Analysis of power generation across USA in 2021

Srishti Mutha, Sokna Kry, Samriddha Ghosh, Nagarajan Vaidya Subramanian

Spring 2023

LIST OF TABLES:

- Table 1:Summary Statistics for Variables per Region
- Table 2: Summary Statistics of Pollutants Emitted per Region
- Table 3: Summary Statistics of Energy Sources Per Region

LIST OF FIGURES:

- Figure 1: Distribution of Energy Sources by Region in 2021
- Figure 2: Distribution of different renewable energy generation sources across BEA regions of USA in 2021
- Figure 3: Plot of total CO2 and CO2e emissions across BEA regions of USA in 2021
- Figure 4: Carbon dioxide emissions in each BEA region in the USA in 2021
- Figure 5: Sulfur dioxide emissions in each BEA region in the USA in 2021
- Figure 6: Nitrogen oxide emissions in each BEA region in the USA in 2021
- Figure 7: Carbon dioxide equivalent emissions in each BEA region in the USA in 2021
- Figure 8: Linear Regression plot of Annual Net Energy Generation and CO2 emissions
- Figure 9: Linear Regression plot of Annual Net Energy Generation and CO2e emissions
- Figure 10: Linear Regression plot of Annual Net Energy Generation and SO2 emissions
- Figure 11: Linear Regression plot of Annual Net Energy Generation and NOX emissions
- Figure 12: Plot showing the correlation between explanatory and response variables for Model 1
- Figure 13: Plot showing the correlation between explanatory and response variables for Model 2
- Figure 14: Plot showing the correlation between explanatory and response variables for Model 3

Rationale and Research Questions

The US has been transitioning towards a greater reliance on renewable energy sources such as wind, solar, hydro power and many more technologies. Analyzing the e-Grid data can provide insights into the distribution of clean energy generation across US, performance of these renewable energy sources, their impact on the electricity generation and energy markets throughout USA, and whether they are meeting the expectations of energy companies, policymakers, and consumers.

This project aims to use e-GRID 2021 (published January 2023) to answer the following research questions:

- 1. What is the distribution of electricity generation across the Bureau of Economic Analysis regions in the US, from both the renewable and non-renewable energy sources?
- 2. What is the distribution of generation from each type of renewable and non-renewable energy sources across Bureau of Economic Analysis regions in the US?
- 3. Greenhouse gas emissions across Bureau of Economic Analysis regions in the US from electricity generators.
- 4. Summary statistics of generators across the Bureau of Economic Analysis regions in the US, in terms of fuel source, nameplate capacity, annual net generation, and pollutants emitted?
- 5. Is there correlation between energy generators and pollutants emitted?

These analyses will be performed by aggregating the states into categories as done by the Bureau of Economic Analysis which divides the states into 8 regions. We have added an additional "Non-Contiguous" category to represent states in the e-GRID dataset that are not part of mainland USA.

Dataset Information

The Emissions & Generation Resource Integrated Database (e-GRID) is a comprehensive source of data published by the Environment Protection Agency of the US Government. This database describes various technical and environmental parameters of all electric power plants in the US, and is published annually. It includes emissions, emission rates, generation, heat input, resource mix, and many other attributes. eGRID is typically used for greenhouse gas registries and inventories, carbon footprints, consumer information disclosure, emission inventories and standards, power market changes, and avoided emission estimates. In our project we have used the e-Grid 2021 data-set which was released on January 30th, 2023. We have also made use of the USA EPA Census Data and CDC - Centers for Disease Control and Prevention for 2021.

Exploratory Analysis

We generated some summary statistics of variables like the installed capacity and annual generation per region (Table 1), pollutants and their CO_2 equivalents per region (Table 2), and lastly about the distribution of annual generation across different renewable and non-renewable sources of energy (Table 3). These tables are available in the Appendix.

