Implementación de sistemas discretos

Ing. José Miguel Barboza Retana Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2019

Introducción

Hasta ahora

- Análisis de sistemas LTI descritos mediante ecuaciones de diferencias lineales de coeficientes constantes.
- Análisis por convolución, en el dominio del tiempo discreto.
- Análisis en el dominio de la frecuencia
- En la práctica: diseño e implementación de sistemas digitales se tratan conjuntamente, y se deben considerar aspectos de costo, tamaño, hardware, potencia, etc.
- Algunos esquemas básicos de implementación se revisarán aquí.

(1)

- Sistemas de procesamiento digital se implementan en computadores digitales.
- Se utilizan representaciones numéricas de precisión limitada.
- Limitaciones afectan el desempeño de los sistemas por lo que debe revisarse su comportamiento numérico.
- En análisis numérico, el número de condición de una función con respecto a un argumento indica, para el peor caso posible, cuánto puede cambiar el valor de la función con respecto a un cambio dado del argumento.
- Un problema es mal condicionado (ill-conditioned) si el número de condición es alto, es decir, si una pequeña perturbación del argumento produce cambios grandes en la salida.

(2)

- Si el número de condición es pequeño (cercano a uno) entonces el problema es bien condicionado (well-conditioned).
- Número de condición es una propiedad de cada problema particular.
- Un problema puede ser inherentemente bien o mal condicionado.

(3)

Ejemplo: Pronóstico del tiempo

Pronóstico del tiempo es un problema inherentemente mal condicionado al depender no solo de un elevado número de variables en tiempo y espacio (presión atmosférica, humedad relativa, temperatura, velocidades de viento, etc.), sino que el resultado es sensible a cambios leves en los valores de dichas variables.

(4)

Ejemplo: Sistema de ecuaciones lineales

La solución de un sistema de ecuaciones lineales expresado como el sistema matricial $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$, donde \mathbf{A} es una matriz cuadrada de $N\mathbf{x}N$, $\underline{\mathbf{x}}$ y $\underline{\mathbf{b}}$ son vectores de N dimensiones, tiene un número de condición dependiente de la matriz \mathbf{A} que determina cuánto afecta un error en los vectores $\underline{\mathbf{b}}$ los valores encontrados para $\underline{\mathbf{x}}$. Si el determinante de \mathbf{A} es un número pequeño, entonces el problema es mal condicionado.

(5)

- No solo el problema es bien o mal condicionado, sino también el algoritmo particular desarrollado para dar solución al problema.
- Si un problema es mal condicionado, ningún algoritmo podrá cambiar esa condición.
- Pero, un algoritmo mal condicionado puedo producir errores considerables en la solución de problemas inherentemente bien condicionados.
- Para el caso de algoritmos, el número de condición se redefine entonces como la razón de salida/entrada pero utilizando el algoritmo concreto.

(6)

• Ejemplo: Solución de sistemas lineales de ecuaciones

Por ejemplo, en la solución de sistemas lineales de ecuaciones se utilizan algoritmos como la eliminación gaussiana (mal condicionado), la eliminación de Gauss-Jordan, descomposición de valores singulares (SVD), o la descomposición QR (bien condicionados), entre otros.

Problema mal condicionado

(1)

• El problema que compete ahora es encontrar las raíces z_i de un polinomio expresado a través de sus coeficientes c_i :

$$P(z) = \sum_{i=0}^{N} c_i z^i = c_0 + c_1 z + c_2 z^2 + \dots + c_N z^N$$

Es decir, encontrar los valores z_i para los que se cumple $P(z_i) = 0$, para poder expresar al polinomio de la forma:

$$P(z) = \prod_{i=1}^{N} (z - z_i) = (z - z_1)(z - z_2) \dots (z - z_N)$$

Problema mal condicionado

(2)

- Este problema es en general mal condicionado, en el sentido de que pequeños cambios en los valores de c_i pueden producir grandes cambios en la posición de las raíces z_i .
- Este hecho que empeora conforme aumenta el orden del polinomio.

