Package 'termstrc'

February 20, 2015

Type Package

Title Zero-coupon Yield Curve Estimation

Version 1.3.7 **Date** 2013-11-03

Author Robert Ferstl, Josef Hayden

Maintainer Josef Hayden < josef.hayden@gmail.com>

Description The package offers a wide range of functions for term structure estimation based on static and dynamic coupon bond and yield data sets. The implementation focuses on the cubic splines approach of McCulloch (1971, 1975) and the Nelson and Siegel (1987) method with extensions by Svensson (1994), Diebold and Li (2006) and De Pooter (2007). We propose a weighted constrained optimization procedure with analytical gradients and a globally optimal start parameter search algorithm. Extensive summary statistics and plots are provided to compare the results of the different estimation methods. Several demos are available using data from European government bonds and yields.

URL http://R-Forge.R-project.org/projects/termstrc/

LazyLoad yes

Depends R (>= 3.0.0)

Imports lmtest, Rcpp (>= 0.10.6), rgl, sandwich, urca, zoo

LinkingTo Rcpp

License GPL (>= 2)

Repository CRAN

Repository/R-Forge/Project termstrc

Repository/R-Forge/Revision 637

Repository/R-Forge/DateTimeStamp 2013-11-03 18:53:03

Date/Publication 2013-11-04 20:20:11

NeedsCompilation yes

R topics documented:

F	4
aabse	5
bond_prices	6
bond_yields	7
create_cashflows_matrix	7
create_maturities_matrix	8
cSums	9
datadyncouponbonds	0
duration	0
estimateyieldcurve	1
estimatezcyieldcurve	2
estim_cs	2
estim_cs.couponbonds	3
estim_nss	5
estim_nss.couponbonds	6
estim_nss.dyncouponbonds	
estim_nss.zeroyields	9
fcontrib	1
fcontrib.dyntermstrc_param	1
findstartparambonds	
findstartparamyields	
forwardrates	
fwr_asv	
fwr_dl	
fwr_ns	
fwr_sv	
get_constraints	
get_grad_objfct	8
get_grad_objfct_bonds	
get_objfct	
get_objfct_bonds	
get_paramnames	9
get_realnames	
gi	
govbonds	
grad_asv	
grad_asv_bonds	
grad_asv_bonds_grid	
grad_asv_grid	
grad_dl	
grad dl bonds	
grad_ns	
grad_ns_bonds	
grad_ns_bonds_grid	
grad_ns_grid	
grad_sv	

grad_sv_bonds
grad_sv_bonds_grid
grad_sv_grid
impl_fwr
loss_function
maturity_range
objfct_asv
objfct_asv_bonds
objfct_asv_bonds_grid
objfct_asv_grid
objfct_dl
objfct_dl_bonds
objfct_ns
objfct_ns_bonds
objfct_ns_bonds_grid
objfct_ns_grid
objfct_sv
objfct_sv_bonds
objfct_sv_bonds_grid
objfct_sv_grid
param
param.dyntermstrc_nss
param.dyntermstrc_yields
plot.df_curves
plot.dyntermstrc_nss
plot.dyntermstrc_param
plot.dyntermstrc_yields
plot.error
plot.fwr_curves
plot.ir_curve
plot.spot_curves
plot.spsearch
plot.s_curves
plot.termstrc_cs
plot.termstrc nss
plot.zeroyields
postpro_bond
prepro_bond
print.couponbonds
print.dyncouponbonds
print.dyntermstrc_nss
print.dyntermstrc_yields
print.summary.dyntermstrc_nss
print.summary.dyntermstrc_param
print.summary.dyntermstrc_yields
1
print.summary.termstrc_nss
print.termstrc_cs

4 termstrc-package

	print.termstrc_nss	66
	print.zeroyields	66
	rmse	67
	rm_bond	67
	rm_bond.couponbonds	68
	rm_bond.dyncouponbonds	68
	spotrates	69
	spr_asv	70
	spr_dl	71
	spr_ns	72
	spr_sv	73
	summary.dyntermstrc_nss	74
	summary.dyntermstrc_param	74
	summary.dyntermstrc_yields	75
	summary.termstrc_cs	75
	summary.termstrc_nss	76
	summary.zeroyields	77
	zeroyields	77
	zyields	78
Index		7 9
Index		

Zero-coupon Yield Curve Estimation

Description

termstrc-package

The package offers a wide range of functions for term structure estimation based on static and dynamic coupon bond and yield data sets. The implementation focuses on the cubic splines approach of McCulloch (1971, 1975) and the Nelson and Siegel (1987) method with extensions by Svensson (1994), Diebold and Li (2006) and De Pooter (2007). We propose a weighted constrained optimization procedure with analytical gradients and a globally optimal start parameter search algorithm. Extensive summary statistics and plots are provided to compare the results of the different estimation methods. Several demos are available using data from European government bonds and yields.

References

Robert Ferstl and Josef Hayden (2010): Zero-Coupon Yield Curve Estimation with the Package **termstrc**, *Journal of Statistical Software*, **36(1)**, 1-34. URL http://www.jstatsoft.org/v36/i01/

- J. Huston McCulloch (1971): Measuring the Term Structure of Interest Rates. *The Journal of Business*, 44 19–31.
- J. Huston McCulloch (1975): The Tax-Adjusted Yield Curve. *The Journal of Finance*, **30** 811–830. Charles R. Nelson and Andrew F. Siegel (1987): Parsimonious Modeling of Yield Curves. *The Journal of Business*, **60(4)**:473–489.
- Lars E.O. Svensson (1994): Estimating and Interpreting Forward Interest Rates: Sweden 1992 -1994. *Technical Reports 4871, National Bureau of Economic Research*.

aabse 5

Robert R. Bliss (1997): Testing Term Structure Estimation Methods. *Advances in Futures and Options Research*, **9** 197–232.

Bank for International Settlements (2005): Zero-Coupon Yield Curves: Technical Documentation. *BIS Papers*, *No.* 25.

F.X. Diebold and C. Li (2006): Forecasting the Term Structure of Government Bond Yields. *Journal of Econometrics*, **130**:337–364.

Michiel De Pooter (2007): Examining the Nelson-Siegel Class of Term Structure Models: In-Sample Fit versus Out-of-Sample Forecasting Performance, *Working paper*.

aabse

Average Absolute Mean Error

Description

Calculation of the average absolute mean error (AABSE). The AABSE is also called mean absolute error (MAE).

Usage

aabse(actual, estimated)

Arguments

actual vector, consisting of the observed values.
estimated vector, consisting of the estimated values.

Details

Calculation of the AABSE according to the formula:

$$AABSE = \frac{1}{m} |\epsilon| \iota,$$

whereas ϵ is the vector of the yield or price errors of the bonds and ι is a column vector filled with ones. m is the number of bonds, for which ϵ has been calculated.

See Also

rmse

6 bond_prices

bond	prices

Bond Price Calculation

Description

Function for the calculation of bond prices according to the chosen approach (Diebold/Li, Nelson/Siegel, Svensson) based on the cashflows and maturities matrix of the bonds.

Usage

```
bond_prices(method = "ns", beta, m, cf, lambda)
```

Arguments

method defines the desired method: "ns" for the Nelson/Siegel, "dl" for Diebold/Li,

"sv" for the Svensson approach.

beta parameter vector, is linked to the chosen approach.

m maturities matrix, consists of the maturity dates which are appended to the cash-

flows of the bonds.

cf cashflows matrix.

lambda additional parameter for the "dl" spot rate function

Value

Returns a list with:

spot_rates spot rates matrix

discount_factors

discount factors matrix

bond_prices bond prices vector

See Also

```
spotrates
```

Examples

```
data(govbonds)
cf <- create_cashflows_matrix(govbonds[[1]])
m <- create_maturities_matrix(govbonds[[1]])
beta <- c(0.0511,-0.0124,-0.0303,2.5429)
bond_prices(method="ns",beta,m,cf)$bond_prices</pre>
```

bond_yields 7

bond_vields	Bond Yield Calculation
DOLIG_ATCTO2	Dona Heia Calculation

Description

Function for the calculation of bond yields.

Usage

```
bond_yields(cashflows, m, searchint = c(-1, 1), tol = 1e-10)
```

Arguments

cashflows matrix with the cashflows of the bonds, including the current dirty price.

m maturity matrix of the bonds searchint search interval for root finding.

tol desired accuracy for function uniroot.

Value

The function returns a matrix with the yields of the bonds and the associated maturities.

See Also

uniroot

Examples

```
data(govbonds)
cf_p <- create_cashflows_matrix(govbonds[[1]],include_price=TRUE)
m_p <- create_maturities_matrix(govbonds[[1]],include_price=TRUE)
bond_yields(cf_p,m_p)</pre>
```

```
create_cashflows_matrix
```

Cashflows Matrix Creation

Description

Creates a matrix of cashflows for a specified group of bonds for a static bond data set. The number of rows is the number of cashflows for the bond with the longest maturity.

Usage

```
create_cashflows_matrix(group, include_price = FALSE)
```

Arguments

```
group static bond data set for a certain group of bonds.
include_price if TRUE the dirty price is included (default: FALSE).
```

Value

Returns a matrix which consits of the calculated cashflows.

See Also

```
create_maturities_matrix
```

Examples

```
data(govbonds)
(cf <- create_cashflows_matrix(govbonds[[1]]))
## cf matrix with included current dirty price
(cf_p <- create_cashflows_matrix(govbonds[[1]],include_price=TRUE))</pre>
```

```
create_maturities_matrix
```

Maturity Matrix Creation

Description

Creates a matrix of maturities for a specified group of bonds for a static bond data set. The number of rows is the number of cashflows for the bond with the longest maturity.

Usage

```
create_maturities_matrix(group, include_price = FALSE)
```

Arguments

```
group static bond data set for a certain group of bonds.
include_price if TRUE the dirty price is included (default: FALSE).
```

Value

The maturity matrix is returned.

See Also

```
create_cashflows_matrix
```

cSums 9

Examples

```
data(govbonds)
(m <- create_maturities_matrix(govbonds[[1]]))
## maturities matrix with included maturity of the current
## dirty price, i.e., zero.
(m_p <- create_maturities_matrix(govbonds[[1]],include_price=TRUE))</pre>
```

cSums

Form Column Sums

Description

Calculates column sums for numer matrices

Usage

```
cSums(x, na.rm = FALSE, dims = 1L)
```

Arguments

X	matrix
na.rm	logical. Should missing values (including NaN) be omitted from the calculations?
dims	integer. Which dimensions are regarded as rows or columns to sum over

Note

The function is an optimized version of colSums and only used for internaly calculations.

