Logarithm Problem 111-120

Shiv Shankar Dayal

February 5, 2022

111. If n is a natural number such that $n=p_1^{a_1}p_2^{a_2}p_3^{a_3}\dots p_k^{a_k}$ and p_1,p_2,p_3,\dots,p_k are distinct primes, then show that $\log n \geq k \log 2$

Solution: Since n is a natural number and $p_1, p_2, p_3, \dots, p_k$ are distinct primes, therefore a_1, a_2, \dots, a_k are also natural numbers.

Now,
$$n = p_1^{a_1} p_2^{a_2} p_3^{a_3} \dots p_k^{a_k}$$

 $\log n = a_1 \log p_1 + a_2 \log p_2 + ... + a_k \log p_k \log n \ge \log 2 + \log 2 + ... + \log 2$ [since bases are p_i s are primes so minimum value is 2 and powers are natural numbers so they are greater than 1]

$$\log n \geq k \log 2$$

112. Prove that $\log_4 18$ is an irrational number.

Solution:
$$\log_4 18 = \log_{2^2}(2.3^2) = \frac{1}{2} + \log_2 3$$

Thus, it will be enough to prove that $\log_2 3$ is a irrational number.

Let
$$\log_2 3 = \frac{p}{q}$$
 where $p,q \in I$

$$2^{\frac{p}{q}} = 3 \Rightarrow 2^p = 3^q$$

However, 2^p is an even number and 3^q is an odde number, and hence the equality will never be achieved. Therefore, $\log_2 3$ is an irrational number.

113. Find the value of $\log_{30} 8$, if $\log_{30} 3 = a$ and $\log_{30} 5 = b$.

Solution:

$$\begin{split} \log_{30} 8 &= 3 \log_{30} 2 = 3 \log_{30} \frac{30}{15} \\ &= 3 \log_{30} 30 - 3 \log_{30} 15 = 3 - 3 (\log_{30} 3 + \log_{30} 5) \\ &= 3 (1 - a - b) \end{split}$$

114. Find the value of $\log_{54}168$, if $\log_712=a$ and $\log_{12}24=b$.

Solution: Given, $\log_7 12 = a$ and $\log_{12} 24 = b$

Multiplying, $ab = \log_7 24$

Adding 1 on both sides

$$ab + 1 = \log_7 24 + \log_7 7 = \log_7 168$$

Similalry, $8a = \log_7 12^8$ and $5ab = \log_7 24^5$

$$\frac{ab+1}{8a-5ab} = \frac{\log_7 168}{\log_7 12^8 - \log_7 24^5}$$

$$= \frac{\log_7 168}{\log_7 \frac{128}{24^5}} = \frac{\log_7 168}{\log_7 54} = \log_{54} 168$$

115. If $a \neq 0$ and $\log_x(a^2 + 1) < 0$ then find the interval in which x lies.

Solution: In all the cases x>0 for logarithm to exist.

Case I: When $x>1, x>a^2+1.$ Also, $a^2+1>1$:x>1

Case II: When $x < 1, x < a^2 + 1$. Also, $a^2 > 0 \cdot x < 1$

116. If
$$\log_{12} 18 = a$$
 and $\log_{24} 54 = b$, prove that $ab + 5(a - b) = 1$

Solution:

$$\begin{aligned} ab + 5(a - b) &= \frac{\log 18 \log 54}{\log 12 \log 24} + 5 \left(\frac{\log 18}{\log 12} - \frac{\log 54}{\log 24} \right) \\ &= \frac{\log 18 \log 54 + 5 (\log 18 \log 24 - \log 54 \log 12)}{\log 12 \log 24} \end{aligned}$$

 $\log 18 = \log 2 + 2\log 3, \log 12 = 2\log 2 + \log 3, \log 24 = 3\log 2 + \log 3, \log 54 = \log 2 + 3\log 3$

Substituting and simplifying we will obtain the desired result.

117. If a, a_1, a_2, \ldots, a_n are in G.P. and b, b_1, b_2, \ldots, b_n in A.P. with positive terms and also the common difference of A.P. and common ratios of G.P. are positive, show that there exists a system of logarithm for which $\log a_n - b_n = \log a - b$ for any n. Find base of the system.

Solution: Let r be the common ratio of G.P. and d be the common difference.

$$\log a_n - b_n = \log a + n \log r - (b + nd) = \log a - d$$

$$n\log r - nd = 0 \Rightarrow \log r = d$$

Thus, base $= r^{\frac{1}{d}}$

118. If $\log_3 2, \log_3(2^x - 5)$ and $\log_3\left(2^x - \frac{7}{2}\right)$ are in A.P., find the value of x.

Solution:

Given,
$$\log_3 2, \log_3(2^x - 5)$$
 and $\log_3\left(2^x - \frac{7}{2}\right)$ are in A.P.
$$\Rightarrow 2\log_3(2^x - 5) = \log_3\left(2^x - \frac{7}{2}\right) + \log_3 2$$

$$(2^x - 5)^2 = 2(2^x - \frac{7}{2})$$
 Let $z = 2^x$, then we have
$$z^2 - 10z + 25 = 2x - 7 \Rightarrow z^2 - 12z + 32 = 0$$

$$\Rightarrow z = 8, 4 \Rightarrow x = 2, 3$$

But if $x=2,2^x-5<0$ which cannot be so only acceptable value of x is 3.

119. Prove that $\log_2 7$ is an irrational number.

Solution: Let $\log_2 7 = \frac{p}{q}$ where $p, q \in I$

 \Rightarrow $2^p=7^2$, however, 2^p is an even number and 7^q is an odd number. Thus, our assumption is wrong and $\log_2 7$ is an irrational number.

120. If $\log_{0.5}(x-2) < \log_{0.25}(x-2)$, then find the interval in which x lies.

Solution:

Given,
$$\begin{split} \log_{0.5}(x-2) &< \log_{0.25}(x-2) \\ &\Rightarrow (x-2)^2 > (x-2) \\ &(x-2)(x-3) > 0 \\ &\Rightarrow x < 2, x > 3 \end{split}$$

Thus, x>3 for logarithm function to be defined.