BY: S.VISHAL (1) AMT TUTORIAL-8 CH18B020 Method 1: Right anglettriangle method. a) o Using the given data, plot the refferate and entrait curves. Plat F (0,94), S(110), Rn (0.005, · y-axis will indicate autone concentration and n-anis will indicate concentration of the. Plot the tie lines: Upon plotting tie lines we can see that the tie line that intersects RS the farthest is the topmost tie line (Smir) [RN is plot wing the autone composition as ywordent E finding the point with that y woordinate on the raffinate curve] Join F to the Sour point Entend the line till the entract curve. The intersection point of Formin on entract is El EIE (0.485 10.479) Intersection of FS and FNE ; gives M. 3) Sohe y - 4F = -4F (M) (FS) y-yrn= yei-yrn (x-xrn) (rnt) YF+ (YEI - YRN) - YRN. YEI - YRN) + YF

7. (MMIYM)= (0.02293, 0.272) (derived in lass a) Smin = (21A) p - (21A) n wring FIS- M (MA)M - (NA)S and (MA) FF+(NA) B F=1300 Mg/h, (MA) F= 0.35 (MA)M:0.272, = MMM) 3 Srun = 372.9289 (NA) 5 20 3 Smen = 372.93 kg/h/. S: (.5 Smur) = 559.39 kg/h. FX(XA) F (: (MA) S = 0) = 0.2447 (NTCE)M = S = 0.3008 Join RM. Entend it to the entrails were to get E1. Join FEI and Join RNS. The intersection of FE, and RNS gives the new delba . 8 point Determine the conjugate curre by drawing bird It to y anis from entract end of the live as line Ut to x-only from raffinate end Intersection of these 2 gives a point on conjugate

· From the 3 available tie lines me get 3 points on conjugate cure which are fit thing a cubic splint From Er drop to tie line. I From the point on the til line draw a hori ronbal to y cent raffinati Join E, with the point on laffinate cuine. This is the Li line passing through EL. & the pt. on a sufficient is R1 Joen Resto of to R1. Entend it to Entend were. The intersection of SRI on entract curve a Ez. Repeat the openions 2 8 typs till RN is cloned From the graph we can see that there are 3 stages! (Actually more than 3 but the end of 3rd stage is very close to RN. compared to und of the 4th stage) Compositions: E3. EZ E 1 TUES (XEE) E 0.818 0.695 0.587 0:171 0.385 Action + X 1 8)E 0.286 0.014 0.029. 0.029. (N war)E

	RI	R ₂	R ₃ .
(xx)R	0-278.	0.2	0.113.
(XTCE)R	0.018	0.01	0.004
(X water) R	0.704	0.790	0.882

Flow rates

Total material balance :

carsuming x_{α} indicates action composition in Acetone Balance: Steeam a).

NEIEI - NRI' - NET + NEIHI

Solving O&O1 (XEI-MRN) EI- (NF-MRN) F

(XEXTI - MRX)

Ri = (NEI - NEI+1) E1 - (NF - NEI+1) E1

(NRi - MEi+1)

RW, E1 can be found using overall mens balance for the 'LIE system E1 + RN = F + S

EINEIN YENRN = FYFH Sas. JE1: Fx (YF - YRN) + 3 + 9 + 1 + 2 + 9 + 6.

R3 = F+5-E1 (YEI-JRN) = 913.96 kg (h.

mark flow reter of E1= 942.43kg/h]

Ez = 829.82 kg (-4)

E3 = 693. 23 kg/h.

1184.4 hg/h.

1047.8 MgCh.

R3 = 9131.96 kg/h.

> For this case all egns have been solved in NATLAB to determine coordinates (rabber than just getting coordinate from graph)

In the code 'y' represent composition of auctore and 'n' represente TCE composition.

This having convention was used be cause y-anis represents actione concentration n- and 11 TCE composition.

Question 1 – RIGHT TRIANGLE METHOD

a) Delta point for minimum solvent flow rate

b) And c) Number of stages and composition of each stream at the exit of each stage

