Výroková a predikátová logika - IV

Petr Gregor

KTIML MFF UK

ZS 2015/2016

Tablo - příklady

Atomická tabla

Atomické tablo je jeden z následujících (položkami značkovaných) stromů, kde p je libovolná výroková proměnná a φ , ψ jsou libovolné výrokové formule.

Tp	Fp	$T(\varphi \wedge \psi)$ $ $ $T\varphi$ $ $ $T\psi$	$F(\varphi \wedge \psi)$ $/ \qquad \qquad \\ F\varphi \qquad F\psi$	$T(\varphi \lor \psi)$ $\nearrow \qquad \qquad$	$F(\varphi \lor \psi)$ $ $ $F\varphi$ $ $ $F\psi$
$T(eg arphi) \ dots \ F arphi$	$F(\neg \varphi) \\ \\ T\varphi$	$T(\varphi \to \psi)$ $F\varphi \qquad T\psi$	$F(\varphi \to \psi)$ $ $ $T\varphi$ $ $ $F\psi$	$\begin{array}{c c} T(\varphi \leftrightarrow \psi) \\ \nearrow & \searrow \\ T\varphi & F\varphi \\ \mid & \mid \\ T\psi & F\psi \end{array}$	$F(\varphi \leftrightarrow \psi)$ $/ \qquad \qquad$

Tablo z teorie

Konečné tablo z teorie T je binární, položkami značkovaný strom daný předpisem

- (i) každé atomické tablo je konečné tablo,
- (ii) je-li P položka na větvi V konečného tabla τ a τ' vznikne z τ připojením atomického tabla pro P na konec větve V, je τ' rovněž konečné tablo,
- (ii)' je-li V větev konečného tabla (z T) a $\varphi \in T$, pak připojením $T\varphi$ na konec V vznikne rovněž konečné tablo z T.
- (iii) každé konečné tablo vznikne konečným užitím pravidel (i), (ii), (ii)'.

Tablo z teorie T je posloupnost $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ konečných tabel z T takových, že τ_{n+1} vznikne z τ_n pomocí pravidla (ii) či (ii)', formálně $\tau = \cup \tau_n$.

Tablo důkaz z teorie

Nechť P je položka na větvi V tabla τ z teorie T. Řekneme, že

- položka P je redukovaná na V, pokud se na V vyskytuje jako kořen atomického tabla, tj. při konstrukci τ již došlo k jejímu rozvoji na V,
- větev V je *sporná*, obsahuje-li položky $T\varphi$ a $F\varphi$ pro nějakou formuli φ ,
- větev V je dokončená, je-li sporná, nebo je každá její položka redukovaná na V a navíc obsahuje $T\varphi$ pro každé $\varphi \in T$,
- tablo τ je dokončené, pokud je každá jeho větev dokončená, a je sporné, pokud je každá jeho větev sporná.

Tablo důkaz formule φ *z teorie* T je sporné tablo z T s $F\varphi$ v kořeni, Má-li φ tablo důkaz z T, je *(tablo) dokazatelná z T*, píšeme $T \vdash \varphi$.

Zamítnutí formule φ tablem z teorie T je sporné tablo z T s $T\varphi$ v kořeni. Formule φ je (tablo) zamítnutelná z T, má-li zamítnutí tablem z T, tj. $T \vdash \neg \varphi$.

Příklady tabla z teorie

- a) Tablo důkaz formule ψ z teorie $T = \{\varphi, \varphi \to \psi\}$, tedy $T \vdash \psi$.
- b) Dokončené tablo pro formuli p_0 z teorie $T=\{p_{n+1}\to p_n\mid n\in\mathbb{N}\}.$ Všechny větve jsou dokončené, nejlevější větev je bezesporná a nekonečná. Poskytuje (jediný) model teorie T, ve kterém p_0 neplatí.

Systematické tablo

Popíšeme systematickou konstrukci, jež povede vždy k dokončenému tablu.

Nechť R je položka a $T = \{\varphi_0, \varphi_1, \dots\}$ je (konečná či nekonečná) teorie.

- (1) Za τ_0 vezmi atomické tablo pro R. Dokud to lze, aplikuj následující kroky.
- (2) Nechť P je nejlevější položka v co nejmenší úrovni již daného tabla τ_n , která není redukovaná na nějaké bezesporné větvi procházející skrze P.
- (3) Za τ'_n vezmi tablo vzniklé z τ_n přidáním atomického tabla pro P na každou bezespornou větev skrze P. (Neexistuje-li P, vezmi $\tau'_n = \tau_n$.)
- (4) Za τ_{n+1} vezmi tablo vzniklé z τ'_n přidáním $T\varphi_n$ na každou bezespornou větev neobsahující $T\varphi_n$. (Neexistuje-li φ_n , vezmi $\tau_{n+1}=\tau'_n$.)

