Answer for Extra Exercises 2

一. 填空

- 1. 在 R^3 中, $\alpha_1 = (2, -3, 1)^T$, $\alpha_2 = (1, 4, 2)^T$, $\alpha_3 = (5, -2, 4)^T$,则 dim $\left(L(\alpha_1, \alpha_2, \alpha_3)\right) = ___2$ ___. L $(\alpha_1, \alpha_2, \alpha_3)$ 的 基 是 __ α_1 , $\alpha_2(\alpha_3)$ ___.
- 3. 设 $\mathbf{U} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} | a, b \in R \right\}$, \mathbf{U} 是(否)_yes____ $R^{2 \times 2}$ 的子空间,若是, \mathbf{dim} $\mathbf{U} = _2___$.
 - 4.设 $\mathbf{U} = \{f(x_1, x_2, ..., x_n) | f = X^T A X 是 R \bot \mathbf{n}$ 个变元的二次型 $\}$
 - U是(否)_yes____ R上的线性空间,若是,dimU = $-\frac{n(n+1)}{2}$ ____
 - 5.在R³中的两组向量分别是

$$\alpha_1 = (1, 0, 1)^T, \alpha_2 = (1, 1, 0)^T, \alpha_3 = (0, 1, 1)^T$$
 (1)

$$\beta_1 = (1, 0, 3)^T, \beta_2 = (2, 2, 2)^T, \beta_3 = (-1, 1, 4)^T$$
 (2)

γ在基(1)下的坐标为(1, 2, 3) T .则基(1)到基(2)的过度矩阵为

6.设 $\alpha_1, \alpha_2, ..., \alpha_n$ 是线性空间V的一组基, $\beta_1 = \alpha_1, \beta_2 = \alpha_1 + \alpha_2, ..., \beta_n = \alpha_1 + \alpha_2 + ... + \alpha_n$. $\beta_1, \beta_2, ..., \beta_n$ 是否是V的一个基 _yes____,若 γ 在 基 $\alpha_1, \alpha_2, ..., \alpha_n$ 下 的 坐 标 为 (n, n-1)

1, ..., 2, 1)^T,则γ在基
$$\beta_1$$
, β_2 , ..., β_n 下的坐标为_____.

7.若 3×3 矩阵 A 的特征值为**1**,**2**, -**1**, $B = A^3 - 5A^2$.则 B 有特征值_-4,-12,-6____.

8. 令 A 是一 $n \times n$ 矩 阵且 $|A| \neq 0$, λ 是 A 的一特征值.则

$$(2A^*)^3 + A^{-1}$$
必有特征值 $\frac{8|A|^3}{\lambda^3} + \frac{1}{\lambda}$ ____

9.若 4×4 矩阵A有特征值1, -2, 3, 和 -3. 则A的行列式等于18: tr(A) = -1_.

$$10.\lambda -$$
 矩阵 $\begin{pmatrix} \lambda - 1 & -2 & 1 \\ 0 & \lambda - 1 & -1 \\ 0 & 0 & \lambda + 2 \end{pmatrix}$ 的法式为

$$-\begin{pmatrix} 1 & & & \\ & 1 & & \\ & & (\lambda+2)(\lambda-1)^2 \end{pmatrix} - \dots$$

11.在复数域上n阶方阵A的特征值全为 1,且只有一个线性 无 关 的 特 征 向 量 ,则 A 的 Jordan 标 准 形 为

$$-\begin{pmatrix} 1 & & & & \\ 1 & 1 & & & \\ & \ddots & \ddots & & \\ & & 1 & 1 \end{pmatrix} - - - \cdot$$

12. 矩 阵
$$A = \begin{pmatrix} 0 & -1 & 2 & 0 \\ 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & -2 & 1 \end{pmatrix}$$
 的 法 式 为

$$\begin{pmatrix} 1 & 0 & & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ 0 & 0 & \lambda - 1 & & 0 \\ 0 & 0 & 0 & (\lambda - 1)(\lambda^2 + 1) \end{pmatrix}$$

有理标准形为
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
——.

