1 Introduction

1.1 Lue Pan

- (a) Shimura varieties and Hodge theory (Complex geometry, Lie groups, automorphic forms)
- (b) p-adic geometry
 - (a) starting with Tate's p-divisible groups paper
- (c) p-adic functional analysis
- (d) representation theory of eveloping algebras.

1.2 Schedule

(a) introduction of methods of differential geometry in the study of perfectoid modular curves

Theorem 1.2.1 (Pan, 2022). Let E be a finite extension of \mathbb{Q}_p and $\rho: G_{\mathbb{Q}} \to \mathrm{GL}_2(E)$ a continuous representation (using the p-adic topology). Suppose,

- (a) $\operatorname{Hom}_{E[G_{\mathbb{Q}}]}\left(\rho, \hat{H}^{1}(K^{p}, E)\right) \neq 0$ where $K = K^{p}K_{p} \subset \operatorname{GL}_{2}(\mathbb{A}_{f})$ with $K_{p} \subset \operatorname{GL}_{2}(\mathbb{Q}_{p})$ is compact open
- (b) and $G_{\mathbb{Q}_p} \subset G_{\mathbb{Q}}$ is a decomposition group and $\rho|_{G_{\mathbb{Q}_p}}$ is de Rham of Hodge-Tate weights 0, k for $k \in \mathbb{Z}^+$

Then ρ arises from a (classical) cusp (k+1)-form and an eigenvector for the Hecke operators.

Remark. Arises from a classical cusp form means arises from the following theorem.

Theorem 1.2.2 (Eichler-Shimura, Deligne). Let f a cusp form of weight k + 1 and level N, eigenvector for the Hecke operators. Write,

$$f(z) = \sum_{n \ge 1} a_n e^{2\pi i n z}$$

with $a_1 = 1$. Then there is a $\rho_f : G_{\mathbb{Q}} \to \mathrm{GL}_2(E)$ with for $q \not\mid Np$ we have $\mathrm{Tr} \left(\rho_f(\mathrm{Frob}_q) \right) = a_q$, and $\rho_f|_{G_{\mathbb{Q}_p}}$ is de Rham of Hodge-Tate weights 0, k.

1.3 Alterior Motives

1.3.1 Simpson Correspondence

The Simpson correspondence. For a complex variety with a local system $\alpha : \pi_1(Z) \to GL_n(\mathbb{C})$ then Simpson produced a Higgs field (nonabelian Hodge theory for n > 1). There is a p-adic simpson correspondence (Faltings, Abber-Gros-Traji) which studies,

$$\alpha: \pi_1(Z) \to \mathrm{GL}_n(\bar{\mathbb{Q}}_{\scriptscriptstyle \perp})$$

and produces p-adic Higgs field. However, in the Simpson correspondence we need by holomorphic and antiholomorphic differentiation. Lue Pan develops a p-adic version of this.

1.3.2 Perfectoid Geometry

In a perfectoid ring, the map $(-)^p: R \to R$ is surjective (by construction) and therefore, $df = dg^{p^n} = p^n g^{p^n-1} dg = 0$ so we need to clarify what it means to do differential geometry in a perfectoid setting.

Also want to clarify relation between complex and p-adic differential operators for p-adic L-functions.

1.3.3 p-adic representation theory of p-adic groups

complex nonabelian Hodge theory is related to the theory of complex Lie groups. Similarly, we might hope to make progress on p-adic groups beyond $GL_2(\mathbb{Q}_p)$ using nonabelian Hodge theory.

1.4 Fontain-Mazur Conjecture

Let $\rho: G_{\mathbb{Q}} \to \mathrm{GL}_2(E)$ be a continuous representation. Suppose,

- (a) ρ is unramified at all but finitely many primes (this is implied by (1) in Pan 2022.
- (b) $\rho|_{G_{\mathbb{Q}_n}}$ is de Rham of Hodge-Tate weights 0, k.

Then $\rho = \rho_f$ for some cuspidal Hecke eigenform of weight k + 1.

Remark. Emerton proved this special case of Fontain-Mazur (only thinking about dimension 2 here) with some condition on the irreducibility of the residual representation.

Suppose that ρ is the representation on the Tate module of an elliptic curve A,

$$\rho: G_{\mathbb{Q}} \to \operatorname{Aut}\left(\varprojlim_{n} A[p^{n}]\right)$$

Then for k=1 this satisfies the conditions of the theorem and thus we get that ρ is modular which implies Tanayama-Shimura and hence FLT.

2 Review of Modular Forms

Going back 200 years. We consider,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{R})$$

and $\mathfrak{h} = \{z = x + iy \mid y > 0\} \subset \mathbb{C}$ is the upper half plane. Then we have an action,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

Then for $N \geq 3$ the open modular curve $Y(N) = \mathfrak{h}/\Gamma(N)$ and $X(N) = Y(N) \cup \{\text{cusps / points at infinity}\}$ which has a unique algebraic structure. Then X(N) is defined over $\mathbb{Q}(\zeta_N)$ is a moduli space for elliptic curves with torsion structure. Consider $\Omega = \Omega^1_{X(N)}$ is the cotangent bundle. Consider $\Omega(S)$ are the differential 1-forms with simple poles at S (the set of cusps). There is a natural line bundle ω on X(N) such that $\omega^{\otimes 2} \cong \Omega(S)$.

For $k \in \mathbb{Z}$ the space of modular forms $\mathcal{M}_k(\Gamma(N)) = \Gamma(X(N), \omega^{\otimes k}) = H^0(X(N), \omega^{\otimes k})$. For k > 0 there are lots of modular forms. For k < 0 there are none. For k = 0 there are only constants. Then the cusp forms $\mathcal{S}_k(\Gamma(N)) \hookrightarrow \mathcal{M}_k(\Gamma(N))$ are the modular forms vanishing at the cusps. There is a Hecke algebra acting on the cusp forms. An eigenvector is called an eigenform. For $k \geq 2$, Deligne produces from an eigenform a "modular" representation ρ_f . and for k = 1 this is via Deligne-Serre.

Consider $\mathfrak{h} \subset \mathbb{C} \hookrightarrow \mathbb{P}^1(\mathbb{C})$ by adding ∞ via $z \mapsto [z:1]$. From the action of $G = \mathrm{PGL}_2(\mathbb{C})$ we get,

$$\gamma \cdot [z:1] = [az+b:cz+d] = \left[\frac{az+b}{cz+d}:1\right]$$

Notice that the inclusion is invariant under $\mathrm{SL}_2(\mathbb{R}) \subset \mathrm{PGL}_2(\mathbb{C})$. Then \mathbb{P}^1 has a collection of G-equivariant line bundles called $\mathcal{O}(n) = \mathcal{O}(1)^{\otimes n}$ for $n \in \mathbb{Z}$.

$$\iota^*(\mathcal{O}(n))/\Gamma(N) = \omega^{-n}|_{Y(N)}$$

for $n = \deg \mathcal{O}(n)$.

Let $\tau: G \to \mathrm{GL}(V)$ be any algebraic representation. Let G act on $V \times \mathbb{P}^1$ via $g \cdot (v, x) = (\tau(g)v, g \cdot x)$ then the projection to \mathbb{P}^1 is equivariant. Therefore we can pull back and descent to Y(N) to get \widetilde{V} . Then,

$$\nabla: V \otimes \mathcal{O}_{\mathbb{P}^1} \to V \otimes \Omega^1_{\mathbb{P}^1}$$

given by $v \otimes \varphi \mapsto v \otimes d\varphi$. This is somehow equivariant so we get an integrable connection,

$$\widetilde{\nabla}: \widetilde{V} \to \widetilde{V} \otimes \Omega^1_{Y(N)}$$

By Deligne, we can extend this to X(N) so that ∇ acquires logarithmic poles on the cusps.

Suppose that τ is integral, meaning $V_{\mathbb{Z}} \subset V$ is a lattice stabilized by the action of $\mathrm{SL}(2,\mathbb{Z}) \subset \mathrm{GL}(2,\mathbb{Z})$. Then,

$$\widetilde{V}_{\mathbb{Z}} = (V_{\mathbb{Z}} \times \mathfrak{h})/\Gamma(N)$$

Then $\tilde{V}_n = \tilde{V}_{\mathbb{Z}}/p^n$ for $n \geq 1$. Define,

$$H^1_!(Y(N), \widetilde{V}_n) = \operatorname{im} \left(H^1_c(Y(N), \widetilde{V}_n) \to H^1(Y(N), \widetilde{V}_n) \right)$$

Then, Eichler-Shimura relations say,

$$H^1(Y(N), \widetilde{V}) \otimes \mathbb{C} \xrightarrow{\sim} \mathcal{S}_{k+2}(\Gamma(N)) \oplus \overline{\mathcal{S}_{k+2}(\Gamma(N))}$$

this is a sort of Hodge decomposition which is equivariant for the Hecke operators. Let,

$$H^1_!(Y(N), \widetilde{V} \otimes \mathbb{Q}_p) = \varprojlim_n H^1_!(Y(N), \widetilde{V}_n) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$$

This is étale cohomology and therefore is equipped with an action of $G_{\mathbb{Q}}$. Consider, $Y(Np^m)$ for $m \to \infty$. If $N \mid N'$ then get a Galois cover $Y(N') \to Y(N)$. Now we consider the inverse system of $Y(Np^m)$ whose limit has covering group $\mathrm{SL}(2,\mathbb{Z}_p)$. Then the completed cohomology is,

$$\hat{H}^{1}_{!}(\Gamma(N), E) = \varinjlim_{m} \varprojlim_{m} H^{1}_{!}(Y(Np^{m}), \widetilde{V}_{N}) \otimes_{\mathbb{Z}_{p}} E$$

First taking the limit in the level and then taking the inverse limit. The order of limits is important. This is p-adically complete (a p-adic Banach space over E) but the other order of limits does not give a p-adically complete space. This is equipped with a continuous $\operatorname{Gal}(()\overline{\mathbb{Q}}/\overline{\mathbb{Q}}(\zeta_{Np^{\infty}}) \times \operatorname{SL}(2,\mathbb{Z}_p)$ action. This is H^1 of a perfectoid space \mathfrak{X}_N and there is a Hodge-Tate map,

$$\pi_{HT}:\mathfrak{X}_N\to\mathbb{P}^1_{\widehat{\mathbb{Q}}_{\scriptscriptstyle l}}$$

of adic spaces which is "anti-holomorphic" relative to $\iota : \mathfrak{h} \hookrightarrow \mathbb{P}^1_{\mathbb{C}}$. The story is, differential operators on $Y(Np^m)$ pull back to operators on the completed cohomology and same with along $\iota : \mathfrak{h} \hookrightarrow \mathbb{P}^1_{\mathbb{C}}$. However, these operators only act on the locally analytic elements.

3 Sep. 8

3.1 Benefits of registering for this course

- (a) NO DRAWBACKS (homework, exams, etc)
- (b) Sends a message to the administration
- (c) You get messages from me (mixed perhaps): will be away Sep. 29th

3.2 Shimura Varieties as Moduli Spaces for Hodge Structures (Complex Theory)

Modular curve - parameter space for elliptic curves,

$$E(\mathbb{C}) = \mathbb{C}/\Lambda \quad \Lambda \subset \mathbb{C}$$
 is a lattice

Any smooth projective curve of genus 1 over $\mathbb C$ is isomorphic to $\mathbb C/\Lambda$ for some Λ . Furthermore, if $\alpha \in \mathbb C^{\times}$ then $\alpha : \mathbb C \to \mathbb C$ takes $\Lambda \mapsto \alpha \Lambda$ so $\mathbb C/\Lambda \cong \mathbb C/\alpha \Lambda$ but these are the only relations.

Orient \mathbb{C} such that $\{1, i\}$ is a positive \mathbb{R} -basis. Let,

$$\Omega = \{(\omega, \omega') \in \mathbb{C}^2 \mid \{\omega, \omega'\} \text{ is an oriented } \mathbb{R}\text{-basis}\}$$

Then $SL_2(\mathbb{Z}) \cap \Omega$ via,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot (\omega, \omega') = (a\omega + b\omega', c\omega + d\omega')$$

fixing the lattice $\mathbb{Z}\omega \oplus \mathbb{Z}\omega'$. Thus $\Omega/\mathrm{SL}_2(\mathbb{Z})$ is the set of lattices in \mathbb{C} . Therefore, the set of complex elliptic curves is,

$$\mathrm{SL}_2(\mathbb{Z})\backslash\Omega/\mathbb{C}^{\times}$$

We are assuming $\tau = \frac{\omega'}{\omega} \in \mathfrak{h}$ and therefore, we can write $(\omega, \omega') \sim (1, \tau)$. Furthermore, we can write $\omega = ai + b$ and $\omega' = ci + d$ and,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbb{R})_+$$

so we see that $\Omega \cong \mathrm{GL}_2(\mathbb{R})_+$. Then $\mathrm{GL}_2(\mathbb{R}) \subset \mathfrak{h}$ and the stabilizer of $\tau = i$ is \mathbb{C}^{\times} . Therefore, we get,

$$\mathrm{SL}_2(\mathbb{Z}) \backslash \Omega / \mathbb{C}^{\times} \cong \mathrm{SL}_2(\mathbb{Z}) \backslash \mathfrak{h}$$

An alternative way to think about this is,

$$\mathbb{Z}^2 \hookrightarrow \mathbb{Q}^2 \hookrightarrow \mathbb{R}^2$$

with a varying complex structure on \mathbb{R}^2 .

Definition 3.2.1. A complex structure on \mathbb{R}^2 is a homomorphism,

$$h: \mathbb{C}^{\times} \to \mathrm{GL}_2(\mathbb{R})$$

such that the eigenvalues of h(z) are z and \bar{z} . Such an h extends to a homomorphism of \mathbb{R} -algebras,

$$\mathbb{C} \to \mathrm{End}\left(\mathbb{R}^2\right)$$

Then h defines an isomorphism $\iota_h : \mathbb{R}^2 \to \mathbb{C}$.

Remark. Then $\mathbb{C}/\iota_h(\mathbb{Z}^2)$ is an elliptic curve and this gives everything from varying the complex structure rather than the lattice.

For all $z \in \mathbb{C} \setminus \mathbb{R}$ the map h(z) has two distinct eigenvalues z, \bar{z} . Let $V_h^{-1,0}$ and $V_h^{0,-1}$ in $V \otimes_{\mathbb{R}} \mathbb{C}$ be the eigenspaces. Then,

$$V \otimes_{\mathbb{O}} \mathbb{C} \cong V^{-1,0} \oplus V^{0,-1}$$

and $\overline{V^{-1,0}} = V^{0,-1}$.

