DAFTAR ISI

DAFTAR ISI	i
BAB 1. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Tujuan	3
1.4 Luaran yang Diharapkan	3
1.5 Manfaat	3
BAB 2. TINJAUAN PUSTAKA	4
2.1 Digital Twin	4
2.2 Aplikasi Teknologi Digital Twin pada Industri Makanan dan Minu	uman 4
2.3 Sauce Filling Machine	5
BAB 3. TAHAP PELAKSANAAN	5
3.1 Waktu dan Tempat Pelaksanaan	5
3.2 Tahap Pelaksanaan Kegiatan	5
3.3 Prinsip Kerja Alat	7
BAB 4. BIAYA DAN JADWAL KEGIATAN	8
4.1 Anggaran Biaya	8
4.2 Jadwal Kegiatan	9
DAFTAR PUSTAKA	9
LAMPIRAN	11
Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping	11
Lampiran 2. Justifikasi Anggaran Kegiatan	18
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas	20
Lampiran 4. Surat Pernyataan Ketua Pelaksana	21
Lampiran 5. Gambaran Teknologi yang akan Dikembangkan	22

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Salah satu program prioritas pemerintah Indonesia adalah *blue economy*, yaitu bagaimana mengelola hasil laut untuk kecukupan pangan serta terjaga keberlanjutannya. Kementerian Kelautan dan Perikanan mencatat produksi total ikan di Indonesia pada tahun 2021 sebesar 24,47 juta ton dari jumlah tersebut 8,08 juta ton merupakan produksi perikanan tangkap (Rahmantya dkk., 2022). Data produksi ikan selaras dengan angka konsumsi ikan nasional mencapai 55,37 kg/kapita pada tahun 2021, meningkat 1,48% dibanding tahun sebelumnya (Indonesia, t.t., 2022). Selain dikonsumsi dalam bentuk ikan segar, ikan dapat diawetkan dengan berbagai cara seperti melalui pengeringan, pembekuan, pengasinan, pengasapan, dan pengalengan (Naiu dkk., 2018). Industri pengalengan ikan khususnya di Indonesia terus berkembang dan memberikan kontribusi penting bagi rantai pasokan makanan baik pasar domestik maupun ekspor (Permintaan Olahan Ikan Kaleng Meningkat di Tengah Pandemi, t.t., 2020). Meningkatnya permintaan produk ikan kaleng menjadi tantangan yang dihadapi produsen untuk memastikan kualitas, efisiensi dalam proses produksinya, memenuhi standar tinggi untuk kebersihan serta kesehatan produk agar tetap aman dikonsumsi manusia (Pabrik Pengalengan Ikan – PT. Sinar Nusantara Sakti, t.t., 2018).

Produksi pengolahan ikan tidak hanya dilakukan dalam skala besar di pabrik-pabrik, hal ini juga menjadi peluang pengembangan sentra UMKM pengolahan hasil perikanan tangkap bagi masyarakat disekitar pantai penghasil ikan (Pramushinta Arum Pynanjung dkk., 2020). Bahkan selama pandemi Covid-19 pengolahan ikan dalam skala kecil melalui UMKM tumbuh secara positif. Kemenperin menyebutkan terdapat 718 unit usaha pengolahan ikan yang tersebar di berbagai wilayah Indonesia (Permintaan Olahan Ikan Kaleng Meningkat di Tengah Pandemi, t.t., 2020). Dikutip dari laman resmi KKP, komitmen pemerintah melalui KKP terus mendorong pertumbuhan usaha pengalengan ikan skala kecil yang diwujudkan dengan melakukan pembinaan kepada salah satu koperasi di Kabupaten Bantul dalam bentuk menyediakan tempat pengolahan senilai Rp2,2 miliar (2015), bantuan modal Rp2,5 miliar (2018) dan 2 unit *chest freezer* (2022).

Secara umum proses pengalengan melalui tahapan: pembersihan dan sortir bahan baku, *thawing*, pemotongan, pemasakan, *cleaning*, *metal detecting*, pengisian (*filling*) ikan, pengisian larutan (larutan garam/bumbu/saus), *seaming*, sterilisasi, dan terakhir penyimpanan (Widnyana & Suprapto, 2020). Untuk produksi ikan kaleng skala besar di pabrik tentunya mayoritas proses dilakukan secara otomatis dengan dukungan mesin manufaktur yang canggih. Sedangkan untuk produsen skala kecil masih melakukannya secara manual, bantuan pemerintah belum sampai pada aspek

inti produksi seperti pengisian larutan (*liquid*). Pengisian larutan merupakan salah satu hal penting yang menjadi fokus para produsen karena volume yang diberikan harus tepat dan akurat. Kesalahan dalam proses ini dapat mengakibatkan masalah kualitas seperti kaleng yang kurang terisi atau terlalu penuh, sehingga berdampak pada pembusukan produk dan keluhan pelanggan.

