Phase 1 Documentation – Group 20

Project Title: Remote Work and Urban Traffic Reduction

Course: Introduction of Data Science

Group: 20

Members:

Amina Kainat	(SP23-BCS-018)	į
--------------	----------------	---

Fizza Ali (SP23-BCS-043)

Laiba Ajmal (SP23-BCS-060)

Zainab Naeem (SP22-BCS-179)

1. Dataset Description:

This project explores the relationship between remote work adoption and urban traffic congestion reduction. Two datasets were used:

- 1. Traffic Dataset (TomTom Traffic Index): Contains city-level traffic congestion metrics before and after remote work adoption.
 - city: City name
 - year: Year of observation
 - pre remote congestion: Congestion before remote work
 - post remote congestion: Congestion after remote work
 - congestion index: Combined congestion index
- **2.** Remote Work Dataset (National Remote Work Surveys): Captures the share of remote workers and commuting time saved.
 - city: City name
 - year: Year of survey
 - remote work share: Proportion of remote workers
 - avg_commute_time_saved: Average daily commute time saved (minutes)

The datasets were merged on city and year for comparative analysis.

2. Challenges Faced

- Missing values in traffic readings due to incomplete records.
- Duplicate rows for overlapping city-year entries.
- Inconsistent city identifiers and year formats.
- Alignment issues between datasets with different time ranges.

3. Data Cleaning Steps

All cleaning operations were performed using pandas in Python.

- 1. Imported datasets using pd.read csv().
- 2. Replaced missing values with mean for traffic data and zero for remote work data.
- 3. Removed duplicates using drop duplicates().
- 4. Standardized city identifiers and year formats for merging.

4. Data Transformation Steps

Several derived variables were created:

1. Traffic Reduction Percentage = ((pre remote congestion - post remote congestion)

/ pre remote congestion) * 100

- **2. Productivity Ratio** = remote_work_share × avg_commute_time_saved
- **3.** Comparison Index = Normalized value of traffic reduction percentage (0–1 scale)
- 4. Datasets merged on city and year using inner join.
- 5. Final dataset saved as cleaned dataset.csv.

5. Output Summary

The final cleaned dataset (cleaned_dataset.csv) includes: city, year, traffic reduction percent, productivity ratio, and comparison index.

city	year	traffic reduction percent	productivity_ratio	comparison index
London	2021	12.45	23.6	0.74
New	2021	9.80	20.2	0.59
York				

6. Key Takeaways

- Data cleaning and transformation ensure reliable analysis for later phases.
- Missing data imputation and duplicate removal improved consistency.
- Derived variables enable insights into the link between remote work and traffic reduction.
- The cleaned dataset will be used in Phase 2 (EDA & Visualization).