

TI-PMLK WEBENCH 实验报告 LDO (TPS7A4901)

作	者:	许晓明	学号:	9161040G0734			
学	院:		电光学	学院			
专业(フ	方向):	电子信息工程(卓工)					
班	级:	9161042103					
题	目:		TI-PMLK WEB	ENCH 实验			
	•		LDO (TPS7	7A4901)			

2019 年 4 月

目 次

1	实验目标	1
2	测试 1 负载电流和输出电压对最小压降的影响	
	2.1 计算公式	
	2.2 实验步骤	1
	2.3 实验结果	
3	测试 2: 负载电流对输出电压的影响(负载调整率); 输入电压对输出电压的	影响
(线性	调整率)	5
	3.1 计算公式	5
	3.1.1 负载调整率	5
	3.1.2 线性调整率	5
	3.2 实验步骤	5
	3.3 实验结果	8
	2.2.1 测试一负载条件	
	2.3.1 最小压降与负载电流IoutVout = 5V&15V关系	
表	3.2.1 测试二负载条件	8
夷	3.3.1VOUT = 5V 时 TPS7A4901 的负载调整率	Ç
10		
表	3.3.2VOUT = 5V 时 TPS7A4901 的线性调整率	9
-10	2.5.2.2.2.2.4.1.1.2.1.1.2.1.1.2.1.1.1.1.1.1	
	2.2.1WEBENCH 设计方案	
	2.2.2 电气仿真页面	
	2.2.3 仿真波形	
	2.2.4 坐标轴比例尺	
	2.2.5 启用光标	
图	2.2.6 改变仿真电路负载电阻	3
冬	2.3.1最小压降与负载电流	5
, –		
冬	2.3.2最小压降与负载电流 <i>IoutVout</i> = 15V关系图	5
	3.2.1 设计方案	
	3.2.1	
	3.2.3 仿真完成 3.2.4 更改参数	
	3.3.1 负载调整率仿真曲线图	
	3.3.2 线性调整率仿真曲线图 3.3.2 线性调整率仿真曲线图	
	3.3.3 负载调整率的实验数据截图	
	3.3.4 线性调整率的头验数据截图 3.3.4 线性调整率的实验数据截图	
13		137

1 实验目标

本实验的目标是分析线性稳压器(LDO)的输入和负载条件如何影响其最小压降和输出电压精度。我们将使用 WEBENCH 电源设计工具来得到分析和仿真结果,以便与 TI-PMLK 实验板的实验结果进行比较。

2 测试 1 负载电流和输出电压对最小压降的影响

21 计算公式

TPS7A4901 的最小压降是在下列条件下测得的:

从正常条件下开始不断降低 V_{in} ,直到 V_{out} 降低至正常 V_{out} 的 95%,记录此时的 V_{in} 和 V_{out} 。通过公式 $V_{DO} = V_{in} - V_{out}$ 计算最小压降。

2.2 实验步骤

1. 打开 TPS7A4901 的 WEBENCH 设计方案,该方案中 $V_{out} = 5$ V。如图 2.2.1 所示。

图 2.2.1WEBENCH 设计方案

2. 点击 "SIMULATE" 按钮, 进入电气仿真页面。本实验中负载电流I_{out} = 150mA , 因此负载 Rload = 33.3 ohms, 如图 2.2.2 所示

图 2.2.2 电气仿真页面

3. 选择仿真类型为 Startup, 然后点击"START"按钮。页面右侧将出现一个波形控制

面板。

4. 仿真完成以后, V_{in} (对应电路板上 V_{in})和 V_{out} (对应电路板上 V_{out})的波形将会出现在波形图上。因为现在是第一次仿真,这两个波形分别被标记为和 V_{in} sim: 1和 V_{out} sim: 1。如果再进行一次仿真,冒号后面的数字将会随仿真次数而变化。

图 2.2.3 仿真波形

5. 点击下图中标记 1 的按钮,将会出现波形控制的下拉菜单。点击"Group voltage on same Y-axis"(如图 2.2.4 中标记 2),这将使V_{in}和V_{out}波形使用相同的坐标轴比例尺。如果需要取消,请点击"Reset Groups"(如图 2.2.4 标记 3)。

