See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231667390

Distance-Dependent para-H2→ortho-H2 Conversion in H2@C60 Derivatives Covalently Linked to a Nitroxide Radical

ARTICLE in JOURNAL OF PHYSICAL CHEMISTRY LETTERS · MARCH 2011

Impact Factor: 7.46 · DOI: 10.1021/jz200192s

CITATIONS

13

READS

41

6 AUTHORS, INCLUDING:

Ronald G Lawler

Brown University

119 PUBLICATIONS 2,459 CITATIONS

SEE PROFILE

Koichi Komatsu

Brown University

233 PUBLICATIONS 4,953 CITATIONS

SEE PROFILE

Distance-Dependent $para-H_2 \rightarrow ortho-H_2$ Conversion in $H_2@C_{60}$ Derivatives Covalently Linked to a Nitroxide Radical

Yongjun Li,[†] Xuegong Lei,[†] Ronald G. Lawler,[‡] Yasujiro Murata,[§] Koichi Komatsu,[⊥] and Nicholas J. Turro*,[†]

ABSTRACT: The *ortho*- H_2 —*para*- H_2 conversion in a series of H_2 @ C_{60} derivatives covalently linked to a nitroxide radical has been investigated. The resulting conversion rates are in good agreement with the Wigner's theory, modified for intramolecular interaction of H_2 with the paramagnet.

SECTION: Kinetics, Spectroscopy

We recently reported distance-dependent nuclear spin relaxation $(1/T_1)$ of a series of $H_2@C_{60}$ derivatives covalently linked to a nitroxide radical. The results show that T_1 increases with the distance between the encapsulated H_2 and the radical centers (r), and the relaxivity rate constant is proportional to r^{-6} . Another aspect of interest for such $H_2@C_{60}$ derivatives is the distance dependence of the nitroxide spin catalyzed $para/ortho-H_2$ conversion. 2,3

The H₂ molecule exists as two allotropes (para-H₂ and ortho-H₂).⁴ At room temperature normal (equilibrium) H₂ consists of 75% of ortho- H_2 (oH_2) and 25% of para- H_2 (pH_2). When the temperature decreases to 77 K, the composition at equilibrium of pH_2 and oH_2 is 50%/50%. With adventitious spin catalysts, interconversion of pH2 and oH2 is very slow, typically months or longer. In the presence of a well-defined and selected paramagnetic spin catalyst, the interconversion rate of pH2 and oH2 can be greatly increased. The availability of a host-guest system, $H_2 @ C_{60}$, provides an opportunity to explore the ortho/para conversion of H₂ incarcerated in a C₆₀ under welldefined conditions. Oxygen³ has been used as a spin catalyst for para/ortho-H₂ interconversion for the H₂@C₆₀ system. The lifetime of $pH_2 \rightarrow oH_2$ conversion at room temperature is \sim 100 h in an oxygen-saturated solution. The latter time scale is comparable to that for a small molecule of nitroxide, 2,2,6,6tetramethylpiperidine-1-oxyl (TEMPO), used as a spin catalyst at a concentration of 50 mM.^{3,4}

The spin conversions of oH_2 and pH_2 with both oxygen and TEMPO as spin catalysts in $H_2@C_{60}$ are bimolecular processes, that is, the paramagnetic species diffuses, and encounters the $H_2@C_{60}$ molecule in order to catalyze the conversion. Compared with H_2 gas, an advantage of H_2 encapsulated inside C_{60} is that one can synthesize a range of $H_2@C_{60}$ derivatives in which a

paramagnetic spin catalyst is covalently linked to the C_{60} surface. Once the nitroxide radical is attached to the $H_2@C_{60}$ surface, a spin catalyst with a predetermined and relative fixed distance for the intramolecular para/ortho- H_2 conversion is realized. Through available synthetic methods, one can readily systematically vary the distance between encapsulated H_2 and the attached nitroxide radical centers. With these nitroxide derivatives of C_{60} , an investigation of distance-dependent conversion of para/ortho- H_2 is possible and is the topic of this report.

Chart 1 shows a series of $H_2@C_{60}$ nitroxide derivatives (1-7) with a 2-fold variation in the distance between the encapsulated H_2 and the nitroxide radical centers. A structurally similar diamagnetic $H_2@C_{60}$ derivative (D1) was used as a control compound to provide benchmark data. The $pH_2 \rightarrow \sigma H_2$ conversion at room temperature was examined by monitoring the change of the 1H NMR spectrum and the resulting conversion rates are analyzed by a modification of Wigner's theory. 6

The synthesis of 1-7 and D1 has been previously reported.^{1,2} From molecular modeling calculations, the distance between encapsulated H_2 and the nitroxide radical centers increases monotonically from 1 to 6.¹ The derivative 7 is similar in structure to 4, but has a biradical attached to the C_{60} surface. In this report, a mixture of isotopomers of H_2 and HD were encapsulated in the C_{60} derivatives, so that the ¹H NMR signal of the HD is an internal standard.^{2,3}

The conversion of $oH_2 \rightarrow pH_2$ of 1-7 and D1 was performed at 77 K with liquid oxygen as the spin catalyst following the procedures described before.^{2,3} Once the 50%/50% ratio of

Received: February 9, 2011 Accepted: March 8, 2011 Published: March 11, 2011

[†]Department of Chemistry, Columbia University, New York, New York 10027, United States

[‡]Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States

[§]Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan

 $^{^\}perp$ Department of Environmental and Biological Chemistry, Fukui University of Technology, Gakuen, Fukui 910-8505, Japan

Chart 1. Structures of $H_2@C_{60}$ derivatives 1-7 and $D1^a$

^aBlue balls indicate a mixture of encapsulated H₂ and HD.

Figure 1. ¹H NMR spectra of **6** in 1,2-dichlorobenzene- d_4 (the forward time dependence of the increase of the ¹H NMR signal of an air-saturated sample after forward conversion at 77 K). The signal at -4.53 ppm corresponds to ¹H of the *ortho*-H₂. The remaining triplet of signals corresponds to the ¹H signal of ¹H²H (HD). Inset indicates *para*-H₂ to *ortho*-H₂ conversion profile.

ortho/para- H_2 was reached, the conversion of $pH_2 \rightarrow oH_2$ at room temperature was monitored by 1H NMR of oH_2 (pH_2 is NMR silent) in 1,2-dichlorobenzene- d_4 solutions. A typical intensity increase of the oH_2 peak of 1H NMR spectra with time is shown in Figure 1. The inset indicates the time-dependent profile, which was fitted to an exponential equation to extract the conversion lifetime.

From these NMR studies, the lifetimes for the pH_2 to oH_2 conversion were obtained. The resulting conversion lifetimes of $pH_2 \rightarrow oH_2$ of 3-7 and D1 are listed in Figure 2 (also see Table 1). The power of the spin catalysis is revealed by the observation that the conversion rates of 1 and 2 are too fast to be monitored by 1H NMR, i.e., within the time of the workup of the samples (~ 15 min), para/ortho- H_2 has reached room temperature equilibrium (75% of $oH_2/25\%$ of pH_2) in minutes rather than many hours. The conversion lifetimes of 3-6 increase with the computed distance between the encapsulated H_2 and the nitroxide radical centers. Furthermore, the conversion lifetime of the biradical derivative 7 is about half of its monoradical counterpart 4, which is consistent with the biradical acting as a pair of spin 1/2 catalyst systems.

The rate constant $k_{\rm po}$ (Table 1) for catalysis caused by the paramagnetic spin catalyst was calculated from the observed rate

Figure 2. Lifetimes (τ) of para- H_2 —ortho- H_2 conversion of $H_2@C_{60}$ nitroxide derivatives.

