

Tarea 3

7 de octubre de 2021

 2^{0} semestre 2021 - Profesores M. Bucchi - G. Diéguez - F. Suárez

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59:59 del 5 de octubre a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Canvas es el lugar oficial para realizarla.

Problemas

Problema 1

Sean A, B y C conjuntos. ¿Son ciertas las siguientes proposiciones? Demuestre.

- a) $A \setminus (B \cup C) = (A \setminus B) \setminus C$
- b) $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$
- c) $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$

Solución

a) (\subseteq) Sea $a \in A \setminus (B \cup C)$. Debemos demostrar que $a \in (A \setminus B) \setminus C$.

$$a \in A \backslash (B \cup C) \Rightarrow a \in A \land a \not\in (B \cup C)$$
 (def. diferencia)
$$\Rightarrow a \in A \land (a \not\in B \land a \not\in C)$$
 (def. unión y De Morgan)
$$\Rightarrow (a \in A \land a \not\in B) \land a \not\in C$$
 (asociatividad)
$$\Rightarrow a \in (A \backslash B) \backslash C$$
 (def. diferencia)

Concluimos que $A \setminus (B \cup C) \subseteq (A \setminus B) \setminus C$.

 (\supseteq) Sea $a \in (A \setminus B) \setminus C$. Debemos demostrar que $a \in A \setminus (B \cup C)$.

$$a \in (A \backslash B) \backslash C \Rightarrow a \in (A \backslash B) \land a \notin C$$
 (def. diferencia)

$$\Rightarrow (a \in A \land a \notin B) \land a \notin C$$
 (def. diferencia)

$$\Rightarrow a \in A \land (a \notin B \land a \notin C)$$
 (asociatividad)

$$\Rightarrow a \in A \land (a \notin B \cup C)$$
 (def. unión y De Morgan)

$$\Rightarrow a \in A \backslash (B \cup C)$$
 (def. diferencia)

Concluimos que $(A \setminus B) \setminus C \subseteq A \setminus (B \cup C)$.

Y por lo tanto $A \setminus (B \cup C) = (A \setminus B) \setminus C$.

b) No se cumple la igualdad. Consideremos el siguiente contraejemplo. Sean

$$A=C=\{a\} \ {\bf y} \ B=\varnothing$$

Si reemplazamos en la izquierda de la igualdad obtenemos que

$$A\backslash (B\cup C)=\{a\}\backslash (\varnothing\cup \{a\})=\{a\}\backslash \{a\}=\varnothing$$

Mientras que en la derecha de la igualdad obtenemos

$$(A \backslash B) \cup (A \backslash C) = (\{a\} \backslash \varnothing) \cup (\{a\} \backslash \{a\}) = \{a\} \cup \varnothing = \{a\}$$

Concluimos que $A \setminus (B \cup C) \neq (A \setminus B) \cup (A \setminus C)$.

c) Sea $(a,b) \in (A \times B) \cup (C \times D)$. Debemos demostrar que $(a,b) \in (A \cup C) \times (B \cup D)$.

$$(a,b) \in (A \times B) \cup (C \times D) \Rightarrow (a,b) \in (A \times B) \vee (a,b) \in (C \times D) \qquad \text{(def. unión)}$$

$$\Rightarrow (a \in A \wedge b \in B) \vee (a \in C \wedge b \in D) \qquad \text{(def. par ordenado)}$$

$$\Rightarrow (a \in A \vee a \in C) \wedge (a \in A \vee b \in D) \qquad \text{(distribuitividad)}$$

$$\Rightarrow (a \in A \vee a \in C) \wedge (b \in B \vee b \in D) \qquad \text{(conjunción)}$$

$$\Rightarrow (a \in A \cup C) \wedge (b \in B \cup D) \qquad \text{(def. unión)}$$

$$\Rightarrow (a,b) \in (A \cup C) \times (B \cup D) \qquad \text{(def. unión)}$$

Pauta (6 pts.)

- 2 pts por a).
- 2 pts por b).
- 2 pts por c).

Puntajes intermedios y soluciones alternativas a criterio del corrector.

