The Logic of Comparative Cardinality

Yifeng Ding (voidprove.com)

Joint work with Matthew Harrison-Trainer and Wesley Holliday

Aug. 7, 2018 @ BLAST 2018

UC Berkeley

Group of Logic and the Methodology of Science

Introduction

Definition

A field of sets (X, \mathcal{F}) is a pair where

- 1. X is a set and $\mathcal{F} \subseteq \wp(X)$;
- 2. \mathcal{F} is closed under intersection and complementation.

Definition

A field of sets (X, \mathcal{F}) is a pair where

- 1. X is a set and $\mathcal{F} \subseteq \wp(X)$;
- 2. \mathcal{F} is closed under intersection and complementation.
 - The equational theory of Boolean algebras is also the equational theory of fields of sets, if we only care about Boolean operations.

Definition

A field of sets (X, \mathcal{F}) is a pair where

- 1. X is a set and $\mathcal{F} \subseteq \wp(X)$;
- 2. \mathcal{F} is closed under intersection and complementation.
 - The equational theory of Boolean algebras is also the equational theory of fields of sets, if we only care about Boolean operations.
 - But more information can be extracted from a field of sets.

Definition

A field of sets (X, \mathcal{F}) is a pair where

- 1. X is a set and $\mathcal{F} \subseteq \wp(X)$;
- 2. \mathcal{F} is closed under intersection and complementation.
 - The equational theory of Boolean algebras is also the equational theory of fields of sets, if we only care about Boolean operations.
 - But more information can be extracted from a field of sets.
 - We compare their sizes.

Definition

Given a countably infinite set Φ of set labels, the language $\mathcal L$ is generated by the following grammar:

$$t ::= a \mid t^c \mid (t \cap t)$$

$$\varphi ::= |t| \ge |t| \mid \neg \varphi \mid (\varphi \land \varphi),$$

Definition

Given a countably infinite set Φ of set labels, the language \mathcal{L} is generated by the following grammar:

$$t ::= a \mid t^c \mid (t \cap t)$$

$$\varphi ::= |t| \ge |t| \mid \neg \varphi \mid (\varphi \land \varphi),$$

• A field of sets model is $\langle X, \mathcal{F}, V \rangle$ where $V : \Phi \to \mathcal{F}$.

Definition

Given a countably infinite set Φ of set labels, the language $\mathcal L$ is generated by the following grammar:

$$t ::= a \mid t^c \mid (t \cap t)$$

$$\varphi ::= |t| \ge |t| \mid \neg \varphi \mid (\varphi \land \varphi),$$

- A field of sets model is $\langle X, \mathcal{F}, V \rangle$ where $V : \Phi \to \mathcal{F}$.
- ullet Terms are evaluated by \widehat{V} on ${\mathcal F}$ in the obvious way.

Definition

Given a countably infinite set Φ of set labels, the language $\mathcal L$ is generated by the following grammar:

$$t ::= a \mid t^c \mid (t \cap t)$$

$$\varphi ::= |t| \ge |t| \mid \neg \varphi \mid (\varphi \land \varphi),$$

- A field of sets model is $\langle X, \mathcal{F}, V \rangle$ where $V : \Phi \to \mathcal{F}$.
- ullet Terms are evaluated by \widehat{V} on $\mathcal F$ in the obvious way.
- $|s| \ge |t|$: set s is at least as large as set t: there is an injection from $\widehat{V}(t)$ to $\widehat{V}(s)$.

Finite sets and infinite sets

• Finite sets and infinite sets obey very different laws.

Finite sets and infinite sets

• Finite sets and infinite sets obey very different laws.

- For finite sets $s, t, |s| \ge |t| \leftrightarrow |s \cap t^c| \ge |t \cap s^c|$.
- For infinite sets *s*, *t*, *u*
 - $|s| \ge |t| \to |s \cap t^c| \ge |t \cap s^c|$ is not valid;
 - $(|s| \ge |t| \land |s| \ge |u|) \rightarrow |s| \ge |t \cup u|$ is valid.

