

1/9/5

DIALOG(R)File 351:Derwent WPI
(c) 2001 Derwent Info Ltd. All rts. reserv.

001828048

WPI Acc No: 1977-49043Y/197728

**Anti-felting treatment for yarns contg. keratin - by individual treatment
with felt-proofing agent and drying to cure**

Patent Assignee: CIBA GEIGY AG (CIBA)

Number of Countries: 003 Number of Patents: 003

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
DE 2657513	A	19770707			197728	B
FR 2336508	A	19770826			197743	
CH 598392	A	19780428			197819	

Priority Applications (No Type Date): CH 7516693 A 19751223

Abstract (Basic): DE 2657513 A

An anti-felting treatment for yarns contg. keratinous fibres, partic. wool yarns involves treating the yarn in the form of single fibres or fibre bundles moving in a lengthwise direction. The yarn passes continuously through a bath contg. a felt-proofing agent, excess liq. is removed and the yarn is dried for a sufficient time to fix the agent on the fibres.

Suitable felt-proofing agents include reactive polyolefins, reaction prods. of polyisocyanate with OH-cpds., silicone polymers, aziridine cpds, reaction prods. of epoxides with fatty amines and dicarboxylic acids or polyamides, reaction prods. with thiosulphate end gps. or pref. reaction prods. with mercapto end gps.

Treated yarns are suitable for subsequent spinning, weaving, knitting etc. The yarn is treated direct from the spinning machine and can be mixed with untreated yarn to achieve fancy effects.

Title Terms: ANTI; FELT; TREAT; YARN; CONTAIN; KERATIN; INDIVIDUAL; TREAT; FELT; PROOF; AGENT; DRY; CURE

Derwent Class: A35; F07

International Patent Class (Additional): D06B-001/02; D06B-003/04;
D06B-015/00; D06B-021/00; D06M-003/00; D06M-015/16

File Segment: CPI

⑥

Int. Cl. 2:

⑨ BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES

PATENTAMT

D 06 B 3/04

D 06 B 1/02

D 06 B 15/00

D 06 B 21/00

D 06 M 3/00

DT 26 57 513 A 1

⑪

Offenlegungsschrift 26 57 513

⑫

Aktenzeichen:

P 26 57 513.3

⑬

Anmeldetag:

18. 12. 76

⑭

Offenlegungstag:

7. 7. 77

⑯

Unionspriorität:

⑰ ⑱ ⑲

23. 12. 75 Schweiz 16693-75

⑳

Bezeichnung:

Verfahren zum Filzfestmachen von Garnen aus kerathinhaltigen Fasermaterialien

㉑

Anmelder:

CIBA-GEIGY AG, Basel (Schweiz)

㉒

Vertreter:

Redies, F., Dr.-Ing. Dr.jur.; Redies, B., Dipl.-Chem. Dr.rer.nat.; Türk, D., Dr.; Gille, Ch., Dipl.-Ing.; Pat.-Anwälte, 4000 Düsseldorf

㉓

Erfinder:

Schudel, Paul, Riehen (Schweiz)

DT 26 57 513 A 1

● 6.77 709827/1076

22/100

2657513

Patentansprüche

1. Verfahren zum Filzfestmachen von Garnen aus keratinhaltigen Fasermaterialien, insbesondere von Wollgarn, dadurch gekennzeichnet, dass man das Garn in Form einzelner, sich in Längsrichtung bewegender Fäden und in einem kontinuierlichen Arbeitsgang nacheinander mit einer das Filzfestmittel enthaltenden Flotte behandelt, die überschüssige Flotte von dem Garn entfernt und das Garn während einer für die Fixierung des Filzfestmittels ausreichenden Zeitspanne trocknet.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man das Garn durch Anwendung von Druck fortbewegt.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die Durchlaufgeschwindigkeit des Garnes 200 bis 1000 m/Min., vorzugsweise 400 bis 800 m/Min., beträgt.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die das Filzfestmittel enthaltende Flotte auf das Garn aufspritzt oder aufsprüht.

709827/1076

2
2657513

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man die das Filzfestmittel enthaltende Flotte bei Temperaturen von 20 bis 30°C auf das Garn aufspritzt oder aufsprüht.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die überschüssige Flotte durch Abquetschen des Garns oder durch Abblasen mit einem Luftstrom entfernt.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man das behandelte Garn bei 80 bis 300° C, vorzugsweise bei 200 bis 300° C, trocknet.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass man das Garn mit wässerigen, organisch-wässerigen oder organischen, das Filzfestmittel enthaltenden Flotten behandelt.
9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass man als Filzfestmittel reaktive Polyolefine, Umsetzungsprodukte aus Polyisocyanaten und Hydroxylverbindungen, Siliconpolymeren, Aziridinverbindungen, Umsetzungsprodukte von Epoxyden mit Fettaminen und Dicarbonsäuren oder Polyamiden, Umsetzungsprodukte mit Thiosulfatendgruppen oder vorzugsweise Umsetzungsprodukte mit Mercaptoendgruppen verwendet.

709827/1076

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass man als Filzfestmittel Umsetzungsprodukte mit Mercaptoendgruppen aus (1) Polyalkoholen oder Polycarbonsäuren, (2) Alkylenoxyden und (3) Mercaptomonoo- oder -dicarbonsäuren verwendet, gegebenenfalls in Gegenwart von weiteren Kondensationsprodukten und von Härtungskatalysatoren.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Umsetzungsprodukte 2 bis 6, vorzugsweise 3 bis 6 Mercaptogruppen enthalten.
12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Molekulargewicht der Umsetzungsprodukte 400 bis 10 000 beträgt.
13. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Filzfestmittel Verbindungen der Formel

sind, worin R ein aliphatischer Rest mit 2 bis 10, insbesondere 2 bis 6 Kohlenstoffatomen, Alkylen eine Alkylen-

709827/1076

gruppe mit 2 bis 6 Kohlenstoffatomen zwischen aufeinanderfolgenden Sauerstoffatomen, m unabhängig voneinander eine Zahl von mindestens 1, n 1 oder 2, q 1 bis 4 und p 2 bis 6 ist, wobei die Summe aus (p+q) 3 bis 7 beträgt.

14. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Filzfestmittel Verbindungen der Formel

sind, worin X Wasserstoff, ein Kation, das sich von einem Alkalimetall, Ammoniak oder einem Amin ableitet, und R, m, n, p und q die in Anspruch 13 angegebenen Bedeutungen haben.

15. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Filzfestmittel Verbindungen der Formeln

und

sind, worin R, Alkylen, X, m, n und p die in Anspruch 14 angegebenen Bedeutungen haben.

709827/1076

16. Verfahren nach Anspruch 10, dadurch gekennzeichnet,
dass die Filzfestmittel Verbindungen der Formeln

oder

sind, worin $\text{R}_1 = \text{CH}-$ oder $= \text{CH}_2\text{CH}-$ und t mindestens 1 ist und X , Alkylen und m die angegebenen Bedeutungen haben.

