Este taller tiene por objeto aplicar los concetos de utilidad esperada y además que utilice todos lo aprendido en el curso a la fecha. El taller no es evaluado, pero se le insta a resolverlo en su totalidad.

Diseño de un sistema de subastas óptimo

Objetivo: maximizar la utilidad esperada del vendedor.

Datos de entrada: Número de postores, sus valoraciones estimadas para el objeto en subasta, y el grado de información que cada uno tiene sobre las valoraciones de los demás.

Variables por considerar: estrategias de pujas de los postores, información asimétrica entre los postores, y el valor de reserva del vendedor.

Restricciones: cada postor tiene una estrategia de puja basada en su valoración y la información disponible.

Método sugerido: utilizar simulaciones de Monte Carlo para modelar diferentes escenarios de subasta y aplicar conceptos de teoría de juegos para identificar estrategias óptimas. Evaluar diferentes formatos de subasta (por ejemplo, subasta inglesa, subasta holandesa, etc.) para determinar cuál maximiza la utilidad del vendedor.

Optimización de políticas de seguro

Objetivo: optimizar las políticas de cobertura y precios para maximizar la utilidad esperada de la compañía.

Datos de entrada: probabilidad de eventos adversos (con base en datos históricos), perfil de riesgo de los clientes, y costos asociados a los diferentes tipos de cobertura.

Variables por considerar: tipos de cobertura, precio de las pólizas, y la aversión al riesgo de los clientes.

Método sugerido: aplicar modelos estadísticos y de optimización para calcular las primas óptimas. Usar análisis de escenarios y teoría de la utilidad para evaluar cómo diferentes políticas afectarían tanto a la compañía como a los clientes en varios escenarios de riesgo.

Para implementar estos problemas en Python, puede utilizar librerías como NumPy para cálculos matemáticos, Pandas para manejo de datos, y Scipy o Pyomo para la optimización. También podría considerar el uso de herramientas específicas de simulación y teoría de juegos si están disponibles en Python.