

Module I. Fundamentals of Information Security

Chapter 2 Cryptographic Techniques

Web Security: Theory & Applications

School of Data & Computer Science, Sun Yat-sen University

Outline

- 2.1 Cryptology Introduction
 - Introduction
 - History
 - Concepts & Items
- 2.2 Symmetric Key Cryptographic Algorithms
 - Introduction
 - Types & Modes
 - Data Encryption Standard (DES)
 - Advanced Encryption Standard (AES)

Outline

2.3 Mathematical Foundations of Public-Key Cryptography

- Prime factorizations of integers
- The Euclidean Algorithm
- Bézout's Theorem
- Linear Congruence
- The Extended_Euclidean Algorithm
- The Chinese Remainder Theorem
- *Euler's* φ function
- Euler's Theorem
- Fermat's Little Theorem

Outline

- 2.4 Asymmetric Key Cryptographic Algorithms
 - Introduction
 - The RSA Algorithm
 - Digital Signatures
- 2.5 Hashing Algorithms
 - Introduction
 - Message-Digest Algorithm (MD5)
- 2.6 Typical Applications
 - MD5 and Passwords
 - AES and WiFi Protected Access
 - RSA and e-Business

2.3.1 Prime factorizations of integers

- Fundamental Theorem of Arithmetic (算术基本定理)
 - Every positive integer greater than 1 can be written uniquely as a prime or as the product of two or more primes when the prime factors are written in order of non-decreasing size. (*Euclid*)
- Greatest Common Divisor (最大公因数)
 - Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the *greatest common divisor* (GCD) of a and b, often denoted as gcd(a, b)

2.3.2 The *Euclidean* Algorithm (欧几里德辗转相除法)

- 《几何原本.第VII卷》(公元前约300年)

- Lemma 0.
 - Let a = bq + r, where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r)
 - Proof.
 - ♦ Suppose d divides both a and b. Recall that if $d \mid a$ and $d \mid b$, then $d \mid a$ -bk for any integer k. It follows that d also divides a-bq = r. Hence, any common division of a and b is also a common division of b and r.
 - \Rightarrow Suppose that d' divides both b and r, then d' also divides bq+r=a. Hence, any common divisor of b and r is also common divisor of a and b.
 - \Leftrightarrow Consequently, gcd(a, b) = gcd(b, r).
 - ♦ Note: a = bq + r, $0 \le r < b$, aka $r = a \mod b$ if the quotient q ignored. r is the (*least positive*) remainder of the division.

- Remark.
 - \Leftrightarrow Suppose a and b are positive integers, $a \ge b$. Let $r_0 = a$ and $r_1 = b$, we successively apply the division algorithm and the gcd is the last nonzero remainder

$$r_0 = r_1q_1 + r_2,$$
 $0 < r_2 < r_1$
 $r_1 = r_2q_2 + r_3,$ $0 < r_3 < r_2$
...
 $r_{n-2} = r_{n-1}q_{n-1} + r_n,$ $0 < r_n < r_{n-1}$
 $r_{n-1} = r_nq_n$
 $gcd(a, b) = gcd(r_0, r_1)$
 $= gcd(r_1, r_2)$
 $= ...$
 $= gcd(r_{n-2}, r_{n-1})$
 $= gcd(r_n, 0) = r_n$

- Remark.
 - \Leftrightarrow Suppose a and b are positive integers, $a \ge b$. Let $r_0 = a$ and $r_1 = b$, we successively apply the division algorithm and the gcd is the last nonzero remainder

$$r_0 = r_1 q_1 + r_2,$$
 $0 < r_2 < r_1$
 $r_1 = r_2 q_2 + r_3,$ $0 < r_3 < r_2$
...
 $r_{n-2} = r_{n-1} q_{n-1} + r_{n},$ $0 < r_n < r_{n-1}$
 $r_{n-1} = r_n q_n + 0.$
 $\gcd(a, b) = \gcd(r_0, r_1)$ The last nonzero remainder
 $= \gcd(r_1, r_2)$ remainder
 $= \gcd(r_{n-2}, r_{n-1})$
 $= \gcd(r_{n-1}, r_n)$
 $= \gcd(r_n, 0) = r_n$