See Also

colSums

10 duration

datadyncouponbonds

German Government Bond Data Set

Description

Dynamic German government coupon bond data set

Usage

data(datadyncouponbonds)

Note

If you use your own data set, make sure that the structure is identical to the provided data sets. Use the function str() to explore the data set.

duration

Duration, modified Duration and Duration based Weights

Description

The function calculates the Macauly duration, modified duration and duration based weights.

Usage

```
duration(cf_p, m_p, y)
```

Arguments

cf_p cashflows matrix including the current dirty prices of the bonds.

m_p maturity matrix, the first row is filled with zeros.

y yields of the bonds.

Details

The duration vector is calculated using the following formula:

$$d = \frac{\iota'(C \cdot M \cdot D)}{\iota'(C \cdot D)},$$

whereas C is the cashflow matrix and M is the maturity matrix. ι is a column vector filled with ones. (\cdot) denotes a elementwise matrix mulitplication and "'" the transpose of a vector (matrix).

The weight ω_j for one bond j is defined as

$$\omega_j = \frac{\frac{1}{d_j}}{\sum_{i=1}^m \frac{1}{d_i}},$$

where d_j is the duration of the j-th bond.

estimateyieldcurve 11

Value

The function returns a matrix with three columns, i.e,. duration, modified duration and duration based weights.

Examples

```
data(govbonds)
cf_p <- create_cashflows_matrix(govbonds[[1]],include_price=TRUE)
m_p <- create_maturities_matrix(govbonds[[1]],include_price=TRUE)
y <- bond_yields(cf_p,m_p)
duration(cf_p,m_p,y[,2])</pre>
```

estimateyieldcurve

Estimate Zero-coupon Yield Curves

Description

Estimate Zero-coupon Yield curves assuming a certain spot rate function

Usage

```
estimateyieldcurve(method, y, m, beta, lambda,
  objfct, grad_objfct, constraints, constrOptimOptions)
```

Arguments

method form of the spot rate function

y yields m maturities

beta parameter vector

lambda parameter for Diebold/Li

objfct objective function

grad_objfct grad_objfct

constraints parameter constraints

 ${\tt constrOptimOptions}$

solver options

Details

internal helper function

12 estim_cs

estimatezcyieldcurve Estimate Zero-coupon Yield Curves

Description

Estimate Zero-coupon Yield curves assuming a certain spot rate function

Usage

```
estimatezcyieldcurve(method, startparam, lambda, objfct, grad_objfct,
constraints, constrOptimOptions, m, cf, weights, p)
```

Arguments

method form of the spot rate function

startparam start parameter vector lambda parameter for Diebold/Li

objective function, e.g., sum of the weighted squared price errors

grad_objfct gradient

constraints constraints for the solver

constrOptimOptions

solver options

m maturities
cf cash flows
weights weights
p prices

Details

Used as internal helper function

estim_cs

Cubic Splines Term Structure Estimation

Description

Function for estimating the term structure of coupon bonds based on cubic splines.

Usage

```
estim_cs(bonddata, group, matrange="all", rse=TRUE)
```

estim_cs.couponbonds 13

Arguments

bonddata a data set of bonds in list format.

group vector defining the group of bonds used for the estimation,

e.g., c("GERMANY", "AUSTRIA").

matrange use "all" for no restrictions, or restrict the maturity range used for the estima-

tion with c(lower, upper).

rse TRUE (default) calculates robust standard erros for the confidence intervalls of

the discount curve

See Also

estim_cs.couponbonds

estim_cs.couponbonds S3 Estim_cs Method

Description

S3 estim.cs method for an object of the class "couponbonds". The method estimates the discount curve with the cubic splines approach by McCulloch (1975).

Usage

```
## S3 method for class 'couponbonds'
estim_cs(bonddata, group, matrange = "all", rse = TRUE)
```

Arguments

bonddata a data set of bonds in list format.

group vector defining the group of bonds used for the estimation,

e.g., c("GERMANY", "AUSTRIA").

matrange use "all" for no restrictions, or restrict the maturity range used for the estima-

tion with c(lower, upper).

rse TRUE (default) calculates robust standard erros for the confidence intervalls of

the discount curve

Details

- groupThe first element of the vector will be used as the reference country for the spread curve calculation. group can be either a vector of bond groups or a scalar.
- bonddataThe package is designed to work with a certain list data structure. For more information use the function str() to explore the structure of the example data sets.

Value

The function returns an object of the class "termstrc_cs". The object contains the following items (mainly lists):

group group of bonds (e.g. countries) used for the estimation.

matrange "none" or a vector with the maturity range.

n_group length of object group, i.e. the number of countries. knotpoints selected knot points for the cubic splines estimation.

spot zero-coupon yield curves as object of the class "spot_curves".

spread spread curves as object of the class "s_curves".

forward curves as object of the class "fwr_curves".

discount discount curves as object of the class "df_curves".

cf cashflow matrices. m maturity matrices.

p dirty prices.

phat estimated bond prices.

perrors pricing errors and maturities as object of the class "error".

y bond yields.

yhat one list for each group with the theoretical bond yields calculated with the esti-

mated bond prices phat.

yerrors yield errors and maturities as object of the class "error".

alpha OLS coefficients of cubic splines estimation.

regout OLS estimation results as object of the class "lm".

rse robust standard errors for confidence interval calculation

Note

For objects of the class "spot_curves", "s_curves", "df_curves", "fwr_curves", "error" appropriate plot methods are offered. For objects of the list item regout standard 1m methods apply. For objects of the class "termstrc_cs" print, summary and plot methods are available. Another term structure estimation method is provided by the method

```
estim_nss.couponbonds.
```

References

J.Huston McCulloch (1971): Measuring the Term Structure of Interest Rates. *The Journal of Business*, **44** 19–31.

J. Huston McCulloch (1975): The Tax-Adjusted Yield Curve. The Journal of Finance, 30 811-830.

See Also

```
print.termstrc_cs, summary.termstrc_cs, plot.termstrc_cs,
estim_nss.couponbonds, plot.spot_curves, plot.s_curves, plot.df_curves,
plot.fwr_curves, plot.error, summary.lm, plot.lm.
```

estim_nss 15

Examples

```
# load data set
data(govbonds)
# define countries, for which the estimation
# of the zero-coupon yield curves will be carried out
group <- c("GERMANY", "AUSTRIA")</pre>
# set maturtly range
matrange <- c(0, 19)
# perform estimation
x <- estim_cs(govbonds, group, matrange)</pre>
# print the obtained parameters of the estimation
print(x)
# goodness of fit measures
summary(x)
# plot the zero-coupon yield curve for each country
plot(x,errors="none")
# plot all zero-coupon yield curves together
plot(x,multiple=TRUE,errors="none")
# spread curve splot
plot(x,ctype="spread",errors="none")
# price error plot for all countries
plot(x,ctype="none")
```

estim_nss

Parametric Term Structure Estimation

Description

Function for estimating the term structure of coupon bonds and yields, with the spot rate function of Diebold/Li, Nelson/Siegel or Svensson.

Usage

```
estim_nss(dataset, ...)
```

Arguments

```
dataset object of the class "zeroyields", "couponbonds" or "dyncouponbonds"
... further arguments
```

See Also

estim_nss.zeroyields, estim_nss.couponbonds, estim_nss.dyncouponbonds

Description

Zero-coupon yield curve estimation with the parametric Nelson/Siegel (1987), Svensson (1994) and Diebold/Li (2006) method. The method requires an object of the class "couponbonds".

Usage

```
## S3 method for class 'couponbonds'
estim_nss(dataset, group, matrange = "all", method = "ns",
    startparam = NULL, lambda = 0.0609 * 12, tauconstr = NULL,
constrOptimOptions = list(control = list(maxit = 2000),
    outer.iterations = 200, outer.eps = 1e-04),...)
```

Arguments

dataset	a static coupon bond data set of the class "couponbonds"
group	vector defining the group of bonds used for the estimation,
	e.g., $c("GERMANY", "AUSTRIA")$. The spot rate curve of the first group element will be used as the reference curve for the spread curve calculation.
matrange	use "all" for no restrictions, or restrict the maturity range (in years) used for the estimation with $c(lower, upper)$.
method	"ns" for Nelson/Siegel (default), "dl" for Diebold/Li, "sv" for Svensson or "asv" for adjusted Svensson.
startparam	matrix of start parameters (number of columns is the number of parameters). If no start parameters are given, globally optimal parameters are searched automatically (default: NULL)
lambda	parameter on a yearly time scale with fixed value for "dl" spot rate function (default: $0.0609*12$)
tauconstr	
constrOptimOpt	ions
	list with solver control parameters (default: control=list(), outer.interations=30,

outer.eps.=1e-04). For further documentation please refer to optim

.. further arguments

estim_nss.couponbonds 17

Value

The function nelson_estim returns an object of the class "nelson". The object contains the following items (mainly lists):

group group of bonds (e.g. countries) used for the estimation.

matrange "none" or a vector with the maturity range.

method estimation method ("Nelson/Siegel" or "Svensson").

startparam calculated starparameters.

n_group length of object group, i.e. the number of countries.

lambda parameter of "dl" spot rate function.

spsearch detailed data from the start parameter search algorithm

spot zero-coupon yield curves as object of the class "spot_curves".

spread spread curves as object of the class "s_curves".

forward curves as object of the class "fwr_curves".

discount discount curves as object of the class "df_curves".

expoints extrapolation points for Nelson/Siegel method.

cf cashflow matrices.
m maturity matrices.

duration duration matrix, including the modified duration and duration based weights.

p dirty prices.

phat estimated bond prices.

perrors pricing errors and maturities, object of the class "error".

ac accrued interest y bond yields.

yhat one list for each group with the theoretical bond yields calculated with the esti-

mated bond prices phat.

yerrors yield errors and maturities as object of the class "error".

opt_result optimization results from optim, e.g. optimal parameters, convergence info.

Note

An error message concerning the function uniroot() is in general caused by wrongly specified start parameters or by data issues.

For objects of the class "spot_curves", "s_curves", "df_curves", "fwr_curves", "error" appropriate plot methods are offered. For objects of the class "termstrc_nss" print, summary and plot methods are available. Another term structure estimation method is provided by the function estim_cs.

References

Charles R. Nelson and Andrew F. Siegel (1987): Parsimonious Modeling of Yield Curves. *The Journal of Business*, **60(4)**:473–489.

Lars E.O. Svensson (1994): Estimating and Interpreting Forward Interest Rates: Sweden 1992 -1994. *Technical Reports 4871, National Bureau of Economic Research*.

F.X. Diebold and C. Li: Forecasting the Term Structure of Government Bond Yields. *Journal of Econometrics*, **130**:337–364.

See Also

```
print.termstrc_nss, summary.termstrc_nss, plot.termstrc_nss, estim_cs, plot.spot_curves,
plot.s_curves, plot.df_curves, plot.fwr_curves,
plot.error, uniroot.
```

Examples

```
## Run: demo(nss_static)
```

estim_nss.dyncouponbonds

S3 Estim_nss method

Description

The method performs an iterative term structure estimation procedure on a dynamic bond data set of the class "dyncouponbonds". Available methods are Nelson/Siegel, Diebold/Li and (adjusted) Svensson.

Usage

```
## S3 method for class 'dyncouponbonds'
estim_nss(dataset, group, matrange = "all", method = "ns",
  lambda = 0.0609 * 12, tauconstr = NULL, optimtype = "firstglobal",
constrOptimOptions = list(control = list(maxit = 2000),
outer.iterations = 200, outer.eps = 1e-04), ...)
```

Arguments

method

dataset dynamic bond data set of the class "dyncouponbonds".

vector defining the group of bonds used for the estimation,
e.g., c("GERMANY", "AUSTRIA").

matrange use "all" for no restrictions, or restrict the maturity range (in years) used for the estimation with c(lower, upper).

"ns" for Nelson/Siegel (default), "d1" for Diebold/Li, "sv" for Svensson or

"asv" for adjusted Svensson.

estim_nss.zeroyields 19

lambda parameter on a yearly time scale with fixed value for "d1" spot rate function

(default: 0.0609*12)

tauconstr

optimtype use "firstglobal" for an inital search for globally optimal start parameters or

"allglobal" for a search at every iteration.

constrOptimOptions

list with solver control parameters (default: control=list(), outer.interations=30,

outer.eps.=1e-04). For further documentation please refer to optim

... further arguments

Details

The method iteratively applies the method "estim_nss.couponbonds".

Value

The method returns an object of the class "dyntermstrc_nss". The object is a list with sublists of the class "termstrc_nss".

See Also

```
estim_nss.couponbonds
```

Examples

```
## Run: demos(nss_dynamic)
```

```
estim_nss.zeroyields S3 estim_nss Method
```

Description

The method performs an iterative term structure estimation procedure on a dynamic yield data set of the class "zeroyields". Available methods are Nelson/Siegel, Diebold/Li and (adjusted) Svensson.

Usage

```
## S3 method for class 'zeroyields'
estim_nss(dataset, method = "ns",
  lambda = 0.0609 *12, tauconstr = NULL, optimtype = "firstglobal",
  constrOptimOptions = list(control = list(),
  outer.iterations = 200, outer.eps = 1e-04), ...)
```

20 estim_nss.zeroyields

Arguments

dataset dynamic bond data set of the class "zeroyields"

method "ns" for Nelson/Siegel (default), "dl" for Diebold/Li, "sv" for Svensson or

"asv" for adjusted Svensson.

lambda parameter on a yearly time scale with fixed value for "d1" spot rate function

(default: 0.0609*12)

tauconstr This is vector with parameters for the grid search procedure containing:

For parametrizations except Diebold/Li, a grid search for the tau-parameter is

performed. The parameters must lie within the following bounds.

lower bound < [tau_1, tau_2] < upper bound The width of the grid is given by gridsize.

 $tau_2 - tau_1 > taudistance$

(upper bound, lower bound, gridsize, tau distance)

optimtype use "firstglobal" for an inital search for globally optimal start parameters or

"allglobal" for a search at every iteration.

constrOptimOptions

list with solver control parameters (default: control=list(), outer.interations=30,

outer.eps.=1e-04). For further documentation please refer to optim

... further arguments

Value

The method returns an object of the class "dyntermstrc_yields". There are print, plot and summary method available.

References

Michiel De Pooter (2007): Examining the Nelson-Siegel Class of Term Structure Models: In-Sample Fit versus Out-of-Sample Forecasting Performance, *Working paper*.

F.X. Diebold and C. Li: Forecasting the Term Structure of Government Bond Yields. *Journal of Econometrics*, **130**:337–364.

Charles R. Nelson and Andrew F. Siegel (1987): Parsimonious Modeling of Yield Curves. *The Journal of Business*, **60(4)**:473–489.

Lars E.O. Svensson (1994): Estimating and Interpreting Forward Interest Rates: Sweden 1992 -1994. *Technical Reports 4871, National Bureau of Economic Research*.

Examples

Run: demo(zeroyields)

fcontrib 21

fcontrib Plot Fac	tor Contribution
-------------------	------------------

Description

The function plots the factor contribution of the parameters of the different spot rate functions at a certain point in time.

Usage

```
fcontrib(x, method = "ns", lambda = 0.0609 * 12, index = 1, m = 1:10, ylim = NULL, ...)
```

Arguments

X	object of the class dyntermstrc_param
method	Spot rate function, one of the following "ns", "sv", "dl", "sv" $$
lambda	additional parameter for "dl" spot rate function.
index	specific point in time
m	maturity spectrum for the plot, e.g., "c(min, max)"
ylim	range of the y axis.
	further arguments

```
fcontrib.dyntermstrc_param
S3 fcontrib Method
```

Description

S3 fcontrib method for objects of the class "dyntermstrc_param". The function plots the factor contribution of the parameters of the different spot rate functions at a certain point in time.

Usage

```
## S3 method for class 'dyntermstrc_param'
fcontrib(x, method = "ns", lambda = 0.0609 * 12, index = 1,
m = 1:10, ylim = NULL, ...)
```

22 findstartparambonds

Arguments

X	object of the class dyntermstrc_param
method	Spot rate function, one of the following "ns", "sv", "dl", "sv"
lambda	additional parameter for "dl" spot rate function.
index	specific point in time
m	maturity spectrum for the plot, e.g., "c(min, max)"
ylim	range of the y axis.
• • •	further arguments

findstartparambonds

Find Globally Optimal Startparameters

Description

Start parameter search routine for term structure estimation based on a coupon bond data set. The algorithm searches for the parameters over a grid spanned over tau1 (tau2).

Usage

```
findstartparambonds(p, m, cf, weights, method, tauconstr,
  control = list(), outer.iterations = 30, outer.eps = 1e-04)
```

Arguments

price vector р maturites matrix m cf cashflows matrix duration based weights weights method form of the spot rate function tauconstr control solver control parameters, for details see optim outer.iterations see constrOptim outer.eps see constrOptim

Details

Used as internal helper function

Value

Returns an object of the class "spsearch", which includes the startparameters and details concerning the optimization.

findstartparamyields 23

findstartparamyields Find Globally Optimal Start Parameters

Description

Start parameter search routine for term structure estimation based on a yield data set. The algorithm searches for the parameters over a grid spanned over tau1 (tau2).

Usage

```
findstartparamyields(y,m, method, tauconstr,
control = list(), outer.iterations = 30, outer.eps = 1e-04)
```

Arguments

y yields
m maturities
method type of spot rate function
tauconstr tau parameter constraints
control solver control parameters, for details see optim
outer.iterations
see constrOptim

see construpt

outer.eps see constrOptim

Details

Used as internal helper function

Value

Returns an object of the class "spsearch", which includes the startparameters and details concerning the optimization.

forward Rate Calculation

Description

Calculates forward rates according to the Diebold/Li, Nelson/Siegel, Svensson approach.

Usage

```
forwardrates(method, beta, m, lambda)
```

24 fwr_asv

Arguments

method forward rate function type: "d1" for Diebold/Li, "ns" for Nelson/Siegel, "sv"

for Svensson, "asv" for adjusted Svensson.

beta parameter vector β .

m maturity or a vector of maturities.

lambda = $1/\tau_1$, a scalar; only required for Diebold/Li forward rate function

Value

The function returns a vector with the calculated forward rates.

See Also

```
fwr_dl, fwr_ns, fwr_sv
```

Examples

```
forwardrates(method="ns",beta=c(0.03,0.02,0.01,5),m=1:30)
```

fwr_asv

Forward Rate Calculation according to an adjusted Svensson Version

Description

The function calculates the forward rates based on a given parameter and maturity vector.

Usage

```
fwr_asv(beta, m)
```

Arguments

beta parameter vector $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \tau_1, \beta_3, \tau_2).$

m maturity or vector of maturities.

Details

The forward rate for a maturity m is calculated according to the following formula:

$$f(m, \boldsymbol{\beta}) = \beta_0 + \beta_1 \exp\left(-\frac{m}{\tau_1}\right) + \beta_2 \left[\left(\frac{m}{\tau_1}\right) \exp\left(-\frac{m}{\tau_1}\right)\right] + \beta_3 \left[\exp\left(-\frac{m}{\tau_2}\right) + \left(\frac{2m}{\tau_2} - 1\right) \exp\left(-\frac{2m}{\tau_2}\right)\right].$$

Value

Returns the a vector with the calculated forward rate (vector).

fwr_dl 25

References

Lars E.O. Svensson (1994): Estimating and Interpreting Forward Interest Rates: Sweden 1992 -1994. *Technical Reports 4871, National Bureau of Economic Research*.

See Also

forwardrates

Examples

```
fwr_asv(c(0.03,0.02,0.01,5,0.01,10),1:30)
```

fwr_dl

Forward Rate Calculation according to Diebold/Li.

Description

Calculate forward rates according to Diebold/Li(2006).

Usage

```
fwr_dl(beta, m, lambda)
```

Arguments

beta parameter vector $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2)$.

m maturity or maturity vector.

lambda $=\frac{1}{\tau_1}$, a scalar

Details

The forward rate for a maturity m is calculated according to the following formula:

$$f(m, \boldsymbol{\beta}, \lambda) = \beta_0 + \beta_1 \exp(-m\lambda) + \beta_2 [(m\lambda) \exp(-m\lambda)].$$

Value

The function returns the calculated forward rate (vector).

References

F.X. Diebold and C. Li: Forecasting the Term Structure of Government Bond Yields. *Journal of Econometrics*, **130**:337–364.

See Also

fwr_sv,fwr_ns, forwardrates

26 fwr_ns

Examples

```
fwr_dl(beta=c(0.03,0.02,0.01),1:30,lambda=1/5)
```

fwr_ns

Forward Rate Calculation according to Nelson/Siegel.

Description

Calculate forward rates according to Nelson/Siegel(1987).

Usage

```
fwr_ns(beta, m)
```

Arguments

beta parameter vector $\boldsymbol{\beta}=(\beta_0,\beta_1,\beta_2,\tau_1).$ m maturity or maturity vector.

Details

The forward rate for a maturity m is calculated using the following relation:

$$f(m, \boldsymbol{\beta}) = \beta_0 + \beta_1 \exp\left(-\frac{m}{\tau_1}\right) + \beta_2 \left[\left(\frac{m}{\tau_1}\right) \exp\left(-\frac{m}{\tau_1}\right)\right].$$

Value

The function returns the calculated forward rate (vector).

