#### **PYTHON DISTRIBUTIONS**

### **Imports**

import numpy as np import scipy.stats as stats import matplotlib.pyplot as plt %matplotlib inline import matplotlib as mpl mpl.rcParams.update({ 'font.size': 20.0, 'axes.titlesize': 'small', 'axes.labelsize': 'small', 'ytick.labelsize': 'small', 'ytick.labelsize': 'small' })

# **Plot Discrete Distribution**

def plot discrete(dist):

dist.ppf(0.99)+1)

fig, ax = plt.subplots(2, 1, sharex=True, figsize=(4, 5)) # Plot hist rvs = dist.rvs(size=1000) w = np.ones\_like(rvs)/ float(len(rvs)) ax[0].hist(rvs, weights=w, alpha=0.2, histtype='stepfilled') # Plot pmf. k = np.arange(dist.ppf(0.01),

ax[0].plot(k, dist.pmf(k), 'bo',
lw=2);
ax[0].set\_title(
dist.dist.name.title() + ' PMF')
ax[0].set\_ylabel('p(X=k)')
# Plot cdf.
ax[1].plot(k, dist.cdf(k), 'bo',
lw=2);

lw=2);
ax[1].set\_title(
dist.dist.name.title() + ' CDF')
ax[1].set\_vlabel('p(X<=k)')</pre>

ax[1].set\_xlabel('k');
return (fig, ax)

# **Plot Continuous Distribution**

def plot\_continuous(dist):
 fig, ax = plt.subplots(2, 1,
 sharex=True, figsize=(4, 5))
# Plot hist
 rvs = dist.rvs(size=1000)
 ax[0].hist(rvs, normed=True,
 alpha=0.2, histtype='stepfilled')

# **Plot Continuous (Continued)**

# Plot pdf.

x=np.linspace(dist.ppf(0.01), dist.ppf(0.99), 50) ax[0].plot(x, dist.pdf(x), '-', lw=2); ax[0].set\_title( dist.dist.name.title() + ' PDF') ax[0].set\_ylabel('p(X=x)') # Plot cdf. ax[1].plot(x, dist.cdf(x), '-', lw=2); ax[1].set\_title( dist.dist.name.title() + ' CDF') ax[1].set\_ylabel('p(X<=x)') ax[1].set\_xlabel('x'); return (fig, ax)

## Bernoulli (Discrete)

### Models

One instance of a success or failure trial, e.g. (possibly unfair) coin toss.

## **Parameters**

p - probability of success.

k - failure or success, i.e. {0,1}, observation.

### **Create and Plot**

bernoulli = stats.bernoulli(p=0.6) plot\_discrete(bernoulli)



## **Binomial (Discrete)**

### Models

Number of successes out of a number of Bernoulli trials with replacement., e.g. number of coin flips out of 100 that turn out to be heads.

# **Binomial (Continued)**

### **Parameters**

p - probability of success (each trial).

n - number of independent trials.

k - observed number of successes

### **Create and Plot**

binomial=stats.binom(n=10,p=0.6) plot discrete(binomial)



# Geometric (Discrete)

### Models

Number of Bernoulli trials until first success, e.g. number of trials until coin flip turns out to be heads.

### **Parameters**

p - probability of success (each trial).

k - observed trials until success.

## **Create and Plot**

geometric = stats.geom(p=0.5)
plot\_discrete(geometric)



## Poisson (Discrete)

#### Models

Number of events occurring in a fixed interval, e.g. number of taxis passing a street corner in a given hour (on avg. 10/hr).

### **Parameters**

lambda - average number of independent events per interval. k - events observed in an interval.

#### **Create and Plot**

lam = 4 # lambda

poisson = stats.poisson(mu=lam)
plot\_discrete(poisson)



# **Exponential (Continuous)**

# Models

Time between poisson events, e.g. time until taxi will pass street corner.

### **Parameters**

lambda - average number of independent events per interval.

x - observed time between events.

# **Create and Plot**

lam = 1 # lambda

exponential =

stats.expon(scale=1/lam)

plot continuous(exponential)

## **Central Limit Theorem**

Means of random samples drawn from any distribution will have an approximately normal distribution.

# **Exponential (Continued)**



# **Uniform (Continuous)**

### Models

Equally likely outcomes in the interval a to b, e.g. degrees between hour and minute hand.

#### **Parameters**

a - minimum value.

b - maximum value.

x - observed value.

### **Create and Plot**

a,b = 1,2

uniform = stats.uniform(loc=a, scale=b-a)

plot continuous(uniform)



# Gaussian (Continuous)

#### Models

A bell curve, e.g. IQ score.

# Gaussian (Continued)

### **Parameters**

mu - mean or expectation. sigma - standard deviation.

x - observed value.

### **Create and Plot**

mu, sigma = 0, 1

gaussian=stats.norm(loc=mu,scale =sigma)

plot\_continuous(gaussian)



# Weibull (Continuous)

### Models

Time between events when rate is **not** constant, e.g. time-to-failure when rate of failure increases or decreases over time.

# Gamma (Continuous)

## Models

Waiting time between Poisson distributed events. Used when waiting times between events are relevant, e.g. aggregate insurance claims or the amount of rainfall accumulated in a reservoir.

# **Hypergeometric (Discrete)**

### Models

Number of successes out of a number of success or failure trials without replacement, e.g. Number of times you draw a black ball from an urn of black and white balls without putting any back.