Dealing with those pesky zeros in ecological models: minding your ps and qs

Table 1. Notation for the composite Bernoulli-Dirichlet model.

\overline{n}	number of groups
i	group index with $1 \le i \le n$
p_{i}	nonzero probability of being in group i , based on an ecologial model
$ar{p}$	mean value $(1/n)$ of p_1, \ldots, p_n
q_i	Bernoulli probability of 0 in group i
x_i	Bernoulli random variable (0 or 1) drawn with probability q_i of value 0
p_i'	adjusted proportions p_i , conditioned on x_i
y_{i}	random proportions from the Dirichlet distribution with parameters
	p_1,\ldots,p_n,N
y_i'	random proportions from the composite Bernoulli-Dirichlet model
\mathbf{v}	generic vector notation $\mathbf{v} = (v_1, \dots, v_n)$; e.g., $\mathbf{p}, \mathbf{p}', \mathbf{q}, \mathbf{x}, \mathbf{y}, \mathbf{y}'$
θ	parameter vector for an ecological model of nonzero probabilities $\mathbf{p}(\boldsymbol{\theta})$
N	effective sample size for a Dirichlet distribution
$a,b, ilde{q}$	parameters in the relationship between p_i and q_i , where $b > 0$ and $0 < \tilde{q} < 1$
ф	complete model vector $\mathbf{\Phi} = (\mathbf{\theta}, \tilde{q}, b, N)$
$\mathcal{B}(x p)$	Bernoulli distribution, where $x = 0$ or 1 with probability $1 - p$ or p , respec-
	tively
$\mathcal{D}(\mathbf{y} \mathbf{p}, N)$	Dirichlet distribution for vector \mathbf{y} of proportions that sum to 1, given the
,- ,- ,	proportion vector \mathbf{p} and the effective sample size N

Table 2. Link between p_i and q_i for i = 1, ..., n, based on parameters \tilde{q} and b, where $0 < \tilde{q} < 1$ and b > 0 and a is computed with (T2.5).

$$logit(p) \equiv log\left(\frac{p}{1-p}\right) \tag{T2.1}$$

$$logit(q_i) = a - b \, logit(p_i) \tag{T2.2}$$

$$\bar{p}(\mathbf{\Theta}) = \frac{1}{n} \tag{T2.3}$$

$$logit(q_i) = logit(\tilde{q}) - b \left[logit(p_i) - logit(\bar{p}) \right]$$
(T2.4)

$$a(\mathbf{\theta}, \tilde{q}, b) = \text{logit}(\tilde{q}) + b \, \text{logit}(\tilde{p}(\mathbf{\theta}))$$
 (T2.5)

$$q_i(\boldsymbol{\Theta}, \tilde{q}, b) = \frac{e^{a - b \log\left(\frac{p_i}{1 - p_i}\right)}}{1 + e^{a - b \log\left(\frac{p_i}{1 - p_i}\right)}}$$
(T2.6)

Table 3. Steps for simulating $\mathbf{y}'(\mathbf{\phi})$ from $\mathbf{p}(\mathbf{\theta})$ and $\mathbf{q}(\mathbf{\theta}, \tilde{q}, b)$, along with the corresponding probability distributions.

$$x_i \sim \mathcal{B}(1 - q_i) \tag{T3.1}$$

$$p_i' = \frac{x_i p_i}{\sum_{i=1}^n (x_i p_i)} \tag{T3.2}$$

$$\mathbf{y}'|_{\mathbf{p}'>0} \sim \mathcal{D}(\mathbf{p}'|_{\mathbf{p}'>0}, N) \tag{T3.3}$$

$$P(\mathbf{x}|\mathbf{q}) = \prod_{i=1}^{n} [q_i^{1-x_i} (1 - q_i)^{x_i}]$$
 (T3.4)

$$P(\mathbf{y}|\mathbf{p}, N) = \frac{\Gamma(N)}{\prod_{i=1}^{n} \Gamma(Np_i)} \prod_{i=1}^{n} y_i^{Np_i - 1}$$
(T3.5)

$$P(\mathbf{y}'|\mathbf{p}',N) = \frac{\Gamma(N)}{\prod_{p_i'>0} \Gamma(Np_i')} \prod_{p_i'>0} y_i'^{Np_i'-1}$$
(T3.6)

