





Sandra Hansen-Morath Sascha Wolfer



# **STATISTIK MIT R**

Skalenniveaus

Mitglied der
Leibniz-Gemeinschaft



## **MESSEN UND SKALEN**

- Datenerhebung ist Variablenmessung.
- Die einzelnen Messungen müssen notiert werden.
- Dies geschieht immer auf einer bestimmten Skala.







#### **GRUNDLAGEN**

#### Variable

- Untersuchungsmerkmal, Bezeichnung für eine interessierende Eigenschaft, die in unterschiedlichen Varianten (Ausprägungen) auftritt
- Sie kann in mindestens zwei Abstufungen vorkommen
- Bsp.: Tempus; Geschlecht

#### Merkmalsausprägungen

- Werte, die eine Variable annehmen kann
- Bsp.: Präsens, Perfekt; männlich, weiblich



# **SKALEN- / MESSNIVEAUS**

- Die Art und Genauigkeit der Messung beeinflusst das Skalenniveau, auf dem eine Variable notiert wird.
- Je höher das Skalenniveau, desto mehr statistische Verfahren können angewendet werden.
- Ziel: Das höchstmögliche Skalenniveau! Ansonsten wird Information verschenkt.
- Sind Messungen nicht hinreichend durchdacht, können die Daten u.U. nur mit großem Aufwand gerettet werden (wenn überhaupt).



#### **SKALENNIVEAUS**

- Je höher das Skalenniveau, desto mehr, präzisere und stärkere statistische Verfahren können angewendet werden.
- Mögliche Skalenniveaus sind
  - Nominalskala
  - Ordinalskala / Rangskala
  - Intervallskala Metrische Skala /
  - Verhältnisskala / Rationalskala / Kardinalskala



## **NOMINALSKALA**

- Notation von Variablen, die keine inhärente Ordnung ausweisen.
- Lediglich die Gleich- bzw. Verschiedenheit kann aus der Skala abgelesen werden.
- Beispiele:
  - Biologisches Geschlecht
  - Muttersprache
  - Richtig / Falsch
- Mögliche Operationen:
  - Auszählen von Häufigkeiten
  - Tests: bspw. χ²-Test





## **ORDINALSKALA**

- Notation von Variablen, die eine inhärente Ordnung aufweisen, aber keine Aussage über die Größe der Abstände möglich ist.
- **Zusätzlich** kann die Geordnetheit / Rangfolge aus einer Skala abgelesen werden.
- Beispiele:
  - Altersklassen
  - Härte von Mineralien (Mohssche Härteskala)
- Zusätzliche Operationen:
  - Aufstellen von Rangfolgen (größer/kleiner)
  - Tests: bspw. Mann-Whitney-U-Test







#### **INTERVALLSKALA**

- Notation von Variablen, bei denen Aussagen über die Größe von Abständen möglich sind. Der Nullpunkt der Skala ist nicht absolut.
- **Zusätzlich** können Aussagen über die Differenzen (die Intervalle) zwischen Werten getroffen werden (und die Verhältnisse von Differenzen).
- Beispiele:
  - Reaktionszeiten
  - Temperatur in °C oder °F
  - Datum
- Zusätzliche Operationen:
  - Errechnen des Mittelwerts, der Varianz/Standardabweichung
  - Vergleich von Differenzen
  - Tests: bspw. t-Test und ANOVA





## **RATIONALSKALA**

- Notation von Variablen deren Nullpunkt absolut ist.
- Zusätzlich können Aussagen über die Verhältnisse zwischen Messwerten gemacht werden.
- Beispiele:
  - Token pro Text
  - Gehalt
  - Gewicht
  - Temperatur in K
- Zusätzliche Operation:
  - Aussagen der Form "A ist doppelt so schwer wie B."
  - keine zusätzlichen Tests
- Der Unterschied zwischen Intervall- und Rationalskala ist für uns meist irrelevant.





# ÜBERBLICK

|                                                | Nominalskala                               | Ordinalskala                     | Kardinalskala                                                    |
|------------------------------------------------|--------------------------------------------|----------------------------------|------------------------------------------------------------------|
| Eigenschaften des<br>numerischen Relativs      | Identität                                  | Identität und<br>Geordnetheit    | Identität, Geordnetheit,<br>Definiertheit der Abstände           |
| Ableitbare<br>Interpretationen                 | Gleich- / Verschiedenheit<br>von Elementen | + Größer-/Kleiner-<br>Relationen | + Relationen und Gleich- /<br>Verschiedenheit von<br>Intervallen |
| Beispiele für zulässige statistische Kennwerte | Modus                                      | + Median                         | + Mittelwert, Varianz                                            |
| Variablentyp                                   | diskret                                    | diskret                          | kontinuierlich                                                   |



## **NOMINAL? ORDINAL? INTERVALL?**

- Tokenfrequenz
- Akzeptabilitätsurteile auf Likert-Skala
- Schulabschluss
- Schwierigkeit von Vokabeln (einfach/mittel/schwer)
- IQ
- Spanisch: "ser" oder "aver" als Hilfsverb?
- Lesezeit auf einem Wort
- Einbettungstiefe einer Nominalphrase
- Herkunft eines Korpus
- Korpusgröße
- Formalitätsgrad



#### **BEGRIFFLICHES**

- Hier wurden die Begriffe Rangskala und Ordinalskala synonym verwendet.
- Die enge Definition einer Rangskala ist, dass jeder Rang nur einmal vergeben werden darf.
  - Man spricht in diesem Fall davon, dass keine Bindungen vorliegen.
- In der Praxis ist dieser Unterschied nur selten wichtig. Statistische Tests korrigeren i.A. für gebundene Ränge.



# ÜBERFÜHRBARKEIT

- Merkmale, die auf einer Skala notiert werden, können immer auch auf niedrigeren Skalen notiert werden.
- Dabei geht aber Information verloren!
- Beispiel: Wortfrequenz





# ÜBERFÜHRBARKEIT

- Auf der Intervallskala (rohe Frequenz) sind alle Wörter und auch die Intervalle zwischen ihnen noch unterscheidbar.
- Auf der Rangskala (Frequenzklassen) fallen manche Wörter bereits in eine Klasse. Ein Unterschied zwischen diesen Wörtern ist damit nicht mehr detektierbar.
- Auf der Nominalskala (niedrig- vs. hochfrequent) wird die ursprüngliche Skala einfach in der Mitte getrennt.
   Das Problem verschärft sich also noch.



#### **DATENERHEBUNG**

- Ziel einer jeden Datenerhebung ist es, auf dem höchstmöglichen Skalenniveau zu messen.
- Außerdem gilt: Soweit möglich sollte jeder Einzelfall dokumentiert werden!
- Beispielstudie: Wird ein spanisches Wort mit dem Auxiliar "ser" (sein) oder "aver" (haben) gebildet? Als potentielle Einflussfaktoren werden erhoben
  - Jahrhundert
  - Zustandsveränderung ja/nein
- Datenbasis: 1000 mit Auxiliar gebildete Verbformen pro Jahrhundert (17. und 18. Jahrhundert).



## **DATENERHEBUNG**

| 17. Jahrhundert |      | Zustandsveränderung |     |
|-----------------|------|---------------------|-----|
|                 |      | nein                | ja  |
| Hilfsverb       | ser  | 150                 | 250 |
|                 | aver | 320                 | 280 |

| 18. Jahrhundert |      | Zustandsveränderung |     |
|-----------------|------|---------------------|-----|
|                 |      | nein                | ja  |
| Hilfsverb       | ser  | 50                  | 150 |
|                 | aver | 550                 | 250 |

| Verb | Zust.v. | Jahr | Hilfsv. |
|------|---------|------|---------|
| 1    | ja      | 1654 | ser     |
| 2    | nein    | 1688 | ser     |
| 3    | nein    | 1672 | aver    |
| 4    | ja      | 1753 | aver    |
| 5    | ja      | 1792 | aver    |
| 6    | nein    | 1702 | aver    |
| 7    | ja      | 1634 | ser     |
|      |         |      | •••     |
| 2000 | nein    | 1777 | ser     |

Die Kreuztabellenlösung (links) ist zwar kompakter und übersichtlicher, die Datentabellenlösung (rechts) ist aber viel **flexibler** und **mächtiger**! Außerdem kann die linke Lösung sehr leicht daraus erstellt werden.



#### **SKALENNIVEAUS IN R**

- In R gilt jeder numerische Vektor als kardinalskaliert.
  - Das kann aber umkodiert werden (?factor).
- Character-Vektoren (Vektoren mit Zeichenketten) sind grundsätzlich nominalskaliert.
- Faktorenvektoren können als "ordered" (geordnet) behandelt werden, sind aber per default nominalskaliert.
- Liest man eine Datentabelle ein, werden (in der Defaulteinstellung) alle Spalten, in denen Zeichenketten stehen, als Faktoren behandelt.



#### **BEGRIFFE**

- Variable
- Ausprägung
- Skalenniveau / Messniveau
- Nominalskala
- Ordinal- / Rangskala
- Intervallskala
- Rational- / Verhältnisskala
- Kardinalskala