

SEQUENCE LISTING

<110> HYBRIGENICS

Pierre, Legrain

<120> Protein-protein interactions in adipocyte cells

<130> B4767A

<140> US 10/038,010

<141> 2002-01-02

<150> US 60/259,377

<151> 2001-01-02

<160> 67

<170> PatentIn version 3.1

<210> 1

<211> 492

<212> DNA

<213> Homo sapiens

<220>

<221> gene

<222> (1)..(492)

<223> Human Skp1 : Part of SCF (Skp1/Cullin/F-box) complexes which act
 as E3 Ubiquitin ligases.

<400> 1 atgccttcaa ttaagttgca gagttctgat ggagagatat ttgaagttga tgtggaaatt

gccaaacaat	ctgtaactat	taagaccatg	ttggaagatt	tgggaatgga	tgatgaagga	120
gatgatgacc	cagttcctct	accaaatgtg	aatgcagcaa	tattaaaaaa	ggtcattcag	180
tggtgcaccc	accacaagga	tgaccctcct	cctcctgaag	atgatgagaa	caaagaaaag	240
cggacagatg	atatccctgt	ttgggaccaa	gaattcctga	aagttgacca	aggaacactt	300
tttgaactca	ttctggctgc	aaactactta	gacatcaaag	gtttgcttga	tgttacatgc	360
aagactgttg	ccaatatgat	caaggggaaa	actcctgagg	agattcgcaa	gaccttcaat	420
atcaaaaatg	actttactga	agaggaggaa	gcccaggtac	gcaaagagaa	ccagtggtgt	480
gaagagaagt	ga					492

- <210> 2
- <211> 163
- <212> PRT
- <213> Homo sapiens
- <220>
- <221> Skp1
- <222> (1)..(163)
- <223>
- <400> 2
- Met Pro Ser Ile Lys Leu Gln Ser Ser Asp Gly Glu Ile Phe Glu Val 1 5 10 15
- Asp Val Glu Ile Ala Lys Gln Ser Val Thr Ile Lys Thr Met Leu Glu 20 25 30
- Asp Leu Gly Met Asp Asp Glu Gly Asp Asp Asp Pro Val Pro Leu Pro 35 40 45
- Asn Val Asn Ala Ala Ile Leu Lys Lys Val Ile Gln Trp Cys Thr His 50 55 60
- His Lys Asp Asp Pro Pro Pro Glu Asp Asp Glu Asn Lys Glu Lys 65 70 75 80
- Arg Thr Asp Asp Ile Pro Val Trp Asp Gln Glu Phe Leu Lys Val Asp

480

540

	85	9	90	9	5
Gln Gly Thr Leu 100	Phe Glu Leu	Ile Leu A	Ala Ala Asn	Tyr Leu A 110	sp Ile
Lys Gly Leu Leu 115	Asp Val Thr	Cys Lys 1	Thr Val Ala	Asn Met I 125	le Lys
Gly Lys Thr Pro	Glu Glu Ile 135	Arg Lys T	Thr Phe Asn 140	Ile Lys A	asn Asp
Phe Thr Glu Glu 145	Glu Glu Ala 150	Gln Val F	Arg Lys Glu 155	Asn Gln T	rp Cys 160
Glu Glu Lys					
<210> 3					
<211> 1917					
<212> DNA					
<213> Homo sap	iens				
<220>					
<221> gene					
<222> (1)(19	17)				
<223> Human Sp	licing Facto	r 1			
<400> 3 atggcgaccg gagc	gaacgc cacgc	cgttg gac	ttcccaa gtaa	ıgaagcg ga	aagaggagc 60
cgctggaacc aaga	cacaat ggaac	agaag aca	gtgattc cagg	gaatgcc ta	acagttatt 120
eccectggac ttac	togaga acaag	aaaga gct	tatatag tgca	actgca ga	atagaagac 180
ctgactcgta aact	gcgcac aggag	acctg ggc	atccccc ctaa	iccctga go	gacaggtcc 240
ccttcccctg agcc	catcta caata	gcgag ggg	aagcggc ttaa	cacccg ag	gagttccgc 300
acccgcaaaa agct	ggaaga ggagd	ggcac aac	ctcatca caga	ıgatggt to	gcactcaat 360
ccggatttca agcc	acctgc agatt	acaaa cct	ccagcaa cac	gtgtgag to	gataaagtc 420

atgattccac aagatgagta cccagaaatc aactttgtgg ggctgctcat cgggcccaga

gggaacaccc tgaagaacat agagaaggag tgcaatgcca agattatgat ccgggggaaa

gggtctgtga aa	gaagggaa	ggttgggcgc	aaagatggcc	agatgttgcc	aggagaagat	600
gagecaette at	gccctggt	tactgccaat	acaatggaga	acgtcaaaaa	ggcagtggaa	660
cagataagaa ac	atcctgaa	gcagggtatc	gagactccag	aggaccagaa	tgatctacgg	720
aagatgcagc tt	cgggagtt	ggctcgctta	aatgggaccc	ttcgggaaga	cgataacagg	780
atcttaagac cc	tggcagag	ctcagagacc	cgcagcatta	ccaacaccac	agtgtgtacc	840
aagtgtggag gg	gctggcca	cattgcttca	gactgtaaat	tccaaaggcc	tggtgatcct	900
cagtcagctc ag	gataaagc	acggatggat	aaagaatatt	tgtccctcat	ggctgaactg	960
ggtgaagcac ct	gtcccagc	atctgtgggc	tccacctctg	ggcctgccac	cacacccctg	1020
gccagcgcac ct	cgtcctgc	tgctcccgcc	aacaacccac	ctccaccgtc	tctcatgtct	1080
accacccaga gc	cgcccacc	ctggatgaat	tctggccctt	cagagagtcg	gccctaccac	1140
ggcatgcatg ga	ggtggtcc	tggtgggccc	ggaggtggcc	cccacagctt	cccacaccca	1200
ttacccagcc tg	acaggtgg	gcatggtgga	catcccatgc	agcacaaccc	caatggaccc	1260
ccaccccctt gg	atgcagcc	accaccacca	ccgatgaacc	agggccccca	ccctcctggg	1320
caccatggcc ct	cctccaat	ggatcagtac	ctgggaagta	cgcctgtggg	ctctggggtc	1380
tatcgcctgc at	caaggaaa	aggtatgatg	ccgccaccac	ctatgggcat	gatgccgccg	1440
ccgccgccgc ct	cccagtgg	gcagccccca	cccctccct	ctggtcctct	tececcatgg	1500
caacaacagc ag	cagcagcc	teegecacee	cctccgccca	gcagcagtat	ggcttccagt	1560
acccccttgc ca	tggcagca	aaatacgacg	actaccacca	cgagcgctgg	cacagggtcc	1620
atcccgccat gg	caacagca	gcaggcggct	gccgcagctt	ctccaggagc	ccctcagatg	1680
caaggcaacc cc	actatggt	gcccctgccc	cccggggtcc	agccgcctct	gccgcctggg	1740
geceeteece et	ccgccgcc	tccaccgcct	ggttccgccg	gcatgatgat	ccctccccgc	1800
ggcggcgatg gc	ccgagcca	tgagagtgag	gactttccgc	gcccattggt	gaccetteca	1860
ggcagacagc ct	cagcaacg	cccctggtgg	acaggatggt	tcggcaaagc	agcctga	1917

<210> 4

<211> 638

<212> PRT

<213> Homo sapiens

<220>

<221> Human Splicing Factor 1

<222> (1)..(638)

<223>

<400> 4

Met Ala Thr Gly Ala Asn Ala Thr Pro Leu Asp Phe Pro Ser Lys Lys
1 10 15

Arg Lys Arg Ser Arg Trp Asn Gln Asp Thr Met Glu Gln Lys Thr Val

Ile Pro Gly Met Pro Thr Val Ile Pro Pro Gly Leu Thr Arg Glu Gln 35 40 45

Glu Arg Ala Tyr Ile Val Gln Leu Gln Ile Glu Asp Leu Thr Arg Lys 50 55 60

Leu Arg Thr Gly Asp Leu Gly Ile Pro Pro Asn Pro Glu Asp Arg Ser 65 70 75 80

Pro Ser Pro Glu Pro Ile Tyr Asn Ser Glu Gly Lys Arg Leu Asn Thr 85 90 95

Arg Glu Phe Arg Thr Arg Lys Lys Leu Glu Glu Glu Arg His Asn Leu
100 105 110

Ile Thr Glu Met Val Ala Leu Asn Pro Asp Phe Lys Pro Pro Ala Asp 115 120 125

Tyr Lys Pro Pro Ala Thr Arg Val Ser Asp Lys Val Met Ile Pro Gln 130 135 140

Asp Glu Tyr Pro Glu Ile Asn Phe Val Gly Leu Leu Ile Gly Pro Arg 145 150 155 160

Gly Asn Thr Leu Lys Asn Ile Glu Lys Glu Cys Asn Ala Lys Ile Met 165 170 175

Ile Arg Gly Lys Gly Ser Val Lys Glu Gly Lys Val Gly Arg Lys Asp 180 185 190

Gly Gln Met Leu Pro Gly Glu Asp Glu Pro Leu His Ala Leu Val Thr 195 200 205 Ala Asn Thr Met Glu Asn Val Lys Lys Ala Val Glu Gln Ile Arq Asn Ile Leu Lys Gln Gly Ile Glu Thr Pro Glu Asp Gln Asn Asp Leu Arg Lys Met Gln Leu Arg Glu Leu Ala Arg Leu Asn Gly Thr Leu Arg Glu 245 250 Asp Asp Asn Arg Ile Leu Arg Pro Trp Gln Ser Ser Glu Thr Arg Ser 265 Ile Thr Asn Thr Thr Val Cys Thr Lys Cys Gly Gly Ala Gly His Ile Ala Ser Asp Cys Lys Phe Gln Arg Pro Gly Asp Pro Gln Ser Ala Gln 295 Asp Lys Ala Arg Met Asp Lys Glu Tyr Leu Ser Leu Met Ala Glu Leu Gly Glu Ala Pro Val Pro Ala Ser Val Gly Ser Thr Ser Gly Pro Ala 325 330 Thr Thr Pro Leu Ala Ser Ala Pro Arg Pro Ala Ala Pro Ala Asn Asn 345 Pro Pro Pro Pro Ser Leu Met Ser Thr Thr Gln Ser Arg Pro Pro Trp 360 Met Asn Ser Gly Pro Ser Glu Ser Arg Pro Tyr His Gly Met His Gly 375 Gly Gly Pro Gly Gly Pro Gly Gly Pro His Ser Phe Pro His Pro 385 390 395 400 Leu Pro Ser Leu Thr Gly Gly His Gly His Pro Met Gln His Asn 405 410 Pro Asn Gly Pro Pro Pro Pro Trp Met Gln Pro Pro Pro Pro Met 420 Asn Gln Gly Pro His Pro Pro Gly His His Gly Pro Pro Pro Met Asp 440 435

Gln Tyr Leu Gly Ser Thr Pro Val Gly Ser Gly Val Tyr Arg Leu His 450 455 460

Gln Gly Lys Gly Met Met Pro Pro Pro Pro Met Gly Met Met Pro Pro 465 470 475 480

Pro Pro Pro Pro Ser Gly Gln Pro Pro Pro Pro Pro Ser Gly Pro 485 490 495

Leu Pro Pro Trp Gln Gln Gln Gln Gln Pro Pro Pro Pro Pro Pro 500 505 510

Pro Ser Ser Ser Met Ala Ser Ser Thr Pro Leu Pro Trp Gln Gln Asn 515 520 525

Thr Thr Thr Thr Thr Thr Ser Ala Gly Thr Gly Ser Ile Pro Pro Trp 530 540

Gln Gln Gln Gln Ala Ala Ala Ala Ser Pro Gly Ala Pro Gln Met 545 550 555 560

Gln Gly Asn Pro Thr Met Val Pro Leu Pro Pro Gly Val Gln Pro Pro 565 570 575

Leu Pro Pro Gly Ala Pro Pro Pro Pro Pro Pro Pro Pro Pro Gly Ser 580 585 590

Ala Gly Met Met Ile Pro Pro Arg Gly Gly Asp Gly Pro Ser His Glu
595 600 605

Ser Glu Asp Phe Pro Arg Pro Leu Val Thr Leu Pro Gly Arg Gln Pro 610 615 620

Gln Gln Arg Pro Trp Trp Thr Gly Trp Phe Gly Lys Ala Ala 625 630 635

<210> 5

<211> 1173

<212> DNA

<213> mouse p53

<220>

<221> gene

<222> (1)..(1173)

<223> mouse p53 : Tumour suppressor protein

<400> 5 atgactgcca tggaggagtc acagtcggat atcagcctcg agctccctct gagccaggag 60 acattttcag gcttatggaa actacttcct ccagaagata tcctgccatc acctcactgc 120 atggacgatc tgttgctgcc ccaggatgtt gaggagtttt ttgaaggccc aagtgaagcc 180 ctccgagtgt caggagctcc tgcagcacag gaccctgtca ccgagacccc tgggccagcg 240 gecetgeee cagecactee atggeeectg teatettttg teeettetea aaaaaettae 300 cagggcaact atggcttcca cctgggcttc ctgcagtctg ggacagccaa gtctgttatg 360 tgcacgtact ctcctcccct caataagcta ttctgccagc tggcgaagac gtgccctgtg 420 cagttgtggg tcagcgccac acctccagct gggagccgtg tccgcgccat ggccatctac 480 aagaagtcac agcacatgac ggaggtcgtg agacgctgcc cccaccatga gcgctgctcc 540 gatggtgatg gcctggctcc tccccagcat cttatccggg tggaaggaaa tttgtatccc 600 gagtatctgg aagacaggca gacttttcgc cacagcgtgg tggtacctta tgagccaccc 660 gaggccggct ctgagtatac caccatccac tacaagtaca tgtgtaatag ctcctgcatg 720 gggggcatga accgccgacc tatccttacc atcatcacac tggaagactc cagtgggaac 780 ettetgggae gggaeagett tgaggttegt gtttgtgeet geeetgggag agaeegeegt 840 acagaagaag aaaatttccg caaaaaggaa gtcctttgcc ctgaactgcc cccagggagc 900 gcaaagagag cgctgcccac ctgcacaagc gcctctcccc cgcaaaagaa aaaaccactt 960 gatggagagt atttcaccct caagatccgc gggcgtaaac gcttcgagat gttccgggag 1020 ctgaatgagg ccttagagtt aaaggatgcc catgctacag aggagtctgg agacagcagg 1080 gctcactcca gctacctgaa gaccaagaag ggccagtcta cttcccgcca taaaaaaaca 1140 1173 atggtcaaga aagtggggcc tgactcagac tga

<210> 6

<211> 390

<212> PRT

<213> mouse p53

<220>

<221> p53

<222> (1)..(390)

<223>

<400> 6

Met Thr Ala Met Glu Glu Ser Gln Ser Asp Ile Ser Leu Glu Leu Pro 1 5 10 15

Leu Ser Gln Glu Thr Phe Ser Gly Leu Trp Lys Leu Leu Pro Pro Glu 20 25 30

Asp Ile Leu Pro Ser Pro His Cys Met Asp Asp Leu Leu Pro Gln 35 40 45

Asp Val Glu Glu Phe Phe Glu Gly Pro Ser Glu Ala Leu Arg Val Ser 50 55 60

Gly Ala Pro Ala Ala Gln Asp Pro Val Thr Glu Thr Pro Gly Pro Ala 65 70 75 80

Ala Prò Ala Pro Ala Thr Pro Trp Pro Leu Ser Ser Phe Val Pro Ser 85 90 95

Gln Lys Thr Tyr Gln Gly Asn Tyr Gly Phe His Leu Gly Phe Leu Gln 100 105 110

Ser Gly Thr Ala Lys Ser Val Met Cys Thr Tyr Ser Pro Pro Leu Asn 115 120 125

Lys Leu Phe Cys Gln Leu Ala Lys Thr Cys Pro Val Gln Leu Trp Val 130 135 140

Ser Ala Thr Pro Pro Ala Gly Ser Arg Val Arg Ala Met Ala Ile Tyr 145 150 155 160

Lys Lys Ser Gln His Met Thr Glu Val Val Arg Arg Cys Pro His His 165 170 175

Glu Arg Cys Ser Asp Gly Asp Gly Leu Ala Pro Pro Gln His Leu Ile 180 185 190

Arg Val Glu Gly Asn Leu Tyr Pro Glu Tyr Leu Glu Asp Arg Gln Thr

195 200 205

Phe Arg His Ser Val Val Val Pro Tyr Glu Pro Pro Glu Ala Gly Ser 210 215 220

Glu Tyr Thr Thr Ile His Tyr Lys Tyr Met Cys Asn Ser Ser Cys Met 225 230 235 240

Gly Gly Met Asn Arg Arg Pro Ile Leu Thr Ile Ile Thr Leu Glu Asp 245 250 255

Ser Ser Gly Asn Leu Leu Gly Arg Asp Ser Phe Glu Val Arg Val Cys 260 265 270

Ala Cys Pro Gly Arg Asp Arg Thr Glu Glu Glu Asn Phe Arg Lys 275 280 285

Lys Glu Val Leu Cys Pro Glu Leu Pro Pro Gly Ser Ala Lys Arg Ala 290 295 300

Leu Pro Thr Cys Thr Ser Ala Ser Pro Pro Gln Lys Lys Lys Pro Leu 305 310 315

Asp Gly Glu Tyr Phe Thr Leu Lys Ile Arg Gly Arg Lys Arg Phe Glu 325 330 335

Met Phe Arg Glu Leu Asn Glu Ala Leu Glu Leu Lys Asp Ala His Ala 340 345 350

Thr Glu Glu Ser Gly Asp Ser Arg Ala His Ser Ser Tyr Leu Lys Thr 355 360 365

Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys Thr Met Val Lys Lys 370 380

Val Gly Pro Asp Ser Asp 385 390

<210> 7

<211> 1710

<212> DNA

<213> Homo sapiens

<220>

<221> gene

<222> (1)..(1710)

<223> Human beta-TrCP1 : F-box containing protein with 7 WD40 repeats; Part of SCF (Skp1/Cullin/F-box) complex E3 ubiquitin ligase; Implicated in the degradation of b-catenin and IkBa

<400> 7 atggacccgg ccgaggcggt gctgcaagag aaggcactca agtttatgaa ttcctcagag 60 agagaagact gtaataatgg cgaaccccct aggaagataa taccagagaa gaattcactt 120 agacagacat acaacagctg tgccagactc tgcttaaacc aagaaacagt atgtttagca 180 agcactgcta tgaagactga gaattgtgtg gccaaaacaa aacttgccaa tggcacttcc 240 agtatgattg tgcccaagca acggaaactc tcagcaagct atgaaaagga aaaggaactg 300 tgtgtcaaat actttgagca gtggtcagag tcagatcaag tggaatttgt ggaacatctt 360 atatcccaaa tgtgtcatta ccaacatggg cacataaact cgtatcttaa acctatgttg 420 cagagagatt tcataactgc tctgccagct cggggattgg atcatatcgc tgagaacatt 480 ctgtcatacc tggatgccaa atcactatgt gctgctgaac ttgtgtgcaa ggaatggtac 540 cgagtgacct ctgatggcat gctgtggaag aagcttatcg agagaatggt caggacagat 600 tctctgtgga gaggcctggc agaacgaaga ggatggggac agtatttatt caaaaacaaa 660 cctcctgacg ggaatgctcc tcccaactct ttttatagag cactttatcc taaaattata 720 caagacattg agacaataga atctaattgg agatgtggaa gacatagttt acagagaatt 780 cactgccgaa gtgaaacaag caaaggagtt tactgtttac agtatgatga tcagaaaata 840 900 gtaagcggcc ttcgagacaa cacaatcaag atctgggata aaaacacatt ggaatgcaag cgaattctca caggccatac aggttcagtc ctctgtctcc agtatgatga gagagtgatc 960 ataacaggat catcggattc cacggtcaga gtgtgggatg taaatacagg tgaaatgcta 1020 aacacgttga ttcaccattg tgaagcagtt ctgcacttgc gtttcaataa tggcatgatg 1080 gtgacctgct ccaaagatcg ttccattgct gtatgggata tggcctcccc aactgacatt 1140 acceteegga gggtgetggt eggacacega getgetgtea atgttgtaga etttgatgae 1200 aagtacattg tttctgcatc tggggataga actataaagg tatggaacac aagtacttgt 1260 gaatttgtaa ggaccttaaa tggacacaaa cgaggcattg cctgtttgca gtacagggac 1320 aggctggtag tgagtggctc atctgacaac actatcagat tatgggacat agaatgtggt 1380 gcatgtttac gagtgttaga aggccatgag gaattggtgc gttgtattcg atttgataac 1440

aagaggatag	tcagtggggc	ctatgatgga	aaaattaaag	tgtgggatct	tgtggctgct	1500
ttggaccccc	gtgctcctgc	agggacactc	tgtctacgga	cccttgtgga	gcattccgga	1560
agagtttttc	gactacagtt	tgatgaattc	cagattgtca	gtagttcaca	tgatgacaca	1620
atcctcatct	gggacttcct	aaatgatcca	gctgcccaag	ctgaaccccc	ccgttcccct	1680
tctcgaacat	acacctacat	ctccagataa				1710

<210> 8

<211> 569

<212> PRT

<213> Homo sapiens

<220>

<221> beta-TrCP1

<222> (1)..(569)

<223>

<400> 8

Met Asp Pro Ala Glu Ala Val Leu Gln Glu Lys Ala Leu Lys Phe Met 1 5 10 15

Asn Ser Ser Glu Arg Glu Asp Cys Asn Asn Gly Glu Pro Pro Arg Lys 20 25 30

Ile Ile Pro Glu Lys Asn Ser Leu Arg Gln Thr Tyr Asn Ser Cys Ala 35 40 45

Arg Leu Cys Leu Asn Gln Glu Thr Val Cys Leu Ala Ser Thr Ala Met 50 55 60

Lys Thr Glu Asn Cys Val Ala Lys Thr Lys Leu Ala Asn Gly Thr Ser 65 70 75 80

Ser Met Ile Val Pro Lys Gln Arg Lys Leu Ser Ala Ser Tyr Glu Lys 85 90 95

Glu Lys Glu Leu Cys Val Lys Tyr Phe Glu Gln Trp Ser Glu Ser Asp 100 105 110

- Gln Val Glu Phe Val Glu His Leu Ile Ser Gln Met Cys His Tyr Gln 115 120 125
- His Gly His Ile Asn Ser Tyr Leu Lys Pro Met Leu Gln Arg Asp Phe 130 135 140
- Ile Thr Ala Leu Pro Ala Arg Gly Leu Asp His Ile Ala Glu Asn Ile 145 150 155 160
- Leu Ser Tyr Leu Asp Ala Lys Ser Leu Cys Ala Ala Glu Leu Val Cys 165 170 175
- Lys Glu Trp Tyr Arg Val Thr Ser Asp Gly Met Leu Trp Lys Lys Leu 180 185 190
- Ile Glu Arg Met Val Arg Thr Asp Ser Leu Trp Arg Gly Leu Ala Glu 195 200 205
- Arg Arg Gly Trp Gly Gln Tyr Leu Phe Lys Asn Lys Pro Pro Asp Gly 210 215 220
- Asn Ala Pro Pro Asn Ser Phe Tyr Arg Ala Leu Tyr Pro Lys Ile Ile 225 230 235 240
- Gln Asp Ile Glu Thr Ile Glu Ser Asn Trp Arg Cys Gly Arg His Ser 245 250 255
- Leu Gln Arg Ile His Cys Arg Ser Glu Thr Ser Lys Gly Val Tyr Cys 260 265 270
- Leu Gln Tyr Asp Asp Gln Lys Ile Val Ser Gly Leu Arg Asp Asn Thr 275 280 285
- Ile Lys Ile Trp Asp Lys Asn Thr Leu Glu Cys Lys Arg Ile Leu Thr 290 295 300
- Gly His Thr Gly Ser Val Leu Cys Leu Gln Tyr Asp Glu Arg Val Ile 305 310 315 320
- Ile Thr Gly Ser Ser Asp Ser Thr Val Arg Val Trp Asp Val Asn Thr 325 330 335
- Gly Glu Met Leu Asn Thr Leu Ile His His Cys Glu Ala Val Leu His 340 345 350
- Leu Arg Phe Asn Asn Gly Met Met Val Thr Cys Ser Lys Asp Arg Ser

355 360 365

Ile Ala Val Trp Asp Met Ala Ser Pro Thr Asp Ile Thr Leu Arg Arg 370 375 380

Val Leu Val Gly His Arg Ala Ala Val Asn Val Val Asp Phe Asp Asp 385 390 395 400

Lys Tyr Ile Val Ser Ala Ser Gly Asp Arg Thr Ile Lys Val Trp Asn 405 410 415

Thr Ser Thr Cys Glu Phe Val Arg Thr Leu Asn Gly His Lys Arg Gly 420 425 430

Ile Ala Cys Leu Gln Tyr Arg Asp Arg Leu Val Val Ser Gly Ser Ser 435 440 445

Asp Asn Thr Ile Arg Leu Trp Asp Ile Glu Cys Gly Ala Cys Leu Arg 450 460

Val Leu Glu Gly His Glu Glu Leu Val Arg Cys Ile Arg Phe Asp Asn 465 470 475 480

Lys Arg Ile Val Ser Gly Ala Tyr Asp Gly Lys Ile Lys Val Trp Asp 485 490 495

Leu Val Ala Ala Leu Asp Pro Arg Ala Pro Ala Gly Thr Leu Cys Leu 500 505 510

Arg Thr Leu Val Glu His Ser Gly Arg Val Phe Arg Leu Gln Phe Asp 515 520 525

Glu Phe Gln Ile Val Ser Ser Ser His Asp Asp Thr Ile Leu Ile Trp 530 535 540

Asp Phe Leu Asn Asp Pro Ala Ala Gln Ala Glu Pro Pro Arg Ser Pro 545 550 555 560

Ser Arg Thr Tyr Thr Tyr Ile Ser Arg 565

<210> 9

<211> 579

<212> DNA

<213> Homo sapiens <220> <221> gene <222> (1)..(579) <223> human Rac1 : Member of Ras subfamily of RAS small GTPases <400> 9 atgcaggcca tcaagtgtgt ggtggtggga gacggagctg taggtaaaac ttgcctactg 60 atcagttaca caaccaatgc atttcctgga gaatatatcc ctactgtctt tgacaattat 120 tctgccaatg ttatggtaga tggaaaaccg gtgaatctgg gcttatggga tacagctgga 180 caagaagatt atgacagatt acgcccccta tcctatccgc aaacagatgt gttcttaatt 240 tgcttttccc ttgtgagtcc tgcatcattt gaaaatgtcc gtgcaaagtg gtatcctgag 300 gtgcggcacc actgtcccaa cactcccatc atcctagtgg gaactaaact tgatcttagg 360 gatgataaag acacgatcga gaaactgaag gagaagaagc tgactcccat cacctatccg 420 cagggtctag ccatggctaa ggagattggt gctgtaaaat acctggagtg ctcggcgctc 480 acacagegag geeteaagae agtgtttgae gaagegatee gageagteet etgeeegeet 540 579 cccgtgaaga agaggaagag aaaatgcctg ctgttgtaa <210> 10 <211> 192 <212> PRT <213> Homo sapiens <220> <221> Rac1 (1)..(192) <222> <223> <400> 10 Met Gln Ala Ile Lys Cys Val Val Val Gly Asp Gly Ala Val Gly Lys

Thr Cys Leu Leu Ile Ser Tyr Thr Thr Asn Ala Phe Pro Gly Glu Tyr 20 25 30

Ile Pro Thr Val Phe Asp Asn Tyr Ser Ala Asn Val Met Val Asp Gly 35 40 45

Lys Pro Val Asn Leu Gly Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr 50 55 60

Asp Arg Leu Arg Pro Leu Ser Tyr Pro Gln Thr Asp Val Phe Leu Ile 70 75 80

Cys Phe Ser Leu Val Ser Pro Ala Ser Phe Glu Asn Val Arg Ala Lys 85 90 95

Trp Tyr Pro Glu Val Arg His His Cys Pro Asn Thr Pro Ile Ile Leu 100 105 110

Val Gly Thr Lys Leu Asp Leu Arg Asp Asp Lys Asp Thr Ile Glu Lys
115 120 125

Leu Lys Glu Lys Lys Leu Thr Pro Ile Thr Tyr Pro Gln Gly Leu Ala 130 135 140

Met Ala Lys Glu Ile Gly Ala Val Lys Tyr Leu Glu Cys Ser Ala Leu 145 150 155 160

Thr Gln Arg Gly Leu Lys Thr Val Phe Asp Glu Ala Ile Arg Ala Val

Leu Cys Pro Pro Pro Val Lys Lys Arg Lys Arg Lys Cys Leu Leu Leu 180 185 190

<210> 11

<211> 915

<212> DNA

<213> Homo sapiens

<220>

<221> gene

<222> (1)..(915)

<223> Human uracil DNA glycosylase : Uracil DNA glycoslylase implicated in DNA repair

<400> 11	tetgeettgg	accatagggg	ttgggccgga	agctgcggac	gcctgggaag	60
	agctcttgag					120
	ctgggcagga					180
	ggatccagag					240
						300
	gctttggaga					360
	agctaatggg					420
	aagtcttcac					
	aggatccata					480
	ttccgcctcc					540
atagaggatt	ttgttcatcc	tggccatgga	gatttatctg	ggtgggccaa	gcaaggtgtt	600
ctccttctca	acgctgtcct	cacggttcgt	gcccatcaag	ccaactctca	taaggagcga	660
ggctgggagc	agttcactga	tgcagttgtg	tcctggctaa	atcagaactc	gaatggcctt	720
gttttcttgc	tctggggctc	ttatgctcag	aagaagggca	gtgccattga	taggaagcgg	780
caccatgtac	tacagacggc	tcatccctcc	cctttgtcag	tgtatagagg	gttctttgga	840
tgtagacact	tttcaaagac	caatgagctg	ctgcagaagt	ctggcaagaa	gcccattgac	900
tggaaggagc	tgtga					915

<210> 12

<211> 304

<212> PRT

<213> Homo sapiens

<220>

<221> DNA glycosylase

<222> (1)..(304)

<223>

<400> 12

Met Gly Val Phe Cys Leu Gly Pro Trp Gly Leu Gly Arg Lys Leu Arg 1 5 10 15

Thr Pro Gly Lys Gly Pro Leu Gln Leu Leu Ser Arg Leu Cys Gly Asp 20 25 30

His Leu Gln Ala Ile Pro Ala Lys Lys Ala Pro Ala Gly Gln Glu Glu 35 40 45

Pro Gly Thr Pro Pro Ser Ser Pro Leu Ser Ala Glu Gln Leu Asp Arg 50 55 60

Ile Gln Arg Asn Lys Ala Ala Ala Leu Leu Arg Leu Ala Ala Arg Asn 65 70 75 80

Val Pro Val Gly Phe Gly Glu Ser Trp Lys Lys His Leu Ser Gly Glu 85 90 95

Phe Gly Lys Pro Tyr Phe Ile Lys Leu Met Gly Phe Val Ala Glu Glu 100 105 110

Arg Lys His Tyr Thr Val Tyr Pro Pro Pro His Gln Val Phe Thr Trp 115 120 125

Thr Gln Met Cys Asp Ile Lys Asp Val Lys Val Val Ile Leu Gly Gln 130 135 140

Asp Pro Tyr His Gly Pro Asn Gln Ala His Gly Leu Cys Phe Ser Val 145 150 155 160

Gln Arg Pro Val Pro Pro Pro Pro Ser Leu Glu Asn Ile Tyr Lys Glu 165 170 175

Leu Ser Thr Asp Ile Glu Asp Phe Val His Pro Gly His Gly Asp Leu 180 185 190

Ser Gly Trp Ala Lys Gln Gly Val Leu Leu Leu Asn Ala Val Leu Thr 195 200 205

Val Arg Ala His Gln Ala Asn Ser His Lys Glu Arg Gly Trp Glu Gln 210 215 220

Phe Thr Asp Ala Val Val Ser Trp Leu Asn Gln Asn Ser Asn Gly Leu 225 230 235 240

Val Phe Leu Leu Trp Gly Ser Tyr Ala Gln Lys Lys Gly Ser Ala Ile

245 250 255	
Asp Arg Lys Arg His His Val Leu Gln Thr Ala His Pro Ser Pro Leu 260 265 270	
Ser Val Tyr Arg Gly Phe Phe Gly Cys Arg His Phe Ser Lys Thr Asn 275 280 285	
Glu Leu Leu Gln Lys Ser Gly Lys Lys Pro Ile Asp Trp Lys Glu Leu 290 295 300	
<210> 13	
<211> 158	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> gene	
<222> (1)(158)	
<223> Human b2 adrenergic receptor : Oncogene	
<400> 13 totttoagga ggccaaaagg cagotocaga agattgacaa atotgagggo ogottocatg	60
tccagaacct tagccaggtg gagcaggatg ggcggacggg gcatggactc cgcagatctt	120
ccaagttctg cttgaaggag cacaaagccc tcaagtga	158
<210> 14	
<211> 52	
<212> PRT	
<213> Homo sapiens	
<220>	
<221> b2 adrenergic receptor	
<222> (1)(52)	

<223>

<400)> :	14															
Val 1	Phe	Gln	Glu	Ala 5	Lys	Arg	Gln	Leu	Gln 10	Lys	Ile	Asp	Lys	Ser 15	Glu		
Gly	Arg	Phe	His 20	Val	Gln	Asn	Leu	Ser 25	Gln	Val	Glu	Gln	Asp 30	Gly	Arg		
Thr	Gly	His 35	Gly	Leu	Arg	Arg	Ser 40	Ser	Lys	Phe	Cys	Leu 45	Lys	Glu	His		
Lys	Ala 50	Leu	Lys														
<210)>	15															
<21	1>	261															
<21	2 >	DNA															
<21	3 >	Homo	sap	iens													
<22	0 >																
<22	1>	gene															
<22	2>	(1).	. (26	1)													
<22	3>	Huma	n b2	adr	ener	gic	rece	ptor	: 0	ncog	ene						
<40 cgg	0> agco	15 cag	attt	cagg	at t	.gcct	tcca	g ga	gctt	ctgt	gcc	tgcg	cag	gtct	tctttg	60)
aag	gcct	atg	gcaa	tggc	ta c	tcca	gcaa	c gg	caac	acag	999	agca	gag	tgga	tatcac	120)
gtg	gaad	agg	agaa	agaa	aa t	aaac	tgct	g tg	tgaa	gacc	tcc	cagg	cac	ggaa	gacttt	180)
gtg	ggc	catc	aagg	tact	gt g	ıccta	ıgcga	t aa	catt	gatt	cac	aagg	gag	gaat	tgtagt	240)
aca	aatg	gact	cact	.gcta	ta a	ı										263	Ĺ
.01	0.	16															
<21		16 86															
<21 <21		PRT															
< 2 1	.42	Home		ni en s													

60

```
<220>
<221> b2 adrenergic receptor
<222> (1)..(86)
<223>
<400> 16
Arg Ser Pro Asp Phe Arg Ile Ala Phe Gln Glu Leu Leu Cys Leu Arg
                5
Arg Ser Ser Leu Lys Ala Tyr Gly Asn Gly Tyr Ser Ser Asn Gly Asn
            20
Thr Gly Glu Gln Ser Gly Tyr His Val Glu Gln Glu Lys Glu Asn Lys
Leu Leu Cys Glu Asp Leu Pro Gly Thr Glu Asp Phe Val Gly His Gln
    50
Gly Thr Val Pro Ser Asp Asn Ile Asp Ser Gln Gly Arg Asn Cys Ser
                                       75
65
Thr Asn Asp Ser Leu Leu
<210> 17
<211> 423
<212> DNA
<213> Homo sapiens
<220>
<221> gene
<222> (1)..(423)
<223> Human b2 adrenergic receptor : Oncogene
<400> 17
gtctttcagg aggccaaaag gcagctccag aagattgaca aatctgaggg ccgcttccat
```

gtccagaacc	ttagccaggt	ggagcaggat	gggcggacgg	ggcatggact	ccgcagatct	120
tccaagttct	gcttgaagga	gcacaaagcc	ctcaagggat	cccggagccc	agatttcagg	180
attgccttcc	aggagcttct	gtgcctgcgc	aggtcttctt	tgaaggccta	tggcaatggc	240
tactccagca	acggcaacac	aggggagcag	agtggatatc	acgtggaaca	ggagaaagaa	300
aataaactgc	tgtgtgaaga	cctcccaggc	acggaagact	ttgtgggcca	tcaaggtact	360
gtgcctagcg	ataacattga	ttcacaaggg	aggaattgta	gtacaaatga	ctcactgcta	420
taa						423

<210> 18

<211> 140

<212> PRT

<213> Homo sapiens

<220>

<221> b2 adrenergic receptor

<222> (1)..(140)

<223>

<400> 18

Val Phe Gln Glu Ala Lys Arg Gln Leu Gln Lys Ile Asp Lys Ser Glu 1 5 10 15

Gly Arg Phe His Val Gln Asn Leu Ser Gln Val Glu Gln Asp Gly Arg 20 25 30

Thr Gly His Gly Leu Arg Arg Ser Ser Lys Phe Cys Leu Lys Glu His 35 40 45

Lys Ala Leu Lys Gly Ser Arg Ser Pro Asp Phe Arg Ile Ala Phe Gln 50 55 60

Glu Leu Leu Cys Leu Arg Arg Ser Ser Leu Lys Ala Tyr Gly Asn Gly 65 70 75 80

Tyr Ser Ser Asn Gly Asn Thr Gly Glu Gln Ser Gly Tyr His Val Glu 85 90 95 Gln Glu Lys Glu Asn Lys Leu Leu Cys Glu Asp Leu Pro Gly Thr Glu 100 105 110

Asp Phe Val Gly His Gln Gly Thr Val Pro Ser Asp Asn Ile Asp Ser 115 120 125

Gln Gly Arg Asn Cys Ser Thr Asn Asp Ser Leu Leu 130 135 140

<210> 19

<211> 579

<212> DNA

<213> Homo sapiens

<220>

<221> gene

<222> (1)..(579)

<223> Human b2 adrenergic receptor : Oncogene

<400> 19 gtctttcagg aggccaaaag gcagctccag aagattgaca aatctgaggg ccgcttccat 60 gtccagaacc ttagccaggt ggagcaggat gggcggacgg ggcatggact ccgcagatct 120 tccaagttct gcttgaagga gcacaaagcc ctcaagacgt taggcatcat catgggcact 180 ttcaccctct gctggctgcc cttcttcatc gttaacattg tgcatgtgat ccaggataac 240 ctcatccgta aggaagttta catcctccta aattggatag gctatgtcaa ttctggtttc 300 aatcccctta tctactgccg gagcccagat ttcaggattg ccttccagga gcttctgtgc 360 ctgcgcaggt cttctttgaa ggcctatggc aatggctact ccagcaacgg caacacaggg 420 gagcagagtg gatatcacgt ggaacaggag aaagaaaata aactgctgtg tgaagacctc 480 ccaggcacgg aagactttgt gggccatcaa ggtactgtgc ctagcgataa cattgattca 540 579 caagggagga attgtagtac aaatgactca ctgctataa

<210> 20

<211> 192

<212> PRT

<213> Homo sapiens <220> <221> b2 adrenergic receptor <222> (1)..(192) <223> <400> 20 Val Phe Gln Glu Ala Lys Arg Gln Leu Gln Lys Ile Asp Lys Ser Glu 5 Gly Arg Phe His Val Gln Asn Leu Ser Gln Val Glu Gln Asp Gly Arg Thr Gly His Gly Leu Arg Arg Ser Ser Lys Phe Cys Leu Lys Glu His Lys Ala Leu Lys Thr Leu Gly Ile Ile Met Gly Thr Phe Thr Leu Cys 50 55 Trp Leu Pro Phe Phe Ile Val Asn Ile Val His Val Ile Gln Asp Asn 70 75 Leu Ile Arg Lys Glu Val Tyr Ile Leu Leu Asn Trp Ile Gly Tyr Val Asn Ser Gly Phe Asn Pro Leu Ile Tyr Cys Arg Ser Pro Asp Phe Arg 105 Ile Ala Phe Gln Glu Leu Leu Cys Leu Arg Arg Ser Ser Leu Lys Ala Tyr Gly Asn Gly Tyr Ser Ser Asn Gly Asn Thr Gly Glu Gln Ser Gly 130 135 140

Asn Ile Asp Ser Gln Gly Arg Asn Cys Ser Thr Asn Asp Ser Leu Leu

Tyr His Val Glu Gln Glu Lys Glu Asn Lys Leu Leu Cys Glu Asp Leu

Pro Gly Thr Glu Asp Phe Val Gly His Gln Gly Thr Val Pro Ser Asp

150

165

145

170

180 185 190

<210> 21

<211> 1794

<212> DNA

<213> Homo sapiens

<220>

<221> gene

<222> (1)..(1794)

<223> hSHP2 FL

60 atgacatcgc ggagatggtt tcacccaaat atcactggtg tggaggcaga aaacctactg ttgacaagag gagttaatgg cagttttttg gcaaggccta gtaaaagtaa ccctggagac 120 ttcacacttt ccgttagaag aaatggagct gtcacccaca tcaagattca gaacactggt 180 gattactatg acctgtatgg aggggagaaa tttgccactt tggctgagtt ggtccagtat 240 tacatggaac atcacgggca attaaaagag aagaatggag atgtcattga gcttaaatat 300 cetetgaact gtgcagatee tacetetgaa aggtggttte atggaeatet etetgggaaa 360 gaagcagaga aattattaac tgaaaaagga aaacatggta gttttcttgt acgagagagc 420 480 cagagecace etggagattt tgttetttet gtgegeactg gtgatgaeaa aggggagage aatgacggca agtctaaagt gacccatgtt atgattcgct gtcaggaact gaaatacgac 540 gttggtggag gagaacggtt tgattctttg acagatcttg tggaacatta taagaagaat 600 cctatggtgg aaacattggg tacagtacta caactcaagc agccccttaa cacgactcgt 660 ataaatgctg ctgaaataga aagcagagtt cgagaactaa gcaaattagc tgagaccaca 720 gataaagtca aacaaggctt ttgggaagaa tttgagacac tacaacaaca ggagtgcaaa 780 cttctctaca gccgaaaaga gggtcaaagg caagaaaaca aaaacaaaaa tagatataaa 840 aacatootgo cotttgatoa taccagggtt gtoctacacg atggtgatoo caatgagoot 900 gtttcagatt acatcaatgc aaatatcatc atgcctgaat ttgaaaccaa gtgcaacaat 960 tcaaagccca aaaagagtta cattgccaca caaggctgcc tgcaaaacac ggtgaatgac 1020 ttttggcgga tggtgttcca agaaaactcc cgagtgattg tcatgacaac gaaagaagtg 1080 gagagaggaa agagtaaatg tgtcaaatac tggcctgatg agtatgctct aaaagaatat 1140

ggcgtcatgc	gtgttaggaa	cgtcaaagaa	agcgccgctc	atgactatac	gctaagagaa	1200
cttaaacttt	caaaggttgg	acaagctcta	ctccagggga	atacggagag	aacggtctgg	1260
caataccact	ttcggacctg	gccggaccac	ggcgtgccca	gcgaccctgg	gggcgtgctg	1320
gacttcctgg	aggaggtgca	ccataagcag	gagagcatca	tggatgcagg	gccggtcgtg	1380
gtgcactgca	gtgctggaat	tggccggaca	gggacgttca	ttgtgattga	tattcttatt	1440
gacatcatca	gagagaaagg	tgttgactgc	gatattgacg	ttcccaaaac	catccagatg	1500
gtgcggtctc	agaggtcagg	gatggtccag	acagaagcac	agtaccgatt	tatctatatg	1560
gcggtccagc	attatattga	aacactacag	cgcaggattg	aagaagagca	gaaaagcaag	1620
aggaaagggc	acgaatatac	aaatattaag	tattctctag	cggaccagac	gagtggagat	1680
cagagccctc	tcccgccttg	tactccaacg	ccaccctgtg	cagaaatgag	agaagacagt	1740
gctagagtct	atgaaaacgt	gggcctgatg	caacagcaga	aaagtttcag	atga	1794

<210> 22

<211> 597

<212> PRT

<213> Homo sapiens

<220>

<221> hSHP2_FL

<222> (1)..(597)

<223>

<400> 22

Met Thr Ser Arg Arg Trp Phe His Pro Asn Ile Thr Gly Val Glu Ala 1 5 10 15

Glu Asn Leu Leu Thr Arg Gly Val Asn Gly Ser Phe Leu Ala Arg 20 25 30

Pro Ser Lys Ser Asn Pro Gly Asp Phe Thr Leu Ser Val Arg Arg Asn 35 40 45

Gly Ala Val Thr His Ile Lys Ile Gln Asn Thr Gly Asp Tyr Tyr Asp 50 55 60

Leu Tyr Gly Glu Lys Phe Ala Thr Leu Ala Glu Leu Val Gln Tyr 65 70 75 80

Tyr Met Glu His His Gly Gln Leu Lys Glu Lys Asn Gly Asp Val Ile 85 90 95

Glu Leu Lys Tyr Pro Leu Asn Cys Ala Asp Pro Thr Ser Glu Arg Trp 100 105 110

Phe His Gly His Leu Ser Gly Lys Glu Ala Glu Lys Leu Leu Thr Glu 115 120 125

Lys Gly Lys His Gly Ser Phe Leu Val Arg Glu Ser Gln Ser His Pro 130 135 140

Gly Asp Phe Val Leu Ser Val Arg Thr Gly Asp Asp Lys Gly Glu Ser 145 150 155 160

Asn Asp Gly Lys Ser Lys Val Thr His Val Met Ile Arg Cys Gln Glu 165 170 175

Leu Lys Tyr Asp Val Gly Gly Glu Arg Phe Asp Ser Leu Thr Asp 180 185 190

Leu Val Glu His Tyr Lys Lys Asn Pro Met Val Glu Thr Leu Gly Thr 195 200 205

Val Leu Gln Leu Lys Gln Pro Leu Asn Thr Thr Arg Ile Asn Ala Ala 210 215 220

Glu Ile Glu Ser Arg Val Arg Glu Leu Ser Lys Leu Ala Glu Thr Thr 225 230 235 240

Asp Lys Val Lys Gln Gly Phe Trp Glu Glu Phe Glu Thr Leu Gln Gln 245 250 255

Gln Glu Cys Lys Leu Leu Tyr Ser Arg Lys Glu Gly Gln Arg Gln Glu 260 265 270

Asn Lys Asn Lys Asn Arg Tyr Lys Asn Ile Leu Pro Phe Asp His Thr 275 280 285

Arg Val Val Leu His Asp Gly Asp Pro Asn Glu Pro Val Ser Asp Tyr 290 295 300

Ile Asn Ala Asn Ile Ile Met Pro Glu Phe Glu Thr Lys Cys Asn Asn 305 310 315 320

Ser Lys Pro Lys Lys Ser Tyr Ile Ala Thr Gln Gly Cys Leu Gln Asn 325 330 335

Thr Val Asn Asp Phe Trp Arg Met Val Phe Gln Glu Asn Ser Arg Val 340 345 350

Ile Val Met Thr Thr Lys Glu Val Glu Arg Gly Lys Ser Lys Cys Val 355 360 365

Lys Tyr Trp Pro Asp Glu Tyr Ala Leu Lys Glu Tyr Gly Val Met Arg 370 375 380

Val Arg Asn Val Lys Glu Ser Ala Ala His Asp Tyr Thr Leu Arg Glu 385 390 395 400

Leu Lys Leu Ser Lys Val Gly Gln Ala Leu Leu Gln Gly Asn Thr Glu 405 410 415

Arg Thr Val Trp Gln Tyr His Phe Arg Thr Trp Pro Asp His Gly Val 420 425 430

Pro Ser Asp Pro Gly Gly Val Leu Asp Phe Leu Glu Glu Val His His
435
440
445

Lys Gln Glu Ser Ile Met Asp Ala Gly Pro Val Val His Cys Ser 450 455 460

Ala Gly Ile Gly Arg Thr Gly Thr Phe Ile Val Ile Asp Ile Leu Ile 465 470 475 480

Asp Ile Ile Arg Glu Lys Gly Val Asp Cys Asp Ile Asp Val Pro Lys 485 490 495

Thr Ile Gln Met Val Arg Ser Gln Arg Ser Gly Met Val Gln Thr Glu 500 505 510

Ala Gln Tyr Arg Phe Ile Tyr Met Ala Val Gln His Tyr Ile Glu Thr 515 520 525

Leu Gln Arg Arg Ile Glu Glu Glu Gln Lys Ser Lys Arg Lys Gly His 530 535 540

Glu Tyr Thr Asn Ile Lys Tyr Ser Leu Ala Asp Gln Thr Ser Gly Asp

Gln Ser Pro Leu Pro Pro Cys Thr Pro Thr Pro Pro Cys Ala Glu Met 565 570 575	
Arg Glu Asp Ser Ala Arg Val Tyr Glu Asn Val Gly Leu Met Gln Gln 580 585 590	
Gln Lys Ser Phe Arg 595	
<210> 23	
<211> 396	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> gene	
<222> (1)(396)	
<223> Human OBRGRP	
<400> 23 atggcgggcg ttaaagctct cgtggcatta tccttcagtg gggctattgg actgactttt (50
cttatgctgg gatgtgcctt agaggattat ggcgtttact ggcccttatt cgtcctgatt 12	50
ttccacgcca tctcccccat cccccatttc attgccaaaa gagtcaccta tgactcagat 18	30
gcaaccagta gtgcctgtcg ggaactggca tatttcttca ctactggaat tgttgtttct 24	40
geetttggat tteetgttat tettgetegt gtggetgtga teaaatgggg ageetgegge 30	00
cttgtgttgg caggcaatgc agtcattttc cttacaattc aagggttttt ccttatattt 36	50
ggaagaggag atgattttag ctgggagcag tggtag 39	96
<210> 24	
<211> 131	
<212> PRT	
<213> Homo sapiens	

<220> <221> OBRGRP <222> (1)..(131) <223> <400> 24 Met Ala Gly Val Lys Ala Leu Val Ala Leu Ser Phe Ser Gly Ala Ile 5 Gly Leu Thr Phe Leu Met Leu Gly Cys Ala Leu Glu Asp Tyr Gly Val 25 20 Tyr Trp Pro Leu Phe Val Leu Ile Phe His Ala Ile Ser Pro Ile Pro 35 His Phe Ile Ala Lys Arg Val Thr Tyr Asp Ser Asp Ala Thr Ser Ser 55 Ala Cys Arg Glu Leu Ala Tyr Phe Phe Thr Thr Gly Ile Val Val Ser Ala Phe Gly Phe Pro Val Ile Leu Ala Arg Val Ala Val Ile Lys Trp 90 Gly Ala Cys Gly Leu Val Leu Ala Gly Asn Ala Val Ile Phe Leu Thr 105 100 Ile Gln Gly Phe Phe Leu Ile Phe Gly Arg Gly Asp Asp Phe Ser Trp 120 115 Glu Gln Trp 130 <210> 25 <211> 114

<220>

<212> DNA

<213> Homo sapiens

```
<221> gene
<222> (1)..(114)
<223> Human OBRGRP
<400> 25
attgccaaaa gagtcaccta tgactcagat gcaaccagta gtgcctgtcg ggaactggca
                                                                    60
tatggatccc ttatatttgg aagaggagat gattttagct gggagcagtg gtag
<210> 26
<211> 37
<212> PRT
<213> Homo sapiens
<220>
<221> OBRGRP
<222> (1)..(37)
<223>
<400> 26
Ile Ala Lys Arg Val Thr Tyr Asp Ser Asp Ala Thr Ser Ser Ala Cys
Arg Glu Leu Ala Tyr Gly Ser Leu Ile Phe Gly Arg Gly Asp Asp Phe
Ser Trp Glu Gln Trp
        35
<210> 27
<211> 87
<212> DNA
<213> Homo sapiens
```

<220>

```
<221> gene
<222> (1)..(87)
<223> Human Melatonin la receptor
<400> 27
ggcatcgcca tcaaccgcta ctgctacatc tgccacagtc tcaagtacga caaactgtac
                                                                     60
                                                                      87
agcagcaaga actccctctg ctactag
<210> 28
<211> 28
<212> PRT
<213> Homo sapiens
<220>
<221> Melatonin la receptor
<222> (1)..(28)
<223>
<400> 28
Gly Ile Ala Ile Asn Arg Tyr Cys Tyr Ile Cys His Ser Leu Lys Tyr
                                    10
 Asp Lys Leu Tyr Ser Ser Lys Asn Ser Leu Cys Tyr
            20
 <210> 29
 <211> 90
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> gene
 <222> (1)..(90)
```

<223> Human Melatonin la receptor

<400> ctggtt	29 ctcc aggtcagaca gagggtgaaa cctgaccgca aacccaaact gaaaccacag	60
gacttc	agga attttgtcac catgttttag	90
<210>	30	
<211>	29	
<212>	PRT	
<213>	Homo sapiens	
<220>		
	Wallaharia da manakan	
<221>	Melatonin 1a receptor	
<222>	(1)(29)	
<223>		
<400>	30	
Leu Va. 1	l Leu Gln Val Arg Gln Arg Val Lys Pro Asp Arg Lys Pro Lys 5 10 15	
Leu Ly	s Pro Gln Asp Phe Arg Asn Phe Val Thr Met Phe 20 25	
<210>	31	
<211>	171	
<212>	DNA	
<213>	Homo sapiens	
<220>		
<221>	gene	
<222>	(1)(171)	
<223>	Human Melatonin 1a receptor	
<400>	31 chac tgaaccaaaa tttcaggaag gaatacagga gaattatagt ctcgctctgt	60

```
acagccaggg tgttctttgt ggacagctct aacgacgtgg ccgatagggt taaatggaaa
                                                                    120
ccgtctccac tgatgaccaa caataatgta gtaaaggtgg actccgttta a
                                                                    171
<210> 32
<211> 56
<212> PRT
<213> Homo sapiens
<220>
<221> Melatonin la receptor
<222> (1)..(56)
<223>
<400> 32
Tyr Gly Leu Leu Asn Gln Asn Phe Arg Lys Glu Tyr Arg Arg Ile Ile
Val Ser Leu Cys Thr Ala Arg Val Phe Phe Val Asp Ser Ser Asn Asp
            20
Val Ala Asp Arg Val Lys Trp Lys Pro Ser Pro Leu Met Thr Asn Asn
        35
Asn Val Val Lys Val Asp Ser Val
    50
<210> 33
<211> 87
<212> DNA
<213> Homo sapiens
 <220>
<221> gene
<222> (1)..(87)
 <223> Human melatonin 1b receptor
```

```
<400> 33
gccatcgcca ttaaccgcta ctgctacatc tgccacagca tggcctacca ccgaatctac
                                                                      60
                                                                      87
cggcgctggc acacccctct gcactga
<210> 34
<211> 28
<212> PRT
<213> Homo sapiens
<220>
<221> melatonin 1b receptor
<222> (1)..(28)
<223>
<400> 34
Ala Ile Ala Ile Asn Arg Tyr Cys Tyr Ile Cys His Ser Met Ala Tyr
His Arg Ile Tyr Arg Arg Trp His Thr Pro Leu His
 <210> 35
 <211> 90
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> gene
 <222> (1)..(90)
 <223> Human melatonin 1b receptor
 <400> 35
 ctggtgcttc aggcccgcag gaaagccaag ccagagagca ggctgtgcct gaagcccagc
                                                                       60
```

90

<210> 36
<211> 29
<212> PRT
<213> Homo sapiens
<220>
<221> melatonin 1b receptor
<222> (1)(29)
<223>
<400> 36
Leu Val Leu Gln Ala Arg Arg Lys Ala Lys Pro Glu Ser Arg Leu Cys 1 5 10 15
Leu Lys Pro Ser Asp Leu Arg Ser Phe Leu Thr Met Phe 20 25
<210> 37
<211> 168
<212> DNA
<213> Homo sapiens
<220>
<221> gene
<222> (1)(168)
<223> Human melatonin 1b receptor
<400> 37 tatgggctct tgaaccaaaa cttccgcagg gaatacaaga ggatcctctt ggccctttgg 60
aacccacggc actgcattca agatgcttcc aagggcagcc acgcggaggg gctgcagagc 120
ccagctccac ccatcattgg tgtgcagcac caggcagatg ctctctag 168
<u> </u>

gacttgcgga gctttctaac catgttttga

```
<210> 38
<211> 55
<212> PRT
<213> Homo sapiens
<220>
<221> melatonin 1b receptor
<222> (1)..(55)
<223>
<400> 38
Tyr Gly Leu Leu Asn Gln Asn Phe Arg Arg Glu Tyr Lys Arg Ile Leu
Leu Ala Leu Trp Asn Pro Arg His Cys Ile Gln Asp Ala Ser Lys Gly
Ser His Ala Glu Gly Leu Gln Ser Pro Ala Pro Pro Ile Ile Gly Val
                            40
Gln His Gln Ala Asp Ala Leu
   50
<210> 39
<211> 120
<212> DNA
<213> Homo sapiens
<220>
<221> gene
<222> (1)..(120)
<223> Human OB-receptor short form
<400> 39
```

ggaacattat taatatcaca ccaaagaatg aaaaagctat tttgggaaga tgttccgaac

```
cccaagaatt gttcctgggc acaaggactt aattttcaga agagaacgga cattctttga
                                                                   120
 <210> 40
 <211> 39
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> OB-receptor short form
 <222> (1)..(39)
 <223>
 <400> 40
 Gly Thr Leu Leu Ile Ser His Gln Arg Met Lys Lys Leu Phe Trp Glu
 Asp Val Pro Asn Pro Lys Asn Cys Ser Trp Ala Gln Gly Leu Asn Phe
                                 25
 Gln Lys Arg Thr Asp Ile Leu
         35
 <210> 41
  <211> 402
  <212> DNA
<213> Homo sapiens
  <220>
  <221> gene
  <222> (1)..(402)
  <223> hOB-receptor long form
  <400> 41
  ggaacattat taatatcaca ccaaagaatg aaaaagctat tttgggaaga tgttccgaac
                                                                       60
```

cccaagaatt	gttcctgggc	acaaggactt	aattttcaga	agccagaaac	gtttgagcat	120
ctțtttatca	agcatacagc	atcagtgaca	tgtggtcctc	ttcttttgga	gcctgaaaca	180
atttcagaag	atatcagtgt	tgatacatca	tggaaaaata	aagatgagat	gatgccaaca	240
actgtggtct	ctctactttc	aacaacagat	cttgaaaagg	gttctgtttg	tattagtgac	300
cagttcaaca	gtgttaactt	ctctgaggct	gagggtactg	aggtaaccta	tgaggacgaa	360
agccagagac	aaccctttgt	taaatacgcc	acgctgatct	ag		402

- <210> 42
- <211> 133
- <212> PRT
- <213> Homo sapiens
- <220>
- <221> hOB-receptor long form
- <222> (1)..(133)
- <223>
- <400> 42
- Gly Thr Leu Leu Ile Ser His Gln Arg Met Lys Lys Leu Phe Trp Glu
 1 10 15
- Asp Val Pro Asn Pro Lys Asn Cys Ser Trp Ala Gln Gly Leu Asn Phe 20 25 30
- Gln Lys Pro Glu Thr Phe Glu His Leu Phe Ile Lys His Thr Ala Ser 35 40 45
- Val Thr Cys Gly Pro Leu Leu Glu Pro Glu Thr Ile Ser Glu Asp 50 55 60
- Ile Ser Val Asp Thr Ser Trp Lys Asn Lys Asp Glu Met Met Pro Thr 65 70 75 80
- Thr Val Val Ser Leu Leu Ser Thr Thr Asp Leu Glu Lys Gly Ser Val 85 90 95
- Cys Ile Ser Asp Gln Phe Asn Ser Val Asn Phe Ser Glu Ala Glu Gly
 100 105 110

Thr Glu Val Thr Tyr Glu Asp Glu Ser Gln Arg Gln Pro Phe Val Lys 115 120 125

Tyr Ala Thr Leu Ile 130

<210> 43

<211> 540

<212> DNA

<213> Homo sapiens

<220>

<221> gene

<222> (1)..(540)

<223> hOB-receptor long form

<400> 43 gccacgctga tcagcaactc taaaccaagt gaaactggtg aagaacaagg gcttataaat 60 agttcagtca ccaagtgctt ctctagcaaa aattctccat tgaaggattc tttctctaat 120 agctcatggg agatagaggc ccaggcattt tttatattat cagatcagca tcccaacata 180 atttcaccac acctcacatt ctcagaagga ttggatgaac ttttgaaatt ggagggaaat 240 ttccctgaag aaaataatga taaaaagtct atctattatt taggggtcac ctcaatcaaa 300 aagagagaga gtggtgtgct tttgactgac aagtcaaggg tatcgtgccc attcccagcc 360 ccctgtttat tcacggacat cagagttctc caggacagtt gctcacactt tgtagaaaat 420 aatatcaact taggaacttc tagtaagaag acttttgcat cttacatgcc tcaattccaa 480 acttgttcta ctcagactca taagatcatg gaaaacaaga tgtgtgacct aactgtgtaa 540

<210> 44

<211> 179

<212> PRT

<213> Homo sapiens

<220>

<221> hOB-receptor long form

<222> (1)..(179)

<223>

<400> 44

Ala Thr Leu Ile Ser Asn Ser Lys Pro Ser Glu Thr Gly Glu Glu Gln 1 5 10 15

Gly Leu Ile Asn Ser Ser Val Thr Lys Cys Phe Ser Ser Lys Asn Ser 20 25 30

Pro Leu Lys Asp Ser Phe Ser Asn Ser Ser Trp Glu Ile Glu Ala Gln 35 40 45

Ala Phe Phe Ile Leu Ser Asp Gln His Pro Asn Ile Ile Ser Pro His 50 55 60

Leu Thr Phe Ser Glu Gly Leu Asp Glu Leu Leu Lys Leu Glu Gly Asn 65 70 75 80

Phe Pro Glu Glu Asn Asn Asp Lys Lys Ser Ile Tyr Tyr Leu Gly Val 85 90 95

Thr Ser Ile Lys Lys Arg Glu Ser Gly Val Leu Leu Thr Asp Lys Ser 100 105 110

Arg Val Ser Cys Pro Phe Pro Ala Pro Cys Leu Phe Thr Asp Ile Arg

Val Leu Gln Asp Ser Cys Ser His Phe Val Glu Asn Asn Ile Asn Leu 130 135 140

Gly Thr Ser Ser Lys Lys Thr Phe Ala Ser Tyr Met Pro Gln Phe Gln 145 150 155 160

Thr Cys Ser Thr Gln Thr His Lys Ile Met Glu Asn Lys Met Cys Asp 165 170 175

Leu Thr Val

<210> 45

<211> 927

<212> DNA

<213> Homo sapiens

<220>

<221> gene

<222> (1)..(927)

<223> hOB-receptor long form

<400> 45 ggaacattat taatatcaca ccaaagaatg aaaaagctat tttgggaaga tgttccgaac 60 cccaagaatt gttcctgggc acaaggactt aattttcaga agccagaaac gtttgagcat 120 180 ctttttatca agcatacagc atcagtgaca tgtggtcctc ttcttttgga gcctgaaaca atttcagaag atatcagtgt tgatacatca tggaaaaata aagatgagat gatgccaaca 240 actgtggtct ctctactttc aacaacagat cttgaaaagg gttctgtttg tattagtgac 300 cagttcaaca gtgttaactt ctctgaggct gagggtactg aggtaaccta tgaggacgaa 360 agccagagac aaccetttgt taaatacgcc acgetgatca gcaactetaa accaagtgaa 420 actggtgaag aacaaggget tataaatagt teagteacea agtgettete tageaaaaat 480 tctccattga aggattcttt ctctaatagc tcatgggaga tagaggccca ggcatttttt 540 atattatcag atcagcatcc caacataatt tcaccacacc tcacattctc agaaggattg 600 gatgaacttt tgaaattgga gggaaatttc cctgaagaaa ataatgataa aaagtctatc 660 tattatttag gggtcacctc aatcaaaaag agagagagtg gtgtgctttt gactgacaag 720 tcaagggtat cgtgcccatt cccagccccc tgtttattca cggacatcag agttctccag 780 gacagttgct cacactttgt agaaaataat atcaacttag gaacttctag taagaagact 840 tttgcatctt acatgcctca attccaaact tgttctactc agactcataa gatcatggaa 900 927 aacaagatgt gtgacctaac tgtgtaa

<210> 46

<211> 308

<212> PRT

<213> Homo sapiens

<220>

<221> hOB-receptor long form

<222> (1)..(308)

<223>

<400> 46

Gly Thr Leu Leu Ile Ser His Gln Arg Met Lys Lys Leu Phe Trp Glu
1 5 10 15

Asp Val Pro Asn Pro Lys Asn Cys Ser Trp Ala Gln Gly Leu Asn Phe 20 25 30

Gln Lys Pro Glu Thr Phe Glu His Leu Phe Ile Lys His Thr Ala Ser 35 40 45

Val Thr Cys Gly Pro Leu Leu Glu Pro Glu Thr Ile Ser Glu Asp 50 55 60

Ile Ser Val Asp Thr Ser Trp Lys Asn Lys Asp Glu Met Met Pro Thr 65 70 75 80

Thr Val Val Ser Leu Leu Ser Thr Thr Asp Leu Glu Lys Gly Ser Val 85 90 95

Cys Ile Ser Asp Gln Phe Asn Ser Val Asn Phe Ser Glu Ala Glu Gly
100 105 110

Thr Glu Val Thr Tyr Glu Asp Glu Ser Gln Arg Gln Pro Phe Val Lys 115 120 125

Tyr Ala Thr Leu Ile Ser Asn Ser Lys Pro Ser Glu Thr Gly Glu Glu 130 135 140

Gln Gly Leu Ile Asn Ser Ser Val Thr Lys Cys Phe Ser Ser Lys Asn 145 150 155 160

Ser Pro Leu Lys Asp Ser Phe Ser Asn Ser Ser Trp Glu Ile Glu Ala 165 170 175

Gln Ala Phe Phe Ile Leu Ser Asp Gln His Pro Asn Ile Ile Ser Pro

		180					185					190			
His Leu	1 Thr 195	Phe	Ser	Glu	Gly	Leu 200	Asp	Glu	Leu	Leu	Lys 205	Leu	Glu	Gly	
Asn Phe		Glu	Glu	Asn	Asn 215	Asp	Lys	Lys	Ser	Ile 220	Tyr	Tyr	Leu	Gly	
Val Thi 225	s Ser	Ile	Lys	Lys 230	Arg	Glu	Ser	Gly	Val 235	Leu	Leu	Thr	Asp	Lys 240	
Ser Arg	g Val	Ser	Cys 245	Pro	Phe	Pro	Ala	Pro 250	Cys	Leu	Phe	Thr	Asp 255	Ile	
Arg Va	l Leu	Gln 260	Asp	Ser	Cys	Ser	His 265	Phe	Val	Glu	Asn	Asn 270	Ile	Asn	
Leu Gly	y Thr 275		Ser	Lys	Lys	Thr 280	Phe	Ala	Ser	Tyr	Met 285	Pro	Gln	Phe	
Gln Th		Ser	Thr	Gln	Thr 295	His	Lys	Ile	Met	Glu 300	Asn	Lys	Met	Cys	
Asp Let	u Thr	Val													
<210>	47														
<211>	2070														
<212>	DNA														
<213>	Homo	sap	iens												
<220>															
<221>	gene	:													
<222>	(1).	. (20	70)												
<223>	Huma	ın AD	BR k	inas	e 1										
<400> atggcg		tgga	ıggcg	gt g	ctgg	ccga	c gt	gagc	tacc	tga	tggc	cat	ggag	aagagc	60
aaggcc	acgc	cggc	cgcg	cg c	gcca	gcaa	g aa	gata	ctgc	tgc	ccga	gcc	cagc	atccgc	120

agtgtcatgc agaagtacct ggaggaccgg ggcgaggtga cctttgagaa gatcttttcc 180

cagaagctgg	ggtacctgct	cttccgagac	ttctgcctga	accacctgga	ggaggccagg	240
cccttggtgg	aattctatga	ggagatcaag	aagtacgaga	agctggagac	ggaggaggag	300
cgtgtggccc	gcagccggga	gatcttcgac	tcatacatca	tgaaggagct	gctggcctgc	360
tcgcatccct	tctcgaagag	tgccactgag	catgtccaag	gccacctggg	gaagaagcag	420
gtgcctccgg	atctcttcca	gccatacatc	gaagagattt	gtcaaaacct	ccgaggggac	480
gtgttccaga	aattcattga	gagcgataag	ttcacacggt	tttgccagtg	gaagaatgtg	540
gagctcaaca	tccacctgac	catgaatgac	ttcagcgtgc	atcgcatcat	tgggcgcggg	600
ggctttggcg	aggtctatgg	gtgccggaag	gctgacacag	gcaagatgta	cgccatgaag	660
tgcctggaca	aaaagcgcat	caagatgaag	cagggggaga	ccctggccct	gaacgagcgc	720
atcatgctct	cgctcgtcag	cactggggac	tgcccattca	ttgtctgcat	gtcatacgcg	780
ttccacacgc	cagacaagct	cagcttcatc	ctggacctca	tgaacggtgg	ggacctgcac	840
taccacctct	cccagcacgg	ggtcttctca	gaggctgaca	tgcgcttcta	tgcggccgag	900
atcatcctgg	gcctggagca	catgcacaac	cgcttcgtgg	tctaccggga	cctgaagcca	960
gccaacatcc	ttctggacga	gcatggccac	gtgcggatct	cggacctggg	cctggcctgt	1020
gacttctcca	agaagaagcc	ccatgccagc	gtgggcaccc	acgggtacat	ggctccggag	1080
gtcctgcaga	agggcgtggc	ctacgacagc	agtgccgact	ggttctctct	ggggtgcatg	1140
ctcttcaagt	tgctgcgggg	gcacagcccc	ttccggcagc	acaagaccaa	agacaagcat	1200
gagatcgacc	gcatgacgct	gacgatggcc	gtggagctgc	ccgactcctt	ctcccctgaa	1260
ctacgctccc	tgctggaggg	gttgctgcag	agggatgtca	accggagatt	gggctgcctg	1320
ggccgagggg	ctcaggaggt	gaaagagagc	ccctttttcc	gctccctgga	ctggcagatg	1380
gtcttcttgc	agaagtaccc	tececegetg	atccccccac	gaggggaggt	gaacgcggcc	1440
gacgccttcg	acattggctc	cttcgatgag	gaggacacaa	aaggaatcaa	gttactggac	1500
agtgatcagg	agctctaccg	caacttcccc	ctcaccatct	cggagcggtg	gcagcaggag	1560
gtggcagaga	ctgtcttcga	caccatcaac	gctgagacag	accggctgga	ggctcgcaag	1620
aaagccaaga	acaagcagct	gggccatgag	gaagactacg	ccctgggcaa	ggactgcatc	1680
atgcatggct	acatgtccaa	gatgggcaac	cccttcctga	cccagtggca	gcggcggtac	1740
ttctacctgt	tececaaceg	cctcgagtgg	cggggcgagg	gcgaggcccc	gcagagcctg	1800
ctgaccatgg	g aggagatcca	gtcggtggag	gagacgcaga	tcaaggagcg	caagtgcctg	1860
ctcctcaaga	a tccgcggtgg	gaaacagttc	attttgcagt	gcgatagcga	ccctgagctg	1920
gtgcagtgga	a agaaggagct	gegegaegee	taccgcgagg	cccagcagct	ggtgcagcgg	1980

gtgcccaaga tgaagaacaa gccgcgctcg cccgtggtgg agctgagcaa ggtgccgctg 2040 gtccagcgcg gcagtgccaa cggcctctga 2070

<210> 48

<211> 689

<212> PRT

<213> Homo sapiens

<220>

<221> ADBR kinase 1

<222> (1)..(689)

<223>

<400> 48

Met Ala Asp Leu Glu Ala Val Leu Ala Asp Val Ser Tyr Leu Met Ala 1 5 10 15

Met Glu Lys Ser Lys Ala Thr Pro Ala Ala Arg Ala Ser Lys Lys Ile 20 25 30

Leu Leu Pro Glu Pro Ser Ile Arg Ser Val Met Gln Lys Tyr Leu Glu 35 40 45

Asp Arg Gly Glu Val Thr Phe Glu Lys Ile Phe Ser Gln Lys Leu Gly 50 55 60

Tyr Leu Leu Phe Arg Asp Phe Cys Leu Asn His Leu Glu Glu Ala Arg 65 70 75 80

Pro Leu Val Glu Phe Tyr Glu Glu Ile Lys Lys Tyr Glu Lys Leu Glu 85 90 95

Thr Glu Glu Glu Arg Val Ala Arg Ser Arg Glu Ile Phe Asp Ser Tyr 100 105 110

Ile Met Lys Glu Leu Leu Ala Cys Ser His Pro Phe Ser Lys Ser Ala 115 120 125

Thr Glu His Val Gln Gly His Leu Gly Lys Lys Gln Val Pro Pro Asp 130 135 140

- Leu Phe Gln Pro Tyr Ile Glu Glu Ile Cys Gln Asn Leu Arg Gly Asp 145 150 155 160
- Val Phe Gln Lys Phe Ile Glu Ser Asp Lys Phe Thr Arg Phe Cys Gln 165 170 175
- Trp Lys Asn Val Glu Leu Asn Ile His Leu Thr Met Asn Asp Phe Ser 180 185 190
- Val His Arg Ile Ile Gly Arg Gly Gly Phe Gly Glu Val Tyr Gly Cys 195 200 205
- Arg Lys Ala Asp Thr Gly Lys Met Tyr Ala Met Lys Cys Leu Asp Lys 210 215 220
- Lys Arg Ile Lys Met Lys Gln Gly Glu Thr Leu Ala Leu Asn Glu Arg 225 230 235 240
- Ile Met Leu Ser Leu Val Ser Thr Gly Asp Cys Pro Phe Ile Val Cys 245 250 255
- Met Ser Tyr Ala Phe His Thr Pro Asp Lys Leu Ser Phe Ile Leu Asp 260 265 270
- Leu Met Asn Gly Gly Asp Leu His Tyr His Leu Ser Gln His Gly Val 275 280 285
- Phe Ser Glu Ala Asp Met Arg Phe Tyr Ala Ala Glu Ile Ile Leu Gly 290 295 300
- Leu Glu His Met His Asn Arg Phe Val Val Tyr Arg Asp Leu Lys Pro 305 310 315 320
- Ala Asn Ile Leu Leu Asp Glu His Gly His Val Arg Ile Ser Asp Leu 325 330 335
- Gly Leu Ala Cys Asp Phe Ser Lys Lys Lys Pro His Ala Ser Val Gly 340 345 350
- Thr His Gly Tyr Met Ala Pro Glu Val Leu Gln Lys Gly Val Ala Tyr 355 360 365
- Asp Ser Ser Ala Asp Trp Phe Ser Leu Gly Cys Met Leu Phe Lys Leu 370 375 380

Leu Arg Gly His Ser Pro Phe Arg Gln His Lys Thr Lys Asp Lys His 390 Glu Ile Asp Arg Met Thr Leu Thr Met Ala Val Glu Leu Pro Asp Ser 410 405 Phe Ser Pro Glu Leu Arg Ser Leu Leu Glu Gly Leu Leu Gln Arg Asp 425 Val Asn Arg Arg Leu Gly Cys Leu Gly Arg Gly Ala Gln Glu Val Lys 440 Glu Ser Pro Phe Phe Arg Ser Leu Asp Trp Gln Met Val Phe Leu Gln 455 Lys Tyr Pro Pro Pro Leu Ile Pro Pro Arg Gly Glu Val Asn Ala Ala Asp Ala Phe Asp Ile Gly Ser Phe Asp Glu Glu Asp Thr Lys Gly Ile 490 Lys Leu Leu Asp Ser Asp Gln Glu Leu Tyr Arg Asn Phe Pro Leu Thr 505 Ile Ser Glu Arg Trp Gln Gln Glu Val Ala Glu Thr Val Phe Asp Thr 520 Ile Asn Ala Glu Thr Asp Arg Leu Glu Ala Arg Lys Lys Ala Lys Asn Lys Gln Leu Gly His Glu Glu Asp Tyr Ala Leu Gly Lys Asp Cys Ile Met His Gly Tyr Met Ser Lys Met Gly Asn Pro Phe Leu Thr Gln Trp 565 570 Gln Arg Arg Tyr Phe Tyr Leu Phe Pro Asn Arg Leu Glu Trp Arg Gly 585 590 580 Glu Gly Glu Ala Pro Gln Ser Leu Leu Thr Met Glu Glu Ile Gln Ser 595 600 Val Glu Glu Thr Gln Ile Lys Glu Arg Lys Cys Leu Leu Lys Ile 610 615

Arg Gly Gly Lys Gln Phe Ile Leu Gln Cys Asp Ser Asp Pro Glu Leu 625 630 635 640

Val Gln Trp Lys Lys Glu Leu Arg Asp Ala Tyr Arg Glu Ala Gln Gln 645 650 655

Leu Val Gln Arg Val Pro Lys Met Lys Asn Lys Pro Arg Ser Pro Val 660 665 670

Val Glu Leu Ser Lys Val Pro Leu Val Gln Arg Gly Ser Ala Asn Gly 675 680 685

Leu

<210> 49

<211> 2067

<212> DNA

<213> Homo sapiens

<220>

<221> gene

<222> (1)..(2067)

<223> Rat ADBR kinase 2

<400> 49 atggcggacc tggaggccgt gctggccgat gtcagttacc tgatggccat ggagaagagc 60 aaggcgaccc cggccgcccg cgccagcaag aggatcgtcc tgccggagcc cagtatccgg 120 agtgtgatgc agaagtacct tgcagagaga aatgaaataa cctttgacaa gattttcaat 180 cagaaaattg gtttcttgct atttaaagat ttttgtttga atgaaattaa tgaagctgta 240 cctcaggtga agttttatga agagataaag gaatatgaaa aacttgataa tgaggaagac 300 cgcctttgca gaagtcgaca aatttatgat gcctacatca tgaaggaact tctttcctgt 360 tcacatectt tetcaaagca agetgtagaa caegtacaaa gteatttate caagaaacaa 420 qtqacatcaa ctctttttca qccatacata qaaqaaattt qtgaaagcct tcqaqqtqac 480 atttttcaaa aatttatgga aagtgacaag ttcactagat tttgtcagtg gaaaaacgtt 540 gaattaaata tooatttgac catgaatgag ttcagtgtgc ataggattat tggacgagga 600

ggattcgggg	aagtttatgg	ttgcaggaaa	gcagacactg	gaaaaatgta	tgcaatgaaa	660
tgcttagata	agaagaggat	caaaatgaaa	caaggagaaa	cattagcctt	aaatgaaaga	720
atcatgttgt	ctcttgtcag	cacaggagac	tgtcctttca	ttgtatgtat	gacctatgcc	780
ttccataccc	cagataaact	ctgcttcatc	ctggatctga	tgaacggggg	cgatttgcac	840
taccaccttt	cacaacacgg	tgtgttctct	gagaaggaga	tgcggtttta	tgccactgaa	900
atcattctgg	gtctggaaca	catgcacaat	cggtttgttg	tctacagaga	tttgaagcca	960
gcaaatattc	tcttggatga	acatggacac	gcaagaatat	cagatcttgg	tcttgcctgc	1020
gatttttcca	aaaagaagcc	tcatgcgagt	gttggcaccc	atgggtacat	ggctcccgag	1080
gtgctgcaga	aggggacggc	ctatgacagc	agtgccgact	ggttctccct	gggctgcatg	1140
cttttcaaac	ttctgagagg	tcacagccct	ttcagacaac	ataaaaccaa	agacaagcat	1200
gaaattgacc	gaatgacact	caccgtgaat	gtggaacttc	cagacacctt	ctctcctgaa	1260
ctgaagtccc	ttttggaggg	cttgcttcag	cgagacgtta	gcaagcggct	gggctgtcac	1320
ggaggcggct	cacaggaagt	aaaagagcac	agctttttca	aaggtgttga	ctggcagcat	1380
gtctacttac	aaaagtaccc	accacccttg	attcctcccc	ggggagaagt	caatgctgct	1440
gatgcctttg	atattggctc	atttgatgaa	gaggatacca	aagggattaa	gctacttgat	1500
tgcgaccaag	aactctacaa	gaacttccct	ttggtcatct	ctgaacgctg	gcagcaagaa	1560
gtaacggaaa	cagtttatga	agcagtaaat	gcagacacag	ataaaatcga	ggccaggaag	1620
agagctaaaa	ataagcaact	tggccacgaa	gaagattacg	ctctggggaa	ggactgtatt	1680
atgcacgggt	acatgctgaa	actgggaaac	ccatttctga	ctcagtggca	gcgtcgctat	1740
ttttacctct	ttccaaatag	acttgaatgg	agaggagagg	gagagtcccg	gcaaaattta	1800
ctgacaatgg	aacagattct	ctctgtggaa	gaaactcaaa	ttaaagacaa	aaaatgcatt	1860
ttgttcagaa	taaaaggagg	gaaacaattt	gtcttgcaat	gtgagagtga	tccagagttt	1920
gtgcagtgga	agaaagagtt	gaacgaaacc	ttcaaggagg	cccagcggct	attgcgtcgt	1980
gccccgaagt	tcctcaacaa	acctcggtca	ggtactgtgg	agctcccaaa	gccatccctc	2040
tgtcacagaa	atagcagcgg	cctctga				2067

<210> 50

<211> 688

<212> PRT

<213> Homo sapiens

<220>

<221> ADBR kinase 2

<222> (1)..(688)

<223>

<400> 50

Met Ala Asp Leu Glu Ala Val Leu Ala Asp Val Ser Tyr Leu Met Ala 1 5 10 15

Met Glu Lys Ser Lys Ala Thr Pro Ala Ala Arg Ala Ser Lys Arg Ile 20 25 30

Val Leu Pro Glu Pro Ser Ile Arg Ser Val Met Gln Lys Tyr Leu Ala 35 40 45

Glu Arg Asn Glu Ile Thr Phe Asp Lys Ile Phe Asn Gln Lys Ile Gly 50 55 60

Phe Leu Leu Phe Lys Asp Phe Cys Leu Asn Glu Ile Asn Glu Ala Val 65 70 75 80

Pro Gln Val Lys Phe Tyr Glu Glu Ile Lys Glu Tyr Glu Lys Leu Asp 85 90 95

Asn Glu Glu Asp Arg Leu Cys Arg Ser Arg Gln Ile Tyr Asp Ala Tyr 100 105 110

Ile Met Lys Glu Leu Leu Ser Cys Ser His Pro Phe Ser Lys Gln Ala 115 120 125

Val Glu His Val Gln Ser His Leu Ser Lys Lys Gln Val Thr Ser Thr 130 135 140

Leu Phe Gln Pro Tyr Ile Glu Glu Ile Cys Glu Ser Leu Arg Gly Asp 145 150 155 160

Ile Phe Gln Lys Phe Met Glu Ser Asp Lys Phe Thr Arg Phe Cys Gln 165 170 175

Trp Lys Asn Val Glu Leu Asn Ile His Leu Thr Met Asn Glu Phe Ser 180 185 190

Val His Arg Ile Ile Gly Arg Gly Gly Phe Gly Glu Val Tyr Gly Cys

		195					200					205			
Arg	Lys 210	Ala	Asp	Thr	Gly	Lys 215	Met	Tyr	Ala	Met	Lys 220	Cys	Leu	Asp	Lys
Lys 225	Arg	Ile	Lys	Met	Lys 230	Gln	Gly	Glu	Thr	Leu 235	Ala	Leu	Asn	Glu	Arc 240
Ile	Met	Leu	Ser	Leu 245	Val	Ser	Thr	Gly	Asp 250	Cys	Pro	Phe	Ile	Val 255	Cys
Met	Thr	Tyr	Ala 260	Phe	His	Thr	Pro	Asp 265	Lys	Leu	Cys	Phe	Ile 270	Leu	Asp
Leu	Met	Asn 275	Gly	Gly	Asp	Leu	His 280	Tyr	His	Leu	Ser	Gln 285	His	Gly	Val
Phe	Ser 290	Glu	Lys	Glu	Met	Arg 295	Phe	Tyr	Ala	Thr	Glu 300	Ile	Ile	Leu	Gly
Leu 305	Glu	His	Met	His	Asn 310	Arg	Phe	Val	Val	Tyr 315	Arg	Asp	Leu	Lys	Pro 320
Ala	Asn	Ile	Leu	Leu 325	Asp	Glu	His	Gly	His 330	Ala	Arg	Ile	Ser	Asp 335	Leu
Gly	Leu	Ala	Cys 340	Asp	Phe	Ser	Lys	Lys 345	Lys	Pro	His	Ala	Ser 350	Val	Gly
Thr	His	Gly 355	Tyr	Met	Ala	Pro	Glu 360	Val	Leu	Gln	Lys	Gly 365	Thr	Ala	Tyr
Asp	Ser 370	Ser	Ala	Asp	Trp	Phe 375	Ser	Leu	Gly	Cys	Met 380	Leu	Phe	Lys	Leu
Leu 385	Arg	Gly	His	Ser	Pro 390	Phe	Arg	Gln	His	Lys 395	Thr	Lys	Asp	Lys	His 400
Glu	Ile	Asp	Arg	Met 405	Thr	Leu	Thr	Val	Asn 410	Val	Glu	Leu	Pro	Asp 415	Thr
Phe	Ser	Pro	Glu 420	Leu	Lys	Ser	Leu	Leu 425	Glu	Gly	Leu	Leu	Gln 430	Arg	Asp
Val	Ser	Lys 435	Arg	Leu	Gly	Cys	His 440	Gly	Gly	Gly	Ser	Gln 445	Glu	Val	Lys

Glu His Ser Phe Phe Lys Gly Val Asp Trp Gln His Val Tyr Leu Gln Lys Tyr Pro Pro Pro Leu Ile Pro Pro Arg Gly Glu Val Asn Ala Ala Asp Ala Phe Asp Ile Gly Ser Phe Asp Glu Glu Asp Thr Lys Gly Ile Lys Leu Leu Asp Cys Asp Gln Glu Leu Tyr Lys Asn Phe Pro Leu Val Ile Ser Glu Arg Trp Gln Gln Glu Val Thr Glu Thr Val Tyr Glu Ala Val Asn Ala Asp Thr Asp Lys Ile Glu Ala Arg Lys Arg Ala Lys Asn Lys Gln Leu Gly His Glu Glu Asp Tyr Ala Leu Gly Lys Asp Cys Ile Met His Gly Tyr Met Leu Lys Leu Gly Asn Pro Phe Leu Thr Gln Trp Gln Arg Arg Tyr Phe Tyr Leu Phe Pro Asn Arg Leu Glu Trp Arg Gly Glu Gly Glu Ser Arg Gln Asn Leu Leu Thr Met Glu Gln Ile Leu Ser Val Glu Glu Thr Gln Ile Lys Asp Lys Lys Cys Ile Leu Phe Arg Ile Lys Gly Gly Lys Gln Phe Val Leu Gln Cys Glu Ser Asp Pro Glu Phe Val Gln Trp Lys Lys Glu Leu Asn Glu Thr Phe Lys Glu Ala Gln Arg Leu Leu Arg Arg Ala Pro Lys Phe Leu Asn Lys Pro Arg Ser Gly Thr Val Glu Leu Pro Lys Pro Ser Leu Cys His Arg Asn Ser Ser Gly Leu

<210> 51

<211> 1359

<212> DNA

<213> Homo sapiens

<220>

<221> gene

<222> (1)..(1359)

<223> Rat beta Arrestin 1

<400> 51 atgggcgaca aagggacgcg ggtgttcaag aaggcgagcc ccaatggaaa gctcaccgtc 60 tatctgggaa agcgggactt tgtggaccac atcgacctcg tggagcccgt ggatggagtg 120 gttcttgtgg atccggagta tctcaaggag aggagagtct atgtgacgct gacctgcgcc 180 ttccgctacg gccgggagga cctggatgtc ctgggcctga cctttcgcaa ggacctgttt 240 300 gtggccaacg tgcagtcttt cccgccggcc cctgaggaca agaagcccct gacgcggctg caggagegee teateaagaa getgggegag catgeetace ettteacett tgagateeet 360 420 ccqaacctcc catqctctqt qactttgcag ccgggacctg aagatacagg gaaggcctgc ggtgtggact acgaagtgaa agccttctgt gcggagaacc tggaggagaa gatccacaag 480 cggaattetg tgcgcctggt catccggaag gttcagtatg ccccagagag gcctggcccc 540 caqcccacgg ccgagaccac caggcagttc ctcatgtcag acaagccctt gcatctggag 600 gcctccctgg acaaggagat ctactaccac ggagaaccca tcagtgtcaa cgtccatgtc 660 accaacaaca ccaacaagac ggtgaagaag atcaagatct cggtgcgcca gtatgcagac 720 atctgtctgt tcaacacagc ccagtacaag tgccctgtgg ccatggaaga ggctgatgac 780 acagtggcac ccagctctac gttctgcaag gtctacacgc tgaccccctt cctggccaac 840 900 aatcgaqaqa agcggggcct cgccctggac gggaagctca aacacgagga cacgaacctg gcctccagca ccctgttgag ggaaggagcc aaccgggaga tcctgggcat cattgtttcc 960 tacaaagtga aagtgaaget ggtggtgtet egtggeggee tgttgggaga tettgeatee 1020 agtgatgtgg ccgtggaact gcctttcacc ctaatgcacc ccaagcccaa agaggaaccc 1080 ccacaccggg aagttccaga gcacgagacg ccggtagata ccaatctcat agaacttgac 1140 accaacgatg acgacattgt gtttgaggac tttgcccgcc agagactaaa aggcatgaag 1200

gatgaca	agg a	aggaa	agag	ga g	gatg	gtac	c g g	ctct	ccgc	gga	cgcg	tga	gctc	agatct	1260
cccatgt	ctc t	act	ggtg	gt g	gtgc	ttct	t tg	gaat	tatt	gga	aggt	aag	gaat	tgccag	1320
gtgttgc	ttt c	cttai	tccg	aa a	agaa	ataa	a tt	gaat	tga						1359
<210> 5	52														
<211>	452														
<212> I	PRT														
<213> I	Omo	sapi	iens												
<220>															
<221> k	oeta	Arre	estin	n 1											
<222>	(1)	(452	2)												
<223>															
<400>	52														
Met Gly 1	Asp	Lys	Gly 5	Thr	Arg	Val	Phe	Lys 10	Lys	Ala	Ser	Pro	Asn 15	Gly	
Lys Leu	Thr	Val 20	Tyr	Leu	Gly	Lys	Arg 25	Asp	Phe	Val	Asp	His 30	Ile	Asp	
Leu Val	Glu 35	Pro	Val	Asp	Gly	Val 40	Val	Leu	Val	Asp	Pro 45	Glu	Tyr	Leu	
Lys Glu 50	Arg	Arg	Val	Tyr	Val 55	Thr	Leu	Thr	Cys	Ala 60	Phe	Arg	Tyr	Gly	
Arg Glu 65	Asp	Leu	Asp	Val 70	Leu	Gly	Leu	Thr	Phe 75	Arg	Lys	Asp	Leu	Phe 80	
Val Ala	Asn	Val	Gln 85	Ser	Phe	Pro	Pro	Ala 90	Pro	Glu	Asp	Lys	Lys 95	Pro	
Leu Thr	Arg	Leu 100	Gln	Glu	Arg	Leu	Ile 105	Lys	Lys	Leu	Gly	Glu 110	His	Ala	
Tyr Pro	Phe	Thr	Phe	Glu	Ile	Pro	Pro	Asn	Leu	Pro	Cys	Ser	Val	Thr	

- Leu Gln Pro Gly Pro Glu Asp Thr Gly Lys Ala Cys Gly Val Asp Tyr 130 135 140
- Glu Val Lys Ala Phe Cys Ala Glu Asn Leu Glu Glu Lys Ile His Lys 145 150 155 160
- Arg Asn Ser Val Arg Leu Val Ile Arg Lys Val Gln Tyr Ala Pro Glu 165 170 175
- Arg Pro Gly Pro Gln Pro Thr Ala Glu Thr Thr Arg Gln Phe Leu Met 180 185 190
- Ser Asp Lys Pro Leu His Leu Glu Ala Ser Leu Asp Lys Glu Ile Tyr 195 200 205
- Tyr His Gly Glu Pro Ile Ser Val Asn Val His Val Thr Asn Asn Thr 210 215 220
- Asn Lys Thr Val Lys Lys Ile Lys Ile Ser Val Arg Gln Tyr Ala Asp 225 230 235
- Ile Cys Leu Phe Asn Thr Ala Gln Tyr Lys Cys Pro Val Ala Met Glu 245 250 255
- Glu Ala Asp Asp Thr Val Ala Pro Ser Ser Thr Phe Cys Lys Val Tyr
- Thr Leu Thr Pro Phe Leu Ala Asn Asn Arg Glu Lys Arg Gly Leu Ala 275 280 285
- Leu Asp Gly Lys Leu Lys His Glu Asp Thr Asn Leu Ala Ser Ser Thr 290 295 300
- Leu Leu Arg Glu Gly Ala Asn Arg Glu Ile Leu Gly Ile Ile Val Ser 305 310 315 320
- Tyr Lys Val Lys Val Lys Leu Val Val Ser Arg Gly Gly Leu Leu Gly 325 330 335
- Asp Leu Ala Ser Ser Asp Val Ala Val Glu Leu Pro Phe Thr Leu Met 340 345 350
- His Pro Lys Pro Lys Glu Glu Pro Pro His Arg Glu Val Pro Glu His 355 360 365

Glu Thr Pro Val Asp Thr Asn Leu Ile Glu Leu Asp Thr Asn Asp Asp 370 375 380

Asp Ile Val Phe Glu Asp Phe Ala Arg Gln Arg Leu Lys Gly Met Lys 385 390 395 400

Asp Asp Lys Glu Glu Glu Glu Asp Gly Thr Gly Ser Pro Arg Thr Arg 405 410 415

Glu Leu Arg Ser Pro Met Ser Leu Leu Val Val Leu Leu Trp Asn 420 425 430

Tyr Trp Lys Val Arg Asn Cys Gln Val Leu Leu Ser Tyr Pro Lys Arg
435
440
445

Asn Lys Leu Asn 450

<210> 53

<211> 1233

<212> DNA

<213> Homo sapiens

<220>

<221> gene

<400> 53

<222> (1)..(1233)

<223> Rat beta Arrestin2

atgggtgaaa aacccgggac cagggtcttc aagaagtcga gccctaactg caagctcacc 60 gtgtacttgg gcaagcgtga ctttgtggat cacttggaca aagtggatcc tgtcgatggt 120 gtggtgcttg tggatcctga ctacttgaag gaccggaaag tgtttgtgac cctcacctgt 180 gccttccgct atggccgaga agacctggat gtactgggcc tgtctttccg caaagatctg 240 ttcatcgcca cctaccaggc cttcccccc atgcccaacc cacctcggcc ccccacccgc 300 ctacaggacc gactgctgaa gaagttgggc cagcatgccc acccttttt tttcacaata 360 ccccagaatt tgccttgctc cgtcacactg cagccaggac cggaggacac agggaaggcc 420

tgtggagtag actttgagat tcgagccttc tgtgccaaat ctatagaaga aaaaagccac

aaaaggaact	ccgtgcggct	tatcatcaga	aaggtacagt	ttgctcctga	gacacccggc	540
ccccagccat	cagctgaaac	cacacgccac	ttcctcatgt	ctgaccggag	gtccctgcac	600
ctagaggctt	ccctggacaa	agagctgtac	taccatgggg	aacccctcaa	tgtcaacgtc	660
cacgtcacca	acaattctgc	caagaccgtc	aagaagatca	gagtgtctgt	gagacagtat	720
gccgacattt	gcctcttcag	caccgcgcag	tacaagtgtc	ctgtggctca	gcttgaacaa	780
gatgaccagg	tgtctcccag	ttccacattc	tgcaaggtgt	acaccataac	cccgctgctc	840
agtgacaacc	gagagaagcg	tggccttgcc	cttgatgggc	aactcaagca	cgaagacacc	900
aacctggctt	ccagcaccat	tgtgaaggag	ggagccaaca	aggaggtgct	gggaatccta	960
gtatcctaca	gggtcaaggt	gaagctggtg	gtgtctcgag	gcggggatgt	ctccgtggag	1020
ctacctttcg	tcctaatgca	ccccaagccc	cacgaccaca	tcacccttcc	ccgaccccag	1080
tcagcccccc	gggaaataga	catccctgtg	gataccaacc	tcattgaatt	cgataccaac	1140
tatgccacag	acgacgacat	cgtgtttgag	gactttgcga	ggcttcggct	gaaggggatg	1200
aaggatgacg	actgtgatga	ccagttctgc	tag			1233

<210> 54

<211> 410

<212> PRT

<213> Homo sapiens

<220>

<221> beta Arrestin2

<222> (1)..(410)

<223>

<400> 54

Cys Lys Leu Thr Val Tyr Leu Gly Lys Arg Asp Phe Val Asp His Leu 20 25 30

Asp Lys Val Asp Pro Val Asp Gly Val Val Leu Val Asp Pro Asp Tyr 35 40 45

Leu Lys Asp Arg Lys Val Phe Val Thr Leu Thr Cys Ala Phe Arg Tyr 50 55 60

Gly Arg Glu Asp Leu Asp Val Leu Gly Leu Ser Phe Arg Lys Asp Leu 65 70 75 80

Phe Ile Ala Thr Tyr Gln Ala Phe Pro Pro Met Pro Asn Pro Pro Arg 85 90 95

Pro Pro Thr Arg Leu Gln Asp Arg Leu Leu Lys Lys Leu Gly Gln His
100 105 110

Ala His Pro Phe Phe Phe Thr Ile Pro Gln Asn Leu Pro Cys Ser Val

Thr Leu Gln Pro Gly Pro Glu Asp Thr Gly Lys Ala Cys Gly Val Asp 130 135 140

Phe Glu Ile Arg Ala Phe Cys Ala Lys Ser Ile Glu Glu Lys Ser His 145 150 155 160

Lys Arg Asn Ser Val Arg Leu Ile Ile Arg Lys Val Gln Phe Ala Pro 165 170 175

Glu Thr Pro Gly Pro Gln Pro Ser Ala Glu Thr Thr Arg His Phe Leu 180 185 190

Met Ser Asp Arg Arg Ser Leu His Leu Glu Ala Ser Leu Asp Lys Glu
195 200 205

Leu Tyr Tyr His Gly Glu Pro Leu Asn Val Asn Val His Val Thr Asn 210 215 220

Asn Ser Ala Lys Thr Val Lys Lys Ile Arg Val Ser Val Arg Gln Tyr 225 230 235 240

Ala Asp Ile Cys Leu Phe Ser Thr Ala Gln Tyr Lys Cys Pro Val Ala 245 250 255

Gln Leu Glu Gln Asp Asp Gln Val Ser Pro Ser Ser Thr Phe Cys Lys 260 265 270

Val Tyr Thr Ile Thr Pro Leu Leu Ser Asp Asn Arg Glu Lys Arg Gly 275 280 285

Leu Ala Leu Asp Gly Gln Leu Lys His Glu Asp Thr Asn Leu Ala Ser

	290					295					300						
Ser 305	Thr	Ile	Val	Lys	Glu 310	Gly	Ala	Asn	Lys	Glu 315	Val	Leu	Gly	Ile	Leu 320		
Val	Ser	Tyr	Arg	Val 325	Lys	Val	Lys	Leu	Val 330	Val	Ser	Arg	Gly	Gly 335	Asp		
Val	Ser	Val	Glu 340	Leu	Pro	Phe	Val	Leu 345	Met	His	Pro	Lys	Pro 350	His	Asp		
His	Ile	Thr 355	Leu	Pro	Arg	Pro	Gln 360	Ser	Ala	Pro	Arg	Glu 365	Ile	Asp	Ile		
Pro	Val 370	Asp	Thr	Asn	Leu	Ile 375	Glu	Phe	Asp	Thr	Asn 380	Tyr	Ala	Thr	Asp		
Asp 385	Asp	Ile	Val	Phe	Glu 390	Asp	Phe	Ala	Arg	Leu 395	Arg	Leu	Lys	Gly	Met 400		
Lys	Asp	Asp	Asp	Cys 405	Asp	Asp	Gln	Phe	Cys 410								
<210)> !	55															
<211	.> :	2313															
<212	!>]	ANC															
<213	3>]	Homo	sapi	iens													
	-																
<220																	
		gene															
<222		(1).							_								
<223			es le	eads	to c	dime	rsiat	cion	and	trar					oy JAK-t e nucleu		
<400		55 sat o	rgaat	cado	et ac	cagos	aact t	. gad	cacac	gat.	acct	ggac	aca c	actor	catcag	60	
															jagagt	120	
															atctc	180	
					-	_	_		-	-							

ctgggagaga ttgaccagca gtatagccgc ttcctgcaag agtcgaatgt tctctatcag

С	acaatctac	gaagaatcaa	gcagtttctt	cagagcaggt	atctggagaa	gccaatggag	300
a	ttgcccgga	ttgtggcccg	gtgcctgtgg	gaagaatcac	gccttctaca	gactgcagcc	360
а	ctgcggccc	agcaaggggg	ccaggccaac	caccccacag	cagccgtggt	gacggagaag	420
C	agcagatgc	tggagcagca	ccttcaggat	gtccggaaga	gagtgcagga	tctagaacag	480
a	aaatgaaag	tggtagagaa	tctccaggat	gactttgatt	tcaactataa	aaccctcaag	540
a	gtcaaggag	acatgcaaga	tctgaatgga	aacaaccagt	cagtgaccag	gcagaagatg	600
C	agcagctgg	aacagatgct	cactgcgctg	gaccagatgc	ggagaagcat	cgtgagtgag	660
C	tggcggggc	ttttgtcagc	gatggagtac	gtgcagaaaa	ctctcacgga	cgaggagctg	720
g	ctgactgga	agaggcggca	acagattgcc	tgcattggag	gcccgcccaa	catctgccta	780
g	atcggctag	aaaactggat	aacgtcatta	gcagaatctc	aacttcagac	ccgtcaacaa	840
a	ttaagaaac	tggaggagtt	gcagcaaaaa	gtttcctaca	aaggggaccc	cattgtacag	900
C	accggccga	tgctggagga	gagaatcgtg	gagctgttta	gaaacttaat	gaaaagtgcc	960
t	ttgtggtgg	agcggcagcc	ctgcatgccc	atgcatcctg	accggcccct	cgtcatcaag	1020
a	ccggcgtcc	agttcactac	taaagtcagg	ttgctggtca	aattccctga	gttgaattat	1080
C	agcttaaaa	ttaaagtgtg	cattgacaaa	gactctgggg	acgttgcagc	tctcagagga	1140
t	cccggaaat	ttaacattct	gggcacaaac	acaaaagtga	tgaacatgga	agaatccaac	1200
a	acggcagcc	tctctgcaga	attcaaacac	ttgaccctga	gggagcagag	atgtgggaat	1260
g	ggggccgag	ccaattgtga	tgcttccctg	attgtgactg	aggagctgca	cctgatcacc	1320
t	ttgagaccg	aggtgtatca	ccaaggcctc	aagattgacc	tagagaccca	ctccttgcca	1380
g	ttgtggtga	tctccaacat	ctgtcagatg	ccaaatgcct	gggcgtccat	cctgtggtac	1440
a	acatgctga	ccaacaatcc	caagaatgta	aacttttta	ccaagccccc	aattggaacc	1500
t	gggatcaag	tggccgaggt	cctgagctgg	cagttctcct	ccaccaccaa	gcgaggactg	1560
a	gcatcgagc	agctgactac	actggcagag	aaactcttgg	gacctggtgt	gaattattca	1620
g	ggtgtcaga	tcacatgggc	taaattttgc	aaagaaaaca	tggctggcaa	gggcttctcc	1680
ti	tctgggtct	ggctggacaa	tatcattgac	cttgtgaaaa	agtacatcct	ggccctttgg	1740
aa	acgaagggt	acatcatggg	ctttatcagt	aaggagcggg	agcgggccat	cttgagcact	1800
a	agcetecag	gcaccttcct	gctaagattc	agtgaaagca	gcaaagaagg	aggcgtcact	1860
ti	cacttggg	tggagaagga	catcagcggt	aagacccaga	tccagtccgt	ggaaccatac	1920
a	caaagcagc	agctgaacaa	catgtcattt	gctaaaatca	tcatgggcta	taagatcatg	1980
ga	atgctacca	atatcctggt	gtctccactg	gtctatctct	atcctgacat	tcccaaggag	2040

gaggcattcg gaaagtattg teggceagag agceaggage atcetgaage tgacecaggt 2100
agegetgeee catacetgaa gaceaagttt atctgtgtga caceaacgae etgeageaat 2160
aceattgace tgeegatgte ecceegeact ttagatteat tgatgeagtt tggaaataat 2220
ggtgaaggtg etgaaceete ageaggaggg eagtttgagt ecceteacett tgacatggag 2280
ttgacetegg agtgegetae etceeceatg tga 2313

