826.0	826.0	0.978 1.000 1.000	1.000	0.826
7	0.919	0.986	096.0	0.942	1.000	1.000	0.964	0.964	1.000	1.000	0.917
m	0.933	0.861	0.959	0.992	1.000	1.000	0.995	0.995	1.000	1.000	0.852
4	0.935	1.000	0.954	0.997	0.988	0.988	1.000	1.000	1.000	1.000	0.910
ω	0.902	0.987	0.927	1.000	1.000	1.000	1.000	1.000	0.914	0.917	0.902
9	0.914	0.816	0.946	0.985	0.998	866.0	0.991	0.991	1.000	1.000	0.781
_	0.728	0.666	0.869	1.000	1.000	1.000	1.000	1.000	0.851	0.864	0.728

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH1	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
 	0.987	ı —-	0.990 0.995 0.9	0.978	0.997	0.988	1.000	0.986	1.000	0.995	0.990	0.992	1.000	1.000	1.000
2	0.962	0.962 0.963 0.998 0.947 1.000 1.000 0.988 0.932 0.967 1.000 0.991 0.996 0.961 0.966 0.964	0.998	0.947	1.000	1.000	0.988	0.932	0.967	1.000	0.991	0.996	0.961	0.966	0.964
m	0.948	0.948 0.957 0.996 0.918 0.972 0.962 1.000 0.931 1.000 0.967 0.964 0.965 0.987 1.000 0.993	966.0	0.918	0.972	0.962	1.000	0.931	1.000	0.967	0.964	0.965	0.987	1.000	0.993
4	096.0	0.960 0.940 0.989 0.928 1.000 0.982 1.000 0.907 0.976 0.986 0.974 0.978 0.978 1.000 1.000	0.989	0.928	1.000	0.982	1.000	0.907	0.976	986.0	0.974	0.978	0.978	1.000	1.000
2	0.992	0.992 0.998 0.996 0.975 0.980 0.978 1.000 0.992 1.000 0.991 0.990 0.991 0.981 0.983 0.983	0.996	0.975	0.980	0.978	1.000	0.992	1.000	0.991	0.990	0.991	0.981	0.983	0.982
9	0.946	0.946 0.951 0.997 0.976 0.919 0.960 0.917 1.000 0.992 0.953 0.957 0.955 1.000 0.989 1.000	0.997	0.976	0.919	0.960	0.917	1.000	0.992	0.953	0.957	0.955	1.000	0.989	1.000
^	0.913	0.913 0.942 0.981 0.856 1.000 0.919 1.000 0.893 1.000 0.982 0.921 0.960 0.921 1.000 0.923	0.981	0.856	1.000	0.919	1.000	0.893	1.000	0.982	0.921	096.0	0.921	1.000	0.923

MAESTRO Negative Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

1															,	
	STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYCF3 FYTF1 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	FCPH1	FCPH2.	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
	H	1 0.812 0.991 0.904 0.756 1.000 0.869 1.000 0.966 1.000 0.966 1.000 0.933 0.996 0.958	0.991	0.904	0.756	1.000	0.869	1.000	0.966	1.000	1.000	0.966	1.000	0.933	0.996	0.958
	2	0.970	0.967	0.997	0.970 0.967 0.997 0.964 1.000 1.000 0.994 0.932 0.976 1.000 0.994 1.000 0.971 0.975 0.973	1.000	1.000	0.994	0.932	0.976	1.000	0.994	1.000	0.971	0.975	0.973
	m	0.988	0.988 0.997 0.995	0.995	0.959	0.959 0.958 0.958 1.000 1.000 1.000 0.962 0.962 0.962 1.000 1.000 1.000	0.958	1.000	1.000	1.000	0.962	0.962	0.962	1.000	1.000	1.000
	4	0.928	0.952	0.961	0.928 0.952 0.961 0.877 0.906 0.921 1.000 0.932 1.000 0.980 0.970 0.976 0.976 1.000 1.000	0.906	0.921	1.000	0.932	1.000	0.980	0.970	0.976	0.976	1.000	1.000
	Ŋ	0.805	0.883	0.844	0.805 0.883 0.844 0.726 0.815 0.770 0.964 0.938 0.952 1.000 1.000 1.000 0.886 0.898 0.893	0.815	0.770	0.964	0.938	0.952	1.000	1.000	1.000	0.886	0.898	0.893
	ဖ	0.940	0.881	0.968	0.940 0.881 0.968 0.959 0.826 0.954 0.893 1.000 1.000 0.959 0.958 0.958 0.988 0.959 0.976	0.826	0.954	0.893	1.000	1.000	0.959	0.958	0.958	0.988	0.959	0.976
	7	7 0.903 0.502 0.704 0.711 0.336 0.541 1.000 0.926 1.000 0.922 0.909 0.916 0.714 0.697 0.710	0.502	0.704	0.711	0.336	0.541	1.000	0.926	1.000	0.922	0.909	0.916	0.714	0.697	0.710

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

TRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYTF PYTP PYCF PYCP	PYCP	PSPBT	PSPBT PSPBL PFLB	PFLB
	0.856	0.856 0.969	0.922	į	0.922 1.000	1.000	0.927	0.927 0.927 1.000	1.000	1.000	0.856
7	0.607	0.868	0.809	0.604	1.000	1.000	0.845	0.845	1.000	1.000	0.607
m	0.510	0.622	0.730	0.878	1.000	1.000	0.939	0.939	1.000	1.000	0.488
., ∟	0.427	0.340	0.738	1.000	1.000	1.000	1.000	1.000	1,000	1.000	0.427
9	0.855	0.855 0.976	0.951	0.951	0.980	086 0	0.955	0.955	1.000	1.000	0.810

MAESTRO Negative Twist

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

	1				
PFLB	0.817	0.351	0.338	0.612	0.798
PSPBT PSPBL PFLB	1.000 1.000	1,000	1.000	1.000	1.000
PSPBT	1.000	1.000	1.000	1.000	1.000
PYCP	0.928 0.928	0.757	0.842	1.000	0.968
	0.928	0.757	0.842	1.000	0.968
PYTP PYCF	1.000	1.000	1.000	1.000	0.989
PYTF	0.922 1.000 1.000	1.000	1.000	1.000	0.989
PCSB	0.922	0.457	0.699	1.000	0.965
PCMY	0.927	0.701	0.795	0.821	0.967
PCCB	0.968	0.793	0.537	0.530	0.969
STRAKE PCSF PCCB		0.357	0.382	0.611	0.858 0.969
STRAKE	1	2	m	พ	9

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

TRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
	0.837 0.814 0.986 1.000 0.652 0.838 0.737 1.000 1.000 0.843 1.000 0.849 1.000 0.847 1.000	0.837 0.814	0.986	1.000	0.652	0.838	0.737	1.000	1.000	0.843	1.000	0.849	1.000	0.847	1.000
7	0.756	0.785	0.976	0.756 0.785 0.976 0.662 1.000 1.000 1.000 0.553 0.785 1.000 1.000 1.000 0.769 0.798 0.787	1.000	1,000	1.000	0.553	0.785	1.000	1.000	1.000	0.769	0.798	0.787
m	0.890	0.919	0.933	0.890 0.919 0.933 0.960 0.896 0.970 0.920 0.914 0.971 0.965 1.000 0.976 0.831 0.876 0.853	0.896	0.970	0.920	0.914	0.971	0.965	1.000	0.976	0.831	0.876	0.853
2	5 0.931 0.982 0.956 0.919 0.952 0.936 0.795 0.830 0.812 0.953 0.947 0.950 0.855 0.840 0.847	0.982	0.956	0.919	0.952	0.936	0.795	0.830	0.812	0.953	0.947	0.950	0.855	0.840	0.847
9	0.837 0.802 0.979 0.696 1.000 0.939 1.000 0.673 0.843 0.980 0.840 0.941 0.840 1.000 0.844	0.802	0.979	0.696	1.000	0.939	1.000	0.673	0.843	0.980	0.840	0.941	0.840	1.000	0.844

MAESTRO Negative Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

P3	178	110	133	36	00
FYTF	0.9	0.6	0.8	9.0	1.0
FYTP2	0.920	0.939	0.867	0.817	1.000
FYTP1	0.980	0.879	0.799	0.851	0.919
FYCP3	0.921	0.881	0.974	0.972	0.920
FYCP2	1 0.915 0.902 0.990 1.000 0.815 0.918 0.851 1.000 0.986 0.917 1.000 0.921 0.980 0.920 0.978	.789 1.000 1.000 1.000 0.719 0.872 1.000 0.877 0.881 0.879 0.939 0.910	.879 0.976 0.965 0.938 0.927 0.969 0.967 0.980 0.974 0.799 0.867 0.833	.960 0.977 0.970 0.701 0.821 0.764 0.973 0.970 0.972 0.851 0.817 0.836	.842 1.000 0.973 1.000 0.822 0.919 0.985 0.917 0.920 0.919 1.000 1.000
FYCP1	0.917	1.000	0.967	0.973	0.985
FYTF3	0.986	0.872	0.969	0.764	0.919
FYTF2	1.000	0.719	0.927	0.821	0.822
FYTF1	0.851	1.000	0.938	0.701	1.000
FYCF3	0.918	1,000	0.965	0.970	0.973
FYCF2	0.815	1.000	0.976	0.977	1.000
FYCF1	1.000	0.789	0.879	0.960	0.842
FCPH3	0.990	0.977	0.897	0.935	0.993
FCPH2	0.902	0.879	0.965	0.987	0.901 0
FCPH1	0.915	0.846 0.879 0.977 0	0.833 0.965 0.897 0.	0.870 0.987 0.935 0	0.914
STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	-	2	m [']	ľO.	6 0.914 0.901 0.993 0.