Problema mal condicionado

(3)

 Las consecuencias del mal condicionamiento de éste problema en el procesamiento digital tienen que ver con el posicionamiento de polos y ceros en la implementación de un sistema utilizando ecuaciones de diferencias que tratan ya sea:

$$P(z) = \sum_{i=0}^{N} c_i z^i = c_0 + c_1 z + c_2 z^2 + \dots + c_N z^N$$

$$P(z) = \prod_{i=1}^{N} (z - z_i) = (z - z_1)(z - z_2) \dots (z - z_N)$$

Estructuras de implementación

Estructuras directas

Considérese el sistema de primer orden:

$$y(n) = -a_1 y(n-1) + b_0 x(n) + b_1 x(n-1)$$

Y su "realización directa" o forma directa I

Interpretación como cascada de sistemas

Dicho sistema

Se interpreta como la serie de dos sistemas LTI:

$$v(n) = b_0 x(n) + b_1 x(n-1)$$

Y

$$y(n) = -a_1 y(n-1) + v(n)$$

Conmutatividad de estructura

Como la conexión en serie de sistemas LTI es conmutativa, se puede reemplazar el sistema anterior por:

Donde se cumplen las ecuaciones:

$$\omega(n) = x(n) - a_1 \omega(n-1)$$

Y

$$y(n) = b_0 \omega(n) + b_1 \omega(n-1)$$

Forma Directa II

Los retardadores tienen la misma entrada $\omega(n)$ y por lo tanto la misma salida $\omega(n-1)$, y se pueden agrupar en uno solo:

A esta estructura se le denomina forma directa II y utiliza sólo un elemento retardador, en lugar de los dos utilizados en la forma directa I.

Generalización de Forma Directa I

(1)

Lo anterior se generaliza para la ecuación de diferencias:

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

Compuesta de un sistema no recursivo:

$$v(n) = \sum_{k=0}^{M} b_k x(n-k)$$

Y un sistema recursivo:

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + v(n)$$

Generalización de Forma Directa I

(2)

Generalización de Forma Directa II

Invirtiendo el orden y combinando los retardadores se obtiene:

Retardadores y multiplicaciones

- Forma Directa II requiere $m \stackrel{\cdot}{a} x \{N, M\}$ retardadores.
- Forma Directa I, requiere N + M retardadores.
- Ambos utilizan M + N + 1 multiplicaciones.
- Forma Directa II, por poseer el mínimo de retardadores, se denomina también forma canónica.

Media móvil ponderada

Al caso especial no recursivo con $a_k = 0, k = 1, ..., N$:

$$y(n) = \sum_{k=0}^{M} b_k x(n-k)$$

Se le denomina sistema de media ponderada móvil o sistema MWA (moving weighted average), que es un sistema FIR de respuesta impulsional:

$$h(k) = \begin{cases} b_k & 0 \le k \le M \\ 0 & en el \ resto \end{cases}$$

Sistema puramente recursivo

• Con M = 0, el sistema

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

Se torna puramente recursivo:

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + b_0 x(n)$$

 Calcula la combinación lineal de las últimas N salidas y la entrada actual.

Estructuras directas para filtros FIR simétricos

 El caso particular de filtros FIR de longitud M cuyos coeficientes presenten condiciones de simetría o antisimetría

$$h(n) = \pm h(M - 1 - n)$$

Se aplica particularmente a filtros de fase lineal.

• Este tipo de simetría permite reducir el número de productos requeridos de una implementación convencional de M a M/2 o a (M-1)/2 para m par o impar respectivamente.

Filtro FIR simétrico con M impar

Filtro FIR simétrico con M par

Grafos de flujo de señal y estructuras transpuestas

Grafos de flujo de señal

- Diagramas de flujo de señal son una representación alternativa de los diagramas de bloques
- Se caracterizan por ramas con transmitancias específicas y nodos en donde convergen y se distribuyen las señales.
- Los nodos
 - Suman todas las señales que convergen en ellos
 - Distribuyen la misma señal en todas las ramas que salen de ellos
- Un nodo que solo distribuye la misma señal (es decir, un nodo en el que no converge ninguna señal) recibe el nombre de nodo fuente.
- Un nodo a donde solo convergen señales (es decir, no sale ninguna señal) se denomina nodo sumidero.

Ejemplo de grafo de flujo de señal: Sistema de segundo orden

Teorema de transposición

- El teorema de transposición especifica una forma de transformar el grafo de flujo de señal de modo que la relación entre la entrada y la salida no cambie.
- Si se invierten las direcciones de todas las transmitancias de rama y se intercambia la entrada con la salida en el grafo, la función de transferencia del sistema no cambia.
- La transposición convierte a los nodos en sumadores y los sumadores en nodos.

