

Cambridge International AS & A Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATI	cs		9709/1
Paper 1 Pure N	Mathematics 1		May/June 202
			1 hour 50 minutes
You must answ	ver on the question paper.		
You will need:	List of formulae (MF19)		

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has **20** pages. Any blank pages are indicated.

PapaCambridge

JC21 06_9709_13/RP © UCLES 2021

[Turn over

BLANK PAGE

1

Find $f(x)$.						[3]
		•••••	••••••			••••••
						••••••
•••••	•••••	•••••		•••••	•••••	
		•••••	•••••			•••••••
			••••••			•••••••••
••••••	•••••					

© UCLES 2021 9709/13/M/J/21 **[Turn over**

T' 1.41 '	11 1 1	C 41 : :			F 43
Find the maximum	possible value o	t the constant	а.		[4]
			•••••		
		•••••	•••••		
			•••••		
			•••••		
•••••		••••••	•••••	••••••	•••••
		•••••	•••••		
••••••			•••••••••••	••••••	••••••
			•••••		
			•••••		
			•••••		

A line with equation $y = mx - 6$ is a tangent to the curve with equation $y = x^2 - 4x + 3$. Find the possible values of the constant m , and the corresponding coordinates of the points at w the line touches the curve.	hich
the line touches the curve.	[O]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

[Turn over

			_	_	_
4	(a)	Show	that	the	equation

$$\frac{\tan x + \sin x}{\tan x - \sin x} = k,$$

	$\frac{1+\cos x}{1-\cos x}=k.$	[2]
		•••••
		•••••
He	nce express $\cos x$ in terms of k .	[2]
•••••		
Не	nce solve the equation $\frac{\tan x + \sin x}{\tan x - \sin x} = 4$ for $-\pi < x < \pi$.	[2]
••••		•••••
		•••••

Papa Cambridge

(b)

(c)

The diagram shows a triangle ABC, in which angle $ABC = 90^{\circ}$ and AB = 4 cm. The sector ABD is part of a circle with centre A. The area of the sector is 10 cm^2 .

(a)	Find angle <i>BAD</i> in radians.	[2]
		•••••
		•••••
		•••••
		•••••
(b)	Find the perimeter of the shaded region.	[4]
		•••••
		•••••
		•••••
		•••••

6	Functions	f and a	are both	defined	for $y \in \mathbb{R}$	and are	given	hx
U	Functions	r and g	are bour	delilled	$101 x \in \mathbb{R}$	and are	given	υ

$$f(x) = x^2 - 2x + 5,$$

$$g(x) = x^2 + 4x + 13.$$

f(x+p)+q, where p and q are constants.
Describe fully the transformation which transforms the graph of $y = f(x)$ to the graph of $y = g(x)$

7	(a)	Write down the first four terms of the expansion, in ascending powers of x , of $(a - x)^6$. [2]
	(b)	Given that the coefficient of x^2 in the expansion of $\left(1 + \frac{2}{ax}\right)(a-x)^6$ is -20 , find in exact form the possible values of the constant a .

8	Functions f	f and o	are	defined	as	follows
O	Tunctions i	anu 2	arc	ucilicu	as	TOHOWS

$$f: x \mapsto x^2 - 1 \text{ for } x < 0,$$
$$g: x \mapsto \frac{1}{2x+1} \text{ for } x < -\frac{1}{2}.$$

•••••

(b)	Find an expression for $(fg)^{-1}(x)$.	[3]

© UCLES 2021 9709/13/M/J/21 **[Turn over**

9	(a)	A geometric progression is such that the second term is equal to 24% of the sum to infinity.				
		Find the possible values of the common ratio.	[3]			

Q has first term 2(a + 1) and common difference (d + 1). It is given that

(b) An arithmetic progression P has first term a and common difference d. An arithmetic progression

	$\frac{5\text{th term of }P}{12\text{th term of }Q} = \frac{1}{3}$	and	Sum of first	t 5 terms of t 5 terms of	$\frac{P}{Q} = \frac{2}{3}.$		
Find the va	lue of a and the value	of d .					[6]
•••••		•••••	••••••	•••••	••••••	•••••	••••••
					••••••		••••••
•••••			••••••	•••••	••••••	•••••	•••••
			••••••		•••••	•••••	••••••
						•••••	
		•	••••••	•••••	••••••	•••••	••••••
			••••••		•••••	•••••	••••••
					•••••	•••••	
•••••		•••••	••••••	•••••	••••••	•••••	••••••
		•••••					••••••
		• • • • • • • • • • • • • • • • • • • •				•••••	
		•					•••••
						•••••	••••••

[Turn over

)	Poir	Points $A(-2, 3)$, $B(3, 0)$ and $C(6, 5)$ lie on the circumference of a circle with centre D .						
	(a)	Show that angle $ABC = 90^{\circ}$.	[2]					
			•••••					
			•••••					
	(b)	Hence state the coordinates of D .	[1]					
	(c)	Find an equation of the circle.	[2]					
	(0)							
			••••••					

The point E lies on the circumference of the circle such that BE is a diameter.

Find an equation of the tangent to the circle at E .	
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

11

The diagram shows part of the curve with equation $y = x^{\frac{1}{2}} + k^2 x^{-\frac{1}{2}}$, where k is a positive constant.

(a)	Find the coordinates of the minimum point of the curve, giving your answer in terms of k . [4]

The tangent at the point on the curve where $x = 4k^2$ intersects the y-axis at P.				
(b)	Find the y-coordinate of P in terms of k .	[4]		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and $x = 4k^2$.	[2]		
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and $x = 4k^2$. Find the area of the shaded region in terms of k.	[3]		
		[3]		
	Find the area of the shaded region in terms of k .			
	Find the area of the shaded region in terms of k .			
	Find the area of the shaded region in terms of k .			
	Find the area of the shaded region in terms of k .			
	Find the area of the shaded region in terms of k .			
	Find the area of the shaded region in terms of k .			
	Find the area of the shaded region in terms of k .			
	Find the area of the shaded region in terms of k .			

Additional Page

must be clearly shown.	number(s)
	•••••
	•••••
	•••••
	••••••
	•••••••

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2021 9709/13/M/J/21

