پاییز ۱۳۹۴

تمرین سری چهارم

ريزپردازنده

پرهام الوانی ۹۲۳۱۰۵۸

Series	Program Memory	Pin Package	Comment
tinyAVR	0.5 - 16 kB	6 - 32	* Limited peripheral set
megaAVR	4-256 kB	28 - 100	* Extended instruction
			set
			* Extended instruction
			set
XMEGA	16 - 384 kB	32 - 44 - 64 - 100	* Extended
			performance features
			* Extensive peripheral
A 11 /1 10			set with
Application-specific	-	-	* megaAVRs with
AVR			special features not found on the other
			members of the AVR
			family
FPSLIC (AVR with	-	-	* FPGA 5K to 40K
FPGA)			gates
22 3.2)			* SRAM for the AVR
			program code, unlike
			all other AVRs
			* AVR core can run at
			up to 50 MHz
32-bit AVRs	-	-	* Microcontrollers
			based on the 32-bit
			AVR32 architecture

سوال ۲

دستورالعمل	مد آدرس دهی
sbis SPSR, SPIF	آدرس دهی مستقیم ورود <i>ی اخ</i> روجی
in r16, SPDR	آدرس دهی مستقیم ورود <i>ی اخ</i> روجی
sbrc r17, 0	حالت آدرس دهی مستقیم توسط ثبات (تنها با یک ثبات Rd)
sbi UCSRB, TXB8	آدرس دهی مستقیم ورود <i>ی اخ</i> روجی
andi r17, \$01	حالت اَدرس دهی مستقیم توسط ثبات (تنها با یک ثبات Rd)
spm Z+	آدرس دهی با پس افزایش حافظه برنامه
elpm r1, Z	آدرس دهی حافظه برنامه با آدرس ثابت
std Y+2, r5	آدرس دهی مستقیم داده با جابجایی
brlt \$50	آدرس دهی نسبی حافظه برنامه
cpi r12, \$60	حالت آدرس دهی مستقیم توسط ثبات (تنها با یک ثبات Rd)
brbs 0, \$50	آدرس دهی نسبی حافظه برنامه

سوال ۳

دستور العمل break:

این دستورالعمل به صورت کلی توسط سیستم debug بر چیپ میکرو استفاده می گردد. بعد از اجرای این دستور العمل پردازنده به حالت Stopped می رود.

Syntax	Operands	Program Counter
BREAK	none	PC <- PC + 1

دستور العمل des:

این دستور العمل به منظور عمل Data Encryption استفاده میشود و ورودی را با توجه به پرچم H رمزگذاری یا رمزگشایی مینماید.

سوال ۴

```
start:
       ; Input
       ldi r16, 12
      mov r0, r16
       ; Answer :)
       ldi r16, 0
      mov r1, r16
       ; Odd number generator
      ldi r16, 1
      mov r2, r16
       ; Step
       ldi r16, 2
      mov r3, r16
loop:
       add r1, r2
       add r2, r3
    dec r0
      mov r16, r0
       cpi r16, 0
       breq deadend
       rjmp loop
deadend:
    rjmp deadend
```

سوال ۵

پردازنده SAM3U4 از شرکت Atmel بر اساس معماری ARMv7 طراحی شده است. پردازنده این میکروکنترلر ۳۲ بیتی بوده و دارای واحدهای پیشرفتهای همچون MMU میباشد، این در حالی است که پردازنده ATMega16 بیتی بوده و فاقد واحدهای پیشرفتهای همچون MMU است.

دستور العملهای حسابی و منطقی

Mnemonic	Operands	Brief description	Flags
ADC, ADCS	{Rd,} Rn, Op2	Add with Carry	N,Z,C,V
ADD, ADDS	{Rd,} Rn, Op2	Add	N,Z,C,V

دستور العملهاى انشعاب

Mnemonic	Operands	Brief description	Flags
В	Label	Branch	-
BL	Label	Branch with link	-

دستور العملهاي انتقال داده

Mnemonic	Operands	Brief description	Flags
MOV, MOVS	Rd, Op2	Move	N,C,Z
MOVT	Rd, #imm16	Move Top	-

دستور العملهاي بيتي

Mnemonic	Operands	Brief description	Flags
BIC, BICS	{Rd,} Rn, Op2	Bit Clear	N,Z,C
BFI	Rd, Rn, #lsb, #width	Bit Field Insert	-

```
.DSEG
data: .byte 200
.CSEG
start:
       ; ===Just For Test===
       ldi r16, 10
       ldi r30, low(data)
       ldi r31, high(data)
       st Z+, r16
       st Z+, r16
       ; =========
       ldi r16, 200
outer_loop:
       mov r17, r16
       ; moving 'data' offset into Z register
ldi r30, low(data)
       ldi r31, high(data)
       ; r20 = data[0]
       ; r21 = data[1]
       ld r20, Z+
       ld r21, Z
inner_loop:
       cp r21, r20
       brsh go_to_inner_loop
       st -Z, r21
       adiw r30:r31, 1
       st Z, r20
go_to_inner_loop:
       dec r17
       cpi r17, 0
       breq go_to_outer_loop
       mov r20, r21
       adiw r30:r31, 1
       ld r21, Z
       rjmp inner_loop
go_to_outer_loop:
       dec r16
       rjmp outer_loop
```