Remark. The standard complex structure is given by,

$$h_0: \mathbb{C}^{\times} \to \mathrm{GL}_2(\mathbb{R}) \quad h_0(x+iy) = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$$

In this case, $V^{-1,0} = \mathbb{C} \cdot (1,i)$ and $V^{0,-1} = \mathbb{C}(1,-i)$.

It is better to consider $\mathfrak{h}^{\pm} = \mathfrak{h} \cup \overline{\mathfrak{h}} = \mathbb{C} \setminus \mathbb{R}$ and $GL_2(\mathbb{R}) \ominus \mathfrak{h}^{\pm}$ by,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

Choose γ such that, $\gamma^{-1}h(i)\gamma = h_0(i)$ ger a map,

$$\pi: \{\text{complex structures}\} \to \mathfrak{h}^{\pm} \quad \pi(h) = \tau_h = \gamma(i)$$

Check that if γ' is another choice that $k = (\gamma')^{-1}\gamma$ centralizes h_0 and thus belongs to $h_0(\mathbb{C})^{\times}$. Then τ_h is independent of the choice of γ such that $\gamma^{-1}h(i)\gamma = h_0(i)$.

The upshot,

$$\{\text{complex structures}\} \cong \mathrm{GL}_2(\mathbb{R})/K_\infty \cong \mathfrak{h}^{\pm}$$

where

$$K_{\infty} = k_0(\mathbb{C}^{\times}) \subset \mathrm{GL}_2(\mathbb{R})$$

Therefore, these sets acquire the structure of a complex manifold. Also $V_h^{0,-1} \subset \mathbb{C}^2$ is a varible line defining a point $p_h \in \mathbb{P}^1(\mathbb{C}) = \mathbb{P}(V_{\mathbb{C}})$. If $[\alpha : \beta]$ is a homogeneous coordinate on \mathbb{P}^1 and $t = \alpha/\beta$ the inhomogeneous coordinate,

$$\operatorname{GL}_2(\mathbb{R})/K_\infty \hookrightarrow \mathbb{P}(V_\mathbb{C})$$

Furthermore, $\iota_h: \mathbb{R}^2 \to \mathbb{C}$ extends by linearity to $V_{\mathbb{C}} = \mathbb{R}^2 \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C}$. Then we get an isomorphism $V_{\mathbb{C}}/V_h^{0,-1} \cong \mathbb{C}$. Thus the elliptic curve parametrized by h becomes,

$$E_h(\mathbb{C}) = \iota_h(\mathbb{Z}^2) \backslash \mathbb{C} \cong \mathbb{Z}^2 \backslash \mathbb{Z}^2 \otimes_{\mathbb{Z}} \mathbb{C}/V_h^{0,-1}$$

However,

$$(\mathbb{Z}^2 \times \mathrm{SL}_2(\mathbb{Z})) \backslash \mathfrak{h}^{\pm} \times V_{\mathbb{C}}/V^{0,-1}$$

is not a family of elliptic curves because of the fixed points. The fibers are $E_h/\operatorname{Stab} h$. Therefore, we replace $\operatorname{SL}_2(\mathbb{Z})$ by $\Gamma(N)$ for $N \geq 3$ to get trivial stabilizers.

Then $Y_N = \Gamma(N) \backslash \mathfrak{h}^+$ and $G = \operatorname{GL}(2)$ let $\widetilde{V}_{\mathbb{Z}} = \Gamma(N) \backslash \mathfrak{h}^+ \times \mathbb{Z}^2$ where $\Gamma(N) \subset \operatorname{SL}_2(\mathbb{Z}) \subset \mathbb{Z}^2$ by the standard action. Then $\Gamma(N)$ acts trivially on $\mathbb{Z}^2/N\mathbb{Z}^2$ and let $\widetilde{V}[N] = \widetilde{V}_{\mathbb{Z}}/N\widetilde{V}_{\mathbb{Z}}$ is a trivial $\mathbb{Z}/N\mathbb{Z}$ -local system of rank 2. We see that,

$$\widetilde{V}_{\mathbb{Z}}|_{E_h} \cong H_1(E_h, \mathbb{Z})$$

then we see,

$$\widetilde{V}[N]|_{E_h} \cong E_h[N]$$

is trivialized over Y_N so $Y_N(\mathbb{C}) = \{(E, \alpha) \mid \alpha : (\mathbb{Z}/N\mathbb{Z})^2 \xrightarrow{\sim} E[N] \text{ plus condition of the Weil pairing} \}$ level N structure. For E/\mathbb{C} and elliptic cuve. There exists Y_N^* defined over \mathbb{Q} represending the Moduli problem,

$$Y_N^*(F) = \{ (E, \alpha) \mid \alpha : (\mathbb{Z}/N\mathbb{Z})^2 \xrightarrow{\sim} E[N] \}$$

for $F \supset \mathbb{Q}$. Furthermore, $Y_N^*(\mathbb{C})$ is $(\mathbb{Z}/N\mathbb{Z})^{\times}$ copies of $Y_N(\mathbb{C})$ permuted by the Galois action since the Weil-paring requires the choice of a root of unity ζ_N . Therefore, Y_N is algebraic and defined over $\mathbb{Q}(\zeta_N)$ but not over \mathbb{Q} .

3.3 Some Algebraic Geometry

Let $f: Z \to X$ be a proper smooth morphis of \mathbb{Q} -varieties of relative dimension d. Then $\widetilde{H}^d = R^d f_* \mathbb{Z}$ is a local system with $(R^d f_* \mathbb{Z})_* \cong H^d(Z_x, \mathbb{Z})$. In a neighborhood of x, this is trivial. If we suppose this is free of rank m then $\widetilde{H}^d/N\widetilde{H}^d$ is a free $\mathbb{Z}/N\mathbb{Z}$ -modules of rank N. This fives a representation of $\pi_1(X(\mathbb{C}), x_0)$ on $(\mathbb{Z}/N\mathbb{Z})^m$. If $K \subset \pi_1(X, x_0)$ is the kernel, then there is a covering space $X_N/X(\mathbb{C})$ with group $\pi_1(X, x_0)/K$. Then by Riemann existence X_N is a variety.

Let $N_0 \geq 3$. Then for any N we have, $Y_{N_0N} \to Y_{N_0}$ trivializes $\tilde{V}[NN_0]$.

Define,

$$\hat{H}^{i}(N_{0}, \mathbb{Z}_{p}) = \varprojlim_{m} \varinjlim_{n} H^{i}(X_{N_{0}p^{n}}, \mathbb{Z}/p^{m}\mathbb{Z})$$

completed cohomology.

3.4 Hodge Structres

Definition 3.4.1. Let V/\mathbb{Q} be a finite dimensional vector space. Let $V_{\mathbb{C}} = V \otimes_{\mathbb{Q}} \mathbb{C}$. A *Hodge structure* V pure of weight w is a decomposition,

$$V_{\mathbb{C}} = \bigoplus_{p+q=w} V^{p,q}$$

such that $\overline{V^{p,q}} = V^{q,p}$.

Remark. We have seen that elliptic curves over \mathbb{C} are in correspondence with weight -1-Hodge structures.

