

Ryssbergen markundersökningar Markteknisk Undersökningsrapport

Uppdragsnummer: 1320027907

Beställare NackaMark Exploatering KB

Handläggare Pascal Orrit
Uppdragsledare Pascal Orrit
Skede Detaljplaneskede

Datum 2017-09-06

Ramböll Sverige AB

Box 17009, Krukmakargatan 21

104 62 Stockholm

T: +46-10-615 60 00 D: +46 (0)106 15 65 01 F: +46-10-615 20 00 www.ramboll.se Unr 1320027907

Ramböll Sverige AB Org nr 556133-0506

1. Objekt och uppdrag

Ramböll Sverige AB har på uppdrag av NackaMark Exploatering KB utfört geotekniska fältundersökningar inför exploatering av ett område kallat Ryssbergen i Nacka. Projektet befinner sig i detaljplanskede, och samråd med kommun är planerat till fjärde kvartalet 2017. Uppdraget omfattade framtagning av jordlagerföljden, bergnivåer, grundvattenförhållanden samt miljötekniska förhållanden.

Figur 1: Flygbild över aktuellt objekt (ungefärligt inringad i rött)

2. Ändamål

Denna handling utgör en dokumentation av utförda geotekniska fältundersökningar. Ändamålet med undersökningen var att utgöra ett underlag inför fortsatt planering av områdets exploatering, bland annat projektering av hus och gator, samt identifiera eventuella behov av grundförstärkningsåtgärder.

3. Underlag för undersökningen

- Geotekniska sonderingar utförda av Ramböll Sverige AB, i uppdrag åt Nacka Stad "Kvarnholmsförbindelsen"
- Markteknisk undersökningsrapport Väg 222, tpl Kvarnholmen, dat.
 2015-11-01, upprättad av Norconsult för Trafikverket) med tillhörande ritningar
- Årsrapport Kontrollprogram vattenverksamhet Nacka Kvarnholmen, dat. 2016-16-27, upprättad av WSP, med bilagor
- Digital grundkarta daterad 2015-05-19
- Ledningsunderlag erhållet via Ledningskollen (ärendenummer 20170410-0592)
- SGU:s berggrunds- och jordartskartor

4. Styrande dokument

Denna rapport ansluter till SS-EN 1997-1 med nationell bilaga. De styrande dokumenten för de olika delmomenten, planerings- och redovisningsskedet, fältundersökningar respektive laboratorieundersökningar utförda inom detta uppdrag redovisas i nedanstående Tabell 1, Tabell 2 och Tabell 3.

Tabell 1 Planering och redovisning

Undersökningsmetod	Standard eller styrande dokument
Fältplanering	SS-EN 1997-2
Fältutförande	Geoteknisk fälthandbok SGF Rapport 1:2013
	samt SS-EN-ISO 22475-1:2006
Beteckningssystem	SGF/BGS beteckningssystem 2001:2

Tabell 2 Fältundersökningar

Undersökningsmetod	Standard eller styrande dokument
Jord-bergsondering	SGF Rapport 1:2013
Slagsondering	SGF Rapport 1:2013
Störd provtagning	SGF Rapport 1:2013

Tabell 3 Laboratorieundersökningar

Undersökningsmetod	Standard eller styrande dokument
	SS-EN-ISO 17294-1, 2 samt EPA-metod
Bestämning av metaller	200.8 (mod)
Bestämning av torrsubstans	SS 028113/1

5. Befintliga förhållanden

5.1 Topografi

Det undersökta området är cirka 500 m i öst-väst riktning och ca 300 m i nordsyd riktning. Det avgränsas i söder av väg 222, i norr av bergryggen kallad Ryssbergen, i öster av villaområdet Vikdalen och i väster av ett lite lägre parti i terrängen i höjd med Birkavägens passage under väg 222.

Det undersökta områdets högsta punkt är i samma höjd som Ryssbergens utsiktspunkt på nivå ca +63, och delar upp området i två lägre och flacka partier öster (i nivå +43) och väster (i nivå +47) om denna. Västra området mynnar i norr i en backe som lutar mot norr, och avgränsas mot väster av ett annat högt parti med högsta höjd ca +55. Det undersökta områdets lägsta punkt är vid dess västra gräns, på nivå +42. Områdets södra kant avgränsas av en slänt upp mot väg 222, från 2 till ca 5 m hög. Vid västra bergpartiet går slänten från berget ner mot vägen, med en höjd av som mest cirka 8 m.

Området korsas av Kvarnholmsvägen, som består av en väg i söder, som sänks ner till en tunnel i mitten av det undersökta området, och mynnar ut norr om Ryssbergen för att passera Svindersviken på en bro och hamna på Kvarnholmens östra ände. Vägens höjd inom området går från +43 i sydost till ca +40 vid tunnelpåslaget (vägen fortsätter nedåt i tunneln).

5.2 Ytbeskaffenhet

Marken består på de bergiga partierna av tallskog på ett tunt jordtäcke. I de lägre och flacka partierna är marken sank och där växer en blandad löv- och tallskog med mosskaraktär.

På lilla ryggen mellan de två flacka partierna är marken återställd efter avetablering av tunneldrivningsentreprenaden. Öster om denna och

Kvarnholmsvägen finns en grusig yta, som leder längs med en cykelväg till Vikdalsvägen. Östra området kantas i väster av en belyst grusstig som leder till norra delen av Vikdalen. Andra gångstigar går igenom området (bland annat till utsiktsplatsen).

Västra området dräneras av ett smalt dike mot norr, delvis insprängt i den bergiga tröskeln mot nord-nordväst.

6. Positionering

Ansvarig mätningsingenjör var Tobias Larsson, Ramböll. Utsättning och inmätning utfördes 2017-05-16 och -17.

Koordinatsystem:

Plan: Sweref 99 18 00

Höjd: RH 2000

7. Fältundersökningar

7.1 Tidigare utförda undersökningar

Sonderingspunkter med numrering R02-R24 är utförda december 2008 till januari 2009.

Sonderingspunkter med numrering 10Rxx är utförda av Ramböll Sverige AB 21-24 juni 2010, med komplettering i september 2010. Tre provgropar har grävts i augusti 2010 i samma uppdrag. Tre hammarborrhål och fyra grundvattenrör har borrats december 2010 i samma uppdrag.

Sonderingspunker med numrering NC01 till NC20 är utförda av Norconsult AB september 2014 med komplettering mars 2015, i uppdrag av Trafikverket för upphandling av entreprenaden för "Trafikplats Kvarnholmen".

7.2 Utförda undersökningar

Sonderingspunkter med ID 17Rxx är utförda av Ramböll Sverige AB. Placering framgår av plan- och sektionsmarkeringar.

Inom ramen av detta uppdrag har följande sonderingar utförts av Ramböll:

- 35 st JB-total sonderingar och 5 st slagsonderingar utförda 16-29 maj 2017. Borrbandvagn Hafo 1500 användes med 57 mm stiftkrona.
 Ansvarig fältingenjör Tony Eriksson.
- 2 grundvattenrör installerades 24 maj 2017. Borrbandvagn Hafo 1500 användes. Ansvarig fältingenjör Tony Eriksson.
- Provtagning för miljöundersökning (metaller, alifat- och aromathalter) i fem punkter, en till två nivåer i varje punkt enligt Tabell 4.

Tabell 4: Provtagningspunkter för miljöundersökningen

Borrhål	Provnummer	Djup
17R03	1	0 - 0,3 m
17R03	2	0,3 - 1,0 m
17R10	1	0 - 0,8 m
17R25	1	0 - 0,5 m
17R31	1	0 - 1,0 m
17R31	2	1,0 - 2,0 m
17R36	1	0 - 1,0 m
17R36	2	1,0 - 2,0 m

8. Resultat

Information om sonderingsresultat samt provtagningar finns i digital fil, som finns i geoteknisk databas (GeoSUITE). Redovisningsprogrammet GeoSUITE har använts för att redovisa resultat från utförda fältundersökningar i plan och sektion. Resultat redovisas på ritningar.

