

77. The compound according to claim 69
wherein A is -O- or -S-.

78. The compound according to claim 69
5 wherein R is an aryl, heteroaryl, cycloalkyl or
heterocycloalkyl group.

79. The compound according to claim 69
wherein E is absent.

10

80. The compound according to claim 69
wherein Y is selected from the group consisting of
hydrido, an alkyl, alkoxy, perfluoroalkoxy and a
perfluoroalkylthio group.

15

81. The compound according to claim 69
wherein R³ is a radical that is comprised of a
single-ringed aryl or heteroaryl group that is 5- or
6-membered, and is itself substituted at its own 4-
20 position when a 6-membered ring and at its own 3- or
4-position when a 5-membered ring with a substituent
selected from the group consisting of a thiophenoxy,
4-chlorophenoxy, 3-chlorophenoxy, 4-methoxyphenoxy,
3-benzodioxol-5-yloxy, 3,4-dimethylphenoxy, 4-
25 fluorophenoxy, 4-fluorothiophenoxy, phenoxy, 4-
trifluoromethoxy-phenoxy, 4-trifluoromethylphenoxy,
4-(trifluoromethylthio)phenoxy, 4-
(trifluoromethylthio)thiophenoxy, 4-chloro-3-
fluorophenoxy, 4-isopropoxyphenoxy, 4-
30 isopropylphenoxy, (2-methyl-1,3-benzothiazol-5-
yl)oxy, 4-(1H-imidazol-1-yl)phenoxy, 4-chloro-3-
methylphenoxy, 3-methylphenoxy, 4-ethoxyphenoxy, 3,4-

difluorophenoxy, 4-chloro-3-methylphenoxy, 4-fluoro-3-chlorophenoxy, 4-(1H-1,2,4-triazol-1-yl)phenoxy, 3,5-difluorophenoxy, 3,4-dichlorophenoxy, 4-cyclopentylphenoxy, 4-bromo-3-methylphenoxy, 4-

5 bromophenoxy, 4-methylthiophenoxy, 4-phenylphenoxy, 4-benzylphenoxy, 6-quinolinylloxy, 4-amino-3-methylphenoxy, 3-methoxyphenoxy, 5,6,7,8-tetrahydro-2-naphthalenyloxy, 3-hydroxymethylphenoxy, N-piperidyl, N-piperazinyl and a 4-benzyloxyphenoxy group.

10

82. The compound according to claim 69 wherein said R³ group is a PhR²³ group, wherein Ph is a phenyl ring that is substituted at its 4-position 15 by an R²³ group that is a substituent selected from the group consisting of another single-ringed aryl or heteroaryl group, a piperidyl group, a piperazinyl group, a phenoxy group, a thiophenoxy group, a phenylazo group and a benzamido group.

20

83. The compound according to claim 82 wherein said R²³ group is itself substituted with a moiety that is selected from the group consisting of a halogen, a C₁-C₄ alkoxy group, a C₁-C₄ alkyl group, 25 a dimethylamino group, a carboxyl C₁-C₃ alkylene group, a C₁-C₄ alkoxy carbonyl C₁-C₃ alkylene group, a trifluoromethylthio group, a trifluoromethoxy group, a trifluoromethyl group and a carboxamido C₁-C₃ alkylene group, or is substituted at the meta- and 30 para-positions by a methylenedioxy group.

- 795 -

84. The compound according to claim 83
wherein said R²³ group is substituted at the para-position.

5 85. The compound according to claim 84
wherein said R²³ group is phenoxy.

86. The compound according to claim 69
wherein said inhibitor corresponds in structure to
10 the formula

87. A compound corresponding in structure
to formula V, below, or a pharmaceutically acceptable
15 salt thereof

20 wherein

Z is O, S or NR⁶;

W and Q are independently oxygen (O), NR⁶ or sulfur (S),

R⁶ is selected from the group consisting of C₃-C₆-cycloalkyl, C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, amino-C₁-C₆-alkyl, aminosulfonyl, heteroaryl-C₁-C₆-alkyl, aryloxycarbonyl, and C₁-C₆-alkoxycarbonyl; and

q is zero or one such that when q is zero, Q is absent and the trifluoromethyl group is bonded 10 directly to the depicted phenyl ring.

88. The compound according to claim 87 wherein q is zero.

15 89. The compound according to claim 87 wherein W is O.

90. The compound according to claim 89 wherein q is zero.

20 91. The compound according to claim 89 wherein q is one and Q is O.

92. The compound according to claim 89 25 wherein q is one and Q is S.

93. The compound according to claim 87 wherein said inhibitor corresponds in structure to the formula

-797-

94. The compound according to claim 87 wherein said inhibitor corresponds in structure to the formula

5

95. The compound according to claim 87 wherein said inhibitor corresponds in structure to the formula

10

96. The compound according to claim 87 wherein said inhibitor corresponds in structure to the formula

- 798 -

97. The compound according to claim 87 wherein said inhibitor corresponds in structure to the formula

5 98. The compound according to claim 87 wherein said inhibitor corresponds in structure to the formula

99. The compound according to claim 87
10 wherein said inhibitor corresponds in structure to the formula

100. The compound according to claim 87
15 wherein said inhibitor corresponds in structure to the formula

- 799 -

101. The compound according to claim 87 wherein said inhibitor corresponds in structure to the formula

5

102. The compound according to claim 87 wherein said inhibitor corresponds in structure to the formula

10

103. The compound according to 87 wherein said inhibitor corresponds in structure to the formula

-800-

104. An intermediate compound
corresponding in structure to formula VI, below

5

VI

wherein

10 g is zero, 1 or 2;

15 R^3 is an optionally substituted aryl or
optionally substituted heteroaryl radical, and when
said aryl or heteroaryl radical is substituted, the
substituent is (a) selected from the group consisting
of an optionally substituted cycloalkyl,
heterocycloalkyl, aryl, heteroaryl, aralkyl,
heteroaralkyl, aralkoxy, heteroaralkoxy,
aralkoxyalkyl, aryloxyalkyl, aralkanoylalkyl,
arylcarbonylalkyl, aralkylaryl, aryloxyalkylaryl,
20 aralkoxyaryl, arylazoaryl, arylhydrazinoaryl,
alkylthioaryl, arylthioalkyl, alkylthioaralkyl,

aralkylthioalkyl, an aralkylthioaryl radical, the sulfoxide or sulfone of any of the thio substituents, and a fused ring structure comprising two or more 5- or 6-membered rings selected from the group

5 consisting of aryl, heteroaryl, cycloalkyl and heterocycloalkyl, and (b) is itself optionally substituted with one or more substituents independently selected from the group consisting of a cyano, perfluoroalkyl, trifluoromethoxy,

10 trifluoromethylthio, haloalkyl, trifluoromethylalkyl, aralkoxycarbonyl, aryloxycarbonyl, hydroxy, halo, alkyl, alkoxy, nitro, thiol, hydroxycarbonyl, aryloxy, arylthio, aralkyl, aryl, arylcarbonylamino, heteroaryloxy, heteroarylthio, heteroaralkyl,

