Implementing Linear Programming in Python

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Use historical data of stocks to estimate risk and return of a stock portfolio

Initially define risk as a linear function

Formulate an LPP in the standard form

Re-define risk as portfolio variance, creating a quadratic optimization

Turn on and off non-negativity constraints

Use Python to solve all of these optimization problems

Demo

Implement portfolio optimization using Python

Portfolio Optimization in R

Assemble financial data

Use data from Yahoo finance

Prices of correlated stocks

Estimate risk, return

Use historical data

Risk = max % 1-period drop

Quadratic Programming

Minimize portfolio variance

Risk = variance

Convert prices into returns

Download prices data and convert into returns

Simple step, use pandas

Linear Programming

Minimize max loss risk

Threshold on expected return

Long-only Constraint

Minimize portfolio variance

Forced to accept lower return

Portfolio Optimization in R

Assemble financial data

Use data from Yahoo finance

Prices of correlated stocks

Portfolio as Sum of Random Variables

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

Modelling a portfolio as the sum of random variables is an extremely common use-case

Portfolio as Sum of Random Variables

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

P_i = % return of stock portfolio on day i

Portfolio P consists of \$w₁ stocks of Y₁, w₂ of Y₂, w₃ of Y₃ and w_k of Y_k

Set up the Problem

DATE	EXXON	GOOGLE	APPLE
2017-01-01	Y ¹ E	Y ¹ _G	Y ¹ A
2016-12-01	Y ² E	Y ² G	Y ² A
2007-01-01	YnE	\mathbf{Y}^{n}_{G}	YnA

Download prices from Yahoo finance (refer Adjusted close)

Data Frame: Data in Rows and Columns

AD HICTED

DATE	OPEN	A	CLOSE
2016-12-01	772	• • •	779
2016-11-01	758	• • •	747
2006-01-01	302	•••	309

Each column represents 1 variable (a list or vector)

Each row represents 1 observation

From File to Data Frame

DATE	OPEN	•••	ADJUSTED CLOSE
2016-12- 01	772	• • •	779
2016-11- 01	758	• • •	747
2006-01 -01	302	• • •	309

File

Data Frame

Portfolio Optimization in R

Assemble financial data

Use data from Yahoo finance

Prices of correlated stocks

Convert prices into returns

Download prices data and convert into returns

Simple step, use Python pandas

Convert Prices to Returns

Smoothly trending data will lead to poor quality regression and covariance models

Convert Prices to Returns

$$y'_{12} = \log y_2 - \log y_1$$

$$x'_{12} = \log x_2 - \log x_1$$

Regress y' and x'

Log Differences

$$y'_{12} = (y_2 - y_1)/y_1$$

 $x'_{12} = (x_2 - x_1)/x_1$
Regress y' and x'

Returns

Take first differences of smooth data converting either to log differences or returns

Set up the Problem

Sort date from oldest to newest to calculate returns

DATE	GOOG. PRICE	NASDAQ. PRICE	
2016-12-01	779	5550	Ro
2016-11-01	747	5324	
2006-01-01	309	1900	Ro

Row 1

goog

Row nrow(goog)

Column 1

goog[-nrow(goog),-1]

goog[-nrow(goog),-1]

Element-wise Operations

779	5550	747	5324		779/747	5550/5324
					• • •	• • •
				=		
					•••	•••

goog[-nrow(goog),-1]/ goog[-1,-1]

Prices to Returns

779/747	5550/5324		1	1		779/
•••	• • •		1	1		
		-	1	1	=	
			1	1		
	***		1	1		

779/747 - 1	5550/5324 -1
• • •	• • •

This converts prices to returns

Portfolio Optimization in R

Assemble financial data

Use data from Yahoo finance

Prices of correlated stocks

Estimate risk, return

Use historical data

Risk = max % 1-period drop

Convert prices into returns

Download prices data and convert into returns

Simple step, use Python pandas

Estimate Portfolio Return and Risk

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

Expected Return

Simple - use average of historical returns

Forecast Risk

Conservative - define as sum of max loss in each stock

Max Loss refers to largest % fall experienced by a stock in any period in our data

Estimate Portfolio Return and Risk

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

Expected Return = Mean(y)

Simple - mean of sum is sum of means

Forecast Risk = MaxLoss(y)

Conservative - define as sum of max loss in each stock

Max Loss refers to largest % fall experienced by a stock in any period in our data

Estimating Return

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

Mean(P) =
$$w_1 \times Mean(Y_1) + w_2 \times Mean(Y_2) + w_3 \times Mean(Y_3) + \dots$$

$$w_k \times Mean(Y_k)$$

k terms, all linear

Mean of sum = sum of means

Estimating Return

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

Mean(P) =
$$\overline{Y}_1$$
 + \overline{Y}_2 + \overline{Y}_2 + \overline{Y}_3 + \overline{Y}_3 + \overline{Y}_k

k terms, all linear

Mean of sum = sum of means

Estimate Portfolio Return and Risk

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

Expected Return = Mean(y)

Simple - mean of sum is sum of means

Forecast Risk = MaxLoss(y)

