MDL Reference

Stuart Moodie and Mike Smith

June 29, 2016

Summary of Contents

1	Objects	9
2	Block Definitions	17
3	List Definitions	57
4	Sublist Definitions	89
5	Function Definitions	91
6	Standard Types	114
7	Mapping Types	115
8	Builtin Enumeration Types	116

Detailed Contents

1	Obj	ects 9
	1.1	Summary
	1.2	Object: mdlObj
	1.3	Object: dataObj
	1.4	Object: priorObj
	1.5	Object: taskObj
	1.6	Object: designObj
	1.7	Object: parObj
	1.8	Object: mogObj
2	Bloc	ck Definitions 17
	2.1	COMPARTMENT
	2.2	COVARIATES
	2.3	DATA_DERIVED_VARIABLES
	2.4	DATA_INPUT_VARIABLES
	2.5	DECLARED_VARIABLES
	2.6	DEQ
	$\frac{2.0}{2.7}$	DESIGN_PARAMETERS
	2.8	DESIGN_SPACES
	2.9	ESTIMATE
		EVALUATE
		FUNCTIONS
		GROUP_VARIABLES
		IDV
		INDIVIDUAL VARIABLES
		INFO
		INPUT_PRIOR_DATA
		INTERVENTION
		MODEL_PREDICTION
		NON_CANONICAL_DISTRIBUTION
		OBJECTS
		OBSERVATION
		OPTIMISE
		POPULATION
		POPULATION_PARAMETERS
		PRIOR_PARAMETERS
		PRIOR_SOURCE
		SAMPLING
		SIMULATE
		SOURCE
	2.32	STRUCTURAL
	2.33	STRUCTURAL_PARAMETERS 51

	2.34	STUDY_DESIGN	52
		TARGET_SETTINGS	53
		VARIABILITY	54
		VARIABILITY_LEVELS	55
		VARIABILITY_PARAMETERS	56
3	\mathbf{List}		57
	3.1	AdminBolusList	57
	3.2	AdminComplexList	57
	3.3	AdminInfusionList	58
	3.4	AdminResetAllList	58
	3.5	AdminResetList	59
	3.6	AdminSuperList	59
	3.7	Amt	59
	3.8	BlqList	60
	3.9	CatCovariate	60
	3.10	CatObs	60
		CensCol	61
		Cmt	61
		CmtDirect	61
		Compartment	62
		ContinuousObsList	62
		CorrelationList	62
		CountObs	63
		CovarianceList	63
		Covariate	63
		DDCatCovariate	64
		DDCovariate	64
		DDVariable	64
		DataColumn	65
		DataVarLevel	65
		DataVariable	65
		Depot	66
		DerivList	66
		DerivedSamplingList	67
		DesignSpaceArmSize	67
		DesignSpaceBolusAmt	67
		DesignSpaceCov	68
		DesignSpaceDuration	68
			68
		DesignSpaceInfAmt	69
		DesignSpaceNumArms	69
		DesignSpaceNumTimes	70
		DesignSpaceParam	70
		DesignSpaceSampleTimes	70
	3.39	DiscreteObs	71

3.40	Distribution																71
3.41	$DoseInterval \dots \dots$																71
3.42	$DoseTime \ \dots \ \dots \ \dots$																72
3.43	$\mathrm{Dv}\ \dots\dots\dots\dots$																72
3.44	Dvid																72
3.45	Effect																73
3.46	Elimination																73
3.47	Evid																74
3.48	$\mathrm{Id} \dots \dots \dots \dots \dots$																74
	$\operatorname{Idv}...........$																74
3.50	IndivAbstractList																75
	IndivParamGeneral																
	IndivParamLinear																
	IndivRvList																76
	IndivUserDefined																76
	MdlObjInMog																
	Mdv																
	PopnCategoricalList																
	PopnContinuousList																
	PopulationTemplate																
	PriorMatrixInput																
	PriorSourceCsv																
	PriorTabularSource																
	PriorVectorInput																
	SamplingSuper																
	SimpleSamplingList																79
	Source																80
	StructuralEstimateMatrix																80
	StructuralEstimateReal .																80
	StructuralEstimateVector																81
	StudyDesign																81
	Transfer																81
	TteObs																82
	UserDefinedObsList																
	VarEstimateMatrix																
	VarEstimateReal																
	VarEstimateVector																
	additiveErrorList																84
	addl																84
	blkDefn																85
	combinedError1List																85
	combinedError2List																85
	dosingTarget																86
	dosingVar																86
	ignore																86
3.85	0	•	•	-	 •	•	•	• •	•	•	 •	•	•	•	•	 •	87

	2 86	observation	87
			87
			88
	3.88		
			88
	3.90	varLevel	88
4	Sub	ist Definitions	39
-	4.1		89
	4.2		89
	4.3	•	89
	4.4		89
	$\frac{4.4}{4.5}$		89
	-	The Table 1	
	4.6		90
	4.7	PopTmpltCovSublist	90
5	Fun	ction Definitions	91
0	5.1		91
	5.2		91
	5.3		91
	5.4		91 91
	$5.4 \\ 5.5$	9	92
	5.6	9	92 92
		1	
	5.7		92
	5.8		93
	5.9		93
			93
		0	93
			94
			94
			94
			95
	5.16	MixtureDistribution	95
			95
			96
			96
	5.20		96
	5.21		96
			97
	5.23	NegativeBinomial2	97
			97
			98
	5.26		98
			98
	• •		99
	00		99
			99
	5.00	Confidence of the contract of))

5.31		100
5.32	StudentT1	100
5.33		100
	Uniform1	101
5.35	Wishart1	101
5.36	Wishart2	101
5.37	ZeroInflatedPoisson1	102
5.38	abs	102
5.39	acos	102
5.40	acosh	102
	asVector	103
	asin	103
	asinh	103
	atan	103
	atanh	103
	ceiling	
	chol	
	constInterp	104
	cos	104
	cosh	104
		$104 \\ 105$
	cubicInterp	
	det	105
	diagonal	105
	dseq	105
	eigen	106
	exp	106
	factorial	106
	floor	106
	gInv	106
	invLogit	107
	invProbit	107
5.62	inverse	107
	lastValueInterp	107
5.64	linearInterp	107
	$\ln\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	108
5.66	InFactorial	108
5.67	log	108
5.68	log10	108
	$\log^2 2$	108
	logit	109
	matrix	109
	max	109
-	mean	109
	median	110
	min	110
	nearestInterp	110
5.10	поисочиногр	110

		11.7
		pchipInterp
		probit
		rep
	5.80	seq
		seqby
	5.82	sin
	5.83	sinh
	5.84	splineInterp
	5.85	sqrt
	5.86	sum
	5.87	tan
	5.88	tanh
	5.89	toInt
	5.90	toMatrixByCol
		toMatrixByRow
		transpose
		triangle
	0.00	0
6	Star	dard Types 114
		• •
7	Mar	ping Types 115
	-	
8	Buil	tin Enumeration Types 116
	8.1	AdminTypeType
	O. I	Adminisperspe
	8.2	CorrelationEnumType
	-	
	8.2	CorrelationEnumType
	8.2 8.3	CorrelationEnumType
	8.2 8.3 8.4	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116
	8.2 8.3 8.4 8.5	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116
	8.2 8.3 8.4 8.5 8.6	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 116
	8.2 8.3 8.4 8.5 8.6 8.7	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 116 blkType 117
	8.2 8.3 8.4 8.5 8.6 8.7 8.8	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 116 blkType 117 cmtType 117
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 116 blkType 117 cmtType 117 covArgEnumType 117
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 116 blkType 117 cmtType 117 covArgEnumType 117 ddvUse 117
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 116 blkType 117 cmtType 117 covArgEnumType 117 ddvUse 117 divUse 117
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 116 blkType 117 cmtType 117 covArgEnumType 117 ddvUse 117 divUse 117 estAlgo 118
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 116 blkType 117 cmtType 117 covArgEnumType 117 divUse 117 divUse 117 estAlgo 118 estimateType 118
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 117 cmtType 117 covArgEnumType 117 ddvUse 117 divUse 117 estAlgo 118 estimateType 118 input 118
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnTypeType 116 blkMethodType 116 blkType 117 cmtType 117 covArgEnumType 117 ddvUse 117 divUse 117 estAlgo 118 estimateType 118 input 118 objType 119
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnTypeType 116 blkMethodType 116 blkType 117 cmtType 117 covArgEnumType 117 ddvUse 117 divUse 117 estAlgo 118 estimateType 118 input 118 obstype 119
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 117 cmtType 117 covArgEnumType 117 ddvUse 117 divUse 117 estAlgo 118 estimateType 118 input 116 obstype 119 priorElementType 119
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 116 blkType 117 cmtType 117 covArgEnumType 117 ddvUse 117 divUse 117 estAlgo 118 estimateType 118 input 118 objType 119 obstype 119 priorElementType 119 priorInput 119
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 8.20	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 116 blkType 117 cmtType 117 covArgEnumType 117 ddvUse 117 divUse 117 estAlgo 118 estimateType 118 input 118 objType 119 obstype 119 priorElementType 119 priorInput 119 sampleElement 120
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.20 8.21	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 116 blkType 117 cmtType 117 covArgEnumType 117 divUse 117 divUse 117 estAlgo 118 estimateType 118 input 118 objType 119 obstype 119 priorElementType 119 priorInput 119 sampleElement 120 sampletype 120
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.20 8.21 8.22	CorrelationEnumType 116 IndivTypeType 116 OptAlgoType 116 PopnType 116 PopnTypeType 116 blkMethodType 116 blkType 117 cmtType 117 covArgEnumType 117 ddvUse 117 divUse 117 estAlgo 118 estimateType 118 input 118 objType 119 obstype 119 priorElementType 119 priorInput 119 sampleElement 120

