A Really Catchy Title for My Technical Report

Technical Report

Ann Author and Ben Writing

Date: June 10, 2019

Technical Report: CPSCI-TR-20##-##

Department of Computer Science Hamilton College Clinton, New York 1 INTRODUCTION 1

Abstract

1 Introduction

Why this is important ...

- 1.1 Motivation
- 1.2 Our Results
- 1.3 Organization

In Section 3 we give..., in Section 4...

2 Related Work

Akiba and Iwata [?]...

3 Preliminaries

- 3.1 Something Central to Understanding Your Result
- 3.2 Should Probably Have Another Subsection Too
- 3.2.1 Even More Details on a Specific Method

4 Specific Contribution 1

In this section, we ...

Reduction 1. If graph G = (V, E) contains a vertex $v \in V$ such that the closed neighborhood of v, denoted N[v], is a clique, then N[v] is in some minimum (vertex) clique cover and can be removed from G to form reduced graph $G' = G[V \setminus N[v]]$, where $\theta(G) = 1 + \theta(G')$.

Proof. Let $C = \{C_1, C_2, \dots, C_{\theta(G)}\}$ be a given minimum clique cover for G. Since C is a clique cover, there exists some clique in C that covers v. Let $C_v \in C$ denote some clique such that $v \in C_v$. Let clique N[v] be denoted by X.

If $X \in C$, then X is in a minimum clique cover, as desired. If $X \notin C$, then we argue that we can swap X with C_v and maintain an optimal clique covering of G.

Observe that, by the definition of a clique, C_v consits only of v and vertices $u \in N(v)$. Therefore, $C_v \subset X$. Hence, all $v \in C_v$ are covered by X. Let $C' = (C \setminus \{C_v\}) \cup \{X\}$ and notice that the single removal of C_v and single addition of clique X ensures that |C'| = |C| = k. Thus, we have a minimum clique cover C' such that $X \in C'$.

If $X = C_v$, then all $v \in X$ reside in a single clique X, as desired. If $X \neq C_v$, then there exists some $u \in N(v)$ such that $u \notin C_v$. Since C is a clique cover, then there exists some clique in C that covers u. Let $C_u \in C$ denote some clique such that $u \in C_u$. Then, by the definition of a clique, $C'_u = C_u \setminus X$ denotes some clique that covers all $u \in C_u$ and $u \notin X$. Since all $u \in X$ are covered by X then we can swap C_u with C'_u . Let $C'' = (C' \setminus \{C_u\}) \cup \{C'_u\}$ and notice that the single removal of C_u and single addition of clique C'_u ensures that |C''| = |C'| = k.

Observe that all $v \in X$ reside in a single clique X. Therefore, we can remove X from G to form reduced graph $G' = G[V \setminus N[v]]$, where $\theta(G) = 1 + \theta(G')$, as desired.

Reduction 2. If graph G = (V, E) contains a maximal degree-two path $P = (v_1, v_2, ..., v_l)$ with $u \notin P$ and $w \notin P$ connected to v_1 and v_l $((u, v_1) \in E)$ and $(u, v_l) \in E)$ respectively then we can reduce G in the following cases:

- (1) If the length of P, denoted |P|, is odd and u = w, then we can remove $P \cup \{u\}$ from G to form $G' = G[V \setminus (P \cup \{u\})]$, where $\theta(G) = \frac{|P|+1}{2} + \theta(G')$.
- (2) If |P| is odd and $u \neq w$ such that $(u, w) \notin E$, contract P into a single vertex v', giving us a new graph G' = (V', E') with vertex set $V' = (V \setminus P) \cup \{v'\}$ and edge set $E' = (E \setminus \{\{x, y\} \in E | x \in P \lor y \in P\}) \cup \{\{x, v_1\} | x \in \{u, w\}\}$. Then $\theta(G) = \frac{|P|-1}{2} + \theta(G')$, and letting C(G') denote a minimum clique cover for G', we have the following two cases:
 - (a) if $\{u, v'\} \in C(G')$, then $\{u, v_1\}$ is in a minimum clique cover of G.
 - (b) Otherwise, $\{w, v_l\}$ is in a minimum clique cover of G.

(3)

Proof of Case 1. Let $C = \{C_1, C_2, \dots, C_{\theta(G)}\}$ be a given minimum clique cover for G.

Since C is a clique cover, there exists some clique in C that covers v_1 . Let $C_v \in C$ denote some clique such that $v_1 \in C_v$. Notice that since $(u, v_1) \in E$, and v_1 is degree-two, there exists a clique containing only u and v_1 . Let clique $\{u, v_1\}$ be denoted by X.

If $X \in C$, then X is in a minimum clique cover, as desired. If $X \notin C$, then we argue that we can swap X with C_v and maintain an optimal clique covering of G.

Notice that since |P| is odd and all $v \in P$ have degree-two, then the minumum clique covering contains $\frac{|P|-1}{2} + 1$ cliques. Hence there exists a clique covering some $v \in P$ that conly contains v.

Since *P* contains only degree-two verticies, then we can swap cliques covering $v \in P$ such that the $C_v = \{v_1\}$.

Observe that since C_v consits only of v_1 , $C_v \subset X$. Hence, all $v \in C_v$ are covered by X. Let $C' = (C \setminus \{C_v\}) \cup \{X\}$ and notice that the single removal of C_v and single addition of clique X ensures that |C'| = |C| = k. Thus, we have a minimum clique cover C' such that $X \in C'$.

If $X = C_v$, then all $v \in X$ reside in a single clique X, as desired. If $X \neq C_v$, then $u \notin C_v$. Since C is a clique cover, then there exists some clique in C that covers u. Let $C_u \in C$ denote some clique such that $u \in C_u$. Then, by the definition of a clique, $C'_u = C_u \setminus \{u\}$ denotes some clique that covers all $y \in C_u$ such that $y \neq u$. Since u is covered by X then we can swap C_u with C'_u . Let $C'' = (C' \setminus \{C_u\}) \cup \{C'_u\}$ and notice that the single removal of C_u and single addition of clique C'_u ensures that |C''| = |C'| = k.

Observe that all $v \in (P \cup \{v\})$ reside in $\frac{|P|+1}{2}$ cliques with no overlap. Therefore, we can remove $(P \cup \{v\})$ from G to form reduced graph $G' = G[V \setminus (P \cup \{v\})]$, where $\theta(G) = \frac{|P|+1}{2} + \theta(G')$, as desired.

Proof of Case 2. We perform a proof in three parts. First, we show that for any clique cover C' of G', there is a clique cover C of G of size $|C| = |C'| + \frac{|P|-1}{2}$. Then we show that $\theta(G) = \theta(G') + \frac{|P|-1}{2}$. Then this implies that if $|C'| = \theta(G')$ (i.e., C' is a minimum clique cover of G'), then $C = \theta(G)$ (i.e., C' is a minimum clique cover of G'). We then conclude by constructing a minimum clique cover of G' from a minimum clique cover of G'.

Claim 1. Let C' be a clique cover of G', we show that there exists a clique cover C of G with size $|C| = |C'| + \frac{|P|-1}{2}$.

There are two cases.

Case a $(\{u,v'\} \in C')$. Since in G, u is an endpoint of P, such that $(u,v_1) \in E$, then if $\{u,v'\} \in C'$, $C = (C' \setminus \{u,v'\}) \cup \{u,v_1\} \cup C(P \setminus \{v_1\})$. Since $P \setminus \{v_1\}$ consists of |P| - 1 elements, which is even, and P is degree-two, then $C(P \setminus \{v_1\}) = \{\{v_2,v_3\},\{v_4,v_5\},\ldots,\{v_{l-1},v_l\}\}$. Observe that $|C(P \setminus \{v_1\})| = \frac{|P|-1}{2}$. Thus $|C| = |C'| + |C(P \setminus \{v_1\})|$, which is equivalent to $|C'| + \frac{|P|-1}{2}$, as desired.

Case b ($\{w, v'\} \in C'$). Since w is also an endpoint of P in G, then we can make a symmetric argument to case a.

Claim 2.
$$\theta(G) = \theta(G') + \frac{|P|-1}{2}$$

We show that $\theta(G) \le \theta(G') + \frac{|P|-1}{2}$ and $\theta(G) \ge \theta(G') + \frac{|P|-1}{2}$.

Case 1 ($\theta(G) \leq \theta(G') + \frac{|P|-1}{2}$). Let $\theta(G')$ be a minimum clique cover of G'. Then by Claim 1, there is a clique cover C of G of size $|C| = |C(G')| + \frac{|P|-1}{2} = \theta(G') + \frac{|P|-1}{2}$. Since any clique cover of G has size at least $\theta(G)$, we have that $\theta(G) \leq |C| = \theta(G') + \frac{|P|-1}{2}$.

Case $2 (\theta(G) \ge \theta(G') + \frac{|P|-1}{2})$. Let CG be a minimum clique cover of G that contains either $\{u, v_1\}$ or $\{w, v_l\}$.

- Case 2a. Let $\{u, v_1\} \in C(G)$. Observe that since $(P \setminus \{v_1\})$ is degree-two, a minimum clique coverage consists of $\frac{|P|-1}{2}$ elements. Therefore, $\theta(G) \frac{|P|-1}{2} \le \theta(G')$, which is equivalent to $\theta(G) \ge \theta(G') + \frac{|P|-1}{2}$.
- Case 2b. Since $(P \setminus \{v_l\})$ is also degree-two and a minimum clique coverage consists of $\frac{|P|-1}{2}$ elements, we can make a symmetrical argument to case 2a.

We now show how to construct a minimum clique cover of G from a minimum clique cover of G'. Let C(G') be a minimum independent set of G'. Applying Claim 1 with C' = C(G') gives a minimum clique cover G of G of size $|G| = |G'| + \frac{|P|-1}{2} = \theta(G') + \frac{|P|-1}{2} = \theta(G)$, where the last equality is by Claim 2 and thus G is a minimum clique cover of G. Then by the proof of Claim 1, we have that

- (a) if $\{u, v'\} \in C'$, then $((C'(G') \setminus \{u, v'\}) \cup \{u, v_1\} \cup \{\{v_2, v_3\}, \{v_4, v_5\}, \dots, \{v_{l-1}, v_l\}\})$ is a minimum vertex cover of G.
- (b) otherwise, $\{w, v'\} \in C'$, then $((C'(G')\setminus \{w, v'\})\cup \{w, v_l\}\cup \{\{v_1, v_2\}, \{v_3, v_4\}, \dots, \{v_{l-2}, v_{l-1}\}\})$ is a minimum vertex cover of G.

5 Specific Contribution 2

In this section, we ...

5.1 A Subsection Title

6 Experimental Results

In this section...

- item 1
- item 2
- item 3

7 Conclusion

7.1 Contributions

7.2 Future Work

Acknowledgments