15 cycloalkyl, heterocyclooxy, heterocyclothio, heterocycloamino, cycloalkyloxy, cycloalkylthio, heteroaralkoxy, heteroaralkylthio, aralkoxy, aralkylthio, aralkylamino, heterocyclo, heteroaryl, arylazo, hydroxycarbonylalkoxy, alkoxy carbonylalkoxy,

20 alkanoyl, arylcarbonyl, aralkanoyl, alkanoyloxy, aralkanoyloxy, hydroxyalkyl, hydroxyalkoxy, alkylthio, alkoxyalkylthio, alkoxy carbonyl, aryloxyalkoxyaryl, arylthioalkylthioaryl, aryloxyalkylthioaryl, arylthioalkoxyaryl,

25 hydroxycarbonylalkoxy, hydroxycarbonylalkylthio, alkoxy carbonylalkoxy, alkoxy carbonylalkylthio, amino, wherein the amino nitrogen is (i) unsubstituted, or (ii) substituted with one or two substituents that are independently selected from the group

30 consisting of an alkyl, aryl, heteroaryl, aralkyl, cycloalkyl, aralkoxycarbonyl, alkoxy carbonyl, arylcarbonyl, aralkanoyl, heteroarylcarbonyl, heteroaralkanoyl and an

alkanoyl group, or (iii) wherein the amino nitrogen and two substituents attached thereto form a 5- to 8-membered heterocyclo or heteroaryl ring containing zero to two additional heteroatoms that are nitrogen, oxygen or sulfur and which ring itself is (a) unsubstituted or (b) substituted with one or two groups independently selected from the group consisting of an aryl, alkyl, heteroaryl, 5 aralkyl, heteroaralkyl, hydroxy, alkoxy, alkanoyl, cycloalkyl, heterocycloalkyl, alkoxycarbonyl, hydroxyalkyl, trifluoromethyl, benzofused heterocycloalkyl, hydroxyalkoxylalkyl, aralkoxycarbonyl, hydroxycarbonyl, 10 aryloxycarbonyl, benzofused heterocycloalkoxy, benzofused cycloalkylcarbonyl, heterocycloalkylcarbonyl, and a cycloalkylcarbonyl group, carbonylamino 15 wherein the carbonylamino nitrogen is (i) unsubstituted, or (ii) is the reacted amine of an amino acid, or (iii) substituted with one or two radicals selected from the group consisting of an alkyl, hydroxyalkyl, hydroxyheteroaralkyl, cycloalkyl, aralkyl, trifluoromethylalkyl, heterocycloalkyl, benzofused heterocycloalkyl, 20 benzofused heterocycloalkyl, benzofused cycloalkyl, and an N,N-dialkylsubstituted alkylamino-alkyl group, or (iv) the carboxamido nitrogen and two substituents bonded thereto 25 together form a 5- to 8-membered heterocyclo, heteroaryl or benzofused heterocycloalkyl ring that is itself unsubstituted or substituted with one or two radicals independently selected from 30

the group consisting of an alkyl, alkoxycarbonyl, nitro, heterocycloalkyl, hydroxy, hydroxycarbonyl, aryl, aralkyl, heteroaralkyl and an amino group,

5 wherein the amino nitrogen is (i) unsubstituted, or (ii) substituted with one or two substituents that are independently selected from the group consisting of alkyl, aryl, and heteroaryl, or (iii) wherein the amino nitrogen and two substituents attached thereto form a 5- to 10 8-membered heterocyclo or heteroaryl ring, and an aminoalkyl group

wherein the aminoalkyl nitrogen is (i) 15 unsubstituted, or (ii) substituted with one or two substituents independently selected from the group consisting of an alkyl, aryl, aralkyl, cycloalkyl, aralkoxycarbonyl, alkoxycarbonyl, and an alkanoyl group, or (iii) wherein the aminoalkyl nitrogen and 20 two substituents attached thereto form a 5- to 8-membered heterocyclo or heteroaryl ring, or is an aryl or heteroaryl group that is substituted with a nucleophilically displaceable leaving group;

25 m is zero, 1 or 2;
n is zero, 1 or 2;
p is zero, 1 or 2;
the sum of m + n + p = 1, 2, 3 or 4;
(a) one of X, Y and Z is selected from the 30 group consisting of C(O), NR⁶, O, S, S(O), S(O)₂ and NS(O)₂R⁷, and the remaining two of X, Y and Z are CR⁸R⁹, and CR¹⁰R¹¹, or

- 804 -

(b) X and Z or Z and Y together constitute a moiety that is selected from the group consisting of $NR^6C(O)$, $NR^6S(O)$, $NR^6S(O)_2$, NR^6S , NR^6O , SS , NR^6NR^6 and $OC(O)$, with the remaining one of X, Y and Z being
 5 CR^8R^9 , or

(c) n is zero and X, Y and Z together constitute a moiety selected from the group consisting of

10

wherein wavy lines are bonds to the atoms of the depicted ring;

5 R⁶ and R^{6'} are independently selected from the group consisting of hydrido, C₁-C₆-alkanoyl, C₆-aryl-C₁-C₆-alkyl, aroyl, bis(C₁-C₆-alkoxy-C₁-C₆-alkyl)-C₁-C₆-alkyl, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-perfluoroalkyl, C₁-C₆-trifluoromethylalkyl, C₁-C₆-perfluoroalkoxy-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₈-heterocycloalkyl, C₃-C₈-heterocycloalkylcarbonyl, C₆-aryl, C₅-C₆-heterocyclo, C₅-C₆-heteroaryl, C₃-C₈-cycloalkyl-C₁-C₆-alkyl, C₆-aryloxy-C₁-C₆-alkyl, heteroaryloxy-C₁-C₆-alkyl, heteroaryl-C₁-C₆-alkoxy-C₁-C₆-alkyl, heteroarylthio-C₁-C₆-alkyl, C₆-arylsulfonyl, C₁-C₆-alkylsulfonyl, C₅-C₆-heteroarylsulfonyl, carboxy-C₁-C₆-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₆-alkyl, aminocarbonyl, C₁-C₆-alkyliminocarbonyl, C₆-

aryliminocarbonyl, C_5 - C_6 -heterocycloiminocarbonyl, C_6 -arylthio- C_1 - C_6 -alkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -alkyl, C_6 -arylthio- C_3 - C_6 -alkenyl, C_1 - C_4 -alkylthio- C_3 - C_6 -alkenyl, C_5 - C_6 -heteroaryl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkanoyl, hydroxy- C_1 - C_6 -alkanoyl, thiol- C_1 - C_6 -alkanoyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_5 -alkoxycarbonyl, aryloxycarbonyl, $NR^8R^9-C_1-C_5$ -alkylcarbonyl, hydroxy- C_1-C_5 -alkyl, an aminocarbonyl wherein the aminocarbonyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, ar- C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl and a C_1 - C_6 -alkanoyl group, hydroxyaminocarbonyl, an aminosulfonyl group wherein the aminosulfonyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, ar- C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl and a C_1 - C_6 -alkanoyl group, an amino- C_1 - C_6 -alkylsulfonyl group wherein the amino- C_1 - C_6 -alkylsulfonyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, ar- C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl and a C_1 - C_6 -alkanoyl group and an amino- C_1 - C_6 -alkyl group wherein the aminoalkyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, ar- C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl and a C_1 - C_6 -alkanoyl group;

R^7 is selected from the group consisting of a arylalkyl, aryl, heteroaryl, heterocyclo, C_1 - C_6 -alkyl, C_3 - C_6 -alkynyl, C_3 - C_6 -alkenyl, C_1 - C_6 -carboxyalkyl and a C_1 - C_6 -hydroxyalkyl group;

5 R^8 and R^9 and R^{10} and R^{11} are independently selected from the group consisting of a hydrido, hydroxy, C_1 - C_6 -alkyl, aryl, ar- C_1 - C_6 -alkyl, heteroaryl, heteroar- C_1 - C_6 -alkyl, C_2 - C_6 -alkynyl, C_2 - C_6 -alkenyl, thiol- C_1 - C_6 -alkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -
10 alkyl cycloalkyl, cycloalkyl- C_1 - C_6 -alkyl, heterocycloalkyl- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, aralkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, hydroxy- C_1 - C_6 -alkyl, hydroxycarbonyl- C_1 - C_6 -alkyl, hydroxycarbonylar- C_1 - C_6 -
15 alkyl, aminocarbonyl- C_1 - C_6 -alkyl, aryloxy- C_1 - C_6 -alkyl, heteroaryloxy- C_1 - C_6 -alkyl, arylthio- C_1 - C_6 -alkyl, heteroarylthio- C_1 - C_6 -alkyl, the sulfoxide or sulfone of any said thio substituents, perfluoro- C_1 - C_6 -alkyl, trifluoromethyl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, alkoxy carbonylamino- C_1 - C_6 -alkyl and an amino-
20 C_1 - C_6 -alkyl group wherein the aminoalkyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, ar- C_1 - C_6 -alkyl, cycloalkyl and C_1 - C_6 -alkanoyl, or wherein R^8 and R^9 or R^{10} and R^{11} and the carbon to which they are bonded form a carbonyl group, or wherein R^8 and R^9 or R^{10} and R^{11} , or R^8 and R^{10} together with the atoms to which they

are bonded form a 5- to 8-membered carbocyclic ring, or a 5- to 8-membered heterocyclic ring containing one or two heteroatoms that are nitrogen, oxygen, or sulfur, with the proviso that only one of R⁸ and R⁹ 5 or R¹⁰ and R¹¹ is hydroxy;

R¹² and R^{12'} are independently selected from the group consisting of a hydrido, C₁-C₆-alkyl, aryl, ar-C₁-C₆-alkyl, heteroaryl, heteroaralkyl, C₂-C₆-alkynyl, C₂-C₆-alkenyl, thiol-C₁-C₆-alkyl, 10 cycloalkyl, cycloalkyl-C₁-C₆-alkyl, heterocycloalkyl-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, aryloxy-C₁-C₆-alkyl, amino-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁-C₆-alkyl, hydroxy-C₁-C₆-alkyl, hydroxycarbonyl-C₁-C₆-alkyl, hydroxycarbonylar-C₁-C₆-alkyl, 15 aminocarbonyl-C₁-C₆-alkyl, aryloxy-C₁-C₆-alkyl, heteroaryloxy-C₁-C₆-alkyl, C₁-C₆-alkylthio-C₁-C₆-alkyl, arylthio-C₁-C₆-alkyl, heteroarylthio-C₁-C₆-alkyl, the sulfoxide or sulfone of any said thio substituents, perfluoro-C₁-C₆-alkyl, trifluoromethyl- 20 C₁-C₆-alkyl, halo-C₁-C₆-alkyl, alkoxycarbonylamino-C₁-C₆-alkyl and an amino-C₁-C₆-alkyl group wherein the aminoalkyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C₁-C₆-alkyl, 25 ar-C₁-C₆-alkyl, cycloalkyl and C₁-C₆-alkanoyl;

R¹³ is selected from the group consisting of a hydrido, benzyl, phenyl, C₁-C₆-alkyl, C₂-C₆-

alkynyl, C_2 - C_6 -alkenyl and a C_1 - C_6 -hydroxyalkyl group; and

R^{20} is (a) $-O-R^{21}$, where R^{21} is selected from the group consisting of a hydrido, C_1 - C_6 -alkyl, 5 aryl, ar- C_1 - C_6 -alkyl group and a pharmaceutically acceptable cation, or (b) $-NH-O-R^{22}$ wherein R^{22} is a selectively removable protecting group.

105. The intermediate compound according 10 to claim 104 wherein R^3 is the substituent G-A-R-E-Y wherein

G is an aryl or heteroaryl group;
A is selected from the group consisting of
(1) $-O-$;
15 (2) $-S-$;
(3) $-NR^{17}-$;
(4) $-CO-N(R^{17})$ or $-N(R^{17})-CO-$, wherein R^{17} is hydrogen, C_1 - C_4 -alkyl, or phenyl;
(5) $-CO-O-$ or $-O-CO-$;
20 (6) $-O-CO-O-$;
(7) $-HC=CH-$;
(8) $-NH-CO-NH-$;
(9) $-C\equiv C-$;
(10) $-NH-CO-O-$ or $-O-CO-NH-$;
25 (11) $-N=N-$;
(12) $-NH-NH-$; and
(13) $-CS-N(R^{18})-$ or $-N(R^{18})-CS-$, wherein R^{18} is hydrogen C_1 - C_4 -alkyl, or phenyl; or

- 810 -

(14) A is absent and G is bonded directly to R;

R is a moiety selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, 5 cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkylalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, heteroarylthioalkyl, cycloalkylthioalkyl, and a 10 heterocycloalkylthioalkyl group wherein the aryl or heteroaryl or cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, 15 perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, amino, alkoxycarbonylalkyl, alkoxy, C₁-C₂-alkylene-dioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoylamino, and a alkoxycarbonyl 20 group, and R is other than alkyl or alkoxyalkyl when A is -O- or -S-;

E is selected from the group consisting of

(1) -CO(R¹⁹)- or -(R¹⁹)CO-, wherein R¹⁹ is 25 a heterocycloalkyl, or a cycloalkyl group;

(2) -CONH- or -HNCO-; and

(3) -CO-;

(4) -SO₂-R¹⁹- or -R¹⁹-SO₂-;

(5) -SO₂-;

30 (6) -NH-SO₂- or -SO₂-NH-; or

-811-

(7) E is absent and R is bonded directly to Y; and

Y is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, 5 aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, aryloxy, aralkoxy, heteroaryloxy, heteroaralkyl, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxycarbonyl, and a 10 aminoalkyl group, wherein the aryl or heteroaryl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, aralkyl, aryl, alkoxy, and an amino 15 group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group.

20 106. The intermediate compound according to claim 104 wherein said -G-A-R-E-Y substituent contains two to four carbocyclic or heterocyclic rings.

25 107. The intermediate compound according to claim 106 wherein each of the two to four rings is 6-membered.

30 108. The intermediate compound according to claim 104 wherein said -G-A-R-E-Y substituent has a length that is greater than a hexyl group and a length that is less than that of a stearyl group.

109. The intermediate compound according
to claim 104 wherein A is -O- or -S-.

5 110. The intermediate compound according
to claim 104 wherein R is an aryl, heteroaryl,
cycloalkyl or heterocycloalkyl group.

10 111. The intermediate compound according
to claim 104 wherein E is absent.

15 112. The intermediate compound according
to 104 wherein Y is selected from the group
consisting of hydrido, an alkyl, alkoxy,
perfluoroalkoxy and a perfluoroalkylthio group.

113. The intermediate compound according
to 104 wherein R¹⁴ is hydrido.

20 114. The intermediate compound according
to claim 104 wherein W of the C(W)R¹⁵ is O and R¹⁵ is
a C₁-C₆-alkyl, aryl, C₁-C₆-alkoxy, heteroaryl-C₁-C₆-
alkyl, C₃-C₈-cycloalkyl-C₁-C₆-alkyl, or aryloxy
group.

25 115. The intermediate compound according
to claim 103 wherein R³ is a single-ringed aryl or
heteroaryl group that is 5- or 6-membered, and is
itself substituted at its own 4-position when a
30 6-membered ring and at its own 3- or 4-position when
a 5-membered ring with a substituent selected from

the group consisting of a thiophenoxy, 4-chlorophenoxy, 3-chlorophenoxy, 4-methoxyphenoxy, 3-benzodioxol-5-yloxy, 3,4-dimethylphenoxy, 4-fluorophenoxy, 4-fluorothiophenoxy, phenoxy, 4-5 trifluoro-methoxyphenoxy, 4-trifluoromethylphenoxy, 4-(trifluoromethylthio)phenoxy, 4-(trifluoromethylthio)thiophenoxy, 4-chloro-3-fluorophenoxy, 4-isopropoxyphenoxy, 4-isopropylphenoxy, (2-methyl-1,3-benzothiazol-5-yl)oxy, 4-(1H-imidazol-1-yl)phenoxy, 10 4-chloro-3-methylphenoxy, 3-methyl-phenoxy, 4-ethoxyphenoxy, 3,4-difluorophenoxy, 4-chloro-3-methylphenoxy, 4-fluoro-3-chlorophenoxy, 4-(1H-1,2,4-triazol-1-yl)phenoxy, 3,5-difluorophenoxy, 3,4-dichlorophenoxy, 4-cyclopentylphenoxy, 4-bromo-3-15 methylphenoxy, 4-bromophenoxy, 4-methylthiophenoxy, 4-phenylphenoxy, 4-benzylphenoxy, 6-quinolinylxy, 4-amino-3-methylphenoxy, 3-methoxyphenoxy, 5,6,7,8-tetrahydro-2-naphthalenyloxy, 3-hydroxymethylphenoxy, and a 4-benzyloxyphenoxy group.

20

116. The intermediate compound according to claim 103 wherein said selectively removable protecting group is selected from the group consisting of a 2-tetrahydropyranyl, C_1 - C_6 -acyl, 25 aroyl, benzyl, p-methoxybenzyloxycarbonyl, benzyloxycarbonyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkoxy- CH_2 - , C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- CH_2 - and an o-nitrophenyl group.

30

117. The intermediate compound according to claim 103 wherein said nucleophilically displaceable leaving group is selected from the group

consisting of a halo, nitro, azido, phenylsulfoxido, aryloxy, C₁-C₆-alkoxy, a C₁-C₆-alkylsulfonate or arylsulfonate group and a trisubstituted ammonium group in which the three substituents are
 5 independently aryl, ar- C₁-C₆-alkyl or C₁-C₆-alkyl.

118. The intermediate compound according to claim 103 wherein g is zero.

10 119. An intermediate compound that corresponds in structure to formula VII, below

VII

15 wherein
 g is zero, 1 or 2;
 D is a nucleophilically displaceable leaving group;
 m is zero, 1 or 2;
 20 n is zero, 1 or 2;
 p is zero, 1 or 2;
 the sum of m + n + p = 1, 2, 3 or 4;
 (a) one of X, Y and Z is selected from the group consisting of C(O), NR⁶, O, S, S(O), S(O)₂

and $\text{NS(O)}_2\text{R}^7$, and the remaining two of X, Y and Z are CR^8R^9 , and $\text{CR}^{10}\text{R}^{11}$, or

(b) X and Z or Z and Y together constitute a moiety that is selected from the group 5 consisting of $\text{NR}^6\text{C(O)}$, $\text{NR}^6\text{S(O)}$, $\text{NR}^6\text{S(O)}_2$, NR^6S , NR^6O , SS , NR^6NR^6 and OC(O) , with the remaining one of X, Y and Z being CR^8R^9 , or

(c) n is zero and X, Y and Z together constitute a moiety selected from the group 10 consisting of

wherein wavy lines are bonds to the atoms of the depicted ring;

5 R⁶ and R^{6'} are independently selected from the group consisting of hydrido, C₁-C₆-alkanoyl, C₆-aryl-C₁-C₆-alkyl, aroyl, bis(C₁-C₆-alkoxy-C₁-C₆-alkyl)-C₁-C₆-alkyl, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-perfluoroalkyl, C₁-C₆-trifluoromethylalkyl, C₁-C₆-perfluoroalkoxy-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₈-heterocycloalkyl, C₃-C₈-heterocycloalkylcarbonyl, C₆-aryl, C₅-C₆-heterocyclo, C₅-C₆-heteroaryl, C₃-C₈-cycloalkyl-C₁-C₆-alkyl, C₆-aryloxy-C₁-C₆-alkyl, heteroaryloxy-C₁-C₆-alkyl, heteroaryl-C₁-C₆-alkoxy-C₁-C₆-alkyl, heteroarylthio-C₁-C₆-alkyl, C₆-arylsulfonyl, C₁-C₆-alkylsulfonyl, C₅-C₆-heteroarylsulfonyl, carboxy-C₁-C₆-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₆-alkyl, aminocarbonyl, C₁-C₆-alkyliminocarbonyl, C₆-

aryliminocarbonyl, C_5 - C_6 -heterocycloiminocarbonyl, C_6 -arylthio- C_1 - C_6 -alkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -alkyl, C_6 -arylthio- C_3 - C_6 -alkenyl, C_1 - C_4 -alkylthio- C_3 - C_6 -alkenyl, C_5 - C_6 -heteroaryl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkanoyl, hydroxy- C_1 - C_6 -alkanoyl, thiol- C_1 - C_6 -alkanoyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_5 -alkoxycarbonyl, aryloxycarbonyl, $NR^8R^9-C_1-C_5$ -alkylcarbonyl, hydroxy- C_1-C_5 -alkyl, an aminocarbonyl wherein the aminocarbonyl nitrogen is

