FEYNN LABS_ PROJECT - 1_EXPLORATORY DATA ANALYSIS

Created by: Parth shukla

Now here I am given with project 1 under feynn labs Machine Learning Internship.

In this perticular project I have to come up with a business idea where I will apply Machine Learning/Data Science in small or medium business and help them with their sales, business operations, marketing etc.

So as a part of my this project I have found one sales dataset of one small shop on **Kaggle** and I will be using Machine Learning or Data Science techniques to help small buissnesses grow using this freely available dataset.

Let's Start

In the first step here we will be downloading the **dataset (CSV Format)** in our local computer and transferring that into desired file to load it here using **Pandas** library.

→ Getting touch with our data

1. Importing Numpy and Pandas

```
In [1]: import pandas as pd
import numpy as np
```

2. Defining our dataset "df", and loading our csv file into that.

```
In [2]: | df = pd.read_csv('Data/201904 sales reciepts.csv')
```

3. Exploring our dataset first time.

Having first look of our dataset using df.head().

In [3]: df.head()

Out[3]:

	transaction_id	transaction_date	transaction_time	sales_outlet_id	staff_id	customer_id in	nstore_yn or	der li	ne_item_id	product_id	quantity line
0	7	2019-04-01	12:04:43	3	12	558	N	1	1	52	1
1	11	2019-04-01	15:54:39	3	17	781	N	1	1	27	2
2	19	2019-04-01	14:34:59	3	17	788	Υ	1	1	46	2
3	32	2019-04-01	16:06:04	3	12	683	N	1	1	23	2
4	33	2019-04-01	19:18:37	3	17	99	Υ	1	1	34	1

Checking for datatypes of all indivisual columns of our dataset using df.info().

```
In [4]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 49894 entries, 0 to 49893
        Data columns (total 14 columns):
            Column
                               Non-Null Count Dtype
           transaction id
                              49894 non-null int64
           transaction date 49894 non-null object
         2 transaction time 49894 non-null object
            sales outlet id
                              49894 non-null int64
         4 staff id
                              49894 non-null int64
                              49894 non-null int64
            customer id
                              49894 non-null object
            instore yn
                              49894 non-null int64
            order
            line item id
                              49894 non-null int64
         9 product id
                              49894 non-null int64
                              49894 non-null int64
         10 quantity
         11 line_item_amount 49894 non-null float64
                              49894 non-null float64
         12 unit_price
         13 promo item yn
                              49894 non-null object
        dtypes: float64(2), int64(8), object(4)
        memory usage: 5.3+ MB
```

checking for some mathematical relations and behaviours of our dataset using **df.describe()**.

In [5]: | df.describe()

Out[5]:

	transaction_id	sales_outlet_id	staff_id	customer_id	order	line_item_id	product_id	quantity	line_item_amount	un
count	49894.000000	49894.000000	49894.000000	49894.000000	49894.000000	49894.000000	49894.000000	49894.000000	49894.000000	49894
mean	869.056059	5.351846	25.359582	2282.324468	1.173428	1.631860	47.878983	1.438209	4.682646	3
std	857.863149	2.074796	12.466490	3240.551757	1.025445	1.412881	17.928355	0.543039	4.436668	2
min	1.000000	3.000000	6.000000	0.000000	1.000000	1.000000	1.000000	1.000000	0.000000	0
25%	223.000000	3.000000	15.000000	0.000000	1.000000	1.000000	33.000000	1.000000	3.000000	2
50%	481.000000	5.000000	26.000000	0.000000	1.000000	1.000000	47.000000	1.000000	3.750000	3
75%	1401.000000	8.000000	41.000000	5412.000000	1.000000	1.000000	60.000000	2.000000	6.000000	3
max	4203.000000	8.000000	45.000000	8501.000000	9.000000	12.000000	87.000000	8.000000	360.000000	45

5. Checking for corelations in our dataset.

Going ahead, using df.corr() to get the correlations of every column with all other columns in our dataset.