<210> 56

<211> 770

<212> PRT

<213> Homo sapiens

<220>

<221> STAT3 : Transcription factor

<222> (1)..(770)

<223>

<400> 56

Met Ala Gln Trp Asn Gln Leu Gln Gln Leu Asp Thr Arg Tyr Leu Glu 1 5 10 15

Gln Leu His Gln Leu Tyr Ser Asp Ser Phe Pro Met Glu Leu Arg Gln 20 25 30

Phe Leu Ala Pro Trp Ile Glu Ser Gln Asp Trp Ala Tyr Ala Ala Ser 35 40 45

Lys Glu Ser His Ala Thr Leu Val Phe His Asn Leu Leu Gly Glu Ile 50 60

Asp Gln Gln Tyr Ser Arg Phe Leu Gln Glu Ser Asn Val Leu Tyr Gln 65 70 75 80

His Asn Leu Arg Arg Ile Lys Gln Phe Leu Gln Ser Arg Tyr Leu Glu 85 90 95

Lys Pro Met Glu Ile Ala Arg Ile Val Ala Arg Cys Leu Trp Glu Glu
100 105 110

- Ser Arg Leu Leu Gln Thr Ala Ala Thr Ala Ala Gln Gln Gly Gly Gln 115 120 125
- Ala Asn His Pro Thr Ala Ala Val Val Thr Glu Lys Gln Gln Met Leu 130 135 140
- Lys Met Lys Val Val Glu Asn Leu Gln Asp Asp Phe Asp Phe Asn Tyr
 165 170 175
- Lys Thr Leu Lys Ser Gln Gly Asp Met Gln Asp Leu Asn Gly Asn Asn 180 185 190
- Gln Ser Val Thr Arg Gln Lys Met Gln Gln Leu Glu Gln Met Leu Thr 195 200 205
- Ala Leu Asp Gln Met Arg Arg Ser Ile Val Ser Glu Leu Ala Gly Leu 210 215 220
- Leu Ser Ala Met Glu Tyr Val Gln Lys Thr Leu Thr Asp Glu Glu Leu 225 230 235 240
- Ala Asp Trp Lys Arg Arg Gln Gln Ile Ala Cys Ile Gly Gly Pro Pro 245 250 255
- Asn Ile Cys Leu Asp Arg Leu Glu Asn Trp Ile Thr Ser Leu Ala Glu 260 265 270
- Ser Gln Leu Gln Thr Arg Gln Gln Ile Lys Lys Leu Glu Glu Leu Gln 275 280 285
- Gln Lys Val Ser Tyr Lys Gly Asp Pro Ile Val Gln His Arg Pro Met 290 295 300
- Leu Glu Glu Arg Ile Val Glu Leu Phe Arg Asn Leu Met Lys Ser Ala 305 310 315 320
- Phe Val Val Glu Arg Gln Pro Cys Met Pro Met His Pro Asp Arg Pro 325 330 335
- Leu Val Ile Lys Thr Gly Val Gln Phe Thr Thr Lys Val Arg Leu Leu 340 345 350
- Val Lys Phe Pro Glu Leu Asn Tyr Gln Leu Lys Ile Lys Val Cys Ile

		355					360					365			
Asp	Lys 370	Asp	Ser	Gly	Asp	Val 375	Ala	Ala	Leu	Arg	Gly 380	Ser	Arg	Lys	Phe
Asn 385	Ile	Leu	Gly	Thr	Asn 390	Thr	Lys	Val	Met	Asn 395	Met	Glu	Glu	Ser	Asn 400
Asn	Gly	Ser	Leu	Ser 405	Ala	Glu	Phe	Lys	His 410	Leu	Thr	Leu	Arg	Glu 415	Gln
Arg	Cys	Gly	Asn 420	Gly	Gly	Arg	Ala	Asn 425	Cys	Asp	Ala	Ser	Leu 430	Ile	Val
Thr	Glu	Glu 435	Leu	His	Leu	Ile	Thr 440	Phe	Glu	Thr	Glu	Val 445	Tyr	His	Gln
Gly	Leu 450	Lys	Ile	Asp	Leu	Glu 455	Thr	His	Ser	Leu	Pro 460	Val	Val	Val	Ile
Ser 465	Asn	Ile	Cys	Gln	Met 470	Pro	Asn	Ala	Trp	Ala 475	Ser	Ile	Leu	Trp	Tyr 480
Asn	Met	Leu	Thr	Asn 485	Asn	Pro	Lys	Asn	Val 490	Asn	Phe	Phe	Thr	Lys 495	Pro
Pro	Ile	Gly	Thr 500	Trp	Asp	Gln	Val	Ala 505	G1u	Val	Leu	Ser	Trp 510	Gln	Phe
Ser	Ser	Thr 515	Thr	Lys	Arg	Gly	Leu 520	Ser	Ile	Glu	Gln	Leu 525	Thr	Thr	Leu
	Glu 530	Lys	Leu	Leu	Gly	Pro 535		Val			Ser 540		Сув	Gln	Ile
Thr 545	Trp	Ala	Lys	Phe	Суs 550	Lys	Glu	Asn	Met	Ala 555	Gly	Lys	Gly	Phe	Ser 560
Phe	Trp	Val	Trp	Leu 565	Asp	Asn	Ile	Ile	Asp 570	Leu	Val	Lys	Lys	Tyr 575	Ile
Leu	Ala	Leu	Trp 580	Asn	Glu	Gly	Tyr	Ile 585	Met	Gly	Phe	Ile	Ser 590	Lys	Glu
Arg	Glu-	Arg 595	Ala	Ile	Leu	Ser	Thr 600	Lys	Pro	Pro	Gly	Thr 605	Phe	Leu	Leu

Arg Phe Ser Glu Ser Ser Lys Glu Gly Gly Val Thr Phe Thr Trp Val 610 620

Glu Lys Asp Ile Ser Gly Lys Thr Gln Ile Gln Ser Val Glu Pro Tyr 625 630 635 640

Thr Lys Gln Gln Leu Asn Asn Met Ser Phe Ala Lys Ile Ile Met Gly 645 650 655

Tyr Lys Ile Met Asp Ala Thr Asn Ile Leu Val Ser Pro Leu Val Tyr 660 665 670

Leu Tyr Pro Asp Ile Pro Lys Glu Glu Ala Phe Gly Lys Tyr Cys Arg 675 680 685

Pro Glu Ser Gln Glu His Pro Glu Ala Asp Pro Gly Ser Ala Ala Pro 690 695 700

Tyr Leu Lys Thr Lys Phe Ile Cys Val Thr Pro Thr Thr Cys Ser Asn 705 710 715 720

Thr Ile Asp Leu Pro Met Ser Pro Arg Thr Leu Asp Ser Leu Met Gln 725 730 735

Phe Gly Asn Asn Gly Glu Gly Ala Glu Pro Ser Ala Gly Gly Gln Phe 740 745 750

Glu Ser Leu Thr Phe Asp Met Glu Leu Thr Ser Glu Cys Ala Thr Ser 755 760 765

Pro Met 770

<210> 57

<211> 774

<212> DNA

<213> Homo sapiens

<220>

<221> gene

```
<222> (1)..(774)
```

<223> mCIS

<400> 57 atggtcctct gcgtacaggg atcttgtcct ttgctggctg tggagcaaat tgggcggcgg 60 cctctgtggg cccagtccct ggagctgccc gggccagcca tgcagccctt acccactggg 120 gcattcccag aggaagtgac agaggagacc cctgtccagg cagagaatga accgaaggtg 180 ctagaccetg agggggatet getgtgeata gecaagaegt teteetaeet tegggaatet 240 gggtggtact ggggttctat tacagccagc gaggcccggc agcacctaca gaagatgccg 300 gagggtacat tectagtteg agacageace caeeceaget acetgtteae actgteagte 360 aaaaccaccc gtggccccac caacgtgcgg atcgagtacg ccgattctag cttccggctg 420 gactctaact gcttgtcaag acctcgaatc ctggccttcc cagatgtggt cagccttgtg 480 cagcactatg tggcctcctg tgcagctgac acccggagcg acagcccgga tcctgctccc 540 accccagccc tgcctatgtc taagcaagat gcacctagtg actcggtgct gcctatcccc 600 gtggctactg cagtgcacct gaaactggtg cagccctttg tgcgcaggag cagtgcccgc 660 agcttacaac atctgtgtcg gctagtcatc aaccgtctgg tggccgacgt ggactgctta 720 cecetgeece ggegtatgge egactacete egacagtace cettecaaet etga 774

<210> 58

<211> 257

<212> PRT

<213> Homo sapiens

<220>

<221> mCIS

<222> (1)..(257)

<223>

<400> 58

Met Val Leu Cys Val Gln Gly Ser Cys Pro Leu Leu Ala Val Glu Gln
1 5 10 15

Ile Gly Arg Arg Pro Leu Trp Ala Gln Ser Leu Glu Leu Pro Gly Pro

20 25 30

Ala Met Gln Pro Leu Pro Thr Gly Ala Phe Pro Glu Glu Val Thr Glu 35 40 45

Glu Thr Pro Val Gln Ala Glu Asn Glu Pro Lys Val Leu Asp Pro Glu 50 55 60

Gly Asp Leu Leu Cys Ile Ala Lys Thr Phe Ser Tyr Leu Arg Glu Ser 65 70 75 80

Gly Trp Tyr Trp Gly Ser Ile Thr Ala Ser Glu Ala Arg Gln His Leu 85 90 95

Gln Lys Met Pro Glu Gly Thr Phe Leu Val Arg Asp Ser Thr His Pro 100 105 110

Ser Tyr Leu Phe Thr Leu Ser Val Lys Thr Thr Arg Gly Pro Thr Asn 115 120 125

Val Arg Ile Glu Tyr Ala Asp Ser Ser Phe Arg Leu Asp Ser Asn Cys 130 135 140

Leu Ser Arg Pro Arg Ile Leu Ala Phe Pro Asp Val Val Ser Leu Val 145 150 155 160

Gln His Tyr Val Ala Ser Cys Ala Ala Asp Thr Arg Ser Asp Ser Pro 165 170 175

Asp Pro Ala Pro Thr Pro Ala Leu Pro Met Ser Lys Gln Asp Ala Pro 180 185 190

Ser Asp Ser Val Leu Pro Ile Pro Val Ala Thr Ala Val His Leu Lys 195 200 205

Leu Val Gln Pro Phe Val Arg Arg Ser Ser Ala Arg Ser Leu Gln His 210 215 220

Leu Cys Arg Leu Val Ile Asn Arg Leu Val Ala Asp Val Asp Cys Leu 225 230 235 240

Pro Leu Pro Arg Arg Met Ala Asp Tyr Leu Arg Gln Tyr Pro Phe Gln 245 250 255

Leu

<210> 59
<211> 639
<212> DNA
<213> Homo sapiens

<220>
<221> gene
<222> (1)..(639)
<223> mSOCS1

<400> 59 atggtagcac gcaaccaggt ggcagccgac aatgcgatct ccccggcagc agagccccga 60 cggcggtcag agecetecte gteetegtet tegteetege cageggeece egtgegteee 120 cggccctgcc cggcggtccc agccccagcc cctggcgaca ctcacttccg caccttccgc 180 teccaeteeg attaceggeg cateaegegg accagegege teetggaege etgeggette 240 tattggggac ccctgagcgt gcacggggcg cacgagcggc tgcgtgccga gcccgtgggc 300 accttcttgg tgcgcgacag tcgccaacgg aactgcttct tcgcgctcag cgtgaagatg 360 gcttcgggcc ccacgagcat ccgcgtgcac ttccaggccg gccgcttcca cttggacggc 420 agccgcgaga ccttcgactg ccttttcgag ctgctggagc actacgtggc ggcgccgcgc 480 cgcatgttgg gggccccgct gcgccagcgc cgcgtgcggc cgctgcagga gctgtgtcgc 540 cagegeateg tggeegeegt gggtegegag aacetggege geatecetet taaeeeggta 600 639 ctccgtgact acctgagttc cttccccttc cagatctga

<210> 60

<211> 212

<212> PRT

<213> Homo sapiens

<220>

<221> mSOCS1

<222> (1)..(212)

<223>

<400> 60

Met Val Ala Arg Asn Gln Val Ala Ala Asp Asn Ala Ile Ser Pro Ala 1 5 10 15

Ser Pro Ala Ala Pro Val Arg Pro Arg Pro Cys Pro Ala Val Pro Ala 35 40 45

Pro Ala Pro Gly Asp Thr His Phe Arg Thr Phe Arg Ser His Ser Asp 50 55 60

Tyr Arg Arg Ile Thr Arg Thr Ser Ala Leu Leu Asp Ala Cys Gly Phe 65 70 75 80

Tyr Trp Gly Pro Leu Ser Val His Gly Ala His Glu Arg Leu Arg Ala 85 90 95

Glu Pro Val Gly Thr Phe Leu Val Arg Asp Ser Arg Gln Arg Asn Cys 100 105 110

Phe Phe Ala Leu Ser Val Lys Met Ala Ser Gly Pro Thr Ser Ile Arg 115 120 125

Val His Phe Gln Ala Gly Arg Phe His Leu Asp Gly Ser Arg Glu Thr 130 135 140

Phe Asp Cys Leu Phe Glu Leu Leu Glu His Tyr Val Ala Ala Pro Arg 145 150 155 160

Arg Met Leu Gly Ala Pro Leu Arg Gln Arg Arg Val Arg Pro Leu Gln 165 170 175

Glu Leu Cys Arg Gln Arg Ile Val Ala Ala Val Gly Arg Glu Asn Leu 180 185 190

Ala Arg Ile Pro Leu Asn Pro Val Leu Arg Asp Tyr Leu Ser Ser Phe 195 200 205

Pro Phe Gln Ile

120

138

21	0	
<210>	61	
<211>	10	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	linker sequence	
<400>		10
999000	acgua de la companya	
<210>	62	
<211>	13	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	linker sequence	
<400>	62 ggccc ctg	13
cccgc	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<210>	63	
<211>	138	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	pP6 vector sequence	

ctagccatgg ccgcaggggc cgcggccgca ctagtgggga tccttaatta aagggccact

ggggcccccg gtaccggcgt ccccggcgcc ggcgtgatca cccctaggaa ttaatttccc

<400> 63

ggtgaccccg ggggagct

<210>	64	
<211>	64	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	pB6 vector sequence (5'-3')	
<400> catggco	64 cgga cgggccgcgg ccgcactagt ggggatcctt aattaaaggg ccactggggc	60
cccc		64
<210>	65	
<211>	76	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	pB20 vector sequence (5'-3')	
<400> aattcg	65 gggc cggacgggcc gcggccgcac tagtggggat ccttaattaa gggccactgg	60
ggcccc	tcga cctgca	76
<210>	66	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	primer	
<400> gcgttt	66 ggaa tcactacagg	20
<210>	67	

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 67 cacgatgcac gttgaagtg

19