生信分析报告

基于典学校.	RNA	测序数据	预测早期肺癌潜在
•	4	三物标志物	

单 号: BSXG240327

分析类型:______补充分析

受托人: 杭州铂赛生物科技有限公司

Contents

1	分析	流程	1
2	材料	和方法	1
	2.1	数据分析平台	1
	2.2	Biomart 基因注释 (Dataset: ALL)	2
	2.3	Limma 差异分析 (Dataset: MRNA)	2
	2.4	Mfuzz 聚类分析 (Dataset: MRNA)	2
	2.5	富集分析 (Dataset: MRNA)	2
	2.6	TCGA 数据获取 (Dataset: LUSC)	2
	2.7	Survival 生存分析 (Dataset: LUSC)	2
	2.8	COX 回归 (Dataset: PROG)	2
	2.9	GEO 数据获取 (Dataset: LUSC)	2
	2.10	Survival 生存分析 (Dataset: GEO_LUSC)	3
	2.11	estimate 免疫评分 (Dataset: LUSC)	3
	2.12	Limma 差异分析 (Dataset: LNCRNA)	3
3	分析	结果	3
	3.1	Limma 差异分析 (MRNA)	3
	3.2	Mfuzz 聚类分析 (MRNA)	10
	3.3	富集分析 (MRNA)	11
	3.4	TCGA 数据获取 (LUSC)	14
	3.5	COX 回归 (LUSC)	14
	3.6	Survival 生存分析 (LUSC)	19
	3.7	COX 回归 (Prognosis)	23
	3.8	GEO 数据获取 (GEO_LUSC)	25
	3.9	Survival 生存分析 (GEO_LUSC)	30
	3.10	estimate 免疫评分 (LUSC)	34
	3.11	Limma 差异分析 (LNCRNA)	36
	3.12	关联分析 (MRNA, LNCRNA)	37
	3.13	实验验证	39
4	总结		39
Re	efere	nce	39