8.1 Miljöundersökning

Generellet visade labbresultat mycket låga halter av föroreningar, långt under Naturvårdsverkets riktvärden för känslig markanvändning (KM) med undantag av alifater >C16-35 som uppmättes i halter över MKM. De förhöjda halterna beror inte på någon föroreningsförekomst utan på hög halt organiskt material från torven. I Tabell 5 redovisas uppmätta halter av alifater C16-35.

Tabell 5: Provtagningspunkter för miljöundersökningen

	5	3-1 3		J -		
Borrhål	Prov	Analys	Uppmätt	KM	MKM	Enhet
			halt			
17R03	1	Alifater >C16-35	670	100	1000	mg/kg TS
17R03	2	Alifater >C16-35	43	100	1000	mg/kg TS
17R10	1	Alifater >C16-35	1 000	100	1000	mg/kg TS
17R25	1	Alifater >C16-35	130	100	1000	mg/kg TS
17R31	1	Alifater >C16-35	1 100	100	1000	mg/kg TS
17R31	2	Alifater >C16-35	850	100	1000	mg/kg TS
17R36	1	Alifater >C16-35	1 100	100	1000	mg/kg TS
17R36	2	Alifater >C16-35	960	100	1000	mg/kg TS

8.2 Grundvattenundersökning

Två grundvattenrör har installerats i området, och tre tidigare rör har hittats på området.

Av de tre tidigare rören kunde bara ett (XGW01) identifieras med någorlunda säkerhet till ett rör benämnt 13W01 och installerat av WSP (se Årsrapport 2016 upprättat av WSP), som ersättning för grundvattenröret RGV03 som togs bort i

samband med tunneldrivningsarbeten. XGW02 kunde inte spåras inom erhållet material från tidigare undersökningar. XGW03 är troligen ett rör installerat av Norconsult, men ej redovisat i deras marktekniska undersökningsrapport. Grundvattennivåmätningarna i dessa rör ska tolkas med försiktighet eftersom deras funktion inte har kontrollerats.

Grundvattnet mättes på nivå mellan +46,3 och +46,5 i västra området i maj 2017, se Tabell 6, vilket också motsvarar dikesbottennivån som dränerar området mot norr. I östra området mättes grundvattnet på nivå mellan +39,4 och +39,7 i maj 2017, samt +40,7 i röret XGW02 vars funktion inte har verifierats.

Ett litet område öster om västra området kan nämnas här (se punkter 17R02 och 17R03), med ett grundvattennivå uppmätt i tidigare undersökningar till +47,2 (mars 2015). Djupet till berg och utbredning på detta område är dock små.

Tabell 6: Resultat av grundvattennivåmätningar utförda i detta uppdrag

		_	_	
Borrhål	Nivå	Djup under mark	Datum	Kommentar
17R19	+46,5	0,4 m	2017-05-24	Västra område
XGW03	+46,4	0,6 m	2017-05-24	Västra område, osäker funktion
XGW03	+46,3	0,7 m	2017-05-17	Västra område, osäker funktion
17R32	+39,6	3,1 m	2017-05-24	Östra område
XGW02	+40,7	2,3 m	2017-05-17	Östra område, osäker funktion
XGW01	+39,4	3,4 m	2017-05-24	Östra område, osäker funktion
XGW01	+39,7	3,1 m	2017-05-17	Östra område, osäker funktion

Bilagor

- 1. Ritningar enligt följande:
 - G-10_1-001 Planritning
 - G-10 2-001 Sektion A-A och B-B
 - G-10_2-002 Sektion C-C och D-D
 - G-10_2-003 Sektion E-E och F-F
 - G-10_2-004 Sektion 1-1, 2-2, 3-3 och 4-4
 - G-10_2-005 Sektion 5-5, 6-6, 7-7 och 8-8
 - G-10_2-006 Sektion 9-9, 10-10 och Z-Z
- 2. BILAGA 2: Rapport från labbundersökningarna (14 sidor)
- 3. BILAGA 3: Rapport från labbundersökning (6 sidor)
- 4. BILAGA 4: Kompletterande svar från ALS angående de höga värden tunga alifater (1 sida)

FÖRKLARINGAR

17R09 NAMN, TYP OCH MARKHÖJD Jb-tol+47.0 PÅ UTFÖRD SONDERING

NAMN, TYP OCH HÖJD PÅ
TIDIGARE UTFÖRD
SONDERING ENLIGT NEDAN:

RAMBÖLL: R02-R24: DEC 2008 – JAN 2009 10Rxx: JUNI 2010 – SEPT 2010 PG1-PG3: AUG 2010 HBH1-HBH3:DEC 2010

NORCONSULT: NC01-NC20: SEPT 2014 - MARS 2015

<u>HÄNVISNINGAR</u>

FÖR SEKTIONERS- OCH
BORRHÅLSPLACERING I PLAN, SE
RITNING G-10_1-001.
FÖR GEOTEKNISKA BETECKNINGAR, SE
WWW.SGF.NET, BETECKNINGSBLAD
GÄLLANDE FR.O.M. 2001-01-01.

<u>KOORDINATSYSTEM</u>

PLAN: SWEREF 99 18 00 HÖJD: RH2000

BET ANT ÄNDRINGEN AVSER DATUM SIGN

DETALJPLANESKEDE

RYSSBERGEN MARKUNDERSÖKNINGAR

Ramböll Sverige AB Krukmakargatan 21 Box 17009 RAMBOLL

UPPDRAG NR GRANSKAT AV HANDL 1320027907 J. ESPAR P.

1320027907 J. ESPAR P. URRI datum lansvarig 2017-09-06 P. ORRIT

Geotekniska undersökningar

Markteknisk Undersökningsrapport Sektioner 1–1 till 4–4

FÖRKLARINGAR

17R09 NAMN, TYP OCH MARKHÖJD Jb-tol +47.0 PÅ UTFÖRD SONDERING

NAMN, TYP OCH HÖJD PÅ
TIDIGARE UTFÖRD
SONDERING ENLIGT NEDAN:

RAMBÖLL: R02-R24: DEC 2008 – JAN 2009 10Rxx: JUNI 2010 – SEPT 2010 PG1-PG3: AUG 2010 HBH1-HBH3:DEC 2010

NORCONSULT: NC01-NC20: SEPT 2014 - MARS 2015

BEFINTLIG MARK UTLÄST FRÅN NIVÅKURVORNA SAMT LASEMÄTNING

<u>HÄNVISNINGAR</u>

FÖR SEKTIONERS- OCH BORRHÅLSPLACERING I PLAN, SE RITNING G-10_1-001. FÖR GEOTEKNISKA BETECKNINGAR, SE WWW.SGF.NET, BETECKNINGSBLAD GÄLLANDE FR.O.M. 2001-01-01.

KOORDINATSYSTEM

PLAN: SWEREF 99 18 00 HÖJD: RH2000

BET ANT ÄNDRINGEN AVSER DATUM SIGN DETALJPLANESKEDE

RYSSBERGEN MARKUNDERSÖKNINGAR

Ramböll Sverige AB Krukmakargatan 21 Box 17009

RAMBOLL

UPPDRAG NR
1320027907 J. ESPAR
DATUM ANSVARIG
2017-09-06 P. ORRIT

Geotekniska undersökningar Markteknisk Undersökningsrapport

Sektioner 5-5 till 8-8

FÖRKLARINGAR

17R09 NAMN, TYP OCH MARKHÖJD Jb-tot+47.0 PÅ UTFÖRD SONDERING

NAMN, TYP OCH HÖJD PÅ
TIDIGARE UTFÖRD
SONDERING ENLIGT NEDAN:

RAMBÖLL: R02-R24: DEC 2008 – JAN 2009 10Rxx: JUNI 2010 – SEPT 2010 PG1-PG3: AUG 2010 HBH1-HBH3:DEC 2010

NORCONSULT: NC01-NC20: SEPT 2014 - MARS 2015

BEFINTLIG MARK UTLÄST FRÅN NIVÅKURVORNA SAMT LASEMÄTNING

HÄNVISNINGAR

FÖR SEKTIONERS- OCH

BORRHÅLSPLACERING I PLAN, SE

RITNING G-10_1-001.

