

Ministério da Educação

Universidade Tecnológica Federal do Paraná

Campus Campo Mourão Wellington José Corrêa

3ª Prova de Cálculo Numérico
Curso: Bacharelado em Ciências da Computação

DAMAT, 2020

TAT .		
Nome:		
TIOITIO.		

Instruções:

- (i) Em todas as páginas da avaliação a ser resolvida, tem que o nome do aluno no **início** e no **fim** de cada página;
- (ii) A prova deve ser anexada no *Google Classroom* e a mesma deve ser escaneada em boa resolução e em **pdf**. Não serão aceitas imagens separadas do tipo jpg! (use um aplicativo do tipo *CamScanner* para celular);
- (iii) A prova tem que ter todos os passos apresentados na sala de aula e nas videoaulas. Resoluções incompletas, apenas apresentando a resposta serão descontadas nota da questão;
- (iv) Não esqueça de devolver a atividade no Google Classroom;
- (v) O aluno precisará do seu R.A. para fazer sua prova. Os alunos devem fazer a seguinte correspondência entre os dígitos d_i 's e os dígitos de seus R.A's. Por exemplo, um aluno com o R.A. dado por 002173581, deve fazer a seguinte correspondência:

0	0	d_1	d_2	d_3	d_4	d_5	d_6	d_7
0	0	2	1	7	3	5	8	1

Assim, neste exemplo, $d_1 = 2, d_2 = 1, d_3 = 7, \dots, d_7 = 1$ e o aluno deve substituir estes valores nas questões da prova;

(vi) Se as instruções (i),(ii), (iv) e (v) não forem obedecidas, a prova será anulada.

Do exposto, preencha a tabela abaixo colocando o seu R.A. (Esta tabela deve estar no início de sua prova juntamente com seu nome):

0	0	d_1	d_2	d_3	d_4	d_5	d_6	d_7
0	0							

Questões:

- **1** (1,8) Faça o que se pede:
- (a) Formule, pelo método de diferenças finitas, um sistema linear cuja solução aproxime a solução do seguinte problema de contorno:

$$\begin{cases} y'' = (d_5 + 2)y' + (d_3 + 2)y + (d_3 + 1)\cos x \\ y(0) = -d_1 - 0, 3 \\ y(\pi/2) = -d_1 - 0, 1 \end{cases}$$

(b) Atribuindo n=4 no item anterior, resolva o sistema pelo Método de Gauss-Seidel com $X^{(0)}=(0,0,0)^t, \varepsilon \leq 10^{-1}$ e k=0,1,2.

- **2 (1,8)** Calcule o valor aproximado da integral $\int_{d_6+2}^{d_6+4} e^{-x^2} dx$ usando a regra 3/8 de Simpson generalizada, com 6 subintervalos.
- **3 (1,8)** Determine a solução aproximada usando o método de Euler para h = 0.6 e $x \in [0, 1.8]$ para o seguinte PVI:

$$\begin{cases} y' = f(x,y) = (d_4 + 2)x^3 + \operatorname{sen}((d_4 + 1)y) \\ y(0) = d_3 + 2 \end{cases}$$

4 (1,8) Suponha que uma rede social tenha 10000 pessoas e seja y a quantidade de pessoas que conhecem um fake news. A velocidade de "espalhamento do boato" (difusão social) pode ser modelada pelo seguinte PVI:

$$\begin{cases} y' = f(x,y) = \frac{1}{10000} \cdot y \cdot (10000 - y) \\ y(0) = d_7 + 2, \ (d_7 + 2 \ pessoas \ d\tilde{a}o \ início \ ao \ fake \ news) \end{cases}$$

Determine quantas pessoas têm contato com o fake news após 15 dias. Para tanto, encontre a solução aproximada usando o método de Runge-Kutta de ordem 4 para n=3 e $x\in[0,15]$. Justifique o que acontece com os valores de y_1,y_2 e y_3 ?

5 (1,8) Usando a quadratura de Gauss, obtenha uma aproximação da integral $\int_{d_3+1}^{d_3+2} x^2 \operatorname{tg} x \, dx$ com n=3.

Sucesso!!!

Feliz Natal e Feliz 2021!!!