DEEP LEARNING REDES NEURAIS ARTIFICIAIS

✓ Traga seu laptop

- ✓ Traga seu laptop
- ✓ Use Software Livre

- ✓ Traga seu laptop
- ✓ Use Software Livre
- ✓ Não converse por voz

- ✓ Traga seu laptop
- ✓ Use Software Livre
- ✓ Não converse por voz
- ✓ Se não entender, pergunte!

- ✓ Traga seu laptop
- ✓ Use Software Livre
- ✓ Não converse por voz
- ✓ Se não entender, pergunte!
 - ✓ Se entender, explique!

Instruções Gerais

- ✓ Traga seu laptop
- ✓ Use Software Livre
- ✓ Não converse por voz
- ✓ Se não entender, pergunte!
 - Se entender, explique!

✓ NÃO ENTRE EM PÂNICO

Eu sou Diego Dorgam

Alguma pergunta que você quer fazer?!

http://bit.ly/dl-unb03 https://t.me/DeepLearningUnB @diegodorgam

O QUE VAMOS APRENDER?

- 1. Intuição
 - O que é o Neurônio
 - Funções de Ativação
 - Funcionamento das Redes Neurais
 - Aprendizagem nas Redes Neurais
- 2. Prática
 - Instalando o Keras
 - Construindo uma ANN

Data | Career | Success

O QUE É O NEURÔNIO

Redes Neurais Artificiais

SANTIAGO RAMÓN Y CAJAL, 1899

Neuron Anatomy

Variáveis Independentes VARIÁVEL DEPENDENTE

Padronização Normalização

Padronização Normalização

Efficient BackProp - Yann Lecun http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

Gostaram?

FUNÇÕES DE ATIVAÇÃO

Redes Neurais Artificiais

TURESHOLD FL

THRESHOLD FUNCTION

SIGMOID FUNCTION

RECTIFIER FUNCTION

HYPERBOLIC TANGENT (TANH)

$$\varphi(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

$$\sum_{i=1}^{m} w_i x_i$$

DEEP SPARSE RECTIFIER
NEURAL NETWORKS
Por Xavier Glorot(2011)

http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf

Se a Variável Dependente é binária (y=0 ou y=1) ??

Se a Variável Dependente é binária (y=0 ou y=1) ?? Threshold

$$y = \varnothing \left(\sum_{i=1}^{m} W_i X_i \right)$$

$$P(y=1) = \varnothing \left(\sum_{i=1}^{m} w_i X_i\right)$$

Entendeu?

COMO FUNCIONAM?

Redes Neurais Artificiais

PREÇO DO IMÓVEL

QUARTOS

METROS²

IDADE

DISTÂNCIA

VARIÁVEL DEPENDENTE

PREÇO DO IMÓVEL

VARIÁVEL **DEPENDENTE**

PREÇO DO IMÓVEL

COMO APRENDEM?

Redes Neurais Artificiais

Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
1	12	6	78%	93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
1	12	6	78%	93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

Row ID	Study Hrs 12	Sleep Hrs 6	Quiz 78%	Exam 93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
1	12	6	78%	93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
1	12	6	78%	93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
1	12	6	78%	93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
1	12	6	78%	93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
1	12	6	78%	93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

$$C = \sum \frac{1}{2} (Y^{-} - Y)^{2}$$

A list of cost functions used in neural networks, alongside applications CrossValidated (2015)

https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications

How the backpropagation algorithm works

Michael Nielsen (2015)

http://neuralnetworksanddeeplearning.com/chap2.html

Should a self-driving car kill the baby or the grandma? Depends on where you're from.

https://www.technologyreview.com/s/612341/a-global-ethics-study-aims-to--help-ai-solve-the-self-driving-trolley-problem/

PRÁTICA CONSTRUINDO SUA ANN

O cliente vai deixar o banco?

https://github.com/deeplearningunb/building-ann

Vamos Exercitar?

Vamos Exercitar?

```
# Adding the input layer and the first hidden layer

classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))

# Adding the second hidden layer

classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))

# Adding the output layer

classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))

# Compiling the ANN

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

# Fitting the ANN to the Training set

classifier.fit(X_train, y_train, batch_size = 10, epochs = 100)
```

- 1. Crie uma branch com seu nome
- 2. Troque a função de ativação
 - 3. Compile a rede
 - 4. Commit do resultado (NA SUA BRANCH)

OBRIGADO!

Dúvidas?

http://bit.ly/dl-unb03 https://t.me/DeepLearningUnB @diegodorgam

CREDITS

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by SlidesCarnival
- X Photographs by <u>Unsplash</u>