FÖR GEOTEKNISKA BETECKNINGAR, SE

WWW.SGF.NET, BETECKNINGSBLAD

GÄLLANDE FR.O.M. 2001-01-01.

<u>KOORDINATSYSTEM</u>

PLAN: SWEREF 99 18 00 HÖJD: RH2000

BET ANT ÄNDRINGEN AVSER DATUM SIGN

DETALJPLANESKEDE

RYSSBERGEN MARKUNDERSÖKNINGAR

Ramböll Sverige AB Krukmakargatan 21 Box 17009 RAMBOLL

UPPDRAG NR
1320027907 J. ESPAR
DATUM
ANSVARIG
2017-09-06 P. ORRIT

Geotekniska undersökningar Markteknisk Undersökningsrapport Sektioner 9–9, 10–10 och Z-Z

> A1 200 H 1:100 G-10_2-006

Sida 1 (14)

T1714380

2N60AD5SWO0

Ankomstdatum **2017-05-29** Utfärdad **2017-06-05**

Ramböll Sverige AB Jeanette Winter

Krukmakargatan 21 104 62 Stockholm Sweden

Projekt

Bestnr 13210809

Analys av fast prov

Er beteckning 17R36 prov nr 1

Provtagare Tony Eriksson Provtagningsdatum 2017-05-23

Labnummer O10891004						
Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
TS_105°C	25.7	2	%	1	V	ERJA
As	<0.5		mg/kg TS	1	Н	ERJA
Ва	26.7	6.3	mg/kg TS	1	Н	ERJA
Cd	<0.1		mg/kg TS	1	Н	ERJA
Со	1.17	0.29	mg/kg TS	1	Н	ERJA
Cr	4.03	0.87	mg/kg TS	1	Н	ERJA
Cu	15.0	3.2	mg/kg TS	1	Н	ERJA
Hg	<0.2		mg/kg TS	1	Н	ERJA
Ni	3.65	1.05	mg/kg TS	1	Н	ERJA
Pb	4.59	0.95	mg/kg TS	1	Н	ERJA
V	7.76	1.66	mg/kg TS	1	Н	ERJA
Zn	30.3	5.7	mg/kg TS	1	Н	ERJA
TS_105°C	25.1		%	2	0	MAEL
alifater >C5-C8	<10		mg/kg TS	3	J	MISW
alifater >C8-C10	<10		mg/kg TS	3	J	STGR
alifater >C10-C12	<20		mg/kg TS	3	J	STGR
alifater >C12-C16	<20		mg/kg TS	3	J	STGR
alifater >C5-C16*	<30		mg/kg TS	3	N	STGR
alifater >C16-C35	1100		mg/kg TS	3	J	STGR
aromater >C8-C10	<1		mg/kg TS	3	J	STGR
aromater >C10-C16	<1		mg/kg TS	3	J	STGR
metylpyrener/metylfluorantener*	<1		mg/kg TS	3	N	STGR
metylkrysener/metylbens(a)antracener*	<1		mg/kg TS	3	N	STGR
aromater >C16-C35	<1		mg/kg TS	3	J	STGR
bensen	<0.01		mg/kg TS	3	J	MISW
toluen	<0.05		mg/kg TS	3	J	MISW
etylbensen	<0.05		mg/kg TS	3	J	MISW
m,p-xylen	<0.05		mg/kg TS	3	J	MISW
o-xylen	<0.05		mg/kg TS	3	J	MISW
xylener, summa*	<0.05		mg/kg TS	3	N	MISW
TEX, summa*	<0.1		mg/kg TS	3	N	MISW
naftalen	<0.1		mg/kg TS	3	J	STGR
acenaftylen	<0.1		mg/kg TS	3	J	STGR
acenaften	<0.1		mg/kg TS	3	J	STGR
fluoren	<0.1		mg/kg TS	3	J	STGR
fenantren	<0.1		mg/kg TS	3	J	STGR
antracen	<0.1		mg/kg TS	3	J	STGR
fluoranten	<0.1		mg/kg TS	3	J	STGR
pyren	<0.1		mg/kg TS	3	J	STGR

Sida 2 (14)

T1714380

2N60AD5SWO0

Er beteckning 17R36 prov nr 1

Provtagare Tony Eriksson Provtagningsdatum 2017-05-23

Labnummer 010891004						
Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
bens(a)antracen	0.13	0.031	mg/kg TS	3	J	STGR
krysen	0.13	0.031	mg/kg TS	3	J	STGR
bens(b)fluoranten	<0.08		mg/kg TS	3	J	STGR
bens(k)fluoranten	<0.08		mg/kg TS	3	J	STGR
bens(a)pyren	<0.08		mg/kg TS	3	J	STGR
dibens(ah)antracen	<0.08		mg/kg TS	3	J	STGR
benso(ghi)perylen	<0.1		mg/kg TS	3	J	STGR
indeno(123cd)pyren	<0.08		mg/kg TS	3	J	STGR
PAH, summa 16	<1.5		mg/kg TS	3	D	STGR
PAH, summa cancerogena*	0.26		mg/kg TS	3	N	STGR
PAH, summa övriga*	<0.5		mg/kg TS	3	Ν	STGR
PAH, summa L*	<0.15		mg/kg TS	3	N	STGR
PAH, summa M*	<0.25		mg/kg TS	3	N	STGR
PAH, summa H*	0.26		mg/kg TS	3	N	STGR

Sida 3 (14)

T1714380

2N60AD5SWO0

Er beteckning 17R31 prov nr 1

Provtagare Tony Eriksson Provtagningsdatum 2017-05-23

Labnummer O10891005						
Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
TS_105°C	26.6	2	%	1	V	ERJA
As	1.16	0.35	mg/kg TS	1	Н	ERJA
Ва	23.1	5.4	mg/kg TS	1	Н	ERJA
Cd	0.134	0.036	mg/kg TS	1	Н	ERJA
Со	1.44	0.35	mg/kg TS	1	Н	ERJA
Cr	4.02	0.83	mg/kg TS	1	Н	ERJA
Cu	12.8	2.7	mg/kg TS	1	Н	ERJA
Hg	<0.2		mg/kg TS	1	Н	ERJA
Ni	3.89	1.03	mg/kg TS	1	Н	ERJA
Pb	5.61	1.17	mg/kg TS	1	Н	ERJA
V	6.30	1.33	mg/kg TS	1	Н	ERJA
Zn	19.2	3.7	mg/kg TS	1	Η	ERJA
TS_105°C	25.6		%	2	0	MAEL
alifater >C5-C8	<10		mg/kg TS	3	J	MISW
alifater >C8-C10	<10		mg/kg TS	3	J	STGR
alifater >C10-C12	<20		mg/kg TS	3	J	STGR
alifater >C12-C16	<20		mg/kg TS	3	J	STGR
alifater >C5-C16*	<30		mg/kg TS	3	N	STGR
alifater >C16-C35	1100		mg/kg TS	3	J	STGR
aromater >C8-C10	<1		mg/kg TS	3	J	STGR
aromater >C10-C16	<1		mg/kg TS	3	J	STGR
metylpyrener/metylfluorantener*	<1		mg/kg TS	3	N	STGR
metylkrysener/metylbens(a)antracener*	<1		mg/kg TS	3	N	STGR
aromater >C16-C35	<1		mg/kg TS	3	J	STGR
bensen	<0.01		mg/kg TS	3	J	MISW
toluen	<0.05		mg/kg TS	3	J	MISW
etylbensen	<0.05		mg/kg TS	3	J	MISW
m,p-xylen	<0.05		mg/kg TS	3	J	MISW
o-xylen	<0.05		mg/kg TS	3	J	MISW
xylener, summa*	<0.05		mg/kg TS	3	N	MISW
TEX, summa*	<0.1		mg/kg TS	3	N	MISW
naftalen	<0.1		mg/kg TS	3	J	STGR
acenaftylen	<0.1		mg/kg TS	3	J	STGR
acenaften	<0.1		mg/kg TS	3	J	STGR
fluoren	<0.1		mg/kg TS	3	J	STGR
fenantren	<0.1		mg/kg TS	3	J	STGR
antracen	<0.1		mg/kg TS	3	J	STGR
fluoranten	<0.1		mg/kg TS	3	J	STGR
pyren	<0.1		mg/kg TS	3	J	STGR
bens(a)antracen	<0.08		mg/kg TS	3	J	STGR
krysen	<0.08		mg/kg TS	3	J	STGR
bens(b)fluoranten	<0.08		mg/kg TS	3	J	STGR
bens(k)fluoranten	<0.08		mg/kg TS	3	J	STGR
bens(a)pyren	<0.08		mg/kg TS	3	J	STGR
dibens(ah)antracen	<0.08		mg/kg TS	3	J	STGR
benso(ghi)perylen	0.19	0.051	mg/kg TS	3	J	STGR
indeno(123cd)pyren	<0.08	5.551	mg/kg TS	3	J	STGR
PAH, summa 16	<1.5		mg/kg TS	3	D	STGR
PAH, summa cancerogena*	<0.3		mg/kg TS	3	N	STGR
PAH, summa övriga*	0.19		mg/kg TS	3	N	STGR
PAH, summa L*	<0.15		mg/kg TS	3	N	STGR
PAH, summa M*	<0.15		mg/kg TS	3	N	STGR
i Aii, Sullilla III	\U.Z 3		ing/kg is	J	IN	JIGK

