Black Friday Sales: Analysis and Prediction

Scenario

A retail store wants to know the customer purchase behavior in terms of purchase amount against various products of different categories. Towards this, store wanted to build a model to predict the purchase amount of each customer against the products they purchased to create personalized offer for their customers.

Objective

The objective this project is build a regression model to predict the dependent variable (the amount of purchase) for the products with the help of the information contained in the other variables

Approach/Activities

The approach includes understanding the customers on the basis of their purchasing habits, according to Age groups, Occupation, City Categories. Customer segmentation/group used to model the data and use to predict the purchase spend for each customer. The activities included: Data exploration, data cleaning, univariate and bivariate analysis, Data Manipulation, One hot-encoding, building different prediction model using h2o for the algorithms multiple regression, random forest, GBM and deep learning. Finally selecting the prediction model with lowest RMSE

Data set information

Source of Dataset: Analytics Vidhya

https://datahack.analyticsvidhya.com/contest/black-friday/

The data set contains customer demographics (age, gender, marital status, city_type, stay_in_current_city), product details (product_id and product category) and Total purchase_amount from last month

Below is the data description:

User ID: User ID

Product_ID: Product ID

Gender: Sex of User

```
Age: Age in bins
```

Occupation: Occupation (Masked)

City_Category: Category of the City (A,B,C)

Stay_In_Current_City_Years: Number of years stay in current city

Marital_Status: Marital Status

Product_Category_1: Product Category (Masked)

Product_Category_2: Product may belongs to other category also (Masked)

Product_Category_3: Product may belongs to other category also (Masked)

Purchase: Purchase Amount (Target Variable)

Initialization

```
#Library calling and Data loading using fread
library(rpart)
## Warning: package 'rpart' was built under R version 3.5.1
library(data.table)
## Warning: package 'data.table' was built under R version 3.5.1
train <- fread("train_black.csv", stringsAsFactors = T)</pre>
test <- fread("test_black.csv", stringsAsFactors = T)</pre>
# Data dimension and structure
dim(train)
## [1] 550068
                 12
dim(test)
## [1] 233599
                 11
str(train)
## Classes 'data.table' and 'data.frame': 550068 obs. of 12 variables:
                                : int 1000001 1000001 1000001 1000001
## $ User ID
2 1000003 1000004 1000004 1000004 1000005 ...
## $ Product_ID : Factor w/ 3631 levels "P00000142", "P0000024
2",..: 673 2377 853 829 2735 1832 1746 3321 3605 2632 ...
## $ Gender
                                : Factor w/ 2 levels "F", "M": 1 1 1 1 2 2 2 2
2 2 ...
## $ Age
                                : Factor w/ 7 levels "0-17", "18-25", ...: 1 1 1
1 7 3 5 5 5 3 ...
## $ Occupation
                                : int 10 10 10 10 16 15 7 7 7 20 ...
## $ City_Category
                               : Factor w/ 3 levels "A", "B", "C": 1 1 1 1 3 1
```

```
2 2 2 1 ...
## $ Stay_In_Current_City_Years: Factor w/ 5 levels "0","1","2","3",..: 3 3
3 3 5 4 3 3 3 2 ...
## $ Marital Status
                               : int 0000001111...
## $ Product_Category_1
                              : int 3 1 12 12 8 1 1 1 1 8 ...
## $ Product_Category_2
                               : int NA 6 NA 14 NA 2 8 15 16 NA ...
## $ Product_Category_3
                               : int NA 14 NA NA NA NA 17 NA NA NA ...
## $ Purchase
                               : int 8370 15200 1422 1057 7969 15227 19215
15854 15686 7871 ...
## - attr(*, ".internal.selfref")=<externalptr>
#combine data set
test[,Purchase := mean(train$Purchase)]
c <- list(train, test)</pre>
combin <- rbindlist(c)</pre>
```

