Elliptic Curve and Cryptography – ECC

Lesson 4

Elliptic curves

• An elliptic curve is the set of solution (x, y) to an equation of the form (E): $Y^2 = X^3 + AX + B$

- Let P and Q be two points on E, R = P \oplus Q is defined as the following:
- (1) Let R' is intersection of E and the line L through P and Q.
- (2) Then R is the reflection of R' by x-axis.
- $P \oplus P = ?$. Take L to be the tangent line to E at P.
- P \oplus Q, where P = (a, b) and Q = (a, -b)? L is the vertical line x = a. There is no third point of intersection. The solution is to create an extra point O that lives "at infinity": P \oplus Q = (a, b) \oplus (a, -b) = O.

Elliptic Curve Addition Algorithm

Let (E): $Y^2 = X^3 + AX + B$ be an elliptic curve and Let P1 = (x1, y1), P2 = (x2, y2) be points on E.

- (1) If P1 = O, then P1 + P2 = P2.
- (2) Else If P2 = O, then P1 + P2 = P1.
- (3) Else If x1 = x2 and y1 = -y2, then P1 + P2 = 0.

(4) Else P1 + P2 = (x3, y3), where
$$\alpha = \begin{cases} \frac{y2 - y1}{x2 - x1} & \text{if } P1 \neq P2, \\ \frac{3x1^2 + A}{2y1} & \text{if } P1 = P2 \end{cases}$$

$$\alpha = \begin{cases} \frac{y2 - y1}{x2 - x1} & \text{if } P1 \neq P2, \\ \frac{3x1^2 + A}{2y1} & \text{if } P1 = P2 \end{cases}$$

Elliptic curves over finite fields

Definition (elliptic curve). An elliptic curve E is the set of solutions to a Weierstrass equation (E): $Y^2 = X^3 + AX + B$, together an extra point O, where A, B satisfy $4A^3 + 27B \neq 0$.

Theorem. Let E be an elliptic curve over F_p , and P, Q \in E(F_p). $(E(F_p), \oplus)$ is a finite group.

Theorem (Hasse). $\#E(F_p) = p + 1 - t_p$ with t_p satisfying $|t_p| \le 2\sqrt{p}$.

The elliptic curve DLP - ECDLP

Definition (ECDLP). P, $Q \in E(F_p)$. The ECDLP is finding an integer n: Q = nP. We denote $n = log_P(Q)$.

The Double-and-Add algorithm

```
Input: P ∈ E(F<sub>p</sub>), n ≥ 1
Output: R = nP
(1) Set Q = P, R = O.
(2) While n > 0 {
        (1) If n ≡ 1 (mod 2), set R = R + Q
        (2) Set Q = 2Q; n = ⌊n/2⌋
        }
```

(3) Return R

Elliptic Diffie-Hellman key exchange

Public Parameter Creation

A trusted party chooses and publishes a (large) prime, an elliptic curve E(F_p), and a point P in E(F_p)

Private Computations

Alice

Chooses a secret integer n_A . Computes the point $Q_A = n_A P$. Chooses a secret integer n_B . Computes the point $Q_B = n_B P$.

Public Exchange of Values

Alice sends Q_A to Bob $Q_B \leftarrow ---$

 $\longrightarrow Q_A$.

Bob sends Q_B to Alice

Furthure Private Computations

Computes the point n_AQ_B .

Computes the point n_BQ_A .

The shared secret value is $n_A Q_B = n_A (n_B P) = n_B (n_A P) = n_B Q_A$.

The Elliptic Curve Diffie-Hellman Problem

Definition (ECDP). Le $E(F_p)$ be an elliptic curve over a finite F_p and let $P \in E(F_p)$. The Elliptic Curve Diffie-Hellman Problem is the problem of computing the value n_1n_2P from the known values n_1P and n_2P .

Elliptic ElGamal public key cryptography

Public Parameter Creation

A trusted party chooses and publishes a (large) prime p, an elliptic curve $E(F_p)$, and a point $P \in E(F_p)$

Alice

Bob

Key Creation

Chooses a private key n_A . Computes $Q_A = n_A P$. Publishes the public key Q_A .

Encryption

Chooses plaintext $M \in E(F_p)$. Chooses an ephemeral key k.

Uses Alice's public key Q_A to

- Compute $C_1 = M + kP$ and
- Compute $C_2 = M + kQ_A$. Sends ciphertext (C_1, C_2) to Alice

Decryption

Computes $C_2 - n_A C_1$.