- 1. 下面()不是控制系统基本要求。
 - A. 稳定性

B. 准确性

C. 快速性

- D. 平衡性
- 2. 传递函数 $L(s) = \frac{7}{(s+7)^2}$ 的静态增益是(
 - A. 1

B. 1/2

C. 1/7

- 3. 传递函数为 $L(s) = \frac{7}{s(s+2)(s+3)}$ 的静态增益是(
 - A. 7

B. 7/5

C. 7/6

- D. ∞
- 4. 传递函数为 $L(s) = \frac{10}{s(s+2)(s+3)}$ 的静态增益是(
 - A. 10

B. 5/3

C. 2

- $D. \infty$
- 5. 传递函数为 $L(s) = \frac{10}{(s+1)(s+5)}$ 的静态增益是(
 - A. 10

B. 5

C. 2

- D. 1
- 6. 下面关于二阶欠阻尼线性系统的阶跃响应说法错误的是(
 - A. 一定是按指数规律振荡衰减
- B. 不一定有超调

)。

C. 一定稳定

- D. 一定收敛
- 7. 如下的传递函数是延迟环节的是(
 -)。

A. $\frac{1}{s-k}$

C. $\frac{1}{s+k}$

- D. $e^{-\tau s}$
- 8. 控制元件中功能是"直接推动被控对象,使其被控量发生变化"的元件是()。
 - A. 执行元件

B. 放大元件

C. 测量元件

- D. 校正元件
- 9. 在液位自动控制系统中,控制对象是(
 -)。

A. 浮子 C. 水

- B. 水箱 D. 电动阀
- 10. 同步发电机励磁控制系统的控制对象是()。

A. 同步发电机 C. 功率励磁装置

- B. 自动励磁调节器 D. 机端电压
- 11. 某系统的开环传递函数为 $G(s) = \frac{1}{Ts-1}$, 其频率特性图是(

В.

12. 某系统的开环传递函数为 $G(s) = \frac{1}{Ts+1}$,下面(

)是其频率特性图。

13. 某单位负反馈系统的开环传递函数为 $\frac{12}{s^2(s+1)}$, 在输入为单位阶跃信号下的稳态误差是()。

A. 0

B 6

C. 12

D. ∞

14. 已知开环传递函数为 $\frac{5}{s(s-2)}$, 其单位负反馈系统在输入为单位阶跃信号下的稳态误差是()。

A. 0

B. 系统不稳定, 无从谈稳态误差

C. 1

D. -

15. 已知开环传递函数为 $\frac{5}{s(s+2)}$, 其单位负反馈系统在输入为单位阶跃信号下的稳态误差是()。

A. 0

B. 系统不稳定, 无从谈稳态误差

C. 1

D. -1

16. 采样系统的采样周期将不影响采样系统的(

- A. 稳定性 B. 稳态误差
 - C. 信号的恢复精度
- D. 对象本身

17. 已知系统的开环传递函数 L(s) 在右半复平面的极点数为 2,若 s 沿 Nyquist 路径顺时针移动一周,L(s) 的 Nyquist 图顺时针包围临界点(-1,j0)的圈数为 1,则闭环系统在右半复平面的极点数为()。

- A. 0
- B. 1
- C. 2
- D. 3

18. 已知稳定的单位负反馈系统的开环传递函数 L(s) 在右半复平面的极点数为 2, 若 s 沿 Nyquist 轨迹顺时针移动一周, L(s) 的 Nyquist 图逆时针包围临界点(-1,j0)的圈数为()。

A. -2

B. 2

C. 0

D. 1

19. 已知某系统的开环传递函数为 $G(s) = \frac{K(T_1s+1)}{s^2(T_2s+1)(T_3s+1)(T_4s+1)}$,其中 $T_1 > 0$, $T_2 > 0$, $T_3 > 0$, $T_4 > 0$,且 $T_1 >> T_2 > T_3 > T_4$ 。则它的 Nyquist 是()。

B. 并联

A. 0

A. -2

C. 0

25. 下面(

26. 下面(

A. 0

C. 2

A. 串联

31. 下面()是比例环节。

D. 复合

32. 下面()是惯性环节。

- 33. 下面哪一个可用比例环节表示?(
 - A. 变速齿轮机构
- B. 液压活塞机构

C. 测速发电机

- D. 皮带传输机
- 34. 下面哪一个可用微分环节表示?(
 - A. 变速齿轮机构

B. 液压活塞机构

C. 测速发电机

- D. 皮带传输机
- 35. 典型的二阶振荡环节,当阻尼比满足 $0 < \zeta < 0.707$ 时,谐振频率()。

A.等于自然频率 B.小于自然频率

- 小于自然频率 C. 大于自然频率
- D.与自然频率没关系
- 36. 由无源电路构成的两个串联环节间存在负载效应,可以在中间加装一个()消除。

)

)

A. 隔离放大器

B. 二极管

C. 变压器

- D. 并联电容
- 37. 下面的的环节是只含有滞后校正环节的是()。
 - $A. \quad \frac{1+3s}{1+s}$

B. $\frac{1+2s}{1+5s} \frac{1+3s}{1+s}$

C. $\frac{1+2s}{1+5s}$

- D. $\frac{1+2s}{1-5s}$
- 38. 已知某线性系统在零初始条件下冲激响应是 $g(t) = e^{-t}$,则当该系统的输入为 $u(t) = t, t \ge 0$ 时,系统的输出为()。
 - A. $e^{-t} + t 1$

B. $e^{-t} + t$

C. $e^{-t} - 1$

- D. te^{-t}
- 39. 已知某 LTI 系统零初始条件下的冲激响应是 $g(t) = 2e^{-t}$,则当该系统的输入为 $u(t) = t, t \ge 0$ 时,系统的输出为()。
 - A. $-te^{-t} + e^{-t} + 2t 1$
- B. $2(e^{-t}+t-1)$

	C. $-te^{-t} + e^{-t}$ D. $2te^{-t}$	
40.		$g(t) = e^{-t}$,则当该系统的输入为 $u(t) = 2t, t \ge 0$ 时,系统的
	输出为()。	
	A. $2(e^{-t} + t - 1)$ B. $-te^{-t}$	$t^{-t} + e^{-t} + 2t$
	C. $-te^{-t} + e^{-t}$ D. $2te^{-t}$	·t
41.	41. 已知对象的传递函数为 $G(s) = \frac{10}{7s+1}$, 若输入	信号为 sin20t,则输出信号的频率是()Hz。
	A. 20 B. $10/\pi$	
	C. $20/\pi$ D. 10	
42.	C. $20/\pi$ D. 10 42. 已知对象的传递函数为 $G(s) = \frac{20}{2s+1}$,若输入	信号为 cos10t,则输出信号的频率是()Hz。
	A. 20 B. $10/\pi$	
	C. D. 10	
43.	43. 已知对象的传递函数为 $G(s) = \frac{10}{(7s+1)^{100}}$,若	输入信号为 sin2t,则输出信号的频率是()Hz。
	A. 2 B. 1	
	C. $2/\pi$ D. $1/\pi$	
	44. 某对象的传递函数为 $G(s) = \frac{3}{7s+2}$, 若输入信	言号为 sin2t,则输出的频率是()rad/s。
	A. 2 B. 1	
	C. 2/π D. 1/π D. 1/π	ᄺᄱ
45.	45. 典型欠阻尼二阶线性系统的最大超调量与()相大。 !以:E.白ெ然振费免疫变。
	A. 阻化μς B. 阻化 C. 白绒垢浆角颗索。 D. 绘λ	记ζ与日然派汤用妙华ωn 恒估
16	A. 阻尼比ζ B. 阻尼 C. 自然振荡角频率ωn D. 输入 46. 二阶欠阻尼系统响应是()的曲线。	N僧伯.
40.	A. 按指数规律振荡衰减 B. 单调	11-升
	C. 单调下降 D. 先单	· 调上升后单调下降
	47. 相同传递函数的物理系统,具有()。	
	A. 相同的内部结构 B. 相同]的输入输出特性
	A. 相同的内部结构 B. 相同 C. 相同的特征值 D. 相同	
48.	48. 方框图的基本连接方式中,等效传递函数等	
	A. 串联 B. 并明	
40	C. 反馈 D. 复合	
49.	49. 方框图基本连接方式中,等效传递函数等于名A. 串联B. 反馈	,
	C. 并联 D. 复合	
50.	50. 下面关于传递函数说法正确的是()。	
	A. 物理系统的传递函数分子次数总是小于等	等于分母次数
	B. 同一系统,不同的输入信号与输出信号之	
	C. 传递函数表示的是静态放大倍数	
	D. 传递函数的阶次一定是系统所含储能元件	‡的个数。
51.	51. 下面()不是串联超前校正的作用。	
	A. 交越频率变大,系统快速性提高	
	B. 增加相角裕度和系统的相对稳定性	
	C. 提高高频段增益,抗测量噪声能力变差	
	D. 减小了稳态误差,提高控制精度	
52.	52. 下面关于开环幅频特性说法错误的是()	。 系统的型别,其高度则表征了开环增益的大小。
	ユ・ ノレットハチヌス 州田ク火1寸 工 以ク火4又 日子ホ十二字 /八 1圧 亅 方	、元山工土川, 元回汉 州水川 1 川 小恒 皿 町 八 小。

