Unsupervised Learning Algorithms

Contents

- Unsupervised learning
- Clustering
- K-Means

Types of Machine Learning

Supervised

data points have known outcome

Unsupervised

data points have unknown outcome

Types of Machine Learning

Supervised

data points have known outcome

Unsupervised

data points have unknown outcome

Types of Unsupervised Learning

Clustering

identify unknown structure in data

Dimensionality
Reduction

use structural characteristics to simplify data

Unsupervised Learning Overview

Clustering: Finding Distinct Groups

Dimensionality Reduction: Simplifying Structure

Cluster

- The process partitions a dataset into meaningful subclasses, called clusters.
- Clusters consist of data points that are similar to one another.
- These clusters should be treated as distinct groups.

Cluster

Unsupervised Learning Algorithms for Auditors

Detect hidden patterns and groupings in unlabeled audit data.

Clustering algorithms (e.g., K-Means) group similar transactions or vendors.

Anomaly detection helps identify outliers without predefined fraud labels.

Useful for exploring large datasets when risks are unknown.

Supports early risk identification and continuous monitoring strategies.

Clustering Techniques and Potential Applications in Insurance Auditing

Clustering Techniques	Potential Applications
K-Means Clustering	Grouping similar policyholder profiles based on demographics.
Hierarchical Clustering	Identifying clusters of claims based on patterns and severity.
DBSCAN	Detecting outliers in claim amounts for fraud detection.
Gaussian Mixture Models	Segmenting insurance products by customer risk profiles.

Supervised vs. Unsupervised Learning in Auditing

Feature	Supervised Learning	Unsupervised Learning
Data Requirement	Labeled data (e.g., fraud vs. non-fraud)	Unlabeled data
Common Algorithms	Logistic Regression, Decision Trees, KNN	K-Means, DBSCAN, Isolation Forest
Audit Use Cases	Fraud detection, risk classification	Outlier detection, vendor segmentation
Outcome	Predicts known categories	Discovers unknown patterns or groupings
Goal	Learn from historical labels to predict future	Explore data for anomalies or hidden structure

Users of a web application:

One feature (age)

Age

Users of a web application:

One feature (age)

Two clusters

Users of a web application:

One feature (age)

Three clusters

Users of a web application:

One feature (age)

Five clusters

K-Means

- K-means clustering is unsupervised learning for unlabeled data.
- It identifies groups within the data.
- 'k' signifies the number of groups.

K-Means

- Initialization Start by randomly selecting 'k' initial centroids (cluster centers) from the dataset.
- Assignment Assign each data point to the nearest centroid based on a distance metric (usually Euclidean distance).
- Update centroids Recalculate the centroids of the clusters by taking the mean of all data points assigned to each cluster.
- Repeat Iterate steps 2 and 3 until convergence, meaning the centroids no longer change significantly or a predefined number of iterations is reached.
- Convergence When centroids stabilize or after a set number of iterations, the algorithm stops, and the final clusters are formed.

K = 2 (find two clusters)

K = 2, Randomly assign cluster centers

K = 2, Each point belongs to closest center

Income

K = 2, Move each center to cluster's mean

Income

K = 2, Each point belongs to closest center

Age

Income

K = 2, Move each center to cluster's mean

Age

K = 2, Points don't change \rightarrow Converged Income

Age

K = 2, Each point belongs to closest center

K = 3

K = 3, Results depend on initial cluster assignment Income

• Inertia: sum of squared distance from each point (x_i) to its cluster (C_k)

$$\sum_{i=1}^{n} (x_i - C_k)^2$$

- Smaller value corresponds to tighter clusters
- Other metrics can also be used

Inertia

- Inertia measures how well a dataset was clustered by K-Means.
- It is calculated by measuring the distance between each data point and its centroid, squaring this distance, and summing these squares across one cluster.
- A good model is one with low inertia AND a low number of clusters (K).

Initiate multiple times, take model with the best score

Inertia = 12.645

Inertia = 12.943

Inertia = 13.112

Income

Age

Pick one point at random as initial point Income

Pick next point with 1/distance² probability Income

Pick next point with 1/distance² probability Income

Pick next point with 1/distance² probability Income

Assign clusters

Income

Sometimes the question has a K

Sometimes the question has a K

- Sometimes the question has a K
- Clustering similar jobs on 4 CPU cores (K=4)

- Sometimes the question has a K
- Clustering similar jobs on 4 CPU cores (K=4)
- A clothing design in 10 different sizes to cover most people (K=10)

- Sometimes the question has a K
- Clustering similar jobs on 4 CPU cores (K=4)
- A clothing design in 10 different sizes to cover most people (K=10)
- A navigation interface for browsing scientific papers with 20 disciplines (K=20)

 Inertia measures distance of point to cluster

r

- Inertia measures distance of point to cluster
- Value decreases with increasing K as long as cluster density increases

Import the class containing the clustering method

from sklearn.cluster import KMeans

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

Fit the instance on the data and then predict clusters for new data

```
kmeans = kmeans.fit(X1)
```

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

Fit the instance on the data and then predict clusters for new data

```
kmeans = kmeans.fit(X1)

y_predict = kmeans.predict(X2)
```

Can also be used in batch mode with MiniBatchKMeans.

Pros and Cons of the K-means Algorithm

Pros	Cons
Simple and easy to implement	Sensitive to initial centroid selection
Fast and computationally efficient	May converge to local optima
Scalable to large datasets	Requires predefined number of clusters (k)
Versatile and widely used	Performs poorly with non-linear data
Effective for spherical clusters	Sensitivity to outliers

Summary