Sample Paper 4

Class- X Exam - 2022-23

Mathematics - Standard

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = \frac{22}{7}$ wherever required if not stated.

Section - A

Section A consists of 20 questions of 1 mark each.

1. If one zero of a quadratic polyne	nomial $(kx^2 + 3x + k)$ is 2, then the value of k is
--------------------------------------	---

(a)
$$\frac{5}{6}$$

(b)
$$-\frac{5}{6}$$

(c)
$$\frac{6}{5}$$

(d)
$$-\frac{6}{5}$$

2. The zeroes of the polynomial
$$x^2 - 3x - m(m+3)$$
 are

(a)
$$m, m+3$$

(b)
$$-m, m+3$$

(c)
$$m, -(m+3)$$

(d)
$$-m, -(m+3)$$

3. The pair of equations
$$3^{x+y} = 81$$
, $81^{x-y} = 3$ has

- (a) no solution
- (b) unique solution
- (c) infinitely many solutions

(d)
$$x = 2\frac{1}{8}, y = 1\frac{7}{8}$$

4. The value of k for which the system of equations
$$x + y - 4 = 0$$
 and $2x + ky = 3$, has no solution, is

(a)
$$-2$$

(b)
$$\neq 2$$

Page 2 Sample Paper 4 Mathematics STD Class 10

5. Assertion: $4x^2 - 12x + 9 = 0$ has repeated roots.

Reason: The quadratic equation $ax^2 + bx + c = 0$ have repeated roots if discriminant D > 0.

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- **6.** If one root of the quadratic equation $ax^2 + bx + c = 0$ is the reciprocal of the other, then
 - (a) b = c

(b) a = b

(c) ac = 1

- (d) a = c
- 7. The first term of AP is p and the common difference is q, then its 10th term is
 - (a) q + 9p

(b) p - 9q

(c) p + 9q

- (d) 2p + 9q
- **8.** What is the common difference of an AP in which $a_{18} a_{14} = 32$?
 - (a) 8

(b) -8

(c) -4

- (d) 4
- 9. Two poles of height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their foot is 12 m, then distance between their tops is
 - (a) 12 m

(b) 14 m

(c) 13 m

- (d) 11 m
- 10. Two chords AB and CD of a circle intersect at E such that $AE = 2.4 \,\mathrm{cm}$, $BE = 3.2 \,\mathrm{cm}$ and $CE = 1.6 \,\mathrm{cm}$. The length of DE is
 - (a) 1.6 cm

(b) 3.2 cm

(c) 4.8 cm

- (d) 6.4 cm
- 11. If $\cos 9\alpha = \sin \alpha$ and $9\alpha < 90^{\circ}$, then the value oftan 5α is
 - (a) $\frac{1}{\sqrt{3}}$

(b) $\sqrt{3}$

(c) 1

- (d) 0
- 12. The ratio of the length of a rod and its shadow is $1:\sqrt{3}$ then the angle of elevation of the sun is
 - (a) 90°

(b) 45°

(c) 30°

- (d) 75°
- 13. If a circular grass lawn of 35 m in radius has a path 7 m wide running around it on the outside, then the area of the path is
 - (a) $1450 \,\mathrm{m}^2$

(b) $1576 \,\mathrm{m}^2$

(c) 1694 m^2

(d) $3368 \,\mathrm{m}^2$

Mathematics STD Class 10

Sample Paper 4

Page 3

If th (a) (c)	ne perimeter of one $120~\mathrm{cm}^2$ $125~\mathrm{cm}^2$	e face of a c	cube is 20 c	m, then its	(d) 400	$0\mathrm{cm}^2$					
(6)	125 Cm				(d) 400	CIII					
Con	sider the following	frequency	distribution	n of the hei	ights of 60 s	students of	a class				
Hei	ight (in cm)	150-155	155-160	160-165	165-170	170-175	175-180]			
Nu	mber of students	15	13	10	8	9	5]			
The (a)	upper limit of the	median cl	ass in the g	iven data i	s (b) 155	j		-			
(c)	160				(d) 170)					
(a) (c)	For each E is 4				(b) 13(d) 51						
. ,	48 co-ordinates of th	e point wh	ich is raflac	tion of poi	,	n <i>r</i> _avic ar	ο.				
(a)	(3,5)	o point wit		or poin		(b) $(3, -5)$					
(c)	(-3, -5)				(d) (–	(d) $(-3,5)$					
C is (a)	s the mid-point of -6 and 1	PQ, if P is	s (4, x), C i	s $(y, -1)$ a	and Q is $((b)$ -6	2, 4), then and 2	x and y re	espectively are			
(c)	6 and -1				(d) 6 a	nd-2					
The (a)	centroid of the tri $(0, 9)$	iangle whos	se vertices a	ore $(3, -7)$,	(-8,6) and (b) $(0,$						
(c)	(1, 3)				(d) $(3,$	5)					
	ertion: The HCF son: For any two Both assertion (positive in	tegers a an	d b , HCF (a	(a,b) + LCM	(a,b)=a	\times b .	0 ion of assertion (A).			
	Both assertion (A) and rea	son (R) are	true but r	eason (R) is	s not the co	orrect expla	anation of assertion (A			
(b)	Dom assertion (. /	` /		` '		1	mation of assertion (11			
(b) (c)	Assertion (A) is		eason (R) is	s false.	, ,		1	matter of assortion (11			

Page 4 Sample Paper 4

Mathematics STD Class 10

Section - B

Section B consists of 5 questions of 2 marks each.