B. 开环频率特性的低频段表征负载扰动抑制能力和稳态误差大小

C. 交越区(中频段)的斜率. 宽度以及交越频率, 表征着系统的静态性能。

- D. 高频段表征了系统的抗高频干扰的能力。
- 53. 下面()不是串联滞后或 PI 校正的作用。
 - A. 增加相角裕度和系统的相对稳定性
 - B. 提高低频分贝数和稳态精度
 - C. 降低系统带宽和加快速性能
 - D. 增加了幅值交越频率,提高了快速性
- 54. 下面说法错误的是() 。
 - A. 相角裕度表征了系统的平稳性
 - B. 交越频率反映了系统的快速性
 - C. 开环的交越频率与闭环的带宽频率大小对系统的影响是一致的
 - D. 幅值裕度表征了准确性。
- 55. 对于典型的线性二阶系统,下面叙述错误的是(
 - A. 临界阻尼与过阻尼系统响应是无振荡的单调上升曲线。
 - B. 欠阻尼系统响应是按指数规律振荡衰减的曲线。
 - C. 对于欠阻尼情况,阻尼比减小会使上升时间减小。
- D. 在零初始条件下,两次不同的输入得到的响应之和,与将这两次输入之和同时输入系统得到的响 应是不相等的。
- 56. 下面叙述正确的是(
 - A. 对于二阶系统, 当初始条件给定后, 相轨迹是一簇曲线。
 - B. 线性系统对象的传递函数与它的单位反馈闭环传递函数的零点是不同的。
 - C. Bode 图只能得到稳定裕度,而不能分析线性系统的稳定性。
 - D. 最小相位开环传递函数没有右半平面的零. 极点。
- 57. 若连续 PI 控制器的传递函数为 $C(s) = k_p + \frac{k_i}{s}$,则在采样周期为 T 时,采用积分前向差分,得到离散 PID 控制器的脉冲传递函数为(

A.
$$C(z) = k_p + \frac{k_i T}{z - 1}$$

B.
$$C(z) = k_p + \frac{k_i T}{1 - z^{-1}}$$

D. $C(z) = k_p - \frac{k_i T}{z - 1}$

C.
$$C(z) = k_p - \frac{k_i T}{1 - z^{-1}}$$

D.
$$C(z) = k_p - \frac{k_i T}{z}$$

58. 连续 PD 控制器的传递函数为 $C(s) = k_p + k_d s$,则在采样周期为 T 时,微分采用后向差分,离散 PD 控 制器的脉冲传递函数为(

(A)
$$C(z) = k_p + \frac{k_d T}{z - 1}$$

(B)
$$C(z) = k_p + \frac{k_d T}{1 - z^{-1}}$$

(C)
$$C(z) = k_p + \frac{k_d (1 - z^{-1})}{T}$$

(D)
$$C(z) = k_p - \frac{k_d(z-1)}{Tz}$$

59. 已知控制系统的结构图为下图,下面()是它的信号流图。

60. 对二阶线性系统 $\ddot{x}+2\zeta\omega_n\dot{x}+\omega_n^2x=0$, 当 $\zeta>1$ 时, 其相轨迹形式是(

В.

C.

D.

61. 测定某最小相位系统的频率特性曲线以及渐近线如右图,从图中可以看出存在谐振,问转折频率 ω_2 是()。

- A. 10
- B. 50.1187
- C. 20.2368
- D. 100
- 62. 对二阶线性系统 $\ddot{x}+2\zeta\omega_n\dot{x}+\omega_n^2x=0$, 当 $0<\zeta<1$ 时, 其相轨迹形式是()。

В.

c.

D.

