文件编号	FIL-C-241227-901410-SWX
上级文件编号	FIL-C-240929-901068-MDX

PPL 算子开发

注意

本文件所含的信息均具有保密性质并仅限于内部使用。不得对本文件、本文件的任何部分或本文件所含的任何信息进行未经授权地使用、披露或复制。

NOTICE

The information contained in this document is confidential and is intended only for internal use. Unauthorized use, disclosure or copying of this document, any part hereof or any information contained herein is strictly prohibited.

目录

目录	1
修订记录	3
第一章 <i>总则</i>	4
第1条 目的	4
第 2 条 适用范围	4
第 3 条 名词定义	4
第二章 <i>环境配置</i>	4
第 4 条 从 gerrit 上下载并配置 PPL 工程	4
第 5 条 从 ftp 服务器下载 PPL release 包	5
第 6 条 从 github sophgo 官方页面获取 PPL release 包	5
第7条 编译方式	5
第三章 <i>工程目录介绍</i>	6
第 8 条 release 包根目录简介	6
第 9 条 PPL 工程根目录简介	6
第四章 <i>基本算子开发</i>	6
第 10 条 以 add 算子为例,介绍使用 PPL 进行算子开发的全过程	6
第 11 条 算子开发注意事项	7
第 12 条 精度验证	8
第 13 条 代码调试	9
第五章 <i>多核算子开发</i>	10
第 14 条 使用 MULTI_CORE 关键字	10
第 15 条 调用 set_core_num()	11
第六章 性能测试	11

第 16 条 使用 ppl_compile.py 脚本进行单测	11
第 17 条 使用 ppl_compile.py 脚本进行批量测试	12
第七章 <i>性能调优</i>	
第 18 条 对齐 LANE_NUM	13
第 19 条 数据切分与流水并行	15
第 20 条 多核并行	17
第八音 checklist	18

修订记录

版本号	修订日期	作者	修订内容
1.0	2024. 12. 27	李胜超	首次制作

第一章 总则

第1条 目的

1) 介绍使用 PPL 编译器进行算子开发及算子性能调优的方法。

第2条 适用范围

1) 所有需要使用 PPL 编译器进行算子开发的员工。

第3条 名词定义

1) PPL: Primitive Programming Language,是一个代码转换工具,它提供了一套 C/C++ 和一套 triton 风格的高级编程接口、负责 TPU 上的内存管理、能够自动进行必要的同步控制和并行计算优化。

第二章 环境配置

目前支持三种获取 PPL 工程或者 release 包的方式,使用任意一种均可进行算子开发。

第4条 从 gerrit 上下载并配置 PPL 工程

安装 git-lfs

curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash sudo apt-get install git-lfs

如何使用 git-lfs

https://wiki.sophgo.com/pages/viewpage.action?pageId=127019078

clone PPL 工程

git config --global http.sslVerify false

git clone https://shengchao.li@gerrit-ai.sophgo.vip:8443/a/ppl && (cd ppl && mkdir -p .git/hooks && curl -Lo `git rev-parse --git-dir`/hooks/commit-msg https://shengchao.li@gerrit-ai.sophgo.vip:8443/tools/hooks/commit-msg; chmod +x `git rev-parse --git-dir`/hooks/commit-msg)

git config --global http.sslVerify true

配置 http

cd ppl

git config lfs.https://gerrit-ai.sophgo.vip/ppl.git/info/lfs.locksverify false

git config --global credential.helper store

git config http.sslVerify false

获取第三方库

cd ppl/third party

scp

guest@172.22.12.22:/data/ppl third party/llvm+mlir-17.0.0-x86 64-linux-gnu-ubuntu-18.04-r elease.tar.gz.

(password:123456)

tar -xvhf llvm+mlir-17.0.0-x86 64-linux-gnu-ubuntu-18.04-release.tar.gz mv llvm+mlir-17.0.0-x86 64-linux-gnu-ubuntu-18.04-release/ llvm release/

第5条 从 ftp 服务器下载 PPL release 包

```
# 下载 release 包
```

服务器 ip 地址: 172.28.141.89

用户名: AI

密码: SophgoRelease2022

快速拉取指令

--ftp-user=AI wget

--ftp-password=SophgoRelease2022

ftp://172.28.141.89/sophon-sdk/ppl/daily build/Master 20241208 053000/ppl v1.4.97-g847805

7a-20241208.tar.gz

从 github sophgo 官方页面获取 PPL release 包 第6条

release 包下载地址

https://github.com/sophgo/PPL

快速拉取指令

wget

https://github.com/sophgo/PPL/releases/download/v1.4.91/ppl v1.4.91-gc2fc3685-20241202.tar.

第7条 编译方式

使用 PPL 提供的 docker 环境

cd docker

当前已处于 ppl/docker 目录下

./build.sh

cd ..

