21 - Introduzione al Calcolo Integrale negli Spazi di Banach

Decomposizioni

Definizione: Decomposizione di un intervallo chiuso e limitato

Sia $[a;b] \subseteq \mathbb{R}$.

Si dice **decomposizione** di [a;b] una tupla $\Delta = (x_1, \ldots, x_{n+1})$ tale che $a = x_1 < \cdots < x_n = b$.

I punti x_1, \ldots, x_{n+1} si dicono **capisaldi** di Δ .

L'insieme delle decomposizioni di [a;b] si denota con $\mathcal{D}[a;b]$.

Fissato $\Delta=(x_1,\ldots,x_{n+1})\in\mathcal{D}[a;b]$, si dice **modulo** di Δ il valore $|\Delta|:=\max_{1\leq i\leq n}(x_{i+1}-x_n)$.

₩ Definizione: Decomposizioni canoniche

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $n \in \mathbb{N}$.

Si dice decomposizione canonica n-esima di [a;b] la tupla

$$\Delta_n:=(ilde x_1,\dots, ilde x_{n+1})$$
, dove $ilde x_i=a+rac{i-1}{n}(b-a)$ per ogni $i\in\{1,\dots,n+1\}$.

Essa è una decomposizione di [a;b], essendo i suoi elementi ordinati in maniera strettamente crescente ed essendo $x_1 = a$ e $x_{n+1} = b$.

Q Osservazione

Si ha $|\Delta_n|=rac{b-a}{n}$, essendo $ilde x_{i+1}- ilde x_i=rac{b-a}{n}$ per ogni $i\in\{1,\dots,n\}.$

Dunque, si ha in particolare $\lim_n |\Delta_n| = 0$.

₩ Definizione: Decomposizioni canoniche

Sia $[a;b] \subseteq \mathbb{R}$.

Siano
$$\Delta_1=(x_1,\ldots,x_{n+1}), \Delta_2=(y_1,\ldots,y_{m+1})\in \mathcal{D}[a;b].$$

Si dice **decomposizione unione** di Δ_1 e Δ_2 la tupla $\Delta_1 \cup \Delta_2 = (z_1, \dots, z_{p+1})$, definita dimodoché:

- $\{z_1,\ldots,z_{p+1}\}=\{x_1,\ldots,x_{n+1}\}\cup\{y_1,\ldots,y_{m+1}\};$
- $z_1 < \cdots < z_{p+1}$.

Essa esiste, è unica ed è una decomposizione di [a; b].

Integrabilità secondo Riemann

₩ Definizione: Integrabilità secondo Riemann, Integrale

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f:[a;b] \to X$ una funzione.

f si dice integrabile secondo Riemann quando esiste $\mathbf{u} \in X$ tale che:

Per ogni $\varepsilon > 0$, esiste $\delta > 0$ tale che

per ogni
$$\Delta=(x_1,\ldots,x_{n+1})\in\mathcal{D}[a;b]$$
 con $|\Delta|<\delta$, per ogni $(t_1,\ldots,t_n)\in[x_1;x_2]\times\cdots\times[x_n;x_{n+1}]$, si ha

$$\left\|\sum_{i=1}^n (x_{i+1}-x_i)f(t_i)-\mathbf{u}
ight\|$$

Q Osservazione

u è unico.

Infatti, siano $\mathbf{u}, \mathbf{v} \in X$ per cui si verifica quanto espresso nella definizione, e si fissi $\varepsilon > 0$.

In corrispondenza a $\frac{\varepsilon}{2}$, esistono allora $\delta_{\mathbf{u}}, \delta_{\mathbf{v}} > 0$ per cui

$$\left\|\sum_{i=1}^h (x_{i+1}-x_i)f(x_i) - \mathbf{u}
ight\| < rac{arepsilon}{2},$$
 per ogni $\Delta = (x_1,\dots,x_{h+1}) \in \mathcal{D}[a;b]$ con $|\Delta| < \delta_{\mathbf{u}}$;

$$\left\|\sum_{i=1}^k (y_{i+1}-y_i)f(y_i)-\mathbf{v}
ight\|<rac{arepsilon}{2},$$
 per ogni $\Delta=(y_1,\ldots,y_{k+1})\in\mathcal{D}[a;b]$ con $|\Delta|<\delta_{\mathbf{v}}$.

Si consideri la decomposizione canonica $\Delta_n = (\tilde{x}_1, \dots, \tilde{x}_{n+1})$ di [a; b], con $n \in \mathbb{N}$ tale che $|\Delta_n| < \min\{\delta_{\mathbf{u}}, \delta_{\mathbf{v}}\}$, che esiste essendo $\lim_n |\Delta_n| = 0$.

