Post-Exercise Regulation of the AP-1 Transcriptional Program

Zach Gillis

Chandel Lab Research Mentor: Zachary Sebo

researcHStart

Motivation • Scholarship • Vision

BACKGROUND

- Much of what makes exercise beneficial for one's health is unknown
- A better understanding of how exercise affects human gene expression may provide insights into improving human health

- (figure 1)
 - Transcription factors (TFs) – proteins that regulate the

Gene expression – the degree to which genes are transcribed into mRNA, which is translated into proteins

- RNA-seq analysis gene expression by measuring the mRNA
- transcription of genes

- Conducted to measure strands present

GOALS

- 1. Identify exercise-induced changes in gene expression
- 2. Identify candidate transcription factors responsible for changes in gene expression

METHODS

- RNA-seq analysis using DESeq2 on MoTrPAC data (figure 2)
- 2. Gene ontology analysis on DEGs using clusterProfiler
- 3. Transcription factor motif analysis using **MSigDB**
- Pathway analysis using **KEGG**

C-type

T cel

PI3K-Akt signaling pathway

Pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

RESULTS

TFs that Target 7-Hour DEGs

Gene Set Name	# Genes in Set (K)	Overlap (k)	k/K	p-value
NFAT (TGGAAA)	1934	68	0.0352	3.07E-20
AP-1 (TGANTCA)	1139	47	0.0413	9.52E-17
NFY (GATTGGY)	1177	44	0.0374	3.17E-14
ERR-1 (TGACCTY)	1064	41	0.0385	9.50E-14
TATA (TATAAA)	1317	43	0.0326	5.56E-12

Function of DEGs

- Promotes muscle tissue development
- Formation and use of precursor metabolites
- Regulation of metabolic processes

Experimental sample collected 7 hours post-exercise

AP-1 Formation

Pathways that Activate AP-1

AP-1 tends to either be a Jun-Jun homodimer or a Jun-Fos heterodimer³ (figure 3)

MoTrPAC Data Collection Protocol

AP-1 targets the transcription of its own subunits (positive autoregulation)4

0.00898963

Jun, Fos, & FosB Expression I.P.E. • Jun, Fos, and FosB are

- highly upregulated This indicates that the AP-1 transcription factor is responsible for some DEGs 7 hrs. P.E.
- Due to positive autoregulation, AP-1 will be further produced as a result

Activation of AP-1

Significantly Positively Perturbed Signaling Pathways

Description	Enrichment Score	p-value	iii tiic ac
IL-17 signaling pathway	0.81652684	0.00296344	− Path\ signa
TNF signaling pathway	0.76734059	0.02067199	nucle
e lectin receptor signaling pathway	0.74474837	0.02478965	– JNK : AP-1
cell receptor signaling pathway	0.72200212	0.04185286	• MAPK pa
MAPK signaling pathway	0.6618261	0.00296344	pro-inflar

0.61525874

- MAPK signaling pathway results in the activation of AP-1⁵
 - nway that communicates al from a ligand to the leus of the cell
 - and p38 phosphorylates
- pathway is activated by pro-inflammatory cytokines⁵
- IL-1β, IL-6, TNFα

CONCLUSION

- Exercise causes 474 genes to be differentially expressed 7 hours later. This altered gene expression results in increased muscle development and muscular energy generation.
- The AP-1 transcription factor may cause some of this differential expression,
 - It binds to regulatory regions near the DEGs
 - Its subunit proteins are produced immediately post-exercise
 - It may be activated through the MAPK pathway

POTENTIAL FUTURE RESEARCH

- Does similar gene expression due to exercise occur in humans?
- Does similar gene expression happen tissue that is not skeletal muscle?
- Does production of the AP-1 transcription factor have any effects on cellular processes?
- How does cell expression differ in various skeletal muscle cell types (through single-cell RNA-seq)?
- How is exercise response affected without AP-1 (through gene knockout experiment)?

ACKNOWLEDGEMENTS

Thank you to everyone who made this summer research program possible

Research Mentors and Partners: Aysha Ahmad, Dr. Zachary Sebo, Dr. Gina Kirsammer, Dr. Navdeep Chandel

Program Funding and Administration: Ira & Debra Cohen, researcHStart Program, Northwestern University – Lurie Cancer Center

SOURCES

- 1. Benefits of Physical Activity. Centers for Disease Control. Published April 5, 2021. Accessed
- 2. Sanford, J. A., Nogiec, C. D., Lindholm, M. E., Adkins, J. N., Amar, D., Dasari, S., Drugan, J. K., Fernández, F. M., Radom-Aizik, S., Schenk, S., Snyder, M. P., Tracy, R. P., Vanderboom, P., Trappe, S., Walsh, M. J., Adkins, J. N., Amar, D., Dasari, S., Drugan, J. K., . . . Rivas, M. A. (2020). Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell, 181(7), 1464–1474.
- 3. Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci. 2004 Dec 1;117(Pt 25):5965-73. doi: 10.1242/jcs.01589. PMID: 15564374.
- 4. Angel, P., Hattori, K., Smeal, T., & Karin, M. (1988). The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell, 55(5), 875-885.doi:10.1016/0092-8674(88)90143-
- 5. Karin, M., Liu, Z., & Zandi, E. (1997). AP-1 function and regulation. Current Opinion in Cell Biology, 9(2), 240–246.doi:10.1016/s0955-0674(97)80068-3

Figure 4. Dainichi, T. et a