List of Figures

1	Unnamed chunk 7	1
2	MRNA Heatmap of DEGs	5
3	MRNA Early stage vs Healthy	6
4	MRNA Advanced stage vs Healthy	7
5	MRNA Advanced stage vs Early stage	8
6	MRNA Difference intersection	9
7	MRNA Mfuzz clusters	10
8	MRNA up KEGG enrichment	11
9	MRNA up GO enrichment	12
10	MRNA down KEGG enrichment	13
11	MRNA down GO enrichment	14
12	LUSC Group distribution	17
13	LUSC Top Features Selected By EFS	18
14	LUSC risk score related genes heatmap	20
15	LUSC survival curve of risk score	21
16	LUSC time ROC	22
17	LUSC boxplot of risk score	23
18	GEO LUSC risk score related genes heatmap	31
19	GEO LUSC boxplot of risk score	32
20	GEO LUSC time ROC	33
21	GEO LUSC survival curve of risk score	34
22	LUSC immune Scores Plot	35
23	LUSC Top10 Immune Related Genes	35
24	LNCRNA Difference intersection	37
25	Significant Correlation mrna lncRNA	38
	`````````````````````````````````	
ict	of Tables	

1	MRNA metadata	4
3	LUSC metadata	10
4	LUSC Uni COX cofficients filtered by EFS	19
6	META Coefficients Of COX	2
0	LUCC CCF157010 metadeta	21

9 Significant correlation		39
---------------------------	--	----

1 分析流程

该分析思路与 (2023, IF:4.8, Q1, Biomolecules)¹ 相似。

Figure 1: Unnamed chunk 7

2 材料和方法

2.1 数据分析平台

在 Linux pop-os x86_64 (6.9.3-76060903-generic) 上,使用 R version 4.4.2 (2024-10-31) (https://www.r-project.org/) 对数据统计分析与整合分析。

2.2 Biomart 基因注释 (Dataset: ALL)

以 R 包 biomaRt (2.62.0) 对基因进行注释,获取各数据库 ID 或注释信息,以备后续分析。

2.3 Limma 差异分析 (Dataset: MRNA)

以R包limma (3.62.1) (2005, **IF**:, ,)² edgeR (4.4.0) (, **IF**:, ,)³ 进行差异分析。以 edgeR::filterByExpr 过于 count 数量小于 10 的基因。以 edgeR::calcNormFactors, limma::voom 转化 count 数据为 log2 countsper-million (logCPM)。分析方法参考 https://bioconductor.org/packages/release/workflows/vignettes/RN Aseq123/inst/doc/limmaWorkflow.html。使用 limma::lmFit, limma::contrasts.fit, limma::eBayes 差异分析对比组: Early_stage vs Healthy, Advanced_stage vs Healthy, Advanced_stage vs Early_stage。以 limma::topTable 提取所有结果,并过滤得到 adj.P.Val 小于 0.05,|Log2(FC)| 大于 1 的统计结果。

2.4 Mfuzz 聚类分析 (Dataset: MRNA)

以 R 包 Mfuzz (2.66.0) (, **IF:**, ,)⁴ 对基因聚类分析,设定 fuzzification 参数为 3.73540696993324 (以 Mfuzz::mestimate 预估) , 得到 8 个聚类。

2.5 富集分析 (Dataset: MRNA)

以 ClusterProfiler R 包 (4.15.0.2) (2021, **IF:33.2**, Q1, The Innovation)⁵ 进行 KEGG 和 GO 富集分析。

2.6 TCGA 数据获取 (Dataset: LUSC)

以R包 TCGAbiolinks (2.34.0) (2015, IF:16.6, Q1, Nucleic Acids Research)⁶ 获取 TCGA 数据集。

以 R 包 EFS (1.0.3) (2017, **IF:4**, Q1, BioData Mining)⁷ 筛选关键基因。以 R 包 survival (3.7.0) 进行单因素 COX 回归 (survival::coxph)。筛选 Pr(>|z|) < .05' 的基因。

数据源自 TCGA-LUSC, 筛选 AJCC Stage (ajcc_pathologic_stage) 为 Stage I, Stage II 的病人, 并且 days_to_last_follow_up 大于 10 天, 且为肿瘤组织的样本。

2.7 Survival 生存分析 (Dataset: LUSC)

将 Univariate COX 回归系数用于风险评分计算,根据中位风险评分 0.0797187407744678 将患者分为低危组和高危组。以 R 包 survival (3.7.0) 生存分析,以 R 包 survminer (0.5.0) 绘制生存曲线。以 R 包 timeROC (0.4) 绘制 1, 3, 5 年生存曲线。

