

姓名:	学号·	实验日期:
νт·	. 1 J	

门电路逻辑功能及测试

1. 实验目的

- ▶ 熟悉门电路逻辑功能;
- ▶ 掌握数字示波器的使用方法。

2. 预习要求

- ▶ 复习门电路工作原理及相应逻辑表达式;
- ▶ 阅读本实验所用各门电路 IC 的数据手册;
- ▶ 熟悉所用集成电路的引线位置及各引线用途;
- ▶ 了解数字示波器使用方法。

3. 实验器材

序号	名 称	型号与规格	数量	备 注
1	直流稳压电源	DP1308A	1	
2	数字示波器	TDS2012C	1	
3	函数信号发生器	DG1022	1	
4	面包板		1	
5	元器件	74LS00 2片, 74LS20 1片, 74LS86 1片, 74LS04 1片。 LED, 电阻若干	5	

4. 实验内容

4.1测试门电路逻辑功能

- (1) 选用双四输入与非门74LS20 一只,插入面包板,按图1.1 接线
- (2) 将逻辑电平开关按表 1.1 状态转换,测出输出逻辑状态值及电压值填表。

图1.1 双四输入与非门

表 1.1

12	输入				输出
1	2	3	4	Y	电压 (V)
1	1	1	1		
0	1	1	1		
0	0	1	1		
0	0	0	l		
0	0	0	0		

4.2 逻辑电路的逻辑关系

(1) 用 74LS00 双输入四与非门电路,按图1.2、图1.3 接线,将输入输出逻辑关系分别填入表1.2,表1.3 中。

输	入	输出
A	В	Y
0	0	
0	1	
1	0	
1	1	

表 1.3			
输入		输出	
A	В	Y	Z
0	0		S
0	Î		Si
1	0		
1	1		8)

(2) 写出两个电路的逻辑表达式。

4.3利用与非门控制输出

用一片 74LS00 按图 1.4 接线。S 分别接高、低电平开关,用示波器观察 S 对输出脉冲的控制作用。

在下面画出波形图:

(a)

(b)

4.4用与非门组成其他门电路

(1) 组成或非门:

用一片二输入端四与非门组成或非门 $Y = \overline{A + B} = \overline{A} \cdot \overline{B}$ 画出电路图,测试并填表1.4。

表 1.4

输入		输出
A	В	Y
0	0	
0	1	
1	0	
1	1	

(2) 组成异或门:

- ① 将异或门表达式转化为与非门表达式:
- ② 画出逻辑电路图

③ 测试并填表 1.5。

表 1.5

输	输入	
A	В	Y
0	0	
0	1	
1	0	
1	1	

4.5 异或门逻辑功能测试

选二输入四异或门电路74LS86,按图1.5 接线,输入端1、2、4、5 接电平开关输出插口,输出端A、B、Y 接电平显示发光二极管。将电平开关按表1.6 的状态转换,将结果填入表中。

表 1.6

	输入			输出			4
1	2	3	4	Λ	В	Y	Y 电压(V)
0	0	0	0		: :		
1	0	0	0				
1	1	0	0				
1	1	1	0				
1	1	1	1				
0	1	0	1				

4.6逻辑门传输延迟时间的测量

用六反相器 74LS04 逻辑电路按图 1.6 接线,输入 1KHz 脉冲,将输入脉冲和输出脉冲分别接入数字示波器两路输入端,观察并记录输入、输出端的延时值,计算出每个门的平均延时值。

每个门的平均延时:______

观察到的波形:

5. 思考题

1. 与非门一个输入接连续脉冲,其余端什么状态允许脉冲通过? 什么状态时禁止脉冲通过?

2. 异或门又称可控反相门,为什么?

附录: IC引脚图

