35. Interval arithmetic II

35. Interval arithmetic II

Last time

- Calculating with sets instead of numbers
- Fundamental idea of interval arithmetic:
 - enclosure of range of function
- Non-existence of roots

Goals for today

- Directed rounding
- Dependency problem
- Finding all roots: Branch-and-bound algorithms
- Interval Newton method
- Global optimization

 \blacksquare Think about operation like $\exp(x)$ on float x

- $\blacksquare \text{ Think about operation like } \exp(x) \text{ on float } x$
- lacktriangle Recall: a float x is a special (dyadic) rational number

- \blacksquare Think about operation like $\exp(x)$ on float x
- lacktriangle Recall: a float x is a special (dyadic) rational number
- lacksquare exp(x) will produce a non-float real

- \blacksquare Think about operation like $\exp(x)$ on float x
- lacktriangle Recall: a float x is a special (dyadic) rational number
- lacktriangle exp(x) will produce a non-float real
- Correct rounding: Return closest float to true result

- $\blacksquare \text{ Think about operation like } \exp(x) \text{ on float } x$
- lacktriangle Recall: a float x is a special (dyadic) rational number
- lacktriangle exp(x) will produce a non-float real
- Correct rounding: Return closest float to true result
- Difficult to do in general: CRlibm library

- Think about operation like exp(x) on float x
- lacktriangle Recall: a float x is a special (dyadic) rational number
- \blacksquare exp(x) will produce a non-float real
- Correct rounding: Return closest float to true result
- Difficult to do in general: CRlibm library
- IEEE-754 standard for floating-point arithmetic
- Requires correct rounding for +, -, *, /, sqrt

- Think about operation like exp(x) on float x
- lacktriangle Recall: a float x is a special (dyadic) *rational* number
- lacktriangle exp(x) will produce a non-float real
- Correct rounding: Return closest float to true result
- Difficult to do in general: CRlibm library
- IEEE-754 standard for floating-point arithmetic
- Requires correct rounding for +, -, *, /, sqrt
- Use additional internal bits of precision to calculate

■ We do not know in which direction rounding occurred

- We do not know in which direction rounding occurred
- For interval arithmetic, need to **bound** this **error**

- We do not know in which direction rounding occurred
- For interval arithmetic, need to bound this error
- Desired result: interval guaranteed to contain true value

- We do not know in which direction rounding occurred
- For interval arithmetic, need to bound this error
- Desired result: interval guaranteed to contain true value
- "Enclosure"

- Various possible techniques to do this:
 - 1 Control processor's rounding direction

- Various possible techniques to do this:
 - 1 Control processor's rounding direction
 - Possible but technically difficult and slow, not thread-safe

- Various possible techniques to do this:
 - Control processor's rounding direction
 - Possible but technically difficult and slow, not thread-safe
 - 2 Artificially move the result outwards:
 - \blacksquare move left endpoint down (towards $-\infty$)
 - lacksquare move right endpoint up (towards $+\infty$)

- Various possible techniques to do this:
 - Control processor's rounding direction
 - Possible but technically difficult and slow, not thread-safe
 - 2 Artificially move the result outwards:
 - \blacksquare move left endpoint down (towards $-\infty$)
 - \blacksquare move right endpoint up (towards $+\infty$)
 - In Julia: prevfloat and nextfloat

- Various possible techniques to do this:
 - Control processor's rounding direction
 - Possible but technically difficult and slow, not thread-safe
 - 2 Artificially move the result outwards:
 - \blacksquare move left endpoint down (towards $-\infty$)
 - lacksquare move right endpoint up (towards $+\infty$)
 - In Julia: prevfloat and nextfloat
 - Result is 2ulps wide instead of 1ulp (unit in last place)

Simple implementation

Can implement this easily:

```
struct SimpleInterval
    inf::Float64
    sup::Float64
end
import Base: +
+(x::SimpleInterval, y::SimpleInterval) =
    SimpleInterval( prevfloat(x.inf + y.inf),
                    nextfloat(x.sup + v.sup) )
x = SimpleInterval(0.1, 0.3)
v = SimpleInterval(0.2, 0.4)
```

- Julia package tuned for efficiency
- Almost compliant with IEEE-1788 standard

- Julia package tuned for efficiency
- Almost compliant with IEEE-1788 standard

```
using IntervalArithmetic
```

```
x = 0.1..0.3  # shorthand for `interval(0.1, 0.3)`
y = 0.2..0.4
x + y
```

- Julia package tuned for efficiency
- Almost compliant with IEEE-1788 standard

```
using IntervalArithmetic
```

```
x = 0.1..0.3  # shorthand for `interval(0.1, 0.3)`
y = 0.2..0.4
x + y
```

Compare

```
x = SimpleInterval(0.1, 0.3)
x + x
y = interval(0.1, 0.3)
```

- Recall the example of excluding roots
- Let's see how to do this with IntervalArithmetic.jl

```
X = 3..4
f(x) = x^2 - 2
0 in f(X) # returns false
```

- $\ \ \, f(X)$ is obtained by substituting X instead of x everywhere in definition of f
- Called natural interval extension

■ What is X - X for the interval X := [0..1]?

- What is X X for the interval X := [0..1]?
- $\blacksquare \text{ It should be } \{x-x: x \in X\} = 0$

- What is X X for the interval X := [0..1]?
- $\blacksquare \text{ It should be } \{x-x: x \in X\} = 0$
- \blacksquare But we actually get $\{x-y:x,y\in X\}=[-1..1]$

- What is X X for the interval X := [0..1]?
- $\blacksquare \text{ It should be } \{x-x:x\in X\}=0$
- \blacksquare But we actually get $\{x-y:x,y\in X\}=[-1..1]$
- lacktriangle We "cannot tell" that it is the same X both times

- What is X X for the interval X := [0..1]?
- $\blacksquare \text{ It should be } \{x-x: x \in X\} = 0$
- \blacksquare But we actually get $\{x-y:x,y\in X\}=[-1..1]$
- lacktriangle We "cannot tell" that it is the same X both times
- Dependency problem of interval arithmetic

- What is X X for the interval X := [0..1]?
- $\blacksquare \text{ It should be } \{x-x: x \in X\} = 0$
- \blacksquare But we actually get $\{x-y:x,y\in X\}=[-1..1]$
- lacktriangle We "cannot tell" that it is the same X both times
- Dependency problem of interval arithmetic
- Serious impediment to using interval arithmetic more widely
- Partial solution: Affine arithmetic

lacksquare We can exclude a root by the inclusion test $0 \in f(X)$

- \blacksquare We can exclude a root by the inclusion test $0 \in f(X)$
- If $0 \notin f(X)$ then there is no root theorem

- \blacksquare We can exclude a root by the inclusion test $0 \in f(X)$
- If $0 \notin f(X)$ then there is no root theorem
- lacktriangle However, if $0 \in f(X)$ we cannot conclude anything

- lacksquare We can exclude a root by the inclusion test $0 \in f(X)$
- If $0 \notin f(X)$ then there is no root theorem
- lacksquare However, if $0 \in f(X)$ we cannot conclude anything
- Overestimation from dependency problem may lead to $0 \not\in \operatorname{range}(f;X)$ but $0 \in f(X)$

Finding all roots

lacksquare Given an interval X, how can we find *all* roots in X

Finding all roots

- lacksquare Given an interval X, how can we find all roots in X
- So far: know how to exclude roots from single interval

Finding all roots

- lacksquare Given an interval X, how can we find all roots in X
- So far: know how to exclude roots from single interval
- Idea: Split interval into pieces

Finding all roots

- lacksquare Given an interval X, how can we find all roots in X
- So far: know how to exclude roots from single interval
- Idea: Split interval into pieces
- Simplest: Equal-sized pieces mincing

Finding all roots

- lacksquare Given an interval X, how can we find all roots in X
- So far: know how to exclude roots from single interval
- Idea: Split interval into pieces
- Simplest: Equal-sized pieces mincing
- \blacksquare Theorem: Over-estimation of range decreases as $\mathcal{O}(w)$
- w is width of each piece

■ How can we improve on this?

- How can we improve on this?
- Idea: (Spatial) branch and prune

- How can we improve on this?
- Idea: (Spatial) branch and prune
- Branch: Bisect
- Prune: Check each piece and throw away if no root

- How can we improve on this?
- Idea: (Spatial) branch and prune
- Branch: Bisect
- Prune: Check each piece and throw away if no root
- Effectively builds a binary tree in an efficient way

- How can we improve on this?
- Idea: (Spatial) branch and prune
- Branch: Bisect
- Prune: Check each piece and throw away if no root
- Effectively builds a binary tree in an efficient way
- Exhaustive search of the space up to some tolerance

- lacksquare Start from initial box X_0
- What does branch and prune produce?

- lacksquare Start from initial box X_0
- What does branch and prune produce?
- \blacksquare List of intervals X^i whose \mathbf{union} contains all roots in X_0

- lacksquare Start from initial box X_0
- What does branch and prune produce?
- \blacksquare List of intervals X^i whose \mathbf{union} contains all roots in X_0
- lacksquare i.e. if x is a root of f then x is in some X^i

- lacksquare Start from initial box X_0
- What does branch and prune produce?
- \blacksquare List of intervals X^i whose ${\bf union}$ contains all roots in X_0
- lacksquare i.e. if x is a root of f then x is in some X^i
- But still don't know if there are roots or how many

- \blacksquare Suppose we have reached a small interval X^i where we they may be a root
- $\blacksquare \text{ So } 0 \in f(X)$

- \blacksquare Suppose we have reached a small interval X^i where we they may be a root
- $\blacksquare \ \mathrm{So} \ 0 \in f(X)$
- Calculus: sufficient condition for unique root to exist:

$$f'(x) > 0$$
 for all $x \in X$

- \blacksquare Suppose we have reached a small interval X^i where we they may be a root
- $\blacksquare \ \mathrm{So} \ 0 \in f(X)$
- Calculus: sufficient condition for unique root to exist:

$$f'(x) > 0$$
 for all $x \in X$

How can we check this?