2.8 COX 回归 (Dataset: PROG)

以 R 包 survival (3.7.0) 做多因素 COX 回归 (survival::coxph)。

2.9 GEO 数据获取 (Dataset: LUSC)

以 R 包 GEOquery (2.74.0) 获取 GSE157010 数据集。

2.10 Survival 生存分析 (Dataset: GEO_LUSC)

将 Univariate COX 回归系数用于风险评分计算,根据中位风险评分 0.0418674487761947 将患者分为低危组和高危组。以 R 包 survival (3.7.0) 生存分析,以 R 包 survminer (0.5.0) 绘制生存曲线。以 R 包 timeROC (0.4) 绘制 1, 3, 5 年生存曲线。

2.11 estimate 免疫评分 (Dataset: LUSC)

以 R 包 estimate (1.0.13) (2013, **IF:14.7**, Q1, Nature communications)⁸ 预测数据集的 stromal, immune, estimate 得分。从 TISIDB (, **IF:**, ,)⁹ 数据库下载的 178 个基因 (genes encoding immunomodulators and chemokines) 比较表达量差异。

2.12 Limma 差异分析 (Dataset: LNCRNA)

以R包limma (3.62.1) (2005, **IF**:, ,)² edgeR (4.4.0) (, **IF**:, ,)³ 进行差异分析。以 edgeR::filterByExpr 过于 count 数量小于 10 的基因。以 edgeR::calcNormFactors, limma::voom 转化 count 数据为 log2 countsper-million (logCPM)。分析方法参考 https://bioconductor.org/packages/release/workflows/vignettes/RN Aseq123/inst/doc/limmaWorkflow.html。随后,以公式 ~ 0 + group + batch 创建设计矩阵 (design matrix) 用于线性分析。使用 limma::lmFit, limma::contrasts.fit, limma::eBayes 差异分析对比组: Early_stage vs Healthy, Advanced_stage vs Early_stage。以 limma::topTable 提取所有结果,并过滤得到 adj.P.Val 小于 0.05,|Log2(FC)| 大于 1 的统计结果。

3 分析结果

3.1 Limma 差异分析 (MRNA)

肝癌 RNA-seq, 共 247 个样本, 分 3 组, 分别为 Advanced_stage (65), Early_stage (101), Healthy (81)。元数据见 Tab. 1。对基因注释后, 获取 mRNA 数据差异分析。差异分析 Early_stage vs Healthy, Advanced_stage vs Early_stage (若 A vs B, 则为前者比后者, LogFC 大于 0时, A 表达量高于 B) 得到的 DEGs 统计见 Fig. 6。所有 DEGs 表达特征见 Fig. 2。所有上调 DEGs 有 539个,下调共 781;一共 1278个 (非重复)。

Table 1 (下方表格) 为表格 MRNA metadata 概览。

(对应文件为 Figure+Table/MRNA-metadata.csv)

注:表格共有 247 行 6 列,以下预览的表格可能省略部分数据;含有 247 个唯一'sample'。

Table 1: MRNA metadata

sample	group	lib.size	norm.factors	rownames	batch
X180622CMQ	Early_stage	14419487	1	180622CMQ-907	1806
X180622HLQ	Early_stage	13558462	1	180622 HLQ- 908	1806
X180622LSF	Early_stage	16935778	1	180622LSF-902	1806
X180622SRD	Early_stage	16297826	1	180622SRD- 906	1806
X180622YRQ	Early_stage	17343112	1	180622 YRQ - 903	1806
X180623WMC	Early_stage	16088883	1	180623WMC-911	1806
X180626XMH	Early_stage	20035739	1	180626XMH- 915	1806
X180627CSY	Early_stage	17851721	1	180627CSY-918	1806
X180627XYJ	Early_stage	18398673	1	180627XYJ-917	1806
X180628LJH	Early_stage	11784847	1	180628 LJH- 902	1806
X180705LLF	Early_stage	18773735	1	180705LLF-915	1807
X180705WWP	Early_stage	14747138	1	180705WWP-912	1807
X180705ZQY	Early_stage	15490310	1	180705ZQY-911	1807
X180705ZZX	Early_stage	18523030	1	180705ZZX-913	1807
X180707CZM	Early_stage	21342554	1	180707CZM-917	1807
					•••

Figure 2 (下方图) 为图 MRNA Heatmap of DEGs 概览。

(对应文件为 Figure+Table/MRNA-Heatmap-of-DEGs.pdf)

Figure 2: MRNA Heatmap of DEGs $\,$

Figure 3 (下方图) 为图 MRNA Early stage vs Healthy 概览。

(对应文件为 Figure+Table/MRNA-Early-stage-vs-Healthy.pdf)

Figure 3: MRNA Early stage vs Healthy


