```
Importando as bibliotecas
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.ticker as mticker
from matplotlib.ticker import AutoMinorLocator, MaxNLocator
from matplotlib.font_manager import FontProperties
Normalização dos preços
from sklearn.preprocessing import MinMaxScaler
Importando os dados
Data_XRP = pd.read_csv("/content/XRP Historical Data (1).csv")
Data_XRP.head()
₹
                                                                     Date Price
                          0pen
                                  High
                                            Low
                                                    Vol. Change %
      0 03/23/2025 2.4108 2.3710 2.4241 2.3656 215.16M
                                                             1.68%
      1 03/22/2025 2.3710 2.3802 2.4162 2.3599 189.14M
                                                             -0.38%
      2 03/21/2025 2.3801 2.4356 2.4653 2.3588 399.74M
                                                            -2 29%
      3 03/20/2025 2.4358 2.5461 2.5549 2.3923 610.64M
                                                             -4.23%
      4 03/19/2025 2.5434 2.2815 2.5806 2.2659
                                                    1.11B
                                                            11 30%

    Ver gráficos recomendados

 Próximas etapas: ( Gerar código com Data XRP )
                                                                           New interactive sheet
Transformando a coluna "Date" em datetime
Data XRP["Date"] = pd.to datetime(Data XRP["Date"], format="%m/%d/%Y")
Criação da primeira fonte de texto para colocar como fonte dos labels
font1 = {"family": "serif", "weight": "bold", "color": "black", "size": 14}
Criação da segunda fonte de texto para colocar como fonte da legenda
font2 = FontProperties(family = "serif",
                       weight = "bold",
                       size = 14)
.....
Cria um "lugar" com size (9, 7) para alocar a figura
fig, axs = plt.subplots(figsize = (16, 7))
Plota um scatter entre o total de casos (cumulativo) e total de mortes (cumulativo)
axs.plot(Data_XRP["Date"], Data_XRP["Price"], color = "orange")
axs.grid(False)
Definindo a "grossura" e a cor do eixos
for axis in ["left", "right", "top", "bottom"]:
   axs.spines[axis].set_linewidth(2)
    axs.spines[axis].set_color("black")
Trabalha com os ticks do gráfico
axs.xaxis.set_minor_locator(AutoMinorLocator())
axs.yaxis.set_minor_locator(AutoMinorLocator())
axs.tick_params(axis = "both", direction = "in", labelcolor = "black", labelsize = 14, left = True, bottom = True, top = True, right = '
axs.tick_params(which = "major", direction = "in", color = "black", length = 5.4, width = 2.5, left = True, bottom = True, top = True, ı
axs.tick_params(which = "minor", direction = "in", color = "black", length=4, width = 2, left = True, bottom = True, top = True, right =
Descrição para cada eixo
axs.set_xlabel("Data", fontdict = font1)
axs.set_ylabel("Price (US$)", fontdict = font1)
plt.rcParams["axes.labelweight"] = "bold" mostra em negrito os números nos eixos.
```

```
"""
plt.rcParams["axes.labelweight"] = "bold"
"""
Definindo um fundo branco para a imagem
"""
fig.patch.set_facecolor("white")
Cor_fundo = plt.gca()
Cor_fundo.set_facecolor("white")
Cor_fundo.patch.set_alpha(1)
"""
Título
"""
plt.title("Price history of XRP", fontdict=font1)
"""
Mostrar o gráfico
"""
plt.show()
```



```
