SEQUENCE LISTING

_	<110>	> University	of Iowa Re	esearch Four	ndation et a	al.	
5	<120	> Novel poly	/peptides an	nd methods o	of their use	2	
	<130	> 875.006WO	1				
10		> US 60/105,					
	<151;	> 1998-10-26	•				
	<160	> 65					
15	<170	> FastSEQ fo	or Windows V	Version 3.0			
	<210	-					
		> 2265 > DNA					
20		> Artificial	l Sequence				
	<220:	>					
	<223	> A modified	d DNA seque	nce			
2.5		_					
25	<400			an a gat agat	ttanaattta	ananaaann	60
			-	caaggtcggt aaaacatatc			120
			_	taacaggagg		_	180
	• •		•	aaacatgaat			240
30	aagtgaatct	ggtctgagcc	aaaagcacct	gattcatggc	gatgaagaac	ttttccaaca	300
	tgaactgaaa	accatttttg	cgcggaactg	gctttttctc	actcatgata	gcctgattcc	360
	tgcccccggc	gactatgtta	ccgcaaaaat	ggggattgac	gaggtcatcg	teteceggea	420
			-	cgtttgccgg			480
				tgtttgcagc			540
35	ctccaacggt						600
				tcgcgtggag tatggactat			660 720
				tttagaactg			780
				ggaaaacttt			840
40	gggttggacg	cacgcgtctt	cgcttcgctc	gggggagtct	atcttctcgt	cgctcgctgg	900
	caatgcggcg	ctaccacctg	aaggcgcagg	cttgcaaatg	acctccaaat	acggcagcgg	960

				2			
	catgggtgtg	ttgtgggacg	gatattcagg	tgtgcatagc	gcagacttgg	ttccggaatt	1020
	gatggcattc	ggaggcgcaa	agcaggaaag	gctgaacaaa	gaaattggcg	atgttcgcgc	1080
	teggatttat	cgcagccacc	tcaactgcac	cgttttcccg	aacaacagca	tgctgacctg	1140
	ctcgggtgtt	ttcaaagtat	ggaacccgat	cgacgcaaac	accaccgagg	tctggaccta	1200
5	cgccattgtc	gaaaaagaca	tgcctgagga	teteaagege	cgcttggccg	actctgttca	1260
	gcgaacggtc	gggcctgctg	gcttctggga	aagcgacgac	aatgacaata	tggaaacagc	1320
	ttcgcaaaac	ggcaagaaat	atcaatcaag	agatagtgat	ctgctttcaa	accttggttt	1380
	cggtgaggac	gtatacggcg	acgcggtcta	tccaggcgtc	gtcggcaaat	cggcgatcgg	1440
	cgagaccagt	tatcgtggtt	tctaccgggc	ttaccaggca	cacgtcagca	gctccaactg	1500
10	ggctgagttc	gagcatgcct	ctagtacttg	gcatactgaa	cttacgaaga	ctactgatcg	1560
	ctaacagacg	agtcgaccat	gatgatcaat	attcaagaag	acaagctggt	ttccgcccac	1620
	gacgccgaag	agattcttcg	tttcttcaat	tgccacgact	ctgctttgca	acaagaagcc	1680
	actacgctgc	tgacccagga	agcgcatttg	ttggacattc	aggettaccg	tgcttggtta	1740
	gagcactgcg	tggggtcaga	ggtgcaatat	caggtcattt	cacgcgaact	gcgcgcagct	1800
15	tcagagcgtc	gttataagct	caatgaagcc	atgaacgttt	acaacgaaaa	ttttcagcaa	1860
	ctgaaagttc	gagttgagca	tcaactggat	ccgcaaaact	ggggcaacag	cccgaagctg	1920
	cgctttactc	gctttatcac	caacgtccag	gccgcaatgg	acgtaaatga	caaagagcta	1980
	cttcacatcc	gctccaacgt	cattctgcac	cgggcacgac	gtggcaatca	ggtcgatgtc	2040
	ttctacgccg	cccgggaaga	taaatggaaa	cgtggcgaag	gtggagtacg	aaaattggtc	2100
20	cagcgattcg	tcgattaccc	agagcgcata	cttcagacgc	acaatctgat	ggtetttetg	2160
	tgattcagtg	accattttta	caaatggtca	ctgcaaccgc	ggtcaccatt	aatcaaaggg	2220
	aatgtacgtg	tatgggcaat	caacaagtcg	tttcgataac	cggtg		2265
	<210>	· 2					
25	-2311	. 440					

25 <211> 449

<212> PRT

<213> Artificial Sequence

<220>

30 <223> A polypeptide encoded by SEQ ID NO:1

<400> 2

 Met
 Asn
 Tyr
 Asn
 Lys
 Ile
 Leu
 Val
 Ser
 Glu
 Ser
 Gly
 Leu
 Ser
 Gln

 35
 Lys
 His
 Leu
 His
 Gly
 Asp
 Glu
 Glu
 Leu
 Phe
 Gln
 His
 Glu
 Leu
 Lys

 35
 Lu
 Asp
 Asp
 Tyr
 Val
 Thr
 Ala
 Lys
 Met
 Gly
 Ile
 Asp
 Glu
 Leu

 40
 Lu
 His
 Gly
 Asp
 Glu
 Thr
 Ala
 Lys
 Met
 Gly
 Ile
 Asp
 Glu
 Val

 40
 Su
 Su

Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His 165 170 175 15 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys 180 185 190 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His 195 200 205 Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe 20 210 215 220 Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu		Ile	Val	Ser	Arg	Gln	Asn	Asp	Gly	ser	Ile	Arg	Ala	Phe	Leu	Asn	Val
S5		65				٠.	70					75					80
S Lys Gly Phe Val Cys Ser Tyr His Gly Typ Gly Ser Asn Gly Glu Leu Glu Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu Lys Leu Lys Glu Val Aaa Arg Val Glu Ser Leu Leu Lys Glu Val Aaa Arg Val Glu Ser Leu Hue Lys Glu Val Ala Arg Val Glu Arg Val Glu Arg Val Glu Ser Hue Met Arg Tyr Leu Met Arg Arg <th></th> <th>Cys</th> <th>Arg</th> <th>His</th> <th>Arg</th> <th>Gly</th> <th>Lys</th> <th>Thr</th> <th>Leu</th> <th>Val</th> <th>Ser</th> <th>Val</th> <th>Glu</th> <th>Ala</th> <th>Gly</th> <th>Asn</th> <th>Ala</th>		Cys	Arg	His	Arg	Gly	Lys	Thr	Leu	Val	Ser	Val	Glu	Ala	Gly	Asn	Ala
100						85					90					95	
Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu Lys Asp Leu Tyr Gly Glu Ser Leu Lys Asp Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe Lys Gly His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Arg Val Glu Met Met Lys Ils Iso	5	Lys	Gly	Phe	Val	Суѕ	Ser	Tyr	His	Glγ	Trp	Gly	Phe	Gly	Ser	Asn	Gly
115					100					105					110		
Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe 10 130 135 140 140 141 140 150 155 160 145 145 150 155 160 145 155 160 145 155 160 155 160 145 165 165 165 177 177 Leu Gly Pro Pro Leu Met 145 165 165 177 177 Leu Glu Pro Met Pro Lys His 165 177 177 Leu Gly Pro Pro Gly Lys Val Val Ile Lys 180 180 185 190 1775 177 180 195 200 205 180 195 200 205 180 195 200 205 180 195 200 205 180 195 200 205 180 195 200 205 180 195 200 205 180 195 200 205 205 180 195 200 205 205 180 195 200 205 205 205 205 205 205 205 205 20		Glu	Leu	Gln	Ser	Val	Pro	Phe	Glu	rya	Asp	Leu	Tyr	Gly	Glu	Ser	Leu
130				115					120					125			
His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met 145		Asn	Lys	Lys	Cys	Leu	Gly	Leu	Lys	Glu	Val	Ala	Arg	Val	Glu	Ser	Phe
145	10		130					135					140				
Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His 165		His	Gly	Phe	Ile	Tyr	Gly	Cys	Phe	Asp	Gln	Glu	Ala	Pro	Pro	Leu	Met
165		145					150					155					160
15 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys 180		Asp	Tyr	Leu	Gly	Asp	Ala	Ala	Trp	Tyr	Leu	Glu	Pro	Met	Phe	Lys	His
180 185 190 185 190 185 190 185 190 195						165					170					175	
Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His 195	15	Ser	Gly	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Val	Ile	Lys
195 200 205 206 207 208					180					185					190		
Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phenomena de la composition del composition de la compositio		Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His
210				195					200					205			
Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Glu Gly Ala Gly Leu 225 230 230 235 235 240 240 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Ang Gly Val Leu Ang Gly Val Pro Ang Leu Ang Leu Val Pro Glu Leu Met Ala Ang Val Ang Ang Leu Ang Lys Glu Ile Gly Ang Ang Ang Leu Ang Lys Glu Ile Ang Ang Ang Leu Ang Lys Ang		Val	Gly	Trp	Thr	His	Ala	Ser	Ser	Leu	Arg	Ser	Gly	Glu	Ser	Ile	Phe
225	20		210					215					220				
Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly 245		Ser	Ser	Leu	Ala	Gly	Asn	Ala	Ala	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
255 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe 260		225					230					235					240
25 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe 260		Gln	Met	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	Val	Leu	Trp	Asp	Gly
260 265 270 . Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg 275 280 285 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn 30 290 295 300 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp 305 310 315 320 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met 325 335 35 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Val 340 340 345 350 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr 355 360 365						245					250					255	
Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg 275 280 285 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn 30 290 295 300 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp 305 310 315 320 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met 325 325 330 335 35 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Val 340 345 356 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr 355 360 365	25	Tyr	Ser	Gly		His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu			Phe
275 280 285 285 286 286 286 287 287 288 288 288 288 288 288 288 288		_														•	_
Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn Asn 300		GΙΆ	GIY		Lys	Gin	Giu	Arg		Asn	Lys	Glu	He	_	Asp	Vai	Arg
300 290 295 300 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp 305 310 315 320 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met 325 330 335 335 335 335 335 335 335 335 33		. 1	.		m	3		773 -		.	Q	mi	77 7		D	•	.
Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp 305 310 320 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met 325 330 330 335 350 320 340 345 340 345 340 340 340 345 340 345 340 345 340 345 340 340 340 345 340 345 340 345 340 345 340 345 340 345 340 345 340 345 340 345 340 345 340 345 340 345 340 345 340 345 340 345 340 345 340 345 340 345 340 345 340 <td< th=""><th>20</th><th>Ala</th><th></th><th>116</th><th>Tyr</th><th>Arg</th><th>ser</th><th></th><th>Leu</th><th>ASI</th><th>Cys</th><th>Thr</th><th></th><th>Pne</th><th>Pro</th><th>Asn</th><th>ASI</th></td<>	20	Ala		116	Tyr	Arg	ser		Leu	ASI	Cys	Thr		Pne	Pro	Asn	ASI
305 310 315 320 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met 325 330 330 335 335 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Val 340 340 345 355 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr 355 360 365	30	00~		Ton	Th w	Crea	002		Ua l	Dha	T	17.7		7.00	Dwa	71a	Xam
Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met 325			Mec	neu	TIIT	Cys		Giy	Val	FIIC	пур		тър	ASII	PIO	116	
325 330 335 35 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Val 340 345 350 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr 355 360 365			λen	ጥኮኍ	Th-	G) v		Trn	mh ~	The same	7 7 ~		17 n T	<i>(</i> 1),	T 110	n an	
35 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Val 340 345 350 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asp Asp Asp Asp Met Glu Thr 355 360 365		MIG	Maii	1111	1111		Val	тър	1111	TYL		116	Val	GIU	пλя		met
340 345 350 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr 355 360 365	35	Pro	Glu	Aso	Leu		Ara	Ara	Len	Δla		Ser	Va 1	Gln	Ara		Vaì
Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr 355 360 365						-10		• 5			-10-F				_		***
355 360 365		Glv	Pro	Ala		Phe	Tro	Glu	Ser		Asp	Asn	Asp	Asn		Glu	Thr
		1			- 1		· F			F	E						
4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ala	Ser		Asn	Gly	Lys	Lys		Gln	Ser	Arq	qsA		Asp	Leu	Leu
40 370 375 380	40					4	•	_	•			-			•		

Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro 385 390 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe 405 410 5 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Asn Trp Ala Glu Phe 425 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp 440 445 435 Arg 10 <210> 3 <211> 9841 <212> DNA 15 <213> Artificial Sequence <220> <223> A modified DNA sequence 20 <400> 3

gaattcatca ggaagacatt caaatgaacg taaacaataa gggcagcgtc tgtatttgcg 60 gcagcgaaat gctccctaaa ttcctcattt accccatctg aggattgctt tatgacagta 120 aagtggattg aagcagtcgc tctttctgac atccttgaag gtgacgtcct cggcgtgact 180 gtcgagggca aggagctggc gctgtatgaa gttgaaggcg aaatctacgc taccgacaac 240 25ctgtgcacgc atggttccgc ccgcatgagt gatggttatc tcgagggtag agaaatcgaa 300 tgccccttgc atcaaggtcg gtttgacgtt tgcacaggca aagccctgtg cgcacccgtg 360 acacagaaca tcaaaacata tccagtcaag attgagaacc tgcgcgtaat gattgatttg 420 agctaagaat tttaacagga ggcaccccgg gccctagagc gtaatcaccc ccattccatc 480 tttttttaggt gaaaacatga attacaataa taaaatcttg gtaagtgaat ctggtctgag 540 30ccaaaagcac ctgattcatg gcgatgaaga acttttccaa catgaactga aaaccatttt 600 tgcgcggaac tggctttttc tcactcatga tagcctgatt cctgcccccg gcgactatgt 660 taccgcaaaa atggggattg acgaggtcat cgtctcccgg cagaacgacg gttcgattcg 720 tgcttttctg aacgtttgcc ggcatcgtgg caagacgctg gtgagcgtgg aagccggcaa 780 tgccaaaggt tttgtttgca gctatcacgg ctggggcttc ggctccaacg gtgaactgca 840 35gagcgttcca tttgaaaaag atctgtacgg cgagtcgctc aataaaaaat gtctggggtt 900 gaaagaagtc gctcgcgtgg agagcttcca tggcttcatc tacggttgct tcgaccagga 960 ggcccctcct cttatggact atctgggtga cgctgcttgg tacctggaac ctatgttcaa 1020 gcatteegge ggtttagaac tggteggtee tecaggeaag gttgtgatea aggeeaactg 1080 gaaggcaccc gcggaaaact ttgtgggaga tgcataccac gtgggttgga cgcacgcgtc 1140 40ttcgcttcgc tcgggggagt ctatcttctc gtcgctcgct ggcaatgcgg cgctaccacc 1200

tgaaggcgca	ggcttgcaaa	tgacctccaa	atacggcagc	ggcatgggtg	tgttgtggga	1260
cggatattca	ggtgtgcata	gcgcagactt	ggttccggaa	ttgatggcat	teggaggege	1320
aaagcaggaa	aggctgaaca	aagaaattgg	cgatgttcgc	gctcggattt	atcgcagcca	1380
cctcaactgc	accgttttcc	cgaacaacag	catgctgacc	tgctcgggtg	ttttcaaagt	1440
5atggaacccg	atcgacgcaa	acaccaccga	ggtctggacc	tacgccattg	tcgaaaaaga	1500
catgcctgag	gatctcaagc	gccgcttggc	cgactctgtt	cagcgaacgg	tcgggcctgc	1560
tggettetgg	gaaagcgacg	acaatgacaa	tatggaaaca	gcttcgcaaa	acggcaagaa	1620
atatcaatca	agagatagtg	atctgctttc	aaaccttggt	ttcggtgagg	acgtatacgg	1680
cgacgcggtc	tatccaggcg	tcgtcggcaa	atcggcgatc	ggcgagacca	gttatcgtgg	1740
10tttctaccgg	gcttaccagg	cacacgtcag	cagctccaac	tgggctgagt	tcgagcatgc	1800
ctctagtact	tggcatactg	aacttacgaa	gactactgat	cgctaacaga	cgagtcgacc	1860
atgatgatca	ata t tcaaga	agacaagctg	gtttccgccc	acgacgccga	agagattett	1920
cgtttcttca	attgccacga	ctctgctttg	caacaagaag	ccactacgct	gctgacccag	1980
gaagcgcatt	tgttggacat	tcaggcttac	cgtgcttggt	tagagcactg	cgtggggtca	2040
15gaggtgcaat	atcaggtcat	ttcacgcgaa	ctgcgcgcag	cttcagagcg	tcgttataag	2100
ctcaatgaag	ccatgaacgt	ttacaacgaa	aattttcagc	aactgaaagt	tcgagttgag	2160
catcaactgg	atccgcaaaa	ctggggcaac	agcccgaagc	tgcgctttac	tcgctttatc	2220
accaacgtcc	aggccgcaat	ggacgtaaat	gacaaagagc	tacttcacat	ccgctccaac	2280
gtcattctgc	accgggcacg	acgtggcaat	caggtcgatg	tcttctacgc	cgcccgggaa	2340
20gataaatgga	aacgtggcga	aggtggagta	cgaaaattgg	tccagcgatt	cgtcgattac	2400
ccagagcgca	tacttcagac	gcacaatctg	atggtctttc	tgtgattcag	tgaccatttt	2460
tacaaatggt	cactgcaacc	gcggtcacca	ttaatcaaag	ggaatgtacg	tgtatgggca	2520
atcaacaagt	cgtttcgata	accggtgcag	gctcaggaat	cggtctcgaa	ctggttcggt	2580
cctttaagtc	ggccggttat	tacgtatccg	ctctcgtacg	aaacgaggag	caagaggcgc	2640
25ttctttgcaa	agagttcaag	gacgcactcg	agattgtagt	gggcgatgtc	cgggaccacg	2700
caacaaatga	gaagetgata	aagcaaacaa	tcgatagatt	cggtcatctt	gattgtttta	2760
ttgcaaatgc	cggtatctgg	gattacatgc	tgagcatcga	agagccttgg	gagaaaatat	2820
cgagcagttt	tgacgaaata	ttcgacatta	atgtcaagag	ctatttcagt	ggcatcagtg	2880
ccgccctgcc	ggaactgaaa	aagactaacg	gatcagtggt	gatgaccgct	tcggtgtcgt	2940
30cccatgcggt	cggtggtggt	ggttcttgct	acatcgccag	caagcatgcg	gtgctcggta	3000
tggttaaggc	tttggcctac	gaattggccc	ccgaagtt c g	cgtgaacgct	gtttcgccgg	3060
ggggcaccgt	gacgtctctg	tgcggtcccg	cgagcgccgg	tttcgacaaa	atgcacatga	3120
aagacatgcc	c ggcatcgac	gatatgatca	aaggtctcac	gcctcttggg	tttgcagcca	3180
agcccgaaga	cgtggtggca	ccctatttgt	tgctggcttc	gcgaaagcaa	ggaaaattca	3240
35tcaccggcac	cgtgattagc	attgatggcg	gtatggcgct	cggtcgcaag	tgagcttgta	3300
gccgatcaga	agttatagac	acatttcagg	tgacgcccca	tgaagacaaa	actgtttatc	3360
aataacgcct	ggatcgattc	tagtgaccag	cagaccttcg	agegeataca	ccccgtcagc	3420
agcgatgtgg	tgactgagag	cgcaaacgcc	acagtgacgg	acgcgataaa	ggcggcgcaa	3480
gcggccgagg	aggcgttcaa	gacctggaag	gccgttggac	cttcagagcg	tcgccgcctt	3540
40ctcctaaagg	tcgccgatgt	catggaaagt	aaaacaccca	agttcatcga	agtgatggcc	3600

atggaggtgg	gagetteege	cctttgggcc	ggattcaacg	tccatgcgtc	tgccaatgtg	3660
ttccgagagg	ctgcctcgct	ggctacccaa	attcagggtg	aaaccatccc	aacggacaaa	3720
gccgaaacgc	tctcaatgac	actacgtcag	ccggtcggcc	cgatcctaag	catcgttcca	3780
tggaacggca	ccgcagtgct	tgcggcacga	gccatcgctt	atccgctggt	ctgtggcaac	3840
5actgtggtgt	tcaaaggctc	tgaatttagt	cccgcgacgc	atgccctgat	cacccagtgc	3900
gtgcaggaag	ccgggctgcc	cgctggcgtg	ctcaattacc	tcaactcttc	gcctgaccgt	3960
tegecegaga	tcgctgacgc	actgatctct	gccaaggaga	tccgccgcat	caacttcacg	4020
ggttccaccc	gcgtgggcag	cattatcgcg	cagaaagccg	cgcaacacct	caagcgctgc	4080
ctgctggagc	tcggcggcaa	gtccccgctt	attgttctgg	atgatgcaga	catcgatgcg	4140
10gcggtcaagg	cagcggtgtt	cggtagcttc	ctgttccaag	gtcagatctg	catgtccact	4200
gagcgcttga	tcgttgatga	gaagatagcc	gacgaatttg	tcgcaaaatt	tgtcgaaaaa	4260
actaagcgct	tgagcgcagg	cgacccgtgc	gtaactggcg	actgcatcat	cggcccgatg	4320
gtctcgccaa	attcgggtga	gcggatcaat	ggtttgttca	aagacgcgat	cgacaaaggg	4380
gcaaaagttg	tttgcggcgg	cttggcccaa	ggtgcgctca	tgccggccac	gatcctggat	4440
15cacgtcaaat	ctgacatgcg	gatttacgat	gaggagacct	ttggtcccat	caccgtggta	4500
atccgttgta	aaggcgaagc	agaggccgtc	cgcattgcca	acgacagcgt	ctatggcctg	4560
tegtegggeg	tatttggccg	cgacatcaac	cgcgctctac	gcgtgggtat	gtccatcgaa	4620
tatggttctg	tacacatcaa	cggttcgacc	gtccagaacg	aggcgcaggc	tccttacgga	4680
ggcaccaaga	acaccggcta	cgggcgcttc	gacggccgtg	ctgtaatcga	cgagttcaca	4740
20gagatcaagt	ggctgaccat	cgaacettte	gagcagcaat	atcccttctg	ataagcacta	4800
actcccagga	atcaaactat	gagtaagcaa	gctgcagtta	tcgagctcgg	atacatgggt	4860
atctcggtca	aggaecetga	tgcgtggaaa	tcatttgcca	cggatatgct	aggtctgcaa	4920
gttcttgatg	agggtgagaa	ggaccgtttc	tatctgcgga	tggattactg	gcatcatcgg	4980
atcgtagtcc	atcacaacgg	acaggacgac	ttggagtacc	taggctggcg	tgtagccggc	5040
25aagccggagt	tcgaagctct	gggtcaaaag	cttattgatg	ccggttacaa	gateegeate	5100
tgcgacaaag	ttgaggctca	ggagcgtatg	gtgttgggtc	tgatgaagac	agaagatccg	5160
ggcggcaacc	cgaccgagat	attctggggc	ccccggatcg	acatgagcaa	cccgttccat	5220
cccggtcgcc	ccctgcacgg	aaagtttgtg	accggtgacc	aaggcttggg	ccattgcatc	5280
gttcgccaaa	ccgacgtcgc	agaageteat	aagttttata	gcctgctggg	cttccgtggg	5340
30gacgtcgaat	accggattcc	gttgcccaac	ggcatgactg	ccgaactgtc	gttcatgcat	5400
tgcaacgccc	gtgatcactc	cattgctttt	ggtgccatgc	ccgctgccaa	acgactcaat	5460
cacttgatgc	ttgagtacac	ccatatggaa	gacttgggat	acacgcacca	acagtttgta	5520
aagaacgaaa	ttgacattgc	cttgcagctt	ggcattcacg	ccaacgacaa	ggcgttgacg	5580
ttctatggtg	caacgccttc	gggctggctc	attgagcccg	gctggcgagg	tgccacggcc	5640
35atagatgaag	cggagtatta	cgtcggcgac	atcttcggcc	atggcgtgga	ggccactgga	5700
tatggcctgg	atgtaaaact	gagctaaaga	tgcgcgctcg	ttgggcgagg	ctctagtcca	5760
gcatcttcat	acgcaaccaa	ccttgcaggg	cgatgagatc	aaaggacgtt	aaagcgaagg	5820
ggaagtggtt	cgggccatgc	gcataccgat	ccatgacatt	tgtttcatag	tatataggta	5880
gataggtgaa	tcaagcgctt	agtcaactag	tggacacatc	tgttccatga	ggctatctac	5940
40tatctattca	aaacaagaat	aataaatagg	atgaaaataa	taatgataaa	aagaacgatt	6000

6060 tgtcttgtgt atcctctatt ctgtttggca agccccacat gggccgaaga gtcgccttgg acgtaccgta ttggtatgac taatgtagct ttcgatgcta gcgcaaaaagt atacttaaat 6120 6180 ggtcagcggg tgccaggagg aagcgctgat gcgagcgata acaacgcgct tacattcgac ttcggctacg ccatcaacga ccagtggaat gtacgtgcga ttgtcggtat tccgcctaca 6240 Sactaaagtga egggegeagg cacaetteet ggtateeage tggggaaaat aacttaeget 6300 ccaacagtat taacgttgaa ctataacctc cccgctttgg gtcccgttcg ccctcacata 6360 ggtgcgggag tcaattacac gcggattttt gaaagtcggg acgctaatct aaaatcgttc 6420 gatgccgacc acgcttggtc ccccgcgcta catgttggtg ccgatattga cgttaaccgt 6480 ggttggttcg ttagcattga tatccggaag ttatacctga aaaccgacgc atcagggtac 6540 10ttggggccac aggaggctaa agcacgggta actcttgacc cattactaac ttcgatcgcg 6600 atcggacgcc aattctgatg attctgttta aagttcttta tctatctaac cgcaaagggt 6660 gtttccatgt cgaataaaat tatgaaaacg tcgcgtctta ccgccgaaga tatcaacggc 6720 gcctggacta taatgcccac accctcgacg cctgatgctt ctgattggcg cagcactgcc 6780 accettegact tagaagagac teccegcata ettegaagagc teattegagc tegtetcaac 6840 15ggtattctaa gtatgggtac ttttggtgag tgcgccacgt tgacctggga tgaaaaacgt 6900 gattatgtct cgacgattgt cgagaccatt cgtggtcgcg tgccttattt ctgtggcacg 6960 acagcettaa ataccegaga agteateege cagaceegag agettatega tattggegee 7020 aacggcacta tgctcggggt gccgatgtgg gtgaagatgg acctgcctac agcggttcag 7080 ttctatcgtg atgttgcaga tgcggtacca gaggctgcca ttgcgattta cgccaacccc 7140 20gaagcattca agttcgactt ccctcgccca ttctgggcag agatgtccaa aattccgcag 7200 gtagtgactg cgaagtatct aggcatcgga atgcttgact tggacctgag actggcaccc 7260 aacatccgct tccttcccca cgaagatgac tattacgcgg ccgcacgcat caatcccgag 7320 cgcataaccg cgttctggtc aagcggggcc atgtgcggcc cggctaccgc catcatgttg 7380 cgtgacgaag tggtgcgggc caagagcacc ggtgactggg ccaaggccaa agccatctcc 7440 25gatgatatgc gtgcagccga ctcgacattg tttccgcgtg gcgacttttc ggagttctcg 7500 aagtataata togggottga aaaggoacgg atggatgegg ctggttgget caaggetggg 7560 cectgeegte egecetacaa eettgtteea gaagactace tegetggtge acagaaatea 7620 ggcaaggett gggccgcgct gcacgctaaa tacagtaatg aattgaagta gttcacctcc 7680 gcagacctga gtgacagggt ggcgcagacg ctgagggtgc aggaattaag tgagctaaag 7740 30cacatttett gegecaggea ttgecagate ageaaagttt getgatetgg cagttteaaa 7800 aatttgggcg aaagctgata tcaggaatac gggataaagg cagtgcacca taacgacggg 7860 gcgtgccatt cgtgatgaac gattttgcta ttgtgccgac ttctgttctt ggagtgtttg 7920 attgtgattg tegattttta tttegatttt ttgagteegt tetettaett ggecaaceat 7980 cgtttgtcaa agcttgcgca agactatggc ttttccattc gttattacgc aatcgatttg 8040 35gcgcgagtta aaatagccat cggaaacgtt ggtccatcta atcgcgacct gatagtcaag 8100 ctggactatt tgaaagtaga tttgcaacgg tgggccgagc tttacgaaat accgttggta 8160 ttcccagcta actacaacag cogacggatg aatactgggc tttattactc gggagccatg 8220 gcacagactg gtgcctatgt gaatgtagta tttaatgcgg tttggggaga tggcatagct 8280 ccagatttgg aaagcttgcc tgctctggta tctgaaaaac taggctggga tcgtagcgcc 8340 40ttegaggaet ttateageag egatgeegea acagagaggt atgaegagea gaeacatqee 8400

```
gcgatcgaac gcaaagtgtt cggtgtgcca acgatgtttt tgggcgatga aatgtggtgg
                                                                        8520
 ggaaacgacc gtctatttat gctcgagaac gcagtgggag gtgcgcctgt aaatggagaa
  tagtcgctac ggagcgcttg tgccggctaa atgccgatat aagtggttga cctgatcgtt
                                                                        8580
  atttgctcga tacagcgctt tcaaaatcag cggctactga agtcagataa aaatgcggga
                                                                        8640
 Sctacttcagg catcctgtgc gacacaagt tttacctgta attgtccacc tattccgagt
                                                                        8700
  ttggaatggt agctgactcg ctatgcgacc agcgatagcc taacaagaca tgcatcactg
                                                                        8760
 gtaacggtgg ggtgtgaagc tcctgcaaca atgtagcccc ttgatgtgtg tatttgctgc
                                                                        8820
 gaggtgaagc acagatgete ggagccgtac eggettgtgg egetaggetg gcaagtatga
                                                                        8880
                                                                        8940
 gcaacgtaag tgggggttgg ggcgcaatgg gaaccaaaaa ccaacgcaag ccttaccagc
10gtcgttcggt gccttcctcc catgcctccg cctcgataaa gcagctgcgc atatcggctt
                                                                        9000
 cctggctgat ctcggttagt aggtcatgca aggtcttgtc cagcgcctcg tcgctccgat
                                                                        9060
 acggaatggt cagctcgtaa tggccggtct ccgaccgctt catgccgtag ggctccaggc
                                                                        9120
 agtagogoto gatgttotoo gtggooogot toogacogog catgaacttg ctgttgttca
                                                                        9180
 ccaccgccag gcgcagggtg acggtggcca cccgctcgac ggttgactct gccggtgacg
                                                                        9240
15cgatattgcg cttttgacct cgcgccaggg cgctcttctg gtacgtcccg atctcgacgc
                                                                        9300
 cacggtggcg taggtagctg tacagggtgc tcttggagat gtgcaacttc tcgccgatgg
                                                                        9360
 cgctgacgct caggcggccc tcgcggtaca gggtctccgc cgccatggcg gtggcctcgg
                                                                        9420
 cettggctgg caggcccttg ggacggcgac cgatccggcc tcgagtccgt gccgccgaca
                                                                        9480
 ggcccgcctg agtccgctcg cggatcagct cgcgctcgaa ctgaacaggt tgaacaccag
                                                                        9540
20gcgatcttgg gcgtgggtgc tgtcaatggg gtcgttcagg ctctgcaagc cgactttgcg
                                                                        9600
 tgcagccagc tagccgacca actcaaccag gtgcttgagc gagcgaccga ggcgatccag
                                                                        9660
 cttccagatc accaeggeat egecegeteg aacatggget ageaacttgt ccaacteegg
                                                                        9720
 ccgcgcgctt tttgcgccgc tggcgatgtc ttgatagatg cgttcgcacc cggcctgttt
                                                                        9780
 cagggcatcg acctggaggt cggcgttcta atcccgagtg ctcacccgcg tataaccgat
                                                                        9840
25c
                                                                       9841
```

<400> 4

```
gaattcatca ggaagacatt caaatgaacg taaacaataa gggcagcgtc tgtatttgcg 60 gcagcgaaat gctccctaaa ttcctcattt accccatctg aggattgctt tatgacagta 120 40 aagtggattg aagcagtcgc tctttctgac atccttgaag gtgacgtcct cggcgtgact 180
```

```
gtcgagggca aggagctggc gctgtatgaa gttgaaggcg aaatctacgc taccgacaac
                                                                          240
   ctgtgcacgc atggttccgc ccgcatgagt gatggttatc tcgagggtag agaaatcgaa
                                                                          300
   tgccccttgc atcaaggtcg gtttgacgtt tgcacaggca aagccctgtg cgcacccgtg
                                                                          360
   acacagaaca tcaaaacata tccagtcaag attgagaacc tgcgcgtaat gattgatttg
                                                                          420
 5 agetaagaat tttaacagga ggcaccccgg gccctagagc gtaatcaccc ccattccatc
                                                                          480
   ttttttaggt gaaaacatga attacaataa taaaatcttg gtaagtgaat ctggtctgag
                                                                          540
   ccaaaagcac ctgattcatg gcgatgaaga acttttccaa catgaactga aaaccatttt
                                                                          600
   tgcgcggaac tggcttttc tcactcatga tagcctgatt cctgcccccg gcgactatgt
                                                                          660
   taccgcaaaa atggggattg acgaggtcat cgtctcccgg cagaacgacg gttcgattcg
                                                                          720
10 tgcttttctg aacgtttgcc ggcatcgtgg caagacgctg gtgagcgtgg aagccggcaa
                                                                          780
   tgccaaaggt tttgtttgca gctatcacgg ctggggcttc ggctccaacg gtgaactgca
                                                                          840
   gagcgttcca tttgaaaaag atctgtacgg cgagtcgctc aataaaaaat gtctggggtt
                                                                          900
   gaaagaagtc gctcgcgtgg agagcttcca tggcttcatc tacggttgct tcgaccagga
                                                                          960
   ggecectect ettatggact atetgggtga egetgettgg tacetggaac etatgtteaa
                                                                         1020
15 gcattccggc ggtttagaac tggtcggtcc tccaggcaag gttgtgatca aggccaactg
                                                                         1080
   gaaggcaccc gcggaaaact ttgtgggaga tgcataccac gtgggttgga cgcacgcgtc
                                                                         1140
   ttegettege tegggggagt etatettete gtegeteget ggeaatgegg egetaecaec
                                                                         1200
   tgaaggegea ggettgeaaa tgacetecaa atacggeage ggeatgggtg tgttgtggga
                                                                         1260
   eggatattea ggtgtgcata gegeagaett ggtteeggaa ttgatggeat teggaggege
                                                                         1320
20 aaagcaggaa aggctgaaca aagaaattgg cgatgttcgc gctcggattt atcgcagcca
                                                                         1380
   cctcaactgc accgttttcc cgaacaacag catgctgacc tgctcgggtg ttttcaaagt
                                                                         1440
   atggaacccg atcgacgcaa acaccaccga ggtctggacc tacgccattg tcgaaaaaga
                                                                         1500
  catgoctgag gatotcaago googottggo cgactotgtt cagogaacgg togggootgo
                                                                         1560
   tggcttctgg gaaagcgacg acaatgacaa tatggaaaca gcttcgcaaa acggcaagaa
                                                                         1620
25 atateaatea agagatagtg atetgettte aaacettggt tteggtgagg acgtataegg
                                                                         1680
   cgacgcggtc tatccaggcg tcgtcggcaa atcggcgatc ggcgagacca gttatcgtgg
                                                                         1740
  tttctaccgg gcttaccagg cacacgtcag cagctccaac tgggctgagt tcgagcatgc
                                                                         1800
  ctctagtact tggcatactg aacttacgaa gactactgat cgctaacaga cgagtcgacc
                                                                         1860
  atgatgatca atattcaaga agacaagctg gtttccgccc acgacgccga agagattctt
                                                                        1920
30 cgtttcttca attgccacga ctctgctttg caacaagaag ccactacgct gctgacccag
                                                                         1980
  gaagegeatt tgttggacat teaggettae egtgettggt tagageactg egtggggtea
                                                                         2040
  gaggtgcaat atcaggtcat ttcacgcgaa ctgcgcgcag cttcagagcg tcgttataag
                                                                        2100
  ctcaatgaag ccatgaacgt ttacaacgaa aattttcagc aactgaaagt tcgagttgag
                                                                        2160
  catcaactgg atccgcaaaa ctggggcaac agcccgaagc tgcgctttac tcgctttatc
                                                                        2220
35 accaacgtoc aggoogcaat ggaogtaaat gacaaagago taottoacat cogotocaac
                                                                        2280
  gtcattctgc accgggcacg acgtggcaat caggtcgatg tcttctacgc cgcccgggaa
                                                                        2340
  gataaatgga aacgtggcga aggtggagta cgaaaattgg tccagcgatt cgtcgattac
                                                                        2400
  ccagagegea tactteagae geacaatetg atggtettte tgtgatteag tgaccatttt
                                                                        2460
  tacaaatggt cactgcaacc gcggtcacca ttaatcaaag ggaatgtacg tgtat
                                                                        2515
```

```
<210> 5
        <211> 9706.
        <212> DNA
        <213> Artificial Sequence
5
        <220>
        <223> A modified DNA sequence
        <400> 5
                                                                         60
10gctgatttcg accaattatt ccacgccgtc tgcgccagca aggccgtaat cagttcgtaa
 aggggagece geagtaacag egaacegaeg eeggtagetg egegegtgaa teetgagate
                                                                        120
                                                                        180
 acaaattett ggegattate geattteaat tteacecaag egeegtteet tgegetgetg
                                                                        240
 tageggegge cateaegett etecaegatt ecetecaget geateeggea agegttggee
 agcagetgea etgggtaage tteeagggta tegetgaage gtacgegete caatgggcag
                                                                        300
15tgctcgagga gegcctcaag tacctggcgg ctcagttcaa cgccctctcc ccgcagatct
                                                                        360
                                                                        420
 gcaccgtcga ggtagagcag gtcgaacgcc acgtacacaa atttgtcggt acaccgtgcg
 gcgaacgctg actgcagggc ttgaaatgct ggtcgaccgt cgtcatactg gaatacgacc
                                                                        480
 tcaccgtcga gccaggctga atggacggct aggcgtccca gctatttggc caggagtggc
                                                                        540
                                                                        600
 atatgatega tetagteaaa eeegtttttg gtgaaaaget geacetggte accategate
20cgtgctaaca gacgatacca gtcgtacttg atctcgtatc gccatgctcc tgccgacgac
                                                                        660
 agtgtcagta gagtaaccag ttgtggcgcg atccaacacg ggtttggtgc cttgggcggt
                                                                        720
                                                                        780
 ttcactatcg ccacctcgct ataggaacat tccttcaggg tggagtgcgt aattttctga
                                                                        840
 aaggggagcc aggttatgag tattcacatt ggtgataaac aacatcactt atgcgttatt
                                                                        900
 gacatataac gtcgtattca cgattattta ccatataagt cttataataa cgaagccata
                                                                        960
25ttatggaact cotcatacaa cogaaaaatc gcataattoc ottoagtgoc ggtgocaacc
                                                                       1020
 ttctggaagt gettegegag aaeggtgtag etattteeta eagttgettg tetgggegtt
 gcggaacctg tcgctgccgg gttatagatg gcagtgtcat tgattctggg gcggaaaatg
                                                                        1080
                                                                       1140
 ggcaatcaaa cctcaccgac aagcagtatg tgctcgcctg tcagtcagta ctcactggca
                                                                       1200
 attgcgctat cgaagtccca gaagccgacg aaattgtcac tcacccggcg cgaatcatca
                                                                       1260
30agggcacagt ggtcgcagtc gagtcgccca ctcacgatat ccgtcgctta cgcgtacgcc
                                                                       1320
 tetecaagee ettegagtte teaeceggae agtaegegae actgeagtte ageeetgage
 atgegegtee gtattcaatg geaggtttge cagatgacea agaaatggag ttecacatae
                                                                       1380
                                                                       1440
 gcaaggtgcc gggtgggcgc gtcacggagt atgttttcga acacgtccgc gaaggtacaa
                                                                       1500
 gcatcaagtt gagcgggcct cttggtacgg cttatctacg tcagaagcac accggaccga
35tgctgtgtgt aggtggcggg accggactcg caccggtgct gtcgattgtt cgcggcgcgc
                                                                       1560
                                                                       1620
 tgaagtcggg tatgacgaac cccatcctcc tttatttcgg ggtgcgcagt cagcaagacc
 totacgacge agagegattg cacaaacteg cogetgacea cecteaactg acceptacaca
                                                                       1680
 cggtgattgc aacgggcccg attaatgagg gtcagcgagc cggcctaatt accgatgtga
                                                                       1740
 tegaaaaaga cateettteg etggetgggt ggagggeeta eetgtgegge geaccagega
                                                                       1800
                                                                       1860
40tggttgaage gttgtgeace gteaceaage atettggaat ateaceegaa catatttatg
```

1920 ecgatgeett etateeeggt gggatetgaa tagtteeegg ceatgeacet etgteeateg 1980 agaattcatc aggaagacat tcaaatgaac gtaaacaata agggcagcgt ctgtatttgc ggcagcgaaa tgctccctaa attcctcatt taccccatct gaggattgct ttatgacagt 2040 aaagtggatt gaagcagteg etetttetga eateettgaa ggtgaegtee teggegtgae 2100 2160 5tgtcgagggc aaggagctgg cgctgtatga agttgaaggc gaaatctacg ctaccgacaa 2220 cctgtgcacg catggttccg cccgcatgag tgatggttat ctcgagggta gagaaatcga atgeceettg cateaaggte ggtttgaegt ttgeacagge aaagecetgt gegeaceegt 2280 2340 gacacagaac atcaaaacat atccagtcaa gattgagaac ctgcgcgtaa tgattgattt 2400 gagetaagaa ttttaacagg aggeaceeeg ggeeetagag egtaateace eccatteeat 2460 10cttttttagg tgaaaacatg aattacaata ataaaatctt ggtaagtgaa tctggtctga gccaaaagca cctgattcat ggcgatgaag aacttttcca acatgaactg aaaaccattt 2520 2580 ttgegeggaa etggettttt eteaeteatg atageetgat teetgeeece ggegaetatg 2640 ttaccqcaaa aatqqqqatt qacqaqqtca tcqtctcccq gcagaacqac ggttcgattc gtgettttet gaacgtttge eggeategtg geaagaeget ggtgagegtg gaageeggea 2700 2760 15atgccaaagg ttttgtttgc agctatcacg gctggggctt cggctccaac ggtgaactgc agagegttee atttgaaaaa gatetgtaeg gegagteget caataaaaaa tgtetggggt 2820 2880 tgaaagaagt cgctcgcgtg gagagcttcc atggcttcat ctacggttgc ttcgaccagg 2940 aggecectee tettatggae tatetgggtg aegetgettg gtacetggaa cetatgttea 3000 agcattccgg cggtttagaa ctggtcggtc ctccaggcaa ggttgtgatc aaggccaact 3060 20ggaaggcacc cgcggaaaac tttgtgggag atgcatacca cgtgggttgg acgcacgcgt cttegetteg etegggggag tetatettet getegetege tggcaatgeg gegetaceae 3120 3180 etgaaggege aggettgeaa atgaeeteea aataeggeag eggeatgggt gtgttgtggg acggatattc aggtgtgcat agcgcagact tggttccgga attgatggca ttcggaggcg 3240 caaagcagga aaggctgaac aaagaaattg gcgatgttcg cgctcggatt tatcgcagcc 3300 25acctcaactg caccgttttc ccgaacaaca gcatgctgac ctgctcgggt gttttcaaag 3360 tatggaaccc gatcgacgca aacaccaccg aggtctggac ctacgccatt gtcgaaaaag 3420 acatgoetga ggateteaag egeegettgg eegaetetgt teagegaaeg gtegggeetg 3480 3540 ctggcttctg ggaaagcgac gacaatgaca atatggaaac agcttcgcaa aacggcaaga aatatcaatc aagagatagt gatctgcttt caaaccttgg tttcggtgag gacgtatacg 3600 3660 30gcgacgcggt ctatccaggc gtcgtcggca aatcggcgat cggcgagacc agttatcgtg 3720 gtttctaccg ggcttaccag gcacacgtca gcagctccaa ctgggctgag ttcgagcatg 3780 cctctagtac ttggcatact gaacttacga agactactga tcgctaacag acgagtcgac catgatgate aatattcaag aagacaaget ggttteegee cacgaegeeg aagagattet 3840 tegtttette aattgecaeg aetetgettt geaacaagaa gecaetaege tgetgaecea 3900 35ggaagcgcat ttgttggaca ttcaggctta ccgtgcttgg ttagagcact gcgtggggtc 3960 agaggtgcaa tatcaggtca tttcacgcga actgcgcgca gcttcagagc gtcgttataa 4020 gctcaatgaa gccatgaacg tttacaacga aaattttcag caactgaaag ttcgagttga 4080 gcatcaactg gatccgcaaa actggggcaa cagcccgaag ctgcgcttta ctcgctttat 4140 caccaacgtc caggccgcaa tggacgtaaa tgacaaagag ctacttcaca tccgctccaa 4200 40egteattetg cacegggeae gaegtggeaa teaggtegat gtettetaeg eegeeeggga 4260

agataaatgg aaacgtggcg aaggtggagt acgaaaattg gtccagcgat tcgtcgatta 4320 cccagagege atacttpaga egeacaatet gatggtettt etgtgattea gtgaccattt 4380 ttacaaatgg tcactgcaac cgcggtcacc attaatcaaa gggaatgtac gtgtatgggc 4440 4500 aatcaacaag tcgtttcgat aaccggtgca ggctcaggaa tcggtctcga actggttcgg 5teetttaagt eggeeggtta ttaegtatee getetegtae gaaacgagga geaagaggeg 4560 4620 cttctttgca aagagttcaa ggacgcactc gagattgtag tgggcgatgt ccgggaccac gcaacaaatg agaagctgat aaagcaaaca atcgatagat tcggtcatct tgattgtttt 4680 attgcaaatg ccggtatctg ggattacatg ctgagcatcg aagagccttg ggagaaaata 4740 togagoagtt ttgacgaaat attcgacatt aatgtcaaga gctatttcag tggcatcagt 4800 4860 10gccgccctgc cggaactgaa aaagactaac ggatcagtgg tgatgaccgc ttcggtgtcg 4920 teccatgogg teggtggtgg tggttettge tacategeca geaageatge ggtgeteggt 4980 atggttaagg ctttggccta cgaattggcc cccgaagttc gcgtgaacgc tgtttcgccg 5040 gggggcaccg tgacgtctct gtgcggttcc gcgagcgccg gtttcgacaa aatgcacatg aaagacatgc ccggcatcga cgatatgatc aaaggtctca cgcctcttgg gtttgcagcc 5100 15aagcccgaag acgtggtggc accctatttg ttgctggctt cgcgaaagca aggaaaattc 5160 5220 atcaccggca ccgtgattag cattgatggc ggtatggcgc tcggtcgcaa gtgagcttgt 5280 agcegateag aagttataga cacattteag gtgacgeece atgaagacaa aactgtttat caataacgcc tggatcgatt ctagtgacca gcagaccttc gagcgcatac accccgtcag 5340 cagegatgtg gtgactgaga gegcaaacgc cacagtgacg gacgcgataa aggcggcgca 5400 20agcggccgag gaggcgttca agacctggaa ggccgttgga ccttcagagc gtcgccgcct 5460 totoctaaag gtogocgatg toatggaaag taaaacaccc aagttoatcg aagtgatggo 5520 catggaggtg ggagcttccg ccctttgggc cggattcaac gtccatgcgt ctgccaatgt 5580 gtteegagag getgeetege tggetaceea aatteagggt gaaaceatee caaeggacaa 5640 agcegaaacg ctctcaatga cactacgtca geeggtegge eegateetaa gcategttce 5700 25atggaacggc accgcagtgc ttgcggcacg agccatcgct tatccgctgg tctgtggcaa 5760 cactgtggtg ttcaaaggct ctgaatttag tcccgcgacg catgccctga tcacccagtg 5820 5880 egtgeaggaa geegggetge eegetggegt geteaattae eteaactett egeetgaeeg ttcgcccgag atcgctgacg cactgatete tgccaaggag atccgccgca tcaacttcac 5940 gggttccacc cgcgtgggca gcattatcgc gcagaaagcc gcgcaacacc tcaagcgctg 6000 30cctgctggag ctcggcggca agtccccgct tattgttctg gatgatgcag acatcgatgc 6060 ggcggtcaag gcagcggtgt tcggtagctt cctgttccaa ggtcagatct gcatgtccac 6120 tgagcgcttg atcgttgatg agaagatagc cgacgaattt gtcgcaaaat ttgtcgaaaa 6180 aactaagcgc ttgagcgcag gcgacccgtg cgtaactggc gactgcatca tcggcccgat 6240 ggtctcgcca aattcgggtg agcggatcaa tggtttgttc aaagacgcga tcgacaaagg 6300 35ggcaaaagtt gtttgeggeg gettggeeca aggtgegete atgeeggeea egateetgga 6360 tcacgtcaaa tctgacatgc ggatttacga tgaggagacc tttggtccca tcaccgtggt 6420 aatccgttgt aaaggcgaag cagaggccgt ccgcattgcc aacgacagcg tctatggcct 6480 gtcgtcgggc gtatttggcc gcgacateaa ccgcgctcta cgcgtgggta tgtccatcga 6540 atatggttct gtacacatca acggttcgac cgtccagaac gaggcgcagg ctccttacgg 6600 40aggcaccaag aacaccggct acgggcgctt cgacggccgt gctgtaatcg acgagttcac 6660

agagatcaag tggctgacca tcgaaccttt cgagcagcaa tatcccttct gataagcact 6720 aactcccagg aatcaaacta tgagtaagca agctgcagtt atcgagctcg gatacatggg 6780 tateteggte aaggaceetg atgegtggaa ateatttgee aeggatatge taggtetgea 6840 agttettgat gagggtgaga aggacegttt etatetgegg atggattaet ggeateateg 6900 6960 Sgategtagte cateacaaeg gacaggacga ettggagtae etaggetgge gtgtageegg 7020 caageeggag ttegaagete tgggteaaaa gettattgat geeggttaca agateegcat ctgcgacaaa gttgaggctc aggagcgtat ggtgttgggt ctgatgaaga cagaagatcc 7080 gggcggcaac ccgaccgaga tattctgggg cccccggatc gacatgagca acccgttcca 7140 teceggtege eccetgeacg gaaagtttgt gaceggtgac caaggettgg gecattgeat 7200 10cgttcgccaa accgacgtcg cagaagctca taagttttat agcctgctgg gcttccgtgg 7260 ggacgtcgaa taccggattc cgttgcccaa cggcatgact gccgaactgt cgttcatgca 7320 7380 ttgcaacgcc cgtgatcact ccattgcttt tggtgccatg cccgctgcca aacgactcaa 7440 tcacttgatg cttgagtaca cccatatgga agacttggga tacacgcacc aacagtttgt 7500 aaagaacgaa attgacattg cettgcaget tggcattcac gccaacgaca aggegttgac 15gttetatggt geaacgeett egggetgget cattgagece ggetggegag gtgeeaegge 7560 catagatgaa geggagtatt aegteggega catettegge catggegtgg aggecaetgg 7620 atatggcctg gatgtaaaac tgagctaaag atgcgcgctc gttgggcgag gctctagtcc 7680 agcatcttca tacgcaacca accttgcagg gcgatgagat caaaggacgt taaagcgaag 7740 gggaagtggt tegggceatg egeatacega tecatgaeat ttgttteata gtatataggt 7800 20agataggtga atcaagcgct tagtcaacta gtggacacat ctgttccatg aggctatcta 7860 ctatctattc aaaacaagaa taataaatag gatgaaaata ataatgataa aaagaacgat 7920 ttgtcttgtg tatcctctat tctgtttggc aagccccaca tgggccgaag agtcgccttg 7980 gacgtaccgt attggtatga ctaatgtagc tttcgatgct agcgcaaaag tatacttaaa 8040 tggtcagcgg gtgccaggag gaagcgctga tgcgagcgat aacaacgcgc ttacattcga 8100 25ctteggetae gecateaaeg accagtggaa tgtacgtgeg attgteggta tteegeetae 8160 aactaaagtg acgggcgcag gcacacttcc tggtatccag ctggggaaaa taacttacgc 8220 tccaacagta ttaacgttga actataacct ccccgctttg ggtcccgttc gccctcacat 8280 aggtgcggga gtcaattaca cgcggatttt tgaaagtcgg gacgctaatc taaaatcgtt 8340 cgatgccgac cacgettggt cccccgcget acatgttggt gccgatattg acgttaaccg 8400 30tggttggttc gttagcattg atateeggaa gttataeetg aaaagegaeg cateagggta 8460 cttggggcca caggaggcta aagcacgggt aactcttgac ccattactaa cttcgatcgc 8520 gatcggacgc caattctgat gattctgttt aaagttcttt atctatctaa ccgcaaaggg 8580 tgtttccatg tcgaataaaa ttatgaaaac gtcgcgtctt accgccgaag atatcaacgg 8640 egeetggaet ataatgeeca caccetegae geetgatget tetgattgge geageactge 8700 35caccgtggac ttagaagaga ctgcccgcat agttgaagag ctgattgcag ctggtgtcaa 8760 cggtattcta agtatgggta cttttggtga gtgcgccacg ttgacctggg atgaaaaacg 8820 tgattatgtc tcgacgattg tcgagaccat tcgtggtcgc gtgccttatt tctgtggcac 8880 gacageetta aataceegag aagteateeg eeagaceega gagettateg atattggege 8940 caacggcact atgctcgggg tgccgatgtg ggtgaagatg gacctgccta cagcggttca 9000 40gttctatcgt gatgttgcag atgcggtacc agaggctgcc attgcgattt acgccaaccc 9060

```
cgaagcattc aagttegact teectegeec attetgggca gagatgteca aaatteegea
                                                                       9120
 ggtagtgact gcgaagtatc taggcatcgg aatgcttgac ttggacctga gactggcacc
                                                                       9180
 caacatcege tteetteece aegaagatga etattaegeg geegeaegea teaateeega
                                                                       9240
 gcgcataacc gcgttctggt caagcggggc catgtgcggc ccggctaccg ccatcatgtt
                                                                       9300
Sgcgtgacgaa gtggtgcggg ccaagagcac cggtgactgg gccaaggcca aagccatete
                                                                       9360
 egatgatatg egtgeageeg aetegaeatt gttteegegt ggegaetttt eggagttete
                                                                       9420
 gaagtataat atcgggcttg aaaaggcacg gatggatgcg gctggttggc tcaaggctgg
                                                                       9480
 geoctgoogt cogecetaca acettgttee agaagactae etegetggtg cacagaaate
                                                                       9540
 aggcaagget tgggeegege tgeaegetaa atacagtaat gaattgaagt agtteaeete
                                                                       9600
10cgcagacctg agtgacaggg tggcgcagac gctgagggtg caggaattaa gtgagctaaa
                                                                       9660
 gcacatttct tgcgccaggc attgccagat cagcaaagtt tgctga
                                                                       9706
```

agggcagckt ctgtatttgc ggcagcgaaa tgctccctaa attcctcatt taccccatct 60 gaggattgct ttatgacagt aaagtggatt gaagcagtcg ctctttctga catccttgaa 120 30 ggtgacgtcc tcggcgtgac tgtcgagggc aaggagctgg cgctgtatga agttgaaggc 180 gaaatntacg ctaccgacaa cctgtgcacg catggttccg cccgcatgag tgatggttat 240 ctcgagggta gagaaatcga atgccccttg catcaaggtc ggtttgacgt ttgcacaggc 300 aaagccctgt gcgcacccgt gacacagaac atcaaaacat atccagtcaa gattgagaac 360 ctgcgcgtaa tgattgattt gagctaagaa ttttaacagg aggcaccccg ggccctagag 420 35 cgtaatcacc cccattccat cttttttagg tgaaaacatg aattacaata ataaaatctt 480 ggtaagtgaa tttggtctga gccaaaagca cctgattcat ggcgatgaag aacttttcca 540 acatgaactg aaaaccattt ttgcgcggaa ctggcttttt ctcactcatg atagcctgat 600 tectgeeece ggegactatg ttacegeaaa aatggggatt gaegaggtea tegteteeeg 660 gcagaacgac ggttcgattc gtgcttttct gaacgtttgc cggcatcgtg gcaagacgct 720 40 ggtgagcgtg gaagccggca atgccaaagg ttttgtttgc agctatcacg gctggggctt 780

```
cggctccaac ggtgaactgc agagcgttcc atttgaaaaa gatctgtacg gcgagtcgct
                                                                          840
   caataaaaaa tgtctggggt tgaaagaagt cgctcgcgtg gagagcttcc atggcttcat
                                                                          900
   ctacggttgc ttcgaccagg aggcccctcc tcttatggac tatctgggtg acgctgcttg
                                                                          960
   gtacctggaa cctatgttca agcattccgg cggtttagaa ctggtcggtc ctccaggcaa
                                                                         1020
 5 ggttgtgate aaggeeaact ggaaggeace egeggaaaac tttgtgggag atgeatacea
                                                                         1080
   cgtgggttgg acgcacgcgt cttcgcttcg ctcgggggag tctatcttct cgtcgctcgc
                                                                         1140
   tggcaatgcg gcgctaccac ctgaaggcgc aggcttgcaa atgacctcca aatacggcag
                                                                         1200
   cggcatgggt gtgttgtggg acggatattc aggtgtgcat agcgcagact tggttccgga
                                                                         1260
   attgatggca ttcggaggcg caaagcagga aaggctgaac aaagaaattg gcgatgttcg
                                                                         1320
10 egeteggatt tategeagee aceteaactg cacegtttte cegaacaaca geatgetgae
                                                                         1380
   ctgctccggt gttttcaaag tatggaaccc gatcgacgca aacaccaccg aggtctggac
                                                                         1440
   ctacgccatt gtcgaaaaag acatgcctga ggatctcaag cgccgcttgg ccgactctgt
                                                                         1500
   tcagcgaacg gtcgggcctg ctggcttctg ggaaagcgac gacaatgaca atatggaaac
                                                                         1560
   agettegeaa aaeggeaaga aatateaate aagagatagt gatetgettt caaacettgg
                                                                         1620
15 tttcggtgag gacgtatacg gcgacgcggt ctatccaggc gtcgtcggca aatcggcgat
                                                                         1680
   cggcgagacc agttatcgtg gtttctaccg ggcttaccga gcacacgtca gcagctccaa
                                                                         1740
   ctgggctgag ttcgagcatg cctctagtac ttggcatact gaacttacga agactactga
                                                                         1800
   togotaacag acgagtogac catgatgatc aatattcaag aagacaagct ggtttccgcc
                                                                         1860
   cacgacgccg aagagattet tegtttette aattgecacg actetgettt geaacaagaa
                                                                         1920
20 gccactacgc tgctgaccca ggaagcgcat ttgttggaca ttcaggctta ccgtgcttgg
                                                                         1980
   ttagagcact gegtggggte agaggtgcaa tatcaggtea ttteaegega aetgegegea
                                                                         2040
  gcttcagagc gtcgttataa gctcaatgaa gccatgaacg tttacaacga aaattttcag
                                                                         2100
  caactgaaag ttcgagttga gcatcaactg gatccgcaaa actggggcaa cagcccgaag
                                                                         2160
   ctgcgcttta ctcgctttat caccaacgtc caggccgcaa tggacgtaaa tgacaaagag
                                                                         2220
25 ctacttcaca tecgetecaa egteattetg cacegggeae gaegtggeaa teaggtegat
                                                                         2280
  gtcttctacg ccgc
                                                                         2294
         <210> 7
         <211> 4355
30
         <212> DNA
         <213> Artificial Sequence
        <220>
        <223> A modified DNA sequence
35
        <400> 7
```

atcgataaaa ccatgagggt aataaataat gatgaaggag actatctaga attcgttctg 60 gagacggtgc cggtggcata accgtagacc agcaggctga gcaaaatacc tcggggtgat 120 aagccgcgct accgcgtccg ccatatgcct gagtgagtgc gctaaggtcg ggccgctcaa 180 tggcttcgag aataaagcgg gccaggtgat cttctgtcaa tctcgccgaa tgggtggaag 240

	cacatcaacc	tgaccggcga	ttacgtctgg	cggcagagcc	gcagactgga	ggtcgggaag	300
	ttccggccgt	tacggtggcc	ctgaaaacct	tagtgtacga	ttttttccgt	cttctctatt	360
	cggcctgcgt	tgcgacgttc	gatctgacta	gggcgcagcg	gcaacatcgg	ctgagtacga	420
	tccagcgcct	ggatctgggt	tatttcgtca	accgacaaca	ccagagcgtt	atccggtggg	480
5	ttcaggtaaa	gcccaaccac	attgactacc	tctcggcaaa	atgagggtcg	ttactaattt	540
	tgaacgtctt	caagcgatgg	ggttttaggt	cggaagctgc	ccagacctgc	ccaacctacc	600
	acgtcgtgac	ccgagcatat	teggeeegeg	gcggcaaaaa	acacagaaat	gagcgggtga	660
	cccgatcgcc	tttgatcgat	tctccgcttt	caaaatgggc	gggggctgaa	gtcagccaga	720
	aatacatgac	tacttcagac	gattcgcagt	attcacgctg	gtgataaaca	aattcaacta	780
10	tgctttattg	acaaataaaa	gcacgctcac	catcatcgcg	aatacaaatc	ttataaaaat	840
	taagccggat	ttatggaact	tctcatacag	ccaaacaatc	gcctcattag	ctttagtccc	900
	ggcgccaacc	ttctggaagt	gcttcgcgaa	aacggtgtcg	ctatttccta	cagttgtatg	960
	tctgggcgtt	gcggaacctg	ccgctgtcgg	gttacagatg	gcagtgtaat	tgattcgggg	1020
	gcgggaagcg	ggttaccaaa	cctcgtggac	gagcattatg	tgctcgcctg	tcagtcagta	1080
15	cttactcaca	attgcgcgat	cgaaatccca	gaaaccgacg	aaatcgtcac	ccacccggcg	1140
	agaatcatca	agggcactgt	ggtcgccgtc	gagtcgccca	ctcacgatat	ccgtcgccta	1200
	cgcgtacgcc	tcgctaagcc	cttcgagttc	tcacceggac	agtacgcgac	attgcagttc	1260
	agtcctgagc	atgcgcgtcc	gtattcaatg	gcaggtctgc	cagatgacca	agaaatggag	1320
	ttccacatac	gcaaggtgcc	gggtgggcgc	gtaacggagt	atgttttcga	gcacgtccgc	1380
20	gaaggtacaa	gcatcaagtt	gagcgggcca	cttggtacgg	cttatttgcg	tcagaaccac	1440
	accgggccga	tgctctgtgt	gggcggtggg	accggactag	caccggtgct	gtcgattgtt	1500
	cgcggcgcgc	tgaagttggg	tatgacaaac	cccatcctcc	tttatttcgg	agtgcgcagt	1560
	cagcaagacc	tetacgacge	agagcgattg	cacaaactcg	ccgctgatca	ccctcaactg	1620
	accgtacaca	cggtaatcgc	aatgggcccg	attaatgaga	gtcagcgagc	cggtctagtt	1680
25	accgatgtga	tcgaaaaaga	catcatttcg	ctggctgggt	ggagggccta	cctgtgcggc	1740
	gcaccagcga	tggttgaagc	gctttgcacc	gttaccaagc	atcttggaat	atcacccgaa	1800
	catatttatg	ccgatgcctt	ctatcccggt	ggaatctgaa	tagtcccttt	ccctgcacct	1860
	ctgtccatcg	aggactcatc	aggaggatac	tcaaataagc	gcaaataata	acagtcgcgt	1920
	cagtatttgc	ggcagcgaaa	tggtttccct	ctccctcatt	taccccatct	gaggatagtt	1980
30	ttatgacaga	aaaatggatt	gaagcagtcg	ccctttctga	catcccagaa	ggtgatgtcc	2040
	tcggcgtgac	tgtcgagggc	aaggagctgg	cgttgtacga	agtggaaggc	gaaatctacg	2100
	ctaccgacaa	cctgtgcacg	catggtgccg	cccgcatgag	cgatggttat	ctcgaggggc	2160
	gagaaatcga	atgccccttg	catcaaggtc	ggtttgacgt	ttgtacaggc	agagccctct	2220
	gegeeeegt	gacagagaac	atcaaaacat	atgcagtcaa	gattgagaac	ctgcgcgtaa	2280
35	tgattgattt	gagcggagag	ttttaatagg	aggtaccccg	gaccetageg	cgtaactacc	2340
	ccaattccat	cttttttagg	tgaaaacatg	aattacaaaa	acaaaatatt	ggtgagtgaa	2400
	tctgggctga	cccaaaagca	cctgattcat	ggcgatgaag	aacttttcca	gcacgaactg	2460
	agaaccattt	ttgcgcggaa	ctggctttt	ctcactcatg	acagcctgat	tccatccccc	2520
	ggcgactatg	ttaccgcaaa	aatgggtatt	gacgaggtca	tcgtctctcg	gcagagcgac	2580
40	ggttcgattc	gtgccttcct	gaacgtttgt	cggcaccgtg	gcaagacgct	ggttaacgcg	2640

```
2700
  gaageeggea atgecaaagg tttegtttge agetateaeg getggggett eggeteeaae
  ggtgaactgc agagcgttcc attcgaaaaa gagctgtacg gcgagtcgct caacaaaaaa
                                                                         2760
   tgtctggggt tgaaagaagt cgctcgcgtg gagagcttcc atggcttcat ctatggttgc
                                                                         2820
   ttegateagg aggecectee tettatggae tatetgggtg aegetgettg gtacetagag
                                                                         2880
                                                                         2940
 5 cccatcttca aacattcagg cggtttagaa ctggtcggtc ctccaggcaa ggttgtgatc
                                                                         3000
   aaggccaact ggaaggcacc cgcggaaaac tttgtggggg atgcatacca cgtgggttgg
                                                                         3060
  acgcacgcgt cttcgcttcg ctcgggagag tctatcttcg cgtcgctcgc tggcaacgca
  gtgctgcccc ctgaaggtgc aggcttgcaa atgacctcca aatacggcag cggcatgggt
                                                                         3120
  gtgttgtggg acggatattc aggcgtgcat agcgcagact tggttccgga gttgatggca
                                                                         3180
10 tteggegget ctaageagga aaggetgaae aaagaaattg gegatgtteg egeeeggatt
                                                                         3240
   tatogoageo acotoaactg cacogtttto cogaacaaca goatgotgao otgotogggt
                                                                         3300
  gttttcaaag tatggaaccc gatcgacgca aacaccaccg aggtctggac ctacgccatt
                                                                         3360
  gtegaaaaag acatgeeega ggateteaag egeegettgg eegaeteggt teagegtaeg
                                                                         3420
  gttgggcctg ctggcttctg ggaaagcgac gacaatgaca atatggaaac agcgtcgcaa
                                                                         3480
15 aacggcaaga aatatcaatc cagagatagt gatctgcttt caaaccttgg tttcggtaag
                                                                         3540
  gacgtatacg gcgacgcggt ctatcctggc gtcgtcggca aatcggcgat cggcgagacc
                                                                         3600
  agttategtg gtttetaeeg ggettaeeag geacaegtea geageteeaa etgggetgag
                                                                         3660
  ttegaggatg cetetagtae ttggeatace gaactgaega agaetaetga tegetaacag
                                                                         3720
  acgagtegae catgatgate aatatteaag aagacaaget ggteteegee cacgaegeee
                                                                         3780
20 aagagtttet tegtttette aattgecaeg aegeggettt geaacaagaa gecaeeaege
                                                                         3840
                                                                         3900
  tgctgaaccg ggaagcgcat ctgttggaca ttcaggctta ccgggcttgg ttagagcact
                                                                         3960
  gcgtggggtc agaggttcaa tatcaggtca tttcacgcga actgcgcgcc gcttccgagc
  gccgttataa gctcaatgaa gccatgaacg tttacaacga aaattttcag caactgaaag
                                                                         4020
  ttegaatega geateaaetg gateegeaaa aetggageaa eageeegaag etgegettta
                                                                         4080
25 ctcgcttcat caccaatgtc caggccgcaa gggacgtaga tgacgaagag ctacttcaca
                                                                         4140
  teegeteeaa egteattetg caeegggeae gaegtggeaa teaggtegat gtettetaeg
                                                                         4200
  ccgcccggga agacaaatgg aaacgtggcg aaggtggagt gcgaaaattg gtccagcgat
                                                                         4260
  tegtggatta eccagagege atactteaga egeacaatet gatggtettt etgtgateca
                                                                         4320
  gtgaccactt ttacaaatgg tgactgctac cgcgg
                                                                         4355
30
        <210> 8
        <211> 2176
        <212> DNA
        <213> Artificial Sequence
35
        <220>
        <223> A modified DNA sequence
        <400> 8
```

```
aaatctacgc taccgacgac ctgtgcacgc atggtgccgc ccgcatgagc gatggttatc
                                                                          120
   tcgaggggcg agaaatcgaa tgccccttge atcaaggtcg gtttgacgtt tgtacaggca
                                                                          180
   gagccctctg cgcccccgtg acagagaaca tcaaaacata tgcagtcaag attgagaacc
                                                                          240
   tgcgcgtaat gattgattta agctgagaat ttttaatagg aggcgccccg gaccatagag
                                                                          300
 5 cgtaattatc cccattccat cttttttag gtgaaaacat gaattacaaa aacaaaatct
                                                                          360
   tggtaagtga gtctgggctg acccaaaagc acctgattca tggcgatgaa gaacttttcc
                                                                          420
   agcacgaact gagaaccatt tktgcgcgga actggctttt tctcactcat gacagcctga
                                                                          480
                                                                          540
   ttccttcccc cggcgactat gttaccgcaa aaatggggat tgacgaggtc atcgtctct
   ggcaaagcga eggttegatt egtgeettee tgaaegtttg eeggeaeege ggcaagaeae
                                                                          600
10 tggtgaacgc ggaagccggc aatgctaaag gtttcgtttg cagttatcac ggctggggct
                                                                          660
   teggetecaa eggegaactg cagagegtte cattegaaaa agagetgtae ggegagtege
                                                                          720
   tcaacaaaaa atgtctgggg ttgaaagaag tcgctcgcgt agagagcttc catgggttca
                                                                          780
   tetatggttg ettegateag gaggeeeett etettatgga etateteggt gaegetgett
                                                                          840
                                                                          900
  ggtacctgga acccatcttc aaacattcag gcggtttaga actggtaggt cctccaggta
15 aggttgtgat caaggccaac tggaaggcac ctgcggaaaa ctttgtgggt gatgcatacc
                                                                          960
   acgtcggttg gacgcacgcg tettcgette gcacaggcga atctatette tegtcgctcg
                                                                         1020
  ctggcaacgc agtgctgccg cctgaaggtg cgggcttgca aatgacctcc aaatacggca
                                                                         1080
  geggtatggg tgtgttgtgg gacggatatt caggcgtgca tagcgcagac ttggttccgg
                                                                         1140
                                                                         1200
  aattgatggc attcggcggc gctaagcagg aaaggctgaa caaagaaatt ggcgatgttc
                                                                         1260
20 cegeceggat ttategeage caceteaact geacegtttt ceegaacaac agegtgetga
                                                                         1320
  cctgctcggg tgttttcaaa gtatggaacc cgatcgacgc aaacaccacc gaggtctgga
  cctacgccat tgtcgaaaaa gacatgcccg aggatctcaa gcgccgcttg gccgacgcgg
                                                                         1380
  ttcagcgaac ggtcgggcct gctggcttct gggaaagcga cgacaatgac aatatggaaa
                                                                         1440
  cagcatcgca aaacggcaaa aaatatcaat ccagagatag tgatctgatt tccaaccttg
                                                                         1500
25 gtttegggaa ggatgtatae ggegaegegg tetateetgg egtegtegga aaateggega
                                                                         1560
  teggegagac cagttategt ggtttetace gggettacea ggeacacgte ageageteea
                                                                         1620
                                                                         1680
  actgggctga gttcgaggat gcctctagta cttggcatac cgaactgacg aagactactg
  atcgctaaca gacgagtcga ccatgatgat caatactcaa gaagacaagc tggtatccgc
                                                                         1740
  ccatgacgcc gaagagtttc ttcgtttctt caattgccac gactcggctt tgcaacaaga
                                                                         1800
30 agccaccacg ctgctgaccc gggaagegca tctgctggac attcaggctt accggacttg
                                                                         1860
  gttagagcac tgcgtggggt cagaggttca atatcaagtc atttcacgcg aactgcgcgc
                                                                         1920
  cgcttccgag cgccgttata agctcaatga agccatgaac gtttacaacg aaaatttcca
                                                                         1980
  gcaactgaaa gttcgagtcg agcatcaact ggattcacaa aactggagca acagcccgaa
                                                                         2040
  gctgcgcttt actcgcttca tcaccaatgt ccaggccgca atggacgtaa atgatgaaga
                                                                         2100
35 tetgetteae gteegeteea aegtegttet geacegggea egaegtggea atcaagtega
                                                                         2160
  tgtcttctac gccgcc
                                                                         2176
```

<210> 9

<211> 14462

40 <212> DNA

<213> Artificial Sequence

<220>

<223> A modified DNA sequence

5

<400> 9

```
60
 gtcgactccg gtggccaaat cgacgggagc acaagcgtta cagcatcggg gctatcggcc
 tcaaccgctg agacgcatct acatacccaa aagcaatggc aagaagcgtc cgctgggaat
                                                                         120
  tocaacgatg cgggategtg cgatgeagge getgtggaaa etggeaettg ageeggttge
                                                                         180
                                                                         240
10cgaaacgcgt gtagatccca actcctatgg atttcggccg cagcgatcca ctgccgatgc
                                                                         300
 aategcacat tgettcaatg cactggegaa aegtggtteg gegcaetggg taetggaagg
                                                                         360
  tgacattcga ggctgtttcg acaatatcag tcacgattgg ctgctcacca acgtgcccat
 ggataaggtg gttctgcgca aatggcttcg agcggggtat gtcgatcagg gagccttgtt
                                                                         420
 cgcaacggag gcaggaaccc cgcaaggggg aatcatctct ccggtacttg cgaattggac
                                                                         480
15gctggatggc ctggaagatg tcgtccatgc aagcgtggct tcgacagcgc gcaagcgtaa
                                                                         540
                                                                         600
 gccattcaag atacacgtcg tacgatatgc cgatgacttc atcatcacag gggccacgca
 agetgttetg caacateagg ttegteetge aattgaggeg tteetgaaac agegtggaet
                                                                         660
                                                                         720
 ggaactetet gatgaagaga eteagataae geatatetea eaaggetteg attitetggg
 ccagaacgta cgcaagtacg ccggcaagct actcatcact ccggcttgca agagtgtgaa
                                                                         780
20ggcactgctg gataaggtgc gggaaatcgc gaacgcaaac aaggcggcga ctcaagctaa
                                                                         840
 ettgatettg accetgaace eggtaateeg aggatgggee atgtateate gecatgttgt
                                                                         900
 cgccgccaac gtttcgcatg gatcgaccat cagatttggc aagtgttatg gcgctgggca
                                                                         960
 gttegtegge acgccatgaa aaatgcctat tgggtaaaac aacgctactt tcgtgtcgta
                                                                        1020
 ggtcaacggc actgggtttt cgccactcag gagaaagcgc gcggcttgag tcaacccgct
                                                                        1080
25tggctgtatg ccgccgccag tgtttcgatc gtgcggcata tcaaaatatg cagtgcagcg
                                                                        1140
 aacccgttcg atccggcatg gacgttttac cttgagcgtc gaagagcgca tcgtcaggtt
                                                                        1200
 gcccagtett acteaggetg etggaagget tgageegtat gaggggtgae teccaagtae
                                                                        1260
 ggttcttagg ggagacaggg gtggtaacac ccctgtttta cccgactgaa agcgcatatc
                                                                        1320
 ggagccgacg cagaatcggg cetggtacat catgtccatg cacagccgcc aacgtggctg
                                                                        1380
30acgtgacgga agttgcccat ctgttgcacg gtggcgagaa cgttgtctgt gcttggggtt
                                                                        1440
 acaccggcgt agagaaacgg cctgagcacg acggtcggca agtgatctgg cagatctgcg
                                                                        1500
 cgacgcagca cctacaagca tttgagcaaa cgcagtgcgc cgtacaaggc caggcgcaag
                                                                        1560
 atcgagaagg ccaaagccca ggtacgtgcg aaggtcgaac atccgtttcg ggtgatcaag
                                                                       1620
 cgtcagttcg gttatgtgaa gacccgcttc cgtgtcctgg ccaagaatac ggcggaattg
                                                                       1680
35accacactgt tegegetgte gaactetgtg gatggtgege eggeaattat tgeetgetge
                                                                       1740
 gggagaggtg cgcccgtgag tgacagaaaa ccagggcttt gcctcggtta tccaataaca
                                                                       1800
 cagcgactga aaatcgggca tttcggcatc cctaagccgc ccatttccga ctgatgagca
                                                                       1860
 acttgttcgg agtttcccta aagcacaagc gcaagccatc agaaaagagt gcctgagtgt
                                                                       1920
 gctccaagat agcccgaaac taaggccgga catggaaaag accaagatca cccatgtgaa
                                                                       1980
40tgatggactt gtttttgtgg gccatcggat cattcgcaag cgtagccgat acggagatat
                                                                       2040
```

	gcgtgtgatc						2100
	gctatcaggt						2160
			tcaattcgtt				2220
			ctggcccatt				2280
	5gtcttgcctg						2340
			ggcatcaaca				2400
	ctaaccaaaa	tgcgcgactg	gcgcatgcag	cttccatatg	ggagacgctg	gaagcgtcgg	2460
	aatagaccgt	caatcagaag	accttcttcg	ctcccgtcga	actgaaagcc	tcaccgagtg	2520
	cgaacgtcaa	cgggaaaggc	gcgcaaagac	ttgccttgct	cacctcgtca	cgagcgtaca	2580
1	0aacgctgtga	gctggctgta	cgggtgcgct	gcttagcgtt	ggtttttccg	ttctgtgagc	2640
	caaccccgtg	atatcgtagt	gcaggaccat	gccgttaagg	agggctgcct	ggtcagcatt	2700
	ttcagccagc	gccggaagtt	cctgcacttc	ggccttgaac	tggcgttcca	atgcctggat	2760
	atggccatag	ggaggtacgc	tttggcgtaa	ggcgttgcat	gcagcttggt	gctgtcgagg	2820
	ctgatggtgc	ggagcttgag	cagcttcatt	tgccctgcca	actccaccgc	ctgaaggaag	2880
1	5ttcccggcca	agtcatcgag	gaagcgctgc	cggaagctgg	ccggggtgac	tcttgcggcg	2940
	aggtggcgaa	aagcgagcga	gtcgtaactg	gcgcgctcaa	tcctggagct	gggaactttg	3000
			catcgggctg				3060
			gagtgagggc				3120
			cttctgccat				3180
2	Otgaccagcga						3240
			gtgtacgatt				3300
			gcgcagcggc				3360
			cgacaacacc				3420
	ccaaccacat	gactacctct	cggcaaaatg	agggtcgtta	ctaattttga	acgtcttcaa	3480
2	25gcgatggggt						3540
			gctaaaaaca				3600
			aaagcggcag				3660
			tgataaataa				3720
	cacactcacc	atcatcgcga	atacaaatct	tataaaatta	agccggattt	atgaaacttc	3780
	30tcatacagcc	aaacaatcgc	ctcattagct	ttagtcccgg	cgccaacctt	ctggaagtgc	3840
	ttcgcgagaa	cggtgtcgct	atttcctaca	gttgtatgtc	tgggcgttgc	ggaacctgcc	3900
	ggtgccgggt	tacagatggt	agtgtaattg	attcggggac	gggaagcggg	ttaccacacc	3960
						tgcgcgatcg	4020
						ggcactgtgg	4080
	35tcgctattga						4140
						gcgcgtccgt	4200
						aaggtgccgg	4260
						atcaaattga	4320
						ctctgtgtgg	4380
	40gcggtggaac						4440

4500 tgacaaaccc catcetectt tattteggag tgegcagtea geaagacete tacgacgeag agegattgea taacctegeg getgateace eteaactgae egtacacaeg gtaategeaa 4560 4620 tgggcccgat taatgagagt cagcgagccg gtctagttac cgatgcgatc gaaaaagaca 4680 teagtteget ggetgggtgg agggeetate tgtgeggtge accagegatg gttgaagege 4740 5tttgcaccgt taccaaacat cttggaatat caccggaaca tatttatgcc gatgccttct 4800 atcccggtga aatctgaatc gtccctttcc ctcacctcgg tccattgagg actcatcagg 4860 aggatactca aataggcgca aataataaca gccgcgtcac tatgtgcggc agcgaaatgg tttccctctc cctcatttgc cccatcggag gatagtttta tgacagaaaa atggattgaa 4920 4980 geagtegeec titigtgaeat tecagaaggt gatgteeteg gegtgaetgt egagggtaag 10gatetggeae tgtacgaagt ggaaggegaa atetacgeta cegacgaeet gtgcacgeat 5040 ggtgccgccc gcatgagcga tggttatctc gaggggcgag aaatcgaatg ccccttgcat 5100 5160 caaggteggt ttgacgtttg tacaagcaga geectetgeg eeecegtgac agagaacate aaaacatatg cagtcaagat tgagaacctg cgcgtaatga ttgatttaag ctgagaattt 5220 ttaataggcg gcgccccgga ccatagagcg tgattatccc cattccatct ttttttaggt 5280 15gaaaacatga attacaaaaa caaaatcttg gtaagtgagt ctgggctgac ccaaaagcac 5340 etgatteatg geggtgaagg getttteeag caegaactga gageegtttt tgegeggaac 5400 tggctttttc tcactcatga cagcctgatt ccttcccccg gcgactatgt taccgcaaaa 5460 5520 atggggattg acgaggtcat cgtctctcgg caaagcgacg gttcgattcg tgccttcctg 5580 aacgtttgcc ggcaccgcgg caagacactg gtgaacgcgg aagccggcaa tgctaaaggt 20ttcgtttgca gttatcacgg ctggggcttc ggctccaacg gcgaactgca gagcgttcca 5640 ttcgaaaaag agctgtacgg cgagtcgctc aacaaaaaat gtctggggtt gaaagaagtc 5700 getegegtag agagetteea tgggtteate tatgeetgea tegateagga ggeecettet 5760 cttatggact atctcggtga cgctgcttgg tacctggaac ccatcttcaa acattcaggc 5820 ggtttagaac tggtaggccc tccaggtaag gttgtgatca aggccaactg gaaggcacct 5880 25gcggaaaact ttgtgggtga tgcataccac gtcggttgga cgcacgcgtc ttcgctctgc 5940 acaggogagt ctatcttctc gtcgctcgct ggcaacgcag tgctgccgcc tgaaggtgcg 6000 ggcttgcaaa tgacctccaa atacggcagc ggtatgggtg tgttgtggga cggatattca 6060 ggcgtgcata gcgcagactt ggttccggaa ttgatggcat tcggcggcgc taagcaggaa 6120 6180 aggetgaaca aagaaattgg cgatgttege geeeggattt ategeageea ceteaactge 30accgttttcc cgaacaacag cgtgctgacc tgctcgggtg ttttcaaagt atggaacccg 6240 atcgacgcaa acaccaccga ggtctggacc tacgccattg tcgaaaaaaga catgcccgag 6300 gateteaage geegettgge egacgeggtt cagegaacgg tegggeetge tggettetgg 6360 gaaagcgacg acaatgacaa tatggaaaca gcatcgcaaa acggcaaaaa atatcaatcc 6420 agagatagtg atctgatttc caaccttggt ttcgggaagg atgtatacgg cgacgcggtc 6480 35tatcctggcg tcgtcggaaa atcggcgatc ggcgagacca gttatcgtgg tttctaccgg 6540 gettaccagg cacacgteag cagetecaae tgggetgagt tegaggatge etetagtaet 6600 tggcataccg aactgacgaa gactactgat cgctaacaga cgagtcgacc atgatgatca 6660 atactcaaga agacaagctg gtatccgccc atgacgccga agagtttctt cgtttcttca 6720 attgccacga ctcggctttg caacaagaag ccaccacgct gctgacccgg gaagcgcatc 6780 40tgctggacat tcaggcttac cggacttggt tagagcactg cgtggggtca gaggttcaat 6840

atcaagtcat	ttcacgcgaa	ctgcgcgccg	cttccgagcg	acgttataag	ctcaatgaag	6900
ccatgaacgt	ttgcgacgaa	aatttccagc	aactgaaagt	tcgagtcgag	catcaactgg	6960
attcacaaaa	ctggagcaac	agcccgaagc	tgcgctttac	tcgcttcatc	accaatgtcc	7020
aggccgcaat	cgagctaaat	gatgaagatc	tgcttcacgt	ccgctccaac	gtcgttctgc	7080
5accgggcacg	acgtggcaat	caagtcgatg	tcttctacgc	cgcccgggaa	gacaaatgga	7140
aacgtggcga	aggtggagtg	cgaaaattgg	tgcagcgatt	cgtggattac	ccagagcgca	7200
tacttcagac	gcacaatctg	atggtctttc	tgtgatccgg	tgaccacttt	tacaaatggt	7260
gactgctacc	gcggtcacca	ttaatcaaaa	gggaatgtac	gtgtatgggc	aatcaacaag	7320
tcgtttcaat	aaccggtgcc	ggctcaggaa	tcggtctcga	actggttcga	tccttcaagt	7380
10cggccggtta	ttgcgtatcc	gctctcgtac	gaaacgagga	gcaagaggcg	cttctttgca	7440
atgaattcaa	ggacgcactc	gagatcgttg	tgggcgatgt	ccgagatcac	gcaataaatg	7500
agaagctgat	caagcagaca	atcgctagat	tcggtcatct	cgattgtttc	atcgcaaatg	7560
ccggtatttg	ggattacatg	ctgagcatcg	aagagccttg	ggagaaaatc	tccagcagtt	7620
ttgacgaaat	attcgacatc	aatgtaaaga	gctatttcag	tggcatcagt	gcagctctgc	7680
15cggaactgaa	aaagacgaac	ggatcggtgg	tgatgaccgc	ttcggtgtcg	tcccatgcgg	7740
teggtggtgg	tggttcttgc	tacatcgcca	gcaagcatgc	ggtgttaggt	atggtcaagg	7800
ctttggccta	cgaattggct	cccgaaattc	gcgtgaacgc	tgtctcgccg	ggcggcaccg	7860
tgacgtctct	gtgcggtcct	gcaagcgccg	gtttcgacaa	aatgcacatg	aaagacatgc	7920
ccggcatcga	cgatatgatc	aaaggcctca	ctcctcttgg	gtttgcagcc	aagcccgaag	7980
20acgtggtgga	gccctatctg	ttgctggctt	cgcgaaagca	gggaaaattc	atcaccggca	8040
ccgtgattag	cattgatggc	ggtatggcgc	tcggtcgcaa	gtgagcttgc	ageegateaa	8100
aggttataga	aacattttta	ggtgacgccc	catgaagaca	aaactgttta	tcaacaacgc	8160
ctggatcgat	tccagtgacc	agcagacctt	cgagcgcaag	caccccgtca	acagcgaggt	8220
gatgactgag	agcgcaaacg	ccacggtgac	ggacgcgata	aaggcggcgc	aagtggccga	8280
25ggaggcattc	aagacctgga	aggacgttgg	accttcggag	cgtcgccgcc	ttctcctgaa	8340
ggtcgccgat	gtcatggaaa	gtaaaacacc	caagtttatc	gaagtgatgg	ccatggaggt	8400
gggagcttcc	gctctttggg	ccggattcaa	cgtccatgcg	tctgccaatg	tgttccggga	8460
ggctgcctcg	ctggccactc	aaattcaggg	cgaaaccatc	ccaacggaca	aagccgaaac	8520
gctctcaatg	acactacgtc	agccggtcgg	cccgatcctg	agcatcgtcc	catggaacgg	8580
30caccgcagtg	ctggcggcac	gagccatcgc	gtatccgctg	gtctgtggca	acacggtggt	8640
gttcaaaggc	tctgaattta	gtcccgcgac	gcatgccctg	atcacccagt	gcgtccagga	8700
ageegggetg	cccgctggcg	tgctcaacta	tctcaactcc	tegeetgace	gttcgcccga	8760
gatcgccgac	gcactgatct	ccgcgaagga	gatccgccgc	atcaacttca	cgggttcaac	8820
ccgcgtgggc	agcattatcg	cgcagaaggc	cgcgcaacac	ctcaagcgct	gcctactgga	8880
35gctcggcggc	aagtccccgc	ttattgttct	ggatgacgca	aacattgacg	cggcggtcaa	8940
			aggtcagatc			9000
					aaactaagcg	9060
			cgactgcato			9120
aaattcgggc	gagcggatca	atggtttgtt	: caaggacgcg	atcgataaag	gggccaaagt	9180
40tgtttgcggc	ggcatggcco	agggtgcggt	catgccggcc	acgatectgg	atcacgtgaa	9240

atctgacatg cggatctacg atgaggagac ctttggtccc atcacagtgg tgatccgttg 9300 caaaggggaa gcagaggcca tccgcattgc caacgacagc gtttatggtc tgtcgtcggg 9360 cgtgtttggc cgcgacatca accgtgctct gcgagtgggt atgtcgatcg aatatggttg 9420 cgtacacatc aacggetega eegteeagaa egaggegeag geteettaeg gaggtaccaa 9480 9540 Sgaacaccggc tacgggcgct tcgacggccg tgccgtggtc gacgagttca cagagctcaa gtggctgacc attgagccat tcgagcagca atatcccttc tgaaagcact aactccaagg 9600 aatcaaacga tgagtaagca agctgcagtt atcgagctcg gatacatggg catctcagtc 9660 aaggateetg atgegtggaa ategtttgee atgaatatge tgggtetgea agtaetegat 9720 9780 gagggtgaga aggaccgttt ctatctgcgg atggattact ggcaccatcg tatcgtagtt l0catcacggcg gagaggacga cttggaatat ctaggctggc gtgtagccgg caagccggag 9840 9900 ttcgaagett tggggcaaaa geteattgat geeggttaea agateegtgt etgegacaaa gttgaggete aggagegtat ggtgttggge etgatgaaga eagaagatee aggeggeaae 9960 ccgaccgaga tattctgggg gccccggatc gacatgagca atccgttcca tcccggccgc 10020 cctctgcacg gcaagtttgt gaccggtgac cagggcttag gtcattgcat cgttcgccaa 10080 15accgacgtcg ctgcggccca taaattctac agcctgctgg gcttccgtgg ggacgtcgaa 10140 taccgcattc cattgcccaa cggcatgact gccgaactgt cattcatgca ttgcaacgcc 10200 10260 cgtgatcact ccattgcgtt tggtgccatg cctgctgcca agcggctcaa tcacctgatg 10320 cttgagtaca cccatatgga agacttggga tatacgcatc aacagttcgt gaagaacgaa attgacatcg ccttgcagct tggcattcac gccaacgaca aggcgttgac gttctacggc 10380 20gcaacgcctt cgggctggct tatcgagccc ggctggcgag gtgctacggc catagacgaa 10440 10500 gcggagtatt acgtcggcga catcttcggc catggcgtcg aggcacctgg atatggcctg 10560 gatgtaaaac tgagttaaaa gcgattatgc gtacatcggg tttctgacgt tttctgcttt ctatacagcg caataacaat aacaactaag tgggaatatt aataatgata aaaaaaacgt 10620 10680 ttctttacat gcctcgcttt acttgttcac tcagcaccgc atgggccgaa gaatcacctt 10740 25ggacataccg catcggcatg agtaatattg cttttgatac aagcgccaaa gtgtacttgg 10800 gaggccagcg tgtgccggga ggaagcgctg acgcgagcaa taacaacgcg ctcacattcg acttcggcta tgccatcaac gaccaatgga atgcacgttt gattgtcggt attccaccta 10860 caactaaagt taagggcgca ggcacacttc cgggcattca gctgggaaaa ataacttatg 10920 10980 ctccaacatt actgacgtta aactataacc tcccagcttt tgggcccgtt cgtcctcaca 30tcggtgcagg agtcaattac acgcgaattt tggaaagcaa ggacgctaat ctaaaatcat 11040 11100 togatgooga coacgottgg toccoogogo tgoatgttgg tgoogatatt gaogtgagto 11160 gcaactggtt cgtcagcatt gatattcgga agttatacct gaaaaccgac gcatcaggtt acttagggcc acaggaggct aaagcaaagg taactcttga cccattgata acatcgatcg 11220 11280 caatcqgacg ccaattttga tgcccccttt taaggctctc tatctatcta actgcaaagg 11340 35gtatttttat gttgaataaa attagtaaaa ccgcgcgtct taccgctgaa gatatcaatg gtgcctggac tataatgccc acaccgtcga cgcctgatgc ttctgattgg cgcacgacta 11400 11460 acactgtgga cttagacgag actgcccgca tagttgaaga gctgattgct gctggtgtca 11520 acggtatttt gagtatgggt acctttggtg agtgcgccac gttgacctgg gaggagaaac 11580 gtgattatgt ttcgacggtt gtcgagacca ttcgcggtcg tgtaccttat ttctgcggca 40cgacggccct gaatacccga gaagtcattc ggcagacccg agagcttatc gatattggcg 11640

ctaacggcac	catgctaggc	gtgccgatgt	gggttaagat	ggacctgccc	acageggtee	11700
agttctatcg	tgatgttgca	ggcgcggtac	cggaggctgc	cattgcgatt	tacgccaacc	11760
ccgaagcatt	caaattcgac	ttccctcgcc	cattttgggc	agagatgtct	aaaattcctc	11820
aggtagtgac	tgccaagtat	ctaggcatcg	gaatgettga	cttggacctg	aaattggcgc	11880
5ctaacatccg	cttccttcca	cacgaggacg	actattacgo	ggccgcacgc	atcaatcccg	11940
agcgcattac	tgcgttctgg	tcaagcgggg	ccatgtgcgg	cccggctacc	gctatcgcgt	12000
tgcgtgatga	agtggagcgg	gccaagagta	ccggtgactg	gatcaaggcc	aaagccatct	12060
ccgatgatat	gcgtgcagcc	gattcgacat	tgtttccgcg	tggcgacttt	tcggagttct	12120
cgaagtataa	tatcgggctt	gaaaaggcac	ggatggacgc	ggctggttgg	ctcaaggctg	12180
10gtccctgccg	tectecetae	aatcttgttc	cagaagatta	cctcgttggt	gcacagaaat	12240
caggcaagtc	gtgggccgcg	ctgcacgcta	aatacagtaa	agaattaaag	tagttcacct	12300
ccgcatgcct	gagcgcgagg	ggtgacgtaa	acgccgagcg	gtgcgggaag	taagtgagtt	12360
agagttcatt	tettgtgcca	ggcactgcta	gatcagcaaa	gttagctgat	ctagcagtct	12420
cgaaaatttg	ggcgaaagct	gatcttagga	atgcgggata	aaggcagtac	accgtaacga	12480
15tcggggtgtg	ccgttcatgt	tgaacgacac	cgctattgcg	ccgacttctc	ttcttcggag	12540
tgtttgattg	tgattgtcga	tttctatttc	gatttttga	gtccgttctc	ttacttggcc	12600
aatcagcgtt	tgtcaaagct	tgcgcaagat	catggcctta	ccacgtgtta	taacgcgatc	12660
gatttggcgc	gggtcaaaat	agcgatcggt	aacgttggtc	catctaatcg	cgacttggaa	12720
gtaaaattgg	actatttgaa	agtagatttg	caacggtggg	cccagcttta	cggaataccg	12780
20ctggtatttc	cagctaacta	caacagcaga	cggatgaata	ctgggcttta	ttactcggag	12840
gccgaggtgc	aggccgctgc	ctatgtgaat	gtagtattta	atgcgatttg	gggagaaggc	12900
atagcaccag	atttggaaag	cttgcctgcc	ctggtatctg	aaaagctagg	ctgggatcgt	12960
agtgccttcg	agcgctttct	cagcagcaac	gccgcaacag	agaggtatga	cgagcagaca	13020
catttcgcca	tcgagcgcaa	ggtgttcggt	gtgccaacga	tgtttttggg	cgatgaaatg	13080
25tggtgggga	acgaccgtct	gtttatgctc	gagagcgcaa	tggggcgctt	gtgccggaaa	13140
aatgccgatt	taagtagttg	atctgatcgt	tatttgctcg	atgagtcgct	ttcaagatca	13200
gcggatactg	aagtcagcta	aatgcgggac	tacttcaggc	catgetteag	gggcggtcag	13260
ggcggactgg	cgtgtgcacg	gtagttgttg	cgtgaggcat	gtttttaaga	tactattttc	13320
				atagtctcaa		13380
30gtacctgacc	agagatacgg	gtgtttatga	tggcatcgct	ggtacagcgc	atgacgccat	13440
				aatctcaacg		13500
				tacgttgtac		13560
				aatctgcgat		13620
				taaggtgtgc		13680
35ctggtcaagc						13740
				aaataaagta		13800
				gcccaccgta		13860
				ttattccagt		13920
				cccgacacct		13980
40gctgagactg	gccgggatcg	ttcgagtaaa	ggagcgtgcc	aaaggtagct	tccagcctcc	14040

```
cgagcctcgt aagtcttatg gctataccga ggcacaccgg cgtcagttgc cggagcaacg
                                                                      14100
ctatcccagt tgcctgactg atgcagaatg gacgttggtc gctgatttat ttgaagtctc
                                                                      14160
gggaggtege ggegtaeege tegecaetee egaegeaete ttttggaage etgetgttat
                                                                     14220
gtcgtgcgca cagggtgctc ctggcgaatg ctgcttcgcg agtttcccta ttgggacaat
                                                                      14280
Sgtctataaaa cctttcggcg ctggagcgtc agggcaagtt tgagcaaatg cacgaccggc
                                                                      14340
teegtgeeca atggegagag egggtggate gtgatgaaeg geegteagee getgttetgg
                                                                      14400
atteccaate aacgegeacg tetecceaag geggtgaaag eggttaegae geaggeaaaa
                                                                      14460
                                                                      14462
ag
```

10

<210> 10

<211> 12808

<212> DNA

15 <213> Artificial Sequence

<220>

<223> A modified DNA sequence

20 <400> 10

gtcgacgcat gatgcaggac tgggccgatc gcctcgacct cttcgagcag aaccaggtcg 60 aggeggeeag catgeegete acceptgeate tggaaggtgt geeegeatte ecgagtgage 120 aaaccgcaag cgcgccctct acgccggttg ccgcttcgcc aagcctgctc gtgacgaagc 180 cgggtgacgc catgccgttg gtttctgccg ccgcacatcg gctgccggca gtgccgcccc 240 25agcgatcggc cgcgccgctg gtgccttcgg acattcagcg cgagagaatg gatttgttcg 300 atgtettega agegeegeac aacetteeeg tegetgegtt tgecaagatg gegggeaaat 360 ctcgcaggtg gatcagctac gagatccagg cgggcaactt gctggcgttg aacgtgggca 420 accgcggcca gcgcgtgccg gactggcacc tcgacccgct caagcacgag ctgatccagt 480 ctgtcctgaa gctgaccagg ggtgcggacc cttggcagat ctaccatgca ctgctgcagc 540 30egegetegat getgeggggg egeteggeae tggagggegt gaetgeeage aatetegaea 600 agetegteat ggeegtgage acageggtga aggaaagega atggaeeeeg etgegggteg 660 gtggtcgtgt agtcaaacaa cgggccggta agggatggcc tggacattat tcatattagt 720 gatactaata ttcatttatg gtttattgac tattagaata cagtcaatga tcatggaacc 780 ataaagcata taaataaaga agctagatct atggaacttc tcgtactacc gaacaatcgc 840 35cgcttgcctt ttgattccgg tgccaacctt ttggaagtgc tccgtgagca ccgtgtgggt 900 atttectaca getgtatgte tggacgatge ggtaettgee getgeegagt tatagatgge 960 agcgtcatta gttcggcggc gaaaagcggt gactcaaatc gcatcgaaga gcattatgta 1020 ctcgcctgtc agtcagtgct caccagcaat tgcgcaattg agatcataga ctcagacgac 1080 atagtcactc accoggogog aatcatcaaa ggcatggttg togoogtoga gtogoocact 1140 40cacgatattc geegeateeg cattegeete geeaageeet tegagttete acceggacag 1200

tacgcgatgc tacagttcag tcccgaacat gtgcgtccat attcaatggc tggtctgcca 1260 1320 gatgaccaag aaatggagtt ccatatccgc aaagtgccgg gcgggcgtgt cacggagtat attttcgagc acgtccgcga aggtacaagc attaagttga gtgggcctct tggtacggcc 1380 tatctgcgtc aggctcacac cgggccgatg ctgtgtgtgg gcggcgggac cggactcgca 1440 1500 Seeggtgetgt egattgtteg eggegegetg aagtegggaa tgaegaacee catecacett tatttcgggg tgcgcagtca gcaagacctt tacgacgcag accgattgaa ccaactcgcg 1560 gctatccacc ctcaactgac tgtccataca gtgatcgcga cgggcccgat taatgagggc 1620 cagcgggccg gcctaattac cgatttgatt gaaaaagaca ttccctcgct ggctgggtgg 1680 agagectace tgtgeggege aceagegatg gttgacgete tatgeacegt egecaaagat 1740 10cttggaatat cgcccgagca tatttatgcc gacgccttct atcccagcgg ggtctgaatt 1800 gccccgaccc ttcacctctg tacatcgaga attcatcagg aagacactta aatgagcatc 1860 actaacaaca gccgcgtctg aatatttagg acagctggat gatctctaac tccatcatta 1920 ccccatttga agatagcttt atgacagaaa aatggattga cgcagtcgct ctttatgaaa 1980 teectgaagg tgacgteete ggegtgacag tegaaggtaa ggaactageg etgtatgaag 2040 15tggaaggcga aatctacgct accgacaacc tgtgcacaca tggtgctgcc cgcatgagtg 2100 atggetttet agaaggeaga gaaattgaat gteetttgea teaaggtaga titgatgttt 2160 gcacaggcag ggccttgtgc gcccctgtga cacagaacat caaaacatac ccggtgaaga 2220 ttgagggcca gcgtgtgatg attgatttga gctgagaatt ttaataggag gcacccgga 2280 ccctagagcg taatcccccc cattcgatct cttgaggtga aaatatgaat tacaaaaata 2340 20aaaacttggt gagtgaatct gggctgaccc aaaaacacct gattcatggc gacgaagaac 2400 ttttccagcg cgaactggaa accatttttg ctcggaactg gcttttcctg actcatgaca 2460 gcctgattcc gtcccctggc gactatgtta cggcaaaaat gggggttgat gaggttatcg 2520 tctccaggca gaacgacggt tcgattcgtg cttttctgaa cgtttgtcgt caccgtggca 2580 agacgctggt acacgcagaa gcaggtaatg ctaaaggttt cgtttgcagc tatcacggct 2640 25ggggcttcgg cgctaacggt gaactgcaga gcgtcccgtt tgaaaaagaa ctgtatggcg 2700 aggcgctcga caagaaatgt atgggattga aagaagtcgc tcgtgtagag agcttccatg. 2760 getteateta tggttgette gatgaggaag eccettetet caaagaetae atgggggaeg 2820 ctggctggta cctggagcct atgtttaagc attccggagg gctagaactg atcggtcctc 2880 caggaaaggt cataatcaag gctaactgga aagcgcccgc ggaaaacttt acgggggatg 2940 30cgtaccacgt gggttggacg catgcgtctt cgcttcgctc agggcagtcg gtcttctcgt 3000 cgttagctgg caacgcagct ttgcccccag aaggtgcagg tctgcaaatg acctccaaat 3060 acggcagcgg catgggtgtg ttgtgggacg gatattcagg cgtgcacagc gcagacctgg 3120 ttccggaatt gatggccttc ggcggtgcta agcaggaacg gctgaacaaa gaaattggcg 3180 aggttcgcgc acgaatctat cgcagccacc tcaactgcac cgttttcccg aacaacagtt 3240 35ttctgacctg ctcgggtgtc ttcaaggtat ggcacccgat cgacgcaaat accactgagg 3300 tatggaccta egecatggte gaaaaagaca tgeeegagga teteaagege egettggteg 3360 acgcggttca gagaacggtt gggcctgctg gcttctggga aagcgacgac aacgacaata 3420 tggaaacggt atcgcaaaac gccaagaaat atcagtccag agatggcgat ctggtttcca 3480 acctgggttt cggcggggac gtatacggcg acgaggttta tcctggcatc gtcggcaaat 3540 40cggcgattgg cgagaccagt tatcgtggct tctatcgggc ttacggcgcg cacatcagca 3600