当前已处于 ppl/ 目录下

docker run --privileged -itd -v \$PWD:/workspace --name ppl sophgo/ppl:latest docker exec -it ppl bash

使用 sophgo 通用镜像

docker run --privileged -itd -v \$PWD:/workspace --name ppl sophgo/tpuc dev:latest docker exec -it ppl bash

#PPL 工程编译

cd /workspace

source envsetup.sh # release 包不需要编译 ./build.sh (DEBUG)

第三章 工程目录介绍

第8条 release 包根目录简介

- 1) bin/ 目录存放 PPL 编译工具(ppl-compile)和 desc 模式编译工具。
- 2) doc/目录存放《PPL快速入门指南.pdf》和《PPL开发参考手册.pdf》。

Figure 1.

- 3) docker/ 目录存放 PPL 专用镜像的编译脚本。
- 4) example/目录存放使用 C/C++ 和 python 指令接口开发的示例算子。
- 5) inc/ 目录存放 PPL 指令接口头文件。
- 6) python/ 目录存放使用 python 开发的辅助工具。
- 7) runtime/ 目录存放不同芯片的 cmodel 运行时库和依赖的头文件。
- 8) samples/目录存放 PPL 代码在不同芯片不同模式下运行的示例。
- 9) third party/目录存放第三方库。
- 10) envsetup. sh 为环境变量设置脚本。

第9条 PPL 工程根目录简介

1) 参考《PPL编译器开发》COP。

第四章 基本算子开发

第10条 以 add 算子为例,介绍使用 PPL 进行算子开发的全过程

1) PPL device 端代码实现功能的编写逻辑为将 gmem 数据上传到 1mem→

在 1mem 上计算→从 1mem 下载结果数据至 gmem。

```
// 示例代码位于 ppl/examples/cxx/arith/add pipeline.pl
 KERNEL void add kernel ori(fp16 *ptr res, fp16 *ptr inp, const int N,
                               const int C, const int H, const int W) {
  dim4 shape = {N, C, H, W};
  // 使用 gtensor 封装 gmem 上的数据
  auto in gtensor = gtensor < fp16 > (shape, GLOBAL, ptr inp);
  auto res gtensor = gtensor < fp16 > (shape, GLOBAL, ptr res);
  auto in = tensor<fp16>(shape); // 使用 tensor 申请 lmem 上的空间
  auto res = tensor<fp16>(shape);
  float scalar c = 0.25;
  dma::load(in, in gtensor);
                             // 从 gmem 上 load 数据到 lmem
  tiu::fadd(res, in, scalar c);
                               // 进行加法操作
  dma::store(res gtensor, res);
                             // 将结果从 lmem 上 store 到 gmem
```

- 2) ppl 使用 gtensor 抽象表示 gmem/12mem 上的内存及其 shape、stride 和 offset 等信息; 使用 tensor 抽象表示 1mem 上的内存及其 shape、stride 和 offset 等信息。
- 3) 需要将 kernel 函数传入参数中的 gmem 内存地址绑定到 gtensor 并 指定为 GLOBAL 类型;使用 shape 申请 lmem 的地址空间。

第11条 算子开发注意事项

1) gmem 和 12mem 均使用 gtensor 结构体,但 gmem 绑定 gtensor 时必须传入地址; 12mem 绑定 gtensor 时可以缺省地址。

```
// 示例代码位于 ppl/examples/cxx/matmul/mm2_fp16_sync.pl auto left_gt = gtensor<fp16>(left_global_shape, GLOBAL, ptr_left); auto right_gt = gtensor<fp16>(right_global_shape, GLOBAL, ptr_right); auto res_gt = gtensor<fp16>(res_global_shape, GLOBAL, ptr_res); gtensor<fp16>12_left(l2_left_max_shape, L2), l2_right(L2);
```

2) 当使用动态 block时,即需要将 block 信息作为参数传入 kernel 函数, 必须添加 const 修饰符。

```
// 示例代码位于 ppl/examples/cxx/arith/add_dyn_block.pl
__KERNEL__ void add(fp16 *ptr_res, fp16 *ptr_inp, int W, const int block_w){...}
```

3) block shape 与 real shape:

```
// 示例代码位于 ppl/examples/cxx/conv/fconv2d_single_loop.pl
dim4 bias_block_shape = {1, block_oc, 1, 1};
auto bias_tensor = tensor<fp32>(bias_block_shape, TPU_COMPACT);
dim4 bias_real_shape = {1, curr_oc, 1, 1};
dim4 bias_offset = {0, idx_oc, 0, 0};
auto bias = bias_tensor.view(bias_real_shape);

dim4 weight_block_shape = {1, block_oc, block_ic / nic * kh * kw, nic};
dim4 weight_real_shape = {1, curr_oc, div_up(curr_ic, nic) * kh * kw, nic};
auto weight = make_tensor<fp16>(weight_block_shape, weight_real_shape, TPU_COMPACT);
```

- a) block_shape 为进行内存分配的形状大小, real_shape 为在循环中 计算出的实际进行计算的形状大小。
- b) 参与内存分配的 block_shape 必须是常数,或者作为参数传入(参数必须有 const 修饰)。
- c) 支持先使用 block_shape 申请 lmem 内存,然后使用 view 取用内存中实际需要计算的大小。
- d) 支持使用 make_tensor 同时传入 block_shape 和 real_shape 直接取用内存中实际需要计算的大小。