Data_BTC = pd.read_csv("/content/Bitcoin Historical Data (1).csv")
Data_BTC.head()
```

```
₹
                                                           Vol. Change %
                                                                            \blacksquare
              Date
                      Price
                                Open
                                         High
                                                    Low
      0 03/23/2025 84,766.0 83,840.2 85,008.4 83,812.7 22.27K
                                                                    1.10%
      1 03/22/2025 83,840.5 84,076.6 84,526.3 83,688.2 20.84K
                                                                   -0.28%
      2 03/21/2025 84,073.3 84,208.7 84,831.0 83,215.9 42.80K
                                                                   -0.16%
      3 03/20/2025 84,208.1 86,841.3 87,419.0 83,656.1 69.86K
                                                                   -3.03%
      4 03/19/2025 86,841.0 82,719.1 86,990.6 82,557.5 84.61K
                                                                    4.98%
 Próximas etapas: ( Gerar código com Data_BTC )

    Ver gráficos recomendados

                                                                             New interactive sheet
Data_BTC["Date"] = pd.to_datetime(Data_BTC["Date"], format="%m/%d/%Y")
Data_BTC["Price"] = Data_BTC["Price"].str.replace(",", "")
Data_BTC["Price"] = Data_BTC.Price.astype(float)
Criação da primeira fonte de texto para colocar como fonte dos labels
font1 = {"family": "serif", "weight": "bold", "color": "black", "size": 14}
Criação da segunda fonte de texto para colocar como fonte da legenda
```

```
font2 = FontProperties(family = "serif",
                       weight = "bold",
                       size = 14)
Cria um "lugar" com size (9, 7) para alocar a figura
fig, axs = plt.subplots(figsize = (16, 7))
Plota um scatter entre o total de casos (cumulativo) e total de mortes (cumulativo)
axs.plot(Data_BTC["Date"], Data_BTC["Price"], color = "orange")
axs.grid(False)
Definindo a "grossura" e a cor do eixos
for axis in ["left", "right", "top", "bottom"]:
    axs.spines[axis].set_linewidth(2)
    axs.spines[axis].set_color("black")
Trabalha com os ticks do gráfico
axs.xaxis.set_minor_locator(AutoMinorLocator())
axs.yaxis.set_minor_locator(AutoMinorLocator())
axs.tick_params(axis = "both", direction = "in", labelcolor = "black", labelsize = 14, left = True, bottom = True, top = True, right = '
axs.tick_params(which = "major", direction = "in", color = "black", length = 5.4, width = 2.5, left = True, bottom = True, top = True, ı
axs.tick_params(which = "minor", direction = "in", color = "black", length=4, width = 2, left = True, bottom = True, top = True, right =
Descrição para cada eixo
axs.set_xlabel("Data", fontdict = font1)
axs.set_ylabel("Price (US$)", fontdict = font1)
plt.rcParams["axes.labelweight"] = "bold" mostra em negrito os números nos eixos.
plt.rcParams["axes.labelweight"] = "bold"
Definindo um fundo branco para a imagem
fig.patch.set_facecolor("white")
Cor fundo = plt.gca()
Cor_fundo.set_facecolor("white")
Cor_fundo.patch.set_alpha(1)
Título
plt.title("Price history of BTC", fontdict=font1)
Mostrar o gráfico
plt.show()
```



```
Norm = MinMaxScaler()
Data_BTC["Price"] = Data_BTC["Price"].values.reshape(-1, 1)
Data_BTC["Price"] = Norm.fit_transform(Data_BTC[["Price"]])
Data_BTC
```