Definition 3.4.2. A morphism of Hodge structures $g:V\to V'$ is a \mathbb{Q} -linear map such that $g_{\mathbb{C}}(V^{p,q})\subset V'^{p,q}$. Then we get a category of Hodge structures. If we allow for mixed weights we also get direct sums.

Proposition 3.4.3. There is an equivalence of categories,

$$\{(V, h: \mathbb{C}^{\times} \to \operatorname{Aut}(V_{\mathbb{R}})) \cong \{\operatorname{Hodge structures}\}$$

where h is a homomorphism of \mathbb{R} -linear algebraic groups (in particular all the eigenvalues of h(z) are of the form $z^p \bar{z}^q$).

4 Hodge Stuctures

If G is an algebraic group then $Rep_F(G)$ of finite dimensional G-representations forms a catgory where F is a field. In fact, this is a symmetric monoidal category:

- (a) additive: direct sums exist
- (b) F-linear it is enriched over F-vectorspaces
- (c) there is a neutral object $\rho: G \to \operatorname{Aut}(V)$ trivial
- (d) there is a monoidal functor \otimes such that the neutral element is an identity
- (e) symmetric $V \otimes W \cong W \otimes V$.

Hodge structures correspond to $\operatorname{Rep}_{\mathbb{R}}(\mathcal{S})$ along with \mathbb{Q} -structure.

We saw that \mathfrak{h}^{\pm} is a parameter space for Hodge structure with $V_{\mathbb{C}} \cong V^{-1,0} \oplus V^{0,1}$ or equivalently for Hodge structures on GL₂-representations.

Theorem 4.0.1. Let $\rho_0: G \to \operatorname{GL}(V)$ is a faithful representation of a reductive group G (over characteristic zero) then any representation $\rho: G \to \operatorname{GL}(W)$ is a direct summand of $V^{\otimes a} \otimes (V^*)^{\otimes b}$ for some a and b.

Remark. Applying this to $V = \mathbb{Q}^2$ with natural GL_2 -structure. Then $W \subset V^{\otimes a} \otimes (V^*)^{\otimes b}$. Then a Hodge structure on V determines on V^* and thus on $V^{\otimes a} \otimes (V^*)^{\otimes b}$. Then clearly, for any $h: \mathcal{S} \to GL_2$ the direct summand as GL_2 -representations is also stable under the \mathcal{S} -action and hence defines a Hodge structure (really we also need to worry about the \mathbb{Q} -structure).

Definition 4.0.2. A Hodge structure on a G-representation $\rho: G \to \mathrm{GL}(V)$ is a map $h: \mathcal{S} \to G$ which then endows V with a Hodge structure.

4.1 Real Algebraic Groups

Definition 4.1.1. Let \mathfrak{g} be a Lie algebra. Then for ad : $\mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ we have,

$$\operatorname{ad}([X,Y]) = \operatorname{ad}(X) \cdot \operatorname{ad}(Y) - \operatorname{ad}(Y) \circ \operatorname{ad}(X)$$

Then the Killing form is,

$$B(X,Y) = \text{Tr}((\text{ad}(X) \cdot \text{ad}(Y)))$$

which is a symmetric bilinear form invariant under Aut (\mathfrak{g}) .

Definition 4.1.2. A complex Lie algebra \mathfrak{g} is *semisimple* if the Killing form is nondegenerate.

Definition 4.1.3. A real form of a complex Lie algebra \mathfrak{g} is a Lie algebra \mathfrak{g}_0 over \mathbb{R} such that $\mathfrak{g} \cong \mathfrak{g}_0 \otimes_{\mathbb{R}} \mathbb{C}$.

Remark. A real form is equivalent to a \mathbb{C} -antilinear involution $\sigma: \mathfrak{g} \to \mathfrak{g}$ in which case,

$$\mathfrak{g}_0 = \mathfrak{g}^{\sigma} = \{ X \in \mathfrak{g} \mid \sigma(X) = X \}$$

Theorem 4.1.4. Lie subgroups of G correspond to Lie subalgebras of $\mathfrak{g} = \text{Lie}(G)$.

Definition 4.1.5. Say the real form \mathfrak{g}_0 is *compact* if the assocated subgroup of G is compact.

Remark. We can recover an algebraic group G with $Lie(G) = \mathfrak{g}$ as the subgroup $G = Aut(\mathfrak{g})^{\circ}/scalars \subset GL(\mathfrak{g})$ then $Lie(G) = \mathfrak{g}$. (WHY?)

Lemma 4.1.6. \mathfrak{g}_0 is compact iff the Killing form $B_{\mathfrak{g}}$ is negative-definite on \mathfrak{g} .

Proof. If $B_{\mathfrak{g}}$ is negative-definite, then G_0 the adjoint group of \mathfrak{g}_0 maps faithfully to Aut $(()\mathfrak{g}_0)$ and preserves $B_{\mathfrak{g}}$ hence is compact (since its image lies inside $O(\mathfrak{g}, B_{\mathfrak{q}})$ which is compact. Conversely, if G_0 is compact then \mathfrak{g}_0 admits a G_0 -invariant (positive-definite) inner produce $\langle -, - \rangle$ via integrating over an arbitrary non-degenerate inner product on \mathfrak{g} . Now $\langle -, - \rangle$ is G_0 -invariant which implies that for infinitessimal transformations,

$$\forall X \in \mathfrak{g}_0 : \langle \operatorname{ad}(X)Y, Z \rangle = -\langle Y, \operatorname{ad}(X)Z \rangle$$

To see this, consider,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \exp(\mathrm{ad}(X)(Y)), \exp(\mathrm{ad}(X)(Z)) \right\rangle = 0$$

The nonzero eigenvalues of a real skew-symmetric matrix are pure imaginary. Then $\operatorname{ad}(X)^2$ is smmetric with eigenvalues ≤ 0 so $B_{\mathfrak{q}}(X,X) = \operatorname{Tr}(()\operatorname{ad}(X)^2) \leq 0$ and is zero iff all eigenvalues are zero and thus $\operatorname{ad}(X) = 0$ so it is negative-definite.

Theorem 4.1.7. Let \mathfrak{g} be a complex semisimple $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra. Then there is a compact real form \mathfrak{g}_u such that \mathfrak{h} is stable under the involution. Then there is a real vector space $\mathfrak{h}_{\mathbb{R}}$ which is a real form of \mathfrak{h} (just a real basis since \mathfrak{h} is abelian) and $i\mathfrak{h}_{\mathbb{R}}$ is a maximal abelian subalgebra of \mathfrak{g}_u . In fact, $\mathfrak{h}_{\mathbb{R}}$ is spanned by the coroot vectors H_{α} for $\alpha \in \Delta(\mathfrak{g}, \mathfrak{h})$ with $\alpha(H) = B_{\mathfrak{g}}(H_{\alpha}, H)$.

Theorem 4.1.8. $\mathfrak{g}, \mathfrak{g}_u$ as above and τ is the conjugation associated to $(\mathfrak{g}, \mathfrak{g}_u)$. Let σ be a second conjugation of \mathfrak{g} . There is a 1-parameter group $t \mapsto A_t \subset \operatorname{Aut}(\mathfrak{g})$ such that $A(0) = \operatorname{id}$ and $A(1)\tau A(1)^{-1}$ commutes with σ .