8.24	${\bf varLvlType}$																120
8.25	varType																120

1 Objects

1.1 Summary

Name	Description
dataObj	Data object
designObj	Design object
mdlObj	Model object
mogObj	Model Object Group object
parObj	Parameter object
priorObj	Prior object
taskObj	Task object

1.2 Object: mdlObj

Model object

${\bf Blocks}$

Name	Description
COVARIATES	Defined covariates
FUNCTIONS	
$GROUP_VARIABLES$	Defines group variables
IDV	Defines the individual variable of the model
$INDIVIDUAL_VARIABLES$	Defines individual parameters
MODEL_PREDICTION	Defines the model prediction
OBSERVATION	Defines observations
POPULATION_PARAMETERS	Defines population parameters
RANDOM_VARIABLE_DEFINITION	Defines random variables
STRUCTURAL_PARAMETERS	Defines structural parameters
VARIABILITY_LEVELS	Defines variability levels
VARIABILITY_PARAMETERS	Defines variability parameters

1.3 Object: dataObj

Data object

${\bf Blocks}$

Name	Description
DATA_DERIVED_VARIABLES	Defines addition column mappings
DATA_INPUT_VARIABLES	Defines data columns
DECLARED_VARIABLES	Declares variables defined in another object
FUNCTIONS	
SOURCE	

1.4 Object: priorObj

Prior object

Blocks

Name Description

NON_CANONICAL_DISTRIBUTION

PRIOR_PARAMETERS

PRIOR_VARIABLE_DEFINITION

1.5 Object: taskObj

Task object

${\bf Blocks}$

Name	Description
ESTIMATE	
EVALUATE	
OPTIMISE	
SIMULATE	

1.6 Object: designObj

Design object

${\bf Blocks}$

Name	Description
DECLARED_VARIABLES	Declares variables defined in another object
DESIGN_PARAMETERS	
DESIGN_SPACES	
INTERVENTION	
POPULATION	
SAMPLING	
STUDY_DESIGN	

1.7 Object: parObj

Parameter object

Blocks

Name Description
STRUCTURAL
VARIABILITY

1.8 Object: mogObj

Model Object Group object

${\bf Blocks}$

Name	Description
INFO	Contains information about the model.
OBJECTS	

2 Block Definitions

2.1 COMPARTMENT

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

- \bullet List definition
- Anonymous list

List	Key Attribute	Key Value
CmtDirect	type	direct
Compartment	type	compartment
Depot	type	depot
Distribution	type	distribution
Effect	type	effect
Elimination	type	elimination
Transfer	type	transfer

2.2 COVARIATES

Defined covariates

Arguments

Attribute	Type	Optional	Description
type	covArgEnumType	true	

${\bf Constraints}$

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

- Variable definition (no RHS)
- Variable definition (with RHS)
- Categorical parameter definition
- Random variable definition

2.3 DATA_DERIVED_VARIABLES

Defines addition column mappings

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

• List definition

List	Key Attribute	Key Value
DDCatCovariate	use	catCov
DDCovariate	use	covariate
DDVariable	use	variable
DoseInterval	use	doseInterval
DoseTime	use	doseTime

2.4 DATA_INPUT_VARIABLES

Defines data columns

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(1, \infty)$

Permitted statement types

ullet List definition

List	Key Attribute	Key Value
Amt	use	amt
CatCovariate	use	catCov
CensCol	use	cens
Cmt	use	cmt
Cmt	use	cmt
Covariate	use	covariate
${\bf DataVarLevel}$	use	varLevel
DataVariable	use	variable
Dv	use	dv
Dvid	use	dvid
Evid	use	evid
Id	use	id
Idv	use	idv
Mdv	use	mdv
addl	use	addl
ignore	use	ignore
ii	use	ii
rate	use	rate
SS	use	SS

2.5 DECLARED_VARIABLES

Declares variables defined in another object

${\bf Constraints}$

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

- Variable definition (no RHS)
- Categorical parameter definition

2.6 DEQ

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

- ullet List definition
- Variable definition (no RHS)
- Variable definition (with RHS)

List	Key Attribute	Key Value
DerivList	N/A	N/A

2.7 DESIGN_PARAMETERS

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

- Variable definition (no RHS)
- Variable definition (with RHS)

2.8 DESIGN_SPACES

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

ullet List definition

List	Key Attribute	Key Value
DesignSpaceArmSize	element	armSize
${\bf DesignSpaceBolusAmt}$	element	bolusAmt
DesignSpaceCov	element	covariate
${\bf DesignSpaceDoseTime}$	element	doseTime
DesignSpaceDuration	element	duration
${\bf DesignSpaceInfAmt}$	element	$\inf Amt$
DesignSpaceNumArms	element	${\bf number Arms}$
DesignSpaceNumTimes	element	numberTimes
DesignSpaceParam	element	parameter
DesignSpaceSampleTimes	element	sampleTime

2.9 ESTIMATE

Constraints

Number of blocks in object (0, 1)Number of statements in block $(0, \infty)$

Permitted statement types

- ullet Property statement
- ullet List definition

Sub-Blocks

Name	Description
TARGET SETTINGS	

Lists

Properties

Name	Type	Optional
algo	estAlgo	F

2.10 EVALUATE

Constraints

Number of blocks in object (0, 1)Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

ullet Property statement

Sub-Blocks

Name Description
TARGET_SETTINGS

Properties

Name	Type	Optional
amount	real	T
armSize	int	${ m T}$
$\operatorname{armSize}$	int	${ m T}$
doseTime	real	${ m T}$
duration	real	${ m T}$
equivalenceRange	vector	${ m T}$
features	vector [sampleElement]	${ m T}$
fim	string	${ m T}$
$\operatorname{graphInfA}$	vector	${ m T}$
graphLogical	boolean	${ m T}$
$\operatorname{graphOnly}$	boolean	${ m T}$
$\operatorname{graphSupA}$	vector	${ m T}$
identicalTimes	boolean	${ m T}$
iterPrint	boolean	${ m T}$
logLogical	boolean	${ m T}$
lowerA	vector	${ m T}$
\max Iter	int	${ m T}$
nSubjectsComparison	boolean	${ m T}$
nSubjectsEquivalence	boolean	${ m T}$
namesDataX	vector [string]	${ m T}$
namesDataY	vector [string]	${ m T}$
numberArms	vector [int]	${ m T}$
numberArms	vector [int]	${ m T}$
numberSamples	vector [int]	${ m T}$
numberTimes	int	${ m T}$
powerComparison	boolean	${ m T}$
powerEquivalence	boolean	${ m T}$
previousFim	string	${ m T}$
rcTol	real	${ m T}$
sampleTime	real	${ m T}$
simplexParameter	real	${ m T}$
$\operatorname{subjectsOpt}$	boolean	${ m T}$
totalCost	real	${ m T}$
totalSize	int	${ m T}$
typeIError	real	${f T}$
typeIIError	real	${f T}$
upperA	vector	${ m T}$

2.11 FUNCTIONS

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

• Variable definition (no RHS)

2.12 GROUP_VARIABLES

Defines group variables

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

- Variable definition (with RHS)
- Variable definition (no RHS)

2.13 IDV

Defines the individual variable of the model

Constraints

Number of blocks in object (1, 1)Number of statements in block (1, 1)

Permitted statement types

• Variable definition (no RHS)

2.14 INDIVIDUAL_VARIABLES

 $Defines\ individual\ parameters$

${\bf Constraints}$

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

- Variable definition (with RHS)
- Equation with LHS transformation and RHS
- List definition (conditional lists permitted)
- Anonymous list

List	Key Attribute	Key Value
IndivParamGeneral	type	general
${\bf Indiv Param Linear}$	type	linear
IndivRvList	type	rv

2.15 INFO

Contains information about the model.

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

• Property statement

Properties

Name	Type	Optional
name	string	Τ
problemStmt	string	${ m T}$

2.16 INPUT_PRIOR_DATA

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

• Anonymous list

List	Key Attribute	Key Value
PriorMatrixInput	matrixVar	N/A
PriorVectorInput	vectorVar	N/A

2.17 INTERVENTION

Constraints

Number of blocks in object $(1, \infty)$ Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

ullet List definition

List	Key Attribute	Key Value
AdminBolusList	type	bolus
AdminComplexList	$_{\mathrm{type}}$	combi
AdminInfusionList	type	infusion
${\bf AdminResetAllList}$	type	resetAll
AdminResetList	type	reset

2.18 MODEL_PREDICTION

Defines the model prediction

${\bf Constraints}$

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

- Variable definition (no RHS)
- Variable definition (with RHS)
- \bullet List definition

Sub-Blocks

Name	Description
COMPARTMENT	
DEQ	

List	Key Attribute	Key Value
DerivList	N/A	N/A

2.19 NON_CANONICAL_DISTRIBUTION

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

• Variable definition (no RHS)

Sub-Blocks

Name Description
INPUT_PRIOR_DATA
PRIOR_SOURCE

2.20 OBJECTS

Constraints

Number of blocks in object (1, 1)Number of statements in block (4, 5)

${\bf Permitted\ statement\ types}$

 \bullet List definition

List	Key Attribute	Key Value
MdlObjInMog	N/A	N/A

2.21 OBSERVATION

Defines observations

${\bf Constraints}$

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

- Variable definition (with RHS)
- Equation with LHS transformation and RHS
- List definition (conditional lists permitted)
- Anonymous list

List	Key Attribute	Key Value
CatObs	type	categorical
ContinuousObsList	$_{\mathrm{type}}$	continuous
CountObs	type	count
DiscreteObs	type	discrete
TteObs	type	tte
User Defined Obs List	type	userDefined
additive Error List	type	additive Error
combinedError1List	type	combinedError1
combined Error 2 List	type	${\bf combined Error 2}$
proportional Error List	type	proportional Error

2.22 OPTIMISE

Constraints

Number of blocks in object (0, 1)Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

ullet Property statement

Sub-Blocks

Name	Description
TARGET_SETTINGS	

Properties

Name	Type	Optional
amount	real	T
$\operatorname{armSize}$	int	${ m T}$
armSize	int	${ m T}$
doseTime	real	${ m T}$
duration	real	${ m T}$
equivalenceRange	vector	${ m T}$
features	vector [sampleElement]	${ m T}$
fim	string	${ m T}$
$\operatorname{graphInfA}$	vector	${ m T}$
graphLogical	boolean	${ m T}$
graphOnly	boolean	${ m T}$
$\operatorname{graphSupA}$	vector	${ m T}$
identicalTimes	boolean	${ m T}$
iterPrint	boolean	${ m T}$
logLogical	boolean	${ m T}$
lowerA	vector	${ m T}$
\max Iter	int	${ m T}$
nSubjectsComparison	boolean	${ m T}$
nSubjectsEquivalence	boolean	${ m T}$
namesDataX	vector [string]	${ m T}$
namesDataY	vector [string]	${ m T}$
numberArms	vector [int]	${ m T}$
numberArms	vector [int]	${ m T}$
numberSamples	vector [int]	${ m T}$
numberTimes	int	${ m T}$
optAlgo	OptAlgoType	${ m T}$
powerComparison	boolean	${ m T}$
powerEquivalence	boolean	${f T}$
previousFim	string	${f T}$
rcTol	real	${ m T}$
sampleTime	real	${ m T}$
simplexParameter	real	${ m T}$
subjectsOpt	boolean	${f T}$
totalCost	real	${ m T}$
totalSize	int	${ m T}$
typeIError	real	${ m T}$
typeIIError	real	${ m T}$
upperA	vector	${f T}$

2.23 POPULATION

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

ullet List definition

List	Key Attribute	Key Value
PopulationTemplate	type	template

2.24 POPULATION_PARAMETERS

Defines population parameters

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

• Anonymous list

List	Key Attribute	Key Value
PopnCategoricalList	type	categorical
PopnContinuousList	type	continuous

2.25 PRIOR_PARAMETERS

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

- $\bullet\,$ Variable definition (no RHS)
- Variable definition (with RHS)

2.26 PRIOR_SOURCE

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

ullet List definition

List	Key Attribute	Key Value	
PriorSourceCsv	inputFormat	csv	

2.27 PRIOR_VARIABLE_DEFINITION

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

- $\bullet\,$ Variable definition (no RHS)
- Variable definition (with RHS)
- Random variable definition

2.28 RANDOM_VARIABLE_DEFINITION

Defines random variables

Arguments

Attribute	Type	Optional	Description
level	varLevel	false	Variability level

${\bf Constraints}$

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

- ullet Random variable definition
- Categorical parameter definition
- Anonymous list

List	Key Attribute	Key Value
CorrelationList	type	correlation
CovarianceList	type	covariance

2.29 SAMPLING

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

ullet List definition

List	Key Attribute	Key Value
DerivedSamplingList	type	combi
SimpleSamplingList	type	$_{\rm simple}$

2.30 SIMULATE

Constraints

Number of blocks in object (0, 1)Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

ullet Property statement

Sub-Blocks

Name	Description
TARGET_SETTINGS	

Properties

Name	Type	Optional
solver	solverType	Т

2.31 SOURCE

Constraints

Number of blocks in object (1, 1)Number of statements in block (1, 1)

${\bf Permitted\ statement\ types}$

ullet List definition

List	Key Attribute	Key Value
Source	N/A	N/A

2.32 STRUCTURAL

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

ullet List definition

List	Key Attribute	Key Value
StructuralEstimateMatrix	matrixValue	N/A
${\bf Structural Estimate Real}$	value	N/A
${\bf Structural Estimate Vector}$	vectorValue	N/A

2.33 STRUCTURAL_PARAMETERS

 ${\bf Defines\ structural\ parameters}$

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

- Variable definition (no RHS)
- Variable definition (with RHS)

2.34 STUDY_DESIGN

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

• List definition

Lists

List	Key Attribute	Key Value
StudyDesign	N/A	N/A

Properties

Name	Type	Optional
armSize	int	Т
numberArms	vector [int]	${ m T}$
numberSamples	vector [int]	${ m T}$
sameTimes	boolean	${ m T}$
totalCost	real	${ m T}$
totalSize	int	${ m T}$

2.35 TARGET_SETTINGS

Arguments

Attribute	Type	Optional	Description
settingsFile	vector [string]	true	
target	string	false	

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

• Property statement

2.36 VARIABILITY

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

${\bf Permitted\ statement\ types}$

ullet List definition

List	Key Attribute	Key Value
VarEstimateMatrix	matrixValue	N/A
VarEstimateReal	value	N/A
VarEstimateVector	vectorValue	N/A

2.37 VARIABILITY_LEVELS

Defines variability levels

Arguments

Attribute	Type	Optional	Description
reference	varLevel	true	Variability level to use as reference (typically BSV)

Constraints

Number of blocks in object (0, 1)Number of statements in block $(0, \infty)$

Permitted statement types

ullet List definition

List	Key Attribute	Key Value
varLevel	N/A	N/A

2.38 VARIABILITY_PARAMETERS

Defines variability parameters

Constraints

Number of blocks in object $(0, \infty)$ Number of statements in block $(0, \infty)$

Permitted statement types

- Variable definition (no RHS)
- Variable definition (with RHS)

3 List Definitions

3.1 AdminBolusList

Options:

 ${\bf extends} \ {\bf AdminSuperList}$

anonymous false

can define categories false

Attribute	Type	Description
amount	real	
doseIntervalVar	reference	
doseTime	vector	
input	reference [dosingTarget]	
last Dose Time Var	reference	
p	real	
ssInterval	real	
${\it time} Last SSDose$	real	
type	AdminTypeType	

Signatures

(type, input, amount, p?, doseTime, doseIntervalVar?, lastDoseTimeVar?) (type, input, amount, p?, ssInterval?, timeLastSSDose)

3.2 AdminComplexList

Options:

 ${\bf extends} \ {\bf AdminSuperList}$

anonymous false

can define categories false

Attribute	Type	Description
combination	vector [AdminSuperList]	
end	vector	
start	vector	
type	AdminTypeType	
Signatures		

(type, combination, start?, end?)

3.3 AdminInfusionList

Options:

 ${\bf extends} \ {\bf AdminSuperList}$

anonymous false

can define categories false

Attribute	Type	Description
amount	real	
doseIntervalVar	reference	
doseTime	vector	
duration	vector	
input	reference [dosingTarget]	
last Dose Time Var	reference	
p	real	
rate	vector	
ssInterval	real	
${\it time} Last SSDose$	real	
timeStopSSInfusion	real	
type	AdminTypeType	

Signatures

(type, input, amount, p?, doseTime, rate, doseIntervalVar?, lastDoseTimeVar?)

