第一章 引论

2018年12月31日

1 内容

- 1. 数值分析的研究对象
- 2. 数值计算的误差
- 3. 病态问题、数值稳定性与避免误差的原则

2 参考文献

《数值计算原理》教材

《数值分析基础》、《数值分析》、《工程中的数值方法》、《现代数值分析》

3 数值分析的研究对象

函数的插值和逼近、数值积分与微分 线性代数方程组的数值解法 非线性方程组的数值解法 常微分方程的数值解法 矩阵特征值的数值解法

4 数值计算的误差

4.1 误差的来源与分类

观测误差、舍入误差、截断误差 观测误差: π 截断误差: 函数泰勒展开, $f(x) \approx f(0) + f(x) + \dots + \frac{f^n(0)}{n!}x^n$ 误差: $\frac{f^{n+1}(\xi)}{(n+1)!}x^{n+1}$

4.2 误差和有效数字

定义 4.1 假设 x 是某个实数的精确值, x^* 是它的一个近似值。则称 $e=x-x^*$ 为近似值 x^* 的绝对误差或简称误差。称 $e_r=\frac{x-x^*}{x}$ 为 x^* 的相对误差,或 $e_r=\frac{x-x^*}{x^*}$ 。

定义 4.2 设 x 是某实数的精确值, x^* 是它的一个近似值,并且 $|x-x^*| \le \varepsilon(x^*)$,则称 $\varepsilon(x^*)$ 是 x^* 的绝对误差界或简称误差界。称 $\frac{\epsilon(x^*)}{|x^*|}$ 为 x^* 的相对误差界,记为:

$$\varepsilon_r(x^*) = \frac{\varepsilon(x^*)}{|x^*|}$$

定义 4.3 设 x^* 是 x 的一个近似值,写成

$$x^* = \pm 10^k * 0.a_1 a_2 \dots a_n \dots \tag{4.1}$$

其中 $a^i \neq 0$, k 为整数。若 $|x-x^*| \leq \frac{1}{2} * 10^{k-n}$, 则称 x^* 具有 n 位有效数字。

例 4.1 对 π 的不同近似的有效位数:

用 3.14 近似 π : $|\pi - 3.14| \le 0.002 < \frac{1}{2} * 10^{1-3}$

用 3.14285 近似 π : :: $|\pi - 3.14285|$... 有效数字仍是 3 位。

例 4.2 按四舍五入原则写出下列各数具有 5 位有效数字的近似数:

187.9325 - > 187.93 0.03785551 - > 0.037856

8.000033 -> 8.0000 2.7182818 -> 2.7183

定理 4.1 设 x 的近似值 x^* 有4.1的表达式,

(1) 若 x^* 有 n 位有效数字,则:

$$\frac{|x - x^*|}{|x^*|} \le \frac{1}{2a_1} * 10^{1-n} \tag{4.2}$$

(2) 若 $\frac{|x-x^*|}{|x^*|} \le \frac{1}{2a_1+1} * 10^{1-n}$,则 x^* 至少具有 n 位有效数字。

4.3 求函数值和算数运算的误差估计

$$|f(x) - f(x^*)| \le |f'(x^*)||x - x^*| + \frac{1}{2}|f''(\xi)||x - x^*|^2$$
 (4.3)

若 $f'(x^*) \neq 0$,且 $f''(\xi)$ 与 $f'(x^*)$ 相比不太大,则上式即可忽略第二项,由此可得到函数值 $f(x^*)$ 的一个近似误差界,为

$$\varepsilon(f(x^*)) \approx |f'(x^*)||x - x^*| \tag{4.4}$$

近似地,

$$|f(x) - f(x^*)| \le \varepsilon(f(x^*)) \approx |f'(x^*)||x - x^*| \le |f'(x^*)|\varepsilon(x^*)$$
 (4.5)

$$\varepsilon_r(f(x^*)) = \frac{\varepsilon(f(x^*))}{|f(x^*)|} \tag{4.6}$$

近似的有:

$$|f(x_1, x_2, \dots, x_n) - f(x_1^*, x_2^*, \dots, x_n^*)| \le \sum_{k=1}^n \left| \frac{\partial f(x_1^*, x_2^*, \dots, x_n^*)}{\partial x_k} \right| |x_k - x_k^*|$$
(4.7)

多元函数计算的误差界为:

$$\varepsilon(f(x_1^*, x_2^*, \dots, x_n^*)) \approx \sum_{k=1}^n \left| \frac{\partial f(x_1^*, x_2^*, \dots, x_n^*)}{\partial x_k} \right| |x_k - x_k^*| \\
\leq \sum_{k=1}^n \left| \frac{\partial f(x_1^*, x_2^*, \dots, x_n^*)}{\partial x_k} \right| * \varepsilon(x_k^*) \tag{4.8}$$

相对误差界

$$\varepsilon_r(f(x_1^*, x_2^*, \dots, x_n^*)) = \frac{\varepsilon(f(x_1^*, x_2^*, \dots, x_n^*))}{|f(x_1^*, x_2^*, \dots, x_n^*)|}$$
(4.9)

两个近似值的算术运算, 其误差界估计:

$$\varepsilon(x_1^* \pm x_2^*) = \varepsilon(x_1^*) + \varepsilon(x_2^*) \tag{4.10}$$

$$\varepsilon_r(x_1^* \pm x_2^*) = \frac{\varepsilon(x_1^*) + \varepsilon(x_2^*)}{|x_1^* \pm x_2^*|}$$
(4.11)

$$\varepsilon(x_1^* * x_2^*) \approx |x_2^*| \varepsilon(x_1^*) + |x_1^*| \varepsilon(x_2^*)$$
 (4.12)

$$\varepsilon_r(x_1^* * x_2^*) \approx \frac{\varepsilon(x_1^*)}{|x_1^*|} + \frac{\varepsilon(x_2^*)}{|x_1^*|} = \varepsilon_r(x_1^*) + \varepsilon_r(x_2^*)$$

$$\tag{4.13}$$

$$\varepsilon(x_1^*/x_2^*) \approx \frac{\varepsilon(x_1^*)}{|x_2^*|} + \frac{|x_1^*|}{|x_2^*|} \varepsilon(x_2^*)$$
(4.14)

$$\varepsilon_r(x_1^*/x_2^*) \approx \frac{\varepsilon(x_1^*)}{|x_1^*|} + \frac{\varepsilon(x_2^*)}{|x_2^*|} = \varepsilon_r(x_1^*) + \varepsilon_r(x_2^*)$$

$$\tag{4.15}$$

注:以上公式都可由构造简单二元函数利用多元函数误差界公式,做泰勒展 开求得。简单证明如下:

$$|f(x_1, x_2) - f(x_1^*, f_2^*)| = |x_1 x_2 - x_1^* * x_2^*| \le \varepsilon(x_1^* x_2^*)$$

5 病态问题、数值稳定性与避免误差的原则

5.1 病态问题与条件数

定义 5.1 设 x^* 为自变量 x 的近似值,则称 $\frac{f(x)-f(x^*)}{f(x)} \approx |\frac{xf'(x)}{f(x)}| := C(x) = Cond(f(x))$ 为计算函数值问题的条件数。

5.2 数值方法的稳定性

例 5.1 计算 $I_n = \int_0^1 \frac{x^n}{x+5} dx, n = 0, 1, 2, \dots$ 解: $:: I_n + 5I_{n-1} = \int_0^1 x^n - 1 = \frac{1}{n}$

$$\therefore I_n = -5I_{n-1} + \frac{1}{n}, n = 0, 1, 2, \dots$$
 (5.1)

显然 $I_0 = ln6 - ln5$ $I'_n = -5I'_{n-1} + \frac{1}{n}$ $E_n = I_n - I'_n = -t(I_{n-1} - I'_{n-1}) = -5E_{n-1} = \dots = (-5)^n E_0 \text{ 由 } (5.1) \text{ 可得},$

$$I_{n-1} = -\frac{1}{5}I_n + \frac{1}{5n}, n = k, k - 1, ..., 1$$
 (5.2)

$$\begin{array}{l} \because \frac{1}{6(k+1)} = \int_{0}^{1} \frac{x^{k}}{6} dx < I_{k} = \int_{0}^{1} \frac{x^{k}}{x+5} dx < \int_{0}^{1} \frac{x^{k}}{5} dx = \frac{1}{5(k+1)}, \ I_{k} \approx \frac{1}{2} [\frac{1}{6(k+1)} + \frac{1}{5(k+1)}], \ \ \text{fx } k = 6, I_{6}^{'} = 0.0262 \end{array}$$

$$E_k = (-5)E_{k-1} = \dots = (-5)^m E_0(k-m), m = 1, 2, \dots, k$$

$$E_{k-m} = (-\frac{1}{5})^m E_k, m = 1, 2, \dots, k$$

若取
$$k=6$$
,则 $E_0=(-\frac{1}{5})^6E_6$, $\therefore |E_0|=(1/5)^6|E_6|$

$\frac{}{n}$			
	1久(0:1) 万异	又 (6.2) 万异	11 压明 压(主 匹)
0	0.1823	0.1823	0.1823
1	0.0885	0.0884	0.0884
2	0.0575	0.0580	0.0580
5	0.0950	0.0281	0.0285
6	-0.3083	0.0262	0.0243

定义 5.2 如果初始数据有误差,而在计算过程中误差得到控制,则称数值方法是稳定的,否则称该方法是不稳定的或称为发散的。

数值计算中应注意的若干准则:

- 应避免除数绝对值远远小于被除数绝对值的运算。
- 要避免两相近数相减,如 x = 532.65, y = 532.62, x y = 0.03
- 要防止大数"吃"小数

如: 在五位十进制计算机上计算:

$$A = 52492 + \sum_{i=1}^{1000} r_i, \ 0.1 \le r_i \le 0.9$$

 $A = 52492 + \sum_{i=1}^{1000} r_i, \ 0.1 \le r_i \le 0.9$ 实际上, $A = 0.52492 * 10^5 + \sum_{i=1}^{1000} r_i$ 若取 $r_i = 0.4, i = 1, 2, \dots, 1000$

$$\therefore A = 0.52492 * 10^5 + 0.000004 * 10^5 + \dots$$
$$= 0.52492 * 10^5 = 52492$$

改写成,
$$A = \sum_{i=1}^{1000} r_i + 52492 = 0.004*10^5 + 0.52492*10^5 = 52892$$

• 注意简化计算步骤如: $x^{255} = x \cdot x^2 \cdot x^4 \cdot x^8 \cdots x^{128}$