Fonctions à valeurs vectorielles

Vallaeys Pascal

6 avril 2024

1 Références:

Exercices de la banque CCINP: 3,4,84,85,89

Méthodes de base :

- Définition de la dérivabilité.
- Utilisation des développements limités.
- Caractérisation de la convexité.
- Utilisation de l'égalité et de l'inégalité des accroissements finis.
- Formules de Taylor.

2 Exercices incontournables:

Exercice 1:

Montrer chacune des inégalités suivantes sur l'intervalle demandé :

a)
$$x - \frac{x^3}{6} \le \sin x \le x \text{ sur } \mathbb{R}^* +$$

b)
$$\cos x \ge 1 - \frac{x^2}{2} \sin \mathbb{R}$$
.

Exercice 2:

a) On pose
$$u_n = \sum_{k=1}^n \frac{n}{n^2 + k^2}$$
. Calculer la limite de u_n quand n tend vers $+\infty$.

b) Procéder de même avec
$$u_n = \frac{1}{n} \cdot \left[\sum_{k=0}^n \cos(\frac{k\pi}{2n}) \right]$$
, puis $u_n = \frac{1}{n \cdot \sqrt{n}} \cdot \sum_{k=1}^{n-1} \sqrt{k}$.

Exercice 3: (d'après ENSEA/ENSIIE MPi 2023)

Factoriser dans \mathbb{R} les polynômes $P_1(X) = X^4 + 1$ et $P_2(X) = X^6 + 1$.

Exercice 4: (Mines télécom MP 2023)

Pour tout $n \in \mathbb{N}^*$, on considère l'équation $\cos x = nx$.

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, cette équation a une et une seule solution x_n dans \mathbb{R}_+ .
- 2. Déterminer la monotonie et la limite de la suite $(x_n)_{n\in\mathbb{N}^*}$.
- 3. Déterminer un développement limité à l'ordre trois en 1/n de x_n .
- 4. La série $\sum \ln(\cos x_n)$ converge-t-elle?
- 5. Montrer qu'il existe $c \in \mathbb{R}_+^*$ tel que $\prod_{i=1}^n x_i \sim \frac{c}{n!}$ quand $n \to \infty$.

Exercice 5: (Mines MP 2023)

Soit
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- 1. Montrer que pour tout $n \in \mathbb{N}$? il existe un polynôme P_n tel que $f^{(n)}(x) = x^{-3n}P_n(x)f(x)$ pour tout $x \neq 0$ et donner le degré de P_n .
 - 2. Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} .
 - 3. Montrer que pour tout $n \in \mathbb{N}$, P_n a toutes ses racines réelles.

Exercice 6: (CCINP MP 2023)

Soit $P \in \mathbb{C}[X]$ vérifiant $P(X^2) = P(X)P(X+1)$. On suppose P non constant et on note a une racine de P dans \mathbb{C} .

1. Montrer que a = 0 ou |a| = 1.

- 2. Montrer que a = 1 ou |a 1| = 1.
- 3. Déterminer tous les polynômes de $\mathbb{C}[X]$ vérifiant la propriété énoncée plus haut.

Exercice 7: (Mines télécom MP 2022)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction k-lipschitzienne, avec $k \in \mathbb{R}_+^*$.

- 1) Montrer que f admet un unique point fixe.
- 2) Montrer que cela est faux lorsque l'on suppose seulement que :

 $\forall x, y \in \mathbb{R}, \ x \neq y \Rightarrow |f(x) - f(y)| < |x - y|.$

Exercice 8: (CCINP MP 2022)

Soit $P \in \mathbb{R}[X]$. Montrer que si P est scindé, alors P' est scindé aussi. Pour cela :

- 1) Énoncer le théorème de Rolle.
- 2) Si a est une racine d'ordre k de P, quel est son ordre dans P'?
- 3) Montrer le résultat voulu.

Exercice 9: (Mines MP 2022)

Quels sont les polynômes complexes P tels que $P(\mathbb{U}) \subset \mathbb{U}$ (en notant \mathbb{U} le cercle unité)?

