### 第二章 示例学习

- 一. 示例学习的问题描述(见表2.1,表2.2)
- 二. 决策树学习(ID3算法)
- 1. ID3算法:

输入: 例子集(正例、反例);

输出: 决策树

从树的根结点开始,每次都用"最好的属性"划分结点,直 到所有结点只含一类例子为止。

表2.1

| 例子号 | 高度 | 头发 | 眼睛      | 类别 |
|-----|----|----|---------|----|
| 1   | 矮  | 淡黄 | <u></u> | +  |
| 2   | 高  | 淡黄 | <u></u> | +  |
| 3   | 高  | 红  | <u></u> | +  |
| 4   | 高  | 淡黄 | 褐       | _  |
| 5   | 矮  | 黑  | <u></u> | _  |
| 6   | 高  | 黑  | 兰       | _  |
| 7   | 高  | 黑  | 褐       | _  |
| 8   | 矮  | 淡黄 | 褐       | _  |

[头发=淡黄∨红色][眼睛=蓝色] → + [头发=黑色] ∨[眼睛=褐色] → -

表2.2

| Day | Outlook  | Temperature | Humidity | Wind  | Class |
|-----|----------|-------------|----------|-------|-------|
| 1   | sunny    | hot         | High     | False | N     |
| 2   | sunny    | hot         | High     | True  | N     |
| 3   | overcast | hot         | High     | False | P     |
| 4   | rain     | mild        | High     | False | P     |
| 5   | rain     | cool        | Normal   | False | P     |
| 6   | rain     | cool        | Normal   | True  | N     |
| 7   | overcast | cool        | Normal   | True  | P     |
| 8   | sunny    | mild        | High     | False | N     |
| 9   | sunny    | cool        | normal   | false | p     |

| 10 | Rain     | Mild | Normal | False | P |
|----|----------|------|--------|-------|---|
| 11 | Sunny    | Mild | Normal | True  | P |
| 12 | Overcast | Mild | High   | True  | P |
| 13 | Overcast | Hot  | Normal | False | P |
| 14 | rain     | Mild | High   | True  | N |



### 2. 信息增益 Gain(A)=I(p,n)-E(A)

$$I(p,n) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

其中,p、n是结点node的正、反例个数。A要扩展结点node的属性, $p_i$ 、 $n_i$ 是C被A划分成的V个子集  $\{C_1, ... Cv\}$ 的正、反例个数。

属性outlook,有三个值,{sunny,overcast,rain},用 outlook扩展根结点得到三个子集{ $C_1$ , $C_2$ , $C_3$ }。  $C_1$ ={ $1^-$ , $2^-$ , $8^-$ , $9^+$ , $11^+$ }, $C_2$ ={ $3^+$ , $7^+$ , $12^+$ , $13^+$ },  $C_3$ ={ $4^+$ , $5^+$ , $6^-$ , $10^+$ , $14^-$ }

根结点:P=9,n=5

$$I(9,5) = -\frac{9}{14} \log_2 \frac{9}{14} - \frac{5}{14} \log_2 \frac{5}{14} = 0.940 \text{ bits}$$

$$P_1=2, n_1=3$$
  $I(2,3)=0.971$ 

$$P_2=4, n_2=0$$
  $I(4,0)=0$ 

$$P_3=3$$
,  $n_3=2$   $I(3,2)=0.971$ 

$$E(outlook) = \frac{5}{14}I(p_1, n_1) + \frac{4}{14}I(p_2, n_2) + \frac{5}{14}I(p_3, n_3)$$
  
= 0.694 bits

Gain(outlook)=0.940-E(outlook)=0.246bits

gain(temperature) = 0.029 bits gain(humidity) = 0.151 bitsgain(windy) = 0.048 bits



Figure 3. A complex decision tree.

