UNIVERSIDADE DO MINHO

Teste Física Computacional

Cursos: Licenciatura em Física e Licenciatura em Enga Física

Nome: Luis Miguel Peneira Silvy

Nº 96534

Data:30/11/2022

Duração: 1h30 + Tolerância: 30 m

1. Um fabricante de microprocessadores pretende otimizar a temperatura do seu último processador em 2 localizações críticas. A temperatura nestas localizações (T1, T2) são funções da potência dissipada por 3 cores (P1, P2, P3) tendo sido realizadas medidas das temperaturas T1 e T2 em 4 condições diferentes, as quais se encontram sumarizadas na tabela seguinte:

P_1	P_2	$P_{\mathbb{R}}$	T_1	T_2
10//	1017	101/	27	29°
100W	1010	1011	15	37
10\\	100W	TOW	11	19
10\\	10W	100M	35	55

Supondo que quando o microprocessador está em funcionamento pleno todos os cores dissipam a mesma potência p, escreva um programa python para determinar a potência máxima p a que podem funcionar os cores de modo que T1 ou T2 não exceda 70°C.

2. A equação de estado de um gás é dada por:

$$[p + a(N/V)^2](V - Nb) = kNT$$

onde a e b são dois coeficientes que dependem do gás, N é o nº de moléculas no volume V, p a pressão do gás, T a temperatura e k a constante de Boltzmann.

Escreva um programa para calcular, com seis casas decimais correctas, o volume ocupado por N moléculas de CO2 ($a = 0.401 \text{ Pa m}^6$, $b = 42.7 \times 10^{-6} \text{m}^3$) a uma temperatura T e uma pressão p, usando o método do ponto fixo.

3. A capacidade calorifica de um sólido a uma temperatura T de acordo com a teoria de Debye é dada por:

$$C_V = 9V\rho k_B \left(\frac{T}{\theta_D}\right)^3 \int_0^{\theta_D/T} \frac{x^4 e^x}{(e^x - 1)^2} dx$$

com $\,\,$ V o volume do sólido, $\,\rho$ a densidade de partículas do material, k_B a constante de Boltzmann, $\,\theta_D$ a temperatura de Debye do sólido.

Escreva uma função Python que calcule C_V a uma temperatura T, para uma amostra de volume V, densidade ρ , temperature de Debye θD . Use a regra de integração mais conveniente $\theta = 0$ subintervalos.