Introduction to Version Control with Git

 Make changes to code with confidence - can always be reverted if necessary

- Make changes to code with confidence can always be reverted if necessary
- Reproducibility version control can complement your lab notebook

- Make changes to code with confidence can always be reverted if necessary
- Reproducibility version control can complement your lab notebook
- ► Work as a team file names and directory structures are consistent for all team members

- Make changes to code with confidence can always be reverted if necessary
- Reproducibility version control can complement your lab notebook
- Work as a team file names and directory structures are consistent for all team members
- ▶ The list goes on...

Git

In the scientific world, Git (and Github) is the most widely used version control system.

Git

In the scientific world, Git (and Github) is the most widely used version control system.

repository: A central storage area where a version control system stores old revisions of files and information about who changed what, when.

How do you get your own repository?

Let's configure Git first:

```
$ git config --global user.name "Your name goes here"
$ git config --global user.email you@yourdomain.com
$ git config --global core.editor vim
$ git config color.ui auto
```

Then initialize your first repository:

```
$ git init
```

How do you get your own repository?

```
Let's configure Git first:
```

```
$ git config --global user.name "Your name goes here"
$ git config --global user.email you@yourdomain.com
$ git config --global core.editor vim
$ git config color.ui auto
```

Then initialize your first repository:

```
$ git init
```

```
You Try (10 minutes):
```

Exercises (1) - 2

Git allows you to save snapshots of your directory

commit: snapshots of your directory.

Git allows you to save snapshots of your directory

commit: snapshots of your directory.

- ▶ There is metadata associated with each commit (snapshot):
 - the date the snapshot was taken
 - who took it
 - what files were modified
 - the changes made on those files
 - etc.

Git allows you to save snapshots of your directory

commit: snapshots of your directory.

- ▶ There is metadata associated with each commit (snapshot):
 - the date the snapshot was taken
 - who took it
 - what files were modified
 - the changes made on those files
 - etc.
- Git will enable you to:
 - track the changes made to files in your directory
 - revert the entire project to a previous snapshot
 - review changes made over time
 - view who modified a file
 - etc.

A little more vocabulary:

There are three main *trees* or *collections of files* (and metadata) in Git:

SHA-1 hash: unique 40-digit computer-generated identifier for each revision (or commit)

SHA-1 hash: unique 40-digit computer-generated identifier for each revision (or commit)

HEAD: reference to the current branch or commit

How to save snapshots with Git: Keep working!

How to save snapshots with Git: Keep working!

How to save snapshots with Git: Keep working!

A simple story so far: what else can we do?!

git log: view the change history (commits) of the current repository.

A simple story so far: what else can we do?!

git diff: view changes between files and commits

How do we do this for real?

An Example

Now it's your turn.

Questions?

Now it's your turn.

Questions?

You Try (15 minutes):

Exercises 3