2 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP		PYCF PYCP PSPBT	PSPBT	PSPBL	PFLB
	0.675 0.849	0.849	0.862	i	0.866 1.000	1.000	0.930	0.930	1.000	1.000	0.667
2	0.757	0.935	0.839	0.785	1.000	1.000	0.859	0.859	1.000	1.000	0.758
m	0.946	0.970	0.975	0.971	1.000	1.000	0.982	0 982	1.000	1.000	0.937
4	0.921	0.988	0.965	0.955	0.989	0.989	0.984	0.984	1.000	1.000	0.926
2	0.879	0.957	0.888	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.877
9	0.940	0.977	0.954	966.0	0.978	0.978	0.997	0.997	1.000	1.000	0.861
7	0.786	0.786 0.932	0.832	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.785

MAESTRO Negative Twist

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

-4								
	PFLB	0.583	0.585	0.902	0.853	0.897	0.905	0.880
	PSPBL	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	PSPBT	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	PYCP PSPBT PSPBL	0.901	0.795	0.961	096.0	1.000	0.982	1.000
.	!	0.901	0.795	0.961	096.0	1.000	0.982	1.000 1.000
	PYTF PYTP PYCF	1.000 1.000	1.000	1.000	1.000	1.000	966.0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PYTE	1.000	1.000	1.000	1.000	1.000	966.0	1.000
	PCSB	0.814	0.695	0.939	0.889	1.000	0.972	1.000
11 VALOES	PCMY	0.883	0.762	0.953	0.933	0.924	0.953	0.901
	PCCB	0.812	0.915	0.985	0.970	0.857	0.970	0.874
יר ארלארן	STRAKE PCSF PCCB	1 0.612 0.812	0.596	0.903	0.851	0.900	0.922	0.880
דוידודאר יחוארו אטרעטארו יארידוי	+ STRAKE		2	m	4	ιΩ	9	7
1	+							

CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. CONSTRAINT SUPPRESSED. STRAKE NOT EVALUATED. POSITIVE NUMBER: ONEGATIVE NUMBER: CONTRACTOR CONTRACTO

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

SIKANE 1	0.963	0.963 0.973 0.968 0.963 0.976 0.969 0.935 0.943 0.982 0.980 0.981 0.966 0.970 0.968	0.968	0.963	STRAKE FCPH1 FCPH3 FYCF1 FYCF2 FYCF3 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3 FYTP3	6.969	0.950	0.935	0.943	FYCP1 0.982	0.980	FYCP3	0.966	0.970	- i ——
3 6	0.879	0.855 0.859 0.996 0.808 1.000 0.985 1.000 0.793 0.977 1.000 0.965 0.986 0.942 1.000 0.975	0.996	0.808	1.000	1.000	1.000	0.801	0.959	1.000	0.973	0.808 1.000 0.985 1.000 0.793 0.977 1.000 0.965 0.986 0.942 1.000 0.975	0.941	0.989	
4	0.856	0.856 0.871 0.978 1.0	0.978	1.000	0.516	1,000	0.516	1.000	0.541	0.541	1.000	000 0.516 1.000 0.516 1.000 0.541 0.541 1.000 0.541 1.000 0.541 1.000 0.541 0.849	1.000	0.541	
2	0.977	0.977 0.982 0.987 0.973 0.969 0.975 0.965 0.939 0.953 0.987 0.988 0.988 0.914 0.921 0.917	0.987	0.973	0.969	0.975	0.965	0.939	0.953	0.987	0.988	0.988	0.914	0.921	
9	0.852	0.852 0.856 0.994 1.0	0.994	1.000	0.794	0.979	0.799	1.000	0.981	0.947	0.990	000 0.794 0.979 0.799 1.000 0.981 0.947 0.990 0.978 1.000 0.958 1.000	1.000	0.958	
7	0.931	0.931 0.919 0.936 0.9	0.936	0.918	1.000	1.000	0.907	0.874	0.930	0.937	0.932	918 1.000 1.000 0.907 0.874 0.930 0.937 0.932 0.935 0.943 0.972 0.976	0.943	0.972	

MAESTRO Negative Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

r			111111	111111111111111111111111111111111111111												•
1	STRAKE	FCPH1	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTE3	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
	H	0.950	0.944	0.947	0.949	0.941	0.945	0.961	0.952	0.956	0.950 0.944 0.947 0.949 0.941 0.945 0.961 0.952 0.956 0.978 0.976 0.977 0.955 0.952 0.954	0.976	0.977	0.955	0.952	0.954
. ,	2	0.928	0.954	0.986	0.953	1.000	1,000	0.977	0.855	0.932	0.928 0.954 0.986 0.953 1.000 1.000 0.977 0.855 0.932 1.000 0.990 1.000 0.935 0.952 0.943	0.990	1.000	0.935	0.952	0.943
	m	0.964	0.969	0.995	0.958	1.000	1.000	1.000	0.933	0.982	0.964 0.969 0.995 0.958 1.000 1.000 1.000 0.933 0.982 1.000 0.995 1.000 0.971 0.985 0.978	0.995	1.000	0.971	0.985	0.978
1	4	0.917	906.0	0.984	1.000	0.648	0.674	0.663	0.938	0.882	0.917 0.906 0.984 1.000 0.648 0.674 0.663 0.938 0.882 0.675 1.000 1.000 0.967 0.675 0.675	1.000	1.000	0.967	0.675	0.675
•	2	0.980	0.994	0.991	0.980	0.975	0.978	0.960	0.936	0.948	0.980 0.994 0.991 0.980 0.975 0.978 0.960 0.936 0.948 0.980 0.982 0.981 0.923 0.929 0.926	0.982	0.981	0.923	0.929	0.926
	9	0.970	0.970	0.997	1.000	0.956	0.996	0.959	1.000	0.994	0.970 0.970 0.997 1.000 0.956 0.956 0.959 1.000 0.994 0.986 0.993 0.990 1.000 0.992 1.000	0.993	0.990	1,000	0.992	1.000
	7 0.946 0.971 0.966 0.	0.946	0.971	996.0	096.0	0.965	0.978	0.931	0.973	0.957	960 0.965 0.978 0.931 0.973 0.957 0.970 0.972 0.971 0.988 0.977 0.986	0.972	0.971	0.988	0.977	0.986

3 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE PCSF	STRAKE PCSF	PCCB	PCMY PCSB	PCSB	PYTF	PYTP PYCF	PYCF	PYCP	PYCP PSPBT	PSPBL	PFLB
	0.727	0.727 0.906	0.905	0.902 0.869	1.000	1.000	0.931	i	0.931 1.000 1.000	1.000	0.712
2	0.800	0.800 0.942	0.886	0.826	1.000	1.000	0.886	0.886	1.000	1,000	0.799
ю	0.958	0.992	0.974	0.967	1.000	1.000	0.980	0.980	1.000	1,000	0.942
4	0.917	0.984	0.947	0.967	1.000	1.000	0.979	0.979	1.000	1.000	0.916
ار د	0.950	0.974	0.969	1.000	1.000	1.000	1,000	1.000	1.000	1.000	0.950
9	0.953	0.979	0.972	0.987	1.000	1.000	0.992	0.992	1.000	1.000	006.0
^	0.870	0.909	0.920	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.862

MAESTRO Negative Twist

3 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

	<u> </u>						
PFLB	0.631	0.702	0.927	0.889	0.910	0.922	0.853
PSPBL	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PSPBT	1.000	1.000	1.000	1,000	1.000	1,000	1.000
PYCP	0.903	0.832	0.961	0.960	1.000	0.979	1.000
PYCF	0.903	0.832	0.961	096.0	1.000	0.979	1.000
PYTP	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PYTF	0.818 1.000	1.000	1.000	1.000	1.000	1.000	1.000
PCSB	0.818	0.748	0.936	0.938	1.000	0.966	1.000
PCMY	0.881	0.827	0.953	0.932	0.965	0.954	0.913
PCCB	0.653 0.878	0.933	0.984	0.984	0.854	0.979	0.852 0.883
STRAKE PCSF PCCB	0.653	0.704	0.929	0.892	0.910	0.926	0.852
STRAKE		2	m	4	اک	9	7

POSITIVE NUMBER: CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED NEGATIVE NUMBER: CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. 1.000 : CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. -2.000 : CONSTRAINT SUPPRESSED. -- : STRAKE NOT EVALUATED.

3 OF SUBSTR. INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE

STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH1	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
	. 0.955 0.942 0.977 0.952 1.000 0.988 1.000 0.903 0.952 0.994 0.983 0.989 0.973 0.989 0.981	0.942	0.977	0.952	1.000	0.988	1.000	0.903	0.952	0.994	0.983	0.989	0.973	0.989	0.981
7	0.911	0.911 0.913 0.986 0.890 1.000 1.000 1.000 0.862 0.981 1.000 0.982 0.992 0.957 1.000 0.981	0.986	0.890	1.000	1.000	1.000	0.862	0.981	1.000	0.982	0.992	0.957	1.000	0.981
m	0.869 0.875 0.995 0.809 1.000 1.000 1.000 0.799 0.979 1.000 0.966 1.000 0.951 1.000 0.978	0.875	0.995	0.809	1.000	1.000	1.000	0.799	0.979	1.000	0.966	1.000	0.951	1.000	0.978
4	0.922	0.922 0.905 0.974 1.000 0.870 0.970 0.867 1.000 0.947 0.966 1.000 0.968 1.000 0.958 0.972	0.974	1.000	0.870	0.970	0.867	1.000	0.947	996.0	1.000	0.968	1.000	0.958	0.972
S	0.989	0.989 0.993 0.992 0.988 0.988 0.985 0.991 1.000 1.000 0.988 0.988 0.991 0.990 0.999	0.992	0.979	0.988	0.985	0.991	1.000	1.000	686.0	0.988	0.989	0.991	0.990	0.991
9	0.868	0.868 0.873 0.993 1.000 0.819 1.000 0.807 1.000 0.978 0.958 1.000 0.980 1.000 0.959 1.000	0.993	1.000	0.819	1.000	0.807	1.000	0.978	0.958	1.000	0.980	1.000	0.959	1.000
^	0.915	0.915 0.875 0.972 0.843 1.000 0.948 1.000 0.799 0.886 1.000 0.887 0.891 0.890 1.000 0.948	0.972	0.843	1.000	0.948	1.000	0.799	0.886	1.000	0.887	0.891	0.890	1.000	0.948

MAESTRO Negative Twist

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 3 OF SUBSTR.

STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	1 0.961 0.946 0.953 0.959 0.947 0.956 1.000 0.946 0.977 0.991 0.984 0.969 0.964 0.966	2 0.932 0.914 0.990 0.932 1.000 1.000 0.984 0.852 0.950 1.000 0.989 0.995 0.951 0.990 0.971	3 0.973 0.977 0.996 0.970 1.000 1.000 1.000 0.954 0.987 1.000 0.997 1.000 0.984 0.995 0.990	4 0.970 0.940 0.964 0.960 0.925 0.958 0.995 0.941 0.979 1.000 0.988 1.000 0.984 0.971 0.978	5 0.983 0.996 0.990 0.988 0.996 0.990 0.971 0.984 0.979 0.983 0.987 0.984 1.000 0.985 1.000	6 0.968 0.967 0.997	
FCPH3	6 0.953	4 0.990	7 0.996	0 0.964	06 0 9	7 0.997	-
FYCF1	0.959	0.932	0.970	096.0	0.988	1.000	
FYCF2	0.947	1.000	1.000	0.925	966.0	0.955	
FYCF3	0.956	1.000	1.000	0.958	0.990	1.000	
FYTF1	1.000	0.984	1.000	0.995	0.971	0.951	
FYTF2	0.946	0.852	0.954	0.941	0.984	1.000	_
FYTF3	0.977	0.950	0.987	0.979	0.979	0.992	_
FYCP1	0.991	1.000	1.000	1.000	0.983	0.991	
FYCP2	0.984	0.989	0.997	0.988	0.987	1.000	
FYCP3	0.988	0.995	1.000	1.000	0.984	000 0.955 1.000 0.951 1.000 0.992 0.991 1.000 0.995 1.000 0.988 0.995	
FYTP1	0.969	0.951	0.984	0.984	1.000	1.000	;
FYTP2	0.964	0.990	0.995	0.971	0.985	0.988	
FYTP3	0.966	0.971	0.990	0.978	1.000	0.995	

