

MT7621 Programming Guide

7-port Gigabit Ethernet Switch

Version: 0.1

Release date: 2013-09-14

© 2008 - 2014 MediaTek Inc.

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Specifications are subject to change without notice.

Table of Contents

Table	e of C	ontents	2
1	Gene	eral Description	4
	1.1	Overview	4
2	Func	ction Description	5
	2.1	Mode setting	5
	2.2	Reset	7
	2.3	PHY auto polling and SMI master control register	7
	2.4	Link Status	8
	2.5	Link Status change	10
	2.6	MAC 5 interface setup	10
	2.7	MAC 6 interface setup	13
	2.8	EEPROM	16
	2.9	Output queue VLAN setting	17
	2.10	VLAN setting	17
	2.11		
	2.12	MAC forward control	26
	2.13	MAC table aging time	27
	2.14	MAC table	27
	2.15	QoS (Quality of Services)	
		Flow control	
	2.17	Local port enable	34
	2.18	System MAC Controller	35
	2.19	LED controller	35
	2.20	Embedded GePHY Access	36
		2.20.1 Embedded GePHY In-Direct Accessing	36
		2.20.2 Embedded GePHY Direct Accessing	37
	2.21	RGMII Timing Adjustment	41
		2.21.1 RGMII RXC Adjustment	41
		2.21.2 RGMII TXC Adjustment	43
	2.22	PHY Clause 45 Register Read	44
		2.22.1 Clause 45 Register Read/Write	44
		2.22.2 Clause 22 Access to Clause 45 Registers	44
	2.23	Flow Control	45
		2.23.1 Related Control Signals for Flow Control	45
	7	2.23.2 Enter Flow-Control State	46
		2.23.3 Leave Flow-Control State	46
	2.24	MIB Counter	47
3	Anne	ex	55
	3.1	User Port	55
1	3.2	Translation Port	
	3.3	Transparent Port	56
	3.4	Security mode	56
Media	aTek Co	onfidential © 2013 - 2014 MediaTek Inc.	Page 2 of 57

3.5	Check mode	5	1
3.6	Fallback mode	5	7
	Port Matrix mode		
		,	•

1 General Description

1.1 Overview

MT7621 GSW is a highly integrated Ethernet switch with high performance and non-blocking transmission. It includes a 7-port Gigabit Ethernet MAC and a 5-port Gigabit Ethernet PHY for several applications, such as xDSL, xPON, WiFi AP, and cable modem. MT7621 GSW enables an advanced power-saving feature to meet the market requirement. It complies with IEEE803.3az for Energy Efficient Ethernet and cable-length/link-down power saving mode. MT7621 GSW is also designed for cost-sensitive applications in retail and Telecom market. MediaTek's industry-leading techniques provide customers with the most cost-competitive and lowest power consumption Ethernet product in the industry. Please refer to the below figure to know the construct of MT7621 GSW.

2 Function Description

2.1 Mode setting

The register 0x 7800 is hardware trap, it is made when power on (define by boot-strap resistance). You can change it by writing 0x7804. Finally, the system would active according 0x7804 not 0x7800. Some registers of 0x7800 cannot be changed. For detail, please check the switch register map. You should check it bit by bit.

0000780	00	HWTRAP Hardware Trap Status Register										01007FFF				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	/ 4	3	2	1	0
Name		ht_loo pdet_ dis		ht_sm	i_addr	ht_xta	al_fsel	ht_p6 _intf_ dis	ht_p5 _intf_ mode	_intf_	ht_c_ mdio_ bps_n			ht_chip	_mode	
Type		RO	RO	R	0	R	RO 🙏		RO)	RO	RO	RO		R	0	
Reset		1	1	1	1	1	1	1 ′	1	1	1	1	1	1	1	1

If you want to change 0x7804, you need to set bit 16 as 1 of 0x7804 first.

0000780	04	<u>MHW</u>	<u>TRAP</u>	•	Modif	ied H	ardwa	are Tra	ap Sta	atus R	egist	er			010	0000F
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name												csr_p 5_phy 0_sel				csr_c hg_tra p
Type				1		1						RW				RW
Reset					1			Y				0				0
Bit	15	14	13	12	11/	10	9	8	7	6	5	4	3	2	1	0
Name	csr_g sw_ck _sel	csr_lo opdet _dis	csr_p 5_intf _sel	csr_si	ni_add r	csr_xt		csr_p		5_intf	csr_c_ mdio_ bps_n			sr_chi	p_mod	e
Type	RW	RW	RW	R	0	R	0	RW	RW	RW	RW	RO		R	0	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

Bit(s)	Name	Description
20	csr_p5_phy0_sel	When p5_intf_sel == 1'b0, the external device will be connected to 1'b0: GPHY4 1'b1: GPHY0
16	csr_chg_trap	Change HW-TRAP setting 1'b1: Change 1'b0: Use default HW-TRAP setting
15	csr_gsw_ck_sel	Control GSW_CK (if csr_chg_trap == 1) 1'b0: 500MHz 1'b1: 200MHz
14	csr_loopdet_dis	Hardware Loop Detection Disable (if csr_chg_trap == 1) 1'b0: Enable 1'b1: Disable
13	csr_p5_intf_sel	Port 5 Interface Selection (if csr_chg_trap == 1) 1'b1: P5 Interface connects to GMAC5 1'b0: P5 Interface connects to GePHY4 or GePHY0 (depends on csr_p5_phy0_sel)
12:11	csr_smi_addr	csr_smi_addr is equal to ht_smi_addr[1:0] (offset: 0x7800, bit 12~11) since this hardware trap cannot be modified by software.

10:9	csr_xtal_fsel	csr_xtal_fsel is equal to ht_xtal_fsel[1:0](offset: 0x7800, bit 10~9)since this hardware trap cannot be modified by software.
8	csr_p6_intf_dis	From hw_trap[8] Port 6 Interface Disable (if csr_chg_trap == 1) 1'b0: Enable 1'b1: Disable
7	csr_p5_intf_mode	Port 5 Interface Mode (if csr_chg_trap == 1) 1'b0: GMII/MII 1'b1: RGMII
6	csr_p5_intf_dis	Port 5 Interface Disable (if csr_chg_trap == 1) 1'b1: Disable 1'b0: Enable
5	csr_c_mdio_bps_n	Directly access phy mdc (if csr_chg_trap==1) 0: Directly access PHY registers via C_MDC/C_MDIO 1: Indirectly access PHY registers
4	csr_eeprom_en	csr_eeprom_en is equal to ht_eeprom_en (offset: 0x7800, bit 4) since this hardware trap cannot be modified by software.
3:0	csr_chip_mode	csr_chip_mode is equal to ht_chip_mode[3:0] (offset: 0x7800, bit 3~0) since this hardware trap cannot be modified by software.

Please also check the detail trap of GSW.

Trap	Function	Description	Default
0x7800 bit [0]	A		
0x7800 bit [3]	Chip mode	Must as 4'b1111	4'b1111
0x7800 bit [6]	Chip mode	Wust as 4 billi	401111
0x7800 bit [1]	7		
0v7900 bit [2]	EEPROM_EN	1'b0: disable EEPROM	1'b1
0x7800 bit [2]	EEPROW_EN	1'b1: external enable EEPROM	101
0x7800 bit [4]	MDIO_Bypass	1'b0: Directly access	1'b1
0X7600 bit [4]	MDIO_Bypass	1'b1: indirectly access	101
0v7900 bit [5]	P5_Disable	1'b0: Port 5 enable	1'b1
0x7800 bit [5]	P5_Disable	1'b1: Port 5 disable	101
0x7800 bit [7]	P5 Interface	1'b0: GMII/MII	1'b1
0X7600 DIL [7]	F5_IIIleIIace	1'b1: RGMII	101
0x7800 bit [8]	P6_Disable	1'b0: Port 6 enable	1'b1
0.77000 pit [0]	FO_DISAUTE	1'b1: Port 6 disable	101
0x7800 bit [9]		EXTERANL XTAL FEQ	
	XTAL_SELECT	1'b01: 20Mhz	2'b11
0x7800 bit [12]	XTAL_OLLLOT	1'b11: 40Mhz	2011
	· /	1'b11: 25Mhz	
0x7800 bit [11]		Chip SMI Address	
0x7800 bit [10]	SMI_ADDR	Bit 4 and bit 3 of SMI address	2'b11
0X7000 DIT[10]		Bit [2:0] = 3'b111 *Note 1	
0x7800 bit [13]	Do not use	-	2'b1
0x7800 bit [14]	Loop detect	1'b0: loop detection enable	1'b1
5X7000 bit [14]	Loop delect	1'b1: loop detection disable	1 0 1

^{*}Note 1: We would suggest that SMI address of GSW is 5'b11111. If not, you need to change the driver of GSW.

2.2 Reset

Check the Register 0x7000 if you want to do the software reset to switch or PHY. Usually, we would set 0x7000 as 0x3 for re-start switch.

0000700	00007000 SYS CTRL					m Co	ntrol				/		7		000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name										ACL_T AB_IN IT	MAC_ TAB_I NIT	VLAN _TAB_ INIT				BMU_ MEM_ INIT
Type Reset										RO 0	RO 0	RO 0				RO 0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TRTC M_BIS T_STS	BIST	_BIST	_BIST		MIB_B IST_S TS				MRIPI	MBIST _EN	7	_		SW_R EG_R ST
Туре		RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RW		R/W/S C	R/W/S C	R/W/S C
Reset		0	0	0	0	0	0	0.	0	0	0	0		0	0	0

2.3 PHY auto polling and SMI master control register

Set the 0x7018 if you want to use auto polling mode for each PHY port.

								y										
000070	18	PHY_	<u>POLL</u>		PHY	Pollin	g and	SMI	Vlaste	r Con	trol R	egiste	er		007F8600			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Name				PH	Y_AP_	EN				EEE_POLL_EN								
Type					RW								RW					
Reset		0	0	0	0	0	0	0		1	1	1	1	1	1	1		
Bit	15	14	13	12 /	11	10	9	8	7	6	5	4	3	2	1	0		
Name		RX_T A1_C HK_O FF			PHY_	END_	ADDR		PMDC	_CFG			PHY	_ST_A	DDR			
Type	RW	RW			7	RW			R'	V RW								
Reset	1	0		0	0	1	1	0	0	0		0	0	0	0	0		

Bit(s)	Name	Description
30:24	PHY_AP_EN	PHY Auto-Polling Enable It indicates the updating PHY status by auto-polling or side-band signals. bit 24 => port 0 bit 25 => port 1 bit 30 => port 6 1: PHY status obtained by Auto-polling 0: PHY status obtained by side-band signals
22:16	EEE_POLL_EN	PHY EEE Polling Enable It indicates polling the EEE capability of each PHY. bit 16 => port 0 bit 17 => port 1 bit 22 => port 6 1: Enable 0: Disable
15	PHY_PRE_EN	PHY Preamble Enable It indicates that the SMI master will send preamble bits (32 bits) at each MDIO read/write transaction. 1: Enable 0: Disable Note: This bit will affect both PHY auto-polling mode and PHY indirect access mode.
14	RX_TA1_CHK_OFF	Disable the checking of RX_TA1 value. 1: Do not check the value of RX_TA1 state

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

0: Check the value of RX_TA1. If this value is not 0, it means that there is no response

from PHYs, and all rx_data are invalid.

12:8 PHY_END_ADDR PHY Polling End Address

It indicates the end address of PHY auto-polling process.

7:6 PMDC_CFG PHY MDC Clock Configuration

It is used to configure the divider N for MDC clock frequency. The MDC clock is from the

system clock (500MHz) and is divided by N.

2'b00: N=256 2'b01: N=64 2'b10: N=32 2'b11: N=16

Note: MDC clock should not be over the MDC clock maximum value of PHY.

4:0 PHY_ST_ADDR PHY Polling Start Address

It indicates the start address of PHY auto-polling process.

2.4 Link Status

You can find MAC control register put at 0x3500 for MAC 5, and 0x3600 for MAC 6. You can change MAC ability at this register. We would suggest don't use the register 0x3000 to 0x3400. It may not work.

(0000350	00	<u>PMCF</u>	<u> P5</u>	PORT	5 M	AC C	ontro	l Reg	ister			000	56330	

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name										1			IPG_C	FG_P5		MAC_ MODE _P5
Type								1	1				R'	W	RW	RW
Reset									r/				0	1	0	1
Bit	15	14	13	12	, 11	10	9	8	7	6	5	4	3	2	1	0
Name	FORC E_MO DE_P 5	MAC_ TX_E N_P5	MAC_ RX_E N_P5	12	MAC_ PRE_ P5	/ ^	BKOF F_EN_ P5	BACK PR_E N_P5	E_EE	FORC E_EE E100_ P5	E_RX_	FORC E_TX_ FC_P5	FORC	E_SPD P5	FORC E_DP X_P5	FORC E_LN K_P5
Type	RW	RW	RW		RW		RW	RW	RW	RW	RW	RW	R'	W	RW	RW
Reset	0	1	1./		0		1	1	0	0	1	1	0	0	0	0

Bit(s)	Name	Description
19:18	IPG_CFG_P5	PORT 5 Inter-Frame+ Gap Shrink 00: Normal 96-bits IFG 01: Transmit 96-bits IFG with short IFG in random behavior 10: Shrink 64-bits IFG
17	EXT_PHY_P5	PORT 5 External PHY
		Port 5 connects with external PHY. 0: PORT 5 DOES NOT connect with external PHY. 1: PORT 5 connects with external PHY.
16	MAC_MODE_P5	PORT 5 MAC Mode
		PORT 5 operates in MAC mode. 0: PORT 5 operates in PHY mode. 1: PORT 5 operates in MAC mode.
15	FORCE_MODE_P5	PORT 5 Force Mode
Y	\$	PORT 5 operates in force mode. It is used to control PORT 5 status of link, speed, duplex, rx_fc, tx_fc, eee100, and eee1g. 0: Force mode is off (mac status is determined by phy auto-polling module). 1: Force mode is on (mac status is determined by force_xxx_P5 register).
14	MAC_TX_EN_P5	Port 5 TX MAC Enable (Note: This bit only has impact on MAC function, and it has no impact on the link status or Queue manager.)
1		0: TX MAC function is disabled. 1: TX MAC function is enabled.
13	MAC_RX_EN_P5	PORT 5 RX MAC Enable (Note: This bit only has impact on MAC function, and it

		has no impact on the link status or Queue manager.) 0: RX MAC function is disabled. 1: RX MAC function is enabled.
11	MAC_PRE_P5	TX short preamble mode 0: TX short preamble length is disabled. 1: TX short preamble is enabled.
9	BKOFF_EN_P5	PORT 5 Backoff Enable 0: Disabled 1: Let the MAC of PORT 5 follow the back-off mechanism when collision happens.
8	BACKPR_EN_P5	PORT 5 Backpressure Enable 0: Disabled 1: Enable back pressure mechanism when operating in half-duplex mode with low internal free memory page count.
7	FORCE_EEE1G_P5	PORT 5 Force LPI Mode For 1000Mbps When (force_mode_P5 = 1), this bit is used to control the 1000Base-T EEE ability of PORT 5. 0: Do not have the ability of entering EEE Low Power Idle mode for 1000Mbps 1: Have the ability of entering EEE Low Power Idle mode for 1000Mbps
6	FORCE_EEE100_P5	PORT 5 Force LPI Mode For 100Mbps When (force_mode_P5 = 1), this bit is used to control the 100Base-TX EEE ability of PORT 5. 0: Do not have the ability of entering EEE Low Power Idle mode for 100Mbps 1: Have the ability of entering EEE Low Power Idle mode for 100Mbps
5	FORCE_RX_FC_P5	PORT 5 Force RX FC When (force_mode_P5 = 1), this bit is used to control the RX FC ability of PORT 5. 0: Disabled. 1: Let the MAC of PORT 5 accept a pause frame when operating in full-duplex mode.
4	FORCE_TX_FC_P5	PORT 5 Force TX FC When (force_mode_P5 = 1), this bit is used to control the TX FC ability of PORT 5. 0: Disabled. 1: Let the MAC of PORT 5 transmit a pause frame when operating in full-duplex mode with low internal free memory page count.
3:2	FORCE_SPD_P5	PORT 5 Force Speed [1:0] When (force_mode_P5 = 1), these bits are used to control MAC speed of PORT 5. 00: 10Mbps 01: 100Mbps 10: 1000Mbps 11: Reserved
1	FORCE_DPX_P5	PORT 5 Force duplex When (force_mode_P5 = 1), this bit is used to control MAC duplex of PORT 5. 0: Half Duplex 1: Full Duplex
0	FORCE_LNK_P5	PORT 5 Force MAC Link Up When (force_mode_P5 = 1), this bit is used to control link status of PORT 5. 0: Link Down 1: Link Up

For MAC 5 and MAC6, they have its own status to check register. 0x3508 is for MAC 5 status and 0x3608 is for MAC 6. If you want to change MAC 5 status, you can use 0x3500 to change its ability.

