Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

— Les questions peuvent présenter une ou plusieurs répor
--

- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
- En cas d'erreur, utilisez du « blanco ».
- Soyez très vigilant, avant de répondre à une question, de cocher la bonne ligne dans la grille.
- N'oubliez pas vos nom, prénom et login (p62xxx). Par exemple, p62375 s'encode ainsi :

Bon courage!

- 1. b|a signifie ...
 - a₍₁₎ \square b est diviseur de a
 - (2) \Box b est multiple de a
 - (3) le reste de la division euclidienne de a par b est nul
 - $_{(4)}\square$ le reste de la division euclidienne de b par a est nul
 - $_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
- 2. 12 est ...
 - $_{(1)}\square$ un multiple de 2
 - $_{(2)}\square$ un diviseur de 3
 - $_{(3)}\square$ un diviseur de 36
 - $_{(4)}\square$ divisible par 4
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 3. Soient a et b deux entiers relatifs. Parmi les affirmations suivantes, lesquelles sont vraies?
 - (1) \square $\forall (a,b) \in \mathbb{Z}^2 : b | a \Leftrightarrow a \in D(b)$
 - $(2)\square \qquad \forall (a,b) \in \mathbb{Z}^2 : b | a \Leftrightarrow a \in b\mathbb{Z}$
 - (3) $\exists a \exists a \in \mathbb{Z}, b = aq$
 - $\forall (a,b) \in \mathbb{Z}^2 : b \mid a \Leftrightarrow \forall q \in \mathbb{Z}, \ a = bq$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

4.	Deux nomb	ores premiers entre eux sont deux nombres qui ont
	₍₁₎	un seul multiple en commun
	(2)	zéro diviseur en commun
	(3)	un pgcd égal à 1
	$_{(4)}\square$	un ppcm égal à 1
	$_{(5)}\square$	aucune des réponses précédentes n'est correcte.
5.	Soient a et	b deux entiers relatifs et $d = \operatorname{pgcd}(a,b).$ Cocher la(les) réponse(s) correcte(s).
	$_{(1)}\square$	d a et $d b$
	(2)	Il existe un couple $(u, v) \in \mathbb{Z}^2$ tels que $au + bv = 1$.
	(3)	Il existe un couple $(u, v) \in \mathbb{Z}^2$ tels que $au + bv = d$.
	(4)	Il existe un couple unique $(u, v) \in \mathbb{Z}^2$ tel que $au + bv = d$.
	$_{(5)}\square$	aucune des réponses précédentes n'est correcte.
6.	Si $a \wedge b = 7$	7, quel est le dernier reste non nul de la division de a par b dans l'algorithme d'Euclide?
		$_{(1)}\square$ 7 $_{(2)}\square$ 0 $_{(3)}\square$ 1 $_{(4)}\square$ b
		$_{(5)}\square$ aucune des réponses précédentes n'est correcte.
7.	7 est	
	₍₁₎	le PGCD de 49 et 14
	(1) \square	le PGCD de 21 et 42
	$\binom{(2)}{(3)}\square$	multiple de 0 et 7
	$^{(3)}_{(4)}\square$	diviseur de 0 et 7
	(5)	aucune des réponses précédentes n'est correcte.
8.	Soit $a = bq$	$+$ r la division euclidienne de $a\in\mathbb{Z}$ par $b\in\mathbb{N}^*.$ Alors
	$_{(1)}\square$	0 < r < b
	(2)	$a \wedge b = b \wedge r$
	(3)	on peut avoir différentes valeurs pour r et q
	(4)□	b a
	(5)	aucune des réponses précédentes n'est correcte.
9.	Cocher la(l	es) affirmation(s) correcte(s).
		$_{(1)}\square$ $84 \wedge 35 = 7$ $_{(2)}\square$ $84 \wedge 35 = 1$ $_{(3)}\square$ $18 \wedge 21 = 2$
		$_{(4)}\Box$ $18 \wedge 21 = 3$ $_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
10.	Une relatio	n binaire R est une relation d'ordre dans un ensemble E si :
	$_{(1)}\square$	elle est réflexive, symétrique et transitive
	(2)	elle est réflexive, antisymétrique et transitive
	\square (3)	$\forall x \in E, \ xRx; \ \forall x, y \in E, \ (xRy \ \text{et} \ yRx) \Rightarrow x = y; \ \ \forall x, y, z \in E, \ (xRy \ \text{et} \ yRz) \Rightarrow xRz$
	(4)□	$\forall x \in E, \ xRx; \ \forall x, y \in E, \ xRy \Rightarrow yRx; \ \ \forall x, y, z \in E, \ (xRy \ \text{et} \ yRz) \Rightarrow xRz$
	$_{(5)}\square$	aucune des réponses précédentes n'est correcte.
11.		l'ensemble des diviseurs de n dans $\mathbb Z$ et soit $n\mathbb Z$ l'ensemble des multiples de n . Parmi les
	amrmation	s suivantes, lesquelles sont vraies?
	$_{(1)}\square$	$D(0) = \mathbb{Z} \text{ et } 0\mathbb{Z} = \{0\}$
	(2)	$D(1) = \mathbb{Z} \text{ et } 1\mathbb{Z} = \{1\}$
	(3)	$\forall (a,b) \in \mathbb{Z}^2: \ b a \Leftrightarrow D(b) \subset D(a)$
	(4)	$\forall (a,b) \in \mathbb{Z}^2: \ b a \Leftrightarrow b \in a\mathbb{Z}$
	(5)□	aucune des réponses précédentes n'est correcte.