Data Exploration of variables using data.table & ggplot-Univariate

```
#Gender
combin[,prop.table(table(Gender))]
## Gender
## 0.2470896 0.7529104
combin[,prop.table(table(Age))]
## Age
         0-17
                   18-25
                              26-35
                                          36-45
                                                     46-50
                                                                51-55
## 0.02722330 0.18113944 0.39942348 0.19998801 0.08329814 0.06990724
## 0.03902040
#City Category
combin[,prop.table(table(City_Category))]
## City Category
##
                     В
           Α
## 0.2682823 0.4207642 0.3109535
#Stay in Current Years
combin[,prop.table(table(Stay_In_Current_City_Years))]
## Stay_In_Current_City_Years
##
           0
                     1
                                                   4+
                               2
                                          3
## 0.1348991 0.3527327 0.1855724 0.1728132 0.1539825
#Unique values in Product and User ID
length(unique(combin$Product ID))
## [1] 3677
```

```
length(unique(combin$User_ID))
## [1] 5891
#Finding missing values
colSums(is.na(combin))
##
                                                Product_ID
                       User_ID
##
                        Gender
##
                                                        Age
##
                                                          0
##
                    Occupation
                                             City_Category
##
## Stay_In_Current_City_Years
                                            Marital_Status
##
##
           Product_Category_1
                                        Product_Category_2
##
                                                    245982
##
           Product_Category_3
                                                  Purchase
##
                        545809
                                                          0
```

Data Exploration of variables using data.table & ggplot-Bivariate library(ggplot2)

```
## Warning: package 'ggplot2' was built under R version 3.5.1
#Age vs Gender
ggplot(combin, aes(Age, fill = Gender)) + geom_bar()
```



```
#Age vs City_Category
ggplot(combin, aes(Age, fill = City_Category)) + geom_bar()
```



```
#Analyzing categorical variables
library(gmodels)
## Warning: package 'gmodels' was built under R version 3.5.1
CrossTable(combin$Occupation, combin$City_Category)
##
##
##
      Cell Contents
##
##
     Chi-square contribution
##
##
               N / Row Total
##
               N / Col Total
             N / Table Total
##
##
##
##
## Total Observations in Table: 783667
##
##
##
                     | combin$City_Category
```

## ##	combin\$Occupation	Α	В	C	Row Total
## ##	0	26874 4.733	42455 17.884	29521 48.165	98850
##		0.272	0.429	0.299	0.126
##		0.128	0.129	0.121	0.120
##		0.034	0.054	0.038	i i
##					
##	1	18200	28264	21223	67687
##		0.092	1.642	1.463	
##		0.269	0.418	0.314	0.086
## ##		0.087	0.086	0.087	
##		0.023	0.036	0.027	
##	2	13201	16276	8519	1 37996
##	_	887.231	5.211	919.471	
##		0.347	0.428	0.224	0.048
##		0.063	0.049	0.035	
##		0.017	0.021	0.011	
##					
##	3	8040	9747	7339	25126
## ##		250.378 0.320	64.398 0.388	28.759 0.292	
##		0.038	0.030	0.030	0.032
##	-	0.010	0.012	0.009	
##					
##	4	34577	42524	25985	103086
##		1731.917	16.692	1149.411	ĺ
##		0.335	0.413	0.252	0.132
##		0.164	0.129	0.107	
##		0.044	0.054	0.033	
## ##	5	3380	9467	4526	 17373
##	5	352.000	636.521	142.112	1/5/5
##		0.195	0.545	0.261	0.022
##		0.016	0.029	0.019	i i
##		0.004	0.012	0.006	İ
##					
##	6	5321	15656	8125	29102
##		791.918	950.127	94.422	0.037
## ##		0.183 0.025	0.538 0.047	0.279 0.033	0.037
##		0.025	0.047	0.033	
##		0.007	0.020	0.010	
##	7	22956	32859	28312	84127
##		6.609	182.064	177.101	
##		0.273	0.391	0.337	0.107
##		0.109	0.100	0.116	
##		0.029	0.042	0.036	
##					

