CLAIMS

1. A compound of formula

 $A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} X \xrightarrow{Z} X$

wherein:

(a) all of X, Y and Z are CH; or (b) one of X, Y and Z is N and the rest of X, Y and Z are CH; or (c) two of X, Y and Z are N and the other of X, Y and Z is CH; or (d) all of X, Y and Z are N;

A is A^1 or A^2 ;

 A^1 is $R^4R^5N-C(O)$ -

$$e \stackrel{N-N}{\underset{H}{\bigvee}}$$
, $e \stackrel{N}{\underset{H}{\bigvee}}$ or $e \stackrel{N}{\underset{S}{\bigvee}}$

10 A^2 is chosen from $R^7C(O)NH$ -, $R^7S(O)_2NH$ -, R^4NH -, and R^4O -;

Q is chosen from heteroaryl, aryl, $-CH_2R^{-1}$, $-CH=N-OCH_3$ and

15

W is chosen from H, Cl, F, R^8 , C_1 - C_4 -alkylaryl, OR^8 , $-SR^8$, $-NR^9R^{10}$ and $-NHC(O)R^{11}$, with the proviso that when two of X, Y and Z are N and Q is imidazolyl, W may not be H, Cl, F or R^8 ;

R¹ is chosen from alkyl, cycloalkyl, alkenyl, C₁-C₃-alkyloycloalkyl, heterocyclyl, C₁-C₃-alkylheterocyclyl, aryl, C₁-C₃-alkylaryl, heteroaryl, C₁-C₃-alkylheteroaryl, (C₁-C₃-alkyloxy)alkyl, (C₁-C₃-alkyloxy)alkyl,

Q' Cont

20

25

30

35

 \mathbb{R}^2

 R^4

is

alkyloxy)cycloalkyl, $(C_1-C_3-alkylthio)alkyl, (C_1-C_3-alkylthio)cycloalkyl and <math>(C_1-C_3-alkylsulfonyl)alkyl;$

H or C₁-C₃-alkyl, or R¹ and R² taken together form a 5- to 7-membered ring structure optionally containing O, S or NR¹²;

R³ is H or C₁-O₅-alkyl, or, when n is zero, R² and R³ taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle;

is chosen from H, aryl, heteroaryl, C₁-C₄-alkyl substituted with from one to three aryl or heteroaryl residues,

and J² are independently chosen from H, F, Cl, CN, NO₂ and CH₃, and G is chosen from -CH₂-, -CH₂CH₂-, -CH₂CH₂-, -OCH₂-, -CH₂CH₂-, -OCH₂-, -OCH₂-, -OCH₂CH₂-, -OCH₂-, -N(lower alkyl)-, -N(lower alkyl)CH₂-, -CH₂N(lower alkyl)-, -S-, -SO-, -SO₂-, -CH₂S-, -SCH₂-, -CH₂SO-, -SOCH₂-, -CH₂SO₂-, and -SO₂CH₂-;

R⁵ is H or C₁-C₃-alkyl, with the proviso that both R³ and R⁵ cannot be alkyl;

R⁶ is aryl;

 R^7 is aryl or C_1 - C_3 -alkylaryl;

 R^8 is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C_1 - C_4 -alkylheteroaryl; alkylaryl, C_1 - C_4 -alkylheteroaryl;

40 R⁹ is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C₁-C₄-alkylcycloalkyl, (C₁-C₄-alkoxy)alkyl, (C₁-C₄-alkoxycarbonyl)alkyl, (C₁-C₄-alkylthio)alkyl,

heterocyclyl, C_1 - C_4 -alkylheterocyclyl, C_1 - C_4 -alkylaryl, and C_1 - C_4 -alkylheteroaryl;

 R^{10} is $H \text{ or } C_1$ - C_3 -alkyl, or

R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with -OH, -ON, -COOH or -COOCH₃;

R¹¹ is aryl;

50 R¹² is chosen from H, & -C₃-alkyl, alkoxycarbonyl, methoxyacetyl and aryl;

R¹³ is chosen from -OH, -OTHP, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and

n is zero or one, with the proviso that when A is A², m and n cannot both be zero.

2. A pyrimidine according to claim 1 of formula

$$A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} X \xrightarrow{Z} Q$$

wherein:

two of X, Y and Z are N and the third is CH.

