A Model-Theoretic Approach to Model Checking Recursion Schemes

Sylvain Salvati, Balaguru Srivathsan, and Igor Walukiewicz

LaBRI, Bordeaux

- Thm [Ong, LICS'06]: This problem is decidable
- Kobayashi [POPL'09]: Type system for deciding this problem in a special case of automata with trivial acceptance condition.
- Kobayashi & Ong [LICS'09]: Type system for all automata.

Here: Kobayashi's case using models

RECURSIVE SCHEMES

RECURSIVE SCHEMES

- $\Sigma = \{a, b, \dots\}$ constants (of type $0^n \to 0$ or 0).
- $\mathcal{N} = \{F, G, \dots\}$ nonterminals (typed variables)
- $S \in \mathcal{N}$ starting symbol (of type 0)
- ullet $\mathcal{R}: \mathcal{N}
 ightarrow \mathit{Terms}$ a rule for every nonterminal

$$\mathcal{R}(F) = \lambda \vec{x}.M$$

its type should be that of F, and its free variables should be included in \mathcal{N} .

EXAMPLE

- $\Sigma = \{a: 0 \to 0 \to 0, b: 0 \to 0, c: 0\}, \mathcal{N} = \{S: 0, F: 0 \to 0\}$
- $R(F) = \lambda x.ax(F(bx)), \quad R(S) = Fc.$

Intuitively the meaning of the scheme is

$$Y(\lambda F.R(F))c.$$

SIMPLY TYPED λY -CALCULUS WITH FIXPOINTS

- Types: 0 is a type, and $\alpha \to \beta$ is a type if α, β types.
- Constants: ω^{α} and $Y^{(\alpha \to \alpha) \to \alpha}$ for every type α .
- Terms: c^{α} , x^{α} , MN, $\lambda x^{\alpha}.M$.

Model: $\mathcal{D} = \langle \{D^{\alpha}\}_{\alpha \in \mathcal{T}}, \rho \rangle$

- D⁰ is a complete lattice;
- $D^{\alpha \to \beta}$ is the complete lattice of monotone functions from D^{α} to D^{β} ordered coordinatewise;
- $\rho(\omega^{\alpha})$ is the greatest element of D^{α} .
- $\rho(Y^{(\alpha \to \alpha) \to \alpha})$ is a mapping assigning to a function $f \in D^{\alpha \to \alpha}$ its fixpoint.
- GFP model when Y assigns greatest fixpoints.
- Finitary model when every D^{α} is finite.

Interpretation of terms in a model

- $\bullet \ \llbracket c \rrbracket^v_{\mathcal{D}} = \rho(c)$
- $\bullet \ \llbracket x^{\alpha} \rrbracket_{\mathcal{D}}^{\upsilon} = \upsilon(x^{\alpha})$
- $\bullet \ \llbracket MN \rrbracket^{v}_{\mathcal{D}} = \llbracket M \rrbracket^{v}_{\mathcal{D}} \llbracket N \rrbracket^{v}_{\mathcal{D}}$
- $[\![\lambda x^{\alpha}.M]\!]_{\mathcal{D}}^{v}$ is a function mapping an element $d \in D^{\alpha}$ to $[\![M]\!]_{\mathcal{D}}^{v[d/x^{\alpha}]}$. (this is a monotone function).
- β -REDUCTION $(\lambda x. M)N \to_{\beta} M[N/x]$
- η -REDUCTION $(\lambda x. Mx) \to_{\eta} M$, provided x is not free in M.
- δ -REDUCTION $Y(M) \rightarrow_{\delta} M(YM)$.

FACT

For every model \mathcal{D} : if $M =_{\beta,\eta,\delta} N$ then $[\![M]\!]^{\mathcal{D}} = [\![N]\!]^{\mathcal{D}}$.

BÖHM TREES

BÖHM TREE OF A TERM

A Böhm tree of a term M is:

- if $M \to_{\beta\delta}^* \lambda \vec{x}.KN_1 \dots N_i$ with K a variable or a constant then the root of BT(M) is labelled by $\lambda \vec{x}.K$ and has $BT(N_1), \dots, BT(N_i)$ as a sequence of its children.
- If M is not solvable then $BT(M) = \omega^{\alpha}$, where α is the type of M.

EXAMPLE

 $Y(\lambda F.\lambda x.ax(F(bx))): 0 \to 0$

BÖHM TREES

Böhm tree of a term

A Böhm tree of a term M is:

- if $M \to_{\beta\delta}^* \lambda \vec{x}.KN_1...N_i$ with K a variable or a constant then the root of BT(M) is labelled by $\lambda \vec{x}.K$ and has $BT(N_1),...,BT(N_i)$ as a sequence of its children.
- If M is not solvable then $BT(M) = \omega^{\alpha}$, where α is the type of M.

