ANALIZA DYNAMIKI METODY INDEKSOWE

ANALIZA DYNAMIKI

METODY STOSOWANE W ANALIZIE KSZTAŁTOWANIA SIĘ POZIOMU ZJAWISKA W CZASIE

Miary stosowane dla wyrażenia relacji pomiędzy wartością pewnej zmiennej w badanym momencie w stosunku do jej wartości w jakimś momencie w przeszłości – tzw. okresie referencyjnym.

ANALIZA DYNAMIKI

- Cel analiza rozwoju zjawiska w czasie
- Podstawą analizy są Szeregi dynamiczne:
 - momentów (średnia chronologiczna)
 - okresów (średnia arytmetyczna)
- Porównywalność danych przedstawionych w postaci szeregów dynamicznych wymaga aby:
 - zjawiska były wyrażone w tych samych miarach
 - rodzaje porównywanych szeregów były identyczne
 - badane zjawiska dotyczyły tego samego terytorium
 - przedziały czasowe były tej samej rozpiętości
- Metody:
 - indeksowe
 - tendencji rozwojowej
 - analizy sezonowości

MIERNIKI ANALIZY DYNAMIKI

1. Przyrosty $\Delta_{n/1} = y_n - y_1$

$$\Delta_{n/1} = y_n - y_1$$

$$\Delta_{n/n-1} = y_n - y_{n-1}$$

$$w_{n/1} = \frac{y_n - y_1}{y_1}$$

$$w_{n/n-1} = \frac{y_n - y_{n-1}}{y_{n-1}}$$

2. Średnia chronologiczna

$$\overline{S}_{ch} = \frac{0.5 y_1 + y_2 + ... + y_{n-1} + 0.5 y_n}{n-1}$$

3. Średnia geometryczna

$$\bar{i}_g = \bar{S}_{t/t-1} = n-1\sqrt{\frac{y_n}{y_1}}$$

Wskaźniki dynamiki - Indeksy

MIERNIKI ANALIZY DYNAMIKI

<u>Średnia chronologiczna – średnia arytmetyczna</u>

\sim	of Callia Cill Onoi	DETERMINE STORY
	Liczba ludności Polski stan	
	w dniu 31.XII	Emigracja z Polski
Lata	(w mln osób)	(w tys. osób)
1998	38277,0	22,2
1999	38263,0	21,5
2000	38254,0	27,0
2001	38242,2	23,3
2002	38218,5	24,5
2003	38190,6	20,8
2004	38173,8	18,9
2005	38157,1	22,2

A. Średnia chronologiczna – gdy zmienna ma charakter zasobu (szereg momentów) np. liczba ludności Polski – przeciętny stan ludności Polski w latach 1998 – 20005 38 222,74

B. Średnia arytmetyczna - gdy zmienna ma charakter strumieni (szereg okresów) np. liczba osób emigrujących z Polski – **22,55**

Średnia liczba:

A. ludności Polski

$$\frac{0.5 \cdot 38277 + 38263 + 38254 + 38242 \cdot 2 + 38218 \cdot 5 + 38190 \cdot 6 + 38173 \cdot 8 + 0.5 \cdot 38157 \cdot 1}{-} = 38222 \cdot 74$$

B. emigrantów

$$\frac{22,2+21,5+27+23,3+24,5+20,8+18,9+22,2}{8} = \frac{180,4}{8} = 22,55$$

KLASYFIKACJA INDEKSÓW

1. Przedmiot analizy

- Indeksy cen
- Indeksy ilości
- Indeksy wartości
- 2. Budowa (stopień złożoności zjawiska)
- Indeksy proste pojedyncze zmienne
- Indeksy złożone kilka zmiennych
- 3. Okres referencyjny (kryterium podstawy)
- O podstawie stałej
- O podstawie zmiennej (łańcuchowe)
- 4. Rodzaj liczb użytych do opisu zjawiska
- Absolutne
- Względne

OKRES REFERENCYJNY

1. Okres referencyjny

- Okres, w stosunku do którego dokonujemy porównań
- Okres, w którym wartość indeksu wynosi 1 (100%)

