RGBD Cameras' Per-Pixel Calibration and Natural 3D Reconstruction on GPU

Dr. Lau, advisor

Dr. Hastings, committee member

Dr. Cheung, committee member

Presented By: Sen Li

Outline

- Introduction
- Academic Background:
 - -Pinhole Camera Model (Camera calibration / 3D reconstruction)
 - -Kai's per-pixel 3D reconstruction on GPU
 - -Distortions
- Per-Pixel Distortion Correction & Natural GPU Reconstruction:
 - -Calibration system
 - -Calibration procedures
 - -Undistorted 3D Reconstruction
- Conclusion & Future Work

Object Segmentation in KinectFusion

Pinhole-Camera Model

Pinhole-Camera Model

Pinhole-Camera Model

$$\begin{bmatrix} \alpha_c f & 0 & \alpha_c c_h \\ 0 & \alpha_r f & \alpha_r r_h \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} f_c & s & t_c \\ 0 & f_r & t_r \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} c \\ r \end{bmatrix} = f \begin{bmatrix} x^c/z^c \\ y^c/z^c \end{bmatrix} + \begin{bmatrix} c_h \\ r_h \end{bmatrix}$$

$$\begin{bmatrix} c \\ r \end{bmatrix} = f \begin{bmatrix} x^c/z^c \\ y^c/z^c \end{bmatrix} + \begin{bmatrix} c_h \\ r_h \end{bmatrix}$$

$$z^c \begin{bmatrix} c \\ r \\ 1 \end{bmatrix} = \begin{bmatrix} fx^c \\ fy^c \\ z^c \end{bmatrix} + \begin{bmatrix} z^cc_h \\ z^cr_h \\ 0 \end{bmatrix} = \begin{bmatrix} f & 0 & c_h \\ 0 & f & r_h \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x^c \\ y^c \\ z^c \end{bmatrix}$$

• Traditional Reconstruction (Calibrate *M* and then Inverse)

$$M = K \begin{bmatrix} R_{3*3} & T_{3*1} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \qquad Z^{C} \begin{bmatrix} R \\ C \\ 1 \end{bmatrix} = M_{3*4} \begin{bmatrix} X^{W} \\ Y^{W} \\ Z^{W} \end{bmatrix} \qquad \rightarrow \qquad \begin{bmatrix} X^{W} \\ Y^{W} \\ Z^{W} \\ 1 \end{bmatrix} = [M^{T}M]^{-1}M^{T}Z^{C} \begin{bmatrix} R \\ C \\ 1 \end{bmatrix}$$

Kai's: Natural Shader Reconstruction on GPU

Pinhole Camera Model
$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix}$$

$$X^{W}[m, n] = a[m, n]Z^{W}[m, n] + b[m, n]$$

$$Y^{W}[m, n] = c[m, n]Z^{W}[m, n] + d[m, n]$$

• KinectV2: Raw 3D Reconstruction on GPU based on $\theta_{\rm h}$ / $\theta_{\rm v}$ (Intrinsic $\textbf{\textit{K}}$)

$$Z^{C}[m,n] = -\beta D[m,n]$$

$$\beta = 65535.0$$

$$X^{C}[m,n] = a[m,n] \cdot |Z^{C}[m,n]|$$

$$Y^{C}[m,n] = b[m,n] \cdot |Z^{C}[m,n]|$$

• Raw 3D Reconstruction on GPU based on θ_h / θ_v (Intrinsic **K**)

Raw KinectV2 3D Reconstruction

lens Distortion

Depth Distortion

From Camera Space to Image Space with Lens Distortions

Academic Background

• Pinhole-Camera Model (Calibration and Reconstruction)

Intrinsic Matrix
$$K = \begin{bmatrix} f_c & s & t_c \\ 0 & f_r & t_r \\ 0 & 0 & 1 \end{bmatrix}$$