3. A 4-pyrimidinamine according to claim 2, wherein Z is CH, having the formula

10

a 1

$$A = \begin{pmatrix} R^1 & R^2 & R^3 \\ (CH_2)_m & (CH_2)_n & N \end{pmatrix}$$

4. A 4-pyrimidinamine according to claim 3 wherein Q is chosen from imidazolyl, methylimidazolyl, pyrrolyl, methylpyrrolyl, pyrazolyl, methylpyrazolyl, hydroxymethylimidazolyl, (dimethylaminomethyl)imidazolyl, furanyl, methylfuranyl, thienyl, oxazolyl, thiazolyl, pyridinyl, quinolinyl, 1-methylpyrimidin-2-onyl, phenyl, fluorophenyl, hydroxymethyl, tetrahydropyranyloxymethyl, imidazolylmethyl, pyrrolylmethyl, -CH=N-OCH₃ and S———.

and S—

- 5. A 4-pyrimidinamine according to claim 4 wherein:
- Q is chosen from pyrrol-1-yl, imidazol-1-yl, furan-3-yl, 2-methylimidazol-1-yl and 4-methylimidazol-1-yl;

A is $R^4R^5N-C(O)$ -;

W is Cl, NHR⁹, N(CH₃)R⁹, OR⁸, SR⁸, R⁸, morpholin-4-yl,

$$-N$$
 SO_2 or $-N$ $N-R^{12}$

R¹ is chosen from alkyl, cycloalkyl, C_1 - C_3 -alkylaryl, C_1 - C_3 alkylcycloalkyl, C_1 - C_3 -alkylheterocyclyl, C_1 - C_3 -alkylheteroaryl;

R², R³ and R⁵ are H;

 R^8 is C_1 - C_4 -alkylaryl

5

10

 \mathbb{R}^9 chosen from hydrogen, alkyl, substituted alkyl, (C1-C4)-alkoxy, C1-C₄-alkylcycloalkyl, C₁-C₄-alkylaryl, heterocyclyl, C₁-C₄alkylheteroaryl, C_1 - C_4 -alkylheterocyclyl; and

m and n are zero.

- A 4-pyrimidinam ne according to claim 5 wherein W is NHR9 and 6.
- R^9 chosen from hydrogen; methyl; ethyl; 2,2,2-trifluoroethyl; allyl; is cyclopropyl; 2-dyanoethyl; propargyl; methoxy; methoxyethyl; cyclopropyl; cyclopropylmethyl; (methylthio)ethyl; 3methoxypropyl; 3-pyridyl; 2-(3-pyridyl)ethyl; 2-(2-pyridyl)ethyl; 3pyridylmethyl; 4-pyridylmethyl; 4-pyridylmethyl-N-oxide; 2pyridazinylmethyl; sulfolan-3-yl; 3-tetrahydrofuranyl; 2tetrahydrofuranylmethyl; $3-(\lambda-imidazolyl)$ propyl; 1-tbutoxycarbonyl-4-piperidinyl; χ -t-butoxycarbonyl-4piperidinylmethyl; 2-(hydroxyimino)propyl; 2-

(methoxyimino)propyl; 2-oxo-1-propyl; and

wherein

- R^{14} chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃ COOCH₃, OCH₃, is OH, SO₂CH₃, N(CH₃)₂ and COOH;
- R^{15} 15 is chosen from H, OCH3 and Cl; and
 - is 1 or 2. p
 - 7. A 4-pyrimidinamine according to claim 5 wherein W is

and

R¹² is t-butoxycarbonyl, methoxyacetyl or phenyl.

Cont

- 8. A 4-pyrimidinamine according to claim 2 wherein
- Z is CH;
- A is

- 5 R¹ is chosen from n-butyl; cyclohexylmethyl; cyclopentylmethyl; 2-methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl; benzyl; 2-thienylmethyl; 1-*t*-butoxycarbonyl-4-piperidinyl; 4-chlorobenzyl; 2-pyranylmethyl; 4-pyranylmethyl; 4-pyranyl and 1,1-dimethylethyl;
- R^2 and R^3 are H;

15

- Q is imidazolyl or pyrrolyl;
- W is NHR⁹; and
- R⁹ is alkyl, cycloalkyl or

- R¹⁴ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and
- R¹⁵ is chosen from H, OCH₃ and Cl.
- 9. A pyrimidine according to claim 2 wherein:
- A is $R^4R^5N-C(O)$ -
- R¹ is chosen from isopropyl; n-butyl; cyclohexylmethyl; cyclohexylethyl; 2-
- 5 methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl;

