

Fully 3D Long-Term Simulation of the Coupling Resonance Experiments at the CERN PS

Ji Qiang and Robert Ryne, LBNL Giuliano Franchetti, Ingo Hofmann, GSI Elias Metral, CERN

HB2012, Beijing, China

Outline

- Introduction
- Computational model
- Simulation of Montague resonance experiment at PS
- Summary

Introduction

- Proton-Synchrotron (PS) is amongst the LHC injectors the oldest, and will continue to serve the LHC at least for the next 25 years.
- Space-charge effects is a dominant factor limiting the bunch intensity.
- Montague Resonance:2 Qx 2 Qy = 0
- can cause particle due to unequal aperture size in horizontal and vertical dimensions.
- benchmark space-charge codes

Refs: B. W. Montague, CERN-Report No. 68-38, CERN, 1968.

E. Metral et al., Proc. of EPAC 2004, p. 1894.

I. Hofmann et al., Proc. of EPAC 2004, p. 1960.

Static and Dynamics Montague Resonance Crossing at PS

Dynamics Emittance Exchange in Constant Focusing Channel with Different Ramping Time and Synchrotron Oscillation Period

different ramping time but fixed synch. period

different synch. period but fixed ramping time

IMPACT Code Suite

- IMPACT-Z: parallel PIC code (z-code)
- IMPACT-T: parallel PIC code (t-code)
- Envelope code, pre- and post-processors,...
- Optimized for parallel processing
- Applied to many projects: SNS, JPARC, RIA, FRIB, PS2, future light sources, advanced streak cameras,...
- Has been used to study photoinjectors for BNL e-cooling project, Cornell ERL, FNAL/A0, LBNL/APEX, ANL, JLAB, SLAC/LCLS

IMPACT-Z

- Parallel PIC code using coordinate"z" as the independent variable
- Key Features
 - Detailed RF accelerating and focusing model
 - —Multiple 3D Poisson solvers
 - Variety of boundary conditions
 - 3D Integrated Green Function
 - Multi-charge state
 - Machine error studies and steering
 - —Wakes
 - —CSR (1D)
 - Run on both serial and multiple processor computers

IMPACT-Z for Space-Charge Study in Ring

Particle-in-cell simulation with split-operator method

- Particle-in-cell approach:
 - Charge deposition on a grid
 - Field solution via spectral-finite difference method with transverse rectangular conducting pipe and longitudinal open
 - Field interpolation from grid to particles
- Split-operator method with $H = H_{external} + H_{space charge}$
- Thin lens kicks for nonlinear elements
- Lumped space-charge at a number locations

Poisson Solver Used in Space-Charge Calculation

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = -\frac{\rho}{\epsilon_0}$$

with boundary conditions

$$\phi(x = 0, y, z) = 0,$$

$$\phi(x = a, y, z) = 0,$$

$$\phi(x, y = 0, z) = 0,$$

$$\phi(x, y = b, z) = 0,$$

$$\phi(x, y, z = \pm \infty) = 0,$$

$$\rho(x, y, z) = \sum_{l=1}^{N_l} \sum_{m=1}^{N_m} \rho^{lm}(z) \sin(\alpha_l x) \sin(\beta_m y),$$

$$\phi(x, y, z) = \sum_{l=1}^{N_l} \sum_{m=1}^{N_m} \phi^{lm}(z) \sin(\alpha_l x) \sin(\beta_m y),$$

where

$$\rho^{lm}(z) = \frac{4}{ab} \int_0^a \int_0^b \rho(x, y, z) \sin(\alpha_l x) \sin(\beta_m y),$$

$$\phi^{lm}(z) = \frac{4}{ab} \int_0^a \int_0^b \phi(x, y, z) \sin(\alpha_l x) \sin(\beta_m y),$$

$$\frac{\partial^{2} \phi^{lm}(z)}{\partial z^{2}} - \gamma_{lm}^{2} \phi^{lm}(z) = -\frac{\rho^{lm}(z)}{\epsilon_{0}},$$

$$\frac{\phi_{n+1}^{lm} - 2\phi_{n}^{lm} + \phi_{n-1}^{lm}}{h_{z}^{2}} - \gamma_{lm}^{2} \phi_{n}^{lm} = -\frac{\rho_{n}^{lm}}{\epsilon_{0}},$$

$$\phi_{-1}^{lm} = \exp(-\gamma_{lm} h_{z}) \phi_{0}^{lm}, \quad n = 0,$$

$$\phi_{N+1}^{lm} = \exp(-\gamma_{lm} h_{z}) \phi_{N}^{lm}, \quad n = N.$$

Numerical Solutions vs. Analytical Solutions

Physical Parameters of PS

Physical parameters:

RF frequency = 3.5 MHz

RF voltage = 27 kV

Ek = 1.4 GeV

 $Emit_x = 7.5 \text{ mm-mrad}$

 $Emit_y = 2.5 mm-mrad$

Rms bunch length = 45 ns

Rms dp/p = 1.7×10^{-3}

Horizontal tune: 6.15 - 6.245

Vertical tune: 6.21

Synchrotron period: 1.5 ms

Half Aperture = $7 \text{cm} \times 3.5 \text{cm}$

 $I = 1.0 \times 10^{12}$

Refs: B. W. Montague, CERN-Report No. 68-38, CERN, 1968.

E. Metral et al., Proc. of EPAC 2004, p. 1894.

I. Hofmann et al., Proc. of EPAC 2004, p. 1960.

Generation of Initial Matched Distribution

- Zero current match found using MaryLie normal form capabilities:
 - Normalize 1-turn map: M=ANA⁻¹

A is the normalizing map

N is the normal form which causes only rotations in phase space

- Consider a function $g((x^2+p_x^2),(y^2+p_y^2),(t^2+p_t^2))$
- Then $f(\zeta)=g(A(x^2+p_x^2),(y^2+p_y^2),(t^2+p_t^2))$ is a matched beam.

Proof: The distribution after one turn is given by $f(M^{-1}\zeta)=g(AN\ A^{-1}A\ (x^2+p_x^2),(y^2+p_y^2),(t^2+p_t^2))=$ $g(AN\ (x^2+p_x^2),(y^2+p_y^2),(t^2+p_t^2))=$ $g(A\ (x^2+p_x^2),(y^2+p_y^2),(t^2+p_t^2))=$ $g(A\ (x^2+p_x^2),(y^2+p_y^2),(t^2+p_t^2))=$

Numerical Parameters: Test of Convergence (1)

100k vs. 200k marco-particles

Numerical Parameters: Test of Convergence (2)

Numerical Parameters: Test of Convergence (3)

Static Montague Resonance Crossing at PS

Emittance Evolution w/o Longitudinal Synchrotron Motion (6.197,6.21)

Synchrotron motion enhances the emittance exchange!

Dynamics Montague Resonance Crossing at PS (1)

100 ms dynamic Crossing

Initial and the Final Phase Space Distribution of the Dynamic Resonance Crossing

Simulation Dynamics Montague Resonance Crossing with Frozen Synchrotron Motion

Dynamics Montague Resonance Crossing at PS (2)

100 ms dynamic Crossing

Summary

- 3D self-consistent space-charge simulation reproduce the experiment data reasonably well
- Dynamic Montague resonance crossing shows no symmetry around the resonance stopband
- Longitudinal synchrotron motion helps the emittance exchange inside the resonance stopband