Analysis of Bank Telemarketing Data

Kaushik Holla, Kaavya Gowthaman and Niyati Chopra

Understanding the Data

Client

Age

Job

Marital Status

Education

Credit in Default?

Housing Loan?

Personal Loan?

Last Contact

Mode of Communication

Call duration

Day, Month

Socio-Economic Factors

Quarterly Employment Variation Rate

Monthly Consumer

Price Index

Monthly Consumer Confidence Index

Number of Employees

Euribor 3-month rate

Other

Outcome of previous campaign

No of previous contacts in the current campaign

GOAL: The goal of the project is to build a classification model to predict if a client is going to subscribe to a term deposit

INDUSTRY RELEVANCE: The analysis is helpful in designing strategies to target prospective clients

Exploratory Data Analysis: Client Data

count

Distribution of defaulters

Distribution of clients with housing loans

Exploratory Data Analysis: Last Contact Data

Exploratory Data Analysis: Socio-Economic Factors

Conclusions drawn from EDA

- Socio-economic factors highly influence the outcome. There might be possible correlation between these variables that needs to be checked.
- Client Data like education, job, marital status etc. does not influence the outcome.
- Call duration influences the outcome. The duration is higher for people who subscribed to the term deposit.

Feature Engineering

Statistical Significance Test:

We performed Statistical significance test for every feature with the output to see if a feature is statistically significant with output.

Feature	P-Value
Age	0.551
Job	0.495
Marital	0.00604
Education	0.000896
Default	2.47e-13
Housing	0.719
Loan	0.319
Contact	6.08e-10
Month	0.839
Day of Week	0.000613
Duration	4.38e-19
Campaign	0.466
pdays	2.25e-66
previous	2.04e-19
poutcome	1.37e-56
Emp.var.rate	1.09e-10
Cons.price.idx	8.le-05
Cons.conf.idx	1.83e-05
Euribor3m	1.24e-19
Nr.employed	3.27e-38

Conclusion After Feature Engineering

- Duration, pdays, emp.var.rate, euribor3m and nr.employed have good correlation with output therefore they might form a very good features compared to others.
- There is high correlation between the socio-economic variables.
- From categorical plot we can see that when value of **poutcome(Previous campaign outcome)** is success, there is 72.5% positive outcome.
- Age, housing, month and campaign have p-value greater than 0.05 therefore we can eliminate them as they fail to reject null hypothesis.

Models Implemented:

Logistic Regression
Support Vector Classifier
K Nearest Neighbours
Random Forest Classifier

Models and Evaluation Metrics

Since the problem we are trying to solve is a classification problem, we generated a confusion matrix to calculate Fl score to compare models

Logistic Regression

Support Vector Classifier

The accuracy for this model is: 81.25%

	precision	recall	f1-score	support
0	0.78	0.86	0.82	914
1	0.85	0.77	0.81	942

	precision	recall	f1-score	support
0	0.78	0.83	0.80	914
1	0.83	0.77	0.80	942

K- Nearest Neighbors (k=27)

Random Forest Classifier

The accuracy for this model is: 80.54%

	precision	recall	f1-score	support
0	0.80	0.80	0.80	914
1	0.81	0.81	0.81	942

Predicted label

Conclusion after Machine Learning

• Using our evaluation metrics, we can conclude that the logistic regression model was the best fit model on our data set giving an overall F1 score of 0.82

• Questions?