# VBC – Biologický inspirované výpočty – TASK 3 ZS 2021/2022

# Petr Šemora, 192026

#### Definované úlohy:

- Rastrigin's Function: 2D, 5D, 10D, 50D, 100D
  - Funkce je pro 2D definována na intervalu [-5.12, 5.12]. Optimální minimum se nachází v bodě [0, 0] s funkční hodnotou 0.



$$f(\mathbf{x}) = 10d + \sum_{i=1}^{d} [x_i^2 - 10\cos(2\pi x_i)]$$

- Rosenbrock Function: 2D, 5D, 10D, 50D, 100D
  - Funkce je pro 2D definována na intervalu [-10, 10]. Optimální minimum se nachází v bodě [1, 1] s funkční hodnotou 0.



$$f(\mathbf{x}) = \sum_{i=1}^{d-1} \left[ 100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$$

- Schwefel Function: 2D, 5D, 10D, 50D, 100D
  - Funkce je pro 2D definována na intervalu [-500, 500]. Optimální minimum se nachází v bodě [-420.9687, 420.9687] s funkční hodnotou 0.



#### Použité metaheuristiky:

- Genetický algoritmus
- HC12

## 1) Genetický algoritmus - GA

Jedná se o heuristický postup, který se snaží aplikací principů evoluční biologie nalézt řešení složitých problémů. Evoluční algoritmy, mezi které patří i genetický algoritmus, používají techniky napodobující evoluční procesy známé z biologie – dědičnost, mutace, přirozený výběr, křížení apod. Princip práce genetického algoritmu je postupná tvorba generací různých řešení daného problému. Při řešení se uchovává tzv. populace, jejíž každý jedinec představuje jedno řešení daného problému. Jak populace probíhá evolucí, řešení se zlepšují. Typicky je na začátku simulace (v první generaci) populace složena z naprosto náhodných členů. V přechodu do nové generace je pro každého jedince spočtena tzv. fitness funkce, která vyjadřuje kvalitu řešení reprezentovaného tímto jedincem. Podle této kvality jsou stochasticky vybráni jedinci, kteří jsou modifikováni (pomocí mutací a křížení), čímž vznikne nová populace. Tento postup se iterativně opakuje, čímž se kvalita řešení v populaci postupně vylepšuje. Algoritmus se obvykle zastaví při dosažení postačující kvality řešení, případně po předem dané době.

V rámci experimentování s tímto algoritmem jsem pro všechny testovací funkce a jejich dimenze 2D, 5D, 10D, 50D, 100D měnil následující parametry:

NP – velikost populace

pS – síla selekce

pC – pravděpodobnost křížení

pM – pravděpodobnost mutace

maxGener – ukončovací limit dle počtu generací

RUNs – počet běhů algoritmu

dodParam – hodnoty byly nastaveny fixně podle definičních intervalů zadaných funkcí

Pro všechny zadané funkce byla spočítána maximální hodnota (MAX), minimální hodnota (MIN), průměrná hodnota (MEAN) a medián (MED) z hodnot účelové funkce a z časových hodnot doby trvání výpočtu jednoho běhu algoritmu. Vzhledem k vysokému počtu různých kombinací jsou do tabulek vypsány výsledky pouze pro vybrané parametry, které jsem získal kompromisem mezi přesností výsledků a výpočetní náročností.

#### Použité optimalizační parametry:

|          | <b>2</b> D | 5D     | 10D     | 50D     | 100D     |
|----------|------------|--------|---------|---------|----------|
| RUNs     | 100        | 20     | 20      | 10      | 10       |
| NP       | 100        | 100    | 100     | 100     | 100      |
| pS       | 0.5        | 0.5    | 0.5     | 0.5     | 0.5      |
| pC       | 0.5        | 0.5    | 0.5     | 0.5     | 0.5      |
| рМ       | 0.03125    | 0.0125 | 0.00625 | 0.00125 | 0.000625 |
| maxGener | 100        | 100    | 100     | 100     | 100      |

