# Augmented Reality Library for the Web (tracking.js)

by

Eduardo A. Lundgren Melo

Submitted to the Center for Informatics in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

#### FEDERAL UNIVERSITY OF PERNAMBUCO

February 2013

© Eduardo A. Lundgren Melo, MMXIII. All rights reserved.

The author hereby grants to UFPE permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created.

| Author        |                                     |
|---------------|-------------------------------------|
|               | Center for Informatics              |
|               | Mar 20, 2013                        |
| Certified by  |                                     |
|               | Silvio de Barros Melo               |
|               | Associate Professor                 |
|               | Thesis Supervisor                   |
| Accepted by   |                                     |
|               | Arthur C. Smith                     |
| Chairman, Der | partment Committee on Master Theses |

#### Augmented Reality Library for the Web (tracking.js)

by

Eduardo A. Lundgren Melo

Submitted to the Center for Informatics on Mar 20, 2013, in partial fulfillment of the requirements for the degree of Master of Science in Computer Science

#### Abstract

In this thesis, I designed and implemented an Augmented Reality (AR) framework aiming to provide a common infrastructure to develop applications and to accelerate the use of those techniques on the web in commercial products. It runs on native web browsers without requiring third-party plugins installation. This involves the use of several modern browser specifications as well as implementation of different computer vision algorithms and techniques into the browser environment. These algorithms can be used to detect and recognize faces, identify objects, track moving objects, etc. The source language of the framework is JavaScript that is the language interpreted by all modern browsers. The majority of interpreted languages have limited computational power when compared to compiled languages, such as C. The computational complexity involved in AR requires highly optimized implementations. Some optimizations are discussed and implemented on this work in order to achieve good results when compared with similar implementations in compiled languages. A series of evaluation tests were made, to determine how effective these techniques were on the web.

Thesis Supervisor: Silvio de Barros Melo

Title: Associate Professor

## Acknowledgments

This is the acknowledgements section. You should replace this with your own acknowledgements [2] foo [2].

| This master thesis has been examined by a Committee as follows:        |
|------------------------------------------------------------------------|
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
| Professor Silvio de Barros Melo                                        |
| Associate Professor                                                    |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
| Professor Veronica Teichrieb                                           |
| Chairman, Thesis Committee  Associate Professor                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
| Professor Alvo Dumbledore                                              |
| Member, Thesis Committee<br>Hogwarts School of Witchcraft and Wizardry |

# Contents

| Li       | st of          | Acronyms                                          | 15 |  |  |  |  |  |  |
|----------|----------------|---------------------------------------------------|----|--|--|--|--|--|--|
| 1        | Intr           | roduction                                         | 19 |  |  |  |  |  |  |
|          | 1.1            | Motivation                                        | 20 |  |  |  |  |  |  |
|          | 1.2            | Problem Definition                                | 20 |  |  |  |  |  |  |
|          | 1.3            | Objectives                                        | 20 |  |  |  |  |  |  |
|          |                | 1.3.1 Augmented Reality Library for the Web       | 21 |  |  |  |  |  |  |
|          | 1.4            | Thesis Structure                                  | 21 |  |  |  |  |  |  |
| <b>2</b> | Basic Concepts |                                                   |    |  |  |  |  |  |  |
|          | 2.1            | Web                                               | 23 |  |  |  |  |  |  |
|          |                | 2.1.1 State of the Art                            | 24 |  |  |  |  |  |  |
|          |                | 2.1.2 Problems of Augmented Reality on the Web    | 28 |  |  |  |  |  |  |
|          | 2.2            | Augmented Reality                                 | 28 |  |  |  |  |  |  |
|          |                | 2.2.1 State of the Art                            | 28 |  |  |  |  |  |  |
|          | 2.3            | Tracking and Object Detection                     | 29 |  |  |  |  |  |  |
|          |                | 2.3.1 State of the Art                            | 29 |  |  |  |  |  |  |
| 3        | Aug            | gmented Reality Library for the Web (tracking.js) | 31 |  |  |  |  |  |  |
|          | 3.1            | Introduction                                      | 31 |  |  |  |  |  |  |
|          | 3.2            | Color Tracking Algorithm                          | 31 |  |  |  |  |  |  |
|          | 3.3            | Marker-less Tracking Algorithm (Keypoints)        | 32 |  |  |  |  |  |  |
|          | 3.4            | Rapid Object Detection and Tracking Algorithm     | 32 |  |  |  |  |  |  |