(type, input, amount, p?, doseTime, duration)

 $(type,\,input,\,amount,\,p?,\,rate,\,ssInterval?,\,timeLastSSDose)$

(type, input, amount, p?, duration, ssInterval?, timeLastSSDose)

(type, input, rate, p?, timeStopSSInfusion)

3.4 AdminResetAllList

Options:

extends AdminSuperList

anonymous false

can define categories false

Attribute	Type	Description
type	AdminTypeType	

Signatures (type)

3.5 AdminResetList

Options:

 ${\bf extends} \ {\bf AdminSuperList}$

anonymous false

can define categories false

Attribute	Type	Description
reset	vector [ResetSublist]	_
type	AdminTypeType	
Signatures (type, reset)		

3.6 AdminSuperList

Options:

 ${\bf anonymous} \ \ {\bf false}$

 ${\bf can \ define \ categories \ } {\it false}$

List Super Type

3.7 Amt

Options:

extends DataColumn

anonymous false

 ${\bf can\ define\ categories\ } {\rm false}$

Attribute	Type	Description
define	DoseMapping	
use	divUse	
variable	reference [dosingTarget]	
Signatures		
(use, define)		
(use, varia	ble)	

3.8 BlqList

Options:

anonymous false

can define categories false

Attribute	Type	Description
blqMethod	blkType	
lloq	real	

Signatures (blqMethod, lloq)

3.9 CatCovariate

Options:

extends DataColumn

anonymous false

can define categories true

supports category mapping with type int

category mapping optional false

Signatures (use)

3.10 CatObs

Options:

extends observation

anonymous true

can define categories false

Attribute	Type	Description
type	obstype	
variable	randomVariable [genericEnum]	

Signatures (type, variable)

3.11 CensCol

Options:

extends DataColumn

anonymous false

can define categories false

Attribute	Type	Description
use	divUse	

Signatures (use)

3.12 Cmt

Options:

extends DataColumn

anonymous false

can define categories false

Attribute	Type	Description
use	divUse	

Signatures (use)

3.13 CmtDirect

Options:

anonymous false

can define categories false

alternate type real

Attribute	Type	Description
finput	real	
modelCmt	int	
modelDur	real	
tlag	real	
to	reference [dosingTarget]	
type	cmtType	
v -	<u> </u>	

Signatures

(type, modelCmt?, to, modelDur?, tlag?, finput?)

3.14 Compartment

Options:

 $\mathbf{extends}$ $\mathbf{dosingTarget}$

 ${\bf anonymous} \ \ {\bf false}$

can define categories false

 ${\bf alternate\ type\ real}$

Attribute	Type	Description
modelCmt	int	_
type	$\operatorname{cmtType}$	

 ${\bf Signatures}$

(type, modelCmt?)

3.15 ContinuousObsList

 ${\bf Options:}$

extends observation

anonymous true

 ${\bf can \ define \ categories \ false}$

Attribute	Type	Description	
type	obstype		
variable	randomVariable [real]		
Signatures			
(type, variable)			

3.16 CorrelationList

 ${\bf Options:}$

anonymous true

can define categories false

Attribute	Type	Description
matrix	matrix	
rv1	$\operatorname{random} \operatorname{Variable}$	
rv2	$\operatorname{random}\operatorname{Variable}$	
type	${\bf Correlation Enum Type}$	
value	real	

Signatures

(type, matrix)

(type, rv1, rv2, value)

3.17 CountObs

Options:

extends observation

anonymous true

can define categories false

Attribute	Type	Description
type	obstype	_
variable	randomVariable [int]	
Signatures		
(type, varia	able)	

3.18 CovarianceList

Options:

anonymous true

${\bf can \ define \ categories \ } {\it false}$

Attribute	Type	Description
matrix	matrix	
rv1	$\operatorname{randomVariable}$	
rv2	$\operatorname{randomVariable}$	
type	CorrelationEnumType	
value	real	
Signatures		
(type, matrix)		
(type, rv1,	rv2, value)	

3.19 Covariate

Options:

extends DataColumn

anonymous false

 ${\bf can \ define \ categories \ } {\it false}$

${\bf alternate\ type\ real}$

Attribute	Type	Description
interp	reference [function (real, real, real, real, real)real]	
use	div Use	
Signatures		
(use, interp	o?)	

3.20 DDCatCovariate

Options:

anonymous false

can define categories true

supports category mapping with type int

category mapping optional false

Attribute	Type	Description
use	ddvUse	
Signatures	_	

DDCovariate

(use)

3.21 Options:

anonymous false

 ${\bf can\ define\ categories\ } {\rm false}$

Attribute	Type	Description
column	reference [DataColumn]	
use	ddvUse	
Signatures		
(use, colum	$\overline{\mathrm{nn}}$	

3.22 DDVariable

Options:

anonymous false

can define categories false

3.23 DataColumn

Options:

anonymous false

 ${\bf can \ define \ categories \ } {\it false}$

List Super Type

3.24 DataVarLevel

Options:

extends DataColumn

anonymous false

can define categories false

Attribute	Type	Description
use	divUse	

Signatures (use)

3.25 DataVariable

 ${\bf Options:}$

extends DataColumn

anonymous false

 ${\bf can \ define \ categories \ } {\it false}$

Attribute	Type	Description
interp	reference [function (real, real, real, real, real)real]	
use	div Use	
Signatures		
(use, interp	0?)	

3.26 Depot

Options:

anonymous false

can define categories false

${\bf alternate\ type\ real}$

Attribute	Type	Description
finput	real	
ka	real	
ktr	real	
modelCmt	int	
modelDur	real	
mtt	real	
$_{ m tlag}$	real	
to	reference [dosingTarget]	
type	cmtType	
Signatures		
(type, mode	elCmt?, to, ka, tlag?, finput	?)

(type, modelCmt?, to, ka, ktr, mtt)

(type, modelCmt?, to, modelDur, ktr, mtt)

(type, modelCmt?, to, modelDur, tlag?, finput?)

3.27 DerivList

Options:

extends dosingTarget

anonymous false

can define categories false

alternate type deriv

Attribute	Type	Description
deriv	real	
init	real	
wrt	reference [real]	
x0	real	
Signatures		

(deriv, init?, x0?, wrt?)

DerivedSamplingList 3.28

Options:

 ${\bf extends} \ {\rm SamplingSuper}$

anonymous false

 ${\bf can \ define \ categories \ false}$

Attribute	Type	Description
combination	vector [reference [SamplingSuper]]	
numberTimes	int	
relative	boolean	
start	vector [real]	
type	sampletype	
Signatures		_
(type combine	tion numberTimes? start? relative?)	

(type, combination, numberTimes?, start?, relative?)

DesignSpaceArmSize 3.29

Options:

anonymous false

can define categories false

Attribute	Type	Description
discrete	vector	
element	sampleElement	
objRef	vector [reference [StudyDesign]]	
range	vector	
Signatures		
(objRef, ele	ement, discrete)	
(objRef, el	ement, range)	

3.30 DesignSpaceBolusAmt

Options:

anonymous false

${\bf can \ define \ categories \ } {\it false}$

Attribute	Type	Description
discrete	vector	
element	sampleElement	
objRef	vector [reference [AdminBolusList]]	
range	vector	

Signatures

(objRef, element, discrete) (objRef, element, range)

3.31 DesignSpaceCov

Options:

anonymous false

can define categories false

Attribute	Type	Description	
discrete	vector		
element	sampleElement		
objRef	vector [reference [real]]		
range	vector		
Signatures			
(objRef, element, discrete)			
(objRef, element, range)			

3.32 DesignSpaceDoseTime

Options:

anonymous false

can define categories false

Attribute	Type	Description
discrete	vector	
element	sampleElement	
objRef	vector [reference [AdminBolusList]]	
range	vector	
Signatures		
(objRef, el	ement, discrete)	
,	ement, range)	

3.33 DesignSpaceDuration

Options:

anonymous false

can define categories false

Attribute	Type	Description
discrete	vector	
element	sampleElement	
objRef	vector [reference [AdminInfusionList]]	
range	vector	
Signatures		
(objRef, element, discrete)		
(objRef, element, range)		

${\bf 3.34}\quad {\bf DesignSpaceInfAmt}$

Options:

anonymous false

can define categories false

Attribute	Type	Description
discrete	vector	
element	sampleElement	
objRef	vector [reference [AdminInfusionList]]	
range	vector	
Signatures		
(objRef, element, discrete)		
(objRef, el	ement, range)	
Signatures (objRef, ele	ement, discrete)	

${\bf 3.35}\quad {\bf Design Space Num Arms}$

Options:

anonymous false

${\bf can \ define \ categories \ false}$

Attribute	Type	Description
discrete	vector	
element	sampleElement	
objRef	vector [reference [StudyDesign]]	
range	vector	
Signatures		
(objRef, element, discrete)		
(objRef, element, range)		