- 3. 决策树学习的常见问题
- 1) 不相关属性(irrelevant attributes)

属性A有v个属性值,A的第I个属性值对应Pi个正例、n<sub>i</sub>个反例。

$$p_i' = p \times \frac{p_i + n_i}{p + n}, \quad n_i' = n \times \frac{p_i + n_i}{p + n}$$

$$\sum_{i=1}^{\nu} \frac{(p_i - p_i')^2}{p_i'} + \frac{(n_i - n_i')^2}{n_i'}$$

2) 不充足属性(Inadequate attributes)

两类例子具有相同属性值。没有任何属性可进一步扩展决策树。哪类例子多,叶结点标为哪类。

- 3) 未知属性值
- ①"最通常值"办法
- ② 决策树方法: 把未知属性作为"类",原来的类作为"属性"

| Day | Outlook  | Temperature | Wind  | Class | Humidity |
|-----|----------|-------------|-------|-------|----------|
| 1   | sunny    | hot         | False | N     | High     |
| 2   | sunny    | hot         | True  | N     | High     |
| 3   | overcast | hot         | False | P     | High     |
| 4   | rain     | mild        | False | P     | High     |
| 5   | rain     | cool        | False | P     | Normal   |
| 6   | rain     | cool        | Truc  | N     |          |
| 7   | overcast | cool        | True  | P     | Normal   |
| 8   | sunny    | mild        | False | N     | High     |
| 9   | sunny    | cool        | false | p     | normal   |

| 10 | Rain     | Mild | False | P | Normal |
|----|----------|------|-------|---|--------|
| 11 | Sunny    | Mild | True  | P | Normal |
| 12 | Overcast | Mild | True  | P | High   |
| 13 | Overcast | Hot  | False | P | Normal |
| 14 | rain     | Mild | True  | N | High   |

### ③ Bayesian 方法

$$prob(A = A_i \mid class = P) = \frac{prob(A = A_i \& class = P)}{prob(class = P)} = \frac{p_i}{p}$$
$$prob(A = A_i \mid class = N) = \frac{n_i}{n}$$

④ 按比例将未知属性值例子分配到各子集中: 属性A有v个值 $\{A_1,...,Av\}$ , A值等于Ai的例子数 $p_i$ 和 $n_i$ ,未知属性值例子数分别为 $p_u$ 和 $n_u$ ,在生成决策树时Ai的例子数 $P_i$ + $p_u$  ratio<sub>i</sub>  $n_i$ + $n_u$  ratio<sub>i</sub>

$$ratio_i = \frac{p_i + n_i}{\sum_i (p_i + n_i)}$$

### 4. 属性选择标准

$$IV(A) = -\sum_{i=1}^{v} \frac{p_i + n_i}{p + n} \log_2 \frac{p_i + n_i}{p + n}$$
 gain(A) /  $IV(A)$ 

### 5. Overfitting(过适合)

### Effect of Reduced-Error Pruning



### Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves validation set accuracy
- produces smallest version of most accurate subtree
- What if data is limited?

### 三. 规则学习算法

### 1. 基本概念:

定义1(例子).设 $E=D_1\times D_2\times...\times Dn$  是n维有穷向量空间,其中  $D_j$ 是有穷离散符号集。E中的元素 $e=(V_1,V_2,...,V_n)$ 简记为 $< V_j >$ 叫做例子。其中 $V_j \in D_j$ 。

例如:对表2.1  $D_1={\hat{B}, \mathcal{B}; D_2={\hat{K}, \mathcal{B}, \mathcal{I}, \mathcal{I}, \mathcal{I}_3={\hat{I}, \mathcal{B}}}$   $D_1={\hat{I}, \mathcal{B}, \mathcal{I}, \mathcal{I}$ 

定义2.选择子是形为 $[x_j=A_j]$ 的关系语句,其中 $x_j$ 为第j个属性, $A_j$   $\subseteq$   $D_j$ ; 公式(或项)是选择子的合取式,即  $\bigwedge_{j\in J} x_j=A_j$ ],其中  $J \subseteq \{1,...,n\}$ ; 规则是公式的析取式,即 I ,其中Li 公式。