Pemanfaatan *filling machine* dapat menjadi pilihan bagi produsen ikan kaleng skala kecil untuk meminimalisir kesalahan pengisian larutan secara manual tersebut. Namun harga dipasaran untuk *filling machine* otomatis di *marketplace* pun mencapai diatas 15 juta rupiah seperti pada Gambar 1 ("Mesin Filling Cairan Dan Pasta MSP-FL500," t.t.). Sehingga perlu dikembangkan *filling machine* otomatis yang lebih ekonomis, otomatis disini bukan hanya untuk proses pengisian namun juga untuk pemantauan kinerja dan kesehatan mesin. Beberapa tahun terakhir ini teknologi *digital twin* menjadi tren dan telah diterapkan diberbagai industri seperti kedirgantaraan (Schirrmeister & Jose, t.t., 2019), otomotif (Piromalis & Kantaros, 2022), kesehatan (Armeni dkk., 2022), dan manufaktur (Onaji dkk., 2022).

Gambar 1. Contoh Pasta/*Liquid Filling Machine* Otomatis (Sumber: Tokomesin.com)

Digital Twin (DT) menghadirkan replika secara detail yang berbasis virtual dari mesin atau entitas fisik lainnya. DT mencakup tiga komponen yaitu konten pengetahuan, efek dan fungsionalitas, dan domain aplikasi (K. Wang, T. Lee, Y. Hsu, and T. Lee, 2020). Pengambilan data secara real-time dilakukan dengan melibatkan berbagai sensor, proses pertukaran data melibatkan Internet of Things. DT memungkinkan operator untuk mensimulasikan, mengoptimalkan proses, mengidentifikasi hal-hal yang tidak efisien, dan memprediksi potensi kegagalan lebih dini (A. Rasheed dkk., 2020).

Inovasi yang diusulkan dalam proposal ini adalah pembuatan *Liquid Filling Machine* otomatis berbiaya lebih rendah dari harga pasaran karena memanfaatkan gaya gravitasi sehingga cocok untuk produsen skala kecil. Sekaligus mengimplementasikan *digital twin* pada mesin pengisian saus otomatis untuk pengalengan ikan. DT akan menghadirkan pemantauan dan kontrol *real-time* proses pengisian saus dalam bentuk mesin virtual 3 dimensi.

DT juga dapat membantu mengidentifikasi potensi ketidaknormalan mesin serta memungkinkan untuk optimalisasi proses. Dampak kedepan dari inovasi teknologi ini dapat mengarah pada peningkatan efisiensi, pengurangan biaya, dan peningkatan daya saing bagi perusahaan dalam industri pengalengan ikan.

1.2 Rumusan Masalah

Berdasarkan latar belakang diatas dapat dirumuskan permasalahan sebagai berikut:

- 1. Bagaimana mengembangkan perangkat *filling machine* otomatis yang lebih ekonomis?
- 2. Bagaimana membangun perangkat *filling machine* virtual dalam bentuk model 3 dimensi?
- 3. Bagaimana cara mensimulasikan perangkat filling machine secara tepat?

1.3 Tujuan

Adapun tujuan dibuatnya teknologi digital twin untuk filling machine yaitu:

- 1. Mengembangkan perangkat *filling machine* versi ekonomis dengan *electrical valve*.
- 2. Membangun virtual perangkat filling machine.
- 3. Mensimulasikan perangkat *filling machine* secara tepat.

1.4 Luaran yang Diharapkan

Luaran wajib yang akan dihasilkan dari pembuatan *liquid filling machine* dengan implementasi *digital twin* ini, yaitu:

- 1. Laporan Kemajuan;
- 2. Laporan Akhir;
- 3. Produk Fungsional: *liquid filling machine* yang lebih ekonomis dengan implementasi *digital twin*.
- 4. Akun media sosial (untuk promosi).
- 5. Hak Kekayaan Intelektual (HKI) atas produk fisik dan produk virtual sebagai luaran tambahan.

1.5 Manfaat

- 1. Adanya *filling machine* otomatis dengan harga yang lebih ekonomis, sehingga memungkinkan produsen skala kecil memilikinya.
- 2. Terciptanya teknologi *digital twin* ini, diharapkan membantu industri untuk mempermudah proses *monitoring* kinerja *filling machine* dengan visualisasi 3D *real-time*.
- 3. Memudahkan pengguna dalam mengetahui kondisi mesin termasuk memperkirakan resiko malfungsi.
- 4. Membantu dalam meningkatkan efektifitas dan efisiensi produksi suatu industri pengalengan ikan.

BAB 2. TINJAUAN PUSTAKA

2.1 Digital Twin

Teknologi *digital twin* adalah representasi digital dari suatu entitas fisik atau sistem, yang mencakup semua informasi dan perilaku yang relevan, termasuk aspek fisik, kinerja, dan keadaan operasional (Liu *et al.*, 2021). *Digital twin* dapat digunakan untuk memantau, menganalisis, dan memperbaiki kinerja sistem secara *real-time*. Karakteristik digital twin meliputi kemampuan mereplikasi sistem secara real-time, interaksi dengan sistem fisik, analisis dan prediksi performa sistem di masa depan, dan kemampuan untuk memperbarui dan mengembangkan model secara dinamis (Jones dkk., 2020). Sistem kerja *digital twin* (Smart & Priebbenow, 2018) dapat dilihat pada Gambar 2.

Gambar 2. Contoh Pasta/*Liquid Filling Machine* Otomatis (Sumber: Smart & Priebbenow, 2018)

2.2 Aplikasi Teknologi *Digital Twin* pada Industri Makanan dan Minuman

Teknologi *digital twin* dapat memiliki beberapa aplikasi yang signifikan pada industri makanan dan minuman. Salah satu aplikasinya adalah meningkatkan efisiensi produksi dengan memantau kinerja peralatan secara real-time dan mengoptimalkan operasi (Bottani, Vignali and Carlo Tancredi, 2020). Dengan menggunakan teknologi *digital twin*, operator dapat memantau mesin dan peralatan mereka secara *real-time* dan mengidentifikasi masalah sebelum menjadi masalah yang lebih besar. Selain itu, teknologi *digital twin* juga dapat mengantisipasi dan mengidentifikasi masalah sebelum produk dikeluarkan dari lini produksi. Hal ini memungkinkan perusahaan untuk memastikan kualitas produk, meningkatkan efisiensi produksi dan mengurangi jumlah limbah yang dihasilkan.

2.3 Sauce Filling Machine

Sauce Filling Machine adalah sebuah mesin yang dirancang untuk mengisi bahan makanan cair seperti saus ke dalam kemasan seperti botol atau kaleng (Syahrul Syah et al., 2018). Mesin ini terdiri dari beberapa komponen seperti tangki penyimpanan bahan, pompa pengisian, nozzle pengisian, sistem kontrol, dan bagian-bagian lain yang berfungsi untuk mengoptimalkan proses pengisian. Mesin pengisi saus dapat digunakan untuk mengisi saus pada berbagai jenis produk makanan seperti kaleng ikan, saus tomat, saus salad, saus bumbu, dan sebagainya. Mesin pengisi saus juga memiliki berbagai macam kapasitas produksi yang dapat disesuaikan dengan kebutuhan perusahaan makanan dan minuman.

BAB 3. TAHAP PELAKSANAAN

3.1 Waktu dan Tempat Pelaksanaan

Waktu yang dibutuhkan untuk pelaksanaan kegiatan ini adalah 5 bulan meliputi kegiatan identifikasi masalah, penyusunan ide, perancangan mesin fisik dan virtual, persiapan alat dan bahan, pembuatan mesin fisik dan virtual, pengujian fungsionalitas dan penyempurnaan, dan pembuatan laporan. Secara keseluruhan pelaksanaan kegiatan ini dilaksanakan di Politeknik Negeri Jember untuk pembuatan alat/mesin fisik dan mesin virtual. Seluruh kegiatan akan dilaksanakan secara luring dengan menerapkan protokol kesehatan.

3.2 Tahap Pelaksanaan Kegiatan

Untuk mencapai tujuan pembuatan inovasi alat *liquid filling machine* dengan *digital twin* dilakukan dalam beberapa tahapan yang dapat dilihat pada Gambar 3.

Gambar 3. Alur Tahapan Pelaksanaan

1. Identifikasi Masalah (Karsa)

Tahap awal untuk mengidentifikasi permasalahan yang ada pada mesin pengisi saus dengan cara studi literatur yang sesuai dengan topik yang dibahas, dimulai dengan mempelajari fenomena di industri pengalengan ikan, khususnya pada bagian mesin pengisian saus. Cara lain untuk memperkuat

penemuan masalah dengan mempelajari referensi alat-alat pengisi saus yang ada di pasaran. Diharapkan dari tahap ini ditemukan permasalahan dan inovasi yang sesuai untuk dikembangkan. diketahui bahwa produsen ikan kaleng skala kecil membutuhkan mesin pengisi saus otomatis yang lebih murah dan memungkinkan pemantauan kondisi fisik mesin secara tepat.

2. Penyusunan Ide Solusi

Tahap ini merupakan fase dimana tim pengusul memunculkan ide solusi yang tepat untuk menjawab permasalahan di tahap sebelumnya. Pembuatan mesin pengisi saus otomatis akan lebih mudah jika prinsip kerjanya memanfaatkan gaya gravitasi, ini dapat menghemat biaya pembuatan mesinnya. Sekaligus mengimplementasikan teknologi *digital twin* dengan menduplikasi mesin fisik. Hal ini akan berdampak terhadap kemudanan monitoring dan meningkatkan efisiensi produksi.

3. Perencanaan Mesin Fisik dan Virtual

Perencanaan ini bertujuan untuk membuat konsep rancangan awal desain mesin pengisi saus yang berdasarkan data yang diperoleh dari beberapa referensi, yang nantinya akan digunakan sebagai pedoman untuk membuat mesin pengisi saus fisik dan virtual. Dalam tahap ini terdapat dua sistem kerja yang menjadi fokus utama dari pembuatan alat, yaitu sistem kerja dari mesin pengisi saus dan penerapan teknologi *digital twin*, termasuk cara mengirim dan menerima data. Gambar 4 merupakan perancangan mesin fisik dan virtualnya.

Gambar 4 (a) Mesin Fisik (b) Mesin Virtual

4. Persiapan Alat dan Bahan

Tahap dimana tim membeli bahan-bahan yang dibutuhkan untuk pembuatan mesin fisik, sensor-sensor, komponen elektronik, mikrokontroler, perangkat pengirim data. Untuk kebutuhan pemodelan mesin virtual dengan asset dan animasi 3 dimensi ke pihak penyedia layanan jasa. Pemilihan *software* yang akan digunakan untuk membuat *digital twin*

5. Pembuatan Mesin Fisik dan Virtual

Tahap ini mesin fisik mulai dibentuk dan dirangkai sehingga mampu menunjukkan funsgionalitasnya. Berikutnya implementasi *digital twin* melibatkan pembuatan model virtual yang mereplikasi mesin pengisi saus

otomatis secara detail, termasuk semua komponen dan fitur mesin. Model virtual ini harus mampu memvisualisasikan semua fungsi mesin dalam keadaan operasional. Mengintegrasikan data sensor pada mesin pengisi saus fisil ke dalam model *digital twin*, sehingga data yang didapatkan dari sensor dapat digunakan untuk memantau kondisi mesin secara *real-time* dan dapat memberikan informasi yang akurat tentang kondisi mesin.

6. Pengujian Fungsionalitas dan Penyempurnaan

Tahap pengujian ini berfokus pada fungsionalitas perangkat seperti sensor, mikrokontroller, modul pengirim dan penerima data, visualisasi mesin virtual apakah sudah tepat atau masih diperlukan perbaikan. Jika ada perangkat atau model virtual yang belum sesuai maka dilakukan penyempurnaan hingga dipastikan kinerja mesin fisik dan virtual selaras.

7. Pembuatan Laporan

Tahap pembuatan laporan meliputi laporan kemajuan yang berisi target luaran seperti hasil yang telah dicapai, dokumentasi pembuatan alat, dan potensi hasil yang akan diperoleh serta rencana untuk tahapan selanjutnya. Setelah alat fisik dan virtual dibuat, kemudian dilanjut dengan pembuatan laporan akhir. Laporan akhir berisi tahapan pelaksanaan mulai dari munculnya inspirasi sampai dengan mewujudkan produk fungsional, rincian penggunaan dana, bukti pendukung kegiatan, gambaran detail produk yang diciptakan, dan akun sosial media yang lima unggahnnya telah diiklankan.

3.3 Prinsip Kerja Alat

Prinsip kerja Teknologi *Digital Twin* pada Mesin Pengisi Saus:

- 1) Mesin pengisi saus ini menggunakan sistem buka tutup katup atau *valve* secara otomatis, pengaturan aliran saus, tingkat kecepatan, dan sistem buka tutup katup atau *valve* dapat dilakukan secara digital, dibantu dengan sensor ultrasonik sesuai dengan ketinggian cairan atau ada tidaknya kaleng dibawah katup tersebut melalui pengaturan program pada kontroler. Sistem pengiriman datanya yaitu dari sensor kemudian dikirim dan diterima oleh server atau *database*, diolah dan ditampilkan secara *real-time* pada mesin virtual. Ditampilkan melalui mesin virtual secara 3D dengan skala 1:1, menampilkan beberapa komponen seperti ketinggian cairan, posisi katup dalam kondisi terbuka atau tertutup, ada tidaknya kaleng dibawah katup, serta indikator aliran saus pada katup.
- 2) Pemodelan Alat: Didapatkan dari mesin pengisi saus yang sesungguhnya. Data ini meliputi informasi tentang spesifikasi mesin, seperti dimensi dan kapasitas pengisiannya.
- 3) Sinkronisasi Data: Data dari mesin pengisi saus yang sesungguhnya dikirimkan ke dalam model tersebut. Hal ini dapat dilakukan dengan menggunakan sensor atau perangkat IoT yang terhubung ke mesin pengisi

- saus. Data tersebut kemudian dimasukkan ke dalam model digital twin untuk menghasilkan visualisasi 3D dari mesin pengisi saus.
- 4) Simulasi Pengisian Saus: Sistem *digital twin* kemudian dapat digunakan untuk mensimulasikan pengisian saus pada mesin yang sesungguhnya. Dengan memasukkan data tentang parameter pengisian, seperti kecepatan dan kapasitas pengisian, sistem *digital twin* dapat menghasilkan simulasi yang sangat mirip dengan pengisian yang sesungguhnya.
- 5) Analisis performa mesin: Dalam analisis ini, prediksi yang dihasilkan oleh model *digital twin* dapat dibandingkan dengan performa yang sesungguhnya dari mesin pengisi saus. Hal ini memungkinkan untuk mendeteksi masalah dalam mesin pengisi saus dan mengambil tindakan perbaikan yang diperlukan.
- 6) Pemantauan dan optimisasi performa mesin: Model *digital twin* dapat digunakan untuk memantau performa mesin pengisi saus secara *real-time* dan memperbaiki atau mengoptimalkan performa mesin saat dibutuhkan. Model digital twin dapat memberikan informasi yang dapat membantu untuk meningkatkan efisiensi dan produktivitas mesin pengisi saus secara keseluruhan.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

No	Jenis Pengeluaran	Sumber Dana	Besaran Dana (Rp)
	Bahan Habis Pakai (57%	Belmawa	5.915.000
1	dari jumlah anggaran yang	Perguruan Tinggi	
	diusulkan)	Instansi Lain (jika ada)	
	Sewa dan Jasa (14% dari	Belmawa	1.450.000
2	jumlah anggaran yang	Perguruan Tinggi	
	diusulkan)	Instansi Lain (jika ada)	
	Transportasi Lokal (15%	Belmawa	1.100.000
3	dari jumlah anggaran yang	Perguruan Tinggi	
	diusulkan)	Instansi Lain (jika ada)	
	Lain-lain (15% dari	Belmawa	1.500.000
4	jumlah anggaran yang	Perguruan Tinggi	
	diusulkan)	Instansi Lain (jika ada)	
	Jumlah		9.965.000
		Belmawa	9.965.000
,	Dakanan Sumban Dana	Perguruan Tinggi	
_	Rekapan Sumber Dana	Instansi Lain (jika ada)	
		Jumlah	9.965.000

4.2 Jadwal Kegiatan

Kegiatan ini direncanakan selama 5 bulan dengan rincian sebagai berikut:

No	Ionia Vagiatan		В	ula	n		Person Penanggung
110	Jenis Kegiatan	1	1 2 3 4 5		5	Jawab	
1	Studi Literatur						Alfiani Nur Aziza
2	Penyusunan Konsep						Ayunda Kusuma Wardani
	Perancangan Teknologi						Achmad Sirojudin
3	Digital Twin dan Desain						
	3D Sauce Filling Machine						
4	Pengumpulan Alat &						Mohammad Irnanda
4	Bahan						
	Pembuatan Teknologi						Anfasa Syahrul Habibie
5	Digital Twin dan Prototipe						
	Sauce Filling Machine						
6	Pengujian, Analisa dan						Anfasa Syahrul Habibie
0	Evaluasi						
7	Pembuatan Laporan Akhir						Ayunda Kusuma Wardani

DAFTAR PUSTAKA

- Armeni, P., Polat, I., De Rossi, L. M., Diaferia, L., Meregalli, S., dan Gatti, A. 2022. Digital Twins in Healthcare: Is It the Beginning of a New Era of Evidence-Based Medicine. 12(8), 1255.
- A. Rasheed, O. San, dan T. Kvamsdal. 2020. Digital Twin: Values, Challenges and Enablers from a Modeling Perspective. 8:21980–22012.
- Bottani, E., Vignali, G. dan Carlo Tancredi, G.P. 2020. A Digital Twin Model of A Pasteurization System For Food Beverages: Tools and Architecture. 1:1-8.
- Indonesia, D. (t.t.). 2023. *Angka Konsumsi Ikan Indonesia Sebesar 54,56 Kg/Kapita pada 2021*. URL: https://dataindonesia.id/sektor-riil/detail/angka-konsumsi-ikan-indonesia-sebesar-5456-kgkapita-pada-2021https://dataindonesia.id/sektor-riil/detail/angka-konsumsi-ikan
 - indonesia-sebesar-5456-kgkapita-pada-2021. Diakses tanggal 5 Maret. Jones, D., Snider, C., Nassehi, A., Yon, J., dan Hicks, B. 2020. *Characterising The Digital Twin: A Systematic Literature Review.* 29, 36–52.
- *Kementerian Kelautan dan Perikanan*. 2022. URL: https://kkp.go.id/djpdspkp/artikel/45508-koperasi-binaan-kkp-produksi-ikan-kaleng-citarasa-nusantara. Diakses tanggal 5 Maret 2023.
- K. Wang, T. Lee, Y. Hsu, dan T. Lee. 2020. Revolution on Digital Twin Technology

 A Patent Research Approach. 2.