##	8	134	1178	877	2189	
##		349.845	71.681	56.624	ļ	
##		0.061	0.538	0.401	0.003	
##		0.001	0.004	0.004		
##		0.000	0.002	0.001	ļ	
##						
##	9	999	4574	3356	8929	
##		814.109	177.664	120.949		
##		0.112	0.512	0.376	0.011	
##		0.005	0.014	0.014		
##		0.001	0.006	0.004		
##	40	2420	6020	0427		
##	10	3138	6039	9127	18304	
##		639.886	358.943	2073.431		
##		0.171	0.330	0.499	0.023	
##		0.015	0.018	0.037	ļ	
##		0.004	0.008	0.012	 	
##	11		0002	 	16502	
##	11	3537	8002	5054	16593	
##		187.912	149.093	2.163		
##		0.213	0.482	0.305	0.021	
##		0.017	0.024	0.021		
##		0.005	0.010	0.006		
##	12	10057	10704	15607		
##	12	10057	18784	15607	44448	
##		292.502	0.358	230.722	0 057	
## ##		0.226	0.423	0.351 0.064	0.057	
##		0.048 0.013	0.057 0.024	0.020		
##				0.020 	 	
##	13	561	3466	7026	11053	
##	13	1949.458	301.788	3747.820	11055	
##		0.051	0.314	0.636	0.014	
##		0.003	0.011	0.029	0.014 	
##		0.001	0.004	0.009		
##					 	
##	14	10975	15971	11836	38782	
##	1	31.279	7.382	4.138	30,02	
##		0.283	0.412	0.305	0.049	
##		0.052	0.048	0.049	3.015	
##		0.014	0.020	0.015	i	
##					 	
##	15	4373	7479	5504	17356	
##	19	17.238	4.252	2.125	_,,550	
##		0.252	0.431	0.317	0.022	
##		0.021	0.023	0.023	0.022	
##		0.006	0.010	0.007		
##						
##	16	8772	15444	11906	36122	
##	_ - _	87.130	3.954	40.412		
				, , ,		

##		0.243	0.428	0.330	0.046
##		0.042	0.047	0.049	
##		0.011	0.020	0.015	
##					
##	17	11668	23204	22546	57418
##		906.208	37.785	1232.854	į į
##		0.203	0.404	0.393	0.073
##		0.055	0.070	0.093	i i
##		0.015	0.030	0.029	i i
##					
##	18	2246	3030	4091	9367
##		28.368	210.708	476.667	
##		0.240	0.323	0.437	0.012
##		0.011	0.009	0.017	i i
##		0.003	0.004	0.005	i i
##					
##	19	3165	4712	4042	11919
##		0.334	18.317	30.415	i i
##		0.266	0.395	0.339	0.015
##		0.015	0.014	0.017	i i
##		0.004	0.006	0.005	į į
##					İİ
##	20	18070	20608	9162	47840
##		2135.562	11.381	2194.806	
##		0.378	0.431	0.192	0.061
##		0.086	0.062	0.038	
##		0.023	0.026	0.012	į į
##					
##	Column Total	210244	329739	243684	783667
##		0.268	0.421	0.311	
##					
##					•
##					