17. Verfahren nach Anspruch 13, dadurch gekennzeichnet,
dass die Filzfestmittel Verbindungen der Formel

sind, worin r eine Zahl von 2 bis 4 ist und m und n die angegebenen Bedeutungen haben.

18. Verfahren nach Anspruch 17, dadurch gekennzeichnet,
dass das Filzfestmittel eine Verbindung der Formel

ist, worin die Summe m_2 66 bis 70 beträgt.

19. Verfahren nach Anspruch 16, dadurch gekennzeichnet,
dass die Filzfestmittel Verbindungen der Formel

oder deren Alkalimetall-, Amin- oder Ammoniumsalze sind
oder der Formel

entsprechen.

20. Verfahren nach Anspruch 15, dadurch gekennzeichnet,
dass die Filzfestmittel Verbindungen der Formeln

709827/1076

enthalten, worin m die angegebene Bedeutung hat.

21. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man Kondensationsprodukte aus Dicyandiamid, Cyanamid oder einer anderen bifunktionellen Verbindung oder einer Mischung aus zwei oder drei dieser Komponenten, einem mindestens drei primäre und/oder sekundäre Aminogruppen enthaltenden Polyamin und einem Epihalogenhydrin verwendet.

22. Verfahren nach Anspruch 21, dadurch gekennzeichnet,
dass man Kondensationsprodukte aus einem Polyalkylenpolyamin
mit 2 bis 8 Alkylengruppen, Dicyandiamid und Epichlorhydrin
verwendet.

23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass man Kondensationsprodukte aus einem Polyalkylenpolyamin mit 2 bis 8 Alkylengruppen, Dicyandiamid, einer aliphatischen Dicarbonsäure oder einem Monoalkyl- oder Dialkylester dieser Dicarbonsäuren mit 1 bis 6 Kohlenstoffatomen im Alkylteil und Epichlorhydrin verwendet.

709827/1076

2657513

24. Verfahren nach Anspruch 23, dadurch gekennzeichnet,
dass man Kondensationsprodukte aus Diäthylentriamin, Dicyan-
diamid, Adipinsäure oder einem Mono- oder Dialkylester
der Adipinsäure dessen Alkylreste 1 bis 6 Kohlenstoffatomen
enthalten und Epichlorhydrin verwendet.
25. Verfahren nach Anspruch 10, dadurch gekennzeichnet,
dass man als Katalysator eine Base, ein Sikkativ, Schwefel,
eine Schwefel enthaltende organische Verbindung, in der die
Schwefelatome nicht ausschliesslich in Form von Mercaptan-
gruppen vorliegen, einen freie Radikale liefernden Kataly-
sator, ein Salz eines Schwermetalls mit einer Säure mit
einer Säurestärke (-log K) unterhalb 5 oder ein Chelat
eines Schwermetalls einschliesslich der salzartigen Chelate
verwendet.
26. Verfahren nach Anspruch 9, dadurch gekennzeichnet,
dass man als Filzfestmittel Umsetzungsprodukte aus Polyäther-
diolen, insbesondere Polypropylenglykolen und Aziridinocar-
bonsäure verwendet.
27. Verfahren nach Anspruch 9, dadurch gekennzeichnet,
dass man als Filzfestmittel Polydimethylsiloxane mit Hydroxyl-
endgruppen, gegebenenfalls im Gemisch mit Methoxy- oder Amino-
silanen verwendet.

709827/1076

2657513

28. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass man als Filzfestmittel freie Isocyanatgruppen enthaltende Umsetzungsprodukte aus Polyisocyanaten und mindestens zwei Hydroxylgruppen enthaltenden Verbindungen verwendet.
29. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man gefärbtes oder bedrucktes Wollgarn verwendet.
30. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man ungefärbtes Wollgarn verwendet.
31. Die nach den Verfahren gemäss einem der Ansprüche 1 bis 30 filzfest ausgerüsteten Garne aus keratinhaltigen Fasermaterialien, insbesondere filzfest ausgerüstete Wollgarne.

709827/1076

10

Case 1-10266

2657513

Deutschland

NACHGEREICHT

NACHGEHEN

Verfahren zum Filzfestmachen von Garnen aus keratinhaltigen Fasermaterialien.

Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Filzfestmachen von Garnen aus keratinhaltigen Fasermaterialien, insbesondere von Wollgarn, dadurch gekennzeichnet, dass man das Garn in Form einzelner, sich in Längsrichtung bewegender Fäden und in einem kontinuierlichen Arbeitsgang nacheinander mit einer das Filzfestmittel enthaltenden Flotte behandelt, die überschüssige Flotte von dem Garn entfernt und das Garn während einer für die Fixierung des Filzfestmittels ausreichenden Zeitspanne trocknet.

Bei den keratinhaltigen Fasermaterialien zur Herstellung der Garne handelt es sich insbesondere um Wolle oder Seide. Dabei kann das keratinhaltige Fasermaterial,

709827/1076

wie beispielsweise die Wolle, aus verschiedenen Qualitäten gemischt sein. Garne aus keratinhaltigen Fasermaterialien im Gemisch mit anderen Fasern sind ebenfalls geeignet. Diese Fasermischungen können neben einem Anteil an keratinhaltigen Fasermaterialien, der im allgemeinen 30 % nicht unterschreiten soll, Fasern aus Baum- oder Zellwolle oder solche aus synthetischen Polyestern und Polyamiden, Polyacrylnitril und modifizierten Polyacrylnitrilen, Polyurethanen oder Polypropylen enthalten. Besonders gute Ergebnisse werden mit nur aus keratinhaltigen Fasern bestehendem Material (Wolle) erzielt. Das Garn kann gefärbt und bedruckt oder auch ungefärbt sein.

Das erfindungsgemäße, in einem kontinuierlichen Arbeitsgang durchgeführte Verfahren zum Filzfestmachen von Garnen aus keratinhaltigen Fasermaterialien, insbesondere von Wollgarnen wird nun in der Regel so durchgeführt, dass man das auf Spinnspindeln aufgewickelte Garn in Form einzelner sich in Längsrichtung fortbewegender Fäden durch eine Imprägnievorrichtung leitet, die mit Flottenverteilern zur Applikation, insbesondere zum Aufspritzen oder Aufsprühen der Flotte auf das Garn, versehen ist. Die Fortbewegung der einzelnen Fäden kann z.B. durch Anwendung von Druck erfolgen. Jeder durchlaufende Faden wird in der Regel aus einer Verteileröffnung, z.B. einer Düse, mit der Flotte bespritzt oder besprüht. Die Applikationsflotte wird von einem Vor-

709827/1076

ratstank mit einer Pumpe zu den einzelnen Flottenvertei-
lern geleitet. Die Applikation der das Filzfestmittel ent-
haltenden Flotte kann bei Raumtemperatur oder leicht er-
höhten Temperaturen erfolgen. Im allgemeinen arbeitet man
bei Temperaturen von 10 bis 30°C.

