Magnetically Coupled Circuits Overview

- Mutual Inductance
- Energy in Coupled Coils
- Linear Transformers
- Ideal Transformers

Introduction to Magnetically Coupled Circuits

- Magnetically coupled coils are conceptually similar to two inductors that have a shared (coupled) magnetic field
- Not all of the magnetic field is shared
- Magnetic coupling is widely used in power systems

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

1 Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Magnetically Coupled Coil

Faraday's Law:

where

$$v = N \frac{d\phi}{dt}$$

$$v = \text{voltage in volts (V)}$$

$$N = \text{number of turns}$$

$$\phi = NPi$$

$$v = N \frac{d\phi}{di} \frac{di}{dt}$$

$$v = \text{magnetic flux in webers (Wb)}$$

$$v = N \frac{d\phi}{di} \frac{di}{dt}$$

$$v = \text{time in seconds (s)}$$

$$P = \text{permeance of the flux space}$$

$$v = voltage in volts (V)$$

$$v = N^2 \frac{d\phi}{dt} \frac{di}{dt}$$

$$v = \text{number of turns}$$

$$v = \text{magnetic flux in webers (Wb)}$$

$$v = V \frac{d\phi}{dt} \frac{di}{dt}$$

$$v = V \frac{d\phi}{dt} \frac{d\phi}{dt}$$

$$v$$

Magnetically Coupled Coil

$$v = N \frac{d\phi}{dt} = (N^2 \mathcal{P}) \frac{di}{dt} = L \frac{di}{dt}$$

- \bullet The flux (& current) have to change to induce a voltage
- $\bullet\,$ The relationship between the flux and the current is constant
- \bullet Consistent with what we already know about inductors
- L is proportional to N^2

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

3 Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Mutual Inductance

$$\phi_1 = \phi_{11} + \phi_{12}$$

- \bullet We can decompose the magnetic flux induced in one coil into two components
- ϕ_1 is the total flux produced in coil 1
- ϕ_{11} is the portion of this flux that links only coil 1
- ϕ_{12} links both coil 1 and coil 2
- The coils are not connected electrically

Mutual Inductance Continued

$$v_{1} = N_{1} \frac{d\phi_{1}}{dt} = N_{1} \frac{d\phi_{1}}{di_{1}} \frac{di_{1}}{dt} = L_{1} \frac{di_{1}}{dt}$$

$$v_{2} = \pm N_{2} \frac{d\phi_{12}}{dt} = \pm N_{2} \frac{d(N_{1}\mathcal{P}_{12}i_{1})}{dt} = \pm (N_{2}N_{1}\mathcal{P}_{12}) \frac{di_{1}}{dt}$$

$$= \pm M_{21} \frac{di_{1}}{dt}$$

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

5 Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Mutual Inductance Continued 2

$$v_1 = L_1 \frac{di_1}{dt}$$
 $v_2 = \pm M_{21} \frac{di_1}{dt}$ $M_{21} = N_2 N_1 \mathcal{P}_{12}$

- M_{21} : the mutual inductance of coil 2 with respect to coil 1
- Note that v_2 is the open circuit voltage
- What if a current was applied to coil 2 as well?
- Superposition applies

Mutual Inductance: Two Sources

$$v_1 = L_1 \frac{1}{dt} \pm M_{12} \frac{2}{dt}$$

$$v_2 = \pm M_{21} \frac{di_1}{dt} + L_2 \frac{di_2}{dt}$$

- We will assume $M_{21} = M_{12} = M$
- $\bullet\,$ If assumption holds, the coils are called a $\it linear\ transformer$
- \bullet M is called the mutual inductance
- Measured in henrys (H)
- Polarity of coupling term depends on how the coils are wound

Linear Transformer: The Dot Convention

- The dot convention determines the polarity of the coupling
- If a current *enters* a dotted terminal, it induces a *positive* voltage at the dotted terminal of the second coil
- If a current leaves a dotted terminal, it induces a negative voltage at the dotted terminal of the second coil

Example 1: The Dot Convention

Write the defining equations for each of the circuits shown above.

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30 9 Portland State University ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Example 2: The Dot Convention

Write the defining equations for each of the circuits shown above.

Mutual Inductance & Self Inductance

$$L_1 = N_1^2 \mathcal{P}_1 \qquad \qquad \mathcal{P}_1 = \mathcal{P}_{11} + \mathcal{P}_{12}$$

$$\mathcal{P}_1 = \mathcal{P}_{11} + \mathcal{P}_1$$

$$L_2 = N_2^2 \mathcal{P}_2$$

$$L_2 = N_2^2 \mathcal{P}_2 \qquad \qquad \mathcal{P}_2 = \mathcal{P}_{22} + \mathcal{P}_{21}$$

$$L_1 L_2 = N_1^2 N_2^2 \mathcal{P}_1 \mathcal{P}_2$$

$$L_1L_2 = N_1^2N_2^2(\mathcal{P}_{11} + \mathcal{P}_{12})(\mathcal{P}_{22} + \mathcal{P}_{21})$$

Since $M_{12}=M_{21}$ for a linear system, $\mathcal{P}_{12}=\mathcal{P}_{21}$ and

$$L_1 L_2 = N_1^2 N_2^2 \mathcal{P}_{12}^2 \left(1 + \frac{\mathcal{P}_{11}}{\mathcal{P}_{12}} \right) \left(1 + \frac{\mathcal{P}_{22}}{\mathcal{P}_{12}} \right)$$
$$= M^2 \frac{1}{L^2}$$

$$M = k\sqrt{L_1L_2}$$

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

11 Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Coefficient of Coupling (k)

$$\frac{1}{k^2} = \left(1 + \frac{\mathcal{P}_{11}}{\mathcal{P}_{12}}\right) \left(1 + \frac{\mathcal{P}_{22}}{\mathcal{P}_{12}}\right)$$

$$M = k\sqrt{L_1L_2}$$

- k is called the coefficient of coupling
- Since $\frac{1}{k^2} \ge 1$, $k \le 1$
- k is non-negative since $\mathcal{P} > 0$
- If two coils have no common flux, k = 0
- If both coils share all flux, k = 1
- It is physically impossible for k=1, but some magnetic cores have k very close to 1

Linear Transformers: Energy

Suppose no energy is stored in the coils at t = 0 and over some period of time t_1 the current in coil 1 increases from 0 to I_1 while the current in coil 2 is zero, $i_2 = 0$. The energy stored in the coils over this period is given by

$$w_1 = \int_0^{t_1} v_1 i_1 d\tau = \int_0^{t_1} \left(L \frac{di_1}{d\tau} \right) i_1 d\tau = L_1 \int_0^{I_1} i_1 di_1 = \frac{1}{2} L_1 I_1^2$$

Now suppose the current in coil 1 is held constant, $i_1 = I_1$, while the current in coil 2 increases from 0 to I_2 .

$$v_{1} = L_{1} \frac{di_{1}}{dt} \pm M \frac{di_{2}}{dt} = \pm M \frac{di_{2}}{dt}$$

$$v_{2} = \pm M \frac{di_{1}}{dt} + L_{2} \frac{di_{2}}{dt} = L_{2} \frac{di_{2}}{dt}$$

$$p_{2} = v_{1}I_{1} + v_{2}i_{2} = \pm M \frac{di_{2}}{dt}I_{1} + L_{2} \frac{di_{2}}{dt}i_{2}$$

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

13 Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Linear Transformers: Energy Continued

The energy stored in the coils during the second period is given by

$$w_{2} = \int_{t_{1}}^{t_{2}} p_{2} d\tau$$

$$= \int_{t_{1}}^{t_{2}} \left(\pm M \frac{di_{2}}{d\tau} I_{1} + L_{2} i_{2} \frac{di_{2}}{d\tau} \right) d\tau$$

$$= \pm M I_{1} \int_{0}^{I_{2}} di_{2} + L_{2} \int_{0}^{I_{2}} i_{2} di_{2}$$

$$= \pm M I_{1} I_{2} + \frac{1}{2} L_{2} I_{2}^{2}$$

Then the total energy stored in magnetically coupled coils after the currents have been applied is given by

$$w = w_1 + w_2$$

= $\frac{1}{2}L_1I_1^2 + \frac{1}{2}L_2I_2^2 \pm MI_1I_2$

Linear Transformers: Energy Comments

$$w = \frac{1}{2}L_1i_1^2 + \frac{1}{2}L_2i_2^2 \pm Mi_1i_2$$

- The polarity of the shared term depends on how the coils are wound
- Can the energy stored ever be negative?
- Recall that $M = k\sqrt{L_1L_2}$
- This limits the expression above to non-negative values only

Time-Domain Analysis

Time Domain

$$v_1 = L_1 \frac{di_1}{dt} \pm M \frac{di_2}{dt}$$

$$v_2 = \pm M \frac{di_1}{dt} + L_2 \frac{di_2}{dt}$$

What is v_1 if $i_1 = A_1 \cos(\omega t)$ and $i_2 = 0$?

Sinusoidal Steady-State Analysis

What is v_1 if $i_1 = A_1 \cos(\omega t)$ and $i_2 = 0$?

$$v_1 = L_1 \frac{di_1}{dt} \pm M \frac{di_2}{dt}$$

$$v_2 = \pm M \frac{di_1}{dt} + L_2 \frac{di_2}{dt}$$

$$v_1 = L_1 \frac{di_1}{dt}$$

$$v_2 = \pm M \frac{di_1}{dt}$$

$$v_2 = \pm M \frac{di_1}{dt}$$

$$v_1 = \omega L_1 A_1 (-\sin(\omega t))$$

$$v_2 = \pm \omega M A_1 (-\sin(\omega t))$$

$$v_1 = \omega L_1 A_1 \cos(\omega t + 90^\circ)$$

$$v_2 = \pm \omega M A_1 \cos(\omega t + 90^\circ)$$

What is the relationship in the phasor domain?

$$V_1 = j\omega L_1 I_1 \qquad \qquad V_2 = \pm j\omega M I_1$$

Superposition applies so if $i_2 = A_2 \cos(\omega t)$.

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

17 Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Sinusoidal Steady-State Analysis Continued

Frequency Domain (Phasors)

$$V_1 = j\omega L_1 I_1 + j\omega M I_2$$

$$V_2 = j\omega M I_1 + j\omega L_2 I_2$$

The dot convention still applies (not shown)

Example 3: Linear Transformers & Phasor Analysis

Find the steady-state expressions for the currents i_s and i_L when $v_s = 70\cos(5000t) \text{ V}.$

Example 3: Workspace

Phasor Analysis: T-Equivalent

Frequency Domain (Phasors)

$$V_1 = j\omega L_1 I_1 + j\omega M I_2$$

$$V_2 = j\omega M I_2 + j\omega L_2 I_2$$

- The T-equivalent is only valid if bottom terminals are connected
- There is also a \prod -equivalent (see text)

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

21 Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Linear Transformer Analysis: Typical Configuration

- Transformers are typically used in only few types of circuits
- The most common configuration connects a source to a load
- Useful to decrease (or increase) the voltage across the load
- Why not just use a voltage divider?
- $\bullet\,$ Should know how to analyze this type of circuit thoroughly

Linear Transformer: Source-Load Analysis

 R_1 = Resistance of primary winding

 R_2 = Resistance of secondary winding

 L_1 = Self-inductance of primary L_2 = Self-inductance of secondary

M = Mutual inductance

 Z_s = Source impedance

 Z_L = Load impedance

Linear Transformer: Source-Load Analysis Continued

$$V_s = (Z_s + R_1 + j\omega L_1)I_1 - j\omega MI_2$$

$$0 = -j\omega M I_1 + (R_2 + j\omega L_2 + Z_L)I_2$$

$$Z_{11} \triangleq Z_s + R_1 + j\omega L_1$$

$$Z_{22} \triangleq R_2 + j\omega L_2 + Z_L$$

$$V_s = Z_{11}I_1 - j\omega MI_2$$

$$0 = -j\omega MI_1 + Z_{22}I_2$$

Linear Transformer: Source-Load Analysis Continued 2

$$V_{s} = Z_{11}I_{1} - j\omega MI_{2}$$

$$0 = -j\omega MI_{1} + Z_{22}I_{2}$$

$$I_{2} = \frac{j\omega M}{Z_{22}}I_{1}$$

$$V_{s} = \left(Z_{11} + \frac{\omega^{2}M^{2}}{Z_{22}}\right)I_{1}$$

$$I_{1} = \frac{Z_{22}}{Z_{11}Z_{22} + \omega^{2}M^{2}}V_{s}$$

$$I_{2} = \frac{j\omega M}{Z_{11}Z_{22} + \omega^{2}M^{2}}V_{s}$$

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

25 Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Linear Transformer: Source-Load Internal Impedance

