- 3-1) Bestimmen Sie die Umkehrfunktion zu f: $\mathbb{R} \to \mathbb{R}$, y = f(x) = mx + n.
- 3-2) Ist das Produkt zweier ungerader Funktionen gerade oder ungerade? Betrachten Sie $h(x) = f_1(x) \cdot f_2(x)$, f_1 , f_2 ungerade, und prüfen Sie h(-x)! Hat $y = f(x) = x + x^2$ eine der Eigenschaften gerade oder ungerade?

<u>3-4)</u> Skizzieren Sie die Funktionen $y = \sqrt{x}$, $y = \sqrt{x-2}$, $y = \frac{1}{x+1}$ und $y = \frac{1}{x^2}$

- 3-5) Schreiben Sie die folgenden Polynome als Produkt von Linearfaktoren (soweit möglich) : a) $y = x^3 + 2x^2 + x$ b) $y = 2x^3 4x^2 10x + 12$ | c) $y = 1 + x^3$
- 3-6) Die Skizzen zeigen die Zeitverläufe für eine elektrische Ladung q = q(t).

Ermitteln Sie die Stromstärke für die einzelnen Zeitabschnitte und zeichnen Sie den Stromverlauf.

Ermitteln Sie näherungsweise die Stromstärke in einigen Punkten und skizzieren Sie den Stromverlauf.

- 3-7) Ermitteln Sie für $f(x) = x^3$ die Ableitung über die Definition als Grenzwert des Differenzenquotienten!
- 3-8) Differenzieren Sie: a) $y = -x^2 + 4$ | \underline{b}) $y = \frac{10}{x^3}$ \underline{c}) $y = 2 x^{a+1}$ | \underline{d}) $y = \sqrt{x} + \frac{1}{\sqrt{x}}$ \underline{e}) $y = \frac{x^2}{\sqrt[3]{x}}$
- 3-9) Differenzieren Sie: a) $y = \frac{10x}{x-1}$ b) $y = \sqrt{x^2 + 4} \mid c$ $y = x\sqrt{x^2 + 1}$ d) $y = \frac{x}{\sqrt{x^2 + 1}}$
- 3-10) Die I-U-Kennlinie einer Solarzelle werde beschrieben durch $I = f(U) = -0.8 \text{ A/V}^2 \cdot U^2 + 3 \text{ A}$. Berechnen Sie für den Arbeitspunkt $U_A = 1.1 \text{ V}$ den Gleichstromwiderstand und den differenziellen Widerstand! (Benutzen Sie die Ableitung der gegebenen Beziehung!)
- 3-11) Ermitteln Sie die Gleichung der Tangente an die Kurve $y = \sqrt{x^3 4}$ im Punkt $x_1 = 2$.

3-12) Für die lastabhängige Leistung gilt
$$P(R_L) = U_0^2 \frac{R_L}{(R_L + R_i)^2}$$

(Zweipolquelle mit Innenwiderstand. R_i, Quellspannung. U₀).

Bestimmen Sie P=P₀ $\pm \Delta P$, wenn R_L = (1.00 \pm 0.02) k Ω , R_i = 0.5 K Ω .

3-13) Ein Ohmscher Widerstand R soll aus den Messwerten $U=U_0\pm\Delta U$ und $I=I_0\pm\Delta I$ bestimmt werden. Bei spannungsrichtiger Messung gilt $R = \frac{U}{I - \frac{U}{R_{IV}}}$, R_{IV} Innenwiderstand des Voltmeters.

Leiten Sie die Formel zur Bestimmung von ΔR_{MAX} her!

Aufgaben mit MATLAB: 3-4), 3-5),

3-14) Experimentieren Sie mit MATLAB:

Bestimmen Sie das Polynom mit den Nullstellen -2, -1.5, -0.8, 1.5, 2.5. Exp. Sie mit MATLAB!

$$3\text{-}1) \ \ f^{-1}\colon \mathbb{R} \to \mathbb{R} \ , \ \ y = \frac{1}{m}x - \frac{n}{m} \quad 3\text{-}2) \ \ h \ \text{gerade}, \quad y = x + x^2 \ \ \text{weder gerade noch ungerade}$$

$$3\text{-}5) \ \ a) \ x \ (x + 1)^2, \ \ x \ \text{ausklammern, dann binomische Formel} \quad b) \ 2 \ (x - 1) \ (x - 3) \ (x + 2) \quad c) \ (x + 1) \ (x^2 - x + 1)$$

3-5) a)
$$x (x+1)^2$$
, x ausklammern, dann binomische Formel b) 2 (x-1) (x-3) (x+2) c) (x+1) (x²-x+1)

3-8) a) -2x b) -30 /
$$x^4$$
 c) 2(a+1) x^a d) $\frac{1}{2\sqrt{x}} - \frac{1}{2\sqrt{x^3}}$ e) $\frac{5}{3}\sqrt[3]{x^2}$

3-9) a)
$$-10/(x-1)^2$$
 b) $x/\sqrt{x^2+4}$ c) $\sqrt{x^2+1} + \frac{x^2}{\sqrt{x^2+1}}$ d) $\frac{1}{(x^2+1)^{\frac{3}{2}}}$

$$3-10) \ \ 0.54 \ \Omega, \\ -0.57 \ \Omega \qquad 3-11) \ \ g(x) = 2 + 3(x-2) \\ \ \ \ 3-12) \ \ \frac{dP}{dR_L} = U_0^{\ 2} \ \frac{R_i - R_L}{(R_L + R_i)^3} \ , \ \ P = U_0^{\ 2} \ (0.444 \pm 0.003) \ (k\Omega)^{-1}$$