사고가 많이 발생하는 고속국도에서의 골든타임을 확보하기 위한 공공병원 입지 선정

[공공빅데이터 Project 57조] 김가영 김유찬 김찬별 성재훈 송예진

데이터 디코딩

데이터 확장

최종 위험도 수치 Top10 지역

공공병원 최종 입지 선정

시각화

 01

 프로젝트 소개

 <2016 ~ 2020년 도로교통공사 제공>

 도로종류별 고통사고의 사고건수 대비 사망자수(중상자수) 퍼센트

 80%

 60%

 40%

 20%

 2016
 2017

 교전체퍼센트
 교고속국도 퍼센트

고속도로의 경우 일반 도로에 비해 교통사고 치사율이 높으나 병원 이송 및 골든 타임 확보가 어려워 고속도로 인근 내 병원의 필요성이 대두됨. < "고속도로 사고"와 관련된 뉴스 키워드 분석 >

#사고 #추돌 #교통사고

그렇다면, 고속도로 안에서 병원을 보신 적이 있나요?

고속국도 내 공공병원 현황

[TV CHOSUN] 고속도로 위에 병원이…안성휴게소에 국내 첫 공공의료시설 개원

경부고속도로 서울방향 안성휴게소입니다. 그런데 휴게소에서 볼 수 없는 병원 건물이 주차장 입구에 자리잡았습니다.

지난 26일 문을 연 경기도립 안성휴게소 의원입니다. 고속도로 휴게소에 공공의료시설이 들어선 건 전국에서 처음입니다.

이지원 / 인천광역시

"휴게소에 병원이 있을 줄은 몰랐는데, 여기서 바로 볼 수 있으니까 신속해서 좋은 거 같아요."

이 병원에는 경기도의료원 소속 의사 2명과 간호사 4명 등 의료진 6명이 교대로 근무합니다. 고속도로에서 발생하는 다양한 응급환자 처치가 가능해 '골든타임' 확보에 기여할 전망입니다

√ 현재 안성휴게소에 공공병원 1곳이 설립되었음.

√ 의료서비스를 제공받기 어려운 화물 기사 및 이용객을 위한 공 공 의료 시설 추가 설립이 필요

√ 닥터헬기가 있으나, 야간 이용이 어렵고 기상 상황의 영향을 받는다는 한계점이 존재

사고가 많이 발생하는 고속국도에서의 골든 타임을 확보하기 위한 공공병원 입지 선정

[TV CHOSUN] 고속도로 위에 병원이…안성휴게소에 국내 첫 공공의료시설 개원

경부고속도로 서울방향 안성휴게소입니다. 그런데 휴게소에서 볼 수 없는 병원 건물이 주차장 입구에 지

지난 26일 문을 연 경기도립 안성휴게소 의원입니다. 고속도로 휴게소에 공공의료시설이 들어선 건 전 국에서 처음입니다.

이 병원에는 경기도의료원 소속 의사 2명과 간호사 4명 등 의료진 6명이 교대로 근무합니다. 고속도로에서 발생하는 다양한 응급환자 처치가 가능해 '골든타임' 확보에 기여할 전망입니다 √ 현재 안성휴게소에 공공병원 1곳이 설립되었음.

이 문제를 어떻게 해결할 수 있을까? 라는 화물 기사 및 이용객을 위한 공 공 의료 시설 추가 설립이 필요

> √ 닥터헬기가 있으나, 야간 이용이 어렵고 기상 상황의 영향을 받 는다는 한계점이 존재

#약국없잖아..

1 프로젝트소개

2. 분석과정

66 고속도로 위험도 예측에서 공공병원 입지선정까지

"

1 프로젝트소개

3. 분석 환경

- Matplotlib
- Seaborn
- Wordcloud
- Folium
- calplot

- 구글드라이브
- zoom

- Selenium(-)
- Bs4
- Mecab
- Re
- Json
- google API

- Excel
- Sklearn
- R
- Python
- Qgis

1. 데이터 수집

1 공사/사고 정보 전국 도로 위 공사/사고데이

터를 제공하는 자료로 날짜,

사고유형 및 발생 지역 포함

2 전국 응급의료기관 위치 데이터

국립중앙의료원에서 제공하는 자료로 전국 응급의료기관의 이름과 주소가 담긴 데이터.

활용 데이터 정의

3 개별 교통사고 정보

TAAS 교통사고정보 개방시스템에서 제공하는 자료로 2017년부터 2019년까지의 교통사고별 발생일, 발생시_시도, 발생지_시군구, 사고내용, 도로종류, 사상자 수 등을 포함

4 전국표준노드링크

ITS 국가 교통 정보 센터에서 제 공하는 데이터로 전국에 걸친 모 든 도로를 line데이터로 포함 **5** 시군구별 인구 데이터

통계청에서 제공하는 자료로 시군구 별 총 인구수를 나타냄

총 34개의 변수 + 3개의 파생변수 = 37개 변수

발생일', '발생시간', '발생지_시도', '발생지_시군구', '요일', '사고내용', '사고유형_대분류',
'사고유형_중분류', '가해자법규위반', '가해자성별', '가해자연령', '가해당사자종별', '가해자신체상해정도',
'피해자성별', '피해자연령', '피해당사자종별', '피해자신체상해정도', '가해차량용도_대분류', '가해차량용도_중분류',
'가해차량용도', '피해차량용도_대분류', '피해차량용도_중분류', '피해차량용도', '기상상태', '노면상태', '사망자수',
'중상자수', '경상자수', '부상신고자수', '도로형태', '도로형태_대분류', '도로종류', '사고유형', '노면상태_대분류', '응급실 개수', '시군구별_인구', 'Risk'

2. 데이터 전처리

Pearson 상관분석

Lambda 계수 활용 상관분석

다중선형회귀분석 (OLS)

포아송 회귀 모형

변수 제거 후 종속변수(Risk)에 영향을 주는 <mark>중요 변수</mark> 파악

37개 변수 - 7개 변수 = 30개 변수

발생일', '발생시간', '발생지_시도', '발생지_시군구', '요일', '사고내용', '사고유형_대분류', '사고유형_중분류', '가해자법규위반', '가해자성별', '가해자선병', '기해자선병', '기해자선병', '피해자선병', '피해자선병', '피해자선병', '피해자선병', '피해자선병', '피해자연형', '피해당사자종별', '피해자상병도', '기해차량용도_대분류', '기해차량용도_대분류', '기해차량용도_대분류', '피해차량용도_ 대분류', '피해차량용도_중분류', '피해차량용도', '기상상태', '노면상태', '사망자수', '중상자수', '경상자수', '부상신고자수', '응급실 개수', '시군구별_인구'

2. 데이터 전처리

다중공선성 확인 다중공선성 확인을 통하여 25개 변수로 축소

Features	VIF
피해차량용도_대분류	27.721
가해차량용도_대분류	21.198
가해자법규위반	21.190
기상상태	15.855
가해자신체상해정도	10.445
가해자성별	9.300
가해차량용도	7.025
피해차량용도_중분류	6.604
피해자연령	6.192
발생시간	5.252
가해자연령	4.863
발생지_시 군구	4.697

Features	VIF
사고내용	4.449
피해자성별	4.285
시군구별_인구	4.153
사고유형_중분류	4.031
피해자신체상해정도	3.379
요일	3.152
응급실_개수	2.816
중상자수	2.542
경상자수	2.085
발생지_시도	2.004
노면상태	1,533
사망자수	1.121
부상신고자수	1.089

사고가 많이 발생하는 고속국도에서의 골든 타임을 확보하기 위한 공공병원 입지 선정

3. 모델링

사고가 많이 발생하는 고속국도에서의 골든 타임을 확보하기 위한 공공병원 입지 선정

4. 성능평가

	Decision Tree	RandomForest	Gradient Boost	Voting
R-squared	0.8458	0.9841	0.8423	0.9095
Adj-R-Squared	0.8452	0.9840	0.8417	0.9092
MAE	1.055	0.0811	0.4111	0.2873
MSE	4.724	0.4864	4.8326	2.7717
RMSE	2.173	0.6974	2.1983	1.6648
MAPE	36.74	1.086	7.9425	5.4903

1. 위험도 Top10 지역

과거 위	위험도 순위		미래 위형	점도 순위
Rank	지역명		Rank	지역명
1	무주군		1	삼척시
2	영광군		2	부여군
3	통영시		3	단양군
4	장수군		4	영주시
5	장흥군		5	남원시
6	군산치		6	보령시
7	당진시		7	무주군
8	단양군	'	8	군산시
9	삼척시		9	포항시
10	함양군	•	10	제천시

