

Machine Learning Lecture 1: intro to ML

Radoslav Neychev Spring 2021

Outline

- Introduction to Machine Learning, motivation
- 2. ML thesaurus and notation
- . Maximum Likelihood Estimation
- Machine Learning problems overview (selection):
- a. Classification
- b. Regression
- c. Dimensionality reduction
- . Naïve Bayes classifier
- . k Nearest Neighbours (kNN)

Motivation, historical overview and current state of ML and Al

- Action classification
- Image captioning

Neural Machine Translation

T2T model top-1 predictions		O U U U U U U U U U U U U U U U U U U U	PO-M OH NA	HO HO Br
Ground truth		F H ₂ O ₂	Br -Sn	HO—OH
Targets	° ¥	L N O		NG ~

DOI: 10.1039/C9RA08535A

Variational AutoEncoders

Prompt engineering

Molecular IUPAC name: 1-[2-[[1-[2-amino-3-(4-hydroxyphenyl)propanoyl]pyrrolidine-2-carbonyl]-methylamino]-3-phenylpropanoyl]pyrrolidine-2-carboxylic acid Molecular SMILES: CC(C)(C)OC(=0)NC1CCN(C(=0)CN2CCOCC2C(=0)Nc2cc(Cl)cc3c2[nH]c2cnccc23)CC1 You are an expert chemist. Given the molecular SMILES, your task is to predict the IUPAC name using your Molecular IUPAC name: N-(2-chloro-5-piperidin-1-ylsulfonylphenyl)-2-[(4R)-4-methyl-6,7-dihydro-4H-thieno[3,2-c]pyridin-5-yl]acetamide Molecular IUPAC name: 1-[3-[2-(dimethylamino)-5-(2-fluorophenyl)pyrimidin-4-yl]piperidin-1-yl]-3-morpholin-4-ylpropan-1-one Molecular IUPAC name: 2-(5,6-dichloro-1,3-dioxoisoindol-2-yl)-N-[3-methyl-2-(pyrrolidine-1-carbonyl)pheny]acetamide Molecular IUPAC name: 1-[[(3R)-1-(cyclopropanecarbonyl)piperidin-3-yl]mettyl/I-N-pyridin-3-ylindole-3-carboxamide Molecular SMILES: CN(C(=O)C1CCCN1C(=O)C(N)Cc1ccc(O)cc1)C(Cc1ccccc1)C(=O)N1CCCC1C(=O)O Please strictly follow the format, no other information can be provided. Molecular SMILES: Cc1cccc(NC(=0)CN2C(=0)c3cc(Cl)c(Cl)cc3C2=0)c1C(=0)N1CCCC1 Molecular SMILES: CN(C)c1ncc(-c2cccc2F)c(C2CCCN(C(=0)CCN3CCOCC3)C2)n Molecular SMILES: CC1c2ccsc2CCN1CC(=0)Nc1cc(S(=0)(=0)N2CCCCC2)ccc1Cl Molecular SMILES: O=C(Nc1cccnc1)c1cn(CC2CCCN(C(=0)C3CC3)C2)c2cccc12 experienced chemical IUPAC name knowledge. Molecular IUPAC name: **Template** Question Task-specific General Template 걸

4-[3-(4-chloro-2H-indazol-3-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl]morpholine-2-carbonyl]amino-N-(2-methylpropyl)benzamide

Figure 4: An ICL prompt example for smiles2iupac prediction

→ Knowledge Data -

Long before the ML

Johannes Kepler

Isaac Newton

Eratosthenes

Denote the dataset.

		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (passed)	(passed)
John	22	5		4 Brown	English	2	TRUE
Aahna	17	4		5 Brown	Hindi	4	TRUE
Emily	25	5		5 Blue	Chinese	2	TRUE
Michael	27	8		4 Green	French	2	TRUE
Some student	23	က		3 NA	Esperanto	2	FALSE

Observation (or datum, or data point) is one piece of information.

				•	_		
		Statistics	Python		Native		Target
Name	Age	(mark)		Eye color language	language	Target (mark) (passed)	passed)
John	22	2	4	4 Brown	English	9	TRUE
Aahna	17	4	5	5 Brown	Hindi	4	TRUE
Emily	25	5	5	5 Blue	Chinese	2	TRUE
Michael	27	8	4	4 Green	French	2	TRUE
Some							
student	23	3	က	3 NA	Esperanto	2	FALSE

In many cases the observations are supposed to be *i.i.d.*

independent

identically distributed

	<u>'</u>
•	peri
	p 0
-	pecial
	lictor) represents some special property
	ents s
	repres
•	ctor)
	predi
	<u> </u>
	eature

Feature	(or pi	redictor)	represer	its some	Feature (or predictor) represents some special property.	oroperty.	
	1	Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (passed)	(passed)
John	22		5 4	4 Brown	English	9	TRUE
Aahna	17	,	4	5 Brown	Hindi	4	TRUE
Emily	25		5 5	5 Blue	Chinese	5	TRUE
Michael	27		3	4 Green	French	5	TRUE
Some							
student	23		3	3 NA	Esperanto	2	FALSE

features	
are	
<u></u>	
These (
_	

		Statistics	Python		Native	•	Target
Vame	Age	(mark)	(mark)	Eye color language	language	Target (mark) (passed)	(passed)
John	22	5		4 Brown	English	5	TRUE
Aahna	17	4	5	5 Brown	Hindi	4	TRUE
≣mily	25	5		5 Blue	Chinese	5	TRUE
Michael	27	က		4 Green	French	5	TRUE
Some student	23	က	က	3 NA	Esperanto	2	FALSE

	res
	\supset
	=
	$\boldsymbol{\omega}$
	<u>ळ</u>
L	$\underline{\underline{\Psi}}$
	•
	<u>ወ</u>
	ニ
	ī
	١٧
	_
	#
	a
	se all
	se all

)							
		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (passed)	(passed)
John	22	5	4	4 Brown	English	5	TRUE
Aahna	17	4	2	5 Brown	Hindi	4	TRUE
Emily	25	5	5	5 Blue	Chinese	2	TRUE
Michael	27	3	4	4 Green	French	2	TRUE
Some student	23	3	က	3 NA	Esperanto	2	FALSE

These all are features

		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (passed)	(passed)
John	22	2		4 Brown	English	5	TRUE
Aahna	17	4		5 Brown	Hindi	4	TRUE
Emily	25	2		5 Blue	Chinese	5	TRUE
Michael	27	3		4 Green	French	5	TRUE
Some student	23	3		3 NA	Esperanto	2	FALSE

These all are features

		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (passed)	(passed)
John	22	5		4 Brown	English	5	TRUE
Aahna	17	4		5 Brown	Hindi	4	TRUE
Emily	25	5		5 Blue	Chinese	2	TRUE
Michael	27	e		4 Green	French	2	TRUE
Some student	23	က		3 NA	Esperanto	2	FALSE

And even the name is a feature

↓		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (passed)	(passed)
John	22	2	4	4 Brown	English	5	TRUE
Aahna	17	4	ĽΩ	5 Brown	Hindi	4	TRUE
Emily	25	5		5 Blue	Chinese	2	TRUE
Michael	27	3	4	4 Green	French	2	TRUE
Some student	23	က	ന	3 NA	Esperanto	7	FALSE

(despite it might be not informative)

The design matrix contains all the features and observations.

		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (passed)	(bassed)
John	22	5	4	4 Brown	English	2	TRUE
Aahna	17	4	5	5 Brown	Hindi	4	TRUE
Emily	25	5	5	5 Blue	Chinese	5	TRUE
Michael	27	3	4	4 Green	French	5	TRUE
Some student	23	8	က	3 NA	Esperanto	2	FALSE

Features can even be multidimensional, we will discuss it later in this course.

Target represents the information we are interested in.

	-	Statistics	Python		Native		Target
Name	Age	(mark)		Eye color language	language	Target (mark) (passed)	(passed)
John	22	5		4 Brown	English	5	TRUE
Aahna	17	4	5	5 Brown	Hindi	4	TRUE
Emily	25	5		5 Blue	Chinese	2	TRUE
Michael	27	3		4 Green	French	2	TRUE
Some student	23	က	က	3 NA	Esperanto	2	FALSE

Target can be either a **number** (real, integer, etc.) – for regression problem

Target represents the information we are interested in.

		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (passed)	(bassed)
John	22	5	4	4 Brown	English	5	TRUE
Aahna	17	4	5	5 Brown	Hindi	4	TRUE
Emily	25	5	2	5 Blue	Chinese	5	TRUE
Michael	27	က	4	4 Green	French	5	TRUE
Some student	23	က	က	3 NA	Esperanto	2	FALSE

Or a label – for classification problem

Target represents the information we are interested in.

	-						
		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (passed)	(passed)
John	22	5	4	4 Brown	English	5	TRUE
Aahna	17	4	5	5 Brown	Hindi	4	TRUE
Emily	25	2	5	5 Blue	Chinese	5	TRUE
Michael	27	က	4	4 Green	French	5	TRUE
Some student	23	က	က	3 NA	Esperanto	2	FALSE

Mark can be treated as a label too (due to finite number of labels:

1 to 5). We will discuss it later.

