

WEST Search History

DATE: Sunday, June 15, 2003

Set Name Query

side by side

DB=USPT; PLUR=YES; OP=ADJ

<u>Set Name</u>	<u>Query</u>	<u>Hit Count</u>	<u>Set Name</u>
L64	L61 and L1	0	L64
L63	L61 and L62	0	L63
L62	isoamyl acetate	1228	L62
L61	L57 and L60	27	L61
L60	a rabitokl or mannitol or sugar alcohol or acetic acid or lactic acid or 2,3 butanediol	184727	L60
L59	L55 and L54	0	L59
L58	L55 and L57	0	L58
L57	L54 and L56	97	L57
L56	liquid same analysis	42943	L56
L55	wine same analysis	209	L55
L54	(INfrared or IR oR FTIR)near5 (spectroscopy or spectrophotometry)	865	L54
L53	L3 and L50	0	L53
L52	L50 and L51	0	L52
L51	Grape must or fermented grape must	81	L51
L50	L13 and L49	17	L50
L49	FTIR and wine	18	L49
L48	L45 and L47	11	L48
L47	L1 and L6	2185	L47
L46	L42 and L41	0	L46
L45	L42 and L43	260	L45
L44	L41 and L43	0	L44
L43	L37 and L40	621	L43
L42	L36 and L40	426	L42
L41	L32 and L40	3	L41
L40	spectrophotometer	24089	L40
L39	L32 and L36	0	L39
L38	L32 and L37	0	L38
L37	L9 and L11	7336	L37
L36	L9 and L10	6072	L36
L35	L31 and L32	0	L35
L34	L8 and L32	0	L34
L33	L7 and L32	0	L33

L32	L12 and L6	22	L32
L31	L29 and L30	205	L31
L30	L25 and L26	2367	L30
L29	L27 and L28	830	L29
L28	L8 and L10	1886	L28
L27	L8 and L11	3276	L27
L26	L7 and L11	4303	L26
L25	L7 and L10	5801	L25
L24	L13 and L20	1	L24
L23	L13 and L21	1	L23
L22	L13 and L19	6	L22
L21	L15 and L17	178	L21
L20	L15 and L16	84	L20
L19	L14 and L17	199	L19
L18	L14 and L16	220	L18
L17	L9 and L11	7336	L17
L16	L9 and L10	6072	L16
L15	L8 and L6	7670	L15
L14	L7 and L6	11563	L14
L13	L1 and L6	2185	L13
L12	grape must or (fermenting near5 grape must)	81	L12
L11	visible	282831	L11
L10	infrared or infra red or infra-red	150496	L10
L9	wave length	25394	L9
L8	spectrophotometric	9689	L8
L7	spectroscopic	15765	L7
L6	Analysis	430354	L6
L5	L1 and L4	1343	L5
L4	water near5 (content or concentration or quantity)	160561	L4
L3	L1 and L2	0	L3
L2	water near5 (content or concentration or quantity)L1	2	L2
L1	wine	7831	L1

END OF SEARCH HISTORY

=> index bioscience

INDEX 'ADISCTI, ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, AQUASCI, BIOBUSINESS,
BIOCOMMERCE, BIOSIS, BIOTECHABS, BIOTECHDS, BIOTECHNO, CABA, CANCERLIT,
CAPLUS, CEABA-VTB, CEN, CIN, CONFSCI, CROPB, CROPUS, DDFB, DDFU, DGENE,
DRUGB, DRUGLAUNCH, DRUGMONOG2, ...' ENTERED AT 16:10:14 ON 15 JUN 2003

67 FILES IN THE FILE LIST IN STNINDEX

=> wine

106 FILE ADISCTI
4 FILE ADISINSIGHT
30 FILE ADISNEWS
12522 FILE AGRICOLA
2158 FILE ANABSTR
59 FILE AQUASCI
8030 FILE BIOBUSINESS
102 FILE BIOCOMMERCE
11363 FILE BIOSIS
547 FILE BIOTECHABS
547 FILE BIOTECHDS
1588 FILE BIOTECHNO
8806 FILE CABA
935 FILE CANCERLIT
32555 FILE CAPLUS
669 FILE CEABA-VTB
169 FILE CEN
389 FILE CIN
381 FILE CONFSCI
77 FILE CROPB
324 FILE CROPUS
137 FILE DDFB
155 FILE DDFU
13380 FILE DGENE
137 FILE DRUGB
13 FILE DRUGLAUNCH
29 FILE DRUGMONOG2
242 FILE DRUGU
1 FILE DRUGUPDATES
73 FILE EMBAL
4915 FILE EMBASE
2274 FILE ESBIOBASE
227 FILE FEDRIP
9937 FILE FOMAD
1609 FILE FOREGE
8373 FILE FROSTI
21929 FILE FSTA
225 FILE GENBANK
201 FILE HEALSAFE
1475 FILE IFIPAT
1645 FILE JICST-EPLUS
59 FILE KOSMET
1936 FILE LIFESCI
44 FILES SEARCHED...
12 FILE MEDICONF
5029 FILE MEDLINE
107 FILE NIOSHTIC

