

RNA structure

Saeedeh Akbari

Department of Computer Engineering Sharif University of Technology Fall 2023

Table of contents

01

Introduction

02

DP method

01

Introduction

Various types of RNA

- messenger RNA (mRNA)
- transfer RNA (tRNA)
- Ribosomal RNA (rRNA)
- small interfering RNA (siRNA)
- micro RNA (miRNA)
- small nuclear RNA (snRNA)
- small nucleolar RNA (snoRNA)
- guide RNA (gRNA)
- efference RNA(eRNA)

RNA Basics

- RNA bases: A, C, G, U
- Watson-Crick Pair

```
A-U (~ 2 kcal/mol)
```

G-C (~ 3 kcal/mol)

- Wobble pair
 - G-U (~ 1 kcal/mol)
- Non-Canonical pairs (modified suitably)
- Bases can only pair with one other base

Secondary and Tertiary Structure

GOGGAUUUAGCUCAGUUGG GAGAGOGCCAGACUGAAGA UCUGGAGGUCCUGUGUUCG AUCCACAGAAUUCGCACCA

Primary structure

Secondary structure

Tertiary structure

Secondary Structural Elements

RNA Secondary structure/Motifs

RNA Motifs Regulatory Effects

-

- Regulations of translations
- Processing of RNA
- Catalytic modification of other RNAs
- Transport and position in the cell
- Stability of RNA-transcript
- Expression of encoded proteins

Cells' mechanisms

Why predict structures?

- Current physical methods (X-Ray, NMR) are too expensive and time consuming
- Predict shape from sequence of bases
- Four basic structures: helices, loops, bulges and junctions

 Knowing the shape of a biomolecule is invaluable in drug design and understanding disease mechanisms

RNA secondary structure

- What makes RNA fold?
- Problem: given an RNA sequence, find the set of base pairs that is "correct" or "optimal"
 - Maximize number of base pairs (Nussinov et al)
 - Minimize energy (Zucker et al)
- Search problem: very high number of possible structures
- Algorithm: dynamic programming
 - Cannot handle pseudoknots

Structure Representation

- Secondary structure described as a graph
- base pairs are described via pairs of indices (i, j), indicating links between base vertices

Definitions

- Sequence 5' (r₁ r₂ r₃ ... r_n) 3' in {A, C, G, U/T}
- A Secondary Structure is a set of pairs i,j s.t.:

1.
$$i < j - 4$$

2. If i, j are two pairs with $i \le i'$, then

a)
$$i = i' \& j = j'$$
, or

b)
$$j < i'$$
, or

b) j < i', or C i < i' < j' < j First pair precedes 2nd, or is nested within it. No "pseudoknots."

Approaches to Structure Prediction

- Maximum Pairing
 - + works on single sequences
 - + simple
 - too inaccurate
- Minimum Energy
 - + works on single sequences
 - ignores pseudoknots
 - only finds "optimal" fold
- Partition Function
 - + finds all folds
 - ignores pseudoknots

- Comparative sequence analysis
 - + handles all pairings (incl. pseudoknots)
 - requires several (many?) aligned,
 appropriately diverged sequences
- Stochastic Context-free Grammars
 Roughly combines min energy & comparative, but no pseudoknots
- Physical experiments (x-ray crystalography, NMR)

02

DP Method

• S(i, j) is the folding of the RNA subsequence of the strand from index i to index j which results in the highest number of base pairs.

- Alignment Method:
 Align RNA strand to itself
 Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

- Alignment Method:
 Align RNA strand to itself
 Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

- Alignment Method:
 Align RNA strand to itself
 Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

- Alignment Method:

 Align RNA strand to itself
 Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

- Alignment Method:

 Align RNA strand to itself
 Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

- Alignment Method:
 Align RNA strand to itself
 Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

$$S(i + 1, j - 1) + 1$$

- Alignment Method:
 Align RNA strand to itself
 Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

- Alignment Method:
 Align RNA strand to itself
 Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

- Alignment Method:
 Align RNA strand to itself
 Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

Base Pair Maximization: Drawbacks

- Base pair maximization will not necessarily lead to the most stable structure.
- It may create structure with many interior loops or hairpins which are energetically unfavorable.
- Results comparable to aligning sequences with scattered matches not biologically reasonable.