Math 1010 - Homework 11

Problem 1

Supply the details for the proof of the Weirerstrass M-Test. (Corollary 6.4.5)

Theorem: For each $n \in \mathbb{N}$, let f_n be a function defined on $A \subseteq \mathbb{R}$ and $M_n > 0$ a real number satisfying $|f_n(x)| \leq M_n$ for all $x \in A$. If $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on A.

Proof: Suppose $\sum_{n=1}^{\infty} M_n$ converges.

By the Cauchy Criterion for Uniform Convergence of Series, $\sum_{n=0}^{\infty} f_n(x)$ converges uniformly if and only if for each $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for $n > m \ge N$ and $x \in A$, we have

$$|f_{m+1}(x) + f_{m+2}(x) + \dots + f_n(x)| < \varepsilon$$

However, by boundedness of $f_n(x)$,

$$|f_{m+1}(x) + f_{m+2}(x) + \dots + f_n(x)| \le M_{m+1} + M_{m+2} + \dots + M_n$$

Since $\sum_{n=1}^{\infty} M_n$ converges, by the Cauchy Criterion for Series,

$$|M_{m+1} + M_{a+2} + \dots + M_n| < \varepsilon$$

Since $M_{m+1} + M_{m+2} + \cdots + M_n \le |M_{m+1} + M_{m+2} + \cdots + M_n|$, we have

$$|f_{m+1}(x) + f_{m+2}(x) + \dots + f_n(x)| < \varepsilon$$

so $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on A.

Let

$$f(x) = \sum_{k=1}^{\infty} \frac{\sin(kx)}{k^3}.$$

1. Show that f(x) is differentiable and that the derivative f'(x) is continuous.

Let $g_k(x) = \frac{\sin(kx)}{k^3}$. We know that $\sin(kx)$ and $\frac{1}{k^3}$ are differentiable for all $k \in \mathbb{N}$ and $x \in \mathbb{R}$. Since g_k is a composition of differentiable functions, g_k is differentiable for all $k \in \mathbb{N}$ and $x \in \mathbb{R}$.

Consider

$$\sum_{k=1}^{\infty} g'_k(x) = \sum_{k=1}^{\infty} \frac{k \cos(kx)}{k^3} = \frac{\cos(kx)}{k^2}$$

We know $|\cos(kx)| \le 1$ so $|g_k'(x)| \le \frac{1}{k^2}$ for all $k \in \mathbb{N}$ and $x \in \mathbb{R}$. Since $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, by the Weierstrass M-Test, $\sum_{k=1}^{\infty} g_k'(x)$ converges uniformly on \mathbb{R} .

Clearly, for x = 0,

$$f(0) = \sum_{k=1}^{\infty} \frac{\sin(0)}{k^3} = 0$$

so there exists $x_0 \in \mathbb{R}$ for which $\sum_{k=1}^{\infty} g(x_0)$ converges.

All together, by the Term-by-Term differentiability theorem, f(x) converges uniformly and

$$f'(x) = \sum_{k=1}^{\infty} g'_k(x) = \sum_{k=1}^{\infty} \frac{\cos(kx)}{k^2}$$

so f is differentiable.

Clearly, $\left(\frac{\cos(kx)}{k^2}\right)$ is a sequence of functions which are continuous for all $x \in \mathbb{R}$ and $k \neq 0$.

Above, we showed that $\sum_{k=1}^{\infty} \frac{\cos(kx)}{k^2}$ converges uniformly on \mathbb{R} . By the term-by-term continuity theorem, f'(x) is continuous on \mathbb{R} .

2. Can we determine if f is twice-differentiable?

We can repeat the same argument:

$$g_k(x) = \frac{\sin(kx)}{k^3} \implies g'_k(x) = \frac{\cos(kx)}{k^2} \implies g''_k(x) = \frac{-\sin(kx)}{k}$$

However, $|\sin(kx)| \le 1$ so $|g_k''(x)| \le \frac{1}{k}$ for all $k \in \mathbb{N}$ and $x \in \mathbb{R}$. Since $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges, we are not able to use the Weierstrass M-test to show that $\sum_{k=1}^{\infty} g_k''(x)$ converges uniformly on \mathbb{R} .

Therefore, we cannot determine that f is twice-differentiable.

1. Recall the Ratio Test from PSET 5. Use this to show that if s satisfies 0 < s < 1, show ns^{n-1} is bounded for all $n \ge 1$.

The Ratio Test states that, given a series $\sum_{n=1}^{\infty} a_n$ with $a_n \neq 0$, if (a_n) satisfies

$$\lim \left| \frac{a_{n+1}}{a_n} \right| = r < 1$$

then the series converges absolutely.

