Задача №1

Подъемник для металлических балок имеет следующую конструкцию: два проводящих параллельных рельса располагаются в наклонной плоскости под углом $\alpha = 10^{\circ}$ к горизонту в однородном магнитном поле. На рельсы подано постоянное напряжение. Балка кладется на рельсы и начинает скользить вверх с коэффициентом трения $\mu = 0.1$. Какое направление для магнитного поля следует выбрать, чтобы минимизировать затраты электроэнергии? Какой КПД имеет такой подъемник? Потери энергии в электрической цепи не учитывайте.

Решение:

Балка замыкает электрическую цепь, т.е. она представляет собой проводник с током в магнитном поле. Таким образом, на балку действует сила тяжести $m \vec{g}$, сила трения скольжения \vec{F}_{TP} , нормальная сила реакции опоры $ec{N}$ и сила Ампера $ec{F}$. При равномерном подъёме все эти силы уравновешивают друг друга. Условие минимума затрат электроэнергии означает минимальное значение силы Ампера.

$$\vec{F}_{TP} + \vec{N} + m\vec{g} + \vec{F} = \vec{0}$$

Заменим силу трения скольжения и нормальную силу реакции опоры их равнодействующей $\vec{R} = \vec{N} + \vec{F}_{TP}$,

Нам известно, что $F_{TP} = \mu N$, при этом вектор \vec{R} отклоняется от направления вектора \vec{N} на угол $oldsymbol{eta}$ тангенс которого равен

 $tgeta=\mu$. когда $\mu o 0$, то $etapprox \mu=0$,1 рад. случаи или $\beta \approx \frac{\mu}{\pi} 180^{\circ} \approx \frac{0.1}{3.14} 180^{\circ} \approx 5.7^{\circ}$.

$$\vec{R} + m\vec{g} + \vec{F} = \vec{0}. \tag{2}$$

Уравнение (2) задает топологический треугольник, в котором известна сторона mg и угол $(\alpha + \beta)$ между сторонами mg и R.

Условие минимума силы Ампера означает, что сторона Fперпендикулярна к стороне R этого треугольника. Тогда вектор \vec{F} направлен под углом β к плоскости рельсов, а его модуль равен

$$F = mg\sin(\alpha + \beta). \tag{3}$$

Правило левой руки позволяет определить для нашего случая направление вектора магнитной индукции \vec{B} в зависимости от направления тока в балке: угол наклона силовых линий однородного магнитного поля к горизонту $(\alpha + \beta \pm 90^{\circ})$.

Выражение для КПД подъемника представляет отношение изменения потенциальной энергии балки к работе силы Ампера

$$\eta = \frac{mgh}{Fl\cos\beta} = \frac{mgl\sin\alpha}{mgl\sin(\alpha + \beta)\cos\beta} = \frac{\sin\alpha}{\sin(\alpha + \beta)\cos\beta} \approx$$

$$\approx \frac{\sin 10^{\circ}}{\sin(10^{\circ} + 5.7^{\circ})\cos 5.7^{\circ}} \approx \frac{0.1736}{0.2706 \cdot 0.9951} \approx 0.64$$

9 клас Залача №2.

У циліндричній посудині радіусом R = 10 см знаходиться в'язка рідина. Зверху на рідину помістили поршень з важкого металу, який щільно прилягає до стінок. Посередині в поршні висвердлено тонкий вертикальний отвір радіуса $r_1 = 0.5$ мм. Поршень потроху опускається, а з отвору б'є фонтанчик заввишки $h_1 = 5$ см над поршнем (див. рисунок). Дослід повторюють, зменшивши товщину поршня втричі та збільшивши радіус отвору до $r_2 = 1.0$ мм. Яка тепер висота h_2 фонтанчика? Тертя між поршнем і стінками посудини, а також опір повітря рухові крапель рідини не враховуйте.

<u>Довідка.</u> Під час усталеного руху в'язкої рідини через тонку трубку об'єм рідини, що проходить трубкою протягом одиничного часу, залежить від різниці тисків по різні боки від трубки, радіуса та довжини трубки, а також від в'язкості η рідини (наприклад, в'язкість води за кімнатної температури становить 1 мПа · с). В'язкість характеризує внутрішнє тертя між шарами рідини, які рухаються один відносно одного.

Розв'язання.

Поршень опускається дуже повільно та практично рівномірно. Тому сила його тиску на рідину дорівнює mg, де m— маса поршня. Отже, тиск у рідині біля нижньої поверхні поршня перевищує атмосферний тиск на $\Delta \rho = \frac{mg}{S} = \rho gl$ (ρ — густина сталі, S і l— відповідно площа та товщина поршня). Отже, рідина рухається через вузький отвір під дією різниці тисків $\Delta \rho = \rho gl$. На рух рідини суттєво впливає в'язкість: швидкість цього руху максимальна на осі отвору та зменшується практично до нуля біля стінок.

Проаналізуємо, якою саме ϵ залежність максимальної швидкості v рідини в отворі від заданих параметрів системи. Перелічимо ці параметри, зазначивши у дужках відповідні одиниці величин:

- різниця тисків др (Па);
- довжина «трубки» (товщина поршня) / (м);
- радіус отвору r (м);
- в'язкість рідини η (Па · c).

В'язкість води наведено в умові саме для надання інформації про одиницю цієї величини. Щоб визначити характер залежності $v(\Delta p, l, r, \eta)$, ми скористаємося методом розмірностей. На перший погляд встановити характер залежності неможливо, оскільки два параметри (l, r) мають розмірність довжини й нібито можуть «заміняти» один одного без зміни розмірності виразу.

Але подивимося, як зміниться швидкість протікання рідини, якщо, наприклад, одночасно збільшити вдвічі Δp і / (до значень $2\Delta p$ і 2l). Оскільки тиск змінюється в трубці лінійно, на кожну з двох «половинок» (трубок довжиною l) припадає

тиск Δp . Отже, швидкість руху рідини не зміниться. Це означає, що величини Δp і l можуть входити до шуканого виразу $v(\Delta p, l, r, \eta)$ тільки в комбінації $\Delta p/l$. Одиницею цієї величини є Па/м. Тепер маємо виразити швидкість через $\Delta p/l$ (Па/м), r (м) і η (Па · с). Очевидно, нам треба «позбавитися» у відповіді такої одиниці, як паскаль (вона містить у собі кг). Єдиний спосіб зробити це — взяти величину $\frac{\Delta p}{\eta l}$ (її одиниця $\mathbf{M}^{-1}\mathbf{c}^{-1}$).

Тепер єдиний спосіб отримати величину, що вимірюється в метрах за секунду, — це помножити останній отриманий вираз на r^2 .

Остаточно отримаємо: $v: \frac{\Delta p \cdot r^2}{\eta l}$. Врахуємо тепер, що $\Delta p = \rho g l$, де ρ густина металу, і отримаємо $v: \frac{\rho g r^2}{\eta}$. Швидкість рідини взагалі не залежить від товщини поршня! За відсутності опору повітря висота фонтанчика $h = \frac{v^2}{2g}$.

Отже,
$$h: \frac{\rho^2 g r^4}{\eta^2}$$
. Звідси випливає, що $\frac{h_2}{h_1} = \left(\frac{r_2}{r_1}\right)^4$ і $h_2 = 80$ см.

Були спроби прирівняти об'єм рідини, що проходить, до об'єму трубки. Висота пропорційна цьому об'єму?!!

Pідина втрача ϵ швидкість, проходячи отвір?!

Повної правильної відповіді не було, хоч метод розмірностей група учасників застосувала правильно.

Задача 3

Треугольник, вырезанный из однородного оргстекла, при первом взвешивании подвесили за две вершины (рис.1а), а при втором взвешивании — за три вершины (рис.1б). В первом случае левый динамометр показал силу 9 H, а правый — 12 H. Чему равны показания каждого из трех динамометров при втором взвешивании?

Puc. 1.

Решение.

- 1) По результатам первого взвешивания находим вес треугольника, он равен $P = mg = F_1 + F_2 = 21 \, H$.
- 2) Если все три динамометра прикреплены к вершинам треугольника, то их показания будут одинаковы (доказательство смотри ниже) и равны $F_A = F_B = F_C = \frac{1}{3} \cdot (F_1 + F_2) = 7 \ H.$

Puc. 2.

Доказательство. Рассмотрим треугольник массы m, подвешенный за три вершины (рис. 2, a). Чтобы найти показания динамометра, прикрепленного к вершине A (силу F_A) проведем мысленно через две другие вершины ось BC. Относительно этой оси треугольник вращают две силы: сила F_A , приложенная к вершине A, и сила тяжести mg, приложенная к центру масс треугольника. Как известно, центр масс треугольника находится в точке пересечения медиан, а сами медианы делятся этой точкой на части в отношении 1: 2. Поэтому AO = 3OD и $\ell_A = 3\ell_0$ (рис. 2, δ). Учитывая этот факт из второго условия равновесия (условия моментов)

$$F_A\ell_A=mg\ell_0,$$

получаем $F_A = mg \cdot \ell_0/\ell_A = rac{mg}{3}$, чтд.

