Datasheet Typical Characteristic Simulation in Qspice

KSKelvin Kelvin Leung 1-31-2024

Purpose

Purpose

• This presentation provides Qspice simulation test circuit templates for simulating device characteristics as stated in the datasheet

Technique in Waveform Viewer for Datasheet Plot

X-Axis Parametric

For X-Axis Label

- Right Click x-axis for Abscissa Setup Window
- In Quantity Plotted, assign to x-axis parameter
- Add bracket () if to display default x-axis parameter

Linear Y-Axis Scale

For Y-Axis Scale

- Right Click y-axis for Axis Setup
- Deselect "Log" and "dB" in .ac can change yaxis to linear scale
- User may adjust top, tick and bottom value

Remove Phase Plot

Remove Phase Plot

- Right Click y-axis (Right side) to open Axis Setup
- Select "No Phase Plot" to disable phase plot

NMOS N-Channel MOSFET

Folder : NMOS

#1 Test Circuit for Drain Current (Id) vs Drain-to-Source Voltage (Vds)

Qspice: NMOS - Idrain vs Vds - Vgs sweep.qsch

- Test Circuit for Drain Current (Id) vs Drain-to-Source Voltage (Vds)
 - Use .dc directive to sweep Vds and Vg for Drain Current vs Drain-to-Source Voltage characteristic

#2 Test Circuit for Drain Current (Id) vs Gate-to-Source Voltage (Vgs) Qspice: NMOS - Idrain vs Vgs - Temp sweep.gsch

- Test Circuit for Drain Current (Id) vs Gate-to-Source Voltage (Vgs)
 - Use .dc directive to sweep Vgs and .step param TEMP to sweep temperature
 - ** The device model does not match the datasheet well in this condition

#3 Test Circuit for On-Resistance Rds(on) vs Drain Current Id

Qspice: NMOS - Rdson vs Idrain.qsch

- Test Circuit for On-Resistance Rds(on) vs Drain Current Id
 - A current source ld is used to force drain current to sweep and resistance is calculated by $R_{ds,on} = \frac{V_{drain}}{I_{drain}}$

#4 Test Circuit for Ciss, Crss and Coss

Qspice: NMOS - Ciss Coss Crss.qsch

- Test Circuit for Ciss, Crss and Coss
 - Use .ac analysis for capacitance measurement
 - Use .func to get imaginary of impedance with $Z = R + jX = \frac{v}{I}$, where X = im(Z)
 - With equation $jX_C = \frac{1}{j2\pi fC} = j\frac{1}{-2\pi fC}$ \Rightarrow Capacitance can be calculated by $C = -\frac{1}{2\pi fX_C}$

#5 Test Circuit for Gate-to-Source Voltage (Vgs) and Gate Charge (Qg) Qspice: NMOS - Vgs vs Qg Gate Charge.qsch

- Test Circuit for Gate-to-Source Voltage (Vgs) and Gate Charge (Qg)
 - .tran analysis is required as charge can be calculated by $Q = I \times t$
 - Simulation method is to use a constant current source with 1s transient analysis, by the end, total charge equal current source value as $Q_{total} = I_{value} \times 1s = I_{value}$
 - A resistor R1 is used to limit maximum drain current as datasheet specified Vds and Id, where Rlimit can be defined as $R_{limit} = \frac{V_{ds}}{I_d}$

kskelvin.net

/_{GS} - Gate-to-Source Voltage (V)

#6 Test Circuit for On-Resistance Rds(on) vs Temperature

Qspice : NMOS - Rdson vs Temp.qsch

- Test Circuit for On-Resistance Rds(on) vs Temperature
 - This circuit is to directly plot Rds,on vs Temperature
 - For normalized plot
 - After simulation, in waveform viewer, measure Rdson @ 25°C, change formula to Rdson()/Rdson@T25
 - Or, add another NMOS and add TEMP=25 attribute to have a device with Rdson@25°C in simulation
 - ** The device model does not match the datasheet well in this condition.

#7 Test Circuit for Source Current vs Source-to-Drain Voltage

Qspice: NMOS - Isource vs Vsd.qsch

- Test Circuit for Source Current (Is) vs Source-to-Drain Voltage (Vsd)
 - This test is to measure body diode forward characteristic, where gate-source is shorted to turn MOSFET off
 - .step param TEMP list 25 150 is to specify temperature step at 25°C and 150°C