- Example.
 - → Find the GCD of 662 and 414
 - ♦ Compute as

$$662 = 414 \cdot 1 + 248$$

$$166 = 82.2 + 2$$

$$82 = 2.41$$

- Example.
 - → Find the GCD of 414 and 662
 - ♦ Compute as

$$662 = 414 \cdot 1 + 248$$

$$414 = 248 \cdot 1 + 166$$

$$82 = 2.41$$

$$\Rightarrow$$
 So, gcd(414,662) = 2

2.3.2 The *Euclidean* Algorithm

• The Euclidean Algorithm

 \Leftrightarrow The time complexity (for **mod** operation) is O(logb) (where $a \ge b$)

2.3.2 The *Euclidean* Algorithm

- The Euclidean Algorithm
 - Another form of *Euclidean* Algorithm

```
function Euclid(a, b: positive integers): positive integer
begin
   if b=0 then return (a)
      else return (Euclid(b, a mod b);
end;
```

♦ Think about it.

2.3.3 *Bézout*'s Theorem (1779, 贝祖定理)

- Theorem 1.
 - If a and b are positive integers, then there exits integers s and t such that gcd(a, b) = sa + tb.
 - Remark.
 - \Rightarrow a and b are positive. s and t can be any integers.
 - ♦ The equation gcd(a, b) = sa + tb is called Bézout's identity (贝祖恒等) 式). The integers s and t are called *Bézout coefficients* of a and b (贝 祖系数).
 - ♦ Proof omitted.
 - Example.
 - \Rightarrow gcd(252, 198) = 18.
 - ♦ By working backward through the divisions of *The Euclidean Algorithm*, we get s = 4, t = -5 such that

18 = 4.252 + (-5).198

→ Ref. to Section 2.3.5: The Extended_Euclidean Algorithm.

- Lemma 1.
 - If a, b and c are positive integers such that gcd(a, b) = 1 and $a \mid bc$ then $a \mid c$.
 - Proof.
 - \Rightarrow By *Theorem.*1, there exits integers *s* and *t* such that sa + tb = 1, or sac + tbc = c.
 - \Rightarrow Since $a \mid sac$ and $a \mid tbc$.
 - \diamond Therefore $a \mid c$.

- Lemma 1.
 - If a, b and c are positive integers such that gcd(a, b) = 1 and $a \mid bc$ then $a \mid c$.
- Lemma 2.
 - If p is a prime and $p \mid a_1 a_2 \dots a_n$, where each a_i is an integer, then $p \mid a_i$ for some i.
 - Proof.
 - \Rightarrow If $gcd(p, a_1) = 1$, by Lemma.1 it should be $p | a_2 \dots a_n$. and if $gcd(p, a_2) = 1$, by Lemma.1 it should be $p | a_3 \dots a_n$.
 - until an i ($i \le n$) found such that $gcd(p, a_i) \ne 1$.
 - \Rightarrow In this case $p \mid a_i$ for p is a prime.
 - \Rightarrow The existence of such an *i* is assured or $gcd(p, a_1a_2 \dots a_n) = 1$, a contradiction.

- Lemma 1.
 - If a, b and c are positive integers such that gcd(a, b) = 1 and $a \mid bc$ then $a \mid c$.
- Lemma 2.
 - If p is a prime and $p \mid a_1 a_2 \dots a_n$, where each a_i is an integer, then $p \mid a_i$ for some i.
- Lemma 3.
 - The uniqueness of the prime factorization of a positive integer.
 - Proof.

- Lemma 1.
 - If a, b and c are positive integers such that gcd(a, b) = 1 and $a \mid bc$ then $a \mid c$.
- Theorem 2.
 - Let m be a positive integer, and a, b and c be integers, $c \neq 0$. If $ac \equiv bc \pmod{m}$ and gcd(c, m) = 1, then $a \equiv b \pmod{m}$.
 - Proof.
 - $\Rightarrow ac \equiv bc \pmod{m}$ means $m \mid (ac bc)$, or $m \mid (a b)c$.
 - \Rightarrow Now gcd(c, m) = 1. By Lemma.1, we have $m \mid (a b)$, or $a \equiv b \pmod{m}$.

2.3.4 Linear Congruence (线性同余式/线性同余方程/模线性方程)

- Definition 1.
 - A congruence of the form

$$ax \equiv b \pmod{m}$$
.

where m is a positive integer, a and b are integers, and x is a variable, is called a linear congruence.

