Final In-Class Exam

Date: Nov 30

(7:05 PM - 8:20 PM : 75 Minutes)

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 30% of your grade, and the lower one 15%.
- There are three (3) questions, worth 75 points in total. Please answer all of them in the spaces provided.
- There are 16 pages including four (4) blank pages and one (1) page of appendix. Please use the blank pages if you need additional space for your answers.
- The exam is *open slides* and *open notes*. But *no books* and *no computers* (no laptops, tablets, capsules, cell phones, etc.).

GOOD LUCK!

Question	Pages	Score	Maximum
1. The Lazy Deletion Filter	2–5		30
2. Randomized $\frac{3}{2}$ -Approximate 3-way Max-Cut	7–11		35
3. Exam Scores	13		10
Total			75

IVANIE.

```
Init^{(Q)}()
    1. Q.queue \leftarrow \emptyset, Q.filter \leftarrow \emptyset
                                                                                    {Q.queue \ and \ Q.filter \ are \ basic \ priority \ queues}
Insert^{(Q)}(x)
                                                                              Delete(Q)(x)
                                          \{insert\ key\ x\ into\ Q\}
                                                                                                                        \{delete\ key\ x\ from\ Q\}
    1. Insert^{(Q.queue)}(x)
                                                                                   1. Insert^{(Q.filter)}(x)
MINIMUM^{(Q)} ()
                                                                                                             \{return\ the\ smallest\ key\ in\ Q\}
    1. x \leftarrow \text{Minimum}^{(Q.queue)}(), x' \leftarrow \text{Minimum}^{(Q.filter)}()
                                                                                              \{x \text{ is the smallest key in } Q, \text{ and } x' \text{ is the } \}
                                                                                         smallest key with a pending Delete request}
    2. while x \neq \text{NIL} and x = x' do
                                                                   \left\{x = x' \neq NIL \text{ means that Delete}^{(Q)}(x) \text{ was issued for } x\right\}
              Extract-Min<sup>(Q.queue)</sup>()
                                                                                                                 \{remove\ x\ from\ Q.queue\}
    3.
                                                                                              \left\{ remove \ \mathrm{Delete}^{(Q)}(\ x\ ) \ from \ Q.filter \right\}
             \text{Extract-Min}^{(Q.filter)}()
    4.
             x \leftarrow \text{Minimum}^{(Q.queue)}(), x' \leftarrow \text{Minimum}^{(Q.filter)}()
                                                                                              {next smallest key and pending Delete}
                                                          \{x \text{ is the smallest key in } Q \text{ for which } Delete(Q)() \text{ was not issued}\}
    6. return x
\text{Extract-Min}^{(Q)}()
                                                                                             \{extract\ and\ return\ the\ smallest\ key\ in\ Q\}
                                                       \{x \text{ is the smallest key in } Q \text{ for which } Delete(Q)(x) \text{ was not issued}\}
    1. x \leftarrow \text{Minimum}^{(Q)}()
    2. Extract-Min^{(Q.queue)}()
                                                                                                                           \{remove \ x \ from \ Q\}
    3. return x
```

Figure 1: Using two instances (Q.queue and Q.filter) of the given basic priority queue to create a new priority queue Q that supports INSERT, DELETE, MINIMUM and EXTRACT-MIN operations.

QUESTION 1. [30 Points] The Lazy Deletion Filter. I have a basic priority queue implementation that supports only INSERT, MINIMUM and EXTRACT-MIN operations in $\mathcal{O}(1)$, $\mathcal{O}(1)$ and $\mathcal{O}(\log n)$ worst-case time, respectively, where n is the number of items currently in it. If the queue is empty both MINIMUM and EXTRACT-MIN return NIL.

I have an application that requires a Delete operation in addition to the three operations mentioned above, but unfortunately, I cannot change the given priority queue implementation to add the Delete operation¹.

Figure 1 shows how I have used the given basic priority queue implementation as a blackbox to create a new priority queue Q that supports all four operations I need. The trick is to use one basic priority queue Q.queue to perform INSERT and EXTRACT-MIN operations as usual, and another basic priority queue Q.filter to store all pending Delete operations. Whenever I access a key x from Q.queue, I check Q.filter to see if a Delete Q.filter operation was issued, and if so, I discard x. Thus Q.filter acts as a filter to lazily remove deleted keys from Q.queue.