Analysis

Question 1: What is the distribution of electricity generation across the Bureau of Economic Analysis regions in the US, from both the renewable and non-renewable energy sources? The first research question focuses on the distribution of electricity generation from renewable and non-renewable energy sources among the Bureau of Economic Analysis (BEA) regions in the United States. The BEA divides the United States into eight regions, which are:

- 1. New England
- 2. Mideast
- 3. Great Lakes
- 4. Plains
- 5. Southeast
- 6. Southwest
- 7. Rocky Mountain
- 8. Far West

The purpose of this question is to gain a deeper understanding of the power production in different regions of the US and the types of energy sources used. This data can aid policymakers and analysts in identifying potential opportunities to increase the use of renewable energy sources and decrease reliance on non-renewable sources, such as coal and natural gas, which are known to contribute to greenhouse gas emissions and climate change. Additionally, the data can assist companies and investors in locating potential markets for renewable energy products and services.

In order to determine the distribution of electricity generation across the BEA regions in the USA, the states were grouped together based on their respective regions. The state-wise annual electricity generation was aggregated to obtain the region-wise annual generation. To better visualize and compare the electricity generation across different regions, we graphed the data in bar plots.

Figure 1: Distribution of Energy Sources by Region in 2021

Question 2: What is the distribution of generation from each type of renewable energy sources across Bureau of Economic Analysis regions in the US? The second research question looks deeper into the distribution of electricity generation from each type of renewable energy source across the BEA regions of the US. Renewable energy sources include solar, wind, hydro, geothermal, and biomass.

The purpose of this question is to gain a better understanding of how different regions in the United States are utilizing various renewable energy sources for electricity generation. The data obtained can be useful in identifying the potential for growth in the use of renewable energy sources in certain regions and identifying areas where investments in renewable energy infrastructure and technology may be needed. It can be crucial data for policymakers to develop policies and regulations that encourage the growth of specific renewable energy across USA. The potential opportunities for growth and expansion of renewable energy plants into regions that have high potential can also be evaluated using this data. Additionally, this information can be useful for identifying regions where investments in renewable energy infrastructure could be profitable.

In order to determine the distribution of electricity generation from each type of renewable energy sources across BEA regions in the US, the states were grouped together based on their respective regions. The state annual generation values for each type of renewable source were aggregated to obtain the annual electricity generation. This enabled us to obtain the total electricity generation for each type of renewable energy source for each region, annually.

Figure 2: Distribution of different renewable energy generation sources across BEA regions of USA in 2021

Question 3: Greenhouse gas emissions across Bureau of Economic Analysis regions in the US from electricity generators. This question delves into greenhouse gas emissions from electricity generators across the BEA regions in the US. Greenhouse gases, such as carbon dioxide, methane, nitrous oxide, sulfur dioxide and many more are released into the atmosphere as a result of the combustion of fossil fuels for electricity generation, which contributes to climate change.

The purpose of this question is to understand the level of greenhouse gas emissions from electricity generation in each region and to identify areas where there may be opportunities to reduce greenhouse gas emissions.

Analysts can make use of this data to gain insights into the sources and levels of greenhouse gas emissions from electricity generators in each region and help in the development of strategies for reducing emissions. Policymakers across USA need this data to comprehend the necessity to develop policies and regulations that encourage the transition to clean energy sources and the reduction of greenhouse gas emissions from electricity generators, such as carbon pricing or cap-and-trade programs. This information is also crucial to identify regions where investments in renewable energy infrastructure, technology and operations may impact the environment.

In order to determine the greenhouse gas emissions across BEA regions in the US from electricity generators, we generated the stacked barplot below which shows the CO_2 and CO_2 -equivalents emissions for the different regions in the US. We see that the South-East region has the highest emissions which can be correlated with the fact that this region has the greatest fraction of its electricity coming from non-renewable sources. New England and Non-Contiguous regions have the lowest emissions because of their low annual electricity generation.

Figure 3: Plot of total CO2 and CO2e emissions across BEA regions of USA in 2021

Question 4: Summary statistics of generators across the Bureau of Economic Analysis regions in the US, in terms of fuel source, nameplate capacity, annual net generation, and pollutants emitted. The summary statistics on electricity generators across the BEA regions in the United States covers information such as the type of fuel source used, the nameplate capacity of the generators, the annual net generation of electricity, and the amount of pollutants emitted. We performed some statistical analyses to obtain more insights. Boxplots are used for summary statistics of this question as they are the most appropriate visualization to understand the distribution of annual net generation of electricity in different regions and the pollutants. They provide a reliable way to compare medians, ranges, spread of data, and identify potential outliers, and are more effective at communicating this information than violin plots or scatter plots.

Looking at the plots for each region, we can see that the highest median of pollutants is in the Great Lakes region, while the lowest is in New England. Additionally, there is a potential outlier in the data for the South West region.

obtain a comprehensive understanding of the electricity generation infrastructure across different regions in the United States, to facilitate the identification of opportunities for investment in renewable energy infrastructure, evaluate the environmental impact of electricity generation in each region, and to develop policies and regulations that encourage the reduction of harmful emissions.

Figure 4: Carbon dioxide emissions in each BEA region in the USA in 2021

Figure 5: Sulfur dioxide emissions in each BEA region in the USA in 2021

Figure 6: Nitrogen oxide emissions in each BEA region in the USA in 2021

Figure 7: Carbon dioxide equivalent emissions in each BEA region in the USA in 2021

Question 5: Is there correlation between energy generation and pollutants emitted? We wanted to understand the correlation between electricity generation and the quantity of different pollutants that are emitted. First, we developed linear regression models to understand the impact that electricity generation has on the emissions of different pollutants (so four linear regression models with one explanatory variable each). The type of fuel source used by a generator affects the amount and type of pollutants that are emitted during power generation. Power plants that use non-renewable fuels such as coal, oil, and natural gas emit pollutants such as carbon dioxide, methane, sulfur dioxide, nitrogen oxides, and many more, majorly contribute to climate change and air pollution.

Through this question we try to find this correlation between energy generators and the pollutants they emit. The information can be used to inform policy decisions related to reducing harmful emissions, such as setting emissions standards or incentives to increase the use of cleaner energy sources. It can also be useful for businesses to evaluate the environmental impact of their operations and to identify opportunities to reduce their carbon footprint. Understanding the correlation between energy generators and pollutants emitted can provide insights into the environmental impact of different types of energy sources and can be used by energy analysts in models for predicting future emissions trends.

The hypotheses for our models are as follows: H_o : There is no correlation between energy generation and pollutants emitted. H_a : There is some correlation between energy generation and pollutants emitted.

The four models all had a p-value of <0.001 indicating that the models had some explanatory power. We can therefore reject the null hypothesis for all four models and conclude that there is some correlation between energy generation and pollutants emitted.

Our models had different R2 values though. Annual electricity generation is able to explain 63% of the variance in NO_x emissions and only under 42% of SO_2 emissions. Whereas it explains 82% of the variance in emissions of CO_2 and CO_2 -equivalents. Further, the β coefficients for the first two models (between electricity generation and NO_x or SO_2) are of the order of 10^{-4} indicating a very small influence of electricity generation on the quantity of pollutants emitted. Whereas the β coefficients for the last two models (between electricity generation and CO_2 or CO_2 -equivalents) are of the order of 10^{-1} indicating that electricity generation has a 1000-fold greater impact on CO_2 emissions than it does on the other pollutants we looked at.

```
##
## Call:
  lm(formula = STNOXAN ~ STNGENAN, data = egrid_subset)
##
##
##
  Residuals:
##
     Min
            1Q Median
                         3Q
                              Max
  -19700
         -7770
                -2885
                       7305
                            31513
##
##
##
  Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                                         0.0323 *
  (Intercept) 5.260e+03
                                  2.202
##
                       2.389e+03
  STNGENAN
             1.959e-04
                       2.125e-05
                                  9.220
                                        2.3e-12 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12220 on 50 degrees of freedom
## Multiple R-squared: 0.6296, Adjusted R-squared: 0.6222
                 85 on 1 and 50 DF, p-value: 2.3e-12
## F-statistic:
  ##
## Call:
```

```
## lm(formula = STSO2AN ~ STNGENAN, data = egrid_subset)
##
## Residuals:
     Min
            1Q Median
##
                        ЗQ
                              Max
## -47341 -12377 -5099 13227 80726
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.342e+03 4.443e+03 0.527
## STNGENAN
             2.361e-04 3.952e-05 5.974 2.4e-07 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 22730 on 50 degrees of freedom
## Multiple R-squared: 0.4165, Adjusted R-squared: 0.4048
## F-statistic: 35.69 on 1 and 50 DF, p-value: 2.4e-07
##
## Call:
## lm(formula = STCO2AN ~ STNGENAN, data = egrid_subset)
## Residuals:
##
        Min
                 1Q
                       Median
                                   3Q
                                           Max
## -34801066 -7155462 -2868586
                              4846472 37306906
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.106e+06 2.875e+06
                                1.081
                                         0.285
## STNGENAN
           3.870e-01 2.557e-02 15.133
                                       <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 14710000 on 50 degrees of freedom
## Multiple R-squared: 0.8208, Adjusted R-squared: 0.8172
## F-statistic: 229 on 1 and 50 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = STCO2EQA ~ STNGENAN, data = egrid_subset)
##
## Residuals:
##
       Min
                 1Q
                       Median
                                   ЗQ
## -34977547 -7210908 -2931564
                              4817282 37582130
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.163e+06 2.896e+06
                                1.092
                                          0.28
## STNGENAN
            3.886e-01 2.576e-02 15.085
                                         <2e-16 ***
## ---
```