Systematické tablo z teorie T pro položku R je výsledkem uvedené konstrukce, tj. $\tau = \cup \tau_n$.

Systematické tablo - dokončenost

Tvrzení Pro každou teorii T a položku R je systematické tablo τ dokončené. Důkaz Nechť $\tau = \cup \tau_n$ je systematické tablo z $T = \{\varphi_0, \varphi_1, \dots\}$ s R v kořeni.

- Je-li větev v τ bezesporná, je i každý její prefix v $\frac{\tau_n}{\tau_n}$ bezesporný.
- Je-li položka P neredukovaná na větvi v τ , je neredukovaná na každém jejím prefixu v τ_n (na němž leží).
- Do úrovně každé položky P (včetně její) je v τ jen konečně položek.
- Kdyby P byla neredukovaná na nějaké bezesporné větvi τ , přišla by na ní řada v nějakém kroku (2) a byla by zredukována krokem (3).
- Každá $\varphi_n \in T$ bude dle (4) nejpozději v τ_{n+1} na každé bezesporné větvi.
- Tedy systematické tablo τ obsahuje pouze dokončené větve. \Box

Konečnost důkazů

Tvrzení Je-li $\tau = \cup \tau_n$ sporné tablo, je τ_n sporné konečné tablo pro nějaké n. Důkaz

- Nechť S je množina vrcholů stromu τ , jenž nad sebou neobsahují spor, tj. mezi předky nemají dvojici $T\varphi$, $F\varphi$ pro žádné φ .
- Kdyby S byla nekonečná, dle Königova lemmatu by podstrom τ na vrcholech S obsahoval nekonečnou větev, tedy by τ nebylo sporné tablo.
- Jelikož je S konečné, všechny vrcholy z S leží do úrovně $\frac{m}{m}$ pro nějaké m.
- Tedy každý vrchol v úrovni m+1 má nad sebou spor.
- Zvolme n takové, že τ_n se shoduje s τ do úrovně m+1 včetně.
- Pak každá větev v τ_n je sporná. \square

Důsledek Je-li systematické tablo τ důkazem (z teorie T), je τ konečné.

Důkaz Při jeho konstrukci se prodlužují jen bezesporné větve.

Korektnost

Řekneme, že položka P se *shoduje* s ohodnocením v, pokud P je $T\varphi$ a $\overline{v}(\varphi)=1$ nebo pokud P je $F\varphi$ a $\overline{v}(\varphi)=0$. Větev V tabla se shoduje s v, shoduje-li se s v každá položka na V.

Lemma Nechť v je model teorie T, který se shoduje s položkou v kořeni tabla $\tau = \cup \tau_n \ z \ T$. Pak v tablu τ existuje větev shodující se s v.

Důkaz Indukcí nalezneme posloupnost V_0, V_1, \ldots takovou, že pro každé n je V_n větev v τ_n shodující se s v a v je obsažena ve v.

- Ověřením atomických tabel snadno zjistíme, že základ indukce platí.
- Pokud τ_{n+1} vznikne z τ_n bez prodloužení V_n , položme $V_{n+1} = V_n$.
- Vznikne-li τ_{n+1} z τ_n připojením $T\varphi$ k V_n pro nějaké $\varphi \in T$, nechť V_{n+1} je tato větev. Jelikož ν je model φ , shoduje se V_{n+1} s ν .
- Jinak τ_{n+1} vznikne z τ_n prodloužením V_n o atomické tablo nějaké položky P na V_n . Jelikož se P shoduje s v a tvrzení platí pro atomická tabla, lze požadovanou větev V_{n+1} v τ_{n+1} nalézt. \square

Věta o korektnosti

Ukážeme, že tablo metoda ve výrokové logice je korektní.

Věta Pro každou teorii T a formuli φ , je-li φ tablo dokazatelná z T, je φ pravdivá v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

Důkaz

- Nechť φ je tablo dokazatelná z teorie T, tj. existuje sporné tablo τ s položkou $F\varphi$ v kořeni.
- Pro spor předpokládejme, že φ není pravdivá v T, tj. existuje model v teorie T, ve kterém φ neplatí (protipříklad).
- Jelikož se položka $F\varphi$ shoduje s v, dle předchozího lemmatu v tablu τ existuje větev shodující se s v.
- To ale není možné, neboť každá větev tabla τ je sporná, tj. obsahuje dvojici $T\psi$, $F\psi$ pro nějaké ψ . \square

Úplnost

Ukážeme, že bezesporná větev v dokončeném tablu poskytuje protipříklad. **Lemma** Nechť V je bezesporná větev dokončeného tabla τ . Pro následující ohodnocení v výrokových proměnných platí, že V se shoduje s v.

$$v(p) = \left\{ egin{array}{ll} 1 & ext{pokud se } \mathit{Tp} \ ext{vyskytuje na } \mathit{V} \\ 0 & ext{jinak} \end{array}
ight.$$

 $D\mathring{u}kaz$ Indukcí dle struktury formule v položce vyskytující se na V.

