

Cálculo para Engenharia

2021'22 Formulário 4

Critérios sobre séries de números reais

[Condição necessária de convergência] Se $\sum_{n>1} u_n$ é convergente então $\lim u_n=0$.

[Condição suficiente de divergência] Se $\lim u_n \neq 0$ então $\sum_{n>1} u_n$ é divergente.

[1.º critério de comparação] Sejam $\sum_{n\geq 1}u_n$ e $\sum_{n\geq 1}v_n$ séries de termos não negativos tais que, a partir de certa ordem, $u_n \leq v_n$.

- i) $\sum_{n\geq 1} v_n$ converge $\implies \sum_{n\geq 1} u_n$ converge. ii) $\sum_{n\geq 1} u_n$ diverge $\implies \sum_{n\geq 1} v_n$ diverge.

[2.º critério de comparação] Sejam $\sum_{n\geq 1}u_n$ e $\sum_{n\geq 1}v_n$ séries de termos positivos tais que $\ell=\lim_n\frac{u_n}{v_n}$, onde $\ell \in [0, +\infty]$.

- i) $\ell \neq 0$ ou $\ell \neq +\infty \implies \sum_{n \geq 1} u_n$ e $\sum_{n \geq 1} v_n$ têm a mesma natureza.
- ii) Se $\ell=0$
 - (a) $\sum_{n\geq 1} v_n$ converge $\implies \sum_{n\geq 1} u_n$ converge. (b) $\sum_{n\geq 1} u_n$ diverge $\implies \sum_{n\geq 1} v_n$ diverge.

- iii) Se $\ell = +\infty$

 - (a) $\sum_{n\geq 1} v_n$ diverge $\Longrightarrow \sum_{n\geq 1} u_n$ diverge. (b) $\sum_{n\geq 1} u_n$ converge $\Longrightarrow \sum_{n\geq 1} v_n$ converge.

[Critério da razão (ou D'Alembert)] Sejam $\sum_{n\geq 1}u_n$ uma série de termos positivos e $\ell=\lim\frac{u_{n+1}}{u_n}$.

- i) $\ell < 1 \implies \sum_{n \geq 1} u_n$ é convergente.
- ii) $\ell > 1 \implies \sum_{n \geq 1} u_n$ é divergente.
- iii) $\ell=1$ \Longrightarrow nada se pode concluir sobre a natureza de $\sum_{n\geq 1}u_n.$

[Critério da raiz (ou de Cauchy)] Sejam $\sum_{n\geq 1} u_n$ uma série de termos não negativos e $\ell=\lim \sqrt[n]{u_n}$.

- i) $\ell < 1 \implies \sum_{n \geq 1} u_n$ é convergente.
- ii) $\ell > 1 \implies \sum_{n \geq 1} u_n$ é divergente.
- iii) $\ell=1$ \Longrightarrow nada se pode concluir sobre a natureza de $\sum_{n\geq 1}u_n.$

[Critério do integral] Se $f:[1,+\infty[\longrightarrow \mathbb{R}$ é uma função contínua, positiva, decrescente e, para cada $n\in\mathbb{N}$ seja, $f(n) = u_n$ então $\sum_{n \geq 1} u_n$ e $\int_1^{+\infty} f(x) dx$ têm a mesma natureza.

[Convergência absoluta] Se $\sum_{n\geq 1} |u_n|$ é convergente então $\sum_{n\geq 1} u_n$ também é convergente.

[Critério de Leibnitz] Seja $(a_n)_n$ uma sucessão decrescente tal que $\lim a_n = 0$. Então $\sum_{n>1} (-1)^n a_n$ é convergente.