

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15030014702

FCC REPORT (BLE)

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F,CEO Tower,77 Wing Hong Street, Cheung Sha Wan,

Hong Kong

Equipment Under Test (EUT)

Product Name: LTE mobile phone

Model No.: X3

Trade mark: NUU

FCC ID: 2ADINNUUX3

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 18 Mar., 2015

Date of Test: 19 Mar., 2015 to 08 Apr., 2015

Date of report issued: 08 Apr., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	08 Apr., 2015	Original

Prepared by: Date: 08 Apr., 2015

Report Clerk

Reviewed by: O8 Apr., 2015

Project Engineer

3 Contents

			Page			
1	COV	/ER PAGE	1			
2	VERSION					
3	CON	ITENTS	3			
4	TES	T SUMMARY	4			
5		IERAL INFORMATION				
J	OLIV					
	5.1	CLIENT INFORMATION				
	5.2	GENERAL DESCRIPTION OF E.U.T	5			
	5.3	TEST ENVIRONMENT AND MODE	7			
	5.4	DESCRIPTION OF SUPPORT UNITS	7			
	5.5	LABORATORY FACILITY	7			
	5.6	LABORATORY LOCATION	7			
	5.7	TEST INSTRUMENTS LIST	8			
6	TES	T RESULTS AND MEASUREMENT DATA	9			
	6.1	ANTENNA REQUIREMENT:	9			
	6.2	CONDUCTED EMISSION	10			
	6.3	CONDUCTED OUTPUT POWER				
	6.4					
	U. '1	OCCUPY BANDWIDTH				
	6.5		15			
		OCCUPY BANDWIDTH				
	6.5	OCCUPY BANDWIDTH				
	6.5 6.6	OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method				
	6.5 6.6 6.6.1	OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method				
	6.5 6.6 6.6.1 6.6.2	OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method SPURIOUS EMISSION				
	6.5 6.6 6.6.1 6.6.2 6.7	OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method SPURIOUS EMISSION Conducted Emission Method				
7	6.5 6.6 6.6.1 6.6.2 6.7 6.7.1	OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method SPURIOUS EMISSION Conducted Emission Method				

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address of Applicant:	16/F,CEO Tower,77 Wing Hong Street, Cheung Sha Wan, Hong Kong
Manufacturer/ Factory:	Suncupid(Shen Zhen) Electronic Ltd
Address of Manufacturer / Factory:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7

5.2 General Description of E.U.T.

Product Name:	LTE mobile phone
Model No.:	X3
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-3.2 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Model: HNFG050100UU
	Input:110-240V AC,50/60Hz 0.2A
	Output:5V DC MAX 1A

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz		
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz		
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz		
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz		
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz		
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCIS15030014702

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m/1.5m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radiated Emission:								
Item	n Test Equipment Manufacturer		Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-05-2015		
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2015	03-29-2016		
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015		
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2015	03-31-2016		
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015		
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015		

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-09-2015			
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -3.2 dBi.

6.2 Conducted Emission

Tost Poquiroment:	FCC Part 15 C Section 15.207	7					
Test Requirement:							
Test Method:	ANSI C63.4: 2009						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz) Limit (dBuV)						
	0.15-0.5 Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46*						
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	n of the frequency.					
Test procedure	 The E.U.T and simulators a line impedance stabiliz 50ohm/50uH coupling im The peripheral devices through a LISN that prowith 50ohm termination. test setup and photograp Both sides of A.C. lininterference. In order to positions of equipment changed according to measurement. 	zation network (L.I.S.N pedance for the measure also connected ovides a 500hm/50uH (Please refer to the hs). e are checked for a find the maximum of and all of the interfixed.	N.), which provides a uring equipment. to the main power coupling impedance block diagram of the maximum conducted emission, the relative				
Test setup:	Refere	ence Plane					
	AUX Equipment E. I Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power				
Test Instruments:	Refer to section 5.7 for details	;					
Test mode:	Refer to section 5.3 for details	;					
Test results:	Passed						

Measurement Data

Neutral:

Trace: 11

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : LTE mobile phone

: X3 Model Test Mode : BLE mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Wendell