- Je-li položka Tp na V, kde p je prvovýrok, je $\overline{v}(p) = 1$ dle definice v.
- Je-li položka Fp na V, není Tp na V, jinak by V byla sporná, tedy $\overline{v}(p)=0$ dle definice v.
- Je-li $T(\varphi \wedge \psi)$ na V, je $T\varphi$ a $T\psi$ na V, neboť τ je dokončené. Dle indukčního předpokladu je $\overline{v}(\varphi) = \overline{v}(\psi) = 1$, tedy $\overline{v}(\varphi \wedge \psi) = 1$.
- Je-li $F(\varphi \wedge \psi)$ na V, je $F\varphi$ nebo $F\psi$ na V, neboť τ je dokončené. Dle indukčního předpokladu je $\overline{v}(\varphi) = 0$ nebo $\overline{v}(\psi) = 0$, tedy $\overline{v}(\varphi \wedge \psi) = 0$.
- Pro ostatní spojky obdobně jako v předchozích dvou případech.

Věta o úplnosti

Ukážeme, že tablo metoda ve výrokové logice je i úplná.

Věta Pro každou teorii T a formuli φ , je-li φ pravdivá v T, je φ tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

Důkaz Nechť φ je pravdivá v T. Ukážeme, že libovolné dokončené tablo (např. *systematické*) τ z teorie T s položkou $F\varphi$ v kořeni je sporné.

- Kdyby ne, nechť V je nějaká bezesporná větev tabla τ .
- Dle předchozího lemmatu existuje ohodnocení v prvovýroků takové, že \overline{V} se shoduje s v, speciálně s $\overline{F}\varphi$, tj. $\overline{v}(\varphi) = 0$.
- Jelikož větev V je dokončená, obsahuje $T\psi$ pro každé $\psi \in T$.
- Tedy v je modelem teorie T (neboť větev V se shoduje s v).
- To je ale ve sporu s tím, že φ platí v každém modelu teorie T.

Tedy tablo τ je důkazem φ z T.

Vlastnosti teorií

Zavedeme syntaktické varianty již definovaných sémantických pojmů.

Nechť T je teorie nad $\mathbb P$. Je-li φ dokazatelná z T, řekneme, že φ je věta (teorém) teorie T. Množinu vět teorie T označme

$$\operatorname{Thm}^{\mathbb{P}}(T) = \{ \varphi \in \operatorname{VF}_{\mathbb{P}} \mid T \vdash \varphi \}.$$

Řekneme, že teorie T je

- $sporn\acute{a}$, jestliže je v T dokazatelný \bot (spor), jinak je $bezesporn\acute{a}$,
- *kompletní*, jestliže není sporná a každá formule je v ní dokazatelná či zamítnutelná, tj. $T \vdash \varphi$ či $T \vdash \neg \varphi$ pro každé $\varphi \in VF_{\mathbb{P}}$,
- extenze teorie T' nad \mathbb{P}' , jestliže $\mathbb{P}'\subseteq\mathbb{P}$ a $\mathrm{Thm}^{\mathbb{P}'}(T')\subseteq\mathrm{Thm}^{\mathbb{P}}(T)$, o extenzi T teorie T' řekneme, že je jednoduchá, pokud $\mathbb{P}=\mathbb{P}'$, a konzervativní, pokud $\mathrm{Thm}^{\mathbb{P}'}(T')=\mathrm{Thm}^{\mathbb{P}}(T)\cap\mathrm{VF}_{\mathbb{P}'}$,
- *ekvivalentní* s teorií T', jestliže T je extenzí T' a T' je extenzí T.

Důsledky

Z korektnosti a úplnosti tablo metody vyplývá, že předchozí pojmy se shodují se svými sémantickými variantami.

Důsledek Pro každou teorii T a formule φ , ψ nad \mathbb{P} ,

- $T \vdash \varphi$ právě když $T \models \varphi$,
- Thm $^{\mathbb{P}}(T) = \theta^{\mathbb{P}}(T)$,
- T je sporná, právě když není splnitelná, tj. nemá model,
- T je kompletní, právě když je sémanticky kompletní, tj. má právě jeden model,
- $T, \varphi \vdash \psi$ právě když $T \vdash \varphi \rightarrow \psi$ (Věta o dedukci).

Poznámka Větu o dedukci lze dokázat přímo, transformací příslušných tabel.

Věta o kompaktnosti

Věta Teorie má model, právě když každá její konečná část má model.