Further	we wil	work wil	th the nu	ımerical	Further we will work with the numerical target (mark)	ıark)
		Statistics	Python		Native	
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark)
John	22	2		4 Brown	English	5
Aahna	17	4	5	5 Brown	Hindi	4
Emily	25	5		5 Blue	Chinese	5
Michael	27	3	4	4 Green	French	5
Some student	23	3	က	3 NA	Esperanto	2

The *prediction* contains values we predicted using some *model*.

				_)	
		Statistics	Python		Native		Predicted
Name	Age	(mark)		Eye color language		Target (mark) (mark)	(mark)
John	22	2		4 Brown	English	9	4.5
Aahna	17	4		5 Brown	Hindi	4	4.5
Emily	25	5		5 Blue	Chinese	5	2
Michael	27	8		4 Green	French	5	3.5
Some student	23	m		3 NA	Esperanto	2	က

One could notice that prediction just averages of Statistics and Python marks. So our *model* can be represented as follows: $\max \hat{\mathbf{k}}_{ML} = \frac{1}{2} \mathrm{mark}_{Statistics} + \frac{1}{2} \mathrm{mark}_{Python}$

The *prediction* contains values we predicted using some *model*.

)	
		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (mark)	(mark)
John	22	2		4 Brown	English	2	4.5
Aahna	17	4		5 Brown	Hindi	4	4.5
Emily	25	5		5 Blue	Chinese	5	2
Michael	27	8		4 Green	French	5	3.5
Some student	23	8		3 NA	Esperanto	2	က

Different models can provide different predictions:

$$\operatorname{mark}_{ML} = \frac{1}{2} \operatorname{mark}_{Statistics} + \frac{1}{2} \operatorname{mark}_{Python}$$

The *prediction* contains values we predicted using some *model*.

		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (mark)	(mark)
nhol	22	2	4	4 Brown	English	5	_
Aahna	17	4	2	5 Brown	Hindi	4	5
Emily	25	5		5 Blue	Chinese	5	2
Michael	27	3	4	4 Green	French	5	4
Some student	23	က	က	3 NA	Esperanto	2	က

Different models can provide different predictions:

 $mark_{ML} = random(integer from [1; 5])$

The pre	dictio	n contair	s values	s we pre	The prediction contains values we predicted using some model.	ing some	model.
		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (mark)	(mark)
John	22	2		4 Brown	English	5	1
Aahna	17	4		5 Brown	Hindi	4	5
Emily	25	5		5 Blue	Chinese	5	2
Michael	27	က		4 Green	French	5	4
Some student	23	က		3 NA	Esperanto	2	က

Different models can provide different predictions.

Usually some hypothesis lies beneath the model choice.

Loss function measures the error rate of our model.

Square		Predicted
deviation	Target (mark) (mark)	(mark)
16	9	_
_	4	5
o o	5	2
_	5	4
_	2	က

Mean Squared Error (where y is vector of targets):

$$MSE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} ||\mathbf{y} - \hat{\mathbf{y}}||_2^2 = \frac{1}{N} \sum_i (y_i - \hat{y}_i)^2$$

Loss function measures the error rate of our model.

Absolute		Predicted
deviation	Target (mark) (mark)	(mark)
4	2	_
_	4	2
က	5	2
_	5	4
	2	က

Mean Absolute Error (where y is vector of targets):

$$MAE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} ||\mathbf{y} - \hat{\mathbf{y}}||_1 = \frac{1}{N} \sum_{i} |y_i - \hat{y}_i|$$

To learn something, our *model* needs some degrees of freedom:

		ò			`		
		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (mark)	(mark)
John	22	2		4 Brown	English	2	4.5
Aahna	17	4		5 Brown	Hindi	4	4.5
Emily	25	2		5 Blue	Chinese	5	5
Michael	27	8		4 Green	French	5	3.5
Some student	23	က		3 NA	Esperanto	2	က

 $\text{mark}_{ML} = w_1 \cdot \text{mark}_{Statistics} + w_2 \cdot \text{mark}_{Python}$

To learn something, our *model* needs some degrees of freedom:

)		
		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (mark)	(mark)
John	22	2		4 Brown	English	2	4.447
Aahna	17	4		5 Brown	Hindi	4	4.734
Emily	25	2		5 Blue	Chinese	5	5.101
Michael	27	8		4 Green	French	5	3.714
Some student	23	м		3 NA	Esperanto	2	3.060

 $\text{mark}_{ML} = w_1 \cdot \text{mark}_{Statistics} + w_2 \cdot \text{mark}_{Python}$

To learn something, our *model* needs some degrees of freedom:

		ò)		
		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color language	language	Target (mark) (mark)	(mark)
John	22	2		4 Brown	English	9	_
Aahna	17	4	5	5 Brown	Hindi	4	5
Emily	25	5		5 Blue	Chinese	5	2
Michael	27	8		4 Green	French	5	4
Some student	23	n		3 NA	Esperanto	2	က

 $\operatorname{mark}_{ML} = \operatorname{random}(\operatorname{integer from} [1; 5])$

Last term we should learn for now is hyperparameter.

Hyperparameter should be fixed before our model starts to work

with the data.

We will discuss it later with kNN as an example.

- Dataset
- Observation (datum)
- Feature
- Design matrix
- Target
- Prediction
- Model
- Loss function
- Parameter
- Hyperparameter

Maximum Likelihood Estimation

Likelihood

Denote dataset generated by distribution with parameter heta

Likelihood function:

$$L(\theta|X,Y) = P(X,Y|\theta)$$

 $L(\theta|X,Y) \longrightarrow \max_{\theta}$

samples should be i.i.d.

 $L(\theta|X,Y) = P(X,Y|\theta) = \prod P(x_i,y_i|\theta)$

36

Likelihood function:

$$L(\theta|X,Y) = P(X,Y|\theta)$$

 $L(\theta|X,Y) \longrightarrow \max_{\theta}$

samples should be i.i.d.

 $L(\theta|X,Y) = P(X,Y|\theta) = \prod P(x_i,y_i|\theta)$

equivalent to

 $\log L(\theta|X,Y) = \sum_{\theta} \log P(x_i, y_i|\theta) \longrightarrow \max_{\theta}$

38

Machine Learning problems overview

Supervised learning problem statement

Let's denote:

Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where

$$\circ$$
 $(x \in \mathbb{R}^p, y \in \mathbb{R})$ for regression

$$\mathbf{x}_i \in \mathbb{R}^p$$
 $\mathbf{y}_i \in \{+1,-1\}$

o
$$\mathbf{x}_i \in \mathbb{R}^p$$
 , $y_i \in \{+1, -1\}$ for binary classification

- Model $f(\mathbf{x})$ predicts some value for every object
- Loss function $\,Q({f x},y,f)\,\,$ that should be minimized

40

Regression problem Classification problem

kNN - k Nearest Neighbors

k Nearest Neighbors Method

Given a new observation:

1. Calculate the distance to each of the samples in the dataset. Select samples from the dataset with the minimal distance to them. ر ا

The label of the new observation will be the most frequent label among those nearest neighbors. The number of neighbors k (it is a hyperparameter)

How to make it better?

- The number of neighbors k (it is a hyperparameter)
- The distance measure between samples
- a. Hamming
- b. Euclidean
- c. cosine
- d. Minkowski distances
- e etc
- Weighted neighbours

Weights can be adjusted according to the neighbors order, $w(\mathbf{x}_{(i)}) = w_i$

Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

or on the distance itself

$$w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$$

Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

or on the distance itself

$$w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$$

$$p_{\text{green}} = \frac{w(\mathbf{x}_1) + w(\mathbf{x}_2)}{w(\mathbf{x}_1) + w(\mathbf{x}_2) + w(\mathbf{x}_3) + w(\mathbf{x}_4)}$$

 Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

or on the distance itself

$$w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$$

$$p_{\text{blue}} = \frac{w(\mathbf{x}_3) + w(\mathbf{x}_4)}{w(\mathbf{x}_1) + w(\mathbf{x}_2) + w(\mathbf{x}_3) + w(\mathbf{x}_4)}$$

- Remember the i.i.d. property
- Usually the first dimension corresponds to the batch size,
- the second (and so on) to the features/time/...
- Even the naïve assumptions may be suitable in some
 - cases
 - Simple models provide great baselines

Model validation and evaluation

Let's denote:

Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where

$$\circ$$
 $(x \in \mathbb{R}^p, y \in \mathbb{R})$ for regression

o
$$\mathbf{x}_i \in \mathbb{R}^p$$
 , $y_i \in \{+1, -1\}$ for binary classification

Model
$$f(\mathbf{x})$$
 predicts some value for every object

Loss function $\,Q({f x},y,f)\,\,$ that should be minimized

Overfitting vs. underfitting

Overfitting vs. underfitting

We can control overfitting / underfitting by altering model's capacity (ability to fit a wide variety of functions):

select appropriate hypothesis space

learning algorithm's effective capacity may be less than the representational capacity of the model family

Image credit: Joseph Nelson @iosephofiowa

Holdout Method Testing Dataset Training

Is it good enough?

Image credit: Joseph Nelson @iosephofiowa

Image credit: Joseph Nelson @iosephofiowa

Image credit: Joseph Nelson @iosephofiowa