图 2.2.4 坐标轴比例尺

6. 我们观察到现在 V_{out} 和 V_{in} 使用相同的 Y 轴比例尺。点击"Show Marker"以启用光标,将鼠标移动到尽量接近 $V_{\text{in}} = 4.655$ V的位置($V_{\text{in}} = 4.655$ V正好是额定输出电压 $V_{\text{outnom}} = 4.9$ V的 95%)。记录此时 V_{in} 和 V_{out} 的值。将记录下的值分别填入表 2.3.1 ($I_{out} = 150$ mA, $V_{outnom} = 4.9$ V)的 $V_{in} (= V_{in})$ 和 $V_{\text{out}} (= V_{\text{out}})$ 当中,并计算最小压降 $V_{dropout} (= V_{in} - V_{out})$ 。

图 2.2.5 启用光标

7. 为了对其他负载条件进行仿真,我们需要改变仿真电路中的负载电阻(Load Resistance)。如图 2.2.6 所示,在页面左侧再次选择 "Startup" 仿真类型,然后点击原理图中的 Rload。在弹出的对话框中点击 "update",输入我们想要的电阻值,然后点击 "SAVE"。设置好负载电阻后,点击"START"按钮开始仿真。仿真结束以后,之前的仿真结果(如图 2.2.2)会和新的V_{in}及V_{out}一起显示在波形图上。我们将看到不同负载条件下的V_{in}和V_{out}波形。重复步骤 5 来调整坐标轴(如图 2.2.4),并重复步骤 6 来记录新的数据。

图 2.2.6 改变仿真电路负载电阻

- 8. 重复步骤 4 到 7, 分别记录所示负载条件下的仿真结果。
- 9. 重复步骤 4 至 8, 记录 V_{out} =15V 时所有负载电流条件下的数据至表 2.3.1。在记录 V_{out} 数据时,使用光标找到 V_{in} = 14.15V(即 V_{OUTNOM} = 14.9V的 95%)时的数据并记录。

 $V_{out} = 5\overline{V}$ $V_{out} = 15V$ Load(mA) Rload(Ohm)Load(mA) Rload(Ohm) 33.3 66.7

表 2.2.1 测试一负载条件

2.3 实验结果

最小压降与负载电流 $I_{out}(V_{out}=5V\&15V)$ 关系表见表 2.3.1, 关系图见图 2.3.1 及图 2.3.2。

out to the same out to the sam						
V _{in} (V)@95%V _{outnom}	I _{out} (mA)					
V _{out} (V)@V _{in}	25mA	50mA	75mA	100mA	125mA	150mA
V _{drop} (mV)						
	4.651	4.649	4.650	4.650	4.649	4.651
$V_{\text{outnom}} = 4.9V$	4.503	4.480	4.445	4.412	4.379	4.347
	148	169	205	238	270	304
	14.171	14.170	14.169	14.169	14.174	14.171
$V_{outnom} = 14.9V$	13.513	13.495	13.480	13.463	13.447	13.430
	658	675	689	706	727	741

表 2.3.1 最小压降与负载电流 $I_{out}(V_{out} = 5V\&15V)$ 关系

图 2.3.1最小压降与负载电流 $I_{out}(Vout = 5V)$ 关系图

图 2.3.2最小压降与负载电流Iout(Vout = 15V)关系图

3 测试 2: 负载电流对输出电压的影响(负载调整率);输入电压对输出电压的影响(线性调整率)

3.1 计算公式

3.1.1 负载调整率

 V_{OUT} Load Sensitivity(%) = $(V_{OUTNOM} - V_{OUT})/V_{OUTNOM} \times 100$ 测量不同负载下的 V_{OUT} ,并计算负载调整率。

3.1.2 线性调整率

 $V_{\rm OUT}$ Line Sensitivity(%) = $(V_{\rm OUTNOM} - V_{\rm OUT})/V_{\rm OUTNOM} \times 100$ 测量在不同 $V_{\rm IN}$ 条件下 $V_{\rm OUT}$ 的值,并计算线性调整率。

3.2 实验步骤

1. 打开TPS7A4901在 V_{out} = 5V时的设计方案。打开设计方案后可以看到设计中 V_{in} = 6V,这与TI-PMLK实验板中的电路是一致的。在打开的WEBENCH窗口中将出现为本实验预先设计好的电路。

图 3.2.1 设计方案

2. 点击 "SIMULATE" 按钮(见图 3.2.1),进入电气仿真页面。点击电路图中的输入电压源,在弹出的对话框中可以看到它的参数。请确认其中的Peak Voltage是6V(对应 V_{in} = 6V)。如果不是,点击"update",可以更改它的值,更改后点击SAVE保存。