- \blacksquare Suppose we have reached a small interval X^i where we they may be a root
- $\blacksquare \ \mathrm{So} \ 0 \in f(X)$
- Calculus: sufficient condition for unique root to exist:

$$f'(x) > 0$$
 for all $x \in X$

- How can we check this?
- Idea: Use algorithmic differentiation and interval arithmetic!

Extend standard Newton method to interval context

- Extend standard Newton method to interval context
- lacksquare Define $\tilde{m}(X)$:= midpoint of interval X

- Extend standard Newton method to interval context
- Define $\tilde{m}(X)$:= midpoint of interval X
- $\blacksquare \text{ Need thin interval version: } m(X) := [\tilde{m}(x)..\tilde{m}(x)]$

- Extend standard Newton method to interval context
- Define $\tilde{m}(X)$:= midpoint of interval X
- Need thin interval version: $m(X) := [\tilde{m}(x)..\tilde{m}(x)]$
- Newton operator is

■ Idea: Through (m, f(m)) take all straight lines whose slope is some number in the interval f'(X)

- Idea: Through (m,f(m)) take all straight lines whose slope is some number in the interval f'(X)
- \blacksquare Here f'(X) is the natural extension of the derivative function f'

- Idea: Through (m,f(m)) take all straight lines whose slope is some number in the interval f'(X)
- lacktriangle Here f'(X) is the natural extension of the derivative function f'
- Can calculate using algorithmic differentiation!

- Idea: Through (m,f(m)) take all straight lines whose slope is some number in the interval f'(X)
- lacktriangle Here f'(X) is the natural extension of the derivative function f'
- Can calculate using algorithmic differentiation!

- Theorem:
 - \blacksquare Any root in X lies in $\mathcal{N}_f(X)$
 - \blacksquare So if $\mathcal{N}_f(X)\cap X=\emptyset$ then there is no root
 - \blacksquare If $\mathcal{N}_f(X)\subseteq X$ then there is a unique root in X

Higher dimensions

- Simplest sets in higher dimensions:
- \blacksquare Cartesian products of intervals, $X_1\times X_2$

Higher dimensions

- Simplest sets in higher dimensions:
- \blacksquare Cartesian products of intervals, $X_1\times X_2$
- Branch and prune and interval Newton extend directly

Global optimization: Ground state of atomic cluster

- lacksquare N atoms at positions $\mathbf{x}_i \in \mathbb{R}^{3\star}$
- lacktriangle Interaction potential $V(r_{ij})$ between pairs
- Ground state: Minimize potential energy

$$V(\mathbf{x}_1,\dots,\mathbf{x}_N) := \sum_{i=1}^N \sum_{j>i} V(r_{ij})$$

 $lacksquare r_{ij} := \| \mathbf{x}_i - \mathbf{x}_j \|$ is distance between atoms i and j

Lennard-Jones potential

Standard model of interaction between argon atoms:

$$V(r) := 4\left(\frac{1}{r^{12}} - \frac{1}{r^6}\right)$$

- Problem: There are lots of local minima
- lacksquare Estimated to grow like $\mathcal{O}(e^N)$
- To find the ground state we need global optimization

Global optimization

Similar algorithm to branch and prune is

branch and bound

Global optimization

- Similar algorithm to branch and prune is
 - branch and bound
- lacktriangle Suppose have upper bound m for global minimum value
- \blacksquare If f(X)>m then X cannot contain global minimum

Global optimization

- Similar algorithm to branch and prune is branch and bound
- lacktriangle Suppose have upper bound m for global minimum value
- $\ \ \, \ \ \, \ \ \,$ If f(X)>m then X cannot contain global minimum
- Use this in similar branching algorithm

Constraint propagation

- lacktriangle Interval arithmetic may be applied to **contract** a box X
- lacktriangle By eliminating parts of X that don't satisfy a **constraint**

Constraint propagation

- lacktriangle Interval arithmetic may be applied to **contract** a box X
- lacksquare By eliminating parts of X that don't satisfy a **constraint**
- lacksquare e.g. Constraint $x^2+y^2\leq 1$
- $\qquad \text{Initial box } X = (-\infty..\infty) \times (-\infty..\infty)$

Constraint propagation

- lacktriangle Interval arithmetic may be applied to **contract** a box X
- lacktriangle By eliminating parts of X that don't satisfy a **constraint**
- lacksquare e.g. Constraint $x^2+y^2\leq 1$
- $\qquad \text{Initial box } X = (-\infty..\infty) \times (-\infty..\infty)$
- **Idea**: Forwards—backwards algorithm:
 - Propagate forwards
 - 2 Apply constraint
 - 3 Propagate backwards

Review

- Applications of intervals
- Branch and prune for excluding roots
- Interval Newton for proving existence and uniqueness
- Global optimization