- 一个例子 $e=<V_1,...V_n>满足选择子(公式、规则)的条件也称做选择子(公式、规则)覆盖该例子。$
- 例如: 例子e=<矮,淡黄,兰>满足选择子[头发=淡黄\红 色]和[眼睛=蓝色];满足公式[头发=淡黄\红色][眼睛= 蓝色]。
- 定义3: 普化(generalize):减少规则的约束,使其覆盖更多的训练例子叫普化。
- 定义4:特化(specialize):增加规则的约束,使其覆盖训练例 子较少叫特化。
- 定义5:一致:只覆盖正例不覆盖反例的规则被称为是一致的。
- 定义6: 完备: 覆盖所有正例的规则被称为是完备的。

2. GS算法:

GS算法

输入: 例子集;

输出:规则;

原则: (a) 从所有属性值中选出覆盖正例最多的属性值;

(b) 在覆盖正例数相同的情况下,优先选择覆盖反例 少的属性值;

- 设PE,NE是正例,反例的集合。 PE',NE'是临时正,反例集。 CPX表示公式,F表示规则(概念描述)。
- **(1)** F←false;
- (2) PE' $\leftarrow$ PE, NE' $\leftarrow$ NE, CPX $\leftarrow$ true;
- (3) 按上述(a) (b)两原则选出一个属性值V<sub>0</sub>,设V<sub>0</sub>为第j<sub>0</sub>个属性的取值,CPX←CPX∧ [Xj<sub>0</sub>=V<sub>0</sub>]
- (4) PE' ← CPX覆盖的正例, NE' ← CPX覆盖的反例, 如果 NE'不为空, 转(3);
   否则,继续执行(5);
- (5)  $PE \leftarrow PE \setminus PE'$ ,  $F \leftarrow F \lor CPX$ , 如果 $PE = \phi$ ,停止,否则转(2);

(5)  $PE \leftarrow PE \setminus PE'$ ,  $F \leftarrow F \lor CPX$ , 如果 $PE = \phi$ , 停止,否则转(2);

GS算法举例:

例子集见表2.3

学习结果:

[ESR=normal][Ausculation=bublelike] ∨

[X-ray=spot][ESR=normal]

肺炎

### 3.AQ算法:

- 1) 普化(generalize):
- 2) 特化(specialize):
- 3) 一致
- 4) 完备

表2.3 肺炎与肺结核两组病历

|    |    | <b>衣2.3</b> | 加火马帅:  | 给你网组<br> | ク内 <i>リ</i> ノ」<br> |            |
|----|----|-------------|--------|----------|--------------------|------------|
|    | no | Fever       | Cough  | X-ray    | ESR                | Auscultat. |
|    | 1  | high        | heavy  | Flack    | Normal             | Bubblelike |
| 肺炎 | 2  | mediu       | heavy  | Flack    | Normal             | Bubblelike |
|    | 3  | low         | slight | Spot     | Normal             | Dry-peep   |
|    | 4  | high        | mediu  | Flack    | Normal             | Bubblelike |
|    | 5  | mediu       | slight | Flack    | Normal             | Bubblelike |
|    | 1  | absent      | slight | Strip    | Normal             | Normal     |
| 肺结 | 2  | high        | heavy  | Hole     | Fast               | Dry-peep   |
| 核  | 3  | low         | slight | Strip    | Normal             | Normal     |
|    | 4  | absent      | slight | Spot     | Fast               | Dry-peep   |
|    | 5  | low         | mediu  | flack    | fast               | Normal     |

## [ESR=Normal]

|    | [ESN | <b>X=NOTHIAI</b> J |        |       |        |            |
|----|------|--------------------|--------|-------|--------|------------|
|    | no   | Fever              | Cough  | X-ray | ESR    | Auscultat. |
|    | 1    | high               | heavy  | Flack | Normal | Bubblelike |
| 肺炎 | 2    | mediu              | heavy  | Flack | Normal | Bubblelike |
|    | 3    | low                | slight | Spot  | Normal | Dry-peep   |
|    | 4    | high               | mediu  | Flack | Normal | Bubblelike |
|    | 5    | mediu              | slight | Flack | Normal | Bubblelike |
|    | 1    | absent             | slight | Strip | Normal | Normal     |
| 肺结 |      |                    |        |       |        |            |
| 核  | 3    | low                | slight | Strip | Normal | Normal     |
|    |      |                    |        |       |        |            |
|    |      |                    |        |       |        |            |