2. Wybór okresu porównań jest arbitralny

- Możliwie okres jak najbliższy badanemu
- Nie powinien to być okres wyjątkowy (pod względem wartości badanej cechy)

3. Indeksy o podstawie stałej

jednopodstawowe

$$i_t^J = \frac{Y_t}{Y_0}$$

3. Indeksy o podstawie zmiennej

$$_{t-1}^{Z} = \frac{Y_t}{Y_{t-1}}$$

- łańcuchowe

ZAMIANA INDEKSU JEDNOPODSTAWOWEGO i^J NA ZMIENNOPODSTAWOWY i^Z

$$i_{t} = \frac{i_{t}^{J}}{i_{t-1}^{J}}$$

ZAMIANA INDEKSU JEDNOPODSTAWOWEGO i^J

NA ZMIENNOPODSTAWOWY i^{Z}

t	y _t /y ₀ 1999=1	y _t /y ₀ 2000=1	y _t /y _{t-1}	y _t /y ₀ 2001=1
1	2	3	4	5
1999	1,0	1,250	-	1,111
2000	0,8	1,000	0,800	0,889
2001	0,9	1,125	1,125	1,000
2002	1,1	1,375	1,222	1,222
2003	1,1		1,000	1,222
2004	1,2		1,091	1,333

Zamiana ciągu indeksów o podstawie stałej na ciąg indeksów o podstawie łańcuchowej (kolumny $2 \rightarrow 4$)

→ należy podzielić indeksy sąsiednie przez siebie

$$i_t^Z = \frac{i_t^J}{i_{t-1}^J}$$

ZAMIANA INDEKSU ZMIENNOPODSTAWOWEGO i^{Z} NA JEDNOPODSTAWOWY i^{Z}

$$i_t^J = i_{t+1}^J / i_{t+1}^Z \qquad \text{dla} \qquad t < t_0$$

$$i_t^J = i_{t-1}^J \cdot i_{t-1}^Z$$
 dla $t > t_0$

ZAMIANA INDEKSU ZMIENNOPODSTAWOWEGO i^J NA JEDNOPODSTAWOWY i^J

t	y _t /y ₀ 1999=1	y_t/y_0 2000=1 y_t/y_{t-1}		y ₀ /y ₀ 2001=1	
1	2	3	4	5	
1999	1,0	1,250	-	1,111	
2000	0,8	1,000	0,800	0,889	
2001	0,9	1,125	1,125	1,000	
2002	1,1	1,375	1,222	1,222	
2003	1,1		1,000	1,222	
2004	1,2		1,091	1,333	

$$i_{t}^{J} = \frac{i_{t+1}^{J}}{i_{t+1}^{Z}} \qquad t < t_{0}$$

$$i_t^J = i_{t-1}^J \cdot i_{t-1}^Z \qquad t > t_0$$

Zamiana ciągu indeksów łańcuchowych na indeksy jednopodstawowe (2001=1) (kolumny 4 \rightarrow 5) \rightarrow

- dla lat wyższych niż podstawa mnożymy kolejne indeksy
- dla lat niższych niż podstawa liczymy odwrotność z odpowiedniego

iloczynu: $y_{99}/y_{01}=1$: $[y_{00}/y_{99} \times y_{01}/y_{00}]$

 $y_{99}/y_{01}=1:[y_{01}/y_{99}]$

ZAMIANA INDEKSU JEDNOPODSTAWOWEGO i^J O PODSTAWIE "k" NA JEDNOPODSTAWOWY i^J O PODSTAWIE "l"

$$i_{t(l)} = \frac{i_{t(k)}}{i_{t(l)}} \cdot 100\%$$

ZAMIANA INDEKSU JEDNOPODSTAWOWEGO i^J O PODSTAWIE "k" NA JEDNOPODSTAWOWY i^J O PODSTAWIE "l"

t	y _t /y ₀ 1999=1	y _t /y ₀ 2000=1	y _t /y _{t-1}	y _t /y ₀ 2001=1		
1	2	3	4	5		
1999	1,0	1,250	-	1,111		
2000	0,8	1,000	0,800	0,889		
2001	0,9	1,125	1,125	1,000		
2002	1,1	1,375	1,222	1,222		
2003	1,1		1,000	1,222		
2004	1,2		1,091	1,333		

Zamiana ciągu indeksów jednopodstawowych (1999=1) na ciąg indeksów jednopodstawowych (2000=1) (kolumny 2 → 3)

→ wszystkie wskaźniki dzielimy przez indeks, który wyraża relację "nowego" roku podstawowego do "starego" (y₂₀₀₀/y₁₉₉₉)

$$i_{t(l)} = \frac{i_{t(k)}}{i_{t(l)}} \cdot 100\%$$

ŚREDNIE TEMPO ZMIAN

- Pierwiastek n-tego stopnia z iloczynu nczynników
- Średnie tempo zmian przedstawia przeciętne zmiany poziomu zjawiska w całym analizowanym okresie, przy założeniu ich równomiernego rozłożenia w czasie

$$\overline{S}_{t/t-1} = n-1 \sqrt{\prod_{t=2}^{n} i_{t/t-1}} = n-1 \sqrt{i_{2/1} \cdot i_{3/2} \cdot \dots \cdot i_{n/n-1}} = n-1 \sqrt{\frac{y_2}{y_1} \cdot \frac{y_3}{y_2} \cdot \dots \cdot \frac{y_n}{y_{n-1}}}$$

INDEKSY INDYWIDUALNE

Absolwenci szkół wyższych, Polska 1998 - 2004

t	y _t	$y_{t}-y_{0}$	$y_{t-}y_{t-1}$	$(y_{t-}y_0)/y_0$	$(y_{t-}y_{t-1})/y_{t-1}$	y_t/y_0	y_t/y_{t-1}
1998	174,8	0	-	0	-	1	-
1999	215,4	40,6	40,6	0,2323	0,2323	1,2323	1,2323
2000	261,1	86,3	45,7	0,4937	0,2122	1,4937	1,2122
2001	304,0	129,2	42,9	0,7391	0,1643	1,7391	1,1643
2002	342,1	167,3	38,1	0,9571	0,1253	1,9571	1,1253
2003	366,1	191,3	24,0	1,0944	0,0702	2,0944	1,0702
2004	384,0	209,2	17,9	1,1968	0,0489	2,1968	1,0489
2005	391,5	216,7	7,5	1,2397	0,0195	2,2397	1,0195
2006	394,0	219,2	2,5	1,2540	0,0064	2,2540	1,0064

$$\overline{S_{t/t-1}} = \sqrt[8]{1,2323 \cdot 1,2122 \cdot 1,1643 \cdot 1,1253 \cdot 1,0702 \cdot 1,0489 \cdot 1,0195 \cdot 1,0064}$$

$$= \sqrt[8]{\frac{394,0}{174,8}} = 1.1069$$

Źródło: www.stat.gov.pl

PRZEWIDYWANIE POZIOMU ZJAWISKA W PRZYSZŁOŚCI

Znając średniookresowe tempo zmian można prognozować poziom zjawiska:

$$y_t^P = y_n \cdot \overline{S}_{t-1}^{n^P - n} = y_n \cdot \overline{i}_g^{n^P - n}$$

 y_n - poziom cechy w ostatnim badanym okresie

n^P - numer okresu na który przeprowadzamy prognozę

n - liczba badanych okresów

 $\bar{S}_{t/t-1}$ - średniookresowe tempo zmian

Przeciętna stopa wzrostu (spadku) oznacza tempo, które wystąpiłoby, gdyby cały przyrost (spadek) rozłożyć równomiernie na wszystkie jednostki czasu.