Ответ: во втором взвешивании показания всех динамометров одинаковы и составляют 1/3 веса треугольника, т.е. 7 H.

9 клас Задача № 4

Исследуя реакцию, в которой два вещества A и B превращались в вещество C, ученые установили следующие три факта: (I) при смешивании I кг вещества A и S кг вещества S в результате реакции получается S кг вещества S при температуре S (II) при смешивании S кг вещества S образуется смесь веществ S и S получается смесь вещества S получается смесь веществ S и S при температуре S0°C. Во всех опытах начальная температура исходных веществ была равна S0°C. Чему равны удельные теплоемкости веществ S0 и S1 и S2, если удельная теплоемкость вещества S2 равна S300 Дж/(°С·кг)?

Решение Способ 1

Кількість теплоти, що виділяється у першому випадку, йде на нагрівання речовини C:

$$Q = c_c m_c \Delta t_1. \tag{1}$$

Тут $m_c = 4$ кг, $\Delta t_1 = 100$ °C.

Кількість теплоти, що виділяється у другому випадку, йде на нагрівання речовини C удвічі більшої маси, та нагрівання залишку $m_0 = 1$ кг речовини B:

$$2Q = (2c_c m_c + c_B m_0) \Delta t_2, \tag{2}$$

де $\Delta t_2 = 96$ °C.

Аналогічно у третьому випадку, де в залишку $m_0 = 1$ кг речовини A:

$$2Q = (2c_c m_c + c_A m_0) \Delta t_3, \tag{3}$$

де $\Delta t_3 = 75$ °C.

Розв'язуючи систему рівнянь (1) - (3), отримуємо:

$$c_A = \frac{2c_c m_c (\Delta t_1 - \Delta t_3)}{m_0 \Delta t_3} = 800 \frac{\text{Дж}}{\text{кг} \cdot \text{°C'}}$$

$$c_B = \frac{2c_c m_c (\Delta t_1 - \Delta t_2)}{m_0 \Delta t_2} = 100 \frac{\text{Дж}}{\text{кг} \cdot \text{°C}}.$$

Способ 2

На рисунке 1 показано, какие вещества и при какой температуре образуются в каждом случае.

Puc. 1

Хотя в реальных процессах реакция образования вещества C и нагрев веществ за счет выделяющегося тепла идут одновременно, мы можем мысленно разделить эти процессы и считать, что во втором и в третьем случаях сначала образуется 8 кг вещества C при температуре 120° C, а затем происходит выравнивание температур (рис. 2). При таком подходе мы можем составить уравнения баланса тепла для этих случаев и найти теплоемкости веществ A и B.

образование
$$C$$
 выравнивание температуры \mathbf{B} $t_0=20\,^{\circ}\mathrm{C}$ \mathbf{C} $t_1=120\,^{\circ}\mathrm{C}$ \mathbf{B} \mathbf{C} $t_2=116\,^{\circ}\mathrm{C}$ $t_3=116\,^{\circ}\mathrm{C}$ $t_4=120\,^{\circ}\mathrm{C}$ $t_5=116\,^{\circ}\mathrm{C}$ $t_6=120\,^{\circ}\mathrm{C}$ $t_7=120\,^{\circ}\mathrm{C}$ $t_7=120\,^{\circ}\mathrm{C}$

Puc. 2

Для второго случая имеем:

$$c_B m_0 t_0 + c_C m t_1 = (c_B m_0 + c_C m) t_2.$$

Здесь $m_0=1~{\rm K}{\rm \Gamma}-{\rm M}{\rm a}$ сса вещества $B,~m=8~{\rm K}{\rm \Gamma}-{\rm M}{\rm a}$ сса вещества $C,~{\rm C}_B$ и $c_C-{\rm V}$ удельные теплоемкости этих веществ.

