

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

Applicant: Ernest A. Voisin

Serial No.: 09/121,725

Filed: July 24, 1998

For: A Process of Elimination of Bacteria in Shellfish, of Shucking Shellfish and

An Apparatus Therefor

To the Honorable Commissioner Of Patents and Trademarks P.O. Box 1450 Alexandria, VA 22313-1450

Box: Board of Patent Appeals and Interferences

Group Art Unit: 1761

Examiner: Drew Becker

Date: August 30, 2004

RESPONSE TO COMMUNICATION OF JULY 28, 2004

In response to the Notice of Non-compliance with 37 CFR 1.192 (c), appellant submits herewith a new Appeal Brief (in triplicate). The Brief was amended in the Argument portion to specifically include reasons why the appellant believes that claims 3, 4, 6, 7, and 27 are independently patentable.

Favorable consideration of the Appeal is respectfully requested.

Respectfully submitted,

Keaty Professional Law Corporation

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as First Class mail in an envelope addressed to:

> **Assistant Commissioner for Patents** P.O. Box 1450 Alexandria, VA 22313-1450

Debra Hom

Thomas \$\mathbf{S}\$. Keaty

Registration No. 27,038

Suite 2140 World Trade Center

#2 Canal Street

New Orleans, Louisiana 70130

(504) 524-2100

Attorney for Applicant

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

Applicant: Ernest A. Voisin

Serial No.: 09/121,725

Group Art Unit: 1761

Filed: July 24, 1998

Examiner: Drew Becker

For: A Process of Elimination of Bacteria in Shellfish, of Shucking Shellfish and

Date: August 30, 2004

An Apparatus Therefor

To the Honorable Commissioner Of Patents and Trademarks P.O. Box 1450 Alexandria, VA 22313-1450

Box: Board of Patent Appeals and Interferences

AMENDED APPEAL BRIEF

Sir:

This is an Appeal Brief with respect to the Notice of Appeal filed on March 24, 2004.

REAL PARTY IN INTEREST

Innovatit Seafood Systems, LLC, assignee of the entire right in this application is the real party in interest in the present application and appeal.

2. RELATED APPEALS AND INTERFERENCES

An appeal filed on 06/11/03 is pending in a related application Serial No. 09/949,704. However, the appeal in the related application is not believed to directly affect, or be indirectly affected by or have a bearing on the Board's decision in this appeal. The Board rendered a decision in the original application S. N. 09/121,725 on March 10, 2003. However, that decision is not believed to directly affect, or be indirectly affected by, or have a bearing on the Board's

decision in this appeal because this appeal raises new issues not heretofore addressed by the Board.

3. STATUS OF CLAIMS

Claims 3, 4, 6, 7, and 27 are pending in the application. Claims 6 and 27 were finally rejected under 35 U.S.C. 102(b) as being anticipated by JP 4356156A in the Office Action of October 30, 2003. Claims 3, 4, and 7 were finally rejected as being unpatentable over JP 4356156A in view of Tesvich et al (pat. No. 5,773,064).

4. STATUS OF AMENDMENTS

There were no amendments in the claims filed subsequent to the final rejection.

5. SUMMARY OF INVENTION

The invention relates to a method of treating raw molluscan shellfish in order to eliminate naturally-occurring pathogenic organisms, such as Vibrio Vulnificus. (p. 1, lines 8-10, p. 17, line 20 through p. 18, lines 1-2). The method provides for exposing raw molluscan shellfish, such as oysters, to high isostatic pressure of between 20,000 p.s.i. and 80,000 p.s.i., without application of heat, for a period of time of between 1 and 15 minutes (p. 8, lines 20-21 through p. 9, line 1), thereby causing elimination of naturally-occurring pathogenic marine bacteria p. 16, lines 2 - 4), while retaining sensory characteristics of the raw shellfish. (p. 9, lines 2-4) and without causing thermal (p. 17, lines 6 - 7) and mechanical damage to the raw molluscan shellfish (p. 9, lines 4 - 6). Prior to placing the raw shellfish in a pressure vessel, a band is secured on the shellfish to prevent bleeding (p. 10, lines 9-11) and the shellfish is enclosed in liquid-impermeable bags filled with pressurizable liquid (p.10, lines 11- 13).

6. ISSUES

- 1. Whether Claims 6 and 27 are unpatentable under 35 U.S.C. 102(b) in light of a cited reference that is inoperable under at least some of the claimed conditions.
- 2. Whether the cited reference enables a person of ordinary skill in the field of invention to treat raw shellfish and thereby eliminate pathogenic organisms without undue experimentation.
- 3. Whether claims directed to a method elimination of pathogenic bacteria, are obvious in light of inoperable cited prior art and despite evidence of persons skilled in the art attesting to the novelty and nonobviousness of the claimed invention.
- 4. Whether examiner established prima facie case of obviousness in light of the contravening evidence of persons skilled in the art on the outstanding commercial success and industry-wide recognition of the claimed invention.

7. GROUPING OF CLAIMS

Claim 3 is believed to be separately patentable because it discloses a process of destroying bacteria in raw molluscan shellfish which comprises the steps of pressurizing the pressure vessel containing the raw shellfish to high pressure of between about 20,000 p.s.i. and 80,000 p.s.i., without application of heat, for a period of time of between 1 and 15 minutes, thereby causing elimination of naturally-occurring pathogenic marine bacteria, while retaining sensory characteristics of the shellfish. The cited prior art fails to address the problem of bacteria elimination, while was proved to be at least partially inoperable for the intended purpose stated in its disclosure.

Claim 4 is believed to be independently patentable because it discloses a method of treating raw shellfish wherein the shellfish is exposed to isostatic pressure for a time period sufficient to eliminate pathogenic Vibriones bacteria. The cited prior art fails to offer enabling disclosure that could be followed without undue experimentation in order to eliminate pathogenic bacteria.

Claim 6 is believed to be independently patentable because it discloses a process of treating raw oysters in a shell, which comprises exposing raw oysters to hydrostatic pressure of between 20,000 p.s.i. and 80,000 p.s.i. for 1 – 15 minutes at ambient temperature, without causing thermal and mechanical damage to the raw oysters, thereby eliminating pathogenic Vibriones bacteria in said raw oysters, preventing deterioration of said raw oysters, while retaining sensory characteristics of said raw oysters. The cited prior art fails to offer enabling disclosure that could be followed without undue experimentation in order to eliminate pathogenic bacteria in raw oysters, while preventing deterioration of the fresh product.

Claim 7 is believed to be independently patentable because it discloses banding of the oysters and enclosing them in liquid-impermeable bags filled with pressurizable liquid prior to exposing the oysters to hydrostatic pressure so as to prevent bleeding of raw oysters during treatment. The cited prior art fails to disclose a step of banding and bagging oyster prior to exposing them to hydrostatic pressure.

Claim 27 is believed to be independently patentable because it discloses a method of treating raw molluscan shellfish by depositing the raw mlluscan shellfish into a pressure vessel and pressurizing the pressure vessel to between 20,000 p.s.i. and 80,000 p.s.i. for 1 – 15 minutes without application of heat at ambient temperature, without causing thermal and mechanical damage to the raw molluscan shellfish, while eliminating pathogenic naturally-occurring marine

bacteria in the raw molluscan shellfish, and while retaining sensory characteristics of the raw molluscan shellfish. The cited prior art fails to offer a solution, which could be followed, without undue experimentation in order to eliminate pathogenic naturally-occurring marine bacteria in raw shellfish.

8. ARGUMENT

No claims were rejected under 35 U.S.C. 112, first paragraph.

No claims were rejected under 35 U.S.C. 112, second paragraph.

A claimed invention cannot be anticipated by a prior art reference if the allegedly anticipatory disclosure cited as prior art is not enabled

Claims 6 and 27 were finally rejected under 35 U.S.C. 102(b) as being anticipated by JP 4356156A. It is the Examiner's contention that the claimed characteristics of eliminating pathogenic Vibriones bacteria "are considered an inherent property and result of the referenced method, and not unique to the instant invention." In his attempt to supply the missing subject matter, examiner cited Cheftel, Effects of high hydrostatic pressure on food constituents: an overview, page 204, heading 1.2.

JP 4356156 teaches a process of opening shells of raw oysters by subjecting the raw oysters to hydrostatic pressure of 1,000ATM – 4,000ATM (14,223 – 56,892 p.s.i.) for 0.5 – 10 minutes at ambient temperature. The cited reference is silent on a possibility or desirability of the process being conducted at 20,000 p.s.i. or at pressures above 56,892 p.s.i. The cited reference is silent on what possible effect different pressure ranges would have on raw oysters. More importantly the cited reference is silent on the issue of pathogenic bacteria elimination. Therefore, the inventor of the cited reference did not recognize a possibility of the hydrostatic pressure being used for treating bacterial contamination in oysters.

Under principles of inherency, when a reference is silent about an asserted inherent characteristic, it must be clear that the missing descriptive matter is necessarily present in the thing described in the reference, and that it would be so recognized by persons of ordinary skill. *Continental Can Co. v. Monsanto Co.*, 948 F.2d 1264, 1268, 20 USPQ2d 1746, 1749 (Fed. Cir. 1991). Examiner relied on a single heading, on a single page 204, of Cheftel's publication, which literally consists of the following:

"POTENTIAL FOOD APPLICATIONS

1.2 Destruction of pathogenic microorgamisms and reduction of the microbial load of non-acid foods

- → sanitation
- → longer refrigerated shelf life

Ex. Salmonella in egg white or minced meat

Salmonella and Listeria in dairy cream or fresh curds from raw milk

Microbial load in cheeses or spreads

Vibrio and viruses in seafoods; parasites and insects in fish, meat, etc.

Pathogenic microorganisms in herbs, spices and leafy vegetables (difficult to wash efficiently)

Lower thermal pasteurization and longer refrigerated shelf-life of ready-to-eat meats"

Examiner contends that "it was known that high pressure treatment of seafood destroyed pathogenic organisms such as Vibrio, as evidenced by Cheftel."

To serve as an anticipating reference, the reference must enable that which it is asserted to anticipate. Elan Pharmaceuticals Inc. v. Mayo Foundation for Medical Education and Research, 346 F.3d 1051;2003 U.S. App. LEXIS 20195;68 U.S.P.Q.2D (BNA) 1373 (Fed. Cir. 2003). "A claimed invention cannot be anticipated by a prior art reference if the allegedly anticipatory disclosures cited as prior art are not enabled." Amgen, Inc. v. Hoechst Marion Roussel, Inc., 314 F.3d 1313, 65 USPQ2d 1385 (Fed. Cir. 2003).

As the Federal Circuit held in <u>Bristol-Myers Squibb v. Ben Venue Laboratories, Inc.</u>, 246 F.3d 1368, 1374, 58 USPQ2d 1508, 1512 (Fed. Cir. 2001), "to anticipate the reference must also

enable one of skill in the art to make and use the claimed invention." and "must disclose every element of the challenged claim," <u>PPG Industries, Inc. v. Guardian Industries Corp.</u>, 75 F.3d 1558, 1566, 37 USPQ2d 1618, 1624 (Fed. Cir. 1996).

Review of the record in this application shows that the cited Japanese application it at least partially non-enabling. After numerous tests, the appellant demonstrated that the lower pressures stated in JP 4356156, do not open the oysters. Appellant submitted its findings in a related application and to Examiner Becker of the instant application. Copy of the Declaration in the related application is submitted as Exhibit 1. The appellant also submits Declaration under Section 132 for the instant application (Exhibit 2); the Declaration essentially confirms the results of the tests using the directions outlined in JP 4356156.

The declarations relied on the exhaustive tests performed by the applicant to test efficacy of the method as disclosed in the Japanese reference. The tests showed that the method of the '456 application is unreliable at best, not producing any shucking at either 1000ATM, or 2000ATM at ambient temperature. At 1000ATM. At ambient temperature of 50 degrees Fahrenheit no shucking of oysters was observed. Only after temperature was elevated to 90 degrees Fahrenheit and after 15 minutes of processing shucking was achieved.

