

ZOOM SUR... les conjectures

Avant de démontrer un résultat, il peut être demandé de conjecturer ce résultat à l'aide d'un tableau de valeurs ou d'un graphique. Émettre une conjecture signifie que l'on formule un résultat que l'on pense être vrai, mais que l'on n'a pas encore démontré.

77

60 min ALGO

Une biologiste souhaite étudier l'évolution de la population d'une espèce animale dans une réserve.

Cette population est estimée à 12 000 individus en 2020. Les contraintes du milieu naturel font que la population ne peut pas dépasser les 60 000 individus.

Partie A. Un premier modèle

Dans une première approche, la biologiste estime que la population croît de 5 % par an. L'évolution annuelle de la population est ainsi modélisée par une suite (v_n) , où v_n représente le nombre d'individus, exprimé en millier, l'année (2020 + n). On a donc v_0 = 12.

- **1.** Déterminer la nature de la suite (v_n) et donner l'expression de v_n en fonction de n_*
- 2. Ce modèle répond-il aux contraintes du milieu naturel ?

Partie B. Un second modèle

La biologiste modélise ensuite l'évolution annuelle de la population par une suite (u_n) définie par $u_0 = 12$ et,

pour tout entier naturel n, $u_{n+1} = \frac{-1.1}{605} u_n^2 + 1.1 u_n^2$.

1. On considère la fonction g définie sur $\mathbb R$ par :

$$g(x) = \frac{-1.1}{605}x^2 + 1.1x$$
. On a ainsi : $u_{n+1} = g(u_n)$.

- **a.** Justifier que g est croissante sur [0; 60].
- **b.** Résoudre dans \mathbb{R} l'équation g(x) = x.
- **2. a.** Calculer la valeur arrondie à 10^{-3} de u_1 . Interpréter.
- **b.** Démontrer par récurrence que, pour tout entier naturel n, $0 \le u_n \le 55$.
- c. Démontrer que la suite (u_n) est croissante.
- **d.** En déduire la convergence de la suite (u_n) .
- **e.** On admet que la limite ℓ de la suite (u_n) vérifie $g(\ell) = \ell$. En déduire sa valeur et l'interpréter dans le contexte de l'exercice.
- **3.** La biologiste souhaite déterminer le nombre d'années au bout duquel la population dépassera les 50 000 individus avec ce second modèle. Recopier puis compléter l'algorithme ci-dessous afin que la variable *n* contienne la réponse au problème donné en fin d'exécution.

$$n \leftarrow 0$$

 $u \leftarrow 12$
Tant que ...
 $u \leftarrow \dots$
 $n \leftarrow \dots$

78

60 min

Un apiculteur étudie l'évolution de sa population d'abeilles. Au début de son étude, il évalue à 10 000 le nombre de ses abeilles.

Chaque année, l'apiculteur observe qu'il perd 20% des abeilles de l'année précédente. Il achète un nombre identique de nouvelles abeilles chaque année. On notera c ce nombre, exprimé en dizaine de milliers.

On note u_0 le nombre d'abeilles, en dizaine de milliers, de cet apiculteur au début de l'étude.

Pour tout entier naturel n non nul, u_n désigne le nombre d'abeilles, en dizaines de milliers, au bout de la n-ième année.

Ainsi, on a:

- $u_0 = 1$;
- pour tout entier naturel n, $u_{n+1} = 0.8u_n + c$.

Partie A

On suppose, dans cette partie seulement, que c = 1.

- 1. Conjecturer la monotonie et la limite de la suite (u_n) .
- **2.** Démontrer par récurrence que, pour tout entier naturel *n* :

$$u_n = 5 - 4 \times 0.8^n.$$

3. En justifiant la réponse, vérifier les deux conjectures établies à la question 1. Interpréter ces deux résultats.

Partie E

L'apiculteur souhaite que le nombre d'abeilles tende vers 100 000.

On cherche à déterminer la valeur de c qui permet d'atteindre cet objectif. On définit la suite (v_n) , pour tout entier naturel n, par :

$$v_n = u_n - 5c_*$$

- **1.** Montrer que la suite (v_n) est une suite géométrique dont on précisera la raison et le premier terme.
- **2.** En déduire une expression du terme général de la suite (v_n) en fonction de n.
- **3.** Déterminer la valeur de c pour que l'apiculteur atteigne son objectif.
- **4.** On pose c = 2.

