VŠB – Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky

Nestandardní číselné soustavy Non-Standard Numeral Systems

2020 Christian Krutsche

VŠB - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky

Zadání bakalářské práce

Student:	Christian Krutsche
Studijní program:	B2647 Informační a komunikační technologie
Studijní obor:	1103R031 Výpočetní matematika
Téma:	Nestandardní číselné soustavy
	Non-Standard Numeral Systems
Jazyk vypracování:	čeština
Zásady pro vypracová	iní:
měl věnovat z větší čá se zabývat i jinými. U	e tematicky měla věnovat nestandardním zápisům čísel z dané množiny. Autor by so isti těm způsobům reprezentace čísel, které využívají pouze cifer 0 a 1, ale je možné každého typu zápisu by měly být popsány jeho základní vlastnosti a pokud možno výhody, které ovlivňují jeho využitelnost.
Seznam doporučené o	dborné literatury:
Donald E. Knuth: Um E. Pelantová, Š. Staro (2011), No. 4, 276-28	tění programování 2. díl: Seminumerické algoritmy sta: nestandardní zápisy čísel, Pokroky matematiky, fyziky a astronomie, Vol. 56 9
Formální náležitosti a stránkách fakulty.	rozsah bakalářské práce stanoví pokyny pro vypracování zveřejněné na webových
Vedoucí bakalářské p	ráce: RNDr. Pavel Jahoda, Ph.D.
Datum zadání:	01.09.2019
Datum odevzdání:	30.04.2020
-	. Jiří Bouchala, Ph.D. prof. Ing. Pavel Brandštetter, CSc. děkan fakulty

Prohlašuji, že jsem tuto bakalářskou práci vypracoval	samostatně. Uvedl jsem všechny literární
prameny a publikace, ze kterých jsem čerpal.	
V Ostravě 1. dubna 2020	

Abstrakt

Cílem této práce je prozkoumat různé nestandardní možnosti zápisu či kódování čísel. Kromě

všem známých soustav s číselným základem (dvojková, šestnáctková,...), jsou zde i zvláštní sou-

stavy s jiným základem. Práce nám přiblíží spektrum nestandardních soustav. U každé soustavy

se zabývá důkazem jednoznačnosti vyjádření čísel v daném tvaru a důkazem schopnosti vyjádřit

libovolně zvolené čísla. Práce zkoumá nejen soustavy s celočíselným základem, ale i se základem

iracionálním, či dokonce komplexním.

Klíčová slova: číselná soustava

Abstract

This is English abstract.

Keywords: numeral system

Obsah

Se	Seznam použitých zkratek a symbolů		
1	Úvod 1.1 Definice	8 8 11	
2	Negabinární	12	
3	3 Komplexní		
4	4 Fibonacciho		
5	Faktoriálová	2 5	
6	Závěr	28	
O	Odkazy		

Seznam použitých zkratek a symbolů

ČS – Číselná soustava

1 Úvod

1.1 Definice

Připomeňme, že libovolnou podmnožinu φ kartézského součinu $A \times B$ nazýváme binární relací (dále jen relací) mezi prvky z množiny A a prvky z množiny B. Binární dvojici $(a,b) \in \varphi$ budeme značit $\varphi(a) = b$ a $\varphi \subseteq A \times B$ budeme značit $\varphi: A \to B$, tak jak je to obvyklé u zobrazení, jež jsou speciálními případy relací.

Následující definici jsme převzali z [a]

Definice 1 Posloupností na množině M rozumíme každou funkci, jejímž definičním oborem je množina \mathbb{N} . Posloupnost, která každému $n \in \mathbb{N}$ přiřazuje číslo $a_n \in M$ budeme zapisovat některým z následujících způsobů:

- $a_0, a_1, a_2, a_3, \dots$
- \bullet (a_n)
- $\bullet \ \{a_n\}_{n=0}^{\infty}$

Definice 2 (Číselná soustava na tělese) Nechť $(A, +, \cdot)$ je těleso; $\{\alpha_i\}_{i=0}^{\infty}$ a $\{\beta_i\}_{i=1}^{\infty}$ jsou posloupnosti na množině $A; C \subseteq A$ a B je množina všech posloupností prvků z C. Číselnou soustavou na tělese $(A, +, \cdot)$ o základu $\{\alpha_i\}_{i=0}^{\infty}$ a $\{\beta_i\}_{i=1}^{\infty}$ s ciframi z C nazveme libovolnou relaci $\varphi: A \to B \times B$, $kde \varphi(x) = (\{a_i\}_{i=0}^{\infty}, \{b_i\}_{i=1}^{\infty})$ právě když

$$x = \sum_{i=0}^{\infty} a_i \alpha_i + \sum_{i=1}^{\infty} b_i \beta_i$$

Množinu C označujeme jako **množinu cifer** číselné soustavy φ . Budeme používat značení $\varphi(x) = (\{a_i\}_{i=0}^{\infty}, \{b_i\}_{i=1}^{\infty}) = (\ldots a_2, a_1, a_0; b_1, b_2, b_3, \ldots)_{\varphi}$ a pokud nebude možno dojít k omylu, pak také $(\ldots a_2, a_1, a_0; b_1, b_2, b_3, \ldots)_{\varphi} = (\ldots a_2, a_1, a_0; b_1, b_2, b_3, \ldots) = (\ldots a_2a_1a_0, b_1b_2b_3 \ldots)$

Všimněme si, že nevyžadujeme, aby φ bylo zobrazení. Číselná soustava nemusí vyjadřovat každý prvek z A a ty prvky z A, které jsou v relaci φ , nemusí být vyjádřeny jediným způsobem. Uvažujme například obvyklou desítkovou číselnou soustavu na tělese reálných čísel. Jde o číselnou soustavu, kde $C = \{0, 1, 2, \dots, 9\}$ a základem jsou konstantní posloupnosti na : $\{\alpha_i\}_{i=0}^{\infty} = \{10^n\}_{n=0}^{\infty}$ a $\{\beta_i\}_{i=1}^{\infty} = \{\frac{1}{10^n}\}_{n=1}^{\infty}$ na množině C.

I. Vyjadřujeme jen nezáporná čísla, např. číslo $x=1\cdot 10^2+2\cdot 10^1+3\cdot 10^0\Rightarrow \varphi(x)=(\dots 123,000\dots),$ ale $\varphi(-x)$ neexistuje. Pomocí cifer z $C=\{0,\dots,9\}$ při základu $\{10^i\}_{i=0}^\infty$ nelze vyjádřit záporné číslo

II. (|x| je celočíselná část reálného čísla x)

$$\varphi(1) = \left(\left\{ \left\lfloor \frac{1}{n+1} \right\rfloor \right\}_{n=0}^{\infty}, \left\{ 0 \right\}_{n=0}^{\infty} \right) = (\dots 001, 000 \dots),$$

ale také

$$\varphi(1) = (\{0\}_{n=0}^{\infty}, \{9\}_{n=0}^{\infty}) = (\dots 000, 999\dots).$$

Analogicky jako na tělese definujeme číselnou soustavu na okruhu.

Definice 3 (Číselná soustava na okruhu) Nechť $(A, +, \cdot)$ je okruh; $\{\alpha_i\}_{i=0}^{\infty}$ je posloupnost prvků z A; $C \subseteq A$ a B je množina všech posloupností prvků z C. Číselnou soustavou na okruhu $(A, +, \cdot)$ o základu $\{\alpha_i\}_{i=0}^{\infty}$ s ciframi z C nazveme libovolnou relaci $\varphi : A \to B$, kde $\varphi(x) = \{a_i\}_{i=0}^{\infty}$ právě když

$$x = \sum_{i=0}^{\infty} a_i \alpha_i$$

Množinu C označujeme jako **množinu cifer** číselné soustavy φ . Budeme používat značení $\varphi(x) = \{a_i\}_{i=0}^{\infty} = (\ldots a_2, a_1, a_0)_{\varphi}$ a pokud nebude možno dojít k omylu, pak také $(\ldots a_2, a_1, a_0)_{\varphi} = (\ldots a_2, a_1, a_0) = \ldots a_2 a_1 a_0$

Poznámka 1 V Definici 2 a Definici 3 předpokládáme, že na tělese, respektive okruhu $(A, +, \cdot)$ jsou definovány nekonečné součty

Poznámka 2 Všimněme si, že číselná soustava φ , ať již na tělese, nebo na okruhu, splňuje:

$$\varphi(x_1) = \varphi(x_2) \Rightarrow x_1 = x_2.$$

Proto, je-li φ zobrazení, je injektivní. Dále můžeme tvrdit, že hodnota $\varphi(x)$ (i v případě, že $\varphi(x)$ není zobrazení) jednoznačně určuje svůj vzor x, ale, jak jsme viděli výše, x nemusí jednoznačně určovat svůj obraz $\varphi(x)$.

Definice 4 Jestliže pro číselnou soustavu φ na tělese $(A,+,\cdot)$ platí, že φ je zobrazení, pak tuto soustavu nazveme **jednoznačnou číselnou soustavou na tělese** $(A,+,\cdot)$. Analogicky, jestliže pro číselnou soustavu φ na okruhu $(A,+,\cdot)$ platí, že φ je zobrazení, pak tuto soustavu nazveme **jednoznačnou číselnou soustavou na okruhu** $(A,+,\cdot)$.

Jednoznačnou číselnou soustavou na tělese (respektive okruhu), tedy nazveme každou číselnou soustavu v níž dokážeme vyjádřit libovolný prvek tělesa (okruhu), přičemž je toto vyjádření jediné možné. V takovém případě platí:

$$(\forall x \in A)(\exists !(\{a_i\}_{i=0}^{\infty}, \{b_i\}_{i=1}^{\infty}) \in \mathbf{B} \times \mathbf{B}) : x = \sum_{i=0}^{\infty} a_i \alpha_i + \sum_{i=1}^{\infty} b_i \beta_i,$$

respektive

$$(\forall x \in A)(\exists ! \{a_i\}_{i=0}^{\infty} \in \mathbf{B}) : x = \sum_{i=0}^{\infty} a_i \alpha_i.$$

Úmluva 1

• Nechť $\{\alpha_i\}_{i=0}^{\infty}$ a $\{\beta_i\}_{i=1}^{\infty}$ jsou posloupnosti, které jsou základem číselné soustavy na tělese $(A, +, \cdot)$. Jestliže $\exists n \in \mathbb{A}$, pro které platí:

$$(\forall i \in \mathbb{N} : \alpha_i = n^i, \beta_i = n^{-i}) \wedge (\alpha_0 = 1),$$

pak prvek ${\bf n}$ také nazýváme základem této číselné soutavy (1 označuje neutrální prvek tělesa $(A,+,\cdot)$ vzhledem k násobení).

- Necht $\varphi(x) = (\{a_i\}_{i=0}^{\infty}, \{b_i\}_{i=1}^{\infty})$ je číselná soustava na tělese o základu **n**. Pokud $(\exists n_1 \in \mathbb{N})(\forall m \in \mathbb{N}, m > n_1) : a_m = 0$, a pokud $(\exists n_2 \in \mathbb{N})(\forall m \in \mathbb{N}, m > n_2) : b_m = 0$, budeme zapisovat: $\varphi(x) = (a_{n_1} \dots a_0, b_1 \dots b_{n_2})_n$
- V případě n=10 píšeme pouze $\varphi(x) = a_{n_1} \dots a_0, b_1 \dots b_{n_2}$
- Nechť $\{\alpha_i\}_{i=0}^{\infty}$ je posloupnost, která je základem číselné soustavy na okruhu $(A, +, \cdot)$ s jedničkou. Jestliže $\exists n \in \mathbb{A}$, pro které platí:

$$(\forall i \in \mathbb{N}_0 : \alpha_i = n^i)$$

pak prvek **n** nazýváme také základem této číselné soutavy $(n^0 = 1$ je jedničkou v okruhu $(A, +, \cdot))$.

- Necht $\varphi(x) = (\{a_i\}_{i=0}^{\infty})$ je číselná soustava na okruhu o základu **n**. Pokud $(\exists n_1 \in \mathbb{N})(\forall m \in \mathbb{N}, m > n_1) : a_m = 0$, budeme zapisovat: $\varphi(x) = (a_{n_1} \dots a_0)_n$
- Pokud zmíníme, že číslo z je v relaci s posloupností a_n pro číselnou soustavu na okruhu o základu $\{\alpha_i\}_{i=0}^{\infty}$, pak dle definice číselné soustavy na okruhu jistě platí $z = \sum_{i=0}^{\infty} a_i \alpha_i$

1.2 Názorné příklady

Pro lepší představu definice číselné soustavy si ji předveďme na příkladu

Příklad 1

Uvažujme těleso reálných čísel (\mathbb{R} , +, ·). Tj. zvolili jsme A = \mathbb{R} . Obvyklý desetinný zápis reálných čísel je vlastně číselná soustava na tělese (\mathbb{R} , +, ·) o základu { α_i } $_{i=0}^{\infty} = \{10^i\}_{i=0}^{\infty}$, { β_i } $_{i=1}^{\infty} = \{10^{-i}\}_{i=1}^{\infty}$ a C = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Podle dohody můžeme říci, že jde o číselnou soustavu na tělese o základu 10 a platí:

$$\varphi(3 \cdot 10^2 + 2 \cdot 10^1 + 5 \cdot 10^0 + 6 \cdot 10^{-1}) = (\{a_i\}_{i=0}^{\infty}, \{b_i\}_{i=1}^{\infty}),$$

kde $\{a_i\}_{i=0}^{\infty} = (5, 2, 3, 0, 0, \dots)$ a $\{b_i\}_{i=1}^{\infty} = (6, 0, 0, \dots)$.

