Chapter 10-3 – Run-Time Analysis 3 & The Seven functions

The Seven Functions used in this semester

- 1. The Constant Function
 - The simplest function we can think of is the constant function.
 - f(n) = c, for some fixed constant c, such c = 5, c = 27, or $c = 2^10$.
 - For any argument n, the constant function f(n) assigns the value c. That is, it doesn't matter what the value of n is, f(n) is always be equal to the constant value c.
- 2. The Logarithm Function

$$f(n) = \log_b n$$
, for some constant $b > 1$.

This function is defined as follows:

$$x = \log_b n$$
 if and only if $b^x = n$.

By definition, $\log_h 1 = 0$. The value b is known as the base of the algorithm.

- Logarithm Rules
 - 1. Inverse properties: $\log_a a^x = x$ and $a^{(\log_a x)} = x$
 - 2. Product: $\log_a (xy) = \log_a x + \log_a y$
 - 3. Quotient: $\log_a \left(\frac{x}{y}\right) = \log_a x \log_a y$
 - 4. Power: $\log_a(x^p) = p \log_a x$
 - 5. Change of base formula: $\log_a x = \frac{\log_b x}{\log_b a}$

3. The Linear Function

$$f(n) = n$$
.

Given an input n, the linear function f assigns the value n itself.

4. The N- Log-N Function

$$f(n) = n \log n$$
.

The function assigns to an input n the value of n times the logarithm base 2 of n.

This function grows a little faster than the linear function and a lot slower than the quadratic function.

5. The Quadratic Function

$$f(n) = n^2$$
.

- Given an input value n, the function f assigns the product of n with itself.
- For any integer $n \ge 1$, we have

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

6. The Cubic Function and Other Polynomials

$$f(n) = n^3.$$

- The cubic function assigns to an input value n the product of n with itself three times.
- Polynomials

A polynomial function is a function of the form

$$f(n) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

where a_n , a_{n-1} , \cdots , a_2 , a_1 , a_0 are constants, called the **coefficients** of the polynomial, and $a_n \ne 0$. Integer n, which indicates the highest power in the polynomial, is called the **degree** of the polynomial.

7. The Exponential Function

$$f(n) = b^n$$

where b is a positive constant, called the base and the argument n is the exponent.

- That is, function f(n) assigns to the input argument n the value obtained by multiplying the base b by itself n times.
- In algorithm analysis, the most common base for the exponential function is b = 2.
- Geometric Sums

For any integer $n \ge 0$ and any real number a such that

a > o and $a \neq 1$, consider the summation

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + a^{3} + a^{n}$$

$$= \frac{a^{n+1} - 1}{a - 1} \text{ (if a > 1)}$$

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

Comparing Growth Rates

Input size (n)	Constant Function f(n) = 1	Logarithmic Function f(n) = log n	Linear Function f(n) = n	n-log-n function f(n) = n logn	Quadratic Function f(n) = n ²	Cubic Function $f(n) = n^3$	Exponential Function $f(n) = 2^n$
n = 2							
$n=2^2$							
$n = 2^3$							
$n = 2^4$							
$n = 2^{10}$							