Déterminer le nombre minimal d'années à partir duquel la population atteindra le seuil de 75 000 abeilles.

79

(60 min)

Les parties A et B de cet exercice sont indépendantes.

Pour chacune des trois affirmations suivantes, indiquer si elle est vraie ou fausse, en justifiant la réponse.

1. On considère la suite (p_n) , définie pour tout entier naturel n par $p_n = n^2 - 42n + 4$.

Affirmation 1: La suite (p_n) est strictement décroissante.

2. Soit *a* un nombre réel.

On considère les suites (u_n) et (v_n) définies respectivement par :

- $u_0 = a$ et, pour tout entier naturel n, $u_{n+1} = \frac{1}{3}\sqrt{u_n^2 + 8}$.
- $v_n = u_n^2 1$ pour tout entier naturel n.

Affirmation 2: La suite (v_n) est géométrique.

3. On considère la suite (w_n) qui vérifie, pour tout entier naturel n, $n^2 \le (n+1)^2 w_n \le n^2 + n$.

Affirmation 3: La suite (w_n) converge.

Partie B ALGO

On considère la suite (U_n) , définie par :

- $U_0 = \frac{1}{2}$;
- pour tout entier naturel n, $U_{n+1} = \frac{2U_n}{1 + U_n}$.
- **1.** Calculer U_1 et l'écrire sous la forme d'une fraction irréductible.
- 2. Démontrer par récurrence que, pour tout entier naturel n, $U_n = \frac{2^n}{1+2^n}$.
- 3. En déduire la limite de la suite (U_n) .
- **4.** On considère les trois algorithmes suivants dans lesquels les variables n, p et u sont des flottants. Pour un seul de ces trois algorithmes, la variable u ne contient pas le terme U_n en fin d'exécution. Déterminer lequel en justifiant.

$$u \leftarrow \frac{1}{2}$$
$$i \leftarrow 0$$

Tant que i < n

$$u \leftarrow \frac{2u}{u+1}$$
$$i \leftarrow i+1$$

b

$$u \leftarrow \frac{1}{2}$$

Pour *i* allant de 0 à *n*

$$u \leftarrow \frac{2u}{u+1}$$

(C)

$$p \leftarrow 2^n$$
$$u \leftarrow \frac{p}{p+1}$$

80

60 min

Soit (u_n) la suite définie par $u_0 = 3$, $u_1 = 6$ et, pour tout entier naturel n:

$$u_{n+2} = \frac{5}{4}u_{n+1} - \frac{1}{4}u_n.$$

Le but de cet exercice est d'étudier la limite éventuelle de la suite (u_n) .

Partie A. Conjectures

On souhaite calculer les valeurs des premiers termes de la suite (u_n) à l'aide d'un tableur. On a reproduit ci-dessous une partie d'une feuille de calcul où figurent les valeurs de u_0 et de u_1 .

	Α	В
1	n	u_n
2	0	3
3	1	6
4	2	
5	3	
6	4	
7	5	

- 1. Donner une formule qui, saisie dans la cellule B4 puis recopiée vers le bas, permet d'obtenir les valeurs de la suite (u_n) dans la colonne B.
- 2. Recopier et compléter le tableau ci-dessus. On donnera les valeurs approchées à 10^{-3} près de u_n pour n allant de 2 à 5.
- 3. Que peut-on conjecturer à propos de la convergence de la suite (u_n) ?

Partie B. Étude de la suite

On considère les suites (v_n) et (w_n) définies pour tout entier naturel n par :

$$\bullet \ v_n = u_{n+1} - \frac{1}{4} u_n \ ;$$

•
$$w_n = u_n - 7$$
.

- **1. a.** Démontrer que la suite (v_n) est une suite constante.
- **b.** En déduire que, pour tout entier naturel n:

$$u_{n+1} = \frac{1}{4}u_n + \frac{21}{4}.$$

2. a. En utilisant le résultat de la question **1.b**, montrer en utilisant un raisonnement par récurrence que, pour tout entier naturel n:

$$u_n < u_{n+1} < 7$$
.

- **b.** En déduire que la suite (u_n) est convergente.
- **3. a.** Démontrer que la suite (w_n) est une suite géométrique dont on précisera le premier terme et la raison.
- **b.** En déduire que, pour tout entier naturel n:

$$u_n = 7 - \left(\frac{1}{4}\right)^{n-1}$$
.

c. Calculer la limite de la suite (u_n) .