Problema 2

Considere el conjunto $\mathcal{Q} = \mathbb{Z} \times (\mathbb{Z} \setminus 0)$, y la relación \uparrow sobre \mathcal{Q} definida como:

$$(a,b) \uparrow (c,d) \Leftrightarrow a \cdot d = b \cdot c$$

- a) (3 ptos.) Demuestre que \uparrow es una relación de equivalencia sobre Q.
- b) (1 pto.) Nombre a los elementos del conjunto cuociente Q/\uparrow de tal forma que este represente al conjunto de todos los racionales. Esto es, tal que $Q/\uparrow=\mathbb{Q}$.
- c) (1 pto.) Defina la operación $+_{\uparrow}$ sobre un par de elementos de \mathcal{Q}/\uparrow de tal forma que esta se comporte como la suma de números racionales. Dé un ejemplo de suma que compruebe que su definición es correcta.
- d) (1 pto.) Defina la operación \uparrow sobre un par de elementos de \mathcal{Q}/\uparrow de tal forma que esta se comporte como la multiplicación de números racionales. Dé un ejemplo de multiplicación que compruebe que su definición es correcta.

Solución

a) Reflexividad:

Dado un par $(m,n) \in \mathcal{Q}$, es claro que $m \cdot n = m \cdot n$, y luego por definición de \uparrow se cumple que $(m,n) \uparrow (m,n)$.

Simetría:

Dados dos pares tales que $(m, n) \uparrow (r, s)$, por definición de \uparrow se tiene que $m \cdot s = n \cdot r$. Es claro que $r \cdot n = s \cdot m$, y luego por definición de \uparrow se cumple que $(r, s) \uparrow (m, n)$.

Transitividad:

Dados tres pares tales que $(m,n) \uparrow (r,s)$ y $(r,s) \uparrow (t,u)$, debemos demostrar que $(m,n) \uparrow (t,u)$.

Por definición de \uparrow , tenemos que $m \cdot s = n \cdot r$ (1) y $r \cdot u = s \cdot t$ (2). Dado que $u \neq 0$, podemos despejar r en (2), y obtenemos que $r = \frac{s \cdot t}{u}$. Reemplazando esto último en (1), se obtiene que $m \cdot s = \frac{n \cdot s \cdot t}{u}$. Dado que $s \neq 0$, podemos reordenar y obtener que $m \cdot u = n \cdot t$. Por definición de \uparrow , concluimos que entonces que $(m, n) \uparrow (t, u)$, y por lo tanto, la relación es transitiva.

b) Notemos que al reordenar la definición de \uparrow , obtenemos que $(a,b) \uparrow (c,d)$ si, y solo si, $\frac{a}{b} = \frac{c}{d}$. Por esto, podemos concluir que $[(a,b)]_{\uparrow}$ contiene exactamente a todos los pares que representan a una fracción que tiene el mismo valor que $\frac{a}{b}$.

Por lo anterior, definimos que $[(a,b)]_{\uparrow}$ será el racional $\frac{a}{b}$.

c) Se define el operador $+_{\uparrow}$ tal que:

$$[(a,b)] +_{\uparrow} [(c,d)] = [(a \cdot d + b \cdot c, b \cdot d)]$$

Como ejemplo, calcularemos $4.2 +_{\uparrow} -3.5$:

$$4.2 +_{\uparrow} -3.5 = [(21, 5)] +_{\uparrow} [(-7, 2)]$$

$$= [(21 \cdot 2 + 5 \cdot -7, 5 \cdot 2)]$$

$$= [(42 - 35, 10)]$$

$$= [(7, 10)]$$

$$= 0.7$$

d) Se define el operador \cdot_\uparrow tal que:

$$[(a,b)]\cdot_{\uparrow}[(c,d)]=[(a\cdot c,\,b\cdot d)]$$

Como ejemplo, calcularemos $4.2 \cdot \uparrow -3.5$:

$$4.2 \cdot_{\uparrow} -3.5 = [(21, 5)] \cdot_{\uparrow} [(-7, 2)]$$

$$= [(21 \cdot -7, 5 \cdot 2)]$$

$$= [(-147, 10)]$$

$$= -14.7$$

Pauta (6 pts.)

- 1 pto. por demostrar cada una de las propiedades de la relación.
- 1 pto. por nombrar correctamente las clases de equivalencia.
- 0,7 pts. por definir correctamente cada operador.
- 0,3 pts. por dar un ejemplo de uso de cada operador.

Puntajes intermedios y soluciones alternativas a criterio del corrector.