Nach dem Verlassen der Imprägniervorrichtung leitet
man die Fäden in eine Abquetschkammer, wo sie von der über-
flüssigen Flotte befreit werden. Man arbeitet insbesondere
so, dass die überschüssige Flotte mit Luft von hoher Ge-
schwindigkeit von den Fäden abblässt. Der Luftdruck auf der
Abquetschkammer kann etwa 1 bis 5, vorzugsweise 3 bar be-
tragen. Die überschüssige (abgeblasene) Flotte kann (nach
Filtration zum Abfangen abgelöster Wollfasern) in den Vor-
ratstank zurückgeleitet werden und nimmt von dort wieder
an der Ausrüstung der Garne teil (zirkulierende Flotte).
Zum Trocknen kann man die Fäden dann durch geheizte Stahl-
rohre (pro Faden ein Rohr) leiten, die Temperaturen von 80
bis 300°C, vorzugsweise 200 bis 300°C aufweisen. Die Tempe-
ratur in den Stahlrohren nimmt normalerweise in der Durch-
laufrichtung der Fäden ab, so dass es z.B. üblich ist, wenn
man mit einer Temperatur von 300°C bei Eintritt des Fadens
in das Trockenrohr beginnt, während die Temperatur bei Ver-
lassen des Rohrs etwa 200°C betragen kann. Der Trocknungs-
grad für die Garne hängt von der Temperatur, aber auch von

2657513

AB

der Länge der Trockenstrecke ab, die das Garn im Trockenrohr durchläuft. Ferner ist natürlich die Durchlaufgeschwindigkeit von Bedeutung, die im Bereich von etwa 200 bis 1000 m/Minute, vorzugsweise im Bereich von 400 bis 800 m/Minute liegt. Sind z.B. nur kurze Trockenrohre vorhanden, die gegebenenfalls nicht sehr hoch aufgeheizt werden können, so wird man also eine kleinere Durchlaufgeschwindigkeit wählen. Ist der Trocknungsvorgang abgeschlossen (erwünscht ist ein Restfeuchtigkeitsgehalt von höchstens 8 %), so kann man das filzfest ausgerüstete Garn mit einer Spulmaschine aufspulen und weiteren Verarbeitungsgängen, wie z.B. Zwirnen, Weben oder Wirken zuführen.

Wird eine weitere Nassbehandlung mit dem filzfest ausgerüsteten Garn durchgeführt, so ist es angebracht, das Garn zunächst 8 bis 12 Stunden zu lagern und erst dann weitere Behandlungen vorzunehmen.

709827/1076

14 2657513

Geeignete Filzfestmittel zur Durchführung des erfindungsgemässen Verfahrens sind beispielsweise reaktive Polyolefine, Umsetzungsprodukte aus Polyisocyanaten und Hydroxylverbindungen. Siliconpolymere, Aziridinverbindungen, Umsetzungsprodukte von Epoxyden mit Fettaminen und Dicarbonsäuren oder Polyamiden, Umsetzungsprodukte mit Thiosulfatendgruppen oder vorzugsweise Umsetzungsprodukte mit Mercaptoendgruppen.

Bei den Polyisocyanatumsetzungsprodukten handelt es sich beispielsweise um solche aus Polyisocyanaten, vorzugsweise aliphatischen oder cycloaliphatischen Diisocyanaten, mit mindestens zwei Hydroxylgruppen enthaltenden Verbindungen.

Als Polyhydroxylverbindungen können Polyäther, beispielsweise Polyoxyäthylen-, Polyoxypropylen-, Polyoxybutylen- oder Polyoxyhexylenglykol, aber auch Polyester aus aliphatischen Dicarbonsäuren, wie Bernsteinsäure, Adipinsäure, Sebacinsäure oder Maleinsäure, und Polyalkoholen, wie Aethylen-glykol, Diäthylenglykol, Propylenglykol, Butandiol und Neopentylglykol, eingesetzt werden.

Als Polyisocyanate seien beispielsweise genannt Hexamethylendiisocyanat, Tetramethylendiisoxyanat, 1,4-Cyclohexandiisocyanat, 4,4'-Dicyclohexylmethandiisocyanat sowie 2,4- und 2,6-Hexahydrotoluylendiisocyanat.

Die Siliconpolymeren sind beispielsweise Gemische aus Polydimethylsiloxanen mit Hydroxylendgruppen, denen man Silane mit funktionellen Gruppen, z.B. Amino- oder Methoxygruppen, als Vernetzer zusetzen kann. Die Applikation dieser Filz-

709827/1076

festmittel erfolgt wegen der Reaktivität der Silane normalerweise aus organischen Lösungen oder Emulsionen, nicht jedoch aus wässrigen Systemen.

Die Aziridinverbindungen können Umsetzungsprodukte aus Polyätherdiolen, insbesondere Polypropylenglykolen, und Aziridincarbonsäure sein.

Die Filzfestmittel auf Epoxydbasis sind beispielsweise Umsetzungsprodukte aus Epoxyden, die sich von Bisphenolen ableiten, insbesondere Bisphenol-A-Epichlorhydrinaddukten, Fettaminen mit 12 bis 24 Kohlenstoffatomen und aliphatischen Dicarbonsäuren mit 7 bis 14 Kohlenstoffatomen oder Polyamiden aus polymerisierten ungesättigten Fettsäuren und Polyalkylenpolyaminen (Linolsäure - Diäthylentriamin). Filzfestmittel dieser Art sind z.B. aus den US-Patentschriften 3 709 847 und 3 754 981 bekannt.

Umsetzungsprodukte mit Thiosulfatendgruppen erhält man z.B. aus Polyalkoholen oder Polycarbonsäuren, Alkylenoxyden, Halogencarbonsäuren und Natriumthiosulfat. Derartige Umsetzungsprodukte sind z.B. aus der deutschen Offenlegungsschrift 2 436 053 bekannt.

Diese Umsetzungsprodukte können z.B. durch die folgenden Formeln dargestellt werden:

709827/1076

worin R ein aliphatischer Rest mit 2 bis 10, insbesondere 2 bis 6 Kohlenstoffatomen, Alkylen eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen zwischen aufeinanderfolgenden Sauerstoffatomen, A ein zweiwertiger Rest, insbesondere $-(CH_2)_a-$ oder $-CO(CH_2)_{a-1}$, worin a eine ganze Zahl von 1 bis 6 ist, m unabhängig voneinander eine Zahl von mindestens 1, n 1 oder 2, q 1 bis 4 und p 2 bis 6 ist, wobei die Summe aus (p+q) 3 bis 7 beträgt, X Wasserstoff, oder ein Kation, das sich von einem Alkalimetall, Ammoniak oder einem Amin ableitet, $R_1 -CH-$ oder $-CH_2 CH-$ und t mindestens 1 ist. R ist ein aliphatischer Rest mit 2 bis 10, insbesondere 2 bis 6 Kohlenstoffatomen, er kann geradkettig oder verzweigt sein und leitet sich z.B. von folgenden Polyalkoholen (für Verbindungen der Formel 1) oder Polycarbonsturen (für Verbindungen der Formeln 2 bis 4) ab:
 709827/1076

12

Aethylenglykol, Propylenglykol, Propan-1,3-diol,
 Butan-1,2-, -1,3-, -1,4- oder -2,3-diol, Glycerin,
 1,1,1-Trimethyloläthan, 1,1,1-Trimethylolpropan,
 Hexan-1,2,5- oder -1,2,6-triol, Pentaerythrit, Di-
 pentaerythrit, Mannit, Sorbit, Zitronensäure, Malon-
 säure, Bernsteinsäure, Adipinsäure, Sebacinsäure,
 Phthalsäure, Hexahydrophthalsäure, Tricarballylsäure
 und Pyromellitsäure.