Corollary 4.1.9. Any two compact real forms of \mathfrak{g} are conjugate by an element of Aut $(()\mathfrak{g})^{\circ}$.

Remark. Let $\mathfrak{h} = \text{Lie}(H)$ then,

$$\Delta \subset X^*(H) = \operatorname{Hom}(H, \mathbb{G}_m) \to \operatorname{Hom}(\mathfrak{h}, \mathbb{C}) \cong X^*(H) \otimes_{\mathbb{Z}} \mathbb{C}$$

Definition 4.1.10. Let \mathfrak{g} be a real semisimple Lie algebra. A *Cartan involution* is an involution $\sigma: \mathfrak{g} \to \mathfrak{g}$ such that $\mathfrak{k} = \mathfrak{g}^{\sigma=1}$ and $\mathfrak{p} = \mathfrak{g}^{\sigma=-1}$ has $B_{\mathfrak{g}}$ negative-definite and positive-definite respectively and gives a Cartan decomposition,

$$\mathfrak{g}\cong\mathfrak{k}\oplus\mathfrak{p}$$

Theorem 4.1.11. Let \mathfrak{g} be real semisimple. Then \mathfrak{g} has a Cartan involution and any two are conjugate by Aut $(\mathfrak{g})^{\circ}$.

Proof. Let \mathfrak{g}_u be a compact real form of $\mathfrak{g}_{\mathbb{C}}$ and $\mathfrak{g} = \mathfrak{g}_{\mathbb{C}}^{\sigma}$ and $\mathfrak{g}_u = \mathfrak{g}_{\mathbb{C}}^{\tau}$ where σ and τ are anti-linear involutions. By the theorem, we may assume that σ and τ commute. Then τ defines an involution of \mathfrak{g} since it commutes with σ . Then the fixed points are $\mathfrak{k} = \mathfrak{g} \cap \mathfrak{g}_u$ which is maximal compact and τ is a Cartan involution on \mathfrak{g} .

4.2 Deligne's Axioms for Shimura Data

Definition 4.2.1. A Shimura datum is a pair (G, X) where G is a reductive group over \mathbb{Q} and X is a $G_{\mathbb{R}}$ -conjugacy class of homomorphism $h: \mathcal{S} \to G_{\mathbb{R}}$ satisfying,

- (a) $\forall h \in X$ we have im $h|_{\mathbb{G}_m} \subset Z(G)$
- (b) $\forall h \in X : Ad(h(i))$ is a Cartan involuton of $\mathfrak{g}^{ad} = Lie(G^{ad}(\mathbb{R}))$ where $G^{ad} = G/Z(G)$.
- (c) For any $h \in X$: Ad $\circ h : \mathcal{S} \to GL(\mathfrak{g}_{\mathbb{R}})$ is a Hodge structure such that $\mathfrak{g}^{p,q} = 0$ unless $(p,q) \in \{(0,0),(-1,1),(1,-1)\}.$

Remark. For $h \in X$ let $K_h = Z_{G_{\mathbb{R}}}(h(\mathcal{S}))$ then $\mathfrak{t}_h = \text{Lie}(K_h) = \mathfrak{g}^{0,0}$ is is the part where \mathcal{S} acts trivially through h. Furthermore, ad(h(i)) actis as -1 pn $\mathfrak{g}^{-1,1}$ or $\mathfrak{g}^{1,-1}$.

- (a) $\mathfrak{g}_{\mathbb{R}} = \mathfrak{k}_h \oplus \mathfrak{p}_h$ is a Cartan decomposition
- (b) K_h/Z_G is maximal compact in $G^{ad}(\mathbb{R})$
- (c) $\mathfrak{p}_h \cong \mathfrak{p}_h^+ \oplus \mathfrak{p}_h^-$ with $\mathfrak{p}_h^- = \mathfrak{g}^{1,-1}$ and $\mathfrak{p}_h^+ = \mathfrak{g}^{-1,1}$.

Then X has a $G(\mathbb{R})$ -invariant complex structure. And G/K is a symmetric space with an action of G. This has a complex structure invariant under the G-action iff X is constructed from a Shimura datum.

5 September 15

To produce \mathbb{C} -local systems on a connected X the best way is to take a smooth proper morphism $p: Y \to X$ then $\mathscr{F} = R^i p_* \mathbb{C}$ then $\mathscr{F}_x = \cong H^i(Y_x, \mathbb{C})$.

Let $X = \widetilde{X}/\Gamma$ where \widetilde{X} is simply connected. Then $\Gamma \cong \pi_1(X, x)$ for any $x \in X$. If $\rho : \Gamma \to \operatorname{GL}(W)$ for W finite dimensional over \mathbb{C} . Then we can take $\widetilde{W} = (\widetilde{X} \times W)/\Gamma$ which is a local system on X whose associated representation is ρ .

For \widetilde{X} a hermitian symmetric space for $G(\mathbb{R})^{\circ}$. Then for $\Gamma \subset G(\mathbb{Q})$ discrete such that,

- (a) $\Gamma \bigcirc \widetilde{X}$ has no fixed points
- (b) \widetilde{X}/Γ is compact
- (c) \widetilde{X}/Γ has finite invariant volume.

Then we get not only a complex manifold but actually a variety.

Let G be a reductive algebraic group over \mathbb{Q} . Let X be a $G(\mathbb{R})$ -conjugacy class of maps $h: \mathcal{S} \to G_{\mathbb{R}}$ satisfying,

- (a) ad(h(i)) is a Cartan involution of \mathfrak{g}
- (b) $h(\mathbb{G}_{m,\mathbb{R}}) \subset Z_G$
- (c) $\forall z \in \mathcal{S}(\mathbb{R})$ then h(z) has eigenvalues $z/\bar{z}, 1, \bar{z}/z$.

Remark. Recall that $\mathcal{S} = \operatorname{Res}_{\mathbb{R}}^{\mathbb{C}}(\mathbb{G}_{m,\mathbb{C}})$ and thus contains $\mathbb{G}_{m,\mathbb{C}} \subset \mathcal{S}$. This corresponds to the lattice \mathbb{Z}^2 with complex conjugation $\sigma(a,b) = (b,a)$ with the invariant map $\mathbb{Z}^2 \to \mathbb{Z}$ sending $(a,b) \mapsto a+b$.

Example 5.0.1. Let $G = \mathbb{G}_{m,\mathbb{R}}$ and $h(z) = z\overline{z} = N(z)$.

Definition 5.0.2. $\mathrm{GU}(p,q) = \{g \in \mathrm{GL}_{p+q}(\mathbb{C}) \mid g^{\dagger}I_{p,q}g = \nu(g)I_{p,q}\}$ where $I_{p,q}$ is the matrix for the standard quadratic form with signature (p,q). Then there is an exact sequence,

$$1 \longrightarrow SO(p,q) \longrightarrow GU(p,q) \longrightarrow \mathbb{G}_m \longrightarrow 1$$

Then we let,

$$h_0(z) = \begin{pmatrix} zI_p & 0\\ 0 & \bar{z}I_q \end{pmatrix}$$

such that $h_0(i) = iI_{p,q}$. Then $U(p,q) = \ker \nu$.

