Семинар 3

Общая информация:

• Если $p(x) = a_0 + a_1 x + \ldots + a_n x^n$ – многочлен с вещественными коэффициентами, а $A \in \mathrm{M}_n(\mathbb{R})$, то можно определить p(A) следующим образом

$$p(A) = a_0 E + a_1 A + \ldots + a_n A^n$$

где $E \in \mathrm{M}_n(\mathbb{R})$ – единичная матрица.

Задачи:

- 1. Задачник. §18, задача 18.3 (а, д).
- 2. Пусть $A=\left(egin{array}{cc} a & b \\ c & d \end{array} \right)$ найти $A^2-{
 m tr}(A)A.$
- 3. Задачник. §17, задача 17.24.
- 4. Задачник. §19, задача 19.15.
- 5. Задачник. §19, задача 19.20.
- 6. Задачник. §19, задача 19.21.
- 7. Задачник. §18, задача 18.17.
- 8. Пусть $A \in M_{mn}(\mathbb{R})$ некоторая матрица, рассмотрим две системы Ax = 0 и $A^ty = 0$. Покажите, что у этих систем одинаковое количество главных переменных, проделав следующие пункты:
 - (a) Объясните, что для любой матрицы достаточно показать, что # главных $A^t \leqslant \#$ главных A.
 - (b) Пусть # главных A = d. Выполним следующие преобразования: Применим к A гаусса по строкам и приведем к улучшенному ступенчатому виду $B = U_1 A$ (будет d ненулевых строк). Покажите, что можно применить к B преобразования столбцов и получить матрицу $C = BU_2$ следующего вида (матрица E будет d на d):

$$C = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

- (c) Покажите, что если мы применим к матрице A преобразования столбцов U_2 , то есть рассмотрим $D = AU_2$, то получится матрица с не более чем d ненулевыми столбцами.
- (d) Вывести предыдущих пунктов, что количество главных переменных для Ax=0 и $A^ty=0$ совпадает.