Principles of Programming (4190.210)

Chung-Kil Hur (허충길)

Department of Computer Science and Engineering Seoul National University

Syllabus

- >Lecture
 - Tue & Thu: $17:00 \sim 18:15$ (@302-107)
 - https://github.com/snu-sf-class/pp202402
 - Bring your laptop to lectures
- >Instructor
 - Chung-Kil Hur
 - http://sf.snu.ac.kr/gil.hur/
- ➤ Teaching Assistant
 - Yeji Han & Yeonwoo Nam
 - Contact TAs at pp@sf.snu.ac.kr
- ➤ Grading (tentative)
 - Attendance: 5%
 - Assignments: 25%
 - Midterm exam: 30%
 - Final exam: 40%

Who am I?

- ▶Prof. Chung-Kil (Gil) Hur [허충길]
 - Education: KAIST (B.S.), Univ of Cambridge (Ph.D.)
 - (High school) Bronze medal in IMO 1994 @Hongkong.
 - Software Foundations Lab <u>http://sf.snu.ac.kr</u>
 - Research Topics
 - Software Verification
 - Low-level Language Semantics (C/C++/LLVM/Rust)
 - Relaxed-Memory Concurrency
 - Our collaborators
 - Many in USA, UK, Germany, France, Israel.
 - Publications in Programming Languages (PL) area
 - POPL and PLDI are the two most prestigious conferences in PL area (see https://csrankings.org)
 - Published 12 PLDI and 8 POPL papers
 - Received distinguished paper awards from PLDI 2017, 2021 & POPL 2020
 - General Chair for PLDI 2025 in Seoul

Introduction

Overview

- ➤ Part 1
 Functional Programming (with Scala)
- ➤ Part 2
 Object-Oriented Programming (with Scala)
- ➤ Part 3
 Type Class (Type-Oriented) Programming (with Scala)
- ➤ Part 4
 Imperative Programming (with Rust)

Imperative vs. Functional Programming

- >Imperative Programming
 - Computation by memory reads/writes
 - Sequence of read/write operations
 - Repetition by loop
 - More procedural (ie, describe how to do)
 - Easier to write efficient code

```
sum = 0;
i = n;
while (i > 0) {
   sum = sum + i;
   i = i - 1;
}
```

- Functional Programming
 - Computation by function application
 - Composition of function applications
 - Repetition by recursion
 - More declarative (ie, describe what to do)
 - Easier to write safe code

```
def sum(n: Int): Int
  if (n <= 0)
    0
  else
    n + sum(n-1)</pre>
```

Both Imperative & Functional Style Supported

- Many languages support both imperative & functional style
 - More imperative: Java, Javascript, C++, Python, Rust, ...
 - More functional: OCaml, SML, Lisp, Scheme, ...
 - Middle: Scala
 - Purely functional: Haskell (monadic programming)

Object-Oriented vs. Type-Oriented Programming

- >Goal
 - To support module systems for writing large software
 - Specifically, to support code abstraction & reuse
- ➤ Object-Oriented Programming
 - Class Instance (ie, Object): data + methods (ie, functions)
 - Code abstraction & reuse together via inheritance
- ➤ Type Class (Type-Oriented) Programming
 - Type Class Instance: type + methods (ie, functions)
 - Abstraction and Reuse are separated
 - Code abstraction via type class instantiation
 - Code reuse via composition

Why Scala & Rust?

➤ Why Scala?

- Equally well support both imperative & functional style
- Many advanced features (both OOP & Type class supported)
- Compatible with Java
- Memory management with Garbage Collection (automatic, dynamic)

➤ Why Rust?

- Can write (low-level) efficient code like C and C++ but safely
- Using ownership types
- Memory management with ownership types (automatic, static) + lightweight Garbage Collection

PART 1 Functional Programming with Function Applications

Values, Expressions, Names

- ➤ Types and Values
 - A type is a set of values
 - Int: {-2147483648,...,-1,0,1, ...,2147483647} //32-bit integers
 - Double: 64-bit floating point numbers // real numbers in practice
 - Boolean: {true, false}
 - •
- > Expressions
 - Composition of values, names, primitive operations, ...
- ➤ Name Binding
 - Binding expressions to names
- > Examples

```
def a = 1 + (2 + 3)
def b = 3 + a * 4
```

Evaluation

Evaluation

- Reducing an expression into a value
- Strategy
- 1. Take a name or an operator (outer to inner)
- 2. (name) Replace the name with its associated expression
- 3. (name) Evaluate the expression
- 4. (operator) Evaluate its operands (left to right)
- 5. (operator) Apply the operator to its operands

Examples

$$5+b \sim 5+(3+(a*4)) \sim 5+(3+(1+(2+3))*4) \sim ... \sim 32$$

Functions and Substitution

- > Functions
 - Expressions with Parameters
 - Binding functions to names

$$def f(x: Int): Int = x + a$$

- >Evaluation by substitution
 - •
 - (function) Evaluate its operands (left to right)
 - (function)
 Replace the function application by the expression of the function
 Replace its parameters with the operands

$$5+f(f(3)+1) \sim 5+f((3+a)+1) \sim ... \sim 5+f(10) \sim 5+(10+a)$$
 $\sim ... \sim 21$

