Bayesian Fusion of Tree Ring Data and Forest Inventory Data to Improve Forecasts of Tree Growth, C Sequestration Variability, and Climate Sensitivity

Kelly A. Heilman^{1,2}, Andria Dawson³, Michael C. Dietze⁴, Margaret E.K. Evans⁵, Grant M. Domke¹

¹USDA Forest Service, Northern Research Station FIA, ²ORAU, ³Mount Royal University, ⁴Boston University, ⁵University of Arizona

Motivation

- The US forest C sink has been declining since at least 1990
- Estimation of interannual variability and attribution of drivers in the forest C sink strength is important for assessing progress and informing mitigation strategies
- Historic National Forest Inventories (NFIs) provide a long-term perspective on drivers of change

Objective: Combine tree remeasurements from early US NFIs with tree ring data to forecast tree size over time, building "enhanced NFI" estimates with interannual variability.

Data from historic NFIs: a long-term perspective on drivers of change

Bayesian State-Space Model of Tree Growth

Process model $diameter_{i,t} = diameter_{i,t-1} + increment_{i,t}$ $increment_{i.t} = lognormal(\mu_{i,t}, \sigma_{additive})$ $\mu_{i,t} = \alpha_t + \beta_{1...a} * annually varying_{t,a} +$ $\beta_{1...s} * spatially varying_s$

Predictors of growth included in current version

Priors

In-sample

Data models

$y_{i,t} \sim N(inc_{i,t}, \sigma_{inc})T(0,)$ $z_{i,t} \sim N(x_{i,t}, \sigma_{dbh})$

 $\beta \sim N(0,5)$ $\alpha_t \sim N(0, \sigma_{TREE})$

 $\sigma_{TREE} \sim cauchy(0,1)$ $\sigma_{inc} \sim cauchy(0,1)$ $\sigma_{add} \sim cauchy(0,1)$ $\sigma_{dbh} = 0.5$

Software: STAN via rstan in Cyverse DE

Growth Model Validation with Site Tree Data

Species	SPCD model	R-squared		
		In-Sample Diameter	In-Sample Increment	Held-0
Virginia pine	132 model.7	1.0000	0.9974	0.64
bigtooth aspen	743 model.5	1.0000	0.9980	0.57
paper birch	375 model.7	1.0000	0.9890	0.52
black cherry	762 model.6	1.0000	0.9971	0.42
white ash	541 model.5	0.9999	0.9898	0.3
red maple	316 model.3	1.0000	0.9948	0.3
northern red oak	833 model.3	0.9999	0.9835	0.34
yellow birch	371 model.6	1.0000	0.9894	0.34
American beech	531 model.7	1.0000	0.9890	0.23
hickory spp.	400 model.7	0.9999	0.9716	0.10
chestnut oak	832 model.7	0.9995	0.9419	0.0
eastern hemlock	261 model.5	0.9999	0.9762	0.02
yellow-poplar	621 model.5	0.9999	0.9934	0.0
sugar maple	318 model.3	0.9996	0.9783	0.0
white oak	802 model.5	0.9998	0.9637	0.0
red spruce	97 model.6	0.9999	0.9702	0.0

Table 1. Fit statistics for species-specific growth models

(top), and diameter (bottom) with 95% Credible Intervals for a red oak tree.

Further state-space model development

- Improvements to QA/QC of our dataset (i.e., crossdating, filtering)
- Exploration and inclusion of additional drivers, especially disturbance agent data
- Exploration of interaction effects and/or different function forms
- Validation and simulation exercises
 - Hold out full tree ring time-series?

References:

Tree core data

1, Smith, R. B . et al. (1990). Res. Pap. NE-6372 2, Canham, C. D. et al (2018) Ecosphere

Nitrogen deposition data

3, Byrnes, D. K., Meter, K. J. V., & Basu, N. B. (2020). Global Biogeochemical Cycles, 34(9).

Disturbance data

- 4. USDA Forest Service Lymantria dispar Digest 2.1.01 released on 1/12/2022. 5. HWA National Initiative. Distribution Maps. Retrieved May 16, 2025, from
- https://hemlock-woolly-adelgid-national-initiativegmsts.hub.arcgis.com/pages/distribution-maps
- 6. Spruce Budworm records compiled from regional USFS Forest Health

7. Cale and Morin. "County-level detection dates for beech scale in Canada and the United States", http://dx.doi.org/10.7939/DVN/10835 V1

Interannual estimates of growth and diameter

- Prediction & Validation with model posteriors
- Data Assimilation (DA) of tally trees with ssm model posteriors (STAN, not updating parameters)
- Full Data Assimilation with re-estimation of parameters

Posterior prediction of tally tree diameter may lead to biases in tree diameter and increment estimates for non-cored, tally trees

Fig. 3. Single tree examples of how posterior predictions from the first tally tree measurement may strongly underestimate (left) or overestimate (right) the tally tree remeasurement.

Data Assimilation and prediction within STAN reduces bias in estimates & preserves

example NFI plot in New Hampshire using DA within STAN modelling framework

From tree to plot to population

Fig. 5. Estimated AGB (top) and AGB increment (bottom) by species (left), and total stand (right) for an example NFI plot in New Hampshire using DA within STAN modelling framework ecological drivers of species and standscale AGB & AGBI trends