References

Charles R. Nelson and Andrew F. Siegel (1987): Parsimonious Modeling of Yield Curves. *The Journal of Business*, **60(4)**:473–489.

See Also

fwr_sv,fwr_dl, forwardrates

Examples

```
fwr_ns(beta=c(0.03,0.02,0.01,5),1:30)
```

fwr_sv 27

fwr_sv

Forward Rate Calculation according to Svensson (1994).

Description

Calculate forward rates according to Svensson (1994).

Usage

```
fwr_sv(beta, m)
```

Arguments

beta parameter vector $\boldsymbol{\beta}=(\beta_0,\beta_1,\beta_2,\tau_1,\beta_3,\tau_2).$ m maturity or vector of maturities.

Details

The forward rate for a maturity m is calculated according to the following formula:

$$f(m, \boldsymbol{\beta}) = \beta_0 + \beta_1 \exp\left(-\frac{m}{\tau_1}\right) + \beta_2 \left[\left(\frac{m}{\tau_1}\right) \exp\left(-\frac{m}{\tau_1}\right)\right] + \beta_3 \left[\left(\frac{m}{\tau_2}\right) \exp\left(-\frac{m}{\tau_2}\right)\right].$$

Value

Returns the a vector with the calculated forward rate (vector).

References

Lars E.O. Svensson (1994): Estimating and Interpreting Forward Interest Rates: Sweden 1992 -1994. *Technical Reports 4871, National Bureau of Economic Research*.

See Also

fwr_ns,fwr_dl forwardrates

Examples

```
fwr_sv(c(0.03,0.02,0.01,5,0.01,10),1:30)
```

get_constraints

Constraints Selection

Description

Selection of the appropriate contraints for constrOptim()

Usage

```
get_constraints(method, tauconstr)
```

Arguments

method term structure estimation method tauconstr constraints on tau parameters

get_grad_objfct

Gradient Selection Function

Description

Selects the appropriate gradient of the objective function

Usage

```
get_grad_objfct(method)
```

Arguments

method

term structure estimation method

 ${\tt get_grad_objfct_bonds} \quad \textit{Gradient Selection Function}$

Description

Selects the appropriate gradient of the objective function for a bond data set

Usage

```
get_grad_objfct_bonds(method)
```

Arguments

method

term structure estimation method

get_objfct 29

get_objfct

Objective Function Selection

Description

Based on a chosen method the objective function is selected

Usage

```
get_objfct(method)
```

Arguments

method

term structure estimation method

 ${\tt get_objfct_bonds}$

Objective Function Selection

Description

Based on a chosen method the objective function for a bond data set is selected

Usage

```
get_objfct_bonds(method)
```

Arguments

method

term structure estimation method

get_paramnames

Parameter Names

Description

Parameter Names for term structure estimation methods

Usage

```
get_paramnames(method)
```

Arguments

method

form of the spot rate function,i.e., one of the following "ns", "sv", "asv", "dl"

gi

Value

Returns a character string with the names of the elements of the parameter vector.

Examples

```
get_paramnames("ns")
```

get_realnames

Name Conversion

Description

Converts Term Structure Method Into Real Name

Usage

```
get_realnames(method)
```

Arguments

method

form of the spot rate function, i.e., "ns", "sv", "asv", "dl"

Value

Returns a character string with the real name

Examples

```
get_realnames("asv")
```

gi

Cubic Functions

Description

Calculation of the cubic functions according to the approach of McCulloch (1975).

Usage

```
gi(t, T, i, s)
```

Arguments

- t maturity.
- T knot points.
- i index.
- s number of basis functions.

govbonds 31

References

J. Huston McCulloch (1975): The Tax-Adjusted Yield Curve. The Journal of Finance, 30 811-830.

govbonds

European Government Bonds

Description

European government bonds.

Usage

```
data(govbonds)
```

Details

The data set bonds consists of German, Austrian and French government bonds.

Note

If you use your own data set, make sure that the structure is identical to the provided data sets. Use the function str() to explore the data set.

Examples

```
data(govbonds)
str(govbonds)
# The following code may be used to generate an empty data set,
# which can then be filled with bond data:
ISIN <- vector()</pre>
MATURITYDATE <- vector()</pre>
ISSUEDATE <- vector()</pre>
COUPONRATE <- vector()
PRICE <- vector()</pre>
ACCRUED <- vector()
CFISIN <- vector()
CF <- vector()
DATE <- vector()
CASHFLOWS <- list(CFISIN,CF,DATE)</pre>
names(CASHFLOWS) <- c("ISIN","CF","DATE")</pre>
TODAY <- vector()
```

32 grad_asv_bonds

grad_asv

Gradient of the adjusted Svensson Loss Function for Yields

Description

Calculates the gradient of the adjusted Svensson Loss Function for Yields

Usage

```
grad_asv(beta, m, y)
```

Arguments

beta Parameter of the adjusted Svensson spot rate function (for details see spr_asv).

m maturity vector

y yield vector

See Also

```
objfct_asv,spr_asv
```

grad_asv_bonds

adjusted Svensson Gradient Function

Description

Calculates the gradient of the objective function. The objective function minimizes the sum of the weighted squared price errors. The spot rate function is based on an adjusted version of Svensson.

grad_asv_bonds_grid 33

Usage

```
grad_asv_bonds(beta,m, cf, w, p)
```

Arguments

beta	Spot rate parameter vector
m	maturity matrix
cf	cashflow matrix
W	weights vector
p	price vector

Value

returns the gradient vector

grad_asv_bonds_grid adjusted Svensson Gradient Function for the Grid Search

Description

Calculates the gradient of the objective function for the grid search. The objective function minimizes the sum of the weighted squared price errors. The spot rate function is based on an adjusted version of Svensson.

Usage

```
grad_asv_bonds_grid(beta, tau, m, cf, w, p)
```

Arguments

beta	Spot rate parameter vector
tau	fixed parameters
m	maturity matrix
cf	cashflow matrix
W	weights vector
p	price vector

Value

returns the gradient vector

grad_dl

grad_asv_grid	Adjusted Svensson Gradient Function for the Grid Search

Description

Calculates the gradient of the objective function for the grid search. The objective function minimizes the sum of the squared yield errors. The spot rate function is based on the adjusted version of Svensson.

Usage

```
grad_asv_grid(beta, tau, m, y)
```

Arguments

beta Spot rate function parameter vec	tor
---------------------------------------	-----

tau fixed parameters
m maturity vector
y yield vector

grad_dl Gradient of the Diebold/Li Loss Function for Yields

Description

Calculates the gradient of the Diebold/Li Loss Function for Yields

Usage

```
grad_dl(beta, lambda, m, y)
```

Arguments

beta	Parameter of the Diebold/Li spot rate function

lambda constant parameter of the Diebold/Li spot rate function

m maturity vector
y yield vector

grad_dl_bonds 35

grad_dl_bonds	Diebold/Li Gradient function	

Description

Calculates the gradient of the objective function. The objective function minimizes the sum of the weighted squared price errors. The spot rate function is based on Diebold/Li.

Usage

```
grad_dl_bonds(beta, lambda, m, cf, w, p)
```

Arguments

beta	Spot rate parameter vector
lambda	fixed spot rate parameter
m	maturity matrix
cf	cashflow matrix
W	weights vector
р	price vector

Value

returns the gradient vector

		7
nd_ns	Gradient of the Nelson/Siegel Loss Function for Yield	S
iu_113	Gradient of the Netson Steget Loss Function	ijoi rieiu

Description

Calculates the gradient of the Nelson/Siegel Loss Function for Yields

Usage

```
grad_ns(beta, m, y)
```

Arguments

```
beta Parameter of the Nelson/Siegel spot rate function (for details see spr_ns).

m maturity vector

y yield vector
```

See Also

```
objfct_ns,spr_ns
```

36 grad_ns_bonds_grid

grad	_ns_bon	ids	

Nelson/Siegel Gradient Function

Description

Calculates the gradient of the objective function. The objective function minimizes the sum of the weighted squared price errors. The spot rate function is based on Nelson/Siegel.

Usage

```
grad_ns_bonds(beta, m, cf, w, p)
```

Arguments

beta	Spot rate parameter vector
m	maturity matrix
cf	cashflow matrix
W	weights vector
р	price vector

Value

returns the gradient vector

grad_ns_bonds_grid

Nelson/Siegel Gradient Function for the Grid Search

Description

Calculates the gradient of the objective function for the grid search. The objective function minimizes the sum of the weighted squared price errors. The spot rate function is based on Nelson/Siegel.

Usage

```
grad_ns_bonds_grid(beta, tau, m, cf, w, p)
```

Arguments

beta	Spot rate parameter vector
tau	fixed parameters
m	maturity matrix
cf	cashflow matrix
W	weights vector
р	price vector

grad_ns_grid 37

Value

returns the gradient vector

grad_ns_grid

Nelson/Siegel Gradient Function for the Grid Search

Description

Calculates the gradient of the objective function for the grid search. The objective function minimizes the sum of the squared yield errors. The spot rate function is based on Nelson/Siegel.

Usage

```
grad_ns_grid(beta, tau, m, y)
```

Arguments

beta Spot rate function parameter vector

tau fixed parameters
m maturity vector
y yield vector

grad_sv

Gradient of the Svensson Loss Function for Yields

Description

Calculates the gradient of the Svensson Loss Function for Yields

Usage

```
grad_sv(beta, m, y)
```

Arguments

beta Parameter of the Svensson spot rate function.

m maturity vector
y yield vector

38 grad_sv_bonds_grid

sv_bonds Svensson Gradient Function

Description

Calculates the gradient of the objective function. The objective function minimizes the sum of the weighted squared price errors. The spot rate function is based on Svensson.

Usage

```
grad_sv_bonds(beta, m, cf, w, p)
```

Arguments

beta	Spot rate parameter vector
m	maturity matrix
cf	cashflow matrix
W	weights vector
р	price vector

Value

returns the gradient vector

grad_sv_bonds_grid Svensson Gradient Function for the Grid Search	
---	--

Description

Calculates the gradient of the objective function for the grid search. The objective function minimizes the sum of the weighted squared price errors. The spot rate function is based on Svensson.

Usage

```
grad_sv_bonds_grid(beta, tau, m, cf, w, p)
```

beta	Spot rate parameter vector
tau	fixed parameters
m	maturity matrix
cf	cashflow matrix
W	weights vector
p	price vector

grad_sv_grid 39

Value

returns the gradient vector

grad_sv_grid

Svensson Gradient Function for the Grid Search

Description

Calculates the gradient of the objective function for the grid search. The objective function minimizes the sum of the squared yield errors. The spot rate function is based on Svensson.

Usage

```
grad_sv_grid(beta, tau, m, y)
```

Arguments

beta Spot rate function parameter vector

tau fixed parameters
m maturity vector
y yield vector

impl_fwr

Implied Forward Rate Calculation

Description

Calculates the implied forward rates from given spot rates.

Usage

Arguments

m maturity vector.s spot rate vector.

Details

Implied forward rates can be calculated using the following relationship:

$$f(t',T) = \frac{s(m_T)m_T - s(m_{t'})m_{t'}}{m_T - m_{t'}},$$

whereas $s(m_T), s(m_{t'})$ is the spot rate for a maturity $m_T, m_{t'}$ respectively.

40 maturity_range

Value

The function returns the calculated forward rate vector.

Examples

```
s \leftarrow spr_ns(c(0.03,0.02,0.01,5),1:30)

impl_fwr(s,m=1:30)
```

loss_function

Loss Function used for the Term Structure Estimation

Description

The loss function defines the objective function used for the optimisation. In case of term structure estimation the objective function is the sum of the weighted squared price errors.

Usage

```
loss_function(p, phat, omega)
```

Arguments

p vector of observed prices.phat vector of estimated prices.

omega weights vector, e.g., duration based weights.

maturity_range

Restricting a Bond Dataset

Description

The function restricts a bond data set to a specified maturity range.

Usage

```
maturity_range(bonddata, lower, upper)
```

Arguments

bonddata bond data set.

lower lower bound of maturity spectrum.
upper upper bound of maturity spectrum.

Note

Internal helper function.

objfct_asv 41

Description

Calculates the sum of the squared spot rate error.

Usage

```
objfct_asv(beta, m, y)
```

Arguments

Paramter vector of the adjusted Svensson spot rate function (for details see:

spr_asv),

m maturity vector

y observed yield vector

See Also

```
spotrates, spr_asv
```

objfct_asv_bonds

Adjusted Svensson Loss Function for Bonds

Description

Calculates the sum of the weighted squared price error.

Usage

```
objfct_asv_bonds(beta, m, cf, w, p)
```

Arguments

beta	Paramter vector	of the ad	iusted Svensso	n spot rate function

m maturity matrix cf cashflow matrix

w weightsp price vector

42 objfct_asv_grid

Description

Calculates the sum of the weighted squared price error.

Usage

```
objfct_asv_bonds_grid(beta, tau, m, cf, w, p)
```

Arguments

beta	Beta parameters of adjusted Svensson spot rate function
tau	Tau parameters of adjusted Svensson spot rate function
m	maturity matrix
cf	cashflow matrix
W	weights vector
р	price vector

objfct_asv_grid

Adjusted Svensson Grid Loss Function for Yields

Description

Calculates the sum of the squared yield error.

Usage

```
objfct_asv_grid(beta, tau, m, y)
```

beta	Beta parameters of adjusted Svensson spot rate function
tau	Tau parameters of adjusted Svensson spot rate function
m	maturity vector
у	yield vector

objfct_dl 43

objfct_dl	Diebold/Li Loss Function for Yields
-----------	-------------------------------------

Description

Calculates the sum of the squared spot rate error.

Usage

```
objfct_dl(beta, lambda, m, y)
```

Arguments

beta	Paramter vector of the Diebold/Li spot rate function (for details see: spr_dl),
lambda	Fixed spot rate function parameter
m	maturity vector
у	observed yield vector

objfct_dl_bonds	Diebold/Li Loss Function for Bonds	
-----------------	------------------------------------	--

Description

Calculates the sum of the weighted squared price error.

Usage

```
objfct_dl_bonds(beta, lambda, m, cf, w, p)
```

beta	Paramter vector of the Diebold/Li spot rate function
lambda	Lambda of the Diebold/Li spot rate function
m	maturity matrx
cf	cashflow matrix
W	weights vector
р	price vector

objfct_ns_bonds

objfct_ns

Nelson/Siegel Loss Function for Yields

Description

Calculates the sum of the squared spot rate error.

Usage

```
objfct_ns(beta, m, y)
```

Arguments

Paramter vector of the Nelson/Siegel spot rate function (for details see: spr_ns),

m maturity vector

y observed yield vector

See Also

```
spotrates, spr_ns
```

 $objfct_ns_bonds$

Nelson/Siegel Loss Function for Bonds

Description

Calculates the sum of the weighted squared price error.

Usage

```
objfct_ns_bonds(beta, m, cf, w, p)
```

Arguments

beta	Parameter vector of the Nelson/Siegel spot rate function

m maturity matrix cf cashflow matrix

w weightsp price vector

objfct_ns_bonds_grid 45

 $\verb|objfct_ns_bonds_grid| Nelson/Siegel Grid Loss Function for Bonds|$

Description

Calculates the sum of the weighted squared price error.

Usage

```
objfct_ns_bonds_grid(beta, tau, m, cf, w, p)
```

Arguments

beta	Beta parameters of the Svensson spot price function
tau	Tau parameters of the Svensson spot price function
m	maturities matrix
cf	cash flows matrix
W	weights vector
р	price vector

objfct_ns_grid

Nelson/Siegel Grid Loss Function for Yields

Description

Calculates the sum of the squared yield error.

Usage

```
objfct_ns_grid(beta, tau, m, y)
```

beta	Beta parameters of the Nelson/Siegel spot rate function
tau	Tau parameter of Nelson/Siegel spot rate function
m	maturity vector
у	yield vector

objfct_sv_bonds

ohi	fct	SV
UU.	1 6 6	_ S v

Svensson Loss Function for Yields

Description

Calculates the sum of the squared spot rate error.

Usage

```
objfct_sv(beta, m, y)
```

Arguments

Paramter vector of the Svensson spot rate function (for details see: spr_sv),

m maturity vector

y observed yield vector

See Also

```
spotrates, spr_sv
```

 $objfct_sv_bonds$

Svensson Loss Function for Bonds

Description

Calculates the sum of the weighted squared price error.

Usage

```
objfct_sv_bonds(beta, m, cf, w, p)
```

Arguments

beta	Parameter v	vector o	f the S	vensson	snot rate	function
Deta	I arameter v	vector o	n unc o	VCHSSOII	spoi raic.	i unicuon.

m maturity matrix cf cashflow matrix

w weightsp price vector

objfct_sv_bonds_grid 47

 $\verb"objfct_sv_bonds_grid" \textit{Svensson Grid Loss Function for Bonds}$

Description

Calculates the sum of the weighted squared price error.

Usage

```
objfct_sv_bonds_grid(beta, tau, m, cf, w, p)
```

Arguments

beta	Beta parameters of the Svensson spot price function
tau	Tau parameters of the Svensson spot price function
m	maturities matrix
cf	cash flows matrix
W	weights vector
р	price vector

objfct_sv_grid

Svensson Grid Loss Function for Bonds

Description

Calculates the sum of the squared yield error.

Usage

```
objfct_sv_grid(beta, tau, m, y)
```

beta	Beta parameters of the Svensson spot rate function
tau	Tau parameters of the Svensson spot rate function
m	maturity vector
У	yield vector

param

Term Structure Parameter Extraction

Description

The function extracts the estimated term structure parameters

Usage

```
param(x, ...)
```

Arguments

x object of the class "dyntermstrc_yields" or "dyntermstrc_nss"
... further arguments

Details

For the class "dyntermstrc_param" print, summary and plot methods are offered.

Value

Returns a list of the class "dyntermstrc_param"

See Also

param.dyntermstrc_nss, param.dyntermstrc_yields, summary.dyntermstrc_param, plot.dyntermstrc_param

```
param.dyntermstrc_nss S3 Param Method
```

Description

The function extracts the estimated term structure parameters from an object of the class "dyntermstrc_nss".

Usage

```
## S3 method for class 'dyntermstrc_nss'
param(x, ...)
```

- x object of the class "dyntermstrc_nss"
- ... further arguments

See Also

param

```
param.dyntermstrc_yields
```

S3 Param Method

Description

The function extracts the estimated term structure parameters from an object of the class "dyntermstrc_yields".

Usage

```
## S3 method for class 'dyntermstrc_yields' param(x, ...)
```

Arguments

```
x object of the class "dyntermstrc_yields"
... further arguments
```

See Also

param

plot.df_curves

S3 Plot Method

Description

S3 plot method for an object of the class "df_curves".

Usage

```
## S3 method for class 'df_curves'
plot(x, multiple = FALSE,
ylim = c(range(mapply(function(i) range(x[[i]][, 2]),
seq(x)))) * 100, xlim = c(), type = "l", lty = 1, lwd = 2,
expoints = NULL, ylab = "Discount factor (percent)",
xlab = "Maturity (years)", main = "Discount factor curves", ...)
```

50 plot.dyntermstrc_nss

Arguments

x	object of the class "df_curves".
multiple	if TRUE all discount factor curves are plotted togehter (default: FALSE).
ylim	the y limits of the plot, for details see plot.default.
xlim	the x limits of the plot, for details see plot.default.
type	1-character string giving the type of plot desired, for details see plot.default.
lty	the line type, for details see par.
lwd	the line width, for details see par.
expoints	extrapolation points (default: NULL).
ylab	a label for the y axis, for details see plot.default.
xlab	a label for the x axis, for details see plot.default.
main	a main title for the plot, for details see title.
	other graphical parameters, see par.

See Also

```
plot.fwr_curves, plot.s_curves, plot.spot_curves
```

```
plot.dyntermstrc_nss S3 Plot Method
```

Description

Plot method for objects of the class "dyntermstrc_nss". The method plots the estimated three-dimensional spot rate curve.

Usage

```
## S3 method for class 'dyntermstrc_nss'
plot(x, range = c(0, 20), ...)
```

Arguments

```
x object of the class "dyntermstrc_nss" range maturity range, e.g., c(0,20) (default)
```

... further arguments

```
plot.dyntermstrc_param
```

S3 Plot Method

Description

Plot method for objects of the class "dyntermstrc_param". The method is able to plot the time series of the parameter levels and first differences and the empirical (partial) autocorrelation function.

Usage

```
## S3 method for class 'dyntermstrc_param'
plot(x, type = "param", ...)
```

Arguments

x object of the class "dyntermstrc_param"

type "param" (default) for the parameters, "diffparam" for the parameter differ-

ences and "acf" for the plot of the (partial) autocorrelation function of the pa-

rameters.

... further arguments

```
plot.dyntermstrc_yields
```

S3 Plot Method

Description

Plot method for object of the class "dyntermstrc_yields". The method plot the estimated three-dimensional spot rate curve.

Usage

```
## S3 method for class 'dyntermstrc_yields'
plot(x, ...)
```

Arguments

```
x object of the class "dyntermstrc_yields".
```

... further arguments.

52 plot.error

Description

S3 plot method for an object of the class error.