Linear Regression: Annual Net Energy Generation and CO2 Emissions

Figure 8: Linear Regression plot of Annual Net Energy Generation and CO2 emissions

```
## 'geom_smooth()' using formula = 'y ~ x'
## 'geom_smooth()' using formula = 'y ~ x'
## 'geom_smooth()' using formula = 'y ~ x'
```

To build on this idea, we wanted to analyse the effects of different parameters on the health of people in different states, we developed three multiple linear regression models. They look at the effect that the consumption of renewable energy has on people's health at the state level instead of the region level so as to get more granular information. We chose the following control variables: 1. air quality (which can make

Figure 9: Linear Regression plot of Annual Net Energy Generation and CO2e emissions

Figure 10: Linear Regression plot of Annual Net Energy Generation and SO2 emissions

Figure 11: Linear Regression plot of Annual Net Energy Generation and NOX emissions

people vulnerable to airborne illnesses), 2. education level (which influences people's awareness of diseases and pollutants), 3. sex ratio (to separate out the predisposition of people of different sex to have different exposures to occupational hazards), and 4. median household income (which affects people's abilities to pay for healthcare)

```
##
## Call:
##
  lm(formula = DeathRate ~ medianAQI + medianHHI + pctRene + pctEducation +
##
       SexRatio, data = dataset_final)
##
## Residuals:
##
      Min
                1Q
                   Median
                                3Q
                                       Max
  -323.54
           -38.26
                             54.24
                                    336.93
##
                     25.17
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                           5.572e+02
                                        4.228 0.000114 ***
## (Intercept)
                 2.356e+03
## medianAQI
                 5.883e+00
                            2.675e+00
                                        2.199 0.033029 *
## medianHHI
                -8.199e-03
                           1.439e-03
                                       -5.696 8.8e-07 ***
## pctRene
                 7.127e+00
                           7.900e+01
                                        0.090 0.928520
## pctEducation
                2.259e+03
                            5.702e+02
                                        3.961 0.000263 ***
## SexRatio
                -1.746e+01
                           6.469e+00 -2.699 0.009753 **
## ---
                  0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' 1
## Signif. codes:
## Residual standard error: 114.4 on 45 degrees of freedom
## Multiple R-squared: 0.6327, Adjusted R-squared: 0.5919
## F-statistic: 15.5 on 5 and 45 DF, p-value: 7.421e-09
```

This model has an F-statistic of 15.5 on 5 variables and 45 degrees of freedom, corresponding to a p-value of <0.001. This indicates that we can reject the null hypothesis and conclude that this model has some explanatory power. This set of explanatory variables is able to explain around 63% of the variance in death rate across the US.

The correlation plot shows that we have some clustering of three explanatory variables - median AQI, percentage of total generation from renewables, and sex ratio. To improve the model we explored two transformations for these clustered variables - one being rank-transform and the other being log-transform.

```
##
## Call:
## lm(formula = DeathRate ~ rank_medianAQI + medianHHI + rank_pctRene +
##
       pctEducation + rank_SexRatio, data = model2_subset)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
                     22.73
                                     364.36
##
  -394.49
            -46.50
                              63.68
##
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                   1.074e+03
                              2.074e+02
                                           5.178 5.08e-06 ***
## rank medianAQI
                   1.411e+00
                               1.147e+00
                                           1.230 0.225110
## medianHHI
                  -8.574e-03
                              1.419e-03
                                          -6.044 2.69e-07 ***
## rank_pctRene
                                           0.037 0.970691
                   5.550e-02
                              1.502e+00
                                           3.528 0.000979 ***
## pctEducation
                   1.912e+03
                              5.419e+02
```


Figure 12: Plot showing the correlation between explanatory and response variables for Model 1

```
## rank_SexRatio -4.248e+00 1.585e+00 -2.680 0.010249 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 116.6 on 45 degrees of freedom
## Multiple R-squared: 0.6186, Adjusted R-squared: 0.5762
## F-statistic: 14.6 on 5 and 45 DF, p-value: 1.681e-08
```


Figure 13: Plot showing the correlation between explanatory and response variables for Model 2

Using the rank-transformed variables in our model, we get an F-statistic of 14.6 on 5 variables and 45 degrees of freedom, corresponding to a p-value <0.001. This means we can reject the null hypothesis for this model and conclude it has some explanatory power. Looking at the R2 value, we see these explanatory variables can explain under 62% of the variance of our response variable - death rate.

Since this R2 is lower than that of Model 1, this model is not as good at explaining the variance of our response variable. Therefore, we tried using a log-transform of our variables.

```
##
## Call:
## lm(formula = DeathRate ~ log_medianAQI + medianHHI + log_pctRene +
##
       pctEducation + log_SexRatio, data = model3_subset)
##
## Residuals:
                                 3Q
##
       Min
                1Q
                    Median
                                        Max
                     22.78
                              55.65
  -304.86
            -36.56
                                     322.70
```

```
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  6.625e+03
                             3.123e+03
                                         2.121 0.039445 *
## log medianAQI
                  1.966e+02
                             7.516e+01
                                         2.616 0.012070 *
## medianHHI
                             1.409e-03
                                        -5.763 7.02e-07 ***
                 -8.122e-03
                                        -0.414 0.681042
## log_pctRene
                 -8.111e+00
                             1.960e+01
## pctEducation
                  2.287e+03
                             5.634e+02
                                         4.059 0.000194 ***
  log_SexRatio
                 -1.417e+03
                             6.903e+02
                                        -2.053 0.045945 *
##
## Signif. codes:
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 112.5 on 45 degrees of freedom
## Multiple R-squared: 0.6449, Adjusted R-squared: 0.6055
## F-statistic: 16.35 on 5 and 45 DF, p-value: 3.56e-09
```


Figure 14: Plot showing the correlation between explanatory and response variables for Model 3

This third model has an F-statistic of 16.35 on 5 variables and 45 degrees of freedom, corresponding to a p-value of <0.001. This means we can reject the null hypothesis and conclude that our model has some explanatory power. The R2 for this model comes to 64.5% which is an improvement over Model 1.

Looking at our best model, we see that percent renewable energy consumption has a β value of -8.11 at a p-value of 0.68. This p-value is greater than 0.1 which means that this variable does not significantly explain variance of death rate across the US. This observation goes against our initial assumption where we expected renewable energy consumption to significantly impact death rates across the US.

Summary and Conclusions

In 2021, the energy market in the USA continued to shift towards renewable energy generation, but non-renewable sources still dominated the market. Through our analysis we were able to establish the same.

In conclusion, the data analytics assignment on electricity generation, renewable energy sources, greenhouse gas emissions, and pollutants in the BEA regions of the United States provides valuable insights that can inform policy decisions related to reducing greenhouse gas emissions, transitioning to cleaner energy sources, and identifying potential investment opportunities in renewable energy infrastructure. Through an examination of the distribution of electricity production from renewable and non-renewable sources, we got an in depth understanding of the distribution of energy across the country. For instance, the South-East predominantly relies on traditional sources of electricity, while the Far-West has a higher proportion of renewable energy production compared to non-renewable, despite the overall lower quantity of energy produced in the grid. This knowledge can support policymakers and analysts in identifying opportunities to increase the use of renewable energy sources while decreasing reliance on non-renewable sources that contribute to harmful greenhouse gas emissions.

We also discovered that wind power is the primary source of renewable energy generation in the US, followed closely by hydroelectric power. In contrast, geothermal energy has been the least utilized despite its immense potential and needs more investment for future exploration.

We also examined the relationship between energy generators and emitted pollutants and discovered a clear correlation. Furthermore, we used an advanced model to understand the correlation between the death rate and renewable energy generation, along with various control variables. Our results indicate that renewable energy generation is not a significant indicator of the death rate.

Future scope of work would involve comparing the generations and emissions over the next couple of years and understand the trend-line followed in each of these parameters of focus.

Appendix

Table 1: Summary Statistics for Variables per Region

Variable	Number of States	Minimum	Maximum	Mean	Median	Standard Deviation
Far West						
Annual net generation (GWh) Nameplate capacity (GW)	4 4	40,000 10	200,000 90	100,000 40	90,000 20	69289.84 33.57
Great Lakes						
Annual net generation (GWh) Nameplate capacity (GW)	5 5	60,000 20	200,000 50	100,000 30	100,000 30	43340.70 11.66
Mid East						
Annual net generation (GWh) Nameplate capacity (GW)	6 6	200 0.05	200,000 50	80,000 20	50,000 20	91763.39 21.84
New England						
Annual net generation (GWh) Nameplate capacity (GW)	6 6	2,000 0.9	40,000 20	20,000 7	10,000 5	14540.51 5.51
Non-Contiguous						
Annual net generation (GWh) Nameplate capacity (GW)	3 3	7,000	20,000	10,000 4	9,000	6306.16 1.84
Plains						
Annual net generation (GWh) Nameplate capacity (GW)	7 7	20,000	80,000 20	50,000 20	60,000 20	20007.36 7.00
Rocky Mountain						
Annual net generation (GWh) Nameplate capacity (GW)	5 5	20,000	60,000 20	40,000 10	40,000 10	15952.02 5.86
South East						
Annual net generation (GWh) Nameplate capacity (GW)	10 10	60,000 20	200,000 70	100,000 30	100,000 30	51631.87 15.47
South West						
Annual net generation (GWh) Nameplate capacity (GW)	4 4	40,000 10	500,000 200	200,000 60	90,000	205164.83 63.30

Table 2: Summary Statistics of Pollutants Emitted Annually Per Region (in 1000 tons)

Variable	Observations	Minimum	Maximum	Mean	Median	Standard Deviation	Skewness
Far West							
CO2	4	10,000	50,000	20,000	10,000	17704.51	0.72
CO2 equivalent	4	10,000	50,000	20,000	10,000	17756.21	0.72
NOx	4	7	40	20	10	16.41	0.69
SO2	4	0.5	3	2	2	0.96	-0.25
Great Lakes							
CO2	5	40,000	80,000	60,000	60,000	14926.77	-0.24
CO2 equivalent	5	40,000	80,000	60,000	60,000	15008.41	-0.25
NOx	5	20	50	30	40	12.56	-0.36
SO2	5	7	80	50	50	26.90	-0.48
Mid East							
CO2	6	60	90,000	20,000	10,000	32645.56	1.08
CO2 equivalent	6	60	90,000	20,000	10,000	32788.42	1.08
NOx	6	0.3	40	10	6	14.11	1.05
SO2	6	0	50	10	2	19.35	1.34
New England							
CO2	6	40	10,000	5,000	3,000	4315.57	0.45
CO2 equivalent	6	50	10,000	5,000	3,000	4337.86	0.45
NOx	6	0.2	6	3	2	2.38	0.4
SO2	6	0.02	2	0.8	0.6	0.84	0.41
Non-Contiguous							
CO2	3	3,000	10,000	8,000	7,000	5824.85	0.21
CO2 equivalent	3	3,000	10,000	8,000	7,000	5841.69	0.21
NOx	3	20	30	20	20	5.18	0.33
SO2	3	1	30	20	30	15.48	-0.34
Plains							
CO2	7	3,000	60,000	30,000	20,000	17982.77	0.76
CO2 equivalent	7	3,000	60,000	30,000	20,000	18127.16	0.77
NOx	7	1	50	20	20	15.56	0.73
SO2	7	0.6	100	30	30	34.76	0.98
Rocky Mountain							
CO2	5	2,000	40,000	20,000	30,000	16109.44	-0.36
CO ₂ equivalent	5	2,000	40,000	20,000	30,000	16223.25	-0.36
NOx	5	1	30	20	20	13.05	-0.0
SO2	5	0.5	30	10	10	8.84	0.0
South East							
CO2	10	30,000	100,000	50,000	40,000	21985.36	1.25
CO2 equivalent	10	30,000	100,000	50,000	40,000	22095.90	1.25
NOx	10	10	40	20	20	9.90	0.27
SO2	10	4	50	20	10	15.96	0.5
South West							
CO2	4	20,000	200,000	70,000	30,000	88321.93	0.73
CO2 equivalent	4	20,000	200,000	70,000	40,000	88713.49	0.75