| 4 | 4 Evaluation |                           |    |  |  |  |  |  |  |
|---|--------------|---------------------------|----|--|--|--|--|--|--|
|   | 4.1          | Tools                     | 33 |  |  |  |  |  |  |
|   | 4.2          | Scenario Description      | 33 |  |  |  |  |  |  |
|   | 4.3          | Evaluation Methodology    | 34 |  |  |  |  |  |  |
|   |              | 4.3.1 Matching Robustness | 34 |  |  |  |  |  |  |
|   |              | 4.3.2 Oclusion Robustness | 34 |  |  |  |  |  |  |
|   |              | 4.3.3 FPS                 | 34 |  |  |  |  |  |  |
|   | 4.4          | Results                   | 34 |  |  |  |  |  |  |
| 5 | Con          | nclusion                  | 35 |  |  |  |  |  |  |
|   | 5.1          | Contributions             | 35 |  |  |  |  |  |  |
|   | 5.2          | Future Work               | 35 |  |  |  |  |  |  |

# List of Figures

| 2-1 | Reference architecture for web browsers       | 25 |
|-----|-----------------------------------------------|----|
| 2-2 | Reference architecture for browsers engines   | 26 |
| 2-3 | Regular vs typed arrays performance benchmark | 28 |

# List of Tables

# List of Acronyms

AJAX Asynchronous JavaScript and XML

**BAST** Bug Report Analysis and Search Tool

**BTT** Bug Report Tracker Tool

**BRN** Bug Report Network

**CCB** Change Control Board

# Listings

| 2.1         | Basic example of J | lavaScript syntax |      |      |   |       |   |   |   |   |       | 26 |
|-------------|--------------------|-------------------|------|------|---|-------|---|---|---|---|-------|----|
| <b>∠.</b> ⊥ | Dable Chample of 9 | avascript symux   | <br> | <br> | • | <br>• | • | • | • | • | <br>• | 20 |

## Introduction

This section introduces this master thesis. It will briefly describe the motivation of the work itself, state the problem that we will focus on solving and shortly discuss the proposed solution. In the end, explain the structure of the next chapters.

Micro-optimization is a technique to reduce the overall operation count of floating point operations. In a standard floating point unit, floating point operations are fairly high level, such as "multiply" and "add"; in a micro floating point unit ( $\mu$ FPU), these have been broken down into their constituent low-level floating point operations on the mantissas and exponents of the floating point numbers.

Chapter two describes the architecture of the  $\mu$ FPU unit, and the motivations for the design decisions made.

Chapter three describes the design of the compiler, as well as how the optimizations discussed in section 1 were implemented.

Chapter four describes the purpose of test code that was compiled, and which statistics were gathered by running it through the simulator. The purpose is to measure what effect the micro-optimizations had, compared to unoptimized code. Possible future expansions to the project are also discussed.

#### 1.1 Motivation

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Augmented Reality, Tracking and Detection, Web, Tracking on the Web

#### 1.2 Problem Definition

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 1.3 Objectives

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 1.3.1 Augmented Reality Library for the Web

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 1.4 Thesis Structure

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

# **Basic Concepts**

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 2.1 Web

Using concepts from existing hypertext systems, Tim Berners-Lee, computer scientist and at that time employee of CERN, wrote a proposal in March 1989 for what would eventually become the World Wide Web (WWW) [13].

The World Wide Web is a shared information system operating on top of the Internet. Web browsers retrieve content and display from remote web servers using a stateless and anonymous protocol called HyperText Transfer Protocol (HTTP). Web pages are written using a simple language called HyperText Markup Language (HTML). They may be augmented with other technologies such as Cascading Style Sheets (CSS), which adds additional layout and style information to the page, and JavaScript (JS) language, which allows client-side computation. Browsers typically provide other useful features such as bookmarking, history, password management,

and accessibility features to accommodate users with disabilities [2].

