Υλοποίηση ανταλλαγής κλειδιού DH και ψηφιακών υπογραφών βασισμένη σε ελλειπτικές καμπύλες

Νίκος Γιανναράκης Ζωή Παρασκευοπούλου

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

28 Ιανουαρίου 2013

Κρυπτογραφία με ελλειπτικές καμπύλες

Why elliptic curve cryptography?

- Αυξημένη ασφάλεια με μικρότερα μήκη κλειδιών
- Μειωμένο υπολογιστικό κόστος και bandwitdh
- Ιδανικές για φορητές συσκευές λόγω ενεργειακών απαιτήσεων (χινητά χλπ.)
- ► ECC σε secure web servers, επιτάχυνση εως και 280% [6]

Σύγκριση μήκους κλειδιού

ECC	RSA	Αναλογία	AES
160	1024	1:6	
256	3072	1:12	128
384	7680	1:20	192
512	15360	1:30	256

Σχήμα : Σύγκριση μήκους κλειδιού σε bits

	ECC-160	RSA-1024	ECC-224	RSA-2048
Time(ms)	3.69	8.75	5.12	56.18
Ops/Sec	271.3	114.3	195.5	17.8
Perf ratio	2.4:1.0		11.0 : 1.0	
Key ratio	1.0 : 6.4		1.0 : 9.1	

Σχήμα : Σύγκριση απόδοσης ανάλογα με το μήκος κλειδιού [6]

Ελλειπτικές καμπύλες στο $\mathcal R$

Ορισμός

Μία ελλειπτική καμπύλη στο \mathcal{R} μπορεί να οριστεί ως το σύνολο των σημείων (x,y) που ικανοποιούν μία εξίσωση ελλειπτικής καμπύλης της μορφής:

$$y^2=x^3+a\cdot x+b\;,\;x,y,a,b\in\mathcal{R}$$

μαζί με ένα σημείο \mathcal{O} , το οποίο ονομάζουμε σημείο στο άπειρο.

Ορισμός πράξεων

- Πρόσθεση δύο σημείων P, Q
- Διπλασιασμός ενός σημείου P

Πρόσθεση δύο σημείων πάνω σε ελλειπτικές καμπύλες στο \mathcal{R}

Η πρόσθεση δύο σημείων P,Q μπορεί να οριστεί γεωμετρικά

Δ ιπλασιασμός σημείου πάνω σε ελλειπτικές καμπύλες στο $\mathcal R$

Ο διπλασιασμός ενός σημείου πάνω σε μία ελλειπτική καμπύλη ορίζεται γεωμετρικά σύμφωνα με το παρακάτω σχήμα

Προβλήματα

- Αργές πράξεις σε πραγματικούς αριθμούς
- Έλλειψη αχρίβειας

Ελλειπτικές καμπύλες πάνω από το \mathbb{F}_p και το \mathbb{F}_{2^m}

Ορισμός

Διαλέγοντας $a,b\in\mathbb{F}_p$ και υπολογίζοντας τα σημεία (x,y) της καμπύλης $modulo\ p$ ορίζουμε μία ελλειπτική καμπύλη στο \mathbb{F}_p .

Πρόσθεση δύο σημείων πάνω σε ελλειπτικές καμπύλες στο \mathbb{F}_p

Η πρόσθεση δύο σημείων R=P+Q σε μία ελλειπτική καμπύλη στο \mathbb{F}_p ορίζεται αλγεβρικά:

$$egin{aligned} s &= rac{(y_P - y_Q)}{(x_P - x_Q)} \pmod{p} \ x_R &= s^2 - x_P - x_Q \pmod{p} \ y_R &= -y_P + s \cdot (x_P - x_R) \pmod{p} \end{aligned}$$

Το $\mathcal O$ είναι το ουδέτερο στοιχείο της πρόσθεσης : $P+\mathcal O=P$.

Δ ιπλασιασμός σημείου πάνω σε ελλειπτικές καμπύλες στο \mathbb{F}_p

Ο διπλασιασμός σημείου R=2P σε μία ελλειπτική καμπύλη στο \mathbb{F}_p ορίζεται αλγεβρικά:

$$egin{aligned} s &= rac{(3 \cdot x_P^2 + a)}{2 \cdot y_P} \pmod p \ & x_R &= s^2 - 2 \cdot x_P \pmod p \ & y_R &= -y_p + s \cdot (x_P - x_R) \pmod p \end{aligned}$$

Βαθμωτός πολλαπλασιασμός πάνω σε ελλειπτικές καμπύλες στο \mathbb{F}_p

Με χρήση των παραπάνω πράξεων μπορούμε να ορίσουμε την πράξη του βαθμωτού πολλαπλασιασμού $R=k\cdot P$ όπου $l\in\mathbb{Z}$ και P ένα σημείο ελλειπτικής καμπύλης. $P=\mathcal{O}\to k\cdot P=\mathcal{O}$