Extrinsic Matrix R_{3*3} T_{3*1}

$$\begin{bmatrix} R_{3*3} & T_{3*1} \end{bmatrix}$$

Pinhole Camera Matrix:

$$M = K \begin{bmatrix} R_{3*3} & T_{3*1} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix}$$

$$C' = C(1 + k_1r^2 + k_2r^4 + k_3r^6) + [p_1(r^2 + 2C^2) + 2p_2CR]$$

$$R' = R(1 + k_1r^2 + k_2r^4 + k_3r^6) + [p_2(r^2 + 2R^2) + 2p_1CR]$$

Distortion Parameters: $k_1/k_2/k_3/p_1/p_2$

$$Z^{\mathsf{C}} \begin{bmatrix} R' \\ C' \\ 1 \end{bmatrix} = \boldsymbol{M}_{3*4} \begin{bmatrix} X^{\mathsf{W}} \\ Y^{\mathsf{W}} \\ Z^{\mathsf{W}} \end{bmatrix} \longrightarrow \begin{bmatrix} X^{\mathsf{W}} \\ Y^{\mathsf{W}} \\ Z^{\mathsf{W}} \\ 1 \end{bmatrix} = [\boldsymbol{M}^{\mathsf{T}} \boldsymbol{M}]^{-1} \boldsymbol{M}^{\mathsf{T}} Z^{\mathsf{C}} \begin{bmatrix} R' \\ C' \\ 1 \end{bmatrix}$$

• Traditional Undistorted Reconstruction (High Order and Inverse)

Distortion Parameters:
$$k_1/k_2/k_3/p_1/p_2$$

 $C' = C(1 + k_1r^2 + k_2r^4 + k_3r^6) + [p_1(r^2 + 2C^2) + 2p_2CR]$
 $R' = R(1 + k_1r^2 + k_2r^4 + k_3r^6) + [p_2(r^2 + 2R^2) + 2p_1CR]$

$$k \begin{bmatrix} R' \\ C' \\ 1 \end{bmatrix} = M_{3*4} \begin{vmatrix} X^{W} \\ Y^{W} \\ Z^{W} \end{vmatrix} \rightarrow \begin{vmatrix} X^{W} \\ Y^{W} \\ Z^{W} \end{vmatrix} = [M^{T}M]^{-1}M^{T} \begin{bmatrix} kR' \\ kC' \\ k \end{bmatrix}$$

• Kai's: "Natural" Shader Reconstruction $(k_1/k_2/k_3/p_1/p_2)$ High Order)

$$m' = m*(1 + k_1r^2 + k_2r^4 + k_3r^6) + [p_1(r^2 + 2m^2) + 2p_2*m*n]$$

$$n' = n*(1 + k_1r^2 + k_2r^4 + k_3r^6) + [p_1(r^2 + 2n^2) + 2p_2*m*n]$$

$$X^{W}[m,n] = a[m',n']Z^{W}[m,n] + b[m',n']$$
$$Y^{W}[m,n] = c[m',n']Z^{W}[m,n] + d[m',n']$$

Want: Undistorted Natural 3D Reconstruction on GPU

$$Z^{C}[m,n] = -\beta D[m,n]$$

$$\downarrow^{65535.0}$$

$$Z^{W}[m,n] = e[m,n]D[m,n] + f[m,n]$$

$$X^{W}[m,n] = a[m,n]Z^{W}[m,n] + b[m,n]$$

$$Y^{W}[m,n] = c[m,n]Z^{W}[m,n] + d[m,n]$$

• Inspiration: find a way to get per-pixel Z^{W}

Rail Calibration System

Data Collection

Mount: camera and laser distance measurer

Want:

- NIR: $X^{W}Y^{W}Z^{W}ID$

- RGB: $X^{W}Y^{W}Z^{W}RGBD$

• Bound:

- Z^w: Laser Distance Measurer

- X^WY^W: Uniform Round Dot Pattern

Found (algorithms):

- Calibration Points (Row, Col)s Extraction;
- Corresponding World Space Address Assignment;
- Non-Linear Dense Transformation

Calibration Points (Row, Col) Extraction;