- Remark.
 - \Rightarrow How to find all integers x that satisfy the congruence $ax \equiv b \pmod{m}$?
- Definition 2. (模 m 逆元)
 - If there is an integer y such that the linear congruence $ya \equiv 1 \pmod{m}$.

holds, then y is said to be an *inverse* of a modulo m.

 \Rightarrow $ya \equiv 1 \pmod{m}$ means (ya - 1) = km for some integer k.

2.3.4 Linear Congruence (线性同余式/线性同余方程/模线性方程)

- Theorem 3.
 - If a and m are relatively prime integers and m>1, then an inverse of a modulo m exits. Furthermore, this inverse is unique modulo m. (模 m 逆元存在定理)
 - Remark.
 - \Rightarrow If the condition gcd(a, m) = 1, m > 1 holds
 - ♦ Then there is a unique positive integer, less than m, denoted by a^{-1} , that is an inverse of a modulo m, and any other inverse of a modulo m is congruence to a^{-1} modulo m.

2.3.4 Linear Congruence (线性同余式/线性同余方程/模线性方程)

- Example.
 - ♦ Find an inverse of 3 modulo 7.
- Solution.
 - \Rightarrow gcd(3, 7) = 1. Then by *Theorem.*3, the inverse of 3 modulo 7 exits.
 - \Leftrightarrow We use the *Euclidean Algorithm* (or *Extended_Euclidean Algorithm*) to find gcd(3, 7). It ends at 7 = 2.3+1.
 - \Rightarrow As the example following *Theorem.*1, by working backward through the divisions of the *Euclidean Algorithm*, we get -2.3+1.7=1.
 - Now gcd(a, m) = 1.
 - By *Theorem.*1, there exists integer s and t such that sa + tm = 1, or sa 1 = -tm.
 - By Definition.2, s is an inverse of a modulo m.
 - \diamond So -2 is an inverse of 3 modulo 7.
 - ♦ Every integers congruent to -2 modulo 7 is an inverse of 3 modulo
 7, such as 5, -9, 12, and so on.

2.3.4 Linear Congruence (线性同余式/线性同余方程/模线性方程)

- Example.
 - \Rightarrow Find the solutions of $3x \equiv 4 \pmod{7}$.
- Solution.
 - ♦ We already know -2 is an inverse of 3 modulo 7. Multiplying both sides of the congruence by -2 show that

$$-2.3x \equiv -2.4 \pmod{7}$$
, or $-2.3x \equiv -8 \pmod{7}$

- \Leftrightarrow We know $-2 \cdot 3 \equiv 1 \pmod{7}$
- $\Rightarrow \text{ So } -2.3x \pmod{7} \equiv [-2.3 \pmod{7}] \cdot [x \pmod{7}] \pmod{7}, \text{ or } -2.3x \pmod{7} \equiv x \pmod{7}$
- ♦ Therefore

$$x \equiv -8 \pmod{7} \equiv 6 \pmod{7}$$

 \Rightarrow The solution are all the x such that $x \equiv 6 \pmod{7}$. That is, 6, 13, 20, . . ., and -1, -8, -15, . . .

2.3.4 Linear Congruence (线性同余式/线性同余方程/模线性方程)

- Remark.
 - → How to working backward through the divisions of the Euclidean Algorithm? By the Algorithm we have the sequence of

$$a_0 = b_0 q_1 + b_1$$

 $b_0 = b_1 q_2 + b_2$
 $b_1 = b_2 q_3 + b_3$
...
 $b_{k-1} = b_k q_{k+1} + b_{k+1}$
 $b_k = b_{k+1} q_{k+2} + \gcd(a_0, b_0)$

 $gcd(a_0, b_0)$ is the last non-zero remainder

$$\Rightarrow \text{ Then } \gcd(a_0, b_0) = f(b_k, b_{k+1}, q_{k+2}) = f^{(1)}(b_{k-1}, b_k, q_{k+1}, q_{k+2})$$

$$= f^{(2)}(b_{k-2}, b_{k-1}, q_k, q_{k+1}, q_{k+2}) = \dots$$

$$= f^{(k+1)}(a_0, b_0, q_1, q_2, q_3, \dots, q_{k+2})$$

2.3.4 Linear Congruence (线性同余式/线性同余方程/模线性方程)

- Example.