第12条 精度验证

1) 当确认 tensor 信息与指令调用无误,使用 ppl_compile.py 脚本对比 经过 PPL 优化的代码和未经过 PPL 优化的代码,验证 PPL 优化的正确性。

ppl_compile.py --src examples/cxx/arith/add_pipeline.pl --chip bm1684x --gen_ref

- 2) 编写 pytorch 版本算子,验证 ppl 算子精度。
 - a) 从 test_add_pipeline/data 目录获取 tpu 输入和输出 (add_pipeline_tar.npz)。文件路径 dir 与 pl 文件同名即可。 npz 文件中数据的排序方式,与 kernel 函数参数中地址的排序一致。

```
import torch
from tool.test_process import test_processor

@test_processor
def compute_add_pipeline_main(tpu_out, shapes, **kwargs):
    left = tpu_out["1"]
    N, C, H, W = shapes
    tensor_left = torch.tensor(left.reshape([N, C, H, W]), dtype=torch.float)
    torch_out = torch.add(tensor_left, 0.25)
    return {"0": torch_out.numpy()}

if __name__ == "__main__":
    compute_add_pipeline_main(dir="add_pipeline", shapes=(8,32,1,4096))
```

Figure 2.

b) 需要用户编写 pytorch 的计算逻辑,然后直接使用 PPL 封装的验证函数,对比 tpu 和 pytorch 的计算结果。

第13条 代码调试

- 1) 在调用 ppl_compile.py 脚本时,添加 --gdb 选项,即可自动编译并运行 debug 版本的 test_case 程序,并在程序运行时进入调试界面;调试的源码为 ppl 编译生成的 tpu_kernel 代码,代码存放在 test add pipeline/device 目录下。
- 2) 支持 tensor 信息打印,不支持数据打印。

Figure 3.

3) 支持在 pl 文件直接打印 tensor 信息,结果会输出在终端。打印 tensor 信息需要使用 to string 函数进行数据提取。

Figure 4.

- 4) 当存在精度问题时,同步截断 ppl 算子和 pytorch 版本算子,进行逐 层结果对比。具体操作为:
 - a) 在 kernel 函数中添加测试参数用于 dump 中间层数据(示例代码位于pp1/examples/cxx/11m/tgi/w4a16_matmu1.pl)。

Figure 5.

- b) 在 pytorch 算子和 PPL 算子中截断输出,进行数据比对,定位精度 损失 出现的位置 (示例代码位于 ppl/examples/cxx/llm/tgi/w4a16 matmul.py)。
- c) PPL 算子可以在任意一步操作后进行 store 操作,将计算结果 dump 下来。

Figure 6.

```
sub_res_tensor = right_int8_tensor.reshape([N, group, group_size]) - zp_int8_tensor.reshape([N, group, 1])
sub_res_f16_tensor = sub_res_tensor.to(torch.float16)
mul_res_f16 = sub_res_f16_tensor.reshape([N, group, group_size]) * scale_fp16_tensor.reshape([N, group, 1])
torch_out = F.linear(tensor_left, mul_res_f16.reshape([N, K]).to(torch.float))

return ["5": sub_res_tensor.numpy()]

You, 现在 * Uncommitted changes

matmul(dir="w4a16_matmul", M=1240, K=4096, N=4096, group_size=128)
```

Figure 7.

d) pytorch 算子 return 时进行截断,直接使用与 PPL 截断相同计算 的结果进行结果对比。数字 5 表示使用 sub_res_tensor 与 tpu 计算结果 npz 文件中的第 5 个数据集进行比对。

第五章 多核算子开发

目前 PPL 支持针对 BM1684x、BM1688、BM1690 和 SG2380 芯片编写算子, BM1684x 仅 有一个 core, BM1688 有两个 core, BM1690 有八个 core, SG2380 有四个 core。以 add 算子为例,介绍多核算子开发的全流程。

第14条 使用 MULTI CORE 关键字

1) MULTI_CORE 是封装了一个模板参数来设置宏数量,如果编写了 __TEST__ 函数,则可以在 test 函数中通过模板参数传入 core 数量,如果未编写 __TEST__ 函数则不能使用此方式,或者需要手动将 kernel 函数实例化。

```
MULTI_CORE
__KERNEL__ void add_kernel_multi_core(fp16 *ptr_res, fp16 *ptr_inp, int W) {

__TEST__ void add() {

    const int N = 8;

    const int C = 32;

    const int H = 1;

    int W = 4096;

    dim4 shape = {N, C, H, W};

    fp16 *res = rand<fp16>(&shape);

    fp16 *res = rand<fp16>(&shape, -32.21f, 32.32f);

    add_kernel_multi_core<8>(res, inp, W); // 使用 6 个核运行核函数
}
```

Figure 8.