- **21.** In a rectangle ABCD, E is a point on AB such that $AE = \frac{2}{3}AB$. If AB = 6 km and AD = 3 km, then find DE.
- 22. In the given figure PQ is chord of length 6 cm of the circle of radius 6 cm. TP and TQ are tangents to the circle at points P and Q respectively. Find $\angle PTQ$.

- 23. Find the value of $\sin 30^{\circ} \cos 60^{\circ} + \cos 30^{\circ} \sin 60^{\circ}$ is it equal to $\sin 90^{\circ}$ or $\cos 90^{\circ}$?
- 24. Find the mode of the following frequency distribution.

Class	0- 10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	8	10	10	16	12	6	7

\mathbf{OR}

The data regarding marks obtained by 48 students of a class in a class test is given below. Calculate the modal marks of students.

Marks obtained	0-5	5- 10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50
Number of students	1	0	2	0	0	10	25	7	2	1

25. Show that 571 is a prime number.

OR

If two positive integers p and q are written as $p = a^2b^3$ and $q = a^3b$, where a and b are prime numbers than verify $LCM(p,q) \times HCF(q,q) = pq$

Mathematics STD Class 10

Sample Paper 4

Page 5

Section - C

Section C consists of 6 questions of 3 marks each.

- **26.** Find the middle term of the AP 7, 13, 19,, 247.
- 27. Prove that $(\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 = 7 + \tan^2 \theta + \cot^2 \theta$
- 28. The circumference of a circle exceeds the diameter by 16.8 cm. Find the radius of the circle. Use $\pi = \frac{22}{7}$.

OR

Find the area of shaded region shown in the given figure where a circular arc of radius 6 cm has been drawn with vertex O of an equilateral triangle OAB of side 12 cm as centre.

29. The marks obtained by 110 students in an examination are given below

Marks	30-35	35-40	40-45	45-50	50-55	55-60	60-65
Number of Students	14	16	28	23	18	8	3

Find the mean marks of the students.

30. If the point C(-1,2) divides internally the line segment joining the points A(2,5) and B(x,y) in the ratio 3:4, find the value of $x^2 + y^2$.

OR

Find the ratio in which the point (-3, p) divides the line segment joining the points (-5, -4) and (-2, 3). Hence find the value of p.

31. 144 cartons of Coke cans and 90 cartons of Pepsi cans are to be stacked in a canteen. If each stack is of the same height and if it equal contain cartons of the same drink, what would be the greatest number of cartons each stack would have?

Section - D

Section D consists of 4 questions of 5 marks each.

32. Determine graphically whether the following pair of linear equations:

$$3x - y = 7$$

2x + 5y + 1 = 0 has:

unique solution

infinitely many solutions or

no solution.

 \mathbf{OR}

Solve the following pair of linear equations graphically:

$$x + 3y = 12, \ 2x - 3y = 12$$

Also shade the region bounded by the line 2x-3y=2 and both the co-ordinate axes.

- **33.** a, b and c are the sides of a right triangle, where c is the hypotenuse. A circle, of radius r, touches the sides of the triangle. Prove that $r = \frac{a+b-c}{2}$.
- 34. A vertical tower stands on horizontal plane and is surmounted by a vertical flag-staff of height 6 m. At a point on the ground, angle of elevation of the bottom and top of the flag-staff are 30° and 45° respectively. Find the height of the tower. (Take $\sqrt{3} = 1.73$)

OR

From the top of tower, 100 m high, a man observes two cars on the opposite sides of the tower with the angles of depression 30° and 45° respectively. Find the distance between the cars. (Use $\sqrt{3} = 1.73$)

35. The internal and external diameters of a hollow hemispherical vessel are 16 cm and 12 cm respectively. If the cost of painting 1 cm² of the surface area is Rs. 5.00, find the total cost of painting the vessel all over. (Use $\pi = 3.14$)

Section - E

Case study based questions are compulsory.

36. Riya has a lawn with a flowerbed and grass land. The grass land is in the shape of rectangle while flowerbed is in the shape of square. The length of the grassland is found to be 3 m more than twice the length of the flowerbed. Total area of the whole lawn is 1260 m².

- (i) If the length of the flowerbed is x m then what is the total length of the lawn?
- (ii) What is the value of x if the area of total lawn is 1260 m²?
- (iii) What is the area of grassland?

OR

What is the ratio of area of flowerbed to area of grassland?

Mathematics STD Class 10

Sample Paper 4

Page 7

37. Rani wants to make the curtains for her window as shown in the figure. The window is in the shape of a rectangle, whose width and height are in the ratio 2:3. The area of the window is 9600 square cm.

- (i) What is the shape of the window that is uncovered?
- (ii) What will be the ratio of two sides of each curtain (other than hypotenuse)?
- (iii) What are the dimensions of the window?

OR

How much window area is covered by the curtains?

38. Family Structures: For a recent year, 51% of the families in the United States had no children under the age of 18; 20% had one child; 19% had two children; 7% had three children; and 3% had four or more children.

If a family is selected at random, find the following probability.

- (i) Find the probability that the family has two or three children.
- (ii) Find the probability that the family has more than one child.
- (iii) Find the probability that the family has less than three children.

OR

Find the probability that the family has more than three children.

Download NODIA App from Playstore

CLICK HERE TO DOWNLOAD

https://play.google.com/store/apps/details?id=com.nodiaapp&hl=en_IN&gl=US

You can search by typing NODIA on the playstore.

How To View Solutions of Sample Papers

Click on the Subject

Select the First Option

View the Solutions

If you want to download and print the solutions, get Gold Plan by upgrading.