♦ To find gcd(287, 91), by Euclidean Algorithm we have the sequence. of 287 = 91.3 + 1491 = 14.6 + 714 = 7.2 + 0♦ Or let $a_0 = 287, b_0 = 91,$ $a_0 = b_0 q_1 + b_1$ $b_0 = b_1 q_2 + b_2$ $b_1 = b_2 q_3$, here $gcd(a_0, b_0) = b_2 (= 7)$ ♦ Then $gcd(a_0, b_0) = b_2 = b_0 - b_1q_2 = b_0 - (a_0 - b_0q_1)q_2$ $= -a_0q_2 + b_0(1 + q_1q_2)$

 $= -6a_0 + 19b_0$

2.3.4 Linear Congruence (线性同余式/线性同余方程/模线性方程)

- Example.
 - → Find an inverse of 101 modulo 4620.
- Solution.
 - → To find gcd(101, 4620), by Euclidean Algorithm we have the sequence of

```
4620 = 45 \cdot 101 + 75

101 = 1 \cdot 75 + 26

75 = 2 \cdot 26 + 23

26 = 1 \cdot 23 + 3

23 = 7 \cdot 3 + 2

3 = 1 \cdot 2 + 1

2 = 2 \cdot 1

quotients
```

2.3.4 Linear Congruence (线性同余式/线性同余方程/模线性方程)

- Example.
 - → Find an inverse of 101 modulo 4620.
- Solution.
 - Now gcd(101, 4620) = 1. We can find the Bézout coefficients for 101 and 4620 by working backwards through these steps, expressing gcd(101, 4620) = 1 in terms of each successive pair of remainders.

```
1 = 3 - 1 \cdot 2 = 3 - 1 \cdot (23 - 7 \cdot 3) = -1 \cdot 23 + 8 \cdot 3
= -1 \cdot 23 + 8 \cdot (26 - 1 \cdot 23) = 8 \cdot 26 - 9 \cdot 23
= 8 \cdot 26 - 9 \cdot (75 - 2 \cdot 26) = -9 \cdot 75 + 26 \cdot 26
= -9 \cdot 75 + 26 \cdot (101 - 1 \cdot 75) = 26 \cdot 101 - 35 \cdot 75
= 26 \cdot 101 - 35 \cdot (4620 - 45 \cdot 101)
= -35 \cdot 4620 + 1601 \cdot 101.
```

♦ Now -35 and 1601 are Bézout coefficients of 4620 and 101, and 1601 is an inverse of 101 modulo 4620.

2.3.5 The Extended_Euclidean Algorithm (扩展欧几里德算法)

Remark.

```
\Leftrightarrow Let ax + by = \gcd(a, b), a \ge b > 0. 	(Theorem.1)
\Rightarrow How to find x, y, and gcd(a, b)?
                                                  (Diophantus equation)
\Leftrightarrow Let a' = b, b' = a \mod b. By Bézout's Theorem we have
          gcd(a', b') = a'x' + b'y' or
          gcd(b, a \mod b) = bx' + (a \mod b)y'.

→ By Lemma 0, we know that
          gcd(a, b) = gcd(b, a \mod b) = gcd(a', b').
\Rightarrow Then gcd(a, b) = gcd(a', b')
                    = a'x' + b'y'
                    = bx' + (a \mod b)y'
                    =bx'+(a-(a\operatorname{div}b)b)y'
                    = av' + b(x' - (a \operatorname{div} b)v')
    So x = y', and y = x'- (a div b)y' is a solution to the equation
          ax + by = \gcd(a', b') = \gcd(a, b).
```

