

"Todos modelos são errados, mas alguns são úteis" (Box, G. E. P, 1979).

Máquinas de Estados

Paulo Ricardo Lisboa de Almeida

Máquina de Estados Finita

Máquina de Estados Finita.

Finite-State Machine (FSM).

Circuito que passa por uma sequência (finita) de **estados** pré-determinados.

A mudança de estados é controlada por um clock ou algum outro sinal de entrada.

Máquina de Moore

Em uma máquina de Moore, a saída depende apenas do estado atual.

As **entradas externas e o clock** (ou similar) ditam qual será o **próximo estado.**

Diagrama de estados

Comumente utilizamos um diagrama de estados para modelar as FSM.

Grafo.

Vértices representam os estados.

Arestas representam as transições entre estados.

Estado

Um estado representa um **estágio do circuito.**

Um pulso de clock (ou algo similar) dispara a troca de estado.

O próximo estado depende do estado anterior e da entrada atual.

Exemplo

Uma máquina de estados que troca entre os estados 0->1->0->1... a cada pulso de clock

Estado inicial

O estado inicial da máquina geralmente é representado por um círculo duplo, ou por uma seta.

Adicionando entradas

Podemos marcar uma transição de estados com uma entrada.

Indica que a mudança de estado ocorre quando é recebido o **pulso de clock e determinada entrada.**

Modelando uma catraca

Vamos modelar uma catraca.

Modelando uma catraca

Vamos modelar uma catraca.

Você pode dar nomes aos estados

Saídas

Em uma máquina de Moore, os estados possuem saídas atreladas.

Lembre-se: com Moore, a saída depende do estado atual.

Considere que a catraca possui uma trava e um LED.

Trava: travada ao enviar 1, aberta ao enviar 0.

LED: vermelho ao enviar 0, verde ao enviar 1.

Saídas

Em uma máquina de Moore, os estados possuem saídas atreladas.

Lembre-se: com Moore, a saída depende do estado atual.

Considere que a catraca possui uma trava e um LED.

Trava: travada ao enviar 1, aberta ao enviar 0.

LED: vermelho ao enviar 0, verde ao enviar 1.

Saídas

Em uma máquina de Moore, os estados possuem saídas atreladas.

Lembre-se: com Moore, a saída depende do estado atual.

Considere que a catraca possui uma trava e um LED.

Trava: travada ao enviar 1, aberta ao enviar 0.

LED: vermelho ao enviar 0, verde ao enviar 1.

Modelando uma catraca

Vamos modelar uma catraca.

Transformando em um circuito

Primeiro passo, dê um código binário para cada estado.

Isso vai ajudar a armazenar os estados na memória.

Transformando em um circuito

	Entradas	Saí	das	
E _t	Р	М	E _{t+1}	Saída
0	0	0	0	10
0	0	1	1	10
0	1	0	0	10
0	1	1	1	10
1	0	0	1	01
1	0	1	1	01
1	1	0	0	01
1	1	1	1	01

Faça uma tabela verdade.

 $E_t e E_{t+1}$: Estado atual e próximo

P: Empurrando

M: Moeda

Saída: saídas no led e no controle do braço da catraca

Flip-Flops

Vamos armazenar os estados em Flip-Flops.

Vamos precisar de apenas um Flip-Flop para armazenar o estado atual nesse circuito.

Você deve pensar em **qual entrada será necessária** para que o Flip-Flop escolhido armazene o valor que representa o estado.

Se preciso, crie outra coluna na tabela.

Nesse circuito, vamos usar Tipo D.

A entrada no Flip-Flop é igual a E_{t-1} .

	Entradas	Saí	das	
E _t	Р	М	$E_{t\text{-}l}$	Saída
0	0	0	0	10
0	0	1	1	10
0	1	0	0	10
0	1	1	1	10
1	0	0	1	01
1	0	1	1	01
1	1	0	0	01
1	1	1	1	01

Modele um circuito que calcula o próximo estado a partir da tabela verdade e do Flip-Flop escolhido

Use, por exemplo.

Álgebra de Boole.

Mapas de Karnaugh.