Transposición de sistema de segundo orden

Ejemplo: Forma transpuesta

(1)

 Encuentre las formas directa I, II y la forma transpuesta para el sistema

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

Ejemplo: Forma transpuesta

(2)

Solución:

$$y(n) = b_0x(n) + b_1x(n-1) + b_2x(n-2) -a_1y(n-1) - a_2y(n-2)$$

$$w(n) = -a_1w(n-1) - a_2w(n-2) + x(n)$$

$$y(n) = b_0w(n) + b_1w(n-1) + b_2w(n-2)$$

Ejemplo: Forma transpuesta

(3)

$$y(n) = b_0 x(n) + w_1(n-1)$$

 $w_1(n) = b_1 x(n) - a_1 y(n) + w_2(n-1)$
 $w_2(n) = b_2 x(n) - a_2 y(n)$

Muestreo en frecuencia

Muestreo en frecuencia

(1)

• La respuesta en frecuencia $H(\omega)$ está dada por la transformada de Fourier en tiempo discreto de la respuesta al impulso h(n):

$$H(\omega) = \sum_{n=0}^{M-1} h(n)e^{-j\omega n}$$

• Dado un conjunto de frecuencias ω_k equiespaciadas

$$\omega_{k} = \frac{2\pi(k+\alpha)}{M}, \qquad k = 0,1,...,\frac{M-1}{2}, \qquad M \text{ impar}$$

$$k = 0,1,...,\frac{M}{2}-1, \qquad M \text{ par}$$

$$\alpha = 0 \text{ ó } \frac{1}{2}$$

(2)

• Los valores de $H(\omega)$ en las frecuencias ω_k son entonces:

$$H(k+\alpha) \stackrel{!}{=} H\left(\frac{2\pi}{M}(k+\alpha)\right)$$

$$= \sum_{n=0}^{M-1} h(n)e^{\frac{-j2\pi(k+\alpha)n}{M}}, \qquad k=0,1,2,...,M-1$$

 Utilizando la ortogonalidad de las exponenciales complejas armónicamente relacionadas se pueden demostrar además que:

$$h(n) = \frac{1}{M} \sum_{k=0}^{M-1} H(k+\alpha) e^{\frac{j2\pi(k+\alpha)n}{M}}, \qquad n = 0,1,2,...,M-1$$

(3)

Se sabe que la función de transferencia del filtro está dada por:

$$H(z) = \sum_{n=0}^{M-1} h(n)z^{-n}$$

Y sustituyendo la expresión anterior se obtiene:

$$H(z) = \sum_{n=0}^{M-1} \left[\frac{1}{M} \sum_{k=0}^{M-1} H(k+\alpha) e^{\frac{j2\pi(k+\alpha)n}{M}} \right] z^{-n}$$

(4)

e intercambiando el orden de las sumatorias:

$$H(z) = \sum_{k=0}^{M-1} H(k+\alpha) \left[\frac{1}{M} \sum_{n=0}^{M-1} \left(e^{\frac{j2\pi(k+\alpha)}{M}} z^{-1} \right)^n \right]$$

$$= \frac{1 - z^{-M} e^{j2\pi\alpha}}{M} \sum_{k=0}^{M-1} \frac{H(k+\alpha)}{1 - e^{\frac{j2\pi(k+\alpha)}{M}} z^{-1}}$$

que está expresada enteramente por las muestras del espectro $H(\omega)$.

(5)

 Lo anterior es la cascada de dos sistemas: un filtro todo ceros del tipo peine caracterizado por:

$$H_1(z) = \frac{1}{M} (1 - z^{-M} e^{j2\pi\alpha})$$

con ceros equiespaciados sobre la circunferencia unitaria en

$$z_k = e^{\frac{j2\pi(k+\alpha)}{M}}, \qquad k = 0,1,...,M-1$$

 El otro elemento de la cascada es un banco de filtros de primer orden, cada uno con un solo polo en

$$p_k = e^{\frac{j2\pi(k+\alpha)}{M}}, \qquad k = 0,1,...,M-1$$

Los polos coinciden en su posición con los ceros.

