离散数学-第 20 次作业

Problem 1

图 1 给出了 6 个偏序集的哈斯图。判断其中哪些是格。如果不是格,请说明理由。

图 1: 图 1

Problem 2

设 L 是格,求以下公式的对偶式:

- (1) $a \wedge (a \vee b) \leq a$;
- $(2) \ a \lor (b \land c) \preceq (a \lor b) \land (a \lor c);$
- (3) $b \lor (c \land a) \preceq (b \lor c) \land a$.

Problem 3

设 L 是格, $a,b,c \in L$, 且 $a \leq b \leq c$, 证明 $a \vee b = b \wedge c$.

Problem 4

针对下图中的格 L, 求出 L 的所有子格。

Problem 5

设 $< L, \preceq >$ 是格, 任取 $a \in L$, 令 $S = \{x | x \in L \land x \preceq a\}$, 证明 $< S, \preceq >$ 是 L 的子格。

Problem 6

针对 Problem 1 中的每个格,如果格中的元素存在补元,则求出这些补元。

Problem 7

说明 Problem 1 中的每个格是否为分配格、有补格和布尔格,并说明理由。

Problem 8

设 $< L, \land, \lor, 0, 1 >$ 是有界格,证明 $\forall a \in L, 有$

$$a \land 0 = 0, a \lor 0 = a, a \land 1 = a, a \lor 1 = 1$$

Problem 9

如果 S 是群 G 的子集,则 S 所生成的子群 $\langle S \rangle$ 是包含所有 S 的元素的 G 的最小子群。这意味着它是包含 S 元素的所有子群的交集。等价的说 $\langle S \rangle$ 是可以用 S 的元素和它们的逆元中的有限多个元素的乘积表达的 G 的所有元素的子群。设 G 是一个群,L(G) 是 G 的所有子群的集合。在 L(G) 上定义偏序关系

 \leq 为集合包含关系 \subseteq 。对于任意的 $A,B\in L(G)$,定义 $A\wedge B\stackrel{\mathrm{def}}{=}\langle A\cap B\rangle$, $A\vee B\stackrel{\mathrm{def}}{=}\langle A\cup B\rangle$,试证明: $\langle L(G),\vee,\wedge\rangle$ 是一个代数格, $\langle L(G),\leq\rangle$ 是一个偏序格,且二者同一。