482 FILE NTIS
45 FILE NUTRACEUT
19 FILE OCEAN
8683 FILE PASCAL
2 FILE PHAR
8 FILE PHARMAML
214 FILE PHIN
63653 FILE PROMT
17 FILE RDISCLOSURE
10620 FILE SCISEARCH
7704 FILE TOXCENTER
8122 FILE USPATFULL
182 FILE USPAT2
1 FILE VETB
8 FILE VETU
11235 FILE WPIDS
11235 FILE WPINDEX

63 FILES HAVE ONE OR MORE ANSWERS
L1 QUE WINE

67 FILES HAVE ONE OR MORE ANSWERS
L2 QUE ANALYSIS

62 FILES HAVE ONE OR MORE ANSWERS
L3 QUE SPECTROSCOPIC OR SPECTROSCOPY

56 FILES HAVE ONE OR MORE ANSWERS
L4 QUE SPECTROPHOTOMETRIC OR SPECTROPHOTOMETRY

63 FILES HAVE ONE OR MORE ANSWERS
L5 QUE INFRARED OR INFRA RED OR INFRA-RED

64 FILES HAVE ONE OR MORE ANSWERS
L6 QUE VISIBLE

64 FILES HAVE ONE OR MORE ANSWERS
L7 QUE GRAPE MUST OR WINE OR FERMENTED GRAPE MUST

64 FILES HAVE ONE OR MORE ANSWERS
L8 QUE GRAPE MUST OR WINE OR FERMENTING GRAPE MUST

64 FILES HAVE ONE OR MORE ANSWERS
L9 QUE L7 AND L8

63 FILES HAVE ONE OR MORE ANSWERS
L10 QUE L9 AND L1

66 FILES HAVE ONE OR MORE ANSWERS
L11 QUE LIQUID

49 FILES HAVE ONE OR MORE ANSWERS
L12 QUE FTIR

44 FILES HAVE ONE OR MORE ANSWERS
L13 QUE L11 AND L12

13 FILES HAVE ONE OR MORE ANSWERS
L14 QUE L10 AND L13

41 FILES HAVE ONE OR MORE ANSWERS
L15 QUE (L3 AND L5) AND L6

38 FILES HAVE ONE OR MORE ANSWERS,
L16 QUE (L4 AND L5) AND L6

31 FILES HAVE ONE OR MORE ANSWERS
L17 QUE L15 AND L16

1 FILES HAVE ONE OR MORE ANSWERS
L18 QUE L14 AND L17

=> d rank

F1 1 USPATFULL

L19 1 L14 AND L17

L19 ANSWER 1 OF 1 USPATFULL

AN 2002:198709 USPATFULL

TI Polyhydroxyl-substituted organic molecule sensing optical in vitro
method utilizing a boronic acid adduct and the device thereof

IN Singaram, Bakthan, Santa Cruz, CA, UNITED STATES

Wessling, Ritchie A., Watsonville, CA, UNITED STATES

PI US 2002106810 A1 20020808

AI US 2000-731325 A1 20001205 (9)

DT Utility

FS APPLICATION

LREP Howard M. Peters, PETERS, VERNY, JONES & BIKSA, LLP, Suite 6, 385
Sherman Avenue, Palo Alto, CA, 94306-1840

CLMN Number of Claims: 22

ECL Exemplary Claim: 1

DRWN 9 Drawing Page(s)

LN.CNT 2021

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The present invention concerns an improved optical method and optical
sensing device for determining the levels of polyhydroxyl-substituted
organic molecules in vitro in aqueous or organic media. Specifically, a
dye is combined with an conjugated nitrogen-containing aromatic
heterocyclic aromatic boronic acid-substituted bis-onium compound in the
presence of a sugar, such as fructose or glucose. The viologens are
preferred as the aromatic conjugated nitrogen containing boronic acid
substituted compounds. The method is useful to determine sugar levels in
fermentation and process streams.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