DIFFÉRENCIATION Exercices

Consolider ses acquis

Étude d'une suite définie par récurrence

Soit (u_n) la suite définie pour tout entier naturel n par :

$$u_0 = 1$$
 et $u_{n+1} = \frac{1}{3}u_n + \frac{2}{3}n + 1$.

- **1.** Calculer les valeurs de u_1 , u_2 et u_3 .
- 2. Prouver par récurrence que, pour tout entier naturel n supérieur ou égal à 0, $u_n \ge 0$.
- 3. En déduire que, pour tout entier naturel n supérieur ou égal à 0 :

$$u_n \geqslant \frac{2}{3}n$$
.

 $u_n \ge \frac{2}{3}n$. 4. Que peut-on en déduire sur la limite de la suite (u_n) ?

Questions Moderato

On considère la suite (v_n) définie pour tout entier naturel n par :

$$v_0 = 1 \text{ et } v_n = u_n - n.$$

- **1.** Prouver que (v_n) est géométrique de raison $\frac{1}{2}$.
- 2. En déduire que, pour tout entier naturel n, $u_n = \left(\frac{1}{3}\right)^n + n$.
- 3. Que peut-on en déduire sur la limite de la suite (u_n) ?
- 4. ALGO Écrire un algorithme en langage naturel qui détermine le plus petit entier naturel n pour lequel $u_n \ge 2 020.$

Questions Allegro

1. Prouver par récurrence que, pour tout entier naturel n:

$$u_n = \left(\frac{1}{3}\right)^n + n.$$

2. On pose pour tout entier naturel n:

$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$$
.

- a. Pour tout entier naturel n, exprimer S_n en fonction de n_*
- b. Calculer la limite de la suite de terme général $\frac{S_n}{r^2}$.

Se préparer aux études supérieures

Suites adjacentes Approfondissement

Deux suites (u_n) et (v_n) sont dites adjacentes lorsque (u_n) est croissante, (v_n) est décroissante et la suite de terme général $v_n - u_n$ converge vers 0.

1. On considère deux suites adjacentes (u_n) et (v_n) . Vérifier que la suite (t_n) , définie pour tout entier naturel n par $t_n = v_n - u_n$, est décroissante.

En déduire que, pour tout entier naturel n, on a :

$$v_n \ge u_n$$

2. Démontrer que les suites (u_n) et (v_n) sont convergentes et justifier qu'elles ont la même limite.

1. Les suites (u_n) et (v_n) sont définies pour tout entier naturel n non nul par :

$$u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$
 et $v_n = u_n + \frac{1}{n}$.

Démontrer que les suites (u_n) et (v_n) sont adjacentes et qu'elles convergent donc vers la même limite.

Ces deux suites convergent vers la valeur $\frac{\pi^2}{6}$. La recherche d'une preuve de la convergence de la suite (u_n) vers cette valeur est connue sous le nom de problème de Bâle (voir TP 2 p. 59).

2. Soient (u_n) et (v_n) deux suites définies par $u_0 = -1$, $v_0 = 2$ et, pour tout entier naturel n:

$$u_{n+1} = \frac{u_n + v_n}{2}$$
 et $v_{n+1} = \frac{u_n + 4v_n}{5}$

- a. Démontrer par récurrence que, pour tout entier naturel n, $u_n < v_n$.
- **b.** Démontrer que les suites (u_n) et (v_n) sont adjacentes.

Série convergente

On considère une suite (u_n) définie pour tout entier

On appelle série de terme général u_n la suite (S_n) défi-

nie pour tout entier naturel n par $S_n = \sum_{k=0}^{\infty} u_k$.

On dit que la série (S_n) est convergente lorsque S_n tend vers un réel lorsque n tend vers $+\infty$.

- **1.** Dans cette question, on pose $u_n = 0.8^n$.
- **a.** Calculer S_n pour tout entier naturel n.
- **b.** Montrer que la série (S_n) est convergente et déterminer sa limite.
- **2.** (u_n) est une suite quelconque.
- **a.** Calculer $S_n S_{n-1}$.
- **b.** En déduire que si la série (S_n) est convergente, alors (u_n) tend vers 0 lorsque n tend vers $+\infty$.