0000350)8	<u>PMSF</u>	<u>₹ P5</u> /		PORT	5 M <i>A</i>	AC Sta	atus F	Regist	er					000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name			7													
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		Y							EEE1 G_ST S_P5	EEE10 0_STS _P5	RX_F C_ST S_P5	TX_FC _STS_ P5	MAC_ TS	SPD_S _P5	MAC_ DPX_ STS_P 5	MAC_ LNK_ STS_ P5
Type									RO	RO	RO	RO	R	.0	RO	RO
Reset	/				_				0	0	0	0	0	0	0	0

MediaTek Confidential

Bit(s)	Name	Description
7	EEE1G_STS_P5	PORT 5 LPI Mode Status For 1000Mbps 0: Not capable of entering EEE Low Power Idle mode for 1000Mbps 1: Capable of entering EEE Low Power Idle mode for 1000Mbps
6	EEE100_STS_P5	PORT 5 LPI Status Mode For 100Mbps 0: Not capable of entering EEE Low Power Idle mode for 100Mbps 1: Capable of entering EEE Low Power Idle mode for 100Mbps
5	RX_FC_STS_P5	PORT 5 RX XFC Status. Port 5 Rx flow control status 0: Disabled. 1: Let the MAC of PORT 5 accept a pause frame when operating in full-duplex mode.
4	TX_FC_STS_P5	PORT 5 TX XFC Status PORT 5 TX flow control status 0: Disabled. 1: Let the MAC of PORT 5 to transmit a pause frame when operating in full-duplex mode with low internal free memory page count.
3:2	MAC_SPD_STS_P5	PORT 5 Speed [1:0] Status Current speed of PORT 5 after PHY links up. 00: 10 Mbps 01: 100 Mbps 10: 1000 Mbps 11: Reserved
1	MAC_DPX_STS_P5	PORT 5 duplex Status Current duplex mode of port 5 after PHY links up 0: Half Duplex 1: Full Duplex
0	MAC_LNK_STS_P5	Port 5 Link Up Status, Link up status of PORT 5. 0: Link Down 1: Link Up

2.5 Link Status change

You can find the 0x700c is a record if PHY status was changed. For example, if you plug into PHY 1, you can find the 0x700c become 00080002. Then drew the PHY 1, the 0x700c would still keep 00080002. You need to write "1" to the bit which you want clean at the register 0x700c. After that you can find it would become 00080000.

0000700C	SYS_INT_STS	System Interrupt Status	00000000
----------	-------------	-------------------------	----------

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	ACL_I NT	ARL_ SEC_T AG_IN T		ARL_ SEC_I G1X_I NT	PKT_			ARL_ TBL_E RR_IN T					PTP_I NT	MIB_I NT	BMU_I NT	MAC_ PC_IN T
Type	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C					W1C	W1C	W1C	W1C
Reset	0	0	0	0	0	0	0	0					0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	7	PHY6_ INT	PHY5_ INT	PHY4_ INT	PHY3_ INT	PHY2_ INT	PHY1_ INT	PHY0_ INT		_	_	_	PHY3_ LC_IN T	_	_	PHY0 _LC_I NT
Type		W1C	W1C	W1C	W1C	W1C	W1C	W1C		W1C	W1C	W1C	W1C	W1C	W1C	W1C
Reset		0	0	0	0	0	0	0		0	0	0	0	0	0	0

2.6 MAC 5 interface setup

Usually, GMII of P5 does not need to do the delay. If you want to use as RGMII, you may modify the TX or RX delay timing. Please also notice that 10Mbps and 100Mbps mode also can do the delay. But,

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 10 of 57

you know that their CLK timing is 400ns and 40ns. So, that also means the 2ns delay latency may not useful to them.

00007B04 P5RGMIITXCR P5 RGMII Wrapper TX Clock Control Register

00000010

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name													5/	csr_rg	mii_txe	en_cfg
Type													,		RW	
Reset														0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						csr_r	gmii_tx	d_cfg					csr_r	gmii_tx	c_cfg	
Type						RW								RW		
Reset						0	0	0				1	0	0	0	0

You can adjust 0x7b04 for P5 CLK, data and enable delay timing.

0x7b04: P5 RGMII Wrapper TX Clock Control Register

Bit 4 ([4] - Using 90-degree TXC (central align)) is used for adjusting align. You can change the bit if you got the short packet.

Bit 3 ([3] - Inverted RXC) is used for enable the XOR, like the below figure. It is usually for a large timing adjustment.

If you need to change the RX delay of P5, please modify 0x7b00. rxd_cfg and rctl_cfg.

Here is the sample when GSW link with Vitesse PHY.

Change reg7B00[18:16] rxd_cfg[2:0], from 3'b000 to 3'b010

Change reg7B00[26:24] rctl_cfg[2:0], from3'b000 to 3'b010

You may also change the CLK align.

Change reg7B04[4:0] GTXC setting , from 5'b10000 to 5'b01001

00007B	<u>0</u> 0	P5RG	MIIR)	(CR	P5 RC	SMII V	Vrapp	er RX	Cloc	k Con	trol R	egiste	er		0000	00104	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	ì

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Name						cer re	gmii_rc	tl cfa						cer re	ımii ry	d_cfg			
						COI_I		u_cig						C31_1		u_cig			
Type							RW								RW				
Reset						0	0	0				/		0	, 0	0			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2 /	1	0			
Name								csr_rg mii_ce ntral_ align					csr_r	rgmii_rxc_0deg_cfg					
Type								RW			_			RW					
Reset								1					0	1	0	0			

Please notice the bit 8 of 7b00 is used for checking the enable delay or not. The delay chain would be no longer valid if the 8th bit set as 1.

csr_rgmii_central_align 1: RXC/RXD is central-aligned; RXC does not pass through the delay chain.

0: RXC/RXD is not central-aligned (edge-aligned); RXC passes through the delay

0x7810 is used for setting TXC driving. P5 CLK driving is 12mA as default value. Others, like TXD, MDC and TXEN are also locate at this register.

00007810 IO_DRV_CR IO Driving Strength Control Register 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name			77			7)	csr_normal_ drv				csr_m	dc_drv			csr_le	d_mdi drv
Туре							RW				R	W			R	W
Reset							0	0 0			0	0			0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			csr_p6 io_	_data_ drv				csr_p6_clk_i o_drv			csr_p5 ta_	_io_da drv			csr_pt k_e	i_io_cl drv
Type			R'	W			RW				R	W			R	W
Reset		/	0	7 0			0	0			0	0			0	0

If P5 want to connect a PHY IC, you should check the below flow to make sure the PHY status:

- 1. Check 0x3508 : check the link up status
- 2. Check PHY is link up or not, use "tce miir 5 1". If you get 796D, it means the PHY is link up.
- 3. Check 0x3500, 56300 is correct for its status.
- 4. Check 0x7018, it need to 7f7f8600 for enable polling mode.

000070	18	PHY_	POLL	:	PHY F	Polling	g and	SMI	l aste	r Con	trol R	egiste	er		007	F8600	
D:4	24	20	20	20	27	20	25	2.4	22	22	24	20	40	4.0	47	4.0	1

Bit	, 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				PH	Y_AP_	EN						EEE	_POLL	_EN		

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 12 of 57

Type					RW								RW			
Reset		0	0	0	0	0	0	0		1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	,/1	0
Name	PHY_ PRE_ EN	RX_T A1_C HK_O FF			PHY_	_END_A	ADDR		PMDC	_CFG			PHY	_ST_A	DDR	
Type	RW	RW				RW			R'	W	4			RW	/	
Reset	1	0		0	0	1	1	0	0	0		0	0	0	0	0

2.7 MAC 6 interface setup

GSW TX driving use full power as default setting. You can change the register to change it:

0x7a54, 0x7a5c, 0x7a64, 0x7a6c, 0x7a74.

All of them are used ff as default. You can change to 44 if you need.

00007A54 TRGMII TD0 O TRGMII TD0 ODT REGISTER

000000FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	TD0_D VN_		TD0_D VP_	M_DR PRE	Т	D0_DM	_TDSE	L	TD0_ ODTE N			TD0_D ME_P RE	M_DR		M_DR	DW_D
Туре	R'	W	R'	W		R'	W		RW			RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0			0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	/ 6	5	4	3	2	1	0
Name		TD0	_DM_O	DTN		TD0	_DM_C	DTP	İ	D0_DN	/LDRV	N	1	LD0_DI	/I_DRVI	•
Type			RW				RW	1		R'	W			R'	W	
Reset		0	0	0		0	0	0	1	1	1	1	1	1	1	1

00007A5C TRGMII_TD1_O TRGMII TD1 ODT REGISTER

000000FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		M_DR PRE		OM_DR PRE) 1	D1_DM	TDSE	L	TD1_ ODTE N			TD1_D ME_P RE	M_DR	TD1_D M_DR VPT0	M_DR	DW_D
Type	R'	W	R	W		R'	W		RW			RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0 /	0	0	0			0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		∡TD1	DM_O	DTN		/TD1	_DM_C	DTP	T	D1_DN	/LDRV	N	1	TD1_DN	/I_DRVI	P
Type			RW				RW			R'	W			R	W	
Reset		0	0	0		0	0	0	1	1	1	1	1	1	1	1

00007A64 TRGMII TD2 O TRGMII TD2 ODT REGISTER

00000FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		M_DR PRE		M_DR PRE	Т	D2_DM	_TDSE	L	TD2_ ODTE N			N		TD2_D M_DR VPT0	M DD	RVPT E
Type	R	W	R'	W		R'	W		RW			RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0			0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TD2	_DM_O	DTN		TD2	_DM_O	DTP	T	D2_DN	/LDRV	N	1	D2_DN	I_DRVI	•
Type			RW				RW			R'	W			R'	W	
Reset		0	0	0		0	0	0	1	1	1	1	1	1	1	1

00007A6C TRGMII_TD3_O TRGMII TD3 ODT REGISTER

000000FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	TD3_D VN_	_		M_DR PRE	Т	D3_DM	_TDSE	L	TD3_ ODTE N			TD3_D ME_P RE	14 DD	14 DD	M DD	
Type	R\	W	R'	W		R'	W		RW			RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0			0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	. 4	3	2	1	0
Name		TD3	_DM_O	DTN		TD3	_DM_O	DTP	T	D3_DN	_DRV	N		TD3_DN	/I_DRVI	P
Type			RW				RW			R	W			R	W	
Reset		0	0	0		0	0	0	1	_1_	1	1	1)	1	1	1

00007A74 TRGMII_TXCTL TRGMII TXCTL ODT REGISTER ODT

000000FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	TXCTL DRVN	_DM_ I_PRE	TXCTI	_DM_ P_PRE	ТХ	CTL_D	M_TDS	EL	TXCT L_OD TEN			TXCT L_DM E_PR E		_	TXCT L_DM _DRV NTE	_
Type	R'	W	R	W		R'	W 🙏		RW 🖠	1 0		RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0 7	0			0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TXCT	L_DM_	ODTN		TXCT	L_DM	ODTP	TX	CTL_D	M_DR	VN	T	(CTL_C	M_DR	۷P
Type			RW				RW	7		R	W			R	W	
Reset		0	0	0		0	0	0	1	1	1	1	1	1	1	1

00007A7C TRGMII TCK O TRGMII TCK ODT REGISTER

00000FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	TCK_E VN_		TCK_D VP_	OM_DR PRE	Т	CK_DN	_TDSE	L	TCK_ ODTE N					DM_D	DM_D	TCK_ DM_D RVPT E
Type	R'	W	R'	W		R'	W		RW			RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0			0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TCK	_DM_O	DTN		TCK	_DM_C	DTP	T	CK_DI	/I_DRV	N	T	CK_DI	VI_DRV	P
Type			RW	,		\cup	RW			R'	W			R	W	
Reset		0	0	0		0	0	0	1	1	1	1	1	1	1	1

If you want to change P6 RX delay, please change the bit 0th to bit 6th of the follow register:

RXDO 0x7a10

RXD1 0x7a18

RXD2 0x7a20

RXD3 0x7a28

RXCTL 0x7a30

00007A10 TRGMII_RD0 TRGMII RD0 CONTROL REGISTER

00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	BSLIP _EN	EDGE _CHK		EDGE _CHK _PAT		BSLIF	P_INIT					RD0	_WD			
Type	RW	RW		RW		R'	W					R	0			
Reset	, 0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Name				RD0_E	RRCNT				R	D0_TA	P		
Type				R	0					RW			
Reset			0	0	0	0	0	0	0	0	0	, 0	0

Bit(s)	Name	Description
31	BSLIP_EN	To trigger a bitslip operation, this bit should be written as 1. This bit is toggled after it is written as 1. 1: Bitslip is performed. The initial value is loaded.
30	EDGE_CHK	To trigger a comparison of received data for 16 clocks, this bit should be written as 1. The comparison error is stored in ERRCNT. This bit is toggled after it is written as 1.
		1: Training comparison is performed for 16 clocks.
28	EDGE_CHK_PAT	Training pattern selection for comparison 0: The training pattern is the toggling pattern. 1: The training pattern is all-zero or all-one pattern.
27:24	BSLIP_INIT	This field is the bitslip initial value loaded when the bitslip is enabled. The suggested value is 15, 0, or 1. 0: Normal operation
23:16	RD0_WD	This register holds the received word for RD0.
11:8	RD0_ERRCNT	This field is cleared when EDGE_CHK is written as 1. At each clock of the training phase, the data received are compared to the data received at the previous clock. This register holds the mismatch counter of RD0.
6:0	RD0_TAP	This is the delay tap of RD0. To modify the delay tap, it should be increased or decreased by 1.