2) MULTI_CORE 关键字是在编译期生效, kernel 函数运行的时候是没有这条指令的。因此,需要调用 get_core_num() 来获取运行时 kernel 函数使用的 core 数量,并且需要调用 get_core_index() 来获取运行时 kernel 函数使用的 core 索引。

第15条 调用 set_core_num()

- 1) set_core_num() 也是在编译期生效,同样需要调用 get_core_num() 和 get_core_index() 来获取运行时 kernel 函数使用的 core 数量和索引。
- 2) 可以通过宏来设置 core 数量,然后编译的时候将宏传入;也可以直接使用 core_num 作为 kernel 函数的参数传入(作为参数时必须加上const 修饰符,可参考 ppl/examples/cxx/llm/mlp_multicore.pl 文件),以便在编译期修改 core 数量。

Figure 9.

第六章 性能测试

与 pytorch 版本算子精度对比通过后,进行性能测试的方式分为两种。以 add 算子为例介绍两种性能测试方式。

第16条 使用 ppl compile.py 脚本进行单测

1) 设置好切分策略后,直接调用 ppl_compile.py 脚本,添加 --profiling 选项进行单测。

ppl_compile.py --src examples/cxx/arith/add_pipeline.pl --chip bm1684x --gen_ref --profiling

```
profiling result:
CoreId Parallelism(%) totalTime(us) TiuWorkingRatio totalTiuCycle totalGdmaCycle GdmaDdrAvgBandwidth(GB/s) GdmaL2AvgBandwidth(GB/s)
       201.69%
        201.69%
                                     1.79%
                                                                                    64.29
       201.69%
                       8.163
                                     1.79%
                                                                                    64.29
       201.69%
                       8.163
                                     1.79%
                                                      146
                                                                    8159
                       8.163
```

Figure 10.

2) 结果会以表格的形式打印在终端, test_add_pipeline/profiling 目录下会生成对应的 profiling 文件。

第17条 使用 ppl_compile.py 脚本进行批量测试

1) 需要在 .pl 文件中添加 __AUTOTUNE__ 函数,编写所需测试的切分策略,运行调用 ppl_compile.py 脚本,添加 --autotune 选项进行批量测试。

ppl_compile.py --src examples/cxx/arith/add_pipeline.pl --chip bm1684x --gen_ref --autotune

```
__AUTOTUNE__ void add_profile() {
   for (int w = 1024; w < 4096; w+=1024) {
        add_kernel_multi_core(nullptr, nullptr, w);
    }
}
```

Figure 11.

2) 结果会以表格的形式打印在终端, test_add_pipeline/profiling 目录下会生成对应的 profiling 文件。

	nel_multi_core \	with args: (10	24) profiling re	sult:			
CoreId	Parallelism(%)	totalTime(us)	TiuWorkingRatio	totalTiuCvcle	totalGdmaCvcle	GdmaDdrAvgBandwidth(GB/s)	GdmaL2AvgBandwidth(GB/s)
0	201.75%	2,403	2.08%	50	2399	54.73	0
1	201.75%	2.403	2.08%	50	2399	54.73	0
2	201.75%	2.403	2.08%	50	2399	54.73	0
	201.75%	2.403	2.08%	50	2399	54.73	0
	201.75%	2.403	2.08%	50	2399	54.73	0
5	201.75%	2.403	2.08%	50	2399	54.73	0
5	201.75%	2.403	2.08%	50	2399	54.73	0
	201.75%	2.403	2.08%	50	2399	54.73	0
	201.75%	2,403	2.08%	0.05us	2.40us	54.73	0
add_kerr	nel_multi_core (======== =============================	48) profiling re	 sult:			
=======		=======================================				=	
						GdmaDdrAvgBandwidth(GB/s)	
0	201.71%	4.323	1.90%	82	4319	60.75	0
	201.71%	4.323	1.90%	82	4319	60.75	
			1.90%	82	4319		
	201.71%	4.323				60.75	
	201.71%	4.323	1.90%	82	4319	60.75	
3 4	201.71% 201.71%	4.323 4.323	1.90% 1.90%	82 82	4319 4319	60.75 60.75	
3 4 5	201.71% 201.71% 201.71%	4.323 4.323 4.323	1.90% 1.90% 1.90%	82 82 82	4319 4319 4319	60.75 60.75 60.75	
3 4 5 6	201.71% 201.71% 201.71% 201.71%	4.323 4.323 4.323 4.323	1.90% 1.90% 1.90% 1.90%	82 82 82 82	4319 4319 4319 4319	60.75 60.75 60.75 60.75	0 0 0 0
3 4 5 6 7	201.71% 201.71% 201.71% 201.71% 201.71%	4.323 4.323 4.323 4.323 4.323	1.90% 1.90% 1.90% 1.90% 1.90%	82 82 82 82 82	4319 4319 4319 4319 4319	60.75 60.75 60.75 60.75 60.75	0 0 0 0
2 3 4 5 6 7 Overall	201.71% 201.71% 201.71% 201.71%	4.323 4.323 4.323 4.323	1.90% 1.90% 1.90% 1.90%	82 82 82 82	4319 4319 4319 4319	60.75 60.75 60.75 60.75	0 0 0 0
3 4 5 6 7 Overall =======	201.71% 201.71% 201.71% 201.71% 201.71% 201.71%	4.323 4.323 4.323 4.323 4.323 4.323	1.90% 1.90% 1.90% 1.90% 1.90%	82 82 82 82 82 82 0.08us	4319 4319 4319 4319 4319	60.75 60.75 60.75 60.75 60.75	0 0 0 0
3 4 5 5 7 7 Overall 	201.71% 201.71% 201.71% 201.71% 201.71% 201.71%	4.323 4.323 4.323 4.323 4.323 4.323 	1.90% 1.90% 1.90% 1.90% 1.90% 1.90%	82 82 82 82 82 82 0.08us sult:	4319 4319 4319 4319 4319 4319 4.32us	60.75 60.75 60.75 60.75 60.75 60.75 =	0 0 0 0 0
3 4 5 6 7 Overall add_kern CoreId	201.71% 201.71% 201.71% 201.71% 201.71% 201.71%	4.323 4.323 4.323 4.323 4.323 4.323 	1.90% 1.90% 1.90% 1.90% 1.90% 1.90%	82 82 82 82 82 80.08us 	4319 4319 4319 4319 4319 4.32us 	60.75 60.75 60.75 60.75 60.75 60.75 = = = = = = = = = = = = = = = = = = =	0 0 0 0 0 0 GdmaL2AvgBandwidth(GB/s)
3 4 5 6 7 Overall add_kern CoreId 0	201.71% 201.71% 201.71% 201.71% 201.71% 201.71%	4.323 4.323 4.323 4.323 4.323 4.323 	1.90% 1.90% 1.90% 1.90% 1.90% 1.90% 	82 82 82 82 82 0.08us sult:	4319 4319 4319 4319 4319 4.32us totalGdmaCycle 6239	60.75 60.75 60.75 60.75 60.75 60.75 = = = GdmaDdrAvgBandwidth(GB/s) 63.07	0 0 0 0 0 0 GdmaL2AvgBandwidth(GB/s)
3 4 5 6 7 7 Overall add_kern CoreId 3	201.71% 201.71% 201.71% 201.71% 201.71% 201.71% 201.71% mel_multi_core in the core	4.323 4.323 4.323 4.323 4.323 4.323 	1.90% 1.90% 1.90% 1.90% 1.90% 1.90% TiuWorkingRatio 1.83% 1.83%	82 82 82 82 82 0.08us sult: totalTiuCycle 114	4319 4319 4319 4319 4.32us totalGdmaCycle 6239 6239	60.75 60.75 60.75 60.75 60.75 60.75 = = = GdmaDdrAvgBandwidth(GB/s) 63.07	0 0 0 0 0 0 GdmaL2AvgBandwidth(GB/s)
3 4 5 6 7 7 Overall add_kern CoreId 9 1	201.71% 201.71% 201.71% 201.71% 201.71% 201.71%	4.323 4.323 4.323 4.323 4.323 4.323 	1.90% 1.90% 1.90% 1.90% 1.90% 1.90% 	82 82 82 82 82 80.08us 	4319 4319 4319 4319 4.32us 	60.75 60.75 60.75 60.75 60.75 60.75 = = GdmaDdrAvgBandwidth(GB/s) 63.07 63.07	0 0 0 0 0 0 0 GdmaL2AvgBandwidth(GB/s) 0 0
3 4 5 5 7 7 Overall add_kern CoreId 0 1	201.71% 201.71% 201.71% 201.71% 201.71% 201.71%	4.323 4.323 4.323 4.323 4.323 4.323 with args: (30°) 	1.90% 1.90% 1.90% 1.90% 1.90% 1.90% 	82 82 82 82 82 80.08us sult: totalTiuCycle 114 114 114 114	4319 4319 4319 4319 4.32us 	60.75 60.75 60.75 60.75 60.75 60.75 =	0 0 0 0 0 0 GdmaL2AvgBandwidth(GB/s) 0 0 0
3 4 5 5 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	201.71% 201.71% 201.71% 201.71% 201.71% 201.71%	4.323 4.323 4.323 4.323 4.323 4.323 with args: (30')	1.90% 1.90% 1.90% 1.90% 1.90% 1.90% 	82 82 82 82 82 0.08us sult: totalTiuCycle 114 114 114 114	4319 4319 4319 4319 4.32us 	60.75 60.75 60.75 60.75 60.75 60.75 = GdmaDdrAvgBandwidth(GB/s) 63.07 63.07 63.07 63.07	0 0 0 0 0 0 0 GdmaL2AvgBandwidth(GB/s) 0 0 0
3 4 5 5 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	201.71% 201.71% 201.71% 201.71% 201.71% 201.71%	4.323 4.323 4.323 4.323 4.323 4.323 with args: (30' totalTime(us) 6.243 6.243 6.243 6.243 6.243 6.243 6.243	1.90% 1.90% 1.90% 1.90% 1.90% 1.90% 1.90% 1.90% 1.83% 1.83% 1.83% 1.83% 1.83% 1.83%	82 82 82 82 82 80.08us sult: totalTiuCycle 114 114 114 114	4319 4319 4319 4319 4.32us 	60.75 60.75 60.75 60.75 60.75 60.75 =	0 0 0 0 0 0 GdmaL2AvgBandwidth(GB/s) 0 0 0
3 4 5 5 6 7 7 Overall add_kern 2 3 1 2 3 4 5	201.71% 201.71% 201.71% 201.71% 201.71% 201.71%	4.323 4.323 4.323 4.323 4.323 4.323 with args: (30')	1.90% 1.90% 1.90% 1.90% 1.90% 1.90% 	82 82 82 82 82 0.08us sult: totalTiuCycle 114 114 114 114	4319 4319 4319 4319 4.32us 	60.75 60.75 60.75 60.75 60.75 60.75 = GdmaDdrAvgBandwidth(GB/s) 63.07 63.07 63.07 63.07	0 0 0 0 0 0 0 GdmaL2AvgBandwidth(GB/s) 0 0 0
3 4 5 5 6 7 Overall coreId 2 1 2 3 4	201.71% 201.71% 201.71% 201.71% 201.71% 201.71%	4.323 4.323 4.323 4.323 4.323 4.323 with args: (30' totalTime(us) 6.243 6.243 6.243 6.243 6.243 6.243 6.243	1.90% 1.90% 1.90% 1.90% 1.90% 1.90% 1.90% 1.90% 1.83% 1.83% 1.83% 1.83% 1.83% 1.83%	82 82 82 82 82 82 82 82 82 82 82 83 84 84 84 84 84 84 84 84 84 84 84 84 84	4319 4319 4319 4319 4.32us totalGdmaCycle 6239 6239 6239 6239 6239 6239 6239 6239	60.75 60.75 60.75 60.75 60.75 60.75 60.75 = = = GdmaDdrAvgBandwidth(GB/s) 63.07 63.07 63.07 63.07 63.07	0 0 0 0 0 0 GdmaL2AvgBandwidth(GB/s) 0 0 0