Si ha allora
$$\left\|\sum_{i=1}^n (\tilde{x}_{i+1} - \tilde{x}_i) f(\tilde{x}_i) - \mathbf{u} \right\| < \frac{\varepsilon}{2} \ \mathrm{e} \left\|\sum_{i=1}^n (\tilde{x}_{i+1} - \tilde{x}_i) f(\tilde{x}_i) - \mathbf{v} \right\| < \frac{\varepsilon}{2};$$

si ottiene allora

$$arepsilon > \left\| \sum_{i=1}^n (ilde{x}_{i+1} - ilde{x}_i) f(ilde{x}_i) - \mathbf{u}
ight\| + \left\| \sum_{i=1}^n (ilde{x}_{i+1} - ilde{x}_i) f(ilde{x}_i) - \mathbf{v}
ight\|$$

sommando membro a membro le due disuguaglianze

$$=\left\|\mathbf{u}-\sum_{i=1}^n (ilde{x}_{i+1}- ilde{x}_i)f(ilde{x}_i)
ight\|+\left\|\sum_{i=1}^n (ilde{x}_{i+1}- ilde{x}_i)f(ilde{x}_i)-\mathbf{v}
ight\|$$

$$0 \geq \left\| \mathbf{u} - \sum_{i=1}^n (ilde{x}_{i+1} - ilde{x}_i) f(ilde{x}_i) + \sum_{i=1}^n (ilde{x}_{i+1} - ilde{x}_i) f(ilde{x}_i) - \mathbf{v}
ight\| = \left\| \mathbf{u} - \mathbf{v}
ight\|$$

Per sub-additività delle norme

Ne segue che $\|\mathbf{u} - \mathbf{v}\| < \varepsilon$ per ogni $\varepsilon > 0$, per cui $\mathbf{u} = \mathbf{v}$.

Avendo acquisito l'unicità di \mathbf{u} , tale vettore prende il nome di **integrale** di f sull'intervallo [a;b]; esso si denota con $\int_a^b f(x) dx$.

Osservazione

Se $X = \mathbb{R}$, le nozioni di integrabilità e di integrale secondo Riemann fornite sopra coincidono con quelle definite originariamente per le sole funzioni reali.

Proposizione 21.1: Integrale delle funzioni costanti

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

 $\mathbf{k} \in X$.

Sia $c_{\mathbf{k}}:[a;b]\to X$ la funzione costantemente pari a \mathbf{k} , definita cioè ponendo $c_{\mathbf{k}}(x)=\mathbf{k}$ per ogni $x\in[a;b]$.

 $c_{\mathbf{k}}$ è integrabile secondo Riemann, e $\int_a^b c_{\mathbf{k}}(x)\,dx = (b-a)\mathbf{k}.$

Dimostrazione

Si osserva che, per ogni $\Delta=(x_1,\ldots,x_{n+1})\in\mathcal{D}[a;b]$ e per ogni $(t_1,\ldots,t_n)\in[x_1;x_2]\times\cdots\times[x_n;x_{n+1}]$ vale

$$\left\| \sum_{i=1}^{n} (x_{i+1} - x_i) c_{\mathbf{k}}(t_i) - (b - a) \mathbf{k} \right\|$$

$$= \left\| \sum_{i=1}^{n} (x_{i+1} - x_i) \mathbf{k} - (b - a) \mathbf{k} \right\|$$
Per definizione di $c_{\mathbf{k}}$

$$= \|(b - a) \mathbf{k} - (b - a) \mathbf{k}\|$$

$$\sum_{i=1}^{n} (x_{i+1} - x_i) = x_{n+1} - x_1 = b - a$$

$$= 0$$

Da questo fatto segue allora che $c_{\mathbf{k}}$ è integrabile, con $\int_a^b c_{\mathbf{k}}(x) \, dx = (b-a)\mathbf{k}$.

Proposizione 21.2: Caratterizzazione dell'integrabilità

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f : [a;b] \to X$ una funzione.

Sono equivalenti le seguenti affermazioni:

- *f* è integrabile secondo Riemann;
- Per ogni $\varepsilon > 0$, esiste $\delta > 0$ tale che

per ogni
$$\Delta_1=(x_1,\ldots,x_{n+1})$$
, $\Delta_2=(y_1,\ldots,y_{n+1})\in\mathcal{D}[a;b]$ con $|\Delta_1|<\delta$ e $|\Delta_2|<\delta$, per ogni $(t_1,\ldots,t_n)\in[x_1;x_2]\times\cdots\times[x_n;x_{n+1}]$ e per ogni $(s_1,\ldots,s_m)\in[y_1;y_2]\times\cdots\times[y_m;y_{m+1}]$, si ha $\left\|\sum\limits_{i=1}^n(x_{i+1}-x_i)f(t_i)-\sum\limits_{i=1}^m(y_{j+1}-y_j)f(s_j)\right\|<\varepsilon.$

J-1

Dimostrazione

Se f è integrabile secondo Riemann, esistono $\mathbf{u} \in X$ e $\delta > 0$ tale che $\left\| \sum_{i=1}^n (x_{i+1} - x_i) f(t_i) - \mathbf{u} \right\| < \frac{\varepsilon}{2}$ per ogni

$$\Delta=(x_1,\ldots,x_{n+1})\in\mathcal{D}[a;b] ext{ con } |\Delta|<\delta ext{ e per ogni } (t_1,\ldots,t_n)\in[x_1;x_2] imes\cdots imes[x_n;x_{n+1}].$$