Usage

```
## S3 method for class 'error' plot(x, type = "b", main = "", mar = c(7, 6, 6, 2) + 0.1, oma = c(4, 2, 2, 2) + 0.1, ylab = "Error", ...)
```

Arguments

X	object of the class error.
type	1-character string giving the type of plot desired, for details see plot.default.
main	a main title for the plot, for details see title.
mar	A numerical vector of the form 'c(bottom, left, top, right)' which gives the number of lines of margin to be specified on the four sides of the plot, for details see par.
oma	A vector of the form 'c(bottom, left, top, right)' giving the size of the outer margins in lines of text.
ylab	a label for the y axis, for details see plot.default.
	other graphical parameters, see par.

Details

Absolute yield and price errors as a resust of the term structure estimation can be plotted. The scaling of the x axis depends on the maturity of the bonds, each bond is labeled with its ISIN number. The error plots seems especially useful in identifying misspriced bonds. For removing them, the function rm_bond may be applied.

See Also

rm_bond

plot.fwr_curves 53

t Method

Description

S3 plot method for an object of the class "fwr_curves".

Usage

```
## S3 method for class 'fwr_curves'
plot(x, multiple = FALSE,
ylim = c(range(mapply(function(i) range(x[[i]][, 2]),
seq(x)))) * 100, xlim = c(), type = "1", lty = 1,
lwd = 2, expoints = NULL, ylab = "Forward rate (percent)",
xlab = "Maturity (years)", main = "Forward rate curves", ...)
```

Arguments

x	object of the class "fwr_curves".
multiple	if TRUE all forward rate curves are plotted together (default: FALSE).
ylim	the y limits of the plot, for details see plot.default.
xlim	the x limits of the plot, for details see plot.default.
type	1-character string giving the type of plot desired, for details see plot.default.
lty	the line type, for details see par.
lwd	the line width, for details see par.
expoints	extrapolation points (default: NULL).
ylab	a label for the y axis, for details see plot.default.
xlab	a label for the x axis, for details see plot.default.
main	a main title for the plot, for details see title.
	other graphical parameters, see par.

See Also

```
plot.df_curves, plot.s_curves, plot.spot_curves
```

54 plot.spot_curves

plot.ir_curve S3 Plot Method

Description

S3 plot method for an object of the class "ir_curve".

Usage

```
## S3 method for class 'ir_curve'
plot(x, ylim = c(), xlim = c(), lwd = 2, type = "1",
xlab = "Maturity (years)", ylab = "Zero-coupon yields (in percent)",
col = "steelblue", lty = 1, ...)
```

Arguments

X	object of the class "ir_curve".
ylim	the y limits of the plot, for details see plot.default.
xlim	the x limits of the plot, for details see plot.default.
lwd	the line width, for details see par.
type	1-character string giving the type of plot desired, for details see plot.default.
xlab	a label for the x axis, for details see plot.default.
ylab	a label for the y axis, for details see plot.default.
col	the colors for lines and points.
lty	the line type, for details see par.
	other graphical parameters, see par.

plot.spot_curves

S3 Plot Method

Description

S3 plot method for an object of the class "spot_curves".

Usage

```
## S3 method for class 'spot_curves'
plot(x, multiple = FALSE,
ylim = c(range(mapply(function(i) range(x[[i]][, 2]),
seq(x)))) * 100, xlim = c(), type = "l", lty = 1,
lwd = 2, expoints = NULL, ylab = "Zero-coupon yields (percent)",
xlab = "Maturity (years)", main = "Zero-coupon yield curves", ...)
```

plot.spsearch 55

Arguments

x	object of the class "spot_curves".
multiple	if TRUE all zero-coupon yield curves are plotted together (default: FALSE).
ylim	the y limits of the plot, for details see plot.default.
xlim	the x limits of the plot, for details see plot.default.
type	1-character string giving the type of plot desired, for details see plot.default.
lty	the line type, for details see par.
lwd	the line width, for details see par .
expoints	extrapolation points (default: NULL.)
ylab	a label for the y axis, for details see plot.default.
xlab	a label for the x axis, for details see plot.default.
main	a main title for the plot, for details see title.
	other graphical parameters, see par.

See Also

```
plot.df_curves, plot.fwr_curves, plot.s_curves
```

|--|

Description

S3 plot method for objects of the class "spsearch". The methods plot details on the objective function of the start parameter search.

Usage

```
## S3 method for class 'spsearch'
plot(x, main = "Start parameter search", rgl=TRUE, ...)
```

```
x object of the class "spsearch".

main title.

rgl if TRUE (default) the rgl device will be used for the plot.

... further arguments.
```

56 plot.s_curves

Description

S3 plot method for an object of the class "s_curves".

Usage

```
## S3 method for class 's_curves'
plot(x, xlim = c(range(mapply(function(i) range(x[[i]][, 1]), seq(x)))),
ylim = c(range(mapply(function(i) range(x[[i]][, 2]),
seq(x)))) * 10000, expoints = NULL,
xlab = "Maturity (years)", ylab = "Spread (basis points)",
lwd = 2, lty = 1, main = "Spread curves", ...)
```

Arguments

x	object of the class "s_curves".
ylim	the y limits of the plot, for details see plot.default.
xlim	the x limits of the plot, for details see plot.default.
lty	the line type, for details see par.
lwd	the line width, for details see par.
expoints	extrapolation points (default: NULL).
expoints ylab	extrapolation points (default: NULL). a label for the y axis, for details see plot.default.
'	
ylab	a label for the y axis, for details see plot.default.

Details

The spread curves (the difference of zero-coupon yield curves) are plotted, if at least two groups of bonds were specified.

See Also

```
plot.df_curves, plot.fwr_curves, plot.spot_curves
```

plot.termstrc_cs 57

plot.termstrc_cs S3 Plot Method for Cubic Splines

Description

S3 plot method for an object of the class "termstrc_cs".

Usage

```
## S3 method for class 'termstrc_cs'
plot(x, matrange = c(min(mapply(function(i) min(x$y[[i]][, 1]),
seq(x$n_group))), max(mapply(function(i) max(x$y[[i]][, 1]),
seq(x$n_group)))), multiple = FALSE,
ctype = "spot", lwd=2, lty=1, type = "l",
errors = "none", inset = c(0.1, 0.3), ask=TRUE, ...)
```

Arguments

X	object of the class "termstrc_cs".
matrange	maturity range for the plot, e.g. $c(2,10)$.
multiple	if TRUE all curves are plotted together (default: FALSE).
ctype	parameter setting for the desired curve type, "spot" ("forward", "discount", "spread") for the spot rate (forward rate, discount factor, spread) curves. Use "none" if no curve plot is desired.
errors	Specify the type of the error plot. If "price" ("yield") the price (yield) errors will be plot. Use "none" if no error plot is desired.
lwd	the line width, for details see par.
lty	the line type, for details see par.
type	1-character string giving the type of plot desired, for details see plot.default.
inset	inset distance(s) from the margins as a fraction of the plot region, for details see legend.
ask	if TRUE (and the R session is interactive) the user is asked for input, before a new figure is drawn, see <code>par</code> for details.
	other graphical parameters, see par.

Details

Depending on the choice of the curve type ("spot", "forward", "discount", "spread") the corresponding curves will be plotted. Either separately or together (mulitple = TRUE). If the curves are plotted separately also the knot points used for the estimation of the cubic splines and the yield-to-maturities will be plotted. In addition, with a zero-coupon yield curve plot the 95 % confidence interval of the curve will be plotted. To ease the analysis of the goodness of the estimation, serveral error plots for the yield and price error are offered.

58 plot.termstrc_nss

See Also

```
\verb|plot.df_curves,plot.error,plot.fwr_curves,plot.ir_curve,plot.s_curves,plot.spot_curves,plot.termstrc_cs|
```

plot.termstrc_nss

S3 Plot Method

Description

S3 plot method for an object of the class "termstrc_nss".

Usage

```
## S3 method for class 'termstrc_nss'
plot(x, matrange = c(min(mapply(function(i) min(x$y[[i]][, 1]),
    seq(x$n_group))), max(mapply(function(i) max(x$y[[i]][, 1]),
    seq(x$n_group)))), multiple = FALSE, expoints = unlist(x$expoints),
    ctype = "spot",errors = "none", lwd = 2, lty = 1, type ="1",
    inset = c(0.8, 0.1), ask = TRUE, ...)
```

X	object of the class "termstrc_nss".
matrange	maturity range for the plot, e.g., $c(2,10)$. Only a range within the maturity range of the estimation is allowed.
multiple	if TRUE all curves are plotted together (default: FALSE).
expoints	extrapolation points (default: NULL).
ctype	parameter setting for the desired curve type, "spot" ("forward", "discount", "spread") for the spot rate (forward rate, discount factor, spread) curves. Use "none" if no curve plot is desired.
errors	Specify the type of the error plot. If "price" ("yield") the pricing (yield) errors will be plotted . Use "none" if no error plot is desired.
lwd	the line width, for details see par.
lty	the line type, for details see par.
type	1-character string giving the type of plot desired, for details see plot.default.
inset	inset distance(s) from the margins as a fraction of the plot region, for details see legend.
ask	if TRUE (and the R session is interactive) the user is asked for input, before a new figure is drawn, see par for details.
	other graphical parameters, see par.

plot.zeroyields 59

Details

Depending on the choice of the curve type ("spot", "forward", "discount", "spread") the corresponding curves will be plot. Either separately or together (multiple = TRUE). If the curves are plotted together a dashed line indicates that the corresponding curve has been extrapolated. In addition, with a separate zero-coupon yield curve plot the yield-to-maturity will be plot. To ease the analysis of the goodness of the estimation, several error plots are offered.

See Also

```
plot.df_curves, plot.error, plot.fwr_curves, plot.ir_curve, plot.s_curves,
plot.spot_curves, plot.termstrc_nss
```

plot.zeroyields

S3 Plot Method

Description

S3 plot method for objects of the class "zeroyields". The method plots the estimated three-dimensional spot rate curve.

Usage

```
## S3 method for class 'zeroyields' plot(x, ...)
```

Arguments

x object of the class "zeroyields"
... further arguments

postpro_bond

Post Processing of Term Structure Estimation Results

Description

The function calculates based on the term structure estimation results the errors for prices and yields and differnt curves (spot, forward, discount curve).

Usage

```
postpro_bond(opt_result, m, cf, sgroup, n_group, y, p,
ac, m_p, method, lambda)
```

prepro_bond

Arguments

opt_result parameter vector
m maturities matrices
cf cahsflows matrices

sgroup sequence of the group length

n_group lenght of the group

y yield-to-maturity matrices

p dirty price vectors
ac accrued interest vectors

m_p maturity matrices including the maturities for the current dirty prices

method form of the spot rate function

lambda additional paramter for the Diebold/Li spot rate function

Note

Used as internal helper function

prepro_bond	Bonddata preprocess function	

Description

Preprocessing a static coupon bond data set, i.e., calculation of cashflows, maturities matrices, price, accrued interest vectors, yield-to-maturity and duration matrices.

