

CLAIM AMENDMENTS

Claim 1. (Currently Amended) A monopole low frequency test woofer, comprising:
a rigid mounting plate having an acoustical opening;
a monopole driver having a high mass cone and low
5 resonance in free air, said driver being mounted on said
mounting plate with a basket of said driver fitting about
said acoustical opening;
a rear tub attached to said mounting plate forming
an enclosure housing said monopole driver so that sound
10 radiates from said enclosure only through said acoustical
opening, a top portion of a rear panel of said rear tub
being offset inward toward said mounting plate to have
lesser depth than a bottom portion of said rear tub to
thereby form a slot; and slot;
15 an electrical connector on said tub for connecting
said monopole driver to an external circuit, said electrical
connector being positioned in said slot flush with said
lower bottom portion of said rear panel. panel; and
an inductor connected in series with said monopole
20 driver, said inductor contouring frequency response of said
monopole driver to match frequency response of a vehicle
dipole speaker over a frequency range of interest.

Claim 2. (Cancelled)

Claim 3. (Currently Amended) A test woofer, as
set forth in claim 1, claim 2, wherein the frequency range
of interest is from about 40 Hz to about 200 Hz.

Claims 4-8. (Cancelled)

Claims 9-20. (Cancelled)

21. (Previously Added) A method for determining loss in baffling due to speaker environment in a vehicle being non-ideal, comprising the steps of:

mounting a monopole driver having a basket, a high mass
5 cone and low resonance in free air on a mounting plate, said mounting plate having an acoustical opening, said basket of said driver fitting about said acoustical opening;

sealing a tub to said mounting plate enclosing said driver so that sound radiates from said enclosure only through
10 said acoustical opening;

attaching an electrical connector on said tub for connecting said monopole driver to an external circuit;

measuring output of said test woofer in the vehicle;
and

15 comparing said test woofer output with output of an optimized vehicle dipole speaker and determining frequency response difference which is the loss in baffling due to speaker environment in the vehicle.