Integrals in Spherical Coordinates

1. Find the volume of a sphere of radius a.

Answer: From the problems on limits in spherical coordinates (Session 76), we have limits: inner ρ : 0 to a –radial segments

middle ϕ : 0 to π –fan of rays.

outer θ : 0 to 2π -volume.

$$V = \iiint_D dV = \int_0^{2\pi} \int_0^{\pi} \int_0^a \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

Inner:
$$\frac{\rho^3}{3} \sin \phi \bigg|_0^a = \frac{a^3}{3} \sin \phi$$

Middle:
$$-\frac{a^3}{3}\cos\phi\Big|_{\alpha}^{\pi} = \frac{2}{3}a^3$$

Outer: $\frac{4}{3}\pi a^3$ –as it should be.

2. Find the centroid of the region bounded by the sphere $\rho = a$ and the cone $\phi = \alpha$.

Answer: In Session 76 we computed the limits:

$$\rho$$
: 0 to a , ϕ : 0 to α , θ : 0 to 2π .

By symmetry, $x_{cm} = y_{cm} = 0$.

$$z_{cm} = \frac{1}{V} \iiint_D z \, dV = \frac{1}{V} \int_0^{2\pi} \int_0^{\pi} \int_0^a \rho \cos \phi \cdot \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$
$$= \frac{1}{V} \int_0^{2\pi} \int_0^{\pi} \int_0^a \rho^3 \cos \phi \sin \phi \, d\rho \, d\phi \, d\theta.$$

$$V = \iiint_D dV = \int_0^{2\pi} \int_0^{\pi} \int_0^a \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = \frac{2}{3} \pi a^3 (1 - \cos \alpha).$$

$$\Rightarrow z_{cm} = \frac{a^4 \sin^2 \alpha \, \pi}{4} \cdot \frac{3}{2\pi a^3 (1 - \cos \alpha)} = \frac{3a}{8} \cdot \frac{\sin^2 \alpha}{1 - \cos \alpha} = \frac{3}{8} a(1 + \cos \alpha).$$

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.