图 3.2.2 更改参数值

- 3. 可以看到电路图中Rload=33.3 ohms,对应输出电流I_{out} = 150mA。
- 4. 点击页面左侧的红色 "START" 按钮,在Waveforms窗口会出现一个进度条。当仿真完成后,默认情况下会显示V_{in}和V_{out}两个节点的电压波形。勾选 "Show Marker" 方框,可以查看这两个节点的电压值。将鼠标放在波形图上约40msec处,将此时的V_{out}值记录下来(保留小数点后3位)。我们要根据表 3.3.1测试每种负载条件下的V_{out}值,并根据V_{out}来计算负载调整率。

图 3.2.3 仿真完成

- 5. 为了设置不同的负载电流,需要更改仿真中所使用的负载大小。点击页面左侧的 "Startup"按钮,然后点击电路图中的Rload电阻,会弹出一个对话框。点击 "UPDATE",然后输入我们想要的负载电阻值(可由表 3.2.1查得),并点击 "SAVE"。
- 6. 点击页面左侧的"START"按钮。仿真完成后,新的V_{in}和V_{out}波形将会和之前仿真的波形一起显示。重复步骤5以记录新数据。
- 7. 重复步骤6,记录 $V_{in} = 6V$ 时其余负载条件下(如表 3.2.1所示)的数据。
- 8. 为了进行线性调整率的仿真,首先需要清除之前负载调整率仿真的波形。要清除某一个波形,请点击该波形对应的坐标轴,并选择菜单中的"Remove probe"。请重复该操作以清除所有需要去掉的波形。
- 9. 现在,我们的电路应当处在 $V_{IN}=6V$, $I_{out}=25mA$ 的状态下。为了测量表5中的线性调整率,我们需要将Rload设置为100 ohms,从而将负载电流设为50mA。点击"SAVE"以保存Rload的值,然后更改 V_{IN} 以进行线性调整率的实验。更改完成后点击"START",开始进行 $V_{IN}=6V$, $I_{OUT}=50mA$ 条件下的仿真。

图 3.2.4 更改参数

- 10. 按照步骤5重复仿真过程,并按照步骤6记录Vout的值。
- 11. 根据表 3.3.2更改输入电压的值,重复步骤11直到表 3.3.2中的空格全部被填满。在记录 \mathbf{V}_{OUT} 之后,可以根据它计算线性调整率的值。

12.2.1 /// M ― シャスパー						
Load(mA)	Rload(Ohm)					
150	33.3					
125	40					
100	50					
75	66.7					
50	100					
25	200					

表 3.2.1 测试二负载条件

3.3 实验结果

负载调整率仿真结果见图 3.3.1 及图 3.3.3。数据处理情况见表 3.3.1; 线性调整率仿真结果见图 3.3.2 及图 3.3.4。数据处理情况见表 3.3.2。

图 3.3.2 线性调整率仿真曲线图

表 $3.3.1V_{OUT} = 5V$ 时 TPS7A4901 的负载调整率

V - 6V	$I_{out}(mA)$						
$V_{in} = 6V$	25mA	50mA	75mA	100mA	125mA	150mA	
$V_{out}(V)$	4.890	4.890	4.889	4.889	4.888	4.888	
Load Sensitivity (%)	20.408%	20.408%	22.449%	22.449%	24.490%	24.490%	

表 3.3.2V_{OUT} = 5V 时 TPS7A4901 的线性调整率

I - 50mA	$V_{in}(V)$						
$I_{out} = 50 \text{mA}$	6V	9V	12V	15V	18V	21V	
$V_{out}(V)$	4.888	4.919	4.923	4.925	4.926	4.927	
Line Sensitivity (%)	24.490%	38.776%	46.939%	51.020%	53.061%	55.102%	

40.093240093 msec

Probe	Sim ID	Value
VOut	1	4.888
VIn	1	6.000
VOut	2	4.888
VIn	2	6.000
VOut	3	4.889
VIn	3	6.000
VOut	4	4.889
Vln	4	6.000
VIn	5	6.000
VOut	5	4.890
VOut	6	4.890

图 3.3.3 负载调整率的实验数据截图

39.976689977 msec

Probe	Sim ID	Value
VOut	6	4.927
VIn	6	20.984
VOut	2	4.919
VIn	3	
VOut	4	4.925
VOut	5	4.926
VOut	3	4.923
VOut	1	4.888
VIn	1	5.996
VIn	2	8.993
VIn	5	17.988
VIn	4	14.988

图 3.3.4 线性调整率的实验数据截图