```
adj.P.Val cut-off:

0.05

Log2(FC) cut-off:

1
```

(上述信息框内容已保存至 Figure+Table/MRNA-Early-stage-vs-Healthy-content)

Figure 4 (下方图) 为图 MRNA Advanced stage vs Healthy 概览。

(对应文件为 Figure+Table/MRNA-Advanced-stage-vs-Healthy.pdf)

Figure 4: MRNA Advanced stage vs Healthy


```
adj.P.Val cut-off:

0.05

Log2(FC) cut-off:

1
```

(上述信息框内容已保存至 Figure+Table/MRNA-Advanced-stage-vs-Healthy-content)

Figure 5 (下方图) 为图 MRNA Advanced stage vs Early stage 概览。

(对应文件为 Figure+Table/MRNA-Advanced-stage-vs-Early-stage.pdf)

Figure 5: MRNA Advanced stage vs Early stage


```
adj.P.Val cut-off:
0.05

Log2(FC) cut-off:
1
```

(上述信息框内容已保存至 Figure+Table/MRNA-Advanced-stage-vs-Early-stage-content)

Figure 6 (下方图) 为图 MRNA Difference intersection 概览。

(对应文件为 Figure+Table/MRNA-Difference-intersection.pdf)

Figure 6: MRNA Difference intersection

All_intersection:

(上述信息框内容已保存至 Figure+Table/MRNA-Difference-intersection-content)

'MRNA data DEGs' 数据已全部提供。

(对应文件为 Figure+Table/MRNA-data-DEGs)

注:文件夹 Figure+Table/MRNA-data-DEGs 共包含 3 个文件。

- 1. 1_Early_stage Healthy.csv
- 2. 2_Advanced_stage Healthy.csv
- 3. 3_Advanced_stage Early_stage.csv

3.2 Mfuzz 聚类分析 (MRNA)

将上述筛选得的 DEGs 以 Mfuzz 聚类分析。见 Fig. 7。按照 Healthy, Early_stage, Advanced_stage 顺序, 在 Mfuzz 聚类中, 1, 3, 4 为按时序上调, 共 590 个, 6, 8 为按时序下调, 共 325 个。其他基因为离散变化。。

Figure 7 (下方图) 为图 MRNA Mfuzz clusters 概览。

(对应文件为 Figure+Table/MRNA-Mfuzz-clusters.pdf)

Figure 7: MRNA Mfuzz clusters

3.3 富集分析 (MRNA)

将 MFuzz 上调聚类与下调聚类分别以 KEGG 富集分析。KEGG 见 Fig. 8, Fig. 10。GO 见 Fig. 9, Fig. 11。 上调组主要富集于 Cellular Processes, Metabolism 相关。下调组富集于 Immune system 相关。

Figure 8 (下方图) 为图 MRNA up KEGG enrichment 概览。

(对应文件为 Figure+Table/MRNA-up-KEGG-enrichment.pdf)

Figure 8: MRNA up KEGG enrichment

Figure 9 (下方图) 为图 MRNA up GO enrichment 概览。

(对应文件为 Figure+Table/MRNA-up-GO-enrichment.pdf)

Figure 9: MRNA up GO enrichment

Figure 10 (下方图) 为图 MRNA down KEGG enrichment 概览。

(对应文件为 Figure+Table/MRNA-down-KEGG-enrichment.pdf)

Figure 10: MRNA down KEGG enrichment

───

Figure 11 (下方图) 为图 MRNA down GO enrichment 概览。

(对应文件为 Figure+Table/MRNA-down-GO-enrichment.pdf)

Figure 11: MRNA down GO enrichment

3.4 TCGA 数据获取 (LUSC)

获取 TCGA-LUSC 数据,用于临床数据分析和预后模型建立。

3.5 COX 回归 (LUSC)

数据源自 TCGA-LUSC, 筛选 AJCC Stage (ajcc_pathologic_stage) 为 Stage I, Stage II 的病人, 并且 days_to_last_follow_up 大于 10 天, 且为肿瘤组织的样本。所用样本的元数据见 Tab. 3。

数据特征如下:

Data Frame Summary Dimensions: 296 x 6

Duplicates: 93

			Freqs (% of			
No	Variable	Stats / Values	Valid)	Graph	Valid	Missing
1	age_at_index	Mean (sd) : 67.4	40 distinct	:	291	5
	[integer]	$(8.5) \min < \text{med}$	values	: : :	(98.3%)	(1.7%)
		< max: 39 < 69		:::.		
		< 84 IQR (CV):		::::::		
		12 (0.1)		: : : : : :		
2	vital_status	1. Alive	$228 \ (77.0\%) \ 68$	IIIIIIIIIIIII	296	0
	[character]	2. Dead	(23.0%)	IIII	(100.0%)	(0.0%)
3	gender [character]		78 (26.4%) 218	IIIII	296	0
		 female male 	(73.6%)	IIIIIIIIIIII	(100.0%)	
4	tumor_grade [character]	1. Not Reported	296 (100.0%)		296 (100.0%)	0 (0.0%)
5	ajcc_pathologic_sta	σe	72 (24.3%) 107	IIII IIIIIII	296	0
0	[character]	1. Stage IA	(36.1%) 1 (III IIII	(100.0%)	(0.0%)
	[character]	2. Stage IB	0.3%) 53	111 1111	(100.070)	(0.070)
		3. Stage II	(17.9%) 63			
		4. Stage IIA	(21.3%)			
		5. Stage IIB	(21.0/0)			
6	classification_of_tur [character]	mor 1. not reported	296 (100.0%)	111111111111111111111111111111111111111	296 (100.0%)	0 (0.0%)

将 LUSC 数据 (count) 标准化后 (同 MRNA 的方法),以生存状态为指标 (Fig. 12),以 EFS 算法,进行 Feature selection,得到 Top 30 基因,统计得分见 Fig. 13。随后,以单因素 COX 回归,筛选能显著预测生 存结局的基因。EFS 与单因素 COX 回归结果如 Tab. 4。共 9 个基因:。

Table 3 (下方表格) 为表格 LUSC metadata 概览。

