B

Spanning Subtrees

Input: Standard Input
Output: Standard Output

Let \mathbf{K}_n denote the complete undirected graph with n vertices where n is an even number. In other words, \mathbf{K}_n is a graph with n vertices where every two vertices are connected. Your task is to find the maximum number of spanning trees of \mathbf{K}_n that can be formed in such a way that no two of these spanning trees have a common edge.

Input

Each test case will have an even integer n ($2 \le n \le 400$), the number of vertices. The last test case will be followed by a single 0 denoting end of input.

Output

For each test case, print a line in the format, "Case X: Y", where X is the case number & Y is the maximum possible number of spanning trees.

Sample	e Input	
--------	---------	--

Output for Sample Input

		•	
4		Case 1: 2	
0			

Problemsetter: Mohammad Mahmudur Rahman Special Thanks to: Manzurur Rahman Khan