6 Sept 20

Let G be a group over \mathcal{O} and X a $G(\mathbb{R})$ -conjugacy class of $h: \mathcal{S} \to \mathscr{G}_{\mathbb{R}}$ with the required properties. Consider $K \subset G(\mathbb{A}_{fin})$ then,

$$\mathfrak{Sh}_K(G,X) = G(\mathbb{Q}) \backslash (X \times \mathscr{G}(\mathbb{A}_{\mathrm{fin}}) / K$$

For $K' \subset K$ get $\mathfrak{Sh}_{K'}(G,X) \to \mathfrak{Sh}_K(G,X)$. If K' is normal in K then,

$$\mathfrak{Sh}_{K'}(G,X) \to \mathfrak{Sh}_K(G,X)$$

is a /K'-covering. Write $K = K^{[} \cdot K_p$ with,

$$K^p \subset \prod_{q \neq p}' G(\mathcal{O}_q)$$

Fix K_p let $K_{p,n} \to \{1\}$ then consider,

$$S(K^p) = \varprojlim_n \mathfrak{Sh}_{K^pK_{p,n}}(G,X)$$

Note that for affine schemes,

$$\lim_{N} \operatorname{Spec}(R_n) = \operatorname{Spec}\left(\varinjlim_{n} R_n\right)$$

Then $S(K^p) \to \mathfrak{Sh}_{K^pK_{p,n}}(G,X)$ is a pro-étale cover with group $K_{p,n}$. We can also from the adic space $\hat{S}(K^p)$.

Definition 6.0.1. A map of Shimura data $(H, Y) \to (G, X)$ is a homomorphism $\phi : H \to G$ and a map of complex analytic spaces $Y \to X$ which is equivariant for the $H_{\mathbb{R}}$ -action.

Remark. This gives rise to a map of Shimura varities,

$$\mathfrak{Sh}_{K\cap H(\mathbb{A}_{6n})}(H,Y) \to \mathfrak{Sh}_K(G,X)$$

of quasi-projective algebraic varities over $E(H,Y) \supset E(G,X)$.

The complex structure is given by $X \hookrightarrow \hat{X} = G(\mathbb{C})/P(\mathbb{C})$ the Borel embedding where for $h \in X$ we have $P = P_h$ is the subgroup with $\text{Lie}(P_h) = \mathfrak{t}_{h,\mathbb{C}} \oplus \mathfrak{p}_h^-$ with $\mathfrak{p}_h^- = \mathfrak{g}^{1,-1}$.

Remark. Recall any algebraic map $h: \mathcal{S} \to \mathrm{GL}(W)_{\mathbb{R}}$ with W defined over \mathbb{Q} gives a Hodge structure on W.

Let \hat{X} be a G-homogeneous space (over a number field E). Consider G-equivariant vector bundles on \hat{G} meaning $V \to \hat{X}$ which is locally isomorphic to $U \times \mathbb{G}_a^n$ for an open $U \subset \hat{X}$ and the transition maps are algebraic. If the transition functions lie in $\mathrm{GL}(n,E)$ then it is a local system. Furthermore, we want it to be equivariant meaning it is equipped with a fiberwise linear action $G \odot V$ such that $\pi: V \to \hat{X}$ is equivariant.

$$G \times V \longrightarrow V$$

$$\downarrow \qquad \qquad \downarrow$$

$$G \times \hat{X} \longrightarrow \hat{X}$$

Suppose that $\hat{X} = G/P$ (in full generality \hat{X} might not have E-points and hence the parabolic might lie over some extension). Let x be a fixed point of $P \odot G$ meaning $x \in \hat{X}$. Then we get $V \mapsto V_x$ with $P \odot V_x$. This defines an equivalence of \otimes -categories,

{equivariant vector bundles on
$$\hat{X}$$
} $\xrightarrow{\sim} \operatorname{Rep}_{E(x)}(P)$

To go the other way, given a representation $\rho: P \to \mathrm{GL}(W)$ then we let,

$$V = (G \times V)/P \to G/P = \hat{X}$$
 with $(g, v) \cdot p = (gp, \rho(p)^{-1}v)$

Consider the restriction map, $\operatorname{Rep}(G) \to \operatorname{Rep}(P)$ then given $\rho: G \to \operatorname{GL}(W)$ we get,

$$(G \times W)/P \cong (G/P) \times W$$

If we have $\rho: K = P/R_n(P) \to GL(W)$ then ρ is completely reducible and thus,

$$V(\rho) = (G \times W)/P$$

is completely reducible.

Let V be a homogeneous vector bundle on \hat{X} . For $\beta: X \hookrightarrow \hat{X}$ consider,

Therefore we get a functor $V \mapsto [V]_K$ from homogeneous vector bundles on \hat{X} to "automorphic" vector bundle son $\mathfrak{Sh}_K(G,X)$.

Remark. There is often an extra axiom: $\operatorname{rank}_{\mathbb{R}} Z_G = \operatorname{rank} Z_G$ to exclude the following example: $G = \operatorname{Res}_{\mathbb{Q}}^F(\mathbb{G}_m)$ for F totally real. Since G is commutative then $X = \{h\}$ there is trivial conjugation. Then,

$$F^{\times} \backslash (h \times V \times \mathbb{A}_{\text{fin},F}^{\times} / K)$$

will have some fixed points. Equivalently we can consider vector bundles over \hat{X} with trivial $Z_G^0 =$ ker action which ensures that the above quotient is actually a vector bundle.

Definition 6.0.2. $\mathfrak{Sh}(G,X) = \varprojlim_{K \subset G(\mathbb{A}_{fin})} \mathfrak{Sh}_K(G,X)$ on which $G(\mathbb{A}_{fin})$ acts. Then we get $\langle [V]_K \rangle = \varprojlim_K [V_K \text{ is equivariant under } G(\mathbb{A}_{fin}).$

For any h, then $r \circ h : \mathcal{S} \to \mathrm{GL}(W)$ defines a Hodge structure on W which we write,

$$W_{\mathbb{C}} = \bigoplus_{p,q} W_h^{p,q}$$

If $g \in G(\mathbb{R})$ then $r \circ g(h)$ gives the Hodge structure,

$$W = \bigoplus_{p,q} W_{g(h)}^{p,q} \quad \text{with} \quad W_{g(h)}^{p,q} = r(g) \cdot W_h^{p,q}$$

Recall,

$$W^{p,q} = F^pW \cap \overline{F^qW}$$

But W also has a filtration by P-invariant subspaces. Writing,

$$\mathfrak{g}_{\mathbb{C}}=\mathfrak{g}^{-1,1}\oplus\mathfrak{g}^{0,0}\oplus\mathfrak{g}^{1,-1}$$

Then,

$$\mathfrak{g}^{a,b}\otimes W^{p,q}\subset W^{p+a,q+b}$$

WHAT!!

Let $r: G \to \mathrm{GL}(W)$ and,

$$\widetilde{W}_K = G(\mathbb{Q}) \backslash (X \times W_F \times G(\mathbb{A}_{fin})) / K$$

is a local system in F-vector spaces where as [W] is an algebraic vector bundle attached to $\hat{X} \times W$ as homogeneous vector bundles. Then $F^p[W] = [F^pW]$ the Hodge filtration on [W] over the Shimura variety.