10 (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, ar- C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl and a C_1 - C_6 -alkanoyl group, hydroxyaminocarbonyl, an aminosulfonyl group wherein

15 the aminosulfonyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, ar- C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl and a C_1 - C_6 -alkanoyl group, an amino- C_1 - C_6 -alkylsulfonyl

20 group wherein the amino- C_1 - C_6 -alkylsulfonyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, ar- C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl and a C_1 - C_6 -alkanoyl group and an amino-

25 C_1 - C_6 -alkyl group wherein the aminoalkyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, ar- C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl and a C_1 - C_6 -alkanoyl group;

R^7 is selected from the group consisting of a arylalkyl, aryl, heteroaryl, heterocyclo, C_1 - C_6 -alkyl, C_3 - C_6 -alkynyl, C_3 - C_6 -alkenyl, C_1 - C_6 -carboxyalkyl and a C_1 - C_6 -hydroxyalkyl group;

5 R^8 and R^9 and R^{10} and R^{11} are independently selected from the group consisting of a hydrido, hydroxy, C_1 - C_6 -alkyl, aryl, ar- C_1 - C_6 -alkyl, heteroaryl, heteroar- C_1 - C_6 -alkyl, C_2 - C_6 -alkynyl, C_2 - C_6 -alkenyl, thiol- C_1 - C_6 -alkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -
10 alkyl cycloalkyl, cycloalkyl- C_1 - C_6 -alkyl, heterocycloalkyl- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, aralkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, hydroxy- C_1 - C_6 -alkyl, hydroxycarbonyl- C_1 - C_6 -alkyl, hydroxycarbonylar- C_1 - C_6 -
15 alkyl, aminocarbonyl- C_1 - C_6 -alkyl, aryloxy- C_1 - C_6 -alkyl, heteroaryloxy- C_1 - C_6 -alkyl, arylthio- C_1 - C_6 -alkyl, heteroarylthio- C_1 - C_6 -alkyl, the sulfoxide or sulfone of any said thio substituents, perfluoro- C_1 - C_6 -alkyl, trifluoromethyl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -
20 alkyl, alkoxycarbonylamino- C_1 - C_6 -alkyl and an amino- C_1 - C_6 -alkyl group wherein the aminoalkyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C_1 - C_6 -alkyl, ar- C_1 - C_6 -alkyl, cycloalkyl and C_1 - C_6 -alkanoyl, or wherein R^8 and R^9 or R^{10} and R^{11} and the carbon to which they are bonded form a carbonyl group, or wherein R^8 and R^9 or R^{10} and R^{11} , or R^8 and R^{10} together with the atoms to which they

are bonded form a 5- to 8-membered carbocyclic ring, or a 5- to 8-membered heterocyclic ring containing one or two heteroatoms that are nitrogen, oxygen, or sulfur, with the proviso that only one of R⁸ and R⁹ 5 or R¹⁰ and R¹¹ is hydroxy;

R¹² and R^{12'} are independently selected from the group consisting of a hydrido, C₁-C₆-alkyl, aryl, ar-C₁-C₆-alkyl, heteroaryl, heteroaralkyl, C₂-C₆-alkynyl, C₂-C₆-alkenyl, thiol-C₁-C₆-alkyl, 10 cycloalkyl, cycloalkyl-C₁-C₆-alkyl, heterocycloalkyl-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, aryloxy-C₁-C₆-alkyl, amino-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁-C₆-alkyl, hydroxy-C₁-C₆-alkyl, hydroxycarbonyl-C₁-C₆-alkyl, hydroxycarbonylar-C₁-C₆-alkyl, 15 aminocarbonyl-C₁-C₆-alkyl, aryloxy-C₁-C₆-alkyl, heteroaryloxy-C₁-C₆-alkyl, C₁-C₆-alkylthio-C₁-C₆-alkyl, arylthio-C₁-C₆-alkyl, heteroarylthio-C₁-C₆-alkyl, the sulfoxide or sulfone of any said thio substituents, perfluoro-C₁-C₆-alkyl, trifluoromethyl- 20 C₁-C₆-alkyl, halo-C₁-C₆-alkyl, alkoxycarbonylamino-C₁-C₆-alkyl and an amino-C₁-C₆-alkyl group wherein the aminoalkyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C₁-C₆-alkyl, 25 ar-C₁-C₆-alkyl, cycloalkyl and C₁-C₆-alkanoyl;

R¹³ is selected from the group consisting of a hydrido, benzyl, phenyl, C₁-C₆-alkyl, C₂-C₆-

- 820 -

alkynyl, C_2 - C_6 -alkenyl and a C_1 - C_6 -hydroxyalkyl group; and

R^{20} is (a) $-O-R^{21}$, where R^{21} is selected from the group consisting of a hydrido, C_1 - C_6 -alkyl, 5 aryl, ar- C_1 - C_6 -alkyl group and a pharmaceutically acceptable cation, or (b) $-NH-O-R^{22}$ wherein R^{22} is a selectively removable protecting group.

120. The intermediate compound according 10 to 119 wherein said selectively removable protecting group is selected from the group consisting of a 2-tetrahydropyranyl, C_1 - C_6 -acyl, aroyl, benzyl, p-methoxybenzyloxycarbonyl, benzyloxycarbonyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkoxy- CH_2 -, C_1 - C_6 -alkoxy- C_1 -15 C_6 -alkoxy- CH_2 - and an o-nitrophenyl group.

121. The intermediate compound according 20 to claim 119 wherein said nucleophilically displaceable leaving group, D, is selected from the group consisting of a halo, nitro, azido, phenylsulfoxido, aryloxy, C_1 - C_6 -alkoxy, a C_1 - C_6 -alkylsulfonate or arylsulfonate group and a trisubstituted ammonium group in which the three substituents are independently aryl, ar- C_1 - C_6 -alkyl 25 or C_1 - C_6 -alkyl.

122. The intermediate compound according to claim 119 wherein said halo group is fluoro.

-821-

123. The intermediate compound according to claim 119 wherein g is zero.

124. A pharmaceutical composition that
5 comprises a compound according to claim 52 dissolved or dispersed in a pharmaceutically acceptable carrier.

125. A pharmaceutical composition that
10 comprises a compound according to claim 62 dissolved or dispersed in a pharmaceutically acceptable carrier.

126. A pharmaceutical composition that
15 comprises a compound according to claim 69 dissolved or dispersed in a pharmaceutically acceptable carrier.

