

Fig.1
binary plasmid
pPZP2028

GUS gene fragment(Seq.59) or intron of rice aspartate protease gene (Seq.97)

modified pUC19 series

Example of a modified plasmid used for constructing a transgene

** Bold lines indicate multiplecloning sites, having the following restriction sites :
HindIII, SphI, PstI , Sall , XbaI , BamHI , SmaI , KpnI , SacI , EcoRI

Fig.2

A prolamin expression suppression cassette used in a standard antisense method

1) a promoter for expressing a prolamin suppression gene	2) prolamin gene fragment	3) terminator
prolamin promoter (Seq.47)	13kDa prolamin(Seq.1) prolamin 67bp fragment (Seq.51)	prolamin terminator (Seq. 61) prolamin terminator (Seq. 61)
prolamin promoter (Seq.47)	13kDa prolamin(Seq.1)	GluB1 terminator
GluB1 promoter (Seq.48)	13kDa prolamin(Seq.1)	Nos terminator (Seq. 55)
CaMV3SS promoter (Seq.49)		
	Xba I	Sac I

RNAi type prolamin expression suppression cassette

1) promoter for expressing prolamin expression suppression gene	2) prolamin fragment	3) terminator
rice modified polyubiquitin promoter(Seq.58)	13kDa prolamin (Seq.1)	Nos terminator (Seq.55)
rice modified polyubiquitin promoter(Seq.58)	prolamin15bp fragment (Seq.52,71)	prolamin15bp fragment (Seq.52 , 71)
	Xba I	Spe I
		Sac I

The schematic illustration of the structure of prolamin suppression genes indicating exemplary combinations of elements in a expression cassette.

Fig.3

Fig.4

**R:hygromycin resistance, S:hygromycin sensitive

variety	a)	b)	c)	d)	e)	f)	g)
Nipponbare	Nipponbare	Nipponbare	Nipponbare	Nipponbare	Nipponbare	LGC-1	LGC-1
promoter used for prolamin gene expression suppression	Seq.47 (10kDa prolamin)	Seq.47 (glutelinB1)	Seq.48 (glutelinB1)	Seq.47	Seq.47	Seq.47	Seq.47
Sequences used for suppression	Seq.1	Seq.3	Seq.1	Seq.51	Seq.1	Seq.1	Seq.51

Fig.5

Fig.6a a-1) a variety having 13 KDa prolamin antisense gene

a-2) a standard variety (Nipponbare)

a-3) a variety having reduced glutelin and increased prolamin (LGC-1)

Fig.6b b-1) a variety having 13 KDa prolamin antisense gene

b-2) a standard variety (Nipponbare)

b-3) a variety having reduced glutelin and increased prolamin (LGC-1)

Fig. 8

Fig.9a

Comparative figure of 13K prolamин sequences

RM1. NUC	1:-----AG--GAAGCATACTAGTACAATCCTACAAAATGAAGATCATTT
RM4. NUC	1:--G--CAAATAGAA--AG-ATC-----TAGTGTCCCCAGCAATGAAGATCATTT
RM5. NUC	1:CAATTCAAACATTATAGTGAAGCATACTAGTACAATCCTACAAAATGAAGATCATTT
RM7. NUC	1:-----GAAGCATACTAGTACAATCCAACAACAATGAAGATCATTT
RM9. NUC	1:--G--CAAAGCATA--AG-AAC-----TAGAAACCCACCACAATGAAGATCATTT
	* * * *** * *****
RM1. NUC	61:CGTATTGCTCTCCTTGCTATTGTCATGCAA-CGCTTCTGCACGGTTGATGCTCTTA
RM4. NUC	61:CGTCTTGCTCTCCTTGCTATTGTCATGCAAG-CGCTTCTGCCAGTTGATGTTTAG
RM5. NUC	61:CGTATTGCTCTCCTTGCTATTGTCATGCAA-CGCTTCTGCACGGTTGATGCTCTTA
RM7. NUC	61:CGTATTGCTCTCCTTGCTATTGTCATGCAATCGC-TCTGCCGGTTGATCCTCTTA
RM9. NUC	61:CTTCTTGCTCTCCTTGCTATTGTCATGCAAG-TCCCTCTGCCAGTTGATGCTGTTA
	* * ***** *
RM1. NUC	121:GTCAAAGTTATAGACAATATCAACTACAATCGCATCTCCTGCTACAGCAACAAGTGTCA
RM4. NUC	121:GTCAAAGTTATAGGCAATATCAACTACAATCGCATCTCCTGCTACAGCAACAGGTGCTTA
RM5. NUC	121:GTCAAAGTTATAGACAATATCAACTACAATCGCATCTCCTGCTACAGCAACAAGTGTCA
RM7. NUC	121:GTCAAAGTTATAGGCAATATCAACTACAGTCGATCTCCTACTACAGCAACAAGTGTCA
RM9. NUC	121:CTCAAAGTTACAGGCAATATCAAGCTGCAGCCGATCTATGTCAGCAACAGATGCTTA
	**** * *** *
RM1. NUC	181:GCCCATGCAGTCAGTTCGTAAGGCAACAGCATAAGCAGTGGCAACCCCTTCTGGCAAC
RM4. NUC	181:GCCCATATAATGAGTTCGTAAGGCAAGCAGTATGGCATAGCGGCAAGCCCTTCTGCAAT
RM5. NUC	181:GCCCATGCAGTCAGTTCGTAAGGCAACAGCATAAGCAGTGGCAACCCCTTCTGGCAAC
RM7. NUC	181:GCCCATGCAGTCAGTTCGTAAGGCAACAGTATAGCATAAGTGGCAACCCCTTCTGGCAAC
RM9. NUC	181:GCCCATGCAGTCAGTTCGTAAGGCAACAGCAGTCAGCAGTGGCAACCCCTTCTGCAAT
	***** *
RM1. NUC	241:CAGCTACGTTCAATTGATAAACACCAAGTCATGCAGCAACAGTGTGCCAACAGCTCA
RM4. NUC	241:CAGCTGCCTTCAACTGAGAAACAACCAAGTC-TG-GCAACA-GCT-C-GC-GCT-
RM5. NUC	241:CAGCTACGTTCAATTGATAAACACCAAGTCATGCAGCAACAGTGTGCCAACAGCTCA
RM7. NUC	241:CAGCTACGTTCAATTGATAAACACCAAGTCATGCAGCAGCAGTGTGCCAACAGCTCA
RM9. NUC	241:CAACCGTGTTCAACTGAGAAACTGCCAAGTCATGCAGCAGCAGTGTGCCAACAGCTCA
	** *

Fig.9b

RM1. NUC	301:GGCTGGTAGCGCAACAATCTCACTACCAGGCCATTAGTAGCGTTCAGGCATTGTGAGC
RM4. NUC	301:GG-TG---GCGCAACAATCTCACTATCAGGACATTAACATTGTCAGGCCATAGCGCAGC
RM5. NUC	301:GGCTGGTAGCGCAACAATCTCACTACCAGGCCATTAGTAGCGTTCAGGCATTGTGAGC
RM7. NUC	301:GGCTGGTAGCACAACAATCTCACTACCAGGCCATTAGTATTGTCAGGCATTGTGCAAC
RM9. NUC	301:GGATGATCGCACAAACAGTCTCACTCCCAGGCCATTAGCAGTGTTCAGGCTATTGTGAGC *** *** . *** ***** *** *** *** * *** *** *** *** *** *** *** ***
RM1. NUC	361:AACTACAGCTGCAGCAGGTGGTGT-GTCTACTTGTATCAGACTCAAGCTCAAGCTCAA
RM4. NUC	361:AGCTACAACTCCAGCAGTTGGTGATC-TCTACTTGTATCGGAATCTGGCTCAAGCTCAA
RM5. NUC	361:AACTACAGCTGCAGCAGGTGGTGT-GTCTACTTGTATCAGACTCAAGCTCAAGCTCAA
RM7. NUC	361:AGCTACAACTGCAGCAATTAGTGGT-GTCTACTTGTATCAGACTCAAGCTCAAGCCCAA
RM9. NUC	361:AGCTACGGCTACAACAGTTGCT-AGCGTCACTTCGATCAGAGTCAAGCTCAAGCCCAA * *** * ** * * * * *** *** *** *** *** *** *** *** *** *** ***
RM1. NUC	421:GCTTTGCTGGCCTTAAACTGCCATCCATATGTGGTATCTATCCTAACTACTACATTGCT
RM4. NUC	421:GCTCTGTTGGCTTTAACGTGCCATCTAGATATGGTATCTACCCCTAGGTACTATGGTGC
RM5. NUC	421:GCTTTGCTGGCCTTAAACTGCCATCCATATGTGGTATCTATCCTAACTACTACATTGCT
RM7. NUC	421:ACTCTGTTGACCTTCAACTTGGCATCCATATGTGGTATCTACCCCTAACTACTATAGTGC
RM9. NUC	421:GCTATGTTGGCCCTAAACATGCCGTCAATATGCCGTATCTACCCAGCTACAACACTGCT ** *** * * * *** *** *** *** * * *** *** *** *** *** *** ***
RM1. NUC	481:CCGAGGAGCATTCCACCGTTGGTGTCTCGTACTGAATTGTAATAGTATAATGGTC
RM4. NUC	481:CCCAGTACCATTAACCCCCCTGGGGTGTCTTGTAAATGAGTTAACAGTATAAGTGGTC
RM5. NUC	481:CCGAGGAGCATTCCACCGTTGGTGTCTCGTACTGAATTGTAATAGTATAATGGTC
RM7. NUC	481:CCCAGGAGCATTGCCACTGTTGGTGTCTGGTACTGAATTGTAACAAATATAATAGTTC
RM9. NUC	481:CCCTGTACCATCCACCGTGGTGTCTGGTATTGAAATTGTAAGCACTAGTAC ** * * *** *** * * *** *** *** *** *** *** * *** * ***
RM1. NUC	541:AAATGTTAAAATAAAGTCATCCATCATCGCTGAC-AGTTGAAACTTGTATGTC-ATA
RM4. NUC	541:CGAAAGTAAAATAAGCTCAGATATCAT-ATATGTGACATG-TGAAACTT-TGGGTGATA
RM5. NUC	541:AAATGTTAAAATAAAGTCATCCATCATCGCTGAC-AGTTGAAA-AAAAAAA--AAA
RM7. NUC	541:GTATGTTAAAATAAAGTCATACATCATCGTGTGAC-TGTTGAAACTTAGGGTC-ATA
RM9. NUC	541:AGGAGAGAAAATAAAGTCATCCATCATCGTGTGACAAACTTGTGAAACATGGGTGATA * *** *** *** *** * *** *** *** *** *** *** *** *** *** ***
RM1. NUC	601:TAAATCTAAAT-AAA-C-TCGTGC-C-----
RM4. NUC	601:TAAATACAAAAAAAGTTGTCTTCATATTAA---
RM5. NUC	601:AAA-----
RM7. NUC	601:TAAATCTAAATAAATCATCTTAC-CTAAAAAA-
RM9. NUC	601:CAAATCTGAATAAAATGTATGCAAGTTAAAC **

Fig.10

Fig.11

Fig.12

construct	exogenous protein gene expression cassette	prolamin antisense (LP) cassette
-----------	---	----------------------------------

Fig. 14
(A)

ATGGCAGCATACACCAGCAAGATCTTGCCTTAATTGCTCTTGCCTAAAGTGCCACTACTGCATCTAGAGCCAATGGTGACCAAGGGCGAGGAG
Met Ala Ala Tyr Thr Ser Lys Ile Phe Ala Leu Phe Ala Leu Ser Ala Ser Ala Ser Arg Ala Met Val Ser Lys Gly Glu
10kDa prolamin signal sequence

The diagram shows the 10kDa prolamin signal sequence with a bracket indicating a restriction enzyme site. A separate bracket below it indicates a ligation sequence site.

original variety Introducing gene 6 in Fig. 12

(B)

Fig.15

Fig.17 A) crop plant

** Optionally preparing plurality of suppression cassette. In the case, the specific exemplary structure is pursuant to the following B) section
B) rice

Fig 17 Exemplary structure of expected optimal transgene in using a seed as a bioreactor
Ideally, two or more cassettes are on a fundamental vector