Die sich von Aethylenglykol ($-\text{CH}_2\text{CH}_2-$), Butan-1,4 diol
 $(-(\text{CH}_2)_4-)$, Glycerin ($-\text{CH}_2\text{CH}(\text{OH})\text{CH}_2-$) und Zitronensäure
 $(-\text{CH}_2-\overset{\text{OH}}{\underset{\text{C}}{\text{C}}}-\text{CH}_2-)$ ableitenden Reste sind bevorzugt.

Die -O-Alkylenreste leiten sich insbesondere von
 Aethylenoxyd, 1,2-Propylenoxyd, 1,4 Butylenoxyd (Tetrahydro-
 furan), Hexandiol oder deren Gemischen ab.

Die einzelnen Alkylenketten im Molekül können ver-
 schiedene Kettenlängen aufweisen. m ist eine Zahl von min-
 destens 1 und höchstens etwa 112, vorzugsweise von 5 bis
 25. Die Molekulargewichte der Umsetzungsprodukte liegen
 dann im angegebenen Bereich von etwa 400 bis 10000.

Besonders geeignete Vertreter dieser Umsetzungs-
 produkte sind beispielsweise solche aus Glycerin, 1,4-
 Butylenoxyd (Tetrahydrofuran), Chloressigsäure und Natrium-
 thiosulfat (Formel 5) oder aus Citronensäure, 1,4-Butylen-
 oxyd (Tetrahydrofuran), Chloressigsäure und Natriumthio-
 sulfat (Formel 6)

AP

2657513

worin m die angegebene Bedeutung hat und die Summe m_1
39 bis 42 ist.

Umsetzungsprodukte mit Mercaptoendgruppen sind z.B. Polymercaptane (Polythiole) aus (1) Polyalkoholen oder Polycarbonsäuren, (2) Alkylenoxyden und (3) Mercaptomonoo- oder -dicarbonsäuren, die gegebenenfalls mit anderen, insbesondere stickstoffhaltigen, Kondensationsprodukten und in Gegenwart von Härtungskatalysatoren auf das keratinhaltige Fasermaterial appliziert werden. Umsetzungsprodukte aus Polyalkoholen, Alkylenoxyden und Monomercaptocarbonsäuren sind beispielsweise aus der US-Patentschrift 3 645 781 bekannt. Weitere als Filzfestmittel geeignete Polymercaptane sind ferner aus den deutschen Offenlegungsschriften 2 429 062 und 2 436 053 bekannt. Bevorzugte Mercaptogruppen enthaltende Filzfestmittel haben Molekulargewichte von etwa 400 bis 10000, wobei es sich um Umsetzungsprodukte handelt, die durch folgende Formeln dargestellt werden können:

709827/1076

oder

worin R, R₁, X, Alkylen, m, n, p, q und t die angegebenen Bedeutungen haben.

Als Mercaptomonocarbonsäuren für die Veresterung sind Thioglykolsäure (2-Mercaptoessigsäure) und 2-Mercapto-propionsäure bevorzugt. Als Mercaptodicarbonsäure seien insbesondere Mercaptobernsteinsäure genannt.

709827/1076

Besonders geeignet zur Durchführung des erfindungsgemässen Verfahrens sind die Filzfestmittel die sich von Glycerin, Aethylenoxyd, Propylenoxyd oder Butylenoxyd und 2-Mercaptoessigsäure ableiten und die der Formel

entsprechen, worin r eine Zahl von 2 bis 4 ist und m und n die angegebenen Bedeutungen haben.

Als Vertreter dieser Filzfestmittel sei insbesondere die Verbindung der Formel

genannt, worin die Summe m_2 66 bis 70 beträgt.

Ganz besonders geeignete Filzfestmittel sind ferner auch die Verbindungen der Formeln

oder deren Alkalimetall-, Amin- oder Ammoniumsalze,

und

worin m die angegebene Bedeutung hat.

Die Verbindungen der Formeln (15) bzw. (16) sind Umsetzungsprodukte aus 4 bzw. 3 Mol Mercaptobernsteinsäure und 3 bzw. 4 Mol eines Polyoxybutylenglykols ($M \sim 1000$).

Bei den Verbindungen der Formel (17) handelt es sich um Umsetzungsprodukte aus Zitronensäure, 1,2-Propylenoxyd und Mercaptobernsteinsäure, während die Verbindungen der Formel (18) aus Zitronensäure, 1,4-Butylenoxyd (Tetrahydrofuran) und Thioglykolsäure hergestellt werden.

Die erfindungsgemäss verwendeten, Mercaptoendgruppen enthaltenden Umsetzungsprodukte können nach bekannten Verfahren hergestellt werden, indem man (1) Polyalkohole oder Polycarbonsäuren mit (2) Alkylenoxyden umsetzt und die erhaltenen hydroxylgruppenhaltigen Polyoxyalkylenverbindungen an mindestens zwei Hydroxylgruppen mit (3) Mercaptomonoo- oder

709827/1076

-dicarbonsäuren verestert.

Die hydroxylgruppenhaltigen Polyoxyalkylenverbindungen, die sich von Polyalkoholen ableiten sind insbesondere Polyoxyalkylendirole (Polyäther), wie z.B. Polyoxyäthylen-, -oxypropyle- oder -oxybutylenglykole, oder Polyoxyalkylen-triole (z.B. von Glycerin abgeleitet).

Durch die Veresterung mit den genannten Mercaptomonoo- oder -dicarbonsäuren werden Umsetzungsprodukte erhalten, die neben den Mercapto(SH)-Gruppen Hydroxyl- und/oder Carboxylendgruppen, wobei letztere auch in Salzform vorliegen können, enthalten.

Die Mercaptoendgruppen enthaltenden Filzfestmittel können gegebenenfalls in Gegenwart von weiteren Kondensationsprodukten, insbesondere stickstoffhaltigen Kondensationsprodukten verwendet werden, wobei in der Regel zusätzlich noch ein Härtungskatalysator eingesetzt wird.

Geeignete stickstoffhaltige Kondensationsprodukte sind z.B. solche aus Dicyandiamid, Cyanamid oder einer anderen bifunktionellen Verbindung, die mit einem Polyamin reagieren kann, oder einer Mischung aus zwei oder drei dieser Verbindungen, einem mindestens drei primäre und/oder sekundäre Aminogruppen enthaltenden Polyamin und einem Epihalogenhydrin.