Gray-Scaling (luminosity method)

$$I_0[m, n] = 0.21R[m, n] + 0.72G[m, n] + 0.07B[m, n]$$

Histogram Equalization

$$I_1[m, n] = \frac{I_0[m, n] - I_{MIN}}{I_{MAX} - I_{MIN}}$$

Adaptive Thresholding

$$I_{2}[m,n] = \begin{cases} 1, & I_{1}[m,n] - I_{b}[m,n] - C_{0} > 0 \\ 0, & else \end{cases}$$

Round Dot Tracking

$$I_{3}[m, n] = I_{2}[m, n] * \frac{(128I_{A} + 64I_{B} + 32I_{C} + 16I_{D} + 8I_{E} + 4I_{F} + 2I_{G} + I_{H})}{255}$$

Raw NIR Image

$$I_0[m, n] = \frac{g[m, n]}{G} * (1.0 - 0.0) + 0.0 = \frac{g[m, n]}{G}$$

$$CDF(g) = \frac{\sum_{l=1}^{g} PMF[l]}{M \times N}$$
 $CDF(g_{min}) = 0.01$
 $CDF(g_{max}) = 0.99$

$$I_{\text{MIN}} = g_{\text{min}} / G$$

$$I_{\text{MAX}} = g_{\text{max}} / G$$

$$I_{1}[m, n] = \frac{I_{0}[m, n] - I_{\text{MIN}}}{I_{\text{MAX}} - I_{\text{MIN}}}$$

$$I_{2}[m,n] = \begin{cases} 1, & I_{1}[m,n] - I_{b}[m,n] - C_{0} > 0 \\ 0, & else \end{cases}$$

Historgram Equalized

Binarized

Round Dot Tracking

E	A	F
В	0	<i>C</i>
G	D	Н

$$I_3[m, n] = I_2[m, n] * \frac{(128I_A + 64I_B + 32I_C + 16I_D + 8I_E + 4I_F + 2I_G + I_H)}{255}$$

$$if (I_{\rm O} \& 0 \times 80 == 1)$$
, then, marker A is valid (go Up)
 $if (I_{\rm O} \& 0 \times 40 == 1)$, then, marker B is valid (go Left)
 $if (I_{\rm O} \& 0 \times 20 == 1)$, then, marker C is valid (go Right)
 $if (I_{\rm O} \& 0 \times 10 == 1)$, then, marker D is valid (go Down)

Anchor !=0 → Detect Valid → Flip Valid → Get Area + Bounding Box

Traverse and Extract on CPU

Binarized Image

Dots' Centers Extracted

World Space Address Assignment

• Travers every 4 Square-Shaped points and find best A_0 , which corresponds to the best-fit "Unit One" (228mm) in Image Space:

Get Linear Mapping matrix $A_0 \rightarrow$ Transform all (R, C) to (X^W, Y^W)

 \rightarrow Count $(N_{\rm v})$ valid points with integer $X^{\rm W}/Y^{\rm W} \rightarrow$ Find best A_0 who generates the largest $N_{\rm v}$.

$$\begin{bmatrix} zX^{W} \\ zY^{W} \\ 0, 0) & (1, 0) \end{bmatrix} = A_{0} \begin{bmatrix} C \\ R \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} C \\ R \\ 1 \end{bmatrix}$$

• Translate Origin to the Center Dot

$$c_{h} = (512-1)/2 = 255.5$$

$$r_{h} = (424-1)/2 = 211.5$$

$$\begin{bmatrix} zx_{h} \\ zy_{h} \\ z \end{bmatrix} = A_{0} \cdot \begin{bmatrix} c_{h} \\ r_{h} \\ 1 \end{bmatrix}$$

$$c_{h} = round(c_{h})$$

$$r_{h} = round(r_{h})$$

$$A_{1} = T \cdot A_{0} = \begin{bmatrix} 1 & 0 & -x_{h} \\ 0 & 1 & -y_{h} \\ 0 & 0 & 1 \end{bmatrix} \cdot A_{0}$$

World Space Address Assignment

Image Space Calibration Points

Assigned World Space X^wY^w

Two Dimensional Polynomial Mapping

• (First Order Perspective Transformation)

$$\begin{bmatrix} zX^W \\ zY^W \\ z \end{bmatrix} = A_0 \begin{bmatrix} C \\ R \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} C \\ R \\ 1 \end{bmatrix}$$

