

					Land and the same of the same	
*	Excitati	on -	Table:	of fli	p-flo	PS
	present o state from combination	ercitation utput n that	on tab state we t	and nez	know st outpo	ut ssible
		Next State	SR FF S R	JK FF J K	T ff T	DFF
	0	0	0 X 0 1	0 X 1 X X 1	1	0
/ *	Conversio	on of	Flip	flop.	O	
alle	· convert	D type	e Apflo	op into	T file	flop.
So	\Rightarrow on α	2n+1	SRFF SR OX 10 01 X0	X 1 X 1 X 1 X 1	THE TO	D

aue:	Convert JK filp Flop to D filp Flop
-	> Excitation Table for conversion
1	Present Next Inputs.
	state state
	Oh D J K
	0 6 2
	1 0 1
	X
414-231-1-1-1	T= < m / 1) + d(n >)
	$J = \leq m(1) + d(2/3)$
	Do o X 2
	1 (1 / 7)
	J= D
	$k = \sum m(2) + d(0,1)$
	K 785
	D I I I
	0 0 2 2
	1 3 1
	1 = D

SHAXII .

				DATE I I	PACIA
	2			1	-
oue	Convert	SRFF	to J	K 88	
	Exclation	Table	for	Conversion	
	present state	Next state		Inputs	44
اره	Oh :	JK	* *	, S R	~~~~~~
2,3	0	0 X		0 X	
4.6	4	$\frac{1}{x}$.1) 0	
5,7	4	X		0 1	
- 17		X O	<u> </u>	X 0.	
	Présenta		ext	Inputs	
	701-	<u> </u>	tate		
0	On On	J	—-K	SP	
1	0	0		O X	•::
2	0	O		×	
3					
5	٦	3		7 0)
ユ	4		9		
4	1	77.0			
(0	7	1	0	~ ~ ~	O
					1
		-	St. I see	f.	11-4-11-00-12-
	S =	$\leq m(2 3)$	+414	, (a)	
	R =	≤m (5,=	t) +d(0	5,4)	
):				

aye	Convert OTH to DA
000.2	& convert D If to SR SF.
	DII DORON
	> Exciation Table for conversion:
	excitation table for conversion:
	present Next Input
	01 1
	Δ.
0,1	
2	0 4
5,	1, 0 1
4,6	1 1
	X 0 1
	HTYO .
	$b = \leq m(\alpha) \cdot (1) \cdot 1(\alpha - 1)$
	$b = \leq m(2,4,6) + d(3,7)$
- x	R 00 01 011 10
	0 9 1 3 1 5 3 6
	1 b X 2 X
	3 1 3 1 3
1000	D = 5 + OnR.
	O O T OLAR
5-	D Only
	SB .
R-DO-	D C-> 64
	00
	Ty.
4 8	TICH H

	DATE
	Exciation Table for conversion
	present Next Inputs state state T
0	On D O
2	1 0 1
	$= \leq m \left(1, 2\right)$
7	San o
	$T = \overline{\alpha} n D + Q n \overline{D}$ $ T = \overline{\alpha} n \oplus \overline{D} $
D ~	Pr .
	T an St
	Qn - 5
	figure ext diagram of DFF using TH

aue °	Converet JK-FF to SR-FF
	Exciation Table for conversion
2	present Next Thrut
	On
0,1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
71 - 29	0
5,	1
4,6	y X
	, X. O.
	7
	$J = \leq m(2) + d(3, 4, 5, 6, 7)$
	None
	R 00 POI 11 10
1	2 4
	$ X_3 \times 7 \times d$
9-1 (A. A. 10)	J=50n
	$K = \leq m(5) + d(0,1,2,3,7)$.
2 (7, p)	Pans 00 601 11 10
	O X O X 2
	1 (X 1 X 3 X 7 1)s
B: 18 - E	
	K = R

W-19		
5-13/	reflerentiate Between synchron	rows
	and Asynchronous counter	
	Synchronous Asynchro	2000
7		
<u>_</u>	Design of synchronous Design of counter is	Asynchrou
	counter is hard as counter is	easy as
4	compare to Asynchrous compare	to Bynchrous
	counter	
الأز	Speed of operation is speed of	anarata
	Speed of operation is speed of fast as compared to is low a	S COMPANY
A	fast as compared to is low a synchron	ours coint
	III	cas courted
111	All the flip-flops are Output of	one
	clocked simultensouly hip-flop is	given
	as clock to	s the next
	Flip-Flop	
0,1		
171	for straight binary for only s	r be designal
	for straight binary for only is	traight
	sequence of rangom binary so	quence
. 2	sequence (Assending	n decending
-27		

	BATE: / / Free
X	Synchronous courter Designing.
1	Decide how many number of Hip-Hop
2	Draw the state diagram for the counter
3	Draw the exercation table for the counter designing
	Find the Equation from the exertation lable and solve using K-map
- 5 - 4	Design the circuit using above generated equation.

