19/06/2023, 13:39 PDF.js viewer

3-to-8 line decoder/demultiplexer

74HC/HCT238

FEATURES

- · Demultiplexing capability
- · Multiple input enable for easy expansion
- · Ideal for memory chip select decoding
- · Active HIGH mutually exclusive outputs
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT238 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT238 decoders accept three binary weighted address inputs (A₀, A₁, A₂) and when enabled,

provide 8 mutually exclusive active HIGH outputs $(Y_0 \text{ to } Y_7)$.

The "238" features three enable inputs: two active LOW $(\overline{E}_1 \text{ and } \overline{E}_2)$ and one active HIGH (E_3) . Every output will be LOW unless \overline{E}_1 and \overline{E}_2 are LOW and E_3 is HIGH.

This multiple enable function allows easy parallel expansion of the "238" to a 1-of-32 (5 lines to 32 lines) decoder with just four "238" ICs and one inverter.

The "238" can be used as an eight output demultiplexer by using one of the active LOW enable inputs as the data input and the remaining enable inputs as strobes. Unused enable inputs must be permanently tied to their appropriate active HIGH or LOW state.

The "238" is identical to the "138" but has non-inverting outputs.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	DADAMETED	CONDITIONS	Т		
	PARAMETER	CONDITIONS	нс	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	A_n to Y_n		14	18	ns
	E ₃ to Y _n		16	20	ns
	\overline{E}_{n} to Y_{n}		17	21	ns
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	72	76	pF

Notes

C_{PD} is used to determine the dynamic power dissipation (P_D in ∞W):

$$P_D = C_{PD} \cdot V_{CC}^2 \cdot f_i + \sum (C_L \cdot V_{CC}^2 \cdot f_o)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

 $\sum (C_L \cdot V_{CC}^2 \cdot f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} - 1.5 V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

December 1990

2

19/06/2023, 13:39 PDF.js viewer

Philips Semiconductors Product specification

3-to-8 line decoder/demultiplexer

74HC/HCT238

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION					
1, 2, 3	A ₀ to A ₂	address inputs					
4, 5	\overline{E}_1 , \overline{E}_2	enable inputs (active LOW)					
6	E ₃	enable input (active HIGH)					
8	GND	ground (0 V)					
15, 14, 13, 12, 11, 10, 9, 7	Y ₀ to Y ₇	outputs (active HIGH)					
16	V _{CC}	positive supply voltage					

December 1990 3

19/06/2023, 13:39 PDF.js viewer

Philips Semiconductors Product specification

3-to-8 line decoder/demultiplexer

74HC/HCT238

FUNCTION TABLE

INPUTS					OUTPUTS								
Ē ₁	Ē ₂	E ₃	A ₀	A ₁	A ₂	Y ₀	Y ₁	Y ₂	Y ₃	Y ₄	Y ₅	Y ₆	Y ₇
Н	X	Х	Х	Х	Х	L	L	L	L	L	L	L	L
X	Н	X	X	X	X	L	L	L	L	L	L	L	L
Χ	X	L	X	X	X	L	L	L	L	L	L	L	L
L	L	Н	L	L	L	Н	L	L	L	L	L	L	L
L	L	Н	Н	L	L	L	Н	L	L	L	L	L	L
L	L	Н	L	Н	L	L	L	Н	L	L	L	L	L
L	L	Н	Н	Н	L	L	L	L	Н	L	L	L	L
L	L	Н	L	L	Н	L	L	L	L	Н	L	L	L
L	L	Н	Н	L	Н	L	L	L	L	L	Н	L	L
L	L	Н	L	Н	Н	L	L	L	L	L	L	Н	L
L	L	Н	Н	Н	Н	L	L	L	L	L	L	L	Н

Note

H = HIGH voltage level
L = LOW voltage level

X = don't care

December 1990

4