2.3.5 The Extended_Euclidean Algorithm (扩展欧几里德算法)

Remark.

```
\Leftrightarrow Let a'' = b', b'' = a' \mod b' we also have
             gcd(a'', b'') = a'v'' + b'(x'' - (a' div b')v'').
    So x' = y'', and y' = x'' - (a' \operatorname{div} b')y'' is a solution to the equation
             a'x' + b'y' = \gcd(a'', b'') = \gcd(a', b') = \gcd(a, b).
\Leftrightarrow Let a^{(3)} = b'', b^{(3)} = a'' \mod b'' we also have
             \gcd(a^{(3)},b^{(3)})=a''v^{(3)}+b''(x^{(3)}-(a''\operatorname{div}b'')v^{(3)}).
    So x'' = y^{(3)}, and y'' = x^{(3)} - (a'' \operatorname{div} b'')y^{(3)}.
\Leftrightarrow Let a^{(k+1)} = b^{(k)}, b^{(k+1)} = a^{(k)} \mod b^{(k)} we have
             \gcd(a^{(k+1)},b^{(k+1)})=a^{(k)}y^{(k+1)}+b^{(k)}(x^{(k+1)}-(a^{(k)}\operatorname{div}b^{(k)})y^{(k+1)}).
    So x^{(k)} = y^{(k+1)}, and y^{(k)} = x^{(k+1)} - (a^{(k)} \operatorname{div} b^{(k)}) y^{(k+1)}.
\Leftrightarrow Continue this process until b^{(k+1)} = a^{(k)} \mod b^{(k)} = 0 obtained.
\Rightarrow Then gcd(a, b) = gcd(a', b') = gcd(a'', b'') = ... = gcd(a^{(k+1)}, b^{(k+1)})
                            = \gcd(a^{(k+1)}, 0)
                            = a^{(k+1)} (=b^{(k)}).
```

2.3.5 The Extended_Euclidean Algorithm (扩展欧几里德算法)

- Remark.
 - ♦ Since we have

$$\gcd(a,b)=a^{(k+1)}.$$

♦ Then The equation

$$a^{(k+1)}x^{(k+1)} + b^{(k+1)}y^{(k+1)} = \gcd(a, b).$$

has a solution $x^{(k+1)} = 1$, $y^{(k+1)} = 0$.

in fact, $y^{(k+1)}$ can take any positive integer because $b^{(k+1)}=0$.

2.3.5 The Extended_Euclidean Algorithm (扩展欧几里德算法)

- Remark.
 - ♦ Since we have

$$\gcd(a,b)=a^{(k+1)}.$$

♦ Then The equation

$$a^{(k+1)}x^{(k+1)} + b^{(k+1)}y^{(k+1)} = \gcd(a, b).$$

has a solution $x^{(k+1)} = 1$, $y^{(k+1)} = 0$.

- o in fact, $y^{(k+1)}$ can take any positive integer because $b^{(k+1)}=0$.
- \Rightarrow If we have put every $a^{(i)}$ and $b^{(i)}$ in the process on record, by working backward,

$$x^{(k)} = y^{(k+1)}$$
, and $y^{(k)} = x^{(k+1)} - (a^{(k)} \operatorname{div} b^{(k)}) y^{(k+1)}$.

we can finally find x and y.

2.3.5 The Extended_Euclidean Algorithm (扩展欧几里德算法)

The Extended Euclidean Algorithm.

```
ADT triple {
   x, y, d: longint;
} ee;
triple function Extended_Euclid (a, b: positive integers)
begin
   if b=0 then return(1, 0, a);
   ee :=Extended_Euclid (b, a mod b);
   x := ee.y;
   y := ee.x - (a \operatorname{div} b)^* ee.y;
   return (x, y, ee.d);
end;
```

2.3.5 The Extended_Euclidean Algorithm (扩展欧几里德算法)

- Example.
 - ♦ Find the GCD of 662 and 414
- Solution.
 - ♦ Construct a forward procedure $a^{(k+1)} = b^{(k)},$ $b^{(k+1)} = a^{(k)} \mod b^{(k)}.$ until k=5, $b^{(5)} = 0$.
 - ♦ We get: $gcd(a, b) = a^{(5)} = b^{(4)}$.

	k	а	b
•	0	662	414
	1	414	248
	2	248	166
	3	166	82
	4	82	2
	5	2	0

2.3.5 The Extended_Euclidean Algorithm (扩展欧几里德算法)

- Example.
 - ♦ Find the GCD of 662 and 414
- Solution.
 - ♦ Construct a forward procedure $a^{(k+1)} = b^{(k)},$ $b^{(k+1)} = a^{(k)} \mod b^{(k)}.$ until k=5, $b^{(5)} = 0$.
 - \Rightarrow We get: $gcd(a, b) = a^{(5)} = b^{(4)}$.
 - \Rightarrow Take $x^{(5)}=1$, $y^{(5)}=0$.

