CIENCIA Y ANALITICA DE DATOS

Actividad Semanal 6 - Visualizacion

Profesor Titular: María de la Paz Rico Fernández

Profesor Tutor: Juan Miguel Meza Méndez

Alumno: Samuel Elias Flores Gonzalez

Matrícula: A01793668

Fecha: 1/Noviembre/2022

```
# Modulos, Librerias y Paquetes
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib as mpl
import matplotlib pyplot as plt
%matplotlib inline
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, StandardScaler
from sklearn.decomposition import PCA
```

1. Cargar los datos

```
url = "https://raw.githubusercontent.com/PosgradoMNA/Actividades_Aprendizaje-/main/default%20

df = pd.read_csv(url)
```

▼ 2. Informacion del dataframe

df.columns #Se verifican los nombres actuales de las columnas del dataframe

df.head(5) #Se despliegan los primeros 5 datos

	ID	Amount_Credit	Gender	Education	Marital_Status	Age	Payment_Sep_2005	Payment
0	1	20000	2.0	2.0	1.0	24.0	2.0	
1	2	120000	2.0	2.0	2.0	26.0	-1.0	
2	3	90000	2.0	2.0	2.0	34.0	0.0	
3	4	50000	2.0	2.0	1.0	37.0	0.0	
4	5	50000	1.0	2.0	1.0	57.0	-1.0	

5 rows × 25 columns

#Se reemplazan los nombres de las columnas

```
df = df.rename(columns = {'X1' : 'Amount_Credit',
                           'X2' : 'Gender',
                           'X3' : 'Education',
                           'X4' : 'Marital_Status',
                           'X5' : 'Age',
                           'X6' : 'Payment_Sep_2005',
                           'X7' : 'Payment_Aug_2005',
                           'X8' : 'Payment_Jul_2005',
                           'X9' : 'Payment Jun 2005',
                           'X10' : 'Payment May 2005',
                           'X11' : 'Payment Apr 2005',
                           'X12' : 'Bill State Sep 2005',
                           'X13' : 'Bill_State_Aug_2005',
                           'X14' : 'Bill State Jul 2005',
                           'X15' : 'Bill_State_Jun_2005',
                           'X16' : 'Bill State May 2005',
                           'X17' : 'Bill State Apr 2005',
                           'X18' : 'Previous_Pay_Sep_2005',
                           'X19': 'Previous Pay Aug 2005',
                           'X20' : 'Previous_Pay_Jul_2005',
                           'X21': 'Previous Pay Jun 2005',
                           'X22' : 'Previous_Pay_May_2005',
```

```
'X23' : 'Previous_Pay_Apr_2005' },
inplace = False
)
```

df.head(5) #Se vuelven a desplegar los primeros 5 valores del dataframe

	ID	Amount_Credit	Gender	Education	Marital_Status	Age	Payment_Sep_2005	Payment
0	1	20000	2.0	2.0	1.0	24.0	2.0	
1	2	120000	2.0	2.0	2.0	26.0	-1.0	
2	3	90000	2.0	2.0	2.0	34.0	0.0	
3	4	50000	2.0	2.0	1.0	37.0	0.0	
4	5	50000	1.0	2.0	1.0	57.0	-1.0	

5 rows × 25 columns

df.dtypes

ID	int64
Amount_Credit	int64
Gender	float64
Education	float64
Marital_Status	float64
Age	float64
Payment_Sep_2005	float64
Payment_Aug_2005	float64
Payment_Jul_2005	float64
Payment_Jun_2005	float64
Payment_May_2005	float64
Payment_Apr_2005	float64
Bill_State_Sep_2005	float64
Bill_State_Aug_2005	float64
Bill_State_Jul_2005	float64
Bill_State_Jun_2005	float64
Bill_State_May_2005	float64
Bill_State_Apr_2005	float64
Previous_Pay_Sep_2005	float64
Previous_Pay_Aug_2005	float64
Previous_Pay_Jul_2005	float64
Previous_Pay_Jun_2005	float64
Previous_Pay_May_2005	float64
Previous_Pay_Apr_2005	float64
Υ	float64
dtype: object	

