Preparcial 2 Teoría de grafos

Rodrigo Castillo

12 de octubre de 2020

1. sean x y y vertices advacentes en un grafo conexo , G , para todo z en V(G) demuestre que :

$$|d_G(x,z) - d_G(y,z)| <= 1$$
(1)

Demostración:

preguntar que significa esa notación

2. Considere el grafo G_1

- 1. escriba la excentricidad de cada vértice y calcule $rad(G_1)$ y $diam(G_1)$
- 2. encuentre el centro de G_1 y calcule el índice de Wiener y la distancia promedio

Excentricidades:(las excentricidades se definen como el camino mas corto al vértice mas lejano)

excentricidad(a) = 4

excentricidad(b) = 3

excentricidad(c)=2

excentricidad(d) = 3

excentricidad(e) = 3

excentricidad(f) = 4

excentricidad(g) = 4

excentricidad(h) = 4

 $rad(G_1)$

el radio se define como el **mínimo de todas las excentricidades** , luego es 2 $diam(G_1)$

el diametro de un grafo se define como el **maximo de todas las excentricidades** luego es 4.

índice de Wiener:

el índice de Wiener se calcula como :

$$D(G) = \sum_{u,v \in V(G)} d_G((u,v))$$
(2)

esto equivale a la sumatoria de los caminos de todos los vértices de esa vuelta por lo tanto... preguntar si hay algún teorema que calcule el índice de wienner

3. Calcule el centro y el radio del biclicke $K_{m,n}$

 K_{mn} es el grafo:

Centro:

el centro de un grafo se define como el grafo inducido por los vértices de mínima excentricidad. por lo tanto el centro del grafo es K_{mn}

Radio:

el radio de un grafo se define como el mínimo de todas las excentricidades de este, por lo tanto...

 $Rad(K_{mn})=2$ pues en K_{mn} es trivial ver que para cualquier par de vértices p,q existe una p-qcaminata de longitud 2

4. Encuentre el código de Prufer del siguiente arbol:

Prufer preguntarlo en las diapositivas

5. Construya el arbol T a partir del código de Prufer 322114211

Prufer preguntarlo en las diapositivas

6. Determine cuáles árboles tiene código de prufer que (a) contienen un valor , (b) contienen exactamente 2 valores , (c) tienen distintos valores en todas las posiciones

Prufer mirarlo en las diapositivas

7. Determine el número de árboles de expansión del siguiente grafo...

- 8. Calcule $\tau(K_{m,n})$
- 9. Utilice la búsqueda a profundidad y la búsqueda a lo ancho para encontrar árboles de expansión del siguiente grafo. Tome como vértice inicial (a) y a (b) como vértice j, (c) como vértice s

10. considere el grafo ponderado:

- 1. utilice el algoritmo de Prim para encontrar el árbol de expansión mínimo
- 2. Utilice el algoritmo de Kruskal para encontrar el árbol de expansión máximo
- 3. Utilice el algoritmo de Dijkstra para encontrar la ruta mínima entre los vértices $a \neq p$
- 11. Hay cinco ciudades en una red , el tiempo para viajar directamente de i a j es la entrada a_{ij} , de la siguiente matrix. La matriz no es simétrica. (Use un grafo dirigido) y $a_{ij} = \infty$ significa que no existe una ruta directa entre i y j Use el algoritmo de Floyd-Warshall para encontrar la ruta mas rápida entre i y j para cada par i,j

$$\begin{pmatrix}
0 & 10 & 20 & \infty & 17 \\
7 & 0 & 5 & 22 & 33 \\
14 & 13 & 0 & 15 & 27 \\
30 & \infty & 17 & 0 & 10 \\
\infty & 15 & 12 & 8 & 0
\end{pmatrix}$$

12. Considere la siguiente tabla de frecuencias

Letra	Frecuencia	Letra	Frecuencia
I	7.5	С	5.0
U	20.0	Н	10.0
В	2.5	M	2.5
S	27.5	P	25.0

- 1. Construya un código de Huffman y codifique la cadena PMUBSCH
- 2. calcule la longitud esperada y la entropía
- 3. Decodifique la cadena esa re larga que dan ahí

13. Escriba los recorridos pre orden , post orden y in orden del siguiente arbol:

14. escriba las siguientes formulas en notación infija:

a.
$$\rightarrow \vee \wedge p\, r \rightarrow q\, p\, \neg \leftrightarrow r\, p$$

b.
$$pr \lor rp \leftrightarrow \rightarrow s \lor \neg$$

c.
$$32 * 2 \uparrow 53 - 84/* -$$

d.
$$+-\uparrow 32 \uparrow 23/6 - 42$$

15. Considere el siguiente grafo G

- 1. verifique si cumple la condición de Hall
- 2. ecuentre el emparejamiento máximo (justifiquelo mostrando un cubrimiento por vértices minimo)
- 3. encuentre un emparejamiento maximal que no sea máximo
- 4. encuentre un conjunto independiente máximo
- 5. encuentre un cubrimiento por aristas mínimo