If you want to change P6 TX delay, please change the bit 8th to bit 11th of the follow register:

TXDO 0x7a50

TXD1 0x7a58

TXD2 0x7a60

TXD3 0x7a68

TXCTL 0x7a70

Note:1 unit about 30ps

00007A50 TRGMII TD0_C TRGMII TD0 CTRL REGISTER

00000455

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	TD0_ DMPE DRV		V	0		TDO)_DM_I	RTT								
Type	RW						RW									
Reset	0					0	0	0								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	TDO_ DM_S R	y - —	TD0_D MOEC TL			TD0_	TAP				т	D0_TR	AIN_W	D		
Type	RW	RW	RW			R'	W					R'	W			
Reset	0	0	0		0	1	0	0	0	1	0	1	0	1	0	1

Bit(s)	Name	Description
31	TD0_DMPEDRV	
26:24	TD0_DM_RTT	This is the RTT setting.
15	TD0_DM_SR	
14	TD0_DMERODT	This is the ODT setting.
13	TD0_DMOECTL	OE edge selection
11:8	TD0_TAP	This is the delay tap of TD0. The delay tap is encoded as gray code $(0, 1, 3, 2, 6, 7,$

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 15 of 57

5, 4, C, D, F, E, A, B, 9, 8)

7:0 TD0_TRAIN_WD

This is the training word in training mode.

2.8 EEPROM

Before use EEPROM, please read 0x7800 bit 4 is 1 or not. If you want to use it, it should be as 1.

You need to use 0x7120 as the register for EEPROM programming. Here take the changing the port 0 register 4 for example.

Ethphxcmd gsww 7120 c000<mark>3075</mark> // Must write the initial address of EEPROM as 3075 (IP ID)

Ethphxcmd gsww 7120 c0021c70 // Use 0x701c to write PHY register, and write to address 2.

Ethphxcmd gsww 7120 c00405e1 // Write data 05e1 to address 4.

Ethphxcmd gsww 7120 c006<mark>8805</mark>

// Write data 8805 to address 6, the final data would be 880505e1

It means write 05E1 to register 4 of port 0.

00007120	EEPR IND	EEPROM INDIRECT ACCESS CONTROL REGISTER	00000000
00001120	EEFK IND	EEPROWINDIRECT ACCESS CONTROL REGISTER	00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	EP_IN D_AC T	EP_IN D_WR										EP_IND	_ADDF	2		
Type	RW	RW								7		R'	W			
Reset	0	0							0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						1	1	EP_INC	DATA	1						
Type								R	W							
Reset	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0

0000701C PHY_IAC PHY Indirect Access Control 00090000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	PHY													!		
	ACS			MDIO	REG	ADDR			MDIO	PHY	ADDR		MDIO	CMD	MDIO_ST	
	ST			y										_		_
Type	R/W/S				RW					RW			Ь	W	RW	
	С			7	KVV	11				LVV			K	vv	IXVV	
Reset	0		0	, 0	0	0	0	0	0	0	0	0	1	0	0	1
Bit	15	_14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							M	DIO_R	W_DAT	Ά						
Type								R/W	//RO							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Write command example:

command	switch reg	EEPROM ADD					
ethphxcmd gsww	7120	c000	3	0	7	5	*chip ID, only need write at EEPROM reg 0.
ethphxcmd gsww	7120	c002	1	С	7	0	*MDIO register
ethphxcmd gsww	7120	c004	0	1	8	1	* data
ethphxcmd gsww	7120	c006	8	8	0	5	*command line

Read command example:

command	switch reg	EEPROM ADD								
ethphxcmd gsww	7120	c000	3	0	7	5	*chip ID,	only need v	write at EE	PROM reg 0.
ethphxcmd gsww	7120	c002	1	С	7	0	*MDIO re	gister		
ethphxcmd gsww	7120	c004	0	0	0	0	*command line			
ethphxcmd gswr	7120									

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 16 of 57

2.9 Output queue

Each port has 8 queues for different QoS services. Please know that QoS only active when traffic jam happen. It means that you should have flow control first for QoS. If not, you would only find the packet loss.

Free page: Read the 0x1fc0

For GSW, if you want to check the queue, please use: ethphxcmd gsww 7038 220 ethphxcmd gswr 7034

Here show the Q map:

	Q1 & Q0	Q3 & Q2	Q5 & Q4	Q7 & Q6
P0	220	221	222	223
P1	224	225	226	227
P2	228	229	22a	22b
P3	22c	22d	22e	22f
P4	230	231	232	233
P5	234	235	236	237
P6	238	239	23a	23b

00001FC0 FPLC Free Page Link Count Register

01EE01EE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name										MIM	_FREI	E_PL_C	NT			
Type											R	.0				
Reset							0 1 1 1 1 0 1 1 0									
Bit	15	14	13	12	11	10	9 8 7 6 5 4 3 2 1 0								0	
Name				7							REE_I	PL_CN	Γ			
Type							RO									
Reset				y ,			0	1	1	1	1	0	1	1	1	0

Bit(s)	Name	Description
25:16	MIN_FREE_PL_CNT	Minimal Free Page Link Count in LMU from last read access
9:0	FREE_PL_CNT	Free Page Link Count in LMU

2.10 VLAN setting

You need use three registers to make one VLAN rule. Please follow the below information to do that: Set the port you want into security mode and as user port, take port 1 as example:

0x 2104 00ff0003 //set as security mode 0x 2110 81000000 //set as user port

You should set up the each VLAN port you want to be security mode and user port.

Next, you need to setup the VLAN ID and group member. Here, we set port 0 to 3 and port 6 as one group and their VLAN ID is 10. And just only port 3 get the egress tag.

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 17 of 57

0x94 104F0001 Port member 0~3+6 (4f =0100 1111)

0x98 000000c0 Egress tag enable for port 3, refer to register 0x98

0x90 80001003 VID member VID set as 03

Note: Please don't use 0 and 4095 for VID.

If you do not want to add egress tag at any port, just set 0x98 as 0. For detail, check the register 0x0098 at the below.

00002104 PCR Port Control of P1 00FF0000

Bit	31	30	29	28	27	26	25	24	23	22	21,	20	19	18	17	16
Name	REV0	MLDv 2_EN	EG_	TAG	REV1	P	ORT_P	RI	۲ (Y		PORT	MATRIX	(
Type	DC	RW	W RW 0		DC		RW					R	W			
Reset	0	0			0	0	0	0	1	1	1	1	1	1	1	1
Bit	15	14			11	10 9 8			7	6	5	4	3	2	1	0
Name	REV2 SCI			UP2D SCP_ EN	UP2T AG_E N	ACL_ EN	PORT _TX_ MIR	PORT RX MIR	ACL_ MIR	MIS	PORT	_ FW	REV3	VLAN _MIS	PORT_	_VLAN
Type	DC RW		RW	RW	RW	RW	RW	RW	4	RW		DC	RW	R'	W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

00000090 <u>VTCR</u> VLAN Table Control 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	BUSY							RE	VO							IDX_I NVLD
Туре	W1C							D	C							RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12,	11	_ 10	9	8	7	6	5	4	3	2	1	0
Name		FU	NC			VID										
Type		R'	W			RW										
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31	BUSY	VLAN Table Is Busy SW can set this bit to 1 only if this bit is reset. After the VTCR register is written and this bit is set, this chip will perform the corresponding function on the VLAN table based on FUNC bits.
30:17	REV0	Reserved
16	IDX_INVLD	Entry is not Valid This index for the access control is out of the valid index.
15:12	FUNC	Access Control Function Whenever VTCR register is written and bit.31 is set, this chip will perform the corresponding function on the VLAN table based on FUNC bits. 4'b0000: Read the specified VID Entry from VAWD# register based on VID bits 4'b0001: Write the specified VID Entry though VAWD# register based on VID bits. 4'b0010: Make the specified VID entry valid based on VID bits. 4'b0011: Make the specified VID entry valid based on VID bits . 4'b0100: Read the specified ACL Table entry. 4'b0101: Write the specified ACL Table entry. 4'b0110: Read the specified trTCM Meter Table. 4'b1001: Write the specified ACL Mask entry. 4'b1001: Write the specified ACL Mask entry. 4'b1001: Write the specified ACL Rule Control entry. 4'b1011: Write the specified ACL Rule Control entry. 4'b1010: Read the specified ACL Rule Control entry. 4'b1100: Read the specified ACL Rate Control entry. 4'b1101: Write the specified ACL Rate Control entry.

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 18 of 57

4'b1111: Reserved

11:0 VID

1. VLAN ID Number: 0x0 to 0x1F (16)

2. ACL table index: 0x0 to 0x3F (64)

3. ACL mask control: 0x0 to 0x3F (32 or 64)

00000094 VAWD1 VLAN and ACL Write Data I

00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								WDATA	[31:16]							
Type								R'	W							
Reset	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								WDAT	A[15:0]							
Type	RW															
Reset	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0

(VLAN Entry)

Bits	Туре	Name	Description	Initial value
31	RW	PORT_STAG	Port based STAG	0x0
30	RW	IVL_MAC	Independent VLAN Learning	0x0
29	RW	EG_CON	Egress Tag Consistent	0x0
28	RW	VTAG_EN	Per VLAN Egress Tag Control	0x0
27	RW	COPY_PRI	Copy User Priority Value from Customer Priority Tag for Stack VLAN	0x0
26:24	RW	USER_PRI	Service Tag User Priority Value from VLAN Table	0x0
23:16	RW	PORT_MEM	VLAN Member Control	0x0
15:4	RW	S_TAG1	Service Tag I	0x0
3:1	RW	FID	Filtering Database	0x0
0	RW	VALID	VLAN Entry Valid	0x0

00000098 VAWD2 VLAN and ACL Write Data II

00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name			V	4			1	WDATA	[31:16]							
Type			7					R'	W							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	1	7						WDAT	A[15:0]							
Type				7				R'	W	•		•	•		•	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(VLAN Entry)

Bits	Туре	Name	Description	Initial value
31:16	RW	S_TAG2	Service Tag II	0x0
15:14	-	-	Reserved	0x0
13:12	RW	P6_TAG	P6 Egress Tag Control	0×0
11:10	RW	P5_TAG	P5 Egress Tag Control	0x0
9:8	RW	P4_TAG	P4 Egress Tag Control	0x0
7:6	RW	P3_TAG	P3 Egress Tag Control	0x0
5:4	RW	P2_TAG	P2 Egress Tag Control	0x0
3:2	RW	P1_TAG	P1 Egress Tag Control	0x0
1:0	RW	P0_TAG	P0 Egress Tag Control	0x0

00002010 <u>PVC</u> Po

Port VLAN Control of P0

00000C0

Bit	31	30	29	28	27	26	25	24	23	_22	21	20	19	18	17	16
Name		STAG_VPID														
Type		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		FORC E_PVI D		PT_VP M	PT_O PTION		EG_TAC		VLAN_				MC_L KYV_ EN	UC_L KYV_ EN	ACC_	_FRM
Type	RW	RW	DC	RW	RW	,	RW		R\	W	RW	RW	RW	RW	R'	W
Reset	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0

Bit(s)	Name	Description
31:16	STAG_VPID	Stack Tag VPID (VLAN Protocol ID) Value
		The received frame will be regarded as a legal stack tag frame if the following conditions are matched: Outer VPID == STAG_VPID Inner VPID == 16'h8100 The outgoing frame will be added by the outer VLAN tag with the programmable VPID field = STAG_VPID.
15	DIS_PVID	PVID Disable
	2	Disable PVID insertion in priority-tagged frames. 0: Use PVID for priority-tagged frames. 1: Keep VID=0 for priority-tagged frames.
14	FORCE_PVID	Force PVID on VLAN-tagged frames
		0: Use VID in VLAN-tagged frame. 1: Force the replacement of VID with PVID .
13	REV0	
12	PT_VPM	Pass-through capability on TPID
Y		Disable pass-through on TPID Enable pass-through on TPID
11	PT_OPTION	Pass-through capability on TX special tag
)	Disable pass-through on TX special tag Enable pass-through on TX special tag
10:8	EG_TAG	Incoming Port Egress VLAN Tag Attribution
*	/	3'b000: System default (disabled) 3'b001: Consistent 3'b010, 3'b011: Reserved

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 20 of 57

		3'b100: Untagged 3'b101: Swap 3'b110: Tagged 3'b111: Stack
7:	6 VLAN_ATTR	VLAN Port Attribute
		2'b00: User port 2'b01: Stack port 2'b10: Translation port 2'b11: Transparent port
5	5 PORT_STAG	Special Tag Enable
		Enable a proprietary VLAN tag format to carry additional information to the remote port. 0: No special tag format for Tx/Rx 1: Enable
4	BC_LKYV_EN	Broadcast Leaky VLAN Enable
		0: Broadcast frames received by this port will be blocked by VLAN.1: Broadcast frames received by this port can pass through VLAN.
3	MC_LKYV_EN	Multicast Leaky VLAN Enable
		[NOTE] Leaky VLAN can be configured by ARL or Port Control Register based on the indication of MAC.UC_ARL_LKYV or MAC.UC_ARL_LKYV.) 0: Multicast frames received by this port will be blocked by VLAN. 1: Multicast frames received by this port can pass through VLAN.
2	2 UC_LKYV_EN	Unicast Leaky VLAN Enable [NOTE] Leaky VLAN can be configured by ARL or Port Control Register based on the indication of MAC.UC_ARL_LKYV or MAC.UC_ARL_LKYV.) 0: Unicast frame received by this port will be blocked by VLAN. 1: Unicast frame received by this port can pass through VLAN.
1:	0 ACC_FRM	Acceptable Frame Type 2'b00: Admit All frames 2'b01: Admit Only VLAN-tagged frames 2'b10: Admit only untagged or priority-tagged frames. 2'b11: Reserved

Note: if you want to drop (or not)packet with VLAN tag(or not), you can set bit 1:0 of REG 0x2010,0x2210,..0x2610 to do that.

2.11 Access control list (ACL)

ACL Rule table is implemented along with packet parser. For the incoming packet, 2-bytes packet content will be filtered sequentially and compared with 64 patterns in the ACL rule table. When one pattern is hit, the corresponding rule flag will be set. After the whole packet is done, the final 64-bits rule flag will be sent to the ACL look-up engine to get the corresponding rule control. GSW can support up to 32 entries ACL rules.

Take port 0 for example:

0x2004 ff0400 //enable ACL of port 0, this setting is by per-port.

00002004	PCR	Port Control of P0	00FF0000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	REV0	MLDv 2_EN	EG_	TAG	REV1	P	ORT_P	RI	PORT_MATRIX							
Type	DC	RW	R'	W	DC	1	RW					R	W			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11/	10	9	8	7	6	5	4	3	2	1	0
Name		REV2		UP2D SCP_ EN	UP2T AG_E N	ACL_ EN	PORT _TX_ MIR	PORT _RX_ MIR	ACL_ MIR	MIS	PORT	_FW	REV3	VLAN _MIS	PORT _.	_VLAN
Type		DC		RW	RW	RW	RW	RW	RW		RW		DC	RW	R	W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

After enable ACL, you need to setup ACL hit pattern. We would check the VLAN for example here.

Setup the ACL pattern:

0x94 ffff8100 //"ffff" mean compare 4byte payload and need match 8100. 0x98 0008ff0c //ACL pattern enable, MAC header. P0 to P6. Offset 12byte.

 $0x90\ 80005001$ //bit [15:12]: 4'b0101: Write the specific ACL Table entry. It is 1st rule.

Setup the 3rd ACL mask:

 $0x94\ 00000021$ //0x21 = 0010.0001 . Active 1st and 6th rule.

0x98 00000000

0x90 80009002 //bit [15:12]: 4'b1001: Write the specific 3rd ACL Mask entry

//use mask can enable many rules at the same time

Or setup 64th ACL rule.

 $0x94\ 00000004\ //0x4=0100$. Active 3th rule.

0x98 80000000 //0x80000000= 1000.0000.0000.0000 . Active 63th rule.