Diese Kondensationsprodukte stellen bekannte Materialien dar. Sie sind kationisch, polymer und vernetzbar,

in der Regel wasserlöslich und werden im allgemeinen hergestellt durch Umsetzung eines Polyalkylenpolyamins, wie z.B. eines Poly-(äthylenimins) und insbesondere eines 2 bis 8 Alkylengruppen pro Molekül enthaltenden Amins, manchmal in Gegenwart einer Base, mit Epichlorhydrin und anschliessender Ansäuerung.

Dazu gehören auch die Derivate von komplexeren Aminen. Es können insbesondere Amine, die durch Erhitzen von Polyalkylenpolyaminen mit Dicyandiamid unter Freisetzung von Ammoniak erhalten werden und ferner Poly(aminoamide) verwendet werden, die aus Polyalkylenpolyaminen und aliphatischen Dicarbonsäuren oder deren Amid-bildenden Derivaten, z.B. ihren Dimethylestern, erhalten werden. Andere Beispiele sind Addukte von Polyalkylenpolyaminen mit einem stöchiometrischen Unterschuss (bezogen auf eine Epoxydgruppe pro Amino-wasserstoffatom) an Mono- oder Poly-1,2-epoxyden. Die für die Verwendung in dem erfindungsgemässen Verfahren am besten geeigneten Kondensationsprodukte sind erhältlich durch Umsetzung eines Polyalkylenpolyamins mit 2 bis 8 Alkylengruppen, Cyanamid insbesondere Dicyandiamid und Epichlorhydrin oder durch Umsetzung eines Polyalkylenpolyamins mit 2 bis 8 Alkylengruppen, Cyanamid, insbesondere Dicyanamid, einer aliphatischen gesättigten Dicarbonsäure mit 2 bis 20 vorzugsweise 3 bis 14 Kohlenstoffatomen oder eines Mono- oder -dialkyl-

esters dieser Dicarbonsäuren mit 1 bis 6 Kohlenstoffatomen im Alkylteil, und Epichlorhydrin.

Beispiele für aliphatische Dicarbonsäuren sind Oxalsäure, Malonsäure, Bernsteinsäure, Adipinsäure, Azelainsäure, Sebacinsäure und Dodecandicarbonsäure. Beispiele für ihre Ester sind ihre Dimethylester, es können aber auch Mischungen dieser Säuren oder Ester verwendet werden. Zur Herstellung dieser Kondensationsprodukte können ein oder mehrere Polyamine verwendet werden. Spezifische Beispiele sind Diäthylentriamin, Triäthylentetramin, Tetraäthylenpentamin, Dipropylentriamin und N,N-Bis(3-amino-propyl)methylamin. Geeignete Amine enthalten vorzugsweise mindestens 2 Aminogruppen, die durch eine Kohlenwasserstoffgruppe der allgemeinen Formel C_aH_{2a} , worin a mindestens 2 bis 4 ist, voneinander getrennt sind.

Das Äquivalentverhältnis zwischen den für die Kondensationsprodukte verwendeten verschiedenen Ausgangsmaterialien ist vorzugsweise so, dass auf jedes Äquivalent an primären Aminogruppen des Polyamins 0,1 bis 1 Mol Dicyandiamid oder 0,2 bis 2 Mol Cyanamid und/oder einer anderen bifunktionellen Verbindung und 0,3 bis 3 Mol, vorzugsweise 1 bis 1,5 Mol Epihalogenhydrin auf jedes Äquivalent an sekundären Aminogruppen des Polyamins entfallen. Bevorzugte Kondensationsprodukte werden erhalten durch Umsetzung von Diäthylentriamin,

Dicyandiamid, Adipinsäure oder einem Mono- oder Dialkylester der Adipinsäure, dessen Alkylreste mit 1 bis 6 Kohlenstoffatome enthalten, und Epichlorhydrin, wie z.B. von 3 Mol Diäthylentriamin, 0,5 bis 1 Mol Dicyandiamid und 2 Mol Dimethyladipat mit 4,5 Mol Epichlorhydrin.

Gegebenenfalls verwendet man ferner für die Umsetzung der Mercaptoendgruppen enthaltenden Polymeren mit dem Fasermaterial Härtungskatalysatoren. Bei Raumtemperatur dauert die Härtung etwa 5 bis 10 Tage oder sogar noch länger. Die Härtungsreaktion bei Raumtemperatur kann jedoch durch Verwendung eines Katalysators stark beschleunigt werden und im allgemeinen wird der Katalysator vorzugsweise dem zu behandelnden Material gleichzeitig mit dem aufgebrachten Polymercaptan zugesetzt, obgleich er gewünschtenfalls auch vorher oder nachher zugegeben werden kann. Die Härtungszeit kann durch entsprechende Auswahl eines geeigneten Katalysators gesteuert werden und die Wahl der Härtungszeit hängt von der speziellen Anwendung des erfundungsgemässen Verfahrens ab. Die Katalysatoren können Basen, Sikkative, Schwefel, Schwefel enthaltende organische Verbindungen und freie Radikale bildende Katalysatoren, wie Azobisisobutyronitril, Peroxyde und Hydroperoxyde, oder Kombinationen davon sein.

Als organische Base können primäre oder sekundäre Amine, wie z.B. niedere Alkanolamine, wie Mono- und Diäthanolamin, und niedere Alkylenpolyamine, wie Aethylendiamin,

Diäthylentriamin, Triäthylentetramin, Tetraäthylenpentamin, Propan-1,2- und -1,3-diamin und Hexamethyldiamin, verwendet werden. Als anorganische Basen können wasserlösliche Oxyde und Hydroxyde, z.B. Natriumhydroxyd, wasserlösliche, stark basische Salze, wie Trinatriumphosphat, Dinatriumtetraborat und Natriumcarbonat, sowie Ammoniak verwendet werden. Zu Schwefel enthaltenden organischen Verbindungen, die als Katalysatoren verwendet werden können, gehören solche, in denen die Schwefelatome nicht ausschliesslich als Mercaptan-gruppen vorliegen, insbesondere Mercaptobenzothiazole und ihre Derivate, Dithiocarbamate, Thiuramsulphide, Thioharnstoffe, Disulphide, AlkyIxanthogensulphide und AlkyIxanthate. Beispiele für Sikkative (trocknende Öle) sind Calcium-, Kupfer-, Eisen-, Blei-, Cer- und Cobaltnaphthenate. Beispiele für geeignete Peroxyde und Hydroperoxyde sind Cumol-hydroperoxyd, Tert-butylhydroperoxyd, Dicumylperoxyd, Di-laurylperoxyd, Methyläthylketonperoxyd, Diisopropylperoxydicarbonat und Chlorbenzoylperoxyd. Andere geeignete Katalysatoren sind Salze eines Schwermetalls mit einer Säure mit einer Säurestärke ($-\log K$) unterhalb 5 oder Chelate eines Schwermetalls einschliesslich der Chelate, die auch Salze sind. Unter "Schwermetall" ist hier ein solches zu verstehen, das in Langes "Handbook of Chemistry", 10. überarbeitete Auflage, McGraw-Hill Book Co., auf den Seiten 60