More background

ullet The sentences in ${\cal L}$ valid on finite sets have been axiomatized, with size interpreted as probability, credence, etc..

More background

- ullet The sentences in $\mathcal L$ valid on finite sets have been axiomatized, with size interpreted as probability, credence, etc..
- ullet The sentences in ${\cal L}$ valid on infinite sets have been axiomatized, with size interpreted as likelihood or possibilities.

More background

- The sentences in L valid on finite sets have been axiomatized, with size interpreted as probability, credence, etc..
- The sentences in L valid on infinite sets have been axiomatized, with size interpreted as likelihood or possibilities.
- We want to combine them: with no extra constraint on (X, \mathcal{F}) , what is the logic?

Outline

Introduction

Laws common to finite and infinite sets

A representation theorem

Logic with predicates for finite and infinite sets

Eliminating extra predicates

Further questions

Laws common to finite and infinite sets

Definition (BasicCompLogic)

Boolean reasoning on the sentence level.

Boolean Reasoning on the set level.

 \geq is a total preorder extending \supseteq .

 \geq works well with \varnothing .

Definition (BasicCompLogic)

Boolean reasoning on the sentence level.

Boolean Reasoning on the set level.

 \geq is a total preorder extending \supseteq .

 \geq works well with \varnothing .

Definition (BasicCompLogic)

Boolean reasoning on the sentence level.

Boolean Reasoning on the set level.

• if t=0 is provable in the equational theory of Boolean algebras, then $|\varnothing| \ge |t|$ is a theorem.

 \geq is a total preorder extending \supseteq .

 \geq works well with \varnothing .

Definition (BasicCompLogic)

Boolean reasoning on the sentence level.

Boolean Reasoning on the set level.

- if t=0 is provable in the equational theory of Boolean algebras, then $|\varnothing| \ge |t|$ is a theorem.
- \geq is a total preorder extending \supseteq .
 - $|s| \ge |t| \lor |t| \ge |s|$; $(|s| \ge |t| \land |t| \ge |u|) \rightarrow |s| \ge |u|$;
 - $|\varnothing| \ge |s \cap t^c| \to |t| \ge |s|$;
- \geq works well with \varnothing .

Definition (BasicCompLogic)

Boolean reasoning on the sentence level.

Boolean Reasoning on the set level.

- if t=0 is provable in the equational theory of Boolean algebras, then $|\varnothing| \ge |t|$ is a theorem.
- \geq is a total preorder extending \supseteq .
 - $|s| \ge |t| \lor |t| \ge |s|$; $(|s| \ge |t| \land |t| \ge |u|) \rightarrow |s| \ge |u|$;
 - $|\varnothing| \ge |s \cap t^c| \to |t| \ge |s|$;
- > works well with \varnothing .
 - $\neg |\varnothing| \ge |\varnothing^c|$;
 - $(|\varnothing| \ge |s| \land |\varnothing| \ge |t|) \rightarrow |\varnothing| \ge |s \cup t|;$

From logic to algebra

Definition

A comparison algebra is a pair $\langle B,\succeq \rangle$ where B is a Boolean algebra and \succeq is a total preorder on B such that

- for all $a, b \in B$, $a \ge_B b$ implies $a \succeq b$,
- $\perp_B \not\succeq b$ for all $b \in B \setminus \{\perp_B\}$.

From logic to algebra

Definition

A comparison algebra is a pair $\langle B,\succeq \rangle$ where B is a Boolean algebra and \succeq is a total preorder on B such that

- for all $a, b \in B$, $a \ge_B b$ implies $a \succeq b$,
- $\perp_B \not\succeq b$ for all $b \in B \setminus \{\perp_B\}$.

Any formula φ consistent with BasicCompLogic is satisfiable in a finite comparison algebra, with \succeq interpreting $|\cdot| \ge |\cdot|$.

$$\varphi \Rightarrow \Sigma \Rightarrow \langle B, \succeq, V \rangle \Rightarrow \langle \underbrace{V(T(\mathit{var}(\varphi)))}_{\mathsf{relevant terms, a finite set}}, \succeq, V \rangle$$

From logic to algebra

Definition

A comparison algebra is a pair $\langle B,\succeq \rangle$ where B is a Boolean algebra and \succeq is a total preorder on B such that

- for all $a, b \in B$, $a \ge_B b$ implies $a \succeq b$,
- $\perp_B \not\succeq b$ for all $b \in B \setminus \{\perp_B\}$.

Any formula φ consistent with BasicCompLogic is satisfiable in a finite comparison algebra, with \succeq interpreting $|\cdot| \ge |\cdot|$.

$$\varphi \Rightarrow \Sigma \Rightarrow \langle B, \succeq, V \rangle \Rightarrow \langle \underbrace{V(T(\mathit{var}(\varphi)))}_{\mathsf{relevant terms, a finite set}}, \succeq, V \rangle$$

$$\Rightarrow \langle X, \mathcal{F}, V \rangle$$

Not enough constraints

Not enough constraints

- (010) and (100) should be finite.
- Then all must be finite.
- But |(011)| = |(101)| while |(010)| < |(100)|.

Message

• Any formula φ consistent with BasicCompLogic is satisfiable in a finite comparison algebra \mathcal{B} , with \succeq interpreting $|\cdot| \ge |\cdot|$.

Message

- Any formula φ consistent with BasicCompLogic is satisfiable in a finite comparison algebra \mathcal{B} , with \succeq interpreting $|\cdot| \ge |\cdot|$.
- But the ordering

 in this

 might not be based on any cardinality comparison.

Message

- Any formula φ consistent with BasicCompLogic is satisfiable in a finite comparison algebra \mathcal{B} , with \succeq interpreting $|\cdot| \ge |\cdot|$.
- But the ordering

 in this

 might not be based on any cardinality comparison.
- We need to know when the ordering arise from cardinality comparison, and add the constraints to the logic.

Plan

Introduction

Laws common to finite and infinite sets

A representation theorem

Logic with predicates for finite and infinite sets

Eliminating extra predicates

Further questions

Definitions

Definition

A measure algebra is a pair $\langle B, \mu \rangle$, where B is a Boolean algebra and μ is a function assigning a cardinal to each element of B such that

- if $a \wedge b = \bot$, then $\mu(a \vee b) = \mu(a) + \mu(b)$, and
- $\mu(b) = 0$ iff $b = \bot$.

Definitions

Definition

A measure algebra is a pair $\langle B, \mu \rangle$, where B is a Boolean algebra and μ is a function assigning a cardinal to each element of B such that

- if $a \wedge b = \bot$, then $\mu(a \vee b) = \mu(a) + \mu(b)$, and
- $\mu(b) = 0$ iff $b = \bot$.

Definition

A comparison algebra $\langle B,\succeq \rangle$ is *represented by* a measure algebra $\langle B,\mu \rangle$ if for all $a,b\in B$, we have $a\succeq b$ iff $\mu(a)\geq \mu(b)$.

A representation theorem for finite sets

Theorem (Kraft, Pratt, Seidenberg)

For any finite comparison algebra $\langle B, \succeq \rangle$, it is represented by a measure algebra $\langle B, \mu \rangle$ where Range $(\mu) = \omega$ if and only if:

• for any two sequences of elements a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n from B, if every atom of B is below (in the order of the Boolean algebra) exactly as many a's as b's, and if $a_i \succeq b_i$ for all $i \in \{1, \ldots, n-1\}$, then $b_n \succeq a_n$.