Wówczas:

$$y_2 = y_1 + y_1 \cdot r = y_1 (1+r)^1$$
$$y_n = y_1 (1+r)^{n-1} = y_1 \cdot \bar{i}_g^{n-1}$$

$$r+1 = n-1 \sqrt{\frac{y_n}{y_1}} = \overline{i}_g$$

PRZEWIDYWANIE POZIOMU ZJAWISKA W PRZYSZŁOŚCI

Znając średniookresowe tempo zmian liczby absolwentów szkół wyższych w Polsce można przewidzieć ich liczbę na rok 2007:

$$y_{2007}^P = y_{2006} \cdot \overline{S}_{t/t-1}^{10-9} = 394 \cdot 1,1069 = 436,13$$

$$y_{2007}^P = y_1(1+r)^{n-1} = 174,8 \cdot 1,1069^{(10-1)} =$$

$$=174,8\cdot1,1069^9=436,13$$

INDEKSY AGREGATOWE: INDEKS CEN

Indywidualny indeks cen

$$i_{p(t)} = \frac{p_t}{p_0} \cdot 100\%$$

Prosty indeks cen (zwykły)

$$I_{p(t)} = \frac{\sum p_t}{\sum p_0} 100\%$$

Ważony agregatowy indeks cen:

$$I_{p(t)} = \frac{\sum p_t q_c}{\sum p_0 q_c} \cdot 100\%$$

INDEKSY AGREGATOWE: INDEKS WARTOŚCI

Indeks wartości:

$$I_{W(t)} = \frac{\sum p_t q_t}{\sum p_0 q_0} \cdot 100\%$$

Równość indeksowa:

$$I_{W(t)} = I_{p(t)}^{L} \cdot I_{q(t)}^{P} = I_{p(t)}^{P} \cdot I_{q(t)}^{L} = I_{p(t)}^{F} \cdot I_{q(t)}^{F}$$

INDEKSY AGREGATOWE: INDEKS CEN

Indeks cen Laspeyres'a:

$$I_p^L = \frac{\sum p_t q_0}{\sum p_0 q_0}$$

Indeks cen Paasche'go:

$$I_p^P = \frac{\sum p_t q_t}{\sum p_0 q_t}$$

Indeks cen Fisher'a:

$$I_p^F = \sqrt{I_p^L \cdot I_p^P}$$

INDEKSY AGREGATOWE: INDEKS ILOŚCI

Indeks ilości Laspeyres'a:

$$I_q^L = \frac{\sum q_t p_0}{\sum q_0 p_0}$$

Indeks ilości Paasche'go:

$$I_q^P = \frac{\sum q_t p_t}{\sum q_0 p_t}$$

Indeks ilości Fisher'a:

$$I_q^F = \sqrt{I_q^L \cdot I_q^P}$$

INDEKSY AGREGATOWE: RELACJA MIĘDZY INDEKSAMI WEDŁUG: LASPEYRES'A I PAASCHE'GO

$$\frac{I_{q(t)}^{P}}{I_{q(t)}^{L}} = 1 + V_{i_p} V_{i_q} r_{i_p i_q} = \frac{I_{p(t)}^{P}}{I_{p(t)}^{L}}$$

Równość Bortkiewicza

AGREGATOWE INDEKSY WARTOŚCI - PRZYKŁAD

	Wartość	obrotów	Liczba za	wieranych	Zmiany ilości	War	tości
Papiery	2005	2004	2005	2004	2005/2004	hipote	tyczne
wartościowe	q_1p_1	q_0p_0	q_1	q_0	q_1/q_0	q_0p_1	q_1p_0
Rynek akcji	15693	8743	582	778	0,7481	20977,9	6540,4
Rynek							
obligacji	448	533	35	113	0,3097	1446,4	165,1
	16141	9276	617	891		22424,3	6705,5

Źródło: http://www.gpw.pl

INDEKSY AGREGATOWE - PRZYKŁAD

$$I_{W(t)} = \frac{\sum p_t q_t}{\sum p_0 q_0} = 1,74$$

$$I_p^L = \frac{\sum p_t q_0}{\sum p_0 q_0} = 2,417$$
 $I_q^L = \frac{\sum q_t p_0}{\sum q_0 p_0} = 0,723$

$$I_p^P = \frac{\sum p_t q_t}{\sum p_0 q_t} = 2,407$$

$$I_p^F = 2,412$$

$$I_q^L = \frac{\sum q_t p_0}{\sum q_0 p_0} = 0,723$$

$$I_q^P = \frac{\sum p_t q_t}{\sum p_t q_0} = 0,720$$

$$I_q^F = 0.721$$

INDEKSY AGREGATOWE

$$I_{V} = \frac{\sum q_{t} p_{t}}{\sum q_{0} p_{0}}$$

$$I_{p}^{L} = \frac{\sum p_{t} q_{0}}{\sum p_{0} q_{0}} = \frac{\sum p_{0} q_{0} i_{p}}{\sum p_{0} q_{0}}$$

$$I_{p}^{P} = \frac{\sum p_{t} q_{t}}{\sum p_{0} q_{t}} = \frac{\sum p_{t} q_{t}}{\sum \frac{p_{t} q_{t}}{i_{p}}}$$

$$I_{p}^{P} = \frac{\sum_{t=0}^{T} p_{t}q_{t}}{\sum_{t=0}^{T} p_{t}q_{t}} = \frac{\sum_{t=0}^{T} p_{t}q_{t}}{\sum_{t=0}^{T} p_{t}q_{t}}$$

$$i_{p} = \frac{p_{t}}{p_{0}}$$

$$I_{V} = \frac{\sum_{i} q_{i} p_{i}}{\sum_{i} q_{0} p_{0}}$$

$$I_{q}^{L} = \frac{\sum_{i} q_{i} p_{0}}{\sum_{i} q_{0} p_{0}} = \frac{\sum_{i} p_{0} q_{0} i_{q}}{\sum_{i} p_{0} q_{0}}$$

$$I_{q}^{P} = \frac{\sum_{i} p_{i} q_{i}}{\sum_{i} p_{i} q_{0}} = \frac{\sum_{i} p_{i} q_{i}}{\sum_{i} \frac{p_{i} q_{t}}{i_{q}}}$$

$$i_q = \frac{q_t}{q_0}$$

WYBRANE WAŻNE INDEKSY

-The Dow Jones Industrial Index

-Indeks kosztów utrzymania
(Consumer Price Index CPI)

-Inflacja

The Dow Jones Industrial Average

- Utworzony przez Charlesa Dow'a & Edwarda Jones'a
- •Pierwszy raz opublikowany 26 maja 1896 w *The Wall Street Journal*
- Średnia składa się z 30 największych i najbardziej znanych spółek amerykańskich

Słowo "industrial - przemysłowy" ma wymiar historyczny – większość z 30 aktualnych komponentów ma niewiele wspólnego z przemysłem

- Jest to najstarszy indeks nieprzerwanie publikowany
- •Inne indeksy giełdowe w USA:
 - Dow Jones Transportation Average
 - Dow Jones Utility Average
 - DJ Global Titans

The Dow Jones Industrial Average

Dow Jones - Listopad 2006 - 23 Listopad 2007

ODPOWIEDNIKI INDEKSU Dow Jones: NIEMIECKI DAX & POLSKI WIG

DAX - Listopad 2006 - 23 Listopad 2007

WIG - Listopad 2006 - 23 Listopad 2007

WSKAŹNIK CEN TOWARÓW I USŁUG INDEKS KOSZTÓW UTRZYMANIA CPI

 Indeks kosztów utrzymania jest średnią ważoną cen wybranego "koszyka" produktów nabywanych przez gospodarstwa domowe

$$\sum_{i}$$
 waga produktu_i · indeks ceny produktu_i

 Gdzie wagą jest udział (proporcja) produktu w wydatkach typowego gospodarstwa domowego, natomiast i reprezentuje wybrane produkty, których cena jest określana w badaniach GUS

INFLACJA

Inflacja mierzy nieprzerwane zmiany cen

Inflacja jest obliczana jako procentowa zmiana indeksu cen w jednym momencie w porównaniu do innego.

Inflacja w indeksie kosztów utrzymania liczona jest następująco:

 Inflacja może być liczona w stosunku do pojedynczego produktu (ceny) oraz dla grupy produktów (cen)