Discrete Mathematics by Rafał Jaworski based on materials prepared by Joanna Pomianowska

First substitution rule

If **P** is a tautology, then any logical variable in this sentence (e.g. p) can be replaced with any other sentence (e.g. $q \rightarrow r$) and P remains a tautology.

Example

In the law of De Morgan $\sim (p \land q) \Leftrightarrow (\sim p \lor \sim q)$ let's substitute p with $q \to r$:

$$\sim [(q \to r) \land q] \Leftrightarrow [\sim (q \to r) \lor \sim q].$$

By logical matrix:

p	\overline{q}	r	$\sim [(q \to r) \land q]$			\Leftrightarrow	$[\sim (q \to r) \lor \sim q]$
0	0	0	1	. 1	0	1	0 1 11
0	0	1	1	1	0	1	1 1 1 1
0	1	0	1	0	0	1	1 0 10
0	1	1	0	1	1	1	0 1 00
1	0	0	1	1	0	1	0 1 11
1	0	1	1	1	0	1	0 1 11
1	1	0	1	0	0	1	1 0 10
1	1	1	0	1	1	1	0 1 00

we verify that the new sentence is also a tautology.

Second substitution rule

If the sentence P contains Q and if we substitute Q with a sentence equivalent to Q, then the new sentence will be equivalent to P.

Example

In modus tollendo tollens $[(p \to q) \land \sim q] \Rightarrow \sim p$ let's substiture $p \to q$ with equivalent $(\sim p \lor q)$ (law 10 $(p \to q) \Leftrightarrow (\sim p \lor q)$), to obtain:

$$[(\sim \mathbf{p} \vee \mathbf{q}) \wedge \sim q] \Rightarrow \sim p,$$

which is equivalent to the original $[(p \to q) \land \sim q] \Rightarrow \sim p$. Because the original sentence was a tautology, the modified sentence is also a tautology.

If there were more than one occurences of $p \to q$, in the original sentence, we could substitute all these occurences or only some and the modified sentence would still be equivalent to the original.

Discrete Mathematics by Rafał Jaworski based on materials prepared by Joanna Pomianowska

Inferring rules

1.
$$\frac{P}{P \vee Q}$$
 introduction of alternative

2.
$$P \wedge Q$$

 $\therefore \overline{P}$ ommiting conjunction

3.
$$P$$

$$P \rightarrow Q$$

$$\frac{P \rightarrow Q}{Q}$$
modus ponendo ponens

4.
$$P \rightarrow Q$$

$$\sim Q$$

$$\therefore \overline{\sim P}$$
 modus tollendo tollens

5.
$$P \lor Q$$

$$\begin{array}{c} \sim P \\ \therefore \overline{Q} \end{array}$$
 modus ponendo tollens

6.
$$P \rightarrow Q$$

$$Q \rightarrow R$$

$$\therefore \overline{P \rightarrow R}$$
 hipothetical syllogism

7.
$$P \\ \frac{Q}{P \wedge Q}$$
 introduction of conjunction