Assignment 11

Pengolahan data dilakukan oleh Andre Christoga Pramaditya (drepram.com) dengan NPM 2006570006 dalam Microsoft Excel dan Python.

File excelnya dapat diakses pada

https://github.com/drepram/college/blob/main/sem1/psd/assignment11/computation.xlsx dan juga codebase yang terkait dengan pengerjaan tugas kali ini pada

https://github.com/drepram/college/tree/main/sem1/psd/assignment11.

From our Python code (with the help of numpy, matplotlib, and pandas.) we receive the following graphics:

Print out

height 1.000000 0.595708 weight 0.595708 1.000000

OLS Regression Results

Dep. Variab	ole:		wei	ight	R–sqı	uared:		0.355	
Model:				0LS	Adj.	0.354			
Method:		Least Squares				•			
Date:		Wed,	30 Dec 2	2020	Prob	9.92e-50			
Time:			01:07	7:52	Log-l	_ikelihood:		-1952.4	
No. Observations: Df Residuals:				504	AIC:	3909.			
				502	BIC:			3917.	
Df Model:				1					
Covariance Type:			nonrob						
========			std err		t	P> t	[0.025	0.975]	
Intercept	-100.60	 064				0.000			
•						0.000			
Omnibus:	======	======				======= in–Watson:	=======	1.846	
<pre>Prob(Omnibus):</pre>			0.000		Jarqı	4149.880			
Skew:			2.	076	Prob	0.00			
Kurtosis:		16.430		Cond	3.07e+03				

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.07e+03. This might indicate that there are strong multicollinearity or other numerical problems.

There are four assumptions associated with a linear regression model:

- 1. Linearity: The relationship between X and the mean of Y is linear.
- 2. Homoscedasticity: The variance of residual is the same for any value of X.
- 3. Independence: Observations are independent of each other.
- 4. Normality: For any fixed value of X, Y is normally distributed.

Linearity

The relationship between height and weight must be linear.

The scatterplot shows that, in general, as height increases, weight increases. There does not appear to be any clear violation that the relationship is not linear.

Independence of errors

There is not a relationship between the residuals and weight

In the residuals versus fits plot, the points seems to not be randomly scattered, and it does appear that there is a relationship.

Normality of errors

The residuals must be approximately normally distributed.

Most of the data points fall close to the line, but there does appear to be a slight curving. There is one data point that clearly stands out.

Homoscedasticity (Equal variances)

The variance of residual is the same for any value of X

In the following plot above, it can be clearly seen that there is a pattern.

We now present our calculation via Microsoft Excel.

SUMMARY OUTPUT									t-Test: Paired Two Sample for Means		
Regression	Statistics									Variable 1	Variable 2
Multiple R	0,5957075								Mean	164,9126984	59,728175
R Square	0,3548674								Variance	79,06989807	210,61582
Adjusted R S	0,3535823								Observations	504	504
Standard Erro	11,668153								Pearson Correlation	0,595707518	
Observations	504								Hypothesized Mean Di	0	
									df	503	
ANOVA									t Stat	202,5348538	
	df	SS	MS	F	Significance F				P(T<=t) one-tail	0	
Regression	1	37594,572	37594,572	276,13466	9,924E-50				t Critical one-tail	1,64788861	
Residual	502	68345,188	136,14579						P(T<=t) two-tail	0	
Total	503	105939,76							t Critical two-tail	1,964691405	
	Coefficients	tandard Erro	t Stat	P-value	Lower 95%	Upper 95%	Lower 95,0%	Upper 95,0%			
Intercept	-100,6064	9,6626399	-10,41189	4,063E-23	-119,5906	-81,62217	-119,5906	-81,62217			
X Variable 1	0,9722389	0,0585076	16,6173	9,924E-50	0,8572889	1,0871889	0,8572889	1,0871889			

The coefficient of determination, R^2 is 0,3548 or 35.48%. This value means that 35.48% of the variation in weight can be explained by height.

Regression equation:

weight =
$$-100, 6 + 0, 97$$
(height)

The slope is 0, 97, and the intercept is -100, 6. The test for the slope has a p-value of less than 0.001.

Therefore, with a significance level of 5%, we can conclude that there is enough evidence to suggest that height is a significant linear predictor of weight. We should make this conclusion with caution, however, since some of our assumptions (**LINE: Linearity, Independence of Errors, Normality of Errors, Equal Variances**) are not valid.

Recall that the confidence interval for the population slope is: $\hat{eta}_1 \pm t_{lpha/2} \hat{SE}\left(\hat{eta}_1
ight)$

The estimate for the slope is 0,97 and the standard error for the estimate (SE Coef in the output) is 0,058. There are observations, so the degrees of freedom are $n-2 \implies 504-2 \implies DoF=502$. Using Excel, we find the t-value to be: 1,964.

$$0,97 \pm 1,964(0,058) \implies (0.85,1.08)$$

With the formula above, we could state that: We are 95% confident that the population slope is between 0.85 and 1.08.

In other words, we are 95% confident that, as height increases by one inch, that weight increases by between 0.85 and 1.08 pounds, on average.

Using the regression formula with a height equal to 153 cm, we get:

weight =
$$-100, 6 + 0, 97(153) \implies \text{weight} = 47,81 \text{ kg}$$

A student with a height of 153cm, we would expect a weight of 47,81 kilograms. If we wanted, we could have Minitab produce a confidence interval for this estimate. We will leave this out for this example.

And to conclude, the estimated standard deviation of the error: s=11,6681529075601.