UNIVERSITY OF IBADAN FACULTY OF TECHNOLOGY DEPARTMENT OF PETROLEUM ENGINEERING

2016/2017 FIRST SEMESTER EXAMINATIONS B.Sc DEGREE FINAL EXAMINATIONS

COURSE: RESERVOIR ENGINEERING I JULY 2017 TIME: 8,00AM INSTRUCTIONS: ANSWER ALL QUESTIONS TIME ALLOWED: 3HRS

1. (a) List 5 characteristics of solution gas drive (5 marks)

(b) A reservoir has the following pressure and PVT data:

Pressure	Bo	Rs	Bg
(psia)	(rb/stb)	(scf/stb)	rb/scf
4500 (pi)	1,3417	620	
4000	1.3480	620	
3830 (pb)	1.3511	620	.00087
3500	1.3222	560	.00096
3200	1.3022	500	.00107
2900	1.2822	452	.00119
2600	1.2633	404	.00137
2300	1.2450	357	.00161
2000	1.2287	314	.00196
1700	1.2115	267	.00249
1400	1.1940	222	.00339
1000	1.1763	108	.00519
800	1.1583	65	.01066
300	1.0520	20	.01122

Is the reservoir saturated or undersaturated? Explain. (5 marks)

ii. Determine the fractional oil recovery, during depletion down to bubble point pressure, given that $cw = 3.0 \times 10^{-6}$ /psi, Swc = 0.20, $cr = 8.6 \times 10^{-6}$ /psi (5 marks)

iii. If the reservoir will be produced down to an abandonment pressure of 900 psia, determine an expression for the recovery at abandonment as a function of the cumulative gas oil ratio Rp.

iv. It is planned to initiate a water injection scheme in the reservoir. The intention is to maintain pressure at the level of 2700 psia (pb = 3330 psia). If the current producing gas oil ratio of the field (R) is 3000 scf/stb, what will be the initial water injection rate required to produce 15,000 stb/d of oil? (5 marks)

List three uses and 2 limitations of the Material Balance Equation. 2. (a)

(b) A reservoir has the following pressure and production data. Using the appropriate (graphical) technique of Havlenah and Odeh, determine the initial oil in place and the gas cap size (15 marks).

Pressure (Psia) 3330 (pi = pi	Np MMstb	Rp scf/stb	Bo rb/stb	Rs	Bg
3150 3000 2850 2700 2550 2400	3.295 5.903 8.852 11.503 14.513 17.730	1050 1060 1160 1235 1265	1.2511 1.2353 1.2222 1.2122 1.2022 1.1922 1.1822	510 477 450 425 401 375 352	rb/scf .00087 .00092 .00096 .00101 .00107 .00113

 Explain why oil reservoirs producing under water drive will normally have high recovery factors while water drive in gas reservoirs lead to low recovery factors.

Given the following data for a reservoir, estimate the stock tank oil initially in place and the water Influx constant in bbls/month/psi, assuming steady state water encroachment. (Bw = 1.02 rb/stb), (15 marks)

Time (years)	Pressure (psia)	Np (btb)	Wp (bbl)	Gp (MMscf)	Bo (rb/stb)	R s (scf/stb)	Bg (Cu ft/scf)
0	3000=РЬ	0	0	0	1.350	500	0.0059
2	2750	6,826,800	160,000	3890	1.302	395	0.0083
4	2550	15,376,000	490,000	12150	1.250	350	0.0090

Differentiate between volumetrically-controlled and hydraulically-controlled reservoirs
(5 marks)

The initial volume in place in a reservoir was calculated by volumetric method to be 300 MMMscf underlying 2500 productive acres at an initial pressure of 3600 psia and 130°F. The pressure-production history is:

Pressure, psia	Production, MMMscf	Gas Deviation Factor at 130°F
3600	0.00	0.86
2700	78.00	0.80

Calculate the initial free gas in place assuming no water influx. (4 marks)

ii. Assuming uniform porosity, sand thickness and water saturation, if the volume of gas in place estimated from the pressure-production history is believed to be correct, how many acres of extension to the reservoir is predicted? (8 marks)

iii. If however the volumetric estimate is believed to be correct, how much water influx occurred during the 78 MMM scf production from the reservoir to ensure agreement between the volumetric and material balance methods? (8 marks)

Note: All the terms and abbreviations have the usual connotations