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 22 of 57

0x90 8000903F //bit [15:12]: 4'b1001: Write the specific 64th ACL Mask entry

Setup the ACL action:

0x94 18000080 //Refer to 0x0094 (ACL rule control). This is used for drop packet.

0x98 00000000

0x90 8000b001 //bit [15:12]: 4'b1011: Write ACL rule control entry, Action for 1st rule.

Destination Address	Source Address	VLAN TAG	Type / Length	Payload	FCS
6 byte	6 byte	4byte	2byte	1500 byte	4 byte

000000	90	VTCR	<u> </u>		VLAN	N Tabl	e Con	trol				7			000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	BUSY		REV0									IDX_I NVLD				
Туре	W1C		DC RO													
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		FU	NC					Y		V	ID					
Type		R	RW RW													
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31	BUSY	VLAN Table Is Busy SW can set this bit to 1 only if this bit is reset. After the VTCR register is written and this bit is set, this chip will perform the corresponding function on the VLAN table based on FUNC bits.
30:17	REV0	Reserved
16	IDX_INVLD	Entry is not Valid This index for the access control is out of the valid index.
15:12	FUNC	Access Control Function Whenever VTCR register is written and bit.31 is set, this chip will perform the corresponding function on the VLAN table based on FUNC bits. 4'b0000: Read the specified VID Entry from VAWD# register based on VID bits 4'b0001: Write the specified VID Entry though VAWD# register based on VID bits. 4'b0010: Make the specified VID entry invalid based on VID bits. 4'b0011: Make the specified VID entry valid based on VID bits . 4'b0100: Read the specified ACL Table entry. 4'b0101: Write the specified ACL Table entry. 4'b0110: Read the specified trTCM Meter Table. 4'b0111: Write the specified ACL Mask entry. 4'b1000: Read the specified ACL Mask entry. 4'b1001: Write the specified ACL Rule Control entry. 4'b1010: Read the specified ACL Rule Control entry. 4'b1101: Write the specified ACL Rate Control entry. 4'b1101: Write the specified ACL Rate Control entry. 4'b1101: Reserved 4'b1111: Reserved
11:0	VID	1. VLAN ID Number: 0x0 to 0x1F (16) 2. ACL table index: 0x0 to 0x3F (64) 3. ACL mask control: 0x0 to 0x3F (32 or 64)

(ACL Rule Table)

Bits	Туре	Name	Description	()	Initial value
31:16	RW	BIT_MASK	Comparison Pattern Mask		0x0
15:0	RW	CMP_PAT	Comparison Pattern	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0x0

(ACLRule Mask)

Bits	Туре	Name		Description	Initial value
31:0	RW	ACL_MASK	ACL Mask[31:0]	5.6	0x0

(ACLRule Control)

Bits	Туре	Name	Description	Initial value
31:30	-	-	Reserved	0×0
29	RW	ACL_MANG	Management Frame Attribute	0×0
28	RW	INT_EN	Interrupt Enable	0×0
27	RW	ACL_CNT_EN	Enable ACL Hit Count	0×0
26:24	RW	CNT_IDX	Counter Group Index	0×0
23	RW	VLAN_PORT_EN	Swap VLAN Member	0×0
22	RW	DA_SWAP	Multicast MAC Address Swap	0×0
21	RW	SA_SWAP	Source MAC Address Swap	0×0
20	RW	PPP_RM	PPPoE Header Removal	0×0
19	RW	LKY_VLAN	Leaky VLAN	0×0
18:16	RW	EG_TAG	Egress VLAN Tag Attribute	0×0
15:8	RW	PORT	Destination Port / VLAN Member	0×0
7	RW	PORT_EN	Force Destination port	0×0
6:4	RW	PRI_USER	User Priority from ACL	0×0
3	RW	MIR_EN	Frame Copy to Mirror Port	0×0
2:0	RW	PORT_FW	Frame TO_CPU Forwarding	0×0

0x98

(ACL Rule Table)

Bits	Type	Name	Description	Initial value
31:20	-	-	Reserved	0x0
19	RW	EN	ACL Pattern Enable	0x0
18:16	RW	OFST_TP	Offset Range	0x0
15:8	RW	SP	Incoming Source Port Bit-map	0x0
7:1	RW	WORD_OFST	Word Offset	0x0
0	RW	CMP_SEL	Comparison mode selection	0x0

Offset range table:

3'b000: MAC Header (inc. VLAN tags and Length/Type) (L2 Offset)

3'b001: L2 Payload (L2 Offset) 3'b010: IP Header (L3 Offset) 3'b011: IP Datagram (L3 Offset) 3'b100: TCP/UDP Header (L4 Offset) 3'b101: TCP/UDP Datagram (L4 Offset) 3'b110: IPv6 Header (L3 Offset)

3'b111: Reserved

(ACLRule Mask)

Bits	Туре	Name	Description	Initial value
31:0	RW	ACL_MASK	ACL Mask[63:32]	0x0

ACL Rule Control)

Bits	Туре	Name	Description	Initial value
31:24	RW	Reserved		0x0
23:19	RW	ACL_CLASS_IDX	Class index for the 32-entries meter table	0x0
18:17	RW	Reserved		0x0
16	RW	Reserved		0x0
15:14	RW	Reserved		0x0
13:11	RW	DROP_PCD_G	User Defined Drop Precedence for Green color packet	0x0
10:8	RW	DROP_PCD_Y	User Defined Drop Precedence for Yellow color packet	0x0
7:5	RW	DROP_PCD_R	User Defined Drop Precedence for Red color packet	0x0
4:2	RW	CLASS_SLR	User Defined Class Selector	0x0
1	RW	CLASS_SLR_SEL	Select original class_selector value or ACL control table defined class selector value	0x0
0	RW	DROP_PCD_SEL	Select original drop precedence value or ACL control table defined drop Precedence value	0x0

2.12 MAC forward control

0x0010 is used for MAC forwarding control rule. For different traffic, like broadcast, Unknown multicast...etc, you can set the forwarding port at this register.

00000010	MFC	MAC Forward Control	00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				BC_	FFP						UNM	_FFP				
Type				R\	W							R	W			
Reset	0	0 0 0 0 0 0 0								0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				UNU	FFP				CPU_ EN	CI	PU_PO	RT	MIRR OR_E N	MIR	ROR_P	ORT
Type				R\	W				RW		RW	$\overline{}$	RW		RW	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:24	BC_FFP	Broadcast Frame Flooding Ports
		If MAC receives broadcast frames, this field indicates the flooding ports. [NOTE] 1. The flooding port excludes the received port on the switch. 2. Frame dropped though BC_FFP=6'b0
23:16	UNM_FFP	Unknown Multicast Frame Flooding Ports
		If MAC receives multicast frames which can not be found on the ARL, this field indicates the flooding ports. [NOTE] 1. The flooding port will exclude the received port by HW. 2. Frame dropped though UNM_FFP=6'b0.
15:8	UNU_FFP	Unknown Unicast Frame Flooding Ports
		If MAC receives the unicast or multicast frames which can not be found on the ARL. The field indicates the flooding port. [NOTE] 1. The flooding port will excludes the received port by HW 2. Frame dropped though UNM_FFP=6'b0
7	CPU_EN	CPU Port Enable
		Enable the CPU port specified in CPU_PORT. 0: No CPU port exists. 1: Enable
6:4	CPU_PORT	CPU Port Number
		Set the CPU port number. 3'h0: Port 0
		 3'h7: Port 7
3	MIRROR_EN	Mirror Port Enable Enable the mirror port specified in MIRROR_PORT. 0: No mirror available 1: Enable mirror
2:0	MIRROR_PORT	Mirror Port Number Set the mirror port number. 3'h0: Port 0
4		 3'h7: Port 7

2.13 MAC table aging time

Aging time is used for recording the MAC is exist or not and would be clean after 300 seconds if there is no traffic pass through again. For changing this, you can modify the 0x00A0.

The aging time would be depending on the switch core clock speed.

000000	A0	<u>AAC</u>			Addr	ess A	ge Co	ntrol					,		0009	95001
Rit	31	30	20	28	27	26	25	24	23	22	21	20	10	18	17	16

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						AGE_ DIS	(5)	AGE_C	NT[7:4]							
Type	DC RW RW															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
Bit	15	14	13	12	11	10	9	8	7	6	_,5	4	3	2	1	0
Name		AGE_C	NT[3:0]							AGE	UNIT	\ ·	7			
Type	RW										W					
Reset	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1

Bit(s)	Name	Description
31:21	REV0	Reserved
20	AGE_DIS	Address Table Aging Disable
		Disable or pause MAC address aging.
19:12	AGE_CNT	Address Table Age Count
		This age count is recorded in the age timer field of the MAC address table when a new source address is received and the table entry is ready to refresh the timer. The applied age timer is equal to (AGE_CNT+1) *(AGE_UNIT+1) seconds.
11:0	AGE_UNIT	Address Table Age Unit
		The applied aging unit is equal to (AGE_UNIT+1) seconds.

2.14 MAC table

We have 2048 MAC entries exist in switch.

GSW build in the API command:

Ethphxcmd arl mactbl-disp

MAC AABBCCDDEEFF: TIMER:149, SA_PORT_FW:0, SA_MIR_EN:0, USER_PRI:0,

EG_TAG:0, LEAKY_EN:0, PORT:4, STATUS:1, TYPE:0

You can find that have an aging time, source port information over there.

For RT63368 or others platform, you can use the command flow to check the MAC table list:

Ethphxcmd gsww 80 8002 //clean

Ethphxcmd gsww 80 8004 //first MAC entry
Ethphxcmd gswr 84 // show the first entry
Ethphxcmd gswr 88 // show the firstentry
Ethphxcmd gsww 80 8005 //next MAC entry
Ethphxcmd gswr 84 // show the second entry

Ethphxcmd gswr 88 // show the second entry

For detail, you can check the register 0x0080,0x0084 and 0x0088.

00000080 ATC Address Table Control 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	ne REV0 ADDR															
Type		D	С							R	0					

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 27 of 57

Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	BUSY	SRCH _END	SRCH _HIT	ADDR _INVL D		AC_	MAT		RE	:V1	AC_	SAT	REV2	A	C_CM	D
Type	W1C	RO	RO	RO		R'	W		D	С	R'	W	DÇ	~	RW	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

00000084 TSRA1 Table Search Read Address I

0	^	^	^	_	^	^	i
		.,			••	•	

Bit	31	30	29	28	27	26	25	24	23	22,	21	20	19	18	17	16
Name				BYT	E_0				BYTE_1							
Type				R	0				RO							
Reset	0	0 0 0 0 0 0 0 0								0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	√ 5	4	3	2	1	0
Name				BYT	E_2						, /	BYT	E_3			
Type				R	0							R	0			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:24	BYTE_0	MAC Address[47:40] / Destination IP(DIP) Address [31:24]
23:16	BYTE_1	MAC Address[39:32] / Destination IP(DIP) Address [23:16]
15:8	BYTE_2	MAC Address[31:24] / Destination IP(DIP) Address [15:8]
7:0	BYTE_3	MAC Address[23:16] / Destination IP(DIP) Address [7:0]

00000088 TSRA2 Table Search Read Address II

00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name				BYT	E_0				BYTE_1								
Type		RO							RO								
Reset	0	0 0 0 0 0 0					0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	1,2	11	10	9	8	7	6	5	4	3	2	1	0	
Name		BYTE_2						/				BYT	E_3				
Type		RO							RO								
Reset	0	0	0 .	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bit(s)	Name	Description
31:24	BYTE_0	MAC Address[15:8] / Source IP(SIP) Address [31:24]
23:16	BYTE_1	MAC Address[7:0] / Source IP(SIP) Address [23:16]
15:8	BYTE_2	SIP Address [15: 8] or
		bit[15]: IVL bit[14:12]: Filter ID[2:0] bit[11:8]: CVID[11: 8] NOTE: When IVL is reset, MAC[47:0] and FID[2:0] will be used to read/write the address table. When IVL is set, MAC[47:0] and CVID[11:0] will be used to read/write the address table.
7:0	BYTE_3	SIP Address[7:0] or CVID[7:0]

2.15 QoS (Quality of Services)

QoS is the ability to provide different priority to different applications or the data flows. GSW can support strict priority (SP) and weighted round-robin (WRR) mode for QoS. Please refer to packet format at the below figure and know the VID and user priority are the key for QoS. We will suggest that you should disable flow control if you want to use QoS.

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 28 of 57

You may need to make the port you want as security mode and user port first. For detail, please check the page about VALN setting in this document.

Follow the step to setup the QoS:

If want to use WRR:

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 29 of 57

0x1000 80008000	//WRR for Queue 0 / Port 0
0x1008 80008000	//WRR for Queue 1 / Port 0
0x1010 80008000	//WRR for Queue 2 / Port 0
0x1018 80008000	//WRR for Queue 3 / Port 0
0x1020 80008000	//WRR for Queue 4 / Port 0
0x1028 80008000	//WRR for Queue 5 / Port 0
0x1030 80008000	//WRR for Queue 6 / Port 0
0x1038 80008000	//WRR for Queue 7 / Port 0

For others, follow the table and set as 0x80008000 (WRR)

	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
Port 1	0x1100	0x1108	0x1110	0x1118	0x1120	0x1128	0x1130	0x1138
Port 2	0x1200	0x1208	0x1210	0x1218	0x1220	0x1228	0x1230	0x1238
Port 3	0x1300	0x1308	0x1310	0x1318	0x1320	0x1328	0x1330	0x1338
Port 4	0x1400	0x1408	0x1410	0x1418	0x1420	0x1428	0x1430	0x1438
Port 5	0x1500	0x1508	0x1510	0x1518	0x1520	0x1528	0x1530	0x1538
Port 6	0x1600	0x1608	0x1610	0x1618	0x1620	0x1628	0x1630	0x1638

If want to use SP:

//SP for Queue 0 / Port 0 0x1000 80000000 0x1008 80000000 //SP for Queue 1 / Port 0 0x1010 80000000 //SP for Queue 2 / Port 0 //SP for Queue 3 / Port 0 0x1018 80000000 0x1020 80000000 //SP for Queue 4 / Port 0 0x1028 80000000 //SP for Queue 5 / Port 0 0x1030 80000000 //SP for Queue 6 / Port 0 //SP for Queue 7 / Port 0 0x1038 80000000

For others, follow the table and set as 0x80000000 (SP)

		`						
	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
Port 1	0x1100	0x1108	0x1110	0x1118	0x1120	0x1128	0x1130	0x1138
Port 2	0x1200	0x1208	0x1210	0x1218	0x1220	0x1228	0x1230	0x1238
Port 3	0x1300	0x1308	0x1310	0x1318	0x1320	0x1328	0x1330	0x1338
Port 4	0x1400	0x1408	0x1410	0x1418	0x1420	0x1428	0x1430	0x1438
Port 5	0x1500	0x1508	0x1510	0x1518	0x1520	0x1528	0x1530	0x1538
Port 6	0x1600	0x1608	0x1610	0x1618	0x1620	0x1628	0x1630	0x1638

00001000 MMSCR0_Q0P0 Max-Min Scheduler Control Register 0 of Queue 0/Port 000000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	MIN_S P_WR R_Q0 _P0															
Type	RW															
Reset	0															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 30 of 57

Name	MIN_R ATE_ EN_Q 0_P0		MIN_R	ATE_C _I	TRL_E	XP_Q0		MIN_	RATE_	CTRL_	MAN_Q0_P0	
Type	RW			R'	W					RW		7
Reset	0		0	0	0	0	0	0	_ 0	0	0 0	0

Bit(s)	Name	Description
31	MIN_SP_WRR_Q0_P0	Port 0 Queue 0 min. traffic arbitration scheme
		0: Strict Priority (SP) 1: Round-Robin (RR)
15	MIN_RATE_EN_Q0_P0	Port 0 Queue 0 minimum shaper rate limit control is enabled.
		0: Queue 0 min. rate limit control is disabled, when it is disabled, shaper will always let the pkt pass (infinite rate).1: Queue 0 min. rate limit control is enabled.
11:8		Exponent part of Port 0 Queue 0 min. shaper rate limit control
	Q0_P0	Value range: 04
6:0	MIN_RATE_CTRL_MAN_ Q0_P0	Mantissa part of Port 0 Queue 0 min. shaper rate limit control Value range: 1100

//Use tag base for QoS. ACL is the default rule. 0x0044 00222<mark>7</mark>22

Check the Queue mapping rule:

Default Priority-to-queue mapping (802.3D QoS) Priority 7 - Queue 7 Priority 6 - Queue 6 Priority 5 - Queue 5 Priority 4 - Queue 4 Priority 3 - Queue 3 Priority 1 - Queue 2 Priority 0 - Queue 1 Priority 2 - Queue 0

You can swap the Q map as you want. For example, change priority 1 from Q2 to Q1:

User Priority Weight

0x0048 0<mark>9</mark>080240

Change priority 1 from Q1 to Q2:

0x0048 0a080240

If want to change priority, check the register of user priority weight.

