百年数学教育改革随想录

陈振宣

陈振宣,著名数学教育专家,著有《极大与极小》《数学题解辞典·平面解析几何》《中学数学思维方法》《数学思想方法入门》等。

序幕

1901年英国工程师皇家理科学院的培利(Pervy, 1850—1920)在英国科学促进会上做了关于数学教育的演说,猛烈抨击英国当时的教育制度,"反对把欧几里得《几何原本》作为数学教科书,不能为了培养一个数学家而毁了数百万人的数学精神"。这是大众数学教育向精英数学教育发起冲击的第一枪,从此拉开了数学教育改革的序幕。此为大众数学教育的萌芽。

早在 1900 年,德国数学大师克莱因(F. Klein, 1849—1925)在德国学校协会上就强调数学应用的重要性,建议在中学开设微积分课程。1904 年,他又在哥根廷大学发表演说,提出中学数学内容应以函数概念为中心,继而于 1905 年起草了著名的《米兰大纲》。这对以后百年数学教育改革产生了持久不衰的影响。

20 世纪三四十年代中国的数学教育

我国在 20 世纪初引入西方数学教育,在三四十年代主要向英、美学习,数学教科书大多为英、美流行的教材,如 Fine 的《大代数》、Smith 和 Gale 的《解析几何》、Loney 的《坐标几何》、Hall 和 Knight 的《高等代数》等。这些书都是精英教育理念的产物,多以解题技巧见长,对中国数学教育影响深远。20 世纪 70 年代,陈省身大师回国之初主张重译 Hall 和 Knight 的《高等代数》就是证明。

笔者的中学、大学教育就是在这样的环境中度过的。那时的教育策略可以概括为"以多取胜",以考取名牌大学为目标。如此教育理念影响了新中国

成立前知识分子的成长,也影响了中国数学教育的发展。

初为人师时的英才教育

我走上教师岗位纯属历史的"巧合"。抗日战争后期,由于偶然的机缘,一位老教师推荐我到江西南城乡村师范(当时在黎川横村)任毕业班的数学课,教材是 Fine 的《大代数》,半年后被"挖"到临川女中(当时在南丰)任教高三解析几何。因而江西是我从教的"故乡",南丰的橘子给我留下了不灭的印象。

抗日战争胜利以后,我被安排到嘉兴青年中学(一所大型完中)教高三理科的解析几何兼理甲班的级任导师。全班 28 人,除一人考入私立大学外,其余全部考取上海交通大学、清华大学、浙江大学等国立大学。这一业绩引起人们的关注。浙江大学校长竺可桢先生在一次大会上说:"嘉兴青中考浙江大学的录取率居浙江全省之冠。"次年理甲班的升学考仍然具有同等优势,一位学生同时被清华大学、上海交通大学等 5 所国立大学录取,后进入清华大学物理系,1952 年毕业,现在是北京工业大学的知名教授。

我初为人师时,教育理念完全被英才教育统领,教学策略则是"以多取胜"的题海战术。虽然培养了一些英才,但有意无意遵循的教育理念与策略都是错误的。

新中国成立初到 1958 年的中国数学教育

新中国成立初到 1958 年,中国的数学教育是向苏联学习,重视概念教学、双基教学,和新中国成立前的偏向解题技巧不同,教师提高了数学理论素养,这是一大进步。但 1958 年以"理论联系实际"为核心的教育改革高潮冲击了几何教学,大量定理、概念被戴上"无用"的帽子遭删除,几何教材被压缩到一册。我下工厂(上海机床厂、工具厂、仪表厂、汽车配件厂等)做了实地调查,发现不少"无用"的定理、概念实际上在工厂里是有用的,所谓"无用",只不过是某些人的无知妄断。从此我重视实地调查,不信"权威"的妄断,强化了数学应用意识的教学,对学生起了良好的导向作用。"和平饭店的电路问题"和"纳米材料制作中的一个小型应用课题"出自我的两位学生葛湘川、何泰来之手,看来不是偶然的。这两个问题被华东师范大学教授张奠亩誉为"中国数学教育的经典"。

席卷全球的"新数"运动

1957 年苏联人造卫星上天,引起美国朝野震惊,引发了一场席卷全球的"新数"运动。受其影响,1960 年上海召开了中国数学会全国代表大会,数学

界精英两千多人共同讨论中国数学教育改革大计。华罗庚、苏步青等数学家到会。我有幸作为上海市教师代表列席会议,与龚昇同一小组(我曾请过他到上海 59 中为学生做报告)。大会口号是"函数为纲""打倒欧家店"。华东师范大学、北京师范大学分别编写了改革教材,大量大学的教学内容"下放"到中学,在教师中引起一片"恐慌"。直到 1963 年全国统一大纲和教材出版,中国的数学教育才趋于稳定。