Remark

iomazii	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu₹	dB	
1	0.339	25.51	0.26	10.73	36.50	49.22	-12.72	Average
2	0.389	22.53	0.25	10.72	33.50	48.08	-14.58	Average
3	0.481	31.47	0.28	10.75	42.50	56.32	-13.82	QP
4	0.595	31.52	0.23	10.77	42.52		-13.48	
1 2 3 4 5 6 7 8	0.595	20.34	0.23	10.77	31.34	46.00	-14.66	Average
6	0.694	31.59	0.18	10.77	42.54	56.00	-13.46	QP
7	0.783	29.98	0.19	10.81	40.98	56.00	-15.02	QP
8	0.783	18.38	0.19	10.81	29.38	46.00	-16.62	Average
9	0.958	13.53	0.21	10.86	24.60	46.00	-21.40	Average
10	1.352	24.85	0.25	10.91	36.01	56.00	-19.99	QP
11	3.346	27.52	0.29	10.91	38.72	56.00	-17.28	QP
12	3.472	13.94	0.29	10.91	25.14	46.00	-20.86	Average

Report No: CCIS15030014702

Line:

Trace: 9

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT LTE mobile phone

: X3 Model

Test Mode : BLE mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Wendell

(emark								
		Read	LISN	Cable	S SE	Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	<u>dB</u>	dB	dBu₹	−−dBuV	dB	
1	0.404	23.42	0.28	10.72	34.42	47.77	-13.35	Average
2	0.481	33.31	0.29	10.75	44.35	56.32	-11.97	QP
3	0.494	22.62	0.29	10.76	33.67	46.10	-12.43	Average
4	0.654	32.22	0.23	10.77	43.22	56.00	-12.78	QP
1 2 3 4 5 6 7 8 9	0.665	23.34	0.23	10.77	34.34	46.00	-11.66	Average
6	0.708	23.24	0.22	10.77	34.23	46.00	-11.77	Average
7	0.862	29.55	0.24	10.83	40.62	56.00	-15.38	QP
8	1.032	27.65	0.25	10.87	38.77	56.00	-17.23	QP
9	1.367	17.30	0.25	10.91	28.46	46.00	-17.54	Average
10	1.441	28.06	0.26	10.92	39.24	56.00	-16.76	QP
11	3.381	28.12	0.28	10.91	39.31	56.00	-16.69	QP
12	3.491	17.69	0.28	10.90	28.87	46.00	-17.13	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.4:2009 and KDB558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2				

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.97		
Middle	-0.29	30.00	Pass
Highest	-3.32		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.4:2009 and KDB558074			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.75		
Middle	0.75	>500	Pass
Highest	0.76		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.09		
Middle	1.09	N/A	N/A
Highest	1.09		

Test plot as follows:

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-15.91		
Middle	-15.52	8.00	Pass
Highest	-15.09		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.4: 20	09				
Test Frequency Range:	2.3GHz to 2.5G	Hz				
Test site:	Measurement Distance: 3m					
Receiver setup:	Frequency Above 1GHz	Detector Peak	RBW 1MHz	VBW 3MHz	Remark Peak Value	
Limit:		Peak	1MHz	10Hz	Average Value	
Littiit.	Freque	•	Limit (dBuV/ 54.0		Remark Average Value	
	Above 1GHz		74.0		Peak Value	
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the make the meters and to find the limit spof the EUT have 10 de	at a 3 meter cane the position of as set 3 meters which was mount a height is variet to determine the ontal and vertical a	amber. The toof the highests away from the on the too the too the feed from one maximum all polarizations to polarizations. Was turned to maximum He EUT in peasting could be tred. Otherwise the polarizations of the feed of	table was rost radiation. The interfer op of a variate meter to for a value of the ons of the art to heights from 0 degreeak Detect old Mode. The was arranged in the was a very stopped arise the emit one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 the ees to 360 degrees	
Test setup:	EUT 3m Turn v. 1.5m Table	4m	Antenna Horn Ant Spectrum Analyzer	enna		
Test Instruments:	Refer to section	5.7 for details				
Test mode:	Refer to section	5.3 for details				
Test results:	Passed					

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : LTE mobile phone

: X3 Model

Test mode : BLE-L mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey REMARK :

2110777		-	• • • • • • • • • • • • • • • • • • • •						
	Freq		Antenna Factor						Remark
2	MHz	—dBuV	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000								

Test channel: Lowest

Vertical:

: 3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : LTE mobile phone

Model : X3

Test mode : BLE-L mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: Carey REMARK:

Huni:55%

	Freq		Antenna Factor						
2	MHz	dBu₹	$\overline{dB}/\overline{m}$	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
	2390.000 2390.000								

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : LTE mobile phone Condition

EUT

Model : X3

Test mode : BLE-H mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey
REMARK

