Hunter Lybbert Student ID: 2426454 10-21-24 AMATH 567

HOMEWORK 4

Collaborators*: Nate Ward

*Listed in no particular order. And anyone I discussed at least part of one problem with is considered a collaborator.

1: From A&F: 2.4.2 c, e. Evaluate the integral $\oint_C f(z)dz$, where C is the unit circle enclosing the origin, and f(z) is given as follows: c)

$$f(z) = \frac{1}{\bar{z}}$$

Solution:

We want to evaluate

$$\oint_C \frac{1}{\bar{z}} \mathrm{d}z$$

on the parameterized unit circle $z=\mathrm{e}^{i\theta}$ where $\theta\in[0,2\pi)$, where $\bar{z}=\mathrm{e}^{-i\theta}$ on the unit circle. Note, before we do the substitution we need $\mathrm{d}z=i\,\mathrm{e}^{i\theta}\,\mathrm{d}\theta$. Now our integral is

$$\begin{split} \oint_C \frac{1}{z} dz &= \oint_0^{2\pi} \frac{1}{e^{-i\theta}} i e^{i\theta} d\theta \\ &= \oint_0^{2\pi} i e^{2i\theta} d\theta \\ &= \left(\frac{1}{2} e^{2i\theta} \Big|_0^{2\pi}\right) \\ &= \frac{1}{2} e^{4\pi i} - \frac{1}{2} e^0 \\ &= \frac{1}{2} - \frac{1}{2} \\ &= 0 \end{split}$$

e)

$$f(z) = e^{\bar{z}}$$

Solution:

We will use the same substitutions from the previous part

$$\oint_C e^{\bar{z}} dz = \oint_0^{2\pi} e^{e^{-i\theta}} i e^{i\theta} d\theta$$

$$= \oint_0^{2\pi} \sum_{j=1}^{\infty} \frac{(e^{-i\theta})^j}{j!} i e^{i\theta} d\theta$$

$$= \sum_{j=1}^{\infty} \oint_0^{2\pi} i \frac{(e^{-i\theta})^j}{j!} e^{i\theta} d\theta.$$

We are justified in reordering the integral of the infinite sum to be the infinite sum of the integrals since the original series converges absolutely. Notice,

$$\sum_{i=1}^{\infty} \int_0^{2\pi} i \frac{\left(\mathbf{e}^{-i\theta}\right)^j}{j!} \mathbf{e}^{i\theta} d\theta = \int_0^{2\pi} i \frac{\left(\mathbf{e}^{-i\theta}\right)^1}{1!} \mathbf{e}^{i\theta} d\theta + \sum_{i=2}^{\infty} \int_0^{2\pi} i \frac{\left(\mathbf{e}^{-i\theta}\right)^j}{j!} \mathbf{e}^{i\theta} d\theta$$

We need to look more closely at the first term that we pulled out, which is where j=1. Observe

$$\oint_0^{2\pi} i \frac{\left(e^{-i\theta}\right)^1}{1!} e^{i\theta} d\theta \mathbf{TODO} \text{ this part}$$

I will now just look at the integral inside the sum where j=2,3,4,...

$$\oint_0^{2\pi} i \frac{\left(e^{-i\theta}\right)^j}{j!} e^{i\theta} d\theta = \oint_0^{2\pi} i \frac{e^{-i\theta j} e^{i\theta}}{j!} d\theta$$

$$= \oint_0^{2\pi} i \frac{e^{-i\theta j+i\theta}}{j!} d\theta$$

$$= \oint_0^{2\pi} i \frac{e^{i\theta(-j+1)}}{j!} d\theta$$

$$= \oint_0^{2\pi} i \frac{e^{i\theta(-j+1)}}{j!} d\theta$$

TODO: Address the j = 1.

$$\begin{split} \oint_0^{2\pi} \frac{i \, \mathrm{e}^{i\theta(1-j)}}{j!} \mathrm{d}\theta &= \frac{1}{1-j} \frac{i \, \mathrm{e}^{i\theta(1-j)}}{j!} \bigg|_0^{2\pi} \\ &= \frac{1}{1-j} \frac{i \, \mathrm{e}^{i2\pi(1-j)}}{j!} - \frac{1}{1-j} \frac{i \, \mathrm{e}^0}{j!} \\ &= \frac{i}{(1-j) \, j!} \left(\mathrm{e}^{i2\pi(1-j)} - 1 \right) \\ &= \frac{i}{(1-j) \, j!} \, (1-1) \\ &= 0. \end{split}$$

I want to clarify why $e^{i2\pi(1-j)} = 1$. Since $j \in \{1, 2, 3, ...\}$, then 1-j is an integer and we have $e^{i2\pi\ell}$ where $\ell \in \mathbb{Z}$ which is always 1. Now we return to the original problem

$$\sum_{j=1}^{\infty} \oint_0^{2\pi} i \frac{\left(e^{-i\theta}\right)^j}{j!} e^{i\theta} d\theta = \sum_{j=1}^{\infty} 0 = 0.$$

Now we have completed the requisite task.

