4. Stochastic Processes (cont'd)

4.4. Classification of States (cont'd)

4.4.3 Equivalent classes and irreducibility (cont'd)

Definition 4.4.3.5: Proposition

If an irreducible MC has a finite state space, then it is recurrent

Idea of proof

If the MC is transient, then with probability 1, each state has a last visit time. Finite states $\Rightarrow \exists$ a last visit time for all the states. As a result, the MC has nowhere to go after that time. \Rightarrow Contradiction.

Remark 4.4.3.1

We can actually prove that the MC must be positive recurrent, if the state space is finite and the MC is irreducible.

Theorem 4.4.3.1

Periodicity is a class property: $i \leftrightarrow j \Rightarrow d_i = d_j$.

For an irreducible MC, its period is defined as the period of any state.

4.5 Limiting Distribution

In this part, we are interested in $lim_{n o\infty}P_{ij}^{(n)}$ and $lim_{n o\infty}P(X_u=i)$

To make things simple, we focus on the irreducible case.

Theorem 4.5.1: Basic Limit Theorem

Let $\{X_n\}_{n=0,1,...}$ be an **irreducible, aperiodic, positive recurrent** DTMC. Then a unique stationary distribution:

$$\underline{\pi} = (\pi_0, \pi_1, \ldots)$$
 exits

Moreover:

Limiting distribution =

- long-run fraction of time
- 1/ expected revisit time
- stationary distribution

Remark 4.5.1

The result (*) is still true if the MC is null recurrent, where all the terms are $\mathbf{0}$, and $\underline{\pi}$ is no longer a distribution. (in other words, there does not exist a stationary distribution)

Remark 4.5.2

If $\{X_n\}_{n=0,1,\ldots}$ has a period d>1:

$$rac{\lim_{n o\infty}P_{jj}^{(nd)}}{d}=\lim_{n o\infty}rac{\sum_{k=1}^{n} 1\!\!\perp_{\{X_k=j\}}}{n}=rac{1}{\mathbb{E}(T_j|X_0=j)}=\pi_j$$

Back to the aperiodic case. Since the limit $\lim_{n\to\infty}P_{ij}^{(n)}$ does not depend on i, $\lim_{n\to\infty}P_{ij}^{(n)}=\pi_j$ is also the limiting(marginal) distribution at state j:

$$\lim_{n o\infty}lpha_{n,j}=\lim_{n o\infty}P(X_n=j)=\pi_j$$

regardless of the initial distribution $lpha_0$

Detail:

$$egin{aligned} \lim_{n o \infty} lpha_{n,j} &= \lim_{n o \infty} (lpha_0 \cdot p^{(n)})_j \ &= \lim_{n o \infty} \sum_{i \in S} lpha_{0,i} \cdot P_{ij}^{(n)} \ &= \sum_{i \in S} \lim_{n o \infty} lpha_{0,i} \cdot P_{ij}^{(n)} \ &= \sum_{i \in S} lpha_{0,i} \lim_{n o \infty} \cdot P_{ij}^{(n)} \ &= (\sum_{i \in S} lpha_{0,i}) \pi_j \ &= \pi_i \end{aligned}$$

Why are the conditions in the Basic Limit Theorem necessary?

Example 4.5.1

Consider a MC with

$$p = egin{pmatrix} rac{1}{2} & rac{1}{2} & & \ rac{1}{2} & rac{1}{2} & & \ & rac{1}{2} & rac{1}{2} \ & & rac{1}{2} & rac{1}{2} \end{pmatrix}$$

Two classes: $\{0,1\},\{2,3\}\Rightarrow$ it is **not** irreducible. All the states are still aperiodic, positive recurrent

This MC can be decomposed into two MC's:

State 0, 1, with

$$p_1 = egin{pmatrix} rac{1}{2} & rac{1}{2} \ rac{1}{2} & rac{1}{2} \end{pmatrix} \qquad ext{irreducible}$$

State 2, 3, with

$$p_1 = egin{pmatrix} rac{1}{2} & rac{1}{2} \ rac{1}{2} & rac{1}{2} \end{pmatrix} \qquad ext{irreducible}$$

And

$$p = egin{pmatrix} P_1 & & \ & P_2 \end{pmatrix}$$

Note that both $(\frac{1}{2}, \frac{1}{2}, 0, 0)$ and $(0, 0, \frac{1}{2}, \frac{1}{2})$ are stationary distributions. Consequently, any convex combination of these two distributions, of the form:

$$a(\frac{1}{2},\frac{1}{2},0,0)+(1-a)(0,0,\frac{1}{2},\frac{1}{2}) \quad ,a\in\{0,1\}$$

is also a stationary distribution

Thus, irreducibility is related to the uniqueness of the stationary distribution.

Correspondingly, the limiting transition probability will depend on i:

$$\lim_{n o \infty} P_{00}^{(n)} = (\lim_{n o \infty} P_1^n)_{00} = \frac{1}{2}$$

but
$$\lim_{n o\infty}P_{20}^{(n)}=0$$

Example 4.5.2

Consider a MC with

$$p = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Irreducible, positive recurrent, but not aperiodic: \$d=2\$

Note that
$$p^2=egin{pmatrix}1&&&\\&1\end{pmatrix}=I\Rightarrow p^{2n}=egin{pmatrix}1&&\\&1\end{pmatrix}, p^{2n+1}=p=egin{pmatrix}&1&\\1&&\end{pmatrix}$$

$$p_{00}^{(n)}=1$$
 for n even, 0 for n odd $\Rightarrow \lim_{n o \infty} P_{00}^{(n)}$ does not exist.

Aperiodicity is related to the existence of the limit $\lim_{n o\infty}P_{ij}^{(n)}$