127. A pharmaceutical composition that
20 comprises a compound according to claim 87 dissolved or dispersed in a pharmaceutically acceptable carrier.

128. A process for forming a
25 metalloprotease inhibitor compound product or intermediate compound product therefore that comprises the step of coupling an intermediate compound with another moiety, wherein said intermediate compound corresponds in structure to
30 formula VIB, below, and said product corresponds in structure to formula VIA, below:

wherein

g is zero, 1 or 2;

5 R^{3'} is an aryl or heteroaryl group that is substituted with a coupling substituent reactive for coupling with another moiety;

10 R³ is an optionally substituted aryl or
optionally substituted heteroaryl radical, and when
said aryl or heteroaryl radical is substituted, the
substituent is (a) selected from the group consisting
of an optionally substituted cycloalkyl,
heterocycloalkyl, aryl, heteroaryl, aralkyl,
heteroaralkyl, aralkoxy, heteroaralkoxy,
15 aralkoxyalkyl, aryloxyalkyl, aralkanoylalkyl,
arylcarbonylalkyl, aralkylaryl, aryloxyalkylaryl,
aralkoxyaryl, arylazoaryl, arylhydrazinoaryl,
alkylthioaryl, arylthioalkyl, alkylthioaralkyl,
aralkylthioalkyl, an aralkylthioaryl radical, the
20 sulfoxide or sulfone of any of the thio substituents,
and a fused ring structure comprising two or more 5-
or 6-membered rings selected from the group
consisting of aryl, heteroaryl, cycloalkyl and
heterocycloalkyl, and (b) is itself optionally
25 substituted with one or more substituents
independently selected from the group consisting of a

cyano, perfluoroalkyl, trifluoromethoxy, trifluoromethylthio, haloalkyl, trifluoromethylalkyl, aralkoxycarbonyl, aryloxycarbonyl, hydroxy, halo, alkyl, alkoxy, nitro, thiol, hydroxycarbonyl, 5 aryloxy, arylthio, aralkyl, aryl, arylcarbonylamino, heteroaryloxy, heteroarylthio, heteroaralkyl, cycloalkyl, heterocyclooxy, heterocyclothio, heterocycloamino, cycloalkyloxy, cycloalkylthio, heteroaralkoxy, heteroaralkylthio, aralkoxy, 10 aralkylthio, aralkylamino, heterocyclo, heteroaryl, arylazo, hydroxycarbonylalkoxy, alkoxycarbonylalkoxy, alkanoyl, arylcarbonyl, aralkanoyl, alkanoyloxy, aralkanoyloxy, hydroxyalkyl, hydroxyalkoxy, alkylthio, alkoxyalkylthio, alkoxycarbonyl, 15 aryloxyalkoxyaryl, arylthioalkylthioaryl, aryloxyalkylthioaryl, arylthioalkoxyaryl, hydroxycarbonylalkoxy, hydroxycarbonylalkylthio, alkoxycarbonylalkoxy, alkoxycarbonylalkylthio, amino, wherein the amino nitrogen is (i) unsubstituted, 20 or (ii) substituted with one or two substituents that are independently selected from the group consisting of an alkyl, aryl, heteroaryl, aralkyl, cycloalkyl, aralkoxycarbonyl, alkoxycarbonyl, arylcarbonyl, aralkanoyl, heteroarylcarbonyl, heteroaralkanoyl and an alkanoyl group, or (iii) wherein the amino nitrogen and two substituents attached thereto 25 form a 5- to 8-membered heterocyclo or heteroaryl ring containing zero to two additional heteroatoms that are nitrogen, oxygen or sulfur and which ring itself is (a) unsubstituted or (b) substituted with one or two groups independently selected from the group 30

consisting of an aryl, alkyl, heteroaryl, aralkyl, heteroaralkyl, hydroxy, alkoxy, alkanoyl, cycloalkyl, heterocycloalkyl, alkoxycarbonyl, hydroxyalkyl, trifluoromethyl, benzofused heterocycloalkyl, hydroxyalkoxyalkyl, aralkoxycarbonyl, hydroxycarbonyl, aryloxycarbonyl, benzofused heterocycloalkoxy, benzofused cycloalkylcarbonyl, heterocycloalkylcarbonyl, and a cycloalkylcarbonyl group,

10 carbonylamino

wherein the carbonylamino nitrogen is (i) unsubstituted, or (ii) is the reacted amine of an amino acid, or (iii) substituted with one or two radicals selected from the group consisting of an alkyl, hydroxyalkyl, hydroxyheteroaralkyl, cycloalkyl, aralkyl, trifluoromethylalkyl, heterocycloalkyl, benzofused heterocycloalkyl, benzofused heterocycloalkyl, benzofused cycloalkyl, and an N,N-dialkylsubstituted alkylamino-alkyl group, or (iv) the carboxamido nitrogen and two substituents bonded thereto together form a 5- to 8-membered heterocyclo, heteroaryl or benzofused heterocycloalkyl ring that is itself unsubstituted or substituted with one or two radicals independently selected from the group consisting of an alkyl, alkoxycarbonyl, nitro, heterocycloalkyl, hydroxy, hydroxycarbonyl, aryl, aralkyl, heteroaralkyl and an amino group,

30 wherein the amino nitrogen is (i) unsubstituted, or (ii) substituted with one or two substituents that are independently selected from the group

-825-

consisting of alkyl, aryl, and heteroaryl, or (iii) wherein the amino nitrogen and two substituents attached thereto form a 5- to 8-membered heterocyclo or heteroaryl ring,

5 and an aminoalkyl group

wherein the aminoalkyl nitrogen is (i) unsubstituted, or (ii) substituted with one or two substituents independently selected from the group consisting of an alkyl, aryl, aralkyl, cycloalkyl, 10 aralkoxycarbonyl, alkoxy carbonyl, and an alkanoyl group, or (iii) wherein the aminoalkyl nitrogen and two substituents attached thereto form a 5- to 8-membered heterocyclo or heteroaryl ring;

m is zero, 1 or 2;

15 n is zero, 1 or 2;

p is zero, 1 or 2;

the sum of m + n + p = 1, 2, 3 or 4;

(a) one of X, Y and Z is selected from the group consisting of C(O), NR⁶, O, S, S(O), S(O)₂

20 and NS(O)₂R⁷, and the remaining two of X, Y and Z are CR⁸R⁹, and CR¹⁰R¹¹, or

(b) X and Z or Z and Y together constitute a moiety that is selected from the group consisting of NR⁶C(O), NR⁶S(O), NR⁶S(O)₂, NR⁶S, NR⁶O,

25 SS, NR⁶NR⁶ and OC(O), with the remaining one of X, Y and Z being CR⁸R⁹, or

(c) n is zero and X, Y and Z together constitute a moiety selected from the group consisting of

5 wherein wavy lines are bonds to the atoms
of the depicted ring;

