ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ			
ПРЕПОДАВАТЕЛЬ			
доц., канд. техн. наук, до			О.О.Жаринов
должность, уч. степень, звани	ие	подпись, дата	инициалы, фамилия
O	ГЧЕТ О ЛА	АБОРАТОРНОЙ РАІ	БОТЕ
		МИРОВАТЕЛЯ ИМ ТИ С ЗАДАННЫМИ	
	по курсу:	: СХЕМОТЕХНИКА	
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР. №	4143	подпись, дата	А. М. Гридин инициалы, фамилия
			. , , 1

1. Цель работы

Разработать проект формирователя импульсной последовательности с заданными свойствами в среде программирования Quartus.

2. Вариант задания

Вариант № 1. $K_{\text{нач}}=0$, $K_1=3$, $K_0=14$

3. Обобщенная структурная схема формирователя и описание концепции проектирования.

Берем 17-разрядный Shift Register и составляем таблицу истинности. Сначала для одного полного периода выходного сигнала, но потом нужно продолжить до появления повторения строчки – тогда таблица будет заполнена. Составляем логическое выражение Dsi и сокращаем по возможности. Строим схему с помощью D-триггеров.

4. Таблица истинности, необходимая для реализации формирователя импульсной последовательности.

№	D	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
	si	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	O	0	0	0	0	O	O	0	0	0	0	0	0	0	0
3	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0

13	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0
-																		
17	1	0	0	0	0	O	0	0	0	0	0	0	0	0	0	1	1	1
18	1	1	0	0	0	O	0	0	0	0	0	0	O	0	O	0	1	1
19	1	1	1	O	0	O	0	0	O	0	O	0	O	0	O	0	0	1
20	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Таблица 1 – Таблица истинности

Итого Dsi=
$$\overline{Q2} \bullet \overline{Q3} \bullet \overline{Q4} \bullet \overline{Q5} \bullet \overline{Q6} \bullet \overline{Q7} \bullet \overline{Q8} \bullet \overline{Q9} \bullet \overline{Q10} \bullet \overline{Q11} \bullet \overline{Q12} \bullet \overline{Q13}$$

5. Логические выражения, включая промежуточные выкладки, выполняемые в процессе минимизации

$$Dsi=\overline{Q2} \bullet \overline{Q3} \bullet \overline{Q4} \bullet \overline{Q5} \bullet \overline{Q6} \bullet \overline{Q7} \bullet \overline{Q8} \bullet \overline{Q9} \bullet \overline{Q10} \bullet \overline{Q11} \bullet \overline{Q12} \bullet \overline{Q13} = \overline{Q2} + \overline{Q3} + \overline{Q4} + \overline{Q5} + \overline{Q6} + \overline{Q7} + \overline{Q8} + \overline{Q9} + \overline{Q10} + \overline{Q11} + \overline{Q12} + \overline{Q13}$$

6. Схема устройства в графическом формате в среде Quartus

Рисунок 2 (а, б) – Схема формирователя импульсной последовательности

Top View - Flip Chip Stratix II - EP2S15F484C3

Рисунок 3 – Назначение выводов ПЛИС

7. Временная диаграмма работы схемы в среде Quartus.

Рисунок 4 (а, б) – Временная диаграмма работы счётчика

8. Перечисление ошибок, если они возникали в процессе работы и методов, примененных для их устранения

Ошибок не было.

9. Выводы.

Был разработан проект формирователя импульсной последовательности с заданными по варианту свойствами в среде программирования Quartus на основе ПЛИС EP2S15F484C3.

10. Список используемых источников.

1 Лекция по схемотехнике от 2 октября 2023г. [Электронный ресурс], URL

https://bbb1.guap.ru/playback/presentation/2.3/4c800ed744e4bb6dc2cb64a2fccc97aec30a6f96-1696247641468