MATHEMATICS 2INT HIGHER LEVEL PAPER 2

December 2016

1 hour - Calculator Allowed

5 mn reading time + 60 mn

S. Coursaget

CANDIDATE NAME :	Vingile	YANG
	V	

Grade: 59/60 marks

19,7/20 Excellent!

INSTRUCTIONS TO CANDIDATES

- Write your name above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is <u>required</u> for this paper.
- Answer all questions in the spaces provided
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- The maximum mark for this examination paper is [60 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Exercise 1 (8 marks)

Romeo and Juliet met for lunch. At 1 p.m., they parted ways.

Romeo drove on a true bearing of 078° at 80 km·h⁻¹ and Juliet drove on a true bearing of 348° at 120 km·h⁻¹.

- 1. Draw a sketch and find the angle between the paths of Romeo and Juliet . Show your working .
- 2. How far will they be from each other at 3:30 p.m.?

Exercise 2: (5 marks)

The illustration shows two circles of radii 4 cm and 2 cm respectively.

The distance between the two centers is 8 cm.

Find the length of the common tangent [AB], to three significant figures.

We construct a rectangle ABCD
hence BC=AD=4 and AB=CD, CD+CE
Using Pythogonau,
$CD^2 + CE^2 = DE^2$
$AB^2 + (CB + BE)^2 = 8^2$
AB+ 6 =82
$AB^2 = 28$
AB = 2N7
AB ~ 5,29 cm
The length of [AB] is 5.29 cm.
<u></u>

Exercise 3 (6 marks)

A pyramid of height 40 m has a square base with edges 50 m.

Determine the length of the slant edges .

Using Pathagoras
$AC^2 = AB^2 + BC^2$
(1.1.4
$Ac^2 = 50^2 + 50^2$
$\Delta C = \sqrt{5000} = 50/2$
$AM = \frac{1}{2}AC = \frac{50\sqrt{2}}{2} = 25\sqrt{2}$
Using Pythagoras,
EA = EM 2+AM2
$EA^2 = 40^2 + (25\sqrt{2})^2$
EA = 5 NII4 ~ 53.4 m : The length of the slant edges is 53.4m

Exercise 4: (7 marks)

Let
$$f(x) = 2^x - 3$$
 and $g(x) = -x^2 + 6$.

a) Using your graphics display calculator, make a sketch of the graphs of these two functions:

b) Solve, giving your answer(s) correct to three significant figures :

ant figures:
$$1-2.98 \neq 2.14$$
 [

$$f(x) = g(x)$$
: $[-2.98]$ 2.14 $]$ $f(x) < g(x)$ $[-\infty]$ -2.98[U]2.14]+00[

$$f(x) < g(x) \ (:$$

c) Determine the range of
$$f:]-0/6]$$
 and the range of $g:]-3/40[$

Exercise 5: (10 marks)

1. Find the constant term in the expansion of $(3x - \frac{2}{x})^6$:

$$20 \times (3 \times)^{3} \times \left(-\frac{2}{\pi}\right)^{3}$$

$$= -20 \times 27 \times 8 \times \frac{3}{\pi}$$

$$= -4320 \quad \checkmark$$

2. Find the value of the real number a given that the coefficient of x^3 in the expansion of $(ax + 5)^5$ is 2000 =

$$[0.(ax)^3 \times 5^2 = 2000 M^3]$$

 $250 a^3 = 2000$
 $a^3 = 8$
 $a = 2$
The value of the real number $a = 52$.

Exercise 6: (8 marks)

A rectangular swimming pool is $12 m \log by 6 m$ wide. It is surrounded by a pavement of uniform width, the area of the pavement being $\frac{7}{8}$ of the area of the pool.

- 1. If the pavement is x m wide, show that the area of the pavement is $4x^2 + 36x m^2$.
- 2. Hence, by solving an equation, determine the width of the pavement.

0 Apprenient = $(12+2x)(6+2x)-72$
$= 4x^2 + 12x + 24x + 72 - 72$
$= (4x^2 + 36x) - m^2$
$9 + \chi^2 + 36 = \frac{7}{8} \times 12 \times 6$
$4\chi^2 + 36\chi = 63$
$4x^{4}+36x-63=0$
(2/1+21)(2/2-3) =0
$\chi = -\frac{2!}{2} \text{ or } \chi = \frac{3}{2}$
-: 170 -: 1 = = = 1.5m The with of the pavement is 1.5m

Exercise 7 (6 marks)

An equilateral triangle is inscribed inside a square.

Given that the diagonal of the square is $10\sqrt{2}~cm$, find the area of the shaded area. Use exact values and show all your working.

		A O B
Using Pathagoras,	hence OB= = = AB=============================	1 A shaded = AABCD - AGASE
$AB^2 + BC^2 = AC^2$	Using P+thagoras,	=AB2-AAAGE
$2AB^{2} = (10\sqrt{2})^{2}$	$EO^2+OB^2=BE^2$	$=10^{2}-25\sqrt{3}$
$AB^2 = 100$	$E0^2 = 10^2 - 5^2$	=100-25 N3 cm
AB = 10 (AB 70)	E0 = 175 = 5N3	256.7 cm2
In the equilateral triangle ABE.	$A_{ABE} = \frac{1}{2} AB \cdot E_0$	in The area of the
BE = AB = AE = 10, EO + AB	$=\frac{1}{2}\cdot 10\cdot 5$	shaded area is 100-25,500
	= 25.5	OC 56.70m2

Exercise 8 : (10 marks)

Solve for x and y given that they are rational:

1.
$$(x + y\sqrt{3})(2\sqrt{3}) = 5 - 6\sqrt{3}$$

213x+6y=5-613	x x=-3
= = 2/3 X = -6/3	Ly = 5
64 = 5	,
	: S = (-3/ 5)
	, , , , , , , , , , , , , , , , , , ,

2. $(x + y\sqrt{2})(3 - \sqrt{2}) = -2\sqrt{2}$

$3x - \sqrt{2}x + 3\sqrt{2}y - 2y = -2\sqrt{2}$	$\sqrt{3}$
(7 \ 3K-24 = 0	$4 = -\frac{6}{7}$
L-NZ X+3NZY=-2NZ	5 X = - #
$\frac{3}{3}$ $-\frac{2}{3}$	1 = - =
$-\frac{2}{3}+34=-2$	1
$\mathcal{F} = \frac{1}{3} \mathcal{F}$	
$\frac{7}{3}\sqrt{=-2}$	$:S = (-\frac{4}{7}, -\frac{6}{7}) $

3. $(x + y\sqrt{2})^2 = 66 - 40\sqrt{2}$