

EL2-Praktikum #10: Tiefpassfilter mit LTspice

In diesem Praktikum wird das Frequenzverhalten eines Tiefpasses erster Ordnung, eines Tiefpasses zweiter Ordnung und eines RLC-Filters untersucht (siehe Abbildung 1).

Abbildung 1. Tiefpass 1. Ordnung, Tiefpass 2. Ordnung und RLC-Filter für die Anwendung im Praktikum.

Das Tiefpassfilter 1. Ordnung soll mit einem Widerstand R_1 = 31.6 Ω und einem Kondensator C_1 = 2.2 μ F gebildet werden. Das Tiefpassfilter 2. Ordnung soll mit demselben Widerstand R_1 , demselben Kondensator C_1 = 2.2 μ F, mit R_2 = 3.16 k Ω und C_2 = 22 nF gebildet werden. Damit hat der Teil-Tiefpass, gebildet aus R_2 und C_2 die gleiche Grenzfrequenz wie das Tiefpassfilter 1. Ordnung. Für das RLC-Filter sind die Werte R_5 = 2 Ω , L = 2.2 mH und C_3 = 2.2 μ F zu verwenden. Damit hat das RLC-Filter die Resonanzfrequenz bei der Grenzfrequenz des Tiefpasses 1. Ordnung. R_3 soll wie folgt berechnet werden: Das RLC-Filter soll bei der Resonanzfrequenz eine lineare Dämpfung von 1/V2 was dem -3 dB Punkt entspricht.

Bode-Diagramme

Erzeugen Sie mit Matlab Bode-Diagramme der Frequenzgänge der Filter, von 1/100 der Resonanzfrequenz bis zur 100-fachen Resonanzfrequenz (gleicher Frequenzbereich für alle Filter). Der Amplituden- und der Phasengang aller Filter soll jeweils in ein Diagramm gezeichnet werden, damit die Filterkurven direkt vergleichbar sind. Zur Hilfe hier ein Matlab-Skript für den Tiefpass 1. Ordnung, w0 als Resonanzfrequenz und die Komponentenwerte müssen noch definiert werden:

```
set(0,'DefaultTextInterpreter','latex') % für griechische Zeichen
w=logspace(log10(w0/10),log10(w0*10)); % Frequenzvektor
H=1./(1+j*w*R1*C1); % Frequenzgang
semilogx(w/w0,20*log10(abs(H)))
title('Tiefpass erster Ordnung mit Komponentenwerten')
ylabel('H (dB)')
subplot(2,1,2), semilogx(w/w0,angle(H)*180/pi) %Plot Phase
xlabel('$\Omega$') % Darstellung eines grossen Omega
ylabel('$\varphi$ (Grad)') % Darstellung des Winkel-phi
```

Bemerkung: Es gibt zwar die Funktion bode, bodeplot, aber in das erzeugte Diagramm lassen sich mit einfachen Mitteln keine Messwerte eintragen. Gestalten Sie also Ihr eigenes Bode-Diagramm, mit subplot können zwei Diagramme in ein Fenster gezeichnet werden, semilogx erzeugt ein Plot mit logarithmischer x-Achse. Beachten Sie: Zehnerlogarithmus = «log10».

Simulationen

Bauen Sie alle Filter mit LTspice auf. Schliessen Sie eine Wechselspannungsquelle an und stellen Sie die Amplitudengänge und Phasengänge von 1/100 der Resonanzfrequenz bis zur 100-fachen Resonanzfrequenz mit LTspice dar. Da die Resultate von Matlab und LTspice identisch sein müssen, können Sie die Korrektheit Ihrer Berechnungen und Simulationen durch Vergleich überprüfen.

Aufgaben

Beantworten Sie folgende Fragen:

- 1. Welchen Zweck könnte die Wahl $R_2 >> R_1$ haben? Falls Sie nicht sofort auf die Antwort kommen, führen Sie die Simulation in LTspice mit $R_2 = R_1$ und $C_2 = C_1$ durch.
- 2. Ändern Sie R_3 so, dass die Amplitudengänge des idealisierten Tiefpasses 2. Ordnung ($R_2 >> R_1$) und des RLC-Filters übereinstimmen. Berechnen Sie den exakten Wert von R_3 . Für den so ermittelten Wert von R_3 ergibt sich ein bestimmter Gütefaktor Q. Wie gross ist dessen Zahlenwert?
- 3. RLC-Filter haben den Nachteil einer relativ teuren Spule mit vergleichsweise grosser Toleranz auf den Induktivitätswert. Vergleicht man den Amplitudengang des RLC-Filters (ursprünglicher Wert für R₃) mit dem Amplitudengang des Tiefpasses 2. Ordnung, so ist aber auch ein Vorteil offensichtlich. Beschreiben Sie diesen Vorteil in Worten.

Anmerkung: Für einen Bodeplot in Matlab basierend auf einer normierten Funktion $H(\Omega)$ definiert man statt dem ω -Frequenzbereich einfach Ω -Frequenzbereich. Im Beispiel für den Tiefpass:

```
Omega=logspace(-2,2); % Frequenzvektor von 0.01 bis 100 (50 Punkte) H=1./(1+j*Omega); % Frequenzgang semilogx(Omega,20*log10(abs(H))); % Plot Amplitude
```