Redes de Petri Propriedades

Jonatha Rodrigues da Costa & Giovanni Cordeiro Barroso

Propriedades

■ Propriedades comportamentais — dependem da marcação inicial da rede de Petri;

■ Propriedades estruturais — independem da marcação inicial da rede de Petri.

Propriedades comportamentais

- Alcançabilidade;
- Limitação;
- Vivacidade;
- Reversibilidade e Estado de Passagem;
- Cobertura;
- Persistência.
- Conservação;

Alcançabilidade

■Uma marcação M_n é *alcançável* a partir de M_0 , se existe uma seqüência de disparo *s* que transforma M_0 em M_n :

$$\exists s \mid M_0 (s > M_n)$$

Alcançabilidade - Exemplo

$$\mathbf{m}_0 = (2, 2, 2, 0, 1, 0); \mathbf{m}_n = (1, 1, 1, 0, 1, 1).$$

$$\mathbf{m}_0 (t_1 t_2 > \mathbf{m}_n)$$

Alcançabilidade

 $\blacksquare R(N, M_0)$ ou simplesmente $R(M_0)$, é o conjunto de todas as possíveis marcações alcançáveis a partir de M_0 ;

O problema de alcançabilidade é decidível, mas geralmente possui um alto custo computacional.

Limitação

Um lugar p_i é limitado para uma marcação inicial M_0 se existe um número natural k, tal que para toda marcação M acessível a partir de M_0 , o número de fichas em p_i é inferior ou igual a k, ou seja:

 $M \in R(M_0) e M(p_i) \le k$

Limitação

■Uma RP é *limitada* se para cada lugar *p* da rede, existe um inteiro *k* tal que *p* seja *k-limitado*;

Uma RP é k-limitada se

$$M(p) \le k \forall p, \forall M \in R(M_0);$$

Uma RP é *segura* se ela é 1-*limitada*.

Limitação - exemplo

RP limitada

Limitação - exemplo

RP não limitada

Vivacidade (liveness)

O conceito de *vivacidade* relaciona-se com a ausência de *bloqueios*.

Bloqueio

BLOQUEIO Marcação em que não há transição habilitada

 $M = (0 \ 0 \ 0 \ 0 \ 0 \ 3)$

Vivacidade

Uma transição t_j é viva para uma marcação inicial M_0 se para toda marcação acessível M_i existe uma seqüência de disparo que contém a transição t_i , a partir de M_i ;

Uma RP é viva para uma marcação inicial M_0 se todas as suas transições são vivas para M_0 .

Vivacidade - exemplo

RP limitada e viva

Vivacidade - exemplo

não viva

 $M_0 = [0 \ 0 \ 2]^T$

 $M_0 = [0 \ 1 \ 0]^T$

Uma transição t numa RP = (N, M_0) é:

 L_0 -viva (morta) se t nunca pode disparar em qualquer seqüência de disparo em $L(M_0)$

Uma transição t numa RP = (N, M_0) é:

 \mathbf{L}_1 -viva se t pode disparar pelo menos uma vez em alguma seqüência de disparo em

Uma transição t numa RP = (N, M_0) é:

 L_2 -viva se, dado um inteiro positivo k qualquer, t pode disparar pelo menos k vezes em alguma seqüência de disparo em

Uma transição t numa RP = (N, M_0) é:

 L_3 -viva se t aparece infinitamente em alguma seqüência de disparo em $L(M_0)$

Uma transição t numa RP = (N, M_0) é:

 L_4 -viva (viva) se $t \in L_1$ -viva em cada marcação M de R(M₀)

Marcação Morta

- Uma marcação M é chamada *marcação* morta se nenhuma transição é habilitada nessa marcação;
- Uma RP = (N, M_0) é sem bloqueio (sem deadlock) se não existir nenhuma marcação morta no conjunto de marcações alcançáveis a partir de M_0 .

