NP-Completeness Part II

Outline for Today

Recap from Last Time

What is NP-completeness again, anyway?

• **3SAT**

• A simple, canonical **NP**-complete problem.

Independent Sets

• Discovering a new **NP**-complete problem.

Gadget-Based Reductions

• A common technique in **NP** reductions.

• 3-Colorability

• A more elaborate **NP**-completeness reduction.

Recent News

• Things happened! What were they?

Polynomial-Time Reductions

- If $A \leq_{p} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_{p} B$ and $B \in \mathbf{NP}$, then $A \in \mathbf{NP}$.

NP-Hardness

- A language L is called **NP-hard** if for every $A \in \mathbf{NP}$, we have $A \leq_{\mathbf{P}} L$.
- A language in L is called NP-complete if L is NP-hard and $L \in NP$.
- The class NPC is the set of NP-complete problems.

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is **NP**-complete and $L \in \mathbf{P}$. Now consider any arbitrary **NP** problem A. Since L is **NP**-complete, we know that $A \leq_p L$. Since $L \in \mathbf{P}$ and $A \leq_p L$, we see that $A \in \mathbf{P}$. Since our choice of A was arbitrary, this means that $\mathbf{NP} \subseteq \mathbf{P}$, so $\mathbf{P} = \mathbf{NP}$.

The Tantalizing Truth

Theorem: If any NP-complete language is not in P, then $P \neq NP$.

Proof: Suppose that L is an **NP**-complete language not in **P**. Since L is **NP**-complete, we know that $L \in \mathbf{NP}$. Therefore, we know that $L \in \mathbf{NP}$ and $L \notin \mathbf{P}$, so $\mathbf{P} \neq \mathbf{NP}$.

How do we even know NP-complete problems exist in the first place?

Satisfiability

- A propositional logic formula φ is called satisfiable if there is some assignment to its variables that makes it evaluate to true.
 - $p \land q$ is satisfiable.
 - $p \land \neg p$ is unsatisfiable.
 - $p \rightarrow (q \land \neg q)$ is satisfiable.
- An assignment of true and false to the variables of φ that makes it evaluate to true is called a *satisfying assignment*.

SAT

 The boolean satisfiability problem (SAT) is the following:

Given a propositional logic formula φ, is φ satisfiable?

• Formally:

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable PL formula } \}$

Theorem (Cook-Levin): SAT is **NP**-complete.

Proof: Read Sipser or take CS154!

New Stuff!

A Simpler **NP**-Complete Problem

Literals and Clauses

- A *literal* in propositional logic is a variable or its negation:
 - X
 - ¬y
 - But not $x \wedge y$.
- A *clause* is a many-way OR (*disjunction*) of literals.
 - $(\neg x \lor y \lor \neg z)$
 - \bullet (χ)
 - But not $x \lor \neg(y \lor z)$

Conjunctive Normal Form

- A propositional logic formula φ is in **conjunctive normal form** (**CNF**) if it is the many-way AND (conjunction) of clauses.
 - $(x \lor y \lor z) \land (\neg x \lor \neg y) \land (x \lor y \lor z \lor \neg w)$
 - $(x \lor z)$
 - But not $(x \lor (y \land z)) \lor (x \lor y)$
- Only legal operators are ¬, ν, Λ.
- No nesting allowed.

The Structure of CNF

The Structure of CNF

The Structure of CNF

3-CNF

- A propositional formula is in *3-CNF* if
 - it is in CNF, and
 - every clause has exactly three literals.
- For example:
 - $(x \lor y \lor z) \land (\neg x \lor \neg y \lor z)$
 - $(x \lor x \lor x) \land (y \lor \neg y \lor \neg x) \land (x \lor y \lor \neg y)$
 - but not $(x \lor y \lor z \lor w) \land (x \lor y)$
- The language *3SAT* is defined as follows:

3SAT = $\{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3-CNF formula } \}$

Theorem: 3SAT is **NP**-Complete

NP-Completeness

Theorem: Let A and B be languages. If $A \leq_{P} B$ and A is **NP**-hard, then B is **NP**-hard.

Theorem: Let A and B be languages where $A \in \mathbf{NPC}$ and $B \in \mathbf{NP}$. If $A \leq_{\mathbf{P}} B$, then $B \in \mathbf{NPC}$.