The next series of tests involved application of pressure of 2,000 ATM. After 3-10 minutes at ambient temperature no shucking occurred. This time period is well over the maximum time of 5 minutes suggested by JP 4356156 in paragraph [0006] of the description. At 3,000 ATM using ambient temperature for 0.5-5 minutes only 80 percent of oysters were shucked. Only elevation of temperature at these pressure and time values caused shucking of oysters. Finally, tests were performed using 4,000 ATM, the highest pressure suggested by JP 4356156 for 0.5 to 5 minutes. Again, the results were not entirely satisfactory. Only after

temperature was elevated, the conclusive result was achieved. These tests are summarized in the attached chart.

The applicant further submits as Exhibit 3, a copy of JP 2000-157157A (NOT PRIOR ART REFERENCE), which fully supports the statements made by the inventor in the above-identified declarations. Specifically, attention of the Board is directed to the table on page 16/28 (Exhibit 4) with hand-written notations made by the inventor of this application and corresponding to the translation of the text into English. JP 157157 supports inventor's tests showing that at 1000 ATM, 5 min. processing and at 50°F (10° C) (ambient temperature), no shells opened, gapped or muscle released. At 2000ATM, 5 min. processing and at 50°F (10° C) (ambient temperature), 22% gapped but muscle stuck to shell, which means no shucking. At 3000ATM, 5 min. processing and at 50°F (10° C) (ambient temperature), 85% gapped and 100% muscle released from shell. It is only at 4000ATM, that the method produced a shell opening and muscle release with a degree of certainty. Of course, as the temperature increased, so did the percentage of the successful shucking.

The appellant further brings attention to the graph on page 27/28 (Exhibit 5) of the translated reference, with hand-written notations made by the applicant. The graph summarizes the findings of the '157 application.

Consequently, the cited prior art fails to disclose an enabling process of treating raw oysters in a shell, which comprises exposing raw oysters to hydrostatic pressure of between 20,000 p.s.i. and 80,000 p.s.i. for 1 – 15 minutes at ambient temperature, without causing thermal and mechanical damage to the raw oysters, thereby eliminating pathogenic Vibriones bacteria in said raw oysters, preventing deterioration of said raw oysters, while retaining sensory characteristics of said raw oysters (Claim 6). Similarly, the cited prior art fails to disclose an

enabling process of treating raw molluscan shellfish, which comprises the steps of depositing the raw mlluscan shellfish into a pressure vessel and pressurizing the pressure vessel to between 20,000 p.s.i. and 80,000 p.s.i. for 1 – 15 minutes without application of heat at ambient temperature, without causing thermal and mechanical damage to the raw molluscan shellfish, while eliminating pathogenic naturally-occurring marine bacteria in said raw molluscan shellfish, and while retaining sensory characteristics of said raw molluscan shellfish (Claim 27).

Claim 6 is believed to be independently patentable because it discloses a process of treating raw oysters in a shell, which comprises exposing raw oysters to hydrostatic pressure of between 20,000 p.s.i. and 80,000 p.s.i. for 1 – 15 minutes at ambient temperature, without causing thermal and mechanical damage to the raw oysters, thereby eliminating pathogenic Vibriones bacteria in said raw oysters, preventing deterioration of said raw oysters, while retaining sensory characteristics of said raw oysters. The cited prior art fails to offer enabling disclosure that could be followed without undue experimentation in order to eliminate pathogenic bacteria in raw oysters, while preventing deterioration of the fresh product.

Claim 27 is believed to be independently patentable because it discloses a method of treating raw molluscan shellfish by depositing the raw mlluscan shellfish into a pressure vessel and pressurizing the pressure vessel to between 20,000 p.s.i. and 80,000 p.s.i. for 1 – 15 minutes without application of heat at ambient temperature, without causing thermal and mechanical damage to the raw molluscan shellfish, while eliminating pathogenic naturally-occurring marine bacteria in the raw molluscan shellfish, and while retaining sensory characteristics of the raw molluscan shellfish. The cited prior art fails to offer a solution, which could be followed, without undue experimentation in order to eliminate pathogenic naturally-occurring marine bacteria in raw shellfish.

Enablement requires that the prior art reference must teach

one of ordinary skill in the art to make or carry out

the claimed invention without undue experimentation

As the Court held in Minnesota Mining and Manufacturing Co. v. Chemque, Inc., 303 F.3d 1294, 1301, 64 USPQ2d 1270, 1278 (Fed. Cir. 2002), "enablement requires that the prior art reference must teach one of ordinary skill in the art to make or carry out the claimed invention without undue experimentation." "Whether undue experimentation would have been required to make and use an invention, and thus whether a disclosure is enabling under 35 U.S.C. \$112, 1, is a question of law," Enzo Biochem, Inc. v. Calgene, Inc., 188 F.3d 1362, 1369, 52 USPQ2d 1129, 1134 (Fed. Cir. 1999).

In <u>In re Wands</u>, 858 F.2d 731, 8 USPQ2d 1400 (Fed. Cir. 1988), the court stated that in cases of biological processes, the factual inquiry in the enablement analysis may include the following factors to determine whether the requisite amount of experimentation is undue:

(1) the quantity of experimentation necessary, (2) the amount of direction or guidance presented, (3) the presence or absence of working examples, (4) the nature of the invention, (5) the state of the prior art, (6) the relative skill of those in the art, (7) the predictability or unpredictability of the art, and (8) the breadth of the claims. *Id.* at 737; 8 USPQ2d at 1404.

It is well established that the "disclosure in an assertedly anticipating reference must be adequate to enable possession of the desired subject matter. It is insufficient to name or describe the desired subject matter, if it cannot be produced without undue experimentation." In re Donohue, 766 F.2d 531, 226 USPQ 619 (Fed. Cir. 1985). The "disclosure must be such as will give possession of the invention to the person of ordinary skill. Even the act of publication or the fiction of constructive reduction to practice will not suffice if the disclosure does not meet this

standard," <u>In re Borst</u>, 345 F.2d 851, 855, 145 USPQ 554, 557 (CCPA 1962). "The determination of what constitutes undue experimentation in a given case requires the application of a standard of reasonableness, having due regard for the nature of the invention and the state of the art." <u>In re</u> Wands, 858 F.2d 731, 737 (Fed. Cir. 1988).

Applying the above principles to the instant case, the inventor's tests, confirmed in JP 157157, show that the stated purpose of JP 4356156 cannot be achieved by using at least some of the criteria suggested in the cited reference. Therefore, JP 4356156 provides little guidance with respect to achieving the stated goal of opening oyster shells in the examples given in the specification. A person intending to repeat the process of JP4356156 and starting at a lower pressure values will get discouraged by not achieving the results claimed in JP 4356156. The quantity of experimentation that would be required to find the workable values is substantial.

JP 4356156 attempts to offer guidance on what particular pressure values would work with the time factor, however, that guidance does not produce a working solution, at least in the lower ranges. The working examples do not appear to be working. The cited reference does not enable the shell opening it describes at least in some of its claimed applications.

The same, if not more so, is true of the Cheftel's reference. Contrary to Examiner's assertions, Cheftel provides even less guidance than JP 4356156 as to the steps to take, the pressures to use and time to process in order to eliminate the pathogenic organisms in raw shellfish. The Cheftel publication falls squarely into the category of publications that do not offer an enabling disclosure, the same category that the Federal Circuit cautions should be used in the assertions of "inherent anticipation." The use of Cheftel's 9-line entry to prove knowledge of high pressure treatment of seafood for the destruction of pathogenic organisms is akin to using

Leonardo Da Vinci's <u>The Codex on the Flight of Birds</u> (cir. 1506 AD) to prove knowledge and anticipation of the Wright brothers airplane.

The nature of the instant invention places it in the field of raw live organism treatment. This field is complex and unpredictable. It is extremely difficult to find a method that would allow elimination of pathogenic organisms without affecting sensory characteristics of seafood. The uncertainty of the process dealing with live organisms and difficulty in finding a workable solution are daunting. The artisans in this field have been searching for the solution to the problem of pathogenic Vibriones for a long time.

The appellant submits four Declarations (Exhibits 5 - 8) from persons having more than ordinary skill in the art in the field of seafood processing and safety. One of the declarants is Mr. Le Roy Chauvin, who has been working in the oyster industry since 1953, who is an active member of North American Oyster Institute and whose recommendations are followed and enforced by the Federal Food and Drug Administration.

The second declarant is Mr. Michael C. Voisin, who has been working in the field of seafood processing since 1971, who is President and Chairman of the Board of Louisiana Oyster Dealers and Growers Association, active member of Gulf and South Atlantic Fisheries Development Foundation, Interstate Shellfish Sanitation Conference and several other organizations that deal with seafood processing and seafood safety on the National and State level.

The third declarant is Mr. Alfred R. Sunseri who has been working in the oyster processing and distributing industry since 1980, who is an active member of the Louisiana Oyster dealers and growers Association, Louisiana Oyster Task Force, Gulf Oyster Industry Council and the Interstate Shellfish Sanitation Conference.

The fourth declarant is Mr. Christopher Lee Nelson who has been working in the oyster industry since 1989, who is an active member of the National Fisheries Institute, Molluscan Shellfish Institute, National Shellfisheries Association, Southeastern Fisheries Association and several other organizations that deal with the problems facing the seafood industry.

All declarants examined the instant application, its prosecution file history, JP 4356156, Cheftel and Tesvich (that is all cited references). All declarants recognize that the cited reference of JP 4356156 is silent on the effects of high pressure processing in the claimed range of 1,000 – 4,000 ATM. for 0.5 – 10 minutes at ambient temperature on elimination of Vibriones.

Having then reviewed Cheftel, the declarants reached a conclusion that it would not have occurred to them "to read the Japanese application or Cheftel's page, singularly or in combination, as a guiding manual or even a suggestion for elimination of *Vibrio Vulnificus* in molluscan shellfish." All declarants stated that it "is not inherent in the Japanese reference and is not recognized inherent by" them, based on their "experience and knowledge of seafood processing, that the method steps of the Japanese application would result in elimination of bacteria in molluscan shellfish." The declarants further stated that they "have reached the same conclusion after considering the Cheftel's paper."

The declarants also disagreed with the examiner's statement that a person of ordinary skill in the art would have expected the same result (Vibrio elimination) after having read the Japanese reference. In their opinion, "Japanese application addresses only one subject - oyster shucking. There is nothing in that paper that have told them "or suggested to" them, "or made inherent to" them "that using certain pressures and time values can eliminate Vibrio in seafood without changing the taste of seafood."

In view of the above, the appellant submits that claims 6 and 27 are not anticipated by JP 4356156, even when read in the context of Chaftel.

Persons of ordinary skill in the art attest to nonobviousness of the claims

Claims 3, 4 and 7 were rejected under 35 U.S.C. 103(a) as being unpatentable over JP 4356156 in view of Tesvich et al (5,773,064). Tesvich et al was cited for two propositions – that keeping uncooked food at refrigeration temperatures is a common method of preservation and that the bands keep shells from opening during processing.

As stated above, the primary reference is silent on the issue of elimination of pathogenic bacteria in seafood by exposing the seafood to high hydrostatic pressure in the range of 20,000 p.s.i. and 80,000 p.s.i. for 1 – 15 minutes at ambient temperature, without causing thermal and mechanical damage to the raw oysters or the raw molluscan shellfish, while retaining sensory characteristics of said raw molluscan shellfish Claim 3). The cited references are silent on the requirement that raw shellfish be exposed to isostatic pressure for a time period sufficient to eliminate pathogenic Vibriones bacteria (Claim 4). Moreover, the cited reference does not provide an enabling disclosure. The cited references, in combination are silent on a process, by which raw molluscan shellfish is banded and enclosed in liquid-impermeable bags filled with pressurizable liquid prior to exposing said oysters to hydrostatic pressure so as to prevent bleeding of raw oysters during treatment (Claim 7).

The declarations of Messrs. Nelson, Sunseri, Chauvin and Voisin address the issue of obviousness as well.

The declarants reviewed the patent of Tesvich and Japanese application as they relate to Claims 3, 4 and 7 and stated that they disagreed with the examiner in his assessment of the differences between Claims 3, 4, and 7 of Mr. Voisin's application and the combined disclosure

of the Japanese application and Tesvich's patent. The declarants believe "that it would not have been obvious to a person familiar with seafood industry to pressurize seafood at 20,000 p.s.i. and 80,000 p.s.i., without application of heat, without causing damage to shellfish, for a period of time of between 1 and 15 minutes in order to destroy bacteria in raw molluscan shellfish after having reviewed JP 4356156A and Tesvich. The mere fact that Tesvich suggests banding and refrigeration of seafood after "mild heat treatment" does not change the result – neither JP 4356156A nor Tesvich, singularly or combined together, suggest, make inherent or obvious what Mr. Voisin's claims 3, 4, and 7 teach."

Examiner failed to establish prima facie case of obviousness in light of the overwhelming evidence by persons skilled in the art

It is well settled that the invention must be viewed not after the blueprint has been drawn by the inventor, but as it would have been perceived in the state of the art that existed at the time the invention was made. Interconnect Planning Corp. v. Feil, 774 F.2d1132, 1138, 227 USPQ 543, 547 (Fed. Cir. 1985). The state of the art, as suggested by the Examiner, consists of a suggestion to use 1,000 kg/cm2 - 4,000 kg/cm2 for 0.5 - 10 minutes to open shellfish. As supported by the facts of numerous tests performed by the applicant and evidenced in the enclosed Declarations, the disclosure of JP 4356156 is not an enabling disclosure within the meaning of Elan Pharmaceuticals.

As held by the court in W.L. Gore & Assocs., Inc. v. Garlock, Inc., 721 F.2d 1540, 1553, 220 USPQ 303, 312-13 (Fed. Cir. 1983), "to imbue one of ordinary skill in the art with knowledge of the invention in suit, when no prior art reference or references of record convey or suggest that knowledge, is to fall victim to the insidious effect of a hindsight syndrome wherein that which only the inventor taught is used against its teacher." Overwhelming evidence in the

form of declarations of persons having exceptional skill in the art (the level of knowledge and experience higher than that of a proverbial "person of ordinary skill in the art") supports appellant's position that Examiner failed to establish prima facie case of obviousness of Claims 3, 4 and 7.

Claim 3 is believed to be separately patentable because it discloses a process of destroying bacteria in raw molluscan shellfish which comprises the steps of pressurizing the pressure vessel containing the raw shellfish to high pressure of between about 20,000 p.s.i. and 80,000 p.s.i., without application of heat, for a period of time of between 1 and 15 minutes, thereby causing elimination of naturally-occurring pathogenic marine bacteria, while retaining sensory characteristics of the shellfish. The cited prior art fails to address the problem of bacteria elimination, while was proved to be at least partially inoperable for the intended purpose stated in its disclosure.

Claim 4 is believed to be independently patentable because it discloses a method of treating raw shellfish wherein the shellfish is exposed to isostatic pressure for a time period sufficient to eliminate pathogenic Vibriones bacteria. The cited prior art fails to offer enabling disclosure that could be followed without undue experimentation in order to eliminate pathogenic bacteria.

Claim 7 is believed to be independently patentable because it discloses banding of the oysters and enclosing them in liquid-impermeable bags filled with pressurizable liquid prior to exposing the oysters to hydrostatic pressure so as to prevent bleeding of raw oysters during treatment. The cited prior art fails to disclose a step of banding and bagging oyster prior to exposing them to hydrostatic pressure.

In view of the evidence and arguments presented above, re-consideration of the rejection under 35 USC 102(b) and 103(a), and allowance of Claims 3, 4, 6, 7, and 27 is respectfully requested.

The Patent Office is authorized to charge the required fees to Deposit Account No. 11-0260 of the undersigned. The appellant also submits that a Petition to Make Special was filed in this application on July 9, 2001. Expedited consideration of this Appeal is therefore respectfully requested.

The appellant also requests an Oral Hearing of this Appeal.

Respectfully submitted,

CERTIFICATE OF MAILING
I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as First Class mail in an

envelope addressed to:

Assistant Commissioner for Patents P.O. Box 1450

Alexandria, VA 22313-1450

on: 8/20/04

By: William

Debra Hom

Keaty Professional Law Corporation

Thomas S. Keaty

Registration No. 27,038

Suite 2140 World Trade Center

#2 Canal Street

New Orleans, Louisiana 70130

(504) 524-2100

Attorney for Applicant

9. APPENDIX

Claims involved in this Appeal:

3. Process of destroying bacteria in raw molluscan shellfish, while shellfish is in the shell, comprising the steps of:

providing a pressure vessel;

depositing said shellfish into said pressure vessel;

loading a pressure transmitting fluid into said pressure vessel;

pressurizing said pressure vessel to high pressure of between about 20,000 p.s.i. and 80,000 p.s.i., without application of heat, for a period of time of between 1 and 15 minutes, thereby causing elimination of naturally-occurring pathogenic marine bacteria, while retaining sensory characteristics of said shellfish; and then

retaining said shellfish at a temperature below ambient temperature.

- 4. The process of Claim 3, wherein said raw shellfish is exposed to isostatic pressure for a time period sufficient to eliminate pathogenic Vibriones bacteria.
- 6. A process of treating raw oysters in a shell, which comprises:

exposing raw oysters to hydrostatic pressure of between 20,000 p.s.i. and 80,000 p.s.i. for 1 – 15 minutes at ambient temperature, without causing thermal and mechanical damage to the raw oysters, thereby eliminating pathogenic Vibriones bacteria in said raw oysters, preventing deterioration of said raw oysters, while retaining sensory characteristics of said raw oysters.

7. The process of Claim 6, wherein said oysters are banded and enclosed in liquidimpermeable bags filled with pressurizable liquid prior to exposing said oysters to hydrostatic pressure so as to prevent bleeding of raw oysters during treatment.

27. A process of treating raw molluscan shellfish, comprising the steps of:

depositing the raw mlluscan shellfish into a pressure vessel and pressurizing the pressure vessel to between 20,000 p.s.i. and 80,000 p.s.i. for 1 – 15 minutes without application of heat at ambient temperature, without causing thermal and mechanical damage to the raw molluscan shellfish, while eliminating pathogenic naturally-occurring marine bacteria in said raw molluscan shellfish, and while retaining sensory characteristics of said raw molluscan shellfish.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Ernest A. Voisin

Serial No. 09/457,835

Group Art Unit: 3643

Filed: December 9, 1999

Examiner: Willis Little

For: "A Process of Elimination of Bacteria

Date: October 23, 2000

In Shellfish..."

DECLARATION UNDER 37 C.F.R. SECTION 132

I, Ernest A. Voisin, applicant of the above-identified application, declare and say:
That I am a citizen of the United States and I reside at 203 Tina Street, Houma,
LA 70363:

That I am the inventor of the above-identified application;

That I have been in the seafood processing business for over thirty years and am intimately familiar with all aspects of harvesting, farming and processing raw seafood, in particular raw molluscan shellfish;

That I am President of Motivatit Seafoods, Inc., a Louisiana corporation engaged

in the business of processing raw seafood;

That I am familiar with Japanese patent application No. 4-356156 cited by the

U.S. Patent Office in the Office Action of March 10, 2000;

That I conducted an exhaustive series of tests at the facilities of Motivatit Seafoods, Inc. in Houma, Louisiana following the steps outlined in Japanese application No. 4-356156 and described in detail hereinafter, to verify the teachings of the cited reference and compare them with the method of the instant invention;

That the tests started with oysters (the subject of the Japanese reference) being taken from a cooler where they were kept at 38 degrees Fahrenheit and then allowed to

rest to come to the ambient temperature of about 50 degrees Fahrenheit;

That in accordance with the teachings of the cited reference, oysters in shells were

placed in a pressure chamber with water,

That the pressure chamber was then pressurized to 1000 ATM at ambient temperature of about 50 degrees Fahrenheit; at that pressure level no shucking of oysters took place;

During the next test, the temperature was elevated to 90 degrees Fahrenheit at

1000 ATM, and it took 15 minutes for the shells to release;

That during the next test, while maintaining pressure at 1000 ATM, the temperature was elevated to 110 degrees Fahrenheit, and it took 10 minutes of pressure application for the shells to release;

That during the next test, the chamber was pressurized to 2000 ATM; however, continued application of pressure at ambient temperature for 3-10 minutes did not release the shells, but when the temperature was elevated to 75 degrees Fahrenheit - the shells released after 10 minutes;

During the next series of tests, the pressure was maintained at 2000 ATM, while the temperature was increased; it took 5 minutes at 95 degrees to release the shells and 3 minutes at 115 degrees to release the shells;

That the next series of tests were conducted under the test pressure of 3000 ATM; application of 3000 ATM pressure for 0.5 to 5 minutes, as claimed in the Japanese reference, did not result in a complete shucking of all oysters in the batch, only about 80 percent were shucked, which makes the method of JP 4-356156 commercialy uncertain;

However, when the temperature was elevated to 68 degrees Fahrenheit (at 3000 ATM), the shells released after 5 minutes; when the temperature was elevated to 95 degrees Fahrenheit the shells released in 3 minutes, and when the temperature was raised to 120 degrees F. - it took only 1 minute to release the shells;

The last series of tests were conducted using 4000 ATM; the results showed that pressurization alone for 0.5 - 5 minutes does not completely shuck all the oysters in the batch; at 3 minutes the heat of 74 degrees was needed, at 1 minute - 102 degrees Fahrenheit to release the oyster shells;

That the results of the tests are summarized in the attached graph;

That the above tests clearly demonstrate superiority of the method of the instant application and criticality of adding the temperature factor to the shellfish shucking process, as claimed in the above-identified application;

That in my opinion the aforementioned superiority with respect to achieving a uniform result critical to commercial seafood processing of the claimed invention is

unobvious to one of ordinary skilled in the art;

That the undersigned declares further that all statements made herein of his own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patents issuing thereon;

Further declarant saith not.

Date: 10-23-00

Emest A. Voisin

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Ernest A. Voisin

Serial No. 09/121,725

Group Art Unit: 1761

Filed: July 24, 1998

Examiner: D. Becker

For: "A Process of Elimination of Bacteria

Date: May 19, 2004

In Shellfish..."

DECLARATION UNDER 37 C.F.R. SECTION 132

I, Ernest A. Voisin, applicant of the above-identified application, declare and say:

That I am a citizen of the United States and I reside at 203 Tina Street, Houma, LA 70363;

That I am the inventor of the above-identified application;

That I have been in the seafood processing business for over thirty years and am intimately familiar with all aspects of harvesting, farming and processing raw seafood, in particular raw molluscan shellfish;

That I am President of Motivatit Seafoods, Inc., a Louisiana corporation engaged in the business of processing raw seafood;

That I am familiar with Japanese patent application No. 4-356156 cited by the U.S. Patent Office in the Office Action of March 10, 2000;

That I conducted an exhaustive series of tests at the facilities of Motivatit Seafoods, Inc. in Houma, Louisiana following the steps outlined in Japanese application No. 4-356156 and described in detail hereinafter, to verify the teachings of the cited reference and compare them with the method of the instant invention;

That the tests started with oysters (the subject of the Japanese reference) being taken from a cooler where they were kept at 38 degrees Fahrenheit and then allowed to rest to come to the ambient temperature of about 50 degrees Fahrenheit;

That in accordance with the teachings of the cited reference, oysters in shells were placed in a pressure chamber with water;

That the pressure chamber was then pressurized to 1000 ATM at ambient temperature of about 50 degrees Fahrenheit; at that pressure level no shucking of oysters took place;

During the next test, the temperature was elevated to 90 degrees Fahrenheit at 1000 ATM, and it took 15 minutes for the shells to release;

That during the next test, while maintaining pressure at 1000 ATM, the temperature was elevated to 110 degrees Fahrenheit, and it took 10 minutes of pressure application for the shells to release;

That during the next test, the chamber was pressurized to 2000 ATM; however, continued application of pressure at ambient temperature for 3-10 minutes did not release the shells, but when the temperature was elevated to 75 degrees Fahrenheit - the shells released after 10 minutes;

During the next series of tests, the pressure was maintained at 2000 ATM, while the temperature was increased; it took 5 minutes at 95 degrees to release the shells and 3 minutes at 115 degrees to release the shells;

That the next series of tests were conducted under the test pressure of 3000 ATM; application of 3000 ATM pressure for 0.5 to 5 minutes, as claimed in the Japanese reference, did not result in a complete shucking of all oysters in the batch, only about 80 percent were shucked, which makes the method of JP 4-356156 commercially uncertain;

However, when the temperature was elevated to 68 degrees Fahrenheit (at 3000 ATM), the shells released after 5 minutes; when the temperature was elevated to 95 degrees Fahrenheit the shells released in 3 minutes, and when the temperature was raised to 120 degrees F. - it took only 1 minute to release the shells;

The last series of tests were conducted using 4000 ATM; the results showed that pressurization alone for 0.5 - 5 minutes does not completely shuck all the oysters in the batch; at 3 minutes the heat of 74 degrees was needed, at 1 minute - 102 degrees Fahrenheit to release the oyster shells;

That the results of the tests are summarized in the attached graph;

That the above tests clearly demonstrate superiority of the method of the instant application and criticality of adding the temperature factor to the shellfish shucking process, as claimed in the above-identified application;

That in my opinion the aforementioned superiority with respect to achieving a uniform result critical to commercial seafood processing of the claimed invention is unobvious to one of ordinary skilled in the art;

That the undersigned declares further that all statements made herein of his own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patents issuing thereon;

Further declarant saith not.

Date: 5-20-04

Generate Collection

L7: Entry 1 of 110

File: JPAB

Jun 13, 2000

PUB-NO: JP02000157157A

DOCUMENT-IDENTIFIER: JP 2000157157 A

TITLE: METHOD OF OPENING BIVALVE

PUBN-DATE: June 13, 2000

INVENTOR - INFORMATION:

NAME

COUNTRY

N/A SHITSUETSU, AKIRA

NANBA, KENJI N/A

ASSIGNEE-INFORMATION:

COUNTRY NAME

N/A YANMAR DIESEL ENGINE CO LTD N/A

MARINO FORUM 21

APPL-NO: JP10340234

APPL-DATE: November 30, 1998

INT-CL (IPC): A22C 29/04

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a method of opening bivalves of high practicability without damage to the texture and taste of shucked shell meat in no need of manual operation relating to opening living bivalves having shells.

SOLUTION: Raw shell oysters are opened by treating them with both heat and pressure. In this case, the heat and the pressure are ranged within no occurrence of irreversible change in the shell meat protein, and the pressure required to the pressure vessel is reduced lower as far as possible. In an embodiment, the pressure is set to 800 kgf/cm2, when the heating temperature is set to 30 $^{\prime}\mathcal{C}$

COPYRIGHT: (C) 2000, JPO

EXHIBIT

2/5/015

DERWENT TERMS AND CONDITIONS

Derwent shall not in any circumstances be liable or responsible for the completeness or accuracy of any Derwent translation and will not be liable for any direct, indirect, consequential or economic loss or loss of profit resulting directly or indirectly from the use of any translation by any customer.

Derwent Information Ltd. is part of The Thomson Corporation

Please visit our home page:

"WWW.DERWENT.CO.UK" (English)
"WWW.DERWENT.CO.JP" (Japanese)

(C) DERWENT

₱00Ø

MACHINE-ASSISTED TRANSLATION (MAT):

(19)【発行国】 日本国特許庁(JP) (19)[ISSUING COUNTRY]
Japanese Patent Office (JP)

(12)【公報種別】 公開特許公報(A)

Laid-open (kokai) patent application number (A)

(11)【公開番号】 特開 2 0 0 0 - 1 5 7 1 5 7 (P 2 0 0 0 - 1 5 7 1 5 7 A)

(11)[UNEXAMINED PATENT NUMBER]
Unexamined Japanese Patent 2000-157157
(P2000-157157A)

(43)【公開日】 平成12年6月13日(200 0.6.13)

(43)[DATE OF FIRST PUBLICATION]
June 13th, Heisei 12 (2000.6.13)

(54)【発明の名称】 二枚貝の開殻方法

(54)[TITLE]
Method of opening bivalves

(51)【国際特許分類第7版】 A22C 29/04 (51)[IPC] A22C 29/04

[FI] A22C 29/04 [FI] A22C 29/04

【審査請求】 未請求 [EXAMINATION REQUEST]
UNREQUESTED

【請求項の数】 2

[NUMBER OF CLAIMS] Two

【出願形態】 〇L

[Application form] OL

【全頁数】 7

3.00

[NUMBER OF PAGES] Seven

(21)【出願番号】 特願平10-340234 (21)[APPLICATION NUMBER]
Japanese Patent Application No. 10-340234

(22)【出願日】 平成10年11月30日(19 98.11.30) (22)[DATE OF FILING] November 30th, Heisei 10 (1998.11.30)

01/06/21

1/28

(C) DERWENT

(71)【出願人】

(71)[PATENTEE/ASSIGNEE]

【識別番号】 000006781 [ID CODE] 000006781

【氏名又は名称】

ヤンマーディーゼル株式会社

Yanmar diesel K.K.

【住所又は居所】

[ADDRESS]

大阪府大阪市北区茶屋町1番3 · 2号

(71)【出願人】

(71)[PATENTEE/ASSIGNEE]

【識別番号】

591036631

[ID CODE] 591036631

【氏名又は名称】

社団法人マリノフォーラム二十 Incorporated association Marino Forum 21

【住所又は居所】

[ADDRESS]

東京都台東区台東4丁目8番7

(72)【発明者】

(72)[INVENTOR]

【氏名】 室越 章 Akira Shitsuetsu

【住所又は居所】

[ADDRESS]

大阪府大阪市北区茶屋町1番3 2号 ヤンマーディーゼル株式

会社内

(72)【発明者】

(72)[INVENTOR]

【氏名】 難波 憲二 Kenji Nanba

【住所又は居所】

[ADDRESS]

01/06/21

2/28

(C) DERWENT-

広島県安芸郡府中町鶴江1丁目 9番20号

(74)【代理人】

(74)[PATENT AGENT]

【識別番号】 100075502 [ID CODE] 100075502

【弁理士】

[PATENT ATTORNEY]

【氏名又は名称】 倉内 義朗

Yoshiro Kurauchi

【テーマコード(参考)】 4B011 [Theme code (reference)] 4B011

【Fターム(参考)】 4B011 MC02 [F term (reference)] 4B011 MC02

(57)【要約】

(57)[SUMMARY]

【課題】

設付の生の二枚貝の開殻に関し、作業者による手作業を不要にしながらも、剥き身の食感や風味を損うことなく、しかも実用性の高い開設方法を得る。

[SUBJECT]

It relates to the open shell of raw bivalves having shells.

Moreover, the high method of opening of the practicability is obtained, without impairing the food feeling and the taste of the shucked shell meat, though the manual work by the operator is made unnecessary.

【解决手段】

[SOLUTION]

An open shell is carried out by making both heat and pressure act to raw oysters having shells.

It makes as the range which does not produce the shell meat protein in particular the irreversible denaturation, as this heat and a pressure in that case.

And the pressure resistance for which a pressure vessel is required by restraining a pressure low as much as possible is restrained low

Specifically, when heating temperature is 30 degree C, a pressed pressure is set as 800 kgf/cm2s.

01/06/21

3/28

(C) DERWENT

TI V. ON SCIENTIFIC

る。加熱温度が 40℃の場合に は加圧圧力を 700 kgf/cm² に 設定する。加熱温度が 45℃の 場合には加圧圧力を 650 kgf/cm² 程度に設定する。 When heating temperature is 40 degree C, a pressed pressure is set as 700 kgf/cm2s.

When heating temperature is 45 degree C, a pressed pressure is set as about 650 kgf/cm2s.

10 40

【特許請求の範囲】

[CLAIMS]

【請求項1】

設付の生の二枚貝を、貝の身の タンパク質に生じる熱変性が可 逆的なものである温度以下の温 度まで加熱すると共に、

この温度において貝の閉殻筋と 外殻との接合部分が外れる圧力 を二枚貝に作用させることを特 徴とする二枚貝の開設方法。

【請求項2】

請求項1記載の二枚貝の開設方 法において、

二枚貝を密閉容器内に入れ、この密閉容器内を30℃以上で50℃未満の温度まで加熱し、且

[CLAIM 1]

The pressure which the junctional part of the closed shell muscle of shellfish and an outer covering detaches in this temperature that heats raw bivalves having shells to the temperature below the temperature whose thermal denaturation produced in the shell meat protein is reversible is made act on a bivalve.

Method of opening bivalves characterized by the above-mentioned.

[CLAIM 2]

In the method of opening bivalves of Claim 1, a bivalve is put in a sealing container and the inside of this sealing container is heated to the temperature of less than 50 degree C above 30 degree C.

And the pressure in a sealing container is set

01/06/21

4/28

(C) DERWENT.

THE A ON SCIENTIFIC

つ密閉容器内の圧力を1000 kgf/cm²未満に設定することを 特徴とする二枚貝の開設方法。 as less than 1000 kgf/cm2s.

Method of opening bivalves characterized by the above-mentioned.

【発明の詳細な説明】

[DETAILED DESCRIPTION OF INVENTION]

[0001]

[0001]

【発明の属する技術分野】 本発明は、殻付の生の二枚貝(牡 蠣等)を開ける(以下、これを 闘勢という)方法に係る。特に、

蠣等)を開ける(以下、これを 開設という)方法に係る。特に、 本発明は、作業者による手作業 を不要にした開設方法の改良に 関するものである。

[0002]

[TECHNICAL FIELD]

This invention realates to the method of opening raw bivalves having shells (oyster etc.) (this being hereafter said open shell).

In particular this invention relates to improvement of the method of opening which made the manual work by the operator unnecessary.

[0002]

【従来の技術】

[0003]

ところが、この作業は熟練を要するため、未熟な作業者の作業では、単位時間当たりの剥き身の取り出し数が少なく効率が悪いばかりでなく、剥き身に外殻の破片が混入したり、刃物によって剥き身を傷付けたりして商

[PRIOR ART]

As operation which takes out shell meat (shucked shell meat) from bivalves for food use, such as an oyster, conventionally, the operator was performing using the hook type cutter etc.

For example, operation which takes out the body of an oyster damages with a cutter a part of outer covering outer edge of shellfish. The open shell of the cutter is inserted and carried out into shellfish from that.

After carrying out an open shell, the body is taken out from an outer covering with this cutter (this is hereafter said taking the meat out of the shell).

[0003]

However, this operation requires skill. Therefore, in an operator's unripe operation, the number of extraction of the shucked shell meat per unit duration is few, and an efficiency is bad. Also the split of an outer covering mixes in the shucked shell meat.

の破片が混入したり、刃物によ Moreover, the shucked shell meat will be って剥き身を傷付けたりして商 damaged and a commercial value will be made

01/06/21

5/28

(C) DERWENT

品価値を低下させてしまう。また、近年、作業者の高齢化に伴い作業者が不足して生産量の減少を招いている。更には、人手により1個づつ取り出し作業を行うため、たとえ熟練者であっても単位時間当たりに取り出せる剥き身の数には限界がある。

[0004]

この点に鑑み、上記の手作業を不要にして二枚貝の開殻を可能にするものとして、特開平4-356156号公報に開示されている加工貝の製造方法は、殻付の生の貝に、常温の下で数千 kgf/cm²の高圧を作用させるもの形である。これにより、容易に開設できる。

[0005]

この公報に開示される開殼のメ カニズムは以下のとおりである と推測する。本来、二枚貝の各 外殻を繋いでいる蝶番部分は外 殻を開こうとしている。これに 対し、各外殻の内面同士を連結 している閉殻筋(一般に貝柱と 呼ばれている)が収縮し蝶番の 力にうち勝った力で外殻同士を 引き寄せている。つまり、この 閉設筋と外殻との接合部分を何 らかの方法で外せば貝は開設す るのである。上記公報では、貝 を髙圧の環境下におくことで、 固体部分である外殻と軟体部分 である閉殻筋との収縮状態に位 相差を生じさせ、これにより、 閉殻筋と外殻との接合部分を外

to reduce with a cutter.

Moreover, in connection with an operator's aging, an operator does an insufficiency and has caused the reduction of the throughput in recent years.

Furthermore, in order for a human hand to perform extraction operation individually, even if it is an expert, there is a threshold in the number of the shucked shell meat which can be taken out to per unit duration.

[0004]

In view of this point, as that which make an above-mentioned manual work unnecessary and make the open shell of a bivalve possible, there is a manufacturing method of the processing shellfish currently indicated by the Unexamined Japanese Patent 4- 356156.

This manufacturing method makes the high pressure of several thousand kgf/cm2 act on the raw shell having shells at a normal temperature.

The processing shellfish whose open shell can be carried out easily by this can be manufactured.

[0005]

It is assumed that the mechanisms of the open shell indicated by this gazette are as follows.

Originally, the hinge part which has connected each outer covering of a bivalve tends to open an outer covering.

On the other hand, outer coverings are drawn near by the strength which the closed shell muscle (generally called the adductor_muscle) which has connected the inner faces of each outer covering shrunk, and overcame the strength of a hinge.

In other words, if the junctional part of this closed shell muscle and outer covering is removed by a certain method, the open shell of the shellfish is carried out.

A phase difference is made to be generated by what shellfish is set by the high-pressure environment in the above gazette in shrinkage state of the outer covering which is the solid part, and the closed shell muscle which is a part

(C) DERWENT

0 T O 🔯

01/06/21

TH DISCIENTIFIC

している。また、貝に作用する 高圧により閉殻筋のタンパク質 が変性し、これも閉殻筋と外殻 との接合部分を外すことに寄与 している。 for a soft body part.

Thereby, the junctional part of a closed shell muscle and an outer covering is removed.

Moreover, protein of a closed shell muscle denatures by the high pressure which acts on shellfish. It has contributed to this removing the junctional part of a closed shell muscle and an outer covering.

[0006]

[0006]

【発明が解決しようとする課 題】

ところが、上記公報の方法を実 現するためには、貝を数千 kgf/cm²といった非常に高い圧 力の環境下におく必要があるこ とから高い耐圧性を有する圧力 容器が必要である。このため、 1回の加圧動作で大量の貝を加 エしようとする際には、大型で しかも高い耐圧性を有する圧力 容器が必要になる。つまり、容 器の材質として強度の高いもの を選択し、且つ容器の壁厚寸法 を大きく設定しておく必要があ る。その結果、圧力容器の製造 コストが高くなってしまい実用 性に欠ける。

[0007]

また、非常に高い圧力の環境下に貝を晒すため、貝の身のタンパク質が圧力の影響を受けて変性し、剥き身の食感や風味が損なわれてしまう可能性がある。この圧力の悪影響は上記公報にも開示されていることである。

[0008]

また、二枚貝を高温度に加熱す れば開殻することは一般に知ら

[PROBLEM ADDRESSED]

However, in order to materialize the method of the above gazette, the pressure vessel which has a high pressure resistance from shellfish being set by the environment of a very high pressure said several thousand kgf/cm2 is necessary.

For this reason, the large-sized pressure vessel which comes out and moreover has a high pressure resistance is needed in the case it processing a lot of shellfishes in one pressure application operation.

In other words, a strong highness needs to be selected as a material of a container, and the wall thickness dimension of a container needs to be set up greatly.

As a result, the manufacturing cost of a pressure vessel becomes high, and the practicability is missing.

[0007]

Moreover, in order to expose shellfish to the environment of a very high pressure, the shell meat protein denatures in response to the influence of a pressure.

The food feeling and the taste of the shucked shell meat may be impaired.

The bad influence of this pressure is indicated by the above gazette.

[8000]

Moreover, if a bivalve is heated to a high temperature, carrying out an open shell is known generally.

01/06/21

7/28

(C) DERWENT

れている。しかし、大気圧中で 開設させるには例えば60℃程 度まで加熱する必要がある。こ れでは、貝の身のタンパク質に 不可逆的な熱変性が生じてしま う (このタンパク質の熱変性に 関しては、「理化学大辞典」白井 岩崎学術出版社 俊明他編 (1967年) の581頁に開示 されている。この文献では、タ ンパク質は60℃に熱すると凝 固するという記載がある)。この 熱変性のメカニズムは、タンパ ク質を高温度に加熱すると、タ ンパク質分子間の側鎖の熱運動 が起こり、存在している分子間 の結合が切れて、この分子間に 新たな結合状態が生じるといっ たものである。このような熱変 性が生じた場合、剥き身の食感 や風味が大きく損なわれてしま う。つまり、剥き身が煮えた状 態になってしまう。このため、 貝を高温度に加熱するのみで開 殻させるといった手法は、生食 用の剥き身を生産するものとし ては到底使用できない。

[0009]

本発明は、かかる点に鑑みてな されたものであり、その目的と するところは、殻付の生の二枚 貝の開殻に関し、作業者による 手作業を不要にしながらも、 き身の食感や風味を損うことな く、しかも実用性の高い開設方 法を得ることにある。

[0010]

[0010]

【課題を解決するための手段】 [SOLUTION OF THE INVENTION]

01/06/21

8/28

(C) DERWENT

However, it needs to heat, for example, to about 60 degree C to carry out an open shell in atmospheric pressure.

This, an Irreversible thermal denaturation is generated in the shell meat protein (indicated by 581 pages of the editing Iwasaki scientific publishing company (1967) besides "physics and chemistry great dictionary" Shirai Toshiaki about the thermal denaturation of this protein).

By this literature, protein has heat, then description of coagulating in 60 degree C.

When the mechanism of this thermal denaturation heats protein to a high temperature, the thermal motion of a protein intermolecular side chain will occur. A intermolecular bond which is present cuts.

It is said that new bond state will be generated between molecules.

When such a thermal denaturation is generated, the food feeling and the taste of the shucked shell meat will be impaired greatly.

In other words, the shucked shell meat will be boiled.

For this reason, how to carry out the open shell of the shellfish only by heating to a high temperature cannot be used by any possibility as that which produces the shucked shell meat of fresh market.

[0009]

This invention is made in view of such a point.

The place made into the object is related with the open shell of raw bivalves having shells.

It is in moreover obtaining the high method of opening of the practicability, without impairing the food feeling and the taste of the shucked shell meat, though the manual work by the operator is made unnecessary.

- 発明の概要-

上記目的を達成するために、本 発明は、設付の生の二を作用とないで、本 対し 数 と で は な と で が と で が と で が と で が と で が と で が と で が と で が と で が な と で が な と し 質 な な と し 質 な な と し 質 な な と し で が と し で が と し で が と し で が と し で と で を が と で と で が と し で と で を が と い さ で と で を が と で き る よ う に し て い る 。

[0011]

一解決手段一

具体的に、本発明が講じた第1 の解決手段は、殻付の生の二枚 貝を、貝の身のタンパク質に生 じる熱変性が可逆的なものである温度以下の温度まで加熱する。また、この温度において の閉殻筋と外殻との接合部分が 外れる圧力を二枚貝に作用させ るようにしている。

[0012]

この特定事項により、貝はタンパク質が不可逆的な熱変性を生じない範囲で加熱される。このように、貝が加熱されていることにより、貝に作用させる圧力が比較的低くても貝の閉殻筋と外殻との接合部分が容易に外れて開設する。

[0013]

この温度域及び圧力域を具体化したものが第2の解決手段である。つまり、この解決手段は、上記第1の解決手段において、二枚貝を密閉容器内に入れ、この密閉容器内を30℃以上で5

- Summary of Invention -

In order to attain the above object, it is made to carry out the open shell of this invention by making both heat and pressure act to raw bivalves having shells.

In particular as this heat and a pressure, it makes as the range which does not produce the shell meat protein the irreversible denaturation, in that case.

And it enables it to set up low the pressure resistance for which a pressure vessel is required by restraining a pressure low as much as possible.

[0011]

- Solution Means -

The thermal denaturation which produces raw bivalves having shells in the shell meat protein specifically heats first solution means which this invention provided, to the temperature below reversible temperature.

Moreover, it is made to make act on a bivalve the pressure which the junctional part of the closed shell muscle of shellfish and an outer covering detaches in this temperature.

[0012]

According to this specific matter, shellfish is heated in the range from which protein does not produce an irreversible thermal denaturation.

Thus, even when the pressure made act on shellfish is comparatively low, by heating the shellfish, the junctional part of the closed shell muscle of shellfish and an outer covering separates easily, and carries out an open shell.

[0013]

That which materialized this temperature range and the pressure region is 2nd solution means. In other words, this solution means puts a bivalve in a sealing container in first solution means.

The inside of this sealing container is heated to the temperature of 30 degree C - 50 degree C.

9/28

(C) DERWENT

01/06/21

DERWENT

THE LON SCIENTIFIC

0℃未満の温度まで加熱し、且 つ密閉容器内の圧力を1000 kgf/cm²未満に設定することで 開設させるものである。 And the open shell of the pressure in a sealing container is carried out by setting as less than 1000 kgf/cm2s.

[0014]

一般に、タンパク質は40℃を 超えると緩やかな熱変性を開始 する(このことは、「生物事典」 江原有信、市村俊英編 旺文社 (1991年)の231頁に開示 されている)。この熱変性は5 0℃程度までは可逆的なもので ある。つまり、この状態から温 度を下げると、タンパク質は略 元の状態に戻る。従って、貝の 身は本来の食感や風味を保つこ とになる。この温度域に貝を加 熱し、この貝に圧力を作用させ ることで開殼させるのである。 この圧力としては、圧力による タンパク質の変性が生じず、ま た、圧力容器に要求される耐圧 性も比較的低くできる1000 kaf/cm²未満に設定される。言 い換えると、上記の温度域に貝 を加熱した場合、この貝に作用 させる圧力が1000kgf/cm² 未満であっても閉殻筋と外殻と の接合部分を外すことができ、 開設が可能となるのである。

[0015]

[0014]

Generally, when protein exceeds 40 degree C, a loose thermal denaturation will be started (this is indicated by 231 pages of "organism encyclopedia" Arinobu Ebara Toshihide Ichimura Obunsha company (1991).

About 50 degree C of this thermal denaturation is reversible.

In other words, when lowering temperature from this state, protein will return to an original state approximately.

Therefore, shell meat will maintain an inherent food feeling and flavour. Shellfish is heated to this temperature range.

An open shell is carried out by making a pressure act on this shellfish.

Denaturation of protein by the pressure is not generated as this pressure. Moreover, it is set as less than 1000 kgf/cm2s which can also make comparatively low the pressure resistance required of a pressure vessel.

When in other words shellfish is heated to the above-mentioned temperature range, even if the pressure made act on this shellfish is less than 1000 kgf/cm2s, the junctional part of a closed shell muscle and an outer covering can be removed.

The open shell is made.

[0015]

The inventors of this invention accumulated experiment various about the temperature and the pressure which are made act on shellfish about the open shell of a bivalve.

And, where shellfish is heated to the temperature range of 30 degree C - 50 degree C which is the temperature range which a thermal denaturation does not produce in the shell meat protein, or the temperature range whose thermal denaturation of this protein is

10/28

(C) DERWENT

01/06/21

では、この貝に作用させる圧力 reversible, even when the pressure made act が1000kgf/cm²未満であっ ても十分に開殻させることがで きることを確認し、本発明に至 ったのである。

sufficiently. It resulted in this invention.

[0016]

[0016]

【発明の実施の形態】

以下、本発明の実施の形態を図 面に基づいて説明する。本実施 形態では、二枚貝として牡蠣、 帆立貝、浅蜊を対象とし、これ ら貝を開設させる場合を例に掲 げる。

[0017]

本形態では、牡蠣、帆立貝、浅 蜊を開設させるための温度条件 及び圧力条件について以下に述 べる実験装置を使用して実験を 行った。

[0018]

01/06/21

- 実験装置の説明-

図1は実験装置1の模式図であ る。この実験装置1は、耐圧容 器2を備えている。この耐圧容 器2は、例えば外径が450 mm の円筒状の密閉容器であっ て、壁厚寸法は100mmに設 定されている。この耐圧容器2 内には清水または海水が貯留さ れている。この耐圧容器2内に はヒータ3が配置されている。 このヒータ3は、耐圧容器2内 の水温を50℃まで上昇させる ことができると共に、図示しな い操作パネルの操作により、こ の水温を任意の温度に調整する

[Embodiment]

Hereafter, the embodiment of this invention is explained based on a drawing.

on this shellfish is less than 1000 kgf/cm2s, it

confirms that an open shell can be carried out

In this embodiment, an oyster, a scallop, and a short-neck clam are made objective as a bivalve.

The case where the open shell of these shellfish are carried out is hung up over an example.

[0017]

With this form, it experimented about the temperature conditions and the flow and pressure requirement for carrying out the open shell of an oyster, a scallop, and the short-neck clam using test equipment described below.

[8100]

- Description of Test Equipment -

Figure 1 is a model figure of test equipment 1. This test equipment 1 has the pressure container 2.

This pressure container 2 is a sealing container of the cylindrical shape whose outer diameter is 450 mm, for example, comprised such that the wall thickness dimension is set as 100 mm.

Spring water or seawater is stored in this pressure container 2.

The heater 3 is arranged in this pressure container 2.

This heater 3 can adjust this water temperature to arbitrary temperature by operation of a not shown console panel, while the water temperature in a pressure container 2 can be risen to 50 degree C.

11/28

ことができるようになってい る。

[0019]

また、耐圧容器2には加圧ポンプ4が接続されてる。とではか上記を操作パネルを操作することで解している。とで、容の0kgf/cm²のもkgf/cm²の範囲で任意るのでは温度をする。更というには温度を対ける。関連を対して表示を検出して表示する。には、ないの温度を検出して表示する。にからは、ないの温度を検出して表示する。の正力を検出して表示する。

[0020]

- 実験動作の説明-

次に、上述した実験装置1を使用した実験動作について説明する。本形態では第1~第4の実験を行っている。

[0021]

[0019]

Moreover, the booster pump 4 is connected to the pressure container 2.

By operating an above console panel, the inside of a pressure container 2 can be adjusted now to arbitrary pressures in the range of 500 kgf/cm2s - 4000 kgf/cm2 by this booster pump

Furthermore, the temperature sensor 5 and the pressure sensor 6 are attached in this pressure container 2.

The temperature sensor 5 detects and displays temperature in a pressure container 2.

The pressure sensor 6 detects and displays the pressure in a pressure container 2.

[0020]

- Description of Experiment Operation -

Next, an experiment operation which used test equipment 1 mentioned the above is explained.

The 1st - 4th experiment are performed with this form.

[0021]

First experiment make an oyster objective as a bivalve.

The rate of the open shell and the rate of the taking the meat out of of an oyster were measured depending on the temperature conditions and the flow and pressure requirement in a pressure container 2.

Specifically, 100 oysters are put into a pressure container 2. It performed by measuring the rate of the open shell and the rate of the taking the meat out of of an oyster at the time of making the pressure in a pressure container 1 into 500, 600, 700, 750, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, and 4000 kgf/cm2 respectivelywhen the water temperature in a pressure container 2 is made into 10 degree C, 20 degree C, 30 degree C, 40

55°F 68'F

(C) DERWENT

01/06/21

12/28

IN SCIENTIFIC

率及び脱殻率を計測することに degree C, and 50 degree C より行った。

[0022]

第2の実験も二枚貝として牡蠣 を対象とし、耐圧容器2内の温 度条件及び圧力条件だけでな く、その温度及び圧力の環境下 に牡蠣を置いておく作用時間を も考慮したものである。具体的 には、耐圧容器2内の温度を4 0℃付近で変化させた場合のそ れぞれに対し、耐圧容器2内の 圧力を大気圧から1000 kgf/cm²の間で変化させ、且つ 作用時間を変化させた際の牡蠣 の開殻状態及び脱殻状態を、実 験条件1~実験条件10まで各 条件を変更して検査することに より行った。

[0023]

第3の実験は、二枚貝として帆 立貝を対象とし、耐圧容器2内 の温度条件及び圧力条件に応じ た帆立貝の開殻率を計測したも のである。具体的には、耐圧容 器2内に10個の帆立貝を置 き、耐圧容器2内の水温を3 0℃、43℃、45℃とした場 合のそれぞれに対し、耐圧容器 1内の圧力を500、600、 7 0 0 , 9 0 0 , 1 0 0 0 kgf/cm²とした際の帆立貝の開 殻率を計測することにより行っ た。

[0024]

第4の実験は、二枚貝として浅 蝌を対象とし、耐圧容器 2 内の 温度条件及び圧力条件に応じた 浅蜊の開殻率を計測したもので

[0022]

2nd experiment also make an oyster objective as a bivalve.

Not only the temperature conditions and the flow and pressure requirement in a pressure container 2 but the effect duration which puts the oyster on the environment of the temperature and a pressure was considered.

Specifically the pressure in a pressure container 2 is changed from atmospheric kgf/cm2s 1000 pressure among respectivelywhen changing temperature in a pressure container 2 near 40 degree C.

And it performed by altering each conditions and inspecting the open shell state and the taking the meat out of the shell state of an oyster at the time of changing the effect duration to the experiment condition 1experiment conditions 10.

[0023]

Third experiment make a scallop objective as a bivalve.

The rate of an open shell of a scallop is: measured depending on the temperature conditions and the flow and pressure requirement in a pressure container 2.

Specifically, it performed by measuring the rate of an open shell of the scallop at the time of making the pressure in a pressure container 1 into 500, 600, 700, 900, and 1000 kgf/cm2 respectively when ten scallops were put into the pressure container 2 and the water temperature in a pressure container 2 is made into 30 degree C, 43 degree C, and 45 degree C.

[0024]

4th experiment make a short-neck clam objective as a bivalve.

The rate of an open shell of a short-neck clam was measured depending on the temperature conditions and the flow and pressure

13/28

(C) DERWENT

01/06/21

ある。実験条件としては、上記 requirement in a pr: 第3の実験の場合と同様であ る。

[0025]

これら実験の作業手順として は、先ず、複数個の生の二枚貝 を洗浄した後、これら二枚貝を 耐圧容器2内に投入する。この 状態で、ヒータ3により耐圧容 器2内を所定温度(実験条件温 度)まで加熱する。その後、加 圧ポンプ4を駆動して耐圧容器 2内の圧力を所定圧力(実験条 件圧力) まで上昇させる。この 加熱及び加圧した状態を所定時 間だけ保持する。第1、第3及 び第4の実験では、この時間を 一定(例えば5分間)に設定す る。第2の実験では、この時間 を実験条件に応じて変更する。 その後、耐圧容器2を開放し、 第1及び第2の実験では開設し ている牡蠣の個数及び脱殻して いる牡蠣の個数を検査する。更 に、第2の実験では、その脱殻 の状態を検査する。一方、第3 及び第4の実験では開設してい る二枚貝の個数を検査する。こ のような実験作業を実験条件を 変更しながら複数回行う。

[0026]

尚、本発明に係る開殼方法を実 際に使用して開殼及び脱殼し剥 き身を出荷する作業としては、 収穫した貝を洗浄し、これら貝 を耐圧容器内に入れて予備加熱 を行う。その後、耐圧容器内を

As experiment c that of the case of a

[0025]

As a sequence experiment, the i washed first. Aft∈ supplied in a pressi

In this state, i container 2 is temperature (exper at a heater 3.

After that, a boos in a pressure co predetermined pre pressure).

This state wher kept for a predeteri

In the 1st, the 3 duration is set as minutes).

In 2nd experimdepending on expe After that, a pres wide.

In first and secothe oyster which is and the number o out taking the i inspected.

Furthermore, th out of the shell is i

On the other experiment, the nu carrying out the or

Such an experie more times, alteria

[0026]

In addition, as an method of opening operation which c of the shell and meat, the shellfisi washed, these si container, and a p

01/06/21

14/28

ssure container 2. anditions, it is the same as bove third experiment.

of operation of these nultiple raw bivalve was r that, these bivalve are ire container 2. he inside of a pressure heated to predetermined ment condition temperature)

ter pump 4 and the pressure ontainer 2 is risen to a ssure (experiment condition

e it heated and pressed is nined duration. rd, and 4th experiment, this regularity (for example) for 5

ent, this duration is altered riment conditions. sure container 2 is opened

id experiment, the number of carrying out the open shell, f an oyster which is carrying neat out of the shell are

state of the taking the meat respected in 2nd experiment. hand, in the 3rd and 4th umber of the bivalve which is en shell is inspected. nentation is performed two or ig experiment conditions.

open shell (actually using the 3 based on this invention) and arries out taking the meat out transports the shucked shell n which gathered a harvest is nellfish are put in a pressure

(C) DERWENT

reheating is performed.

所定温度まで加熱する。 に大生で加圧する。 に大生で加圧する。 に大生で加圧する。 に大生で加圧する。 に大生で加圧する。 に大生ののでは、 でおいしいのでは、 でいたでは、 ののでは、 の

After that, it presses to a predetermined pressure at the same time it heats the inside of a pressure container to predetermined temperature.

After maintaining this state for a predetermined duration, shellfish is taken out from a pressure container and the shucked shell meat is collected.

This shucked shell meat is washed.

After an appropriate time, these shucked shell meat is packed in a box.

It transports, refrigerating in a refrigerator (or

refrigerating car).

In other words, an above experimentation is performed by the -like procedure nearly identical with the case where the method of opening based on this invention is actually used.

[0027]

(第1実験の結果) 第1実験の 結果を以下の表1に示す。 [0027]

(Result of the 1st experiment) The result of the 1st experiment is shown in the following Table 1.

