Code No: 153AN

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, October - 2020 DIGITAL SYSTEM DESIGN

(Electronics and Communication Engineering)

Time: 2 hours Max. Marks: 75

Answer any five questions All questions carry equal marks

- - -

- 1.a) Convert the following to Binary and then to gray code:
 - i) $(AB33)_{16}$
- ii) $(3323)_8$
- b) Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend.
 - i) 11010 10010
- ii) 100 110000.

- [7+8]
- 2.a) Derive Boolean expression for a 2 input Ex-NOR gate to realize with two input NOR gates, without using complemented variables and draw the circuit.
 - b) Implement the function F with the following two level forms
 - i) NAND-AND
 - ii) AND-NOR

$$F(A,B,C,D) = P(0,1,2,3,4,8,9,12)$$

[7+8]

- 3. For the given function $F(A, B, C, D, E) = \Sigma(0,1, 2, 3, 4, 5, 9, 10, 16, 17, 18, 19, 20, 22, 25, 26) + \Sigma d (7, 11, 12, 13, 15, 23, 27, 28, 29, 30). Obtain minimal SOP expression using K-Map. [15]$
- 4.a) Implement the multiple output combinational logic circuit using a 4 line to 16 line decoder.

$$f1 = \Sigma m(1, 2, 4, 7, 8, 11, 12, 13, 14, 15)$$

$$f2 = \Sigma m(0, 1, 3, 5, 8, 9, 15)$$

 $f3 = \Sigma m(2, 3, 4, 7)$

$$f4 = \Sigma m(0, 1, 3, 4, 7, 9)$$

b) Design a 32:1 Multiplexer using two 16:1 and 2:1 Multiplexers.

[8+7]

5.a) Design a 4 bit universal shift resister and draw the circuit with the given mode of operation table.

S_1	S_0	Operation
0	0	Shift left
0	1	Shift right
1	0	Parallel
1	1	Inhibit clock

b) Explain how a T Flip-Flop is converted to J-K Flip-Flop.

[8+7]

- 6.a) Using the method of flip flop conversion carry out S-R to T conversion.
 - b) Design and implement a MOD-7 synchronous counter using T flip-flops.

[7+8]

- 7.a) Design a Mod-6 synchronous counter using J-K flip flops.
 - b) Explain the design of a serial binary adder.

[8+7]

- 8.a) Draw and explain the circuit diagram of a diode OR gate for positive logic.
 - b) Draw the circuit diagram of diode-transistor logic NOR gate and explain its operation.

[7+8]