

gauravsharma727545@gmail.com ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Programming, Data Structures And

Algorithms Using Python (course)

Announcements (announcements)

About the Course (https://swayam.gov.in/nd1 noc19 cs40/preview) Ask a Question (forum)

Progress (student/home) Mentor (student/mentor)

Course outline

How to access the portal

Week 1: Introduction

Week 1 Quiz

Week 2: Basics of Python

Week 2 Quiz

Week 2 Programming Assignment

Week 3: Lists, inductive function

Week 8 Programming Assignment

Due on 2019-09-27, 23:59 IST

For this assignment, you have to write a complete Python program. Paste your code in the window below.

- You may define additional auxiliary functions as needed.
- There are some public test cases and some (hidden) private test cases.
- "Compile and run" will evaluate your submission against the public test cases
- "Submit" will evaluate your submission against the hidden private test cases. There are 10 private test cases, with equal weightage. You will get feedback about which private test cases pass or fail, though you cannot see the actual test cases.
- Ignore warnings about "Presentation errors".

Domino Solitaire

(Indian National Olympiad in Informatics, 2008)

In Domino Solitaire, you have a grid with two rows and many columns. Each square in the grid contains an integer. You are given a supply of rectangular 2×1 tiles, each of which exactly covers two adjacent squares of the grid. You have to place tiles to cover all the squares in the grid such that each tile covers two squares and no pair of tiles overlap

definitions, sorting

Week 3 Programming Assignment

Week 4:
Sorting,
Tuples,
Dictionaries,
Passing
Functions, List
Comprehension

Week 4 Quiz

Week 4
Programming
Assignment

Week 5: Exception handling, input/output, file handling, string processing

Week 5 Programming Assignment

Week 6:
Backtracking,
scope, data
structures;
stacks,
queues and
heaps

Week 6 Quiz

Week 7: Classes, objects and user defined datatypes

Week 7 Quiz

The score for a tile is the difference between the bigger and the smaller number that are covered by the tile. The aim of the game is to maximize the sum of the scores of all the tiles.

Here is an example of a grid, along with two different tilings and their scores.

8	6	2	3
9	7	1	2

Tiling 1					
	8	6	2	3	
	9	7	1	2	
Score 12					

Tiling 2					
8	6	2	3		
9	7	1	2		
Come C					

The score for Tiling 1 is 12 = (9-8)+(6-2)+(7-1)+(3-2) while the score for Tiling 2 is 6 = (8-6)+(9-7)+(3-2)+(2-1). There are other tilings possible for this grid, but you can check that Tiling 1 has the maximum score among all tilings.

Your task is to read the grid of numbers and compute the maximum score that can be achieved by any tiling of the grid.

Solution hint

Recursively find the best tiling, from left to right. You can start the tiling with one vertical tile or two horizontal tiles. Use dynamic programming to evaluate the recursive expression efficiently.

Input format

The first line contains one integer N, the number of columns in the grid. This is followed by 2 lines describing the grid. Each of these lines consists of N integers, separated by blanks.

Output format

A single integer indicating the maximum score that can be achieved by any tiling of the given grid.

Test Data:

For all inputs, $1 \le N \le 105$. Each integer in the grid is in the range $\{0,1,...,10^4\}$.

Sample Input:

4 8 6 2 3

9 7 1 2

Week 8: **Dynamic** programming, wrap-up

Week 8 **Programming Assignment**

Week 8 **Programming** Assignment name=98)

Download videos

Text Transcripts

Online **Programming Test - Sample**

Online Programming Test 1, 26 Sep 2019, 09:30-11:30

Sample Output:

12

```
Select the Language for this assignment. Python3 ▼
```

```
1 n = int(input())
2 l1 = list(map(in))
3 l2 = list(man(in))
                                  l1 = list(map(int, input().split()))
l2 = list(map(int, input().split()))
(/noc19_cs40/progassignngengfff = []
                               diff.append(abs(l1[0]-l2[0])) # for first column / for 1 col diff.append(max(diff[0]+abs(l1[1]-l2[1]),abs(l1[0]-l1[1])+ab
                               8
                               ğ
                                  i=2
                              10 while i<len(l1):
                             11
                                         diff.append(max(diff[i-1]+abs(l1[i]-l2[i]),diff[i-2]+abs
                             12
13
                                         i+=1
                             14 print(diff[-1])
```

You may submit any number of times before the due date. The final submission will be considered for grading.

This assignment has Public Test cases. Please click on "Compile & Run" button to see the status of Public test cases. Assignment will be evaluated only after submitting using Submit button below. If you only save as or compile and run the Program, your assignment will not be graded and you will not see your score after the deadline.

Carra an Dunger	Camanila o Dun	C. da aa in	D4
Save as Draft	Compile & Run	Submit	Reset

```
Sample Test Cases
   Input
                                                        Output
Test
Case 8 6 2 3
                                                         12
     9 7 1 2
Test
     8789 7959 4809 5257 4592 9455 6462 5855 6399 956
                                                         315
Case 9
                                                         97
     4977 5499 7329 2997 9599 5445 2412 9838 6252 657
2
```

100

2511 2090 9410 4226 3959 3826 2318 5356 5333 863 0 9624 3155 7360 6547 503 4539 8065 6558 8119 82 99 792 2046 6803 6519 9765 851 2039 2315 143 156 6 141 7040 894 5713 9574 2861 1437 8254 8573 350 3 2540 2862 8272 5518 9578 155 8493 9935 1672 58 74 5457 3379 3689 6102 9972 4269 3263 274 8535 2 766 1393 1859 2864 8412 368 6360 9530 1607 5327 6394 6831 86 7476 1983 1257 9508 5275 8492 8620 4276 800 5409 2229 6220 8377 2016 1569 1255 1554 4253 3592 8325 8073 4123 5605 7625 4737 5013 417 Case 3 2287

Test

9668 4457 791 6609 6438 9208 9074 5723 6687 4940 3855 3866 7280 6290 3158 7736 7585 9150 5101 556 7 8238 605 3218 3442 6767 7493 2552 6121 7803 94 79 1702 7483 7379 9357 1309 4021 6197 2206 402 6 193 5867 6284 8661 5558 3199 5171 4723 8388 9933 827 9738 7870 1030 6640 7850 249 2164 4176 4203 4686 2685 5869 9403 698 1360 1954 1818 464 9144 5064 5033 9785 2402 1599 3597 1153 5942 9486 182 3 4149 3317 6659 5671 2763 753 518 9301 399 5176 3041 5035 2088 8825 8874 7437 9378 6412 9721 987 4 7499

425 423