(6)

(7)

- Cuando la respuesta en frecuencia deseada es de banda angosta, la mayor parte de los coeficientes $H(\omega_k)$ son cero, y la estructura se simplifica.
- Si se requiere una respuesta impulsional deseada, entonces debido a la simetría hermítica de $H(\omega)$ la estructura se simplifica aun más combinando pares de filtros de primer orden en filtros de segundo orden.

(1)

- Las formas directas I y II utilizan los coeficientes de los polinomio de la función de transferencia racional que implementan.
- El posicionamiento de las raíces polinomiales es un problema mal condicionado: los polos y ceros pueden variar considerablemente su posición cuando se limita la precisión numérica.
- Los sistemas en cascada persiguen una utilización directa de los valores de polos y ceros, que hacen más predecible el efecto de cuantificación en sus representaciones digitales.

(2)

 Para ello se parte de una factorización de los polinomios en el numerador y el denominador de la función de transferencia del sistema:

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

$$= A \frac{\prod_{k=1}^{M_1} (1 - f_k z^{-1})}{\prod_{k=1}^{N_1} (1 - c_k z^{-1})} \frac{\prod_{k=1}^{M_2} (1 - g_k z^{-1}) (1 - g_k^* z^{-1})}{\prod_{k=1}^{M_2} (1 - d_k z^{-1}) (1 - d_k^* z^{-1})}$$

donde
$$M = M_1 + 2M_2$$
 y $N = N_1 + 2N_2$

- Si a_k y b_k son reales entonces f_k y c_k también lo son.
- g_k y d_k son complejos y aparecen junto a sus pares complejos conjugados g_k^* y d_k^* .

(3)

 Usualmente se combinan pares de factores reales o complejos conjugados en estructuras de segundo orden, de modo que:

$$H(z) = \prod_{k=1}^{N_S} \frac{b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}}{1 + a_{1k}z^{-1} + a_{2k}z^{-2}}$$

con
$$N_s = [(N+1)/2]$$

- Aquí se ha asumido que $M \leq N$.
- En caso de que hubiese un número impar de ceros (o polos) reales, entonces uno de los términos b_{2k} (o a_{2k}) será cero.
- Para cada uno de estos términos se utiliza la forma directa II.

(4)

 Se acostumbra utilizar una reducción en el número de multiplicadores necesarios utilizando la factorización:

$$H(z) = b_0 \prod_{k=1}^{N_S} \frac{1 + \tilde{b}_{1k} z^{-1} + \tilde{b}_{2k} z^{-2}}{1 + a_{1k} z^{-1} + a_{2k} z^{-2}}$$

• La primera forma tiene sin embargo la ventaja sobre la segunda de que el valor de b_0 queda distribuido en todos los términos de la cascada, lo que es conveniente en implementaciones en punto fijo.

(5)

Sistemas paralelos

Sistemas paralelos

(1)

 De forma alternativa a la factorización en términos de segundo orden, utilizando descomposición en fracciones parciales es posible expresar la función de transferencia como:

$$H(z) = \sum_{k=0}^{N_p} c_k z^{-k} + \sum_{k=1}^{N_1} \frac{A_k}{1 - c_k z^{-1}} + \sum_{k=1}^{N_2} \frac{B_k (1 - e_k z^{-1})}{(1 - d_k z^{-1})(1 - d_k^* z^{-1})}$$

donde $N = N_1 + 2N_2$

- El primer término está presente solo si H(z) es una función racional impropia, es decir, si $M \ge N$ en cuyo caso $N_p = M N$.
- Si los coeficientes a_k y b_k son reales, también lo son A_k , B_k , e_k y d_k .

Sistemas paralelos

(2)

- Está expresión puede interpretarse como la combinación en paralelo de sistemas IIR de primer y segundo orden, más una cadena de N_p retardadores.
- Agrupando también los polos reales en pares, la función de transferencia se puede expresar como:

$$H(z) = \sum_{k=0}^{N_p} c_k z^{-k} + \sum_{k=1}^{N_2} \frac{e_{0k} - e_{1k} z^{-1}}{1 - a_{1k} z^{-1} - a_{2k} z^{-2}}$$

Bibliografía

• [1] P. Alvarado, Procesamiento Digital de Señales. Instituto Tecnológico de Costa Rica: Centro de Desarrollo de Material Bibliográfico, 2011.