In [6]: | df.corr()

Out[6]:

	transaction_id	sales_outlet_id	staff_id	customer_id	order	line_item_id	product_id	quantity	line_item_amount unit_price
transaction_id	1.000000	-0.134200	-0.050462	0.004820	-0.052610	-0.047631	-0.046251	0.015083	-0.010319 -0.033934
sales_outlet_id	-0.134200	1.000000	0.696921	0.429706	0.012392	0.004210	0.024360	-0.002860	0.004255 -0.001673
staff_id	-0.050462	0.696921	1.000000	0.294914	0.015983	-0.008372	0.010359	0.002996	0.003410 -0.000396
customer_id	0.004820	0.429706	0.294914	1.000000	-0.018909	-0.008114	0.001156	0.011265	-0.005202 -0.016218
order	-0.052610	0.012392	0.015983	-0.018909	1.000000	0.000616	-0.173570	-0.125321	0.452822 0.758723
line_item_id	-0.047631	0.004210	-0.008372	-0.008114	0.000616	1.000000	0.604757	-0.315383	-0.050380 0.074058
product_id	-0.046251	0.024360	0.010359	0.001156	-0.173570	0.604757	1.000000	-0.175536	-0.164309 -0.138539
quantity	0.015083	-0.002860	0.002996	0.011265	-0.125321	-0.315383	-0.175536	1.000000	0.353336 -0.119205
line_item_amount	-0.010319	0.004255	0.003410	-0.005202	0.452822	-0.050380	-0.164309	0.353336	1.000000 0.672168
unit_price	-0.033934	-0.001673	-0.000396	-0.016218	0.758723	0.074058	-0.138539	-0.119205	0.672168 1.000000

→ EXPLORATORY DATA ANALYSIS

6. Univariate analysis on our dataset.

Performing **Univariate EDA** on our dataset.

In [7]: import seaborn as sns

```
In [8]: sns.countplot(df['staff_id'])
```

Out[8]: <AxesSubplot:xlabel='staff_id', ylabel='count'>

After seeing the countplot of staff_if, we can easily say that staff_id 12 is very often among all, so we can conclide that the staff having id 12 might be very loyal to work or is having much pressure to work in perticular time frame.

```
In [9]: sns.countplot(df['instore_yn'])
```

Out[9]: <AxesSubplot:xlabel='instore_yn', ylabel='count'>

Here Instore_yn has majorly two values Y and N. and it is having approximately same value count of Y and N, so it is **balanced**.

```
In [10]: sns.countplot(df['promo_item_yn'])
Out[10]: <AxesSubplot:xlabel='promo_item_yn', ylabel='count'>

50000
40000
10000
promo item yn
```

After plotting the count plot of promo_item_yn , we can clearly see that the dataset is **imbalanced** , so it will be better if we remove the column

```
In [11]: df=df.drop(columns=['promo_item_yn'])
```

In [12]: | df.head() Out[12]: transaction id transaction date transaction time sales outlet id staff id customer_id instore_yn order line_item_id product_id quantity line 12:04:43 Ν 2019-04-01 2019-04-01 15:54:39 2019-04-01 14:34:59 16:06:04 2019-04-01 2019-04-01 19:18:37

In [13]: df['order'].value_counts().plot(kind='pie',autopct='%.2f')

Out[13]: <AxesSubplot:ylabel='order'>

After seeing the pie-chart we can say that the order 1 is most frequent amongst all. and it is also **imbalanced** so we will remove the column here.

```
In [14]: | df = df.drop(columns=['order'])
```

