Tarea I

Nicholas Mc-Donnell

1er semestre 2019

${\bf \acute{I}ndice}$

Problema 1.2	2
Problema 1.4	2
Problema 1.6	2
Problema 1.8	3
Problema 1.12	3
Problema 1.14	4
Problema 1.16	4
Problema 1.18	5
Problema 1.20	5
Problema 1.22	5

Notas

En esta tarea se usará la notación $\overline{a} = (a_1, ..., a_n)$

Problema 1.2: Sea R un DFU, K cuerpo cociente de R. Muestre que todo elemento z de K puede ser escrito z = a/b, donde a, b no tiene factores en común; este representante es único salvo unidades de R.

Solución problema 1.2: Dado un $z \in K$, se sabe que $\exists c, d \in R : z = c/d$, y ya que R es un DFU c, d tienen factorización única. Si $c = u_1 \cdot p_1^{\alpha_1} \cdot \ldots \cdot p_n^{\alpha_n}, d = u_2 \cdot q_1^{\beta_1} \cdot \ldots \cdot q_k^{\beta_k}$, se pueden ver los factores en común $(r_1^{\gamma_1} \cdot \ldots \cdot r_m^{\gamma_m})$ y escribir $c = u_1 \cdot a \cdot r_1^{\gamma_1} \cdot \ldots \cdot r_m^{\gamma_m}, d = u_2 \cdot b \cdot r_1^{\gamma_1} \cdot \ldots \cdot r_m^{\gamma_m}$, luego $c/d = \frac{u_1}{u_2} \cdot \frac{a}{b} \cdot \frac{r_1^{\gamma_1} \cdot \ldots \cdot r_m^{\gamma_m}}{r_1^{\gamma_1} \cdot \ldots \cdot r_m^{\gamma_m}} = u_3 \cdot \frac{a}{b}$, donde los u_i son unidades, con esto tenemos lo pedido.

Problema 1.4: Sea k un cuerpo infinito, $F \in k[x_1, ..., x_n]$. Suponga que $F(\overline{(a)}) = 0$ para todo $\overline{(a)} \in k^n$. Muestre que F = 0 (*Hint:* Escriba $F = \sum F_i x_n^i \in k[x_1, ..., x_{n_1}]$. Use inducción en n, y el hecho que $F(x_1, ..., x_n)$ solo tiene una cantidad finita de raíces si algún $F_i(a_1, ..., a_{n-1}) \neq 0$)

Solución problema 1.2: Por inducción sobre n.

Para n = 1, sea $F \in k[x]$ tal que $F(a) = 0 \ \forall a \in k$, pero se sabe que un polinomio no trivial en una variable solo puede tener a lo más finitos ceros, por lo que F = 0.

Para n, se sabe que $k[x_1,...,x_{n-1},x_n]=k[x_1,...,x_{n-1}][x_n]$, dado esto y un polinomio $F\in k[x_1,...,x_n]$ que cumple que $F(\bar{a})=0$ $\forall \bar{a}\in k^n$, se escribe F de la siguiente forma:

$$F(x_1,...,x_n) = \sum_{i=0}^{m} F_i \cdot x_n^i$$
 donde $F_i \in k[x_1,...,x_{n-1}]$

Evaluando F en $\overline{a} \in k^{n-1}$ se tiene lo siguiente:

$$F(\overline{a}, x_n) = \sum_{i=0}^{m} F_i(\overline{a}) \cdot x_n^i$$

Se nota que $F(\overline{a}, x_n) \in k[x_n]$, con lo que sabemos que $F(\overline{a}, x_n)$ es el polinomio cero, o tiene finitas raíces, como para todo $a_n \in k$ se cumple que $F(\overline{a}, a_n) = 0$, se cumple que todos los $F_i(\overline{a})$ son cero, pero recordamos que \overline{a} es arbitrario, por lo que por hipótesis inductiva los F_i también son cero. Con lo que F es cero.

Problema 1.6: Muestre que todo cuerpo algebraicamente cerrado es infinito. (*Hint:* Los polinomios irreducibles mónicos son $x - a, a \in k$)

Solución problema 1.6: Por contradicción, se tiene un cuerpo algebraicamente cerrado k tal que $|k| = n < \infty$. Se cuentan los polinomios mónicos de grado 2, usando que k es algebraicamente cerrado se sabe lo siguiente:

$$x^{2} + ax + b = (x - c)(x - d)$$
$$\#\{x^{2} + ax + b : (a, b) \in k^{2}\} = \#\{(x - c)(x - d) : (c, d) \in k^{2}\}$$

Lo primero claramente es n^2 y lo segundo es la cantidad de pares no ordenados con distintos elementos $\binom{n}{2}$, más la cantidad de pares con el mismo elemento $\binom{n}{2}$

$$n^{2} = \binom{n}{2} + n$$

$$n^{2} = \frac{n(n-1)}{2} + n$$

$$n^{2} = \frac{n(n+1)}{2}$$

Claramente $n^2 \neq \frac{n(n+1)}{2}$, excepto para n = 0, 1 pero no hay cuerpos de cero o un elemento. Por lo que no hay cuerpos finitos algebraicamente cerrados.

Problema 1.8: Muestre que los conjuntos algebraicos de \mathbb{A}^1_k son solo los conjuntos finitos con el mismo \mathbb{A}^1_k .

Solución problema 1.8: Se asume que existe algún conjunto algebraico $X \nsubseteq \mathbb{A}^1_k$ que es infinito. Luego existe algún conjunto finito de polinomios S tal que V(S) = X, sea $p \in S \subset k[x]$, sabemos que p tiene finitos ceros. Definimos $S' = \{\deg p : p \in S\}$, como S es finito, S' tiene un máximo s, por lo que se puede acotar $\#V(S) \leq \#S \cdot s \in \mathbb{N}$, pero X es infinito con lo que tenemos una contradicción.

Problema 1.12: Suponga C es una curva afín en el plano, y L es una linea en \mathbb{A}^2_k , $L \nsubseteq C$. Suponga C = V(F), $F \in k[x,y]$ un polinomio de grado n. Muestre que $L \cap C$ es un conjunto finito de no más que n puntos. (*Hint:* Suponga que L = V(y - (ax + b)), y considere $F(x, ax + b) \in k[x]$.)

Solución problema 1.12: Ya que L es una linea (recta), existe p(x,y) = ax + by + c: V(p) = L, se nota que si $b \neq 0$ entonces q(x,y) = a/bx + y + c/b tiene los mismos ceros que p y se puede escribir como q(x,y) = y - (-a/bx - c/b). En caso de que b = 0 sabemos

que $a \neq 0$, si no $V(p) = \emptyset \lor V(p) = \mathbb{A}_k^2$. Con esto notamos que existe $q \in k[x,y] : q(x,y) = y - (a'x + b') \land V(q) = L$ (si no existe q(x,y) = x - (a''y + b'') que cumple lo mismo). Con esto se analiza F(x, a'x + b'), se puede notar que $V(F(x, a'x + b')) = V(F) \cap L$. Se ve que $F(x, a'x + b') \in k[x]$, por lo que tiene finitos ceros. Con esto se tiene que $V(F) \cap L$ tiene finitos elementos.

Problema 1.14: Sea F un polinomio no constante en $k[x_1, ..., x_n]$, k algebraicamente cerrado. Muestre que $\mathbb{A}_k^n \setminus V(F)$ es infinito si $n \geq 1$, y V(F) es infinito si $n \geq 2$. Concluya que el complemento de un conjunto algebraico es infinito. (*Hint:* Ver el problema 1.4)

Solución problema 1.14: Se nota que $V(F) \nsubseteq \mathbb{A}_k^n$, ya que por el problema 1.4 se sabe que si $\forall \overline{a} \in \mathbb{A}_k^n : F(\overline{a}) = 0 \implies F(\overline{x}) = 0$, pero F es no constante. Supongamos que $\mathbb{A}_k^n \setminus V(F)$ es finito, luego sean \overline{a}_i sus elementos, se pueden construir los polinomios $p_i(\overline{x}) = \prod_{j=1}^n (x_j - a_j)$. Con estos se construye $G = F \cdot \prod_{i=1}^m p_i$, claramente $V(G) = \mathbb{A}_k^n$, por lo que G = 0, pero $p_i \neq 0$, lo que implica que F = 0 una contradicción. Con esto se tiene que $\mathbb{A}_k^n \setminus V(F)$ es infinito para $n \geq 1$.

Dado $F \in k[x_1, ..., x_n]$ no constante, y V(F), se asume que V(F) es finito. Se sabe que F se puede escribir de la siguiente manera:

$$F(\overline{x}, x_n) = \sum_{i=0}^{m} g_i(\overline{x}) x_n^i \quad q_i \in k[x_1, ..., x_{n-1}]$$

Como V(F) es finito, $n \ge 2$ y k es algebraicamente cerrado (es infinito por problema 1.6) existe $\overline{a} \in \mathbb{A}_k^{n-1} : F(\overline{a}, x_n) \ne 0 \forall x_n \in k$, luego, se ve evalúa \overline{a} en el polinomio:

$$F(\overline{a}, x_n) = \sum_{i=0}^{m} g_i(\overline{a}) x_n^i$$

Se puede notar que $F(\overline{a}, x_n)$ es un polinomio en $k[x_n]$, por lo que tiene que sea una raíz, pero elegimos \overline{a} tal que no tuviera raíces. Con esto tenemos una contradicción. Por lo que V(F) es infinito.

Problema 1.16: Sea V, W un conjunto algebraico en \mathbb{A}^n_k . Muestre que V = W ssi I(V) = I(W).

Solución problema 1.16: Sean V,W conjuntos algebraicos, trivialmente se nota que I(V)=I(W) si V=W. Para la otra implicancia, sean I(V)=I(W), y sea $\overline{a}\in V$, y

 $p \in I(V) = I(W)$, luego $p(\overline{a}) = 0$, por lo que $\overline{a} \in W$. Análogamente, se consigue la otra contención.

Problema 1.18: Sea I un ideal en un anillo R. Si $a^n, b^m \in I$, muestre que $(a+b)^{n+m}$. Muestre rad(I) es un ideal, de hecho un ideal radical. Muestre que un ideal primo es radical.

Solución problema 1.18: Sabemos que $(a+b)^{n+m} = \sum_{i=0}^{n+m} \binom{n+m}{i} a^i b^{m+n-i}$, dado un termino de esta sumatoria $a^i b^{m+n-i}$ tenemos dos casos $i \geq n$ e i < n. En el primer caso escribimos lo siguiente $a^i b^{m+n-i} = a^n \cdot a^{n-i} b^{m+n-i}$, como $a^n \in I$ entonces $a^i b^{m+n-i} \in I$. En el segundo caso notamos que si n > i entonces m+n-i > m, por lo que se puede usar el mismo argumento anterior, pero con b^m . Con esto se concluye que todos los términos de $(a+b)^{n+m}$ pertenecen a I, y por la aditividad $(a+b)^{n+m} \in I$.

Problema 1.20: Muestre que para cualquier ideal I en $R = k[x_1, ..., x_n], V(I) = V(rad(I)), y rad(I) <math>\subset I(V(I)).$

Solución problema 1.20: Claramente $\operatorname{rad}(I) \subseteq I$, por lo que $V(\operatorname{rad}(I)) \supseteq V(I)$. Sea $\overline{a} \in V(\operatorname{rad}(I))$, entonces $\exists m \in \mathbb{N}, p \in I : p^m \in I \land p(\overline{a}) = 0$ por lo que $p^m(\overline{a}) = 0 \implies \overline{a} \in V(I)$, con esto se concluye que $V(I) = V(\operatorname{rad}(I))$. Ahora dado $p \in \operatorname{rad}(I)$, y un $\overline{a} \in \mathbb{A}^n_k : p(\overline{a}) = 0$ como $V(I) = V(\operatorname{rad}(I))$, entonces $\overline{a} \in V(I)$, por lo que $p \in I(V(I))$. Con esto se concluye que $\operatorname{rad}(I) \subseteq I(V(I))$.

Problema 1.22: Se I un ideal en un anillo $R, \pi : R \to R/I$ el homorfismo natural.

- (a) Muestre que para cualquier ideal J' de R/I, $\pi^{-1}(J') = J$ es un ideal de R que contiene a I, y para cada ideal J en R que contiene I, $\pi(J) = J'$ es un ideal de R/I. Esto arma un correspondencia uno-a-uno natural entre {ideales de R/I}= \mathcal{I}' y {ideales de R que contienen I}= \mathcal{I} .
- (b) Muestra que J' es ideal radical ssi J es radical. Similarmente para ideales primos y maximales.
- (c) Muestre que J' es finitamente generado si J lo es. Concluya que R/I es Noetheriano si R es Noetheriano. Todo anillo de la forma $k[x_1, ..., x_n]/I$ es Noetheriano.

Solución problema 1.22:

- (a) Sea J' un ideal, luego $0 \in J = \pi^{-1}(J')$, ya que $\pi^{-1}(\{0\}) = I$ se sabe que $I \subseteq \pi^{-1}(J') = J$. Sean $a, b \in J$, entonces $\pi(a), \pi(b) \in J'$, luego $\pi(a) + \pi(b) = \pi(a+b) \in J'$ con lo que $a+b \in \pi^{-1}(J') = J$. Sea $a \in J, r \in R$, de esto se nota que $\pi(a) \in J', \pi(r) \in R/I$, por lo que $\pi(r)\pi(a) = \pi(ra) \in J'$ con lo cual se sabe que $ra \in \pi^{-1}(J') = J$. Con esto se concluye que $J \supseteq I$ es ideal. Sea $J \supseteq I$ un ideal, entonces $0 \in J' = \pi(J)$, ya que $\pi(I) = \{0\}$. Sean $a', b' \in J'$, luego $\exists a, b \in J : \pi(a) = a', \pi(b) = b'$, con esto se ve que $a' + b' = \pi(a) + \pi(b) = \pi(a+b) \in J'$. Sean $a' \in J', r' \in R/I$, se puede ver que $\exists a \in J, r \in R : \pi(a) = a', \pi(r) = r'$, por lo que $r'a' = \pi(r)\pi(a) = \pi(ra) \in J'$. Por lo que se puede concluir que J' es un ideal.
- (b) Sea J ideal radical, y sea b^m ∈ J'. Luego, existe a ∈ R : π(a) = b, dado eso π(a^m) = b^m ∈ J', por lo que a^m ∈ J, y ya que J es radical a ∈ J, con esto π(a) = b ∈ J' por lo que J' es radical. Similarmente si J' radical, a^m ∈ J luego π(a)^m ∈ J', por lo que π(a) ∈ J' con lo que π(a) ∈ J' por lo que a ∈ J, lo significa que J es radical.
 Sea J ideal primo, luego sean a', b' ∈ R/I : a'b' ∈ J', se sabe que existen a, b ∈ R : π(a) = a', π(b) = b', con esto se ve que ab ∈ J y como J ideal primo a ∈ J ∨ b ∈ J ⇒ π(a) = a' ∈ J' ∨ π(b) = b' ∈ J'. Entonces J' ideal primo. Ahora, sea J' ideal primo, y sean a, b ∈ R : ab ∈ J, entonces π(a)π(b) = π(ab) ∈ J' y ya que J' primo π(a) ∈ J' ∨ π(a) ∈ J' ⇒ a ∈ J ∨ b ∈ J. Por lo que J es ideal primo.
 Sea J' ideal maximal, y supongamos que π⁻¹(J') = J ⊇ I ideal no maximal, luego existe ideal M ⊇ J. Se ve que J' = π(J) ⊆ π(M) = M' lo que es una contradicción. Por lo que J es ideal maximal. Ahora, sea J ideal maximal y su imagen π(J) = J' es no maximal, por lo que existe M' ⊇ J', sea M = π⁻¹(M') ⊇ π⁻¹(J') = J, pero J es maximal, una contradicción. Por lo que J' es maximal.
- (c) Sea J finitamente generado, y sea $a' \in J'$, entonces existe $a \in J : \pi(a) = a'$, como J es finitamente generado $J = (a_1, ..., a_n)$ y $\exists r_i \in R : a = \sum_{i=1}^n r_i \cdot a_i$, luego $\pi(a) = \sum_{i=1}^n \pi(r_i)\pi(a_i)$, como a' es un elemento arbitrario de J', $(\pi(a_1), ..., \pi(a_n))$ genera J', por ende J' es finitamente generado. Con esto se concluye directamente que si todo J es finitamente generado, todo J' es finitamente generado. Por lo que si R Noetheriano R/I es Noetheriano. Como corolario directo $k[x_1, ..., x_n]/I$ es Noetheriano.