bis .61 als "schwer" bezeichnet wird, d.h. ein Metall der Gruppe IB, IIB, IIIB, IVB, VB, VIB, VIIIB oder VIII, ein Metall der Gruppe IIIA mit einer Atomzahl (Ordnungszahl) von mindestens 13, ein Metall der Gruppe IVA mit einer Atomzahl von mindestens 32 oder ein Metall der Gruppe VA mit einer Atomzahl von mindestens 51. Bei dem Metall handelt es sich vorzugsweise um ein solches aus der Gruppe IB, IIB, IVB, VB, VIB, VIIIB oder VIII, insbesondere der ersten Periode dieser Metalle, d.h. Titan, Vanadin, Chrom, Mangan, Nickel und insbesondere Eisen, Cobalt und Kupfer. Geeignete Salzbildende Säuren sind Mineralsäuren, insbesondere Chlorwasserstoffsäure, Bromwasserstoffsäure, Salpetersäure, Schwefelsäure, Phosphrigre Säure und Phosphorsäure, sowie organische Säuren, wie Chloressigsäure, Fumarsäure, Maleinsäure, Oxalsäure, Salicylsäure und insbesondere Zitronensäure. Geeignete Chelatbildner sind solche, in deren die Chelatbildungsatome Sauerstoff- und/oder Stickstoffatome sind, wie z.B. 1,2- und 1,3-Diketone, wie Acetylaceton, Alkylendiamine, wie Aethylendiamin, und insbesondere Aethylendiamintetraessigsäure.

Die Menge des verwendeten Katalysators kann stark variieren. Im allgemeinen sind 0,1 bis 20, in der Regel 1 bis 10 Gew.%, bezogen auf das Gewicht des verwendeten

Polymercaptans, erforderlich, obgleich auch viel grössere Mengen verwendet werden können. Das Trocknen und Aushärten des Polymercaptans wird auch dadurch unterstützt, dass man erhöhte Temperaturen anwendet und wenn besonder schnell Ergebnisse erzielt werden sollen, dann können Temperaturen innerhalb des Bereiches 80 bis 300°C, insbesondere 200 bis 300°C angewendet werden. Hohe Feuchtigkeitsgehalte beschleunigen ebenfalls die Aushärtung in Gegenwart von Katalysatoren. Die Härtung wird durch Arbeiten bei einem pH-Wert innerhalb des Bereiches 7,5 bis 12 gefördert.

Die zur Durchführung des erfindungsgemässen Verfahrens verwendeten Zubereitungen (Applikationsflossen) können wässrige, organisch-wässrige oder organische Imprägnierbäder sein; vorzugsweise enthalten sie das Filzfestmittel in Form einer wässrigen Dispersion oder Emulsion. Die Zubereitungen können ferner die genannten stickstoffhaltigen Kondensationsprodukte und die Härtungskatalysatoren sowie auch weitere Zusätze enthalten, z.B. Verdickungsmittel, wie Johannisbrotkernmehle, Methylcellulose, Alginate oder Tragant; Harnstoff oder Thiol-harnstoff; Dispergier- und Emulgiermittel; bakterizide Mittel; Stabilisatoren gegen die nachteiligen Einflüsse von Licht, wasser- und ölabweisende Mittel; Weichgriffmittel.

Die Zubereitungen, die im erfindungsgemässen Verfahren eingesetzt werden, können etwa 1 bis 30 Gewichtsprozent des Filzfestmittels enthalten. Die Menge der stickstoffhaltigen Kondensationsprodukte kann etwa 0,1 bis 3 Gewichtsprozent

betragen und die Menge des Katalysators für die Mercaptoendgruppen enthaltenden Filzfestmittel liegt im Bereich von 0,1 bis 20 Gewichtsprozent, bezogen auf die genannten Filzfestmittel. Ein bevorzugtes Gewichtsverhältnis zwischen dem Mercaptoendgruppen enthaltenden Filzfestmittel und den stickstoffhaltigen Kondensationsprodukten ist (7,5 bis 2,5):1.

Die Flottenaufnahme wird vorzugsweise so geregelt, dass sich nach der Ausrüstung 1 bis 10, vorzugsweise 3 bis 8 Gewichtsprozent des Filzfestmittels auf dem Garn befinden.

Die nach dem erfindungsgemässen Verfahren in einem kontinuierlichen Arbeitsgang ausgerüsteten Garne aus keratinhaltigen Fasermaterialien, insbesondere aus Wolle, zeigen einen sehr guten Filzfesteffekt (IWS-Spezifikation 72) und praktisch keine Vergilbung und weisen einen weichen Griff auf.

Als weiterer Vorteil ist zu nennen, dass im Gegensatz zu insbesondere oxydativen, oder auch den kombinierten Verfahren zur Filzfestausrüstung (oxydative Vorbehandlung, Harzapplikation) beim erfindungsgemässen Verfahren keine Faserschädigung eintritt.

Die Durchführung des erfindungsgemässen Verfahrens ist sehr einfach (nur imprägnieren und trocknen); das Verfahren ist praktisch für jede Garnqualität und Garnmischung anwendbar und ausserdem ist der Wasserverbrauch erheblich geringer als bei den genannten Verfahren, die mit einer oxydativen Vorbehandlung arbeiten.

709827/1076

30

2657513

Die erfindungsgemäss ausgerüsteten Garne zeigen
eine gestreckte Faserlängslage bei geschlossener Fadenkontur
und eignen sich daher insbesondere als Maschinenstrickgarne
oder Webgarne.

709827/1076

HerstellungsvorschriftenPolythiol A

Eine Mischung aus 800 g (0,2 g-Mol) eines Triols mit einem durchschnittlichen Molekulargewicht von 4000, hergestellt aus Glycerin und Propylenoxyd, 55,2 g (0,6 g-Mol) Thiglykolsäure, 5 g Toluol-p-sulphonsäure und 350 ml Toluol wird unter Rühren in einer Stickstoffatmosphäre zum Rückfluss erhitzt. Das während der Umsetzung gebildete Wasser (10,8 ml, 0,6 g-Mol) wird in Form eines Azeotrops mit Toluol entfernt. Die Mischung wird gekühlt und mit Wasser gewaschen und die organische Schicht wird abgetrennt. Nach Entfernen des Lösungsmittels von der organischen Schicht unter Vakuum bleiben 793 g (theoretische Ausbeute 94 %) des gewünschten Tris(thioglykolats) mit einem Thiogehalt von 0,59 Aequ./kg zurück.

Polythiole B und C

Dabei handelt es sich um aus Glycerin/Propylenoxyd-Addukten mit einem jeweiligen durchschnittlichen Molekulargewicht von 600 und 4800, Epichlorhydrin und Natriumsulfid hergestellte Poly(2-hydroxy-3-mercaptopropyl)äther. Die Produkte haben einen Mercaptangehalt von 3,7 Aequ./kg bzw. 0,32 Aequ./kg.

