

Reference

• Chapter 8 – Murphy, 2023(Book 1)

Gradient descent (from previous slide sets)

$$Min f(\vec{x})$$

$$\vec{x} \in R^n$$

$$\vec{x}_{m+1} \leftarrow \vec{x}_m - \mu_m \nabla f(\vec{x}_m)$$

Complexity

Problems: What are key features related to these questions?

- What is optimal price for airline seat to maximize revenue?
- What should be testing frequency to minimize spread of a newly emergent infectious disease on a university campus?

Formulate problem

- Objective function?
- Difficult to formulate analytically (no closed form equation), but value of function at any given point can be estimated (e.g., simulation/ system dynamics modeling)
- Difficult to find exact derivative
- Non-convex function- do not want to get stuck in global optima
- Stochastic or deterministic
- Exogenous (decision) variables?
- Endogenous (input) variables?
- Constraints (if any)?

Approximate gradient methods

- Finite difference derivative approximation; Finite difference stochastic approximation (FDSA)- or Kiefer-Wolfowitz SA
- Simultaneous perturbation stochastic approximation (SPSA) by Spall
 - SPSA in NN https://www.jhuapl.edu/spsa/PDF-
 SPSA/Vande Wouwer Simultaneous Perturbation.PDF

Finite difference derivative approximation (1-D vector)

• Forward difference estimation of derivative using *Taylor's series expansion*

•
$$f(x+h) = f(x) + \frac{h}{1!} \frac{df}{dx} + \frac{h^2}{2!} \frac{df^2}{dx} + \dots + \frac{h^n}{n!} \frac{df^n}{dx}$$

•
$$f(x+h) = f(x) + \frac{h}{11} \frac{df}{dx} + \delta$$
 (For a sufficiently small $h, \delta \sim 0$)

•
$$\frac{df}{dx} = \frac{f(x+h)-f(x)}{h}$$
 (forward difference estimation of derivative)

• Central difference estimation of derivative using *Taylor's series expansion*

•
$$f(x+h) = f(x) + \frac{h}{1!} \frac{df}{dx} + \frac{h^2}{2!} \frac{df^2}{dx} + \dots + \frac{h^n}{n!} \frac{df^n}{dx}$$

•
$$f(x+h) = f(x) + \frac{h}{1!} \frac{df}{dx} + \frac{h^2}{2!} \frac{df^2}{dx} + \delta_1$$
 (1)

$$f(x-h) = f(x) + \frac{(-1)h}{1!} \frac{df}{dx} + \frac{(-1)^2 h^2}{2!} \frac{df^2}{dx} + \dots + \frac{(-1)^n h^n}{n!} \frac{df^n}{dx}$$

•
$$f(x-h) = f(x) + \frac{(-1)h}{1!} \frac{df}{dx} + \frac{(-1)^2 h^2}{2!} \frac{df^2}{dx} + \delta_2$$
 (2)

- (For a sufficiently small h, $\delta_1 \sim 0$, $\delta_2 \sim 0$)
- (1)-(2) gives $\frac{df}{dx} = \frac{f(x+h) f(x-h)}{2h}$ (central difference estimation of derivative)

Pointers:

- Central difference approximation is preferred as it maintains the second order derivative
- Minimize randomness between estimations of f(x + h) and f(x - h), e.g., if using stochastic simulation, use the same random numbers for evaluation of function at both points

Finite difference stochastic approximation

 $\min_{\vec{x} \in R^n} f(\vec{x})$

Initialization: m = 1, $\vec{x} = \text{vector of arbitrary starting point}$; set stopping conditions

- 1. Set $h[i] \leftarrow c$
- 2. Calculate $F^+[i]$ and $F^-[i]$ from simulation for each i=1,2,...,n (k is the number of variables, i.e., size of vector \vec{x})
 - 1. $F^+[i] = f(x_m[1] + h[1]\delta_{1i}, \quad x_m[2] + h[2]\delta_{2i}, \quad ..., \quad x_m[k] + h[k]\delta_{ki})$
 - 2. $F^{-}[i] = f(x_m[1] h[1]\delta_{1i}, \quad x_m[2] h[2]\delta_{2i}, \quad ..., \quad x_m[k] h[k]\delta_{ki})$
- 3. for each $i \in \{1, 2, ..., n\}$

1.
$$\frac{\partial f(\vec{x})}{\partial x[i]} \approx \frac{F^{+}[i] - F^{-}[i]}{2h[i]}$$

4. Update

1.
$$x_{m+1}[i] = x_m[i] - \mu_m \frac{\partial f(\vec{x})}{\partial x[i]}$$
 for $i=1,2,...n$