THEOREM [?]

For every finitary GFP-model \mathcal{D} : if $BT(M) \equiv BT(N)$ then $\llbracket M \rrbracket^{\mathcal{D}} = \llbracket N \rrbracket^{\mathcal{D}}$.

Approximate Böhm tree

APPROXIMATE BÖHM TREE

ABT(M) is defined by

- If M is in head normal form, i.e. $M \equiv \lambda \vec{x}.KN_1 \dots N_k$ with K a constant or a variable then ABT(M) has the root labelled with $\lambda \vec{x}.K$ and $ABT(N_1), \dots, ABT(N_k)$ as its children.
- Otherwise ABT(M) is ω^{α} ; where α is the type of M.

Remark

ABT(M) is a $\lambda\text{-term}$ in a $\beta\delta\text{-normal}$ form.

LEMMA

 $BT(M) = \bigsqcup \{ABT(N) : N =_{\beta, \delta} M\};$ we are taking syntactic limit over trees.

Meanings of Böhm trees

Remainder

 $BT(M) = \bigsqcup \{ABT(N) : N =_{\beta, \delta} M\}$; here we are taking syntactic limit over trees.

SEMANTICS

$$\llbracket BT(M) \rrbracket^{\mathcal{D}} = \bigwedge \{ \llbracket ABT(N) \rrbracket^{\mathcal{D}} : N =_{\beta, \delta} M \}$$

THEOREM [?]

If \mathcal{D} is a finitary GFP model then: $[\![M]\!]^{\mathcal{D}} = [\![BT(M)]\!]^{\mathcal{D}}$.

PROOF OF THE THEOREM

THEOREM

If \mathcal{D} is a finitary GFP model then: $\llbracket M \rrbracket^{\mathcal{D}} = \llbracket BT(M) \rrbracket^{\mathcal{D}}$.

Proof $[BT(M)] \ge [M]$

- $[BT(M)]^{\mathcal{D}} = \bigwedge \{ [ABT(N)]^{\mathcal{D}} : N =_{\beta, \delta} M \}.$
- $\bullet \ \llbracket ABT(N) \rrbracket^{\mathcal{D}} \geq \llbracket N \rrbracket^{\mathcal{D}} = \llbracket M \rrbracket^{\mathcal{D}}.$

Proof $[\![M]\!] \ge [\![BT(M)]\!]$

- Let N be a term of type $\alpha \to \alpha$ without occurrences of Y constants. Define $iterate^i(N)$ to be $N(\dots(N\omega^\alpha)\dots)$. In general, define $iterate^i(M)$ as result of repeatedly replacing all YN by $iterate^i(N)$.
- If $\mathcal D$ is a finitary GFP model then there is i such that $[\![M]\!]^{\mathcal D} = [\![iterate^i(M)]\!]^{\mathcal D}$.

$$[\![M]\!] = [\![\mathit{iterate}^i(M)]\!] = [\![\mathit{BT}(\mathit{iterate}^i(M))]\!] \geq [\![\mathit{BT}(M)]\!]$$

BACK TO RECURSION SCHEMES

RECURSIVE SCHEMES

• $\mathcal{R}: \mathcal{N} \to \mathit{Terms}$ a definition rule for every nonterminal

$$\mathcal{R}(F) = \lambda \vec{x}.M$$

its type should be correct, and its free variables should be included in \mathcal{N} .

Translation to λY -terms

$$T_{1} = Y(\lambda F_{1}.\mathcal{R}(F_{1}))$$

$$T_{2} = Y(\lambda F_{2}.\mathcal{R}(F_{2})[T_{1}/F_{1}])$$

$$\vdots$$

$$T_{n} = Y(\lambda F_{n}.(\dots((\mathcal{R}(F_{n})[T_{1}/F_{1}])[T_{2}/F_{2}])\dots)[T_{n-1}/F_{n-1}])$$

FACT

If F_n is the starting symbol of the grammar then $BT(T_n)$ is the tree generated by the scheme.

HALF WAY THROUGH

WE HAVE

- Models $\mathcal{D} = (D^{\alpha}{}_{\alpha \in \mathcal{T}}, \rho)$ interpreting fixpoint operators.
- ② Definition of a Böhm tree of a λY -term: BT(M).
- Models are capable of talking about Böhm trees:

$$\llbracket M \rrbracket^{\mathcal{D}} = \llbracket BT(M) \rrbracket^{\mathcal{D}}$$

• Translation from recursive schemes to λY -terms:

 $\mathcal{R} \mapsto M$, such that BT(M) is the meaning of \mathcal{R} .

WE WANT

- Models for calculating properties of BT(M).
- In particular a model $\mathcal{D}_{\mathcal{A}}$ such that $\llbracket M \rrbracket^{\mathcal{D}_{\mathcal{A}}}$ tells us if BT(M) is accepted by \mathcal{A} .