Appendix I. Comparison of Results for Transverse Hogging

Analytical Transverse Hogging

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR. 1

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
1	0.605	0.605 0.743	0.856	0.810	1.000	1.000	0.899	0.899	0.899 1.000 1.000	1.000	0.556
2	0.716	0.903	0.835	0.744	1.000	1.000	0.833	0.833	1.000	1,000	0.714
m	0.932	0.985	0.956	0.940	1.000	1.000	0.962	0.962	1.000	1.000	0.930
4	0.870	0.952	0.918	0.942	1.000	1.000	0.964	0.964	1.000	1.000	0.860
2	0.934	0.933	0.964	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.922
9	0.920	0.979	0.948	0.971	1.000	1.000	0.982	0.982	1.000	1.000	0.889
_	0.844	0.924	0.897	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.845

MAESTRO Transverse Hogging

1 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF PYTP	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
 	0.480	0.480 0.735	0.796	0.723	0.796 0.723 1.000	1.000	0.849	0.849	1.000	1.000	0.437
2	0.583	0.855	0.752	0.625	1.000	1.000	0.749	0.749	1.000	1.000	0.582
m 	0.890	0.976	0.930	0.905	1.000	1.000	0.940	0.940	1.000	1.000	0.885
4	0.818	0.947	0.887	0.902	1.000	1.000	0.939	0.939	1.000	1.000	0.808
ъ	0.870	0.837	0.940	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.870
9	0.875	0.965	0.919	0.951	1.000	1.000	0.969	0.969	1.000	1.000	0.871
7	0.785	0.849	0.875	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.786

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STR	AKE	FCPH1	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTE1	FYTE2	FYTE3	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	FYCP2	FYCP3	EVTP1	EVTP2	EVTP3
1				1 1 1 1 1 1 1	- 1 1 1 1 1 1 1 1			- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								-
	Н	0.927	0.794	0.907	0.907	1.000	1.000	1.000	0.693	0.839	0.927 0.794 0.907 0.907 1.000 1.000 1.000 0.693 0.839 0.980 0.922 0.960 0.948 1.000 1.000	0.922	0.960	0.948	1.000	1.00(
	2.	0.747	0.794	0.966	0.695	1.000	1.000	1.000	0.667	0.948	0.747 0.794 0.966 0.695 1.000 1.000 1.000 0.667 0.948 1.000 0.939 0.975 0.899 1.000 0.967	0.939	0.975	0.899	1.000	0.96;
	Ж	0.871	0.885	0.991	0.806	1.000	0.980	1.000	0.806	1.000	0.871 0.885 0.991 0.806 1.000 0.980 1.000 0.806 1.000 1.000 0.968 1.000 0.958 1.000 0.979	0.968	1.000	0.958	1.000	0.97
	4	0.978	0.935	0.975	0.965	1.000	1.000	0.959	0.894	0.953	0.978 0.935 0.975 0.965 1.000 1.000 0.959 0.894 0.953 0.984 0.976 0.982 0.986 1.000 1.000	9.976	0.982	0.986	1.000	1.00(
	5	0.945	0.974	0.964	0.921	0.955	0.940	1.000	1.000	1.000	0.945 0.974 0.964 0.921 0.955 0.940 1.000 1.000 1.000 1.000 1.000 1.000 0.957 0.959 0.958	1.000	1.000	0.957	0.959	0.95
	9	0.869	0.877	0.995	1.000	0.807	1.000	0,791	1.000	0.977	6 0.869 0.877 0.995 1.000 0.807 1.000 0.791 1.000 0.977 0.957 1.000 0.979 1.000 0.961 1.000	1.000	0.979	1.000	0.961	1.00
	7	0.862	0.6.0	7 0.862 0.900 0.954 0.783 1.000 0.874 1.000 0.816 1.000 1.000 0.875 1.000 0.874 1.000 0.876	0.783	1.000	0.874	1.000	0.816	1.000	1.000	0.875	1.000	0.874	1.000	0.87

MAESTRO Transverse Hogging

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

0.982 0.947 0.965 0.941 1.000 0.98	0 0.955 0.980 0.905 1.000 0.95	.988 1.000 0.974 1.000 0.98	6 0.964 0.958 1.000 1.00	0.988 0.951 0.980 0.95	.988 1.000 0.981 1.00	7 0.863 0.883 0.965 0.783 1.000 0.868 1.000 0.794 0.874 1.000 0.866 0.868 0.866 1.000 0.895
0.982 0.947 0.965 0.941 1.000	0 0.955 0.980 0.905 1.000	.988 1.000 0.974 1.000	6 0.964 0.958 1.000	0.988 0.951 0.980	.988 1.000 0.981	368 0.866 1.000
0.982 0.947 0.965 0.941	0.955 0.980 0.905	.988 1.000 0.974	6 0.964 0.958	0.988 0.951	.988 1.000	368 0.866
0.982 0.947 0.965	086.0 558 0.980	.988 1.000	6 0.964	0.988	.988	368
0.982 0.947	0 0.955	.988	9		0	0
0.982		0	0.95	0.952	0.993	0.866
_	1.00	1.000	1.000	0.987	0.977	1.000
0.887	0.918	0.991	0.948	1.000	0.985	0.874
0.783	0.730	0.925	0.818	1.000	1.000	0.794
0.976	1.000	1.000	1.000	0.988	0.902	1.000
1.000	1.000	0.989	1.000	0.940	1.000	0.868
1.000	1.000	1.000	1.000	0.952	0.912	1.000
0.906	0.824	0.912	0.882	0.921	1.000	0.783
0.950	0.977	0.990	0.979	0.966	0.993	0.965
0.867	0.848	0.952	0.884	0.978	0.939	0.883
0.919	0.832	0.933	0.919	0.944	0.930	7 0.863 0.883 0.965 0.783 1.000 0.868 1.000 0.794
	7	m	4	ľ	ဖ	
	1 0.919 0.867 0.950 0.906 1.000 1.000 0.976 0.783 0.887 0.98	1 0.919 0.867 0.950 0.906 1.000 1.000 0.976 0.783 0.887 0.982 0.947 0.965 0.941 1.000 0.981 2 0.832 0.848 0.977 0.824 1.000 1.000 1.000 0.730 0.918 1.000 0.955 0.980 0.905 1.000 0.958	1 0.919 0.867 0.950 0.906 1.000 1.000 0.976 0.783 0.887 0.982 0.947 0.965 0.941 1.000 0.981 2 0.832 0.848 0.977 0.824 1.000 1.000 1.000 0.730 0.918 1.000 0.955 0.980 0.905 1.000 0.958 3 0.952 0.990 0.912 1.000 0.989 1.000 0.925 0.991 1.000 0.988 1.000 0.974 1.000 0.989	1 0.919 0.867 0.950 0.906 1.000 1.000 0.783 0.887 0.982 0.947 0.965 0.941 1.000 0.981 2 0.832 0.848 0.977 0.824 1.000 1.000 1.000 0.918 1.000 0.955 0.998 1.000 0.955 0.998 1.000 0.989 1.000 0.925 0.991 1.000 0.989 1.000 0.988 1.000 0.988 1.000 1.000 1.000 0.918 1.000 0.956 0.956 0.958 1.000 1.000 1.000	1 0.919 0.867 0.950 0.906 1.000 0.976 0.783 0.887 0.982 0.947 0.965 0.941 1.000 0.981 1.000 0.973 0.983 1.000 0.973 0.998 1.000 0.925 0.991 1.000 0.989 1.000 0.925 0.998 1.000 0.974 1.000 0.974 1.000 0.989 4 0.919 0.884 0.979 0.882 1.000 1.000 0.818 0.948 1.000 0.956 0.956 0.957 1.000 1.000 5 0.944 0.978 0.966 0.921 0.940 0.988 1.000 1.000 0.987 0.988 1.000 0.988	1 0.919 0.867 0.950 0.906 1.000 0.976 0.783 0.887 0.982 0.947 0.965 0.941 1.000 0.976 0.783 0.887 0.985 0.995 0.995 0.997 1.000 0.989 1.000 0.925 0.991 1.000 0.989 1.000 0.925 0.991 1.000 0.989 1.000 0.989 1.000 0.988 1.000 0.9

THESE VALUES ARE NORMALIZED BETWEEN +1. AND -1. OR NULLIFIED BY USER. CONSTRAINT SATISFIED.
CONSTRAINT VIOLATED.
CONSTRAINT NOT RELEVANT OF
CONSTRAINT SUPPRESSED.
STRAKE NOT EVALUATED. POSITIVE NUMBER: O 1.000 : C -2.000 : C

Analytical Transverse Hogging

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYTP PYCF	PYCP	PSPBT	PSPBL	PFLB
) T I	0.686	0.686 0.872	0.855	0.877	0.985	0.985	0.935	0.935	1.000	1.000	0.651
2	0.806	0.951	0.846	0.861	1.000	1.000	0.912	0.912	1.000	1.000	0.801
٣	0.833	0.655	0.890	0.969	1.000	1.000	0.981	0.981	1.000	1.000	0.628
4	0.879	0.862	0.919	0.985	0.981	0.981	0.991	0.991	1.000	1.000	0.802
Δ.	092.0	0.981	0.819	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.761
9	0.731	0.503	0.834	096.0	1.000	1.000	0.976	0.976	1.000	1.000	0.433
7	0.527	0.918	0.646	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.528

MAESTRO Transverse Hogging

2 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBT PSPBL	PFLB
1	0.604 0.860	098.0	0.814	0.823	0.978	i	0.978 0.905	0.905	1.000	1.000	0.570
2	0.739	0.927	0.816	0.787	1.000	1.000	1.000 0.863	0.863	1.000	1.000	0.740
m	0.807	0.590	0.870	0.956	1.000	1.000	0.971	0.971	1.000	1.000	0.561
4	0.850	0.835	0.902	0.964	0.973	0.973	0.979	0.979	1.000	1.000	0.773
ъ	0.692	0.955	0.763	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.693
9	0.669	0.397	0.788	0.945	1.000	1.000	0.966	996.0	1.000	1.000	0.308
7	0.658	0.894	0.744	1.000	1.000	1,000	1.000	1.000	1.000	1.000	0.659

POSITIVE NUMBER: CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED NEGATIVE NUMBER: CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. 1.000 : CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. -2.000 : CONSTRAINT SUPPRESSED. -- : STRAKE NOT EVALUATED.

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	0.946 0.986 0.978 0.950 1.000 0.988 1.000 0.961 0.992 0.993 0.983 0.988 0.960 0.979 0.970	0.933 0.935 0.997 0.917 1.000 1.000 0.977 0.862 0.918 1.000 0.982 0.992 0.904 0.919 0.912	0.900 0.912 0.993 0.845 0.954 0.899 1.000 0.860 1.000 0.909 0.895 0.902 0.977 1.000 1.000	0.978 0.947 0.984 0.952 0.969 0.963 1.000 0.919 0.974 0.959 0.958 0.958 0.984 1.000 1.000	0.948 0.984 0.982 0.952 0.962 0.959 0.918 0.859 0.891 0.995 0.980 0.980 0.827 0.845 0.836	0.897 0.905 0.991 0.941 0.835 0.886 0.842 1.000 0.985 0.860 0.874 0.867 1.000 0.979 1.000	0 880 0 918 0 976 0 806 1 000 0 025 0 025 0 020 0 020 0 000 1 000 0 000 0
-YCP1 FYCP2	0.993 0.983	1.000 0.982	0.909 0.895	0.959 0.958	0.995 0.980	0.860 0.874	000
FYTE3 F	1 0.992	2 0.918	00 1.000	9 0.974	9 0.891	0 0.985	0 770
YTE1 FYTE2	1.000 0.96	0.977 0.86	1.000 0.86	1.000 0.91	0.918 0.85	0.842 1.00	77 0 020 0
FYCF3 F	0 0.988	000.1	4 0.899	9 0.963	2 0.959	5 0.886	000
:1 FYCF2	50 1.000	17 1.00(345 0.95	92 0.96	952 0.962	941 0.83	1 000
STRAKE FCPH1 FCPH2 FCPH3 FYCF	0.978 0.9	0.997 0.9	0.993 0.8	0.984 0.9	0.982 0.9	0.991 0.9	0 076 0
FCPH2 1	0.986	0.935	0.912	0.947	0.984	0.905	0 918
FCPH1	0.946	0.933	0.900	0.978	0.948	0.897	0880
STRAKE	H	7	er	4		9	

MAESTRO Transverse Hogging

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

FYTP3	0.956	0.907	0.993	1,000	0.790	1.000	0.815
FYTP2	0.968	0.915	1.000	1.000	0.799	0.989	0.827
FYTP1	0.943	0.900	0.987	0.960	0.782	1.000	0.804
FYCP3	0.986	0.994	0.882	0.945	0.993	0.830	0.871
FYCP2	0.980	0.986	0.942 0.958 0.991 0.836 0.917 0.875 1.000 0.929 1.000 0.888 0.877 0.882 0.987 1.000 0.993	0.940	0.979	0.836	0.860
FYCP1	0.991	1.000	0.888	0.951	0.993	0.824	0.880
FYTF3	0.986	0.913	1.000	0.954	0.857	0.988	0.839
FYTF2	0.943	0.855	0.929	0.832	0.822	1.000	092.0
FYTF1	1.000	0.974	1.000	1.000	0.891	0.913	0.910
FYCF3	0.984	1.000	0.875	0.958	0.956	0.851	0.871
FYCF2	1.000	1.000	0.917	1.000	0.958	0.804	1.000
FYCF1	0.946	0.944	0.836	0.870	0.953	0.900	0.776
FCPH3	0.974	0.997	0.991	0.982	0.978	0.990	0.983
FCPH2	0.985	0.945	0.958	0.893	0.987	0.955	0.886
FCPH1	0.934 0.985 0.974 0.946 1.000 0.984 1.000 0.943 0.986 0.991 0.980 0.986 0.943 0.968 0.956	0.942 0.945 0.997 0.944 1.000 1.000 0.974 0.855 0.913 1.000 0.986 0.994 0.900 0.915 0.907	0.942	0.926 0.893 0.982 0.870 1.000 0.958 1.000 0.832 0.954 0.951 0.940 0.945 0.960 1.000 1.000	0.943 0.987 0.978 0.953 0.958 0.956 0.891 0.822 0.857 0.993 0.979 0.993 0.782 0.799 0.790	0.940 0.955 0.990 0.900 0.804 0.851 0.913 1.000 0.988 0.824 0.836 0.830 1.000 0.989 1.000	0.871 0.886 0.983 0.776 1.000 0.871 0.910 0.760 0.839 0.880 0.860 0.871 0.804 0.827 0.815
STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	H	2	m	4	2	9	

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY PCSB	PCSB	PYTF	PYTP	PYTF PYTP PYCF PYCP	PYCP	PSPBT	PSPBT PSPBL PFLB	PFLB
Π,	0.750	0.750 0.949	0.884	0.874	1.000	1.000	0.884 0.874 1.000 1.000 0.883 0.883 1.000 1.000	0.883	1.000	1.000	0.749
2	0.240	0.729	0.635	0.325	1.000	1.000	0.693	0.693	1.000	1.000	0.237
3	0.266	0.387	0.677	0.638	1.000	1.000		0.807 0.807	1.000	1.000	0.210
'n	0.376	0.276	0.697	1.000	1.000	1.000	1.000	1.000	1 000	1.000	0.376
9	0.786	0.946	0.937	0.930	0.983		0.983 0.935	0.935	1.000	1.000	0.703

MAESTRO Transverse Hogging

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY PCSB	PCSB	PYTF	PYTP PYCF PYCP	PYCF	PYCP		PSPBT PSPBL PFLB	PFLB
 	0.664 0.937	0.664 0.937	0.853	0.853 0.846	1.000	1.000 1.000 0.857 0.857 1.000	0.857	0.857	1.000	1.000	1.000 0.655
7	-0.007	0.575	0.451	0.120	1.000	1.000	0.543	0.543	1.000	1.000	-0.010
	0.017	0.226	0.625	0.444	1.000	1.000	0.686	0.686	1.000	1.000	-0.024
Ŋ	0.381	0.277	0.681	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.381
9	0.733	0.733 0.928	0.934	0.930	0.930 0.979	0.979	0.935	0.935	1.000	1.000	0.630

Analytical Transverse Hogging

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR. 2

STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH1	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
 	0.812 0.791 0.987 1.000 0.621 0.821 0.690 1.000 0.986 0.822 1.000 0.828 0.990 0.825 0.981	0.791	0.987	1.000	0.621	0.821	0.690	1.000	0.986	0.822	1.000	0.828	0.990	0.825	0.981
7	0.721	0.751	0.975	0.721 0.751 0.975 0.623 1.000 1.000 1.000 0.488 0.748 1.000 0.770 1.000 0.754 0.902 0.767	1.000	1.000	1.000	0.488	0.748	1.000	0.770	1.000	0.754	0.902	0.767
M	0.778 0.921 0.863 0.853 0.918 0.964 0.902 0.879 0.968 0.948 0.974 0.962 0.721 0.811 0.765	0.921	0.863	0.853	0.918	0.964	0.902	0.879	0.968	0.948	0.974	0.962	0.721	0.811	0.765
Ŋ	5 0.846 0.975 0.918 0.931 0.954 0.943 0.616 0.751 0.683 0.951 0.946 0.949 0.807 0.757 0.783	0.975	0.918	0.931	0.954	0.943	0.616	0.751	0.683	0.951	0.946	0.949	0.807	0.757	0.783
9	6 0.812 0.779 0.980 0.663 1.000 0.934 1.000 0.627 0.820 0.976 0.817 0.822 0.819 1.000 1.000	0.779	0.980	0.663	1.000	0.934	1.000	0.627	0.820	0.976	0.817	0.822	0.819	1.000	1.000

MAESTRO Transverse Hogging

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR. 2

STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
	1 0.820 0.803 0.979 1.000 0.649 0.833 0.694 1.000 0.965 0.830 1.000 0.836 0.954 0.834 0.950	0.803	0.979	1.000	0.649	0.833	0.694	1.000	0.965	0.830	1.000	0.836	0.954	0.834	0.950
7	0.718 0.760 0.967 0.626 1.000 1.000 1.000 0.494 0.752 1.000 0.763 0.772 0.771 0.874 0.824	092.0	0.967	0.626	1.000	1.000	1.000	0.494	0.752	1.000	0.763	0.772	0.771	0.874	0.824
m	3 0.672 0.935 0.794 0.748 0.966 0.921 0.890 0.849 0.938 0.934 0.957 0.945 0.621 0.748 0.682	0.935	0.794	0.748	0.966	0.921	0.890	0.849	0.938	0.934	0.957	0.945	0.621	0.748	0,682
Ŋ	0.725	0.971	0.725 0.971 0.854 0.946 0.956 0.954 0.448 0.650 0.551 0.955 0.951 0.953 0.702 0.647 0.680	0.946	0.956	0.954	0.448	0.650	0.551	0.955	0.951	0.953	0.702	0.647	0.680
9	0.819	0.795	0.819 0.795 0.986 0.685 1.000 0.972 1.000 0.644 0.830 0.969 0.826 0.832 0.831 1.000 1.000	0.685	1.000	0.972	1.000	0.644	0.830	0.969	0.826	0.832	0.831	1.000	1.000

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

STRAKE	STRAKE PCSF PCCB	STRAKE PCSF PCCB	PCMY	PCSB	PYTF	PYTF PYTP PYCF	PYCF	PYCP	PSPBT	PSPBL	PFLB
1	0.488	0.488 0.747	0.839	0.745	1.000	1.000	0.862	0.862	0.862 1.000	1.000	0.469
7	0.510	0.885	0.692	0.603	1.000	1.000	0.729	0.729	1.000	1.000	0.499
m	0.875	0.981	0.941	0.924	1.000	1.000	0.951	0.951	1.000	1.000	0.874
4	0.841	996.0	0.930	0.874	1.000	1.000	0.954	0.954	1.000	1.000	0.844
. ∽	0.845	0.847	0.870	1.000	1.000	1.000	1.000	1.000	1,000	1,000	0.832
9	0.895	696.0	0.945	0.970	0.987	0.987	0.981	0.981	1.000	1.000	0.829
	0.776	0.776 0.868	0.816	1.000	1.000	1,000	1.000	1.000	1.000	1.000	0.777

MAESTRO Transverse Hogging

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

4								
1 1 1 1	PFLB	0.290	0.285	0.807	0.730	0.795	0.809	0.790
1 1 1 1 1 1	PSPBL	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PSPBT	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	PYCP PSPBT PSPBL	0.797	0.611	0.919	0.919	1.000	0.963	1.000
	PYCF	0.797	0.611	0.919	0.919	1.000	0.963	1.000
	PYTP	0.775 0.637 1.000 1.000	1.000	1.000	1.000	1.000	0.994	1.000
	PYTF	1.000	1.000	1.000	1.000	1.000	0.994	1.000
	PCSB PYTF	0.637	0.448	0.876	0.783	1.000	0.943	1.000
בוי אחרטבט	PCMY	0.775	0.555	0.905	0.874	0.850	0.911	0.816
יויאאריי	PCCB	0.648	0.821	0.969	0.936	0.725	0.934	0.767
י אטרעטאין	STRAKE PCSF PCCB	0.325 0.648	0.299	0.807	0.725	0.795	0.848	0.790 0.767
בוטדיבת האוהו אטהעטאני האואייה אאייבוני	STRAKE PCSF PCCB	1	2	m	4	2	9	
T Z	+							

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

FYTP3	0.934	0.921	0.967	0.483	0.886	1.000	0.978
FYTP2	0.936	0.871 0.888 0.983 0.880 1.000 1.000 1.000 0.751 0.906 1.000 0.977 1.000 0.894 0.949 0.921	0.860 0.868 0.994 0.827 1.000 1.000 1.000 0.793 0.972 1.000 0.977 1.000 0.932 1.000 0.967	0.839 0.840 0.974 1.000 0.450 0.483 0.461 1.000 0.757 0.483 1.000 1.000 1.000 0.483 0.483	0.968 0.980 0.985 0.962 0.960 0.963 0.943 0.906 0.925 0.975 0.976 0.975 0.882 0.891 0.886	0.856 0.855 0.993 1.000 0.798 0.979 0.800 1.000 0.981 0.953 0.989 0.978 1.000 0.954 1.000	0.974
FYTP1	0.932	0.894	0.932	1.000	0.882	1.000	0.948
FYCP3	0.967	1.000	1.000	1.000	0.975	0.978	0.943
FYCP2	0.965	0.977	0.977	1.000	0.976	0.989	0.940
FYCP1	0.970	1.000	1.000	0.483	0.975	0.953	0.944
FYTF3	0.927	906.0	0.972	0.757	0.925	0.981	0.927
FYTF2	0.918	0.751	0.793	1.000	906.0	1.000	0.917
FYTF1	0.935	1.000	1.000	0.461	0.943	0.800	0.914
FYCF3	0.925	1.000	1.000	0.483	0.963	0.979	0.943
FYCF2	0.930	1.000	1.000	0.450	096.0	0.798	0.976
FYCF1	0.921	0.880	0.827	1.000	0.962	1.000	0.901
FCPH3	0.927	0.983	0.994	0.974	0.985	0.993	0.932
CPH1 FCPH2 FCPH3 FYCF	0.930	0.888	0.868	0.840	0.980	0.855	0.939
STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	0.923 0.930 0.927 0.921 0.930 0.925 0.935 0.918 0.927 0.970 0.965 0.967 0.932 0.936 0.934	0.871	0.860	0.839	0.968	0.856	0.924 0.939 0.932 0.901 0.976 0.943 0.914 0.917 0.927 0.944 0.940 0.943 0.948 0.974 0.978
STRAKE	Ħ [°]	2	m	4	Ŋ	9	7

MAESTRO Transverse Hogging

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

1)			;							
	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH1	FCPH2	CPH2 FCPH3 FYC	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTE3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
	+	0.896 0.881 0.888 0.896 0.876 0.886 0.919 0.907 0.913 0.956 0.951 0.954 0.904 0.895 0.900	0.881	0.888	0.896	0.876	0.886	0.919	0.907	0.913	0.956	0.951	0.954	0.904	0.895	0.900
	7	0.880	0.919	0.979	0.951	1.000	1.000	0.940	0.736	0.855	0.880 0.919 0.979 0.951 1.000 1.000 0.940 0.736 0.855 1.000 0.984 1.000 0.861 0.893 0.877	0.984	1.000	0.861	0.893	0.877
	m	0.928 0.936 0.991 0.917 1.000 1.000 1.000 0.864 0.964 1.000 1.000 1.000 0.943 0.970 0.956	0.936	0.991	0.917	1,000	1.000	1.000	0.864	0.964	1.000	1.000	1.000	0.943	0.970	0.956
	4	0.838	0.805	0.838 0.802 0.962 1.0	1.000	0.399	0.440	0.425	0.892	0.918	000 0.399 0.440 0.425 0.892 0.918 0.441 1.000 1.000 0.939 0.441 0.442	1.000	1.000	0.939	0.441	0.442
,	אַ	0.961	0.986	0.961 0.986 0.982	0	0.951	0.956	0.919	0.873	0.896	0.961 0.951 0.956 0.919 0.873 0.896 0.960 0.962 0.961 0.851 0.862 0.857	0.962	0.961	0.851	0.862	0.857
	ဖ	0.944 0.942 0.993	0.942	0.993	+i	0.919	0.991	0.919	1.000	0.987	000 0.919 0.991 0.919 1.000 0.987 0.969 0.985 0.977 1.000 0.981 0.992	0,985	0.977	1.000	0.981	0.992
	7 0.908 0.943 0.936 0.923 0.929 0.958 0.885 0.946 0.922 0.953 0.955 0.955 0.972 0.964 0.969	0.908	0.943	0.936	0.923	0.929	0.958	0.885	0.946	0.922	0.953	0.955	0.955	0.972	0.964	0.969

VIOLATED. | THESE VALUES ARE NORMALIZED VIOLATED. | BETWEEN +1. AND -1. NOT RELEVANT OR NULLIFIED BY USER. CONSTRAINT S CONSTRAINT V CONSTRAINT N CONSTRAINT S STRAKE NOT E POSITIVE NUMBER: C NEGATIVE NUMBER: C 1.000 : C

3 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
; —	0.530 0.824	0.824	0.855	0.745	1.000	1.000	1.000 1.000 0.862	0.862	1.000	1.000	0.514
2	0.619	0.893	0.765	0.657	1.000	1.000	0.768	0.768	1.000	1.000	0.619
m	0.904	086.0	0.940	0.919	1.000	1.000	0.949	0.949	1.000	1.000	0.902
4	0.865	0.979	0.917	0.919	1.000	1.000	0.949	0.949	1.000	1.000	0.861
יס	0.879	0.847	0.952	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.879
9	0.913	0.973	0.946	0.961	1.000	1.000	0.976	0.976	1,000	1.000	0.884
7	0.830	0.830 0.844	0.907	1.000	1.000	1.000	1.000	1.000	1,000	1.000	0.830

MAESTRO Transverse Hogging

3 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTE	PYTP	PYCF		PYCP PSPBT	PSPBL	PFLB
 	0.373 0.764	0.764	0.773	0.637	1.000	0.773 0.637 1.000 1.000	0.797	0.797	1.000	1.000	0.348
2	0.444	0.845	0.653	0.516	1.000	1.000	0.663	0.663	1.000	1.000	0.442
m	0.851	0.967	0.904	0.870	1.000	1.000	0.918	0.918	1.000	1.000	0.848
4	0.800	0.964	0.875	0.869	1.000	1.000	0.916	0.916	1.000	1.000	0.794
ν.	0.808	0.722	0.932	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.808
9	0.856	0.958	0.911	0.932	1.000	1.000	0.958	0.958	1.000	1.000	0.847
	0.756	0.768	0.870	1.000	1.000	1.000	1.000 1.000	1.000	1,000	1.000	0.757

3 OF SUBSTR. INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYCF3 FYTF1 FYTF3 FYCP1 FYCP3 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2"	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
 	0.929 0.925 0.934 0.922 0.932 0.944 1.000 0.882 0.947 0.987 0.982 0.980 0.980 0.944 0.947	0.925	0.934	0.922	0.932	0.944	1.000	0.882	0.947	0.987	0.972	0.980	0.950	0.944	0.947
7	0.870	0.840	0.983	0.859	1.000	1.000	1.000	0.741	0.928	0.870 0.840 0.983 0.859 1.000 1.000 1.000 0.741 0.928 1.000 0.976 0.989 0.916 0.985 0.955	0.976	0.989	0.916	0.985	0.955
m	0.845	0.850	0.994	0.795	1.000	1.000	1.000	0.780	0.976	0.845 0.850 0.994 0.795 1.000 1.000 1.000 0.780 0.976 1.000 0.963 1.000 0.938 1.000 0.974	0.963	1.000	0.938	1.000	0.974
4	0.909	0.819	0.949	1.000	0.759	0.928	0.852	1.000	0.954	0.909 0.819 0.949 1.000 0.759 0.928 0.852 1.000 0.954 0.954 1.000 1.000 1.000 0.919 0.947	1.000	1.000	1.000	0.919	0.947
2	0.973	0.986	0.984	0.954	0.969	996.0	0.964	1.000	0.972	0.973 0.986 0.984 0.954 0.969 0.966 0.964 1.000 0.972 0.972 0.974 0.975 1.000 0.969 0.971	0.974	0.975	1,000	0.969	0.971
9	0.841	0.841	0.994	1.000	0.782	1.000	0.776	1.000	0.976	0.841 0.841 0.994 1.000 0.782 1.000 0.776 1.000 0.976 0.952 1.000 0.978 1.000 0.945 0.977	1.000	0.978	1.000	0.945	0.977
_	0.906	0.899	0.978	0.840	1.000	0.971	1.000	0.826	0.898	1.000	0.896	0.899	0.899	0.978	0.906 0.899 0.978 0.840 1.000 0.971 1.000 0.826 0.898 1.000 0.896 0.899 0.899 0.978 0.975

MAESTRO Transverse Hogging

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 3 OF SUBSTR.

STRAKE	FCPH1 FCPH2	FCPH2	FCPH3 FY	<u>~</u>	13 FYCF1	13 FYCF1 FYCF2	13 FYCF1 FYCF2 FYCF3	13 FYCF1 FYCF2 FYCF3 FYTF1	13 FYCF1 FYCF2 FYCF3 FYTF1 FYTF2	13 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3	13 FYCF1 FYCF2 FYCF3 FYTF1 FYTF2 FYTF3 FYCP1	13 FYCF1 FYCF2 FYCF3 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2	13 FYCF1 FYCF2 FYCF3 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3	13 FYCF1 FYCF2 FYCF3 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF3 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3
H	0.927	0.825	0.889	0.933	0	813	813 0.900	813 0.900 0.992	813 0.900 0.992 0.904	813 0.900 0.992 0.904 0.950	813 0.900 0.992 0.904 0.950 0.981	813 0.900 0.992 0.904 0.950 0.981 0.970	813 0.900 0.992 0.904 0.950 0.981 0.970 0.976	813 0.900 0.992 0.904 0.950 0.981 0.970 0.976 0.937	1 0.927 0.825 0.889 0.933 0.813 0.900 0.992 0.904 0.950 0.981 0.970 0.976 0.937 0.895 0.916
2	0.872	0.812	0.965	0.890	1.0	8	00 1.000	00 1.000 0.939	00 1.000 0.939 0.682	00 1.000 0.939 0.682 0.876	00 1.000 0.939 0.682 0.876 1.000	00 1.000 0.939 0.682 0.876 1.000 0.979	00 1.000 0.939 0.682 0.876 1.000 0.979 0.990	00 1.000 0.939 0.682 0.876 1.000 0.979 0.990 0.888	0.872 0.812 0.965 0.890 1.000 1.000 0.939 0.682 0.876 1.000 0.979 0.990 0.888 0.972 0.930
m	0.938	0.940	0.993	0.930	1.000		1.000	1.000 1.000	1.000 1.000 0.898	1.000 1.000 0.898 0.972	1.000 1.000 0.898 0.972 1.000	1.000 1.000 0.898 0.972 1.000 0.991	1.000 1.000 0.898 0.972 1.000 0.991 1.000	1.000 1.000 0.898 0.972 1.000 0.991 1.000 0.963	0.938 0.940 0.993 0.930 1.000 1.000 1.000 0.898 0.972 1.000 0.991 1.000 0.963 0.991 0.979
4	0.961	0.815	0.921	0.995	0.763		0.906	0.906 0.913	0.906 0.913 0.938	0.906 0.913 0.938 0.965	0.906 0.913 0.938 0.965 1.000	0.906 0.913 0.938 0.965 1.000 1.000	0.906 0.913 0.938 0.965 1.000 1.000 1.000	0.906 0.913 0.938 0.965 1.000 1.000 1.000 0.960	0.961 0.815 0.921 0.995 0.763 0.906 0.913 0.938 0.965 1.000 1.000 1.000 0.960 0.913 0.940
2	096.0	0.995	0.981	096.0	0.991		0.970	0.970 0.924	0.970 0.924 0.953	0.970 0.924 0.953 0.944	0.970 0.924 0.953 0.944 0.951	0.970 0.924 0.953 0.944 0.951 0.969	0.970 0.924 0.953 0.944 0.951 0.969 0.953	0.970 0.924 0.953 0.944 0.951 0.969 0.953 1.000	0.960 0.995 0.981 0.960 0.991 0.970 0.924 0.953 0.944 0.951 0.969 0.953 1.000 0.952 1.000
9	0.937	0.937	0.993	1.000	0.916		1.000	1.000 0.905	1.000 0.905 1.000	1.000 0.905 1.000 0.983	1.000 0.905 1.000 0.983 0.982	1.000 0.905 1.000 0.983 0.982 0.994	1.000 0.905 1.000 0.983 0.982 0.994 0.989	1.000 0.905 1.000 0.983 0.982 0.994 0.989 1.000	0.937 0.937 0.993 1.000 0.916 1.000 0.905 1.000 0.983 0.982 0.994 0.989 1.000 0.975 0.990
	0.934	0.918	0.984	0.886	0.967		1.000	1.000 0.963	1.000 0.963 0.855	1.000 0.963 0.855 0.918	1.000 0.963 0.855 0.918 0.939	1.000 0.963 0.855 0.918 0.939 0.917	1.000 0.963 0.855 0.918 0.939 0.917 0.920	1.000 0.963 0.855 0.918 0.939 0.917 0.920 0.921	0.934 0.918 0.984 0.886 0.967 1.000 0.963 0.855 0.918 0.939 0.917 0.920 0.921 0.972 0.976

CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. CONSTRAINT SUPPRESSED. STRAKE NOT EVALUATED.

Appendix J. Comparison of Results for Transverse Sagging

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYCP	PSPBT	PSPBL	PFLB
	0.655	0.655 0.859	0.864	0.824	1.000	1.000	1.000 0.906	0.906	1.000	1.000	0.624
2	0.719	0.915	0.843	0.758	1.000	1.000	0.842	0.842	1.000	1.000	0.718
m	0.932	986.0	0.957	0.943	1.000	1.000	0.964	0.964	1.000	1 000	0.929
4	0.879	0.975	0.924	0.937	1.000	1.000	0.962	0.962	1.000	1.000	0.874
2	0.862	0.791	0.954	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.862
9	0.913	0.974	0.946	0.968	1.000	1.000	086.0	0.980	1.000	1.000	0.908
7	0.835	0.835 0.877	0.908	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.835

MAESTRO Transverse Sagging

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

PFLB	0.435	0.540	0.872	0.798	0.859	0.855	0.782
PSPBL	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PSPBT	1.000	1.000	1.000	1.000	1,000	1.000	1.000
PYCP	0.839	0.727	0.934	0.933	1.000	0.965	1.000
PYCF	0.839	0.727	0.934	0.933	1,000	0.965	1.000
PYTP	1.000	1.000	1.000	1.000	1,000	1.000	1.000
PYTF	1.000	1.000	1.000	1.000	1,000	1.000	1.000
PCSB	0.707	0.594	0.897	0.891	1,000	0.945	1.000
PCMY :	0.773	0.730	0.924	0.882	0.923	0.910	0.877
PCCB	0.819	0.842	0.970	0.949	0.835	0.962	0.828
STRAKE PCSF PCCB	0.458	0.541	0.879	0.808	0.859	0.861	0.781
STRAKE	T	2	m	4	25	9	

POSITIVE NUMBER: CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED NEGATIVE NUMBER: CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. 1.000 : CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. -2.000 : CONSTRAINT SUPPRESSED.

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF3 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH1	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
	0.986	0.986 0.976 0.989 0.990 0.985 1.000 0.959 0.980 0.976 0.981 0.987 0.984 0.988 0.995 0.992	0 686 0 926 0	0.990	0.985	1.000	0.959	0.980	0.976	0.981	0.987	0.984	0.988	0.995	0.992
7	0.965	0.965 0.978 0.983 1.000 1.000 1.000 0.898 0.931 0.936 0.984 0.991 0.990 0.970 0.983 0.976	0.983	1.000	1.000	1.000	0.898	0.931	0.936	0.984	0.991	0.990	0.970	0.983	0.976
æ	0.956	0.956 0.950 0.995	0.995	1.000	0.928	0.994	0.918	1.000	0.991	0.989	1.000	1.000 0.928 0.994 0.918 1.000 0.991 0.989 1.000 1.000 1.000 0.984 0.992	1.000	0.984	0.992
4	0.896	0.896 0.878 0.989 0.852 1.000 1.000 1.000 0.813 0.954 1.000 0.951 0.960 0.950 1.000 0.963	0.989	0.852	1.000	1.000	1.000	0.813	0.954	1.000	0.951	096.0	0.950	1.000	0.963
Ŋ	0.971	0.971 0.981 0.977 1.000 1.000 1.000 0.960 0.972 0.967 0.977 0.979 0.979 1.000 1.000 1.000 1.000	0.977	1.000	1.000	1.000	096.0	0.972	0.967	0.977	0.979	0.979	1.000	1.000	1.000
9	0.957	0.957 0.950 0.996 0.929 1.000 1.000 1.000 0.918 0.990 1.000 0.981 0.989 0.989 1.000	966.0	0.929	1.000	1.000	1.000	0.918	0.990	1.000	0.981	0.989	0.989	1.000	1.000
7	0.929 0.	0.929 0.930 0.996 0.8	0.996	0.883	1.000	0.934	1.000	0.879	0.927	1.000	0.925	883 1.000 0.934 1.000 0.879 0.927 1.000 0.925 0.927 0.926 1.000 1.000	0.926	1.000	1.000

MAESTRO Transverse Sagging

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

		*****	*****							1					
STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTE3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
H	0.847 0.946 0.931 0.828 1.000 0.944 1.000 0.890 1.000 0.991 0.967 0.981 0.920 1.000 0.960	0.946	0.931	0.828	1.000	0.944	1.000	0.890	1.000	0.991	0.967	0.981	0.920	1.000	096.0
7	0.927	0.927 0.923 0.986 0.961 1.000 1.000 0.885 0.826 0.886 0.983 0.977 0.983 0.932 0.983 0.957	0.986	0.961	1.000	1.000	0.885	0.826	0.886	0.983	0.977	0.983	0.932	0.983	0.957
m	0.935 0.924 0.991 1.000 0.892 0.990 0.881 1.000 0.987 0.981 1.000 0.989 1.000 0.981 0.991	0.924	0.991	1.000	0.892	0.990	0.881	1.000	0.987	0.981	1.000	0.989	1.000	0.981	0.991
4	0.833 0.825 0.993 0.768 1.000 0.955 1.000 0.744 0.939 1.000 0.925 0.940 0.922 1.000 0.943	0.825	0.993	0.768	1.000	0.955	1.000	0.744	0.939	1.000	0.925	0.940	0.922	1.000	0.943
א	0.891 0.952 0.952 0.851 0.913 0.884 1.000 1.000 1.000 1.000 0.978 1.000 0.957 0.930 0.929	0.952	0.922	0.851	0.913	0.884	1.000	1,000	1.000	1.000	0.978	1.000	0.927	0.930	0.929
9	0.941	0.941 0.935 0.994 0.910 1.000 1.000 1.000 0.891 0.986 1.000 0.977 0.986 0.985 1.000 1.000	0.994	0.910	1.000	1.000	1.000	0.891	0.986	1.000	0.977	0.986	0.985	1.000	1.000
7	7 0.864 0.901 0.965 0.795 1.000 0.878 1.000 0.820 1.000 1.000 0.877 0.879 0.878 1.000 0.897	0.901	0.965	0.795	1.000	0.878	1.000	0.820	1.000	1.000	0.877	0.879	0.878	1.000	0.897

SAIISFIED. | THESE VALUES ARE NORMALIZED VIOLATED. | BETWEEN +1. AND -1. NOT RELEVANT OR NULLIFIED BY USER. CONSTRAINT V
CONSTRAINT V
CONSTRAINT N
CONSTRAINT S
STRAKE NOT E POSITIVE NUMBER: C 1.000 : C -2.000 : C : S

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

STRAKE PCSF	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYTF PYTP PYCF PYCP	PSPBT	PSPBT PSPBL	PFLB
1	0.773	0.773 0.915	0.910		0.903 0.989	686'0	0.949	0.949	1.000	1.000	0.748
7	0.857	0.962	0.920	0.872	0.872 1.000	1.000	0.919	0.919	1.000	1.000	0.856
m	0.904	0.798	0.939	0.979	1.000	1.000	0.986	0.986	1.000	1.000	0.780
4	0.914	0.934	0.945	0.978	0.985	0.985	0.988	0.988	1.000	1.000	0.889
2	0.882	0.887	0.912	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.882
9	0.829	0.670	0.894	0.971	1.000	1.000	0.983	0.983	1.000	1.000	0.598
_	0.749	0.659	0.877	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.749

MAESTRO Transverse Sagging

2 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP PYCF	PYCF	PYCP	PSPBT	PSPBL	PFLB
1 1 1 1 1 1 1 1	1 0.618	0.618 0.925	0.789	0.817	0.973		0.973 0.902 0.902	0.902	1.000	1.000	0.596
2	0.740	0.927	0.826	0.768	1.000	1.000	0.850	0.850	1.000	1.000	0.741
κ	0.811		0.875	0.954	1.000	1.000	0.970	0.970	1.000	1.000	0.582
4	0.852	0.844	0.911	0.955	0.965	0.965	0.974	0.974	1.000	1.000	0.759
٠.	0.605	0.940	0.689	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.606
9	0.670	0.391	0.783	0.938	1.000	1.000	0.962	0.962	1.000	1.000	0.296
7	0.442	0.288	0.712	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.443

POSITIVE NUMBER: CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED NEGATIVE NUMBER: CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. 1.000 : CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. -2.000 : CONSTRAINT SUPPRESSED. -- : STRAKE NOT EVALUATED.

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
; ; ; - ;	0.976	0.993	0.976 0.993 0.991 0.980 1.000 0.996 0.991 0.978 0.993 0.991 0.990 0.991 0.989 0.985	0.980	1.000	0.996	0.991	0.978	0.993	0.991	0.990	0.991	0.980	0.989	0.985
7	0.983	0.987	0.983 0.987 0.998 0.995 1.000 1.000 0.984 0.953 0.972 1.000 0.999 0.999 0.968 0.973 0.970	0.995	1,000	1.000	0.984	0.953	0.972	1.000	0.999	0.999	0.968	0.973	0.970
m	0.977	0.968	0.977 0.968 0.995 0.946 0.941 0.943 0.959 1.000 1.000 0.948 0.949 0.949 1.000 0.991 0.996	0.946	0.941	0.943	0.959	1.000	1.000	0.948	0.949	0.949	1,000	0.991	0.996
4	0.908	0.887	0.908 0.887 0.987 0.854 1.000 0.968 1.000 0.819 0.954 0.978 0.952 0.959 0.955 1.000 1.000	0.854	1.000	0.968	1.000	0.819	0.954	0.978	0.952	0.959	0.955	1.000	1.000
2	0.978	0.985	0.978 0.985 0.982 0.996 0.993 0.994 0.965 0.955 0.960 0.982 0.984 0.983 0.926 0.928 0.927	0.996	0.993	0.994	0.965	0.955	096.0	0.982	0.984	0.983	0.926	0.928	0.927
9	0.976	0.967	0.976 0.967 0.995 0.940 0.909 0.925 1.000 0.951 0.992 0.917 0.921 0.999 0.996 1.000 1.000	0.940	0.909	0.925	1.000	0.951	0.992	0.917	0.921	0.919	0.996	1.000	1.000
7	0.922 0.912 0.968 0.857 0.955 0.912 1.000 0.854 0.912 0.979 0.910 0.912 0.910 1.000 0.912	0.912	0.968	0.857	0.955	0.912	1.000	0.854	0.912	0.979	0.910	0.912	0.910	1,000	0.912

MAESTRO Transverse Sagging

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

FYTP3	0.940	0.923	0.997	1.000	0.736	1.000	0.851
FYTP2	0.953	0.929	0.994	1.000	0.743	1.000	1.000
FYTP1	0.927	0.918	1.000	0.923	0.728	1.000	0.846
FYCP3	0.985	0.997	0.891	0.927	0.986	0.825	0.867
FYCP2	0.977	0.994	0.890	0.915	0.986	0.827	0.851
FYCP1	1.000	1.000	0.891	0.945	1.000	0.822	0.890
FYTF3	0.979	0.927	1.000	0.927	0.797	0.987	1.000
FYTF2	0.927	0.881	1.000	0.742	0.767	0.957	0.798
FYTF1	1.000	0.975	0.964	1.000	0.828	0.975	1.000
FYCF3	0.955	1.000	0.878	0.929	0.920	0.845	0.833
FYCF2	1.000	1.000	0.879	1.000	0.927	0.827	1.000
FYCF1	0.906	976.0	0.877	0.748	0.913	0.864	0.710
FCPH3	0.963	0.998	0.990	0.986	0.954	0.991	0.971
FCPH2	0.986	0.961	0.965	0.830	0.960	0.970	0.885
FCPH1	0.923 0.986 0.963 0.906 1.000 0.955 1.000 0.927 0.979 1.000 0.977 0.985 0.927 0.953 0.940	0.957 0.961 0.998 0.976 1.000 1.000 0.975 0.881 0.927 1.000 0.994 0.997 0.918 0.929 0.923	0.980 0.965 0.990 0.877 0.879 0.878 0.964 1.000 1.000 0.891 0.890 0.891 1.000 0.994 0.997	4 0.851 0.830 0.986 0.748 1.000 0.929 1.000 0.742 0.927 0.945 0.915 0.927 0.923 1.000 1.000	0.948 0.960 0.954 0.913 0.927 0.920 0.828 0.767 0.797 1.000 0.986 0.986 0.728 0.743 0.736	0.977 0.970 0.991 0.864 0.827 0.845 0.975 0.957 0.987 0.822 0.827 0.825 1.000 1.000 1.000	7 0.835 0.885 0.971 0.710 1.000 0.833 1.000 0.798 1.000 0.890 0.851 0.867 0.846 1.000 0.851
STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYCF1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3		7	m	4	Ŋ	ဖု	<u> </u>

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR.

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	PYTF PYTP PYCF PYCP PSPBT	PSPBT	PSPBL	PFLB
	0.780	0.780 0.966	0.910	0.912	1.000	1.000	1.000 1.000 0.919	0.919	0.919 1.000	1.000	0.772
7	0.213	0.721	009.0	0.340	1.000	1.000 1.000	0.678	0.678	1.000	1.000	0.206
m	0.217	0.435	0.767	0.592	1.000	1.000	0.779	0.779	1.000	1.000	0.187
2	0.651	0.566	0.828 1	1.000		1.000 1.000	1.000	1.000	1.000	1.000	0.651
9	0.834 0.965	0.965	0.964	0.968	0.986	0.986	0.970	0.970	1.000	1.000	0.770

MAESTRO Transverse Sagging

PFLB	0.632	-0.069	-0.083	0.474	0.639
PSPBT PSPBL	1.000	1.000	1.000	1.000	1.000 1.000
PSPBT	1.000	1.000	1.000	1.000	1.000
PYCP	0.861	0.500	0.646	1.000	0.947
	0.861	0.500	0.646	1.000	0.947
 PYTP	0.849 1.000 1.000 0.861	1.000	1.000	1.000	0.979
PYTF	1.000	1.000	1.000	1.000	0.979
PCMY PCSB PYTF PYTP PYCF	0.849	0.078	0.385	1.000	0.942
PCMY	0.849	0.395	0.627	0.718	0.937
PCCB	0.937	0.526	0.207	0.370	0.739 0.926
1	0.644 0.937	-0.067 0.526	-0.055 0.207	0.474	0.739
STRAKE	1 1 1 1 1 1 1 1	2	m	Σ	9

POSITIVE NUMBER: CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED NEGATIVE NUMBER: CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. 1.000 : CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. -2.000 : CONSTRAINT SUPPRESSED. -- : STRAKE NOT EVALUATED.

Analytical Transverse Sagging

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR. 2

STRAKE	П	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTE3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
; ; ; ; , ; ;	0.903 0.896 0.986 1.000 0.814 0.913 0.822 0.983 0.966 0.910 1.000 0.913 0.960 0.912 0.960	0.896	.903 0.896 0.986 1.0	1.000	0.814	0.913	0.822	0.983	0.966	0.910	1.000	0.913	096.0	0.912	096.0
2	0.851	0.880	0.977	0.851 0.880 0.977 0.795 1.000 1.000 1.000 0.724 0.874 0.883 0.867 0.877 0.864 0.925 0.894	1.000	1.000	1.000	0.724	0.874	0.883	0.867	0.877	0.864	0.925	0.894
	0.775	0.958	0.862	0.775 0.958 0.862 0.820 1.000 0.940 0.938 0.908 0.952 0.960 0.968 0.964 0.746 0.840 0.792	1.000	0.940	0.938	0.908	0.952	0.960	0.968	0.964	0.746	0.840	0.792
ın	0.803	0.982	0.899	0.803 0.982 0.899 0.976 0.974 0.979 0.602 0.759 0.686 0.978 0.977 0.978 0.786 0.755 0.776	0.974	0.979	0.602	0.759	0.686	0.978	0.977	0.978	0.786	0.755	0.776
9	0.900 0.894 0.992 0.825 0.997 0.998 1.000 0.802 0.910 0.971 0.907 0.911 0.910 1.000 1.000	0.894	0.992	0.825	0.997	0.998	1.000	0.802	0.910	0.971	0.907	0.911	0.910	1.000	1.000

MAESTRO Transverse Sagging

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 1 OF SUBSTR. 2

STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTF2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
	1 0.859 0.848 0.977 1.000 0.731 0.872 0.747 0.960 0.949 0.868 0.977 0.873 0.932 0.933	0.848	0.977	1.000	0.731	0.872	0.747	0.960	0.949	0.868	0.977	0.873	0.932	0.871	0.933
5	0.767 0.811 0.968 0.693 1.000 1.000 1.000 0.579 0.799 0.815 0.790 0.806 0.781 0.867 0.823	0.811	0.968	0.693	1.000	1.000	1.000	0.579	0.799	0.815	0.790	0.806	0.781	0.867	0.823
m	0.646 0.923 0.773 0.713 1.000 0.896 0.901 0.858 0.924 0.933 0.946 0.940 0.604 0.739 0.669	0.923	0.773	0.713	1.000	0.896	0.901	0.858	0.924	0.933	0.946	0.940	0.604	0.739	0.669
ស	0.681 0.973 0.833 0.958 0.961 0.966 0.404 0.621 0.519 0.965 0.962 0.964 0.657 0.612 0.642	0.973	0.833	0.958	0.961	0.966	0.404	0.621	0.519	0.965	0.962	0.964	0.657	0.612	0.642
9	6 0.857 0.845 0.985 0.755 0.989 0.996 0.997 0.716 0.868 0.956 0.864 0.870 0.870 1.000 1.000	0.845	0.985	0.755	0.989	966.0	0.997	0.716	0.868	0.956	0.864	0.870	0.870	1.000	1.000

POSITIVE NUMBER: CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED NEGATIVE NUMBER: CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. 1.000 : CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. -2.000 : CONSTRAINT SUPPRESSED. : STRAKE NOT EVALUATED.

2 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

						1	100	200	F0000	ומטטט	0 100
STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTE PYTP PYCF	PYCF	PYCP	PSPBI	PSPBI PSPBL	- Fre
	0.512	1 0.512 0.739	Ì	0.839 0.757 1.000 1.000 0.869	1.000	1.000	0.869	0.869	1.000	1.000	0.471
2	0.484	0.886	0.691	0.616	1.000	1.000	0.737	0.737	1.000	1.000	0.469
m	0.873	0.979	0.937	0.917	1.000	1.000	0.947	0.947	1.000	1.000	0.873
4	0.793	0.956	906.0	0.846	1.000	1.000	0.943	0.943	1.000	1.000	0.798
Ŋ	0.838	0.733	0.918	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.838
9	0.897	0.962	0.935	096.0	0.999	0.999	0.974	0.974	1.000	1.000	0.886
7	0.821	0.821 0.810	0.905	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.822

MAESTRO Transverse Sagging

INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR. 2

STRAKE	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYCF	bycp	PSPBT	PSPBL	PFLB
 	1 0.292 0.663	0.663	0.740	0.613	1.000	1.000	0.782	0.782	1.000	1.000	0.255
2	0.243	0.802	0.520	0.413	1.000	1.000	0.583	0.583	1.000	1.000	0.228
m	0.789	0.964	0.896	098.0	1,000	1.000	0.910	0.910	1,000	1.000	0.789
4	0.692	0.926	0.856	092.0	1.000	1.000	0.909	0.909	1.000	1.000	0.697
2	0.821	092.0	0.849	1.000	1.000	1.000	1.000	1.000	1,000	1.000	0.796
9	0.832	0.935	0.893	0.933	0.999	0.999	0.957	0.957	1.000	1.000	0.811
	0.753	0.753	0.861	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.754

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR.

STRAKE	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTE2	FYTE3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
-	0.954 0.919 0.936 0.955 0.907 0.931 0.954 0.949 0.951 0.967 0.967 0.967 0.957 0.937 0.947	0.919	0.936	0.955	0.907	0.931	0.954	0.949	0.951	0.967	0.967	0.967	0.957	0.937	0.947
2	0.933	0,962	0.984	0.933 0.962 0.984 0.983 1.000 1.000 0.915 0.850 0.908 1.000 0.992 1.000 0.921 0.924 0.923	1.000	1.000	0.915	0.850	0.908	1.000	0.992	1.000	0.921	0.924	0.923
æ	0.972 0.968 0.994 0.983 0.983 1.000 0.934 0.938 0.975 1.000 1.000 1.000 0.979 0.963 0.971	0.968	0.994	0.983	0.983	1.000	0.934	0.938	0.975	1.000	1.000	1.000	0.979	0.963	0.971
4	0.922	0.890	0.981	0.922 0.890 0.981 0.941 0.624 0.657 0.651 0.859 0.937 0.659 1.000 1.000 0.953 0.659 0.659	0.624	0.657	0.651	0.859	0.937	0.659	1.000	1.000	0.953	0.659	0.659
2	0.959	0.995	0.977	0.959 0.995 0.977 0.979 0.961 0.976 0.945 0.922 0.936 0.947 0.958 0.953 0.911 0.918 0.914	0.961	0.976	0.945	0.922	0.936	0.947	0.958	0.953	0.911	0.918	0.914
9	0.973	0.973	0.997	0.973 0.973 0.997 0.961 0.984 0.996 0.989 0.961 0.993 0.987 0.988 0.988 0.992 1.000 0.996	0.984	0.996	0.989	0.961	0.993	0.987	0.988	0.988	0.992	1.000	0.996
7	0.946	0.966	0.971	0.946 0.966 0.971 0.959 0.950 0.972 0.929 0.984 0.959 0.967 0.967 0.969 1.000 0.973 0.979	0.950	0.972	0.929	0.984	0.959	0.967	0.970	0.969	1.000	0.973	0.979

MAESTRO Transverse Sagging

INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE 2 OF SUBSTR. 2

STRAKE	RAKE FCPH1 FCPH2 FCPH3	СРН1 FCРН2 FCРН3	STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYTF1 FYTF2 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	FYCF1	FYCF2	FYCF3	FYTF1	FYTE2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
-	0.827	0.864	1 0.827 0.864 0.846 0.814 0.864 0.839 0.942 0.915 0.928 0.968 0.948 0.958 0.855 0.876 0.865	0.814	0.864	0.839	0.942	0.915	0.928	0.968	0.948	0.958	0.855	0.876	0.865
2	0.908	0.946	0.908 0.946 0.979 1.000 1.000 1.000 0.867 0.766 0.838 1.000 0.990 1.000 0.860 0.871 0.866	1.000	1.000	1.000	0.867	0.766	0.838	1,000	0.990	1.000	0.860	0.871	0.866
m	0.946	0.932	0.946 0.932 0.987 0.987 0.946 1.000 0.882 0.914 0.962 1.000 1.000 1.000 0.969 0.936 0.952	0.987	0.946	1.000	0.882	0.914	0.962	1.000	1.000	1.000	0.969	0.936	0.952
7 2	0.869	0.842	0.869 0.842 0.943 0.797 0.576 0.612 0.605 0.715 0.854 0.614 0.868 1.000 0.862 0.613 0.614	0.797	0.576	0.612	0.605	0.715	0.854	0.614	0.868	1.000	0.862	0.613	0.614
Ŋ	0.949	0.963	0.949 0.963 0.956 0.922 0.925 0.925 0.910 0.862 0.886 0.973 0.973 0.878 0.846 0.857 0.851	0.922	0.925	0.925	0.910	0.862	0.886	0.973	0.973	0.973	0.846	0.857	0.851
9	0.953	0.957	0.953 0.957 0.994 0.935 0.979 0.994 0.990 0.936 0.991 0.978 0.981 0.980 0.984 1.000 0.993	0.935	0.979	0.994	0.990	0.936	0.991	0.978	0.981	0.980	0.984	1,000	0.993
7	006.0	0.922	7 0.900 0.922 0.932 0.855 0.897 0.896 0.937 1.000 0.964 0.960 0.957 0.959 0.965 0.969 0.974	0.855	0.897	0.896	0.937	1.000	0.964	096.0	0.957	0.959	0.965	0.969	0.974

3 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

STRAKE PCSF	STRAKE PCSF PCCB	PCCB	PCMY	PCSB	PYTF	PYTP	PYTP PYCF	PYCP		PSPBT PSPBL PFLB	PFLB
	1 0.556 0.807	0.807	0.841	0.758	1.000	1.000	0.758 1.000 1.000 0.869 0.869	698.0	1.000	1.000	1.000 0.524
2	0.610	0.908	0.769	0.674	1.000	1.000	0.779	0.779	1.000	1.000	0.605
m	906.0	0.979	0.937	0.915	1.000	1.000	0.947	0.947	1.000	1.000	0.904
4	0.859	0.977	0.911	0.915	1.000	1.000	0.945	0.945	1.000	1.000	0.854
20	0.836	0.732	0.953	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.837
9	0.895	0.968	0.937	0.954	1.000	1.000	0.971	0.971	1.000	1.000	0.888
7	0.815	0.823	0.902	1.000	1.000	1.000	1.000	1.000	1,000	1.000	0.815

MAESTRO Transverse Sagging

3 OF SUBSTR. INITIAL PANEL ADEQUACY PARAMETER VALUES - MODULE

-+								
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PFLB	0.308	0.394	0.834	0.773	0.818	0.821	0.734
1 1 1 1 1 1 1	PSPBL	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	PSPBT	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	PYCP	0.782	0.636	0.910	906.0	1.000	0.952	1.000
	PYCF	0.735 0.613 1.000 1.000 0.782	0.636	0.910	906.0	1.000	0.952	1.000
	PYTP	1,000	1.000	1.000	1.000	1.000	1.000	1.000
 	PYTF PYTP PYCF	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	PCSB	0.613	0.482	0.857	0.853	1.000	0.923	1.000
	PCMY	0.735	0.622	0.896	0.853	0.916	0.895	0.860
	PCCB	0.780	0.833	0.963	0.959	0.729	0.959	0.751
)	STRAKE PCSF PCCB	0.335 0.780	0.398	0.837	0.779	0.818	0.831	7 0.734 0.751
	STRAKE	1	2	m	4	2	9	_
-								

POSITIVE NUMBER: CONSTRAINT SATISFIED. | THESE VALUES ARE NORMALIZED NEGATIVE NUMBER: CONSTRAINT VIOLATED. | BETWEEN +1. AND -1. 1.000 : CONSTRAINT NOT RELEVANT OR NULLIFIED BY USER. -2.000 : CONSTRAINT SUPPRESSED. - : STRAKE NOT EVALUATED.

175

3 OF SUBSTR. INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE

FYTP3	0.957	0.957	0.986	0.958	1.000	0.993	0.990
FYTP2	0.935	0.977	0.974	0.980	1.000	1.000	0.989
FYTP1	0.979	0.937	0.994	0.954	1.000	0.983	1.000
FYCP3	0.979	0.996	1.000	1.000	0.959	0.990	0.956
-YCP2	0.980	0.994	1.000	0.955	0.964	0.982	0.953
-YCP1	0.978	0.997	0.991	1.000	0.954	1.000	0.957
-YTF3	0.970	0.923	0.982	0.937	0.953	0.989	0.958
YTF2	0.982	0.825	1.000	0.811	0.965	0.920	0.931
**************************************	0.955	0.923	0.917	1.000	0.937	1.000	0.980
FYCF3	0.937	0.945 0.906 0.979 0.969 1.000 1.000 0.923 0.825 0.923 0.997 0.994 0.996 0.937 0.977 0.957	0.953 0.951 0.996 1.000 0.935 1.000 0.917 1.000 0.982 0.991 1.000 1.000 0.994 0.974 0.986	0.971	0.954 0.982 0.968 1.000 1.000 1.000 0.937 0.965 0.953 0.954 0.964 0.959 1.000 1.000 1.000	0.953 0.950 0.996 0.933 1.000 1.000 1.000 0.920 0.989 1.000 0.982 0.990 0.983 1.000 0.993	0.957
FYCF2	0.842	1.000	0.935	1.000	1.000	1.000	0.986
FYCF1	1.000	0.969	1.000	0.883	1.000	0.933	0.928
FCPH3	0.938	0.979	0.996	0.969	0.968	0.996	0.990
FCPH2	0.865	906.0	0.951	0.892	0.982	0.950	0.962
FCPH1	0.982 0.865 0.938 1.000 0.842 0.937 0.955 0.982 0.970 0.978 0.980 0.979 0.979 0.935 0.957	0.945	0.953	0.921 0.892 0.969 0.883 1.000 0.971 1.000 0.811 0.937 1.000 0.955 1.000 0.954 0.980 0.958	0.954	0.953	0.958 0.962 0.990 0.928 0.986 0.957 0.980 0.931 0.958 0.957 0.953 0.956 1.000 0.989 0.990
STRAKE FCPH1 FCPH2 FYCF1 FYCF2 FYCF3 FYTF1 FYTF3 FYCP1 FYCP2 FYTP1 FYTP2 FYTP3	H	7	m	4	ıs	9	
+				· · · ·			

MAESTRO Transverse Sagging

3 OF SUBSTR. INITIAL FRAME ADEQUACY PARAMETER VALUES - MODULE

STRAKE FCPH1	STRAKE FCPH1 FCPH2 FCPH3 FYCF1 FYCF2 FYTF1 FYTF3 FYCP1 FYCP2 FYCP3 FYTP1 FYTP2 FYTP3	FCPH2	FCPH3	FYCF1	FYCF2	FYCF3	FYTF1	FYTE2	FYTF3	FYCP1	FYCP2	FYCP3	FYTP1	FYTP2	FYTP3
T ::	0.840 0.796 0.846 0.811 0.784 0.850 1.000 0.914 1.000 0.988 0.967 0.979 0.910 0.878 0.893	0.796	0.846	0.811	0.784	0.850	1.000	0.914	1.000	0.988	0.967	0.979	0.910	0.878	0.893
7	0.896 0.814 0.954 0.933 1.000 1.000 0.884 0.678 0.853 0.997 0.982 0.990 0.885 0.963 0.924	0.814	0.954	0.933	1.000	1.000	0.884	0.678	0.853	0.997	0.982	0.990	0.885	0.963	0.924
m	0.937	0.937	0.937 0.937 0.995 1.000 0.921 1.000 0.882 1.000 0.969 0.985 1.000 1.000 0.991 0.965 0.981	1.000	0.921	1.000	0.882	1.000	0.969	0.985	1.000	1.000	0.991	0.965	0.981
4	0.918	0.783	0.918 0.783 0.868 0.895 0.722 0.836 1.000 1.000 1.000 1.000 1.000 1.000 0.952 0.905 0.929	0.895	0.722	0.836	1.000	1,000	1.000	1.000	1.000	1.000	0.952	0.905	0.929
'n	0.949	0.975	0.949 0.975 0.966 0.925 0.950 0.943 0.924 1.000 0.943 0.950 0.961 0.962 1.000 0.945 0.949	0.925	0.950	0.943	0.924	1.000	0.943	0.950	0.961	0.962	1,000	0.945	0.949
Q	6 0.936 0.932 0.996 0.906 1.000 1.000 1.000 0.886 0.984 1.000 0.977 0.987 0.974 1.000 0.989	0.932	966.0	906.0	1.000	1.000	1.000	0.886	0.984	1.000	0.977	0.987	0.974	1.000	0.989
7	7 0.932 0.948 0.977 0.972 0.914 0.979 0.889 0.953 0.938 0.939 0.980 0.981 1.000 0.937 0.940	0.948	0.977	0.972	0.914	0.979	0.889	0.953	0.938	0.939	0.980	0.981	1.000	0.937	0.940