

APROG – Algoritmia e Programação

Emanuel Cunha Silva

ecs@isep.ipp.pt

Apresentação

Enquadramento

Enquadra-se nas Ciências de Base da Engenharia Informática e visa dar conhecimentos estruturantes na área científica das Ciências da Computação.

Objetivos

- Introdução de conceitos fundamentais das Ciências da Computação associados à programação
- Conceção de algoritmos aplicando adequadas metodologias de programação
- Análise e resolução de problemas computacionalmente
- Codificação de algoritmos em linguagem Java (perspetiva procedimental)
- Assumir atitudes de aprendizagem ativa, colaborativa e responsável, de trabalho persistente, individual e em grupo, e de aplicação de espírito crítico na análise e resolução de problemas

Apresentação

Bibliografia

- Sítio da disciplina: moodle.isep.ipp.pt
- "Programação, algoritmos e estruturas de dados"; João Pedro Neto; Escolar Editora
- "Java: How to program (How to program series); Deitel & Deitel; Prentice Hall

Introdução

Informática

Informação + Automática

Computador

Máquina eletrónica-digital que executa algoritmos tendo em conta os dados de entrada a serem processados

Hardware

Componente física do computador: componentes mecânicos, elétricos, eletrónicos, magnéticos.

Software

Componente lógica do computador: Sistema operativo, ferramentas de desenvolvimento, aplicações,

Principais componentes de um computador

Principais componentes de um computador

Software

Sistema operativo

- Permite a gestão dos recursos do computador: memória, periféricos
- Executa tarefas

Ficheiro

- Conjunto de dados agrupados sob um determinado nome que o identifica
- O SO é capaz de o reconhecer e manipular

Programa

- Ficheiro que descreve uma tarefa específica através de uma linguagem conhecida pelo SO.
- O SO é capaz de reconhecer um programa e executar a tarefa descrita no seu conteúdo

Programas

Programação estruturada

- Define um conjunto de regras para elaboração de programas
- Permite fasear o processo de construção de um programa descrevendo o processo computacional de um modo não ambíguo
- baseia-se no desenho modular dos programas e no refinamento gradual do topo para a base
- Segundo este paradigma: Programa = Estrutura de Dados + Algoritmo

Algoritmo

Sequência finita e não ambígua de instruções que descrevem os passos lógicos necessários à realização de uma dada tarefa ou resolução de um problema

Estruturas de dados

- Representam o modo como os dados são organizados, acedidos e alterados
- Tipos primitivos
 - Números Inteiros, números reais, caracteres, booleano (V ou F)
- Tipos não primitivos (complexos)
 - Tipos indexados mono e multidimensionais
 - Listas, filas
 - Árvores, grafos

Conceitos fundamentais de programação

Resolução de problemas

- Analisar o problema
 - Conhecer bem o problema
 - Descrever o problema: subdividir, detalhar
- Resolver o problema passo-a-passo
 - Verificar se não há ambiguidade na solução apresentada
- Implementar a solução
 - Numa linguagem de programação

Algoritmo

Um algoritmo é constituído por um conjunto de expressões simbólicas que representam ações (escolher, atribuir, etc.), testes de condições (estruturas condicionais) e estruturas de controlo (ciclos na estrutura sequencial do algoritmo) de modo a especificar o problema e respetiva solução

É representado através de uma linguagem com sintaxe e semântica associada

- Linguagem natural
 - português estruturado, inglês, etc.
- Pseudocódigo
 - linguagem intermédia. Aplica a linguagem natural em conjunto com construtores usados em linguagens de programação
 - mais precisa que a linguagem natural
- Notação gráfica
 - Fluxogramas

Representação de Algoritmos

Pseudocódigo

INÍCIO ou FIM

LER()

ESCREVER()

SE...ENTÃO...SENÃO

PARA...ATÉ...FAZER

ENQUANTO...FAZER

FAZER...ENQUANTO

PROCEDIMENTO/FUNÇÃO

Fluxograma

Variável

Unidade de memória de onde se pode aceder a uma informação de um dado tipo.