Example 6.0.3. Let $(G, X) = (GL(2), \mathfrak{h}^{\pm})$ and $\hat{X} = \mathbb{P}^1$ and $W = \operatorname{Sym}_{(k)V}$ where $V = \mathbb{Q}^2$ with standard representation ρ_{st} . Then,

$$\mathfrak{Sh}_{K(N)}(\mathrm{GL}(2),\mathfrak{h}^{\pm})=Y(N)$$

For $N \geq 3$ there is a universal curve $p: \mathcal{E} \to Y(N)$ then $[V] = (R^1 p_* \underline{\mathbb{Q}})^{\vee}$ or really the flat sections of the relative de Rham vector bundle under the Gauss-Manin connection so $[V]_x = H^1_{dR}(\mathcal{E}_x)^{\vee}$.

For $V/\mathbb{P}^1 = \operatorname{GL}_2/B$ is isomorphic to a sum of $\mathcal{O}(k)$ for some k and $\Omega = \mathcal{O}(-2)$ so it pulls back to Ω on the modular curve which is $\omega^{\otimes 2}$. Therefore, $[\mathcal{O}(k)] = \omega^{\otimes (-k)}$.

For $r: G \to \mathrm{GL}(W)$ and $\hat{X} \times W = W \otimes \mathcal{O}_{\hat{X}}$ as algebraic vector bundles. There is a trivial connection on here. Therefore, we get $\nabla: [W] \to [W] \otimes \Omega^1_{\mathfrak{Sh}(G,X)}$ which is an integrable connection on the Shimura variety and,

$$\nabla(F^p[W]) \subset F^{p-1}[W] \otimes \Omega^1_{\mathfrak{Sh}(G,X)}$$

which we check using Lie algebras, another manifestation of Griffiths transversality. Using the de Rham complex associated to [W] we get an equivalence in the derived category,

$$\widetilde{W}(\mathbb{C}) \sim [0 \to [W] \to [W] \otimes \Omega^1 \to \cdots \to [W] \otimes \Omega^d \to 0]$$

for holomorphic vectorspaces. Therefore,

$$H^i(\mathfrak{Sh},\widetilde{W})=\mathscr{H}^i_{\mathrm{dR}}(\mathfrak{Sh},[W])$$

7 Sept 27

7.1 Perfectoid Spaces

Let $C_p = \widehat{\mathbb{Q}}_p$ for any characteristic zero field complete with repsecte to the p-adic topology and algebraically closed. Let $[K:\mathbb{Q}_p] < \infty$ and $G = \operatorname{Gal}(\overline{\mathbb{Q}}_p/K)$. Let $\rho: G \to \operatorname{GL}V$ and $\rho_{C_p}: G \to \operatorname{GL}V \otimes_{\mathbb{Q}_p} C_p$ the action is diagonal.

Let K_{00}/K be with Galois group \mathbb{Z}_p , totally ramified (e.g. $K = \mathbb{Q}_p(\zeta_{p^n})^{\mathbb{F}_p^{\times}}$.

Definition 7.1.1. A pseudo-uniformizer ϖ is an extension of \mathbb{Q}_p is a topologically nilpotent unit meaning,

$$\lim_{n\to\infty}\varpi^n=0$$

Remark. This is called topologically nilpotent because it says that for any open neighborhood U of 0 there is $\varpi^n \in U$ for sufficiently large n.

Proposition 7.1.2. For any L/K_{∞} with integer ring \mathcal{O}_L we have,

$$\operatorname{Tr}\left(\right)L/K_{\infty}\mathcal{O}_{L}\supset\mathfrak{m}_{\infty}$$

which is called being almost unramified or almost etale.

Proof. Let $L = L_0 K_\infty$ with L_0/K and $L_h = L_0 K_h$ gives $(L_n/K_N) \to 9$ as $n \to \infty$. Therefore, it

8 Oct. 4 Sen's Theory

Recall the situation: $\mathbb{Q}_p \subset K \subset K_\infty \subset C$ with $\Gamma = \operatorname{Gal}(K_\infty/K)$.

Corollary 8.0.1. The inflation map,

 H^1

$$\boxtimes (\Gamma, \operatorname{GL}(n, \hat{K}_{\infty}) \to H^1 \boxtimes (G, \operatorname{GL}(n, C))$$

is an isomorphism.

Remark. We are using the fact that $\hat{K}_{\infty} = C^H$ where $H = \text{Gal}(() C/K_{\infty})$.

Remark. $H^1 \boxtimes (H, GL(n, C)) = 1$

Now we take W a finite dimensional C-vectorspace with $n = \dim_C W$. We equip it with the structure of a semi-linear G-representation $g \cdot (\lambda w) = g(\lambda)g(w)$ for $w \in W$ and $g \in G$ and $\lambda \in C$.

Proposition 8.0.2. Let $\hat{W}_{\infty} = W^H$ is an *n*-dimensional \hat{K}_{∞} subspace. Then the inclusion $\hat{W}_{\infty \otimes_{\hat{K}_{\infty}} \to W}$ is an isomorphism.

Proof. This is Galois descent

Proposition 8.0.3 (Decompletion). The inclusion $H^1(\mathbb{G}_a, \mathrm{GL}(n, K_\infty)) \to H^1(\Gamma, \mathrm{GL}(n, \hat{K}_\infty))$.

Proof. The map $g \mapsto U_g$ descends to a cocycle $g \in \Gamma$ maps to $U_g \in GL(n, \hat{K}_{\infty})$. But it γ is a topological generator then,

$$U_{\gamma} \in \mathrm{GL}(n, K_{\infty}) = \bigcup_{r} \mathrm{GL}(n, K_{r})$$

Therefore, because this is a topological generator we can choose a uniform r such that,

$$\forall g \in \Gamma : U_q \in \mathrm{GL}(n, K_r)$$

Proposition 8.0.4. There is a K_r -representation W_r of Γ of dimension n such that $W_r \otimes_{K_r} \hat{K}_{\infty} \cong \hat{W}_{\infty}$.

Corollary 8.0.5. Let $W_{\infty} \subset \hat{W}_{\infty}$ be the sset of all vectors whose Γ -orbit is contained in a K-vector space of finite dimension. Then $W_r \otimes_{K_r} K_{\infty} = W_{\infty}$ and hence $W_{\infty} \otimes_{K_{\infty}} \hat{K}_{\infty} = \hat{W}_{\infty}$.

Proof. Clearly $\dim_{K_{\infty}} W_r \otimes_{K_r} K_{\infty} = \dim_{K_r} W_r = n$. Also, $W_{\infty} \supset W_r \otimes_{K_r} K_{\infty}$ so $\dim W_{\infty} \geq n$. On the other hand, Sen proves that any element of \hat{K}_{∞} whose Γ -orbit is finite is contained in K_{∞} . One writes $D_{\mathrm{Sen}}(W) = W_{\infty}$ is an n-dim v.s. over K_{∞} attached to the G-action on W. ...

Remark. Write $\log \chi$ for the map $G \to \Gamma_r \xrightarrow{\sim} \mathbb{Z}_p$ for $\Gamma_r = \operatorname{Gal}(K_{\infty}/K_r)$. Then γ_r acts linearly on W_r .

Definition 8.0.6. The Sen operator $\phi = \phi_W$ is the K_r -linear endomorphism fo W_r whose matrix in the basis $\{e_1, \ldots, e_r\}$ is given by,

$$\Phi = \frac{\log U_{\gamma_r}}{\log \chi(\gamma_r)}$$

is independent of the choice of γ_r .

