1682 AUTOMATON

5.255 min_increasing_slope

DESCRIPTION LINKS AUTOMATON

Origin Motivated by time series.

Constraint min_increasing_slope(MIN, VARIABLES)

Arguments MIN : dvar

VARIABLES : collection(var-dvar)

Restrictions $MIN \ge 0$

MIN <range(VARIABLES.var)
required(VARIABLES, var)</pre>

|VARIABLES| > 0

Purpose Given a sequence of variables VARIABLES $=V_1,V_2,\ldots,V_n$, sets MIN to 0 if $\nexists i \in [1,n-1]|V_i < V_{i+1}$, otherwise sets MIN to $\min_{i \in [1,n-1]|V_i < V_{i+1}} (V_{i+1} - V_i)$.

Example $(3, \langle 1, 1, 5, 8, 6, 2, 2, 1, 5 \rangle)$ $(0, \langle 8, 8, 2, 0, 0 \rangle)$

 $(9, \langle 1, 1, 0, 9, 6 \rangle)$

The first min_increasing_slope constraint holds since the sequence $1\ 1\ 5\ 8\ 6\ 2\ 2\ 1\ 5$ contains two increasing subsequences $1\ 5\ 8$ and $1\ 5$ and the minimum slope is equal to $\min(5-1,8-5,5-1)=3$ as shown on Figure 5.553.

Typical MIN > 1

|VARIABLES| > 2range(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

Functional dependency: MIN determined by VARIABLES.

Usage Getting the minimum slope over the increasing sequences of time series.

Counting

 Length (n)
 2
 3
 4
 5
 6
 7
 8

 Solutions
 9
 64
 625
 7776
 117649
 2097152
 43046721

Number of solutions for min_increasing_slope: domains 0..n

20130315 1683

Figure 5.553: Illustration of the first example of the **Example** slot: a sequence of nine variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 , V_9 respectively fixed to values 1, 1, 5, 8, 6, 2, 2, 1, 5 and the corresponding minimum slope on the strictly increasing subsequences 1 5 8 and 1 5 (MIN = 3)

1684 AUTOMATON

Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
Parameter value	0	6	20	70	252	924	3432	12870
	1	2	22	256	3512	56537	1051936	22280084
	2	1	14	145	1864	28728	515372	10601773
	3	-	8	98	1062	14729	255076	5106480
	4	-	-	56	704	8853	133672	2475484
	5	-	-	-	382	5266	78198	1369232
	6	-	-	-	-	2612	41330	730161
	7	-	-	-	-	-	18136	341618
	8	-	-	-	-	-	-	129019

Solution count for min_increasing_slope: domains 0..n

20130315 1685

Solution density for min_increasing_slope

Solution density for min_increasing_slope

Keywords

characteristic of a constraint: automaton, automaton with counters.
combinatorial object: sequence.

1686 AUTOMATON

```
constraint arguments: reverse of a constraint, pure functional dependency.filtering: glue matrix.modelling: functional dependency.
```

Cond. implications

```
\begin{split} & \texttt{min\_increasing\_slope}(\texttt{MIN}, \texttt{VARIABLES}) \\ & \text{with } & \texttt{range}(\texttt{VARIABLES}.\texttt{var}) = \texttt{MIN} + 1 \\ & \textbf{implies } & \texttt{max\_increasing\_slope}(\texttt{MAX}, \texttt{VARIABLES}) \\ & \text{when } & \texttt{range}(\texttt{VARIABLES}.\texttt{var}) = \texttt{MAX} + 1. \end{split}
```

20130315 1687

Automaton

Figure 5.554 depicts the automaton associated with the min_increasing_slope constraint. To each pair of consecutive variables (VAR $_i$, VAR $_{i+1}$) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR $_i$, VAR $_{i+1}$ and S_i : (VAR $_i \geq$ VAR $_{i+1} \Leftrightarrow S_i = 0$) \wedge (VAR $_i <$ VAR $_{i+1} \Leftrightarrow S_i = 1$).

Glue matrix where \overrightarrow{C} and \overleftarrow{C} resp. represent the counter value C at the end of a prefix and at the end of the corresponding reverse suffix that partitions the sequence VARIABLES.

	s	t
s	0	₽
t	\overrightarrow{C}	$\min(\overrightarrow{C}, \overleftarrow{C})$

Figure 5.554: Automaton for the min_increasing_slope constraint and its glue matrix (note that the reverse of min_increasing_slope is min_decreasing_slope)