Contrôle continu n⁰3

Durée 1h20

Tous documents, calculatrices et téléphones sont interdits. Une rédaction précise et concise sera récompensée.

Exercice 1 (4p)

Soit E un \mathbb{R} -espace vectoriel de dimension 4. Soit u un endomorphisme de E ayant une valeur propre λ de multiplicité 4.

- A) Justifiez que u est trigonalisable. (1p)
- B) Soit $\mathcal{B} = (\vec{i}, \vec{j}, \vec{k}, \vec{l})$ une base de E telle que la matrice A de u dans \mathcal{B} est triangulaire de Jordan. Donner toutes les formes possibles de A en précisant pour chaque forme (dans l'ordre désiré) :
 - 1. L'image par u de chaque vecteur de \mathcal{B} (en fonction des vecteurs de \mathcal{B}), (1**p**)
 - 2. Le polynome minimal de u (justifier), (1p)
 - 3. La dimension de $\ker[(u \lambda Id_E)^m]$, pour $m \in \mathbb{N}^*$. (1p)

Exercice 2 (7,5p)

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans le base canonique \mathcal{B} est

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 1 \end{array}\right)$$

- 1. Calculer le polynôme caractéristique de u. u est-il trigonalisable? $(\mathbf{1p}+\mathbf{0.5p})$
- 2. Calculer le polynôme minimal de u. u est-il diagonalisable? (1p+0.5p)
- 3. Trouver une base C de \mathbb{R}^3 dans laquelle la matrice T de u a une forme triangulaire de Jordan. (2**p**)
- 4. Si P est la matrice de passage de \mathcal{B} à \mathcal{C} , quelle relation relie A, T et P? (0.5p)

5. En remarquant que

$$C := \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) = I_2 + N,$$

avec $N^2 = 0$, calculer C^n et en déduire T^n pour $n \in \mathbb{N}^*$. (1,5p)

6. Comment procéderiez vous ensuite pour obtenir A^n (on ne demande pas de faire les calculs)? (1p)

Exercice 3 (8,5p)

Soit E un \mathbb{K} - espace vectoriel de dimension finie $n \in \mathbb{N} \setminus \{0, 1\}$ et u un endomorphisme de E. On se propose de (re)démontrer que u est trigonalisable si et seulement si son polynôme caractéristique P_u est scindé.

- 1. Montrer que si u est trigonalisable, alors P_u est scindé. (1p)
- 2. On suppose que P_u est scindé.
 - (a) Justifier qu'il existe une base $(e_1, ..., e_n)$ telle que la matrice de u dans cette base est de la forme

$$M = \left(\begin{array}{cc} \lambda & L \\ 0_{\mathbb{K}^{n-1}} & A \end{array}\right),\,$$

avec $\lambda \in \mathbb{K}$, L matrice ligne de taille n-1 et A matrice carré $(n-1)\times (n-1)$. (1**p**)

On pose $G = vect\{e_1\}$ et $F = vect\{e_2, ..., e_n\}$ ainsi $E = G \oplus F$. Pour $x \in E$, on note p(x) sa projection sur F parallèlement à G et q(x) sa projection sur G parallèlement à F, ainsi x = p(x) + q(x) avec $p: E \longrightarrow F$ et $q: E \longrightarrow G$. On pose $v = u_{|F}: F \longrightarrow E$ et $w = p \circ v: F \longrightarrow F$.

- (b) Justifier que la matrice de w dans $(e_2, ..., e_n)$ est A et que le polynôme caractéristique de w est scindé. $(\mathbf{2p+0.5p})$
- (c) Si $(e'_2, ..., e'_n)$ est une base de F, justifier que $\forall k \in \{2, ..., n\}, \exists \alpha_k \in \mathbb{K}$ tq (argumenter pour chaque égalité)

$$u(e'_k) = v(e'_k) = w(e'_k) + q(v(e'_k)) = w(e'_k) + \alpha_k e_1.$$
 (1p)

- (d) On suppose qu'il existe une base $(e'_2,, e'_n)$ de F qui trigonalise w. Montrer que $(e_1, e'_2, ..., e'_n)$ est une base qui trigonalise u. (2p)
- 3. Conclure.(**1p**)