

A MATHEMATICAL MODEL FOR THE STARTING PROCESS OF A TRANSONIC LUDWIEG TUBE WIND TUNNEL

VON KARMAN GAS DYNAMICS FACILITY
ARNOLD ENGINEERING DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
ARNOLD AIR FORCE STATION, TENNESSEE 37389

June 1976

Final Report for Period July 1974 - April 1975

Approved for public release; distribution unlimited.

Prepared for

DIRECTORATE OF TECHNOLOGY (DY)
ARNOLD ENGINEERING DEVELOPMENT CENTER
ARNOLD AIR FORCE STATION, TENNESSEE 37389

NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

APPROVAL STATEMENT

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

MARION L. LASTER

Research & Development

Division

Directorate of Technology

prat o figs

ROBERT O. DIETZ

Director of Technology

UNCLASSIFIED

	READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT AC	CESSION NO. 3. RECIPIENT'S CATALOG NUMBER
AEDC-1R-10-39	
4. TITLE (and Subtitle) A MATHEMATICAL MODEL FOR THE STARTIN	G Final Report - July 1974 April 1975
PROCESS OF A TRANSONIC LUDWIEG TUBE WIND TUNNEL	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)
Frederick L. Shope - ARO, Inc.	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Arnold Engineering Development Cente	r (DY) 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Air Force Systems Command Arnold Air Force Station, Tennessee	37389 Program Element 65807F
11. CONTROLLING OFFICE NAME AND ADDRESS Arnold Engineering Development Cente	r (DYFS) 12. REPORT DATE June 1976
Air Force Systems Command Arnold Air Force Station, Tennessee	37389 134
14. MONITORING AGENCY NAME & ADDRESS(it different from Contro	
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distrib	
17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20,	ii diitereni irom kepon)
18. SUPPLEMENTARY NOTES	
Available in DDC	
19. KEY WORDS (Continue on reverse side if necessary and identify by	block number)
	est facilities
	eynolds number
wind tunnels a	erodynamics
20. ABSTRACT (Continue on reverse side if necessary and identify by	block number)
A simplified mathematical model flow process of starting a transonic	
rrough or pearerne a cransourc	Harmitop case with culture, the

A simplified mathematical model is presented for the unsteady flow process of starting a transonic Ludwieg tube wind tunnel. The hardware modeled consists of a porous-walled test section surrounded by a plenum chamber with an exhaust system independent of the tunnel's main starting valves, which are located downstream of the diffuser-test section. In the present method, the hardware is modeled as three control volumes: the plenum, the test section,

UNCLASSIFIED

20. ABSTRACT (Continued)

and the diffuser. The plenum is treated with the unsteady integral continuity equation with one-dimensional influx or outflux through the porous wall, through the plenum exhaust system, and through the flaps, which exhaust into the diffuser. The other two control volumes are treated with the steady integral continuity equation and a steady, adiabatic, one-dimensional energy equation whose stagnation conditions vary in time according to the classical solution for an unsteady expansion wave. Numerical solutions are compared with experimental pressure-time histories of a small, transonic, high Reynolds number tunnel referred to as HIRT. Agreement between the model and experiment is good.

AFS C Arnold AFS Tenn

PREFACE

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under Program Element 65807F. The results were obtained by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of AEDC, AFSC, Arnold Air Force Station, Tennessee. The research was done under ARO Project No. V37A-32A in support of the High Reynolds Number Wind Tunnel (HIRT) project. The author of this report was Frederick L. Shope, ARO, Inc. The manuscript (ARO Control No. ARO-VKF-TR-75-147) was submitted for publication on September 26, 1975.

The author wishes to acknowledge R. F. Starr and M. O. Varner for their many helpful discussions and the fruitful suggestions they made during the course of this effort.

				≫
				_
				¥
·				
	•			

CONTENTS

			Pa	ige
1.0	INTRODUCTION		•	7
2.0	THE MATHEMATICAL MODEL			_
	2.1 Description of the Physical Situation to be Modeled	•	•	8
	2.2 Goal of the Modeling	•	•	14
	2.3 Formal Assumptions		•	16
	2.4 Mathematical Formulation			17
	2.5 Solution Procedure		•	25
3.0	RESULTS			
	3.1 Description of Pilot Hardware			31
	3.2 Comparison of Math Model and Experiment			35
	3.3 Other Results from the Math Model		• '	43
	3.4 Application of the Math Model			47
4.0	SUMMARY AND CONCLUSIONS			50
	REFERENCES			51
	ILLUSTRATIONS			
Figu	<u>are</u>			
1	Major Components of the High Reynolds Number Wind Tunnel			9
	Schematic Illustration of the Flow Process during Start			
	Qualitative Plot of the Energy Equation			
	Energy Dome versus Position in Test Section for			
	Normal Subsonic Flow			12
5	Energy Dome versus Position in Test Section for			
٠.	Normal Supersonic Flow			12
6.	Energy Dome versus Position in Test Section for Subsonic			
	Flow with Choked Nozzle			13
7.	Porous Wall and Flap Flow Coefficients	·	·	
• •	a. Porous Wall Flow Coefficient versus Porosity (τ)			19
	b. Ejector Flap Flow Coefficient versus Area	·	•	
	Ratio (A_f/A_{ts})			19
8.	Wall Porosity in Pilot HIRT			
	Flow Chart of Solution Procedure			
	Logic for Numerical Solution of an Algebraic Equation $Y = F(X)$ for X ,	•	•	
10.	Given Y when $X = F^{-1}(Y)$ is not a Closed Form Function			27
	Circle 2 milet 22 1 (1) is not a closed I offit I diletton	•	•	/

AEDC-TR-76-39

Figu	<u>are</u>	Page
11.	Plenum Pressure versus Iteration Number for Convergent	
	and Divergent Cases	. 29
12.	Pilot HIRT Elevation Line Drawing	. 32
13.	Cross-Sectional View of Nozzle, Test Section, Diffuser, and	
	Main Valve System	. 33
14.	Plenum Exhaust System	. 34
15.	Plenum Pressure versus Time for Subsonic Run with Medium	
	Plenum Volume	. 37
16.	Plenum Pressure versus Time for Subsonic Run with Small	
	Plenum Volume	. 38
17.	Plenum Pressure versus Time for Subsonic Run with Large	
	Plenum Volume	. 38
18.	Plenum Exhaust Area-Time Curve for Mach 1.039 Run	. 39
19.	Plenum Pressure versus Time for Supersonic Run (Mach 1.039)	
	with Plenum Exhaust	. 39
20.	Plenum Pressure versus Time for Supersonic Run (Mach 1.228)	
	with Plenum Exhaust	. 40
21.	Plenum Pressure versus Time for Supersonic Run with Sliding	
	Sleeve Valve and Plenum Exhaust	. 41
22.	Plenum Pressure versus Time for Supersonic Run with 1-1/2-percent	
	Porosity and No Plenum Exhaust	. 41
23.	Plenum Pressure versus Time for Subsonic Run with Small	
	Flap Setting	. 42
24.	Plenum Pressure versus Time for Subsonic Run with Large	
	Flap Setting	. 42
	Various Pressures versus Time for Nominal Conditions	. 44
26.	Various Pressures versus Time for Supersonic Run with	
	Plenum Exhaust	. 44
27.	Steady-State Values of Correction Coefficients, A ₁₅ and A ₁₆	
	a. Momentum Correction Coefficient (A ₁₅) and Flap Correction	
	Coefficient (A ₁₆) versus Steady Test Section Mach Number	. 45
	b. Assumed Variation with Test Section Mach Number (M _d) of	
	Momentum (A_{15}) and Flap (A_{16}) Correction Coefficients	
20	during Starting Process	. 45
28.	Relative Theoretical Mass Flow Rate for Nominal Conditions	
20	(Run 2258) of Subsonic Flow with No Plenum Exhaust	. 46
29.	Relative Mass Flow Rates for a Supersonic Run (Mach 1.228)	
	with Plenum Exhaust (Run 2255)	. 47

Figu	<u>ire</u>	_	Pag	<u>şe</u>
	Nondimensional Equal Area Plenum Exhaust Area-Time Curves		4	8ء
01.	Curves with Same Integrated Area		. 4	9
32.	Transient Loading of Test Section Wall at Exit for Nominal			
	Conditions and Selected Deviations		5	0
	TABLES			
1.	List of Exact Simultaneous Equations		2	3
2.	Geometric Data for Pilot HIRT Required by			
_	Mathematical Model		3	4
3.	Summary of Run Conditions for Experimental Data		_	_
	to be Compared with Theory	•	3	6
	APPENDIXES			
A.	SMALL PERTURBATION SOLUTION	•	5	3
В.	APPROXIMATED EQUATIONS		5	6
C.	DESCRIPTION OF THE COMPUTER PROGRAM HIRTSM1		5	7
	NOMENCLATURE		13	3

		-
		t.
		a
		-

1.0 INTRODUCTION

This report documents an effort to mathematically model the aerodynamics involved in the unsteady process of starting a Ludwieg Tube wind tunnel. In essence, the model represents the end product of many people assimilating a large amount of experimental data obtained from a transonic Ludwieg tube facility and, thus, depends on several experimentally derived parameters and assumptions. The wind tunnel configuration studied here consists of a very long, circular supply tube which contracts to a rectangular, porous-walled test section. The test section expands through a diffuser into a valve manifold. Surrounding the test section is a plenum chamber with exhaust valves which can be controlled independently of the main valves. In addition, the plenum contains a set of ejector flaps which allow the plenum to exhaust itself into the diffuser.

When one considers that larger scale transonic Ludwieg tube facilities would have a price of order \$10,000,000 and would produce a usable run time of only a few seconds per run, it is clear that considerable effort must be concentrated to ensure that the tunnel can be started rapidly under a wide range of operating conditions. A laboratory scale pilot facility (Ref. 1) (known as "Pilot HIRT") at Arnold Engineering Development Center provides an experimental vehicle to measure the effects of many of the important parameters in the tunnel starting process and to provide basic experimental data for verification of math models.

To clarify the need for a mathematical model of starting such a device, a brief explanation of the tunnel operation is required. Prior to a run, the tunnel is pumped to the desired charge pressure and temperature. A tunnel run is initiated by first opening the main valves downstream of the diffuser. This opening process sends unsteady expansion waves up the tunnel to the supply tube. Were it not for the plenum, the flow in the test section would become steady soon after the trailing edge of the unsteady wave from the valve, initiated by the valve area becoming steady, passed the test section into the supply tube. The test section flow cannot become steady until the plenum volume has been exhausted to the point where the summation of mass flow across the porous wall, through the flaps, and out the plenum exhaust (dumped to atmosphere) becomes zero and allows the plenum pressure to become steady. Since current state-of-the-art, fast-opening valves easily reach the required flow area in advance of the plenum becoming steady, the plenum is the primary limitation upon how quickly the tunnel can be started and steady flow established in the test section.

The present model assumes that the unsteady expansion wave emanating from the main valves propagates instantaneously to all parts of the wind tunnel and that property variation within the wave at any location in the diffuser, test section, nozzle, or supply tube is totally controlled by the area-time curve of the main valve. While partially retaining

the effect of the unsteady wave, this assumption allows use of the steady continuity equation in the test section coupled with the well-known exact solution for one-dimensional, variable area, isentropic flow (Ref. 2). Use of these equations at any instant requires a knowledge of stagnation conditions driving the flow, which vary through the nonisentropic expansion wave. Variation of the stagnation properties is computed via the exact solution for a one-dimensional unsteady wave in a variable area duct (Ref. 3). The unsteadiness of the plenum is handled via the unsteady continuity equation by equating the rate of mass accumulation in the plenum to the summation of all the flow rates entering and leaving the plenum. The air in the plenum is assumed to be a calorically perfect gas and its temperature is assumed either isentropic or equal to the stagnation temperature of the flow in the test section (whichever is greater), an experimentally based assumption. The main valves are treated as one-dimensional sonic orifices driven by the stagnation pressure and temperature of the unsteady wave. The plenum exhaust valves are handled similarly by assuming that the flow in the plenum is stagnant. Flow through the ejector flaps and across the porous wall is computed via an adaptation of the work of Ref. 4, which empirically corrected the flow rates with the pressure drops across these devices.

In the discussion which follows, the mathematical model will first be presented, including a more detailed description of the physical situation, the assumptions underlying the model, the mathematical formulation, and the solution procedure. Next, the model will be compared with a sample of experimental data from the Pilot HIRT facility. The appendixes contain some of the mathematical details and a brief user's manual for the computer program.

2.0 THE MATHEMATICAL MODEL

2.1 DESCRIPTION OF THE PHYSICAL SITUATION TO BE MODELED

All of the essential features of the proposed HIRT facility which are to be modeled are given in Fig. 1. The overall length of the facility is 1,880 ft, and the supply tube has an inside diameter of 15 ft. The main valve system consists of a number of fast-acting valves, and the plenum exhaust also requires a multiple valve system. The pilot facility provides a precisely scaled (1/13) flow envelope but has a single sliding sleeve valve in place of the valve manifold of the full-scale tunnel and a single plenum exhaust valve fed by multiple tubes from the plenum.

A tunnel run is initiated by opening the main valves and possibly the plenum valves, not necessarily together or in the same length of time. Both sets of valves send nonisentropic expansion waves throughout the tunnel and primarily up the charge tube. The main valve system produces the steepest (or strongest) wave because it handles a much greater portion

Figure 1. Major components of the High Reynolds Number Wind Tunnel.

of the flow rate than the plenum exhaust. At any point in the supply tube, the gas remains totally stagnant until the first expansion wave reaches that point; and the flow at that point does not become steady until the last expansion wave passes the point. The main valve system sends out its last expansion wave when the flow area becomes constant. The plenum also continues to send out expansion (and sometimes compression) waves until the plenum pressure becomes steady. But the plenum does not become steady until the sum of all the flows into and out of it are zero (Fig. 2), and it invariably controls the start time of the tunnel. Since the main valves are much faster than the plenum response, the pressure in the test section drops rapidly below the plenum pressure, causing mass flow to enter the test section from the plenum. As the plenum gradually catches up to the test section, the wall crossflow (across the porous test section wall) gradually decreases and, in some cases, reverses. This process, coupled with the increasing main valve area, gradually increases the flow rate drawn from the supply tube. However, the flow rate from the tube may continue to increase only until the nozzle exit becomes choked, after which the supply tube flow becomes steady since the choke point will no longer pass additional expansion or compression waves (unless the compression wave is strong enough to unchoke the nozzle). Whether the nozzle eventually chokes and whether the test section eventually steadies out to supersonic or subsonic flow depends on the relative flow areas of the main valves, the plenum exhaust valves, and the test section, the direction of the flap and wall crossflows, and how the various steady conditions are approached in time relative to each other. Subsonic and very slightly supersonic test section Mach numbers can be obtained without steady-state plenum exhaust, though the plenum exhaust may be opened temporarily and then closed in order to reduce the starting time. For subsonic flows, the steady main valve area - in terms of the ideal, one-dimensional area

at the choke point - must be as much less than the nozzle area (where the nozzle meets the entrance to the test section) as is dictated by the steady test section Mach number to be attained (neglecting diffuser losses). A slightly supersonic test section can be obtained with a steady main valve area greater than or equal to the nozzle area if the flaps and porosity are set properly, giving a flow situation as follows: with the nozzle choked and the plenum steadied at a pressure very near the static test section pressure such that the static pressure and dynamic heads of the main flow force a small crossflow into the plenum, the net test section flow decreases from the choked flow rate at the nozzle. The slightly subcritical flow rate leaving the test section thus produces a slightly supersonic condition, resulting in a favorable pressure gradient for the plenum to exhaust its incoming crossflow out the flaps and hence become steady. Normally, however, supersonic conditions (up to Mach 1.3 in the pilot) are obtained by having the plenum exhaust area become steady at a flow area sufficient to pass all of the mass flow rate entering the plenum via wall crossflow and sometimes via reverse flap flow.

Figure 2. Schematic illustration of the flow process during start.

To understand the flow in terms of the mathematical model, the various flow configurations might be best thought of in terms of the steady energy equation relating the local pressure to the mass flux (Fig. 3). Subsonic flows fall on the branch to the

right of the choke point, supersonic flows to the left. In general, all points in the tunnel are initially at point A, which corresponds to no flow. Higher flow rates with correspondingly lower static pressures are illustrated by movement from point A to B

Figure 3. Qualitative plot of the energy equation.

on the energy equation. Flows which become subsonically steady would halt to the right of C; while for supersonic flows, some portions of the tunnel would proceed beyond C to D. If the energy dome is then plotted versus axial position in the test section as shown in Figs. 4, 5, and 6, the importance of the wall crossflow and the relative timewise approach of various components to their steady conditions may be made clearer. For a normal subsonic run, Fig. 4 shows the energy dome at the entrance and exit of the test section. The constant time contours are shown as straight lines for purposes of illustration, though in reality they would have to be nonlinear to some degree in order for all points on the contour to fall on the surface of the dome cylinder and because the wall crossflow does not necessarily vary linearly along the test section. As the flow begins, the constant time contours do not remain parallel because the flow rate leaving the test section will not balance that at the entrance, the difference being the wall crossflow. For the most probable case of the plenum lagging the test section pressure, the crossflow will be into the test section, giving a greater flow rate at the exit than at the entrance. As time proceeds, however, the plenum pressure eventually catches up to the test section so that the contours do become nearly straight and parallel as the crossflow becomes insignificant. This process assumes that the plenum exhaust, if opened, is eventually closed.

Figure 4. Energy dome versus position in test section for normal subsonic flow.

Figure 5. Energy dome versus position in test section for normal supersonic flow.

If the plenum exhaust is not closed and the steady main valve area is sufficiently large, the supersonic case of Fig. 5 may result. The initial constant time contours are similar to the subsonic case. However, the origins of the contours at the entrance eventually stop at the peak of the dome while at the exit they proceed over the choke point downward on the supersonic branch as the crossflow reverses from entering to leaving the test section. The contours, however well approximated by straight lines in the subsonic case, become significantly nonlinear for the higher supersonic Mach numbers, as illustrated by the dotted "real nonlinear steady contour" in Fig. 5. This results from a combination of the nonlinear variation of the wall crossflow and boundary layer growth. These nonlinear effects, though certainly present in the subsonic case, are more pronounced in the supersonic case because the pressure at the nozzle must remain unchanged at the choke value while the pressure at the exit varies significantly with the exit Mach number.

Figure 6. Energy dome versus position in test section for subsonic flow with choked nozzle.

The slopes of the constant time contours in Figs. 4 and 5 depend on the magnitude of the wall crossflow, which in turn depends partially on the pressure difference between the plenum and the test section. Since the timewise variation of the plenum pressure can be controlled by controlling the flow area-time curve of the plenum exhaust valves,

it appears that the shortest starting time for the tunnel would be obtained by controlling the plenum pressure to precisely follow the test section pressure so that the plenum would reach its steady conditions simultaneously with the main valve system. This would result in the constant time contours remaining parallel right up to their final position, or up to the choke point for a supersonic run. In Fig. 6, the plenum is exhausted fast enough so that the wall crossflow is always out of the test section, resulting in less flow rate leaving the exit of the test section than entering. Thus, the constant time contour at the entrance dome reaches its peak while the point on the exit dome is forced by the plenum exhaust to become steady before reaching the peak though the desired steady condition lies on the other side of the dome and cannot be reached. Hence, it appears that the manner in which the various portions of the tunnel approach their steady conditions in time relative to each other can affect the final outcome of a run.

The foregoing discussion of the test section flow in terms of the energy domes serves as an introduction to one of the key elements of the mathematical model, namely, the steady energy equation in an unsteady environment. The domes also provide graphic visualization for the flow process.

2.2 GOAL OF THE MODELING

The purpose of this mathematical model is to study the starting process, controlled by the plenum, in order to size the plenum exhaust system; determine the effect upon start time of the interaction of the area-time curves of the main valves, flaps, and plenum exhaust; and, in general, to provide the essential information necessary for trading off facility cost and start time. To provide this information, the model must accept the following input data. The gross level mass flow rate depends upon the cross-sectional area of the supply tube and nozzle exit. The geometric factor, on which the wall crossflow primarily depends, is the porosity, the fraction of the total surface area of the test section walls drilled out to allow flow between the test section and plenum. Thus, the dimensions of the test sections and porosity must be provided along with the experimentally derived coefficients for the flow model. A key design parameter having first-order impact on the start time is the plenum volume ratioed to the test section volume. The area-time curves of the main valves, plenum exhaust valves, and the flaps are required along with the experimental coefficients for the flap flow model. Finally, the characteristics of the gas must be provided in terms of the ideal gas constant and the specific heat ratio.

This input to the model is then used to compute the following data concerning the flow. As functions of time the static and stagnation properities - pressure, density, and temperature - along with mass flow rate and Mach number are computed for three stations along the tunnel circuit: the supply tube at the nozzle entrance, the test section entrance,

and the test section exit. The plenum properties along with the mass flux through the porous wall, flaps, plenum exhaust, and main valves are computed as functions of time.

There are many other considerations, neglected herein, which might be of interest for other applications. One of the most important is the boundary layer, whose growth on the walls of the supply tube and test section varies with time. This unsteadiness occurs because at any given station along the tunnel, the particles of air passing that station at succeeding times into the run have travelled over successively longer lengths of tube from their starting points. If the effect of the boundary-layer growth on the local mass flow rate is thought of in terms changing the effective flow area, one might suspect that the test section would never become steady. In reality, however, the boundary-layer growth, sufficiently late in the starting process, varies with approximately the same proportion in the nozzle and test section so that, though the effective flow areas may be varying, the area ratios (A/A^*) are not. As experimentally documented in Refs. 1 and 5, this results in essentially constant Mach number once the plenum has become steady, thus justifying the neglect of the boundary layer herein.

Neglect of the boundary layer means that no prediction is made of property variation over the cross section of the flow area. Similarly, detailed variation of properties along the length of the test section is not predicted. Such information would be useful for studying wall loading or flow uniformity but is of secondary importance for present purposes. Very severe nonuniformity occurs in the diffuser section (connecting the test section and main valve manifold), which has been subjected to a detailed experimental study in Ref. 4. The complexity of the diffuser flow results from a combination of effects: shock waves, flow separation, flap exhaust, and the presence of the model or probe support sector. The performance of the diffuser is important because of its effect on the noise environment in subsonic flow in the test section and because its stagnation losses significantly impact the sizing of the real flow area of the main valve system. However, for purposes of the starting model, diffuser losses may be neglected if the main valve area is assumed to be the ideal, one-dimensional flow area needed to pass a given mass flow rate for a given set of driving stagnation conditions as determined from wave mechanics.

Three additional effects neglected herein deserve mention. First, wave spreading is neglected. This phenomenon is due to the difference in propagation speed between the leading and trailing edges of the unsteady wave. Since the wave propagation speed (equal to the local speed of sound minus the local velocity) is less for the trailing edge than the leading edge, the time delay between a change in main valve area and the sensing of this change in the supply tube is greater for the last area change than the first. In fact, this delay is different for each position along the tunnel. However, over the greatest

distance of importance in the pilot facility, this difference in delay is less than 0.5 msec and is neglected in the model. Besides wave spreading, the model also neglects the finite time required for a disturbance to travel from one point to another. Such a consideration is important for determining the relative times for first motion of main valves and plenum exhaust valves; but for purposes of the starting model, the tunnel components determining start time - plenum, test section, and supply tube exit - are sufficiently close together that the propagation times (on the order of one millisecond in the pilot) are small compared with the starting time under study. However, neglect of the propagation time and wave spreading should not be construed to mean that the finite wave width is neglected. This width, or time difference between passage of a given point of the leading and trailing edges of the wave, depends primarily on the opening time of the valve but is also increased by the nonideal flow processes in the diffuser. Such effects are accounted for herein by correction of the area-time curve of the main valve. A final additional effect, accounted for empirically but not modeled in detail, is the nonisentropicity of the thermodynamics of the plenum. It has been experimentally observed that the temperature in the plenum approximates an isentropic process only during the initial portion of the starting process, but over the entire start time for the tunnel, the asymptotic plenum temperature is much closer to the stagnation temperature in the test section than that for a completely isentropic expansion. A good model of this process would have to include the mixing of the virgin plenum air with that entering from the test section as well as account for the heat transfer from the walls of the plenum. This possible refinement to the present model is not yet included.

2.3 FORMAL ASSUMPTIONS

Before proceeding to the equations comprising the mathematical model, the following list of assumptions should be reviewed:

- a. Flow across all control volume surfaces is one dimensional.
- b. The fluid is assumed to be a calorically perfect gas (constant specific heats).
- c. Flow within the envelope comprised of the supply tube, test section, and main valves is inviscid, adiabatic, and irrotational except as accounted for by the unsteady wave equations.
- d. Within this envelope and at a constant time, property variation from point to point is isentropic. Entropy variation with time is governed by the wave equations. Thus, at any given instant, the one-dimensional, variable area, isentropic equations of gas dynamics (Ref. 2) are applicable.

e. Wave propagation time and wave spreading are zero. This justifies the steady assumption needed to invoke the equations of Ref. 2.

2.4 MATHEMATICAL FORMULATION

The set of equations comprising the model naturally divides into two groups, one for subsonic flow and one for supersonic flow. Since the set of equations for supersonic flow is nearly an exact subset of the subsonic case, the latter will be presented first, followed by a discussion of the changes needed for supersonic flow. The subsonic model is in the form of 19 algebraic equations, not necessarily linear, involving 19 unknowns. This system of equations must be solved numerically at successive points in time until all properties have approached their asymptotic values. The solution at any time t depends entirely on the property values obtained for the solution at $t - \Delta t$, a short time earlier, as well as the given valve area-time curves, which may be thought of as forcing functions. Quantities which vary between $t - \Delta t$ and t are usually evaluated at an intermediate time t^* such that $(t - \Delta t) < t^* < t$. The time t^* is usually taken as the midpoint of the time interval.

The model is based on mass conservation for three control volumes as illustrated in Fig. 2. Conservation of mass for the plenum is derived from the unsteady integral continuity equation for a control volume to give

$$\rho_{p}(t) = \rho_{p}(t - \Delta t) + \left[\dot{m}_{pt}(t^{*}) + \dot{m}_{pe}(t^{*}) + \dot{m}_{f}(t^{*})\right] \frac{\Delta t}{V_{p}}$$
 (1)

Here ρ_p is the mass density in the plenum, assumed uniform throughout, and V_p is the volume of the plenum. The quantities $\dot{m}_{p\,t}(t^*)$, $\dot{m}_{p\,e}(t^*)$, and $\dot{m}_f(t^*)$ represent, respectively, the mass flow rates between the plenum and test section (pt), out the plenum exhaust (pe), and through the flaps (f). The formal continuity equation can not be precisely integrated because the dependence of the mass flow rates on t or ρ_p can not be written in simple closed form. However, the law of the mean provides that $\rho_p(t)$ may still be precisely computed if the flow rates are treated as constant but evaluated at a suitable intermediate point t^* . If Δt is now chosen sufficiently small so that the flow rates may be suitably approximated by linear functions of time, t^* can obviously be chosen as t^* 1/2 Δt , the midpoint. For the other two control volumes in Fig. 2, the steady continuity equation is used, having been justified by assumption (e) of the last section. By noting that Eq. (1) assumes the flap and wall crossflows are positive when flow is into the plenum, continuity for the test section becomes

$$\dot{m}_{ct}(t^*) = \dot{m}_{pt}(t^*) + \dot{m}_{d}(t^*)$$
 (2)

and for the diffuser-valve manifold control volume

$$\dot{m}_{d}(t^{*}) = \dot{m}_{e}(t^{*}) + \dot{m}_{f}(t^{*})$$
 (3)

The three new mass flow rates introduced here are, in terms of the subscripts, that leaving the supply tube (ct, for charge tube, as it is often called), the primary tunnel exit (e) provided by the main valves, and the diffuser-end (d) of the test section. It should be noted from Fig. 2 that \dot{m}_d corresponds to a point upstream of where the flap flow enters the main stream.

Proceeding next to model each of these six mass flow rates, consider first the flow through the plenum exhaust and the main valves, which are both treated as single one-dimensional sonic orifices driven by the stagnation conditions.

$$\dot{m}_{e}(t^{*}) = \dot{a} \frac{P_{e_{o}}(t^{*}) A_{e}(t^{*})}{\sqrt{T_{e_{o}}(t^{*})}}$$
 (4)

$$\dot{m}_{pe}(t^*) = \alpha \frac{P_p(t^*)A_{pe}(t^*)}{\sqrt{T_p(t^*)}}$$
 (5)

In Eq. (4), P_{e_0} and T_{e_0} are the stagnation pressure and temperature in the valve manifold; and in Eq. (5), P_p and T_p are the pressure and temperature in the plenum, approximated as stagnant. The quantities A_e and A_{pe} are the total flow areas of the main valves and plenum exhaust valves. These areas are assumed to be the ideal, one-dimensional flow areas of a sonic orifice. If the real valve areas are used, discharge coefficients must be included in Eqs. (4) and (5). The constant α is given by

$$\alpha = \sqrt{\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}} \frac{\gamma}{R}$$
 (6)

where R is the ideal gas constant and γ is the ratio of the specific heats.

Consider next the flap and wall crossflows, which have been neatly modeled by Varner (Ref. 2) as simply proportional to the pressure drop across the devices. With a second order adaptation added here, Varner's model takes the following form

$$\dot{m}_{pt}(t^*) = -\frac{A_w}{k_w} \left[\dot{P}_p(t^*) - A_{15} P_t(t^*) \right]$$
 (7)

$$\dot{m}_f(t^*) = -\frac{A_f(t^*)}{k_f} [P_p(t^*) - A_{16} P_d(t^*)]$$
 (8)

Here A_w and A_f are the effective flow areas through the porous wall and through the flaps. While A_f is the actual geometric area, A_w depends on the total surface area of the test section walls (A_{tsw}) , the porosity (τ) , and a flow coefficient. Varner gives this relationship as

$$A_{w} = 0.17 \tau A_{tsw}$$
 (9)

The flow coefficients k_w and k_f were determined by Varner from experimental data from Pilot HIRT and are given in Fig. 7. The values of k_w in Fig. 7 are for the porosity shown in Fig. 8. The coefficients 1 A_{15} and A_{16} multiplying, respectively, the mean test section pressure P_t and the diffuser end test section pressure P_d were added in an effort to improve the accuracy of the asymptotic values of the numerical solution. The rationale for each of these constants is different. Rigorous modeling of the crossflow must include not only the effect of pressure forces but also the momentum of the fluid as it moves along the test section wall. The coefficient A_{15} thus represents an attempt to include momentum effects as a small correction to the existing crossflow model. Experimental evidence from the pilot facility indicates that this small momentum effect can make the difference between choking and not choking when the desired steady conditions are very near sonic flow. In particular, it has been observed that during supersonic flow, where the net crossflow must be from the test section to the plenum, the test section pressure is actually slightly less than the plenum pressure.

a. Porous wall flow coefficient versus porosity (τ)

b. Ejector flap flow coefficient versus area ratio (A_f/A_{ts})

Figure 7. Porous wall and flap flow coefficients.

¹The subscripts 15, 16, and 17 have no significance beyond consistency with variable names in the computer program.

Figure 8. Wall porosity in Pilot HIRT.

This has been attributed to the fluid momentum in the test section overcoming the slightly adverse pressure gradient. The other constant, A_{16} in the flap model, was added to account for some of the losses in the upstream portion of the diffuser. Unfortunately, both of these constants were found to be functions of the test section Mach number, thus indicating the need for more accurate modeling.

The mean test section pressure P_t in Eq. (7) is computed from a weighted average of the pressure at the nozzle-end of the test section P_n and at the diffuser end P_d . That is,

$$P_{t}(t^{*}) = (1 - A_{17})P_{n}(t^{*}) + A_{17}P_{d}(t^{*})$$
(10)

where $0 \le A_{17} \le 1$. Since a detailed model of axial property variation in the test section has not yet been included in the start model, properties are computed only at the nozzle and diffuser ends of the test section. For subsonic flows, the value of A_{17} was not found critical to the accuracy of the solution and was thus taken as 0.5, assuming a linear variation. For supersonic flow, a value of 0.9 was used to account for the more pronounced axial gradients.

The remaining two mass flow rates $(\dot{m}_{ct} \text{ and } \dot{m}_d)$ may be related to pressures already introduced above using the steady energy equation discussed earlier and shown in Fig. 3. At the diffuser end of the test section, the energy equation is

$$\left[\frac{\dot{\mathbf{m}}_{\mathbf{d}^{(t^*)}}}{\dot{\mathbf{m}}_{\mathbf{o}^{(t^*)}}}\right]^2 = \frac{2}{\gamma - 1} \left\{ \left[\frac{\mathbf{P}_{\mathbf{d}^{(t^*)}}}{\mathbf{P}_{\mathbf{ct}_{\mathbf{o}^{(t^*)}}}}\right]^{\frac{2}{\gamma}} - \left[\frac{\mathbf{P}_{\mathbf{d}^{(t^*)}}}{\mathbf{P}_{\mathbf{ct}_{\mathbf{o}^{(t^*)}}}}\right]^{\frac{\gamma + 1}{\gamma}} \right\}$$
(11)

where as before the subscript "ct" refers to the charge tube and the subscript "o" indicates stagnation properties. The quantity \dot{m}_0 is defined as

$$\dot{m}_{o}(t^{*}) \equiv \sqrt{\frac{\gamma}{R}} \frac{P_{ct_{o}}(t^{*})}{\sqrt{T_{ct_{o}}(t^{*})}} A_{ts}$$
 (12)

where A_{ts} is the cross-sectional area of the test section. The stagnation properties (P_{ct_0} and T_{ct_0}) are thought of as originating from the unsteady wave when it reaches the charge tube and are assumed the same, for any given time, throughout all of the flow envelope except the plenum. At the nozzle end of the test section, the flow rate is equal to that in the charge tube, since its value has not yet been modified by any wall crossflow. At this station, the energy equation is, therefore,

$$\left[\frac{\dot{\mathbf{m}}_{\mathrm{ct}}(t^*)}{\dot{\mathbf{m}}_{\mathrm{o}(t^*)}}\right]^2 = \frac{2}{\gamma - 1} \left\{ \left[\frac{\mathbf{P}_{\mathrm{n}}(t^*)}{\mathbf{P}_{\mathrm{ct}_{\mathrm{o}}}(t^*)}\right]^{\frac{2}{\gamma}} - \left[\frac{\mathbf{P}_{\mathrm{n}}(t^*)}{\mathbf{P}_{\mathrm{ct}_{\mathrm{o}}}(t^*)}\right]^{\frac{\gamma+1}{\gamma}} \right\}$$
(13)

To complete the portion of the model not arising from the unsteady wave, the thermodynamic equations of state for the plenum are needed. To compute the properties at t* for use in Eqs. (5), (7), and (8) while Eq. (1) gives the density at t, the density at t* is computed from

$$\rho_{p}(t^{*}) = 1/2[\rho_{p}(t) + \rho_{p}(t - \Delta t)]$$
 (14)

The plenum temperature is assumed equal to the greater of the isentropic temperature and the stagnation temperature in the test section.

That is,

$$T_{p}(t^{*}) = \max \left\{ T_{p}(t^{*} - \Delta t) \left[\frac{\rho_{p}(t^{*})}{\rho_{p}(t^{*} - \Delta t)} \right]^{\gamma - 1}, T_{ct_{0}}(t^{*}) \right\}$$

$$(15)$$

In either event, the pressure may then be obtained from the perfect gas law:

$$P_{p}(t^{*}) = \rho_{p}(t^{*}) R T_{p}(t^{*})$$
(16)

Closing the system of equations presented so far requires relationships for how the stagnation properties vary in time. A careful accounting of the number of equations and the number of unknowns to this point would reveal that, given values of P_{ct_0} and T_{ct_0} and assuming $P_{e_0} = P_{ct_0}$ and $T_{e_0} = T_{ct_0}$ (which is what is done for the subsonic case),

it is possible to compute the value of \dot{m}_{ct} . This value of the flow rate from the charge tube represents that required by the sum total of all the expansion waves which at a given time have reached the charge tube from all parts of the tunnel. That is, \dot{m}_{ct} identifies an intermediate point within the entire unsteady wave, which begins with the first motion of a valve somewhere in the tunnel and ends when the plenum reaches its asymptotic pressure. Thus, \dot{m}_{ct} may be used to compute all other stagnation properties for that point in the unsteady wave. By using the equations of Ref. 3 and after some algebra, the charge tube Mach number at the desired point in the wave may be related to \dot{m}_{ct} by the equation:

$$\dot{m}_{ct}(t^*) = M_{ct}(t^*) \left[1 + \frac{\gamma - 1}{2} M_{ct}(t^*) \right]^{-\frac{\gamma + 1}{\gamma - 1}} \dot{m}_{c}$$
 (17)

where mc is defined from

$$\dot{m}_{c} = \sqrt{\frac{\gamma}{R}} \frac{P_{c}}{\sqrt{T_{c}}} A_{ct}$$
 (18)

Here A_{ct} is the cross-sectional area of the charge tube, and P_c and T_c are the charge conditions, that is, the air pressure and temperature after the tunnel has been pumped up but before any valves are opened. These charge conditions are assumed to apply uniformly throughout the envelope, including the plenum. After obtaining the charge tube Mach number, the stagnation pressure and temperature are readily computed from the following equations from Ref. 3:

$$P_{ct_{o}}(t^{*}) = \left\{ \frac{1 + \frac{\gamma - 1}{2} M_{ct}^{2}(t^{*})}{\left[1 + \frac{\gamma - 1}{2} M_{ct}(t^{*})\right]^{2}} \right\}^{\frac{\gamma}{\gamma - 1}} P_{c}$$
(19)

$$T_{ct_o}(t^*) = \left\{ \frac{1 + \frac{\gamma - 1}{2} M_{ct}^2(t^*)}{\left[1 + \frac{\gamma - 1}{2} M_{ct}(t^*)\right]^2} \right\} T_c$$
 (20)

Equations (1) through (20) thus comprise the subsonic portion of the starting model and are summarized in Table 1. The supersonic case is physically different from the subsonic case and requires solution of a different set of equations as noted in Table 1. The distinguishing factor of the supersonic case is that the nozzle exit is choked, making the flow rate and stagnation conditions steady there. Once the nozzle chokes, the charge tube Mach number is a constant depending only on the area ratio between the charge tube and nozzle exit. From Ref. 2, the steady Mach number can be obtained by reverting the equation:

Table 1. List of Exact Simultaneous Equations

Equation	Independent Variable to be Computed	Included in Supersonic Case?	Text Equation Number	Program Equation Number
$\rho_{p}(t) = \rho_{p}(t - \Delta t) + [\dot{m}_{pt}(t^{*}) + \dot{m}_{pe}(t^{*}) + \dot{m}_{f}(t^{*})] \frac{\Delta t}{V_{p}}$	ρ _p (t)	Yes	1	5
$\dot{m}_{cl}(t^*) = \dot{m}_{pl}(t^*) + \dot{m}_{d}(t^*)$	m _{ct} , M < 1 m _d , M > 1	Yes	2	6
$\dot{m}_{d}(t^{*}) = \dot{m}_{e}(t^{*}) + \dot{m}_{f}(t^{*}).$	m _d	No	3	7
$\dot{m}_{e}(t^{*}) = \alpha \frac{P_{e_{o}}(t^{*}) A_{e}(t^{*})}{\sqrt{T_{e_{o}}(t^{*})}}$	m _e	No	4	1
$\dot{m}_{pe}(t^*) = \alpha \frac{P_p(t^*)A_{pe}(t^*)}{\sqrt{T_p(t^*)}}$	m _{pe}	Yes	5	2
$\dot{m}_{pt}(t^*) = -\frac{A_w}{k_w} [\dot{P}_p(t^*) - A_{15} P_t(t^*)]$	m _{pt}	Yes	7	4
$\dot{m}_{f}(t^{*}) = -\frac{A_{f}(t^{*})}{k_{f}} [P_{p}(t^{*}) - A_{16} P_{d}(t^{*})]$	m̈ί	Yes	8	3
$P_{t}(t^{*}) = (1 - A_{17})P_{n}(t^{*}) + A_{17}P_{d}(t^{*})$, P _t	Yes	10	11
$\left[\frac{\left[\frac{m_{d}(t^{*})}{m_{o}(t^{*})}\right]^{2}}{\left[\frac{p_{d}(t^{*})}{m_{o}(t^{*})}\right]^{2}} = \frac{2}{\gamma - 1} \left\{\left[\frac{p_{d}(t^{*})}{p_{ct_{o}}(t^{*})}\right]^{\frac{\gamma}{\gamma}} - \left[\frac{p_{d}(t^{*})}{p_{ct_{o}}(t^{*})}\right]^{\frac{\gamma+1}{\gamma}}\right\}$	P _d a	Yes	11	12
$\left[\frac{\dot{m}_{c1}(t^*)}{\ddot{m}_{o(t^*)}}\right]^2 = \frac{2}{\gamma - 1} \left\{ \left[\frac{P_n(t^*)}{P_{ct_o}(t^*)}\right]^{\frac{2}{\gamma}} - \left[\frac{P_n(t^*)}{P_{ct_o}(t^*)}\right]^{\frac{\gamma + 1}{\gamma}} \right\}$	P _n a	No	13	13
$\dot{m}_{o}(t^{*}) \equiv \sqrt{\frac{Y}{R}} \frac{P_{ot_{o}}(t^{*})}{\sqrt{T_{ct_{o}}(t^{*})}} A_{ts}$	ṁ _o	No	12	14
$\rho_{p}(t^{*}) = 1/2[\rho_{p}(t) + \rho_{p}(t - \Delta t)]$	ρ _p (t*)	Yes	14	18
$T_{p}(t^{*}) = \max \left\{ T_{p}(t^{*} - \Delta t) \left[\frac{\rho_{p}(t^{*})}{\rho_{p}(t^{*} - \Delta t)} \right]^{\gamma - 1}, T_{ct_{0}}(t^{*}) \right\}$	T _p	Yes	15	17
$P_{p}(t^{*}) = \rho_{p}(t^{*}) R T_{p}(t^{*})$	Pp	Yes	16	19
$\dot{m}_{ct}(t^*) = M_{ct}(t^*) \left[1 + \frac{\gamma - 1}{2} M_{ct}(t^*) \right]^{-\frac{\gamma + 1}{\gamma - 1}} \dot{m}_{c}$	M _{et}	No	17	8
$P_{ct_{o}}(t^{*}) = \left\{ \frac{1 + \frac{\gamma - 1}{2} M_{ct}^{2}(t^{*})}{\left[1 + \frac{\gamma - 1}{2} M_{ct}(t^{*})\right]^{2}} \right\}^{\frac{\gamma}{\gamma - 1}} P_{c}$	P _{ct} 。	No	19	9
$T_{ct_{0}}(t^{*}) = \left\{ \frac{1 + \frac{\gamma - 1}{2} M_{ct}^{2}(t^{*})}{\left[1 + \frac{\gamma - 1}{2} M_{ct}(t^{*})\right]^{2}} \right\} T_{c}$	T _{cto}	No	.20	10
$P_{e_0}(t^*) = P_{cl_0}(t^*), T_{e_0}(t^*) = T_{cl_0}(t^*)$		No	_	_

^aRequire Numerical Reversion

$$\frac{A_{ct}}{A_{ts}} = \frac{1}{M_{ct}(t^*)} \left\{ \frac{2}{\gamma + 1} \left[1 + \frac{\gamma - 1}{2} M_{ct}^2(t^*) \right] \right\}^{\frac{\gamma + 1}{2(\gamma - 1)}}$$
(21)

With this final Mach number, the steady stagnation conditions (P_{ct_0} , T_{ct_0} , and \dot{m}_o) along with the steady charge tube flow rate (\dot{m}_{ct}) can be computed one final time from Eqs. (19), (20), (13), and (17), after which these equations and variables may be dropped from the simultaneous solution. Since \dot{m}_{ct} is now constant, the flow rate leaving the test section (\dot{m}_d) is solely dependent on the wall crossflow (\dot{m}_{pt}) according to Eq. (2) and is independent of the flow rate out the main valves (\dot{m}_e), assuming the valve area A_e is sufficient to pass all the charge tube flow not removed by the plenum exhaust. Thus, Eqs. (3) and (4) may also be dropped from the system of equations. This is fortunate since it is no longer true that $P_{e_0} = P_{ct_0}$, which results from the nonisentropic recompression of the supersonic flow entering the diffuser. Thus, the original system of 19 equations and 19 unknowns reduces to 10 equations and 10 unknowns for the supersonic case.

These two sets of equations were solved using an iterational technique which unfortunately failed to converge in the vicinity of the choke point in time. To provide an alternate solution procedure when the iterational technique failed to converge, a small perturbation solution was developed for the original exact equations. The small perturbation solution was then used as an initial guess for the iterational procedure when it converged and as the complete solution when it did not. The results of this lengthy derivation are recorded in Appendix A, but the essential ideas are discussed below.

The exact solution already assumes that Δt is a small quantity. For the small perturbation solution, therefore, any of the 19 variables at time t^* may be assumed to be related to their values at t^* - Δt by the general form

$$v_i(t^*) = v_i(t^* - \Delta t) + \epsilon_i(t^*)$$
 (22)

where ϵ_i is the small increment in the variable and i = 1, 2, ..., 19. If these small perturbation equations are used to expand the original exact equations, a new system of equations involving the increments rather than the variables themselves is obtained. For all exact equations, except the energy equations relating the pressure and mass flux at the entrance and exit of the test section (Eqs. (11) and (13)), only terms of order ϵ_i need be retained in the small perturbation equations. Such is not the case for the energy equations because in the region of the peak (or choke point) in Fig. 3, there is no linear approximation to the function. In the expanded equation, the coefficient of ϵ_i approaches zero as the Mach number approaches one. Thus, the term of order ϵ_i^2 , whose coefficient is nonzero at Mach number one, governs the form of the expansion. The resulting subsonic system

of equations is thus comprised of 17 linear equations and 2 second-degree equations, which can be solved analytically. The supersonic case is composed of 9 linear equations and 1 of second degree.

2.5 SOLUTION PROCEDURE

The procedure used to solve these two systems of equations is discussed in the following section. Included is a discussion of the overall logical procedure, the order in which the equations of the exact solutions are used, convergence considerations, and a general description of the computer program used to accomplish the calculation. The general solution procedure is illustrated by the flow chart in Fig. 9. The decision whether to use the supersonic or subsonic branch is decided by whether $P_d(t^*$ - $\Delta t) < P^*$ or $P_d(t^* - \Delta t) > P^*$, that is whether the diffuser end of the test section was supersonic or subsonic at the midpoint of the previous time interval. If the previous interval was supersonic, the current one is also assumed to be supersonic. If the previous interval was subsonic but 1 - $M(t^* - \Delta t) \leq M(t^* - \Delta t)$ - $M(t^* - 2\Delta t)$, then the supersonic branch is used for the current time interval; otherwise the solution is assumed to remain subsonic. This criterion is checked for both ends of the test section, and the switch to the supersonic branch is contingent upon either or both positions satisfying the inequality. In either event, the small perturbation solution is computed to provide a good starting point for the exact iterational procedure. If convergence does not occur before a given number of iterations, the small perturbation solution is used as the final solution, and the next time interval is begun.

The "exact iterational procedure" referred to above is accomplished by taking an initial guess for one of the 19 variables and then proceeding from equation to equation, determining new values for each of the 19 variables until a complete circuit is made and a second value of the variable initially guessed at is obtained. This process is repeated until the difference between two successive values of certain of the variables is within a preset limit. For the subsonic case, the equation order is as follows:

The supersonic equation order is

Some of these equations (Eqs. (11), (13), and (17)) require reversion from the form given but cannot be reverted analytically in closed form and must be solved numerically. The variable to be solved for in each equation is indicated in Table 1, and the three requiring numerical reversion are marked with an asterisk.

Figure 9. Flow chart of solution procedure.

The complete solution thus requires numerical iteration at three distinct levels, which necessitates careful consideration of convergence criteria as well as what to do when the criteria can not be met because of stability problems. The most basic level of numerical iteration involves reversion of the two energy equations and the mass flux - Mach number

wave equation. Considering the general case where the function Y = F(X) must be solved for X given a value of Y and a guess X_1 , the procedure is simply to adjust X_1 in the direction which reduces the error criterion

$$E_1 = \frac{Y - F(X)}{Y} \tag{23}$$

until $|E_1| \le |E_{max}|$, E_{max} being the present, maximum allowable error. The precise logic of the procedure is illustrated in the flow chart in Fig. 10. Since this procedure must

Figure 10. Logic for numerical solution of an algebraic equation Y = F(X) for X, given Y when $X = F^{-1}(Y)$ is not a closed form function.

be repeated many times at each time interval, it is of considerable importance (because of impact on computer time) to achieve a solution with as few iterations as possible. Since the number of iterations depends to a large extent on the accuracy of the guess X_1 , considerable effort was expended in obtaining approximate reversions of the three equations. It was inadvertently discovered that the energy equation may be approximated with surprising accuracy over the entire range of present interest with a single ellipse, the reversion of which is trivial. The wave equation presented more of a problem. Since an easily revertable second-degree expansion around $M_{ct} = 0$ failed to match the accuracy of the elliptic energy equation, the expansion was carried to the seventh degree and then formally reverted according to the procedure of Ref. 6. These expansions are summarized in Appendix B.

The next higher level of iteration is, of course, the simultaneous solution of the exact model equations, during which stability problems were encountered in the vicinity of the choke point. The error criterion for halting the iteration may be generally expressed as

$$\left| \frac{v_{i}^{(n)} - v_{i}^{(n+1)}}{\frac{1}{2} \left[v_{i}^{(n)} + v_{i}^{(n+1)} \right]} \right| \leq P_{err}$$
 (24)

where test variables (v_i) are the pressures P_n , $P_p(t)$, $P_p(t^*)$, P_d , P_t , and P_{ct_0} ; P_{err} is the maximum allowable error; and n is the iteration number. Figure 11 illustrates the stability problem encountered in striving to meet this error limit. Shown is how the plenum pressure $P_p(t^*)$ varied with iteration number at two succeeding time points, one converging and one not. Such stability problems are known to occur in applying the iterational technique to locating the intersection of two curves on a plane when the curves have the same slope (same or opposite sign) at the point of intersection. Whether this simple explanation in 2-space is applicable to 19-space where no two of the 19 functions lie in the same plane is unclear. In any event, improvement in convergence rate was sought via the following procedures, most of which improved the situation:

- a. Relative Errors. It was found that if E_{max} was much greater than 1/10 P_{err} , the numerical reversions could oscillate enough themselves from one iteration to the next to slow convergence.
- b. Computational Precision. Single precision arithmetic (\sim 8 digits on an IBM 370) was found inadequate to achieve errors of $E_{max} = 10^{-5}$ ($P_{err} = 10^{-4}$), and double precision (\sim 16 digits) was, therefore, adopted.

Figure 11. Plenum pressure versus iteration number for convergent and divergent cases.

c. Solution Weighting. The clearly periodic oscillation of Fig. 11 suggests that the average of any two successive values should be closer to the final asymptote than either value. Accordingly, solution weighting,

$$v_i^{(n)} = A_{11}v_i^{(n)} + (1 - A_{11})v_i^{(n+1)}$$
(25)

was employed on a regular basis.

- d. Weight Cutting. It was further discovered that convergence rate could be greatly improved after the number of iterations reached a certain point if a lesser weight was applied to the current value $v_i^{(n)}$.
- e. Error Cutting. It was found that, later in a computation when some of the pressures were very near their asymptotes, the amount of variation from one time point to the next eventually approached the error limit. This in effect allowed these values to vary at random within the error limits and deteriorate the convergence rate. It was thus found prudent to reduce the error limits as necessary so as to maintain

$$P_{err} \le \left| \frac{v_{i}(t^{*}) - v_{i}(t^{*} - \Delta t)}{\frac{1}{2} \left[v_{i}(t^{*}) + v_{i}(t^{*} - \Delta t) \right]} \right|$$
 (26)

and $E_{max} \leq 1/10 P_{err}$.

f. Extrapolation. A second-order extrapolation function

$$v_{i}(t^{*}) = 2v_{i}(t^{*} - \Delta t) - v_{i}(t^{*} - 2\Delta t)$$
 (27)

was tested in an effort to improve the starting values for iteration through the 19 equations, but this generally produced no improvement in convergence rate. A third-order function

$$v_i(t^*) = 3v_i(t^* - \Delta t) - 3v_i(t^* - 2\Delta t) + v_i(t^* - 3\Delta t)$$
 (28)

was found not much better. Ultimately, of course, it is illogical to expect any finite order extrapolation scheme to predict the effect of changes in the forcing functions (area-time curves) if those coming changes had not been anticipated by the derivatives of less than that order.

g. Small Perturbation Solution. In place of an extrapolation function, there was used the more logical small perturbation solution. This considerably improved the convergence rate and provided sufficiently accurate results in lieu of the exact solution when it failed to converge in a reasonable length of time.

The complete mathematical model along with the above described convergence enhancement logic have been programmed in Fortran IV for solution on an IBM 370/165. The computer program HIRTSM1 (for HIRT Starting Model) is composed of the normally expected components: the main program (MAIN) containing the exact equations, the convergence control logic, and the overall solution control logic; subroutines to control input (INPUT), output (PRINT and DUMP), and variable definition and initialization (CONST and INIT): and a subroutine which performs the calculation for the analytical solution to the simultaneous small perturbation equations (SMPERT). In addition, the program contains a package of utility subroutines: one routine contains the logic of Fig. 10 to numerically revert any given function (SOLVER); a second expands out the binominal coefficients (BINOM) to give a series which is reverted by a third subroutine (REVERT) to the seventh-degree term; a fourth subroutine (QSIMUL) determines the points of intersection of two conics (the two final energy equations resulting from SMPERT) by converting them to a single fourth-degree polynominal, which has an exact analytical solution for the four roots (QANDC). Use of this program is described in Appendix C.

The program can be run in a partition of 110K bytes and easily completes about 200 time increments in less than a minute of central processor time, though occasionally a run may require up to three minutes. Peripheral storage is not essential, though provisions are made to dump the entire solution on to a direct (random) access data set (such as a disk file) so that the solution may be picked up at any point and continued. The results of calculations with HIRTSM1 are compared in the next section with experimental results from the Pilot HIRT facility.

3.0 RESULTS

Presented below is a comparison between the mathematical model and experimental pressure-time histories from Pilot HIRT. Included is a brief description of those characteristics of the tunnel important to the model. After a comparison of the model and data, some other results of the calculations are shown. The section concludes with a discussion of how the model can be applied in the design of certain portions of the tunnel.

3.1 DESCRIPTION OF PILOT HARDWARE

Figure 12 shows an elevation line drawing of the Pilot HIRT facility, to which the present mathematical model was applied. Figure 13 shows most of the geometric data required by the model and also accurately illustrates the real life hardware, which is simplified in the model. The geometric parameters in the precise form used in the model are summarized in Table 2. The tunnel uses two alternate types of starting devices, the sliding sleeve valve shown in Fig. 13 and, for quicker starts, a Mylar[®] diaphragm and cutter located at the interface of the diffuser and the valve assembly. The plenum exhaust system, shown schematically in Fig. 14, also uses a diaphragm in addition to two valves to control the exhaust flow. The diaphragm initiates the flow, and the ball valve, whose setting cannot be changed during a run, determines the amount of plenum exhaust during the steady portion of the run. The quick-acting valve, however, may be rapidly closed during the run to provide a temporarily elevated plenum exhaust in excess of what the ball valve will pass. The complete system in Fig. 14 is modeled as the area-time curve of a one-dimensional sonic orifice, as is the multiple port system on the main valve.

The portion of the tunnel shown in Fig. 13 was heavily instrumented with pressure taps to measure pressure-time histories at various locations in the nozzle, test section, diffuser, and plenum. Output from the pressure transducers was sampled every 2 msec by a data acquisition system based on a PDP 11/10 digital computer with certain of the signals also displayed on a recording oscillograph. Of primary interest here are the plenum pressure-time histories, which comprise the primary basis for comparison of the theory and experiment.

Figure 12. Pilot HIRT elevation line drawing.

Charge Tube7

13.94

(Nom.)7

- 12-in. Sliding Sleeve

Start Valve (Shown Closed)

29.0-

Figure 13. Cross-sectional view of nozzle, test section, diffuser, and main valve system.

←Model Support Strut

27.2

-Diffuser

Plenum Exhaust

(10 Places Typ)

⊢Plenum Shell

25.4

-7.34 x 9.15 Rectangle

Ejector Flaps-

CMR

-Sonic Nozzle

Test Section Wall Support Structure-

18.5

Table 2. Geometric Data for Pilot HIRT Required by Mathematical Model

Charge Tube Diameter	1.162 ft
Charge Tube Flow Area	1.060 ft ²
Ratio of Charge Tube Area to Test Section Area	2.271
Test Section Length	2.114 ft
Test Section Width	0.7633 ft
Test Section Height	0,6117 ft
Test Section Flow Area	$0.4669 \mathrm{ft}^2$
Test Section Wall Surface Area	5.813 ft ²
Test Section Porosity	3.5 to 10%
Test Section Volume	0.9870ft^3
Flap Flow Area	0 to 0.2062 ft 2
Ratio of Plenum Volume to Test Section Volume Nominally	1.75 to 4.0 2.8

Figure 14. Plenum exhaust system.

3.2 COMPARISON OF MATH MODEL AND EXPERIMENT

Data for nine different tunnel settings were studied with the mathematical model. Some basic data for runs typical of these nine conditions are summarized in Table 3. The data of primary interest in this table include the plenum-to-test section volume ratio, porosity, the opening times of the main valve and plenum exhaust valve, the maximum plenum exhaust area, and the experimental test section Mach number. The conditions listed for Run 2258 may be considered nominal values from which variations in plenum volume, porosity, flap setting, and test section Mach number were examined.

Figure 15 compares the experimental plenum pressure as a function of time with the present mathematical model for the nominal conditions (Run 2258). The data illustrated is for a plenum volume 2.8 times the test section volume, a porosity of 4-1/2 percent, and a flap setting of 0.4 in. (the gap between the flap and the test section wall where the flap flow empties into the diffuser). The main starting device was a Mylar diaphragm; and the exit flow area, the primary factor determining the asymptotic test section Mach number (0.921), was obtained by capping off the proper number of exit ports on the main exhaust manifold (Fig. 13, 16-in. valve). Since the desired Mach number was subsonic, the plenum exhaust system was not used. The resulting data for these tunnel settings are plotted in Fig. 15 as circles, and the solid line represents the output of the computer program. The program was run for the indicated tunnel settings (Table 3), but several not readily apparent inputs were assumed. The starting device (diaphragm) was treated as a linear area-time curve reaching its maximum area in 2 msec. The maximum area shown in Table 3 is approximately 99.46 percent of the test section flow area, which is based on the ideal, one-dimensional flow area ratio needed to produce a test section Mach number of 0.921. The resulting theoretical plenum pressure-time history shown in Fig. 15 agrees well with the experimental data. The greatest discrepancy occurs at 25 msec and reaches a peak there of 6.5 percent. This difference, due to a temporary leveling of the experimental data between 10 and 25 msec, results from the finite time required for the initial expansion wave to traverse the plenum volume, which includes the plenum exhaust lines shown in Fig. 14. These lines extend to a distance of about 4 ft from the major portion of the plenum. Since the model assumes a uniform plenum, it cannot account for this factor. Figure 15 also illustrates another deficiency of the model, which in this case produces the 3.1-percent error at a time of about 100 msec. Part of this error is due to error accumulation in the small perturbation solution, to which the program reverted entirely beyond 45 msec because of nonconvergence of the exact iterational solution. Another part of the error, in this case the smaller part, is due to neglect of the axial momentum of the test section flow by the crossflow model, which results in the smaller slope of the theoretical curve in the region of 60 to 90 msec. Since this discrepancy has been found to be generally small for subsonic runs, the coefficient in the crossflow model (A_{15}) has been left equal to one.

Table 3. Summary of Run Conditions for Experimental Data to be Compared with Theory

		Plenum		Maxin	um Flow Area		Total C	pening Times	5		Asymptotic	Test Section
Run Number	Charge Pressure, P _C , psia	Volume	Porosity,	Main Valve, A _e , ft ²	Plenum Ex, A _{pe} , ft ²	Flaps, A _f , ft ²	Main Valve, sec	Plenum Ex,	Flaps, sec	Plenum Delay, sec	Plenum Pressure, psia	Mach Number (-), M,
2226	60.11	2.8	4.5	0.466886	0	0.045835 ^a	0.002				25.00	0.992
2236	62.37	2.8	4.5	0.466331	0	0.2062 ^b	0.002				25.55	0.962
2241	61.84	2.8	1.5	0.465911	0	0.09167 ^C	0.002				23.83	1.013
2251	81.47	2.5	4.5	0.465911	0.1090	0.09167	0.002	0.040		0.005	30.56	1.039
2255	81.27	2.5	4.5	0.465911	0.1090	0.09167	0.002	0.040		0.004	24.04	1.228
2258	70.51	2.8	4.5	0.464351	0	0.09167	0.002				30.47	0.921 ^d
2260	70.90	4.0	4.5	0.466290	0	0.09167	0.002				29.36	0.960
2263	74.10	1.75	4.5	0.466662	0	0.09167	0.002				29.64	0.975
2742	152.15	2.5	4.0	0.465911	0.1090	0.09167	0.030	0.040		0.005	53.25	1.100

⁽a) $f = 0.2 \text{ in.}^2$ (b) $f = 0.9 \text{ in.}^2$ (c) f = 0.4 in.(d) Nominal Conditions

Figure 15. Plenum pressure versus time for subsonic run with medium plenum volume.

Since the amount of plenum volume which must be drawn down to the asymptotic pressure may logically be expected to have a first-order impact on the starting time, the plenum volume was the first parameter varied from the nominal conditions for Run 2258 (Fig. 15). Figures 16 and 17 show the plenum pressure for a smaller plenum volume ratio (1.75) and a larger ratio (4.0), respectively. As expected, the smaller volume case flattens more quickly than the medium volume case, and the larger volume more slowly. As in Fig. 15, the accuracy of the model is generally good for both the smaller and larger plenum volumes, though the effect of the wave propagation time in the plenum is much more pronounced for the larger volume.

Now return to a medium plenum volume case but vary another parameter - plenum exhaust - for a slightly supersonic run. The theoretical analysis depends on an experimentally derived plenum exhaust area-time curve, shown in Fig. 18, in the nondimensional form used by the computer program. Unfortunately, the uncertainty in the shape of this curve is quite large, and only the steady area is known accurately. Illustrated in Figs. 19 and 20 are the data for two supersonic cases, Mach 1.039 and 1.228. Both the theory and experiment of Fig. 18 show a slight over-shoot bottoming out at 30 msec and then approaching the asymptote from below. In addition, the experimental data show a slight rebound peaking at 60 msec, a result not predicted by the model. The rebound probably results from the overshoot, which would tend to draw the test section below its asymptotic pressure while the plenum exhaust area was decreasing

Figure 16. Plenum pressure versus time for subsonic run with small plenum volume.

Figure 17. Plenum pressure versus time for subsonic run with large plenum volume.

Figure 18. Plenum exhaust area-time curve for Mach 1.039 run.

Figure 19. Plenum pressure versus time for supersonic run (Mach 1.039) with plenum exhaust.

to its steady value at 40 to 50 msec. This combination of occurrences would then produce a slight refilling of the plenum, manifesting itself in the observed rebound. For the higher Mach number (1.288) of Fig. 20, the plenum exhaust curve of the previous case was retained intact up to its peak but was linearly stretched beyond the peak to make it approach the steady area needed for the tunnel to reach the desired asymptotic Mach

number. The peak area and closing time were unchanged. The disagreement between theory and data at the knee of the curve may be charged to the uncertainty in the plenum exhaust area-time curve, which is known to vary somewhat from run to run since the plenum diaphragm rupture is not precisely repeatable.

Figure 20. Plenum pressure versus time for supersonic run (Mach 1.228) with plenum exhaust.

The next parameter variation for which the model was tested was the opening time of the main starting device. Figure 21 shows the data and theory for a supersonic run made with a relatively slow opening 12-in. sliding sleeve valve instead of the diaphragm. Though not apparent from the excellent agreement for this case, there is also some uncertainty in the effective opening time of the main valve, assumed to be 30 msec for the theoretical calculation. This uncertainty results because the choke point of the tunnel changes position as the valve area increases, moving from the valve to the nozzle exit. Since the time at which this change occurs is not easily determined experimentally, the exact effective opening time is not known. In addition, the area-time curves are not precisely repeated from run to run.

To continue with the testing of the model for variations in other parameters, the program was run for a case of reduced porosity (1.5 percent), maintaining the nominal conditions of medium plenum volume and flap setting. Figure 22 shows that the model agrees well with the data. Cases were also run for which the flap flow area was halved

Figure 21. Plenum pressure versus time for supersonic run with sliding sleeve valve and plenum exhaust.

Figure 22. Plenum pressure versus time for supersonic run with 1-1/2-percent porosity and no plenum exhaust.

Figure 23. Plenum pressure versus time for subsonic run with small flap setting.

Figure 24. Plenum pressure versus time for subsonic run with large flap setting.

and doubled from the nominal settings. Illustrated in Figs. 23 and 24, both theoretical calculations are in acceptable agreement with experiment. As in previous cases, the disagreement just above the knees is due to the neglect of the finite wave propagation time across the plenum. The disagreement very early in the run (10 msec) is due to uncertainty in the rupture time of the diaphragm, and the slowness of the model in approaching the asymptote may be charged to inadequate handling of the momentum terms in the crossflow model.

3.3 OTHER RESULTS FROM THE MATH MODEL

To predict the data of primary interest, plenum pressure, the model must also calculate many other quantities including pressures and mass flow rates at various locations in the tunnel. Figure 25 shows the pressure-time histories for the case of nominal plenum volume (2.8) for a subsonic run with a diaphragm starting device. Besides plenum pressure, the stagnation pressure and static pressures at opposite ends of the test section are shown. This graph illustrates that the test section pressure initially drops much faster than the plenum, as expected since the rate of plenum depletion is limited by the porosity and flap area. Early in the run, the pressure at the exit of the test section leads the pressure at the entrance because the wall crossflow leaving the plenum increases the flow rate from the entrance to the exit. Eventually, of course, the test section and plenum pressures approach each other as the flap and wall crossflows become negligible and the steady conditions are reached. The stagnation pressure becomes nearly flat long before the static pressures in the test section and changes very slowly beyond 20 msec.

The subsonic case in Fig. 25 may be contrasted to the supersonic case in Fig. 26, which shows the same set of pressure curves. Besides the more rapid drop of all curves prior to 40 msec, due to the plenum exhaust, the most striking difference from the subsonic case is the approach of opposite ends of the test section to distinctly different asymptotes. The entrance to the test section levels rather suddenly at the choking pressure ratio, while the exit continues to drop to the lower pressure ratio corresponding to the supersonic Mach number. Another interesting feature is that the asymptotic pressure at the test section exit is lower than for the plenum even though the net wall crossflow must be into the plenum (to reduce the flow rate along the test section as needed for supercritical flow). Crossflow against the pressure gradient occurs because of the increasing momentum retained by the crossflow while separating off from the high-speed test section flow. Another feature of Fig. 26 due to this momentum is the crossing of the test section pressure curves at 12 msec, which signifies the reversing of the wall crossflow. To improve the crossflow model's representation of the effect of this momentum (which is neglected in modeling the crossflow rate as a function of pressure difference only), the momentum correction coefficient A_{15} in Eq. (7) was introduced. This quantity expediently models the small

Figure 25. Various pressures versus time for nominal conditions.

Figure 26. Various pressures versus time for supersonic run with plenum exhaust.

additional crossflow due to momentum in terms of a slightly elevated driving pressure. The steady-state value of $A_{1\,5}$ at a given steady test section Mach number was derived empirically for a given steady plenum pressure. These steady-state values of $A_{1\,5}$ are shown in Fig. 27a. During a run, however, $A_{1\,5}$ was assumed to vary according to the ramp function of Fig. 27b to simulate the increasing momentum.

a. Momentum correction coefficient (A₁₅) and flap correction coefficient (A₁₆) versus steady test section Mach number

b. Assumed variation with test section Mach number (M_d) of momentum (A_{15}) and flap (A_{16}) correction coefficients during starting process

Figure 27. Steady-state values of correction coefficients, A₁₅ and A₁₆.

Looking at the mass flow rate-time curves corresponding to Figs. 25 and 26 provides further insight into the behavior of the mathematical model. Figure 28 shows the flow rate entering (from the charge tube) and leaving the test section, the flow rate through the flaps, and across the porous wall for the nominal conditions and subsonic flow. The flap and wall crossflows, though leaving the plenum in this run, are shown on the positive

axis for convenience. All data are expressed as ratios of the steady, asymptotic flow rate through the main valves. The flow in the test section is seen to rise very rapidly, in concert with the breaking diaphragm, and to approach the final flow rate only as the flap and crossflows approach zero. Both flows from the plenum reach peaks at about 3 msec, which results from the pressure differences between the plenum and test section reaching a maximum. The crossflow further manifests itself in the disparity between the flow entering and leaving the test section. Various experimentally derived flow rates are given in Ref. 4 for the pilot tunnel. These relatively well behaved results for the subsonic case may be contrasted to the tangle of curves resulting from a supersonic case with plenum exhaust (Fig. 29), which is based on the same conditions as Fig. 26. Initially similar to the subsonic case with peak flap and crossflows at 3 msec, the curves are considerably modified by the opening of the plenum exhaust at 4 msec (a programmed delay). The leveling of the flap and crossflow curves at 22 msec is associated with choking in the test section. Eventually, the plenum exhaust forces both the crossflow and flap flow to reverse and eventually to exactly balance the plenum exhaust flow rate when steady flow is reached. Reversal of the flap flow requires, in terms of the flow model (Eq. (8)), a driving pressure at the flap exit greater than the plenum pressure and in general greater than the computed pressure at the exit of the test section. Though the flap correction coefficient (A₁₆) is applied much like the wall crossflow coefficient, the physical explanation cannot be the same since the free-stream momentum is in the opposite direction of the reversed

Figure 28. Relative theoretical mass flow rates for nominal conditions (Run 2258) of subsonic flow with no plenum exhaust.

Figure 29. Relative mass flow rates for a supersonic run (Mach 1.228) with plenum exhaust (Run 2255).

flap flow. A more likely explanation is the shock structure and flow separation at the diffuser entrance. Since precise modeling of this complex flow is beyond the scope of the present work, the flap flow correction coefficient (A_{16}) was added to Eq. (8). Experimentally derived values of A_{16} as a function of steady test section Mach number are plotted in Fig. 27a along with the static pressure jump across a normal shock. The pressure rise during the reversed flap flow must be due to a flow more complex than a normal shock, since the pressure jump across the shock rises much more rapidly than experiment indicates. The lines through the circled points are cubic fits and are probably not accurate beyond Mach 1.25. As with the momentum correction, the flap correction was assumed to vary in time according to the ramp function in Fig. 27b.

3.4 APPLICATION OF THE MATH MODEL

Besides prediction of tunnel start time, there are several other ways the model can be applied in the design of a wind tunnel. Since the plenum exhaust area-time curves can be varied arbitrarily in the model, the number of plenum valves (or total valve area) to achieve various start times can be determined. In addition, the sensitivity of the start time to the shape of the area-time curves can be predicted. This is important because it indicates how finely controllable and repeatable (and expensive) the valves must be. Another potential application is estimation of the structural loading of the test section wall due to transient pressure differences between the plenum and test section.

To illustrate some of these possibilities, the program was run for the three different plenum exhaust area time curves shown in Fig. 30. The solid line is a typical area-time curve from Pilot HIRT, and the two broken lines are variations having the same average open area. Processing the model with the triangular curve should indicate whether a curve with the same peak as the basic curve but having a different shape would significantly affect starting time. The trapezoidal curve should indicate whether a smaller number of valves kept at full open for a longer time could achieve the same start time as the more peaked curves. The plenum pressure-time histories for these three curves are shown in Fig. 31. It is clear that the triangular curve has little effect on the shape of the pressure curve and does not affect starting time. On the other hand, the trapezoidal curve has a larger effect but still does not lengthen the starting time. The logical conclusions for the tunnel configuration studied here is that very accurate controllability is not required of the plenum valves and that the tunnel could be started just as quickly with about

Figure 30. Nondimensional equal area plenum exhaust area-time curves.

2/3 of the available valve area if the valves were kept fully open for a longer duration. If these results were found to apply to a large scale facility, a considerable cost reduction could be realized.

Figure 31. Plenum pressures versus time for three plenum exhaust area-time curves with same integrated area.

A second example of application of the model is illustrated by Fig. 32, which shows the pressure differential across the wall at the test section exit as a function of time for several conditions. From these results, it can be seen that reducing the porosity has little impact on wall loading, but raising the Mach number from 0.921 to 1.228 or reducing the flap gap by 1/2 significantly increases the loading by 25 and 50 percent, respectively. In contrast, lengthening the effective valve opening time from 2 to 30 msec reduces the peak load to about 1/3 of the nominal case. The peaks of the curves for the diaphragm runs occur just as the diaphragm reaches its full open area. The curve for the valve run, however, peaks first when the plenum exhaust area peaks and later when the valve reaches its steady area around 30 msec. Two data points for the peak pressure differential from Ref. 4 are shown in Fig. 32 and agree with the model.

Figure 32. Transient loading of test section wall at exit for nominal conditions and selected deviations.

4.0 SUMMARY AND CONCLUSIONS

A mathematical flow model for the process of starting a transonic Ludwieg tube wind tunnel has been developed. The present model uses the integral continuity equation for three specific control volumes, the steady form for the diffuser and test section control volumes, and the unsteady form for the plenum. The solution in the two former control volumes also uses the steady, isentropic energy equation, assumed applicable throughout the diffuser and test section control volumes for a given set of stagnation conditions. However, the stagnation conditions are allowed to vary in time according to the well-known exact solution for an unsteady, one-dimensional expansion wave. Application of this model takes the form of a numerical solution of 19 simultaneous algebraic equations to be solved at successive time points until the flow becomes steady. The iterational solution procedure

for these exact equations becomes nonconvergent in the vicinity of choking and is replaced with an analytical solution to a set of small perturbation equations until the choke point is passed. The numerical procedure is programmed for computer solution.

The mathematical model was evaluated by comparison with experimental plenum pressure-time histories from a small Ludwieg tube wind tunnel. Agreement between the model and experiment was found to be good. Other numerical results from the computer model were also presented to illustrate application of the model to design of a large facility. Specific conclusions drawn from the present study include (1) verification of the model's ability to predict accurately plenum pressure-time histories and, therefore, tunnel starting time; (2) prediction that starting time is insensitive to the precise shape of area-time curve of the plenum exhaust and, therefore, that very precise controllability is not required of the plenum valves; (3) prediction that starting time is not significantly lengthened by even large changes in the shape of the plenum exhaust area-time curve if the area under the curve and open time are maintained, thus permitting considerable reduction in the number of start valves suggested by data from the pilot facility; and (4) verficiation that aerodynamic loading of the test section walls (and, therefore, the support structure) can be reduced by lengthening the opening time of the main starting valves, within limitations of the required starting time.

REFERENCES

- 1. Starr, R. F. and Schueler, C. J. "Experimental Studies of a Ludwieg Tube High Reynolds Number Transonic Tunnel." AIAA Paper No. 73-212, January 1973.
- 2. Ames Research Staff. "Equations, Tables, and Charts for Compressible Flow." NACA Report 1135, 1953.
- 3. Hottner, T. H. "Investigations at the Model Tube Wind Tunnel." AVA Report No. 64 A 04 (Technical Translation), 1964.
- 4. Varner, M. O., Stallings, D. W., and Starr, R. F. "Experimental Evaluation of the Aerodynamic Design Criteria and Performance of a Transonic Ludwieg Tube Wind Tunnel." AEDC-TR-75-132 (AD), October 1975.
- 5. Porter, J. H., Mayne, A. W., and Starr, R. F. "Boundary-Layer Development in the Nozzle and Test Section of a Transonic Ludwieg Tube." AEDC-TR-76-35.
- 6. Hodgman, Charles D. (ed.). <u>Handbook of Chemistry and Physics.</u> The Chemical Rubber Co., 1961 (42nd Edition).

		:
		+
		e.

APPENDIX A SMALL PERTURBATION SOLUTION

This section presents the essential details of the small perturbation solution, the knowledge of which may be important to a user of the computer program HIRTSM1. Table A-1 shows the small perturbation variables and the exact variables they represent. Use of the expansions (Eq. (22)) in the exact equations listed in Table 1 produces the approximate small perturbation equations listed in Table A-2. Definitions of the coefficients A₁, B₁, C₁ ..., if needed, should be extracted directly from the computer program (subroutine SMPERT) where they are coded as CA1, CB1, CC1, ..., respectively. The equations of Table A-2 can be solved analytically without recourse to numerical iterative procedures. To accomplish this task, the linear equations were solved algebraically to eliminate all variables except those contained in the quadratic equations, Eqs. (12) and (13). After eliminating all variables but ϵ_{12} and ϵ_{13} from the two quadratics, Eqs. (12) and (13) were converted to a single quartic (subroutine QSIMUL), which was solved analytically for its four roots. If necessary, the reader can extract the algebraic details of this procedure from the computer program. The correctness of the algebra has been inferred from computation of residuals from the equations of Table A-2 (replacing the zeros on the right-hand side with residuals). For all cases tested, the residuals were found to be on the order of the computer's accuracy (~10-16). Similarly, the accuracy of the expansions in representing the exact equations was tested by computing residuals from the exact equations using perturbed values for the variables. The largest residuals (percentage basis) were generally less than 10-4.

Table A-1. Perturbation Variables

Original Variable	Perturbation Variable
m _e (t*)	ϵ_1
mpe (t*)	$\epsilon_{f 2}$
m _f (t*)	€3
m _{pt} (t*)	€4
ρ _p (t)	€5
m _d (t*)	€6
mct (t*)	ϵ_7
M _{ct} (t*)	€8
Peo (t*)	€9
Teo (t*)	€10
P _t (t*)	€11
P _d (t*)	$\epsilon_{f 12}$
P _n (t*)	€13
mo (t*)	€14
P _p (t*)	$\epsilon_{f 17}^{f a}$
ρ _p (t*)	€ 18
T _p (t*)	€19
A _e (t*)	$\epsilon_{ ext{A}_{ extbf{e}}}$
A _{pe} (t*)	$^{\in A}$ pe
A _f (t*)	$\epsilon_{ extsf{A}_{ extbf{f}}}$

⁽a) Variables 15 and 16 were eliminated.

Table A-2. Perturbation Equations

Program Equation Number ^a	Perturbation Equation ^b
1	$A_1 \epsilon_1 + B_1 \epsilon_9 + C_1 \epsilon_{Ae} + D_1 \epsilon_{10} = 0$
2	$A_2 \epsilon_2 + B_2 \epsilon_{17} + C_2 \epsilon_{Ape} + D_2 \epsilon_{19} = 0$
3	$A_3 \epsilon_3 + B_3 \epsilon_{A_f} + C_3 \epsilon_{17} + D_3 \epsilon_{12} = 0$
4	$A_4 \in _4 + B_4 \in _{17} + C_4 \in _{11} = 0$
5	$A_5 \epsilon_5 + B_5 \epsilon_2 + C_5 \epsilon_3 + D_5 \epsilon_4 + E_5 = 0$
6	$^{A_{6}\epsilon_{6}} + ^{B_{6}\epsilon_{4}} + ^{C_{6}\epsilon_{7}} = 0$
7	$A_7 \epsilon_6 + B_7 \epsilon_3 + C_7 \epsilon_1 = 0$
8	$A_8 \epsilon_7 + B_8 \epsilon_8 = 0$
9	$A_9 \epsilon_9 + B_9 \epsilon_8 = 0$
10	$A_{10} \epsilon_{10} + B_{10} \epsilon_{8} = 0$
11	$A_{11}\epsilon_{11} + B_{11}\epsilon_{13} + C_{11}\epsilon_{12} = 0$
12	$A_{12}\epsilon_6 + B_{12}\epsilon_{14} + C_{12}(P_{ct_0}\epsilon_{12} - P_d\epsilon_9) + D_{12}(P_{ct_0}\epsilon_{12} - P_d\epsilon_9)^2 = 0$
13	$A_{13}\epsilon_7 + B_{13}\epsilon_{14} + C_{13}(P_{ct_0}\epsilon_{13} - P_n\epsilon_9) + D_{13}(P_{ct_0}\epsilon_{13} - P_n\epsilon_9)^2 = 0^c$
14	$A_{14} \epsilon_{14} + B_{14} \epsilon_{9} + C_{14} \epsilon_{10} = 0$
17 ^d	$A_{17}^{\epsilon}_{17} + B_{17}^{\epsilon}_{18} = 0$
18	$A_{18} \in {}_{18} + B_{18} \in {}_{5} + C_{18} = 0$
19	$A_{19}\epsilon_{19} + B_{19}\epsilon_{18} + C_{19}\epsilon_{17} = 0$

⁽a) See Table 1 for Corresponding Exact Equations

⁽b)Refer to Listing of Computer Program, Subroutine SMPERT, for Definitions of $\mathbf{A_i}$, $\mathbf{B_i}$, ...

⁽c) Variables P_{cto} , P_{d} , and P_{n} Are Evaluated at t* - Δt As Are All the Coefficients Ai, Bi, ...

⁽d) Equations 15 and 16 Were Eliminated

APPENDIX B APPROXIMATED EQUATIONS

Reversion of Eqs. (11), (13), and (17) requires a time-consuming numerical procedure which has a major impact on the run time of HIRTSM1. To reduce the number of iterations needed for the reversions, approximations to the original equations were used to provide accurate initial guesses to the numerical procedure. Since these approximations may be of general interest, they are listed below. A good approximation to the mass flux-Mach number wave equation was obtained by expanding

$$\widehat{\mathbf{m}} = \mathbf{M} \left(1 + \frac{\gamma - 1}{2} \mathbf{M} \right)^{-\frac{\gamma + 1}{\gamma - 1}}$$
 (B-1)

in a series of powers of M using the binominal expansion. Reversion of this series for $\gamma = 1.4$ then produced

$$M = \widehat{m} - 1.200 \,\widehat{m}^2 + 2.0400 \,\widehat{m}^3 + 4.0480 \,\widehat{m}^4 + 8.7965 \,\widehat{m}^5 + 20.106 \,\widehat{m}^6 + 47.960 \,\widehat{m}^7 + \cdots$$
(B-2)

where $\hat{m} \equiv \dot{m}/\dot{m}_c$. The approximation used for the energy equation is much simpler and was discovered quite by accident. It was found that the equation

$$\widetilde{m}^2 = \widetilde{P}^{2/\gamma} - \widetilde{P}^{\frac{\gamma+1}{\gamma}}$$
 (B-3)

could be very reasonably approximated over the interval $0 \le M \le 1.4$ by the ellipse

$$\left(\frac{\widetilde{m}}{\widetilde{m}^*}\right)^2 + \left(\frac{\widetilde{P} - \widetilde{P}^*}{1 - \widetilde{P}^*}\right)^2 = 1$$
 (B-4)

where

$$\widetilde{\mathbf{m}} \equiv \sqrt{\frac{\gamma - 1}{2}} \frac{\dot{\mathbf{m}}}{\dot{\mathbf{m}}_{0}}$$

$$\tilde{P} \equiv \frac{P}{P_o}$$

and

$$\widetilde{P} = \widetilde{P}^*, \widetilde{m} = \widetilde{m}^* \text{ for } M = 1$$

APPENDIX C DESCRIPTION OF THE COMPUTER PROGRAM HIRTSM1

Because of the complexity of the numerical calculations, potential users of the moder must have access to the computer program (a manual calculation on a scientific calculator took about six hours to step through five time increments). For this reason, a listing of the source deck is given in this section along with a brief description of its content and use. Table C-1 lists the 15 subroutines comprising HIRTSM1. Of primary interest are the routines MAIN and SMPERT, which house the exact model equations and the small perturbation equations, respectively. Table C-2 defines some of the more important variables used in the program, information which is potentially useful if a program modification is necessary.

Of primary interest to the potential user, however, is the input, instructions for which are listed in Table C-3. The first card (NCTL) allows the user to retain manual control over some of the superficial program logic. While intended primarily for debugging purposes, the NCTL variable may be used to restart a run previously written onto a data file. To make a normal run and relinquish all control to the program, a blank card may be used. The second card (INSTR) provides the means to invoke certain program options via integer instructions. Table C-4 gives a set of values which have been used successfully to date, though occasional adjustments are necessary for some cases. Of particular importance for supersonic cases is INSTR(26). As the program approaches the choke point in the calculation (timewise, speaking), the number of iterations (ITER) for convergence always becomes inordinately large (~100); and the program must switch to the small pertubation solution entirely by automatically setting INSTR(23) = 2 when ITER \geq INSTR(22). However, for supersonic cases, the solution is often not close to its asymptote, and significant error can accumulate from the small perturbation solution. To reduce this error, INSTR(26) may be used to direct the program to attempt to revert back to the exact solution a certain number of time increments (the input value of INSTR(26)) beyond the choke point. Sometimes the attempted reversion will be unsuccessful because the solution is either still too close to the choke point or is already too close to its asymptote; in which case ITER ≥ INSTR(22) will occur, and the program will continue with the small perturbation solution. When this situation occurs, the exact solution is not given a chance to correct the accumulated error, which may affect the asymptote by as much as 10 percent. If this result is encountered, different values of INSTR(26) should be tried, since even a temporary successful reversion to the exact solution can improve the accuracy of the solution considerably.

The remaining data cards constitute primarily a description of the tunnel and its geometry. While most of the table entries are self explanatory, some of them deserve more emphasis. On card number 4, the values of A15 and A16, if used, should be entered

as negative to invoke the use of ramps. On card number 5, the weight used in computation of the test section pressure for subsonic flow is programmed as 0.5. The input value is used only in supersonic flow. On card number 6, the variable A14 is used to sort the roots from the quartic. A value of -0.2 has been found more effective than -0.1. If the root sorting logic finds more than one value of ϵ_{13} acceptable, the program will halt in bewilderment, requiring some trial and error adjustment of A₁₄ by the user. On card number 7, it has been found best to keep $EMAX \leq PERR/10$. The quantity A10 is used to obtain debugging information when T > A10. Following card number 10, three separate decks for the nondimensional area-time curves for the main valves, plenum exhaust valves, and flaps must be provided. Each deck must contain the number of cards entered on card number one. The times and areas must be nondimensionalized by the values entered on card numbers 9 and 8, respectively, and, therefore, will vary only between zero and one. The times must proceed in ascending order. Table C-5 gives recommended values for some of these entries. The remaining input instructions (I1, I2, ...) may be ignored unless NCTL has been entered as other than zero, in which case the user is invited to decipher the program logic in order to determine the endless uses to which this option may be put.

Table C-6 presents a sample job stream and data deck. The first four cards are peculiar to the computer facility. The first "GO" card designates data set 03 a dummy in order to suppress debugging printouts sent to DSRN* IDEBUG. The remaining data cards may be understood via Table A-3.

A portion of the output from this run is shown in Table A-7. The first four pages show the input data along with the initial values of most program variables. In addition, an interpretation of the INSTR(I) options selected is printed. The flow area-time curves are the redimensionalized form in units of seconds and square feet (or whatever units are used in the input data). The form of the remaining output is that due to the selection of INSTR(5) = 2 and generally displays all computed properties at the midpoint or end of each time interval. Each five lines of data separated by a space corresponds to a single time interval, and each block of five numbers corresponds to the similarly positioned block of five variable names in the page heading. Interpretation of these names may be accomplished via Table C-2. The illustrated run went to 180 msec, generated about 1,700 records (lines of print), and required 42.6 sec of central processor (CPU) time on an IBM 370/165. This run may be used as a check case by potential users.

Table C-8 presents a machine listing of the final source deck. All necessary subprograms are included except those available from the IBM subroutine library, from which HIRTSM1 uses DABS, DSQRT, DSIN, DCOS, DATAN2, CDSQRT, and CDABS.

^{*}Data Set Reference Number

Table C-1. Description of Subroutines

PRIMARY MODEL SUBROUTINES

Subroutine Name	<u>Function</u>
MAIN	1. Overall program control
	2. Exact model equations
	3. Convergence control
SMPERT	Small perturbation equations
SPECIALIZED UTI	LITY SUBROUTINES
INPUT	Obtains initial data from DSRN IIN
CONST	Defines certain program constants
INIT	Initializes certain program variables
DUMP	Prints out all program variables at beginning and end of run and as needed for debugging
PRINT	Prints numerical solution and controls paging
GENERAL UTILITY	SUBROUTINES
SOLVER	Provides logic for numerical reversion of a function (see Fig. 10)
BINOM	Expands a binomial to seven terms
REVERT	Reverts a series to seven terms
QSIMUL	Converts two conics to a quartic
QANDC	Computes the exact roots of a quartic
CUBRT	Computes the exact roots of a cubic
DREAL	Returns the real part of a double precision complex number
DIMAG	Returns the imaginary part of a double precision complex number

Table C-2. Definition of Major Program Variables

REAL	ARRAYS

V	a	r	i	a	b	1	е
		N	a	m	e		

Definition

AREA Input nondimensional area-time curves for

main valves, flaps, and plenum exhaust valves

AREATS Interpolated areas for time t*

AREAM Peak of area-time curves (dimensional)

TV Nondimensional times for area-time curves

E Convergence criteria errors

TVF Total time for main valves, flaps, and plenum

exhaust valves (dimensional)

TDELAY Delays times for first motion of valves and

flaps

RW Coefficients for the reverted expansion of

the mass Flux-Mach number wave equation

V Array equivalenced to major property values

RSTR Array equivalenced to certain real commoned

variables to simplify writing of solution onto a storage device for restarting a run

ISTR Array equivalenced to certain integer vari-

ables for storage and restarting

REAL SCALARS

Pxi Pressure

MDxi Mass flow rate

Txi Temperature

Rxi Density

Mxi Mach number

Axi Flow areas

Table C-2. Continued.

x-c	od	es	:
-----	----	----	---

x = N Nozzle exit (test section entrance)

= P Plenum

= PT Plenum at time t (PPT) or wall crossflow

(MDPT)

= D Diffuser entrance (test section exit)

= T Test section midpoint (PT)

= CTO Stagnation condition, charge tube

= CT Charge tube

= E Main valve exit

= F Flaps

= PE Plenum exhaust

= C Charge conditions

i - codes:

i = blank Values at current time interval and current

iteration

i = 1 Converged values from last time interval

i = 2 Values from last iteration, current interval

i = 3 Scratch area

G Specific heat ratio (γ)

R Ideal gas constant

PERR Error limit on pressures

KF Flap flow coefficient

KW Wall crossflow coefficient

TSL Test section length

TSH Height

Table C-2. Continued.

TSW Width

TSP Perimeter

TSA Flow area

TSWA Wall surface area

TSV Volume

CTD Charge tube diameter

CTA Charge tube flow area

PV Plenum volume

PVOTSV Plenum: test section volume ratio

TAUW Porosity

Time at end of current interval (t)

Time at end of last interval $(t - \Delta t)$

DT Time increment

TSTR Midpoint of current interval (t*)

TSTOP Time for termination of run

Ai Miscellaneous program constants

INTEGER ARRAYS

INSTR Program control instructions (see input)

NVT Number of time points in each of three input

area-time curves

INTEGER SCALARS

IDEBUG Data set reference number (DSRN) for debugging

output, normally dummied

IIN DSRN of input data (usually 05 for card reader)

IOUT DSRN of primary output data (usually 06 for

line printer)

ITER Number of iterations

Table C-2. Concluded.

NP

Printing time interval

IFLGi

Miscellaneous program control flags

Table C-3. Description of Program Input a. Main Program

Variable	Index	Value	Action	Default Value	Format
NCTL		0	Proceed through normal programmed solution procedure	0	13
		1	Read INSTR(*)		
		2	Write heading		
		3	Read data file and print results		
		4	Proceed to normal calculation		Į.
		5	Call INPUT		
		6	Call INIT		
		7	Call CONST		
	1	8	Call DUMP		
	1	9	Call SOLVER		
		10	Call PRINT		
		11	Call BINOM		
		12	Call REVERT		
	1 .	13	Stop		
INSTR	1	06	Print debugging data		2613
		03	Skip debugging prints (DSRN 03 Is Dummy)	03	(One Care
	2	05	Input DSRN	05	
	3	06	Output DSRN	06	
	4		Printing time interval	1	Ì
	5	1	Pressures in psf		
		2	Pressures in psi	2	
	6	≠ 0	Call PRINT on every iteration)		
		0	Call PRINT on ON convergence set to zero when IDEBUG = IOUT	0	
	7	1	Extrapolate to next time interval as an initial guess		
		2	Do not extrapolate	2	
	8	1	Use reverted series from mass flux - Mach number wave equation		1
		2	Use second-degree approximation	1	
	9	1	Use iterative solution to energy and wave equations		1
		2	Use approximate expansions for energy and wave equations	1	
	10	1	Average current value with previous average value		
		2	Average current value with previous unaveraged value		
	1	0	Do not invoke option	0	

Table 3. Continued a. Concluded

Variable	Index	Value	Action	Default Value	Format
INSTR	11	>0	Iteration limit beyond which current weight is halved	0	
	12	1	Do not invoke option		
		>1	Divide error limits PERR and \$EMAX by INSTR(12) if the fractional difference between successive time intervals is less than (errors) x (INSTR(12))	1	
	13	≠ 0	Print only time and pressure data		
		0	Print everything		
	14	>1	Set DT = DT*INSTR(14) based on INSTR(12) ceiteria, do not cut error limits		
	}	1	Do not invoke option	1	
	15	≠ 03	Read solution from DSRN = INSTR(15), skip other input		
		03	Do not read solution	03	
	16	[1,1000]a	First record number to be read	0	
]	17	[1,1000]	Last record number to be read	0	
	18	≠ 03	Write solution on DSRN = INSTR(18)		
		03	Do not write solution	03	
	19	[1,1000]	First record number to be written	0	
	20	0	Do not invoke option		
		>0	When weight is halved, increment INSTR(11) by INSTR(20)	0	
	21	0	Do not invoke option		
		≠0	Set INSTR(7) = 2 to extrapolate next time interval when weight is halved	0	
	22	0	Do not invoke option, set INSTR(22) = 231-1		
	}	>0	Set INSTR(23) = 2 when number of iterations > INSTR(22)	9999999	
	23	o	Do not use small perturbation expansion	Ì	
		1	Use small perturbation initial guess for next time interval		
		2	Use small perturbation expansions as solution	0	
	24	≠0	SMPERT prints small perturbation results	1	
		0	Does not print without error	0	
	25	1	Use isentropic solution in plenum		
		2	Use anisentropic solution in plenum	2	
	26	0	Do not invoke option		
		>0	Revert to exact equation after the input number of time increments beyond choking	9999999	

aSquare brackets [] indicate the range of the variable.

Table 3. Concluded b. Subroutine INPUT

Variable, units	Card Numbera	Value	Meaning	Default Value	Format
NVT(1)	1	[2,50]	Number of area-time points for main valve		2613
NVT(2)		[2,50]	Number of area-time points for plenum exhaust valve		
NVT(3)		[2,50]	Number of area-time points for flaps		
PC, psia	2		Charge pressure		5E16.8
TC, OR			Charge temperature		
TSL, ft	3		Test section length		5E16.8
TSH, ft		1	Test section height		
TSW, ft			Test section width		
CTD, ft		}	Charge tube diameter	1	
PVOTSV			Ratio of plenum volume to test section volume		
TAUW	4		Porosity (fraction, not percent)		5E16.8
KW, ft/sec			Wall crossflow coefficient		
KF, ft/sec			Flap flow coefficient from Dr. Varner's flow model		
A15b]	Crossflow constant MDPT = -AWOKW x (PP - Al5 x PT)	1.0	
Al6 ^b		1	Flap flow constant MDF = -AF/KF x (PP - A16 x PD)	1.0	
A17	5	>0	Test section pressure weight, PT = A17 x PD + (1.DO - A17) x PN	1.0	5E16.8
R, ft ² /sec ² -OR	6	1	Perfect gas constant	1.0	5E16.8
G G		[Ratio of specific heats (γ)		DETO. 0
A11		(0,1) ^c	Fraction of new values to be accepted		
Al3, sec		(0,1)	Set INSTR(23) = 2 When T > A13	0,5	
A14				1.D70	
	7	 	€12 and €13 limits	-0.1	
DT, sec	′	(Time increment for numerical calculation		5E16.8
TSTOP, sec			Time to halt calculation		
\$EMAX		(0,1)	Maximum allowable error - used in SOLVER fractions, not percent		
PERR		(0,1)	MAXIMUM BILOWADIC CITOT - USed In MAIN		
AlO, sec			Time at which INSTR(6) is set different from zero	1.D70	
AREAM(1), ft ²	8	1	Maximum main valve flow area		5E16.8
$AREAM(2)$, ft^2			Maximum plenum exhaust flow area		
AREAM(3), ft2			Maximum flap flow area		
TVF(1), sec	9		Final time in main valve area-time curve	T	5E16.8
TVF(2), sec		1	Final time in plenum exhaust area-time curve		
TVF(3), sec		1	Final time in flap area-time curve		
TDELAY(1), sec	10		Time delay for main valve	-	5E16.8
TDELAY(2), sec		1	Time delay for plenum exhaust		
TDELAY(3), sec			Time delay for flaps		
TV(1,I) AREA(1,I))) ({ main } valve }		2E16.8
TV (2, I) AREA (2, I)		[0.,1.]	Nondimensional time (final = 1.0) and nondimensional area (maximum = 1.0) for { for exhaust }		
TV (3, I) AREA (3, I)					
11d	1	0	Return 1		
11.	_	1	Read ISTR(I2)		
		2	· · ·		
		3	(
12		3	Read V(12,13)		
) i	Indices of array elements to be read		
13			N		2613
ISTR RSTR	>1 >1		Enter one per card each preceded by a no. 1 card above - see common and		13 E16.8
v	>1		equivalence statements to determine indices		E16.8

⁸Card Order in Input Deck

bif Less than Zero, Ramps of Fig. 27b Will Be Used

CRound Brackets Exclude End Points

dThese Cards Omitted Unless NCTL # 0

Note: If INSTR(5) = 1, any set of units for which g_{C} = 1 in F = $1/g_{C}$ wa will work properly.

Table C-4. Suggested Values for INSTR(I)

	Suggested Value of				
I	Suggested Value of INSTR (I)				
1	03				
2	05				
3	06				
4	01				
5	02				
6	00				
7	02				
8	01				
9	01				
10	01				
11	40 ^a				
12	10				
13	0 or 1				
14	01				
15	03				
16	00				
17	00				
18	03				
19	00				
20	10 ^a				
21	00				
22	01				
23	01				
24	00				
25	02				
26	09 ^a				

⁽a) Adjustment May Be Necessary for Specific Cases

Table C-5. Recommended Values for Certain Variables

Variable Names	Recommended Value				
KW, KF A15, A16	See Fig. 7 See Fig. 27a, Enter Negative 0.5 or Leave Blank				
A13 A14	Leave Blank -0.2				
A17 PERR \$EMAX	0.9 0.49999999E-04 0.49999999E-05				

Table C-6. Sample Jobstream and Input Data Deck

```
/*PRIORITY
//VKF05145
              J08
                            (ARO.
    VRV00090 001 0 V37A-31A) 0 09452SHOPE 0 MSGLEVEL= (200) 0 CLASS=A0TIME=3
// EXEC FORTEPDS.PGMNO=VRY00090
//GO.FT03F001 DD DUMMY
7/GO.FT05F001 DD *
000
                                                              10 00 20 01 00
                                                                                 09
                    05
                             01 50 10
 05 10 05
  0.15215000E+03
                   0.53000900E + 03
                   0.61170000E 00
                                    0.76330000E 00 1.16200000E 00 2.50000000E 00
  2.11400000E 00
  0.0400000E 00
                   0.31000000E+03
                                    0.2000000E.03 =1.04988410E 00 =1.08312800E 00
  0.9000000E 00
  0.171760A0E+04
                   1.40000000 00
                                                                     ~0.20000000E 00
                   0.180000000 00
                                    0.499999998-05
                                                     0.49999999E=04
  0.001000000 00
  0.46591116E 00
                                    0.09167000E 00
                   0.90371714E -1
  0.03000000 00
                   0.04000000E 00
                                    0.00000000000000
  0.0000000E 00
                   0.00500000E 00
                                    0.0000000E 00
  0.0000000E 00
                   0.00000000E 00
                   1.00000000E 00
  1.00000000E 00
  0.0000000E 00
                   0.0000000E 00
  0.16400000E 00
                   0.923000000 00
                   0.98000000E 00
1.00000000E 00
  0.2000000E 00
  0.30000000E 00
                   0.99298055E 00
  0.45000000E 00
  0.50000000E 00
                   0.97332608E 00
  0.66000000E 00
                   0.649027378 00
                   0.52478305E 00
0.49810913E 00
  0.80000000E 00
  0.9000000E 00
                   0.48687801E 00
  1.00000000 00
  0.00000000E 00
                   1.00000000E 00
  1.00000000E 00
                   1.00000000E 00
```

				7
				×
				a a
•				
				-

TABLE C-7 SAMPLE OUTPUT FROM HIRTSM1 FOR RUN 2742

	٠
	*

88 88	A 69 6	n _, en e	8 68 68
的现在分词的现在分词的现在分词的现在分词的现在分词的现在分词的现在分词的现在分词	HIRTSMI - MATHEMATICAL STAMTING MODEL FOR A LUDWIEG TUBE WIND TUNNEL		SA S
55555	GN I B	2	55555
88889	TUBE	NOI	8888
55555)wle G	STAT	58.88.88
88888	§ Lu	FORCE	88888
88888	FOR	AIR	8888
88888	MODE	MOLD	55.55
8888	RIING	ON. A	2555
88888	L STA	IZATI	888888
86868	ATICA	ORGAN	88888
9888	ATHEM	ARCH	8 4 4 8 8 8 4 8 8
88888		RESE	8888
888888	HIRTSM	S ARVOLD RESEARCH ORGANIZATION. ARNOLD AIR FORCE STATION. IN	888888
19 19 19	9 69 6	- 	9 9

1 25 TR 16		9 3		0 03	00 0		0-01	9	:	<u>ق</u> 93		· 6	03		00	9	-00
INSTRIS INE	M	IFLGS IFLG6	NCTL 0	KF 0.200000000	15V 0.98704903D		RP1 0.240676960-01	PE0 0.15215000D	0.0	PN 0.15215000D	MDC12	MD15TR 0.73415627D	PE03 0.15215000D		A8 -0.28571429D	A16 -0.10831280D	A24 0.477178590-80
INSTRIB INSTRIC	. 0	IFLG3 IFLG4 0 0	IT(2) IT(3)	KW 0.31000000D 03	CTA 0.10504789D 01		PP1 0.15215000D 03	TCT0 0.530000000 03	MDE	PD .152150000 03	MÚFZ	MSOM0 0.57870370D 00	MDF3		A7 0.16658684D 00	A15 -0.10498841D 01	A23 0.46678052D-80
INSTRIZ INSTR	10	IFLG2	17(1)		3				000	9	9	00	000 03 000		20	9	
INSTRIL IN	20	IFLG IFLGI	. 14 0 0	TAUW 0.400000000000000000000000000000000000	TSWA 0.58135000D		000000005900	RCT0 U.24067696D-01	MUCT 0.0	0.0	MDPE2	RSOR0 0.63393815D	PP3 0.152150000	TDELAY	A6 0.47171821D	A14 -0.20000000	0.457309020-80
INSTR 9 INSTRIC	STRZS INSTRZ6	12 0 0 26	(a) [3 0 5	PVOTSV .250000000052	TSP 0.2750000UD 01		кр 0.24067696U-01	PCT0 0.15215000D 03	MOPE 0.0	MUPT 0.0	MDE2	150T0 .83333330 00	PN3 .152150000 03	TDELAY 0.5000000000-02	A5 0.172800000 01	A13 0.999999450 70	A21 0.43280664D-80
NE S ALSNI A MISNI	INSTRACT I	1P 11EH 0 0	NVI(1) NVI(2) NVI(3)	CTD 0.116200000 01 0.	TSA 09.96691U61D UU 0		94 0.15215000033	1P1 0.5300000000000000000000000000000000000	ACT0 0.112892410 04 0.	TSTM 0.0	PP2 0.152150000	PSOP0 .52828Î79D 00 0	PEHK 0.499999990-04 0.4999999990-04	TDELAY	A4 U.57870370D <u>00</u> 0.	A1¢ 0.500000000000000000000000000000000000	A2U 0.425600060-80 0.
ONICH S INCIN 6	INSTRZZ INSTRZZ 2 0 0 20	SE NPAGE NP	NA NCT ITIME NO 0 0 0	15₩ 0.76330000D 00	AFM 0.9167000UD-01		TC 0.53000000D 03 0	HPT 0.24067696D-01 U	AC 0,11289221D 04 0	0 ° 0	MCT 0.0	DT 0.10000000D-02	MDCT0 0.28813801D 02 0	PCT03 0.15215000D 03 U	A3 0.69444440-02 U	A11 0.50000000 00 0	A19 0.41756987D-80 0
INST E	19 INSTR20 1 0 10	IOUT II IPAGE 6 0 0	1FL69 ND 0	TSH 0.611700000 00	APM 0.903717140-01	AWDKW 0.127521900-03	RC 0.24067696D-01	PP1 0.152150000 03	750 0.530000000	T1 0.0	0.0	1510P 0.180000000	MDCTC 0.28813801D 02	MD1503 0.1<686220D 02	A2 0.144000000 03	A10 0.99999945U 70	A18 0.402641950-80
HISTE 2 HISTR 2 INSTR	NSTRIA INSTRIB 3 3 S S S S S S S S S S S S S S S S S S	IDEBUG IIN I	IFLG7 IFLG8 IF	TSL 0.21140000D 01	AEM 0.46591116D 00	PV 0.24676226U U1	PC 0.15215000D 03	TP1 0.530000000 u3	RE0 0.24 <u>0</u> 67695D-01	F 0.0	PT 0.152150000 u3	\$EMAX 0.49499990-05	MDTS0 0.12686220D 02	TEU3 0.530000000 u3	A1 0.16521834D-01	A9 0.4800000000	A17 0.900000000000

```
GM102
                                                                 GP102
                                                                                 006
                                                                                               GM10G
                                                                                                              GP105
  0.14000000 01 0.40000000 00 0.240000000 01 0.200000000 00 0.12000000 01 0.714285710 00 0.28571429D 00 0.17142857D 01
                                                   TOG
                                                                                00GM1
  0.35000000D 01 0.56333333D 00 0.44721360D 00 0.14285/14D 01 0.63333333D 00 0.2500000DD 01 0.6000000DD 01 0.3000000DD 01
                   MGPGMZ
                                  MGPOGM
                                                  00621
 0.5000000D 01 -0.3000000D 01 -0.6000000D 01 0.41666967D 00 0.17176080D 04 0.58220502D-03 0.24046512D 04 0.5000000D-03
 0.40524836D-u3 0.50000000D-02 0.99999945D 70 0.60525968D 02 0.10000000 04 -0.35000000 01 0.30612245D 00 0.61224490D 00
 0.285497290-01
V EQUIVALENCE ARRAY
. 0.15215000D 03 0.0
                                                                             0.12686220D 02 0.28813801D 02 0.53000000D 03
                 0.0
                               0.0
                                              0.0
                                                             0.0
  0.53000000D 03 0.53000000D 03 0.53000000D 03 0.24067090D-01 0.24067696D-01
                                                                            0.24067696D-01 0.24067696D-01 0.11289221D 04
                0.0
                               0.0
                                              0.0
                                                             0.0
                                                                                           0.15215000D 03 0.15215000D 03
                                                                            0.0
 0.15215000D 03 0.15215000D 03 0.15215000D 03 0.15215000D 03 0.15215000D 03 0.0
                                                                                           0.0
                                                                                                          0.0
                                              0.12686220D 02 0.28813801D 02 0.53000000D 03 0.53000000D 03 0.53000000D 03
                0.0
                               0.0
 0.53000000D 03 0.24067696D-01 0.24067696D-01 0.24067696D-01 0.24067696D-01 0.11289221D 04 0.0
                                                                                                          0.0
                0.91670000D-01 0.0
                                                             0.15215000D 03 0.15215000D 03 0.15215000D 03 0.15215000D 03
                                              0.0
 0.152150000 03 0.152150000 03
                               0.15215000D 03 0.0
                                                             0.0
                                                                             0.0
                                                                                           0.0
                0.126862200 02 0.28813801D 02 0.53000000D 03 0.53000000D 03 0.5300000D 03 0.5300000D 03 0.24067696D-01
 0.0
  0.24067696D-01 0.24067696D-01 0.24067696D-01 0.11289221D 04 0.0
                                                                            0.0
                                                                                            Ö.O
                                                                                                          0.0
                               0.15215000D 03 0.15215000D 03 0.15215000D 03 0.15215000D 03 0.15215000D 03 0.15215000D 03
  0.0
                                                                                                           0.12686220D 02
  0.152150000 03 0.0
                               0.0
                                               0.0
                                                             0.0
                                                                            0.0
                                                                                            0.0
  0.28813801D 02 0.53000000D 03 0.53000000D 03 0.53000000D 03 0.53000000D 03 0.24067696D-01 0.24067696D-01 0.24067696D-01
 0.240676960-01 0.11289221D 04 0.0
                                              0.0
                                                             0.0
                                                                            0.0
                                                                                           Õ.O
                                                                                                          0.0
                                                  RH(4)
                                                                 RW(5)
                                                                                RW(6)
 0.10000000D 01 0.1200000D 01 0.20400000D 01 0.40480000D 01 0.87696000D 01 0.20106240D 02 0.47961472D 02
INSTR.( 1)=
              3 SEND DEBUGGING OUTPUT TO DERN 3
INSTR.( 2) =
               5 OBTAIN INPUT FROM DSRN 5
INSTR( 3)=
              6 SEND REGULAR OUTPUT TO DSRN 6
             1 PRINTING TIME INTERVAL: 1
INSTR( 4)=
               2 INPUT AND OUTPUT PRESSURES IN PSIA
INSTR( 5)=
              O PRINT DATA ONLY WHEN CONVERGED
INSTR( 6)=
INSTR( 7)=
               2 DO NOT EXTRAPOLATE TO NEXT TIME INTERVAL
INSTR( 8)=
              1 USE SEVENTHI DEGREE REVERTED SERIES AS INITIAL GUESS TO MASS FLUX-MACH NUMBER WAVE EQUATION
              1 USE ITERATIVE SOLUTION TO ENERGY AND WAVE EQUATIONS
INSTR( 9)=
INSTR(10)=
             1 AVERAGE VALUES OF CURRENT ITERATION WITH AVERAGE VALUES OF PREVIOUS ITERATION
INSTR(11) = 20 CURRENT WEIGHT IS HALVED BEYOND 20 ITERATIONS
```

72
Ш
O
C
÷
\pm
Ξ,
6
۵
õ

INSTR(12)=	10	DIVIDE ERRORS BY 10 WHEN TIME-DIFFERENCES ARE LESS THAN 10 TIMES THE ERRORS
INSTR(13)=	0	PRINT ALL DATA
INSTR(14)=	1	DO NOT INVOKE DI-HAISING OPTION
[NSTR(15)=	3	DO NOT READ SOLUTION FROM PERMANENT DATA SET
INSTR(16)=	O	FIRST MECURD TO BE READ: 0
INSTR(17) =	0	LAST RECORD TO BE READ: 0
INSTR(18)=	3	DO NOT WRITE SOLUTION ON PERMANENT DATA SET
INSTR(19)=	0	FIRST MECORD TO BE WRITTEN: U
INSTR(20)=	10	INCHEMENT INSTR(11) BY 10 WHENEVER WEIGHT IS HALVED
INSTR(21)=	0	DO NOT CHANGE EXTRAPOLATION OPTION (INSTR(7))
INSTR(22) =	20	SET INSTR(23)=2 WHEN ITER >= 20
=(£5),FT2NI	1	USE SMALL PERTURBATION EXPANSIONS AS INITIAL GUESS FOR NEXT TIME INTERVAL
INSTR(24)=	0	RESULTS FROM SMPERT NOT PRINTED
INSTR(25)=	2	SET TP AND TPT = MAX(ISEN TP.TCTO)
INSTR(26)=	9	REVERT TO EXACT SUPERSONIC SOLUTION 9 TIME INCREMENTS AFTER CHOKE

Jl	J2	J 3	J 4	Jo	J 6	J 7	JB	J 9	JIO	JII	112	JĮ3	4 (ا	Jlo	J16	J17	٦Ĩ۾	J19	J20	JZl	JZZ	J23	J24	J25	J26
3	5	6	1	2	Ü	2	1	1	1	20	10	0	1	3	Ü	0	3	0	10	0	20	1	Ü	2	9

FLOW AREAS VERSUS TIME

1	TV(1+1)	A-RA(1.1)	T4(201)	AREA(2+1)	TV(3,1)	AREA (3.1)
====			*********	. = = = = = = = = = = = = = = = = = = =		
1	0.0	0.0 .	0.0	U.O	0.0	0.915700000-01
ے	0.3000000000-01	0.465911160 00	0.5000000000-02	0.0	0.0	0.916700U0D-01
3	0.0	0.0	0.11560000D-01	0.834130920-01	0.0	0.0
4	0.0	0.0	0.13000000D-01	0.885642800-01	0.0	0.0
5	0.0	0.0	0.170000000-01	0.90371714D-01	0.0	0.0
6	0.0	0.0	U.23U0U000D-01	0.89/37354D-01	0.0	0.0
7	0.0	0.0	0.2500000D-01	0.879011460-01	0.0	0.0
8	0.0	0.0	0.314000000-01	0.586537160-01	0.0	0.0
9	U.O	0.0	U.37000000D-01	0.474255440-01	Ō. O	0.0
10	0.0	0.0	0.41000000D-01	0.450149760-01	0.0	0.0
11	0.0	0.0	0.4500000000-01	0.440000000-01	0.0	0.0

N S S S S S S S S S S S S S S S S S S S	2222	20207	75,265	20011	22227	1222	20007	99977
PP1 MD0 150 AF I	0.151234D 03 0.151234D 01 0.519132D 03 0.916700D-01 0.100000D-02	0.1398190 03 0.1778230 01 0.5169650 03 0.9167000-03	0.136854D 03 0.201770D 01 0.515037D 03 0.916700D-01 0.100000D-02	0.1336250 03 0.2259060 01 0.5130620 03 0.9167000-01	0.1301030 03 0.2501260 01 0.5110510 03 0.9167000-01	0.1268520 03 0.2737890 01 0.5090700 03 0.9167600-01	0.1236920 03 0.2962910 01 0.5071840 03 0.9167000-01	0.1207200 03 0.3175630 01 0.5054020 03 0.9167000-01
PN MUPT TPT APE	0.140033D 03 -0.658874D-01 0.520659D 03 0.317885D-01 0.382935D-05	0.137313D 03 -0.507014D-01 0.516965D 03 0.445039D-01 0.101492D-05	0.134603D 03 -0.423509D-01 0.515037D 03 0.572193D-01 0.211124D-06	0.132134D 03 -0.318372D-01 0.513062D 03 0.699348D-01 0.995457D-07	0.1293110 03 -0.197063D-01 0.5110510 03 0.626502D-01 0.742643D-07	0.126416D 03 -0.798923D-02 0.509070D 03 0.667757D-01 0.393086D-06	0.1235520 03 0.1430110-02 0.5071840 03 0.8879020-01	0.1207350 03 0.8282350-02 0.5054020 03 0.8924210-01
PD MDCT TP AE E(6)	0.139894D 03 0.14646D 01 0.522035D 03 0.116478D 00	0.1727590 03 0.1727590 01 0.5169650 03 0.1320080 00	0.134677D 03 0.197535D 01 0.515037D 03 0.147539D 00	0.132025D 03 0.222723D 01 0.513062D 03 0.163069D 00	0.129234D 03 0.240158D 01 0.511051D 03 0.176599D 00	0.126383D 03 0.272991D 01 0.509070D 03 0.194130D 00	0.1235590 03 0.2966440 01 0.5071840 03 0.2096600 00	0.120781D 03 0.318391D 01 0.505402D 03 0.2251500 00
PP MN MDCTO RCTO E(S)	0.1442960 03 0.1224250 00 0.270420 02 0.2285280-01 0.2310280-05	0.140887D 03 0.148691D 00 0.267397D 02 0.226150D-01 0.207053D-05	0.138076D 03 0.172732D 00 0.264417D 02 0.224048D-01 0.116771D-05	0.1349770 03 0.1981250 00 0.2613870 02 0.2219070-01 0.1594220-05	0.131642D 03 0.224875D 00 0.258324D 02 0.219734D-01	0.128266D 03 0.25222D 00 0.255332D 02 0.217615D-01 0.175627D-05	0.2793200 03 0.2793200 00 0.2525040 02 0.2156040-01	0.121989D 03 0.305997D 00 0.249854D 02 0.213717D-01 0.169809D-05
PT MD MDTS:0 RE:0 E(4)	0.139964D 03 0.118109D 00 0.118209D 00 0.2285499-01 0.351006D-01	0.137249D.03 0.153179D 00 0.117730D 02 0.226150D~01 0.277742D~05	0.134/400 03 0.1745/7/D 00 0.224948D-01 0.22590-05	0,132040D 03 0,201099D 00 0,115049D 02 0,22190(D-01 0,334842D-05	0.129472D 03 0.226777D 00 0.113739U 02 0.2197339D-01 0.402426D-05	0.1264010 93 0.2530210 00 0.1124100 02 0.2175150-91	0.123555D 03 0.27917D 00 0.111173D 02 0.215604D-01 0.298026D-05	0.120/58D 03 0.305103D 00 0.110006D 02 0.213/170-01 0.299565D
TJ MCT MUPE APT E(3)	0.700000D-02 0.5351350-01 -0.4775350 0.230212D-01 0.212672D-05	0.6476820-02 0.6476820-01 -0.656084D 00 0.2267480-01 0.8438120-06	0.94004040-02 0.7495780-01 -0.8282500 00 0.2227740-01 0.9232930-06	0.100000D-01 0.85583ZD-01 -0.99149UD 00 0.218351D-01 0.825413D-06	0.110000D-01 0.966034D-01 -0.114500D 01 0.213565D-01 0.683904D-06	0.120000D-01 0.107661D 00 -0.117365D 01 0.208910D-01 0.5240270-07	0.130000b-01 0.118388D 00 -0.117285D 01 0.204463D-01	0.140000D-01 0.128702D 00 -0.115210D 01 0.200254D-01 0.342077D-07
1STR PEU MDE MP RP	0.750000D-02 0.14150BD 03 0.172110D 01 0.231736D-01 0.105743D-05	0.8500000-02 0.1394500 03 0.1926240 01 0.2284600-01	0.950000D-02 0.137639D 03 0.212887D 01 0.224759D-01 0.488217D-06	0.105000D-01 0.135801D 03 0.23599D 01 0.220561D-01 0.423144D-06	0.1150000-01 0.133946D 03 0.251767D 01 0.215958D-01 0.3276260-06	0.125000D-01 0.1321360 0.2704900 0.211237D-01 0.3077570-07	0.1350u0b-01 0.130432D 03 0.288894D 01 0.206686D-01	0.1450000-01 0.1288360 03 0.3070360 01 0.2023580-01
T PCT0 MDF TCT0 E(1)	0.8000000-02 0.1415080 03 -0.2086850 00 0.5191320 03	0.9000000-02 0.1394500 03 -0.1479720 00 0.5169650 03 0.1364510-05	0.1076390 03 0.1376390 03 -0.1111440 00 0.5150370 03 0.3136960-06	0.110000D-01 0.135801D 03 -0.669061D-01 0.513062D 03	0.1200000-01 0.133946D 03 -0.163700U-01 0.511051D 03	0.1300000-01 0.1321380 03 0.3299670-01 0.5090700 03	0.1400000-01 0.1304320 03 0.7397440-01 0.5071840 03 0.5398320-06	0.1500000-01 0.1288360 03 0.1052720 00 0.5054020 03

T S S S S S S S S S S S S S S S S S S S	125	10101	62527	30 F 50 CF T	P 3 P = =	0 F 00 F F	* 8 9 7 7 7	11709
T T T T T T T T T T T T T T T T T T T	0.117902D 03 0.337681D 01 0.503721D 03 0.916700D-01	0.115206D 03 0.356789D 01 0.502127D 03 0.916700D-01	0.1126130 03 0.3749910 01 0.5006110 03 0.9167000-01	0.110107D 03 0.392362D 01 0.499167D 03 0.916700D-01 0.100000D-02	0.107657D 03 0.408972D 01 0.497790D 03 0.916700D-01 0.100000D-02	0.1052730 03 0.4248960 01 0.4964730 03 0.9167000-01 0.1000000-02	0.102907D 03 0.440153D 01 0.495212D 03 0.916700D-01	0.100556D 03 0.454810D 01 0.494005D 03 0.915700D=01
PN MDPT TPT APE	0.1179690 03 0.1272950-01 0.5037210 03 0.8969390-01	0.1152390 03 0.1514240-01 0.5021270 03 0.9014580-01 0.7462190-07	0.112535D 03 0.157811D-01 0.500611D 03 0.903189D-01 0.326772D-07	0.109849D 03 0.148171D-01 0.499167D 03 0.902131D-01 0.438612D-08	0.107173D 03 0.124210D-01 0.497790D 03 0.901074D-01 0.128849D-07	0.104495D 03 0.875840D-02 0.496473D 03 0.900017D-01	0.101805D 03 0.395459D=02 0.495212D 03 0.898959D=01 0.340164D=07	0.990944D 02 -0.189983D-02 0.494005D 03 0.897902D-01 0.416879D-07
PD MDCT TP AE E(6)	0.1180%6D 03 0.33895%D 01 0.503721D 03 0.2%0721D 00	0.115339D 03 0.358343D 01 0.502127D 03 0.256251D 00 0.746219D-07	0.112649D 03 0.376569D 01 0.500611D 03 0.271762D 00	0.1099660 03 0.3938440 01 0.4991670 03 0.2873120 00	0.107280D 03 0.410214D 01 0.497790D 03 0.302842D 00	0.104577D 03 0.425762D 01 0.496473D 03 0.318373D 00	0.101846D 03 0.440549D 01 0.495212D 03 0.333993D 00	0.990732D 02 0.454620D 01 0.49409D 03 0.349433D 00
PP MN MDCTO RCTO E(5)	0.119110D 03 0.332297D 00 0.247368D 02 0.2119440-01 0.1588930-05	0.116358D 03 0.358385D 00 0.245027D 02 0.210271D-01 0.147855D-05	0.1137360 03 0.384401D 00 0.242815D 02 0.208687D=01 0.137796D=05	0.111198D 03 0.410445D 00 0.240720D 02 0.207186D-01 0.128229D-05	0.108735D 03 0.436640D 00 0.238732D 02 0.205760D-01 0.245233D-05	0.106327D 03 0.463126D 00 0.236843D 02 0.204401D-01 0.231224D-05	0.103956D 03 0.490043D 00 0.235043D 02 0.203106D-01 0.217171D-05	0.101606D 03 0.517530D 00 0.233329D 02 0.201871D-01 0.205695D-05
PT MOT MOTS: RE (4)	0.1189040 03 0.1084160 00 0.1084160 00 0.20840 00 0.2184040 00	0.1152890 03 0.3566050 00 0.107881D 02 0.2102710-01	0.112592D 03 0.382457D 00 0.106997D 02 0.208647D-01 0.267834D-05	0.1099UBD 03 0.408529D 00 0.1059B5D 02 0.207186D-05	0.1072200 03 0.4349470 00 0.1051100 02 0.2057600-01 0.4865940-05	0.104536D 03 0.461863D 00 0.104279D 02 0.204401D-01	0.101826D 03 0.489436D 00 0.103485D 02 0.203106D-01 0.446503D-05	0.9906380 02 0.5178420 00 0.1027310 02 0.2016710-01
11 MCT MDPE RPT E (3)	0.1500000-01 0.138100 00 -0.1132500 01 0.1962320-01 0.4328000-07	0.1600000-01 0.1681650 00 -0.1113760 01 0.1923540-01	0.170000D-01 0.157402D 00 -0.109231D 01 0.188594D-01 0.613691D-07	0.180000D=01 0.1663440 00 -0.1068230 01 0.184930D=01	0.1500000-01 0.1750070 -0.1044790 0.1613320-01	0.2000000-01 0.1834190 00 -0.1021810 01 0.1777700-01	0.2100000-01 0.191592D 00 -0.999116D 00 0.174216D-01	0.2200000-01 0.199532D 00 -0.976574D 00 0.170654D-01
TSTR PEU MDE RP E(2)	0.155000-01 0.1273-20 0.3249-60 0.1982-30-01 0.2218090-08	0.1650000-01 0.1259470 03 0.3426370 01 0.1942930-01	0.1750000-01 0.1246120 03 0.3601210 01 0.1904740-01	0.165000D-01 0.123358D 03 0.377415D 01 0.186762D-01 0.327074D-07	0.1950000-01 0.122171D 03 0.394532D 01 0.183131D-01 0.6787350-07	0.2050000-01 0.121043D 03 0.411481D 01 0.179551D-01 0.724347D-07	0.2150u0D-01 0.119971D 03 0.428274D 01 0.175994D-01 0.756421D-07	0.225000D-01 0.118951D 03 0.444925D 01 0.172436D-01
T PCT0 MDF 1CT0 E(1)	0.1670000-01 0.1273420 03 0.127352D 00 0.503721D 03 0.2704570-06	0.1700000-01 0.125937U 03 0.141520U 00 0.502127U 03 0.1591400-06	0.1800000-01 0.1246120 03 0.1446980 00 0.5006110 03 0.7625330-07	0.1900000-01 0.1233580 03 0.1494680 00 0.4991670 03 0.78399900-08	0.2000000-01 0.1221710 0.1444010 0.4977900 0.3530140-07	0.2100000-01 0.1210430 03 0.1340480 00 0.4964730 03	0.2200000-01 0.119971D 03 0.118789D 00 0.495212D 03 0.122530D-06	0.2300000-01 0.189510 03 0.9884940-01 0.494005D 03 0.1355140-06

T									
### E(1)	PCTO MDF	PEU MDE	MCT_ MUPE	MU MDTS0	MN MDCTO	MDCT TP	MDPT TPT	MDD TE0	NM NCT
0.2000000-01 0.2250000-01 0.2200000-01 0.93314D 02 0.98257D 02 0.98257D 02 0.98258D 02 0.98258D 02 0.98258D 02 0.17081D 03 0.117081D 03 0.20123D 03 0.58758D 00 0.58758D 00 0.48788D 01 0.									
0.117981D 03	~ 1 1 1 1				_ \ J / 			**************************************	
0.7514950-01 0.4614510 01 -0.999250 00 0.1020130 02 0.2216980 02 0.4228520 03 0.4828520 03 0.688610-01 0.107690-01 0.200950-01 0.3048040 00 0.829330-01 0.916700-01 11 0.103470-06 0.7129180-07 0.1322010-06 0.608640-05 0.4078270-07 0.4078270-07 0.4078270-07 0.4078270-07 0.4078270-07 0.4078270-07 0.4078270-07 0.4078270-01 0.107040 03 0.1170840 03 0.216680 00 0.7378380 00 0.574830 00 0.808610 01 -0.1671970-01 0.8223130 01 17 0.4478380-01 0.4778780 01 -0.918400 00 0.4078280 02 0.4201520 02 0.408610 01 -0.1671970-01 0.8223130 01 17 0.448180-06 0.6519890-07 0.1212910-06 0.398780-00 0.103250 02 0.408610 01 -0.1671970-01 0.8223130 01 17 0.448180-06 0.6519890-07 0.1212910-06 0.398780-00 0.1995780-01 0.1995780-01 0.380480-00 0.8840520-01 0.918700-07 0.308780-01 0.918700-07 0.308780-01 0.918700-07 0.308780-01 0.918700-07 0.308780-01 0.918700-07 0.308780-01 0.918700-07 0.308780-01 0.918700-07 0.308780-01 0.918700-07 0.308780-01 0.918700-07 0.308780-01 0.918700-07 0.308780-01 0.918700-01 0.108000-02 -1 0.250000-01 0.250000-01 0.250000-01 0.250000-01 0.250000-01 0.250000-01 0.250000-01 0.250000-01 0.408780-0									
0.4926320 03									
0.1504A7D-06 0.712918D-07 0.132201D-06 0.0000-01 0.240000D-01 0.245000D-01 0.245000D-01 0.245000D-01 0.245000D-01 0.245000D-01 0.57783B0 00 0.55785B0 00 0.57783B0 00 0.57785B0 00 0.57785B									
0.250000D-U1		0.1688910-01							
0.1170e40 03	A • 12044 \ N=00	0.1153180-01	0.1355010-00	n. «no.acan_ñ2	0.077557600	. 0°4012510-A1			_
0.4434860-01 0.4778780 01 -0.918405 00 0.101332D 02 0.230152D 02 0.4917540 03 0.4917540 03 0.165262D-01 0.133550-00 0.1907870-01 0.3807840 00 0.686402D-01 0.916700-01 11 0.1464180-06 0.651399D-07 0.121291D-06 0.330789D-05 0.186391D-05 0.380170D-07 0.480170D-07 0.380170D-07 0.480170D-07 0.48									
0.49175-0 U3 0.1652620-01 0.152550-01 0.1995780-01 0.1963780-00 0.3601700-07 0.4951700 0 0.4951700 0 0.4951700 0 0.4951700 0 0.4951700 0 0.4951700 0 0.4951700-07 0.100000-02 0.4951700 0 0.4951700-07 0.3601700-07 0 0.4951700-07 0 0.4									
0.14.66180-06 0.4519980-07 0.1212910-06 0.387749D-05 0.1863910-05 0.360170D-07 0.300170D-07 0.100000D-02 -1 0.250000D-01 0.250000D-01 0.250000D-01 0.40000D-02 0.9062030 02 0.907946D 02 0.935672D 02 17 0.162030 03 0.1162030 03 0.2171710 00 0.4097260 00 0.4003210 00 0.4002130 01 -0.255872D-01 0.955909 01 17 0.852927D-02 0.400260 01 -0.850510D-01 0.19087D-00 0.1008930 02 0.428700D 02 0.490717D 03 0.490717D 0									
0.2600000-01									
0.1162030 03 0.1162030 03 0.2217710 00 0.6097260 00 0.6003210 00 0.4925130 01 -0.258720-01 0.4997170 33 0.4997170 03 0.499	0.1448180-06	0.6518980-07	0.1212910-06	0.387749D-05	0.1863910-05	_ 0,3601700-07	0.3601700-07	0.100000D-0S	- j
0.1162030 03 0.1162030 03 0.2217710 00 0.6097260 00 0.6003210 00 0.4925130 01 -0.258720-01 0.4997170 33 0.4997170 03 0.499	0.2600000=01	0.2550000-01	0.2500000=01	0.9060070 02	0.9662030 02	0.9040690 02	0.9079440 02	0.9356720 02	17
0.892870-02 0.898280-00 0.490870-00 0.190850-00 0.190850-01 0.398280-01 0.0896280-00 0.9567150-01 0.1908290-01 0.398280-01 0.95867150-01 0.9587150-01 0.9587150-01 0.9587150-01 0.2534750-07 0.2534750-07 0.2534750-07 0.1000000-02 -1 0.2700000-01 0.2600000-01 0.2600000-01 0.3748770-05 0.1812280-05 0.2534750-07 0.2534750-07 0.10000000-02 -1 0.2700000-01 0.2600000-01 0.2600000-01 0.36487000 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6628600 0.6867500 0.68676500 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.6867600 0.68677600 0.686877600 0.686877600 0.686877600 0.686877600 0.6									
0.490717U 03 0.161656D-01 0.199857D-01 0.1998529D-01 0.396620 00 0.856715D-07 0.916700D-01 11 0.119590P-06 0.49929B0-07 0.935715D-07 0.334677D-05 0.71670D-05 0.25475D-07 0.253475D-07 0.260000D-02 1 0.270000D-01 0.266000D-01 0.266000D-01 0.266000D-01 0.266000D-01 0.266000D-01 0.266000D-01 0.266000D-01 0.266000D-01 0.266000D-01 0.26600D-01 0.26600D-01 0.26600D-01 0.26600D-01 0.26600D-01 0.26600D-01 0.26600D-01 0.26600D-01 0.197555D-01 0.19755D-01 0.41155D 00 0.80753D 03 0.46673D 03 0.466673D 03 0.4						0.4907170 03			
0.1139590-U0									
0.1[5406U 03									
0.1[5406U 03	0.2700000-01	0.2650000-01	0.2600000-01	0.876965D 02	0.9234630 02	0.8739160 02	0.880014D 02	0.9130930 02	17
-0.3466770-ui 0.510607D 01 -0.6050050 00 0.10101D 02 0.227355D 02 0.489753D 03 0.488753D 03 0.48									
0.4887530 03									
0.1042610-06									
0.114675D 03									
-0.859660U-01	0.280000D-ul	0-275000D-01	0.2700000-01	0.847570D 02	0.901085D 02	0,843002D 02	0.852138D 02	0.8907330 02	18
-0.859660U-01	0.1146750 03	0.114675D 03	0.2347110 00	0.677865D 0 0	0.6653670 00	0,513567D 01	-0.483494D-01	0.5184020 01	13
0.633280-0-07		0.526999D 01	-0.7418680 00	0.995572D 01	0.2261210 02	0.4888650 03	0.480865D 03	0.488855D 03	14
0.290000D-01	0.488865D U3	0.1545310-01	0.1527550-01	0.1966610-01	0-1966610-01	0.427085D 00	0.765129D-01	0.9167000-01	11
0.114011D 03	0.6332040-07	0.2721640-07	0.5183590-07	ი•333¤ფდე-ტ5	0.1628600-05	_ 0.1104320-07	0.110432D-07	0.100000D-02	- J
-0.145778U UO	0.29000D-01		0.20000D-01	0.817 <u>9</u> 40D 02					
0.488055D U3	0.114011D u3	0.1140110 03	0.24047 <u>9</u> D 00					0.520071D 01	11
0.423989D-07	-0.1457780 00	0.543449D 01	-0.680768D 00				0.488055D 03	0.488055D 03	14
0.300000D-01 0.295000D-01 0.290000D-01 0.787005D 02 0.856262D 02 0.777476D 02 0.796535D 02 0.845517D 02 14 0.113415D 03 0.245724D 00 0.756704D 00 0.728816D 00 0.530928D 01 -0.756393D-01 0.538492D 01 15 -0.215054D 00 0.559997D 01 -0.621501D 00 0.986187D 01 0.223984D 02 0.487324D 03 0.487324D 03 0.487324D 03 14 0.487324D 03 0.147308D-01 0.145460D-01 0.195115D-01 0.195115D-01 0.458146D 00 0.673544D-01 0.916700D-01 11 0.186695D-06 0.908252D-08 0.110318D-07 0.296926D-05 0.156113D-05 0.251391D-07 0.251391D-07 0.10000D-02 -1 0.310000D-01 0.30500D-01 0.30500D-01 0.30500D-01 0.763310D 02 0.834333D 02 0.752141D 02 0.774480D 02 0.824056D 02 14 0.112989D 03 0.112989D 03 0.249516D 00 0.785182D 00 0.75881D 00 0.536788D 01 -0.7765040-01 0.54853D 01 14 -0.231043D 00 0.567656D 01 -0.564770D 00 0.983014D 01 0.223269D 02 0.486801D 03 0.486801D	0.488055D U3	0.1509560-01	0.14915/0-01		0.1958460-01	0.4426160 00	0.7193360-01	0.916700D-01	11
0.113415D 03	0-623989D - 07	0.2062460-07	0.3954830-07	0.309215D- <u>0</u> 5	0.1512140-05	0,7512800-08	0.751280D-08	0.1000000-05	- 1
-0.215050 00 0.559997D 01 -0.62156D 00 0.986187D 01 0.223989D 02 0.487324D 03 0.487324D 03 1.6 0.487324D 03 0.147308D-01 0.14546D-01 0.195115D-01 0.195115D-01 0.45816D 00 0.673544D-01 0.916700D-01 11 0.186695D-06 0.908252D-08 0.110318D-07 0.296926D-05 0.156113D-05 0.251391D-07 0.251391D-07 0.10000DD-02 -1 0.31000DD-01 0.30500DD-01 0.30500DD-01 0.30500DD-01 0.76331D 02 0.834333D 02 0.752141D 02 0.77488DD 02 0.824056D 02 14 0.112989D 03 0.112989D 03 0.249516D 00 0.785118D 00 0.755181D 00 0.556758D 01 0.54553D 01 14 -0.231043D 00 0.556756D 01 -0.56477UD 00 0.983014D 01 0.223269D 02 0.486801D 03 0.48	0.3000000-01	0.2950000-01	0.29000UD-01	0.787005D 02	0.8562620 02	0.7774760 02	0.796535D 02	0.845517D 02	14
-0.2150540 00	0.1134150 03	0.113415D 03	0.245724D 00	0.754704D 00	0.728816D 00	0.530928D 01	-0.756393D-01	0.538492D 01	15
0.487324D 03 0.147308D-01 0.145460D-01 0.195115D-01 0.195115D-01 0.458146D 00 0.673544D-01 0.916700D-01 11 0.186695D-06 0.908252D-08 0.110318D-07 0.296926D-05 0.156113D-05 0.251391D-07 0.251391D-07 0.10000D-02 -1 0.310000D-01 0.30500D-01 0.30500D-01 0.30500D-01 0.763310D 02 0.834333D 02 0.752141D 02 0.774480D 02 0.824056D 02 14 0.112989D 03 0.112989D 03 0.249516D 00 0.765182D 00 0.75681D 00 0.536788D 01 -0.7765040-01 0.544553D 01 14 -0.231043D 00 0.567656D 01 -0.564770D 00 0.983014D 01 0.223269D 02 0.486801D 03 0.916700D-01 14	-0.2150540 00		-0.6215610 00	0.986i87D 01	0.223989D 02	0.487324D 03	0.487324D 03	0.4873240 03	14
0.186695D-06				0.195115D-01					
0.112989D 03									
0.112989D 03	0.3100000-01	0.305000D-01	0.30000D-01	0.763310D 02	0.834333D 02	0.7521410 02	0.774480D 02	0.824056D 02	14
-0.231043D 00 0.567656D 01 -0.56477UD 00 0.983U14D 01 0.223269D 02 0.4868U1D 03 0.486801D 03 0.486801D 03 18 0.486801D 03 0.143690D-01 0.141920D-01 0.194592D-01 0.194592D-01 0.46591D 00 0.627751D-01 0.916700D-01 14	0.1129890 03	0.1129890 03	0.249516D 00	0.7851820 00	0.7548110 00	0.5367880 01	-0.7765040-01		
0.486801D 03 0.143640D-01 0.141920D-01 0.194592D-01 0.194592D-01 0.46591D 00 0.627751D-01 0.916700D-01 14		0.567656D 01	-0.56477UD 00	0.9830140 01		0,486801D 03			
0.321694D-05 0.373704D-06 0.638564D-06 0.27D881D-05 0.296659D-05 0.403502D-06 0.403502D-06 0.10000D-02 -1	0.486801D 03								
	0.321694D-05	0.3737040-06	0.6385690-06	0.2708810-05	0.2966590-05	0,4035020-06	0.4035020-06	0.100000D-02	-1

I LERI	1985	•	0043	20043	20040	30343	22243	00040	20042
PPT HDD TECO T	0.8053220 02 0.5473850 01 0.4864510 03 0.9167000-01	0.788342D 02	0.549416D 01 0.4862U3D 03 0.916700D-U1 0.100000D-U2	0.5511680 01 0.5511680 01 0.4859800 03 0.9167000-01	0.7592200 02 0.5526800 01 0.4857870 03 0.9167000-01	0.7463520 U2 0.553984D 01 0.485621D 03 0.916700D=01	0.7346220 02 0.5551070 01 0.485477D 03 0.9157000-01	0.723763D 02 0.556079D 01 0.485353D 03 0.9167000010	0.7135770 02 0.5569280 01 0.4852440 03 0.9167000-01
PN MUPT TPT APE E(7)	0.758818D 02 -0.679581D-01 0.486461D 03 0.584532D-01 0.538521D-06	0.7460500 02	-0.5944390-01 0.4861820 03 0.5644820-01 0.4442130-05	0.7342180 02 -0.5210240-01 0.4862030 03 0.5444320-01	0.723249D 02 -0.457677D-01 0.48598UD 03 0.524381D-01 0.444213D-05	0.713078D 02 -0.402984D-01 0.485787D 03 0.504331D-01 0.444213D-05	0.703649D 02 -0.335735D-01 0.48562D 03 0.4842BD-01 0.444213D-05	0.694860D 02 -0.314664D-01 0.485477D 03 0.4/1242D-01	0.686553D 02 -0.278499D-01 0.485353D 03 0.465215D-01 0.444213D-05
PO MDCT TP TP AE (6)	0.737365D 02 0.540589D 01 0.486461D 03 0.465911D 00	. 50	-000 -000 -000	0.714872U 02 0.545957U 01 0.486466D 03 0.465911D 00 0.448213D-05	0.704817D 02 0.548103D 01 0.486475D 03 0.465911D 00	0.095471D U2 0.549954D 01 0.486487D 03 0.465911D 00 0.444213D-05	0.586781D 02 0.551549D 01 0.486591D 03 0.46591D 00	0.e78eblD 02 0.554932D 01 0.486516D 03 0.405911D 00 0.444213D-05	0.5541420 02 0.5541420 01 0.485330 03 0.4659110 00
PP MN MUC10 RC10 E(S)	0.8144ULD 02 0.773584D 00 0.222801D 02 0.194252D-01 0.437484D-05	S0 0850787.0		0.7812590 02 0.803618D 00 0.222140D 02 0.193771D-01 0.4200070-04	0.7668/2D 02 0.817243D 00 0.221876D 02 0.1935/9D-01 0.420007D-04	0.7537250 02 0.8300100 00 0.2216480 02 0.1934140-01 0.4200070-04	0.7417070 02 0.8419650 00 0.2214510 02 0.1932710-01	0.7306450 02 0.8532150 00 0.2212810 02 0.19314/0-01 0.4200070-04	0.72032bD 02 0.863929D 00 0.221132D 02 0.193038D-01 0.420007D-04
P 1 M M 1 S 0 M (4)	0.7480920 02 0.8026020 01 0.9809550 01 0.1942520-01 0.3999720-05	0.735 <u>8</u> 740 02	0.8168610 00 0.979393D 01 0.193994D-01 0.396465D-04	0.724545D 02 0.830045D 00 0.978045D 01 0.193771D-01 0.396455D-04	0.7140330 02 0.8425240 00 0.9768820 01 0.1935/90-01 0.3964650-04	0.704275D 02 0.854225D 00 0.975879D 01 0.193414D-01 0.396465D-04	0.695215D 02 0.865229D 00 0.975913D 01 0.193271D-01 0.396465D-04	0.686/550 02 0.8756330 00 0.9742630 01 0.19314/D-01 0.3964650-04	0.678/550 02 0.8855940 00 0.9730060 01 0.1939380-01 0.3964650-04
T1 MCT MDPE RPT E (3)	0.31000UD-01 0.251996D 00 -0.513504D 00 0.13879UD-01 0.991515D-06	TION SOLUTION ENTIRELY 00-01 0-32000UD-01	0.253882D 00 -0.484954D 00 0.135942D-01 0.947961D-05	0.255180 00 -0.4580990 00 0.1333450-01 0.9479610-05	0.340000D-01 0.256935D 00 -0.432742D 00 0.130975D-01 0.947961D-05	0.3500000-01 0.2581630 00 -0.4087150 00 0.128808D-01 0.9479610-05	0.3600000-01 0.259220 00 -0.3858700 00 0.1268250-01 0.9479610-05	0.370000D-01 0.260148D 00 -0.369655D 00 0.12498/D-01 0.947961D-05	0.3800000-01 0.260958D 00 -0.359654D 00 0.123260D-01 0.947961D-05
151# PEU MOE RP E (2)	0.3150000-01 0.1127130 03 0.5664670 01 0.1403550-01 0.5680200-06		0.1125040 03 0.5652650 01 0.1373660-01 0.5331820-05	0.3350000-01 0.1123230 03 0.5642270 01 0.1346440-01 0.5331820-05	0.3450000-01 0.1121670 03 0.563331D 01 0.132160D-01 0.533182D-05	0.3550000-01 0.1120330 03 0.5625580 01 0.1298910-01 0.5331420-05	0.365000D-01 0.1119170 03 0.5618920 01 0.127816D-01	0.375000D-01 0.118170 03 0.5613140 01 0.125906D-01 0.5331820-05	0.3850006-01 0.1117290 03 0.5608980 01 0.124.240-01
PCT0 MUF (CT0 E(1)	0.320000U-01 0.112713D 03 -0.190793U 00 0.486461D 03 0.474809D-05	SWITCHING TO SMALL 0.3300000-01	0.1125040 03 -0.1584680 00 0.486203D 03 0.4428960-04	0.3400000-01 0.1123230 03 -0.1305670 00 0.4859800 03 0.4428950-04	0.350000D-01 0.112167D 03 -0.106490D 00 0.485787D 03 0.442896D-04	0.36000U-ul 0.112033V 03 -0.857226U-ul 0.485621D 03 0.442896D-04	0.37000U-01 0.111917U 03 -0.678262U-01 0.485477U 03 0.442896D-04	0.3800000-01 0.1118170 03 -0.5233470-01 0.4853530 03	0.390000D-01 0.111729D 03 -0.387820D-01 0.485244D 03
1		S.	0	9	၁	၁	0	0	9

N S S S S S S S S S S S S S S S S S S S	333 73	20242	22042	00040	22343	00043	000-0	00000
PPT MOD TE 0 PF 0 P	0.703996D 02 0.557673D 01 0.485148D 03 0.916700D-01 0.100000D-02	0.694965D 02 0.558325U 01 0.485063D 03 0.916700D-01	0.6864030 02 0.5588940 01 0.4849890 03 0.916700D-01	0.559389D U1 0.559389D U1 0.484923D 03 0.916706D-01	0.6704290 02 0.5598180 01 0.4848560 03 0.9167000-01	0.662946D 02 0.560185D 01 0.484816D 03 0.916740D-01	0.655736D 02 0.560494D 01 0.484773D 03 0.916700D-01	0.648751D 02 0.560751D 01 0.484736D 03 0.916700D-01
AUPT TPT TPT APE	0.6786 02 -0.2464200-01 0.4852440 03 0.4591890-01	0.671198D 02 -0.217931D-01 0.485148D 03 0.453163D-01 0.446213D-05	0.664003D 02 -0.192549D-01 0.485063D 03 0.44881D-01 0.446213D-05	0.657135D 02 -0.169804D-01 0.484989D 03 U.445344D-01 0.444213D-05	0.650534D 02 -0.14934UD-01 0.484924D 03 0.443806D-01 0.446213D-05	0.644187D 02 -0.130844D-01 0.444866D 03 0.441269D-01 0.446213D-05	0.638074D 02 -0.114013D-01 0.444816D 03 0.44000D-01 0.44213D-05	0.632170D 02 -0.985253D-02 0.484773D 03 0.44000D-01 0.444213D-05
PU MDC1 TP AE (6)	0.6552090 01 0.4865500 03 0.465900 03 0.4659110 00	0.6561450 02 0.5561450 01 0.4865680 03 0.4659110 00 0.442130-05	0.556968D 01 0.466587D 03 0.466587D 03 0.46591DD 00	0.5576910 02 0.5576910 01 0.4866060 03 0.4659110 00	0.036864U 02 0.058324D 01 0.46625D 03 0.46591ID 00	0.5588760 01 0.5588760 01 0.4866450 03 0.4659110 00 0.4442130-05	0.6246560 02 0.5593540 01 0.4866550 03 0.4659110 00	0.559766D 02 0.559766D 01 0.486685D 03 0.465911D 00 0.44413D-05
PP MN MUCTU RCTU E(5)	0.8742050 02 0.8742050 00 0.2210000 02 0.1929420-01	0.7014620 02 0.8840550 00 0.220885D 02 0.192858D-01 u.420007D-04	0.692796D 02 0.69355/D 00 0.220783D 02 0.192784D-01 U.420U7D-04	0.6845450 02 0.9027240 00 0.2206940 02 0.1927200-01 0.4200070-04	0.676657D 02 0.911603D 00 0.220616D 02 0.192653D-01 0.420007D-04	0.669097D 02 0.920205D 00 0.220548D 02 0.192613D-01 0.420007D-04	0.6618250 02 0.928550 00 0.2204890 02 0.1925/UD-01 U.42040/D-04	0.6547910 02 0.936660 00 0.2204380 02 0.1925330-01 U.4200070-04
PT MD MD150 RE0 E(4)	0.6/11/29D 02 0.895205D 00 0.97302/D 01 0.192942D-01 0.396405D-04	0.6639510 02 0.9044920 00 0.9725180 01 0.1928540-01 0.3964550-04	0.656682D 02 0.913497D 00 0.972071D 01 0.192784D-01 0.396465D-04	0.6501750 02 0.922750 00 0.9716790 01 0.1927200-01 0.3964650-04	0.6436950 02 0.9308650 00 0.9713350 01 0.1926630-01	0.6374340 02 0.9394840 00 0.9710350 01 0.1926130-01 0.3964850-04	0.6313660 02 0.9475770 00 0.9707760 01 0.1925700-01 0.3964650-04	0.6254550 02 0.955/70 00 0.970552 01 0.1925340-01 0.3964650-04
11 MC1 MDPE RPT E (3)	0.390000D-01 0.261673D 00 -0.350093D 00 0.121632D-01 0.947961D-05	0.4000000-01 0.26.3020 00 -0.3409330 00 0.1200900-01 0.9479610-05	0.410000D-01 0.262850 00 -0.3334520 00 0.11863/D-01 0.947951D-05	0.4200000-01 0.2633430 -0.3275540 00 0.1172430-01 0.9479610-05	0.4300000-01 0.2637700 00 -0.3218770 00 0.1159090-01 0.9479510-05	0.440000D-01 0.264143D 00 -0.31640UD 00 0.114629D-01 0.947961D-05	0.4500000-01 0.264460 00 -0.31201/0 00 0.1133440-01 0.9474610-05	0.4600000-01 0.2647450 00 -0.3086730 00 0.1121950-01 0.9479610-05
ISTA PEU MOE MOE (2)	0.3950000-01 0.1116510 03 0.6663530 01 0.1224460-01 0.5331820-05	0.4050000-01 0.1115830 03 0.559971D 01 0.1208640-01 0.5331820-05	0.415630 03 0.115630 03 0.559670 01 0.1193660-01	0.4250000-01 0.114/10 03 0.5593250 01 0.1179400-01 0.5331820-05	0.435uv00-01 0.111455U 03 0.559ub0U 01 0.116576U-01 u.533182U-05	0.4450000-01 0.1113850 03 0.5588290 01 0.1152590-01 0.5331820-05	0.4550000-01 0.1113500 03 0.5586290 01 0.1140110-01 0.5331820-05	0.4650000-01 0.1113<00 03 0.5584>70 01 0.1127950-01 0.5331820-05
1 PCT0 MDF 1CT0 Ē(1)	0.4000000-01 0.1116510 03 -0.2687290-01 0.4651480 03 0.4428960-04	0.4100000-01 0.1115830 03 -0.1643630-01 0.4850630 03 0.4428950-04	0.4200000-01 0.1115230 03 -0.7307600-02 0.4849890 03 0.4428950-04	0.430000D-01 0.111471D 03 0.667005D-03 0.484923D 03 0.442896D-04	0.400000-01 0.1114250 us u.7600750-us 0.4848660 us 0.4428950-04	0.450000U-01 0.1113850 03 0.1357670-01 0.484816U 03 0.442896U-04	0.4600000-01 0.113500 03 0.1867360-01 0.4847730 03 0.4428960-04	0.470000b-u1 0.111320b u3 0.2296190-u1 0.484736b u3
į	၁	3	0	9	3	၁	2	٥

	T PCT0 MDF TCT0 E(1)	TSTR PEO MDE RP E(2)	T1 MCT MDPE RPT E(3)	PT MD MDTSU REU E(4)	PP MN MDCTU RCTU E(5)	PU MDCT TP AE £(6)	PN MÜPT TPT APE E(7)	PPT MDD TEU AF DT	NÚ NM NCT ITEK Jl6
o	0.480000D-01 0.111294D u3 0.26490D-01 0.484704D u3 0.442896D-04	0.475000D-01 0.1112940 03 0.5583110 01 0.111614D-01 0.533182D-05	0.470000D-01 0.264982D 00 -0.305425D 00 0.111032D-01 0.9479610-05	0.619688D 02 0.963920D 00 0.970362D 01 0.192502D-01 0.396465D-04	0.647962D 02 0.944563D 00 0.220395D 02 0.192502D-01 0.420007D-04	0.612910D 02 0.560116D 01 0.486706D 03 0.465911D 00 0.444213D-05	0.026460D 02 -0.840878D-02 0.484736D 03 0.44000D-01 0.444213D-05	0.641959D 02 0.560957D 01 0.484704D 03 0.9167000-01 0.100000D-02	1 0 3 0 1 1
0	0.490000D-01 0.111273D 03 0.292905U-01 0.484678D 03 0.442896D-04	0.4850000-01 0.1112730 03 0.5581880 01 0.1104640-01 0.5331820-05	0.480000D-01 0.265181D 00 -0.302266D 00 0.109897D-01 0.947961D-05	0.6140570 02 0.972026D 00 0.970202D 01 0.192475D-01 0.396465D-04	0.6413160 02 0.9522300 00 0.2203590 02 0.192475D-01 0.420007D-04	0.507149D 02 0.560410D 01 0.486726D 03 0.465911D 00 0.444213D-05	0.620964D 02 -0.704118D-02 0.484704D 03 0.440000D-01 0.444213D-05	0.5353560 02 0.5611140 03 0.4846780 03 0.9167000-03 0.1000000-03	1 0 3 0 1 1
0	0.5000000-01 0.111255D 03 0.313888D-01 0.484656D 03 0.442896D-04	0.495000D-01 0.111255D 03 0.5580870 01 0.109343D-01 0.533182D-05	0.49000D-01 0.265345D 00 -0.299183D 00 0.108789D-01 0.947961D-05	0.608560D 02 0.980114D 00 0.970071D 01 0.192454D-01 0.396465D-04	0.634832D 02 0.959649D 00 0.220329D 02 0.192454D-01 0.420007D-04	0.6014440 02 0.5606510 01 0.4867470 03 0.4659110 00 0.4442130-05	0.615676D 02 -0.571734D-02 0.484678D 03 0.44000D-01 0.444213D-05	0.628924U 02 0.5612230 03 0.484636D 03 0.9167400-03 0.100040D-03	1 0 3 0 1 1
0	0.510000D-01 0.1112410 03 0.328040D-01 0.484638D 03 0.442896D-04	0.505000D-01 0.111241D 03 0.5580U6D 01 0.108246D-01 0.533182D-05	0.500000D-01 0.265476D 00 -0.296168D 00 0.107703D-01 0.947961D-05	0.6032000 02 0.988203D 00 0.969966D 01 0.192436D=01 0.396465D=04	0.628492D 02 0.966789D 00 0.220305D 02 0.192436D-01 0.420007D-04	0.595/60D 02 0.560844D 01 0.486768D 03 0.465911D 00 0.444213D-05	0.610620D 02 -0.439968D-02 0.484650D 03 0.44000D-01 0.444213D-05	0.6226220 03 0.5612840 03 0.4846380 03 0.9167000-03	1 0 3 0 1 1
0	0.520000-01 0.1112310 03 0.335493D-01 0.484625D 03 0.442896D-04	0.515000D-01 0.111231D 03 0.557944D 01 0.107171D-01 0.533182D-05	0.51000D-01 0.265570D 00 -0.2932130 00 0.106639D-01 0.947961D-05	0.597982D 02 0.996312D 00 0.969886D 01 0.192423D-01 0.396465D-04	0.622278D 02 0.973605D 00 0.220287D 02 0.192423D-01 0.420007D-04	0.590142D 02 0.560992D 01 0.486789D 03 0.465911D 00 0.444213D-05	0.605822D 02 -0.304324D-02 0.484638D 03 0.44000UD-01 0.444213D-05	0.6164450 02 0.5612970 01 0.4846250 03 0.916700D-02	1 0 3 0 1 1
NOZ	ZLE HAS CHOKED								
Q	0.5300000-01 0.1112150 03 0.2792220-01 0.4846050 03 0.4428960-04	0.525000D-01 0.110915D 03 0.558496D 01 0.106101D-01 0.533182D-05	0.5200000-01 0.265742D 00 -0.290272D 00 0.105564D-01 0.947961D-05	0.584032D 02 0.100568D 01 0.969767D 01 0.191885D-01 0.396465D-04	0.6160940 02 0.1000000 01 0.2202600 02 0.1924040-U1 0.4200070-04	0.583644D 02 0.561208D 01 0.486811D 03 0.465911D 00 0.444213D-05	0.587528D 02 -0.296090D-02 0.484605D 03 0.440000D-01 0.444213D-05	0.6101880 0; 0.5612890 0; 0.4846050 0; 0.9167000-0; 0.1000000-0;	1 0 3 18 1 1
Q	0.5400000-01 0.1112150 03 0.2538520-01 0.4846050 03 0.4428960-04	0.535000D-01 0.1109490 03 0.558666D 01 0.105029D-01 0.533182D-05	0.53000UD-01 0.265742D 00 -0.287324D 00 0.104494D-01 0.947961D-05	0.578561D 02 0.101459D 01 0.969767D 01 0.191943D-01 0.396465D-04	0.609894D 02 0.100000D 01 0.220260D 02 0.192404D-01 0.420007D-04	0.5775650 02 0.5612080 01 0.486833D 03 0.465911D 00 0.444213U-05	0.5875280 02 -0.212361D-02 0.484605D 03 0.44000D-01 0.444213D-05	0.604003D 02 0.561205D 01 0.484605D 03 0.916700D-01 0.100000D-02	1 0 3 0 1 1
Q	0.5500000-01 0.111215D 03 0.253953D-01 0.484605D 03 0.442896D-04	0.545000D-01 0.110920D 03 0.558521D 01 0.103967D-01 0.533182D-05	0.54000D-01 0.265742D 00 -0.284407D 00 0.103441D-01 0.947961D-05	0.5734650 02 0.1022930 01 0.9697670 01 0.1918940-01 0.3964650-04	0.6037590 02 0.1000000 01 0.2202600 02 0.192404D-01 0.420007D-04	0.5719020 02 0.5612080 01 0.4868560 03 0.4659110 00 0.4442130-05	0.587528D 02 -0.6835320-03 0.484605D 03 0.444000D-01 0.444213D-05	0.5979190 02 0.5610610 01 0.484605D 03 0.916700D-03	1 0 3 0 1 1

LEBATE	00070	00000	000~0	900~0	0000	นออเมา	000N	20002
PPT MDD 1E0	0.591996D 02 0.560870D 01 0.484605D 03 0.916700D-01	0.5862760 02 0.5605450 01 0.4845050 03 0.9167000-01 0.1000000-01	0.580790D 02 0.560395D 01 0.884605D 03 0.9167000-01	0.575520 02 0.5601300 01 0.4846050 03 0.916700-01 0.1000000-02	0.5706040 02 0.5598560 01 0.9167000-01 0.1000000-02	0.568184D 02 0.559561D 01 0.484605D 03 0.916700D-01	0.5659030 02 0.5594220 01 0.4645050 03 0.9167000~01	0.5637590 02 0.5592870 01 0.9167000-01 0.1000000-02
PN MDPT TPT APE	0.587528D 02 0.125232D-02 0.48605D 03 0.480000D-03	0.587528D 02 0.387431D=02 0.484605D 03 0.440000D=01 0.444213D=05	0.5875280 02 0.5970390-02 0.4806050 03 0.4400000-01 0.4462130-05	0.5875290 02 0.862520D=02 0.484605D 03 0.440000D=01 0.446213D=05	0.587528D 02 0.113686D-01 0.484605D 03 0.44000D-01 0.444213D-05	0.587528D 02 0.164705D-01 0.464605D 03 0.359544D-01	0.587528D 02 0.178606D-01 0.48605D 03 0.48000D-01	0.567528D 02 0.192076D-01 0.466605D 03 0.44000D-01 0.124162D-05
PD MDCT AF E (6.)	0.5666470 02 0.5612080 01 0.4686180 03 0.4659110 00	0.561784D 02 0.561208D 01 0.486901D 03 0.465911D 00	0.5572930 02 0.561208D 01 0.486922D 03 0.465911D 00	0.5531540 02 0.5612080 01 0.4869440 03 0.4659110 00	0.549345D 02 0.561208D 01 0.486964D 03 0.465911D 00	0.5468110 02 0.5412080 01 0.4846050 03 0.4659110 00	0.545125D 02 0.561208D 01 0.484605D 03 0.465911D 00	0.5435590 02 0.5612080 01 0.4646050 03 0.465911D 00
PP MN MDCTU RCTU E(5)	0.5977560 02 0.1000000 01 0.2202600 01 0.1924040-01 0.4200070-04	0.5919340 02 0.1000000 01 0.2202600 02 0.1924040-01	0.5863310 02 0.1000000 01 0.2202600 02 0.1924040-01 0.420070-04	0.5809740 02 0.1000000 01 0.2202600 02 0.1924040-01 0.420070-04	0.575681D 02 0.100000D 01 0.220260D 02 0.192404D-01 0.42007D-04	0,5693940 02 0,1000000 01 0,2202600 02 0,1924040-01 0,153220-01	0.5670430 02 0.1000000 01 0.2202590 02 0.1924040-01 0.2072520-05	0.5648310 02 0.1000000 01 0.2202600 02 0.1924040-01 0.2107510-05
P+ MD MD MDTSO REG R (& §)	0.5687350 02 0.1034710 01 0.9697670 01 0.1917580-01 0.396*650-04	0.564358D 02 0.103793D 01 0.969767D 01 0.191555D-01 0.396465D-04	0.560316D 02 0.104463D 01 0.969767D 01 0.191301D-01 0.396465D-04	0.556591D 02 0.105983D 01 0.969767D 01 0.191012D=01 0.396465D=04	0.553163D 02 0.105656D 01 0.969767D 01 0.190698D-01 0.396465D-04	0.550E83D 02 0.106037D 01 0.969767D 01 0.10997645D 0.755945D-01	0.1062920 01 0.1062920 01 0.9697670 01 0.186970-01 0.2320720-05	0.547956D 02 0.106529D 01 0.962767D 01 0.186734D-01 0.236073D-05
11 MCI MDPE E(3)	0.5500000-01 0.2657420 00 -0.2815520 00 0.1024150-01 0.9479610-05	0.550000D-01 0.255742D 00 -0.278784D 00 0.101427D-01 0.947961D-05	0.570000-01 0.255742D 00 -0.276119D 00 0.100474D-01 0.947951D-05	0.5800000-01 0.2657420 00 -0.2735720 00 0.9957330-02 0.9479610-05	0.559000D=01 0.265742D 00 -0.271150D 00 0.987156D=02 0.947961D=05	0.600000000000000000000000000000000000	0.2557420 00 -0.2557420 00 -0.2596470 00 0.9790230-02 0.4900600-06	0.65900000-01 0.2657420 00 -0.2685950 00 0.9753130-02 0.5041850-06
ISTR PEO MDE RP RP E (2)	0.5550000-01 0.1108%10 03 0.5581250 01 0.1029290-01 0.5331820-05	0.5650000-01 0.1107240 03 0.5575340 01 0.1019220-01 0.5331820-05	0.5750000-01 0.110578D 03. 0.556797D 01 0.100952D-01 0.533182D-05	0.5559550 01 0.104100 03 0.5559550 01 0.1000260-01 0.5331820-05	0.595000D-01 0.1102290 03 0.5550420 01 0.991445D-02 0.533182D-05	SUPERSONIC SOLUTION 0.6050000-01 0. 0.2044650 01 -0. 0.8519620-02 0.	0.615000D-01 0.108032D 03 0.543978D 01 0.980996D-02 0.244537D-06	0.6259000-01 0.1079380 03 0.5435050 01 0.9771680-02 0.2516140-06
T PCT0 MDF [CT0 E(1)	0.5600000-01 0.111215U 03 0.2745090-01 0.44605D 03 0.442896D-04	0.5700000-u1 0.1112150 03 0.3110760-u1 0.484605D 03 0.428960-04	0.5800000-01 0.112150 03 0.3598200-01 0.4846050 03 0.4428960-04	0.590000D-01 0.111215D 03 0.417477D-01 0.484605D 03 0.442896D-04	0.6000000-01 0.1112150 03 0.4813300-01 0.4846050 03	U.S10000D-01 0.510000D-01 0.1121SD 03 0.150965D 00 0.604605D 03	0.6200000-01 0.1112150 03 0.1544230 00 0.4846050 03	0.6300000-01 0.112150 03 0.157836D 00 0.684605D 03
ŀ	3	3	3	3	3	REV		

TABLE 8 LISTING OF THE COMPUTER PROGRAM HIRTSM1

			3
	·		
			n
			ar-
			**

	MAIN	DATE = 75157	11/58/40
C HIRTSMI - HIRT STARTI	NG MODEL		
IMPLICIT REAL#8 (
		M(3) +TV(3+50) +A(10) +E(7)	•B(30) •
1 TVF(3) TOELAY(3)		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , ,
COMMON PCORCOTCOA		«MDTSTR » INFIN » TMGO	S.GPOZGS.
1 SGOR	C.V. C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C	yild a my gill gray most	,570, 040,57
	006.6P102.6M102	• GP10G • GM10G • GOGP1 • GOGM1	
		• TOG • MGPGMZ • TOGP1 • GPGM12	
		AWOKW, OOAl, OOKF, KF, KW	
		TSV.CTD.CTA.PV.PVOTSV.IA	1114
COMMON TOTTODE TO			
		9,A10,A11,A12,A13,A14,A	5.A16.A17
COMMON PN .		D . PT . PCTO . PEO	
		E .MDTSO .MDCTO . TEO	
- TPI . TCIO .		0 · RCTO · ACTO · MCT ·	AE »
- APE . AF .	MN + MD	O V RCIO 9 ACTOS MCI V	MC, 9
COMMON PNI	· · · · · · · · · · · · · · · · · · ·	DI. PTI. PCTOI. PEOL	MDEl
		<u>El_°MOTSOl_°MDCTOl_° TEOl</u> Ol _° RCTOl _° ACTOl _° MCTl _°	
- TPTL TCTO1,	MNI. MDI	OIS MCIOIS MCIOIS MCIA	ALIG
- APEL AFI.		DZ. PTZ. PCTOZ. PEOZ.	MDE2.
,		02. RCT02. ACT02. MCT2.	AE2.
	MN2, MD2	DO DEAD DEAD	MOES
COMMON PN3,		D3, PT3, PCT03, PE03	
		<u>E3.MDTS03.MDCT03. TE03.</u>	
- TPT3, TCT03,		03, RCT03, ACT03, MCT3,	AE3,
- APE3. AF3.	MN3, MD3		
COMMON PSOPO TSOT			
		1. SEZ. SEMAX. SEP. SDE	00.00
		NP.IP.ITER.NVT(3).I.NT	
		·NCT · IFLG · IFLG1 · IFLG2 · IF	LG3 o IFLG4 o
2IFLG5.TFLG6.IFLG7			=
		<u> </u>	5,016,017,
1 J18,J19,J20,J21,	J22,J23,J24,J25	• J26	
COMMON NOTE			
	•RSTR (582) • ISTR	(35) • IEXTP(7) • JV(26)	
DIMENSION C(4,2)			
	(1) • AREA(1) T • (1)	VU) • (1) V • M9) • (9N • V(1)) • (JV	(1) »J1)
INTEGER SV			
REALMS INFINOKEOK			
DATA IFXTPV1.2.6.			
		•43530673D2•.14068554D	12 9
		9170D3, <u>38913333D2/</u>	
DEFINE FILE 01(30		•	
POPO(D1)=(1.+GM10			······································
MDOTPT(D1.D2) =-AW	OKW# (D1-D2#415)	PA2	,
ITIME=0			
IFLG1=1			
IFLG6=1			
IFLG9=1			
IFLG10=1	'		
IFLG11=0			<u> </u>
IFLG12=1	**		
IDEBUG=03		•	
	-		

	MAIN	DATE = 75157	11/58/40
I I N=05			
IOUT=06			
NP=1			
15=0			
10 READ(ITN:120) VC	L	•	
C MANUAL PROGRAM CONTE	801		
IF (NCTL.ED.0) GO	TO 100		
WRITE (TOUT . 15) NO			
15 FORMAT (ONCTL=)		- 0 10 11 10 10 1	
		8 9 10 11 12 13 14 50,60,70,80,90,151,95)	NOT)
20 CALL: INPUT(810)	290111005(10300400	20000000000000001210321	NCIL
30 CALLI INIT (610)			
40 CALLI CONST (&10)			
50 CALLI DUMP (&10)			
50 CALLISOLVER(&10)			
70 CALLI PRINT(810)	•		
90 CALL BINOM (610) 90 CALL REVERT (610)			
95 CALLI SMPERIT (&10)			
(•
C READ AND DEFINE DEF	AULTED RUN CONTRO	L INSTRUCTIONS	
() = = = = = = = = = = = = = = = = = =	****	****	
100 READ (IIN+120) IN	STR		
120 FORMAT(2613)	11 7 NEDUC - 2 HC 70 / 11		
)) <u>(DEBUG=INSTR(I)</u>)) INSTR(1)=IDEBUG		
IF (INSTR(2) NE.			
IF (INSTR(2).EQ.(
IF (INSTR(3) a NE a C)) IOUT=INSTR(3)		
IF(INSTR(3).EQ.(
IF (INSTR (4) NE.			
IF(INSTR(4).EQ.(•	
IF (INSTR(5).EQ.(
IF (INSTR(7) .EQ.		1	
IF (INSTR(8).EQ.(
IF(INSTR(9).EQ.			
IF (INSTR(12).EQ.		1	
IF (INSTR(14) .EQ.			
IF (INSTR(15) .EQ.			
	0) (NSTR(22) =9999	999	
IF (INSTR(25).EQ.			
IF (INSTR(26) . FQ.	0) INSTR (26) =9999	999	
DO 121 I=1.56			
121 JV(I)=INSTR(I)			
IF (NCTL NE 0) GO	10 10		
C PRINT HEADING			
125 WRITE (10UT +130)			
130 FORMAT (1 29X . 7			- MATHEMATI
1CAL STARTING MOD	DEL FOR A LUNWIEG	TURE WIND TUNNEL \$ 1/3	30X 9 9 \$ 9 9

MAIN

DATE = 75157

11/58/40

	272x, \$9/30x, \$ ARNOLD RESEARCH ORGANIZATION. AR		AIR F	ORCE	STA
	3TION: TN: 012X 0:8'/30X 0:8'072X 0:8'/30X 074('\$'))				
	IF (NCTL.NELO) GO TO 10				
129	IF(J15.EQ.031GO TO 135				
(=====	> 35 m p p p p p m m m p p p p p p p p p p				
C REAL	SOLUTION FROM DATA FILE AND PRINT				_
(a = = = =	3 情 背 ① ③ ③ ② ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑥ ⑤ ⑥				
J	K1=0				
	IF (J15.NE.07) GO TO 128				
	READ (J15 END=132) RSTR ISTR				
	J16=J16+1			-	
	GO TO 127				
120	READ(J15°J16) RSTR. ISTR				
	FIND(J15'J16)				
107	TELKY CO ALCALL DIMO				
. 161	IPAGE=K1				
	TPAJESKI .		-		
	CALLI PRINT				
	K1=IPAGE				
	IF(J16=1.50.J17)GO TO 132				
	GO TO 131				
	IF(INSTR(5).EQ.0)60 TO 134				
	WRITE(IOUT, 133)	<u> </u>			
133	FORMAT(#1#)				
	CALLIDUMP				
	IPA3E=0				
	CALLI PRINT	_			
134	J16=J19				
	WRITE (TOUT • 136)	_			
	FORMAT (0+#1)				
	ICM-UM2				
	DAN J = MN - M / J				
	IF (NCTL NE's 0) GO TO 10				
	GO TO 1115				
(n===	5 日本 5 年 5 年 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				
	INPUT, INITIALIZE VARIABLES, AND PRINT RESULTS				
	> 公山 & 等 B B B B B B B B B B B B B B B B B B		•		
	J16=J19				
	IFL34=0				
	CALL: INPUT				
	CALL' CONST				
	CALL: DUMP IF(A15.GT.0.D0)GO TO 140				
	1P (410a01a01a010)(00 10 140				
	IFL31=1 IF(A16.GE.(-1.D0))GO TO 139 A15A=DARS(A15)				
	1				
	A164=DABS(A16)				
	IFLGil=?				
	A15=1.00				
	A16=1.00				
140	CALL PRINT				
	IF(J18,EQ.03)SO TO 150				
	IF(J18.NE.07)30 TO 145				
	WRITE(J18.141)				
141	FORMAT(32(141) . SHOPE - VKF/ADP . 33(141))				
	WRITE (J18) RSTR ISTR				

	MAIN	DATE = 75157	11/58/40
J16=J16+1			
GO TO 150	070 0000		
145 WRITE (J18 · J16) R			
C START NEW TIME INTE			,
150 71=7			
7=I+QT			
IF(IFLG11.EQ.0)	GO TO 280		
GO TO(269,282,2			
269 IF (MD1.GE.1.DO)			
A15=1.00			
A16=1.00 GO TO 276			
270 A(1)=0.D0			
A(2)=0.00			
DO 274 I=1.4			
A(3)=MD1##(I=1)			
DO 272 J=1.2			
- 515 V(T)=V(T) +C(I * T) *A(3)		
274 CONTINUE			
A15=A(1) A16=A(2)			
GO TO 276			
282 IF (MD1.GE.1.D0)	GO TO 284		
A15=(A15A-1.D0)			
A16=(A16A-1.D0)	*MD1+1.D0		
GO TO 276			
284 A15=A15A			
A16=A16A			
IFLG11=3 276 WRITE(IDE∃UG•27	SIMPLANE ALS		
278 FORMAT(MD1= .		16.8. A16= +,E16.8)	
I (O. IF (IFLG2.LIT. 0) I			
IF (15.NE.INSTR)	26))GO TO 143		
INSTR(23)=1			
WRITE (TOUT , 142)			
142 FORMAT (* OREVERT	O AL OD ANTED LE	INSTR(11)))60 TO 152	
C WEIGHT CUTTING	Wall aura (Ir. Mal.	*14314(111)/100 10 13E	
A11=.5*A11			
412=1,-411		<u> </u>	
INSTR(11) = INSTR	(11) + INSTR (20)		
) ITEROALLOINSTR(
1205 FORMAT (10 1 , 5X , 1	ITER= 13.0 WY	HALVED TO ",F5.3," I	VSTR(11) RATSED
10 TO (,17)	I WI specification as a second		
IPAGE=TPAGE+2 152 IF(T.GE.Alo)IDE	BUG TOUT		
TSTR=T1+DT02	300=1101		
ITIME=TTIME+1			
IF (IFLG1.EQ.2) I			
C SET PRESSURES OF LA	ST ITERATION TO	INFINITY FOR ERROR COM	APUTATION
DO 153 T=1.7			
153 V(I+3) = INFIN			
ITER=0	0 TO(155,240) . IF	1.61	
IF (I o LP a I STOP) O	O 10(13398801918		

	MAIN	DATE	E = 75157	11/58/40
	IF (NCTL.NE.0) GO TO 10			
151	WRITE (TOUT : 154)			
	FORMAT(+1+)			
	CALLI DUMP			
	IF (J18.EQ.07) WRITE (J18.15	6)		
156	FORMAT(2(/80(***)))			
9999	STOP			
				,
	PUTE ARFAS OF VALVES AT TS			
	DO 220 J=1.3			
	Il=NVI(J)			
	IF(TSTP.GT.TV(J.I1))60 TO	500		
	<u> </u>			
	DO 160 [=[2.]]		•	
	IF ((TSTR.LE.TV(J.IMI)).OR	ARETO OF THE A	11100 TO 160	
	1 (6 (1314 9 0 1 8 1 4 (J 9 1)	77760 10 160	
	IFLG1=3			***
	A(1)=TSTR-TV(JeTM1)		•	
	[MI, () VI-(I, () VI) \. (= (5) A))		
	AREATS (J) = (AREA (J. I) -AREA		(2) + AREA (J. 141)	
	GO TO 220			
150	CONTINUE			
	WRITE(IOUT.190)			
190	FORMATIOSTOP AT 1900)			·
_	STOP			
200	AREATS (J) = AREA (J. NVT (J))			
21.0	GO TO(210,220,220),IFLG1			
	IFLG1=2			
	CONTINUE IE(IFLGLa=Q.3)IFLGl=l			
C	ILIII COLA COLA CARRA C			
C REG	IN NEXT ITERATION AT SAME	TIME INTERVAL		
C 0 - 0 -	1 : 1 - 1 - 1 :			
240	ITER=IJER+1			
	IF (ITER.LT. INSTR(22)) GO TO	0 242		
	INSTR(23)=2			
	IF (IFLG12.FQ.1) WRITE (TOUT			•
245	FORMAT (OSWITCHING TO SMA	L PERTURBATION S	SOLUTION ENTIRELY	(0)
	IFLG12=2			
	ITER=1 ND=0		·	
	NV=0 NCT=0			
	IF (ITER &GE . INSTR(22)) INST	0/231=2		
243	IF(IFLG2.FQ.1)GO TO 250	CLE 9 (SEE		*****
			====================================	•
	FT CHARGE TURE AND NOZZLE	VARYABLES TO STE	ADY CHOKED VALUES	
C====				
	IF (IFLG6.50.2) GO TO 250			
	IFLS6=2			
	SY=CTA/TSA			
	IFLG=3			
	IFLGZ=+1			
	CALL SOLVER			and the same of th

		MAIN	DATE = 75157	11/58/40
_	MCT=\$X1	,		
-	NCT=\$N			
		OS#MCT##2)/(1.+GM10	5. WC 1) * 5	
. —	TCTO=TC*A(1)			
	TEO=TCTO	* # 0.0CM1		
	PCT0=PC*A(1):			
	ACTO=DSQRT(G			
	MDTS0=RCTO*A			
	MDCT0=RCT0#A			
	MN=1.			
	PN=PSOPO#PCT			· · · · · · · · · · · · · · · · · · ·
		CTO#DSQRT(TSOTO) *AC	TO#TSA	
	IFLG2=-1			
	WRITE (TOUT . ?			
249		ZLE HAS CHOKED!)		
	MCT1=MCT TCT01=TCT0			
	PCT01=PCT0			
	RCT01=RCT0			
	ACTO1=ACTO			
	MN1=MN			
	PNI=PN			
	MDCT1=MDCT			
	MDTS01=MDTS0			
	MDCTO1=MDCTO			
	PT=417#PD+(1	• D0-41/) *PN		
250	PT1=PT	.EQ.0)GO TO 255		
6.50	IF (1.67.A13)			
			E.INSTR(11)))00 TO 253	
252	IF (ITER NEL 1			
C ====		5 44 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46		
C. CALL	L SMALL PERTUR	RRATION PACKAGE	<u></u>	
(***************************************		
253	DO 260 [=1,3			
	Il=I+25 V(Il#1)=AREA	76/71		
	EA(I) = V(I)			
260	CONTINUE	a, v(11vc)		
		FQ.O.DO) AND (EA	3).EQ.0.D0))MDF1=0.D0	
			2) EQ. 0. DO)) MDPE 1= 0. DO	
	CALLI SMPERT			
	K1=DSIGN(1.5)	00.PT-PCTO*PSOPOT		
	IF (Kl.FQ.IFL)	32)60 TO 256	•	
	IF (IFLG10.EQ.	2) GO TO 258		
	IFLG10=2	117ELG2-K1		•
	IF (IFLG2.EQ.)	(-1))GO TO 241		
	GO TO 256	1-11/00 10 641		
258	IFLG10=1	44444	The state of the s	
		.EQ.3).AND.(TTER.G	E.INSTR(11)))60 TO 254	
		.EQ.2)GO TO 254		
	60 10 255			
254	IF(J18,EQ.03	GO TO 1190		
	WRITE (J18 · J1	CIRCTA SCSD		

	·	MAIN	DATE = 75157	11/58/40
	F5N5(J18+J16)			
	GO TO 1190		•	
	IF (IFLG2) 500 + 999	9,251		
raessa raessa	1. (). r. (). (). (). (). (). (). (). (). (). ()	79231		
C SHEE	ONIC BRANCH			
	MDESA1 *PEO *AREAT		4.3	
	IFLG2=+1		M.C.	
	[FLG6=1			
	IFLG12=1			
	MDD=MDF+MDF			
	USER MACH NUMBER	AND DUECCIDE	•	
	\$Y=MDD/MDTS0	AGO EBESSORE	· · · · · · · · · · · · · · · · · · ·	-
	IFLG=2			
	CALL: SOLVER			
	MD=\$X1			
	ND=\$N			
	PD=PCTO*POPO(MD)			
	PT= 5# (PD+PN)			
	MDPI=MDOIPI(PP.P	Ť 1		
	MOCT=MOD + MOPT			
	GE, TUBE MACH YUM	RED		
	SY=MDCT/MDCTC			
	IFLG=4			
	CALL SOLVER			
	MCT=\$X1			
	NCT=SN			
	A(1)=(1.+GM102#M	CT##2)//1.*GM102	9MCT) 802	
	TCTO=TC+A(1)	V. L L. I.		
	PCT0=PC+A(1) ++G0	GM1		
	RCT0=PCT0+00R/TC			
	PE0=PCT0			
	TEN=TCTO			
	REO=RCTO			
	ACTO=DSQRT(GR#TC	TO)		
	A(1)=RCTO#ACTO			
	MOCTU=A(1)#CTA			
-	MDISO=A())*ISA			
C N077	LE MACH NUMBER A	ND PRESSURF		
	\$Y=MDCT/MOTSO _			
	IFLG=2			
	CALL SOLVER			
	MN=8X]			
	NV=8N			
	(VV) 09CG+013G=VG			
	IF (PT.LE.PCTO#PS	OP0160 TO 241		
	GO TO 1000			
C		'	- 1000	
C SJPE	RSONIC BRANCH			
C				
	PT=417#PD+(1.70-	A17) #PN		
	IF(.32==1			
	IF(G12=1			
	40PI=400TPT(PP.P	T)		
	MOD=MOCI-MOPI			
	MDE==MDE+MDD			

	MAIN	DATE = 75157	11/58/40
C DIF	TE0=TCT0 PE0=MDE*DSGRT(TE0)*00Al/AREATS(1)*A3 RE0=PE0*00R/TE0 *A2 FUSEP PRESSURE AND MACH NUMBER		
	SY=MDD/MDTS0 ; IFLG=2 CALL SOLVER		
	MD=\$X] ND=\$N PD=PCTO*POPO(MD)		
C Abú	TE PLENUM CONDITIONS		
	IF (JFLG2)1001,9999,1002 PT=(1,00-417)*PN+417*PD GO TO 1003		
	PT=0.5N0*(PN+PD) MDPT=MD0TPT(PP.PT) MDF=-APEATS(3)*00KF*(PP-PD*A16)*A2		
Product of the de-	RPT=RPT1+(MDPT+MDF+MDPE)+DTOPV RP=.5*(RPT1+RPT) IF(IFLG9-EQ.2)GO TO 1010		
	PPT=PPT1*(RPT/RPT1)**G TPT=PPT*00R/RPT*A2 PP=PPT1*(RP/RPT1)**G		
1010	<pre>JP=PP*00R/RP *AZ IF(INSTR(25).EQ.1)GO TO 1020 IF(TPT.GE.TCT0)GO TO 1020 IFLG9=2 TP=TCT0</pre>		
	TPT=TCT0 PP=3P*R*TP/A2 PPT=RPT*R*TPT/A2	,	
C	MDPE=-A1*PP*AREATS(2)/DSORT(JP)*A2 VERGENCE CHECK		
	IFLG3=1 DO 1050 I=1.7		
	E(I)=2.*DARS(V(I:1)-V(I:3))/(V(I:1)*V DO 1100 I=1.7 IF(E(I).GT.PERR)GO TO 1200		
	CONTINUE IE DATA ON FILE AND PRINT CONVERGED DA IFLG3=2 IF(J18,EQ.03)GO TO 1115		
1115	WRITE(J18'J16)RSTR.ISTR FIND(J18'J16) CALL: PRINT		
1120	IF(INSTR(7),EQ.2)GO TO 1180 IF(INSTR(6),NE.0)WRITE(IOUT.1120)V FORMAT(15(/' ''8E16.8))		
C	ORM EXTRAPOLATION TO NEXT TIME INTERV	AL	
	DO 1170 I=1.7		

	:	MAIN	DATE = 75157	11/58/40
J=IE	XTP(I)			
C SAVE DAT	A FOR CURREN	T INTERVAL		Side-organization (see procession) and the second
	€V(J•1)			
	TIME. FO. 11GO			
	FLG4.EQ.1)GO	10 1100		
C EXTRAPOLI	1)=2,#V(J,1).	=V (.1.2)		***************************************
	NSTR(6) NE 0			
		ING OF TIME IN	FRVAL	
1160 V(Je				
	FLG4.EQ.1)IFL	LG4=2		
1170_CONT	INUE			
Caaraaaaa				
C DETERMIN	E IF FRROR CL	UTTING OR DI DO	OUBLING IS REQUIRED	
(======================================	**************************************			
	185 I=1.7	all adding this this	14) .FQ.1) 160 TO 1190	
		AND. ((1.E0.1).(R. (I.FQ.6)))GO TO 1185	
			[1,1)+V([,2))/[NSTR(]2)	
		60 to 1185		
	VSTP (14) . GT.			
C ERROR CU			<u> </u>	
PER3:	=PFRR/INSTR()	12)		
SEMA	X=SEMAX/LYSI	R(12)		
	E(70UT•1183)F			
		RR CUT TO . F16.	900 AND SEMAX CUT TOOOF	<u>6.8)</u>
	E=TPAGE+2			
	Q 1190			
C DT DOUBL	rng T#INSTR(14)			
	V=DT/PV			
	=1./07			
	DT#.5			Manager County County County
	1(TALL . TUOI)	<u> </u>		
1187 FORM	AT (P O DT	RAISED TO . E16	0.8)	·
	E=1PAGE+2			
	1190			
_1185 CONT				
	TIME.LE.2)GO			
		TERVAL IS PREDI		
C OFICHMIA	: it ACVI TIAI	ICKAMP 12 LURA1	CIED IO CHOVE	•
DMD=	4D-MD1			
	4N-MN1			
IF (D)	D.LT.DMD1)DM	MD=DMD1	•	
	MN.LT.DMN11DM			
		D.PT-PCTO*PSOPO		
		OMD)) OR (MN GE	(1.D0-DMN))) IFLG2=-1	
1191 DMD1:				
	=MN-MN1 FLG2.LT.O) IFL	C10-2	فالبود فالبور مستريز ووسعيان المستوار فالمستوار والمستوار والمستوار والمستوار والمستوار والمستوار والمستوار والمستوار	
		· · · · · · · · · · · · · · · · ·	I o MD o MN o MDl o MNl	
			: 0 . 2 E 1 3 . 5 . 0 MD . MN = 0 . 2 E 1 3	5.0
	1D1.MN1=1.2E		- AFCICACA MINALITA ASEIG	u y
		ING OF TIME INT	ERVAL	
	VSTR(23) FQ C			Comment of the Commen

	MAIN	DATE = 75157	11/58/40
	DO 1188 I=1.30		
1188	V(1.2) = V(1.1)	· ·	
	60 70 150		
1189	RPT1=RPT		
	PPT1=PPT		
	IF(INSTR(7) .FQ.1)GO TO 150		
	DO 1186 I=1.7		
	JETEXTP(I)		
	V(J.2)=V(J.1)		
	60 TO 150		
			······································
C RESE	T CONVERGENCE CONTROL DATA		
1200	IF (IDERUG.EG. TOUT) CALL PRINT		
	IF (INSTR(6) . NE. 0) CALL PRINT		
	Il=INSTR(10)		
1210	DO 1260 Is1,30	,	
_	GO TO(1220.1240).11		
	V([,3) =V([,1)		
	GO TO 1260		_
1220	IF (ITER.NEL1) V(I.) =All =V(I.1)	+A12 *V(I+3)	-
	V(I.3) = V(I.1)		
	GO TO 1260		
1240	V([.4) = V([.3)		
	V(1,3)=V(1,1)		
	IF (ITER NE's 1) V(I o 1) = All @V(I o 1)	A12*V(I.4)	
1260	CONTINUE		
	GQ TQ 240		
	END		

·	NPUT	DATE = 75157	11/58/40
SUBROUTINE INPUT (*)			
IMPLUCIT REAL #8 (A-H.	M 9 D - Z 9 \$ 7		
COMMON AREA (3,50) , ARE		TV (3,50), A(10), E(7),	B(30),
1 TVF(3) . TDELAY (3) . RW(
COMMON PC+RC+TC+AC+MD	CTC . EAE SEAPE . EAF	MDTSTR, INFIN, TMGOGS	GP02GS.
1 5GOR			
COMMON G.GMI.GPI.OOG.	GP102,GM102,GP10	G,GM10G,GOGP1,GOGM1,	
1 00GM1.00GP1.GP0GM1.S	GM102. TOGM1. TOG.	MGPGM2.TOGP1.GPGM12.	
2 MGPOGM, MGOGM1.R.GR.O	OR, PI , PERR, AWOKW	OOA1 OOKF OKF OKW	
COMMON TSLIPTSHOTSWOTS	POTSAOTSWAOTSVOC	TD.CTA.PV.PVOTSV.TAU	#
COMMON TOTLODTOTSTROD	TU2.TSTOP.OODT.D	TOPV	
COMMON ALOAZOAJOAGOAS	· A6 · A7 · A8 · A9 · A10	<u> </u>	9A169A17
COMMON PN , PP ,		PT , PCTO , PEO ,	MDE ,
	MDCT . MDPE .MD		TP •
- TPT , TCTO , RP ,	RPT . REO . R	CTO . ACTO. MCT .	AE »
- APE , AF , MN ,			
COMMON PN1. PP1.		PT1. PCT01, PE01,	MDE1.
	MOCTI . MDPE1 . MD		Tpl.
i care e a care e c		CTO1, ACTO1, MCT1,	AE1.
- APEL AFL MNI			· · · · · · · · · · · · · · · · · · ·
COMMON PN2. PP2.		PT2. PCT02. PE02.	MDE2,
- MDD2. MDF2. MDPT2.	MDCT2, MDPE2, MD		TP2.
- TPTZ, TCTO2, RP2,		CTO2, ACTO2, MCT2,	ÁEZ,
- APEZ. AFZ. MNZ.			
COMMON PN3, PP3,		PT3 PCT03 PE03	MDE3.
	MDCT3 MDPE3 MD		трэ.
- TP13, TCT03, RP3,		CT03, ACT03, MCT3,	AE3,
- APE3, AF3, MN3,			
COMMON PSOPO, TSOTO, RS		CCMAY CED CAE	
COMMON SY, SY1, SY2, SX1			3105
COMMON INSTR(26) + IDER			
1NPAGE & SNOTT (3) & JOIM) &			33915[[349]
ZIFLG5.JFLG6.IFLG7.IFL COMMON J1.J2.J3.J4.J5			. 116. 117.
1 J18,J19,J20,J21,J22,		13111915 131314141013	9010101178
COMMON NCTL	023102410251026		
DIMENSION V(30,4) .RST	D(570) . 75TD(35)		
EQUIVALENCE (V(1) PN)		11. (1STD (11.ND)	
INTEGER SV	THAT THE CALL	JAKAS INC.	
REAL B INFINOKEOKW			
IF (VCTL NELO) GO TO 20	0		
READ (ITN.50) NVT.NT			
50 FOR MAT (2613)			
READ (ITN , 100) PC . TC			
100 FORMAT (5E16.8)			
READ (IIN 100) TSL . TSH.	TSW.CTD;PVOTSV.TA	AUW oKW oKF oA15 oA15	
1,417,418,419,420,421			
READ(ITMO100)ROGOAllo	A13.A14		
READ(ITN.100) DT.TSTOP			
READ(IIN.100) AREAM			
READ (ITN . 100) TVF			
READ (ITN. 100) TOELAY			
00 110 J=1,3			
00_105_T=1,50			
0=(1el)VT			
105 AREA(J.I)=0.			

INPUT	DATE :	75157	11/58/40
I1=VVT(J) -			
110 READ(IIN+120) (TV(J+1) + ARFA(Jol) ol=loll)		
120 FORMAT (2E16.8)			
RETURN			
200 READ(ITN+50) 11+12+13			
IF(IL.FQ.O)RETURN 1			
60 10(220,240,260),11			
220 READ (11N+50) ISTR(12)			
60 TO 200			
240 READ(IIN+100) RSTR(IZ)			
GO TO 200			
250 READ(TIN-100) V(12-13)			
GO TO 200			
END			

DATE = 75157

CONST

11/59/40

```
SUBROUTING CONST(#)
  IMPLICIT REALHR (A-H+M+0-Z+$)
 COMMON AREA (3.50) . AREATS (3) . AREAM (3) . TV (3.50) . A (10) . E (7) . R (30) .
1 TVF(3),TDELAY(3),RW(7)
 COMMON PC.PC.TC.AC.MOCIC.FAF.FAPE.FAF.MDTSTR.INFIN.TMGOGS.GPOZGS.
1 SGOR
 COMMON G.SM1.SP1.00G.GP102.GM102.GP10G.GM10G.G0GP1.GOSM1.
1 003M1,003P1,GP0GM1,SGM102,T0GM1,T0G,MGPGM2,T0GP1,GPGM12,
2 MGPOGM.M30GM1.R.GR.OOR.PI.PERR.AWOKW.OOA1.OOKF.KF.KW
 COMMON TSLISTSHOTSWOTSPOTSAOTSWAOTSVOCTOOCTAOPVOPVQTSVOTAUW
 COMMON T, F1 . DT. FSTR. DTO2. TSTOP. OODF. DTOPV
 COMMON 11.42,43.44,45,46,47.48.49,10.411.412.113.414.415.416,417
                                  PP. . PPT . PD . PT . PCTO . PEO . MDF .
 COMMON
                    PN ,
     , OCM
                    MDF , MDPT , MDCT , MDPE , MDTSQ , MDCTQ , TEQ . . . TR.
                                    ąР,
                                                RPT . RED . RCTO . ACTO.
     TPT . TCTO .
                                                                                                     MCT .
                                                                                                                       ΔE .
     APE ,
                                    MN 9
                                                 MD
                      AF 9
                                                                                                         PE01.
                                                                                                                       MDF1.
 COMMON
                      PN1 .
                                    PP1.
                                              PPT1.
                                                                PD1.
                                                                              PTI+ PCT01+
                    MDF1, MDPT1, MDCT1, MDPE1, MDTS01, MDCT01,
                                                                                                         TEO1,
                                                                                                                         JPl.
     MOD1.
                                              RPT1. RE01. PCT01, ACT01.
     TP11, TC 01.
                                    RP-1 .
                                                                                                         MCT1.
                                                                                                                          AF1.
     APE1.
                                                 MD1
                      AFI.
                                    MN1.
                                                                                                                       MDF2.
                                                                              PT2. PCT02. PF02.
 NOMMOD
                      PN7.
                                    pp>.
                                                PPT2,
                                                                P02+
                                                                                                                       -TP2.
    *SOCM
                    MDF2, MDP12, MDCT2, MDPE2, MDTS02, MDCT02, TE02,
                                    BB5.
     TPT2. TCT02.
                                               RPT2. RED2. HCT02. ACT02.
                                                                                                         MCT2.
                                                                                                                         AF2.
     APE2,
                      AF2,
                                    MNS.
                                                 SOM
                     PV3.
 COMMON
                                    PP3.
                                               PPT3.
                                                                PDJO
                                                                              PT3. PCT03.
                                                                                                         PE03,
                                                                                                                      MDF3.
                    MDF3, MDPT3, MDCT3, MDPF3, MDTS03, MDCT03, TE03, TP3.
     MOD3,
     TPT3. TCT03.
                                                                                                         MCT3.
                                    RP3.
                                                RPT3. RE03. HCT03. ACT03.
                                                                                                                         AF3.
     4PE3.
                      AF3,
                                    MN3.
                                                 FOM
 COMMON PSOPO TSOTO PSORO MSOMO
 COMMON 8Y-8Y1, 8Y2.5X1.5X2.5DX.5E1.5F2.5EMAX.5EP.5DF
 COMMON INSTR (26) . IDFHUG. TIN. TOUT. NP. JP. ITER. NVT (3) . I. NT. IPAGE.
1NPASE · FN · TT (3) · J · TM1 · TT (ME · ND · NN · NCT · IFLG · IFLG <u>· IFLG ? • IF</u>
21FLG5+TFLG6+1FLG7+1FLG8+TFLG9+11+T2+13+14+15
 1 J18,J19,J20,J21,J22,J23,J24,J25,J26
 COMMON NOTE
  INTEGER SV
  REALMB INFIVOKEOKW
 PI=3.141592653589793
 G4] =G-]
 GP1=G+1
 GM102=.5#3M1
 GP102=GP14.5
 006=1./6
 GM10G=GM1#00G
 GP10G=GP1#00G
  GP026S=0.5*GP10G*006
  G0G41=G/G41
 G0GP1=G/GP1
  SGM102=DSQRT(GM102)
  100=2.4003
 TOGP1=2./3P1
 IMEN. I=IPDCO
 GPOSM1=GP1*005M1
 GPGM12=.5*GPDGMI
 00GPl=1./3Pl
```

CONST DATE = 75157 11/58/40 00R=1./R MSPOGM==GPOGM1 MGPGM2=-GPGM12 MGOGM1==GOGM1 TMG06S=(2.-G)*006**2 TOGM1=2./3M1 IF (INSTR(5) .EQ.1) GO. TO. 100. A2=144. SA/.1=EA GO TO 200 100 42=1. A3=A2 200. CONTINUE C SERIES FOR UNSTEADY MASS FLUX FROM MACH NUMBER A (A) =MGPOGM A(9)=GM102 CALL BINOM 00 220 1=1.7 -220 RW(I)=A(I) SGOR=DSORT (G#30R) IF (NCTL .EQ. 7) RETURN 1 RFTJRN END

11/58/40

```
SURROUTING INIT(*)
  IMPLICIT REAL#A (A-H.M.O-Z.S)
 COMMON AREA (3.50) . AREATS (3) . AREAM (3) . TV (3.50) . A (10) . E (7) . B (30) .
 1 TVF (3) . TTELAY (3) . RW (7)
 COMMON PC.RC.TC.AC.MDCTC.FAF.EAPF.FAF.MDTSTR.INFIN.TMGOGS.GP02GS.
 COMMON G.SMI.SPI.OOG.GPIOZ.GMIOZ.GPIOG.GMIOG.GOGPI.GOGMI.
 1 003M1.003P1.GP0GM1.SGM102.T0GM1.T0G.MGPGM2.T0GP1.GPGM12.
 2 MGPOGM.M3OGMI.P.GR.OOR.PI.PERR.AWOKW.OOA1.OOKF.KF.KW
  COMMON TSLIGTSHOTSWOTSPOTSAOTSWAOTSVOCTDOCTAOPVOPVOTSVOTAUW
  COMMON TOTA DISTRODIO 2. TSTOP . DODT . DIOPV
 COMMON A1.A2.A3.A4.A5,A6.A7.A8.A9.A10.A11.A12.A13.A14.A15.A16.A17
          COMMON
                                       PT . PCTO . PEO . MDF .
   • מכא
                                                            TP .
                                                    TE0 .
   TPT . TCTO .
                                                            AE ,
                  MN ,
   VDE .
            ΔF 9
                         MD
 COMMON
                   PP1,
                                       PTI. PCT01.
           PN1.
                        PPT1.
                                PD1,
                                                    PE01,
                                                            MDE1.
           MDF1, MDPT1, MDCT1, MDPE1, MDTS01, MDCT01,
   MOD1,
                                                    TE 0.1 9
                                                           TPle
                   RP1.
                        RPT1, RE01, RCT01, ACT01.
   TPIL. TCTOI.
                                                     MCT1,
                                                             AE1,
   APE1,
                   MN1 .
           AF1,
                         MD1.
           PN2,
                        PPT2.
                                       PT2, PCT02,
 VOPMOD
                   PP2.
                                PD2.
                                                     PF02.
                                                            MDF2.
          MDF2. MDPT2. MDCT2, MDPE2.MDTS02.MDCT02. TE02.
   *SOCW
                                                             ΫP2,
   TOTE, TOTOS.
                  RP2.
                        RPT2, RE02, RCT02, ACT02,
                                                    MCT2.
                                                             AEZ.
                   e SNM
   VDE5.
            AF2,
                         MD2
 COMMON
           PN3,
                   рр3,
                        PPT3.
                                PD3,
                                                    PE03.
                                                            MDE3.
                                        PT3. PCT03.
   Mana.
          MDF3. MDPT3. MDCT3. MDPE3.MDTS03.MDCT03.
                                                             TP3,
                                                    TF03.
   TPT3. TCT03.
                   RP3. RPT3, RE03, RCT03, ACT03,
                                                    MCT3,
                   · ENM
   ∧2E3•
           ΔF3 •
                         MD3
 COMMON PSOPO, TSOTO, RSORO, MSOMO
 COMMON SY. SY1. SY2. SX1. SX2. SDX. SE1. SE2. SEMAX. SEP. SDE
  COMMON INSTRICED . TOFRUG. TIN. TOUT . NP . IP. ITER. NVT (3) . 1 . NT . IPAGE.
 INPAGE . TV IT (3) , J. IMI , IT IMF . ND . NN . NCT . IFLG . IFLG . IFLG . IFLG . IFLG . IFLG .
 21FLG5+1FLG6+1FLG7+1FLG8+1FLG9+11+12+13+14+15
 1 J19,J19,J20,J21,J22,J23,J24,J25,J26
 COMMON NOTE
 DIMENSION V(30.4)
 EQUIVALENCE (PN.V(1,1))
  INTEGER SV
 REALMA INFINATE OKW
 DO 5 I=1.3
 IT([)=2
5 ARFATS([)=0.
  TSA=TSW#TSH
  TSP=2.#(TSW+TSH)
  TSWA=TSL #TSP
 CTA=PT*CTD**2*.25
 TSV=TSA4TSL
 PV=TSV#PVDTSV
 Vc/Id=Aculu
  RC=PC#NOR/TC#A2
 AC=DSQRT(GR#TC)
  MULIC=BC#VC#CIV
 MOTSO=PC#AC#TSA
 00 50 3=1.4
 00 10 7=1.7
```

INIT DATE = 75157 11/58/40

.

```
10 V((-J)=PC
   DO 20 T=8+13
 20 V(I.J)=0.
   V(14%J)=MOTSO
   V(15+J)=MOCTC
   DO 30 I=15:19
 30 V(1,J)=TC
   00 40 T=20,23
 40 V(T+J)=RC
   V(24+J)=AC
   DO 45 T=25+30
 45 V(I,J)=0.
50 CONTINUE
    T=0.
   T1 = 0.
   M7=0.
   TSTR=0
  . DT02=.54DT
   0001=1./01
   MN=0.
                     MCT=0.
   00 160 J=1.3
   (L) TVV=11
   DO 140 I=1.I1
   TV(J,1)=TV(J,1)*TVF(J)
140 AREA(J+I) = AREA(J+I) #AREAM(J)
   IF (TOEL AY (J) .EQ. 0.) GO TO 160
   DO 150 11=1,49
   1=51-11
   AREA(J.I) = AREA(J.I-1)
150 TV(J+I)=TV(J+I-1)+TOFLAY(J)
   1+ (L) TVN=(L) TVN
160 CONTINUE
   DO 170 I=1.3
170 V(1+25+2) = AREA(1+1)
   PSOP0=TOGP1##GDGM1
   T50T0=T0GP1
   RSORO=TOGP1##00GM1
   MSOMU=PSORO#D5QRT(TSOTO)
    MOTSTR=MDTS0#MS0M0
    TNF1N=1.E+70
    Al=DSQPT(TOGP1##GPOGM1#G#OOR)
   0041=1./41
   A4=TOGP1 ##GPGM12
   A5=1./MSOM0
   A5=1 .-P50P0
   A7=2. GP1/MOCTC
   AB=-GM10G
    49=2. #GP1
   IF (A10.FQ.0.) A10=[NF]N
    IF(All.FQ.0.)All=.5
    IF (A13.FQ.O.) A13=TMFIN
    IF (A14.FQ.O.) A14=-0.1
   IF (014.GT.O.) 014=-014
   114--1=514
    IF(A15.EQ.0.D0)A15=1.D0
```

INIT DATE = 75157 11/58/40 IF (A16.FQ.0.D0) A16=1.00 TF (417.FQ.0.Q0) A17=1.00 IPAGE=0 NPAGE=50 1P=0 OOKF=1./KF AWOKW=.17#TAUW#TSWA/KW ITER=0 TFL G=0 1FL32=1 IFL 33=0 TFLG4=0 IFL.65=0 IFL36=0 1FLG7=0 TFLG8=0 1FLG9=0 ND = 0NN=0 NCT=0]]=0 15=0 13=0 14 = 015=0 DO 200 [=],7
200 E([)=0.
IF(VCTL.E3.6) RETURN] RETURN E ND

DATE = 75157 DUMP 11/58/40 SUPROUTINE DUMP (#) IMPLICIT REALOR (A-HOMOD-ZOS) COMMON ARFA (3,50) . ARFATS (3) . AREAM (3) . TV (3,50) . A (10) . E (7) . B (30) . 1 TVF (3) . TOFLAY (3) . RW (7) COMMON PC.RC.TC.AC.MDCTC.FAF.EAPE.FAF.MDTSTP.INFIN.TMGOGS.GP02GS. 1 SGOR COMMON 6:5M1:5P1:006:6P102:6M102:GP106:GM106:G0GP1:G0GM1: 1 DOGMI.OOGPI.GPOGMI.SGMIQ2.TOGMI.TOG.MGPGMZ.TOGPI.GPGMIZ. 2 MGPOGM.MGOGMI.P.GR.OOR.PT.PERR.AWOKW.OOA1.OOKF.KF.KW COMMON TSLOTSHOTSWOTSPOTSAOTSWAOTSVOCTDOCTAOPVOPPVOTSVOTAUW COMMON T+T1+DT+TSTR+DT02+TSTOP+DODT+DTOPV COMMON A1.42.43.44.45.46.47.48.49.410.411.412.413.414.415.416.417 VOMMON PY . PP . PPT . PD . PT . PCTO . PEO . MDE . MDF . MDPT . MDCT . MDPF . MDTSO . MDCTO .
CTO . RP . RPT . PEO . RCTO . ACTO. MOD . TEO . TP . TPT . TCTO . MCT . AE . MN . APF . MD ΔF , COMMON PV1. PP1. PPT1. PD1. PT1, PCT01, PE01 . MDE1. MDF1, MDPT1, MDCT1, MDPF1, MDTS01, MDCT01, MODI. TF01, TPle TP11. TC101. PP1. RPT1+ RE01+ RCT01+ ACT01+ MCT1 . AF1. APE1. AF1, MN1 . MDI POZ. PTZ. PCTOZ. PP2. COMMON PN2. PPT2. PE02. MDF2. MDES. MOPTE: MOCTE: MOPEE MOTSOE MOCTOE: TEOR ·SOCM TP2, RPT2. , 549 RED2, RCTD2, ACTD2, TPT2. TCT02. MCT2. ΔΕ2, APE 2 . . SIMM MD2 0F2 . PF03. PD7. MDE3. PN3. PP3. PP 7 3 . PT3. PCT03. MDF3. MDPT3. MDCT3, MDPF3,MDT503.MDCT03, JE03. MO()3. TP3. TPT3. TCT03. B63. RPT3+ RE03+ RCT03+ ACT03+ MCT3, AE3. APE3. 4N3 . **AF3**. MD 3 COMMON PSOPO, TSOTO, PSORO, MSOMO COMMON SY. SY1. SY2. SX1. SX2. SDX. SF1. SF2. SEMAX. SEP. SDE COMMON INSTRICED . TOFPUG. TIN. TOUT . NP. 1P. TTFR . NVT (3) . T. NT. IPAGE. INPAGE . SN. IT (3) . J. IM] . ITIME . NO. NN. NCT . IFLG . IFLG] . IFLG ? . IFLG 3. IFLG 4. 21FL 35+ 1FL36+ 1FLG7+ 1FLG8+ 1FLG9+ 11+12+13+ 14+15 COMMON J1.J2.J3.J4.J5.J6.J7.J8.J9.J10.J11.J12.J13.J14.J15.J16.J17.J 1 119.119.120.121.122.123.124.125.126 COMMON NOTE DIMENSION JV (25) +V (30.4) EQUIVALENCE (UV(1) +U1) + (V(1) +PN) INTEGER SV REALAR INFINACE . KM LOGTCA1 44 CHAR1(2) +CHAR2(2+2) DATA CHARIZIPSEAT. PSIAIZ. CHARZZISECOT, IND INTERPRETAINTH IZ WRITE (TOUT . 100) (I .] = 1 . 26) . INSTR 100 FORMAT(.0..16(* INSTR. . IS) / * .10(* INSTR. . IS) .5(/ * .16[8)) WRITE (TOUT . 120) IDEBUG. ITN. TOUT . II. TPAGE . NPAGE . NP. TP. TTER. 12. T 1IFLS, IFLG1, TFLG2, TFLG3, TFLG4, IFLG5, TFLG6, IFLG7, IFLG8, IFLG9, ND, NN, 2 NCT+ITIME+NVT+13+14+15+TT+NCTL DUFFICE OF TAMPOR OS TOUT IL IPAGE TELG TELG1 TELG2 TIN 151 NPAGE NP TTFR TFLG3 TFLG4 1,' 12 ì TFLG5 ! IT(1) .. IFLG6+/+ ++1817/+0 TFLG7 TFLG8 TFLG9 ND 15 ITTME NVT(1) NVT(2) NVT(3) 7.3 41 11(2) TT(3) NCTI * -/+ + ·1 A J 7) WRITE (TOUT . 140) TSL . TSH . TSW . CTD . PVOTSV . TAUW . KW . KF . ARFAM . TSA . 1TSP.TSWA.CTA.TSV.PV.AWUKW 140 FORMAT(*0**7%**TSL**13%**TSH**13%**TSW**13%**CTD**12%**PVOTSV**

```
DUMP
                                                                               DATE = 75157
                                                                                                                      11/58/40
        1 11X, TAUW 1, 13X, KW 1, 14X, KF 1/1 1, SE16, 8/10 1, 7X, AEM 1, 13X, APM 1,
        213X, 'AFM', 13X, 'TSA', 13X, 'TSP', 12X, 'TSWA', 13X, 'CTA', 13X, 'TSV'/
        3 * * . 8E16 . 8/ * 0 * . 7X . * PV * . 13X . * AWOKW * . 10X . *
                                                                                              9 9 1 0 X 9 9
        4 10X+
                               1.210X9.9
                                                      0 9 1 0 X 9 0
                         WRITE(IOUT, 180) PC.RC.IC.PP.RP.TP.PP1.RP1.TP1.PPT.RPT.TPT.PCTO.
        1 RCTO.TCTO.PEO.REO.TFO.AC.ACTO.MDPE.MDCT.MDE.MDF.T.T1.MN.TSTR.
        2MDPT.MDD.PD.PV.PT.MD.MCT.PPZ.MDEZ.MDPEZ.MDFZ.MDCTZ.SEMAX.
        3TSTOP, DT .PSOP0.TSOT0.RSOR0.MSOM0.MDTSTR.MDTSO,MDCTC.MDCT0.PERR
        4.PN3.PP3.MDF3.PE03.TE03.MDTS03.PCT03.TDELAY
   190 FORMAT( *0 * + 7X , *PC * + 14X + *RC * + 14X + *TC * + 14X + *PP * + 14X + *RP * + 14X + 14X + *RP * + 14X 
        1 * TP * $ 14x , * PP1 * • 13X , * RP1 * /* * $ 8 F 16 , 8 / * 0 * • 7X • * TP1 * • 13X • * PPT * • 13X •
        2*RPT**13X**TPT**12X**PCT0**12X**RCT0**12X**TCT0**13X**PE0*/* **
        38E15.8/:0.,7X.. 'RED!.13X.. 'TED!.13X.. 'AC!.12X.. 'ACTO!.13X.. 'MDPE!.11X.
        4 PMDCT + . 13X , PMDE + . 13X . PMDF + / + + . 8E16.8/+0+ . 8X , +T+ . 14X . +T1 + . 14X . +MN +
        5,13X, *TSTR*, 12X, *MDPT*, 13X, *MDD*, 13X, *PD*, 14X, *PN*/* *,8F16,8/
        6*0*•7X•*PT*•14X•*MD*•14X•*MCT*•13X•*PP2*•12X•*MDE2*•12X•*MDPE2*•
        7 11x , 'MDF2' , 12x , 'MDCT2'/ , , 8E16 , 8/10' , 6X , 'SFMAX' , 11X , 'TSTOP' ,
        811X. * DT *.12X. *PSOPO*,11X. *TSOTO*,11X. *RSORO*,11X. *MSOMO*,10X.
      9.MDISTR:// ..BE16.8/.0..6X..MDISO..IIX..MDCTC..IIX..MDCTO..
        A 10X+* PERR *+10X+* PN3 *+10X+* PP3 *+10X+* MDF3 *+10X+
        B * PE03 */* *,8F16,8/*0*,6X,*TE03*,11X,*MDTS03*,11X,*PCT03*,10X,
        C'TDELAY' . 10X . TDELAY' . 10X . TDELAY' . 10X .
                                                                                              * . 10X . *
        D8E16.8)
         WRITE (TOUT, 200) A1 . A2. A3. A4. A5. A6. A7. A8. A9. A10. A11. A12. A13. A14. A15.
        1 A15, A17, A18, A19, A20, A21, A22, A23, A24
200 FORMAT ( *0 * • 7X • * A1 * • 14X • * A2 * • 14X • * A3 * • 14X • * A4 * • 14X • * A5 * • 14X •
        313X • 4 11 • 13X • 4 12 • 13X • 4 13 • • 13X • • 4 14 • • 13X • • 4 15 • • 13X • • 4 16 • / • • •
        4 8E16.8/'0', 7X, A17', 13X, A18', 13X, A19', 13X, A20', 13X, A21',
        5 13X, 1A221, 13X, 1A231, 13X, 1A241
        -/1 1,8E16.81
         WRITE (10UT . 220) G. GM1. GP1. GM102. GP102. DOG. GM10G. GP10G. GOGM1.
        1GOGP1:SGM102:TOG:TOGP1:DOGM1:GPOGM1:GPGM12:TOGM1:MGPGM2:MGPOGM:
        200GPl.P.OOR.GR.NTO2.DTOPV.OOKF.INFIN.OOAl.OODT.MGOGMl.TMGOGS.
        3 GP02GS,530R
  220 FORMAT(*1**8X**6**14X**6M1**13X**6P1**12X**6M102**11X**6P102**
        211X • * GOGP1 • • 10X • * SGM102 • • 12X • * TOG • • 12X • * TOGP1 • • 11X • * OOGM1 • •
        310X+ GPOGM1++10X++GPGM12+/+ ++8E16,8/+0++6X++TOGM1++10X++MGPGM2++
        4 10X. MGPOGM. 11X. OOGP1. 13X. R. 14X. OOR. 13X. GR. 13X. OTOZ.
        5 . 4 BE16 . 9/10 . 6X . 10TOPV . 11X . 100KF . 12X . 1NFIN . 11X . 10041 .
        6 12X * * ODDT * * 11X * * MGOGM1 * * 10X * * TMGOGS * * 10X * * GPOZGS * / * * * 8E16.8
        7 /101+6X+15G0R1 .
          /+ + + RE15 . R)
         WRITE(IOUT . 260) V
  250 FORMAT( OV EQUIVALENCE ARRAY 15(/1 1.8E16.8))
         WRITE (10UT + 240) (1 + 1 = 1 27) 9 RW
  240 FORMAT( +0 + +7 (5x + *RW( * +11 + +) * +5x) / * * +7E16.8)
         NINSTR=26
         DO 1000 I=1.NINSTR
         IF(I.En.12) WRITF(IOUT,490)
  490 FORMAT(+1+)
         WRITE (IOUT . 500) I . INSTR(I)
  500 FORMAT( *01NSTR( * +12 + *) = * +17)
                      1
                          2 3 4 5 6 7 8 9 10 11 12 13 14 15
```

					DUMP		DATE = 75157	11/58/40
С		15 17	1 8	19 20	21 22 2	23 24	25 26 27 28	29 30 31
٠.							590,600,610,620	
	*				•710.720.73			
		=) , I						
		WRITE (10)						
	511			X, SEND	DEBUGGING	QUTPUT	TO DSRN . 131	
		GO TO 100						
		WRITE (IOU				DOM DEDA	10.731	
	261	GO TO 100		A 9 * UMIA	IN INPUT FR	יא נושאו	4,012)	
	530	WRITE (TO		DINSTR	(3)			· · · · · · · · · · · · · · · · · · ·
						FPUT TO	DSRN (, [3)	
		GO TO 100		,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	5,40	WRITE(IO	JT . 54	1) INSTR	(4)			
	541			(+ PRIN	TING TIME I	NTERVAL	.: * • I3)	
		eo Lo Tú						
					(INSTR(55)	IT BOSCO	THE THE ALL	
	וַליי	GO TO 100		(N. INDO	I AND OUTPU	II PHE 2	SURES IN P.A4)	
	560			10410	75 / 10017 . 562	٠,		
					<u>TE(IOUT•562</u> TE(IOUT•561			
	561						(ITERATION)	
-					T DATA ONLY			
		GO TO 100						
	570	IF (INSTR	(7) .E	3.1) WRI	TE (IOUT .571)		
					TE (INUT, 572			
					ARLY FXTRAP	POLATE 1	O NEXT TIME INT	ERVAL AS AN I
		INITIAL GI			07		11m V 7	
	572			COUD N	OI EXTRAPOL	AIE 10	NEXT TIME INTER	VAL 7)
	590	60 TO 100	J U	I AW	TE (TOUT . SA)	LCHAR	2(J,3-INSTR(8)),	J=1 a 2)
		FORMATO	• • • 20)				ERTED SERIES AS	
					NUMBER WAVE			* 11.1.2
		GO TO 100	0.0					
	590	IF (INSTR	(9) E	1.1) WRI	TE (I OUT + 591)		
					TE(10UT,592		·	
			* 1 , 20)	() USE	TTERATIVE S	OLUTION	TO ENFRGY AND	WAVE EQUATION
		15')		- AUGE	100000000000000000000000000000000000000		TANK EOR MIRROY	1448 HAUS HOLL
				40 TUSF	APPHURIMATE	FXPANS	SIONS FOR ENERGY	AND MAKE EUU
		1ATTONS+) GO TO 100						
	600			9.01WR	TTE (10UT • 60	1)		
	- 5.1				TTE (TOUT . 60			-
		IF (INSTR	(10) .	0.2) WR	TTE (TOUT . 60	3)		
	601	FORMAT (• • • 20)	(. DO N	OT INVOKE A	VERAGIA	G OPTION!)	
	605	FORMAT(14	• • • 20)	(. AVFR	AGE VALUES		RENT ITERATION W	ITH AVERAGE V
		ALUES OF				A		19 T
							PENT ITERATION W	ITH UNAVERAGE
				4F A 1 DOZ	TTERATION	7		
	610	GO TO 100		TOTO	(11)			
						TS HALL	ED BEYOND .17.	. ITERATIONS.
		1)	, O.	1.7.19.01101	nt 10/11	42 1116	CO SCISSO - VIIV	I I ENMITTONS.
		GQ TO 100	00					
	620			0.1) WR	TE (10UT +62	1)		
		IF ([NSTR	(12)	VE.1) WR	ITE (10UT , 62:	2) (INST	R(12) .J=1.2)	

[UMP	DATE =	75157	11/58/40
621 FORMAT (* + + , 20 X , * DO NO	T INVOKE FRE	POR CUTTING	OPTIONII	
622 FORMAT (* + + 20X + DIVI				FS ARF I
1ESS THAN . 13, TIMES				
60 TO 1000				
630 IF (INSTR(13) . EQ. 0) WR	TE (TOUT . 631	1		
IF (INSTR(13) . VE.O) WRI				
631 FORMAT (** * * 20X * * PRINT	ALL DATA!)			
632 FORMAT(++ + 20 X + + PRINT	ONLY TIMES	AND PRESSUR	ES!)	
GO TO 1000				
640 IF (INSTR(14) . EQ. 1) WR				
IF (INSTR(14) . GT. 1) WR				
641 EORMAT (*** 20X 100 NO				
642 FORMAT (* + + + 20X + + SFT I		I IF TIME-DI	FFERENCES ARE	LESS THA
•N• •13 • TIMES THE ERE	RORSII			
GO TO 1000	LIGE SE / TALIF	4533		
650 IF (INSTR(15) .EQ. 03)				
IF (INSTR(15) .NE.03) 651 FORMAT (!**.20X*.100)				CF741
652 FORMAT (*** 20X + TEAD				
GO TO 1000	SOUDITION PRO	NW A.C.M.WINELAI	DAIN SELLATS!	
660 WRITE (JOUT + 661) INSTR	161			
661 FORMAT (* * * 20X * FIRST		E READ TA	1	
60 10 1000		ZI INC. PIO C YAY	·	
670 WRITE (10UT.671) INSTR	17)			
671 FORMAT (++ + 20X+ LAST		READ: * . 14)		
GO TO 1000				
690 IF (INSTR(18) .EQ. 03) WPITE(IOUT	(681)		
IF (INSTR(18) NE.03)			8)	
681 FORMAT (* + + , 20 X , + DO NO				71)
682 FORMAT (* + ! + 20X + WRITE				
GO TO 1000				
690 WRITE (10UT . 691) INSTE				
691 FORMAT(* * * * 20 X * * FIRS	RECORD TO F	BE AHILLEN:	• T4)	
GO TO 1000				
700 IF ((INSTR(11) .NE.0)	AND (INSTRIC	20) NE 0)) W	RITE(10UT,701)	INSTR (2
*0)	0 4-110-010-01	25 ALLIBER		
IF((INSTR(11),EQ.0).C				A
701 FOPMAT (* * * * 20X * * INCRE	MENT INSTACT	11 91 10130	AHENEALA MET	GHI IS H
PALVED®)	T MARTEV THE	20/11/41		
702 FORMAT (1 + 1 + 20 X + 100 NC	ITOUTP_I_TYS	1141111		
60 TO 1000	D17F/YOUT - 71	* *		
710 IF(INSTR(21)E0.0) _\(\frac{1}{2}\) IF(INSTR(21)NF.0) \(\text{WF}\)				
711 FORMAT(* + * + 20X - * DO NO			APTION ITUSTO	71111
712 FORMAT (*+ * , 20 X , * 1 NV				
*WEIGHT IS HALVED !)			(00.7 110011117)	
GO TO 1000				
720 WRITE (TOUT, 721) INSTR	221			
721 FORMAT (* * * 20 X * * SET 1		HEN ITER >=	* 9 17)	
GQ TO 1000				
730 IF (INSTR(23) . EQ. 0) WR1	TE (TOUT , 731)			
JF ([NSTR(23].EQ.1) WR				
TF (TNSTR (23) . FQ. 2) WRY				
731 FORMAT(++++20X++DO NO				
732 FORMAT (* * * 20X + * USE S		ATTON FXPAN	SIONS AS INITI	AL GUESS
1 FOR NEXT TIME INTERV	AL .).			

		DUMP		DATE = 75157	11/58/40
			PERTURBAT	ION EXPANSION AS S	OLUTION.)
	GQ TO 1000				
740	IF (INSTR(24).				
	IF (INSTR (24)				
	· · · · · · · · · · · · · · · · · · ·			NOT PRINTED!)	
742		X. THE SULTS F	ROM SMPFRY	ARE PRINTED!)	
	GO TO 1000				
750	IF (INSTR (25).				
_	IF (INSTR(25).				
				NTROPICIL	
752		IX. SET TP AND	N TPT = MA	((TSEN TP.TCTO) +)	
	GO TO 1000				
	WRITE (TOUT . 76				
			FXACT SUP	RSONIC SOLUTION .	. I 7. O TIME IN
	ICREMENTS AFTE	S CHUKE!			
	GD TO 1000				····
000	CONTINUE			•	
	WRITE (IOUT . 11				
110	FORMAT(111.26	(* J**12)/+	1.132(1-1)	/ 1 + 26 [5]	
	[]=0			· · · · · · · · · · · · · · · · ·	
	00 1020 I=1.3				
	JF(NVT(1).GT.	(1) IVM=[I([I,		· · · · · · · · · · · · · · · · · · ·	
050	CONTINUE				
	MAILE (LUNT * 10	(く。[=1。()) (040))•J=1•3)•(]	O (TV(Je I) OARFA(Je	I),J=1,3),
	1 [=1.1])				
0.60	FORMAT (*OFLOW	I AREAS VERSUS	S TIME 1/10	1 • 3 (5 X • TV (• • I)	0 0 7) 0 0
	BX. ARFA(. I	1 • • • [) • • 3X) /	0 0099(0=0)	+50(/* ++13+6E16.	8))
	IF (NCTL.ED.A)	RETURN 1			
	RETURN				
	E 40				

	SOLVER	DATE = 75157	11/58/40
SUBROUTINE SOLVER ())		
IMPLICIT REAL #8 (A-			
		*TV(3*50) *A(10) *E(7) *E	3(30),
1 TVF (3) • TOFLAY (3) • F		C MATETA SUPSE THANAC	000000
1 SGOR	MUCICOLARDEAPEREA	F,MDTSTR, INFIN, TMGOGS) GPU265 •
	G • GP102 • GM102 • GP1	0G • GM10G • G0GP1 • G0GM1 •	
		MGPGM2.TOGP1.GPG412.	
2 MGPOGM . MGOGMI . R . GF			
COMMON TSLITSHOTSWO			4
COMMON TOTTODTOTSTR		DIOPV <u>0.All.Al2.Al3.Al4.Al5</u> .	. 414 . 417
	PPT . PD .		MDE .
	. MOCT . MOPE .M		TP .
- TPT , TCTO , RP		RCTO . ACTO. MCT .	AE 9
	l e MD		
	ole PPT1. PD1.	PT1, PCT01, PE01,	MDE1.
MOD1, MDF1, MDPT TPT1, TCT01, RP		DTS01.MDCT01. TE01. RCT01. ACT01. MCT1.	TP], AEl.
	Il MDl	ACTOIS ACTOIS MCTIS	MEYA
	2. PPT2. PD2.	PT2, PCT02, PE02,	MDE2,
- MODZ, MOFZ, MOPT	2. MOCTZ. MDPEZ.M	DTS02.MDCT02. TE02.	TP2.
		RCTO2, ACTO2, MCT2,	AE2 v
	15 MDS	074 6a743 0#A3	110.00
COMMON PN3, PP - MDD3, MDF3, MDPT	3, PPT3, PD3,	PT3, PCT03, PE03, DTS03, MDCT03, TE03,	MDE3.
		RCT03. ACT03. MCT3.	AE3,
	13 MD3	NOTEST NOTEST	M(. 3 y
COMMON PSOPO, TSOTO,			
COMMON SY.SY1.SY2.S			
		IPOITERONVT(3) OF NTOIF	
21FLG5 • 1FLG6 • 1FLG7 • 1	FI GRATEL GOATLATZA	·IFLG·IFLGI·IFLGZ·IFLG	JOIPL GAO
		0.111.112.113.114.115.	J16.J17.
1 J18,J19,J20,J21,J2	2, J23, J24, J25, J26		
COMMON NCTL			
INTEGER SV			
REALMS INFINOKFOKW C ELLIPTIC ENERGY EQUATIO	N CTUTNO POECEUDE	EDOM MACE ELLIV	
GUESSI(DI)=PSOPO+IF			
C ELLIPTIC ENFRGY EQUATIO			
GUESS2(D1)=DSQRT((G		-1 .) *TOGM1)	
C ELLIPTIC ENFRGY/CONTINU		NG MACH NUMBER FROM AR	EA RATTO
GUESS3(D1)=GUESS2(1			
C APPROXIMATE UNSTEADY WA GUESS4(D1)=00GP1#(1			S FLUX
\$DX=.001	• DOMELITO AA AA		
GO TO (10,20,30,40)	• IFLG		
10 \$X1=GUESS1(\$Y)			
GO TO 50			
20 IF(\$Y.GE. 4SOMO)GO T	0 25		
\$X1=GUESS2(\$Y) GO TO 50			
25 \$X1=1.00	**		
\$V=0			
RETURN	•		

	SOLVFR	DATE = 75157	11/58/40
30 \$X1=GUF553(\$Y#4	5)		
GO TO 50			
40 IF (INSTR(B) .EQ.	1)GO TO 45		
\$X1=GUESS4(\$Y)			
GO TO 50	•		
45 \$X1=Q.			
DO 46 7=1.7			Ť
45 \$X1=\$X1+RW(I)#\$			
50 IF(INSTR(9).EQ.			
WRITE(IDEBUG+10	UISTOSUAOSEMAA	EDV-1.516 Q.1 SPMA	V-1-516 07
1.0 N. 2X . X (N)	4 - 1 U A - 4 A (VI) 4 - Q A - 4	A THE TOOLS A SELECTION OF THE	OV OF IND O
		2X+1DX1/1 1+132(1-1)	
	MAIDE ATENDICE INT	EXA.DV.) A125()	′
120 GO TO(1100,1200	-1300-1400) - TELG		
130 \$E1=(\$Y-\$Y1)/\$Y			
IF(SN.NF.O)GO T			
140 \$E2=\$E1	· -		
\$Y2=\$Y1	**		
\$X2=\$X1			
\$X]=\$X2+\$7X			
160 \$N=\$N+1			
GO TO 120		•	
180 SEP=\$E1*SE2			
SDE=DARS(RE1)-D	ABS(\$E2) 0)\$N,\$X1,\$Y1,\$X2,		- V
		\$Y2,\$E1,\$E2,\$DE,\$EP,	30A
200 FORMAT(1 1,13,9	E LACOI		
IF (SEP.GT.O.) GO			
\$DY = . 588DY	10 220		
210 \$X1=\$X2+\$7X			
60 10 160			
220 TE (SDE LT 0.1G)	TO 140		
\$DX==\$DX			
GO TO 210			
C ENERGY EQUATION GIV		M PRESSURE	_
1100 \$Y1=\$X1**TOG-\$X		•	
60 10 130			
C ENERGY EQUATION GIV			
1200 \$Y1=\$X1*(1.+G41	OSayxIasS) asMGbCW	2	
GO TO 130 C AREA RATIO VERSUS	MACH NUMBER		
1300 \$Y1=(TOGP1*(1a)		PGM12/\$X1	
GO TO 130	GUANE POLITICAL TO	J. ALI DAL	
C UNSTEADY MASS FLUX	FROM MACH NUMBER		
1400 \$Y1=\$X1*(1.+GM1			
60 TO 130	OL SALY SHIP OUT		
ENO			

