# TecNav

Clinic Monitoring & Technician Navigation Application



### **Project Overview**

Background & Pitch

Background

Rapid growth of on-demand care

Challenge

Unpredictable patient traffic

Use-case

Shuffle technicians across clinics on per need basis

Pitch

Automated Real-Time ML-based Application - *TecNav* 





## **Project Overview**

Pipeline



### Data Fabrication

Overview

### Data Source

- No publicly-available sources fabricate!
- Road-Block: Patient registration logs

### Objective

• Emulate real-world data

### Challenges

- Strategize based on secondary research
- Balance between consistency across datasets, while maintaining real-world variation



 Past patient records, clinic info, employee records, new patient logs (for streaming)





### Data Fabrication

#### Approach

#### Patient Records

- IDs
- Ages
- Visit Reasons
- Names, D.O.B.

#### Clinic Info

- Names / Locations
- Distances
- Capacity



#### **Employee Records**

- IDs
- Names
- Roles

#### Visit Records

- Severity Level
- Visit Lengths
- Check-In Times

### **Data Fabrication**

#### Patient Traffic - Check-in Times

```
# Denver-Clinic:
denver_ctime_specs = {
    'weekday_means1': [8, 8.25, 8.5, 8.75, 9],
                                                       # First weekday peak possibilities of Denver location
    'weekday_means2': [11, 11.25, 11.5, 11.75],
                                                       # Second weekday peak possibilities of Denver location
    'weekday_means3': [16, 16.25, 16.5, 16.75],
                                                       # Third weekday peak possibilities of Denver location
    'weekday_sigmas': [1.8, 1.9, 2.1, 2.2],
                                                       # Possible weekday variations (standard-deviations)
    'weekend_means1': [10.5, 11, 11.5, 12],
                                                       # First weekend peak possibilities of Denver location
                                                       # Second weekend peak possibilities of Denver location
    'weekend_means2': [14, 14.5, 15, 15.5],
    'weekend_means3': [17, 17.25, 17.5, 17.75],
                                                       # Third weekend peak possibilities of Denver location
    'weekend sigmas': [1.8, 1.9, 2.1, 2.2]
                                                       # Possible weekend variations (standard-deviations)
```





Actual Example (source: Google)

#### Multi-modal

Multiple peaks

#### Variations

- Randomly sampled Means & SDs
- By day (weekday vs. weekend)
- By location



Fabricated Example

#### Patient Traffic by Location



- Denver (most-populated) sees highest patient traffic
- Edgewater (leastpopulated) has smallest capacity
- Distribution of severity levels standardized across locations



#### Patient Demographics



#### Age-Group Breakdown

- Infant to 10: 14%
- 11 20: 15%
- 21 30: 18%
- 31 40: 16%
- 41 50: 13%
- 51 60: 11%
- 61+: 13%



#### Rolling Patient Count



Based on past patient records (May 2021 – Apr 2022):

- Most common rolling count: 5-6
- Can extend up to 20
- Slight variations based on clinic location



#### Visit Reasons

- Visit reason proportions emulate CDC's ER estimates
- Cold/Flu/Fever: most common reason for visit
- Severity Level-4 visits are most common





#### Visit Length



- Level-3 visits ("non-urgent") have quickest visit times
- Level-5 visits have longest durations
  - Additional diagnostic or therapeutic measures



#### Patient Traffic by Location



- Pt. Count @ Wheatridge clinic
  Pt. Count @ Edgewater clinic
- Traffic varies by clinic
- Peaks are different
- Number of technicians needed changes throughout the day



#### Scheduled Technician Count





Scheduling technicians based on anticipated "peak" hours leads to inefficient use of resources (red dotted line)



Dynamic scheduling that adapts based on clinic's current needs can mitigate these inefficiencies



### Modeling

#### ML - Regression

#### "Is it feasible to transfer a technician?"

**Model**: Random Forest Regressor

**Prediction**: How many technicians are needed in the next hour?

**Evaluation:** RMSE = 0.72 (< 1 technician)

Use: Assess whether a technician can be transferred at a given time



### Modeling

#### Time Series - ARIMA

(Integrated)

### ARIMA

(Autoregressive)

(Moving-Average)

#### **Augmented Dickey-Fuller Test**

ADF Test Statistic: -6.393478079011247

p-value: 2.0781867199569106e-08

# of Lags Used: 2 # of Obs. Used: 333

REJECT H<sub>0</sub>!