在全国代表大会上,我看到世界各国的教学大纲、改革方向,拓展了视野。法国在高中引入向量给我留下了深刻印象。这是 20 世纪 80 年代初我自编三角、解析几何实验教材的基础,也是中国人自编的第一本题解辞典——《数学题解辞典》(其中解析几何卷,我是责任编委即分册主编)中坚持将向量、矩阵、行列式引入的改革方向的依据。事实证明这一改革方向是正确的。目前高考命题的演变正朝此方向前进中,向量从配角转化为高考的"新宠"。

"新数"运动由于脱离学生实际,以失败告终,但其以数学的近代观点重新认识处理传统内容的新视角,对数学界产生了深远的影响,给以后的改革指明了正确的航向。

1980 年教材会议启动了中国新的教育改革浪潮

1966 年至 1976 年的十年浩劫把中国的数学教育推向失败的深渊,教育质量下滑到匪夷所思的低谷,教材体系被彻底破坏。1980 年教育部在京召开教材会议,笔者作为上海市代表参加了新大纲制定的讨论。以"精简、增加、渗透"六字方针为指导,把向量、矩阵、行列式、概率、微积分均初步列入大纲。人民教育出版社编出教材白皮书,中国的数学教育有了起色。但因长官意志干扰,直到 1997 年新大纲教材才在两省一市开展试验,到 20 世纪初才在大部分省市推开,延误了近二十年,教训深刻。

2003 年,又从芬兰引入新课标。人民教育出版社编了 A 版、B 版,另外还有北师大版、苏教版、湖南版,必修与选修有二十多册,内容多,时间短,教师处于赶进度中。新课标与国情有一定距离。如何按数学内在规律,编写一套有中国特色的教材,仍是我们教改的主攻目标。如莱布尼茨所说,"我打算把书写成这样,让学习的人总能够看清他所学知识的内在道理,甚至使发明的本源能够显露出来。因为这样写,学者便能明了一切,仿佛就是他自己发明的一样",可以为我们提供借鉴。

中国教育改革中的老大难

当前中学教育中的最大祸害是学业负担过重,摧残青少年的身心健康。 这不是一个学科的问题,而数学教育是其中最突出的矛盾。几十年来,教育

部门三令五申为学生减负,但始终未能解决。由于这一问题的复杂性,三言 两语难以说清。笔者 2004 年曾让学生在全国政协会上交讨一个提案, 讨论十 分热烈,但最后无果而终。2009年初又写了一篇《建议开展增效减负的大讨 论》,发表在《中小学数学》2009年第4期上,主编章建跃为此文写了《增效 与减负》的评论。

高考命题研究应与教改配套

高考命题是指挥棒, 应与教育改革密切配套。近年来数学命题有可喜的 进展,从知识立意到能力立意,重视数学思想方法的考察,促进创新思维的 发展等,都是令人振奋的讲步。遗憾的是,仍存在一些偏向,"深挖洞""钻 牛角尖"现象仍未纠正过来,例如曾受过批判的递推数列,如今又卷土重来。 语文、外语等其他学科是否有类似的偏颇,请各科老师查一查。这对教育改 革的健康发展至关重要,请命题专家严格把关。

重视教学规律的探索

在我国近几十年来的教育改革中,对教学规律的探索似未受到重视。就 数学教育来说,研究的重点集中于解题方法的研究,这当然是重要的,我们 已取得不少成果,但其他方面就显得薄弱了,原因是急功近利与应试教育禁 锢了人们的思想, 应该在教育工作领域贯彻科学发展观, 提倡按教育规律办 教育。

笔者在《高考数学命题研究与试题评析》中提出"同一数学对象,有时既 可以用普通语言(自然语言)表述,又可以用符号语言、图像语言表达",并 运用语言形态转化解决了一个复数问题,从符号语言转化为图像语言,利用 形象思维快速获解,这是否是数学语言教学中的一条规律?可否概括为"数 学语言形态转化不是无聊的游戏,而是解决问题的有力杠杆"?据说美国的微 积分教学中,除了自然语言、符号语言、图像语言外,还提到数字语言(计算 机语言) 之间的相互转化。尽管尚未见到具体资料,但可以预期,这是一条 值得重视的语言教学规律。

语文、外语都是语言教学,其间是否存在可共同遵循的教学规律? 我曾 和几位资深的语文、外语老师讨论过,他们都认为这是有意义的课题。笔者 愿与有兴趣的老师共同研究。

营诰健康的学术研究氛围

很遗憾,学术腐败已渗透到中等教育领域,造假抄袭之风,生造术语,拉 大旗作虎皮,借势吓人的恶劣行径已侵蚀到一些人的思想,其危害是人所共

知的。其他学科的同行是否有同感? 笔者不敢妄测。提倡学术道德修养、保 护中、青年教师健康成长,以加速我国教育改革理论研究,这是否是教育改 革讨程中不可忽视的大事?