Durante a execução do algoritmo o valor de uma variável pode ser modificado

Quando uma variável é declarada e associada a um valor, 4 atributos fundamentais são considerados:

- Nome (deve ser sugestivo e curto)
- Tipo
- Valor (conteúdo)
- Endereço

Tipos de Dados

Um **tipo** é um conjunto de valores relacionados por um conjunto de operações

Tipos primitivos

- Números Inteiros (INTEIRO)
- Números reais (REAL)
- Carácter (CARACTER)
- Cadeias de caracteres (TEXTO)
- Booleano (BOOLEANO)

Tipos não primitivos (complexos)

- Tipos indexados mono e multidimensionais
 - referenciar e guardar valores de um tipo primitivo único.

Operadores

Aritméticos

• *, /, ^ : multiplicação, divisão real, potenciação

• DIV, MOD, % : divisão inteira , resto da divisão inteira, resto da divisão inteira

• +, - : soma, subtração

Lógicos

• E : conjunção

• OU : disjunção

• NÃO : negação

Relacionais

• <, <= : menor, menor ou igual

• =, != : igual, diferente

• >, >= : maior, maior ou igual

Atribuição

• ←

Estrutura do algoritmo

- (1) Declaração das variáveis necessárias
- (2) Leitura dos dados
- (3) Processamento ...
- (4) Escrita dos resultados

```
INICIO

ED: (1)

variavel1, variavel2 INTEIRO

variavel3, variavel4 REAL

LER (variavel1, variavel2) (2)

variavel3 ← variavel1 + variavel2 (3)

ESCREVER (variavel3) (4)

FIM
```

Estrutura de controlo do algoritmo

- Sequência
 - Executar instruções sequencialmente, na ordem em que aparecem
- Condição
 - Escolher entre executar ou não executar um conjunto de instruções
- Repetição

Executar, repetidamente, um conjunto de instruções de acordo com uma condição

Estrutura de controlo: Sequência

Problema1: Ler 2 números inteiros indicados pelo utilizador e apresentar a sua soma.

(1) Declarar variáveis, (2) ler dados, (3) somar números e (4) mostrar soma

Pseudocódigo

INICIO

ED: numero1, numero2, soma INTEIRO

LER (numero1, numero2)

soma ← numero1 + numero2

ESCREVER (soma)

FIM

Fluxograma

Estrutura de controlo: Sequência

Problema1: Ler 2 números inteiros indicados pelo utilizador e apresentar a sua soma.

```
INICIO

ED: numero1, numero2, soma INTEIRO

LER (numero1, numero2)

soma ← numero1 + numero2

ESCREVER (soma)

INICIO

ED: numero1, numero2 INTEIRO

LER (numero1)

LER (numero2)

ESCREVER (numero2)

FIM
```

Estrutura de controlo: Sequência

Problema2: Conhecendo a aresta de um cubo calcule o seu volume.

(1) Declarar variáveis, (2) ler aresta, (3) calcular volume e (4) mostrar volume

Pseudocódigo

INICIO

ED: aresta, volume INTEIRO

LER (aresta)

volume ← (aresta ^ 3)

ESCREVER (volume)

FIM

Fluxograma

</Sequências>

SE (condição) ENTÃO

FIMSE

SE (condição) ENTÃO

<br

Problema1: Indique se um número lido pelo teclado é zero.

Pseudocódigo

```
INICIO

ED: numero INTEIRO

LER (numero)

SE (numero = 0) ENTÃO

ESCREVER ("Zero")

FIMSE

FIM
```

Fluxograma

Problema2: Indique se um número lido pelo teclado é positivo ou negativo.

Pseudocódigo

```
INICIO

ED: numero INTEIRO

LER (numero)

SE (numero >= 0) ENTÃO

ESCREVER ("Positivo")

SENÃO

ESCREVER ("Negativo")

FIMSE
```

Fluxograma

FIM

Condições encaixadas

Problema3: Indique se um número lido pelo teclado é positivo, negativo ou zero.

```
INICIO
   ED: numero INTEIRO
   LER (numero)
   SE (numero = 0) ENTÃO
       ESCREVER ("Zero")
   SENÃO
       SE (numero > 0) ENTÃO
          ESCREVER ("Positivo")
       SENÃO
          ESCREVER ("Negativo")
       FIMSE
   FIMSE
FIM
```


Condições encaixadas

Problema4: Escreva um algoritmo capaz de ler dois valores entre 0 e 20 (relativos às duas provas de avaliação que um aluno efetuou) e devolver a situação atual desse aluno com base nos seguintes critérios:

- A nota do aluno é obtida pela média das duas avaliações
- De acordo com a nota, a situação do aluno é:
 - "Reprovado" se nota inferior a 7.5
 - "Oral" se nota igual ou superior a 7.5 mas inferior a 10
 - "Aprovado" se nota igual ou superior a 10

Condições encaixadas

Problema4:

```
INICIO
   ED: av1, av2 INTEIRO
   ED: nota REAL
   LER (av1, av2)
   nota \leftarrow (av1 + av2) / 2
   SE (nota < 7.5) ENTÃO
       ESCREVER ("Reprovado")
   SENÃO
       SE (nota < 10) ENTÃO
           ESCREVER ("Oral")
       SENÃO
           ESCREVER ("Aprovado")
       FIMSE
   FIMSE
FIM
```


Álgebra Booleana

- Desenvolvida pelo matemático inglês George Boole
- Usada para descrever os circuitos que podem ser construídos pela combinação de portas lógicas, em que as variáveis podem ter apenas valores 0 e 1 (Falso e Verdadeiro)
- Existem apenas três operadores E, OU e NÃO

E	V	F	X ← 8	(X > 5) E (X < 10)	V
V	V	F		(X > 5) E (X < 7)	F
F	F	F			
OU	V	F	X ← 8	(X > 5) OU (X < 10)	V V
V	V	V		(X > 5) OU (X < 7) (X > 15) OU (X < 7)	v F
F	V	F			
NAO	V	F	X ← 8	NÃO (X > 5)	F
	F	V		NÃO ((X > 15) OU (X < 7))	V

Condições encaixadas

Problema4:

```
INICIO
    ED: av1, av2 INTEIRO
    ED: nota REAL
   LER (av1, av2)
    nota \leftarrow (av1 + av2) / 2
   SE (nota < 7.5) ENTÃO
       ESCREVER ("Reprovado")
   FIMSE
   SE (nota >= 7.5 E nota < 10) ENTÃO
       ESCREVER ("Oral")
   FIMSE
   SE (nota >= 10) ENTÃO
       ESCREVER ("Aprovado")
   FIMSE
FIM
```


Validação do algoritmo

- Traçagem
 - Verificar se o algoritmo faz o que se pretende
 - Executar manualmente, simulando os passos
 - Registar os valores das variáveis e acompanhar a evolução das suas modificações

Validação do algoritmo

Problema2: Indique se um número lido pelo teclado é positivo ou negativo.

	numero	numero >= 0
LER (numero)	4	
<i>SE (numero >= 0)</i>		V
ESCREVER ("Positivo")		

	numero	numero >= 0
LER (numero)	-10	
<i>SE (numero >= 0)</i>		F
ESCREVER ("Negativo")		

	numero	numero >= 0
LER (numero)	0	
SE (numero >= 0)		V
ESCREVER ("Positivo")		

</Condições>

Estrutura de controlo: Repetição

REPETIR ENQUANTO (<condição>)

FIMREPETIR

ENQUANTO (<condição>)

REPETIR PARA $\langle v \rangle \leftarrow \langle vi \rangle$ ATE $\langle vf \rangle$ PASSO $\langle p \rangle$

<blood>

FIMREPETIR

<v> : variável de controlo

<vi>: valor inicial <vf>: valor final

: valor do incremento de <v>

Estrutura de controlo: Repetição

Problema1: Escrever os números inteiros de 1 a 100

INICIO

ESCREVER ("1")

ESCREVER ("2")

ESCREVER ("3")

•••

ESCREVER ("100")

FIM


```
INICIO
ED: n INTEIRO
n \leftarrow 1
REPETIR
ESCREVER (n)
n \leftarrow n + 1
FIMREPETIR
FIM
```


REPETIR ENQUANTO ...

```
REPETIR ENQUANTO (<condição>)
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
FIMREPETIR
```

```
INICIO
ED: n \ INTEIRO
n \leftarrow 1
REPETIR \ ENQUANTO \ (n <= 100)
ESCREVER \ (n)
n \leftarrow n + 1
FIMREPETIR
FIM
```


REPETIR ... ENQUANTO

```
REPETIR

<br/>
<br
```

```
INICIO

ED: n INTEIRO

n \leftarrow 1

REPETIR

ESCREVER (n)

n \leftarrow n + 1

ENQUANTO (n <= 100)

FIM
```


REPETIR PARA ...

```
REPETIR PARA \langle v \rangle \leftarrow \langle vi \rangle ATE \langle vf \rangle PASSO \langle p \rangle \langle bloco\ de\ instruções \rangle FIMREPETIR
```

<v> : variável de controlo

<vi>: valor inicial <vf>: valor final

: valor do incremento de <v>

```
INICIO 
 ED: n INTEIRO 
 REPETIR PARA n \leftarrow 1 ATE 100 PASSO 1 
 ESCREVER (n) 
 FIMREPETIR 
FIM
```


REPETIR ENQUANTO ...

```
REPETIR ENQUANTO (<condição>)
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
FIMREPETIR
```

Problema2: Ler e escrever números inteiros enquanto não for inserido o número zero (não imprimir o zero).

```
ED: n INTEIRO

REPETIR ENQUANTO (n != 0)

LER (n)

ESCREVER (n)

FIMREPETIR

FIM
```


REPETIR ENQUANTO ...

```
REPETIR ENQUANTO (<condição>)
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
FIMREPETIR
```

Problema2: Ler e escrever números inteiros enquanto não for inserido o

número zero (não imprimir o zero).

```
INICIO

ED: n INTEIRO

LER (n)

REPETIR ENQUANTO (n != 0)

ESCREVER (n)

LER (n)

FIMREPETIR
```


REPETIR ... ENQUANTO

```
REPETIR

<br/>
<br
```

Problema2: Ler e escrever números inteiros enquanto não for inserido o

número zero (não imprimir o zero).

```
INICIO
ED: n INTEIRO
REPETIR
LER (n)
ESCREVER (n)
ENQUANTO (n != 0)
FIM
Não imprimir o zero
```

```
INICIO
ED: n INTEIRO
REPETIR
LER (n)
SE (n != 0 ) ENTAO
ESCREVER (n)
FIMSE
ENQUANTO (n != 0)
FIM
```


REPETIR PARA ...

```
REPETIR PARA <v> ← <vi> ATE <vf> PASSO <p> <bloco de instruções> FIMREPETIR
```

Problema2: Ler e escrever números inteiros enquanto não for inserido o número zero (não imprimir o zero).

Repetições encaixadas

Problema3: Calcular a temperatura média diária ao longo de uma semana. As temperaturas foram registadas hora a hora durante os 7 dias da semana.

Problema4: Calcular o fatorial de um número inserido pelo utilizador.

Problema4: Calcular o fatorial de um número inserido pelo utilizador.

```
n! = 1 * 2 * 3 * ... * (n-1) * n
```

REPETIR ENQUANTO ...

```
INICIO

ED: x, n, fatorial INTEIRO

LER (n)

fatorial \leftarrow 1

x \leftarrow 1

REPETIR ENQUANTO (x <= n)

fatorial \leftarrow fatorial * x

x \leftarrow x + 1

FIMREPETIR

ESCREVER (fatorial)
```

Problema5: Calcular o fatorial de um conjunto de números inseridos pelo utilizador. A leitura termina quando for inserido um número negativo.

REPETIR PARA ...

INICIO

ED: numero, x, n, fatorial INTEIRO LER (n)

REPETIR PARA x ← ? ATE ?

