સાતત્ય અને વિકલન

5

Do not worry about your difficulties in mathematics.

I assure you that mine are greater.

- Albert Einstein

The last thing one knows when writing a book is what to put first.

- Blaise Pascal

5.1 પ્રાસ્તાવિક

આપણે ધોરણ XI માં લક્ષ વિષેનો ખ્યાલ મેળવ્યો. સાહજિક અભિગમ અને આલેખાત્મક સમજ આપણને લક્ષનો ખ્યાલ સમજવામાં મદદરૂપ થયાં. ઘણી જગ્યાએ આપણે 'સતત' શબ્દનો નિર્દેશ કરીએ છીએ. 'સતત વિષેય' શું છે ? હવે આપણે લક્ષના અભ્યાસ માટે જરૂરી સાતત્યની સંકલ્પનાનો અભ્યાસ કરવા પ્રયત્ન કરીશું. તે લક્ષ અને વિકલનીયતાને જોડતી કડીરૂપ છે. $f(x) = [x], x \in \mathbb{R}$ નો આલેખ જુઓ. (આકૃતિ 5.1)

આપણે પેન્સિલ ઉઠાવ્યા વગર કાગળ પર f(x) = [x] નો આલેખ દોરી શકીશું નહીં. આ પરિસ્થિતિનું નિર્માણ જયારે x-યામ પૂર્ણાંક હશે ત્યારે થશે. આવી જ પરિસ્થિતિ ચિદ્ધ વિધેય (Signum function) માટે પણ થશે.

$$f(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

અથવા

$$f(x) = \begin{cases} \frac{|x|}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

આકૃતિ 5.1

x = 0 આગળ આલેખ 'કૂદે' છે. (આકૃતિ 5.2)

અહીં
$$\lim_{x \to 0^{-}} f(x) = -1$$
 અને $\lim_{x \to 0^{+}} f(x) = 1$.

તેથી $\lim_{x\to 0} f(x)$ નું અસ્તિત્વ નથી. f(x) = [x]ના

ઉદાહરણમાં પણ આલેખ પરથી એવું અનુમાન કરી શકાય.

$$\lim_{x \to 1^{-}} [x] = 0, \quad \lim_{x \to 1^{+}} [x] = 1.$$

 $x \to \lim_{x \to 1} [x]$ નું અસ્તિત્વ નથી.

વિષેય
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & x \neq 2 \\ 5 & x = 2 \end{cases}$$
 લેતાં,
$$f(x) = \begin{cases} x + 2 & x \neq 2 \\ 5 & x = 2 \end{cases}$$
 શશે. અહીં વિષેયનો આલેખ $(\overrightarrow{AB} - \{P\}) \cup \{Q\}$ નો

બનેલો છે.

$$\lim_{x \to 2-} f(x) = \lim_{x \to 2+} f(x) = 4$$

$$\lim_{x\to 2} f(x) = 4$$

પરંતુ
$$f(2) = 5$$

$$\therefore \lim_{x \to 2} f(x) \neq f(2)$$

આકૃતિ 5.3

અહીં પણ કાગળ પરથી પેન્સિલ ઉપાડ્યા વગર f(x)નો આલેખ દોરી શકાશે નહીં. આ જ સાતત્યનો ખ્યાલ છે. આલેખ 'તૂટે' છે એટલે કે સતત નથી અથવા આલેખ 'સળંગ' નથી, એટલે વિધેય 'સતત' નથી.

હવે આપણે સાતત્યની વિધિવત્ વ્યાખ્યા આપીએ.

સાતત્ય : વિધેય f એ c ને સમાવતા કોઈક અંતરાલ (a, b) પર વ્યાખ્યાયિત છે. $c \in \mathbb{R}$

જો $\lim_{x \to c} f(x)$ નું અસ્તિત્વ હોય અને તે f(c)ની બરાબર હોય, તો આપણે કહીશું કે f એ x=c આગળ સતત છે.

બીજા શબ્દોમાં કહીએ તો, $\lim_{x\to c+} f(x)$ અને $\lim_{x\to c-} f(x)$ નું અસ્તિત્વ હોય અને તે બંને f(c) ની બરાબર હોય તો આપણે કહી શકીએ કે વિધેય f એ x = c આગળ સતત છે.

 \therefore f એ \mathbf{c} આગળ સતત છે $\Leftrightarrow \lim_{x \to c+} f(x)$ તથા $\lim_{x \to c-} f(x)$ નું અસ્તિત્વ છે તથા

$$\lim_{x\to c+} f(x) = \lim_{x\to c-} f(x) = f(c).$$

જો f એ x=c આગળ સતત ન હોય તો આપણે કહીશું કે f એ x=c આગળ અસતત છે. એટલે કે જો f એ x=c આગળ અસતત હોય, તો નીચેનામાંથી કોઈ એક પરિસ્થિતિનું નિર્માણ થાય :

- (1) $\lim_{x \to c+} f(x)$ અથવા $\lim_{x \to c-} f(x)$ નું અસ્તિત્વ ન હોય.
- $\lim_{x\to c+} f(x)$ અને $\lim_{x\to c-} f(x)$ નું અસ્તિત્વ હોય પણ તેઓ સમાન ન હોય.
- $\lim_{x \to c+} f(x)$ અને $\lim_{x \to c-} f(x)$ નું અસ્તિત્વ હોય તથા સમાન હોય. (3)

એટલે કે
$$\lim_{x \to c+} f(x) = \lim_{x \to c-} f(x) = \lim_{x \to c} f(x)$$

પરંતુ f એ x=c આગળ વ્યાખ્યાયિત ન હોય અથવા $\lim_{x\to a} f(x) \neq f(c)$

જો f એ કોઈક પૃથક બિંદુઓએ વ્યાખ્યાયિત હોય, તો આપણે કહીશું કે f તે બિંદુઓ આગળ સતત છે. પરિણામે જો f એ સાન્ત ગણ $\{x_1,\ x_2,\ x_3,...,\ x_n\}$ પર વ્યાખ્યાયિત હોય તો તે ગણ $\{x_1,\ x_2,...,\ x_n\}$ પર સતત છે.

જ્યારે f એ તેના પ્રદેશના દરેક બિંદુએ સતત હોય ત્યારે આપણે વિધેય f એ તેના પ્રદેશ પર સતત છે એમ કહીશુ<u>ં</u>.

જો f એ [a, b] પર વ્યાખ્યાયિત હોય, અને

- (1) f એ (a, b) પરના બધા બિંદુએ સતત હોય.
- (2) $\lim_{x \to a+} f(x) = f(a)$
- $\lim_{x \to b-} f(x) = f(b)$

તો f એ [a, b] પર સતત છે.

ઉદાહરણ $1:f: \mathbb{R} \to \mathbb{R}, f(x) = 2x - 4$ નું x = 3 આગળ સાતત્ય ચકાસો.

$$63$$
લ : $f(x) = 2x - 4 એ x માં બહુપદી છે.$

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} (2x - 4) = 2 \cdot 3 - 4 = 2$$

$$f(3) = 2 \cdot 3 - 4 = 2$$

$$\lim_{x\to 3} f(x) = f(3)$$

$$f$$
 એ $x=3$ આગળ સતત છે.

fનો આલેખ એક રેખા છે અને તે 'સળંગ' છે.

ઉદાહરણ $2:f:\mathbb{R} \to \mathbb{R}, f(x)=x^2$ નું x=2 આગળ સાતત્ય ચકાસો.

634:
$$\lim_{x \to 2} f(x) = \lim_{x \to 2} x^2 = 4, f(2) = 4$$

$$(f(x) = x^2)$$
 એ બહુપદી વિધેય છે.)

$$\therefore \lim_{x \to 2} f(x) = f(2)$$

$$f(x) = x^2 એ x = 2 આગળ સતત છે.$$

$$f(x) = x^2 નો આલેખ 'સળંગ' છે.$$

ઉદાહરણ $3:f:\mathbb{R}\to\mathbb{R},\,f(x)=|x|$ એ \mathbb{R} પર સતત છે ?

63લ: આપણે |x|નું સાતત્ય તેના પ્રદેશ પર ચકાસીશું.

$$f(x) = |x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

c>0 માટે કોઈક $\delta>0$ મળે કે જેથી,

 $c - \delta > 0$ (ઉદાહરણ તરીકે, $\delta = \frac{c}{2}$ લેતાં)

$$(c - \delta, c + \delta)$$
માં $f(x) = |x| = x$ $(c - \delta > 0)$

$$\therefore \lim_{x \to c} f(x) = \lim_{x \to c} x = c, f(c) = |c| = c (c > 0)$$

$$\therefore \quad \lim_{x \to c} f(x) = f(c)$$

f એ પ્રત્યેક c > 0 માટે સતત છે.

c<0 લેતાં, કોઈક $\delta>0$ મળે કે જેથી $c+\delta<0$. (ઉદાહરણ તરીકે, $\delta=-\frac{c}{3}$ લેતાં)

(f ઓ x < a માટે વ્યાખ્યાયિત નથી.)

આકૃતિ 5.4

આકૃતિ 5.6

$$\therefore (c - \delta, c + \delta) \text{ Hi } f(x) = |x| = -x \qquad (c + \delta < 0)$$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (-x) = -c, f(c) = |c| = -c$$
 (c < 0)

$$\therefore \lim_{x \to c} f(x) = f(c)$$

f એ પ્રત્યેક c < 0 માટે સતત છે.

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} |x| = \lim_{x \to 0+} x = 0 \tag{(x > 0)}$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{-}} -x = 0$$
 (x < 0)

$$q(0) = |0| = 0$$

$$\therefore \lim_{x\to 0} f(x) = f(0) = 0$$

- f એ x=0 આગળ સતત છે.
- ∴ f એ પ્રત્યેક $x \in \mathbb{R}$ માટે સતત છે.

ઉદાહરણ 4: અચળ વિધેય f(x) = k ના R પરના સાતત્યની ચર્ચા કરો.

ઉદ્દેલ :
$$c \in \mathbb{R}$$
 માટે, $\lim_{x \to c} f(x) = \lim_{x \to c} k = k = f(c)$ ($\lim_{x \to c} k = k$)

∴ અચળ વિધેય R પર સતત છે.

ઉદાહરણ 5:
$$f(x) = \begin{cases} x^3 + x^2 + x + 1 & x \neq 0 \\ 5 & x = 0 \end{cases}$$

નું x=0 આગળ સાતત્ય ચર્ચો.

ઉકેલ :
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^3 + x^2 + x + 1) = 1$$
 (બહુપદી વિધેયનું લક્ષ)
$$f(0) = 5$$

$$\therefore \lim_{x \to 0} f(x) \neq f(0)$$

$$f$$
 એ $x = 0$ આગળ અસતત છે.

ઉદાહરણ 6 : તદેવ વિધેયનું સાતત્ય R પર ચર્ચો.

ઉકેલ : અહીં
$$f(x) = x$$
. $a \in \mathbb{R}$ લેતાં,
$$\lim_{x \to a} f(x) = \lim_{x \to a} x = a = f(a)$$

∴ તદેવ વિધેય R પર સતત છે.

આકૃતિ 5.7

ઉદાહરણ $7: f(x) = \frac{1}{x}, x \in \mathbb{R} - \{0\}$ તો fનું સાતત્ય ચર્ચો.

63લ :
$$f(x) = \frac{1}{x}$$
 એ સંમેય વિધેય છે.

$$\lim_{x \to c} f(x) = \frac{\lim_{x \to c} 1}{\lim_{x \to c} x} = \frac{1}{c}$$

$$f(c) = \frac{1}{c}$$

$$\lim_{x\to c} f(x) = \frac{1}{c} = f(c)$$

f એ પ્રત્યેક $c \in \mathbb{R} - \{0\}$ માટે સતત છે.

નોંધ : x = 0 માટે $f(x) = \frac{1}{x}$ વ્યાખ્યાયિત નથી. f(x) ના શૂન્ય આગળના વર્તનનો અભ્યાસ કરીએ. x > 0 લેતાં,

x	0.1	0.01	0.001	10 ⁻ⁿ	
f(x)	10	$100 = 10^2$	$1000 = 10^3$	10 ⁿ	

જો $x \to 0+$ તો f(x) એ અસિમિત વધે છે.

આ વિકલ્પમાં આપણે કહી શકીએ કે x o 0+ તો $f(x) o \infty$. આપણે $\lim_{x o 0+} f(x) = \infty$ લખીશું નહીં. $\lim_{x o 0+} f(x)$ નું અસ્તિત્વ નથી.

વિધેયનું લક્ષ એ <mark>વાસ્તવિક સંખ્યા</mark> છે. ૦૦ એ વાસ્તવિક સંખ્યા નથી અથવા તો એ વિસ્તૃત વાસ્તવિક સંખ્યા સંહતિનો ઘટક છે.

x	-0.1	-0.01	-0.001	-10 ⁻ⁿ
f(x)	-10	$-100 = -10^2$	$-1000 = -10^3$	-10 ⁿ

 \therefore અહીં x ઘટે છે તેમ f(x) ઘટે છે અને

$$x \to 0- \partial \mu f(x) \to -\infty.$$

પુનઃ આપણે $\lim_{x\to 0-} f(x) = -\infty$ લખીશું નહીં.

$$\lim_{x\to 0-} f(x) + \frac{1}{3}$$
 અસ્તિત્વ નથી.

ઉદાહેરણ $8: f(x) = \frac{1}{x^2}, x \neq 0$ નું $x \in \mathbb{R} - \{0\}$ આગળ સાતત્ય ચર્ચો.

634:
$$c \neq 0$$
 dai, $\lim_{x \to c} f(x) = \lim_{x \to c} \frac{1}{x^2} = \frac{\lim_{x \to c} 1}{\lim_{x \to c} x^2} = \frac{1}{c^2} = f$

 \therefore f એ પ્રત્યેક $c \in \mathbb{R} - \{0\}$ માટે સતત છે.

નોંધ : $\lim_{x\to 0} \frac{1}{x^2}$ નું અસ્તિત્વ નથી.

$$x \to 0$$
 at $\frac{1}{x^2} \to \infty$

x	-0.1	0.1	-0.01	0.01	±10 ⁻ⁿ
f(x)	100	100	10000	10000	10 ²ⁿ

ઉદાહરણ
$$9: f(x) = \begin{cases} x+3 & x<2\\ 3-x & x \ge 2 \end{cases}$$

નું $x \in \mathbb{R}$ આગળ સાતત્ય ચકાસો.

6કેલ : a < 2, તો a ને સમાવતા કોઈક અંતરાલમાં

$$f(x) = x + 3 \, \text{ a.i.}$$

$$\lim_{x \to a} f(x) = \lim_{x \to a} (x+3) = a+3 = f(a)$$

f એ a < 2 હોય તેવા પ્રત્યેક $a \in \mathbb{R}$ માટે સતત છે.

a > 2 તો a ને સમાવતા કોઈક અંતરાલમાં f(x) = 3 - x થશે.

$$\therefore f(a) = 3 - a$$

$$\lim_{x \to a} f(x) = \lim_{x \to a} (3 - x) = 3 - a = f(a)$$

f એ a > 2 હોય તેવા પ્રત્યેક $a \in \mathbb{R}$ માટે સતત છે.

$$a = 2$$
 ead, $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x + 3) = 5$

$$\lim_{x \to 2+} f(x) = \lim_{x \to 2+} (3 - x) = 1$$

f એ x=2 સિવાયના પ્રત્યેક $x\in \mathbb{R}$ માટે સતત છે.

 $(-1)^{4}$: જ્યારે f(x)નું સૂત્ર બદલાતું હોય તે સિવાયના બધાં જ બિંદુઓએ મહદ્દ્ અંશે f સતત હોય છે.)

GELESCRI 10:
$$f(x) = \begin{cases} x+1 & x > 2 \\ 0 & x = 2 \\ 1-x & x < 2 \end{cases}$$

જે બિંદુઓએ f અસતત છે તે બિંદુઓ શોધો.

ઉંકેલ : ઉપરની નોંધ અને y = f(x) ના આલેખ પરથી એ સ્પષ્ટ છે કે f એ x = 2 સિવાય પ્રત્યેક $x \in \mathbb{R}$ માટે સતત છે.

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (1 - x) = 1 - 2 = -1$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x + 1) = 2 + 1 = 3$$

 $\therefore \lim_{x \to 2} f(x)$ નું અસ્તિત્વ નથી.

 \therefore f એ x = 2 આગળ અસતત છે.

63લ : a < 1 લેતાં, f(a) = a - 1 થશે.

કોઈક $\delta > 0$ માટે $a + \delta < 1$ મળે.

 $x \in (a - \delta, a + \delta)$ લેતાં, f(x) = x - 1

(x < 2)

આકૃતિ 5.11

$$\therefore \lim_{x \to a} f(x) = \lim_{x \to a} (x - 1) = a - 1 = f(a)$$

f એ a < 1 હોય તેવા પ્રત્યેક $a \in \mathbb{R}$ માટે સતત છે.

$$a > 1$$
 માટે $f(a) = 1 - a$ થશે.

કોઈક $\delta > 0$ માટે $a - \delta > 1$ મળે.

$$x \in (a - \delta, a + \delta)$$
 લેતાં,

$$f(x) = 1 - x \tag{x}$$

$$\therefore \lim_{x \to a+} f(x) = \lim_{x \to a+} (1-x) = 1 - a = f(a)$$

f એ a > 1 હોય તેવા પ્રત્યેક $a \in \mathbb{R}$ માટે સતત છે.

આકૃતિ 5.12

ઉદાહરણ 12 : જો
$$f(x) = \begin{cases} x-1 & x < 1 \\ 0 & x = 1 \\ 1-x & x > 1 \end{cases}$$

તો fનું સાતત્ય ચકાસો.

6કેલ : ઉદાહરણ 11માં જોયું કે, f એ $x \neq 1$ હોય તેવા પ્રત્યેક $x \in \mathbb{R}$ માટે સતત છે.

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x - 1) = 0, \ \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (1 - x) = 0$$

$$\therefore f(1) = 0$$

$$f$$
 એ $x = 1$ માટે સતત છે.

નોંધ : શું
$$f: \mathbb{R} \to \mathbb{R}, f(x) = -|x - 1|$$
 નથી ?

ઉદાહરણ 13 : જો
$$f(x) = \begin{cases} x+2 & x < 0 \\ 2-x & x > 0 \\ k & x = 0 \end{cases}$$

f એ \mathbf{R} પર સતત હોય, તો k મેળવો.

ઉકેલ : f નો આલેખ જોતાં તથા f(x) = 2 - x, x > 0 અને f(x) = x + 2, x < 0 બહુપદી વિધેયો છે. તેથી f એ પ્રત્યેક $x \in \mathbb{R} - \{0\}$ માટે સતત છે જ.

હવે આપણે x = 0 આગળ સાતત્ય ચકાસીએ.

$$\lim_{x \to 0-} f(x) = \lim_{x \to 0-} (x+2) = 2$$

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} (2 - x) = 2$$

આકૃતિ 5.13

$$\lim_{x\to 0} f(x) = 2$$

$$\therefore$$
 $f એ x = 0$ આગળ સતત છે અને તેથી $\lim_{x \to 0} f(x) = 2 = f(0)$.

 $\left(\lim_{x\to 0}f(x)=2\right)$

$$f(0) = k = 2$$

$$f$$
 એ પ્રત્યેક $x \in \mathbb{R}$ માટે સતત હોય તો $k=2$.

ઉદાહરણ 14 : સાબિત કરો કે બહુપદી વિધેય સતત છે.

ઉદ્દેલ :
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$$
, $a_i \in \mathbb{R}$ $(i = 0, 1, 2, ..., n)$ $a_n \neq 0$ એ બહુપદી છે.

$$\begin{array}{lll} \mbox{sd}, & \lim_{x \to a} f(x) & = \lim_{x \to a} \; (a_n x^n + a_{n-1} x^{n-1} + ... + a_0) \\ & = \lim_{x \to a} \; a_n \lim_{x \to a} \; x^n + \lim_{x \to a} \; a_{n-1} \lim_{x \to a} \; x^{n-1} + ... + \lim_{x \to a} \; a_0 \\ & = a_n \, a^n + a_{n-1} \, a^{n-1} + ... + a_0 \\ & = f(a) \end{array}$$

 \therefore બહુપદી વિધેય પ્રત્યેક $x \in \mathbb{R}$ માટે સતત છે.