		Read	Ant enna	Cable	Preamn		Limit	Over	
	Freq		Factor						
3	MHz	dBu∜	dB/m	dB	<u>ab</u>	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500					54.49 41.07			Peak Average

Test channel: Highest

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : LTE mobile phone Condition

EUT

Model : X3

Test mode : BLE-H mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey REMARK :

1 2

TH T									
	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	
	MHz	dBu∇	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
	2483.500	200 (Carrier 1) (190 (Carrier 1)	(57) V. S. N. SANTON			100000000000000000000000000000000000000			55 (A 10 CH
22	2483.500	(. ((21.52	5. (0	0.00	40.99	54.00	-13. UI	Average

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2009 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Date: 20.MAR.2015 17:54:28

30MHz~25GHz

Date: 20.MAR.2015 17:55:42

30MHz~25GHz

Date: 20.MAR.2015 17:56:39

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.20	09 and 15.205							
Test Method:	ANSI C63.4:200	9								
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency Detector RBW VBW Remark									
·	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value									
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value									
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	Above 1G112	Peak	1MHz	10Hz	Average Value					
Limit:										
	Frequency		Limit (dBuV/m	@3m)	Remark					
	30MHz-88MHz		40.0		Quasi-peak Value					
	88MHz-216MHz		43.5		Quasi-peak Value					
	216MHz-960MH	Z	46.0		Quasi-peak Value					
	960MHz-1GHz		54.0		Quasi-peak Value					
	Above 1GHz		54.0		Average Value					
			74.0		Peak Value					
Test Procedure:	below 1GH meter camber position of the EUT of antenna, we tower. 3. The antenna both horizon make the make the make the make the make to find the meters and to find the make the limit spen of the EUT have 10 dB	Iz/1.5 meters ber. The table the highest ra was set 3 meters he height is were wasurement wasurem	s for above 10 e was rotated adiation. The saway funted on the towaried from one the maximulatical polarization, the Enna was tuned ading. The EUT in perfecting could be ported. Other lid be re-tested adiation.	GHz above 360 degree 160 degree 1	table 0.8 meters for the ground at a 3 des to determine the atterference-receiving table-height antenna of four meters above of the field strength, antenna are set to arranged to its worst is from 1 meter to 4 direct to 360 degrees detect. Function and as 10 dB lower than and the peak values missions that did not e using peak, quasing reported in a data					

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : LTE mobile phone

: X3 : BLE mode Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb REMARK :

Freq						Limit Line	Over Limit	Remark
MHz	dBu∜	— <u>d</u> B/π	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
83.230	44.85	9.72	0.87	29.61	25.83	40.00	-14.17	QP
191.745	38.92	10.56	1.37	28.89	21.96	43.50	-21.54	QP
383.932	36.93	14.68	2.06	28.71	24.96	46.00	-21.04	QP
537.589	35.59	17.36	2.51	29.06	26.40	46.00	-19.60	QP
750.108	35.16	19.43	3.04	28.48	29.15	46.00	-16.85	QP
912.862	39.25	21.18	3.38	27.84	35.97	46.00	-10.03	QP
	MHz 83.230 191.745 383.932 537.589 750.108	Freq Level MHz dBuV 83.230 44.85 191.745 38.92 383.932 36.93 537.589 35.59 750.108 35.16	Freq Level Factor MHz dBuV dB/m 83.230 44.85 9.72 191.745 38.92 10.56 383.932 36.93 14.68 537.589 35.59 17.36 750.108 35.16 19.43	Freq Level Factor Loss MHz dBuV dB/m dB 83.230 44.85 9.72 0.87 191.745 38.92 10.56 1.37 383.932 36.93 14.68 2.06 537.589 35.59 17.36 2.51 750.108 35.16 19.43 3.04	MHz dBuV dB/m dB dB 83.230 44.85 9.72 0.87 29.61 191.745 38.92 10.56 1.37 28.89 383.932 36.93 14.68 2.06 28.71 537.589 35.59 17.36 2.51 29.06 750.108 35.16 19.43 3.04 28.48	MHz dBuV dB/m dB dB dBuV/m 83.230 44.85 9.72 0.87 29.61 25.83 191.745 38.92 10.56 1.37 28.89 21.96 383.932 36.93 14.68 2.06 28.71 24.96 537.589 35.59 17.36 2.51 29.06 26.40 750.108 35.16 19.43 3.04 28.48 29.15	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 83.230 44.85 9.72 0.87 29.61 25.83 40.00 191.745 38.92 10.56 1.37 28.89 21.96 43.50 383.932 36.93 14.68 2.06 28.71 24.96 46.00 537.589 35.59 17.36 2.51 29.06 26.40 46.00 750.108 35.16 19.43 3.04 28.48 29.15 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m <t< td=""></t<>

