COMP9318 (17S1) ASSIGNMENT 1

DUE ON 23:59 28 MAY, 2017 (SUN)

Q1. (40 marks)

Consider the following base cuboid *Sales* with *four* tuples and the aggregate function SUM:

Location	Time	Item	Quantity
Sydney	2005	PS2	1400
Sydney	2006	PS2	1500
Sydney	2006	Wii	500
Melbourne	2005	XBox 360	1700

Location, Time, and Item are dimensions and Quantity is the measure. Suppose the system has built-in support for the value **ALL**.

- (1) List the tuples in the complete data cube of R in a tabular form with 4 attributes, i.e., Location, Time, Item, SUM(Quantity)?
- (2) Write down an equivalent SQL statement that computes the same result (i.e., the cube). You can *only* use standard SQL constructs, i.e., no **CUBE BY** clause.
- (3) Consider the following *ice-berg cube* query:

SELECT Location, Time, Item, SUM(Quantity)
FROM Sales
CUBE BY Location, Time, Item
HAVING COUNT(*) > 1

Draw the result of the query in a tabular form.

(4) Assume that we adopt a MOLAP architecture to store the full data cube of R, with the following mapping functions:

$$f_{Location}(x) = \begin{cases} 1 & \text{if } x = \text{`Sydney'}, \\ 2 & \text{if } x = \text{`Melbourne'}, \\ 0 & \text{if } x = \mathbf{ALL}. \end{cases}$$
$$f_{Time}(x) = \begin{cases} 1 & \text{if } x = 2005, \\ 2 & \text{if } x = 2006, \\ 0 & \text{if } x = \mathbf{ALL}. \end{cases}$$

$$f_{Item}(x) = \begin{cases} 1 & \text{if } x = \text{'PS2'}, \\ 2 & \text{if } x = \text{'XBox 360'}, \\ 3 & \text{if } x = \text{'Wii'}, \\ 0 & \text{if } x = \mathbf{ALL}. \end{cases}$$

Draw the MOLAP cube (i.e., sparse multi-dimensional array) in a tabular form of (*ArrayIndex*, *Value*). You also need to write down the function you chose to map a multi-dimensional point to a one-dimensional point.

Consider binary classification where the class attribute y takes two values: 0 or 1. Let the feature vector for a test instance be a d-dimension column vector x. A linear classifier with the model parameter w (which is a d-dimension column vector) is the following function:

$$y = \begin{cases} 1 & \text{, if } \boldsymbol{w}^{\top} \boldsymbol{x} > 0 \\ 0 & \text{, otherwise.} \end{cases}$$

We make additional simplifying assumptions: x is a binary vector (i.e., each dimension of x take only two values: 0 or 1).

- Prove that if the feature vectors are d-dimension, then a Naïve Bayes classifier is a linear classifier in a d+1-dimension space. You need to explicitly write out the vector \boldsymbol{w} that the Naïve Bayes classifier learns.
- It is obvious that the Logistic Regression classifier learned on the same training dataset as the Naïve Bayes is also a linear classifier in the same d+1-dimension space. Let the parameter \boldsymbol{w} learned by the two classifiers be \boldsymbol{w}_{LR} and \boldsymbol{w}_{NB} , respectively. Briefly explain why learning \boldsymbol{w}_{NB} is much easier than learning \boldsymbol{w}_{LR} .

int 1.
$$\log(\prod_i x_i = x_i (\prod) \log(x_i)$$

Consider the (slightly incomplete) k-means clustering algorithm as depicted in Algorithm 1.

- (1) Assume that the stopping criterion is till the algorithm converges to the final k clusters. Can you insert several lines of pseudo-code to the algorithm to implement this logic? You are **not** allowed to change the first 7 lines though.
- (2) The cost of k clusters is just the total cost of each group q_i , or formally

$$cost(g_1, g_2, \dots, g_k) = \sum_{i=1}^k cost(g_i)$$

Algorithm 1: k-means(D, k)

```
Data: D is a dataset of n d-dimensional points; k is the number of clusters.

1 Initialize k centers C = [c_1, c_2, \ldots, c_k];

2 canStop \leftarrow \mathbf{false};

3 while canStop = \mathbf{false} do

4 Initialize k empty clusters G = [g_1, g_2, \ldots, g_k];

5 for each data point p \in D do

6 c_x \leftarrow \mathsf{NearestCenter}(p, C);

7 g_{c_x}.\mathsf{append}(p);

8 for each group g \in G do

9 c_x \leftarrow \mathsf{ComputeCenter}(g);
```

 $cost(g_i)$ is the sum of squared distances of all its constituent points to the center c_i , or

$$cost(g_i) = \sum_{p \in g_i} dist^2(p, c_i)$$

dist() is the Euclidean distance. Now show that the cost of k clusters as evaluated at the end of each iteration (i.e., after Line 9 in the current algorithm) never increases.

(3) Prove that the cost of clusters obtained by k-means algorithm always converges to a local minima. You can make use of the previous conclusion even if you have not proved it.

Hint 2. Show that the two loops (Lines 5-7 and Lines 8-9) never increases the cost.

SUBMISSION

Please write down your answers in a file named ass1.pdf. You must write down your name and student ID on the first page.

```
You can submit your file by
```

```
give cs9318 ass1 ass1.pdf
```

Late Penalty. -10% per day for the first two days, and -30% for each of the following days.