A representation theorem for finite sets

Theorem (Kraft, Pratt, Seidenberg)

For any finite comparison algebra $\langle B, \succeq \rangle$, it is represented by a measure algebra $\langle B, \mu \rangle$ where Range $(\mu) = \omega$ if and only if:

• for any two sequences of elements a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n from B, if every atom of B is below (in the order of the Boolean algebra) exactly as many a's as b's, and if $a_i \succeq b_i$ for all $i \in \{1, \ldots, n-1\}$, then $b_n \succeq a_n$.

We call this condition "finite cancellation"

Finite cancellation illustrated

$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Finite cancellation illustrated

$$\begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} + \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 2\\1\\3\\2 \end{bmatrix} = \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix} + \begin{bmatrix} 1\\0\\1\\1\\0 \end{bmatrix}$$

• Then $|a_0| + |a_1| + |a_2| = |b_0| + |b_1| + |b_2|$.

Finite cancellation illustrated

$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

- Then $|a_0| + |a_1| + |a_2| = |b_0| + |b_1| + |b_2|$.
- Then if $|a_0| \ge |b_0|$ and $|a_1| \ge |b_1|$, we can't have $|a_2| > |b_2|$, which means $|b_2| \ge |a_2|$.

Let $\mathcal{B} = \langle \mathcal{B}, \succeq \rangle$ be a **finite** comparison algebra.

Let $\mathcal{B}=\langle B,\succeq \rangle$ be a **finite** comparison algebra. Suppose there is an $F\subseteq B$ such that the following conditions are satisfied:

1. *F* is an ideal;

- 1. *F* is an ideal;
- 2. elements in *F* satisfy the finite cancellation condition;

- 1. *F* is an ideal;
- 2. elements in F satisfy the finite cancellation condition;
- 3. for any $a,b,c\in B$ such that $a\not\in F$, if $a\succeq b$ and $a\succeq c$ then $a\succeq b\vee_B c$;

- 1. *F* is an ideal;
- 2. elements in F satisfy the finite cancellation condition;
- 3. for any $a, b, c \in B$ such that $a \notin F$, if $a \succeq b$ and $a \succeq c$ then $a \succeq b \vee_B c$;
- 4. for any $a, b \in B$, if $a \in F$ and $b \notin F$, then $b \succeq a$ and not $a \succeq b$.

Let $\mathcal{B}=\langle B,\succeq \rangle$ be a **finite** comparison algebra. Suppose there is an $F\subseteq B$ such that the following conditions are satisfied:

- 1. *F* is an ideal;
- 2. elements in F satisfy the finite cancellation condition;
- 3. for any $a, b, c \in B$ such that $a \notin F$, if $a \succeq b$ and $a \succeq c$ then $a \succeq b \vee_B c$;
- 4. for any $a, b \in B$, if $a \in F$ and $b \notin F$, then $b \succeq a$ and not $a \succeq b$.

Then \mathcal{B} is represented by a finite measure algebra $m(\mathcal{B}) = \langle \mathcal{B}, \mu \rangle$ such that $a \in \mathcal{F}$ iff $\mu(a)$ is finite.

Plan

Introduction

Laws common to finite and infinite sets

A representation theorem

Logic with predicates for finite and infinite sets

Eliminating extra predicates

Further questions

The logic with extra predicates (With FC)

- 1. $\operatorname{Fin}(s) \oplus \operatorname{Inf}(s)$;
- 2. $\bigwedge_i \operatorname{Fin}(s_i) \to \operatorname{Fin}(\bigcup_i s_i)$; $(\operatorname{Fin}(t) \land s \subseteq t) \to \operatorname{Fin}(s)$;
- 3. $(\operatorname{Fin}(s) \wedge \operatorname{Inf}(t)) \rightarrow |t| > |s|;$
- 4. $Inf(s) \to ((|s| \ge |t| \land |s| \ge |u|) \to |s| \ge |t \cup u|);$
- 5. $\bigwedge_{i=1}^{n} (\operatorname{Fin}(s_i) \wedge \operatorname{Fin}(t_i)) \to \mathsf{FC}(s_1, \dots, s_n, t_1, \dots, t_n),$