Exercice 10: (Centrale MP 2021)

- 1. Soit $f:[a,b] \to \mathbb{R}$ continue, $g:[a,b] \to \mathbb{R}$ continue par morceaux et positive. Montrer qu'il existe $c \in [a,b]$ tel que $\int_{a}^{b} f(x)g(x) dx = f(c) \int_{a}^{b} g(x) dx$.
 - 2. Soit $f:[0,\pi]\to\mathbb{R}$ continue. Montrer que $\lim_{n\to+\infty}\int_0^\pi f(x)\left|\sin(nx)\right|\mathrm{d}x=\frac{2}{\pi}\int_0^\pi f(x)\,\mathrm{d}x$.

Exercice 11: (Mines-Ponts 2019)

- a) Pour tout $n \in \mathbb{N}$, montrer l'existence de $P_n \in \mathbb{R}[X]$ tel que : $\forall \theta \in \left]0, \frac{\pi}{2}\right[, P_n\left(\frac{1}{\tan^2\theta}\right) = \frac{\sin((2n+1)\theta)}{\sin^{2n+1}\theta}$.
- b) Préciser le degré et les racines de P_n . Etudier la somme des racines. c) Montrer que $\forall \theta \in \left]0, \frac{\pi}{2}\right[, \frac{1}{\tan^2\theta} \leq \frac{1}{\theta^2} \leq 1 + \frac{1}{\tan^2\theta}$.
- d) En déduire la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

Exercice 12:

- a) Calculer le coefficient de x^n dans la dérivée $n^{i n m e}$ de la fonction $f: x \to x^n (1-x)^n$.
- b) En déduire $\sum_{k=0}^{n} {n \choose k}^2$.
- c) Démontrer le même résultat à l'aide d'un dénombrement.

Exercice 13 : Calculer : $\sum_{k=0}^{n} \cos(k.x)$.

Exercice 14:

Soit f une fonction de classe C^1 sur [a,b]. Montrer que $\lim_{n\to+\infty} \int_a^b \cos(nt) f(t) dt = 0$.

Exercice 15: (ENS MP)

On pose $T_n(x) = \cos(n \cdot Arc\cos(x))$.

- 1. Montrer que T_n est un polynôme.
- 2. Trouver une relation entre T_n , T_{n+1} et T_{n+2} .
- 3. Déterminer les extrema de T_n .
- 4. Montrer que pour tout polynôme P de même degré et de même coefficient dominant que T_n , on a $|P| \ge 1$ $||T_n||$.

Exercice 16: Soit f la fonction $x \to (x^2 - 1)^n$. Montrer que $f^{(n)}$ admet n zéros distincts deux à deux, entre -1 et 1.

2

Exercice 17:

Soit f une fonction continue sur \mathbb{R} telle que pour tous réels x et y, on ait f(x+y)=f(x)+f(y).

- a) Déterminer la fonction f.
- b) Répondre ensuite à la même question avec $f(x^2) = f(x)$ sur [0;1].

Exercice 18:

Soient $a_1, ..., a_n$ et $x_1, ..., x_n$ des réels strictement positifs.

- a) Montrer que $\sqrt[n]{a_1...a_n} \le \frac{a_1+...+a_n}{n}$. b) Montrer que $\frac{x_1}{x_2} + \frac{x_2}{x_3}.... + \frac{x_n}{x_1} \ge n$.

3 Exercices de niveau 1:

Exercice 19: (ENSEA ENSIIE MP 2023)

Donner le développement limité à l'ordre 5 en 0 de $e^{\cos x}$.

Exercice 20: (ENSEA/ENSIIE MP 2022)

Soit $n \in \mathbb{N}$ tel que : $n \ge 2$. On pose $z = e^{\frac{2i\pi}{n}}$.

1) Soit $k \in [1, n-1]$. Déterminer le module et l'argument de $z^k - 1$.

2) On pose
$$S = \sum_{k=1}^{n-1} |z^k - 1|$$
. Montrer que $S = \frac{2}{\tan\left(\frac{\pi}{2n}\right)}$.

Exercice 21: (CCINP MP 2019)

Soit $P \in \mathbb{R}[X]$ de degré impair et f une fonction de classe C^{∞} de \mathbb{R} dans \mathbb{R} telle que $\forall n \in \mathbb{N}, \forall t \in \mathbb{R}$, $\left|f^{(n)}\left(t\right)\right| \le |P\left(t\right)|.$

- a) Montrer qu'il existe $a \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}, f^{(n)}(a) = 0$.
- b) Montrer que f est la fonction nulle.
- c) Le résultat subsiste-t-il si P est supposé être de degré pair?

Exercice 22:

On pose
$$u_n = \sum_{k=1}^n \sin \frac{k}{n} \cdot \sin \frac{k}{n^2}$$
 et $v_n = \sum_{k=1}^n \frac{k}{n^2} \cdot \sin \frac{k}{n}$.

- a) Montrer que pour tout réel x, on a $|\sin x x| \le \frac{x^2}{2}$.
- b) En déduire que $\lim_{n \to +\infty} |u_n v_n| = 0$.
- c) En déduire la limite de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 23 : Déterminer $\lim_{x \to \frac{\pi^-}{2}} (\sin x)^{\frac{1}{\cos x}}$. (X PC 2014)

Exercices de niveau 2 : 4

Exercice 24: (Centrale MP 2023)

Soit $\lambda \in [0,1]$ et $f,g,h:[0,1] \to \mathbb{R}_+^*$ continues telles que $\forall (x,y) \in [0,1]^2$, $h(\lambda x + (1-\lambda)y) \geqslant f(x)^{\lambda}g(y)^{1-\lambda}$.

1. Rappeler la définition d'une fonction concave sur un intervalle et établir :

$$\forall (a,b) (\mathbb{R}_+^*)^2, \quad \lambda a + (1-\lambda)b \geqslant a^{\lambda}b^{1-\lambda}.$$

2. On pose $\alpha = \int_0^1 f(x) dx$ et $\beta = \int_0^1 g(x) dx$. Vérifier que les fonctions suivantes réalisent des bijections de

$$\Phi: \theta \mapsto \frac{1}{\alpha} \int_0^{\theta} f(x) \ dx \quad \text{et} \quad \Psi: \theta \mapsto \frac{1}{\beta} \int_0^{\theta} g(x) \ dx$$
 et montrer que la fonction $u = \lambda \Phi^{-1} + (1 - \lambda) \Psi^{-1}$ est une bijection de classe C^1 de $[0, 1]$ dans $[0, 1]$.

3. En déduire l'inégalité :

$$\int_0^1 h(x) \ dx \geqslant \left(\int_0^1 f(x) \, \mathrm{d}x\right)^{\lambda} \cdot \left(\int_0^1 g(x) \ dx\right)^{1-\lambda}.$$

Exercice 25: (Mines MP 2023)

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$, de classe \mathcal{C}^{∞} telle que f(0) > 0, f'(0) > 0 et admettant une limite nulle à l'infini.

- 1. Montrer l'existence de $x_1 > 0$ tel que $f'(x_1) = 0$.
- 2. Montrer l'existence d'une suite strictement croissante $(x_n)_{n\geqslant 1}$ de réels strictement positifs, vérifiant : $f^{(n)}(x_n) = 0$ pour tout entier $n \in \mathbb{N}^*$.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve :

Pour la question 2, après avoir validé l'usage d'une récurrence l'examinateur m'a conseillé de raisonner par l'absurde.

Pour un $n \in \mathbb{N}^*$ on pourra utiliser un développement de Taylor à l'ordre n pour trouver une contradiction sur la limite de f en l'infini.

Exercice 26: (Mines MP 2021)

Soit f une fonction continue de $\mathbb{R}+$ dans \mathbb{R} . On suppose que f tend vers une limite l en $+\infty$. Déterminer $\lim_{n\to\infty} \frac{1}{n} \int_0^n f(t)dt$

Exercice 27: (Mines-Ponts 2019) Soit $f:[0,1]\to\mathbb{R}$ une fonction dérivable. On suppose que pour tout réel x de [0,1], $(f(x),f'(x)) \neq (0,0)$. Montrer que l'ensemble des zéros de f est fini.

Exercice 28: (Mines-Ponts 2019) Soient a et b deux réels tels que a
s, et E l'ensemble des fonctions continues de [a,b] dans \mathbb{R}_{+}^{*} . Pour $f \in E$, on note $\varphi(f) = \int_{a}^{b} f \times \int_{a}^{b} \frac{1}{f}$. Déterminer $\varphi(E)$.