3.36 DesignSpaceNumTimes

Options:

anonymous false

${\bf can \ define \ categories \ false}$

Attribute	Type	Description
discrete	vector	
element	sampleElement	
objRef	vector [reference [SamplingSuper]]	
range	vector	
Signatures		
(objRef, element, discrete)		
(objRef, element, range)		

${\bf 3.37}\quad {\bf Design Space Param}$

Options:

anonymous false

can define categories false

Attribute	Type	Description
discrete	vector	
element	sampleElement	
objRef	vector [reference [real]]	
range	vector	
Signatures		
(objRef, element, discrete)		
(objRef, element, range)		

3.38 DesignSpaceSampleTimes

Options:

anonymous false

${\bf can \ define \ categories \ } {\rm false}$

Attribute	Type	Description
discrete	vector	
element	sampleElement	
objRef	vector [reference [SamplingSuper]]	
range	vector	

Signatures

(objRef, element, discrete) (objRef, element, range)

3.39 DiscreteObs

Options:

extends observation

anonymous true

can define categories false

Attribute	Type	Description
type	obstype	
variable	randomVariable [genericEnum]	
Cimptung		

Signatures

(type, variable)

3.40 Distribution

Options:

anonymous false

 ${\bf can \ define \ categories \ } {\it false}$

Attribute	Type	Description
from	reference [dosingTarget]	
kin	real	
kout	real	
modelCmt	int	
type	cmtType	
Signatures		
(type, modelCmt?, kin, kout, from)		

3.41 DoseInterval

Options:

anonymous false

can define categories false

Attribute	Type	Description	
amtColumn	reference [Amt]		
idvColumn	reference [Idv]		
use	ddvUse		
Signatures		_	
(use, idvColumn, amtColumn)			

3.42 DoseTime

Options:

anonymous false

 ${\bf can \ define \ categories \ false}$

Attribute	Type	Description	
amtColumn	reference [Amt]		
idvColumn	reference [Idv]		
use	ddvUse		
Signatures			
(use, idvColumn, amtColumn)			

3.43 Dv

Options:

extends DataColumn

anonymous false

can define categories false

Attribute	Type	Description
define	ObsMapping	
use	divUse	
variable	reference [observation]	
	-	
Signatures		
(use, define)		
(use, varia	ble)	

3.44 Dvid

Options:

extends DataColumn

anonymous false

can define categories false

Attribute	Type	Description
use	divUse	

Signatures (use)

3.45 Effect

Options:

anonymous false

can define categories false

alternate type real

Attribute	Type	Description	
from	reference [dosingTarget]		
keq	real		
modelCmt	int		
$_{\mathrm{type}}$	$\operatorname{cmtType}$		
Signatures			
(type, mode	(type, modelCmt?, from, keq)		

(type, moderemer, from, ke

3.46 Elimination

Options:

anonymous true

${\bf can \ define \ categories \ false}$

Attribute	Type	Description
cl	real	
$_{ m from}$	reference [dosingTarget]	
k	real	
km	real	
modelCmt	int	
type	$\operatorname{cmtType}$	
v	real	
vm	real	

Signatures

(type, modelCmt?, from, v?, k) (type, modelCmt?, from, v?, cl) (type, modelCmt?, from, vm, km)

3.47 Evid

Options:

 ${\bf extends}\ {\rm DataColumn}$

anonymous false

can define categories false

Attribute	Type	Description
use	divUse	

 $\frac{\text{Signatures}}{\text{(use)}}$

3.48 Id

Options:

extends DataColumn

anonymous false

can define categories false

Attribute	Type	Description
use	divUse	

Signatures (use)

$3.49 ext{ Idv}$

Options:

extends DataColumn

anonymous false

can define categories false

Signatures (use)

3.50 IndivAbstractList

Options:

anonymous false

can define categories false

alternate type real

List Super Type

3.51 IndivParamGeneral

Options:

extends IndivAbstractList

anonymous false

can define categories false

 ${\bf alternate\ type\ real}$

Attribute	Type	Description
grp	real	
ranEff	vector [randomVariable]	
trans	transType	
$_{\mathrm{type}}$	IndivTypeType	
Signatures		
(type, trans?, grp, ranEff)		

3.52 IndivParamLinear

Options:

extends IndivAbstractList

anonymous false

can define categories false

alternate type real

Attribute	Type	Description
fixEff	vector [fixEffAtts]	
pop	real	
ranEff	vector [randomVariable]	
trans	transType	
$_{\mathrm{type}}$	IndivTypeType	
Signatures		
(type, trans?, pop, fixEff?, ranEff)		

3.53 IndivRvList

Options:

 ${\bf extends} \ \, {\bf IndivAbstractList}$

anonymous true

can define categories false

Attribute	Type	Description	
type	IndivTypeType		
variable	randomVariable [real]		
Signatures			
(type, varia	(type, variable)		

3.54 IndivUserDefined

Options:

 ${\bf extends} \ \, {\bf IndivAbstractList}$

anonymous false

can define categories false

 ${\bf alternate\ type\ real}$

Attribute	Type	Description
type	IndivTypeType	
value	real	
Signatures		
(type, valu	ie)	

3.55 MdlObjInMog

 ${\bf Options:}$

anonymous false

can define categories false

Attribute	Type	Description
type	objType	

Signatures (type)

3.56 Mdv

Options:

 ${\bf extends}\ {\rm DataColumn}$

anonymous false

can define categories false

Attribute	Type	Description
use	divUse	

Signatures (use)

3.57 PopnCategoricalList

Options:

anonymous true

can define categories false

Attribute	Type	Description
type	PopnTypeType	
variable	randomVariable [genericEnum]	
Signatures		
(type, varia	able)	

3.58 PopnContinuousList

Options:

anonymous true

can define categories false

Attribute	Type	Description
type	PopnTypeType	
variable	random Variable [real]	

Signatures (type, variable)

3.59 PopulationTemplate

Options:

anonymous false

can define categories false

Attribute	Type	Description
covariate	vector [PopTmpltCovSublist]	
type	PopnType	
Signatures		

(type, covariate)

3.60 PriorMatrixInput

Options:

anonymous true

 ${\bf can \ define \ categories \ } {\it false}$

Attribute	Type	Description
column	vector [string]	
matrixVar	reference [matrix [[real]]]	
src	PriorSourceCsv	
Signatures		
(matrixVar,	src, column)	

3.61 PriorSourceCsv

Options:

 ${\bf extends}\ {\bf PriorTabularSource}$

anonymous false

can define categories false

Attribute	Type	Description
column	vector [string]	
file	string	
inputFormat	priorInput	

Signatures

(file, inputFormat, column)

3.62 PriorTabularSource

Options:

anonymous false

can define categories false

List Super Type

3.63 PriorVectorInput

Options:

anonymous true

can define categories false

Attribute	Type	Description
column	string	
src	PriorSourceCsv	
vectorVar	reference [vector [real]]	
Signatures		
(vectorVar,	src, column)	

3.64 SamplingSuper

Options:

anonymous false

can define categories false

List Super Type

3.65 Simple Sampling List

Options:

 ${\bf extends} \ {\rm SamplingSuper}$

anonymous false

can define categories false

Attribute	Type	Description
blq	real	
deltaTime	real	
numberTimes	int	
outcome	reference [observation]	
sampleTime	vector	
type	sampletype	
ulq	real	

(type, outcome, sampleTime?, numberTimes?, deltaTime?, blq?, ulq?)

3.66 Source

Options:

anonymous false

can define categories false

Attribute	Type	Description
file	string	
input Format	input	

Signatures

(file, inputFormat)

3.67 StructuralEstimateMatrix

Options:

anonymous false

can define categories false

alternate type matrix

Attribute	Type	Description
fix	boolean	
matrixValue	matrix	

Signatures

(matrixValue, fix?)

3.68 StructuralEstimateReal

Options:

anonymous false

 ${\bf can \ define \ categories \ false}$

 ${\bf alternate\ type\ real}$

Attribute	Type	Description
fix	boolean	
hi	real	
lo	real	
value	real	

Signatures

(value, lo?, hi?, fix?)

3.69 Structural Estimate Vector

Options:

anonymous false

can define categories false

alternate type vector

Attribute	Type	Description
fix	boolean	
vectorValue	vector	

Signatures

(vectorValue, fix?)

3.70 StudyDesign

Options:

anonymous false

can define categories false

Attribute	Type	Description
armSize	int	
interventionSequence	vector [intSeqAtts]	
occasionSequence	vector [OccSeqSubList]	
population	reference [PopulationTemplate]	
sameTimes	boolean	
sampling Sequence	vector [sampSeqAtts]	

(interventionSequence, samplingSequence, occasionSequence?, armSize?, sameTimes?, population?)

