Assignment - 2

EEC201 - Signals, Systems, and Networks (Monsoon 2024) Department of Electrical Engineering, IIT (ISM) Dhanbad Due: 24.10.2024

1. Find the Laplace Transforms of the following:

(a)
$$(t + e^{-t} + t^2 e^{-t} + (t - 4)e^{2t})u(t)$$
 (b) $(\sin^2 t)u(t)$ (c) $\frac{\sin kt}{t}u(t)$

(b)
$$(\sin^2 t)u(t)$$

(c)
$$\frac{\sin kt}{t}u(t)$$

(d)
$$\cosh(t + \theta)u(t)$$

(e)
$$(1-(1-t)e^{-3t})u(t)$$

(f)
$$|t|e^{-|t|}$$

(g)
$$x(t) = \begin{cases} t & 0 \le t < 1 \\ e^t & t \ge 1 \\ 0 & \text{else} \end{cases}$$
 (h) $x(t) = \begin{cases} t - \pi & \pi \le t < 2\pi \\ 0 & \text{else} \end{cases}$

(h)
$$x(t) = \begin{cases} t - \pi & \pi \le t < 2\pi \\ 0 & \text{else} \end{cases}$$

(i)
$$(t \sin t)u(t)$$

(j)
$$x(t) = \begin{cases} 1 & 0 \le t < 2 \\ t^2 - 4t + 4 & t \ge 2 \\ 0 & \text{else} \end{cases}$$
 (k) $x(t) = \begin{cases} \cos(\pi t) & 0 < t < 4 \\ 0 & \text{else} \end{cases}$

(k)
$$x(t) = \begin{cases} \cos(\pi t) & 0 < t < 4 \\ 0 & \text{else} \end{cases}$$

(a)
$$\frac{1}{s^2} + \frac{1}{s+1} + \frac{2}{(s+1)^3} + \frac{1}{(s-2)^2} - \frac{4}{s-2}$$

(b)
$$\frac{2}{s(s^2+4)}$$

(c)
$$\tan^{-1}\left(\frac{k}{s}\right)$$

(d)
$$\frac{\sinh\theta + s\cosh\theta}{s^2 - 1}$$

(e)
$$\frac{4s+9}{s(s+3)^2}$$

(f)
$$\frac{2(s^2+1)}{(s^2-1)^2}$$

(g)
$$\frac{1}{s^2} + e^{-s} \left(\frac{e}{s-1} - \frac{1}{s} - \frac{1}{s^2} \right)$$

(h)
$$\frac{e^{-\pi s}}{s^2} - e^{-2\pi s} \left(\frac{\pi}{s} + \frac{1}{s^2} \right)$$

(i)
$$\frac{2s}{(s+1)^2}$$

(j)
$$\frac{1}{s} + e^{-2s} \left(\frac{2}{s^3} - \frac{1}{s} \right)$$

(k)
$$\frac{s(1-e^{-4s})}{s^2+\pi^2}$$

2. Find the Inverse Laplace Transforms of the following:

(a)
$$\frac{24}{s^4} - \frac{9}{s^2 + 9}$$

(b)
$$\frac{8}{s^3 + 4s}$$

(c)
$$\frac{1 + e^{-2s}}{s^2 + 6}$$

(a)
$$\frac{24}{s^4} - \frac{9}{s^2 + 9}$$
 (b) $\frac{8}{s^3 + 4s}$ (c) $\frac{1 + e^{-2s}}{s^2 + 6}$ (d) $\frac{2s + 3}{s^2 + 4s + 13}$

(e)
$$\frac{1}{(s+1)(s^2-1)}$$
 (f) $\frac{s^2-2s}{s^4+5s^2+4}$ (g) $\frac{e^{-3s}}{s-2}$ (h) $\frac{5(s+2)^2}{s(s+1)^3}$

(f)
$$\frac{s^2 - 2s}{s^4 + 5s^2 + 4}$$

$$(g) \frac{e^{-3s}}{s-2}$$

(h)
$$\frac{5(s+2)^2}{s(s+1)^3}$$

(i)
$$\frac{2s+5}{s^2+5s+6}e^{-2s}$$
 (j) $\frac{s}{(s-3)^5}$ (k) $\frac{3+e^{-(s-1)}}{s^2-2s+5}$ (l) $\frac{9+s}{4-s^2}$

$$(j) \frac{s}{(s-3)^5}$$

(k)
$$\frac{3 + e^{-(s-1)}}{s^2 - 2s + 5}$$

(1)
$$\frac{9+s}{4-s^2}$$

Answer:

(a)
$$(4t^3 - 3\sin(3t))u(t)$$

(b)
$$(2-2\cos(2t))u(t)$$

(c)
$$\frac{\sin\sqrt{6}t}{\sqrt{6}}u(t) + \frac{\sin(\sqrt{6}(t-2))}{\sqrt{6}}u(t-2)$$

(d)
$$\left(2\cos 3t - \frac{\sin 3t}{3}\right)e^{-2t}u(t)$$

(e)
$$\frac{e^t - 2te^{-t} - e^{-t}}{4}u(t)$$

(f)
$$\frac{2\cos 2t + 2\sin 2t - 2\cos t - \sin t}{3}u(t)$$

(g)
$$e^{2(t-3)}u(t-3)$$

(h)
$$(20 - e^{-t}(2.5t^2 + 15t + 20))u(t)$$

(i)
$$(e^{-2(t-2)} + e^{-3(t-2)})u(t-2)$$

(j)
$$e^{3t} \left(\frac{t^3}{6} + \frac{t^4}{8} \right) u(t)$$

(k)
$$\frac{3e^t}{2}(\sin 2t)u(t) + \frac{e^t}{2}(\sin 2(t-1))u(t-1)$$

(I)
$$-(\cosh 2t + 4.5 \sinh 2t)$$

3. Verify the Initial value theorem and the Final value theorem for the following:

(a)
$$e^{-t}(t+2)^2 u(t)$$

(b)
$$(1 + e^{-t}(\sin t + \cos t)) u(t)$$

(c)
$$t^2 e^{-3t} u(t)$$

(d)
$$u(t-T)$$

(a)
$$x(0^+) = 4$$
, $x(\infty) = 0$

(b)
$$x(0^+) = 2$$
, $x(\infty) = 1$

(c)
$$x(0^+) = 0$$
, $x(\infty) = 0$

(d) If
$$T > 0$$
: $x(0^+) = 0$, $x(\infty) = 1$

If
$$T < 0$$
: $x(0^+) = 1$, $x(\infty) = 1$

4. Solve the following differential equations:

(a)
$$y' + 3y = t^2 e^{-3t} + t e^{-2t} + t$$
 with $y(0) = 1$

(b)
$$y'' + 4y = 0$$
 with $y(0) = 1$, $y'(0) = 6$

(c)
$$y'' + 4y' + 8y = e^{-t}$$
 with $y(0) = y'(0) = 0$

(d)
$$y''' - y' = 2$$
 with $y(0) = y'(0) = y''(0) = 4$

(e)
$$y'' + 2y' + 5y = 0$$
 with $y(0) = 2$, $y'(0) = 0$

(f)
$$y'' + 4y' + 3y = 10\cos(t)$$
 with $y(0) = 1$, $y'(0) = 2$

(g)
$$y'' + 4y' + 4y = 3te^{-2t}$$
 with $y(0) = 0$, $y'(0) = 1$

(h)
$$y'''' + y = 0$$
 with $y(0) = y'(0) = y''(0) = y'''(0) = 1$

(a)
$$y(t) = \left(e^{-3t}\left(2 + \frac{t^3}{3}\right) + e^{-2t}(t-2) + \frac{t}{3} - \frac{1}{9}\right)u(t)$$

(b)
$$y(t) = \cos 2t + 3\sin 2t$$

(c)
$$\frac{2e^{-t} - e^{-2t}(2\cos 2t + \sin 2t)}{10}$$

(d)
$$y(t) = 5e^t - e^{-t} - 2t$$

(e)
$$y(t) = e^{-t}(2\cos 2t + \sin 2t)$$

(f)
$$y(t) = \cos t + 2\sin t$$

(g)
$$y(t) = e^{-2t} \left(t + \frac{t^3}{2} \right)$$

(h)
$$y(t) = \frac{1}{\sqrt{2}} \left(\sin\left(\frac{t}{\sqrt{2}}\right) \cosh\left(\frac{t}{\sqrt{2}}\right) - \cos\left(\frac{t}{\sqrt{2}}\right) \sinh\left(\frac{t}{\sqrt{2}}\right) \right)$$

- 5. Using KCL/KVL and Nodal/Mesh Analysis, answer the following:
 - (a) What are the node voltages in this circuit?