Podle Úmluvy 1 můžeme psát

$$\varphi(3 \cdot 10^2 + 2 \cdot 10^1 + 5 \cdot 10^0 + 6 \cdot 10^{-1}) = 325.6$$

Označme $x = 3 \cdot 10^2 + 2 \cdot 10^1 + 5 \cdot 10^0 + 6 \cdot 10^{-1}$

 $\varphi(-x)=\varphi(-(3\cdot 10^2+2\cdot 10^1+5\cdot 10^0+6\cdot 10^{-1}))$ neexistuje, ale prvek -x ovykle značíme $-x=-\varphi(x)=-325.6$, neboť obvykle nerozlišujeme mezi číslem a jeho ciferným zápisem, tj. mezi -x a $\varphi(-x)$.

2 Negabinární

Definice 5 Negabinární číselná soustava je číselná soustava na okruhu $(\mathbb{Z}, +, \cdot)$ o základu -2 s množinou cifer $C = \{0, 1\}$ a mmnožinou všech posloupností $B = \{\{a_n\}_{n=0}^{\infty}, a_n \in \{0, 1\}\}$. Podle Úmluvy 1 v negabinární číselné soustavě zapisujeme: $\varphi(x) = (\{a_i\}_{i=0}^{\infty})_{-2}$ Negabinární číselná soustava je relace: $\varphi : \mathbb{Z} \to B$

Věta 1 Pro každé
$$z \in \mathbb{Z}$$
 $\exists \{a_n\}_{n=0}^{\infty} : z = \sum_{i=0}^{\infty} a_i \cdot (-2)^i$. To jest $D(\varphi) = \mathbb{Z}$

Důkaz Protože $(\mathbb{Z}, +, \cdot)$ je euklidovský obor integrity, jistě existují čísla $z_i \in \mathbb{Z}, a_i \in \{0, 1\}$ taková, že:

$$z = z_0 = z_1 \cdot (-2) + a_0 \qquad a_0 \in \{0, 1\}$$

$$z = z_0 = z_1 \cdot (-2) + a_0 \qquad a_0 \in \{0, 1\}$$

$$z_1 = z_2 \cdot (-2) + a_1 \qquad a_1 \in \{0, 1\}$$

$$z_{k-1} = z_k \cdot (-2) + a_{k-1} \qquad \vdots$$

$$z_{n-2} = z_{n-1} \cdot (-2) + a_{n-2}$$

$$z_{n-1} = z_n \cdot (-2) + a_{n-1}$$

$$z_n = z_{n+1} \cdot (-2) + a_n$$

$$\alpha$$
) $z_1 = 0 \Rightarrow z = z_0 = a_0 \cdot (-2)^0 = a_0 \in \{0, 1\}$

 β) $z_i \neq 0 \Rightarrow \forall k > 1$:

$$\begin{split} |z_k| &= \left| \frac{z_{k-1} - a_{k-1}}{-2} \right| \leq \frac{|z_{k-1}| + 1}{2} \\ |z_{k-1}| &\leq \frac{|z_{k-2}| + 1}{2} \leq \frac{\frac{|z_{k-2}| + 1}{2} + 1}{2} = \frac{|z_{k-2}|}{2^2} + \frac{1}{2} + \frac{1}{4} \\ & \vdots \\ |z_k| &\leq \frac{|z_0|}{2^k} + \sum_{i=1}^k \left(\frac{1}{2}\right)^i = \frac{|z_0|}{2^k} + 1 - \left(\frac{1}{2}\right)^k \\ \left[\frac{|z_0|}{2^k} + 1 - \left(\frac{1}{2}\right)^k \right] \to \infty \\ pro \ k \to \infty \end{split}$$

(1)

Pro dost velké $k_0 \quad |z_{k_0}| \leq 1, 5 \Rightarrow \exists k_0 : z_{k_0} \in \{1, 0, -1\}$

a)
$$z_{k_0} = 0$$

b)
$$z_{k_0} = 1$$

$$\Rightarrow 1 = z_{k_0} = z_{k_0+1} \cdot (-2) + a_{k_0} \Rightarrow z_{k_0+1} = 0$$

c)
$$z_{k_0} = -1$$

$$\Rightarrow -1 = z_{k_0} = z_{k_0+1} \cdot (-2) + a_{k_0} \Rightarrow z_{k_0+1} = 1 \Rightarrow z_{k_0+2} = 0$$

$$\Rightarrow \exists z_{n+1} \text{ takové, že } z_{n+1} = 0$$

$$\Rightarrow z_n = a_n \Rightarrow z_{n-1} = a_n \cdot (-2)^1 + a_{n-1} \Rightarrow \dots$$

$$\Rightarrow z = z_0 = a_n \cdot (-2)^n + a_{n-1} \cdot (-2)^{n-1} + \dots + a_0$$

Poznámka 3 Algoritmus pro hledání reprezentace čísla v negabinární číselné soustavě

- 1. Nechť z je číslo, které chceme reprezentovat, $z_0=z$ a i=0 je počáteční hodnota algoritmu
- 2. Provedeme následující operaci:

$$z_i/(-2) = z_{i+1} \ zb. \ a_i, \text{ kde } a_i \in \{0, 1\}, z_i \in \mathbb{Z}$$

- 3. Opakujeme operaci dokud $z_{i+1} \neq 0$, nechť n je počet iterací. (n je jistě konečné, viz. 2)
- 4. $\{a_i\}_{i=0}^{\infty}$, kde $a_i=0$ pro každé i>n, splňuje požadavek $z=\sum_{i=0}^{\infty}a_i\cdot(-2)^i$