二.选择题

- 13.设 $B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$,在 $R^{2\times 2}$ 中定义一个变换 $\sigma: A \to BA$,则(C)
 - (A) σ 是 $R^{2\times2}$ 的线性变换, 但不是满射;
 - (B) $\sigma \in \mathbb{R}^{2 \times 2}$ 的线性变换, 但不是单射;
 - (C) $\sigma \in \mathbb{R}^{2\times 2}$ 的可逆线性变换;
 - (D) σ不是线性变换.
- 14.三维几何空间 R^3 的全体线性变换所成线性空间维数为(C)
 - (A)3; (B)6; (C)9; (D)27
 - 15. 设 $\sigma \in L(V)$, W_1 , W_2 是的任意两个子空间,则 $\sigma(W_1 \cap W_2)$ 与 $\sigma(W_1) \cap \sigma(W_2)$ 的关系是(B)
 - $(A)\sigma(W_1)\cap\sigma(W_2)=\sigma(W_1\cap W_2);$
 - (B) $\sigma(W_1 \cap W_2) \subseteq \sigma(W_1) \cap \sigma(W_2)$;
 - (C) $\sigma(W_1 \cap W_2) \supseteq \sigma(W_1) \cap \sigma(W_2)$;
 - (D)无法确定.
 - 16. 设 $\sigma \in L(V), W_1, ..., W_n$ 都是 σ 的一维不变子空间, 且

 $V = W_1 \oplus W_2 \oplus ... \oplus W_n$,则在中存在一组基使 σ 在该基下的表示矩阵为(A)

- (A)对角矩阵; (B)反对称矩阵;
- (A)非对角上三角矩阵; (D)可逆矩阵.
- 17.设 $\sigma \in L(V), W_1, ..., W_s(s < n)$ 都是 σ 的不变子空间,且 $V = W_1 \oplus W_2 \oplus ... \oplus W_s$,则在中存在一组基使 σ 在该基下的表示矩阵为(B)
 - (A)对角矩阵; (B)准对角矩阵;
 - (C)反对称矩阵; (D)可逆矩阵.
- 18. 设 $\alpha_1, \alpha_3, \alpha_3$ 是线性空间V的一组基, $\sigma \in L(V)$,

$$\sigma(\alpha_1)=\alpha_1+\alpha_3$$
, $\sigma(\alpha_2)=\alpha_2+\alpha_3$, $\sigma(\alpha_3)=\alpha_1+\alpha_2+2\alpha_3$. 则dim $(\sigma)^{-1}(0)$ 为(C)

(A)3; (B) 2; (C) 1; (D)0

19.设矩阵
$$B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
.已知矩阵 A 相似于 B ,则 $\mathbf{r}(A - \mathbf{r})$

2E)与r(A - E)之和为(C)

19.令 λ_1 , λ_2 是矩阵A的两个不同特征值,它们对应的两个特征向量分别是 α_1 , α_2 .则 α_1 , $A(\alpha_1+\alpha_2)$ 线性无关的条件是(B)

(A)
$$\lambda_1 \neq 0$$
, (B) $\lambda_2 \neq 0$, (C) $\lambda_1 = 0$, (D) $\lambda_2 = 0$.

20..令 $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$,则在实数域上与A合同的矩阵为(D) $(A)\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}, (B)\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} (C)\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} (D)\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$

- 21. 设V是复数域上的线性空间, $\sigma, \tau \in L(V)$ 且 $\sigma\tau = \tau\sigma, \emptyset$ (C).
- $(A) \sigma, \tau$ 的特征向量完全相同; $(B)\sigma, \tau$ 有有限多个公共特征向量;
- $(C)\sigma$, τ 有无限多个公共特征向量; $(D)\sigma$, τ 未必有公共特征向量.
- **22.**设V是实数域上的线性空间, $\sigma, \tau \in L(V)$ 且 $\sigma\tau = \tau\sigma, 则(D)$.
- (A) σ , τ 的特征向量完全相同; $(B)\sigma$, τ 有有限多个公共特征向量;
- $(C)\sigma$, τ 有无限多个公共特征向量; $(D)\sigma$, τ 未必有公共特征向量.

三.计算与证明题

23. 在 $F^{2\times 2}$ 中,求从基

$$\alpha_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix},$$
$$\alpha_3 = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

到基

$$\boldsymbol{\beta}_1 = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, \boldsymbol{\beta}_2 = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \boldsymbol{\beta}_3 = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}, \boldsymbol{\beta}_4 = \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}$$

的过渡矩阵,并分别求 $\gamma = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ 在上面两个基下的矩阵.

解. 令:
$$\varepsilon_1 = E_{11}$$
, $\varepsilon_2 = E_{12}$, $\varepsilon_3 = E_{21}$, $\varepsilon_4 = E_{22}$, 有:

$$(\beta_1,\beta_2,\beta_3,\beta_4)=(\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4)\begin{pmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & -1 & 1 \\ 3 & 0 & 0 & 1 \\ 1 & 1 & -1 & -2 \end{pmatrix},$$

则基 α_1 , α_2 , α_3 , α_4 到基 β_1 , β_2 , β_3 , β_4 的过渡矩阵为:

则 γ 在基(α_1 , α_2 , α_3 , α_4)下的坐标为:

类似求得 γ 在基(β_1 , β_2 , β_3 , β_4)下的坐标为

$$\begin{pmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & -1 & 1 \\ 3 & 0 & 0 & 1 \\ 1 & 1 & -1 & -2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}.$$

24. 在 F^4 中, 令 $\alpha_1 = (1, 2, -1, -2)^T$, $\alpha_2 = (3, 1, 1, 1)^T$,

$$\alpha_3 = (-1, 0, 1, -1)^T$$
,

$$\beta_1 = (2, 5, -6, -5)^T, \beta_2 = (1, 2, -7, 3)^T,$$

求 $L(\alpha_1, \alpha_2, \alpha_3) + L(\beta_1, \beta_2)$ 与 $L(\alpha_1, \alpha_2, \alpha_3) \cap L(\beta_1, \beta_2)$ 的一个基.

解. 因 $L(\alpha_1, \alpha_2, \alpha_3) + L(\beta_1, \beta_2) = L(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2)$, 求下

列矩阵列向量的一个极大无关组:

$$\begin{pmatrix} 1 & 3 & -1 & 2 & -1 \\ 2 & 1 & 0 & 5 & 2 \\ -1 & 1 & 1 & -6 & -7 \\ -2 & 1 & -1 & -5 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & -1 & 2 & -1 \\ 0 & -5 & 2 & 1 & 4 \\ 0 & 4 & 0 & -4 & -8 \\ 0 & 7 & -1 & -5 & 3 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 3 & -1 & 2 & -1 \\ 0 & 1 & -2 & 3 & 4 \\ 0 & 0 & 1 & -2 & -3 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

故 α_1 , α_2 , α_3 , β_2 是L(α_1 , α_2 , α_3) + L(β_1 , β_2)的一个基,维数为4; 而dim(L(α_1 , α_2 , α_3) \cap L(β_1 , β_2)) = 1, 求其基底,即求: $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = y_1\beta_1 + y_2\beta_2$ 的解,解齐次线性方程组

$$\begin{pmatrix} 1 & 3 & -1 & -2 & 1 \\ 2 & 1 & 0 & -5 & -2 \\ -1 & 1 & 1 & 6 & 7 \\ -2 & 1 & -1 & 5 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ y_1 \\ y_2 \end{pmatrix} = 0$$

得解 $(3,-1,-2,1,0)^T$, 故 $3\alpha_1 - \alpha_2 - 2\alpha_3 = \beta_1 =$ $(2,5,-6,-5)^T$ 为 $L(\alpha_1,\alpha_2,\alpha_3) \cap L(\beta_1,\beta_2)$ 的基.

25. 在 F^2 中, $\sigma(x,y) = (x,y)\begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$ 是 F^2 的一个线性变换.

(1)求证: 当F = R时, R^2 中没有 σ 的真不变子空间;

(2)当F = C时, 求出 σ 的所有不变子空间.

证明.设W为R²中非平凡 σ -子空间, dimW=1. 令(a,b)为

的生成元,则
$$k(a,b) = \sigma(a,b) = (a,b) \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$$
,从而 $\{(k-1)a-2b=0 \\ a+(k-2)b=0 \}$

有非平凡解,

$$\begin{vmatrix} k-1 & -2 \\ 1 & k-2 \end{vmatrix} = 0, \ k^2 - 3k + 4 = 0.$$

在实数域里,该方程无根,故不存在k,使 $k(a,b) = \sigma(a,b)$, R^2 中没有 σ 的真不变子空间:

在复数域里, 该方程有两个根:

$$k_1 = \frac{3+i\sqrt{7}}{2}, k_2 = \frac{3-i\sqrt{7}}{2},$$

代入(*)式, 求得: $(a,b) = (4,1+i\sqrt{7})$, 或 $(4,1-i\sqrt{7})$, 故 \mathbb{C}^2 中有两个 σ 的真不变子空间:

$$W_1 = L(4, 1 + i\sqrt{7}), W_2 = L(4, 1 - i\sqrt{7}).$$

26.设V是4维线性空间, φ 在基 ε_1 ,…, ε_4 下的矩阵为

$$\begin{pmatrix}
1 & 0 & 2 & -1 \\
0 & 1 & 4 & -2 \\
2 & -1 & 0 & 1 \\
2 & -1 & -1 & 2
\end{pmatrix}$$

验证: $U = L(\varepsilon_1 + 2\varepsilon_2, \varepsilon_2 + \varepsilon_3 + 2\varepsilon_4)$ 是否为 ϕ -子空间.

$$\varphi(\varepsilon_2 + \varepsilon_3 + 2\varepsilon_4) = \varepsilon_2 + \varepsilon_3 + 2\varepsilon_4$$

故 $U = L(\varepsilon_1 + 2\varepsilon_2, \varepsilon_2 + \varepsilon_3 + 2\varepsilon_4)$ 是 ϕ -子空间.

27.
$$\Leftrightarrow A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}, P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, B = P^{-1}A^*P \cdot \mathbf{R}B + 2I$$

的特征值与所属的特征向量.

解. 先求**A**的特征值: $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 7$. 因 |A| = 7. A*的特征值为 $\frac{|A|}{\lambda_i}$ i = 1, 2, 3,即: $\lambda_1 = \lambda_2 = 7$, $\lambda_3 = 1$.

A的属于
$$\lambda_1 = \lambda_2 = 1$$
 的特征向量为: $\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, 属于 $\lambda_3 = 7$

的特征向量为: $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.则 $B + 2I = P^{-1}A^*P + 2I$ 的特征向量分别

为
$$P^{-1}\alpha_i(i=1,2,3)$$
.即 $\begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ -\mathbf{1} \end{pmatrix}$, $\begin{pmatrix} -\mathbf{1} \\ \mathbf{1} \\ \mathbf{0} \end{pmatrix}$, $\begin{pmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix}$,

28.设

$$A = \begin{pmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{pmatrix}$$

有 3 个线性无关的特征向量, $\lambda = 2$ 是 A 的 2 重根. 求可逆矩阵 P 使得 $\Lambda = P^{-1}AP$ 是一对角矩阵 Λ .

解. 直接计算 $|\lambda E - A|$ 求得 $\lambda_1 = \lambda_2 = 2, \lambda_3 = 6$. 对于 $\lambda_1 = \lambda_2 = 2$, r(A-2I)=1,求得 x=2, y=-2. 然后求解齐次线性方程组 (2E-A)X=0及(6E-A)X=0,

$$(2\mathbf{E} - \mathbf{A}) = \begin{pmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \\ 3 & 3 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

得解 $(1,0,1)^T$, $(1,-1,0)^T$;解(6E-A)X=0得解 $(\frac{1}{2},-1,\frac{3}{2})^T$.

則
$$P = \begin{pmatrix} 1 & 1 & \frac{1}{2} \\ 0 & -1 & -1 \\ 1 & 0 & \frac{3}{2} \end{pmatrix}$$
, $\Lambda = P^{-1}AP = \begin{pmatrix} 2 & & \\ & 2 & \\ & & 6 \end{pmatrix}$