Conservative - define as sum of max loss in each stock

Estimating Risk

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

$$\begin{aligned} \text{Risk}(P) &= & \text{w}_1 \times \text{MaxLoss}(Y_1) + \\ & \text{w}_2 \times \text{MaxLoss}(Y_2) + \\ & \text{w}_3 \times \text{MaxLoss}(Y_3) + \\ & \text{k terms} \end{aligned}$$

k terms, all linear

Portfolio Risk = Sum of individual asset risks

Portfolio Variance in R

Assemble financial data

Use data from Yahoo finance

Prices of correlated stocks

Estimate risk, return

Use historical data

Risk = max % 1-period drop

Convert prices into returns

Download prices data and convert into returns

Simple step, use Python pandas

Linear Programming

Minimize max loss risk

Threshold on expected return

Portfolio Allocation as an Optimization Problem

Objective Function

Minimize Risk(P)

Risk(P) = MaxLoss(P)

Constraints

P >= R_{threshold}

 $\overline{P} = w_1\overline{Y}_1 + w_2\overline{Y}_2 + ... \quad w_k\overline{Y}_k$

Decision Variables

W

 $W = [w_1 \ w_2 \ w_3 \ ... \ w_k]$

Portfolio Optimization in R

Assemble financial data

Use data from Yahoo finance

Prices of correlated stocks

Estimate risk, return

Use historical data

Risk = max % 1-period drop

Quadratic Programming

Minimize portfolio variance

Risk = variance

Convert prices into returns

Download prices data and convert into returns

Simple step, use Python pandas

Linear Programming

Minimize max loss risk

Threshold on expected return

Estimate Portfolio Return and Risk

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

Expected Return

Simple - use average of historical returns

Forecast Risk

Change definition of risk to refer to variance of portfolio

Change definition of risk to use portfolio variance (a more common, but less conservative approach)

Estimate Portfolio Return and Risk

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

Expected Return = Mean(y)

Simple - mean of sum is sum of means

Forecast Risk = Variance(y)

Tricky - requires use of covariance matrix

Change definition of risk to use portfolio variance (a more common, but less conservative approach)

Covariance Matrix

$$Y = Y_1 + Y_2 + Y_3 ... + Y_k$$

k columns

A kxk matrix - diagonal elements are variances, offdiagonal elements are covariances

Adding Random Variables

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

Variance (P) =
$$\sum_{i=1}^{k} \sum_{j=1}^{k} w_i w_j \text{Covariance}(Y_i, Y_j)$$
 k² terms, quadratic

Variance of the portfolio can be found by multiplying the weight vector with the covariance matrix

Portfolio Variance

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

Variance of the portfolio can be found by multiplying the weight vector with the covariance matrix

Portfolio Variance

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

The weight vector simply contains the weights of different stocks in the portfolio

Portfolio Variance

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

Transposing a vector reverses its rows and columns

Portfolio Variance

$$P = w_1Y_1 + w_2Y_2 + w_3Y_3 ... + w_kY_k$$

Variance of the portfolio can be found by multiplying the weight vector with the covariance matrix

Standard Form of Linear Programming Problems

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$x_1, x_2 ... x_n >= 0$$
 (Non-negativity constraints)

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$
$$+ q_{11}x_1^2 + q_{12}x_1x_2 + ... + q_{nn}x_n^2$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$x_1, x_2...x_n >= 0$$
 (Non-negativity constraints)

Maximize

$$Z = cx - \frac{1}{2} x Qx$$

Subject to constraints:

$$Ax \leq B$$

$$x >= 0$$

Matrix form of quadratic programming problems

Maximize

$$Z = cx - \frac{1}{2} x Qx$$

Subject to constraints:

$$Ax \leq B$$

$$x >= 0$$

Can be solved using the Modified Simplex Method

Maximize

$$Z = cx - \frac{1}{2} x Qx$$

Subject to constraints:

$$Ax \leq B$$

$$x >= 0$$

Here
$$c = 0$$
, $Q = Cov(Y)$, $x = W$

Maximize

$$Z = cx - \frac{1}{2} x^{T}Qx$$

Subject to constraints:

$$Ax \leq B$$

$$x >= 0$$

Also, relax the non-negativity constraint to allow short selling

Portfolio Allocation as an Optimization Problem

Objective Function

Minimize Risk(P)

Risk(P) = Variance(P)

Constraints

P >= R_{threshold}

 $\overline{P} = w_1\overline{Y}_1 + w_2\overline{Y}_2 + ... \quad w_k\overline{Y}_k$

Decision Variables

W

 $W = [w_1 \ w_2 \ w_3 \ ... \ w_k]$

Portfolio Optimization in R

Assemble financial data

Use data from Yahoo finance

Prices of correlated stocks

Estimate risk, return

Use historical data

Risk = max % 1-period drop

Quadratic Programming

Minimize portfolio variance

Risk = variance

Convert prices into returns

Download prices data and convert into returns

Simple step, use Python pandas

Linear Programming

Minimize max loss risk

Threshold on expected return

Long-only Constraint

Minimize portfolio variance

Forced to accept lower return

Maximize

$$Z = cx - \frac{1}{2} x^{T}Qx$$

Subject to constraints:

$$Ax \leq B$$

$$x \rightarrow = 0$$

Here
$$c = 0$$
, $Q = Cov(Y)$, $x = W$

Also, relax the non-negativity constraint to allow short selling

Maximize

$$Z = cx - \frac{1}{2} x Qx$$

Subject to constraints:

$$Ax \leq B$$

$$x >= 0$$

Re-impose the constraint on shortselling - the optimal return will reduce

Summary

Use historical data of stocks to estimate risk and return of a stock portfolio

Initially define risk as a linear function

Formulate an LPP in the standard form

Re-define risk as portfolio variance, creating a quadratic optimization

Turn on and off non-negativity constraints

Use Python to solve all of these optimization problems