平成17年度 日本留学試験(第2回)

試験問題

生物

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙のおもて面に解答し、もう1科目を裏面に解答してください。

「生物」を選ぶ場合は、右のように、解答用紙の左上にある「解答科目」の「生物」を○で囲み、その下のマーク欄をマークしてください。選択した科目が正しくマークされていないと、採点されません。

- 問 1 動物細胞に存在する次の構造物 $a \sim e$ の中で、光学顕微鏡 (light microscope) ではその存在が確認できず、電子顕微鏡 (electron microscope) で確認できるものはどれか。 あてはまる二つの組み合わせを、下の① \sim ⑥の中から一つ選びなさい。
 - a 核小体 (nucleolus)
 - b リボソーム (ribosome)
 - c 中心体 (centrosome)
 - d ミトコンドリア (mitochondrion) のクリステ (cristae)
 - e ゴルジ体 (Golgi body)
 - ① a と b
- ② a と c
- ③ bとd

- ④ bとe
- ⑤ cとd
- ⑥ dとe

問 2 光学顕微鏡でオオカナダモ(Egeria densa)の原形質流動(protoplasmic streaming)を観察した。まず、600 倍で接眼ミクロメーター(ocular micrometer)と対物ミクロメーター(stage micrometer)の目盛りの一致するところを確かめたところ、対物ミクロメーターの5目盛りと接眼ミクロメーターの20目盛りが一致した。次に、倍率はそのままで、葉緑体の動きを観察したところ、8秒間で接眼ミクロメーターの16目盛り分を移動した。葉緑体の移動速度を原形質流動の速度とみなすと、原形質流動の速さは何μm/秒になるか。正しいものを次の①~⑥の中から一つ選びなさい。なお、対物ミクロメーターには、1 mmを100等分したメモリが刻んである。

- ① 0.5
- 2 5.0
- 3 8.0
- **4**) 20
- **⑤** 80
- **6** 160

問3 生物の生殖 (reproduction) について述べた次の文①~⑤の中から, <u>誤っているもの</u>を 一つ選びなさい。

- ① 生殖の方法を大きく2つに分けた場合、栄養生殖 (vegetative reproduction) と無性 生殖 (asexual reproduction) がある。
- ② 無性生殖では、親の細胞と同じ遺伝子 (gene) をもつ細胞が増殖する。
- ③ 有性生殖 (sexual reproduction) においては、生殖のために配偶子 (gamete) とよばれる細胞が形成される。
- ④ 有性生殖において、卵 (ovum) と精子 (sperm) が合体することを受精 (fertilization)という。
- ⑤ 有性生殖では、子の世代の遺伝的な性質は多様になる。

問4 次の図は動物の卵(ovum)の形成過程を示している。図中の E は卵細胞を示している。 これについて下の問い(1)、(2)に答えなさい。

(1) 細胞 B, C, Dの正しい名称の組み合わせを、次の①~⑦の中から一つ選びなさい。

4

	В	С	D
1	卵原細胞	一次卵母細胞	二次卵母細胞
2	卵原細胞	一次卵母細胞	極体
3	一次卵母細胞	極体	二次卵母細胞
4	一次卵母細胞	二次卵母細胞	極体
(5)	始原生殖細胞	一次卵母細胞	二次卵母細胞
6	始原生殖細胞	一次卵母細胞	極体
7	極体	始原生殖細胞	卵原細胞

注:卵原細胞 (oogonium), 一次卵母細胞 (primary oocyte), 二次卵母細胞 (secondary oocyte), 極体 (polar body), 始原生殖細胞 (primordial germ cell)

(2) 細胞Aの染色体数 (chromosome number) が 48 本であった場合, B, C, E それぞれ の細胞の染色体数はいくつか。次の①~8の中から正しいものを一つ選びなさい。 **5**

	В	Ċ	Е
1	48	48	48
2	24	12	48
3	48	48	24
4	48	24	24
5	48	12	24
6	48	24	12
7	24	24	12
8	24	12	12

問 5 ある種のスイートピー(sweet pea)の花の色は、 $A \ge a$, $B \ge b$ の 2 対の対立遺伝子 (allele)によって決まる。A は a に対して優性(dominant)で、B は b に対して優性である。花の色は $A \ge B$ が共存するときだけ紫色になり、どちらか一方でも欠けた場合は白色になる。なお、 $A(a) \ge B(b)$ はそれぞれ別々の染色体上にある。これについて次の問い(1)、(2)に答えなさい。