Priority queue Q assumes that for any given key value x:

- (i) INSERT^(Q)(x) will not be performed more than once during Q's lifetime,
- (ii) DELETE^(Q)(x) will not be issued more than once during Q's lifetime, and
- (iii) Delete(Q)(x) operation will not be issued unless x already exists in Q.queue.

¹I only have a pre-compiled library, not the source code.

Suppose my application first initializes Q by calling $\text{INIT}^{(Q)}(\)$ and then performs an intermixed sequence of Insert, Delete, Minimum and Extract-Min operations among which exactly N (≥ 1) are Insert operations. Then answer the following questions.

1(a) [8 Points] What is the worst-case cost of each of the following operations: (i) Insert^(Q)(x), (ii) Delete^(Q)(x), (iii) Minimum^(Q)() and (iv) Extract-Min^(Q)()? Justify your answers. **Hint:** Think of a sequence of Insert and Delete operations that will force the loop in lines

Hint: Think of a sequence of INSERT and DELETE operations that will force the loop in lines 2-5 of Minimum^(Q)() to be executed the maximum number of times when a Minimum^(Q)() or Extract-Min^(Q)() operation is performed afterwards. Please keep in mind that there will not be more than N Insert operations. Then what is the maximum number of Delete operations one can perform on Q?

1(b) [4 Points] In order to find the amortized costs of the operations performed on Q we will use the following potential function:

 $\Phi\left(\ Q_{i}\ \right)=c\log N \times \text{number of items in }Q.queue \text{ after the }i\text{-th operation,}$

where, Q_i is the state of Q after the i-th $(i \ge 0)$ operation is performed on it assuming that Q was initially empty, and c is a positive constant.

Argue that this potential function guarantees that the total amortized cost will always be an upper bound on the total actual cost.

1(c) [18 Points] Use the potential function given in part 1(b) to find the amortized cost of each of the following operations: (i) $\mathrm{INSERT}^{(Q)}(\ x\),$ (ii) $\mathrm{DELETE}^{(Q)}(\ x\),$ (iii) $\mathrm{MINIMUM}^{(Q)}(\)$ and (iv) $\mathrm{EXTRACT\text{-}MIN}^{(Q)}(\).$

QUESTION 2. [35 Points] Randomized $\frac{3}{2}$ -Approximate 3-way Max-Cut. Suppose you are given an undirected graph G=(V,E) with vertex set V and edge set E, where |V|=n and |E|=m. Now you divide V into three pairwise disjoint subsets V_1, V_2 and V_3 such that $V_1 \cup V_2 \cup V_3 = V$. For any edge $(u,v) \in E$, let $u \in V_i$ and $v \in V_j$ for some $i,j \in [1,3]$. Then we say that (u,v) is a cut edge provided $i \neq j$. Let $E_c \subseteq E$ be the set of all cut edges of G, and let $m_c = |E_c|$. We will call E_c the cut set. Figure 2 shows an example.

Figure 2: A 3-way cut example.

The 3-way Max-Cut problem asks one to find subsets V_1 , V_2 and V_3 to maximize m_c . A randomized approximation algorithm for solving the problem is given in Figure 3 below.

```
APPROX-3-WAY-MAX-CUT( V, E )

1. V_1 \leftarrow \emptyset, \ V_2 \leftarrow \emptyset, \ V_3 \leftarrow \emptyset

2. for each vertex v \in V do

3. choose a V_k from \{V_1, V_2, V_3\} uniformly at random

\{i.e., k \text{ takes each value from } \{1, 2, 3\} \text{ with probability } \frac{1}{3}\}

4. V_k \leftarrow V_k \cup \{v\}

5. E_c \leftarrow \emptyset

6. for each edge (x, y) \in E do

7. if \ x \in V_i \ and \ y \in V_j \ and \ i \neq j \ then

\{1 \leq i, j \leq 3\}

8. E_c \leftarrow E_c \cup \{(x, y)\}

9. return \ \langle V_1, V_2, V_3, E_c \rangle
```

Figure 3: Approximating 3-way Max-Cut.

2(a) [7 Points] Show that the expected approximation ratio of APPROX-3-WAY-MAX-CUT given in Figure 3 is $\frac{3}{2}$.

Hint: What is the probability that any given edge is a cut edge? What is the expected value of m_c implied by that probability? What is the maximum possible value of m_c ?

