Synthetic Population Catalyst

Table of contents

Introduction				
I	Using SPC	6		
1	Getting started 1.1 What SPC does	7 7		
2	SPC Outputs 2.1 Citing	8		
3	Outputs for England (Counties) 3.1 Citing	10		
4	Outputs for Wales (ITL regions) 4.1 Citing	17		
5	Outputs for Scotland (Police Divisions) 5.1 Citing	20 22		
6	Using the SPC output file 6.1 Javascript 6.2 Python 6.2.1 Converting to Pandas data-frames and CSV 6.2.2 Converting .pb file to JSON format 6.2.3 Converting to numpy arrays 6.2.4 Visualizing venues	23 23 24 24 24 25		
7	1	26 26 26 26		
8	Creating new study areas 8.1 Specifying the area	27 27		

	8.2 8.3	Run SPC for the new area	
	8.4	Using the output	
II	Un	derstanding SPC	29
9	Intro	oduction	30
10	Tech	nnical overview	31
	10.1	Phase 1: Data preparation	32 32 33 34
	10.2	10.1.4 Azure upload	34 34
11	Mod	lelling methods	35
		SPENSER and QUANT	35
		BMI estimation	35
	11.3	Income data	36
		11.3.1 Methods	36
		11.3.2 Comparison to reference values from ONS	37
	11.4	Commuting flows	40
		11.4.1 List of all workplaces in GB	40
		11.4.2 Usage inside SPC	41
12		a schema	42
		Understanding the schema	42
		Flows: modelling daily activites	42
	12.3	Flow weights	43
13		a sources	44
	13.1	Utility data	
		lookUp-GB.csv.gz	44
	13.2	County level data	45
		popcsv.gz	45
	13.3	National data	47
		businessRegistry.csv.gz	47
		GIS/	47
		QUANT_RAMP_spc.tar.gz	47
		timeAtHomeIncreaseCTY.csv.gz	48
		diariesRef.csv.gz	48

Ш	Advanced	49
14	Developer guide	50
	14.1 Updating the docs	50
	14.2 Code hygiene	50
	14.3 Some tips for working with Rust	50
	14.4 Docker	51
15	Code walkthrough	52
	15.1 Generally useful techniques	52
	15.1.1 Split code into two stages	
	15.1.2 Explicit data schema	
	15.1.3 Type-safe IDs	
	15.1.4 Idempotent data preparation	
	15.1.5 Logging with structure	
	15.1.6 Determinism	
	15.2 Protocol buffers	55
	15.3 An example of the power of static type checking	55
16	Performance	57

Introduction

The Synthetic Population Catalyst (SPC) makes it easier for researchers to work with synthetic population data in Great Britain. It combines a variety of data sources and outputs a single file in protocol buffer format, describing the population and its activities in a given study area. The data include socio-demographic, health, salary and daily activity data per person, and information about the venues where people conduct those activities.

SPC outputs can be used to catalyze other projects. Rather than join together many raw data sources yourself and deal with missing and messy data, you can leverage SPC's effort and well-documented schema.

You can download this site as a PDF and find all code on Github.

This work was supported by Wave 1 of The UKRI Strategic Priorities Fund under the EP-SRC Grant EP/W006022/1, particularly the "Ecosystem of Digital Twins" and "Shocks and Resilience" themes within that grant & The Alan Turing Institute

Part I Using SPC

1 Getting started

We suggest to start by exploring one of the pre-compiled areas we have made readily available:

- 1. Download sample data for an area in Great Britain
- 2. Unpack it and open it with the web explorer

Possible next steps:

- 3. Learn more on how to use the data
- 4. If you need a custom area, build and then run SPC

1.1 What SPC does

SPC generates spatially enriched synthetic population outputs for any area that is comprised of one or more Middle-Layer Output Areas (MSOAs) in England and Wales and/or one or more Intermediary Zones (IZ) in Scotland, including Local Authority Districts - LADs. The output file generated by SPC has a granularity of Output Area (150 ± 100 households). This file is structured to help other researchers or urban analysts to feed dynamic models, such as ABMs, for multiple purposes where an enriched synthetic population file is required. SPC includes a comprehensive set of variables that include sociodemographic characteristics, daily activities, and other extra data to help you model the complexity of British society.

1.2 What SPC outputs

You can see all of the per-person, household, and OA information SPC provides in the schema and data sources. We use protocol buffers to efficiently encode the data and describe its shape.

2 SPC Outputs

You don't need to run SPC yourself. See config/ for the list of MSOAs covered by each study area. If you want to run SPC for a different list of MSOAs, see here.

One of the advantages of using SPC is that help researches to mimic the population characteristics and its iterations through multiples years (see for more details). So you can replicate what the population might look like across multiple periods of time. Initially check what country you would like to explore, then pick the year to get the outcome file. In case you want to explore it and see how does the data look like, and what attributes are included, load the output in our SPC Explorer and get inspired about the potential applications you could co-create using these outcomes.

- England (Available years: 2012, 2020, 2022, 2032 & 2039)
- Wales (Available years: 2012, 2020, 2022, 2032 & 2039)
- Scotland (Available years: 2012, 2020, 2022, 2032 & 2039)

We also include two special areas for your testing:

- North West Transpennine: 2012, 2020, 2022, 2032, 2039
- Oxford-Cambridge arc: 2012, 2020, 2022, 2032, 2039

2.1 Citing

If you use SPC code or data in your work, please cite using the Zenodo DOI (using the bottom-right tool to generate the citation).

2.2 Versioning

Over time, we may add more data to SPC or change the schema. Protocol buffers are designed to let combinations of new/old code and data files work together, but we don't intend to use this feature. We may make breaking changes, like deleting fields. We'll release a new version of the schema and output data every time and document it here. You should depend on a specific version of the data output in your code, so new releases don't affect you until you decide to update.

- v1: released 25/04/2022, schema
- v1.1, released 27/05/2022, schema
 - added pwkstat, salary_hourly, salary_yearly, and idp
 - reorganized Identifiers and Employment attributes
 - non-breaking change added 02/08/2022: added bmi_new field
- v1.2, released 29/12/2022, schema
 - switched to proto2 and made some fields optional
 - adjusted some numeric enum values to match ONS
- v2, released 09/03/2023, schema
 - new per-person and per-household fields
 - various changes to existing fields (adjusting enum number, removing the BMI enum, etc)
 - adding time-use diaries
 - expanding to Wales
 - adding multiple years of output
- v2.1, released 25/07/2023, schema
 - expanding to Scotland
 - adding special area: Oxford-Cambridge arc
 - adding previously missing LADs to their counties:
 - * Greater London (E09000001)
 - * Cornwall (E06000053)
 - * Dorset (E06000058 & E06000059)
 - * Buckinghamshire (E06000060)
 - * Leicestershire (E07000135)
 - * Suffolk (E07000244 & E07000245)
 - * Somerset (E07000246)

3 Outputs for England (Counties)

The counties of England are in this context the lieutenancy areas, often referred to as ceremonial counties. There are officially 48 of them, although we have chosen to include the City of London within Greater London in our release. Check the year you would like to explore and pick the corresponding file based on the region you are interested. Remember if you want to explore the data you can load the output in our SPC explorer

• 2012:

- bedfordshire.pb.gz
- berkshire.pb.gz
- bristol.pb.gz
- buckinghamshire.pb.gz
- cambridgeshire.pb.gz
- cheshire.pb.gz
- cornwall.pb.gz
- cumbria.pb.gz
- derbyshire.pb.gz
- devon.pb.gz
- dorset.pb.gz
- durham.pb.gz
- east-sussex.pb.gz
- east-yorkshire-with-hull.pb.gz
- essex.pb.gz
- gloucestershire.pb.gz
- greater-london.pb.gz (London)
- greater-manchester.pb.gz (Manchester)
- hampshire.pb.gz (Southampton)
- herefordshire.pb.gz
- hertfordshire.pb.gz
- isle-of-wight.pb.gz
- kent.pb.gz
- lancashire.pb.gz
- leicestershire.pb.gz
- lincolnshire.pb.gz
- merseyside.pb.gz (Liverpool)

- norfolk.pb.gz
- northamptonshire.pb.gz
- northumberland.pb.gz (Newcastle)
- north-yorkshire.pb.gz
- nottinghamshire.pb.gz (Nottingham)
- oxfordshire.pb.gz
- rutland.pb.gz
- shropshire.pb.gz
- somerset.pb.gz
- south-yorkshire.pb.gz (Sheffield)
- staffordshire.pb.gz
- suffolk.pb.gz
- surrey.pb.gz
- tyne-and-wear.pb.gz
- warwickshire.pb.gz
- west-midlands.pb.gz (Birmingham)
- west-sussex.pb.gz
- west-yorkshire.pb.gz (Leeds)
- wiltshire.pb.gz
- worcestershire.pb.gz

• 2020:

- bedfordshire.pb.gz
- berkshire.pb.gz
- bristol.pb.gz
- buckinghamshire.pb.gz
- cambridgeshire.pb.gz
- cheshire.pb.gz
- cornwall.pb.gz
- cumbria.pb.gz
- derbyshire.pb.gz
- dorset.pb.gz
- devon.pb.gz
- durham.pb.gz
- east-sussex.pb.gz
- east-yorkshire-with-hull.pb.gz
- essex.pb.gz
- gloucestershire.pb.gz
- greater-london.pb.gz (London)
- greater-manchester.pb.gz (Manchester)
- hampshire.pb.gz (Southampton)
- herefordshire.pb.gz

- hertfordshire.pb.gz
- isle-of-wight.pb.gz
- kent.pb.gz
- lancashire.pb.gz
- leicestershire.pb.gz
- lincolnshire.pb.gz
- merseyside.pb.gz (Liverpool)
- norfolk.pb.gz
- northamptonshire.pb.gz
- northumberland.pb.gz (Newcastle)
- north-yorkshire.pb.gz
- nottinghamshire.pb.gz (Nottingham)
- oxfordshire.pb.gz
- rutland.pb.gz
- shropshire.pb.gz
- somerset.pb.gz
- south-yorkshire.pb.gz (Sheffield)
- staffordshire.pb.gz
- suffolk.pb.gz
- surrey.pb.gz
- tyne-and-wear.pb.gz
- warwickshire.pb.gz
- west-midlands.pb.gz (Birmingham)
- west-sussex.pb.gz
- west-yorkshire.pb.gz (Leeds)
- wiltshire.pb.gz
- worcestershire.pb.gz

2022:

- bedfordshire.pb.gz
- berkshire.pb.gz
- bristol.pb.gz
- buckinghamshire.pb.gz
- cambridgeshire.pb.gz
- cheshire.pb.gz
- cornwall.pb.gz
- cumbria.pb.gz
- derbyshire.pb.gz
- dorset.pb.gz
- devon.pb.gz
- durham.pb.gz
- east-sussex.pb.gz

- east-yorkshire-with-hull.pb.gz
- essex.pb.gz
- gloucestershire.pb.gz
- greater-london.pb.gz (London)
- greater-manchester.pb.gz (Manchester)
- hampshire.pb.gz (Southampton)
- herefordshire.pb.gz
- hertfordshire.pb.gz
- isle-of-wight.pb.gz
- kent.pb.gz
- lancashire.pb.gz
- leicestershire.pb.gz
- lincolnshire.pb.gz
- merseyside.pb.gz (Liverpool)
- norfolk.pb.gz
- northamptonshire.pb.gz
- northumberland.pb.gz (Newcastle)
- north-yorkshire.pb.gz
- nottinghamshire.pb.gz (Nottingham)
- oxfordshire.pb.gz
- rutland.pb.gz
- shropshire.pb.gz
- somerset.pb.gz
- south-yorkshire.pb.gz (Sheffield)
- staffordshire.pb.gz
- suffolk.pb.gz
- surrey.pb.gz
- tyne-and-wear.pb.gz
- warwickshire.pb.gz
- west-midlands.pb.gz (Birmingham)
- west-sussex.pb.gz
- west-yorkshire.pb.gz (Leeds)
- wiltshire.pb.gz
- worcestershire.pb.gz

• 2032:

- bedfordshire.pb.gz
- berkshire.pb.gz
- bristol.pb.gz
- buckinghamshire.pb.gz
- cambridgeshire.pb.gz
- cheshire.pb.gz

- cornwall.pb.gz
- cumbria.pb.gz
- derbyshire.pb.gz
- devon.pb.gz
- dorset.pb.gz
- durham.pb.gz
- east-sussex.pb.gz
- east-yorkshire-with-hull.pb.gz
- essex.pb.gz
- gloucestershire.pb.gz
- greater-london.pb.gz (London)
- greater-manchester.pb.gz (Manchester)
- hampshire.pb.gz (Southampton)
- herefordshire.pb.gz
- hertfordshire.pb.gz
- isle-of-wight.pb.gz
- kent.pb.gz
- lancashire.pb.gz
- leicestershire.pb.gz
- lincolnshire.pb.gz
- merseyside.pb.gz (Liverpool)
- norfolk.pb.gz
- northamptonshire.pb.gz
- northumberland.pb.gz (Newcastle)
- north-yorkshire.pb.gz
- nottinghamshire.pb.gz (Nottingham)
- oxfordshire.pb.gz
- rutland.pb.gz
- shropshire.pb.gz
- somerset.pb.gz
- south-yorkshire.pb.gz (Sheffield)
- staffordshire.pb.gz
- suffolk.pb.gz
- surrey.pb.gz
- tyne-and-wear.pb.gz
- warwickshire.pb.gz
- west-midlands.pb.gz (Birmingham)
- west-sussex.pb.gz
- west-yorkshire.pb.gz (Leeds)
- wiltshire.pb.gz
- worcestershire.pb.gz

• 2039:

- bedfordshire.pb.gz
- berkshire.pb.gz
- bristol.pb.gz
- buckinghamshire.pb.gz
- cambridgeshire.pb.gz
- cheshire.pb.gz
- cornwall.pb.gz
- cumbria.pb.gz
- derbyshire.pb.gz
- devon.pb.gz
- dorset.pb.gz
- durham.pb.gz
- east-sussex.pb.gz
- east-yorkshire-with-hull.pb.gz
- essex.pb.gz
- gloucestershire.pb.gz
- greater-london.pb.gz (London)
- greater-manchester.pb.gz (Manchester)
- hampshire.pb.gz (Southampton)
- herefordshire.pb.gz
- hertfordshire.pb.gz
- isle-of-wight.pb.gz
- kent.pb.gz
- lancashire.pb.gz
- leicestershire.pb.gz
- lincolnshire.pb.gz
- merseyside.pb.gz (Liverpool)
- norfolk.pb.gz
- northamptonshire.pb.gz
- northumberland.pb.gz (Newcastle)
- north-yorkshire.pb.gz
- nottinghamshire.pb.gz (Nottingham)
- oxfordshire.pb.gz
- rutland.pb.gz
- shropshire.pb.gz
- somerset.pb.gz
- south-yorkshire.pb.gz (Sheffield)
- staffordshire.pb.gz
- suffolk.pb.gz
- surrey.pb.gz
- tyne-and-wear.pb.gz
- warwickshire.pb.gz
- west-midlands.pb.gz (Birmingham)

- west-sussex.pb.gz
- west-yorkshire.pb.gz (Leeds)wiltshire.pb.gz
- worcestershire.pb.gz

3.1 Citing

If you use SPC code or data in your work, please cite using the Zenodo DOI (using the bottom-right tool to generate the citation).