20

Cont

benzyl; 2-thienylmethyl; 1-*t*-butoxycarbonyl-4-piperidinyl; 4-methoxybenzyl; 4-chlorobenzyl; 3,4-dichlorobenzyl; 2-pyranylmethyl; 4-pyranylmethyl; 4-pyranyl and 1,1-dimethylethyl; and

- R^2 , R^3 and R^5 are H.
 - 10. A pyrimidine according to claim 9 wherein:

 R^4 is pyridinyl, pyridinylmethyl, tetrahydronaphthalenyl, indanylmethyl, furanylmethyl, substituted phenyl, or R^{16} ;

R¹⁷

- R¹⁶ is chosen from H, Cl, F, CN, NO₂, SQ₂NH₂, CF₃, CH₃, COOCH₃,
 OCH₃, SO₂CH₃, SOCH₃, N(CH₃)₂, tetrazol-5-yl, CONH₂,
 C(=NOH)NH₂ and COOH; and
- R¹⁷ is chosen from H, OCH₃, F and Cl.
- 11. A pyrimidine according to claim 9 wherein R⁴ is

G, one

of J¹ and J² is H and the other is H, Cl or CN and G is chosen from -CN₂-,
-CH₂CH₂-, -OCH₂-, -O- and -CH₂N(lower alkyl)-.

12. A 2-pyrimidinamine according to claim 2, wherein Y is CH, having the formula

$$A = \begin{pmatrix} R^1 & R^2 & R^3 \\ (CH_2)_m & (CH_2)_n & N \end{pmatrix}$$

13. A 2-pyrimidinamine according to claim 11 wherein Q is chosen from imidazolyl, pyrrolyl, pyridinyl, fluorophenyl and 2-thienyl.

14. A 2-pyrimidinamine according to claim \(\mathcal{Y} \) wherein

A is $R^4R^5N-C(O)$ -;

5 W is H, Cl, NHR⁹ or OR⁸;

R¹ is chosen from alkyl and C₁-C₃-alkylcycloalkyl;

R², R³ and R⁵ are H;

 R^4 is C_1 - C_4 -alkylaryl or C_1 - C_4 -alkylheteroaryl;

 R^8 is C_1 - C_4 -alkylaryl;

10 R⁹ is chosen from hydrogen, alkyl, fluoroalkyl, (C₁-C₄-alkoxy)alkyl, (C₁-C₄-alkylthio)alkyl, C₁-C₄-alkylcycloalkyl, C₁-C₄-alkylaryl,

heterocyclyl, C₁-C₄-alkylheteroaryl, C₁-C₄-alkylheterocyclyl; and

m and n are zero.

15. A 2-pyrimidinamine according to claim 14 wherein W is NHR⁹ and

R⁹ is

R¹⁴ is chosen from H, F, Cl, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and

a' cont

R¹⁵ is chosen from H, OCH₃ and Cl.

16. 4-pyrimidinamine according to claim 2, wherein X is CH, having the formula

- 17. A 4-pyrimidinamine according to claim 16 wherein Q is chosen from imidazolyl and pyrrolyl and m and n are zero.
- 18. A 4-pyrimidinamine according to claim 17 wherein:

A is $R^4R^5N-C(O)$ -;

W is NHR⁹;

R¹ is chosen from cyclohexylmethyl; 2-methylpropyl and 3-methyl-1-butyl;

R², R³ and R⁵ are H; and

 $R^4\, and \,\, R^9$ are benzyl or substituted benzyl.

19. A triazine according to claim 1, wherein all of X, Y, and Z are N, having the formula

Ce Cont

$$A = \begin{pmatrix} R^1 & R^2 & R^3 \\ (CH_2)_m & (CH_2)_n & N \end{pmatrix}$$

- 20. A triazine according to claim 19 wherein Q is chosen from imidazolyl and pyrrolyl.
- 21. A triazine according to claim 20 wherein:

A is $R^4R^5N-C(O)$ -;

W is NHR⁹;

R¹ is chosen from cyclohexylmethyl; 2-methylpropyl and 3-methyl-1-butyl;

R², R³ and R⁵ are H; and

 R^4 and R^9 are benzyl or substituted benzyl.

22. An aniline according to claim 1, wherein all of X, Y and Z are CH, having the formula

$$A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} N$$

10

Cont

wherein Q is chosen from imidazolyl and pyrrolyl.

- 23. An aniline according to claim 22 wherein:
- A is $R^4R^5N-C(O)$ -;
- W is NHR9;
- R¹ is chosen from alkyl, cycloalkyl, C₁-C₃-alkylaryl and C₁-C₃-alkylcycloalkyl;
- R², R³ and R⁵ are H;
- R^4 is C_1 - C_4 -alkylary
- R⁹ is

- R¹⁴ is chosen from H, Cl, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH,
- R¹⁵ is chosen from H, OCH₃ and Cl; and m and n are zero.
- 24. A compound according to claim 1 wherein m and n are zero and R² is H having the R configuration at the carbon to which R² is attached.
- 25. A compound according to claim 1 wherein m and n are zero and $R^1 = R^2$.
- 26. A compound according to claim 1 wherein R⁴ is J¹

having the R configuration at the carbon indicated with an asterisk.

Q! Cont

27. A pyrimidine according to claim 12 wherein R⁴ is J¹

having the R configuration at the carbon indicated with an asterisk.

28. A compound of formula

wherein:

(a) all of X, Y and Z are CH; or (b) one of X, Y and Z is N and the rest of X, Y and Z are CH; or (c) two of X, Y and Z are N and the other of X, Y and Z is CH; or (d) all of X, Y and Z are N;

A is A^1 or A^2 ;

 A^1 is $R^4R^5N-C(O)$ -

A² is chosen from $R^7C(O)NH$ -, $R^7S(O)_2NH$ -, R^4NH -, and R^4O -;

Q is chosen from aryl, -CH₂R¹³, -CH=N-OCH₃ and

a cont

heteroaryl other than 1-imidazolyl and 1-triazolyl;

- W is chosen from H, Cl, F, R^8 , C_1 - C_4 -alkylaryl, $-OR^8$, $-SR^8$, $-NR^9R^{10}$ and $-NHC(O)R^{11}$, with the proviso that when two of X, Y and Z are N and Q is imidazolyl, W may not be H, Cl, F or R^8 ;
- $R^1 \quad \text{is} \quad \text{chosen from alkyl, cycloalkyl, alkenyl, C_1-C_3-alkylcycloalkyl,} \\ \quad \text{heterocyclyl, C_1-C_3-alkylheterocyclyl, aryl, C_1-C_3-alkylaryl,} \\ \quad \text{heteroaryl, C_1-C_3-alkylheteroaryl, $(C_1$-C_3-alkyloxy)alkyl, $(C_1$-C_3-alkyloxy)cycloalkyl, $(C_1$-C_3-alkylthio)alkyl, $(C_1$-C_3-alkylthio)cycloalkyl and $(C_1$-C_3-alkylsulfonyl)alkyl;} \label{eq:R1}$
- R² is H or C₁-C₃-alkyl, or R¹ and R² taken together form a 5- to 7membered ring structure optionally containing O, S or NR¹²;
- R³ is H or C₁-C₆-alkyl, or, when n is zero, R² and R³ taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle;
- R^4 is chosen from H, aryl, heteroaryl, C_1 - C_4 -alkyl substituted with from one to three aryl or heteroaryl residues,

and J² are independently chosen from H, F, Cl, CN, NO₂ and CH₃, and G is chosen from -CH₂-, -CH₂CH₂-, -CH₂CH₂-, -OCH₂-, -CH₂CH₂-, -OCH₂-, -OCH₂-, -OCH₂CH₂-, -O-, -N(lower alkyl)-, -N(lower alkyl)CH₂-, -CH₂N(lower alkyl)-, -S-, -SO-, -SO₂-, -CH₂S-, -SCH₂-, -CH₂SO-, -SOCH₂-, -CH₂SO₂-, and -SO₂CH₂-;

 R^5 is H or C_1 - C_3 -alkyl, with the proviso that both R^3 and R^5 cannot be alkyl,

R⁶ is aryl;

 R^7 is aryl or C_1 - C_3 -alkylaryl;

 R^8 is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C_1 - C_4 -alkylheteroaryl; alkylaryl, C_1 - C_4 -alkylheteroaryl;

R⁹ is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C_1 - C_4 -alkylcycloalkyl, $(C_1$ - C_4 -alkoxy)alkyl, $(C_1$ - C_4 -alkoxycarbonyl)alkyl, $(C_1$ - C_4 -alkylthio)alkyl, heterocyclyl, C_1 - C_4 -alkylheterocyclyl, C_1 - C_4 -alkylheteroaryl;

 R^{10} is H or C_1 - C_3 -alkyl, or

R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with -OH, -CN, -COOH or -COOCH₃;

R¹¹ is aryl;

 R^{12} is chosen from H, C_1 - C_3 -alkyl, alkoxycarbonyl methoxyacetyl and aryl;

R¹³ is chosen from -OH, -OTHP, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and

n is zero or one, with the proviso that when A is A², m and n cannot both be zero.

acont

29. A pyrimidine according to claim 28 of formula

wherein:

two of X, Y and Z are N and the third is CH.

30. A 4-pyrimidinamine according to claim 29, wherein Z is CH, having the formula

$$A = \begin{pmatrix} R^1 & R^2 & R^3 \\ (CH_2)_m & (CH_2)_n & N \end{pmatrix}$$

31. A 4-pyrimidinamine according to claim 30 wherein Q is chosen from methylimidazolyl, pyrrolyl, methylpyrazolyl, methylpyrazolyl, furanyl, methylfuranyl, thienyl, oxazolyl, thiazolyl, pyridinyl, quinolinyl, 1 methylpyrimidin-2-onyl, phenyl, fluorophenyl, hydroxymethyl, 2-imidazolyl, tetrahydropyranyloxymethyl, imidazolylmethyl, pyrrolylmethyl, -CH=N-OCH₃ and S———.

5

al contro

32. A 4-pyrimidinamine according to claim 31 wherein:

Q is chosen from pyrrol-1-yl, imidazol-1-yl, furan-3-yl, 2-methylimidazol-1-yl and 4-methylimidazol-1-yl;

A is $R^4R^5NC(O)$ -;

W is Cl, NHR N(CH₃)R⁹, OR⁸, SR⁸, R⁸, morpholin-4-yl,

-N or $N-R^{12}$

R¹ is chosen from alkyl, cycloalkyl, C₁-C₃-alkylaryl, C₁-C₃-alkylheteroaryl; alkylcycloalkyl, C₁-C₃-alkylheteroaryl;

15 R^2 , R^3 and R^5 are H;

 R^8 is C_1 - C_4 -alkylaryl

 R^9 is chosen from hydrogen, alkyl, substituted alkyl, (C_1-C_4) -alkoxy, C_1 - C_4 -alkylcycloalkyl, C_1 - C_4 -alkylaryl, heterocyclyl, C_1 - C_4 -alkylheterocyclyl; and

20 m and n are zero.

33. A 4-pyrimidinamine according to claim 32 wherein W is NHR⁹ and

R⁹ is chosen from hydrogen; methyl; ethyl; 2,2,2-trifluoroethyl; allyl; cyclopropyl; 2-cyanoethyl; propargyl; methoxy; methoxyethyl; cyclopropyl; cyclopropylmethyl; (methylthio)ethyl; 3-methoxypropyl; 3-pyridyl; 2-(3-pyridyl)ethyl; 2-(2-pyridyl)ethyl; 3-pyridylmethyl; 4-pyridylmethyl; 4-pyridylmethyl-N-oxide; 2-pyridazinylmethyl; sulfolan-3-yl; 3-tetrahydrofuranyl; 2-tetrahydrofuranylmethyl; 3-(1-imidazolyl)propyl; 1-t-butoxycarbonyl-4-piperidinyl; 1-t-butoxycarbonyl-4

piperidinylmethyl; 2-(hydroxyimino)propyl; 2-

(methoxyimino)propyl; 2-oxo-1-propyl; and

CH₂)_p

10

5

a' cont

wherein

chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, OH, SO₂CH₃, N(CH₃)₂ and COOH;

- 15 R¹⁵ is chosen from H, OCH₃ and Cl; and p is 1 or 2.
 - 34. A 4-pyrimidinamine according to claim 32 wherein W is

 $S - N N - R^{12}$

and

 R^{14}

R¹² is t-butoxycarbonyl, methoxyacetyl or phenyl.

- 35. A 4-pyrimidinamine according to claim 29 wherein
- Z is CH;

A is

- 5 R¹ is chosen from n-butyl; cyclohexylmethyl; cyclopentylmethyl; 2-methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl; benzyl; 2-thienylmethyl; 1-t-butoxycarbonyl-4-piperidinyl; 4-chlorobenzyl; 2-pyranylmethyl; 4-pyranylmethyl; 4-pyranyl and 1,1-dimethylethyl;
- R^2 and R^3 are H;

Q is pyrrolyl;

W is NHR9; and

R⁹ is alkyl, cycloalkyl or

R¹⁴ wherein

5

R¹⁴ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and

R¹⁵ is chosen from H, OCH₃ and Cl.