(对应文件为 Figure+Table/LUSC-metadata.xlsx)

注: 表格共有 296 行 87 列,以下预览的表格可能省略部分数据;含有 296 个唯一'sample'。

Table 3: LUSC metadata

sample	group	lib.size norm.f	barcode	patient	${\rm shortL}$	defini	sample9	sample10	
TCGA-	Dead	372553761	TCGA-	TCGA-	TP	Primar	TCGA-	01	
1			1	1			1		
TCGA-	Alive	434925071	TCGA-	TCGA-	TP	Primar	TCGA-	01	
1			1	1			1		
TCGA-	Dead	397148181	TCGA-	TCGA-	TP	Primar	TCGA-	01	
1			1	1			1		
TCGA-	Dead	399758341	TCGA-	TCGA-	TP	Primar	TCGA-	01	
1			1	1			1		
TCGA-	Alive	407479171	TCGA-	TCGA-	TP	Primar	TCGA-	01	
1			1	1			1		
TCGA-	Alive	444292151	TCGA-	TCGA-	TP	Primar	TCGA-	01	
1			1	1			1		
TCGA-	Alive	217350121	TCGA-	TCGA-	TP	Primar	TCGA-	01	
1			1	1			1		
TCGA-	Alive	615553201	TCGA-	TCGA-	TP	Primar	TCGA-	01	
1			1	1			1		
TCGA-	Dead	485268831	TCGA-	TCGA-	TP	Primar	TCGA-	01	
2			2	2			2		
TCGA-	Alive	604430271	TCGA-	TCGA-	TP	Primar	TCGA-	01	
2			2	2			2		
TCGA-	Alive	602266461	TCGA-	TCGA-	TP	Primar	TCGA-	01	
2			2	2			2		
TCGA-	Alive	583659241	TCGA-	TCGA-	TP	Primar	TCGA-	01	
2			2	2			2		
TCGA-	Dead	586316011	TCGA-	TCGA-	TP	Primar	TCGA-	01	
2			2	2			2		
TCGA-	Dead	540988351	TCGA-	TCGA-	TP	Primar	TCGA-	01	
2			2	2			2		
TCGA-	Alive	549216961	TCGA-	TCGA-	TP	Primar	TCGA-	01	
2			2	2			2		
					•••		•••		

Figure 12 (下方图) 为图 LUSC Group distribution 概览。

(对应文件为 Figure+Table/LUSC-Group-distribution.pdf)

Group distribution

Figure 12: LUSC Group distribution

Figure 13 (下方图) 为图 LUSC Top Features Selected By EFS 概览。

(对应文件为 Figure+Table/LUSC-Top-Features-Selected-By-EFS.pdf)

Figure 13: LUSC Top Features Selected By EFS

Table 4 (下方表格) 为表格 LUSC Uni COX cofficients filtered by EFS 概览。

(对应文件为 Figure+Table/LUSC-Uni-COX-cofficients-filtered-by-EFS.csv)

注: 表格共有 9 行 7 列,以下预览的表格可能省略部分数据;含有 9 个唯一'feature'。

Table 4: LUSC Uni COX cofficients filtered by EFS

feature	coef	$\exp(\operatorname{coef})$	se(coef)	Z	pvalue	p.adjust
SERPINE	210.24390416	1.27622202	0.11338208	2.15117024	0.03146276	0.83624230
BCL2L2	-0.4283650	0.65157349	0.14369845	-2.9809998	0.00287308	0.83624230
SLC14A1	0.45789329	1.58074031	0.09645783	4.74708263	2.06371657	0.00184702
DYRK3	0.29492209	1.34302172	0.13055192	2.25904045	0.02388086	0.83624230
PDCD11	-0.2666409	0.76594805	0.11389728	-2.3410647	0.01922883	0.83624230
AGPAT3	0.27364386	1.31474648	0.12352324	2.21532281	0.02673791	0.83624230
COQ2	-0.2876134	0.75005145	0.12333293	-2.3320085	0.01970024	0.83624230
TPK1	0.31038423	1.36394908	0.13272344	2.33857877	0.01935724	0.83624230
MPZL1	0.30363800	1.35477853	0.11695141	2.59627472	0.00942406	0.83624230

3.6 Survival 生存分析 (LUSC)

这些基因表达特征如 Fig. 14 热图所示。

建立预后特征,构建风险评分:

$$Score = \sum (expr(Gene) \times coef)$$

按中位风险评分,将病例分为 Low 和 High 风险组,随后进行生存分析,见 Fig. 15。AUC 见 Fig. 16。第 1, 3, 5 年存活的患者,风险评分显著较低。

Figure 14 (下方图) 为图 LUSC risk score related genes heatmap 概览。

(对应文件为 Figure+Table/LUSC-risk-score-related-genes-heatmap.pdf)

Figure 14: LUSC risk score related genes heatmap

Figure 15 (下方图) 为图 LUSC survival curve of risk score 概览。

(对应文件为 Figure+Table/LUSC-survival-curve-of-risk-score.pdf)

Figure 15: LUSC survival curve of risk score

Figure 16 (下方图) 为图 LUSC time ROC 概览。

(对应文件为 Figure+Table/LUSC-time-ROC.pdf)

Figure 16: LUSC time ROC

Figure 17 (下方图) 为图 LUSC boxplot of risk score 概览。

(对应文件为 Figure+Table/LUSC-boxplot-of-risk-score.pdf)

Figure 17: LUSC boxplot of risk score

3.7 COX 回归 (Prognosis)

进一步通过单因素和多因素 COX 回归的方式评估了包括风险评分在内的 4 项预后特征 (smoking, treatment 等其他数据缺失值较多,不易处理)。数据特征如下:

Data Frame Summary

Dimensions: 291×5

Duplicates: 0

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid	Missing