Entradas			Saí	das
E _t	Р	М	E _{t+1}	Saída
0	0	0	0	10
0	0	1	1	10
0	1	0	0	10
0	1	1	1	10
1	0	0	1	01
1	0	1	1	01
1	1	0	0	01
1	1	1	1	01

	PM	- PM	PM	PM
E _t	0	1	1	0
E _t	1	1	1	0

$$E_{t+1} = M + E_t.\overline{P}$$

Implemente com portas lógicas

	Entradas			das
E _t	Р	М	E _{t+1}	Saída
0	0	0	0	10
0	0	1	1	10
0	1	0	0	10
0	1	1	1	10
1	0	0	1	01
1	0	1	1	01
1	1	0	0	01
1	1	1	1	01

$$E_{t+1} = M + E_{t}.\overline{P}$$

	Entradas	Saí	das	
E _t	Р	М	E _{t+1}	Saída
0	0	0	0	10
0	0	1	1	10
0	1	0	0	10
0	1	1	1	10
1	0	0	1	01
1	0	1	1	01
1	1	0	0	01
1	1	1	1	01

Faça o mesmo para cada uma das saídas.

Máquina de Moore depende apenas do estado atual.

	Entradas	Saí	das	
E _t	Р	М	$E_{t\text{-}l}$	Saída
0	0	0	0	10
0	0	1	1	10
0	1	0	0	10
0	1	1	1	10
1	0	0	1	01
1	0	1	1	01
1	1	0	0	01
1	1	1	1	01

O primeiro bit da saída representa a catraca, e o segundo o LED. Vamos chamar de $S_{\rm c}$ e $S_{\rm l}$

$$S_c = \overline{E}_t$$

$$S_L = E_t$$

Faça você mesmo

Faça o circuito para a seguinte máquina de estados.

Dica: {0,1} é uma forma de dizer que a transição ocorre quando a entrada é 0 ou 1 (tanto faz).

Moore

Número de flip-flops para manter o estado: 2.

Número de bits na entrada: 1.

Número de bits na saída: 1.

Estado	Atual	Entrada	Próximo Estado		Saída
D1	DO	E	P1	P0	S
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	1
1	1	1	0	0	1

Estado	Atual	Entrada	Próximo Estado		Saída
D1	D0	E	P1	P0	S
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	1
1	1	1	0	0	l

S = D1.D0

Estado	Atual	Entrada	Próximo	o Estado	Saída
D1	DO	E	P1	P0	S
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	1
1	1	1	0	0	1

S = D1.D0 P1 = !D1.D0.!E + !D1.D0.E P1 = !D1.D0.(!E + E) P1 = = !D1.D0

Estado	Estado Atual		Próximo Estado		Saída
D1	DO	E	P1	P0	S
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1		0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	1
1	1	1	0	0	1

```
S = D1.D0
P1 = !D1.D0.!E + !D1.D0.E
P1 = !D1.D0.(!E + E)
P1 = !D1.D0
P0 = !D1.!D0.!E + !D1.!D0.E + !D1.D0.E
P0 = !D1.!D0.(!E +.E) + !D1.D0.E
P0 = !D1.!D0 + !D1.D0.E
P0 = !D1.(!D0 + D0.E) <- !A + AB = !A + B
P0 = !D1.(!D0 + E)
P0 = !D1.!D0 + !D1.E
```


Exercícios

- 1. Assista a esse vídeo sobre como sincronizar (ou armazenar) uma entrada:
 - a. youtu.be/e9rVVKUvj78
- 2. Faça uma máquina de estados para uma máquina de refrigerantes. Considere o seguinte:
 - a. No início, o usuário pressiona um botão indicando se quer um refrigerante de 3 ou de 4 reais.
 - b. A máquina só aceita moedas de 1 real.
 - i. Somente uma moeda pode ser inserida por vez.
 - c. Quando o usuário insere a quantidade total necessária de moedas, a máquina serve o refrigerante (de 3 ou 4 reais, de acordo com a escolha inicial).
 - i. Feito isso, a máquina volta para o estado inicial.

Referências

Ronald J. Tocci, Gregory L. Moss, Neal S. Widmer. Sistemas digitais. 10a ed. 2017.

Thomas Floyd. Sistemas Digitais: Fundamentos e Aplicações. 2009.

Licença

Esta obra está licenciada com uma Licença <u>Creative Commons Atribuição 4.0 Internacional.</u>