ઉદાહરણ 15 : સાબિત કરો કે પૂર્શાંકો સિવાયના પ્રત્યેક $x \in \mathbb{R}$ માટે f(x) = [x] સતત છે.

 \therefore f એ $n \in \mathbb{Z}$ માટે કોઈ પણ અંતરાલ (n, n+1) પર અચળ વિધેય છે.

$$f$$
 એ પ્રત્યેક અંતરાલ $(n, n+1)$ પર સતત છે. $n \in \mathbb{Z}$ હવે, $f(x) = \left\{ \begin{array}{ll} n-1 & n-1 \leq x < n \\ n & n \leq x < n+1 \end{array} \right.$

 $n \in Z$ લેતાં.

આપણે $\delta > 0$ એવો પસંદ કરીએ કે જેથી $n-1 < n-\delta < n$.

$$\therefore \lim_{x \to n-} f(x) = \lim_{x \to n-} n - 1 = n - 1 \qquad (x \in (n - \delta, n))$$

હવે,
$$\delta > 0$$
 પસંદ કરો કે જેથી $n < n + \delta < n + 1$. (0 $< \delta < 1$)

$$\lim_{x \to n+} f(x) = \lim_{x \to n+} n = n \qquad (x \in (n, n + \delta))$$

 $\lim_{x \to \infty} f(x)$ નું અસ્તિત્વ નથી. (જુઓ આકૃતિ 5.1)

∴ f એ દરેક પૂર્શાંક માટે અસતત છે.

f(x) = [x] એ R - Z પર સતત છે અને પ્રત્યેક $n \in Z$ માટે અસતત છે.

ઉદાહરણ 16 :
$$f(x) = \begin{cases} kx + 3 & x \le 2 \\ 7 & x > 2 \end{cases}$$

f એ x=2 આગળ સતત હોય, તો k શોધો.

634:
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (kx + 3) = 2k + 3$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} 7 = 7$$

 $(0 < \delta < 1)$

$$\therefore \text{ જો } 2k + 3 = 7 \text{ તો } \lim_{x \to 2} f(x) + \text{નું અસ્તિત્વ હોય.}$$

$$\therefore$$
 $k=2$ તો $\lim_{x\to 2} f(x)$ નું અસ્તિત્વ હોય તથા તેનું મૂલ્ય 7 હોય.

$$\text{qul}, \ k = 2 \text{ Hi} \\ \hat{f}(2) = 2 \cdot 2 + 3 = 7$$

$$\therefore \lim_{x \to 2} f(x) = f(2)$$

 \therefore જો k=2 તો f એ x=2 આગળ સતત છે.

ઉદાહરણ 17 :
$$f(x) = \begin{cases} 3 & x \le 1 \\ ax + b & 1 < x < 3 \\ 7 & x \ge 3 \end{cases}$$

એવા a અને b શોધો કે જેથી f સતત વિધેય થાય.

3લ $x \in (1, 3)$ સિવાય f અચળ વિધેય હોવાથી સતત વિધેય છે.

f એ (1, 3)માં સુરેખ બહુપદી છે. તેથી સતત વિધેય છે.

તેથી f એ $x \in \mathbb{R} - \{1, 3\}$ પર સતત છે, શક્યતઃ x = 1 અને 3 સિવાય તે \mathbb{R} પર સતત છે.

$$\lim_{x \to 1+} f(x) = \lim_{x \to 1+} (ax + b) = a + b, \quad \lim_{x \to 1-} f(x) = \lim_{x \to 1-} 3 = 3$$

f એ x=1 આગળ સતત હોવાથી, $\lim_{x\to 1} f(x)$ નું અસ્તિત્વ હોવું જોઈએ.

$$\lim_{x \to 1+} f(x) = \lim_{x \to 1-} f(x)$$

(i)

f એ x=3 આગળ પણ સતત હોવાથી $\lim_{x\to 3} f(x)$ નું અસ્તિત્વ હોવું જોઈએ.

$$\lim_{x \to 3+} f(x) = \lim_{x \to 3-} f(x)$$

$$\therefore 3a+b=7 \tag{ii}$$

(i) અને (ii) ઉકેલતાં,
$$a=2,\ b=1.$$
 વળી $\lim_{x\to 1} f(x)=3,\ \lim_{x\to 3} f(x)=7$

$$\dot{e} \dot{q}, \ f(1) = 3, \ \lim_{x \to 1} f(x) = 3 = f(1)$$

$$f(3) = 7$$
, $\lim_{x \to 3} f(x) = 7 = f(3)$

 \therefore a=2 અને b=1 લેતાં f એ \mathbb{R} પર સતત છે.

ઉદાહરણ 18 :
$$f(x) = \begin{cases} x + a & x < 0 \\ 2 & 0 \le x < 1 \\ bx - 1 & 1 \le x < 2 \end{cases}$$

જો f એ x = 0 અને x = 1 આગળ સતત હોય, તો α અને b શોધો.

$$\lim_{x \to 0-} f(x) = \lim_{x \to 0-} (x + a) = a$$

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} 2 = 2.$$

$$f$$
 એ $x=0$ આગળ સતત હોવાથી, $\lim_{x\to 0-} f(x) = \lim_{x\to 0+} f(x)$

146 ગણિત 12

∴
$$a = 2$$
. $a = 0$ $a = 0$.

$$\lim_{x \to 0-} f(x) = 2 = f(0)$$

$$\therefore$$
 $a=2$ લેતાં f એ $x=0$ આગળ સતત છે.

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 2 = 2$$

$$\lim_{x \to 1+} f(x) = \lim_{x \to 1+} (bx - 1) = b - 1$$

fએ x=1 આગળ સતત હોવાથી, $\lim_{x\to 1+} f(x) = \lim_{x\to 1-} f(x)$

∴
$$b-1=2$$

$$\therefore \quad b = 3. \text{ આવી } \lim_{x \to 1} f(x) = 2$$

$$q = 0, f(1) = b - 1 = 3 - 1 = 2$$

$$\therefore \lim_{x \to 1} f(x) = 2 = f(1)$$

$$\therefore$$
 $a=2$ અને $b=3$ લેતાં f એ $x=0$ તથા $x=1$ માટે સતત છે.

5.3 સતત વિધેયોનું બીજગણિત

સાતત્યની સંકલ્પના લક્ષ પર આધારિત છે, તેથી લક્ષનાં કાર્યનિયમો પ્રમાણે જ આપણને $f\pm g, f imes g, rac{f}{g}$ વગેરેના સાતત્યના કાર્યનિયમો મળે.

પ્રમેય 5.1 : ધારો કે f અને g એ x=c માટે સતત છે, જ્યાં (a,b) કોઈક અંતરાલ છે અને $c\in(a,b)$,

તો (1)
$$f + g એ x = c$$
 માટે સતત છે.

(2)
$$kf$$
 એ $x = c$ માટે સતત છે. $k \in \mathbb{R}$

(3)
$$f - g એ x = c$$
 માટે સતત છે.

(4)
$$f \times g$$
 એ $x = c$ માટે સતત છે.

(5) જો
$$g(c) \neq 0$$
 તો $\frac{k}{g}$ એ $x = c$ માટે સતત છે. $k \in \mathbb{R}$

(6) જો
$$g(c) \neq 0$$
 તો $\frac{f}{g}$ એ $x = c$ માટે સતત છે.

સાબિતી : f અને g એ x=c માટે સતત છે. તેથી $\lim_{x\to c} f(x)=f(c)$ અને $\lim_{x\to c} g(x)=g(c)$

(1)
$$\lim_{x \to c} (f+g)(x) = \lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$

= $f(c) + g(c)$
= $(f+g)(c)$

 \therefore f+g એ x=c આગળ સતત છે.

(2)
$$\lim_{x \to c} (kf)(x) = \lim_{x \to c} kf(x)$$
$$= \lim_{x \to c} k \lim_{x \to c} f(x)$$
$$= kf(c)$$
$$= (kf)(c)$$

 \therefore kf એ x = c આગળ સતત છે.

(3) (2)માં
$$k = -1$$
 લેતાં, g સતત હોવાથી $-g$ એ $x = c$ આગળ સતત છે.

$$f + (-g) = f - g$$
 એ $x = c$ આગળ સતત છે.

(4)
$$\lim_{x \to c} (f \times g)(x) = \lim_{x \to c} f(x)g(x)$$
$$= \lim_{x \to c} f(x) \lim_{x \to c} g(x)$$
$$= f(c) g(c)$$
$$= (f \times g)(c)$$

 \therefore $f \times g$ એ x = c આગળ સતત છે.

(5)
$$\lim_{x \to c} \left(\frac{k}{g}\right)(x) = \lim_{x \to c} \frac{k}{g(x)} = \frac{\lim_{x \to c} k}{\lim_{x \to c} g(x)}$$
$$= \frac{k}{g(c)}$$
$$(g(x) \neq 0)$$

(6)
$$\left(\frac{f}{g}\right)(x) = \left(f \times \frac{1}{g}\right)(x)$$

(5)માં
$$k=1$$
 લેતાં, g સતત હોવાથી $\frac{1}{g}$ એ $x=c$ આગળ સતત છે.
$$\left(f\times\frac{1}{g}\right)=\frac{f}{g}$$
 એ $x=c$ આગળ સતત છે.

અથવા

$$\lim_{x \to c} \left(\frac{f}{g}\right)(x) = \lim_{x \to c} \frac{f(x)}{g(x)}$$

$$= \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

$$= \frac{f(c)}{g(c)}$$

$$= \left(\frac{f}{g}\right)(c)$$

$$(g(c) \neq 0)$$

 $\therefore \frac{f}{g}$ એ x = c આગળ સતત છે.

કેટલાંક અગત્યનાં પરિણામો :

(1) સંમેય વિષેય તેના પ્રદેશ પર સતત છે.

$$h(x) = \frac{p(x)}{q(x)}$$
 એ સંમેય વિધેય છે, જ્યાં $p(x)$ અને $q(x)$ બહુપદી વિધેય છે અને $q(x) \neq 0$

$$\lim_{x \to a} h(x) = \lim_{x \to a} \frac{p(x)}{q(x)}$$
$$= \frac{\lim_{x \to a} p(x)}{\lim_{x \to a} q(x)}$$

148 ગણિત 12

$$= \frac{p(a)}{q(a)}$$

$$= h(a)$$

$$(q(a) \neq 0)$$

∴ h એ તેના પ્રદેશ પર સતત છે.

(2) sine વિધેય સતત છે.

ધોરણ XIમાં આપણે જોયું તે પ્રમાણે આપણે
$$\lim_{x\to 0} sinx = 0$$
, $\lim_{x\to 0} cosx = 1$ સ્વીકારી લઈશું. ધારો કે $a\in \mathbb{R}$. $x=a+h$ લેતાં, જેમ $x\to a$ તેમ $h\to 0$ થશે.
$$\lim_{x\to a} sinx = \lim_{h\to 0} sin(a+h)$$
$$= \lim_{h\to 0} (sina\ cosh + cosa\ sinh)$$
$$= sina\ \lim_{h\to 0} cosh + cosa\ \lim_{h\to 0} sinh$$
$$= sina \cdot 1 + cosa \cdot 0$$
$$= sina$$

- $\lim_{x \to a} \sin x = \sin a$
- ∴ sine વિધેય સતત છે.

(3) cosine विधेय सतत छे.

$$\lim_{x \to a} cosx = \lim_{h \to 0} cos(a + h)$$

$$= \lim_{h \to 0} (cosa \ cosh - sina \ sinh)$$

$$= cosa \lim_{h \to 0} cosh - sina \lim_{h \to 0} sinh$$

$$= cosa \cdot 1 - sina \cdot 0$$

ધારો કે $a \in \mathbb{R}$. x = a + h લેતાં, જેમ $x \to a$ તેમ $h \to 0$ થશે.

- $\therefore \lim_{x \to a} \cos x = \cos a$
- ∴ cosine વિધેય સતત છે.

= cosa

(4) tan विधेय सतत छे :

$$tanx = \frac{sinx}{cosx}, x \in \mathbb{R} - \left\{ (2k-1)\frac{\pi}{2} \mid k \in \mathbb{Z} \right\}$$
 sine વિષય સતત છે તથા cosine વિષય સતત છે.
$$cosx = 0 \iff x \in \left\{ (2k-1)\frac{\pi}{2} \mid k \in \mathbb{Z} \right\}$$

 \therefore f અને g સતત હોય, તો $\frac{f}{g}$ સતત છે એ કાર્યનિયમ મુજબ tan વિધેય તેના પ્રદેશ પર સતત છે.

(5) संयोषित विधेयनुं सातत्य :

ધારો કે $f:(a,\ b)\to (c,\ d)$ અને $g:(c,\ d)\to (e,\ f)$ વિધેયો છે અને તેથી gof વ્યાખ્યાયિત છે. જો f એ $x_1\in (a,\ b)$ અને g એ $f(x_1)\in (c,\ d)$ આગળ સતત હોય, તો gof એ $x_1\in (a,\ b)$ આગળ સતત છે.

સંયોજિત વિધેયના લક્ષના નિયમ પ્રમાણે (ધોરણ XI, સિમેસ્ટર II).

$$\lim_{x \to x_1} g(f(x)) = g(\lim_{x \to x_1} (f(x))) = g(f(x_1)) = (gof)(x_1)$$

 \therefore gof એ $x = x_1$ આગળ સતત છે.

ઉદાહરણ 19 : સાબિત કરો કે પ્રત્યેક $n\in Z$ માટે f(x)=x-[x] એ અસતત છે. $(x\in R)$

કોઈ પણ $n \in Z$ માટે,

= 1

અને
$$f(n) = n - [n] = n - n = 0$$

- $\therefore \quad \lim_{x \to n-} f(x) \neq f(n) \quad \forall n \in \mathbb{Z}$
- f(x) = x [x] એ $n \in Z$ પર સતત નથી.

નોંધ : (0, 1), (1, 2),... વગેરે અંતરાલ પર f(x) = x - [x] સતત છે. શક્ય હોય તો ધારો કે $n \in \mathbb{Z}$ પર પણ x - [x] સતત છે. g(x) = x તો $x \in \mathbb{R}$ પર સતત છે જ.

- f(x) = x [x] તથા g(x) = x એ બંને R પર સતત થાય.
- g(x) f(x) = x (x [x]) = [x] પણ R પર સતત થાય. પરંતુ [x] તો પ્રત્યેક પૂર્ણાંક આગળ અસતત છે.

આથી f(x) = x - [x], $n \in \mathbb{Z}$ માટે સતત નથી.

ઉદાહરણ 20 : સાબિત કરો કે $sin \mid x \mid$ એ R પર સતત છે.

ઉકેલ : $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| અને $g: \mathbb{R} \to \mathbb{R}$, g(x) = sinx સતત છે.

 \therefore $gof: \mathbb{R} \to \mathbb{R}$, (gof)(x) = g(f(x)) = g(|x|) = sin|x| એ પ્રત્યેક $x \in \mathbb{R}$ માટે સતત છે.

ઉદાહરણ 21 : સાબિત કરો કે $f: \mathbb{R} \to \mathbb{R}, f(x) = |1 - x + |x||$ સતત છે.

ઉકેલ : $g: R \to R$, g(x) = 1 - x અને $h: R \to R$, h(x) = |x| એ સતત છે.

- $\therefore g(x) + h(x) = 1 x + |x| એ R પર સતત છે.$
- :. h અને g + h એ R પર સતત હોવાથી ho((g + h)(x)) = h((g + h)(x)) = |1 x + |x|| એ R પર સતત છે.

ઉદાહરણ 22 : સાબિત કરો કે $cosx^3$ એ R પર સતત છે.

ઉકેલ : $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ અને $g: \mathbb{R} \to \mathbb{R}$, g(x) = cosx સતત છે.

 $\therefore gof: \mathbf{R} \to \mathbf{R}, (gof)(x) = g(f(x)) = g(x^3) = \cos x^3 \text{ And } \vartheta.$

ઉદાહરણ 23 :
$$f(x) = \begin{cases} \frac{k\cos x}{\pi - 2x} & x \neq \frac{\pi}{2} \\ k^2 & x = \frac{\pi}{2} \end{cases}$$

એવો k મળી શકે કે જેથી f એ $x=\frac{\pi}{2}$ આગળ સતત થાય?

Geq:
$$\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{k\cos x}{2\left(\frac{\pi}{2} - x\right)} = \lim_{\alpha \to 0} \frac{k\sin\alpha}{2\alpha} = \frac{k}{2}$$

$$\text{and} \quad f\left(\frac{\pi}{2}\right) = k^2$$

f એ $x=\frac{\pi}{2}$ આગળ સતત થાય તે માટે, $\lim_{x\to\frac{\pi}{2}}f(x)=f\left(\frac{\pi}{2}\right)$ થવું જોઈએ.

$$\therefore \quad \frac{k}{2} = k^2$$

 \therefore k=0 અથવા $k=\frac{1}{2}$ લેતાં f એ $x=\frac{\pi}{2}$ આગળ સતત થાય.

(નોંધ : k = 0 તો પ્રત્યેક $x \in \mathbb{R}$ માટે f(x) = 0)

ઉદાહેરણ 24 :
$$f(x) = \begin{cases} \frac{\sin x}{|x|} & x \neq 0 \\ k & x = 0 \end{cases}$$

f એ x=0 આગળ સતત થાય તેવો k શોધી શકાશે ?

$$\lim_{x \to 0-} f(x) = \lim_{x \to 0-} \frac{\sin x}{|x|} = \lim_{x \to 0-} \frac{\sin x}{-x} = -1$$

$$\therefore \lim_{x \to 0} f(x) + i j$$
 અસ્તિત્વ નથી.

 \therefore એવો કોઈ પણ $k \in \mathbb{R}$ મળશે નહીં કે જેથી f એ x=0 આગળ સતત થાય.

ઉદાહરણ 25 :
$$f(x) = \begin{cases} \frac{\sin 4x}{9x} & x \neq 0 \\ k^2 & x = 0 \end{cases}$$

f એ x = 0 આગળ સતત થાય તેવો k શોધો.

Get:
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin 4x}{9x}$$
$$= \lim_{x \to 0} \frac{\sin 4x}{4x} \frac{4}{9}$$
$$= \frac{4}{9}$$

$$f(0) = k^2$$

- \therefore $k^2 = \frac{4}{9}$ માટે f એ x = 0 આગળ સતત છે.
- \therefore $k = \pm \frac{2}{3}$ માટે f એ x = 0 આગળ સતત છે.

- સાબિત કરો કે cot, cosec અને sec તેમના પ્રદેશ પર સતત છે.
- સાબિત કરો કે ન્યૂનતમ પૂર્ણાંક વિધેય $f(x) = \lceil x \rceil$ એ પ્રત્યેક $n \in \mathbb{Z}$ માટે અસતત છે.
- સાબિત કરો કે ચિક્ષ વિધેય x = 0 આગળ અસતત છે.

4.
$$f(x) = \begin{cases} x+3 & x \ge 2 \\ 3-x & x < 2 \end{cases}$$

$$f(x) = \begin{cases} x^2 & x \ge 0 \\ x & x < 0 \end{cases}$$

1.
$$f(x) = \begin{cases} x+3 & x \ge 2 \\ 3-x & x < 2 \end{cases}$$

2. $f(x) = \begin{cases} 2x+3 & x < 1 \\ 5 & x = 1 \\ 3x+2 & x > 1 \end{cases}$

3. $f(x) = \begin{cases} \frac{tanx}{x} & x \ne 0 \\ 1 & x = 0 \end{cases}$

10. $f(x) = \begin{cases} \frac{sinx}{3x} & x \ne 0 \\ \frac{2}{3} & x = 0 \end{cases}$

7.
$$f(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0 \\ 2 & x = 0 \end{cases}$$

8.
$$f(x) = \begin{cases} \frac{tanx}{x} & x \neq 0 \\ 1 & x = 0 \end{cases}$$

9.
$$f(x) = \begin{cases} 2x - 3 & x < 0 \\ 2 & x = 0 \\ 3x - 2 & x > 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{\sin x}{3x} & x \neq 0 \\ \frac{2}{3} & x = 0 \end{cases}$$

9.
$$f(x) = \begin{cases} 2x - 3 & x < 0 \\ 2 & x = 0 \\ 3x - 2 & x > 0 \end{cases}$$
11. $f(x) = \begin{cases} \frac{2x + 3}{3x + 2} & x > 0 \\ \frac{\sin 3x}{2x} & x < 0 \\ \frac{3}{2} & x = 0 \end{cases}$

12.
$$f(x) = \begin{cases} \frac{x^2 - 1}{x^2 + 1} & x > 0 \\ \frac{\sin x}{|x|} & x < 0 \\ -1 & x = 0 \end{cases}$$

x ની આપેલ કિંમતો આગળ નીચે આપેલાં વિધેયો સતત હોય, તો k મેળવો. (13 થી 16)

13.
$$f(x) = \begin{cases} \frac{\tan kx}{3x} & x \neq 0 \\ 1 & x = 0 \end{cases}$$
 (x = 0)

14. $f(x) = \begin{cases} \frac{\sin 5x}{kx} & x \neq 0 \\ 1 & x = 0 \end{cases}$ (x = 0)

14.
$$f(x) = \begin{cases} \frac{\sin 5x}{kx} & x \neq 0 \\ 1 & x = 0 \end{cases}$$
 (x = 0)

15.
$$f(x) = \begin{cases} \frac{(x+1)\tan(x-1)}{\sin(x^2-1)} & x \neq 1 \\ k & x = 1 \end{cases}$$
 $(x = 1)$

16.
$$f(x) = \begin{cases} 2x^2 + k & x < 0 \\ x^2 - 2k & x \ge 0 \end{cases}$$
 $(x = 0)$

 $oldsymbol{17}$. જો આપેલ x ની કિંમતો આગળ f સતત હોય, તો a અને b શોધો :

$$f(x) = \begin{cases} 2x + 3 & 1 < x < 2 \\ ax + b & 2 \le x < 3 \\ 3x + 2 & 3 \le x \le 4 \end{cases}$$
 (x = 2 with x = 3)

- 18. સાબિત કરો કે $sin^2x cos^2x$ એ R પર સતત છે.
- 19. સાબિત કરો કે sin2x cos3x એ R પર સતત છે.
- 20. સાબિત કરો કે sin |x| એ R પર સતત છે.
- 21. સાબિત કરો કે | sinx | એ R પર સતત છે.
- 22. સાબિત કરો કે sin^3x અને $sinx^3$ એ R પર સતત છે.
- 23. સાબિત કરો કે $cosx^n$ એ R પર સતત છે. $(n \in \mathbb{N})$
- 24. સાબિત કરો કે $\cos^n x$ એ R પર સતત છે. $(n \in \mathbb{N})$

25.
$$f(x) = \begin{cases} sinx - cosx & x \neq 0 \\ -1 & x = 0 \end{cases}$$

સાબિત કરો કે f એ x=0 પર સતત છે.

26.
$$f(x) = \begin{cases} |\sin x - \cos x| & x \neq 0 \\ -1 & x = 0 \end{cases}$$

f એ x = 0 આગળ સતત છે ?

27.
$$f(x) = \begin{cases} \frac{\sin x - \cos x}{x - \frac{\pi}{4}} & x \neq \frac{\pi}{4} \\ k & x = \frac{\pi}{4} \end{cases}$$

જો f એ $x = \frac{\pi}{4}$ આગળ સતત હોય, તો k શોધો.

28.
$$f(x) = \begin{cases} \frac{x^n - 2^n}{x - 2} & x \neq 2 \\ 80 & x = 2 \end{cases}$$

જો f એ x = 2 આગળ સતત હોય, તો n શોધો.

5.4 ઘાતાંકીય અને લઘુગણકીય વિધેયો

વિધેય $f(x) = x^n$ નો ઉપયોગ બહુપદી વિધેયો અને સંમેય વિધેયોમાં થાય છે.

ધારો કે
$$f_n(x) = x^n$$

$$f_1(x) = x, f_2(x) = x^2, f_3(x) = x^3,....$$
 વગેરે

ચાલો, આપણે નીચે આપેલા આલેખો દોરીએ :

$f_2(x)$ માટે,	x	1	2	3	4	5	-1	- 2	-3
	$f_2(x)$	1	4	9	16	25	1	4	9
$f_3(x)$ માટે,	x	1	2	3	4	5	-1	-2	- 3
	$f_3(x)$	1	8	27	64	125	-1	-8	-27

સાતત્ય અને વિકલન

જેમ x વધે છે તેમ $f_n(x)$ વધે છે. x>1 માટે, xના નિશ્ચિત ઉપચય (વધારા) માટે જેમ n વધે છે તેમ $f_n(x)$ વધે છે. ઉદાહરણ તરીકે x એ 2 થી 3 થાય ત્યારે, $f_{10}(2)=2^{10},$ $f_{10}(3)=3^{10},$ $f_{20}(2)=2^{20},$ $f_{20}(3)=3^{20}.$ સ્વાભાવિક રીતે, $3^{20}-2^{20}>3^{10}-2^{10}.$

આકૃતિ 5.15

હવે આપણે 'સામાન્ય ઘાતાંકીય વિધેય' $f(x)=10^x$ લઈએ. આ વિધેય કોઈ પણ વિધેય $f_n(x)$ કરતાં ખૂબ ઝડપથી વધે છે.

$$x=10^2$$
 લો. હવે, $f_{100}(x)=x^{100}=(10^2)^{100}=10^{200}$, $f(x)=10^{10^2}=10^{100}$ $x=10^3$ માટે, $f_{100}(x)=x^{100}=10^{300}$, $f(x)=10^{10^3}=10^{1000}$ $x=10^4$ માટે, $f_{100}(x)=(10^4)^{100}=10^{400}$, $f(x)=10^{10^4}=10^{10000}$ સામાન્ય રીતે, જો $x>10^3$, તો $f(x)$ એ $f_{100}(x)$ કરતાં ખૂબ જ ઝડપથી વધે છે. $(2 પૃષ્ઠ 155 જુઓ.)$

ઘાતાંકીય વિષેય : $f(x) = a^x$, a > 0, $x \in \mathbb{R}$ ને ઘાતાંકીય વિષેય કહે છે.

- (2) કોઈ પણ $a \in \mathbb{R}^+$ માટે fનો આલેખ (0, 1)માંથી પસાર થાય છે.
- (3) જો $a \neq 1$, તો f એક-એક અને વ્યાપ્ત વિધેય છે.
- (4) f નો વિસ્તાર R+ છે.
- (5) જેમ a ની કિંમત વધે તેમ, a > 1 માટે f નો આલેખ Y-અક્ષ તરફ ઢળે છે.
- (6) a>1 માટે જો x ઋણ હોય અને ઘટે તો fનો આલેખ X-અક્ષની નજીકને નજીક આવે છે પરંતુ X-અક્ષને છેદતો નથી.

वास्तविङ घातांङना नियमो :

$$(1) \quad a^x a^y = a^{x+y}$$

$$(2) \quad \frac{a^x}{a^y} = a^{x-y}$$

$$(3) \quad (a^x)^y = a^{xy}$$

(4)
$$(ab)^x = a^x b^x$$
 $a, b \in \mathbb{R}^+, x, y \in \mathbb{R}$

(આ ચર્ચા ફક્ત સમજવા માટે અને હવે પછીની ચર્ચાની કડીરૂપ છે અને પરીક્ષા માટે નથી.).

અચળ e : શ્રેણીનું લક્ષ : વિધેયની માફક જ, કેટલીક શ્રેણીઓને 'લક્ષ' હોય છે.

શ્રેણી 1, $\frac{1}{2}$, $\frac{1}{3}$,..., $\frac{1}{100}$,..., $\frac{1}{n}$નાં પદો 0 ની નજીક અને નજીક જાય છે.

આપણે $\lim_{n\to\infty}\frac{1}{n}=0$ કહીશું.

આપશે શ્રેણીનાં લક્ષની વિધિવત્ વ્યાખ્યા આપીશું નહીં. નીચેનાં પરિણામો આપશે સ્વીકારીશું,

- (1) $\lim_{n\to\infty}\frac{1}{n}=0$. $(n\in\mathbb{N})$. આપણે સ્વીકારીએ છીએ કે $\lim_{x\to\infty}\frac{1}{x}=0$ $(x\in\mathbb{R})$
- $(2) \quad \lim_{n \to \infty} r^n = 0 \quad |r| < 1$

દાખલા તરીકે જો $r=\frac{1}{2}$, તો આપણને શ્રેણી $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$,.. મળે. જેમ nની કિંમત મોટી ને મોટી થાય છે તેમ $\left(\frac{1}{2}\right)^n$ એ 0 ની નજીક અને નજીક પહોંચે છે.

શ્રેણી $\left(1+\frac{1}{n}\right)^n$ લઈએ.

$$\left(1 + \frac{1}{n}\right)^n = 1 + \binom{n}{1} \frac{1}{n} + \binom{n}{2} \frac{1}{n^2} + \dots + \binom{n}{n} \frac{1}{n^n}$$

$$= 1 + 1 + \frac{n(n-1)}{2! n^2} + \frac{n(n-1)(n-2)}{3! n^3} + \dots + \frac{n(n-1)\dots 1}{n! n^n}$$

$$= 1 + 1 + \frac{\left(1 - \frac{1}{n}\right)}{2!} + \frac{\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)}{2!} + \dots + \frac{\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{n-1}{n}\right)}{n!}$$

 $1-\frac{1}{n},\,1-\frac{2}{n},\,1-\frac{3}{n}$ બધાં જ 1 કરતાં નાનાં છે અને જ્યાં જ્યાં તેમનો ગુણાકાર હોય છે ત્યાં આ ગુણાકાર પણ 1 કરતાં નાનો છે.

$$(1 + \frac{1}{n})^n < 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!}$$

$$< 1 + 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}}$$

$$(2^{n-1} < n!)$$

$$\therefore \quad \left(1+\frac{1}{n}\right)^n < 1 + \frac{1-\left(\frac{1}{2}\right)^n}{1-\frac{1}{2}} \tag{સમગુશોત્તર શ્રેણી)}$$

$$\therefore \left(1 + \frac{1}{n}\right)^n < 1 + 2\left(1 - \left(\frac{1}{2}\right)^n\right) = 3 - 2\left(\frac{1}{2}\right)^n < 3$$
 (i)

સ્વાભાવિક રીતે,
$$\left(1+\frac{1}{n}\right)^n > 2$$
 (n > 1) (ii)

આપણે શ્રેણી $\left(1+\frac{1}{n}\right)^n$ ને લક્ષ છે તે સ્વીકારી લઈશું અને તેને e કહીશું. પરિણામ (i) અને (ii) પરથી, 2< e<3 આમ e એ નિશ્ચિત અચળ છે, જે 2< e<3 નું પાલન કરે છે.

આ અચળાંકને નેપિયરનો અચળ કહે છે. તેનું લગભગ મૂલ્ય e = 2.71828183 છે.

શ્રેશી
$$\left(1+\frac{1}{n}\right)^n$$
નું લક્ષ e છે.

$$\therefore \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

આપણે સાબિત કરી શકીએ, કે શ્રેણી $\left(1+\frac{1}{n}\right)^n$ ને લક્ષ છે. પરંતુ અહીં તેની સાબિતી આપીશું નહીં.

$$\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e \text{ અથવા } x\text{ -1 out of } \frac{1}{x}\text{ eldi, } \lim_{x\to0}(1+x)^{\frac{1}{x}}=e \text{ ug realist} \text{ eldi}.$$

લઘુગણકીય વિધેય :

આપણે જાણીએ છીએ કે ઘાતાંકીય વિધેય $f: \mathbf{R} \to \mathbf{R}^+, f(x) = a^x$ એ $a \in \mathbf{R}^+ - \{1\}$ માટે એક-એક અને વ્યાપ્ત છે. તેના પ્રતિવિધેય $g: \mathbf{R}^+ \to \mathbf{R}$ ને લઘુગણકીય વિધેય કહે છે. તેથી જો $y = f(x) = a^x$, તો $x = g(y) = \log_a y$

આપણે જાણીએ છીએ કે, વિધેય $f: A \to B$ અને પ્રતિવિધેય $g: B \to A$ માટે $(fog)(y) = y, y \in B$ અને $(gof)(x) = x, x \in A$.

હવે,
$$f(g(y)) = y$$

$$\therefore f(\log_a y) = y$$

$$\therefore a^{\log_a y} = y$$

અથવા બીજા શબ્દોમાં, $a^{\log_a x} = x$ જ્યાં $x \in \mathbb{R}^+$

જો a = 10, તો $\log_{10} x$ ને સામાન્ય લઘુગણક કહીશું.

આમ, $f: \mathbb{R} \to \mathbb{R}^+$, $f(x) = 10^x$ તો તેનું પ્રતિવિધય $g: \mathbb{R}^+ \to \mathbb{R}$, $g(x) = \log_{10} x$ થાય.

જો a=e તો આપણને પ્રાકૃતિક લઘુગણક મળે અને તેને $\ln_e x$ વડે દર્શાવીશું. આપણે $\ln x$ ને $\log_e x$ અથવા સામાન્ય રીતે $\log_e x$ લખીશું.

156 ગણિત 12

(1) \log વિધેયનો પ્રદેશ R^+ અને વિસ્તાર R છે. ફક્ત ધન વાસ્તવિક સંખ્યાઓનો લઘુગણક મેળવી શકાય અને જો $x \in R^+$ તો $\log x$ એ વાસ્તવિક સંખ્યા છે.

(2)
$$a^0 = 1$$
. $\partial a \log_a 1 = 0$
 $\partial a \log_e 1 = 0$, $\log_{10} 1 = 0$

(3)
$$a^1 = a$$
. $\lambda \in \log_a a = 1$

∴
$$\log_e e = 1$$
, $\log_{10} 10 = 1$
$$a^{\log_a x} = x$$
, $a \in \mathbb{R}^+ - \{1\}$ હોવાથી $e^{\log_e x} = x$ થાય.

આપણને $f(x) = \log_e x$ અને $f(x) = e^x$ ના આલેખનું અવલોકન કરતાં માલૂમ પડે છે કે તે રેખા y = x અરીસામાં એકબીજાનાં પ્રતિબિંબ છે :

- (1) (1, 0) એ log વિધેયના આલેખનો ઘટક છે.
- (2) a > 1 માટે $f(x) = \log_a x$ વધતું વિધેય છે. 0 < a < 1 માટે તે ઘટતું વિધેય છે.

લઘુગણકના કેટલાક નિયમો :

(1)
$$\log_a mn = \log_a m + \log_a n$$
 (m , ધારો કે $\log_a m = x$, $\log_a n = y$

$$(m, n \in \mathbb{R}^+, a \in \mathbb{R}^+ - \{1\})$$

$$\therefore m = a^x, n = a^y$$

$$\therefore mn = a^{x}a^{y} = a^{x+y}$$

$$\log_a mn = x + y = \log_a m + \log_a n$$

(3)
$$\log_a x^n = n\log_a x$$
 $(x \in \mathbb{R}^+, n \in \mathbb{Z}, a \in \mathbb{R}^+ - \{1\})$ ધારો કે $\log_a x = y$

$$\therefore x = a^y$$

$$\therefore x^n = (a^y)^n = a^{ny}$$

$$\log_{\alpha} x^n = ny$$

$$\log_{\alpha} x^n = n \log_{\alpha} x$$

(4) આધાર પરિવર્તનનો નિયમ :
$$\log_a b = \frac{\log_c b}{\log_c a}$$
 ($b \in \mathbb{R}^+$, $a, c \in \mathbb{R}^+ - \{1\}$) ધારો કે $\log_a b = x$, $\log_c a = y$

$$\therefore b = a^x, a = c^y$$

$$\therefore b = (c^y)^x = c^{xy}$$

$$\therefore \log_c b = xy = \log_a b \times \log_c a$$

$$\therefore \log_a b = \frac{\log_c b}{\log_c a}$$

 $(a \neq 1$ હોવાથી $\log_a a \neq 0)$

વળી,
$$\lim_{x \to 0} \frac{\log_e(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \log_e(1+x)$$

$$= \lim_{x \to 0} \log_e(1+x)^{\frac{1}{x}}$$

$$= \log_e\left(\lim_{x \to 0} (1+x)^{\frac{1}{x}}\right) \qquad \text{(log સતત છે અને સંયોજત વિધેયનું લક્ષ)}$$

$$= \log_e e$$

$$= 1$$

$$\lim_{x \to 0} \frac{\log (1+x)}{x} = 1$$

5.5 વિકલન

આપણે ધોરણ XIમાં વિકલનની સંકલ્પનાનો અભ્યાસ કર્યો. ચાલો આપણે યાદ કરીએ.

વ્યાખ્યા : જો $f:(a,b)\to \mathbb{R}$ વિધેય હોય અને $c\in(a,b)$ તથા h એટલો નાનો હોય કે જેથી $c+h\in(a,b)$, $\lim_{h\to 0}\frac{f(c+h)-f(c)}{h}$ નું અસ્તિત્વ હોય, તો આ લક્ષને f નું c આગળનું વિકલિત કહે છે. તેને f'(c) અથવા $\left[\frac{d}{dx}f(x)\right]_{x=c}$ અથવા $\left(\frac{dy}{dx}\right)_{x=c}$ વડે દર્શાવાય છે, જ્યાં y=f(x). જો x=c આગળ f ના વિકલિતનું અસ્તિત્વ હોય, તો f એ x=c આગળ વિકલનીય છે તેમ કહેવાય. $\frac{dy}{dx}$ માટે y_1 પણ ઉપયોગમાં લેવાય છે.

જો f એ દરેક $x \in A$ પર વિકલનીય હોય $(A \neq \emptyset)$ તો, f એ Aમાં વિકલનીય છે તેમ કહેવાય.

f એ $c \in (a, b)$ પર વિકલનીય છે નો અર્થ $\lim_{h \to 0+} \frac{f(c+h) - f(c)}{h}$ અને $\lim_{h \to 0-} \frac{f(c+h) - f(c)}{h}$ નું અસ્તિત્વ છે તથા તેઓ સમાન છે.

ધારો કે f એ $[a,\ b]$ પર વ્યાખ્યાયિત છે. f એ $[a,\ b]$ પર વિકલનીય છે એનો અર્થ છે કે,

- (1) f એ (a, b) પર વિકલનીય છે.
- (2) $\lim_{h \to 0+} \frac{f(a+h) f(a)}{h} + \frac{1}{2} \text{ which ca } \dot{\theta}.$

આપણે f એ x=a આગળ જમણી બાજુથી વિકલનીય છે તેમ કહીશું અને આ લક્ષને f'(a+) લખીશું.

(3) $\lim_{h \to 0^{-}} \frac{f(b+h) - f(b)}{h} \neq 0$

આપણે f એ x=b આગળ ડાબી બાજુથી વિકલનીય છે તેમ કહીશું અને આ લક્ષને f'(b-) વડે દર્શાવીશું.

આપણે નીચેના કાર્યનિયમો અને પ્રમાણિત રૂપો સ્વીકારી લઈશું. જો f અને g એ x આગળ વિકલનીય હોય, તો

(1)
$$f \pm g$$
 એ x આગળ વિકલનીય છે અને $\frac{d}{dx}(f(x) \pm g(x)) = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)$

(2)
$$f \times g$$
 એ x આગળ વિકલનીય છે અને $\frac{d}{dx}f(x)g(x) = f(x) \frac{d}{dx}g(x) + g(x) \frac{d}{dx}f(x)$

(3) જો
$$g(x) \neq 0$$
, તો $\frac{f}{g}$ એ x આગળ વિકલનીય છે અને $\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{g(x) \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{[g(x)]^2}$

$$(4) \quad \frac{d}{dx}x^n = nx^{n-1} \qquad \qquad n \in \mathbb{R}, x \in \mathbb{R}^+$$

$$(5) \quad \frac{d}{dx} \sin x = \cos x \qquad \qquad x \in \mathbf{R}$$

$$(6) \ \frac{d}{dx}\cos x = -\sin x \qquad \qquad x \in \mathbb{R}$$

(7)
$$\frac{d}{dx} \tan x = \sec^2 x$$
 $x \in \mathbb{R} - \left\{ (2k-1)\frac{\pi}{2} \mid k \in \mathbb{Z} \right\}$

(8)
$$\frac{d}{dx} secx = secx \ tanx$$
 $x \in \mathbb{R} - \left\{ (2k-1)\frac{\pi}{2} \mid k \in \mathbb{Z} \right\}$

(9)
$$\frac{d}{dx} \cot x = -\csc^2 x$$
 $x \in \mathbb{R} - \{k\pi \mid k \in \mathbb{Z}\}$

(10)
$$\frac{d}{dx} cosecx = -cosecx cotx$$
 $x \in \mathbb{R} - \{k\pi \mid k \in \mathbb{Z}\}$

હવે આપણે નીચેનું પ્રમેય સાબિત કરીશું.