2(b) [8 Points] Show that for the cut set E_c returned by Approx-3-way-Max-Cut:

$$\Pr\left\{m_c \ge \frac{2m}{3}\right\} \ge \frac{3}{m+3}.$$

Hint: You have already computed the expected value of m_c in part (a). Let that expected value be \bar{m}_c . Then $\bar{m}_c = \sum_{k=0}^m k \Pr\{m_c = k\} = \sum_{k=0}^{\frac{2m}{3}-1} k \Pr\{m_c = k\} + \sum_{k=\frac{2m}{3}}^m k \Pr\{m_c = k\}$ $\leq \sum_{k=0}^{\frac{2m}{3}-1} \left(\frac{2m}{3}-1\right) \Pr\{m_c = k\} + \sum_{k=\frac{2m}{3}}^m m \Pr\{m_c = k\} = \left(\frac{2m}{3}-1\right) \sum_{k=0}^{\frac{2m}{3}-1} \Pr\{m_c = k\} + m \sum_{k=\frac{2m}{3}}^m \Pr\{m_c = k\}.$ Use this inequality to find a lower bound for $\Pr\{m_c \geq \frac{2m}{3}\}.$

2(c) [10 Points] Explain how you will use APPROX-3-WAY-MAX-CUT as a subroutine to design an approximation algorithm with

$$\Pr\left\{m_c \ge \frac{2m}{3}\right\} \ge 1 - \frac{1}{e},$$

where, m_c is the size of the cut set returned by the algorithm.

You must describe your algorithm (briefly in words) and prove the probability bound.

Hint: We did something similar in the class.

2(d) [10 Points] Explain how you will use your algorithm from part (c) as a subroutine to design another approximation algorithm that returns a cut set of size at least $\frac{2m}{3}$ with high probability in m. You must describe your algorithm (briefly in words) and prove the probability bound.

QUESTION 3. [10 Points] Exam Scores. After grading the last midterm exam I made a sorted list of n anonymous scores public. That was, indeed, a complete list of the scores obtained by all n students of the class. This time I plan to release a smaller list L. I will use the algorithm shown in Figure 4 for constructing L.

- 1. $L \leftarrow \emptyset$
- 2. for each student x in the class do
- 3. include x's score in L with probablity $\frac{1}{n^{\frac{1}{3}}}$

Figure 4: Making the list L of scores to release.

3(a) [10 Points] Show that
$$Pr\left\{\;|L| < n^{\frac{2}{3}} + n^{\frac{1}{2}}\;\right\} \ge 1 - \frac{1}{e^{\frac{1}{3}}}.$$

Hint: Use an appropriate Chernoff bound.

APPENDIX I: USEFUL TAIL BOUNDS

Markov's Inequality. Let X be a random variable that assumes only nonnegative values. Then for all $\delta > 0$, $\Pr\left[X \geq \delta\right] \leq \frac{E[X]}{\delta}$.

Chebyshev's Inequality. Let X be a random variable with a finite mean E[X] and a finite variance Var[X]. Then for any $\delta > 0$, $Pr[|X - E[X]| \ge \delta] \le \frac{Var[X]}{\delta^2}$.

Chernoff Bounds. Let X_1, \ldots, X_n be independent Poisson trials, that is, each X_i is a 0-1 random variable with $Pr[X_i = 1] = p_i$ for some p_i . Let $X = \sum_{i=1}^n X_i$ and $\mu = E[X]$. Following bounds hold:

Lower Tail:

- for
$$0 < \delta < 1$$
, $Pr[X \le (1 - \delta)\mu] \le \left(\frac{e^{-\delta}}{(1 - \delta)^{(1 - \delta)}}\right)^{\mu}$

- for
$$0 < \delta < 1$$
, $Pr[X \le (1 - \delta)\mu] \le e^{-\frac{\mu\delta^2}{2}}$

- for
$$0 < \gamma < \mu$$
, $Pr[X \le \mu - \gamma] \le e^{-\frac{\gamma^2}{2\mu}}$

Upper Tail:

- for any
$$\delta > 0$$
, $Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$

- for
$$0 < \delta < 1$$
, $Pr[X \ge (1 + \delta)\mu] \le e^{-\frac{\mu\delta^2}{3}}$

- for
$$0 < \gamma < \mu$$
, $Pr[X \ge \mu + \gamma] \le e^{-\frac{\gamma^2}{3\mu}}$