• • •

- Quantos nº vão ser introduzidos?
- Qual o valor inicial e o final?
- Os números vão ser consecutivos?

Problema5: Calcular o fatorial de um conjunto de números inseridos pelo utilizador. A leitura termina quando for inserido um número negativo.

```
n! = 1 * 2 * 3 * ... * (n-1) * n
```

REPETIR ENQUANTO ...

```
INICIO

ED: numero, x, n, fatorial INTEIRO

LER (n)

REPETIR ENQUANTO (n >= 0)

fatorial \leftarrow 1

REPETIR PARA x \leftarrow 1 ATE n PASSO 1

fatorial \leftarrow fatorial * x

FIMREPETIR

ESCREVER (fatorial)

LER (n)

FIMREPETIR
```

Problema5: Calcular o fatorial de um conjunto de números inseridos pelo utilizador. A leitura termina quando for inserido um número negativo.

```
n! = 1 * 2 * 3 * ... * (n-1) * n
```

REPETIR ... ENQUANTO

```
INICIO
     ED: numero, x, n, fatorial INTEIRO
     REPETIR
         LER (n)
         SE(n \ge 0) ENTAO
             fatorial \leftarrow 1
             REPETIR PARA x \leftarrow 1 ATE n PASSO 1
                  fatorial \leftarrow fatorial * x
             FIMREPETIR
             ESCREVER (fatorial)
         FIMSE
     ENQUANTO (n \ge 0)
FIM
```

Conceitos Fundamentais

Validação do algoritmo

- Traçagem
 - Verificar se o algoritmo faz o que se pretende
 - Executar manualmente, simulando os passos
 - Registar os valores das variáveis e acompanhar a evolução das suas modificações

Conceitos Fundamentais

Validação do algoritmo

Problema1: Calcular o fatorial de um número inserido pelo utilizador.

```
INICIO

ED: x, n, fatorial INTEIRO

LER (n)
fatorial \leftarrow 1
x \leftarrow 2
REPETIR ENQUANTO (x <= n)
fatorial \leftarrow fatorial * x
x \leftarrow x + 1
FIMREPETIR
ESCREVER (fatorial)
```

	n	fatorial	Х	x<=n
LER (n)	4			
$fatorial \leftarrow 1$		1		
$x \leftarrow 2$			2	
REPETIR ENQUANTO $(x \le n)$				V
$fatorial \leftarrow fatorial * x$		2		
$x \leftarrow x + 1$			3	
REPETIR ENQUANTO $(x \le n)$				V
$fatorial \leftarrow fatorial * x$		6		
$x \leftarrow x + 1$			4	
REPETIR ENQUANTO $(x \le n)$				V
$fatorial \leftarrow fatorial * x$		24		
$x \leftarrow x + 1$			5	
REPETIR ENQUANTO $(x \le n)$				F
ESCREVER (fatorial)		24		

Problema6: Escrever em sequência os algarismos das unidades, dezenas, ... de um número inteiro.

Executar divisões inteiras por 10, ou seja, dividir sempre por 10 sem usar casas decimais

Problema6: Escrever em sequência os algarismos das unidades, dezenas, ... de um número inteiro.

INICIO

Repete enquanto o numero != 0

Problema6: Escrever em sequência os algarismos das unidades, dezenas, ... de um número inteiro. Considere que dispõe das operações DIV e MOD que calculam respectivamente o quociente e o resto da divisão inteira

INICIO ED: numero, algarismo INTEIRO LER(numero) REPETIR algarismo ← numero MOD 10 ESCREVER (algarismo) numero ← numero DIV 10 ENQUANTO (numero!=0) FIM

	numero	algarismo	numero!= 0	output
LER (n)	453			-
algarismo ← numero MOD 10		3		
ESCREVER (algarismo)				3
numero ← numero DIV 10	45			
ENQUANTO (numero!=0)			V	
algarismo ← n MOD 10		5		
ESCREVER (algarismo)				5
numero ← numero DIV 10	4			
ENQUANTO (numero!=0)			V	
algarismo ← numero MOD 10		4		
ESCREVER (algarismo)				4
numero ← numero DIV 10	0			
ENQUANTO (numero!=0)			F	

Problema 7.1: Determinar a quantidade de algarismos de um número inteiro.