પ્રમેય 5.2 : જો f એ x=c આગળ વિકલનીય હોય તો તે x=c આગળ સતત છે. $c\in(a,b)$

સાબિતી : ધારો કે f એ x=c આગળ વિકલનીય છે.

$$\therefore \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \neq \emptyset.$$

હવે,
$$x \neq c$$
 માટે $f(x) - f(c) = \left(\frac{f(x) - f(c)}{x - c}\right)(x - c)$

$$\lim_{x \to c} (f(x) - f(c)) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \quad \lim_{x \to c} (x - c)$$

(કારણ કે f એ વિકલનીય હોવાથી બંને લક્ષનું અસ્તિત્વ છે.)

$$=f'(c)\cdot 0 = 0$$
 $(f'(c)નું અસ્તિત્વ છે.)$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (f(x) - f(c) + f(c))$$

$$= \lim_{x \to c} (f(x) - f(c)) + \lim_{x \to c} f(c)$$

$$= 0 + f(c)$$

$$= f(c)$$

f એ x = c આગળ સતત છે.

પરંતુ સતત વિધેય વિકલનીય ન પણ હોય તે શક્ય છે.

$$f(x) = |x|$$
 લઈએ.

$$\lim_{x \to 0+} |x| = \lim_{x \to 0+} x = 0, \quad \lim_{x \to 0-} |x| = \lim_{x \to 0-} (-x) = 0, \quad f(0) = |0| = 0$$

 \therefore f એ x=0 આગળ સતત છે.

પરંતુ,
$$\lim_{x \to 0+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0+} \frac{|x|}{x} = \lim_{x \to 0+} \frac{x}{x} = 1$$

$$\lim_{x \to 0-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0-} \frac{|x|}{x} = \lim_{x \to 0-} \frac{-x}{x} = -1$$

આમ,
$$\lim_{x\to 0} \frac{f(x) - f(0)}{x - 0}$$
 નું અસ્તિત્વ નથી.

 \therefore |x| એ x=0 આગળ સતત છે, પરંતુ x=0 આગળ વિકલનીય નથી.

શું આપણે આ પરિસ્થિતિ સમજાવી શકીશું ?

આપણે જોયું કે f'(c) એ વક્ક y = f(x) ના x = cઆગળના સ્પર્શકનો ઢાળ છે.

f(x) = |x| નો આલેખ જુઓ. તે (0, 0) ઉદ્ભવબિંદુવાળા બે કિરણોનો બનેલો છે અને (0, 0) આગળ તેને કોઈ સ્પર્શક મળતો નથી. તે કિરણો એક ખુણો બનાવે છે.

વિધેય ક્યારે વિકલનીય ન હોય ?

(2)
$$x = c$$
 આગળનો સ્પર્શક શિરોલંબ હોય. (આકૃતિ 5.22)

(3) x = c આગળ સ્પર્શક ન હોય. (આકૃતિ 5.23)

સ્વાધ્યાય 5.2

- 1. સાબિત કરો કે f(x) = |x-1| + |x-2| + |x-3| એ R પર સતત છે પરંતુ ફક્ત x = 1, 2 અને 3 માટે વિકલનીય નથી.

સાતત્ય અને વિકલન

3.
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0. \end{cases}$$
 સાબિત કરો કે $f'(0) = 0$ તથા તે પરથી દર્શાવો કે $f \Rightarrow x = 0$ આગળ સતત છે.
4. $f'(x)$ શોધો : (1) $f(x) = \sin^2 x$ (2) $f(x) = \tan^2 x$ (3) $f(x) = x^4$ (4) $f(x) = \cos^4 x$

4.
$$f'(x)$$
 શોધો : (1) $f(x) = \sin^2 x$, (2) $f(x) = \tan^2 x$, (3) $f(x) = x^4$, (4) $f(x) = \cos^4 x$

5.6 સાંકળનો નિયમ અથવા સંયોજિત વિધેયનું વિકલિત

આપણે જોઈ ગયા છીએ કે ગુણાકારના નિયમથી sin^2x અથવા tan^3x નો વિકલિત કેવી રીતે મેળવી શકાય અથવા ત્રિકોશમિતિનાં સૂત્રો જેવાં કે $sin2x = 2sinx \ cosx, \ cos2x = cos^2x - sin^2x$ નો ઉપયોગ ગુણાકારના નિયમ સાથે કરીને sin2x અથવા cos2xનો વિકલિત મેળવી શકાય. પરંતુ આ તો સરળ છે.

આપણે $tan^5(x^2-x+1)$ નો વિકલિત શોધવાનો હોય, તો તે ધારીએ તેટલું સરળ નથી.

ચાલો, આપણે એક ઉદાહરણ લઈએ.

ધારો કે
$$f(x) = (2x + 1)^4$$

$$= 16x^4 + 32x^3 + 24x^2 + 8x + 1$$

$$f'(x) = 64x^3 + 96x^2 + 48x + 8$$

$$= 8(8x^3 + 12x^2 + 6x + 1)$$

$$= 8(2x + 1)^3$$

$$= 2 \cdot 4(2x + 1)^3$$
હવે, ધારો કે $g(t) = t^4$ તથા $t = h(x) = 2x + 1$. આથી $g(h(x)) = g(2x + 1) = (2x + 1)^4 = f(x)$

હવે, ધારો કે
$$g(t) = t^4$$
 તથા $t = h(x) = 2x + 1$. આથી $g(h(x)) = g(2x + 1) = (2x + 1)^4 = f(x)$

$$f(x) = g(h(x))$$

હવે,
$$g'(t) = 4t^3$$
 અને $\frac{dt}{dx} = h'(x) = 2$

$$qv(1, f'(x)) = 8(2x + 1)^3 = 4(2x + 1)^3 \cdot 2$$

$$= 4t^3 \cdot 2 = g'(t)\frac{dt}{dx} = g'(t) h'(x)$$

એટલે કે
$$\frac{d}{dx}f(x) = \frac{d}{dx}g(h(x)) = g'(t)h'(x) = g'(h(x))h'(x)$$

અહીં આપણે f(x) ને બે વિધેયો $g(t)=t^4$ અને h(x)=2x+1 ના સંયોજિત વિધેય તરીકે દર્શાવેલ છે કે જેથી તેમનો વિકલિત ખૂબ સરળ રીતે શોધી શકાય.

ચાલો આપણે તે નિયમ જાણીએ.

સાંકળનો નિયમ (Chain Rule) : $f:(a,b) \to (c,d)$ એ x આગળ અને $g:(c,d) \to (e,f)$ એ f(x)આગળ વિકલનીય વિધેયો છે.

$$(gof)(x) = g(f(x))$$
 All $(gof)'(x) = g'(f(x))$ $f'(x)$

બીજી રીતે કહીએ તો ધારો કે
$$h(x)=(gof)(x)=g(f(x))$$
. અહીં $f(x)=t$ લેતાં,

$$h'(x) = (gof)'(x) = g'(f(x)) f'(x) = g'(f) f'(x)$$

$$\therefore \frac{d}{dx}g(f(x)) = \frac{d}{dt}g(t)\frac{d}{dx}f(x), \text{ wil } t = f(x)$$

162 ગણિત 12

આમ,
$$\frac{d}{dx}g(f(x)) = \frac{du}{dt}\frac{dt}{dx}$$
. જ્યાં $u = g(t)$ અને $t = f(x)$.

તેથી
$$\frac{du}{dx} = \frac{du}{dt} \frac{dt}{dx}$$
, $u = g(t)$ અને $t = f(x)$ અને તેથી $u = g(f(x))$.

આમ જો u એ t નું વિધેય અને t એ x નું વિધેય હોય, તો u એ x નું સંયોજિત વિધેય છે.

અને
$$\frac{du}{dx} = \frac{du}{dt} \frac{dt}{dx}$$

આ નિયમને સાંકળનો નિયમ કહે છે.

આ જ પ્રમાણે, $\frac{du}{dx} = \frac{du}{dt} \frac{dt}{ds} \frac{ds}{dv} \frac{dv}{dx}$

અહીં u એ t નું, t એ s નું, s એ v નું, v એ x નું વિધેય છે. આમ u એ x નું વિધેય છે.

ઉદાહરણ 26: f(x) = sin(tan x) હોય, તો f'(x) શોધો.

 G_{\bullet} લ : $g(t) = \sin t$ અને $t = h(x) = \tan x$ લઈએ.

$$\therefore f(x) = (goh)(x) = g(h(x)) = g(tanx) = sin(tanx)$$

$$f'(x) = g'(h(x)) h'(x)$$

$$= g'(t) h'(x)$$

$$= cost \cdot h'(x)$$

$$= cos(tanx) sec^2x$$

(t = tanx)

$$\therefore f'(x) = \cos(\tan x) \sec^2 x$$

મહદ્અંશે આપણે મૌખિક ગણતરી કરીશું.

પ્રથમ બહારનું વિધેય પસંદ કરી તેનું વિકલન તેના ચલને સાપેક્ષ કરો અને જ્યાં સુધી ચલ સુધી ન પહોંચીએ ત્યાં સુધી બહારથી અંદર તરફ આ રીતે વિકલન કરતા જાઓ અને આ બધાં વિકલિતોનો ગુણાકાર કરો.

ધારો કે,
$$f(x) = sin(cos(2x + 3))$$

$$f'(x) = \cos(\cos(2x+3)) \qquad (-\sin(2x+3)) \qquad \qquad 2$$
 સૌથી બહારના વિધેયનું વિકલિત (અંદરની બાજુના (અંતિમ વિધેય $2x+3$ નું તેના ચલ આગળ $\cos(2x+3)$ નું વિકલિત વિકલિત વિકલિત $= -2\sin(2x+3)\cos(\cos(2x+3))$ (પદીનું પુનર્ગઠન)

ધારો કે $f(x) = \sin(\tan(\cos(x^2 - 3x + 51)))$

:.
$$f'(x) = cos(tan(cos(x^2 - 3x + 51))) (sec^2(cos(x^2 - 3x + 51))) (-sin(x^2 - 3x + 51)) \times dos 1$$

$$dos 1$$

$$dos 2$$

$$dos 3$$

$$(2x - 3)$$

તબક્કો 4

= $-(2x-3) \sin(x^2-3x+51) \sec^2(\cos(x^2-3x+51)) \cos(\tan(\cos(x^2-3x+51)))$ (પદોની પુન: ગોઠવણી કરતાં)

સાતત્ય અને વિકલન 163

ઉદાહરણ 27 :
$$y = sin^3x \cos^5x$$
 તો, $\frac{dy}{dx}$ શોધો.

Geq:
$$\frac{dy}{dx} = \sin^3 x \frac{d}{dx} \cos^5 x + \cos^5 x \frac{d}{dx} \sin^3 x$$

$$= \sin^3 x \frac{d}{dx} (\cos x)^5 + \cos^5 x \frac{d}{dx} (\sin x)^3$$

$$= \sin^3 x \cdot 5\cos^4 x (-\sin x) + \cos^5 x \cdot 3\sin^2 x \cos x$$

$$= -5\sin^4 x \cos^4 x + 3\sin^2 x \cos^6 x$$

[-1]ધ : $sin^n x$ માં $sin^n x = (sin x)^n$ હોવાથી ઘાત એ 'બહાર'નું વિધેય છે.]

ઉદાહરણ 28 :
$$\frac{d}{dx} \sin^3(x^2 - x + 1)$$
 શોધો.

634:
$$\frac{d}{dx} \sin^3(x^2 - x + 1) = \frac{d}{dx} \left[\sin(x^2 - x + 1) \right]^3$$

= $3\sin^2(x^2 - x + 1) \cos(x^2 - x + 1) (2x - 1)$
= $3(2x - 1) \sin^2(x^2 - x + 1) \cos(x^2 - x + 1)$

ઉદાહરણ 29 :
$$\frac{d}{dx} \sqrt{\sin x^3}$$
 શોધો.

ઉકેલ :
$$\frac{d}{dx} \sqrt{\sin x^3} = \frac{d}{dx} (\sin x^3)^{\frac{1}{2}}$$

$$= \frac{1}{2} (\sin x^3)^{-\frac{1}{2}} \cdot \cos x^3 \cdot 3x^2$$

$$= \frac{3}{2} \frac{x^2 \cos x^3}{\sqrt{\sin x^3}}$$
($\sqrt{\frac{1}{2}}$ સૌથી બહારનું વિષય)

(નોંધ : યાદ રાખો $\frac{d}{dx} \sqrt{x} = \frac{1}{2\sqrt{x}}$)

ઉદાહરણ 30 :
$$\frac{d}{dx} \sqrt[4]{\sin^3 x}$$
 શોધો.

સ્વાધ્યાય 5.3

યોગ્ય પ્રદેશ પર વ્યાખ્યાયિત નીચે આપેલાં વિધેયોનાં વિકલિત મેળવો :

1.
$$sin^3(2x + 3)$$

2.
$$tan^3x$$

3.
$$\sin^3 x \cos^5 x$$

4.
$$cos(sin(sec(2x + 3)))$$

$$5. \sec(\cot(x^3-x+2))$$

6. નિત્યસમ $sin3x = 3sinx - 4sin^3x$ નું વિકલન કરો. તમે શું નિરીક્ષણ કર્યું ?

7.
$$\frac{d}{dx}(2x+3)^m(3x+2)^n$$
 શોધો.

8.
$$\frac{d}{dx} (\sin^n x - \cos^n x)$$
 શોધો.

9.
$$\frac{d}{dx} \sin^3 x \cos^3 x$$
 શોધો.

10.
$$\frac{d}{dx} sin^3(4x-1) cos^3(2x+3)$$
 શોધો.

*

5.7 પ્રતિવિધેયોનું વિકલિત

આપશે પ્રકરશ 2માં ત્રિકોશમિતીય પ્રતિવિધેયોનો અભ્યાસ કર્યો. હવે આપશે તેમનું વિકલિત મેળવીશું. પ્રતિવિધેયોનું વિકલિત : ધારો કે $f:(a,b) \to (c,d)$ એક-એક અને વ્યાપ્ત વિધેય છે. તેથી તેના પ્રતિવિધેયનું અસ્તિત્વ છે. તેનું પ્રતિવિધેય, $g:(c,d) \to (a,b)$ છે.

જો
$$y = f(x)$$
 તો $x = g(y) = f^{-1}(y)$ નું પાલન થાય છે.

આપણે સ્વીકારીશું કે
$$f'(x) = \frac{dy}{dx} = \frac{1}{g'(y)} = \frac{1}{\frac{dx}{dy}}$$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \quad \text{અથવા} \quad f'(x) = \frac{1}{\frac{d}{dy}f^{-1}(y)}$$

$$\therefore [f^{-1}(y)]' = \frac{1}{f'(x)}$$
$$[f^{-1}(x)]' = \frac{1}{f'(f^{-1}(x))}$$

કેટલાંક પ્રમાણિત રૂપો :

(1)
$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\int_{1-x^2}}$$
 $|x| < 1$

$$\Re y = \sin^{-1}x$$
. $\operatorname{cl} x = \sin y$, $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$(y \neq \pm \frac{\pi}{2} \text{ sirgl } 3 x \neq \pm 1)$$

$$\frac{dx}{dy} = \cos y = \sqrt{1 - \sin^2 y}$$
$$= \sqrt{1 - x^2}$$

$$(cosy > 0 \text{ sirgl} y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right))$$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\sqrt{1 - x^2}}$$

$$\therefore \quad \frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}$$

(2)
$$\frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$
 $|x| < 1$

$$\ \ \text{wi}\ y=\cos^{-1}x.\ \text{di}\ x=\cos y,\quad y\in\ (0,\ \pi)$$

$$(y \neq 0, \pi \text{ sizes } x \neq \pm 1)$$

$$\frac{dx}{dy} = -\sin y = -\sqrt{1 - \cos^2 y}$$
$$= -\sqrt{1 - x^2}$$

$$(siny > 0$$
 કારણકે $y \in (0, \pi))$

સાતત્ય અને વિકલન

$$\therefore \quad \frac{dy}{dx} = -\frac{1}{\sqrt{1-x^2}}$$

$$\therefore \quad \frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$

અથવા બીજી રીતે

$$sin^{-1}x + cos^{-1}x = \frac{\pi}{2}$$

$$\therefore \frac{d}{dx} \sin^{-1}x + \frac{d}{dx} \cos^{-1}x = \frac{d}{dx} \frac{\pi}{2} = 0$$

$$\therefore \quad \frac{d}{dx}\cos^{-1}x = -\frac{d}{dx}\sin^{-1}x = -\frac{1}{\sqrt{1-x^2}} \qquad |x| < 1$$

$$(3) \quad \frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2} \qquad x \in \mathbb{R}$$

$$\Re \ y = tan^{-1}x \ \text{cl} \ x = tany, \quad y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$\therefore \quad \frac{dx}{dy} = sec^2y$$

$$\therefore \frac{dy}{dx} = \frac{1}{sec^2y} = \frac{1}{1 + tan^2y} = \frac{1}{1 + x^2}$$

$$\therefore \quad \frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$$

$$(4) \quad \frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2} \qquad \qquad x \in \mathbb{R}$$

આપણે (3) પ્રમાણે સાબિત કરી શકીએ અથવા $tan^{-1}x + cot^{-1}x = \frac{\pi}{2}$ લઈ પરિણામ મેળવી શકીએ.

(5)
$$\frac{d}{dx} \sec^{-1} x = \frac{1}{|x| \sqrt{x^2 - 1}}$$
 $|x| > 1$

$$\therefore \quad \frac{dx}{dy} = secy \ tany$$

હવે,
$$secy = x$$
, $y \in (0, \pi) - \left\{\frac{\pi}{2}\right\}$

આપણને બે વિકલ્પ મળે. $y \in \left(0, \frac{\pi}{2}\right)$ અથવા $y \in \left(\frac{\pi}{2}, \pi\right)$.

(i)
$$y \in \left(0, \frac{\pi}{2}\right)$$

$$\therefore$$
 $x = secy > 0$ તથા $tany > 0$ હોવાથી $tany = \sqrt{x^2 - 1}$

$$\therefore \frac{dx}{dy} = secy \ tany = x\sqrt{x^2 - 1} = |x|\sqrt{x^2 - 1}$$
 કારણ કે $x > 0$ હોવાથી $|x| = x$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2 - 1}}$$

(ii)
$$y \in \left(\frac{\pi}{2}, \pi\right)$$

$$\therefore x = secy < 0. \ \text{del} |x| = -x$$

$$tany < 0 \text{ shall } tany = -\sqrt{x^2 - 1},$$

$$\therefore \frac{dy}{dx} = \frac{1}{secy \ tany} = \frac{1}{-x\sqrt{x^2 - 1}} = \frac{1}{|x|\sqrt{x^2 - 1}}$$
 (|x| = -x \ \text{slequ \frac{1}{3}} x < 0)

$$\therefore \quad \frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2 - 1}} \qquad |x| > 1$$

(6) તે જ પ્રમાણે આપણે,
$$\frac{d}{dx} cosec^{-1}x = -\frac{1}{|x|\sqrt{x^2-1}}$$
 સાબિત કરી શકીએ, $|x| > 1$

અથવા $sec^{-1}x + cosec^{-1}x = \frac{\pi}{2}$ હોવાથી,

$$\frac{d}{dx} sec^{-1}x + \frac{d}{dx} cosec^{-1}x = \frac{d}{dx} \frac{\pi}{2} = 0$$

$$\frac{d}{dx} cosec^{-1}x = -\frac{d}{dx} sec^{-1}x = -\frac{1}{|x|\sqrt{x^2 - 1}}$$

આપણે આ પ્રકરણમાં e નો પરિચય મેળવ્યો છે. 2 < e < 3, e એ પ્રાકૃતિક લઘુગણકનો આધાર છે.

$$\lim_{h \to 0} \frac{e^{h} - 1}{h} = 1 \text{ આપણે સ્વીકારી લઈશું.}$$

આપણે જાણીએ છીએ કે
$$\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$$
 (i)

ધારો કે $\log_e(1+x) = h$. તેથી $x = e^h - 1$.