Pozor! zbytek musí vždy patřit do množiny $\{0,1\}$, proto musíme volit z_{i+1} tak, aby platilo:

$$z_i = z_{i+1} \cdot (-2) + a_i$$

Příklad 2

$$z = 13$$

$$13: (-2) = -6zb. 1$$

$$-6: (-2) = 3zb. 0$$

$$3: (-2) = -1zb. 1$$

$$-1: (-2) = 1zb. 1$$

$$1: (-2) = 0zb. 1$$

$$\Rightarrow a_0 = 1, a_1 = 0, a_2 = 1, a_3 = 1, a_4 = 1$$

$$13 = 1 \cdot (-2)^0 + 1 \cdot (-2)^2 + 1 \cdot (-2)^3 + 1 \cdot (-2)^4$$

$$13 = 1 + 4 - 8 + 16 \quad \checkmark$$

Věta 2 Jestliže $z = \sum_{i=0}^{\infty} a_i (-2)^i$, pak $(\exists n_0 \in \mathbb{N})(\forall n > n_0) : a_n = 0$

 \mathbf{D} ůkaz Předpokládejme, že takové číslo z existuje, pak uvažujme tři případy:

- a) Každý sudý člen posloupnosti a_n má hodnotu 1 a existuje $n_0 \in \mathbb{N}$, pro který platí že všechny liché členy posloupnosti dále od tohoto n_0 mají hodnotu 0. Je zřejmé, že suma diverguje a $z = \infty$, a proto $z \notin \mathbb{Z}$
- b) Každý lichý člen posloupnosti a_n má hodnotu 1 a existuje $n_0 \in \mathbb{N}$, pro který platí že všechny sudé členy posloupnosti dále od tohoto n_0 mají hodnotu 0. Je zřejmé, že suma diverguje a $z = -\infty$, a proto $z \notin \mathbb{Z}$
- c) Posloupnost je nekonečná a pro libovolné liché n_1 vždy najdeme sudé n_2 , kde $n_2 > n_1 \wedge a_{n_2} = 1$

$$n_2 \text{ sud\'e} \Rightarrow (-2)^{n_2} = 2^{n_2}$$

$$-\left(\sum_{n=0}^{n_2-1} 2^n\right) + (-2)^{n_2} \le \left(\sum_{n=0}^{n_2-1} a_n (-2)^n\right) + (-2)^{n_2} \le \left(\sum_{n=0}^{n_2-1} 2^n\right) + (-2)^{n_2}$$

$$-\left(\frac{2^{n_2}-1}{2-1}\right) + 2^{n_2} \le z \le \left(\frac{2^{n_2}-1}{2-1}\right) + 2^{n_2}$$

$$1 \le z \le 2 \cdot 2^{n_2} - 1$$

$$z \ge 1$$

Analogicky pro libovolné sudé n_1 vždy najdeme liché n_2 větší, kde $n_2>n_1\wedge a_{n_2}=1$

$$n_2$$
 liché $\Rightarrow (-2)^{n_2} = -2^{n_2}$

$$-\left(\sum_{n=0}^{n_2-1} 2^n\right) + (-2)^{n_2} \le \left(\sum_{n=0}^{n_2-1} a_n (-2)^n\right) + (-2)^{n_2} \le \left(\sum_{n=0}^{n_2-1} 2^n\right) + (-2)^{n_2}$$

$$-\left(\frac{2^{n_2}-1}{2-1}\right) - 2^{n_2} \le z \le \left(\frac{2^{n_2}-1}{2-1}\right) - 2^{n_2}$$

$$-2 \cdot 2^{n_2} + 1 \le z \le -1$$

$$z \le -1$$

Je zřejmé, že ani v posledním případě suma nekonverguje, protože vždy najdeme případ, kdy suma je menší než -1 a zároveň případ, kdy suma je větší než $1 \Rightarrow \mathbf{spor!}$

14

Věta 3 Pro každé $z \in \mathbb{Z}$ $\exists ! \{a_n\}_{i=0}^{\infty} : z = \sum_{i=0}^{\infty} a_i(-2)^i$

Důkaz Dokazujeme sporem, a proto předpokládejme že existuje celé číslo z, které je v relaci s posloupností $\mathbf{a_n}$ a zároveň v relaci s jinou posloupností $\mathbf{b_n}$. Pokud takové číslo existuje, tak $\varphi(z)$ jistě není zobrazení.

$$\{a_n\}_{n=0}^{\infty} \neq \{b_n\}_{n=0}^{\infty}$$
$$z = \sum_{n=0}^{k} a_n (-2)^n = \sum_{n=0}^{k} b_n (-2)^n$$

definujme posloupnost C_n splňující:

$$C_n = a_n - b_n$$

$$\sum_{n=0}^{k} C_n(-2)^n = 0, C_n \in \{-1, 0, 1\}$$

Abychom došli ke sporu, předpokládejme, že $\exists n_0 \in \{0,\ldots,k\} : C_n \neq 0$

 α) $C_{n_0}=1$

I.) $\mathbf{n_0}$ je liché

$$-\left(\sum_{n=0}^{n_0-1} 2^n\right) + (-2)^{n_0} \le \left(\sum_{n=0}^{n_0-1} C_n(-2)^n\right) + C_{n_0} \cdot (-2)^{n_2} \le \left(\sum_{n=0}^{n_0-1} 2^n\right) + (-2)^{n_0}$$
$$1 \le \left(\sum_{n=0}^{n_0-1} C_n(-2)^n\right) + C_{n_0} \cdot (-2)^{n_2} \le 2^{n_0+1} - 1$$

Takové číslo je jistě kladné \Rightarrow **z** nemůže být v relaci s posloupností $\mathbf{a_n}$ a zároveň v relaci s posloupností $\mathbf{b_n}$

II.) $\mathbf{n_0}$ je sudé

$$-\left(\sum_{n=0}^{n_0-1} 2^n\right) + (-2)^{n_0} \le \left(\sum_{n=0}^{n_0-1} C_n(-2)^n\right) + C_{n_0} \cdot (-2)^{n_2} \le \left(\sum_{n=0}^{n_0-1} 2^n\right) + (-2)^{n_0}$$
$$-2^{n_0+1} + 1 \le \left(\sum_{n=0}^{n_0-1} C_n(-2)^n\right) + C_{n_0} \cdot (-2)^{n_2} \le -1$$

Takové číslo je jistě záporné \Rightarrow z nemůže být v relaci s posloupností $\mathbf{a_n}$ a zároveň v relaci s posloupností $\mathbf{b_n}$

 $\beta) C_{n_0} = -1$

Důkaz je úplně stejný, ať je C_{n_0} liché nebo sudé, nikdy se suma rovnat 0 jistě nebude.