Sida 4 (14)

T1714380

2N60AD5SWO0

Er beteckning 17R31 prov nr 1

Provtagare Tony Eriksson
Provtagningsdatum 2017-05-23

Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
PAH, summa H*	0.19		mg/kg TS	3	Z	STGR

Sida 5 (14)

T1714380

2N60AD5SWO0

Er beteckning 17R25 prov nr 1

Provtagare Tony Eriksson
Provtagningsdatum 2017-05-23

Labnummer O10891006						
Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
TS_105°C	60.6	2	%	1	V	ERJA
As	0.725	0.251	mg/kg TS	1	Н	ERJA
Ва	20.6	4.7	mg/kg TS	1	Н	ERJA
Cd	0.136	0.033	mg/kg TS	1	Н	ERJA
Со	0.548	0.136	mg/kg TS	1	Н	ERJA
Cr	4.06	0.82	mg/kg TS	1	Н	ERJA
Cu	4.36	0.97	mg/kg TS	1	Н	ERJA
Hg	<0.2		mg/kg TS	1	Н	ERJA
Ni	1.26	0.34	mg/kg TS	1	Н	ERJA
Pb	17.9	3.7	mg/kg TS	1	Н	ERJA
V	8.30	1.83	mg/kg TS	1	Н	ERJA
Zn	11.8	2.3	mg/kg TS	1	Н	ERJA
TS_105°C	67.9		%	2	0	MAEL
alifater >C5-C8	<10		mg/kg TS	3	J	MISW
alifater >C8-C10	<10		mg/kg TS	3	J	STGR
alifater >C10-C12	<20		mg/kg TS	3	J	STGR
alifater >C12-C16	<20		mg/kg TS	3	J	STGR
alifater >C5-C16*	<30		mg/kg TS	3	N	STGR
alifater >C16-C35	130		mg/kg TS	3	J	STGR
aromater >C8-C10	<1		mg/kg TS	3	J	STGR
aromater >C10-C16	<1		mg/kg TS	3	J	STGR
metylpyrener/metylfluorantener*	<1		mg/kg TS	3	N	STGR
metylkrysener/metylbens(a)antracener*	<1		mg/kg TS	3	N	STGR
aromater >C16-C35	<1		mg/kg TS	3	J	STGR
bensen	<0.01		mg/kg TS	3	J	MISW
toluen	<0.05		mg/kg TS	3	J	MISW
etylbensen	<0.05		mg/kg TS	3	J	MISW
m,p-xylen	<0.05		mg/kg TS	3	J	MISW
o-xylen	<0.05		mg/kg TS	3	J	MISW
xylener, summa*	<0.05		mg/kg TS	3	N	MISW
TEX, summa*	<0.1		mg/kg TS	3	N	MISW
naftalen	<0.1		mg/kg TS	3	J	STGR
acenaftylen	<0.1		mg/kg TS	3	J	STGR
acenaften	<0.1		mg/kg TS	3	J	STGR
fluoren	<0.1		mg/kg TS	3	J	STGR
fenantren	<0.1		mg/kg TS	3	J	STGR
antracen	<0.1		mg/kg TS	3	J	STGR
fluoranten	<0.1		mg/kg TS	3	J	STGR
pyren	<0.1		mg/kg TS	3	J	STGR
bens(a)antracen	<0.08		mg/kg TS	3	J	STGR
krysen	<0.08		mg/kg TS	3	J	STGR
bens(b)fluoranten	<0.08		mg/kg TS	3	J	STGR
bens(k)fluoranten	<0.08		mg/kg TS	3	J	STGR
bens(a)pyren	<0.08		mg/kg TS	3	J	STGR
dibens(ah)antracen	<0.08		mg/kg TS	3	J	STGR
benso(ghi)perylen	<0.1		mg/kg TS	3	J	STGR
indeno(123cd)pyren	<0.1		mg/kg TS	3	J	STGR
PAH, summa 16	<1.5		mg/kg TS	3	D	STGR
PAH, summa cancerogena*	<0.3		mg/kg TS	3	N	STGR
PAH, summa övriga*	<0.5		mg/kg TS	3	N	STGR
PAH, summa L*	<0.15		mg/kg TS	3	N	STGR
PAH, summa M*	<0.15		mg/kg TS	3	N	STGR
ran, summa w	<0.23		ing/kg is	<u> </u>	IN	SIGK

Sida 6 (14)

T1714380

2N60AD5SWO0

Er beteckning 17R25 prov nr 1

Provtagare Tony Eriksson 2017-05-23

Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
PAH, summa H*	<0.3		mg/kg TS	3	Z	STGR

Sida 7 (14)

T1714380

2N60AD5SWO0

Er beteckning 17R10 prov nr 1

Provtagare Tony Eriksson Provtagningsdatum 2017-05-23

Labnummer O10891007						
Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
TS_105°C	16.6	2	%	1	V	ERJA
As	<0.5		mg/kg TS	1	Н	ERJA
Ва	39.2	9.3	mg/kg TS	1	Н	ERJA
Cd	0.129	0.032	mg/kg TS	1	Н	ERJA
Со	1.55	0.38	mg/kg TS	1	Н	ERJA
Cr	4.00	0.80	mg/kg TS	1	Н	ERJA
Cu	8.05	1.70	mg/kg TS	1	Н	ERJA
Hg	<0.2		mg/kg TS	1	Η	ERJA
Ni	3.33	0.89	mg/kg TS	1	Η	ERJA
Pb	7.01	1.47	mg/kg TS	1	Η	ERJA
V	3.64	0.78	mg/kg TS	1	Η	ERJA
Zn	14.8	2.8	mg/kg TS	1	Η	ERJA
TS_105°C	18.4		%	2	0	MAEL
alifater >C5-C8	<10		mg/kg TS	3	J	MISW
alifater >C8-C10	<10		mg/kg TS	3	J	STGR
alifater >C10-C12	<20		mg/kg TS	3	J	STGR
alifater >C12-C16	<20		mg/kg TS	3	J	STGR
alifater >C5-C16*	<30		mg/kg TS	3	N	STGR
alifater >C16-C35	1000		mg/kg TS	3	J	STGR
aromater >C8-C10	1.3		mg/kg TS	3	J	STGR
aromater >C10-C16	<1		mg/kg TS	3	J	STGR
metylpyrener/metylfluorantener*	<1		mg/kg TS	3	N	STGR
metylkrysener/metylbens(a)antracener*	<1		mg/kg TS	3	N	STGR
aromater >C16-C35	<1		mg/kg TS	3	J	STGR
bensen	<0.01		mg/kg TS	3	J	MISW
toluen	<0.05		mg/kg TS	3	J	MISW
etylbensen	<0.05		mg/kg TS	3	J	MISW
m,p-xylen	<0.05		mg/kg TS	3	J	MISW
o-xylen	<0.05		mg/kg TS	3	J	MISW
xylener, summa*	<0.05		mg/kg TS	3	N	MISW
TEX, summa*	<0.1		mg/kg TS	3	N	MISW
naftalen	<0.1		mg/kg TS	3	J	STGR
acenaftylen	<0.1		mg/kg TS	3	J	STGR
acenaften	<0.1		mg/kg TS	3	J	STGR
fluoren	<0.1		mg/kg TS	3	J	STGR
fenantren	<0.1		mg/kg TS	3	J	STGR
antracen	<0.1		mg/kg TS	3	J	STGR
fluoranten	<0.1		mg/kg TS	3	J	STGR
pyren	<0.1		mg/kg TS	3	J	STGR
bens(a)antracen	0.16	0.038	mg/kg TS	3	J	STGR
krysen	<0.08		mg/kg TS	3	J	STGR
bens(b)fluoranten	<0.08		mg/kg TS	3	J	STGR
bens(k)fluoranten	<0.08		mg/kg TS	3	J	STGR
bens(a)pyren	0.080	0.020	mg/kg TS	3	J	STGR
dibens(ah)antracen	<0.08		mg/kg TS	3	J	STGR
benso(ghi)perylen	<0.1		mg/kg TS	3	J	STGR
indeno(123cd)pyren	0.16	0.042	mg/kg TS	3	J	STGR
PAH, summa 16	<1.5		mg/kg TS	3	Ď	STGR
PAH, summa cancerogena*	0.40		mg/kg TS	3	N	STGR
PAH, summa övriga*	<0.5		mg/kg TS	3	N	STGR
PAH, summa L*	<0.15		mg/kg TS	3	N	STGR
PAH, summa M*	<0.25		mg/kg TS	3	N	STGR
r zinj summu m	70.20		i ilig/kg i S		I N	GIGIN