Table 1. Lifetimes and Rate Constants of $para-H_2 \rightarrow ortho-H_2$ Conversion of $H_2 @ C_{60}$ Nitroxide Derivatives, and Distances between H_2 and the Nitroxide Radical Centers

H ₂ @C ₆₀ nitroxides	conversion lifetimes (h)	$k_{\rm po}~(\rm s^{-1})\times10^6$	distances r (Å) a
3	16 ± 2	11 ± 2	9.4
4	30 ± 2	5.2 ± 0.5	10.7
5	45 ± 4	2.9 ± 0.2	12.0
6	100 ± 5	0.41 ± 0.11	13.6
7	18 ± 3.5		
D1	125 ± 6		

^a Distances were deduced from relaxivity measurement. ¹

constant $(1/\tau)$ by subtracting the rate constant observed for the diamagnetic species (D1) $(1/\tau_{\rm d})$ and multiplying by 3/4 to adjust for the contribution, $k_{\rm op}$, from the reverse rate.⁷

Quantitative analysis of the conversion rates has been carried out using Wigner's theory 6,7 of homogeneous bimolecular catalysis of para-ortho conversion via the field gradient across the H_2 molecule produced by a magnetic moment, μ , at fixed distance, r, from the H_2 center of mass. In the present case, however, the H_2 and paramagnet remain permanently in contact, and the physical theory resembles the ortho-para conversion of H_2 physisorbed on surfaces, which has been extensively developed. For simplicity we will assume that only the lowest para (J=0) and ortho (J=1) states are involved in the conversion process, which accounts for about 80% of the molecules at room temperature.

In this approximation, the probability at time t of a transition to the *ortho* state by a molecule initially in the *para* state may be written in conventional notation as^{9a}

$$P_{p-o}(t) = 3\left(\frac{\mu_0}{4\pi}\right)^2 \left[\gamma_p^2 g^2 \mu_B^2 S(S+1) r^{-6}\right] \left(\frac{r_0}{r}\right)^2 \left[\frac{\sin(\omega_{\text{op}} t/2)}{(\omega_{\text{op}}/2)}\right]^2$$
(1)

The first-order rate coefficient for conversion of *para*- to *ortho*- H_2 , k_{po} , may then be obtained by taking the time derivative of eq 1 and averaging over a distribution of times during which the coherence expressed in eq 1 is maintained. The result is 9b

$$k_{\rm po} = \Omega^2 d^{-8} J(\omega_{\rm op}, \tau_{\rm r}) \tag{2}$$

where the angular frequency, $\Omega = 1.0 \times 10^{10} \text{ rad s}^{-1}$, the

Figure 3. Logarithm profile of the *para*-H₂—ortho-H₂ conversion rate constant $(k_{\rm por}\ {\rm s}^{-1})$ versus distance (d, atomic units) of H₂@C₆₀ nitroxide derivatives. The slope is fixed at -8 ,and the best-fit intercept, corresponding to d=1 atomic unit, is $\log(\Omega^2\langle J(\omega_{\rm op},\,\tau_{\rm r})\rangle)$ (equals to 5.1) from which $\langle \tau_{\rm r} \rangle$ has been calculated.

distance, *d*, between the paramagnet and H₂ is expressed in atomic units $(0.529 \times 10^{-10} \text{ m})$, and the spectral density function, $J(\omega_{\text{op}}, \tau_{\text{r}}) = \tau_{\text{r}}/(1 + \omega_{\text{op}}^2 \tau_{\text{r}}^2)$.

The introduction of $J(\omega_{\rm op}, \tau_{\rm r})$ assumes that the evolution of coherent mixing between the *para* state and the *ortho* states, which in Wigner's gas phase theory⁶ or the solution analogue⁷ is limited by the collision lifetime, in our case decreases exponentially with a correlation time, $\tau_{\rm r}$. A possible mechanism for loss of coherence would be mixing of one of the target *ortho* states with one of the other two J=1 states in an "m-diffusion" process in which the orientation, but not the magnitude, of the angular momentum J is randomly modulated. On the basis of T_1 measurements 11,12 in $H_2@C_{60}$ it is expected that $\tau_{\rm r}\approx 10^{-12}~{\rm s}.$

Equation 2 leads to the prediction that $k_{\rm po}$ should vary 13 as d^{-8} and depend on $\tau_{\rm r}$ through the function $J(\omega_{\rm op},\tau_{\rm r})$. If it is assumed that $\tau_{\rm r}$ (and therefore $J(\omega_{\rm op},\tau_{\rm r})$) is insensitive to the nitroxide side chain, a plot of $\log(k_{\rm po})$ versus $\log(d)$ (Figure 3) should be linear with a slope of -8 and an intercept from which an average value of $\tau_{\rm r}$ can be estimated. The $\langle \tau_{\rm r} \rangle$ obtained, $1.6 \pm 0.5 \times 10^{-12}$ s, is remarkably close to the value of the spin-rotation correlation time for $H_2@C_{60}$, obtained from T_1 measurements, which ranges from ca. 3-8 ps, depending on the model used for analysis. 12,13

The dipole—dipole mechanism analogous to the Wigner theory has also been applied to explain bimolecular relaxation, R_1 , and para/ortho conversion of $H_2 @ C_{60}$ by TEMPO.^{3,4} The ratio of bimolecular rate constants, $R_1/k_{\rm po}$, in that case ⁴ has the value 1.7×10^6 . The corresponding ratio, $(1/T_{\rm 1p})/k_{\rm po}$, for 3–6 ranges from 1.1 to 3.8 \times 10⁶. The similarity of the ratios seems to indicate that the effectiveness of the paramagnet in the two processes is relatively insensitive to the dynamics of the H_2 —paramagnet interaction. Interestingly, the ratio of relaxation to bimolecular conversion for solutions of H_2 in toluene catalyzed by TEMPO is 6000 times smaller than that for $H_2 @ C_{60}$, indicating either more effective conversion or less effective relaxation of H_2 in solution.

In conclusion, $pH_2 \rightarrow oH_2$ conversion of a series of $H_2 @C_{60}$ derivatives covalently linked to a nitroxide radical has been measured by monitoring their ¹H NMR. The resulting conversion rates are in good agreement with the Wigner's theory, modified for intramolecular interaction of H_2 with the paramagnet.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: njt3@columbia.edu.

ACKNOWLEDGMENT

The authors thank the National Science Foundation for its generous support through Grant CHE 07-17518. We are also grateful to three reviewers for encouraging us to refine our description of the analysis and interpretation of the data.

■ REFERENCES

- (1) Li, Y.; Lei, X.; Lawler, R. G.; Murata, Y.; Komatsu, K.; Turro, N. J. Distance-Dependent Paramagnet Enhanced Nuclear Spin Relaxation of $H_2@C_{60}$ Derivatives Covalently Linked to a Nitroxide Radical. *J. Phys. Chem. Lett.* **2010**, *1*, 2135–2138.
- (2) Li, Y.; Lei, X.; Jockusch, S.; Chen, J. Y.-C.; Frunzi, M.; Johnson, J. A.; Lawler, R. G.; Murata, Y.; Murata, M.; Komatsu, K.; Turro, N. J. A Magnetic Switch for Spin-Catalyzed Interconversion of Nuclear Spin Isomers. J. Am. Chem. Soc. 2010, 132, 4042–4043.
- (3) Turro, N. J.; Marti, A. A.; Chen, J. Y.-C.; Jockusch, S.; Lawler, R. G.; Ruzzi, M.; Sartori, E.; Chuang, S.-C.; Komatsu, K.; Murata, Y. Demonstration of a Chemical Transformation Inside a Fullerene. The Reversible Conversion of the Allotropes of H₂@C₆₀. *J. Am. Chem. Soc.* **2008**, *130*, 10506–10507.
- (4) Turro, N. J.; Chen, J. Y.-C.; Sartori, E.; Ruzzi, M.; Marti, A. A.; Lawler, R. G.; Jockusch, S.; Lopez-Gejo, J.; Komatsu, K.; Murata, Y. The Spin Chemistry and Magnetic Resonance of H₂@C₆₀. From the Pauli Principle to Trapping a Long Lived Nuclear Excited Spin State inside a Buckyball. *Acc. Chem. Res.* **2010**, *43*, 335–345.
- (S) Komatsu, K.; Murata, M.; Murata, Y. Encapsulation of Molecular Hydrogen in Fullerene C_{60} by Organic Synthesis. *Science* **2005**, 307, 238–240.
- (6) Wigner, E. Z. Concerning the Paramagnetic Conversion of para—ortho Hydrogen. III. Phys. Chem. 1933, B23, 28–32.
- (7) Atkins, P. W.; Clugston, M. J. *ortho—para* Hydrogen Conversion in Paramagnetic Solutions. *Mol. Phys.* **1974**, *27*, 1619–1631.
- (8) (a) Ilisca, E.; Legrand, A. P. Theoretical Rates and Correlation Functions in *ortho—para* H₂ Conversion on Paramagnetic Surfaces. *Phys. Rev. B* **1972**, *5*, 4994–4999. (b) Ilisca, E. *ortho—para* Conversion of Hydrogen Moleules Physisorbed on Surfaces. *Prog. Surf. Sci.* **1992**, 41, 217–335.
- (9) (a) Equation 1 is the equivalent of eq 9a of ref 6 with the following substitutions and changes of notation: l=0; $r=a_s$; $t=a_s/3v$; $I=J=(1/2)Ma_{\rm H2}^2$; $r_0=a_{\rm H2}=0.74$ Å; $\omega_{\rm op}=\hbar/I=(E_{\rm ortho}-E_{\rm para})/\hbar=2.30\times 10^{13}$ rad s $^{-1}$; $\hbar\gamma_P=\mu_P$; and the square of the paramagnetic moment $\mu_a^2=g^2\mu_B^2S(S+1)$. The magnetic moments are SI units. (b) Equation 2 is obtained by taking the time average of the time derivative of $P_{\rm P-o}$ using the probability function $\tau_{\rm r}^{-1}$ exp $(-t/\tau_{\rm r})$, and introducing the convenient notation $\Omega^2=6(\mu_0/4\pi)^2[\gamma_P{}^2g^2\mu_B{}^2S(S+1)/a_0{}^6](r_0/a_0)^2$.
- (10) Gordon, R. G. On the Rotational Diffusion of Molecules. J. Chem. Phys. 1966, 44, 1830–1836.
- (11) Sartori, E.; Ruzzi, M.; Turro, N. J.; Decatur, J. D.; Doetschman, D. C.; Lawler, R. G.; Buchachenko, A. L.; Murata, Y.; Komatsu, K. Nuclear Relaxation of $\rm H_2$ and $\rm H_2@C_{60}$ in Organic Solvents. *J. Am. Chem. Soc.* **2006**, 128, 14752–14753.
- (12) Chen, J. Y-C.; Marti, A. A.; Turro, N. J.; Komatsu, K.; Murata, Y.; Lawler, R. G. Comparative NMR Properties of H_2 and HD in Toluene- d_8 and in $H_2/\text{HD}@C_{60}$. J. Phys. Chem. B **2010**, 114, 14689–14695.
- (13) "Wigner's Law", which has often been used to analyze bimolecular paramagnetic conversion, 8b,14 predicts a d^{-6} dependence. This is, however, an artifact of the definition of the collision lifetime increasing with d. The inverse eighth power, i.e., $(d^{-4})^2$, arises from the presence of

the dipolar field gradient, proportional to d^{-4} , acting across the distance of the H-H bond, r_0 , hence the appearance also of the ratio $(r_0/r)^2$ in eq 1. (14) Matsumoto, M.; Espenson, J. H. Kinetics of the Interconversion of Parahydrogen and Orthohydrogen Catalyzed by Paramagnetic Complex Ions. *J. Am. Chem. Soc.* **2005**, *127*, 11447-11453.