Из этого уравнения получаем первый ответ

$$c_B = \frac{mc_C(t_1 - t_2)}{m_0(t_2 - t_0)} = 100 \frac{Дж}{к \Gamma \cdot \Gamma pag}.$$

Аналогично для вещества А получаем:

$$c_A = \frac{mc_C(t_1 - t_3)}{m_0(t_3 - t_0)} = 800 \frac{Дж}{к \Gamma \cdot \Gamma pag}.$$

$$\mathit{Omsem} \colon \mathit{c_A} = 800 \frac{\mathit{Дж}}{\mathit{\kappa}_{\Gamma} \cdot \mathit{град}}, \ \mathit{c_B} = 100 \frac{\mathit{Дж}}{\mathit{\kappa}_{\Gamma} \cdot \mathit{град}}.$$

9 клас Задача <u>№ 5.</u>

Ледяной шар массой 2.7 кг (радиус такого ледяного шара равен 9 см) привязывают нитью длиной 20 см ко дну широкого и глубокого сосуда (глубина превышает размеры шара вместе с нитью). С противоположной стороны от точки закрепления нити к шару прикреплена тяжелая дробинка (рис.). Сосуд полностью заполняют водой. Найти расстояние между центром шара и дном сосуда. Рассмотреть два случая: (а) масса

дробинки равна 140 г; (б) масса дробинки равна 200 г. При расчетах принять дробинку за материальную точку, плотность воды равна 1000 кг/м 3 , плотность льда 900 кг/м 3 .

Решение. Для решения задачи нам следует найти *устойчивые положения равновесия* шара для каждого значения массы дробинки.

Равновесие — это состояние, в котором выполняются два условия: (1) сумма всех сил, действующих на тело, равна нулю и (2) сумма моментов всех сил равна нулю.

На нашу систему (шар с дробинкой) действуют следующие силы: сила натяжения нити T, сила тяжести дробинки mg, сила тяжести льда Mg и выталкивающая (архимедова) сила F_A . Так как две последние силы приложены из одной точки (центра шара), то мы для простоты заменим их одной силой $F = F_A - Mg = \frac{1}{9}Mg$ направленной вверх и приложенной к центру шара.

Так силы mg и F направлены по вертикали, то сила натяжения нити в положении равновесия также должна быть направлена вертикально (рис. 2). Рассмотрим условие моментов для каждого значения массы дробинки.

- 1) Масса дробинки равна $m=140\ \emph{c}$. Рассмотрим промежуточное (неустановившееся) состояние $\emph{б}$ на рис.1. Для него момент силы \emph{F} будет всегда (для любых углов $0<\Theta<90^\circ$) больше момента силы $mg: M_F/M_{mg}=FR/2mgR=\frac{M}{18m}=\frac{30}{28}>1$, кроме положения, когда они оба стают равными нулю (вертикальное положение, показанное на рис. 1 \emph{a}). Поэтому шар начнет вращаться против часовой стрелки (на рисунке) вокруг точки закрепления нити и примет состояние устойчивого равновесия только в том самом вертикальном положении \emph{a} на рис. 1 (при малейшем отклонении от него преобладание момента силы \emph{F} будет возвращать шар в это же положение). Расстояние от центра шара до дна сосуда в этом случае будет равно $\emph{H}_1 = \emph{l} + \emph{R} = 29\ \emph{cm}$.
 - 2) Масса дробинки равна $m=200\ \varepsilon$. В этом случае (для углов $\Theta < 90^\circ$) момент силы

mg будет больше момента силы $F\left(M_F/M_{mg}=\frac{M}{18m}=\frac{3}{4}\!<\!1\right)$, и шар начнет вращаться вокруг точки прикрепления нити по часовой стрелке. При таком движении плечи сил mg и F изменяются одинаково, поэтому вращение будет продолжаться до тех пор, пока нить не начнет наматываться на шар (а сам шар при этом будет погружаться!) (рис. 1, ϵ). При дальнейшем движении ($\Theta > 90^\circ$) плечо силы F (относительно точки касания нити A_1) остается постоянным и равным $d_F = R$, а плечо силы mg начинает уменьшаться: $d_{mg} = R + R \cos \varphi$ (где $\varphi = \Theta - 90^\circ$).

Поэтому спустя некоторое время моменты сил сравняются: $\frac{1}{9}MgR=mgR(1+\cos\varphi)$ (см. рис.2). Для нашего случая это произойдет тогда, когда $\varphi=60^\circ$. Считаем теперь расстояние от центра шара до дна сосуда. Так как на шар намоталась часть нити длиной равной 1/6 окружности, то $H_2=\ell-\frac{1}{6}\cdot 2\pi R=10,58$ см. По сравнению с первым случаем шар опустился вниз на 18,42 см!

Omsem: 1) $H_1 = \ell + R = 29 \text{ cm}$; 2) $H_2 = \ell - \frac{1}{6} \cdot 2\pi R = 10,58 \text{ cm}$.