Second Order

$$X^{W} = a_{11}C^{2} + a_{12}CR + a_{13}R^{2} + a_{14}C + a_{15}R + a_{16}$$
$$Y^{W} = a_{21}C^{2} + a_{22}CR + a_{23}R^{2} + a_{24}C + a_{25}R + a_{26}$$

Fourth Order

$$X^{W} = a_{11}C^{4} + a_{12}C^{3}R + a_{13}C^{2}R^{2} + a_{14}CR^{3} + a_{15}R^{4} + a_{16}C^{3} + a_{17}C^{2}R ...$$
$$+ a_{18}CR^{2} + a_{19}R^{3} + a_{110}C^{2} + a_{111}CR + a_{112}R^{2} + a_{113}C + a_{114}R + a_{115}$$

$$Y^{W} = a_{21}C^{4} + a_{22}C^{3}R + a_{23}C^{2}R^{2} + a_{24}CR^{3} + a_{25}R^{4} + a_{26}C^{3} + a_{27}C^{2}R ...$$
$$+ a_{28}CR^{2} + a_{29}R^{3} + a_{210}C^{2} + a_{211}CR + a_{212}R^{2} + a_{213}C + a_{214}R + a_{215}$$

$$d_1 = (Y1-Y3)/(X2-X1) = [-3.772+4.004]/[5.713+4.735] = 2.2\%$$

 $d_4 = [-3.936 - (-3.992)] = [5.923 - (-4.928)] = 0.516\%$

63 frames from 1.165m to 2.565m, 25mm / frame

63 frames, generate Pixels' Beam Equations

Frustum Linear Z^{W} to $X^{W}Y^{W}$: Pixels' View

Per-Pixel D to ZW mapping

Data at pixel (212, 256) from 32 frames

1

Linear in this example

$$Z^{W}[m,n] = e[m,n]D[m,n] + f[m,n]$$

D to Z^W Polynomial Fit

Generate Look-Up Table

- Size: *Width Height -* 6 (512*424*6)
- Data: $X^{W}Y^{W}Z^{W}D$
- Pre-Process: (for every frame)
 - Find best-fit plane equation $D = aX^{W} + bY^{W} + c$
 - Throw away 10% pixels of worst D
- Mappings:

Fragment Shader: 3 per-pixel linear mappings, 6 parameters

$$X^{W}[m, n] = a[m, n]Z^{W}[m, n] + b[m, n]$$

$$Y^{W}[m, n] = c[m, n]Z^{W}[m, n] + d[m, n]$$

$$Z^{W}[m, n] = e[m, n]D[m, n] + f[m, n]$$

Depth Distortion Correction

Raw Pin-Hole Reconstructions

Transformed into World Space
By
Best-Fit *Rotation* and *Translation*

Calibrated LUT Reconstructions

Lens Distortion Correction

Before Calibration

Calibrated

Conclusion

- Rail System
 - Infinite frames of data, dense calibration points, per-pixel D to Z^{W} mapping
- Data Collection (Per-Frame)
 - Get Z^{W} from laser distance measurer;
 - Robust calibration points' extraction;
 - Histogram Equalization, Adaptive Thresholding, Round Dots' Tracking
 - Assign world space coordinates to calibration points;
 - Determine two-dimensional fourth order polynomial mapping;
 - Generate dense undistorted X^WY^W .
- Pre-Process
 - Unify staggered frames
 - Throw away 10% noise pixels
- Generate LUT: *Width Height -* 6 (512*424*6)
- 3D Reconstruction: Undistorted 3D Reconstruction, No model, Only Textures

Future Works

Hard Ware

- Longer rail: segmented D to Z^{W} mapping in case a rough extrapolation;
- Pattern Size and Distribution: based on resolution;
- 2D pattern to 3D pattern: in case NIR streams cannot be used, 3D pattern for depth streams analysis;
- Tracking module on rail: to substitute laser distance measure, such that it is possible to input Z^{W} record frames automatically.

Software

- Better DIP techniques;
- Higher order polynomial Z^W to X^WY^W mapping.

Questions?