Suppose 0 < s < 1. Consider the sequence $a_n = ns^{n-1}$.

Immediately, we note $a_n > 0$ for all $n \in \mathbb{N}$. Further,

$$\lim \left| \frac{a_{n+1}}{a_n} \right| = \lim \left| \frac{(n+1)s^n}{ns^{n-1}} \right| = \lim \left| \frac{n+1}{n} \cdot s \right| = \lim \left| s + \frac{s}{n} \right| = |s| < 1$$

so $\sum_{n=1}^{\infty} n s^{n-1}$ converges absolutely. This tells us $(a_n) \to 0$. Since (a_n) is convergent, it is Cauchy and hence bounded.

2. Given an arbitrary $x \in (-R, R)$, pick t to satisfy |x| < t < R. Use the observation

$$|na_n x^{n-1}| = \frac{1}{t} \left(n \left| \frac{x^{n-1}}{t^{n-1}} \right| \right) |a_n t^n|$$

to construct a proof for Theorem 6.5.6 from the book.

Theorem 6.5.6: If $\sum_{n=0}^{\infty} a_n x^n$ converges for $x \in (-R, R)$, then the series differentiated series $\sum_{n=1}^{\infty} n a_n x^{n-1}$ converges at each $x \in (-R, R)$ as well. Consequently, the convergence is uniform on compact sets contained in (-R, R).

Let $x \in (-R, R)$ and pick t such that |x| < t < R. Suppose $\sum_{n=0}^{\infty} a_n x^n$ converges.

Notice

$$|na_n x^{n-1}| = \frac{n}{t} \left| \frac{x^{n-1}}{t^{n-1}} \right| |a_n t^n|$$
$$= \frac{1}{t} \left(n \left| \frac{x}{t} \right|^{n-1} \right) |a_n t^n|$$

But |x| < t so $\left| \frac{x}{t} \right| < 1$. By Part 1, $n \left| \frac{x}{t} \right|^{n-1}$ is bounded for all $n \in \mathbb{N}$ so we can write

$$\frac{1}{t} \left(n \left| \frac{x}{t} \right|^{n-1} \right) |a_n t^n| \le M \frac{|a_n t^n|}{t}$$

Therefore,

$$\sum_{n=1}^{\infty} |na_n x^{n-1}| = \sum_{n=1}^{\infty} \frac{M}{t} |a_n t^n| = \frac{M}{t} \sum_{n=1}^{\infty} |a_n t^n|$$

but $t \in (-R,R)$ so $\sum_{n=1}^{\infty} |a_n t^n|$ converges (converges absolutely because it is a power series which converges on (-R,R)). Therefore, $\sum_{n=1}^{\infty} |na_n x^{n-1}|$ converges so $\sum_{n=1}^{\infty} na_n x^{n-1}$ converges absolutely for all $x \in (-R,R)$.

Since the series converges absolutely for all $x_0 \in (-R, R)$, it converges uniformly on all compact sets $[x_0, x_0] \subset (-R, R)$.

1. Show that the power series representations are unique. If we have

$$\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n$$

for all x in the interval (-R, R), prove that $a_n = b_n$ for all $n = 0, 1, 2, \cdots$

$$\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n$$

Expanding terms,

$$a_0 + a_1 x^1 + a_2 x^2 + \dots = b_0 + b_1 x^1 + b_2 x^2 + \dots$$

Clearly, at $x = 0 \in (-R, R), a_0 = b_0$.

Since the power series converge, we have uniform convergence on (-R, R) so we may take term-by-term derivatives:

$$\sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

by identical argument as above, with x = 0, we have

$$a_1x^0 + 2a_2x^1 + 3a_3x^2 + \dots = b_1x^0 + 2b_2x^1 + 3b_3x^2 + \dots \implies a_1 = b_1$$

Now suppose $a_n = b_n$ for all n < k. Then

$$\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n \implies \sum_{n=k}^{\infty} a_n x^n = \sum_{n=k}^{\infty} b_n x^n$$

Taking the k-th termwise derivative,

$$\sum_{n=k}^{\infty} n(n-1)\cdots(n-k)a_n x^{n-k} = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k)b_n x^{n-k}$$

so at x=0,

$$n(n-1)\cdots(n-k)a_k = n(n-1)\cdots(n-k)b_k \implies a_k = b_k$$

Therefore, by induction, $a_n = b_n$ for all $n \in \mathbb{N}$.

2. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ converge on (-R, R), and assume f'(x) = f(x) for all $x \in (-R, R)$ and f(0) = 1. Deduce the values of a_n .