The logic with extra predicates (With Polarizability rule)

- 1. $\operatorname{Fin}(s) \oplus \operatorname{Inf}(s)$;
- 2. $\bigwedge_i \operatorname{Fin}(s_i) \to \operatorname{Fin}(\bigcup_i s_i)$; $(\operatorname{Fin}(t) \land s \subseteq t) \to \operatorname{Fin}(s)$;
- 3. $(\operatorname{Fin}(s) \wedge \operatorname{Inf}(t)) \rightarrow |t| > |s|;$
- 4. $\inf(s) \to ((|s| \ge |t| \land |s| \ge |u|) \to |s| \ge |t \cup u|);$
- 5. $(\operatorname{Fin}(s) \wedge \operatorname{Fin}(t)) \to (|s| \ge |t| \leftrightarrow |s \cap t^c| \ge |t \cap s^c|);$
- 6. where a|t abbreviates $|t \cap a| = |t \cap a^c|$ for $a \in \Phi$, if $a|t \to \phi$ is derivable, then ϕ is derivable, assuming that a does not occur in t or in ϕ .

The logic with extra predicates (With Polarizability rule)

- 1. $\operatorname{Fin}(s) \oplus \operatorname{Inf}(s)$;
- 2. $\bigwedge_i \operatorname{Fin}(s_i) \to \operatorname{Fin}(\bigcup_i s_i)$; $(\operatorname{Fin}(t) \land s \subseteq t) \to \operatorname{Fin}(s)$;
- 3. $(\operatorname{Fin}(s) \wedge \operatorname{Inf}(t)) \rightarrow |t| > |s|;$
- 4. $Inf(s) \to ((|s| \ge |t| \land |s| \ge |u|) \to |s| \ge |t \cup u|);$
- 5. $(\operatorname{Fin}(s) \wedge \operatorname{Fin}(t)) \to (|s| \ge |t| \leftrightarrow |s \cap t^c| \ge |t \cap s^c|);$
- 6. where a|t abbreviates $|t \cap a| = |t \cap a^c|$ for $a \in \Phi$, if $a|t \to \phi$ is derivable, then ϕ is derivable, assuming that a does not occur in t or in ϕ . $\varphi(0)$, $\varphi(1)$, $\varphi(2)$, $\varphi(3)$, $\varphi(4)$, $\varphi(5)$, $\varphi(6)$, ...

The logic with extra predicates (With Polarizability rule)

- 1. $\operatorname{Fin}(s) \oplus \operatorname{Inf}(s)$;
- 2. $\bigwedge_i \operatorname{Fin}(s_i) \to \operatorname{Fin}(\bigcup_i s_i)$; $(\operatorname{Fin}(t) \land s \subseteq t) \to \operatorname{Fin}(s)$;
- 3. $(\operatorname{Fin}(s) \wedge \operatorname{Inf}(t)) \rightarrow |t| > |s|;$
- 4. $Inf(s) \to ((|s| \ge |t| \land |s| \ge |u|) \to |s| \ge |t \cup u|);$
- 5. $(\operatorname{Fin}(s) \wedge \operatorname{Fin}(t)) \to (|s| \ge |t| \leftrightarrow |s \cap t^c| \ge |t \cap s^c|);$
- 6. where a|t abbreviates $|t \cap a| = |t \cap a^c|$ for $a \in \Phi$, if $a|t \to \phi$ is derivable, then ϕ is derivable, assuming that a does not occur in t or in ϕ . $\varphi(0)$, $\varphi(2)$, $\varphi(4)$, $\varphi(6)$, ...

In sum, a complete logic can be made from the following:

• Basic comparison rules.

In sum, a complete logic can be made from the following:

- Basic comparison rules.
- Axioms (rules) for finite sets.

In sum, a complete logic can be made from the following:

- Basic comparison rules.
- Axioms (rules) for finite sets.
- Axioms for infinite sets.