12.	Soient a, b	et c trois entiers relatifs. Parmi les affirmations suivantes, lesquelles sont vraies?	
	$(1) \Box$ $(2) \Box$ $(3) \Box$ $(4) \Box$ $(5) \Box$	$a \lor b = 1$ et $a bc \Rightarrow a c$ $a \land b = 1$ et $a bc \Rightarrow b c$ $a \lor b = 1$ et $a bc \Rightarrow b c$ $a \land b = 1$ et $a bc \Rightarrow a c$ aucune des réponses précédentes n'est correcte.	
13.	13. Parmi les affirmations suivantes, lesquelles sont vraies?		
	$ \begin{array}{c} (1) \\ (2) \\ (3) \\ (4) \\ (5) \\ \end{array} $	Si $a \equiv b$, alors $b \equiv a$ $a - c \equiv b - d$, avec $a, b, c, d \in \mathbb{Z}$ Si $a \equiv b$ alors, $ma \equiv mb$, $\forall m \in \mathbb{Z}$ Si $a \equiv b$ et $c \equiv d$, alors $a - c \equiv b - d$ aucune des réponses précédentes n'est correcte.	
14. Cocher les congruences correctes, s'il y en a.			
		$_{(1)}\square$ $15 \equiv 1$ $_{(2)}\square$ $31 \equiv 21$ $_{(3)}\square$ $4 \equiv 8$ $_{(4)}\square$ $77 \equiv 80$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.	
15.	Quelle est dans \mathbb{Z} ?	la condition pour que l'équation diophantienne $ax + by = c$ admette une(des) solution(s)	
	$(1) \square$ $(2) \square$ $(3) \square$ $(4) \square$ $(5) \square$	$a \wedge b$ divise c c divise $a \wedge b$ c est multiple de $a \wedge b$ $a \wedge c$ divise b aucune des réponses précédentes n'est correcte.	
16. Est-ce que l'équation diophantienne $121x + 33y = 22$ admet une(des) solution(s) d		l'équation diophantienne $121x + 33y = 22$ admet une(des) solution(s) dans \mathbb{Z} ?	
	$ \begin{array}{c} (1) \\ (2) \\ (3) \\ (4) \\ (5) \end{array} $	L'équation n'admet pas de solution. L'équation admet une unique solution. L'équation admet une infinité de solutions. L'équation admet des solutions obtenues à la suite d'une solution particulière. aucune des réponses précédentes n'est correcte.	
17.	Soit (E) l'équation diophantienne $2x + 3y = 5$. 17. Quel couple est solution particulière de (E)?		
	(2)	(-5;5) (5;-5) (2;3) (-2;5) aucune des réponses précédentes n'est correcte.	
18.	Pour l'équation (E) de la question précédente, quel est l'ensemble S des solutions ?		
	$ \begin{array}{c} (1) \\ (2) \\ (3) \\ (4) \\ (5) \end{array} $	$S = \{(-5-3k; 5+2k), k \in \mathbb{Z}\}$ $S = \{(5+3k; -5-2k), k \in \mathbb{Z}\}$ $S = \{(2+5k; 3-5k), k \in \mathbb{Z}\}$ $S = \{(-5+3k; 5-2k), k \in \mathbb{Z}\}$ aucune des réponses précédentes n'est correcte.	

- Soit (E') l'équation diophantienne 15x + 6y = 4.
- 19. Quel couple est solution particulière de (E')?
 - (1)(-3;8)
 - (2)(3; -7)
 - (3)(4; -10)
 - (1; -2)
 - (4) \square (5) \square aucune des réponses précédentes n'est correcte.
- 20. Quel est l'ensemble S des solutions de l'équation diophantienne (E') de la question précédente?
 - $S = \{(-3 + 15k; 8 6k), k \in \mathbb{Z}\}\$ \Box (1)
 - $S = \{(3 15k; -7 + 6k), k \in \mathbb{Z}\}\$ (2)
 - (3) $S = \{(4+6k; -10-15k), k \in \mathbb{Z}\}\$ $S = \{(-1-15k; 2-6k), k \in \mathbb{Z}\}\$
 - (4)
 - (5)aucune des réponses précédentes n'est correcte.