Since f'(x) = f(x) for all $x \in (-R, R)$, we have

$$\sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} a_n x^n$$

From f(0) = 1,

$$f(0) = \sum_{n=0}^{\infty} a_n 0^n = a_0 = 1$$

But this also means f'(0) = 1 so

$$(1)a_1 = 1 \implies a_1 = 1$$

We may take further derivatives:

$$f'(x) = f(x) \implies f''(x) = f'(x) \implies f''(x) = f(x) \implies f''(0) = 1$$

SO

$$f''(x) = \sum_{n=2}^{\infty} (n)(n-1)a_n x^{n-2}, \quad f''(0) = 2(1)a_2 = 1 \implies a_2 = \frac{1}{2}$$

Now we will induct on the derivatives of f(x). Suppose $f^{(n)} = f$ for all n < k. Then

$$\frac{d}{dx}f^{(k)} = \frac{d}{dx}f = f \implies f^{(k+1)}(x) = f(x) \implies f^{(k+1)}(0) = f(0) = 1$$

Therefore,

$$f^{(k+1)}(x) = \sum_{n=k+1}^{\infty} (n)(n-1)\cdots(n-k)a_n x^{n-k-1}$$

and

$$f^{(k+1)}(0) = (k+1)(k)(k-1)\cdots(2)(1)a_{k+1} + 0 + 0 + \cdots = 1 \implies (k+1)!a_{k+1} = 1 \implies a_{k+1} = \frac{1}{(k+1)!}$$

Therefore, $a_n = \frac{1}{n!}$ for all $n \in \mathbb{N}$.

1. Generate the Taylor coefficients for the exponential function $f(x) = e^x$, and then prove that the corresponding Taylor series converges uniformly to e^x on any interval of the form [-R, R].

$$a_1 = \frac{\frac{d}{dx}e^x}{1!}\Big|_{x=0} = 1, a_2 = \frac{1}{2}, a_3 = \frac{1}{6}, a_4 = \frac{1}{24}, \dots, a_n = \frac{1}{n!}$$

Define $f(x) = e^x$ and $S_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$.

Let $\varepsilon > 0$. To show that the Taylor series converges uniformly on [-R, R], we want to show that for all $x \in [-R, R]$,

$$|E_n(x)| = |f(x) - S_n(x)| < \varepsilon$$

By Lagrange's Remainder Theorem, if $x \neq 0$ in (-R, R), exists c such that |c| < |x| such that

$$|E_N(x)| = \frac{f^{(N+1)}(c)}{(N+1)!}x^{n+1}$$

Since $f(x) = e^x$, $f^{(N+1)}(c) = e^c$ for all $N \in \mathbb{N}$. Further, since $c \in [-R, R]$ and e^x is monotone increasing,

$$|f^{(N+1)}(c)| = |e^c| \le |e^R|$$

Similarly, $|x^{n+1}| \le |R^{n+1}|$ for all $x \in [-R, R]$.

Therefore,

$$|E_N(x)| \le \left| \frac{e^R}{(N+1)!} R^{N+1} \right| \to 0$$

so the Taylor series converges uniformly on [-R, R].

2. Verify the formula $f'(x) = e^x$.

Assume $f(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. By a theorem in class,

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

But $a_n = \frac{1}{n!}$ so

$$f'(x) = \sum_{n=1}^{\infty} \frac{n}{n!} x^{n-1} = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^{n-1} = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = e^x \quad \blacksquare$$

3. Use a substitution to generate the series for e^{-x} , and then informally calculate $e^x \cdot e^{-x}$ by multiplying together the two series and collecting common powers of x.

Let u = -x. Then from above,

$$e^{-x} = e^{u} = \sum_{n=0}^{\infty} \frac{u^{n}}{n!} = \sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n}$$

$$e^{x} \cdot e^{-x} = \left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n}\right)$$

$$= \left(1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots\right) \left(1 - x + \frac{x^{2}}{2} - \frac{x^{3}}{3!} + \dots\right)$$

$$= \left(1 - x + \frac{x^{2}}{2} - \frac{x^{3}}{3!} + \dots\right) + \left(x - x^{2} + \frac{x^{3}}{2} - \frac{x^{4}}{3!} + \dots\right) + \left(\frac{x^{2}}{2} - \frac{x^{3}}{2} + \frac{x^{4}}{4} - \frac{x^{5}}{2 \cdot 3!}\right) + \dots$$

$$= 1 + (-x + x) + \left(\frac{x^{2}}{2} - x^{2} + \frac{x^{2}}{2}\right) + \left(-\frac{x^{3}}{3!} + \frac{x^{3}}{2} - \frac{x^{3}}{2} + \frac{x^{3}}{3!}\right) + \dots$$

$$= 1 + 0 + 0 + 0 + \dots = 1$$

which matches what we would expect!