### Modeling

#### Time Series - ARIMA



#### RMSEs (05-2021):

• Denver: 0.69

• Wheat Ridge: 0.67

• Edgewater: 0.72

• RiNo: 0.65

Lakewood: 0.67

CONSIDERATIONS: Model Performance | Time / Model Complexity | Algorithm Integration



### TecNav Algorithm

#### Flowchart





### Demo

#### Interactive Prototype of Software Application



**Navigation Activity Log for 2021-05-04:** 

```
08:55:13 - Rino Clinic needs a technician
 Availability: ['Denver', 'Wheatridge', 'Lakewood']
 Assessing if Denver is a feasible location to pull technician from.
 Denver only has 1 technician available
 Deploy ML model to assess if transfer is feasible:
     Predicted amount needed = 1 | Current amount needed = 3
 Model anticipates Denver clinic to become less busy; feasible to pull from this location.
 Pull technician from nearest clinic: Denver, 1 available
 Technician from Denver left at 08:57:28
 Technician from Denver arrived at Rino at 09:09:19
 Rino: before count = 3 | after count = 4
 Denver: before count = 4 | after count = 3
09:34:31 - Denver Clinic needs a technician
 Availability: ['Edgewater', 'Wheatridge', 'Lakewood']
 Assessing if Edgewater is a feasible location to pull technician from.
 Edgewater only has 1 technician available
 Deploy ML model to assess if transfer is feasible:
    Predicted amount needed = 3 | Current amount needed = 1
         ML model recommends no transfer from Edgewater
 Assessing if Wheatridge is a feasible location to pull technician from.
 Wheatridge only has 1 technician available
 Deploy ML model to assess if transfer is feasible:
     Predicted amount needed = 3 | Current amount needed = 4
 Model anticipates Wheatridge clinic to become less busy; feasible to pull from this location.
 Pull technician from nearest clinic: Wheatridge, 1 available
 Technician from Wheatridge left at 09:36:35
 Technician from Wheatridge arrived at Denver at 09:56:41
 Denver: before count = 4 | after count = 5
 Wheatridge: before count = 5 | after count = 4
09:53:44 - Denver Clinic needs a technician
 Availability: ['Rino', 'Wheatridge', 'Lakewood']
 Assessing if Rino is a feasible location to pull technician from.
 Rino only has 1 technician available
```

### **Conclusions & Recommendations**

#### Client Success Metrics

For our chain of 5 clinics, TecNav recommends:

- 5 less technicians per day
  - No need for navigator
- \$91,980 savings in yearly compensation (\$7665/month)
  - ~\$21/hr (avg. Denver wage)
- 357 moves a month
  - Gas reimbursements: \$264
  - Based on distances & Denver gas prices
- Total yearly savings: \$88,812\*

#### Savings can be applied to:

- Expand scope of services
  - Advanced diagnostic tools
  - Imaging equipment
- Minimize cost to patients

<sup>\*</sup> Minus a TecNav subscription fee





### **Project Reflections**

#### Challenges & Future Directions

#### Technical Challenges

- Fabrication tuning
- Translatable study design

#### Improvements

- Extra layers of sophistication
- Manual "Grid-Search"

#### Alternative Strategies

- Broaden applicability
- Wait-Time focus

#### Development Breakdown





# Thank you!



github.com/rc-9/TecNav github.com/RemoNona/TecNav



Tomer.Danon@du.edu Romith.Challa@d<u>u.edu</u>



Connect with us!