In sum, a complete logic can be made from the following:

- Basic comparison rules.
- Axioms (rules) for finite sets.
- Axioms for infinite sets.
- Some simple interaction between finite and infinite sets.

In sum, a complete logic can be made from the following:

- Basic comparison rules.
- Axioms (rules) for finite sets.
- Axioms for infinite sets.
- Some simple interaction between finite and infinite sets.

But that's assuming that we can distinguish finite and infinite sets, which uses two extra predicates.

Plan

Introduction

Laws common to finite and infinite sets

A representation theorem

Logic with predicates for finite and infinite sets

Eliminating extra predicates

Further questions

Defining finiteness and infiniteness

Can we define Fin and Inf in the language of pure cardinality comparison?

Defining finiteness and infiniteness

Can we define Fin and Inf in the language of pure cardinality comparison?

No. There are models that satisfy exactly the same formulas in \mathcal{L} , but one has only infinite sets and the other has a finite set.

Undefinability

Undefinability

Flexible algebras

We call a finite measure algebra $\langle B, \mu \rangle$ flexible when:

- There is a strictly smallest atom.
- Any element (except the bottom element) is equally large to the largest atom below it.
- Equivalently, there is at most one finite but non-empty element (which must be the strictly smallest atom).

Flexible algebras

We call a finite measure algebra $\langle B, \mu \rangle$ flexible when:

- There is a strictly smallest atom.
- Any element (except the bottom element) is equally large to the largest atom below it.
- Equivalently, there is at most one finite but non-empty element (which must be the strictly smallest atom).

For any flexible measure algebra $\langle B, \mu \rangle$ and any cardinal κ , there exists a flexible measure algebra $\langle B, \mu' \rangle$ such that

- μ (the smallest atom) = κ ;
- For any $a, b \in B$, $\mu(a) \ge \mu(b)$ iff $\mu'(a) \ge \mu'(b)$;
- $\langle B, \mu, V \rangle \equiv_{\mathcal{L}} \langle B, \mu', V \rangle$ for any valuation V.

We must do our best.

We must do our best. Perhaps flexible models are the only models where finiteness can't be defined?

When $\Delta \subseteq \Phi$ is finite, define $\operatorname{Fin}_{\Delta}(u)$ for any set term $u \in T(\Delta)$ as:

$$\bigvee_{\substack{R \subseteq T_0(\Delta) \\ S, T \in T_0(\Delta)^{|R|}}} \begin{cases} u = \bigcup_{i=1}^{|R|} r_i \\ \bigwedge_{i=1}^{|R|} \begin{cases} |s_i \cup t_i| > |s_i| \ge |t_i| \\ |s_i \cup t_i| \ge |r_i| \end{cases}$$

Here r_i ranges over elements in R, and s_i , t_i range over the elements in sequences S and T, respectively.

When $\Delta \subseteq \Phi$ is finite, define $Fin_{\Delta}(u)$ for any set term $u \in T(\Delta)$ as:

$$\bigvee_{\substack{R \subseteq T_0(\Delta) \\ S, T \in T_0(\Delta)^{|R|}}} \begin{cases} u = \bigcup_{i=1}^{|R|} r_i \\ \bigwedge_{i=1}^{|R|} \begin{cases} |s_i \cup t_i| > |s_i| \ge |t_i| \\ |s_i \cup t_i| \ge |r_i| \end{cases}$$
 Here r_i anges over elements in R , and s_i , t_i range over the

There exists uences S and T, respectively. ri, si, ti's

When $\Delta \subseteq \Phi$ is finite, define $\operatorname{Fin}_{\Delta}(u)$ union of r_i 's $u \in T(\Delta)$ as: as: $\bigvee_{\substack{R \subseteq T_0(\Delta) \\ S, T \in T_0(\Delta)^{|R|}}} \begin{cases} u = \bigcup_{i=1}^{|R|} r_i \\ \bigwedge_{i=1}^{|R|} \begin{cases} |s_i \cup t_i| > |s_i| \ge |t_i| \\ |s_i \cup t_i| \ge |r_i| \end{cases}$ Here r_i anges over elements in R, and s_i , t_i range over the There exists uences S and T, respectively. r_i, s_i, t_i 's