Sida 8 (14)

T1714380

2N60AD5SWO0

Er beteckning	17R10 prov nr 1				
Provtagare Provtagningsdatum	Tony Eriksson 2017-05-23				
Labnummer	O10891007	1			

Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
PAH, summa H*	0.40		mg/kg TS	3	Z	STGR

Sida 9 (14)

T1714380

2N60AD5SWO0

Er beteckning 17R03 prov nr 1

Provtagare Tony Eriksson Provtagningsdatum 2017-05-23

Labnummer O10891008						
Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
TS_105°C	28.5	2	%	1	V	ERJA
As	2.43	0.71	mg/kg TS	1	Н	ERJA
Ва	88.5	20.2	mg/kg TS	1	Н	ERJA
Cd	0.225	0.063	mg/kg TS	1	Н	ERJA
Со	1.89	0.47	mg/kg TS	1	Н	ERJA
Cr	16.3	3.2	mg/kg TS	1	Н	ERJA
Cu	26.4	5.6	mg/kg TS	1	Н	ERJA
Hg	<0.2		mg/kg TS	1	Н	ERJA
Ni	7.99	2.09	mg/kg TS	1	Н	ERJA
Pb	40.3	8.3	mg/kg TS	1	Н	ERJA
V	21.3	4.6	mg/kg TS	1	Н	ERJA
Zn	25.2	4.7	mg/kg TS	1	Η	ERJA
TS_105°C	26.2		%	2	0	MAEL
alifater >C5-C8	<10		mg/kg TS	3	J	MISW
alifater >C8-C10	<10		mg/kg TS	3	J	STGR
alifater >C10-C12	<20		mg/kg TS	3	J	STGR
alifater >C12-C16	<20		mg/kg TS	3	J	STGR
alifater >C5-C16*	<30		mg/kg TS	3	N	STGR
alifater >C16-C35	670		mg/kg TS	3	J	STGR
aromater >C8-C10	<1		mg/kg TS	3	J	STGR
aromater >C10-C16	<1		mg/kg TS	3	J	STGR
metylpyrener/metylfluorantener*	<1		mg/kg TS	3	N	STGR
metylkrysener/metylbens(a)antracener*	<1		mg/kg TS	3	N	STGR
aromater >C16-C35	<1		mg/kg TS	3	J	STGR
bensen	<0.01		mg/kg TS	3	J	MISW
toluen	<0.05		mg/kg TS	3	J	MISW
etylbensen	<0.05		mg/kg TS	3	J	MISW
m,p-xylen	<0.05		mg/kg TS	3	J	MISW
o-xylen	<0.05		mg/kg TS	3	J	MISW
xylener, summa*	<0.05		mg/kg TS	3	N	MISW
TEX, summa*	<0.1		mg/kg TS	3	N	MISW
naftalen	<0.1		mg/kg TS	3	J	STGR
acenaftylen	<0.1		mg/kg TS	3	J	STGR
acenaften	<0.1		mg/kg TS	3	J	STGR
fluoren	<0.1		mg/kg TS	3	J	STGR
fenantren	<0.1		mg/kg TS	3	J	STGR
antracen	<0.1		mg/kg TS	3	J	STGR
fluoranten	<0.1		mg/kg TS	3	J	STGR
pyren	<0.1		mg/kg TS	3	J	STGR
bens(a)antracen	<0.08		mg/kg TS	3	J	STGR
krysen	<0.08		mg/kg TS	3	J	STGR
bens(b)fluoranten	<0.08		mg/kg TS	3	J	STGR
bens(k)fluoranten	<0.08		mg/kg TS	3	J	STGR
bens(a)pyren	<0.08		mg/kg TS	3	J	STGR
dibens(ah)antracen	<0.08		mg/kg TS	3	J	STGR
benso(ghi)perylen	<0.1		mg/kg TS	3	J	STGR
indeno(123cd)pyren	<0.08		mg/kg TS	3	J	STGR
PAH, summa 16	<1.5		mg/kg TS	3	D	STGR
PAH, summa cancerogena*	<0.3		mg/kg TS	3	N	STGR
PAH, summa övriga*	<0.5		mg/kg TS	3	N	STGR
PAH, summa L*	<0.15		mg/kg TS	3	N	STGR
PAH, summa M*	<0.15		mg/kg TS	3	N	STGR
i Aii, sullilla W	\U.Z J		ing/kg is	J	IN	SIGK

Sida 10 (14)

T1714380

2N60AD5SWO0

Er beteckning 17R03 prov nr 1

Provtagare Tony Eriksson 2017-05-23

Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
PAH, summa H*	<0.3		mg/kg TS	3	Z	STGR

Sida 11 (14)