Allora, date due decomposizioni $\Delta_1=(x_1,\ldots,x_{n+1})$, $\Delta_2=(y_1,\ldots,y_{n+1})\in\mathcal{D}[a;b]$ con $|\Delta_1|<\delta$ e $|\Delta_2|<\delta$, e fissate due tuple $(t_1,\ldots,t_n)\in[x_1;x_2]\times\cdots\times[x_n;x_{n+1}]$ e $(s_1,\ldots,s_m)\in[y_1;y_2]\times\cdots\times[y_m;y_{m+1}]$, si ha

$$\left\|\sum_{i=1}^n (x_{i+1}-x_i)f(t_i) - \sum_{j=1}^m (y_{j+1}-y_j)f(s_j)
ight\| = \left\|\sum_{i=1}^n (x_{i+1}-x_i)f(t_i) - \mathbf{u} + \mathbf{u} - \sum_{j=1}^m (y_{j+1}-y_j)f(s_j)
ight\|$$

$$\leq \left\|\sum_{i=1}^n (x_{i+1}-x_i)f(t_i)-\mathbf{u}
ight\|+\left\|\mathbf{u}-\sum_{j=1}^m (y_{j+1}-y_j)f(s_j)
ight\|$$

Per sub-additività delle norme

$$\leq \left\|\sum\limits_{i=1}^{n}(x_{i+1}-x_{i})f(t_{i})-\mathbf{u}
ight\|+\left\|\sum\limits_{i=1}^{m}(y_{i+1}-y_{i})f(s_{i})-\mathbf{u}
ight\|$$

Per sub-additività delle

Per costruzione di **u**

Viceversa, si supponga verificata la condizione del secondo punto.

Per ogni $\varepsilon > 0$, si fissi dunque $\delta_{\varepsilon} > 0$ dimodoché si verifichi quanto descritto in corrispondenza a ε .

Per ogni $n \in \mathbb{N}$, posta $\Delta_n = (x_1^{(n)}, \dots, x_{n+1}^{(n)})$ la decomposizione canonica n-esima, si consideri $\sum_{i=1}^n f(x_i^{(n)}) \big(x_{i+1}^{(n)} - x_i^{(n)}\big)$.

La successione
$$\left\{\sum\limits_{i=1}^n fig(x_i^{(n)}ig)ig(x_{i+1}^{(n)}-x_i^{(n)}ig)
ight\}_{n\in\mathbb{N}}\subseteq X$$
 è di Cauchy;

infatti, per ogni $\varepsilon>0$, esiste $\nu\in\mathbb{N}$ tale che $|\Delta_n|<\delta_{\varepsilon}$ per ogni $n\geq
u$, in quanto $\lim_n |\Delta_n|=0$.

Allora, per ogni $m,n\geq
u$ si ha $|\Delta_m|,|\Delta_n|<\delta_{arepsilon}$, e dunque

$$\left\|\sum_{i=1}^n fig(x_i^{(n)}ig)ig(x_{i+1}^{(n)}-x_i^{(n)}ig) - \sum_{j=1}^m fig(x_j^{(m)}ig)ig(x_{j+1}^{(m)}-x_j^{(m)}ig)
ight\| < arepsilon,$$
 per costruzione di $\delta_arepsilon.$

Essendo X completo in quanto di Banach per ipotesi, $\left\{\sum_{i=1}^n f(x_i^{(n)}) \left(x_{i+1}^{(n)} - x_i^{(n)}\right)\right\}_{n \in \mathbb{N}}$ converge; sia $\mathbf{u} \in X$ il suo limite.

Si provi che \mathbf{u} verifica la condizione per l'integrabilità di f.

Si fissi dunque $\varepsilon > 0$.

Sia
$$u_1 \in \mathbb{N}$$
 tale che $\left\|\sum_{i=1}^n fig(x_i^{(n)}ig)ig(x_{i+1}^{(n)}-x_i^{(n)}ig) - \mathbf{u}
ight\| < rac{arepsilon}{2}$ per ogni $n \geq
u_1$, che esiste per definizione di \mathbf{u} .

Sia $\nu \in \mathbb{N}$ (si supponga $\nu \geq \nu_1$) tale che $|\Delta_n| < \delta_{\varepsilon/2}$ per ogni $n \geq \nu$, che esiste in quanto $\lim_n |\Delta_n| = 0$.

Sia
$$\Delta=(x_1,\ldots,x_{p+1})\in\mathcal{D}[a;b]$$
 con $|\Delta|<\delta_{\varepsilon/2}$, e sia $(t_1,\ldots,t_p)\in[x_1;x_2]\times\cdots\times[x_p;x_{p+1}]$.

