Chapter 8

ARTIFICIAL INTELLIGENCE

Announcements

- Theory quiz 4 on today's work at Thursday, 23 September 2021
- Please complete Practical assignment 4 for Wednesday, 22 September 2021

Overview of lecture

- Representation
- Syntax and semantics of First-order Logic (FOL)

Representation

- Programming languages like C++ and Java most in common use
 - Represent computational processes
 - Data structures represent facts
 - Lacks general mechanism for deriving facts from other facts
 - Cannot handle partial information in an easy way
 - Procedural approach

Representation

Propositional Logic

- Declarative language
- Semantics based on truth value relation between sentences and possible worlds
- Can deal with partial information
- Has property of compositionality $B_{1,1}$, $B_{2,2}$ ($B_{1,1} \lor B_{2,2}$)
- Meaning independent of context
- Cannot describe environment with many objects concisely

Representation

- Natural languages like English,
 Afrikaans, Spanish, Tswana
 - Very expressive
 - Textbook in English
 - Medium for communication rather than pure representation
 - Context important
 - Does not have property of compositionality
 - Ambiguity

- Adopt the foundation of propositional logic
 - Declarative
 - Compositional
 - Context independent
 - Unambiguous
- Use positive properties of natural language
 - Expressive

- Natural language elements
 - Objects

- Natural language elements (continued)
 - Relationships

- Natural language elements (continued)
 - Functions

 Assertions refer to objects, properties, and functions

- First-order logic build around objects and relations
- Facts about some or all the objects in the world
- General laws or rules
- Difference between logics
 - Ontological commitment
 - What is assumed about the nature of reality

- Propositional logic
 - Facts hold or do not hold in the world
 - Each fact can be in one of two states: true or false
- First-order logic
 - The world consists of objects with certain relations that do or do not hold
- Temporal logic
 - Facts hold at particular times
 - Times are ordered

- Higher-order logic
 - Relations and functions are objects
- Epistemological commitments
 - The possible states of knowledge that it allows with respect to each fact
 - Propositional logic and First-order logic: True, false, or has no opinion
 - Probability theory: degree of belief ranging from 0 (total disbelief) to 1 (total belief)

- Models for First-order logic
 - Models of logical languages are formal structures that constitute the possible worlds under consideration
 - Models for propositional logic
 - Models for First-order Logic contains objects
 - Domain (elements) of models is set of objects it contains

JOHN.

1199 tot 1215

- Models for First-order Logic (continues)
- Relation is set of tuples of objects
 - Brotherhood relation: { <Richard the
 Lionheart, King John>, <King John, Richard
 the Lionheart> }
 - "On head" relation: { <the crown, King John> }
 - Properties: "person", "king", "crown"
 - Certain relationships best considered as functions

- Models for First-Order Logic (continues)
 - Function example: LeftLeg
 - < Richard the Lionheart > → Richard's left leg
 - <King John> → John's left leg
- Symbols and Interpretations (Syntax)
 - Symbols for objects: constant symbols
 - Symbols for relations: predicate symbols
 - Symbols for functions

- Symbols and Interpretations (continued)
 - Symbols for objects, relationships and functions start with capital letters
 - Examples: Richard, John, Brother, OnHead, Person, King, Crown, LeftLeg
 - Interpretation specifies which objects, relations and functions are referred to by symbols
 - A possible interpretation: the intended interpretation
 - Other interpretations

- Symbols and Interpretations (continued)
 - Truth of sentence determined by a model and a interpretation for a sentence's symbols
 - Logical entailment, validity, etc. defined in terms of all possible models and all possible interpretations
 - Domain (elements) of model can be infinitely large
 - Enumeration of models impossible

Terms

- Logical expression that refers to an object
- Constant symbols are terms
- Function used instead of constants, e.g. LeftLeg(John)
- Complex term is f(t₁, t₂, ..., t_n)
- Complex term not subroutine that returns a value
- Formal semantics of term f(t₁, t₂, ..., t_n)

Atomic Sentences

- Predicate symbol with terms in brackets
- Example: Brother(Richard, John)
- Complex terms as arguments:
 Married(Father(Richard), Mother(John))
- Atomic sentence is true in given model, under given interpretation, if (predicate) relation holds among objects referred to by the arguments

- Complex Sentences
 - Logical connectives construct complex sentences
 - Semantics of complex sentences the same as propositional logic

```
\neg Brother(LeftLeg(Richard), John)
```

 $Brother(Richard, John) \land Brother(John, Richard)$

 $King(Richard) \lor King(John)$

 $\neg King(Richard) \Rightarrow King(John)$

Assignment

- Study today's work
 - Sections 8.1 to 8.2.5
- Read 8.1.1 the language of thought, with attention