When $\Delta \subseteq \Phi$ is finite, define $Inf_{\Delta}(u) := for$ any set term $u \in \mathcal{T}(\Delta)$ as:

$$\bigvee_{s,t\in T_0(\Delta)} (t\not\subseteq s \ \land \ |u|\geq |s|\geq |s\cup t|)$$

Definition works

For any measure algebra model $\langle B, \mu, V \rangle$ such that every element is named by a term in $T(\Delta)$, namely $V(T(\Delta)) = B$:

- If $\operatorname{Fin}_{\Delta}(u)$ is true, then $\mu(\widehat{V}(u))$ is finite.
- If $Inf_{\Delta}(u)$ is true, then $\mu(\widehat{V}(u))$ is infinite.
- $\operatorname{Fin}_{\Delta}(u)$ and $\operatorname{Inf}_{\Delta}(u)$ can't be both true.
- If they are both false, then $\langle B, \mu \rangle$ is flexible, and $\widehat{V}(u)$ is the smallest atom.
- $(s \subseteq t \land \mathsf{Fin}(t)) \to \mathsf{Fin}(s)$ and $(\mathsf{Fin}(s) \land \mathsf{Fin}(t)) \to \mathsf{Fin}(s \cup t)$ are derivable in BasicCompLogic.

The axioms

Definition

Where $\Delta \subseteq \Phi$ is finite, define Axiom(Δ) as the set containing all of the following formulas for all $u, s, t \in T_0(\Delta)$:

- 1. $\neg(\operatorname{Fin}_{\Delta}(u) \wedge \operatorname{Inf}_{\Delta}(u))$;
- 2. $(\neg \mathsf{Fin}_{\Delta}(u) \land \neg \mathsf{Inf}_{\Delta}(u)) \rightarrow$

$$\bigwedge_{t\in T_0(\Delta)}(|u|\geq |t|\to (t=\varnothing\vee t=u));$$

- 3. $(\operatorname{Fin}_{\Delta}(s) \wedge \operatorname{Fin}_{\Delta}(t)) \rightarrow (|s| \geq |t| \leftrightarrow |s \cap t^c| \geq |t \cap s^c|);$
- 4. $\operatorname{Inf}_{\Delta}(u) \rightarrow ((|u| \geq |s| \land |u| \geq |t|) \rightarrow |u| \geq |s \cup t|);$
- 5. $(\operatorname{Inf}_{\Delta}(s) \wedge \operatorname{Fin}_{\Delta}(t)) \rightarrow |s| > |t|$.

The logic

Definition

Let CardCompLogic be the logic for \mathcal{L} with the following axioms and rules:

- 1. all axioms and rules in BasicCompLogic;
- 2. for any finite $\Delta \subseteq \Phi$, all formulas in Axioms(Δ);
- 3. the polarizability rule (A7).

Proof sketch

Pick a φ consistent with CardCompLogic, take $\Delta = var(\varphi)$:

- 1. Extend it to Σ maximally consistent in CardCompLogic.
- 2. Σ is also maximally consistent with BasicCompLogic. Get canonical comparison model \mathcal{C} .
- 3. Restrict C to terms in $T(\Delta)$, get B.
- 4. $\mathcal{B} \models \mathsf{Axiom}(\Delta)$ and also $\mathsf{Fin}(\vec{s}) \to \mathsf{FC}(\vec{s})$. Use the terms with Fin as finite elements. Apply representation theorem and get measure algebra model $\mathcal{M} \equiv_{\mathcal{L}} \mathcal{B}$.
- 5. $\mathcal{M} \models \varphi$. So φ is satisfiable.