00000044

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	REV0										RL_UP	W	REV1	PORT_UPW		
Type	DC									RW		DC		RW		
Reset	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	REV2	DS	CP_U	PW	REV3	T/	AG_UP	W	REV4	STAG_UPW			REV5	ACL_UPW		W
Type	DC		RW		DC		RW		DC	RW		DC	RW			
Reset	0	1	0	0	0	1	0	1	0	1	1	0	0	1	1	1

Bit(s) Name	Description	
31:23 REV0	Reserved	

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

00234567

22:20	ARL_UPW	ARL User Priority Weight (MAC/DIP Hit)
19	REV1	Reserved
18:16	PORT_UPW	Port-Based User Priority Weight Value Weights range from 0x0 to 0x7.
15	REV2	Reserved
14:12	DSCP_UPW	DSCP Priority Weight (IPv4)
11	REV3	Reserved
10:8	TAG_UPW	Priority Tag User Priority Weight
7	REV4	Reserved
6:4	STAG_UPW	Special Tag User Priority Weight
3	REV5	Reserved
2:0	ACL_UPW	ACL User Priority Weight (ACL Hit)

00000048 PEM1 User Priority Egress Mapping I

08480240

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name	RE	V0	TA	TAG_PRI_1			IE_CPL	J_1 /	QUE_I	_AN_1			DSCP_	_PRI_1			
Type	D	С		RW		RW			RW)	R'	W			
Reset	0	0	0	0	1	0	0	0	0 /	1	0	0	1	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	RE	V1	TA	\G_PRI	_0	QU	E_CPL	1_0	QUE_LAN_0 D				DSCP	CP_PRI_0			
Type	D	С		RW			RW			RW			RW				
Reset	0	0	0	0	0	0	1	0 7	0	1	0	0	0	0	0	0	

Bit(s)	Name	Description
31:30	REV0	Reserved
29:27	TAG_PRI_1	User Priority 1 Priority Tag Value
26:24	QUE_CPU_1	User Priority 1 CPU Queue Selectio
23:22	QUE_LAN_1	User Priority 1 LAN Queue Selection
21:16	DSCP_PRI_1	User Priority 1 DSCP Value
15:14	REV1	Reserved
13:11	TAG_PRI_0	User Priority 0 Priority Tag Value
10:8	QUE_CPU_0	User Priority 0 CPU Queue Selectio
7:6	QUE_LAN_0	User Priority 0 LAN Queue Selection
5:0	DSCP_PRI_0	User Priority 0 DSCP Value

0000004C PEM2 User Priority Egress Mapping II

1B581110

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Name	REV	0	TA	TAG_PRI_3			E_CPL	J_3	QUE_I	LAN_3	DSCP_PRI_3							
Type	DC			RW			RW			W	RW							
Reset	0	0	0	1	1	0	1	1	0	1	0	1	1	0	0	0		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name	REV	11	TA	G_PRI	_2	QU	QUE_CPU_2			LAN_2	DSCP_PRI_2							
Type	DC			RW			RW			RW		RW						
Reset	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0		

Bit(s) Name	Description
31:30 REV0	Reserved
29:27 TAG_PRI_3	User Priority 3 Priority Tag Value
26:24 QUE_CPU_3	User Priority 3 CPU Queue Selectio
23:22 QUE_LAN_3	User Priority 3 LAN Queue Selection
21:16 DSCP_PRI_3	User Priority 3 DSCP Value
15:14 REV1	Reserved
13:11 TAG_PRI_2	User Priority 2 Priority Tag Value

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

10:8	QUE_CPU_2	User Priority 2 CPU Queue Selectio
7:6	QUE_LAN_2	User Priority 2 LAN Queue Selection
5:0	DSCP_PRI_2	User Priority 2 DSCP Value

2.16 Flow control

You should set 0x1fe0 bit 31 as 1 for global flow control first.

We take Port 5 for example, if you want to disable TX and RX flow control, you should set the bit 5 and bit 4 of 0x3500 as 0. And read 4^{th} and 5^{th} bit of 0x3508 to check it works or not.

00001FE0 GFCCR0 Global Flow_Control Control Register 0 A0087858

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	5	30				20	25	27	23		I	20	13	10		10
Name			FC_O	FC_O						7						
	FC_E		FF2O	N ₂ OF							1	V				
	N		_	F OP					7		FC.	PORT	_BLK_	THD		
	IN.		N01	' <u>-</u> 0'												
				I							<u> </u>					
Туре	RW		RW	RW								R	W			
Reset	1		1	0					0	0	0	0	1	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			FC_I	FREE_E	3LK_H	THD			FC_FREE_BLK_LOTHD							
Type				R\	Ν			_	RW							
Reset	0	1	1	1	1	0	0	0	0	. 1	0	1	1	0	0	0

Bit(s)	Name	Description
31	FC_EN	Disable flow control Enable flow control
29	FC_OFF2ON_OPT	Flow control assertion option 0: Disable 1: Enable aggressive frame discard option in flow control transition from OFF to ON
28	FC_ON2OFF_OPT	Flow control de-assertion option 0: Disable 1: Enable aggressive frame discard option in flow control transition from ON to OFF
23:16	FC_PORT_BLK_THD	Per port memory buffer (in unit of 2 blocks) associated with flow control and packet discard mechanism. (not include reserve block)
15:8	FC_FREE_BLK_HITHD	High water mark of memory buffer (in unit of 2 blocks) associated with flow control and packet discard mechanism. (not include reserve block) See TBD.
7:0	FC_FREE_BLK_LOTHD	Low water mark of memory buffer (in unit of 2 blocks) associated with flow control and packet discard mechanism. (not include reserve block) See TBD.

00003500 <u>PMCR P5</u> PORT 5 MAC Control Register 00056330

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		6											IPG_C	FG_P5	EXT_P HY_P5	MAC_ MODE _P5
Type													R	W	RW	RW
Reset													0	1	0	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	FORC E_MO DE_P 5	MAC_ TX_E N_P5	MAC_ RX_E N_P5		MAC_ PRE_ P5		BKOF F_EN_ P5	BACK PR_E N_P5	FORC E_EE E1G_ P5	FORC E_EE E100_ P5	FORC E_RX_ FC_P5	FORC E_TX_ FC_P5		E_SPD P5	FORC E_DP X_P5	_
Type	RW	RW	RW		RW		RW	RW	RW	RW	RW	RW	R	W	RW	RW
Reset	0	1	1		0		1	1	0	0	1	1	0	0	0	0

0000350)8	<u>PMSF</u>	<u>P5</u>		PORT	5 M <i>A</i>		000	00000							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	/ 17	16
Name														7		
Type																
Reset													_/			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									EEE1 G_ST S_P5	EEE10 0_STS _P5	RX_F C_ST S_P5	TX_FC _STS_ P5	MAC_: TS_	SPD_S	MAC_ DPX_ STS_P 5	MAC_ LNK_ STS_ P5
Type									RO	RO	RO	RO	R	0	RO	RO
Reset									0	0	0	0	0	0	0	0

Bit(s)	Name	Description
7	EEE1G_STS_P5	PORT 5 LPI Mode Status For 1000Mbps 0: Not capable of entering EEE Low Power Idle mode for 1000Mbps 1: Capable of entering EEE Low Power Idle mode for 1000Mbps
6	EEE100_STS_P5	PORT 5 LPI Status Mode For 100Mbps 0: Not capable of entering EEE Low Power Idle mode for 100Mbps 1: Capable of entering EEE Low Power Idle mode for 100Mbps
5	RX_FC_STS_P5	PORT 5 RX XFC Status. Port 5 Rx flow control status 0: Disabled. 1: Let the MAC of PORT 5 accept a pause frame when operating in full-duplex mode.
4	TX_FC_STS_P5	PORT 5 TX XFC Status PORT 5 TX flow control status 0: Disabled. 1: Let the MAC of PORT 5 to transmit a pause frame when operating in full-duplex mode with low internal free memory page count.
3:2	MAC_SPD_STS_P5	PORT 5 Speed [1:0] Status Current speed of PORT 5 after PHY links up. 00: 10 Mbps 01: 100 Mbps 10: 1000 Mbps 11: Reserved
1	MAC_DPX_STS_P5	PORT 5 duplex Status Current duplex mode of port 5 after PHY links up 0: Half Duplex 1: Full Duplex
0	MAC_LNK_STS_P5	Port 5 Link Up Status. Link up status of PORT 5. 0: Link Down 1: Link Up

2.17 Local port enable

This is used for debugging not for normal use. It means it would add the self port to the MAC table. So, the same packet would come out from the input port. Set 7th of 0x000c to enable it.

000000	OC/	<u>AGC</u>			ARL (Globa	I Con	trol							000	71819
Bit	31	30 29 28 27 26 25 24 23 22 21 20 19											18	17	16	
Name	MLDv 2_int_ en		REV0										ACL_I NT	VLAN _INT	ADDR _INT	
Type	RW		DC									RO	RO	RO		
Reset	0	7 0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	RATE _COM P			CO	MP_BN	IUM			LOCA L_EN	ARL_ PADDI NG	ACL_ MULTI	L2LEN _CHK	CTRL _DRO P	VLAN 4CPU		ALR_ RST_ N
Type	/ RW				RW				RW	RW	RW	RW	RW	RW	RW	RW

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Reset	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	1

2.18 System MAC Controller

SMACCR0

000030E4

GSW build-in the internal MAC. The default MAC is 00000017a501. We put them at 0x30E8 and 0x30E4. You can change the default value as you want.

System MAC Control Register 0

0x30E4. You can change the default value as you want.

0017A501

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		SMACCR0[31:16]														
Type								R	W	$\overline{}$						
Reset	0	0	0	0	0	0	0	0	0	0	0	(1	0	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	<i>(</i> 5)	4	3	2	1	0
Name		SMACCR0[15:0]														
Type								R	W							
Reset	1	0	1	0	0	1	0	1	0	0	0	0	0	0	0	1

Bit(s)	Name	Description
31:0	SMACCR0	System MAC Address, sys_mac [31:0]. The first 32-bit of system MAC address. It is unique and is specified for pause frame.

000030E8 SMACCR1 System MAC Control Register 1

00000000

Bit	31	30	29	28	27	26	25	24	23	/ 22	21	20	19	18	17	16
Name																
Type																
Reset									7							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					1			SMA	CCR1							
Type		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
15:0	SMACCR1	System MAC Address, sys_mac [47:32]. The second 16-bit of system MA address. It is unique and is specified for pause frame.

2.19 LED controller

All hardware traps of GSW are weakly pull-up internally. The only way to pull-down these traps is using an external pull-down circuit. However, hardware traps and LEDs share the same pins in GSW. To make LEDs work normally, the hardware configurations of LEDs will depend on its related values in the current design.

Every port has 3 LED to mean its behavior:

GSW Px_LED_0 is used for any ability linkup and traffic (10/100/1000). GSW Px_LED_1 is used for 10/100 ability linkup and traffic (10/100). GSW Px_LED_2 is used for Giga ability linkup and traffic (1000).

For trapping-high pins, the external LEDs should be active low. Its configuration is shown as below. OEs (output enables) of LED pads are controlled by the internal circuits, and LED_DO will always be LOW under this configuration. So the external LEDs should be active low.

MediaTek Confidential

2.20 Embedded GePHY Access

2.20.1 Embedded GePHY In-Direct Accessing

By default, the embedded 5-port GePHY is using in-direct accessing. We can read/write the GePHY registers by accessing the PHY Indirect Access Control Register (PHY_IAC)

PHY Indirect Access Control Register

0000701C PHY_IAC PHY Indirect Access Control 0009000

0000701C PHY_IAC PHY Indirect Access Control

0009000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	PH A CS ST			MDIO_REG_ADDR					MDIO_PHY_ADDR					O_CM	MDIC	O_ST
Туре	R/W /SC				RW					RW		V	R	W	R	W
Reset	0		0	0	0	0	0	0	0	0	0	0	_1	0	0	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							N	IDIO_R	W_DAT	Α						
Type								R/W	//RO				-)/			
Reset	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0

Bit(s)	Name	Description
31	PHY_ACS_ST	PHY Access Start Start the indirect accessing of PHY's register. When the accessing is completed, this bit will be self-cleared to 0. 1: Start 0: Idle or indirect accessing is completed
29:25	MDIO_REG_ADDR	MDIO Register Address Fields Configure the Register Address Field.
24:20	MDIO_PHY_ADDR	MDIO PHY Address Field Configure the PHY address field.
19:18	MDIO_CMD	MDIO Command Field Configure the MDIO command field. 2'b01: MDIO Write 2'b10: MDIO Read
17:16	MDIO_ST	MDIO Start Field Configure the MDIO start field. 2'b01: Start Others; Reserved
15:0	MDIO_RW_DATA	MDIO Read/Write Data Field It indicates the MDIO data field for Read/Write accessing. When READ, this is used as MDIO read data (Read Only). When Write, this is used as MDIO write data (R/W).

2.20.2 Embedded GePHY Direct Accessing

For some applications and test modes, in-direct accessing is time-consuming. A new direct accessing approach is adopted. There are two ways described in the following sections to enable this in-direct accessing.

2.20.2.1 Method I - By Hardware Trap

The 1st method to use direct accessing is setting hardware the trap. To enable this function, the hardware trap C_MDIO_BPS_N (P1_LED1; pin 107) must trap low. Thus, the embedded GePHY can be accessed by C_MDIO directly.