- Naive $P + P \dots + P$
- Double-and-add (το ανάλογο του επαναλαμβανόμενου τετραγωνισμού)
- ► Windowed, Sliding-window, wNAF, Montogomery ladder ... [3]

Double-and-add

```
Input: Elliptic curve E, elliptic curve point P, scalar d:
         (d_0 d_1 \dots d_{t-1})
Output: T = d \cdot P
T \leftarrow P
for i \leftarrow t-1 downto 0 do
   T \leftarrow T + T \pmod{n}
   if d_i = 1 then
       T \leftarrow T + P \pmod{n}
   end
end
return T
```

Algorithm 1: Μέθοδος double-and-add

Το πρόβλημα του διαχριτού λογαρίθμου σε ελλειπτικές καμπύλες (ECDLP)

Ορισμός

Έστω ελλειπτική καμπύλη στο \mathbb{F}_p και έστω δύο σημεία αυτής $P,\,Q.$ Αν η τάξη του P είναι n τότε το πρόβλημα διακριτού λογαρίθμου ορίζεται ως η εύρεση ενός ακεραίου $0\leq l\leq n-1$ τέτοιου ώστε $Q=l\cdot P.$

Ανταλλαγή κλειδιού με τη μέθοδο Diffie-Hellman για ελλειπτικές καμπύλες (ECDH)

- Ο χρήστης ${\bf A}$ και ο χρήστης ${\bf B}$ επιλέγουν δημόσια τις παραμέτρους D=(q,a,b,G,n,h)
- ▶ Ο χρήστης A επιλέγει έναν τυχαίο αριθμό $1 \le a \le n-1$ ως ιδιωτικό κλειδί και υπολογίζει και στέλνει στον B το δημόσιο κλειδί του $a \cdot G$.
- ▶ Ο χρήστης B επιλέγει έναν τυχαίο αριθμό $1 \le b \le n-1$ ως ιδιωτικό κλειδί και υπολογίζει και στέλνει στον A το δημόσιο κλειδί $b \cdot G$ και το στέλνει στον A.
- Ο Α υπολογίζει το a · b · G
- ightharpoonup Ο Β υπολογίζει το $b \cdot a \cdot G$
- lacktriangle Το κοινό κλειδί τους είναι το $a\cdot b\cdot G=b\cdot a\cdot G$

Ψηφιακές υπογραφές με τον αλγόριθμο DSA για ελλειπτικές καμπύλες (ECDSA)

Παραγωγή υπογραφής

Για να υπογράψει ένα μήνυμα m, ο χρήστης A με παραμέτρους D=(q,a,b,G,n,h) και ένα ζεύγος ιδιωτικού-δημόσιου κλειδιού (d,Q) ακολουθεί τα παρακάτω βήματα

Ψηφιακές υπογραφές με τον αλγόριθμο DSA για ελλειπτικές καμπύλες (ECDSA)

Παραγωγή υπογραφής

- 1. Επιλέγει έναν τυχαίο αριθμό k τέτοιο ώστε $1 \le k \le n-1$.
- 2. Υπολογίζει το σημείο $k \cdot G = (x_1, y_1)$.
- 3. Υπολογίζει το $r=x_1\pmod n$. Αν r=0 επιστρέφει στο βήμα 1.
- 4. Υπολογίζει το $k^{-1} \pmod{n}$.
- 5. Υπολογίζει το SHA-1(m) και μετατρέπει το αποτέλεσμα του bit-string σε έναν ακέραιο e.
- 6. Υπολογίζει το $s=k^{-1}\cdot (e+d\cdot r)\pmod n$. Αν s=0 επιστρέφει στο βήμα 1.
- 7. Η υπογραφή του Α για το μήνυμα m είναι (r, s).

Ψηφιαχές υπογραφές με τον αλγόριθμο DSA για ελλειπτιχές καμπύλες (ECDSA)

Επαλήθευση υπογραφής

Για να επαληθεύσει μία υπογραφή (r,s) σε ένα μήνυμα m, ο χρήστης B παίρνει τις παραμέτρους D=(q,FR,a,b,G,n,h) και το δημόσιο κλειδί Q του A και ακολουθεί τα παρακάτω βήματα:

Προσοχή! Ο B θα πρέπει να ελέγξει ότι τα στοιχεία του A δεν έχουν αλλοιωθεί, π.χ. αν το σημείο Q ανήκει στην καμπύλη που ορίζεται απο το D

Ψηφιακές υπογραφές με τον αλγόριθμο DSA για ελλειπτικές καμπύλες (ECDSA)

Επαλήθευση υπογραφής

- 1. Επιβεβαιώνει ότι τα r, s είναι αχέραιοι στο διάστημα [1, n-1].
- 2. Υπολογίζει το SHA-1(m) και μετατρέπει το αποτέλεσμα του bit-string σε έναν ακέραιο e.
- 3. Υπολογίζει το $w = s^{-1} \pmod{n}$.
- 4. Υπολογίζει το $u_1 = e \cdot w \pmod n$ και το $u_2 = r \cdot w \pmod n$.
- 5. Υπολογίζει το $X = u_1 \cdot G + u_2 \cdot G$
- 6. Εάν $X=\mathcal{O}$ τότε απορρίπτει την υπογραφή. Αλλιώς υπολογίζει το $u=x_1\pmod n$ όπου x_1 η συντεταγμένη x του X.
- 7. Δέχεται την υπογραφή αν και μόνο αν u=r.

Υλοποίηση

Επιλογή παραμέτρων

Παράμετρος	Περιγραφή
p	Η χαραχτηριστική του πεπερασμένου σώματος \mathbb{F}_p
a	Ο συντελεστής α της ελλειπτικής καμπύλης
b	Ο συντελεστής b της ελλειπτικής καμπύλης
G	Ένα σημείο $\mathit{G} = (\mathit{x}_\mathit{G}, \mathit{y}_\mathit{G})$
n	Η τάξη του στοιχείου G
h	$\sharp E(\mathbb{F}_p)/n$

Σχήμα: Domain Parameters

Απαιτείται πολύ προσεχτική επιλογή των παραμέτρων [1] [2] [4]

Υλοποίηση

Επίπεδα υλοποίησης

- Αριθμητική modulo με υποστήριξη για μεγάλους αριθμούς
- Υλοποίηση των πράξεων που ορίζονται στην ομάδα (πρόσθεση, διπλασιασμός)
- Υλοποίηση του βαθμωτού πολλαπλασιασμού
- Υλοποίηση ενός κρυπτοσυστήματος π.χ. ECDH

Why OCaml?

- Μείωση σφαλμάτων. Έλεγχος τύπων κατά τη μεταγλώττιση.
- ► Βιβλιοθήκες. Αρκετές έτοιμες συναρτήσεις (για big numbers κ.α.)
- Ταχύτητα. Απόδοση αρκετά κοντά σε low-level γλώσσες όπως C.
- ► Garbage collected. Η διαχείριση μνήμης γίνεται αυτόματα, ένα πράγμα λιγότερο για να ανησυχούμε.

Βασιχοί τύποι

```
type point = Infinity | Point of Z.t * Z.t

An elliptic curve point. It is either infinity or a point (x,y).
```

```
type elliptic_curve = {
p : Z.t ;
a : Z.t ;
b : Z.t ;
g : point ;
n : Z.t ;
h : Z.t ;
}
```

The type of domain parameters

Modulo αριθμητική

Χρησιμοποιήθηκε η βιβλιοθήκη μεγάλων αριθμών Zarith, χρησιμοποιεί το GMP (C/C++). Διάφορες ετοιμες συναρτήσεις για βασικές πράξεις όπως εύρεση αντιστρόφου ενός αριθμού $modulo\ n$.

Υλοποίηση πράξεων ομάδας

```
val add_point : point -> point ->
elliptic curve -> point
```

Given two points P and Q, both on the same elliptic curve, and the elliptic curve returns P+Q on that curve.

```
val double_point : point -> elliptic_curve ->
point
```

Given a point P on an elliptic curve and the elliptic curve returns the point 2P on that curve.

Υλοποίηση βαθμωτού πολλαπλασιασμού

```
val multiply_point : point -> Z.t ->
elliptic_curve -> point
```

Given a point P on an elliptic curve, an integer k and the elliptic curve returns the scalar multiplication kP on that curve.

Υλοποίηση δημιουργίας ζεύγους κλειδιών

```
val create_keys : elliptic_curve -> point * Z.t
    Creates a tuple (public_key, secret_key) where public_key
    is a point of the curve and secret key an integer.
```

Υλοποίηση ψηφιακής υπογραφής

```
val sign : string -> Z.t -> elliptic_curve ->
Z.t * Z.t
```

Ecc.sign message sk curve where sk is secret key of the user s and curve the public elliptic curve, returns the signature (r, s) of the message.

```
val verify : string -> Z.t * Z.t -> point ->
elliptic_curve -> bool
```

Ecc.verify message (r, s) pk curve where pk is the public key of the user who signed the message, returns true if the (r, s) is a valid signature or false otherwise.