3.71 Transfer

Options:

anonymous true

can define categories false

Attribute	Type	Description
from	reference [dosingTarget]	
kt	real	
modelCmt	int	
to	reference [dosingTarget]	
type	$\operatorname{cmtType}$	
Signatures		
(type, mode	elCmt?, to, from, kt)	

3.72 TteObs

Options:

 ${\bf extends}$ observation

anonymous false

can define categories false

Attribute	Type	Description
hazard	reference [real]	
\max Event	real	
type	obstype	
Signatures		
(type, haza	rd, maxEvent?)	

3.73 UserDefinedObsList

Options:

extends observation

anonymous false

can define categories false

Attribute	Type	Description
prediction	real	
type	obstype	
value	real	
weight	real	

Signatures

(type, value, prediction, weight)

3.74 VarEstimateMatrix

Options:

anonymous false

can define categories false

alternate type matrix

Attribute	Type	Description
fix	boolean	
matrixValue	matrix	
type	varType	
Signatures		
(type?, matrix	xValue, fix	?)

VarEstimateReal

3.75 Options:

anonymous false

can define categories false

 ${\bf alternate\ type\ real}$

Attribute	Type	Description
fix	boolean	
hi	real	
lo	real	
type	varType	
value	real	
Cimpotunos		

Signatures

(type?, value, lo?, hi?, fix?)

3.76 VarEstimateVector

Options:

anonymous false

can define categories false

alternate type vector

Attribute	Type	Description
fix	boolean	
type	varType	
vectorValue	vector	
Signatures		
(type?, vecto	rValue, fix	?)

3.77 additive Error List

Options:

extends observation

anonymous false

can define categories false

Attribute	Type	Description
additive	real	
eps	randomVariable [real]	
lhsTrans	boolean	
prediction	real	
trans	transType	
type	obstype	
Signatures		
(type trans	? lhsTrans? additive n	rediction ens)

(type, trans?, lhsTrans?, additive, prediction, eps)

3.78 addl

Options:

extends DataColumn

anonymous false

can define categories false

Attribute	Type	Description
use	divUse	

Signatures (use)

3.79 blkDefn

Options:

anonymous false

 ${\bf can \ define \ categories \ } {\it false}$

Attribute	Type	Description
llq	real	
type	blkMethodType	
Signatures		
(type, llq)	_	

3.80 combinedError1List

Options:

extends observation

anonymous false

can define categories false

Attribute	Type	Description
additive	real	
eps	randomVariable [real]	
lhsTrans	boolean	
prediction	real	
proportional	real	
trans	transType	
type	obstype	
Signatures		

(type, trans?, lhsTrans?, additive, proportional, prediction, eps)

3.81 combined Error 2 List

Options:

extends observation

anonymous false

can define categories false

Attribute	Type	Description
additive	real	
eps	randomVariable [real]	
lhsTrans	boolean	
prediction	real	
proportional	real	
trans	transType	
type	obstype	
C: 4		

Signatures

(type, trans?, lhsTrans?, additive, proportional, prediction, eps)

3.82 dosingTarget

Options:

anonymous false

 ${\bf can \ define \ categories \ } {\it false}$

List Super Type

3.83 dosingVar

Options:

 $\mathbf{extends}$ $\mathbf{dosingTarget}$

anonymous false

can define categories false

 ${\bf alternate\ type\ real}$

Attribute	Type	Description
value	real	

Signatures (value)

3.84 ignore

Options:

anonymous false

can define categories false

Attribute Type Description use divUse

Signatures (use)

3.85 ii

Options:

extends DataColumn

anonymous false

can define categories false

Attribute Type Description use divUse

Signatures (use)

3.86 observation

Options:

anonymous false

can define categories false

List Super Type

3.87 proportional Error List

Options:

extends observation

 ${\bf anonymous} \ \ {\bf false}$

can define categories false

Attribute	Type	Description
eps	randomVariable [real]	
lhsTrans	boolean	
prediction	real	
proportional	real	
trans	transType	
type	obstype	

Signatures

(type, trans?, lhsTrans?, proportional, prediction, eps)

3.88 rate

Options:

 ${\bf extends}\ {\rm DataColumn}$

 ${\bf anonymous} \ \ {\bf false}$

can define categories false

Attribute	Type	Description
use	divUse	

 $\frac{\text{Signatures}}{\text{(use)}}$

3.89 ss

Options:

extends DataColumn

anonymous false

 ${\bf can \ define \ categories \ } {\it false}$

Attribute	Type	Description
use	divUse	

Signatures (use)

3.90 varLevel

Specifies a variability level Options:

anonymous false

${\bf can \ define \ categories \ } {\it false}$

Attribute	Type	Description
level	int	The position in the variability hierarchy.
type	varLvlType	The type of variability level

Signatures (type, level)

4 Sublist Definitions

4.1 fixEffAtts

Attribute	Type	Description
catCov	reference [genericCategoryValue]	Categorical covariate
coeff	reference [real]	Fixed effect coefficient
cov	reference [real]	Covariate
Signatures		
(cov, coeff)		
(catCov, co	peff)	

4.2 priorFormat

Attribute	Type	Description
element	string	
type	priorElementType	
Signatures		
(element, t	ype)	

4.3 ResetSublist

Attribute	Type	Description
resetTime	real	
value	real	
variable	reference [dosingTarget]	
Signatures		
(variable, re	esetTime?, value?)	

4.4 intSeqAtts

Attribute	Type	Description
admin	vector [reference [AdminSuperList]]	
start	vector	
Signatures		
(admin, sta	art?)	

4.5 sampSeqAtts

Attribute	Type	Description
sample	vector [reference [SamplingSuper]]	
start	vector	

Signatures (sample, start)

${\bf 4.6}\quad {\bf OccSeqSubList}$

Attribute	Type	Description
level	reference [varLevel]	
occasion	vector [int]	
start	vector	
Signatures		
(occasion,	level, start?)	

${\bf 4.7} \quad {\bf PopTmpltCovSublist}$

Attribute	Type	Description
catCov	reference [genericEnum]	
${\it cat} {\it CovValue}$	reference [genericCategoryValue]	
cov	reference [real]	
discreteRv	randomVariable [genericEnum]	
rv	randomVariable [real]	
value	real	
Signatures		
(catCovValue)		
(cov, value)		
(cov, rv)		
(catCov, discr	reteRv)	

5 Function Definitions

5.1 Bernoulli1

Bernoulli distributions

 ${\bf Returns} \ {\bf pmf}$

Named Arguments

Type	Description
real	
)	

5.2 Beta1

Beta distribution

 ${\bf Returns} \ \, {\rm pdf}$

Named Arguments

Argument	Type	Description
alpha	real	shape
beta	real	shape

Signatures (alpha, beta)

5.3 Binomial1

Bernouli distributon with parameters n and p

 ${\bf Returns} \ {\bf pmf}$

Named Arguments

Argument	Type	Description	
numberOfTrials	real	number of trial	
probability	real	success probability in each trial	
Signatures			
(probability, num	berOfT	rials)	

5.4 Categorical Nonordered 1

 ${\bf Returns} \ {\bf pmf}$

Argument	Type	Description
categoryProb	vector [real]	
Signatures		
(categoryProb))	

5.5 Categorical Ordered 1

 ${\bf Returns} \ {\bf pmf}$

Named Arguments

Argument	Type	Description
categoryProb	vector [real]	
Ciamatumaa		
Signatures		
(categoryProb))	

5.6 Empirical

 ${\bf Returns} \ {\bf pdf}$

Named Arguments

Argument	Type	Description
data	vector	
G :		
Signatures		
(data)	-	

5.7 Gamma1

 ${\bf Returns}\ {\rm pdf}$

Named Arguments

Argument	Type	Description	
scale	real		
$_{\mathrm{shape}}$	real		
Signatures			
(shape, scal	le)		

5.8 Gamma2

${\bf Returns}\ {\rm pdf}$

Named Arguments

Argument	Type	Description
rate	real	
shape	real	
Signatures		
(shape, rate	e)	

5.9 InverseGamma1

Inverse Gamma 1

 $\mathbf{Returns}\ \mathrm{pdf}$

Named Arguments

Argument	Type	Description
scale	real	scale
shape	real	$_{\mathrm{shape}}$

Signatures (shape, scale)

5.10 InverseWishart1

Inverse Wishart

 ${\bf Returns}\ \, {\rm matrix}\ [[{\rm pdf}\]]$

Named Arguments

Argument	Type	Description
degreesOfFreedom	real	degrees of freedom
scaleMatrix	matrix	scale matrix

Signatures

(scaleMatrix, degreesOfFreedom)

5.11 LogNormal1

Log Normal distribution 1

 ${\bf Returns} \ \, {\rm pdf}$

Argument	Type	Description
meanLog	real	mean of log
stdevLog	real	shape

Signatures

(meanLog, stdevLog)