SUBROUTINE PRINT(*) IMPLICIT REAL** (A-H-M*0-Z**) COMMON AREA(3**)0** AREA(3**)0** AREAM(3)** TV(3**50)** A(10)** E(7)** B(30)** I TYF(3)** ITDELAY(3)** RMI(7)** COMMON PC**, RC**, CC**, ACCC**, CC**,		PRINT	DATE = 75157	11/58/40
COMMON AREA(3-50).AREATS(3).AREAM(3).TV(3-50).A(10).E(7).8(30). IY(1).IDELAY(3).RH(7). COMMON PC.RC.TC.AC.MDCTC.FAF.EAPF.EAF.MDTSTR.INFIN.TMGOGS.GP02GS. I SGOR. COMMON G.SMI.GP1.00G.GP102.GM102.GP10G.GM10G.G0GP1.GOGM1. 1.00GM1.00GP1.GP0GM1.SGM102.IDGM.ITOG.MBCPM2.TOGGP1.GPGM12. 2.MGP0GM.MSOGM1.RS GR.90R.PJ.PERR.AMOKW.9001.00KF.KF.KW COMMON TSLITSH.ISW.ISP.ISA.ISWATSV.CTO.CTA.PV.PV0ISV.TAUM COMMON T.TI.DT.T.STP.NTO2.TSTOP.00DT.TOTOPV CDMMON A1.A2.A3.A4.A5.A6.A7.A8.A9.A10.A11.A12.A13.A14.A15.A16.A17. COMMON PN. PP. PPT. PD. PT.PCTO. PEO. MDE. - MOD. MDF. MMPT. MDCI. MDE. MDISO.MDCIO. TEO. TP. - TPT. TCTO. RP. RPT. REO. RCTO. ACTO. MCT. AE. - APE. AF. MN. MD. COMMON PNI. PPI. PPII. PDI. PTI.PCTOI. PEOI. MDEI. - MDD. MOFI.MPTI. MDCI. MDEFL.MDCTOI. PEOI. MDEI. - MDD. MOFI.MPTI. MDCI. MDEFL.MDCTOI. ACTOI. MCTI. AEI. - APE. AF. MN. MD. COMMON PNI. PPI. PPII. PDI. PTI. PCTOI. PEOI. MDEI. - TPII. TCTOI. RPI. RPTI. REOI. RCTOI. ACTOI. MCTI. AEI. - APE. AFI. MNI. MDI. COMMON PN2. PP2. PP12. PD2. PT2. PCT02. PEO2. MDE2. - MDD2. MOF2. MDPIL. MDCT2. MDEFL.MDCT01. MCTI. AEI. - APE. AFI. MNI. MDI. COMMON PN3. PP3. PP13. PD3. PT3. PCT03. PE03. MDE3. - TP13. TCT03. RP3. RP13. PD3. PT3. PCT03. PE03. MDE3. - MDD3. MDF3. MDF3. MDCT3. MDEE2.MDISO2.MDCT03. TEO3. TP3. - TP13. TCT03. RP3. RP3. RE03. RCT03. ACT03. MCT3. AF3. - APE3. AF3. MN3. MD3. COMMON PN3.PN3. MDT3. MDCT3. MDEFS.MDTS03.MDCT03. TEO3. TP3. - TP13. TCT03. RP3. RP3. RE03. RCT03. ACT03. MCT3. AF3. - APE3. AF3. MN3. MD3. COMMON PN3.PN3. MDF3.MDCT3. MDEFS.MDTS03.MDCT03. TEO3. TP3. - TP13. TCT03. RP3. RP3. RE03. RCT03. ACT03. MCT3. AF3. - APE3. AF3. MN3. MD3. COMMON PN3.PN3. MDT3. MDCT3. MDE7.NS.PN3.IA.NT.PAGF. 1 NP3.ST.FT.SG. TC.GR. TF.GB. TF.GB. TT.GB. TT.	SUBROUTINE PRINT	».)		
COMMON AREA(3-50).AREATS(3).AREAM(3).TV(3-50).A(10).E(7).8(30). IY(1).IDELAY(3).RH(7). COMMON PC.RC.TC.AC.MDCTC.FAF.EAPF.EAF.MDTSTR.INFIN.TMGOGS.GP02GS. I SGOR. COMMON G.SMI.GP1.00G.GP102.GM102.GP10G.GM10G.G0GP1.GOGM1. 1.00GM1.00GP1.GP0GM1.SGM102.IDGM.ITOG.MBCPM2.TOGGP1.GPGM12. 2.MGP0GM.MSOGM1.RS GR.90R.PJ.PERR.AMOKW.9001.00KF.KF.KW COMMON TSLITSH.ISW.ISP.ISA.ISWATSV.CTO.CTA.PV.PV0ISV.TAUM COMMON T.TI.DT.T.STP.NTO2.TSTOP.00DT.TOTOPV CDMMON A1.A2.A3.A4.A5.A6.A7.A8.A9.A10.A11.A12.A13.A14.A15.A16.A17. COMMON PN. PP. PPT. PD. PT.PCTO. PEO. MDE. - MOD. MDF. MMPT. MDCI. MDE. MDISO.MDCIO. TEO. TP. - TPT. TCTO. RP. RPT. REO. RCTO. ACTO. MCT. AE. - APE. AF. MN. MD. COMMON PNI. PPI. PPII. PDI. PTI.PCTOI. PEOI. MDEI. - MDD. MOFI.MPTI. MDCI. MDEFL.MDCTOI. PEOI. MDEI. - MDD. MOFI.MPTI. MDCI. MDEFL.MDCTOI. ACTOI. MCTI. AEI. - APE. AF. MN. MD. COMMON PNI. PPI. PPII. PDI. PTI. PCTOI. PEOI. MDEI. - TPII. TCTOI. RPI. RPTI. REOI. RCTOI. ACTOI. MCTI. AEI. - APE. AFI. MNI. MDI. COMMON PN2. PP2. PP12. PD2. PT2. PCT02. PEO2. MDE2. - MDD2. MOF2. MDPIL. MDCT2. MDEFL.MDCT01. MCTI. AEI. - APE. AFI. MNI. MDI. COMMON PN3. PP3. PP13. PD3. PT3. PCT03. PE03. MDE3. - TP13. TCT03. RP3. RP13. PD3. PT3. PCT03. PE03. MDE3. - MDD3. MDF3. MDF3. MDCT3. MDEE2.MDISO2.MDCT03. TEO3. TP3. - TP13. TCT03. RP3. RP3. RE03. RCT03. ACT03. MCT3. AF3. - APE3. AF3. MN3. MD3. COMMON PN3.PN3. MDT3. MDCT3. MDEFS.MDTS03.MDCT03. TEO3. TP3. - TP13. TCT03. RP3. RP3. RE03. RCT03. ACT03. MCT3. AF3. - APE3. AF3. MN3. MD3. COMMON PN3.PN3. MDF3.MDCT3. MDEFS.MDTS03.MDCT03. TEO3. TP3. - TP13. TCT03. RP3. RP3. RE03. RCT03. ACT03. MCT3. AF3. - APE3. AF3. MN3. MD3. COMMON PN3.PN3. MDT3. MDCT3. MDE7.NS.PN3.IA.NT.PAGF. 1 NP3.ST.FT.SG. TC.GR. TF.GB. TF.GB. TT.GB. TT.	IMPLICIT REAL #8 (A=H+M+O=Z+S)		
I TYF(3)*IDELAY(3)*RH(7) COMMON PC*RC*TC*AC*MCTC*FAF*EAPF*EAF*MDTSTR*INFIN*TM606S*6P026S* L SGOR			(3) • TV (3•50) • A (10) • E (7	08(30)
COMMON PC.RC.TC.AC.MDCTC.EAF.EAPF.EAFF.MDTSTR.INFIN.TMGOGS.GPO2GS. 1 SGOR COMMON G.3M1.GP1.0OG.GP10.2.GM102.GP10G.GM10G.GOGP1.GOGM1. 1 DOGMI.OGGP1.GPCOGM1.SGM102.TOGM1.TOG.MGPGM2.TOGP1.AGCM12. 2 MGPOGM.MSOGM1.RGR.OOR.PT.PERRA.MOKUM.0OAL.OOKF.KF.WK COMMON 151.5T5H.TSH.TSP.ISA.TSWA.TSV.CID.CTA.PV.PVOISV.TAIW COMMON 151.5T5H.TSH.TSP.ISA.TSWA.TSV.CID.CTA.PV.PVOISV.TAIW COMMON N.T.1.DT.TSTP.DTOZ.TSTOP.OODT.OTOPV COMMON N.T.1.DT.TSTP.DTOZ.TSTOP.OODT.OTOPV COMMON PN. PP . PPT . PD . PT . PCTO . PEO . MDE . - MDD . MDF . MDPT . MDCI . MDCE .MDTSO .MDCTO . TEO . TP . - TPT . TCTO . RP . RPT . REO . RCTO . ACTO . MCT . AE . - APE . AF . MN . MD COMMON PNI. PPI. PPI. PDI. PTI. PCTO1. PEO1. MDE1. - MD01. MOFI. MDPTI. MDCT1. MDEFILMDTSO1.MDCTO1. TEO1. TE1. - TPTI. TC101. RPI. RPT1. RE01. RCT01. ACT01. MCT1. AE1. - APE1. AF1. MN1. MD1 COMMON PN2. PP2. PP12. PD2. PT2. PC102. PE02. MDE2. - MD23. MOF12. MDCT2. MDCT2. MDCF2.MDTSO2.MDCT03. TE03. TP1. - TP13. TC103. RP2. RP12. RE02. RC102. ACT02. MCT2. AE2. - APE2. AF2. MN2. MDC - MDD2. MOF2. MDPT3. MDCT3. MDCF2.MDTSO2.MDCT03. TE03. TP2. - TP13. TC103. RP3. RP3. RE03. RC103. ACT03. MCT3. AE2. - APE3. AF2. MN2. MD2 - MD03. MDF3. MDF13. MDCT3. MDE23.MDCT03. TE03. TE03. TP3. - MD03. MDF3. MDF13. MDCT3. MDE23.MDCT03. TE03. TP3. - P03. MDF3. MDF13. MDCT3. MDE23.MDCT03. TE03. TP3. - P03. MDF3. MDF13. MDCT3. MDCF3.MDCF03. ACT03. MCT3. AE3. - APE3. AF3. MN3. MD3 COMMON PSOPO.TSOTO.RSORO.MSOMO COMMON PSOPO.TSOTO.RSORO.MSOMO COMMON PSOPO.TSOTO.RSORO.MSOMO COMMON ST.ST1.SY2.SS1.SY2.SDX.SE1.SE2.SEMAX.SEP.SDE COMMON NTTL DIMENSTON V(26.4) EUIVALFNCE (PN.V(1.)) 1 J19.J19.J19.J20.J21.J22.J23.J24.J25.J26 CDMON NTTL DIMENSTON V(26.4) EUIVALFNCE (PN.V(1.)) 1 J19.J19.J20.J31.J4J.SJ.J46.J5J.S0.J7.J8.J.J9.JJ0.JJ1.JJ1.J13.J14.JJ5.JJ6.JJ7.J1.J1.J1.J1.J1.J12.JJ3.JJ4.J5.JJ6.J1.J1.J1.J12.J13.J14.J15.J16.J17. 1 J19.J14.S.PNC.1(J.1.J1.T) 1 FORMAT(1.J.RNC.1.J2.Y.MDCT0.J1.X.MDCT0.J1.ZX.MDCT.J1.JX.MCT.J.X.MDCT.JX.Y.MCT.JX.Y.MCT.JX.Y.MCT.JX.Y.MCT.JX.Y.MCT.JX.Y.MCT.JX.Y.M			(0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
SGGR			EAF MATSTO THE THE THOO	SEARROZGE.
COMMON G.SMI.GPI.OOG.GPID.SGMID.SGPIDG.GMIDG.GOGPI.GOGMI. 1 ODGMI.OOGPI.GPOGMI.SGMID.TOGMI.TOG.MGGMZ.TOGPI.GPGMIZ. 2 MGPOGM.MOGMI.R.GR.OOR.PI.PERR.AWOKW.OOAI.OOKF.KF.KW COMMON ISILTSH.TSW.TISP.TISA.TSWA.TSV.CID.CITA.PV.PVOISY.TAUW COMMON N.T.I.D.T.STP.DTOZ.TSTOP.OODT.TOTOPV COMMON N.T.I.D.T.STP.DTOZ.TSTOP.OODT.TOTOPV COMMON N.T.I.D.T.STP.DTOZ.TSTOP.OODT.TOTOPV COMMON N.T.I.D.T.STP.DTOZ.TSTOP.OODT.TOTOPV COMMON N.T.I.D.T.STP.DTOZ.TSTOP.OODT.TOTOPV COMMON PO. PP . PPT . PD . PT . PCTO . PEO . MOE . - MOD . MOF . MOPT . MOCT . MOPE .MDTSO .MOCTO . TEO . TP . - TPT . TCTO . RP . RPT . REO . RCTO . ACTO . MCT . AE . - APE . AF . MN . MD COMMON PNI. PPI. PPII. PDI. PTI. PCTOI. PEOI. MOEI. - MODI. MOFI.MDPII. MCTI.M.DEFLMDTSDIAMOCTOI. TEOI. TPI. - TPII. TCIOI. RPI. RPTI. REOI. RCTOI. ACTOI. MCTI. AEI. - APEI. AFI. MNI. MDI COMMON PNZ. PP2. PPZ. PDZ. PTZ. PCTOZ. PEOZ. MDEZ. - MDDZ. MOFZ. MOPTZ. MDCTZ. MDEZZMDTSOZ.MDCTOZ. TEOZ. TPZ. - MDDZ. MOEZ. MOPTZ. MDCTZ. MDEZZMDTSOZ.MDCTOZ. TEOZ. TPZ. - TPIZ. TCTOZ. RPZ. RPZ. REOZ. RCTOZ. ACTOZ. MCTZ. AEZ. - APEZ. AFZ. MNZ. MDZ. - MDDJ. MOFJ. MDPTJ. MDCTJ. MDEFJ.MDTSOJ.SMDCTOZ. TEOZ. TPZ. - TPIZ. TCTOZ. RPZ. RPZ. REOZ. RCTOZ. ACTOZ. MCTZ. AEZ. - APEZ. AFZ. MNZ. MDZ. - MDDJ. MOFJ. MDETJ. MDCTJ. MDEFJ.MDTSOJ.SMDCTOZ. TEOZ. TPZ. - TPIZ. TCTOZ. RPZ. RPTJ. REOJ. RCTOJ. ACTOJ. MCTJ. AEJ. - TPIJ. TCTOJ. RPJ. RCTJ. MDCTJ. MDEFJ.MDTSOJ.SMDCTOJ. TEOJ. TBJ. - TPJJ. TCTOJ. RPJ. RCTJ. MDCTJ. MDEFJ.MDTSOJ.SMDCTOJ. TEOJ. TBJ. - TPJJ. TCTOJ. RPJ. RCTJ. MDCTJ. MDEFJ.MDTSOJ.SMDCTOJ. TEOJ. TBJ. - TPJJ. TCTOJ. RPJ. RCTJ. MDCTJ. MDEFJ.MDTSOJ.SMDCTOJ. TEOJ. TBJ. - TPJJ. TCTOJ. RPJ. RCTJ. MDCTJ. MDCTJ. MDFJ.J. NT.T.PAGF. COMMON TST.CCO. TOTOJ. RCTJ. RCTJ	- · · · · · · · · · · · · · · · · · · ·	Lymic ic sene years	ACM AND THAT HAS THAT INGO	0370102037
OOSMIAOQRI		000 0B100 0M100	M202 18200 201W2 2018	•
2 MGPOGM.MSOGM1.R.GR.OOR.PI.PERR.AWOKW.OOA1.OOKF.KF.KW COMMON T.SL.BTSH.SISW.ISP.ISA.ISMA.ISV.CID.CTA.PV.PVOISV.TAUW COMMON T.TI.DT.YSTR.DTO?.TSTOP.OODT.DTOPV COMMON A1.A2.A3.A5.A5.A5.A5.A5.A1.A9.A10.A11.A12.A13.A14.A15.A16.A17. COMMON PN. PP. PPT. PD. PT. PT. PEO. MOE. - MDD. MDF. MDPT. MDCT. MDPE. HDTSD. MDCTO. TEO. TP. - TPT. TCTO. PP. RPT. REO. RCTO. ACTO. MCT. AE. - APE. AF. MN. MD COMMON PNI. PPI. PPTI. PDTI. PCTOI. PEOI. MDEI. - MDD1. MDF1. MDPT1. MDCT1. MDPEI.MDTSD1.MDCT01. TEO1. TP1. - TPTI. TC101. RP1. RPT1. REO1. RCT01. ACT01. MCT1. AE1. - MD01. MDF1. MDPT1. MDCT1. MDPEI.MDTSD1.MDCT01. TEO1. TP1. - TPTI. TC101. RP1. RPT1. REO1. RCT01. ACT01. MCT1. AE1. - APE1. AF1. MN1. MD1 COMMON PN2. PP2. PP72. PD2. PT2. PCT02. PE02. MDE2. - MD02. MDF2. MDF12. MDCT2. MDPE2.MDTSD2.MDCT02. TEO2. TP2. - TP12. TCT02. RP2. RP12. RC2. RCT02. ACT02. MCT2. AE2. - APE2. AF2. MN2. MD2 COMMON PN3. PP3. PP3. PP3. PP3. PCT03. PE03. MDE3. - MD03. MDF3. MDP13. MDCT3. MDP53.MDTS03.MDCT03. TE03. TP3. - TP13. TCT03. RP3. RP3. RP3. RC03. RCT03. ACT03. MCT3. AE3. - MD03. MDF3. MDP13. MDCT3. MDP53.MDTS03.MDCT03. TE03. TP3. - TP13. TCT03. RP3. RP3. RP3. RC03. RCT03. ACT03. MCT3. AE3. - APE3. AF3. MN3. MD3 COMMON PS.PD0.TSOT0.RSORO.MSOMO COMMON PS.PD0.TSOT0.RSORO.MSOMO COMMON PS.PD0.TSOT0.RSORO.MSOMO COMMON PS.PS.TLY2.SX1.SX2.SDX.SE1.SE2.SEMAX.SEP.SDE COMMON NCTL DIMENSTON V(24.4) EQUIVAL FNCE (EN.V(1.1)) INTEGER SN REAL#8 INFIN.FF.KW IP=IP+) IF(IPAGF.CT.NPAGE.GO TO 100 IF(IPAGF.CT.NPACE.GO TO 100 IF(IPAGF.CT.NPACE.GO TO 100 IF(IPAGF.CT.NPACE.GO				
COMMON JSLLSTH-15M-15M-15P-15A-15M-15N-2CID-CTA-PV-PVOISV-TAUM COMMON A1+32-6A3-A4+3A5-A65-A7-3A3-A9-A10-A111A12-A13-A14-A15-A16-A17 COMMON A1+32-6A3-A4+3A5-A65-A7-3A3-A9-A10-A111A12-A13-A14-A15-A16-A17 COMMON PN				<u> </u>
COMMON 1,1,0T,TSTP,DT02,TSTOP,OONT,DTOPV COMMON A1,2,83,44,34,34,34,34,34,34,34,34,34,34,34,34				
COMMON PN PP PPT PPT PD PT PPT PCTO PEO MOE PPT PPT PPT PPT PCTO PPO MOE PPT PPT PPT PCTO PPO MOE PPT PPT PPT PCTO PPO MOE PPT PCTO PPO MOE PPT PCTO PPO MOE PPT PCTO PPO PPT PCTO PPO MOE PPT PCTO PPO PPT PCTO PCTO				<u>aum</u>
COMMON PN PP PP PPT PP PPT PP PT PET PET NOTO PEO NOTE NOTE NOTE NOTE NOTE NOTE NOTE NO				
- MOD , MOF , MDPT , MDCT , MDEE , MDTSO , MDCTO , TEO , TP , - TPT , TCTO , RP , RPT , REO , RCTO , ACTO , MCT , AE , - APE , AF , MN , MD COMMON PNI, PPI, PPII, PDI , PTI, PCTOI, PEOI, MDEI, - TPII, TC101 , RPI , RPTI , REO1, RCT01, ACT01, MCT1 , AE1, - APE1, AFI, MNI, MD1 COMMON PN2, PP2, PPI2, PD2, PT2, PCT02, PE02, MDE2, - MDD2, MDP2, MDPT2, MDCT12, MDPE2, MDTSO2, MDCT02, TE02, TP2, - TPI2, TC102, RP2, RPT2, RE02, RCT02, ACT02, MCT2, AE2, - APE2, AF2, MN2, MD2 COMMON PN3, PP3, PP13, PD3, PT3, PCT03, PE03, MDE3, - MD03, MDF3, MDP13, MDC13, MDP3, MDT30, MDC103, TE03, TP3, - MD03, MDF3, MDP13, MDC13, MDP3, MDT30, MCT03, AE3, - APE3, AF3, MN3, MD3 COMMON PN3, PP3, PP13, PD3, PT3, PCT03, PE03, MDE3, - MD03, MDF3, MDP13, MDC13, MDP3, MDC103, MCT3, AE3, - APE3, AF3, MN3, MD3 COMMON PS,PP0, TSGT0, PSGR0, MSGM0 COMMON SY,SY1,SY2,SX1,SX2,SDX,SE1,SE2,SEMAX,SEP,SDE COMMON NTSTR(26), TDERUG, TN, TOUT, NP, TP, TTER, NVT(3), T, NT, TPAGF, LNPASE, SN, TT(3), J, IMI, ITIME, ND, NN, NCT, IFLG, IFLG, IFLG3, IFLG3, IFLG4, ZIFLG5, IFLS6, IFLG7, IFLG8, IFLG9, II, Y2, I3, T4, I5 COMMON NCTL DIMENSTON V(24, 6) EQUIVALENCE (PN, V(1, 1)) INTEGER SN REALM8 INFIN, YF, KW PP=1P+) IF (TPAGE, CU, NPAGE) GO TO 300 IF (TPAGE, CU, NPAGE) GO TO 160 IF (TPAGE, CU, NPAGE) GO TO 160 OF GRYAT(1), SN, YF, SN, YF, SN, YSTR 1, 13X, YMDD 1, 9X, YPT, 14X, PPP, 14X, - 190, 14X, YPN, 14X, YPPT, 13X, YNDPT, 13X, YMDD 1, 9X, YAPE, 14X, YAPE, 4 *TP+1 14X, YPPT, 13X, YTEO, YX, NDTY, Y, 6X, YPCTO, YX, YAPE, 4 *TP+1 14X, YPPT, 13X, YTEO, YX, NDTY, Y, YA, YAPE, 4 *TP+1 14X, YPPT, 13X, YTEO, YX, NDTY, Y, YA, YAPE, 4 *TP+1 14X, YPPT, 13X, YTEO, YX, NDTY, Y, YA, YAPE, 5 *TAX, YAPE, YAX, YAPE, YAY, YA, YAPE, 1 *ZX, YAPE, YAX, YAPE, YAY, YA, YAPE, 1 *ZX, YAPE, YAX, YAPE, YAY, YAPE, 1 *ZX, YAPE, YAX, YAPE, YAY, YAY, YAY, YAY, YAPE, 1 *ZX, YAPE, YAX, YAPE, YAY, YAY, YAPE, 1 *ZX, YAPE, YAY, YAY, YAY, YAPE, 1 *ZX, YAPE, YAY, YAPE, 1 *ZX, YAPE, YAY, YAPE, 1 *ZX, YAPE, 1 *ZX, YAPE, 1 *ZX, YAPE, 1 *ZY, YAPE, 1 *ZY, YAPE,				
- TPT				, MDE ,
- APE	- MDD . MDF . MD	PT . MDCT . MOPE	MDTSO MOCTO TEO	e TP e
COMMON PN1 PP1 PP11 PP10 PP10 PP10 PP10 PP10	- TPT . TCTO .	RP . RPT . REO	· RCTO · ACTO · MCT ·	ΔE 9
COMMON PN1 PP1 PP11 PP10 PP10 PP10 PP10 PP10	- APE . AF .	MN • MD		
- MOD1, MOF1, MDPT1, MDCT1, MDPF1, MDTS01, MDCT01, TE01, TP1, TP1, TC101, RP1, RP1, RE01, RCT01, ACT01, MCT1, AE1, AF1, MN1, MD1 - APE1, AF1, MN1, MD1 - COMMON PN2, PP2, PP12, PD2, PT2, PC702, PE02, MDE2, MDD72, MDCT2, MDP2, MDT202, MDCT02, MDCT02, MCT2, E72, TP2, TC102, RP2, RP12, RE02, RC102, ACT02, MCT2, AE2, AP2, MN2, MD2 - APE2, AF2, MN2, MD2 - COMMON PN3, PP3, PP3, PD3, PT3, PC703, PE03, MD3, MD3, MD3, MD53, MD63, MD63, MD73, MD73, MD73, MD73, MD73, MD73, TE03, TP3, TC103, RP3, RP13, RE03, RC103, ACT03, MCT3, AE3, AP3, AE3, MN3, MD3 - COMMON PS0P0, TS010, RS0R0, MS0M0 - COMMON SY, SY1, SY2, SX1, SX2, SDX, SE1, SF2, SEMAX, SEP, SDE - COMMON NSY, SY1, SY2, SX1, SX2, SDX, SE1, SF2, SEMAX, SEP, SDE - COMMON INSTR(26), TDERUG, TTN, TOUT, NP, TPTER, NVT(3), T, NT, TPAGF, INPAGE, SN, TY(3), J, M1, TTIME, ND, NN, NCT, FFLG, TFLG2, TFLG3, TFLG4, IP1, J19, J20, J2, J4, J5, J6, J7, J8, J9, J10, J11, J12, J13, J14, J15, J16, J17, J19, J19, J20, J21, J22, J23, J24, J25, J26 - COMMON NCTL - DIMENSTON V(20, 4) EQUIVALENCE (PN, V(1, 1)) INTEGER SN REAL B INFIN, KF, KW P= P+) IF (TPAGE, EG, O) GO TO 100 IF (TPAGE, EG, O) GO TO 300 WILL (TOUT, 120, (1, 1=1, 7)) OF FORMAT (11, ARX, "T, 13X, "TSTR", 13X, "TI, 14X, "PT, 14X, "PP, 14X, "PP, 14X, "PP, 13X, "MDCTO, 12X, "MDTO, 12X, "MDTO, 12X, "MDTO, 12X, "MDF, 12X, "M			l. PIL PCTOL PFOL	. MDFl.
- TPT1. TC101. RP1. RP11. RE01. RCT01. ACT01. MCT1. AE1. - APE1. AF1. MN1. M01 COMMON PN2. PP2. PP12. PD2. PT2. PCT02. PE02. MDE2. - MD02. MOF2. MDF12. MDCT2. MDFE2.MDTS02.MDCT02. TF02. TP2. - TP12. TCT02. RP2. RP72. RE02. RCT02. ACT02. MCT2. AE2. - TP12. TCT03. RP3. MD73. MDCT3. MDF3. PCT03. PE03. MDE3. - MD03. MDF3. MDPT3. MDCT3. MDPE3.MDTS03.MDCT03. TF03. TP3. - MD03. MDF3. MDPT3. MDCT3. MDPE3.MDTS03.MDCT03. TF03. TP3. - MD03. MDF3. MDPT3. RD03. RCT03. ACT03. MCT3. AE3. - APE3. AF3. MN3. MD3. COMMON PSDP0.TS0T0.RSOR0.MSOM0 COMMON SY.SY1.5Y2.\$X1.\$X2.\$X0.XSE1.\$F2.\$EMAX.\$FP.\$DF COMMON INSTR(26).TDERUG.TTN.IOUT.NP.IP.TTER.NVT(3).T.NT.TPAGF. INPAGE.\$N.IT(3).J.IM.ITIME.ND.NN.NCT.IFLG.IFLG.IFLG3.IFLG3.IFLG4. EQUIVALENCE (EC.T.TEG8.TFLG9.TI.213.I4-15 COMMON NCT. DIMENSTON V (24.4) EQUIVALENCE (PN.V(1.1)) ITF(IPAGE.CO.0)GO TO 100 IF (IPAGE.CO.0)GO TO 100 IF (IPAGE.CO.NPAGE)GO TO 140 O WRITE (IOUT.120).(I.I=1.7) O FORMAT('10.RX.*IT'.13X.*TSTR'.13X.*TI'.14X.*PT'.14X.*PP'.14X.*PP'.14X. IPDO:.14X.*PN'.16X.*PDT'.AX.*NDP'.13X.*MDD'.8X.*NM'/,7X.*MDF'.13X.* 3.*MDC'.12X.*MDDF'.12X.*MDPT'.13X.*MDDD.8X.*NM'/,7X.*MDF'.13X.* 3.*MDC'.12X.*MDPC'.12X.*MDPT'.13X.*NDCTO.12X.* 4.*TP'.14X.*TPT'.13X.*TE0'.7X.*NCT'./,6X.*TCTO 5 13X.*PDP'.14X.*RPT'.13X.*TSTR.*D.X.*RCTO		• .		
- APEl. AFI. MNI. MDI COMMON PN2. PP2. PP7. PD2. PT2. PCT02. PE02. MDE2 MD02. MDF2. MDF12. MDC12. MDF2. MDT502. MDC102. TF02. TP2 TP12. TCT02. RP2. RP72. RE02. RCT02. ACT02. MCT2. AE2 APE2. AF2. MN2. MD7 MD03. MDF3. MDF13. MDCT3. MDP3. PD3. PCT03. PE03. MDE3 MD03. MDF3. MDF13. MDCT3. MDPE3. MDT503. MDCT03. TF03. TP3 TP73. TCT03. RP3. RP73. RE03. RCT03. ACT03. MCT3. AE3 APE3. AF3. MN3. MD3 COMMON P50. TSOT0.RSOR0.MSOM0 COMMON P50.P0.TSOT0.RSOR0.MSOM0 COMMON INSTR(26).TDERUG.TTN.IOUT.NP.IP.TER.NVT(3).I.NT.TPAGF. INPAGE.SN.IT[3].J.IMI.ITIME.ND.NN.NCT.IFLG.IFLG1.IFLG2.IFLG3.IFLG4. 2IFLG5.TFL36.IFLG7.IFLG8.TFLG9.II.Y2.I3.I4.I5 COMMON J1.J2.J3.J4.J5.J4.J7.J8.J9.J1.J1.J1.J1.J1.J1.J1.J1.J1.J1.J1.J1.J1.				
COMMON PN2, PP2, PPT2, PD2, PT2, PCT02, PE02, MDE2, MDD2, MOF2, MDP12, MDCT2, MDPE2, MDT502, MDCT02, TE02, TE03, T		•	IA MCIOTA MCIOTA MCIT	A WETA
- MOD2, MOF2, MDPT2, MDCT2, MDPE2, MDT502, MDCT02, TF02, TP2, - TPT2, TCT02, RP2, RPT2, RE02, RCT02, ACT02, MCT2, AE2, - APE2, AF2, MM2, MD2 COMMON PN3, PP3, PPT3, PD3, PT3, PCT03, PE03, MDE3, - MDD3, MDF3, MDPT3, MDCT3, MDPE3, MDT503, MDCT03, TE03, TP3, - TPT3, TCT03, RP3, RP73, RE03, RCT03, ACT03, MCT3, AF3, - APE3, AF3, MM3, MD3 COMMON PSOP0, TSOT0, RSOR0, MSOMO COMMON SY, \$1, \$72, \$2, \$1, \$22, \$50, \$52, \$56, \$72, \$66, \$71, \$71, \$72, \$73, \$74, \$72, \$73, \$74, \$72, \$74, \$72, \$74, \$72, \$74, \$72, \$74, \$72, \$74, \$72, \$74, \$72, \$74, \$72, \$74, \$72, \$74, \$72, \$74, \$72, \$74, \$74, \$74, \$74, \$74, \$74, \$74, \$74			3 DAZA DEA2	MARA
- TPI2. TCTO2, RP2. RPT2. REO2. RCTO2. ACTO2. MCT2. AE2. - APE2. AF2. MM2. MD2. - COMMON PN3. PP3. PP73. PD3. PT3. PCT03. PE03. MDE3. - MDD3. MDF3. MDF73. MDCT3. MDPE3. MDT503. MDCT03. TE03. TP3. - TP73. TCT03. RP3. RP73. REO3. RCT03. ACT03. MCT3. AF3. - APE3. AF3. MN3. MD3. - COMMON PSDP0. TSOT0. RSOR0. MSOM0 - COMMON SY,\$Y1.\$Y2.\$X1.\$X2.\$DX.\$E1.\$F2.\$EMAX.\$EP.\$DE - COMMON NSTR(26). TDERUG. TIN. TOUT.NP. TP. TTER. NVT(3). I.NT. TPAGF. - INPAGE. *N. IT(3). J. INI. ITIME. ND. NN. NCT. IFLG. IFLG1. IFLG2. IFLG3. IFLG4. - INPAGE. *N. IT(3). J. INI. ITIME. ND. NN. NCT. IFLG. IFLG1. IFLG2. IFLG3. IFLG4. - COMMON D.T. - DIMENSTON V(24.4) - EQUIVAL FNCE (PN. V(1,1)) INTEGER \$N - REAL#8 INFIN. KF. KW - IP=IP+) - IF (INSTR(13). NE.0) GO TO 300 - IF (IPAGE. EQ.0) GO TO 100 - MRITE(TOUT. 120) (I.I = 1.7) - FORMAT(1). AKX. TT. 13X. TSTR. 13X. TT. 14X. TPT. 14X. TPP. 14X. TPP. 14X. - 1.90. 14X. PN. 14X. PPT. 2X. MDDT. 13X. MDD. 8X. NMM. P. 7. TX. MDF. 13X. - 13X. MD. - 2.14X. MN. 13X. MDCT. 12X. MDDT. 13X. MDD. 8X. NMM. P. 7. TX. MDF. 13X. - 5. 13X. PP. 14X. PPT. 13X. FEO. 12X. NCT. P. 96X. TCTO. 9 - 5. 13X. PP. 14X. PPT. 13X. FEO. 12X. PRCTO. 13X. AE. 14X. APE. 9				
- APE2. AF2. MN2. MD2 COMMON PN3. PP3. PP13. PD3. PT3. PC103. PE03. MDE3 MDD3. MDF3. MDP13. MDC13. MDP23. MDT503. MDC103. TE03. TP3 TP13. TC103. RP3. RP13. RE03. RC103. AC103. MC13. AE3 APE3. AF3. MN3. MD3 COMMON PS0P0.TS0T0.RS0R0.MS0M0 COMMON SY.\$Y1.\$Y2.\$X1.\$X2.\$DX.\$E1.\$E2.\$EMAX.\$EP.\$DE COMMON INSTR(26).IDERUG.TIN.IOUT.NP.IP.ITER.NVT(3).I.NT.IPAGF. INPAGE.\$N.IT(3).J.IMI.ITIME.ND.NN.NCT.IFLG.IFLG.IFLG2.IFLG3.IFLG4. 2FIL.G5.IFLG3.IFLG7.IFLG8.IFLG9.II.Y2.I3.I4.I5 COMMON J1.J2.J3.J4.J5.J6.J7.J8.J9.J10.J11.J12.J13.J14.J15.J16.J17. 1 J18.J10.J2.J3.J4.J5.J6.J7.J8.J9.J10.J11.J12.J13.J14.J15.J16.J17. 1 J18.J10.J2.J2.J23.J24.J25.J26 COMMON NCTL DIMENSION V(24.6) EQUIVALENCE (PN.V(1,1)) INTEGER \$N REAL#8 INFIN.XF,KW JP=IP+) IF(IPAGE.EG.0).GO TO 300 IF(IPAGE.EG.0).GO TO 100 0 WRITE(IOUT.120).(I.I=1.7) 0 FORMAT(11.AX.*IT.13X.*ITSTR*.I3X.*ITI*.I4X.*PT*.I4X.*PP*.I4X13X.*MO* 2.14X.*MO* 2.14X.*MN*.13X.*MDCT*.12X.*MDPT*.13X.*MDD*.8X.*NM*/* *,7X.*MDCT*.13X.*MCT*13X.*MO* 2.14X.*MN*.13X.*MDCT*.12X.*MDPT*.13X.*MDDT*.8X.*NM*/* *,7X.*MDF*.13X.* 5 13X.*PP*.14X.*TPT*.13X.*TE0*.12X.*PCT0*.13X.*AE*.14X.*APE*.				
COMMON PN3, PP3, PP13, PD3, P13, PC103, PE03, MDE3, MD			S. BCTOS. WCTOS. MCTS	o AE2,
- MOD3, MDF3, MDPT3, MDCT3, MDPE3, MDTS03, MDCT03, TE03, TP3, - TPT3, TCT03, RP3, RP73, RE03, RCT03, ACT03, MCT3, AE3, - APE3, AE3, MN3, MD3 - COMMON PSOPO, TSOTO, PSORO, MSOMO - COMMON PSOPO, TSOTO, PSORO, MSOMO - COMMON SY, \$Y1, \$Y2, \$X1, \$X2, \$DX, \$E1, \$F2, \$EMAX, \$EP, \$DE - COMMON INSTR(26), TDERUG, TYN, TOUT, NP, IP, TTER, NVT(3), I, NT, TPAGF, - LNPAGE, \$N, IT(3), J, IM1, ITIME, ND, NN, NCT, IFLG, IFLG1, IFLG2, IFLG3, IFLG4, - 2IFLG5, TFLG6, IFLG7, IFLG8, IFLG9, II, Y2, I3, I4, I5 - COMMON J19, J20, J3, J4, J5, J6, J7, J8, J9, J10, J11, J12, J13, J14, J15, J16, J17, - I J18, J19, J20, J21, J22, J23, J24, J25, J26 - COMMON NCTL - DIMENSTON V(24, 4) - EQUIVALENCE (PN, V(1, 1)) - IVTEGER \$N - REAL#8 INFIN, KF, KW - JP=IP+) - IF(IPAGE, EQ, 0) GO TO 300 - IF(IPAGE, EQ, 0) GO TO 300 - IF(IPAGE, EQ, 0) GO TO 140 - WRITE(IOUT, 120) (I, I=1, 7) - FORMAT('11, RX, 'IT', 13X, 'ISTR', 13X, 'TI', 14X, 'PT', 14X, 'PP', 13X, 'MDT', ', 6X, 'PCTO', 13X, 'PEO', 13X, 'MCT', '13X, 'MD' - 2, 14X, 'MN', 13X, 'MDCT', 12X, 'MDTS', 11X, 'MDCTO', 12X, 'APE', '12X, 'MDF', 13X, 'REO', 12X, 'MDTO', 12X, 'APE', '13X, 'APE', '13X, 'APE', '13X, 'APE', '12X, 'APE', '13X, 'APE', '13X, 'APE', '12X,				
- TPT3, TCT03, RP3, RPT3, RE03, RCT03, ACT03, MCT3, AE3, - APE3, AF3, MN3, MD3 COMMON PSOPO, TSOTO, RSORO, MSOHO COMMON SY, SY1, SY2, SX1, SX2, SOX, SE1, SE2, SEMAX, SEP, SDE COMMON INSTR(26), IDERUG, ITN, IOUT, NP, IP, ITER, NVT(3), I, NT, IPAGF, INPAGE, SN, IT(3), J, IMI, ITIME, NO, NN, NCT, IELG, IFLG1, IFLG2, IFLG3, IFLG4, 2IFLG5, IFLG6, IFLG7, IFLG8, IFLG9, II, Y2, I3, I4, I5 COMMON J1, J2, J3, J4, J5, J6, J7, J8, J9, J1, J1, J1, J1, J1, J1, J1, J1, J1, J2, J3, J14, J5, J16, J17, I J18, J19, J20, J21, J22, J23, J24, J25, J26 COMMON NCTL DIMENSION V(24, 4) EQUIVALENCE (PN, V(1, 1)) INTEGER SN REAL#8 INFIN, KF, KW IP=IP+) IF(IP, NF, NP) RETURN IP=0 II=J16-1 IF(INSTR(13), NE, 0) GO TO 300 IF(IPAGE, CG, 0) GO TO 140 OWITE(IQUT, 120) (I, I=1, 7) OFORMAT(11, AX, *IT, I3X, *ISTR*, 13X, *IT, *14X, *PT*, 14X, *PP*, 14X, *PP*, 14X, *MD*, *IT, IAX, *	COMMON PN3,	PP3, PPT3, PD3	3, PT3, PCT03, PE03	• MDE3•
- APE3, AF3, MN3, MD3 COMMON PSOPO.TSOTO.RSORO.MSOMO COMMON SY, \$Y1.\$Y2.\$X1.\$X2.\$DX.\$E1.\$E2.\$EMAX.\$EP.\$DE COMMON INSTR(26).TDERUG.TIN.TOUT.NP.IP.TTER.NVT(3).T.T.TPAGF. 1NPAGE.\$N.IT(3).J.IM1.ITIME.ND.NN.NCT.IFLG.IFLG1.IFLG2.IFLG3.IFLG4. 2IFLG5.TFL36.IFLG7.IFLG8.TFLG9.I1.Y2.I3.I4.I5 COMMON J1.J2.J3.J4.J5.J6.J7.J8.J9.J10.J11.J12.J13.J14.J15.J16.J17. 1 J18.J19.J20.J21.J22.J23.J24.J25.J26 COMMON NCTL DIMENSION V(24.4) EQUIVALENCE (PN.V(1.1)) INTEGER \$N REAL#8 INFIN.XF.KW JP=IP+) IF(IP.NE.NP)RETURN IP=0 II=J16-1 IF(INSTR(13).NE.0)GO TO 300 IF(IPAGE.EQ.0)GO TO 100 JF(IPAGF.LI.NPAGE)GO TO 140 0 WQITE(IOUT.120)(I.I=1.7) 0 FORMAT(11.AN.*TT.13X.*TSTR*.13X.*T1*.14X.*PT*.14X.*PP*.14X.* 1.**PD*.14X.**PN*.14X.**PPT*.AX.**ND*.***NDD*.**NDD*	- MOD3. MDF3. MDI	PT3. MDCT3. MDPE	3.MDTS03.MDCT03. TE03	, TP3.
COMMON PSOPO.TSOTO.RSORO.MSOMO COMMON SY, \$Y1, \$Y2, \$X1, \$X2, \$DX, \$E1, \$E2, \$EMAX, \$EP, \$DE COMMON INSTR(26).TDERUG.TIN.TOUT.NP.IP.TTER.NVT(3).T.NT.TPAGF. 1NPAGE.\$N.IT(3).J.J.MI.ITIME.ND.NN.NCT.IFLG.IFLG.IFLG2.IFLG3.IFLG4. 2IFLG5.TFL36.IFLG7.TFLG8.TFLG9.II.Y2.I3.TA.I5 COMMON J1, J2.J3, J4.J5.J6.J7.JR.J9.J10.J11.J12.J13.J14.J15.J16.J17. 1 J18.J19.J20.J21.J22.J23.J24.J25.J26 COMMON NCTL DIMENSTON V(24.4) EQUIVALENCE (PN.V(1,1)) INTEGER \$N REAL#8 INFIN.XF,KW IP=IP+) IF(IP.NF.NP)RETURN IP=0 II=J16-1 IF(IPAGE.EG.0)GO TO 100 JF(IPAGE.EG.0)GO TO 140 0 WRITE(IOUT.120)(I.I=1.7) 0 FORMAT(:1.RX.*T*.13X.*TSTR*.13X.*TI*.14X.*PT*.14X.*PP*.14X.*PP*.14X.* 1.**D*******************************	- TPT3, TCT03,	RP3, RPT3, RE03	3. RCT03. ACT03. MCT3	AE3.
COMMON PSOPO.TSOTO.RSORO.MSOMO COMMON SY, \$Y1, \$Y2, \$X1, \$X2, \$DX, \$E1, \$E2, \$EMAX, \$EP, \$DE COMMON INSTR(26).TDERUG.TIN.TOUT.NP.IP.TTER.NVT(3).T.NT.TPAGF. 1NPAGE.\$N.IT(3).J.J.MI.ITIME.ND.NN.NCT.IFLG.IFLG.IFLG2.IFLG3.IFLG4. 2IFLG5.TFL36.IFLG7.TFLG8.TFLG9.II.Y2.I3.TA.I5 COMMON J1, J2.J3, J4.J5.J6.J7.JR.J9.J10.J11.J12.J13.J14.J15.J16.J17. 1 J18.J19.J20.J21.J22.J23.J24.J25.J26 COMMON NCTL DIMENSTON V(24.4) EQUIVALENCE (PN.V(1,1)) INTEGER \$N REAL#8 INFIN.XF,KW IP=IP+) IF(IP.NF.NP)RETURN IP=0 II=J16-1 IF(IPAGE.EG.0)GO TO 100 JF(IPAGE.EG.0)GO TO 140 0 WRITE(IOUT.120)(I.I=1.7) 0 FORMAT(:1.RX.*T*.13X.*TSTR*.13X.*TI*.14X.*PT*.14X.*PP*.14X.*PP*.14X.* 1.**D*******************************	= ΔPE3. ΔF3.	MN3. MD3		
COMMON \$Y,\$Y1,\$Y2,\$X1,\$X2,\$DX,\$E1,\$E2,\$EMAX,\$EP,\$DE COMMON INSTR(26), IDERUG,IIN,IOUT,NP,IP,ITER,NVT(3),I.NT,IPAGF, 1NPAGE,\$N,IT(3),J.JIMI,ITIME,ND,NN,NCT,IFLG,IFLG1,IFLG2,IFLG3,IFLG4, 2IFLG5,IFLG6,IFLG7,IFLG8,IFLG9,II,Y2,I3,I4*I5 COMMON J1,J2,J3,J4,J5,J6,J7,J8,J9,J10,J11,J12,J13,J14*J15*J16*J17, 1 J18*J19*J20*J21*J22*J23*J24*J25*J26 COMMON NCTL DIMENSTON V(24*4) EQUIVALENCE (PN*V(1,1)) INTEGER \$V REAL**8 INFIN,KF,KW IP=IP*) IF(IPAGE.*EQ.0)GO TO 300 IF(IPAGE.*EQ.0)GO TO 100 JF(IPAGE.*EQ.0)GO TO 100 OWRITE(IOUT,120)(I,I=1,7) 0 FORMAT(*)**,AX,**I**,13X,**ISTR**,13X***I**,14X***PT**,14X***PP**,14X* -*13X***MD** 2*14X***MD***,PN**,14X*,**PPT**,AX,**ND**/***,***,************************				
COMMON INSTR(26), IDERUG, IIN, IOUT, NP, IP, ITER, NVT(3), I, NT, IPAGE, 1NPAGE, SN, IT(3), J, IMI, ITIME, ND, NN, NCT, IFLG, IFLG1, IFLG2, IFLG3, IFLG4, 2IFLG5, IFLG6, IFLG7, IFLG8, ITLG9, II, V2, I3, I4, I5 COMMON J1, J2, J3, J4, J5, J6, J7, J8, J9, J10, J11, J12, J13, J14, J15, J16, J17, 1 J18, J19, J20, J21, J22, J23, J24, J25, J26 COMMON NCTL DIMENSION V(24, 4) EQUIVALENCE (PN, V(1, 1)) INTEGER \$N REAL#8 INFIN, KF, KW JP=IP+) IF (IPSTR(13), NE, 0) GO TO 300 IF (IPAGE, EQ, 0) GO TO 100 JF (IPAGE, EQ, 0) GO TO 140 0 WRITE (IOUT, 120) (I, I=1, 7) 0 FORMAT(11, AX, IT, 13X, ITTR, 13X, IT, 14X, IPP, 14X, IPP, 14X, 1, PD, 14X, IPN, 14X, IPP, AX, ND, IX, MDD, 8X, INM, IX, PEO, 13X, MCT, -13X, MD 2, 14X, MN, 13X, MDCT, 12X, MDPT, 13X, MDDT, 8X, INM, IX, INM, IX, MDF, 13X, 4, PP, 14X, IPT, 13X, IFP, IX, NCT, IX, MDCTO, 12X, 4, PP, 14X, IPT, 13X, IFP, IX, NCT, IX, MCTO, 13X, AE, IAX, APE, 5 13X, PP, 14X, PPT, 13X, FEO, IX, RCTO, 13X, AE, IAX, APE,			SF2.SFMAX.SFP.SDF	
1NPAGE.*N.IT(3), J.IM1.ITIME.ND.NN.NCT.IFLG.IFLG.IFLG2.IFLG3.IFLG4. 2IFLG5.IFLG6.IFLG7.IFLG8.IFLG9.II.T2.I3.I4.I5 COMMON J1.J2.J3.J4.J5.J6.J7.J8.J9.J1.J1.J12.J13.J14.J15.J16.J17, 1 J18.J19.J20.J21.J22.J23.J24.J25.J26 COMMON NCTL DIMENSTON V(24.4) EQUIVALENCE (PN.V(1.1)) INTEGER \$N REAL#8 INFIN.KF.KW JP=IP.) IF(IP.NE.NP)RETURN IP=0 II=J16-1 IF(INSTR(13).NE.0)GO TO 300 IF(IPAGE.EQ.0)GO TO 100 JF(IPAGE.EQ.0)GO TO 100 JF(IPAGE.II.NPAGE)GO TO 140 0 WRITE(IDUT.120)(I.I=1.7) 0 FORMAT(11.AX.*IT.13X.*ISTR*.13X.*IT.*14X.*PT*.14X.*PP*.14X.*PP*.14X.* 13X.*MD* 2.14X.*MN*.13X.*MDCT*.12X.*MDPT*.13X.*MDD*.8X.*NM*/* *.7X.*MDF*.13X.* 3.*MDE*.12X.*MDPE*.12X.*MDPT*.13X.*MDCT0*.12X.* 4.*TP.*12X.*MDPE*.12X.*MDPT*.13X.*MDCT0*.12X.* 5 13X.*PP*.14X.*RPT*.13X.*REO*.12X.*RCTO*.13X.*AE*.14X.*APE*.				. TPAGE .
ZIFLG5*TFL36*IFLG7*IFLG8*TFLG9*I1*T2*I3*I4*I5 COMMON J1*J2*J3*J4*J5*J6*J7*J8*J9*J10*J11*J12*J13*J14*J15*J16*J17* 1 J18*J19*J20*J21*J22*J23*J24*J25*J26 COMMON NCTL DIMENSTON V(24*4) EQUIVALFNCE (PN*V(1*1)) INTEGER \$N REAL**B INFIN*KF*,KW JP=IP*) IF(IPNE*NP) RETURN IP=0 I1*J16*-1 IF(INSTR(13)*NE**,0)GO TO 300 IF(IPAGE**EQ**,0)GO TO 140 0 WRITE(IOUT**,120)(I**,1=1**,7) 0 FORMAT(*1**,4X***,***,***,***,***,****,****,***				
COMMON J1,J2,J3,J4,J5,J6,J7,J8,J9,J10,J11,J12,J13,J14,J15,J16,J17, 1 J19,J19,J20,J21,J22,J23,J24,J25,J26 COMMON NCTL DIMENSTON V(24,4) EQUIVALENCE (PN,V(1,1)) INTEGER \$N REAL#8 INFIN,KF,KW P= P+0 IF(IP,NE,NP)RETURN P=0 II=J16-1 IF(INSTR(13),NE,0)GO TO 300 IF(IPAGE,EQ,0)GO TO 100 IF(IPAGE,EQ,0)GO TO 140 0 WRITE(IOUT,120)(I,I=1,7) 0 FORMAT(11,0,AX,1T,13X,1TSTR,13X,1T,014X,1PT,14X,1PP,14X				- COSATLE 13-4A
1 J18.J19.J20.J21.J22.J23.J24.J25.J26 COMMON NCTL DIMENSTON V(24.4) EQUIVALENCE (PN.V(1.1)) INTEGER \$V REAL#8 INFIN.KF.KW JP=TP*) IF (IP.NE.NP) RETURN IP=0 II=J6-1 IF (INSTR(13).NE.0) GO TO 300 IF (IPAGE.EQ.0) GO TO 100 JF (IPAGE.EQ.0) GO TO 140 0 WRITE (IOUT.120) (I.I=1.7) 0 FORMAT (*) **.AX.**I**.13X.**I**.13X.**I**.14X.**PT**.14X.**PP**.14X.* 1*PD**.14X.**PN**.14X.**PPT**.AX.**ND*/* **.6X.**PCTO**.13X.**PEO**.13X.**MDF**.13X.** 13X.**MD* 2.14X.**MN**.13X.**MDCT**.12X.**MDPT**.13X.**MDD**.8X.**NM*/* **.7X.**MDF**.13X.* 4*TP**.12X.**MDPE**.12X.**MDTSO**.11X.**MDCTO**.12X.**APE**, 5 13X.**PP**.14X.**RPT**.13X.**REO**.12X.**RCTO**.13X.**AE**.14X.**APE**,				16. 114. 11 9 .
COMMON NCTL DIMENSTON V(24.4) EQUIVALENCE (PN.V(1,1)) INTEGER \$N REAL#8 INFIN, KF, KW JP=IP+) IF (IP.NE.NP) RETURN IP=0 II = J16-1 IF (INSTR(13).NE.0) GO TO 300 IF (IPAGE.EQ.0) GO TO 100 JF (IPAGE.EQ.0) GO TO 140 O WRITE (IOUT, 120) (I.J=1-7) O FORMAT(')'.AX, 'T'.13X, 'TSTR'.13X.'TI'.14X.*PT'.14X, 'PP'.14X.]'PD'.14X, 'PN'.14X, 'PPT'.AX, 'ND'.' ',6X, 'PCTO'.13X, 'PEO'.13X, 'MCT'13X.*MD' 2.14X, 'MN'.13X.*MDCT'.12X.*MDPT'.13X, 'MDD'.8X, 'NM'.' ',7X.*MDF'.13X, 4.TP.*12X.*MDPE'.12X.*MDTSO'.11X, 'MDCTO'.12X, 4.TP.*14X.*IPT'.13X.*IEO'.7X.*NCT'.' ',6X.*TCTO'. 5. 13X.*PP'.14X.*RPT'.13X.*REO'.12X.*RCTO'.13X.*AE'.14X.*APE'.				12171017111
DIMENSTON V(24.4) EQUIVALENCE (PN.V(1,1)) INTEGER \$\(\text{REALMB INFIN, \text{F,KW}} \) IP=IP+) IF(IP.NF.NP) RETURN IP=0 II=J16-1 IF(INSTR(13).NE.0)GO TO 300 IF(IPAGE.EQ.0)GO TO 100 0 WRITE(IOUT.120)(I.J.=1.7) 0 FORMAT(*1*.AX,*I*.13X,*ITSTR*.13X**T1*.14X**PT*.14X**PP*.14X* 1*PO*.14X**PN*.14X,*PPT*.AX.*ND*.*********************************		J269J639J699J659	J26	
EQUIVALENCE (PN.V(1,1)) INTEGER \$N REAL#8 INFIN, KF, KW JP=IP+) IF (IP.NE.NP) RETURN JP=0 II=J16-1 IF (INSTR(13) .NE.0) GO TO 300 IF (IPAGE.EQ.0) GO TO 100 JF (IPAGE.EQ.0) GO TO 140 0 WRITE (IOUT, 120) (I.J.=1,7) 0 FORMAT (11.AX, *I*,13X, *TSTR*,13X, *T1*,14X, *PT*,14X, *PP*,14X, 1*PD*,14X, *PN*,14X, *PPT*,AX, *ND*,****,6X, *PCTO*,13X, *PEO*,13X, *MCT*13X, *MD* 2.14X, *MN*,13X, *MDCT*,12X, *MDPT*,13X, *MDD*,8X, *NM*,***,7X, *MDF*,13X, 4*TP*,14X, *TPT*,13X, *TFO*,7X, *NCT*,****,6X, *TCTO*, 5 13X, *PP*,14X, *RPT*,13X, *REO*,12X, *RCTO*,13X, *AE*,14X, *APE*,				
INTEGER \$N REAL#8 INFIN, KF, KW JP=IP+) IF (IP-NE-NP) RETURN IP=0 II=J16-1 IF (INSTR(13) .NE.0) GO TO 300 IF (IPAGE.EG.0) GO TO 100 JF (IPAGE.EG.0) GO TO 140 0 WRITE (IOUT, 120) (I.=I=1,7) 0 FORMAT (*1*-8X,**T**,13X,**TSTR**,13X***TI**,14X**PT**,14X**PP**,14X* 1*PD**,14X**PN**,14X,**PPT**,9X**,*ND**/***,6X,**PCTO**,13X,**PEO**,13X,**MCT** 13X**MD* 2.14X**MD* 2.14X**MD* 2.14X**MD** 3.**MD**,12X**MDC***,12X**MDPT**,13X**MDD**,8X**NM*/***,7X**MDF**,13X** 4*TP**,12X**MDPE**,12X**MDTSO**,11X**,*MDC***,12X**,*MDF**,13X** 4*TP**,14X**,*TPT**,13X**,*TEO**,7X**,*NCT*/***,6X**,*TCTO***, 5.13X**PP**,14X**,*RPT**,13X**,*REO**,12X**,*RCTO**,13X**,*AE***,14X**,*APE***			•	
REALMS INFIN, KF, KW JP=TP+) IF (IP-NE-NP) RETURN IP=0 II=J6-1 IF (INSTR(13).NE.0) GO TO 300 IF (IPAGE.EQ.0) GO TO 100 JF (IPAGE.UT.NPAGE) GO TO 140 0 WRITE (IOUT.120) (I.JI=1-7) 0 FORMAT (*) **-0.8X.*** **-13X.*** **-14X.*** **-14X.	EQUIVALENCE (PN.V	(1,1))		
<pre>IP=IP+) IF(IP.NE.NP)RETURN IP=0 II=J16-1 IF(INSTR(13).NE.0)GO TO 300 IF(IPAGE.EQ.0)GO TO 100 JF(IPAGE.LT.NPAGE)GO TO 140 0 WRITE(IDUT.120)(I.J=1-7) 0 FORMAT('!'.AX.'T'.13X.'TSTR'.13X.'TI'.14X.'PT'.14X.'PP'.14X.]'PD'.14X.PN'.14X.PPT'.AX.ND'/' '.6X.PCTO'.13X.PEO'.13X.PMCT'13X.PMD' 2-14X.PMD' 2-14X.PMD' 2-14X.PMDCT'.12X.PMDTT'.13X.PMDD'.8X.PMM'/' '.7X.PMDF'.13X.PMCT' 4'TP'.12X.PMDP'.12X.PMDTSO'.11X.PMDCTO'.12X.PMDF'.13X.PMCT'. 5 13X.PP'.14X.PPT'.13X.PTE'.7X.PMCT'.' '.6X.PCTO'.13X.PAE'.</pre>	INTEGER SV			
IF (IP.NE.NP) RETURN IP=0 II=J16=1 IF (INSTR(13).NE.0) GO TO 300 IF (IPAGE.EQ.0) GO TO 100 IF (IPAGE.LT.NPAGE) GO TO 140 NWRITE (IOUT.120) (I.I=1.7) FORMAT(*1*.AX,*T*.13X,*TSTR*.13X,*T1*.14X,*PT*.14X,*PP*.14X,*MCT*. 1*PD*.14X,*PN*.14X,*PPT*.AX,*ND*/* *,6X,*PCTO*,13X,*PEO*.13X,*MCT*. 13X,*MD* 2.14X,*MN*.13X,*MDCT*.12X,*MDPT*.13X,*MDD*.8X,*NM*/* *,7X,*MDF*,13X,* 3.*MDE*.12X,*MDPE*.12X,*MDTSO*.11X,*MDCTO*.12X,* 4*TP*.14X,*TPT*.13X,*TFO*.7X,*NCT*/* *,6X,*TCTO*,* 5.13X,*PP*.14X,*RPT*.13X,*REO*.12X,*RCTO*.13X,*AE*.14X,*APE*,*	REALMS INFINACE & KI	d		
IP=0 II=J16-1 IF(INSTR(13).NE.0)GO TO 300 IF(INSTR(13).NE.0)GO TO 300 IF(IPAGE.EQ.0)GO TO 100 0 WRITE(IOUT.120)(I.JI=1.7) 0 FORMAT(*1*.AX.**I*.13X.**TSTR*.13X.**T1*.14X.**PT*.14X.**PP*.14X.* 1*PO*.14X.**PN*.14X.**PPT*.AX.**ND*.********************************	JP=JP+)			
IP=0 II=J16-1 IF(INSTR(13).NE.0)GO TO 300 IF(INSTR(13).NE.0)GO TO 300 IF(IPAGE.EQ.0)GO TO 100 0 WRITE(IOUT.120)(I.JI=1.7) 0 FORMAT(*1*.AX.**I*.13X.**TSTR*.13X.**T1*.14X.**PT*.14X.**PP*.14X.* 1*PO*.14X.**PN*.14X.**PPT*.AX.**ND*.********************************	IF (TP.NF. VP) RETUR	y.		
II=J16-1 IF(INSTR(13).NE.0)GO TO 300 IF(IPAGE.EQ.0)GO TO 100 IF(IPAGE.EQ.0)GO TO 100 OF(IPAGE.EQ.0)GO TO 140 OWRITE(IOUT.120)(I.JI=1,7) OFORMAT(*1**.AX,**T**.13X,**TSTR**.13X***T1**.14X***PT**,14X***PP**,14X* 1**PD**.14X***PN**.14X,**PPT**,AX,**ND**/****,6X,**PCT0**,13X,**PE0**,13X,**MCT**				***************************************
IF(INSTR(13).VE.0)GO TO 300 IF(IPAGE.EQ.0)GO TO 100 JF(IPAGE.EQ.0)GO TO 100 OF(IPAGE.EQ.0)GO TO 140 OWRITE(IOUT.120)(I.sI=1.7) OFORMAT(*1**.AX.**I**.13X.**ISTR**.13X.**I1**.14X.**PT**,14X.**PP**.14X.* 1*PD**.14X.**PN**.14X.**PPT**.AX.**ND*/* **,6X.**PCTO**,13X.**PEO**,13X.**MCT**13X.**MD* 2-14X.**MD* 2-14X.**MD**.13X.**MDCT**.12X.**MDPT**,13X.**MDD**.8X.**NM*/* **,7X.**MDF**,13X.** 4*TP**.12X.**MDPE**.12X.**MDTSO**.11X.**MDCTO**.12X.** 4*TP**.14X.**IPT**.13X.**IEO**,7X.**NCT*/* **,6X.**TCTO**, 5 13X.**PP**.14X.**RPT**.13X.**REO**.12X.**RCTO**.13X.**AE**.14X.**APE**,				
IF(IPAGE.EQ.0)GO TO 100 JF(IPAGE.LT.NPAGE)GO TO 140 0 WRITE(IDUT:120)(I.J=1:7) 0 FORMAT(!!:AX:'I*:13X:'TSTR':13X:'TI':14X:'PT':14X:'PP':14X:'MCT' -:13X:'MD' 2-14X:'MD' 2-14X:'MD' 1-2X:'MDCT':12X:'MDPT':13X:'MDD':8X:'NM'/' '.7X:'MDF':13X:'MCT' 4'TP:14X:'MD':12X:'MDPE':12X:'MDTSO':11X:'MDCTO':12X:'MCT':12X:'MDE':12X:'MDF':13X:'MCT':12X:'MCT'		60 10 300		· · · · · · · · · · · · · · · · · · ·
JF(IPAGF.LT.NPAGE)GO TO 140 0 WRITE(IOUT,120)(I,I=1,7) 0 FORMAT(11,0X,*T*,13X,*TSTR*,13X,*T1*,14X,*PT*,14X,*PP*,14X,*PP*,14X,*PP*,14X,*PP*,14X,*PP*,14X,*PP*,14X,*PP*,14X,*PP*,14X,*PP*,13X,*MCT*,13X,*MD*,13X,*PE*,13X,*MCT*,13X,*MD*,13X,				
0 WRITE(TOUT, 120)(I, I=1, 7) 0 FORMAT(*1*, AX, *T*, 13X, *TSTR*, 13X, *T1*, 14X, *PT*, 14X, *PP*, 13X, *PP*, 14X, *PP*, 13X, *PP*, 14X, *PP*, 13X, *PP*,				
0 FORMAT(*!*.AX.*T*.13X.*TSTR*.13X.*T!*.14X.*PT*.14X.*PP*.14X.* 1*PO*.14X.*PN*.14X.*PPT*.AX.*ND*/* *.6X.*PCTO*.13X.*PEO*.13X.*MCT*13X.*MD* 2.14X.*MN*.13X.*MDCT*.12X.*MDPT*.13X.*MDD*.8X.*NM*/* *.7X.*MDF*.13X.* 3.*MDE*.12X.*MDPE*.12X.*MDTSO*.11X.*MDCTO*.12X.* 4*TP*.14X.*TPT*.13X.*TFO*.7X.*NCT*/* *.6X.*TCTO*.* 5.13X.*PP*.14X.*RPT*.13X.*REO*.12X.*RCTO*.13X.*AE*.14X.*APE*.*		-		
1 *PD * 0 14X * *PN * 0 14X * *PPT * 0 AX * *ND * / * * 0 6X * *PCTO * 0 13X * *PEO * 0 13X * *MCT * -0 13X * *MD * 2 * 14X * *MN * 0 13X * *MDCT * 0 12X * *MDPT * 0 13X * *MDD * 0 0 0 X * * *NM * / * * 0 7X * *MDF * 0 13X * 3 * *MDE * 0 12X * *MDPE * 0 12X * *MDTSO * 0 11X * *MDCTO * 0 12X * 4 *TP * 0 14X * *TPT * 0 13X * *TEO * 0 7X * *NCT * / * * 0 6X * *TCTO * 0 5 * 13X * *PP * 0 14X * *RPT * 0 13X * *REO * 0 12X * *RCTO * 0 13X * 0 4E * 0 14X * 0 4PE * 0				
13X+*MD* 2-14X+*MN*+13X+*MDCT*+12X+*MDPT*+13X+*MDD*+8X+*NM*/* *,7X+*MDF*+13X+ 3-*MDE*+12X+*MDPE*+12X+*MDT50*+11X+*MDCT0*+12X+ 4*TP*+14X+*TPT*+13X+*TF0*+7X+*NCT*/* *,6X+*TCT0*+ 5 13X+*PP*+14X+*RPT*+13X+*RE0*+12X+*RCT0*+13X+*AE*+14X+*APE*+				
2.14X,*MN*.13X.*MDCT*.12X.*MDPT*.13X.*MDD*.8X,*NM*/* *.7X.*MDF*.13X. 3.*MDE*.12X.*MDPE*.12X.*MDT50*.11X.*MDCT0*.12X, 4*TP*.14X.*TPT*.13X.*TF0*.7X.*NCT*/* *.6X.*TCT0*. 5.13X.*PP*.14X.*RPT*.13X.*RE0*.12X.*RCT0*.13X.*AE*.14X.*APE*.		**PPT**AX**ND*/*	*,6X,*PCTO*,13X,*PEO*	13X, MCT
3.*MDE*,12X.*MDPE*,12X.*MDT50*,11X.*MDCT0*,12X, 4*TP*,14X.*TPT*,13X.*TF0*,7X.*NCT*/* *,6X.*TCT0*, 5 13X.*PP*,14X.*RPT*,13X.*RE0*,12X.*RCT0*,13X.*AE*,14X.*APE*,				
4*TP**14X***TPT**13X***TF0***7X***NCT*/* **********************************	2 . 14 X . MN 13 X MD	T . 12X MDPT 13	3X, "MDD ", 8X, "NM "/ " ", 7)	(, 'MDF', 13X,
4*TP**14X***TPT**13X***TF0***7X***NCT*/* **********************************	3. MOE 1.12X. MOPE	12X, MOTSO', 11X;	*MDCTO*+12X+	
5 13X, *PP*, 14X, *RPT*, 13X, *REO*, 12X, *RCTO*, 13X, *AE*, 14X, *APE*,				•
				PE.

	PRINT	DATE = 75157	11/58/40
-/* **132(1-1))			
IPASE=5			
40 WRITE (TOUT . 160)TOTSTROTIOPTOPPOF	PD.PN.PPT.ND.PCTO.PEO	94CT 9MD 9MN 9
IMDCT . MDPT . MDD	NN . MDF . MDF . MDPE . MI	DTSO.MDCTO.TP.TPT.TEO	NCT, TCTO, RP,
2RPT.RED.RCTO.A	REATS . ITER . E . DT . I	1	
160 FORMAT (5 (/) 14	BE16.6.14))		
IPAGE=TPAGE+6			
RETURN			
000 IF (IPAGE.EQ. 0)	GO TO 320		•
IF (IPAGE . LIT . NE	AGE) GO TO 360		
820 WRITE(10UT+340))		
40 FORMAT(11 .6X	• T • • 1 1 X • • PPT • • 1 0 X	• • • • • • • • • • • • • • • • • • •	19P1, 11X,
Jabbaajixaabka	10X, 'PEO', 10X, 'PC'	TO+/+ +,132(+-+))	
IPAGE=2			
60 WRITE(10UT.380))	PD.PN.PEO.PCTO	
BO FORMAT(! ! 9E)	3.5)		
IPAGE=TPAGE+1			
IF(VCTL.EG.10)	RETURN 1		
RETJRN			
END			

	RINOM	DATE = 75157	11/58/40
SURROUTINE: RINOM(*)			
IMPLICIT REAL+8 (A-	H . M . O - Z . ST		
		• TV (3 • 50) • A (10) • E (7)	в(30),
1 TVF (3) . TDELAY (3) . R			
	MDCTC . EAE . EAPE . EA	F.MDTSTR.INFIN.TMGOGS	5 • GP0265 •
1 SGOR	/11-00 -M1-00 -001	00 04130 00001 00041	
		OG, GM10G, GOGP1, GOGM1	
1 00GM1.00GP1.GP0GM1			<u> </u>
2 MGPOGM, MGOGM1, R, GR		WOODALOOURPORFORW CTDoCTAOPVOPVOTSVOTAL	14
COMMON TOTA DISTR			/ W
		0 - A11 - A12 - A13 - A14 - A15	5.A16.A17
		PT , PCTO , PEO ,	
- MOD , MOF , MOPT			
	. RPT . REO .		AE 9
	9 MD		
	1. PPT1. PD1.	PT1. PCT01. PE01.	MDE1,
- MODI, MOFI, MOPT	1. MOCTI. MOPEL.M	DTS01.MDCT01. TE01.	
	1. RPT1, RE01,		AE1 o
- APEL AFL MN			,
COMMON PN2, PP	2. PPTZ, PDZ,	PT2. PCT02. PE02,	MDE2,
	2. MDCTZ. MDPEZ.M	DTS02, MDCT02, TE02,	
		RCT02, ACT02, MCT2,	AE2,
- APEP, AFE, MN			
	3, PPT3, PD3,		MDE3.
- MOD3, MDF3, MDP1	3. MDCT3. MDPE3.M		
- TP13, TCT03, RP		RCT03, ACT03, MCT3,	AE3,
- APE3, AF3, MN			
COMMON PSOPO, TSOTO,		O SCHAV SED SE	
COMMON SYSTEM SYZES		<u> </u>	DACE.
		o IFLGo IFLGL o IFLG2 o IFL	
21FL 35 • TFL 36 • 1FL G7 • 1	EL GRATEL GOATLATZA	73.74.75	USAITLUAA
		0.011.0112.013.014.015	in.116a.117a
1 118+119+120+121+12			TYGOTUATY
	2.023702770237020		
INTEGER SV	Mark Bill of Mark and Appropriate Comments		
REAL & B INFINOKEOKH			•
] = 0			
Δ(1)=1 _e			
10 = 1 + 1			
IF (I.GT.6) GO TO 20			
14]=1- <u>1</u>			
A(I+1)=A(I)*(A(B)=I	MI)/I		
WRITE (TOERUG. 15) I. I			
15 FORMAT(! I= + 17 . !	11=001700 IM1=00	[7]	
60 10 10			
20 WRITE (IDEBUG, 30) A	10000		
30 FORMAT(+09INOM+/+ +	910E13 ₀ 5)	•	
DO 40 T=1.7 40 A(T)=A(T)*A(9)**(T=	1)		
WRITE(TDESUG:30)A	11		
RETURN			
END	=: =: 		