Simple Recursion

> Recursion

- Use X in the definition of X
- Powerful mechanism for repetition
- Nothing special but just rewriting

```
def sum(n: Int) : Int =
  if (n <= 0)
    0
  else
    n + sum(n-1)

sum(2) ~ if (2<=0) 0 else (2+sum(2-1)) ~
2+sum(1) ~ 2+(if (1<=0) 0 else (1+sum(1-1))) ~
2+(1+sum(0)) ~ 2+(1+(if (0<=0) 0 else (0+sum(0-1))))
  ~ 2+(1+0) ~ 3</pre>
```

Termination/Divergence

Evaluation may not terminate

- **≻**Termination
 - An expression may reduce to a value
- **≻**Divergence
 - An expression may reduce forever

```
def loop: Int = loop
```

loop ~ loop ~ loop ~ ...

Evaluation strategy: Call-by-value, Call-by-name

- ➤ Call-by-value
 - Evaluate the arguments first, then apply the function to them
- ➤ Call-by-name
 - Just apply the function to its arguments, without evaluating them.

```
def square (x: Int) = x * x

[cbv]square(1+1) ~ square(2) ~ 2*2 ~ 4

[cbn]square(1+1) ~ (1+1)*(1+1) ~ 2*(1+1) ~ 2*2 ~ 4
```

CBV, CBN: Differences

- ➤ Call-by-value
 - Evaluates arguments once
- ➤ Call-by-name
 - Do not evaluate unused arguments
- **>** Question
 - Do both always result in the same value?

Scala's evaluation strategy

- ➤ Call-by-value
 - By default
- ➤ Call-by-name
 - Use "=>"

```
def one(x: Int, y: =>Int) = 1
one(1+2, loop)
one(loop, 1+2)
```

Scala's name binding strategy

- ➤ Call-by-value
 - Use "val" (also called "field") e.g. val x = e
 - Evaluate the expression first, then bind the name to it
- ➤ Call-by-name
 - Use "def" (also called "method") e.g. def x = e
 - Just bind the name to the expression, without evaluating it
 - Mostly used to define functions

```
def a = 1 + 2 + 3
val a = 1 + 2 + 3 // 6
def b = loop
val b = loop

def f(a: Int, b: Int): Int = a*b - 2
```

Conditional Expressions

- >If-else
 - •if (b) e_1 else e_2
 - b : Boolean expression
 - e_1 , e_2 : expressions of the same type
- > Reduction rules:
 - •if (true) e_1 else $e_2 \rightarrow e_1$
 - •if (false) e_1 else $e_2 \rightarrow e_2$

```
def abs(x: Int) = if (x \ge 0) x else -x
```

Boolean Expressions

- ➤ Boolean expression
 - •true, false
 - !b
 - b && b
 - b | b
 - •e <= e, e >= e, e < e, e > e, e == e, e != e
- Reduction rules:
 - •!true → false
 - •!false → true
 - •true && b \rightarrow b
 - •false && b → false
 - •true || b → true
 - •false || b → b

true && (loop == 1) \sim loop == 1 \sim loop == 1

Exercise: and, or

```
➤ Write two functions
  • and (x,y) == x \&\& y
  •or(x,y) == x | | y
  • Do not use &&, |
  and(false,loop==1)
  ~ if (false) loop==1 else false
  ~ false
  and(true,loop==1)
  ~ if (true) loop==1 else false
  \sim loop==1 \sim loop==1 ...
```

Solution

```
def and(x: Boolean, y: =>Boolean) =
  if (x) y else false

def or(x: Boolean, y: =>Boolean) =
  if (x) true else y
```

Exercise: square root calculation

```
Calculate square roots with Newton's method
def isGoodEnough(guess: Double, x: Double) =
  ??? // guess*guess is 99.9% close to x
def improve(guess: Double, x: Double) =
  (guess + x/guess) / 2
def sqrtlter(guess: Double, x: Double): Double =
  ??? // repeat improving guess until it is good enough
def sqrt(x: Double) =
  sqrtIter(1, x)
sart(2)
```

Solution

```
Calculate square roots with Newton's method
def isGoodEnough(guess: Double, x: Double) =
  guess*guess/x > 0.999 && guess*guess/x < 1.001
def improve(guess: Double, x: Double) =
  (guess + x/guess) / 2
def sqrtlter(guess: Double, x: Double): Double =
  if (isGoodEnough(guess,x)) guess
  else sqrtlter(improve(guess,x),x)
def sqrt(x: Double) =
  sqrtIter(1, x)
sgrt(2)
```

Blocks and Name Scoping

Blocks in Scala

≻Block

```
• { val x1 = e1
    def x2 = e2
    e
}
```

- Is an expression
- Allow nested name binding
- Allow arbitrary order of "def"s, but not "val"s (think about why)

Scope of names

```
Flock
{ val t = 0
  def f(x: Int) = t + g(x+1)
  def g(y: Int) = y * y
  val x = f(5)
  val r = {
    val t = 10
    val s = f(5)
    s - t }
  t + r }
```

- Block-scoped definitions are only accessible within the block
- Inner definitions shadow outer ones of the same name
- Outer definitions are accessible in nested blocks unless shadowed
- No duplicate definitions allowed in the same block
- Functions are evaluated under the environment where they are defined, not where they are called

Problem

```
// should be allowed
  def f(x:Int) = g(x)
 def g(x: Int) = 10
 val x = f(10)
  X
// should not be allowed
  def f(x:Int) = g(x)
 val x = f(10)
 def g(x: Int) = 10
  X
```

Safety Checking

Safety checking rules out any use of undefined names.