- 36. A pyrimidine according to claim 29 wherein:
- A is $R^4R^5N-C(O)$
- R¹ is chosen from isopropyl; n-butyl; cyclohexylmethyl; cyclohexylethyl; 2-methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl; benzyl; 2-thienylmethyl; 1-t-butoxycarbonyl-4-piperidinyl; 4-methoxybenzyl; 4-chlorobenzyl; 3,4-dichlorobenzyl; 2-pyranylmethyl; 4-pyranylmethyl; 4-pyranylmethyl; 4-pyranyl and 1,1-dimethylethyl;

R², R³ and R⁵ are H;

is pyridinyl, pyridinylmethyl, indanylmethyl, furanylmethyl, tetrahydronaphthalenyl, substituted phenyl, or R¹⁶;

R¹⁶ is chosen from H, Cl, F, CN, NO₂, SO₂NH, CF₃, CH₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and

R¹⁷ is chosen from H, OCH₃, F and Cl.

37. A pyrimidine according to claim 29 wherein R⁴ is

38. A pyrimidine according to claim 37 wherein one of J^1 and J^2 is H and the other is H, Cl or CN and G is chosen from $-CH_2$ -, $-CH_2CH_2$ -, $-OCH_2$ -, -OCH

39. A 2-pyrimidinamine according to claim 29, wherein Y is CH, having the formula

- 40. A 2-pyrimidinamine according to claim 39 wherein Q is chosen from pyrrolyl, pyridinyl, fluorophenyl and 2-thienyl.
- 41. A 2-pyrimidinamine according to claim 40 wherein
- A is $R^4R^5N-C(O)$ -;
- 5 W is H, Cl, NHR⁹ or OR⁸;
 - R¹ is chosen from alkyl and C₁-C₃-alkylcycloalkyl;
 - R², R³ and R⁵ are H;
 - R^4 is C_1 - C_4 -alkylaryl or C_1 - C_4 -alkylheteroaryl;
 - R^8 is C_1 - C_4 -alkylaryl;
- 10 R^9 is chosen from hydrogen, alkyl, fluoroalkyl, C_1 - C_4 -alkoxy)alkyl, $(C_1$ - C_4 -alkylthio)alkyl, C_1 - C_4 -alkylcycloalkyl, C_1 - C_4 -alkylaryl, heterocyclyl, C_1 - C_4 -alkylheterocyclyl; and

m and n are zero.

- 42. A 2-pyrimidinamine according to claim 41 wherein W is NHR⁹ and
- R⁹ is

43.

Cont 5

R¹⁴ is chosen from H, F, Cl, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃,

SO₂CH₃, N(CH₃)₂ and COOH; and

R¹⁵ is chosen from H, OCH₃ and Cl.

A 2-pyrimidineamine according to claim 39 wherein R⁴ is

, one of J^1 and J^2 is H and the other is $H,\,Cl$ or $CN\,$ and G is $_{J^2}$

chosen from $-CH_2$ -, $-CH_2CH_2$ -, $-OCH_2$ -, -O- and $-CH_2N$ (lower alkyl)-.

44. A 4-pyrimidinamine according to claim 29, wherein X is CH, having the formula

$$A = \begin{pmatrix} R^1 & R^2 & R^3 \\ (CH_2)_m & (CH_2)_n & N \end{pmatrix} Q$$

45. A 4-pyrimidinamine according to claim 44 wherein Q is pyrrolyl and m and n are zero.

46. A 4-pyrimidinamine according to claim 45 wherein:

A is $R^4R^5N-C(O)$ -;

W is NHR⁹;

R¹ is chosen from cyclohexylmethyl; 2-methylpropyl and 3-methyl-1-

5 butyl;

a cont

R², R³ and R⁵ are H; and

R⁴ and R⁹ are benzyl or substituted benzyl.

47. A 4-pyrimidineamine according to claim 44 wherein R⁴ is

- 10 chosen from -CH₂-, -CH₂CH₂-, -OCH₂-, -O- and -CH₂N(lower alkyl)-.
 - 48. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound according to claim 1.
 - 49. A pharmaceutical composition according to claim 48 additionally comprising a steroidal or nonsteroidal antiinflammatory drug (NSAID).
 - 50. A pharmaceutical composition according to claim 48 additionally comprising a nonsteroidal antiinflammatory drug (NSAID).
 - 51. A pharmaceutical composition according to claim 50 wherein said NSAID is chosen from arylpropionic acids, arylacetic acids, arylbutyric acids, fenamic acids, arylcarboxylic acids, pyrazoles, pyrazolones, salicylic acids; and oxicams.
 - 52. A pharmaceutical composition according to claim 48 additionally comprising a cyclooxygenase inhibitor.
 - 53. A pharmaceutical composition according to claim 52 wherein said cyclooxygenase inhibitor is ibuprofen or a salicylic acid derivative.