1	rownames [character]	1. TCGA-18- 3408-01A 2. TCGA-18- 3409-01A 3. TCGA-18- 3415-01A 4. TCGA-18- 3416-01A 5. TCGA-18- 3419-01A 6. TCGA-18- 3421-01A 7. TCGA-18- 4721-01A 8. TCGA-18- 5592-01A 9. TCGA-21- 1071-01A 10. TCGA-21- 1072-01A [281 others]	1 (0.3%) 1 (0.3%) 1 (0.3%) 1 (0.3%) 1 (0.3%) 1 (0.3%) 1 (0.3%) 1 (0.3%) 1 (0.3%) 1 (0.3%) 281 (96.6%)		291 (100.0%)	0 (0.0%)
2	age [character]	1. <= 65 $2.$ 65	111 (38.1%) 180 (61.9%)	IIIIIIII	291 (100.0%)	0 (0.0%)
3	gender [character]	 female male 	77 (26.5%) 214 (73.5%)	IIIII	291 (100.0%)	0 (0.0%)
4	ajcc_pathologic_s [character]	tage 1. Stage I 2. Stage II	176 (60.5%) 115 (39.5%)	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	291 (100.0%)	0 (0.0%)

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid	Missing
5	risk_score [numeric]	Mean (sd): 0 (1.4) min < med < max: -5.3 < 0.1 < 4.1 IQR (CV): 1.8 (122)	291 distinct values	: ::: :::::	291 (100.0%)	0 (0.0%)

单因素和多因素分析结果,风险评分是诊断早期肺癌预后的独立风险指标,见 Tab. 6。

Table 6 (下方表格) 为表格 META Coefficients Of COX 概览。

(对应文件为 Figure+Table/META-Coefficients-Of-COX.csv)

注: 表格共有 4 行 5 列,以下预览的表格可能省略部分数据;含有 4 个唯一'feature'。

Table 6: META Coefficients Of COX

${\bf Uni_coefficients}$	Uni_p	$Multi_coefficients$	Multi_p
0.215192027477178	0.41311128570459	0.101704964279124	0.709950395815607
0.183214670354876	0.523084334023976	0.36615958534245	0.209021149635656
0.014477650239466	50.954293406973733	0.295933974836866	0.256805285385573
0.54781086968627	6.06868708145961e-	0.565964036073118	1.45743179043085e-
	09		09
	0.215192027477178 0.183214670354876 0.014477650239466	0.215192027477178 0.41311128570459 0.183214670354876 0.523084334023976 0.01447765023946650.954293406973733 0.54781086968627 6.06868708145961e-	0.215192027477178 0.41311128570459 0.101704964279124 0.183214670354876 0.523084334023976 0.36615958534245 0.01447765023946650.954293406973733 0.295933974836866 0.54781086968627 6.06868708145961e- 0.565964036073118

3.8 GEO 数据获取 (GEO_LUSC)

为了验证预后特征在不同数据平台上的性能,这里获取了 GEO 数据平台的早期肺癌数据 (GSE157010,微 阵列数据),并筛选了 Stage 为 I, II 阶段的病例。数据特征如下:

Data Frame Summary Dimensions: 202 x 14

Duplicates: 0

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid	Missing
1	sample [character]	1. GSM4750621 2. GSM4750622 3. GSM4750623 4. GSM4750624 5. GSM4750625 6. GSM4750626 7. GSM4750627 8. GSM4750628 9. GSM4750630 10. GSM4750631 [192 others]	1 (0.5%) 1 (0.5%) 192 (95.0%)		202 (100.0%)	0 (0.0%)
2	vital_status [character]	 Alive Dead 	107 (53.0%) 95 (47.0%)	IIIIIIIIII	202 (100.0%)	0 (0.0%)
3	group [character]	 Alive Dead 	107 (53.0%) 95 (47.0%)	IIIIIIIII	202 (100.0%)	0 (0.0%)
4	days_to_last_foll [numeric]	owlean (sd): 1403 (697.3) min < med < max: 4.9 < 1669.8 < 3062.5 IQR (CV): 1111.8 (0.5)	186 distinct values	: : : : : : : : : : : : : : .	202 (100.0%)	0 (0.0%)
5	stage [character]	1. T1 2. T2	63 (31.2%) 139 (68.8%)	IIIIIII	202 (100.0%)	0 (0.0%)

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid	Missing
6	rownames [character]	1. GSM4750621 2. GSM4750622 3. GSM4750623 4. GSM4750624 5. GSM4750625 6. GSM4750626 7. GSM4750627 8. GSM4750628 9. GSM4750630 10. GSM4750631 [192 others]	1 (0.5%) 1 (0.5%) 1 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		0
7	title [character]	7. CAD_NA385PT 8. CAD_NA386PT 9. CAD_NA388PT 10.	1 (0.5%) 1 (0.	1 3 4 7 4 5	202 (100.0%)	0 (0.0%)

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid	Missing
8	age.ch1 [character]	1. 63 2. 64 3. 65 4. 71 5. 70 6. 59 7. 61 8. 66 9. 68 10. 72 [29 others]	12 (5.9%) 12 (5.9%) 12 (5.9%) 12 (5.9%) 10 (5.0%) 9 (4.5%) 99 (4.5%) 99 (I I I I I	202 (100.0%)	0 (0.0%)
9	diagnosis.ch1 [character]	1. Squamous Cell Carcinoma o	202 (100.0%)	111111111111111111111111111111111111111	II202 (100.0%)	0 (0.0%)