In [15]:	df.head()										
Out[15]:	transa	action_id	transaction_date	transaction_time	sales_outlet_id	staff_id	customer_id	instore_yn	line_item_id	product_id	quantity I	ine_item_a
	0	7	2019-04-01	12:04:43	3	12	558	N	1	52	1	
	1	11	2019-04-01	15:54:39	3	17	781	N	1	27	2	
	2	19	2019-04-01	14:34:59	3	17	788	Υ	1	46	2	
	3	32	2019-04-01	16:06:04	3	12	683	N	1	23	2	
	4	33	2019-04-01	19:18:37	3	17	99	Υ	1	34	1	
				_								
In [16]:	import m	atplot1:	ib.pyplot as pi	lt								
	Plotting	y Histo	ograms for	columns in	our datase	et.						
In [17]: Out[17]:	plt.hist (array([4 array([(df['un: 8970., 0.8 ,	it_price'],bin:	s=5) , 83., 6 7.32, 36.16, 4	7.]),	et.						
	plt.hist (array([4 array([<barconf< td=""><td>(df['un: 8970., 0.8 ,</td><td>it_price'],bins 539., 235. 9.64, 18.48, 2</td><td>s=5) , 83., 6 7.32, 36.16, 4</td><td>7.]),</td><td>et.</td><td></td><td></td><td></td><td></td><td></td><td></td></barconf<>	(df['un: 8970., 0.8 ,	it_price'],bins 539., 235. 9.64, 18.48, 2	s=5) , 83., 6 7.32, 36.16, 4	7.]),	et.						
	plt.hist (array([4 array([<barcon< td=""><td>(df['un: 8970., 0.8 ,</td><td>it_price'],bins 539., 235. 9.64, 18.48, 2</td><td>s=5) , 83., 6 7.32, 36.16, 4</td><td>7.]),</td><td>et.</td><td></td><td></td><td></td><td></td><td></td><td></td></barcon<>	(df['un: 8970., 0.8 ,	it_price'],bins 539., 235. 9.64, 18.48, 2	s=5) , 83., 6 7.32, 36.16, 4	7.]),	et.						
	plt.hist (array([4 array([<barconf< td=""><td>(df['un: 8970., 0.8 ,</td><td>it_price'],bins 539., 235. 9.64, 18.48, 2</td><td>s=5) , 83., 6 7.32, 36.16, 4</td><td>7.]),</td><td>et.</td><td></td><td></td><td></td><td></td><td></td><td></td></barconf<>	(df['un: 8970., 0.8 ,	it_price'],bins 539., 235. 9.64, 18.48, 2	s=5) , 83., 6 7.32, 36.16, 4	7.]),	et.						
	plt.hist (array([4 array([<barcont< td=""><td>(df['un: 8970., 0.8 ,</td><td>it_price'],bins 539., 235. 9.64, 18.48, 2</td><td>s=5) , 83., 6 7.32, 36.16, 4</td><td>7.]),</td><td>et.</td><td></td><td></td><td></td><td></td><td></td><td></td></barcont<>	(df['un: 8970., 0.8 ,	it_price'],bins 539., 235. 9.64, 18.48, 2	s=5) , 83., 6 7.32, 36.16, 4	7.]),	et.						

```
In [18]: df['product_id'].unique()
Cut[18]:
                array([52, 27, 46, 23, 34, 32, 49, 60, 51, 35, 47, 25, 48, 53, 40, 37, 41,
                38, 50, 59, 28, 77, 55, 54, 45, 79, 43, 61, 58, 42, 31, 39, 22, 76, 29,
                33, 26, 30, 56, 74, 24, 71, 36, 69, 57, 70, 44, 78, 75, 73, 72, 87, 9, 84,
                12, 6, 64, 63, 13, 65, 2, 7, 18, 20, 19, 10, 8, 15, 21, 4, 1, 17, 14, 82,
                16, 3, 5, 81, 83, 11], dtype=int64)
      In [19]: plt.hist(df['product id'],bins=5)
      Out[19]: (array([ 988., 13318., 16150., 10923., 8515.]),
                 array([ 1. , 18.2, 35.4, 52.6, 69.8, 87. ]),
                 <BarContainer object of 5 artists>)
                 16000
                 14000
                 12000
                 10000
                  8000
                  6000
                  4000
```

7. Bi-variate analysis on our dataset.

20

40

60

80

2000

product id

So here in the scatterplot of **product_id vs unit_price** we can see that products having id between 0 to 20 is of high to medium of price and products having id between 20 to 80 is of low price, it is so because it might possible that 0 to 20 product id is for some glossories and 20 to 80 product id id for some expensive products.

```
In [21]: sns.lineplot(df['unit_price'],df['product_id'])
```

Out[21]: <AxesSubplot:xlabel='unit_price', ylabel='product_id'>


```
In [22]: sns.lineplot(df['transaction_date'],df['quantity'])
```

Out[22]: <AxesSubplot:xlabel='transaction_date', ylabel='quantity'>

→ CUSTOMER DATA ANALYSIS

1. Reading the data.

```
df1=pd.read csv('Data/customer.csv')
In [23]:
In [24]:
           df1.head()
Out[24]:
                customer id
                              home store customer first-name
                                                                   customer email customer since
                                                                                                    loyalty card number birthdate gender birth year
             0
                                                    Kelly Key Venus@adipiscing.edu
                                      3
                                                                                                          908-424-2890 1950-05-29
                                                                                                                                       М
                                                                                      2017-01-04
                                                                                                                                               1950
             1
                                      3
                                              Clark Schroeder
                                                                  Nora@fames.gov
                                                                                      2017-01-07
                                                                                                          032-732-6308 1950-07-30
                                                                                                                                       М
                                                                                                                                               1950
                                      3
                                              Elvis Cardenas
                                                                Brianna@tellus.edu
                                                                                      2017-01-10
                                                                                                                                               1950
                                                                                                          459-375-9187 1950-09-30
             3
                                      3
                                                 Rafael Estes
                                                                     Ina@non.gov
                                                                                      2017-01-13
                                                                                                          576-640-9226 1950-12-01
                                                                                                                                       М
                                                                                                                                               1950
                                      3
                                                                 Dale@Integer.com
                                                   Colin Lynn
                                                                                      2017-01-15
                                                                                                          344-674-6569 1951-02-01
                                                                                                                                       М
                                                                                                                                               1951
 In [25]:
            df1.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2246 entries, 0 to 2245
Data columns (total 9 columns):

	())			
#	Column	Non-	Null Count	Dtype
0	customer_id	2246	non-null	int64
1	home_store	2246	non-null	int64
2	customer_first-name	2246	non-null	object
3	customer_email	2246	non-null	object
4	customer_since	2246	non-null	object
5	loyalty_card_number	2246	non-null	object
6	birthdate	2246	non-null	object
7	gender	2246	non-null	object
8	birth_year	2246	non-null	int64

dtypes: int64(3), object(6)
memory usage: 158.0+ KB

1.000000

562.250000

50% 5323.500000

75% 5884.750000

min 25%

max 8501.000000 8.000000 2001.000000

2. Checking for correlations.

3.000000 1950.000000

3.000000 1965.000000

5.000000 1981.000000

5.000000 1991.000000

In [27]: df1.corr()

Out[27]:

	customer_id	home_store	birth_year
customer_id	1.000000	0.948053	0.134341
home_store	0.948053	1.000000	0.084356
birth vear	0.134341	0.084356	1.000000

3. Performing Exploratory Data Analysis.

```
In [28]: sns.countplot(df1['birth_year'][:70])
```

Out[28]: <AxesSubplot:xlabel='birth_year', ylabel='count'>


```
In [29]: sns.countplot(df1['gender'])
Out[29]: <AxesSubplot:xlabel='gender', ylabel='count'>
```


Here we can clearly see that the store has more Female customers as compared to Male.

```
In [30]: | sns.distplot(df1[df1['customer_since']>'07-01-2017']['customer_id'],hist=True)
```

Out[30]: <AxesSubplot:xlabel='customer_id', ylabel='Density'>

From the distribution plot we can see that more older customers has `higher customers id , which indicates that customers ids are provided sequently.

```
In [31]: sns.distplot(df1[df1['birth_year']>1950]['customer_id'],hist=True)
```

Out[31]: <AxesSubplot:xlabel='customer_id', ylabel='Density'>

birth_year

→ PASTRY INVENTORY DATA ANALYSIS

1. Reading the data.

In [33]: df2=pd.read_csv('Data/pastry inventory.csv')

In [34]: df2.head()

Out[34]:

	sales_outlet_id	transaction_date	product_id	start_of_day	quantity_sold	waste	% waste
(3	4/1/2019	69	18	8	10	56%
,	1 3	4/1/2019	70	18	12	6	33%
2	2 3	4/1/2019	71	18	8	10	56%
;	3	4/1/2019	72	48	9	39	81%
4	4 3	4/1/2019	73	18	9	9	50%

In [35]: df2.tail()

Out[35]:

	sales_outlet_id	transaction_date	product_id	start_of_day	quantity_sold	waste	% waste
302	8	4/27/2019	69	18	1	17	94%
303	8	4/27/2019	70	18	4	14	78%
304	8	4/27/2019	71	18	2	16	89%
305	8	4/27/2019	72	48	19	29	60%
306	8	4/27/2019	73	18	4	14	78%

In [36]: df2.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 307 entries, 0 to 306 Data columns (total 7 columns): Column Non-Null Count Dtype ----sales outlet id 307 non-null int64 1 transaction date 307 non-null object 2 product id 307 non-null int64 307 non-null start of day int64 4 quantity_sold 307 non-null int64 waste 307 non-null int64 % waste 307 non-null object dtypes: int64(5), object(2) memory usage: 16.9+ KB

In [37]: df2.describe()

Out[37]:

waste	quantity_sold	start_of_day	d product_id	sales_outlet_i	
307.000000	307.000000	307.000000	307.000000	307.000000	count
14.657980	9.296417	24.058632	70.983713	5.394137	mean
11.202108	5.440115	12.063414	1.417582	2.049477	std
0.000000	0.000000	18.000000	69.000000	3.000000	min
8.000000	6.000000	18.000000	70.000000	3.000000	25%
11.000000	8.000000	18.000000	71.000000	5.000000	50%
15.000000	11.000000	18.000000	72.000000	8.000000	75%
47.000000	32.000000	48.000000	73.000000	8.000000	max

In [38]: df2.corr()

Out[38]:

waste	quantity_sold	start_of_day	product_id	sales_outlet_id	
-0.053893	0.120800	-0.005696	0.013465	1.000000	sales_outlet_id
0.339001	0.134961	0.361235	1.000000	0.013465	product_id
0.893224	0.393825	1.000000	0.361235	-0.005696	start_of_day
-0.043859	1.000000	0.393825	0.134961	0.120800	quantity_sold
1.000000	-0.043859	0.893224	0.339001	-0.053893	waste

2. Exploratory Data Analysis.