4 Outputs for Wales (ITL regions)

International Territorial Level (ITL) regions are a post-brexit renaming of the former Nomenclature of Territorial Units for Statistics (NUTS) regions. In wales, the level 3 represents a grouping of the 22 unitary districts into 12 regions. Check the year you would like to explore and pick the corresponding file based on the region you are interested. Remember if you want to explore the data you can load the output in our SPC explorer

• 2012:

- bridgend-and-neath-port-talbot.pb.gz
- cardiff-and-vale-of-glamorgan.pb.gz
- central-valleys.pb.gz
- conwy-and-denbighshire.pb.gz
- flintshire-and-wrexham.pb.gz
- gwent-valleys.pb.gz
- gwynedd.pb.gz
- isle-of-anglesey.pb.gz
- monmouthshire-and-newport.pb.gz
- powys.pb.gz
- south-west-wales.pb.gz
- swansea.pb.gz

• 2020:

- bridgend-and-neath-port-talbot.pb.gz
- cardiff-and-vale-of-glamorgan.pb.gz
- central-valleys.pb.gz
- conwy-and-denbighshire.pb.gz
- flintshire-and-wrexham.pb.gz
- gwent-valleys.pb.gz
- gwynedd.pb.gz
- isle-of-anglesey.pb.gz
- monmouthshire-and-newport.pb.gz
- powys.pb.gz
- south-west-wales.pb.gz
- swansea.pb.gz

• 2022:

- bridgend-and-neath-port-talbot.pb.gz
- cardiff-and-vale-of-glamorgan.pb.gz
- central-valleys.pb.gz
- conwy-and-denbighshire.pb.gz
- flintshire-and-wrexham.pb.gz
- gwent-valleys.pb.gz
- gwynedd.pb.gz
- isle-of-anglesey.pb.gz
- monmouthshire-and-newport.pb.gz
- powys.pb.gz
- south-west-wales.pb.gz
- swansea.pb.gz

• 2032:

- bridgend-and-neath-port-talbot.pb.gz
- cardiff-and-vale-of-glamorgan.pb.gz
- central-valleys.pb.gz
- conwy-and-denbighshire.pb.gz
- flintshire-and-wrexham.pb.gz
- gwent-valleys.pb.gz
- gwynedd.pb.gz
- isle-of-anglesey.pb.gz
- monmouthshire-and-newport.pb.gz
- powys.pb.gz
- south-west-wales.pb.gz
- swansea.pb.gz

• 2039:

- bridgend-and-neath-port-talbot.pb.gz
- cardiff-and-vale-of-glamorgan.pb.gz
- central-valleys.pb.gz
- conwy-and-denbighshire.pb.gz
- flintshire-and-wrexham.pb.gz
- gwent-valleys.pb.gz
- gwynedd.pb.gz
- isle-of-anglesey.pb.gz
- monmouthshire-and-newport.pb.gz
- powys.pb.gz
- south-west-wales.pb.gz
- swansea.pb.gz

4.1 Citing

If you use SPC code or data in your work, please cite using the Zenodo DOI (using the bottom-right tool to generate the citation).

5 Outputs for Scotland (Police Divisions)

Police divisions are a convenient grouping of unitary districts. Check the year you would like to explore and pick the corresponding file based on the region you are interested. Remember if you want to explore the data you can load the output in our SPC explorer

• 2012:

- argyll-and-west-dunbartonshire.pb.gz
- ayrshire.pb.gz
- dumfries-and-galloway.pb.gz
- edinburgh.pb.gz
- fife.pb.gz
- forth-valley.pb.gz
- greater-glasgow.pb.gz
- highlands-and-islands.pb.gz
- lanarkshire.pb.gz
- north-east.pb.gz
- renfrewshire-and-inverclyde.pb.gz
- tayside.pb.gz
- the-lothians-and-scottish-borders.pb.gz

• 2020:

- argyll-and-west-dunbartonshire.pb.gz
- ayrshire.pb.gz
- dumfries-and-galloway.pb.gz
- edinburgh.pb.gz
- fife.pb.gz
- forth-valley.pb.gz
- greater-glasgow.pb.gz
- highlands-and-islands.pb.gz
- lanarkshire.pb.gz
- north-east.pb.gz
- renfrewshire-and-inverclyde.pb.gz
- tayside.pb.gz
- the-lothians-and-scottish-borders.pb.gz

• 2022:

- argyll-and-west-dunbartonshire.pb.gz
- ayrshire.pb.gz
- dumfries-and-galloway.pb.gz
- edinburgh.pb.gz
- fife.pb.gz
- forth-valley.pb.gz
- greater-glasgow.pb.gz
- highlands-and-islands.pb.gz
- lanarkshire.pb.gz
- north-east.pb.gz
- renfrewshire-and-inverclyde.pb.gz
- tayside.pb.gz
- the-lothians-and-scottish-borders.pb.gz

• 2032:

- argyll-and-west-dunbartonshire.pb.gz
- ayrshire.pb.gz
- dumfries-and-galloway.pb.gz
- edinburgh.pb.gz
- fife.pb.gz
- forth-valley.pb.gz
- greater-glasgow.pb.gz
- highlands-and-islands.pb.gz
- lanarkshire.pb.gz
- north-east.pb.gz
- renfrewshire-and-inverclyde.pb.gz
- tayside.pb.gz
- the-lothians-and-scottish-borders.pb.gz

• 2039:

- argyll-and-west-dunbartonshire.pb.gz
- ayrshire.pb.gz
- dumfries-and-galloway.pb.gz
- edinburgh.pb.gz
- fife.pb.gz
- forth-valley.pb.gz
- greater-glasgow.pb.gz
- highlands-and-islands.pb.gz
- lanarkshire.pb.gz
- north-east.pb.gz
- renfrewshire-and-inverclyde.pb.gz
- tayside.pb.gz
- the-lothians-and-scottish-borders.pb.gz

5.1 Citing

If you use SPC code or data in your work, please cite using the Zenodo DOI (using the bottom-right tool to generate the citation).

6 Using the SPC output file

Once you download or generate an SPC output file for your study area, how do you use it? Each study area consists of one .pb or protocol buffer file. This file efficiently encodes data following this schema. Read more about what data is contained in the output.

You can read the "protobuf" (shorthand for a protocol buffer file) in any supported language, and then extract and transform just the parts of the data you want for your model.

We have examples for Python below, but feel free to request other languages.

6.1 Javascript

We have a web app using Svelte to interactively explore SPC data. Its source code is great reference for how to use the proto output.

6.2 Python

To work with SPC protobufs in Python, you need two dependencies setup:

- The protobuf library
 - You can install system-wide with pip install protobuf
 - Or add as a dependency to a conda, poetry, etc environment
- The generated Python library, synthpop_pb2.py
 - You can download a copy of this file into your codebase, then import synthpop_pb2
 - You can also generate the file yourself, following the docs: protoc --python_out=python/synthpop.proto

6.2.1 Converting to Pandas data-frames and CSV

The schema expresses relationships between people, households, and venues that can't all be captured by a simple 2D table. Nevertheless, you can extract per-person information and express as a dataframe or CSV file. See this example Python script for inspiration. You can try it out:

```
# Download a file
wget https://rampOstorage.blob.core.windows.net/spc-output/v1/rutland.pb.gz
# Uncompress
gunzip rutland.pb.gz
# Convert the .pb to JSON
python3 python/protobuf_to_csv.py --input_path data/output/rutland.pb
# View the output
less people.csv
```

6.2.2 Converting .pb file to JSON format

To interactively explore the data, viewing JSON is much easier. It shows the same structure as the protobuf, but in a human-readable text format. The example below uses a small Python script:

```
# Download a file
wget https://rampOstorage.blob.core.windows.net/spc-output/v1/rutland.pb.gz
# Uncompress
gunzip rutland.pb.gz
# Convert the .pb to JSON
python3 python/protobuf_to_json.py data/output/rutland.pb > rutland.json
# View the output
less rutland.json
```

6.2.3 Converting to numpy arrays

The ASPICS project simulates the spread of COVID through a population. The code uses numpy, and this script converts the protobuf to a bunch of different numpy arrays.

Note the ASPICS code doesn't keep using the generated Python protobuf classes for the rest of the pipeline. Data frames and numpy arrays may be more familiar and appropriate. The protobuf is a format optimized for reading and writing; you don't need to use it throughout all of your model code.

6.2.4 Visualizing venues

Use this script to read a protobuf file, then draws a dot for every venue, color-coded by activity.

7 Installation

You only need to compile SPC to run for a custom set of MSOAs. Just download existing output if your study area matches what we provide.

7.1 Dependencies

• Rust: The latest stable version of Rust: https://www.rust-lang.org/tools/install

7.2 Compiling SPC

```
git clone https://github.com/alan-turing-institute/uatk-spc/
cd uatk-spc
# The next command will take a few minutes the first time you do it, to build external dep
cargo build --release
```

7.3 Troubleshooting downloading

If you get an error No such file or directory (os error 2) it might be because a previous attempt to run SPC failed, and some necessary files were not fully downloaded. In these cases you could try deleting the data/raw_data directory and then running SPC again. It should automatically try to download the big files again.

If you have trouble downloading any of the large files, you can download them manually. The logs will contain a line such as Downloading https://rampOstorage.blob.core.windows.net/nationaldata/to data/raw_data/nationaldata/QUANT_RAMP_spc.tar.gz. This tells you the URL to retrieve, and where to put the output file. Note that SPC won't attempt to download files if they already exist, so if you wind up with a partially downloaded file, you have to manually remove it.

8 Creating new study areas

If the area you want to model isn't already generated, then you can follow this guide to run SPC on a custom area. You must first compile SPC.

8.1 Specifying the area

SPC takes a newline-separated list of MSOAs in the config/ directory as input, like this. You can generate this list from a LAD (local authority district). From the main SPC directory, run python scripts/select_msoas.py. Refer to data/raw_data/referencedata/lookUp.csv (only available after running SPC once) for all geographies available.

This script will create a new file, config/your_region.txt.

8.2 Run SPC for the new area

From the main directory, just run:

```
cargo run --release -- config/your_region.txt
```

This will download some large files the first time. You'll wind up with data/output/your_region.pb as output, as well as lots of intermediate files in data/raw_data/. The next time you run this command (even on a different study area), it should go much faster.

8.3 (Optional) run SPC for lots of areas

If you want to run the program over lots of areas at once and are using Mac/Linux, you can use a for loop in a terminal to repeatedly run SPC over all files in the config directory. For example, this will run SPC on all .txt files in the config directory:

```
for file in config/*.csv; do cargo run --release -- config/$file; done
```

8.4 Using the output

After you generate the files, see here for how to use them in your project.

If you use SPC code or data in your work, please cite using the Zenodo DOI (using the bottom-right tool to generate the citation).

Part II Understanding SPC

9 Introduction

Blabla

10 Technical overview

SPC is divided into two phases. The data preparation phase relies on scripts that only need to be run once. It is meant to output a postprocessed version of all the raw data sources that allows the model to run smoothly on custom areas. The second phase involves the user choosing a custom area and launching a simulation. It pulls the relevant datasets among the data prepared by the first phase, calculates the different daily activities and formats the results into a single protobuffer file.

We provide in this document a step by step description of running the entire SPC pipeline. For

The full SPC pipeline comprises the following steps.

- Phase 1 Data preparation steps:
 - 1. The SPENSER model creates a synthetic population with basic demographic information for all of GB.
 - 2. A script downloads and prepares data from various public sources that will be used throughout the model.
 - 3. The outputs of SPENSER are enriched using some of the outputs from step 2.
 - 4. The resulting outputs are uploaded as .csv files to a dedicated Azure repository.
- Phase 2 Steps after the user has selected a study area:
 - 1. All the data relevant to the study area are pulled from Azure.
 - 2. Individuals are assigned a single education destination (if under 16) and several potential retail destinations, according to a local version of the QUANT model.
 - 3. Individuals are assigned a single workplace destination (if above 16), according to the method described here.
 - 4. The population, its activities and an optional lockdown modelling are gathered into a single .pb file that can be visualised by the SPC explorer.

We now explain how to run each step. The theoretical concepts supporting the modelling are presented here.

10.1 Phase 1: Data preparation

10.1.1 SPENSER

The original SPENSER model is made up of 5 different GitHub repositories, operating specific parts of the simulation of a synthetic population (gathering the data from ONS, creating individuals, creating households, assigning individuals to households and projecting the population to future years). We use this modified version with instructions for running the full pipeline on a single machine.

The SPENSER microsimulation is split into three steps:

- 1. Household synthesis: households are synthesised for a base year (2011) from census data at OA resolution. These households are then sequentially synthesised for subsequent years using household forecasts.
- 2. Population synthesis: people are sequentially synthesised using marginal census data on gender, age and ethnicity at MSOA resolution for 2011, with population projections used to derive the marginals beyond the reference census year.
- 3. Assignment: for a given year, the synthesised population (from step 2) can be assigned to a synthesised household (from step 1), while a "household representative person" from the synthesised population (step 2) is assigned to each synthesised household (from step 1).

The result of SPENSER is two separate datasets and a merging key: one dataset for individuals, accurate at MSOA level and containing the sex, age and ethnicity fields; and one for households, accurate at OA level and containing the OA11CD, HOUSE_nssec8, House_type, HOUSE_typeCommunal, HOUSE_NRooms, HOUSE_centralHeat, HOUSE_tenure and HOUSE_NCars fields respectively.

10.1.2 Downloading and preparation of public data from various sources

Instructions to run this step from the source code can be found under Step 1: Curate public data from diverse sources. The result is a set of data files, some of which will be merged with the outputs from SPENSER during the next step, containing:

- NSSEC8 distributions among the population of England and Wales by age group and sex at MSOA level (NSSEC8_EW_F_16to24_CLEAN.csv, etc.) and among the total population of Scotland by age group, sex and ethnicity (NSSECS_CLEAN.csv)
- A combined extract from the three latest GB Health Surveys (HSComplete.csv)
- An extract from the UK Time Use Survey 2015 (indivTUS.csv)
- A file containing a set of coefficients to estimate the average BMI of individuals in England depending on their age, sex and ethnicity (BMIdMean.csv) and a file containing coefficients to obtain the equivalent average BMI in Scotland and Wales (BMIdiff.csv)
- Coefficients to estimate the hourly salary of an employee in England depending on their home region, sex, part-time/full-time status, age and SOC category (coeffft.csv, etc.) & ageRescaleFft.csv, etc.).
- Coefficients to estimate the numbers of hours worked corresponding to the criteria mentioned above (meanHoursFFT.csv, etc. and distribHours.csv)
- Centroid coordinates of Output areas in GB (OACentroids.csv)

In addition, four files to be used by the second phase of the model are outputted:

- diariesRef.csv contains diaries of typical days extracted from the UK Time Use Survey
- businessRegistry.csv contains a list of all individual workplaces in GB
- timeAtHomeIncreaseCTY.csv contains a reduction in time spent away from home during the pandemic according to Google Mobility reports
- lookUp-GB.csv is a comprehensive lookup table between GB geographies, including name variants used by Google and OSM and local file names for storage within Azure

To understand the methods supporting the creation of these files, we refer the reader to the corresponding section inside the modelling methods section.

10.1.3 Enriching SPENSER

Instructions to run this step can be found under Step 2: Add to SPENSER. Line numbers quoted in the following refer to this script.

Once merged into one dataset according to the matching key (l. 13-49), the SPENSER data is enriched with the outputs of the previous step. An individual among those sharing the same 5-year age group (extra details for under 18) and sex is drawn from the participants of the Health Survey (l. 56-72). This adds the id_HS, HEALTH_diabetes, HEALTH_bloodpressure, HEALTH_cvd, HEALTH_NMedecines, HEALTH_selfAssessed and HEALTH_lifeSat fields. This join is not spatially differentiated and other matching criteria (ethnicity and nssec8) were retained due to a lack of representativity inside the survey. The BMI field is then added l. 74-89, according to this method.

Each individual that is not a head of household is assigned an nssec8 category (l. 96-108). This is done according to nssec8 category distributions among the general population by sex and age groups according to ONS data (DC6114EW and DC6206SC datasets). An individual among those sharing the same 5-year age group, sex and nssec8 category is drawn from the participants of the UK Time Use Survey (l. 111-125). This adds the id_TUS_hh, id_TUS_p, pwkstat, soc2010, sic1d2007, sic2d2007, netPayWeekly and workedHoursWeekly fields. Note that the netPayWeekly and workedHoursWeekly fields have a low response rate among participants of the survey. For that reason, we have added a much more detailed modelling of income, that includes spatial differences at region level (l. 130-140).

Coordinates of the OA where the household's home is located are finally added l. 152-156.

10.1.4 Azure upload

Following enrichment, a final step involves grouping LADs into counties and uploading to an Azure container for use as input for Phase 2 below.

10.2 Phase 2: Running SPC for a specific study area

This part is corresponding to the scripts written in Rust. Instructions can be found here.

11 Modelling methods

We present here the theoretical principles behind the modelling done in SPC and point to the parts of the code where they are implemented.

11.1 SPENSER and QUANT

The generation of the population data by SPENSER and the modelling of trips to schools and retail by QUANT are detailed in

Lomax N et al. An Open-Source Model for Projecting Small Area Demographic and Land-Use Change. Geographical analysis, 54(3), 599-622 (2022). (DOI)

and

Spooner F et al. A dynamic microsimulation model for epidemics. Soc Sci Med., 291:114461 (2021). (DOI)

11.2 BMI estimation

Body Max Index (BMI) is calculated for each individual from the Health Survey for England 2019 (access needs to be requested to the UK Data Service). This calculation is independent from the matching with the Heath Survey that happens during the data preparation step, therefore the BMI values will not match the ones that could be obtained from the Health Survey identifiers included in the output. As the BMI variable is not necessarily independent from the other health variables (diabetes etc.), the new variable should only be used for studies where all other variables are considered equal. The new variable is continuous (a float) instead of categorical.

According to the HSE 2019, the distribution of BMI values should follow figure 1. The socio-economic category variable was discarded for the modelling as it is not independent from the other variables, and "mixed" and "other" ethnicity categories have been merged due to small sample sizes.

Figure 1. BMI per age. Columns represent ethnicity (White, Black, Asian, Other), and the rows sex (female, male).

The distribution for each age group is a gamma distribution. See figure 2.

Figure 2. Distribution of BMI values for white females aged 30-34.

Due to small sample sizes, the BMI is calculated for each individual depending on their age according to a gamma distribution whose mean is the mean for the corresponding age, sex and ethnicity (thick line in figure 1), but whose variance is only determined by the total variance by sex and ethnicity. The resulting BMI values were validated for Bedfordshire, and correlations of 0.93 and 0.97 were found between the mean and variance of the modelled data compared to those for the reference HSE 2019 data. See figure 3. The distribution per age, as in figure 1, were also validated.

Figure 3. Modelled mean and variance compared to the reference mean and variance from the HSE 2019 data for each of the eight categories of figure 1.

The R code for this modelling are l. 239-406 of this script, and the validation is included in the legacy version, here.

11.3 Income data

This modelling is based on the 2020 revised edition of the Earnings and hours worked, region by occupation by four-digit SOC: ASHE Table 15 database from ONS. Some percentiles for employees' gross hourly salaries are provided for each full-time and part-time job according to their four-digit SOC classification per region, and separated by sex. It is supported by this script.

11.3.1 Methods

The data are far from complete (only about 15% of all possible values), especially for the highest deciles. We found that the missing values amongst the partially filled SOCs could be estimated by interpolating an order 3 polynomial to the existing values. We found that the order 3 polynomials were a good fit for most categories (93.11%). SOCs with too many missing values are given the value for the category that is immediately higher in the SOC hierarchy. For some jobs, the highest percentiles seem capped, making the polynomial fitting fail. In that case, we have replaced the unknown values with the highest known value (as there is no clear and systematic fitting for these special cases). In addition, the highest decile is never detailed in the data, which means that the highest salaries are underestimated in the model (and exceptionally high salaries are not present). The result of this phase is four tables {male full-time, male part-time, female full-time, female part-time} containing the coefficients of the fitted order 3 polynomials, with an optional cap when relevant. This step is done in section 1 of the script.

A percentile is chosen randomly (uniformly) for each individual in England, and the salary is then deduced according to their full-time/part-time status, region, sex and SOC category. Age data from ONS are then integrated. Part of the differences that can be observed between different age groups is already taken into account through the SOC variable, since it is expected to evolve throughout an individual's career. To avoid counting this dependency twice, we compute the residual between the results of the initial modelling that does not take into account age and the expected results by age group according to the data. We then deduce a function that modifies a posteriori the estimated salary of an individual depending on their age, so that the salaries sum correctly by age groups. This step is done in sections 2 to 4 of the script.

To get the number of hours worked per week, we also use the ASHE Table 15. Since only minimal differences are observed between SOC categories, we simply complete missing values by approximating them by values of the category that is immediately higher within the SOC hierarchy. This step is done in section 5 of the script.

When added to the SPC population data, a basic hourly salary column is added, as well as a corresponding annual salary deduced from the number of worked hours. In addition, we repeat this process for all individuals that are categorised as 'Self-employed' or 'Employee unspecified' by the Time Use Survey matching,, as if they were full time employees. These values are recorded in the columns IncomeHAsIF and IncomeYAsIf.

11.3.2 Comparison to reference values from ONS

We compare the results of the modelling to the raw datasets from ONS.

- Mod for modelled
- M for male
- F for female
- H for hourly gross salary
- Y for annual gross salary
- FT for full-Time
- PT for part-Time
- Only individuals recorded as employees (i.e. not self-employed) are taken into account in this section.

Number of employees per sex and full-time/part-time classification

The numbers given by ONS vary from dataset to dataset and are reported by ONS as indicative only. For the modelled values, we give the total number of individuals with a non-zero salary in each category.

					M				
Variable	All	FT	PT	M	FT	M PT	F	F FT	F PT
ONS tot Mod tot	22-26k 23.1k	16-19k 18.5k		11-13k 11.8k		1.5-2k 0.8k		6.5-7.5k	4.5-5.5k 3.8k
H H	23.1K	10.JK	4.0K	11.0K	IIK	U.OK	11.3K	7.5K	3.0K
Mod tot Y	17.6k	14.8k	2.8k	9.4k	8.9k	0.5k	8.2k	5.9k	2.3k

A significant number of individuals listed as working either full or part time have 0 effective worked hours per day according to the Time Use Survey matching. In those cases, an hourly salary is modelled depending on their SOC, region and sex, as for any other employee, but the annual salary will be displayed as 0. It is possible to estimate the likely true number of hours worked from the same ONS dataset (Table 15.9a: Paid hours worked - Total 2020), also depending on their sex, soc and region. This calculation has been added to the "As If" column.

Hourly gross salary per sex and full-time/part-time classification

Variable	All	FT	PT	M	M FT	M PT	F	F FT	F PT
ONS mean	17.63	18.32	13.93	18.81	19.12	14.69	16.19	17.08	13.68
ONS median	13.71	15.15	10.38	14.84	15.58	10.12	12.58	14.42	10.47
Mod mean	16.45	17.19	13.45	17.50	17.84	12.75	15.35	16.23	13.60
Mod median	13.55	14.46	10.23	14.27	14.72	9.16	12.79	14.12	10.51

The median values are quite close to the ONS values, but the mean values are always lower. This is expected, see the description of the modelling above.

Annual gross salary per sex and full-time/part-time classification

Only values > 0 are retained for these calculations.

Variable	All	FT	PT	M	M FT	M PT	F	F FT	F PT
ONS mean	31,646	38,552	13,819	38,421	42,072	14,796	24,871	33,253	13,512
ONS	$25,\!886$	$31,\!487$	11,240	31,393	33,915	10,883	20,614	28,002	4,743
median									
Mod mean	$34,\!317$	$36,\!595$	$22,\!257$	$37,\!574$	38,496	20,698	$30,\!594$	33,729	$22,\!585$
Mod	28,713	30,942	17,928	31,404	$32,\!382$	17,382	$25,\!875$	29,028	18,137
median									

The average salary for part-time employees is correct when values equal to 0 are taken into account. This suggests that the total number of hours worked for part-time employees is

correct, but the way they are distributed among individuals is not. It could be due to the TUS taking a snapshot of the situation during a particular week, rather than averaging their data over the year. It appears that the TUS matching also overestimates the average number of hours worked for female employees.

Regional differences (hourly gross salary)

	East					West	
	Mid-	North	North	South	South	Mid-	Yorkshire and
Region	East lands	LondonEast	West	East	West	lands	The Humber
ONS mean	16.74 15.87	23.78 15.69	16.36	17.88	16.36	16.34	15.76
ONS me- dian	13.28 12.65	18.30 12.40	12.90	14.33	12.74	12.92	12.46
Mod mean	16.67 15.29	19.39 15.05	15.22	17.34	15.92	15.47	14.41
Mod me- dian	13.69 12.79	16.25 12.42	12.44	14.84	13.35	12.64	12.44

The pearson correlations for mean and median between the modelled and raw values are 0.92 and and 0.93.

Hourly gross salary per one-digit SOC

1d SOC	1	2	3	4	5	6	7	8	9
ONS mean	26.77	23.38	18.29	13.42	13.35	10.87	10.94	12.23	10.77
ONS median	20.96	21.34	15.66	11.54	12.04	10.08	9.52	10.93	9.22
Mod mean	21.52	22.14	16.00	12.76	12.55	10.49	10.50	12.05	9.87
Mod median	17.22	20.66	14.12	11.46	11.34	9.71	9.59	10.82	9.12

- 1. Managers, directors and senior officials
- 2. Professional occupations
- 3. Associate professional and technical occupations
- 4. Administrative and secretarial occupations
- 5. Skilled trades occupations
- 6. Caring, leisure and other service occupations
- 7. Sales and customer service occupations
- 8. Process, plant and machine operatives
- 9. Elementary occupations.

The Pearson correlations for mean and median between the modelled and raw values are 0.98 and 0.98.

Hourly gross salary per age

The reference for this table is: Table 6.5a Hourly pay - Gross 2020

Table before weighting by age:

Age	16-17	18-21	22-29	30-39	40-49	50-59	60+
ONS mean	7.21	9.59	14.09	18.13	20.04	19.12	16.32
ONS median	6.36	9.00	12.26	15.08	15.89	14.39	12.17
Mod mean	12.77	14.96	16.33	16.93	16.83	16.66	16.29
Mod median	10.93	12.71	13.88	14.02	13.96	13.85	13.65

The Pearson correlations for mean and median between the modelled and raw values are 0.92 and 0.92.

Table after weighting by age:

Age	16-17	18-21	22-29	30-39	40-49	50-59	60+
ONS mean	7.21	9.59	14.09	18.13	20.04	19.12	16.32
ONS median	6.36	9.00	12.26	15.08	15.89	14.39	12.17
Mod mean	9.05	11.15	14.87	17.35	17.96	17.47	15.41
Mod median	8.20	9.51	12.86	14.41	14.78	14.43	12.56

The Pearson correlations for mean and median between the modelled and raw values are 0.99 and 0.99.

11.4 Commuting flows

11.4.1 List of all workplaces in GB

In order to distribute each individual of the population to a unique physical workplace, we first created a population of all individual workplaces in England, based on a combination of the Nomis UK Business Counts 2020 dataset and the Nomis Business register and Employment Survey 2015 (see Data sources). The first dataset gives the number of individual workplace counts per industry, using the SIC 2007 industry classification, with imprecise size (i.e. number of employees) bands at MSOA level. The second dataset gives the total number of jobs available at LSOA level per SIC 2007 industry category. We found that the distribution of workplace sizes follows closely a simple 1/x distribution, allowing us to draw for each workplace a size

within their band, with sum constraints given by the total number of jobs available, according to the second dataset. The R codes to create the list of all workplaces can be found here.

11.4.2 Usage inside SPC

The workplace 'population' and individual population are levelled for each SIC 2007 category by removing the exceeding part of whichever dataset lists more items. This takes into account that people and business companies are likely to over-report their working availability (e.g. part time and seasonal contracts are not counted differently than full time contracts, job seekers or people on maternity leave might report the SIC of their last job). This process can be controlled by a threshold in the parameter file that defines the maximal total proportion of workers or jobs that can be removed. If the two datasets cannot be levelled accordingly, the categories are dropped and the datasets are levelled globally. Tests in the West Yorkshire area have shown that when the level 1 SIC, containing 21 unique categories, is used, 90% of the volume of commuting flows were recovered compared to the Nomis commuting OD matrices at MSOA level.

The employees for each workplace are drawn according to the 'universal law of visitation', see

Schläpfer M et al. The universal visitation law of human mobility. Nature 593, 522–527 (2021). (DOI)

This framework predicts that visitors to any destination follow a simple

$$(r,f) = K / (rf)2$$

distribution, where (r,f) is the density of visitors coming from a distance r with frequency f and K is a balancing constant depending on the specific area. In the context of commuting, it can be assumed that f=1. Additionally, we only need to weigh potential employees against each other, which removes the necessity to compute explicitly K. In the West Yorkshire test, we found a Pearson coefficient of 0.7 between the predicted flows when aggregated at MSOA level and the OD matrix at MSOA level available from Nomis.

12 Data schema

12.1 Understanding the schema

Here are some helpful tips for understanding the schema.

Each .pb file contains exactly one Population message. In contrast to datasets consisting of multiple .csv files, just a single file contains everything. Some of the fields in Population are lists (of people and households) or maps (of venues keyed by activity, or of MSOAs). Unlike a flat .csv table, there may be more lists embedded later. Each Household has a list of members, for example.

The different objects refer to each other, forming a graph structure. The protobuf uses uint64 IDs to index into other lists. For example, if some household has members = [3, 10], then those two people can be found at population.people[3] and population.people[10]. Each of them will have the same household ID, pointing back to something in the population.households list.

12.2 Flows: modelling daily activites

SPC models daily travel behavior of people as "flows." Flows are broken down by by an activity – shopping/retail, attending primary or secondary school, working, or staying at home. For each activity type, a person has a list of venues where they may do that activity, weighted by a probability of going to that particular venue.

Note that flows_per_activity is stored in InfoPerMSOA, not Person. The flows for retail and school are only known at the MSOA level, not individually. So given a particular Person object, you first look up their household's MSOA — msoa = population.households[person.household].msoa and then look up flows for that MSOA — population.info_per_msoa[msoa].flows_per_activity.

Each person has exactly 1 flow for home – it's just person.household with probability 1. A person has 0 or 1 flows to work, based on the value of person.workplace.

This doesn't mean that all people in the same MSOA share the same travel behavior. Each person has their own activity_durations field, based on time-use survey data. Even if two

people share the same set of places where they may go shopping, one person may spend much more time on that activity than another.

See the ASPICS conversion script for all of this in action – it has a function to collapse a person's flows down into a single weighted list.

Note that per MSOA, very few venues are represented as destinations – 10 for retail and 5 for school. Only the most likely venues from QUANT are used.

12.3 Flow weights

How do you interpret the probabilities/weights for flows? If your model needs people to visit specific places each day, you could randomly sample a venue from the flows, weighting them appropriately. For retail, you may want to repeat this sampling every day of the simulation, so they visit different venues. For primary and secondary school, it may be more appropriate to sample once and store that for the simulation – a student probably doesn't switch schools daily.

Alternatively, you can follow what ASPICS does. Every day, each person logically visits all possible venues, but their interaction there (possibly receiving or transmitting COVID) is weighted by the probability of each venue.

13 Data sources

The original data are provided at different scales, which define their level of accuracy. For simplicity, the outputs of SPC are geolocated at Output Area (OA) level, although this scale may not be relevant to all indicators. The 2011 OAs are a geographical unit created for census collection and are designed to be relatively homogeneous, with an average size between 120 and 129 households.

The data from Open Street Map (OSM) is downloaded directly from https://www.openstreetmap.org. Everything else is hosted through local copies inside one Azure repository that interacts automatically with the model. We describe below the content of this repository and indicate the raw source used for each indicator. It is divided into utilities, county level data and national data. To recreate the content of this repository from raw sources, please refer to this part of the code.

13.1 Utility data

lookUp-GB.csv.gz

The look-up table links different geographies of Great Britain together. It is used internally by the model, but can also help the user define their own study area. The following are standard denominations, compatible with ONS fields of the same name. They are based on ONS lookups. See ONS documentation for more details.

