Exportações de Minérios de ferro e seus concentrados

5 de novembro de 2016

Dados

Os dados desse exemplo foram extraídos das séries históricas disponíveis no site do MDIC.

```
options(OutDec = ",", scipen = 999)
library(readxl)
library(dplyr)
library(ggplot2)
library(ggthemes)
library(knitr)
library(forecast)
library(tidyr)
dados <- read_excel('../dados/FAT_PPE_PPI.xlsx', sheet = 1)</pre>
# Dados apenas com todos anos e meses disponíveis. Será usado posteriormente.
dados.base <- dados %>%
  filter(TIPO == "EXP", `NO_PPE/NO_PPI` == "Soja Mesmo Triturada") %>%
  select(CO_ANO, CO_MES)
# Filtrar por TIPO == EXP
dados <- dados %>%
 filter(TIPO == "EXP") %>%
 rename(CO_PPE = `CO_PPE/CO_PPI`,
         NO_PPE = `NO_PPE/NO_PPI`)
# Calcular o preço e a participação por PPE para cada Mês/Ano
dados <- dados %>%
  group_by(CO_ANO, CO_MES) %>%
  mutate(PRECO = VL_FOB/KG_LIQUIDO,
         PART = VL_FOB/sum(VL_FOB),
         DATA = as.Date(paste0(CO_ANO, "-", CO_MES, "-01"))) %>%
 ungroup()
# Filtrar para Soja
dados <- dados %>%
  filter(NO_PPE == params$prod)
```

Amostra dos dados:

```
kable(dados %>%
    select(DATA, VL_FOB, KG_LIQUIDO, PRECO) %>%
    mutate(DATA = format.Date(DATA, "%b/%Y")) %>%
    head(10), format.args = list(big.mark = "."))
```

DATA	VL_FOB	KG_LIQUIDO	PRECO
Jan/1997	266.869.782	12.190.272.878	0,0218920
Fev/1997	172.468.713	7.845.212.443	0,0219839
Mar/1997	265.033.886	13.041.094.690	0,0203230
Abr/1997	229.954.303	10.368.844.046	$0,\!0221774$
Mai/1997	222.365.501	10.515.503.370	0,0211464
Jun/1997	281.409.102	13.278.045.526	0,0211936
Jul/1997	261.705.472	12.452.278.986	$0,\!0210167$
Ago/1997	207.029.373	9.810.599.506	0,0211026
Set/1997	227.474.215	10.764.039.314	0,0211328
$\mathrm{Out}/1997$	239.946.533	11.641.658.254	0,0206110


```
# Volume
ggplot(dados, aes(x = DATA, y = KG_LIQUIDO/1e3)) +
  geom_line() +
  scale_y_continuous(labels = function(x) format(x, big.mark = ".", decimal.mark = ",")) +
```



```
# Preço

ggplot(dados, aes(x = DATA, y = PRECO)) +
    geom_line() +
    scale_y_continuous(labels = function(x) format(x, big.mark = ".", decimal.mark = ",")) +
    labs(title = paste0("Preço ", params$prod),
        caption = "Fonte: MDIC.",
        subtitle = "US$/KG",
        x = "Data",
        y = "US$ Milhões") +
    theme_fivethirtyeight()
```


Convertendo em objeto ts

Antes de converter para um objeto da classe ts é necessário garantir que o objeto dados possua uma linha para cada mês/ano do período. No arquivo original, se a exportação de um produto foi zero em um determinado mês, não haverá uma linha para aquele mês. Dessa forma, se fizermos algo do tipo x <- ts(dados, start = c(1997, 1), freq = 12) e existirem apenas 12 observações, o R entenderá que há observações de jan/1997 a dez/1997, o que pode não ser o caso. Assim, usaremos o data.frame dados.base que possui uma linha para cada período entre jan/1997 e o último mês disponível.

Investigando a existência de sazonalidade

```
ggmonthplot(dados.ts[,"KG_LIQUIDO"]/1e3) +
   scale_y_continuous(labels = function(x) format(x, big.mark = ".", decimal.mark = ",")) +
   labs(title = paste0("Volume Exportado ", params$prod),
        caption = "Fonte: MDIC.",
```

```
subtitle = "Toneladas",
    x = "Data",
    y = "Toneladas") +
theme_fivethirtyeight()
```

