INTRODUCTION TO CRYPTOGRAPHY – QUIZ 2

B.Tech. Computer Science and Engineering (Cybersecurity)

Name: Anish Sudhan Nair	Roll No.: K041
Batch: K2/A2	Date of submission: 14/01/2021

Quiz 2

1. (4 points) Suppose that k = (9,22) is a key in an Affine Cipher over Z_{26} . Write the decryption function in the form $d_k(y)$ =ry+s, where r,s $\in Z_{26}$. Your answer should be exactly in this form where $0 \le r$,s ≤ 25 .

$$e_k(x) = 9x + 22$$

$$d_k(y) = 3(y-22) = 3y-66 = 3y+(-66) = 3y+12$$

Therefore, $d_k(y) = 3y + 12$

2. (6 points) By using the decryption function d(y) = 7y + 10, decrypt the message: WZWZWF

->	W	Z	W	Z	W	F
initial	22	25	22	25	22	5
$d_{\rm k}$	164	185	164	185	164	45
final	8	3	8	3	8	19
letter	i	d	i	d	i	t

Plaintext: ididit

3. (4 points) Suppose that k=(25,2) is a key in an Affine Cipher over Z_{26} . Write the decryption function in the form $d_k(y)$ =ry+s, where r,s $\in Z_{26}$. Your answer should be exactly in this form where $0 \le r$,s ≤ 25 .

$$e_k(x) = 25x + 2$$

$$d_k(y) = 25(y-2)$$
 {Inverse of 25 in mod 26 = 25}

$$=25y-50=25y+(-50)=25y+2$$

Therefore, $d_k(y) = 25y + 2$

- 4. (2 points) For a given key k, if the encryption function e_k is identical to the decryption function d_k , then the key k is called an involutory key. Say true or false: The key given in the previous problem is an involutory key.
- -> True, the key given in the previous problem is an involutory key.
- 5. (2 points) True or False: If the encryption function is given by $e_k(x) = x + 13 \mod 26$, then the corresponding key is an involutory key.

$$-> e_k(x) = x + 13$$

k=(1,13)

$$d_k(y) = 1(y-13)$$
 {Inverse of 1 in mod 26 = 1}

$$d_k(y) = y+13$$
 which is same as $e_k(x) = x+13$

Therefore, TRUE, the corresponding key is an involutory key.

6. (2 points) Compute the value of Euler phi function $\phi(100)$.

$$->$$
Now, $100=2^2x5^2$

$$\varphi(100) = (2^2 - 2^1)(5^2 - 5^1) = (4-2)(25-5) = (2)(20) = 40$$