R⁶ and R^{6'} are independently selected from the group consisting of hydrido, C₁-C₆-alkanoyl, C₆-aryl-C₁-C₆-alkyl, aroyl, bis(C₁-C₆-alkoxy-C₁-C₆-alkyl)-C₁-C₆-alkyl, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-perfluoroalkyl, C₁-C₆-trifluoromethylalkyl, C₁-C₆-

perfluoroalkoxy-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₈-heterocycloalkyl, C₃-C₈-heterocycloalkylcarbonyl, C₆-aryl, C₅-C₆-heterocyclo, C₅-C₆-heteroaryl, C₃-C₈-cycloalkyl-C₁-C₆-alkyl, C₆-aryloxy-C₁-C₆-alkyl, heteroaryloxy-C₁-C₆-alkyl, heteroaryl-C₁-C₆-alkoxy-C₁-C₆-alkyl, heteroarylthio-C₁-C₆-alkyl, C₆-arylsulfonyl, C₁-C₆-alkylsulfonyl, C₅-C₆-heteroarylsulfonyl, carboxy-C₁-C₆-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₆-alkyl, aminocarbonyl, C₁-C₆-alkyliminocarbonyl, C₆-aryliminocarbonyl, C₅-C₆-heterocycloiminocarbonyl, C₆-arylthio-C₁-C₆-alkyl, C₁-C₆-alkylthio-C₁-C₆-alkyl, C₆-arylthio-C₃-C₆-alkenyl, C₁-C₄-alkylthio-C₃-C₆-alkenyl, C₅-C₆-heteroaryl-C₁-C₆-alkyl, halo-C₁-C₆-alkanoyl, hydroxy-C₁-C₆-alkanoyl, thiol-C₁-C₆-alkanoyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₅-alkoxycarbonyl, aryloxycarbonyl, NR⁸R⁹-C₁-C₅-alkylcarbonyl, hydroxy-C₁-C₅-alkyl, an aminocarbonyl wherein the aminocarbonyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C₁-C₆-alkyl, ar-C₁-C₆-alkyl, C₃-C₈-cycloalkyl and a C₁-C₆-alkanoyl group, hydroxyaminocarbonyl, an aminosulfonyl group wherein the aminosulfonyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C₁-C₆-alkyl, ar-C₁-C₆-alkyl, C₃-C₈-cycloalkyl and a

C_1 - C_6 -alkanoyl group, an amino- C_1 - C_6 -alkylsulfonyl group wherein the amino- C_1 - C_6 -alkylsulfonyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group
5 consisting of C_1 - C_6 -alkyl, ar- C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl and a C_1 - C_6 -alkanoyl group and an amino- C_1 - C_6 -alkyl group wherein the aminoalkyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group
10 consisting of C_1 - C_6 -alkyl, ar- C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl and a C_1 - C_6 -alkanoyl group;

R^7 is selected from the group consisting of a arylalkyl, aryl, heteroaryl, heterocyclo, C_1 - C_6 -alkyl, C_3 - C_6 -alkynyl, C_3 - C_6 -alkenyl, C_1 - C_6 -carboxyalkyl and a C_1 - C_6 -hydroxyalkyl group;

R^8 and R^9 and R^{10} and R^{11} are independently selected from the group consisting of a hydrido, hydroxy, C_1 - C_6 -alkyl, aryl, ar- C_1 - C_6 -alkyl, heteroaryl, heteroar- C_1 - C_6 -alkyl, C_2 - C_6 -alkynyl, C_2 - C_6 -alkenyl, thiol- C_1 - C_6 -alkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -alkyl cycloalkyl, cycloalkyl- C_1 - C_6 -alkyl, heterocycloalkyl- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, aralkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, hydroxy- C_1 - C_6 -alkyl, 25 hydroxycarbonyl- C_1 - C_6 -alkyl, hydroxycarbonylar- C_1 - C_6 -alkyl, aminocarbonyl- C_1 - C_6 -alkyl, aryloxy- C_1 - C_6 -alkyl, heteroaryloxy- C_1 - C_6 -alkyl, arylthio- C_1 - C_6 -alkyl, heteroarylthio- C_1 - C_6 -alkyl, the sulfoxide or

sulfone of any said thio substituents, perfluoro-C₁-C₆-alkyl, trifluoromethyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, alkoxycarbonylamino-C₁-C₆-alkyl and an amino-C₁-C₆-alkyl group wherein the aminoalkyl nitrogen is
5 (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C₁-C₆-alkyl, ar-C₁-C₆-alkyl, cycloalkyl and C₁-C₆-alkanoyl, or wherein R⁸ and R⁹ or R¹⁰ and R¹¹ and the carbon to which they are bonded form a
10 carbonyl group, or wherein R⁸ and R⁹ or R¹⁰ and R¹¹, or R⁸ and R¹⁰ together with the atoms to which they are bonded form a 5- to 8-membered carbocyclic ring, or a 5- to 8-membered heterocyclic ring containing one or two heteroatoms that are nitrogen, oxygen, or
15 sulfur, with the proviso that only one of R⁸ and R⁹ or R¹⁰ and R¹¹ is hydroxy;

R¹² and R^{12'} are independently selected from the group consisting of a hydrido, C₁-C₆-alkyl, aryl, ar-C₁-C₆-alkyl, heteroaryl, heteroaralkyl, C₂-C₆-alkynyl, C₂-C₆-alkenyl, thiol-C₁-C₆-alkyl, cycloalkyl, cycloalkyl-C₁-C₆-alkyl, heterocycloalkyl-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, aryloxy-C₁-C₆-alkyl, amino-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁-C₆-alkyl, hydroxy-C₁-C₆-alkyl, hydroxycarbonyl-C₁-C₆-alkyl, hydroxycarbonylar-C₁-C₆-alkyl,
20 aminocarbonyl-C₁-C₆-alkyl, aryloxy-C₁-C₆-alkyl, heteroaryloxy-C₁-C₆-alkyl, C₁-C₆-alkylthio-C₁-C₆-alkyl, arylthio-C₁-C₆-alkyl, heteroarylthio-C₁-C₆-alkyl,
25

alkyl, the sulfoxide or sulfone of any said thio substituents, perfluoro-C₁-C₆-alkyl, trifluoromethyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, alkoxycarbonylamino-C₁-C₆-alkyl and an amino-C₁-C₆-alkyl group wherein 5 the aminoalkyl nitrogen is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of C₁-C₆-alkyl, ar-C₁-C₆-alkyl, cycloalkyl and C₁-C₆-alkanoyl;

R¹³ is selected from the group consisting 10 of a hydrido, benzyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkynyl, C₂-C₆-alkenyl and a C₁-C₆-hydroxyalkyl group; and

R²⁰ is (a) -O-R²¹, where R²¹ is selected 15 from the group consisting of a hydrido, C₁-C₆-alkyl, aryl, ar-C₁-C₆-alkyl group and a pharmaceutically acceptable cation, or (b) -NH-O-R²² wherein R²² is a selectively removable protecting group.

