Project: Predictive Analytics Capstone

Complete each section. When you are ready, save your file as a PDF document and submit it here: https://coco.udacity.com/nanodegrees/nd008/locale/en-us/versions/1.0.0/parts/7271/project

Task 1: Determine Store Formats for Existing Stores

1. What is the optimal number of store formats? How did you arrive at that number?

After applying k-means cluster tool (based on % category sales contribution in for 2015), the optimal number of store formats is 3 formats.

After carrying out the requisite steps in data preparation to generate data set with % category sales contribution by store for the year 2015, this dataset was fed into Cluster Diagnostics tool with k-means as clustering methodology. Analysis using both Adjusted Rand and Calinski-Harabasz Indices lead to selecting 3 clusters/formats.

2. How many stores fall into each store format?

Upon feeding the dataset to Cluster Analysis tool with number of clusters = 3 with k-means as clustering method, we can establish the number of stores that fall into each store format – 23 stores fall in cluster 1, 29 stores in cluster 2 and 33 stores in cluster 3.

Cluster Size

1 23
2 29
3 33

3. Based on the results of the clustering model, what is one way that the clusters differ from one another?

Based on results of clustering model, we can clearly establish that:

1. For Cluster 1 store formats, the contribution of General Merchandise is highest. We will call this cluster 'General' cluster.

2. For Cluster 2 store formats, the contribution of Produce is highest. We will call this cluster 'Produce' cluster.

	XDry.Grocery	XDairy	XFrozen.Food	XMeat	XProduce	XFloral	XDeli
1	0.327833	-0.761016	-0.389209	-0.086176	-0.509185	-0.301524	-0.23259
2	-0.730732	0.702609	0.345898	-0.485804	1.014507	0.851718	-0.554641
3	0.413669	-0.087039	-0.032704	0.48698	-0.53665	-0.538327	0.64952
	XBakery	XGeneral.Merchandise					
1	-0.894261	1.208516					
2	0.396923	-0.304862					
3	0.274462	-0.574389					

3. For Cluster 3 store formats, the contribution of Deli is highest. We will call this cluster 'Deli' cluster.

	XDry.Grocery	XDairy	XFrozen.Food	XMeat	XProduce	XFloral	XDel
1	0.327833	-0.761016	-0.389209	-0.086176	-0.509185	-0.301524	-0.2525
2	-0.730732	0.702609	0.345898	-0.485804	1.014507	0.851718	-0.55464
3	0.413669	-0.087039	-0.032704	0.48698	-0.53665	-0.538327	0.6495
	XBakery	XGeneral.Merchandise					-
1	-0.894261	1.208516					
2	0.396923	-0.304862					
3	0.274462	-0.574389					

: Awesome: The number of stores in each format is correct - great job!

: Awesome: Excellent work providing observations about the difference among the clusters.

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.

https://public.tableau.com/profile/karthik.subramanian#!/vizhome/Task1 Visualization 4/Sheet1 ?publish=yes

: Awesome: The map looks great. It has legends. Color is used to show the clusters and size is used to show total sales.

Task 2: Formats for New Stores

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.)

I have used Boosted Model (BM) classification methodology to predict best store format for new stores after trying out all three non-binary classification models - Decision Tree, Random Forest and Boosted Model using Alteryx workflow (below).

It is clear from model comparison results (below) that Boosted Model methodology has the highest F1 score even though all three non-binary classification methodologies –

: Awesome: Yes, we can see that the Boosted model should be used since it has high accuracy and higher F1 score. F1 Score is the weighted average of Precision and Recall. Therefore, this score takes both false positives and false negatives into account.

Decision Tree, Random Forest and Boosted Model have similar overall accuracies.

Model	Accuracy	F1	Accuracy_1	Accuracy_2	Accuracy_3
DT_Storeformat	0.8235	0.8426	0.7500	1.0000	0.7778
RF_Storeformat	0.8235	0.8426	0.7500	1.0000	0.7778
BM_Storeformat	0.8235	0.8889	1.0000	1.0000	0.6667
RF_Storeformat	0.8235	0.8426	0.7500	1.0000	

While Decision Tree methodology and Random Forest methodology score slightly higher on accuracy of predicting Cluster 3 (Deli), Boosted model methodology has perfect accuracy 1.0 in predicting both Cluster 1 (General) and Cluster 2 (Produce).

Confusion matrix of BM	_Storeformat		
	Actual_1	Actual_2	Actual_3
Predicted_1	4	0	1
Predicted_2	0	4	2
Predicted_3	0	0	6
	-		
Confusion matrix of DT	_Storeformat		
	Actual_1	Actual_2	Actual_3
Predicted_1	3	0	1
Predicted_2	0	4	1
Predicted_3	1	0	7
	-		
Confusion matrix of RF	_Storeformat		
	Actual_1	Actual_2	Actual_3
Predicted_1	3	0	1
Predicted_2	0	4	1
Predicted_3	1	0	7

2. What format do each of the 10 new stores fall into? Please fill in the table below.

Store	City	Zip	Cluster	Format
S0086	Gilroy	95020	1	General
S0087	San Jose	95118	2	Produce
S0088	San Jose	95122	3	Deli
S0089	San Jose	95117	2	Produce
	San			
S0090	Mateo	94403	2	Produce
S0091	Tracy	95304	1	General
	El		•	
S0092	Cerrito	94530	2	Produce
S0093	Antioch	94531	1	General
	Walnut			
S0094	Creek	94596	2	Produce
	Pleasant			
S0095	Hill	94523	2	Produce

: Awesome: The stores are correctly segmented - great job!

Three most significant variables for Boosted model are Age 0 to 9, HVal 750K Plus and EdHSGrad as illustrated in the Variable Importance Plot below:

Task 3: Predicting Produce Sales

1. What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?

Forecast Existing Stores:

To forecast for sales of produce for existing stores, we first identify the appropriate forecast model to use through the following workflow (I have used ETS(M,N,M) and ARIMA(1,0,0)(1,1,0)[12] after evaluating relevant TS plots for comparison):

Using the TS Compare tool and by observing the forecast error measurements against the holdout sample, it is evident that ETS(M,N,M) forecast model performs better than ARIMA (1,0,0)(1,1,0)[12] forecast model for forecasting existing store sales.

Actual and Forecast Values: Actual ETS_Produce ARIMA_Produce 26338477.15 26907095.61191 27997835.63764 23130626.6 22916903.07434 23946058.0173 20774415.93 20342618.32222 21751347.87069 20359980.58 19883092.31778 20352513.09377 21936906.81 20479210.4317 20971835.10573 20462899.3 21211420.14022 21609110.41054

Accuracy Measures:

	Model	ME	RMSE	MAE	MPE	MAPE	MASE	NA
			760267.3					
ARIMA_	_Produce	-604232.3	1050239.2	928412	-2.6156	4.0942	0.5463	NA

Therefore, I have used ETS(M,N,M) forecast model to forecast existing store sales for all 12 months of 2016 using the following workflow:

Period	Sub_Period	Task3_Forecast
4	11	21539936.007499
4	12	20413770.60136
5	1	24325953.097628
5	2	22993466.348585
5	3	26691951.419156
5	4	26989964.010552
5	5	26948630.764764
5	6	24091579.349106
5	7	20523492.408643
5	8	20011748.6686
5	9	21177435.485839
5	10	20855799.10961

Forecast New Stores:

I have used ETS(M,N,M) forecast model to forecast average sales of produce per store for each of the Clusters 1, 2 and 3 for all 12 months of 2016 using the following workflow:

Cluster 1

Period	Sub_Period	Task3_Forecast_Cluster1
4	11	256056.032949
4	12	244548.923224
5	1	293254.587434
5	2	275841.952548
5	3	314668.287235
5	4	316655.428983
5	5	318463.410907
5	6	278092.991554
5	7	247574.917662
5	8	241544.741016
5	9	254424.713942
5	10	257905.506922

Cluster 2

Period	Sub_Period	Task3_Forecast_Cluster2
4	11	265594.847766
4	12	253264.72445
5	1	295443.526216
5	2	285116.608029
5	3	321995.572552
5	4	326046.639417
5	5	329587.121571
5	6	297122.98882
5	7	263666.455329
5	8	258452.686811
5	9	268672.564962
5	10	261568.455979

Cluster 3

Period	Sub_Period	Task3_Forecast_Cluster3
4	11	225713.666052
4	12	224117.77602
5	1	260760.316649
5	2	237520.103949
5	3	274888.538311
5	4	282675.879908
5	5	281832.684105
5	6	249331.755812
5	7	214003.363899
5	8	212797.943546
5	9	219960.854853
5	10	230269.372411

2. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts.

Using the forecasts of average sales of produce per store for each of the clusters 1, 2 and 3, we derive forecast of sales of produce for all new sales using the following workflow (mainly multiplying the forecast of average sales per store by each cluster with number of new stores in each cluster)

Table of forecasts for existing and new stores using ETS (M,N,M) forecast model for Existing as well as New Stores (Cluster 1, 2 and 3) provides the following results:

Month	Forecast New Stores	Forecast Existing Stores
2016-Jan	2587451	21539936
2016-Feb	2477353	20413771
2016-Mar	2913185	24325953
2016-Apr	2775746	22993466
2016-May	3150867	26691951
2016-Jun	3188922	26989964
2016-Jul	3214746	26948631
2016-Aug	2866349	24091579
2016-Sep	2538727	20523492
2016-Oct	2488148	20011749
2016-Nov	2595270	21177435
2016-Dec	2573397	20855799

: Awesome: The forecasts for the existing and new stores are within the expected range - great job! Great job plotting the results! Visualization of forecasts that includes historical data, existing stores forecasts, and new stores forecasts is provided in the Tableau link below:

https://public.tableau.com/profile/karthik.subramanian#!/vizhome/Task3_Visualization_0/Sheet1?publish=yes

Before you submit

Please check your answers against the requirements of the project dictated by the rubric. Reviewers will use this rubric to grade your project.

: Suggestion: Great job! Great job with the plot! We suggest presenting the plot as an area chart not as a line chart. And by the way, if you are interested how to close the gap in the plot between the actual sales and the forecasted ones you can check the example in the project review section.