

SEQUENCE LISTING

<10> Genzyme Corporation
Charles, Nicolette A.

<120> THERAPEUTIC COMPOUNDS FOR OVARIAN CANCER

<130> 5032US-DIV

<140> US 10/813,859

<141> 2004-03-31

<150> US 09/870,089

<151> 2001-05-31

<160> 14

<170> PatentIn version 3.2

<210> 1

<211> 2015

<212> DNA

<213> Homo sapiens

<400> 1

gttttctact ttgcccggcc acagatgttag ttttctctgc gcgtgtgcgt tttccctcct	60
cccccgccct cagggtccac ggccaccatg gcgtatttagg ggcagcagtgc cctgcggcag	120
cattggcctt tgcagcggcg gcagcagcac caggctctgc agcggcaacc cccagcggct	180
taagccatgg cgtgagtacc ggggggggtc gtccagctgt gctcctgggg ccggcgcggg	240
ttttggattt gtggggtgcg gcctggggcc agggcggtgc cgccaagggg gaagcgattt	300
aacgagcgcc cgggacgcgt ggtctttgtc tgggtgtccc cgagacgctc gcgtgcctgg	360
gatcgggaaa gcgtagtcgg gtgcccggac tgcttccccca ggagccctac agccctcgga	420
ccccgagccc cgcaagggtcc caggggtctt ggctgttgcc ccacgaaacg tgcaggaacc	480
aagatggcgg cggcagggcg gcggcgccgg cgtgagtcaa gggcggggcg tggggggggc	540
gcggccgctg gccgtatttg gacgtggggc cggagcgctt tcctcttggc ggccgggtgga	600
agaatccccct ggtctccgtg agcgtccatt ttgtggAACC tgagttgcaa gcagggaggg	660
gcaaatacaat ctgccctgtt cccgattctc tagatggccg atctagagaa gtcccgccctc	720
ataagtggaa ggatgaaatt ctcagaacag ctaacctcta atgggagttt gcttctgattt	780
ctcattcagg cttctcacgg cattcagcag cagcggtgtc gtaaccgaca aagacacctt	840
cgaattaagc acattcctcg attccagcaa agcaccgcaa catgaccgaa atgagcttcc	900
tgagcagcga ggtgttggtg gggacttga tgtccccctt cgaccggcgt ggtttgggg	960
ctgaagaaag cctaggtctc ttagatgatt acctggaggt ggccaagcac ttcaaaccctc	1020
atgggttctc cagcgacaag gctaaggcgg gctcctccga atggctggct gtggatgggt	1080
tggtcagtcc ctccaacaac agcaaggagg atgccttctc cgggacagat tggatgttgg	1140
agaaaaatgga tttgaaggag ttgcacttgg atgcctgtt gggatagat gacctggaaa	1200
ccatgccaga tgaccttctg accacgttgg atgacacttg tgcattcttt gccccctag	1260
tccaggagac taataagcag cccccccaga cggtaaccc aattggccat ctcccagaaaa	1320

gtttaacaaa	acccgaccag	gttgccccct	tcaccttctt	acaacctttt	ccccttccc	1380
caggggtcct	gtcctccact	ccagatcatt	ccttagttt	agagctggc	agtgaagtgg	1440
atatcactga	aggagatagg	aagccagact	acactgctta	cgttgccatg	atccctcagt	1500
gcataaaagga	ggaagacacc	ccttcagata	atgatagtgg	catctgtatg	agcccagagt	1560
cctatctggg	gtctcctcag	cacagccccct	ctaccagggg	ctctccaaat	aggagcctcc	1620
catctccagg	tgttctctgt	gggtctgccc	gtcccaaacc	ttacgatcct	cctggagaga	1680
agatggtagc	agcaaaagta	aagggtgaga	aactggataa	gaagctgaaa	aaaatggagc	1740
aaaacaagac	agcagccact	aggtaccgccc	agaagaagag	ggcggagcag	gaggcttta	1800
ctggtgagtg	caaagagctg	gaaaagaaga	acgaggctct	aaaagagagg	gcggattccc	1860
tggccaagga	gatccagtagc	ctgaaagatt	tgatagaaga	ggtccgcaag	gcaagggggga	1920
agaaaagggt	cccctagttg	aggatagtca	ggagcgtcaa	tgtgcttcta	catagagtgc	1980
tgtagctgtg	tgttccaata	aattattttg	taggg			2015

<210> 2
 <211> 351
 <212> PRT
 <213> Homo sapiens

<400> 2

Met	Thr	Glu	Met	Ser	Phe	Leu	Ser	Ser	Glu	Val	Leu	Val	Gly	Asp	Leu
1						5				10					15

Met	Ser	Pro	Phe	Asp	Pro	Ser	Gly	Leu	Gly	Ala	Glu	Glu	Ser	Leu	Gly
								20		25				30	

Leu	Leu	Asp	Asp	Tyr	Leu	Glu	Val	Ala	Lys	His	Phe	Lys	Pro	His	Gly
							35		40					45	

Phe	Ser	Ser	Asp	Lys	Ala	Lys	Ala	Gly	Ser	Ser	Glu	Trp	Leu	Ala	Val
							50		55				60		