Theorem 8.0.7. Sen's operator is the unique K_{∞} -linear endomorphism fo $W = D_{\text{Sen}}(W)$ wuch that for all $w \in W_{\infty}$ there exists $\Gamma_W \subset \Gamma$ open such that $\forall \sigma \in \Gamma_W$,

$$\sigma(e) = [\exp(\phi(\log \chi(r)))](w)$$

Theorem 8.0.8 (Sen). Let V be a \mathbb{Q}_p -vectorspace and $\rho : \operatorname{Gal}(()\overline{\mathbb{Q}}_p/K) \to \operatorname{GL}(V)$ a linear representation. Let $W = V \otimes C$ and $\phi = \phi_W$ its SEn operator. Suppose that residue field of K is algebraically closed. Then $\operatorname{Lie}(\rho(\operatorname{Gal}(()\overline{\mathbb{Q}}_p/K)))$ is the smallest \mathbb{Q}_p -rational subspace $S \subset \operatorname{End}_{\mathbb{Q}_p}(V)$ such that $\phi \in S \otimes C$.

Remark. We want a geometric version where the residue field may not be perfect.

9 Oct 6

Definition 9.0.1. A *strict* p-ring is a p-adically complete ring S, flat over \mathbb{Z}_p such that S/pS is perfect.

Proposition 9.0.2. Suppose that S is a strict p-ring and A = S/pS. Then there is a multiplicative Teichmuller lift $A \to S^{\times}\{0 \text{ given by},$

$$a \mapsto [a] = \varprojlim_{n} \tilde{a}^{p^{n}}$$

Theorem 9.0.3 (Witt). The functor $S \mapsto S/pS$ from,

$$\{\text{strict p-rings}\} \to \{\text{perfect } \mathbb{F}_p\text{-algebas}\}$$

is an equivalence of catefories. The inverse map $A \mapsto W(A)$ is called the ring of Witt vectors. Any $w \in W(A)$ has a unique expansion,

$$w = \sum_{n>0} [a_n(w)]p^n$$

with $a_n(w) \in A$.

10 Oct. 11

Remark. No class next tuesday.

Consider the perfectoid modular curve $X_{\infty}(N)$ over X(N) (with $p \nmid N$) then we get a vector bundle $\widetilde{M} = (X_{\infty}(N) \times M)/G$ where $G = \mathrm{GL}(2, \mathbb{Z}_p)$ is the Galois group of the perfectoid cover. To \widetilde{M} there is an associated Sen operator.

Working over C a complete algebraically closed field of characteristic zero and p-adic normalized such that $| \bullet |_C$ restricts to the standard norm on \mathbb{Q}_p . Consider $\mathcal{O}_C \subset C$ then (C, \mathcal{O}_C) and $X = (A, A^+)$ is a 1-dimensional smooth affinoid adic space over (C, \mathcal{O}_C) .

Definition 10.0.1. Profinite inverse limit: let X be a perfectoid space and X_i for $i \in I$ a filtered system of noetherian adic spaces over C with maps,

We say that $\mathbb{X} \sim \varprojlim \mathbb{X}_i$ if,

- (a) $|\mathbb{X}| \to \underline{\lim} |\mathbb{X}_i|$ is a homeomorphism
- (b) for any $x \in \mathbb{X}$ and $\varphi_i(x) = x_i$ the map on residue fields,

$$\varinjlim_{i} k(x_{i}) \to k(x)$$

has dense image.

Remark. If the limit exists as a perfectoid space then it is unique. However, it does not always exist as a perfectoid space.

Example 10.0.2. $\mathbb{A}^1(C) \supset D_\alpha$ closed disk of radius α . Then consider $A = C \langle X \rangle$ is the ring of functions on D_1 . Furthermore, $\sup_{D_\alpha} f$ is a norm which corresponds to a point. If we write,

$$f = \sum a_i x^i$$

then $\sup |a_i|$ is another norm.

11 Mysterious Functor

We want a functor relating,

$$H^n_{\mathrm{\acute{e}t}}(X_{\bar{k}},\mathbb{Q}_p)\otimes K$$

and the deRham cohomology,

$$H^n_{\mathrm{dR}}(X/K)$$

Theorem 11.0.1 (Fantaine-Messing, and others). There is a canonical isomorphism,

$$H_{\mathrm{\acute{e}t}}^n(X_{\bar{k}},\mathbb{Q}_p)\otimes_{\mathbb{Q}_p}B_{\mathrm{dR}}\cong H_{\mathrm{dR}}^n(X/k)_kB_{\mathrm{dR}}$$

of Galois modules.

12 Oct 27

Definition 12.0.1. A *strict* p-ring is a p-adically complete ring S flat over \mathbb{Z}_p such that S/pS is perfect.

Remark. Can replace \mathbb{Z}_p by $\mathbb{Z}_{(p)}$.

If S is a strict p-ring and A = S/pS then,

$$A \to S^{\times} \cup \{0\} \quad a \mapsto [a] = \lim_{n} \tilde{a}^{p^n}$$

is well-defined and multiplicative where \tilde{a} is an arbitrarily chosen lift.

Theorem 12.0.2 (Witt). The map $S \mapsto S/pS$ is an equivalence of categories,

$$\{\operatorname{strict} p\text{-rings}\} \to \{\operatorname{perfect} \mathbb{F}_p\text{-algebras}\}$$

The inverse map $A \mapsto W(A)$ is the ring of Witt vectors. Any $w \in W(A)$ can be written uniquely as,

$$w = \sum_{n \ge 0} [a_n] p^n$$

for $a_n \in A$.

Example 12.0.3. For $A = \mathbb{F}_{p^r}$ with $r \geq 1$ thne W(A) is the ring of integers of $\mathbb{Q}(\zeta_{p^r-1})$ in that case $[a_n] \in \mu_{p^r-1} \cup \{0\}$ for all $a_n \in \mathbb{F}_{p^r}$.

Example 12.0.4. If $A = \mathbb{F}_q[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ then $\widetilde{A} = \mathbb{F}_q[x_i^{\pm \frac{1}{p^r}}]_{i,r}$ is a perfect ring.

Remark. Can prove Witt's theorem by showing that deformations of a perfect \mathbb{F}_p -algebra to characteristic zero are unique. Then the unique deformation will be W(A).

12.1 Addition and Multiplication

Consider an infintie sequence of variables α_i, β_j corresponding to α_i^p and α_j^p . Let

12.2 Universal Property

Let S be p-adically complete, p-torsion-free. Consider a map of multiplicative monoids $\varphi: R \to S$ such that the composition $R \to S \to S/p$ is a ring homomorphism. Then $\varphi: R \to S$ factors uniquely through $[]: R \to W(R)$.

12.3 •

Let $C = \mathbb{C}_p$ be the complete normed field and \mathcal{O}_C the elements of norm ≤ 1 . Define \mathcal{O}_C^{\flat} the *tilt* of \mathcal{O}_C via,

$$\mathcal{O}_C^{\flat} = \varprojlim_{x \mapsto x^p} \mathcal{O}_C$$

These maps are surjective. In fact, the reduction map,

$$\mathcal{O}_C^{\flat} = \varprojlim_{x \mapsto x^p} \mathcal{O}_C \xrightarrow{\sim} \varprojlim_{x \mapsto x^p} C/p$$

where the inverse map takes,

$$(a_n \mod p) \mapsto b_n = \lim_m a_{n+m}^{p^m}$$