T1714380

2N60AD5SWO0

Er beteckning 17R03 prov nr 2

Tony Eriksson 2017-05-23 Provtagare Provtagningsdatum

Labnummer O10891009 Parameter	Posultat	Opäkarkat (.)	Enhat	Motod	1 144	Sign
TS_105°C	Resultat 84.2	Osäkerhet (±)	Enhet %	Metod	Utf V	ERJA
	<0.5	2		1	_	
Ba	25.7	5.9	mg/kg TS	1	Н	ERJA
Cd	<0.1	5.9	mg/kg TS	1	Н	ERJA ERJA
Co	4.52	1.10	mg/kg TS	1	Н	
	17.6		mg/kg TS	1	H	ERJA
Cr	5.76	3.6 1.21	mg/kg TS	1	H	ERJA
Cu Hg	<0.2	1.21	mg/kg TS	1	Н	ERJA
Ni	6.31	1.65	mg/kg TS	1	Н	ERJA ERJA
Pb	5.38	1.05	mg/kg TS mg/kg TS	1	Н	ERJA
V	20.7	4.4	mg/kg TS		Н	ERJA
Zn	32.4	6.2	mg/kg TS	1	Н	ERJA
211	32.4	0.2	Hig/kg 13	ı	П	EKJA
TS_105°C	81.2		%	2	0	MAEL
alifater >C5-C8	<10					MISW
alifater >C5-C8	<10		mg/kg TS	3	J	STGR
alifater >C8-C10	<20		mg/kg TS mg/kg TS	3	J	STGR
alifater >C10-C12	<20			3		STGR
alifater >C12-C16	<20 <30		mg/kg TS mg/kg TS	3	J N	STGR
alifater >C16-C35	43			3		STGR
aromater >C8-C10			mg/kg TS		J	STGR
	<1		mg/kg TS	3	J	STGR
aromater >C10-C16	<1		mg/kg TS	3	J	
metylpyrener/metylfluorantener*	<1		mg/kg TS	3	N	STGR
metylkrysener/metylbens(a)antracener* aromater >C16-C35	<1		mg/kg TS mg/kg TS	3	N	STGR STGR
	<1 <0.01				J	MISW
bensen toluen	<0.01		mg/kg TS	3	J	MISW
	<0.05		mg/kg TS	3	J	MISW
etylbensen	<0.05		mg/kg TS mg/kg TS	3	J	MISW
m,p-xylen o-xylen	<0.05		mg/kg TS	3	J	MISW
xylener, summa*	<0.05		mg/kg TS	3	N	MISW
TEX, summa*	<0.03		mg/kg TS	3	N	MISW
naftalen	<0.1		mg/kg TS	3	J	STGR
acenaftylen	<0.1		mg/kg TS	3	J	STGR
acenaften	<0.1		mg/kg TS	3	J	STGR
fluoren	<0.1		mg/kg TS	3	J	STGR
fenantren	<0.1		mg/kg TS	3	J	STGR
antracen	<0.1		mg/kg TS	3	J	STGR
fluoranten	<0.1		mg/kg TS	3	J	STGR
pyren	<0.1		mg/kg TS	3	J	STGR
bens(a)antracen	<0.08		mg/kg TS	3	J	STGR
krysen	<0.08		mg/kg TS	3	J	STGR
bens(b)fluoranten	<0.08		mg/kg TS	3	J	STGR
bens(k)fluoranten	<0.08		mg/kg TS	3	J	STGR
bens(a)pyren	<0.08		mg/kg TS	3	J	STGR
dibens(ah)antracen	<0.08		mg/kg TS	3	J	STGR
benso(ghi)perylen	<0.1		mg/kg TS	3	J	STGR
indeno(123cd)pyren	<0.1		mg/kg TS	3	J	STGR
PAH, summa 16	<1.5		mg/kg TS	3	D	STGR
PAH, summa cancerogena*	<0.3		mg/kg TS	3	N	STGR
PAH, summa övriga*	<0.5		mg/kg TS	3	N	STGR
PAH, summa L*	<0.15		mg/kg TS	3	N	STGR
PAH, summa M*	<0.15			3	N	STGR
ran, summa w	<0.25		mg/kg TS		IN	SIGK

Sida 12 (14)

T1714380

2N60AD5SWO0

Er beteckning 17R03 prov nr 2

Provtagare Tony Eriksson 2017-05-23

Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
PAH, summa H*	<0.3		mg/kg TS	3	Z	STGR

Sida 13 (14)

T1714380

2N60AD5SWO0

* efter parameternamn indikerar icke ackrediterad analys.

	Metod
1	Bestämning av metaller enligt MS-1.
	Analysprovet har torkats vid 50°C och elementhalterna TS-korrigerats.
	För jord siktas provet efter torkning.
	För sediment/slam mals alternativt hamras det torkade provet .
	Vid expressanalys har upplösning skett på vått samt osiktat/omalt prov.
	Upplösning har skett med salpetersyra för slam/sediment och för jord med salpetersyra/väteperoxid.
	Analys med ICP-SFMS har skett enligt SS EN ISO 17294-1, 2 (mod) samt EPA-metod 200.8 (mod).
	Analys fred for -51 MS har skett enligt 55 EN 150 17254-1, 2 (mod) samt El A-metod 200.0 (mod).
	Rev 2015-07-24
	Nev 2013-07-24
2	Postämning outerraphotone onlint SC 020112/4
-	Bestämning av torrsubstans enligt SS 028113/1 Provet torkas vid 105°C.
	Provet torkas vid 105°C.
	Mötenökerhet (k-2): ,69/
	Mätosäkerhet (k=2): ±6%
	Rev 2013-05-15
	Nev 2013-03-13
3	Paket OJ-21A
3	· •·····
	Bestämning av alifatfraktioner och aromatfraktioner

Bestämning av bensen, toluen, etylbensen och xylen (BTEX).

Bestämning av polycykliska aromatiska kolväten, PAH (16 föreningar enligt EPA)

* summa metylpyrener/metylfluorantener och summa metylkrysener/metylbens(a)antracener.

Mätning utförs med GCMS enligt interna instruktioner TKI45a och TKI42a som är baserade på SPIMFABs kvalitetsmanual.

PAH cancerogena utgörs av benso(a)antracen, krysen, benso(b)fluoranten, benso(k)fluoranten, benso(a)pyren, dibenso(ah)antracen och indeno(123cd)pyren.

Summa PAH L: naftalen, acenaften och acenaftylen.

Summa PAH M: fluoren, fenantren, antracen, fluoranten och pyren.

Summa PAH H: benso(a)antracen, krysen, benso(b)fluoranten, benso(k)fluoranten, benso(a)pyren,

indeno(1,2,3-c,d)pyren, dibenso(a,h)antracen och benso(g,h,i)perylen.

Enligt direktiv från Naturvårdsverket oktober 2008.

Mätosäkerhet (k=2):

Alifatfraktioner: ±29-44% Aromatfraktioner: ±27-28% Enskilda PAH: ±24-27%

±31% vid 0,1 mg/kg Bensen Toluen ±23% vid 0,1 mg/kg Etylbensen ±24% vid 0,1 mg/kg m+p-Xylen ±25% vid 0,1 mg/kg ±25% vid 0,1 mg/kg o-Xylen

Summorna för metylpyrener/metylfluorantener, metylkrysener/metylbens(a)antracener och alifatfraktionen >C5-C16 är inte ackrediterade.

Rev 2017-02-28

	Godkännare
ERJA	Erika Jansson
MAEL	Matthew Ellis
MISW	Miryam Swartling
STGR	Sture Grägg

Sida 14 (14)

T1714380

2N60AD5SWO0

	Utf ¹
D	För mätningen svarar ALS Scandinavia AB, Box 700, 182 17 Danderyd som är av det svenska ackrediteringsorganet SWEDAC ackrediterat laboratorium (Reg.nr. 2030).
Н	Mätningen utförd med ICP-SFMS För mätningen svarar ALS Scandinavia AB, Aurorum 10, 977 75 Luleå, som är av det svenska ackrediteringsorganet SWEDAC ackrediterat laboratorium (Reg.nr. 2030).
J	För mätningen svarar ALS Scandinavia AB, Box 700, 182 17 Danderyd som är av det svenska ackrediteringsorganet SWEDAC ackrediterat laboratorium (Reg.nr. 2030).
N	För mätningen svarar ALS Scandinavia AB, Box 700, 182 17 Danderyd som är av det svenska ackrediteringsorganet SWEDAC ackrediterat laboratorium (Reg.nr. 2030).
0	För mätningen svarar ALS Scandinavia AB, Box 700, 182 17 Danderyd som är av det svenska ackrediteringsorganet SWEDAC ackrediterat laboratorium (Reg.nr. 2030).
V	Våtkemisk analys För mätningen svarar ALS Scandinavia AB, Aurorum 10, 977 75 Luleå, som är av det svenska ackrediteringsorganet SWEDAC ackrediterat laboratorium (Reg.nr. 2030).

Mätosäkerheten anges som en utvidgad osäkerhet (enligt definitionen i "Evaluation of measurement data - Guide to the expression of uncertainty in measurement", JCGM 100:2008 Corrected version 2010) beräknad med täckningsfaktor lika med 2 vilket ger en konfidensnivå på ungefär 95%.

Mätosäkerhet anges endast för detekterade ämnen med halter över rapporteringsgränsen.

Mätosäkerhet från underleverantör anges oftast som en utvidgad osäkerhet beräknad med täckningsfaktor 2. För ytterligare information kontakta laboratoriet.

Denna rapport får endast återges i sin helhet, om inte utfärdande laboratorium i förväg skriftligen godkänt annat. Resultaten gäller endast det identifierade, mottagna och provade materialet. Beträffande laboratoriets ansvar i samband med uppdrag, se aktuell produktkatalog eller vår webbplats www.alsglobal.se

Den digitalt signerade PDF filen representerar originalrapporten. Alla utskrifter från denna är att betrakta som kopior.

