QXMD Hands-on Session

Session instructors: Anikeya Aditya, Hinata Hokyo, Taufeq Razakh, Logan Yamamoto, Suryakanti Debata

Collaboratory for Advanced Computing & Simulations

University of Southern California

CyberMAGICS Workshop

June 25, 2024

Outline for QXMD Hands-on

- 1. Optimize Water Structure
- 2. Adiabatic Quantum Molecular Dynamics (QMD)
- 3. Non-adiabatic Quantum Molecular Dynamics (NAQMD)

1. Optimize Water Structure

We will use QXMD to optimize water molecule

1. Optimization Input File

```
*molecular dynamics
                                                                   IN.PARAM
(method)
                              : (ifmd)
                                  0:non, 1:optimization, 2:NVE, 3:NVT, 4:NPT
(time step)
                              : (dtmd, nstop) time step, total step
  0.1d0
          100
(optimization)
                              : only for structural optimization (ifmd == 1)
    2
                              : (ioptmze)
                                -1: do not optimize atomic coordinates
                                  0: Conjugate gradient
                                  1: Projected velocity Verlet
                                 2: Quasi-Newton method with BFGS formula
(output data)
                              : only for MD nodes
                              : (ioskip) skip step
                              : (locoor) .true. = output scaled coordinates
 .true.
                              : (lovelo) .true. = output scaled velocities
 .true.
                              : (loforc) .true. = output scaled forces
 .true.
(tolerance)
                              : tolerance for CG optimization (ifmd == 1)
 1.d-07
                              : (tol_energy) energy/atom in [a.u.]
 5.d-04
                              : (tol_force ) max. force in [a.u.]
*end
```

2. Adiabatic Quantum Molecular Dynamics (QMD)

We will run a QMD simulation in NVE ensemble for the water molecule

2.QMD Input File

```
*molecular dynamics
                                                                  IN.PARAM
(method)
   2
                              : (ifmd)
                                  0:non, 1:optimization, 2:NVE, 3:NVT, 4:NPT
(time step)
  10.0d0 300
                              : (dtmd, nstop) time step, total step
(temperature)
                              : only for real dynamics (NVE-, NVT-, NPT-MD )
  300.d0
                              : (treg) temperature in [K]
(check temperature)
  .false.
                              : (liscale) .true. = Do it !
                              : (iscnum) number of temperature check
  25
  20
                              : (iscstp) skip step
(output data)
                              : only for MD nodes
                              : (ioskip) skip step
                              : (locoor) .true. = output scaled coordinates
 .true.
                              : (lovelo) .true. = output scaled velocities
 .true.
                              : (loforc) .true. = output scaled forces
 .true.
*end
```

3. Non-adiabatic Quantum Molecular Dynamics (NAQMD)

 We will perform excited state dynamics with an electron and hole pair excited in the water molecule and evaluate bond length and bond angle.

QMD Simulation

NAQMD Simulation

3.NAQMD Input File

```
*TDDFT-MD
                                                                          IN.PARAM
(how of it)
.true.
                               : (ltddft) .true. = execute MD based on TDDFT
(FSSH)
                               : (ltddft_fssh) .true. = FSSH, .false. = Ehrenfest
 .true.
(FSSH-ground-state-SCF)
                                 (lfssh_gsscf) .true. = SCF with the ground state
 .true.
                                                .false. = SCF with the excited state
(FSSH-mixing charge)
                               : only for lfssh gsscf = .true.
   0.8d0 0.13d0
                               : (aslh_fssh, bslh_fssh)
(time step)
   0.04d0
                               : (dttddft) time step in [Hartree a.u.] in TDDFT-FSSH
(restart)
 .false.
                                 (ltddft_start) .true. = restart
(FSSH-random-initialize)
                               : (lfssh_random) .true. = manual, .false. = automatic
 .true.
 1119041003.0000000
                               : (rseed_fssh) only for lfssh_random = .true.
(occupations)
                               : (nocc_change) # of occupations to be changed
      1.0 0.0 \rightarrow \text{Hole}
                               : (numband, occ_new) band index, occupations(up&down)
       1.0 0.0 \rightarrow Electron
                               : (numband, occ_new) band index, occupations(up&down)
*end
```

```
\begin{array}{cccc}
6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & ---
```