Figure 12.

第七章 性能调优

当算子性能较差时,推荐分三步进行性能优化。以 add 算子为例介绍性能优化流程。

第18条 对齐 LANE_NUM

- 1) tpu 在进行运算时会按照 tensor shape 的 channel 分发到 LANE_NUM 个 lane 上进行并行计算; 所以,将 tensor 的 channel 对齐 LANE_NUM 能更好的发挥硬件的并行性能。
- 2) 如果,数据的计算对于 shape 的形状依赖较少(例如逐元素计算、单维度 softmax 等),则可以将数据切分到 channel 维度上,并对齐 LANE_NUM,可以实现一定程度的性能优化。
- 3) 上面加法 kernel 函数为逐元素加法,所以可以改写为:

```
__KERNEL__ void add_kernel_align_lane0(fp16 *ptr_res, fp16 *ptr_inp, const int N, const int C, const int H, const int W) {

int n = 1, c = LANE_NUM, h = 1;
```

```
int element_num = N * C * H * W;
int w = div_up(element_num, LANE_NUM);
dim4 shape = {n, c, h, w};

auto in_gtensor = gtensor<fp16>(shape, GLOBAL, ptr_inp);
auto res_gtensor = gtensor<fp16>(shape, GLOBAL, ptr_res);

auto in = tensor<fp16>(shape);
auto res = tensor<fp16>(shape);
float scalar_c = 0.25;

dma::load(in, in_gtensor);
tiu::fadd(res, in, scalar_c);
dma::store(res_gtensor, res);
}
```

4) 示例中的加法计算为逐元素计算,所以对于 shape 的形状不存在依赖, 故可以先将 tensor 视为一维:

```
int element_num = N * C * H * W;
```

5) 然后,在将一维的数据按 LANE_NUM 进行划分,并将 channel 维度设置 为 LANE NUM:

```
int w = div_up(element_num, LANE_NUM);
dim4 shape = {1, LANE_NUM, 1, w};
```

6) 对于 shape 形状存在依赖的算子,即不可以随意更改 tensor shape 的 算子,例如 matmul,可以将 M、N、K 中的某一维放在 channel 维度上实现加速:

```
// 完整代码见 ppl/example/cxx/matmul/mm2_fp16.pl dim4 res_global_shape = {1, M, 1, N}; dim4 left_global_shape = {1, M, 1, K}; dim4 right_global_shape = {1, K, 1, N};
```

