USB 限流配电开关芯片 CH217

手册 版本: V1.0 http://wch.cn

1、概述

CH217 是可调限流门限的 USB 端口电源开关芯片。芯片内部集成了过流保护、过温保护、欠压保护等模块,支持 5V 电压下不超过 2. 7A 的可编程电流,在 VOUT 输出端发生短路等情况时可以限制输出电流从而保护供电系统。下面为 CH217 的内部框图,仅供参考。

2、特点

- 内置功率开关管,典型 70mΩ导通电阻。
- 可通过外置电阻调节限流门限,支持 400mA~2.7A, 典型误差±10%。
- 支持电源电压 2.7V~5.5V。
- 输出短路时快速限流保护。
- 低功耗,典型 50uA 静态工作电流。
- 典型关机电流小于 1uA,关断时没有反向电流。
- SOT23-6L 封装。

3、封装

封装形式	塑体宽度		引脚间距		封装说明	订货型号	
S0T23-6L	1.6mm	63mil	0. 95mm	37mil	小型 6 脚贴片	CH217K	
S0T23-6L	1.6mm	63mil	0. 95mm	37mil	小型 6 脚贴片	CH217X	

CH217 手册 2

4、引脚

CH217K 引脚号	CH217X 引脚号	引脚名称	类型	引脚说明
6	1	VIN	电源	电源输入,建议外接电容 10uF 或以上
1	6	VOUT	电源	电源输出,通常连接 USB 端口 VBUS
2	2	GND	电源	公共接地端
4	3	EN#	输入	电源开关使能输入,低电平有效,高电平关机
3	4	FLAG#	输出	过流或过温报警开漏输出,低电平有效
5	5	ISET	模拟	限流门限设置,外接电阻 Rset 到 GND 设置 Iset

5、功能模块

5.1. 欠压保护

当 VIN 电压低于欠压保护门限 Vuv Io 时,开关管将不受 EN#控制,始终保持关断状态。当 VIN 电压高于欠压保护门限后,开关管被允许控制,EN#输入低电平则开启。欠压保护门限具有迟滞特性。

5.2. 过温保护

当开关连续导通电流较大或者发生过流或短路等情况时,VIN 和 VOUT 两端压差乘以电流的功耗将会使芯片内部升温。当芯片温度超过过温保护门限 Tsd 后,开关管将被强行关断,VOUT 没有输出电流。稍后芯片降温后,开关管将会被允许重新开启。开启后一段时间如果过温,则再次关断。

5.3. 开关控制

当 EN#输入低电平,且 VIN 高于 Vuv Io 时,VIN 和 VOUT 之间的开关管开启,即电源开关打开。 当 EN#输入高电平,或 VIN 低于 Vuv Io 时,VIN 和 VOUT 之间的开关管关断,即 shutdown 关机, 并且 VOUT 端的放电管开启,加速 VOUT 电容放电。

5.4. 限流与过流保护

当 VOUT 输出电流 lout 超过限流门限 lset 时,过流保护模块自动降低功率开关管的导通程度,使导通电阻增大、VOUT 电压下降,从而限制输出电流并进入恒流状态。该恒流值与 VOUT 电压值正相关,当 VOUT 对 GND 短路时,VOUT 电压最小,对应的恒流值最小,即短路电流 Ishort。

在 ISET 引脚外接对 GND 的电阻 Rset 可以设定限流门限 Iset, Iset=60K/Rset, Rset 不小于 22K。

6、参数

6.1 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	$^{\circ}\mathbb{C}$
TS	储存时的环境温度	-55	150	$^{\circ}\mathbb{C}$
VIN	电源电压	-0. 4	6	٧
VOUT	输出电压	-0. 4	VIN	٧
VIO	EN#或者 FLAG#引脚上的电压	-0. 4	5. 5	٧
PD	整个芯片的最大功耗		500	mW

CH217 手册 3

	-		
θ JA	S0T23-6L 封装热阻	200	°C/W

6.2 电气参数 (测试条件: TA=25℃、VIN=5V、Rset=30KΩ)

名称	参数说明	最小值	典型值	最大值	单位	
VIN	电源电压	2. 7	5. 0	5. 5	٧	
Ιq	静态工作电流	EN#=低电平	25	50	80	uA
Isd	关机电流	EN#=高电平	0	0. 1	3	uA
VIL	EN#引脚低电平输 <i>)</i>	\电压	0		0. 7	٧
VIH	EN#引脚高电平输入电压		1.8		5	V
V0L	FLAG#引脚低电平输出电压	吸入 2mA 电流		0. 2	0. 4	٧
Ron	功率开关管导通电阻	lout=500mA	40	70	110	$\mathbf{m}\Omega$
Iset	限流门限	Rset=30K	1.7	2. 0	2. 3	Α
Ishort	VOUT 对地短路电流	Rset=30K	1.0	1. 2	1.4	Α
Venda	欠压锁定电压	VIN 上升阶段	1.8	2. 2	2. 7	٧
Vuvlo	(具有迟滞特性)	VIN 下降阶段	1.6	2. 0	2. 4	٧
Tad	过温保护门限	升温阶段		155		$^{\circ}\mathbb{C}$
Tsd	(具有迟滞特性)	降温阶段		135		$^{\circ}\!\mathbb{C}$
Tdly	从检测到故障到 FLAG#引脚输出有效			8		mS

7、典型特性图示 (无特殊说明 TA=25℃、VIN=5V、Rset=22KΩ)

CH217 手册 4

8、应用

CH217 可以用于计算机、USB 主机、USB HUB 集线器、充电器等端口的电源控制。

下图为 HUB 各端口独立电源配电控制的应用,EN#引脚由 HUB 芯片 CH335 或 CH334 的 PWREN#信号控制,FLAG#引脚可以产生过流或过温报警信号通知 HUB 控制器及计算机,CH334/5 已内置上拉电阻。

图中 Rset 为 56K,设置限流门限约 1A,实际应该根据电源供电能力选择以实现保护效果。

电容 C8 根据需要选择容量, C4/C5/C6/C7 典型值可选 150uF。

设计 PCB 时需考虑实际工作电流承载能力,VIN(+5V)和 VOUT(VBUS*)走线路径的 PCB 尽可能宽,如有过孔则建议多个,至少两个以上并联。

CH217 手册 <u>5</u>

9、封装信息

9.1. S0T23-6L

符号	公制,单位为 mm				
17 5	Min	Type	Max		
Α	1. 05	1. 15	1. 4		
A1	0. 0	0. 07	0. 15		
b	0. 3	0. 4	0. 5		
С	0. 1	0. 16	0. 22		
D	2. 7	2. 9	3. 1		
E	1. 4	1. 6	1. 8		
E1	2. 6	2. 8	3. 0		
е		0. 95			
L		0. 6			
L1	0. 25	0. 4	0. 55		
θ	0°		8°		