(1) 遺伝子型 (genotype) が AaBb の個体を自家受精 (self-fertilization) させると、子の世代では紫色の花をつける個体と白い花をつける個体は、およそどのような比で現れるか。紫色:白色の比として最も適当なものを次の①~⑥の中から一つ選びなさい。

- ① 1:1
- 2:1
- ③ 3:1

- 4 9:7
- **⑤** 13:3
- **6** 15:1

(2) 遺伝子型が AaBb の個体を自家受精させて得られた子の世代で、どの遺伝子型を持つ 個体が最も多いか。次の①~⑨の中から最も適当なものを一つ選びなさい。

- ① AABB
- ② AABb
- ③ AaBB
- 4 AaBb
- (5) AAbb

- 6 Aabb
- ② aaBB
- 8 aaBb
- aabb

問 6 同一の染色体 (chromosome) に存在する3つの遺伝子 (gene) A, B, Cについて, AB間の組換え価 (recombination value) は13%, BC間の組換え価は5%であった。 A, B, Cが染色体に次の図のような順序で並んでいる (図中のそれぞれの間隔は正確ではない) 場合, AC間の組換え価はおおよそ何%になるか。下の①~⑤の中から一つ選びなさい。

- 問 7 遺伝子 (gene) の働きや性質に関する実験について述べた次の文① \sim ⑤の中から、<u>誤</u>っているものを一つ選びなさい。
 - ① グリフィスの実験では、病原性 (pathogenicity) のあるS型の肺炎双球菌 (Streptococcus pneumoniae) を加熱処理して殺したものを、病原性のないR型の肺炎 双球菌と混合してマウスに投与すると、マウスが発病した。このときマウスの体内からはS型菌が検出された。
 - ② 人工的に合成した RNA を用いて試験管内でポリペプチド (polypeptide) を合成することができる。そのアミノ酸 (amino acid) 配列から, RNA のコドン (codon) が指定するアミノ酸を推定できる。
 - ③ T2 ファージ (bacteriophage) が大腸菌 (E.~coli) に感染した場合に、ファージの タンパク質 (protein) のみが大腸菌内に入り、ファージの増殖がおこる。
 - ④ DNAに含まれる塩基 (base)の量 (分子の数)を測定すると、アデニン (adenine) とチミン (thymine) の数はほぼ同じである。
 - ⑤ DNA が複製 (replication) される場合には、元の DNA の 1 本の鎖に対して、新しい鎖が合成されることが、窒素の同位体 (isotope) ¹⁵N を使って確かめられた。

- 問 8 多細胞生物では発生(development)の過程で細胞が分化(differentiation)して、さまざまな特徴をもった細胞が生じる。この過程について述べた次の文①~⑤の中から、正しいものを一つ選びなさい。
 - ① 発生が進むと、遺伝子(gene)が変異(variation)を起こして細胞が分化する。
 - ② 発生が進むと、遺伝子の組換え (recombination) が起こり、細胞が分化する。
 - ③ 発生が進むと、遺伝子の転写調節 (transcriptional control) が起こらなくなり、細胞が分化する。
 - ④ 発生が進むと、特定の遺伝子が発現(expression)するようになり、細胞が分化する。
 - ⑤ 発生が進むと、特定の遺伝子が複製 (replication) されるようになり、細胞が分化する。

問9 次の図A、Bは、植物の細胞小器官 (cell organelle) の断面を描いたものである。また、下の化学反応式 (chemical equation) a~d は、生物がおこなう反応を示している。

- a. $2C_3H_4O_3 + 5O_2 + 6H_2O \rightarrow 6CO_2 + 10H_2O$
- b. $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$
- $c. 6CO_2 + 12H_2O \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$
- d. $6CO_2 + 12H_2S \rightarrow C_6H_{12}O_6 + 6H_2O + 12S$

細胞小器官A,Bが行う代表的な化学反応は $a \sim d$ のどれか。正しいものの組み合わせを,次の $1 \sim 8$ の中から一つ選びなさい。

	A	В
1	а	С
2	а	d
3	b	С
4	b	d
⑤	С	a
6	С	b
7	d	a
8	d	b

問10 右の図は、ある植物に十分な量の 二酸化炭素 (CO₂) を与え, 20°Cの温 度のもと光の強さを変えて, 吸収され る二酸化炭素の量を測定した結果であ る。なお、二酸化炭素吸収量は、葉 100 cm²あたり 1 時間で吸収される量 (mg) として示してある。これについ て次の問い(1)、(2)に答えなさい。