Důkaz 1 Implikace zleva doprava je zřejmá. Pokud teorie T nemá model, je sporná, tj. je z ní dokazatelný \bot systematickým tablem τ . Jelikož je τ konečné, je \bot dokazatelný z nějaké konečné $T' \subseteq T$, tj. T' nemá model.

Poznámka Tento důkaz je založen na konečnosti důkazu, korektnosti a úplnosti. Uveďme ještě druhý, přímý důkaz (pomocí Königova lemmatu).

 $extit{D}\mathring{u}$ kaz 2 Nechť $T=\{arphi_i\mid i\in\mathbb{N}\}.$ Uvažme strom S na konečných binárních posloupnostech σ uspořádaných prodloužením. Přičemž $\sigma\in S$, právě když existuje ohodnocení v prodlužující σ takové, že $v\models arphi_i$ pro každé $i\leq \frac{\mathrm{lth}}{\sigma}$.

Pozorování S má nekonečnou větev, právě když T má model.

Jelikož $\{\varphi_i \mid i \in n\} \subseteq T$ má model pro každé $n \in \mathbb{N}$, bude každá úroveň v S neprázdná. Tedy S je nekonečný, navíc binární, a dle Königova lemmatu obsahuje nekonečnou větev. \square

Aplikace kompaktnosti

Graf (V, E) je k-obarvitelný, pokud existuje $c \colon V \to k$ takové, že $c(u) \neq c(v)$ pro každou hranu $\{u, v\} \in E$.

Věta Spočetně nekonečný graf G = (V, E) je k-obarvitelný, právě když každý jeho konečný podgraf je k-obarvitelný.

extstyle ext

$$\begin{array}{ll} p_{u,0} \vee \cdots \vee p_{u,k-1} & \text{pro v} \\ \neg (p_{u,i} \wedge p_{u,j}) & \text{pro v} \\ \neg (p_{u,i} \wedge p_{v,i}) & \text{pro v} \\ \end{array} \\ \begin{array}{ll} \text{sechna } u \in V, \\ i < j < k, \\ \text{pro v} \\ \text{sechna } \\ \{u,v\} \in E, \\ i < k. \end{array}$$

Platí, že G je k-obarvitelný, právě když T má model. Dle věty o kompaktnosti stačí dokázat, že každá konečná $T' \subseteq T$ má model. Nechť G' je podgraf na vrcholech u takových, že $p_{u,i}$ se vyskytuje v T' pro nějaké i. Jelikož G' je k-obarvitelný dle předpokladu, má T' model. \square

Hilbertovský kalkul

- základní logické spojky: ¬, → (ostatní z nich odvozené)
- logické axiomy (schémata logických axiomů):

(i)
$$\varphi \to (\psi \to \varphi)$$

$$(ii) \hspace{0.5cm} (\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$$

(iii)
$$(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$$

kde φ , ψ , χ jsou libovolné formule (daného jazyka).

odvozovací pravidlo:

$$\frac{\varphi, \ \varphi \to \psi}{\psi} \qquad \text{(modus ponens)}$$

Důkaz (Hilbertova stylu) formule φ v teorii T je konečná posloupnost $\varphi_0, \ldots, \varphi_n = \varphi$ formulí taková, že pro každé $i \leq n$

- φ_i je logický axiom nebo $\varphi_i \in T$ (axiom teorie), nebo
- φ_i lze odvodit z předchozích formulí pomocí odvozovacího pravidla.

Poznámka Volba axiomů a odvozovacích pravidel se v může v různých dokazovacích systémech Hilbertova stylu lišit.

Příklad a korektnost

Formule φ je *dokazatelná* v T, má-li důkaz z T, značíme $T \vdash_H \varphi$. Je-li $T = \emptyset$, značíme $\vdash_H \varphi$. Např. pro $T = \{ \neg \varphi \}$ je $T \vdash_H \varphi \rightarrow \psi$ pro každé ψ .

$$\begin{array}{ccc} 1) & \neg \varphi & \text{axiom z } T \\ 2) & \neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi) & \text{logick\'y axiom } (i) \end{array}$$

3)
$$\neg \psi \rightarrow \neg \varphi \qquad \qquad \text{modus ponens z 1), 2)}$$

4)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$
 logický axiom (iii)
5) $\varphi \rightarrow \psi$ modus ponens z 3), 4)

Věta *Pro každou teorii* T *a formuli* φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$.

Důkaz

- Je-li $\varphi \in T$ nebo logický axiom, je $T \models \varphi$ (logické axiomy jsou tautologie),
- jestliže $T \models \varphi$ a $T \models \varphi \rightarrow \psi$, pak $T \models \psi$, tj. modus ponens je korektní,
- tedy každá formule vyskytující se v důkazu z T platí v T.

Poznámka Platí i úplnost, tj. $T \models \varphi \Rightarrow T \vdash_H \varphi$ pro každou teorii T a formuli φ .