Ευθυγράμμιση sm2 δίχως αντιστοιχίσεις, υπό χρονικούς περιορισμούς

Πρόβλημα:

Κατασκευή h: sm2 χωρίς αντιστοιχίσεις, δεδομένων:

- Πραγματική σάρωση $\mathcal{S}_R(\boldsymbol{p})$: FOV = 360°
- Χάρτης Μ του περιβάλλοντος
- ullet Εκτίμηση $\hat{m{p}}(\hat{m{l}},\hat{ heta})$
- $oldsymbol{\bullet}$ Η εκτίμηση θέσης $\hat{oldsymbol{l}}=(\hat{x},\hat{y})$ είναι σε μία γειτονιά της $oldsymbol{l}=(x,y)$

τέτοιας ώστε

$$(\Sigma 1) \hat{\boldsymbol{p}}' \leftarrow h(\mathcal{S}_R, \boldsymbol{M}, \hat{\boldsymbol{p}}):$$

$$\|\hat{\boldsymbol{p}}'-\boldsymbol{p}\|<\|\hat{\boldsymbol{p}}-\boldsymbol{p}\|$$

$$(\Sigma T)$$
 $f_{
m exec}(h) \geq f_{
m exec}({
m pf})$

Αποσύνθεση προβλήματος

- Εκτίμηση θέσης
$$\emph{\textbf{l}}(x,y)$$
 όταν $\hat{\theta}=\theta$

$$ullet$$
 Εκτίμηση προσανατολισμού $heta$ όταν $\hat{m{l}}=m{l}$

Εκτίμηση θέσης όταν $\hat{ heta}= heta$

$$\hat{\boldsymbol{l}}[k+1] = \hat{\boldsymbol{l}}[k] + \boldsymbol{u}[k]$$

$$m{u}[k] = rac{1}{N_s} egin{bmatrix} \cos \hat{ heta} & \sin \hat{ heta} \ \sin \hat{ heta} & -\cos \hat{ heta} \end{bmatrix} egin{bmatrix} X_{1,r}(\mathcal{S}_R, \mathcal{S}_V | \hat{m{p}}[k]) \ X_{1,i}(\mathcal{S}_R, \mathcal{S}_V | \hat{m{p}}[k]) \end{bmatrix}$$

$$X_{1}\left(\mathcal{S}_{R}, \mathcal{S}_{V}|_{\hat{p}[k]}\right) = X_{1,r}\left(\mathcal{S}_{R}, \mathcal{S}_{V}|_{\hat{p}[k]}\right) + i \cdot X_{1,i}\left(\mathcal{S}_{R}, \mathcal{S}_{V}|_{\hat{p}[k]}\right)$$
$$= \sum_{k=1}^{N_{s}-1} \left(\mathcal{S}_{R}[n] - \mathcal{S}_{V}[n]|_{\hat{p}[k]}\right) \cdot e^{-i\frac{2\pi n}{N_{s}}}$$

G. Vasiljević, D. Miklić, I. Draganjac, Z. Kovačić, P. Lista, "High-accuracy vehicle localization for autonomous warehousing". Robotics and Computer-Integrated

Εκτίμηση θέσης όταν $\hat{ heta}= heta$

- Όταν $\sigma_R=0.0$ και $\pmb{M}\equiv W$ τότε: $\hat{\pmb{l}}[k]$ συγκλίνει ομοιόμορφα ασυμπτωτικά στην πραγματική θέση \pmb{l} καθώς $k\to\infty$
- Όταν $\sigma_R>0.0$ ή/και $\pmb{M}\not\equiv W$ τότε: $\pmb{\hat{l}}[k]$ φράσσεται ομοιόμορφα σε γειτονιά της πραγματικής θέσης \pmb{l} όταν $k\geq k_0$

Εκτίμηση προσανατολισμού όταν $\hat{\emph{l}}=\emph{l}$ (rc_x1—1/3)

$$\hat{ heta}[k+1] = \hat{ heta}[k] + ot \mathcal{F}_1\{\mathcal{S}_R\} - ot \mathcal{F}_1\{\mathcal{S}|_{\hat{p}[k]}\}$$

Επίλοιπο σφάλμα:

$$\phi = \angle \mathcal{F}_1\{\mathcal{S}_V\} - \tan^{-1} \frac{|\mathcal{F}_1\{\mathcal{S}_V\}| \sin(\angle \mathcal{F}_1\{\mathcal{S}_V\}) - N_s|\delta| \sin(\hat{\theta} + \angle \delta)}{|\mathcal{F}_1\{\mathcal{S}_V\}| \cos(\angle \mathcal{F}_1\{\mathcal{S}_V\}) - N_s|\delta| \cos(\hat{\theta} + \angle \delta)}$$

