Path induction is a key tool in HoTT.

Path induction - Roughly

To prove C(x, y, p) where x, y : A and $p : x =_A y$ it suffices to prove $C(x, x, refl_x)$ for all x : A

Path induction

Suppose C(x,y,p) is a (dependent) type for each x,y:A and $p:x=_Ay$, and suppose there is a function $c:\prod_{x:A}C(x,x,\operatorname{refl}_x)$, then there is a function $f:\prod_{x,y:A}\prod_{p:x=_Ay}C(x,y,p)$.

Path induction is a key tool in HoTT.

Path induction - Roughly

To prove C(x, y, p) where x, y : A and $p : x =_A y$ it suffices to prove $C(x, x, refl_x)$ for all x : A

Path induction

Suppose C(x, y, p) is a (dependent) type for each x, y : A and $p : x =_A y$, and suppose there is a function $c : \prod_{x:A} C(x, x, \text{refl}_x)$ then there is a function $f : \prod_{x,y:A} \prod_{p:x=_{A}y} C(x, y, p)$.

Path induction is a key tool in HoTT.

Path induction - Roughly

To prove C(x, y, p) where x, y : A and $p : x =_A y$ it suffices to prove $C(x, x, refl_x)$ for all x : A

Path induction

Suppose C(x, y, p) is a (dependent) type for each x, y : A and $p : x =_A y$, and suppose there is a function $c : \prod_{x:A} C(x, x, \text{refl}_x)$,

Path induction is a key tool in HoTT.

Path induction - Roughly

To prove C(x, y, p) where x, y : A and $p : x =_A y$ it suffices to prove $C(x, x, refl_x)$ for all x : A

Path induction

Suppose C(x, y, p) is a (dependent) type for each x, y : A and $p : x =_A y$, and suppose there is a function $c : \prod_{x : A} C(x, x, \text{refl}_x)$, then there is a function $f : \prod_{x,y : A} \prod_{p:x=_A y} C(x,y,p)$.

Path induction is a key tool in HoTT.

Path induction - Roughly

To prove C(x, y, p) where x, y : A and $p : x =_A y$ it suffices to prove $C(x, x, refl_x)$ for all x : A

Path induction

Suppose C(x,y,p) is a (dependent) type for each x,y:A and $p:x=_Ay$, and suppose there is a function $c:\prod_{x:A}C(x,x,\text{refl}_x)$, then there is a function $f:\prod_{x,y:A}\prod_{p:x=_Ay}C(x,y,p)$.

- If x : A then there is a special element $refl_x : Id_A(x,x)$ ("unit element")
- If $p: Id_A(x, y)$ and $q: Id_A(y, z)$ then there is an element $r: Id_A(x, z)$ ("Composition")
- For every element $p: Id_A(x, y)$ there is an element $p^{-1}: Id_A(y, x)$ ("Inverses")
- Several "group-like" laws hold

Groupoid" structure

Every type A is a "(weak) ∞ -groupoid" with objects x: A and morphisms $A(x,y) := Id_A(x,y)$.

- If x : A then there is a special element $refl_x : Id_A(x,x)$ ("unit element")
- If $p: Id_A(x, y)$ and $q: Id_A(y, z)$ then there is an element $r: Id_A(x, z)$ ("Composition")
- For every element $p: Id_A(x,y)$ there is an element $p^{-1}: Id_A(y,x)$ ("Inverses")
- Several "group-like" laws hold

Groupoid" structure

Every type A is a "(weak) ∞ -groupoid" with objects x: A and morphisms $A(x,y) := Id_A(x,y)$.

- If x : A then there is a special element $refl_x : Id_A(x,x)$ ("unit element")
- If $p: Id_A(x, y)$ and $q: Id_A(y, z)$ then there is an element $r: Id_A(x, z)$ ("Composition")
- For every element $p: Id_A(x, y)$ there is an element $p^{-1}: Id_A(y, x)$ ("Inverses")
- Several "group-like" laws hold

'Groupoid'' structure

Every type A is a "(weak) ∞ -groupoid" with objects x: A and morphisms $A(x,y):=Id_A(x,y)$.

- If x : A then there is a special element $refl_x : Id_A(x,x)$ ("unit element")
- If $p: Id_A(x, y)$ and $q: Id_A(y, z)$ then there is an element $r: Id_A(x, z)$ ("Composition")
- For every element $p: Id_A(x, y)$ there is an element $p^{-1}: Id_A(y, x)$ ("Inverses")
- Several "group-like" laws hold

'Groupoid" structure

Every type A is a "(weak) ∞ -groupoid" with objects x: A and morphisms $A(x,y):=Id_A(x,y)$.

- If x : A then there is a special element $refl_x : Id_A(x,x)$ ("unit element")
- If $p: Id_A(x, y)$ and $q: Id_A(y, z)$ then there is an element $r: Id_A(x, z)$ ("Composition")
- For every element $p: Id_A(x, y)$ there is an element $p^{-1}: Id_A(y, x)$ ("Inverses")
- Several "group-like" laws hold

'Groupoid" structure

Every type A is a "(weak) ∞ -groupoid" with objects x: A and morphisms $A(x,y) := Id_A(x,y)$.

- If x : A then there is a special element $refl_x : Id_A(x,x)$ ("unit element")
- If $p: Id_A(x, y)$ and $q: Id_A(y, z)$ then there is an element $r: Id_A(x, z)$ ("Composition")
- For every element $p: Id_A(x, y)$ there is an element $p^{-1}: Id_A(y, x)$ ("Inverses")
- Several "group-like" laws hold

"Groupoid" structure

Every type A is a "(weak) ∞ -groupoid" with objects x : A and morphisms $A(x,y) := Id_A(x,y)$.

- If x : A then there is a special element $refl_x : Id_A(x,x)$ ("unit element")
- If $p: Id_A(x, y)$ and $q: Id_A(y, z)$ then there is an element $r: Id_A(x, z)$ ("Composition")
- For every element $p: Id_A(x, y)$ there is an element $p^{-1}: Id_A(y, x)$ ("Inverses")
- Several "group-like" laws hold

"Groupoid" structure

Every type A is a "(weak) ∞ -groupoid" with objects x: A and morphisms $A(x,y) := Id_A(x,y)$.

Types can be inductively defined. For example, N, is defined by

$$0:\mathbb{N}$$
 (element) succ: $\mathbb{N} \to \mathbb{N}$ (function)

Universal property / Recursion principle for $\mathbb N$

Given any type A, and $a_0:A$, and a map $f:A\to A$, we get a unique map $rec_{(a_0,f)}:\mathbb{N}\to A$ such that

commutes, and such that $rec_{(a_0,f)}(0) = a_0$.

Types can be *inductively* defined. For example, \mathbb{N} , is defined by

 $\begin{array}{ll} 0: \mathbb{N} & \text{(element)} \\ \text{succ}: \mathbb{N} \to \mathbb{N} & \text{(function)} \end{array}$

Universal property / Recursion principle for N

Given any type A, and $a_0:A$, and a map $f:A\to A$, we get a unique map $rec_{(a_0,f)}:\mathbb{N}\to A$ such that

$$\begin{array}{ccc}
\mathbb{N} & \xrightarrow{\text{succ}} & \mathbb{N} \\
rec & & | rec \\
A & \xrightarrow{f} & A
\end{array}$$

commutes, and such that $rec_{(a_0,f)}(0) = a_0$.

Types can be *inductively* defined. For example, \mathbb{N} , is defined by

 $0:\mathbb{N}$ (element) $succ : \mathbb{N} \to \mathbb{N}$ (function)

Universal property / Recursion principle for N

Given any type A, and $a_0: A$, and a map $f: A \to A$, we get a

$$\begin{array}{ccc}
\mathbb{N} & \xrightarrow{\text{succ}} & \mathbb{N} \\
\text{rec} & & | \text{rec} \\
A & \xrightarrow{f} & A
\end{array}$$

Types can be *inductively* defined. For example, \mathbb{N} , is defined by

 $0:\mathbb{N}$ (element) $succ : \mathbb{N} \to \mathbb{N}$ (function)

Universal property / Recursion principle for N

Given any type A, and $a_0: A$, and a map $f: A \to A$, we get a unique map $rec_{(a_0,f)}: \mathbb{N} \to A$ such that

$$\begin{array}{ccc}
\mathbb{N} & \xrightarrow{\text{succ}} & \mathbb{N} \\
\text{rec} & & | \text{rec} \\
A & \xrightarrow{f} & A
\end{array}$$

Types can be *inductively* defined. For example, \mathbb{N} , is defined by

$$\begin{array}{ll} 0: \mathbb{N} & \text{(element)} \\ \text{succ}: \mathbb{N} \to \mathbb{N} & \text{(function)} \end{array}$$

Universal property / Recursion principle for \mathbb{N}

Given any type A, and $a_0: A$, and a map $f: A \to A$, we get a unique map $rec_{(a_0,f)}: \mathbb{N} \to A$ such that

commutes, and such that $rec_{(a_0,f)}(0) = a_0$.

Types can be *inductively* defined. For example, \mathbb{N} , is defined by

$$\begin{array}{ll} 0: \mathbb{N} & \text{(element)} \\ \text{succ}: \mathbb{N} \to \mathbb{N} & \text{(function)} \end{array}$$

Universal property / Recursion principle for N

Given any type A, and $a_0 : A$, and a map $f : A \rightarrow A$, we get a unique map $rec_{(a_0,f)}: \mathbb{N} \to A$ such that

commutes, and such that $rec_{(a_0,f)}(0) = a_0$.

• We say $\mathbb N$ is "constructed freely" from $0:\mathbb N$ and succ : $\mathbb N\to\mathbb N$

- A new way to construct new types in HoTT is to construct "free types on some generators", called higher inductive types
- Whereas "normal" inductive definitions (eg. \mathbb{N}) use elements and functions, we allow *paths*, i.e. elements of $Id_A(x, y)$.

Example: Interval

The interval I is constructed freely from 0_I : I, 1_I : I and the path seg : $Id_I(0_I,1_I)$

ullet Each higher inductive type comes equipped with its own universal property, similar to the one for $\mathbb N$

- A new way to construct new types in HoTT is to construct "free types on some generators", called higher inductive types
- Whereas "normal" inductive definitions (eg. \mathbb{N}) use elements and functions, we allow *paths*, i.e. elements of $Id_A(x, y)$.

Example: Interval

The interval I is constructed freely from 0_I : I, 1_I : I and the path seg : $Id_I(0_I,1_I)$

ullet Each higher inductive type comes equipped with its own universal property, similar to the one for $\mathbb N$

- A new way to construct new types in HoTT is to construct "free types on some generators", called higher inductive types
- Whereas "normal" inductive definitions (eg. \mathbb{N}) use elements and functions, we allow *paths*, i.e. elements of $Id_A(x, y)$.

Example: Interva

The interval I is constructed freely from 0_I : I, 1_I : I and the path seg : $Id_I(0_I, 1_I)$

 Each higher inductive type comes equipped with its own universal property, similar to the one for N

- A new way to construct new types in HoTT is to construct "free types on some generators", called higher inductive types
- Whereas "normal" inductive definitions (eg. \mathbb{N}) use elements and functions, we allow *paths*, i.e. elements of $Id_A(x, y)$.

Example: Interval

The interval I is constructed freely from $0_I:I$, $1_I:I$ and the path seg : $Id_I(0_I,1_I)$

ullet Each higher inductive type comes equipped with its own universal property, similar to the one for $\mathbb N$

- A new way to construct new types in HoTT is to construct "free types on some generators", called higher inductive types
- Whereas "normal" inductive definitions (eg. \mathbb{N}) use elements and functions, we allow *paths*, i.e. elements of $Id_A(x, y)$.

Example: Interval

The interval I is constructed freely from $0_I:I$, $1_I:I$ and the path seg : $Id_I(0_I,1_I)$

 \bullet Each higher inductive type comes equipped with its own universal property, similar to the one for $\mathbb N$

Higher Inductive definition of the Circle - \mathbb{S}^1

 \mathbb{S}^1 is constructed freely from

```
base: \mathbb{S}^1 (element)
loop: Id_{\mathbb{S}^1}(base, base) (path!)
```

 \mathbb{S}^1 is the "free ∞ -groupoid" on these generators

- There is already a lot of structure implied by these generators for example
 - $\operatorname{refl}_{\mathsf{base}}: \operatorname{Id}_{\mathbb{S}^1}(\mathsf{base},\mathsf{base})$
 - loop \cdot loop : $Id_{\mathbb{S}^1}(base, base)$
 - $loop^{-1}$: $ld_{\mathbb{S}^1}$ (base, base
 - α : loop = loop = loop = loop = refloase

Higher Inductive definition of the Circle - \mathbb{S}^1

 \mathbb{S}^1 is constructed freely from

```
base : \mathbb{S}^1 (element)
loop : Id_{\mathbb{S}^1}(base, base) (path!)
```

 \mathbb{S}^1 is the "free ∞ -groupoid" on these generators.

- There is already a lot of structure implied by these generators for example
 - refl_{base} : $Id_{\mathbb{S}^1}$ (base, base)
 - loop loop : Id_{S¹} (base, base)
 - $loop^{-1}: Id_{\mathbb{S}^1}(base, base)$
 - α : loop = $_{\mathsf{base}=_{\mathsf{S}^1}\mathsf{base}}$ refl_{base}

Higher Inductive definition of the Circle - \mathbb{S}^1

 \mathbb{S}^1 is constructed freely from

```
base : \mathbb{S}^1 (element)
loop : Id_{\mathbb{S}^1}(base, base) (path!)
```

 \mathbb{S}^1 is the "free ∞ -groupoid" on these generators.

- There is already a lot of structure implied by these generators for example
 - refl_{base}: Id_{S1}(base, base)
 loop loop : Id_{S1}(base, base)
 - $loop^{-1} : Id_{\mathbb{S}^1}(base, base)$
 - $\bullet \ \alpha : \mathsf{loop}^{-1} \ \centerdot \ \mathsf{loop} =_{\mathsf{base} =_{\mathbb{S}^1}\mathsf{base}} \mathsf{refl}_{\mathsf{base}}$

As for \mathbb{N} , since we defined \mathbb{S}^1 freely we get a universal mapping property, for mapping out of \mathbb{S}^1 .

Universal property / Recursion principle for \mathbb{S}^1

Given any type A, and $a_0: A$, and a $path \ p: Id_A(a_0, a_0)$, we get a unique map $rec_{(a_0,p)}: \mathbb{S}^1 \to A$, such that

1 base
$$\mathbb{S}^1$$
 rec A

commutes, and such that $rec_{(a_0,p)_*}(loop) = p$

As for \mathbb{N} , since we defined \mathbb{S}^1 freely we get a universal mapping property, for mapping out of \mathbb{S}^1 .

```
Universal property / Recursion principle for \mathbb{S}^1
Given any type A, and a_0: A, and a path p: Id_A(a_0, a_0), we get a
```

As for \mathbb{N} , since we defined \mathbb{S}^1 freely we get a universal mapping property, for mapping out of \mathbb{S}^1 .

Universal property / Recursion principle for \mathbb{S}^1

Given any type A, and $a_0:A$, and a $path\ p:Id_A(a_0,a_0)$, we get a unique map $rec_{(a_0,p)}:\mathbb{S}^1\to A$, such that

$$\begin{array}{c}
\text{base} \\
1 \\
\xrightarrow{a_0} \\
X
\end{array}$$

commutes, and such that $rec_{(a_0,p)_*}(loop) = p$

As for \mathbb{N} , since we defined \mathbb{S}^1 freely we get a universal mapping property, for mapping out of \mathbb{S}^1 .

Universal property / Recursion principle for \mathbb{S}^1

Given any type A, and $a_0: A$, and a $path \ p: Id_A(a_0, a_0)$, we get a unique map $rec_{(a_0,p)}: \mathbb{S}^1 \to A$, such that

commutes, and such that $rec_{(a_0,p)_*}(loop) = p$

We can "rank" our types into a hierarchy according to which level is homotopically trivial.

Propositional truncation

Let A be a type. Then the *propositional truncation* of A, written $||A||_{-1}$, is A "reduced to a logical proposition"

The type $||A||_{-1}$ is freely generated by the function $|a|:A\to ||A||_{-1}$ and the paths $\prod_{a,b:A}a=_Ab$.

Writing the usual axiom of choice:

$$\left(\left.\prod_{(X:F)}\left\|\left|\sum_{(x:A(X))}P(x,X)\right|\right|_{-1}\right)\rightarrow \left.\left\|\sum_{(g:\prod_{(X:F)}A(X))}\prod_{(X:F)}P(g(X),X)\right\|_{-1}\right.$$

We can "rank" our types into a hierarchy according to which level is homotopically trivial.

Propositional truncation

Let A be a type. Then the *propositional truncation* of A, written $||A||_{-1}$, is A "reduced to a logical proposition"

The type $||A||_{-1}$ is freely generated by the function $|a|:A\to ||A||_{-1}$ and the paths $\prod_{a,b:A}a=_Ab$.

• Writing the usual axiom of choice

$$\left(\prod_{(X:F)} \left\| \sum_{(x:A(X))} P(x,X) \right\|_{-1} \right) \to \left\| \left\| \sum_{(g:\prod_{(X:F)} A(X))} \prod_{(X:F)} P(g(X),X) \right\|_{-1} \right\|$$

We can "rank" our types into a hierarchy according to which level is homotopically trivial.

Propositional truncation

Let A be a type. Then the *propositional truncation* of A, written $||A||_{-1}$, is A "reduced to a logical proposition"

The type $||A||_{-1}$ is freely generated by the function $|a|:A\to ||A||_{-1}$ and the paths $\prod_{a,b:A}a=_Ab$.

• Writing the usual axiom of choice:

$$\left(\left.\prod_{(X:F)}\left\|\left|\sum_{(x:A(X))}P(x,X)\right|\right|_{-1}\right)\to\right.$$
$$\left\|\left|\sum_{(g:\prod_{(X:F)}A(X))}\prod_{(X:F)}P(g(X),X)\right|\right|_{-1}$$

We can "rank" our types into a hierarchy according to which level is homotopically trivial.

Propositional truncation

Let A be a type. Then the *propositional truncation* of A, written $||A||_{-1}$, is A "reduced to a logical proposition"

The type $||A||_{-1}$ is freely generated by the function $|a|:A\to ||A||_{-1}$ and the paths $\prod_{a,b:A}a=_Ab$.

• Writing the usual axiom of choice:

$$\left(\prod_{(X:F)} \left\| \sum_{(x:A(X))} P(x,X) \right\|_{-1} \right) \to \left\| \left| \sum_{(g:\prod_{(X:F)} A(X))} \prod_{(X:F)} P(g(X),X) \right| \right\|_{-1}$$

General Truncations

The hierarchy of types is divided into certain "h-level" accordingly

- At the −1-level we have types that are either contractible ("have only one point") or empty.
- At the 0-level we have "sets"
- At the 1-level we have ordinary groupoids ...

Set truncation, π_0

Let A be a type. Then the set truncation is A "reduced to a set", $\pi_0(A)$ also denoted $||A||_0$.

 $\pi_0(A)$ is freely generated by the function $|a|:A\to\pi_0(A)$ and paths $\prod_{x,y:A}\prod_{p,g:Id(x,y)}p=q$.

General Truncations

The hierarchy of types is divided into certain "h-level" accordingly

- At the -1-level we have types that are either contractible ("have only one point") or empty.
- At the 0-level we have "sets"
- At the 1-level we have ordinary groupoids ...

Set truncation, π_0

Let A be a type. Then the set truncation is A "reduced to a set", $\pi_0(A)$ also denoted $||A||_0$.

 $\pi_0(A)$ is freely generated by the function $|a|:A\to\pi_0(A)$ and paths $\prod_{x,y:A}\prod_{p,g:Id(x,y)}p=q$.

The hierarchy of types is divided into certain "h-level" accordingly

- At the −1-level we have types that are either contractible ("have only one point") or empty.
- At the 0-level we have "sets"
- At the 1-level we have ordinary groupoids ...

Set truncation, π_0

Let A be a type. Then the set truncation is A "reduced to a set", $\pi_0(A)$ also denoted $||A||_0$.

 $\pi_0(A)$ is freely generated by the function $|a|:A\to\pi_0(A)$ and paths $\prod_{\mathbf{x},\mathbf{y}:A}\prod_{p,q:Id(\mathbf{x},\mathbf{y})}p=q.$

The hierarchy of types is divided into certain "h-level" accordingly

- At the −1-level we have types that are either contractible ("have only one point") or empty.
- At the 0-level we have "sets"
- At the 1-level we have ordinary groupoids ...

Set truncation,

Let A be a type. Then the set truncation is A "reduced to a set", $\pi_0(A)$ also denoted $||A||_0$.

 $\pi_0(A)$ is freely generated by the function $|a|:A\to\pi_0(A)$ and paths $\prod_{x,y:A}\prod_{p,q:|d(x,y)|}p=q$.

The hierarchy of types is divided into certain "h-level" accordingly

- At the -1-level we have types that are either contractible ("have only one point") or empty.
- At the 0-level we have "sets"
- At the 1-level we have ordinary groupoids ...

Set truncation, π_0

Let A be a type. Then the set truncation is A "reduced to a set", $\pi_0(A)$ also denoted $||A||_0$.

 $\pi_0(A)$ is freely generated by the function $|a|:A\to\pi_0(A)$ and paths $\prod_{\mathbf{x},\mathbf{y}:A}\prod_{p,q:Id(\mathbf{x},\mathbf{y})}p=q.$

The hierarchy of types is divided into certain "h-level" accordingly

- At the -1-level we have types that are either contractible ("have only one point") or empty.
- At the 0-level we have "sets"
- At the 1-level we have ordinary groupoids ...

Set truncation, π_0

Let A be a type. Then the *set truncation* is A "reduced to a set", $\pi_0(A)$ also denoted $||A||_0$.

 $\pi_0(A)$ is freely generated by the function $|a|:A\to\pi_0(A)$ and paths $\prod_{x,y:A}\prod_{p,a:Id(x,y)}p=q$.

- A pointed type is a type A along with some a: A, denoted $\langle A, a \rangle$
- The *loop space* of a pointed type $\langle A, a \rangle$, denoted $\Omega(A, a)$ is the pointed type $\langle Id_A(a, a), refl_a \rangle$
- But $\Omega(A, a)$ is not a group! We need it to be a set first
- Thus $\pi_0(\Omega(A,a))$ is a set, and it can be shown to be a group

Theorem

$$\pi_0(\Omega(\mathbb{S}^1,\mathsf{base}))=\mathbb{Z}$$

- A *pointed type* is a type A along with some a:A, denoted $\langle A,a\rangle$
- The *loop space* of a pointed type $\langle A, a \rangle$, denoted $\Omega(A, a)$ is the pointed type $\langle Id_A(a, a), \text{refl}_a \rangle$
- But $\Omega(A, a)$ is not a group! We need it to be a set firstst
- Thus $\pi_0(\Omega(A,a))$ is a set, and it can be shown to be a group

Theorem

$$\pi_0(\Omega(\mathbb{S}^1,\mathsf{base})) = \mathbb{Z}$$

- A *pointed type* is a type A along with some a:A, denoted $\langle A, a \rangle$
- The *loop space* of a pointed type $\langle A, a \rangle$, denoted $\Omega(A, a)$ is the pointed type $\langle Id_A(a, a), refl_a \rangle$
- But $\Omega(A, a)$ is not a group! We need it to be a set first
- Thus $\pi_0(\Omega(A,a))$ is a set, and it can be shown to be a group

Theorem

$$\pi_0(\Omega(\mathbb{S}^1,\mathsf{base})) = \mathbb{Z}.$$

- A *pointed type* is a type A along with some a:A, denoted $\langle A, a \rangle$
- The *loop space* of a pointed type $\langle A, a \rangle$, denoted $\Omega(A, a)$ is the pointed type $\langle Id_A(a, a), refl_a \rangle$
- But $\Omega(A, a)$ is not a group! We need it to be a set first
- Thus $\pi_0(\Omega(A,a))$ is a set, and it can be shown to be a group

Theorem

$$\pi_0(\Omega(\mathbb{S}^1,\mathsf{base})) = \mathbb{Z}.$$

- A pointed type is a type A along with some a:A, denoted $\langle A,a\rangle$
- The *loop space* of a pointed type $\langle A, a \rangle$, denoted $\Omega(A, a)$ is the pointed type $\langle Id_A(a, a), refl_a \rangle$
- But $\Omega(A, a)$ is not a group! We need it to be a set first
- Thus $\pi_0(\Omega(A,a))$ is a set, and it can be shown to be a group

$\mathsf{T}\mathsf{heorem}$

$$\pi_0(\Omega(\mathbb{S}^1,\mathsf{base})) = \mathbb{Z}.$$

- A pointed type is a type A along with some a:A, denoted $\langle A,a\rangle$
- The *loop space* of a pointed type $\langle A, a \rangle$, denoted $\Omega(A, a)$ is the pointed type $\langle Id_A(a, a), refl_a \rangle$
- But $\Omega(A, a)$ is not a group! We need it to be a set first
- Thus $\pi_0(\Omega(A,a))$ is a set, and it can be shown to be a group

Γ heorem

$$\pi_0(\Omega(\mathbb{S}^1,\mathsf{base})) = \mathbb{Z}.$$

- A pointed type is a type A along with some a:A, denoted $\langle A,a\rangle$
- The *loop space* of a pointed type $\langle A, a \rangle$, denoted $\Omega(A, a)$ is the pointed type $\langle Id_A(a, a), refl_a \rangle$
- But $\Omega(A, a)$ is not a group! We need it to be a set first
- Thus $\pi_0(\Omega(A,a))$ is a set, and it can be shown to be a group

Theorem

$$\pi_0(\Omega(\mathbb{S}^1,\mathsf{base}))=\mathbb{Z}.$$

Thank you for listening!

• More info: HomotopyTypeTheory.org