Code for evaluating the points and plotting:

```
close all; clear;
%% Equilibrium Data
r tce = [0.1,0.07,0.03,0.02,0.01,0.005];
r_a = [0.55, 0.5, 0.4, 0.3, 0.2, 0.1];
r p = spline(r a,r tce);
e_a = [0.6,0.5,0.4,0.3,0.2,0.1];
e tce = [0.27, 0.46, 0.57, 0.68, 0.785, 0.89];
e_p = spline(e_a,e_tce);
%% Given Feed Data
yF = 0.35;
yRN = 0.1;
F = 1300;
%% Tie Line data
ac raff = [0.44, 0.29, 0.12];
ac_ext = [0.56, 0.4, 0.18];
tce_r = ppval(r_p,ac_raff);
tce_e = ppval(e_p,ac_ext);
xRN = ppval(r p,yRN);
%% Plotting the data
plot(r_tce,r_a,e_tce,e_a);
hold on; grid on; grid minor;
for i = 1:3
  plot([tce_r(i),tce_e(i)],[ac_raff(i),ac_ext(i)]);
end
%Completing the triangle
plot(linspace(0,1,5),1-linspace(0,1,5));
%Plotting the axes
plot(zeros(1,2),linspace(-0.5,1.5,2));
plot(linspace(-0.5,1,2),zeros(1,2));
%% Conjugate curve
curve = spline(ac raff,tce e);
plot(linspace(0.3,0.8,5),ppval(curve,linspace(0.3,0.8,5)));
%% Tie line intersection with RS
% From the plot we can infer topmost tie line gives farthest S
line1 = polyfit([tce r(1),tce e(1)],[ac raff(1),ac ext(1)],1);
line3 = polyfit([tce r(3),tce e(3)],[ac raff(3),ac ext(3)],1);
RS = @(x)(yRN + (x-xRN)*(-yRN/(1-xRN)));
int1 = @(x)(RS(x)-polyval(line1,x));
xint1 = fsolve(int1,0);
int2 = @(x)(RS(x)-polyval(line3,x));
xint2 = fsolve(int2,0);
plot([xint1,tce_r(1),tce_e(1)],[polyval(line1,xint1),ac_raff(1),ac_ext(1)]);
plot([xint2,tce_r(3),tce_e(3)],[polyval(line3,xint2),ac_raff(3),ac_ext(3)]);
plot([xint1,1],[polyval(line1,xint1),0]);
%% Connecting F and delmin
xint = xint1;
yint = polyval(line1,xint1);
Fdel = polyfit([xint,0],[yint,yF],1);
int = @(x)(polyval(Fdel,x)-ppval(e_p,x));
xE1 = fsolve(int,0);
```

```
yE1 = ppval(e_p,xE1);
%hold off;
%figure();
hold on; grid on; grid minor;
plot([xint1,1],[polyval(line1,xint1),0]);
plot([xint,xE1],polyval(Fdel,[xint,xE1]),'-.');
xlabel('TCE MASS FRACTION');
ylabel('ACETONE MASS FRACTION');
hold off;
%% Getting Smin
%Find intersection of EF and RS
mER = (yE1-yRN)/(xE1-xRN);
xM = (yF-yRN+mER*xRN)/(mER+yF);
yM = -yF*xM+yF;
Smin = F*(yF-yM)/(yM);
%% Stages
figure();
plot(r_tce,r_a,e_tce,e_a);
hold on;
%Conjugate Curve
plot(linspace(0.3,0.8,5),ppval(curve,linspace(0.3,0.8,5)));
%Plotting the axes
plot(zeros(1,2),linspace(-0.5,1,2));
plot(linspace(-0.5,1,2),zeros(1,2));
S = 1.5*Smin;
yMnew = F*yF/(F+S);
RM = polyfit([xRN,S/(F+S)],[yRN,yMnew],1);
fun1 = @(x)(polyval(RM,x)-spline(e_tce,e_a,x));
xE1 = fsolve(fun1,1);
yE1 = polyval(RM,xE1);
plot([0,1],polyval(RM,[0,1]));
FE = polyfit([xE1,0],[yE1,yF],1);
RS = polyfit([xRN,1],[yRN,0],1);
fun = @(x)(polyval(FE,x)-polyval(RS,x));
delx = fsolve(fun, -1.48);
dely = polyval(FE,delx);
plot(delx,dely,'x');
x = [-2,1];
plot(x,polyval(FE,x),x,polyval(RS,x));
% Stepping process
% Conjugate curve
cc = spline(tce e,ac raff);
i = 1;
yp = yE1;
xp = xE1;
EC = spline(e_tce,e_a);
ycoords= zeros(1,4);
xcoords= zeros(1,4);
ycoords(1)= yp;
xcoords(1) = xp;
ycoords2= zeros(1,4);
```

```
xcoords2= zeros(1,4);
while yp \ge yRN
  yp = ppval(cc,xp);
  xp = ppval(r_p,yp);
  ycoords2(i) = yp;
  xcoords2(i) = xp;
  OL = polyfit([xp,delx],[yp,dely],1);
  f = @(x)(ppval(EC,x)-polyval(OL,x));
  xp = fsolve(f,0.5);
  yp = polyval(OL,xp);
  ycoords(i+1)= yp;
  xcoords(i+1) = xp;
  i = i + 1;
  if i > 25
    break;
  end
end
plot(linspace(0,1,5),1-linspace(0,1,5));
plot(xcoords,ycoords,'o',xcoords2,ycoords2,'x');
xlabel('TCE MASS FRACTION');
ylabel('ACETONE MASS FRACTION');
%% Mass
E1 = (F*(yF-yRN)-S*yRN)/(yE1-yRN);
E = ((yE1-ycoords2(1:2))*E1-(yF-ycoords2(1:2))*F)./(ycoords(2:3)-ycoords2(1:2));
R = ((yE1-ycoords(2:3))*E1-(yF-ycoords(2:3))*F)./(ycoords(2:3)-ycoords2(1:2));
```

