Problem 20: Sprowadźcie Johna Glenna do domu

Punkty: 60

Autor: Wesley Holcombe, Colorado Springs, Kolorado, Stanu Zjednoczone

Wprowadzenie

Film "Ukryte działania" opowiadał historię Katherine Johnson, afroamerykańskiej kobiety pracującej w NASA w trakcie programu Mercury. W tym momencie historii komputery nie były jeszcze tak powszechne, a Johnson była "ludzkim komputerem", wykonując złożone obliczenia mające zapewnić sukces programu. Pomimo jej nieocenionego wkładu w program Johnson była wielokrotnie dyskryminowana przez współpracowników. Dopiero niedawno Johnson i jej afroamerykańscy współpracownicy doczekali się uznania ich wkładu w badania kosmosu; w 2015 r. otrzymała ona Prezydencki Medal Wolności, a w 2019 r. Złoty Medal Kongresu. Katherine Johnson zmarła w 2020 roku w wieku 101 lat.

W kluczowej scenie filmu Johnson opisuje, jak obliczyła trajektori**ę** lotu kapsuły kosmicznej Johna Glenna za pomoc**ą** metody Eulera.

Opis problemu

Metoda Eulera to osiemnastowieczna metoda przybliżania równań różniczkowych, nazywanych powszechnie "problemami warunków początkowych". Aby jej użyć, trzeba rozwiązać równanie dla zadanych warunków początkowych, a następnie przejść do kolejnej wartości korzystając z obliczonego nachylenia linii.

W ramach problemu spróbujemy przybliżyć rozwiązanie dla równania:

$$y = f(x) = \int \frac{\sin(x)}{x} dx$$

Jeśli jeszcze nie uczyliście się rachunku różniczkowego, nie martwcie się; będziemy jedynie aproksymować rozwiązanie, a nie szukać pełnego rozwiązania. Z dziedziny rachunku różniczkowego będziemy jedynie potrzebowali ustalić pochodną funkcji, która wynosi:

$$f'(x) = \frac{\sin(x)}{x}$$

Równaniem rozwiązywanym w każdej iteracji metody Eulera będzie:

$$y_n = y_{n-1} + h * f'(x_{n-1})$$

W tym równaniu x i y są współrzędnymi na siatce, a h to wielkość kroku aproksymacji; to wielkość, o którą zwiększa się x w każdym kroku. Aby skorzystać z metody Eulera, musimy zacząć od zbioru wartości początkowych, x_0 i y_0 . Gdy wartość x wynosi 0, zakładamy, że f'(0) = 1.

Spróbujmy aproksymować to równanie używając wartości początkowych:

$$x_0 = -1.5\pi$$
, $y_0 = -2$, $h = .3$.

Tabela i wykres pokazują, jak wartości x i y zmieniają się w każdym kroku równania i jak mają się do rzeczywistego rozwiązania tego równania.

n	$y_n = y_{n-1} + h * \left(\frac{\sin x_{n-1}}{x_{n-1}}\right)$	$x_n = h + x_{n-1}$
0	-2	-1.5п = -4.7124
1	-2.0637	-4.4124
2	-2.1286	-4.1124
3	-2.1888	-3.8124
4	-2.2377	-3.5124
5	-2.2687	-3.2124
6	-2.2753	-2.9124

W tym problemie będziecie musieli użyć metody Eulera, aby przedstawić kilka aproksymowanych wartości dla powyższego równania.

Przykładowe dane wejściowe

Pierwszy wiersz danych wejściowych programu, otrzymanych przez standardowy kanał wejściowy, będzie zawierać dodatnią liczbę całkowitą oznaczającą liczbę przypadków testowych. Każdy przypadek testowy będzie zawierać pojedynczy wiersz z poniższymi wartościami oddzielonymi spacjami:

- x_0 , liczba odpowiadająca początkowej wartości x.
- y_0 , liczba odpowiadająca początkowej wartości y.
- h, liczba odpowiadająca stałej wartości kroku.

• n, dodatnią liczbę całkowitą odpowiadającą liczbie wykonywanych iteracji.

```
2
1 5 0.5 6
-.54 0 0.01 8
```

Przykładowe dane wyjściowe

W każdym przypadku testowym wasz program musi wyświetlić pojedynczy wiersz zawierający wartość y_n , wartość y uzyskaną po wykonaniu n iteracji. Wartości powinny być zaokrąglone do 3 miejsc dziesiętnych, bez zer końcowych.

6.074 0.077