2: From A&F: 2.4.4 a, b. Use the principal branch where the argument is in $[-\pi, \pi)$. Discuss any ambiguities. Use the principal branch of $\log(z)$ and $z^{\frac{1}{2}}$ where the argument is in $[-\pi, \pi)$ to evaluate the following: a)

$$\int_{-1}^{1} \log z dz$$

Solution:

We want to parameterize this once again using $z = r e^{i\theta}$ where $\theta \in [-\pi, \pi)$. Now our integral is

$$\int_{-1}^{1} \log z dz = \int_{-\pi}^{0} \log (e^{i\theta}) i e^{i\theta} d\theta$$
$$= \int_{-\pi}^{0} i\theta i e^{i\theta} d\theta.$$

Let's use integration by parts, woohoo! We will assign the substitutions as follows:

$$u = i\theta$$
$$du = id\theta$$

$$dv = i e^{i\theta} d\theta$$
$$v = e^{i\theta}.$$

Plugging this in we have

$$\int_{-\pi}^{0} i\theta i e^{i\theta} d\theta = i\theta e^{i\theta} \Big|_{-\pi}^{0} - \int_{-\pi}^{0} i e^{i\theta} d\theta$$

$$= (0 - (-i\pi e^{-i\pi})) - e^{i\theta} \Big|_{-\pi}^{0}$$

$$= 0 + i\pi e^{-i\pi} - e^{i\theta} \Big|_{-\pi}^{0}$$

$$= i\pi e^{-i\pi} - (e^{0} - e^{-i\pi})$$

$$= -i\pi - (1 - (-1))$$

$$= -i\pi - (2)$$

$$= -i\pi - 2.$$

b)

$$\int_{-1}^{1} z^{\frac{1}{2}} \mathrm{d}z$$

Solution:

We want to parameterize this once again using $z = r e^{i\theta}$ where $\theta \in [-\pi, \pi)$. Now our integral is

$$\int_{-1}^{1} z^{\frac{1}{2}} dz = \int_{-\pi}^{0} \left(e^{i\theta} \right)^{\frac{1}{2}} i e^{i\theta} d\theta$$

$$= \int_{-\pi}^{0} i e^{\frac{i\theta}{2}} e^{i\theta} d\theta$$

$$= \int_{-\pi}^{0} i e^{\frac{i3}{2}\theta} d\theta$$

$$= \frac{2}{3} e^{\frac{i3}{2}\theta} \Big|_{-\pi}^{0}$$

$$= \frac{2}{3} e^{-\frac{i3}{2}\pi} - \frac{2}{3}.$$

Now remembering our branch cut limits θ to be within $[-\pi,\pi)$ we change the angle $-\frac{3}{2}\pi$ to be $\frac{1}{2}\pi$. Hence,

$$\begin{split} \frac{2}{3} e^{-\frac{i3}{2}\pi} - \frac{2}{3} &= \frac{2}{3} e^{-\frac{i2}{2}\pi} e^{-\frac{i\pi}{2}} - \frac{2}{3} \\ &= \frac{2}{3} e^{\frac{i\pi}{2}} - \frac{2}{3} \\ &= \frac{2}{3} \left(i - 1 \right). \end{split}$$

3: From A&F: 2.4.7

Let C be an open (upper) semicircle of radius R with its center at the origin, and consider $\int_C f(z) dz$. Let $f(z) = \frac{1}{z^2 + a^2}$ for a real a > 0. Show that $|f(z)| \leq \frac{1}{R^2 - a^2}$, R > a, and

$$\left| \int_C f(z)dz \right| \le \frac{\pi R}{R^2 - a^2}, \quad R > a.$$

Solution:

First, we want to show

$$|f(z)| \le \frac{1}{R^2 - a^2}$$

where R > a > 0 and $a \in \mathbb{R}$. Let's consider the function more closely

$$f(z) = \frac{1}{z^2 + a^2} = \frac{1}{(x + iy)^2 + a^2}$$
$$= \frac{1}{x^2 + 2ixy - y^2 + a^2}$$
$$= \frac{1}{x^2 - y^2 + a^2 + i2xy}.$$

Notice, we can write the real and imaginary parts of the complex number in the denominator as functions u(x,y) and v(x,y). Where $u(x,y) = x^2 - y^2 + a^2$ and v(x,y) = 2xy.

