CS 170 Spring 2017 — Discussion 1

Raymond Chan

Asymptotic Analysis

When looking at function behavior, we want to think about how it behaves when the input gets significantly large. We use the following notations O ("Big-Oh"), Ω ("Big-Omega"), and Θ ("Big-Theta"). These refer to function sets rather than runtime specifically.

- $O(\cdot)$ This is considered an "upper bound". $f(n) \in O(g(n))$ means that the function f(n) belongs in the set of functions that are upper bounded by g(n) when n gets significantly large. Mahtematically, the can be referred to as $f(n) \le c \cdot g(n)$ for some constant c. If $f(n) \in O(n^2)$, it also means that $f(n) \in O(n^3)$, $f(n) \in O(2^n)$, and $f(n) \in O(\cdot)$ of any function that upper bounds n^2 .
- $\Omega(\cdot)$ This is a "lower bound". $f(n) \in \Omega(g(n))$ means that f(n) is lower bounded by g(n). For significantly large n, $f(n) \geq c \cdot g(n)$ for some constant c. Like $O(\cdot)$, if $f(n) \in \Omega(n^2)$, then $f(n) \in \Omega(n)$, $f(n) \in \Omega(\log n)$, and any function that lower bounds n^2 .
- $\Theta(\cdot)$ This is a "tight bound". $f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in \Omega(g(n))$ and $f(n) \in O(g(n))$. This mathematical expression is $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ where c_1 and c_2 are constants and $c_1 \leq c_2$.

Here are some rules when dealing with asymptotics

- Remove multiplicative constants and lower order terms. e.g. $O(2n^4 + n^2 + n \log n) = O(n^4)$.
- Any exponential dominates any polynomial. e.g. $n^2 \in O(2^n)$.
- Any polynomial dominates any logarithm. e.g. $n^2 \in \Omega(\log_3 n)$.