 ${f Vreve{e}ta}$ ${f 4}$ Negabinární číselná soustava je jednoznačná číselná soustava na okruhu celých čísel

Příklad 3

Pro negabinární číselnou soustavu platí:

$$\varphi(1 \cdot -2^6 + 1 \cdot -2^4 + 1 \cdot -2^1) = (\{a_i\}) = (64 + 16 + (-2))$$

$$a = (0, 1, 0, 0, 1, 0, 1, \dots)$$

$$78 = (1010010)_{-2}$$

3 Komplexní

Úmluva 2 Pozor! Narozdíl od jiných kapitol, v kterých se i objevuje jako index posloupnosti, budeme v této kapitole symbolem i značit imaginární část komplexního čísla.

Protože a již používame pro značení posloupnosti budeme komplexní číslo místo obvyklého značení z=a+bi značit z=u+vi, kde u je celočíselná část a v je imaginární část komplexního čísla.

Definice 6 *Množina* $\mathbb{Z}[i]$ *je definována následovně:*

$$\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}\$$

/b/

Definice 7 Komplexní číselná soustava je číselná soustava na okruhu ($\mathbb{Z}[i], +, \cdot$) o základu $\{(1-i)^j\}_{j=0}^{\infty}$ s množinou cifer $C = \{0, 1\}$

Komplexní číselná soustava je relace: $\varphi : \mathbb{Z}[i] \to B$

Definice 8 $D\check{e}leni\ v\ \mathbb{Z}[i]$ $z\acute{a}kladem\ soustavy\ provádíme\ následovně:$

$$\forall z \in \mathbb{Z}[i]: \quad \frac{z}{1-i} = \frac{(u-v) + (u+v)i}{2}$$

Důkaz

$$\frac{z}{1-i} = \frac{u+vi}{1-i} = \frac{u+vi}{1-i} \cdot \frac{1+i}{1+i} = \frac{(u+vi)\cdot(1+i)}{(1-i)\cdot(1+i)} = \frac{(u-v)+(u+v)i}{2}$$

Definice 9 Zbytek po dělení číslem $z \in \mathbb{Z}[i]$.

Nechť $x, y \in \mathbb{Z}[i] : \frac{x}{y} \notin \mathbb{Z}[i]$, pak můžeme hovořit o zbytku po dělení, který zapisujeme takto:

$$\forall (a+bi), (c+di) \in \mathbb{Z}[i], \forall g \in \mathbb{Z} : \frac{a+bi}{c+di} = e+fi \quad zb. \ g$$

$$e+fi = \left\lfloor \frac{a+bi}{c+di} \right\rfloor \Rightarrow (e+fi) \in \mathbb{Z}[i]$$

$$g = a - ec + fd + (b-ed-fc)i$$

Důkaz Stejně jak jsme zvyklí u dělení čísel z Z, pro zbytek po dělení platí:

$$(e+fi)\cdot(c+di)+g=a+bi$$

$$ec-fed+(ed+fc)i+g=a+bi$$
(2)

Poznámka 4 Protože se zajímáme pouze o dělení číslem (1-i) bude (c+di)=(1-i) a tudíž g=a-e-f+(b+e-f)i

Věta 5 Jestliže $c + di = 1 - i \wedge e + fi = \left| \frac{a + bi}{c + di} \right|$, pak zbytek $g \in \{0, 1\}$

Důkaz Nejprve vyjádřime e + fi:

$$e + fi = \left\lfloor \frac{a+bi}{1-i} \right\rfloor = \left\lfloor \frac{(a-b) + (a+b)i}{2} \right\rfloor = \left\lfloor \frac{a-b}{2} \right\rfloor + \left\lfloor \frac{a+b}{2} \right\rfloor i$$

$$\Rightarrow e = \left\lfloor \frac{a-b}{2} \right\rfloor \land f = \left\lfloor \frac{a+b}{2} \right\rfloor$$

Následně dosadně do formule pro výpočet zbytku po dělení číslem (1-i):

$$g = a - \left| \frac{a-b}{2} \right| - \left| \frac{a+b}{2} \right| + \left(b + \left| \frac{a-b}{2} \right| - \left| \frac{a+b}{2} \right| \right) i$$

jelikož $b \in \mathbb{Z}$, můžeme si dovolit zapsat:

$$b + \left| \frac{a-b}{2} \right| = \left| \frac{a-b}{2} + b \right| = \left| \frac{a+b}{2} \right|$$

a proto:

$$g = a - \left\lfloor \frac{a-b}{2} \right\rfloor - \left\lfloor \frac{a+b}{2} \right\rfloor + \left(\left\lfloor \frac{a+b}{2} \right\rfloor - \left\lfloor \frac{a+b}{2} \right\rfloor \right) i$$
$$g = a - \left\lfloor \frac{a-b}{2} \right\rfloor - \left\lfloor \frac{a+b}{2} \right\rfloor$$

rozmysleme si, že pro libovolné $x \in \mathbb{R}$ platí:

$$-|x| = \lceil -x \rceil$$

a analogicky jako u funkce pro dolní celou část platí za předpokladu $a \in \mathbb{Z}$:

$$a + \left\lceil \frac{b-a}{2} \right\rceil = \left\lceil \frac{b-a}{2} + a \right\rceil = \left\lceil \frac{b+a}{2} \right\rceil$$

proto zbytek můžeme zapsat již takto:

$$g = a + \left\lceil \frac{b-a}{2} \right\rceil - \left\lfloor \frac{a+b}{2} \right\rfloor = \left\lceil \frac{b+a}{2} \right\rceil - \left\lfloor \frac{a+b}{2} \right\rfloor$$

znovu nemusíme dlouho přemýšlet a všimneme si, že se jedná o rozdíl horní celé části a dolní celé části racionálního čísla $\frac{a+b}{2}$ a tudíž pro zbytek jistě platí:

$$g = \begin{cases} 0 & \text{if } \frac{a+b}{2} \in \mathbb{Z} \\ 1 & \text{if } \frac{a+b}{2} \notin \mathbb{Z} \end{cases}$$

Věta 6 Pro každé $z \in \mathbb{Z}[i]$ existuje posloupnost $\{a_n\}_{n=0}^{\infty} : z = \sum_{j=0}^{\infty} a_j \cdot (1-i)^j$. To jest $D(\varphi) = \mathbb{Z}[i]$

Důkaz ... ■

Poznámka 5 Algoritmus pro hledání reprezentace čísla v komplexní číselné soustavě

