

SoDeep: a Sorting Deep net to learn ranking loss surrogates

Martin Engilberge^{1,2}, Louis Chevallier², Patrick Pérez³, Matthieu Cord^{1,3} ¹Sorbonne Université, Paris, France, ²Technicolor, Cesson Sévigné, France, ³Valeo.ai, Paris, France

Overview

Non-differentiable ranking metrics:

The projection from continuous score to discrete rank used in ranking metrics makes them non-differentiable

Approach to make ranking metrics differentiable:

- DNN sorter trained to approximate the rank function rk
- Ranking metrics expressed as a function of the sorter
- Ranking metrics used as loss function

Training a differentiable sorter

Using only synthetic data:

- Uniform distribution over [-1,1]
- Normal distribution with $\mu = 0$ and $\sigma = 1$
- Evenly spaced numbers in random sub-range of [-1,1]

Sorter architecture:

$$\mathbf{y}$$
 BI-LSTM affine $\widehat{\mathbf{r}}$ • LSTM

Loss functions

 $r_s = 1 - \frac{6\|\mathbf{r}\mathbf{k}(\mathbf{y}) - \mathbf{r}\mathbf{k}(\mathbf{y}')\|_2^2}{d(d^2 - 1)}$

 $\min_{\mathbf{\Theta}_A} \sum_{n=1}^N \left\| \mathbf{rk}(\mathbf{y}^{(n)}) - \mathbf{rk}(\mathbf{y}^{*(n)}) \right\|_2^2$

 $\mathcal{L}_{mAP}(\mathbf{\Theta}_A,\mathcal{B}) = \sum \langle f_{\mathbf{\Theta}_B}(\mathbf{y}_c), \mathbf{y}_c^*
angle$

Spearman correlation as loss function:

- Spearman correlation
- Maximizing Spearman correlation
- Replacing rk with our trained sorter

$\mathcal{L}_{SPR}(\mathbf{\Theta}_A, \mathcal{B}) = \sum_{1}^{N} \left\| f_{\mathbf{\Theta}_B}(\mathbf{y}(\mathbf{\Theta}_A)^{(n)}) - \mathbf{rk}(\mathbf{y}^{*(n)}) \right\|_2^2$

Mean average precision as loss function:

 $\mathcal{L}_{REC}(\mathbf{\Theta}_A, \mathcal{B}) = \frac{1}{d} \sum_{i \in \mathcal{B}} \max_{c \neq p, c \neq i} loss(\mathbf{Y}[i], p, c)$ **Recall as loss function:**

$$loss(\mathbf{Y}[i], p, c) = \max \{0, \alpha + f_{\mathbf{\Theta}_B}(\mathbf{Y}[i])_p - f_{\mathbf{\Theta}_B}(\mathbf{Y}[i])_c\}$$

Handcrafted sorter

Baseline: a ranking algorithm

 A differentiable comparator: the sigmoid function

$$\sigma_{comp}(a,b) = \frac{1}{1 + e^{-\lambda(b-a)}}$$

 Comparing an element with the rest of the sequence yields its rank

$$f_h(\mathbf{y}, i) = \sum_{j: j \neq i} \sigma_{comp}(\mathbf{y}_i, \mathbf{y}_j)$$

 Value of λ, a trade off between accuracy and gradient flow

Sorter comparison

Sorter behavior analysis:

- The learned sorters are able to estimate the groundtruth rank
- RNN sorters perform better than CNN ones

Memorability Loss Spear. corr. val. 45.7 Sorter baseline Sorter CNN 50.4 Sorter LSTM

Toy experiments:

- Binary classification on synthetic data
- Competitive with less complexity

Object recognition: evaluated on the VOC 2007 challenge

Model	mAP
VGG 16	89.3
WILDCAT [1]	95.0
WILDCAT*	93.2
WILDCAT* + SoDeep	94.0

Evaluation

Cross modal retrieval: evaluated on MS-CoCo image/caption pairs

	Caption retrieval			Image retrieval				
Model	R@1	R@5	R@10	Med. r	R@1	R@5	R@10	Med. r
DSVE-Loc[2]	69.8	91.9	96.6	1	55.9	86.9	94.0	1
GXN[3]	68.5	-	97.9	1	56.6	-	94.5	1
SoDeep	71.5	92.8	97.1	1	56.2	87.0	94.3	1

Memorability prediction: memorability score reflects the probability of a video to be remembered

Model	Spear. corr.
Baseline	46.0
Sem-Emb + MSE loss	48.6
Sem-Emb + SoDeep	49.4

References

[1] T. Durand et al. Wildcat: Weakly supervised learning of deep convnets for image classification, pointwise localization and segmentation. CVPR, 2017

[2] M. Engilberge et al. Finding beans in burgers: Deep semantic-visual embedding with localization. CVPR,

[3] J. Gu et al. Look, imagine and match: Improving textual-visual cross-modal retrieval with generative models. CVPR, 2018.

[4] Y. Yue et al. A support vector method for optimizing average precision. ACM SIGIR, 2007.

Code available on Github