7) 注意:上述示例中,将整个 tensor 按照 LANE_NUM 划分,必须保证 N*C*H*W 的结果是 LANE_NUM 的整数倍,否则会导致访问越界。或者可以使用下面的实现方式进行划分:

```
KERNEL void add kernel align lane1(fp16 *ptr res, fp16 *ptr inp,
```

```
const int N, const int C, const int H,
                                              const int W) {
  const int c = N * C, w = H * W;
  dim4 \text{ shape} = \{1, c, 1, w\};
  auto in gtensor = gtensor < fp16 > (shape, GLOBAL, ptr inp);
  auto res gtensor = gtensor < fp16 > (shape, GLOBAL, ptr res);
  float scalar c = 0.25;
  int block c = LANE NUM;
  int block w = 512;
  dim4 in shape = {1, block c, 1, block w};
  for (int idx c = 0; idx c < c; idx c += block c) {
    int real c = min(block c, c - idx c);
     for (int idx w = 0; idx w < w; idx w += block w) {
       int real w = \min(block \ w, w - idx \ w);
       dim4 real shape = \{1, real c, 1, real w\};
       dim4 \text{ offset} = \{0, idx \ c, 0, idx \ w\};
       auto in = make tensor<fp16>(in shape, real shape);
       auto res = make tensor<fp16>(in shape, real shape);
       dma::load(in, in gtensor.sub view(real shape, offset));
       tiu::fadd(res, in, scalar c);
       dma::store(res gtensor.sub view(real shape, offset), res);
  }
}
```

第19条 数据切分与流水并行

- 1) lmem 的大小存在限制,当数据规模过大时,无法一次性将所有数据 load 进入 lmem,即无法经过一轮运算就得到结果,需要分批次将数据传入 tpu,然后排队计算。
- 2) tpu 各个 engine 之间的运行是独立且互不干扰的(仅存在数据流动依赖关系),于是可以将数据切分为适当的大小,然后利用 tpu 的硬件特性实现内存传输(dma)时间的隐藏,进而实现性能优化。
- 3) 流水并行具体原理可参考 doc 目录下的《PPL开发参考手册.pdf》。上述加法 kernel 可进一步优化为:

```
__KERNEL__ void add_kernel_pipeline(fp16 *ptr_res, fp16 *ptr_inp, const int N, const int C, const int H, const int W) {

int n = 1, c = LANE_NUM, h = 1;
```

```
int element num = N * C * H * W;
  int w = div up(element num, LANE NUM);
  dim4 \text{ shape} = \{n, c, h, w\};
  auto in gtensor = gtensor < fp16 > (shape, GLOBAL, ptr inp);
  auto res gtensor = gtensor < fp16 > (shape, GLOBAL, ptr res);
  int block w = 512;
  dim4 block shape = \{n, c, h, block w\};
  float scalar c = 0.25;
  for (int w idx = 0; w idx < W; w idx += block w) {
     enable pipeline();
     int tile w = min(block w, W - w idx);
    dim4 cur shape = \{n, c, h, tile w\};
     auto in = make tensor<fp16>(block shape, cur shape);
     auto res = make tensor<fp16>(block shape, cur shape);
     dim4 \text{ offset} = \{0, 0, 0, w | idx\};
     dma::load(in, in gtensor.sub view(cur shape, offset));
     tiu::fadd(res, in, scalar c);
     dma::store(res gtensor.sub view(cur shape, offset), res);
  }
}
```

- 4) 对 W 维度进行切分,并使用 enable_pipeline 指令开启自动流水并行,即可以将一部分 load 和 store 操作消耗的时间隐藏。
- 5) 同理,上述示例中,将整个 tensor 按照 LANE_NUM 划分,必须保证 N*C*H*W 的结果是 LANE_NUM 的整数倍,否则会导致访问越界。或者可以使用下面的实现方式进行划分:

```
for (int idx_c = 0; idx_c < c; idx_c += block_c) {
    enable_pipeline();
    int real_c = min(block_c, c - idx_c);
    for (int idx_w = 0; idx_w < w; idx_w += block_w) {
        int real_w = min(block_w, w - idx_w);
        dim4 real_shape = {1, real_c, 1, real_w};
        dim4 offset = {0, idx_c, 0, idx_w};
        auto in = make_tensor<fp16>(in_shape, real_shape);
        auto res = make_tensor<fp16>(in_shape, real_shape);
        dma::load(in, in_gtensor.sub_view(real_shape, offset));
        tiu::fadd(res, in, scalar_c);
        dma::store(res_gtensor.sub_view(real_shape, offset), res);
    }
}
```