Table 4. Inference functions for estimating ϕ from observed data \mathbf{y}' , where L denotes the likelihood and ℓ the negative log likelihood.

$$x_i = \begin{cases} 0 \text{ if } y_i' = 0\\ 1 \text{ if } y_i' > 0 \end{cases}$$
 (T4.1)

$$p_i'(\mathbf{\theta}, \mathbf{x}) = \frac{x_i p_i(\mathbf{\theta})}{\sum_{i=1}^{n} [x_i p_i(\mathbf{\theta})]}$$
(T4.2)

$$L(\mathbf{\phi}|\mathbf{y}') = P[\mathbf{y}'|\mathbf{p}'(\mathbf{\theta}, \mathbf{x}), N] P[\mathbf{x}|\mathbf{q}(\mathbf{\theta}, \tilde{q}, b)]$$
(T4.3)

$$\ell(\mathbf{\Phi}) = \sum_{p_i'>0} [\log \Gamma(Np_i') - (Np_i' - 1)\log y_i']$$

$$-\sum_{i=1}^n [(1 - x_i)\log q_i + x_i\log(1 - q_i)] - \log \Gamma(N)$$
(T4.4)

Table 5. Model notation for simulating proportions p_i in a stable fish age distribution.

```
i
            age class index (i = 1, ..., n)
           maximum age class
   n
   Z
            total mortality from natural causes and fishing (Z = M + F)
   S_i
           survival from recruitment (age class 1) to age class i
           fishery selectivity on age class i (0 < \beta_i \le 1)
   \alpha
           selectivity parameter (\alpha > 0)
   A
            age class with full selectivity, where \beta_i = 1 for A \leq i \leq n
   R_i
            historical recruitment for age class i
   B
            age class with anomolous recruitment
   δ
            fixed design vector \boldsymbol{\delta} = (n, A)
   θ
            vector \boldsymbol{\theta} = (Z, \beta_1, \alpha) of potentially estimable parameters
p_i(\boldsymbol{\theta}|\boldsymbol{\delta})
           simulated proportion in age class i
           full parameter vector for the Bernoulli-Dirichlet model, in this case \boldsymbol{\phi} =
   φ
            (Z, \beta_1, \alpha, \tilde{q}, b, N)
```

Table 6. Model equations for computing $\mathbf{p}(\boldsymbol{\theta})$, given the design vector $\boldsymbol{\delta}$.

$$S_{i} = \begin{cases} e^{-Z(i-1)}; & i = 1, \dots, n-1 \\ \frac{e^{-Z(i-1)}}{1 - e^{-Z}}; & i = n \end{cases}$$
 (T6.1)

$$\beta_{i}(\beta_{1}, \alpha) = \begin{cases} 1 - (1 - \beta_{1}) \left(\frac{A - i}{A - 1}\right)^{\alpha}; & i = 1, \dots, A - 1\\ 1; & i = A, \dots, n \end{cases}$$
 (T6.2)

$$R_i = 1 (T6.3)$$

$$p_i(\mathbf{\theta}) = \frac{S_i \beta_i R_i}{\sum_{i=1}^n S_i \beta_i R_i}; \qquad i = 1, \dots, n$$
(T6.4)

GUI: Entries for δ and ϕ . Buttons for simulation, estimation, and MCMC. Probably use a notebook with a second page for graphics output options. Source my example pq.r.

Simulation: Calculate \mathbf{p} from Table 6, based on $\boldsymbol{\delta}$ and $\boldsymbol{\theta}$. Then get \bar{p} , a and \mathbf{q} from (T2.3), (T2.5) and (T2.6). Generate \mathbf{x} from (T3.1) using rbinom with probability $1-q_i$. (This corresponds to the distribution (T3.4).) Use (T3.2) to compute \mathbf{p}' . Finally, use (T3.3) to produce the Dirichlet sample \mathbf{y}' . (This corresponds to the distribution (T3.6).) Define rdirich using rgamma as in the past. Write \mathbf{y}' to a file for use by ADMB in the estimation step.

Estimation: Start with y' from the simulation. Get x from (T4.1). Use (T4.4) to calculate the negative log likelihood ℓ needed by ADMB. Always compute log gamma, not gamma directly (lgamma in R and gammaln in ADMB).