- 29 有理数域Q上的线性空间定义中八条规则的第八条: $k(\alpha + \beta) = k\alpha + k\beta$ 可由其他七条推出.
- 证明.(1)k为正整数m, m = 1时, $1(\alpha + \beta) = \alpha + \beta = 1\alpha + 1\beta$. 假设结论对m 1成立, $m(\alpha + \beta) = (1 + (m 1))(\alpha + \beta) = 1(\alpha + \beta) + (m 1)(\alpha + \beta) = \alpha + \beta + (m 1)\alpha + (m 1)\beta$ (根据归纳假设)= $\alpha + (m 1)\alpha + \beta + (m 1)\beta$ (交换律) = $m\alpha + m\beta$.
 - (2) k = -m , m为正整数, $0 = (m + (-m))(\alpha + \beta) = m(\alpha + \beta) + (-m)(\alpha + \beta)$ (第七条) $= m\alpha + m\beta + (-m)(\alpha + \beta)$. 从等号左边依次加 $(-m)\alpha$, $(-m)\beta$, 得: $(-m)\beta + (-m)\alpha = (-m)(\alpha + \beta)$, 进而, $(-m)(\alpha + \beta) = (-m)\alpha + (-m)\beta$ (交换律). (3) $k = \frac{1}{m}$, m为整数, $\frac{1}{m}(\alpha + \beta) = \frac{1}{m}(\frac{m}{m}\alpha + \frac{m}{m}\beta) = \frac{1}{m}(m(\frac{1}{m}\alpha + \frac{1}{m}\beta))$ ((1),(2)对整数已证明) $= (\frac{1}{m}m)(\frac{1}{m}\alpha + \frac{1}{m}\beta) = \frac{1}{m}\alpha + \frac{1}{m}\beta$. (4) $k = \frac{n}{m}$, m, n为整数,留给你们完成.
- 30.设 V_1, V_2 是V的两个子空间,求证

$$V_1 \cup V_2 = V_1 + V_2 \Leftrightarrow V_1 \subseteq V_2, \quad \overrightarrow{\mathfrak{Q}}V_1 \supseteq V_2.$$

证明. 充分性显然. 现证必要性:

 $若V_1 \nsubseteq V_2$,同时 $V_1 \not\supseteq V_2$,则存在 $\alpha_1 \in V_1$ 但 $\notin V_2$,及 $\alpha_2 \in V_2$,但 $\notin V_1$.因而 $\alpha_1 + \alpha_2 \notin V_1$, V_2 ,否则,将推出 $\alpha_1 \in V_2$ 或 $\alpha_2 \in V_1$,矛盾.故 $V_1 + V_2 \nsubseteq V_1 \cup V_2$,等式不可能成立.

31. 设 V_1 , V_2 是n维线性空间V的两个子空间,且满足 $\dim(V_1 + V_2) = \dim(V_1 \cap V_2) + 1$, 求证: $V_1 \subseteq V_2$ 或 $V_1 \supseteq V_2$.

证明. 因 $V_1 \cap V_2 \subseteq V_1, V_2$, 我们有

 $\begin{aligned} &\dim(V_1\cap V_2)\leq \dim V_1, \dim(V_1\cap V_2)\leq \dim V_2\\ &\boxplus维数公式, \dim(V_1+V_2)=\dim V_1+\dim V_2\\ &-\dim(V_1\cap V_2)=\dim(V_1\cap V_2)+1, \end{aligned}$

即有:

 $(\dim V_1 - \dim(V_1 \cap V_2)) + (\dim V_2 - \dim(V_1 \cap V_2)) = 1$ 因等式左边的两项,即, $\dim V_i - \dim(V_1 \cap V_2)(i = 1, 2)$ 为非负整数,故必有 $\dim V_1 - \dim(V_1 \cap V_2) = 0$,或 $\dim V_2 - \dim(V_1 \cap V_2) = 0$,

故: $V_1 \cap V_2 = V_1$ 或 $V_1 \cap V_2 = V_2$, 即 $V_1 \subseteq V_2$ 或 $V_1 \supseteq V_2$.

32. 设 $A \in F^{n \times n}$, $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$,

$$V_1 = \{X|A_1X = 0\}, V_2 = \{X|A_2X = 0\}$$

求证A可逆 $\Leftrightarrow F^n = V_1 \oplus V_2$.

证明. 首先, $V_1 + V_2 \in F^n$ 的子空间.

" ⇒ "若A可逆, $V_1 \cap V_2 = 0$, $V_1 + V_2 = V_1 \oplus V_2$. 又 $\dim V_1 = n - r(A_1)$, $\dim V_2 = n - r(A_2)$, $\dim V_1 + \dim V_2 = 2n - (r(A_1) + r(A_2)) = n$, 故 $F^n = V_1 \oplus V_2$.

" \leftarrow "若A不可逆, F^n 中存在非零向量Y使得AY = 0,则 $A_1Y = 0$, $A_2Y = 0$, $V_1 \cap V_2 \neq 0$,与 $V_1 + V_2$ 是直和矛盾.

33.设 $\sigma \in L(V)$, A为 σ 在V的一组基下的表示矩阵,求证 $\mathbf{r}(A^2) = \mathbf{r}(A) \Leftrightarrow V = \sigma(V) \oplus \sigma^{-1}(\mathbf{0}).$

证明." \leftarrow "将 σ 作用在等式 $V = \sigma(V) \oplus \sigma^{-1}(0)$ 两边,有 $\sigma(V) = \sigma^2(V)$, σ 在V的一组基下的表示矩阵A,亦有 $AV = A^2V$,因 $\dim AV = r(A)$,故 $r(A^2) = r(A)$.

" ⇒ " . $\sigma(V) + \sigma^{-1}(0)$ 是 V 的 子 空 间 . 令 $\alpha = A\beta \in \sigma(V) \cap \sigma^{-1}(0)$, 因 $AV = A^2V$, $A^{-1}(0) = A^{2^{-1}}(0)$, $A\alpha = 0 \Rightarrow \alpha = 0$, 即 $\sigma(V) \cap \sigma^{-1}(0) = 0$.因而,和 $\sigma(V) + \sigma^{-1}(0)$ 是直和,由 dim $\sigma(V) + \dim \sigma^{-1}(0) = \dim V$,知 $V = \sigma(V) \oplus \sigma^{-1}(0)$.

34.设 $A \in F^{n \times n}$,且 $W = \{f(A) | f(x) \in F[x]\}$,求W的一个基和维数.

解. 令 $m(x) = x^d + a_{d-1}x^{d-1} + \dots + a_1x + a_0 \in F[x]$ 是A的最小多项式,对任一次数 \geq d的多项式 $f(x) \in F[x]$,有 f(x) = m(x)q(x) + r(x), 其中r(x) = 0或deg r(x) < d,则 f(A) = m(A)q(A) + r(A) = r(A). 这表明对任一次数 \geq d的

多项式 $f(x) \in F[x]$, f(A)可写成关于A的次数不超过d-1的一个多项式. 故 $W = \{f(A)|f(x) \in F[x]\}$ 的维数为d, 基底为: $E,A,...,A^{d-1}$.

35. 设V是n维线性空间, 求证V的r维子空间有无穷多个, 其中 0 < r < n.

证明.令W为V的一r维子空间,取W的一组基 $\alpha_1,\alpha_2,...,\alpha_r$ ($r=\dim W< n$), 并扩充成V的一组基 $\alpha_1,...,\alpha_r,\beta_1...,\beta_{n-r}$.令

$$W_k = L(\alpha_1, \dots, \alpha_{r-1}, \alpha_r + k\beta_{n-r}).$$

易于证明 $\alpha_1, ..., \alpha_{r-1}, \alpha_r + k\beta_{n-r}$ 线性无关,因而 W_k 也是V的一 r 维 子 空 间 . 现 证 对 不 同 的 $k, l, W_k \neq W_l$. 因 若 $L(\alpha_1, ..., \alpha_{r-1}, \alpha_r + k\beta_{n-r}) = L(\alpha_1, ..., \alpha_{r-1}, \alpha_r + l\beta_{n-r}),$ $\alpha_r + l\beta_{n-r} \in L(\alpha_1, ..., \alpha_{r-1}, \alpha_r + k\beta_{n-r}),$ 则有 $\alpha_r + l\beta_{n-r} = k_1\alpha_1 + \cdots + k_{r-1}\alpha_{r-1} ... + k_r(\alpha_r + k\beta_{n-r}),$ $(k_r - 1)\alpha_r + (k_rk - l)\beta_{n-r} + k_1\alpha_1 + \cdots + k_{r-1}\alpha_{r-1} = 0.$ 但 $\alpha_1, ..., \alpha_{r-1}, \alpha_r, \beta_{n-r}$ 线性无关,必有:

$$k_r k - l = k_r - 1 = k_1 = \cdots = k_{r-1} = 0$$

推出 $k_r=1,kk_r=l$,即k=l,与 $k\neq l$ 矛盾.故 $W_k\neq W_l$.

因数域是无限的,因而W在V中有无穷多个r维子空间.

36. 设 σ , τ ∈ $L(V_n)$, 并且 σ 在数域中F有n个互异的特征根,求证:

- (1) σ 有2ⁿ个不变子空间,
- (2) σ 的特征向量都是 τ 的特征向量当且仅当 $\sigma\tau = \tau\sigma$.

证明. (1) 因 σ 在数域中F有n个互异的特征根, σ 有n个线性无关的特征向量 α_i (i=1,2,...,n),且 σ $\alpha_i=\lambda_i$ α_i . 易见,

 $L(\alpha_{j1},...,\alpha_{js})(j1,...,js \in \{1,2,...,n\},1 \leq s \leq n)$ 都是 σ 的不变子空间,另一方面,若W为 σ 的一不变子空间, $\dim W = r.\sigma|_{w}$ 是W上的线性变换, $\sigma|_{w}$ 在W中有r个特征值及r个线性无关的特征向量 $\alpha_{j1},...,\alpha_{jr}$,则 $W = L(\alpha_{j1},...,\alpha_{js})$.即任一 σ -子空间都被计算在内,故 σ 有: $1 + C_{n}^{1} + C_{n}^{2} ... + C_{n}^{n-1} + 1 = 2^{n}$ 个不变子空间.

(2)" \Rightarrow "因 σ 的特征向量 $\alpha_i(i=1,2,...,n)$ 都是 τ 的特征向量,设τ $\alpha_i = \mu_i \alpha_i$,则: σ τ $\alpha_i = \sigma(\mu_i \alpha_i) = \mu_i(\sigma \alpha_i) = \mu_i \lambda_i \alpha_i$, τ σ $\alpha_i = \tau(\lambda_i \alpha_i) = \lambda_i(\tau \alpha_i) = \lambda_i \mu_i \alpha_i$. 因 $\alpha_1, \alpha_2, ..., \alpha_n$ 是 V_n 的一个基, σ τ与 τ σ对基底的作用相同,故 σ τ $= \tau$ σ.

" \leftarrow "因στ = τσ, σ的特征子空间都是τ的不变子空间, 又, σ的特征子空间都是1维的, 即 $\mathbf{L}(\alpha_j)(j=1,2,...,n)$, τ $\alpha_j=\mu_j\alpha_j$, 即σ的特征向量 α_j 都是τ的特征向量.

37. 设 $\alpha_1, ..., \alpha_s, \beta_1, ..., \beta_t$ 是 F^n 的两组线性无关的列向量, 令 $V_1 = L(\alpha_1, ..., \alpha_s), V_2 = L(\beta_1, ..., \beta_t),$ 求证 $\dim(V_1 \cap V_2)$ 等于齐次线性方程组 $(\alpha_1, ..., \alpha_s, \beta_1, ..., \beta_t)X = 0$ 的解空间维数. 证明. 设 $\gamma \in V_1 \cap V_2$,

$$\gamma = x_1\alpha_1 + \dots + x_s\alpha_s = y_1\beta_1 + \dots + y_t\beta_t, 即有$$
$$x_1\alpha_1 + \dots + x_s\alpha_s - y_1\beta_1 - \dots - y_t\beta_t = 0, (*)$$

这表明 $V_1 \cap V_2$ 中的向量 γ 在 V_1 , V_2 基底下的坐标需满足上述的齐次线性方程组,即对应该齐次线性方程组的一个解,反之,若 $(x_1, ..., x_s, -y_1, ..., -y_t)^T$ 是该齐次线性方程组

$$(\alpha_1, \ldots, \alpha_s, \beta_1, \ldots, \beta_t)X = 0$$
的一个解,

则
$$\gamma = x_1\alpha_1 + \cdots + x_s\alpha_s = y_1\beta_1 + \cdots + y_t\beta_t \in V_1 \cap V_2$$
,

因此, 齐次线性方程组(*)的解空间即为 $V_1 \cap V_2$, 故维数相等.

证明1. 记L
$$(\alpha_1, ..., \alpha_s, \beta_1, ..., \beta_t)$$
为 U ,有
$$\dim U = \dim V_1 + \dim V_2 - \dim (V_1 \cap V_2)$$

$$\dim (V_1 \cap V_2) = s + t - \dim U$$

而 $(\alpha_1, ..., \alpha_s, \beta_1, ..., \beta_t)X = 0$ 的解空间维数:

$$s + t - r(\alpha_1, ..., \alpha_s, \beta_1, ..., \beta_t) = s + t - \dim U$$
, 得到结论.