Polythiole D - S

Diese Polymercaptanester werden wie für das Polythiol A beschrieben hergestellt, wobei im Falle der Harze J-S an-

709827/1076

stelle von Toluol Perchloräthylen verwendet wird und im Falle der Harze D-I die Reaktionsmischung nicht mit Wasser gewaschen wird: die gegebenenfalls vorhandene nicht-umgesetzte Mercaptosäure wird zusammen mit dem übrigen Toluol (oder Perchloräthylen) durch Abdestillieren unter Vakuum in einem Rotationsverdampfer entfernt. Die zur Herstellung dieser Polythiole verwendeten Materialien sind in den Tabellen I und II angegeben. Für das Harz P wird kein Katalysator verwendet.

Tabelle I

Polythiol	Bezeichnung des Herstellers	Polyol-Addukt			veresternde Säure
		durchschn. Molekulargew. (MG)	hergestellt aus Alkylenoxyd	Alkohol oder Amin	
D	Caradol 3000	3000	PO	Glycerol	Thioglycol-
E	Caradol 5001	5000	PO mit EO-Endgruppe	"	"
F	Polyurax G 1000	1000	PO	"	"
G	Polyurax G 3000	3000	PO	"	"
H	Polyurax G 3521	3000-4000	EO/PO(10:90)	"	"
I	Polyurax G 1000	1000	PO	"	2-Mercapto- Propion-
J	Caradol 5001	5000	PO mit EO-Endgruppe	"	Thioglycol-
K	Polyurax G 1000	1000	PO	"	"
L	Voranol CP 700	700	PO	"	"
M	Caradol 3000	3000	PO	"	"
N	Niax LHT 112	1500	PO	Hexan-1, 2,6-triol	"
O	Polyurax G 4000	4000	PO	Glycerin	2-Mercapto- Propion-

709827/1076

Polythiol	Polyol-Addukt			veresternde Säure
	Bezeichnung des Herstellers	durchschn. Moleku- largew. (MG)	hergestellt aus Alkylenoxyd	
P	Pluracol EDP 500	500.	PO	Aethylendiamin
Q	-	2220	PO	Pentacrythrit
R	Pluracol TP 4040	4040	PO	Trimethylolpropan
S	Polymeg 1000	1000	Tetrahydrofuran	Butan-1,4-diol

EO = Aethylenoxyd

PO = Propylenoxyd

"CARADOL", "POLYURAX", "VORANOL", "NIAX", "PLURACOL" und "POLYMEG" sind Warenzeichen; die "CARADOL"-Produkte sind von der Firma Shell Chemical Co. erhältlich, die "POLYURAX"-Produkte sind von der Firma B.P. Chemicals Ltd. erhältlich, das "VORANOL"-Produkt ist von der Firma Dow Chemical Co. erhältlich, das "NIAX"-Produkt ist von der Firma Union Carbide erhältlich, die "PLURACOL"-Produkte sind von der Firma Wyandotte Chemical Corp. erhältlich und das Produkt "POLYMEG" ist von der Firma The Quaker Oats Co. erhältlich. Das zur Herstellung des Thio-Harzes Q verwendete Polyol wurde auf bekannte Weise hergestellt durch Reaktion in Gegenwart von Natriumhydroxyd.

Tabelle II

Polythiol	Substanz Komponenten	Molver- hältnis	Thiol-Gehalt (Äquiv./kg)
A ₁	Glycerin Adipinsäure Butan-1,4-diol Thioglycolsäure	1 4 4 3	2.35
B ₁	trimerisierte Linol- säure* Polyol I Thioglycolsäure	1 3 3	1.09
C ₁	Polyol II Mercaptobernstein- säure n-Pentanol	1 3 3	0.83
D ₁	Polyol II Adipinsäure 2-Mercaptoäthanol	1 3 3	0.62
E ₁	Polyol III Mercaptobernstein- säure Thioglycolsäure	3 2 2	1.15
F ₁	Hexan -1,2,6-triol dimerisierte Linol- säure** Hexan -1,6-diol Thioglycolsäure	1 5 4 2.5	0.94
G ₁	trimerisierte Linol- säure Butan -1,4-diol Thioglycolsäure	1 3 3	1.64
H ₁	1,1,1-Trimethylol- propan Adipinsäure Polyol I 3-Mercaptopropion- säure	1 2 2 3	1.95

709827/1076

Polythiol	Komponenten	Molverhältnis	Thiol-Gehalt (Aquiv./kg)
J ₁	1,1,1-Trimethylolpropan Adipinsäure 2,2-Bis(p-hydroxypropoxy)-phenylpropan Thioglycolsäure	1 2 2 3	1.63
K ₁	trimerisierte Linolsäure Polyol IV Thioglycolsäure	1 3 3	0.85
L ₁	Polyol II Bernsteinsäureanhydrid Mercaptoäthanol	1 3 3	0.48
M ₁	Polyol V dimerisierte Linolsäure 2-Mercaptoäthanol	1 4 4	0.98
N ₁	Glycerin Phthalsäureanhydrid Butan -1,4-diol Thioglycolsäure	1 4 4 3	2.2
O ₁	Polyol VI Mercaptobernsteinsäure	11 10	0.40
P ₁	Polyol I Mercaptobernsteinsäure	11 10	1.65
Q ₁	Butan -1,4-diol Mercaptobernsteinsäure	6 5	3.98

Fussnoten:

- * Die trimerisierte Linolsäure mit einem durchschnittlichen Molekulargewicht von etwa 800 und einem Carboxylgehalt von etwa 3,4 Äquivalenten/kg wurde von der Firma Unilever-Emery N.V., Gouda, Holland, unter der Bezeichnung "Trimer acid Empol 1043" erhalten.
- ** Die dimerisierte Linolsäure, die unter der Bezeichnung "Dimer acid Empol 1022" von der gleichen Firma erhalten wurde, hatte ein durchschnittliches Molekulargewicht von etwa 570 und einen Carboxylgehalt von etwa 3,4 Äquivalenten/kg.

Bei "Polyol I", "Polyol III" und "Polyol VI" handelt es sich um Poly(oxypropylen)glykole mit einem durchschnittlichen Molekulargewicht von 425, 1000 bzw. 2000.

Bei "Polyol II" handelt es sich um Glycerin-Propylen-oxad-Addukte mit einem durchschnittlichen Molekulargewicht von 700.

Bei "Polyol IV" handelt es sich um Poly(oxyäthylen)glykole mit einem durchschnittlichen Molekulargewicht von 300.

Bei "Polyol V" handelt es sich um ein Pentaerythrit-Propylenoxyd-Addukt mit einem durchschnittlichen Molekulargewicht von 650.

Die das Polythiol A bis S und A₁ bis Q₁ enthaltenden Emulsionen wurden hergestellt durch Auflösen von 0,5 Teilen Natriumcarboxymethylcellulose in 44,5 Teilen Wasser bei 70 bis 80°C, Abkühlenlassen der Lösung, Zugabe von 50 Teilen

709827/1076

des Polythiols und 5 Teilen eines Netzmittels (eines Addukts von p-Nonylphenol und 9 Mol Aethylenoxyd) und fünfminütiges Rühren in einem Hochgeschwindigkeitsmischer.