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30000 entries, 0 to 29999
Data columns (total 25 columns):
```

#	Column	Non-Null Count	Dtype
0	ID	30000 non-null	int64
1	Amount_Credit	30000 non-null	int64
2	Gender	29999 non-null	float64
3	Education	29998 non-null	float64
4	Marital_Status	29998 non-null	float64
5	Age	29995 non-null	float64
6	Payment_Sep_2005	29997 non-null	float64
7	Payment_Aug_2005	29995 non-null	float64
8	Payment_Jul_2005	29993 non-null	float64
9	Payment_Jun_2005	29991 non-null	float64
10	Payment_May_2005	29984 non-null	float64
11	Payment_Apr_2005	29986 non-null	float64
12	Bill_State_Sep_2005	29989 non-null	float64
13	Bill_State_Aug_2005	29989 non-null	float64
14	Bill_State_Jul_2005	29987 non-null	float64
15	Bill_State_Jun_2005	29985 non-null	float64
16	Bill_State_May_2005	29983 non-null	float64
17	Bill_State_Apr_2005	29990 non-null	float64
18	Previous_Pay_Sep_2005	29992 non-null	float64
19	Previous_Pay_Aug_2005	29991 non-null	float64
20	Previous_Pay_Jul_2005	29992 non-null	float64
21	Previous_Pay_Jun_2005	29989 non-null	float64
22	Previous_Pay_May_2005	29989 non-null	float64
23	Previous_Pay_Apr_2005	29995 non-null	float64
24	Υ	29997 non-null	float64

dtypes: float64(23), int64(2)

memory usage: 5.7 MB

df.isna()

		ID	Amount_Credit	Gender	Education	Marital_Status	Age	Payment_Sep_2005			
	0	False	False	False	False	False	False	False			
	1	False	False	False	False	False	False	False			
	2	False	False	False	False	False	False	False			
	3	False	False	False	False	False	False	False			
df.isn	a().va	lues.ar	ny() # Se verif	ica si ha	ay algun da	to vacio		alse False alse False False			
Т	rue										
	29995	False	False	False	False	False	False	False			

→ 3. Limpieza de los datos

```
df.dropna(inplace = True) #Eliminamos los datos NaN o nulos

df.isna().values.any() #Comprobamos si existen datos nulos

False
```

▼ 4. Calculo de la estadistica descriptiva

df.describe()

was all in Allate Allate and the second of t

Decidimos eliminar los registros vacios debido a que la cantidad era muy pequeña en comparacion con la cantidad total de registros, es decir se eliminaron 42 registros de 30000, menos del 1%.

Segun la estadistica descriptiva, las columnas o variables que presentan mayor desviacion estandar son: Amount_Credit, los Bill_state y los Previous_Pay; mientras que todas las demas columnas presentas una desviacion estandar alrededor de 0 y 1.

Podemos observar que las columnas presentan distintas magnitudes, es decir mientras que Amount_Credit esta en el orden de los miles, otras variables o columnas estan entre los valores 0 y 1. Esto quiere decir que se debe aplicar una normalización a los datos para poder tener una menor diferencia en los rangos de los mismos.

5. Conteo de variables categoricas

Se separan las variables de entrada y la salida.

```
X = df.drop("Y", axis=1) #Eliminamos la columna y y almacenamos dataframe en X
Y = df["Y"] #Almacenamos columna Y
```

Ahora nos interesa identificar a las variables categoricas para proceder a eliminarlas, puesto que solo nos interesan las numericas

ID, Gender, Education, Marital status, Age, Payment September - April 2005.

X = X.drop(['ID', 'Gender', 'Education', 'Marital_Status', 'Age', 'Payment_Sep_2005', 'Paymen
X.head() #Mostramos dataframe con datos numericos

	Amount_Credit	Bill_State_Sep_2005	Bill_State_Aug_2005	Bill_State_Jul_2005	Bill_S
0	20000	3913.0	3102.0	689.0	
1	120000	2682.0	1725.0	2682.0	
2	90000	29239.0	14027.0	13559.0	
3	50000	46990.0	48233.0	49291.0	
4	50000	8617.0	5670.0	35835.0	

→ 6. Escalamiento de los datos

Prodemos a escalar los datos para evitar sesgos creados por la diferencias de magnitudes de cada una de las columnas.

	Amount_Credit	Bill_State_Sep_2005	Bill_State_Aug_2005	Bill_State_Jul_2005	Bill_S
0	0.010101	0.149982	0.069164	0.086723	
1	0.111111	0.148892	0.067858	0.087817	
2	0.080808	0.172392	0.079532	0.093789	
3	0.040404	0.188100	0.111995	0.113407	
4	0.040404	0.154144	0.071601	0.106020	

Como se puede obervar, ahora mismo, los datos todas las columnas se encuentran en un rango de 0 a 1.

▼ 7. Reduccion de dimensiones con PCA

```
-1.28164910e-02, -7.85206363e-03, -9.97520841e-03], [-9.19042877e-02, 7.78591548e-02, -8.01930001e-03, ..., -4.45835633e-05, 7.39169942e-03, -2.01033628e-03]])
```

▼ 7.1. Explicacion de la varianza de los datos

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	Р
% Varianza Explicada	2.31	1.22	0.14	0.11	0.10	0.06	0.04	0.04	0.02	0.01	0.01	C
Desviación Estándar	0.15	0.11	0.04	0.03	0.03	0.02	0.02	0.02	0.02	0.01	0.01	C
%Proporción de Varianza	56.50	29.90	3.30	2.80	2.50	1.50	1.10	0.90	0.60	0.40	0.30	(

Como vemos en la tabla, las primeras dos componentes prinpipales nos explican el 86.5%, por lo cual podemos decir que este es el nímero minimos de componentes principales. A partir de la tercera componente la varianza explicada es mu pequeña como para ser considerada.

Double-click (or enter) to edit

```
fig, axes = plt.subplots(1,2)
axes[0].scatter(scaled_X["Amount_Credit"], scaled_X["Bill_State_Sep_2005"], c=Y)
axes[0].set_title('Before PCA')
axes[1].scatter(pcs_t[:,0], pcs_t[:,1], c=Y)
axes[1].set_title('After PCA')
plt.show()
```


Se puede observar como despues de aplicar el PCA, utilizando las dos primeras componentes, se reduce su varianza distribuyendose de mejor manera, si se visualizan demasiado juntas es debido a la cantidad de registros en el conjunto de datos.

▼ 7.2. Importancia de las variables de cada componente

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9
Amount_Credit	0.681	-0.727	-0.077	-0.022	-0.025	-0.015	-0.015	-0.011	-0.004
Bill_State_Sep_2005	0.334	0.317	-0.194	0.424	-0.229	0.231	-0.204	0.366	0.088
Bill_State_Aug_2005	0.350	0.343	-0.177	0.329	-0.161	0.106	0.276	-0.225	-0.271
Bill_State_Jul_2005	0.196	0.188	-0.021	0.041	-0.012	-0.106	0.105	-0.247	0.534
Bill_State_Jun_2005	0.317	0.298	0.028	-0.227	0.155	-0.395	0.138	0.194	0.187
Bill_State_May_2005	0.313	0.289	0.095	-0.429	0.260	0.074	-0.197	-0.099	-0.128
Bill_State_Apr_2005	0.232	0.212	0.240	-0.332	-0.026	-0.020	-0.232	-0.136	-0.259
Previous_Pay_Sep_2005	0.034	0.004	0.097	0.028	0.092	0.054	0.712	-0.322	-0.245
Previous_Pay_Aug_2005	0.020	-0.002	0.094	-0.031	0.064	-0.030	0.223	-0.031	0.626
Previous_Pay_Jul_2005	0.035	-0.001	0.140	-0.095	0.141	-0.017	0.406	0.762	-0.148
Previous_Pay_Jun_2005	0.043	-0.004	0.215	-0.124	0.196	0.855	0.048	0.019	0.193
Previous_Pay_May_2005	0.062	-0.013	0.816	0.150	-0.501	-0.084	-0.018	0.004	0.018
Previous_Pay_Apr_2005	0.057	-0.014	0.329	0.562	0.712	-0.141	-0.186	-0.057	-0.063