人类百年数学教育改革取得了哪些共识

- 1. 世界各国都认识到教育改革的必要性与迫切性,无不以数学教育改革 为突破口,投入大量人力物力开展试验,推动改革的深入。
- 2. 数学教育是开发人脑智能的有效涂径之一。如何运用良好的数学教育 开发人脑的潜力以及脑科学的研究成了世界级的难题。钱学森先生生前向大 家提出教育科学的研究必须与思维科学相结合,这为数学教育改革拨正了 方向。
 - 3. 数学教育改革无不聚焦在数学教材改革上,实即教育数学的创新之作。
- 4. 优质数学教育 = 扎实的基础 + 创新能力(张奠审等著《数学教育学 导论》, 高等教育出版社)。这是东、西方数学教育对比研究形成的共识。至于 什么是扎实的基础,认识与理解上还有分歧。
- 5. 经过 20 世纪 80 年代以来的努力,大家都普遍认识到数学思想方法的 教学是提高数学思维能力的关键之一,数学思想方法已载入新课程标准与考 试大纲。
- 6. 情感因素与智力因素密切相关,是教育中不可忽视的因素,并引起国 内外学者的关注。但是,如何进行情感智力因素的教育?情感智力因素能编 制出科学的量表吗? 这有待讲一步探索。

中国教学教育改革中的失误与教训

- 1. 一种倾向掩盖了另一种倾向, 形而上学是认识上的误区。精英教育忽 视了大众数学教育;反过来,重视大众化教育,搞一刀切,又排斥了精英教 育。这在初中教育阶段反映得特别突出,乘法公式从7个减到5个,再减到 3个。为了减轻负担,不惜破坏数学固有的体系,没有认识到把必要的知识点 删去了,工具少了,学生做题的负担反而重了。近十年来,这样的蠢事做得 不少。
 - 2. 教材改革与考试改革不能配套,造成许多不必要的损失。
- 3. "颗海战术"仍然统治着数学教育,对数学教育科学规律的探索不够重 视,数学教育的科学规律在教师中的普及工作做得不够,这方面的研究仍很 薄弱。
 - 4. "新数运动"中提出"打倒欧家店"的错误口号,把平面几何的基本推

理训练排斥在中学数学课程之外,使理性思维大大削弱。这一遗毒影响了义 务教育新课程标准的制定,引起众多数学家的担忧与反对。这一失误值得永 远铭记。

5. 奥数教育成了少数人的敛财之道,影响恶劣。另外,在奥数教育中"题海战术"大行其道,让学生死记硬背,机械模仿,不讲数学原理,使学生、家长深受其害。奥数命题还影响中考、高考命题改革,值得注意,应予以纠正。

为了使人类百年数学教育改革的经验为我国的数学教育改革服务,在本文之末,笔者斗胆提出以下建议:

数学教育改革是一项复杂的系统工程,教育部门可否建立一个数学教育改革研究委员会,作为国务院制定《国家中长期教育改革和发展规划纲要》的咨询机构?成员包括数学家、数学教育家、物理学家、化学家、心理学家、思维科学家,研究的重点是编制一套优良的实验教材,为所有青少年受到优良的数学教育创造条件。既重视大众数学教育,又不排斥精英人才的培养。委员会应以国内外已发表的文章为基础,有准备地在全国各地区召开座谈会,集思广益,组织力量编制出实验教材,进行严格的科学实验。在证明其可行性与优越性的基础上逐步推广,既能使广大青少年受到良好的数学精神培养,又能使 10%~20% 的精英人才脱颖而出,为我国提高综合国力,早日进入创新型国家行列创造条件。

语文、外语学科是否需要建立相应机构,还请有关专家研究。

本文所述只是个人管见,目的是抛砖引玉,引发广泛的讨论,不妥之处请大家不吝指正。

编者按:本文转载自《教师博览:原创版》2010年第4期。