Data Manipulation using data.table

```
#Creating new variables,revalue existing variable and treat missing values
#Missing value treatment for Product_Category_2 and Product_Category_3
combin[,Product_Category_2_NA := ifelse(sapply(combin$Product_Category_2, is.
na) == TRUE,1,0)]
combin[,Product_Category_3_NA := ifelse(sapply(combin$Product_Category_3, is.
na) == TRUE,1,0)]
#Impute missing values
combin[,Product_Category_2 := ifelse(is.na(Product_Category_2) == TRUE, "-999
", Product_Category_3 := ifelse(is.na(Product_Category_3) == TRUE, "-999
", Product_Category_3]
#Revaluing Stay_In_Current_City_Years variable levels
```

```
levels(combin$Stay In Current City Years)[levels(combin$Stay In Current City
Years) == "4+"] <- "4"
#Re-coding age groups
levels(combin$Age)[levels(combin$Age) == "0-17"] <- 0</pre>
levels(combin$Age)[levels(combin$Age) == "18-25"] <- 1</pre>
levels(combin$Age)[levels(combin$Age) == "26-35"] <- 2</pre>
levels(combin$Age)[levels(combin$Age) == "36-45"] <- 3</pre>
levels(combin$Age)[levels(combin$Age) == "46-50"] <- 4</pre>
levels(combin$Age)[levels(combin$Age) == "51-55"] <- 5</pre>
levels(combin$Age)[levels(combin$Age) == "55+"] <- 6</pre>
#convert age to numeric
combin$Age <- as.numeric(combin$Age)</pre>
#convert Gender into numeric
combin$Gender<- as.numeric(combin$Gender)</pre>
#New variable to capture count of ID variables
combin[, User_Count := .N, by = User_ID]
combin[, Product_Count := .N, by = Product_ID]
#Mean purchase of user and prodcut
combin[, Mean Purchase Product := mean(Purchase), by = Product ID]
combin[, Mean_Purchase_User := mean(Purchase), by = User_ID]
#One-hot encoding of variable City Category
library(dummies)
## dummies-1.5.6 provided by Decision Patterns
combin <- dummy.data.frame(combin, names = c("City Category"), sep = " ")</pre>
#checking classes of all variables
sapply(combin, class)
##
                       User ID
                                                Product ID
                     "integer"
##
                                                   "factor"
##
                        Gender
                                                        Age
                     "numeric"
                                                  "numeric"
##
##
                   Occupation
                                           City_Category_A
##
                     "integer"
                                                 "integer"
                                           City_Category_C
##
              City_Category_B
                     "integer"
                                                 "integer"
##
## Stay_In_Current_City_Years
                                            Marital Status
##
                      "factor"
                                                 "integer"
           Product_Category_1
##
                                        Product Category 2
```

```
##
                     "integer"
                                               "character"
##
           Product Category 3
                                                  Purchase
                   "character"
                                                 "numeric"
##
##
        Product_Category_2_NA
                                     Product_Category_3_NA
                                                 "numeric"
##
                     "numeric"
                                             Product_Count
##
                   User_Count
##
                     "integer"
                                                 "integer"
##
        Mean_Purchase_Product
                                        Mean_Purchase_User
##
                     "numeric"
                                                 "numeric"
#converting Product Category 2 & 3 to integer
combin$Product_Category_2 <- as.integer(combin$Product_Category_2)</pre>
combin$Product_Category_3 <- as.integer(combin$Product_Category_3)</pre>
Model Building using H2O
##Dividing into train and test
c.train <- combin[1:nrow(train),]</pre>
c.test <- combin[-(1:nrow(train)),]</pre>
#Dropping rows which has category level 19 & 20 in Product Category 1
c.train <- c.train[c.train$Product Category 1 <= 18,]</pre>
#Initiating h2o
library(h2o)
localH20 <- h2o.init(nthreads = -1)</pre>
h2o.init()
    Connection successful!
##
## R is connected to the H2O cluster:
##
       H2O cluster uptime:
                                     1 days 44 minutes
##
       H2O cluster timezone:
                                     Asia/Kolkata
##
       H2O data parsing timezone: UTC
##
                                     3.20.0.8
       H2O cluster version:
##
                                     3 months and 5 days
       H2O cluster version age:
##
                                    H2O_started_from_R_186481_fmx062
       H2O cluster name:
##
       H2O cluster total nodes:
                                    1.82 GB
##
       H2O cluster total memory:
##
       H2O cluster total cores:
##
       H2O cluster allowed cores:
                                     4
##
       H2O cluster healthy:
                                     TRUE
##
       H2O Connection ip:
                                    localhost
##
       H2O Connection port:
                                     54321
##
       H2O Connection proxy:
                                     NA
```

