

Why

A simple example of an embedding.¹

Definition

Fix $d \in \mathbf{N}$. A polynomial feature map of degree d is a function $\phi : \mathbf{R} \to \mathbf{R}^d$ with

$$\phi(x) = \begin{pmatrix} 1 & x^2 & \cdots & x^d \end{pmatrix}^\top.$$

For $x \in \mathbf{R}$, we call $\phi(x)$ the polynomial embedding of x.

A polynomial regressor is a least squares linear predictor using a polynomial feature embedding (of any degree, but to be precise one must specify the degree). The task of constructing a linear predictor is often referred to as polynomial regression.

Given a dataset of paired records $(x^1,y^1),\ldots,(x^n,y^n)\in \mathbf{R}^2$, one can construct a predictor $g:\mathbf{R}\to\mathbf{R}$ for y by embedding the dataset $(\phi(x^1),\ldots,\phi(x^n))$ and finding the least squares linear regressor $f:\mathbf{R}^d\to\mathbf{R}$ for y. One defines the predictor $g:\mathbf{R}\to\mathbf{R}$ by $g(\phi(x))$.

¹Future editions will expand, or perhaps collapse this sheet.