¹ Utförande teknisk enhet (inom ALS Scandinavia) eller anlitat laboratorium (underleverantör).

Sida 1 (6)

T1716420

20M7DVIZ0FZ

Ankomstdatum **2017-06-15** Utfärdad **2017-06-22**

Ramböll Sverige AB Jeanette Winter

Krukmakargatan 21 104 62 Stockholm Sweden

Projekt

Bestnr 13210809

Analys av fast prov

Er beteckning 17R36

Prov nr 2

Provtagare Tony Eriksson Provtagningsdatum 2017-05-23

Labnummer 010897039	Described	Opäkarbat (a)	Fu! -1	Materi	1146	Ciarra
Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
TS_105°C	28.8	2	% // TO	1	V	ERJA
As	2.86	0.80	mg/kg TS	1	Н	ERJA
Ba	52.2	12.0	mg/kg TS	1	H	ERJA
Cd	0.503	0.117	mg/kg TS	1	Н	ERJA
Co	8.43	2.04	mg/kg TS	1	H	ERJA
Cr	31.9	6.3	mg/kg TS	1	Н	ERJA
Cu	36.9	7.7	mg/kg TS	1	H	ERJA
Hg	<0.2		mg/kg TS	1	Н	ERJA
Ni	29.0	7.6	mg/kg TS	1	Н	ERJA
Pb	12.1	2.5	mg/kg TS	1	H	ERJA
V	31.1	6.7	mg/kg TS	1	Н	ERJA
Zn	77.2	14.6	mg/kg TS	1	Н	ERJA
TS_105°C	15.7		%	2	0	LISO
alifater >C5-C8	<10		mg/kg TS	3	J	JEME
alifater >C8-C10	<10		mg/kg TS	3	J	LISO
alifater >C10-C12	<20		mg/kg TS	3	J	LISO
alifater >C12-C16	<20		mg/kg TS	3	J	LISO
alifater >C5-C16*	<30		mg/kg TS	3	N	LISO
alifater >C16-C35	960		mg/kg TS	3	J	LISO
aromater >C8-C10	<1		mg/kg TS	3	J	LISO
aromater >C10-C16	1.8		mg/kg TS	3	J	LISO
metylpyrener/metylfluorantener*	<1		mg/kg TS	3	N	LISO
metylkrysener/metylbens(a)antracener*	<1		mg/kg TS	3	N	LISO
aromater >C16-C35	<1		mg/kg TS	3	J	LISO
bensen	<0.01		mg/kg TS	3	J	JEME
toluen	<0.05		mg/kg TS	3	J	JEME
etylbensen	<0.05		mg/kg TS	3	J	JEME
m,p-xylen	<0.05		mg/kg TS	3	J	JEME
o-xylen	<0.05		mg/kg TS	3	J	JEME
xylener, summa*	<0.05		mg/kg TS	3	N	JEME
TEX, summa*	<0.1		mg/kg TS	3	N	JEME
naftalen	<0.1		mg/kg TS	3	J	LISO
acenaftylen	<0.1		mg/kg TS	3	J	LISO
acenaften	<0.1		mg/kg TS	3	J	LISO
fluoren	<0.1		mg/kg TS	3	J	LISO
fenantren	<0.1		mg/kg TS	3	J	LISO
antracen	<0.1		mg/kg TS	3	J	LISO
fluoranten	<0.1		mg/kg TS	3	J	LISO
pyren	<0.1		mg/kg TS	3	J	LISO
		L				

Sida 2 (6)

T1716420

20M7DVIZ0FZ

Er beteckning 17R36

Prov nr 2

Provtagare Tony Eriksson Provtagningsdatum 2017-05-23

Labriuminer 010697039						
Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
bens(a)antracen	<0.08		mg/kg TS	3	J	LISO
krysen	<0.08		mg/kg TS	3	J	LISO
bens(b)fluoranten	<0.08		mg/kg TS	3	J	LISO
bens(k)fluoranten	<0.08		mg/kg TS	3	J	LISO
bens(a)pyren	<0.08		mg/kg TS	3	J	LISO
dibens(ah)antracen	<0.08		mg/kg TS	3	J	LISO
benso(ghi)perylen	<0.1		mg/kg TS	3	J	LISO
indeno(123cd)pyren	<0.08		mg/kg TS	3	J	LISO
PAH, summa 16	<1.5		mg/kg TS	3	D	LISO
PAH, summa cancerogena*	<0.3		mg/kg TS	3	Ν	LISO
PAH, summa övriga*	<0.5		mg/kg TS	3	Ζ	LISO
PAH, summa L*	<0.15		mg/kg TS	3	N	LISO
PAH, summa M*	<0.25		mg/kg TS	3	N	LISO
PAH, summa H*	<0.3		mg/kg TS	3	N	LISO

Sida 3 (6)

T1716420

20M7DVIZ0FZ

Er beteckning 17R31

Prov nr 2

Provtagare **Tony Eriksson** 2017-05-23

Provtagningsdatum

Labnummer O10897040						
Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
TS_105°C	25.7	2	%	1	V	ERJA
As	2.67	0.75	mg/kg TS	1	Н	ERJA
Ва	41.0	9.4	mg/kg TS	1	Н	ERJA
Cd	0.479	0.114	mg/kg TS	1	Н	ERJA
Со	8.37	2.02	mg/kg TS	1	Н	ERJA
Cr	28.5	5.7	mg/kg TS	1	Н	ERJA
Cu	34.5	7.3	mg/kg TS	1	Н	ERJA
Hg	<0.2		mg/kg TS	1	Н	ERJA
Ni	28.0	7.3	mg/kg TS	1	Н	ERJA
Pb	9.87	2.02	mg/kg TS	1	Н	ERJA
V	24.4	5.2	mg/kg TS	1	Н	ERJA
Zn	81.5	15.5	mg/kg TS	1	Н	ERJA
TS_105°C	17.0		%	2	0	LISO
alifater >C5-C8	<10		mg/kg TS	3	J	JEME
alifater >C8-C10	<10		mg/kg TS	3	J	LISO
alifater >C10-C12	<20		mg/kg TS	3	J	LISO
alifater >C12-C16	<20		mg/kg TS	3	J	LISO
alifater >C5-C16*	<30		mg/kg TS	3	N	LISO
alifater >C16-C35	850		mg/kg TS	3	J	LISO
aromater >C8-C10	<1		mg/kg TS	3	J	LISO
aromater >C10-C16	<1		mg/kg TS	3	J	LISO
metylpyrener/metylfluorantener*	<1		mg/kg TS	3	N	LISO
metylkrysener/metylbens(a)antracener*	<1		mg/kg TS	3	N	LISO
aromater >C16-C35	<1		mg/kg TS	3	J	LISO
bensen	<0.01		mg/kg TS	3	J	JEME
toluen	<0.05		mg/kg TS	3	J	JEME
etylbensen	<0.05		mg/kg TS	3	J	JEME
m,p-xylen	<0.05		mg/kg TS	3	J	JEME
o-xylen	<0.05		mg/kg TS	3	J	JEME
xylener, summa*	<0.05		mg/kg TS	3	N	JEME
TEX, summa*	<0.1		mg/kg TS	3	N	JEME
naftalen	<0.1		mg/kg TS	3	J	LISO
acenaftylen	<0.1		mg/kg TS	3	J	LISO
acenaften	<0.1		mg/kg TS	3	J	LISO
fluoren	<0.1		mg/kg TS	3	J	LISO
fenantren	<0.1		mg/kg TS	3	J	LISO
antracen	<0.1		mg/kg TS	3	J	LISO
fluoranten	<0.1		mg/kg TS	3	J	LISO
pyren	<0.1		mg/kg TS	3	J	LISO
bens(a)antracen	<0.08		mg/kg TS	3	J	LISO
krysen	<0.08		mg/kg TS	3	J	LISO
bens(b)fluoranten	<0.08		mg/kg TS	3	J	LISO
bens(k)fluoranten	<0.08		mg/kg TS	3	J	LISO
bens(a)pyren	<0.08		mg/kg TS	3	J	LISO
dibens(ah)antracen	<0.08		mg/kg TS	3	J	LISO
benso(ghi)perylen	<0.1		mg/kg TS	3	J	LISO
indeno(123cd)pyren	<0.08		mg/kg TS	3	J	LISO
PAH, summa 16	<1.5		mg/kg TS	3	D	LISO
PAH, summa cancerogena*	<0.3		mg/kg TS	3	N	LISO
PAH, summa övriga*	<0.5		mg/kg TS	3	N	LISO
PAH, summa L*	<0.15		mg/kg TS	3	N	LISO
PAH, summa M*	<0.25		mg/kg TS	3	N	LISO

Sida 4 (6)

T1716420

20M7DVIZ0FZ

Er beteckning 17R31
Prov nr 2
Provtagare Tony Eriksson
Provtagningsdatum 2017-05-23

Parameter	Resultat	Osäkerhet (±)	Enhet	Metod	Utf	Sign
PAH, summa H*	<0.3		mg/kg TS	3	Z	LISO

Sida 5 (6)

T1716420

20M7DVIZ0FZ

* efter parameternamn indikerar icke ackrediterad analys.

	Metod			
1	Bestämning av metaller enligt MS-1.			
	Analysprovet har torkats vid 50°C och elementhalterna TS-korrigerats.			
	För jord siktas provet efter torkning.			
	För sediment/slam mals alternativt hamras det torkade provet .			
	Vid expressanalys har upplösning skett på vått samt osiktat/omalt prov.			
	Upplösning har skett med salpetersyra för slam/sediment och för jord med salpetersyra/väteperoxid.			
	Analys med ICP-SFMS har skett enligt SS EN ISO 17294-1, 2 (mod) samt EPA-metod 200.8 (mod).			
	That ye med tell of the flat energy of the first of the f			
	Rev 2015-07-24			
	1.0v 2010 01 21			
2	Bestämning av torrsubstans enligt SS 028113/1			
_	Provet torkas vid 105°C.			
	Trovo torikae vid 100 C.			
	Mätosäkerhet (k=2): ±6%			
	Rev 2013-05-15			
3	Paket OJ-21A			
	Bestämning av alifatfraktioner och aromatfraktioner			

Bestämning av bensen, toluen, etylbensen och xylen (BTEX).

Bestämning av polycykliska aromatiska kolväten, PAH (16 föreningar enligt EPA)

* summa metylpyrener/metylfluorantener och summa metylkrysener/metylbens(a)antracener.

Mätning utförs med GCMS enligt interna instruktioner TKI45a och TKI42a som är baserade på SPIMFABs kvalitetsmanual.

PAH cancerogena utgörs av benso(a)antracen, krysen, benso(b)fluoranten, benso(k)fluoranten, benso(a)pyren, dibenso(ah)antracen och indeno(123cd)pyren.

Summa PAH L: naftalen, acenaften och acenaftylen.

Summa PAH M: fluoren, fenantren, antracen, fluoranten och pyren.

Summa PAH H: benso(a)antracen, krysen, benso(b)fluoranten, benso(k)fluoranten, benso(a)pyren,

indeno(1,2,3-c,d)pyren, dibenso(a,h)antracen och benso(g,h,i)perylen.

Enligt direktiv från Naturvårdsverket oktober 2008.

Mätosäkerhet (k=2):

Alifatfraktioner: ±29-44% Aromatfraktioner: ±27-28% Enskilda PAH: ±24-27%

±31% vid 0,1 mg/kg Bensen Toluen ±23% vid 0,1 mg/kg Etylbensen ±24% vid 0,1 mg/kg m+p-Xylen ±25% vid 0,1 mg/kg ±25% vid 0,1 mg/kg o-Xylen

Summorna för metylpyrener/metylfluorantener, metylkrysener/metylbens(a)antracener och alifatfraktionen >C5-C16 är inte ackrediterade.

Rev 2017-02-28

	Godkännare
ERJA	Erika Jansson
JEME	Jenny Melkersson
LISO	Linda Söderberg

Sida 6 (6)

T1716420

20M7DVIZ0FZ

	Utf ¹
D	För mätningen svarar ALS Scandinavia AB, Box 700, 182 17 Danderyd som är av det svenska ackrediteringsorganet SWEDAC ackrediterat laboratorium (Reg.nr. 2030).
Н	Mätningen utförd med ICP-SFMS För mätningen svarar ALS Scandinavia AB, Aurorum 10, 977 75 Luleå, som är av det svenska ackrediteringsorganet SWEDAC ackrediterat laboratorium (Reg.nr. 2030).
J	För mätningen svarar ALS Scandinavia AB, Box 700, 182 17 Danderyd som är av det svenska ackrediteringsorganet SWEDAC ackrediterat laboratorium (Reg.nr. 2030).
N	För mätningen svarar ALS Scandinavia AB, Box 700, 182 17 Danderyd som är av det svenska ackrediteringsorganet SWEDAC ackrediterat laboratorium (Reg.nr. 2030).
0	För mätningen svarar ALS Scandinavia AB, Box 700, 182 17 Danderyd som är av det svenska ackrediteringsorganet SWEDAC ackrediterat laboratorium (Reg.nr. 2030).
V	Våtkemisk analys För mätningen svarar ALS Scandinavia AB, Aurorum 10, 977 75 Luleå, som är av det svenska ackrediteringsorganet SWEDAC ackrediterat laboratorium (Reg.nr. 2030).

Mätosäkerheten anges som en utvidgad osäkerhet (enligt definitionen i "Evaluation of measurement data - Guide to the expression of uncertainty in measurement", JCGM 100:2008 Corrected version 2010) beräknad med täckningsfaktor lika med 2 vilket ger en konfidensnivå på ungefär 95%.

Mätosäkerhet anges endast för detekterade ämnen med halter över rapporteringsgränsen.

Mätosäkerhet från underleverantör anges oftast som en utvidgad osäkerhet beräknad med täckningsfaktor 2. För ytterligare information kontakta laboratoriet.

Denna rapport får endast återges i sin helhet, om inte utfärdande laboratorium i förväg skriftligen godkänt annat. Resultaten gäller endast det identifierade, mottagna och provade materialet. Beträffande laboratoriets ansvar i samband med uppdrag, se aktuell produktkatalog eller vår webbplats www.alsglobal.se

Den digitalt signerade PDF filen representerar originalrapporten. Alla utskrifter från denna är att betrakta som kopior.

¹ Utförande teknisk enhet (inom ALS Scandinavia) eller anlitat laboratorium (underleverantör).

Pascal Orrit

Från: Jeanette Winter

Skickat: den 18 augusti 2017 13:09

Till: charlotte.danielsson@skanska.se; Jorgen.Nygard@hsb.se

Kopia: Pascal Orrit

Ämne: VB: Matrisstörning? T1714380 [ref:_00D0Y1ID9n._5000YGo7El:ref]

Bifogade filer: Analysprotokoll.pdf

Kategorier: Ryssbergen; InternRamböll; Kopia

Hej igen!

Vidarebefordrar mailet jag fick från labbet så att ni kan hänvisa till det om det uppstår frågor från tillsynsmyndigheten eller från den som kommer att ta emot de massor ni kommer schakta bort inom området. Skickar även med analysprotokollen.

Hälsningar Jeanette

Från: Sture Gragg [mailto:sture.gragg@alsglobal.com]

Skickat: den 18 augusti 2017 10:56

Till: Jeanette Winter

Ämne: Matrisstörning? T1714380 [ref:_00D0Y1ID9n._5000YGo7El:ref]

Hej,

Jag har kontrollerat rådata för din order T1714380 och det är mycket riktigt så att de detetkterade alifaterna i fraktionen >C16-C35 sannolikt härrör från naturligt förekommande alifatiska föreningar. Eftersom TS-halten är så låg på flera av proverna blir ju också halterna i mg/kg TS höga.

Med vänlig hälsning,

Sture Gragg

Client service, Chemist

ALS Life Science Division | Environmental

ALS

+46 8 5277 5200 sture.gragg@alsglobal.com

ALS Scandinavia AB Rinkebyvägen 19c SE-182 36 Danderyd, Sweden

Right Solutions • Right Partner www.alsglobal.se

ref: 00D0Y1ID9n. 5000YGo7El:ref