=> INdex bioscience

6 FILES HAVE ONE OR MORE ANSWERS

L20 QUE FTIR (5N) ((WINE OR GRAPE MUST OR FERMENTING GRAPE MUST)(5N) ANALYSIS)

L21 QUE (INFRARED (5N) (SPECTROPHOTOMETRY OR SPECTROSCOPY))(5N) ((WINE OR
GRAP

E MUST OR FERMENTING GRAPE MUST)(5N) ANALYSIS)

1 FILES HAVE ONE OR MORE ANSWERS

L22 QUE L20 AND L21

=> d rank

F1 2 CAPLUS

L23 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2003 ACS

AN 2002:337314 CAPLUS

DN 137:19566

TI Fourier Transform Infrared Spectroscopy and
Chemometric Analysis of White Wine Polysaccharide
Extracts

AU Coimbra, Manuel A.; Goncalves, Fernando; Barros, Antonio S.; Delgadillo,
Ivonne

CS Departamento de Quimica, Universidade de Aveiro, Aveiro, 3810-193, Port.

SO Journal of Agricultural and Food Chemistry (2002), 50(12), 3405-3411

CODEN: JAFCAU; ISSN: 0021-8561

PB American Chemical Society

DT Journal

LA English

AB Monovarietal white wines from Maria Gomes and Bical Portuguese Bairrada varieties were prep'd. according to different maceration and pectic enzyme clarification procedures. The polysaccharide-rich exts., obtained by wine concn., dialysis, and lyophilization, were fractionated by graded ethanol pptn. A wide range of fractions rich in polysaccharides were obtained. Using the spectral region between 1200 and 800 cm⁻¹ of the FTIR spectra of the wine polysaccharide dry exts., using PCA and CCA chemometric methods, it was possible to discriminate the exts. on the basis of their polysaccharide compn. Moreover, it was possible to identify the wine-making processes involved and their influence on the wine polysaccharides. Furthermore, a calibration model using a PLS1 was proposed for the quantification of mannose in the samples obtained by pptn. with 60% ethanol aq. solns. This information will allow an expeditious assessment and monitoring of the polysaccharide compn. and modifications that occur during the wine-making processing and evolution.

RE.CNT 23 THERE ARE 23 CITED REFERENCES AVAILABLE FOR THIS RECORD

ALL CITATIONS AVAILABLE IN THE RE FORMAT

L23 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2003 ACS

AN 2000:165797 CAPLUS

DN 133:29753

TI Wine analysis with FTIR spectrometry

AU Patz, C.-D.; David, A.; Thente, K.; Kurbel, P.; Dietrich, H.

CS Forschungsanstalt Geisenheim, Fachgebiet Weinanalytik und Getrankeforschung, Geisenheim, D-65366, Germany

SO Wein-Wissenschaft (1999), 54(2-3), 80-87

CODEN: WEWIAW; ISSN: 0375-8818

PB Fachverlag Fraund

DT Journal

LA English

AB A new FTIR spectrometry technique is of practical interest in routine wine anal. with low cost in terms of sample treatment, time and personnel. Up to twelve parameters can be detd. in less than two minutes. FTIR spectroscopy and chemometrics were combined to create a calibration for alc., tartaric acid, lactic acid, malic acid, total acid, pH, volatile acids, reducing sugars, fructose, glucose, total SO₂, total phenols and glycerol in wine. From 400 wines studied, 130 were selected in order to

get a varied and unbiased sample set. The IR spectra and the ref. data of these wines were used as a data set for a partial least squares regression (PLS). Up to 54 wines were used as an independent set to test the calibration, giving very promising results. As a result, the calibration developed in our lab. is acceptable for routine wine anal. of alc., reducing sugar, glucose, fructose, total acid, pH, tartaric acid, malic acid, lactic acid, volatile acid and glycerol. Total SO₂ and total phenols (Folin Ciocalteu) showed the greatest deviation, being thus omitted from the calibration.

Case Creation Option

Case "09919311M" already exists. Please overwrite it or cancel the operation.