```
In [39]: sns.lineplot(df2['start_of_day'],df2['waste'])
Out[39]: <AxesSubplot:xlabel='start_of_day', ylabel='waste'>

35
30
25
20
25
30
35
40
45
```

Here we can see from the lineplot that as start of the day increases, the waste is also increasing which is showing linear behaviour.

```
In [40]: sns.lineplot(df2['start_of_day'],df2['quantity_sold'])
Out[40]: <AxesSubplot:xlabel='start_of_day', ylabel='quantity_sold'>

16
15
14
19
10
10
```

start_of_day

Here we can see from the lineplot that as start of the day increases, the waste is also increasing which is showing linear behaviour.

```
In [41]: sns.lineplot(df2['product_id'],df2['waste'])
```

Out[41]: <AxesSubplot:xlabel='product_id', ylabel='waste'>

% waste

→ PRODUCT DATA ANALYSIS

1. Reading the dataset.

In [43]: df3=pd.read_csv('Data/product.csv')

In [44]: | df3.head()

Out[44]:

	product_id	product_group	product_category	product_type	product	product_description	unit_of_measure	current_wholesale_price	current_ret
0	1	Whole Bean/Teas	Coffee beans	Organic Beans	Brazilian - Organic	cup. Clean and	12 oz	14.40	
1	2	Whole Bean/Teas	Coffee beans	House blend Beans	Our Old Time Diner	Out packed blend of beans that is	12 oz	14.40	
2	3	Dean/Teas	Coffee beans	Espresso Beans	Blend	reminiscent Our house blend for a	1 lb	11.80	
3	4	Whole Bean/Teas	Coffee beans	Espresso	Primo	Our primium single	1 lb	16.36	
4	5	Whole Bean/Teas	Coffee beans	Beans Gourmet	Espresso Roast Columbian	roasted beans.	1 lb	12.00	
				Beans	Medium Roast	coffee any time of			>

```
In [45]: sns.countplot(df3['product_type'])
```

Out[45]: <AxesSubplot:xlabel='product_type', ylabel='count'>


```
In [46]: df3['product_type'].value_counts()
Out[46]: Barista Espresso
         Gourmet brewed coffee
         Scone
         Brewed Chai tea
                                  6
         Hot chocolate
         Brewed herbal tea
         Brewed Black tea
         Pastry
         Drip coffee
         Premium brewed coffee
         Chai tea
         Seasonal drink
         Regular syrup
         Biscotti
         Organic brewed coffee
         Organic Beans
         Drinking Chocolate
         Housewares
         Espresso Beans
         Premium Beans
         Gourmet Beans
         Brewed Green tea
         Herbal tea
         Black tea
         Clothing
         Sugar free syrup
         Green tea
         Green beans
         House blend Beans
         Organic Chocolate
                                  1
         Specialty coffee
         Name: product_type, dtype: int64
```

current_retail_price

20

```
In [48]: sns.countplot(df3['promo_yn'])
Out[48]: <AxesSubplot:xlabel='promo_yn', ylabel='count'>

80
70
60
40
30
20
10
10
10
```

promo yn

Here from the count plot we can conclude that there is not any promo available for most of the products available in the shop.

N

new product yn

Here from the count plot we can conclude that most of the products available in the shop are not new, they are old products.

current retail price

→ PANDAS PROFILING

Pandas profiling is a library which is very useful for exploratory data analysis and using which we can automate some part of our exploratory data analysis on our dataset.

```
In [51]: from pandas_profiling import ProfileReport
```

```
GITHUB LINK : https://github.com/ParthShukla211/FEYNN-
LABS_PROJECT---1
```