$$Z_i \triangleq \frac{V_s}{I_1} = \frac{Z_{11}Z_{22} + \omega^2 M^2}{Z_{22}}$$

$$= Z_{11} + \frac{\omega^2 M^2}{Z_{22}}$$

$$Z_{ab} = Z_i - Z_s = R_1 + j\omega L_1 + \frac{\omega^2 M^2}{Z_{22}}$$

Linear Transformer: Source-Load Reflected Impedance

$$Z_{ab} = R_1 + j\omega L_1 + \frac{\omega^2 M^2}{Z_{22}}$$

$$Z_R = Z_{ab} - (R_1 + j\omega L_1)$$

$$= \frac{\omega^2 M^2}{Z_{22}} = \frac{\omega^2 M^2}{|Z_{22}|^2} Z_{22}^*$$

Example 4: Linear Transformers

Find the following:

- 1. Self-impedance of primary & secondary circuits
- 2. Impedance reflected into the primary winding
- 3. Impedance seen looking into the primary terminals of the transformer
- 4. Thévenin equivalent with respect to the terminals c,d

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Example 5: Linear Transformers

Find the following:

- 1. Thévenin equivalent with respect to the terminals c,d
- 2. If Z_L is set equal to Z_{eq}^* , what is I_1 ?
- 3. What is I_2 ?

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

31 Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Example 5: Workspace (2)

Introduction to Ideal Transformers

- Ideal/Linear transformers are similar to ideal/real models of operational amplifiers
- Both ideal models make assumptions that simplify analysis
- Ideal approximation: all of the flux links both coils
- Ideal Assumptions
 - Large reactance: $L_1, L_2, M \to \infty$
 - Perfect coupling: $k \to 1$
 - Primary and secondary are lossless: $R_1 = R_2 = 0$

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

33 Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Ideal Transformer Analysis

$$v_1 = N_1 \frac{d\phi}{dt}$$

$$p_1 = p_2$$

$$v_2 = N_2 \frac{d\phi}{dt}$$

$$v_1 i_1 = v_2 i_2$$

$$\frac{v_2}{v_1} = \frac{N_2}{N_1} = n$$

$$\frac{i_1}{i_2} = \frac{v_2}{v_1} = n$$

Ideal Transformers: Comments

$$\frac{v_2}{v_1} = \frac{N_2}{N_1} = n \qquad \qquad \frac{i_2}{i_1} = \frac{N_1}{N_2} = \frac{1}{n}$$

- Defining equations for ideal transformers do not include time
- The phasor domain equations are identical to the time domain
- The ideal transformer can not store energy
- Note direction of secondary current
- Sometimes only the turns ratio is given: $N_2/N_1 = n$

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

35 Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Ideal Transformers: The Dot Convention

- The dot convention determines the polarity of the defining equations
- If v_1 and v_2 are both positive or both negative at the dotted terminals, use +n. Otherwise, use -n.
- \bullet If i_1 and i_2 both enter or both leave the dotted terminals, use -n. Otherwise, use +n.

Example 6: The Dot Convention for Ideal Transformers

Write the defining equations for each of the circuits shown above.

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

37 Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Example 7: The Dot Convention for Ideal Transformers

Write the defining equations for each of the circuits shown above.

Ideal Transformer: Reflected Impedance

$$Z_R = \frac{V_1}{I_1} = \frac{V_2 \frac{1}{n}}{I_2 n} = \frac{V_2}{I_2} \frac{1}{n^2} = \frac{Z_L}{n^2}$$

Example 8: Ideal Transformers

If $v_g = 2500 \cos(400t)$ V, find $i_1, v_1, i_2, \text{ and } v_2$.

Example 8: Workspace

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30 41 F

41 Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

Example 9: Ideal Transformers

Find the value of C that maximizes the power absorbed by the 160 Ω resistor. What is the average power delivered for this value of C? Replace the resistor with a variable resistor and find the value that maximizes the power delivered? What is the maximum average power that can be delivered?

Example 9: Workspace (1)

Portland State University

ECE 221

Magnetically Coupled Circuits

Ver. 1.30

43 Portland State University

ECE 221

Magnetically Coupled Circuits

s Ver. 1.30

1.30 44

Portland State University ECE 221 Magnetically Coupled Circuits Ver. 1.30 48