∴ (i) નો ઉપયોગ કરતાં,

$$\lim_{h \to 0} \frac{h}{e^h - 1} = 1$$

$$(x \to 0, h = \log(1+x) \to 0)$$

$$\therefore \quad \lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

$$(7) \quad \frac{d}{dx} e^x = e^x \qquad \qquad x \in \mathbb{R}$$

$$\therefore \quad \frac{d}{dx} e^x = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} e^x \lim_{h \to 0} \left(\frac{e^h - 1}{h} \right) = e^x \cdot 1 = e^x$$

$$\therefore \quad \frac{d}{dx} e^x = e^x$$

(8)
$$\frac{d}{dx}a^x = a^x \log_e a \qquad a > 0, x \in \mathbb{R}$$

આપણે જાણીએ છીએ કે, $a=e^{\log_e a}$

$$\therefore a^x = (e^{\log_e a})^x = e^{x \log_e a}$$

$$a^x = e^t$$
. અહીં, $t = x \log_e a$

સાંકળ નિયમ પ્રમાણે
$$\frac{d}{dx} a^x = \frac{d}{dt} e^t \cdot \frac{dt}{dx}$$

$$= e^t \cdot \log_e a \qquad \qquad (\frac{d}{dx} kx = k)$$

$$= a^x \log_e a$$

$$\therefore \quad \frac{d}{dx} a^x = a^x \log_e a$$

સાતત્ય અને વિકલન 167

નોંધ : સાંકળના નિયમના ઉપયોગથી
$$\frac{d}{dx}e^{\sin x}=e^{\sin x}\cos x$$
.

તે
$$e^{\sin x} = \exp(\sin x)$$
 પ્રમાણે છે.

(વાંચીશું એકસ્પોનેન્શિયલ (sinx))

 $x \in \mathbb{R}^+$

સૌથી બહારનું વિધેય exp. છે. $\frac{d}{dx}(exp x) = \frac{d}{dx}e^x = e^x = exp x$

$$\therefore \quad \frac{d}{dx} e^{\sin x} = \frac{d}{dx} \exp(\sin x) = \exp(\sin x) \frac{d}{dx} \sin x = e^{\sin x} \cos x$$

$$\frac{d}{dx} e^{\tan 2x} = e^{\tan 2x} \frac{d}{dx} \tan 2x$$
$$= 2e^{\tan 2x} \sec^2 2x$$

$$(9) \quad \frac{d}{dx} \log_e x = \frac{1}{x}$$

ધારો કે,
$$y = \log_{\rho} x$$

$$\therefore x = e^y$$

$$\therefore \quad \frac{dx}{dy} = e^y$$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{e^y} = \frac{1}{x}$$

$$\therefore \quad \frac{d}{dx} \log_e x = \frac{1}{x}$$

ઉદાહરણ 31 :
$$\frac{d}{dx} tan^{-1} \frac{3x - x^3}{1 - 3x^2}$$
 શોધો.

$$|x| < \frac{1}{\sqrt{3}}$$

ઉકેલ : ધારોકે
$$\theta = tan^{-1}x$$
, $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. આથી $x = tan\theta$

$$|x| < \frac{1}{\sqrt{3}} \implies -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$$
$$\implies \tan(-\frac{\pi}{6}) < \tan\theta < \tan\frac{\pi}{6}$$

$$\Rightarrow \tan(-\frac{\pi}{6}) < \tan\theta < \tan\frac{\pi}{6}$$

$$\Rightarrow -\frac{\pi}{2} < 3\theta < \frac{\pi}{2}$$

$$\Rightarrow -\frac{\pi}{6} < \theta < \frac{\pi}{6} \qquad \left(\tan \vartheta \left(-\frac{\pi}{6}, \frac{\pi}{6}\right) \subset \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \text{ માં વધતું વિષય છે.}\right)$$

હવે,
$$y = tan^{-1} \frac{3x - x^3}{1 - 3x^2} = tan^{-1} \left(\frac{3tan\theta - tan^3\theta}{1 - 3tan^2\theta} \right)$$

 $= tan^{-1} (tan 3\theta)$

$$(3\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right))$$

$$= 3\theta$$

$$= 3tan^{-1}x$$

$$\therefore \quad \frac{dy}{dx} = \frac{3}{1+x^2}$$

....

ઉદાહરણ 32 :
$$\frac{d}{dx} \sin^{-1} 2x \sqrt{1-x^2}$$
 શોધો. $|x| < \frac{1}{\sqrt{2}}$

634 : ધારો કે $\theta = \sin^{-1} x$. $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. તેથી, $x = \sin\theta$
 $|x| < \frac{1}{\sqrt{2}} \Rightarrow -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$
 $\therefore -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$
 $\therefore \sin(-\frac{\pi}{4}) < \sin\theta < \sin\frac{\pi}{4}$
 $\therefore -\frac{\pi}{4} < \theta < \frac{\pi}{4}$
 $\therefore -\frac{\pi}{4} < \theta < \frac{\pi}{4}$
 $\therefore y = \sin^{-1} 2x \sqrt{1-x^2}$
 $= \sin^{-1} (2\sin\theta \cos\theta)$
 $= \sin^{-1} (\sin 2\theta)$
 $= 2\theta$
 $\therefore y = 2\sin^{-1} x$
 $\therefore \frac{dy}{dx} = \frac{2}{\sqrt{1-x^2}}$

65 હારણ 33 : $\frac{d}{dx} \sec^{-1} \frac{1}{2x^2-1}$ શોધો. $0 < x < \frac{1}{\sqrt{2}}$

634 : ધારો કે $\theta = \cos^{-1} x$. $\theta \in (0, \pi)$. તેથી, $x = \cos\theta$
 $\therefore y = \sec^{-1} \frac{1}{2x^2-1} = \sec^{-1} \frac{1}{2\cos^2\theta-1} = \sec^{-1} \frac{1}{\cos 2\theta}$
 $\therefore y = \sec^{-1} \frac{1}{(\sec 2\theta)}$

છે તે $0 < x < \frac{1}{\sqrt{2}} \Rightarrow \cos\frac{\pi}{2} < \cos\theta < \cos\frac{\pi}{4}$
 $\Rightarrow \frac{\pi}{4} < \theta < \frac{\pi}{2}$
 $\Rightarrow \frac{\pi}{2} < 2\theta < \pi$
 $\therefore y = \sec^{-1} (\sec 2\theta) = 2\theta = 2\cos^{-1} x$
 $\therefore \frac{d}{dx} = \frac{-2}{\sqrt{1-x^2}}$

65 હારણ 34 : (1) $\frac{1}{2} < x < 1$ (2) $0 < x < \frac{1}{2}$ ધારે $\frac{d}{dx} \cos^{-1} (4x^3 - 3x)$ શોધો.

634 : ધારો કે $\theta = \cos^{-1} x$. $0 < \theta < \pi$. તેથી, $x = \cos\theta$
 $(x \neq \pm 1)$
 $\therefore y = \cos^{-1} (4x^3 - 3x) = \cos^{-1} (4\cos^3\theta - 3\cos\theta)$

સાતત્ય અને વિકલન

 $v = cos^{-1} (cos3\theta)$

(1)
$$\frac{1}{2} < x < 1 \implies \cos \frac{\pi}{3} < \cos \theta < \cos \theta$$

 $\Rightarrow 0 < \theta < \frac{\pi}{3}$
 $\Rightarrow 0 < 3\theta < \pi$
(cos \downarrow)

∴
$$y = cos^{-1} (cos3\theta) = 3\theta = 3cos^{-1}x$$
 (30 ∈ (0, π))

$$\therefore \quad \frac{dy}{dx} = \frac{-3}{\sqrt{1-x^2}}$$

(2)
$$0 < x < \frac{1}{2} \Rightarrow \cos \frac{\pi}{2} < \cos \theta < \cos \frac{\pi}{3}$$

 $\Rightarrow \frac{\pi}{3} < \theta < \frac{\pi}{2}$
 $\Rightarrow \pi < 3\theta < \frac{3\pi}{2}$
 $\Rightarrow 0 < 3\theta - \pi < \frac{\pi}{2}$
(cos \downarrow)

$$y = cos^{-1} (cos3\theta) = cos^{-1}(-cos(\pi - 3\theta))$$

$$= \pi - cos^{-1}(cos(\pi - 3\theta))$$

$$= \pi - cos^{-1}(cos(3\theta - \pi))$$

$$= \pi - (3\theta - \pi)$$

$$= 2\pi - 3\theta$$

$$= 2\pi - 3cos^{-1}x$$

$$(3\theta - \pi) \in (0, \frac{\pi}{2}) \subset [0, \pi]$$

$$\therefore \quad \frac{dy}{dx} = \frac{3}{\sqrt{1-x^2}}$$

5.8 ગૂઢ વિધેયનું વિકલિત

કેટલીક વખત ઉપયોગમાં f(x, y) = 0 જેવાં સમીકરણ મળી જાય છે, કે જેમાં આપણે y ને x ના વિધેય તરીકે મેળવી શકીએ અથવા ન પણ મેળવી શકીએ. $y = \sin^2 x$ પ્રકારનું વિધેય એ x નું વિધેય છે, પરંતુ $3y - \sin 2x = 0$ પરથી $y = \frac{1}{3}\sin 2x$ મળશે.

આ ઉદાહરy એ xના ગૂઢ વિધેયનું છે.

વર્તુળ
$$x^2 + y^2 = 1$$
 લો.

આકૃતિ 5.24 એ વિધેયનો આલેખ નથી. પરંતુ $x^2+y^2-1=0$ સંબંધ પરથી વ્યાખ્યાયિત થતાં બે ગૂઢ વિધેયો $y=\sqrt{1-x^2}$ અને $y=-\sqrt{1-x^2}$ ના આલેખ એ એકમ વર્તુળ બનાવે છે.

આકૃતિ 5.24

આમ, આપણને બે ગૂઢ વિધેય (Implict function) મળે છે. જુઓ કે કોઈ પણ શિરોલંબ રેખા, આ વર્તુળને બે બિંદુમાં મળે છે. તે X-અક્ષથી બનતા દરેક અર્ધતલના અર્ધવર્તુળોને ફક્ત એક બિંદુમાં મળે છે. તેથી જ દરેક અર્ધવર્તુળ એ ગૂઢ વિધેયનો આલેખ છે.

પરંતુ કેટલાંક સમીકરણોનો ઉકેલ મેળવવો સરળ નથી.

 $x^3 + y^3 = 3axy$ એ આવું જ સમીકરણ છે. આવા y ના ગૂઢ વિધેયનું વિકલિત કેવી રીતે શોધીશું ? y એ xનું ગૂઢ વિધેય છે તેમ ધારીને સાંકળ નિયમનો ઉપયોગ કરી આવા સમીકરણ (સંબંધ)નું વિકલિત મેળવીશું.

ઉદાહરણ તરીકે
$$\frac{d}{dx}x^4 = 4x^3$$

$$\operatorname{ver}^2, \ \frac{d}{dx} y^4 = \frac{d}{dy} \ y^4 \frac{dy}{dx} = 4y^3 \frac{dy}{dx}$$

તેથી, જ્યારે કોઈ પદમાં ચલ y હોય અને તેનું x વિશે વિકલન કરવાનું હોય, તો આપણે વિકલનના સામાન્ય નિયમોનો ઉપયોગ કરીશું અને મળતા પરિણામને $\frac{dy}{dx}$ વડે ગુણીશું.

ચાલો આપણે કેટલાંક ઉદાહરણો લઈએ.

ઉદાહરણ 35: x + y = sinxy તો $\frac{dy}{dx}$ શોધો.

ઉકેલ : સમીકરણનું વિકલન કરતાં,

$$\frac{d}{dx}x + \frac{d}{dx}y = \frac{d}{dx}\sin xy$$

$$\therefore 1 + \frac{dy}{dx} = x \cos xy \frac{dy}{dx} + y \cos xy$$

$$\therefore (1 - x\cos xy) \frac{dy}{dx} = y \cos xy - 1$$

$$\therefore \quad \frac{dy}{dx} = \frac{y cos xy - 1}{1 - x cos xy}$$

ઉદાહરણ $36: x^3 + y^3 = 3axy$, તો $\frac{dy}{dx}$ શોધો.

634:
$$3x^2 + 3y^2 \frac{dy}{dx} = 3a \left(x \frac{dy}{dx} + y \cdot 1 \right)$$

$$\therefore (y^2 - ax) \frac{dy}{dx} = ay - x^2$$

$$\therefore \quad \frac{dy}{dx} = \frac{ay - x^2}{y^2 - ax}$$

ઉદાહરણ $37: ax^2 + 2hxy + by^2 = 100$, તો $\frac{dy}{dx}$ શોધો.

$$634 : 2ax + 2h\left(x\frac{dy}{dx} + y\right) + 2by\frac{dy}{dx} = 0$$

$$\therefore (hx + by) \frac{dy}{dx} = -(ax + hy)$$

$$\therefore \quad \frac{dy}{dx} = -\left(\frac{ax + hy}{hx + by}\right)$$

ઉદાહરણ 38 : $sin^2x + sin^2y = 1$, તો $\frac{dy}{dx}$ શોધો.

634:
$$2\sin x \cos x + 2\sin y \cos y \frac{dy}{dx} = 0$$

$$\therefore \quad \frac{dy}{dx} = \frac{-\sin 2x}{\sin 2y}$$

$$\sin^2 y = 1 - \sin^2 x = \cos^2 x$$

$$\therefore$$
 siny = \pm cosx

(બે વિધેયો)

$$\therefore \quad \cos y \, \frac{dy}{dx} \, = \, \mp \, \sin x$$

$$\therefore \quad \frac{dy}{dx} = \pm \frac{\sin x}{\cos y}$$

નોંધ : જો $sin^2x + sin^2y = 2$ હોય તો $sin^2x = sin^2y = 1$ થાય કારણ કે $|sinx| \le 1$, $|siny| \le 1$. કોઈ વિધેય ના મળે. $sin^2x + sin^2y = 3$ હોય તો $\frac{dy}{dx} = \frac{-sin 2x}{sin 2y}$ લખી શકાય ?

ના. કારણ કે $sin^2x + sin^2y \le 2$. ગૂઢ વિધેય મળે જ નહીં. આપણે ધારણામાં ગૂઢ વિધેય મળે તે સ્વીકારીને વિકલન કરવાનું છે. પરંતુ આવી પરિસ્થિતિમાં ગૂઢ વિધેય જ ન મળે તે શક્ય છે.

સ્વાધ્યાય 5.4

 $\frac{dy}{dx}$ શોધો : (1 થી 10)

1.
$$x^2 + y^2 = 1$$

$$2. x + sinx = siny$$

$$3. \sin(x+y) = x-y$$

4.
$$2x^2 + 3xy + y^2 = 1$$
 5. $sinx + siny = tanxy$ 6. $\frac{x^2}{4} - \frac{y^2}{9} = 1$

$$5. \sin x + \sin y = \tan xy$$

6.
$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$

7.
$$y^2 = 10x$$

8.
$$\frac{x^2}{16} + \frac{y^2}{25} = 1$$

9.
$$x^2 + y^2 - 4x - 6y - 25 = 0$$

10. sinx = siny

વિકલિત શોધો : (11 થી 16)

11.
$$y = \sin^{-1}(3x - 4x^3), \quad 0 < x < \frac{1}{2}$$

12.
$$y = tan^{-1} \frac{2x}{1-x^2}, \qquad x \neq \pm 1$$

13.
$$y = cos^{-1} \frac{1-x^2}{1+x^2}$$

14.
$$y = \sin^{-1} \frac{2x}{1+x^2}$$

15.
$$y = tan^{-1} \frac{3x - x^3}{1 - 3x^2}, \qquad |x| > \frac{1}{\sqrt{3}}$$

$$|x| > \frac{1}{\sqrt{3}}$$

16.
$$y = \sin^{-1} 2x \sqrt{1 - x^2}$$
, $\frac{1}{\sqrt{2}} < x < 1$

5.9 પ્રચલ વિધેયનું વિકલન

કેટલીક વખત x અને y એ કોઈ અન્ય ચલનાં વિધેય હોય છે, માનો કે tનાં. તે ચલ tને પ્રચલ કહે છે.

ધારો કે
$$x = f(t)$$
 $y = g(t)$

ધારો કે $t = f^{-1}(x)$ મળે છે અને તેને y = g(t)માં મૂકતાં $y = g(f^{-1}(x))$ મળે છે, તેથી y એ x નું વિધેય છે.

પરંતુ આ પ્રમાણે ઉકેલ મેળવીને વિકલિત મેળવવાની ક્રિયા મુશ્કેલ છે. આપણે નીચે આપેલા નિયમને અનુસરીશું.

प्रयक्ष विधेयना विक्रितनो नियम :

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)} \quad \text{wii } f'(t) \neq 0$$

ઉદાહરણ 39 : જો $x = a\cos\theta$, $y = b\sin\theta$, તો $\frac{dy}{dx}$ શોધો.

634:
$$\frac{dx}{d\theta} = -a\sin\theta$$
, $\frac{dy}{d\theta} = b\cos\theta$

$$\therefore \quad \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = -\frac{b\cos\theta}{a\sin\theta} = \frac{-b}{a}\cot\theta$$

$$\text{qull, } \frac{dy}{dx} = -\frac{b\cos\theta}{a\sin\theta} = \frac{-b}{a} \left(\frac{\frac{x}{a}}{\frac{y}{b}} \right) = -\frac{b^2x}{a^2y}$$

અથવા
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \cos^2\theta + \sin^2\theta = 1$$

$$\therefore \quad \frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$$

$$\therefore \quad \frac{dy}{dx} = -\frac{b^2x}{a^2y}$$

ઉદાહરણ 40 : જો $x = at^2$, y = 2at, તો $\frac{dy}{dx}$ શોધો.

$$634: \frac{dx}{dt} = 2at, \frac{dy}{dt} = 2a$$

$$\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2at} = \frac{1}{t} \ (t \neq 0)$$

ઉદાહરણ 41 : જો $x = asin^3\theta$, $y = bcos^3\theta$, તો $\frac{dy}{dx}$ શોધો.

$$\therefore \frac{dy}{dx} = \frac{-3b\cos^2\theta \sin\theta}{3a\sin^2\theta \cos\theta} = \frac{-b}{a}\cot\theta$$

$$\cot^3\theta = \frac{\cos^3\theta}{\sin^3\theta} = \frac{ay}{bx}$$
. All $\cot\theta = \left(\frac{ay}{bx}\right)^{\frac{1}{3}}$.

તેથી
$$\frac{dy}{dx} = \frac{-b}{a} \left(\frac{ay}{bx}\right)^{\frac{1}{3}}$$
$$= -\frac{b^{\frac{2}{3}}y^{\frac{1}{3}}}{\frac{2}{3}\frac{1}{3}}$$

અથવા
$$\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} = \cos^2\theta + \sin^2\theta = 1$$

$$\therefore \quad \frac{2}{3} \frac{x^{-\frac{1}{3}}}{a^{\frac{2}{3}}} + \frac{2}{3} \frac{y^{-\frac{1}{3}}}{b^{\frac{2}{3}}} \frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = -\frac{b^{\frac{2}{3}}y^{\frac{1}{3}}}{a^{\frac{2}{3}}x^{\frac{1}{3}}}$$

સ્વાધ્યાય 5.5

1.
$$x = asec\theta$$
, $y = btan\theta$ $\theta \in \mathbb{R} - \left[\left\{ (2k-1)\frac{\pi}{2} \mid k \in Z \right\} \cup \left\{ k\pi \mid k \in Z \right\} \right]$

2.
$$x = cos\theta - cos2\theta$$
 $y = sin\theta - sin2\theta$ $\theta \in R - \{k\pi \mid k \in Z\}, cos\theta \neq \frac{1}{4}$

3.
$$x = a(\theta - \sin\theta), \quad y = a(1 - \cos\theta)$$

4.
$$x = a(\cos t + \log \tan \frac{t}{2}),$$
 $y = a\sin t$

5.
$$x = a(\cos\theta + \theta\sin\theta),$$
 $y = a(\sin\theta - \theta\cos\theta)$

6.
$$x = \frac{a}{t^2}, y = bt$$

7. જો
$$x = \sqrt{a^{sin^{-1}t}}$$
 , $y = \sqrt{a^{cos^{-1}t}}$, તો સાબિત કરો કે, $\frac{dy}{dx} = \frac{-y}{x}$ | $t \mid < 1$

*

5.10 લઘુગણકીય વિકલન

કેટલીક વખત આપણે કેટલાંક વિધેયોના ગુણાકારનું અથવા જટિલ ગુણાકાર અથવા $[f(x)]^{g(x)}$ પ્રકારનાં વિધેયોનું વિકલિત મેળવવાનું હોય છે.

આવા કિસ્સાઓમાં લઘુગણક લેતાં આપણને $\frac{dy}{dx}$ શોધવામાં સુગમતા રહે છે.

ઉદાહરણ 42 : જો
$$y = \sqrt{\frac{(2x+3)(3x-4)}{(4x+9)(x-8)}}$$
 તો $\frac{dy}{dx}$ શોધો.

Geo.:
$$\log y = \frac{1}{2} \left[\log (2x + 3) + \log (3x - 4) - \log (4x + 9) - \log (x - 8) \right]$$

$$\therefore \quad \frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \left[\frac{2}{2x+3} + \frac{3}{3x-4} - \frac{4}{4x+9} - \frac{1}{x-8} \right]$$

$$\therefore \quad \frac{dy}{dx} = \frac{y}{2} \left[\frac{2}{2x+3} + \frac{3}{3x-4} - \frac{4}{4x+9} - \frac{1}{x-8} \right]$$

ઉદાહરણ 43 : જો $y = x^{sinx}$ હોય, તો $\frac{dy}{dx}$ શોધો.

$$634: \log y = \sin x \log x$$

$$\therefore \quad \frac{1}{y} \frac{dy}{dx} = \sin x \cdot \frac{1}{x} + \cos x \log x$$

$$\therefore \quad \frac{dy}{dx} = \left[\frac{\sin x}{x} + \cos x \log x\right] y$$

ઉદાહરણ 44 : જો
$$x^y + y^x + a^x + x^a = 1$$
 તો $\frac{dy}{dx}$ શોધો.

6કેલ : ધારો કે
$$u = x^y$$
, $v = y^x$, $w = a^x + x^a$

હવે,
$$\log u = y \log x$$

$$\therefore \quad \frac{1}{u} \frac{du}{dx} = \frac{y}{x} + \log x \, \frac{dy}{dx}$$

$$\therefore \quad \frac{du}{dx} = \left(\frac{y}{x} + \log x \, \frac{dy}{dx}\right) x^y$$

હવે,
$$v = y^x$$

$$\therefore \log v = x \log y$$

$$\therefore \quad \frac{1}{v} \frac{dv}{dx} = \frac{x}{y} \frac{dy}{dx} + \log y$$

$$\therefore \quad \frac{dv}{dx} = \left(\frac{x}{y} \frac{dy}{dx} + \log y\right) y^x$$

હવે,
$$u + v + w = 1$$

$$\therefore \quad \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} = 0$$

$$\left(\frac{y}{x} + \log x \, \frac{dy}{dx}\right) x^y + \left(\frac{x}{y} \, \frac{dy}{dx} + \log y\right) y^x + a^x \, \log_e a + ax^{a-1} = 0$$

$$\left(x^{y} \log x + \frac{x}{y} y^{x}\right) \frac{dy}{dx} = -\left(\frac{x^{y} \cdot y}{x} + y^{x} \log y + a^{x} \log a + ax^{a-1}\right)$$

$$\therefore \frac{dy}{dx} = \frac{-(yx^{y-1} + y^x \log y + a^x \log_e a + ax^{a-1})}{xy^{x-1} + x^y \log x}$$

ઉદાહરણ 45 : જો $y = (sinx)^x + sinx^x$ તો $\frac{dy}{dx}$ શોધો.

ઉકેલ : ધારો કે
$$u = (sinx)^x = e^{x \log sinx}$$

કારણ કે
$$a = e^{\log e^a}$$
 હોવાથી, $sinx = e^{\log sinx}$

$$\therefore \quad \frac{du}{dx} = e^{x \log \sin x} \frac{d}{dx} (x \log \sin x)$$

$$= e^{x \log \sin x} \left(1 - \log \sin x + \frac{x \cos x}{\sin x} \right)$$

$$= (sinx)^x (\log sinx + xcot x)$$

$$\frac{d}{dx}\sin x^{x} = \cos x^{x} \frac{d}{dx} x^{x}$$

$$= cosx^{x} \frac{d}{dx} e^{x \log x}$$

$$= \cos x^x \cdot e^x \log^x \left(x \frac{1}{x} + \log x \right)$$

$$= x^x \cos x^x (1 + \log x)$$

$$\therefore \frac{dy}{dx} = (\sin x)^x (\log \sin x + x \cot x) + x^x \cos x^x (1 + \log x)$$

$$(1)^{1}$$
 : $a=e^{\log_e a}$ ના ઉપયોગથી સરળતા દેખાય ત્યાં લઘુગણક લેવાનું ટાળી શકાય.)

સ્વાધ્યાય 5.6

$$\frac{dy}{dx}$$
 શોધો : (1 થી 14)

1.
$$y = \left(x + \frac{1}{x}\right)^x + \left(x + \frac{1}{x}\right)^{\frac{1}{x}}$$

3.
$$y = \sqrt[3]{\frac{(2x+1)^3(4x+3)^5}{(7x-1)^6}}$$

5.
$$y = (x + 1)^2 (x + 2)^3 (x + 3)^4$$

$$7. \quad y = x^x \sin x + (\sin x)^x$$

9.
$$y = (\sin x)^x + \left(\frac{1}{x}\right)^{\cos x}$$

11.
$$y^x = x^y$$

13.
$$x^y y^x = 1$$

15.
$$\Re y = (x^2 - 2x + 3)(x^2 - 3x + 15)$$
, th

- (1) ગુણાકારના નિયમથી
- (2) ગુણાકાર કરી બહુપદીના નિયમથી
- (3) લઘુગણકીય વિકલનથી

 $\frac{dy}{dx}$ શોધો અને તેમની સરખામણી કરો.

$$2. \quad y = cosx^x + sinx^x$$

$$4. \quad y = (\log x)^{\cos x}$$

$$6. \quad v = (\log x)^x + \log x^x$$

$$8. \quad y = x^{\left(x + \frac{1}{x}\right)}$$

10.
$$y = 3^{sinx} + 4^{cosx}$$

12.
$$xy = e^{x-y}$$

14.
$$y = (1 + x)(1 + x^2)(1 + x^4)(1 + x^8)$$

*

5.11 द्वितीय विक्रिसत

જો f એ (a, b) પરનું x નું વિકલનીય વિધેય હોય અને f'(x) પણ (a, b) પર x નું વિકલનીય વિધેય હોય, તો f'(x) નાં વિકલિતને f નો દ્વિતીય વિકલિત કહે છે તથા તેને f''(x) અથવા $\frac{d^2y}{dx^2}$ અથવા y_2 વડે દર્શાવાય છે, જ્યાં y=f(x) છે.

આમ, $\frac{d}{dx}f'(x)=f''(x)$ અથવા $\frac{d^2y}{dx^2}$ અથવા y_2 . અહીં y_1 એ f'(x) અથવા $\frac{dy}{dx}$ દર્શાવે છે.

આપણે નીચે પ્રમાણે સાંકળના નિયમનો ઉપયોગ કરીશું :

$$\frac{d}{dx}y^2 = \frac{d}{dy}y^2 \frac{dy}{dx} = 2y \frac{dy}{dx} = 2yy_1$$

$$\frac{d}{dx}y_1^2 = \frac{d}{dy_1}y_1^2 \frac{d}{dx}y_1 = 2y_1 \frac{dy_1}{dx} = 2y_1y_2$$

યાદ રાખો કે
$$\frac{d}{dx}y^2 = 2yy_1$$
, $\frac{d}{dx}y_1^2 = 2y_1y_2$

ઉદાહરણ 46 : જો $y = a\cos x + b\sin x$, તો સાબિત કરો કે $\frac{d^2y}{dx^2} + y = 0$

$$634: y = acosx + bsinx$$

$$\therefore y_1 = -a \sin x + b \cos x$$

$$\therefore$$
 $y_2 = -acosx - bsinx = -y$

$$\therefore \quad \frac{d^2y}{dx^2} + y = 0$$

ઉદાહરણ 47 :
$$y = ae^{4x} + be^{5x}$$
 તો સાબિત કરો કે $y_2 - 9y_1 + 20y = 0$

$$634: y = ae^{4x} + be^{5x}$$

$$\therefore y_1 = 4ae^{4x} + 5be^{5x}$$

$$y_2 = 16ae^{4x} + 25be^{5x}$$

$$y_2 - 9y_1 + 20y = [(16ae^{4x} + 25be^{5x}) - 9(4ae^{4x} + 5be^{5x}) + 20(ae^{4x} + be^{5x})]$$
$$= (16 - 36 + 20) ae^{4x} + (25 - 45 + 20) be^{5x} = 0$$

$$\therefore \quad y_2 - 9y_1 + 20y = 0$$

ઉદાહરણ 48 :
$$y = x^4 + \sin^3 x$$
, તો $\frac{d^2y}{dx^2}$ શોધો.

$$634: y = x^4 + \sin^3 x$$

$$\therefore \quad \frac{dy}{dx} = 4x^3 + 3\sin^2 x \cos x$$

$$\therefore \frac{d^2y}{dx^2} = 12x^2 + 6\sin x \cos^2 x + 3\sin^2 x (-\sin x)$$

$$= 12x^2 + 6\sin x \cos^2 x - 3\sin^3 x$$

$$\left(\frac{d}{dx}\sin^2 x = 2\sin x \cos x\right)$$

ઉદાહરણ 49 :
$$y = \log(\log x)$$
, તો $\frac{d^2y}{dx^2}$ શોધો.

$$\frac{dy}{dx} = \frac{d}{dx} \log (\log x) = \frac{1}{\log x} \frac{1}{x} = \frac{1}{x \log x}$$

$$\frac{d^2y}{dx^2} = \frac{d^2}{dx^2} \log (\log x) = \frac{(x \log x) \cdot 0 - 1 \cdot (1 \log x + x \cdot \frac{1}{x})}{(x \log x)^2}$$
$$= \frac{-(1 + \log x)}{(x \log x)^2}$$

ઉદાહરણ 50 : જો $y = a\cos(\log x) + b\sin(\log x)$, તો સાબિત કરો કે $x^2y_2 + xy_1 + y = 0$.

$$Geq: y = acos(\log x) + bsin(\log x)$$

$$\therefore y_1 = \frac{-a\sin(\log x)}{x} + \frac{b\cos(\log x)}{x}$$

$$\therefore xy_1 = -asin (\log x) + bcos (\log x)$$

$$\therefore \frac{d}{dx}(xy_1) = \frac{-a\cos(\log x)}{x} - \frac{b\sin(\log x)}{x}$$

$$\therefore x(xy_2 + 1 \cdot y_1) = -a\cos(\log x) - b\sin(\log x) = -y$$

$$\therefore x^2y_2 + xy_1 + y = 0$$

ઉદાહરણ 51 : જો $y = cos^{-1}x$, તો સાબિત કરો કે $(1 - x^2)y_2 - xy_1 = 0$.

$$Geq: y = cos^{-1}x$$

$$\therefore y_1 = \frac{-1}{\sqrt{1-x^2}}$$

$$\therefore$$
 $(1-x^2)y_1^2 = 1$

$$\therefore \quad \frac{d}{dx} \left(1 - x^2 \right) y_1^2 = 0$$

$$\therefore (1 - x^2)2y_1y_2 + (-2xy_1^2) = 0$$

$$\therefore (1-x^2)y_2 - xy_1 = 0 (y_1 \neq 0)$$

ઉદાહરણ 52 : જો $y = tan^{-1}x$ તો સાબિત કરો કે $(1 + x^2)y_2 + 2xy_1 = 0$.

$$Geq : y = tan^{-1}x$$

$$\therefore y_1 = \frac{1}{1+x^2}$$

$$\therefore$$
 $(1 + x^2)y_1 = 1$

$$\therefore (1 + x^2)y_2 + 2xy_1 = 0$$

ઉદાહરણ 53 : જો $y = ae^{px} + be^{qx}$ તો સાબિત કરો કે $y_2 - (p+q)y_1 + pqy = 0$.

$$\mathbf{G}_{\mathbf{q}} = ape^{px} + bqe^{qx}$$

$$y_2 = ap^2 e^{px} + bq^2 e^{qx}$$

$$ape^{px} + bqe^{qx} - y_1 = 0 ag{1}$$

$$ap^2e^{px} + bq^2e^{qx} - y_2 = 0 ag{ii}$$

 e^{px} અને e^{qx} માટે (i) તથા (ii)ને ઉકેલતાં,

$$e^{px} = \frac{-bqy_2 + bq^2y_1}{abpq^2 - abp^2q}$$

$$e^{qx} = -\frac{-apy_2 + ap^2y_1}{abpq(q-p)}$$

$$\therefore e^{px} = \frac{-y_2 + qy_1}{ap(q-p)}$$

$$e^{qx} = -\frac{-y_2 + py_1}{bq(q-p)}$$

$$\therefore y = ae^{px} + be^{qx} + i \quad \text{on } \quad \text{ugall } \quad \text$$

$$y = \left(\frac{-y_2 + qy_1}{p(q-p)}\right) - \left(\frac{-y_2 + py_1}{q(q-p)}\right)$$

$$pq(q - p)y = -qy_2 + q^2y_1 + py_2 - p^2y_1$$
$$= (p - q)y_2 - (p^2 - q^2)y_1$$

$$\therefore \qquad y_2 - (p+q)y_1 + pqy = 0$$

5.12 મધ્યકમાન પ્રમેયો

વિકલનીય કલનશાસ્ત્રમાં કેટલાંક અગત્યનાં પ્રમેયો છે, જેમને મધ્યકમાન પ્રમેયો કહે છે.

રોલનું પ્રમેય : જો f એ [a, b] પર સતત હોય અને (a, b) પર વિકલનીય હોય તથા f(a) = f(b) થાય તો કોઈક $c \in (a, b)$ મળે કે જેથી f'(c) = 0 થાય.

ભૌમિતિક અર્થઘટન : જો વિધેય y = f(x) નો આલેખ [a, b]માં 'સળંગ' હોય અને દરેક $(x, f(x)), x \in (a, b)$ આગળ તેના સ્પર્શકનો ઢાળ મળે તથા જો f(a) = f(b) થાય, તો કોઈક $c \in (a, b)$ એવો મળે કે જેથી વક્ર y = f(x) નો (c, f(c)) બિંદુ આગળનો સ્પર્શક સમક્ષિતિજ થાય અથવા આપણે કહી શકીએ કે તે X-અક્ષ અથવા X-અક્ષને સમાંતર છે.

મધ્યકમાન પ્રમેય (લાગ્રાન્જે) : જો f એ [a, b] માં સતત હોય અને $(a,\ b)$ માં વિકલનીય હોય તો કોઈક $c\in(a,\ b)$ મળે કે જેથી $\frac{f(b)-f(a)}{b-a}=f'(c)$ and.

આપણે જાણીએ છીએ કે
$$\overrightarrow{AB}$$
નો ઢાળ $=\frac{y_2-y_1}{x_2-x_1}=\frac{f(b)-f(a)}{b-a}$

અને (c, f(c)) બિંદુ આગળના સ્પર્શકનો ઢાળ = f'(c) અને તેથી ઉપરનું પરિશામ મળે છે.

 $\mathbf{6}$ કેલ \mathbf{r} \mathbf{f} એ બહુપદી વિધેય હોવાથી [1, 3] પર સતત અને (1, 3) પર વિકલનીય છે.

$$f(1) = 0, f(3) = 9 - 12 + 3 = 0$$

હવે,
$$f'(c) = 2c - 4 = 0 \Rightarrow c = 2$$
 અને $2 \in (1, 3)$

$$c = 2$$

ઉદાહરણ 55 : $f(x) = x^3 - 6x^2 + 11x - 6$ માટે [1, 3] માં રોલનું પ્રમેય ચકાસો.

6કેલ : f એ [1, 3] પર સતત અને (1, 3) પર વિકલનીય છે તથા f(1) = 0 = f(3)

$$f'(x) = 3x^2 - 12x + 11 = 0 \implies x = \frac{12 \pm \sqrt{144 - 132}}{6}$$

$$\therefore x = 2 \pm \frac{1}{\sqrt{3}} \in (1, 3)$$

∴
$$c$$
 ની બે કિંમતો છે. $2 \pm \frac{1}{\sqrt{3}}$. વળી, $2 \pm \frac{1}{\sqrt{3}} \in (1, 3)$. ($c \in (1, 3)$)

ઉદાહરણ 56: f(x) = sinx માટે $[0, \pi]$ માં રોલનું પ્રમેય ચકાસો.

63લ: sine એ $[0,\,\pi]$ માં સતત અને $(0,\,\pi)$ માં વિકલનીય છે તથા $sin~0=sin\pi=0$

$$f'(x) = cosx = 0 \implies x = \frac{\pi}{2}$$

$$c = \frac{\pi}{2}$$
 અને $\frac{\pi}{2} \in (0, \pi)$. ($c \in (0, \pi)$)

આકૃતિ 5.25

આકૃતિ 5.26

ઉદાહરણ 57 : f(x) = cosx, $x \in [0, \pi]$ પર મધ્યકમાન પ્રમેય લગાડો.

63લ : cos એ $[0, \pi]$ પર સતત અને $(0, \pi)$ પર વિકલનીય છે.

$$a = 0, b = \pi$$

હવે,
$$\frac{f(b)-f(a)}{b-a}=f'(c)$$
. તેથી $\frac{\cos \pi - \cos 0}{\pi - 0}=-\sin c$

$$\therefore \quad \frac{-1-1}{\pi} = -sinc$$

$$sinc = \frac{2}{\pi}$$
. $acc{0}$, $0 < \frac{2}{\pi} < 1$.

તેથી
$$\exists c, \ 0 < c < \pi$$
 કે જેથી $sinc = \frac{2}{\pi}$

ખિરેખર
$$\left(0,\frac{\pi}{2}\right)$$
 અને $\left(\frac{\pi}{2},\pi\right)$ દરેકમાં એક એમ c ની બે કિંમતો મળે કે જેથી $sinc=\frac{2}{\pi}$

જો આપણે $c=\sin^{-1}\frac{2}{\pi}$ લઈએ તો, આપણને $\left(0,\frac{\pi}{2}\right)$ માં c ની ફક્ત એક કિંમત મળે.]

ઉદાહરણ $58: f(x) = e^x ન [0, 1]$ પર મધ્યકમાન પ્રમેય લગાડો.

ઉકેલ : $f(x) = e^x$ એ [0, 1] પર સતત અને (0, 1) પર વિકલનીય છે. a = 0, b = 1.

હવે,
$$\frac{f(b)-f(a)}{b-a}=f'(c)$$
. તેથી $\frac{e-1}{1-0}=e^c$

$$e^c = e - 1$$

$$\therefore c = \log_e(e-1)$$

$$\therefore$$
 1 < e - 1 < 2

$$\therefore 0 < \log(e - 1) < \log_e 2 < \log_e e = 1$$
 (e > 2)

$$c \in (0, 1)$$
 અને $c = \log_{\rho}(e - 1)$

ઉદાહરણ $59: f(x) = \log x$ ને [1, e] પર મધ્યકમાન પ્રમેય લગાડો.

ઉકેલ : લઘુગણકીય વિધેય એ [1, e] પર સતત અને (1, e) પર વિકલનીય છે.

$$a = 1, b = e, f'(x) = \frac{1}{x}$$

$$\therefore \frac{\log e - \log 1}{e - 1} = \frac{1}{c}$$

$$\therefore \quad \frac{1}{c} = \frac{1}{e-1} \qquad \qquad (\log 1 = 0, \log_e e = 1)$$

$$\therefore$$
 $c = e - 1$

વળી, 1 < e - 1 < e કારણ કે e > 2

$$\therefore c = e - 1 \qquad (c \in (0, e))$$

ઉદાહરણ 60:f(x)=[x] ને $[-2,\,2]$ માં મધ્યકમાન પ્રમેય અને રોલનું પ્રમેય લગાડી શકાય ?