NOx	4	10	100	40	20	53.39	0.74
SO2	4	3	200	50	10	74.27	0.74

Table 3: Summary Statistics of Energy Sources Per Region

Variable	Observations	Minimum	Maximum	Mean	Median	Standard Deviation	Skewness
Far West							
Biomass	4	50	5,000	2,000	1,000	2349.53	0.60
Coal	4	0	3,000	2,000	2,000	1625.82	0.01
Gas	4	20,000	100,000	40,000	20,000	38150.42	0.73
Geothermal	4	0	10,000	4,000	2,000	5203.54	0.51
Hydro	4	2,000	70,000	30,000	20,000	30244.89	0.49
Nuclear	4	0	20,000	6,000	4,000	7912.80	0.30
Oil	4	0.4	80	30	20	34.13	0.45
Other fossil	4	0	2,000	500	200	725.63	0.68
Solar	4	50	30,000	10,000	4,000	16322.85	0.69
Wind	4	300	20,000	9,000	9,000	6125.44	-0.28
Great Lakes							
Biomass	5	400	2,000	900	600	754.69	0.76
Coal	5	30,000	50,000	40,000	40,000	10057.16	-0.13
Gas	5	20,000	60,000	30,000	30,000	14494.51	0.86
Geothermal	5	0	0	0	0	0.00	NaN
Hydro	5	100	2,000	800	600	791.56	0.91
Nuclear	5	0	100,000	30,000	20,000	38566.53	0.81
Oil	5	50	1,000	600	300	540.13	0.23
Other fossil	5	30	2,000	900	800	904.52	0.37
Solar	5	400	700	500	500	117.26	0.12
Wind	5	2,000	20,000	8,000	8,000	6966.76	0.65
Mid East							
Biomass	6	60	2,000	800	500	827.19	0.37
Coal	6	0	30,000	6,000	700	11581.28	1.28
Gas	6	100	100,000	40,000	20,000	47806.43	0.89
Geothermal	6	0	0	0	0	0.00	NaN
Hydro	6	-100	30,000	5,000	1,000	11279.76	1.33
Nuclear	6	0	80,000	30,000	20,000	28246.09	0.74
Oil	6	0.04	700	200	50	261.24	1.28
Other fossil	6	0	1,000	600	500	552.45	0.36
Solar	6	20	1,000	600	400	562.22	0.32
Wind	6	0	4,000	1,000	300	1918.42	0.55
New England							
Biomass	6	200	2,000	900	800	600.44	0.67
Coal	6	0	300	100	20	132.11	0.51
Gas	6	2	20,000	9,000	7,000	9044.24	0.57
Geothermal	6	0	0	0	0	0.00	NaN
Hydro	6	4	3,000	1,000	900	864.49	0.73
Nuclear	6	0	20,000	5,000	0	7367.45	0.77
Oil	6	3	80	40	40	31.14	0.09
Other fossil	6	0	900	300	100	379.76	0.68
Solar	6	4	2,000	400	200	565.29	1.26
Wind	6	10	3,000	600	300	952.19	1.27
Non-Contiguo	us						
Biomass	3	0	300	100	40	153.38	0.36
Coal	3	800	3,000	2,000	1,000	1360.30	0.36

Gas	3	0	8,000	4,000	3,000	4005.06	0.14
Geothermal	3	0	200	60	0	105.88	0.38
Hydro	3	0	2,000	600	100	943.65	0.38
Nuclear	3	0	0	0	0	0.00	NaN
Oil	3	900	7,000	5,000	6,000	3271.75	-0.36
Other fossil	3	0	200	70	0	114.73	0.38
Solar	3	0	500	300	300	254.83	-0.14
Wind	3	100	700	300	200	294.30	0.38
Plains							
Biomass	7	2	1,000	300	90	448.08	1.55
Coal	7	2,000	60,000	20,000	20,000	17109.00	0.94
Gas	7	1,000	10,000	5,000	3,000	4245.14	0.85
Geothermal	7	0	0	0	0	0.00	NaN
Hydro	7	30	5,000	2,000	1,000	1608.68	1.10
Nuclear	7	0	10,000	5,000	4,000	5398.44	0.47
Oil	7	30	300	100	100	79.83	0.66
Other fossil	7	0	300	40	0	95.42	1.51
Solar	7	0	2,000	300	60	685.93	1.58
Wind	7	7,000	40,000	20,000	10,000	11004.37	0.83
Rocky Mountain							
Biomass	5	0	500	200	80	197.08	0.82
Coal	5	20	30,000	20,000	20,000	12952.56	-0.35
Gas	5	500	10,000	6,000	5,000	6031.70	0.26
Geothermal	5	0	400	100	0	181.80	0.95
Hydro	5	500	9,000	4,000	2,000	4246.96	0.30
Nuclear	5	0	0	0	0	0.00	NaN
Oil	5	0.2	500	100	40	188.68	1.04
Other fossil	5	0	400	80	6	158.37	1.07
Solar	5	30	3,000	1,000	600	1438.45	0.62
Wind	5	800	20,000	6,000	3,000	5774.87	0.56
South East							
Biomass	10	10	6,000	2,000	2,000	1748.78	0.65
Coal	10	3,000	60,000	20,000	20,000	16882.21	1.03
Gas	10	3,000	200,000	50,000	50,000	46834.38	1.78
Geothermal	10	0	0	0	0	0.00	NaN
Hydro	10	0	10,000	4,000	3,000	3842.34	0.85
Nuclear	10	0	50,000	30,000	30,000	17613.84	-0.07
Oil	10	8	4,000	500	100	1107.03	2.33
Other fossil	10	0	2,000	400	50	654.16	1.44
Solar	10	0	10,000	3,000	500	3560.89	1.08
Wind	10	0	2,000	200	0	476.40	2.28
South West							
Biomass	4	30	1,000	500	300	555.69	0.64
Coal	4	10,000	90,000	30,000	10,000	38082.51	0.75
Gas	4	10,000	200,000	80,000	40,000	101951.77	0.70
Geothermal	4	0	50	10	0	25.47	0.75
Hydro	4	100	6,000	2,000	2,000	2612.62	0.42
Nuclear	4	0	40,000	20,000	20,000	21032.57	0.05
Oil	4	30	300	100	40	130.44	0.75
Other fossil	4	0	2,000	600	0.9	1109.50	0.75
Solar	4	80	10,000	6,000	4,000	6598.93	0.40

Wind 4 = 2,000 = 100,000 = 40,000 = 20,000 = 44235.78 = 0.57

References

Hyperlink to Project repository on GitHub

- $1. \ https://en.wikipedia.org/wiki/List_of_regions_of_the_United_States$
- 2. https://www.epa.gov/egrid/download-data
- 3. https://www.cdc.gov/nchs/fastats/state-and-territorial-data.htm
- $4. \ https://data.census.gov/table?t=Age+and+Sex\&g=010XX00US\$0400000\&y=2020\&tid=ACSST5Y2020.\\ S0101\&moe=false$
- $5. \ https://data.census.gov/table?t=Education\&g=010XX00US\$0400000\&y=2020\&tid=ACSST5Y2020.\\ S1501\&moe=false$
- $6. \ https://data.census.gov/table?t=Income+and+Poverty\&g=010XX00US\$0400000\&y=2020\&tid=ACSST5Y2020.S1901\&moe=false$
- 7. https://aqs.epa.gov/aqsweb/airdata/annual_aqi_by_county_2021.zip