Now we get

$$f(z) = \frac{1}{x^2 - y^2 + a^2 + i2xy} = \frac{u - iv}{u - iv} \frac{1}{u + iv} = \frac{u - iv}{u^2 + v^2}$$

Then we calculate

$$|f(z)| = \left| \frac{u - iv}{u^2 + v^2} \right|$$

$$= \left| \frac{u}{u^2 + v^2} - i \frac{v}{u^2 + v^2} \right|$$

$$= \sqrt{\left(\frac{u}{u^2 + v^2}\right)^2 + \left(\frac{v}{u^2 + v^2}\right)^2}$$

$$= \sqrt{\frac{u^2}{(u^2 + v^2)^2} + \frac{v^2}{(u^2 + v^2)^2}}$$

$$= \sqrt{\frac{u^2 + v^2}{(u^2 + v^2)^2}}$$

$$= \sqrt{\frac{1}{u^2 + v^2}}$$

$$= \frac{1}{\sqrt{u^2 + v^2}}.$$

If we plug our substitution back in we see

$$\begin{split} \frac{1}{\sqrt{u^2 + v^2}} &= \frac{1}{\sqrt{\left(x^2 - y^2 + a^2\right)^2 + \left(2xy\right)^2}} \\ &= \frac{1}{\sqrt{\left(x^2 - y^2 + a^2\right)\left(x^2 - y^2 + a^2\right) + 4x^2y^2}} \\ &= \frac{1}{\sqrt{x^4 - x^2y^2 + x^2a^2 - x^2y^2 + y^4 - y^2a^2 + x^2a^2 - y^2a^2 + a^4 + 4x^2y^2}} \\ &= \frac{1}{\sqrt{x^4 + x^2a^2 + y^4 - y^2a^2 + x^2a^2 - y^2a^2 + a^4 + 2x^2y^2}}. \end{split}$$

Now we add zero in a particular fashion, namely $-4x^2a^2 + 4x^2a^2$, so we can regroup the terms and refactor to get closer to what we desire

$$= \frac{1}{\sqrt{x^4 + x^2a^2 + y^4 - y^2a^2 + x^2a^2 - y^2a^2 + a^4 + 2x^2y^2 + (-4x^2a^2 + 4x^2a^2)}}$$

$$= \frac{1}{\sqrt{x^4 + y^4 - y^2a^2 - y^2a^2 + a^4 + 2x^2y^2 - x^2a^2 - x^2a^2 + 4x^2a^2}}$$

$$= \frac{1}{\sqrt{(x^2 + y^2 - a^2)^2 + (2xa)^2}}.$$

Using the fact that $\sqrt{a+b} \ge \sqrt{a}$ for a,b>0, in our next step we get a smaller denominator which makes the overall expression greater or equal to the previous step.

Note, equality only holds when x = 0.

$$\frac{1}{\sqrt{(x^2 + y^2 - a^2)^2 + (2xa)^2}} \le \frac{1}{\sqrt{(x^2 + y^2 - a^2)^2}}$$

$$= \frac{1}{x^2 + y^2 - a^2}$$

$$= \frac{1}{|z|^2 - a^2}$$

$$= \frac{1}{R^2 - a^2}$$

Therefore $|f(z)| \leq \frac{1}{R^2 - a^2}$.

Next we wish to show that

$$\left| \int_C f(z)dz \right| \le \frac{\pi R}{R^2 - a^2}, \quad R > a.$$

By Theorem 2.4.2 from A&F, if f(z) is continuous on contour C, then

$$\left| \int_C f(z) dz \right| \le ML$$

where L is the length of C and M is an upper bound for |f(z)|. We have that C is continuous, since a > 0 and a < R there are no singularities or weirdness with f(z) on the specified contour. So we have

$$M = \frac{1}{R^2 - a^2}$$

as we calculated in the first part of this problem. Additionally, we know the arc length of C is easy to calculate because it is half the circumference of the circle with radius R. To convince myself of this I will show the general arc length formula also provides this quick calculation. Let our parameterization of this contour be

$$z(\theta) = R \, \mathrm{e}^{i\theta}$$

where $\theta \in [0, \pi)$. Then

$$z'(\theta) = Ri e^{i\theta} = -R\sin\theta + iR\cos\theta.$$

Therefore calculating arc length is as follows:

$$L = \int_{a}^{b} |z'(t)| dt$$

$$= \int_{0}^{\pi} |-R\sin\theta + iR\cos\theta| d\theta$$

$$= \int_{0}^{\pi} \sqrt{R^{2}\sin^{2}\theta + R^{2}\cos^{2}\theta} d\theta$$

$$= \int_{0}^{\pi} \sqrt{R^{2}(\sin^{2}\theta + \cos^{2}\theta)} d\theta$$

$$= \int_{0}^{\pi} Rd\theta$$

$$= \pi R.$$

Which is the same as half the circumference $(\frac{1}{2}2\pi R = \pi R)$. And thus

$$\left| \int_C f(z) dz \right| \le ML \le \pi R \frac{1}{R^2 - a^2} = \frac{\pi R}{R^2 - a^2}.$$

Hence,

$$\left| \int_C f(z)dz \right| \le \frac{\pi R}{R^2 - a^2}$$

as desired.

