序列化推薦系統

Source

• Session-based recommendations with recurrent neural networks. (ICLR 2016)

Session-based Neural network

Recommendation

Why Session based

Session 是伺服器端用來有時序關係的記錄、識別使用者的一種機制。 典型的場景比如購物車,服務端為特定的物件建立了特定的 Session,用於標 識這個物件,並且跟蹤使用者的瀏覽點選行為。

傳統推薦演算法

- Content-based
- Collaborative Filtering

每個item互相獨立,沒有辦法考量時序性

如何考量時序性?

傳統解法 (1)

• Item to item recommendation: 用item間的相似性預測下一個item


```
For each item in product catalog, I_1

For each customer C who purchased I_1

For each item I_2 purchased by customer C

Record that a customer purchased I_1 and I_2

For each item I_2

Compute the similarity between I_1 and I_2
```

缺點:只考慮最後一個click的item相似性

傳統解法 (2)

Markov Decision Processes (MDPs) : 馬可夫狀態轉移的四個狀態 (S:狀態, A:動作, P:轉移機率, R:獎勵函數) 用狀態轉移機率計算點擊下一個item的機率。

• 轉移機率(transition probability): 在目前狀態 S_t 為S,目前執行動作 A_t 為a的情況下,下一期狀態 S_{t+1} 為s的機率。

$$P_a(s,s') = \mathbb{P}(S_{t+1} = s' | S_t = s, A_t = a)$$

• 報酬函數 (expected reward):

,在目前狀態 S_t 為s,目前執行動作 A_t 為a,下一期狀態 S_{t+1} 為s的情況下,該動作可以得到的期望報酬。 $(S_{t+1}, R_a(s))$ 存在聯合分配 $(joint\ distribution)$ 。

$$R_a(s) = R_{t+1} | S_t = s, a_t = a$$

缺點:狀態數量大,隨問題維度指數增加

Deep Neural Network

先複習一下LSTM

- Element by element multiplication
- Element by element addition
- Squashing function

三個門:輸入門、輸出門、遺忘門

LSTM

- C變化緩慢 (記憶功能的訊息傳遞)
- h變化較快

LSTM

LSTM

GRU(Gated Recurrent Unit)

參數較少 輸入輸出較少 但performance不一定比較好

GRU

GRU

$$\begin{split} z_t &= \sigma\left(W_z \cdot [h_{t-1}, x_t]\right) & \text{Update Gated} \\ r_t &= \sigma\left(W_r \cdot [h_{t-1}, x_t]\right) & \text{Reset Gated} \\ \tilde{h}_t &= \tanh\left(W \cdot [r_t * h_{t-1}, x_t]\right) & \text{Candidate hidden layer} \\ h_t &= (1-z_t) * h_{t-1} + z_t * \tilde{h}_t & \text{Output Gated} \end{split}$$

兩個門:更新門、重置門(將LSTM的輸入、遺忘門用更新門代替)

- 模型架構
 - Input: Session中的點擊序列X=[X₁, X₂, ..., X_{r-1}, X_r]通過One hot encoding, 再通過embedding 層壓縮為連續低微向量作為GRU輸入
 - Output: 每個Item被點擊的預測機率, y = M(X), where y=[y₁, y₂, ..., y_m]其中M是模型函數、y_i是 item i的預測點擊機率

- 訓練策略 (提高訓練效率、簡化訓練代價)
 - Training Strategy: Mini-batch
 - Training data sample: 選取當前正樣本(下一個點擊的item)加上隨機抽取的負樣本(選取同一個mini-batch中其他sequence下一個點擊的item作為負樣本)

- Loss Function
 - Point-wise ranking loss
 - Pair-wise ranking loss:
 - BPR: 基於貝葉斯理論的矩陣分解
 - TOP1: 一種正則估計

BPR

$$L_s = -rac{1}{N} * \sum_{j=1}^{N_s} log(\sigma(ilde{y}_{s,i} - ilde{y}_{s,j}))$$

Ns: Sample size $y_{s,k}: item k$ 在當前session的分數

i: session中的下一個item

j: 負樣本

Bayesian Personalized Ranking(BPR)概念

背景:如果商品的數量非常多且用戶非常少,我們關心的是哪些極少數的商品在用戶心中的排序=>排序問題

目標:找到合適的矩陣W, H讓X和X相似

<u, i, j> 表示user對i的優先級高於j,假設有m個用戶、n個用品

訓練成果是兩個分解後的矩陣W和H:

W的維度:mxk

H的維度:nxk

其中k是一個自定義的維度。

對於用戶u,商品i的排序評分為 $\bar{x}_{ui} = w_u \cdot h_i = \sum_{f=1}^k w_{uf} h_{if}$

Top1

Paper設計的排序損失計算方式,加入類似L2正則化的誤差項

$$L_s = \frac{1}{N_S} \cdot \sum_{j=1}^{N_S} \sigma\left(\hat{r}_{s,j} - \hat{r}_{s,i}\right) + \sigma\left(\hat{r}_{s,j}^2\right)$$

實驗結果

POP: 推薦最受歡迎的item

S-POP: 推薦當前session最受歡迎的item

Item-KNN: 推薦與實際item相似的item,

session向量間的cos similarity

Table 1: Recall@20 and MRR@20 using the baseline methods

Baseline	RSC15		VIDEO	
	Recall@20	MRR@20	Recall@20	MRR@20
POP	0.0050	0.0012	0.0499	0.0117
S-POP	0.2672	0.1775	0.1301	0.0863
Item-KNN	0.5065	0.2048	0.5508	0.3381
BPR-MF	0.2574	0.0618	0.0692	0.0374

Loss / #Units	RSC15		VIDEO	
	Recall@20	MRR@20	Recall@20	MRR@20
TOP1 100	0.5853 (+15.55%)	0.2305 (+12.58%)	0.6141 (+11.50%)	0.3511 (+3.84%)
BPR 100	0.6069 (+19.82%)	0.2407 (+17.54%)	0.5999 (+8.92%)	0.3260 (-3.56%)
Cross-entropy 100	0.6074 (+19.91%)	0.2430 (+18.65%)	0.6372 (+15.69%)	0.3720 (+10.04%)
TOP1 1000	0.6206 (+22.53%)	0.2693 (+31.49%)	0.6624 (+20.27%)	0.3891 (+15.08%)
BPR 1000	0.6322 (+24.82%)	0.2467 (+20.47%)	0.6311 (+14.58%)	0.3136 (-7.23%)
Cross-entropy 1000	0.5777 (+14.06%)	0.2153 (+5.16%)	177	-

Reference

- Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
- Session-based recommendations with recurrent neural networks. (ICLR 2016)
- Gated RNN and Sequence Generation (Recorded at Fall, 2017)