第20条 多核并行

- 1) 当算子针对的芯片有多个 core 时,由于 core 与 core 之间是并行运算,可以将数据按照 core 的数目进行切分,每个 core 上进行相同的运算,但涉及的数据块不一样,理论上可以提升 CORE_NUM 倍数的性能。
- 2) 上述加法 kernel 可进一步优化为:

```
#ifdef bm1690
#define CORE NUM 8
#elif bm1688
#define CORE NUM 2
#else
#define CORE NUM 1
#endif
 KERNEL void add kernel multi core(fp16 *ptr res, fp16 *ptr inp, int W) {
 // 在 TPU 上运行的主函数需要加上 KERNEL 关键字
 // 在多核(bm1690 等)上运行的主函数需要添加 MULTI CORE 关键字
 // 或者不使用 MULTI CORE 关键字,直接可以调用 ppl::set core num
 const int N = 8;
 const int C = 32;
 const int H = 1;
 ppl::set core num(CORE NUM);
                               // 获取当前程序运行使用的总的核数量
                                 // 获取当前程序运行使用的总的核数量
 int core num = ppl::get core num();
                               // 获取当前是在哪个核上运行
 int core_idx = ppl::get_core_index();
 if (core idx \geq= core num) {
   return;
```

```
assert(W > 0);
 dim4 global shape = {N, C, H, W};
 // 使用 tensor 封装 gmem 上的数据
 auto in gtensor = gtensor < fp16 > (global shape, GLOBAL, ptr inp);
 auto res gtensor = gtensor < fp16 > (global shape, GLOBAL, ptr res);
 int slice = div up(W, core num);
                                    // 计算每个核上处理的 W size
 int cur slice = min(slice, (W - slice*core idx)); // 计算当前核上处理的 W size
 int slice offset = core idx * slice;
                                 // 计算当前核处理的数据在 ddr 上的偏移
                         // 定义单个核上,每次循环处理的 W block size
 int block w = 512;
 dim4 block shape = {N, C, H, block w}; // 定义单次循环处理的数据 shape
 // 申请 tpu lmem 上的内存,由于 PPL 是在编译期计算 lmem 大小,
 // 所以 tensor 初始化的 shape 的值在编译期必须是常量
 tensor<fp16> in tensor, res;
  float scalar c = 0.25;
  for (int w idx = 0; w idx < cur slice; w idx += block w) {
    enable pipeline();
                                      // 开启 PPL 自动流水并行优化
    int tile w = min(block w, cur slice - w idx);
                                           // 当前循环需要处理的 W 尺寸
    dim4 cur_shape = {N, C, H, tile_w}; // 当前循环的输入数据 shape
   dim4 offset = {0, 0, 0, slice offset + w idx}; // 当前需要计算的数据在 ddr 上的偏移
   // 从 ddr 上 load 数据到 tpu 上
    dma::load(in tensor, in gtensor.sub view(cur shape, offset));
    tiu::fadd(res, in_tensor, scalar_c);
                                    // 做加法
   // 将数据从 Imem 到 gmem
    dma::store(res gtensor.sub view(cur shape, offset), res);
  }
}
```

3) 首先,设置计算所需 core 的数目,然后,将 W 维度按照 core 的数目 进行切分,再对每个 core 上的数据进行切分并开启流水并行。

第八章 checklist

Cat.	编号	Check 项目	Check 方法 与参考值	Check 结果	PR & 时间
环境配置	1.	PPL 工程配 置 git-lfs	使 用 PPL 工程开发算 子时是否配		

			學 -:4.10	
			置 git-lfs。	
			参考值:是。	
			使用 PPL	
		- 10 T	工程开发算	
	2.	PPL 工程配	子时是否配	
		置 http 环境	置 http 环	
			境。	
			参考值: 是。	
		设置环境变	是否设置环	
	3.	量	境变量。	
			参考值: 是。	
			是否注意到	
			gmem 和	
	4.	gtensor 结构	12mem 绑定	
	1.	体	gtensor 结构	
			体的区别。	
			参考值: 是。	
			是否注意到	
			动态 block	
	5.	 动态 block	参数需要添	
	.	29JAN BIOCK	加 const 关	
			键字修饰。	
			参考值: 是。	
			是否注意到	
		block_shape	block_shape	
	6.	□ block_shape □ real_shape	≒ real_shape	
		→ Teal_shape	的区别。	
算子开发			参考值: 是。	
			是否正确使	
		设置 core 数量	用	
	7.		MULTI_CO	
			RE 关键字	
			或 者	
			set_core_nu	
			m 函数设置	
			core 数目。	
			参考值: 是。	
			是否使用了	
			get_core_nu	
		基 研	m 和	
	18		get_core_ind	
		数日仲系分	ex 函数获取	
			core 数目和	
			索引。	
	8.	数 获 取 core 数 目 和 索 引	m 函数设置 core 数目。 参考值:是。 是否使用了 get_core_nu m 和 get_core_ind ex 函数获取 core 数目和	

			4 4 t P	
			参考值: 是。	
			是否使用	
			gen_ref 选	
	9.	验 证 PPL	项验证 PPL	
	9.	优化正确性	优化的正确	
			性。	
正确性验			参考值:是。	
证			是否编写	
		74)T PD1	pytorch 算子	
	10.	验证 PPL	验证 PPL	
		算子精度	算子的精度。 算子的精度。	
			参考值:是。	
			是否编写	
		=	AUTOTU	
	11.	批量性能测	— NE 函数设	
		试	置切分策略。	
			参考值:是。	
			channel 是否	
			对齐	
	12.	性能调优	LANE NUM	
性能测试			_	
及调优			参考值:是。	
		性能调优	是否切分适	
			当并开启流	
	13.		水并行。	
			参考值:是。	
	14.		多核芯片是	
		性能调优	否使用了多	
			个 core。	
			<i>></i>	