Εκτίμηση προσανατολισμού όταν $\hat{m{l}}=m{l}$ (rc_uf-2/3)

$$\hat{ heta}' = \hat{ heta} + \xi \gamma, ext{ όπου}$$
 $\xi riangleq rg \max \mathcal{F}^{-1} igg\{ rac{\mathcal{F}\{\mathcal{S}_V\}^* \cdot \mathcal{F}\{\mathcal{S}_R\}}{|\mathcal{F}\{\mathcal{S}_V\}| \cdot |\mathcal{F}\{\mathcal{S}_R\}|} igg\}, ext{ και}$ $\gamma riangleq rac{2\pi}{N_c}$

Επίλοιπο σφάλμα:

$$\phi \leq \frac{\gamma}{2}$$

Εκτίμηση προσανατολισμού όταν $\hat{\emph{\emph{l}}}=\emph{\emph{l}}$ (rc_fm-3/3)

Έστω

- ullet P_R, P_V οι προβολές των $\mathcal{S}_R, \mathcal{S}_V$ στο οριζόντιο επίπεδο
- ullet $UDV^ op = \operatorname{svd}(P_RP_V^ op)$
- $S = \operatorname{diag}(1, \det(UV))$

Τότε $\mathrm{tr}(\mathbf{DS})$ είναι μέτρο ευθυγράμμισης ανάμεσα στα σύνολα $\mathbf{\emph{P}}_{\it{R}},\mathbf{\emph{P}}_{\it{V}}$ και

$$oldsymbol{R}^\star = oldsymbol{U} oldsymbol{S} oldsymbol{V}^ op = rg \min_{oldsymbol{R}} \|oldsymbol{P}_R - oldsymbol{R} \cdot oldsymbol{P}_V\|_F^2$$

εάν θ γνωστή [1].

Όμως θ θεμελιωδώς άγνωστη \Rightarrow περιστροφή \mathbf{P}_V κατά $k \cdot \gamma$, $0 \le k < N_s$. Τότε εάν $\hat{\theta}' = \hat{\theta} + k^* \gamma$, $k^* = \arg\min \operatorname{tr}(\mathbf{DS})$, το επίλοιπο σφάλμα:

$$\phi \leq \frac{\gamma}{2}$$

[1] S. Umeyama, "Least-squares estimation of transformation parameters between two point patterns", IEEE Transactions on Pattern Analysis and Machine Intelligence, Apr. 1991

Το πρόβλημα του πεπερασμένου των ακτίνων: $\phi = f(N_s)$

Υπερδειγματοληψία πραγματικής σάρωσης σε γραμμικές περιοχές 🗸

$$\mathcal{S}_{R}^{\text{--interp}}(\theta) \quad \mathcal{S}_{V}^{\text{--interp}}(\hat{\theta})$$

Υπερδειγματοληψία πραγματικής σάρωσης σε μη γραμμικές περιοχές Χ

$${\mathcal S}_R^{ ext{ --interp}}(heta) \ \ {\mathcal S}_V^{ ext{ --interp}}(\hat heta)$$

Λύση: Υπερδειγματοληψία του χάρτη \Rightarrow παραγωγή 2^{ν} εκτιμήσεων

$$\mathcal{S}_R^{ ext{--interp}}(heta) \hspace{0.2cm} \mathcal{S}_V^{ ext{--interp}}(\hat{ heta})$$

$$\mathcal{S}_{R}(\theta) = \mathcal{S}_{V}(\hat{\theta} + \{0...2^{\nu_{\max}} - 1\} \cdot \frac{\gamma}{2^{\nu_{\max}}})$$

$$\phi' = rac{\phi}{2^{
u_{
m max}}} \leq rac{\gamma}{2^{1+
u_{
m max}}}$$

Ιεράρχηση σφαλμάτων εκτιμήσεων: η μετρική CAER*

* Cumulative Absolute Error per Ray

$$ext{CAER}(\mathcal{S}_R, \mathcal{S}_V) riangleq \sum_{n=0}^{N_s-1} \left| \mathcal{S}_R[n]|_{m{p}} - \mathcal{S}_V[n]|_{\hat{m{p}}} \right|$$

Το σύστημα fsm2

Πειραματική διαδικασία

Στόχοι:

 $(\Sigma 1) \|\hat{p}' - p\| < \|\hat{p} - p\|$

 $(\Sigma 2)~f_{\rm exec}^{\rm \,fsm2} \geq f_{\rm exec}^{\rm \,pf}$

Πέντε benchmark περιβάλλοντα δοχιμής

Σύνολο δεδομένων D	Πληθικότητα
aces	7373
fr079	4933
intel	13630
mit_csail	1987
mit_killian	17479
	$\sum D = 45402$

Πίναχας: Πηγή: SLAM evaluation datasets, Dept. of Computer Science, University of Freiburg

Πειραματική διαδικασία

Στόχοι:

$$(\Sigma 1) \quad \|\hat{\boldsymbol{p}}' - \boldsymbol{p}\| < \|\hat{\boldsymbol{p}} - \boldsymbol{p}\|$$

 $(\Sigma 2)$ $f_{\mathrm{exec}}^{\mathrm{fsm2}} \ge f_{\mathrm{exec}}^{\mathrm{pf}}$

Πέντε benchmark περιβάλλοντα δοχιμής

Πληθικότητα
7373
4933
13630
1987
17479
$\sum D = 45402$

Πίναχας: Πηγή; Σύνολα δεδομένων αξιολόγησης SLAM, Τμήμα Επιστήμης των Υπολογιστών, Πανεπιστήμιο του Φράιμπουργχ

Τυπική απόκλιση θορύβου μέτρησης και συντεταγμένων χάρτη

$$\begin{split} \sigma_R &= \{0.01, 0.03, 0.05, 0.10, 0.20\} \text{ [m]} \\ \sigma_M &= \{0.0, 0.05\} \text{ [m]} \end{split}$$

Παραγωγή τυχαίων αρχικών συνθηκών σφάλμάτων στάσης

$$\Delta \hat{x}_0 \sim U(-0.20, +0.20) \text{ [m]}$$

$$\Delta \hat{y}_0 \sim U(-0.20, +0.20) \text{ [m]}$$

$$\Delta \hat{\theta}_0 \sim U(-\frac{\pi}{4}, +\frac{\pi}{4}) \text{ [rad]}$$

Συνολικός αριθμός ευθυγραμμίσεων ανά μέθοδο: $10 \times \sum |D| \times |\sigma_{R}| \times |\sigma_{M}| \simeq 4.5 \cdot 10^{6}$

Μέγεθος σαρώσεων:
$$N_s = 360$$

$$\nu \in (\nu_{\min}, \nu_{\max}) = (2, 5)$$

$$I_T = 1 + \nu$$

Ποσοστά επίτευξης στόχου Σ1

- [1] A. Censi, "An ICP variant using a point-to-line metric", ICRA 2008
- [2] P. Biber, W. Strasser, "The normal distributions transform: a new approach to laser scan matching", IROS 2003
- A. Segal, D. Hähnel, S. Thrun, "Generalized-ICP", Robotics: Science and Systems, 2009
- [4] K. Koide, M. Yokozuka, S. Oishi, A. Banno, "Voxelized GICP for Fast and Accurate 3D Point Cloud Registration", ICRA 2021
- [5] S. Bouraine, A. Bougouffa, O. Azouaoui, "Particle swarm optimization for solving a scan-matching problem based on the normal distributions transform", Evolutionary Intelligence, 2021
- [6] H. Yang, J. Shi, L. Carlone, "TEASER: Fast and Certifiable Point Cloud Registration", IEEE Transations on Robotics, 2021
- [7] A. Filotheou, A. Symeonidis, G. Sergiadis, A. Dimitriou, "Correspondenceless scan-to-map-scan matching of 2D panoramic range scans", Array, Under review
- [8] A. Filotheou, G. Sergiadis, A. Dimitriou, "FSM: Correspondenceless scan-matching of panoramic 2D range scans", IROS 2022

Χρόνοι εκτέλεσης—Στόχος Σ2

Τυπική απόκλιση διαταραχών σ_R [m]

[1] C. H. Walsh and S. Karaman, "CDDT: Fast Approximate 2D Ray Casting for Accelerated Localization,", IEEE International Conference on Robotics and Automation, 2018

Ποσοστά επίτευξης στόχου Σ1

ως προς προσανατολισμό ανά μονάδα αρχικού σφάλματος εκτίμησης προσανατολισμού $|\Delta\hat{\theta}|$ PLICP -GICP ---VGICP -NDT fm $\sigma_R = 0.01 \text{ m } \sigma_R = 0.03 \text{ m } \sigma_R = 0.05 \text{ m } \sigma_R = 0.10 \text{ m } \sigma_R = 0.20 \text{ m}$ 100%m 95%90% ρ_M 85%100% m 0.0595%90% $\sigma_M =$ 85% $\frac{\pi}{16}$

