Exam 1



$$F_g = \frac{mMG}{r^2}$$

| Description                                                                                                                                                                    | Symbol                                                                                          | Quantity                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gravitational Constant Mass of Earth Mass of Moon Radius of Earth Radius of Moon Orbital Radius of Earth Orbital Radius of Moon Period of Earth's Orbit Period of Moon's Orbit | $G$ $m_{earth}$ $m_{moon}$ $R_{earth}$ $R_{moon}$ $r_{earth}$ $r_{moon}$ $T_{earth}$ $T_{moon}$ | $\begin{array}{c} 6.67 \times 10^{-11} \mathrm{N \cdot m^2/kg^2} \\ 5.98 \times 10^{24} \mathrm{kg} \\ 7.36 \times 10^{22} \mathrm{kg} \\ 6.38 \times 10^{6} \mathrm{m} \\ 1.74 \times 10^{6} \mathrm{m} \\ 1.50 \times 10^{11} \mathrm{m} \\ 3.84 \times 10^{8} \mathrm{m} \\ 365.24 \ \mathrm{days} \\ 27.3 \ \mathrm{days} \end{array}$ |

Table 1: A list of physical quantities.

The first question of the exam is worth 30 points. The above table is required.

- 1) Consider the earth moving around the sun.
- a. Determine the orbital angular velocity of the earth.
- b. Determine the speed of the earth relative to the sun.

$$\mathbf{V}{=}(2^*3.14^*\mathbf{r})/\mathbf{T} = (2^*3.14^*1.50^*10^-11)/31556736 = 29850, 9m/s$$

c. Determine centripetal acceleration of the earth relative to the sun.

$$a_c ent = \frac{v^2}{r}$$

$$a_cent = \frac{29866^2}{1.5 \times 10^{11}}$$

$$a_cent = 5.95 \times 10^{-3} \frac{m}{s^2}$$

d. Determine the net force on the earth considering this acceleration.

$$F=m*a=5.98*10^24*1.77e^-8=1.05e17$$

e. Determine the mass of the sun from the above.

$$\frac{mMG}{r^2} = m * a$$

$$M = \frac{3.56 \times 10^{22} * (1.5 \times 10^{11})^2}{5.98 \times 10^{24} * 6.67 \times 10^{-11}}$$
 
$$M = 1.9 \times 10^{30} Kg$$

| The second question is worth 30 points. The table is required.                                                              |
|-----------------------------------------------------------------------------------------------------------------------------|
| 2) Consider gravitation at the surface of the moon.                                                                         |
| a. Determine the acceleration due to gravity on the surface of the moon.                                                    |
|                                                                                                                             |
|                                                                                                                             |
| b. Determine the launch velocity for circular orbit.                                                                        |
|                                                                                                                             |
|                                                                                                                             |
| c. Determine the launch velocity for escape from the moon's gravity.                                                        |
|                                                                                                                             |
|                                                                                                                             |
| d. Determine the result of launching an object at $2000 \text{ m/s}$ into the moon's horizon.                               |
| it will go in the shape of an eliptical orbit.                                                                              |
| Question three is worth 40 points.                                                                                          |
| 3) Consider a capacitor. Two very large parallel conducting plates are connected to the leads of a 9 Volt battery.          |
| a. Determine the separation between the plates to generate a 30.0 $\frac{N}{C}$ electric field. ) b. Determine the force of |
|                                                                                                                             |

| this electric field on a 0.012 Coulomb charge.                                                              |
|-------------------------------------------------------------------------------------------------------------|
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
| c. Determine the change in potential energy for the 0.012 C charge moving from the 9V plate to the 0V plate |
| d. Draw the parallel plates and the electric field between them.                                            |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |