Contrôle final Durée 2 heures Tout document interdit

Exercice 1 (2 points)

Montrer sans utiliser la propriété de complétude de la résolution que l'ensemble S ci-dessous est inconsistant :

S: {
$$P(f(x)) \lor Q(x)$$
, $P(g(x)) \lor \neg Q(x)$, $\neg P(x) \lor Q(y)$, $\neg P(y) \lor \neg Q(x)$ }

Important : ne pas utiliser de symboles de constante dans la démonstration. Il sera tenu compte de la longueur des réponses.

Exercice 2 (8 points)

Soient α et β deux formules fermées et non valides et soient α_S et β_S leurs formes de Skolem respectives.

Question 1. Représentez trois tableaux de vérité à l'image du tableau ci-dessous en utilisant les connecteurs \rightarrow , \wedge , \vee au lieu et place du symbole o.

- V: si vous considérez la proposition valide
- **F**: si vous considérez la proposition non valide
- X: si vous considérez que la proposition peut être vraie dans certaines situations et fausse dans d'autres.

α satisfiable	β satisfiable	αοβ satisfiable?	α_S o β_S satisfiable ?	$(\alpha \circ \beta)_S$ satisfiable?
V	V			
V	F			
F	V			
F	F			

Question 2. Complétez le tableau de vérité ci-dessous.

α satisfiable	¬α satisfiable ?	$\neg(\alpha)_{S}$ satisfiable ?	(¬α) _S satisfiable ?
V			
F			

Exercice 3 (2 points)

Montrer à l'aide d'un arbre sémantique la validité de la formule γ telle que :

$$\gamma: (\neg P(x) \rightarrow \neg Q(y)) \rightarrow ((\neg P(x) \rightarrow Q(y)) \rightarrow P(x))$$

Indiquez toutes les étapes.

Exercice 4(2-1-1)

Soit β telle que β : $\exists x P(x) \land \forall x \neg P(f(x))$

Question 1. Donner une interprétation I telle que $I = \beta$ et une interprétation J telle que $J = -\beta$

Question 2. Vérifier la satisfiabilité de β à l'aide d'un arbre sémantique.

Question 3. Donner, si vous jugez β satisfiable, un modèle de Herbrand de l'ensemble S de clauses qui en est issu.

Exercice 4(1.5 - 1.5 - 1)

Les deux énoncés E1 et E2 ci-dessous sont-ils contradictoires ?

E1: "Tout nombre pair plus grand que 2 est la somme de deux nombres premiers."

E2 : Il y'a un nombre pair plus grand que 2 qui n'est pas égal à la somme de deux nombres premiers.

Correction

Exercice 1 (2 points)

a) On renomme les variables

(0.25 point)

b) Résolution

1.5 point (noter sur 0.5 point si symbole de constante). $C_5: \neg P(\boldsymbol{g}(\boldsymbol{u})) \vee \neg Q(\boldsymbol{u}) C_4[\boldsymbol{g}(\boldsymbol{u})/z, \boldsymbol{u}/w]$

 $C_9: \neg Q(x)$

 $C_1 : \mathbf{P}(f(x)) \vee \mathbf{Q}(x)$

 $C_2: \mathbf{P}(g(u)) \vee \neg \mathbf{Q}(u)$

 C_6 : $\neg Q(\boldsymbol{u})$

 $Res(C_2, C_5)$

 $C_9: \square \operatorname{Res}(C_9, C_{10})$

 $C_3: \neg P(v) \lor Q(y)$

 C_7 : $\neg P(f(x)) \lor Q(x)$ $C_3[f(x)/v, x/y]$

 $C_4: \neg P(z) \lor \neg Q(w)$

 $C_8: Q(x)$

 $Res(C_1, C_6)$

c) S | □ donc S est inconsistant

(0.25 point)

-0.5 si la démo dépasse 15 lignes

Exercice 2 (8 points : 2 pts/tableau)

Soient α et β deux formules fermées et non valides et soient α_S et β_S leurs formes de Skolem respectives.

Réponse 1. Représentez trois tableaux de vérité à l'image du tableau ci-dessous en utilisant les connecteurs \rightarrow , \land , \lor au lieu et place du symbole o.

- V: si vous considérez la proposition valide
- **F**: si vous considérez la proposition non valide
- X: si vous considérez que la proposition peut être vraie dans certaines situations et fausse dans d'autres.

α	β	$\alpha \rightarrow \beta$	$\alpha_{\mathrm{S}} \rightarrow \beta_{\mathrm{S}}$	$(\alpha \rightarrow \beta)_{S}$
satisfiable	satisfiable	satisfiable?	satisfiable?	satisfiable?
V	V	V	V	V
V	F	V	V	V
F	V	V	V	V
F	F	V	V	V

α satisfiable	β satisfiable	$\alpha \vee \beta$ satisfiable ?	$\begin{array}{c} \alpha_S \vee \beta_S \\ \text{satisfiable ?} \end{array}$	$(\alpha \vee \beta)_S$ satisfiable ?
V	V	V	V	V
V	F	V	V	V
F	V	V	V	V
F	F	F	F	F

α satisfiable	β satisfiable	$\alpha \wedge \beta$ satisfiable ?	$\alpha_S \wedge \beta_S$ satisfiable ?	$(\alpha \wedge \beta)_S$ satisfiable ?
V	V	X	X	X
V	F	F	F	F
F	V	F	F	F
F	F	F	F	F

Réponse 2. Complétez le tableau de vérité ci-dessous.