Αρχικό σφάλμα εκτίμησης προσανατολισμού $|\Delta \hat{\theta}|$ [rad]

Ποσοστά επίτευξης στόχου Σ1 ως προς θέση ανά μονάδα αρχικού σφάλματος εκτίμησης προσανατολισμού $|\Delta\hat{ heta}|$ PLICP -NDT -GICP ---VGICP fm $\sigma_R = 0.01 \text{ m} \ \sigma_R = 0.03 \text{ m} \ \sigma_R = 0.05 \text{ m} \ \sigma_R = 0.10 \text{ m} \ \sigma_R = 0.20 \text{ m}$ 100% $\sigma_M = 0.0 \text{ m}$ 80%60%100%0.05 m80% $\sigma_M =$ 60%

Αρχικό σφάλμα εκτίμησης προσανατολισμού $|\Delta\hat{ heta}|$ [rad]

 $\frac{\pi}{4}$ $\frac{\pi}{16}$ $\frac{\pi}{8}$

 $\frac{\pi}{4}$ $\frac{\pi}{16}$ $\frac{\pi}{8}$

 $\frac{\pi}{4}$ $\frac{\pi}{16}$ $\frac{\pi}{8}$

40%

 $0.0\frac{\pi}{16} \frac{\pi}{8}$

 $\frac{\pi}{4}$ $\frac{\pi}{16}$ $\frac{\pi}{8}$

Ποσοστά επίτευξης στόχου $\Sigma 1$ ως προς θέση ανά μονάδα αρχικού σφάλματος εκτίμησης θέσης $(\Delta x^2 + \Delta y^2)^{1/2}$ -GICP ---VGICP PLICP -NDT fm $\sigma_R = 0.01 \text{ m} \ \sigma_R = 0.03 \text{ m} \ \sigma_R = 0.05 \text{ m} \ \sigma_R = 0.10 \text{ m} \ \sigma_R = 0.20 \text{ m}$ 100% 80%60%40% σ_M 20%100% $0.05 \mathrm{m}$ 80%60%40% σ_M 20% 0% 14 21 28 7 14 21 28 7 14 21 28

Αρχικό σφάλμα εκτίμησης θέσης $(\Delta x^2 + \Delta y^2)^{1/2}$ [cm]

Ποσοστά επίτευξης στόχου Σ1 ως προς προσανατολισμό ανά μονάδα αρχικού σφάλματος εκτίμησης θέσης $(\Delta x^2 + \Delta y^2)^{1/2}$ PLICP —GICP —VGICP -NDT fm $\sigma_R = 0.01 \text{ m} \ \sigma_R = 0.03 \text{ m} \ \sigma_R = 0.05 \text{ m} \ \sigma_R = 0.10 \text{ m} \ \sigma_R = 0.20 \text{ m}$ 100%= 0.0 m95% $^{\circ}M$ 100% $0.05 \mathrm{m}$ 95% $\sigma_M =$ 90%14 21 28 14 21 28 14 21 28

Αρχικό σφάλμα εκτίμησης θέσης $(\Delta x^2 + \Delta y^2)^{1/2}$ [cm]

Κατανομές σφαλμάτων θέσης [m]

Κατανομές σφαλμάτων προσανατολισμού [rad]

Σφάλμα εκτίμησης στάσης υπό περιορισμούς βεληνεκούς

Τρεις μέθοδοι ευθυγράμμισης πραγματικών με εικονικές (δισδιάστατες και πανοραμικές) σαρώσεις χωρίς τον υπολογισμό αντιστοιχίσεων: $\hat{p}' \leftarrow h(S_R, M, \hat{p})$:

Τρεις μέθοδοι ευθυγράμμισης πραγματικών με εικονικές (δισδιάστατες και πανοραμικές) σαρώσεις χωρίς τον υπολογισμό αντιστοιχίσεων: $\hat{p}' \leftarrow h(\mathcal{S}_R, \boldsymbol{M}, \hat{\boldsymbol{p}})$:

• Εύρωστη βελτίωση ακρίβειας pose tracking (\Rightarrow navigation) σε πραγματικό χρόνο: $f_{\rm exec}(h) \geq f_{\rm exec}({\bf pf})$

Τρεις μέθοδοι ευθυγράμμισης πραγματικών με εικονικές (δισδιάστατες και πανοραμικές) σαρώσεις χωρίς τον υπολογισμό αντιστοιχίσεων: $\hat{p}' \leftarrow h(S_R, M, \hat{p})$:

- Εύρωστη βελτίωση ακρίβειας pose tracking (\Rightarrow navigation) σε πραγματικό χρόνο: $f_{\rm exec}(h) \geq f_{\rm exec}({\bf pf})$
- Global localisation
 - Χωρίς ad hoc παραμετροποίηση (features ή μεταβλητές)
 - ightharpoonup Ταχύτερα από FMI-SPOMF (\Rightarrow περισσότερες υποθέσεις)

Τρεις μέθοδοι ευθυγράμμισης πραγματικών με εικονικές (δισδιάστατες και πανοραμικές) σαρώσεις χωρίς τον υπολογισμό αντιστοιχίσεων: $\hat{p}' \leftarrow h(\mathcal{S}_R, \boldsymbol{M}, \hat{\boldsymbol{p}})$:

- Εύρωστη βελτίωση ακρίβειας pose tracking (\Rightarrow navigation) σε πραγματικό χρόνο: $f_{\rm exec}(h) \geq f_{\rm exec}({\bf pf})$
- Global localisation
 - Χωρίς ad hoc παραμετροποίηση (features ή μεταβλητές)
 - ▶ Ταχύτερα από FMI-SPOMF (\Rightarrow περισσότερες υποθέσεις)
- {Αναγνώριση, ευθυγράμμιση} κλειστών (convex ή non-convex) 2D σχημάτων (π.χ. computer vision [1])

Παρατηρήσεις ευαισθησίας λύσης σε παραμέτρους και θόρυβο λόγω αντιστοιχίσεων

Λύσεις εκτελούμενες σε πραγματικό χρόνο

Κεφ. 6

Μετά το sm2 τι;

Ευθυγράμμιση sm2 δίχως αντιστοιχίσεις, υπό χρονιχούς περιορισμούς Πρόβλημα: Κατασχευή h: sm2 γωρίς αντιστοιγίσεις, δεδομένων: Πραγματική σωμε χορρις Αιτων (p): FOV = 360°
 Χάρτης M του περιβάλλοντος
 Εχτίμηση $\hat{p}(\hat{l}, \hat{\theta})$ Η εχτίμηση θέσης $\hat{l} = (\hat{x}, \hat{y})$ είναι σε μία γειτονιά της l = (x, y) $\|\hat{l}_0 - l\| < \delta$ τέτοιας ώστε $(\Sigma 1)$ $\hat{p}' \leftarrow h(S_R, M, \hat{p})$: $\|\hat{p}' - p\| < \|\hat{p} - p\|$

Eάν
$$\|\hat{\boldsymbol{l}}_N - \boldsymbol{l}\| \ll \delta$$
 τότε

$$\bullet \|\hat{\pmb{l}}_{0:N} - \pmb{l}\| < \delta$$

$$\bullet \ \|\hat{\pmb{l}}_{0:N} - \pmb{l}\| < \delta$$

$$\bullet \ \mathcal{S}_V(\hat{\pmb{p}}_0) \ \text{topical this prosection} \ \pmb{M}$$

$$\text{sth general this p,} \ \forall \hat{\pmb{p}}_i, i = 0, 1, \dots, N$$

$$\ \ M \leftarrow \mathcal{S}_V(\hat{\pmb{p}}_0) \ \Rightarrow h \ \text{nútei sm};$$

Βαρύτητα μετατροπής fsm2 σε fsm

- sm ως μέσο sm2 \Rightarrow λύση pose tracking & global localisation
- sm ως μέσο παραγωγής οδομετρίας μέσω lidar \Rightarrow απεξάρτηση από
 - Αποκλίνουσα οδομετρία τροχών / άκρων
 - Συνθήκες τριβής ως προς επιφάνεια επαφής
- Πρώτη μέθοδος sm χωρίς υπολογισμό αντιστοιχίσεων

Προχλήσεις μετατροπής fsm2 σε fsm

• $\mathcal{S}_V(\hat{p}_0)$ ατελής προσέγγιση του χάρτη M \Rightarrow απαίτηση ευρωστίας σε "χενές αντιστοιχίσεις"

• $t_{\rm exec}^{\rm sm} \le \frac{1.0}{20 \text{ Hz}} = 50 \text{ ms}$ $(\bar{t}_{\rm exec,min}^{\rm fsm2} = \bar{t}_{\rm exec}^{\rm fm} \simeq 100 \text{ ms})$