 $\mathbf{6}$ કેલ : f એ -1, 0, 1 અને 2 પર અસતત છે. (-2 પર શા માટે નહીં ?)

ગણિત 12

f એ (-2, 2)માં -1, 0, 1 આગળ વિકલનીય નથી.

$$f(x) = \begin{cases} -2 & -2 \le x < -1 \\ -1 & -1 \le x < 0 \\ 0 & 0 \le x < 1 \\ 1 & 1 \le x < 2 \\ 2 & x = 2 \end{cases}$$

) ∪ (1, 2) (અચળ વિધેય)

∴ રોલના પ્રમેયની શરતો પર્યાપ્ત છે પરંતુ જરૂરી નથી.

કોઈ પણ
$$c \in (-2, 2)$$
. માટે $f'(c) \neq \frac{f(2) - f(-2)}{2 - (-2)} = \frac{2 - (-2)}{4} = 1$

(ખરેખર તો f'(c)નું અસ્તિત્વ નથી અથવા f'(c) = 0, જ્યાં $c \in (-2, 2)$.)

(પૂર્ણાંક સંખ્યા ન ધરાવતા કોઈ પણ અંતરાલ [a, b] માં f સતત વિધેય છે અને તેથી રોલનું પ્રમેય અને મધ્યકમાન પ્રમેય ચકાસાય છે પરંતુ તે સિવાય નહીં.)

સ્વાધ્યાય 5.7

 $x \in [0, 3]$

 $x \in [2, 3]$

 $x \in [-3, 3]$

 $x \in \left[0, \frac{\pi}{2}\right]$

 $x \in \left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$

 $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

 $x \in [0, \pi], a > 0$

 $x \in [a, b] \quad 0 < a < b$

રોલનું પ્રમેય ચકાસો : (1 થી 8)

1.
$$f(x) = x(x-3)^2$$

$$2. \quad f(x) = x^3 - 6x^2 + 11x - 6$$

$$3. \quad f(x) = \sqrt{9 - x^2}$$

$$4. \quad f(x) = \log\left(\frac{x^2 + ab}{x(a+b)}\right)$$

$$5. \quad f(x) = \sin x + \cos x - 1$$

$$6. \quad f(x) = e^x \left(sinx - cosx \right)$$

7.
$$f(x) = a^{\sin x}$$

$$8. \quad f(x) = e^x cos x$$

9.
$$f(x) = x - 2sinx, x \in [-\pi, \pi]$$

10.
$$f(x) = \log_e x$$
, $x \in [1, 2]$

11. મધ્યકમાન પ્રમેયનો ઉપયોગ કરી,
$$f(x) = \log_e x$$
 લઈ સાબિત કરો કે $\frac{x-y}{x} < \log_e \frac{x}{y} < \frac{x-y}{y}$, $0 < y < x$

આકૃતિ 5.27

12. મધ્યકમાન પ્રમેય ચકાસો અને c મેળવો :

(1)
$$f(x) = x + \frac{1}{x}$$
 $x \in [1, 3]$

(2)
$$f(x) = tan^{-1}x$$
 $x \in [0, 1]$

13. સાબિત કરો કે
$$sec^2a < \frac{tanb-tana}{b-a} < sec^2b$$
 $0 < a < b < \frac{\pi}{2}$

14. $y = (x - 4)^2$ ના આલેખ પર એવું બિંદુ શોધો જ્યાં સ્પર્શક A(4, 0) તથા B(5, 1)ને જોડતી છેદિકાને સમાંતર હોય.

*

પ્રકીર્ણ ઉદાહરણો :

ઉદાહરણ $61: \frac{d}{dx} \log_7 (\log_7 x)$ શોધો.

General Section 19 and
$$y = \log_7\left(\frac{\log x}{\log 7}\right) = \log_7(\log x) - \log_7(\log 7)$$

$$\therefore \frac{dy}{dx} = \frac{d}{dx} \log_7 (\log x).$$

$$= \frac{d}{dx} \frac{\log (\log x)}{\log 7}$$

$$= \frac{1}{\log 7} \frac{d}{dx} \log (\log x)$$

$$= \frac{1}{\log 7} \frac{1}{\log x} \frac{1}{x}$$

$$= \frac{1}{x \log x \log 7}$$

$$(\frac{d}{dx} \log_7 (\log x))$$

ઉદાહરણ 62 :
$$\frac{d}{dx} tan^{-1} \left(\frac{sinx}{1 + cosx} \right)$$
 શોધો.

 $\pi < x < 2\pi$

Geq:
$$y = tan^{-1} \left(\frac{sinx}{1 + cosx} \right)$$

$$= tan^{-1} \left(\frac{2 sin \frac{x}{2} cos \frac{x}{2}}{2 cos \frac{2x}{2}} \right)$$

$$= tan^{-1} \left(tan \frac{x}{2} \right)$$

$$\frac{\pi}{2} < \frac{x}{2} < \pi$$

હવે,
$$\frac{\pi}{2} < \frac{x}{2} < \pi \implies -\frac{\pi}{2} < \frac{x}{2} - \pi < 0$$

હવે,
$$y = tan^{-1} \left(tan\left(\frac{x}{2}\right)\right) = tan^{-1} \left(tan\left(\frac{x}{2} - \pi\right)\right) = \frac{x}{2} - \pi$$

$$\therefore \frac{dy}{dx} = \frac{1}{2}$$

ઉદાહરણ 63 : જો
$$f(x) = cos^{-1} \frac{1-9^x}{1+9^x}$$
, તો $f'(x)$ શોધો. $x \in \mathbb{R}$

ઉકેલ :
$$t = 3^x$$
 લો. $\cos^{-1} \frac{1 - t^2}{1 + t^2}$ નો વિચાર કરીએ.

ધારો કે,
$$\theta = tan^{-1}t$$
, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

આથી
$$t = tan\theta$$
, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$

 $3^x>0$ હોવાથી t>0. આથી $0< heta<rac{\pi}{2}$

$$\therefore 0 < 2\theta < \pi$$

$$\therefore cos^{-1} \frac{1-t^2}{1+t^2} = cos^{-1} \left(\frac{1-tan^2\theta}{1+tan^2\theta} \right)
= cos^{-1} (cos2\theta)
= 2\theta
= 2tan^{-1}t$$

$$(0 < 2\theta < \pi)$$

$$\therefore \cos^{-1} \frac{1 - 9^x}{1 + 9^x} = 2\tan^{-1} 3^x$$
 (t = 3x &\di)

$$f(x) = \cos^{-1} \frac{1 - 9^x}{1 + 9^x} = 2\tan^{-1} 3^x$$

$$f'(x) = \frac{2 \cdot 3^x \log_e 3}{1 + (3^x)^2} = \frac{2 \cdot 3^x \log_e 3}{1 + 3^{2x}}$$

ઉદાહરણ 64 : જો x = a (cost + tsint), y = a(sint - tcost), તો $\frac{d^2y}{dx^2}$ શોધો.

$$\frac{dy}{dt} = a(\cos t - \cos t + t\sin t) = at \sin t$$

$$\therefore \frac{dy}{dx} = tant$$

$$\therefore \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

$$= \frac{d}{dx} (tant)$$

$$= \frac{d}{dt} (tant) \frac{dt}{dx}$$

$$= \frac{\sec^2 t}{\frac{dx}{dt}}$$

$$= \frac{\sec^2 t}{a t \cos t} = \frac{\sec^3 t}{at}$$

ઉદાહરણ 65 : જો $y = e^{a \sin^{-1} x}$, $|x| \le 1$, તો સાબિત કરો કે $(1 - x^2)y_2 - xy_1 - a^2y = 0$.

Geometric
$$\frac{dy}{dx} = y_1 = e^{asin^{-1}x} \frac{a}{\sqrt{1-x^2}} = \frac{ay}{\sqrt{1-x^2}}$$

$$\therefore (1 - x^{2})y_{1}^{2} = a^{2}y^{2}$$

$$\therefore (1 - x^{2})2y_{1}y_{2} + (-2x)y_{1}^{2} = a^{2}2yy_{1}$$

$$\therefore (1 - x^{2})y_{2} - xy_{1} - a^{2}y = 0$$

$$(\frac{d}{dx}y^{2} = 2yy_{1}, \frac{d}{dx}y_{1}^{2} = 2y_{1}y_{2})$$

$$\therefore (1 - x^{2})y_{2} - xy_{1} - a^{2}y = 0$$

$$(y_{1} \neq 0)$$

ઉદાહરણ 66 : એવું કોઈ વિધેય અસ્તિત્વ ધરાવે છે કે જે દરેક વાસ્તવિક સંખ્યા માટે સતત હોય પરંતુ બરાબર n વાસ્તવિક સંખ્યાઓ માટે વિકલનીય ન હોય ?

ઉકેલ : ધારો કે
$$f(x) = |x-1| + |x-2| + |x-3| + ... + |x-n|$$

 \therefore |x| એ R પર સતત છે. તેથી |x-1|, |x-2|,..., |x-n| માંનું દરેક R પર સતત છે. કારણ કે સતત વિધેયોનું સંયોજિત વિધેય એ સતત છે.

તેથી f(x) એ R પર સતત છે. કારણ કે સતત વિધેયોનો સરવાળો સતત છે.

|x-1|, |x-2|,..., |x-n| માંનું દરેક અનુક્રમે $x=1,\,x=2,...,\,x=n$ સિવાયની પ્રત્યેક વાસ્તવિક સંખ્યા માટે વિકલનીય છે.

$$|x-2|$$
, $|x-3|$,..., $|x-n|$ એ $x=1$ આગળ વિકલત્તીય છે.

$$g(x) = |x-2| + |x-3| + ... + |x-n| એ x = 1$$
 આગળ વિકલનીય છે.

જો
$$f(x)=|x-1|+|x-2|+...+|x-n|$$
 એ $x=1$ આગળ વિકલનીય હોય, તો
$$f(x)-g(x)=|x-1|$$
 એ $x=1$ આગળ વિકલનીય થવું જોઈએ.

પરંતુ |x-1| એ x=1 આગળ વિકલનીય નથી.

$$f(x) = |x-1| + |x-2| + ... + |x-n|$$
 એ $x = 1$ આગળ વિકલનીય નથી.

તે જ પ્રમાણે |x-1|+|x-2|+...+|x-n| એ x=2,3,...,n આગળ વિકલનીય નથી.

f એ R પર સતત હોવા છતાં x = 1, 2, 3, ..., n પર વિકલનીય નથી.

ઉદાહરણ 67 : જો siny = xsin(a + y), તો સાબિત કરો કે $\frac{dy}{dx} = \frac{sin^2(a + y)}{sina}$

$$\therefore [\cos y - x\cos(a+y)] \frac{dy}{dx} = \sin(a+y)$$

$$\frac{dy}{dx} = \frac{\sin(a+y)}{\cos y - x\cos(a+y)}$$

$$= \frac{\sin(a+y)}{\cos y - \frac{\sin y}{\sin(a+y)}\cos(a+y)}$$

$$= \frac{\sin^2(a+y)}{\sin(a+y)\cos y - \cos(a+y)\sin y}$$

184 ગણિત 12

$$=rac{\sin^2(a+y)}{\sin a}$$
 $(\sin(a+y)\cos y - \cos(a+y)\sin y = \sin(a+y-y) = \sin a)$ અથવા

$$x = \frac{\sin y}{\sin (a+y)}$$

$$\therefore \frac{dx}{dy} = \frac{\sin(a+y)\cos y - \sin y \cos(a+y)}{\sin^2(a+y)} = \frac{\sin a}{\sin^2(a+y)}$$

$$\therefore \quad \frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$$

ઉદાહરણ 68 : જો $(x-a)^2+(y-b)^2=r^2$, તો સાબિત કરો કે $\left|\frac{(1+y_1^2)^{\frac{3}{2}}}{y_2}\right|$ અચળ છે.

$$634 : 2(x-a) + 2(y-b)y_1 = 0$$

$$\therefore y_1 = -\frac{x-a}{y-b}$$

$$y_2 = -\frac{(y-b) \cdot 1 - (x-a)y_1}{(y-b)^2}$$

$$= -\frac{(y-b) + \frac{(x-a)(x-a)}{y-b}}{(y-b)^2}$$

$$= -\frac{(x-a)^2 + (y-b)^2}{(y-b)^3}$$

$$= -\frac{r^2}{(y-b)^3}$$

 $\left(\left|\frac{(1+y_1^2)^{\frac{3}{2}}}{y_2}\right|$ ને વક y=f(x) ના કોઈ પણ બિંદુ $(x,\,f(x))$ આગળની વક્રત્રિજ્યા કહે છે. વર્તુળ એ દરેક બિંદુએ એકરૂપ વક્રત્રિજ્યાવાળો વક્ર છે.)

સાતત્ય અને વિકલન

ઉદાહરણ 69 : યોગ્ય પ્રદેશ પર વ્યાખ્યાયિત વિધેય માટે $\frac{d}{dx}(\log x)^{\log x}$ શોધો.

$$Geq : y = (\log x)^{\log x}$$

$$\therefore \log y = \log x (\log (\log x))$$

$$\therefore \frac{1}{y} \frac{dy}{dx} = \frac{1}{x} \log (\log x) + \frac{\log x}{\log x} \frac{1}{x}$$
$$= \frac{\log (\log x) + 1}{x}$$

$$\therefore \frac{dy}{dx} = \left(\frac{1 + \log(\log x)}{x}\right) (\log x)^{\log x}$$

ઉદાહરણ 70 : વ્યાખ્યાની (પ્રથમ સિદ્ધાંતથી) મદદથી $\left[\frac{d}{dx} sec^{-1}x\right]_{x=-2}$ મેળવો.

GSet:
$$\left[\frac{d}{dx} \sec^{-1}x \right] = \lim_{x \to -2} \frac{\sec^{-1}x - \sec^{-1}(-2)}{x - (-2)}$$

$$= \lim_{t \to \frac{2\pi}{3}} \frac{t - (\pi - \sec^{-1}2)}{\sec t + 2}$$

$$= \lim_{t \to \frac{2\pi}{3}} \frac{t - \left(\pi - \frac{\pi}{3}\right)}{\sec t + 2}$$

$$= \lim_{t \to \frac{2\pi}{3}} \frac{t - \frac{2\pi}{3}}{\sec t + 2}$$

$$= \lim_{t \to \frac{2\pi}{3}} \frac{t - \frac{2\pi}{3}}{2\sec t \left(\cos t - \cos \frac{2\pi}{3}\right)}$$

$$= \lim_{t \to \frac{2\pi}{3}} \frac{t - \frac{2\pi}{3}}{2\sec t \left(-2\sin \frac{t + \frac{2\pi}{3}}{2}\sin \frac{t - \frac{2\pi}{3}}{2}\right)}$$

$$= \lim_{t \to \frac{2\pi}{3}} \frac{\left(t - \frac{2\pi}{3}\right) \int_{-2\sec t} \frac{t + \frac{2\pi}{3}}{2}\sin \frac{t - \frac{2\pi}{3}}{2}}$$

$$= \frac{-1}{2\sec \frac{2\pi}{3}\sin \frac{2\pi}{3}}$$

$$= \frac{-1}{2(-2)\frac{\sqrt{3}}{2}}$$

$$= \frac{1}{2\sqrt{3}}$$

ચકાસો :
$$\left(\frac{d}{dx} \sec^{-1} x\right)_{x=-2} = \left(\frac{1}{|x|\sqrt{x^2-1}}\right)_{x=-2} = \frac{1}{|-2|\sqrt{4-1}} = \frac{1}{2\sqrt{3}}$$

સ્વાધ્યાય 5

નીચે આપેલાં વિધેયોમાંથી જે વિધેયો જે બિંદુએ અસતત હોય તે બિંદુઓ શોધો : (1 થી 4)

1.
$$f(x) = \begin{cases} \frac{x^3 - 27}{x - 3} & x \neq 3 \\ 5 & x = 3 \end{cases}$$

1.
$$f(x) = \begin{cases} \frac{x^3 - 27}{x - 3} & x \neq 3 \\ 5 & x = 3 \end{cases}$$
 2. $f(x) = \begin{cases} \frac{\sin(x - 1)}{|x - 1|} & x \neq 1 \\ 2 & x = 1 \end{cases}$

3.
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x + 1} & x \neq -1 \\ -1 & x = -1 \end{cases}$$

3.
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x + 1} & x \neq -1 \\ -1 & x = -1 \end{cases}$$
 4. $f(x) = \begin{cases} \frac{e^{2x} - e^4}{e^x - e^2} & x \neq 2 \\ e^2 & x = 2 \end{cases}$

આપેલ x આગળ વિધેયો સતત હોય, તો k શોધો : (5 થી 8)

5.
$$f(x) = \begin{cases} \frac{x^2 - x - 6}{x - 3} & x \neq 3 \\ k & x = 3, x = 3 \end{cases}$$
 where

5.
$$f(x) = \begin{cases} \frac{x^2 - x - 6}{x - 3} & x \neq 3 \\ k & x = 3, \quad x = 3 \end{cases}$$
 6. $f(x) = \begin{cases} kx^2 & x < 1 \\ x^2 + 1 & x \ge 1, \quad x = 1 \end{cases}$ where

7.
$$f(x) = \begin{cases} 2x + 3 & x < 2 \\ k & x = 2 & x = 2 \end{cases}$$
 આગળ $3x + 1 & x > 2$

7.
$$f(x) = \begin{cases} 2x + 3 & x < 2 \\ k & x = 2 & x = 2 \end{cases}$$
 8. $f(x) = \begin{cases} \cos x & 0 < x < \frac{\pi}{2} \\ k^2 - 4 & x = \frac{\pi}{2}, & x = \frac{\pi}{2} \end{cases}$ where $\begin{cases} \sin x - 1 & x > \frac{\pi}{2} \end{cases}$

નીચે આપેલાં વિધેયો સતત હોય, તો a અને b શોધો : (9 થી 10)

9.
$$f(x) = \begin{cases} asinx + b & 0 \le x \le \frac{\pi}{2} \\ cosx & \frac{\pi}{2} < x \le \pi \\ tanx + b & \pi < x < \frac{3\pi}{2} \end{cases}$$

યોગ્ય પ્રદેશ પર વ્યાખ્યાયિત x નાં વિધેયો y માટે $\frac{dy}{dx}$ શોધો :

11.
$$y = \log_{10}(x^2 + 1)$$

12.
$$y = \cot^{-1} \frac{2x}{1-x^2}, x \neq \pm 1$$

13.
$$y = sin(\log(cosx))$$

14.
$$x\sqrt{1-y^2} + y\sqrt{1-x^2} = a$$
, $|x| < 1$, $|y| < 1$

15.
$$y = (sinx)^{sinx}$$

$$16. y = (sinx - cosx)^{sinx - cosx}$$

17.
$$y = x^x + \left(x + \frac{1}{x}\right)^x$$

$$18. \ y = x^{\left(x + \frac{1}{x}\right)}$$

$$19. y = cos(x^x) + (tanx)^x$$

20.
$$y = sin^{-1}x + sin^{-1}\sqrt{1-x^2}$$
, $|x| < 1$

21.
$$y = tan^{-1}x + cot^{-1}x, x \in \mathbb{R}$$

19.
$$y = cos(x^{x}) + (tanx)^{x}$$

20. $y = sin^{-1}x + sin^{-1}\sqrt{1-x^{2}}$, $|x| < 1$
21. $y = tan^{-1}x + cot^{-1}x$, $x \in \mathbb{R}$
22. $x = (cost)^{t}$, $y = (sint)^{t}$ $0 < t < \frac{\pi}{2}$

23. સાબિત કરો કે $\frac{d}{dx} e^{ax} cos(bx+c) = re^{ax} cos(bx+c+\alpha)$ જયાં $r = \sqrt{a^2+b^2}$, $cos\alpha = \frac{a}{r}$, $sin\alpha = \frac{b}{r}$ અને $\frac{d^2}{dx^2}$ $e^{ax}cos$ $(bx + c) = r^2 e^{ax}cos$ $(bx + c + 2\alpha)$ સાબિત કરો.

24.
$$\frac{d}{dx} tan^{-1} \frac{\sqrt{1+x^2}-1}{x}, x \in \mathbb{R} - \{0\}$$
 શોધો.

