

# Machine Learning

Prof. Adil Khan

#### Objectives

- 1. A quick recap of last lecture
- 2. Software defect prediction
  - predicting the number of defects
  - View this task in the context of ML
- 3. What is linear regression? What is its objective function? How is it motivated?
- 4. Deriving closed-form solution for linear regression

#### Recap (1)

#### What is Machine Learning?

- A subfield of artificial intelligence
- Computer programs that <u>improve</u> their <u>performance</u> at some <u>task</u> through experience
- Examples: object recognition, spam detection, disease prediction, weather forecasting, etc.

#### **Goal of Learning**

· Learning or inferring a "functional" relationship between predictors and target

$$D = \{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^N$$

$$x \in \mathbb{R}^d$$

$$\widehat{f} \approx f$$
 Goal of learning

$$y = f(x)$$

#### **Parametric Models**

$$y = f(x; parameters)$$
  
 $y = f(x; w)$ 

$$y = f(x; w_0, w_1) = w_0 + w_1 x$$

#### **Classification and Regression**

| Country | Age | Salary | Purchased |
|---------|-----|--------|-----------|
| France  | 44  | 72000  | No        |
| Spain   | 27  | 48000  | Yes       |
| Germany | 30  | 54000  | No        |
| Spain   | 38  | 61000  | No        |
| Germany | 40  |        | Yes       |
| France  | 35  | 58000  | Yes       |
| Spain   |     | 52000  | No        |
| France  | 48  | 79000  | Yes       |
| Germany | 50  | 83000  | No        |
| France  | 37  | 67000  | Yes       |

| YearsExperience | Salary |
|-----------------|--------|
| 1.1             | 39343  |
| 1.3             | 46205  |
| 1.5             | 37731  |
| 2               | 43525  |
| 2.2             | 39891  |
| 2.9             | 56642  |
| 3               | 60150  |
| 3.2             | 54445  |
| 3.2             | 64445  |

Classification

Regression

### Recap (2)

#### How do we implement it?



#### **Model Complexity or Flexibility**

MSE<sub>Te</sub>

 $MSE_{Tr}$ 



## Underfitting and Overfitting







#### Software Defects

- Also known as
  - Bugs
  - Problems
  - Error
  - Anomaly
  - **...**
- We say a software has defects if
  - It does something that it should not
  - It does not do something that it should
  - **...**

#### **Problem Sources**

- Requirements definition
- Design
- Implementation
- Inadequate testing
- •

#### Adverse Effects of Defected Software

- Healthcare: loss of lives, breech of data, etc.
- Communications: Loss of data, etc.
- **Defense:** Misidentification of the target, etc.
- Electric power: power outages, injuries, etc.
- Money management: fraud, shutdown of stockexchange, etc.
- •

#### Bug-free Software

 Can you gaurantee that the software systems that you or your team will develop would be bug-free?

- Even if we will be extra careful, still it is extremely hard to make software bug-free because
  - As softwares get more features and supports more platform it becomes increasingly difficult to make it bug-free

#### Detection vs. Prediction

- Software defect detection
  - Identify defects
  - Fix them

But usually the bugs found later cost more to fix

- Software defect prediction
  - Advance information on likely defects
  - .. Number of defects ..

#### You Now Know ...

- 1. What are software bugs?
- 2. What are their sources?
- 3. What are their adverse effects?
- 4. How unlikely is it to create bug-free software?
- 5. How important is it to be able to predict defect's related information?
- Now, let's see how can we predict *number of defects* in a software using machine learning

# Predicting Number of Defects From the Point of view of ML

Given a computer program, let's say  $p_i$ 

- 1. What will be the  $x_i$ ?
- 2. What will be the  $y_i$ ?

