Architecture Overview

The **WeatherNetModel** is designed to predict weather parameters for a specific station by effectively capturing spatial and temporal dependencies from nearby stations.

The architecture integrates **1D Convolutional Neural Networks (CNNs)** for feature extraction, **positional encodings** for spatial and temporal context, and a **Transformer Encoder** to model complex interactions between stations and across time windows. The final prediction layer outputs the desired weather metrics.

Hybrid Model Approach

We employ a **multi-model strategy**, utilizing four instances of the **WeatherNetModel**, each optimized for different forecasting horizons. While all models share the same architecture, they specialize in distinct time frames to enhance predictive accuracy:

- **0–12 hours**: Captures short-term weather dynamics.
- **12–24 hours**: Provides insights into near-daily trends.
- 24–36 hours: Focuses on mid-term patterns.
- **36–60 hours**: Optimized for longer-range forecasts.

By training each model on its respective time window, we ensure that learned representations are tailored to specific temporal dependencies, improving accuracy across different forecasting horizons.

Conclusion

The WeatherNetModel integrates CNN-based feature extraction, positional encodings, and Transformer-based encoding to deliver precise weather predictions for targeted stations. Its modular design ensures flexibility and scalability, making it well-suited for diverse meteorological applications. By leveraging both spatial and temporal contexts, the model significantly enhances predictive performance in complex weather systems.