- For "val x = e", all names in "e" should be defined before this definition.
- For "def x = e", all names in "e" should be defined before the next "val" definition.

```
/* The following code passes the safety checking */
\{ def f(x:Int) = g(x) \}
  def g(x: Int) = 10
  val a = 10
  f(10) }
/* The following code fails at the safety checking */
{ def f(x:Int) = g(x)
  val a = 10
  def g(x: Int) = 10
```

Evaluation for Blocks

```
1: { val t = 0
2: def f(x: lnt) = t + g(x+1)
3: def g(y: lnt) = y*y
4: val x = f(5) + 7
5: val r = {
6: val t = 10
7: val s = f(5)
8: s - t }
9: t + r }
```

>Evaluation with Environment

```
[E0|t=,f=,g=,x=,r=_],1 \sim 0
[E0|t=0,f=(x)t+g(x),g=(y)y*y,x=,r=],4 \sim f(5)+7 \sim 36+7 \sim 43
 f(5): E0::[E1|x=5],t+g(x+1) ~ 0+g(6) ~ 36
          g(6): E0::[E2|y=6],y*y ~ 6*6 ~ 36
[E0|t=0,f=(x)t+g(x),g=(y)y*y,x=43,r= ],5 \sim 26
 5: E0::[E3|t=,s=],6 \sim 10
     E0::[E3|t=10,s=],7 \sim f(5) \sim 36
       f(5): E0::[E4|x=5],t+g(x+1) ~ 0+g(6) ~ 36
               g(6): E0::[E5|y=6],y*y ~ 6*6 ~ 36
     E0::[E3|t=10,s=36],8 \sim s-t \sim 26
[E0|t=0,f=(x)t+g(x),g=(y)y*y,x=43,r=26],9 \sim t+r \sim 26
```

Semi-colons and Parenthesis

≻Block

- Can write two definitions/expressions in a single line using;
- Can write one definition/expression in two lines using (), but can omit () when clear

```
// ok
val r = {
 val t = 10; val s = square(5); t +
  s }
// Not ok
val r = {
 val t = 10; val s = square(5); t
 + s }
// ok
val r = {
  val t = 10; val s = square(5); (t
  + s)
```

Exercise: Writing Better Code using Blocks

```
Make the following code better
def isGoodEnough(guess: Double, x: Double) =
  guess*guess/x > 0.999 && guess*guess/x < 1.001
def improve(guess: Double, x: Double) =
  (guess + x/guess) / 2
def sqrtlter(guess: Double, x: Double): Double = {
  if (isGoodEnough(guess,x)) guess
  else sqrtlter(improve(guess,x),x)
def sqrt(x: Double) =
  sgrtlter(1, x)
sart(2)
```

Solution

```
def sqrt(x: Double) = {
  def sqrtlter(guess: Double, x: Double): Double = {
    if (isGoodEnough(guess,x)) guess
    else sqrtlter(improve(guess,x),x)
  def isGoodEnough(guess: Double, x: Double) = {
    val ratio = guess * guess / x
    ratio > 0.999 && ratio < 1.001
  def improve(guess: Double, x: Double) =
    (guess + x/guess) / 2
  sqrtIter(1, x)
```

Lazy Call-By-Value

Lazy call-by-value

- ➤ Lazy call-by-value
 - Use "lazy val" e.g. lazy val x = e
 - Evaluate the expression first time it is used, then bind the name to it

```
def f(c: Boolean, i: =>Int): Int = {
    lazy val iv = i
    if (c) 0
    else iv * iv * iv
}

f(true, {print/n("ok"); 100+100+100+100})
f(false, {print/n("ok"); 100+100+100+100})
```

Tail Recursion & Tail Call

Recursion needs care

- >Summation function
 - Write a summation function sum such that sum(n) = 1+2+...+n
 - Test sum(10), sum(100), sum(1000), sum(10000), sum(100000)
 - What's wrong? (Think about evaluation)

Recursion: Try

```
def sum(n: Int): Int =
  if (n <= 0) 0 else (n+sum(n-1))</pre>
```

Recursion: Tail Recursion

```
import scala.annotation.tailrec

def sum(n: Int): Int = {
    @tailrec def sumItr(res: Int, m: Int): Int =
    if (m <= 0) res else sumItr(m+res,m-1)
    sumItr(0,n)
}</pre>
```

Mutual Recursion: Try

```
def sum(acc: Int, n: Int): Int =
  if (n <= 0) acc else sum2(n + acc, n-1)

def sum2(acc: Int, n: Int): Int =
  if (n <= 0) acc else sum(2*n + acc, n-1)

sum(0, 20000) // stack overflow
}</pre>
```

Mutual Recursion: Tail Call Optimization

import scala.util.control.TailCalls. def sum(acc: Int, n: Int): TailRec[Int] = if (n <= 0) done(acc) else tailcall(sum2(n + acc, n-1)) def sum2(acc: Int, n: Int): TailRec[Int] = if (n <= 0) done(acc) else tailcall(sum(2*n + acc, n-1)) sum(0, 20000).result

Higher-Order Functions

Functions as Values

> Functions

- Functions are normal values of function types $(A_1,...,A_n => B)$.
- They can be copied, passed and returned.
- Functions that take functions as arguments or return functions are called higher-order functions.
- Higher-order functions increase code reusability.