a' cont

- 54. A pharmaceutical composition according to claim 48 additionally comprising a selective cyclooxygenase-2 inhibitor.
- 55. A pharmaceutical composition according to claim 54 wherein said selective cyclooxygenase-2 inhibitor is rofecoxib or celecoxib.
- 56. A pharmaceutical composition according to claim 48 additionally comprising a selective cyclooxygenase-1 inhibitor.
- 57. A pharmaceutical composition according to claim 48 additionally comprising a steroidal antiinflammatory drug.
- 58. A pharmaceutical composition according to claim 57 wherein said steroidal antiinflammatory drug is chosen from finasteride, beclomethasone and hydrocortisone.
- 59. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound according to claim 28.
- 60. A pharmaceutical composition according to claim 59 additionally comprising a steroidal or nonsteroidal antiinflammatory drug (NSAID).
- 61. A pharmaceutical composition according to claim 59 additionally comprising a nonsteroidal antiinflammatory drug (NSAID).
- 62. A pharmaceutical composition according to claim 61 wherein said NSAID is chosen from arylpropionic acids, arylacetic acids, arylbutyric acids, fenamic acids, arylcarboxylic acids, pyrazoles, pyrazolones, salicylic acids; and oxicams.

- 63. A pharmaceutical composition according to claim 59 additionally comprising a cyclooxygenase inhibitor.
- 64. A pharmaceutical composition according to claim 63 wherein said cyclooxygenase inhibitor is ibuprofen or a salicylic acid derivative.
- 65. A pharmaceutical composition according to claim 59 additionally comprising a selective cyclooxygenase-2 inhibitor.
- 66. A pharmaceutical composition according to claim 65 wherein said selective cyclooxygenase-2 inhibitor is rofecoxib or celecoxib.
- 67. A pharmaceutical composition according to claim 59 additionally comprising a selective cyclooxygenase-1 inhibitor.
- 68. A pharmaceutical composition according to claim 59 additionally comprising a steroidal antiinflammatory drug.
- 69. A pharmaceutical composition according to claim 68 wherein said steroidal antiinflammatory drug is chosen from finasteride, beclomethasone and hydrocortisone.
- 70. A method of treating a condition resulting from inappropriate bradykinin receptor activity comprising administering to a subject in need of such treatment a therapeutically effective amount of a compound of formula I

a' cont

$$A = \begin{pmatrix} R^1 & R^2 & R^3 \\ (CH_2)_m & (CH_2)_n & X \end{pmatrix}$$

wherein:

(a) all of X, Y and Z are CH; or (b) one of X, Y and Z is N and the rest of X, Y and Z are CH; or (c) two of X, Y and Z are N and the other of X, Y and Z is CH; or (d) all of X, Y and Z are N;

A is A^1 or A^2 ;

 A^1 is $R^4R^5N-C(O)$ -

A² is chosen from $R^7C(O)NH$ -, $R^7S(O)_2NH$ -, R^4NH -, and R^4O -;

Q is chosen from heteroaryl, aryl, $-CH_2R^{13}$, $-CH=N-OOH_3$ and

W is chosen from H, Cl, F, R^8 , C_1 - C_4 -alkylaryl, $-OR^8$, $-SR^8$, $-NR^9R^{10}$ and $-NHC(O)R^{11}$, with the proviso that when two of X, Y and Z are N and Q is imidazolyl, W may not be H, Cl, F or R^8 ;

al

R¹

chosen from alkyl, cycloalkyl, alkenyl, C_1 - C_3 -alkylcycloalkyl, heterocyclyl, C_1 - C_3 -alkylheterocyclyl, aryl, C_1 - C_3 -alkylaryl, heteroaryl, C_1 - C_3 -alkylheteroaryl, $(C_1$ - C_3 -alkyloxy)alkyl, $(C_1$ - C_3 -alkyloxy)cycloalkyl, $(C_1$ - C_3 -alkylthio)alkyl, $(C_1$ - C_3 -alkylthio)cycloalkyl and $(C_1$ - C_3 -alkylsulfonyl)alkyl;

- R² is H or C₁C₃-alkyl, or R¹ and R² taken together form a 5- to 7membered ring structure optionally containing O, S or NR¹²;
- R³ is H or C₁-C₆-alkyl, or, when n is zero, R² and R³ taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle;
- R⁴ is chosen from H, aryl, heteroaryl, C₁-C₄-alkyl substituted with from one to three aryl or heteroaryl residues,

$$\int_{J^2}^{J^1} \int_{J^2}^{G} \int_{J^2}^{And} \int_{J^2}^{J^1} \int_{J^2}^{G} \int_{J^2}^{J^1} \int_{J^2}^{J^2} \int_{J$$

and J^2 are independently chosen from N, F, Cl, CN, NO_2 and CH_3 , and G is chosen from $-CH_2$ -, $-CH_2CH_2$ -, $-CH_2CH_2$ -, $-OCH_2$ -, $-CH_2CH_2$ -, $-OCH_2$

- R⁵ is H or C₁-C₃-alkyl, with the proviso that both R³ and R⁵ cannot be alkyl;
- R⁶ is aryl;
- R^7 is aryl or C_1 - C_3 -alkylaryl;
- R⁸ is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C_1 - C_4 -alkylheteroaryl, and C_1 - C_4 -alkylheteroaryl,

R⁹ is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C_1 - C_4 -alkylcycloalkyl, $(C_1$ - C_4 -alkoxy)alkyl, $(C_1$ - C_4 -alkoxycarbonyl)alkyl, $(C_1$ - C_4 -alkylthio)alkyl, heterocyclyl, C_1 - C_4 -alkylheterocyclyl, C_1 - C_4 -alkylheteroaryl;

 R^{10} is $H \text{ or } C_1$ - C_3 -alkylor

R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with -OH, -CN, -COOH or -COOCH₃;

R¹¹ is aryl;

R¹² is chosen from H, C₁-C₃-alkyl, alkoxycarbonyl, methoxyacetyl and aryl;

R¹³ is chosen from -OH, -OTHP, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and

n is zero or one, with the proviso that when A is A^2 , m and n cannot both be zero.

71. A method according to claim 70 wherein said compound is a pyrimidine of the formula

$$A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} X \xrightarrow{Z} X$$

wherein:

two of X, Y and Z are N and the third is CH.

at

- 72. The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is diabetic vasculopathy, post-capillary resistance or diabetic symptoms associated with insulitis.
- 73. The method according to claim 72 wherein said diabetic symptoms associated with insulitis comprise hyperglycemia, diuresis, proteinuria and increased nitrite and kallikrain urinary excretion.
- 74. The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is inflammation, edema, liver disease, asthma, rhinitis, or septic shock.
- 75. The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is pain or hyperalgesia.
- 76. The method according to claim 75 wherein said pain is chronic pain, pain associated with inflammation or dental pain.
- 77. The method of treating pain or hyperalgesia according to claim 75 additionally comprising administering a steroidal or nonsteroidal antiinflammatory drug (NSAID).
- 78. The method of treating pain or hyperalgesia according to claim 77 wherein an NSAID is administered.
- 79. The method of treating pain or hyperalgesia according to claim 35 additionally comprising administering a cyclooxygenase inhibitor.

- 80. The method of treating pain or hyperalgesia according to claim 79 wherein said cyclooxygenase inhibitor is a selective cyclooxygenase-2 inhibitor.
- 81. The method of treating pain or hyperalgesia according to claim 79 wherein said cyclooxygenase inhibitor is a selective cyclooxygenase-1 inhibitor.
- 82. The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is multiple sclerosis.
- 83. The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is atherosclerosis.
- 84. The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is Alzheimer's disease or closed head trauma.
- 85. A method for stimulating hair growth or preventing hair loss comprising administering to a subject in need of such treatment a therapeutically effective amount of a compound formula I according to claim 70.
- 86. A compound of formula

wherein E is halogen or methylthio and Hal is halogen.

87. A compound according to claim 86 wherein Hal is chlorine

88. A compound according to claim 86 wherein Hal is fluorine.

89. A compound according to claim 86 wherein E is methylthio and Hal is chlorine.

90. A compound according to claim 86 of formula

91. A compound of formula

wherein X is -CN or halogen and L is -CH₂- or -N(CH₃)-

92. A compound of formula

93. A compound of formula

a' cont

having the R absolute stereochemistry at the asymmetric carbon, wherein X is -CN or halogen and L is -CH₂-, -O- or -N(CH₃)-.

94. A compound of formula

wherein X is -CN or halogen.