UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

CORSO DI LAUREA IN SCIENZE STATISTICHE ED ECONOMICHE

Prova di STATISTICA 1 del 24 gennaio 2018 - Versione I

COGNOME E NOME: MATRICOLA

Rispondere ai seguenti quesiti indicando per esteso formule, calcoli, risultati e commenti:

1) Si considerino le variabili X (propensione al rischio), Y (capitale investito in azioni in migliaia di euro) e Z (capitale investito in obbligazioni in migliaia di euro), per una popolazione di 9 investitori:

X	Media	Alta	Media	Alta	Bassa	Bassa	Alta	Media	Alta
Y	10	18	12	13	18	13	20	10	13
Z	1	2	7	5	2	7	2	1	2

- 1.1) Relativamente alla variabile X:
- 1.1a) si fornisca una opportuna rappresentazione grafica;
- 1.1b) senza fare conti, si indichino gli indici di posizione che è possibile calcolare, specificando il carattere della variabile;
- 1.1c) si quantifichi il grado di mutabilità tramite l'indice di Gini. Si motivi l'utilità nel normalizzare l'indice.
- 1.2) Relativamente alla variabile Y aggregata nelle seguenti classi (chiuse a destra):

8- 12	12- 14	14- 20
-------	--------	--------

- 1.2a) si fornisca una opportuna rappresentazione grafica;
- 1.2b) si calcoli la mediana;
- 1.2c) si calcoli la media armonica;
- 1.2d) si normalizzi la varianza rispetto all'intervallo [0; 30].
- 1.3a) Si costruisca la tabella di distribuzione congiunta (X,Z);
- 1.3b) si quantifichi il grado di connessione χ^2_N tra le variabili X e Z e lo si interpreti;
- 1.3c) si quantifichi il grado di dipendenza in media $\eta_{Z|X}^2$ di Z da X e lo si interpreti.
- 2) Utilizzando i valori riportati nella sottostante tabella:

X	1	2	4	8	6
Y	2	4	5	7	4

- 2.1) si calcolino i parametri "a" e "b" dei minimi quadrati del modello: Y = a + b X;
- 2.2) si calcoli il parametro "c" dei minimi quadrati del modello: Y = c X;
- 2.3) Si calcoli l'indice di adattamento ρ^2 per il modello al punto 2.1);
- 2.4) Si calcoli l'errore medio di interpolazione per il modello al punto 2.2).

Rispondere ai seguenti quesiti	scegliendo l'opzione	e corretta e motivai	ndo opportunamente la
risposta:			

- 3) Se l'indice di asimmetria di Fisher della variabile X è pari a 2, $\gamma(X)=2$, allora l'indice di asimmetria di Fisher della variabile Y=X+3 risulta:
 - a) pari a 2
 - b) maggiore di 2
 - c) minore di 2
 - d) nessuna delle precedenti

a) nessuna dene precedenti
Motivazione:

- 4) Quale delle seguenti espressioni, per X non degenere, assume il valore più piccolo:
 - a) la somma degli scarti delle osservazioni dalla media
 - b) la somma del quadrato degli scarti delle osservazioni dalla media
 - c) la somma del quadrato degli scarti delle osservazioni dalla mediana

Motivazione:			

- 5) Sia X una variabile statistica (non degenere) simmetrica rispetto alla media aritmetica M(X)=2, allora la sua media quadratica risulta:
 - a) maggiore della media aritmetica
 - b) minore della media aritmetica
 - c) uguale alla media aritmetica

Motivazione:

6) Con riferimento alla seguente tabella a doppia entrata:

X\Y	1	2	3
5	4	6	4
7	8	12	8

- a) l'indice di connessione assume valore massimo
- b) l'indice di connessione assume valore minimo e la mediana di Me(Y|X=5)=2
- c) nessuna delle precedenti

B #			
M	วรเง	azio	ne:

7) Si dimostri che $Var(a + bX) = b^2 Var(X)$

Dimostrazione: