Calculus: Limits and Sequences

Instructor: Abbas Edalat

First Assessed Coursework: Questions 1, 2(b), 3, 6(c) are assessed.

- 1. What is the *least upper bound* or supremum and *greatest lower bound* or infimum in the reals \mathbb{R} of the following sets of numbers:
 - (a) $\{x \in \mathbb{N} \mid 1 \le x^2 \le 29\}$
 - (b) $\{x \in \mathbb{Q} \mid 1 \le x^2 \le 29\}$
 - (c) $\{x \in \mathbb{R} \mid 1 \le x^2 \le 29\}$

In each case, state whether the infimum and supremum are in the given set.

- 2. For each of the sequences below $(a_n)_{n\geq 1}$, guess the limit and prove directly that the sequence tends to that limit.
 - (a) $a_n = -\frac{1}{\sqrt{2n}}$ for all $n \ge 1$
 - (b) $a_n = \frac{1 e^{-n}}{2}$ for all $n \ge 1$
 - (c) $a_n = \frac{n-1}{n}$ for all $n \ge 1$
 - (d) $a_n = C$ for all $n \ge 1$, where C is a real constant.
- 3. Use the Sandwich theorem and any previous result to prove that:

$$\lim_{n \to \infty} \left(1 - \frac{1}{n^2} \right) = 1$$

4. **Exam standard.** You are given that both of the sequences $(a_n)_{n\geq 1}$, with a_n defined for $n\geq 1$ below, tend to 0. Prove that they do so directly or using the Sandwich theorem.

(a)
$$a_n = \begin{cases} 1/n & \text{: if } n < 1000\\ 1/n^2 & \text{: if } n \ge 1000 \end{cases}$$

¹Direct proof of sequence convergence requires that you use the ϵ -N method.

(b)
$$a_n = \begin{cases} 1/n & \text{: if } n \text{ even} \\ -1/n & \text{: if } n \text{ odd} \end{cases}$$

- 5. The sequence $(a_n = 2^{-n})_{n \ge 1}$ converges to 0. Attempt a direct proof that $\lim_{n \to \infty} a_n = 1/8$ instead and explain where it fails.
- 6. Exam standard.
 - (a) Let α be a positive, real constant. Use a direct proof to show that the sequence $(a_n)_{n\geq 1}=(n^{-\alpha})_{n\geq 1}$ converges to 0 as n tends to infinity.
 - (b) Use the Sandwich theorem to show that

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$

(c) Let p be a fixed natural number. What happens to the sequence

$$\left(\frac{n!}{n^p}\right)_{n\geq 1}$$

as
$$n \to \infty$$
?

7. **Exam standard.** Let θ be any constant in \mathbb{R} . Using any techniques of your choice, prove that the following sequence converges to 0 as $n \to \infty$:

$$(a_n)_{n\geq 1} = \left(\frac{\sin n\theta}{2^n}\right)_{n\geq 1}$$

- 8. Let $a_n = \left(1 + \frac{1}{n}\right)^n$ for all $n \ge 1$. Show that
 - (a) $(a_n)_{n\geq 1}$ is an increasing sequence.
 - (b) $(a_n)_{n\geq 1}$ is upper bounded by e.

Hint: You may use the fact that $\ln x \le x - 1$.

- 9. Let $a_1 = 1$ and define $a_{n+1} = \sqrt{1 + 2a_n}$ for all $n \ge 1$.
 - (a) Show that the sequence $(a_n)_{n\geq 1}$ is increasing.
 - (b) Show that the sequence $(a_n)_{n\geq 1}$ is upper bounded by 3.
 - (c) Explain why $\lim_{n\to\infty} a_n$ exists and determine its value.