INICIO ED: n, qtd INTEIRO LER(n) qtd \leftarrow 0 REPETIR qtd \leftarrow qtd + 1 n \leftarrow n DIV 10 ENQUANTO (n!=0) ESCREVER (qtd) FIM

	n	qtd	n!= 0	output
LER (n)	453			
$qtd \leftarrow 0$		0		
$qtd \leftarrow qtd + 1$		1		
$n \leftarrow n DIV 10$	45			
ENQUANTO (n!=0)			V	
$qtd \leftarrow qtd + 1$		2		
$n \leftarrow n DIV 10$	4			
ENQUANTO (n!=0)			V	
$qtd \leftarrow qtd + 1$		3		
$n \leftarrow n DIV 10$	0			
ENQUANTO (n!=0)			F	
ESCREVER (qtd)				3

Problema 7.2: Determinar a quantidade de algarismos de um número inteiro.

```
INICIO

ED: n, qtd INTEIRO

LER(n)

qtd \leftarrow 1

REPETIR ENQUANTO (n > 9)

qtd \leftarrow qtd + 1

n \leftarrow n DIV 10

FIM REPETIR

ESCREVER (qtd)
```

qualquer número tem pelo menos um algarismo

	n	qtd	n>9	output
LER (n)	453			
$qtd \leftarrow 1$		1		
REPETIR ENQUANTO (n > 9)			V	
$qtd \leftarrow qtd + 1$		2		
n ← n DIV 10	45			
REPETIR ENQUANTO (n > 9)			V	
$qtd \leftarrow qtd + 1$		3		
$n \leftarrow n DIV 10$	4			
REPETIR ENQUANTO $(n > 9)$			F	
ESCREVER (qtd)				3

Problema8.1: Determinar se um número inteiro é composto por mais algarismos pares ou impares.

INICIO

```
ED: numero, totalAlgarismosPares, totalAlgarismosImpares, algarismo INTEIRO
                                                                                           Valores iniciais
LER(numero)
totalAlgarismosPares ← 0
totalAlgarismosImpares ← 0
REPETIR
    algarismo ← numero MOD 10
                                                                                        Capturar algarismo
    SE ( (algarismo MOD 2) = 0) ENTAO
                                                                                        Analisar algarismo
            totalAlgarismosPares ← totalAlgarismosPares + 1
    SENAO
            totalAlgarismosImpares ← totalAlgarismosImpares + 1
    FIM SE
    numero ← numero DIV 10
                                                                                       Descartar algarismo
ENQUANTO (numero !=0)
                                                                                         Analisar resultado
SE (totalAlgarismosPares > totalAlgarismosImpares) ENTAO
     ESCREVER ("existem mais algarismos pares")
SENAO
    SE (totalAlgarismosPares = totalAlgarismosImpares) ENTAO
            ESCREVER ("existem a mesma quantidade de algarismos pares e impares")
    SENAO
            ESCREVER ("existem mais algarismos impares")
    FIM SE
FIM SE
```

Problema8.2: Determinar se um número inteiro é composto por mais algarismos pares ou impares.

```
INICIO
     ED: numero, totalAlgarismosPares, totalAlgarismosImpares, algarismo INTEIRO
     LER(numero)
     totalAlgarismosPares ← 0
                                                                E se o número inserido for zero?
     totalAlgarismosImpares ← 0
                                                                        Qual o resultado?
     REPETIR ENQUANTO (numero !=0)
          algarismo ← numero MOD 10
          SE ( (algarismo MOD 2) = 0) ENTAO
                 totalAlgarismosPares ← totalAlgarismosPares + 1
          SENAO
                 totalAlgarismosImpares ← totalAlgarismosImpares + 1
          FIM SE
          numero ← numero DIV 10
     FIM REPETIR
     SE (totalAlgarismosPares > totalAlgarismosImpares) ENTAO
          ESCREVER ("existem mais algarismos pares")
     SENAO
          SE (totalAlgarismosPares = totalAlgarismosImpares) ENTAO
                 ESCREVER ("existem a mesma quantidade de algarismos pares e impares")
          SENAO
                 ESCREVER ("existem mais algarismos impares")
          FIM SE
     FIM SE
```