Predicting Number of Defects From the Point of view of ML

Thus, the goal of learning is to estimate following functional relationship

# of defects in 
$$p_i = f(features \ of \ p_i)$$

$$y_i \qquad x_i$$

#### Let's take a detour!

#### Equation of a Straight Line



#### Different Slopes and Intercepts



#### Back to our Regression Problem

# of defects in  $p_i = f(features or behavior of <math>p_i)$ 

- Let's suppose there is just one feature,
- Then we can write the above expression as

$$y = w_1 x + w_0$$

- Which is the same equation as that of a straight line
- And that is why, we call it "Simple Linear Regression"

#### In General, Linear Regression

$$y = w_0 + w_1 x_1 + w_2 x_2 + \cdots w_p x_p$$

- The response variable is quantitative
- The relationship between response and predictors is assumed to be linear in the inputs
- Thus we are restricting ourselves to a hypothesis space of linear functions

#### Why Linear Regression

Although it may seem overly simplistic, linear regression is extremely useful

- Easy for inferencing
- Serves as a good jumping point for more powerful and complex approaches

#### How Do We Train Linear Regression Model?



#### Mean Squared Error (MSE)

$$f(x_i) = w_0 + w_1 x_i$$

$$e_i = y_i - f(x_i)$$

$$\mathcal{L}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

We need to find the value of parameters that minimize this cost or loss function.

## Objective Function

$$f(x_i) = w_0 + w_1 x_i$$

$$e_i = y_i - f(x_i)$$

$$\mathcal{L}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

$$\underset{w_0, w_1}{\operatorname{argmin}} \mathcal{L}(w_0, w_1)$$

The term argmin is the shorthand for "find the argument that minimizes ... "

Let's take a detour, again!

#### Derivative

- The derivate is the heart of calculus
- The derivative of a function of a single variable is defined as

$$f'(x) = \lim_{dx \to 0} \frac{f(x + dx) - f(x)}{dx}$$

But the question is, what can we use it for?

#### Use of Derivative



# What will be f'(x) at this point?



#### Maximum and Minimum



| Point <i>x</i> | f' slightly left to $x$ | f' at $x$ | f' slightly right to $x$ |
|----------------|-------------------------|-----------|--------------------------|
| Maximum •      | > 0                     | 0         | < 0                      |
| Minimum •      | < 0                     | 0         | > 0                      |

#### Convex vs Non-convex



Unique minimum – its global minimum



Multiple minimum points – local and global minimum

### Back to Our Objective Function

$$\mathcal{L}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$



Thus, it is convex, at the unique minimum of our loss function, its "partial" derivative with respect to  $w_0$  and  $w_1$  will be zero!

#### The Least Square Solution

$$\mathcal{L}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

- 1. Compute partial derivatives of the loss function with respect to  $w_0$  and  $w_1$
- 2. Set them to 0
- 3. And solve for  $w_0$  and  $w_1$

## The Least Square Solution (2)

$$\mathcal{L}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} \left( w_1^2 x_i^2 + 2w_1 x_i (w_0 - y_i) + w_0^2 - 2w_0 y_i + y_i^2 \right)$$

- Let's take the partial derivatives of the loss function with respect to  $w_0$ ,
- We can start by removing the terms that do not include  $w_0$

$$\frac{1}{n} \sum_{i=1}^{n} (w_0^2 + 2w_1 x_i w_0 - 2w_0 y_i)$$

## The Least Square Solution (3)

$$\frac{1}{n} \sum_{i=1}^{n} (w_0^2 + 2w_1 x_i w_0 - 2w_0 y_i)$$

• Rearrange the terms not indexed by n outside of the summation,

$$= w_0^2 + 2w_1w_0 \frac{1}{n} \left( \sum_{i=1}^n x_i \right) - 2w_0 \frac{1}{n} \left( \sum_{i=1}^n y_i \right)$$

**Basic Properties and Formulas** 

1. (c f)' = c f'(x)

 $\frac{d}{dx}(x)=1$ 

 $\frac{d}{dx}(\sin x) = \cos x$ 

 $\frac{d}{dx}(\cos x) = -\sin x$ 

 $\frac{d}{dx}(\tan x) = \sec^2 x$ 

 $\frac{d}{dx}(\sec x) = \sec x \tan x$ 

2.  $(f \pm g)' = f'(x) \pm g'(x)$ 

3. (fg)' = f'g + fg' -Product Rule

4.  $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$  - Quotient Rule

If 
$$f(x)$$
 and  $g(x)$  are differentiable functions (the derivative exists)

If 
$$f(x)$$
 and  $g(x)$  are differentiable functions (the derivative exists), c and n

If 
$$f(x)$$
 and  $g(x)$  are differentiable functions (the derivative exists)