gctctagctg	ggctgaatto	gaggatgtct	ctaaaaattg	gcataccgaa	ctg gc aaaga	3660
ctactgatcg	ctaacagacg	agagggacca	tgatgattaa	tattcaggaa	gacaagcttg	3720
tctccgccca	cgacgccgaa	gagtttcttc	gtttcttcaa	ttccggcgac	gaggctttgc	3780
aacaagaagc	taccacgttg	ctaacccggg	aagcgcatct	tttagacatt	caggettacc	3840
5gcgcctggtt	agagcactgc	gtggactcag	aggtgaaata	tcagattatc	tcacgcgaac	3900
tgcgctcagc	ttccgagcgc	cgttaccagc	tcaatgaaac	catgaacatt	ttcaacgaga	3960
attat gaac a	actggaagtt	cgcgtagcgc	atcaactgga	tccgcaaaac	tggggcaata	4020
gtccaaaggt	gcgctttact	cgtttcatca	caaatatcca	ggctgcaatg	gacgaaaatg	4080
aagatttgct	tcacattcgc	tccaacctaa	ttgttcaccg	agcacgacgc	ggcaatcaag	4140
10tcgatgtctt	ctatgccact	cgggaggata	aatggaagcg	cggcgaagat	ggagcgcgta	4200
agttggtcca	acgattgatt	gattatccag	agcgcacatt	ccagacgcac	aatgtgatga	4260
tctttatgtg	acccaataat	cgcctttaca	aatggtgact	gctacaagcg	gtcccattgt	4320
tcaaaaggaa	atttatgtgt	atgagcaatc	aacaagtcgt	ttcgataacc	ggtgctggct	4380
caggaattgg	tctcgaactg	gttcgatcct	ttaagtccgc	cggttattgc	gtatccgctc	4440
15tcgtacaaaa	cgaggagcaa	aaggcgagcc	tttgcaatga	gttcaaggac	gcactcgaga	4500
tcgtcgtggg	cgatgtccgg	gaccacgcaa	caaatgagaa	gctgataaag	caaacaaccg	4560
atagattcgg	ccatctcgat	tgtttcattg	caaatgccgg	tatttgggat	tacatgcttg	4620
gcatcgaaga	gccttgggag	aaaatatcga	gcagttttga	tgagatattc	aacatcaatg	4680
tcaagagcta	tttcagcggt	atcagggccg	ccctgcagga	actgaaaaag	actagcggat	4740
20cagtggtgat	gaccgcttca	gtgtcgtccc	atgcggtcgg	tgctggtggt	tettgetaca	4800
tegecageaa	gcatgcggtc	ctgggcatga	tgaaagcttt	ggcttacgaa	ttggctcccc	4860
acattcgcgt	caacgccgta	gcaccgggcg	gcactgtgac	gcctctgagc	ggtcccgcaa	4920
gegeeggett	cgacaaaact	cacatggaaa	acatgcccgg	tatcgaggac	atgatcaagg	4980
gtctaacgcc	tcttggaatt	tcagccaagg	ccgaagacgt	agtggcaccc	tatttgttgt	5040
25tggcgtcgcg	agatcaaggg	aaattcatta	ccgggactgt	cattaatata	gatggaggga	5100
tggcgctcgg	tcgcaagtag	gtttgtcgcc	tatcttgaaa	taataactaa	atttctggta	5160
aaaccgcatg	aatacaaaat	tgtttatcaa	caatgtctgg	atcaattcca	gtgaccaaca	5220
gacettegag	cgaaagcacc	ccgtcagtgg	tgaggtgatg	acggagtgtg	caaactccac	5280
ggtgatggat	gcgttaaagg	ccgcgcaagc	tgcccaagag	gctttccaga	cctggaagac	5340
30tgttggacct	tcggagcgtc	gccgccttct	gctgagggtc	gctgaggtta	tggaaagtaa	5400
aacacccgag	tttatcgaag	tgatggccaa	ggaggtggga	gcctccgctc	tttgggccgg	5460
cttcaatgtc	cagatgtcag	ccaatgtgtt	ccgtgaagcg	gcatcgctgg	ctacacaaat	5520
tcagggggaa	actattccga	cagacaagtc	tgacacgctc	tcaatgacgc	tacgtcagcc	5580
ggtcggtccg	atcctgagca	tcgtgccgtg	gaacggcacc	gcagtgctgg	cggcacgagc	5640
35catcgcttat	ccgctggtct	gcggcaacgc	ggtggtattc	aaaggttctg	agtttagtcc	5700
cgcgacgcat	gccctgatca	cccagtgcgt	gcaggaagcc	gggctgcctg	ctggcgtgct	5760
caactatctc	aactcttcgc	ctgaccgttc	gcccgagatc	gccgacgcac	tgatctcagc	5820
caaggagatc	cgacgcatca	acttcacggg	ctccacccgc	gtgggcagta	ttatcgcgca	5880
gaaggccgcg	caacacctca	agcgctgcct	gctggagctc	ggtggcaagt	ccccacttat	5940
40tgttctggat	gatgcagaca	tcgatgcggc	ggtcaaggca	gcggtgttcg	gtagetteet	6000

gttccaaggt cagatctgca tgtccactga gcgcttgatc gttgatgaga agatagccga 6060 cgaatttgtc gcaaaatttg tcgaaaaaac taagcgcttg agcgcaggcg acccgtgcgt 6120 6180 aactggcgac tgcatcatcg gcccgatggt ctcgccaaat tcgggtgagc ggatcaatgg tttgttcaaa gacgcgatcg acaaaggggc aaaagttgtt tgcggcggct tggcccaagg 6240 Stgcgctcatg ccggccacga tcctggatca cgtcaaatct gacatgcgga tttacgatga 6300 ggagaccttt ggtcccatca ccgttgtaat ccgttgtaaa ggcgaagcag aggccgtccg 6360 cattgccaac gacagcgtct atggcctgtc gtcgggcgta tttgggcgcg acatcaaccg 6420 cgctctacgc gtgggtatgt ccatcgaata tggttctgta cacatcaacg gttcgaccgt 6480 ccagaacgag gcgcaggctc cttacggagg caccaagaac accggctacg ggcgcttcga 6540 10cggccgtgct gtaatcgacg agttcacaga gatcaagtgg ctgaccatcg aacctttcga 6600 gcagcaatat cccttctgat aagcactaac tcccaggaat caaactatga gtaagcaagc 6660 tgcagttatc gagctcggat acatgggtat ctcggtcaag gaccctgatg cgtggaaatc 6720 atttgccacg gatatgctag gtctgcaagt tcttgatgag ggtgagaagg accgtttcta 6780 tctgcggatg gattactggc atcatcggat cgtagtccat cacaacggac aggacgactt 6840 15ggagtaccta ggctggcgtg tagccggcaa gccggagttc gaagctctgg gtcaaaagct 6900 tattgatgcc ggttacaaga tccgcatctg cgacaaagtt gaggctcagg agcgtatggt 6960 gttgggtctg atgaagacag aagatccggg cggcaacccg accgagatat tctggggccc 7020 ccggatcgac atgagcaacc cgttccatcc cggtcgcccc ctgcacggaa agtttgtgac 7080 cggtgaccaa ggcttgggcc attgcatcgt tcgccaaacc gacgtcgcag aagctcataa 7140 20gttttatagc ctgctgggct tccgtgggga cgtcgaatac cggattccgt tgcccaacgg 7200 catgactgcc gaactgtcgt tcatgcattg caacgcccgt gatcactcca ttgcttttgg 7260 tgccatgccc gctgccaaac gactcaatca cttgatgctt gagtacaccc atatggaaga 7320 cttgggatac acgcaccaac agtttgtaaa gaacgaaatt gacattgcct tgcagcttgg 7380 cattcacgcc aacgacaagg cgttgacgtt ctatggtgca acgccttcgg gctggctcat 7440 25tgagcccggc tggcgaggtg ccacggccat agatgaagcg gagtattacg tcggcgacat 7500 cttcggccat ggcgtggagg ccactggata tggcctggat gtaaaactga gctaaagatg 7560 cgcgctcgtt gggcgaggct ctagtccagc atcttcatac gcaaccaacc ttgcagggcg 7620 atgagatcaa aggacgttaa agcgaagggg aagtggttcg ggccatgcgc ataccgatcc 7680 atgacatttg tttcatagta tataggtaga taggtgaatc aagcgcttag tcaactagtg 7740 30gacacatetg ttecatgagg etatetaeta tetatteaaa acaagaatga taaataggat 7800 gaaaataata atgataaaaa gaacgatttg tcttgtgtat cctctattct gtttggcaag 7860 ccccacatgg gccgaagagt cgccttggac gtaccgtatt ggtatgacta atgtagcttt 7920 cgatgctagc gcaaaagtat acttaaatgg tcagcgggtg ccaggaggaa gcgctgatgc 7980 gagcgataac aacgcgctta cattcgactt cggctacgcc atcaacgacc agtggaatgt 8040 35acgtgcgatt gtcggtattc cgcctacaac taaagtgacg ggcgcaggca cacttcctgg 8100 tatccagctg gggaaaataa cttacgctcc aacagtatta acgttgaact ataacctccc 8160 cgctttgggt cccgttcgcc ctcacatagg tgcgggagtc aattacacgc ggatttttga 8220 aagtegggae getaatetaa aategttega tgeegaeeae gettggteee eegegetaea 8280 tgttggtgcc gatattgacg ttaaccgtgg ttggttcgtt agcattgata tccggaagtt 8340 40atacctgaaa accgacgcat cagggtactt ggggccacag gaggctaaag cacgggtaac 8400

tottgaccca ttactaactt cgatcgcgat cggacgccaa ttctgatgat tctgtttaaa 8460 gttctttatc tatctdaccg caaagggtgt ttccatgtcg aataaaatta tgaaaacgtc 8520 qcqtcttacc gccgaagata tcaacggcgc ctggactata atgcccacac cctcgacgcc 8580 tgatgcttct gattggcgca gcactgccac cgtggactta gaagagactg cccgcatagt 8640 5tgaagagetg attgeagetg gtgteaaegg tattetaagt atgggtaett ttggtgagtg 8700 8760 egecaegttg acetgggatg aaaaaegtga ttatgteteg aegattgteg agaceatteg 8820 tggtcgcgtg ccttatttct gtggcacgac agcettaaat acccgagaag tcatccgcca gacccgagag cttatcgata ttggcgccaa cggcactatg ctcggggtgc cgatgtgggt 8880 gaagatggac ctgcctacag cggttcagtt ctatcgtgat gttgcagatg cggtaccaga 8940 10ggctgccatt gcgatttacg ccaaccccga agcattcaag ttcgacttcc ctcgcccatt 9000 ctgggcagag atgtccaaaa ttccgcaggt agtgactgcg aagtatctag gcatcggaat 9060 gettgaettg gaeetgagae tggeacceaa cateegette etteeccaeg aagatgaeta 9120 ttacgcggcc gcacgcatca atcccgagcg cataaccgcg ttctggtcaa gcggggccat 9180 gtgeggeeeg getaeegeea teatgttgeg tgaegaagtg gtgegggeea agageaeegg 9240 15tgactgggcc aaggccaaag ccatctccga tgatatgcgt gcagccgact cgacattgtt 9300 tccgcgtggc gacttttcgg agttctcgaa gtataatatc gggcttgaaa aggcacggat 9360 ggatgegget ggttggetea aggetgggee etgeegteeg eeetacaace ttqttecaga 9420 agactacete getggtgeae agaaateagg caaggettgg geegegetge aegetaaata 9480 cagtaatgaa ttgaagtagt tcacctccgc agacctgagt gacagggtgg cgcagacgct 9540 20gagggtgcag gaattaagtg agctaaagca catttettge gecaggeatt gecagateag 9600 caaagtttgc tgatctggca gtttcaaaaa tttgggcgaa agctgatatc aggaatacgg 9660 gataaaggca gtgcaccata acgacggggg cgtgccattc gtgatgaacg attttgctat 9720 tgtgccgact tctgttcttg gagtgtttga ttgtgattgt cgatttttat ttcgatttt 9780 tgagtccgtt ctcttacttg gccaaccatc gtttgtcaaa gcttgcgcaa gactatggct 9840 25tttccattcg ttattacgca atcgatttgg cgcgagttaa aatagccatc ggaaacgttg 9900 gtccatctaa tcgcgacctg atagtcaagc tggactattt gaaagtagat ttgcaacggt 9960 gggccgagct ttacgaaata ccgttggtat tcccagctaa ctacaacagc cgacggatga 10020 atactgggct ttattactcg ggagccatgg cacagactgg tgcctatgtg aatgtagtat 10080 ttaatgcggt ttggggagat ggcatagete cagatttgga aagettgeet getetggtat 10140 30ctgaaaaact aggetgggat egtagegeet tegaggaett tateageage gatgeegeaa 10200 cagagaggta tgacgagcag acacatgccg cgatcgaacg caaagtgttc ggtgtgccaa 10260 cgatgttttt gggcgatgaa atgtggtggg gaaacgaccg tctatttatg ctcgagaacg 10320 cagtgggagg tgcgcctgta aatggagaat agtcgctacg gagcgcttgt gccggctaaa 10380 tgccgatata agtggttgac ctgatcgtta tttgctcgat acagegettt caaaatcagc 10440 35ggctactgaa gtcagataaa aatgcgggac tacttcaggc atcctgtgcg acacaaagtt 10500 ttacctgtaa ttgtccacct attccgagtt tggaatggta gctgactcgc tatgcgacca 10560 gcgatagcct aacaagacat gcatcactgg taacggtggg gtgtgaagct cctgcaacaa 10620 tgtagcccct tgatgtgtgt atttgctgcg aggtgaagca cagatgctcg gagccgtacc 10680 ggcttgtggc gctaggctgg caagtatgag caacgtaagt gggggttggg gcgcaatggg 10740 40aaccaaaaac caacgcaagc cttaccagcg tcgttcggtg ccttcctccc atgcctccgc 10800

```
ctcgataaag cagctgcgca tatcggcttc ctggctgatc tcggttagta ggtcatgcaa
                                                                       10860
                                                                       10920
  ggtcttgtcc agcgcctcgt cgctccgata cggaatggtc agctcgtaat ggccggtctc
  egacegette atgeegtagg geteeaggea gtagegeteg atgtteteeg tggeeegett
                                                                       10980
  ccgaccgcgc atgaacttgc tgttgttcac caccgccagg cgcagggtga cggtggccac
                                                                       11040
 Scegetegaeg gttgaetetg ceggtgaege gatattgege ttttgaeete gegeeaggge
                                                                       11100
 getettetgg tacgteega tetegaegee aeggtggegt aggtagetgt acagggtget
                                                                       11160
  cttggagatg tgcaacttct cgccgatggc gctgacgctc aggcggccct cgcggtacag
                                                                       11220
 ggtctccgcc gccatggcgg tggcctcggc cttggctggc aggcccttgg gacggcgacc
                                                                       11280
 gateoggeet egagteegtg eegeegacag geeegeetga gteegetege ggateagete
                                                                       11340
10gegetegaac tgaacaggtt gaacaccagg egatettggg egtgggtget gteaatgggg
                                                                       11400
  tegtteagge tetgeaagee gaetttgegt geagecaget ageegaeeaa eteaaeeagg
                                                                       11460
  tgcttgageg agegacegag gegatecage ttecagatea ceaeggeate geeegetega
                                                                       11520
 acatgggcta gcaacttgtc caactccggc cgcgcgcttt ttgcgccgct ggcgatgtct
                                                                       11580
  tgatagatgc gttcgcaccc ggcctgtttc agggcatcga cctggaggtc ggcgttctaa
                                                                       11640
15tcccgagtgc tcacccgcgt ataaccgatc ttcataaaaa gtaccgttta cttgactgca
                                                                       11700
 ttagtaatag ttgaactttg attaagctta ccagttattt gaaccctagc gcaggtgtaa
                                                                       11760
 gegtecagee geceeacete tacteagett gatgaacega ggggeagtag tteateaate
                                                                       11820
 cggctgttag ggaaactctg aagaagactt cctgattttg gcaaaatgcc cggatttcac
                                                                       11880
 cegeegagtt ttecaatgaa geagatgaee tteetegaeg eegagtatge eggtaagege
                                                                       11940
20aaacagaccc gcaaagagct gttcctgatc gagatggatc gggtggtgcc gtggaagggt
                                                                       12000
 ttgattgcct tgatcgatcc gcattacccc aagggtgagg gtggcccgcc agcctatcca
                                                                      12060
 ctgacggcaa tgctgcgggt tcatctgatg cataagtggt tcggctacag cgacccggcg
                                                                       12120
 atggaggaag cgctgtacga gacgaccatc ctgcgccagt ttgccgggtt gagcctggag
                                                                      12180
 cgcattccgg actaaaccac catccccaac ttccgccggc tgctggagaa acacgaacta
                                                                      12240
25cctaccggca tcatgtttgc tgaattttcg cctttggctt tgagtgcggc attcaaccga
                                                                       12300
 tacaggtgtg gcatgacacg ccaaagaaat caaccttggc ggctagaaca cttgtcgatg
                                                                      12360
 aagcgaacaa toogcaaacg ttaaggotac caggaaaaac ccaggatgog gtagcogata
                                                                      12420
 gecegegege geattggtet cetteegtee aagagtgtea aaggatattg gactaatgea
                                                                      12480
 geatgeeteg accaeatgge egtggteegt teatetgttg gecataegte tategaateg
                                                                      12540
30gacgcgggcg gcgacgacct cgggttgttg gcgttcggcc cagtcgatga gctcagtcag
                                                                      12600
 ggacggcatc agcgaagtcc cgagcggggt gagcccgtag cgcacagatg ggggtgtcga
                                                                      12660
 gggcgttacc tcgcgccaga tgagtccgtc gcgttcgagg tgacgcagcg tctcggtcag
                                                                      12720
 catcoggege gaaatgtegg geacggegeg ggccagegea ttgaatcgtt geggaecetg
                                                                      12780
 cgacaaggtg accaggatca gcgtcgac
                                                                      12808
```

35

<210> 11 <211> 15024

40

<212> DNA

<213> Artificial Sequence

<220>

<223> A modified DNA sequence

5

<400> 11

					0> 11	<40
60	gctgcgtcag	ctgacggcag	aagtgaattg	gcagccgttt	agcgccgcac	atcgtcctta
120	tgaagaccac	agtagctggt	ccggtcgagc	tcgatacgct	tegceggeeg	ccccagtttt
180	catgctggtg	caccattatt	catgatgcct	cgcgcagatc	aagtcgatgt	cagcagattc
240	aatcgcagcc	gacgcgccag	tataccgatc	tctatagcgc	tcagacttga	10attttaacta
300	ctcaatttgc	agtagaaccc	tggaactggt	agagcttgca	aactgaaaaa	attcggagac
360	gaggtcccca	caggtccaac	ttgacgtgct	agcaccctgc	ggagaccggc	atctgaacgc
420	attgccggcc	ttgccgtgtg	gcacttgccg	ggccgctgcg	ctgcatgtcg	tttcttatag
480	acctacgttc	aggaaaggga	gcccgcaggc	gagacagggc	taacggcccc	atcttcgcga
540	tctgacgaga	gattcctgaa	gcacgatcga	accgaagact	ggcggttctg	15tggcctgtca
600	gaagccaccc	agcgatagac	ggacggtcac	atcgtcaagg	cccggcgcgc	tcgtggttca
660	cctggccagt	tgagttcagc	ccaaaccgct	atcaaactgg	gcgcctgcgc	atgacatccg
720	gggctgccta	ttcgatggcc	tccgcccata	cccgaatgcg	gcagttcacg	acgcaacggt
780	agcaactacg	cgggcatgtc	cggttccggg	cagattcgcg	aatggagttt	gcgatgcgga
840	ggaacggctt	cggccccctc	tgcggatcag	ggcgcttcgg	actgtccgta	20ttttcaatga
900	ggtctggcgc	gggtggaaca	tttgtgtggg	ggccccatgc	cacgcacacc	atctgcggcg
960	atccatctgt	gagcaacccc	aaagcgggat	ggcgcactgg	gatcgttcga	ccgtcctttc
1020	gcattggctg	acgccttcac	atgacgagga	caggacatct	gcggagcgag	acttcggtgt
1080	ggccctggtc	aggccctgcc	ttgttgcaac	gtgaatgtcg	gaatctcaag	caaggtttcc
1140	gcgggatggc	gcccaatttg	gccgtgactt	gatctgatcg	cctggtcacc	25gtcgatccgg
1200	gttgctcgcc	gaacctgctc	tcgaggccct	ccggccatgg	gtgtggcgct	 gcgcctacct
1260	gtctgagcga	teccagegge	atgcgttcta	atccatgccg	acccgggcac	taggcatagt
1320	ccccaacgat	catgagtgaa	gataccaagc	tcaacccaag	cgaacccaat	aggcaccatg
1380	cgcgttccct	aggtagcagc	ggccgggcga	gatccgaaat	gtttccccaa	taaaacccgt
1440	ttctatgcaa	ggagcgcctg	agcgcgaatt	gacctgtaca	cacccgcgaa	30tctgggccta
1500	ttcaagcgaa	tccaggcgac	agattccgaa	ctggaagccg	ctatgtaggc	accactggtg
1560	atcaacgtgg	ggatggcggc	tgcgtgatcc	gtcatcatgg	tgagcgctcg	cggtgatcgg
1620	ggcaacgcca	cgagcgccac	gcttttgccg	cgtggcatgc	ctgcgcccac	tggagaacgt
1680	ctgcagggcg	caagggtgac	actacagect	caccagtgga	ctgcccctac	aggacttctt
1740	cccaaggact	cggcggcatg	gcaaggtcaa	aagcaggacg	ccgtggcgtc	35tgcccttccg
1800	ggtgcagtgt	cgcccgaggc	tcaaggtggc	ctgaccaagc	agaacacggc	tcaaactcga
1860	accatcctgc	cctgggccca	tcgaggagtt	gtcgagccct	tgaccacgat	ttgcctcttt
1920	cgccgccagc	cctgggctac	agctcaagat	aacggccgca	ccgcgtcttc	attacttcga
1980	cacccgggcc	ggacccctac	agaacatcaa	ctgatgcagg	caactggaag	gcateceggg
2040	tcggaactga	cgacaacaag	tctggcgcgc	acctteggge	ctggttctcg	40tgctgcacac

agatggacgc	caagttccgc	cacgccgcaa	tgatctccac	gcgcggtcag	ggcggcaaga	2100
acgaggaggt	cgtgtccggc	gtggacagct	tcaaggaaca	gatgaaggtg	aacgacccgc	2160
gcctgctcga	catcgtgccc	gagccctggt	ggggcggtcc	gactgcggtg	atgaccacga	2220
tcttccccag	cgtgatcatc	cagcagcagg	tcaacagcgt	atcgacccgc	cacatccagc	2280
5ccaacggtca	cggctccttc	gatttcgtct	ggacccactt	cggcttcgag	gacgacaacg	2340
aggagtggac	ccagcgccgc	ctgatccagg	ccaacctgtt	cgggccggcg	ggcttcgtgt	2400
cggccgatga	cggcgaggtg	atcgagtggt	cgcaggaagg	ctttgagcaa	aaaccgacgc	2460
accgcaccgt	gatcgagatg	ggcggtcacg	aaatcggcga	cacggaccac	atggtcaccg	2520
agacgctgat	ccgcggcatg	tacgactact	ggcgcaaggt	gatgggggaa	taaacatggt	2580
10cgacttcaaa	acctatttcg	aactgctgaa	cctgtacagc	gactacgcca	tggtgtgcga	2640
ctccgccaat	tgggagaagt	ggcctgattt	cttcatcgag	accggcacct	accgcctgca	2700
gccgcgcgag	aactttgagc	agggcctgcc	gctgtgcctg	ctggcgctgg	agagcaaggc	2760
aatgatccgc	gaccgggtgt	acggcgtcaa	ggaaaccatg	taccacgacc	cctactacca	2820
gcgccacatc	gtgggcacgc	cgcgcgtgct	gtcagtggag	cgtgacgcgg	atggcgagcg	2880
15catcaccgcc	gaagccagct	atgccgtgat	tcgcaccaag	tacgacggcg	attccacgat	2940
tttcaacgcc	ggctattacc	gagacgtgat	cgtgcgcacg	cccgagggcc	tcaagctgaa	3000
gtcgcgcctg	tgcgtttacg	acagcgaaat	gatccccaac	tctgtgatct	atccaatctg	3060
aggcgacgca	catgactcag	aactggattg	atgcagcttg	tcttgacgac	atccctgaag	3120
gcgatgtggt	cggcgtcaaa	gttaacggca	aggaaattgc	gctctacgag	gtcgaggggg	3180
20agatttatgc	caccgataac	ctgtgcacgc	acggcgctgc	gcgcatgagc	gatggctttc	3240
tegaaggeeg	ggaaattgaa	tgccctctgc	accaaggtcg	atttgatgtc	tgcacaggca	3300
aagccttgtg	cacccccctg	acaaaggaca	tcaaaaccta	ccccgtcaaa	attgaaaaca	3360
tgcgcgtgat	gctcaaaatg	gagtaagact	gctttcaatc	aggaggctga	attcggacca	3420
atcaaccaaa	ccatccaatc	cacccattag	ccaaaaaacg	gagacattaa	tcatgattta	3480
25tgaaaatttg	gtgagtgaag	cagggctgac	gcaaaagcac	ctgattcatg	gcgacaaaga	3540
acttttccag	cacgaattga	agaccatctt	cgcgcgaaac	tggctttttc.	tgacccatga	3600
cagcttgatt	ccctcccccg	gcgactatgt	cacagccaaa	atgggtgtcg	atgaagtcat	3660
cgtctcccgc	cagaacgatg	gctcggtgcg	agcctttttg	aatgtttgcc	gtcaccgggg	3720
caagacacta	gttcacgctg	aagccggaaa	tgcgaaaggc	tttgtgtgca	gttaccacgg	3780
30ctggggcttt	ggctccaacg	gcgaactgca	aagcgttccc	tttgaaaaag	agttgtacgg	3840
cgatacgate	aaaaagaagt	gcctgggctt	gaaagaagtc	ccccgcatcg	aaagctttca	3900
tggcttcatt	tacggttgtt	ttgatgcaga	ggcccccacg	cttgtcgatt	atctgggtga	3960
tgcagcctgg	tacttagaac	ccatcttcaa	gcactctggt	ggcctggaac	ttgtaggccc	4020
ccccggcaaa	gtggtgatca	aggccaactg	gaaggctcct	gcggaaaact	ttgtgggtga	4080
35cgcgtaccac	gttggttgga	cgcacgcatc	gtctttgcgc	tcaggtcagt	cgatatttac	4140
ccctcttgcg	ggcaacgcta	tgcttccacc	cgaaggcgcg	ggcttacaaa	tgaccagcaa	4200
gtatggcagt	ggaatgggcg	tattgtggga	cggctactcc	ggtgtccaca	gtgctgacct	4260
ggttcccgaa	atgatggcat	tcggcggcgc	aaaacaggaa	aaactcgcca	aggaaatcgg	4320
cgatgtccgg	gcacggattt	accgcagcca	tctaaactgc	acggttttcc	cgaacaacag	4380
40cattttgacc	tgctccggtg	tcttcaaggt	ctggaacccg	atcgatgaaa	acacgaccga	4440

ggtttggacg	tatgccatcg	tagaaaaaga	catgcctgag	gacttaaagc	gtcgcttggc	4500
tgacg c ggtt	cagcgcactg	teggaccage	aggattctgg	gaaagcgacg	acaacgacaa	4560
catggagacg	gagtcgcaaa	atgccaagaa	ataccaatcc	agcaacagtg	atctgattgc	4620
caatttgggt	ttcggcaagg	acgtctacgg	cgacgaatgc	tatccgggcg	tcgttgccaa	4680
5atcggcaatc	ggcgaaacca	gctatcgcgg	attctaccgt	gcctaccagg	ctcacatcag	4740
cagetecaat	tgggccgagt	tcgaaaacac	ctcccgaaat	tggcacaccg	aactcaccaa	4800
gacgactgat	cgctaatcca	ggagccaacc	atgatgatca	atacccagga	agacaagctg	4860
gtetecgege	acgacgccga	agaatttcat	cgtttcttcg	tcgggcacga	cagcgatctg	4920
cagcaagaag	tcaccacact	cctgacccga	gaagcacatc	tgttggacat	tcaggcctac	4980
10aacgcctggc	ttgaacactg	cgttgccccc	gagatcaaat	accaagtgat	ctcgcgagaa	5040
tttcggtcca	cttccgagcg	tcgataccaa	ctgaatgatg	cggtgaacat	ctacaacgag	5100
aactatcagc	acctgaaagt	tcgagttgag	catcagatgg	acccgcagaa	ctgggccaac	5160
agcccgaaga	tccgtttcac	ccgcttcgtc	accaatgtca	cagcggccaa	ggacaagatc	5220
gtaccggatc	tgctgcatgt	gcgttccaac	ctcattctcc	accgcgccag	acgcggcaat	5280
15caagttgacg	tcttctatgc	aacgcgggaa	gacaaatgga	aacgcatcga	aggtggtggc	5340
atccaactgg	tggaacgtct	tgtggactac	ccggagcgca	ttctccagac	ccacaatctg	5400
atgaccttcc	tgtgaaccct	ggggatgcct	gccttgatgg	cggtcatcct	tgattgtttt	5460
aaacagaaat	ttattgccat	gaacatacag	caagttattg	ccattactgg	cgccggttca	5520
ggcatcgggc	tggaactggt	tcgatccttc	aaagcagctg	gctattgcgt	gtccgcactt	5580
20gttcgcaacg	aggaacaaga	ggcgggcctt	cgcagtgaat	tcaaagatgc	cattgagatc	5640
gtagcgggcg	atgtttgtga	tcacgccacc	aatgaaaagc	tggtcaacaa	ggcggtcgcc	5700
aggttcggac	acctcgactg	cttcatcgga	aatgccggga	tatgggatta	catgctgggc	5760
gtcgacgagc	catgggagaa	attatccggc	agtttcgagg	agatatttga	tatcaacgtc	5820
aaaagctatt	tcagcggcat	cagcgcggcc	ttgccggaac	tcaaaaaaac	gaacggatcg	5880
25gtcgtagtga	cggcttccgt	ttcttcctat	gcggccggcg	gcggcggctc	ttgctacatt	5940
gccagcaagc	atgcagtgct	gggtatggtc	aaggcgttgg	cctacgaatt	ggccccgcac	6000
atccgggtca	atggcgttgc	gccaggtggt	acggtcactt	ctttggctgg	gccggcaagc	6060
gccggtttcg	acaaaaccaa	aatgaaagac	atgcccggca	tcgatgacat	gatcaagggc	6120
ctgaccccct	tggggttcgc	agcaaggccc	gaggacgtgg	tggcaccgta	tettttgetg	6180
30gcctcccggg	aacaagggaa	gttcatcact	ggcaccgtaa	tcggcattga	tggcggcatg	6240
gcgctcggtc	gaaagtgaat	tttcaatcaa	atcagatttt	tcaaccccat	tcccaggaga	6300
caacccatga	agacgaaatt	gttcatcaac	aacacctgga	gcgcttcgag	tgacaaaaag	6360
tcattcgatc	gcaagcaccc	tgtcagtggc	gaggtcgtga	cccaatgcgc	gaacgccacg	6420
gtggacgatg	cggtcaatgc	ggctcgagcc	gctcaagagg	cgttcaagtc	ctggaaggcc	6480
35gtcggaccct	cggagcggcg	gcgccttctt	ttgaaggtgg	cagacgtcat	ggagagcaaa	6540
acgcccgagt	tcatcgaagt	gatggccaag	gaagtgggag	cctccgcgct	gtgggcgggg	6600
ttcaacgtgc	acctgtcggc	caatgtattc	cgggaagccg	cctcactggc	cacccaaatt	6660
caaggcgaaa	ccattccgac	ggacaagcct	gacaccctgt	caatgacgct	gcgtcacgct	6720
gtcggcccca	tcttgagcat	cgttccctgg	aacggcaccg	ccgtgctcgc	ggcgcgggcc	6780
40atcgcttatc	cgctggtctg	cggcaatacc	gttgtgttca	aaggctccga	gttcagcccc	6840

ggtacgcacg	ctttgatcac	caagtgcctg	caggaggccg	acctgcctgc	tggegtgete	6900
aactatctga	actcctcccc	ggaccggtcg	cccgatattg	cagatgcgct	gatttcgtct	6960
aaagagattc	gtcgcatcaa	cttcacaggc	tccactcgcg	tggggcgcat	categeceag	7020
aaatcggccc	agcatctcaa	gcgctgcttg	ctggagttgg	gtggaaagtc	cccgctgatc	7080
5gttctggacg	acgctgacat	cgacgcggca	gtcaaggccg	cggtgttcgg	cagetteetg	7140
ttccaaggcc	agatctgcat	gtccaccgaa	cgcctggtgg	tcgacgaaaa	gatcgcggac	7200
gaatttgtcg	cgaagttcgt	cgagaaaacc	aagcagttga	gcgcaggcga	tecatgegte	7260
acaggggact	gcatcatcgg	cccgatggtg	tcgcccaact	cgggtgaccg	aatcaatggt	7320
ctgttcaaag	atgccatcag	caagggcgcc	aaggtcgtgt	gcggcggcat	cgccgagggt	7380
10gcggtcatgc	ccgccacgat	cttggaccac	gtgacagccg	acatgcagat	ctacgatgag	7440
gaaaccttcg	gtcccatcac	tgtggttatc	cggtgcaaga	gcgaagcgga	cgccatccgc	7500
attgccaatg	acagcgccta	cggcctgtca	tcgggcgtgt	ttggccggga	cgtgaaccgg	7560
g ctctgc gcg	tgggcatggc	gatcgaatac	ggctcggtcc	atatcaacgg	ctccaccgta	7620
cagaacgagg	ctcaggcgcc	ttatggcgga	acaaaggcca	ccggttatgg	ccgcttcgac	7680
15ggacgcgcgg	tgatcgacga	gttcacggaa	ctcaagtggc	tgaccattga	accattcgag	7740
cagcagtatc	ccttctaagc	tgaagcaaca	aaggagttaa	accatgaaca	agccagcaac	7800
tgtcattgaa	ttggggtaca	tgggcatttc	ggtcaaggat	cccgcagcgt	ggaaatcctt	7860
tgccgcaaac	atgctgggac	ttcaagtcct	cgatgagggt	gacaaggatc	gcttctatct	7920
gcgaatggac	aattggcacc	ateggategt	ggttcatcac	aacggtcaag	atgaccttga	7980
20atacctggge	tggcgtgtcg	ccggtcaacc	ggaattcgag	gcattgggtc	aaaagctcgt	8040
ggacgcaggc	tacaaagtcc	gcgtgtgcga	caaagccgaa	gcacaagaac	ggatggtgct	8100
gggcctgatg	aagacagaag	atccgggggg	caacccgacc	gagattttct	ggggaccccg	8160
gattgacctg	aacaacccct	tccatcccgg	tcgtcccttg	cacgggaaat	ttctaaccgg	8220
tgatcagggc	ctgggccact	gcatcgtgcg	tcagaacgat	gttgaagcgg	cacgtaagtt	8280
25ctatagettg	ctgggatttc	gtggagatgt	cgagtaccgc	cttcctttgc	ccaacggcat	8340
gacggctgag	ttgacgttca	tgcattgcaa	tgctcgcgat	cattcoatcg	ctttcggtgc	8400
aatgcctgcg	gccaagcgcc	tcaatcatct	gatgattgaa	tacactcata	tcgaagattt	8460
gggttgcaca	caccagcttt	tcacgaagga	aaagattgac	attgccttgc	aattgggcat	8520
ccattccaac	gataaggcgc	tgacgttcta	cggggcaaca	ccttccggct	ggctgataga	8580
30acctgggtgg	cgaggcgccc	ccgccattgc	tgaatcggaa	tattacgtcg	gcgacatttt	8640
cggccacacc	atcgaggcca	ccggttatgg	attggacgtc	aaactgagct	agccatgtaa	8700
cagatgcgaa	atcgatcgca	tctgttttcc	ccattcagtt	ccatataaaa	aaaaggagac	8760
aatgatgatc	aaagaagcca	tttccctcgc	aggacttggg	atgctgatgc	tcagcaccgc	8820
atatgccgag	gattcccgtt	ggtcatatcg	catcggcgcc	accaacgtag	ccttcgatgc	8880
35gagcgccaaa	gtttcgattg	acggaacaag	ggtgccgggt	ggaagcgctg	acgccagtga	8940
caacaacgct	ttgacatttg	acttcggtta	catcattaac	gataactgga	acgcgcgatt	9000
aattgttggc	attccaccca	ccacaaaagt	gacgggcgca	ggcacgctgc	ctccgatttt	9060
getgggeegt	gtccaatatg	ctcctgcagt	tttgtcggcg	acctacaacc	tgccacagat	9120
gggattggtt	cgcccgtacg	tgggggcggg	gatcaactac	actcgaattc	tgaaaagcaa	9180
40agatgccaat	ctgacctcat	tcgatgcaga	tcatgcgtgg	gcacttgtgc	tccacatcgg	9240