Examples

```
def sumLinear(n: Int): Int =
  if (n <= 0) 0 else n + sumLinear(n-1)

def sumSquare(n: Int): Int =
  if (n <= 0) 0 else n*n + sumSquare(n-1)

def sumCubes(n: Int): Int =
  if (n <= 0) 0 else n*n*n + sumCubes(n-1)</pre>
```

Q: How to write reusable code?

Examples

```
def sum(f: Int=>Int. n: Int): Int =
  if (n \le 0) 0 else f(n) + sum(f, n-1)
def linear(n: Int) = n
def square(n: Int) = n * n
def cube(n: Int) = n * n * n
def sumLinear(n: Int) = sum(linear, n)
def sumSquare(n: Int) = sum(square, n)
def sumCubes(n: Int) = sum(cube, n)
```

Anonymous Functions

➤ Anonymous Functions

```
• Syntax  (x_1\colon T_1,...,x_n\colon T_n) => e  or  (x_1,...,x_n) => e  def sumLinear(n: Int) = sum((x:Int)=>x, n)
```

```
def sumLinear(n: Int) = sum((x:Int)=>x, n)
def sumSquare(n: Int) = sum((x:Int)=>x*x, n)
def sumCubes(n: Int) = sum((x:Int)=>x*x*x, n)
```

Or simply

```
def sumLinear(n: Int) = sum((x)=>x, n)
def sumSquare(n: Int) = sum((x)=>x*x, n)
def sumCubes(n: Int) = sum((x)=>x*x*x, n)
```

Exercise

```
def sum(f: Int=>Int, a: Int, b: Int): Int =
   if (a <= b) f(a) + sum(f, a+1, b) else 0

def product(f: Int=>Int, a: Int, b: Int): Int =
   if (a <= b) f(a) * product(f, a+1, b) else 1</pre>
```

DRY (Do not Repeat Yourself) using a higher-order function, called "mapReduce".

Exercise

```
def mapReduce(reduce: (Int,Int)=>Int,inival: Int,
              f: Int=>Int, a: Int, b: Int): Int = {
  if (a <= b) reduce(f(a), mapReduce(reduce, inival, f, a+1, b))</pre>
 else inival
def sum(f: Int=>Int, a: Int, b: Int): Int =
  mapReduce((x,y)=>x+y,0,f,a,b)
def product(f: Int=>Int, a: Int, b: Int): Int =
  mapReduce((x,y)=>x*y,1,f,a,b)
```

Evaluation for functional values

```
1: \{ va | t = 0 \}
 2: val f: lnt = { // Note: What if using "def f" ?
 3:
          val t = 10
 4:
          def g(x: Int) : Int = x + t
 5: g _ }
 6: f(20) }
* Try: Evaluation without Closures
[E0|t=,f=],1 \sim 0
[E0|t=0,f=],2 \sim (x)x+t
  E0::[E1|t= ,g=(x)x+t],\frac{3}{3} ~ 10
  E0:: [E1|t=10,g=(x)x+t], 5 \sim (x)x+t
[E0|t=0,f=(x)x+t],6 \sim f(20) \sim 20
  f(20): E0::[E2|x=20],x+t ~ 20+0 ~ 20
```

Closures for functional values

```
1: \{ val t = 0 \}
 2: val f: lnt = { // Note: What if using "def f" ?
 3:
          val t = 10
 4:
          def g(x: Int) : Int = x + t
 5: g _ }
 6: f(20) }
* Evaluation with Closures
[E0|t=,f=],1 \sim 0
[E0|t=0,f=],2 \sim (E1,(x)x+t)
  E0:: [E1|t=,g=(x)x+t],3 \sim 10
  E0::[E1|t=10,g=(x)x+t],5 \sim (E1,(x)x+t)
[E0|t=0,f=(E1,(x)x+t)],6 \sim f(20) \sim 30
  f(20): E1::[E2|x=20],x+t ~ 20+10 ~ 30
```

(Parameterized) expression vs. (closure) value

- Functions defined using "def" are not values but parameterized expressions.
- Parameterized expression f can be converted to a value (f _).
- The compiler often infers and inserts missing conversions automatically.
- Anonymous functions are values.
- Anonymous functions can be seen as syntactic sugar:

```
(x:T)=>e
is equivalent to
  { def noname(x:T) = e; (noname _) }
where noname is not used in e.
```

- One can even write a recursive anonymous function in this way.
- Q: what's the difference between param. exps and function values? A: function values are "closures" (ie, param. exp. + env.)
- Q: how to implement call-by-name?
 - A: The argument expression is converted to a closure.