FALSE

##

H2O Internal Security:

```
H20 API Extensions:
                                   Algos, AutoML, Core V3, Core V4
       R Version:
                                   R version 3.5.0 (2018-04-23)
##
#Transfering data from R to h2o instancer
train.h2o <- as.h2o(c.train)</pre>
#checking column index number
colnames(train.h2o)
  [1] "User_ID"
                                      "Product_ID"
## [3] "Gender"
                                      "Age"
## [5] "Occupation"
                                      "City_Category_A"
## [7] "City_Category_B"
                                      "City_Category_C"
## [9] "Stay_In_Current_City_Years" "Marital_Status"
## [11] "Product_Category_1"
                                      "Product_Category_2"
## [13] "Product_Category_3"
                                      "Purchase"
## [15] "Product_Category_2_NA"
                                      "Product Category 3 NA"
## [17] "User_Count"
                                      "Product Count"
## [19] "Mean_Purchase_Product"
                                      "Mean Purchase User"
#Dependent variable (Purchase)
y.dep <- 14
#Independent variables (dropping ID variables)
x.indep \leftarrow c(3:13,15:20)
Multiple Regression in H2O
regression.model <- h2o.glm( y = y.dep, x = x.indep, training_frame = train.h
20, family = "gaussian")
  h2o.performance(regression.model)
## H2ORegressionMetrics: glm
## ** Reported on training data. **
## MSE: 16710563
## RMSE: 4087.856
## MAE: 3219.644
## RMSLE: 0.5782911
## Mean Residual Deviance : 16710563
## R^2 : 0.3261543
## Null Deviance :1.353804e+13
## Null D.o.F. :545914
## Residual Deviance :9.122547e+12
## Residual D.o.F. :545898
## AIC :10628689
```

Random Forest in H2O

```
rforest.model <- h2o.randomForest(y=y.dep, x=x.indep, training_frame = train.</pre>
h2o, ntrees = 1000, mtries = 3, max_depth = 4, seed = 1122)
h2o.performance(rforest.model)
## H2ORegressionMetrics: drf
## ** Reported on training data. **
## ** Metrics reported on Out-Of-Bag training samples **
##
## MSE:
         10414919
## RMSE:
         3227.215
## MAE: 2486.118
## RMSLE: 0.5007453
## Mean Residual Deviance :
                              10414919
#check variable importance
h2o.varimp(rforest.model)
## Variable Importances:
##
                                      relative importance scaled importance
                         variable
## 1
           Mean Purchase Product 2720452686381056.000000
                                                                    1.000000
## 2
              Product_Category_1 1005997304840192.000000
                                                                    0.369790
## 3
                   Product Count
                                   252741091852288.000000
                                                                    0.092904
## 4
              Product_Category_3
                                   231408274505728.000000
                                                                    0.085062
## 5
           Product_Category_3_NA
                                   194243133964288.000000
                                                                    0.071401
## 6
              Mean Purchase User
                                   174858721820672.000000
                                                                    0.064276
## 7
              Product Category 2
                                    84932466573312.000000
                                                                    0.031220
## 8
           Product_Category_2_NA
                                    54471002423296.000000
                                                                    0.020023
## 9
                      User_Count
                                    12314694647808.000000
                                                                    0.004527
## 10
                 City_Category_C
                                     5007590031360.000000
                                                                    0.001841
## 11
                           Gender
                                     2175469223936.000000
                                                                    0.000800
                 City_Category_A
## 12
                                     1162100736000.000000
                                                                    0.000427
                                                                    0.000226
## 13
                              Age
                                      613729370112.000000
## 14
                      Occupation
                                      478127718400.000000
                                                                    0.000176
## 15
                 City Category B
                                      234770481152.000000
                                                                    0.000086
## 16 Stay_In_Current_City_Years
                                       32139771904.000000
                                                                    0.000012
## 17
                  Marital Status
                                       17185155072.000000
                                                                    0.000006
##
      percentage
## 1
        0.573797
## 2
        0.212185
## 3
        0.053308
## 4
        0.048809
## 5
        0.040970
## 6
        0.036881
## 7
        0.017914
## 8
        0.011489
## 9
        0.002597
## 10
        0.001056
## 11
        0.000459
```

