CYK-Algorithmus

Wortproblem für kontextfreie Sprachen: Sei $L \subseteq \Sigma^*$ eine kontextfreie Sprache und sei $w = x_1 \dots x_n \in \Sigma^*$, gilt $w \in L$?

Der folgende von Cocke, Kasami und Younger unabhängig voneinander entworfene Algorithmus löst das Wortproblem für kontextfreie Sprachen, die durch eine kontextfreie Grammatik in Chomsky Normalform gegeben sind. Sei $G = (V, \Sigma, R, S)$ eine kontextfreie Grammatik in Chomsky Normalform und sei $w = x_1 \dots x_n$ mit $x_i \in \Sigma$ für $i = 1, \dots, n$.

 $w \in L(G)$ g.d.w. $S \Rightarrow_G^* w$ g.d.w. es bezüglich G einen Syntaxbaum mit Beschriftung $w = x_1 \dots x_n$ und Wurzel S gibt.

O.B.d.A. sei n > 1.

Falls $S \Rightarrow_G x_1 \dots x_n$, so gibt es ein k, $1 \le k < n$ und $T, U \in V$, so dass $T \Rightarrow_G x_1 \dots x_k$ und $U \Rightarrow_G x_{k+1} \dots x_n$.

Für $1 \le i \le j \le n$ sei N[i,j] die Menge aller Symbole aus V, aus denen das Teilwort $x_i \dots x_j$ abgeleitet werden kann.

$$i < j$$
: $N[i, j] = \{A \in V \mid A \to_G BC, BC \in \bigcup_{i \le k < j} N[i, k] \circ N[k+1, j] \}$

$$i = j$$
: $N[i, i] = \{A \in V \mid A \rightarrow_G x_i\}$

$$\bigcup_{i \leq k < j} N[i,k] \circ N[k+1,j]$$

$$= N[i,i] \circ N[i+1,j]$$

$$\cup N[i,i+1] \circ N[i+2,j]$$

$$\vdots$$

$$\cup N[i,k] \circ N[k+1,j]$$

$$\vdots$$

$$\cup N[i,j-1] \circ N[j,j]$$

```
CYK(G = (V, \Sigma, R, S), w = x_1 \dots x_n)
      for i \leftarrow 1 to n
             do N[i,i] \leftarrow \{A \in V \mid \text{ es gibt } A \rightarrow x_i \text{ in } R\}
                  for j \leftarrow i+1 to n
                        do N[i, j] \leftarrow \emptyset
     for s \leftarrow 1 to n-1
             do for i \leftarrow 1 to n-s
                        do for k \leftarrow i to i+s-1
                                   do if ( es gibt A \rightarrow BC in R mit
                                              B \in N[i,k] und C \in N[k+1,i+s])
 9
                                           then füge A zu N[i, i+s] hinzu
      if (S \in N[1,n])
10
11
          then return "w \in L(G)"
12
          else return "w \not\in L(G)"
```

Lemma:

Nach s Iterationen, $0 \le s \le n$, von $\mathrm{CYK}((V, \Sigma, R, S), x_1 \dots x_n)$ gilt für alle $i = 1, \dots, n - s$,

$$N[i,i+s] = \{A \in V \mid A \Rightarrow_G^* x_i \dots x_{i+s}\}$$

Beweisskizze: Induktion über s.

Aus dem Lemma folgt, dass $x \in L(G)$ genau dann wenn $S \in N[1,n]$.

Beispiel:

$$x_i = a$$
: $N[i, i] = \{A, C\}$ $x_i = b$: $N[i, i] = \{B\}$

Beispiel:

$$N[1,1] \circ N[2,2] = \{B\} \circ \{A,C\} = \{BA,BC\}$$

Beispiel:

$$N[1,1] \circ N[2,5] \cup N[1,2] \circ N[3,5] \cup N[1,3] \circ N[4,5] \cup N[1,4] \circ N[5,5]$$

= $\{BA,BC,BS,AB,SB\}$

$$w = (()(()))$$

```
\{A\} . . . . . .
    6
             {E}
```

$$w = (()(()))$$

$$w = (()(()))$$

$$w = (()(()))$$

$$w = (()(()))$$

```
\{A\} \{S\} . . .
                                                 egin{pmatrix} \emptyset & . & . \ \{A\} & \emptyset & . \end{bmatrix}
                                                                     \begin{array}{cccc} \{A\} & \{S\} & . & . \\ & \{E\} & \emptyset & . \\ & & \{E\} & \emptyset \end{array} 
6
                                                                                                                     {E}
```

$$w = (()(()))$$

```
 \begin{cases} ( & ( & ) & ( & ( & ) & ) \\ \{A\} & \emptyset & \emptyset & . & . & . & . \\ & \{A\} & \{S\} & \emptyset & . & . & . & . \\ & & \{E\} & \emptyset & \emptyset & . & . & . \\ & & & \{A\} & \emptyset & \emptyset & . & . \end{cases} 
                                                                                                                                                       \{T\} .
                                                                                                                                  \{\overline{E}\}
6
                                                                                                                                                           {E} ∅
                                                                                                                                                                                   {E}
```

$$w = (()(()))$$

$$w = (()(()))$$

$$w = (()(()))$$

$$w = (()(()))$$

```
\{A\}
                             \emptyset \{S\}
                                       {T}
                       \{A\}
                            {S}
                                 \{T\}
                            \{\overline{E}\}
6
                                      Ø
                                       {E}
```

$$w = (()(()))$$

```
\{A\}
                         {S}
                             \{T\}
                             Ø
                         {S}
                            \{T\}
                 \{A\}
                     {S}
                        {T}
                     {E}
                         0 0
6
                         {E}
                             {E}
```

$$w = (()(()))$$

```
{S}
     \{A\}
                         {S}
                         Ø
                         {S}
                             \{T\}
                 \{A\}
                     {S}
                        {T}
                     {E}
6
                         {E}
                             {E}
```