Si ha

$$egin{aligned} &\left\|\sum_{i=1}^p (x_{i+1}-x_i)f(t_i) - \mathbf{u}
ight\| = \left\|\sum_{i=1}^p (x_{i+1}-x_i)f(t_i) - \sum_{i=1}^
u fig(x_i^{(
u)}ig)ig(x_{i+1}^{(
u)} - x_i^{(
u)}ig) + \sum_{i=1}^
u fig(x_i^{(
u)}ig)ig(x_{i+1}^{(
u)} - x_i^{(
u)}ig) - \mathbf{u}
ight\| \ &\leq \left\|\sum_{i=1}^p (x_{i+1}-x_i)f(t_i) - \sum_{i=1}^
u fig(x_i^{(
u)}ig)ig(x_{i+1}^{(
u)} - x_i^{(
u)}ig)
ight\| + \left\|\sum_{i=1}^
u fig(x_i^{(
u)}ig)ig(x_{i+1}^{(
u)} - x_i^{(
u)}ig) - \mathbf{u}
ight\| \end{aligned}$$

Per subadditività delle norme

La maggiorazione del primo addendo segue dall'ipotesi per costruzione di $\delta_{\varepsilon/2}$, avendo posto \$

La tesi è pertanto acquisita.

 $<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$

Proposizione 21.3: Integrabilità delle funzioni continue

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: [a; b] \rightarrow X$ una funzione continua.

Allora, f è integrabile secondo Riemann su [a; b].

Dimostrazione

In virti della Proposizione 21 21 si viole provare la continuità di f mostrando la condizione equivalente da essa indicata

mi virtu ucha pi roposizione 21.2], si vuole provate la commuta ui j mostianuo la contiizione equivalente ua essa muleata.

Si fissi dunque $\varepsilon > 0$.

Essendo f continua per ipotesi su [a;b] compatto in \mathbb{R} , essa è uniformemente continua; ne segue che esiste $\delta>0$ tale che, per ogni $s,t\in[a;b]$ con $|s-t|<\delta$, si ha $\|f(s)-f(t)\|<\frac{\varepsilon}{2(b-a)}$.

Siano $\Delta_1=(x_1,\ldots,x_{n+1})$ e $\Delta_2=(y_1,\ldots,y_{m+1})$ due decomposizioni di [a;b] con $|\Delta_1|,|\Delta_2|<\delta;$

si provi che, fissati $(t_1,\ldots,t_n)\in[x_1;x_2] imes\cdots imes[x_n;x_{n+1}]$ e $(s_1,\ldots,s_m)\in[y_1;y_2] imes\cdots imes[y_m;y_{m+1}]$, si ha

$$\left\|\sum_{i=1}^n (x_{i+1}-x_i)f(t_i) - \sum_{j=1}^m (y_{j+1}-y_j)f(s_j)
ight\| < arepsilon.$$

Si consideri la decomposizione unione $\Delta_1 \cup \Delta_2 = (w_1, \dots, w_{p+1});$

$$\text{si provi che} \left\| \sum_{i=1}^n (x_{i+1} - x_i) f(t_i) - \sum_{h=1}^p (w_{h+1} - x_h) f(w_h) \right\| < \tfrac{\varepsilon}{2} \; \mathrm{e} \left\| \sum_{j=1}^m (y_{j+1} - y_j) f(s_j) - \sum_{h=1}^p (w_{h+1} - x_h) f(w_h) \right\| < \tfrac{\varepsilon}{2}.$$

Intanto, per ogni $i\in\{1,\ldots,n+1\}$, sia $h_i\in\{1,\ldots,p+1\}$ tale che $w_{h_i}=x_i$, che esiste ed è unico per definizione di $\Delta_1\cup\Delta_2$.

Si osserva che $1=h_1<\dots< h_{n+1}=p+1$ per definizione di $\Delta_1\cup\Delta_2$; ne segue che gli insiemi $\{h_1,\dots,h_2-1\},\dots,\{h_n,\dots,h_{n+1}-1\}$ costituiscono una partizione di $\{1,\dots,p\}$.

Allora,

$$\left\| \sum_{i=1}^{n} (x_{i+1} - x_i) f(t_i) - \sum_{h=1}^{p} (w_{h+1} - x_h) f(w_h) \right\|$$

$$= \left\| \sum_{i=1}^{n} (x_{i+1} - x_i) f(t_i) - \sum_{i=1}^{n} \sum_{h=h_i}^{h_{i+1}-1} (w_{h+1} - x_h) f(w_h) \right\|$$

$$\sum_{h=1}^{p} \dots = \sum_{i=1}^{n} \sum_{h=h_i}^{h_{i+1}-1} \dots \text{ per quanto osservato sugli } h_i$$

$$=\left\|\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{h_{i+1}-1}(w_{h+1}-w_h)f(t_i)-\sum\limits_{j=1}^{n}\sum\limits_{j=1}^{h_{i+1}-1}(w_{h+1}-x_h)f(w_h)
ight\| ext{ In quanto }\sum\limits_{j=1}^{n}(w_{h+1}-w_h)=w_{h_{i+1}}-w_{h_i}=x_{i+1}-x_i ext{ per }$$

$$||i=1 \quad h=h_i|$$
 $\overline{i=1} \quad h=h_i$

definizione degli
$$h_i$$

$$=\left\|\sum_{i=1}^{n}\sum_{h=h_i}^{h_{i+1}-1}(w_{h+1}-w_h)ig(f(t_i)-f(w_h)ig)
ight\|$$

$$\leq \sum\limits_{i=1}^{n}\sum\limits_{h=h_{i}}^{h_{i+1}-1}ig\|(w_{h+1}-w_{h})ig(f(t_{i})-f(w_{h})ig)ig\|$$

$$=\sum_{i=1}^n\sum_{h=h_i}^{h_{i+1}-1}(w_{h+1}-w_h)\|f(t_i)-f(w_h)\|$$

$$<\sum_{i=1}^{n}\sum_{h=h_{i}}^{h_{i+1}-1}(w_{h+1}-w_{h})rac{arepsilon}{2(b-a)}$$

$$=\frac{\varepsilon}{2}$$

Per assoluta omogeneità delle norme, essendo $w_{h+1}-w_h>0$ per ogni $h\in\{1,\ldots,p\}$

