

数学建模

浙江大学数学科学学院 谈之弈

tanzy@zju.edu.cn

运筹学

数学建模

主要用数学方法研究国民经济和国防等方面的运行系统在人力、物力、财力等资源和其他约束条件下系统地设计和管理的最有效(最优)决策

——《中国大百科全书(第二版)》

• 用科学方法研究复杂的系统,以 求在可<u>获得的资源条件下改善</u>该 系统的效率和产出

——《不列颠百科全书(国际中文版)》

高祖曰: "公知其一,未知其二。夫 運籌策帷帳之中,决勝於千里之外, 吾不如子房。鎮國家,撫百姓,給餽 飾,不絶糧道,吾不如蕭何。連百萬 之軍,戰必勝,攻必取,吾不如韓 信。此三者,皆人傑也,吾能用之, 此吾所以取天下也。項羽有一范增而

不與人利,此其所以失天下也。"上曰:"公知其一,未知其二。夫運籌帷幄之中,决勝千里之外,吾不如子房;填國家,撫百姓,給餉魄,不絶

——《史记•高祖本纪》

《汉书•高帝纪》

运筹学

- (美) Operations Research
- (英) Operational Research

Industrial EngineeringOptimization(工业工程)(最优化)

op-e-ra-tion /_apə\respan; opə'ressan/n

6 ► MILITARY/POLICE ACTION 军事的/警方的行动 【C] a planned military or police action, especially one that involves a lot of people [尤指涉及人数众多的] 军事行动; 警方的行动: an espionage operation 谍报行动:

许国志:运用学中的一些问题。科学通报, 1956(5), 15-23

周华章: 谈谈运筹科学及其在交通运输问题中的应用。科学, 1957, 33(2), 66-70

许国志 (1919-2001) 江苏扬州人 中国工程院院士

周华章 (1917-1968) 江苏江阴人 运筹学家

起源

- 优化理论与算法
 - Fermat定理(1637)
 - Lagrange乘子法(1788)
 - Newton法 (1665)

$$x_{k+1} = x_k - \alpha_k \left(\nabla^2 f(x_k) \right)^{-1} \nabla f(x_k)$$

• Cauchy最速下降法(1847)

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

Pierre de Fermat (1607-1665) 法国数学家

Isaac Newton (1642-1727) 英国数学家、物理学家 Augustin-Louis Cauchy

Joseph-Louis Lagrange Augustin-Louis Cauchy (1736-1813) (1789-1857)

法国数学家 法国数学家、物理学家

$$f(x) = f(x_k) + (x - x_k)^{\mathrm{T}} \nabla f(x_k) + \frac{1}{2} (x - x_k)^{\mathrm{T}} \nabla^2 f(x_k) (x - x_k) + o(||x - x_k||^2)$$

起源

- 著名数学问题
 - 七桥问题(Euler, 1736)
 - Steiner树问题(Gauss, 1836)
- 企业管理实践
 - 伯利恒钢铁公司(Taylor, Gantt等, 二十世纪初)
 - 哥本哈根电话公司(Erlang, 1909)

Frederick Winslow Taylor (1856-1915) 美国管理学家

Taylor FW. The Principles of Scientific Management. Harper & Brothers, 1914.

数学建模

Johann Carl Friedrich Gauss (1777-1855)德国数学家、物理学家题图: Gauss 致天文学家Heinrich Christian Schumacher的信(1836)

数学建模

- 第二次世界大战期间,英、 美等国在运用科技指导作
 - Blackett领导的多学科团队 Blackett Circus对英国空军 雷达系统的决策支持
 - Morse参与美国海军反潜作 战

Society, 39(3), 221-233, 1988.

Patrick Maynard Stuart Blackett (1897 - 1974)

Philip McCord Morse (1903 - 1985)英国物理学家、运筹学家 美国物理学家、运 筹学家

1948年诺贝尔物理学奖得主 Lovell SB. Blackett in war and peace. Journal of the Operational Research

Little JD. Philip M. Morse and the beginnings. Operations Research, 50(1), 146-148, 2002.

- 自二十世纪三十年代起, Kantorovich开始研究计划经济 体系中的数学问题,提出了众多实际问题的线性规划模型
- 二十世纪四十年代,Koopmans 在对商船调度的研究中提出了 运输问题及其它资源配置问题

Kantorovich I.V. Mathematical Methods in the Organization and Planning of Production. Leningrad State University Press, 1939.

Leonid Vitaliyevich Kantorovich (1912-1986)

Tjalling Charles Koopmans (1910-1985)苏联数学家、经济学家 美国经济学家

Kantorovich和Koopmans分享1975年Nobel经济学奖。Prize motivation: for their contributions to the theory of optimum allocation of resources

发展

- 1947年,Dantzig提出了一般线性规划模型及其求解方法——单纯形法
- 1951年,Kuhn和Tucker 给出了刻划非线性规划 最优解性质的Karush— Kuhn—Tucker条件
- · 1958年,Gomory给出了求解整数线性规划的割平面法

右: Ralph Edward Gomory (1929-)

左: Harold William Kuhn (1925-)

右: Albert William Tucker (1905-1995)

主要分支

- 数学规划(Mathematical Programming)
 - 线性规划(Linear Programming)
 - 非线性规划 (Nonlinear Programming)
 - 整数规划(Integer Programming)
 - 多目标规划(Multiobjective Programming)

- 组合优化(Combinatorial Optimization)
- 随机运筹
 - 排队论(Queuing Theory)
 - 可靠性理论(Reliability Theory)
 - 库存论 (Inventory theory)
- 博弈论(Game Theory) 与决策理论(Decision Theory)

研究内容与基础

- 研究内容
 - 优化理论
 - 应用问题
 - 实际案例
- 应用问题与案例研究过程
 - 实际问题建模
 - 数学和计算机求解
 - 推广与应用成果

- 数学基础
 - 连续: 微积分、线性代数、数值分析
 - 离散: 离散数学(组合数学、图论)、算法设计与分析
 - 随机: 概率论、随机过程

从确定到随机 从静态到动态 从连续到离散 从线性到非线性

学术期刊

数学建模

Operations Research

Management Manufacturing & Service INFORMS Journal Operations Management Science on Computing

Production and Operations Management

Mathematics of Operations Research

Interfaces

Mathematical Programming

Naveen Jindal School of Management

上方5种属UT达拉斯商学院 经济管理类24种期刊

(除POM和MP外均为 INFORMS协会出版期刊)

优化软件

- LINGO: Optimization Modeling Software for Linear, Nonlinear, and Integer Programming
- IBM ILOG CPLEX: High-performance mathematical programming solver for linear programming, mixed-integer programming and quadratic programming
- **Gurobi: The Fastest Mathematical Programming** Solver
- 优化建模语言
 - **GAMS (General Algebraic Modeling System)**
 - AMPL (A Mathematical Programming Language)

www.gams.com

www.ibm.com/analytics/cplex-optimizer

www.lindo.com

www.gurobi.com

ampl.com/

优化软件

- Decision Tree for Optimization Software
 - http://plato.asu.edu/guide.html
- SCIP (Solving Constraint Integer Programs)
 - https://scip.zib.de/ 30/Mar/2020 SCIP version 7.0.0 released

• SCIP is currently one of the fastest non-commercial solvers for mixed integer programming (MIP) and mixed integer nonlinear programming (MINLP). It is also a framework for constraint integer programming and branch-cut-and-price. It allows for total control of the solution process and the access of detailed information down to the guts of the solver.

DECISION TREE FOR OPTIMIZATION SOFTWARE

参考资料

胡运权、郭耀煌:运筹学教 程(第5版),清华大学出版 社,2018

刁在筠、刘桂真、戎晓霞、 王光辉:运筹学(第4版), 高等教育出版社,2016

Taha, Hamdy A. Operations **Research: An Introduction** (10th), Pearson, 2016. (中 译本:运筹学基础,刘德刚、(中译本:运筹学导论,李晓 朱建明、韩继业译,中国人 松、吕彬、郭全魁、李增华、 民大学出版社,2018)

Hillier, Frederick S, Lieberman, Gerald J. Introduction to **Operations Research (10th).** McGraw-Hill Education, 2014. 刘同译, 国防工业出版社, 2018)

数学规划

- 若干个变量在满足一些等式或不等式限制条件下,使一个 或多个目标函数取得最大值或最小值
- 极值问题
 - 求函数 $f(\mathbf{x})$ 在 $\mathbf{x} \in S$ 上的 极大(小)值
- 条件极值
 - 求函数 $f(\mathbf{x})$ 在满足 $h_i(\mathbf{x}) = 0, \quad j = 1, \dots, t$ 条件下的极大(小)值

• 数学规划

以下为约束条件

范围约束

不等式约束

数学规划

- 可行解与最优解
 - 满足所有约束条件的点称为可行点(解)(feasible point),可行点的集合称为可行域(feasible region),记为S
 - $\mathbf{x}^* \in S$ 称为(单目标、极小化)优化问题的最优解(optimal solution),若对任意 $\mathbf{x} \in S$,均有 $f(\mathbf{x}^*) \leq f(\mathbf{x})$; $f(\mathbf{x}^*)$ 称为最优值
 - 局部最优解和全局最优解

分类

- 线性规划与非线性规划
 - 线性规划:目标函数为线性函数,约束条件为线性等式或不等式
 - 非线性规划:目标函数为非线性函数,或者至少有一个约束条件为非线性等式或不等式
 - 二次规划(Quadratic Programming):目标函数为二次函数,约束条件为线性等式或不等式
 - 带二次约束的二次规划(Quadratically Constrained Quadratic Program, QCQP): 目标函数为二次函数,约束条件为线性或二次等式或不等式
- 整数规划: 至少有一个决策变量限定取整数值
 - 混合整数规划(Mixed Integer Programming, MIP): 部分决策 变量取整数值
 - 0-1规划:所有决策变量都取 0 或 1

问题建模

数学建模

- 将实际问题表示成数学规划的 形式使得可以借助数学规划的 算法或软件求解一些具体的实 例,也可利用数学规划的理论 和方法分析解决问题
- 建立实际问题的数学规划模型 一般包含确定决策变量、给出 目标函数、列出约束条件等步 骤

Williams HP. Model Building in Mathematical Programming. Wiley, 2013.

Chen DS, Batson RG, Dang Y. Applied Integer Programming: Modeling and Solution. Wiley, 2011.

- 食谱问题 (diet problem)
 - 在市场上可以买到 n种不同的食品,第 j种食品的单位售价为 c_j
 - 人体正常生命活动过程需要 m 种基本营养成分,一个人每天至少需要摄入第 i 种营养成分 b_i 个单位
 - 每单位第j种食物包含第i种营养成分 a_{ij} 个单位
 - 在满足人体营养需求的前提下,如何寻找最经济的配食方案

George Joseph Stigler (1911—1991) 美国经济学家 1982年诺贝尔经 济学奖得主

- 决策变量: 食谱中第 j 种食物的数量为 x_j 个单位, $j=1,\dots,n$
- 目标函数: 所有食物费用之和 $\sum_{j=1}^{n} c_j x_j$
- 约束条件:
 - 满足人体营养需求
 - x_i 个单位第 j 种食物中含第 i种营养成分 $a_{ij}x_j$ 个单位
 - 人体摄入的第 i种营养成分的总量为 $\sum_{i=1}^{n} a_{ij} x_{j}$
 - 每种营养成分应满足人体需要 $\sum_{i=1}^{n} a_{ij} x_j^{j=1} \geq b_i, i=1,\dots,m$
 - 摄入食物量非负 $x_j \ge 0, j = 1, \dots, n$

数学建模

$$\min \sum_{j=1}^{n} c_{j} x_{j}$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i}, i = 1, \dots, m$$

 $x_{i} \ge 0, j = 1, \dots, n$

min cx

$$\mathbf{x} = (x_1, x_2, \cdots, x_n)^{\mathrm{T}}$$

s.t. $Ax \ge b$

$$\mathbf{A} = (a_{ij})_{m \times n}$$

$$x \ge 0$$

$$\mathbf{c}=(c_1,\cdots,c_n)$$

$$\mathbf{b} = (b_1, \cdots, b_m)^{\mathrm{T}}$$

MATHEMATICA

```
in[55]:= c = \{4, 2, 3\};

b = \{4, 11\};

A = \begin{pmatrix} 2 & 0 & 2 \\ 4 & 3 & 1 \end{pmatrix};
```

LinearProgramming[c, A, b]

Out[58]= $\{2, 1, 0\}$

MODEL:

endsets

data:

nut/1..2/:b; food/1..3/:c,x; cost(nut,food):a; Global optimal solution found.
Objective value:
Infeasibilities:
Total solver iterations:

Variable Value X(1) 2.000000 X(2) 1.000000 X(3) 0.000000

10.00000

0.000000

a=2 0 2 4 3 1; enddata

c=4 2 3;

min=@sum(food(j):c(j)*x(j));

@for(nut(i): @sum(food(j):a(i,j)*x(j))>b(i););
END

营养物质	PDA			
热量	3000卡			
蛋白质	70 克			
钙	0.8克			
铁	12毫克			
维生素A	5000IU			
维生素B1	1.8毫克			
维生素B2	2.7毫克			
烟碱酸	18毫克			
维生素C	75毫克			

1943年美国研究院发布的从事中等强度活动,体重为154磅的成年男性9种营养成分的每天推荐摄入量(PDA)

TABLE A. NUTRITIVE VALUES OF COMMON FOODS PER DOLLAR OF EXPENDITURE, AUGUST 15, 1989

Commodity	Unit	Price Aug. 15, 1939 (cents)	Edible Weight per \$1.00 (grams)	Calories (1,000)	Protein (grams)	Calcium (grams)	Iron (mg.)	Vitamin A (1,000 I.U.)	Thiamine (mg.)	Ribo- flavin (mg.)	Niacin (mg.)	Ascorbic Acid (mg.)
**1. Wheat Flour (Enriched) 2. Macaroni 3. Wheat Cereal (Enriched) 4. Corn Flakes 5. Corn Meal 6. Hominy Grits 7. Rice	10 lb. 1 lb. 28 oz. 8 oz. 1 lb. 24 oz. 1 lb.	36.0 14.1 24.2 7.1 4.6 8.5 7.5	12,600 3,217 3,280 3,194 9,861 8,005 6,048	44.7 11.6 11.8 11.4 36.0 28.6 21.2	1,411 418 377 252 897 680 460	2.0 .7 14.4 .1 1.7 .8 .6	365 54 175 56 99 80 41	30.9	55.4 3.2 14.4 13.5 17.4 10.6 2.0	33.3 1.9 8.8 2.3 7.9 1.6 4.8	441 68 114 68 106 110 60	
71. Tea 72. Cocoa 73. Chocolate 74. Sugar 75. Corn Sirup 76. Molasses 77. Strawberry Preserves	1 lb. 8 oz. 8 oz. 10 lb. 24 oz. 18 oz. 1 lb.	17.4 8.6 16.2 51.7 13.7 13.6 20.5	652 2,637 1,400 8,773 4,966 3,752 2,213	8.7 8.0 34.9 14.7 9.0 6.4	9.87 77 — — — —	3.0 1.3 	72 39 74 244 7	.2	2.0 .9	2.3 11.9 3.4	42 40 14 5 146 3	

77种常见食物所含各种营养成分数量(以价值1美元计)

G. J. Stigler, The Cost of Subsistence, *Journal of Farm Economics*, 27, 303-314, 1945

数学建模

食品种类	Stigler所	得近似解	最优解		
(选自77种常用食品)	年摄入量	费用(\$)	年摄入量	费用(\$)	
小麦粉(Wheat Flour)	370磅	13.33	299磅	10.78	
炼乳(Evaporated Milk)	57加仑	3.84			
卷心菜(Cabbage)	111磅	4.11	111磅	4.10	
菠菜(Spinach)	23磅	1.85	23磅	1.83	
干菜豆(Dried Navy Beans)	285磅	16.80	378磅	22.29	
牛肝 (Beef Liver)	resistant and the second		2.57磅	0.69	
年度总费用		39.93		39.69	
(以1939年度价格计算)		37.73	Security Security Comments	37.07	

运输问题

数学建模

- 运输问题(Transportation Problem)
 - 某货物有m个产地,产地i的 产量为 a_i , $i=1,\dots,m$,n个销地, 销地j的销量为 b_i , $j=1,\dots,n$
 - 由产地 i 到销地 j 的运输单价为 c_{ii} , $i=1,\dots,m,\ j=1,\dots,n$
 - 产销平衡, $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$
 - 如何调运货物从产地到销地, 可使总运输费用最小

1925年全球主要港口到港离港货物量(百万吨)

Koopmans TC. Optimum utilization of the transportation system. Econometrica, 17(S), 136-146, 1949.

	到港	离岗	净值
纽约(New York)	23.5	32.7	-9.2
旧金山(San Francisco)	7.2	9.7	-2.5
圣托马斯(St. Thomas)	10.3	11.5	-1.2
布宜诺斯艾利斯(Buenos Aires)	7.0	9.6	-2.6
安托法加斯塔(Antofagasta)	1.4	4.6	-3.2
鹿特丹(Rotterdam)	126.4	130.5	-4.1
里斯本 (Lisbon)	37.5	17.0	20.5
雅典(Athens)	28.3	14.4	13.9
敖德萨 (Odessa)	0.5	4.7	-4.2
拉各斯(Lagos)	2.0	2.4	-0.4
德班 (Durban)	2.1	4.3	-2.2
孟买 (Bombay)	5.0	8.9	-3.9
新加坡 (Singapore)	3.6	6.8	-3.2
横滨(Yokohama)	9.2	3.0	6.2
悉尼(Sydney)	2.8	6.7	-3.
#S107/07/50	CALLED STREET, STREET,	A CHARLES	Accordance to

运输问题

• 决策变量

• *x_{ij}* : 产地 *i* 调运到 销地 *j* 的货物数量

$$\min \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$

s.t.
$$\sum_{j=1}^{n} x_{ij} = a_i, i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} = b_{j}, j = 1, \dots, n$$

$$x_{ij} \ge 0$$

以净输入港口为产地,净输出港口为销地的运输问题的最优解,给出了最优空船调运路线

下料问题

- 下料问题(Cutting-Stock Problem)
 - 给定生产一批产品所需的某种材料的大小与数量列表,如何从相同规格的原料中下料,使所用的原料最少

现有W米长的钢管若干。生产某产品需长为 w_i 米的短管 b_i 根, $i=1,\dots,k$ 如何截取方能使材料最省

如何选择决策变量

- 装箱问题(bin-packing problem)
 - 给定一系列大小已知的物品 和若干个容量相同的箱子, 如何将物品放入箱子中,使 所用箱子数尽可能少

下料问题

- 确定每根钢管的截法
- 决策变量
- x_{ji} : 第 j 根钢管截取的第 i 种短管数量 $i=1,\dots,k,j=1,\dots,n$ 截取后才能 产生短管 $y_j = \begin{cases} 1 & \text{第 } j \text{ 根钢管被截取,} \\ 0 & \text{其他,} \end{cases}$ $j = 1, \dots, n$ 约束条件

$$\sum_{j=1}^{n} x_{ji} \ge b_i, i = 1, \dots, k$$

- $\sum_{k=1}^{j=1} x_{ji} w_i \leq W, j = 1, \dots, n$
- 目标函数

$$\min \sum_{j=1}^{n} y_{j}$$

$$\exists i, x_{ji} > 0 \Rightarrow y_j = 1 \longrightarrow \sum_{i=1}^k x_{ji} > 0 \Rightarrow y_j = 1$$

$$y_j \ge \sum_{i=1}^k x_{ji}$$

$$Wy_j \ge \sum_{i=1}^k x_{ji} w_i$$

n=200+150+100 钢管只有被

$$y_j = 1 \Rightarrow \exists i, x_{ji} > 0$$
 在给定目标下, 最优解自动满足

钢管之间没有区别, 重复变量过多

下料问题

- 列举所有可能的截取方式
- 决策变量
 - x_i : 按第 i 种方式截取的原料的数量, $i = 1, \dots, 7$
 - *x_i* 必须取正整数值
- 约束条件应取不等式

min $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$ s.t. $2x_1 + x_2 + x_3$ ≥ 200 $x_2 + 3x_4 + 2x_5 + x_6$ ≥ 150 $2x_3 + x_5 + 2x_6 + 3x_7 \geq 100$ $x_i \geq 0$ 且 x_i 为整数, $i = 1, 2, \dots, 7$.

钢管长15米,所需4米,5米,7米长的短管分别为100,150,200根

方式	1	2	3	4	5	6	7
7米	2	1	1	0	0	0	0
5米	0	1	0	3	2	1	0
4米	0	0	2	0	1	2	3
余料	1	3	0	0	1	2	3

列生成法 (column generation)

0-1变量

- 仅当**0-1**变量 y = 1时,n 个**0-1**变量 x_1, x_2, \dots, x_n 中的任一个才能取值 1
 - $\sum_{j=1}^{n} x_j \le ny$
- $n \uparrow_{0-1}^{J=1}$ 变量 x_1, x_2, \dots, x_n 中有且仅有一个取值 1
 - $\sum_{j=1}^{n} x_j = 1$, 且取值为1的那个变量的足标为 $\sum_{j=1}^{n} jx_j$
- 整变量 $0 \le y \le a$ 是否取非零值
 - 0-1变量 w 满足 w ≤ y ≤ aw
- 两个整变量 y, z, 当 y > z 时, **0-1**变量 w = 1
 - $w = 1 \Rightarrow y \ge z + 1, w = 0 \Rightarrow y \le z$
 - $(1+M)w-M \le y-z \le Mw$

选址问题

- 选址问题
 - 设在平面上有n个点,第j个点的坐标为 (x_i, y_i)
 - 求一个面积最小的圆,使这*n*个点均为 该圆内的点

A QUESTION IN THE GEOMETRY OF SITUATION.

By J. J. SYLVESTER.

It is required to find the least circle which shall contain a given system of points in a plane.

QUARTERLY JOURNAL

OF

PURE AND APPLIED

MATHEMATICS.

EDITED BY

J. J. SYLVESTER, M.A., F.R.S.,
PROFESSOR OF MATHEMATICS IN THE ROYAL MILITARY ACADEMY,
WOOLWIGH; AND

N. M. FERRERS, M.A.,

FELLOW OF GONVILLE AND CAIUS COLLEGE, CAMBRIDGE:

ASSISTED BY

G. G. STOKES, M.A., F.R.S.,

A. CAYLEY, M.A., F.R.S.,
LATE FELLOW OF TRINITY COLLEGE, CAMBRIDGE; AND

M. HERMITE,

VOL. I.

ο τι ούσία πρὸς γένεσιν, ἐπιστημή πρὸς πίστιν και διάνοια πρὸς εἰκασίαν ἔστι.

LONDON: JOHN W. PARKER AND SON, WEST STRAND.

选址问题

- 选址问题
 - 决策变量: 圆心(x₀, y₀), 半径 r
 - 目标函数: r²
 - 约束条件:每个点到圆心的距离不超过半径

 $\min r^2$

带二次约束的二次规划

s.t.
$$(x_i - x_0)^2 + (y_i - y_0)^2 \le r^2$$
, $i = 1, 2, \dots, n$

• 定义新决策变量 $\lambda = r^2 - (x_0^2 + y_0^2)$ 替代 r

min
$$\lambda + x_0^2 + y_0^2$$
 二次规划 $s.t.$ $\lambda + 2x_0x_i + 2y_0y_i \ge x_i^2 + y_i^2$, $i = 1, 2, \dots, n$

James Joseph Sylvester (1814-1897) 英国数学家

$$x_i^2 - 2x_0x_i + x_0^2 + y_i^2 - 2y_0y_i + y_0^2 \le r^2 \implies x_i^2 - 2x_0x_i + y_i^2 - 2y_0y_i \le r^2 - x_0^2 - y_0^2 = \lambda$$

支持向量机

- 支持向量机(Support Vector Machine)
 - 拟将一数据集分为 C_1 , C_2 两类。每个数据有 n 个特征,用 n 维实向量表示数据
 - 重衣亦剱掂
 训练集 $S = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$,其分类已知,记 $y_i = \begin{cases} 1 & \mathbf{x}_i \in C_1 \\ -1 & \mathbf{x}_i \in C_2 \end{cases}$
 - 训练集可线性分离(linearly separable),即存在超平
 面 $\mathbf{w} \cdot \mathbf{x} + b = 0$,使得 $\begin{cases} \mathbf{w} \cdot \mathbf{x}_i + b > 0 & \mathbf{x}_i \in C_1 \end{cases}$,或 $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 0$
 因平面 $\begin{cases} \mathbf{w} \cdot \mathbf{x}_i + b < 0 & \mathbf{x}_i \in C_2 \end{cases}$
- 超平面
 - 设 w为 n 维实向量,b 为实数,称 w·x+b=0为 \mathbb{R}^n 中的超平面 (hyperplane)
 - \mathbb{R}^n 中点 \mathbf{x} 到超平面 $\mathbf{w} \cdot \mathbf{x} + b = 0$ 的距离为 $\frac{|\mathbf{w} \cdot \mathbf{x} + b|}{\sqrt{\mathbf{w} \cdot \mathbf{w}}}$ 不妨要求 $\mathbf{w} \cdot \mathbf{w} = 1$

Cortes C, Vapnik V. Support-vector networks. *Machine Learning*, 20(3), 273-297, 1995.