k	а	b	X	у
0	662	414		
1	414	248		
2	248	166		
3	166	82		
4	82	2		
5	2	0	1	0

2.3.5 The Extended_Euclidean Algorithm (扩展欧几里德算法)

- Example.
 - ♦ Find the GCD of 662 and 414
- Solution.
 - ♦ Construct a forward procedure $a^{(k+1)} = b^{(k)},$ $b^{(k+1)} = a^{(k)} \mod b^{(k)}.$ until k=5, $b^{(5)} = 0$.
 - \Rightarrow We get: gcd(a, b) = $a^{(5)}$ = $b^{(4)}$.
 - \Rightarrow Take $x^{(5)}=1$, $y^{(5)}=0$.
 - ♦ Construct a backward process

$$x^{(k)} = y^{(k+1)},$$

 $y^{(k)} = x^{(k+1)} - (a^{(k)} \text{ div } b^{(k)})y^{(k+1)}.$

♦ Now the *Diophantus* equation $662x + 414y = \gcd(662, 414)$ has a solution of x = -5, y = 8.

	k	а	b	X	у
	0	662	414	-5	8
	1	414	248	3	-5
	2	248	166	-2	3
	3	166	82	1	-2
	4	82	2	0	1
	5	2	0	1	0

2.3.6 The Chinese Remainder Theorem (中国剩余定理)

- History of the *CRT*.
 - In 4ST century, the Chinese mathematician Sun-Tsu ask: There are certain things whose number is unknown. When divided by 3, the remainder is 2; when divided by 5, the remainder is 3; when divided by 7, the remainder is 2. What will be the number of things? (有物不知其数, 三分之余二, 五分之余三, 七分之余二, 此物几何? -《孙子算经》魏晋南北朝)
 - ◆ The notion of congruences was first introduced and used by *Gauss* in his *Disquisitiones Arithmeticae* (算术探究) of 1801. This puzzle can be: What are the solutions of the systems of congruences

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

2.3.6 The Chinese Remainder Theorem (中国剩余定理)

- History of the CRT.
 - 一 "大衍求一术"(《数书九章》,秦九韶,南宋,1247)◇ 求解一次同余式

2.3.6 The Chinese Remainder Theorem (中国剩余定理)

- Theorem 4.
 - Let m_1, m_2, \ldots, m_n be pairwise relatively prime positive integers and a_1, a_2, \ldots, a_n arbitrary integers. Then the system

```
x \equiv a_1 \pmod{m_1}

x \equiv a_2 \pmod{m_2}

...

x \equiv a_n \pmod{m_n}
```

has a unique solution modulo m, $m = m_1 m_2 \dots m_n$.

— That is, there is a solution x with $0 \le x \le m$ to the system, and all other solutions to the system are congruent modulo m to this solution.

2.3.6 The Chinese Remainder Theorem (中国剩余定理)

- Theorem 4.
 - Proof.
 - \Leftrightarrow Let $M_k = m/m_k$ for k=1, 2, ..., n. That is, M_k is the product of the moduli except for m_k , and M_s mod $m_k = 0$ when $s \neq k$.
 - \Leftrightarrow We know $\gcd(M_k, m_k) = 1$ for k=1, 2, ..., n because $m_1, m_2, ..., m_n$ are pairwaise relatively prime integers. From *Theorem.3*, there is an integer y_k , an inverse of M_k modulo m_k , such that

$$M_k y_k \equiv 1 \pmod{m_k}, k = 1, 2, ..., n.$$

♦ Now form the sum

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + \dots + a_n M_n y_n.$$

 \diamondsuit Then we know x is a simultaneous solution by showing

$$x \mod m_k = a_k M_k y_k \mod m_k = a_k \mod m_k$$
, $k = 1, 2, ..., n$.

or
$$x \equiv a_k \pmod{m_k}, k = 1, 2, ..., n.$$

2.3.6 The Chinese Remainder Theorem (中国剩余定理)

Example.

```
    Find the solutions of the systems of congruences
    x \equiv 2 \pmod{3}
    x \equiv 3 \pmod{5}
    x \equiv 2 \pmod{7}
```

- Solution.