tgcagaagcg	aacatcaacc	gcgactggtt	cgtcagcttt	gatatccgaa	aactttatct	9300
aaaaacagat	gcatcggggt	ttcttgggcc	tcaagttgct	acagecegeg	taacgttgaa	9360
teegetgetg	acgtcgattg	cgattggccg	gagattctga	tcggtccaca	ttgattccaa	9420
aattctgttt	gcatcaccat	tttcaaagga	aatttgaatg	acaagaaaga	cgagcaaagc	9480
5ggtgcgcctg	accgccgcgg	atattcaagg	cgcatgggtc	atcatgccga	ccccgtccac	9540
gccggatgcc	tcggactggc	gcagcacgca	cacggtcgat	ctcgacgaga	cggcccggat	9600
tgtcgaggag	ttgattgcgg	ccggcgtcaa	tggcattctg	agccacggca	cctttggcga	9660
atgegegacg	ctgacgtggg	aggagaagcg	ggattttgtt	tcaacggtcg	tggaaaccgc	9720
gcgcggtcga	gtgccctact	tctgcggcac	aacggccttg	aatacccgtg	aagtcatacg	9780
10ccagacccgc	gaattgatcg	acattggcgc	ccaaggaaca	atgctcggcg	tgccgatgtg	9840
ggtgaagatg	gatctgccta	ctgccgtgca	attttatcgc	gatgtggcgg	aagcagtgcc	9900
agatgcagcc	atcgctgtct	acgccaaccc	ggaggctttc	aaatttgatt	ttcctcgccc	9960
gttttgggcc	gaaatgtcca	aaatcccgca	ggttgtcaca	gccaagtact	tgggcatcgg	10020
gatgctggac	ttggatctga	aattggcccc	aaatattcgc	ttccttccgc	atgaggatga	10080
15ctactacgct	gcggcccgga	tcaatcccga	gcgcatgact	gctttctggt	ctagcggttc	10140
catgtgcggc	ccagcgaccg	cccttgtgct	gcgcgatgag	gtggtaaagg	ccaaaaatac	10200
aggtgattgg	gccaaggcca	aggctatttc	agatgacatg	cgcgcagccg	atgccacact	10260
gtttccacgc	ggcgatttct	cggaattctc	aaaatacaac	attggcctcg	aaaaagcacg	10320
aatggacgag	gccggctggc	tcaaggcggg	gccgtgccgg	ccaccctata	cgctggttcc	10380
20cgacgaatac	cttgcaggtg	cccgaaaatc	aggcaaggcc	tgggccgcac	tgcataccaa	10440
gtatgccaag	gaattgagga	aaaccaaaac	ggcaaccaac	tcgaaaaaga	agtaagtcca	10500
ggccctgagt	cagacatctc	cgatcagcac	aacctgctga	tctggaggtt	ttctggatta	10560
gtgcagtcgg	cgagttaaaa	atatgccagt	acagagtgga	agcgccacaa	gcgcagggtg	10620
caccgatcgc	cctgaagcaa	tctcacacta	ttgccatctt	ctctttgttg	ggagtgcatg	10680
25atcgtgatgg	tcgattttta	tttcgatttt	ttgagcccat	tttcgtatct	ggccaaccac	10740
cgtttgtcgg	tgctcgccgg	gcgttatgga	ttctccatcc	agtatcacge	cattgatttg	10800
gcgcgagcaa	aaacggccat	tggcaacatc	gggccatcca	atcgggacct	caaggtcaag	10860
cttgactact	taaaggtgga	tttgcagcga	tgggccgatc	tctataggat	tccgttggtt	10920
ttccccccta	acttcaacag	ccgccgggtg	aatgccggac	tgtattaccc	ggcagccagg	10980
30gagcgagccg	ctgaatatgt	tegeettgtt	ttcgattcgg	cttgggggaa	agggtgggca	11040
ctggatgctg	atagettget	ggctgaggta	tgcgacaagc	taaactggga	tctcggtgaa	11100
tttgaagatt	ttttgaacag	cgaaaatgcc	gccaaggcat	acgacgaaga	gacgcaggcg	11160
gccattgacc	gaaaggtttt	cggggttccc	accgtgtttt	gggatgatca	aatgtggtgg	11220
ggaaatgacc	gccttttcat	gcttgagagc	aggttgcaaa	aggaaacgca	accataaatt	11280
35ctcagtgcat	cgatttttct	gatttttcaa	ccacgccttg	attttaagga	gtctcatgaa	11340
gctttattac	agccccggcg	catgttcatc	gtcgcctcac	atcatccttc	gtgaaggtgg	11400
				gtgactgaga		11460
				caaatggatg		11520
				cgtgtgccag		11580
40ggcaccggca	gctggctcgc	tggagcgtta	ccgactgatg	gaatggctga	atttcatctc	11640

		teggageget				11700
		tggaaageeg				11760
caaggtttgg	gccatgggga	acgacttttc	cgtggtggac	gcctacttgt	ttactgtgct	11820
tggctggggg	gcttacgtga	atgtggacct	ttcgccttgg	cccggcctgc	aaggctacct	11880
5caaccgcgtg	gctgaacgtc	cagcagtccg	ggccacattg	tcggctgaag	gtttgatctg	11940
attttttag	agaaataaat	aaagcatggc	cagcctccat	gagcggccag	ccatgccgcg	12000
gggcagccgt	gggcagcggc	ctcgatcaaa	tttcgatgca	cacagattac	gagccccttt	12060
ttccgactgc	ggtcggattc	agaaattgcc	gatacttgct	ttggtctgat	cgaagcgtga	12120
gggatatcgg	cttcccctat	ccacatgctt	gatgaagagg	agcgtatcac	catgagtcac	12180
10gaacttggcc	gactggaaga	cctgccgcag	gactaccgag	acgaactcaa	acaacttaac	12240
ctggtgccgc	tatggcccag	cctacgcgcg	gtgctgccgc	ccaatgtccc	gacccgccag	12300
acgcagccga	cttactggtc	ctaccagacg	ctcaagccgc	tgctgctcaa	ggccggtgag	12360
ctgaccccca	ttgagaaggc	cgagcgccgc	gtgctggtgc	tggccaaccc	cggccacggc	12420
ctggagaaga	tgcaagccag	cgccgccata	tacctgggca	tgcagttgct	gctgcccggc	12480
15gagtgggcgc	ccagecaceg	ccacaccccc	aacgcggtgc	gcatgatcgt	ggagggcgag	12540
ggcgcctaca	ccaccgtgga	tggcgagaag	tgccccatga	gccggggtga	cctcatcctc	12600
acgcccaccg	gcctgtggca	cgagcacggc	cacgacggca	acgagcccgt	ggtgtggctc	12660
gatgtgctgg	acctgccgct	ggtgtactac	atggaggcca	gctaccacat	cgacggcgag	12720
cgccagcagg	tcgaccccgg	ccggggcgac	tgcgcctgga	cccgtgcggg	cgtggtgcca	12780
20acccccgtgt	tccagcgcag	cgacaagcgc	tatcctctct	tgcgctaccc	ttgggccgac	12840
acccgtgccg	ccctgctgtc	gctggcggcc	gaccagcctg	agcaggaatg	cgtgcaggtc	12900
acctacgtca	accccgaaac	gggtgacgac	gccgagaaca	tcctgggctt	ctacgccctg	12960
atgctcaagc	ccggccagac	cctgcgcctg	cccgtgcgtt	cgcccgccgt	ggtgttccac	13020
cagatcgaag	gccgcagcga	ggcgcgcatc	gccgagtcca	ccttcgccct	gagggaagcc	13080
25gatacctgct	gcgcccccgg	ctacaccgag	gtgacgctga	aaaacctctc	agccgaccag	13140
ccgtccttca	tcttcatggc	cgacgaatcg	cccctgcacc	gcaagctggg	cgtctttgaa	13200
aaccgcggct	gagccgccgc	gaagcaccac	acaacaggaa	agcaagtgag	caactacctc	13260
tggaacccgc	ctcccgtcca	gtctctgccc	gttcgtggca	agaccgagcg	cttccccatc	13320
aaccgcatct	tctgcgtcgg	ccgcaactac	cacgcccacg	cggtggaaat	gggccgtccg	13380
30gtcgacaaaa	gcgtcgaaca	agcgttctac	ttcaccaaat	cgccacaaac	cctggtggaa	13440
agtggtgcga	ccgtggccta	cccgccgcgc	accagcaact	accactacga	gatggagctg	13500
gtgctggcga	tcggcaagcc	cggcttccgc	gtcagcgaag	accaggcgca	cgagttgatt	13560
tacggctacg	ccgccggcct	ggacatgacc	cggcgcgacc	tgcaactggt	ggcacgcgac	13620
aagggccgcc	cctgggacac	cggcaaggac	atcgaggaag	gctcggtctg	ctccgagatc	13680
35gtgccgatgc	aaggcgtggt	ggtggagcag	ggcgcgatcg	ccctggaagt	caacggccag	13740
accaaacagt	cgtccaacgt	ggacaagctg	atctggaacg	tccgcgagat	cattgccgac	13800
ctctccacct	actaccactt	gcaacccggc	gacctgattt	acaccggcac	gecegaagge	13860
gtgggcgccg	tggtggcggg	tgacaagatc	atcggccgtg	tggaaggcat	tgccgagatc	13920
agcctgaccg	teggeeegge	cgagtgagcc	tgcacgcgat	gaagctgtac	aacttctggc	13980
40gcagcggcac	gtcacaccgg	ctgcgcatcg	cgctcaacct	caagggcgtg	ccctacgagt	14040

acctggccgt	gcacctgggc	aaggaagagc	acctaaagga	cgccttcaag	gcgctgaacc	14100
cacagcagtt	ggtgcccgcg	ctggacacgg	gcgcgcaagt	gctgatccag	tcgccggcca	14160
tcatcgaatg	gctggaggaa	cagtacccca	cgcccgcgct	gctgccggcc	gacgccgacg	14220
gccgccaacg	ggtgcgcgcg	ctggccgcca	tcgtgggctg	cgacatccac	cccatcaaca	14280
5accgccgcat	tctggagtac	ctgcgcaaga	cgttcggcgc	cgacgaggcc	gccatcaacg	14340
cctggtgtgg	cacctggatc	agcgccggtt	tcgatgccta	cgaagcactg	ctggcggtcg	14400
acccgaagcg	cggccgctac	agctttggcg	acacacccac	gctggccgac	tgctacctgg	14460
tgccgcaggt	ggaaagcgcc	cgccgcţtcc	aggtggacct	gacgccctac	cccctgatcc	14520
gcgcagtgga	cgcggcctgc	ggcgagttgg	acgcatttcg	gcgcgccgcg	ccagctgctc	14580
10aacctgattc	ggcttgacga	aaaatacgcc	gccttcgccc	taataaacag	ttcgtagccc	14640
tgcccagtga	caagtatcaa	tgagcaatag	tgaaaatgta	aggggaaaga	ttatgaaaca	14700
tattctgacc	cgacgagcag	ccctgagcac	tttgggctcc	cttggaatcg	ggggccttcc	14760
gggcatgagc	ttggcgcaat	ccggccctgg	cgtggccacg	atcgtgattg	gactegeege	14820
aggcggagcg	accgatatgg	ctgcccgccg	gttgtctgag	ggaatgcgcg	gtgcctatgc	14880
15ttccagtgtg	ctcgtcgaca	accgcacggg	ggcgggtggt	cgaattgcga	tccagcatgt	14940
taaggccgcg	gcaccaaacg	gcgcgacact	tctgctgacg	cctgcatcca	tgatgacgct	15000
ataccctcac	acgtacaaag	atct				15024

<400> 12

30	gagctcgttg	cgcaagcgct	tccatcagtg	ggggcatgaa	gtacatctcg	ccgatgtcgg	60
	tcattgccaa	gttgaaggtg	cgcgtgctgg	caaatgggtc	gaaagagtca	cgggtcgtca	120
	gtgccgtctg	cagcgtgttg	agcgcataga	ccacgggctc	cgcaagatgc	agtgcatacg	180
	gtgtcggctc	catgcctttt	gaggtgcgca	agaacaaatc	gtcctttagc	gccgcacgca	240
	gccgtttaag	tgaattgctg	acggcaggct	gcgtcagccc	cagtttttcg	ccggccgtcg	300
35	atacgctccg	gtcgagcagt	agctggttga	agaccaccag	cagattcaag	tcgatgtcgc	360
	gcagatccat	gatgcctcac	cattattcat	gctggtgatt	ttaactatca	gacttgatct	420
	atagcgctat	accgatcgac	gcgccagtat	cgcagccatt	cggagacaac	tgaaaaaaga	480
	gcttgcatgg	aactggtagt	agaacccctc	aatttgcatc	tgaacgcgga	gaccggcagc	540
	accctgcttg	acgtgctcag	gtccaacgag	gtccccattt	cttatagctg	catgtcgggc	600
40	cgctgcggca	cttgccgttg	ccgtgtgatt	gccggccatc	ttcgcgataa	cggctccgag	660

	acagggcgcc	cgcaggcagg	aaagggggcc	tatgtcctgg	cctgtcaggc	ggttctgacc	720
	gaagactgca	cgatcgagat	tcctgaatct	gacgagatcg	tggttcaccc	ggcgcgcatc	780
	gtcaagggga	cggtcacage	gatagacgaa	gccacccatg	acatccggcg	cctgcgcatc	840
	aaactggcca	aaccgcttga	gttcagccct	ggccagtacg	caacggtgca	gttcacgccc	900
5	gaatgcgtcc	gcccctattc	gatggccggg	ctgcctagcg	atgcggaaat	ggagtttcag	960
	attcgcgcgg	ttccgggcgg	gcatgtcagc	aactacgttt	tcaatgaact	gtccgtaggc	1020
	gcttcggtgc	ggatcagcgg	ccccctcgga	acggcctatc	tgcggcgcac	gcacaccggc	1080
	cccatgcttt	gtgtgggggg	tggaaçaggt	ctggcgcccg	tcctttcgat	cgttcgaggc	1140
	gcactggaaa	gcgggatgag	caaccccatc	catctgtact	tcggtgtgcg	gagcgagcag	1200
10	gacatctatg	acgaggaacg	ccttcacgca	ttggctgcaa	ggtttccgaa	tctcaaggtg	1260
	aatgtcgttg	ttgcaacagg	ccctgccggc	cctggtcatc	gatccggcct	ggtcaccgat	1320
	ctgatcggcc	gtgacttgcc	caatttggcg	ggatggcgcg	cctacctgtg	tggcgctccg	1380
	gccatggtcg	aggccctgaa	cctgctcgtt	gctcgcctag	gcatagtacc	cgggcacatc	1440
	catgccgatg	cgttctatcc	cagcggcgtc	tgagcgaagg	caccatgcga	acccaattca	1500
15	acccaaggat	accaagccat	gagtgaaccc	caacgattaa	aacccgtgtt	tccccaagat	1560
	ccgaaatggc	cgggcgaagg	tagcagccgc	gttcccttct	gggcctacac	ccgcgaagac	1620
	ctgtacaagc	gcgaattgga	gcgcctgttc	tatgcaaacc	actggtgcta	tgtaggcctg	1680
	gaagccgaga	ttccgaatcc	aggcgacttc	aagcgaacgg	tgatcggtga	gcgctcggtc	1740
	atcatggtgc	gtgatccgga	tggcggcatc	aacgtggtgg	agaacgtctg	cgcccactgt	1800
20	ggcatgcgct	tttgccgcga	gcgccacggc	aacgccaagg	acttcttctg	cccctaccac	1860
	cagtggaact	acagcctcaa	gggtgacctg	cagggcgtgc	ccttccgccg	aggcgtcaag	1920
	caggacggca	aggtcaacgg	cggcatgccc	aaggacttca	aactcgaaga	acacggcctg	1980
	accaagctca	aggtggccgc	ccgaggcggt	gcagtgtttg	cctctttcga	ccacgatgtc	2040
	gagcctttcg	aggactgtgc	gtgtacgaca	gcgagatgat	ccccaactcc	ctcatctacc	2100
25	ccatttgagg	ttgcagaaca	tgtccgagaa	ctggattgat	gccatcgcac	gggacgctgt	2160
	gcctgagggc	gatgtggtcg	gagtcatcgt	ggcaggcaaa	gacattgcct	tctatgaggt	2220
	ggaaggtgag	gtcttcgcca	ccgacaactt	gtgtacccac	ggggctgcgc	gcttgagcga	2280
	cggctttctc	gaaggccggg	aaattgaatg	tcctttgcat	caaggccgat	tcgatgtttg	2340
	cacgggtaaa	gccttgtgca	cacccctgac	acaggacatc	aaaacctacc	ccgtaaaaat	2400
30	cgaaaacatg	cgcgtgatgc	tcaagctgga	ctaaaactct	ttgcaggagg	aaagccaaat	2460
	ccggaaatca	ccccacccaa	cccaatcact	accegttttc	aaacaagagg	agataagcaa	2520
	ttatgagtta	ccaaaactta	gtgagtgaag	cagggctgac	gcaaaagctc	ctgattcatg	2580
	gcgacaaaga	acttttccag	cacgaattga	agaccatctt	cgcgcggaac	tggctttttc	2640
	tgacccatga	cagtctgatt	ccetcccccg	gcgactatgt	cacagccaaa	atgggcgtcg	2700
35	atgaagtcat	cgtctcccgc	cagaacgatg	gctcggtgcg	agcctttttg	aatgtttgcc	2760
	gtcaccgggg	caagacacta	gttcacactg	aagccggaaa	tgcgaaaggc	tttgtgtgcg	2820
	gctaccacgg	ctggggctac	ggttccaacg	gcgaactgca	aagcgttccc	tttgaaaaag	2880
	agttgtacgg	agatgcgatc	aaaaagaaat	gcctgggctt	gaaagaagtc	ccccgcatcg	2940
	aaagctttca	tggctttatc	tatggctgtt	ttgatgcaga	agctcccccg	ctcatcgatt	3000
40	atctgggtga	tgcagcctgg	tacctggaac	ccaccttcaa	gcactctggt	ggcctggaac	3060

```
ttgtaggccc ccccggcaaa gtggtggtta aggccaactg gaagcctttt gcggaaaact
                                                                         3120
   ttgtaggtga catctaccac gttggttgga cgcacgcagc ggctttgcgc gcagggcagt
                                                                         3180
   cggtatttag ttctcttgcg ggcaacgcta agcttccacc cgaaggcgcg ggcttgcaaa
                                                                         3240
                                                                         3300
   tgaccagcaa gtatggcagt ggaatgggct taacgtggga ctactactcc ggtaacttca
 5 gegetgatat ggtteeegat etgatggeat teggegeege aaaacaggaa aaactegeea
                                                                         3360
   aggaaategg egatgteegg geaeggattt acegeageat tetgaaegge aeggttttee
                                                                         3420
   cgaacaacaq ctttttqacc ggctccqcta ccttcaaggt ctggaacccg atcgatgaaa
                                                                         3480
   acacgaccga ggtttggacg tatgccttcg tagaaaaaga catgcctgag gacttaaagc
                                                                         3540
   gtcgcttggc tgacgcggct cagcgcagtg tcggaccagc aggattctgg gaaagcgacg
                                                                         3600
10 acaacgaaaa catggagacg ttgtcgcaaa atgccaagaa ataccaatcc agcaacagtg
                                                                         3660
   atcagattgc cagtttqqqt ttcqqcaaqq acqtctacqq cqacqaatgc tatccqqqcq
                                                                         3720
   tegttggcaa ateggcaate ggegaaacea getategegg attetacegt geetaceagg
                                                                         3780
  ctcacatcag cagetecaat tgggeegagt tegaaaatge etccegaaat tggeacaceg
                                                                         3840
   aactcaccaa gacaactgat cgctaatcca ggagccaacc atgatgatca atacccagga
                                                                         3900
15 agacaagetg gteteegege acgacgeega agaattteae egtttettea tegtacaaga
                                                                         3960
   tgatgcacta ctgcaagaag tcaacacgct cctgacccgc gaagcgcacc tgctggacat
                                                                         4020
   teaggeetae aaageetgge ttgaacaetg egttgeeece gagateaaat accaagtgat
                                                                         4080
  ctcgcgagaa cttcgctcca cttccgagcg tcgataccaa ctgaatgatg cggtgaatct
                                                                         4140
  ctacaacgag aactatcaac agctgaaagt tcgagttgaa caccagatgg atcctcagaa
                                                                         4200
20 ctgggccaac aaccegaaga tccgcttcac ccgcttcgtc accaatgtca cggcqccaa
                                                                         4260
  ggacaagagc gcaccggaaa tgctgcatgt gcggtccaac ctcattctcc atcgcgccag
                                                                         4320
  acgagaaaac caagttgacg tottotatgo aacgogtgaa gacaaatgga aacgoatoga
                                                                         4380
  aggtggtggt atcaaattgg tcgaacgctt tgtggactac ccggagcgca ttccccagac
                                                                         4440
  ccacaacctg ttggtcttcc tgtgaaccct ggggatgcct gcctggatgg cgggcattcg
                                                                         4500
25 tgattatttt taacagaaat ttattgccat gaacacacag caagttgttg ccatcactgg
                                                                         4560
  egeeggeteg ggeattggtt tegagttggt tegetetttt aaggeageeg gttategegt
                                                                         4620
  atctgcactc gttcgcaacg aggagcaaga ggcgggtctt cgcaqtqaat tcaaaqacqa
                                                                         4680
  cattgagatc gtggcgggcg atgtccgtga tcacgccacc aatgagaagc tggttaaaca
                                                                         4740
  gacggttgcc aagttcgggc gcctggattg cttcatcgga aatgccggga tatgggatta
                                                                         4800
30 catgctgagc atcgatgatg cttgggagaa attctcgggc agtttcgacg agatatttga
                                                                         4860
  catcaacgtc aaaagctatt tcagcggcat cagcgcggcc ttgccggagc tc
                                                                         4912
```

<210> 13

<211> 6779

35 <212> DNA

<213> Artificial Sequence

<220>

<223> A modified DNA sequence

<400> 13

(10)	0, 13					
atgcatacgt	agcggtggcg	aaagaggcgc	cgctggaaga	atccggtctg	tagetetgge	60
agaagaccca	aggcgagatc	aaccgcaccg	gactccatat	cctccttcag	attgccagca	120
ttcgggcgca	gcgtgctgat	ctggatgtga	ggagctcgtt	gcgcaagcgc	ttccatcagt	180
5gggggcatga	agtacatctc	gccgatgtcg	gtcattgcca	agttgaaggt	gegegtgetg	240
gcaaatgggt	cgaaagagtc	acgggtcgtc	agtgccgtct	gcagcgtgtt	gagcgcatag	300
atcacgggct	ccgcaagatg	cagtgcatac	ggtgtcggct	ccatgccttt	tgaggtgcgc	360
aagaacaaat	cgtcgttcag	cgctgtacgc	agccgtttaa	gtgaattact	gacggcaggc	420
tgcgtcagcc	ccagtttttc	gccggccgtc	gatacgctcc	ggtcgagcag	tagctggttg	480
10aagaccacca	gcagattcaa	gtcgatgtcg	cgcagatcca	tgacctcacc	ctcaccatta	540
ttcatgctgg	tgattttaac	tatcagactt	gatctatagc	gctataccga	tcgacgcgct	600
agaatcgcag	ccattcggag	acaactgaaa	aaagagcttg	catggaactg	gtagtagaac	660
ccctcaattt	gcatctgaac	gcggagaccg	gcagcaccct	gcttgacgtg	ctcaggtcca	720
acgaggtccc	catttcttat	agctgcatgt	cgggccgctg	cggcacttgc	cgttgccgtg	780
15tgattgccgg	ccatcttcgc	gataacggcc	ccgagacagg	gcgcccgcag	gcaggaaagg	840
gggcctatgt	cctggcctgt	caggcggttc	tgaccgaaga	ctgcacgatc	gagattcctg	900
aatctgacga	gatcgtggtt	cacccggcgc	gcatcgtcaa	ggggacggtc	acagcgatag	960
acgaagccac	ccatgacatc	cggcgcctgc	gcatcaaact	ggccaaaccg	cttgagttca	1020
gccctggcca	gtacgcaacg	gtgcagttca	cgcccgaatg	cgtccgcccc	tattcgatgg	1080
20ccgggctgcc	tagcgatgcg	gaaatggagt	ttcagattcg	cgcggttccg	ggcgggcatg	1140
tcagcaacta	cgttttcaat	gaactgtccg	taggcgcttc	ggtgcggatc	agcggccccc	1200
tcggaacggc	ctatctgcgg	cgcacgcaca	ccggccccat	gctttgtgtg	gggggtggaa	1260
caggtctggc	gcccgtcctt	tcgatcgttc	gaggcgcact	ggaaagcggg	atgagctacc	1320
ccatccatct	gtacttcggt	gtgcggagcg	agcaggacat	ctatgacgag	gaacgccttc	1380
25acgcattggc	tgcaaggttt	ccgaatctca	aggtgaatgt	cgttgttgca	acaggecetg	1440
ccggccctgg	tcatcgatcc	ggcctggtca	ccgatctgat	cggccgtgac	ttgcccaatt	1500
tggcgggatg	gcgactgcat	cctgtgtggc	gctccggcca	tggtcgaggc	cctgaacctg	1560
ctcgttgctc	gcctaggcat	agtacccggg	cacatccatg	ccgatgcgtt	ctatcccagc	1620
ggcgtctgag	cgaaggcacc	atgcgaaccc	aattcaaccc	aaggatacca	agccatgagt	1680
30gaaccccaac	gattaaaacc	cgtgtttccc	caagatccga	aatggccggg	cgaaggtagc	1740
agccgcgttc	ccttctgggc	ctacacccgc	gaagacctgt	acaagcgcga	attggagcgc	1800
ctgttctatg	caaaccactg	gtgctatgta	ggcctggaag	ccgagattcc	gaatccaggc	1860
gacttcaagc	gaacggtgat	cggtgagcgc	tcggtcatca	tggtgcgtga	tccggatggc	1920
ggcatcaacg	tggtggagaa	cgtctgcgcc	caccgtggca	tgcgcttttg	ccgcgagcgc	1980
35cacggcaacg	ccaaggactt	cttctgcccc	taccaccagt	ggaactacag	cctcaagggt	2040
gacctgcagg	gcgtgccctt	ccgccgtggc	gtcaagcagg	acggcaaggt	caacggcggc	2100
				agctcaaggt		2160
aggcggtgca	gtgtttgcct	ctttcgacca	cgatgtcgag	cctttcgagg	acttcctggg	2220
ccaaccatcc	tgcactactt	cgatcgcgtc	ttcaatggcc	gcaagctcaa	gatcctgggc	2280
40tacegeegee	agegeatece	gggcaactgg	aagctgatgc	aggagaacat	caaggacccc	2340

taccaccegg geotgetgea cacctggtte tegacetteg ggetetggeg egeogacaac 2400 aagteggaae tgaagatgga egecaagtte egecaegeeg caatgatete caegegeggt 2460 cagggcggca agaacgagga ggtcgtgtcc ggcgtggaca gcttcaagga acagatgaag 2520 2580 gtgaacgaec egegeetget egacategtg ecegageeet ggtggggegg teegaetgeg 5gtgatgacca cgatcttccc cagcgtgatc atccagcagc aggtcaacag cgtatcgacc 2640 egecacatee ageceaacgg teacggetee ttegattteg tetggaceea etteggette 2700 2760 gaggacgaca acgaggagtg gaccagege egectgatee aggecaacet gttegggeeg gegggetteg tgteggeega tgaeggegag gtgategagt ggtegeagga aggetttgag 2820 caaaaaccga cgcaccgcac cgtgatcgag atgggcggtc acgaaatcgg cgacacggac 2880 10cacatggtca ccgagacgct gatccgcggc atgtacgact actggcgcaa ggtgatgggg 2940 3000 gaataaacat ggtagacttc aaaacctatt tcgaactgct gaacctgtac agcgactacg ccatggtgtg cgactccgcc aattgggaga agtggcctga tttcttcatc gagaccggca 3060 3120 cctaccgcct gcaaccgcgc gaaaacttcg agcaggactt gccgctgtgt ctgctggcgc tggagagcaa ggccatgatt cgtgaccgag tgtacggtgt caaggaaacc atgtaccacg 3180 15atccctacta ccagegeeac ategtaggea egeegegegt getgteagtg gagegtgatg 3240 eggaeggega gegeateace geegaageea getatgeegt gattegeace aagtaegaeg 3300 gegattecae gatttteaae geeggetatt acegagaegt gategtgege aegeeegagg 3360 gcctcaagct gaagtegege etgtgegtgt acgacagega aatgatteec aactecatea 3420 tctaccctat ctgagaagga atccaatgag cgagaactgg atcgacgccg ccgcccgcga 3480 20cgaggtgcca cgagggcgac gtgatcggca tcaatatcgt cggcaaggag attgcctcta 3540 cgaggtggcg ggcgagatct acgccaccga caacacctgc actcacggcg ccgcccgcat 3600 gagcgatggc tttctcgaag gccgggaaat tgaatgtcct ttgcatcaag gccgattcga 3660 tgtttgcacg ggtaaagect tgtgcacacc cctgacacag gacatcaaaa cctacccgt 3720 aaaaatcgaa aacatgcgcg tgatgctcaa gctggactaa atgctcaagc tggactaaaa 3780 25ctctttgcag gaggaaagcc aaatccggaa atcaccccac ccaacccaat cactacccgt 3840 3900 tttcaaacaa gatgagacaa gcaattatga gttaccaaaa cttagtgagt gaagcagggc tgacgcaaaa gcacctgatt tatggcgaca aagaactttt ccagcacgaa ttgaagacca 3960 tettegegeg gaactggett tttetgaece atgacagtet gatteeetee eeeggegaet 4020 atgtcaaagc caaaatgggc gtcgatgaag tcatcgtctc ccgccagaac gatggctcgg 4080 30tgcgagcett titgaatgit tgccgtcacc ggggcaagac aatagitgac gctgaagccg 4140 gaaatgcgaa aggctttgtg tgcggttacc acggctgggg ctatggctcc aacggcgaac 4200 tgcaaagcgt tccctttgaa aaagagttgt acggagatgc gatcaaaaag aaatgcctgg 4260 gettgaaaga agteeeeege ategaaaget tteatggett tatetatgge tgttttgatg 4320 cagaagetee ecegeteate gattatetgg gtgatgtage etggtacetg gaacecacet 4380 35tcaagcacte tggtggcctg gaacttgtag gcccccccgc caaagtggtg gttaagggca 4440 actggaaggt ttttgcggaa aactttgtag gtgacateta ecacattggt tggacgcacg 4500 catctatttt gegegeaggg caggegatat ttgeteetet tgegggeaac getatgette 4560 cacccgaagg cacgggcttg caagcgacca ccaagtatgg cagtggaatt ggcgtatcgt 4620 tggacgccta ctccggtgtc cagagcgctg atctggttcc cgaaatgatg gcattcggcg 4680 40gcgcaaaaca ggaaaagctc gccaaagaaa tcggcgatgt ccgggcgcgg atttaccgca 4740

```
gccaagtgaa cggcacggtt ttcccgaaca actgcttttt gaccggcgcc ggtgtcttca
                                                                        4800
 aggtetttaa eeegategat gaaaacaega eegaggettg gaegtatgee ategtagaaa
                                                                        4860
  aagacatgcc tgaggactta aagcgtcgct tggctgacgc ggctcagcgc tctgtcggac
                                                                        4920
                                                                        4980
  cagcaggata ctgggaaagc gacgacaacg acaacatggt gttgtcgcaa aatgccaaga
 Saataccaatc cagcaacagt gatctgattg ccgatttggg tttcggcaag gacgtctacg
                                                                        5040
 gegacgaatg ctateeggge gtegttagea aateggeatt cagegaaacc aaccategeg
                                                                        5100
 gattctaccg tgcctaccag gctcacatca gcagctccaa ttgggccgag ttcgaaaaca
                                                                        5160
 cetecegaaa ttggcacaee gaacteaeea agacgaetga tegetaatee aggageeaat
                                                                        5220
 catgatgate aatacccagg aagacaaget ggtctccgcg cacgacgccg aagaatttca
                                                                        5280
10ccgtttcttc gtcgggcaeg acagcgatct gcagcaagaa gtcaccacac tcctgacccg
                                                                        5340
 cgaagccgac ctgctggaca ttcaggccta caaagcctgg cttgaacact gcgttgcccc
                                                                        5400
 cgagatcaaa taccaagtga tetegegaga aettegetee aetteegage gtegatacea
                                                                        5460
 actgaatgat geggtgaata tetacaaega gaactateaa eagetgaaag ttegagttga
                                                                        5520
 acaccagatg gatectcaga actggtacaa cagecegaag atcegettca ecegettegt
                                                                        5580
15caccaatgtc acggcggcca aggacaagag cgcaccggaa atgctgcatg tgcggtccaa
                                                                        5640
 ecteattete categegeca gaegaggaaa ceaagttgae gtettetatg caaegegaga
                                                                        5700
 agacaaatgg aaacgcatcg aaggtggtgg catcaaattg gtcgaacgct ttgtggacta
                                                                       5760
 cccggagcgc agtccccaaa cccacaacct gatgatette ctgtgagccc tggggatqcc
                                                                       5820
 tgcctggatg gcgggcattc gtgattattt ttaacagggc ggattcaaaa gtgaagtgca
                                                                       5880
20acaccctgga tttcagtgaa tgagagtgga gtgctgcggg ctattcacaa gcagttcgcg
                                                                       5940
 gtagaccgcc agcggtgatc gtactcccag ccctttcctt ggccggttgt tgatttcatc
                                                                       6000
 ggeaategea tegagetget cetggetgta gatgeteaga teegteeett tgggeaggta
                                                                       6060
 ctggcgcacc aggccattca tgttctcgtt ggagcctctt tgccaagggc tgtgcgggtc
                                                                       6120
 gcagaagtac acggctatgc cggtttgctc actgagcttc ttgtgcatgg acatctcccg
                                                                       6180
25gecetggteg taegteatge teaacegeat eggetgegea atgeceagea gettgteegt
                                                                       6240
 gaaggcctgc aagacgttgg cagcactggc cggcttgaac tcaggcagct tgaccagcat
                                                                       6300
 caccageegg etggtgegtt ceaccaaggt eeegactgeg etggeattge etteteeett
                                                                       6360
 gatgagatca cetteccagt gecegggaaa etggeggtet tegatetegg gegggegtae
                                                                       6420
 atggatgete ageatgtegg gaatetggee tetgeggtee ttgecettge tgegeggeag
                                                                       6480
30ccgcttgttg tgggcgtgac gcagggtggc gatcagctct ttgcgcagct ctcccacggg
                                                                       6540
 catggcatag atgcagttgt agatggtttc gtgtgacacg cggtattcat ggcccagggg
                                                                       6600
 atacaaacgt gccagtgtca gggcaatctg ctcgggcgac cagcgcagcc gcagcagatg
                                                                       6660
 gatcaccagg caggacaaga tcgactcggg atgcagcttg atagctggtc tgccacagcg
                                                                       6720
 totgogotgo agggactggc actgggcatg tgcgctgcca tagccagatg aagatgcat
                                                                       6779
```

<210> 14

<211> 449

40

<212> PRT

<213> Artificial Sequence

<220>

<223> A polypeptide encoded by SEQ ID NO:3

5

<400> 14

Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln

1 5 10 15

Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys
10 20 25 30

Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
35 40 45

Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
50 55 60

15 Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val 65 70 75 80

Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala 85 90 95

Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
100 105 110

Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu 115 120 125

Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe 130 135 140

25 His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met 145 150 155 160

Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His
165 170 175

Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys

180 185 190

Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His

Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe

210 215 220 35 Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu

225 230 235 235 246

Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
245 250 255

Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe 40 260 265 270

```
Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg
                               280
   Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 5 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
                       310
                                           315
   Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
                   325
                                       330
   Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Val
10
                                   345
   Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr
                               360
   Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
       370
                           375
15 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro
                       390
                                           395
  Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arq Gly Phe
                                       410
  Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
                                   425
  Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
           435
                               440
                                                   445
  Arg
25
         <210> 15
         <211> 449
         <212> PRT
         <213> Artificial Sequence
30
        <220>
        <223> A polypeptide encoded by SEQ ID NO:4
        <400> 15
35 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln
  Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys
                                   25
  Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
40
          35
                               40
```

	Pro	Ala	Pro	Gly	Asp	Tyr	Val	Thr	Ala	Lys	Met	Gly	Ile	Asp	Glu	Val
		50			٠.		55					60				
	Ile	Val	Ser	Arg	Gln	Asn	Asp	Gly	Ser	Ile	Arg	Ala	Phe	Leu	Asn	Val
	65					70					75					80
5	Cys	Arg	His	Arg	Gly	Lys	Thr	Leu	Val	Ser	Val	Glu	Ala	Gly	Asn	Ala
					85					90					95	
	Lys	Gly	Phe	Val	Cys	Ser	Tyr	His	Gly	Trp	Gly	Phe	Gly	Ser	Asn	Gly
				100				_	105					110		
	Glu	Leu	Gln	Ser	Val	Pro	Phe	Glu	Lys	Asp	Leu	Tyr	Gly	Glu	Ser	Leu
10			115					120					125			
	Asn	Lys	Lys	Cys	Leu	Gly	Leu	Lys	Glu	Val	Ala	Arg	Val	Glu	Ser	Phe
		130					135					140				
	His	Gly	Phe	Ile	Tyr	Gly	Cys	Phe	Asp	Gln	Glu	Ala	Pro	Pro	Leu	Met
	145					150					155					160
15	Asp	Tyr	Leu	Gly	Asp	Ala	Ala	Trp	Tyr	Leu	Glu	Pro	Met	Phe	Lys	His
					165					170					175	
	Ser	Gly	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Val	Ile	Lys
				180					185					190		
	Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His
20			195					200					205			
	Val	Gly	Trp	Thr	His	Ala	Ser	ser	Leu	Arg	Ser	Gly	Glu	Ser	Ile	Phe
		210					215					220				
	Ser	Ser	Leu	Ala	Gly	Asn	Ala	Ala	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
	225					230					235					240
25	Gln	Met	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	Val	Leu	Trp	Asp	Gly
					245					250					255	
	Tyr	Ser	Gly	Val	His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu	Met	Ala	Phe
				260					265					270		
	Gly	Gly	Ala	Lys	Gln	Glu	Arg	Leu	Asn	Lys	Glu	Ile	Gly	Asp	Val	Arg
30			275					280					285			
	Ala	Arg	Ile	Tyr	Arg	Ser	His	Leu	Asn	Cys	Thr	Val	Phe	Pro	Asn	Asn
		290					295					300				
	Ser	Met	Leu	Thr	Cys	Ser	Gly	Val	Phe	Lys	Val	Trp	Asn	Pro	Ile	Asp
	305					310					315					320
35	Ala	Asn	Thr	Thr	Glu	Val	Trp	Thr	Tyr	Ala	Ile	Val	Glu	Lys	qaA	Met
					325					330					335	
	Pro	Glu	Asp	Leu	Lys	Arg	Arg	Leu	Ala	Asp	Ser	Val	Gln	Arg	Thr	Val
				340					345					350		
	Gly	Pro	Ala	Gly	Phe	Trp	Glu	Ser	Asp	Asp	Asn	Asp	Asn	Met	Glu	Thr
10			355					360					365			

<210> 16 15 <211> 449 <212> PRT

<213> Artificial Sequence

<220>

20 <223> A polypeptide encoded by SEQ ID NO:5

<400> 16

130

Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln 5 10 25 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys 25 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile 40 Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val 30 55 Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala 90 35 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly 105 Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu 115 120

Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe

140

135

	His	Gly	Phe	Ile	Tyr	Gly	Cys	Phe	Asp	Gln	Glu	Ala	Pro	Pro	Leu	Met
	145				٠,	150					155					160
	Asp	Tyr	Leu	Gly	Asp	Ala	Ala	Trp	Tyr	Leu	Glu	Pro	Met	Phe	Lys	His
					165					170					175	
5	Ser	Gly	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Val	Ile	Lys
				180					185					190		
	Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His
			195					200					205			
	Val	Gly	Trp	Thr	His	Ala	Ser	Ser	Leu	Arg	Ser	Gly	Glu	Ser	Ile	Phe
10		210					215					220				
	Сув	Ser	Leu	Ala	Gly	Asn	Ala	Ala	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
	225					230					235					240
	Gln	Met	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	Val	Leu	Trp	Asp	Gly
					245					250					255	
15	Tyr	Ser	Gly	Val	His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu	Met	Ala	Phe
				260					265					270		
	Gly	Gly	Ala	Lys	Gln	Glu	Arg	Leu	Asn	Lys	Glu	Ile	Gly	Asp	Val	Arg
			275					280					285			
	Ala	Arg	Ile	Tyr	Arg	Ser	His	Leu	Asn	Cys	Thr	Val	Phe	Pro	Asn	Asn
20		290					295					300				
	Ser	Met	Leu	Thr	Cys	Ser	Gly	Val	Phe	Lys	Val	Trp	Asn	Pro	Ile	Asp
	305					310					315					320
	Ala	Asn	Thr	Thr	Glu	Val	Trp	Thr	Tyr	Ala	Ile	Val	Glu	ràs	Asp	Met
					325					330					335	
25	Pro	Glu	qaA	Leu	Lys	Arg	Arg	Leu	Ala	Asp	Ser	Val	Gln	Arg	Thr	Val
				340					345					350		
	Gly	Pro	Ala	Gly	Phe	Trp	Glu	Ser	Asp	Asp	Asn	Asp	Asn	Met	Glu	Thr
			355					360					365			
	Ala	Ser	Gln	Asn	Gly	Lys	Lys	Tyr	Gln	Ser	Arg	Asp	Ser	Asp	Leu	Leu
30		370					375					380				
	Ser	Asn	Leu	Gly	Phe	Gly	Glu	Asp	Val	Tyr	Gly	Asp	Ala	Val	Tyr	Pro
	385					390					395					400
	Gly	Val	Val	Gly	Lys	Ser	Ala	Ile	Gly	Glu	Thr	Ser	Tyr	Arg	Gly	Phe
					405					410					415	
35	Tyr	Arg	Ala	Tyr	Gln	Ala	His	Val	Ser	Ser	Ser	Asn	Trp	Ala	Glu	Phe
				420					425					430		
	Glu	His		Ser	Ser	Thr	Trp	His	Thr	Glu	Leu	Thr		Thr	Thr	Asp
	5		435					440					445			
	Arg															

```
<210> 17
         <211> 449 ·
         <212> PRT
        <213> Artificial Sequence
        <220>
         <223> A polypeptide encoded by SEQ ID NO:6
        <400> 17
10 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Phe Gly Leu Ser Gln
                    5
                                       10
  Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys
                                   25
  Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
15
                               40
  Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
                           55
  Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
                       70
20 Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala
  Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
                                   105
  Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu
25
          115
                               120
  Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
  His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met
30 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His
                                       170
                   165
  Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
                                   185
  Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
35
                               200
  Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe
                           215
  Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu
40 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
```

245 250 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe 265 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg 280 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn 295 300 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp 10 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met 325 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Val 345 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr 360 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu 375 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro 20 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe 405 410 Tyr Arg Ala Tyr Arg Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe 425 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp 25 440 445 Arg

<210> 18

30 <211> 449

<212> PRT

<213> Artificial Sequence

<220>

35 <223> A polypeptide encoded by SEQ ID NO:7

<400> 18

Met Asn Tyr Lys Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Thr Gln

1 5 10 15

40 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Arg

				20					25					30		
	Thr	Ile	Phe	Ala	Arg	Asn	Trp	Leu	Phe	Leu	Thr	His	Asp	Ser	Leu	Ile
			35					40					45			
	Pro	Ser	Pro	Gly	Asp	Tyr	Val	Thr	Ala	Lys	Met	Gly	Ile	Asp	Glu	Val
5		50					55					60				
	Ile	Val	Ser	Arg	Gln	Ser	Asp	Gly	Ser	Ile	Arg	Ala	Phe	Leu	Asn	Val
	65					70					75					80
	Cys	Arg	His	Arg	Gly	Lys	Thr	Leu	Val	Asn	Ala	Glu	Ala	Gly	Asn	Ala
					85					90					95	
10	Lys	Gly	Phe	Val	Cys	Ser	Tyr	His	Gly	Trp	Gly	Phe	Gly	Ser	Asn	Gly
				100					105					110		
	Glu	Leu	Gln	Ser	Val	Pro	Phe	Glu	Lys	Glu	Leu	Tyr	Gly	Glu	Ser	Leu
			115					120					125			
	Asn	Lys	Lys	Cys	Leu	Gly	Leu	Lys	Glu	Val	Ala	Arg	Val	Glu	Ser	Phe
15		130					135					140				
	His	Gly	Phe	Ile	Tyr	Gly	Cys	Phe	Asp	Gln	Glu	Ala	Pro	Pro	Leu	Met
	145					150					155					160
	Asp	Tyr	Leu	Gly	Asp	Ala	Ala	Trp	Tyr	Leu	Glu	Pro	Ile	Phe	Lys	His
					165					170					175	
20	Ser	Gly	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Val	Ile	Lys
				180					185					190		
	Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His
			195					200					205			
	Val		Trp	Thr	His	Ala	Ser	Ser	Leu	Arg	Ser	Gly	Glu	Ser	Ile	Phe
25		210					215					220				
		Ser	Leu	Ala	Gly		Ala	Val	Leu	Pro		Glu	Gly	Ala	Gly	Leu
	225			_	_	230		_			235					240
	Gin	Met	Thr	Ser	-	Tyr	GTÀ	Ser	GIÀ		Gly	Val	Leu	Trp	-	Gly
20	TTe exa	0	01	77-7	245	0	3 -		•	250		a 1	_		255	_,
20	тăт	ser	Gly	260	HIS	ser	AIA	Asp		vai	Pro	GIU	ren		Ala	Pne
	Clv	Clv	Ser		<i>0</i> 1n	<i>(</i> 13.11	7 ~~	T 011	265	T	01	T1	01	270	37-3	3
	GīĄ	Gry	275	пуъ	GIII	GIU	Arg	280	ASII	rys	GIU	116		Asp	vai	Arg
	Δla	Δra	Ile	Tur	Δτα	Ser	Hie		Aen	Cve	Thr	V-1	285	Dro	Nan	Nan
35	7114	290	110	T y L	nig	DCI	295	neu	VOII	Cys	IIII	300	FIIE	PIO	ASII	ASII
	Ser		Leu	Thr	Cvs	Ser		Val	Dhe	Lvs	Val		Δen	Dro	Tle	λen
	305				-10	310	1			-1-	315	1		1.0	**6	320
		Asn	Thr	Thr	Glu		Tro	Thr	Tyr	Ala		Va1	Glu	Lvs	Asn	
		-			325		- 1 -	- · - -	-1-	330				-, -	335	
40	Pro	Glu	Asp	Len		Ara	Δrα	Len	αla		Ser	17a 1	Gln	Δra		Va l

10

, ,

	145					150					155					160
	Asp	Tyr	Leu	Gly	Asp	Ala	Ala	Trp	Tyr	Leu	Glu	Pro	Met	Phe	Lys	His
					165					170					175	
	Ser	Gly	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Va1	Ile	Lys
5				180					185					190		
	Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His
			195					200					205			
	Val	Gly	Trp	Thr	His	Ala	Ser	Ser	Leu	Arg	Ser	Gly	Glu	Ser	Ile	Phe
		210					215					220				
10	Cys	Ser	Leu	Ala	Gly	Asn	Ala	Ala	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
	225					230					235					240
	Gln	Met	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	${\tt Gly}$	Val	Leu	Trp	Asp	Gly
					245					250					255	
	Tyr	Ser	Gly	Val	His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu	Met	Ala	Phe
15				260					265					270		
	Gly	Gly	Ala	Lys	Gln	Glu	Arg	Leu	Asn	Lys	Glu	Ile	Gly	Asp	Val	Arg
			275					280					285			
	Ala	Arg	Ile	Tyr	Arg	Ser	His	Leu	Asn	Cys	Thr	Val	Phe	Pro	Asn	Asn
		290					295					300				
20	Ser	Met	Leu	Thr	Cys	Ser	Gly	Val	Phe	Lys	Val	Trp	Asn	Pro	Ile	Asp
	305					310					315					320
	Ala	Asn	Thr	Thr	Glu	Val	Trp	Thr	Tyr	Ala	Ile	Val	Glu	Lys	Asp	Met
					325					330					335	
	Pro	Glu	Asp	Leu	Lys	Arg	Arg	Leu	Ala	Asp	Ser	Val	Gln	Arg	Thr	Val
25				340					345					350		
	Gly	Pro	Ala	Gly	Phe	Trp	Glu	Ser	Asp	Asp	Asn	Asp	Asn	Met	Glu	Thr
			355					360					365			
	Ala	Ser	Gln	Asn	Gly	Lys	Lys	Tyr	Gln	Ser	Arg	Asp	Ser	Asp	Leu	Leu
		370					375					380				
30	Ser	Asn	Leu	Gly	Phe	Gly	Glu	Asp	Val	Tyr	Gly	Asp	Ala	Val	Tyr	Pro
	385					390					395					400
	Gly	Val	Val	Gly	Lys	Ser	Ala	Ile	Gly	Glu	Thr	Ser	Tyr	Arg	Gly	Phe
					405					410					415	
	Tyr	Arg	Ala	Tyr	Gln	Ala	His	Val		Ser	Ser	Asn	Trp	Ala	Glu	Phe
35				420					425					430		
	Glu	His		Ser	Ser	Thr	Trp		Thr	Glu	Leu	Thr	Lys	Thr	Thr	Asp
			435					440					445			
	Arg															

<210> 17

<211> 449

<212> PRT

					85					90					95	
	Lys	Gly	Phe	Val	Cys	Ser	Tyr	His	Gly	Trp	Gly	Phe	Gly	Ser	Asn	Gly
				100					105					110		
	Glu	Leu	Gln	Ser	Val	Pro	Phe	Glu	Lys	Glu	Leu	Tyr	Gly	Glu	ser	Leu
5			115					120					125			
	Asn	Lys	Lys	Cys	Leu	Gly	Leu	Lys	Glu	Val	Ala	Arg	Val	Glu	Ser	Phe
		130					135					140				
	His	Gly	Phe	Ile	Tyr	Gly	Cys	Phe	Asp	Gln	Glu	Ala	Pro	Ser	Leu	Met
	145					150					155					160
10	Asp	Tyr	Leu	Gly	Asp	Ala	Ala	Trp	Tyr	Leu	Glu	Pro	Ile	Phe	Lys	His
					165					170					175	
	Ser	Gly	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Val	Ile	ràa
				180					185					190		
	Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His
15			195					200					205			
	Val	Gly	Trp	Thr	His	Ala	Ser	Ser	Leu	Arg	Thr	Gly	Glu	Ser	Ile	Phe
		210					215					220				
	Ser	Ser	Leu	Ala	Gly	Asn	Ala	Val	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
	225					230					235					240
20	Gln	Met	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	Val	Leu	Trp	Asp	Gly
					245					250					255	
	Tyr	Ser	Gly	Val	His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu	Met	Ala	Phe
				260					265					270		
	Gly	Gly	Ala	Lys	Gln	Glu	Arg	Leu	Asn	Lys	Glu	Ile	Gly	Asp	Val	Pro
25			275					280					285			
	Ala		Ile	Tyr	Arg	Ser		Leu	Asn	Cys	Thr	Val	Phe	Pro	Asn	Asn
		290					295					300				
		Val	Leu	Thr	Cys		Gly	Val	Phe	Lys		Trp	Asn	Pro	Ile	_
20	305		m1 .	em)	~1	310			_		315					320
30	Ald	ASN	Thr	Thr		vai	Trp	Thr	Tyr		ITE	Vai	GIU	Lys	-	Met
	Dro	<i>0</i> 1	7 an	Lou	325	7~~	71 20 00	Ť	77.	330	21-	17. 1	a 1		335	TY - 7
	PIO	GIU	Asp		ьys	Arg	Arg	Leu		Asp	Ата	vaı	Gin	_	Tnr	val
	Clar	Dro	7 l a	340	Dho	mvn	G1	Com	345	7	7	3	3	350	a 3	m1
35	GTÀ	FIO	Ala 355	GTÅ	PHE	пр	GIU	360	Asp	Asp	ASII	Asp		Met	GIU	Thr
50	Δla	Ser	Gln	Δen	GIV	Lve	Laze		aln	Sar	7 200	7 00	365	7.00	T 011	T1.
		370		11011	O.A.y	y.5	375	- 7 -	GIII	Jer	AL 9	380	per	АБР	пец	116
	Ser		Leu	G] v	Phe	Glv		Agn	Val	Τιν	Glv		∆ 7 ⇒	Va1	ጥነν	Dro
	385			1		390	-10	-10P	·uı	-1-	395	.⊶P	n.a	ANT	TÅT	400
40		۷al	Val	Glv	Lare		Δla	714	Glar	رر ای		20×	η	7.~ ~	رماء۔ مام	
. •	1			-+ y	~ y =	~~_	-1± C	114	O I Y	JIU	TILL	Der	TAT	wrA	атХ	FIIC

405 410 415 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe 425 Glu Asp Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp 440 Arg <210> 20 10 <211> 449 <212> PRT <213> Artificial Sequence <220> 15 <223> A polypeptide encoded by SEQ ID NO:9 <400> 20 Met Asn Tyr Lys Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Thr Gln 5 10 20 Lys His Leu Ile His Gly Gly Glu Gly Leu Phe Gln His Glu Leu Arg 25 Ala Val Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile 40 Pro Ser Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val Ile Val Ser Arg Gln Ser Asp Gly Ser Ile Arg Ala Phe Leu Asn Val 70 Cys Arg His Arg Gly Lys Thr Leu Val Asn Ala Glu Ala Gly Asn Ala 30 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly 100 105 Glu Leu Gln Ser Val Pro Phe Glu Lys Glu Leu Tyr Gly Glu Ser Leu 115 120 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe His Gly Phe Ile Tyr Ala Cys Ile Asp Gln Glu Ala Pro Ser Leu Met 155 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Ile Phe Lys His 165 170

40 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys

				180					185					190		
	Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His
			195					200					205			
	Val	Gly	Trp	Thr	His	Ala	Ser	Ser	Leu	Cys	Thr	Gly	Glu	Ser	Ile	Phe
5		210					215					220				
	Ser	Ser	Leu	Ala	Gly	Asn	Ala	Val	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
	225					230					235					240
	Gln	Met	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	Val	Leu	Trp	Asp	Gly
					245					250					255	
10	Tyr	Ser	Gly	Val	His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu	Met	Ala	Phe
				260					265					270		
	Gly	Gly	Ala	Lys	Gln	Glu	Arg	Leu	Asn	Lys	Glu	Ile	Gly	Asp	Val	Arg
			275					280					285			
	Ala	Arg	Ile	Tyr	Arg	Ser	His	Leu	Asn	Cys	Thr	Val	Phe	Pro	Asn	Asn
15		290					295					300				
	Ser	Val	Leu	Thr	Cys	Ser	Gly	Val	Phe	Lys	Val	Trp	Asn	Pro	Ile	Asp
	305					310					315					320
	Ala	Asn	Thr	Thr	Glu	Val	Trp	Thr	Tyr	Ala	Ile	Val	Glu	Lys	Asp	Met
					325					330					335	
20	Pro	Glu	Asp	Leu	Lys	Arg	Arg	Leu	Ala	Asp	Ala	Val	Gln	Arg	Thr	Val
				340					345					350		
	Gly	Pro	Ala	Gly	Phe	Trp	Glu	Ser	Asp	Asp	Asn	Asp	Asn	Met	Glu	Thr
			355					360					365			
	Ala	Ser	Gln	Asn	Gly	Lys	Lys	Tyr	Gln	Ser	Arg	Asp	Ser	Asp	Leu	Ile
25		370					375					380				
	Ser	Asn	Leu	Gly	Phe	Gly	Lys	Asp	Val	Tyr	Gly	Asp	Ala	Val	Tyr	Pro
	385					390					395					400
	Gly	Val	Val	Gly	Lys	Ser	Ala	Ile	Gly	Glu	Thr	Ser	Tyr	Arg	Gly	Phe
					405					410					415	
30	Tyr	Arg	Ala	Tyr	Gln	Ala	His	Val	Ser	Ser	Ser	Asn	Trp	Ala	Glu	Phe
				420					425					430		
	Glu	Asp	Ala	Ser	Ser	Thr	Trp	His	Thr	Glu	Leu	Thr	Lys	Thr	Thr	qaA
			435					440					445			
	Arg															
35																
		_		^-												
			10>													
			11>													
10			12>		£! = '	-1 ^										
rV		< 2	C L L :	Arti	E1C7	aı s	eave	nce								

<220>

<223> A polypeptide encoded by SEQ ID NO:10

<400> 21

		<-	400>	21												
5	Met	Asn	Tyr	Lys	Asn	Lys	Asn	Leu	Val	Ser	Glu	Ser	Gly	Leu	Thr	Gln
	1				5					10					15	
	Lys	His	Leu	Ile	His	Gly	Asp	Glu	Glu	Leu	Phe	Gln	Arg	Glu	Leu	Glu
				20					25					30		
	Thr	Ile	Phe	Ala	Arg	Asn	Trp	Leu	Phe	Leu	Thr	His	Asp	Ser	Leu	Ile
10			35					40					45			
	Pro	ser	Pro	Gly	Asp	Tyr	Val	Thr	Ala	Lys	Met	Gly	Val	Asp	Glu	Val
		50					55					60				
	Ile	Val	Ser	Arg	Gln	Asn	Asp	Gly	Ser	Ile	Arg	Ala	Phe	Leu	Asn	Val
	65					70					75					80
15	Cys	Arg	His	Arg	Gly	Lys	Thr	Leu	Val	His	Ala	Glu	Ala	Gly	Asn	Ala
					85					90					95	
	Lys	Gly	Phe	Val	Cys	Ser	Tyr	His	Gly	Trp	Gly	Phe	Gly	Ala	Asn	Gly
				100					105					110		
	Glu	Leu	Gln	Ser	Val	Pro	Phe	Glu	Lys	Glu	Leu	Tyr	Gly	Glu	Ala	Leu
20			115					120					125			
	Asp	Lys	Lys	Cys	Met	Gly	Leu	Lys	Glu	Val	Ala	Arg	Val	Glu	Ser	Phe
		130					135					140				
	His	Gly	Phe	Ile	Tyr	Gly	Cys	Phe	Asp	Glu	Glu	Ala	Pro	Ser	Leu	Lys
	145					150					155					160
25	Asp	Tyr	Met	Gly	Asp	Ala	Gly	Trp	Tyr	Leu	Glu	Pro	Met	Phe	Lys	His
					165					170					175	
	Ser	Gly	Gly	Leu	Glu	Leu	Ile	Gly	Pro	Pro	Gly	Lys	Val	Ile	Ile	Lys
				180					185					190		
	Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Thr	Gly	Asp	Ala	Tyr	His
30			195					200					205			
	Val		Trp	Thr	His	Ala	Ser	Ser	Leu	Arg	Ser	Gly	Gln	Ser	Val	Phe
		210					215					220				
		Ser	Leu	Ala	Gly		Ala	Ala	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
	225					230					235					240
35	GIn	Met	Thr	Ser		Tyr	Gly	Ser	Gly		Gly	Val	Leu	Trp	Asp	Gly
			_	_	245					250					255	
	Tyr	Ser	Gly		His	Ser	Ala	Asp		Val	Pro	Glu	Leu		Ala	Phe
	al	<i>α</i> 3	27.	260	01 ~	al.	3	• -	265		~1	~-		270		
40	атА	стλ	Ala	ьys	GIN	GIU	arg		Asn	ràs	GIU	11e		GLu	Val	Arg
40			275					280					285			

Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn 290 295 Ser Phe Leu Thr Cys Ser Gly Val Phe Lys Val Trp His Pro Ile Asp 310 315 5 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Met Val Glu Lys Asp Met Pro Glu Asp Leu Lys Arg Arg Leu Val Asp Ala Val Gln Arg Thr Val 345 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr 360 Val Ser Gln Asn Ala Lys Lys Tyr Gln Ser Arg Asp Gly Asp Leu Val 375 Ser Asn Leu Gly Phe Gly Gly Asp Val Tyr Gly Asp Glu Val Tyr Pro 390 395 15 Gly Ile Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe 405 410 Tyr Arg Ala Tyr Gly Ala His Ile Ser Ser Ser Trp Ala Glu Phe 425 Glu Asp Val Ser Lys Asn Trp His Thr Glu Leu Ala Lys Thr Thr Asp 20 435 440 445 Arg <210> 22 <211> 447

25

<212> PRT

<213> Artificial Sequence

<220>

30 <223> A polypeptide encoded by SEQ ID NO:11

<400> 22

Met Ile Tyr Glu Asn Leu Val Ser Glu Ala Gly Leu Thr Gln Lys His

35 Leu Ile His Gly Asp Lys Glu Leu Phe Gln His Glu Leu Lys Thr Ile 20 25

Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile Pro Ser

Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Val Asp Glu Val Ile Val 40 50 55 60

	Ser	Arg	Gln	Asn	Asp	Gly	Ser	Val	Arg	Ala	Phe	Leu	Asn	Val	Cys	Arg
	65					70					75					80
	His	Arg	Gly	ГЛа	Thr	Leu	Val	His	Ala	Glu	Ala	Gly	Asn	Ala	Lys	Gly
					85					90					95	
5	Phe	Val	Cys	Ser	Tyr	His	Gly	Trp	Gly	Phe	Gly	Ser	Asn	Gly	Glu	Leu
				100					105					110		
	Gln	Ser	Val	Pro	Phe	Glu	Lys	Glu	Leu	Tyr	Gly	Asp	Thr	Ile	Lys	Lys
			115					120					125			
	Lys	Cys	Leu	Gly	Leu	Lys	Glu	Val	Pro	Arg	Ile	Glu	Ser	Phe	His	Gly
10		130					135					140				
	Phe	Ile	Tyr	Gly	Cys	Phe	Asp	Ala	Glu	Ala	Pro	Thr	Leu	Val	Asp	Tyr
	145					150					155					160
	Leu	Gly	Asp	Ala	Ala	Trp	Tyr	Leu	Glu	Pro	Ile	Phe	Lys	His	Ser	Gly
					165					170					175	
15	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Val	Ile	Lys	Ala	Asn
				180					185					190		
	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His	Val	Gly
			195					200					205			
	Trp	Thr	His	Ala	Ser	Ser	Leu	Arg	Ser	Gly	Gln	Ser	Ile	Phe	Thr	Pro
20		210					215					220				
	Leu	Ala	Gly	Asn	Ala	Met	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu	Gln	Met
	225					230					235					240
	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	Val	Leu	Trp	Asp	Gly	Tyr	Ser
		_	_		245					250					255	
25	Gly	Val	His		Ala	Asp	Leu	Val		Glu	Met	Met	Ala	Phe	Gly	Gly
	_		_	260					265					270		
	Ala	Lys		Glu	Lys	Leu	Ala	-	Glu	Ile	Gly	Asp		Arg	Ala	Arg
			275	_	4	_	_	280				_	285	_	_	
20	IIe	-	Arg	Ser	His	Leu		Cys	Thr	Val	Phe		Asn	Asn	Ser	He
30	T	290	~		0 1 .	** . 3	295	_	••• •		•	300		_	~ 3	_
		Tnr	Cys	ser	Gly		Pne	ьуѕ	vaı	Trp		Pro	11e	Asp	Glu	
	305	mh	a 1	17 1	П	310	 -	n 1 _	- 1-	77. 7	315	*	*	M - 4-	D	320
	IIII	Int	GIU	vaı	Trp	inr	туг	Ата	He		GIU	гув	Asp	Met		GIU
25	7 cn	Leu	Laro	۸ra	325	Lou	7 T ~	8 an	777	330	C) n	Λ×α	Th x	17-1	335	Dro
33	Азр	neu	цув	340	Arg	neu	HIG	Asp	345	vaı	GIII	Arg	THE	350	GLY	PIO
	Δla	Glv	Dhe		Glu	Ser	Aen	Nen		λen	Nan	Met	Glu		Glu	Ser
		~-y	355		Jiu		بآوس	360	POIT	re 'n	*****	.,,,,,	365	7 41T	υzu	501
	Gln	Asn		Lvs	Lys	Tvr	G]n		Ser	Asn	Ser	Asp		Ile	Ala	Asn
40		370		., -		.,-	375					380				

Leu Gly Phe Gly Lys Asp Val Tyr Gly Asp Glu Cys Tyr Pro Gly Val 395 385 390 Val Ala Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe Tyr Arg 410 5 Ala Tyr Gln Ala His Ile Ser Ser Ser Asn Trp Ala Glu Phe Glu Asn 425 Thr Ser Arg Asn Trp His Thr Glu Leu Thr Lys Thr Thr Asp Arg 435 440 10 <210> 23 <211> 447 <212> PRT <213> Artificial Sequence 15 <220> <223> A polypeptide encoded by SEQ ID NO:12 <400> 23 Met Ser Tyr Gln Asn Leu Val Ser Glu Ala Gly Leu Thr Gln Lys Leu 5 20 1 Leu Ile His Gly Asp Lys Glu Leu Phe Gln His Glu Leu Lys Thr Ile 25 Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile Pro Ser 40 25 Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Val Asp Glu Val Ile Val 55 Ser Arg Gln Asn Asp Gly Ser Val Arg Ala Phe Leu Asn Val Cys Arg 75 His Arg Gly Lys Thr Leu Val His Thr Glu Ala Gly Asn Ala Lys Gly 30 Phe Val Cys Gly Tyr His Gly Trp Gly Tyr Gly Ser Asn Gly Glu Leu 105 Gln Ser Val Pro Phe Glu Lys Glu Leu Tyr Gly Asp Ala Ile Lys Lys 115 120 35 Lys Cys Leu Gly Leu Lys Glu Val Pro Arg Ile Glu Ser Phe His Gly Phe Ile Tyr Gly Cys Phe Asp Ala Glu Ala Pro Pro Leu Ile Asp Tyr 150 Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Thr Phe Lys His Ser Gly 40 165 170

	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Val	Val	Lys	Ala	Asn
				180					185					190		
	Trp	Lys	Pro	Phe	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ile	Tyr	His	Val	Gly
			195					200					205			
5	Trp	Thr	His	Ala	Ala	Ala	Leu	Arg	Ala	Gly	Gln	Ser	Val	Phe	Ser	Ser
		210					215					220				
	Leu	Ala	Gly	Asn	Ala	Lys	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu	Gln	Met
	225					230					235					240
	Thr	ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	Leu	Thr	Trp	Asp	Tyr	Tyr	Ser
10					245					250					255	
	Gly	Asn	Phe	Ser	Ala	Asp	Met	Val	Pro	Asp	Leu	Met	Ala	Phe	Gly	Ala
				260					265					270		
	Ala	Lys	Gln	Glu	Lys	Leu	Ala	Lys	Glu	Ile	Gly	Asp	Val	Arg	Ala	Arg
			275					280					285			
15	Ile	Tyr	Arg	Ser	Ile	Leu	Asn	Gly	Thr	Val	Phe	Pro	Asn	Asn	Ser	Phe
		290					295					300				
	Leu	Thr	Gly	Ser	Ala	Thr	Phe	Lys	Val	Trp	Asn	Pro	Ile	Asp	Glu	Asn
	305					310					315					320
	Thr	Thr	Glu	Val	Trp	Thr	Tyr	Ala	Phe	Val	Glu	Lys	Asp	Met	Pro	Glu
20					325					330					335	
	Asp	Leu	Lys	Arg	Arg	Leu	Ala	Asp	Ala	Ala	Gln	Arg	Ser	Val	Gly	Pro
				340					345					350		
	Ala	Gly	Phe	Trp	Glu	Ser	Asp	Asp	Asn	Glu	Asn	Met	Glu	Thr	Leu	Ser
			355					360					365			
25	Gln	Asn	Ala	Lys	Lys	Tyr	Gln	Ser	Ser	Asn	Ser	Asp	Gln	Ile	Ala	Ser
		370					375					380				
	Leu	Gly	Phe	Gly	Lys	Asp	Val	Tyr	Gly	Asp	Glu	Cys	Tyr	Pro	Gly	Val
	385					390					395					400
	Val	Gly	Lys	Ser	Ala	Ile	Gly	Glu	Thr	Ser	Tyr	Arg	Gly	Phe	Tyr	Arg
30					405					410					415	
	Ala	Tyr	Gln	Ala	His	Ile	Ser	Ser	Ser	Asn	Trp	Ala	Glu	Phe	Glu	Asn
				420					425					430		
	Ala	Ser	Arg	Asn	Trp	His	Thr	Glu	Leu	Thr	Lys	Thr	Thr	Asp	Arg	
			435					440					445			
35																
		<2	10>	24												
		<2	11>	451												
		<2	12>	PRT												
	<213>			Arti	fici	al S	Seque	nce								

275

<220>

<223> A polypeptide encoded by SEQ ID NO:13

<400> 24 5 Met Arg Gln Ala Ile Met Ser Tyr Gln Asn Leu Val Ser Glu Ala Gly Leu Thr Gln Lys His Leu Ile Tyr Gly Asp Lys Glu Leu Phe Gln His 25 Glu Leu Lys Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp 10 Ser Leu Ile Pro Ser Pro Gly Asp Tyr Val Lys Ala Lys Met Gly Val 55 Asp Glu Val Ile Val Ser Arg Gln Asn Asp Gly Ser Val Arg Ala Phe 70 15 Leu Asn Val Cys Arg His Arg Gly Lys Thr Ile Val Asp Ala Glu Ala Gly Asn Ala Lys Gly Phe Val Cys Gly Tyr His Gly Trp Gly Tyr Gly 105 Ser Asn Gly Glu Leu Gln Ser Val Pro Phe Glu Lys Glu Leu Tyr Gly 20 115 120 Asp Ala Ile Lys Lys Lys Cys Leu Gly Leu Lys Glu Val Pro Arg Ile 135 Glu Ser Phe His Gly Phe Ile Tyr Gly Cys Phe Asp Ala Glu Ala Pro 150 155 25 Pro Leu Ile Asp Tyr Leu Gly Asp Val Ala Trp Tyr Leu Glu Pro Thr 165 170 Phe Lys His Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Ala Lys Val 185 Val Val Lys Gly Asn Trp Lys Val Phe Ala Glu Asn Phe Val Gly Asp 30 195 200 Ile Tyr His Ile Gly Trp Thr His Ala Ser Ile Leu Arg Ala Gly Gln 215 Ala Ile Phe Ala Pro Leu Ala Gly Asn Ala Met Leu Pro Pro Glu Gly 225 230 235 35 Thr Gly Leu Gln Ala Thr Thr Lys Tyr Gly Ser Gly Ile Gly Val Ser 250 Leu Asp Ala Tyr Ser Gly Val Gln Ser Ala Asp Leu Val Pro Glu Met Met Ala Phe Gly Gly Ala Lys Gln Glu Lys Leu Ala Lys Glu Ile Gly

280

285

	Asp	Val	Arg	Ala	Arg	Ile	Tyr	Arg	Ser	Gln	Val	Asn	Gly	Thr	Val	Phe	
		290					295					300					
	Pro	Asn	Asn	Cys	Phe	Leu	Thr	Gly	Ala	Gly	Val	Phe	Lys	Val	Phe	Asn	
	305					310					315					320	
5	Pro	Ile	Asp	Glu	Asn	Thr	Thr	Glu	Ala	${\tt Trp}$	Thr	Tyr	Ala	Ile	Val	Glu	
					325					330					335		
	Lys	Asp	Met	Pro	Glu	Asp	Leu	Lys	Arg	Arg	Leu	Ala	Asp	Ala	Ala	Gln	
				340					345					350			
	Arg	Ser	Val	Gly	Pro	Ala	Gly	Tyr	Trp	Glu	Ser	Asp	Asp	Asn	Asp	Asn	
10			355					360					365				
	Met	Val	Leu	Ser	Gln	Asn	Ala	Lys	Lys	Tyr	Gln	Ser	Ser	Asn	Ser	Asp	
		370					375					380					
	Leu	Ile	Ala	Asp	Leu	Gly	Phe	Gly	Lys	Asp	Val	Tyr	Gly	Asp	Glu	Cys	
	385					390					395					400	
15	Tyr	Pro	Gly	Val	Val	Ser	Lys	Ser	Ala	Phe	Ser	Glu	Thr	Asn	His	Arg	
					405					410					415		
	Gly	Phe	Tyr	Arg	Ala	Tyr	Gln	Ala	His	Ile	Ser	Ser	Ser	Asn	Trp	Ala	
				420					425					430			
	Glu	Phe	Glu	Asn	Thr	Ser	Arg	Asn	Trp	His	Thr	Glu	Leu	Thr	Lys	Thr	
20			435					440					445				
	Thr	Asp	Arg														
		450															
		<2	210>	25													
25		<2	211>	2265	5												
		<2	212>	DNA													
		<2	213>	Pset	ıdomo	onas	sp.										
		< 4	100>	25													
30	gagg	gtag	gag	aaato	gaat	g co	cctt	gcat	caa	iggto	ggt	ttga	cgtt	tg (cacaç	gcaaa	60
	gccc	tgte	geg (cacco	gtga	ac ac	cagaa	acato	aaa	acat	atc	cagt	caag	gat 1	gaga	acctg	120
	cgcg	taat	ga ·	ttgat	ttga	ag ct	aaga	attt	: taa	cago	gagg	caco	ccgg	ge (cctag	gagcgt	180
	aato	acco	cc i	atte	atct	t tt	ttaç	ggtga	ı aaa	cate	gaat	taca	ataa	ıta a	aaato	ttggt	240
	aagt	gaat	ct	ggtct	gago	cc aa	aago	cacct	gat	tcat	ggc	gate	jaaga	ac t	tttc	caaca	300
35	tgaa	ctga	aaa a	accat	tttt	g cg	acaa	acto	gct	tttt	ctc	acto	atga	ıta ç	goots	gattcc	360
	tgcc	cccg	gc g	gacta	ıtgtt	a co	gcaa	aaat	ggg	gatt	gac	gagg	tcat	.cg t	ctcc	eggca	420
	gaac	gaco	igt i	tcgat	tcgt	g ct	tttc	tgaa	cgt	ttg	cgg	cato	gtgg	jca a	agaco	gctggt	480
	gago	gtgg	yaa 🤉	gccgc	jca at	g co	caaag	gttt	tgt:	ttgo	agc	tato	acgg	jet g	gggg	ettcgg	540
	ctcc	aacc	gt (gaact	gcag	ja go	gtto	catt	: tga	aaaa	ıgat	ctgt	acgg	geg a	agtc	jctcaa	600
40	taaa	aaat	gt (etggg	gtto	ga aa	agaag	gtaga	teg	cgto	gag	agct	tcca	itg 9	gctto	atcta	660

```
eggttgette gaccaggagg ecceteetet tatggactat etgggtgacg etgettggta
                                                                          720
   cctqqaacct atgttcaagc attccggcgg tttagaactg gtcggtcctc caggcaaggt
                                                                          780
   tgtgatcaag gccaactgga aggcacccgc ggaaaacttt gtgggagatg cataccacgt
                                                                          840
   gggttggacg cacgcgtctt cgcttcgctc gggggagtct atcttctcgt cgctcgctgg
                                                                          900
 5 caatgeggeg ctaccacetg aaggegeagg ettgeaaatg aceteeaaat aeggeagegg
                                                                          960
   catgggtgtg ttgtgggacg gatattcagg tgtgcatagc gcagacttgg ttccggaatt
                                                                         1020
   gatggcattc ggaggcgcaa agcaggaaag gctgaacaaa gaaattggcg atgttcgcgc
                                                                         1080
   teggatttat egeagecace teaactgeac egtttteeeg aacaacagea tgetgaeetg
                                                                         1140
   ctcgggtgtt ttcaaagtat ggaacccgat cgacgcaaac accaccgagg tctggaccta
                                                                         1200
10 cgccattgtc gaaaaagaca tgcctgagga tctcaagcgc cgcttggccg actctgttca
                                                                         1260
   gcgaacgttc gggcctgctg gcttctggga aagcgacgac aatgacaata tggaaacagc
                                                                         1320
  ttegeaaaac ggeaagaaat ateaateaag agatagtgat etgettteaa acettggttt
                                                                         1380
  cggtgaggac gtatacggcg acgcggtcta tccaggcgtc gtcggcaaat cggcgatcgg
                                                                         1440
  cgagaccagt tategtggtt tetaceggge ttaccaggea caegtcagea getecaactg
                                                                         1500
15 ggctgagttc gagcatgcct ctagtacttg gcatactgaa cttacqaaga ctactgatcq
                                                                         1560
  ctaacagacg agtcgaccat gatgatcaat attcaagaag acaagctggt ttccqcccac
                                                                         1620
  gacgccgaag agattetteg tttetteaat tgccacgact etgetttgca acaagaagee
                                                                         1680
  actacgctgc tgacccagga agcgcatttg ttggacattc aggcttaccg tgcttggtta
                                                                         1740
  gagcactgcg tggggtcaga ggtqcaatat cagqtcattt cacqcqaact gcqcqcaqct
                                                                         1800
20 tcagagcgtc gttataagct caatgaagcc atgaacgttt acaacgaaaa ttttcagcaa
                                                                         1860
  ctgaaagttc gagttgagca tcaactggat ccgcaaaact ggggcaacag cccgaagctg
                                                                         1920
  cgctttactc gctttatcac caacgtccag gccgcaatgg acgtaaatga caaagagcta
                                                                        1980
  cttcacatcc getecaaegt cattctgcac cgggcacgac gtggcaatca ggtcgatgtc
                                                                        2040
  ttctacgccg cccgggaaga taaatggaaa cgtggcgaag gtggagtacg aaaattggtc
                                                                         2100
25 cagcgattcg tcgattaccc agagcgcata cttcagacgc acaatctgat ggtctttctg
                                                                        2160
  tgattcagtg accattttta caaatggtca ctgcaaccgc ggtcaccatt aatcaaaggg
                                                                         2220
  aatgtacgtg tatgggcaat caacaagtcg tttcgataac cggtg
                                                                        2265
```

<210> 26
30 <211> 449
 <212> PRT
 <213> Pseudomonas sp.

<400> 26

35 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln

1 5 10 15

Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys

20 25 30

Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile

40 35 40 45

	Pro	Ala	Pro	Gly	Asp	Tyr	Val	Thr	Ala	Lys	Met	Gly	Ile	Asp	Glu	Val
		50					55					60				
	Ile	Val	Ser	Arg	Gln	Asn	Asp	Gly	Ser	Ile	Arg	Ala	Phe	Leu	Asn	Val
	65					70					75					80
5	Cys	Arg	His	Arg	Gly	Lys	Thr	Leu	Val	Ser	Val	Glu	Ala	Gly	Asn	Ala
					85					90					95	
	Lys	Gly	Phe	Val	Cys	Ser	Tyr	His	Gly	Trp	Gly	Phe	Gly	Ser	Asn	Gly
				100					105					110		
	Glu	Leu	Gln	Ser	Val	Pro	Phe	Glu	Lys	Asp	Leu	Tyr	Gly	Glu	Ser	Leu
10			115					120					125			
	Asn	Lys	ьуs	Сув	Leu	Gly	Leu	Lys	Glu	Val	Ala	Arg	۷al	Glu	Ser	Phe
		130					135					140				
	His	Gly	Phe	Ile	Tyr	Gly	Cys	Phe	Asp	Gln	Glu	Ala	Pro	Pro	Leu	Met
	145					150					155					160
15	Asp	Tyr	Leu	Gly	Asp	Ala	Ala	Trp	Tyr	Leu	Glu	Pro	Met	Phe	Lys	His
					165					170					175	
	ser	Gly	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Val	Ile	Lys
				180					185					190		
	Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His
20			195					200					205			
	Val	Gly	Trp	Thr	His	Ala	Ser	Ser	Leu	Arg	Ser	Gly	Glu	Ser	Ile	Phe
		210					215					220				
	Ser	Ser	Leu	Ala	Gly	Asn	Ala	Ala	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
	225					230					235					240
25	Gln	Met	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	٧al	Leu	Trp	Asp	Gly
					245					250					255	
	Tyr	Ser	Gly	Val	His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu	Met	Ala	Phe
				260					265					270		
	Gly	Gly	Ala	Lys	Gln	Glu	Arg	Leu	Asn	Lys	Glu	Ile	Gly	Asp	Val	Arg
30			275					280					285			
	Ala	Arg	Ile	Tyr	Arg	Ser	His	Leu	Asn	Cys	Thr	Val	Phe	Pro	Asn	Asn
		290					295					300				
	Ser	Met	Leu	Thr	Cys	Ser	Gly	Val	Phe	Lys	Val	Trp	Asn	Pro	Ile	Asp
	305					310					315					320
35	Ala	Asn	Thr	Thr	Glu	Val	Trp	Thr	Tyr	Ala	Ile	Val	Glu	Lys	Asp	Met
					325					330					335	
	Pro	Glu	Asp	Leu	Lys	Arg	Arg	Leu	Ala	Asp	Ser	Val	Gln	Arg	Thr	Phe
				340					345					350		
	Gly	Pro	Ala	Gly	Phe	Trp	Glu	Ser	Asp	Asp	Asn	Asp	Asn	Met	Glu	Thr
40			355					360					365			

Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu 370 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro 395 390 5 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe 410 405 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe 425 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp 10 435 440 445 Arg

<210> 27

15 <211> 2265

<212> DNA

<213> Artificial Sequence

<220>

20 <223> A modified DNA sequence

<400> 27

gagggtagag aaatcgaatg ccccttgcat caaggteggt ttgacgtttg cacaggcaaa 60 gccctgtgcg cacccgtgac acagaacatc aaaacatatc cagtcaagat tgagaacctg 120 25 cgcgtaatga ttgatttgag ctaagaattt taacaggagg caccccgggc cctagagcgt 180 aatcacccc attccatctt ttttaggtga aaacatgaat tacaataata aaatcttggt 240 aagtgaatct ggtctgagcc aaaagcacct gattcatggc gatgaagaac ttttccaaca 300 tgaactgaaa accatttttg cgcggaactg gctttttctc actcatgata gcctgattcc 360 tgcccccggc gactatqtta ccgcaaaaat ggggattgac gaggtcatcg tctcccggca 420 480 30 gaacgacggt tegattegtg ettttetgaa egtttgeegg categtggea agaegetggt gagogtggaa googgcaatg ccaaaggttt tgtttgcage tatcacggct ggggcttcgg 540 ctccaacggt gaactgcaga gcgttccatt tgaaaaaagat ctgtacggcg agtcgctcaa 600 taaaaaatgt ctggggttga aagaagtcgc tcgcgtggag agcttccatg gcttcatcta 660 eggttgette gaccaggagg ceceteetet tatggactat etgggtgacg etgettggta 720 35 cctggaacct atgttcaagc attccggcgg tttagaactg gtcggtcctc caggcaaggt 780 840 tgtgatcaag gccaactgga aggcacccgc ggaaaacttt gtgggagatg cataccacgt gggttggacg cacgcgtctt cgcttcgctc gggggagtct atcttctcgt cgctcgctgg 900 960 caatgeggeg ctaccacctg aaggegeagg cttgcaaatg acctecaaat aeggeagegg catgggtgtg ttgtgggacg gatattcagg tgtgcatagc gcagacttgg ttccggaatt 1020 40 gatggcattc ggaggcgcaa agcaggaaag gctgaacaaa gaaattggcg atgttcgcgc 1080

```
teggatttat egeageeace teaactgeae egtttteeeg aacaacagea tgetgaeetg
                                                                         1140
   ctegggtgtt ttcaaagtat ggaaccegat cgacgcaaac accaccgagg tctggaccta
                                                                         1200
   cgccattgtc gaaaaagaca tgcctgagga tctcaagcgc cgcttggccg actctgttca
                                                                         1260
   gegaaeggge gggeetgetg gettetggga aagegaegae aatgaeaata tggaaaeage
                                                                         1320
 5 ttcgcaaaac ggcaagaaat atcaatcaag agatagtgat ctgctttcaa accttggttt
                                                                         1380
   eggtgaggae gtataeggeg aegeggteta tecaggegte gteggeaaat eggegategg
                                                                         1440
   cgagaccagt tatcgtggtt tctaccgggc ttaccaggca cacgtcagca gctccaactg
                                                                         1500
   ggctgagttc gagcatgcct ctagtacttg gcatactgaa cttacgaaga ctactgatcg
                                                                         1560
   ctaacagacg agtcgaccat gatgatcaat attcaagaag acaagctggt ttccgcccac
                                                                         1620
10 gacgccgaag agattetteg tttetteaat tgccacgact etgetttgca acaagaagee
                                                                         1680
   actacgctgc tgacccagga agcgcatttg ttggacattc aggcttaccg tgcttggtta
                                                                         1740
   gagcactgcg tggggtcaga ggtgcaatat caggtcattt cacgcgaact gcgcgcagct
                                                                         1800
   tcagagcgtc gttataagct caatgaagcc atgaacgttt acaacgaaaa ttttcagcaa
                                                                         1860
   ctgaaagttc gagttgagca tcaactggat ccgcaaaact ggggcaacag cccgaagctg
                                                                         1920
15 cgctttactc gctttatcac caacgtccag gccgcaatgg acgtaaatga caaagagcta
                                                                         1980
   cttcacatcc gctccaacgt cattctgcac cgggcacgac gtggcaatca ggtcgatgtc
                                                                         2040
   ttctacgccg cccgggaaga taaatggaaa cgtggcgaag gtggagtacg aaaattggtc
                                                                         2100
   cagegatteg tegattacce agagegeata etteagaege acaatetgat ggtetttetg
                                                                         2160
   tgattcagtg accattttta caaatggtca ctgcaaccgc ggtcaccatt aatcaaaggg
                                                                         2220
20 aatgtacgtg tatgggcaat caacaagtcg tttcgataac cggtg
                                                                         2265
         <210> 28
         <211> 2265
         <212> DNA
25
         <213> Artificial Sequence
         <220>
         <223> A modified DNA sequence
30
         <400> 28
  gagggtagag aaatcgaatg ccccttgcat caaggtcggt ttgacgtttg cacaggcaaa
                                                                           60
  gccctgtgcg cacccgtgac acagaacatc aaaacatatc cagtcaagat tgagaacctg
                                                                          120
  cgcgtaatga ttgatttgag ctaagaattt taacaggagg caccccgggc cctagagcgt
                                                                          180
  aatcaccccc attccatctt ttttaggtga aaacatgaat tacaataata aaatcttggt
                                                                          240
35 aagtgaatet ggtetgagee aaaageaeet gatteatgge gatgaagaae ttttecaaca
                                                                          300
  tgaactgaaa accatttttg cgcggaactg gctttttctc actcatgata gcctgattcc
                                                                          360
  tgcccccggc gactatgtta ccgcaaaaat ggggattgac gaggtcatcg tctcccggca
                                                                          420
  gaacgacggt tegattegtg ettttetgaa egtttgeegg categtggea agaegetggt
                                                                          480
```

gagcgtggaa geeggeaatg eeaaaggttt tgtttgeage tateaegget ggggettegg

40 ctccaacggt gaactgcaga gcgttccatt tgaaaaagat ctgtacggcg agtcgctcaa

540

600

```
taaaaaatqt ctqqqqttga aaqaagtcgc tcgcgtggag agcttccatg gcttcatcta
                                                                          660
   cggttgcttc gaccaggagg cccctcctct tatggactat ctgggtgacg ctgcttggta
                                                                          720
   cctggaacct atgttcaagc attccggcgg tttagaactg gtcggtcctc caggcaaggt
                                                                          780
   tgtgatcaag gccaactgga aggcacccgc ggaaaacttt gtgggagatg cataccacgt
                                                                          840
 5 gggttggacg cacgcgtctt cgcttcgctc gggggagtct atcttctcgt cgctcgctgg
                                                                          900
                                                                          960
   caatgeggeg ctaccacetg aaggegeagg cttgcaaatg acctecaaat acggeagegg
                                                                         1020
   catgggtgtg ttgtgggacg gatattcagg tgtgcatagc gcagacttgg ttccggaatt
  qatqqcattc qqaqqcqcaa aqcaqqaaag gctgaacaaa gaaattggcg atgttcgcgc
                                                                         1080
   toggatttat ogcagocaco toaactgoac ogttttocog aacaacagoa tgotgacotg
                                                                         1140
10 ctcgggtgtt ttcaaagtat ggaacccgat cgacgcaaac accaccgagg tctggaccta
                                                                         1200
  cqccattqtc qaaaaaqaca tqcctqaqqa tctcaagcgc cgcttggccg actctgttca
                                                                         1260
  gcgaacggcc gggcctgctg gcttctggga aagcgacgac aatgacaata tggaaacagc
                                                                         1320
  ttcgcaaaac ggcaagaaat atcaatcaag agatagtgat ctgctttcaa accttggttt
                                                                         1380
  eggtgaggae gtataeggeg aegeggteta tecaggegte gteggeaaat eggegategg
                                                                         1440
15 cgagaccagt tatcgtggtt tctaccgggc ttaccaggca cacgtcagca gctccaactg
                                                                         1500
  ggotgagtto gagoatgoot ctaqtacttg goatactgaa cttacgaaga ctactgatcq
                                                                         1560
  ctaacagacg agtcgaccat gatgatcaat attcaagaag acaagctggt ttccgcccac
                                                                         1620
  gacgccgaag agattcttcg tttcttcaat tgccacgact ctgctttgca acaagaagcc
                                                                         1680
  actacgctgc tgacccagga agegcatttg ttggacattc aggcttaccg tgcttggtta
                                                                         1740
20 gagcactgcg tggggtcaga ggtgcaatat caggtcattt cacgcgaact gcgcgcagct
                                                                         1800
  tcagagcgtc gttataagct caatgaagcc atgaacgttt acaacgaaaa ttttcagcaa
                                                                         1860
  ctgaaagttc gagttgagca tcaactggat ccgcaaaact ggggcaacag cccgaagctg
                                                                         1920
  cgctttactc gctttatcac caacgtccag gccgcaatgg acgtaaatga caaagagcta
                                                                         1980
  cttcacatcc gctccaacgt cattctgcac cgggcacgac gtggcaatca ggtcgatgtc
                                                                         2040
25 ttctacgccg cccgggaaga taaatggaaa cgtggcgaag gtggagtacg aaaattggtc
                                                                         2100
  cagcgattcg togattaccc agagcgcata cttcagacgc acaatctgat ggtctttctg
                                                                         2160
  tgattcagtg accattttta caaatggtca ctgcaaccgc ggtcaccatt aatcaaaggg
                                                                         2220
  aatgtacgtg tatgggcaat caacaagtcg tttcgataac cggtg
                                                                         2265
30
         <210> 29
         <211> 2265
         <212> DNA
         <213> Artificial Sequence
35
        <220>
        <223> A modified DNA sequence
```

<400> 29

gagggtagag aaatcgaatg ccccttgcat caaggtcggt ttgacgtttg cacaggcaaa 60
40 gccctgtgcg cacccgtgac acagaacatc aaaacatatc cagtcaagat tgagaacctg 120

```
cgcgtaatga ttgatttgag ctaagaattt taacaggagg caccccgggc cctagagcgt
                                                                         180
  aatcaccccc attccatctt ttttaggtga aaacatgaat tacaataata aaatcttggt
                                                                         240
  aagtgaatet ggtetgagee aaaageaeet gatteatgge gatgaagaae ttttecaaca
                                                                         300
  tgaactgaaa accatttttg cgeggaactg getttttete acteatgata geetgattee
                                                                         360
5 tgcccccggc gactatgtta ccgcaaaaat ggggattgac gaggteatcg tctcccggca
                                                                          420
  gaacgacggt tegattegtg ettttetgaa egtttgeegg eategtggea agaegetggt
                                                                         480
                                                                          540
  gagegtggaa geeggeaatg eeaaaggttt tgtttgeage tateaegget ggggettegg
  ctccaacggt gaactgcaga gcgttccatt tgaaaaagat ctgtacggcg agtcgctcaa
                                                                          600
  taaaaaatgt ctggggttga aagaagtcgc tcgcgtggag agcttccatg gcttcatcta
                                                                          660
10 cggttgcttc gaccaggagg cccctcctct tatggactat ctgggtgacg ctgcttggta
                                                                          720
  cctggaacct atgttcaagc attccggcgg tttagaactg gtcggtcctc caggcaaggt
                                                                          780
  tgtgatcaag gccaactgga aggcacccgc ggaaaacttt gtgggagatg cataccacgt
                                                                          840
  gggttggacg cacgcgtett cgettegete gggggagtet atettetegt egetegetgg
                                                                          900
  caatgcggcg ctaccacctg aaggcgcagg cttgcaaatg acctccaaat acggcagcgg
                                                                          960
15 catgggtgtg ttgtgggacg gatattcagg tgtgcatagc gcagacttgg ttccggaatt
                                                                         1020
                                                                         1080
  gatggcattc ggaggcgcaa agcaggaaag gctgaacaaa gaaattggcg atgttcgcgc
  toggatttat ogcagocaco toaactgoac ogttttocog aacaacagoa tgotgacotg
                                                                         1140
                                                                         1200
  ctcgggtgtt ttcaaagtat ggaacccgat cgacgcaaac accaccgagg tctggaccta
  cgccattgtc gaaaaagaca tgcctgagga tctcaagcgc cgcttggccg actctgttca
                                                                         1260
20 gcgaacgacc gggcctgctg gcttctggga aagcgacgac aatgacaata tggaaacagc
                                                                         1320
                                                                         1380
  ttcgcaaaac ggcaagaaat atcaatcaag agatagtgat ctgctttcaa accttggttt
                                                                         1440
  cggtgaggac gtatacggcg acgcggtcta tccaggcgtc gtcggcaaat cggcgatcgg
  cgagaccagt tatcgtggtt tctaccgggc ttaccaggca cacgtcagca gctccaactg
                                                                         1500
   ggctgagttc gagcatgcct ctagtacttg gcatactgaa cttacgaaga ctactgatcg
                                                                         1560
25 ctaacagacg agtcgaccat gatgatcaat attcaagaag acaagctggt ttccgcccac
                                                                         1620
   gacgccgaag agattcttcg tttcttcaat tgccacgact ctgctttgca acaagaagcc
                                                                         1680
                                                                         1740
   actacgctgc tgacccagga agcgcatttg ttggacattc aggcttaccg tgcttggtta
   gagcactgcg tggggtcaga ggtgcaatat caggtcattt cacgcgaact gcgcgcagct
                                                                         1800
                                                                         1860
   tcagagcgtc gttataagct caatgaagcc atgaacgttt acaacgaaaa ttttcagcaa
30 ctgaaagttc gagttgagca tcaactggat ccgcaaaact ggggcaacag cccgaagctg
                                                                         1920
   cgctttactc gctttatcac caacgtccag gccgcaatgg acgtaaatga caaagagcta
                                                                         1980
   cttcacatcc gctccaacgt cattctgcac cgggcacgac gtggcaatca ggtcgatgtc
                                                                         2040
                                                                         2100
   ttctacgccg cccgggaaga taaatggaaa cgtggcgaag gtggagtacg aaaattggtc
                                                                         2160
   cagogattcg togattaccc agagogoata cttcagacgc acaatctgat ggtctttctg
35 tgattcagtg accattttta caaatggtca ctgcaaccgc ggtcaccatt aatcaaaggg
                                                                         2220
                                                                         2265
   aatgtacgtg tatgggcaat caacaagtcg tttcgataac cggtg
```

<210> 30

<211> 2265

40 <212> DNA

<213> Artificial Sequence

<220>

<223> A modified DNA sequence

5

<400> 30

	<400	> 30					
	gagggtagag	aaatcgaatg	ccccttgcat	caaggtcggt	ttgacgtttg	cacaggcaaa	60
	gccctgtgcg	cacccgtgac	acagaacatc	aaaacatatc	cagtcaagat	tgagaacctg	120
	cgcgtaatga	ttgatttgag	ctaagaattt	taacaggagg	caccccgggc	cctagagcgt	180
10	aatcaccccc	attccatctt	ttttaggtga	aaacatgaat	tacaataata	aaatcttggt	240
	aagtgaatct	ggtctgagcc	aaaagcacct	gattcatggc	gatgaagaac	ttttccaaca	300
	tgaactgaaa	accatttttg	cgcggaactg	gctttttctc	actcatgata	gcctgattcc	360
	tgcccccggc	gactatgtta	ccgcaaaaat	ggggattgac	gaggtcatcg	tctcccggca	420
	gaacgacggt	tcgattcgtg	cttttctgaa	cgtttgccgg	catcgtggca	agacgctggt	480
15	gagcgtggaa	gccggcaatg	ccaaaggttt	tgtttgcagc	tatcacggct	ggggcttcgg	540
	ctccaacggt	gaactgcaga	gcgttccatt	tgaaaaagat	ctgtacggcg	agtcgctcaa	600
	taaaaaatgt	ctggggttga	aagaagtcgc	tcgcgtggag	agcttccatg	gcttcatcta	660
	cggttgcttc	gaccaggagg	cccctcctct	tatggactat	ctgggtgacg	ctgcttggta	720
	cctggaacct	atgttcaagc	attccggcgg	tttagaactg	gtcggtcctc	caggcaaggt	780
20	tgtgatcaag	gccaactgga	aggcacccgc	ggaaaacttt	gtgggagatg	cataccacgt	840
	gggttggacg	cacgcgtctt	cgcttcgctc	gggggagtct	atcttctcgt	cgctcgctgg	900
	caatgcggcg	ctaccacctg	aaggcgcagg	cttgcaaatg	acctccaaat	acggcagcgg	960
	catgggtgtg	ttgtgggacg	gatattcagg	tgtgcatagc	gcagacttgg	ttccggaatt	1020
	gatggcattc	ggaggcgcaa	agcaggaaag	gctgaacaaa	gaaattggcg	atgttcgcgc	1080
25	tcggatttat	cgcagccacc	tcaactgcac	cgttttcccg	aacaacagca	tgctgacctg	1140
	ctcgggtgtt	ttcaaagtat	ggaacccgat	cgacgcaaac	accaccgagg	tctggaccta	1200
	cgccattgtc	gaaaaagaca	tgcctgagga	tctcaagcgc	cgcttggccg	actctgttca	1260
	gcgaacgctc	gggcctgctg	gcttctggga	aagcgacgac	aatgacaata	tggaaacagc	1320
	ttcgcaaaac	ggcaagaaat	atcaatcaag	agatagtgat	ctgctttcaa	accttggttt	1380
30	cggtgaggac	gtatacggcg	acgcggtcta	tccaggcgtc	gtcggcaaat	cggcgatcgg	1440
	cgagaccagt	tatcgtggtt	tctaccgggc	ttaccaggca	cacgtcagca	gctccaactg	1500
	ggctgagttc	gagcatgcct	ctagtacttg	gcatactgaa	cttacgaaga	ctactgatcg	1560
	ctaacagacg	agtcgaccat	gatgatcaat	attcaagaag	acaagctggt	ttccgcccac	1620
	gacgccgaag	agattcttcg	tttcttcaat	tgccacgact	ctgctttgca	acaagaagcc	1680
35	actacgctgc	tgacccagga	agegeatttg	ttggacattc	aggcttaccg	tgcttggtta	1740
	gagcactgcg	tggggtcaga	ggtgcaatat	caggtcattt	cacgcgaact	gcgcgcagct	1800
	tcagagcgtc	gttataagct	caatgaagcc	atgaacgttt	acaacgaaaa	ttttcagcaa	1860
		gagttgagca					1920
		gctttatcac					1980
40	cttcacatcc	gctccaacgt	cattctgcac	cgggcacgac	gtggcaatca	ggtcgatgtc	2040

ttctacgccg cccgggaaga taaatggaaa cgtggcgaag gtggagtacg aaaattggtc 2100 cagegatteg tegattacce agagegeata etteagaege acaatetgat ggtetttetg 2160 2220 tgattcagtg accattttta caaatggtca ctgcaaccgc ggtcaccatt aatcaaaggg aatgtacgtg tatgggcaat caacaagtcg tttcgataac cggtg 2265 5 <210> 31 <211> 2265 <212> DNA <213> Artificial Sequence 10 <220> <223> A modified DNA sequence <400> 31 15 gagggtagag aaatcgaatg ccccttgcat caaggtcggt ttgacgtttg cacaggcaaa 60 gccctgtgcg cacccgtgac acagaacatc aaaacatatc cagtcaagat tgagaacctg 120 cgcgtaatga ttgatttgag ctaagaattt taacaggagg caccccgggc cctagagcgt 180 aatcacccc attccatctt ttttaggtga aaacatgaat tacaataata aaatcttggt 240 aagtgaatct ggtctgagcc aaaagcacct gattcatggc gatgaagaac ttttccaaca 300 20 tgaactgaaa accatttttg cgcggaactg gctttttctc actcatgata gcctgattcc 360 tgcccccggc gactatgtta ccgcaaaaat ggggattgac gaggtcatcg tctcccggca 420 gaacgacggt tcgattcgtg cttttctgaa cgtttgccgg catcgtggca agacgctggt 480 gagcgtggaa gccggcaatg ccaaaggttt tgtttgcagc tatcacggct ggggcttcgg 540 ctccaacggt gaactgcaga gcgttccatt tgaaaaagat ctgtacggcg agtcgctcaa 600 25 taaaaaatgt ctggggttga aagaagtege tegegtggag agetteeatg getteateta 660 cggttgcttc gaccaggagg cccctcctct tatggactat ctgggtgacg ctgcttggta 720 cctggaacct atgttcaagc attccggcgg tttagaactg gtcggtcctc caggcaaggt 780 tgtgatcaag gccaactgga aggcacccgc ggaaaacttt gtgggagatg cataccacgt 840 900 gggttggacg cacgegtett egettegete gggggagtet atettetegt egetegetgg 960 30 caatgeggeg ctaccacctg aaggegcagg cttgcaaatg acctecaaat aeggcagegg catgggtgtg ttgtgggacg gatattcagg tgtgcatagc gcagacttgg ttccggaatt 1020 gatggcattc ggaggcgcaa agcaggaaag gctgaacaaa gaaattggcg atgttcgcgc 1080 teggatttat egeageeace teaactgeae egtttteeeg aacaacagea tgetgaeetg 1140 ctcgggtgtt ttcaaagtat ggaacccgat cgacgcaaac accaccgagg tctggaccta 1200 35 cgccattgtc gaaaaagaca tgcctgagga tctcaagcgc cgcttggccg actctgttca 1260 gcgaacgatc gggcctgctg gcttctggga aagcgacgac aatgacaata tggaaacagc 1320 ttcgcaaaac ggcaagaaat atcaatcaag agatagtgat ctgctttcaa accttggttt 1380 cggtgaggac gtatacggcg acgcggtcta tccaggcgtc gtcggcaaat cggcgatcgg 1440 cgagaccagt tatcgtggtt tctaccgggc ttaccaggca cacgtcagca gctccaactg 1500 40 ggctgagttc gagcatgcct ctagtacttg gcatactgaa cttacgaaga ctactgatcg 1560

				70			
	ctaacagacg	agtcgaccat	gatgatcaat	attcaagaag	acaagctggt	ttccgcccac	1620
	gacgccgaag	agattcttcg	tttcttcaat	tgccacgact	ctgctttgca	acaagaagcc	1680
	actacgctgc	tgacccagga	agcgcatttg	ttggacattc	aggettaceg	tgcttggtta	1740
	gagcactgcg	tggggtcaga	ggtgcaatat	caggtcattt	cacgcgaact	gcgcgcagct	1800
5	tcagagcgtc	gttataagct	caatgaagcc	atgaacgttt	acaacgaaaa	ttttcagcaa	1860
	ctgaaagttc	gagttgagca	tcaactggat	ccgcaaaact	ggggcaacag	cccgaagctg	1920
	cgctttactc	gctttatcac	caacgtccag	gccgcaatgg	acgtaaatga	caaagagcta	1980
	cttcacatcc	gctccaacgt	cattctgcac	cgggcacgac	gtggcaatca	ggtcgatgtc	2040
	ttctacgccg	cccgggaaga	taaatggaaa	cgtggcgaag	gtggagtacg	aaaattggtc	2100
10	cagcgattcg	tcgattaccc	agagcgcata	cttcagacgc	acaatctgat	ggtctttctg	2160
	tgattcagtg	accattttta	caaatggtca	ctgcaaccgc	ggtcaccatt	aatcaaaggg	2220
	aatgtacgtg	tatgggcaat	caacaagtcg	tttcgataac	cggtg		2265
	<210>	> 32					
15	<211;	449					
	<212>	> PRT					
	<213>	Artificial	Sequence				
	<220	•					
20	<223>	A polypept	ide encoded	d by SEQ ID	NO:27		
	<400>	32					
	Met Asn Tvi	Asn Asn Lv	s Ile Leu V	Jal Ser Glu	Ser Glv Lei	ı Ser Gln	

Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln 10 25 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys 25 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val 30 55 Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val 75 70 Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala 35 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly 105 Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu 120 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe 135 140

	His	Gly	Phe	Ile	Tyr	Gly	Cys	Phe	Asp	Gln	Glu	Ala	Pro	Pro	Leu	Met
	145					150					155					160
	Asp	Tyr	Leu	Gly	Asp	Ala	Ala	Trp	Tyr	Leu	Glu	Pro	Met	Phe	Lys	His
					165					170					175	
5	Ser	Gly	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Val	Ile	Lys
				180					185					190		
	Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His
			195					200					205			
	Val	Gly	Trp	Thr	His	Ala	Ser	Ser	Leu	Arg	Ser	Gly	Glu	Ser	Ile	Phe
10		210					215					220				
	Ser	Ser	Leu	Ala	Gly	Asn	Ala	Ala	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
	225					230					235					240
	Gln	Met	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	Val	Leu	Trp	Asp	Gly
					245					250					255	
15	Tyr	Ser	Gly	Val	His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu	Met	Ala	Phe
				260					265					270		
	Gly	Gly	Ala	Lys	Gln	Glu	Arg	Leu	Asn	Lys	Glu	Ile	Gly	Asp	Val	Arg
			275					280					285			
	Ala	Arg	Ile	Tyr	Arg	Ser	His	Leu	Asn	Cys	Thr	Val	Phe	Pro	Asn	Asn
20		290					295					300				
	Ser	Met	Leu	Thr	Cys	Ser	Gly	Val	Phe	Lys	Val	Trp	Asn	Pro	Ile	Asp
	305					310					315					320
	Ala	Asn	Thr	Thr	Glu	Val	Trp	Thr	Tyr	Ala	Ile	Val	Glu	Lys	Asp	Met
					325					330					335	
25	Pro	Glu	Asp	Leu	Lys	Arg	Arg	Leu	Ala	Asp	Ser	Val	Gln	Arg	Thr	Gly
				340					345					350		
	Gly	Pro	Ala	Gly	Phe	Trp	Glu	Ser	Asp	Asp	Asn	Asp	Asn	Met	Glu	Thr
			355					360					365			
	Ala		Gln	Asn	Gly	Lys	Lys	Tyr	Gln	Ser	Arg	Asp	Ser	Asp	Leu	Leu
30		370					375					380				
		Asn	Leu	Gly	Phe		Glu	Asp	Val	Tyr	Gly	Asp	Ala	Val	Tyr	
	385					390					395					400
	Gly	Val	Val	Gly		Ser	Ala	Ile	Gly	Glu	Thr	Ser	Tyr	Arg		Phe
					405					410					415	
35	Tyr	Arg	Ala		Gln	Ala	His	Val		Ser	Ser	Asn	Trp		Glu	Phe
	a 1			420	~	1	_	1	425		_			430		_
	GIU	HIS		ser	ser	ınr	Trp		Thr	Glu	Leu	Thr		Thr	Thr	Asp
	•		435					440					445			
	Arg															

<210> 33

```
<211> 449
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> A polypeptide encoded by SEQ ID NO:28
        <400> 33
10 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln
                                       10
  Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys
                                   25
  Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
15
                               40
  Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
  Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
                                           75
20 Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala
                   85
                                       90
  Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
               100
                                   105
  Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu
  Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
                           135
  His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met
30 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His
                                       170
  Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
              180
                                   185
  Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
35
                               200
  Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe
                           215
  Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu
                       230
                                           235
40 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
```

					245					250					255	
	Tyr	Ser	Gly	Val	His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu	Met	Ala	Phe
				260					265					270		
	Gly	Gly	Ala	Lys	Gln	Glu	Arg	Leu	Asn	Lys	Glu	Ile	Gly	Asp	Val	Arg
5			275					280					285			
	Ala	Arg	Ile	Tyr	Arg	Ser	His	Leu	Asn	Cys	Thr	Val	Phe	Pro	Asn	Asn
		290					295					300				
	Ser	Met	Leu	Thr	Cys	Ser	Gly	Val	Phe	Lys	Val	Trp	Asn	Pro	Ile	Asp
	305				,	310					315					320
10	Ala	Asn	Thr	Thr	Glu	Val	Trp	Thr	Tyr	Ala	Ile	Val	Glu	Lys	Asp	Met
					325					330					335	
	Pro	Glu	Asp	Leu	Lys	Arg	Arg	Leu	Ala	Asp	Ser	Val	Gln	Arg	Thr	Ala
				340					345					350		
	Gly	Pro	Ala	Gly	Phe	Trp	Glu	Ser	Asp	Asp	Asn	qaA	Asn	Met	Glu	Thr
15			355					360					365			
	Ala	Ser	Gln	Asn	Gly	Lys	Lys	Tyr	Gln	Ser	Arg	Asp	Ser	Asp	Leu	Leu
		370					375					380				
	Ser	Asn	Leu	Gly	Phe	Gly	Glu	Asp	Val	Tyr	Gly	Asp	Ala	Val	Tyr	Pro
	385					390					395					400
20	Gly	Val	Val	Gly	Lys	Ser	Ala	Ile	Gly	Glu	Thr	Ser	Tyr	Arg	Gly	Phe
					405					410					415	
	Tyr	Arg	Ala	Tyr	Gln	Ala	His	Val	Ser	Ser	Ser	Asn	Trp	Ala	Glu	Phe
				420					425					430		
	Glu	His	Ala	Ser	Ser	Thr	Trp	His	Thr	Glu	Leu	Thr	Lys	Thr	Thr	Asp
25			435					440					445			
	Arg															

<210> 34

30 <211> 449

<212> PRT

<213> Artificial Sequence

<220>

35 <223> A polypeptide encoded by SEQ ID NO:29

<400> 34

Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln

1 5 10 15

40 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys

				20					25					30		
	Thr	Ile	Phe	Ala	Arg	Asn	Trp	Leu	Phe	Leu	Thr	His	Asp	Ser	Leu	Ile
			35					40					45			
	Pro	Ala	Pro	Gly	Asp	Tyr	Val	Thr	Ala	Lys	Met	Gly	Ile	qaA	Glu	Val
5		50					55					60				
	Ile	Val	Ser	Arg	Gln	Asn	Asp	Gly	Ser	Ile	Arg	Ala	Phe	Leu	Asn	Val
	65					70					75					80
		Arg	His	Arg	Gly	Lys	Thr	Leu	Val	Ser	Val	Glu	Ala	Gly	Asn	Ala
	•	_			85					90					95	
10	Lys	Gly	Phe	Val	Cys	Ser	Tyr	His	Gly	Trp	Gly	Phe	Gly	Ser	Asn	Gly
	•	•		100					105					110		
	Glu	Leu	Gln	Ser	Val	Pro	Phe	Glu	Lys	Asp	Leu	Tyr	Gly	Glu	Ser	Leu
			115					120					125			
	Asn	Lvs	Lys	Cys	Leu	Gly	Leu	Lys	Glu	Val	Ala	Arg	Val	Glu	Ser	Phe
15		130	-	-			135					140				
	His	Gly	Phe	Ile	Tyr	Gly	Cys	Phe	Asp	Gln	Glu	Ala	Pro	Pro	Leu	Met
	145	_				150					155					160
	Asp	Tyr	Leu	Gly	Asp	Ala	Ala	Trp	Tyr	Leu	Glu	Pro	Met	Phe	Lys	His
					165					170					175	
20	Ser	Gly	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Val	Ile	Lys
				180					185					190		
	Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His
			195					200					205			
	Val	Gly	Trp	Thr	His	Ala	Ser	Ser	Leu	Arg	Ser	Gly	Glu	Ser	Ile	Phe
25		210					215					220				
	Ser	Ser	Leu	Ala	Gly	Asn	Ala	Ala	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
	225					230					235					240
	Gln	Met	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	Val	Leu	Trp	Asp	Gly
					245					250					255	
30	Tyr	Ser	Gly	Val	His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu	Met	Ala	Phe
				260	1				265					270		
	Gly	Gly	Ala	Lys	Gln	Glu	Arg	Leu	Asn	Lys	Glu	Ile	Gly	Asp	Val	Arg
			275					280					285			
	Ala	Arg	Ile	Туг	Arg	Ser	His	Leu	Asn	Cys	Thr	Val	Phe	Pro	Asn	Asn
35		290					295					300				
	Ser	Met	Leu	Thr	Cys	Ser	Gly	Val	Phe	Lys	Val	Trp	Asr	Pro	Ile	Asp
	305					310					315					320
	Ala	Asn	Thr	Thr	Glu	Val	Trp	Thr	Tyr	Ala	Ile	. Val	Glu	ı Lys		Met
					325					330					335	
40	Dro	<u>@1</u> ;;	λον	Ter	T.376	. Arc	Aro	r T.em	Δla	Asp	Ser	· Val	Glr	Arc	Thr	Thr

340 345 350 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr 360 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu 375 380 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro 390 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe 410 10 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp 435 440 445 Arg 15 <210> 35 <211> 449 <212> PRT <213> Artificial Sequence <220> <223> A polypeptide encoded by SEQ ID NO:30 <400> 35 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys 25 30 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile 40 Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val 55 Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly 105 40 Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu

			115					120					125			
	Asn	Lys	Lys	Cys	Leu	Gly	Leu	Lys	Glu	Va1	Ala	Arg	Val	Glu	Ser	Phe
		130					135					140				
	His	Gly	Phe	Ile	Tyr	Gly	Cys	Phe	Asp	Gln	Glu	Ala	Pro	Pro	Leu	Met
5	145					150					155					160
	Asp	Tyr	Leu	Gly	Asp	Ala	Ala	Trp	Tyr	Leu	Glu	Pro	Met	Phe	Lys	His
					165					170					175	
	Ser	Gly	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Val	Ile	Lys
				180					185					190		
10	Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His
			195					200					205			
	Val	Gly	Trp	Thr	His	Ala	Ser	Ser	Leu	Arg	Ser	Gly	Glu	Ser	Ile	Phe
		210					215					220				
	Ser	Ser	Leu	Ala	Gly	Asn	Ala	Ala	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
15	225					230					235					240
	Gln	Met	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	Val	Leu	Trp	Asp	Gly
					245					250					255	
	Tyr	ser	Gly	Val	His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu	Met	Ala	Phe
				260					265					270		
20	Gly	Gly	Ala	Lys	Gln	Glu	Arg	Leu	Asn	Lys	Glu	Ile	Gly	Asp	Val	Arg
			275					280					285			
	Ala	Arg	Ile	Tyr	Arg	Ser	His	Leu	Asn	Cys	Thr	Val	Phe	Pro	Asn	Asn
		290					295					300				
	Ser	Met	Leu	Thr	Cys	Ser	Gly	Val	Phe	Lys	Val	Trp	Asn	Pro	Ile	Asp
25	305					310					315					320
	Ala	Asn	Thr	Thr	Glu	Val	Trp	Thr	Tyr	Ala	Ile	Val	Glu	Lys	Asp	Met
					325					330					335	
	Pro	Glu	qaA	Leu	Lys	Arg	Arg	Leu	Ala	Asp	Ser	Val	Gln	Arg	Thr	Leu
				340					345					350		
30	Gly	Pro	Ala	Gly	Phe	Trp	Glu	Ser	Asp	Asp	Asn	Asp	Asn	Met	Glu	Thr
			355					360					365			
	Ala	Ser	Gln	Asn	Gly	Lys	Lys	Tyr	Gln	Ser	Arg	Asp	Ser	Asp	Leu	Leu
		370					375					380				
	Ser	Asn	Leu	Gly	Phe	Gly	Glu	Asp	Val	Tyr	Gly	Asp	Ala	Val	Tyr	Pro
35	385					390					395					400
	Gly	Val	Val	Gly	Lys	Ser	Ala	Ile	Gly	Glu	Thr	Ser	Tyr	Arg	Gly	Phe
					405					410					415	
	Tyr	Arg	Ala	Tyr	Gln	Ala	His	Val	Ser	Ser	Ser	Asn	Trp	Ala	Glu	Phe
				420					425					430		
40	Glu	His	Δla	Ser	Ser	Thr	Trn	Uie	Thr	alu.	Len	Thr	Tare	Thr	Thr	non.

435 440 445

Arg

5 <210> 36

<211> 449

<212> PRT

<213> Artificial Sequence

10 <220>

<223> A polypeptide encoded by SEQ ID NO:31

<400> 36

Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln

15 1 5 10 15

Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys

20 25 30

Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile 35 40 45

20 Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val

50 55 60

Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val

65 70 75 80

Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala
5 90 95

Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly

100 105 110

Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu

115 120 125

30 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe

130 135 140

His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met

145 150 155 **1**60

Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His

35 165 170 175

Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys

180 185 196

Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His

195 200 205

40 Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe

		210					215					220				
	Ser	Ser	Leu	Ala	Gly	Asn	Ala	Ala	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
	225					230					235					240
	Gln	Met	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	Val	Leu	Trp	Asp	Gly
5					245					250					255	
	Tyr	Ser	Gly	Val	His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu	Met	Ala	Phe
				260					265					270		
	Gly	Gly	Ala	Lуs	Gln	Glu	Arg	Leu	Asn	Lys	Glu	Ile	Gly	Asp	Val	Arg
			275					280					285			
10	Ala	Arg	Ile	Tyr	Arg	Ser	His	Leu	Asn	Суѕ	Thr	Val	Phe	Pro	Asn	Asn
		290					295					300				
	Ser	Met	Leu	Thr	Cys	Ser	Gly	Val	Phe	Lys	Val	Trp	Asn	Pro	Ile	Asp
	305					310					315					320
	Ala	Asn	Thr	Thr	Glu	Val	Trp	Thr	Tyr	Ala	Ile	Val	Glu	Lys	Asp	Met
15					325					330					335	
	Pro	Glu	Asp	Leu	ГЛа	Arg	Arg	Leu	Ala	Asp	Ser	Val	Gln	Arg	Thr	Ile
				340					345					350		
	Gly	Pro	Ala	Gly	Phe	Trp	Glu	Ser	Asp	Asp	Asn	Asp	Asn	Met	Glu	Thr
			355					360					365			
20	Ala	Ser	Gln	Asn	Gly	Lys	Lys	Tyr	Gln	Ser	Arg	Asp	Ser	Asp	Leu	Leu
		370					375					380				
	Ser	Asn	Leu	Gly	Phe	Gly	Glu	Asp	Val	Tyr	Gly	Asp	Ala	Val	Tyr	Pro
	385					390					395					400
	Gly	Val	Val	Gly	Lys	Ser	Ala	Ile	Gly	Glu	Thr	Ser	Tyr	Arg	Gly	Phe
25					405					410					415	
	Tyr	Arg	Ala	Tyr	Gln	Ala	His	Val	Ser	Ser	Ser	Asn	Trp	Ala	Glu	Phe
				420					425					430		
	Glu	His	Ala	Ser	Ser	Thr	Trp	His	Thr	Glu	Leu	Thr	Lys	Thr	Thr	Asp
			435					440					445			
30	Arg															

<210> 37

<211> 22

35 <212> DNA

<213> Artificial Sequence

<220>

<223> An oligonucleotide

	<400> 37	22
t	tcagcgaac ggtcgggcct gc	22
	<210> 38	
5	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
10	<223> An oligonucleotide	
	<400> 38	27
ç	gccgggcctc ttgcgggata tcgtcca	2,
15	<210> 39	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
20	<220>	
20	<223> An oligonucleotide	
	(225) All Oligonacional	
	<400> 39	
,	gttgccattg ctgcaggcat cgtggtg	27
25		
	<210> 40	
	<211> 33	
	<212> DNA	
	<213> Artificial Sequence	
30		
	<220>	
	<223> An oligonucleotide	
	<400> 40	33
35	gaggcacccg cggaagcttt tgtgggagat gca	33
	<210> 41	
	<211> 30	
	<212> DNA	
40		
77		

40

<210> 45

	<220>	
	<223> An oligonucleotide	
	<400> 41	30
5 g	gcacccgcgg aacaatttgt gggagatgca	30
	<210> 42	
	<211> 21	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
	<223> An oligonucleotide	
15	<400> 42	21
	ccgcggaaag ctttgtggga g	21
	•	
	<210> 43	
	<211> 24	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> An oligonucleotide	
25		
	<400> 43	24
	ccgcggaaaa gcttgtggga gatg	
	<210> 44	
30	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
35	<223> An oligonucleotide	
	<400> 44	23
	cgcggaaaac gttgtgggag atg	

```
<211> 23
        <212> DNA
        <213> Artificial Sequence
        <220>
5
        <223> An oligonucleotide
         <400> 45
                                                                            23
  atattcaggt gcgcatagcg cag
10
         <210> 46
         <211> 34
         <212> DNA
         <213> Artificial Sequence
15
         <220>
         <223> An oligonucleotide
         <400> 46
                                                                            34
20 ggacggatat tcagggctcc atagcgcaga cttg
         <210> 47
         <211> 33
         <212> DNA
         <213> Artificial Sequence
25
         <220>
         <223> An oligonucleotide
         <400> 47
30
                                                                             33
   gacggatatt caggtaacca tagcgcagac ttg
          <210> 48
          <211> 30
 35
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> An oligonucleotide
 40
```

	<400> 40	2.2
g	gtgttttca aagtcgcgaa cccgatcgac	30
	<210> 49	
5	<211> 26	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
10	<223> An oligonucleotide	
	<400> 49	26
C	tgttcagcg aaacttcggg cctgct	20
15	<210> 50	
	<211> 26	
	<212> DNA	
	<213> Artificial Sequence	
20	<220>	
	<223> An oligonucleotide	
	<400> 50	26
C	tgttcagcg aaggttcggg cctgct	26
25		
	<210> 51	
	<211> 26	
	<212> DNA	
	<213> Artificial Sequence	
30		
	<220>	
	<223> An oligonucleotide	
	<400> 51	26
35	ctgttcagcg aagcttcggg cctgct	26
	<210> 52	
	<211> 22	
	<212> DNA	
40	<213> Artificial Sequence	

	<220>	
	<223> An oligonucleotide	
	<400> 52	22
5 tt	cagegaae getegggeet ge	22
•		
	<210> 53	
	<211> 30	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
	<223> An oligonucleotide	
	<400> 53	30
g	geetgetgg ettegeggaa agegaegaea	30
	<210> 54	
	<211> 21	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> An oligonucleotide	
25	54	
	<400> 54	21
g	aaagcgacg ccaatgacaa t	
	<210> 55	
30	<211> 30	
30	<211> 30 <212> DNA	
	<213> Artificial Sequence	
	(413) o = 1	
	<220>	
35	<223> An oligonucleotide	
55		
	<400> 55	
á	acgacaatga caattgggaa acagcttcgc	30
40	<210> 56	

<211> 2265 <212> DNA

<213> Artificial Sequence

5 <220>

<223> A modified DNA sequence

<400> 56

gagggtagag aaatcgaatg ccccttgcat caaggtcggt ttgacgtttg cacaggcaaa 60 10 gccctgtgcg cacccgtgac acagaacatc aaaacatatc cagtcaagat tgagaacctg 120 cgcgtaatga ttgatttgag ctaagaattt taacaggagg caccccgggc cctagagcgt 180 aatcacccc attccatctt ttttaggtga aaacatgaat tacaataata aaatcttggt 240 aaqtqaatct gqtctqaqcc aaaaqcacct gattcatggc gatgaagaac ttttccaaca 300 tgaactgaaa accatttttg cgcggaactg gctttttctc actcatgata gcctgattcc 360 15 tgcccceggc gactatgtta ccgcaaaaat ggggattgac gaggtcatcg teteccggca 420 gaacgacggt tcgattcgtg cttttctgaa cgtttgccgg catcgtggca agacgctggt 480 gagegtggaa geeggeaatg ceaaaggttt tgtttgeage tateaegget ggggettegg 540 ctccaacggt gaactgcaga gcgttccatt tgaaaaagat ctgtacggcg agtcgctcaa 600 taaaaaatgt ctggggttga aagaagtcgc tcgcgtggag agcttccatg gcttcatcta 660 20 eggttgette gaccaggagg ceceteetet tatggactat etgggtgaeg etgettggta 720 cctggaacct atgttcaagc attccggcgg tttagaactg gtcggtcctc caggcaaggt 780 tgtgatcaag gccaactgga aggcacccgc ggaaaacttt gtgggagatg cataccacgt 840 gggttggacg cacgcgtctt cgcttcgctc gggggagtct atcttctcgt cgctcgctgg 900 caatgoggog ctaccacctg aaggogcagg cttgcaaatg acctccaaat acggcagcgg 960 25 catgggtgtg ttgtgggacg gatattcagg tgtgcatagc gcagacttgg ttccggaatt 1020 gatggcatte ggaggegcaa ageaggaaag getgaacaaa gaaattggeg atgttegege 1080 teggatttat egeageeace teaactgeac egtttteeeg aacaacagea tgetgacetg 1140 ctegggtgtt tteaaagtat ggaaccegat cgacgcaaac accacegagg tetggaccta 1200 cgccattgtc gaaaaagaca tgcctgagga tctcaagcgc cgcttggccg actctgttca 1260 30 gegaacgtgg gggeetgetg gettetggga aagegaegae aatgaeaata tggaaacage 1320 ttcgcaaaac ggcaagaaat atcaatcaag agatagtgat ctgctttcaa accttggttt 1380 cggtgaggac gtatacggcg acgeggteta tecaggcgtc gtcggcaaat cggcgatcgg 1440 cgagaccagt tatcgtggtt tctaccgggc ttaccaggca cacgtcagca gctccaactg 1500 ggctgagttc gagcatgcct ctagtacttg gcatactgaa cttacgaaga ctactgatcg 1560 35 ctaacagacg agtcgaccat gatgatcaat attcaagaag acaagctggt ttccgcccac 1620 gacgccgaag agattcttcg tttcttcaat tgccacgact ctgctttgca acaagaagcc 1680 actacgctgc tgacccagga agcgcatttg ttggacattc aggcttaccg tgcttggtta 1740 gagcactgcg tggggtcaga ggtgcaatat caggtcattt cacgcgaact gcgcgcagct 1800 tcagagcgtc gttataagct caatgaagcc atgaacgttt acaacgaaaa ttttcagcaa 1860 40 ctgaaagttc gagttgagca tcaactggat ccgcaaaact ggggcaacag cccgaagctg 1920

```
cgctttactc gctttatcac caacgtccag gccgcaatgg acgtaaatga caaagagcta
                                                                         1980
   cttcacatcc gctccaacgt cattctgcac cgggcacgac gtggcaatca ggtcgatgtc
                                                                         2040
   ttctacgccg cccgggaaga taaatggaaa cgtggcgaag gtggagtacg aaaattggtc
                                                                         2100
   cagegatteg tegattacce agagegeata etteagaege acaatetgat ggtetttetg
                                                                         2160
 5 tgattcagtg accattttta caaatggtca ctgcaaccgc ggtcaccatt aatcaaaggg
                                                                         2220
   aatgtacgtg tatgggcaat caacaagtcg tttcgataac cggtg
                                                                         2265
         <210> 57
         <211> 2265
10
         <212> DNA
         <213> Artificial Sequence
         <220>
         <223> A modified DNA sequence
15
         <400> 57
   gagggtagag aaatcgaatg ccccttgcat caaggtcggt ttgacgtttg cacaggcaaa
                                                                           60
  gccctgtgcg cacccgtgac acagaacatc aaaacatatc cagtcaagat tgagaacctg
                                                                          120
   cgcgtaatga ttgatttgag ctaagaattt taacaggagg caccccgggc cctagagcgt
                                                                          180
20 aatcacccc attccatctt ttttaggtga aaacatgaat tacaataata aaatcttggt
                                                                          240
   aagtgaatct ggtctgagcc aaaagcacct gattcatggc gatgaagaac ttttccaaca
                                                                          300
  tgaactgaaa accatttttg cgcggaactg gctttttctc actcatgata gcctgattcc
                                                                          360
  tgcccccggc gactatgtta ccgcaaaaat ggggattgac gaggtcatcg tctcccggca
                                                                          420
  gaacgacggt tcgattcgtg cttttctgaa cgtttgccgg catcgtggca agacgctggt
                                                                          480
25 gagcgtggaa gccggcaatg ccaaaggttt tgtttgcagc tatcacggct ggggcttcgg
                                                                          540
  ctccaacggt gaactgcaga gcgttccatt tgaaaaagat ctgtacggcg agtcgctcaa
                                                                          600
  taaaaaatgt ctggggttga aagaagtcgc tcgcgtggag agcttccatg gcttcatcta
                                                                          660
  eggttgette gaccaggagg eccetectet tatggactat etgggtgacg etgettggta
                                                                          720
  cctggaacct atgttcaagc attccggcgg tttagaactg gtcggtcctc caggcaaggt
                                                                          780
30 tgtgatcaag gccaactgga aggcacccgc ggaaaacttt gtgggagatg cataccacgt
                                                                          840
  gggttggacg cacgcgtett egettegete gggggagtet atettetegt egetegetgg
                                                                          900
  caatgcggcg ctaccacctg aaggcgcagg cttgcaaatg acctccaaat acggcagcgg
                                                                          960
  catgggtgtg ttgtgggacg gatattcagg tgtgcatagc gcagacttgg ttccggaatt
                                                                         1020
  gatggcattc ggaggcgcaa agcaggaaag gctgaacaaa gaaattggcg atgttcgcgc
                                                                         1080
35 toggatttat cgcagccacc tcaactgcac cgttttcccg aacaacagca tgctgacctg
                                                                         1140
  ctcgggtgtt ttcaaagtat ggaacccgat cgacgcaaac accaccgagg tctggaccta
                                                                         1200
  cgccattgtc gaaaaagaca tgcctgagga tctcaagcgc cgcttggccg actctgttca
                                                                         1260
  gcgaacggtc gggcctgctg gcttctggga aagcgacgac aatgacaata tggaaacagc
                                                                         1320
  ttcgcaaaac ggcaagaaat atcaatcaag agatagtgat ctgctttcaa accttggttt
                                                                         1380
40 cggtgaggac gtatacggcg acgcggtcta tccaggcgtc gtcggcaaat cggcgatcgg
                                                                         1440
```

40

115

```
cgagaccagt tatcgtggtt tctaccgggc ttaccaggca cacgtcagca gctccaactg
                                                                         1500
   ggctgagttc gagcatgcct ctagtacttg gcatactgaa cttacgaaga ctactgatcg
                                                                         1560
   ctaacagacg agtcgaccat gatgatcaat attcaagaag acaagctggt ttccgcccac
                                                                         1620
   gacgccgaag agattetteg tttetteaat tgccacgaet etgetttgca acaagaagee
                                                                         1680
 5 actacgetge tgacceagga agegeatttg ttggacattc aggettaccg tgcttggtta
                                                                         1740
   gagcactgcg tggggtcaga ggtgcaatat caggtcattt cacgcgaact gcgcgcagct
                                                                         1800
   tcagagcgtc gttataagct caatgaagcc atgaacgttt acaacgaaaa ttttcagcaa
                                                                         1860
   ctgaaagttc gagttgagca tcaactggat ccgcaaaact ggggcaacag cccgaagctg
                                                                         1920
   cgctttactc gctttatcac caacgtccag gccgcaatgg acgtaaatga caaagagcta
                                                                         1980
10 etteacatee geteeaaegt cattetgeae egggeaegae gtggeaatea ggtegatgte
                                                                         2040
   ttctacgccg cccgggaaga taaatggaaa cgtggcgaag gtggagtacg aaaattggtc
                                                                         2100
   cagogatteg tegattacce agagegeata etteagaege acaatetgat ggtetttetg
                                                                         2160
   tgattcagtg accattttta caaatggtca ctgcaaccgc ggtcaccatt aatcaaaggg
                                                                         2220
   aatgtacgtg tatgggcaat caacaagtcg tttcgataac cggtg
                                                                         2265
15
         <210> 58
         <211> 449
         <212> PRT
         <213> Artificial Sequence
20
         <220>
         <223> A polypeptide encoded by SEQ ID NO:56
         <400> 58
25 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln
   1
                    5
                                       10
  Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys
                                   25
  Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
30
           35
                               40
  Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
                           55
  Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
35 Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala
                                       90
  Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
                                   105
  Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu
```

120

125

	Asn	Lys	Lys	Cys	Leu	Gly	Leu	Lys	Glu	Val	Ala	Arg	Val	Glu	Ser	Phe
		130					135					140				
	His	Gly	Phe	Ile	Tyr	Gly	Cys	Phe	Asp	Gln	Glu	Ala	Pro	Pro	Leu	Met
	145					150					155					160
5	Asp	Tyr	Leu	Gly	Asp	Ala	Ala	Trp	Tyr	Leu	Glu	Pro	Met	Phe	Lys	His
					165					170					175	
	Ser	Gly	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Val	Ile	Lys
				180					185					190		
	Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His
10			195					200					205			
	Val	Gly	Trp	Thr	His	Ala	Ser	Ser	Leu	Arg	Ser	Gly	Glu	Ser	Ile	Phe
		210					215					220				
	Ser	Ser	Leu	Ala	Gly	Asn	Ala	Ala	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
	225					230					235					240
15	Gln	Met	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	Val	Leu	Trp	Asp	Gly
					245					250					255	
	Tyr	Ser	Gly	Val	His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu	Met	Ala	Phe
				260					265					270		
	Gly	Gly	Ala	Lys	Gln	Glu	Arg	Leu	Asn	Lys	Glu	Ile	Gly	Asp	Val	Arg
20			275					280					285			
	Ala	Arg	Ile	Tyr	Arg	Ser	His	Leu	Asn	Cys	Thr	Val	Phe	Pro	Asn	Asn
		290					295					300				
	Ser	Met	Leu	Thr	Cys	Ser	Gly	Val	Phe	Lys	Val	Trp	Asn	Pro	Ile	Asp
	305					310					315					320
25	Ala	Asn	Thr	Thr	Glu	Val	Trp	Thr	Tyr	Ala	Ile	Val	Glu	Lys	Asp	Met
					325					330					335	
	Pro	Glu	qaA	Leu	Lys	Arg	Arg	Leu	Ala	Asp	Ser	Val	Gln	Arg	Thr	Trp
				340					345					350		
	Gly	Pro	Ala	Gly	Phe	\mathtt{Trp}	Glu	Ser	Asp	Asp	Asn	Asp	Asn	Met	Glu	Thr
30			355					360					365			
	Ala	Ser	Gln	Asn	Gly	Lys	Lys	Tyr	Gln	Ser	Arg	Asp	Ser	Asp	Leu	Leu
		370					375					380				
	Ser	Asn	Leu	Gly	Phe	Gly	Glu	Asp	Val	Tyr	Gly	Asp	Ala	Val	Tyr	Pro
	385					390					395					400
35	Gly	Val	Val	Gly	Lys	Ser	Ala	Ile	Gly	Glu	Thr	Ser	Tyr	Arg	Gly	Phe
					405					410					415	
	Tyr	Arg	Ala	Tyr	Gln	Ala	His	Val	Ser	Ser	Ser	Asn	Trp	Ala	Glu	Phe
				420					425					430		
	Glu	His	Ala	Ser	Ser	Thr	Trp	His	Thr	Glu	Leu	Thr	ГЛЗ	Thr	Thr	Asp
40			435					440					115			

40

210

Arg

<210> 59 <211> 449 <212> PRT <213> Artificial Sequence <220> <223> A polypeptide encoded by SEQ ID NO:57 10 <400> 59 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln 15 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys 25 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val 55 Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val 70 75 Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala 25 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly 105 Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu 120 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe 30 130 His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met 150 155 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His 165 170 35 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys 180 185 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His 200

Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe

220

215

Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu 225 230 235 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly 250 5 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe 265 260 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg 280 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn 10 290 295 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp 315 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met 325 330 15 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Tyr 340 345 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr 360 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu 370 375 380 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro 390 395 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe 25 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe 425 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp 435 440 445 Arg 30 <210> 60 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> An oligonucleotide

40

<400> 60

	gttcagcgaa cgggcgggcc tgctgg	26
	<210> 61	
	<211> 26	
5	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> An oligonucleotide	
10		
	<400> 61	26
	gttcagcgaa cggccgggcc tgctgg	20
	<210> 62	
15		
15	<212> DNA	
	<213> Artificial Sequence	
	•	
	<220>	
20	<223> An oligonucleotide	
	<400> 62	
	gttcagcgaa cgaccgggcc tgctgg	26
25		
	<211> 26	
	<212> DNA <213> Artificial Sequence	
	(213) Altificial bequested	
30	<220>	
50	<223> An oligonucleotide	
	<400> 63	
	gttcagcgaa cgatcgggcc tgctgg	26
35		
	<210> 64	
	<211> 26	
	<212> DNA	
	<213> Artificial Sequence	
40		

	<223> An Oligonucleotide
	<400> 64
5	gttcagcgaa cgtgggggcc tgctgg
	<210> 65
	<211> 25
	<212> DNA
10	<213> Artificial Sequence
	<220>
	<223> An oligonucleotide
15	<400> 65
	ttcagcgaac gtacgggcct gctgg

<220>

25

26