系统

$\Pi = \delta \Sigma w$

B-L 模型中的资产收益有两个特点: 一是以本国货币计价,二是超额收益,即减去本国货币的无风险利率。因 此协方差矩阵 Σ 是超额收益的协方差矩阵, Π 是先验均衡超额收益,对于观点收益向量Q和后验收益E[R], 也应是超额收益。

CAPM模型

$$ec{\hat{\pi}} = (rac{\mathbb{E}(ilde{R}_M | \mathcal{G}) - r_f)}{\sigma_M^2}) \Sigma ec{w}_{M[n imes 1]}$$

- δ (也有记成 λ 的):风险厌恶系数(需要计算)

$$(rac{\mathbb{E}(ilde{R}_M|\mathcal{G})-r_f)}{\sigma_M^2})\sim \delta$$
,其中 $:$

- 。 $\mathbb{E} ilde{R}_{M}$:期望市场收益率
- *r_f*:无风险利率
 σ²_M:市场收益率的方差(沪深300收益率)
- $ec{w}_{M[n imes 1]} \sim w$:市场流通市值权重沪深300中每只股票所占比重[N imes 1]
- $\Sigma[n \times n] \sim \Sigma$:期望收益率的方差协方差矩阵(历史收益率)

观点矩阵

n表示资产数量,k表示投资者观点数量 $(k \le n)$

- P:投资者观点矩阵- $[k \times n]$ 矩阵,当只有一个观点时,则为 $[1 \times n]$ 行向量
- Ω :观点误差的协方差矩阵,为对角阵,表示每个观点的信心水平($[\mathbf{k} \times \mathbf{k}]$ 矩阵)
- $\vec{\hat{q}}$:观点收益向量- $[k \times 1]$ 列向量

Black-litterman模型

公式

$$w=(\delta\Sigma)^{-1}\Pi$$

$$egin{align} \Pi \sim ec{\hat{m}} &= [(au \Sigma)^{-1} + P^T \Omega^{-1} P]^{-1} [(au \Sigma)^{-1} ec{\hat{\pi}} + P^T \Omega^{-1} ec{\hat{q}}] \ &\Sigma \sim \hat{V} = [(au \Sigma)^{-1} + P^T \Omega^{-1} P]^{-1} \ \end{aligned}$$

• 后验的收益率 $ec{\hat{m}}[n imes1]$ $ec{\hat{m}}[n imes1]\sim\Pi$

- **7**:观点权重常数,与CAMP和观点的置信程度有关
- **☆**:Camp模型的结果
- \$\$\vec {V} \sim \Sigma\$\$:是sigma的后验更新