The Contents of Case "09919311M"

Qnum	Query	DB Name	Thesaurus	Operator	Plural
Q1	wine	USPT	None	ADJ	YES
Q2	water near5 (content or concentration or quantity)L1	USPT	None	ADJ	YES
Q3	Q1 and Q2	USPT	None	ADJ	YES
Q4	water near5 (content or concentration or quantity)	USPT	None	ADJ	YES
Q5	Q1 and Q4	USPT	None	ADJ	YES
Q6	Analysis	USPT	None	ADJ	YES
Q7	spectroscopic	USPT	None	ADJ	YES
Q8	spectrophotometric	USPT	None	ADJ	YES
Q9	wave length	USPT	None	ADJ	YES
Q10	infrared or infra red or infra-red	USPT	None	ADJ	YES
Q11	visible	USPT	None	ADJ	YES
Q12	grape must or (fermenting near5 grape must)	USPT	None	ADJ	YES
Q13	Q1 and Q6	USPT	None	ADJ	YES
Q14	Q7 and Q6	USPT	None	ADJ	YES
Q15	Q8 and Q6	USPT	None	ADJ	YES
Q16	Q9 and Q10	USPT	None	ADJ	YES
Q17	Q9 and Q11	USPT	None	ADJ	YES
Q18	Q14 and Q16	USPT	None	ADJ	YES
Q19	Q14 and Q17	USPT	None	ADJ	YES
Q20	Q15 and Q16	USPT	None	ADJ	YES
Q21	Q15 and Q17	USPT	None	ADJ	YES
Q22	Q13 and Q19	USPT	None	ADJ	YES
Q23	Q13 and Q21	USPT	None	ADJ	YES

Q24	Q13 and Q20	USPT	None	ADJ	YES
Q25	Q7 and Q10	USPT	None	ADJ	YES
Q26	Q7 and Q11	USPT	None	ADJ	YES
Q27	Q8 and Q11	USPT	None	ADJ	YES
Q28	Q8 and Q10	USPT	None	ADJ	YES
Q29	Q27 and Q28	USPT	None	ADJ	YES
Q30	Q25 and Q26	USPT	None	ADJ	YES
Q31	Q29 and Q30	USPT	None	ADJ	YES
Q32	Q12 and Q6	USPT	None	ADJ	YES
Q33	Q7 and Q32	USPT	None	ADJ	YES
Q34	Q8 and Q32	USPT	None	ADJ	YES
Q35	Q31 and Q32	USPT	None	ADJ	YES
Q36	Q9 and Q10	USPT	None	ADJ	YES
Q37	Q9 and Q11	USPT	None	ADJ	YES
Q38	Q32 and Q37	USPT	None	ADJ	YES
Q39	Q32 and Q36	USPT	None	ADJ	YES
Q40	spectrophotometer	USPT	None	ADJ	YES
Q41	Q32 and Q40	USPT	None	ADJ	YES
Q42	Q36 and Q40	USPT	None	ADJ	YES
Q43	Q37 and Q40	USPT	None	ADJ	YES
Q44	Q41 and Q43	USPT	None	ADJ	YES
Q45	Q42 and Q43	USPT	None	ADJ	YES
Q46	Q42 and Q41	USPT	None	ADJ	YES
Q47	Q1 and Q6	USPT	None	ADJ	YES
Q48	Q45 and Q47	USPT	None	ADJ	YES
Q49	FTIR and wine	USPT	None	ADJ	YES
Q50	Q13 and Q49	USPT	None	ADJ	YES
Q51	Grape must or fermented grape must	USPT	None	ADJ	YES
Q52	Q50 and Q51	USPT	None	ADJ	YES
Q53	Q3 and Q50	USPT	None	ADJ	YES
Q54	(INfrared or IR oR FTIR)near5 (spectroscopy or spectrophotometry)	USPT	None	ADJ	YES
Q55	wine same analysis	USPT	None	ADJ	YES

Q56	liquid same analysis	USPT	None	ADJ	YES
Q57	Q54 and Q56	USPT	None	ADJ	YES
Q58	Q55 and Q57	USPT	None	ADJ	YES
Q59	Q55 and Q54	USPT	None	ADJ	YES
Q60	a rabbitolk or mannitol or sugar alcohol or acetic acid or lactic acid or 2,3 butanediol	USPT	None	ADJ	YES
Q61	Q57 and Q60	USPT	None	ADJ	YES
Q62	isoamyl acetate	USPT	None	ADJ	YES
Q63	Q61 and Q62	USPT	None	ADJ	YES
Q64	Q61 and Q1	USPT	None	ADJ	YES