63. 测定某最小相位系统的频率特性曲线以及渐近线如右图,从图中可以看出存在谐振,问转折频率 ω_1 是()。

- A. 2.5126
- B. 1
- C. 3.9812
- D. 10
- 64. 如下图所示的非线性系统中,M=2,K=6,此系统存在自振。图中非线性环节为理想继电器特性,描述函数为 $N(A)=\frac{4M}{\pi A}=\frac{8}{\pi A}$ 。系统的自振频率为()rad/s

- A. $\sqrt{2}$
- B. $\sqrt{3}$
- $2\sqrt{2}$ C.
- D. $2\sqrt{3}$
-)图是某初始条件下欠阻尼二阶线性齐次系统的相轨迹图。 65. 下面图中(

- 66. 下面关于 s 平面与 z 平面的对应关系说法错误的是(
 - A. s 域的实轴映射到 z 域的实轴
- B. 左半 s 平面映射到 z 域的单位圆内
- C. s域的虚轴映射到 z域的单位圆上 D. 右半 s 平面映射到 z域的单位圆外
-)是三位置继电特性。 67. 下面的非线性特性中(

68. 下面的非线性特性中()是死区特性。

- 69. 下面关于离散线性时不变系统稳定性说法错误的是(
 - A. 若系统传递函数的极点在圆内,则系统响应渐近稳定。
 - B. 基于双线性变换的 Routh 判据可以判定系统的稳定性。

C. 系统响应的稳定性性不仅与极点相关, 还与零点相关

D. 若系统传递函数有极点只有一对共轭极点在单位圆周上, 其他极点在单位圆内, 系统是等幅振荡的。

70. 下面图中()图是某初始条件下欠阻尼二阶线性齐次系统的相轨迹图。

71. 设单位负反馈控制系统的开环传递函数 $G(s) = \frac{K}{s(s+a)}$,其中 K>0,a>0,则闭环控制系统的稳定性与)有关。

A. K 值的大小有关 B. a 值的大小有关 C. a 和 K 值的大小无关 D. a 和 K 值的大小有关

72. 关于奈氏判据及其辅助函数 F(s)=1+G(s)H(s), 错误的说法是()。

A. F(s)的零点就是开环传递函数的极点

B. F(s)的极点就是开环传递函数的极点

C. F(s)的零点数与极点数相同

D. F(s)的零点就是闭环传递函数的极点

73. 已知负反馈系统的开环传递函数为 $G(s) = \frac{2s+1}{s^2+6s+100}$,则该系统的闭环特征方程为(

A.
$$s^2 + 6s + 100 = 0$$

B.
$$(s^2 + 6s + 100) + (2s + 1) = 0$$

C.
$$s^2 + 6s + 100 + 1 = 0$$

D. 与是否为单位反馈系统有关

74. 一阶系统的闭环极点越靠近 s 平面原点,则()。

- A. 准确度越高
- B. 准确度越低
- C. 响应速度越快

D. 响应速度越慢

75. 已知系统的开环传递函数为 $\frac{100}{(0.1s+1)(s+5)}$ -,则该系统的开环增益为()。

- A. 100
- B. 1000
- C. 20
- D. 不能确定

76. 若两个系统的根轨迹相同,则有相同的()。

- A. 闭环零点和极点 B. 开环零点
- C. 闭环极点
- D. 阶跃响应

77. 下列串联校正装置的传递函数中,能在 $\omega_c = 1$ 处提供最大相位超前角的是()。

- $\frac{1}{0.1s+1}$

78. 关于 PI 控制器作用,下列观点正确的有(

A. 可使系统开环传函的型别提高,消除或减小稳态误差

B. 积分部分主要是用来改善系统动态性能的

C. 比例系数无论正负. 大小如何变化,都不会影响系统稳定性

D. 只要应用 P I 控制规律,系统的稳态误差就为零

79. 关于线性系统稳定性的判定,下列观点正确的是(

A. 线性系统稳定的充分必要条件是: 系统闭环特征方程的各项系数都为正数;

B. 无论是开环极点或是闭环极点处于右半 S 平面,系统不稳定;

C. 如果闭环系统特征方程仅有某项系数为负数,系统不稳定;

D. 当系统的相角裕度大于零,幅值裕度大于1时,系统不稳定。

80. 关于系统频域校正,下列观点错误的是(

A. 一个设计良好的系统,相角裕度应为 45 度左右;

B. 开环频率特性, 在中频段对数幅频特性斜率应为-20dB/dec;

	D. 利用超前网络进行串联校正,是利用超前网络的相角超前特性。				
81.	已知单位反馈系统的开环传递函数为 $G(s) = \frac{10(2s+1)}{s^2(s^2+6s+100)}$,	当输入信号是 $r(t) = 2 + 2t + t^2$ 时,系统			
82.	关于线性系统稳态误差,正确的说法是()。 A. 一型系统在跟踪斜坡输入信号时无误差	D. 20			
	B. 稳态误差计算的通用公式是 $e_{ss} = \lim_{s\to 0} \frac{s^2 R(s)}{1+G(s)H(s)}$ C. 增大系统开环增益 K 可以减小稳态误差 D. 增加积分环节可以消除稳态误差,而且不会影响系统稳定。适合应用传递函数描述的系统是()。 A. 单输入单输出的线性定常系统	性。			
	B. 单输入单输出的线性时变系统 C. 单输入单输出的定常系统 D. 非线性系统				
84.	若某负反馈控制系统的开环传递函数为 $\frac{5}{s(s+1)}$,则该系统的闭	用环特征方程为()。			
85.	A. $s(s+1)=0$ B. $s(s+1)+5=0$ C. $s(s+1)+1=0$ D. 与是否为单位反馈系统非单位负反馈系统,其前向通道传递函数为 $G(s)$,反馈通道传从输入端定义的误差 $E(s)$ 为()。	递函数为 $H(s)$,当输入信号为 $R(s)$,则			
86.	A. $E(s) = R(s) \cdot G(s)$ B. $E(s) = R(s) \cdot G(s) \cdot $	H(s)			
	A. $\frac{K^*(2-s)}{s(s+1)}$ B. $\frac{K^*}{s(s-1)(s+5)}$ C. $\frac{K^*}{s(s^2-3s+1)}$	$D. \frac{K^*(1-s)}{s(2-s)}$			
87.	闭环系统的动态性能主要取决于开环对数幅频特性的()。 A. 低频段 B. 开环增益 C. 高频段	D. 中频段			
88.	关于系统零极点位置对系统性能的影响,下列观点中正确的是A. 如果闭环极点全部位于S左半平面,则系统一定是稳定的	c() _°			
80	B. 如果闭环系统无零点,且闭环极点均为负实数极点,则时 C. 超调量仅取决于闭环复数主导极点的衰减率,与其它零极 D. 如果系统有开环极点处于 S 右半平面,则系统不稳定。 关于传递函数,错误的说法是 ()。				
0).	A. 传递函数只适用于线性定常系统 B. 传递函数不仅取决于系统的结构参数,给定输入和扰动对传递函数也有影响 C. 传递函数一般是为复变量 s 的真分式				
90	D. 闭环传递函数的极点决定了系统的稳定性 下列哪种措施对改善系统的精度没有效果 ()。				
<i>7</i> 0.	A. 增加积分环节 B. 提高系统的开环增益 K C. 增加微分环节 D. 引入扰动补偿				
91.	高阶系统的主导闭环极点越靠近虚轴,则系统的()。 A. 准确度越高 B. 准确度越低 C. 响应速度越恒	央 D. 响应速度越慢			
92.	已知系统的开环传递函数为 $\frac{50}{(2s+1)(s+5)}$,则该系统的开环增	益为()。			
	(2 <i>s</i> + 1)(<i>s</i> + 5) A. 50 B. 25 C. 10 若某系统的根轨迹有两个起点位于原点,则说明该系统(D. 5			
,,,	10				
10					

C. 低频段,系统的开环增益主要由系统动态性能要求决定;

A. 含两个理想微分环节

B. 含两个积分环节

C. 位置误差系数为0

- D. 速度误差系数为 0
- 94. 开环频域性能指标中的相角裕度 ho_m 对应时域性能指标(
 - A. 超调 σ(%)
- B. 稳态误差 e_{ss} C. 调整时间 t_{s}
- D. 峰值时间 t_n
- 95. 已知某些系统的开环传递函数如下,属于最小相位系统的是(

- 96. 若系统增加合适的开环零点,则下列说法不正确的是(
 - A. 可改善系统的快速性及平稳性
 - B. 会增加系统的信噪比
 - C. 会使系统的根轨迹向 s 平面的左方弯曲或移动
 - D. 可增加系统的稳定裕度
- 97. 开环对数幅频特性的低频段决定了系统的()。
 - A. 稳态精度
- B. 稳定裕度 C. 抗干扰性能 D. 快速性

- 98. 下列系统中属于不稳定的系统是()。
 - A. 闭环极点为 $s_{12} = -1 \pm j2$ 的系统
- **B**. 闭环特征方程为 $s^2 + 2s + 1 = 0$ 的系统
- C. 阶跃响应为 $y(t) = 20(1 + e^{-0.4t})$ 的系统 D. 脉冲响应为 $g(t) = 8e^{0.4t}$ 的系统
- 99. 采用负反馈形式连接后,则 ()。
 - A. 一定能使闭环系统稳定
 - B. 系统动态性能一定会提高
 - C. 一定能使干扰引起的误差逐渐减小,最后完全消除
 - D. 需要调整系统的结构参数,才能改善系统性能
- 100. 下列哪种措施对提高系统的稳定性没有效果(
 - A. 增加开环极点

B. 在积分环节外加单位负反馈

C. 增加开环零点

- D. 引入串联超前校正装置
- 101. 系统特征方程为 $D(s) = s^3 + 2s^2 + 3s + 6 = 0$, 则系统(
 - A. 稳定

B. 单位阶跃响应曲线为单调指数上升

C. 临界稳定

- D. 右半平面闭环极点数2
- 102. 系统在 $r(t) = t^2$ 作用下的稳态误差 $e_{ss} = \infty$, 说明(
 - A. 型别 v < 2

- B. 系统不稳定
- C. 输入幅值过大

- D. 闭环传递函数中有一个积分环节
- 103. 对于以下情况应绘制 0°根轨迹的是(
 - A. 主反馈口符号为"-"
-)。 B. 除 K 外的其他参数变化时
 - C. 非单位反馈系统
- D. 根轨迹方程(标准形式)为G(s)H(s) = +1
- 104. 已知开环幅频特性下图所示, 则图中不稳定的系统是(

- A. 系统(1)
- B. 系统②
- C. 系统③
- 105. 若某最小相位系统的相角裕度 $\varphi_{m} > 0^{\circ}$,则下列说法正确的是(
 - A. 不稳定

B. 只有当幅值裕度 $g_m > 1$ 时才稳定

C. 稳定

- D. 不能判用相角裕度判断系统的稳定性
- 106. 若某串联校正装置的传递函数为 $\frac{10s+1}{100s+1}$,则该校正装置属于(

A. 超前校正 B. 滞后校正 C. 滞后-超前校正 D. 不能判断 107. 下列串联校正装置的传递函数中,能在 $\omega_c=1$ 处提供最大相位超前角的是()。			
A. $\frac{10s+1}{s+1}$ B. $\frac{10s+1}{0.1s+1}$ C. $\frac{2s+1}{0.5s+1}$ D. $\frac{0.1s+1}{10s+1}$			
108. 设 $G(s)H(s) = \frac{k(s+10)}{(s+2)(s+5)}$, 当 k 增大时,闭环系统()。			
A. 由稳定到不稳定 B. 由不稳定到稳定 C. 始终稳定 D. 始终不稳定			
109. 设开环传递函数为 $G(s) = \frac{k}{s(s+1)}$, 在根轨迹的分离点处,其对应的 k 值应为()。			
A. $\frac{1}{4}$ B. $\frac{1}{2}$ C. 1 D. 4			
110. 某串联校正装置的传递函数为 $G_c(s) = K \frac{1 + \beta T s}{1 + T s}$,1> β >0,该校正装置为()。			
A. 超前校正装置B. 滞后校正装置C. 滞后—超前校正装置D. 超前—滞后校正装置			
111. 已知单位反馈控制系统在阶跃函数作用下,稳态误差 e_{ss} 为常数,则此系统为() 的。 A. 0 型 B. I 型 C. I 型 D. I			
112. 若两个线性定常系统的根轨迹相同,则有相同的()。A			
A. 闭环零点 B. 开环零点 C. 闭环极点 D. 开环极点			
113. 一阶线性系统的阶跃响应, ()。			
C. 当时间常数 T 较小时有超调 D . 有超调			
114. 设 $G(s)H(s) = \frac{K(s+10)}{(s+2)(s+5)}$, 当 K 增大时,闭环系统()。			
A. 由稳定到不稳定 B. 由不稳定到稳定 C. 始终稳定 D. 始终不稳定			
115. 设开环传递函数为 $G(s)H(s) = \frac{K(s+1)}{s(s+2)(s+3)}$, 其根轨迹渐近线与实轴的交点为()。			
A. 0 B1 C2 D3			
116. 一阶系统的闭环极点越靠近 s 平面原点,则()。			
A. 准确度越高 B. 准确度越低 C. 响应速度越快 D. 响应速度越慢 117. 进行串联超前校正后,校正前的穿越频率 ω_c 与校正后的穿越频率 ω_c' 的关系,通常是()。			
A. $\omega_c > \omega_c'$ B. $\omega_c < \omega_c'$ C. $\omega_c = \omega_c'$ D. $\omega_c = \omega_c'$ 无关			