auc:	Dosign 3 bit Synchronous counter using JR Hip-Hop	8
	Using TR Flop	
	> 3 no. of JK-ff required	P
	design.	102
	design	
OF C	State diagram	÷,
	$\bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \bigcirc$	
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	(1) (2) (S) (S)	
21 1 ,	T ilation	-
	Excitation	
	present Next Thouse	
	Present Next Thruts State State	,
	32 Q1 Q0 Q2 Q1 Q0 J0 K0 J1 K1	<u> </u>
- 0		J2 K2
	0 0 1 0 1	0 1
2	0 1 0 0 1	ÒX
. 3	0 1 1 100 X 1 X 1	0 X
7	1000 404 1 2	<u> </u>
	10111	X D
6	11 1 0 11 11	X O
7	1 1 1 0 0 0 X 1 X 1	XO
	X X X	X
	Jo= <m(0,2,4,6)+d(1,3,5,7).< td=""><td></td></m(0,2,4,6)+d(1,3,5,7).<>	
11		44
	Ko=Em(1,3,5,7)+ d(9,2,4,6)	
11	1 114	

$$J_1 = \leq m(1,5) + d(2,3,6,7)$$

KI= Em(3,7) + d(0,1,4,5)

J2= Em (3) +d (4,5,6,7)

k2= Em(7)+d(0,1,2,3)

0201	00	01	Ji 11"	10
6	2	X 2	Χı	4,
	7/	X	X ₇	(t)
4	171:	= Q0	- k	

20	100	018	11.	10
do	Xo	7	6	$\times_{\mathcal{G}}$
1	(X)	1 3	1 7	Xs
	1			

Ki = Qo

Jo= =m(6)+d(1,3,5,7)

Ko = Em(1,5)+ d(6,2,4,6)

Ji = &m(4) + d(3,6,7,2)

 $K_1 = Em(2,3) + d(4,1,05)$

J2 = 5m(0,1,2) +d(4,67,5)

K2= =m(7)+d(0,1,2,3)

			7° a. I.
X 2	X	X	-
,		7 7	5
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	X 2	X 2 X 6	X 2 X 6 X

2001	00	01		10
0	0	X 2	CX.	1)
1	1	X	X	

aye	Design mode-5 synchronous	coorde
79.77 %	> 3 OH-It required for the	counter
	3/de diagram:	
	$\begin{array}{c} \bigcirc \rightarrow \bigcirc \bigcirc \rightarrow \bigcirc \bigcirc \bigcirc \rightarrow \bigcirc $	
	Excitation Table:	
	Present state Next Inp	ruts Ti Te
0	02 01 00 02 01 00	
1	0 0 1 0 1	0 0
2	0 10 0 11	0 0
3	0 1 1 1 0 0	
	100000	0 1
	Q0 00 01 11 10 0 11 0 172 6 4 1 1 1 3 7 5	
	To = 02	1

14	Hsynchronous Qunter design.
70	PISALLE COOLING COOLING COOLING
D	Use T-ff, provide logic 1 as i/p to
	1 1
2	for up counting use -ve edge to ggerd
	CIOCA
	10.0dgc A
	-ve.edge D tong.ckt
	For down counting use the edge triggered
5)	clock
	tog. ckt
	1018. CET
1	

7.4.1 The Race-Around Condition

The difficulty of both inputs 1(S=R=1) being not allowed in an S-R FLIP-FLOP is eliminated in a J-K FLIP-FLOP by using the feedback connection from outputs to the inputs of the gates G_3 and G_4 (Fig. 7.9). Table 7.3 assumes that the inputs do not change during the clock pulse (CK=1), which is not true because of the feedback connections. Consider, for example, that the inputs are J=K=1 and Q=0, and a pulse as shown in Fig. 7.11 is applied at the clock input. After a time interval Δt equal to the propagation delay through two NANO

Fig. 7.11 A clock pulse.

gives in series, the output will change to Q = 1 (see fourth row of Table 7.3b). Now we have f = K = 1 and Q = 1 and after another time interval of Δt the output will change back to Q = 0, indee, we conclude that for the duration t_p of the clock pulse, the output will oscillate back and forth between 0 and 1. At the end of the clock pulse, the value of Q is uncertain. This situation is referred to as the race-around condition.

The race-around condition can be avoided if $t_p < \Delta t < T$. However, it may be difficult to satisfy this inequality because of very small propagation delays in ICs. A more practical method for overcoming this difficulty is the use of the master-slave (M-S) configuration discussed below.

1.4.2 The Master-Slave J-K FLIP-FLOP

A master-slave J-K FLIP-FLOP is a cascade of two S-R FLIP-FLOPs, with feedback from the outputs of the second to the inputs of the first as illustrated in Fig. 7.12. Positive clock pulses are applied to the first FLIP-FLOP and the clock pulses are inverted before these are applied to the second FLIP-FLOP.

When CK = 1, the first FLIP-FLOP is enabled and the outputs Q_M and \overline{Q}_M respond to the inputs J and K according to Table 7.3. At this time, the second FLIP-FLOP is inhibited