129. The process according to claim 128 20 including the further step of recovering said product.

130. The process according to claim 128 wherein R²⁰ is -NH-O-R²², wherein R²² is a 25 selectively removable protecting group.

131. The process according to claim 130 wherein said selectively removable protecting group is selected from the group consisting of a 2- 30 tetrahydropyranyl, C₁-C₆-acyl, aroyl, benzyl, p-

-831-

methoxybenzyloxycarbonyl, benzyloxycarbonyl, C₁-C₆-alkoxycarbonyl, C₁-C₆-alkoxy-CH₂- , C₁-C₆-alkoxy-C₁-C₆-alkoxy-CH₂- , an o-nitrophenyl group and a peptide synthesis resin.

5

132. The process according to claim 128 wherein said coupling substituent is a nucleophilically displaceable leaving group

10

133. The process according to claim 122 wherein said nucleophilically displaceable leaving group is selected from the group consisting of a halo, nitro, azido, phenylsulfoxido, aryloxy, C₁-C₆-alkoxy, a C₁-C₆-alkylsulfonate or arylsulfonate group 15 and a trisubstituted ammonium group in which the three substituents are independently aryl, ar- C₁-C₆-alkyl or C₁-C₆-alkyl.

15

20

134. The process according to claim 128 wherein g 2.

135. The process according to claim 128 wherein said R³ aryl or heteroaryl group is an aryl group.

25

136. The process according to claim 128 wherein said intermediate that corresponds in structure to formula VI corresponds in structure to formula VIIA, below,

30

VIIA

wherein D is said nucleophilically

displaceable leaving group and is selected from the group consisting of a halo, nitro, azido,

5 phenylsulfoxido, aryloxy, $\text{C}_1\text{-C}_6$ -alkoxy, a $\text{C}_1\text{-C}_6$ -alkylsulfonate or arylsulfonate group and a trisubstituted ammonium group in which the three substituents are independently aryl, ar- $\text{C}_1\text{-C}_6$ -alkyl or $\text{C}_1\text{-C}_6$ -alkyl.

10

137. The process according to claim 128 including the further step of recovering said product.

15

138. The process according to claim 128 including the further step of selectively removing said protecting group, R^{22} .

20

139. The process according to claim 138 wherein said protecting group, R^{22} , is removed after carrying out the further step of recovering said product.

-833-

140. The process according to claim 139
wherein said protecting group, R²², is a 2-
tetrahydropyranyl group.

5 141. The process according to claim 129
wherein R²¹ in said product after recovery is
hydrido, and including the further step of reacting
said product with hydroxyl amine or a hydroxyl amine
whose oxygen is reacted with a selectively removable
10 protecting group selected from the group consisting
of a 2-tetrahydropyranyl, C₁-C₆-acyl, aroyl, benzyl,
p-methoxybenzyloxycarbonyl, benzyloxycarbonyl, C₁-C₆-
alkoxycarbonyl, C₁-C₆-alkoxy-CH₂- , C₁-C₆-alkoxy-C₁-
C₆-alkoxy-CH₂- , an o-nitrophenyl group and a peptide
15 synthesis resin to form a hydroxamic acid or
protected hydroxamate product.

142. The process according to claim 141
including the further step of recovering the product
20 formed.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 98/23242

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6	C07D211/66	C07D309/08	A61K31/445	A61K31/35	A61K31/16
	C07C317/44	C07D335/02	C07D405/12	C07D409/12	C07D211/94
	C07D405/14	C07D239/04	C07D417/12	C07D407/12	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07D C07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0 780 386 A (HOFFMANN LA ROCHE ;AGOURON PHARMA (US)) 25 June 1997 cited in the application see the whole document ---	1-142
Y	WO 97 24117 A (RHONE POULENC RORER PHARMA ;GRONEBERG ROBERT D (US); NEUENSCHWANDE) 10 July 1997 cited in the application see the whole document ---	1-142

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the International search report

4 March 1999

20.04.99

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 'epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Fink, D

INTERNATIONAL SEARCH REPORT

Int. .ional Application No
PCT/US 98/23242

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE WPI Section Ch, Week 9302 Derwent Publications Ltd., London, GB; Class B03, AN 93-012141 XP002095370 & JP 04 338331 A (TAKEDA CHEM IND LTD) , 25 November 1992 see abstract -& JP 04 338331 A (TAKEDA CHEM IND LTD) 25 November 1992 see, in particular, pages 3-4, table 1, the entries no. 7-9, 13, 16, 21, 22, 31, 36, and 41-43 ---</p>	104, 117-119, 121-123
X	<p>EP 0 266 182 A (TAKEDA CHEMICAL INDUSTRIES LTD) 4 May 1988 see page 19; claim 1 see page 10; examples 9-11 see page 15; examples 35,38 ---</p>	104, 117-119, 121-123
P,X	<p>WO 98 37877 A (AMERICAN CYANAMID CO) 3 September 1998 see the whole document ---</p>	1-142
P,X	<p>WO 98 38163 A (AMERICAN CYANAMID CO) 3 September 1998 see the whole document ---</p>	1-6

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 98/23242

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 1-51 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: 104-120, 122, 123 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Claims Nos.: 104-120,122,123

The novelty search on the intermediate compounds of formula VI according to the present independent claim 104 - wherein R20 represents the group -O-R21 - revealed a vast amount of novelty-destroying documents. In the case of the said esters (R20 = -O-R21), the International Search Report therefore had to be limited to the intermediates of formula VII of the present claim 119, wherein the group D is defined according to present claim 121 (in the case of the hydroxamic acid derivatives of formula VI (R20 = -NH-O-R22) of the present claim 104, the International Search Report may be considered as being complete).

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 98/23242

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 0780585	A 25-06-1997	AU 700725	B	14-01-1999
		AU 7548296	A	31-07-1997
		BR 9606134	A	03-11-1998
		CA 2193178	A	21-06-1997
		CN 1160045	A	24-09-1997
		CZ 9603740	A	14-01-1998
		HR 960612	A	28-02-1998
		HU 9603494	A	30-11-1998
		JP 9249638	A	22-09-1997
		NO 965413	A	23-06-1997
		NZ 299941	A	27-05-1998
		PL 317604	A	23-06-1997
WO 9724117	A 10-07-1997	AU 1529897	A	28-07-1997
		EP 0871439	A	21-10-1998
EP 0266182	A 04-05-1988	CA 1326855	A	08-02-1994
		JP 1034976	A	06-02-1989
		JP 2059772	C	10-06-1996
		JP 7091283	B	04-10-1995
		US 4882434	A	21-11-1989
WO 9837877	A 03-09-1998	AU 6168698	A	18-09-1998
		AU 6436898	A	18-09-1998
		WO 9838163	A	03-09-1998
WO 9838163	A 03-09-1998	AU 6168698	A	18-09-1998
		AU 6436898	A	18-09-1998
		WO 9837877	A	03-09-1998