Profa. Dra. Raquel C. de Melo-Minardi Departamento de Ciência da Computação Instituto de Ciências Exatas Universidade Federal de Minas Gerais

	0	1	2	3	4	5	6	7	8	9	10
0	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*
1	↑		\uparrow								
2	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*
3	↑		\uparrow		\uparrow		\uparrow		\uparrow		↑
4	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*
5	↑		\uparrow								
6	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*
7	↑		\uparrow								
8	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*
9	↑		\uparrow								
10	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*

MÓDULO 4 ALGORITMOS PARA BIOINFORMÁTICA Algoritmo de Smith-Waterman

ALGORITMO DE NEEDLEMAN-WUNSCH

- O algoritmo de Needleman-Wunsch que acabamos de apresentar é um algoritmo de alinhamento global par-a-par que busca similaridades entre duas sequências globalmente
 - Útil quando a similaridade entre sequências se estender por toda sua extensão
 - Exemplo: proteínas de uma mesma família que, normalmente, são conservadas, tem comprimentos próximos mesmo em organismos tão diversos quanto moscas e seres humanos

- Entretanto, em diversas aplicações biológicas, isso não ocorre e alinhamentos entre subsequências de v e w podem ter uma pontuação bem maior que a pontuação de v e w quando alinhadas globalmente
 - Exemplo: proteínas que tem mais de um domínio altamente conservados mas a proteína por inteiro não é conservada
- Como podemos encontrar essas regiões conservadas e ignorar as áreas de maior dissimilaridade?
 - Em 1981, Temple Smith e Michael Waterman propuseram uma elegante modificação no algoritmo de Needleman-Wunsch que resolve o alinhamento local e que ficou conhecido como o algoritmo de Smith-Waterman [Smith e Waterman, 1981]

A figura a seguir ilustra a diferença conceitual entre um alinhamento global e local e ainda nos dá uma primeira dica de como funciona o algoritmo de Smith-Waterman

Problema do Alinhamento Local de Sequências

Encontre o melhor alinhamento local entre duas sequências

Entradas: Duas sequências, v e w, e uma matriz de pontuação δ

Saída: Subsequências de v e w para os quais o **alinhamento global**, conforme a matriz de pontuação utilizada δ , é máximo entre todos os alinhamentos globais de subsequências de v e w

MATRIZES DE PONTUAÇÃO

- Matrizes para pontuar a similaridade entre sequências de DNA usualmente são definidas pelos parâmetros:
 - Match (M)
 - Mismatch (μ)
 - Indel (σ)
- No exemplo bastante simplificado que usamos na abordagem de alinhamento global o valor de M foi "+1", μ e σ foram de "0"

MATRIZES DE PONTUAÇÃO

- Mutações aleatórias em sequências de nucleotídeos podem provocar mudanças na sequência de aminoácidos
 - Algumas dessas mutações podem não afetar a estrutura e a função de proteínas mas outras podem ser muito relevantes afetando a habilidade de sobrevivência do organismo
 - Há aminoácidos que são mais comumente mutados (ASN, ASP, GLU, SER) e outros raramente mutados (CYS e TRP)
- A probabilidade de se encontrar uma SER mutada por uma PHE é três vezes maior que de se encontrar um TRP mutado por uma PHE
- Esse tipo de conhecimento estatístico sobre as mutações que ocorrem nas proteínas dos seres vivos permitem elaborar matrizes de pontuação para alinhar adequadamente sequências de proteínas

MATRIZES DE PONTUAÇÃO

- Para alinhamento de sequências de **proteínas**, compostas por um alfabeto de 20 possíveis aminoácidos, usamos matrizes de pontuação δ
- Uma matriz de pontuação $\delta(i, j)$ traz a frequência na qual encontramos um aminoácido i substituído por um j
- As matrizes mais comumente utilizadas são
 - PAM: Point Accepted Mutations, desenvolvida por Margareth Dayhoff [Dayhoff et al., 1978]
 - **BLOSUM**: *Block Substitution*, desenvolvida por Steven e Joria Henikoff [Henikoff e Henikoff, 1992]

- Voltando ao Problema do Alinhamento Local de Sequências, Smith e Waterman, usando uma matriz de substituição δ para pontuar dissimilaridades entre aminoácidos substituídos em duas sequências de proteínas v e w, perceberam que, como uma pequena e simples modificação o algoritmo de Needleman-Wunsch poderia ser usado para buscar
 - o melhor alinhamento global entre duas subsequências de v e w, ou em outras palavras,
 - o máximo alinhamento local entre duas sequências

- Lembre que para resolver o LCS (alinhamento global), criamos uma matriz de programação dinâmica e a preenchemos seguindo o seguinte critério:
 - $s_{i,j} = max (s_{i-1,j}, s_{i,j-1} e s_{i-1,j-1}+1) (desde que v[i] = w[j])$
- Há variações desse critério que pontuam diferentemente para matches, mismatches e indels como, por exemplo:
 - $s_{i,j} = max (s_{i-1,j} \sigma, s_{i,j-1} \sigma, s_{i-1,j-1} \mu)$ (desde que v[i] seja diferente w[j])) e $s_{i-1,j-1} + M$ (desde que v[i] igual a w[j])):
 - onde
 - M: é a pontuação de um *match*
 - μ: é a penalidade de um mismatch
 - σ: é a penalidade de um *indel*

- ightharpoonup Veja a seguir uma outra variação usando uma matriz de pontuação δ:

 - onde
 - $\delta(v_i, -)$ e $\delta(v_i, -)$: são as penalidade de *indels* (deleção e inserção, respectivamente).
 - $\delta(v_i, w_j)$: pode ser a pontuação ou a penalidade dependendo se é um *match* ou *mismatch*

- O Problema do Alinhamento Local foi resolvido simplesmente a substituição do critério anterior
 - $s_{i,j} = max(s_{i-1,j}+\delta(v_i, -), s_{i,j-1}+\delta(-, w_i) e s_{i-1,j-1}+\delta(v_i, w_i))$
 - pelo seguinte:
 - $s_{i,j} = max(0, s_{i-1,j}+\delta(v_i,-), s_{i,j-1}+\delta(-, w_j) e s_{i-1,j-1}+\delta(v_i, w_j)$
 - Note que ele é idêntico ao critério anterior usado no alinhamento global exceto por adicionar "0" pontos no caso de a pontuação ter se tornado negativa

 \blacktriangleright É como se adicionássemos **uma aresta de peso "0"** no *grid* ou, em outras palavras, conectássemos o nó fonte $s_{0,0}$ a todos os outros no $s_{i,j}$ do *grid*

 Dessa forma, sempre que um alinhamento se torna muito ruim (pontuação negativa), pode-se recomeçá-lo zerando a pontuação e ignorando a subsequência inicial

- No alinhamento global, a pontuação do melhor alinhamento sempre está no nó (ou célula) $s_{m,n}$
- No alinhamento local, buscamos a célula $s_{i,j}$ de pontuação máxima (que indica onde o alinhamento irá terminar nas sequências $v \in w$)
- Dessa forma, caracteres após (ou à direita) de *i* e *j* não farão parte do alinhamento local máximo de *v* e *w*