 $x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3 = 233 \equiv 23 \pmod{105}$

2.3.6 The Chinese Remainder Theorem (中国剩余定理)

- Remark.
 - \Leftrightarrow Let m_1, m_2, \ldots, m_n ($m_i \ge 2, i=1, 2, \ldots, n$) be pairwaise relatively prime integers and $m = m_1 m_2 \ldots m_n$. By *The Chinese Remainder Theorem*, any integer x with $0 \le x \le m$ can be uniquely represented by the n-tuple

$$(a_1, a_2, \ldots, a_n), a_i = x \mod m_i, i=1, 2, \ldots, n.$$

- \Leftrightarrow Keeping (m_1, m_2, \ldots, m_n) in secret, it is very difficult to decrypt x from (a_1, a_2, \ldots, a_n) .
 - As we know, $x = a_1 M_1 y_1 + a_2 M_2 y_2 + ... + a_n M_n y_n$.
- \Leftrightarrow As in Sun-Tsu's example, $(m_1, m_2, m_3) = (3, 5, 7)$ is the secret key. The number x=23 is represented by $(a_1, a_2, a_3) = (2, 3, 2)$:

$$a_1 = x \mod m_1 = 23 \mod 3 = 2$$

$$a_2 = x \mod m_2 = 23 \mod 5 = 3$$

$$a_3 = x \mod m_3 = 23 \mod 7 = 2$$

2.3.7 *Euler's* φ function (*Euler's* Totient function, 欧拉 φ 函数)

- Definition.
 - For an integer m, consider the ring $Z_m = \{0, ..., m-1\}$. Euler's φ function $\varphi(m)$ is the number of integers in Z_m which are coprime to m.
 - \Leftrightarrow Denote the collection of all the integers coprime to m in Z_m as Z_m , $\varphi(m) = |Z_m|$. (Z_m) , reduced residue system of m, 既约剩余系)
 - $\Leftrightarrow \varphi(m)$ is the number of positive integers less than and prime to m.
 - Example.
 - $\Leftrightarrow \varphi(8) = 4.$
 - 1, 3, 5, 7 are coprime to 8. $Z_8' = \{1, 3, 5, 7\}$
 - \Leftrightarrow Convention: $\varphi(1) = 1$.

2.3.7 *Euler's* φ function (*Euler's* Totient function, 欧拉 φ 函数)

- Example.
 - \Leftrightarrow Let m = p^k, p is prime. Then φ (m) = φ (p^k) = p^k p^{k-1}.
 - \diamond *Proof.*
 - An integer n is coprime to $m = p^k$ if and only if it contains no p as its factor. Integers in Z_m containing p as factor are 1p, 2p, 3p, ..., $p^{(k-1)}p$,
 - Remove them from Z_m , $m p^{k-1} = p^k p^{k-1}$ number of integers are left witch are coprime to m.
 - *♦* Example.
 - $\varphi(8) = \varphi(2^3) = 2^3 2^2 = 4.$
 - When k=1, The equation becomes $\varphi(p) = p 1$.
 - ♦ The equation can be the form of

$$\phi(p^k) = p^k - p^{k-1} = p^k (1 - \frac{1}{p})$$

2.3.7 *Euler's* φ function (*Euler's* Totient function, 欧拉 φ 函数)

- Example.
 - $\Leftrightarrow \varphi(p) = p-1$ if p is prime. (p $\neq 1$ because 1 is not prime)
 - For p is coprime to any integer less then p. $Z_p' = \{1, 2, ..., p-1\}$
 - Example.
 - $\varphi(11) = 10$.
- Example.
 - \Rightarrow Let m = pq, p and q are relatively prime. Then $\varphi(m) = \varphi(pq) = \varphi(p)\varphi(q)$.
 - *♦ Proof.*
 - Let $a \in Z_p'$, $b \in Z_q'$. Applying the *Chinese Remainder Theorem*, any $c \in Z_{pq}'$ can be uniquely represent as a ordered pair (a, b). The number of c, say $|Z_{pq}'|$, is $|Z_p'| \times |Z_p'|$.
 - *♦* Example.
 - $\varphi(56) = \varphi(8 \times 7) = \varphi(8) \times \varphi(7) = 4 \times 6 = 24$

2.3.7 Euler's φ function (Euler's Totient function, 欧拉 φ 函数)

- Example.
 - ♦ Let m = pq, p and q are primes, p ≠ q. Then φ (m) = φ (pq) = φ (p) φ (q) = (p-1)(q-1).
- Example.
 - ♦ Let $m = p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$ where p_i are primes and $k_i > 0$ for i=1...r, $p_s \neq p_t$ for $1 \le s < t \le r$. Then

$$\varphi(m) = \varphi(p_1^{k_1}) \varphi(p_2^{k_2}) ... \varphi(p_r^{k_r})
= p_1^{k_1} [1 - (1/p_1)] p_2^{k_2} [1 - (1/p_2)] ... p_r^{k_r} [1 - (1/p_r)]
= m [1 - (1/p_1)] [1 - (1/p_2)] ... [1 - (1/p_r)]$$