Hardware Trap Status Register

00007800 <u>HWTRAP</u> Hardware Trap Status Register

01007FF

F

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	7							bon d_o								

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 37 of 57

00007800 <u>HWTRAP</u> Hardware Trap Status Register

n'	10	U.	7	F	F
~		٠	1	6	٠

Type Reset								ptio n RO 1							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		ht_I oop det _di _s	ht_ p5_ intf _sel	ht_sn		ht_xta	al_fse	ht_ p6_ intf _di _s	ht_ p5_ intf _m ode	ht_ p5_ intf _di _s	ht_ c_ mdi o_b ps_ n	ht_ eep rom _en		ht_chip	o_mode	
Type		RO	RO	R	0	R	0	RO	RO	RO	RO	RO		R	0	
Reset		1	1	1	1	1	1	1	1	1	y 1 /	1	1	1	1	1

Bit(s)	Name	Description
24	bond_option	Bonding Option 1: Single switch mode 0: MCM mode
14	ht_loopdet_dis	From hw_trap[14] Hardware Loop Detection Disable 1'b0: Enable 1'b1: Disable
13	ht_p5_intf_sel	From hw_trap[13] Port 5 Interface Selection 1'b1: P5 Interface connects to GMAC5 1'b0: P5 Interface connects to GePHY4 or GePHY0 (depends on csr_p5_phy0_sel)
12:11	ht_smi_addr	From hw_trap[11:10] Chip SMI address bit 4 ~ bit 3 Note: chip_smi_addr[2:0] = 3'b111
10:9	ht_xtal_fsel	From {hw_trap[12],hw_trap[9]} External Crystal Frequency Selection 2'b00: 40MHz 2'b01: 20MHz 2'b11: 25MHz
8	ht_p6_intf_dis	From hw_trap[8] ort 6 Interface Disable 1'b0: Enable 1'b1: Disable
7	ht_p5_intf_mode	From hw_trap[7] Port 5 Interface Mode 1'b0: GMII/MII 1'b1: RGMII
6	ht_p5_intf_dis	From hw_trap[5] Port 5 Interface Disable 1'b1: Disable 1'b0: Enable
5	ht_c_mdio_bps_n	From hw_trap[4] 0: Directly access PHY registers via C_MDC/C_MDIO 1: Indirectly access PHY registers
4	ht_eeprom_en	From hw_trap[2] External EEPROM Enable 1: Enable 0: Disable
3;0	ht_chip_mode	From {hw_trap[1],hw_trap[6],hw_trap[3],hw_trap[0]} Chip Operation Mode[3:0] 4'b0000: IDDQ mode 4'b0001: IO TEST mode 4'b0010: NANDTREE mode 4'b0011: RING mode (both IO and std-cell) 4'b0100: MBIST mode

Bit(s)	Name	Description	Y
		4'b0101: SCAN mode 4'b0110: SCAN-COMP mode (compression) 4'b0111: SCAN-MBIST-OLT mode 4'b1000: AFE-OLT mode 4'b1001: GPHY ATE mode 4'b1010: GPHY ADUMP mode 4'b1011: GPHY ADUMP probe mode 4'b1010: Reserved 4'b1101: Reserved 4'b1111: Bootup probe mode 4'b1111: Normal mode	

2.20.2.2 Method II - By Software Configurations

The steps to enable this direct accessing are listed as followings.

- 1. Set embedded PHY clock enable as 0 (set reg_7808[0]=1'b0)
- 2. Enable in-direct accessing register (set reg_7804[16] = 1'b1; reg_7804[5]=1'b0)
- 3. Set embedded PHY clock enable as 1 (set reg_7808[0]=1'b1)

Modified Hardware Trap Status Register

00007804	MHWTRAP	Modified Hardware Trap Status Register	
00007004	IVII IVV I IX/XI	Modified Hardware Trap Status Register	

0100000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					1		• 4	bon d_o ptio n				csr _p5 _ph y0_ sel				csr _ch g_tr ap
Type					1			RO				RW				RW
Reset								1				0				0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	csr _gs w_c k_s el	csr _lo opd et_ dis	csr p5 int f_s el	csr_s	_	csr_x	tal_fs	csr _p6 _int f_di s	csr _p5 _int f_m ode	csr _p5 _int f_di s	csr _c_ mdi o_b ps_ n	csr _ee pro m_ en	(csr_chi	p_mode	0
Type	RW	RW	RW	R	0	R	0	RW	RW	RW	RW	RO		R	0	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

Bit(s)	Name	Description
24	bond_option	Bonding Option 1: Single switch mode 0: MCM mode
20	csr_p5_phy0_sel	When p5_intf_sel == 1'b0, the external device will be connected to 1'b0: GPHY4 1'b1: GPHY0
16	csr_chg_trap	Change HW-TRAP setting 1'b1: Change 1'b0: Use default HW-TRAP setting
15	csr_gsw_ck_sel	Control GSW_CK (if csr_chg_trap == 1) 1'b0: 500MHz 1'b1: 200MHz
14	csr_loopdet_dis	Hardware Loop Detection Disable (if csr_chg_trap == 1) 1'b0: Enable 1'b1: Disable

MediaTek Confidential © 2013 - 2014 MediaTek Inc.

Page 39 of 57

Bit(s)	Name	Description
13	csr_p5_intf_sel	Port 5 Interface Selection (if csr_chg_trap == 1) 1'b1: P5 Interface connects to GMAC5 1'b0: P5 Interface connects to GePHY4 or GePHY0 (depends on csr_p5_phy0_sel)
12:11	csr_smi_addr	csr_smi_addr is equal to ht_smi_addr[1:0] (offset: 0x7800, bit 12~11) since this hardware trap cannot be modified by software.
10:9	csr_xtal_fsel	csr_xtal_fsel is equal to ht_xtal_fsel[1:0](offset: 0x7800, bit 10~9)since this hardware trap cannot be modified by software.
8	csr_p6_intf_dis	From hw_trap[8] Port 6 Interface Disable (if csr_chg_trap == 1) 1'b0: Enable 1'b1: Disable
7	csr_p5_intf_mode	Port 5 Interface Mode (if csr_chg_trap == 1) 1'b0: GMII/MII 1'b1: RGMII
6	csr_p5_intf_dis	Port 5 Interface Disable (if csr_chg_trap == 1) 1'b1: Disable 1'b0: Enable
5	csr_c_mdio_bps_n	Directly access phy mdc (if csr_chg_trap==1) 0: Directly access PHY registers via C_MDC/C_MDIO 1: Indirectly access PHY registers
4	csr_eeprom_en	csr_eeprom_en is equal to ht_eeprom_en (offset: 0x7800, bit 4) since this hardware trap cannot be modified by software.
3:0	csr_chip_mode	csr_chip_mode is equal to ht_chip_mode[3:0] (offset: $0x7800$, bit $3\sim0$) since this hardware trap cannot be modified by software.

Top Signal Control Registers

00007909	TOP_SIG_CT	TOP Signals Control Register	0000000
00007808	RL CR	TOP Signals Control Register	1

					_											
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																5_txd _sel
Type															R	W
Reset															0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		1		> Q				csr _int r_si g_s el								csr eb d_p hy_ md c_c ken
Type			7					RW								RW
Reset			7		r			0								1

Bit(s) Name	Description
17:16 csr_p5_txd7_o_sel	2'b11 : Output INTR/LOOPDET Otherwise : Output normal signals
8 csr_intr_sig_sel	Output INTR or LOOPDET_ALARM 1'b1 : Output LOOPDET_ALARM 1'b0 : Output INTR
0 csr_ebd_phy_mdc_cke	Gating phy_mdc

2.21 RGMII Timing Adjustment

2.21.1 RGMII RXC Adjustment

The control register P5RGMIIRXCR (offset: 0x7B00) is used to adjust the P5 RXC. It is shown is the following table.

P5 RGMII Wrapper RX Clock Control Register

00007E	300	<u>P5R</u> (<u>GMIIR</u>	<u>XC</u>	P5 R	P5 RGMII Wrapper RX Clock Control Register)	0000010				
Bit	31	30	29	28	27	26	25	24	23	22	_21	20	19	18	17	16
Name						csr_r	gmii_r g	ctl_cf						csr_i	rgmii_r: g	xd_cf
Type							RW								RW	
Reset						0	0	0)		0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								csr _rg mii _ce ntra l_ali gn		2			csr_i	gmii_rz		g_cfg
Type								RW					RW			
Reset								1					0	1	0	0

Bit(s)	Name	Description
		1: RXC/RXD is central-aligned; RXC does not pass through the delay chain.
8	csr_rgmii_central_align	 RXC/RXD is not central-aligned (edge-aligned); RXC passes through the delay chain.
		Port 5 RGMII RXC Delay Setting for 0-degree case
		[3] - Inverted RXC
		[2:0] - Delay chain setting
		3'b000: No delay applied
	csr rgmii rxc Odeg cf	3'b001: 1-step buffer chain applied
3:0	g	3'b010: 2-step buffer chain applied
	9	3'b011: 3-step buffer chain applied
		3'b100: 4-step buffer chain applied
	Y	3'b101: 5-step buffer chain applied
		3'b110: 6-step buffer chain applied
		3'b111: 7-step buffer chain applied

The following figure shows the usage of these settings.

Figure. P5RGMIIRXCR Usage

2.21.2 RGMII TXC Adjustment

RGMII TXC can be adjusted by setting P5RGMIITXCR (Offset: 0x7B04) which is shown in the following table.

P5 RGMII Wrapper TX Clock Control Register

00007B04 P5RGMIITXCR P5 RGMII Wrapper TX Clock Control Register

0000001

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name												>		csr_r	gmii_tx	en_cf
Туре											,		7		g RW	
Reset											7			0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						csr_r	gmii_t	(d_cf					csr_r	gmii_tx	c_cfg	
Type							RW	/_						RW		
Reset						0	0	0				/ 1	0	0	0	0

Bit(s)	Name	Description
4:0	csr_rgmii_txc_cfg	Port 5 RGMII TXC Delay Setting [4] - Using 90-degree TXC (central align) [3] - Inverted RXC [2:0] - Delay chain setting 3'b000: No delay applied 3'b001: 1-step buffer chain applied 3'b010: 2-step buffer chain applied 3'b010: 3-step buffer chain applied 3'b100: 4-step buffer chain applied 3'b100: 5-step buffer chain applied 3'b101: 5-step buffer chain applied 3'b111: 7-step buffer chain applied

Figure. P5RGMIITXCR Usage

2.22 PHY Clause 45 Register Read

There are two method to read/write PHY Clause 45 registers. One is Clause 45 Register Read/Write, and another is Clause 22 Access to Clause 45 Registers. Clause read/clear register can't be cleared when we use the cl22 method to read. For the following register, please use the Clause 45 Register Read/Write.

Register list: dev03_001h, dev03_022h, dev30_0a2h, dev30_14bh

2.22.1 Clause 45 Register Read/Write

The extensions that are used for MDIO indirect register accesses are specified in following Table. The address register shall be overwritten by address frames. At power up or device reset, the contents of the address register are undefined. Write, read, and post-read-increment-address frames shall access the register whose address is stored in the address register. Write and read frames shall not modify the contents of the address register.

Extensions to Management Frame Format for Indirect Access

		Management frame fields								
Frame	PRE	ST	OP	PRTAD	DEVAD	TA	ADDRESS / DATA	IDLE		
Address	11	00	00	PPPPP	EEEEE	10	AAAAAAAAAAAAAAA	Z		
Write	11	00	01	PPPPP	EEEEE	10	DDDDDDDDDDDDDDD	Z		
Read	11	00	11	PPPPP	EEEEE	Z0	DDDDDDDDDDDDDDD	Z		
Post-read- increment- address	11	00	10	PPPPP	EEEEE	Z0	DDDDDDDDDDDDDDDD	Z		

2.22.2 Clause 22 Access to Clause 45 Registers

The assignment of bits in the MMD access control register (Register 13) is shown in following table. The MMD access control register is used in conjunction with the MMD access address data register (Register 14) to provide access to the MMD address space using the interface and mechanisms.

Management Frame Format

Management frame fields								
	PRE	ST	OP	PHYAD	REGAD	TA	DATA	IDLE
READ	11	01	10	AAAAA	RRRRR	Z0	DDDDDDDDDDDDDDD	Z
WRITE	11	01	01	AAAAA	RRRRR	10	DDDDDDDDDDDDDD	Z

MMD Access Control Register Bit Definitions

Bit(s)	Name	Description	R/W ^a
13.15:14	Function	13.1513.14 00= address 01= data, no post increment 10= data, post increment on reads and writes 11= data, post increment on writes only	R/W
13.13:5	Reserved	Write as 0, ignore on read	R/W
13.4:0	DEVAD	Device address	R/W

 $^{^{}a}R/W = Read/Write$

The Function field can be set to any of four values:

- a) When set to 00, accesses to Register 14 access the MMD (Register 13) is shown in following table. Tregister should always be initialized before attempting any accesses to other MMD registers.
- b) When set to 01, accesses to Register 14 access the register within the MMD selected by the value in the MMD should always be in
- c) When set to 10, accesses to Register 14 access the register within the MMD selected by the value in the MMD should always be initialized before attempting any accesses to other MMD registers.ter (value in the MMD0, accesses to Register 14 acces
- d) When set to 11, accesses to Register 14 access the register within the MMD selected by the value in the MMD should always be initialized before attempting any accesses to other MMD registers.ter (Regi

MMDWhen set to 11, accesses to Register 14 access the register within the MMD selected by t is not modified.

The assignment of bits in the MMD access address data register (Register 14) is shown in following table. The MMD access address data register is used in conjunction with the MMD access control register (Register 13) to provide access to the MMD address space using the interface and mechanisms.

MMD Access Address Data Register Bit Definitions

Bit(s)	Name	Description	R/W ^a
14.15:0	Address Data	If 13.15:14 = 00, MMD DEVAD's address register. Otherwise, MMD DEVAD's data register as indicated by the contents of its address register	R/W

^aR/W = Read/Write

2.23 Flow Control

2.23.1 Related Control Signals for Flow Control

There are three parameters related to the flow control mechanism, queue-based, port-based and system-based. Both high and low thresholds listed as the following table are applied to these three parameters.

Flow Control Related Thresholds

Low Threshold		High Threshold			
Address	Default	Address	Default		

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 45 of 57

	Low Threshol	d	High Threshold				
Queue	0x1FE4[(qn*3+2):qn*3]	0x4	0x1FF4[7:0]	0xC			
Port	0x1FE0[23:16]	0x8	0x1FF4[15:8]	0x12			
System	0x1FE0[7:0]	0x58	0x1FE0[15:8]	0x78			

Note that these thresholds are in units of 2 memory pages.

2.23.2 Enter Flow-Control State

There are two conditions which can be used to enter the flow-control state, which is descriped as the following table.

Pseudo Code for Entering Flow Control State

```
Enter_FC_State[qn] =
  (queue_exceed_lothd[qn] & port_exceed_lothd & public_below_lothd) |
  (csr_fc_off2on_opt & queue_exceed_hithd[qn] & port_exceed_hithd & (~public_exceed_hithd));
  where
  queue_exceed_lothd[qn] = (queue_page_cnt[qn] >= (queue_low_threshold*2));
  queue_exceed_hithd[qn] = (queue_page_cnt[qn] >= (queue_high_threshold*2));
  port_exceed_lothd = (port_page_cnt >= (port_low_threshold*2));
  port_exceed_hithd = (port_page_cnt >= (port_high_threshold*2));
  public_below_lothd = (free_page_cnt < (public_low_threshold*2));
  public_exceed_hithd = (free_page_cnt > (public_low_threshold*2));
  csr_fc_off2on_opt = reg_1FE0h[29];
```

2.23.3 Leave Flow-Control State

To leave the flow-control state, there are four conditions shown in the following table.