(b) Calculate the node voltages and the current I_0 in the circuit below.

(c) What is the power dissipated by the 10 Ohm resistor?

(d) What is the current I_0 in the circuit below?

(e) If $x(t) = te^{-t}u(t)$ V, calculate y(t):

(f) If the switch is open for a long time and suddenly closed at t = 0, calculate $y_1(t)$ and $y_2(t)$:

(g) What is the transfer function of this circuit?

(h) What is the transfer function of this circuit?

(i) What is the current I_x flowing out of the voltage source?

(j) What is the voltage $V_0(t)$ across the capacitor?

(Hint: Convert the circuit to phasor domain, solve the equations and the convert back to time domain.)

(k) What are the node voltages v_1 and v_2 ?

(1) If $i_L(0^-) = 1A$ and $v_C(0^-) = 3V$, calculate the voltage y(t) for $t \ge 0$.

(m) Assuming zero initial conditions and $\omega_0^2 = \frac{1}{LC}$, calculate the current y(t) if

(n) What should be the value of V_x so that no current flows through the impedance 8 + 8j?

(o) What is the power dissipated or supplied by the voltage source?

(p) What is the power dissipated by the 30 Ohm resistor?

(q) If the switch is at "a" for a long time and suddenly moved to "b" at t = 0, calculate y(t):

(r) What is the current flowing through the 6 Ohm resistor?

(s) Assuming zero initial conditions and R = 2 and L = 2, calculate the current in the circuit:

(t) What is the voltage across the 6 Ohm resistor?

(u) Calculate the current flowing through the 4 Ohm resistor:

(v) Calculate all the node voltages in the circuit below:

(w) Calculate the current *i* in the circuit below:

(a)
$$V_1 = -4.5V$$
, $V_2 = -15.5V$, $V_3 = 6.5V$

(b)
$$V_1 = 4.5V$$
, $V_2 = 1.5V$, $V_3 = 6V$, $I_0 = 0.375A$

(c)
$$P = 58.6 W$$

(d)
$$I_0 = 0 A$$

(e)
$$(te^{-t} - e^{-t} \sin t)u(t) V$$

(f)
$$y_1(t) = (8 + 17.9e^{-1.5t}\cos(0.5t - 26.56))u(t) A$$

 $y_2(t) = 28.28e^{-1.5t}\cos(0.5t - 45))u(t) A$

$$\mathbf{(g)} \ H(s) = \frac{s}{s+a} \left(1 + \frac{R_b}{R_a} \right)$$

(h)
$$H(s) = \frac{3-4s}{4+s}$$

(i)
$$I_x = 6.12 \angle 144.78 A$$

(j)
$$V_0(t) = 4.63 \sin(5t - 81.12) + 1.05 \cos(10t - 86.24)) V$$

(k)
$$v_1(t) = 20.96 \sin(2t + 58) V$$

 $v_2(t) = 44.11 \sin(2t + 41) V$

(I)
$$y(t) = 1.72e^{-2t}\cos(3t + 29))u(t) V$$

(m)
$$y(t) = \frac{A}{L\omega_0}u(t) + \frac{B}{L\omega_0^2}\delta(t)$$

(n)
$$V_x = 88.4 \angle 45 \ V$$

(o)
$$P = 48.66 W$$

(p)
$$P = 0.01 W$$

(q)
$$(121.6e^{-6.5t} - 1.6e^{-2.8t})u(t)$$

(r)
$$I = 2.64 \angle 10 A$$

(s)
$$i(t) = \left(\frac{t-1+e^{-t}}{2}\right)(u(t)-2u(t-1)+u(t-2)) A$$

(t)
$$V = 34.4 \angle 24 V$$

(u)
$$I = 2 - 1.636 = 0.364 A$$

(v)
$$V_1 = 4.37V$$
, $V_2 = 5V$, $V_3 = -1.63V$, $V_4 = 4.33V$

(w)
$$I = 0.8 \angle 92 A$$