

Cross-entropy method: tabular case

ayrau)

- Initialize policy (state-action matrix, every row sums up to 1)
- Sample N sessions
- Select M elite sessions with highest rewards

(Notieralia

- Update policy using the elite session state-action sequences
- Repeat

Approximate cross-entropy method

Model (e.g. parametric) predicts action probability given state:

$$\pi(a|s) = f_{ heta}(a,s)$$
Random Forest Classifier,

model = RandomForestClassifier() Logistic Regression, NN etc.

Sample N sessions, select M elite sessions

Elite =
$$[(s_0, a_0), (s_1, a_1), \dots, (s_M, a_M)]$$

New training set; states are objects, actions are target values

Maximize likelihood of actions in elite sessions:

$$\pi(a|s)_{\text{new}} = \arg\max_{\pi} \sum_{s_t, a_t \in \text{Elite}} \log \pi(a_i|s_i)$$

 $\log \pi(a_i|s_i)$ $s_t, a_t \in \mathrm{Elite}$ model.fit(elite states, elite actions)

Cross-entropy method: tabular case

Policy is a matrix

$$\pi(a|s) = A_{s,a} \iff$$

- Sample N games with this policy
- Select M elite sessions with highest rewards

Elite =
$$[(s_0, a_0), (s_1, a_1), \dots, (s_M, a_M)]$$

 $\bullet \quad \text{Update policy:} \quad \pi_{\text{new}}(a|s) = \frac{\sum\limits_{s_t, a_t \in \text{Elite}} [s_t = s][a_t = a]}{\sum\limits_{s_t \in \text{Elite}} [s_t = s]}$

Supervised Learning

- Learn to approximate reference answers
- Need reference answers
- Model does not affect the input data

Key differences

Reinforcement Learning

- Learn optimal strategy by trial and error
- Need feedback on agent's actions
- Agent actions affect the environment (so the observations)

	+																				
	_																				
	\dashv																				
\vdash	+																				