Comparison sorts

Name +	Best +	Average \$	Worst ¢	Memory +	Stable +	Method ♦	Other notes
	$\Omega()$		O()				
Insertion sort	n	n^2	n^2	1	Yes	Insertion	O(n+d), in the worst case over sequences that have d inversions.
Selection sort	n^2	n^2	n^2	1	No	Selection	Stable with $O(n)$ extra space, when using linked lists, or when made as a variant of Insertion Sort instead of swapping the two items. ^[10]
Bubble sort	n	n^2	n^2	1	Yes	Exchanging	Tiny code size.
Quicksort	$n \log n$	$n \log n$	n^2	$\log n$	No	Partitioning	Quicksort is usually done in-place with $O(\log n)$ stack space. [5][6]
Merge sort	$n \log n$	$n \log n$	$n \log n$	n	Yes	Merging	Highly parallelizable (up to $O(\log n)$ using the Three Hungarians' Algorithm). ^[7]
Heapsort	$n \log n$	$n \log n$	$n \log n$	1	No	Selection	

Non-comparison sorts

				-			
Sort ascending	g 3est ≑	Average +	Worst ♦	Memory ≑	Stable +	$n \ll 2^k \Leftrightarrow$	Notes
	$\Omega()$		O()				
Bucket sort (uniform keys)	_	n+k	$n^2 \cdot k$	$n \cdot k$	Yes	No	Assumes uniform distribution of elements from the domain in the array. ^[14] Also cannot sort non-integers
Bucket sort (integer keys)	_	n+r	n+r	n+r	Yes	Yes	If r is $O(n)$, then average time complexity is $O(n)$. $^{ extstyle{[15]}}$
Counting sort	_	n+r	n+r	n+r	Yes	Yes	If r is $O(n)$, then average time complexity is $O(n)$. $^{[14]}$
LSD Radix Sort	n	$n\cdot rac{k}{d}$	$n\cdot rac{k}{d}$	$n+2^d$	Yes	No	$\frac{k}{d} \text{ recursion levels, } 2^d \text{ for count array.}^{[14][15]}$ Unlike most distribution sorts, this can sort Floating point numbers, negative numbers and more.
MSD Radix Sort	_	$n \cdot rac{k}{d}$	$n\cdot rac{k}{d}$	$n+2^d$	Yes	No	Stable version uses an external array of size n to hold all of the bins. Same as the LSD variant, it can sort non-integers.
MSD Radix Sort (in-place)	_	$n\cdot rac{k}{1}$	$n\cdot rac{k}{1}$	2^1	No	No	d=1 for in-place, $k/1$ recursion levels, no count array.