Example: call by name with closures

```
1: \{ va | t = 0 \}
2: def f(x: =>|nt|) = t + x
3: val r = {
4: val t = 10
5: f(t*t) }
                             // t*t is treated as ()=>t*t
6: r }
>Evaluation with Closures
[E0|t=,f=(x:=>Int)t+x,r=],1 \sim 0
[E0|t=0,f=(x:=>Int)t+x,r=],3 \sim 100
  E0::[E1|t=],4 \sim 10
  E0::[E1|t=10],5 \sim f(t*t) \sim 100
  f(t*t): E0::[E2|x=(E1,t*t)],t+x ~ 0+x ~ 0+100 ~ 100
    x: E1, t*t \sim 10*10 \sim 100
[E0|t=0,f=(x)t+x,r=100],6 \sim r \sim 100
```

Currying

Motivation

```
def sum(f: Int=>Int. a: Int. b: Int): Int =
  if (a \le b) f(a) + sum(f, a+1, b) else 0
def sumLinear(a: Int, b: Int) = sum((n)=>n, a, b)
def sumSquare(a: Int, b: Int) = sum((n)=>n*n, a, b)
def sumCubes(a: Int, b: Int) = sum((n)=>n*n*n, a, b)
We want the following. How?
val sumLinear = sum(linear)
val sumSquare = sum(square)
val sumCubes = sum(cube)
```

Solution

```
def sum(f: Int=>Int): (Int,Int)=>Int = {
    def sumF(a: Int, b: Int): Int =
        if (a <= b) f(a) + sumF(a+1, b) else 0
        sumF // sumF _
}

def sumLinear = sum((n)=>n)
def sumSquare = sum((n)=>n*n)
def sumCubes = sum((n)=>n*n)
```

Benefits

```
def sumLinear = sum((n)=>n)
def sumSquare = sum((n)=>n*n)
def sumCubes = sum((n)=>n*n*n)
sumSquare(3,10) + sumCubes(5,20)
```

We don't need to define the wrapper functions.

$$sum((n)=>n*n)(3,10) + sum((n)=>n*n*n)(5,20)$$

Multiple Parameter List

```
def sum(f: Int=>Int): (Int,Int)=>Int = {
  def sumF(a: Int, b: Int): Int =
    if (a \le b) f(a) + sumF(a+1, b) else 0
  sumF _
Or simply:
def sum(f: Int=>Int)(a: Int, b: Int): Int =
  if (a \le b) f(a) + sum(f)(a+1, b) else 0
Note that sum(f) is just a parameterized expression.
(sum(f) _) creates a closure like (sumF _)
The following code is slightly inefficient. Think about why.
def sum(f: Int=>Int): (Int,Int)=>Int =
  (a,b) = if (a \le b) f(a) + sum(f)(a+1, b) else 0
```

Comparison between Param. Exp vs. Closure

```
def sum(f: Int=>Int)(a: Int, b: Int): Int =
 if (a \le b) f(a) + sum(f)(a+1, b) else 0
def sumLinear = sum((n)=>n) // sum((n)=>n) incorrect
sumLinear(0,100)
def sum(f: Int => Int): (Int, Int) => Int = {
 def sumF(a: Int, b: Int): Int =
  if (a \le b) f(a) + sumF(a + 1, b) else 0
 sumF
def sumLinear = sum((n)=>n) // sum((n)=>n) incorrect
sumLinear(0,100)
```

Currying and Uncurrying

• A function of type

$$(T_1, T_2, ..., T_n) = > T$$

can be turned into that of type

$$T_1 = > (T_2 = > (... = > (T_n = > T)...))$$

- This is called "currying" named after Haskell Brooks Curry.
- The opposite direction is called "uncurrying".

Currying using Anonymous Functions

```
def foo(x: Int, y: Int, z: Int)(a: Int, b: Int) =
  x + y + z + a + b
val f1 = (x: Int, z: Int, b: Int) => foo(x,1,z)(2,b)
val f2 = foo(_:|nt,1,_:|nt)(2,_:|nt)
val f3 = (x: Int, z: Int) => ((b: Int) => foo(x,1,z)(2,b))
f1(1,2,3)
f2(1,2,3)
f3(1,2)(3)
```

Exercise

Curry the mapReduce function.

```
def mapReduce(reduce: (Int,Int)=>Int,inival: Int.
              f: Int=>Int, a: Int, b: Int): Int = {
  if (a <= b) reduce(f(a), mapReduce(reduce, inival, f, a+1, b))</pre>
  else inival
def sum(f: Int=>Int, a: Int, b: Int): Int =
  mapReduce((x,y)=>x+y,0,f,a,b)
def product(f: Int=>Int, a: Int, b: Int): Int =
  mapReduce((x,y)=>x*y,1,f,a,b)
```

Solution

```
def mapReduce(reduce:(Int,Int)=>Int,inival: Int)
             (f: Int=>Int) (a: Int, b: Int): Int = {
  if (a <= b) reduce(f(a), mapReduce(reduce, inival)(f)(a+1,b))</pre>
  else inival
// need to make a closure since mapReduce is param. code.
def sum = mapReduce((x,y)=>x+y,0)
// val is better than def. Think about why.
val product = mapReduce((x,y)=>x*y,1) _
```

Exceptions

Exception & Handling

```
class factRangeException(val arg: Int) extends Exception
def fact(n : Int): Int =
  if (n < 0) throw new factRangeException(n)
  else if (n == 0) 1
  else n * fact(n-1)
def foo(n: Int) = fact(n + 10)
try {
 print/n (fact(3))
 print/n (foo(-100))
} catch {
  case e : factRangeException => {
   print/n("fact range error: " + e.arg)
```

Datatypes

Types so far

Types have introduction operations and elimination ones.