Gradient Boosting Machine in H2O

```
gbm.model <- h2o.gbm(y=y.dep, x=x.indep, training_frame = train.h2o, ntrees =
1000, max_depth = 4, learn_rate = 0.01, seed = 1122)

h2o.performance (gbm.model)

## H2ORegressionMetrics: gbm
## ** Reported on training data. **
##
## MSE: 6321280

## RMSE: 2514.216

## MAE: 1859.895

## RMSLE: NaN
## Mean Residual Deviance : 6321280</pre>
```

Deep Learning in H2O

```
dlearning.model <- h2o.deeplearning(y = y.dep,</pre>
                                    x = x.indep,
                                    training_frame = train.h2o,
                                    epoch = 60,
                                    hidden = c(100,100),
                                    activation = "Rectifier",
                                    seed = 1122)
h2o.performance(dlearning.model)
## H2ORegressionMetrics: deeplearning
## ** Reported on training data. **
## ** Metrics reported on temporary training frame with 9881 samples **
## MSE: 6163649
## RMSE: 2482.67
## MAE: 1825.37
## RMSLE: NaN
## Mean Residual Deviance : 6163649
dlearning.model
## Model Details:
## ========
##
## H2ORegressionModel: deeplearning
## Model ID: DeepLearning_model_R_1545817681819_18
## Status of Neuron Layers: predicting Purchase, regression, gaussian distrib
```

```
ution, Quadratic loss, 12,501 weights/biases, 154.4 KB, 13,097,784 training s
amples, mini-batch size 1
##
     layer units
                      type dropout
                                         11
                                                  12 mean_rate rate_rms
## 1
         1
                     Input 0.00 %
              22
                                         NA
                                                  NA
                                                            NA
                                                                     NA
## 2
         2
             100 Rectifier 0.00 % 0.000000 0.000000 0.050958 0.207950
             100 Rectifier 0.00 % 0.000000 0.000000 0.040882 0.051702
## 3
         3
## 4
                                NA 0.000000 0.000000 0.000982 0.001225
               1
                    Linear
##
     momentum mean weight weight rms mean bias bias rms
                       NA
                                  NA
                                            NA
## 2 0.000000
                -0.075226
                            0.548449 -0.814823 0.466772
## 3 0.000000
                -0.114927
                            0.242933 -0.361529 1.011846
## 4 0.000000
                0.019601
                            0.107993 0.274263 0.000000
##
##
## H2ORegressionMetrics: deeplearning
## ** Reported on training data. **
## ** Metrics reported on temporary training frame with 9881 samples **
##
## MSE:
        6163649
## RMSE: 2482.67
## MAE: 1825.37
## RMSLE: NaN
## Mean Residual Deviance : 6163649
#From above algorithms, deeplearning has lowest RMSE value
##Making predictions based on deeplearning
predict.dl2 <- as.data.frame(h2o.predict(dlearning.model, test.h2o))</pre>
#creating a data frame and writing csv file for predicted values
sub_dlearning <- data.frame(User_ID = test$User_ID, Product_ID = test$Product</pre>
_ID, Purchase = predict.dl2$predict)
write.csv(sub_dlearning, file = "sub_dlearning_new.csv", row.names = F)
```