- OA11CD: Output area codes for the 2011 census (120 to 129 households)
- LSOA11CD & LSOA11NM: Lower-layer Super Output Areas (about 2000 individuals), replaced by Intermediary Zones for Scotland
- MSOA11CD, MSOA11NM: Middle-layer Super Output Areas (about 8000 individuals), replaced by Data Zones for Scotland
- LAD20CD, LAD20NM: Local Authority Districts (314 for England, 22 for Wales and 32 for Scotland)
- ITL321CD, ITL321NM, ITL221CD, ITL221NM, ITL121CD & ITL121NM: International Territorial Level, replacing pre-Brexit NUTS European divisions.
- RGN20CD & RGN20NM: Regions of England (NA for other Wales and Scotland)
- Country: England, Wales or Scotland

In addition,

- "AzureRef": Name of the geographical unit for the County level data folder inside Azure (Lieutenancy Areas a.k.a. Ceremonial Counties for England, Scottish Police Divisions and ITL321NM for Wales) For Wales: ITL321NM
- "GoogleMob" & "OSM" are alternate spellings used by Google and OSM for their data releases.

13.2 County level data

Files in this section are grouped by country (England, Wales and Scotland), then date (2012, 2020, 2022, 2032, 2039). The format of a path to an individual file is:

https://rampOstorage.blob.core.windows.net/countydata-v2-1/[country]/[date]/pop_[area_name].

As of July 2023, England contains 5 series of 47 files, Wales 5 series of 12 files and Scotland 5 series of 13 files

pop_.csv.gz

The data is mainly based on the 2011 UK census, the UK Time Use Survey 2014-15 and the health surveys of GB (England, Wales, Scotland). The SPENSER (Synthetic Population Estimation and Scenario Projection) microsimulation model (ref) distributes individuals from the census with MSOA scale constraints into synthetic households with OA constraints. It is able to project this synthetic population in the future according to estimates from the Office for National Statistics (ONS). These data were enriched with some of the content of the other datasets mentioned (the rest of which can be added a posteriori from the identifiers provided). The data have also been complented with a modelling of BMI and salaries. The methods used to join the different datasets are explained in the methods.

The fields currently contained are detailed here. They are:

- pid: Unique person identifier at GB level within SPC
- hid: Unique household identifier at GB level within SPC
- DA11CD: Output Area code of the individual's home (ONS, 2011 boundaries)
- sex: Sex assigned at birth (DC1117EW, census 2011)
- age: Age in years (DC1117EW, census 2011)
- ethnicity: Based on self-report (aggregated from DC2101EW, census 2011)
- nssec8: National Statistics Socio-economic classification (see methods)
- HOUSE_nssec8: National Statistics Socio-economic classification of the reference person of the household (LC4605, census 2011)

- House_type: Type of accommodation (based on LC4402EW, census 2011)
- HOUSE_typeCommunal: Type of communal establishment (based on QS420, census 2011)
- HOUSE_NRooms: Number of rooms in the accommodation (LC4404EW, census 2011)
- HOUSE_centralHeat: Presence of central heating (based on LC4402EW, census 2011)
- HOUSE_tenure: Tenure (based on LC4402EW, census 2011)
- HOUSE_NCars: Number of cars (derived from LC4202EW by SPENSER team, census 2011)
- id_HS: unique identifier within the Health Survey (aggregated from the Health surveys from England, Wales and Scotland)
- HEALTH_diabetes: for Scotland and England, has doctor diagnosed diabetes; for Wales, diabetes currently treated (derived from HSE, HSW, SHS)
- HEALTH_bloodpressure: for Scotland and England, Doctor diagnosed high blood pressure; for Wales, high blood pressure currently treated (derived from HSE, HSW, SHS)
- HEALTH_cvd: for England, cardiovascular medication taken in the last 7 days; for Scotland, had cardiovascular condition excluding diabetes / blood pressure; for Wales, any heart condition excluding high blood pressure (derived from HSE, HSW, SHS)
- HEALTH_NMedecines: Number of prescribed medications (derived from HSE, HSW, SHS)
- HEALTH selfAssessed: Self assessed general health (derived from HSE, HSW, SHS)
- HEALTH_lifeSat: how satisfied with life nowadays? (derived from HSE, HSW, SHS)
- HEALTH_bmi: BMI (see methods)
- id TUS hh: serial household identifier field in the UK Time Use Survey 2015
- id TUS p: pnum person identifier field in the UK Time Use Survey 2015
- pwkstat: Employment status (derived from UK TUS 2015)
- soc2010: Standard Occupational Classification (derived from UK TUS 2015)
- sic1d2007: Standard Industry Classification of economic activities 2007, 1st level (derived from UK TUS 2015)
- sic2d2007: Standard Industry Classification of economic activities 2007, 2nd level (derived from UK TUS 2015)
- netPayWeekly: Weekly take home pay after all deductions (derived from UK TUS 2015)
- workedHoursWeekly: Number of hours per week usually worked in main job or business (derived from UK TUS 2015)
- incomeH: Hourly gross salary for full-time and part-time employees (see methods)
- incomeY: Yearly gross salary for full-time and part-time employees (see methods)
- incomeHAsIf: Hourly gross salary for employees with self employed/other employees as employees of the same industry and with mean hourly worked for the industry when the number of hours is missing (see methods)
- incomeYAsIf: Yearly gross salary for employees with self employed/other employees as employees of the same industry and with mean hourly worked for the industry when the number of hours is missing (see methods)
- ESport: Relative probability weight to attend a sport fixture (Experimental, WIP)
- ERugby: Relative probability weight to attend a Rugby fixture (Experimental, WIP)
- EConcertM: Relative probability weight to attend a concert primarily targeting young males (Experimental, WIP)

- EConcertF: Relative probability weight to attend a concert primarily targeting young females (Experimental, WIP)
- EConcertMS: Relative probability weight to attend a concert primarily targeting middle-aged males (Experimental, WIP)
- EConcertMS: Relative probability weight to attend a concert primarily targeting middle-aged females (Experimental, WIP)
- EMuseum: Relative probability weight to visit a museum (Experimental, WIP)
- easting: X coordinate of the OA centroid in the British National Grid coordinate system (epsg:27700, source: ONS)
- northing: Y coordinate of the OA centroid in the British National Grid coordinate system (epsg:27700, source: ONS)
- lng: X coordinate of the OA centroid in the Longitude/Latitude coordinate system (epsg:4326, derived from ONS)
- lat: Y coordinate of the OA centroid in the Longitude/Latitude coordinate system (epsg:4326, derived from ONS)

13.3 National data

businessRegistry.csv.gz

Contains a breakdown of all business units (i.e. a single workplace) in Great Britain at LSOA scale, estimated by the project contributors from two nomis datasets: UK Business Counts - local units by industry and employment size band 2020 and Business Register and Employment Survey 2015. Each item contains the size of the unit and its main sic1d07 code in reference to standard Industrial Classification of Economic Activities 2007 (number corresponding to the letter in alphabetical order). It is used to compute commuting flows.

GIS/

Contains three GIS datasets of GB in GeoJson format taken from ONS boundaries:

- OA 2011 Pop20.geojson at OA level
- LSOA 2011 Pop20.geojson at LSOA level
- MSOA 2011 Pop20.geojson at MSOA level

QUANT_RAMP_spc.tar.gz

See: Milton R, Batty M, Dennett A, dedicated RAMP Spatial Interaction Model GitHub repository. It is used to compute the flows towards schools and retail.

timeAtHomeIncreaseCTY.csv.gz

This file is a subset from Google COVID-19 Community Mobility Reports, cropped to GB. It describes the daily reduction in mobility, averaged at county level, due to lockdown and other COVID-19 restrictions between the 15th of February 2020 and 15th of October 2022. Missing values have been replaced by the national average. These values can be used directly to reduce pnothome and increase phometot (and their sub-categories) to simulate more accurately the period.

diariesRef.csv.gz

Contains diaries taken from the UK TUS that can be distributed to the population on a daily basis. They contain weekend days and weekday days. A full description of the fields can be found here.

Part III Advanced

14 Developer guide

14.1 Updating the docs

The site is built with Quarto. You can iterate on it locally: cd docs; quarto preview

14.2 Code hygiene

We use automated tools to format the code.

```
cargo fmt

# Format Markdown docs
prettier --write *.md
prettier --write docs/*.qmd --parser markdown
```

Install prettier for Markdown.

14.3 Some tips for working with Rust

There are two equivalent ways to rebuild and then run the code. First:

```
cargo run --release -- devon
```

The -- separates arguments to cargo, the Rust build tool, and arguments to the program itself. The second way:

```
cargo build --release
./target/release/aspics devon
```

You can build the code in two ways – **debug** and **release**. There's a simple tradeoff – debug mode is fast to build, but slow to run. Release mode is slow to build, but fast to run. For the ASPICS codebase, since the input data is so large and the codebase so small, I'd recommend always using --release. If you want to use debug mode, just omit the flag.

If you're working on the Rust code outside of an IDE like VSCode, then you can check if the code compiles much faster by doing cargo check.

14.4 Docker

We provide a Dockerfile in case it's helpful for running, but don't recommend using it. If you want to, then assuming you have Docker setup:

```
docker build -t spc .
docker run --mount type=bind,source="$(pwd)"/data,target=/spc/data -t spc /spc/target/rele
```

This will make the data directory in your directory available to the Docker image, where it'll download the large input files and produce the final output.

15 Code walkthrough

SPC is implemented in Rust, and its code can be found here. This is an unusual implementation choice in the data science world, so this page has some notes about it.

15.1 Generally useful techniques

The code-base makes use of some techniques that may be generally applicable to other projects, independent of the language chosen.

15.1.1 Split code into two stages

Agent-based models and spatial interaction models require some kind of input. Often the effort to transform external data into this input can exceed that of the simulation component. Cleanly separating the two problems has some advantages:

- iterate on the simulation faster, without processing raw data every run
- reuse the prepared input for future projects
- force thinking about the data model needed by the simulation, and transform the external data into that form

SPC is exactly this first stage, originally split from ASPICS when further uses of the same population data were identified.

15.1.2 Explicit data schema

Dynamically typed languages like Python don't force you to explicitly list the shape of input data. It's common to read CSV files with pandas, filter and transform the data, and use that throughout the program. This can be quick to start prototyping, but is hard to maintain longer-term. Investing in the process of writing down types:

- makes it easier for somebody new to understand your system they can first focus on **what** you're modeling, instead of how that's built up from raw data sources
- clarifies what data actually matters to your system; you don't carry forward unnecessary input

- makes it impossible to express invalid states
 - One example is here per person and activity, there's a list of venues the person may visit, along with a probability of going there. If the list of venues and list of probabilities are stored as separate lists or columns, then their length may not match.
- reuse the prepared input for future projects

There's a variety of techniques for expressing strongly typed data:

- protocol buffers or flatbuffers
- JSON schemas
- Python data classes and optional type hints
- statically typed languages like Rust

15.1.3 Type-safe IDs

Say your data model has many different objects, each with their own ID – people, households, venues, etc. You might store these in a list and use the index as an ID. This is fine, but nothing stops you from confusing IDs and accidentally passing in venue 5 to a function instead of household 5. In Rust, it's easy to create "wrapper types" like this and let the compiler prevent these mistakes.

This technique is also useful when preparing external data. GTFS data describing public transit routes and timetables contains many string IDs – shapes, trips, stops, routes. As soon as you read the raw input, you can store the strings in more precise types that prevent mixing up a stop ID and route ID.

15.1.4 Idempotent data preparation

If you're iterating on your initialisation pipeline's code, you probably don't want to download a 2GB external file every single run. A common approach is to first test if a file exists and don't download it again if so. In practice, you may also need to handle unzipping files, showing a progress bar while downloading, and printing clear error messages. This codebase has some common code for doing this in Rust. We intend to publish a separate library to more easily call in your own code.

15.1.5 Logging with structure

It's typical to print information as a complex pipeline runs, for the user to track progress and debug problems. But without any sort of organization, it's hard to follow what steps take a long time or encounter problems. What if your logs could show the logical structure of your pipeline and help you understand where time is spent?

The screenshot above shows a summary printed at the end of a long pipeline run. It's immediately obvious that the slowest step is creating commuting flows.

This codebase uses the tracing framework for logging, with a custom piece to draw the tree. (We'll publish this as a separate library once it's more polished.) The tracing framework is hard to understand, but the main conceptual leap over regular logging framworks is the concept of a **span**. When your code starts one logical step, you call a method to create a new span, and when it finishes, you close that span. Spans can be nested in any way – create_commuting_flows happens within the larger step of creating population.

15.1.6 Determinism

Given the same inputs, your code should always produce identical output, no matter where it's run or how many times. Otherwise, debugging problems becomes very tedious, and it's more difficult to make conclusions from results. Of course, many projects have a stochastic element – but this should be controlled by a random number generator (RNG) seed, which is part of the input. You vary the seed and repeat the program, then reason about the distribution of results.

Aside from organizing your code to let a single RNG seed influence everything, another possible source of non-determinism is iteration order. In Rust, a HashMap could have different order every time it's used, so we use a BTreeMap instead when this matters. In Python, dictionaries are ordered. Be sure to check for your language.

15.2 Protocol buffers

SPC uses protocol buffers v2 for output. This has some advantages explained the "explicit data schema" section above.

Note that we chose proto2 instead of proto3, because proto3 doesn't support required fields. This is done to allow schemas to evolve better over time, but this isn't a feature SPC makes use of. There's no need to have new code work with old data, or vice versa – if the schema is updated, downstream code should adapt accordingly and use the updated input files.

Note also that protocol buffers don't easily support type-safe wrappers around numeric IDs, so downstream code has to be careful not to mix up household, venue, and person IDs. For this reason, SPC internally doesn't use the auto-generated protobuf code until the very end of the pipeline. It's always possible to be more precise with native Rust types, and convert to the less strict types later.

15.3 An example of the power of static type checking

Imagine we want to add a new activity type to represent people going to university and higher education. SPC already has activities for primary and secondary school, so we'll probably want to follow those as a guide. In any language, we could search the codebase for relevant terms to get a sense of what to update. In languages like Python without an up-front compilation step, if we fail to update something or write blatantly incorrect code (such as making a typo in variable names or passing a list where a string was expected), we only find out when that code happens to run. In pipelines with many steps and large input files, it could be a while before we reach the problematic code.

Let's walk through the same exercise for SPC's Rust code. We start by adding a new University case to the Activity enum. If we try to compile the code here (with cargo check or an IDE), we immediately get 4 errors.

Three of the errors are in the QUANT module. The first is here. It's immediately clear that for retail and primary/secondary school, we read in two files from QUANT representing venues where these activities take place and the probability of going to each venue. Even if we were unfamiliar with this codebase, the compiler has told us one thing we'll need to figure out, and where to wire it up.

The other error is in the code that writes the protobul output. Similarly, we need a way to represent university activities in the protobul scheme.

Extending an unfamiliar code-base backed by compiler errors is a very guided experience. If you wanted to add more demographic attributes to people or energy use information to households, you don't need to guess all of the places in the code you'll need to update. You can just add the field, then let the compiler tell you all places where those objects get created.

16 Performance

The following tables summarizes the resources SPC needs to run in different areas.

year study_area	num_	_msoas_ho	us aho l <u>ds</u> pe pp<u>le</u>file_	_sizetim	e commuting	nention_e_
2012 England/bedfordshire	74	245,166	647,272 256.91	7 sec-	2 seconds	848.99
			MiB	onds		MiB
2020England/bedfordshire	74	$272,\!875$	$674,044\ 271.73$	7 sec-	2 seconds	922.86
			${ m MiB}$	onds		MiB
2022England/bedfordshire	74	309,706	$703,\!582\ 277.82$	7 sec-	2 seconds	929.78
			MiB	onds		MiB
2032 England/bedfordshire	74	309,706	$703,\!582\ 277.82$	7 sec-	2 seconds	929.78
			MiB	onds		MiB
2039England/bedfordshire	74	329,061	715,797 278.47	7 sec-	2 seconds	927.74
			MiB	onds		MiB
2012England/berkshire	107	$342,\!167$	$890,\!543\ 356.08$	10	4 seconds	1.06
			${ m MiB}$	sec-		GiB
				onds		
2020England/berkshire	107	$365,\!905$	$918,\!258\ 373.39$	10	4 seconds	1.10
			MiB	sec-		GiB
				onds		
2022England/berkshire	107	$394,\!446$	$941,\!655\ 368.41$	10	4 seconds	1.08
			MiB	sec-		GiB
				onds		
2032England/berkshire	107	394,446	$941,\!655\ 368.41$	10	4 seconds	1.08
			${ m MiB}$	sec-		GiB
				onds		
2039England/berkshire	107	408,604	949,986 367.25	10	4 seconds	1.07
			MiB	sec-		GiB
				onds		
2012England/bristol	55	$182,\!299$	$448,\!233\ 173.75$	5 sec-	$1 \ second$	527.15
·			MiB	onds		MiB
2020England/bristol	55	196,940	470,039 184.00	5 sec-	$1 \ second$	547.40
•			MiB	onds		MiB
2022England/bristol	55	216,197	503,014 192.51	5 sec-	1 second	559.70
- ,		,	MiB	onds		MiB

ear study_area	num_	_msoas_ho	usæhnd <u>ds</u> pepp <u>le</u> file_	_sizetim	e commuting	<u>mentiony</u> e
032 England/bristol	55	216,197	503,014 192.51	6 sec-	1 second	559.70
- ,			MiB	onds		MiB
039England/bristol	55	227,770	521,371 199.73	6 sec-	1 second	573.32
			MiB	onds		MiB
$012 { m England/bucking hamsh}$	ire99	$301,\!486$	$786,221\ 314.40$	9 sec-	3 seconds	1007.27
			MiB	onds		MiB
20England/buckinghamsh	ire99	$327,\!554$	$816,\!518\ 331.16$	9 sec-	3 seconds	1.02
			MiB	onds		GiB
22England/buckinghamsh	ire99	$333,\!801$	$824,\!863\ 334.87$	9 sec-	3 seconds	1.03
			MiB	onds		GiB
32England/buckinghamsh	ire99	$363,\!840$	$844,684\ 331.67$	9 sec-	3 seconds	1.01
			MiB	onds		GiB
039England/buckinghamsh	ire99	$381,\!583$	$855,739\ 332.20$	9 sec-	3 seconds	1.01
			MiB	onds		GiB
12England/cambridgeshir	e 98	$327,\!257$	832,980 323.39	9 sec-	3 seconds	1013.07
			MiB	onds		MiB
20England/cambridgeshir	e 98	$348,\!522$	$863,\!250\ 341.20$	9 sec-	3 seconds	1.03
			MiB	onds		GiB
22England/cambridgeshir	e 98	$377,\!634$	$907,\!166\ 348.79$	9 sec-	3 seconds	1.03
			MiB	onds		GiB
32England/cambridgeshir	e 98	$377,\!634$	$907,\!166\ 348.79$	9 sec-	3 seconds	1.03
			MiB	onds		GiB
39England/cambridgeshir	e 98	$392,\!478$	$924,\!170\ 351.43$	9 sec-	3 seconds	1.04
			MiB	onds		GiB
12England/cheshire	139	441,084	1,042,06402.31	12	4 seconds	1.13
			MiB	sec-		GiB
				onds		
20England/cheshire	139	464,134	$1,\!070,\!59 \ \pmb{4} 16.52$	12	4 seconds	1.46
			MiB	sec-		GiB
				onds		
22England/cheshire	139	$489,\!476$	$1{,}125{,}19\$25.44$	12	4 seconds	1.47
			${ m MiB}$	sec-		GiB
				onds		
32England/cheshire	139	489,476	1,125,19\\ 25.44	12	4 seconds	1.47
- ,			${ m MiB}$	sec-		GiB
				onds		
39England/cheshire	139	501,501	1,149,51 4 31.28	12	4 seconds	1.48
- <i>,</i>		,	MiB	sec-		GiB
				onds		
12England/cornwall	74	233,710	551,951 208.93	7 sec-	2 seconds	744.32
<u> </u>		,	MiB	onds		MiB

ear study_area	num_	_m soas _ho	us eho l <u>ds</u> pepp <u>le</u> file_	_sizetim	e commuting	<u>nentiony</u>
020England/cornwall	74	248,145	579,460 220.51	7 sec-	2 seconds	766.20
			MiB	onds		MiB
022England/cornwall	74	251,934	$590,\!365\ 224.28$	7 sec-	2 seconds	773.13
			MiB	onds		MiB
032England/cornwall	74	271,147	$636,573\ 234.01$	7 sec-	2 seconds	829.51
			MiB	onds		MiB
039England/cornwall	74	281,563	$660,\!164\ 240.35$	7 sec-	2 seconds	839.16
			MiB	onds		MiB
012England/cumbria	64	$222,\!586$	498,624 188.07	6 sec-	1 second	547.25
			${ m MiB}$	onds		MiB
020England/cumbria	64	226,893	499,873 188.76	6 sec-	1 second	548.43
			MiB	onds		MiB
022England/cumbria	64	$230,\!206$	499,840 183.22	6 sec-	1 second	533.91
			MiB	onds		MiB
032England/cumbria	64	$230,\!206$	499,840 183.22	6 sec-	1 second	533.91
			${ m MiB}$	onds		MiB
039England/cumbria	64	231,202	498,475 181.62	6 sec-	1 second	530.88
			MiB	onds		MiB
012England/derbyshire	131	$436,\!276$	1,035,35 6 97.76	11	4 seconds	1.12
			${ m MiB}$	sec-		GiB
				onds		
020England/derbyshire	131	$459{,}743$	$1,\!064,\!40$ 609.77	11	4 seconds	1.44
			${ m MiB}$	sec-		GiB
				onds		
022England/derbyshire	131	489,764	$1{,}122{,}07\$19.53$	12	4 seconds	1.45
			${ m MiB}$	sec-		GiB
				onds		
032England/derbyshire	131	489,764	$1{,}122{,}07\$19.53$	12	4 seconds	1.45
			MiB	sec-		GiB
				onds		
039England/derbyshire	131	$505,\!314$	$1{,}152{,}51 \$ 29.02$	12	4 seconds	1.47
			MiB	sec-		GiB
				onds		
012England/devon	156	$494,\!106$	$1{,}165{,}95238.76$	13	4 seconds	1.49
			MiB	sec-		GiB
				onds		
020England/devon	156	$523,\!033$	1,212,38 4 59.60	13	4 seconds	1.53
			${ m MiB}$	sec-		GiB
			1,112	200		0.12

vear study_area	num_	_msoas_ho	us eho l <u>ds</u> pe pþ lefile	_sizetim	e commuting	<u>mentiony</u> e_u
2022 England/devon	156	567,011	1,304,87478.87	14	4 seconds	1.64
- ,			${ m MiB}$	sec-		$_{ m GiB}$
				onds		
$032 \mathrm{England/devon}$	156	$567,\!011$	1,304,87478.87	14	5 seconds	1.64
			MiB	sec-		GiB
				onds		
039England/devon	156	$589,\!178$	$1,\!342,\!77488.39$	14	5 seconds	1.66
			MiB	sec-		GiB
				onds		
$012 \mathrm{England/dorset}$	95	$328,\!906$	$761,766\ 285.99$	8 sec-	2 seconds	931.64
			MiB	onds		MiB
$020 { m England/dorset}$	95	$345,\!862$	777,887 295.20	8 sec-	2 seconds	951.30
			MiB	onds		MiB
022 m England/dorset	95	$350,\!392$	$782,725\ 296.83$	8 sec-	2 seconds	955.86
			MiB	onds		MiB
032 m England/dorset	95	$375,\!160$	802,953 294.92	8 sec-	2 seconds	945.43
			MiB	onds		MiB
39England/dorset	95	389,694	810,856 294.90	8 sec-	2 seconds	945.59
			MiB	onds		MiB
012England/durham	117	$390,\!472$	911,601 349.81	9 sec-	3 seconds	1.03
			MiB	onds		GiB
020England/durham	117	$407,\!828$	$930,\!184\ 359.62$	9 sec-	3 seconds	1.05
			MiB	onds		GiB
022England/durham	117	$425,\!611$	$952,\!801\ 356.65$	9 sec-	3 seconds	1.03
			MiB	onds		GiB
32England/durham	117	$425,\!611$	$952,\!801\ 356.65$	9 sec-	3 seconds	1.03
			MiB	onds		GiB
39England/durham	117	$434,\!593$	959,555 357.69	9 sec-	3 seconds	1.04
			MiB	onds		GiB
012England/east-sussex	102	$355,\!257$	827,703 313.77	9 sec-	3 seconds	987.24
			MiB	onds		MiB
020England/east-sussex	102	$380,\!894$	853,970 324.07	9 sec-	3 seconds	1006.06
			MiB	onds		MiB
022England/east-sussex	102	$423,\!181$	895,907 329.61	9 sec	3 seconds	1008.52
			MiB	onds		MiB
032England/east-sussex	102	$423,\!181$	895,907 329.61	9 sec-	3 seconds	1008.52
			MiB	onds		MiB
039England/east-sussex	102	446,000	915,014 335.50	9 sec	3 seconds	1020.68
			MiB	onds		MiB
012England/east-yorkshire-	75	$255,\!848$	$593,\!271\ 227.51$	7 sec-	2 seconds	778.67
with-hull			${ m MiB}$	onds		MiB

year study_area	num_	_m isoais _hou	sæhodspepþ <u>le</u> file_	_sizetim	e commuting	<u>nnentiomye</u>
2020 England/east-yorkshire-	75	262,609	602,286 233.16	7 sec-	2 seconds	834.96
with-hull			${ m MiB}$	onds		MiB
2022England/east-yorkshire-	75	272,805	613,721 230.36	7 sec-	2 seconds	824.41
with-hull			MiB	onds		MiB
2032England/east-yorkshire-	75	$272,\!805$	$613,721\ 230.36$	7 sec-	2 seconds	824.42
with-hull			${ m MiB}$	onds		MiB
2039England/east-yorkshire-	75	277,770	$617,\!357\ 230.47$	7 sec-	2 seconds	824.92
with-hull			MiB	onds		MiB
2012England/essex	211	722,974	1,786,31 6 90.86	19	9 seconds	2.06
			${ m MiB}$	sec-		GiB
				onds		
2020England/essex	211	773,454	1,857,20526.11	20	9 seconds	2.13
			${ m MiB}$	sec-		GiB
				onds		
2022England/essex	211	$858,\!552$	1,981,99 4 61.49	21	9 seconds	2.19
			${ m MiB}$	sec-		GiB
				onds		
2032England/essex	211	$858,\!552$	1,981,99 4 61.49	21	10	2.19
			${ m MiB}$	sec-	seconds	GiB
				onds		
2039England/essex	211	906,640	2,042,40 4 77.80	22	10	2.21
			MiB	sec-	seconds	GiB
				onds		
2012England/gloucestershire	107	365,240	889,836 344.21	10	3 seconds	1.02
			${ m MiB}$	sec-		GiB
				onds		
020England/gloucestershire	107	392,643	933,909 362.94	11	3 seconds	1.06
			MiB	sec-		GiB
				onds		
2022 England/gloucestershire	107	$432,\!216$	$1,\!025,\!07389.60$	11	3 seconds	1.10
			${ m MiB}$	sec-		GiB
				onds		
2032 England/gloucestershire	107	$432,\!216$	1,025,07389.60	11	3 seconds	1.10
			MiB	sec-		GiB
				onds		
2039England/gloucestershire	107	$453,\!383$	$1,\!068,\!48403.92$	11	3 seconds	1.43
			MiB	sec-		GiB
				onds		
2012England/greater-	983	3,287,651	$8,\!587,\!95$ 3 .28	5	4	11.80
london			${ m GiB}$	min-	minutes	GiB
				utes		

year study_area	num_	_m soas _hou	sæhnd <u>ds</u> pepp <u>le</u> file_	_siuntime	ecommuting	_nentiony
2020England/greater-	983	3,578,616	8,992,49 3 .48	5	4	12.22
london			GiB	min- utes	minutes	GiB
2022England/greater-	983	3,645,459	9,105,91 9 .53	5	4	12.31
london			GiB	min- utes	minutes	GiB
2032England/greater-	983	4,001,897	9,461,273.55	5	5	12.26
london			GiB	min- utes	minutes	GiB
2039England/greater-	983	4,233,367	9,697,96 6 .59	6	5	12.96
london			GiB	min- utes	minutes	GiB
2012England/greater-	346	1,128,371	$2,\!745,\!455.05$	40	26	3.56
manchester			GiB	sec- onds	seconds	GiB
2020England/greater-	346	1,192,547	2,840,431.10	41	27	3.66
manchester			GiB	sec- onds	seconds	GiB
2022England/greater-	346	1,272,689	2,974,95 4 .13	43	27	3.69
manchester			GiB	sec- onds	seconds	GiB
2032England/greater-	346	1,272,689	2,974,95 4 .13	43	28	3.69
manchester			GiB	sec- onds	seconds	GiB
2039England/greater-	346	1,319,090	3,049,727.15	45	29	3.73
manchester			GiB	sec- onds	seconds	GiB
2012England/hampshire	225	733,611	1,810,51 6 98.19	21	10	2.07
			MiB	sec- onds	seconds	GiB
2020 England/hampshire	225	$777,\!116$	$1,\!861,\!25\mathbf{@}21.78$	21	10	2.12
			${ m MiB}$	sec- onds	seconds	GiB
2022 England/hampshire	225	836,451	1,931,66 9 29.13	21	10	2.12
			${ m MiB}$	sec- onds	seconds	GiB
2032England/hampshire	225	$836,\!451$	1,931,66 9 29.13	21	10	2.12
			MiB	sec- onds	seconds	GiB

year study_area	num_	_msoas_ho	us ehn l <u>ds</u> pe pp<u>le</u>file_	_sizetim	e commuting	<u>mentionye</u>	_usag
2039 England/hampshire	225	867,417	1,960,19 0 35.66	22	10	2.13	
			MiB	sec-	seconds	GiB	
				onds			
2012 England/herefordshire	23	79,083	$188,362\ 72.22$	3 sec-	1 second	234.79	
			MiB	onds		MiB	
2020 England/herefordshire	23	$83,\!238$	195,19474.72	3 sec-	1 second	239.26	
			MiB	onds		MiB	
2022 England/herefordshire	23	$89,\!574$	209,784 77.64	3 sec-	1 second	242.72	
			MiB	onds		MiB	
2032 England/herefordshire	23	$89,\!574$	$209,784\ 77.64$	3 sec-	1 second	242.72	
			MiB	onds		MiB	
2039 England/herefordshire	23	$92,\!605$	216,50879.44	3 sec-	1 second	245.59	
			${ m MiB}$	onds		MiB	
2012England/hertfordshire	153	$457,\!276$	$1{,}160{,}15458.74$	13	5 seconds	1.56	
			${ m MiB}$	sec-		GiB	
				onds			
2020 England/hertfordshire	153	$494,\!661$	1,190,04 3 77.27	13	5 seconds	1.59	
			${ m MiB}$	sec-		GiB	
				onds			
2022England/hertfordshire	153	$546,\!573$	$1,\!219,\!12476.65$	13	5 seconds	1.67	
			${ m MiB}$	sec-		GiB	
				onds			
2032 England/hertfordshire	153	$546,\!573$	$1,\!219,\!12476.65$	13	5 seconds	1.67	
			MiB	sec-		GiB	
				onds			
2039England/hertfordshire	153	$575,\!179$	1,233,57 3 77.07	13	5 seconds	1.67	
			MiB	sec-		GiB	
				onds			
2012England/isle-of-wight	18	$61,\!636$	$139,732\ 53.88$	3 sec-	1 second	188.67	
			MiB	onds		MiB	
2020England/isle-of-wight	18	65,140	$143,268\ 54.99$	3 sec-	1 second	190.34	
			${ m MiB}$	onds		MiB	
2022England/isle-of-wight	18	70,496	151,582 55.55	3 sec-	1 second	200.88	
- ,			${ m MiB}$	onds		MiB	
2032 England/isle-of-wight	18	70,496	$151,582\ 55.55$	3 sec-	1 second	200.88	
<i>-</i> ,		,	m MiB	onds		MiB	
2039 England/isle-of-wight	18	72,968	154,841 56.14	3 sec-	1 second	202.02	
5 ,		,	$^{'}$ MiB	onds		MiB	
2012England/kent	220	718,544	1,793,70 2 00.26	19	8 seconds	2.08	
J ,	-	,	MiB	sec-		GiB	
				onds			

rear study_area	num_	_msoas_ho	us eho l <u>ds</u> pe pþ lefile_	_sizetim	e commuting	<u>mentourye</u>
2020England/kent	220	781,933	1,873,45737.36	20	9 seconds	2.15
			MiB	sec-		GiB
				onds		
$2022 \mathrm{England/kent}$	220	$875,\!515$	2,008,85773.40	20	9 seconds	2.21
			MiB	sec-		GiB
				onds		
2032England/kent	220	$875,\!515$	2,008,85773.40	20	9 seconds	2.21
			MiB	sec-		GiB
2007	220			onds		2.22
039England/kent	220	$926,\!571$	2,069,08788.63	21	9 seconds	2.23
			MiB	sec-		GiB
010 E1 1/1	101	610.061	1 476 46570 04	onds	7 1	1 09
012England/lancashire	191	619,861	1,476,46 9 72.04	16	7 seconds	1.83 C:D
			MiB	sec-		GiB
0020England/langaghire	191	640,196	1 511 00500 00	$\frac{\text{onds}}{16}$	7 seconds	1.87
020 England/lancashire	191	040,190	1,511,89 6 89.88 MiB		7 seconds	GiB
			MID	$\frac{\text{sec-}}{\text{onds}}$		GID
022England/lancashire	191	663,637	1,567,39 6 94.59	16	7 seconds	1.87
022 England/laneasine	101	000,001	MiB	sec-	7 Seconds	GiB
			WIID	onds		GID
032England/lancashire	191	663,637	1,567,39694.59	16	7 seconds	1.87
oo z Biigiana, ianoasime	101	000,001	MiB	sec-	, seconds	GiB
				onds		0.1_
039England/lancashire	191	674,387	1,591,90 6 00.12	17	7 seconds	1.88
8,		,	MiB	sec-		GiB
				onds		
012England/leicestershire	120	391,605	1,014,48 3 94.46	10	4 seconds	1.12
·			MiB	sec-		GiB
				onds		
2020 England/leicestershire	120	$418,\!618$	$1,\!073,\!84219.67$	11	4 seconds	1.47
			${ m MiB}$	sec-		GiB
				onds		
022England/leicestershire	120	424,923	1,092,67426.66	11	4 seconds	1.49
			${ m MiB}$	sec-		GiB
				onds		
032England/leicestershire	120	$460,\!335$	1,178,74 6 49.47	12	5 seconds	1.52
			MiB	sec-		GiB
				onds		

year study_area	num_	_msoas_ho	usæhmd <u>ds</u> pepp <u>le</u> file_	_sizetim	e commuting	<u>g_mentiony</u> e_usage
2039 England/leicestershire	120	482,373	1,225,82464.68	12	4 seconds	1.55
			MiB	sec-		GiB
				onds		
2012 England/lincolnshire	134	$449,\!394$	1,064,40303.11	11	4 seconds	1.43
			MiB	sec-		GiB
				onds		
2020 England/lincolnshire	134	$475,\!646$	1,098,40 3 19.38	11	4 seconds	1.46
			MiB	sec-		GiB
00000	104	FOT 00F	1 150 00005 60	onds	4 1	1 477
2022 England/lincolnshire	134	507,295	1,152,29 9 27.62	11	4 seconds	1.47 C:D
			MiB	sec-		GiB
2032 England/lincolnshire	134	507,295	1,152,29 9 27.62	$\frac{\text{onds}}{11}$	4 seconds	1.47
2032 England/ Infcomshire	134	507,295	1,152,29 4 27.02 MiB	sec-	4 seconds	GiB
			MID	onds		GID
2039England/lincolnshire	134	523,548	1,172,92330.89	11	4 seconds	1.47
2003 England, miconismic	101	020,040	MiB	sec-	4 beconds	GiB
			WIID	onds		CID
2012 England/merseyside	184	603,483	1,399,20 9 33.99	14	6 seconds	1.75
		000, 200	MiB	sec-		GiB
				onds		
2020 England/merseyside	184	632,617	1,435,75553.36	14	6 seconds	1.79
ζ , ,			${ m MiB}$	sec-		GiB
				onds		
2022 England/merseyside	184	665,766	$1,\!498,\!51870.24$	14	6 seconds	1.82
			MiB	sec-		GiB
				onds		
2032 England/merseyside	184	665,766	1,498,51870.24	14	6 seconds	1.82
			MiB	sec-		GiB
				onds	_	
2039England/merseyside	184	$685,\!165$	$1,\!528,\!03$ 5 77.51	15	6 seconds	1.83
			${ m MiB}$	sec-		GiB
20107 1 1/ 67		0=1 101		onds		101=00
2012 England/norfolk	110	374,491	882,793 333.12	10	3 seconds	1017.08
			MiB	sec-		MiB
2020 El 1/ C 11	110	207 770	016 700 949 46	onds	9 1	1.00
2020 England/norfolk	110	397,770	916,799 348.46 M:D	10	3 seconds	1.02 C:D
			MiB	sec-		GiB
				onds		

year study_area	num_	_m soas _ho	usæhnd <u>ds</u> pepp <u>le</u> file	_sizetim	e commuting	g <u>ne</u> ntiony
2022 England/norfolk	110	432,187	982,755 362.33	10	3 seconds	1.04
- ,		,	MiB	sec-		GiB
				onds		
2032England/norfolk	110	$432,\!187$	$982,755\ 362.33$	10	3 seconds	1.04
			MiB	sec-		GiB
				onds		
2039England/norfolk	110	450,068	1,013,21 3 71.44	10	3 seconds	1.06
			MiB	sec-		GiB
				onds		
2012 England/north-	138	$460,\!050$	$1,\!085,\!06 \overline{\textbf{4}} 13.12$	12	4 seconds	1.45
yorkshire			MiB	sec-		GiB
				onds		
2020 England/north- yorkshire	138	$478,\!639$	$1{,}107{,}92\$23.25$	12	4 seconds	1.47
			MiB	sec-		GiB
				onds		
2022England/north-	138	$499,\!392$	$1{,}134{,}72320.66$	12	4 seconds	1.45
yorkshire			MiB	sec-		GiB
				onds		
2032 England/north-	138	$499,\!392$	1,134,72320.66	12	4 seconds	1.45
yorkshire			MiB	sec-		GiB
				onds		
2039England/north-	138	509,099	1,143,89 4 21.58	12	4 seconds	1.46
yorkshire			MiB	sec-		GiB
				onds		
2012England/northampton	shir 9 1	$289,\!575$	$720,\!263\ 284.41$	8 sec-	2 seconds	941.24
			MiB	onds		MiB
2020England/northampton	shir 0 1	$316,\!553$	$762,\!382\ 304.38$	8 sec-	2 seconds	981.06
			MiB	onds		MiB
2022England/northampton	shir 0 1	$352,\!529$	$828,003\ 320.83$	9 sec-	3 seconds	1005.56
			MiB	onds		MiB
2032England/northampton	shir 0 1	$352,\!529$	$828,\!003\ 320.83$	9 sec-	3 seconds	1005.56
			MiB	onds		MiB
2039England/northampton	shir 0 1	$370,\!555$	$855,\!812\ 328.05$	9 sec-	3 seconds	1016.77
			MiB	onds		MiB
2012England/northumberla	and 40	138,928	$315,\!894\ 120.67$	5 sec-	$1 \ {\rm second}$	423.02
			MiB	onds		MiB
$2020 \mathrm{England/northumberla}$	and 40	$143,\!516$	$322,\!616\ 121.95$	5 sec-	$1 \ {\rm second}$	423.78
			MiB	onds		MiB
2022England/northumberla	and 40	148,792	$333,\!456\ 122.08$	5 sec-	$1 \ {\rm second}$	421.39
			MiB	onds		MiB
			MID	onas		MID

ear study_area	num	msoas_ho	us eho l <u>ds</u> pe ob <u>le</u> file_	_sizetim	e commuting	<u>g</u> nention
032England/northumberland	d 40	148,792	333,456 122.08	5 sec-	1 second	421.39
			${ m MiB}$	onds		MiB
$039 { m England/northumberland}$	d 40	$150,\!259$	$337,\!186\ 122.26$	5 sec-	1 second	421.38
			MiB	onds		MiB
012England/nottinghamshir	e 138	460,022	$1{,}123{,}00432.55$	12	4 seconds	1.49
- ,			${ m MiB}$	sec-		GiB
				onds		
020England/nottinghamshir	e 138	486,163	1,169,48 9 53.88	12	4 seconds	1.53
, ,		,	MiB	sec-		GiB
				onds		
022England/nottinghamshir	e 138	522,944	1,248,80473.55	12	5 seconds	1.56
G/		10	MiB	sec-		GiB
			1.112	onds		<u></u>
032England/nottinghamshir	e 138	522,944	1,248,80473.55	12	5 seconds	1.56
		J==,0 11	MiB	sec-	5 55501140	GiB
			1,111	onds		
039England/nottinghamshir	e 138	543,291	1,281,81 2 82.41	13	5 seconds	1.66
039England/ nottingnamsim	0100	010,201	MiB	sec-	o beconds	GiB
			141117	onds		GID
2England/oxfordshire	86	261,235	671,997 260.47	7 sec-	2 seconds	852.78
.2 Lingland, Oxfordshire	00	201,200	MiB	onds	2 acconds	MiB
20England/oxfordshire	86	274,908	695,490 271.66	7 sec-	2 seconds	918.84
20 England/ Oxfordshire	00	414,300	MiB	onds	2 Seconds	918.84 MiB
22England/oxfordshire	86	293,368	729,866 275.44	7 sec-	2 seconds	919.28
22 England/oxfordshire	00	293,300	MiB		2 seconds	919.20 MiB
22 England /ortfordahina	06	202 260		onds	O googn da	
32England/oxfordshire	86	293,368	729,866 275.44	8 sec-	2 seconds	919.28 M:D
20 England /orfordshins	96	อกอ กอะ	MiB	onds	2 gocond-	MiB
39England/oxfordshire	86	303,035	743,227 277.55 MiB	8 sec-	2 seconds	922.13 M;B
119 England /mrtland	5	14.019		onds	1 ancomd	MiB
012England/rutland	5	14,912	,	2 sec-	1 second	53.95 M;D
200 El 1 / +1 1	F	16 600	MiB	onds	1 1	MiB
020England/rutland	5	16,698	40,381 17.09	2 sec-	1 second	57.84
000T 1 1/ +1 1	-	10 100	MiB	onds	1 1	MiB
22England/rutland	5	18,198	44,193 18.26	2 sec-	1 second	59.97
20 D 1 1/ 13	_	10.100	MiB	onds		MiB
32England/rutland	5	18,198	44,193 18.26	2 sec-	1 second	59.97
2007	_	40.000	MiB	onds		MiB
39England/rutland	5	18,914	45,659 18.71	2 sec-	1 second	61.09
			${ m MiB}$	onds		MiB
12England/shropshire	62	197,768	483,414 186.37	6 sec-	1 second	550.90
			${ m MiB}$	onds		MiB

year study_area	num_	_m soas _ho	usæhnd <u>ds</u> pepp <u>le</u> file_	_sizetim	e commuting	_mentionye_	_u
2020 England/shropshire	62	211,035	508,233 195.85	6 sec-	1 second	568.56	
			${ m MiB}$	onds		MiB	
2022England/shropshire	62	$228,\!285$	$558,755\ 207.37$	6 sec-	1 second	740.52	
			MiB	onds		MiB	
2032 England/shropshire	62	$228,\!285$	$558,755\ 207.37$	6 sec-	1 second	740.52	
			MiB	onds		MiB	
2039England/shropshire	62	$236,\!015$	581,476 213.31	6 sec-	1 second	749.75	
			MiB	onds		MiB	
2012England/somerset	124	$392,\!224$	$938,968\ 359.26$	10	3 seconds	1.05	
			MiB	sec-		GiB	
				onds			
2020England/somerset	124	421,693	979,526 376.56	10	3 seconds	1.08	
			${ m MiB}$	sec-		GiB	
				onds			
2022England/somerset	124	$428,\!543$	993,364 381.41	10	3 seconds	1.09	
			MiB	sec-		GiB	
				onds			
2032England/somerset	124	$463,\!526$	1,054,16 3 94.38	11	3 seconds	1.41	
·			MiB	sec-		GiB	
				onds			
2039England/somerset	124	484,587	1,087,59 6 04.50	11	3 seconds	1.43	
·			MiB	sec-		GiB	
				onds			
2012England/south-	172	566,664	1,372,43528.13	14	6 seconds	1.75	
yorkshire			MiB	sec-		GiB	
				onds			
2020 England/south-	172	597,694	1,418,84648.61	15	6 seconds	1.79	
yorkshire			${ m MiB}$	sec-		GiB	
				onds			
2022England/south-	172	637,411	1,493,54 4 63.93	15	6 seconds	1.81	
yorkshire			MiB	sec-		GiB	
				onds			
2032 England/south-	172	637,411	1,493,54 4 63.93	15	6 seconds	1.81	
yorkshire		,	m MiB	sec-		GiB	
				onds			
2039England/south-	172	659,843	1,531,31 3 75.33	15	6 seconds	1.83	
yorkshire		,	MiB	sec-		GiB	
-				onds			
2012 England/staffordshire	143	464,441	1,111,14425.33	12	4 seconds	1.47	
,		,	MiB	sec-		GiB	
				onds			

vear study_area	num_	_m soas _ho	us eho l <u>ds</u> pepp <u>le</u> file_	_sizetim	e commuting	<u>mentiony</u>
2020 England/staffordshire	143	486,645	1,139,75 2 37.56	12	4 seconds	1.49
·			MiB	sec-		GiB
				onds		
022England/staffordshire	143	$510,\!634$	$1{,}188{,}857\!\!\!/44.92$	12	4 seconds	1.50
			${ m MiB}$	sec-		GiB
				onds		
2032 England/staffordshire	143	$510,\!634$	$1{,}188{,}85744.92$	12	4 seconds	1.50
			${ m MiB}$	sec-		GiB
				onds		
039England/staffordshire	143	$522,\!882$	$1,\!215,\!00653.00$	12	4 seconds	1.52
<u> </u>			${ m MiB}$	sec-		GiB
				onds		
$012 \mathrm{England/suffolk}$	90	$312,\!178$	$746,\!863\ 285.39$	8 sec-	2 seconds	933.65
			${ m MiB}$	onds		MiB
020England/suffolk	90	331,778	$766,023\ 294.07$	8 sec-	2 seconds	950.73
			${ m MiB}$	onds		MiB
022England/suffolk	90	$336,\!599$	$773,\!019\ 296.48$	8 sec-	2 seconds	956.16
			${ m MiB}$	onds		MiB
032England/suffolk	90	$360,\!555$	800,189 298.09	8 sec-	2 seconds	952.75
			${ m MiB}$	onds		MiB
039England/suffolk	90	$375,\!536$	$817,\!179\ 302.95$	8 sec-	2 seconds	963.06
			${ m MiB}$	onds		MiB
012England/surrey	151	$458,\!108$	$1{,}168{,}11256.56$	14	7 seconds	1.55
			${ m MiB}$	sec-		GiB
				onds		
020England/surrey	151	480,930	$1{,}195{,}50{\bf 9}72.95$	14	6 seconds	1.58
			${ m MiB}$	sec-		GiB
				onds		
022England/surrey	151	518,720	$1,\!214,\!554\!\!\!/67.08$	14	6 seconds	1.56
			${ m MiB}$	sec-		GiB
				onds		
2032England/surrey	151	518,720	$1,\!214,\!557\!$	14	6 seconds	1.56
			MiB	sec-		GiB
				onds		
039England/surrey	151	$538,\!941$	$1,\!221,\!227\!\!\!\!\!\!64.76$	14	6 seconds	1.64
			MiB	sec-		GiB
				onds		
012England/tyne-and-wear	145	483,909	$1{,}119{,}03\mathbf{@}27.37$	11	4 seconds	1.47
			MiB	sec-		GiB
				onds		

vear study_area	num_	_msoas_hou	sæhnd <u>ds</u> pepp <u>le</u> file_	_sizetim	e commuting	<u>mentionye</u>
2020 England/tyne-and-wear	145	501,383	1,143,19439.11	11	4 seconds	1.50
			${ m MiB}$	sec-		GiB
				onds		
022England/tyne-and-wear	145	521,777	1,168,07 8 40.06	11	4 seconds	1.49
			${ m MiB}$	sec-		GiB
				onds		
2032 England/tyne-and-wear	145	521,777	1,168,07 8 40.06	11	4 seconds	1.49
			MiB	sec-		GiB
				onds		
039 England/tyne-and-wear	145	$532,\!652$	1,177,34041.39	11	4 seconds	1.58
			MiB	sec-		GiB
				onds		
012England/warwickshire	108	$361,\!467$	896,673 347.46	10	3 seconds	1.03
			MiB	sec-		GiB
				onds		
020 England/warwickshire	108	392,639	958,833 373.64	10	3 seconds	1.08
			MiB	sec-		GiB
	400	400.000		onds		
022England/warwickshire	108	$432,\!682$	1,061,95 4 05.97	11	4 seconds	1.44
			MiB	sec-		GiB
2227 1 1/	100	100.000	1 001 05505 05	onds		- 44
032 England/warwickshire	108	$432,\!682$	1,061,95 4 05.97	11	4 seconds	1.44
			MiB	sec-		GiB
2007 1 1/ 111	100	45 4 500	1 110 0000 / 11	onds	4 1	1 45
039England/warwickshire	108	454,732	1,112,23 0 24.11	11	4 seconds	1.47
			MiB	sec-		GiB
010E 1 1/ 4 :11 1	01.4	050 094	0.477.20000.00	onds	10	2.04
012England/west-midlands	314	958,034	2,477,39 9 90.28	33	19	3.24
			MiB	sec-	seconds	GiB
000 E1 1/	914	1 000 050	0.570.905.01	onds	10	2 22
020 England/west-midlands	314	1,002,273	2,572,395.01	34	19	3.33
			GiB	sec-	seconds	GiB
0000 1 1/ / 11 1	01.4	1 040 140	0.004.000.04	onds	20	0.07
022England/west-midlands	314	1,046,146	2,664,228.04	35	20	3.37
			GiB	sec-	seconds	GiB
	01.4	1 050 010	0.700.040.04	onds	0.1	0.55
032 England/west-midlands	314	1,079,612	2,706,242.04	36	21	3.55
			GiB	sec-	seconds	GiB
				onds		

ear study_area	num_	_m soas _hou	sæhml <u>ds</u> pepp <u>le</u> file_	_sizetim	e commuting	<u>nentim</u>
039England/west-midlands	314	1,128,890	2,787,990.07	38	22	3.59
- ,		. ,	$_{ m GiB}$	sec-	seconds	GiB
				onds		
12England/west-sussex	100	348,766	836,646 321.38	9 sec-	3 seconds	1004.51
			${ m MiB}$	onds		MiB
20England/west-sussex	100	$375,\!837$	871,029 337.97	9 sec-	3 seconds	1.01
			${ m MiB}$	onds		GiB
22England/west-sussex	100	419,347	$931,\!573\ 350.32$	9 sec-	3 seconds	1.03
			${ m MiB}$	onds		GiB
2England/west-sussex	100	$419,\!347$	$931,\!573\ 350.32$	9 sec-	3 seconds	1.03
			${ m MiB}$	onds		GiB
9England/west-sussex	100	$442,\!292$	958,567 356.98	9 sec-	3 seconds	1.04
			${ m MiB}$	onds		GiB
2England/west-	299	$921,\!242$	2,271,83 8 93.92	29	15	3.05
yorkshire			MiB	sec-	seconds	GiB
				onds		
0England/west-	299	963,460	2,339,93 9 30.52	29	16	3.12
yorkshire		,	MiB	sec-	seconds	GiB
				onds		
2England/west-	299	1,021,830	2,434,90 9 45.81	30	16	3.13
yorkshire		, ,	MiB	sec-	seconds	GiB
				onds		
2England/west-	299	1,021,830	2,434,90 9 45.81	30	16	3.13
yorkshire		, ,	MiB	sec-	seconds	GiB
·				onds		
England/west-	299	1,053,859	2,481,35957.44	31	16	3.32
yorkshire		, ,	MiB	sec-	seconds	GiB
•				onds		
2England/wiltshire	89	285,600	704,491 274.63	7 sec	2 seconds	921.03
J ,		,	MiB	onds		MiB
0England/wiltshire	89	309,159	735,088 288.25	8 sec-	2 seconds	947.38
<u> </u>		,	MiB	onds		MiB
2England/wiltshire	89	335,400	774,105 292.74	8 sec-	2 seconds	949.12
<u> </u>		,	MiB	onds		MiB
2England/wiltshire	89	335,400	774,105 292.74	8 sec-	2 seconds	949.12
S ,		,	MiB	onds		$_{ m MiB}$
9England/wiltshire	89	348,866	792,075 296.45	8 sec-	2 seconds	955.03
S /		,	MiB	onds		MiB
2England/worcestershire	85	240,958	578,628 221.50	6 sec-	2 seconds	770.52
3 /		- ,	MiB	onds		MiB

year study_area	num	m soas ho	us eho l <u>ds</u> pe pþ lefile	_sizetim	e commuting	<u>_nentom</u>
2020 England/worcestershire	85	255,594	601,116 231.62	7 sec-	2 seconds	790.33
			MiB	onds		MiB
2022England/worcestershire	85	$274,\!309$	$644,922\ 242.01$	7 sec-	2 seconds	849.75
			MiB	onds		MiB
2032 England/worcestershire	85	$274,\!309$	$644,922\ 242.01$	7 sec-	2 seconds	849.75
			MiB	onds		MiB
2039England/worcestershire	85	$283,\!275$	666,303 248.40	7 sec-	2 seconds	861.28
			MiB	onds		MiB
2012Scotland/argyll-and-	41	82,845	176,560 74.08	11	1 second	238.90
west-dunbartonshire			MiB	sec-		MiB
				onds		
2020Scotland/argyll-and-	41	85,066	174,19773.18	11	$1 \ {\rm second}$	236.56
west-dunbartonshire			MiB	sec-		MiB
				onds		
2022Scotland/argyll-and-	41	$85,\!263$	172,737 72.59	11	$1 \ { m second}$	235.57
west-dunbartonshire			MiB	sec-		MiB
				onds		
2032Scotland/argyll-and-	41	85,398	165,068 67.76	11	$1 \ second$	224.69
west-dunbartonshire			MiB	sec-		MiB
				onds		
2039Scotland/argyll-and-	41	84,758	$159,\!19665.25$	11	$1 \ second$	219.77
west-dunbartonshire			MiB	sec-		MiB
				onds		
2012Scotland/ayrshire	93	$168,\!387$	$370,\!588\ 146.33$	9 sec-	$1 \ second$	483.77
			MiB	onds		MiB
2020Scotland/ayrshire	93	133,922	283,894 112.46	8 sec-	1 second	416.08
			MiB	onds		MiB
2022Scotland/ayrshire	93	$173,\!199$	$367,\!016\ 143.70$	9 sec-	1 second	476.04
			MiB	onds		MiB
2032 Scotland/ayrshire	93	$174,\!290$	$356,750\ 137.29$	9 sec-	1 second	462.30
			MiB	onds		MiB
2039Scotland/ayrshire	93	$173,\!349$	$347,\!174\ 133.28$	9 sec-	1 second	455.01
			MiB	onds		MiB
2012 Scotland/dumfries-and-	40	$68,\!416$	$149,\!648\ 61.42$	6 sec-	$1 \ {\rm second}$	217.04
galloway			MiB	onds		MiB
2020 Scotland/dumfries-and-	40	$70,\!212$	$148,\!123\ 60.21$	6 sec-	$1 \ \text{second}$	213.17
galloway			MiB	onds		MiB
2022 Scotland/dumfries-and-	40	$70,\!455$	$147,\!351\ 59.47$	6 sec-	1 second	211.49
galloway			MiB	onds		MiB
2032 Scotland/dumfries-and-	40	70,840	$142,\!418\ 56.10$	6 sec-	1 second	204.07
galloway			${ m MiB}$	onds		MiB

year study_area	num_	_msoas_ho	us eho l <u>ds</u> pepp <u>le</u> file_	_sizetim	e commuting	<u>rnentium</u>
2039 Scotland/dumfries-and-	40	70,668	138,573 54.77	6 sec-	1 second	202.05
galloway		,	MiB	onds		MiB
2012Scotland/edinburgh	111	225,093	497,378 186.98	7 sec-	2 seconds	555.70
			MiB	onds		MiB
2020Scotland/edinburgh	111	$242,\!994$	$525,\!476\ 198.41$	8 sec-	2 seconds	732.84
			MiB	onds		MiB
2022Scotland/edinburgh	111	248,491	$532,\!384\ 200.96$	8 sec-	2 seconds	738.35
			MiB	onds		MiB
2032Scotland/edinburgh	111	$273,\!234$	$562,902\ 207.62$	8 sec-	2 seconds	791.61
			MiB	onds		MiB
2039Scotland/edinburgh	111	288,360	578,847 210.49	8 sec-	2 seconds	793.17
			MiB	onds		MiB
2012Scotland/fife	104	162,121	$368,\!038\ 145.78$	6 sec-	$1 \ second$	484.35
			MiB	onds		MiB
2020Scotland/fife	104	$159,\!563$	371,896 147.05	6 sec-	1 second	486.65
			MiB	onds		MiB
2022Scotland/fife	104	159,580	371,743 146.38	6 sec-	$1 \ second$	485.15
,			${ m MiB}$	onds		MiB
2032Scotland/fife	104	$166,\!255$	370,447 141.66	6 sec-	1 second	472.29
,			${ m MiB}$	onds		MiB
2039Scotland/fife	104	169,335	366,438 138.24	6 sec-	1 second	463.01
,			${ m MiB}$	onds		MiB
2012Scotland/forth-valley	78	130,141	302,504 121.15	8 sec-	1 second	414.67
,			MiB	onds		MiB
2020Scotland/forth-valley	78	136,735	308,153 122.32	8 sec-	1 second	436.38
,			MiB	onds		MiB
2022 Scotland/forth-valley	78	138,447	310,297 122.89	8 sec-	1 second	437.80
,			${ m MiB}$	onds		MiB
2032Scotland/forth-valley	78	146,138	318,438 122.93	8 sec-	1 second	435.84
,			${ m MiB}$	onds		MiB
2039Scotland/forth-valley	78	150,069	$322,395\ 123.80$	8 sec-	$1 \ second$	436.43
			MiB	onds		MiB
2012Scotland/greater-	184	368,013	805,502 306.63	11	4 seconds	985.47
glasgow			${ m MiB}$	sec-		MiB
				onds		
2020Scotland/greater-	184	382,846	836,875 320.55	11	4 seconds	1013.11
glasgow		•	${ m MiB}$	sec-		MiB
				onds		
2022Scotland/greater-	184	388,050	842,636 322.55	11	4 seconds	1017.20
glasgow		,	MiB	sec-		MiB
00				onds		

year study_area	num_{-}	_msoas_ho	us eho l <u>ds</u> pe pþ lefile_	_sizetime commutii	ng_m entiony e_usag
2032Scotland/greater-	184	411,534	866,464 327.49	11 4 seconds	
glasgow			${ m MiB}$	sec-	GiB
2020 (1 1/	104	407 500	000 001 000 51	onds	1000.00
2039 Scotland/greater-	184	427,529	880,981 329.51	11 4 seconds	
glasgow			MiB	sec-	MiB
2012Scotland/highlands-	78	136,249	305,988 140.72	onds 56 1 second	451.01
and-islands	10	130,249	MiB	sec-	MiB
and islands			WIID	onds	WIID
2020Scotland/highlands-	78	144,639	307,886 140.39	57 1 second	447.70
and-islands	•	111,000	MiB	sec-	MiB
and isimilas				onds	
2022 Scotland/highlands-	78	145,837	307,923 139.70	57 1 second	445.96
and-islands		,	${ m MiB}$	sec-	${ m MiB}$
				onds	
2032 Scotland/highlands- and-islands	78	149,761	$305,\!422\ 135.12$	56 1 second	434.37
			MiB	sec-	MiB
				onds	
2039 Scotland/highlands-	78	$150,\!652$	$301,591\ 133.25$	56 1 second	430.68
and-islands			MiB	sec-	MiB
				onds	
2012Scotland/lanarkshire	160	287,147	654,563 258.58	11 2 seconds	
			${ m MiB}$	sec-	MiB
20226 1 1/1 1 1 1	1.00	000 111	001 040 001 04	onds	000 74
2020Scotland/lanarkshire	160	302,111	661,042 261.24	11 2 seconds	
			MiB	sec-	MiB
2022 Cartland /langulahina	160	205 554	662,692 261.37	onds 11 2 seconds	907.35
2022Scotland/lanarkshire	100	$305,\!554$	MiB	sec-	MiB
			MID	onds	MID
2032Scotland/lanarkshire	160	318,581	667,589 257.31	11 2 seconds	895.50
2002 Scotland, landr Kshire	100	310,001	MiB	sec-	MiB
			WIID	onds	WIID
2039Scotland/lanarkshire	160	324,614	666,795 254.59	11 2 seconds	887.40
		~-,~	MiB	sec-	MiB
				onds	
2012Scotland/north-east	132	250,789	587,273 228.59	14 2 seconds	795.80
,		,	MiB	sec-	MiB
				onds	

year study_area	num_	_m soas _ho	usehnd <u>ds</u> pepp <u>le</u> file_	_sizetim	e commuting	<u>_nnentian</u>
2020 Scotland/north-east	132	267,964	586,245 230.01	14	2 seconds	841.08
			MiB	sec-		MiB
				onds		
2022 Scotland/north-east	132	271,745	587,957 230.81	14	2 seconds	842.86
			MiB	sec-		MiB
				onds		
2032 Scotland/north-east	132	287,988	594,876 228.56	14	2 seconds	836.51
			MiB	sec-		MiB
				onds		
2039Scotland/north-east	132	$297,\!440$	594,445 226.47	14	2 seconds	830.82
			MiB	sec-		MiB
				onds		
2012 Scotland/renfrewshire-	55	119,057	254,125 99.98	5 sec-	1 second	293.66
and-inverclyde		101.100	MiB	onds		MiB
2020 Scotland/renfrewshire-	55	124,460	256,040 100.44	5 sec-	1 second	293.33
and-inverclyde		105 450	MiB	onds		MiB
2022 Scotland/renfrewshire-	55	$125,\!450$	256,087 100.34	5 sec-	1 second	293.55
and-inverclyde		100 105	MiB	onds	1 1	MiB
2032 Scotland/renfrewshire-	55	129,185	255,008 97.93 MiB	5 sec-	1 second	287.17 M:D
and-inverclyde 2039 Scotland/renfrewshire-	==	191 507	252,677 96.59	$\frac{\text{onds}}{5 \text{ sec}}$	1 second	MiB 306.43
and-inverclyde	55	131,507	252,077 90.59 MiB	onds	1 second	300.43 MiB
2012Scotland/tayside	92	186,890	414,921 162.38	10	1 second	513.43
2012 Scotland/tayside	92	100,090	414,921 102.38 MiB	sec-	1 second	MiB
			MID	onds		MID
2020Scotland/tayside	92	195,140	416,793 162.39	10	1 second	510.25
2020 Scotlaria, taysiac	32	150,140	MiB	sec-	1 Second	MiB
			WIID	onds		MIL
2022Scotland/tayside	92	197,192	416,846 162.22	10	1 second	510.05
2222227 2003 2200	~ -	, _	MiB	sec-		MiB
				onds		_
2032Scotland/tayside	92	205,693	415,175 158.45	10	1 second	501.29
, .		,	MiB	sec-		MiB
				onds		
2039Scotland/tayside	92	210,290	411,445 156.35	10	1 second	497.39
,		•	MiB	sec-		MiB
				onds		
2012Scotland/the-lothians-	111	205,879	482,896 194.90	12	2 seconds	580.86
and-scottish-borders			MiB	sec-		MiB
				onds		