In the beginning of the web, plain text and images were the most advanced features available on the browsers. In 1994, the World Wide Web Consortium (W3C) was founded to promote interoperability among web technologies. Companies behind web browser development together with the web community, were able to contribute to the W3C specifications [13]. Today's web is a result of the ongoing efforts of an open web community that helps define these technologies and ensure that they're supported in all web browsers. Those contributions transformed the web in a growing universe of interlinked pages and applications, with videos, photos, interactive content, 3D graphics processed by the Graphics Processing Unit (GPU), and other varieties of features without requiring any third-party plugins installation [4]. The significant reuse of open source components among different browsers and the emergence of extensive web standards have caused the browsers to exhibit "convergent evolution" [2].

#### 2.1.1 State of the Art

The browser main functionality is to present a web resource, by requesting it from the server and displaying it on the browser window. There are four major browsers used today: Internet Explorer, Firefox, Safari and Chrome. Currently, the usage share of Firefox, Safari and Chrome together is nearly 60% [14].

Three mature browser implementations were selected and, for each browser, a conceptual architecture was described based on domain knowledge and available documentation. Firefox, Safari and Chrome were used to derive the reference architecture because they are mature systems, have reasonably large developer communities and user bases, provide good support for web standards, and are entirely open source.

The reference architecture for web browsers based on three well known open source implementations architecture, is shown in Figure 2-1; it comprises eight major subsystems plus the dependencies between them: (1) the User Interface, this includes the address bar, back and forward buttons, bookmarking menu etc. Every part of the browser display except the main window where you see the requested resource;

(2) the Browser Engine, an embeddable component that provides a high-level interface for querying and manipulating the Rendering Engine; (3) the Rendering Engine, which performs parsing and layout for HTML documents, optionally styled with CSS; (4) the Networking subsystem, used for network calls, like HTTP requests. It has platform independent interface and underneath implementations for each platform; (5) the JavaScript Interpreter, used to parse and execute the JavaScript code; (6) the XML Parser; (7) the UI Backend, which provides drawing and windowing primitives, user interface widgets, and fonts. Underneath it uses the operating system user interface methods; and (8) the Data Persistence subsystem, which stores various data associated with the browsing session on disk, including bookmarks, cookies, and cache [2].



Figure 2-1: Reference architecture for web browsers

Browser subsystem are swappable and could vary for browser vendor, platform or operational system. The browsers mostly differ between different vendors in subsystems (2) the Browser Engine, (3) the Rendering Engine, and (5) the JavaScript Interpreter. Firefox subsystems (2) and (3) is known as Gecko [12] [10], Safari as WebKit [5] [6] and Chrome uses a fork of WebKit project called Blink [7] [8]. Those browsers subsystems, often called Browser Engines, are shown on Figure 2-2.

Another common swappable subsystem is (5) the JavaScript Interpreter. JavaScript is a lightweight, interpreted, object-oriented language with first-class functions, most known as the scripting language for Web pages [10]. The JavaScript standard is EC-

MAScript. As of 2013, all modern browsers fully support ECMAScript 5.1. Older browsers support at least ECMAScript 3 [10] [9].



Figure 2-2: Reference architecture for browsers engines

The JavaScript language is intended to be used within some larger environment, be it a browser, server-side scripts, or similar. For a basic example of the language syntax a *println* might have been defined in Listing 2.1.

```
function println(string) {
    window.alert(string);
}
```

Listing 2.1: Basic example of JavaScript syntax

JavaScript core language features comprises few major features: (1) Functions and function scope, function is a "subprogram" that can be called by code external, functions have a scope it references for execution; (2) Global Objects, refer to objects in the global scope, such as general-purpose constructors (Array, Boolean, Date etc.), Typed array constructors (Float32Array, Int32Array, Uint32Array etc.), Error constructors etc.; (3) Statements, consist of keywords used with the appropriate syntax (function, if...else, block, break, const, continue, debugger etc.); (4) Operators and keywords, arithmetic operators (+,-,\*,/, etc.), bitwise operators (\*,-,\*,-,\*), etc.), assignment operators, comparison operators, logical operators, string operators, member operators, conditional operator, delete operator, instanceof operator, new operator, this operator, typeof operator, void operator etc. [11].

As web applications become more and more powerful, adding features such as audio and video manipulation, access to raw data using WebSockets, and so forth, it has become clear that there are times when it would be helpful for JavaScript code to be able to quickly and easily manipulate raw binary data. In the past, this had to be simulated by treating the raw data as a string and using the charCodeAt() method to read the bytes from the data buffer [11] [3].