4: From A&F: 2.4.8

Let C be an arc of the circle |z|=R with (R>1) of angle $\frac{\pi}{3}$. Show that

$$\left| \int_C \frac{\mathrm{d}z}{z^3 + 1} \right| \le \frac{\pi}{3} \left(\frac{R}{R^3 - 1} \right)$$

and deduce

$$\lim_{R \to \infty} \int_C \frac{\mathrm{d}z}{z^3 + 1} = 0$$

Solution:

Similar to the previous problem, we will utilize Theorem 2.4.2 from A&F. We are justified in this, since the contour C is continuous on the arc of the circle |z| = R. This time, our arc length of the contour C is

$$L = \frac{1}{6}2\pi R = \frac{\pi}{3}R.$$

Next, we need to calculate M as the upper bound for $\left|\frac{1}{z^3+1}\right|$. Let's use a simpler method than in problem 3.

$$|f(z)| = \left| \frac{1}{z^3 + 1} \right| = \frac{1}{|z^3 + 1|}.$$

If we can get a lower bound for the denominator then we will have an upper bound for the whole expression. It falls out quickly from the inverse triangle inequality and the parameterization $z = R e^{i\theta}$.

$$|z^{3} + 1| = |R^{3} e^{i3\theta} + 1|$$

$$= |R^{3} e^{i3\theta} - (-1)|$$

$$\geq ||R^{3} e^{i3\theta}| - |(-1)||$$

$$= |R^{3} - 1|$$

$$= R^{3} - 1$$

where the last equality holds because R > 1. Therefore, we have our lower bound for the denominator

$$|z^3 + 1| \ge R^3 - 1.$$

And thus we have an upper bound for the expression as follows:

$$|f(z)| = \frac{1}{|z^3 + 1|} \le \frac{1}{R^3 - 1} = M.$$

Once again leaning on Theorem 2.4.2 from A&F we have

$$\left| \int_C f(z)dz \right| \le ML \le \frac{\pi}{3}R\frac{1}{R^3 - 1} = \frac{\pi}{3}\left(\frac{R}{R^3 - 1}\right).$$

Hence,

$$\left| \int_C f(z) dz \right| \leq \frac{\pi}{3} \left(\frac{R}{R^3 - 1} \right).$$

5: From A&F: 2.5.1 b, e

Evaluate $\oint_C f(z)dz$, where C is the unit circle centered at the origin, and f(z) is given by the following:

b)

$$f(z) = e^{z^2}$$

Solution:

e)

$$f(z) = \frac{1}{2z^2 + 1}$$

Solution:

6: Use the ideas from A&F: 2.5.5 to evaluate $\int_0^\infty \mathrm{e}^{\mathrm{i}z^3t} \,\mathrm{d}z$, t > 0. Express the result in terms of $\int_0^\infty \mathrm{e}^{-r^3} \,\mathrm{d}r$.

The ideas we might need to use are ... it's actually really long! Solution:

7: From A&F: 2.5.6.

Consider the integral

$$I = \int_{-\infty}^{\infty} \frac{\mathrm{d}x}{x^2 + 1}.$$

Show how to evaluate this integral by considering

$$\oint_{C_{(\mathbb{R})}} \frac{\mathrm{d}z}{z^2 + 1},$$

where $C_{(\mathbb{R})}$ is closed semicircle in the upper half plane with endpoints at (-R,0) and (R,0) plus the x-axis. *Hint:* use

$$\frac{1}{z^2 + 1} = -\frac{1}{2i} \left(\frac{1}{z+i} - \frac{1}{z-i} \right),$$

and show that the integral along the open semicircle in the upper half plane vanishes as $R \to \infty$. Verify your answer by usual integration in real variables. *Solution:*

Repeat this exercise for

$$I_{\epsilon} = \int_{-\infty}^{\infty} \frac{\epsilon \mathrm{d}x}{x^2 + \epsilon^2}, \quad \epsilon > 0.$$

Seems like I am supposed to do 2.5.6 and then for the given integral as well. *Solution:*

- 8: Use a similar method to calculate $\int_{-\infty}^{\infty} \frac{dx}{1+x^4}$. Solution:

9: From A&F: 2.6.1 a, e. Evaluate the integrals $\oint_C f(z) dz$, where C is the unit circle centered at the origin and f(z) is given by the following (use Eq. (1.2.19) as necessary):

$$\frac{\sin z}{z}$$

Solution:

$$e^{z^2} \left(\frac{1}{z^2} - \frac{1}{z^3} \right)$$

Solution: