UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS

DEPARTAMENTO DE MATEMATICA

II - 2023

EVALUACION nº3 - Cálculo II

- 1. (16 ptos). Sean C_1 , C_2 curvas cerradas en el plano polar cuyas ecuaciones son $r=2+\cos\theta$, $r=5\cos\theta$ respectivamente
 - (a) Determine las coordenadas de los puntos de intersección entre C_1 y C_2 .
 - (b) Calcule el área de la región R que se encuentra al interior de C_1 y es exterior a C_2
- Sol. $C_1: r = 2 + \cos \theta$ $C_2: r = 5\cos \theta$

a)

 C_1 y C_2 se intersecan cuando

$$2 + \cos \theta = 5\cos \theta$$

esto es

$$\cos\theta = \frac{1}{2}$$

luego

$$\theta = \frac{\pi}{3}$$
 o $\theta = \frac{5\pi}{3}$

Así, las coordenadas de los puntos de intersección son $\left(\frac{5}{2},\frac{\pi}{3}\right)$ y $\left(\frac{5}{2},\frac{5\pi}{3}\right)$

(06 ptos)

b. El área A de la región R que se encuentra al interior de C_1 y es exterior a C_2 , usando simetrias, esta dada por

$$A = \int_{\pi/3}^{\pi} (2 + \cos \theta)^2 d\theta - \int_{\pi/3}^{\pi/2} (5 \cos \theta)^2 d\theta$$

$$= \int_{\pi/3}^{\pi} (\cos^2 \theta + 4 \cos \theta + 4) d\theta - \int_{\pi/3}^{\pi/2} (25 \cos^2 \theta) d\theta$$

$$= 3\pi - \frac{17}{8} \sqrt{3} - \left(\frac{25}{12}\pi - \frac{25}{8}\sqrt{3}\right)$$

$$= \frac{11}{12}\pi + \sqrt{3}$$

(10 ptos)

- 2. (21 ptos).
 - (a) Usando un criterio adecuado, determine la convergencia de cada una de las siguientes series

i.
$$\sum_{n=1}^{\infty} n \left(\frac{2}{3}\right)^n \sin\left(\frac{n\pi}{6}\right)$$
 ii.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$$

ii.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$$

Resp

i. Puesto que

$$\left| n \left(\frac{2}{3} \right)^n \sin \left(\frac{n\pi}{6} \right) \right| < n \left(\frac{2}{3} \right)^n$$

y como

$$\lim_{n \to \infty} \sqrt[n]{n \left(\frac{2}{3}\right)^n} = \frac{2}{3} \lim_{n \to \infty} \sqrt[n]{n} = \frac{2}{3}$$

entonces, aplicando el criterio de la raiz, la serie $\sum_{n=1}^{\infty} n\left(\frac{2}{3}\right)^n$ es convergente.

Así, por comparación simple, la serie $\sum_{n=1}^{\infty} \left| n \left(\frac{2}{3} \right)^n \sin \left(\frac{n\pi}{6} \right) \right|$ converge.

Así, la serie $\sum_{n=0}^{\infty} n\left(\frac{2}{3}\right)^n \sin\left(\frac{n\pi}{6}\right)$ converge absolutamente.

(05 ptos)

ii. Es claro que

$$\sum_{n=1}^{\infty} \left| (-1)^n \frac{\ln n}{n} \right| = \sum_{n=1}^{\infty} \frac{\ln n}{n}$$

Ahora, si definimos $f(x) = \frac{\ln x}{x}$, $x \in [1, \infty[$ se tiene que:

a.
$$f(x) > 0$$
 en $[1, \infty]$

b.
$$f$$
 es decreciente en $[3, \infty[$, ya que $f'(x) = \frac{1 - \ln x}{x^2} < 0$ alli.

c.
$$\lim_{x \to \infty} \frac{\ln x}{x} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{1/x}{1} = 0$$

d.
$$\forall n \in \mathbb{N}, \ f(n) = \frac{\ln n}{n}$$

d.
$$\forall n \in \mathbb{N}, \ f(n) = \frac{\ln n}{n}$$

d.
$$\forall n \in \mathbb{N}, f(n) = \frac{\ln n}{n}$$

e. $\int_3^\infty \frac{\ln x}{x} dx = \lim_{h \to \infty} \left(\frac{1}{2} \ln^2 h - \frac{1}{2} \ln^2 3\right) = \infty$

entonces, por criterio de la integral, la serie $\sum_{n=3}^{\infty} \frac{\ln n}{n}$ es divergente. Como una serie no cambia su caracter de convergencia al agregar o quitar un número finito

de términos, entonces la serie $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ es divergente, y luego la serie $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$ no es absolutamente convergente.

Por otro lado, la serie $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$ es serie alternante con $a_n = \frac{\ln n}{n}$.

Como

i.
$$\lim_{n \to \infty} a_n = 0$$

ii.
$$a_{n+1} < a_n$$

ii.
$$a_{n+1} < a_n$$

entonces , por Leibniz, la serie alternante $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$ es convergente.

De lo anterior, la serie $\sum_{n=0}^{\infty} (-1)^n \frac{\ln n}{n}$ converge condicionalmente.

(09 ptos)

(b) Encuentre una expresión en series de potencias para la función $f(x)=\frac{x}{x+4}$, determinando explícitamente el intervalo de convergencia.

Resp. Se sabe que

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n , \quad -1 < x < 1$$

entonces, por sustitución,

$$\frac{1}{1 + \frac{x}{4}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^n} x^n , \quad -4 < x < 4$$

Ahora, como
$$\frac{x}{4+x} = \frac{x}{4} \left(\frac{1}{1+\frac{x}{4}} \right)$$

$$\frac{x}{4+x} = \frac{x}{4} \sum_{n=0}^{\infty} \frac{(-1)^n}{4^n} x^n, \quad -4 < x < 4$$
$$= \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4^n} x^n,$$

entonces la serie de potencias para f(x) es

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4^n} x^n , -4 < x < 4$$
 (07 ptos)

3. (23 ptos) Sea f la función definida mediante

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n4^n} (x-1)^n$$

en el intervalo de convergencia I de la serie de potencia

(a) (08 ptos) Determinar radio e intervalo de convergencia de $\sum_{n=1}^{\infty} \frac{(-1)^n}{n4^n} (x-1)^n$. Indique, con fundamentos, si la serie converge absolutamente, condicionalmente o diverge en los extremos del intervalo de convergencia.

Resp. Para x = 1, la serie converge al valor cero.

Si $x \neq 1$, se tiene que

$$\lim_{n \to \infty} \sqrt[n]{\frac{(x-1)^n}{n4^n}} = \lim_{n \to \infty} \frac{|x-1|}{4\sqrt[n]{n}} = \frac{|x-1|}{4}, \text{ ya que } \lim_{n \to \infty} \sqrt[n]{n} = 1$$

Luego, aplicando el criterio de la raiz, la serie de potencias $\sum_{n=1}^{\infty} \frac{(-1)^n}{n4^n} (x-1)^n$ es converge absolutamente si $\frac{|x-1|}{4} < 1$ y divergente si $\frac{|x-1|}{4} > 1$.

Así, la serie $\sum_{n=1}^{\infty} \frac{(-1)^n}{n4^n} \left(x-1\right)^n$ converge si $\ -3 < x < 5$, y diverge si x < -3 o $\ x > 5$

(04 ptos)

Como el criterio no proporciona información para x = -3 o x = 5, analizamos por separado dichos puntos.

- Si x = -3, entonces resulta la serie numérica $\sum_{n=1}^{\infty} \frac{1}{n}$ que es divergente (serie armonica)
- Si x = 5, entonces resulta la serie numérica $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ que es convergente condicionalmente (por Leibnitz).

Finalmente, el intervalo de convergencia de la serie de potencias $\sum_{n=1}^{\infty} \frac{(-1)^n}{n4^n} (x-1)^n$ es

$$I =]-3, 5]$$

y su radio de convergencia es

$$R = 4 (04 \text{ ptos})$$

b) (07 ptos) Demuestre que $f'(x) = \frac{-1}{x+3}$ en el intervalo] -3,5[

Resp. Como la serie de potencias $\sum_{n=1}^{\infty} \frac{(-1)^n}{n4^n} (x-1)^n$ converge a f(x) en]-3,5[entonces para cada $x \in]-3,5[$, por propiedad de derivación en series de potencias,

$$f'(x) = \frac{1}{4} \sum_{n=1}^{\infty} \frac{(-1)^n}{4^n} (x-1)^{n-1}$$

$$= \frac{1}{4} \sum_{n=0}^{\infty} (-1)^{n+1} \left(\frac{x-1}{4}\right)^n$$

$$= -\frac{1}{4} \sum_{n=0}^{\infty} \left(\frac{1-x}{4}\right)^n \text{ (serie geométrica con } r = \frac{1-x}{4}\text{)}$$

Así, por propiedad de series geométricas,

$$f'(x) = -\frac{1}{4} \frac{1}{1 - \left(\frac{1-x}{4}\right)}, -1 < \frac{1-x}{4} < 1$$

Esto es,

$$f'(x) = \frac{-1}{x+3}, -3 < x < 5$$
 (07 ptos)

c) (5 ptos) Usando el 3.b) deduzca que $f(x) = \ln\left(\frac{4}{x+3}\right)$

Ind. Notar que, por la definición de f en el apartado 3.a), $f\left(1\right)=0$

Solución: Como f(1) = 0, y usando el teorema fundamental del cálculo,

$$f(x) - f(1) = \int_{1}^{x} \frac{-1}{t+3} dt = -\ln(x+3) + \ln 4$$
$$= \ln\left(\frac{4}{x+3}\right),$$

luego

$$f(x) = \ln\left(\frac{4}{x+3}\right), -3 < x < 5.$$
 (05 ptos)

d) (3 ptos) Utilice 3.c) para calcular la suma de la serie $\sum_{n=1}^{\infty} \frac{(-1)^n}{n4^n}$. En particular, usando x=2 en la serie de potencias se tiene.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{ne^n} = f(2) = \ln\left(\frac{4}{5}\right)$$
 (03 ptos)