₹		Date	Price	0pen	High	Low	Vol.	Change %			
	0	2025-03-23 0.797794		83,840.2 85,008.4		83,812.7 22.27K	1.10%	ıl.			
	1	2025-03-22	0.789046	84,076.6	84,526.3	83,688.2	20.84K	-0.28%	+/		
	2	2025-03-21	0.791246	84,208.7	84,831.0	83,215.9	42.80K	-0.16%			
	3	2025-03-20	0.792520	86,841.3	87,419.0	83,656.1	69.86K	-3.03%			
	4	2025-03-19	0.817409	82,719.1	86,990.6	82,557.5	84.61K	4.98%			
	3364	2016-01-05	0.000597	433.3	435.3	428.9	45.03K	-0.49%			
	3365	2016-01-04	0.000617	430.7	435.3	428.6	53.01K	0.61%			
	3366	2016-01-03	0.000593	433.7	434.1	423.1	54.83K	-0.70%			
	3367	2016-01-02	0.000621	434.0	437.4	430.7	33.57K	-0.06%			
	3368	2016-01-01	0.000624	430.0	438.0	425.9	46.97K	0.94%			
	3369 rows × 7 columns										

Próximas etapas: Gerar código com Data_BTC Ver gráficos recomendados New interactive sheet

Data_XRP["Price"] = Data_XRP["Price"].values.reshape(-1, 1)
Data_XRP["Price"] = Norm.fit_transform(Data_XRP[["Price"]])
Data_XRP

```
₹
                Date
                         Price
                                 0pen
                                        High
                                                         Vol. Change %
                                                                          丽
                                                 Low
           1.68%
       0
                                                                          1
           2025-03-22  0.720022  2.3802  2.4162  2.3599  189.14M
       1
                                                                 -0.38%
       2
           2025-03-21 0.722790 2.4356 2.4653 2.3588 399.74M
                                                                 -2.29%
           2025-03-20 0 739734 2 5461 2 5549 2 3923 610 64M
                                                                 -4 23%
       3
           2025-03-19 0.772465 2.2815 2.5806 2.2659
                                                        1.11B
                                                                 11.30%
      3364 2016-01-05 0.000304 0.0051 0.0054 0.0050
                                                         NaN
                                                                 -1.96%
           2016-01-04 0.000335 0.0052 0.0054 0.0051
                                                                 -1.92%
                                                         NaN
      3366 2016-01-03 0.000365 0.0051 0.0054 0.0050
                                                                 1 46%
                                                        0.02K
      3367 2016-01-02 0.000335 0.0051 0.0051 0.0050
                                                        0.50K
                                                                 -6.82%
      3368 2016-01-01 0.000456 0.0052 0.0055 0.0051
                                                         NaN
                                                                  5.67%
     3369 rows × 7 columns
 Próximas etapas: ( Gerar código com Data_XRP )

    Ver gráficos recomendados

                                                                          New interactive sheet
....
Criação da primeira fonte de texto para colocar como fonte dos labels
font1 = {"family": "serif", "weight": "bold", "color": "black", "size": 14}
Criação da segunda fonte de texto para colocar como fonte da legenda
font2 = FontProperties(family = "serif",
                      weight = "bold",
                      size = 14)
Cria um "lugar" com size (9, 7) para alocar a figura
fig, axs = plt.subplots(figsize = (16, 7))
Plota um scatter entre o total de casos (cumulativo) e total de mortes (cumulativo)
axs.plot(Data_BTC["Date"], Data_BTC["Price"], color = "orange")
axs.plot(Data_XRP["Date"], Data_XRP["Price"], color = "black")
axs.grid(False)
Definindo a "grossura" e a cor do eixos
for axis in ["left", "right", "top", "bottom"]:
   axs.spines[axis].set_linewidth(2)
    axs.spines[axis].set_color("black")
Trabalha com os ticks do gráfico
axs.xaxis.set_minor_locator(AutoMinorLocator())
axs.yaxis.set_minor_locator(AutoMinorLocator())
axs.tick_params(axis = "both", direction = "in", labelcolor = "black", labelsize = 14, left = True, bottom = True, top = True, right = "
axs.tick_params(which = "major", direction = "in", color = "black", length = 5.4, width = 2.5, left = True, bottom = True, top = True, i
axs.tick_params(which = "minor", direction = "in", color = "black", length=4, width = 2, left = True, bottom = True, top = True, right :
Descrição para cada eixo
axs.set_xlabel("Data", fontdict = font1)
axs.set_ylabel("Normalized Price", fontdict = font1)
plt.rcParams["axes.labelweight"] = "bold" mostra em negrito os números nos eixos.
plt.rcParams["axes.labelweight"] = "bold"
Definindo um fundo branco para a imagem
fig.patch.set_facecolor("white")
Cor_fundo = plt.gca()
Cor_fundo.set_facecolor("white")
Cor fundo.patch.set alpha(1)
Título
plt.title("Price history of BTC vs XRP", fontdict=font1)
Mostrar o gráfico
```

```
23/03/2025, 11:25
```

```
"""
Legenda
"""
plt.legend(["BTC", "XRP"], prop = font2, frameon=False)
"""
Mostrar o gráfico
"""
```