10	os_event.ch1 [character]	1. 0 2. 1	107 (53.0%) 95 (47.0%)	IIIIIIIII	202 (100.0%)	0 (0.0%)

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid	Missing
11	os_mo.ch1 [character]	1. 55.6931506849315 2. 60.6904109589041 3. 69.041095890411 4. 15.0904109589041 5. 60.1972602739726 6. 60.2958904109589 7. 60.7890410958904 8. 61.0520547945205 9. 61.0849315068493 10. 61.7095890410959 [176 others]	1.5%) 2 (1.0%) 179 (88.6%)		202 (100.0%)	0 (0.0%)
12	Sex.ch1 [character]	 Female Male 	71 (35.1%) 131 (64.9%)	IIIIIIII	202 (100.0%)	0 (0.0%)
13	Stage.ch1 [character]	 T1a T1b T2a T2b 	23 (11.4%) 40 (19.8%) 74 (36.6%) 65 (32.2%)	II III IIIIIII	202 (100.0%)	0 (0.0%)
14	tissue.ch1 [character]	1. lung	202 (100.0%)	111111111111111111111111111111111111111	(100.0%)	0 (0.0%)

Table 8 (下方表格) 为表格 LUSC GSE157010 metadata 概览。

(对应文件为 Figure+Table/LUSC-GSE157010-metadata.csv)

注:表格共有 202 行 14 列,以下预览的表格可能省略部分数据;含有 202 个唯一'sample'。

Table 8: LUSC GSE157010 metadata

sample	vital	group	days_t	stage	rownames	title	age.ch1	diagno	os_eve
GSM475	Dead	Dead	1259.5	T2	GSM475	CAD_NA	63	Squamo	1
$\operatorname{GSM475}$	Dead	Dead	993.20	T2	$\operatorname{GSM475}$	CAD_NA	78	Squamo	1
$\operatorname{GSM475}$	Alive	Alive	2071.2	T2	$\operatorname{GSM475}$	${\rm CAD_NA}$	68	Squamo	0
$\operatorname{GSM475}$	Alive	Alive	2836.6	T2	$\operatorname{GSM475}$	${\rm CAD_NA}$	71	Squamo	0
$\operatorname{GSM475}$	Dead	Dead	452.71	T2	$\operatorname{GSM475}$	${\rm CAD_NA}$	83	Squamo	1
$\operatorname{GSM475}$	Dead	Dead	835.39	T2	$\operatorname{GSM475}$	${\rm CAD_NA}$	63	Squamo	1
$\operatorname{GSM475}$	Alive	Alive	1945.9	T2	$\operatorname{GSM475}$	${\rm CAD_NA}$	73	Squamo	0
$\operatorname{GSM475}$	Dead	Dead	234.73	T2	$\operatorname{GSM475}$	${\rm CAD_NA}$	71	Squamo	1
$\operatorname{GSM475}$	Alive	Alive	1045.4	T2	$\operatorname{GSM475}$	${\rm CAD_NA}$	76	Squamo	0
$\operatorname{GSM475}$	Dead	Dead	581.91	T2	$\operatorname{GSM475}$	${\rm CAD_NA}$	72	Squamo	1
$\operatorname{GSM475}$	Alive	Alive	1919.3	T2	$\operatorname{GSM475}$	${\rm CAD_NA}$	78	Squamo	0
$\operatorname{GSM475}$	Dead	Dead	982.35	T2	$\operatorname{GSM475}$	${\rm CAD_NA}$	72	Squamo	1
$\operatorname{GSM475}$	Dead	Dead	1091.8	T2	$\operatorname{GSM475}$	${\rm CAD_NA}$	71	Squamo	1
$\operatorname{GSM475}$	Dead	Dead	671.67	T2	$\operatorname{GSM475}$	${\rm CAD_NA}$	68	Squamo	1
$\operatorname{GSM475}$	Alive	Alive	1880.8	T2	$\operatorname{GSM475}$	CAD_NA	59	Squamo	0
						•••			

3.9 Survival 生存分析 (GEO_LUSC)

GEO 数据集中,风险评分基因集表达特征见 Fig. 18。将 GEO 数据集按相同的方式处理,并计算风险评分,生存结果见 Fig. 21,高风险组与低风险组显著差异。ROC 曲线见 Fig. 20。第 1,3,5 年风险评分差异见 Fig. 19。

Figure 18 (下方图) 为图 GEO LUSC risk score related genes heatmap 概览。

(对应文件为 Figure+Table/GEO-LUSC-risk-score-related-genes-heatmap.pdf)

◇○

Figure 18: GEO LUSC risk score related genes heatmap

Figure 19 (下方图) 为图 GEO LUSC boxplot of risk score 概览。

(对应文件为 Figure+Table/GEO-LUSC-boxplot-of-risk-score.pdf)

Figure 19: GEO LUSC boxplot of risk score

Figure 20 (下方图) 为图 GEO LUSC time ROC 概览。

(对应文件为 Figure+Table/GEO-LUSC-time-ROC.pdf)

Figure 20: GEO LUSC time ROC

───

Figure 21 (下方图) 为图 GEO LUSC survival curve of risk score 概览。

(对应文件为 Figure+Table/GEO-LUSC-survival-curve-of-risk-score.pdf)

Figure 21: GEO LUSC survival curve of risk score

3.10 estimate 免疫评分 (LUSC)

为了探索标记与肿瘤免疫微环境之间的关系,我们对来自 TCGA LUSC 的数据进行了 ESTIMATE 计算免疫评分、ESTIMATE 评分和 stromal 评分。根据评分结果,将病例分为 High 组和 Low 组,免疫评分和 ESTIMATE 评分较低的患者具有较高的风险评分,见 Fig. 22。此外,还比较了高危组和低危组之间编码免疫调节剂和趋化因子的基因的表达情况。从 TISIDB 数据库下载的 178 个基因中,有 127 个可以在 TCGA 表达矩阵中找到,两组之间有 119 个表达存在差异 (p.value < 0.05)。前 10 个基因见 Fig. 23。

Figure 22 (下方图) 为图 LUSC immune Scores Plot 概览。