♦ Example.

$$\varphi(1323) = \varphi(3^3 \times 7^2) = 1323 \times (1-1/3) \times (1-1/7) = 756$$

2.3.8 Euler's Theorem (欧拉定理)

- Theorem 5.
 - Let a and m be integers such that gcd(a, m) = 1. Then $a^{\varphi(m)} \equiv 1 \pmod{m}$.
 - $\Rightarrow m > 0.$
 - Remark.
 - \Rightarrow The existence of *inverse* of *a* modulo *m*
 - As defined in *Definition*.2, if there is an integer y such that $ya \equiv 1 \pmod{m}$, y is said to be an *inverse* of a modulo m.
 - Now $a^{\varphi(m)} = a \times a^{\varphi(m)-1} \equiv 1 \pmod{m}$. Thus $a^{\varphi(m)-1}$ is an inverse of a modulo m

2.3.8 Euler's Theorem (欧拉定理)

- Theorem 5.
 - Let a and m be integers such that gcd(a, m) = 1. Then $a^{\varphi(m)} \equiv 1 \pmod{m}$.
 - Proof.
 - (1) Let $Z_m' = \{x_1, x_2, ..., x_{\varphi(m)}\}$ be the reduced residue system of m, and let $S = \{ax_1 \mod m, ax_2 \mod m, ..., ax_{\varphi(m)} \mod m\}$, then $Z_m' = S$.
 - Because a and x_i ($1 \le i \le \varphi(m)$) are all coprime to m, so ax_i are also coprime to m for $1 \le i \le \varphi(m)$. Therefore $ax_i \mod m \in Z_m'$.
 - Now a is coprime to m. For any $x_i \neq x_j$, by Cancellation Law we get

 $ax_i \mod m \neq ax_i \mod m$.

2.3.8 Euler's Theorem (欧拉定理)

- Theorem 5.
 - Let a and m be integers such that gcd(a, m) = 1. Then $a^{\varphi(m)} \equiv 1 \pmod{m}$.
 - Proof.
 - (2) Construct

$$a^{\varphi(m)} x_1 x_2 ... x_{\varphi(m)} \pmod{m}$$

 $\equiv (ax_1) (ax_2) ... (ax_{\varphi(m)}) \pmod{m}$
 $\equiv (ax_1 \mod m) (ax_2 \mod m) ... (ax_{\varphi(m)} \mod m) \pmod{m}$
 $\equiv x_1 x_2 ... x_{\varphi(m)} \pmod{m}$.

- But x_i (1 ≤ i ≤ $\varphi(m)$) are coprime to m, and so is $x_1 x_2 ... x_{\varphi(m)}$.
- Therefore, by Cancellation Law, $a^{\varphi(m)} \equiv 1 \mod m$.
- ♦ Cancellation Law:

If gcd(c,p) = 1, then $ac \equiv bc \pmod{p} \Rightarrow a \equiv b \pmod{p}$

2.3.9 Fermat's Little Theorem (1640, 费马小定理)

- Theorem 6.
 - If p is a prime number and a is an integer not divisible by p,
 then

$$a^{p-1} \equiv 1 \pmod{p}$$

 Further more, for every integer a, Fermat's Little Theorem is equivalent to

$$a^p \equiv a \pmod{p}$$

Example.

$$\Rightarrow a = 13, p = 7, a^p = 13^7 = 62748517, a^{p-1} = 13^6 = 4826809$$
 $a^p - a = 62748517 - 13 = 62748504 = 8964072 \times 7$
 $a^{p-1} = 4826809 = 689544 \times 7 + 1 = qp + 1$
 $\Rightarrow a = 14, p = 7, a^p = 14^7 = 105413504, a^{p-1} = 14^6 = 7529536$
 $a^p - a = 105413504 - 14 = 105413490 = 15059070 \times 7$
 $a^{p-1} = 7529536 = 1075648 \times 7 = qp$, the *Theorem* failed.