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : LTC mobile phone Condition

EUT

: X3 Model

Test mode : BLE mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: A-bomb REMARK :

Freq						Limit Line	Over Limit	Remark
MHz	dBu₹	<u>dB</u> /m	₫B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
82.938	44.41	9.57	0.87	29.62	25.23	40.00	-14.77	QP
177.509	43.30	9.49	1.36	28.99	25.16	43.50	-18.34	QP
268.485	36.97	12.34	1.68	28.51	22.48	46.00	-23.52	QP
460.727	37.40	15.59	2.29	28.89	26.39	46.00	-19.61	QP
576.644	37.51	18.03	2.58	29.01	29.11	46.00	-16.89	QP
845.088	36.56	20.55	3.24	28.02	32.33	46.00	-13.67	QP
	MHz 82.938 177.509 268.485 460.727 576.644	Freq Level MHz dBuV 82.938 44.41 177.509 43.30 268.485 36.97 460.727 37.40 576.644 37.51	Freq Level Factor MHz dBuV dB/m 82.938 44.41 9.57 177.509 43.30 9.49 268.485 36.97 12.34 460.727 37.40 15.59 576.644 37.51 18.03	Freq Level Factor Loss MHz dBuV dB/m dB 82.938 44.41 9.57 0.87 177.509 43.30 9.49 1.36 268.485 36.97 12.34 1.68 460.727 37.40 15.59 2.29 576.644 37.51 18.03 2.58	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 82.938 44.41 9.57 0.87 29.62 177.509 43.30 9.49 1.36 28.99 268.485 36.97 12.34 1.68 28.51 460.727 37.40 15.59 2.29 28.89 576.644 37.51 18.03 2.58 29.01	MHz dBuV dB/m dB dB dBuV/m 82.938 44.41 9.57 0.87 29.62 25.23 177.509 43.30 9.49 1.36 28.99 25.16 268.485 36.97 12.34 1.68 28.51 22.48 460.727 37.40 15.59 2.29 28.89 26.39 576.644 37.51 18.03 2.58 29.01 29.11	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 82.938 44.41 9.57 0.87 29.62 25.23 40.00 177.509 43.30 9.49 1.36 28.99 25.16 43.50 268.485 36.97 12.34 1.68 28.51 22.48 46.00 460.727 37.40 15.59 2.29 28.89 26.39 46.00 576.644 37.51 18.03 2.58 29.01 29.11 46.00	Freq Level Factor Level Line Limit MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m dB 82.938 44.41 9.57 0.87 29.62 25.23 40.00 -14.77 177.509 43.30 9.49 1.36 28.99 25.16 43.50 -18.34 268.485 36.97 12.34 1.68 28.51 22.48 46.00 -23.52 460.727 37.40 15.59 2.29 28.89 26.39 46.00 -19.61 576.644 37.51 18.03 2.58 29.01 29.11 46.00 -16.89

Above 1GHz

Test channel:			Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.30	31.53	8.90	40.24	46.29	74.00	-27.71	Vertical
4804.00	45.95	31.53	8.90	40.24	46.14	74.00	-27.86	Horizontal

Test channel:			Lowest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.13	31.53	8.90	40.24	35.32	54.00	-18.68	Vertical
4804.00	35.74	31.53	8.90	40.24	35.93	54.00	-18.07	Horizontal

Test channel:			Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	44.10	31.58	8.98	40.15	44.51	74.00	-29.49	Vertical
4884.00	45.66	31.58	8.98	40.15	46.07	74.00	-27.93	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	34.76	31.58	8.98	40.15	35.17	54.00	-18.83	Vertical
4884.00	35.13	31.58	8.98	40.15	35.54	54.00	-18.46	Horizontal

Test channel:			Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.11	31.69	9.08	40.03	45.85	74.00	-28.15	Vertical
4960.00	44.36	31.69	9.08	40.03	45.10	74.00	-28.90	Horizontal

Т	est channel	:	Highest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.85	31.69	9.08	40.03	36.59	54.00	-17.41	Vertical
4960.00	34.52	31.69	9.08	40.03	35.26	54.00	-18.74	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366