If 
$$f(x)$$
 and  $g(x)$  are differentiable functions (the derivative exists)

formulas ative exists), 
$$c$$
 and  $n$  are any real numbers,

 $\frac{d}{dx}(a^x) = a^x \ln(a)$ 

 $\frac{d}{dx}(\ln(x)) = \frac{1}{x}, x > 0$ 

 $\frac{d}{dx}(\ln|x|) = \frac{1}{x}, x \neq 0$ 

 $\frac{d}{dx} (\log_a(x)) = \frac{1}{x \ln a}, x > 0$ 

 $\frac{d}{dx}(\mathbf{e}^x) = \mathbf{e}^x$ 

If 
$$f(x)$$
 and  $g(x)$  are differentiable functions (the derivative exists),  $c$  and  $n$  are any real numbers,

5. 
$$\frac{d}{dr}(c) = 0$$

$$5. \quad \frac{1}{dx}(c) = 0$$

$$3. \quad \frac{d}{dx}(c) = 0$$

**Common Derivatives** 

 $\frac{d}{dx}(\csc x) = -\csc x \cot x$ 

 $\frac{d}{dx}(\cot x) = -\csc^2 x$ 

 $\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$ 

 $\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$ 

 $\frac{d}{dx}\left(\tan^{-1}x\right) = \frac{1}{1+x^2}$ 

6. 
$$\frac{d}{dx}(x^n) = n x^{n-1} -$$
Power Rule

7.  $\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$ 

This is the Chain Rule

## The Least Square Solution (4)

$$w_0^2 + 2w_1w_0\frac{1}{n}\left(\sum_{i=1}^n x_i\right) - 2w_0\frac{1}{n}\left(\sum_{i=1}^n y_i\right)$$

• Now, Let's take the partial derivative with respect to  $w_0$ ,

$$\frac{\partial \mathcal{L}}{\partial w_0} = 2w_0 + 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i \right) - 2\frac{1}{n} \left( \sum_{i=1}^n y_i \right)$$

## The Least Square Solution (5)

$$\frac{\partial \mathcal{L}}{\partial w_0} = 2w_0 + 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i \right) - 2\frac{1}{n} \left( \sum_{i=1}^n y_i \right)$$

Now equate the partial derivative to zero,

$$2w_0 + 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i \right) - 2\frac{1}{n} \left( \sum_{i=1}^n y_i \right) = 0$$

$$2w_0 = 2\frac{1}{n} \left( \sum_{i=1}^n y_i \right) - 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i \right)$$

## The Least Square Solution (6)

$$2w_0 = 2\frac{1}{n} \left( \sum_{i=1}^n y_i \right) - 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i \right)$$

$$w_0 = \frac{1}{n} \left( \sum_{i=1}^n y_i \right) - w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i \right)$$

$$w_0 = \overline{y} - w_1 \overline{x}$$

# The Least Square Solution (7)

$$w_0 = \overline{y} - w_1 \overline{x}$$

• Now, we must do the same process for  $w_1$ 

## The Least Square Solution (8)

$$\mathcal{L}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} \left( w_1^2 x_i^2 + 2w_1 x_i (w_0 - y_i) + w_0^2 - 2w_0 y_i + y_i^2 \right)$$

- We will now take the partial derivatives of the loss function with respect to  $w_1$ ,
- We can start by removing the terms that do not include  $w_1$

$$\frac{1}{n} \sum_{i=1}^{n} \left( w_1^2 x_i^2 + 2w_1 x_i w_0 - 2w_1 x_i y_i \right)$$

## The Least Square Solution (9)

$$\frac{1}{n} \sum_{i=1}^{n} \left( w_1^2 x_i^2 + 2w_1 x_i w_0 - 2w_1 x_i y_i \right)$$

• Rearrange the terms not indexed by n outside of the summation,

$$= w_1^2 \frac{1}{n} \left( \sum_{i=1}^n x_i^2 \right) + 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i \left( w_0 - y_i \right) \right)$$

## The Least Square Solution (10)

$$w_1^2 \frac{1}{n} \left( \sum_{i=1}^n x_i^2 \right) + 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i \left( w_0 - y_i \right) \right)$$

• Now, Let's take the partial derivative with respect to  $w_1$ ,

$$\frac{\partial \mathcal{L}}{\partial w_1} = 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i^2 \right) + 2 \frac{1}{n} \left( \sum_{i=1}^n x_i \left( w_0 - y_i \right) \right)$$

## The Least Square Solution (11)

$$w_1^2 \frac{1}{n} \left( \sum_{i=1}^n x_i^2 \right) + 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i \left( w_0 - y_i \right) \right) \qquad \mathbf{w_0} = \overline{\mathbf{y}} - \mathbf{w_1} \overline{\mathbf{x}}$$

• Now, Let's take the partial derivative with respect to  $w_1$ ,

$$\frac{\partial \mathcal{L}}{\partial w_1} = 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i^2 \right) + 2 \frac{1}{n} \left( \sum_{i=1}^n x_i \left( \overline{y} - w_1 \overline{x} - y_i \right) \right)$$

## The Least Square Solution (12)

$$\frac{\partial \mathcal{L}}{\partial w_1} = 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i^2 \right) + 2 \frac{1}{n} \left( \sum_{i=1}^n x_i \left( \overline{y} - w_1 \overline{x} - y_i \right) \right)$$

Let's expand the right hand side

$$= 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i^2 \right) + 2 \frac{1}{n} \left( \sum_{i=1}^n x_i \right) - 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i \right) - 2 \frac{1}{n} \left( \sum_{i=1}^n x_i y_i \right)$$

## The Least Square Solution (13)

$$= 2w_1 \frac{1}{n} \left( \sum_{i=1}^n x_i^2 \right) + 2\overline{y} \frac{1}{n} \left( \sum_{i=1}^n x_i \right) - 2w_1 \overline{x} \frac{1}{n} \left( \sum_{i=1}^n x_i \right) - 2\frac{1}{n} \left( \sum_{i=1}^n x_i y_i \right)$$

We can rewrite it as

$$=2w_1\overline{x^2}+2\overline{y}\,\overline{x}-2w_1\overline{x}\,\overline{x}-2\overline{xy}$$

$$=2w_1\left(\overline{x^2}-(\overline{x})^2\right)+2\overline{y}\,\overline{x}-2\overline{xy}$$

# The Least Square Solution (14)

$$\frac{\partial \mathcal{L}}{\partial w_1} = 2w_1 \left( \overline{x^2} - (\overline{x})^2 \right) + 2\overline{y} \, \overline{x} - 2\overline{xy}$$

• Let's set it to 0 and solve for  $w_1$ 

$$2w_1\left(\overline{x^2} - (\overline{x})^2\right) = 2\overline{xy} - 2\overline{y}\,\overline{x}$$

$$w_1\left(\overline{x^2} - (\overline{x})^2\right) = \overline{xy} - \overline{y}\,\overline{x}$$

$$w_1 = \frac{\overline{xy} - \overline{x}\,\overline{y}}{\overline{x^2} - (\,\overline{x}\,)^2}$$

## The Least Square Solution (Summary)

$$\mathcal{L}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

$$w_0 = \overline{y} - w_1 \overline{x}$$

$$w_1 = \frac{\overline{xy} - \overline{x}\,\overline{y}}{\overline{x^2} - (\,\overline{x}\,)^2}$$

#### Alternatives

- You just learned how to estimate the parameters of LR using the method of least square
- But there are other ways to do this, especially when we are dealing with data that cannot fit in the memory
- One such, and a very important method, is Gradient Descent

## **Extending Linear Regression**

# Non-Linear Relationship between Predictors and Response





# Non-Linear Relationship between Predictors and Response (2)



## Polynomial Regression

- Using the same framework that we learned, to fit a family of more complex models through a <u>transformation of predictors</u>
- Linear model has the following form

$$y = w_0 + w_1 x$$

- It is linear in both predictor (x) and parameters  $(w_0, w_1)$
- Let's keep it linear in parameters, but make it quadratic in predictors

## Polynomial Regression (2)

• That is,

$$y = w_0 + w_1 x + w_2 x^2$$

More generally,

$$y = w_0 + w_1 x + w_2 x^2 + \dots + w_d x^d$$

Do not forget, "the model is still linear in parameters"

## Polynomial Regression (3)



### Summary

- Importance of prediting (number of) defects in software
- Analyzing the task from the point of view of ML to see that it's a regression task
- Formulating the learning objective
- Solving the objective
  - Least Square Solution
- Next Lecture:
  - Gradient Descent
  - Extending the linear model to fit more complex data