### [ECD-Normal][Augoultat- Pubblalika]

|    | [ESR=Normal][Auscultat= Bubblelike] |       |        |       |        |            |  |  |  |
|----|-------------------------------------|-------|--------|-------|--------|------------|--|--|--|
|    | no                                  | Fever | Cough  | X-ray | ESR    | Auscultat. |  |  |  |
|    | 1                                   | high  | heavy  | Flack | Normal | Bubblelike |  |  |  |
| 肺炎 | 2                                   | mediu | heavy  | Flack | Normal | Bubblelike |  |  |  |
|    | 3                                   |       |        |       |        |            |  |  |  |
|    | 4                                   | high  | mediu  | Flack | Normal | Bubblelike |  |  |  |
|    | 5                                   | mediu | slight | Flack | Normal | Bubblelike |  |  |  |
|    |                                     |       |        |       |        |            |  |  |  |
| 肺结 |                                     |       |        |       |        |            |  |  |  |
| 核  |                                     |       |        |       |        |            |  |  |  |
|    |                                     |       |        |       |        |            |  |  |  |
|    |                                     |       |        |       |        |            |  |  |  |

| 第二 | 轮  |        |        |       |        |            |
|----|----|--------|--------|-------|--------|------------|
|    | no | Fever  | Cough  | X-ray | ESR    | Auscultat. |
|    |    |        |        |       |        |            |
| 肺炎 |    |        |        |       |        |            |
|    | 3  | low    | slight | Spot  | Normal | Dry-peep   |
|    |    |        |        |       |        |            |
|    |    |        |        |       |        |            |
|    | 1  | absent | slight | Strip | Normal | Normal     |
| 肺结 | 2  | high   | heavy  | Hole  | Fast   | Dry-peep   |
| 核  | 3  | low    | slight | Strip | Normal | Normal     |
|    | 4  | absent | slight | Spot  | Fast   | Dry-peep   |
|    | 5  | low    | mediu  | flack | fasts  | Normal     |

### $\sim$

|    | [X-r | ay= Spot] |        |       |        |            |
|----|------|-----------|--------|-------|--------|------------|
|    | no   | Fever     | Cough  | X-ray | ESR    | Auscultat. |
|    |      |           |        |       |        |            |
| 肺炎 |      |           |        |       |        |            |
|    | 3    | low       | slight | Spot  | Normal | Dry-peep   |
|    |      |           |        |       |        |            |
|    |      |           |        |       |        |            |
|    |      |           |        |       |        |            |
| 肺结 |      |           |        |       |        |            |
| 核  |      |           |        |       |        |            |
|    | 4    | absent    | slight | Spot  | Fast   | Dry-peep   |
|    | 1    |           |        |       |        |            |

### [X-ray=spot][ESR=normal]

|    | [A-Tay-spot][ESIX-Hormar] |       |        |       |        |            |  |  |  |  |
|----|---------------------------|-------|--------|-------|--------|------------|--|--|--|--|
|    | no                        | Fever | Cough  | X-ray | ESR    | Auscultat. |  |  |  |  |
|    |                           |       |        |       |        |            |  |  |  |  |
| 肺炎 |                           |       |        |       |        |            |  |  |  |  |
|    | 3                         | low   | slight | Spot  | Normal | Dry-peep   |  |  |  |  |
|    |                           |       |        |       |        |            |  |  |  |  |
|    |                           |       |        |       |        |            |  |  |  |  |
|    |                           |       |        |       |        |            |  |  |  |  |
| 肺结 |                           |       |        |       |        |            |  |  |  |  |
| 核  |                           |       |        |       |        |            |  |  |  |  |
|    |                           |       |        |       |        |            |  |  |  |  |

### 3. AQ算法:

输入: 例子集、参数#SOL、#CONS、Star的容量m、优化标准:

输出:规则;