```
pcsComponents_df.PC1.abs().idxmax()
```

^{&#}x27;Amount_Credit'

Observamos que tanto la componente 1 y 2 tienen un mayor peso sobre la variable Amount_Credit

▼ 8. Histograma de los atributos

```
fig, ax = plt.subplots()
for i in range(0,13):
  plt.hist(pcs_t[:,i])
  plt.title("PC%d"%(i+1))
  plt.show()
```


→ 9. Visualizacion de los datos usando 3 graficos

Grafica 1

```
plt.xticks(rotation = 'vertical')
g = sns.boxplot(data=pcsComponents_df)
```


plt.xticks(rotation = 'vertical')
g = sns.boxplot(data=scaled_X)

Grafica 2

sns.pairplot(pcsComponents_df)

<seaborn.axisgrid.PairGrid at 0x7fda3a7e3dd0>

sns.pairplot(scaled_X)

<seaborn.axisgrid.PairGrid at 0x7fda34f1ad50>

Grafica 3

```
PC_components = np.arange(pcs.n_components_) + 1
_ = sns.set(style = 'whitegrid',
            font_scale = 1.2
#### c. Gráfica 3
fig, ax = plt.subplots(figsize=(10, 7))
_ = sns.barplot(x = PC_components,
                y = pcs.explained_variance_ratio_,
                color = 'b'
                )
_ = sns.lineplot(x = PC_components-1,
                 y = np.cumsum(pcs.explained_variance_ratio_),
                 color = 'black',
                 linestyle = '-',
                 linewidth = 2,
                 marker = 'o',
                 markersize = 8
                 )
plt.title('Scree Plot')
plt.xlabel('N-th Principal Component')
plt.ylabel('Variance Explained')
plt.ylim(0, 1)
plt.show()
```


10. Interpreta y explica cada uno de los graficos

Diagrama Boxplot

Con este diagrama podemos observar la distribucion de cada elemento, observando el sesgo que presentan estas mismas, siendo positivos o negativos. El diagrama consta de 4 cuartiles, distribuidos en una caja dividida y dos bigote.

en el primer boxplot nos enfocamos en el PCA, donde pordemos observar que los Componente 7, 10 y 11 son los que presentan una mayor varianza pero sin presentar outliers. Por el otro lado el componente 13 tiene una caja y bigotes reducida, pero con una gran cantidad de outliers.

En el segundo box plot se muestran las columnas y su distribucion, lo que nos permite ver el comportamiento mes a mes de cada variable, lo que nos podria ayudar a detectar anomalias en algun mes en especifico.

Diagrama Pairplot

El pairplot nos permite observar el comortamiento que presentan las variables con respecto a las componentes. Nos permiten visualizar como se correlacionan entre si, o en otras palabras, como las variables forman parte del PC.

Diagrama Scree Plot

Esta ultima grafica nos despliega la varianza explicada, las barras es la varianza de cada una de las componentes, miesntras que la grafica de linea nos muestra la varianza acumulada. Visualmente, podemos observar que sobrepasamos el 90% de la variación total en la componente PC4. Tambien podemos observar que las componentes que mas aportan a la variación son las dos primeras.

https://colab.research.google.com/drive/1fjr0cUbJTr98IXqJor7X3rWS4iUuukY7#scrollTo=F-B7uQsjv7uL