- Introduction: how to construct elements of the type
- Elimination: how to use elements of the type

➤ Primitive types

- Int, Boolean, Double, String, ...
- Intro for Int: ...,-2,-1,0,1,2,
- Elim for Int: +,-,*,/,<,<=,...

>Function types

- Int=>Int, (Int=>Int)=>(Int=>Int), ...
- Intro: (x:T)=>e
- Elim: f(v)

Tuples

> Tuples

Intro:

- (1,2,3): (Int, Int, Int)
- (1,"a") : (Int, String)

Elim:

- (1, "a", 10). 1 = 1
- (1, "a", 10). 2 = "a"
- (1, "a", 10)._3 = 10

Only up to length 22

Structural Types (a.k.a. Record Types): Examples

import reflect.Selectable.reflectiveSelectable

```
def bar (x: Int) = x+1
val foo = new {
  val a = 1+2
  def b = a + 1
  def f(x: Int) = b + x
 val g : Int => Int = bar _
foo.b
foo. f(3)
val ff: Int=>Int = foo.f
def g(x: {val a: Int; def b: Int;
          def f(x:|nt): |nt; val g: |nt => |nt}) =
  x.f(3)
g(foo)
```

Type Alias

```
import reflect. Selectable. reflective Selectable
type Foo = {val a: Int; def b: Int; def f(x:Int):Int}
val gn = 0
val foo : Foo = new {
  val a = 3
  def b = a + 1
  def f(x: Int) = b + x + gn
foo. f(3)
def g(x: Foo) = \{
  val gn = 10
  x.f(3)
g(foo)
```

Structural Types: Evaluation

```
1: def bar (x: Int) = x+1
2: val foo = new //or, object foo
3: \{ val \ a = 2 + 1 \}
  def f(x: Int) = a + x
5: val g : Int => Int = bar
6: }
7: val b = foo.f(1)
8: foo.g(b)
>Evaluation with Closures
E1[], 1 \sim E1[bar=(x)x+1], 2 \sim E1[...]:E2[], 3 \sim
E1[...]:E2[a=3],4 \sim
E1[...]:E2[a=3,f=(x)a+x],5 \sim
E1[...]:E2[a=3,f=(x)a+x,g=((x)x+1,E1)],6 \sim
E1[bar=(x)x+1,foo=(E2)],7 \sim
E1[bar=(x)x+1,foo=(E2),b=4],8 \sim 5
7: E1:E2:E3[x=1], a+x \sim 3+1 \sim 4
8: E1:E4[x=4],x+1 \sim 4+1 \sim 5
```

Algebraic Datatypes

> Ideas

```
• T = C of T * ... * T

| C of T * ... * T

| ...

| C of T * ... * T
```

Intro:

```
Name("Chulsoo Kim"), Name("Younghee Lee"), Age(16), DOB(2000,3,10), Height(171.5), ...
```

Algebraic Datatypes: Recursion

> Recursive ADT

```
• E.g.

IList = INil

| ICons of Int * IList

Intro:

INil(),

ICons(3, INil()),

ICons(2, ICons(3, INil())),

ICons(1, ICons(2, ICons(3, INil()))),
```

Algebraic Datatypes In Scala

```
> Attr
 sealed abstract class Attr
 case class Name(name: String) extends Attr
 case class Age(age: Int) extends Attr
 case class DOB(year: Int, month: Int, day: Int) extends Attr
 case class Height(height: Double) extends Attr
 val a : Attr = Name("Chulsoo Kim")
 val b : Attr = DOB(2000, 3.10)
>IList
 sealed abstract class IList
 case class INiI() extends IList
 case class | Cons(hd: Int, tl: | List) extends | List
 val x : IList = /Cons(2, /Cons(1, /Ni/()))
 def gen(n: Int) : IList =
   if (n \le 0) /Ni/()
   else /Cons(n, gen(n-1))
```

Exercise

```
IOption = INone
        ISome of Int
BTree = Leaf
     Node of Int * BTree * BTree
sealed abstract class IList
case class INiI() extends IList
case class | Cons(hd: Int, t|: | List) extends | List
def x : IList = /Cons(2, /Cons(1, /Ni/()))
```

Solution

```
sealed abstract class lOption
case class lNone() extends lOption
case class lSome(some: Int) extends lOption

sealed abstract class BTree
case class Leaf() extends BTree
case class Node(value: Int, left: BTree, right: BTree)
    extends BTree
```

Pattern Matching

- > Pattern Matching
 - A way to use algebraic datatypes

```
e match {
  case C1(...) => e1 : T
  ...
  case Cn(...) => en : T
} : T
```

Pattern Matching: An Example

```
def length(xs: IList) : Int =
    xs match {
    case /Ni/() => 0
    case /Cons(x, tl) => 1 + length(tl)
  }
length(x)
```

Advanced Pattern Matching

➤ Advanced Pattern Matching

```
e match {
  case P1 => e1
  ...
  case Pn => en
}
```

- One can combine constructors and use _ and | in a pattern.
 (E.g) case ICons(x, INil()) | ICons(x, ICons(_, INil())) => ...
- The given value e is matched against the first pattern P1. If succeeds, evaluate e1. If fails, e is matched against P2. If succeeds, evaluate e2. If fails, ...
- The compiler checks exhaustiveness (ie, whether there is a missing case).

Advanced Pattern Matching: An Example

```
def secondElmt(xs: |List) : |Option =
  xs match {
    case /Ni/() \mid /Cons(\_, /Ni/()) \Rightarrow /None()
    case /Cons(\_, /Cons(x, \_)) \Rightarrow /Some(x)
Vs.
def secondElmt2(xs: |List) : |Option =
  xs match {
    case /Ni/() \mid /Cons(\_, /Ni/()) \Rightarrow /None()
    case |Cons(\_, |Cons(x, |Ni/()))| \Rightarrow |Some(x)|
    case => /None()
Vs.
def secondElmt2(xs: |List) : |Option =
  xs match {
    case |Cons(\_, |Cons(x, |Ni/()))| \Rightarrow |Some(x)|
    case => /None() }
```

Pattern Matching on Int

```
def factorial(n: Int) : Int =
  n match {
    case 0 \Rightarrow 1
    case \_ \Rightarrow n * factorial(n-1)
def fib(n: Int) : Int =
  n match {
    case 0 | 1 => 1
    case \_ => fib(n-1) + fib(n-2)
```

Pattern Matching with If

```
def f(n: Int) : Int =
  n match {
    case 0 | 1 => 1
    case _ if (n <= 5) => 2
    case _ => 3
def f(t: BTree) : Int =
  t match {
    case Leaf() \Rightarrow 0
    case Node(n, _, _) if (n <= 10) => 1
    case Node(\_,\_,\_) \Rightarrow 2
```

Exercise

Write a function "find(t: BTree, x: Int): Boolean" that checks whether x is in t.

```
sealed abstract class BTree
case class Leaf() extends BTree
case class Node(value: Int, left: BTree, right: BTree)
extends BTree
```

Solution

```
def find(t: BTree, i: Int) : Boolean =
   t match {
    case Leaf() => false
    case Node(n, It, rt) =>
        i == n || find(It, i) || find(rt, i)
}

def t: BTree = Node(5, Node(4, Node(2, Leaf(), Leaf()), Leaf()),
    Node(7, Node(6, Leaf(), Leaf()), Leaf()))
find(t,7), find(t,1)
```

Type Checking & Inference (Concept)

What Are Types For?

> Typed Programming

```
def id1(x: Int): Int = x
def id2(x: Double): Double = x
```

- At run time, type information is erased (ie, id1 = id2)
- Untyped Programming
 def id(x) = x
 - Do not care about types at compile time.
 - But, many such languages check types at run time paying cost.
 - Without run-time type check, errors can be badly propagated.
- ➤ What is compile-time type checking for?
 - Can detect type errors at compile time.
 - Increase Readability (Give a good abstraction).
 - Soundness: Well-typed programs raise no type errors at run time.

Type Checking and Inference

> Type Checking

```
x<sub>1</sub>:T<sub>1</sub>, x<sub>2</sub>:T<sub>2</sub>, ..., x<sub>n</sub>:T<sub>n</sub> ⊢ e : T
•def f(x: Boolean): Boolean = x > 3
=> Type error
•def f(x: Int): Boolean = x > 3
=> OK. f: (x: Int)Boolean
```

> Type Inference

$$x_1:T_1, x_2:T_2, ..., x_n:T_n \vdash e : ?$$

• def f(x: Int) = x > 3

- => OK by type inference. f: (x: Int)Boolean
- Too much type inference is not good. Why?

You can learn how type checking & inference work in 4190.310 Programming Languages

Parametric Polymorphism

Parametric Polymorphism: Functions

Problem

```
def id1(x: Int): Int = x
def id2(x: Double): Double = x
```

- Can we avoid copy and paste?
- Polymorphism to the rescue!
- Parametric Polymorphism (a.k.a. For-all Types)

```
def id[A](x: A) : A = x
```

- The type of id is [A] (val x:A)=>A
- id is a parametric expression.
- id[T] _ is a value of type T=>T for any type T.
- Function types do not support polymorphism.
 (E.g.) [A](A=>A) is not a valid function value type.

[We will learn other kinds of polymorphism later.]