- 1) Pos和NEG分别代表正例和反例的集合
- ①从Pos中随机地选择一例子
- ② 生成例子e相对于反例集NEG的一个约束Star(reduced star), G(e|NEG,m), 其中元素不多于m个。
- ③ 在得到的star中,根据设定的优化标准LEF找出一个最优的公式D。
- ④ 若公式D完全覆盖集合Pos,则转⑥
- ⑤ 否则,减少Pos的元素使其只包含不被D覆盖的例子。从步骤①开始重复整个过程。
- ⑥生成所有公式D的析取,它是一个完备且一致的概念描述。

- 2) Star生成: Induce方法
- ①例子e的各个选择符被放入PS(partial star)中,将ps中的元素按照各种标准排序.
- ②在ps中保留最优的m个选择符.
- ③对ps中的选择符进行完备性和一致性检查,从ps中取出完备一致的描述放入SOLUTION表中,若SOLUTION表的大小大于等于参数#SOL,则转⑤.一致但不完备的描述从ps中取出放入表CONSISTENT中,若CONSISTENT表的大小大于等于参数#COS,则转⑤;
- ④对每个表达式进行特殊化处理,所有得到的表达式根据优化标准排列,仅保留m个最优的.重复步骤③, ④.
- ⑤得到的一般化描述按优先标准排序,保留m个最优的表达式构成约束Star(e|NEG,m).

举例:

例子集: 表2.3

#SOL=2

```
#CONS=2
```

M=2

优化标准: 正例数/反例数

种子 $e_1^+$ : [Fever=high][Cough=heavy][X-ray=flack][ESR=normal] [Auscultation=bubblelike]

#### 第一轮:

(进入Induce算法)

#### Ps:

| (5) | [Fever=hig | gh |  |
|-----|------------|----|--|
|-----|------------|----|--|

<2,1>

<2,1>

<4,1>

<5,2>

<4,0>

保留m个表达式

[Auscultation=bubblelike]

一致的表达式,放入CONSISTENT中

[X-ray=flack]

特化;

保留2个表达式,2个表达式均为一致的,放入CONSISTENT中,按 优先标准排序CONSISTENT中表达式,保留m(2)个表达式.

[Ausculation=bubblelike]

[x-ray=flack][ESR=normal]

(出Induce算法)

选出一个最优的作为D

D: [Auscultation=bubblelike]

将D覆盖的正例去掉. 去掉  $e_1^+, e_2^+, e_4^+, e_5^+$  第一轮结束.

第二轮:

种子  $e_3^+$  : [Fever=low][Cough=slight][x-ray=spot][ESR=normal]

[Auscultation=dry-peep]

```
Ps:
@[fever=low]
                                           <1,2>
⑤[Cough=slight]
                                           <1,3>
①[x-ray=spot]
                                           <1,1>
②[ESR=normal]
                                           <1,2>
③[Ausculation=dry-peep]
                                           <1.2>
保留m(2)个表达式:
[ESR=normal]
[x-ray=spot]
特殊化:
                   [ESR=normal] [fever=low]
               ___ [ESR=normal] [Cough=slight]
                   [ESR=normal] [Ausculation=dry-peep]
                 [x-ray=spot] [ESR=normal]
                                                     <1.0>
                [x-ray=spot] [Ausculation=dry-peep]
                                                     <1,1>
               - [x-ray=spot] [fever=low]
                                                     <1,0>
                 [x-ray=spot] [Cough=slight]
                                                    <1,1>
```

保留m(2)个表达式

[x-ray=spot] [ESR=normal]

[x-ray=spot] [fever=low]

上面2个表达式都是一致的,放入CONSISTENT表中,按优先标准排序,并选出一个最优的作为D

D: [x-ray=spot] [ESR=normal] 将D覆盖的正例从pos中去掉,去掉  $e_3^+$  ,pos空.

### 生成规则:

[Ausculation=bubblelike] ∨ [x-ray=spot] [ESR=normal]→肺炎

算法结束.

4.扩张矩阵:

定义1(扩张矩阵): 己知 $e^+=< V_1^+, \cdots, V_n^+>$ 及反例矩阵NE. 对每一 $j\in N$ ,用"死元素"\*对 $V_j^+$ 在NE中第j列的所有出现做代换,这样得出的矩阵叫做正例 $e^+$ 在反例NE背景下的扩张矩阵。记为EM( $e^+|NE$ ),或简记为EM( $e^+$ )。

表2.7正例矩阵与反例矩阵

| k | X1 | X2 | X3 | k | X1 | X2 | X3 |
|---|----|----|----|---|----|----|----|
| 1 | 0  | 0  | 0  | 1 | 1  | 0  | 1  |
| 2 | 1  | 2  | 0  | 2 | 0  | 1  | 0  |
| 3 | 1  | 0  | 0  | 3 | 1  | 1  | 0  |
| 4 | 0  | 0  | 2  | 4 | 1  | 1  | 2  |
|   |    |    |    | 5 | 0  | 0  | 1  |

图2.2 正例在反例背景下的扩张矩阵

定义2: 在一个扩张矩阵中,由分别来自不同行的m个非死元素连接组成它的一条路(径);在两个以上的扩张矩阵中,具有相同值的对应的非死元素叫做它们的公共元素;在两个或两个以上扩张矩阵中出现的路叫公共路;具有公共路的两个扩张矩阵叫做相交的,否则叫做不相交的。

#### 5. 算法AE1

优先选择"最大公共元素",即在最多数目的扩张矩阵中出现的元素。

- 6. 广义扩张矩阵与AE9算法
- ①广义扩张矩阵:已知反例矩阵NE和一个公式 $L=\int_{j\in J}^{n}[X_j=A_j]$ 对NE的每一列 $j\in N,N=\{1,2,...,n\}$ ,如果 $j\notin J$ ,则用死元素 "\*"对NE中第j列的所有元素做代换;如果 $j\in J$ ,则用"\*"对NE中第j列属于Aj的所有元素做代换。这样得到的矩阵叫做公式L的广义扩张矩阵。记为EM(L).
- ②必选元素:设EM(L)是一致公式L的扩张矩阵,如果在EM(L)中的某一行中只有一个非死元素,则该元素叫做必选元素。
- ③公式的合并:已知公式 $L = \bigwedge_{j \in J} [X_j = A_j]$ 及公式 $F = \bigwedge_{j \in J'} [X_j = B_j]$ 则将L和F对应的选择子的取值合并得到一个新的公式,叫做L和F的合并,记为L⊕F。即L⊕ $F = \bigwedge_{j \in J \cap J'} [X_j = A_j \cup B_j]$  .

定理2.1 公式L覆盖公式A又覆盖公式B,当且仅当它覆盖A⊕B。 定理2.2 一个例子集合被一个一致的规则所覆盖,则这些例子 的合并也是一致的。

|    |                                                                    | x1    | x2    | <b>x</b> 3 | x4 |  |  |
|----|--------------------------------------------------------------------|-------|-------|------------|----|--|--|
|    | 公式L                                                                | {0,3} | {0,1} | {1,3}      |    |  |  |
|    | 1                                                                  | 1     | 1     | 1          | 1  |  |  |
| NE | 2                                                                  | 0     | 2     | 2          | 2  |  |  |
|    | 3                                                                  | 3     | 1     | 2          | 2  |  |  |
|    | 4                                                                  | 4     | 0     | 3          | 3  |  |  |
|    | (a) 公式L(L=[X1=0 \square 3][X2=0\square 1][X3=1 \square 3]) 与反例矩阵NE |       |       |            |    |  |  |
|    |                                                                    | X1    | X2    | X3         | X4 |  |  |
|    | 公式                                                                 |       |       |            |    |  |  |
|    |                                                                    | 1-    | *     | *          | *  |  |  |
|    |                                                                    | *     | 2     | - 2        | *  |  |  |
|    |                                                                    | *     | *     | -2         | *  |  |  |
|    |                                                                    | 4     | *     | *          | *  |  |  |

# L的扩张矩阵EM(L)箭头经过的路对应于公式 $[X_1 \neq 1, 4][X_3 \neq 2] = [X_1 = \{0, 2, 3\}][X_3 = \{0, 1, 3\}]$

### [算法AE9]

- (1) 从正例集PE中选择一个种子e. F←e, path←ø, CPE← ø.
- (2) 做F的扩张矩阵EM(F)。如果有必选元素则放入path中,同时删去NE中该必选元素出现的行(反例),如果NE空则终止;如非空则删去PE和CPE中出现该必选元素的对应行,重复执行直至EM(F)中不存在必选元素为止。
- (3)如果PE非空,检查PE中的每一正例,看它与F的合并是否是一致公式;如不是则从PE中删去该正例;若是则保留一个覆盖正例数目最多的一个合并取代F,将PE中被F覆盖的正例放入CPE中,重复步骤(2)和(3),直至PE变空。
- (4) 如果PE空而CPE非空,则检查CPE中的每一个正例,看它与F合并后是否为一致公式,若不是则从CPE中删去该正例;

- 若是则生成合并公式,保留一个覆盖最多正例的合并取代F,从CPE中删去被新的F覆盖的正例,重复(2),(4)直至CPE 变空。
- (5) 此时PE和CPE均空,但NE非空,做EM(F). 将其中含有最多非死元素的列中的非死元素放入path中,并从NE中删去含这些非死元素的行,重复这一过程,直到NE变空。将path转变为相应的公式。

### [应用举例]

将表2.7的第一个反例<1,0,1>改为<1,0,2>

(1) 选择第一个正例  $e_1^+ = <0,0,0>$  做种子,F $\leftarrow e_1^+$ , path  $\leftarrow \phi$ , CPE  $\leftarrow \phi$ .

(2) 做F的扩张矩阵EM(F), 如下图(a)

|   |     | X1 | X2 | X3  |   |     | X1    | X2    | X3  |
|---|-----|----|----|-----|---|-----|-------|-------|-----|
| _ | 公式F | 0  | 0  | 0   |   | 公式F | {0,1} | {0,2} | {0} |
|   | 1   | 1  | *  | 2   | · | 1   | *     | *     | 2   |
|   | 2   | *  | 1  | *   |   |     |       |       |     |
|   | 3   | 1  | 1  | *   |   |     |       |       |     |
|   | 4   | 1  | 1  | 2   |   |     |       |       |     |
|   | 5   | *  | *  | 1   |   |     |       |       |     |
|   |     |    |    | (a) |   |     |       |       | (b) |

path  $\leftarrow$  path  $\cup$  { $l_{22}$ , $l_{53}$ },

(3) 将路径转变为公式 $[x2 \neq 1][x3 \neq 1]$  删去路径对应的反例,

因PE与CPE中没有该必选元素出现,所以PE与CPE不动 (4) PE非空,做F ← F ⊕ ( $e_1^+$ )=<{0},{0},{0}>,F是一致的。做 F ← F ⊕ ( $e_2^+$ )=<{0,1},{0,2},{0}>,F是一致的。继续合并F ← F ⊕ ( $e_3^+$ )=<{0,1},{0,2},{0}>,F是一致的。继续合并F ← F ⊕ ( $e_4^+$ )=<{0,1},{0,2},{0,2}>,F是不一致的。从PE中删除 $e_4^+$ ,保留覆盖最多正例的F =<{0,1},{0,2},{0}>。CPE={ $e_1^+$ , $e_2^+$ , $e_3^+$ }做 EM(F),如图(b)所示

Path={ $l_{22}$ , $l_{53}$ , $l_{13}$ }, NE空,将Path转变为公式 [ $x2 \neq 1$ ][ $x3 \neq 1$ , 2]=[x2={0,2}][x3=0] 上面公式覆盖= $e_1^+$ ,  $e_2^+$ ,  $e_3^+$ , 但不覆盖  $e_4^+$  第二轮:

对 e<sup>‡</sup> 执行上面过程。

#### 参考文献:

- 1. Induction of Decision Trees, Machine Learning 1: 81-106, 1986.
- 2. Machine learning: An Artificial Intelligence Approach Edited by R.S. Michalski P39-135.
- 3. 归纳学习—算法,理论,应用 洪家荣 P.1-33