- 2. $\vec{x}_{m+1} \leftarrow \vec{x}_m \mu_m \nabla f(\vec{x}_m)$
- 5. Set m = m + 1; if stopping condition stop, else go to 1,

$$c = small \ value$$

 $c = f(m), e. g., c = \frac{1}{m}$

$$Kronecker's delta$$

$$\delta_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

Drawbacks of FDSA

- Number of function evaluations = 2n, n = # of decision variables
- Computational burden high if *n* is high

Reference

- Chapter 5.3 and 5.4 Powell, 2019
- Chapter 8 Murphy, 2023 (Book 1)

Simultaneous perturbation stochastic approximation

Initialization: m = 1, $\vec{x} =$ arbitrary starting point; set stopping conditions

- 1. Let $H[i] \sim Bernoulli(p = 0.5)$ with density function $f(n, p) = \begin{cases} p & \text{if } n = 1 \\ 1 p & \text{if } n = -1 \end{cases}$
 - 1. Set h[i] = H[i]c; i = 1, 2, ..., n
- 2. Calculate F⁺ and F⁻ from simulation

1.
$$F^+ = f(\vec{x}_m + \vec{h})$$

$$2. \quad \mathbf{F}^- = f(\vec{\mathbf{x}}_m - \vec{\mathbf{h}})$$

$$c = f(m), e. g.,$$

$$c = \frac{Constant}{m}$$

- 3. for each $i \in \{1, 2, ..., n\}$
 - 1. $\frac{\partial f(\vec{x})}{\partial x[i]} \leftarrow \frac{F^+ F^-}{2h[i]}$ (notice, unlike in FDSA, numerator does not have [i], although denominator does)
- 4. Update

1.
$$\vec{x}_{m+1} \leftarrow \vec{x}_m - \mu_m \nabla f(\vec{x}_m)$$

5. Set m = m + 1; if stopping condition, stop, else goto 1

Generalized: Stochastic gradient algorithm

Transformation

$$\vec{x}_{m+1} \leftarrow \vec{x}_m - \mu_m Y_m(\vec{x}_m)$$

$$Y_m(\vec{x}_m) = \nabla f(\vec{x}_m) + noise$$

Projected gradient descent

$$Min f(\vec{x})$$

$$\vec{x} \in C^n$$

 C^n is a n-dimensional convex set, constrained problem $\vec{x}_{m+1} \leftarrow P_C[\vec{x}_m - \mu_m \nabla f(\vec{x}_m)]$

 P_C is the projection onto the feasible space.

For example
$$Minf(\vec{x}); \vec{a} \leq \vec{x} \leq \vec{b}$$

$$P[x[i], a[i], b[i]] = \begin{cases} a[i] \text{ if } x[i] \leq a[i] \\ b[i] \text{ if } x[i] \geq b[i]; \forall i \in \{1, ..., n\} \\ x[i] \text{ o/w} \end{cases}$$

Gradient descent for constrained problems

- $Minf(\vec{x}); \vec{a} \le \vec{x} \le \vec{b} \qquad P[x[i], a[i], b[i]] = \begin{cases} a[i] \text{ if } x[i] \le a[i] \\ b[i] \text{ if } x[i] \ge b[i]; \forall i \in \{1, ..., n\} \\ x[i] \text{ o/w} \end{cases}$ Main transformation
- Main transformation

$$x[i]_{m+1} \leftarrow x[i]_m - \frac{\mu_m \partial f(\vec{x})}{\partial x[i]} \text{ for } i = 1, 2, ..., N$$

Algorithm

- Set m = 1, select μ_m (tiny step), set M (max iterations) to a sufficiently large value
- 2. Initialize \vec{x}_m to an arbitrary feasible solution
- Obtain $\frac{\partial f(\vec{x})}{\partial x^{[i]}}$ for i = 1, 2, ..., N3.
- Update $x[i]_{m+1}$, Apply $x[i]_{m+1} = P[x[i], a[i], b[i]] \forall i$; update μ_{m+1}
- If all $\frac{\partial f(\bar{x})}{\partial x[i]} = 0$, or sufficiently close, or m = M STOP. Else set m = m + 1, goto step 3

Pointers:

- Repeat above multiple times, with a different starting point in step 2;
- Here: μ_m is a hyperparameter
 - Try different μ_m (it can be a constant that does not change with m; or can be a function of m, e.g., 1/m)
- Put a constraint on number of iterations

Same as gradient descent except for the points in red

UMassAmherst

The Commonwealth's Flagship Campus