

- ❖ Spanning Tree Protocol (STP) is a Layer 2 protocol that runs on bridges and switches.
- * Spanning Tree Protocol (STP) is enabled by default.
- ❖ Spanning Tree Protocol (STP) uses Spanning-Tree Algorithm (STA) to search for the redundant links between bridges and switches.
- * Spanning Tree Protocol (STP) automatically disables the ports of the redundant links, thus preventing possible network loops.
- Using redundant links without enabling spanning tree protocol causes three problems on switched networks:
- 1. Broadcast storms: The forwarding of a frame repeatedly on the same links, consuming significant parts of the links' capacities.
- 2. Multiple frame transmission: sending multiple copies of one frame to the intended host.
 - 3. MAC table instability: updating the MAC Address Table with a new entries in reaction to looping frames.

Types of Spanning Tree Protocols

Types of Spanning Tree Protocols

- ❖ In 1985. the Digital Equipment Corporation (DEC) invented the first spanning tree protocol, called DEC STP.
- ❖ In 1990, the IEEE published the first standard of the spanning tree protocol (STP) as 802.1D.

IEEE 802.1D is called Common Spanning Tree (**CST**), it creates **one spanning-tree instance** for the entire network.

- ❖ Per-VLAN Spanning Tree (PVST+) is a Cisco enhancement of STP that provides a separate 802.1D spanning-tree instance for each VLAN configured in the network.
- ❖ In 2001, the IEEE introduced Rapid Spanning Tree Protocol (RSTP) as 802.1w.

RSTP provides significantly **faster spanning tree convergence** after a topology change and it is backwards-compatible with standard STP.

- * Rapid Per-VLAN Spanning Tree (Rapid PVST+) is a Cisco enhancement of RSTP that uses PVST+ and provides a separate instance of 802.1w for each VLAN..
- ❖ In 2002, the IEEE introduced Multiple Spanning Tree Protocol (MSTP) as 802.1s, That allows multiple VLANs to be managed by a single STP instance and supports per-VLAN STP.
- ❖ In 2004, the IEEE integrated RSTP into 802.1D and obsoleted the original STP standard.

STP Standards and Configuration Options

	Name	Based on STP or RSTP?	# Trees	Original IEEE Standard	Configuration Command				
	STP	STP	1 (CST)	IEEE 802.1D	N/A				
	PVST+	STP	1/VLAN	IEEE 802.1D	#spanning-tree mode pvst				
	RSTP	RSTP	1 (CST)	IEEE 802.1w	N/A				
	Rapid PVST+	RSTP	1/VLAN	IEEE 802.1w	#spanning-tree mode rapid-pvst				
	. MSTP	RSTP	1 or more*	IEEE 802.1s	#spanning-tree mode mst				
	Switch(config)#spanning-tree mode ?								
Multiple spanning tree mode Per-Vlan spanning tree mode									
							Ĺ		

Bridge ID (BID)

- ❖ Bridge ID or BID is an 8-byte field which is divided into two parts. The first part is a 2-byte Bridge Priority field while the second part is the 6-byte burned-in MAC address of the switch.
- ☐ Bridge ID without Extended System ID, one Spanning Tree instance:

☐ Bridge ID with Extended System ID, Multiple Spanning Tree instances :

Bridge ID with Extended System ID

☐ Bridge ID with Extended System ID, Multiple Spanning Tree instances :

Bridge Priority				Extended System ID											
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	◆														

- > Bridge Priority Field can only be set in increments of 4096.
- > 0, **4096**, **8192**, 12288, **16384**, 20480, 24576, 28672, **32768**, 36864, 40960, 45056, 49152, 53248, 57344, 61440.
- Cisco Switch default bridge priority is 32768 or 0x8000.

Bridge ID with Extended System ID

			Name	Based on STP or RST	P? # Trees	Original IEEE Standard	Configuration Command
Switch#show s	panning-tree	2	STP	STP	1 (CST)	IEEE 802.1D	N/A
VLAN0001		•	PVST+	STP	1/VLAN	IEEE 802.1D	#spanning-tree mode pvst
Spanning tr	ee enabled p	rotoco	l ieee				
Root ID	Priority	32769					
	Address	0014.f	251.0700)			
	This bridge	is the	root				
	Hello Time	2 sec	Max Ag	ge 20 sec	Forward	Delay 15 se	С
	Priority <u>Address</u> Hello Time Aging Time	0014.f	251.0700 Max Ag	-			С
Interface	Role	Sts Co	st	Prio.Nbr	Туре		
Fa0/1	Desg	FWD 19		128.1	P2p		

Bridge ID Examples

How Spanning Tree Works

- ❖ The STP algorithm creates a spanning tree of interfaces that forward frames by choosing the interfaces that should be placed into a forwarding state and choosing the interfaces that should be placed into a blocking state.
- * STP uses three criteria to choose whether to put an interface in forwarding state or blocking state:

Bridge Protocol Data Units (BPDU)

- ❖ Bridge Protocol Data Units (BPDUs) are frames that contain information about the spanning tree protocol (STP).
- * STP sends BPDUs using a unique source MAC address from its origin port to a multicast address with destination MAC (01:80:C2:00:00:00)
- **❖ BPDU Messages :**
 - 1. Configuration BPDU (Hello BPDU), sent by the root bridge to provide information to all switches every 2 seconds.
 - **2. TCN (Topology Change Notification),** sent by **bridges** towards the **root bridge** to notify changes in the topology.

SRC ADDR: 0001.4329.B901 **DEST ADDR: 0180.C200.0000**

ROOT ID : 32769 / 0001.424C.5861

BRIDGE ID: 32769 / 0001.424C.5861

SRC ADDR: 000C.CF4D.8E02 **DEST ADDR: 0180.C200.0000**

ROOT ID : 32769 / 0001.424C.5861

BRIDGE ID: 32769 / 0002.1657.3397

SRC ADDR: 0001.C93C.A902 **DEST ADDR: 0180.C200.0000**

ROOT ID : 32769 / 0001.424C.5861

BRIDGE ID: 32769 / 0090.0C06.2DBD

Fa0/1 --> MAC Addr: 0001.4329.B901

Fa0/2 --> MAC Addr: 000C.CF4D.8E02

Fa0/2 --> MAC Addr: 0001.C93C.A902

BRIDGE ID: 32769 / **0002**.1657.3397 BRIDGE ID: 32769 / 0090.0C06.2DBD

BRIDGE ID: 32769 / **0001**.424C.5861

SW4

Port Cost

The port cost is defined by the speed at which the port operates.

Link Speed	Cost
10 Mbps	100
100 Mbps	19
1 Gbps	4
10 Gbps	2

SRC ADDR: 0001.4329.B901

DEST ADDR: 0180.C200.0000

ROOT ID : 32769 / 0001.424C.5861

Fa0/1

BRIDGE ID: 32769 / 0001.424C.5861

Cost = 0

SRC ADDR: 000C.CF4D.8E02

DEST ADDR: 0180.C200.0000

POOT ID + 22760 / 00

ROOT ID: **32769 / 0001.424C.5861**BRIDGE ID: **32769 / 0002.1657.3397**

Cost = 19

Fa0/1

Cost = 19 + 0 = 19

SRC ADDR: 0001.C93C.A902 **DEST ADDR: 0180.C200.0000**

ROOT ID: **32769 / 0001.424C.5861**BRIDGE ID: **32769 / 0090.0C06.2DBD**

Cost = 19 + 19 = 38

Fa0/1 --> MAC Addr : 0001.4329.B901

W2 Fa0/2 --> MAC Addr : 000C.CF4D.8E02

Cost = 19

Sw3 Fa0/2 --> MAC Addr : 0001.C93C.A902

SW4

Fa0/1

BRIDGE ID: 32769 / 0001.424C.5861

BRIDGE ID: 32769 / 0002.1657.3397

BRIDGE ID: 32769 / 0090.0C06.2DBD

Port Identifier

- ❖ Port identifier is a 16-bit field, 8 bits for the port priority and 8 bits for the port number.
- ❖ The port priority is a value from 0 to 255 and defaults to 128 for all ports.
- ❖ The port number can range from 0 to 255 and represents the port's actual physical mapping.

Wireshark BPDU Frame

```
> Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
> IEEE 802.3 Ethernet
> Logical-Link Control
Spanning Tree Protocol
    Protocol Identifier: Spanning Tree Protocol (0x0000)
    Protocol Version Identifier: Spanning Tree (0)
    BPDU Type: Configuration (0x00)

▼ BPDU flags: 0x00
      0... = Topology Change Acknowledgment: No
      .... ...0 = Topology Change: No

▼ Root Identifier: 32768 / 100 / 00:1c:0e:87:78:00

      Root Bridge Priority: 32768
      Root Bridge System ID Extension: 100
      Root Bridge System ID: Cisco_87:78:00 (00:1c:0e:87:78:00)
    Root Path Cost: 4

▼ Bridge Identifier: 32768 / 100 / 00:1c:0e:87:85:00

      Bridge Priority: 32768
      Bridge System ID Extension: 100
      Bridge System ID: Cisco_87:85:00 (00:1c:0e:87:85:00)
    Port identifier: 0x8004
    Message Age: 1
    Max Age: 20
    Hello Time: 2
    Forward Delay: 15
```


STP Convergence

STP Timers

❖ Hello Timer: the time between each configuration BPDUs that is sent on a designated port (DP).

> Default value : 2 seconds.

❖ MaxAge : the time interval that a switch stores a configuration BPDU before discarding it.

> Default value : 10 times Hello.

❖ Forward delay: the time interval that a switch port spends in both the Listening and Learning states.

> Default value: 15 seconds.

Port Roles and Port States

Port Roles and Port States

Blocking 20 seconds

Role	State	
Disabled	Disabled	
Root Port	Forwarding	
Designated Port	Forwarding	
Non-Designated	Blocking	
Transition	Listening	
Hansition	Learning	
Disabled	Listening	15 seconds

Listening

	Role	State		
ľ	Disabled	Disabled		
	Root Port	Forwarding		
	Designated Port	Forwarding		
	Alternate	Blocking		
	Transition	Listening		
	Transition	Learning		
	Learning 15 sec	onds Forwarding		

15 seconds

Forwarding

15 seconds

Learning |

Rapid STP (802.1w)

- ❖ In 2001, the IEEE introduced Rapid Spanning Tree Protocol (RSTP) as 802.1w.
- ❖ In 2004, IEEE integrated RSTP into the STP 802.1D standard.
- RSTP provides significantly faster spanning tree convergence after a topology change.
- RSTP is backwards-compatible with standard STP.
- Most modern networks use RSTP instead of STP.
- The most recent models and IOS versions of Cisco switches default to use RSTP (RPVST+) instead of STP (PVST+).
- ❖ STP takes a long time to converge (50 seconds).
- RSTP takes few seconds to converge (6 seconds).
- RSTP can replace a root port, without any waiting to reach a forwarding.
- * RSTP can replace a designated port, without any waiting to reach a forwarding state.
- ❖ With STP, only root switch generates configuration BPDU and sends it to all other switches.
- ❖ With RSTP, each switch independently generates its own configuration BPDU.
- RSTP allows for queries between neighbors, rather than waiting on timers to expire.

Port Roles and Port States

Role	State	
Disabled	Disabled	
Alternat	Blocking	
Transition	Listening (15 sec)	
ITalisition	Learning (15 sec)	
Root Port	Famusadias	
Designated Port	Forwarding	

Role	State	
Disabled	Discarding	
Alternate	Discarding	
Backup	Discarding	
Transition	Learning	
Root Port	Forwarding	
Designated Port	Forwarding	

STP BPDU and RSTP BPDU

STP BPDU

Spanning Tree Protocol

Protocol Identifier: Spanning Tree Protocol (0x0000)

Protocol Version Identifier: Spanning Tree (0)

BPDU Type: Configuration (0x00)

BPDU flags: 0x00

0... = Topology Change Acknowledgment: No

.... ... 0 = Topology Change: No

Root Identifier: 32768 / 1 / 50:00:00:01:00:00

Root Path Cost: 0

Bridge Identifier: 32768 / 1 / 50:00:00:01:00:00

Port identifier: 0x8001

Message Age: 0 Max Age: 20

Hello Time: 2 Forward Delay: 15

RSTP BPDU

Spanning Tree Protocol

Protocol Identifier: Spanning Tree Protocol (0x0000)

Protocol Version Identifier: Rapid Spanning Tree (2)

BPDU Type: Rapid/Multiple Spanning Tree (0x02)

BPDU flags: 0x0e, Port Role: Designated, Proposal

0... = Topology Change Acknowledgment: No

.0.. = **Agreement**: No

..0. = **Forwarding**: No

...0 = **Learning**: No

.... 11.. = **Port Role**: Designated (3)

.... ..1. = **Proposal**: Yes

.... ... 0 = Topology Change: No

Root Identifier: 32768 / 1 / 50:00:00:01:00:00

Root Path Cost: 0

Bridge Identifier: 32768 / 1 / 50:00:00:01:00:00

Port identifier: 0x8001

Message Age: 0

Max Age: 20 Hello Time: 2

Forward Delay: 15 Version 1 Length: 0

STP and RSTP Port Costs

Data rate	STP cost	RSTP cost
10 Mbit/s	100	2,000,000
100 Mbit/s	19	200,000
1 Gbit/s	4	20,000
2 Gbit/s	3	10,000
10 Gbit/s	2	2,000
100 Gbit/s	N/A	200
1 Tbit/s	N/A	20

RSTP Port Types

- Point-to-Point Edge ports—These are the interfaces/ports connected to hosts. These interfaces are immediately moved to the forwarding state.
- Point-to-Point Ports—These are the interfaces/ports connected directly to neighboring switches over a point-to-point link.
 - > RSTP negotiates with the neighbor switch for rapid convergence/transition only when the link is point-to-point
- Shared Ports—These are the interfaces/ports that operate in half-duplex mode (Hub).

Configuring RSTP

SW# configure terminal
SW(config)# spanning-tree mode rapid-pvst
SW(config)# end
SW1# show spanning-tree

SW#show spanning-tree VLAN0001 Spanning tree enabled protocol rstp Root ID Priority 32769

STP PortFast and BPDU Guard

- ❖ PortFast is a Cisco proprietary feature that causes a switch port to enter forwarding state immediately, bypassing the listening and learning states.
- ❖ PortFast minimizes the spanning-tree convergence time.
- PortFast feature can be enabled on an access port connected to an workstation such as a computer or a printer or on a trunk port connected to a router or a server.
- **Enabling** PortFast feature on a switch port connected to another switch port can causes **broadcast storms**.
- ❖ PortFast is useful for DHCP. Without PortFast, a PC can send a DHCP request before the port is in forwarding state, denying the host from getting an IP address.
- * BPDU Guard feature Prevents accidental connection of switching devices to PortFast-enabled ports.
- ❖ BPDU Guard puts an interface configured for STP PortFast into the err-disable state upon receipt of a BPDU.

Configuring PortFast and BPDU Guard

SW1> enable

SW1# configure terminal

SW1(config)# spanning-tree portfast default

SW1(config)# spanning-tree portfast bpduguard default

SW1(config)# end

SW1# show spanning-tree summary

SW1# show spanning-tree interface portfast SW1> enable

SW1# configure terminal

SW1(config)# interface range fa0/1 - 24

SW1(config-if)# spanning-tree portfast

SW1(config-if)# spanning-tree bpduguard enable

SW1(config-if)# end

SW1#

SW1> enable

SW1# configure terminal

SW1(config)# interface range Gig0/1 - 2

SW1(config-if)# spanning-tree portfast trunk

SW1(config-if)# spanning-tree bpduguard enable

SW1(config-if)# end

SW1#

Configuring PortFast