Polythiole R₁ bis Y₁

Eine Mischung aus 100 g (0,099 Mol) eines Polytetramethylenätherglykols (Molekulargewicht 1005), 29,9 g (0,199 Mol) 2-Mercaptobernsteinsäure (Molverhältnis 1:2) und 2 g p-Toluolsulfonsäure Monohydrat werden in 50 ml Toluol unter Stickstoff am Rückfluss erhitzt, wobei das Reaktionswasser azeotrop entfernt wird. Nach einer Stunde haben sich 3,8 ml Wasser abgeschieden. Nach weiteren 30 Minuten beendet man die Reaktion, kühlt das Reaktionsgemisch ab, verdünnt mit Toluol, wäscht mehrere Male mit Wasser und trocknet dann die organische Phase über wasserfreiem Natriumsulfat. Nach dem Entfernen des Lösungsmittels im Vakuum erhält man ein farbloses, stark viskos Polymer in einer Ausbeute von 97 % (Polythiol R₁).

50 g des Polymers, 25 g einer 50%igen wässrigen Lösung des Adduktes aus p-Nonylphenol und 9 Mol Aethylenoxyd und 175 ml Wasser werden zu einer 25%igen wässrigen Emulsion verarbeitet. Diese Emulsion und auch die analog hergestellten Emulsionen der Polythiole S₁ bis Y₁ werden in den Druckpasten bzw. Foulardfritten eingesetzt.

Die Polythiole S₁ bis Y₁ werden gemäss der Vorschrift für Polythiol R₁ hergestellt:

Polythiol	Molverhältnis des Polytetramethylenätherglykols zur 2-Mercaptobernsteinsäure
S ₁	1 : 1,67
T ₁	1 : 1,50
U ₁	1 : 1,40
V ₁	1 : 1,33
W ₁	1 : 1,29
X ₁	1 : 1,25
Y ₁	1 : 1,14

Polythiol Z₁

595 g (0,296 Mol) Polytetramethylenätherglykol (Molekulargewicht 2010), 20,7 g (0,098 Mol) Zitronensäure Monohydrat und 10 g p-Toluolsulfonsäure Monohydrat werden in 100 ml Toluol unter Stickstoff am Rückfluss erhitzt, wobei das Reaktionswasser azeotrop abgetrennt wird. Nach 90 Minuten sind 8,1 ml Wasser abgeschieden. Man gibt 37,4 g Thioglykolsäure (0,395 Mol - 97%ig) hinzu und erhitzt solange weiter am Rückfluss bis 5,8 ml Wasser abgeschieden sind. Das Reaktionsgemisch wird dann abgekühlt, mit Wasser gewaschen und über Magnesiumsulfat getrocknet. Nach dem Entfernen des Lösungsmittels im Vakuum erhält man ein farbloses Polymer in einer Ausbeute von 97 %.

50 g des Polymers, 25 g einer 50%igen wässrigen

Lösung des Adduktes aus p-Nonylphenol und 9 Mol Aethylenoxyd und 425 ml Wasser werden zu einer 10%igen Emulsion weiterverarbeitet, die in den Druckpasten bzw. Foulardflotten des vorliegenden Verfahrens eingesetzt wird.

Stickstoffhaltige Kondensationsprodukte

- I. Dabei handelt es sich um ein Reaktionsprodukt eines Poly(aminoamids), hergestellt aus Diäthylentriamin und Adipinsäure, und Epichlorhydrin, hergestellt wie in Beispiel I der US-Patentschrift 2 926 154 beschrieben. Es wird in Form einer wässrigen Lösung verwendet, die 10 Gew.% Harz bildende Materialien (Kondensationsprodukt (I) enthält.
- II. 3 Mol Diäthylentriamin werden zuerst mit 1 Mol Dicyandiamid und dann mit 2 Mol Dimethyladipat erhitzt. Dieses Reaktionsprodukt wird dann mit 4,5 Mol Epichlorhydrin erhitzt, und das Harz wurde schliesslich mit Wasser verdünnt, so dass eine 20%ige Lösung des Kondensationsproduktes II erhalten wird.
- III. 68,5 g eines Epoxyds mit einem Epoxydäquivalentgewicht von 685, das durch Umsetzung von 2,2-Bis(4-hydroxyphenyl)propan zuerst mit Epichlorhydrin und dann mit einer Mischung aus 1-Aminoelicosan und 1-Aminodocosan

hergestellt worden war, werden in 37 g Isopropanol gelöst und auf 88°C erhitzt. Dann werden 24,7 g eines Poly(aminoamids), hergestellt aus polymerisierter Linolsäure und Diäthylentriamin (0,1 Aminogruppenäquivalent), gelöst in 15 g Isopropanol, zu der Epoxydlösung zugetropft. Danach wird die Mischung 5 Stunden lang unter Rückfluss gerührt und es werden 1,85 g Epichlorhydrin zugegeben. In 312 g Wasser werden dann 16 g Eisessig zugegeben und die Mischung wird gerührt, bis sie abgekühlt ist. Es wird eine Flüssigkeit mit einer niedrigen Viskosität erhalten, die 20 E des Kondensationsprodukts III enthält und einen pH-Wert von 4,6 aufweist.

Beispiel

Folgende Applikationsflotte wird hergestellt:

20 Teile Natriumcarbonat

20 Teile Kondensationsprodukt II

600 Teile Polythiol A (40%ige wässrige Emulsion)

360 Teile Wasser

1000 Teile

Mit dieser Flotte werden einzelne Wollgarnfäden (Tricotgarn) bei Raumtemperatur in einer mit Flottenverteilern versehenen Imprägniervorrichtung besprüht. Der pH-Wert der Flotte beträgt etwa 10,5. Für jeden durchlaufenden Faden ist ein Verteiler vorhanden. Die Garngeschwindigkeit beträgt etwa 200 m/Minute. Die Flottenaufnahme beträgt 30 %. Nach Durchlaufen der Imprägniervorrichtung wird überschüssige Flotte mit Luft von hoher Geschwindigkeit (Druck: 3 bar) von den Garnfäden abgeblasen. Die Fäden durchlaufen dann ein Trockenrohr (pro Faden ein Rohr), das eine Eingangstemperatur von 300°C und eine Ausgangstemperatur von 200°C aufweist. Die so getrockneten Fäden sind ausgezeichnet filzfest (IWS Spezifikation 72). Sie können dann aufgespult und weiteren Verarbeitungsgängen, wie Zwirnen, Weben oder Wirken zugeführt werden.

709827 / 1076

Ist eine weitere Nassbehandlung des filzfest ausgerüsteten Garns vorgesehen, so muss das Garn nach dem Trocknungsprozess noch etwa 8 bis 12 Stunden bei Raumtemperatur gelagert werden.

IWS-Spezifikation 72: Das ausgerüstete Material wird in einer wässrigen Flotte (Flottenverhältnis 1:15) bei 40°C und einem pH-Wert von 7 (phosphatgepuffert) 180 Minuten behandelt. Maximal zulässige Schrumpfung: 10 %. Der genannte Test entspricht etwa 100 Maschinenwäschen im Normalprogramm bis 60°C.

709827/1076