Per costruzione di δ ; infatti, per ogni $i \in \{1,\ldots,n\}$ si è posto $t_i \in [x_i;x_{i+1}]$ e per ogni $h \in \{h_i,\ldots,h_{i+1}-1\}$ si ha $w_h = [w_{h_i};w_{h_{i+1}}] = [x_i;x_{i+1}]$; essendo \$

In quanto

$$\sum\limits_{i=1}^{n}\sum\limits_{h=h_{i}}^{h_{i+1}-1}(w_{h+1}-w_{h})=\sum\limits_{i=1}^{n}(x_{i+1}-x_{i})=x_{n+1}-x_{1}=b-a$$

Analogamente si ricava che,
$$\left\|\sum\limits_{j=1}^m (y_{j+1}-y_j)f(s_j) - \sum\limits_{h=1}^p (w_{h+1}-x_h)f(w_h) \right\| < rac{arepsilon}{2}.$$

Si ottiene allora

$$arepsilon > \left\| \sum_{i=1}^n (x_{i+1} - x_i) f(t_i) - \sum_{h=1}^p (w_{h+1} - x_h) f(w_h)
ight\| + \left\| \sum_{j=1}^m (y_{j+1} - y_j) f(s_j) - \sum_{h=1}^p (w_{h+1} - x_h) f(w_h)
ight\|$$

Sommando membro a membro le due disuguaglianze appena acquisite

$$=\left\|\sum_{i=1}^n(x_{i+1}-x_i)f(t_i)-\sum_{h=1}^p(w_{h+1}-x_h)f(w_h)
ight\|+\left\|\sum_{h=1}^p(w_{h+1}-x_h)f(w_h)-\sum_{j=1}^m(y_{j+1}-y_j)f(s_j)
ight\|$$

$$\left\|\sum_{i=1}^{n}(x_{i+1}-x_{i})f(t_{i})-\sum_{i=1}^{p}(w_{h+1}-x_{h})f(w_{h})+\sum_{i=1}^{p}(w_{h+1}-x_{h})f(w_{h})-\sum_{i=1}^{m}(y_{i+1}-y_{i})f(s_{i})
ight\|$$

Per sub-additività delle

$$||i=1|$$
 $h=1$ $h=1$ $j=1$ norme

$$\left\| \sum_{i=1}^n (x_{i+1} - x_i) f(t_i) - \sum_{j=1}^m (y_{j+1} - y_j) f(s_j)
ight\|$$

come si voleva.

Proposizione 21.4: Integrale della composizione di funzionali lineari continui con funzioni continue

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia f:[a;b] o X una funzione continua.

Sia $\varphi \in X^*$.

Si ha $\int_a^b arphiig(f(x)ig)\,dx = arphi\left(\int_a^b f(x)\,dx
ight).$

Osservazioni preliminari

Dalle ipotesi si ha che $\varphi \circ f$ e f sono continue, dunque integrabili ([Proposizione 21.3]); pertanto, gli integrali indicati nella tesi sono ben definiti.

Dimostrazione

Se $\varphi = \mathbf{0}_{X^*}$, si ha $\varphi \left(\int_a^b f(x) \, dx \right) = 0$ essendo φ identicamente nulla su X, e si ha anche $\int_a^b \varphi \left(f(x) \right) \, dx = 0$ per la [Proposizione 21.1], essendo $\varphi \circ f$ identicamente nulla su [a;b].

La tesi è dunque acquisita in questo caso.

Si supponga adesso $\varphi \neq \mathbf{0}_{X^*}$.

Si provi che, per ogni $\varepsilon>0$, esiste $\delta>0$ tale che, per ogni decomposizione $\Delta=(x_1,\ldots,x_{n+1})$ con $|\Delta|<\delta$ e per ogni

$$(t_1,\ldots,t_n)\in [x_1;x_2] imes\cdots imes [x_n,x_{n+1}]$$
 si ha

$$\left\|\sum_{i=1}^n (x_{i+1}-x_i)arphiig(f(t_i)ig)-arphi\left(\int_a^b f(x)\,dx
ight)
ight\|$$

Si fissi dunque $\varepsilon > 0$.