Exercice 29:

On considère la fonction $f: x \to \frac{1}{\sqrt{1+x^2}}$.

- 1. Montrer que f est de classe C^{∞} .
- 1. Montrer que le st de classe C.
 2. Montrer que la dérivée $n^{i\hat{e}me}$ de f est de la forme $\frac{P_n(x)}{(1+x^2)^{n+0.5}}$ où P_n est un polynôme de degré n.
- 3. Montrer que $P_{n+1}(X) = (1+X^2)P'_n(X) (2n+1)XP_n(X)$.
- 4. Montrer que $P_{n+1}(X) + (2n+1)X \cdot P_n(X) + n^2(1+X^2)P_{n-1}(X) = 0$.
- 5. Montrer que $P'_{n}(X) = -n^{2}P_{n-1}(X)$.
- 6. Calculer $P_n(0)$ pour tout entier n.

Exercice 30:

On pose
$$f(x) = \int_{x}^{x^2} \left(\frac{1}{\ln t} - \frac{1}{t \cdot \ln t}\right) dt$$
.

- a) Montrer que f(x) tend vers 0 quand x tend vers 1.
- b) En déduire la limite quand x tend vers 1 de $\int_{0}^{x^{2}} \frac{dt}{\ln t}$.

Exercice 31: Soit f une fonction définie et de classe C^1 sur $[0; +\infty[$, telle que f(0)=f'(0)=0. On suppose que f s'annule en une autre valeur a strictement positive. Montrer qu'il existe un point sur la courbe représentative de f en lequel la tangente passe par l'origine. (Point autre que (0;0)).

Exercice 32 : (Mines PC)

On suppose que le graph de f admet deux centres de symétrie. Montrer que f est la somme d'une fonction affine et d'une fonction périodique.

5 Exercices de niveau 3:

Exercice 33: (ENS MPi 2022???)

Soit f une fonction convexe à valeurs dans $\mathbb R$ définie sur un intervalle I de $\mathbb R$ non vide. On note J l'intérieur $\mathrm{de}\ I.$

1. Montrer que f admet une dérivée à droite et à gauche en tout point de J.

On note $f'_{+}(t)$ la dérivée à droite de f en t.

2. Soit $t \in I$. Montrer que $\sup_{\tau \in J} (f'_+(\tau)(t-\tau) + f(\tau)) = f(t)$.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve

Question 1. Appliquer l'inégalité des pentes avec t, t - h et t + h.

Exercice 34: (ENS MP 2023)

Soit $f: \mathbb{R} \to \mathbb{R}$, on pose

$$\forall s \in \mathbb{R}, f^*(s) = \sup_{x \in \mathbb{R}} \{sx - f(x)\}$$

$$\forall x \in \mathbb{R}, f^{**}(x) = \sup_{s \in \mathbb{R}} \{sx - f^*(s)\}$$

- 1. Montrer que $f^{**}(x) = \sup\{a(x), a \text{ fonction affine telle que } a \leq f\}$.
- 2. Comment adapter les définitions pour $f: \mathbb{R}^n \to \mathbb{R}$?

- 3. Est-il possible de calculer f^{**} pour $f: x \mapsto (1-x^2)^2$? Représenter f et f^{**} . (Indication: montrer que f^{**} est convexe)
 - 4. Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. Montrer que

$$f(x_0) = min_{\mathbb{R}}f \Leftrightarrow f'(x_0) = 0 \text{ et } f^{**}(x_0) = f(x_0)$$

5. Question de cours : donner des conditions nécessaires et/ou suffisantes pour qu'une fonction infiniment dérivable admette un minimum en un point.

Exercice **35**: (ENS MP 2022)

Densité des fonctions étagées, ENS Lyon

Soit f définie sur $[-\pi,\pi]$, monotone et bornée. On note $c_n(f)=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)\mathrm{e}^{-inx}\,\mathrm{d}x$. Montrer que $c_n(f) = O\left(\frac{1}{n}\right).$

Construire une suite de fonction en escalier telle que $||f - f_n|| = O\left(\frac{1}{2^n}\right)$. Examinateur très sympathique.