Data_ETH = pd.read_csv("/content/Ethereum Historical Data.csv")
Data_ETH

	Date	Price	0pen	High	Low	Vol.	Change %		
0	03/23/2025	2,009.14	1,980.78	2,019.59	1,977.07	249.72K	1.43%		
1	03/22/2025	1,980.80	1,965.74	2,005.80	1,965.45	185.64K	0.77%		
2	03/21/2025	1,965.58	1,983.94	1,996.73	1,938.55	291.89K	-0.91%		
3	03/20/2025	1,983.57	2,056.11	2,066.45	1,952.95	433.71K	-3.55%		
4	03/19/2025	2,056.62	1,931.79	2,069.43	1,927.77	743.84K	6.42%		

3296	03/14/2016	12.50	15.07	15.07	11.40	92.18K	-17.05%		
3297	03/13/2016	15.07	12.92	15.07	12.92	1.30K	16.64%		
3298	03/12/2016	12.92	11.95	13.45	11.95	0.83K	8.12%		
3299	03/11/2016	11.95	11.75	11.95	11.75	0.18K	1.70%		
3300	03/10/2016	11.75	11.20	11.85	11.07	0.00K	4.91%		
3301 rows × 7 columns									

```
Próximas etapas: Gerar código com Data_ETH Ver gráficos recomendados

Data_ETH["Date"] = pd.to_datetime(Data_ETH["Date"], format="%m/%d/%Y")

Data_ETH["Price"] = Data_ETH["Price"].str.replace(",", "")

Data_ETH["Price"] = Data_ETH.Price.astype(float)

Data_ETH["Price"] = Data_ETH["Price"].values.reshape(-1, 1)

Data_ETH["Price"] = Norm.fit_transform(Data_ETH["Price"]])
```

Data_ETH

New interactive sheet

₹

```
Date
                        Price
                                 0pen
                                         High
                                                          Vol. Change %
                                                                          \blacksquare
                                                   Low
       0
           1.43%
                                                                          ıl.
           0.77%
       1
      2
           -0.91%
           2025-03-20 0 411704 2 056 11 2 066 45 1 952 95 433 71K
                                                                  -3 55%
       3
           6.42%
     3296 2016-03-14 0.001208
                                 15.07
                                         15.07
                                                 11.40
                                                        92.18K
                                                                -17.05%
           2016-03-13 0.001743
                                 12.92
                                         15.07
                                                 12.92
                                                         1.30K
                                                                 16.64%
     3298 2016-03-12 0.001295
                                 11 95
                                         13 45
                                                 11.95
                                                         0.83K
                                                                  8 12%
     3299 2016-03-11 0.001093
                                 11.75
                                         11.95
                                                 11.75
                                                         0.18K
                                                                  1.70%
     3300 2016-03-10 0.001052
                                 11.20
                                         11.85
                                                 11.07
                                                         0.00K
                                                                  4.91%
    3301 rows × 7 columns
 Próximas etapas: ( Gerar código com Data_ETH )
                                        ( Ver gráficos recomendados )
                                                                      New interactive sheet
....
Criação da primeira fonte de texto para colocar como fonte dos labels
font1 = {"family": "serif", "weight": "bold", "color": "black", "size": 14}
Criação da segunda fonte de texto para colocar como fonte da legenda
font2 = FontProperties(family = "serif",
                     weight = "bold",
                     size = 14)
Cria um "lugar" com size (9, 7) para alocar a figura
fig, axs = plt.subplots(figsize = (16, 7))
Plota um scatter entre o total de casos (cumulativo) e total de mortes (cumulativo)
axs.plot(Data_BTC["Date"], Data_BTC["Price"], color = "orange")
axs.plot(Data_ETH["Date"], Data_ETH["Price"], color = "darkblue")
axs.plot(Data_XRP["Date"], Data_XRP["Price"], color = "black")
axs.grid(False)
Definindo a "grossura" e a cor do eixos
for axis in ["left", "right", "top", "bottom"]:
   axs.spines[axis].set_linewidth(2)
   axs.spines[axis].set_color("black")
Trabalha com os ticks do gráfico
axs.xaxis.set_minor_locator(AutoMinorLocator())
axs.yaxis.set_minor_locator(AutoMinorLocator())
axs.tick_params(axis = "both", direction = "in", labelcolor = "black", labelsize = 14, left = True, bottom = True, top = True, right = "
axs.tick_params(which = "major", direction = "in", color = "black", length = 5.4, width = 2.5, left = True, bottom = True, top = True, I
axs.tick_params(which = "minor", direction = "in", color = "black", length=4, width = 2, left = True, bottom = True, top = True, right :
Descrição para cada eixo
axs.set_xlabel("Data", fontdict = font1)
axs.set_ylabel("Normalized Price", fontdict = font1)
plt.rcParams["axes.labelweight"] = "bold" mostra em negrito os números nos eixos.
plt.rcParams["axes.labelweight"] = "bold"
Definindo um fundo branco para a imagem
fig.patch.set_facecolor("white")
Cor_fundo = plt.gca()
Cor_fundo.set_facecolor("white")
Cor_fundo.patch.set_alpha(1)
Título
plt.title("Normalized Price Comparison: BTC vs. ETH vs. XRP", fontdict=font1)
```

```
Mostrar o gráfico
"""
Legenda
"""
plt.legend(["BTC", "ETH", "XRP"], prop = font2, frameon=False)
"""
Mostrar o gráfico
"""
plt.show()
```