Conclusion

The logic of cardinal comparison on arbitrary fields of sets can be axiomatized by putting together

- a basic system for orderings extending the inclusion ordering;
- a working definition for finiteness and infiniteness based on witnesses;
- characteristic axioms and rules for finite and infinite sets.

The axiomatization is weak; the logic is non-compact. We use finite Boolean algebras in an essential way.

Plan

Introduction

Laws common to finite and infinite sets

A representation theorem

Logic with predicates for finite and infinite sets

Eliminating extra predicates

Further questions

Representation theorems in the infinite:

Representation theorems in the infinite:

• A field of sets $\langle X, \mathcal{F} \rangle$ (\mathcal{F} possibly infinite) naturally give rise to a measure algebra $\langle \mathcal{B}, \mu \rangle$. The \mathcal{B} part can be arbitrary due to Stone duality. But what about μ ?

Representation theorems in the infinite:

- A field of sets $\langle X, \mathcal{F} \rangle$ (\mathcal{F} possibly infinite) naturally give rise to a measure algebra $\langle \mathcal{B}, \mu \rangle$. The \mathcal{B} part can be arbitrary due to Stone duality. But what about μ ?
- Same question for $\langle \mathcal{B}, \succeq \rangle$. What conditions must \succeq satisfy?

Representation theorems in the infinite:

- A field of sets $\langle X, \mathcal{F} \rangle$ (\mathcal{F} possibly infinite) naturally give rise to a measure algebra $\langle \mathcal{B}, \mu \rangle$. The \mathcal{B} part can be arbitrary due to Stone duality. But what about μ ?
- Same question for $\langle \mathcal{B}, \succeq \rangle$. What conditions must \succeq satisfy?

Our logic is not strongly complete, as it is finitary but not compact. What is the strongly complete logic?

Non-compactness

The problem of finiteness:

$$\{|s_n| < |s_{n+1}| \mid n \in \omega\} \cup \{|s_n| \le |t| \mid n \in \omega\} \cup \{Fin(t)\}.$$

The problem of well-foundedness:

$$\{|s_{n+1}|<|s_n|\mid n\in\omega\}.$$

The problem of discreteness:

$$\begin{aligned} & \mathsf{Disjoint}\{t_i, s_i \mid i \in \omega\} \cup \\ & \{|t_i| = |t_j|, |s_i| = |s_j| \mid i, j \in \omega\} \cup \\ & \{|\cup_{i < m_1} t_i| < |\cup_{i < n} s_i| < |\cup_{i < m_2} t_i| \mid \left(\frac{m_1}{n}, \frac{m_2}{n}\right) \overset{\mathsf{lim}}{\to} \sqrt{2}\}. \end{aligned}$$

Thank You.

Definition of FC

Definition

For each sequence of n terms $\vec{s} = \langle s_0, \cdots, s_{n-1} \rangle$ and $f \in {}^{n}2$, define

$$\vec{s}[f] = \bigcap \{ s_i \mid f(i) = 1 \} \cap \bigcap \{ s_i^c \mid f(i) = 0 \},$$

$$N_m(\vec{s}) = \bigcup \{ \vec{s}[f] \mid f : n \to 2 \text{ and } |f^{-1}(1)| = m \}.$$

Given two sequences \vec{s} and \vec{t} of n terms, define

$$ec{s} \to ec{t} = igwedge_{0 \le i \le n} (\mathsf{N}_i(ec{s}) = \mathsf{N}_i(ec{t})),$$
 $\mathsf{FC}(ec{s}, ec{t}) = ec{s} \to ec{t} \to ((igwedge_{i < n-1} |s_i| \ge |t_i|) \to |t_{n-1}| \ge |s_{n-1}|).$

Polarization

With polarization, we can almost do set addition:

Polarization

With polarization, we can almost do set addition:

Polarization

With polarization, we can almost do set addition:

