Übungen zur Linearen Algebra I 8. Übungsblatt

Abgabe bis zum 12.12.19, 9:15 Uhr

Aufgabe 1 (1 + 5 Punkte). Sei K ein Körper. Wir definieren den K-Vektorraum K[X], indem wir die Symbole X^i für $i \in \mathbb{N}_0$ zu einer Basis erklären.

Für festes n definieren wir ferner $K[X]_{\leq n}=\mathrm{Lin}((X^i)_{0\leq i\leq n})$. Wir definieren darüber hinaus die Systeme $\underline{v}=(X^0,X^1,X^2,X^3)$ und $\underline{w}=(X^0,X^0+X^1,X^1-X^2+X^3,X^3+X^0)$.

- (a) Zeigen Sie, dass auch \underline{w} eine Basis von $W = K[X]_{\leq 3}$ ist.
- (b) Bestimmen Sie $M_{\underline{v}}^{\underline{v}}(\hat{\sigma})$, $M_{\underline{w}}^{\underline{w}}(\hat{\sigma})$, $M_{\underline{w}}^{\underline{v}}(\mathrm{id}_W)$, $M_{\underline{v}}^{\underline{w}}(\mathrm{id}_W)$, $M_{\underline{w}}^{\underline{v}}(\hat{\sigma})$ und $M_{\underline{v}}^{\underline{w}}(\hat{\sigma})$, wobei $\hat{\sigma} \colon W \to W$ wie auf Blatt 5 durch

$$\partial(X^i) = \begin{cases} 0 & i = 0\\ i \cdot X^{i-1} & i \neq 0 \end{cases}$$

definiert ist.

Aufgabe 2 (3 · 2 Punkte). Sei K ein Körper und $f: U \to V$ und $g: V \to W$ lineare Abbildungen zwischen endlich-dimensionalen K-Vektorräumen.

- (a) Zeigen Sie die Ungleichung dim $\ker(g \circ f) \leq \dim \ker g + \dim \ker f$.
- (b) Zeigen Sie die Ungleichung $Rg(f) Rg(g \circ f) \leq \dim V Rg(g)$.
- (c) Folgern Sie für $A \in M_{n,m}(K)$ und $B \in M_{l,n}(K)$ die Ungleichung

$$S \operatorname{Rg}(A) - S \operatorname{Rg}(B \cdot A) \leq n - S \operatorname{Rg}(B).$$

Aufgabe 3 (1+1+4 Punkte). Sei K ein Körper, V ein K-Vektorraum und U ein Untervektorraum. Sei ferner W ein Komplement von U in V. Zeigen Sie:

- (a) Es gibt eine eindeutige lineare Abbildung $\pi\colon V\to V$, welche eingeschränkt auf U die Identität und eingeschränkt auf W konstant null ist.
- (b) Für dieses π gilt: $\pi \circ \pi = \pi$.
- (c) Ist umgekehrt $\pi' \colon V \to V$ eine lineare Abbildung, für welche $\pi' \circ \pi' = \pi'$ gilt, so zerlegt sich V als direkte Summe: $V \cong \pi'(V) \oplus \ker \pi'$.

Aufgabe 4 (6 Punkte). Konstruieren Sie mittels Aufgabe 3(a,b) drei verschiedene Matrizen A_1 , A_2 , und $A_3 \in M_{2,2}(\mathbb{Q})$ mit $A_i \cdot A_i = A_i$ und $A_i \cdot (1,1)^t = (1,1)^t$.

¹Die Existenz eines solchen Vektorraums sieht man wie folgt: In $V = \text{Abb}(\mathbb{N}_0, K)$ betrachten wir die Elemente $X^i \in V$, welche durch $X^i(j) = \delta_{ij}$ definiert sind. Sie haben bereits implizit auf Blatt 5 nachgewiesen, dass das System $(X^i)_{i \in \mathbb{N}_0}$ linear unabhängig ist. Deren lineare Hülle Lin($(X^i)_{i \in \mathbb{N}_0}$) bezeichnen wir mit K[X].