AUTOMATA

Tree signature

 Σ has only constants of types 0 or $0^n \to 0$ (and all the constants ω^{α} , $Y^{(\alpha \to \alpha) \to \alpha}$). If M is a closed term of type 0 then BT(M) is a ranked tree.

AUTOMATON

Let $\Sigma = \Sigma_0 \cup \Sigma_2$ with Σ_0 constants of type 0 and Σ_2 of type $0 \to 0 \to 0$.

$$\mathcal{A} = \langle Q, \Sigma, q^0 \in Q, \delta_1 : Q \times \Sigma_0 \to \{ff, tt\}, \delta_2 : Q \times \Sigma_2 \to \mathcal{P}(Q^2) \rangle$$

Run of \mathcal{A} on $t:\{0,1\}^* \to \Sigma$

- $r(\varepsilon) = q^0$
- $(r(w0), r(w1)) \in \delta_2(t(w), r(w))$ if w is an internal node.

A run is accepting if:

• $\delta_1(r(w), t(w)) = tt$ for every leaf w.

$$(q_0,q_1)\in\delta(q,a)$$

$$\mathbf{c}^{\mathbf{q}}$$
 $\delta(q,c) = tt$

A MODEL FROM AN AUTOMATON

For an automaton $\mathcal{A} = \langle Q, \Sigma, q^0 \in Q, \delta_1 : Q \times \Sigma_0 \to \{f\!f, tt\}, \delta_2 : Q \times \Sigma_2 \to \mathcal{P}(Q^2) \rangle$ we define a model $\mathcal{D}_{\mathcal{A}}$.

- $D^0 = \mathcal{P}(Q)$.
- If c:0 then $[\![c]\!]=\{q:\delta_1(q,c)=tt\}.$
- If $a:0^2\to 0$ then [a] is a function that for $(S_0,S_1)\in \mathcal{P}(Q)^2$ returns

$$\{q:\delta_2(q,a)\in S_0\times S_1\}$$

THEOREM

For every closed term M of type 0:

$$BT(M) \in L(\mathcal{A}) \quad \text{iff} \quad q_0 \in \llbracket M \rrbracket^{D_{\mathcal{A}}}$$

If
$$BT(M) \in L(\mathcal{A})$$
 then $q_0 \in \llbracket M \rrbracket$

Take a run of \mathcal{A} on BT(M) and show that $q^0 \in \llbracket BT(M) \rrbracket^{\mathcal{D}_{\mathcal{A}}}$. This will do as $\llbracket BT(M) \rrbracket = \llbracket M \rrbracket$.

APPROXIMATIONS

One can define $prefix_i(M)$:

Of course

$$\llbracket BT(M) \rrbracket = \bigwedge \{ \llbracket ABT(\textit{prefix}_i(M)) \rrbracket : i = 1, 2, \dots \}$$

So it is enough to show that $q^0 \in \llbracket ABT(\textit{prefix}_i(M)) \rrbracket$ for every i.

$q^0 \in [ABT(prefix_i(M))]$ for every i.

RECALL THAT:

$$\llbracket \omega \rrbracket = \mathcal{P}(Q)$$
 $\llbracket a \rrbracket(S_0, S_1) = \{ q : \delta_2(q, a) \in S_0 \times S_1 \}$

If $q_0 \in \llbracket M \rrbracket$ then $BT(M) \in L(\mathcal{A})$

PROPERTY OF THE INTERPRETATION

If $q \in \llbracket a(M_0,M_1) \rrbracket$ then there is $(q_0,q_1) \in \delta(q,a)$ such that: $q_0 \in \llbracket M_0 \rrbracket$, and $q_1 \in \llbracket M_1 \rrbracket$.

PUTTING IT ALL TOGETHER

SUMMARY

- Given an automaton A we construct a model \mathcal{D}_A .
- For every term of type 0 we have: $q^0 \in \llbracket M \rrbracket^{\mathcal{D}_{\mathcal{A}}}$ iff \mathcal{A} accepts BT(M). Here it is important that in the model $\llbracket M \rrbracket = \llbracket BT(M) \rrbracket$.
- As the model is finite one can compute $[\![M]\!]^{\mathcal{D}_{\mathcal{A}}}$.
- Recursive schemes can be translated to λY -terms of type 0 (and vice versa).

Remarks

- Standard models are sufficient to do the job.
- This method does not require an induction on the order of the scheme.
- The approach works because the fixpoint defining Böhm tree is the same as the one defining runs of automata.
- It is possible to redo the exercise for LFP models and dual, "prefix", automata.
- Extension to all parity winning conditions is not obvious as one needs to talk about the winning condition somewhere.