Nonperturbative Transverse Momentum Effects in Dihadron and Direct Photon-Hadron Angular Correlations

Joe Osborn for the PHENIX Collaboration

Based on work in arXiv:1609.04769, submitted to Phys. Rev. D

SPIN 2016

Joe Osborn (UM) SPIN 2016 9/27/2016 1 / 23

Universality and Factorization in TMDs

- Sign change in Sivers TMD PDF predicted due to initial-state vs. final-state gluon exchange with proton remnants between DY and SIDIS: modified universality!
- What about $p+p \rightarrow h_1h_2$ where both initial- and final-state interactions are possible?

TMD Factorization Breaking

- Rogers and Mulders paper predicts QCD factorization breaking in dihadron production from p+p collisions in a TMD framework (Phys. Rev. D 81,094006 (2010))
- Back-to-back two particle angular correlations give sensitivity to initial- and final-state transverse momentum k_T and j_T

 ≥2 gluons exchanged with proton remnants leads to predicted breakdown

Joe Osborn (UM) SPIN 2016 9/27/2016 3 / 23

Expectations from Collins-Soper-Sterman (CSS) Evolution

- Expectation from CSS
 evolution is that any
 momentum width sensitive to
 nonperturbative k_T grows with
 the hard scale
 - Broadening due to increased phase space for hard gluon radiation
- Note that the CSS evolution equation comes directly out of the derivation for TMD factorization
- Phenomenological studies have shown that DY/Z and SIDIS follow this expectation

Phys. Lett. B 633, 710 (2006) (DY/Z)

Phys. Rev. D 89, 094002 (2014) (SIDIS)

Angular Correlation Observables

Dihadron production

$$p_{out} = p_T^{assoc} \sin \Delta \phi$$

PHENIX Detector

- PHENIX central arms
 - $\bullet \ \Delta \phi \sim \pi$
 - $|\eta|$ < 0.35
- Electromagnetic Calorimeter (PbSc/PbGI) provides isolated direct photon and $\pi^0 \to \gamma \gamma$ detection
- Drift Chamber (DC) and Pad Chambers (PC) provide nonidentified charged hadron detection

• New results from $2012/2013 \sqrt{s} = 510 \text{ GeV}$ p+p runs

Joe Osborn (UM) SPIN 2016 9/27/2016 6 / 23

$\Delta \phi$ Correlations for π^0 -h[±] and Direct γ -h[±]

- Two jet structure visible for π^0 -h $^\pm$, isolation cut on near side for direct γ -h $^\pm$
- ullet Direct $\gamma\text{-h}^\pm$ probes smaller jet energy due to emerging from hard scattering at LO

Joe Osborn (UM) SPIN 2016 9/27/2016 7 / 23

$\sqrt{\langle p_{out}^2 \rangle}$ Extracted from Fits to $\Delta \phi$ Correlations

- ullet $\sqrt{\langle p_{out}^2
 angle}$ characterizes away-side jet width in momentum space
- Decreases with hard scale, opposite of SIDIS and DY!
- Sensitive to perturbative and nonperturbative k_T and j_T

8 / 23

pout Distributions

- p_{out} shows two distinct regions: gaussian and power law
- Gaussian fits clearly fail past ${\sim}1.3$ GeV/c
- Indicates transition from nonperturbative to perturbative k_T and j_T

 Note: Curves are Kaplan and Gaussian fits, not calculations!!

Gaussian Widths of pout

- Gaussian widths of p_{out} distributions also decrease with hard scale p_T^{trig}
- Sensitive to only nonperturbative k_T and j_T in the nearly back-to-back region $\Delta \phi \sim \pi$
- PYTHIA replicates slope almost exactly, but shows 15% difference in magnitude of widths

Joe Osborn (UM) SPIN 2016 9/27/2016 10 / 23

Conclusions

- Factorization breaking has been predicted in $p + p \rightarrow h + X$ collisions for observables sensitive to nonperturbative transverse momentum
- New measurements from PHENIX of nearly back-to-back dihadron and isolated direct photon-hadron correlations at \sqrt{s} =510 GeV
- Angular correlations sensitive to initial-state k_T and final-state j_T show decreasing momentum widths with hard scale in $p+p \to h+X$
- Literature shows that Drell-Yan/Z and SIDIS interactions, which CSS evolution describes, exhibit increasing momentum widths with hard scale
- Paper submitted to Phys. Rev. D, arXiv:1609.04769

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ 釣 ९ ○

Back Up

Direct Photons and Dihadrons

- Direct photon-hadron and dihadron correlations both predicted to be sensitive to factorization breaking effects in PHENIX
- Assuming factorization, direct photon-hadrons probe three nonperturbative functions, while dihadrons probe four
- Direct photons offer one less avenue for gluon exchange in the final-state: fewer/different effects?

R_{γ}^{iso} Measurement at \sqrt{s} =510 GeV

- R_{γ}^{iso} measured for statistical subtraction of isolated decay photon contribution
- R_{γ} measured in PHENIX and corrected by tagging and isolation efficiencies
- $R_{\gamma}^{iso} > 1$ indicates isolated direct photon production

$$R_{\gamma}^{iso} = rac{R_{\gamma}}{(1 - \epsilon_{dec}^{tag})(1 - \epsilon_{dec}^{niso})} rac{N_{inc}^{iso}}{N_{inc}}$$

PYTHIA pout Distributions

- PYTHIA π^0 -h $^\pm$ and isolated γ -h $^\pm$ correlations analyzed similarly to data
- PYTHIA exhibits similar characteristics to data: nonperturbative transitioning to perturbative region
- Initial and final state interactions possible in PYTHIA: all particles are forced to color neutralize

PYTHIA Reproduces CSS Evolution

- Can check if PYTHIA also reproduces CSS evolution with DY dimuon production
- Construct same observable $p_{out} = p_T^{lep} \sin \Delta \phi$ between two nearly back-to-back leptons
- PYTHIA confirms expectation from CSS evolution for same observable

- Note rate of increase is significantly larger in magnitude also
- Red solid line shows log fit, blue dotted line shows linear fit

Other DY/Z and SIDIS Refs.

Phys. Rev. D 67, 073016 (2003) (DY/Z)

Phys. Rev. D 61, 014003 (2000) (SIDIS)

\sqrt{s} =200 GeV Results

- Previous PHENIX result at \sqrt{s} =200 GeV with larger errors (Phys. Rev. D 82, 072001 (2010))
- Next step: analyze recent Run 15 \sqrt{s} =200 GeV p+p and p+A data from RHIC!
- 6x luminosity in Run 15 p+p, as well as first result from p+A
- Can also look at transverse spin dependence in Run 15!

Joe Osborn (UM) SPIN 2016 9/27/2016 18 / 23

Other Measurements in Literature

- Other RHIC publications show the same effect in $\sqrt{\langle p_{out}^2 \rangle}$ and away-side width
- All previous analyses motivated by different physics goals: fragmentation functions, partonic energy loss in QGP, etc

PRD 82, 072001 (2010) (PHENIX)

PRD 74, 072002 (2006) (PHENIX)

Possible Links to Color Coherence Effects?

- D0, CDF, CMS have all published papers on evidence for "color coherence effects"
- Color flow gives rise to areas in phase space where gluons destructively interfere
- Few citations though, relatively unknown work!
- CMS: Eur.Phys.J. C74 (2014) no.6, 2901
- CDF: Phys. Rev. D 50, 5562 (1994)
- D0: Phys. Lett. B 414, 419 (1997)

PYTHIA $\langle z_T \rangle$ Correction

- Direct photons emerge directly from hard scattering, π^0 s are a fragment
- Thus a more direct comparison is between p_T^{trig} for direct photon and jet p_T^{trig} for π^0
- Determine $\langle z_T \rangle = p_T^{\pi^0}/\hat{p}_T^{parton}$ using PYTHIA, "correct" π^0 p_T^{trig} to get $p_T^{jet} = p_T^{trig,\pi^0}/\langle z_T \rangle$

Analysis Methods

- Correlated $\pi^0 h^{\pm}$ or isolated γh^{\pm} are collected and corrected with:
 - Charged hadron efficiency
 - Acceptance correction
- Direct photons undergo additional statistical subtraction to remove decay photon background, estimated with Monte Carlo probability functions
- Isolation and tagging cuts remove decay photon background and NLO fragmentation photons

Probability for a π^0 to decay to a photon which could not be tagged with $5 < p_T < 7$ GeV/c in PHENIX

$$Y_{ extit{dir}}^{ extit{iso}} = rac{1}{R_{\gamma}^{ extit{iso}}-1} \left(R_{\gamma}^{ extit{iso}} Y_{ extit{inc}}^{ extit{iso}} - Y_{ extit{dec}}^{ extit{iso}}
ight)$$

DY and SIDIS Measurements

- A few examples of DY and SIDIS TMD measurements shown here
- Both show increasing trends with the hard scale
- Phys. Rev. Lett. 38, 1334 (DY)
- Phys. Rev. Lett. 47, 12 (DY)
- Phys. Rev. D 23, 604 (DY)
- Eur. Phys. J. C73, 2531 (SIDIS)