Βελτιστοποίησεις

Βελτιστοποίηση αριθμητικής modulo

Το πιο χρονοβόρο κομμάτι είναι οι πράξεις με μεγάλους αριθμούς και η αριθμητική modulo. Η χρήση της βιβλιοθήκης Zarith μας λύνει το πρόβλημα βελτιστοποίησεις αυτού του κομματιού καθώς χρησιμοποιεί το GMP που έχει γρήγορες υλοποιήσεις πράξεων στη γλώσσα C.

Βελτιστοποίηση πράξεων

Οι συναρτήσεις add_point και double_point δεν παρουσιάζουν ιδιαίτερα περιθώρια βελτιστοποίησης. Μπορούμε να βελτιστοποιήσουμε τη συνάρτηση multiply_point χρησιμοποιώντας έναν καλύτερο αλγόριθμο από αυτούς που έχουν αναφερθεί (η υλοποίηση μας χρησιμοποιεί τη μέθοδο double-and-add)

Επιθέσεις

- Επίλυση ECDLP (πρακτικά ανέφικτο με κατάλληλη επιλογή παραμέτρων)
- Επίθεση στη συνάρτηση κατακερματισμού (hash function)
 εαν χρησιμοποιείται.
- Κακή διαχείριση κλειδιών (private key, αριθμός k στο ECDSA) κλπ.

Επίλυση του ECDLP

Certicom ECC Challenge

- Στόχος είναι να βρεθούν τα ιδιωτικά κλειδιά απο μία δοθείσα λίστα με δημόσια κλειδιά και τις αντίστοιχες παραμέτρους.
- Επίπεδο 1 : 109-bit, 131-bit
- Επίπεδο 2 : 163-bit, 191-bit, 239-bit, 359-bit
- Το 2004 λύθηκε το πρόβλημα για τα 109-bit από 10000 υπολογιστές σε 549 μέρες χρησιμοποιώντας τη μέθοδο rho. Για τα 131-bit όμως θα χρειαστούν σημαντικά περισσότεροι πόροι.
- Τα προβλήματα στο επίπεδο 2 θεωρούνται υπολογιστικά ανέφτικα.

Επίθεση στο ECDSA

Sony Playstation 3

Το playstation 3 χρησιμοποιεί το σχήμα ψηφιακής υπογραφής ECDSA για ψηφιακές υπογραφές στα παιχνίδια και στις αναβαθμίσεις του firmware του έτσι ώστε να μην επιτρέπεται σε unsigned κώδικα να εκτελεστεί στην κονσόλα.

Επίθεση στο ECDSA

Επιλογή τυχαίου αριθμού k

- Ο τυχαίος αριθμός k έχει τις ίδιες απαιτήσεις ασφάλειας με το ιδιωτιχό χλειδί d.
- Αυτό συνεπάγεται απο το γεγονός οτι αν ο κακόβουλος χρήστης $\mathbf E$ ανακτήσει ένα k που χρησιμοποιεί ο $\mathbf A$ για να υπογράψει ένα μήνυμα m τότε μπορεί να ανακτήσει το ιδιωτικό κλειδί του $\mathbf A$ αφού $d=r^{-1}\cdot(k\cdot s-e)\pmod n$.
- Συνεπώς το k θα πρέπει να παράγεται με ασφαλή τρόπο και να αποθηκεύεται με ασφαλή τρόπο.

Επίθεση στο ECDSA

Sony Playstation 3 τρόπος επιλογής τυχαίου k

- Η Sony δε παρήγαγε ποτέ τυχαίο k αλλά χρησιμοποιούσε μία σταθερά για k
- Με τον τρόπο που δείξαμε παραπάνω υπολογίστηκε το private key της Sony και δόθηκε η δυνατότητα να κάνουμε sign ότι κώδικα θέλουμε. [7]

Παραγωγή τυχαίων αριθμών!

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

References

[1] Don Johnson, Alfred Menezes, Scott Vanstone, The Elliptic Curve Digital Signature Algorithm (ECDSA) Certicom Research

[2] Certicom Research

SEC 2: Recommended Elliptic Curve Domain Parameters
Certicom Research

[3] Daniel J. Bernstein, Tanja Lange

Analysis and optimization of elliptic-curve single-scalar multiplication

[4] Brainpool

ECC Brainpool Standard Curves and Curve Generation v1.0 Brainpool

References

[5] Chrisoft Paar, Jan pelzl,

Understanding Cryptography: A textbook for Students and Practitioners

Springer

[6] Vipul Gupta, Douglas Stebila, Stephen Fung, Sheueling Chang, Nils Gura, Hans Eberle

Speeding up secure web transactions using elliptic curve cryptography Sun Microsystems Labs

[7] bushing, marcan, sgher, sven PS3 Epic Fail

failOverflow

Fork here!

https://github.com/zoep/ECC-OCaml

The end