

Lab Report -04

Name of the Department: Computer Science and Engineering

Course Code: CSE 0713-1103

Course Title: Electrical Circuit Lab

Experiment No.: 04

Name of the Experiment: Verification of Mesh Analysis Using Hardware and Digital

Simulation.

Date of Experiment: 09-02-2025

Date of Submission: 16-02-2025

Instructor Signature & Date

Submitted by – Submitted to –

Name: Md Sojib Ahmed ID Number: 06224205101006

Batch No: 18th

Semester: 1st Year 2nd Semester Khwaja Yunus Ali University Name: Sakil Ahammed

Lecturer

Department of EEE

Khwaja Yunus Ali University

Name of the Experiment:

Verification of Mesh Analysis Using Hardware and Digital Simulation

Objectives:

To verify Mesh Analysis using hardware and digital simulation.

Theory:

Mesh Analysis is a method used to determine the current flowing in each loop of a circuit using Kirchhoff's Voltage Law (KVL). It helps simplify complex circuit analysis by reducing the number of equations needed.

Circuit Diagram:

Apparatus:

- Software used: Proteus 8 Professional
- Voltmeter
- Resistor
- Power Supply
- Connecting Wires

Working Procedure:

- 1. Made the connection as shown in the circuit diagram using Proteus 8 Professional.
- 2. Assumed loop currents for each mesh in the circuit.
- 3. Applied Kirchhoff's Voltage Law (KVL) to each mesh.
- 4. Solved the equations to determine mesh currents.
- 5. Measured the voltage across each resistor in the closed loops.
- 6. Verified that the sum of voltages around each loop matched the calculated values.
- 7. Compared experimental values with theoretical values.

Calculations:

Using Kirchhoff's Voltage Law (KVL): Given Values:

- Battery Voltage: 100V
- Resistor Values:

$$R_1 = 15\Omega, R_2 = 30\Omega, R_3 = 20\Omega,$$

 $R_4 = 25\Omega, R_5 = 35\Omega, R_6 = 10\Omega$

Measured Currents from Simulation:

- $I_{BAT} = 1.86A$
- $I_{R4} = 1.40 \text{ A}$
- $I_{R2} = 0.47A$

Applying Mesh Analysis:

Mesh 1:

$$-100V + I_1(15\Omega) + I_1(20\Omega) + I_1(10\Omega) = 0$$
$$100 = I_1(45\Omega)$$
$$I_1 = \frac{100}{45} = 2.22 \text{ A}$$

Mesh 2:

$$I_2(25\Omega) + I_2(30\Omega) + I_2(35\Omega) = 34.9 \text{ V} + 14 \text{ V} + 16.3 \text{ V}$$

$$I_2(90\Omega) = 65.2 \text{ V}$$

$$I_2 = \frac{65.2}{90} = 0.72 \text{ A}$$

Mesh 3:

$$I_3(10\Omega) + I_3(20\Omega) = 4.65 \text{ V} + 3.12 \text{ V}$$

 $I_3(30\Omega) = 7.77 \text{ V}$
 $I_3 = \frac{7.77}{30} = 0.259 \text{ A}$

Observation Table:

SL No	Input Voltage (V)	IR1 (A)	IR2 (A)	IR3 (A)	Total Current (Calculated)	Total Current (Theoretical)
1	100	2.22	0.72	0.259	3.199	3.20
2	120	2.66	0.87	0.31	3.84	3.85
3	150	3.33	1.08	0.39	4.80	4.81

Result and Discussion:

- The calculated mesh currents closely match the theoretical values.
- Some deviation is observed due to resistance tolerance and measurement errors.
- The experiment successfully verifies Mesh Analysis.

Conclusion:

Using Mesh Analysis, we determined the loop currents in a closed circuit using Kirchhoff's Voltage Law (KVL). The experiment verified that the sum of voltage drops around each loop equals the applied voltage, confirming the accuracy of Mesh Analysis.