

Architektura počítačů

Milan Kolář Ústav mechatroniky a technické informatiky

Projekt ESF CZ.1.07/2.2.00/28.0050

Modernizace didaktických metod
a inovace výuky technických předmětů.

Literatura

- E-learningový portál FM: https://elearning.tul.cz
- Šimeček, I.: Moderní počítačové architektury a optimalizace implementace algoritmů. ČVUT FIT Praha, 2015.
- Kubátová, H.: Struktura a architektura počítačů s řešenými příklady.
 ČVUT FIT Praha, 2013.
- Hlavička, J.: Architektura počítačů. ČVUT FEL Praha, 2001.
- Skalický, P.: Přístrojové aplikace mikropočítačů. ČVUT FEL Praha, 2004.
- Pluháček, A.: Projektování logiky počítačů. ČVUT FEL Praha, 2000.
- Pinker, J.: Mikroprocesory a mikropočítače. BEN, Praha, 2004.
- Smékal, Z. Sysel, P.: Signálové procesory. Sdělovací technika, Praha, 2006.

Definice architektury

Architektura počítačů – více definic

- technický obor zaměřený na návrh a konstrukci zařízení na zpracování dat;
- soubor pravidel a metod, které popisují funkčnost, organizaci a implementaci počítačových systémů;
- zahrnuje návrh architektury instrukční sady, návrh logiky, návrh mikroarchitektury (počítačové organizace) a implementaci v konkrétním počítači.

Znalost architektury má být prostředkem pro vytváření nových systémů, má být podkladem pro hodnocení kvality výsledku.

Počítač

Stroj na číslicové zpracování informací (dat).

Zařízení, které provádí výpočty nebo řídí operace, které jdou popsat čísly nebo logickými výrazy (Oxfordský slovník)

Vrstvy abstrakce počítače:

Části počítače

CPU (Central Processing Unit) - procesor ALU (Arithmetical and Logical Unit) — aritmeticko-logická jednotka CU (Control / Central Unit) — řadič, řídicí jednotka I/O (Input / Output) Devices — vstupně / výstupní zařízení Memory — paměť (operační) Storage — paměť (archivní) — disk, karta (flash), páska

Von Neumannova architektura

představena v roce 1946

Von Neumannova architektura

Charakteristické vlastnosti lze shrnout do následujících bodů:

- 1) struktura počítače je nezávislá na typu řešené úlohy, počítač se programuje obsahem paměti (lze řešit jakýkoli algoritmicky řešitelný problém);
- 2) instrukce a operandy jsou v téže paměti;
- 3) paměť je rozdělena do buněk stejné velikosti, jejich pořadová čísla se používají jako adresy;
- 4) program je tvořen posloupností elementárních příkazů (instrukcí), které se provádějí jednotlivě v pořadí, v němž jsou zapsány do paměti;
- 5) změna pořadí provádění instrukcí se vyvolá instrukcí podmíněného nebo nepodmíněného skoku;

Von Neumannova architektura

- 6) pro reprezentaci instrukcí i čísel se používají dvojkové signály a dvojková číselná soustava;
- 7) programem řízené zpracování dat probíhá v počítači samočinně (tok dat řídí řadič);
- 8) zpracování dat probíhá v tzv. diskrétním režimu (během výpočtu nelze s počítačem komunikovat);
- 9) vstupy (resp. výstupy) jsou koncipovány jako datové zdroje (resp. výsledky) a jsou tedy přímo napojeny na ALU.

Nevýhody:

Může být obtížnější ladění programu, méně bezpečné, možnost mylně interpretovat data jako program, data i instrukce se přenáší po stejné sběrnici.

Harvardská architektura

vznikla v roce 1943 (koncepce IBM Harvard MARK1) někdy označována jako princetonská architektura

Harvardská architektura

Základní principy (rozdíly vůči von Neumannově architektuře):

- 1) paměť programu je oddělena od paměti dat
 - možnost ve stejném okamžiku načítat instrukci a přistupovat k datové paměti,
 - datová a programová paměť mohou mít odlišnou organizaci,
 - paměť programu může být non-volatilní;
- 2) oddělené sběrnice (datová, instrukční, adresové);
- 3) řízení procesoru je odděleno od řízení vstupních a výstupních jednotek (nejsou napojeny přímo na ALU).

Vhodné pro zpracování většího objemu dat (rychlejší).

Použití zejména v mikrořadičích či signálových procesorech a v souvislosti s redukovanou instrukční sadou (RISC).

Modifikované architektury počítačů

V moderních architekturách existují různé modifikace obou zmiňovaných architektur, např.:

- oddělená paměť dat a paměť programu, avšak společná adresová a datová sběrnice (umožňuje zacházet s instrukcemi jako daty, např. přenést část kódu do paměti dat);
- sdílení programové sběrnice i pro přenos dat.

Generace počítačů

Každá generace je charakteristická svou konfigurací, rychlostí počítače a základním stavebním prvkem

Generace	0	1	2	3	4
Rok	1940	1951	1957	1964	1981
Prvky	relé	elektronky	tranzistory	IO SSI	IO (V)LSI
Hlavní paměť		buben	ferity	ferity	LSI
Kapacita paměti		1 kB	10 kB	1 MB	10 MB
MIPS	0,001	0,01	0,1	1	10
Příklad	Mark I	Univac 1	IBM 7090	IBM 360	Intel 4004

Ctvrtá generace

Její vývoj prožíváme dodnes;

základem je centrální procesorová jednotka (CPU) označovaná jako mikroprocesor (vesměs z křemíku);

IO LSI a VLSI (až 10¹⁸ tranzistorů na čipu);

malé rozměry (technologie $32 \rightarrow 22 \rightarrow 14 \rightarrow 10 \rightarrow 7 \rightarrow 5$ nm);

velká rychlost – využití paralelismu a zavádění programovacích prostředků, které paralelismus podporují;

Již mnoho let se mluví o 5. generaci – orientace na využití umělé inteligence, nalézá algoritmy řešení, přímý styk s uživatelem na úrovni přirozeného jazyka, textu a obrazů, distribuovaný HW.

Výkonnost počítače

Viz 1. cvičení

Výkonnost – převrácená hodnota doby vykonání jednoho úkonu

Propustnost – počet úkonů za jednotku času (množství vykonané práce za jednotku času)

Do celkové výkonnosti počítače z pohledu uživatele je třeba počítat i čekání na I/O operace, režii OS (včetně sdílení zdrojů s jinými uživateli) apod.

Výkonnost procesoru – dána výkonnostní rovnicí CPU

 $T_{CPU} = IC \cdot CPI \cdot T_{c/k}$ (jednoprocesorový systém bez cache)

Není vhodné porovnávat jednotlivé veličiny samostatně (např. MIPS)

Průměrný počet taktů na instrukci (CPI) závisí na instrukčním mixu.

Instrukční mixy

Instrukční mixy jsou seznamy (tabulky) nejfrekventovanějších instrukcí ohodnocených pravděpodobnostmi jejich výskytu v rámci daného typu zátěže.

Nevýhody:

- instrukční mixy jsou zpravidla závislé na konkrétním procesoru a architektuře – obtížná přenositelnost;
- frekvence použití jednotlivých instrukcí závisí subjektivně na programátorech, na druhu zpracovávaných úloh i na souborech vstupních zpracovávaných dat;
- dobu instrukcí ovlivňuje i operační systém.

Nejstarší způsob hodnocení propustnosti číslicových systémů (dnes v podstatě nepoužívaný)

Zkušební úlohy (benchmarky)

Zkušební úloha je vzorek zátěže, který má ověřit propustnost počítače v rámci určité aplikační oblasti.

Výhodou je komplexnost – na jejich běhu se nepodílí jen procesor (jako u mixů), ale jsou ovlivněny i operačním systémem, překladačem, vstupy a výstupy, atd.

Skupiny zkušebních úloh:

Reálné (přirozené) aplikace – převzaté z běžného provozu počítače (překladač, text. editor, komprimace) - problém s přenositelností (závislost na OS nebo překladači); Umělé (synthetic benchmarks) – vzniklé pouze za účelem zjišťování výkonnosti, např. Whetstone (WHIPS), Dhrystone (DIPS).

SPEC

(Standard Performance Evaluation Corporation)

- Eliminace slabin jedné zkušební úlohy vedla k vytvoření sad zkušebních úloh => SPEC skládá se z reálných aplikací z různých vědeckých a inženýrských aplikací:
 - pro osobní počítače (desktop benchmarks),
 - pro servery (server benchmarks),
 - pro vestavěné poč. systémy (embedded benchmarks), ...
- Původně hlavně pro výkonnost CPU, dnes i GPU, cloudů, databází, web serverů, emailových systémů apod.
- Vývoj: speciální benchmarky pro různé typy HW (SPEC CPU2017, SPECviewpeft 13, SPECmail2009, SPEC Cloud_laaS 2018, SPEC SFS 2014, ... (více na www.spec.org)

Monitorování výkonnosti počítačů

Na rozdíl od zkušebních úloh cílem monitorování je zjištění skutečného chování počítače v čase prostřednictvím hodnot několika předem zvolených stavových proměnných (např. stav procesoru, paměti, sběrnice, V/V zařízení)

- programový monitor snadná realizace, ale nepatrně zdržuje vlastní činnost počítače
- obvodový monitor samostatný funkční blok, který neovlivňuje počítač a je s ním spojen sondami
- kombinovaný monitor

Monitory mohou sledovat nejen činnost OS, ale i požadavky uživatele nebo vyváženost konfigurace počítače.

Hodnocení vyváženosti architektur

Kiviatův graf – obecně *n* radiálních os (*n* vlastností s různými metrikami) – pro charakterizaci procesorů

Sparc

IBM RS/6000