year study_area	num_	_m isoas _ho	usæhoddspeppplefile_	_siuetim	e commuting	<u>nention</u>
2020 Scotland/the-lothians-	111	223,446	501,223 201.50	12	2 seconds	590.52
and-scottish-borders		,	$^{'}$ MiB	sec-		MiB
				onds		
2022Scotland/the-lothians-	111	227,783	$507,\!880\ 203.76$	12	2 seconds	595.27
and-scottish-borders			MiB	sec-		MiB
				onds		
2032 Scotland/the-lothians-	111	$246,\!603$	$537,145\ 210.28$	12	2 seconds	761.01
and-scottish-borders			${ m MiB}$	sec-		MiB
				onds		
2039Scotland/the-lothians-	111	$257,\!299$	$552,\!545\ 214.47$	12	2 seconds	767.17
and-scottish-borders			MiB	sec-		MiB
				onds		
2012 Wales/bridgend-and-	38	119,725	283,159 108.22	4 sec-	1 second	382.14
neath-port-talbot			MiB	onds		MiB
2020 Wales/bridgend-and-	38	123,909	289,896 111.11	4 sec-	1 second	387.34
neath-port-talbot			MiB	onds	_	MiB
022 Wales/bridgend-and-	38	124,921	292,227 111.51	4 sec-	1 second	387.62
neath-port-talbot			MiB	onds		MiB
032 Wales/bridgend-and-	38	128,601	301,529 113.58	4 sec-	1 second	390.72
neath-port-talbot	00	100 740	MiB	onds	. 1	MiB
039 Wales/bridgend-and-	38	129,740	307,260 114.33	4 sec-	1 second	391.18
neath-port-talbot	CO	100 000	MiB	onds	1 1	MiB
012 Wales/cardiff-and-vale-	63	199,208	484,182 187.22	5 sec-	1 second	558.11
of-glamorgan	CO	01 / 676	MiB	onds	1 1	MiB
020 Wales/cardiff-and-vale-	63	214,676	499,272 194.75	5 sec-	1 second	572.81
of-glamorgan	62	210 001	MiB	onds	1 accord	MiB
022 Wales/cardiff-and-vale- of-glamorgan	63	218,981	502,763 196.15 MiB	5 sec- onds	1 second	575.96 MiB
032 Wales/cardiff-and-vale-	63	240,112	522,526 199.47	5 sec-	1 second	577.76
of-glamorgan	00	240,112	MiB	onds	1 second	MiB
2039 Wales/cardiff-and-vale-	63	254,162	531,549 201.86	6 sec-	1 second	737.22
of-glamorgan	00	201,102	MiB	onds	1 booting	MiB
2012 Wales/central-valleys	38	124,691	296,581 115.15	4 sec-	1 second	396.09
ora , raios, continui vancys	30	121,001	MiB	onds	1 booting	MiB
2020 Wales/central-valleys	38	130,072	301,907 117.77	4 sec-	1 second	400.86
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		,	MiB	onds		MiB
2022 Wales/central-valleys	38	131,383	303,557 118.40	4 sec-	1 second	424.36
,		,	MiB	onds		MiB
	20	136,404	310,032 118.04	4 sec-	1 second	421.02
2032 Wales/central-valleys	38	130,404	010,002 110.01	T BCC-	1 become	121.02

year study_area	num_	_msoas_ho	us æhn l <u>ds</u> pepp <u>le</u> file_	_siuntim	e commutin	g <u>r</u> nentiony
2039 Wales/central-valleys	38	138,735	314,703 119.17	4 sec-	1 second	422.91
,			${ m MiB}$	onds		MiB
2012 Wales/conwy-and-	30	92,732	211,205 80.51	4 sec-	$1 \ second$	251.37
denbighshire			MiB	onds		MiB
2020 Wales/conwy-and-	30	95,314	213,302 81.57	4 sec-	$1 \ second$	253.52
denbighshire			${ m MiB}$	onds		MiB
2022 Wales/conwy-and-	30	95,881	214,182 81.86	4 sec-	$1 \ second$	254.11
denbighshire			${ m MiB}$	onds		MiB
2032 Wales/conwy-and-	30	97,683	218,122 81.12	4 sec-	$1 \ second$	251.06
denbighshire			${ m MiB}$	onds		MiB
2039 Wales/conwy-and-	30	97,687	220,933 80.93	4 sec-	1 second	249.66
denbighshire			${ m MiB}$	onds		MiB
2012 Wales/flintshire-and-	38	122,180	288,696 113.33	4 sec-	$1 \ second$	393.53
wrexham			${ m MiB}$	onds		MiB
2020 Wales/flintshire-and-	38	127,660	292,056 114.59	4 sec-	1 second	395.17
wrexham			${ m MiB}$	onds		MiB
2022 Wales/flintshire-and-	38	129,007	292,644 115.04	4 sec-	1 second	396.45
wrexham		,	$_{ m MiB}$	onds		MiB
2032 Wales/flintshire-and-	38	134,527	292,817 112.38	4 sec-	1 second	410.81
wrexham		ŕ	$_{ m MiB}$	onds		MiB
039 Wales/flintshire-and-	38	136,425	293,540 112.23	4 sec-	1 second	410.67
wrexham		ŕ	$_{ m MiB}$	onds		${ m MiB}$
012Wales/gwent-valleys	46	144,178	341,543 132.18	4 sec-	1 second	450.92
, = 0			MiB	onds		${ m MiB}$
020 Wales/gwent-valleys	46	148,386	344,566 132.84	4 sec-	1 second	450.78
, 5		,	MiB	onds		${ m MiB}$
022Wales/gwent-valleys	46	149,374	345,498 132.73	4 sec-	1 second	450.12
, 5		,	MiB	onds		${ m MiB}$
2032 Wales/gwent-valleys	46	151,842	347,976 130.51	4 sec-	1 second	442.75
, -			${ m MiB}$	onds		MiB
2039 Wales/gwent-valleys	46	151,729	350,397 130.60	4 sec-	1 second	442.92
, 0			MiB	onds		MiB
2012Wales/gwynedd	17	52,926	122,595 48.30	3 sec-	1 second	141.40
, 5 %		,	$^{'}$ MiB	onds		MiB
020Wales/gwynedd	17	55,064	124,569 49.30	3 sec-	1 second	143.64
, 5 0		,	$^{'}$ MiB	onds		MiB
2022Wales/gwynedd	17	55,683	125,030 49.22	3 sec-	1 second	143.38
, 🔾 . v		,	$^{'}$ MiB	onds		MiB
2032 Wales/gwynedd	17	58,372	128,844 49.83	3 sec-	1 second	143.73
/ U V	-	,	MiB	onds		MiB

vear study_area	num_	_msoas_ho	us eho l <u>ds</u> po	pp <u>le</u> file	_sizetim	e commutin	g_mention
2039 Wales/gwynedd	17	59,746	130,948	50.66	3 sec-	1 second	145.55
,		,	,	MiB	onds		MiB
2012 Wales/isle-of-anglesey	9	30,797	69,919	27.65	3 sec-	1 second	96.69
,		,	,	MiB	onds		MiB
2020 Wales/isle-of-anglesey	9	31,366	69,845	27.85	3 sec-	1 second	97.28
,		,	,	MiB	onds		MiB
022Wales/isle-of-anglesey	9	31,488	69,864	27.91	3 sec-	1 second	97.60
,		,	,	MiB	onds		MiB
032Wales/isle-of-anglesey	9	31,601	69,502	27.10	3 sec-	1 second	95.40
,		,	,	MiB	onds		MiB
039 Wales/isle-of-anglesey	9	31,337	69,423	26.91	3 sec-	1 second	95.26
,		,	,	MiB	onds		MiB
012Wales/monmouthshire-	31	100,402	240,491	94.45	4 sec-	1 second	280.30
and-newport		,	,	MiB	onds		MiB
020 Wales/monmouthshire-	31	104,394	250,185	98.12	4 sec-	1 second	286.88
and-newport				MiB	onds		MiB
022Wales/monmouthshire-	31	105,481	253,282	99.28	4 sec-	1 second	288.93
and-newport		,	,	MiB	onds		MiB
032Wales/monmouthshire-	31	109,752	265,785	102.22	4 sec-	1 second	371.30
and-newport		,	,	MiB	onds		MiB
039 Wales/monmouthshire-	31	111,246	273,319	103.91	4 sec-	1 second	373.72
and-newport		,	,	MiB	onds		MiB
012Wales/powys	19	59,028	132,725	51.23	4 sec-	$1 \ second$	184.96
, 2				MiB	onds		MiB
020 Wales/powys	19	59,972	132,328	50.62	4 sec-	1 second	183.27
, , ,		,	,	MiB	onds		MiB
022Wales/powys	19	60,190	132,467	50.48	4 sec-	1 second	182.78
, 2				MiB	onds		MiB
032Wales/powys	19	59,586	133,010	49.65	4 sec-	$1 \ second$	180.54
·				MiB	onds		MiB
039Wales/powys	19	57,969	133,514	49.37	4 sec-	1 second	179.70
				MiB	onds		MiB
012Wales/south-west-	50	165,004	383,260	145.80	5 sec-	$1 \ \text{second}$	474.24
wales				MiB	onds		MiB
020 Wales/south-west-	50	170,327	385,937		5 sec-	$1 \ {\rm second}$	474.39
wales		,	,	MiB	onds		MiB
022Wales/south-west-	50	171,623	386,901	147.01	5 sec-	$1 \ {\rm second}$	476.02
wales		,	,	MiB	onds		MiB
032Wales/south-west-	50	175,897	392,107	145.21	5 sec-	1 second	469.23
		,	,				MiB

year study_area	num_	_msoas_ho	us æho l <u>ds</u> pe pþ <u>le</u> file_	sizatime commuting_manting_usag				
2039 Wales/south-west-	50	176,482	394,303 144.54	5 sec-	1 second	467.40		
wales			MiB	onds		MiB		
2012 Wales/swansea	31	104,423	242,128 93.14	4 sec-	1 second	276.08		
·			MiB	onds		MiB		
2020Wales/swansea	31	110,304	247,820 95.76	4 sec-	1 second	281.31		
·			MiB	onds		MiB		
2022Wales/swansea	31	111,940	249,098 96.15	4 sec-	1 second	282.09		
			MiB	onds		MiB		
2032 Wales/swansea	31	119,141	257,653 98.32	4 sec-	1 second	285.46		
·			$_{ m MiB}$	onds		MiB		
2039 Wales/swansea	31	123,450	262,306 99.97	4 sec-	1 second	366.54		
·			MiB	onds		MiB		
2012special/birmingham	132	410,243	1,104,21 6 50.75	14	5 seconds	1.55		
- , -			$_{ m MiB}$	sec-		GiB		
				onds				
2020special/birmingham	132	429,124	1,148,42 6 70.60	14	5 seconds	1.59		
- , -			${ m MiB}$	sec-		GiB		
				onds				
2022special/birmingham	132	434,527	1,156,70 2 73.72	15	5 seconds	1.59		
· , · · · ·			MiB	sec-		GiB		
				onds				
2032 special/birmingham	132	467,993	1,198,71 6 79.63	15	5 seconds	1.59		
· , · · · ·		,	MiB	sec-		GiB		
				onds				
2039 special/birmingham	132	492,029	1,230,21489.58	16	5 seconds	1.61		
· , · · · ·		,	MiB	sec-		GiB		
				onds				
2012special/liverpool	61	207,217	479,774 182.06	7 sec-	1 second	538.83		
- , -			MiB	onds		MiB		
2020special/liverpool	61	224,431	503,264 193.74	7 sec-	1 second	562.01		
·			MiB	onds		MiB		
2022special/liverpool	61	241,366	536,264 206.67	7 sec-	1 second	742.97		
- , -			$_{ m MiB}$	onds		MiB		
2032 special/liverpool	61	241,366	536,264 206.67	7 sec-	1 second	742.97		
- , -		•	m MiB	onds		MiB		
2039 special/liverpool	61	251,435	549,857 211.22	7 sec-	1 second	751.45		
- , -		•	m MiB	onds		MiB		
2012special/manchester	57	204,775	525,548 207.38	10	2 seconds	752.26		
- ,		,				M:D		
			${ m MiB}$	sec-		MiB		

year study_area	num_1	m soas _hou	samundspepplefile_	_sizetim	e commuting	<u>_nnention</u>
2020 special/manchester	57	220,664	551,613 221.09	10	2 seconds	780.27
			MiB	sec-		MiB
2022 an a sial/man sheat an	F7	241 262	E76 212 226 2E	onds	O gooon da	705 05
2022 special/manchester	57	241,262	576,313 226.35 MiB	10 sec-	2 seconds	785.85 MiB
			MID	onds		MIID
2032 special/manchester	57	241,262	576,313 226.35	10	2 seconds	785.84
2002 special/ manenester	01	241,202	MiB	sec-	2 seconds	MiB
			WIID	onds		WIID
2039 special/manchester	57	253,464	589,904 230.46	11	2 seconds	793.05
· F · · · · / · · · · · · · · · · · · ·		,	MiB	sec-		MiB
				onds		
2012special/northwest_transp	p @229 ine	2,653,096	6,416,49 2 .45	3	2	7.74
- · ·		. ,	$_{ m GiB}$	min-	minutes	${ m GiB}$
				utes		
$2020 \operatorname{special/northwest_trans}$	p @29 ine	2,788,624	6,616,11 2 .56	3	2	7.95
			GiB	min-	minutes	GiB
				utes		
2022 special/northwest_transp	p @29 ine	2,960,285		3	2	8.02
			GiB	min-	minutes	GiB
				utes		
$2032 \mathrm{special/northwest_transp}$	p &29 ine	2,960,285	, , , , , , , , , , , , , , , , , , ,	3	2	8.02
			GiB	min-	minutes	GiB
		0.050.114		utes		
2039 special/northwest_transp	pendine	3,058,114		3 .	2	8.09
			GiB	min-	minutes	GiB
2012 an acial /owford	10	55 OO1	154 065 61 14	utes	1	207 70
2012special/oxford	18	55,081	154,065 61.14 MiB	4 sec- onds	1 second	207.79 MiB
2020special/oxford	18	55,235	153,045 61.53	4 sec-	1 second	208.41
2020special/oxioru	10	00,200	MiB	onds	T SECORA	MiB
2022special/oxford	18	56,840	149,534 58.11	4 sec-	1 second	199.69
2022 Special, Oxford	10	50,010	MiB	onds	1 become	MiB
2032 special/oxford	18	56,840	149,534 58.11	4 sec-	1 second	199.69
-september of the control of the con		50,010	MiB	onds	_ 5550114	MiB
2039 special/oxford	18	58,038	147,239 56.67	4 sec-	1 second	196.62
, , , , , , , , , , , , , , , , , , , ,		,	MiB	onds		MiB
2012special/oxford_cambridg	ge <u>3</u> 53fc	1,112,235	2,828,466.08	40	21	3.61
. , — .	-	, ,				
			${ m GiB}$	sec-	seconds	$_{ m GiB}$

year study_area nur	n_msoas_	_hous æh	nddspepoplefile_	_sizetim	e commuting	<u>nentome</u> usage
2020special/oxford_cambridge353	c 1,199,	,021 2,9	50,74 3 .14	41	21	3.73
			GiB	sec-	seconds	GiB
				onds		
2022special/oxford_cambridge353	c 1,296	$,471\ 3,1$.07,28 9 .17	43	22	3.77
			GiB	sec-	seconds	GiB
				onds		
2032special/oxford_cambridge353	c 1,314	,402 3,1	22,071.17	43	22	3.76
			GiB	sec-	seconds	GiB
				onds		
2039special/oxford_cambridge353	c 1,372,	,547 3,1	89,664.18	44	23	3.78
			GiB	sec-	seconds	GiB
				onds		

Notes:

- pb_file_size refers to the size of the uncompressed protobuf file in data/output/
- The total runtime is usually dominated by matching workers to businesses, so commuting_runtime gives a breakdown
- Measuring memory usage of Linux processes isn't straightforward, so memory_usage should just be a guide
- These measurements were all taken on one developer's laptop, and they don't represent multiple runs. This table just aims to give a general sense of how long running takes.
 - That machine has 10 cores, which matters for the parallelized commuting calculation.
- The time *usually* doesn't include downloading or decompressing raw data. For some areas, it might!
- scripts/collect_stats.py produces the table above