Deadlock e Livelock

 $M_0 = [1 \ 0 \ 0 \ 0]^T$

Reversibilidade

Uma RP = (N, M_0) é *reversível* (reinicializável) se para toda marcação $M \in R(M_0)$, M_0 é alcançável a partir de M;

 $\forall M \in R(M_0), \exists s \mid M(s > M_0).$

Reversibilidade

RP reversível ou reinicializável

Estado de passagem

■Uma marcação M' \in R(M₀) é um *estado de passagem* (home state) se para toda marcação M \in R(M₀), M' é alcançável a partir de M.

 $M_0 = [2 \ 2 \ 2 \ 2]^T$

Cobertura

■Uma marcação $M \in R(M_0)$ é coberta se existe uma marcação M' em $R(M_0)$ tal que $M'(p) \ge M(p)$

para todo p da RP.

Cobertura

$$\mathbf{M}_1 = (1 \ 0 \ 3 \ 2 \ 0)$$

$$\mathbf{M}_2 = (1 \ 0 \ 4 \ 2 \ 1)$$

$$\mathbf{M}_1 = (1 \ 0 \ 3 \ 2 \ 0)$$

$$\mathbf{M}_2 = (0 \ 0 \ 3 \ 2 \ 0)$$

$$\mathbf{M}_1 = (1 \ 0 \ 3 \ 2 \ 0)$$

$$\mathbf{M}_2 = (0 \ 0 \ 3 \ 2 \ 1)$$

$$M_2 > M_1$$

$$M_2 < M_1$$

$$M_2 \neq M_1$$

Persistência

Uma RP = (N, M_0) é *persistente* se, para quaisquer duas transições habilitadas, o disparo de uma não desabilita a outra.

Persistência

Matriz de Incidência

Referência do lugar à transição com w.

Matriz de Incidência

Referência da transição com w ao lugar.

Matriz de Incidência

A partir das matrizes Pré e Post, define-se a matriz de incidência C:

C = Post - Pré

post

pré

Disparo de uma transição

Se t é habilitada em uma dada marcação M_{n-1} , então, uma nova marcação M_n é obtida através do disparo de t, tal que:

$$\forall p \in P$$

$$M_{n} = M_{n-1} + C \times T'$$

$$T' = [0, 0, ..., 1, ..., 0]^T$$

$$M_{n} = M_{n-1} + \left(\begin{array}{c} C \\ C \\ \end{array} \right) \left(\begin{array}{c} \vdots \\ 1 \\ \vdots \\ \end{array} \right) (t)$$

Vetor característico

Seja o vetor u em que cada componente $u(t_i)$ representa o número de disparos da transição t_i numa seqüência de disparo s;

- O vetor *u* é denominado de *vetor característico* da seqüência *s*;
- Sua dimensão é igual ao número de transições da RP.

$$M_{0} = [2 \ 0 \ 0]^{T}$$

$$\downarrow t_{1}$$

$$M_{1} = [1 \ 1 \ 0]^{T}$$

$$\downarrow t_{3}$$

$$M_{2} = [0 \ 0 \ 1]^{T}$$

$$\downarrow t_{4}$$

$$M_{3} = [3 \ 0 \ 0]^{T}$$

$$\downarrow t_{1}$$

$$M_{4} = [2 \ 1 \ 0]^{T}$$

$$\downarrow t_{1}$$

$$M_{5} = [1 \ 2 \ 0]^{T}$$

$$s = t_1 t_3 t_4 t_1 t_1$$

$$u = \begin{bmatrix} t_1 & t_2 & t_3 & t_4 \end{bmatrix}$$

 $u = \begin{bmatrix} 3 & 0 & 1 & 1 \end{bmatrix}$ ^T

Marcação alcançada

Suponha que M_q seja alcançável a partir de M_0 através de uma seqüência de disparo $s=t_at_b...t_q$, então:

$$\mathbf{M}_1 = \mathbf{M}_0 + \mathbf{C} \times \left| \mathbf{t}_{\mathbf{a}} \right|;$$

$$\mathbf{M}_{2} = \mathbf{M}_{1} + \mathbf{C} \times \begin{vmatrix} \mathbf{t}_{b} \\ \mathbf{t}_{b} \end{vmatrix} = \mathbf{M}_{0} + \mathbf{C} \times \begin{vmatrix} \mathbf{t}_{a} \\ \mathbf{t}_{a} \end{vmatrix} + \mathbf{C} \times \begin{vmatrix} \mathbf{t}_{b} \\ \mathbf{t}_{b} \end{vmatrix};$$

$$= \mathbf{M}_0 + \mathbf{C} \begin{vmatrix} \mathbf{t}_a \\ \mathbf{t}_b \end{vmatrix}$$

Marcação alcançada

Suponha que M_q seja alcançável a partir de M_0 através de uma seqüência de disparo $s=t_at_b...t_q$, então:

$$\mathbf{M}_{\mathbf{q}} = \mathbf{M}_{\mathbf{0}} + \mathbf{C} \times \mathbf{u};$$

$$t_{a} t_{b} ... t_{q}$$

$$u = [... 11... 1...]^{T}$$

$$s = t_1 t_3 t_4 t_1 t_1$$

$$u = \begin{bmatrix} t_1 & t_2 & t_3 & t_4 \\ 0 & 1 & 1 \end{bmatrix}^T$$

$$C \times u$$

$$\begin{array}{c|c} p_1 \\ \hline \\ t_1 \\ \hline \\ p_2 \\ \hline \\ t_2 \\ \hline \end{array}$$

$$\begin{array}{c|c} & -1 \\ 2 \\ 0 \end{array}$$

$$u = \begin{bmatrix} t_1 & t_2 & t_3 & t_4 \\ u = \begin{bmatrix} 3 & 0 & 1 & 1 \end{bmatrix}^T$$

?? Questões ??

Dada uma marcação inicial M e uma sequência s, existe uma marcação M' tal que M(s > M')?

- ◆Se M' < 0, não existe a seqüência s;
- ◆Se M' > 0, não se tem garantia da existência de *s*.

Derivadas diretamente da estrutura da RP;

■Não dependem da marcação inicial;

Definidas através dos componentes conservativos de lugar e dos componentes repetitivos estacionários.

$$M_0 = (1 \ 0 \ 3 \ 0 \ 1)$$

$$\mathbf{M}(\mathbf{p}_1) + \mathbf{M}(\mathbf{p}_2) = 1$$

qualquer que seja a marcação da RP

$$M_0 = (0\ 0\ 3\ 0\ 2)$$

$$M(p_1) + M(p_2) = 0$$

qualquer que seja a marcação da RP

$$\forall M \in R(M_0), M(p_1) + M(p_2) = M_0(p_1) + M_0(p_2)$$

O conjunto de lugares p₁ e p₂ forma um *componente* conservativo da RP

A forma linear

$$M(p_1) + M(p_2) = M_0(p_1) + M_0(p_2)$$

é chamada de

invariante linear de lugar

A soma das fichas se conserva para estes lugares.

$$M_0 = (1 \ 0 \ 3 \ 0 \ 1)$$

 $\forall M \in R(M_0), M(p_2) + M(p_3) + 3M(p_4) = 3$

O conjunto de lugares p₁, p₂ e p₃ forma um componente conservativo da RP

Um *invariante linear de lugar* é uma função linear da marcação do lugar cujo valor é uma constante;

Essa constante depende somente da marcação inicial da RP.

O invariante é uma restrição sobre os estados e as atividades de um sistema que será sempre verificada, quaisquer que sejam suas evoluções.

Dado $M_q = M_0 + C \times u$ e multiplicando-se esta equação por um vetor f^T , tem-se:

$$\mathbf{f}^{\mathrm{T}} \times \mathbf{M}_{\mathrm{q}} = \mathbf{f}^{\mathrm{T}} \times \mathbf{M}_{0} + \mathbf{f}^{\mathrm{T}} \times \mathbf{C} \times \mathbf{u}$$

Tornando a equação independente de **u**, tem-se:

$$\mathbf{f}^{\mathrm{T}} \times \mathbf{C} = \mathbf{0}$$

Um componente conservativo de uma RP é o conjunto de lugares $p_i \in P$ correspondentes aos elementos não nulos f_i do vetor coluna f_i , solução da equação

$$\mathbf{f}^{\mathrm{T}} \times \mathbf{C} = 0$$
 para $\mathbf{f} > 0$

Do ponto de vista gráfico, um *componente conservativo* define uma *sub-rede de Petri*;

Ele é formado pelos lugares para os quais o componente de **f** é não nulo e pelas transições de entrada e saída destes lugares.

Uma rede de Petri é conservativa se

$$\forall p_i \in P$$
,

p_i pertence a um componente conservativo.

Se **f** é solução da equação $\mathbf{f}^T \times \mathbf{C} = \mathbf{0}$, então a função linear

$$\mathbf{f}^{\mathrm{T}} \times \mathbf{M}_{\mathrm{q}} = \mathbf{f}^{\mathrm{T}} \times \mathbf{M}_{\mathrm{0}} \quad \forall \mathbf{M}_{\mathrm{q}} \in \mathbf{R}(\mathbf{M}_{\mathrm{0}})$$

é o *invariante linear de lugar* correspondente.

O invariante linear de lugar obtido a partir da equação $\mathbf{f}^T \times \mathbf{M}_q = \mathbf{f}^T \times \mathbf{M}_0$, depende da marcação inicial da RP;

O *componente conservativo*, obtido a partir da equação $\mathbf{f}^T \times \mathbf{C} = \mathbf{0}$, é independente da marcação inicial da RP.

Componentes conservativos – invariantes de lugar

$$C = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} f_1 & f_2 & f_3 & f_4 \end{bmatrix}^T \times \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} = 0$$

$$\begin{bmatrix} 0 & -1 & 1 \end{bmatrix}$$

- Encontram-se: $\mathbf{f}^1 = [1 \ 1 \ 0 \ 0]^T \ e \ \mathbf{f}^2 = [0 \ 0 \ 1 \ 1]^T;$
- A RP é conservativa pois $f(p) \neq 0$ para todo lugar p.

Substituindo-se: **f**¹ e **f**² na equação

$$\mathbf{f}^{\mathrm{T}} \times \mathbf{M}_{\mathrm{q}} = \mathbf{f}^{\mathrm{T}} \times \mathbf{M}_{0}$$

para $M_0 = [0 \ 1 \ 0 \ 1]^T$, encontram-se os invariantes lineares de lugar

$$I_1$$
: $M(p_1) + M(p_2) = M_0(p_1) + M_0(p_2) = 1;$

$$I_2$$
: $M(p_3) + M(p_4) = M_0(p_3) + M_0(p_4) = 1$.

O invariante

$$I_1$$
: $M(p_1) + M(p_2) = M_0(p_1) + M_0(p_2) = 1$;

indica que, para qualquer marcação acessível a partir de M_0 , a soma das fichas em p_1 e p_2 será sempre 1.

- Numa marcação qualquer
 - se $M(p_2) = 1$, então $M(p_1) = 0$;
 - nunca haverá mais de uma ficha em p_1 e p_2 ;

O invariante de lugar permite, sem enumerar todas as marcações acessíveis, obter algumas informações sobre partes da RP.