- Liu, M. et al. 2021. Review of Digital Twin About Concepts, Technologies, and Industrial Applications. 58:346–361
- Naiu, A. S., Koniyo, Y., Nursinar, S., dan Kasim, F. 2018. *Penanganan Dan Pengolahan Hasil Perikanan*. Cv Athra Samudra.
- Onaji, I., Tiwari, D., Soulatiantork, P., Song, B., & Tiwari, A. 2022. Digital Twin in Manufacturing: Conceptual Framework and Case Studies. International Journal of Computer Integrated Manufacturing, 35(8), 831–858.
- Pabrik Pengalengan Ikan PT. Sinar Nusantara Sakti. URL: https://sinarnusantarasakti.com/pabrik-ikan/. Diakses tanggal 5 Maret 2023.
- Permintaan Olahan Ikan Kaleng Meningkat di Tengah Pandemi. URL: https://pasardana.id/news/2020/4/24/permintaan-olahan-ikan-kaleng-meningkat-di-tengah-pandemi/. Diakses tanggal 6 Maret 2023.
- Piromalis, D., & Kantaros, A. 2022. Digital Twins in the Automotive Industry: The Road Toward Physical-Digital Convergence. 5(4), 65.
- Pramushinta Arum Pynanjung, Hendri, M. I., & Mayasari, E. 2020. *Peluang Pengembangan Sentra Umkm Pengolahan Hasil Perikanan Tangkap Di Kalimantan Barat*. Cv. Derwati.
- Rahmantya, K. F., Setiawan, A., Wahyuni, T., Asianto, A. D., Malika, R., Wulansari, R. E., Annisa, A. K., Zunianto, A. K., Putra, H. I. K., Luvianita, A. A., Nurfaizah, A., Retno, R. A., Listyowati, T., Pebriani, R., Pribadi, D. M., Rakhman, F. A., Fitriyani, M. K., Indria, P. D., Rahmah, N. M., dan Tambunan, M. L. M. 2022. *Kelautan dan Perikanan dalam Angka Tahun 2022 Marine and Fisheries in Figures 2022*. Pusat Data, Statistik dan Informasi.
- Schirrmeister, F., & Jose, S. System Emulation and Digital Twins in Aerospace Applications.
- Smart, M., & Priebbenow, R. (2018, Oktober 2). *Designing a 3D Cadastral System Demonstrator: A Case Study. 6th International FIG 3D Cadastre Workshop 2-4 October 2018, Delft, The Netherlands.*
- Syahrul Syah, S. et al. 2018. Sauce Filler Machine Automatic Screw System Equipped with Electrical Control Unit.Mesin Filling Cairan Dan Pasta MSP-FL500. (t.t.).
- Toko Mesin Maksindo. Diambil 6 Maret 2023, dari https://www.tokomesin.com/shop/mesin-filling-cairan-dan-pasta-msp-f1500
- Widnyana, I. M. S., & Suprapto, H. (2020). Canning Process Tuna (Canned Tuna) with High Temperatures in PT. Aneka Tuna Indonesia, Pasuruan. *Journal of Marine and Coastal Science*, 8(2), 66. https://doi.org/10.20473/jmcs.v8i2.21150

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping

Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Ayunda Kusuma Wardani
2	Jenis Kelamin	Perempuan
3	Program Studi	D4-Teknik Informatika
4	NIM	E41201809
5	Tempat dan Tanggal Lahir	Jember, 12 April 2002
6	Alamat E-mail	ayundakusumawardani12@gmail.com
7	Nomor Telepon/HP	081234416938

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat	
1	UKM English Club	Anggota	2020, Politeknik Negeri Jember	
2	UKM LABAIK	Anggota	2023, Politeknik Negeri Jember	

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 1 Aplikasi E-Perpus (Pameran TIF Exhibition)	Politeknik Negeri Jember	2021
2	Juara 1 Aplikasi Pesona Laundry (Pameran TIF Exhibition)	Politeknik Negeri Jember	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Jember, 5 Februari 2023 Ketua,

(Ayunda Kusuma Wardani)

A. Identitas Diri

1	Nama Lengkap	Achmad Sirojudin
2	Jenis Kelamin	Laki-laki
3	Program Studi	D4-Teknik Infomatika
4	NIM	E41201607
5	Tempat dan Tanggal Lahir	Pasuruan, 28 April 2002
6	Alamat E-mail	achmadsiroj07@gmail.com
7	Nomor Telepon/HP	081217141562

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Himpunan Mahasiswa Jurusan Teknologi Informasi Politeknik Negeri Jember	Ketua Himpunan	Januari 2022 – Desember 2022, Politeknik Negeri Jember

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 2 Inovasi Teknologi tingkat Nasional 2022	POLINEMA	2022
2	Best Teamwork Hackathon KMIPN	BAKORMA	2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Jember, 5 Februari 2023 Anggota Tim 1,

(Achmad Sirojudin)

A. Identitas Diri

1	Nama Lengkap	Alfiani Nur Aziza
2	Jenis Kelamin	Perempuan
3	Program Studi	D3-Teknik Komputer
4	NIM	E32211811
5	Tempat dan Tanggal Lahir	Jember, 18 Mei 2002
6	Alamat E-mail	alfianigomez@gmail.com
7	Nomor Telepon/HP	085236067418

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat	
1	Himpunan Mahasiswa Jurusan Teknologi Informasi	Anggota Biro Hardware Departemen Keilmuan	2022, Politeknik Negeri Jember	
2	Himpunan Mahasiswa Jurusan Teknologi Informasi	Wakil Ketua Himpunan	2023, Politeknik Negeri Jember	

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Best Team Work KMIPN IV Tahun 2022 Kategori Hackathon	Bakorma	2022
2	2022 World Friend Korea Volunteer	Jurusan TI, Politeknik Negeri Jember	2022
3	Peraih Mendali Perak Olimpiade Sains Mahasiswa	Pelatihan Olimpiade Sains Mahasiswa	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Jember, 5 Februari 2023

Anggota Tim 2,

(Altiani Hur Aziza)

A. Identitas Diri

1	Nama Lengkap	Anfasa Syahrul Habibie
2	Jenis Kelamin	Laki-laki
3	Program Studi	D4-Teknologi Rekayasa Mekatronika
4	NIM	H43201183
5	Tempat dan Tanggal Lahir	Jember, 21 April 2000
6	Alamat E-mail	anfasa.syhrl@gmail.com
7	Nomor Telepon/HP	085233284220

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Himpunan Mahasiswa Jurusan Teknik	Humas	2021, Politeknik Negeri Jember

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Jember, 5 Februari 2023 Anggota Tim 3,

(Anfasa Syahrul Habibie)

A. Identitas Diri

1	Nama Lengkap	Mohammad Irnanda
2	Jenis Kelamin	Laki-laki
3	Program Studi	D3-Teknik Komputer
4	NIM	E32211535
5	Tempat dan Tanggal Lahir	Jember, 31 Maret 2002
6	Alamat E-mail	mohammadirnanda@gmail.com
7	Nomor Telepon/HP	089517455030

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Hima Prodi Teknik	Anggota Divisi	2021, Politeknik
	Komputer	PSDM	Negeri Jember

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan		Pihak Pemberi Penghargaan	Tahun
1		197	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Jember, 5 Februari 2023 Anggota Tim 4,

(Mohammad Irnanda)

Lampiran Biodata Dosen Pendamping

A. Identitas Diri

Nama Lengkap (dengan gelar)	Aji Seto Arifianto, S.ST, M.T
Jenis Kelamin	Laki-laki
Program Studi	Teknik Informatika
NIP/NIDN	198511282008121002/0028118502
Tempat dan Tanggal Lahir	Jember, 28 November 1985
Alamat E-mail	ajiseto@polije.ac.id
Nomor Telepon/HP	08121622323
	Jenis Kelamin Program Studi NIP/NIDN Tempat dan Tanggal Lahir Alamat E-mail

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Lulus
1	Sarjana (D4)	Teknologi Informasi	PENS – ITS	2008
2	Magister (S2)	Teknik Elektro	Universitas Brawijaya	2014
3	Doktor (S3)	-	-	-

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	sks
1	Pemrograman Dasar	Wajib	2
2	Sistem Aplikasi Berbasis Objek	Wajib	2
3	Workshop Sistem Cerdas	Wajib	4
4	Multimedia Permainan	Wajib	2

Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Deteksi Kendaraan Truk pada Video Menggunakan Metode Tiny-YOLO v4	Mandiri	2023
2	Virtual Exhibition Based On 2D Animation (Hibah Matching Fund Vokasi 2022)	DIKSI	2022
3	Pengembangan Prototype Media Promosi Kesehatan AVA (Audiovisual Aids) Dengan Figure Maskot Edukatif Tefa Nutrition Care Center Politeknik Negeri Jember Dengan Pendekatan Design Thinking	PNBP Politeknik Negeri Jember (PVUJ)	2022
4	Pengaruh Prediksi Missing Value pada Klasifikasi Decision Tree C4. 5	Mandiri	2022

5	Sistem Peramalan Waktu Masak Fisiologis Benih Padi Menggunakan Double Exponential Smoothing	Mandiri	2022
6	Teleoperation System for UV-Based Sterilization Robot	PNBP Politeknik Negeri Jember	2020
7	Fuzzy Multi-Criteria Decision Making To Classify Land Capability And Suitability	PNBP Politeknik Negeri Jember	2019

Pengabdian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Diseminasi teknologi Auto Diagnostics Repair (ADR) pada mobil LCGC untuk meningkatkan jumlah pelanggan dan mutu jasa servis di bengkel mobil Udy Teknik	PNBP Politeknik Negeri Jember	2022
2	Diseminasi Pengembangan Media Pembelajaran berbasis Internet dalam rangka Menunjang Implementasi Blended Learning	PNBP Politeknik Negeri Jember	2022
3	Diseminasi Sistem Informasi Geografis Komoditas Pertanian Di Desa Kemuning Lor Kabupaten Jember Untuk Mendukung Peningkatan Perekonomian Ditengah Pandemi Covid-19	PNBP Politeknik Negeri Jember	2021
4	Diseminasi Perawatan Dan Perbaikan Sistem Pendingin Dengan Flaring Kit Technology Bagi Kelompok Bengkel Servis Mesin & Ac Mobil	PNBP Politeknik Negeri Jember	2019

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan **PKM-KC**.

Jember, 5 Februari 2023 Dosen Pendamping

(Aji Seto Arifianto, S.ST, M.T)

Lampiran 2. Justifikasi Anggaran Kegiatan

No	Jenis Pengeluaran	Volume	Harga Satuan (Rp)	Total (Rp)	
1	Belanja Bahan				
	Wadah Chamber Stainless 304	1	900.000	900.000	
	Valve Stainless 304	1	750.000	750.000	
	Sensor Ultrasonik	3	300.000	900.000	
	Sensor Distance Infra Red	3	320.000	960.000	
	Mikrokontroler EPS 32	3	80.000	240.000	
	Power Supply	1	175.000	175.000	
	Relay	2	18.000	36.000	
	Switch Aktuator	2	90.000	180.000	
	Mode Toggle	2	90.000	180.000	
	Lamp	2	12.000	24.000	
	Box Panel	1	120.000	120.000	
	Kabel Jumper Male to Female	50	1.000	50.000	
	Kabel Jumper Female to Female	50	1.000	50.000	
	Kabel Jumper Male to Male	50	1.000	50.000	
	Kabel Pita	50	1.000	50.000	
	Saus	10	90.000	900.000	
	Kaleng	50	4.500	225.000	
	Alumunium	5	25.000	125.000	
	SUB TOTAL (A)			5.915.000	
2	Belanja Sewa				
	Jasa Las	3	50.000	150.000	

T T			l
Jasa Pembuatan 3D model mesin virtual	1	800.000	800.000
Sewa Hosting dan Domain	5	60.000	300.000
Jasa Potong Alumunium	1	50.000	50.000
Sewa Pick Up	1	150.000	150.000
SUB TOTAL (B)			1.450.000
3 Perjalanan lokal			
Trasnportasi Pembelian Bahan	5	100.000	500.000
Transportasi Pembuatan Jasa 3D	3	100.000	300.000
Trasnportasi Angkutan Alat (untuk keperluan las)	2	100.000	200.000
Transportasi Pemotongan Alumunium	1	100.000	100.000
SUB TOTAL (C)			1.100.000
4 Lain-lain			
Pendaftaran HKI	2	300.000	600.000
Biaya Komunikasi (Pulsa dan Internet)	4	100.000	400.000
Biaya Adsense	1	500.000	500.000
SUB TOTAL(D)			1.500.000
GRAND TOTAL (SUB TOTAL A-		9.965.000	

GRAND TOTAL (Terbilang: Sembilan Juta Sembilan Ratus Enam Puluh Lima Ribu Rupiah)

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama / NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Ayunda Kusuma Wardani / E41201809	D4-Teknik Informatika	Teknik Informatika	21 jam/minggu	Koordinator, pengembang desain, pembuatan perangkat fisik, dan pembuatan perangkat virtual
2	Achmad Sirojudin / E41201607	D4-Teknik Informatika	Teknik Informatika	21 jam/minggu	Penyusunan proposal, pemodelan mesin virtual, pembelanjaan bahan
3	Alfiani Nur Aziza / E32211811	D3-Teknik Komputer	Teknik Komputer	21 jam/minggu	Penyusunan laporan kemajuan, rancang bangun alat dan sistem, komunikasi data
4	Anfasa Syahrul Habibie / H43201183	D4-Teknologi Rekayasa Mekatronika	Teknik	21 jam/minggu	Pengembangan mesin fisik, penyusunan laporan akhir, HKI
5	Mohammad Irnanda / E32211535	D3-Teknik Komputer	Teknik Komputer	21 jam/minggu	Pembuatan sistem kontrol, pembelanjaan alat, pengelolaan sosial media

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertandatangan dibawah ini:

Nama Ketua Tim : Ayunda Kusuma Wardani

Nomor Induk Mahasiswa : E41201809

Program Studi : Teknik Informatika

Nama Dosen Pendamping : Aji Seto Arifianto, S.ST., M.T.
Perguruan Tinggi : Politeknik Negeri Jember

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul Inovasi *Liquid Filling Machine* dengan *Digital Twin* Guna Memudahkan Proses Monitoring dan Efisiensi Produksi Pengalengan Ikan yang diusulkan untuk tahun anggaran 2023 adalah hasil asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Jember, 1 Maret 2023 Yang menyatakan,

(Ayunda Kusuma Wardani) NIM. E41201809

Lampiran 5. Gambaran Teknologi yang akan Dikembangkan

5.1 Sketsa Alat

Gambar 5. Sketsa Mesin Fisik

5.2 Gambar 3D Alat

Gambar 6. Sketsa Mesin Virtual