Usage

```
prepro_bond(group, bonddata, matrange = "all")
```

Arguments

group character, specifies group of a bond data set.

bonddata Static bond data set.

matrange bond data set is filtered according to chosen maturity spectrum c(min, max).

Value

n_group	group l	ength
---------	---------	-------

sgroup sequence of the group length cf list with cashflows matrices

cf_p list with cashflows matrices including the current dirty prices

m list with maturites matrices

print.couponbonds 61

m_p	list with cashflows matrices including the maturities of the current dirty prices
р	list with the dirty price vectors
ac	list with the accrued interest vectors
у	list with the yield-to-maturity matrices
duration	list with the duration, duration based weights matrices
timestamp	date of the data

Examples

```
data(govbonds)
bdata <- prepro_bond("GERMANY",govbonds,c(0,10))
## print maturites matrix
bdata$m</pre>
```

print.couponbonds

S3 Print Method

Description

Prints basic information of an coupon bond data set.

Usage

```
## S3 method for class 'couponbonds' print(x, ...)
```

Arguments

x object of the class "couponbonds"
... futher arguments

Description

The method prints basic information of a dynamic bond data set.

Usage

```
## S3 method for class 'dyncouponbonds' print(x, ...)
```

```
x object of the class "dyncouponbonds"... further arguments
```

```
\verb"print.dyntermstrc_nss" \textit{ S3 Print Method}
```

S3 print method for objects of the class "dyntermstrc_nss". The basic parameter and a summary of the estimated term structure parameters are printed.

Usage

```
## S3 method for class 'dyntermstrc_nss' print(x, ...)
```

Arguments

```
x object of the class "dyntermstrc_nss"
... further arguments
```

S3 print method for objects of the class "dyntermstrc_yields". The method prints information from the term structure estimation and a summary of the estimated parameters.

Usage

Description

```
## S3 method for class 'dyntermstrc_yields' print(x, ...)
```

Arguments

```
x object of the class "dyntermstrc_yields"
```

... further arguments

Print method for objects of the class "summary.dyntermstrc_nss"

Usage

```
## S3 method for class 'summary.dyntermstrc_nss'
print(x, ...)
```

Arguments

```
x object of the class "summary.dyntermstrc"
... further arguments
```

Description

S3 print method for an object of the class "summary.dyntermstrc_param"

Usage

```
## S3 method for class 'summary.dyntermstrc_param' print(x, ...)
```

```
x object of the class "summary.dyntermstrc_param"
... further arguments
```

S3 print method for objects of the class "summary.dyntermstrc_yields".

Usage

```
## S3 method for class 'summary.dyntermstrc_yields' print(x, \ldots)
```

Arguments

```
x object of the class "summary.dyntermstrc_yields"... further arguments.
```

Description

S3 print method for an object of the class "summary.termstrc_cs".

Usage

```
## S3 method for class 'summary.termstrc_cs' print(x, \ldots)
```

```
x object of the class "summary.termstrc_cs".
... other arguments.
```

S3 print method for an object of the class "summary.termstrc_nss".

Usage

```
## S3 method for class 'summary.termstrc_nss' print(x, ...)
```

Arguments

```
x object of the class "summary.termstrc_nss".
... other arguments.
```

```
print.termstrc_cs
```

S3 Print Method for termstrc_cs

Description

S3 print method for an object of the class "termstrc_cs".

Usage

```
## S3 method for class 'termstrc_cs'
print(x,...)
```

Arguments

```
x object of the class "termstrc_cs".
... other arguments.
```

Details

The print method for an object of the class "termstrc_cs" prints the parameter estimates and the associated (robust) standard errors of the cubic spline functions.

See Also

```
plot.termstrc_cs, summary.termstrc_cs
```

print.zeroyields

print.termstrc_nss

S3 Print Method

Description

Print method for objects of the class "termstrc_nss".

Usage

```
## S3 method for class 'termstrc_nss'
print(x, ...)
```

Arguments

x objects of the class "termstrc_nss"

... further arguments

Details

The print method for an object of the class "nelson" prints important input parameters of the optimisation and the results (the optimal parameter vector)

print.zeroyields

S3 Print Method

Description

S3 print method for objects of the class "zeroyields". The method prints basic information of a zeroyields data set.

Usage

```
## S3 method for class 'zeroyields' print(x, ...)
```

Arguments

x object of the class "zeroyields"

... further arguments

rmse 67

rmse

Root Mean Squared Error

Description

Calulates the root mean squared error (RMSE).

Usage

```
rmse(actual, estimated)
```

Arguments

actual vector, consisting of the observed values. estimated vector, consisting of the estimated values.

Details

Calculation of the RMSE according to the formula:

$$\mathrm{RMSE} = \sqrt{\frac{1}{m} \epsilon^2 \iota},$$

whereas ϵ is the vector of the yield or price errors of the bonds and ι is a column vector filled with ones. m is the number of bonds, for which ϵ has been calculated.

See Also

aabse

Bond Removal Function

Description

Specified bonds and their associated data are removed from a static or dynamic bond data set

Usage

```
rm_bond(bonddata, group, ISIN)
```

Arguments

bonddata bond data set of the class "couponbond" or "dyncouponbond"

group the group where the bonds to be removed belong to.

ISIN the ISIN numbers of the bonds to remove.

rm_bond.couponbonds S3 Remove Bond Method

Description

Specified bonds and their associated data are removed from a static bond data set of the class "couponbonds".

Usage

```
## S3 method for class 'couponbonds'
rm_bond(bonddata, group, ISIN)
```

Arguments

bonddata bond data set.

group the group where the bonds to be removed belong to.

ISIN the ISIN numbers of the bonds to remove.

Value

The function returns the new bond data set.

Examples

```
data(govbonds)
newgovbonds <- rm_bond(govbonds,"GERMANY","DE0001135150")</pre>
```

rm_bond.dyncouponbonds

S3 Remove Bond Method

Description

Specified bonds and their associated data are removed from a dynamic bond data set of the class "dyncouponbonds".

Usage

```
## S3 method for class 'dyncouponbonds'
rm_bond(bonddata, group, ISIN)
```

Arguments

bonddata bond data set.

group the group where the bonds to be removed belong to.

ISIN the ISIN numbers of the bonds to remove.

spotrates 69

Value

The function returns the new bond data set.

Examples

```
data(datadyncouponbonds)
newdynbonddata <- rm_bond(datadyncouponbonds, "GERMANY", "DE0001135150")</pre>
```

spotrates

Function for the Calculation of the Spot Rates

Description

The function calculates the spot rates for the chosen spot rate function (Diebold/Li, Nelson/Siegel, Svensson), a provided maturity and parameter vector.

Usage

```
spotrates(method, beta, m, lambda)
```

Arguments

method spot rate function type: "d1" for Diebold/Li, "ns" for Nelson/Siegel, "sv" for

Svensson, "asv" for adjusted Svensson.

beta parameter vector $\boldsymbol{\beta}$.

m maturity or a vector of maturities.

lambda $= 1/\tau_1$, a scalar; only required for Diebold/Li spot rate function

Value

Returns a vector with the calculated spot rates.

See Also

```
spr_dl, spr_ns, spr_sv
```

```
spotrates(method="ns",beta=c(0.03,0.02,0.01,5),m=1:30)
```

70 spr_asv

spr_asv

Adjusted Svensson Spot rate function

Description

This function calculates the spot rates for certain maturity dates and a parameter vector according to an adjusted version of Svensson (1994).

Usage

```
spr_asv(beta, m)
```

Arguments

beta a vector of parameters $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \tau_1, \beta_3, \tau_2).$ m one maturity (or a vector of maturities).

Details

The adjusted Svensson spot rate function is defined as:

$$s(m, \beta) = \beta_0 + \beta_1 \frac{1 - \exp(-\frac{m}{\tau_1})}{\frac{m}{\tau_1}} + \beta_2 \left(\frac{1 - \exp(-\frac{m}{\tau_1})}{\frac{m}{\tau_1}} - \exp(-\frac{m}{\tau_1}) \right) + \beta_3 \left(\frac{1 - \exp(-\frac{m}{\tau_2})}{\frac{m}{\tau_2}} - \exp(-\frac{2m}{\tau_2}) \right)$$

Value

Returns a vector consisting of the calculated spot rates.

References

Lars E.O. Svensson (1994): Estimating and Interpreting Forward Interest Rates: Sweden 1992 -1994. *Technical Reports 4871, National Bureau of Economic Research*.

```
spr_asv(c(0.07,0.03,0.05,2,0.08,7),1:30)
```

spr_dl 71

spr_dl

Spot Rate Function according to the Diebold and Li Version of the Nelson/Siegel Spot Rate Function

Description

This function calculates the spot rates for certain maturity dates and a parameter vector according to Diebold/Li (2006).

Usage

```
spr_dl(beta, m, lambda)
```

Arguments

beta a vector of parameters $\boldsymbol{\beta}=(\beta_0,\beta_1,\beta_2).$ m one maturity (or a vector of maturities). $=\frac{1}{\tau_1}, \text{ a scalar}$

Details

The spot rate according to Diebold/Li for a maturity m is defined as:

$$s(m, \boldsymbol{\beta}, \lambda) = \beta_0 + \beta_1 \frac{1 - \exp(-m\lambda)}{m\lambda} + \beta_2 \left(\frac{1 - \exp(-m\lambda)}{m\lambda} - \exp(-m\lambda) \right).$$

Value

Returns a vector consisting of the calculated spot rates.

References

F.X. Diebold and C. Li: Forecasting the Term Structure of Government Bond Yields. *Journal of Econometrics*, **130**:337–364.

See Also

codespr_ns

```
spr_dl(c(0.1,0.03,0.01),1:30,0.0609)
```

spr_ns

spr_ns

Spot Rate Function according to Nelson and Siegel

Description

This function calculates the spot rates for certain maturity dates and a parameter vector according to Nelson/Siegel (1987).

Usage

```
spr_ns(beta, m)
```

Arguments

beta a vector of parameters $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \tau_1)$.

m one maturity (or a vector of maturities).

Details

The spot rate according to Nelson/Siegel for a maturity m is defined as:

$$s(m, \beta) = \beta_0 + \beta_1 \frac{1 - \exp(-\frac{m}{\tau_1})}{\frac{m}{\tau_1}} + \beta_2 \left(\frac{1 - \exp(-\frac{m}{\tau_1})}{\frac{m}{\tau_1}} - \exp(-\frac{m}{\tau_1}) \right).$$

Value

Returns a vector consisting of the calculated spot rates.