Essendo f integrabile in quanto continua ([Proposizione 21.3]) esiste $\delta > 0$ tale che, per ogni decomposizione $\Delta = (x_1, \dots, x_{n+1})$

con $|\Delta|<\delta$ e per ogni $(t_1,\ldots,t_n)\in [x_1;x_2] imes\cdots imes [x_n,x_{n+1}]$ si ha

$$\left\|\sum_{i=1}^n (x_{i+1}-x_i)f(t_i) - \int_a^b f(x)\,dx
ight\| < rac{arepsilon}{\|arphi\|_{X^*}}.$$

Per ogni decomposizione $\Delta=(x_1,\ldots,x_{n+1})$ con $|\Delta|<\delta$ e per ogni $(t_1,\ldots,t_n)\in[x_1;x_2]\times\cdots\times[x_n,x_{n+1}]$ si ha allora

$$\left\|\sum_{i=1}^n (x_{i+1}-x_i)arphiig(f(t_i)ig)-arphi\left(\int_a^b f(x)\,dx
ight)
ight\|$$

$$=\left\|arphi\left(\sum\limits_{i=1}^n(x_{i+1}-x_i)(f(t_i)-\int_a^bf(x)\,dx
ight)
ight\|$$

Per linearità di arphi

$$\| \leq \|arphi\|_{X^*} \cdot \left\| \sum_{i=1}^n (x_{i+1} - x_i) (f(t_i) - \int_a^b f(x) \, dx
ight\|_{L^\infty}$$

Dalla disuguaglianza fondamentale delle norme di operatori lineari continui

$$<\|arphi\|_{X^*}\cdotrac{arepsilon}{\|arphi\|_{X^*}}=arepsilon$$

Per costruzione di δ

La tesi è dunque acquisita anche in questo caso.

Proposizione 21.5: Linearità dell'integrale

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Siano $\alpha, \beta \in \mathbb{R}$.

Si ha $\int_a^b (lpha f + eta g)(x) \, dx = lpha \int_a^b f(x) \, dx + eta \int_a^b g(x) \, dx.$

Dimostrazione

Sia $\varphi \in X^*$.

Si ha

$$arphi \left(\int_a^b (lpha f + eta g)(x) \, dx
ight)$$

$$=\int_a^b arphiig((lpha f+eta g)(x)ig)\,dx$$

Per la [Proposizione 21.4]

$$=\int_a^b \varphi ig(lpha f(x) + eta g(x) ig) \, dx$$

Per definizione di $\alpha f + \beta g$

$$=\int_a^b lpha arphiig(f(x)ig) + eta arphiig(g(x)ig)\,dx$$

Per linearità di φ

$$=lpha\int_a^barphiig(f(x)ig)\,dx+eta\int_a^barphiig(g(x)ig)\,dx$$

Per linearità dell'integrale di funzioni reali, essendo $arphi\circ f$, $arphi\circ g:[a;b] o \mathbb{R}$

$$=lphaarphi\left(\int_a^bf(x)\,dx
ight)+etaarphi\left(\int_a^bg(x)\,dx
ight)$$

Per la [Proposizione 21.4]

$$=arphi\left(lpha\int_a^bf(x)\,dx+eta\int_a^bg(x)\,dx
ight)$$

Per linearità di φ

Ne segue quindi che $arphi\left(\int_a^b (lpha f+eta g)(x)\,dx
ight)=arphi\left(lpha\int_a^b f(x)\,dx+eta\int_a^b g(x)\,dx
ight)$, per ogni $arphi\in X^*$;

dal [Corollario 7.5] segue allora $\int_a^b (\alpha f + \beta g)(x) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$.

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia f:[a;b] o X una funzione continua.

Si ha
$$rac{\int_a^b f(x) \ dx}{b-a} \in \overline{\mathrm{conv}} \, fig([a;b]ig).$$

Dimostrazione

Si proceda per assurdo, supponendo $\frac{\int_a^b f(x) \, dx}{b-a}
otin \overline{\cot f([a;b])}$.

Applicando il Teorema di Separazione ([Teorema 7.10]) all'insieme $\overline{\text{conv}} f([a;b])$, chiuso e convesso, e all'insieme $\left\{\frac{\int_a^b f(x) \, dx}{b-a}\right\}$ compatto, convesso e disgiunto dal primo insieme per ipotesi di assurdo, esiste allora $\varphi \in Y^*$ tale che

$$\sup_{\mathbf{y} \in \overline{\operatorname{conv}} \, f([a;b])} \varphi(\mathbf{y}) < \varphi\left(\frac{\int_a^b f(x) \, dx}{b{-}a}\right).$$

Ne segue che, per ogni $x \in [a; b]$, vale

$$arphiig(f(x)ig) Essendo $f(x)\in fig([a;b]ig)\subseteq\overline{\mathrm{conv}}\,fig([a;b]ig)$

$$=rac{1}{b-a}\,arphi\left(\int_a^b f(x)\,dx
ight)$$
 Per linearità di $arphi$

$$=rac{1}{b-a}\,\int_a^b arphiig(f(x)ig)\,dx$$
 Per la [Proposizione 21.4]$$

D'altra parte, essendo $\varphi \circ f$ una funzione reale continua, per il teorema della Media per funzioni reali esiste $\tilde{x} \in [a;b]$ tale che $\varphi(f(\tilde{x})) = \frac{1}{b-a} \int_a^b \varphi(f(x)) \, dx$, in contrasto con quanto appena ottenuto.

Integrale definito su estremi arbitrari

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia f:[a;b] o X una funzione continua.