Componentes repetitivos – invariantes de transição

Dada a sub-rede formada pelas transições t_3 e t_4 e por seus lugares de entrada ou saída (p_3 , p_4 e p_5)

Componentes repetitivos – invariantes de transição

Disparando a seqüência $s = t_3 t_4$ a partir de M_0

Componentes repetitivos – invariantes de transição

Disparando a seqüência $s = t_3 t_4$ a partir de M_0

Componentes repetitivos – invariantes de transição

Disparando a seqüência $s = t_3 t_4$ a partir de M_0

encontra-se novamente a marcação M_0 .

Componentes repetitivos – invariantes de transição

A seqüência $s = t_3 t_4$ é um *invariante de transição*, pois o disparo de *s* não modifica a marcação da RP.

Componentes repetitivos – invariantes de transição

O *invariante de transição* corresponde a uma seqüência cíclica de eventos que pode ser repetida indefinidamente;

O conjunto das transições t₃ e t₄ do invariante forma um *componente repetitivo estacionário* da RP;

Componentes repetitivos – invariantes de transição

Para encontrar o conjunto das transições tal que

utiliza-se novamente a equação fundamental

$$\mathbf{M}_{\mathbf{q}} = \mathbf{M}_{\mathbf{0}} + \mathbf{C} \times \mathbf{u}.$$

Para obter-se $M_q = M_0$ a seqüência s deve ser tal que o vetor característico \mathbf{u} verifique:

$$\mathbf{C} \times \mathbf{u} = 0$$

Componentes repetitivos – invariantes de transição

Toda solução **u** da equação

$$\mathbf{C} \times \mathbf{u} = 0$$

é chamado componente repetitivo estacionário

A sequência *s* correspondente a **u** é dita invariante de transição.

Componentes repetitivos – invariantes de transição

Uma rede de Petri é dita repetitiva se todas as transições t ∈ T pertencem a um componente repetitivo estacionário.

Componentes repetitivos – invariantes de transição

Um componente repetitivo estacionário define uma sub-rede em que se consideram:

- As transições para as quais o elemento correspondente de **u** é não nulo;
- Os respectivos lugares de entrada e saída destas transições.

Componentes repetitivos – invariantes de transição

$$\Rightarrow \mathbf{U}^{\mathrm{T}} = [1 \ 1 \ 1]$$

⇒Rede repetitiva

Componentes repetitivos – invariantes de transição

$$\Rightarrow \mathbf{u}^{\mathrm{T}} = [1 \ 1 \ 1]$$

⇒Rede repetitiva

$$s = t_2 t_1 t_3$$

Invariante de transição

Bibliographie

- ■F. Bause, P. S. Kritzinger, 'Stochastic Petri Nets An Introduction to the Theory', Vieweg, Alemanha, 2002;
- B. Caillaud, P. Darondeau, L. Lavagno, X. Xie, 'Syntesis and Control of Discrete Event Systems', Kluwer Academic Publishers, 2002;
- C. G. Cassandras, S. Lafortune, 'Introduction to Discrete Event Systems', Kluwer Academic Publishers, 1999;

Bibliographie

- J. O. Moody, P. J. Antsaklis, 'Supervisory Control of Discrete Event Systems Using Petri Nets', Kluwer Academic Publishers, 1998
- J. Cardoso, R. Valette, 'Redes de Petri', Editora da UFSC, 1997;
- J.-M. Proth, X. Xie, 'Les Réseaux de Petri pour la Conception de la Gestion des Systèmes de Prodution', Masson, Paris, 1994;

Bibliographie

- R. David, H. Alla, 'Du Grafcet aux Réseaux de Petri', Hermés, Paris, 1992;
- G. W. Brams, 'Réseaux de Petri: Théorie et Pratique tome 1', Masson, Paris, 1983.
- J. L. Peterson, 'Petri Net Theory and the Modeling of Systems', Prentice-Hall, N.J., 1981;
- ■J. Figueredo, A. Perkusich, J. Damásio, 'Notas de Aulas', Departamentos de engenharia Elétrica e Computação – Universidade Federal de Campina Grande, PB.