- (1) a) NA
 - b) Veremos que f es homotopa a constante, por lo tanto, $\mu(f,O)=0$. Como f no es exahustiva, existe $z_0\in\mathbb{S}^1$ tal que $z_0\notin f\left(\mathbb{S}^1\right)$, tomamos el punto diametralmente opuesto z_1 y aplicamos el teorema de Poincaré-Bohl, que nos dice que si O no pretenece al segmento que une f(z) y z_1 , entonces $\mu(f,O)=\mu(z_1,O)$. El único segmento que parte de z_1 y pasa por O, es el que une z_1 con z_0 , como z_0 no pertenece a la imagen de f, las hipótesis del teorema se cumplen y $\mu(f,O)=\mu(z_1,O)=0$
- (2) a) Suponemos que $X \times Y \setminus A \times B$ es no conexo, es decir, $\exists U, V$ abiertos tal que $U \cap V = \emptyset$ <++>

<++>