	REVERT	DATE = 75157	11/58/40
SURROUTINE REVERT (*			
IMPLICIT REAL®R (A- COMMON AREA (3,50), A		YV/2-501-4/101-5/7	B / 3A1
		1 A (2 A 2 D) & W (1 D) & C (1)	90(30/9
1 TVF (3) , TOEL AY (3) , R		MARCES SHEET, SHAD	
COMMON PC.RC.TC.AC.	MIICICOEAEOEAPEOEAP	OMI) I SIRO INFINO IMGU	35 9 GP02G5 9
1_560R	0.00100.04100.0010	0 04100 00001 00044	
COMMON G.GMI.GPI.OO			
1 009W1 008P1 GPOGM1			<u> </u>
2 MGPOGM MGOGMI R GR			
COMMON TSLINTSHOTSWO			1UW
COMMON TOTTO DISTR			
ALASSA STANCO			
	• PPT • PD •	PT · PCTO · PEO ·	
	. MDCT . MDPE .MD		
		CTO . ACTO. MCT .	AE 9
	• MD	mg1 0.701 0m01	
COMMON PNI, PP		PTI, PCTO1, PEO1,	
	1. MDCT1. MDPE1.MD		
		CTO1, ACTO1, MCT1,	AEl,
	i. MOI	820 00200 0000	
COMMON PAS PP		PT2, PCT02, PE02,	I
	2. MDCTZ. MDPEZ.MD		
- TPT2, TCT02, RP		CTO2, ACTO2, MCT2,	AE2.
- APEZ. AFZ. MN			
COMMON PN3, PP		PT3 PCT03 PE03	
	3. MDCT3, MDPE3,MD		
		CT03, ACT03, MCT3	AE3,
- APE3. AF3. MN			
COMMON PSOPO, TSOTO,		SPMAY OFF CAP	
COMMON \$Y, \$Y1, \$Y2.5			
COMMON INSTR(26) . ID			
INPAGE . SN . IT (3) . J . IM			LG39 IFLG49
2IFL G5. TFL G6. IFL G7. I			
COMMON J1.J2.J3.J4.	72 676 974 974 974 971 0	17111171517131714171	5901090179
1 118,119,120,121,12	21163112411251126	· ·	
COMMON NCTL			
INTEGER SV			
REALMS INFINORFORM			
B(1)=1./A(1)			
B(2) = A(2) / A(1) 4#3	1100/211/0/11/08		
B(3)=(2.44(2)+42-4(B(4)=(5.44(1)+4(2)+		E #4/2\##3\/4/3\##5	,
B(5)=(6. #a(1) ##2#A(
A A(1) ##3#A(5) =21. #A			4-
B(6)=(7,*A(1)**3*A(MA / 31 MM3
B *Δ(3)=Δ(1)**4*Δ(5):			
C *A(3) **2-42. *A(2) *		-2"A(%)=200 "A(1)"-2	WA (2)
B(7)=(8.*A(1)*#4*A(84/3184/3188/318	CAMIALABAM
(S) A #S##(1) A # . US1 + A			
B 132. % (2) * 46-4 (1) *			· *
C 72.*A(1)**3*A(2)*A) #A(2)
D ##4#A(3))/A(1)##13	• •	J.#13/#3~33064#11	/ "M (C/
DO 10 7=1.7			
10 A(I)=B(I)			
WRITE (IDEBUG. 20) A			
20 FORMAT(OREVERT 1/	* . 10E13.51		
RETURN	7 4 4 5 1 3 6 3 7		
END.			
5. YL			

```
DATE = 75157
                                                                                                                                11/58/40
                                                    SMPFRT
            SURROUTINE SMPERT (#)
            IMPLICIT REALMA (A-H.M.O-Z.S)
            COMMON AREA (3,50) + AREATS (3) + AREAM (3) + TV (3+50) + A (10) + F (7) + B (30) +
          1 TVF (3) . TDELAY (3) . RW (7)
            COMMON PC.RC.TC.AC.MDCTC.FAF.FAPE.EAF.MDTSTR.INFIN.TM30GS.GP02GS.
          1 SGOR
            COMMON G.SM1.GP1.00G.GP10Z.GM10Z.GP10G.GM10G.GOGP1.GOSM1.
             003M1.003P1.GP0GM1.SGM102.T0GM1.T0G.MGPGM2.T0GP1.GPGM12.
          2 MGPOGM, MGOGM1 . P. GR. OOR . PT. PERR. AWOKW. OOAl . OOKF, KF. KW
            COMMON TSLIGTS HOTSWOTSPOTSA OTSWOTSVOCTDOCTA OPVOPOVOTSVOTALIN
            COMMON T.TI.DT.TSTR.DT02.TSTOP.DODT.DTOPV
            COMMON 41.42.43.44.45.46.47.48.49.410.411.412.413.414.415.416.417...
                              COMMON
              MOD .
               TPT . TOTO .
                                              4N . 9
              VDE .
                                AF 9
                                                          MD
                               PVI,
           COMMON
                                              PPl,
                                                         PPT1,
                                                                          PO1 .
                                                                                       PT1, PCT01, PF01, MOF1,
          - MOD1,
                              MDF1, MDPT1, MDCT1, MDPF1, MDTS01, MDCT01,
                                                                                                                  TE01, 1P1,
                                              RP1. RPT1. RE01. RCT01. ACT01.
                                                                                                                                  AE1 .
               TPIL. TC.TOI.
                                                                                                                  MCT1.
                                              MN1. MD1 .
                APEl,
                                AF1,
                                                                         PD2. PT2. PCT02.
                             MDF2, MDPT2, MDCT2, MDPE2, MDISO2, MCTO2, MCT2, 
           COMMON
               MOD2,
                                                                                                                                  TP2.
               TPT2. TCT02.
                                                                                                                                AE2.
                                              MN2 .
                VaES.
                                AFZ.
                                                                                        PT3. PCT03.
          COMMON
                                PN3.
                                              PP3.
                                                         PPT3.
                                                                          PD3,
                                                                                                                  PE03.
                                                                                                                                MDE3.
                              MDF3, MDPT3, MDC13, MDPE3, MDTS03, MDCT03,
               Mon3.
                                                                                                                  TE03.
                                                                                                                                  TP3.
                                                                       RE03+ RCT03+ ACT03+
              TPT3. TCT03.
                                              RP3. RPT3.
                                                                                                                 MCT3.
                                                                                                                                  AE3.
                APE3.
                                              4N3.
                                AF3.
                                                            MD3
           COMMON PSOPORTSOTORROWSOMO
            COMMON SY.SY1, SY2.SX1.SX2.SDX.SE1.SE2.SEMAX.SEP.SDE
            COMMON INSTR (26) . TOFRUG. TIN. TOUT. NP. IP. TTER. NVT (3) . I. NT. TPAGE,
          INPAGE . SA. IT (3) . J. IM) . ITIME . ND . NV. NCT. IFLG. IFLG1. IFLG2. IFLG3. IFLG4.
          21FL 95 . TFL 96 . TFL 67 . TFL 68 . TFL 69 . 11 . 12 . 13 . 14 . 15
           COMMON J1.02.03.04.015.06.07.04.09.010.010.010.010.015.014.015.016.017.0
          1 118,119,120,121,122,123,124,125,126
            COMMON NOTE
           DIMENSION IEXTP(19) . FPS(19) . Q(19) . V(30.4)
            DIMENSION JJ(4)
            EQUIVALENCE (V(1) PN)
           COMPLEX#15 X(4),Y(4)
            INTEGER SY
            REAL *8 NUI . NUZ . NUI D . NUZ D . NUI N . NUZN . INFIN . KF . KW
           1 2 3 4 5 6 7 8 9 10 11 12 13 17 15 16 17 18 19
DATA IEXTP/ 8,13,10,11,21, 9,12,25, 7,16, 5, 4, 1,14, 0, 0, 2,20,
            MACH(D1) = DSORT(TOGM1 *((D1 / PCT0) **(-GM10G) - 1.00))
            WRITE (IDEAUG.1)
       1 FORMAT(+15MPFRT+/+ ++6(+=+))
C COMPUTE CONSTANTS FOR EXPANSIONS
IF (JELG2. NE. 1) 60 TO 90
C EQUATION 1
           CA1 =-1.D0
           \Delta(1) = \Delta 1 / DSORT(TF01) + \Delta 2
           CB1 = AE1 * A(1)
```

C

```
SMPERT DATE = 75157
                                                       11/58/40
     CC1 = PF01 * 4(1)
     CO1 = 0.500 + PF01 + A(1) + AE1 / TE01
C EQUATION 2
  90 CA2 = -1.70
     A(2) = A1 / DSORT( TP1 ) * A2
     C92 = -APE1 * A(2)
     CC2 = -PP1 + A(2)
     CD2 = 0.500 * PP1 * A(2) * APE1 / TP1
C EQUATION 3
     CA3 = -1.70
     CR3 = -(PP) - PD1 * A16) * DOKF * A2
CC3 = -AF1 * DOKF * A2
     CO3 = -CC3 * A16
C EQUATION 4
     CA4 = -1.70
     C94 = -AWOKW # 42
     CC4 = -C64 * A15
C EQUATION 5
     CA5 = -1.70
     CHS = DTOPV
     CC5 = CB5
     005 = 085
     CES = CB5 * ( MDPF1 + MDF1 + MDPT1)
C EQUATION 6
     CA6 = 1.00
     C36 = 1.00
               0.06 = -1.00
     IF (IFLG2.NE.1) GO TO 91
C FQUATION 7
     CA7 = 1.D0
     CB7 =-1.D0
     CC7 = -1.70
                 C FOUATION B
     CAR = -1.00
     \Lambda(3) = 1.00 - \text{MCT1}
     A(4) = 1.70 + GM102 * MCT1
     CHR = MDCTC * A(3) / A(4) ** (GOGM1 * 2.00)
C EQUATION 9
     CA9 = -1.50
     4(5) = 1.70 + GM102 * MCT1 ** 2
     CR9 = -G + A(3) + PF01 / A(4) / A(5)
C FRUATION IN
     CA10 = -1.00
     Calo = - GM1 + \Delta(3) + TEO1 / \Delta(4) / \Delta(5)
C EQUATION 11
  91 C\Delta 11 = -1.00
 TF(TFLG2)99+9999+100
100 CR11 = 0.500
     CC11 = CB11
     GO TO 101
  90 CR11=1.00-A17
     CC11=A17
C ESUNTION 15
 101 A(9) = - GM1 / MDTS01 ** 2
     \Lambda(10) = GM1 / MDTS01 ## 3
     C\Delta 12 = A(9) + 4001
```

```
SMPERT
                                        DATE = 75157
                                                           11/58/40
     CB12 = A(10) + MDD1 ++2
     IF(IFLG2.EQ.1)A(6)=PD1/PF01
     IF (IFLG2. NE.1) A (6) =PD1/PCT01
     \Delta(7) = \Delta(5) ** TOG
\Delta(8) = \Delta(6) ** GP10G
     NU10 = TOS * A(7) - GP106 * A(8)
     NU20 = TMGOGS * A(7) - GP02GS * A(8)
  IF(JFLG2)94.9999.93
93 CC12 = NU10 / PD1 / PE01
     CO15 = NOSD / ( BO1 + BEO1 ) ++ 5
     GO TO 95
  94 CC12= NU10/PD1/PCT01.
     CD12=NU2D/(PD1*PCT01)**2
   95 IF (IFLG2. NE.1) GO TO 92
C EQUATION 13
     CA13 = A(9) * MDCT1
CB13 = A(10) * MDCT1 ** 2
     B(1) = PN1 / PE01
     B(S) = B(I) \Rightarrow TOG
     B(3) = B(1) ** GP10G
     NU1 N=TOG#3(2) -GP10G#8(3)
     NU2N=TMG0GS*B(2)-GP02G5*B(3)
     CC13=NU1N/PV1/PF01
     CD13=NU2N/(PN1*PE01)**2
C EQUATION 14
     CA14 = -1.D0

CB14 = T5A * SGOR / DSQRT( TE01 ) * A2

CC14 = -0.5D0 * PE01 * CB14 / TE01
C EQUATION 17
   92 GO TQ(96,98), IFLG9_____
  98 CA17842
  C917=-R*TC701
     GO TO 97
  96 CA17 = RP1
     C917 = - 6 * PP1
C EQUATION 18 ..
  97 CA19= -1.00
     C318 = 0.500
CC19 = RPT1 - RP1
C EQUATION 19
     CA19 = 9 # RP1
     CA19 = R # TP1
     CC19 = -A2
[F(IFLG2)2,9999,3
C SUPERSONIC ARANCH
2 IF(IDEHUG.E0.03)G0 T0 70
     CA1 = INFIN
     CAL = INFIN
     CC1 = INFIN
     COL = THEIN
     CA7 = INFIN
     CB7 = TNFIN
     CC7 = THEIN
     CAR = INFIN
```

	SMPERT	DATE = 75157	11/59/40
CAR = INFIN		·	
CA9 = TNFIN			
CB9 = INFIN			
CC6 = INFIN	•		
CALO = INFIN			
CB10 = INFIN			
CB11 = INFIN		•	
CB12 = INFIN			
CA13 = INFIN CB13 = INFIN			
CC13 = INFIN			
CD13 = INFIN			
CA14 = INFIN			
CB14 = INFIN			
CC14 = TNFIN			
C EQUATION 11			
70 SALP11 = -CC11	/ CA11		
C FRUATION 1A			
SALP18 = -C919	/ CAIM		
SBET18 = -CC18	/ CA18		
A(1) = -1.00 /	CA19 # SALP18 # A(1)		
S9ET19 = CC19	* A(1) * SAET1A * A(1)		
C EQUATION 2	* 35E 116 * A(1)		
h(2) = -1.00	C45		
SALP2 = (CB2 +	CD2 # SBET19) # A	(2)	
59ET2 = C22 *	SALP19 # A(2)		
SGAM2 = (CC2 #	FAPE + CD2 # SGAMI	9) # A(2)	
C FRUATION 3			
$\Lambda(3) = -1.00 /$	CA3A(3)		
SRET3 = C03 *	A(3) EAF # A(3)		
SGAM3 = CA3 *	EAF 4 A (3)		
C FOUNTION 17	C417		
$\Delta(4) = -C317 / C31917 / C319$	CAIT		
546717 = 54671 546717 = 54671	8 4 A(4)		
C FQUATION 4	Ct		
SALP4 = CC4 *	SALPII	. Administration	
SALP5 = CA5 +	CB5 * SRET2		
S9FT5 = C35 #	SALPE + CC5 * SALPE	3	
SGAMS = CC5 #	SBETA ,.		
SEPS5 = C35 *	SGAM2 + CC5 # SGAM3	. + CF5	
C FRUNTION 4 CONTINU			
S9FT4 = C34 *			
SGAM4 = CB4 *	28E 117		
C FOUNTION 5 CONTINU	ED		
51015 = 54LP5	+ SALP17 + SRETS		
A(5) = -1.00 /		1	
SZET5 = 53AM5	" A ()/		
SET45 = C75 *	4 SBFT17 + SFPS5)	8 A (5)	
C EDUATION 4 CONTINU	TOTALLE POPPODE	* M/J)	
C SACULTOA & COALTAD	59		

	SMPFRY	DATE = 75157	11/58/4
SETAS = CAS + SRI	FT4 # SFTA5	· · · · · · · · · · · · · · · · · · ·	
	SZFI5 + SALP4)	/ SFTAA	
	SKAP5 + SGAM4)		
EQUATION 6		, SE 1 A 4	
A(6) = -C96 / CA			
SALP6 = SEPS4 #			
\$9FT6 = \$7ET4 * .	A (0)		
FOUNTIANCE	20201 ## 6	ENDOUGH	
SGA412 = CD12 # (SCIOI AM S		
		ALP6) / SGAM12	-
SBET12 = CA12 * 1			
IFLIDEBUG.EQ.031	GO TO 80		
SEPS3 = INFIN			
SGAM6 & INFIN			
SEPS6 = INFIN			
SZET6 = IVFIN			
SETA6 = IVFIN			
SIOI6 & INFIN			
SLAME INFIN			
SMU6 = INFIN			
SNU6 = INFIN	A CONTRACTOR OF THE CONTRACTOR		
SALP7 = INFIN	•	• .	
SBET7 = INFIN			
SGAM7 = INFIN			
SEPS7 E INFIN			
SZETZ B INFIN			
SETAT & IVFIN			
SIOIT & INFIN			
SKAP7 = INFIN			
SALPO E IVEIN			
SALP9 = IVFIN			
SBET9 = INFIN			
SGAM9 & INFIN			
SZET9 s INFIN	";		
SALP10 = INFIN			
SBET11 = INFIN			
SALPI3 = INFIN	•		
SBEIL3 = INFIN			
SGAML3 = INFIN			
SALPIA = INFIN			
SBFT14 = INFIN			
SGAMIA = INFIN			
SEPSIA = INFIV			
SZETIA E INFIN			
SETAL = INFIN		00000000000000000000000000000000000000	
SIOTIA = INFIN			
SGAMIT & INFIN			
SEPSI7 = INFIN			
30 A(7) = 0.500 + S	ALP12		
	** 2 - SAETIZI		
Y(1) = -A(7) + Y	(2)		
Y(2) = -A(7) - Y			

```
DATE = 75157
                                          SMPERT
                                                                                                       11/58/40
           DO 200 K = 1.2
          IF()ABS(DIMAG(Y(K))).GI.1.D-12)GO TO 200
B(15) = DREAL(Y(K))/PD1
       WRITE(IDEBUG.9)K,Y(1),Y(2),A14.8(15)
9 FORMAT(* Ke*,Il.* Y=*,4E13.5.* A14=*,E13.5.* B(15)=*,E13.5.*
          IF ()ABS (B(15)) .GT.DABS (A14)) GO TO 200
          I = [ +]
FPS(12) = Y(K)
    200 CONTINUE
     IF(I.LF.1)GO TO 205
           IF ()ARS (DRFAL (Y(2))) .LT. DARS (DREAL (Y(1)))) Y(1) = Y(2)
          EPS(12)=Y(1)
           [=]
    205 IFLG8=0
          K = 1
           IF(1.EQ.1)60 10 230
           WRITE (TOUT, 210) T
    210 FORMAT (*05MPERT (SUPERSONIC) : *, 13, * SOLUTIONS FOUND *)
           IDEBUG = 06
          IFLG8 = 1
          K = 0
    250 K=K+1
          1F(4.GT.2)GO TO 60
          EPS(12) = Y(K)
                                  C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

 C. COMPUTE INCREMENTS
    230 EPS(6) = SALP6 * EPS(12) + SRET6 ______
EPS(4) = SEPS4 * FPS(12) + SZET4
          EPS(5) = SZET5 * EPS(12) + SETA5 * FPS(4) + SKAP5
EPS(17) = SALP17 * FPS(5) + SBET17
   EPS(3) = SALP3 * EPS(17) + SRET3 * FPS(12) + SGAM3

EPS(2) = SALP2 * FPS(17) + SRET2 * EPS(5) + SGAM2

EPS(19) = SALP19 * EPS(5) + SBET19 * EPS(17) + SGAM19

EPS(18) = SALP18 * FPS(5) + SRET18
          EPS(11) = 5ALP11 * EPS(12)
          EPS(1) = 0.00
          EPS(7) = 0.00
          EPS(8) = 0.00
          EPS(9) = 0.00
          EPS(10) = 0.00
          EPS(13) = 0.00
          EPS(14) = 0.00
          WRITE (IDEBUG . 20) (1.1=1.24) . EPS
 C COMPUTE PROPERTY VALUES
          DO 240 I = 1,19 ____
          J = IEXTP()
          IF (J. EQ. 0) GO TO 240
          V(J+1) = V(J+2) + FPS(I)
    240 CONTINUE
          TEO=TCTO
          ACM - OUM = 3CM
          PEO = MOE * DSQRT(TFO) / (41 * A2 * AE)
          GO TO(239,238) (IFLG9
```

	•	SMPERT	DATE = 75157	11/58/40
	T = PPT1 * (RP			
	'Î = PPÎ # Δ2 #	OOR / RPT		
	70 237			
	Parcio	S 1		·
	97 # 8 # 798=79			
	0 = PF0 * A2 *	. DOK / LEO		
		-21 AND / THE TO / 2/	1) FQ 0)) GO TO 241	
	6sJ16+1	MILL MINISTER A LINE IN A LEVEL A LEVE	C.A Q L D D D D D D D	· · · · · · · · · · · · · · · · · · ·
	LL PRINT		·	
	6=J16=1			
	. (SAS (TUOI) 3TI			
	(* C + *) TAPA	•		
		AND.(IDEBUG.EQ.0:	B))RETURN	n alaman da sa
	ITE(IDEAUG*35)			
	PEDTUANA 7784 D			
	PERTURBATION R			
	250 Y = 1.19			
-	I) = INFIN			
		(2) + CB2 + EPS()	7) + CC2 # EAPE + CD2	* EPS(19)
			CC3 * FPS(17) + CD3 *	
Q (4) = CA4 # EPS	(4) + CB4 * EPS(1	7) + CC4 * EPS(11)	
		(5) + CB5 + EPS(2	2) + CC5 # FPS(3) + CD	5 # FPS(4)
	CE5			
		(6) + CB6 * EPS(4	<u> </u>	
	7) = INFIN			
	8) = INFIN 9) = INFIN			,
	10) = INFIN			
		PS(11) + CC11 # E	PS (12)	
	12) = CA12 * F	PS(6) + CC12 * PC	TO1 * FPS(12) + CD12 *	PCTO1 ** 2
	5PS(12) ** 2			
Q (131 = INFIN			
	14) = INFIN			
		$\frac{PS(17) + C917 * E}{PS(17) + C917}$		
		PS(18) + CB18 * E		
	TTE (TDE 3UG . 13)		PS(18) → CC19 * FPS(17	
_	116/11/62004121	(101-1051) 013		•
	RESIDUALS	**************************************		
C =======	~~~~~			
00	40 7=1,19			
	11=1.070			
		APE/DSQRT(TP) A2		
		*(PP-PD*A16)*A2		
	4) =MDPT+AWOKW#		NDV	
	9) = MDD + MD b L = MDI	<u>OPE+MDF+MDPT)*DTC</u> CT	/P V	·
	(IFLG2) 254,999			
	11)=PT=(1.D0=A			The state of the s
	TO 256			
	11)=PT=0.5D0*(PN+PD)		
	12)=1.DO/PCIO			
	13) = TOG 41 0 MDTS			
Q (13) =WDD##5-8(1)	3) * ((PD*B(121) * * T	OG-(PD*8(12))**GP10G)	

	SMPERT	DATE = 75157	11/58/40
60 10	(251,252), IFLG9		
	PP-PPT1*(RP/RPT1)**G		
G0 T0			
	PP-RP4R4TP/A2		
	PP-0.500#(RPT+RPT1)		
	TP-PP#OOR/RP#A2		
GO TO			
	* & c & c & a & a & a & a & a & a & a & a		**********
C SUBSONIC !	5年中国17月1 5年中国17月		

	INSTANTS FOR SOLUTION		
CEQUATION			
	P = -CB19 / CA19		
	9 = -CC19 / CA19		
C EQUATION :			
541 D2	= -1.D0 / CA2 = (CB2 + CD2 * SBFT19) *	P(A)	
546~2 50F72	= C)2 * SALP19 * B(4)	0.047	
	= CC2 * EAPE * B(4)		Wearen.
C EQUATION			
	= C35 * SALP2		
	= C95 * SBET2		
	= C85 * SGAM2 * CE5		
C EQUATION !		10 4 1 Th. 10 Th.	
	= -CA8 / CB8		
C EQUATION			
	B = -CA18 / CB18 B = -CC18 / CB18		
C EQUATION !			
	= CA5 # SALP18 * SBETS		
	1.00 / SKAP5		
	= - SALP5 * B(5)		
SZFT5	z = CC5 # B(5)		
SETA5	= - CD5 * B(5)		
	= - (CA5 * SBET18 + SGAM5) * B(5)	
C EQUATION	0		
C EQUATION	= - CB10 * SALP8 / CA10		
	= - CB11 / CA11		
	= - CC11 / CA11	•	
C EQUATION			
	" = CA17 +CB17 # SEPS5		
	=CB17 / SEPS17		
	7 = SZET5 * B(6)		
	7 = SETA5 # B(6)		
	' = SIOT5 * B(6)		
C EQUATION :			
	= -1.D0 / CA1 = C31 * B(7)		
	= C31 * S(7) = C31 * SALP10 * B(7)		
	= CC1 # EAE # B(7)	1.00	
SGAM1 : EQUATION			

SMPERT	DATE = 75157	11/58/40
The second secon		
54LP3 = CC3 * SRET17 * B(8)		
SSET3 = CD3 + B(8)	9 M PAR 1 M PA 101	
SGAM3 = (CC3 * SGAM17 + CR	3 * EAF) * H(8)	
C EQUATION 4 SFP54 = CA4 + CR4 * (SBFT1	7 A CALDIT & CALDO:	
$8(9) = -1 \cdot 00 / SEPS4$	1 4 DWELL . DWELD !	
SALP4 = (CR4 * SALP17 * SA	+ CC4 * SBFT11)	# B(9)
59ET4 = CC4 * 5ALP11 * 8(9)		
SGAM4 = C84 + (SALP17 + SG		
C EQUATION 6		
B(10) = -CR6 / CA6		
SALP6 = SALP4 * B(10)		
SBET6 = SBET4 # B(10)		
SGAM6 = -CC6 / CA6		
SEPS6 = SGAM4 * B(10)		
C EQUATION 7 SZET7 = CA7 * SGAM6 + CC7 *	CDETI	
B(11) = = 1.00 / SZET7.	SBE 11	
SAL D7 = 1 CA7 # SALP6 # CD7	" (SRET3 + SALP3 # SALP4	11 # B(11)
SRETT = (CAT * SRETG * CRT	# SALP3 # SRETA 1 # 8(11)	// " 0118/
SGA47 = CC7 * SALP1 *B(11)		
SEPS7 = (CA7 + SEPS6 + CB7	* SGAM3 + CC7 * SGAM1 + C97	SALP3 *
9 5GAM4) # 8 (11)		
C EQUATION 6 CONTINUED		
SZFT6 = SALP6 + SGAM6 * SAL	7	
SETA6 = SBET6 + SGAM6 # SBE	T7	
SIUT6 = SGAM6 * SGAM7		
SKAP6 = SEPS6 + SGAM6 * SEP	57	
C EQUATION 14	•	
B(12) = CC16 * SALP10	.7	
5ALP14 = CR14 + 8(12) * SGA	M /	
SBET14 = 3(12) * SALP7 SGAM14 = 3(12) * SBET7		
SEPS14 = 9(12) * SEPS7		
C EQUATION 9		
8(13) = C39 * SALP8		
SZFT9 = C49 + B(13) * SGAM7		
SGAM9 =-B(13) / SZET9		
SALP9 = SGAM9 * SALP7		
SBET9 = SGAM9 * SBET7		
SGA M9=SGA M9 SEPS7		
C EQUATION 14 CONTINUED		
B(14) = -1.00 / CA14	CDETTA & M DATAS	
S7FT14 = (SALP14 * SALP9 + SETA14 = (SALP14 * SBET9 +		
	SEPS14) * B(14)	
C EQUATION 6 CONTINUED	3LT 319 1	
SLAM6 = SZET6 + SIOT6 * SALI	9	
SMU6 = SETA6 + STOT6 * SHE		
SNU6 = SKAP6 + SIDI6 + SGAM		
C EQUATION 7 CONTINUED		
SETAT = SALPT + SGAMT + SAL		
STOTY - SRETY & SCAMY & CDE	70	
SKAP7 = SEPS7 + SGAM7 + SGAI	19	
C EGNATION 15		
SALP12 = PEO1 - PD1 * SALP9		

```
SMPERT
                                               DATE = 75157
                                                                       11/58/40
      SAFT12 = -PD1 # SAFT9
      SGA412 = -PD1 * SGAM9
      SA2 = CD12 * SALP12 ** 2
SB2 = CA12 * SLAM6 + CB12 * SZET14 + CC12 * SALP12 + 2.D0 * CD12 *
     B SALP12 # SGA412
      SC2 = 2.00 * CD12 * SALP12 * SBET12 .

SD2 = CA12 * SMU6 + CR12 * SETA14 + CC12 * SBET12 + 2.00 * CD12 *
     SRET12 . SGAM12
      SEZ = COIZ * SRETIZ ** Z
      SF2 = CA12 * SNU6 + CA12 * STOT14 + CC12 * SGAM12 + CO12 *
     9 5GAM12 ## 2
C EQUATION 13
      SALP13 = - PN1 # SALP9
      SBFT13 = PE01 - PN1 * SRFT9
      SGAM13 = - PN1 SGAM9
      543= C013 # 5ALP13 ## 2
      SB3 = CA13 * SETA7 + CB13 * SZET14 + CC13 * SALP13 + 2.00 * CD13 *
     9 SALP13 # SGAM13
      SC3 = 2.00 * C013 * SALP13 * SRET13
      SD3 = CAl3 * SIGIT + CBl3 * SETA16 + CCl3 * SEFTI3 + Z-D0 * CD13 *
     9 SRFT13 4 SGAM13
      SE3 = CD13 * SBET13 ** 2_
      SF3 = CA13 * SKAP7 * CR13 * STOT14 * CC13 * SGAM13 * CD13 *
     9 5GAM13 ** 2
      II=IDERUG
      CALL OSIMUL (SAZ. SBZ. SCZ. SDZ. SEZ. SFZ. SA3. SR3. SC3. SD3. SF3. SF3. II. X
     1 •Y)
(-----
C SORT ROOTS
(°
      I = 0
      00 15 K=1.4
      IF ((DARS()IMAG(X(K))).GT.1.D-12).OR.(DARS(DIMAG(Y(K))).GT.1.D-12))
     1 GO TO 15
      8(14)=DREAL(X(K))/PD1
      B(15)=DREAL(Y(K))/PNI
      WRITE (INERUG. 69) K. X (K) . Y (K) . A14 . R (14) . B (15)
  69 FDRMAT ( = 1 + 11 + 1 X= 1 + 2F13 - 5 + 1 Y= 1 + 2E13 - 5 + 414 = 1 + F13 - 5 +
     1 + 3(14) + 3(15) = + • 2E13.5)
       IF ((DARS(B(14)).GT.DABS(A14)).OR.(DABS(B(15)).GT.DABS(A14)))
     1 GO TO 15
      [ = [ + ]
      JJ(I)=K
      EP5(12)=X(K)
      EPS(13) = Y(K)
   15 CONTINUE
      IF(1.LF.1)60 TO 340
      K=T
      B(14) = x(JJ(1))
      9(15)=Y(JJ(1))
      DO 320 1=2.K
      J=JJ(I)
      IF ()ABS(DREAL(X(J))).GT. DARS(R(14)))GO TO 300
      11=J
      B(14) = x(J)
  300 IF (DABS (DREAL (Y (J))) .GT. DARS (B (15))) GO TO 320
```

			SMPERT	DATE	= 75157	1	1/58/40
	12=J						
	B(15)=Y(J)						
320	CONTINUE						
	IF.LIL. NE . I	2)60 10 34	0				
	I = 1						
	EPS(12) =X(<u> </u>	· · · · · · · · · · · · · · · · · · ·				
	EPS(13)=Y(
360	IFLG8=0						
	K=1						
	WRITE (TOUT	, 16) î					
16		MPERT: 1.13	soculion	NS FOUND 1)			
	IDF3UG=06						
				· · · · · · · · · · · · · · · · · · ·			
	K=0						
18				···		~~~~~~~	
	IF (K.GT.4)						
	EDZITS) = V	·K)					
_	F 1 2 (12) = 1 (K)	* .				
Canada	EPS(13)=Y(FUEC					
	POIS TACKE						
			. (12) . CMU6	# EDE / 131	. CNII4		
			(12) → SMU6 (12) → SIOT				
			5(12) + SBET				
			PS(12) + SE				
			(12) + SBET				
			S(4) SBET3				
			(9) + SBET1				
			PS (3) + SBE				
			PS(13) + SBE			·	
	EPS(10) =						
	EPS(18) =	SEPSS # EF	S(17) + SZE	75 * EPS(3)	+ SETA5 *	EPS(4)	÷
	9 S1015						
	EP5(5) = S	ALPIS # FP	S(18) + SBE1	TIA	•		
	EPS(8) = 5	ALPS # EPS	(7)				
			(17) ♦ SBET				
			PS(1A) + SBE	<u> </u>	17)		
			=1,24),EPS				
			FPS(0,12,0)		* *,8E16.8))	
C COM	PUTE SMALL.		ON PROPERTY				
C							
		19					
25	J=JFXTP(1)						
20	V(J,1)=V(J	9 <) + E P > (1)					
. 30	CONTINUE GD TO(341.	3431 - 151 00					
241			RPTI) ** G				
341	TPT = PPT						
	60 TO 343						
342	TPT=ICTO	***					
376		TPT/A2					
343	PCTO = PEO						
	TCTO = TEO						

REO = PEO * 00R / TEO * A? RCIO = REO ACTO = RSART(GR * TCTO) MDCIO = RCIO * ACTO * CTA MD = MACH(PD) MN = MACH(PD) MN = MACH(PN) IF ((INSTR(23).VE.2).AND.(INSTR(24).E0.0))GO TO 28 J16=J16=J J16=J16=1 CALL PRINT J16=J16=1 WHITE (TOUT.29) 29 FORMAT ((1.0.1) 21 F ((IF) GB.FO.0).AND.(IDERUG.FO.03))RETURN WHITE (IDERUG.F2)V 32 FORMAT ((1.0.1) 32 FORMAT (1.0.1) 35 F (IF) = SECTION OF			SMPERT	DATE =	75157	11/58/40
ACTO = DSSRT(GR * TCTO) MDCTO = RCTO * ACTO * CTA MD = MACH(PD) MN = MACH(PD) MN = MACH(PD) MN = MACH(PD) IF ((INSTR(23).VE.2).AND.(INSTR(24).E0.0))GO TO 28 JI6=J16=J CALL PRINT JI6=J16-1 WRITE(TOUT.29) 29 FORMAT(1.4.2). 28 IF ((IFI.68.F0.0).AND.(IDERUG.E0.03))RETURN WRITE(IDERUG.E3.2)V 32 FORMAT(1.4.2). 32 FORMAT(1.4.2). 33 FORMAT(1.4.2). 34 FORMAT(1.4.2). 35 G(I)=1.D70 0(1) = CA1 * EPS(1) * CR1 * EPS(9) * CC1 * FAE * CD1 * EPS(10) 0(1) = CA1 * EPS(1) * CR3 * EPS(17) * CC2 * FAPE * CD2 * EPS(19) 0(3) = CA3 * EPS(2) * CR3 * EPS(17) * CC2 * FAPE * CD2 * EPS(19) 0(3) = CA3 * EPS(3) * CR3 * EAF * CC3 * EPS(17) * CD3 * EPS(11) 0(5) = CA5 * EPS(6) * CR3 * EPS(7) * CC5 * EPS(3) * CD5 * EPS(4) * **CE5.** 0(6) = CA5 * EPS(6) * CR6 * EPS(17) * CC6 * EPS(11) 0(1) = CA1 * EPS(10) * CR7 * EPS(3) * CC7 * FPS(11) 0(8) = CA5 * EPS(6) * CR6 * EPS(17) * CC6 * EPS(17) 0(1) = CA1 * EPS(10) * CR9 * EPS(8) 0(1) = CA1 * EPS(10) * CR9 * EPS(8) 0(1) = CA1 * EPS(10) * CR9 * EPS(8) 0(1) = CA1 * EPS(11) * CR1 * EPS(13) * CC7 * FPS(11) 0(1) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(12) 0(11) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(12) 0(12) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(12) 0(12) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(12) 0(12) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(12) 0(12) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(12) 0(13) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(13) * CC1 * EPS(12) 0(13) = CA1 * EPS(17) * CR1 * EPS(18) * CC1 * EPS(18) 0(14) = CA1 * EPS(17) * CR1 * EPS(18) * CC1 * EPS(10) 0(17) = CA1 * EPS(17) * CR1 * EPS(18) * CC1 * EPS(10) 0(17) = CA1 * EPS(17) * CR1 * EPS(18) * CC1 * EPS(10) 0(17) = CA1 * EPS(17) * CR1 * EPS(18) * CC1 * EPS(17) WRITE(IDERUG.13)(1,T=1-20.0) 0(13) = CA1 * EPS(19) * CR1 * EPS(18) * CC1 * EPS(17) WRITE(IDERUG.13)(1,T=1-20.0) 0(13) = CA1 * EPS(19) * CR1 * EPS(18) * CC1 * EPS(17) WRITE(IDERUG.13)(1,T=1-20.0) 0(1) = MAPF-A1PEONAE/DSORT(TE0)*A2 0(2) = MMPRE*A1PEONAE/DSORT(TE0)*A2 0(3) = MMP*AFEONAE*(PPP-PD*A15)*A2 0(3) = MMP*AFEONAE*(PPP-PD*A15)*A2	REO =	PE0 # 00R /	TEO # A2	· · · · · · · · · · · · · · · · · · ·		
ACTO = DSSRT(GR * TCTO) MDCTO = RCTO * ACTO * CTA MD = MACH(PD) MN = MACH(PD) MN = MACH(PD) MN = MACH(PD) IF ((INSTR(23).VE.2).AND.(INSTR(24).E0.0))GO TO 28 JI6=J16=J CALL PRINT JI6=J16-1 WRITE(TOUT.29) 29 FORMAT(1.4.2). 28 IF ((IFI.68.F0.0).AND.(IDERUG.E0.03))RETURN WRITE(IDERUG.E3.2)V 32 FORMAT(1.4.2). 32 FORMAT(1.4.2). 33 FORMAT(1.4.2). 34 FORMAT(1.4.2). 35 G(I)=1.D70 0(1) = CA1 * EPS(1) * CR1 * EPS(9) * CC1 * FAE * CD1 * EPS(10) 0(1) = CA1 * EPS(1) * CR3 * EPS(17) * CC2 * FAPE * CD2 * EPS(19) 0(3) = CA3 * EPS(2) * CR3 * EPS(17) * CC2 * FAPE * CD2 * EPS(19) 0(3) = CA3 * EPS(3) * CR3 * EAF * CC3 * EPS(17) * CD3 * EPS(11) 0(5) = CA5 * EPS(6) * CR3 * EPS(7) * CC5 * EPS(3) * CD5 * EPS(4) * **CE5.** 0(6) = CA5 * EPS(6) * CR6 * EPS(17) * CC6 * EPS(11) 0(1) = CA1 * EPS(10) * CR7 * EPS(3) * CC7 * FPS(11) 0(8) = CA5 * EPS(6) * CR6 * EPS(17) * CC6 * EPS(17) 0(1) = CA1 * EPS(10) * CR9 * EPS(8) 0(1) = CA1 * EPS(10) * CR9 * EPS(8) 0(1) = CA1 * EPS(10) * CR9 * EPS(8) 0(1) = CA1 * EPS(11) * CR1 * EPS(13) * CC7 * FPS(11) 0(1) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(12) 0(11) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(12) 0(12) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(12) 0(12) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(12) 0(12) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(12) 0(12) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(12) 0(13) = CA1 * EPS(11) * CR1 * EPS(13) * CC1 * EPS(13) * CC1 * EPS(12) 0(13) = CA1 * EPS(17) * CR1 * EPS(18) * CC1 * EPS(18) 0(14) = CA1 * EPS(17) * CR1 * EPS(18) * CC1 * EPS(10) 0(17) = CA1 * EPS(17) * CR1 * EPS(18) * CC1 * EPS(10) 0(17) = CA1 * EPS(17) * CR1 * EPS(18) * CC1 * EPS(10) 0(17) = CA1 * EPS(17) * CR1 * EPS(18) * CC1 * EPS(17) WRITE(IDERUG.13)(1,T=1-20.0) 0(13) = CA1 * EPS(19) * CR1 * EPS(18) * CC1 * EPS(17) WRITE(IDERUG.13)(1,T=1-20.0) 0(13) = CA1 * EPS(19) * CR1 * EPS(18) * CC1 * EPS(17) WRITE(IDERUG.13)(1,T=1-20.0) 0(1) = MAPF-A1PEONAE/DSORT(TE0)*A2 0(2) = MMPRE*A1PEONAE/DSORT(TE0)*A2 0(3) = MMP*AFEONAE*(PPP-PD*A15)*A2 0(3) = MMP*AFEONAE*(PPP-PD*A15)*A2	RCIO =	REO				
MD = MACH(PD) MN = MACH(PN) IF ((INSTR(23), NE.2), AND, (INSTR(24), EQ.0))60 TO 28 II6=II6=I II6=II6-I CALPRINT JI6=II6-I WRITE(IOUT.29) 29 FORMAT((1.021) 28 IF ((IF)68,F0.0), AND, (IDERUG.F0.03))RETURN WRITE(IDEBUG.32)V 32 FORMAT(10SMALL) PERTURBATION PROPERTIES*, 13(/**,8E16.8)) C==================================	ACTO =	nsort(GR #	TCTO)			
MN = MACH(PN) If ((INSTR(23).NE.2).AND.(INSTR(24).E0.0))GO TO 28 J16=J16+1 CALL PRINT J16=J16+1 WRITE(IOUT.29) 29 FORMAI(1-0.9) 29 FORMAI(1-0.9) 29 FORMAI(1-0.9) 29 FORMAI(10.9) 32 FORMAI(10.9) 32 FORMAI(10.9) 32 FORMAI(10.9) 32 FORMAI(10.9) 33 Fal.10 35 G(I)=1.07 36 (I)=1.07 36 (I)=1.07 37 G(I)=1.07 38 G(I)=1.07 39 G(I)=1.07 30 G(I)= CA1 * EPS(I) * CB1 * EPS(9) * CC1 * FAE * CD1 * EPS(10) 30 G(I)= CA2 * EPS(2) * CB2 * EPS(17) * CC2 * FAPE * CD2 * EPS(19) 31 CA3 * EPS(3) * CB3 * EPS(17) * CC4 * EPS(11) * CD3 * EPS(12) 32 G(I)=1.07 33 CA3 * EPS(3) * CB3 * EPS(17) * CC5 * EPS(3) * CD5 * EPS(4) * 34 CA3 * EPS(4) * CB4 * EPS(17) * CC6 * EPS(11) 35 G(I)=1.07 36 CA5 * EPS(6) * CB5 * EPS(3) * CC5 * EPS(3) * CD5 * EPS(4) * 36 CA5 * EPS(6) * CB6 * EPS(3) * CC7 * EPS(1) 37 CA7*EPS(6) * CB7 * EPS(3) * CC7 * EPS(1) 38 G(I)=1.08 39 (I)=1.08 30 CA1 * EPS(1) * CB1 * EPS(3) * CC7 * EPS(1) 30 CA1 * EPS(1) * CB1 * EPS(3) * CC7 * EPS(1) 30 CA1 * EPS(1) * CB1 * EPS(3) * CC7 * EPS(1) 31 CA1 * EPS(1) * CB1 * EPS(3) * CC7 * EPS(1) 31 CA1 * EPS(1) * CB1 * EPS(3) * CC7 * EPS(1) 31 CA1 * EPS(1) * CB1 * EPS(3) * CC7 * EPS(1) 31 CA1 * EPS(1) * CB1 * EPS(3) * CC1 * EPS(4) * CD1 * EPS(2) 31 (1) * CA1 * EPS(1) * CB1 * EPS(4) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(4) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(4) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(4) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(4) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(4) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(4) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(4) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(1) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(1) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(1) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(1) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(1) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(1) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(1) * CC1 * EPS(1) 31 (1) * CA1 * EPS(1) * CB1 * EPS(MOCTO	= RCTO # AC	TO # CTA			
IF ((INSTR(23) NE.2).AND.(INSTR(24).E0.0))GO TO 28 J16=J16=J. CALL PRINT J16=J16=L WATTE (IOUT.29) 29 FORMAT ((1-0):1. 28 IF ((IF1.68.F0.0).AND.(IDERUG.E0.03))RETURN WATTE (IDERUG.32)V 32 FORMAT ((1-0):1. 32 FORMAT ((1-0):1. BY THE (IDERUG.32)V 33 FORMAT (1-0):1. C SMALL PERTUBBATION RESIDUALS D S S S S S S S S S S S S S S S S S S						
J16=J16+1 CALL PPINT J16=J16-1 WRITE(IOUT.29) 29 FORMAI(:0.21). 28 IF((IFLGB.FG.0).AND.(IDEBUG.FG.03))RETURN WRITE(IDEBUG.32)V 32 FORMAI(:0.5MALL PERTURBATION PROPERTIES:,13(/' ',8E16.8)) C						
CALL PRINT JI6=JI6-1 WRITE(1OUT.29) 29 FORMAI(1.2.1). 28 IFI (IFI.GB.GR.0).AND.(IDERUG.EQ.03))RETURN WRITE(IDERUG.32)V 32 FORMAI(1.9ERTURRATION PROPERTIES*,13(/**,8E16.8)) C==================================			2) . AND . (INSTR	(24) .EQ.0))GO 1	0 28	
J16=J16-1 WRITE(IOUT.29) 29 FORMAT(:.2.1). 28 IF((IFLGG.FG.0).AND.(IDEBUG.EQ.03))RETURN WRITE(IDEBUG.32)V 32 FORMAT(:0SMALL PERTURBATION PROPERTIES*,13(/**,8E16.8)) C==================================						
WRITE(10UT,29) 29 FORMAT(***)-21. 28 IF((IFI, GB.FQ.0).AND.(IDERUG.EQ.03))RETURN WRITE(IDERUG.32). 32 FORMAT(***)						
29 FORWAIT(1*01) 28 IF((IFL 68*FQ.0).AND.(IDERUG.EQ.03))RETURN WRITE(IDEBUG.32)V 32 FORWAIT(05MALL) PERTURBATION PROPERTIES*,13(/* *,8E16.8)) C==================================						
28 IF ((IFL 68,F0.0).AND. (IDERUG.E0.03)) RETURN WRITE (IDEBUG.32) V 32 FORMAT(*0SMALL) PERTURBATION PROPERTIES*,13(/* *,8E16.8)) C==================================						
WRITE (IDESUGA 22) V 32 FORMAT (**) SMALL PERTURBATION PROPERTIES*,13(/**,8E16.8)) C==================================			ND. CIDEBUG.EQ.	.03)) RF TURN		-,
32 FORMAT(*OSMALL PERTURBATION PROPERTIES*,13(/**,8E16,8)) C==================================						
C SMALL PERTURBATION RESIDUALS C===================================	32 FORMAT	(OSMALLI PE	RTURBATION PRO	PERTIES . 13(/	*,8E16.8))	
DO 35 T=1.19 35 Q(I)=1.070 Q(I) = CA1 * EPS(I) * CB1 * EPS(9) * CC1 * FAE * CD1 * EPS(10) Q(2) = CA2 * FPS(2) * CB2 * EPS(17) * CC2 * FAPF * CD2 * EPS(19) Q(3) = CA3 * EPS(3) * CB3 * EAF * CC3 * EPS(17) * CD3 * FPS(12) Q(4) = CA4 * EPS(4) * CB4 * EPS(17) * CC4 * FPS(11) Q(5) = CA5 * EPS(5) * CB5 * EPS(2) * CC5 * EPS(3) * CD5 * EPS(4) * @ (E5 Q(6) = CA5 * EPS(6) * CB7 * EPS(3) * CC7 * EPS(3) * CD5 * EPS(4) * @ (C5) Q(7) = CA7*EPS(6) * CB7 * EPS(3) * CC7 * EPS(1) Q(8) = CA9 * EPS(9) * CB9 * EPS(8) Q(9) = CA9 * EPS(9) * CB9 * EPS(8) Q(10) = CA10 * EPS(10) * CB10 * EPS(8) Q(11) = CA11 * EPS(11) * CB11 * EPS(13) * CC11 * EPS(12) B(15) = PF01 * EPS(12) * PD1 * EPS(9) Q(12) = CA12 * EPS(6) * CB12 * EPS(14) * CC12 * B(15) * CD12 * @ A(15) = PC01 * EPS(13) * PN1 * EPS(9) Q(13) = CA13 * EPS(7) * CB13 * EPS(14) * CC13 * B(16) * CD13 * @ B(16) = PC01 * EPS(13) * CB14 * EPS(9) Q(17) = CA17 * EPS(17) * CB17 * EPS(18) Q(19) = CA19 * EPS(19) * CB19 * EPS(18) Q(19) = CA19 * EPS(19) * CB19 * EPS(18) Q(19) = CA19 * EPS(19) * CB19 * EPS(18) C====================================						
DO 35 T=1,19 35 Q(1)=1,070 Q(1) = CA1 * EPS(1) * CB1 * EPS(9) * CC1 * FAE * CD1 * EPS(10) Q(2) = CA2 * EPS(2) * CB2 * EPS(17) * CC2 * FAPF * CD2 * EPS(19) Q(3) = CA3 * EPS(3) * CB3 * EAF * CC3 * EPS(17) * CD3 * EPS(12) Q(4) = CA4 * EPS(4) * CB4 * EPS(17) * CC4 * EPS(11) Q(5) = CA5 * EPS(4) * CB5 * EPS(2) * CC5 * EPS(3) * C05 * EPS(4) * Q(5) = CA5 * EPS(6) * CB6 * EPS(2) * CC5 * EPS(3) * C05 * EPS(4) * Q(6) = CA5 * EPS(6) * CB6 * EPS(3) * CC7 * EPS(1) Q(7) = CA7*EPS(6) * CB7 * EPS(3) * CC7 * EPS(1) Q(8) = CA9 * EPS(1) * CB7 * EPS(8) Q(9) = CA9 * EPS(1) * CB1 * EPS(13) * CC1 * EPS(1) Q(10) = CA10 * EPS(10) * CB10 * EPS(8) Q(11) = CA11 * EPS(11) * CB10 * EPS(8) Q(12) = CA12 * EPS(6) * CB12 * EPS(14) * CC12 * B(15) * CD12 * B(15) = PF01 * EPS(12) * PD1 * EPS(9) Q(12) = CA12 * EPS(6) * CB12 * EPS(14) * CC12 * B(15) * CD12 * B(16) = PE01 * EPS(13) * PN1 * EPS(9) Q(13) = CA13 * EPS(7) * CB13 * EPS(14) * CC13 * B(16) * CD13 * B(16) * 2 Q(14) = CA14 * EPS(14) * CB14 * EPS(9) * CC14 * EPS(10) Q(17) = CA17 * EPS(17) * CB17 * EPS(18) Q(19) = CA19 * EPS(19) * CB19 * EPS(18) * CC19 * EPS(17) WATTE (IDEBUG-13) (T+1=1c0) * Q 13 FORMAT(*ORESIDUALS FROM SMALL PERTURBATION EQUATIONS*, 1 2(**)**10(6X**12**5X**)**2(******,**10E13**5*)) C==================================						
35 Q(1)=1.D70 Q(1) = CA1 * EPS(1) * CB1 * EPS(9) * CC1 * FAE * CD1 * EPS(10) Q(2) = CA2 * FPS(2) * CB2 * EPS(17) * CC2 * FAPE * CD2 * EPS(19) Q(3) = CA3 * EPS(3) * CB3 * EAF * CC3 * EPS(17) * CD3 * EPS(12) Q(4) = CA4 * EPS(4) * CB4 * EPS(17) * CC4 * EPS(11) Q(5) = CA5 * EPS(5) * CB5 * EPS(2) * CC5 * EPS(3) * CD5 * EPS(4) * @ CE5 Q(6) = CA5 * EPS(6) * CB6 * EPS(4) * CC6 * EPS(7) Q(7) = CA7 * EPS(6) * CB6 * EPS(4) * CC7 * EPS(1) Q(8) = CA8 * EPS(7) * CB8 * EPS(8) Q(9) = CA9 * EPS(9) * CB9 * EPS(8) Q(10) = CA10 * EPS(10) * CB10 * EPS(8) Q(11) = CA11 * EPS(11) * CB10 * EPS(8) Q(11) = CA11 * EPS(11) * CB10 * EPS(13) * CC11 * EPS(12) B(15) = PF01 * EPS(12) * PD1 * EPS(14) * CC12 * B(15) * CD12 * @ R(15) * * 2 B(16) = PF01 * EPS(12) * PD1 * EPS(9) Q(13) = CA13 * EPS(7) * CB13 * EPS(14) * CC13 * B(16) * CD13 * @ R(16) * * 2 Q(14) = CA14 * EPS(13) * CB14 * EPS(9) * CC14 * EPS(10) Q(17) = CA17 * EPS(17) * CB17 * EPS(18) Q(18) = CA18 * EPS(18) * CB18 * EPS(18) * CC19 * EPS(17) WRITE(TDERUG-13)(T+SI=120)+Q 13 FORMAI(*QRESIDUALS FROM SMALL PERTURBATION EQUATIONS*, 1 2(7* *,10(6X-12*5X))*2(7* *,10E13*5)) C==================================	DO 35	7=1.19				
0(1) = CA1 * EPS(1) * CB1 * EPS(9) * CC1 * FAE * CD1 * EPS(10) Q(2) = CA2 * EPS(2) * CB2 * EPS(17) * CC2 * FAFE * CD2 * EPS(19) Q(3) = CA3 * EPS(3) * CB3 * EAF * CC3 * EPS(17) * CD3 * EPS(12) Q(4) = CA4 * EPS(4) * CB4 * EPS(17) * CC4 * FES(11) Q(5) = CA5 * EPS(6) * CB5 * EPS(2) * CC5 * EPS(3) * CD5 * EPS(4) * Q(6) = CA5 * EPS(6) * CB6 * EPS(4) * CC6 * EPS(7) Q(7) = CA7*EPS(6) * CB7 * EPS(3) * CC7 * EPS(1) Q(8) = CA8 * EPS(10) * CB7 * EPS(3) * CC7 * EPS(1) Q(9) = CA9 * EPS(10) * CB9 * EPS(8) Q(9) = CA9 * EPS(10) * CB9 * EPS(8) Q(10) = CA10 * EPS(10) * CB10 * EPS(10) Q(11) = CA11 * EPS(11) * CB11 * EPS(13) * CC11 * EPS(12) B(15) = PF01 * EPS(12) * PP1 * EPS(9) Q(12) = CA12 * EPS(6) * CB12 * EPS(14) * CC12 * B(15) * CD12 * P(15) ** 2 B(16) = PF01 * EPS(13) * PN1 * EPS(9) Q(13) = CA13 * EPS(7) * CB13 * EPS(14) * CC13 * B(16) * CD13 * P(16) = CA14 * EPS(11) * CB14 * EPS(18) * CC14 * EPS(10) Q(17) = CA17 * EPS(17) * CB15 * EPS(18) Q(19) = CA19 * EPS(11) * CB14 * EPS(18) Q(19) = CA19 * EPS(11) * CB15 * EPS(18) * CC14 * EPS(10) Q(17) = CA17 * EPS(17) * CB17 * EPS(18) Q(19) = CA19 * EPS(11) * CB19 * EPS(18) * CC19 * EPS(17) WATTE (TDERUG-13) (7:1=1:20) * Q 13	35 0(1) =1	D70				
Q(2) = CA2 * FPS(2) + CB2 * FPS(17) + CC2 * FAPE + CD2 * EPS(19) Q(3) = CA3 * EPS(3) + CB3 * EAF + CC3 * EPS(17) + CD3 * EPS(12) Q(4) = CA4 * EPS(4) + CB4 * EPS(17) + CC4 * EPS(11) Q(5) = CA5 * EPS(5) + CB5 * EPS(2) + CC5 * EPS(3) + C05 * EPS(4) + **CE5 Q(6) = CA5 * EPS(6) + CB6 * EPS(4) + CC6 * EPS(7) Q(7) = CA7*EPS(6) + CB7 * EPS(3) + CC7 * EPS(1) Q(8) = CA9 * EPS(9) + CB9 * EPS(8) Q(9) = CA9 * EPS(9) + CB9 * EPS(8) Q(10) = CA10 * EPS(10) + CB10 * EPS(8) Q(11) = CA10 * EPS(10) + CB10 * EPS(8) Q(11) = CA11 * EPS(11) + CB11 * EPS(13) + CC11 * FPS(12) B(15) = PF01 * EPS(12) - PD1 * EPS(9) Q(12) = CA12 * EPS(6) + CB12 * EPS(16) + CC12 * B(15) + CD12 * ***Q(15) ***2 B(16) = PF01 * EPS(13) - PN1 * EPS(9) Q(13) = CA13 * EPS(14) + CB14 * EPS(14) + CC13 * B(16) + CD13 * ***Q(16) = CA14 * EPS(14) + CB14 * EPS(16) + CC13 * B(16) + CD13 * ***Q(16) = CA17 * EPS(17) + CB17 * EPS(18) Q(17) = CA17 * EPS(17) + CB17 * EPS(18) Q(19) = CA19 * EPS(11) + CB19 * EPS(18) + CC19 * EPS(17) WRITE(TDERUG-13)(T, I=1 * 20) * Q 13 * FORMAT(*ORESTDUALS * FROM SMALL * PERTURBATION * EQUATIONS**, 1 * 2(**)** * * * * * * * * * * * * * * * * *	0(1) =	CAL * FPS(1) + CB1 * EPS	(9) + CC1 # FA	E + CD1 * EP	S(10)
0(4) = CA4 * EPS(4) + CR4 * EPS(17) + CC4 * EPS(11) Q(5) = CA5 * EPS(5) + CB5 * EPS(2) + CC5 * EPS(3) + CD5 * EPS(4) + **CE5. Q(6) = CA5 * EPS(6) + CB6 * EPS(4) + CC6 * EPS(7) Q(7) = CA7*EPS(6) + CB7 * EPS(3) + CC7 * EPS(1) Q(8) = CA8 * EPS(7) + CB8 * EPS(8) Q(9) = CA9 * EPS(9) + CB9 * EPS(8) Q(10) = CA10 * EPS(10) + CB10 * EPS(8) Q(11) = CA11 * EPS(11) + CB11 * EPS(13) + CC11 * EPS(12) B(15) = PF01 * EPS(12) - PD1 * EPS(9) Q(12) = CA12 * EPS(6) + CB12 * EPS(14) + CC12 * B(15) + CD12 * **A(15) **PS(13) - PN1 * EPS(9) Q(13) = CA13 * EPS(7) + CB13 * EPS(14) + CC13 * B(16) + CD13 * **B(16) **PS(13) - PN1 * EPS(9) Q(14) = CA14 * EPS(14) + CB14 * EPS(9) + CC14 * EPS(10) Q(17) = CA17 * EPS(17) + CB17 * EPS(18) Q(18) = CA18 * EPS(18) + CB18 * EPS(5) + CC18 Q(19) = CA19 * EPS(18) + CB19 * EPS(18) + CC19 * EPS(17) WRITE(IDERUG-13)(1-1-20) * CB19 * EPS(18) + CC19 * EPS(17) ARTE(IDERUG-13)(1-1-20) * CB19 * EPS(18) + CC19 * EPS(17) C						
Q(5) = CA5 * EPS(5) * C85 * EPS(2) * CC5 * EPS(3) * C05 * EPS(4) * *** CE5 Q(6) = CA5 * EPS(6) * C86 * EPS(4) * CC6 * EPS(7) Q(7) = CA7*EPS(6) * C87 * EPS(3) * CC7 * EPS(1) Q(8) = CA8 * EPS(7) * C88 * EPS(8) Q(9) = CA9 * EPS(9) * C89 * EPS(8) Q(10) = CA10 * EPS(10) * C810 * EPS(8) Q(11) = CA11 * EPS(11) * C811 * EPS(13) * CC11 * EPS(12) ***B(15) = PF01 * EPS(12) * PD1 * EPS(9) Q(12) = CA12 * EPS(6) * C812 * EPS(14) * CC12 * B(15) * CD12 * ***A(15) ***2 B(16) = PF01 * EPS(13) * PN1 * EPS(9) Q(13) = CA13 * EPS(7) * C813 * EPS(14) * CC13 * B(16) * CD13 * ***B(16) ***2 Q(14) = CA14 * EPS(14) * C814 * EPS(14) * CC14 * EPS(10) Q(17) = CA14 * EPS(17) * C817 * EPS(18) Q(19) = CA14 * EPS(19) * C814 * EPS(18) * CC18 Q(19) = CA19 * EPS(19) * C819 * EPS(18) * CC19 * EPS(17) WRITE((DERUG-13)(1-1-20) * Q 13 FORMAT(*ORESIDUALS FROM SMALL PERTURBATION EQUATIONS*, 1 2(*, *, *10(6X,12-5X)), *2(*, *, *10E13.5)) C	0(3) =	CA3 # EPS(3) + CB3 * EAF	+ CC3 + EPS(1	7) + CD3 # E	PS(12)
GES G(6) = CA5 * EPS(6) * CB6 * EPS(4) * CC6 * EPS(7) Q(7) = CA7*EPS(6) * CB7 * EPS(3) * CC7 * EPS(1) G(8) = CA8 * EPS(7) * CB8 * EPS(8) Q(9) = CA9 * EPS(9) * CB9 * EPS(8) Q(10) = CA10 * EPS(10) * CB10 * EPS(8) Q(11) = CA11 * EPS(11) * CB11 * EPS(13) * CC11 * EPS(12) B(15) = PF01 * EPS(12) * PD1 * EPS(9) Q(12) = CA12 * FPS(6) * CB12 * EPS(14) * CC12 * B(15) * CD12 * # R(15) ** 2 B(16) = PF01 * EPS(13) * PN1 * EPS(9) Q(13) = CA13 * EPS(7) * CB13 * EPS(14) * CC13 * B(16) * CD13 * # B(16) ** 2 Q(14) = CA14 * EPS(14) * CB14 * EPS(14) * CC14 * EPS(10) Q(17) = CA17 * EPS(17) * CB17 * EPS(18) G(19) = CA18 * EPS(18) * CB18 * EPS(5) * CC18 G(19) = CA19 * EPS(19) * CB19 * EPS(18) * CC19 * EPS(17) WRITE (IDERUGA13) (Ty1=1*20)*0 13 FORMAT(*QRESIDUALS FROM SMALL PERTURBATION EQUATIONS*, 1 2(/* '*,10(6X*,12*5X))*2(/* **,10E13*5)) C=						
0(6) = CA5 * EPS(6) + CB6 * EPS(4) + CC6 * EPS(7) 0(7) = CA7*EPS(6) + CB7 * EPS(3) + CC7 * EPS(1) 0(8) = CA8 * EPS(7) + CB8 * EPS(8) 0(9) = CA9 * EPS(9) + CB9 * EPS(8) 0(10) = CA10 * EPS(10) + CB10 * EPS(8) 0(10) = CA10 * EPS(11) + CB11 * EPS(13) + CC11 * EPS(12) B(15) = PF01 * EPS(12) - PD1 * EPS(9) 0(12) = CA12 * EPS(16) + CB12 * EPS(14) + CC12 * B(15) + CD12 * 0(13) = CA12 * EPS(13) - PN1 * EPS(9) 0(13) = CA13 * EPS(7) + CB13 * EPS(14) + CC13 * B(16) + CD13 * 0(16) = PF01 * EPS(13) - PN1 * EPS(9) 0(17) = CA14 * EPS(14) + CB14 * EPS(9) + CC14 * EPS(10) 0(17) = CA17 * EPS(17) + CB17 * EPS(18) 0(19) = CA18 * EPS(19) + CB18 * EPS(5) + CC18 0(19) = CA19 * EPS(19) + CB19 * EPS(18) + CC19 * EPS(17) WRITE(IDEBUG-13)(T, I=1-20) * O 13			5) + C85 + EP9	5(2) + CC5 * EP	'S(3) + CD5 #	EPS(4) *
Q(7) = CA7*FPS(6) + CB7 * EPS(3) + CC7 * EPS(1) Q(8) = CA8 * EPS(7) + CB8 * EPS(8) Q(9) = CA9 * EPS(9) + CB9 * EPS(8) Q(10) = CA10 * EPS(10) + CB10 * EPS(8) Q(11) = CA11 * EPS(11) + CB11 * EPS(13) + CC11 * EPS(12) B(15) = PF01 * EPS(12) - P01 * EPS(9) Q(12) = CA12 * FPS(6) + CB12 * EPS(14) + CC12 * B(15) + CD12 * @ A(15) * * 2 B(16) = PF01 * EPS(13) - PN1 * EPS(9) Q(13) = CA13 * EPS(7) + CB13 * EPS(14) + CC13 * B(16) + CD13 * @ B(16) * * 2 Q(14) = CA14 * EPS(14) + CB14 * EPS(9) + CC14 * EPS(10) Q(17) = CA17 * EPS(17) + CB17 * EPS(18) Q(18) = CA18 * EPS(18) + CB18 * EPS(5) + CC18 Q(19) = CA19 * EPS(19) + CB19 * EPS(18) + CC19 * EPS(17) WRITE(TDERUG-13)(T, I=1-20) * Q 13 FORMAT(*QRESIDUALS FROM SMALL PERTURBATION EQUATIONS*, 1 2(/* *,10(6X,12*5X)),2(/* *,10E13.5)) C===================================						
Q(8) = CA9 * EPS(7) + CBR * EPS(8) Q(9) = CA9 * EPS(9) + CB9 * EPS(8) Q(10) = CA10 * EPS(10) + CB10 * EPS(8) Q(11) = CA11 * EPS(11) + CB11 * EPS(13) + CC11 * EPS(12) B(15) = PF01 * EPS(12) = PD1 * EPS(9) Q(12) = CA12 * EPS(6) + CB12 * EPS(14) + CC12 * B(15) + CD12 * # R(15) ** 2 B(16) = PE01 * EPS(13) = PN1 * EPS(9) Q(13) = CA13 * EPS(7) + CB13 * EPS(14) + CC13 * B(16) + CD13 * # B(16) ** 2 Q(14) = CA14 * EPS(14) + CB14 * EPS(9) + CC14 * EPS(10) Q(17) = CA17 * EPS(17) + CB17 * EPS(18) Q(18) = CA18 * EPS(18) + CB18 * EPS(5) + CC18 Q(19) = CA19 * EPS(19) + CB19 * EPS(18) + CC19 * EPS(17) WRITE(TDEBUG-13)(7·1=1·20)·Q 13 FORMAT(*ORESIDUALS FROM SMALL PERTURBATION EQUATIONS*, 1 2(/* '.10(6X,12.5X)).2(/* *.10E13.5)) C===================================						
Q(9) = CA9 * FPS(9) + CR9 * FPS(8) Q(10) = CA10 * FPS(10) + CR10 * FPS(8) Q(11) = CA11 * FPS(11) + CR11 * FPS(13) + CC11 * FPS(12) R(15) = PF01 * FPS(12) - PD1 * FPS(14) + CC12 * R(15) + CD12 * @ R(15) ** 2 R(15) = PF01 * FPS(13) - PN1 * FPS(9) Q(13) = CA13 * FPS(7) + CR13 * FPS(14) + CC13 * R(16) + CD13 * @ R(16) ** 2 Q(14) = CA14 * FPS(14) + CR14 * FPS(9) + CC14 * FPS(10) Q(17) = CA17 * FPS(17) + CR17 * FPS(18) Q(19) = CA19 * FPS(19) + CR18 * FPS(5) + CC18 Q(19) = CA19 * FPS(19) + CR19 * FPS(18) + CC19 * FPS(17) WRITE(TDERUG-13)(T-1=1-20) *Q 13 FORMAT(*ORESIDUALS FROM SMALL PERTURBATION FQUATIONS*, 1 2(/* *,10(6X,12+5X))*2(/* *,10E13-5)) C EXACT RESIDUALS C = DO 140 T=1-19 140 Q(1)=1.070 Q(1)=MDF-A1*PE0*AF/DSQRT(TE0)*A2 Q(2)=MDPE+A1*PP*APF/DSQRT(TP*A2 Q(3)=MDF+AF*ODKF*(PP-PD*A16)*A2 Q(4)=MDPT+AHOKW*(PP-PT*A15)*A2					1)	
Q(10) = Cal0 * EPS(10) + CB10 * EPS(8) Q(11) = CAl1 * FPS(11) + CB11 * FPS(13) + CC11 * FPS(12) B(15) = PF01 * EPS(12) - P01 * EPS(9) Q(12) = Cal2 * FPS(6) + CB12 * FPS(14) + CC12 * B(15) + CD12 * B(16) = PF01 * EPS(13) - PN1 * EPS(9) Q(13) = Cal3 * EPS(7) + CB13 * EPS(14) + CC13 * B(16) + CD13 * B(16) * * 2 Q(14) = Cal4 * EPS(14) + CB14 * FPS(9) + CC14 * EPS(10) Q(17) = Cal7 * EPS(17) + CB17 * FPS(18) Q(18) = Cal8 * EPS(18) + CB18 * EPS(5) + CC18 Q(19) = Cal9 * EPS(19) + CB19 * EPS(18) + CC19 * EPS(17) WRITE(TDETUG-13)(T-1=1-20)+Q 13 FORMAT(*QRESIDUALS FROM SMALL PERTURBATION EQUATIONS*, 1 2(/**,10(6X,12,5X))+2(/***,10E13,5)) C==================================						
Q(11) = CA11 * EPS(11) + CB11 * EPS(13) + CC11 * EPS(12) B(15) = PF01 * EPS(12) - PD1 * EPS(9) Q(12) = CA12 * FPS(6) + CR12 * EPS(14) + CC12 * B(15) + CD12 * B(15) ** 2 B(16) = PE01 * EPS(13) - PN1 * EPS(9) Q(13) = CA13 * EPS(7) + CR13 * EPS(14) + CC13 * B(16) + CD13 * B(16) ** 2 Q(14) = CA14 * EPS(14) + CB14 * EPS(9) + CC14 * EPS(10) Q(17) = CA17 * EPS(17) + CB17 * EPS(18) Q(18) = CA18 * EPS(18) + CB18 * EPS(5) + CC18 Q(19) = CA19 * EPS(19) + CB19 * EPS(18) + CC19 * EPS(17) WRITE (TDERUG*13) (T*, I=1*20) * Q 13 FORMAT(*ORESIDUALS FROM SMALL PERTURBATION EQUATIONS*, 1 2(/* *,10(6X*,12*,5X))*,2(/* *,10E13*,5)) C==================================						
B(15) = PF01 * EPS(12) = PD1 * EPS(9) Q(12) = CA12 * FPS(6) + CR12 * FPS(14) + CC12 * B(15) + CD12 * # A(15) * # 2 B(16) = PF01 * FPS(13) = PN1 * FPS(9) Q(13) = CA13 * EPS(7) + CR13 * EPS(14) + CC13 * B(16) + CD13 * # B(16) * # 2 Q(14) = CA14 * EPS(14) + CB14 * FPS(9) + CC14 * EPS(10) Q(17) = CA17 * EPS(17) + CB17 * FPS(18) Q(18) = CA18 * EPS(18) + CB18 * EPS(5) + CC18 Q(19) = CA19 * EPS(19) + CB19 * EPS(18) + CC19 * EPS(17) WRITE(TOERUG*13)(1*,1=1*20)*Q 13 FORMAT(*ORESIDUALS FROM SMALL PERTURBATION EQUATIONS**, 1 2(/**,10(6X,12*5X))*2(/***,10E13*5)) C==================================					# FDS(12)	
Q(12) = CA12 * FPS(6) + CB12 * FPS(14) + CC12 * B(15) + CD)2 * 3 A(15) * 2 B(16) = P501 * FPS(13) = PN1 * FPS(9) Q(13) = CA13 * EPS(7) + CB13 * EPS(14) + CC13 * B(16) + CD13 * 8 B(16) * 2 Q(14) = CA14 * EPS(14) + CB14 * FPS(9) + CC14 * EPS(10) Q(17) = CA17 * FPS(17) + CB17 * FPS(18) Q(18) = CA18 * EPS(18) + CB18 * EPS(5) + CC18 Q(19) = CA19 * FPS(19) + CB19 * EPS(18) + CC19 * EPS(17) WRITE(TDERUG*13)(T*,I=1*20)*Q 13 FORMAT(*ORESIDUALS FROM SMALL PERTURBATION EQUATIONS**, 1 2(/**,10(6X*,I2*,5X))*,2(/***,10E13*,5)) C==================================						
## ## ## ## ## ## ## ## ## ## ## ## ##					* B(15) + C	D12 *
Q(13) = CA13 * EPS(7) + CR13 * EPS(14) + CC13 * B(16) + CD13 * B R(16) ** 2 Q(14) = CA14 * EPS(14) + CB14 * FPS(9) + CC14 * EPS(10) Q(17) = CA17 * EPS(17) + CB17 * FPS(18) Q(18) = CA18 * EPS(18) + CB18 * EPS(5) + CC18 Q(19) = CA19 * EPS(19) + CB19 * EPS(18) + CC19 * EPS(17) WRITE (TDERUG*13) (T*, I=1*20) * Q 13 FORMAT(**ORESIDUALS FROM SMALL PERTURBATION EQUATIONS**, 1 2(/***,10(6X*,12*,5X))**,2(/****,10E13**,5)) C EXACT RESIDUAL5 C						
@ B(16) ** 2 Q(14) = CA14 * EPS(14) + CB14 * FPS(9) + CC14 * EPS(10) Q(17) = CA17 * EPS(17) + CB17 * FPS(18) Q(18) = CA18 * EPS(18) + CB18 * EPS(5) + CC18 Q(19) = CA19 * EPS(19) + CB19 * EPS(18) + CC19 * EPS(17) WRITE(YDERUG*13)(I*,I=1*20)*Q 13 FORMAT(*ORESIDUALS FROM SMALL PERTURBATION EQUATIONS**, 1 2(/* **,10(6X*,I2*,5X))*,2(/* **,10E13*,5)) C	B(15)	= PF01 # FP	S(13) - PN1 *	EPS (9)		
Q(14) = CA14 * EPS(14) + CB14 * EPS(9) + CC14 * EPS(10) Q(17) = CA17 * EPS(17) + CB17 * FPS(18) Q(18) = CA18 * EPS(18) + CB18 * EPS(5) + CC18 Q(19) = CA19 * EPS(19) + CB19 * EPS(18) + CC19 * EPS(17) WRITE(TDERUG*13)(T*,I=1*20)*Q 13 FORMAT(**QRESIDUALS FROM SMALL PERTURBATION EQUATIONS**, 1 2(/**,10(6X*,I2*5X))*,2(/***,10E13*5)) C EXACT RESIDUALS C = CA14 * EPS(18) + CB18 * EPS(18) + CC19 * EPS(17) DO 140 Y=1*19 140 Q(1)=1*D70 Q(1)=1*D70 Q(1)=1*D70 Q(2)=MDF*A1*PP*APE/DSQRT(TE0)*A2 Q(3)=MDF*A1*PP*APE/DSQRT(TPI*A2 Q(3)=MDF*AF*DOKF*(PP*PD)*A2 Q(4)=MDPT*AWOKH*(PP*PD*A15)*A2 Q(4)=MDPT*AWOKH*(PP*PT*A15)*A2			S(7) + CB13 *	EPS(14) + CC13	* B(16) * C	D13 ®
Q(17) = C417 * FPS(17) * C817 * FPS(18) Q(18) = C418 * EPS(18) * C818 * EPS(5) * CC18 Q(19) = C419 * FPS(19) * C819 * EPS(18) * CC19 * EPS(17) WRITE (IDERUG*13) (I*, I=1*20) *Q 13 FORMAT(*ORESIDUALS FROM SMALL PERTURBATION EQUATIONS**, 1 2(/**,10(6X*,12*5X))*2(/****10E13**5)) C EXACT RESIDUAL5 C EXACT RESIDUAL5 C = C EXACT RESIDUAL5 C = C EXACT RESIDUAL5 Q(1)=1**D70 Q(1)=1**D70 Q(1)=1**D70 Q(1)=1**D70 Q(2)=MDF**A1**PP**AF**DSQRT(TF0**A2 Q(3)=MDF**A1**PP**AF**DSQRT(TF1**A2 Q(3)=MDF**AF**DDKF**(PP**PD**A15)**A2 Q(4)=MDPT**AMOKH**(PP**PD**A15)**A2			S(14) + CB14 *	FPS(9) + CC14	* FPS(10)	
Q(18) = CA18 * EPS(18) + CB18 * EPS(5) + CC18 Q(19) = CA19 * EPS(19) + CB19 * EPS(18) + CC19 * EPS(17) WRITE(IDERUG-13)(I, I=1 > 20) + Q 13 FORMAT('.ORESIDUALS FROM SMALL PERTURBATION EQUATIONS', 1 2(/' ',10(6X,12*5X)),2(/' ',10E13*5)) C EXACT RESIDUALS C EXACT RESIDUALS C DO 140 I=1*19 140 Q(I)=1**D70 Q(1)=MDE-A1*PEO*AE/DSQRT(TEO)*A2 Q(2)=MDE+A1*PEO*AE/DSQRT(TPI*A2 Q(3)=MDF+AF*0OKF*(PP-PD)*A16)*A2 Q(4)=MDPT+AHOKH*(PP-PD*A16)*A2 Q(4)=MDPT+AHOKH*(PP-PT*A15)*A2	0(17)	= CA17 . FP	S(17) + CB17	FPS(18)		
WRITE(IDERUG.13)(I.1=1.20).Q 13 FORMAT(!ORESIDUALS FROM SMALL PERTURBATION EQUATIONS!. 1 2(/' !.10(6X,12.5X)).2(/' !.10E13.5)) C EXACT RESIDUALS C	0(18)	= CAIR # EP	5(18) + CB18 4	EPS(5) + CC18		,
13 FORMAT(*ORESIDUALS FROM SMALL PERTURBATION EQUATIONS*, 1 2(/* *,10(6X,12,5X)),2(/* *,10E13,5)) C EXACT RESIDUALS C EXACT RESIDUALS DO 140 1=1,19 140 Q(1)=1,D70 Q(1)=MDF-A1*PE0*AE/DSQRT(TE0)*A2 Q(2)=MDFE-A1*PP*APE/DSQRT(TF1*A2 Q(3)=MDF+A1*PP*APE/DSQRT(TF1*A2 Q(3)=MDF+AF*DOKF*(PP-PD)*A2 Q(3)=MDF+AF*DOKF*(PP-PD)*A16)*A2 Q(4)=MDPT+AWOKH*(PP-PT*A15)*A2	0(19)	= C419 # EP	S(19) + CB19 +	EPS(18) + CC1	9 # EPS(17)	
1 2(/* *,10(6X,12*5X)),2(/* *,10E13.5)) C						
C EXACT RESIDUALS C EXACT RESIDUALS C					UATIONS .	
C EXACT RESIDUALS C			5X)) +2(/* **) [E13.5))		
D0 140 T=1+19 140 Q(I)=1_D70 Q(I)=MDF-A1*PE0*AE/DSQRT(TE0)*A2 Q(2)=MDPE+A1*PP*APE/DSQRT(TPI*A2 Q(3)=MDF+AF*DOKF*(PP-PD)*A2 Q(3)=MDF+AF*DOKF*(PP-PD*A16)*A2 Q(4)=MDPT+AWOKH*(PP-PT*A15)*A2	CERESCO CEC	SERSES				
DO 140 I=1.19 140 Q(I)=1.D70 Q(I)=MDE-A1*PE0*AE/DSQRT(TE0)*A2 Q(2)=MDPE+A1*PP*APE/DSQRT(TPI*A2 Q(3)=MDF+AF*0OKF*(PP-PD)*A2 Q(3)=MDF+AF*OOKF*(PP-PD*A16)*A2 Q(4)=MDPT+AWOKH*(PP-PT*A15)*A2						
140 Q(1)=1.D70 Q(1)=MDF-A1*PEO*AE/DSQRT(TEO)*A2 Q(2)=MDPE+A1*PP*APE/DSQRT(TPT*A2 Q(3)=MDF+AF*DOKF*(PP-PD)*A2 Q(3)=MDF+AF*DOKF*(PP-PD*A16)*A2 Q(4)=MDPT+AWOKW*(PP-PT*A15)*A2						
Q(1)=MDE-A1*PE0*AE/DSQRT(TE0)*A2 Q(2)=MDPE+A1*PP*APE/DSQRT(TPI*A2 Q(3)=MDF+AF*OOKF*(PP-PD)*A2 Q(3)=MDF+AF*OOKF*(PP-PD*A16)*A2 Q(4)=MDPT+AHOKH*(PP-PT*A15)*A2						
Q(2)=MDPE+A1*PP*APE/DSQRT(TPT*A2 Q(3)=MDF+AF*OOKF*(PP=PD)*A2 Q(3)=MDF+AF*OOKF*(PP=PD*A16)*A2 Q(4)=MDPT+AHOKH*(PP=PT*A15)*A2			E/DSORT (TEO) #4	.2		
Q(3)=MDF+AF*OOKF*(PP-PD+A16)*A2 Q(3)=MDF+AF*OOKF*(PP-PD+A16)*A2 Q(4)=MDPT+AHOKH*(PP-PT*A15)*A2						
Q(4)=MDPT+AWOKH4(PP-PT*A15)*A2						
	Q(3) = M	DF + AF # OOKF #	(PP-PD#A16)#A2			
Q(5)=RPT-RPT1=(MDPE+MDF+MDPT)*DTOPV						
	0(5) = R	PT-RPT1-(MD	PE+MDF+MDPT) *[TOPY	·	

	SMPERT	DATE = 75157	11/58/40
Q(6)=MDD+	MDPT-MDCT		
Q(7)=MDD=	MDF=MDE		
B(9)=1.00	+GM102#MCT		
	0+GM102*MCT**2		
	-MCT & MDCTC &B (9) & MGPOGM	•	
B(11)=B(1			
	PC+B(11)++G0GM1		
Q(10)=TE0			
	144,9999,145		
GO TO 146	(1.00-A17) #PN-A17#PD		·
145. Q(11) =PT=			
146 B(12)=1.D			
B(13)=TOG			
	*#2-B(13) #((PD#R(12)) ##T	0G=(PD*B(12))**GP10G)	
	T**2-B(13) *((PN*B(12)) **		
	SO-SGOR*PEO*TSA/DSQRT(TE		
	•142) • IFLG9		
	PPT1*(RP/RPT1)**G		
GO TO 143			
142 Q(17)=PP=	RP#R#TP/AZ		
143 Q(18)=RP=	0.500*(RPT+RPT))		
	PP#00R/RP#A2		}
Campananananana	****	****************	· · · · · · · · · · · · · · · · · · ·
C OUTPUT			
Caabaaaaaaaaaa	*************	***************	****
(
C CONVERT RESTO	UALS TO PERCENTAGES		
39 DO 49 T=1	.10		
J=[EXTP(I			
IF (J. EQ. 0			
) GO TO 45		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
IF (I.EQ.7			
IF(I.EO.8) GO TO 42		
IF (I.EQ.)	2)60 TO 43		
IF(1.E0.1	3) GO TO 42		
GO TO 46			_
41 J=10			
GOTO 4.6 _			
42 J=12	•	,	
GO TO 46			
43 J=9			
GO TO 46			
45 J=11	NE 0 00100 TO 47		
Q(Y)=INFI	.NE.0.D01G0 TO 47		
		•	
	*1.D2/V(J.2)		
49 CONTINUE	-1002/ 4/07/2/	•	
	9UG+21) (T+I=1+20)+0		
	RESIDUALS FROM FXACT EQU	ATTONS .	
	0(6X,12,5X)),2(/* *,10E1		
	FQ.0)GO TO 60		
	220,9999,18		
60 WRITE (IDE	BUG. 31) (1.1=1.10) .A. ([.]	=1.30).B	

SMPERT DATE = 75157 11/58/40 31 FORMAT(*04 ARRAY */ * *, 10(6X, 12, 5X) / * *, 10E13, 5/ *0 *, ** ARRAY *, 13(/ 1.10(6X.12.5X1).3(/ 1.10F13.5)) WRITE(TDEAUG.10) CAL. CRI. CCI. CDI. CAZ. CBZ. CCZ. CDZ. 1 CA3, CB3, CC3, CD3, CA4, CB4, CC4, CA5, CB5, CC5, CD5, CE5, CA6, CR6, CC6, CA7, CB7, CC7, CA8, CB8, CA9, CB9, 3 CA10. CB10.CA11.CB11.CC11.CA12.CB12.CC12.CD12.CA13.CB13. 4 CC13+CD13+CA14+CB14+CC14+CA17+CR17+CA18+CB18+CC18+CA19+ 5.CB19.CC19. 10 FORMAT(*15MPERT*/* **6(*=*)/*0**7X**CA1**13X**CB1**13X**CC1** 1 13X, *CD1 */.* ... 4E16.8/.0 * . 7X * * CA2 * . 13X * * CB2 * . 13X * * CC2 * . 13X . 2 'CD2'/' '.4F16.8/'0',7X,'CA3',13X,'CB3',13X,'CC3',13X,'CD3' 3 / 1,4E16.B/10,7X,1CA41,13X,1CB41,13X,1CC41/1,13E16.B/101, 4 7X+1CA51+13X+1CB51+13X+1CC5 ++13X+1CD51+13X+1CE51/1 ++5F16+8 5 / 10 1 7 X 9 1 C A 6 1 9 1 3 X 9 1 C B 6 1 9 1 3 X 9 1 C C 6 1 / 1 9 3 E 1 6 8 / 10 1 9 7 X 9 1 C A 7 1 9 1 3 X 9 6 'CB7'.13X, CC7'/' '.3E16.8/'0'.7X. CA8'.13X. CB8'/' '.2E16.8 7 / 10 1 , 7 X , 1 CA 9 1 2 1 3 X . 1 CB 9 1 / 1 2 F 16 . 8 / 10 1 . 6 X , 1 CA 10 1 . 1 2 X . 1 CB 10 1 / 1 8 2F 16.8/'0',6X,'CAll',11X,'CBll',12X,'CCll'/' ',3F16.8/'0', 9 6X+ CA12+ 12X+ CB12+ 12X+ CC12+ 12X+ CD12*/ + +4E16.8/+0+6X+ A *CA13++12X+*CB13++12X+*CC13++12X+*CD13*/* *+4F16.8/*0*+6X+ B . CA14. 12X. CB14. 12X. CC14. . . 3E16. 8/ O. 6X. CA17. 12X. C 'CB17'/' '.2F16.8/'0'.6X, 'CA18'.12X, CA18'.12X. CC18'/' ', D 3E16.8/'0',6X, 'CA19',12X, 'CB19',12X, 'CC19'/' ',3E16.B1 WRITE(THERUG: 11) SALPI: SRETI: SGAMI: SALPZ: SRETZ: SGAMZ: SALP3 1 , SBET3, SGAM3, SEPS3, SALP4, SBET4, SGAM4, SEPS4, SALP5, SBET5 2 · SGAM5 · SEPS5 · SZET5 · SETA5 · SIOT5 · SKAP5 · SALP6 · SBET6 · SGAM6 3 , SEPS6, SZET6, SEIA6, STOIG, SKAP6, SLAMG, SMUG, SNUG, SALPZ 4 . SRETT. SGAMT. SEPST. SZETT. SETAT. STOTT. SKAPT. SALPB. SALPS 5 . SBET9, SGAM9, SZET9, SALP10, SALP11, SBET11, SALP12, SBET12, SGAM12 6 •SALP13•SRFT13•SGAM13•SALP14•SBFT14•SGAM14•SFPS14•SZET14•SETA14 ·SIOT14·SALP17·SBET17·SGAM17·SEPS17·SALP18·SRET18·SALP19·SRET19 1) FORMAT(11 , 6X , "SALP1 , 11X , "SBET1 , 11X , "SGAM1 , , , , 3F16 , 8/ 00 , 6X , 1 *SALP2**11X**SBET2**11X**SGAM2*/* **3E16*B/*0**6X**SALP3**11X* 2 *SBET3**11X**SGAM3**11X**SEPS3*/* **4E16*B/*0**6X**SALP4**11X* 11X+1SEPS41/1 1.4E16.8/101.6X. 3 '53ET4',11X,'5GAM4'. 4 *SALP5*,11X, *SHET5*,11X, *SGAM5*,11X, *SEPS5*,11X, *SZET5*,11X, 5 'SETA5'+11X+'SIOT5'+11X+'SKAP5'/'_!+8E16,8/'0'+6X+'SALP6'+11X+ 6 TSBET6**11X**SGAM6**11X**SEPS6**11X**SZET6**11X**SETA6**11X* 7 'STOT6' 111X , 'SKAP6'/' ', RE16, 8/'0', 6X , 'SLAM6', 11X, 'SMU6 8 'SNU6'/' ',3F16.9/'0',6x, 'SALP7',11X, 'SBET7',11X, 'SGAM7',11X, 9 "SEPS7" | 11X | "S7ET7" | 11X | "SETA7" | 11X | "STOT7" | 11X | "SKAP7"/" " . BF16.8/*0 * 6X * * SALP8 * / * * * F16.8/*0 * * 6X * * SALP9 * * 11X * * SRET9 * * 11X . . SGAM9 . . 11X . . SZET9 . / . . . 4E16 . 8/ . 0 . . 5X . . SALP10 . / C * *, F16.8/*0**5X**SALP11*,10X**SRET11*/* *,2F16.8/*0**5X**SALP12 ',10x,'SBET12',10x,'SGAM12'/' ',3E16.8/'0',5x,'SALP13',10x. *SHET13*,10X,*SGAM13*/* *.3E16.8/*0*,5X,*SALP14*,10X,*SHET14*, F 10X+ *SGAM14*+10X+ *SEPS14*+10X+ *SZET14*+10X+ *SETA14*+10X+*SIOT14* G / ! ! . TF15.B/ ! O ! . SX , ! SALP] T ! . 10X , ! SRET1 T ! . 10X . ! SGAM1 T ! . 10X . H 'SEPS17'/' '.4E16.8/'0'.5X, 'SALP18'.10X.'SBET18'/' '.2E16.8/ I '0',5x, 'SALP19',10X, 'SRFT19'/' ',2E16.8) WRITF (INEBUG.) 2) SAZ. 582. SCZ. SDZ. SFZ. SFZ. SA3. SB3. SC3. SD3. SE3. SF3 .FAE.FAPE.FAF 12 FORMAT(+1++7X++5A2++13X++5B2++13X++5C2++13X++5D2++13X++5E2++ 1 13X, 15F2+/+ +,6E16.8/+0+,7X++SA3+,13X++SB3++13X++SC3+,13X+ 2 15731.13X.15E31.13X.15E31/1 1.6E16.8/101.7X.1EAE1.12X.1EAPE1. 3 13X OFF AFT 4 /1 1.AE15.8) TF(TFLC8.FQ.1)STOP RETURN 9999 STOP FVD

```
OSIMUL
                                              DATE = 75157
                                                                     11/58/40
      SUBROUTTNF QSTMUL(A2+B2+C2+D2+F2+F2+A3+B3+C3+D3+F3+F3+IDEBUG+XX+Y)
      IMPLICIT REAL 48 (A-H+Q-Z)
      COMPLEX#15 X(2.2.4) .Y(4) .SIGMA.UPSLON.PHI.PSI.OMEGA.ZERO.A1.B1.C1.
     -Y1, Y2, Y3, Y4, ONE, R(2,2,4,2), CINFIN, XX(4)
      COMPLEX#15 SYGMA1.UPSLN1.PHT1.PST1.OMEGA1
      DIMENSION III(4)+JJJ(4)
      DATA ZFRO/(0.00.0.00)/.ONF/(1.00.0.00)/.CINFIN/(1.070.1.070)/
C COMPUTE QUARTIC COEFFICIENTS
      ALP-11=A2#53-A3#F2
      BETAI=A2*33-A3*D2
      GAMMI=42#F3-43#F2
      ALPHII=A3#B2-A2#B3
      BETAIL=434C2-424C3
      DELTII=ALPHI*BETAII
      FPSLII=ALPHI*ALPHII+RETAT*RETAII
      ZETAII=PETAI*ALPHTI+GAMMI*BETAII
      ETATI=GAMMI#ALPHII
      BIISQ=BETAIL*#2
      ARTI=ALPHTI*BETATT
      AIISQ=ALPHII##2
      SIGMA=7FRO
      UPSLON=ZERO
      PHY=ZERO
      PSI=ZERO.
      OMEGA=7FRO
      DO 8 I=1.2
      DO 7 J=1.2
      DO 5 K=194
    6 X(I.J.K)=CINFIN
    7 CONTINUE ....
    A CONTINUE
      SIGMA= A2 * ALPHI**2 + C2 * DELTII + E2 * BIISQ
UPSLON = 2.00 * A2 * ALPHI * RETAI + R2 * DELTII + C2 * FPSLII +
     DELLE + 20 + ILBVARE + 0C.2 +
      PHT = A2 # ( BETAT ** 2 + 2.00 * ALPHI * GAMMI ) + 82 * EPSLTI +
     * C2 * ZETAII + F2 * AIISQ + F2 * RIISQ + Z=D0 * D2 * ABIT
PST = 2.00 * 3FTAI * GAMMI *A2 + B2 * ZETAII + C2 * ETAII +
         2.D0 # F2 # AHTT + D2 # AIIS0
      OMEGA = A2 " SAMMT " 2 + B2 " ETATT + F2 " ATTSQ
      SIGMAL=SIGMA
      UPSLN1=UPSLON
      PSI1=PSI
      PHI ] = PHI
      OMEGA1=OMEGA
      IF (IDEBUG.EQ.03) GO TO 9
C PRINT COEFFICIENTS
      WRITE (THEBUG. 1) AZ. BZ. CZ. HZ. FZ. FZ. A3. B3. C3. D3. E3. F3. ALPHI. BETAI.
     - GAMMI. ALPHII. BETAIL DELTIL . FPSLIT . ZETAIL . ETAIL . BIISQ . ARIL . ALISQ
    1 FORMAT(+1951MJL+/+ ++5(+=+)/+0++7X++A2++14X++B2++14X++C2++14X+
     2 14X+*D3++14X++F3++14X++F3+/+ ++6F16+B/+0++6X++ALPHI++11X+
     3 'RETATIONIX. GAMMI . 10X. ALPHIT . 10X. BETATION . DELTITO.
```

		RSIMUL	DATE = 75157	11/58/40
	4 10X . 1 EPS (T 1 / 2 1 .)	7F16.8/101.5X.17FTA	II . 11X . 'ETATT' . 11X .	
	5 BIISC + LIX + ABIL			
	WRITE (IDEBUG. 2) SIGN			
2			8X, *PHI *, 29X, *PHI */*	٠,
	18E15.8/101.14X.10ME			
C				
	ROOTS TO QUARTIC			
C=2:42				
9	N=4	0 00100 70 40		
	IF (DREAL (SIGMA), NE. N=3	0.0000000000000000000000000000000000000		
	Art .	0.0 00 co TO 30		
	N=2			-
	IF (DREAL (PHI) . NF. 0.	D0)60 TO 20		
CLINE				_
	N=1			
10	OMFGA=OMEGA/PSI			
	PSI = QNE			
	CALLI GANDO (N. OMEGA		0, 11, 12, 13, 14)	
	GO TO 45			
O JAI	DC4			
20	PSI=PST/PHI OMEGA/PHI			
	PHI=ONF			
	CALLI GANDO (N. PST. ON	AFGA . ZFRO . ZFRO . Y1 . Y	2.Y3.Y4)	
C CUR				
. 30	PHI=PHI/UPSLOV			
	PSI=PSI/UPSLON			
	OMEGA=OMEGA/UPSLON		A 18 1 T T T T T T T T T T T T T T T T T	
	UPSLON=ONE:			
	CALLI GANDO (N. PHI . PS	I OMEGA , ZERO , YI OYZ	9 Y 3 9 Y 4)	
6 0:14	GO TO 45			
C QUAF	KTIU UPSLON=UPSLON/STGMA			
40	PHI=PHI/SIGMA			
	PSI=PSI/SIGMA			
	OMEGA=OMEGA/SIGMA			
	SIGMA=ONE			
	CALL GANDC (N. UPSLON	I.PHI.PSI.OMEGA.YL.	Y2, Y3, Y4)	
C				
C FINE) ALL X VALUES FOR F			
45	Y(1)=Y1			
	Y(2)=Y2			
	Y(3)=Y3			
	Y(4)=Y4			
	DO 100 (=1.4			
	IF (1.GT.N) GO TO 100)		
****	B1=5#(B2+C2*Y(I))			
	C1=CDSORT(81##2-(D2			
	X(1.1.1)=31+C1			
	X(2.1.1)=31=C1	/42		
	81=5*(<u>8</u> 3+ <u>C</u> 3* <u>Y(I))</u> C1=CDSQRT(B1**2-(D3		3) (8)	
	X(1,2,1)=31,C1	1" 1 () VP 3" 1 () " " Z V "	J, / MJ /	

	OSTMIL	DATE = 75157	11/58/40
X(2.2.1)=31-C1 100 CONTINUE			
C PRINT ROOTS TO QUARTIC	AND CONICS		
1 2(*)**26(*-*)**EC 2 *POSITIVE**11(*-* 3/*0% ROOTS BASED ((T+T=1+7)+X T+30X++Y2++30X UATJON++T2+27(UATJON++T2+27(UATJON+T2+7) UATJON+T1+1	PSI+0MEGA+ZERO +*Y3*+30X+*Y4*/* *.8E16 -*-*))**- */* *.7(* *-1) *NEGATIVE**12(*-*) **- .8/*0X ROOTS BASED ON \ *.8E16.8/*0X ROOTS BASE	((=+), +)
CHECK ALL X AND Y VALL	JES IN ORIGINAL		
1 E2*Y(T)**2*F2 60 TO 115	, , , , , , , , , , , , , , , , , , ,	•K•I)+C2*X(J•K•I)*Y(I)+	
C SORT OUT EXTRANEOUS RO		nr,1000;;	
135 L=0 D0 160 J=1.4 D0 180 f=1.2 D0 140 K=1.2 IF(CDARS(R(1.1.J.)		о то 140	
GO TO 180 140 CONTINUE L=L+1 IF(L-LF-4)GO TO 15 WRITE(10UT-145)			
145 FORMAT(+00STMUL: N	MORE THAN FOUR	ROOTS FOUND+)	
150 ITT(L)=T JJJ(L)=J		and the second s	And the second s
180 CONTINUE 160 CONTINUE LLL=L DO 200 L=1.4 XX(L)=CINFIN IF(L'.GT.LLL)GD TO XX(L)=X(III(L).1.	111111		
GO TO 200 190 Y(L)=CINFIN 200 CONTINUE WRITE(IDEAUG+220)X			
220 FORMAT(*1SORTED ROWERLE (TOERUG*240)	1)Se 17XX : \$10	• • • 8E16_8))	
		R(III.eleJJJJ.K).!Z!_!e'II	I=! 9.4 I2/

```
DATE = 75157
                          DANDO
      SURROUTINE GANDC (N.B.C.D.F.X1.X2.X3.X4)
      IMPLICIT COMPLEX#16(A-G.O-Z)
      COMPLEX#141
      DATA I/(0.D0,1.D0)/.CINFIN/(1.D70.1.D70)/
      GO TO (30+20+10+5) +N
C QUARTIC
    5 A=((4.000C0F=(B00Z0F)-D00Z)/2.00)
      A1=(C*(B*)=4a70*E1/6aD0)
A2=-((C**3)/27.D0)
      A=A+A1+A2
      RB=CDSORT((A**2)+((R*D-4.00*E-((C**2)/3.00))**3)/27.00)
      A = - A
      CALLI CHART (A. 98.R)
      PSTAR=R+D-4.00+F-C+C/3.00
      R1=-PSTAR/(3.70*R)
      R=(R+R1+(C/3,00))
      P=CDSORT ((B##2/4.D0)-C+R)
      PG=CDSORT(0.2590*R**2=E)
      A42=.500#4#R-7
      DbUS=5"00*b*b5
      IF (CDAHS (AR2-PPQ2) .GT. CDARS (AR2+PPQ2))PQ=-PQ
      PP=(C)ARS(P))
      CALCULATING THE ZFROS
C
      Al=(1.0.0.0)
      91=(8/2,00)+P
      C1=(R/2.00)+P3
      X)=(-91+C)50RT(91**2-4.00*A1*C1))/(2.00*A1) .
      X2=(-81-C)5QRT(R1**2-4.90*A1*C1))/(2.00*A1)
      91=(B/2.D0)-P
      C1=(R/2,Dn)-P3
      X3=(-R1+C75QHT(R1+42-4.0044)*C1))/(2.00*A1)
      A4=(-R1-C750RT(R1++2-4.00+A1+C1))/(2.00+A1)
      VALTER
C CURIC
   10 CONTINUE
      P=C=(9##2/3.00)
      Q=D=(A*C/3.70)+((2.004H*43)/27.00)
      Z1 = -(0/2, 0) + (CDSORT((U**2/4, 0)) + (P**3/27, 0)))
      72=-(3/2.70)-(CDSORT((Q*#2/4.D0)+(P##3/27.D0)))
      IF(CDARS(Z1).SF.CDARS(Z2))Z=Z1
      TF (CDARS (Z2) .GE.CDARS (Z1)) Z=Z2
      IF(CDARS(Z) .FQ. 0.0)X1==(8/3.00)
      JF(CDARS(7) .EQ. 0.0) X2=-(8/3.00)
      IF(CDARS(Z) .EQ. 0.0)X3==(R/3.D0)
IF(CDARS(Z) .FQ. 0.0)RETURN
      APR = (0.00.0.00)
      CALL CURRT(Z. 388.81)
      R=-(P/(3.70*R1))
      W1=-(.500)+((3.00**.5)/2.00)*[
      W2=-(.500)-((3.00*4.5)/2.00)#I
      X1=-(8/3.70)+R1+R
      X2=-(A/3.70) +∀1#R]+₩2#R
      X3=-(9/3.70)+W2#R1+W1#R
      X4=CINEIN
      RFTJRY
C QUADRATIC
   20 41=.540
      9=C3S0PT(4]##2-C)
      X1 = A1 + Q
      X5=VJ-b
      X3=CINFIN
      X4=CIVFIN
      RFTJRV
C LINEAR
   30 X1=-H
      X2=CINFIN
      X3=CINEIN
      X4=CINFIN
      RETURN
      FVD
```

		CUBRT	DATE = 75157	11/58/40
	SUBROUTING CURRY (A	: . A . BR . DD)		
	IMPLICIT COMPLEX#1			
			· · · · · · · · · · · · · · · · · · ·	
	REAL#8H.HIA.HIB.HT	н		
	REAL#8PI + SSSS	The same of the sa		
	COMPLEX#15I			
99(CONTINUE			
	I=(0.01.)			
	I I = 1			
	21=4A+RR			
	72=AA-BB			
	IF(CDARS(Z2) .GF.	CDABS (71)) A=Z2		
	IF(CDARS(71) .GF.		•	
	B=DCONJG(A)	STREET CO. STREET		
	H1A=(A+A)/2.DQ			
***	H1B=-I*(A-B)/2.D0			
	H=(H1A++2+H1B++2)+			
	PI=3.1415926535897	9300		
	SSSS=3.00			
			I-1) #2.D0#PI)/\$555)+I	<u>* (DSIN((HI</u>
	1H+(II-1)#2.00#PI)/	(SSSS)))		•
	RETURN.			
	END			
_	- · · · · · · · · · · · · · · · · · · ·			
TV G LEVEL	_ 21	DREAL.	DATE = 75157	11/58/40
	FUNCTION DREALICECT			· · · · · · · · · · · · · · · · · · ·
	COMPLEX#15 C.CC			
	REALMS D(2) DREAL			
	EQUIVALENCE (C+D(1))	•	
	C=CC			
	DREAL=D(1)			
	RETURN			
			•	•
	END		····	The second secon
TV G LEVE		DIMAG	DATE = 75157	11/58/40
IN G CENE	r c1	OIMA(4	DAIE # 13131	11/26/40
	FUNCTION DIMAG(11)	,		
	COMPLEX#15 TOTI			
	REALME D(2) . DIMAG			
	FRUTVALENCE (T.D (1			
	I=II			
	DJM4G=D(2)			
	RETURN			
	END			

NOMENCLATURE

A Area

A₁₁ Solution weighting parameter, Eq. (25)

A₁₅ Momentum correction coefficient in wall crossflow model, Eq. (7)

A₁₆ Flap correction coefficient in the flap flow model, Eq. (8)

A₁₇ Weight used in computing test section pressure, Eq. (10)

A_i,B_i,C_i,D_i,E_i Arrays of coefficients in the small perturbation equations

E Computational error

F Function

k Flow coefficient, as in k_f and k_w

M Mach number

M Steady, asymptotic test section Mach number

m Mass flow rate

mo Convenient quantity with units of mass flow rate defined as

 $\sqrt{\frac{\gamma}{R}} \frac{P_{ct_o}}{\sqrt{T_{ct_o}}} A_{ts}$

 \widetilde{m} Nondimensional mass flow rate defined as $\sqrt{\frac{\gamma \cdot 1}{2}} \frac{\dot{m}}{\dot{m}_0}$, Eq. (B-3)

 \hat{m} Nondimensional mass flow rate defined as \dot{m}/\dot{m}_c , Eq. (B-1)

m_c Convenient quantity with units of mass flow rate defined as

 $\sqrt{\frac{\gamma}{R}} \; \frac{P_c}{\sqrt{T_c}} \; A_{ct}$

n Iteration number

P Pressure

 \widetilde{P} Nondimensional pressure, P/P_0

Perfect gas constant R Temperature T Time t Midpoint of a time interval t* Final time in an area time curve $t_{\rm F}$ V Volume, as in V_p or V_{ts} Scratch variable used to develop small perturbation expansion, Eq. (27) ٧i Variables in numerical reversion procedure (Fig. 10) X,YConstant defined as $\sqrt{\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}} \frac{\gamma}{R}$, Eqs. (4) and (5) aRatio of specific heats γ δ_{f} Flap gap Array of small perturbations of the variables from the exact solution ϵ_{i} (Table A-1) Perturbation in the main valve area $\epsilon_{
m A_{
m e}}$ Perturbation in the flap area $\epsilon_{
m A_f}$ Perturbation in the plenum exhaust valve area $\epsilon_{\rm A}$ pe Density Porosity, percent of test section wall area drilled out to allow crossflow **SUBSCRIPTS** С Charge condition ct Charge tube (or supply tube) d Diffuser end of test section e Main tunnel exit, main valves

AEDC-TR-76-39

f Flaps

i Array index

max Maximum value as in Apemax

n Nozzle end of test section

p Plenum

pe Plenum exhaust

pt Plenum - Test Section

 $t,\ ts \qquad \qquad Test\ section,\ as\ in\ P_t\ or\ A_{ts}$

tsw Test section wall, as in Atsw, the total wall area

w Test section wall, as in A_w , the effective flow area

O Stagnation condition

1 Test value in numerical reversion (Fig. 10)

SUPERSCRIPT

* Sonic conditions