Pseudo Code for Leaving Flow Control State

```
Leave FC State[qn] =
 ( (~(queue_exceed_lothd[qn] & port_exceed_lothd)) & (~public_below_lothd)) |
 ( (~( queue_exceed_hithd[qn] & port_exceed_hithd)) & public_exceed_hithd) |
port_empty |
 (csr_fc_on2off_opt &
  (~(queue_exceed_hithd[qn] & port_exceed_hithd)) &
  (~public_below_lothd) &
  (~public_exceed_hithd));
where
queue_exceed_lothd[qn] = (queue_page_cnt[qn] >= (queue_low_threshold*2));
queue_exceed_hithd[qn] = (queue_page_cnt[qn] >= (queue_high_threshold*2));
port_exceed_lothd = (port_page_cnt >= (port_low_threshold*2));
port_exceed_hithd = (port_page_cnt >= (port_high_threshold*2));
public_below_lothd = (free_page_cnt < (public_low_threshold*2));</pre>
public_exceed_hithd = (free_page_cnt > (public_high_threshold*2));
csr_fc_on2off_opt = reg_1FE0h[28];
port empty = (port page cnt == 0);
```

2.24 MIB Counter

MIB counters are used to record the packet number of ingress and egress port. You can use software reset to clean it. Or write 0x4fe0 as 0 then write 80000000 to restart it.

MIB counter of port 0:

00004000	TDPC_P0	32	TX Drop Packet Counter of Port 0
00004004	TCRC_P0	32	TX CRC Packet Counter of Port 0
00004008	TUPC_P0	32	TX Unicast Packet Counter of Port 0
0000400C	TMPC_P0	32	TX Multicast Packet Counter of Port 0
00004010	TBPC PO	32	TX Broadcast Packet Counter of Port 0
00004014	TCEC PO	32	TX Collision Event Counter of Port 0
00004018	TSCEC_P0	32	TX Single Collision Event Counter of Port 0
0000401C	TMCEC_P0	32	TX Multiple Collision Event Counter of Port 0
00004020	TDEC PO	32	TX Deferred Event Counter of Port 0
00004024	TLCEC_P0	32	TX Late Collision Event Counter of Port 0
00004028	TXCEC PO	32	TX excessive Collision Event Counter of Port 0
0000402C	TPPC PO	32	TX Pause Packet Counter of Port 0
00004030	TL64PC P0	32	TX packet Length in 64-byte slot Packet Counter of Port 0
00004034	TL65PC_P0	32	TX packet Length in 65-byte slot Packet Counter of Port 0
00004038	TL128PC P0	32	TX packet Length in 128-byte slot Packet Counter of Port 0
0000403C	TL256PC_P0	32	TX packet Length in 256-byte slot Packet Counter of Port 0
00004040	TL512PC_P0	32	TX packet Length in 512-byte slot Packet Counter of Port 0
00004044	TL1024PC P0	32	TX packet Length in 1024-byte slot Packet Counter of Port 0
00004048	TOCL_P0	32	TX Octet Counter Low double word of Port 0

0000404C	TOCH_P0	32	TX Octet Counter High double word of Port 0
00004060	RDPC_P0	32	RX Drop Packet Counter of Port 0
00004064	RFPC_P0	32	RX Filtering Packet Counter of Port 0
00004068	RUPC_P0	32	RX Unicast Packet Counter of Port 0
0000406C	RMPC_P0	32	RX Multicast Packet Counter of Port 0
00004070	RBPC_P0	32	RX Broadcast Packet Counter of Port 0
00004074	RAEPC_P0	32	RX Alignment Error Packet Counter of Port 0
00004078	RCEPC PO	32	RX CRC(FCS) Error Packet Counter of Port 0
0000407C	RUSPC_P0	32	RX Undersize Packet Counter of Port 0
00004080	RFEPC PO	32	RX Fragment Error Packet Counter of Port 0
00004084	ROSPC_P0	32	RX Oversize Packet Counter of Port 0
00004088	RJEPC PO	32	RX Jabber Error Packet Counter of Port 0
0000408C	RPPC_P0	32	RX Pause Packet Counter of Port 0
00004090	RL64PC_P0	32	RX packet Length in 64-byte slot Packet Counter of Port 0
00004094	RL65PC PO	32	RX packet Length in 65-byte slot Packet Counter of Port 0
00004098	RL128PC_P0	32	RX packet Length in 128-byte slot Packet Counter of Port 0
0000409C	RL256PC PO	32	RX packet Length in 256-byte slot Packet Counter of Port 0
000040A0	RL512PC_P0	32	RX packet Length in 512-byte slot Packet Counter of Port 0
000040A4	RL1024PC P0	32	RX packet Length in 1024-byte slot Packet Counter of Port 0
000040A8	ROCL_P0	32	RX Octet Counter Low double word of Port 0
000040AC	ROCH PO	32	Rx Octet Counter High double word of Port 0
000040B0	RDPC_CTRL_P0	32	RX CTRL Drop Packet Counter of Port 0
000040B4	RDPC_ING_P0	32	RX Ingress Drop Packet Counter of Port 0
000040B8	RDPC_ARL_P0	32	RX ARL Drop Packet Counter of Port 0
000040D0	TMIB_HF_STS_P0	32	TX Port MIB Counter Half Full Status of Port 0
000040D4	RMIB_HF_STS_P0	32	RX Port MIB Counter Half Full Status of Port 0

MIB counter of port 1;

00004100	TDPC_P1	32	TX Drop Packet Counter of Port 1
00004104	TCRC_P1	32	TX CRC Packet Counter of Port 1
00004108	TUPC_P1	32	TX Unicast Packet Counter of Port 1
0000410C	TMPC_P1	32	TX Multicast Packet Counter of Port 1
00004110	TBPC P1	32	TX Broadcast Packet Counter of Port 1
00004114	TCEC_P1	32	TX Collision Event Counter of Port 1
00004118	TSCEC_P1	32	TX Single Collision Event Counter of Port 1
0000411C	TMCEC_P1	32	TX Multiple Collision Event Counter of Port 1
00004120	TDEC_P1	32	TX Deferred Event Counter of Port 1
00004124	TLCEC_P1	32	TX Late Collision Event Counter of Port 1
00004128	TXCEC P1	32	TX excessive Collision Event Counter of Port 1
0000412C	TPPC P1	32	TX Pause Packet Counter of Port 1
00004130	TL64PC P1	32	TX packet Length in 64-byte slot Packet Counter of Port 1
00004134	TL65PC_P1	32	TX packet Length in 65-byte slot Packet Counter of Port 1
00004138	TL128PC P1	32	TX packet Length in 128-byte slot Packet Counter of Port 1
0000413C	TL256PC_P1	32	TX packet Length in 256-byte slot Packet Counter of Port 1
00004140	TL512PC_P1	32	TX packet Length in 512-byte slot Packet Counter of Port 1
00004144	TL1024PC P1	32	TX packet Length in 1024-byte slot Packet Counter of Port 1
00004148	TOCL_P1	32	TX Octet Counter Low double word of Port 1
0000414C	TOCH P1	32	TX Octet Counter High double word of Port 1

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 48 of 57

00004160	RDPC_P1	32	RX Drop Packet Counter of Port 1
00004164	RFPC_P1	32	RX Filtering Packet Counter of Port 1
00004168	RUPC_P1	32	RX Unicast Packet Counter of Port 1
0000416C	RMPC_P1	32	RX Multicast Packet Counter of Port 1
00004170	RBPC_P1	32	RX Broadcast Packet Counter of Port 1
00004174	RAEPC_P1	32	RX Alignment Error Packet Counter of Port 1
00004178	RCEPC_P1	32	RX CRC(FCS) Error Packet Counter of Port 1
0000417C	RUSPC P1	32	RX Undersize Packet Counter of Port 1
00004180	RFEPC_P1	32	RX Fragment Error Packet Counter of Port 1
00004184	ROSPC P1	32	RX Oversize Packet Counter of Port 1
00004188	RJEPC_P1	32	RX Jabber Error Packet Counter of Port 1
0000418C	RPPC P1	32	RX Pause Packet Counter of Port 1
00004190	RL64PC_P1	32	RX packet Length in 64-byte slot Packet Counter of Port 1
00004194	RL65PC_P1	32	RX packet Length in 65-byte slot Packet Counter of Port 1
00004198	RL128PC P1	32	RX packet Length in 128-byte slot Packet Counter of Port 1
0000419C	RL256PC_P1	32	RX packet Length in 256-byte slot Packet Counter of Port 1
000041A0	RL512PC P1	32	RX packet Length in 512-byte slot Packet Counter of Port 1
000041A4	RL1024PC_P1	32	RX packet Length in 1024-byte slot Packet Counter of Port 1
000041A8	ROCL P1	32	RX Octet Counter Low double word of Port 1
000041AC	ROCH_P1	32	Rx Octet Counter High double word of Port 1
000041B0	RDPC CTRL P1	32	RX CTRL Drop Packet Counter of Port 1
000041B4	RDPC_ING_P1	32	RX Ingress Drop Packet Counter of Port 1
000041B8	RDPC_ARL_P1	32	RX ARL Drop Packet Counter of Port 1
000041D0	TMIB_HF_STS_P1	32	TX Port MIB Counter Half Full Status of Port 1
000041D4	RMIB_HF_STS_P1	32	RX Port MIB Counter Half Full Status of Port 1

MIB counter of port 2:

00004200	TDPC_P2	32	TX Drop Packet Counter of Port 2
00004204	TCRC_P2	32	TX CRC Packet Counter of Port 2
00004208	TUPC_P2	32	TX Unicast Packet Counter of Port 2
0000420C	TMPC_P2	32	TX Multicast Packet Counter of Port 2
00004210	TBPC_P2	32	TX Broadcast Packet Counter of Port 2
00004214	TCEC_P2	32	TX Collision Event Counter of Port 2
00004218	TSCEC_P2	32	TX Single Collision Event Counter of Port 2
0000421C	TMCEC P2	32	TX Multiple Collision Event Counter of Port 2
00004220	TDEC_P2	32	TX Deferred Event Counter of Port 2
00004224	TLCEC P2	32	TX Late Collision Event Counter of Port 2
00004228	TXCEC_P2	32	TX excessive Collision Event Counter of Port 2
0000422C	TPPC_P2	32	TX Pause Packet Counter of Port 2
00004230	TL64PC_P2	32	TX packet Length in 64-byte slot Packet Counter of Port 2
00004234	TL65PC P2	32	TX packet Length in 65-byte slot Packet Counter of Port 2
00004238	TL128PC_P2	32	TX packet Length in 128-byte slot Packet Counter of Port 2
0000423C	TL256PC P2	32	TX packet Length in 256-byte slot Packet Counter of Port 2
00004240	TL512PC_P2	32	TX packet Length in 512-byte slot Packet Counter of Port 2
00004244	TL1024PC_P2	32	TX packet Length in 1024-byte slot Packet Counter of Port 2
00004248	TOCL P2	32	TX Octet Counter Low double word of Port 2
0000424C	TOCH_P2	32	TX Octet Counter High double word of Port 2
00004260	RDPC P2	32	RX Drop Packet Counter of Port 2

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

00004264	RFPC_P2	32	RX Filtering Packet Counter of Port 2
00004268	RUPC_P2	32	RX Unicast Packet Counter of Port 2
0000426C	RMPC_P2	32	RX Multicast Packet Counter of Port 2
00004270	RBPC_P2	32	RX Broadcast Packet Counter of Port 2
00004274	RAEPC_P2	32	RX Alignment Error Packet Counter of Port 2
00004278	RCEPC_P2	32	RX CRC(FCS) Error Packet Counter of Port 2
0000427C	RUSPC_P2	32	RX Undersize Packet Counter of Port 2
00004280	RFEPC P2	32	RX Fragment Error Packet Counter of Port 2
00004284	ROSPC_P2	32	RX Oversize Packet Counter of Port 2
00004288	RJEPC P2	32	RX Jabber Error Packet Counter of Port 2
0000428C	RPPC_P2	32	RX Pause Packet Counter of Port 2
00004290	RL64PC P2	32	RX packet Length in 64-byte slot Packet Counter of Port 2
00004294	RL65PC_P2	32	RX packet Length in 65-byte slot Packet Counter of Port 2
00004298	RL128PC_P2	32	RX packet Length in 128-byte slot Packet Counter of Port 2
0000429C	RL256PC P2	32	RX packet Length in 256-byte slot Packet Counter of Port 2
000042A0	RL512PC_P2	32	RX packet Length in 512-byte slot Packet Counter of Port 2
000042A4	RL1024PC P2	32	RX packet Length in 1024-byte slot Packet Counter of Port 2
000042A8	ROCL_P2	32	RX Octet Counter Low double word of Port 2
000042AC	ROCH P2	32	Rx Octet Counter High double word of Port 2
000042B0	RDPC_CTRL_P2	32	RX CTRL Drop Packet Counter of Port 2
000042B4	RDPC ING P2	32	RX Ingress Drop Packet Counter of Port 2
000042B8	RDPC_ARL_P2	32	RX ARL Drop Packet Counter of Port 2
000042D0	TMIB_HF_STS_P2	32	TX Port MIB Counter Half Full Status of Port 2
000042D4	RMIB_HF_STS_P2	32	RX Port MIB Counter Half Full Status of Port 2

MIB counter of port 3:

00004300	TDPC_P3	32	TX Drop Packet Counter of Port 3
00004304	TCRC_P3	32	TX CRC Packet Counter of Port 3
00004308	TUPC_P3	32	TX Unicast Packet Counter of Port 3
0000430C	TMPC_P3	32	TX Multicast Packet Counter of Port 3
00004310	TBPC_P3	32	TX Broadcast Packet Counter of Port 3
00004314	TCEC_P3	32	TX Collision Event Counter of Port 3
00004318	TSCEC P3	32	TX Single Collision Event Counter of Port 3
0000431C	TMCEC_P3	32	TX Multiple Collision Event Counter of Port 3
00004320	TDEC P3	32	TX Deferred Event Counter of Port 3
00004324	TLCEC_P3	32	TX Late Collision Event Counter of Port 3
00004328	TXCEC P3	32	TX excessive Collision Event Counter of Port 3
0000432C	TPPC_P3	32	TX Pause Packet Counter of Port 3
00004330	TL64PC_P3	32	TX packet Length in 64-byte slot Packet Counter of Port 3
00004334	TL65PC_P3	32	TX packet Length in 65-byte slot Packet Counter of Port 3
00004338	TL128PC P3	32	TX packet Length in 128-byte slot Packet Counter of Port 3
0000433C	TL256PC_P3	32	TX packet Length in 256-byte slot Packet Counter of Port 3
00004340	TL512PC P3	32	TX packet Length in 512-byte slot Packet Counter of Port 3
00004344	TL1024PC_P3	32	TX packet Length in 1024-byte slot Packet Counter of Port 3
00004348	TOCL_P3	32	TX Octet Counter Low double word of Port 3
0000434C	TOCH P3	32	TX Octet Counter High double word of Port 3
00004360	RDPC_P3	32	RX Drop Packet Counter of Port 3
00004364	RFPC P3	32	RX Filtering Packet Counter of Port 3