Asp	Gly	Leu	Val	Ser	Pro	Ser	Asn	Asn	Ser	Lys	Glu	Asp	Ala	Phe	Ser
							65		70				75		80

Gly	Thr	Asp	Trp	Met	Leu	Glu	Lys	Met	Asp	Leu	Lys	Glu	Phe	Asp	Leu
							85		90				95		

Asp	Ala	Leu	Leu	Gly	Ile	Asp	Asp	Leu	Glu	Thr	Met	Pro	Asp	Asp	Leu
								100		105				110	

Leu	Thr	Thr	Leu	Asp	Asp	Thr	Cys	Asp	Leu	Phe	Ala	Pro	Leu	Val	Gln
							115		120				125		

Glu	Thr	Asn	Lys	Gln	Pro	Pro	Gln	Thr	Val	Asn	Pro	Ile	Gly	His	Leu
							130		135				140		

Pro Glu Ser Leu Thr Lys Pro Asp Gln Val Ala Pro Phe Thr Phe Leu
145 150 155 160

Gln Pro Leu Pro Leu Ser Pro Gly Val Leu Ser Ser Thr Pro Asp His
165 170 175

Ser Phe Ser Leu Glu Leu Gly Ser Glu Val Asp Ile Thr Glu Gly Asp
180 185 190

Arg Lys Pro Asp Tyr Thr Ala Tyr Val Ala Met Ile Pro Gln Cys Ile
195 200 205

Lys Glu Glu Asp Thr Pro Ser Asp Asn Asp Ser Gly Ile Cys Met Ser
210 215 220

Pro Glu Ser Tyr Leu Gly Ser Pro Gln His Ser Pro Ser Thr Arg Gly
225 230 235 240

Ser Pro Asn Arg Ser Leu Pro Ser Pro Gly Val Leu Cys Gly Ser Ala
245 250 255

Arg Pro Lys Pro Tyr Asp Pro Pro Gly Glu Lys Met Val Ala Ala Lys
260 265 270

Val Lys Gly Glu Lys Leu Asp Lys Lys Leu Lys Lys Met Glu Gln Asn
275 280 285

Lys Thr Ala Ala Thr Arg Tyr Arg Gln Lys Lys Arg Ala Glu Gln Glu
290 295 300

Ala Leu Thr Gly Glu Cys Lys Glu Leu Glu Lys Lys Asn Glu Ala Leu
305 310 315 320

Lys Glu Arg Ala Asp Ser Leu Ala Lys Glu Ile Gln Tyr Leu Lys Asp
325 330 335

Leu Ile Glu Glu Val Arg Lys Ala Arg Gly Lys Lys Arg Val Pro
340 345 350

<210> 3

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> ATF4/CREB-2

<400> 3

Phe Leu Tyr Lys Trp His Gly Phe Val
1 5

<210> 4

```
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> ATF4/CREB-2

<220>
<221> misc_feature
<222> (6)..(6)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (21)..(21)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (27)..(27)
<223> n is a, c, g, or t

<400> 4
tttytntaya artggcaygg nttygtn
```

27

```
<210> 5
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> ATF4/CREB-2

<400> 5

Phe Leu His Lys Val His Phe Tyr Val
1           5
```

```
<210> 6
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> ATF4/CREB-2
```

```
<220>
<221> misc_feature
<222> (6)..(6)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (15)..(15)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (27)..(27)
<223> n is a, c, g, or t
```

```
<400> 6
tttytncaya argtncaytt ytaygtn
```

27

<210> 7
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> ATF4/CREB-2

<400> 7

Phe Leu His Lys Trp His Trp Val Val
1 5

<210> 8
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> ATF4/CREB-2

<220>
<221> misc_feature
<222> (6)..(6)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (24)..(24)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (27)..(27)
<223> n is a, c, g, or t

<400> 8
t₁yytncaya artggcaytg ggtngtn

27

<210> 9
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> ATF4/CREB-2

<400> 9

Phe Leu His Lys Trp His Trp Tyr Val
1 5

<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> ATF4/CREB-2

<220>
<221> misc_feature

<222> (6)..(6)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (27)..(27)
<223> n is a, c, g, or t

<400> 10
t_ty_yt_nc_ay_a a_rt_gg_ca_yt_g g_ta_yg_tn

27

<210> 11
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> ATF4/CREB-2

<400> 11

Phe Leu His Lys Val His Tyr Leu Val
1 5

<210> 12
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> ATF4/CREB-2

<220>
<221> misc_feature
<222> (6)..(6)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (15)..(15)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (24)..(24)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (27)..(27)
<223> n is a, c, g, or t

<400> 12
t_ty_yt_nc_ay_a t_ag_tn_ca_yt_a y_nt_ng_tn

27

<210> 13
<211> 9
<212> PRT
<213> Homo sapiens

<400> 13
Lys His Phe Lys Pro His Gly Phe Ser
1 5

<210> 14
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> ATF4/CREB-2

<220>
<221> misc_feature
<222> (15)..(15)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (21)..(21)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (27)..(27)
<223> n is a, c, g, or t

<400> 14
aarcaytta arccncaygg nttywsn

27