Examples

```
def id[A](x:A) = x
id(3)
id("abc")
def applyn[A](f: A => A, n: Int, x: A): A =
  n match {
    case 0 \Rightarrow x
    case \Rightarrow f(applyn(f, n - 1, x))
applyn((x:Int)=>x+1, 100,3)
applyn((x:String)=>x+"!", 10, "gil")
applyn(id[String], 10, "hur")
def foo[A,B](f:A=>A, x:(A,B)):(A,B)=
  (applyn[A](f, 10, x. 1), x. 2)
foo[String, Int]((x:String)=>x+"!",("abc", 10))
```

Parametric Polymorphism: Datatypes

```
sealed abstract class MyOption[A]
case class MyNone[A]() extends MyOption[A]
case class MySome[A](some: A) extends MyOption[A]
sealed abstract class MyList[A]
case class MyNil[A]() extends MyList[A]
case class MyCons[A](hd: A, tl: MyList[A]) extends MyList[A]
sealed abstract class BTree[A]
case class Leaf[A]() extends BTree[A]
case class Node[A](value: A, left: BTree[A], right: BTree[A])
extends BTree[A]
def x: MyList[Int] = MyCons(3, MyNi/())
def y: MyList[String] = MyCons("abc", MyNi/())
```

Revisit: Solution with Tail Recursion

```
def find[A](t: BTree[A], x: A) : Boolean = {
 def findIter(ts: MyList[BTree[A]]) : Boolean =
  ts match {
   case MyNil() => false
    case MyCons(Leaf(), tl) => findIter(tl)
    case MyCons(Node(v, , ), ) if v == x => true
    case MyCons(Node(_,I,r), tl) =>
     findIter(MyCons(I, MyCons(r, tl))) }
 findIter(MyCons(t, MyNil()))
def genTree(v: Int, n: Int) : BTree[Int] = {
 def genTreeIter(t: BTree[Int], m : Int) : BTree[Int] =
  if (m == 0) t
  else genTreelter(Node(v, t, Leaf()), m-1)
 genTreeIter(Leaf(), n)
find(genTree(0,10000), 1)
```

Exercise

```
BSTree[A] = Leaf
          | Node of Int * A * BSTree[A] * BSTree[A]
def lookup[A](t: BSTree[A], k: Int) : MyOption[A] =
  ???
def t : BSTree[String] =
  Node(5, "My5",
    Node(4, "My4", Node(2, "My2", Leaf(), Leaf()), Leaf()),
    Node(7, "My7", Node(6, "My6", Leaf(), Leaf()), Leaf()))
lookup(t, 7)
lookup(t, 3)
```

Solution

```
sealed abstract class BSTree[A]
case class Leaf[A]() extends BSTree[A]
case class Node[A](key: Int, value: A, left: BSTree[A], right:
BSTree[A]) extends BSTree[A]
def lookup[A](t: BSTree[A], key: Int) : MyOption[A] =
  t match {
    case Leaf() => MyNone()
    case Node(k,v,lt,rt) =>
      k match {
        case _ if key == k => MySome(v)
        case _ if key < k => lookup(It,key)
        case _ => lookup(rt, key)
def t : BSTree[String] =
  Node(5, "My5",
    Node(4, "My4", Node(2, "My2", Leaf(), Leaf()), Leaf()),
    Node(7, "My7", Node(6, "My6", Leaf(), Leaf()), Leaf()))
lookup(t, 7)
lookup(t, 3)
```

A Better Way

```
sealed abstract class BTree[A]
case class Leaf[A]() extends BTree[A]
case class Node[A](value: A, left: BTree[A], right: BTree[A])
  extends BTree[A]
type BSTree[A] = BTree[(Int,A)]
def lookup[A](t: BSTree[A], k: Int) : MyOption[A] =
  ???
def t : BSTree[String] =
  Node((5, "My5"),
    Node((4, "My4"), Node((2, "My2"), Leaf(), Leaf()), Leaf()),
    Node((7, "My7"), Node((6, "My6"), Leaf(), Leaf()), Leaf()))
lookup(t, 7)
```

Solution

```
type BSTree[A] = BTree[(Int,A)]
def lookup[A](t: BSTree[A], key: Int) : MyOption[A] =
  t match {
    case Leaf() => MyNone()
    case Node((k,v), It,rt) =>
      k match {
        case _ if key == k => MySome(v)
        case _ if key < k => lookup(It,key)
        case _ => lookup(rt, key)
def t : BSTree[String] =
  Node((5, "My5"),
    Node((4, "My4"), Node((2, "My2"), Leaf(), Leaf()), Leaf()),
    Node((7, "My7"), Node((6, "My6"), Leaf(), Leaf()), Leaf()))
lookup(t, 7)
lookup(t, 3)
```

Polymorphic Option (Library)

> Option[T]

Intro:

- None
- Some(x)
- Library functions

Elim:

- Pattern matching
- Library functions

Some(3): Option[Int]

Some("abc"): Option[String]

None: Option[Int]

None: Option[String]

Polymorphic List (Library)

➤ List[T]

Intro:

- Nil
- x :: L
- Library functions

Elim:

- Pattern matching
- Library functions

```
"abc"::Nil : List[String]
List(1,3,4,2,5) = 1::3::4::2::5::Nil : List[Int]
```

Summary: Parametric Polymorphism

- Parametric Polymorphism
 - Program against unknown datatypes
 - How is it possible?