5.12 LogNormal2

 ${\bf Log\ Normal\ distribution\ 2}$

 ${\bf Returns} \ {\bf pdf}$

Named Arguments

Argument	Type	Description
meanLog	real	mean of log
varLog	real	shape

Signatures

(meanLog, varLog)

5.13 LogNormal3

 ${\bf Log\ Normal\ distribution\ 3}$

 ${\bf Returns} \ \, {\rm pdf}$

Named Arguments

Argument	· ·	Description
median	real	median / geometric mean
stdevLog	real	shape

Signatures

(median, stdevLog)

5.14 LogNormal4

 ${\bf Log\ Normal\ distribution\ 4}$

 ${\bf Returns} \ {\bf pdf}$

Argument	Type	Description
coefVar	real	coefficient of variation
median	real	median / geometric mean
C:		

Signatures

(median, coefVar)

5.15 LogNormal5

 ${\bf Log\ Normal\ distribution\ 5}$

 ${\bf Returns}\ {\rm pdf}$

Named Arguments

Argument	Type	Description
meanLog	real	mean of $log(x)$
precision	real	precision
0		~ (/

 ${\bf Signatures}$

(meanLog, precision)

5.16 MixtureDistribution

 ${\bf Returns}\ {\rm pdf}$

Named Arguments

Argument	Type	Description
distributions	vector [pdf]	
weight	vector	mixing coefficients
Signatures		
(weight, distri	butions)	

5.17 MultiEmpirical

Returns vector [pdf]

Named Arguments

Argument	Type	Description
data	matrix	

Signatures (data)

5.18 MultiNonParametric

Returns vector [pdf]

Named Arguments

Argument	Type	Description	
bins	matrix		
probability	vector		
Signatures			
(bins, probability)			

5.19 MultivariateNormal1

Multivariate normal distribution

Returns vector [pdf]

Named Arguments

Argument	Type	Description
covarianceMatrix	matrix	covariance matrix
mean	vector	location
Signatures		
(mean, covarianceMatrix)		

5.20 MultivariateNormal2

Multivariate normal distribution

Returns vector [pdf]

Named Arguments

Argument	Type	Description
mean	vector	location
precisionMatrix	matrix	inverse of the covariance matrix
Signatures		
(mean, precision)	Matrix)	

5.21 MultivariateStudentT1

 ${\bf Multivariate~(Student)~T~distribution}$

Returns vector [pdf]

Argument	Type	Description
covarianceMatrix degreesOfFreedom mean	matrix real vector	covariance matrix degrees of freedom location

Signatures

(mean, covarianceMatrix, degreesOfFreedom)

5.22 MultivariateStudentT2

Multivariate (Student) T distribution

Returns vector [pdf]

Named Arguments

Argument	Type	Description
degreesOfFreedom	real	degrees of freedom
mean	vector	location
precisionMatrix	matrix	inverse of the covariance matrix

Signatures

(mean, precisionMatrix, degreesOfFreedom)

5.23 NegativeBinomial2

Negative Binomial

 ${\bf Returns} \ {\bf pmf}$

Named Arguments

Argument	Type	Description
overdispersion	real	over-dispersion
rate	real	Poisson intensity

Signatures

(rate, overdispersion)

5.24 NonParametric

 ${\bf Returns}\ {\rm pdf}$

Argument	Type	Description	
bins	vector		
probability	vector		
Signatures			
(bins, probability)			

5.25 Normal

Normal distribution with varying parameterisation

${\bf Returns}\ {\rm pdf}$

Named Arguments

Argument	Type	Description
mean	real	mean
sd	real	standard deviation
var	real	variance
Signatures		
(mean, sd)		
(mean, var))	

5.26 Normal1

Normal distribution with s.d.

${\bf Returns} \ \, {\rm pdf}$

Named Arguments

Argument	Type	Description
mean	real	mean
stdev	real	standard deviation
Signatures		
(mean, stde	ev)	

5.27 Normal2

Normal distribution with variance

${\bf Returns} \ {\bf pdf}$

Argument	Type	Description
mean	real	mean
var	real	variance

Signatures (mean, var)

5.28 Normal3

Normal distribution with precision

 ${\bf Returns}\ {\rm pdf}$

Named Arguments

Argument	Type	Description
mean	real	mean
precision	real	precision

Signatures (mean, precision)

5.29 Poisson1

Poisson distribution

 ${\bf Returns} \ {\bf pmf}$

Named Arguments

Argument	Type	Description
rate	real	Poisson intensity

Signatures (rate)

5.30 StandardNormal1

Standard normal distribution

 ${\bf Returns}\ {\rm pdf}$

Argument	Type	Description
mean	real	mean
stdev	real	standard deviation

Signatures (mean, stdev)

5.31 StandardUniform1

Standard uniform distribution

 ${\bf Returns}\ {\rm pdf}$

Named Arguments

Argument	Type	Description
maximum	real	maximum
minimum	real	minimum

Signatures (minimum, maximum)

5.32 StudentT1

Student's t-distribution

 ${\bf Returns} \ \, {\rm pdf}$

Named Arguments

Argument	Type	Description
degreesOfFreedom	real	

Signatures (degreesOfFreedom)

5.33 StudentT2

Student's t-distribution

 ${\bf Returns} \ \, {\rm pdf}$

Argument	Type	Description
degreesOfFreedom	real	
mean	real	mean
scale	real	scale

Signatures

(mean, scale, degreesOfFreedom)

5.34 Uniform1

Uniform distribution

 ${\bf Returns} \ {\bf pdf}$

Named Arguments

Argument	Type	Description
maximum	real	maximum
minimum	real	minimum

Signatures

(minimum, maximum)

5.35 Wishart1

Wishart distribution

Returns matrix [[pdf]]

Named Arguments

Argument	Type	Description
degreesOfFreedom	real	degrees of freedom
scaleMatrix	matrix	scale matrix

Signatures

(scaleMatrix, degreesOfFreedom)

5.36 Wishart2

Wishart distribution

Returns matrix [[pdf]]

Argument	Type	Description
degreesOfFreedom	real	degrees of freedom
inverseScaleMatrix	$_{ m matrix}$	inverse scale matrix

Signatures

(inverseScaleMatrix, degreesOfFreedom)

5.37 ZeroInflatedPoisson1

Sero-inflated Poisson

 ${\bf Returns}\ {\rm pdf}$

Named Arguments

Argument	Type	Description
probabilityOfZero	real	probability of zero
rate	real	Poisson intensity

Signatures

(rate, probabilityOfZero)

5.38 abs

 ${\bf Returns} \ \ {\rm real}$

Arguments

Argument	Type	Description
X	real	

5.39 acos

 ${\bf Returns} \ {\bf real}$

Arguments

Argument	Type	Description
X	real	

5.40 acosh

 ${\bf Returns} \ {\bf real}$

Arguments

Argument	Type	Description
X	real	

5.41 asVector

 ${\bf Returns} \ \ {\bf vector}$

Arguments

Argument	Type	Description
X	matrix	

5.42 asin

 ${f Returns}$ real

Arguments

Argument	Type	Description
X	real	

5.43 asinh

 ${\bf Returns}$ real

Arguments

Argument	Type	Description
X	real	

5.44 atan

Returns real

Arguments

Argument	Type	Description
X	real	

5.45 atanh

 ${f Returns}$ real

Argument	Type	Description
X	real	

5.46 ceiling

Returns real

Arguments

Argument	Type	Description
X	real	

5.47 chol

Cholsky decomposition

 ${\bf Returns}\ {\rm matrix}$

Arguments

Argument	Type	Description
A	matrix	_

5.48 constInterp

 ${\bf Returns} \ \ {\rm real}$

Arguments

Argument	Type	Description
t0	real	
t1	real	
x	real	
x0	real	
x1	real	

$5.49 \cos$

 ${\bf Returns} \ \ {\rm real}$

Arguments

Argument	Type	Description
X	real	

$5.50 \cosh$

 ${\bf Returns} \ {\bf real}$

Argument	Type	Description
X	real	

5.51 cubicInterp

 ${f Returns}$ real

Arguments

Argument	$_{\mathrm{Type}}$	Description
t0	real	
t1	real	
X	real	
x0	real	
x1	real	

5.52 det

Determinant

 ${\bf Returns} \ {\bf real}$

Arguments

Argument	Type	Description
A	matrix	

5.53 diagonal

 ${\bf Returns}\ {\rm matrix}$

Arguments

Argument	Type	Description
X	vector	_

5.54 dseq

Create a sequence of integers.