2. 데이터 디코딩

발생지 시군구	Risk	응급실_개수	시군구별 _인구
무주군	1	0	0.02
영광군	0.82	0.11	0.05
통영시	0.76	0	0.11
장수군	0.74	0	0.02
장흥군	0.71	0.06	0.03

	CODE	NAME	X	Υ
0	41173	안양시	126.9265485	37.40449318
1	41273	안산시	126.4641628	37.08141046
2	41285	고양시	126.8323569	37.66013775
3	41465	용인시	127.2221199	37.22797806
4	48129	창원시	128.6689353	35.056715
	•••	***		

66

단위가 다른 데이터에 대해 Min-Max 스케일링에서 위치 데이터 추가까지

"

2. 데이터 디코딩 - 최종데이터

최종 데이터

발생지_시군구	Risk	응급실_개수	시군구별_인구	CODE	lat	lon	rank_risk
무주군	1	0	0.02	45730	127.71786797949537	35.92844902789001	0.979518
장수군	0.74	0	0.02	45740	127.53081063748525	35.65337857728517	0.719379
영광군	0.82	0.11	0.05	46870	126.35771868785159	35.17002740272413	0.664171
통영시	0.76	0	0.11	48220	128.38664787637794	34.902772288651185	0.647544
장흥군	0.71	0.06	0.03	46800	126.93002786619141	34.43655247827988	0.619340
단양군	0.44	0	0.03	43800	128.4346107181822	36.98014110856385	0.411289
함양군	0.43	0	0.03	48870	127.73139250081962	35.54356449098023	0.397460
영덕군	0.4	0	0.03	47770	129.45016910669779	36.51156974033527	0.368319
서천군	0.41	0	0.04	44770	126.60504527996054	35.9953980127662	0.368193
청양군	0.39	0	0.03	44790	126.85008784286296	36.44315504458993	0.359898

사고가 많이 발생하는 고속국도에서의 골든 타임을 확보하기 위한 공공병원 입지 선정

3. 시각화

3. 시각화

3. 시각화

4. 최종 위험도 수치 Top10 지역

과거 위험도 순위					미래 위험도	E 순위
Rank	지역명	위험도 지수		Rank	지역명	위험도 지수
1	무주군	0.98]	1	삼척시	0.89
2	장수군	0.72		2	부여군	0.82
3	영광군	0.66		3	단양군	0.79
4	통영시	0.65		4	영주시	0.60
5	장 흥 군	0.62		5	무주군	0.56
6	단양군	0.41	·	6	남원시	0.54
7	함양군	0.40		7	군위군	0.47
8	영덕군	0.37		8	보령시	0.46
9	서천군	0.37		9	함양군	0.43
10	청양군	0.36		10	보은군	0.39

5. 데이터 확장

고속국도 내 사고 최신데이터 를 위험도 수치 데이터를 통해 검증하고자 함

최신 사고 데이터를 최종 위험도 수치 데이터에 결합하였을 때, 공 통되는 부분은 위험도가 실제로 높다고 생각

공통 지역을 최종 입지로 선정

5. 데이터 확장

실제 사고위험도가 높은 지역 사고위험도가 높을 것이라고 예측된 위치 공통 지역

5. 공공병원 최종 입지 선정

사고가 많이 발생하는 고속국도에서의 골든 타임을 확보하기 위한 공공병원 입지 선정

 04

 개선방안

4 개선방안

1. 활용방안

활용방안

- 1. 의료시설이 부족한 지역에 공공의료 시설을 확대할 수 있음
- 2. 사고 위험도가 높게 예측된 지역의 지자체가 사고위험도를 낮출 수 있는 방안을 마련하여 사고를 방지하고 신속하게 대처할 수 있음
- 3. 해당 모델을 고속국도 외의 교통사고 데이터에도 활용하여 사고 예측의 적용 범 위를 확대할 수 있음

4 개선방안

2. 한계점

한계점

- 구급차가 도착해서 병원 이송 관련 정확한 과정을 알 수 없어서 입지선정 요인에 고려하지 못했음
- 2. 입지선점에 있어서 지형에 대한 정확한 수치데이터가 없었음
- 3. 도로환경을 데이터 부족으로 인해 충분히 고려하지 못했음

감사합니다