α satisfiable	¬α satisfiable ?	$lpha_{ m S}$ satisfiable ?	¬(α _S) *satisfiable ?	(¬α) _S satisfiable ?
V	V	V	V	V
F	V	F	V	V

*) Exemple:

$\neg(\alpha_S)$ peut-elle être non satisfiable ? La réponse est non

 $\neg(\alpha_S)$ non satisfiable $\Rightarrow |=\alpha_S|$

On sait que tout modèle de α_S est aussi modèle de α

Par conséquent si $|=\alpha_S$ alors $|=\alpha$ (par hypothèse, ce n'est pas le cas)

Donc $\neg(\alpha_s)$ est satisfiable.

Exercice 3 (Fermeture existentielle : (1point) Arbre sémantique : 1 point.)

Montrer à l'aide d'un arbre sémantique la validité de la formule γ telle que :

$$\gamma: (\neg P(x) \to \neg Q(y)) \to ((\neg P(x) \to Q(y)) \to P(x))$$

 $= \gamma$ ssi $-\gamma$ est non satisfiable

 $\neg \gamma$ est non satisfiable ssi la fermeture existentielle de $\neg \gamma$ ($\exists x \exists y \neg \gamma$) est non satisfiable

 $(\exists x \exists y \neg \gamma)$ est non satisfiable ssi à l'ensemble S des clauses qui en est issu il correspond un arbre sémantique clos.

$$\exists x \exists y \neg \gamma : (\neg P(x) \rightarrow \neg Q(y)) \land (\neg P(x) \rightarrow Q(y)) \land \neg P(x))$$

$$(\exists x \exists y \neg \gamma)_S = (\neg P(a) \rightarrow \neg Q(b)) \land (\neg P(a) \rightarrow Q(b)) \land \neg P(a))$$

$$S : \{P(a) \lor \neg Q(b), P(a) \lor Q(b), \neg P(a)\}$$

Figure 2.5.3. Arbre sémantique clos de S

Exercice 4 (4 points)

Vérifier la satisfiabilité de la formule β telle que β : $\exists x P(x) \land \forall x \neg P(f(x))$

Question 1. Donner une interprétation I telle que $I = \beta$ et une interprétation J telle que $J = -\beta$ (2pts)

Question 2. Vérifier la satisfiabilité de β à l'aide d'un arbre sémantique. (1 point)

Question 3. Donner, si vous jugez β satisfiable, un modèle de Herbrand de l'ensemble S de clauses qui en est issu. (**1point**)

Réponse 1. (2 points)

Interprétation *I* telle que $I = \beta$ (1point)

- Le domaine D_I
- I(P)
- **I**(*f*)

Interprétation *I* telle que $J = -\beta$ (1point)

Réponse 2. (1point)

 β est satisfiable ssi l'AS obtenu à partir de l'ensemble S des clauses issu de β_S n'est pas clos.

 $\beta_{S}: P(a) \wedge \forall x \neg P(f(x))$

(0.25 point)

 $S : \{P(a), \neg P(f(x))\}$

Arbre sémantique clos de S 0.75 point

Réponse 3. (1point)

La branche en gras ne peut pas être fermée. L'interprétation qui lui correspond : { P(a), P(f(a)),} est un modèle de Herbrand de S.

Exercice 4 (2 points pour la traduction – 2 points pour la démonstration)

Les deux énoncés E1 et E2 ci-dessous sont-ils contradictoires ?

E1: "Tout nombre pair plus grand que 2 est la somme de deux nombres premiers."

E2 : Il y'a un nombre pair plus grand que 2 qui n'est pas égal à la somme de deux nombres premiers.

Réponse 3. (1point - 1point)

Ecriture de E1 dans le langage des prédicats :

Tout nombre pair plus grand que 2 est la **somme** de deux nombres premiers.

Les propriétés et les relations :

P(x): x est pair. R(x): x est premier

E(x,y): x est égal à y G(x,y): x > y

a: une constante

s(x,y) = x + y

On occultera la propriété d'être un nombre pour alléger l'écriture.

 $\alpha_1: \forall x (P(x) \land G(x,a) \rightarrow \exists u \exists v R(u) \land R(v) \land E(x, s(u,v)))$

1point

Il y'a un nombre pair plus grand que 2 qui n'est pas égal à la somme de deux nombres premiers.

 $\alpha_2: \exists x (\mathbf{P}(x) \land \mathbf{G}(x,a) \land \forall u \forall v (\mathbf{R}(u) \land \mathbf{R}(v) \rightarrow \neg \mathbf{E}(x,s(u,v))))$ 1point

Démonstration

 $\alpha_1: \forall x (P(x) \land G(x,a) \rightarrow \exists u \exists v R(u) \land R(v) \land E(x, s(u,v)))$

 $\alpha_2 : \exists x (\mathbf{P}(x) \land \mathbf{G}(x,a) \land \forall u \forall v (\mathbf{R}(u) \land \mathbf{R}(v) \rightarrow \neg \mathbf{E}(x,s(u,v))))$

 $\alpha_1 \equiv \neg \alpha_2$