UGANDA MARTYRS UNIVERSITY NKOZI & MASAKA

UNIVERSITY EXAMINATIONS

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES

FINAL SEMESTER ASSESSMENT SEMESTER I

FIRST YEAR EXAMINATIONS FOR BSc, BSc Econ & Stat, BSc (Ed)

MAT 1101: Calculus I

DATE: Monday 11th December, 2023

DURATION: 3 Hours

Instructions:

- 1. Carefully read through ALL the questions before attempting
- 2. ANSWER ANY FIVE Questions (Each question is 20 marks)
- 3. No names should be written anywhere on the examination book.
- 4. Ensure that your **Reg number** is indicated on all pages of the examination answer booklet.
- 5. Ensure your work is clear and readable. Untidy work shall be penalized
- 6. Any type of examination Malpractice will lead to automatic disqualification
- 7. Do not write anything on the questions paper.

- a. Using relevant examples, give the difference between an odd function and an even function.
 4 marks
 - b. Give an example of a function that is neither odd nor even.
 1 mark
 - c. Classify the following functions as odd, even or neither
 - i. f(x) = 2 2 marks
 - ii. $f(x) = \frac{g(x)}{h(x)}$ where g is even, h is odd and $h(x) \neq 0$ for all x. 4 marks
 - d. Functions g and h are such that g has a domain $\{-1, 0, 1, 2, 3\}$, $g(x) = x^2$ and h(x) = 1 2x. Find the:
 - i. range of g 3 marks
 - ii. domain and range of $h \circ g$. 6 marks
- a. What is meant by continuity of a function on an interval?
 2 marks
 - b. Give an example of a function that is continuous. 1 mark
 - c. Determine the values of the parameters k and m for which the function h defined below is differentiable at the point x=3.

$$h(x) = \begin{cases} kx+1, & x \le 3\\ 10-mx^2, & x > 3 \end{cases}$$

4 marks

- d. Given the function g, where $g(x) = x(x^2 + 2x 1) 2$. Find:
 - i. the domain of g 1 mark
 - the points where the graph of g crosses the axes.
 4 marks
 - iii. the coordinates (x, g(x)) where g' and g'' are zero. 6 marks
- iv. $\lim_{x \to -\infty} g(x)$ and $\lim_{x \to \infty} g(x)$. 2 marks
- 3. a. Use the $\epsilon \delta$ definition of a limit to prove that $\lim_{x \to 1} -x + 2 = 1$. 3 marks
 - b. Given the function

$$g(x) = \begin{cases} 1 - x, & x < 1 \\ -2 + 2x, & x \ge 1. \end{cases}$$

Compute the limits:

- i. $\lim_{x \to 1^+} g(x)$ 2 marks
- ii. $\lim_{x \to 1^-} g(x)$ 2 marks
- Hence state $\lim_{x\to 1} g(x)$ 1 mark

and an

- c. Give an example of a function g and a point c such that the limit of g does not exist at c.

 2 marks
- d. Find the following limits:
 - i. $\lim_{x \to -1} x^4 2x$ 2 marks
 - ii. $\lim_{x \to 4} \frac{2 \sqrt{x}}{x 4}$ 3 marks
 - iii. $\lim_{x\to 1} g(x)$ over an interval where $3-x^2-x\leq g(x)\leq x^2$ 3 marks
- e. Explain one application of limits in real life situations. 2 marks
- a. Using relevant examples, differentiate between a relation and a function.

3 marks

- b. A function h is given by $h(x) = \frac{2x-1}{x-1}$. Find the inverse of h. 2 marks
- c. Solve for x and represent the solution on a number line.
 - i. $x x^2 < 0$ 3 marks
 - ii. -2 < 4(1-x) < 5 3 marks
- d. Show that
 - i. the product of two odd functions is even. 3 marks
 - ii. $f(x) = \frac{3x}{2x-1}$ is a one to one function. 3 marks
- e. If $y = f(x) = \frac{3+5x}{4x-5}$, show that x = f(y)
- 5. a. Find the domain of each of the following functions.
 - i. $g(x) = \sqrt{2 x}$. 2 marks
 - ii. $f(x) = \frac{2x}{x^2 4}$. 3 marks
 - b. A function f defined on \mathbb{R} is such that f(x) = 2x. Find a formula for:
 - i. $f^2 = f \circ f$ 2 marks
 - ii. $\frac{d}{dx}f^2(x)$ 1 mark
 - iii. $f^3 = f \circ f \circ f$ 2 marks
 - iv. $\frac{d}{dx}f^3(x)$ 1 mark

Hence state the formula for f^n and $\frac{d}{dx}f^n(x)$, where n is a positive integer.

3 marks

c. Using relevant examples, distinguish between an increasing function and a decreasing function.

4 marks

i. Give the limit definition of a derivative, f ', of a function f at a point x. 6.

1 mark

ii. Use the definition in part a.i. above to show that

$$\frac{d}{dx}\left(\sqrt{x}\right) = \frac{1}{2\sqrt{x}}.$$

4 marks

b. Compute the derivatives of the following functions:

i.
$$f(x) = \frac{x^3 + 3x^2}{3 - x}$$

ii. $g(x) = x^4(2 + x)^2$

4 marks

ii.
$$g(x) = x^4(2+x)^2$$

4 marks

- c. Find the equation of the tangent line to the curve $h(x) = x^3$ at the point x = 1. 3 marks
- d. The graph of function f, where $y = f(X) = \sqrt{X}$ is shown below.

On the same axes sketch the graphs of f and $g(X) = 1 - \sqrt{X - 2}$. 4 marks

END