References

Charles R. Nelson and Andrew F. Siegel (1987): Parsimonious Modeling of Yield Curves. *The Journal of Business*, **60(4)**:473–489.

```
spr_ns(rep(0.01,4),1:30)
```

spr_sv 73

spr_sv

Spot Rate Function according to Svensson

Description

This function calculates the spot rates for certain maturity dates and a parameter vector according to Svensson (1994).

Usage

```
spr_sv(beta, m)
```

Arguments

beta a vector of parameters $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \tau_1, \beta_3, \tau_2).$ m one maturity (or a vector of maturities).

Details

The spot rate according to Svensson for a maturity m is calculated using the following function:

$$s(m, \beta) = \beta_0 + \beta_1 \frac{1 - \exp(-\frac{m}{\tau_1})}{\frac{m}{\tau_1}} + \beta_2 \left(\frac{1 - \exp(-\frac{m}{\tau_1})}{\frac{m}{\tau_1}} - \exp(-\frac{m}{\tau_1}) \right) + \beta_3 \left(\frac{1 - \exp(-\frac{m}{\tau_2})}{\frac{m}{\tau_2}} - \exp(-\frac{m}{\tau_2}) \right)$$

Value

Returns a vector consisting of the calculated spot rates.

References

Lars E.O. Svensson (1994): Estimating and Interpreting Forward Interest Rates: Sweden 1992 -1994. *Technical Reports 4871, National Bureau of Economic Research*.

```
spr_sv(c(0.07,0.3,0.05,2,0.08,7),1:30)
```

```
summary.dyntermstrc_nss
```

S3 Summary Method

Description

Summary method for objects of the class "dyntermstrc_nss". The average RMSE and AABSE for the prices and yields is calculated. Additionally convergence information and the message from the used solver is printed.

Usage

```
## S3 method for class 'dyntermstrc_nss'
summary(object, ...)
```

Arguments

```
object of the class "dyntermstrc_nss".
... further arguments
```

Value

The method returns an object of the class "summary.dyntermstrc_nss".

```
summary.dyntermstrc_param
S3 Summary Method
```

Description

S3 summary method for objects of the class "dyntermstrc_param".

Usage

```
## S3 method for class 'dyntermstrc_param'
summary(object, type = "none", lags = 1, selectlags = "Fixed", ...)
```

Arguments

```
object of the class "dyntermstrc_param".
```

type use "trend" and a trend is considered for the unit root test (default: "none").

lags number of lags for unit root test function ur.df from package urca (default:1)

leg selectlags leg selection flag for function ur.df from package urca (default: "Fixed").

... further arguments

Details

The function calculates from an object of the class "dyntermstrc_param" the augmented Dickey Fuller test for the levels and first differences for each of the estimated term structure parameters. Additionally, the correlation of the parameter levels and differences are calculated.

Value

```
an object with the class "summary.dyntermstrc_param"
```

```
summary.dyntermstrc_yields

S3 Summary Method
```

Description

Summary method for objects of the class "dyntermstrc_yields". The mean RMSE and AABSE of the yields is calculated

Usage

```
## S3 method for class 'dyntermstrc_yields'
summary(object, ...)
```

Arguments

```
object of the class "dyntermstrc_yields"
... further arguments
```

```
summary.termstrc_cs S3 Summary Method for Termstrc_cs
```

Description

S3 summary method for objects of the class "termstrc_cs".

Usage

```
## S3 method for class 'termstrc_cs'
summary(object,...)
```

```
object of the class "termstrc_cs".
... other arguments.
```

76 summary.termstrc_nss

Details

The summary method for an object of the class "termstrc_cs" calculates goodness of fit statistics (RMSE, AABSE) of the price and yield errors. Additionally, summary statistics of the regression analysis of the parameters are printed.

See Also

```
plot.termstrc_cs, print.termstrc_cs, rmse, aabse, summary.lm
```

Description

S3 summary method for objects of the class "termstrc_nss".

Usage

```
## S3 method for class 'termstrc_nss'
summary(object,...)
```

Arguments

```
object object of the class "termstrc_nss".
... other arguments.
```

Details

The summary method for an object of the class "termstrc_nss" prints the solution of the goodness of fit statistics (RMSE,AABSE) of the optimisation. Moreover a convergence information of the used optimiser (optim) is printed.

See Also

```
nlminb, plot.termstrc_nss, print.termstrc_nss, rmse, aabse
```

summary.zeroyields 77

summary.zeroyields S3 Summary Method

Description

S3 summary method for objects of the class "zeroyields". The method calculates basic summary statistics of the data.

Usage

```
## S3 method for class 'zeroyields'
summary(object, ...)
```

Arguments

object of the class "zeroyields"
... further arguments

Value

returns an object of the class "summary.zeroyields"

zeroyields

Zeroyields Data Set Generation

Description

The function generates a zeroyield data set out of yield, date and maturities data.

Usage

```
zeroyields(maturities, yields, dates)
```

Arguments

maturities maturities vector of the yields

yields yields matrix

dates vector of the observations dates in the format "

Value

returns a list, which belongs to the class "zeroyields". For the class plot, print and summary methods are offered.

See Also

```
\verb"print.zeroyields", \verb"summary.zeroyields", \verb"plot.zeroyields"
```

78 zyields

zyields

Zero Coupon Yield Data Set

Description

Zero Coupon Yield Data Set

Usage

data(zyields)

Note

If you use your own data set, make sure that the structure is identical to the provided data set. Use the function str() to explore the data set.

Index

*Topic datasets datadyncouponbonds, 10 govbonds, 31 zyields, 78	<pre>get_grad_objfct, 28 get_grad_objfct_bonds, 28 get_objfct, 29 get_objfct_bonds, 29</pre>
*Topic package termstrc-package, 4	get_paramnames, 29 get_realnames, 30
aabse, 5, 67, 76	gi, 30 govbonds, 31 grad_asv, 32
bond_prices, 6 bond_yields, 7	grad_asv_bonds, 32 grad_asv_bonds_grid, 33
<pre>colSums, 9 constrOptim, 22, 23 create_cashflows_matrix, 7, 8 create_maturities_matrix, 8, 8 cSums, 9</pre>	grad_asv_grid, 34 grad_dl, 34 grad_dl_bonds, 35 grad_ns, 35 grad_ns_bonds, 36 grad_ns_bonds_grid, 36
$\begin{array}{c} {\rm datadyncouponbonds,10} \\ {\rm duration,10} \end{array}$	grad_ns_grid, 37 grad_sv, 37 grad_sv_bonds, 38
estim_cs, 12, 17, 18 estim_cs.couponbonds, 13, 13	<pre>grad_sv_bonds_grid, 38 grad_sv_grid, 39</pre>
estim_nss, 15 estim_nss.couponbonds, 14, 16, 16, 19	impl_fwr,39
estim_nss.dyncouponbonds, 16, 18 estim_nss.zeroyields, 16, 19 estimateyieldcurve, 11	legend, 57, 58 loss_function, 40
estimatezcyieldcurve, 12	maturity_range, 40
fcontrib, 21 fcontrib.dyntermstrc_param, 21 findstartparambonds, 22 findstartparamyields, 23 forwardrates, 23, 25-27	nlminb, 76 objfct_asv, 32, 41 objfct_asv_bonds, 41 objfct_asv_bonds_grid, 42
fwr_asv, 24 fwr_dl, 24, 25, 26, 27 fwr_ns, 24, 25, 26, 27 fwr_sv, 24–26, 27	objfct_asv_grid, 42 objfct_dl, 43 objfct_dl_bonds, 43 objfct_ns, 35, 44 objfct_ns_bonds, 44
get_constraints, 28	objfct_ns_bonds_grid,45

80 INDEX

objfct_ns_grid,45	spr_asv, <i>32</i> , <i>41</i> , 70
objfct_sv,46	spr_dl, <i>43</i> , <i>69</i> , 71
objfct_sv_bonds, 46	spr_ns, <i>35</i> , <i>44</i> , <i>69</i> , <i>71</i> , <i>72</i>
objfct_sv_bonds_grid,47	spr_sv, 46, 69, 73
objfct_sv_grid,47	<pre>summary.dyntermstrc_nss, 74</pre>
optim, 16, 19, 20, 22, 23	$summary.dyntermstrc_param, 48,74$
	<pre>summary.dyntermstrc_yields, 75</pre>
par, <i>50</i> , <i>52–58</i>	summary.lm, <i>14</i> , <i>76</i>
param, 48, <i>49</i>	summary.termstrc_cs, <i>14</i> , <i>65</i> , <i>75</i>
param.dyntermstrc_nss, 48, 48	summary.termstrc_nss, 18,76
param.dyntermstrc_yields, 48, 49	summary.zeroyields, 77,77
plot.default, 50, 52-58	
plot.df_curves, 14, 18, 49, 53, 55, 56, 58, 59	termstrc(termstrc-package),4
plot.dyntermstrc_nss, 50	termstrc-package,4
plot.dyntermstrc_param, 48, 51	title, 50, 52, 53, 55, 56
plot.dyntermstrc_yields, 51	
plot.error, 14, 18, 52, 58, 59	uniroot, <i>7</i> , <i>18</i>
plot.fwr_curves, 14, 18, 50, 53, 55, 56, 58,	
59	zeroyields, 77
plot.ir_curve, 54, 58, 59	zyields, 78
plot.lm, <i>14</i>	
plot.s_curves, 14, 18, 50, 53, 55, 56, 58, 59	
plot.spot_curves, 14, 18, 50, 53, 54, 56, 58,	
59	
plot.spsearch, 55	
plot.termstrc_cs, 14, 57, 58, 65, 76	
plot.termstrc_nss, 18, 58, 59, 76	
plot.zeroyields, 59, 77	
postpro_bond, 59	
prepro_bond, 60	
print.couponbonds, 61	
print.dyncouponbonds, 61	
print.dyntermstrc_nss, 62	
print.dyntermstrc_yields, 62	
print.summary.dyntermstrc_nss, 63	
print.summary.dyntermstrc_param, 63	
print.summary.dyntermstrc_yields, 64	
print.summary.termstrc_cs, 64	
print.summary.termstrc_nss, 65	
print.termstrc_cs, 14, 65, 76	
print.termstrc_nss, 18, 66, 76	
print.zeroyields, 66, 77	
pr 1110.201 0y10103, 00, //	
rm_bond, 52, 67	
rm_bond.couponbonds, 68	
rm_bond.dyncouponbonds, 68	
rmse, 5, 67, 76	
, , , , , , , , , , , , , , , , , , ,	
spotrates, <i>6</i> , <i>41</i> , <i>44</i> , <i>46</i> , 69	