How Capable is an Applicant of Repaying a Loan?

Home Credit Default Risk Results

Laura Cattaneo, Callie Page, Max Traub, Cathy Zheng

- 1. Prediction Problem
 - a. Company & Customer perspectives
- 2. Analysis Overview
 - a. Data sources
 - b. Model results
- 3. Conclusion

How Capable is an Applicant of Repaying a Loan?

Higher risk applicants with poor credit history adds risk to the company

Sources:

How Capable is an Applicant of Repaying a Loan?

Individuals with poor credit history also face higher risk

Individuals face increased risk of falling to predatory lenders

Unfair and abusive lenders profit from loan terms

High late fees

Penalty interest

Collateral

Almost 1 in 9 Americans struggle to get a home loan

26 million

10 million = 36 million

Are credit invisible 1

Have insufficient credit to get a loan ¹

Struggle to get a home loan

- 1. Prediction Problem
 - a. Company & Customer perspectives
- 2. Analysis Overview
 - a. Data sources

We use alternative data to predict repayment abilities

8 datasets

#1, 2 Application Train and Test

→ Main table including the target variable (whether or not the client has payment difficulties)

#3 Bureau Data

→ Data on previous loans a client received

#4 Bureau Balance Data

- → Monthly balance of credits in the Bureau
- → Gives insight into client's behavior

We use alternative data to predict repayment abilities

8 datasets

#5 Previous Application

#6

Cash Balance

7 Instalments Payments

#8 Credit Card Balance

- → Client's previous loan applications with Home Credit
- → Client's loan repayment history
- → Payment data for each instalment of credit
- → Monthly balance of credit card loans

We engineer more powerful new variables

220 Original Variables

Recent Monthly Credit Payments

New Credit to Income Ratio

Current Credit Down Payment

1054 additional variables

- 1. Prediction Problem
 - a. Company & Customer perspectives
- 2. Analysis Overview
 - a. Data sources
 - b. Model results

We try various models to maximize predictive power

Algorithm	Recall
Logistic Regression	0.002
SVM	0.052
k-NN	0.062
Decision Tree	0.125
LightGBM	0.452

The best performer was:

Model Limits Cost of Mortgage Defaults

	Member can pay	Member will have difficulty paying
Model predicts member can pay	\$4,548	-\$26,895
Model predicts member cannot pay	-\$1,000	\$ O

When evaluating the expected benefit from the model, we create a matrix associating the cost or benefit of each potential outcome.

Sources:

- 1. Goodman, L., & Zhu, J. (2015, February). Loss Severity on Residential Mortgages [PDF]. Washington, DC: Urban Institute.
- 2. Olick, D. (2020, September 10). Mortgage lenders just saw record profit, and expect to do better in the next quarter. Retrieved from https://www.cnbc.com/2020/09/10/mortgage-lenders-just-saw-record-profit-and-expect-to-do-better-in-the-next-quarter.html

We return to the incurred risk associated with incorrect predictions

	Member can pay	Member will have difficulty paying
Model approves mortgage	\$4,548	-\$26,895
Model denies mortgage	-\$1,000	\$ O

Model Limits Cost of Mortgage Defaults

Likelihood of Outcome

91.6%	7.7%
0.3%	0.4%

Model Limits Cost of Mortgage Defaults

Type of Classifier	Expected Value Per Customer	Improvement with Model
Best Model	\$2,078.82	
Give Everyone a Mortgage	\$1,990.75	4.4%

If **100,000** customers are served annually by Home Credit, the additional profit each year would be over \$8.8 million gain

- 1. Prediction Problem
 - a. Company & Customer perspectives
- 2. Analysis Overview
 - a. Data sources
 - b. Model results
- 3. Conclusion

Results with an Emphasis on Business Value

\$8.8 Million

Help people who are usually not able to enter the credit market do so

Thank you for your attention. Questions?

Laura Cattaneo cattaoo8@umn.edu

Callie Page page0268@umn.edu

Max Traub traub015@umn.edu

Cathy Zheng zheng465@umn.edu

For more technical details, check out our **GitHub**