Exercice 36 : (X MP 2022)

Trouver les fonctions f de \mathbb{R}_+ dans \mathbb{R} , au moins dérivables en un point, vérifiant

$$\forall (x,y) \in \mathbb{R}^2_+ \quad f(xy) = xf(y) + yf(x)$$

Indication(s) fournie(s) par l'examinateur pendant l'épreuve :

On peut supposer, dans un premier temps, que f est dérivable en 0 et l'étudier sur un voisinage de 0.

Exercice 37: (X MP 2022)

Soit f une fonction continue de [a,b] dans \mathbb{R} , telle que f(a)=f(b).

- a. Pour n entier supérieur à 2, montrer qu'il existe $(a',b') \in [a,b]^2$ tel que f(a') = f(b') et $b' a' = \frac{b-a}{n}$.
- b. En supposant de plus f dérivable sur]a,b[, en déduire le théorème de Rolle.
- c. Application : soit $f: x \mapsto e^{-x^2}$. Déterminer le nombre de points d'annulation de $f^{(n)}$.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve :

Regarder la fonction $g: x \mapsto f(x) - f\left(x + \frac{b-a}{n}\right)$.

Exercice 38 : (Classique écrits X-ENS)

Montrer qu'une fonction réelle continue d'une variable réelle, périodique, est uniformément continue.

Exercice 39 : (X MP 2021)

Déterminer $\{P \in \mathbb{R}[X] \mid P(X)P(X+1) = P(X^2 + X + 1)\}.$

Exercice 40:

Soit f une fonction de classe C^2 sur $\mathbb{R}+$, telle que f et f'' soient bornées. On note respectivement $M_0=$ $\sup_{\mathbb{R}^+} \|f\| \text{ et } M_2 = \sup_{\mathbb{R}^+} \|f''\|.$

- a) Montrer que pour tout réel h strictement positif, et pour tout réel x positif, $||f'|| \le \frac{2M_0}{h} + \frac{h.M_2}{2}$. b) En déduire que f' est bornée et que $M_1 = \sup_{\mathbb{R}^+} ||f'|| \le 2\sqrt{M_0M_2}$.

Exercice 41:

Soit f une fonction de classe C^3 de [0,1] dans \mathbb{R} . Montrer que $\frac{1}{n}\sum_{k=0}^{n-1}f\left(\frac{k}{n}\right) = \int_{0}^{1}f - \frac{1}{2n}\int_{0}^{1}f' + \frac{1}{12n^2}\int_{0}^{1}f'' + O\left(\frac{1}{n^3}\right)$.

En déduire un développement limité à l'ordre 3 de $\sum_{k=1}^{2n-1} \frac{1}{k}$.

Exercice 42: On note $E = \{ f \in C^1([0,1], \mathbb{R}) \text{ tq } f(0) = 0 \}$. Déterminer $\inf_{f \in E} \int_0^1 |f - f'|$. (On posera $g(x) = f(x) e^{-x}$ (X 2006 142)

Exercice 43 : Soit g une fonction définie et continue sur \mathbb{R} . Montrer l'équivalence :

g convexe $\Leftrightarrow \forall f \in C^0([0;1], \mathbb{R})$ on a $g\left(\int\limits_0^1 f(x)dx\right) \leq \int\limits_0^1 g \circ f(x)dx$.

Exercice 44:

Soient u et v deux nombres strictement positifs. Soient p et q deux réels strictement positifs tels que $\frac{1}{p} + \frac{1}{q} = 1$. n désigne un entier strictement positif. a) Montrer que $uv \leq \frac{u^p}{p} + \frac{v^q}{q}$.

- b) Montrer que si $(a_i)_{1 \le i \le n}$ et $(b_i)_{1 \le i \le n}$ sont deux familles de nombres strictement positifs, on a $\sum_{i=1}^{n} a_i . b_i \le n$

$$\left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}$$

- $$\begin{split} \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}} \ . \\ \text{d) En déduire que } \|X\| = \sqrt[p]{x_1^p + x_2^p + \ldots + x_n^p} \text{ est une norme sur } \mathbb{R}^n. \end{split}$$
 e) Montrer que si f et g sont des fonctions continues sur [a;b] on a $\int_a^b |f(x)g(x)| dx \le \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}} \cdot \left(\int_a^b |g(x)|^q dx\right)^{\frac{1}{q}}$.