

Machine Learning with Python-From Linear Models to Deep Learning

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u>

☆ Course / Unit 1. Linear Classifiers and Gene... / Lecture 3 Hinge loss, Margin b

Exercises due Feb 15, 2023 08:59 -03 Completed Introduction

Video

♣ Download video file

Transcripts

♣ Download SubRip (.srt) file

▲ Download Text (.txt) file

Review: Distance from a Line to a Point

1/1 point (graded)

Consider a line L in \mathbb{R}^2 given by the equation

$$L: heta \cdot x + heta_0 = 0$$

where heta is a vector normal to the line L. Let the point P be the endpoint of a vector x_0 P equal the components of x_0).

What is the the shortest distance $m{d}$ between the line $m{L}$ and the point $m{P}$? Express $m{d}$ in t

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Do Not Sell My Personal Information

Connect

<u>Blog</u>

Contact Us

Help Center

Security

Media Kit