25.
$$\frac{d}{dx} \tan^{-1} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}$$
 શોધો. $|x| < 1$

$$26. \quad \frac{d}{dx} \tan^{-1} \sqrt{\frac{1+\sin x}{1-\sin x}} \text{ entition } 0 < x < \frac{\pi}{2}$$

27. જો
$$y = (\cos^{-1}x)^2$$
, તો સાબિત કરો કે $(1 - x^2)y_2 - xy_1 = 2$

28. જો
$$y = sinpt$$
, $x = sint$, તો સાબિત કરો કે $(1 - x^2)y_2 - xy_1 + p^2y = 0$

29. જો
$$y = e^{mtan^{-1}x}$$
, તો સાબિત કરો કે $(1 + x^2)y_2 + (2x - m)y_1 = 0$

30. જો
$$2x = y^{\frac{1}{m}} + y^{-\frac{1}{m}}$$
 $(x \ge 1)$, તો સાબિત કરો કે $(x^2 - 1)y_2 + xy_1 = m^2y$

31. જો
$$y = (x + \sqrt{x^2 - 1})^m$$
, તો સાબિત કરો કે $(x^2 - 1)y_2 + xy_1 = m^2y$

32. જો
$$x^y = e^{x-y}$$
, તો સાબિત કરો કે $\frac{dy}{dx} = \frac{\log x}{(\log x + 1)^2}$

33. જો
$$y = e^{ax} \sinh x$$
, તો સાબિત કરો કે $y_2 - 2ay_1 + (a^2 + b^2)y = 0$

34. જો
$$(a - bcosy)(a + bcosx) = a^2 - b^2$$
, તો સાબિત કરો કે $\frac{dy}{dx} = \frac{\sqrt{a^2 - b^2}}{a + bcosx}$, $0 < x < \frac{\pi}{2}$

35. જો
$$y = (tan^{-1}x)^2$$
, તો સાબિત કરો કે $(1 + x^2)^2y_2 + 2x(1 + x^2)y_1 = 2$

36. જો
$$y = x \log \frac{x}{a + bx}$$
, તો સાબિત કરો કે $x^3y_2 = (xy_1 - y)^2$

37. જો
$$x = asint - bcost$$
, $y = acost + bsint$, તો y_2 શોધો.

38. જો
$$y = sin(sinx)$$
, તો સાબિત કરો કે $y_2 + tanx \cdot y_1 + ycos^2x = 0$

39. જો
$$y = cos^{-1} \frac{3 + 5cosx}{5 + 3cosx}$$
, તો સાબિત કરો કે $\frac{dy}{dx} = \frac{4}{5 + 3cosx}$

40.
$$tan^{-1} \frac{x}{\sqrt{1-x^2}}$$
 નું $sin^{-1} (2x\sqrt{1-x^2})$ ને સાપેક્ષ વિકલન કરો, જ્યાં $0 < x < \frac{1}{\sqrt{2}}$

41.
$$\cos^{-1}\frac{1-x^2}{1+x^2}$$
 નું $\sin^{-1}\frac{2x}{1+x^2}$ ને સાપેક્ષ વિકલન કરો. $(0 < x < 1)$

42.
$$\left[\frac{d}{dx}(cosec^{-1}x)\right]_{x=-2}$$
 વ્યાખ્યાથી મેળવો.

43.
$$\frac{d}{dx} \left(sin^{-1} \frac{x}{\sqrt{1+x^2}} + cos^{-1} \frac{1}{\sqrt{1+x^2}} \right)$$
 શોધો. $x > 0$

44.
$$\frac{d}{dx} tan^{-1} \frac{4x}{1+21x^2}$$
 શોધો. $x > 0$

45.
$$\frac{d}{dx} tan^{-1} \frac{a+bx}{b-ax}$$
 શોધો.

46.
$$\frac{d}{dx} \tan^{-1} \frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}}, |x| < 1$$
 શોધો.

47.
$$\frac{d}{dx} tan^{-1}(secx - tanx)$$
 શોધો.

(a) x^{x-1}

48. નીચે આપેલું દરેક વિધાન સાચું બને તે રીતે આપેલા વિકલ્પો (a), (b), (c) અથવા (d) માંથી યોગ્ય વિકલ્પ પસંદ કરીને ામાં લખો :

વિભાગ A (1 ગુણ)

(1)
$$\left[\frac{d}{dx} \sec^{-1} x\right]_{x=-3} = \dots$$

(a)
$$\frac{1}{\sqrt{x^2 - 1}}$$
 (b) $-\frac{1}{\sqrt{x^2 - 1}}$ (c) $\frac{1}{6\sqrt{2}}$ (d) $\frac{-1}{6\sqrt{2}}$

(b) x^x

(a) $a^a (1 + \log a)$ (b) 0

$$(2) \frac{d}{dx}x^x = \dots (x > 0)$$

(c) 0

(d) $x^x(1 + \log x)$

(d) અસ્તિત્વ નથી.

(3)
$$\frac{d}{dx} (\sin^{-1}x + \cos^{-1}x) = \dots (|x| < 1)$$

(a) 0 (b)
$$\frac{2}{\sqrt{1-x^2}}$$
 (c) $\frac{1}{\sqrt{1-x^2}}$ (d) અસ્તિત્વ નથી.

$$(4) \frac{d}{dx} a^a = \dots (a > 0)$$

$$(5) \frac{d}{dx} e^{5x} = \dots$$

(c) a^a

(a)
$$e^{5x}$$
 (b) $5e^{5x}$ (c) $5x e^{5x-1}$ (d) 0

$$(6) \frac{d}{dx} \log |x| = \dots (x \neq 0)$$

(a)
$$\frac{1}{|x|}$$
 (b) $\frac{1}{x}$ (c) અસ્તિત્વ નથી. (d) e^x

$$(7) \frac{d}{dx} \sin^3 x = \dots$$

(a)
$$3\sin^2 x$$
 (b) $3\cos^2 x$ (c) $3\sin^2 x \cos x$ (d) $-3\cos^2 x \sin x$

(8)
$$\frac{d}{dx} tan^n x = \dots$$

(a)
$$n tan^{n-1}x$$
 (b) $n tan^{n-1}x sec^2x$ (c) $n sec^{2n}x$ (d) $n tan^{n-1}x sec^{n-1}x$

(9)
$$\Re f(x) = \begin{cases} ax + b & 1 \le x < 5 \\ 7x - 5 & 5 \le x < 10 \\ bx + 3a & x \ge 10 \end{cases}$$

સતત હોય, તો (a, b) =

$$f(x) = \begin{cases} \frac{x^2}{a} - a & x < a \\ 0 & x = a \\ a - \frac{x^2}{a} & x > a \end{cases}$$

(a)
$$\lim_{x \to a+} f(x) = a$$

(b)
$$\lim_{x \to a} f(x) = -a$$

(c)
$$f$$
 એ $x = a$ આગળ સતત છે.

(c)
$$f$$
 એ $x = a$ આગળ સતત છે. (d) f એ $x = a$ આગળ વિકલનીય છે.

$$(11)\Re f(x) = \begin{cases} x & x \in (0, 1) \\ 1 & x \ge 1 \end{cases}$$

(a)
$$f$$
 એ ફક્ત $x = 1$ આગળ સતત છે

(a)
$$f$$
 એ \mathfrak{s} ક્ત $x=1$ આગળ સતત છે. (b) f એ \mathfrak{s} ક્ત $x=1$ આગળ અસતત છે.

(c)
$$f$$
 એ R^+ પર સતત છે.

(d)
$$f$$
 એ $x = 1$ આગળ વ્યાખ્યાયિત નથી.

$$(12)\frac{d}{dx} \frac{1}{\log|x|} = \dots .$$

(a)
$$\frac{1}{|x|}$$

$$(b) \frac{1}{(\log x)^2}$$

(a)
$$\frac{1}{|x|}$$
 (b) $\frac{1}{(\log x)^2}$ (c) $-\frac{1}{x(\log |x|)^2}$ (d) e^x

(d)
$$e^x$$

(13)
$$\hat{x} y = a \sin x + b \cos x$$
, $\hat{x} y^2 + (y_1)^2 = \dots (a^2 + b^2 \neq 0)$

(a)
$$a\cos x - b\sin x$$

(a)
$$a\cos x - b\sin x$$
 (b) $(a\sin x - b\cos x)^2$ (c) $a^2 + b^2$

$$(14)\frac{d}{dx} (x^2 + \sin^2 x)^3 = \dots .$$

$$(a) 3(x^2 + sin^2x)$$

(b)
$$3(x^2 + \sin^2 x)^2 (2x + \sin 2x)$$

(c)
$$2x + 2sinx cosx$$

$$(15)\frac{d}{dx} \sqrt{x \sin x} = \dots \quad 0 < x < \pi$$

(a)
$$\frac{x \sin x + \cos x}{\sqrt{x \sin x}}$$

(b)
$$\frac{x\cos x}{2\sqrt{x\sin x}}$$

(a)
$$\frac{x \sin x + \cos x}{\sqrt{x \sin x}}$$
 (b) $\frac{x \cos x}{2\sqrt{x \sin x}}$ (c) $\frac{x \cos x + \sin x}{2\sqrt{x \sin x}}$ (d) $\frac{1}{2\sqrt{x \sin x}}$

(d)
$$\frac{1}{2\sqrt{xsinx}}$$

વિભાગ B (2 ગુણ)

(16)
$$\frac{d}{dx} \tan^{-1} \frac{1-x}{1+x} = \dots$$
.

(a)
$$\frac{-1}{1+x^2}$$
 (b) $\frac{1}{1+x^2}$ (c) $\frac{1+x}{1-x}$

(b)
$$\frac{1}{1+x^2}$$

(c)
$$\frac{1+x}{1-x}$$

(d)
$$\frac{2}{1+x^2}$$

(17)
$$\frac{d}{dx} \tan^{-1} \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \dots \quad \pi < x < 2\pi$$

(a)
$$\frac{1}{1+\cos^2 x}$$
 (b) $-\frac{1}{1+\cos^2 x}$ (c) $\frac{1}{2}$

(18)
$$\Re x = e^{tan^{-1}\frac{y-x^2}{x^2}}$$
, $\operatorname{cl} \frac{dy}{dx} = \dots$

(a)
$$2x (tan (log x) + 1)$$
 (b) $2x (tan (log x) + 1) + x sec^2 (log x)$

(c)
$$2x (tan (log x) + 1) + x^2 sec (log x)$$
 (d) 0

(19)
$$\frac{d}{dx} \sin^{-1} \left(\frac{3x}{5} + \frac{4}{5} \sqrt{1 - x^2} \right) = \dots$$
 (0 < x < $\frac{3}{5}$)

(a)
$$\frac{3}{5} + \frac{1}{\sqrt{1-x^2}}$$
 (b) $\frac{4}{5} + \frac{1}{\sqrt{1-x^2}}$ (c) $\frac{1}{\sqrt{1-x^2}}$ (d) $\frac{1}{\sqrt{1+x^2}}$

(20)
$$\frac{d}{dx} tan^{-1} \left(\frac{x+a}{1-xa} \right) = \dots (x, a \in \mathbb{R}^+, xa > 1)$$

(a)
$$\frac{1}{1+x^2}$$
 (b) $\frac{1}{1+a^2}$ (c) $\frac{1}{1+x^2} + \frac{1}{1+a^2}$ (d) $\frac{1}{1+x^2a^2}$

(21)
$$\Re f(x) = \log_7(\log_3 x), \ \text{d} f'(x) = \dots$$

(a)
$$\frac{1}{x \log 7 \log 3}$$
 (b) $\frac{1}{\log 3 \log x}$ (c) $\frac{1}{x \log x \log 7}$ (d) $\frac{1}{x \log x}$

(22)
$$\frac{d}{dx} x |x| = \dots (x < 0)$$

(a)
$$2x$$
 (b) $-2x$ (c) $|x|$ (d) 0

(23)
$$\Re x = \frac{2t}{1+t^2}, y = \frac{1-t^2}{1+t^2}, \text{ dù } \frac{dy}{dx} = \dots$$

(a)
$$\frac{2t^2}{1-t^2}$$
 (b) $\frac{2t}{1+t^2}$ (c) $2t$ (d) $\frac{-2t}{1-t^2}$

$$(24) \frac{d}{dx} e^{x \log x} = \dots$$

(a)
$$x^x (1 + \log x)$$
 (b) x^x (c) $1 + \log x$ (d) x^{x-1}

(25)
$$\frac{tan^{-1}x}{1+tan^{-1}x}$$
 નો $tan^{-1}x$ ને સાપેક્ષ વિકલિત =

(a)
$$\frac{1}{1+tan^{-1}x}$$
 (b) $\frac{1}{(1+tan^{-1}x)^2}$ (c) $\frac{1}{1+x^2}$ (d) $\frac{-1}{1+x^2}$

વિભાગ C (3 ગુણ)

(26)
$$\Re x = at^2, y = 2at, \operatorname{ch} \frac{d^2y}{dx^2} = \dots$$

(a)
$$\frac{-1}{t^2}$$
 (b) $\frac{1}{t^2}$ (c) $\frac{-1}{2at^3}$ (d) $\frac{1}{2at^3}$

(27)
$$\frac{d}{dx} \cot^{-1} \frac{\sqrt{1+x^2}-1}{x} = \dots, x \in \mathbb{R} - \{0\}$$

- (a) $\frac{1}{1+x^2}$ (b) $\frac{-1}{2(1+x^2)}$ (c) $\frac{2}{1+x^2}$
- (d) $-\frac{1}{1+r^2}$

$$\frac{d^2x}{dy^2} = \dots$$

- (a) $\frac{1}{\frac{d^2y}{dx^2}}$ (b) $\frac{1}{\left(\frac{dy}{dx}\right)^2}$ (c) $-\frac{1}{\left(\frac{dy}{dx}\right)^2}$ (d) $-\frac{1}{\left(\frac{dy}{dx}\right)^3} \frac{d^2y}{dx^2}$

(29) વક
$$f(x) = (x-3)^2$$
 ને [2, 4] પર મધ્યકમાન પ્રમેય લગાડતાં બિંદુ આગળનો સ્પર્શક, A(2, 1) અને B(4, 1)ને જોડતી જીવાને સમાંતર છે.

- (a) (1, 0)
- (b) (4, 3)
- (c) (2, 3)
- (d)(3,0)

(30) વિધેય
$$f(x) = x^3$$
 ને $[-1, 1]$ પર મધ્યકમાન પ્રમેય લગાડતાં $c =$ થાય.

- (a) $\pm \frac{1}{\sqrt{2}}$
- (b) $\pm \sqrt{3}$
- (c) ± 1

(31)
$$f(x) = e^x \sin x$$
 $x \in [0, \pi]$ માટે રોલના પ્રમેયનો ઉપયોગ કરતાં $c =$

- (a) $\frac{3\pi}{4}$
- (b) $\frac{5\pi}{4}$
- (c) $\frac{\pi}{4}$

(32)
$$f(x) = x^3 - 4x$$
, $x \in [0, 2]$ ને માટે રોલના પ્રમેયનો ઉપયોગ કરતાં $c =$

- (a) $\sqrt{3}$
- (b) 2
- (c) $\frac{2}{\sqrt{2}}$
- (d) -2

વિભાગ D (4 ગુણ)

(33)
$$\Re x = \sec \theta - \cos \theta, y = \sec^n \theta - \cos^n \theta, \text{ di...}$$

(a)
$$(x^2 + 4) \left(\frac{dy}{dx}\right)^2 = n^2 (y^2 + 4)$$

(a)
$$(x^2 + 4) \left(\frac{dy}{dx}\right)^2 = n^2 (y^2 + 4)$$
 (b) $(x^2 - 4) \left(\frac{dy}{dx}\right)^2 = n^2 (y^2 - 4)$

(c)
$$(x^2 + 4) \left(\frac{dy}{dx}\right)^2 = 1$$

(d)
$$(x^2 + 4) \left(\frac{dy}{dx}\right)^2 = y^2 + 4$$

(34)
$$\frac{d}{dx} tan^{-1} \frac{\sqrt{1+x^2} - \sqrt{1-x^2}}{\sqrt{1-x^2} + \sqrt{1+x^2}} = \dots |x| < 1$$

(a)
$$\frac{1}{\sqrt{1-x^4}}$$

(b)
$$\frac{x}{\sqrt{1-x^4}}$$

(a)
$$\frac{1}{\sqrt{1-x^4}}$$
 (b) $\frac{x}{\sqrt{1-x^4}}$ (c) $\frac{1}{2\sqrt{1-x^4}}$ (d) $\frac{x^2}{1-x^4}$

(d)
$$\frac{x^2}{1-x^4}$$

(35)
$$\frac{d}{dx} \left(\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right) = \dots (a > 0)$$

(a)
$$\frac{1}{\sqrt{a^2 - x^2}}$$
 (b) $\sqrt{a^2 - x^2}$ (c) $\sqrt{x^2 - a^2}$ (d) $\sqrt{x^2 + a^2}$

(b)
$$\sqrt{a^2 - x^2}$$

(c)
$$\sqrt{x^2 - a^2}$$

(d)
$$\sqrt{x^2 + a^2}$$

(a)
$$f(x) = |x|$$
 (b) $f(x) = x^3$

(c)
$$f(x) = sinx$$

$$(d) f(x) = x^2$$

- (37) વિધેય $f(x) = x + \frac{1}{x}$, $x \in [1, 3]$ પર મધ્યકમાન પ્રમેય લગાડતાં અને વિધેય $f(x) = x^2 4x + 3$ પર રોલનું પ્રમેય લગાડતાં c નાં મૂલ્ય મળે.
 - (a) $\sqrt{3}$, 1
- (b) 2, 1
- (c) $\sqrt{3}$, 2 (d) 2, $\sqrt{3}$
- (38) $y = x \log x$ નો (c, f(x)) આગળ સ્પર્શક A(1, 0) તથા B(e, e) ને જોડતી રેખાને સમાંતર હોય તો

 - (a) $\frac{e-1}{e}$ (b) $\log \frac{e-1}{e}$ (c) $e^{\frac{1}{1-e}}$
- (39) $f(x)=2sinx+sin\ 2x$ માટે $\left[0,\ \pi\right]$ પર મધ્યકમાનનું પ્રમેય ચકાસતાં મળતી c ની કિંમત \square
 - (a) π
- (c) $\frac{\pi}{2}$

(40)
$$f(x) = \begin{cases} 2 + x^3 & x \le 1 \\ 3x & x > 1 \end{cases}$$
 $x \in [-1, 2]$

તો મધ્યકમાન પ્રમેય અનુસાર c નું મુલ્ય...

- (a) 2
- (b) 0
- (c) 1
- (d) $\frac{\sqrt{5}}{3}$

સારાંશ

આ પ્રકરણમાં આપણે નીચે આપેલા મુદ્દાઓ શીખ્યા :

- સતત વિધેયો
- વિકલનીયતા અને સાતત્ય
- લઘુગશકીય વિધેય
- પ્રતિવિધેયના વિકલિતનો નિયમ
- प्रयस विधेयनुं विक्रित
- 11. દ્વિતીય વિકલિત

- 2. સતત વિધેયોનું બીજગણિત
- 4. घातां डीय विधेय
- 6. સાંકળનો નિયમ
- 8. ગૃઢ વિધેયનું વિકલિત
- 10. લઘુગણકીય વિકલન
- 12. મધ્યકમાન પ્રમેય

Prehistory

Excavations at Harappa, Mohenjo-daro and other sites of the Indus Valley Civilization have uncovered evidence of the use of "practical mathematics". The people of the IVC manufactured bricks whose dimensions were in the proportion 4:2:1, considered favorable for the stability of a brick structure. They used a standardized system of weights based on the ratios: 1/20, 1/10, 1/5, 1/2, 1, 2, 5, 10, 20, 50, 100, 200, and 500, with the unit weight equal to approximately 28 grams (and approximately equal to the English ounce or Greek uncia). They mass produced weights in regular geometrical shapes, which included hexahedra, barrels, cones, and cylinders, thereby demonstrating knowledge of basic geometry.

The inhabitants of Indus civilization also tried to standardize measurement of length to a high degree of accuracy. They designed a ruler—the Mohenjo-daro ruler—whose unit of length (approximately 1.32) inches or 3.4 centimetres) was divided into ten equal parts. Bricks manufactured in ancient Mohenjo-daro often had dimensions that were integral multiples of this unit of length.

સાતત્ય અને વિકલન 193