Siano $\alpha, \beta \in [a; b]$.

Se $\alpha < \beta$, si ha $f_{|[\alpha;\beta]}$ integrabile essendo ivi continua; si pone allora $\int_{\alpha}^{\beta} f(x) \, dx = \int_{\alpha}^{\beta} f_{|[\alpha;\beta]}(x) \, dx$.

Se $\alpha = \beta$, si pone $\int_{\alpha}^{\beta} f(x) \, dx = 0$.

Se $\alpha>\beta$, si ha $f_{|[\beta;\alpha]}$ integrabile essendo ivi continua; si pone allora $\int_{\alpha}^{\beta}f(x)\,dx=-\int_{\beta}^{\alpha}f_{|[\beta;\alpha]}(x)\,dx$.

Proposizione 21.7: Additività dell'integrale rispetto all'unione di intervalli contigui

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia f:[a;b] o X una funzione continua.

Siano $\alpha, \beta, \gamma \in [a; b]$.

Si ha $\int_{lpha}^{eta}f(x)\,dx=\int_{lpha}^{\gamma}f(x)\,dx+\int_{\gamma}^{eta}f(x)\,dx.$

Dimostrazione

Se almeno due tra α, β, γ sono uguali, la tesi è di immediata acquisizione.

Si supponga dunque che α, β, γ siano a due a due distinti;

sia $\varphi \in X^*$.

Si ha

$$arphi \left(\int_{lpha}^{eta} f(x) \, dx
ight)$$

 $= \int_{\alpha}^{\beta} \varphi(f(x)) dx \qquad \qquad \text{Per la [Proposizione 21.4]}$ $= \int_{\alpha}^{\gamma} \varphi(f(x)) dx + \int_{\gamma}^{\beta} \varphi(f(x)) dx \qquad \qquad \text{Per additività rispetto all'unione dell'integrale di funzioni reali, essendo } \varphi \circ f : [a; b] \to \mathbb{R}$ $= \varphi\left(\int_{\alpha}^{\gamma} f(x) dx\right) + \varphi\left(\int_{\gamma}^{\beta} f(x) dx\right) \qquad \text{Per la [Proposizione 21.4]}$ $= \varphi\left(\int_{\alpha}^{\gamma} f(x) dx + \int_{\gamma}^{\beta} f(x) dx\right) \qquad \text{Per linearità di } \varphi$

Ne segue quindi che $arphi\left(\int_{lpha}^{eta}f(x)\,dx
ight)=arphi\left(\int_{lpha}^{\gamma}f(x)\,dx+\int_{\gamma}^{eta}f(x)\,dx
ight)$, per ogni $arphi\in X^{*};$

dal [Corollario 7.5] segue allora $\int_{\alpha}^{\beta} f(x) dx = \int_{\alpha}^{\gamma} f(x) dx + \int_{\gamma}^{\beta} f(x) dx$.

Funzioni Primitive, Teorema fondamentale del calcolo integrale su spazi di Banach

₩ Primitiva di una funzione di variabile reale

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia f:I o X una funzione.

Una funzione $F:I\to X$ si dice **primitiva** di F quando:

- F è derivabile in I (nel senso dato per funzioni di variabile reale);
- $\dot{F}(x) = f(x)$ per ogni $x \in I$.

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia $f: I \to X$ una funzione.

Sia F:I o X una primitiva di f.

Le primitive di f sono allora tutte e sole del tipo $F + c_k$, con $k \in X$ ($c_k : I \to X$ è la funzione costantemente pari a k, definita cioè ponendo $c_k(x) = k$ per ogni $x \in I$).

Dimostrazione

Chiaramente, $F+c_{\mathbf{k}}$ è primitiva di f per ogni $\mathbf{k}\in X$; infatti, fissato $x\in I$ si ha

$$\lim_{h\to 0}\frac{(F+c_{\mathbf{k}})(x+h)-(F+c_{\mathbf{k}})(x)}{h}=\lim_{h\to 0}\frac{F(x+h)+\mathbf{k}-F(x)-\mathbf{k}}{h} \quad \text{ Per definizione di } F+c_{\mathbf{k}}$$

$$=\lim_{h\to 0}\frac{F(x+h)-F(x)}{h}$$

$$=f(x)$$
 Essendo F una primitiva di f per ipotesi

Viceversa, sia G una seconda primitiva per f, e si mostri che esiste $\mathbf{k} \in X$ tale che $G = F + c_{\mathbf{k}}$, ossia $G(x) - F(x) = \mathbf{k}$ per ogni $x \in \mathbb{R}$.

Essendo F e G entrambe primitive di f, si ha $\dot{G}(x)=f(x)=\dot{F}(x)$ per ogni $x\in I$.

Per derivazione di una combinazione lineare di funzioni (che si acquisisce allo stesso modo della derivazione di una combinazione lineare di funzioni reali), si ottiene che

$$(F-G)^{\cdot}(x) = \mathbf{0}$$
 per ogni $x \in I$.

Ne segue allora che F - G è costante, come si voleva.

₩ Definizione: Funzione integrale

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia f:[a;b] o X una funzione continua.