支持向量机

数学建模

所有点至超平面距离

的最小值尽可能大

- 若(I)有解,(I)与(Ⅱ)等价
 - (I)的可行域包含在(II)的可行域内
 - (II)的最优解在(I)的可行域内

 $\mathbf{w} \cdot \mathbf{w} = 1$

- 由于 (I) 有解,存在 \mathbf{w}, b ,满足 $\mathbf{w} \cdot \mathbf{w} = 1$ 与 $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 0$, $i = 1, \dots, m$ 。这也是 (II) 的一 组可行解,故 (II) 的最优值非负。因此 (II) 的最优解 \mathbf{w}^*, b^* 总满足 $y_i(\mathbf{w}^* \cdot \mathbf{x}_i + b^*) > 0$, $i = 1, \dots, m$
- 在(I)的可行域内,对相同决策变量,(I)的目标值与(II)的目标值相等
 - 由于 $y_i = \pm 1$, 若 $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 0$, 则 $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = |\mathbf{w} \cdot \mathbf{x}_i + b|$

(I)
$$\max_{i=1,\dots,m} \min_{|\mathbf{w} \cdot \mathbf{x}_i + b|} \mathbf{w} \cdot \mathbf{x}_i + b = \max_{i=1,\dots,m} y_i (\mathbf{w} \cdot \mathbf{x}_i + b)$$
s.t.
$$y_i (\mathbf{w} \cdot \mathbf{x}_i + b) > 0, \ i = 1,\dots,m$$
s.t.
$$\mathbf{w} \cdot \mathbf{w} = 1$$

支持向量机

- 若 \mathbf{w}_0, b_0 是(III)的最优解,则 $\frac{\mathbf{w}_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}}, \frac{b_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}}$ 是(II)的最优解
 - $\mathfrak{P} \mathbf{w}^*, b^* \in \mathbf{H}$ 的最优解, $\mathbf{w}^* \cdot \mathbf{w}^* = 1$,最优值为 $\gamma^* = \min_{i=1,\dots,m} y_i (\mathbf{w}^* \cdot \mathbf{x}_i + b^*)$
 - $y_i(\mathbf{w}^* \cdot \mathbf{x}_i + b^*) \ge \gamma^*, i = 1, \dots, m$, $\mathbb{P} y_i\left(\frac{\mathbf{w}^*}{\gamma^*} \cdot \mathbf{x}_i + \frac{b^*}{\gamma^*}\right) \ge 1, i = 1, \dots, m$, $\mathbb{E} \frac{\mathbf{w}^*}{\gamma^*}, \frac{b^*}{\gamma^*} \ne 1$
 - 由于 \mathbf{w}_0^{γ} , b_0 是 (III) 的最优解, $\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0} \le \sqrt{\frac{\mathbf{w}^*}{\gamma^*}} \cdot \frac{\mathbf{w}^*}{\gamma^*} = \frac{1}{\gamma^*}$
 - $y_i \left(\frac{\mathbf{w}_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}} \cdot \mathbf{x}_i + \frac{b_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}} \right) \ge y_i \left(\gamma^* \mathbf{w}_0 \cdot \mathbf{x}_i + \gamma^* b_0 \right) = \gamma^* y_i \left(\mathbf{w}_0 \cdot \mathbf{x}_i + b_0 \right) \ge \gamma^*, \ i = 1, \dots, m$, $\text{th} \frac{\mathbf{w}_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}}, \frac{b_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}} \text{ in } \text{left} \text$

$$\max \quad \min_{i=1,\cdots,m} y_i(\mathbf{w} \cdot \mathbf{x}_i + b)$$

s.t. $\mathbf{w} \cdot \mathbf{w} = 1$

(II)

(III)

$$\min \mathbf{w} \cdot \mathbf{w}$$

s.t.
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, \dots, m$$

数学规划

- 建立实际问题数学规划的原则与技巧
 - 选择合适的决策变量,数量适中,目标函数和约束条件表达清晰、形式简单
 - 约束条件完整反映问题要求,不遗漏,不冗余。确保数学规划的最优值与原问题的最优值一致
 - 善于转化和变形,一般应尽量减少非线性约束和整数取值限制,灵活处理绝对值、分段函数等复杂情况
 - 善于运用0-1变量建立决策变量之间的联系和描述逻辑关系
 - 结合计算求解检验、修正和改进已有规划