Data_ADA = pd.read_csv("/content/Cardano Historical Data.csv")
Data_ADA

Data_ADA["Price"] = Data_ADA["Price"].values.reshape(-1, 1)
Data_ADA["Price"] = Norm.fit_transform(Data_ADA[["Price"]])

Data_ADA

₹		Date	Price	0pen	High	Low	Vol.	Change %		
	0	03/23/2025	0.7112	0.7014	0.7158	0.7008	141.88M	1.40%	1.	
	1	03/22/2025	0.7014	0.7050	0.7160	0.6975	110.49M	-0.49%	*/	
	2	03/21/2025	0.7048	0.7179	0.7273	0.7007	159.73M	-1.81%		
	3	03/20/2025	0.7178	0.7437	0.7551	0.7125	233.04M	-3.47%		
	4	03/19/2025	0.7437	0.7018	0.7467	0.7006	281.11M	5.96%		
	2634	01/04/2018	1.1043	1.1000	1.3500	1.0500	19.60M	2.25%		
	2635	01/03/2018	1.0800	0.9782	1.0900	0.8882	20.23M	41.73%		
	2636	01/02/2018	0.7620	0.7022	0.8000	0.6750	10.97M	8.52%		
	2637	01/01/2018	0.7022	0.7100	0.7150	0.6320	17.95M	-1.10%		
	2638	12/31/2017	0.7100	0.5900	0.7400	0.5900	17.22M	20.34%		
2	2639 rows × 7 columns									
Próximas etapas: Gerar código com Data_ADA Ver gráficos recomendados New interactive sheet										
Data_#	<pre>Data_ADA["Date"] = pd.to_datetime(Data_ADA["Date"], format="%m/%d/%Y")</pre>									

```
\overline{2}
               Date
                       Price
                                      High
                                                      Vol. Change %
                                                                      丽
                               0pen
                                              Low
           1.40%
       0
                                                                      1
                                                              -0.49%
      2
           -1.81%
           2025-03-20 0.236098 0.7437 0.7551 0.7125 233.04M
                                                             -3 47%
       3
           5.96%
     2634 2018-01-04 0.367471 1.1000 1.3500 1.0500
                                                    19.60M
                                                              2.25%
           2018-01-03  0.359211  0.9782  1.0900  0.8882
                                                             41.73%
                                                    20.23M
     2636 2018-01-02 0.251122 0.7022 0.8000 0.6750
                                                              8 52%
                                                    10.97M
     2637 2018-01-01 0.230795 0.7100 0.7150 0.6320
                                                    17.95M
                                                             -1.10%
     2638 2017-12-31 0.233447 0.5900 0.7400 0.5900
                                                    17.22M
                                                             20.34%
    2639 rows × 7 columns
 Próximas etapas: ( Gerar código com Data_ADA )

    Ver gráficos recomendados

                                                                      New interactive sheet
....
Criação da primeira fonte de texto para colocar como fonte dos labels
font1 = {"family": "serif", "weight": "bold", "color": "black", "size": 14}
Criação da segunda fonte de texto para colocar como fonte da legenda
font2 = FontProperties(family = "serif",
                     weight = "bold",
                     size = 14)
Cria um "lugar" com size (9, 7) para alocar a figura
fig, axs = plt.subplots(figsize = (16, 7))
Plota um scatter entre o total de casos (cumulativo) e total de mortes (cumulativo)
axs.plot(Data_BTC["Date"], Data_BTC["Price"], color = "orange")
axs.plot(Data_ETH["Date"], Data_ETH["Price"], color = "darkblue")
axs.plot(Data_XRP["Date"], Data_XRP["Price"], color = "black")
axs.plot(Data_ADA["Date"], Data_ADA["Price"], color = "red")
axs.grid(False)
Definindo a "grossura" e a cor do eixos
for axis in ["left", "right", "top", "bottom"]:
   axs.spines[axis].set_linewidth(2)
   axs.spines[axis].set_color("black")
Trabalha com os ticks do gráfico
axs.xaxis.set_minor_locator(AutoMinorLocator())
axs.yaxis.set_minor_locator(AutoMinorLocator())
axs.tick_params(axis = "both", direction = "in", labelcolor = "black", labelsize = 14, left = True, bottom = True, top = True, right = '
axs.tick_params(which = "major", direction = "in", color = "black", length = 5.4, width = 2.5, left = True, bottom = True, top = True, ı
axs.tick_params(which = "minor", direction = "in", color = "black", length=4, width = 2, left = True, bottom = True, top = True, right :
Descrição para cada eixo
axs.set_xlabel("Data", fontdict = font1)
axs.set_ylabel("Normalized Price", fontdict = font1)
plt.rcParams["axes.labelweight"] = "bold" mostra em negrito os números nos eixos.
plt.rcParams["axes.labelweight"] = "bold"
Definindo um fundo branco para a imagem
fig.patch.set_facecolor("white")
Cor fundo = plt.gca()
Cor_fundo.set_facecolor("white")
Cor_fundo.patch.set_alpha(1)
Título
plt.title("Normalized Price Comparison: BTC vs. ETH vs. XRP vs. ADA", fontdict=font1)
```

```
"""
Mostrar o gráfico
"""
Legenda
"""
plt.legend(["BTC", "ETH", "XRP", "ADA"], prop = font2, frameon=False)
"""
Mostrar o gráfico
"""
plt.show()
```



```
Criação da primeira fonte de texto para colocar como fonte dos labels
font1 = {"family": "serif", "weight": "bold", "color": "black", "size": 14}
Criação da segunda fonte de texto para colocar como fonte da legenda
font2 = FontProperties(family = "serif",
                       weight = "bold",
                       size = 14)
Cria um "lugar" com size (9, 7) para alocar a figura
fig, axs = plt.subplots(figsize = (16, 7))
Plota um scatter entre o total de casos (cumulativo) e total de mortes (cumulativo)
axs.plot(Data_BTC["Date"], Data_BTC["Price"], color = "orange")
axs.plot(Data_ADA["Date"], Data_ADA["Price"], color = "red")
axs.grid(False)
Definindo a "grossura" e a cor do eixos
for axis in ["left", "right", "top", "bottom"]:
    axs.spines[axis].set_linewidth(2)
    axs.spines[axis].set_color("black")
Trabalha com os ticks do gráfico
axs.xaxis.set_minor_locator(AutoMinorLocator())
axs.yaxis.set_minor_locator(AutoMinorLocator())
axs.tick_params(axis = "both", direction = "in", labelcolor = "black", labelsize = 14, left = True, bottom = True, top = True, right = '
axs.tick_params(which = "major", direction = "in", color = "black", length = 5.4, width = 2.5, left = True, bottom = True, top = True, I
axs.tick_params(which = "minor", direction = "in", color = "black", length=4, width = 2, left = True, bottom = True, top = True, right :
Descrição para cada eixo
```

```
axs.set xlabel("Data", fontdict = font1)
axs.set_ylabel("Normalized Price", fontdict = font1)
plt.rcParams["axes.labelweight"] = "bold" mostra em negrito os números nos eixos.
plt.rcParams["axes.labelweight"] = "bold"
Definindo um fundo branco para a imagem
fig.patch.set_facecolor("white")
Cor_fundo = plt.gca()
Cor_fundo.set_facecolor("white")
Cor_fundo.patch.set_alpha(1)
Título
plt.title("Normalized Price Comparison: BTC vs. ADA", fontdict=font1)
Mostrar o gráfico
....
Legenda
plt.legend(["BTC", "ADA"], prop = font2, frameon=False)
Mostrar o gráfico
plt.show()
```



```
axs.plot(Data_XRP["Date"], Data_XRP["Price"], color = "black")
axs.grid(False)
Definindo a "grossura" e a cor do eixos
for axis in ["left", "right", "top", "bottom"]:
    axs.spines[axis].set linewidth(2)
    axs.spines[axis].set_color("black")
Trabalha com os ticks do gráfico
axs.xaxis.set_minor_locator(AutoMinorLocator())
axs.yaxis.set_minor_locator(AutoMinorLocator())
axs.tick_params(axis = "both", direction = "in", labelcolor = "black", labelsize = 14, left = True, bottom = True, top = True, right = "
axs.tick_params(which = "major", direction = "in", color = "black", length = 5.4, width = 2.5, left = True, bottom = True, top = True, ı
axs.tick_params(which = "minor", direction = "in", color = "black", length=4, width = 2, left = True, bottom = True, top = True, right :
Descrição para cada eixo
axs.set_xlabel("Data", fontdict = font1)
axs.set_ylabel("Normalized Price", fontdict = font1)
plt.rcParams["axes.labelweight"] = "bold" mostra em negrito os números nos eixos.
plt.rcParams["axes.labelweight"] = "bold"
Definindo um fundo branco para a imagem
fig.patch.set_facecolor("white")
Cor_fundo = plt.gca()
Cor_fundo.set_facecolor("white")
Cor_fundo.patch.set_alpha(1)
Título
plt.title("Normalized Price Comparison: BTC vs. XRP", fontdict=font1)
Mostrar o gráfico
Legenda
plt.legend(["BTC", "XRP"], prop = font2, frameon=False)
Mostrar o gráfico
plt.show()
→▼
```


....

```
Criação da primeira fonte de texto para colocar como fonte dos labels
font1 = {"family": "serif", "weight": "bold", "color": "black", "size": 14}
Criação da segunda fonte de texto para colocar como fonte da legenda
font2 = FontProperties(family = "serif",
                      weight = "bold",
                      size = 14)
Cria um "lugar" com size (9, 7) para alocar a figura
fig, axs = plt.subplots(figsize = (16, 7))
Plota um scatter entre o total de casos (cumulativo) e total de mortes (cumulativo)
axs.plot(Data_BTC["Date"], Data_BTC["Price"], color = "orange")
axs.plot(Data_ETH["Date"], Data_ETH["Price"], color = "darkblue")
axs.grid(False)
Definindo a "grossura" e a cor do eixos
for axis in ["left", "right", "top", "bottom"]:
    axs.spines[axis].set_linewidth(2)
   axs.spines[axis].set_color("black")
Trabalha com os ticks do gráfico
axs.xaxis.set_minor_locator(AutoMinorLocator())
axs.yaxis.set_minor_locator(AutoMinorLocator())
axs.tick_params(axis = "both", direction = "in", labelcolor = "black", labelsize = 14, left = True, bottom = True, top = True, right = Tr
axs.tick_params(which = "major", direction = "in", color = "black", length = 5.4, width = 2.5, left = True, bottom = True, top = True, ri
axs.tick_params(which = "minor", direction = "in", color = "black", length=4, width = 2, left = True, bottom = True, top = True, right =
Descrição para cada eixo
axs.set_xlabel("Data", fontdict = font1)
axs.set_ylabel("Normalized Price", fontdict = font1)
plt.rcParams["axes.labelweight"] = "bold" mostra em negrito os números nos eixos.
plt.rcParams["axes.labelweight"] = "bold"
Definindo um fundo branco para a imagem
fig.patch.set_facecolor("white")
Cor_fundo = plt.gca()
Cor_fundo.set_facecolor("white")
Cor_fundo.patch.set_alpha(1)
Título
plt.title("Normalized Price Comparison: BTC vs. ETH", fontdict=font1)
Mostrar o gráfico
....
Legenda
plt.legend(["BTC", "ETH"], prop = font2, frameon=False)
Mostrar o gráfico
```