CBSE Board

Class X Mathematics

Sample Paper 5 (Basic)

Time: 3 hrs Total Marks: 80

General Instructions:

- a) All the questions are compulsory.
- **b)** The question paper consists of **40** questions divided into **four sections** A, B, C, and D.
- c) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
- d) There is no overall choice. However internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- **e)** Use of calculator is **not** permitted.

Section A

(Q 1 – Q 10 are multiple choice questions.) Select the most appropriate answer from the given options.)

1.	The sum of exponents of the prime factors in the prime factorisation of 196 is
	A. 1
	B. 2
	C. 4
	D. 6
2.	Mode of the given data is
	3, 5, 7, 4, 5, 3, 5, 6, 8, 9, 5, 3, 5, 3, 6, 9, 7, 4

- **A.** 3
- **B.** 4
- **C.** 5
- **D.** 9

- 3. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is
 A. 7cm
 B. 12cm
 C. 15cm
- 4. If HCF(26, 169) = 13, then LCM(26, 169) =
 A. 26
 B. 52
 C. 338
 D. 13
- If P(A) = 0.05, then P(not A) =
 A. -0.05
 B. 0.5
 C. 0.9
 D. 0.95

D. 24.5cm

- 6. How many zeroes will a polynomial have if its curve does not touch the X axis?
 A. 0
 B. 1
 C. 2
 D. 3
- 7. (5+√5) (1 +√5) is a/an _____ number.
 A. Rational
 B. Irrational
 C. Prime
 D. Odd
- 8. On dividing $x^2 x + 1$ by x 1, we get the remainder as

 A. -1
 - B. 0C. 1
 - **D.** x

- **9.** The area of the triangle whose vertices are (3, 4), (-1, 2) and (-2, 3) is
 - **A.** 0
 - **B.** 1
 - **C.** 2
 - **D.** 3
- **10.** What is the distance between (a, 0) and (0, b)?
 - $\mathbf{A.} \quad \sqrt{\mathbf{a}^2 + \mathbf{b}^2}$
 - **B.** $\sqrt{a^2 b^2}$
 - C. $\sqrt{a^2 b^2}$
 - **D.** $\sqrt{2a^2b^2}$

Fill in the blanks: (Q 11- Q 15)

- **11.** If the distance between the points A (4, p) and B (1, 0) is 5, then the value(s) of p is/are _____.
- **12.** The cost of a table is 3 times the cost of a chair. The total cost of 4 chairs and a table is Rs. 2100, then the cost of a table is equal to _____.

OR

The solution of a quadratic equation $x^2 + x - 2 = 0$ is equal to _____.

- 13. If $\cot A = \frac{4}{5}$, then $\frac{\sin A + \cos A}{\sin A \cos A} = \square$.
- **14.** If A and B are acute angles such that $\sin A = \cos B$, then $A + B = \underline{\hspace{1cm}}$.
- **15.** In an isosceles triangle ABC, $\angle C = 90^{\circ}$. If AB = 8 cm, then AC = ____.

Answer the following: (Q 16- Q 20)

16. If $\sin 2A = \cos 50^\circ$, then find the value of A.

Find the value of
$$\frac{\sin 75^{\circ} + \cos 15^{\circ}}{\sin 75^{\circ}}$$
.

- **17.** The diameter of a wheel is 35 cm. Find the circumference of the wheel.
- **18.** Find the probability of getting non face card from a deck of cards.
- **19.** \triangle ABC and \triangle XYZ are similar, and if AB = 11 cm, XY = 7 cm and BC = 22 cm, then find the value of YZ.
- **20.** Find the 28th term of the AP 5, 8, 11, 54,....

Section B (Questions 21 to 26 carry 2 marks each)

- **21.** A number card is drawn from a pack of 15 cards numbered from 1 to 15. Find the probability that the card bears a number which is divisible by 4.
- **22.** What is the probability of getting a working bulb out of 5 defective bulbs mixed with 6 good bulbs?

OR

Five cards of diamond—ten, jack, queen, king and ace—are shuffled face downwards. One card is picked at random. If a king is drawn first and put aside, what is the probability that the second card picked is king?

