Южно-Уральский государственный университет (НИУ) Высшая школа электроники и компьютерных наук Кафедра «Информационно-измерительная техника»

	УТВЕРЖДАЮ
Заведуюц	ций кафедрой
	_ (А.П.Лапин)
	2021 г.

ЗАДАНИЕ НА РАБОТУ

на курсовую работу студентам: группа: КЭ-413

- 1. Дисциплина: Программное обеспечение измерительных процессов.
- 2. Тема работы: Разработка устройства определения положения объекта с передачей параметров на ПК'
- 3. Требования к разработке:
 - Для разработки должна использоваться отладочная плата XNUCLEO-F411RE
 - Программное обеспечение должно измерять положение платы в пространстве X, Y, Z
 - Устройство должно измерять угол наклона и ускорение измеряемого объекта
 - Период измерения должен быть 50 ms.
 - К измеренным значениям параметров должен быть применен цифровой фильтр вида:

```
tau = int ((1-e^(-dt/(R*C)), RC > 0 sec), (1, RC<= 0 sec))

"FilteredValue" = "OldFiltered" + ("Value" - "OldValue") * tau,

где dt - 100 мс;

Value — текущее нефильтрованное измеренное значение температуры;
```

value – текущее нефильтрованное измеренное значение температуры; oldValue - предыдущее фильтрованное значение.

- Для измерения параметров должен использоваться датчик ADXL345
- Получение данных с датчика ADXL345 должно производиться через I2C1 (PB8, PB9) интерфейс
- Устройство должно измерять температуру со встроенного в микроконтроллер датчика температуры
- Вывод значений
 - Вывод значений должен осуществляться через USART2 на скорости 19200 кБит/с
 - Период вывода информации раз в 100ms
 - Программ на ПК должна отображать положение объекта в 3D
- Архитектура должна быть представлена в виде UML диаграмм в пакете Star UML

- Приложение должно быть написано на языке C++ с использование компилятора ARM 8.40.2
- При разработке должна использоваться Операционная Система Реального Времени FreeRTOS и C++ обертка над ней

4. Перечень вопросов, подлежащих разработке:

- В ходе работы необходимо разработать архитектуру программного обеспечения в виде диаграммы UML.
- В ходе работы необходимо разработать код программного обеспечения.
 - Код должен соответствовать стандарту кодирования Стэнфордского университета, см также оригинал
- Работа программы должна быть продемонстрирована совместно с платой XNUCLEO-F411RE.
- Содержание работы должно соответствовать ГОСТ 19.402–78 «Единая система программной документации. Описание программы».
 - работа должна быть оформлена в формате Asciidoc и выложена на Github
- Описание архитектуры в виде UML диаграмм должно быть оформлено в разделе «Описание логической структуры» "Алгоритм программы".
- Дополнительно к архитектуре, в разделе «Описание логической структуры» → "Структура программы с описанием функций составных частей и связи между ними" должен быть описан принцип работы программы и взаимодействия разных блоков программы друг с другом.
- Оформление пояснительной записки к курсовой работе в соответствии с СТО ЮУрГУ 04–2008 «Курсовое и дипломное проектирование. Общие требования к содержанию и оформлению».

5. Календарный план:

• Сдача этапов выполнения курсовой работы осуществляется строго в соответствии с календарным планом.

Наименование разделов курсовой работы	Срок выполнения разделов работы	Отметка руководителя о выполнении
Разработка общей архитектуры программы	28 марта 2020 г.	
Разработка кода каркаса программы	4 апреля 2020 г.	
Разработка детальной архитектуры модуля работы с датчиком	11 апреля 2020 г.	
Разработка кода для модуля работы с датчиком	11 апреля 2020 г.	
Разработка детальной архитектуры модуля работы с индикатором	18 апреля 2020 г.	

Наименование разделов курсовой работы	Срок выполнения разделов работы	Отметка руководителя о выполнении
Разработка кода для модуля работы с индикатором	18 апреля 2020 г.	
Разработка детальной архитектуры модуля работы с USART и блутуз	25 апреля 2020 г.	
Разработка кода для модуля работы с USART и блутуз	25 апреля 2020 г.	
Разработка детальной архитектуры и кода для оставшихся модулей	2 мая 2020 г.	
Сдача и демонстрация работы устройства	9 мая 2020 г.	
Оформление пояснительной записки к курсовой работе	20 мая 2020 г.	

Руководитель работы:		/C. B. K	_/С.В.Колодий/	
	(подпись)			
Студент			/	
	(подпись)			
Студент			/	
	(подпись)			