Analisar dígitos de um número inteiro

Check digit

"A check digit is a form of redundancy check used for error detection on identification numbers" 1

- UPC (Universal Product Code)
- ISBN (International Standard Book Number)
- EAN (European Article Number)
- IMEI (International Mobile Equipment Identity)
- •

^{1 -} https://en.wikipedia.org/wiki/Check_digit

"The Luhn algorithm or Luhn formula, also known as the "modulus 10" or "mod 10" algorithm, named after its creator, IBM scientist Hans Peter Luhn, is a simple checksum formula used to validate a variety of identification numbers, such as credit card numbers, IMEI numbers, etc.." ¹

- 1. From the rightmost digit and moving left, double the value of every digit in odd positions. If the result of this doubling operation is greater than 9 (e.g., $8 \times 2 = 16$), then add the digits of the result (e.g., 16: 1 + 6 = 7, 18: 1 + 8 = 9) or, alternatively, the same final result can be found by subtracting 9 from that result (e.g., 16: 16 9 = 7, 18: 18 9 = 9).
- 2. Take the sum of all the digits.
- 3. The check digit (x) is obtained by computing the sum of the non-check digits then computing 9 times that value modulo 10.

^{1 -} https://en.wikipedia.org/wiki/Luhn_algorithm

Luhn Algorithm

- 1. From the rightmost digit and moving left, double the value of every digit in odd positions. If the result of this doubling operation is greater than 9 (e.g., $8 \times 2 = 16$), then add the digits of the result (e.g., 16: 1 + 6 = 7, 18: 1 + 8 = 9) or, alternatively, the same final result can be found by subtracting 9 from that result (e.g., 16: 16 9 = 7, 18: 18 9 = 9).
- Take the sum of all the digits.
- 3. The check digit (x) is obtained by computing the sum of the non-check digits then computing 9 times that value modulo 10.

Assume an example of an account number "7992739871" that will have a check digit added, making it of the form 7992739871x:

Account number	7	9	9	2	7	3	9	8	7	1	x
Double every other	7	18	9	4	7	6	9	16	7	2	x
Sum digits	7	9	9	4	7	6	9	7	7	2	x

Luhn Algorithm

- 1. The sum of all the digits in the third row is 67 + x.
- 2. Compute the sum of the non-check digits (67).
- 3. Multiply by 9 (67 x 9 = 603).
- 4. The check digit (x) is obtained by computing the sum of the non-check digits then computing 9 times that value modulo 10 (603 mod 10 = 3).
- 5. The units digit (3) is the check digit. Thus, x=3.

Account number	7	9	9	2	7	3	9	8	7	1	X
Double every other	7	18	9	4	7	6	9	16	7	2	x
Sum digits	7	9	9	4	7	6	9	7	7	2	X

Problema9: Calcular o check digit de um número pelo algoritmo de Luhn.

```
INICIO
   ED: numero, posicao, soma, digito, dobro INTEIRO
   LER(numero)
   posicao ← 0
  soma \leftarrow 0
   REPETIR ENQUANTO (numero != 0)
                                                            pára quando o numero chegar a zero
       digito ← numero MOD 10
                                                             retira o algarismo à direita no número
       numero ← numero DIV 10
       posicao ← posicao + 1
       SE (posicao MOD 2 != 0) ENTAO
           dobro ← digito * 2
          SE(dobro > 9) ENTAO
              dobro ← dobro - 9
                                                             processa com base no algarismo
          FIMSE
          soma ← soma + dobro
       SENAO
          soma ← soma + digito
       FIMSE
   FIMREPETIR
   ESCREVER("check digit=", (soma * 9) MOD 10)
FIM
```

</Repetições>