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 50 of 57

		1	
00004368	RUPC_P3	32	RX Unicast Packet Counter of Port 3
0000436C	RMPC_P3	32	RX Multicast Packet Counter of Port 3
00004370	RBPC_P3	32	RX Broadcast Packet Counter of Port 3
00004374	RAEPC_P3	32	RX Alignment Error Packet Counter of Port 3
00004378	RCEPC_P3	32	RX CRC(FCS) Error Packet Counter of Port 3
0000437C	RUSPC_P3	32	RX Undersize Packet Counter of Port 3
00004380	RFEPC_P3	32	RX Fragment Error Packet Counter of Port 3
00004384	ROSPC P3	32	RX Oversize Packet Counter of Port 3
00004388	RJEPC_P3	32	RX Jabber Error Packet Counter of Port 3
0000438C	RPPC P3	32	RX Pause Packet Counter of Port 3
00004390	RL64PC_P3	32	RX packet Length in 64-byte slot Packet Counter of Port 3
00004394	RL65PC P3	32	RX packet Length in 65-byte slot Packet Counter of Port 3
00004398	RL128PC_P3	32	RX packet Length in 128-byte slot Packet Counter of Port 3
0000439C	RL256PC_P3	32	RX packet Length in 256-byte slot Packet Counter of Port 3
000043A0	RL512PC P3	32	RX packet Length in 512-byte slot Packet Counter of Port 3
000043A4	RL1024PC_P3	32	RX packet Length in 1024-byte slot Packet Counter of Port 3
000043A8	ROCL P3	32	RX Octet Counter Low double word of Port 3
000043AC	ROCH_P3	32	Rx Octet Counter High double word of Port 3
000043B0	RDPC CTRL P3	32	RX CTRL Drop Packet Counter of Port 3
000043B4	RDPC_ING_P3	32	RX Ingress Drop Packet Counter of Port 3
000043B8	RDPC ARL P3	32	RX ARL Drop Packet Counter of Port 3
000043D0	TMIB HF STS P3	32	TX Port MIB Counter Half Full Status of Port 3
000043D4	RMIB_HF_STS_P3	32	RX Port MIB Counter Half Full Status of Port 3

MIB counter of port 4:

00004400	TDPC_P4	32	TX Drop Packet Counter of Port 4
00004404	TCRC_P4	32	TX CRC Packet Counter of Port 4
00004408	TUPC_P4	32	TX Unicast Packet Counter of Port 4
0000440C	TMPC_P4	32	TX Multicast Packet Counter of Port 4
00004410	TBPC_P4	32	TX Broadcast Packet Counter of Port 4
00004414	TCEC P4	32	TX Collision Event Counter of Port 4
00004418	TSCEC_P4	32	TX Single Collision Event Counter of Port 4
0000441C	TMCEC_P4	32	TX Multiple Collision Event Counter of Port 4
00004420	TDEC P4	32	TX Deferred Event Counter of Port 4
00004424	TLCEC P4	32	TX Late Collision Event Counter of Port 4
00004428	TXCEC_P4	32	TX excessive Collision Event Counter of Port 4
0000442C	TPPC_P4	32	TX Pause Packet Counter of Port 4
00004430	TL64PC P4	32	TX packet Length in 64-byte slot Packet Counter of Port 4
00004434	TL65PC_P4	32	TX packet Length in 65-byte slot Packet Counter of Port 4
00004438	TL128PC_P4	32	TX packet Length in 128-byte slot Packet Counter of Port 4
0000443C	TL256PC P4	32	TX packet Length in 256-byte slot Packet Counter of Port 4
00004440	TL512PC_P4	32	TX packet Length in 512-byte slot Packet Counter of Port 4
00004444	TL1024PC P4	32	TX packet Length in 1024-byte slot Packet Counter of Port 4
00004448	TOCL_P4	32	TX Octet Counter Low double word of Port 4
0000444C	TOCH_P4	32	TX Octet Counter High double word of Port 4
00004460	RDPC P4	32	RX Drop Packet Counter of Port 4
00004464	RFPC_P4	32	RX Filtering Packet Counter of Port 4
00004468	RUPC P4	32	RX Unicast Packet Counter of Port 4

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

0000446C	RMPC_P4	32	RX Multicast Packet Counter of Port 4
00004470	RBPC_P4	32	RX Broadcast Packet Counter of Port 4
00004474	RAEPC_P4	32	RX Alignment Error Packet Counter of Port 4
00004478	RCEPC_P4	32	RX CRC(FCS) Error Packet Counter of Port 4
0000447C	RUSPC_P4	32	RX Undersize Packet Counter of Port 4
00004480	RFEPC_P4	32	RX Fragment Error Packet Counter of Port 4
00004484	ROSPC_P4	32	RX Oversize Packet Counter of Port 4
00004488	RJEPC P4	32	RX Jabber Error Packet Counter of Port 4
0000448C	RPPC_P4	32	RX Pause Packet Counter of Port 4
00004490	RL64PC P4	32	RX packet Length in 64-byte slot Packet Counter of Port 4
00004494	RL65PC_P4	32	RX packet Length in 65-byte slot Packet Counter of Port 4
00004498	RL128PC P4	32	RX packet Length in 128-byte slot Packet Counter of Port 4
0000449C	RL256PC_P4	32	RX packet Length in 256-byte slot Packet Counter of Port 4
000044A0	RL512PC_P4	32	RX packet Length in 512-byte slot Packet Counter of Port 4
000044A4	RL1024PC P4	32	RX packet Length in 1024-byte slot Packet Counter of Port 4
000044A8	ROCL_P4	32	RX Octet Counter Low double word of Port 4
000044AC	ROCH P4	32	Rx Octet Counter High double word of Port 4
000044B0	RDPC_CTRL_P4	32	RX CTRL Drop Packet Counter of Port 4
000044B4	RDPC ING P4	32	RX Ingress Drop Packet Counter of Port 4
000044B8	RDPC_ARL_P4	32	RX ARL Drop Packet Counter of Port 4
000044D0	TMIB HF STS P4	32	TX Port MIB Counter Half Full Status of Port 4
000044D4	RMIB HF STS P4	32	RX Port MIB Counter Half Full Status of Port 4

MIB counter of port 5:

00004500	TDPC_P5	32	TX Drop Packet Counter of Port 5
00004504	TCRC_P5	32	TX CRC Packet Counter of Port 5
00004508	TUPC_P5	32	TX Unicast Packet Counter of Port 5
0000450C	TMPC_P5	32	TX Multicast Packet Counter of Port 5
00004510	TBPC_P5	32	TX Broadcast Packet Counter of Port 5
00004514	TCEC_P5	32	TX Collision Event Counter of Port 5
00004518	TSCEC_P5	32	TX Single Collision Event Counter of Port 5
0000451C	TMCEC_P5	32	TX Multiple Collision Event Counter of Port 5
00004520	TDEC P5	32	TX Deferred Event Counter of Port 5
00004524	TLCEC_P5	32	TX Late Collision Event Counter of Port 5
00004528	TXCEC_P5	32	TX excessive Collision Event Counter of Port 5
0000452C	TPPC_P5	32	TX Pause Packet Counter of Port 5
00004530	TL64PC_P5	32	TX packet Length in 64-byte slot Packet Counter of Port 5
00004534	TL65PC_P5	32	TX packet Length in 65-byte slot Packet Counter of Port 5
00004538	TL128PC_P5	32	TX packet Length in 128-byte slot Packet Counter of Port 5
0000453C	TL256PC_P5	32	TX packet Length in 256-byte slot Packet Counter of Port 5
00004540	TL512PC P5	32	TX packet Length in 512-byte slot Packet Counter of Port 5
00004544	TL1024PC_P5	32	TX packet Length in 1024-byte slot Packet Counter of Port 5
00004548	TOCL P5	32	TX Octet Counter Low double word of Port 5
0000454C	TOCH_P5	32	TX Octet Counter High double word of Port 5
00004560	RDPC_P5	32	RX Drop Packet Counter of Port 5
00004564	RFPC P5	32	RX Filtering Packet Counter of Port 5
00004568	RUPC_P5	32	RX Unicast Packet Counter of Port 5
0000456C	RMPC P5	32	RX Multicast Packet Counter of Port 5

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

00004570	RBPC_P5	32	RX Broadcast Packet Counter of Port 5
00004574	RAEPC_P5	32	RX Alignment Error Packet Counter of Port 5
00004578	RCEPC_P5	32	RX CRC(FCS) Error Packet Counter of Port 5
0000457C	RUSPC_P5	32	RX Undersize Packet Counter of Port 5
00004580	RFEPC_P5	32	RX Fragment Error Packet Counter of Port 5
00004584	ROSPC_P5	32	RX Oversize Packet Counter of Port 5
00004588	RJEPC_P5	32	RX Jabber Error Packet Counter of Port 5
0000458C	RPPC P5	32	RX Pause Packet Counter of Port 5
00004590	RL64PC_P5	32	RX packet Length in 64-byte slot Packet Counter of Port 5
00004594	RL65PC P5	32	RX packet Length in 65-byte slot Packet Counter of Port 5
00004598	RL128PC_P5	32	RX packet Length in 128-byte slot Packet Counter of Port 5
0000459C	RL256PC P5	32	RX packet Length in 256-byte slot Packet Counter of Port 5
000045A0	RL512PC_P5	32	RX packet Length in 512-byte slot Packet Counter of Port 5
000045A4	RL1024PC_P5	32	RX packet Length in 1024-byte slot Packet Counter of Port 5
000045A8	ROCL P5	32	RX Octet Counter Low double word of Port 5
000045AC	ROCH_P5	32	Rx Octet Counter High double word of Port 5
000045B0	RDPC CTRL P5	32	RX CTRL Drop Packet Counter of Port 5
000045B4	RDPC_ING_P5	32	RX Ingress Drop Packet Counter of Port 5
000045B8	RDPC ARL P5	32	RX ARL Drop Packet Counter of Port 5
000045D0	TMIB_HF_STS_P5	32	TX Port MIB Counter Half Full Status of Port 5
000045D4	RMIB HF STS P5	32	RX Port MIB Counter Half Full Status of Port 5

MIB counter of port 6:

00004600	TDPC_P6	32	TX Drop Packet Counter of Port 6
00004604	TCRC_P6	32	TX CRC Packet Counter of Port 6
00004608	TUPC P6	32	TX Unicast Packet Counter of Port 6
0000460C	TMPC_P6	32	TX Multicast Packet Counter of Port 6
00004610	TBPC P6	32	TX Broadcast Packet Counter of Port 6
00004614	TCEC_P6	32	TX Collision Event Counter of Port 6
00004618	TSCEC P6	32	TX Single Collision Event Counter of Port 6
0000461C	TMCEC_P6	32	TX Multiple Collision Event Counter of Port 6
00004620	TDEC P6	32	TX Deferred Event Counter of Port 6
00004624	TLCEC P6	32	TX Late Collision Event Counter of Port 6
00004628	TXCEC P6	32	TX excessive Collision Event Counter of Port 6
0000462C	TPPC P6	32	TX Pause Packet Counter of Port 6
00004630	TL64PC P6	32	TX packet Length in 64-byte slot Packet Counter of Port 6
00004634	TL65PC P6	32	TX packet Length in 65-byte slot Packet Counter of Port 6
00004638	TL128PC_P6	32	TX packet Length in 128-byte slot Packet Counter of Port 6
0000463C	TL256PC P6	32	TX packet Length in 256-byte slot Packet Counter of Port 6
00004640	TL512PC_P6	32	TX packet Length in 512-byte slot Packet Counter of Port 6
00004644	TL1024PC_P6	32	TX packet Length in 1024-byte slot Packet Counter of Port 6
00004648	TOCL P6	32	TX Octet Counter Low double word of Port 6
0000464C	TOCH_P6	32	TX Octet Counter High double word of Port 6
00004660	RDPC_P6	32	RX Drop Packet Counter of Port 6
00004664	RFPC_P6	32	RX Filtering Packet Counter of Port 6
00004668	RUPC_P6	32	RX Unicast Packet Counter of Port 6
0000466C	RMPC_P6	32	RX Multicast Packet Counter of Port 6

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 53 of 57

00004670	RBPC_P6	32	RX Broadcast Packet Counter of Port 6
00004674	RAEPC_P6	32	RX Alignment Error Packet Counter of Port 6
00004678	RCEPC_P6	32	RX CRC(FCS) Error Packet Counter of Port 6
0000467C	RUSPC_P6	32	RX Undersize Packet Counter of Port 6
00004680	RFEPC_P6	32	RX Fragment Error Packet Counter of Port 6
00004684	ROSPC_P6	32	RX Oversize Packet Counter of Port 6
00004688	RJEPC_P6	32	RX Jabber Error Packet Counter of Port 6
0000468C	RPPC P6	32	RX Pause Packet Counter of Port 6
00004690	RL64PC_P6	32	RX packet Length in 64-byte slot Packet Counter of Port 6
00004694	RL65PC P6	32	RX packet Length in 65-byte slot Packet Counter of Port 6
00004698	RL128PC_P6	32	RX packet Length in 128-byte slot Packet Counter of Port 6
0000469C	RL256PC P6	32	RX packet Length in 256-byte slot Packet Counter of Port 6
000046A0	RL512PC_P6	32	RX packet Length in 512-byte slot Packet Counter of Port 6
000046A4	RL1024PC_P6	32	RX packet Length in 1024-byte slot Packet Counter of Port 6
000046A8	ROCL P6	32	RX Octet Counter Low double word of Port 6
000046AC	ROCH_P6	32	Rx Octet Counter High double word of Port 6
000046B0	RDPC CTRL P6	32	RX CTRL Drop Packet Counter of Port 6
000046B4	RDPC ING P6	32	RX Ingress Drop Packet Counter of Port 6
000046B8	RDPC ARL P6	32	RX ARL Drop Packet Counter of Port 6
000046D0	TMIB HF STS P6	32	TX Port MIB Counter Half Full Status of Port 6
000046D4	RMIB HF STS P6	32	RX Port MIB Counter Half Full Status of Port 6

3 Annex

3.1 User Port

The user port is the default VLAN port. The incoming VLAN-tagged frame is stripped by the outer tag despite the following inner tags. Per untagged or priority-tagged frame, PVID is treated as VID1 tag. At the same time, VID1 is used to look for VLAN table to get the FID and Service tag for VID0. When a new Source MAC address is learned, the VID1 will also be learned on the MAC table.

On the TX_CTRL side, each frame carries 2*N-port egress control bits on per-port based. Bit0 indicates whether this frame carries VID 0 or not; similarly, Bit.1 is for VID1. Once "Consistent tag" is set, the egress tag format will follow the ingress tag format.

VLAN Tag Process on User Port

3.2 Translation Port

The translation port is designated for 1:1 or N:1 VLAN aggregation according to CHINA TELECOM EPON requirement. When an incoming frame is received on the translation port, the corresponding custom VID will be found from MAC table, and then the CVID will be the VID for VLAN table.

In the uploading direction, several custom VIDs can be translated into one service VID from the VLAN table which is carried on VID0. When this frame is transmitted from the translation port, etag_ctrl[1:0] will be 2'b01 (Swap), and the service VID will appear on the egress frame.

VLAN Tag Process on Translation Port

3.3 Transparent Port

When the port is chosen as transparent port, the VLAN tags on the incoming will be ignored and treated as un-tagged frames. VID0 and VID1 will store PVID as the default VID which is used to look up the VLAN table. On the egress side, TX_CTRL can accept "UNTAG" control to send the original frame.

VLAN Tag Process on Transparent Port

3.4 Security mode

Enable 802.1Q VLAN for all the received frames.

Discard received frame due to ingress membership violation (interrupt CPU)

Discard received frames once if VID is missed on the VLAN table (interrupt CPU)

MediaTek Confidential

© 2013 - 2014 MediaTek Inc.

Page 56 of 57

3.5 Check mode

Enable 802.1Q function for all the received frames.

Don't discard received frame due to ingress membership violation

Discard received frames once if VID is missed on the VLAN table (interrupt CPU)

3.6 Fallback mode

Enable 802.1Q function for all the received frames.

Don't discard received frame due to ingress membership violation

Frames whose VID is missed on the VLAN table will be filtered by the Port Matrix Member

3.7 Port Matrix mode

802.1Q function disables (VLAN Security and VLAN Filter Table) Frames filtered by the Port Matrix Member