38. 设A的特征值为0, 1, 对应的特征向量为 $(1,2)^T$, $(2,-1)^T$, 问A是否为对称矩阵?求A的迹,行列式与A.

解. 注意到向量 $(1,2)^T$, $(2,-1)^T$ 正交, 将它们单位化得 $\alpha_1 = \frac{1}{\sqrt{5}}(1,2)^T$, $\alpha_2 = \frac{1}{\sqrt{5}}(2,-1)^T$, 但 α_1 , α_2 仍为A的属于特征值0,1

的特征向量. 故
$$T^{-1}AT = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$$
, 其中 $T = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \end{pmatrix}$

而
$$A = T \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} T^{-1} = \begin{pmatrix} \frac{4}{5} & \frac{-2}{5} \\ \frac{-2}{5} & \frac{1}{5} \end{pmatrix}$$
 为 对 称 矩 阵 , $\operatorname{tr}(A) =$

- 1, |A| = 0.
- 39. 设A,B为n阶矩阵,且AB有n个不同的特征值,证明 AB与BA相似于同一个对角矩阵.
- 证明. 因AB有n个不同的特征值,矩阵AB有n个线性无关的特征向量,因而相似于一个对角矩阵. 设 α_i 为AB的属于特征值 λ_i 的特征向量, $AB\alpha_i=\lambda_i\alpha_i(i=1,2,...,n)(1)$,因而, $BAB\alpha_i=\lambda_iB\alpha_i$,因 $\alpha_i\neq 0$,由(1)知若 $\lambda_i\neq 0$, $B\alpha_i\neq 0$,故 $B\alpha_i$ 为BA的属于特征值 λ_i 的特征向量,若 $B\alpha_i=0$,AB有特征值0,BA与AB均不可逆,也有零特征值,因n个特征值不相同,n0,n0 有相同的n0,不同的特征值,故n0 和别和以于同一个对角矩阵.
- 注: 也可应用 $|\lambda I AB| = |\lambda I BA|$ 得出 BA = |AB|有相同的n个不同的特征值.
- 40. 设A,B分别为 4×3 和 3×4 的矩阵,满足

$$BA = \begin{pmatrix} -9 & -20 & -35 \\ 2 & 5 & 7 \\ 2 & 4 & 8 \end{pmatrix}, AB = \begin{pmatrix} 9a - 14 & 0 & 9a - 15 & 18a - 32 \\ 6a + 2b - 9 & 1 & 6a + 3b - 9 & 12a + 4b - 19 \\ -2a + 2 & 0 & -2a + 3 & -4a + 4 \\ -3a + 6 & 0 & -3a + 6 & -6a + 14 \end{pmatrix}$$

求a,b的值.

解. 由BA与AB迹相同,立得: 9a - 8a + 4 = 4, a = 0. 求BA的特征值: $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 2$. 1是BA的二重特征值,但r(E - BA) = 1, BA的属于特征值1的特征子空间是2维的. 又,若 $\gamma_i(i = 1, 2)$ 是BA的属于特征值1的特征向量, $BA\gamma_i = 1$

 γ_i , $ABA\gamma_i = A\gamma_i$, $BA\gamma_i \neq 0$, $A\gamma$ 也是AB的属于特征值1的特征向量,由 $|BA| \neq 0$ 知A的秩为 3,是列满秩矩阵, $A\gamma_1$, $A\gamma_2$ 仍然线性无关,这说明,对于矩阵AB,属于特征值1的特征子空间也是2维的,故r(E-AB) = 2.对E-AB作行初等变换,求b使得r(E-AB) = 2,

$$E - AB = \begin{pmatrix} 15 & 0 & 15 & 32 \\ -2b + 9 & 0 & -3b + 9 & -4b + 19 \\ -2 & 0 & -2 & -4 \\ -6 & 0 & -6 & -13 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 15 & 0 & 15 & 32 \\ -2b+9 & 0 & -3b+9 & -4b+19 \\ -2 & 0 & -2 & -4 \\ 0 & 0 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 0 & 0 \\ -2b+9 & 0 & -3b+9 & 0 \\ -2 & 0 & -2 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

得b=0

另一解法. 构作