- (1) 20 キロルクス (kilo lux) で 5 時間経過した時, 葉 100 cm²に吸収される二酸化炭素量 12 はいくらか。次の①~⑤の中から正しいものを一つ選びなさい。
 - \bigcirc 30 mg
- (2) 35 mg
- ③ 150 mg
- **4**) 175 mg
- ⑤ 200 mg
- (2) 補償点 (compensation point) の光の強さで5時間, その後, 30キロルクスで2時間 経過した時、葉 50 cm²に吸収される二酸化炭素量はいくらか。次の①~⑤の中から正し 13 いものを一つ選びなさい。
 - (1) 17.5 mg
- ② 30 mg . ③ 35 mg
- **4** 60 mg
- **⑤** 210 mg
- 問11 神経細胞 (nerve cell) から別の神経細胞への興奮 (excitation) の伝達 (transmission)は、一般にどのようにして行われるか。正しい説明を、次の①~④の中 14 から一つ選びなさい。
 - ① 軸索 (axon) を伝わってきた活動電流 (action current) は末端 (nerve terminal) に達すると、隣接する神経細胞へ活動電流としてそのまま伝えられる。
 - ② 軸索を伝わってきた活動電流が末端に達すると、軸索の末端(nerve terminal) から 電子(electron)が放出し、その電子が隣接する神経細胞に受け取られ、活動電流を生 じさせる。
 - ③ 軸索の末端からアセチルコリン(acetylcholine)のような化学物質が放出され、そ れが刺激となって隣接する神経細胞に興奮が起こる。
 - ④ 軸索の末端からナトリウムイオン(Na+)が放出され、それが刺激となって隣接する 神経細胞に興奮が起こる。

問 12 自律神経系 (autonomic nervous system) について述べた次の文①~④の中から、<u>誤っているもの</u>を一つ選びなさい。

- ① 自律神経系は、交感神経 (sympathetic nerve) と副交感神経 (parasympathetic nerve) とからなる。
- ② 自律神経系は、末梢神経系 (peripheral nervous system) に属する。
- ③ 胃 (stomach) や腸 (intestine) の運動は、自律神経系によって調節されている。
- ④ 熱い物に手を触れたとき思わず手を引っ込めるような反射運動 (reflex movement) には、自律神経系が関与している。

問 13 右の図は、網膜 (retina) の 2 種類の視細胞 (visual cell) の分布を示したものである。太線と破線 (broken line) が示す 視細胞数 それぞれの細胞の名称と部位 A の名称につ (×10^t/mm²) いて正しい組み合わせを、次の①~⑥の中から一つ選びなさい。

	太線	破線	部位A
1	かん体細胞	錐体細胞	黄斑
2	かん体細胞	錐体細胞	瞳孔
3	かん体細胞	錐体細胞	盲斑
4	錐体細胞	かん体細胞	黄斑
(5)	錐体細胞	かん体細胞	瞳孔
6	錐体細胞	かん体細胞	盲斑

注:かん体細胞 (rod cell), 錐体細胞 (cone cell), 黄斑 (macula retinae), 盲斑 (blind spot), 瞳孔 (pupil)

理科一36

- 問 14 染色体 (chromosome) にある遺伝情報 (genetic information) が形質 (character) として発現 (expression) するまでの流れを示したものとして正しいものを、次の文① ~⑥の中から一つ選びなさい。
 - ① tRNA → mRNA → DNA → タンパク質 (protein)
 - ② tRNA → mRNA → タンパク質→ DNA
 - ③ mRNA → DNA → tRNA → タンパク質
 - ④ mRNA → タンパク質→ tRNA → DNA
 - ⑤ DNA → tRNA → mRNA → タンパク質
 - ⑥ DNA → mRNA → tRNA → タンパク質
- 問 15 次の表は、5 種類のウイルス (virus) a ~ e が遺伝情報 (genetic information) として持つ核酸 (nucleic acid) の塩基組成 (base composition) を調べた結果である。これに基づいて、二本鎖の DNA を遺伝情報として持つウイルスを下の①~⑤の中から一つ選びなさい。

	A	Т	G	С	U
ウイルス a	30.1 %	00.0%	29.0 %	15.5 %	25.4 %
ウイルス b	24.4 %	33.1 %	24.0 %	18.5 %	00.0%
ウイルス c	29.5 %	29.9 %	20.6 %	20.3 %	00.0%
ウイルス d	28.8 %	00.0%	21.2 %	21.1%	30.3 %
ウイルス e	16.8 %	23.2 %	35.4 %	24.6 %	00.0%

- ① ウイルス a
- ② ウイルス b
- ③ ウイルス c

- ④ ウイルス d
- ⑤ ウイルス e

生物の問題はこれで終わりです。解答欄の $19 \sim 75$ は、空欄にしてください。

この問題用紙を持ち帰ることはできません。