[0028]

[0028]

【表1】

[Table 1]

	*	温101	c	*	20	c	水温30℃ 水温40								
圧力		見まのみ	Na	開始事			東設年	見のみ		1 - 1 - 1	対性のみ	政社	1	対語のみ	は氏
(kgf/cm²)		(x)	(x)	(X)	(x)	(X)	(X)	(x)	(x)	(X)	(X)	(X)	(x)	(x)	(x)
500	ı			-			_			D	. 0	0	88	5	95
600	_						٥	0	0	82	14	88	97		99
700				_			66	91	9	97	_	100	_	<u> </u>	
							80	5	95	_			—		
750	-						95	_	100	-			_		
800							83		100	├			-	1	
900	-			0	0	0				<u> </u>			 		
1000	0	0	0	19	100	_	_						-		
1500	15	100	_	30	87	13	-		·	<u> </u>			上二	1	
2000	22	91	9	68	12	88	T –			-		<u> </u>	_		
2500		10	90	84	8	92	-			T-			<u> -</u>	<u> </u>	
	+	+	100	92	_	100	1=	1	1	-			-		1
3000	┼	 			 		+	+	 	+_	1	1	1=	T	
3500	93	_	100	97	<u> </u>	100	_	┼	-	+	 	-	+-	 	+
4000	98		100	95		100		1	<u></u>	二			1_	ــــــــــــــــــــــــــــــــــــــ	<u> </u>

[0029]

この表1における「開殻率」は、 100個の牡蠣のうち開殻した もの(脱殻まで至ったものを含 む)の個数を示している。また、

「開設のみ」は、上記開設した 牡蠣のうち脱殻まで至らず開設 のみに止まったものの割合を示 している。「脱殻」は、上記開設 した牡蠣のうち脱殻まで至った ものの割合を示している。また、 「水温」、「圧力」、「開殻率」の 関係をグラフ化したのが図2で ある。

[0030]

この表 1 及び図 2 に示すように、水温が 1 0 ℃の場合には耐 圧容器 2 内の圧力が 1 5 0 0 kgf/cm² 程度まで上昇しなけれ ば開殻が開始せず、この温度で

[0029]

The "rate of open shell" in this Table 1 shows the number of that (that which resulted to taking the meat out of the shell is included) which carried out the inside open shell as for 100 oysters.

Moreover, although only the "open shell" did not result to taking the meat out of the shell among the oysters which carried out the above open shell but stopped only at the open shell, it shows the ratio.

Although "taking the meat out of the shell" resulted to taking the meat out of the shell among the oysters which carried out the above open shell, it shows the ratio.

Moreover, Figure 2 graph-ized the relationship of "water temperature", a "pressure", and "the rate of an open shell".

[0030]

If the pressure in a pressure container 2 does not rise to about 1500 kgf/cm2s when water temperature is 10 degree C as shown in this Table 1 and Figure 2, an open shell does not begin. In order to obtain the rate of an open

01/06/21

16/28

90%以上の開殼率を得るためには3500kgf/cm²程度の配子では3500kgf/cm²程度は20元素に高い圧力を作用されるかった。また、水温ののは20元素をおりるのは、大容器を開設が出るののはは開設が出るの。なりには、本のはないには、本のはないには、本の非常にある。後の作用される。後の非常にある。後の非常にある。後の非常にある。後の非常にある。後の非常にある。後の非常にある。後の非常にある。後の非常にある。

very high pressure of about 3500 kgf/cm2s had to be made act.

Moreover, if the pressure in a pressure container 2 does not rise to about 1000 kgf/cm2s when water temperature is 20 degree C, an open shell does not begin. In order to

obtain the rate of an open shell of 90 % or more

at this temperature, the very high pressure of

shell of 90 % or more at this temperature, the

about 3000 kgf/cm2s had to be made act.
In other words, in these temperature range, if
the similar very high pressure as conventionally
is not made act, it turns out that an open shell
cannot be carried out.

[0031]

これに対し、水温が30℃の場合には耐圧容器2内の圧力が700kgf/cm²程度であっても開設が開始し、また、水温が40℃の場合には耐圧容器2内の圧力が600kgf/cm²程度であっても開設が開始し、更に、水温が50℃の場合には耐圧容器2内の圧力が500kgf/cm²以下であっても開設が開始した。

[0031]

On the other hand, when water temperature is 30 degree C, even when the pressure in a pressure container 2 is about 700 kgf/cm2s, an open shell begins. Moreover, when water temperature is 40 degree C, even when the pressure in a pressure container 2 is about 600 kgf/cm2s, an open shell begins.

Furthermore, when water temperature was 50 degree C, even when the pressure in a pressure container 2 was 500 or less kgf/cm2s, the open shell began.

[0032]

[0032]

This experimental result shows that the rate of an open shell rises abruptly by setting water temperature as 30 degree C or more, even when it is the pressure region which did not carry out the open shell at all, when water temperature is 20 degree C or less.

If in other words water temperature is set as 30 degree C or more, it turns out that the influence (influence which contributes to removing the junctional part of a closed shell muscle and an outer covering) which contributes to the open shell of the pressure made act on an oyster improves remarkably.

01/06/21

17/28

[0033]

[0034]

本実験の結果から、水温を3 0℃以上に設定すれば、水温を 20℃以下に設定した場合に比 べて、耐圧容器 2 内の圧力を 1 /4程度またはそれ以下に設定 しても殆どの牡蠣を開殻させ、 また脱殻まで至らせることがで きることが判る。但し、水温を 50℃とした場合、牡蠣の身に 含まれているタンパク質が不可 逆的な熱変性を生じる可能性が あるため、この温度域で開殻を 行わせることはあまり好ましく ない。実際には、水温が30℃ ~45℃の範囲で開殻率が9 5%以上となる圧力域を使用す ることが好ましい。例えば、水 温が30℃の場合には耐圧容器 2内の圧力を800kgf/cm²に 設定し、また、水温が40℃の 場合には耐圧容器2内の圧力を 700kgf/cm²に設定し、更に、 水温が45℃の場合には耐圧容 器 2 内の圧力を 6 5 0 kgf/cm² 程度に設定するのである。これ

[0033]

In particular, when water temperature is 30 degree C, even when the pressure in a pressure container 2 is 800 kgf/cm2s, 95% of an oyster carries out an open shell. The all have resulted to taking the meat out of the shell.

Moreover, when water temperature is 40 degree C, even when the pressure in a pressure container 2 is 700 kgf/cm2s, 97% of an oyster carries out an open shell, and the all have resulted to taking the meat out of the shell.

Furthermore, when water temperature is 50 degree C, even when the pressure in a pressure container 2 is 600 kgf/cm2s, 97% of an oyster carries out an open shell, and the most has resulted to taking the meat out of the shell

[0034]

From the result of this experiment, if water temperature is set as 30 degree C or more, almost all the oysters are opened even when it sets up the pressure in a pressure container 2 at 1/4 or less than it, compared with the case where water temperature is set as 20 degree C or less.

Moreover that it can be made to result to taking the meat out of the shell understands.

However, when water temperature is made into 50 degree C, protein contained in the body of an oyster may produce an irreversible thermal denaturation. Therefore, it is not so preferable to make an open shell perform by this temperature range.

It is preferable that the rate of an open shell uses in fact the pressure region used as 95 % or more in the range whose water temperature is 30 degree C - 45 degree C.

For example, when water temperature is 30 degree C, the pressure in a pressure container 2 is set as 800 kgf/cm2s.

Moreover, when water temperature is 40 degree C, the pressure in a pressure container 2 is set as 700 kgf/cm2s.

Furthermore, when water temperature is 45 degree C, the pressure in a pressure container 2 is set as about 650 kgf/cm2s.

01/06/21

18/28

Since almost all oysters result not only to an open shell but to taking the meat out of the shell in these cases, there is almost no necessity of performing the taking the meat out of the shell operation with respect to the oyster taken out from the pressure container 2.

Moreover, there is no necessity of making almost all oysters resulting to taking the meat out of the shell. If a little lower temperature and a low pressure are made act on an oyster when what is sufficient is just to make only an open shell perform, it ends.

In addition, already, even if it is the case where only this open shell is made to perform, since it is the state where it is easy to separate, the junctional part of the closed shell muscle of an oyster and an outer covering can perform taking the meat out of the shell operation extremely easily.

[0035]

(第2実験の結果)第2実験の 結果を以下の表2に示す。 [0035]

(Result of the 2nd experiment) The result of the 2nd experiment is shown in the following table 2.

[0036]

[0036]

[表2]

[Table 2]

	圧力条件(kgf/cml)	温度条件(で)	作用時偏 (min)	果使
条件し	大気圧	43	8	両数せず
条件2	500	40	2	ជម
条件3	700	44	6	質量・片側は登
条件4	700	44	7	网络·片侧设数
	750	44	6	開設・以社
条件5		43	3	開始・片朝以致50×の貝は以来
条件6	800	43	4	同語·放钮
条件7	<u> </u>	43	5	スカ・女士 -
条件日		43	6	対等・政策
条件 9 条件 10		40	4	舞班·联盟

01/06/21

19/28

[0037]

実験条件1の結果が示すよう に、耐圧容器2内の温度を4 3℃とし、作用時間を6分に設 定しても、耐圧容器2内の圧力 が大気圧である場合には牡蠣を 開殻させることはできない。そ れに対し、実験条件2の結果が 示すように、耐圧容器2内の温 度を実験条件1よりも低い4 0℃とし、作用時間を実験条件 1よりも短い2分に設定した場 合であっても、耐圧容器2内の 圧力を500kgf/cm²に設定す れば牡蠣は開設する。この両条 件の実験結果を比較することに より、所定の圧力を作用させれ ば、温度が低く且つ作用時間が 短くても開設を行うことができ ることが確認できる。

[0038]

また、条件1~条件10の各実 験結果を比較することにより、 温度を高く設定するほど、また、 圧力を高く設定するほど、更に は作用時間を長く設定するほ ど、開設に留まらず脱殻まで至 らせることができることが判 る。特に、実験条件3及び4と 実験条件6~8とを比較した場 合、実験条件3及び4では、部 分的な脱殻しか行えなかったの に対し、実験条件6~8では、 実験条件3及び4に比べて温度 が低く作用時間を短いにもかか わらず、圧力を僅かに高く設定 することで脱殻まで至らせるこ とができることが確認できる。

[0037]

Temperature in a pressure container 2 is made into 43 degree C so that the result of the experiment conditions 1 may show.

Even when it sets up the effect duration in 6 minutes, when the pressure in a pressure container 2 is atmospheric pressure, the open shell of the oyster cannot be carried out.

To it, temperature in a pressure container 2 is made into 40 degree C lower than the experiment conditions 1 so that the result of the experiment conditions 2 may show.

If the pressure in a pressure container 2 is set as 500 kgf/cm2s even when it is the case where the effect duration is set up in 2 minutes when it is shorter than the experiment conditions 1, the open shell of the oyster will be carried out.

If a predetermined pressure is made act by comparing the experimental result of this both condition, even if temperature is low and the effect duration is short, it can confirm that an open shell can be performed.

[0038]

Moreover, that it cannot stop at an open shell but it can be made to result to taking the meat out of the shell understands so that the effect duration is set up for a long time further, so that temperature is highly set up by comparing each experimental result of the condition 1-conditions 10, and so that a pressure is set up highly.

In particular, when comparing the experiment conditions 3 and 4 and the experiment conditions 6-8, only partial taking the meat out of the shell was able to be performed on the experiment conditions 3 and 4. On the experiment conditions 6-8, temperature is low comparing with the experiment conditions 3 and 4. It can confirm that the effect duration can nevertheless be made to result to taking the meat out of the shell with the short thing which a pressure is set up highly slightly.

20/28

(C) DERWENT

01/06/21

[0039]

本実験の結果から、耐圧容器2 内の温度及び圧力だけでなく作 用時間をも考慮することにより 開殻動作を効率的に行うことが できることが判る。例えば、実 験条件6~8を比較することに より、耐圧容器2内の圧力を8 0 0 kgf/cm² とし、温度を4 3 ℃ とする場合には、作用時間を4 分に設定することで、必要最小 限の作用時間で牡蠣を脱殻まで 至らせることができることが判 る。このように、温度及び圧力 を適切に設定しておけば、作用 時間が短くても開殻及び脱殻を 行わせることができ、単位時間 当たりに処理できる貝の個数を 増大できるのである。

[0040]

(第3実験の結果)第3実験の 結果を以下の表3に示す。

[0041]

【表3】

[0039]

The result of this experiment shows that an open shell operation can be efficiently performed by considering not only the temperature and the pressure in a pressure container 2 but the effect duration.

For example, make the pressure in a pressure container 2 be 800 kgf/cm2s by comparing the experiment conditions 6-8.

In making temperature into 43 degree C, that an oyster can be made to result to taking the meat out of the shell by the effect duration of necessary minimum understands by setting up the effect duration in 4 minutes.

Thus, even if the effect duration is short, an open shell and taking the meat out of the shell can be made to perform, if temperature and the pressure are set up adequately.

The number of the shellfish which can be treated to per unit duration can be increased.

[0040]

(Result of the 3rd experiment) The result of the 3rd experiment is shown in the following table 3.

[0041]

[Table 3]

作品(で) (kgf/cm ²)	30	43	45
500	20	20	40
800	20		
700	60	70	80
900	70	100	100
1000		100	100

21/28

[0042]

[0043]

本実験の結果から、牡蠣に限らず帆立貝においても水温を30℃以上に設定すれば、耐圧容器2内の圧力を1000kgf/cm²未満に設定しても殆どを開設させることができることが判る。

[0044]

(第4実験の結果)第4実験の 結果を以下の表4に示す。

[0045]

【表4】

[0042]

Even when the pressure in a pressure container 2 is 900 kgf/cm2s when water temperature is 30 degree C as shown in this table 3, 70% of the scallop is carrying out the open shell.

Moreover, when water temperature is 43 degree C, even when the pressure in a pressure container 2 is 700 kgf/cm2s, 70% of a scallop carries out an open shell. Similarly, when water temperature is 45 degree C, even when the pressure in a pressure container 2 is 700 kgf/cm2s, 80% of the scallop is carrying out the open shell.

[0043]

From the result of this experiment, if it does not restrict to an oyster but water temperature is set as 30 degree C or more also in a scallop, even when it sets the pressure in a pressure container 2 as less than 1000 kgf/cm2s, it turns out that the open shell of most can be carried out.

[0044]

(Result of the 4th experiment) The result of the 4th experiment is shown in the following table 4.

[0045]

[Table 4]

推進(で) (kgf/(m ¹)	30	43	45
500	0	20	40
800	20	_	
700	50	90	90
900	70	100	100
1000	_	100	100

01/06/21

22/28

[0046]

この表 4 に示すように、水温が30℃の場合には耐圧容器 2内の圧力が900 kgf/cm²であっても70%の浅蜊が開殻している。また、水温が43℃の場合及び45℃の場合には耐圧容器2内の圧力が700 kgf/cm²であっても90%の浅蜊が開殻している

[0047]

本実験の結果から、上述した牡蠣及び帆立貝に限らず浅蜊においても水温を30℃以上に設定すれば、耐圧容器2内の圧力を1000kgf/cm²未満に設定しても殆どを開設させることができることが判る。

[0048]

これら第3及び第4の実験結果から、帆立貝及び浅蜊に関しては、水温を43℃に設定し、耐圧容器2内の圧力を700kgf/cm²~900kgf/cm²程度に設定すれば、その殆どを開設させることができることが判る。

[0049]

ー他の実施形態ー

上述した実施形態では、二枚貝として牡蠣、帆立貝、浅蜊を対象とし、これらの貝を開設させる場合を例に掲げて説明した。本発明は、蛤等のその他の二枚貝にも適用することが可能である。

[0046]

Even when the pressure in a pressure container 2 is 900 kgf/cm2s when water temperature is 30 degree C as shown in this table 4, 70% of the short-neck clam is carrying out the open shell.

Moreover, when water temperature is 43 degree C, and when it is 45 degree C, even when the pressure in a pressure container 2 is 700 kgf/cm2s, 90% of the short-neck clam is carrying out the open shell.

[0047]

From the result of this experiment, if it does not restrict to the oyster and the scallop which were mentioned the above but water temperature is set as 30 degree C or more also in a short-neck clam, even when it sets the pressure in a pressure container 2 as less than 1000 kgf/cm2s, it turns out that the open shell of most can be carried out.

[0048]

From these the 3rd and 4th experimental results, water temperature is set as 43 degree Cabout a scallop and a short-neck clam.

If the pressure in a pressure container 2 is set as about 700 kgf/cm2-900 kgf/cm2, it turns out that the open shell of the most can be carried out.

[0049]

- The other Embodiment -

In the embodiment mentioned the above, an oyster, a scallop, and a short-neck clam are made objective as a bivalve.

The case where the open shell of these shellfishes was carried out was hung up and explained to the example.

This invention can be applied also to the bivalve of others, such as \ddagger 3.

01/06/21

23/28

[0050]

[0051]

更に、上述した実験では、耐圧容器2内を加熱した後に加圧していた。これに限らず、耐圧容器2内を加圧した後に加熱を行ったり、この加熱と加圧とを同時に行ったりすることで、更に効率良く開設させることができる可能性がある。

[0052]

【発明の効果】

以上のように、本発明によれば、 以下のような効果が発揮される。

[0053]

[0050]

Moreover, the inventors of this invention mix bitter_juice in water in the container which received the shellfish, as a method of opening bivalves.

It has already found out that a closed shell muscle is made to relax under the influence of the magnesium ion, and an open shell is carried out.

Therefore, that the relaxation effect of the closed shell muscle by this magnesium ion should be utilized, if bitter_juice is mixed in the above pressure container 2, it will be assumed that an open shell can be carried out more efficiently.

[0051]

Furthermore, in experiment mentioned the above, it was pressing, after heating the inside of a pressure container 2.

It heats, after not restricting to this but pressing the inside of a pressure container 2.

Moreover, it is performing simultaneously and the open shell of this heating and pressure application may be able to be carried out more efficiently.

[0052]

[EFFECT OF THE INVENTION]

As mentioned above, according to this invention, the following effects are demonstrated.

[0053]

In invention of Claim 1, both heat with respect to raw bivalves having shells and pressure are made act.

It is made to carry out an open shell according to the synergistic effect.

It is made to become the temperature range which a thermal denaturation does not produce in the shell meat protein, or the temperature range whose thermal denaturation of this protein is reversible, as this heat to make act.

01/06/21

24/28

にしている。また、作用させる 圧力としては、上記温度で貝の 閉殻筋と外殻との接合部分を外 すことができる必要最低限に設 定すればよい。従来は、数千 kgf/cm²といった非常に高い圧 力を貝に作用させて開殻させて いた。このため、高い耐圧性を 有する圧力容器が必要であり、 圧力容器の製造コストが高かっ た。また、非常に高い圧力の環 境下に貝を晒すため、貝の身の タンパク質が圧力の影響を受け て変性し、剥き身の食感や風味 が損なわれてしまう可能性があ った。本発明によれば、貝を剥 き身の食感や風味が損なわれな い程度まで加熱し、この貝に圧 力を作用させて開殻させてい る。このため、比較的低い圧力 であっても開殻させることがで きる。従って、圧力容器に要求 される耐圧性も比較的低くで き、この圧力容器の製造コスト を低減できる。その結果、二枚 貝の開設方法を実用化する際の 装置の実用性の向上を図ること ができる。また、圧力の悪影響 によるタンパク質の変性が殆ど 無いので、剥き身の食感や風味 を良好に保つことができる。

[0054]

更に、剥き身のタンパク質に不可逆的な熱変性が生じないようにしているので、これによっても、剥き身の食感や風味を良好に保つことができる。

Moreover, what is sufficient is just to set as the necessary minimum which can remove the junctional part of the closed shell muscle of shellfish, and an outer covering at above temperature, as a pressure to make act.

Conventionally, the open shell of a very high pressure said several thousand kgf/cm2 was made act and carried out to the shellfish.

For this reason, the pressure vessel which has a high pressure resistance is necessary.

The manufacturing cost of a pressure vessel was high.

Moreover, in order to expose shellfish to the environment of a very high pressure, the shell meat protein denatures in response to the influence of a pressure.

The food feeling and the taste of the shucked shell meat may be impaired.

According to this invention, shellfish is heated to the level by which the food feeling or the taste of the shucked shell meat are not impaired.

The open shell of the pressure is made act and carried out to this shellfish.

For this reason, an open shell can be carried out even if it is a comparatively low pressure:

Therefore, the pressure resistance required of a pressure vessel can also be made comparatively low.

The manufacturing cost of this pressure vessel can be reduced.

The improvement in the practicability of the apparatus at the time of as a result utilising the method of opening bivalves can be attempted.

Moreover, since there is almost no denaturation of protein by the bad influence of a pressure, the food feeling and the taste of the shucked shell meat can be maintained satisfactorily.

[0054]

Furthermore, since the irreversible thermal denaturation is made not to be generated in protein of the shucked shell meat, the food feeling and the taste of the shucked shell meat can be satisfactorily maintained also by this.

25/28

(C) DERWENT

01/06/21

[0055]

[0056]

つまり、本発明によれば、作業者による手作業を不要にしながら、剥き身の食感や風味を損うことなく、しかも実用性の高い開設方法を得ることができるのである。

100561

[0055]

請求項2記載の発明は、二枚貝を開設する場合の温度域及び圧力域を具体化している。このため、本方法を実施する場合の実用性の向上を図ることができる。

Invention of Claim 2 has materialized the temperature range in the case of carrying out the open shell of the bivalve, and the pressure region.

For this reason, the improvement in the

In other words, according to this invention, the

method of opening of the high practicability can

be obtained, without impairing the food feeling

and the taste of the shucked shell meat, making

the manual work by the operator unnecessary.

practicability in the case of implementing this method can be attempted.

【図面の簡単な説明】

[BRIEF EXPLANATION OF DRAWINGS]

[図1]

実施形態に係る実験装置の模式図である。

[FIGURE 1]

It is the model figure of test equipment based on an embodiment.

【図2】

第1の実験の結果をグラフ化し た図である。 [FIGURE 2]

It is the figure which graph-ized the result of first experiment.

【符号の説明】

2 耐圧容器

[EXPLANATION OF DRAWING]
2 Pressure Container

[FIGURE 1]

【図1】

01/06/21

26/28

TABLE TABLE

JP2000-157157-A

THOMSON SCIENTIFIC

5 MINUTES UNDER PRESSURE

T			50	F	68°F 86°F			1	04	F	122°F					
}		水温10℃				¥201		水温30℃			水温40℃			水温50℃ 現金 本語 大田		
. t	圧力		の数のみ	K a	平担风				名の日本		は記事	(X)	放社 (×)	が (X)	A設のみ (火)	(X) 路讯
1 · k	kgf/cm1)	(X)	(X)	(X)	(X)	(x)	(X)	(X)	(X)	(X)	(%)	. 0	0	88	5	95
o [500	_			_	<u>. </u>					0		86			99
32	800	-			_			0	0	0	62	14		 		
4	700	_		•	_			661	91	9	97		100			•
65	750	_			-			80	5	95	_		<u> </u>	-		
76	800	-			-			95	-	100						
76	900	_			0	0	0				_			1-	 	
98	1000	0	0	C	19	100	-	-			_	<u>.</u>		<u> </u>	 	
٥.	1500	15	100	_	30	87	13	_						1=	<u> </u>	
30	2000	 		9	68	12	88	-			<u> </u>			上二	-	
₩.	2500	}	 	90	84	В	92	-		-	_	<u> </u>		1=	 	}
50				100	92	-	100					<u> </u>	<u> </u>	1=	1	
60	8500		-}	100	97	-	100	-			_	<u> </u>	<u> </u>	<u> </u>	- 	
70	4000		+	100		1-	100	-			_			1=		1
80	4000	A	B	C	A	B	C	A	B	C	A	В	< C	. 4	8	\ c

A PERCENT ONLY OPENSA (GAPPED)

B GAPPED BUT MUSCLE STUCK TO SHELL.

C. MUSCLE RELEASED FROM SHELL

【図2】

[FIGURE 2]

01/06/21

27/28

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
 □ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
 □ FADED TEXT OR DRAWING
 □ BLURRED OR ILLEGIBLE TEXT OR DRAWING
 □ SKEWED/SLANTED IMAGES
 □ COLOR OR BLACK AND WHITE PHOTOGRAPHS
 □ GRAY SCALE DOCUMENTS
 □ LINES OR MARKS ON ORIGINAL DOCUMENT
 □ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.