		•
الاسىم: الرقم:	مسابقة في مادة الفيزياء المدة: ساعة واحدة	

Cette épreuve est constituée de trois exercices obligatoires répartis sur deux pages. <u>L'usage des calculatrices non programmables est autorisé.</u>

Premier exercice (7 pts) Agrandissement d'un objet à l'aide d'une lentille convergente

Deux élèves de la classe EB9 veulent montrer à leurs camarades les détails d'un petit objet AB. Ils disposent d'une lentille convergente (L) et d'un écran (E).

I – L'un de ces deux élèves place l'objet AB devant (L) comme l'indique la figure (1).

- 1) Reproduire, à l'échelle réelle, la figure (1) sur le papier millimétré.
- 2) a) Tracer la marche d'un rayon lumineux issu de B et parallèle à l'axe optique de (L).
 - **b)** Tracer la marche d'un autre rayon lumineux issu de B et passant par le centre optique O.
 - c) Dessiner alors l'image A'B' de AB.
 - d) Donner la nature et la grandeur de A'B'.

II – L'autre élève place l'objet AB comme l'indique la figure (2). Son image A''B'' se forme alors sur l'écran (E).

- 1) Reproduire, à l'échelle réelle, la figure (2) sur le papier millimétré.
- 2) Tracer la marche d'un rayon lumineux issu de B et passant par le foyer objet F.
- 3) Préciser, sur la reproduction et en le justifiant, la position de l'image B".
- 4) Dessiner l'image A"B".
- 5) Donner la nature et la grandeur de A"B".

III – Lequel des deux élèves arrive à montrer à ses camarades, en même temps, les détails de AB? Pourquoi?

Deuxième exercice (6 pts)

Fonctionnement normal d'une lampe

Le but de cet exercice est d'étudier le fonctionnement d'une lampe (L) portant les inscriptions (3 V ; 3 W).

I – Résistance de la lampe

La lampe (L) est placée dans un circuit convenable de façon qu'elle brille normalement.

- 1- a) Quelle est la tension aux bornes de (L)?
 - **b)** Quelle est la puissance consommée par (L)?
 - c) En déduire l'intensité I₀ du courant qui passe dans (L).
- **2-** (L) est assimilée à un conducteur ohmique de résistance r. Montrer que $r = 3 \Omega$.

II – Fonctionnement de la lampe (L)

On branche (L) en série avec un conducteur ohmique (D) de résistance R = 17 Ω aux bornes d'un générateur délivrant une tension constante U_{PN} = 12 V.

Un courant d'intensité I passe alors dans le circuit.

- 1) a) Déterminer la valeur de la résistance équivalente à l'association de R et r.
 - **b)** Déterminer la valeur de I.
 - c) (L) ne brille pas normalement. Pourquoi?
- 2) Pour que le fonctionnement de (L) soit normal, on doit remplacer (D) par un autre conducteur ohmique (D') de résistance R'.

R' doit être inférieure à R. Pourquoi?

Troisième exercice (7 pts) Tension et allongement d'un ressort

On dispose d'un ressort élastique et d'un solide (S) de masse M.

On donne : g = 10 N/kg.

I - Caractéristique du ressort

La figure ci-contre donne, dans la limite d'élasticité du ressort, les variations de la valeur T de la tension en fonction de l'allongement ΔL du ressort.

1) En se référant au graphique, compléter le tableau ci-dessous.

T (N)	2		6
ΔL (cm)		2	
$K = \frac{T}{\Delta L} (N/cm)$			

- 2) K représente une grandeur caractéristique du ressort.
 - a) Nommer cette grandeur.
 - **b)** Donner sa valeur dans le SI.
 - c) Nommer la loi traduite par la relation entre T, K et ΔL .

II - Equilibre du solide (S)

On suspend le solide (S) à l'extrémité libre du ressort. (S) est au repos.

- 1) Nommer les deux forces agissant sur (S).
- 2) Ecrire la relation vectorielle entre ces deux forces.
- 3) Déduire la relation entre T et M.

L'allongement maximal du ressort dans sa limite d'élasticité est de 7 cm.

Si on accroche au ressort une masse M = 1,7 kg, le ressort perd son élasticité. Justifier en se référant au graphique.