- 1. Nechť z je číslo, které ch
ceme reprezentovat, $z_0=z$ a j=0 je počáteční hodnota algoritmu
- 2. Provedeme následující operaci:

$$x=\frac{(u_j-v_j)+(u_j+v_j)i}{2}$$
 Jestliže $x\in\mathbb{Z}[i]$, pak $z_{j+1}=x$ $a_{j+1}=0$ V opačném případě $z_{j+1}=\frac{(u_j-v_j-1)+(u_j+v_j-1)i}{2}$ $a_{j+1}=1$

- 3. Opakujeme operaci dokud $z_{j+1} \neq 0$, nechť n je počet iterací. (n je jistě konečné, viz. 3)
- 4. $\{a_j\}_{j=0}^{\infty},$ kde $a_j=0$ pro každé j>n,splňuje požadavek $z=\sum_{j=0}^{\infty}a_j\cdot(1-i)^j$

4 Fibonacciho

Definice 10 Fibonacciho číselná soustava je číselná soustava na okruhu $(\mathbb{N}_0, +, \cdot)$ o základu $\{F_i\}_{i=0}^{\infty} (kde \ F_i \ je \ i\text{-tý} \ člen \ fibonacciho \ posloupnosti) \ s \ množinou \ cifer \ C = \{0,1\} \ a \ mmnožinou \ všech \ posloupností \ B = \{\{a_n\}_{n=0}^{\infty}, a_n \in \{0,1\}\}.$

Fibonacciho číselná soustava je relace: $\varphi : \mathbb{N}_0 \to B$

Definice 11 Fibonacciho posloupnost

Je nekonečná posloupnost přirozených čísel definována rekurentní formulí:

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$

Příklad 4

$$F_2 = F_1 + F_0 = 1 + 0 = 1$$

$$F_3 = F_2 + F_1 = 1 + 1 = 2$$

$$\vdots$$

$$\{F_i\}_{i=0}^{\infty} = \{0, 1, 1, 2, 3, 5, 8, 13, \dots\}$$

Úmluva 3 V fibonacciho číselné soustavě zapisujeme: $\varphi(x) = (\{a_i\}_{i=0}^{\infty})_F$ Pokud bychom chtěli vyjádřit záporné číslo (které logicky nemůže patřit do $D(\varphi)$), pak budeme podobně jak jsme zvyklí v desítkové soustavě zapisovat $\varphi(x) = -(\{a_i\}_{i=0}^{\infty})_F$

Věta 7 Pro každé
$$x \in \mathbb{N}_0$$
 $\exists \{a_n\}_{n=0}^{\infty} : x = \sum_{i=0}^{\infty} a_i \cdot F_i$ To jest $D(\varphi) = \mathbb{N}_0$

Důkaz Protože je fibonacciho posloupnost nekonečná a rostoucí posloupnost, je zřejmé, že pro libovolné $n \in \mathbb{N}_0$ vždy najdeme právě jedno $i \in \mathbb{N}_0$ pro které platí: $F_i \leq n < F_{i+1}$

Protože $(\mathbb{Z}, +, \cdot)$ je euklidovský obor integrity, jistě existují čísla $z_i \in \mathbb{Z}, a_i \in \{0, 1\}$ taková, že:

$$z = z_0 = z_1 \cdot (-2) + a_0, \quad a_0 \in \{0, 1\}$$

$$z_1 = z_2 \cdot (-2) + a_1, \quad a_1 \in \{0, 1\}$$

$$z_{k-1} = z_k \cdot (-2) + a_{k-1}$$

$$z_{n-2} = z_{n-1} \cdot (-2) + a_{n-2}$$

$$z_{n-1} = z_n \cdot (-2) + a_{n-1}$$

$$z_n = z_{n+1} \cdot (-2) + a_n$$

$$\alpha) \ z_1 = 0 \Rightarrow z = z_0 = a_0(-2)^0 = a_0 \in \{0, 1\}$$

$$|z_{k}| = \left| \frac{z_{k-1} - a_{k-1}}{-2} \right| \le \frac{|z_{k-1}| + 1}{2}$$

$$|z_{k-1}| \le \frac{|z_{k-2}| + 1}{2} \le \frac{\frac{|z_{k-2}| + 1}{2} + 1}{2} = \frac{|z_{k-2}|}{2^{2}} + \frac{1}{2} + \frac{1}{4}$$

$$\vdots$$

$$|z_{k}| \le \frac{|z_{0}|}{2^{k}} + \sum_{i=1}^{k} \left(\frac{1}{2}\right)^{i} = \left[\frac{|z_{0}|}{2^{k}} + 1 - \left(\frac{1}{2}\right)^{k}\right] \to 1$$

$$pro k \to \infty$$

Pro dost velké $k_0 \quad |z_{k_0}| \leq 1, 5 \Rightarrow \exists k_0 : z_{k_0} \in \{1,0,-1\}$

a)
$$z_{k_0} = 0$$

b)
$$z_{k_0} = 1$$

$$\Rightarrow 1 = z_{k_0} = z_{k_0+1} \cdot (-2) + a_{k_0} \Rightarrow z_{k_0+1} = 0$$

c)
$$z_{k_0} = -1$$

$$\Rightarrow -1 = z_{k_0} = z_{k_0+1} \cdot (-2) + a_{k_0} \Rightarrow z_{k_0+1} = 1 \Rightarrow z_{k_0+2} = 0$$

$$\Rightarrow \exists z_{n+1} \text{ takov\'e}, \check{\text{z}} e z_{n+1} = 0$$

$$\Rightarrow z_n = a_n \Rightarrow z_{n-1} = a_n \cdot (-2)^1 + a_{n-1} \Rightarrow \dots$$

$$\Rightarrow z = z_0 = a_n \cdot (-2)^n + a_{n-1} \cdot (-2)^{n-1} + \dots + a_0$$

Poznámka 6 Algoritmus pro hledání reprezentace čísla v negabinární číselné soustavě

- 1. Nechť zje číslo, které chceme reprezentovat, $z_0=z$ ai=0je počáteční hodnota algoritmu
- 2. Provedeme následující operaci:

$$z_i/(-2) = z_{i+1} \ zb. \ a_i, \text{ kde } a_i \in \{0,1\}, z_i \in \mathbb{Z}$$

- 3. Opakujeme operaci dokud $z_{i+1} \neq 0$, nechť n je počet iterací. (n je jistě konečné, viz. 2)
- 4. $\{a_i\}_{i=0}^{\infty}$, kde $a_i=0$ pro každé i>n, splňuje požadavek $z=\sum_{i=0}^{\infty}a_i\cdot(-2)^i$