Returns vector [int]

Argument	Type	Description
from	int	_
interval	int	
to	int	

5.55 eigen

Eigen Value

 ${\bf Returns} \ {\bf real}$

Arguments

Argument	Type	Description
A	vector	

$5.56 \exp$

 ${f Returns}$ real

Arguments

Argument	Type	Description
X	real	

5.57 factorial

 ${\bf Returns}$ real

Arguments

Argument	Type	Description
X	real	

5.58 floor

 ${\bf Returns} \ {\bf real}$

Arguments

Argument	Type	Description
X	real	

5.59 gInv

Inversion (Pseudo/general Inverse)

 ${\bf Returns}\ {\rm matrix}$

Argument	Type	Description
A	matrix	

5.60 invLogit

Returns real

Arguments

Argument	Type	Description
X	real	

5.61 invProbit

 ${\bf Returns} \ {\bf real}$

Arguments

Argument	Type	Description
X	real	

5.62 inverse

 ${f Returns}\ {f matrix}$

Arguments

Argument	Type	Description
X	matrix	

5.63 lastValueInterp

 ${f Returns}$ real

Arguments

Argument	Type	Description
t0	real	
t1	real	
X	real	
x0	real	
x1	real	

5.64 linearInterp

 ${\bf Returns} \ {\bf real}$

Argument	Type	Description
t0	real	
t1	real	
X	real	
x0	real	
x1	real	

5.65 ln

 ${\bf Returns} \ {\bf real}$

Arguments

Argument	Type	Description
X	real	

5.66 InFactorial

 ${f Returns}$ real

Arguments

Argument	Type	Description
X	real	

$5.67 \log$

 ${\bf Returns} \ \ {\rm real}$

Arguments

Argument	Type	Description
X	real	
V	real	

$5.68 \log 10$

 ${\bf Returns} \ {\bf real}$

Arguments

Argument	Type	Description
X	real	

$5.69 \log 2$

 ${f Returns}$ real

Argument	Type	Description
X	real	

5.70 logit

 ${\bf Returns} \ {\bf real}$

Arguments

Argument	Type	Description
X	real	

5.71 matrix

 ${\bf Returns}\ {\rm matrix}$

Named Arguments

Argument	Type	Description
byRow	boolean	
ncol	real	
vector	vector	
a .		

Signatures

(vector, ncol, byRow)

5.72 max

 ${\bf Returns} \ {\bf real}$

Arguments

Argument	Type	Description
X	real	
У	real	

5.73 mean

 ${f Returns}$ real

Arguments

Argument	Type	Description
X	vector	

5.74 median

Returns real

Arguments

Argument	Type	Description
X	vector	

5.75 min

 ${f Returns}$ real

Arguments

Argument	Type	Description
x	real	
У	real	

5.76 nearestInterp

 ${\bf Returns}$ real

Arguments

Argument	Type	Description
t0	real	
t1	real	
x	real	
x0	real	
x1	real	

5.77 pchipInterp

 ${\bf Returns} \ {\bf real}$

Arguments

Argument	Type	Description
t0	real	
t1	real	
X	real	
x0	real	
x1	real	

5.78 probit

 ${\bf Returns} \ {\bf real}$

Argument	Type	Description
X	real	

5.79 rep

Repeats vector, similar to the R function.

${f Returns}$ vector

Arguments

Argument	Type	Description
each	int	Each element is repeated n times.
times	int	Number of times to repeat the vector
X	vector	

5.80 seq

Create a sequence of real numbers with given interval until to is reached.

${\bf Returns} \ \ {\bf vector}$

Arguments

Argument	Type	Description
from	real	
interval	real	
to	real	

5.81 seqby

Create a sequence of real numbers repeated n times

${\bf Returns} \ \ {\bf vector}$

Arguments

Argument	Type	Description
by	real	
$_{ m from}$	real	
to	real	

$5.82 \sin$

Returns real

Argument	Type	Description
X	real	

5.83 sinh

 ${f Returns}$ real

Arguments

Argument	Type	Description
X	real	

5.84 splineInterp

 ${\bf Returns} \ {\bf real}$

Arguments

Argument	Type	Description
t0	real	
t1	real	
X	real	
x0	real	
x1	real	

5.85 sqrt

 ${\bf Returns} \ {\bf real}$

Arguments

Argument	Type	Description
X	real	

5.86 sum

 ${\bf Returns}$ real

Arguments

Argument	Type	Description
X	vector	

5.87 tan

 ${f Returns}$ real

Argument	Type	Description
X	real	

5.88 tanh

 ${f Returns}$ real

Arguments

Argument	Type	Description
X	real	

5.89 toInt

 ${\bf Returns} \ {\bf int}$

Arguments

Argument	Type	Description
X	real	

5.90 toMatrixByCol

 ${\bf Returns}\ {\rm matrix}$

Arguments

Argument	Type	Description
cols	vector [vector [real]]	

5.91 toMatrixByRow

 ${\bf Returns}\ {\rm matrix}$

Arguments

Argument	Type	Description
rows	vector [vector [real]	

5.92 transpose

 ${f Returns}\ {f matrix}$

Arguments

Argument	Type	Description
X	matrix	

5.93 triangle

${\bf Returns}\ {\rm matrix}$

Arguments

Argument	Type	Description
diagonalFlag	boolean	
\dim	int	
X	vector	

6 Standard Types

Name	Type Class	Description
Mapping	_mapping	Mapping type
boolean	_bool	Boolean type
deriv	_deriv	Derivative type
function	$_{ m L}$ function	Function type
${\tt generic Category Value}$	$_$ category V alue	Generic categorical type
genericEnum	$_$ category	Generic categorical type
int	_int	Integer type
matrix	$_$ matrix	Matrix type
pdf	_pdf	Probability Density Function type
pmf	_pmf	Probability Mass Function type
$\operatorname{random} \operatorname{Variable}$	_rv	Random variable type
real	_real	Real number type
reference	$_$ reference	Reference type
string	$_{ m str}$	String type
undefined	_undef	Undefined type
vector	_vector	Vector type

7 Mapping Types

Name	Data Type	Variable Type	Description
DoseMapping	Cmt	int	
ObsMapping	Dvid	int	

8 Builtin Enumeration Types

8.1 AdminTypeType

Enumeration	Description
bolus	
infusion	
combi	
resetAll	
reset	

8.2 CorrelationEnumType

Enumeration	Description
covariance	
correlation	

8.3 IndivTypeType

Enumeration	Description
linear	
general	
rv	

8.4 OptAlgoType

Enumeration	Description
simplex	
fw	

8.5 PopnType

Enum	neration	Description
temp	late	

8.6 PopnTypeType

Enumeration	Description
continuous	
categorical	

8.7 blkMethodType

Enumeration	Description
m1	
m2	
m3	
m4	

8.8 blkType

Enumeration	Description
m1	
m2	
m3	
m4	

8.9 cmtType

Enumeration	Description
depot	
compartment	
elimination	
transfer	
distribution	
direct	
effect	

$8.10 \quad {\rm covArgEnumType}$

Enumeration	Description
constant	
idvDependent	

8.11 ddvUse

Enumeration	Description
doseTime	
doseInterval	
covariate	
catCov	
variable	
dvid	

8.12 divUse

Column use in DIV block

Enumeration	Description
covariate	continuous covariate
variable	variable
amt	Dosing amount
dv	Dependent variable
dvid	Dependent variable identifier
cmt	Compartment
mdv	Dependent variable not used
idv	Independent variable
id	Individual identifier
rate	Rate of infusion
ignore	Ignore column
varLevel	Variability level
catCov	Categorical covariate
SS	Steady state
ii	Steady state interval
addl	Additional dose
evid	Event id
cens	Censoring flag

8.13 estAlgo

Enumeration	Description
saem	
foce	
fo	
focei	
mcmc	

8.14 estimateType

Enumeration	Description
scalar	
vector	
matrix	

8.15 input

Enumeration	Description
nonmemFormat	

8.16 objType

Enumeration	Description
mdlObj	
dataObj	
parObj	
taskObj	
designObj	
priorObj	

8.17 obstype

Enumeration	Description
combinedError1	
${\bf combined Error 2}$	
additive Error	
proportionalError	
categorical	
count	
discrete	
tte	
continuous	
userDefined	

$\bf 8.18 \quad prior Element Type$

Prior element Enumeration	Description
matrix	Matrix
vector	Vector

8.19 priorInput

Enumeration	Description
OCTT	

8.20 sampleElement

Enumeration	Description
bolusAmt	
$\inf Amt$	
duration	
sampleTime	
number Times	
covariate	
numberArms	
$\operatorname{armSize}$	
parameter	
doseTime	

8.21 sampletype

Enumeration	Description
simple	
combi	

8.22 solverType

Enumeration	Description
stiff	
nonStiff	

8.23 transType

Transformation type	
Enumeration	Description
none	No transformation
\ln	Natural log
logit	Logit
probit	Probit

$8.24 \quad {\rm varLvlType}$

Enumeration	Description
parameter	
observation	

8.25 varType

Enumeration	Description
cov	
corr	
sd	
var	