(对应文件为 Figure+Table/LUSC-immune-Scores-Plot.pdf)

Figure 22: LUSC immune Scores Plot

Figure 23 (下方图) 为图 LUSC Top10 Immune Related Genes 概览。

(对应文件为 Figure+Table/LUSC-Top10-Immune-Related-Genes.pdf)

3.11 Limma 差异分析 (LNCRNA)

长链非编码 RNA(lncRNA)在基因调控和癌症发展中起着重要作用。这里对 lncRNA 做了差异分析,并与 mRNA 关联分析。差异分析 Early_stage vs Healthy, Advanced_stage vs Healthy, Advanced_stage vs Early_stage (若 A vs B,则为前者比后者,LogFC 大于 0 时,A 表达量高于 B)。得到的 DEGs 统计见 Fig. 24。所有上调 DEGs 有 539 个,下调共 781;一共 1278 个(非重复)。。

'LNCRNA DEGs data' 数据已全部提供。

(对应文件为 Figure+Table/LNCRNA-DEGs-data)

注: 文件夹 Figure+Table/LNCRNA-DEGs-data 共包含 3 个文件。

- 1. 1 Early stage Healthy.csv
- 2. 2_Advanced_stage Healthy.csv
- 3. 3_Advanced_stage Early_stage.csv

Figure 24 (下方图) 为图 LNCRNA Difference intersection 概览。

(对应文件为 Figure+Table/LNCRNA-Difference-intersection.pdf)

Figure 24: LNCRNA Difference intersection

All_intersection:

(上述信息框内容已保存至 Figure+Table/LNCRNA-Difference-intersection-content)

3.12 关联分析 (MRNA, LNCRNA)

将相关系数 > 0.6 和 p < 0.001 设定为识别相关阈值,最终建立网络图见 Fig. 25。共包含 4 个 mRNA,4 个 lncRNA,52 对关联关系。

Figure 25 (下方图) 为图 Significant Correlation mrna lncRNA 概览。

(对应文件为 Figure+Table/Significant-Correlation-mrna-lncRNA.pdf)

Figure 25: Significant Correlation mrna lncRNA

Table 9 (下方表格) 为表格 Significant correlation 概览。

(对应文件为 Figure+Table/Significant-correlation.csv)

注: 表格共有 52 行 7 列,以下预览的表格可能省略部分数据;含有 4 个唯一'mRNA'。

Table 9: Significant correlation

mRNA	LncRNA	cor	pvalue	$-\log 2 (P.va$	significant	sign
SLC14A1	HBB	0.61	0	16.6096404	< 0.001	**
BCL2L2	LTB	-0.63	0	16.6096404	< 0.001	**
AGPAT3	NCKIPSD	0.71	0	16.6096404	< 0.001	**
AGPAT3	MAFG	0.62	0	16.6096404	< 0.001	**
BCL2L2	TMPPE	0.65	0	16.6096404	< 0.001	**
BCL2L2	PEAR1	0.61	0	16.6096404	< 0.001	**
BCL2L2	PROS1	0.63	0	16.6096404	< 0.001	**
BCL2L2	SYNM	0.63	0	16.6096404	< 0.001	**
AGPAT3	TOM1L2	0.61	0	16.6096404	< 0.001	**
BCL2L2	TOM1L2	0.61	0	16.6096404	< 0.001	**
BCL2L2	DPY19L1	0.62	0	16.6096404	< 0.001	**
SLC14A1	GYPA	0.66	0	16.6096404	< 0.001	**
BCL2L2	SH3TC2	0.62	0	16.6096404	< 0.001	**
AGPAT3	STIM1	0.61	0	16.6096404	< 0.001	**
BCL2L2	STIM1	0.63	0	16.6096404	< 0.001	**

3.13 实验验证

请参考 (2023, IF:4.8, Q1, Biomolecules)¹

4 总结

本研究为肺癌早期诊断建立了预后的独立风险指标,这些基因是,可预测肺癌 LUSC 中, Sage I、II 的预后 疗效。该风险评分对于 RNA-seq 可能有更敏感的评估,因为我们在 GEO 的微阵列数据集中,High 组与 Low 组的风险评分差异不如 TCGA 显著。由于 GEO 中,包含生存结局和详细临床数据记录的数据集不多,我们未能更多的验证。后续评估发现,该风险评分与免疫微环境(根据 ESTIMATE 评分)显著相关。

Reference

- 1. Wang, H. et al. HCC: RNA-sequencing in cirrhosis. Biomolecules 13, (2023).
- 2. Smyth, G. K. Limma: Linear models for microarray data. in *Bioinformatics and Computational Biology Solutions Using R and Bioconductor* (eds. Gentleman, R., Carey, V. J., Huber, W., Irizarry, R. A. & Dudoit, S.) 397–420 (Springer-Verlag, 2005). doi:10.1007/0-387-29362-0_23.

- 3. Chen, Y., McCarthy, D., Ritchie, M., Robinson, M. & Smyth, G. EdgeR: Differential analysis of sequence read count data users guide. 119.
- 4. Kumar, L. & E Futschik, M. Mfuzz: A software package for soft clustering of microarray data. *Bioinformation* 2, 5–7 (2007).
- 5. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- 6. Colaprico, A. et al. TCGAbiolinks: An r/bioconductor package for integrative analysis of tcga data. Nucleic Acids Research 44, (2015).
- 7. Neumann, U., Genze, N. & Heider, D. EFS: An ensemble feature selection tool implemented as r-package and web-application. *BioData Mining* **10**, 21 (2017).
- 8. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nature communications 4, (2013).
- 9. Ru, B. et al. TISIDB: An integrated repository portal for tumorimmune system interactions. Bioinformatics 35, 4200–4202 (2019).