



# Virus que infectan hortalizas a través del suelo

Dirk Janssen, Leticia Ruiz, Carmen García IFAPA La Mojonera



Instituto de Investigación y Formación Agraria y Pesquera







Responsable de la infección primaria



Facilita la transmisión de enfermedades a nuevas áreas de cultivo















Capacidad de PROPAGACIÓN mediante las prácticas culturales







- PERMANENCIA en restos vegetales durante largos periodos (> 5 meses).
- ALTA temperatura de INACTIVACIÓN









# INTRODUCCIÓN







Posibilidad de transmisión de enfermedades como virus

Debemos asegurar la sanidad del material vegetal







| GENERO DE<br>VIRUS | ESPECIE                                   | CULTIVOS<br>HUÉSPEDES       |  |
|--------------------|-------------------------------------------|-----------------------------|--|
|                    | ToMV, tomato mosaic virus                 | pimiento, tomate, berenjena |  |
|                    | PMMoV, pepper mild mottle virus           | pimiento,                   |  |
| TOBAMOVIRUS        | TMGMV, tobacco mild green mosaic virus    | pimiento                    |  |
|                    | CGMMV, cucumber green mottle mosaic virus | pepino, sandía, melón       |  |
|                    | Tobrev, tomato brown rugose fruit virus   | tomate, pimiento            |  |
| POTEXVIRUS         | PepMV, pepino mosaic virus                | tomate                      |  |
| CARMOVIRUS         | MNSV, melon necrotic spot virus           | pepino, sandía, melón       |  |







#### Descritos con anterioridad en nuestra zona

| Género de VIRUS | Especie                          | VECTOR              | Cultivos huéspedes             |
|-----------------|----------------------------------|---------------------|--------------------------------|
| AUREUSVIRUS     | CLSV, cucumber leaf spot virus   | Suelo-O. bornobanus | pepino                         |
| TOMBUSVIRUS     | TBSV, tomato bushy stunt virus   | Suelo-lixiviado     | pimiento, tomate,<br>berenjena |
| SOBEMOVIRUS     | SBMV, southern bean mosaic virus | Suelo, raíces       | judía                          |







-Genoma formado por ARNcs en sentido positivo de 6.4 Kb (Tan et al., 2000; Ugaki et al., )



Mandal et al., 2008

- -Las partículas virales tienen forma de varilla rígida.
- -Principal característica es su gran **estabilidad** fruto de la interacción de proteínas estructurales y su RNA (hasta 50 años)









#### ToMV en tomate

#### Hoja

Mosaico verde claro-oscuro Distorsión de hojas jóvenes

#### **Fruto**

Manchas cloróticas Necrosis interna















Fotografías Ana Aguado, Sanidad y Certificación Vegetal, Zaragoza





## **ToMV**

#### **SÍNTOMAS**

Manchas cloróticas Necrosis interna Reducción tamaño









**Fotografías** Ana Aguado, Sanidad y Certificación Vegetal





## **ToMV**

#### **SÍNTOMAS**

Manchas cloróticas Necrosis interna Reducción tamaño









Resistencia dirigida por los genes TM-2 y TM-2<sup>2</sup> introgresados a partir de Solanum peruvianum













# **PMMoV**











## **PMMoV**



Distintos Patotipos indistinguibles mediante síntomas







#### Análisis molecular mediante RFLPs para distinguir entre Patotipos





92% de las resistencias ofertadas en pimiento lo son a Tobamovirus

La resistencia a tobamovirus en pimiento, está dirigida por cuatro genes diferentes conocidos como *L1, L2, L3 y L4*. Atendiendo a los genes de resistencia que son capaces de superar en la planta, las distintas cepas o especies de *Tobamovirus* se han clasificado en cuatro grupos o patotipos : Po, P1, P12, P123. Virus con el patotipo P123 infectan sistémicamente plantas *L1, L2y L3* y origina reacción de hipersensibilidad en plantas *L4*.



















## **CGMMV**





















- Declarado oficialmente en Almería en Octubre 2019
  BOJA nº 21 de 31/01/2020
- Declarado organismo de cuarentena por la EU desde 1 Noviembre
- El gen de resistencia Tm-2<sup>2</sup> que confiere resistencia a tobamovirus en tomate no proteje contra ToBRFV.
- Para evitar la infección de las plantaciones y su transmisión, se deben implementar las siguientes medidas de control basadas fundamentalmente en profilaxis e higiene:
- Las semillas y plántulas deben ser inspeccionadas y garantizada su sanidad por lo que deben proceder de operadores debidamente inscritos en el Registro Oficial de Productores, Comerciantes e Importadores de Vegetales (ROPCIV) y disponer del correspondiente Pasaporte Fitosanitario.
- • Eliminar al máximo posible los restos vegetales de los cultivos anteriores, incluidas las raíces.









## **ToBRFV**









Declarado en octubre 2019









# ToBRFV





https://gd.eppo.int/taxon/TOBRFV/photos







## **CARMOVIRUS**

Manchas cloróticas, estrías cloróticas en el tallo, en peciolos y pedúnculos de los frutos

#### MNSV en sandía









## **CGMMV**







# **POTEXVIRUS**

# PepMV

Las hojas muestran grandes manchas de color amarillolimón

Otras veces filiformismo y rizado.

Los frutos manifiestan manchas cloróticas











#### Control Infección Primaria: Semilla



**Termoterapia:** Calor seco a 80°C durante 24 horas. (Gil Ortega, 1991).



**Tratamiento químico**: Solución de TSP al 10% durante 15-20 minutos o al 3% durante 3h, soluciones a base de lejía diluida (1-3%)



Uso de sandía injertadas en **patrones** de calabaza para proteger contra MNSV

Se estima una pérdida de poder germinativo en el tomate de un 10% y un retraso en la germinación de 2-3 días

(Dombrovsky y Smith., 2017; Gil Ortega 1991)







#### Desinfección del suelo

- PSOLARIZACIÓN: Se acolcha un suelo húmedo con plástico transparente y fino (generalmente polietileno) durante 4-6 semanas en la época de mayor intensidad de radiación solar. Se traduce en un aumento de temperatura del suelo del orden de 10°C respecto al no solarizado (Frápoli et al., 2000). Usado en control de bacterias, nematodos, hongos, insectos, malas hierbas y virus.
- BIOFUMIGACIÓN La acción de las sustancias biológicamente activas y desinfectantes producidas por la biodescomposición de la materia orgánica (Brasicáceas y gallinazas).

**BIOSOLARIZACIÓN** = Biofumigación + Solarización.



Pérez Hernández et al., 2014



Talavera et al., 2014









Materia activa más usada en **Solarización química**:

74% Metansodio, 24 % Dicloropropeno

García et al., 2016; IFAPA

- 1-3 Dicloropropeno y Cloropicrina: sin autorización desde el 2010 y 2013. (Autorización excepcional del Ministerio). Sustancias excluidas del Anexo I de la Directiva 91/414/CEE (399). Trasladadas al anexo I del Reglamente (CE) № 1107/2009.
- **Dazomet, Metam Na y Metam K**: Desautorizados desde 2020, solicitados autorización excepcional.

El Reglamento de PI recomienda Solarización, Biosolarización y Biofumigación.







#### CONTROL MEDIANTE SOLARIZACIÓN Y BIOSOLARIZACIÓN

- Efectivo y con resultados satisfactorios en el control de hongos de suelo: Fusarium spp; Phytium aphanidermatum. Reduce significativamente poblaciones Meloidogyne spp, resultados contradictorios en el control de virosis (Domínguez et al., 2016; Pérez Hernández et al., 2014).
- Temperaturas medias alcanzadas en Solarización y Biosolarización: > 50ºC en superficie o **44**ºC 1 ºC a 10-15 cm de profundidad (Pérez Hernández et al., 2014).
- En el caso de virus muy estables como los tobamovirus, las temperaturas alcanzadas en el proceso de solarización no parecen ser totalmente efectivas en el control de virus que persisten en suelo

Moratilla Vega, 2017









#### ERRADICACIÓN DE PATÓGENOS DURANTE EL COMPOSTAJE

| Pathogen                            | Inoculum                         | Feedstock<br>(in heaps<br>unless stated) | Temperature*<br>(°C; max<br>unless stated) | Time<br>(days |
|-------------------------------------|----------------------------------|------------------------------------------|--------------------------------------------|---------------|
| Fungl                               | III SANA ARESTANIA               | SMOVE AS LATER STORY TO LATER            | 925                                        | 11162         |
| Armiliaria mellea                   | cherry wood                      | garden refuse                            | 70                                         | 21            |
| Botrytis aciada                     | bulbs/scierotia                  | garden refuse                            | 64-70                                      | 21            |
| Bolrytis cinerea                    | bean leaves                      | grass, hop waste,<br>manure              | 35                                         | 4             |
| B. cinerea                          | geranium stems/leaves            | bark                                     | 60                                         | 91            |
| Collelolifichum coccodes            | tomato, aubergine<br>roots/stems | garden refuse                            | 64-70                                      | 21            |
| Didymelia lycopersici               | tomato haulms                    | inoculum                                 | 59-73                                      | 7             |
| Fusarium охувропит                  |                                  |                                          |                                            |               |
| t.sp. callistephi                   | Chinese aster                    | garden refuse                            | 47-65                                      | 21            |
| f.sp. ////                          | Ifly bulbs                       | garden refuse                            | 58-70                                      | 21            |
| t.sp. melanis                       | melon roots/stems                | garden refuse                            | 56-67                                      | 21            |
| t.sp. melanis                       | melon residue                    | plant residues                           | 64                                         | 4             |
| t.sp. narcissi                      | bulb peelings                    | plant residues                           | 40                                         | 210           |
| Fusarium soleni<br>f.sp. cucurbilae | courgette roots/stems            | garden refuse                            | 53-65                                      | 21            |

Noble and Roberts, 2004

A partir de 45°C, dependiendo de la especie, los hongos patógenos pueden ser eliminados del compost. Coincide con los datos elaborados en **el IFAPA** en solarización por Pérez Hernández y col., 2014.







#### ERRADICACIÓN DE PATÓGENOS DURANTE EL COMPOSTAJE

CGMMV, PMMoV, ToMV y TMV se consideran virus "tolerantes a la temperatura"



- Temperaturas superiores a 60ºC y 60 días de compostaje, PMMoV no se detecta (Aguilar et al, 2010, IFAPA La Mojonera)
- Se ha descrito que para eliminar **CGMMV** durante el compostaje, es necesario temperaturas superiores a 72ºC (Avgelis & Manios 1992), en estudios de bioensayos y períodos de compostaje largos (más de 20 días)







Centro La Mojonera Camino de San Nicolás 1 04745 La Mojonera







Instituto de Investigación y Formación Agraria y Pesquera

mariac.garcia.g@juntadeandalucia.es







# TIPO DE SUSTRATO INFECTADO









#### TIPO DE SUSTRATO INFECTADO









#### TIPO DE SUSTRATO INFECTADO