However, this is slow and error-prone, due to the need for multiple conversions, especially if the binary data is not actually byte-format data, but, for example, 32-bit integers or floats.

JavaScript typed arrays provide a mechanism for accessing raw binary data much more efficiently. This thesis takes advantage of typed arrays in order to achieve acceptable performance on the web of complex algorithms implementations.

The three well known open-source browsers, Firefox version 16.0, Safari version 6.0.4 and Chrome version 25.0.1364, were compared in the following benchmark executed on Mac OS X 10.8.3, 2.6 GHz Intel Core i7 16 GB 1600 MHz RAM. The array types selected were *Array*, not strongly typed array; *Float32Array*, represents an array of 32-bit floating point numbers; *Uint8Array*, represents an array of 8-bit unsigned integers. For each array type a read and a write operation was executed 100,000 times. In order to not compromise benchmark results caused by run-time type conversion [9], the write value used for each array type were proper selected, e.g. *Number* 1.0 was used for regular arrays *Array*, *Number* 1.0 was used for *Float32Array*, and unsigned *Number* 1 for *Uint8Array*. Regular vs typed arrays performance benchmark is shown in Figure 2-3 [1].

As conclusion, typed arrays provides fast read and write operations when compared to regular arrays in JavaScript, i.e. 7872 ops/sec for unsigned array vs 4437 ops/sec in Firefox browser, similar behavior is noticeable on Safari and Chrome, thereby float and unsigned arrays are vastly used on complex algorithms implementations on the web.

Nevertheless, reading and writing raw binary data using typed arrays solves part of the problem of manipulating video and images. The other missing feature was resolved by the fact of HTML5 brings a new element called *canvas*, which provides access to the pixel matrix of those medias in order to be manipulated from Augmented



Figure 2-3: Regular vs typed arrays performance benchmark

Reality (AR) algorithms.

#### 2.1.2 Problems of Augmented Reality on the Web

#### 2.2 Augmented Reality

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 2.2.1 State of the Art

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt

mollit anim id est laborum.

#### 2.3 Tracking and Object Detection

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 2.3.1 State of the Art

# Augmented Reality Library for the Web (tracking.js)

#### 3.1 Introduction

Supported modules: color, keypoints, rapid object detection.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 3.2 Color Tracking Algorithm

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 3.3 Marker-less Tracking Algorithm (Keypoints)

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

BRIEF, FAST, RANSAC.

# 3.4 Rapid Object Detection and Tracking Algorithm

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Viola-Jones: Features, Integral images, Learning, Detection, Training a cascade of classifiers, Training data optimization for JavaScript.

## **Evaluation**

#### 4.1 Tools

OpenCV, JSFlartoolkit, Others. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 4.2 Scenario Description

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 4.3 Evaluation Methodology

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 4.3.1 Matching Robustness

#### 4.3.2 Oclusion Robustness

#### 4.3.3 FPS

#### 4.4 Results

Graphics, Analysys. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

## Conclusion

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 5.1 Contributions

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 5.2 Future Work

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud

exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

# **Bibliography**

- [1] Eduardo A Lundgren Melo. Typed Arrays Performance, 2013.
- [2] Alan Grosskurth and M.W. Godfrey. A reference architecture for Web browsers. In 21st IEEE International Conference on Software Maintenance (ICSM'05), pages 661–664. IEEE, 2005.
- [3] Inc.) Herman, David (Mozilla and Inc.) Russell, Kenneth (Google. Typed Array Specification, 2013.
- [4] Ian Hickson. HTML 5 Nightly Specification (W3C), 2013.
- [5] Apple Inc. Safari Browser, 2013.
- [6] Apple Inc. The WebKit Open Source Project, 2013.
- [7] Google Inc. Google Chrome Browser, 2010.
- [8] Google Inc. Blink, 2013.
- [9] Ecma International. ECMA-262 ECMAScript Language Specification. JavaScript Specification, 16(December):1–252, 2009.
- [10] Inc. Mozilla. Gecko, 2013.
- [11] Inc. Mozilla. Mozilla Developer Network, 2013.
- [12] Inc. Mozilla. Mozilla Firefox Browser, 2013.
- [13] W.C. The World Wide Web Consortium (W3C), 2006.
- [14] Wikimedia. Wikimedia Traffic Analysis Report Browsers, 2013.