Sia $x_0 \in [a;b]$.

Si dice **funzione integrale** di f con piede x_0 , la funzione $F_{x_0}:[a;b] o\mathbb{R}$ definita ponendo

 $F_{x_0}(x)=\int_{x_0}^x f(t)\,dt$ per ogni $x\in [a;b].$

Teorema 21.9: Teorema fondamentale del calcolo integrale

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia f:[a;b] o X una funzione continua.

Sia $x_0 \in [a;b]$.

Sia F_{x_0} la funzione integrale di f con piede x_0 .

 F_{x_0} è una primitiva di f.

Osservazioni preliminari

Sia $x \in [a;b]$.

Sia $h \in \mathbb{R} \setminus \{0\}$ tale che $x+h \in [a;b]$.

Si ha $\lim_{h o 0^+} \operatorname{diam} fig([x;x+h]ig) = \lim_{h o 0^-} \operatorname{diam} fig([x+h;x]ig) = 0.$

Infatti, si fissi $\varepsilon > 0$.

Essendo f continua per ipotesi su [a;b] compatto in \mathbb{R} , essa è uniformemente continua; esiste allora $\delta > 0$ tale che, per ogni $s,t \in [a;b]$ con $|s-t| < \delta$, si abbia $||f(s) - f(t)|| < \frac{\varepsilon}{2}$.

Sia allora $h \in]0; \delta[;$

Per ogni $s,t\in[x,x+h]$ si ha allora $|s-t|\leq h<\delta$, e dunque $\|f(s)-f(t)\|<rac{arepsilon}{2}$ per costruzione di δ .

Essendo $\operatorname{diam} fig([x;x+h]ig) = \sup_{s,t \in [x;x+h]} \|f(s) - f(t)\|$, ne segue allora che

 $\operatorname{diam} f([x;x+h]) \leq \frac{\varepsilon}{2} < \varepsilon.$

Pertanto, $\lim_{h o 0^+} \operatorname{diam} fig([x;x+h]ig) = 0.$

Il limite $\lim_{h o 0^-} \operatorname{diam} fig([x+h;x]ig) = 0$ si mostra in maniera analoga.

Dimostrazione

Si fissi $x \in [a; b]$; si provi che

$$\lim_{h \to 0} \frac{F_{x_0}(x+h) - F_{x_0}(x)}{h} = 0.$$

Si studi il limite destro; per il limite sinistro si procede in maniera analoga.

Per ognih>0 tale che $x+h\in [a;b]$, si ha

$$\frac{F_{x_0}(x+h)-F_{x_0}(x)}{h} = \frac{\int_{x_0}^{x+h} f(t) dt - \int_{x_0}^{x} f(t) dt}{h}$$
 Per definizione di F_{x_0}
$$= \frac{1}{h} \int_{x}^{x+h} f(t) dt$$
 Per la [Proposizione 21.7]
$$\in \overline{\text{conv}} f([x;x+h])$$
 Per il teorema della media ([Proposizione 21.6])

Essendo $f(x) \in f([x;x+h])$ e avendo appena ricavato che $\frac{F_{x_0}(x+h)-F_{x_0}(x)}{h} \in \overline{\operatorname{conv}} f([x;x+h])$, dalla [Proposizione 11.6] segue che

$$\left\|rac{F_{x_0}(x+h)-F_{x_0}(x)}{h}-f(x)
ight\|\leq \operatorname{diam} fig([x;x+h]ig).$$

Poiché $\lim_{h o 0^+} \operatorname{diam} fig([x;x+h]ig) = 0$ per le osservazioni preliminari, ne segue che

$$\lim_{h \to 0^+} \left\| \frac{F_{x_0}(x+h) - F_{x_0}(x)}{h} - f(x) \right\| = 0$$
, che corrisponde a ciò che si voleva provare.

H

Corollario 21.10: Teorema di Torricelli-Barrow

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: [a;b] \to X$ una funzione continua.

Sia $F:[a;b] \to X$ una primitiva di f, che esiste per il [Teorema 21.9].

Si ha $\int_a^b f(t) dt = F(b) - F(a)$.

Dimostrazione

Fissato $x_0 \in [a;b]$, sia F_{x_0} la funzione integrale di f con piede x_0 .

Essendo F e F_{x_0} due primitive di f, per la [Proposizione 21.8] esiste $\mathbf{k} \in X$ tale che $F_{x_0}(x) = F(x) + \mathbf{k}$ per ogni $x \in [a; b]$.

Si ha

$$\int_{a}^{b} f(t) dt = \int_{a}^{x_{0}} f(t) dt + \int_{x_{0}}^{b} f(t) dt \quad \text{Per la [Proposizione 21.7]}$$

$$= \int_{x_{0}}^{b} f(t) dt - \int_{x_{0}}^{a} f(t) dt \quad \text{Per definizione di integrale definito su estremi arbitraria}$$

$$= F_{x_0}(b) - F_{x_0}(a)$$

Per definizione di F_{x_0}

$$=F(b)+\mathbf{k}-(F(a)+\mathbf{k})$$

Per quanto osservato prima

$$=F(b)-F(a)$$

La tesi è dunque aquisita.

L