Worksheet 6

1. The set of Gaussian integers is

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$$

Which of the following terms describe the Gaussian integers?

rng, (commutative) ring, integral domain, field, Z-module, R-vector space

2. Let X be a set. Which of the following terms describe $(\mathcal{P}(X), \Delta, \cap)$?

rng, (commutative) ring, integral domain, field

3. Which of the following terms describe

$$\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}?$$

rng, (commutative) ring, integral domain, field

4. Let k be a field. A polynomial over k with indeterminate X is an expression of the form

$$c_0 + c_1 X + c_2 X^2 + \dots + c_n X^n$$
,

where $c_0, \ldots, c_n \in k$ and X is a formal symbol. For example,

$$2X^2 + 3$$
, X^9 , $X^2 + 3X - 2$

are polynomials over \mathbb{R} . Write k[X] for the set of polynomials in X over k equipped with the familiar polynomial addition and multiplication operations. Which of the following terms describe k[X]?

rng, (commutative) ring, integral domain, field

5. Let (G, +) be an abelian group and define the operation

$$\cdot: \mathbb{Z} \times G \to G$$

by

$$k \cdot g = \underbrace{g + \dots + g}_{k \text{ times}}$$

if k > 0, by

$$k \cdot g = \underbrace{(-g) + \dots + (-g)}_{k \text{ times}}$$

if k < 0, and by $0 \cdot g = 0.1$ Is G a \mathbb{Z} -module?

¹That is, $0_{\mathbb{Z}} \cdot g = 0_G$, where $0_G \in G$ is the identity in G.

- 6. What are the additive inverses of $0, 1, 2, 3, 4 \in \mathbb{Z}_5$?
- 7. What are the multiplicative inverses of $1, 2, 3, 4 \in \mathbb{Z}_5$?
- 8. Let k be a field and fix $n \in \mathbb{N}$. Is

$$k^n = \{(a_1, \dots, a_n) \mid a_1, \dots a_n \in k\}$$

necessarily a k-vector space?²

9. Let $(R, +, \cdot)$ be a ring with additive identity $0 \in R$. That is, 0 is the (unique) element in R satisfying

$$\forall a \in R : a + 0 = a = 0 + a.$$

Prove that $0 \cdot a = 0 = a \cdot 0$.

Hint. Use the distributive property.

10. Consider the operation

$$\cdot: \mathbb{F}_2 \times \mathbb{R} \to \mathbb{R}$$

given by

$$0 \cdot x = 0$$

$$1 \cdot x = x$$

for $x \in \mathbb{R}$. Is $(\mathbb{R}, +, \cdot)$ an \mathbb{F}_2 -vector space?

 $^{^2\}mathrm{By}$ convention, we define $k^0=\{0_k\}$