2D:

|      |      | Rastrigin    | Schwefel     | Rosenbrock   |
|------|------|--------------|--------------|--------------|
|      | MAX  | 1.237919     | 0.207357     | 8.735654     |
| Υ    | MIN  | 1.125425e-07 | 3.449525e-05 | 8.288119e-07 |
| Y    | MEAN | 0.173162     | 0.098834     | 1.067283     |
|      | MED  | 4.843556e-06 | 0.103695     | 0.839650     |
|      | MAX  | 5.51         | 4.28         | 4.95         |
| +[a] | MIN  | 0.87         | 0.89         | 0.87         |
| t[s] | MEAN | 1.81         | 1.40         | 1.41         |
|      | MED  | 1.45         | 1.03         | 1.05         |

|       |      | Rastrigin    | Schwefel | Rosenbrock |
|-------|------|--------------|----------|------------|
|       | MAX  | 7.165382     | 119.3505 | 233.6215   |
| v     | MIN  | 9.967112e-06 | 0.104738 | 0.138667   |
| Υ     | MEAN | 2.970091     | 33.8681  | 31.27270   |
|       | MED  | 2.471541     | 34.3397  | 3.989513   |
|       | MAX  | 1.79         | 1.70     | 2.30       |
| ±[a]± | MIN  | 1.32         | 1.39     | 1.72       |
| t[s]  | MEAN | 1.42         | 1.51     | 1.92       |
|       | MED  | 1.38         | 1.49     | 1.87       |

10D:

|      |      | Rastrigin | Schwefel | Rosenbrock |
|------|------|-----------|----------|------------|
|      | MAX  | 19.888416 | 978.7066 | 492.7222   |
| v    | MIN  | 3.792116  | 34.9621  | 8.7140     |
| Y    | MEAN | 11.489842 | 496.8608 | 130.3053   |
|      | MED  | 10.658077 | 608.3199 | 100.3729   |
|      | MAX  | 2.60      | 2.73     | 7.59       |
| +[6] | MIN  | 2.11      | 2.13     | 2.97       |
| t[s] | MEAN | 2.36      | 2.31     | 3.93       |
|      | MED  | 2.33      | 2.24     | 3.34       |

50D:

|      |      | Rastrigin | Schwefel | Rosenbrock |
|------|------|-----------|----------|------------|
|      | MAX  | 137.62    | 5660.94  | 6497.95    |
| V    | MIN  | 94.12     | 3670.56  | 519.71     |
| Υ    | MEAN | 118.36    | 4649.14  | 2180.71    |
|      | MED  | 119.43    | 4673.11  | 1731.30    |
|      | MAX  | 10.11     | 12.32    | 20.11      |
| .tol | MIN  | 8.70      | 7.39     | 12.99      |
| t[s] | MEAN | 9.18      | 9.88     | 15.67      |
|      | MED  | 9.09      | 10.13    | 15.47      |

|       |      | Rastrigin | Schwefel | Rosenbrock |
|-------|------|-----------|----------|------------|
|       | MAX  | 412.234   | 15669.11 | 247218.61  |
| Υ     | MIN  | 310.339   | 12686.96 | 63231.51   |
| Y     | MEAN | 377.692   | 14131.35 | 157454.85  |
|       | MED  | 377.325   | 14246.45 | 171666.84  |
|       | MAX  | 18.54     | 25.35    | 27.86      |
| +[c]+ | MIN  | 16.38     | 15.67    | 26.05      |
| t[s]  | MEAN | 17.01     | 19.60    | 26.94      |
|       | MED  | 16.76     | 17.68    | 27.00      |

Pro všechny zadané 2D funkce bylo pomocí GA nalezeno optimální minimum.

Pro Rastrigin Function bylo nalezeno optimální minimum v bodě:

**X1** = 2.354825e-08

**X2** = 1.325479e-07

s hodnotou funkce **Y** = 1.125425e-07

Pro **Schwefel** Function bylo nalezeno optimální minimum v bodě:

**X1** = 420.97473144

**X2** = 420.97477314

s hodnotou funkce **Y** = 3.449525e-05

Pro Rosenbrock Function bylo nalezeno optimální minimum v bodě:

X1 = 1.000671

X2 = 1.001281

s hodnotou funkce **Y** = 8.288119e-07

#### **GRAFY**

- 1) Průběh optimalizace pro jeden běh (RUN) programu:
- A) Rastrigin:



# B) Schwefel:



# C) Rosenbrock:



- 2) Nalezená minima pro 10 běhů programu (RUNs):
- A) Rastrigin:



## B) Schwefel:



## C) Rosenbrock:



#### 2) HC12

Všechny parametry účelové funkce jsou zapsány v jednom binárním vektoru délky n. Tato délka n (počet bitů) je dána vtahem n = nParam \* nBitParam, kde nParam vyjadřuje počet parametrů účelové funkce a nBitParam udává na kolik bitů bude každý parametr kódován. Hlavním rysem tohoto algoritmu je použití grayova kódování, ve kterém se každé dvě po sobě jdoucí hodnoty liší pouze v jedné bitové pozici. Hammingovat vzdálenost dvou hodnot v Grayově kódu poté lépe koresponduje s opravdovou rozdílností čísel. Celý algoritmus pracuje tak, že na začátku je vybrán počáteční kandidátní bod. Ten je převeden do binárního vektoru a z binárního vektoru do Grayová kódu. Následně je provedena operace exkluzivní disjunkce (XOR) tohoto kandidátního vektoru v Grayově kódu s každým řádkem matice M. Tím vznikne nová generace jedinců, ve které má každý jedinec Hammingovu vzdálenost do kandidátního vektoru nejvýše 2, tzn. vektory se od kandidátního liší maximálně ve 2 pozicích. Každý z těchto jedinců je převeden zpět do reálných parametrů. Vyhodnocení fitness poté proběhne dosazením těchto parametrů do účelové funkce. Pokud má kandidátní bod lepší vlastnosti než dosavadní optimální bod, stává se vstupem do další iterace algoritmu. V případě, že ale vylepšující bod populace neobsahuje, algoritmus končí a výsledkem je dosavadní optimální bod.

V rámci experimentování s tímto algoritmem jsem pro všechny testovací funkce a jejich dimenze 2D, 5D, 10D, 50D, 100D měnil následující parametry:

nBitParam - počet bitů na parametr

nParam - počet parametrů

maxGener - ukončovací limit dle počtu generací

RUNs - počet běhů algoritmu

dodParam – hodnoty byly nastaveny fixně podle definičních intervalů zadaných funkcí

Pro všechny zadané funkce byla spočítána maximální hodnota (MAX), minimální hodnota (MIN), průměrná hodnota (MEAN) a medián (MED). Vzhledem k vysokému počtu různých kombinací jsou do tabulek vypsány výsledky pouze pro vybrané parametry, které jsem získal kompromisem mezi přesností výsledků a výpočetní náročností.

#### Použité optimalizační parametry:

|           | 2D  | 5D  | 10D | 50D | 100D |
|-----------|-----|-----|-----|-----|------|
| RUNs      | 100 | 100 | 20  | 5   | 5    |
| maxGener  | 10  | 10  | 10  | 10  | 10   |
| nBitParam | 10  | 10  | 10  | 10  | 10   |

|      |      | Rastrigin | Schwefel | Rosenbrock |
|------|------|-----------|----------|------------|
|      | MAX  | 0.009938  | 0.005525 | 4.331452   |
| v    | MIN  | 0.009938  | 0.005525 | 0.005067   |
| Y    | MEAN | 0.009938  | 0.005525 | 0.892141   |
|      | MED  | 0.009938  | 0.005525 | 0.066210   |
|      | MAX  | 0.045     | 0.063    | 0.047476   |
| 4[a] | MIN  | 0.012     | 0.009    | 0.001425   |
| t[s] | MEAN | 0.028     | 0.028    | 0.023980   |
|      | MED  | 0.027     | 0.027    | 0.022989   |

5D:

|      |      | Rastrigin | Schwefel | Rosenbrock |
|------|------|-----------|----------|------------|
|      | MAX  | 6.902     | 283.825  | 7.833      |
| V    | MIN  | 0.025     | 0.013    | 0.032      |
| Y    | MEAN | 1.494     | 48.114   | 2.649      |
|      | MED  | 1.215     | 8.945    | 2.537      |
|      | MAX  | 0.304     | 0.198    | 2.200      |
| .to1 | MIN  | 0.180     | 0.145    | 0.577      |
| t[s] | MEAN | 0.214     | 0.167    | 0.847      |
|      | MED  | 0.209     | 0.166    | 0.652      |

10D:

|      |      | Rastrigin | Schwefel | Rosenbrock |
|------|------|-----------|----------|------------|
|      | MAX  | 31.79     | 788.39   | 593.70     |
| Υ    | MIN  | 7.54      | 94.92    | 13.73      |
| Y    | MEAN | 19.57     | 464.51   | 240.99     |
|      | MED  | 19.18     | 512.82   | 189.97     |
|      | MAX  | 0.90      | 0.86     | 5.95       |
| 45-1 | MIN  | 0.84      | 0.71     | 4.89       |
| t[s] | MEAN | 0.88      | 0.74     | 5.24       |
|      | MED  | 0.88      | 0.72     | 5.19       |

|      |      | Rastrigin | Schwefel  | Rosenbrock   |
|------|------|-----------|-----------|--------------|
|      | MAX  | 551.45    | 12 619.96 | 1 402 878.94 |
| v    | MIN  | 428.20    | 10 062.46 | 254 658.80   |
| Y    | MEAN | 480.77    | 11 230.92 | 658 425.26   |
|      | MED  | 768.78    | 11 062.73 | 656 248.14   |
|      | MAX  | 57.58     | 44.71     | 1 280.45     |
| 4[a] | MIN  | 49.06     | 43.04     | 1 212.65     |
| t[s] | MEAN | 52.19     | 43.56     | 1 246.24     |
|      | MED  | 51.28     | 43.37     | 1 244.45     |

#### 100D:

|      |      | Rastrigin  | Schwefel   | Rosenbrock    |
|------|------|------------|------------|---------------|
|      | MAX  | 1 493.3586 | 31 131.583 | 10 551 660.92 |
| Υ    | MIN  | 1 263.5883 | 28 153.518 | 6 793 616.73  |
| Y    | MEAN | 1 399.3456 | 29 563.286 | 8 664 325.15  |
|      | MED  | 1 407.2969 | 29 555.339 | 8 661 228.27  |
|      | MAX  | 448.62     | 455.49     | 7 125.14      |
| +[a] | MIN  | 397.97     | 312.51     | 7 464.25      |
| t[s] | MEAN | 422.94     | 360.24     | 7 314.14      |
|      | MED  | 422.43     | 349.58     | 7 298.25      |

Pro všechny zadané 2D funkce bylo pomocí HC12 nalezeno optimální minimum.

Pro **Rastrigin** Function bylo nalezeno optimální minimum v bodě:

**X1** = -7.812619e-05

**X2** = 7.812619e-05

s hodnotou funkce Y = 2.421852e-06

Pro Schwefel Function bylo nalezeno optimální minimum v bodě:

X1 = 420.973525

**X2** = 420.973525

s hodnotou funkce **Y** = 3.121948e-05

Pro Rosenbrock Function bylo nalezeno optimální minimum v bodě:

X1 = 1.002670

X2 = 1.005416

s hodnotou funkce **Y** = 7.609028e-06

#### **GRAFY**

- 1) Průběh optimalizace pro jeden běh (RUN) programu:
- A) Rastrigin:



## B) Schwefel:



# C) Rosenbrock:



2) Nalezená minima pro zadaný počet běhů programu (RUNs):

## A) Rastrigin:



## B) Schwefel:



# C) Rosenbrock:



#### Závěr

Při výběru parametrů pro optimalizaci jsem prováděl kompromis mezi přesností nalezeného minima a výpočetní náročností experimentů. V případě 2D všech zadaných úloh jsou výsledky relativně blízké teoretické optimální hodnotě. Se zvyšující se dimenzí úloh přesnost výsledků výrazně klesá. Pokud bych optimalizoval parametry i pro problémy vyšších dimenzí bez ohledu na výpočetní náročnost, funkční hodnoty by pak byly mnohem přesnější. Tato možnost však k omezeným výpočetním a časovým možnostem nepřicházela v úvahu.