Pozor! zbytek musí vždy patřit do množiny $\{0,1\}$, proto musíme volit z_{i+1} tak, aby platilo:

$$z_i = z_{i+1} \cdot (-2) + a_i$$

Příklad 5

$$z = 13$$

$$13: (-2) = -6zb. 1$$

$$-6: (-2) = 3zb. 0$$

$$3: (-2) = -1zb. 1$$

$$-1: (-2) = 1zb. 1$$

$$1: (-2) = 0zb. 1$$

$$\Rightarrow a_0 = 1, a_1 = 0, a_2 = 1, a_3 = 1, a_4 = 1$$

$$13 = 1 \cdot (-2)^0 + 1 \cdot (-2)^2 + 1 \cdot (-2)^3 + 1 \cdot (-2)^4$$

$$13 = 1 + 4 - 8 + 16 \quad \checkmark$$

Věta 8 Jestliže
$$z = \sum_{i=0}^{\infty} a_i(-2)^i$$
, pak $(\exists n_0 \in \mathbb{N})(\forall n > n_0) : a_n = 0$

 \mathbf{D} ůkaz Předpokládejme, že takové číslo z existuje, pak uvažujme tři případy:

- a) Každý sudý člen posloupnosti a_n má hodnotu 1 a existuje $n_0 \in \mathbb{N}$, pro který platí že všechny liché členy posloupnosti dále od tohoto n_0 mají hodnotu 0. Je zřejmé, že suma diverguje a $z = \infty$, a proto $z \notin \mathbb{Z}$
- b) Každý lichý člen posloupnosti a_n má hodnotu 1 a existuje $n_0 \in \mathbb{N}$, pro který platí že všechny sudé členy posloupnosti dále od tohoto n_0 mají hodnotu 0. Je zřejmé, že suma diverguje a $z = -\infty$, a proto $z \notin \mathbb{Z}$
- c) Posloupnost je nekonečná a pro libovolné liché n_1 vždy najdeme sudé n_2 , kde $n_2 > n_1 \wedge a_{n_2} = 1$

$$n_2 \operatorname{sud\acute{e}} \Rightarrow (-2)^{n_2} = 2^{n_2}$$

$$-\left(\sum_{n=0}^{n_2-1} 2^n\right) + (-2)^{n_2} \le \left(\sum_{n=0}^{n_2-1} a_n (-2)^n\right) + (-2)^{n_2} \le \left(\sum_{n=0}^{n_2-1} 2^n\right) + (-2)^{n_2}$$

$$-\left(\frac{2^{n_2}-1}{2-1}\right) + 2^{n_2} \le z \le \left(\frac{2^{n_2}-1}{2-1}\right) + 2^{n_2}$$

$$1 \le z \le 2 \cdot 2^{n_2} - 1$$

$$z \ge 1$$

Analogicky pro libovolné sudé n_1 vždy najdeme liché n_2 větší, kde $n_2 > n_1 \wedge a_{n_2} = 1$

$$n_2 \operatorname{lich\'e} \Rightarrow (-2)^{n_2} = -2^{n_2}$$

$$-\left(\sum_{n=0}^{n_2-1} 2^n\right) + (-2)^{n_2} \le \left(\sum_{n=0}^{n_2-1} a_n (-2)^n\right) + (-2)^{n_2} \le \left(\sum_{n=0}^{n_2-1} 2^n\right) + (-2)^{n_2}$$

$$-\left(\frac{2^{n_2}-1}{2-1}\right) - 2^{n_2} \le z \le \left(\frac{2^{n_2}-1}{2-1}\right) - 2^{n_2}$$

$$-2 \cdot 2^{n_2} + 1 \le z \le -1$$

$$z < -1$$

Je zřejmé, že ani v posledním případě suma nekonverguje, protože vždy najdeme případ, kdy suma je menší než -1 a zároveň případ, kdy suma je větší než $1 \Rightarrow \mathbf{spor!}$

Věta 9 Pro každé $z \in \mathbb{Z}$ $\exists ! \{a_n\}_{i=0}^{\infty} : z = \sum_{i=0}^{\infty} a_i(-2)^i$

Důkaz Dokazujeme sporem, a proto předpokládejme že existuje celé číslo z, které je v relaci s posloupností $\mathbf{a_n}$ a zároveň v relaci s jinou posloupností $\mathbf{b_n}$. Pokud takové číslo existuje, tak $\varphi(z)$ jistě není zobrazení.

$$\{a_n\}_{n=0}^{\infty} \neq \{b_n\}_{n=0}^{\infty}$$
$$z = \sum_{n=0}^{k} a_n (-2)^n = \sum_{n=0}^{k} b_n (-2)^n$$

definujme posloupnost C_n splňující:

$$C_n = a_n - b_n$$

$$\sum_{n=0}^{k} C_n(-2)^n = 0, C_n \in \{-1, 0, 1\}$$

Abychom došli ke sporu, předpokládejme, že $\exists n_0 \in \{0,\ldots,k\} : C_n \neq 0$

$$\alpha) C_{n_0} = 1$$

I.) $\mathbf{n_0}$ je liché

$$-\left(\sum_{n=0}^{n_0-1} 2^n\right) + (-2)^{n_0} \le \left(\sum_{n=0}^{n_0-1} C_n(-2)^n\right) + C_{n_0} \cdot (-2)^{n_2} \le \left(\sum_{n=0}^{n_0-1} 2^n\right) + (-2)^{n_0}$$
$$1 \le \left(\sum_{n=0}^{n_0-1} C_n(-2)^n\right) + C_{n_0} \cdot (-2)^{n_2} \le 2^{n_0+1} - 1$$

Takové číslo je jistě kladné $\Rightarrow {\bf z}$ nemůže být v relaci s posloupností ${\bf a_n}$ a zároveň v relaci s posloupností ${\bf b_n}$

II.) n_0 je sudé

$$-\left(\sum_{n=0}^{n_0-1} 2^n\right) + (-2)^{n_0} \le \left(\sum_{n=0}^{n_0-1} C_n(-2)^n\right) + C_{n_0} \cdot (-2)^{n_2} \le \left(\sum_{n=0}^{n_0-1} 2^n\right) + (-2)^{n_0}$$
$$-2^{n_0+1} + 1 \le \left(\sum_{n=0}^{n_0-1} C_n(-2)^n\right) + C_{n_0} \cdot (-2)^{n_2} \le -1$$

Takové číslo je jistě záporné \Rightarrow **z** nemůže být v relaci s posloupností $\mathbf{a_n}$ a zároveň v relaci s posloupností $\mathbf{b_n}$

 $\beta) C_{n_0} = -1$

Důkaz je úplně stejný, ať je C_{n_0} liché nebo sudé, nikdy se suma rovnat 0 jistě nebude.

Věta 10 Negabinární číselná soustava je jednoznačná číselná soustava na okruhu celých čísel

Příklad 6

Pro negabinární číselnou soustavu platí:

$$\varphi(1 \cdot -2^6 + 1 \cdot -2^4 + 1 \cdot -2^1) = (\{a_i\}) = (64 + 16 + (-2))$$

$$a_i = (0, 1, 0, 0, 1, 0, 1, \dots)$$

$$78 = (1010010)_{-2}$$

5 Faktoriálová

Definice 12 Faktoriálová číselná soustava je číselná soustava na okruhu $(\mathbb{N}_0, +, \cdot)$ o základu $\{(i+1)!\}_{i=0}^{\infty}$ s množinou cifer $C = \mathbb{N}_0$

Faktoriálová číselná soustava je relace: $\varphi : \mathbb{N}_0 \to B$

Věta 11 Pro každé $x \in \mathbb{N}_0$ $\exists \{a_n\}_{n=0}^{\infty} : x = \sum_{i=0}^{\infty} a_i \cdot (i+1)!$ To jest $D(\varphi) = \mathbb{N}_0$

Důkaz

- α) $x = 0 \Rightarrow \forall i \in \mathbb{N} : a_i = 0$
- β) Je zřejmé, že pro libovolné $x \in \mathbb{N}$ existuje právě jedno $n \in \mathbb{N}$: $n! \leq x < (n+1)!$ Protože $(\mathbb{N}_0, +, \cdot)$??je?? euklidovský obor integrity, jistě existují čísla $x_i \in \mathbb{N}_0, a_i \in \mathbb{N}_0$ taková, že:

$$x = x_0 = a_0 \cdot n! + x_1, \quad a_0 \in \mathbb{N}$$

$$x_1 = a_1 \cdot (n-1)! + x_2, \quad a_1 \in \mathbb{N}_0$$

$$x_2 = a_2 \cdot (n-2)! + x_3, \quad a_2 \in \mathbb{N}_0$$

$$x_{k-1} = a_k \cdot (n-k+1)! + x_k$$

$$x_{n-1} = a_{n-1} \cdot 1! + x_n$$

$$x_n = a_n \cdot 0!$$

 $\forall k \geq 1$:

$$x_k = x_{k-1} - a_n \cdot (n - k + 1)!$$

 $a_n \in \mathbb{N}_0 \Rightarrow \text{bud} \ a_n = x_{k-1}, \text{ pak jistě}$

$$x_k \le x_{k-1} - a_n(n-k+1)! \le 0,$$

protože $(n-k+1)! \le 1$

Pro dost velké $k_0: x_{k_0} = 0$

$$\Rightarrow x = x_0 = a_n \cdot (0)! + a_{n-1} \cdot (1)! + \dots + a_0$$

Poznámka 7 Algoritmus pro hledání reprezentace čísla v faktoriálové číselné soustavě

1. Nechť x je číslo, které chceme reprezentovat, $x_0 = x$ a i = 0 je počáteční hodnota algoritmu

- 2. Najdeme nejvyšší n, pro které platí: n! < x
- 3. Provedeme následující operaci: $x_i/(n-i)! = a_{n-i-1} \ zb. \ x_{i+1}, \ \text{kde} \ a_i, x_i \in \mathbb{N}_0$
- 4. Opakujeme operaci dokud $x_{i+1} \neq 0$, nechť n je počet iterací. (n je jistě konečné, viz. 5)
- 5. $\{a_i\}_{i=0}^{\infty}$, kde $a_i=0$ pro každé i>n, splňuje požadavek $x=\sum_{i=0}^{\infty}a_i\cdot(i+1)!$

Věta 12 Jestliže
$$x = \sum_{i=0}^{\infty} a_i \cdot (i+1)!$$
, $pak \ (\exists n_0 \in \mathbb{N}) (\forall n > n_0) : a_n = 0$

Důkaz Sporem:

Nechť existuje taková posloupnost, že pro libovolné n najdeme vždy n_0 větší: $a_{n_0} \neq 0$ Pak $x = \sum_{i=0}^{\infty} a_i \cdot (i+1)! \notin \mathbb{N}_0$, protože suma řady diverguje k $+\infty$

Definice 13 Omezená množina velikosti i

$$C_i = \{k, k \in \mathbb{N}_0, k \le i\} = \{0, \dots, i\}$$

Např. $C_5 = \{0, 1, 2, 3, 4, 5\}$

Věta 13 Pro vyjádření libovolného $x \in \mathbb{N}_0$ nám postačí omezená množina $C_i \subseteq \mathbb{N}_0$. Pro každé $i \in \mathbb{N}_0$ pro faktoriálovou číselnou soustavu platí $C = C_i$. To jest, každé číslo $x \in \mathbb{N}_0$ lze vyjádřit následovně:

$$x = \sum_{i=0}^{\infty} a_i(i+1)!, \quad a_i \in C_i$$

Důkaz ... ■

Věta 14 Jestliže $a_i \in C_{i+1}$, pak je faktoriálová číselná soustava jednoznačná

Úmluva 4 V faktoriálové číselné soustavě zapisujeme: $\varphi(x) = (\{a_i\}_{i=0}^{\infty})!$

Pokud bychom chtěli vyjádřit záporné číslo (které logicky nemůže patřit do $D(\varphi)$), pak budeme podobně jak jsme zvyklí v desítkové soustavě zapisovat $\varphi(x) = -(\{a_i\}_{i=0}^{\infty})!$

Příklad 7

$$z = 77$$

$$77: 4! = 3 zb. 5$$

$$5: 3! = 0 zb. 5$$

$$5: 2! = 2 zb. 1$$

$$1: 1! = 1 zb. 0$$

$$\Rightarrow a_0 = 1, a_1 = 2, a_2 = 0, a_3 = 3$$

$$77 = 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 4!$$

$$77 = 1 + 4 + 72 \quad \checkmark$$

6 Závěr

Závěrečná kapitola obsahuje zhodnocení dosažených výsledků se zvlášť vyznačeným vlastním přínosem studenta. Povinně se zde objeví i zhodnocení z pohledu dalšího vývoje tématu práce, student uvede náměty vycházející ze zkušeností s řešeným tématem a uvede rovněž návaznosti na právě dokončené související práce (řešené v rámci ostatních bakalářských/diplomových prací v daném roce nebo na práce řešené na externích pracovištích).

Odkazy

- $[1]\$ Bouchala J., $Matematick\acute{a}$ analýza ve $\textit{Vesm\'{i}ru},$ strana 3
- [2] Keith C., The Gaussian integers