11/18

Regular Expressions

Formal definitions

regex

A **regular expression** over an alphabet Σ is any of the following:

ullet \varnothing (the empty regular expression)

k we

• 8

• a (for any $a \in \Sigma$)

foundation case

Moreover, if R_1 and R_2 are regular expressions over Σ , then so are: $R_1 \mid R_2$, $R_1 \cdot R_2$, R_1^*

Every regar R his a language 4R) associated with it.

regular language (or regular set): A language (or set) is regular if and only if it can be defined using a regular expression.

ression.
i.e if it can be written LIR) for ruger R.

- like antheretic legic, sets.

Regular expressions as an expression language

regular expression = pattern describing a set of strings

a t >

Operands

La regular set.

Operators

Pre cedepil

allo alternation ("or") also called choice, union.

a-b concatentation ("followed by") or catenation

Also written as ab a-a-a=a³ 5

only for authal numeric values

at iteration (o or mow) also called closure

Kieene closure.

parent are not operators but used for grouping overriding precedence

Examples

Express each of these using a regular expression (where $\Sigma = \{0, 1\}$):

1. the set consisting of the strings 0, 11, and 010

0 11 00

2. the set of strings that contain exactly one 1
$$6 \times 10^{4}$$

3. the set of strings that contain two consecutive 0s

4. the set of strings that end with two 0s

Connection between finite automata and regular expressions

Theorem: A language *L* is regular if and only if it is accepted by some finite automaton.

1) For every regex R, I finite automaton M s.t. L(R) = L(M)
2) For every language L decidable by some finite automaton, I regex R s.t. L=L(R)

* But finite automaton might not be deterministic

Theorem: Let N be a nondeterministic finite automaton. Then there exists a deterministic finite automaton M such that L(N) = L(M).

So we do DTA -> regox

and regex > NTA

But DTA might have exponential \$1 ef status

(compare to original NTA)