23. Two concentric circles of radii a and b (a > b) are given. Find the length of the chord of the larger circle which touches the smaller circle.

24. Find the value of $(\sin A + \cos A)^2 + (\sin A - \cos A)^2$.

OR

Find the value of $\frac{2 \tan 30^{\circ}}{1 + \tan^2 30^{\circ}}$.

- **25.** The area and perimeter of a rectangle are equal. Find the breadth of the rectangle if the length is twice the breadth of the rectangle.
- **26.** Read the following passage and answer the questions that follows: A teacher told students to fill the boxes with the correct answer.

Degree	Name of the polynomial	Form of the polynomial
		f(x) = a, a is a constant
		$f(x) = ax + b, a \neq 0$
		$f(x) = ax^2 + bx + c, a \neq 0$
		$f(x) = ax^3 + bx^2 + cx + d,$ $a \neq 0$

Rahul got all the answers correct.

What is the correct Table?

Section C (Questions 27 to 34 carry 3 marks each)

- **27.** Obtain the remaining zeros of the polynomial $2x^3 4x x^2 + 2$ if two of its zeros are $\sqrt{2}$ and $-\sqrt{2}$.
- **28.** Draw a circle of radius 6 cm. From a point 10 cm away from its centre, construct a pair of tangents to the circle and measure their lengths.

OR

Draw a line x and take any point R outside that line. Through the point R draw a line y perpendicular to line x.

- **29.** Marbles of diameter 1.4 cm are dropped into a cylindrical beaker of diameter 7 cm containing some water. Find the number of marbles which should be dropped into the beaker so that the water level rises by 5.6 cm.
- **30.** Prove that: $\frac{\sin A \sin B}{\cos A + \cos B} + \frac{\cos A \cos B}{\sin A + \sin B} = 0.$

OR

Evaluate:

- i. tan 1°tan2°tan3°...tan89°
- ii. $\sin^2 45^\circ$ $\tan^2 60^\circ$ + $\cos^2 90^\circ$
- **31.** Find HCF of 963 and 657 by using Euclid's Division Algorithm.

OR

Write the decimal expansion of the rational number

$$\frac{129}{2^2\times 5^7}$$

32. A quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD = AD + BC.

33. Read the following passage and answer the questions that follows: In a class room, three students Ritu, Ankita and Rahul are sitting at positions A, B and C respectively.

Teacher asks the students:

- i. These three students form which type of triangle?
- ii. What is the area of the triangle? A(3, 4), B(6, 7) and C(9, 4)
- **34.** Solve the following pair of linear equations by Substitution Method.

$$0.2x + 0.3y = 1.3$$

$$0.4x + 0.5y = 2.3$$

Section D (Questions 35 to 40 carry 3 marks each)

- **35.** The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.
- **36.** If S_n denotes the sum of the first n terms of an AP, then prove that $S_{12} = 3(S_8 S_4)$. **OR**

Which term of the given AP is -150?

11, 8, 5, 2, ...

- **37.** Two poles of equal heights are standing opposite to each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of poles and the distance of the point from the poles.
- **38.** In the figure, altitudes AD and CE of \triangle ABC intersect each other at the point P. Show that:

- (i) $\triangle ABD \sim \triangle CBE$
- (ii) $\Delta PDC \sim \Delta BEC$

ABCD is a trapezium in which AB \parallel DC and PQ \parallel DC. If PD = 18 cm, BQ = 35 cm and QC = 15 cm, then find PA.

39. A drinking glass is in the shape of a frustum of a cone of height 14 cm. The diameters of its two circular ends are 4 cm and 2 cm. Find the capacity of the glass.

OR

A 20 m deep well with diameter 7 m is dug and the earth from digging is evenly spread out to form a platform 22 m by 14 m. Find the height of the platform.

40. The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them.

Monthly consumption (in units)	Number of consumers
65 - 85	4
85 - 105	5
105 - 125	13
125 - 145	20
145 – 165	14
165 – 185	8
185 – 205	4