6	
	Methodz: Equilatual briangle method.
a).	Oriver S, F, RN and equilibrium and tie live data
	are plot on the equilatual
٥	I wied the ternary flot generator to plot the pointy Expoint 3D to draw the lines.
	Ee point 3D to draw the lines.
ο	From the previous method, we know that the toprot tie line interest RNS at Smer.
	til line intersect RNS at Smer.
~	Join F & Sour. Extend line till El (intersection
à	
Ð	RNTI RE
2	The supon composition
	1 dim Mat is 0.05)
	point lies between 2 lines, I took that to go
	Spring = (NA)F - (e NA)M
Ð	Smin = (M) = (M) e
	F (NA)M - (NA)S.
	F = 1300 hylli fra) F = 0.35 , (2A) n= 0.2 /31
	13 Smin = 354-5453 kg/h
5	5=1.5 Smir 1, <u>8=531.818</u> . Plot
	Nove (ix) m= Fx (xxx) = 0. 6248 } Mon Hore (ix) m= Fx5 = 5 = 0-29 } terrary
	and [xree] = 5 = 0-29] ternally diagram

RM. Entend it to the enteast curve to Join FEI and RNS Intersection of FEI and RS is the new of point Plot the conjugate were: - draw lines parallel to the Water and autone line from entrut and reffinate and entrat points of a til line respectudy -> Tour the the intersection of such a pour of dines lies on conjugate curve -> connect the 3 points (from I til lines) to get the conjugate wire. - 8 Done Wing 3 point were in point 3D Draw a Lie line blrough E1. The end point of the tie line on the raffinate curve gives R1 _, the procedure to do are new tie like is said as the one described earlier. Draw a line from 860 R, we embered it till entract come. The intersection of SRI with entract would Repeat the previous 2 steps till you get close enough to RN

0	No. of stages 1/3. Carbuelly more, but 3rd stage is closer to Kn than end of 4th stage)						
c)	Compositions (my ded the formatt 0.025)						
		E	EZ	Es.			
	(XA) &	0.375	0.3	0.175			
	(X TCE) E.	0.6	O.7	0.825			
	(X vatu) E			Compared and the compar			
	Raffinale	The second of th	and the second control of the second displace and an accordance that all the second displaces are second as the	R3.			
	(na) r	0275	0 - 2	0.115			
_	(xtct) r	0.025		0.01			
	(nwater) p.	0.70	0 · 8	0.875			
,	same at previous can.						
	E1= FX (MA) F- MRAN (MA) RN)						
	YS (NA) - (NA) KN.						
	= Fx ((xA) E- (XA) NN) - S (MA) KN						
	(NA) EI - (NA) ROU						
	= 950. 955.12 kg/h.						

(8)

RN=F+S-E1= 877 kg/h. We can me the same equations derived for equilateral He class. right ble carl 9 ((XA)E, - (NA)P,)E, - (XA)F - (NA)P,) ((xx)=1+1 - (xx)Ri) Ai = ((xx)=1 - (xx)=i+1) =1 - ((xx)= - (xx)=i+1) =1 $(x_A)_{k_i} - (x_A)_{E_{i+1}}$ Mars flow rakes are found to be E1 - 955 kg/h. Ez = 889.7 kg/h. * E3 = 747.74 hg/h. R1 = 1234.6 hg/h. * R2 = 1092,66 kg/h R3 = 877 kg/h. * Instead of wing 0.3 and 0.275 as entracting compositions, I used a more amoreto values of 0 29 % 0.28. This is done to reduce is round off errors which high in this case.

Lugard to the provided drawing attached: purple lines represent stages (til ling) ii) red bing represent the original til lines gwen as data (note that the final stage almost coincides with on of the given til D in & centre of the graph denotes mining point. FEI, KNS, F and all operating lines Light yellow and light blue are dires parallel to sides of the De wed to in nels tiel line determination by conjugate uve appourt. Dark blue is the conjugate and. vii) This eight blue on left - raffirette curre This light orange on right - entrait word. Liqued to first dayron. -> light blue curve - raffuett entract. I light along "

Question 1- EQUILATERAL TRIANGLE METHOD

Diagram source: www.ternaryplot.com

a) Smin determination (Graph Lines not visible when I upload it in word)

b) And c) Stages and composition determination(Graph Lines not visible when I upload it in word)

Legend for each of these graphs is in the handwritten part

MATLAB Code for solving the Mass balance equations

```
xcoords = [0.60,0.70,0.825];
ycoords = [0.375    0.29    0.175];
ycoords2 = [0.28,0.20,0.115];
xcoords2 = 1-ycoords2-[0.70    0.80    0.875];
Snew = 1.5*354.5455;
E1 = (F*(yF-yRN)-Snew*yRN)/(yE1-yRN);
```

```
E = ((yE1-ycoords2(1:2))*E1-(yF-
ycoords2(1:2))*F)./(ycoords(2:3)-ycoords2(1:2));
R = ((yE1-ycoords(2:3))*E1-(yF-
ycoords(2:3))*F)./(ycoords(2:3)-ycoords2(1:2));
RNew = F + Snew- E1;
```