Chapter 0. Course Notation

Javier R. Fonollosa

Universitat Politècnica de Catalunya javier.fonollosa@upc.edu

January 2, 2018

Overview

1 Notation used in the course

Notation for sets, scalars and vectors

- Lowercase letters, x, y, \dots are used for constants and values of random variables.
- Sequences or column vectors are $x_i^j = (x_i, x_{i+1}, ... x_j)$. In case i = 1 then $x^j = (x_1, x_2, ... x_j)$.
- Let $\alpha, \beta \in [0, 1]$. Then $\bar{\alpha} = (1 \alpha)$ and $\alpha * \beta = \alpha \bar{\beta} + \beta \bar{\alpha}$.
- Calligraphic letters $\mathcal{X}, \mathcal{Y}, \dots$ are used for finite sets and $|\mathcal{X}|$ denotes the cardinality of the set \mathcal{X} .
- ullet $[i:2^a]=\{i,i+1,...,2^{\lceil a \rceil}\}$, where $\lceil a \rceil$ is the smallest integer $\geq a$.

Notation for probability and random variables (I)

- The probability of an event \mathcal{A} is $\mathsf{P}(\mathcal{A})$ and the conditional probability of \mathcal{A} given \mathcal{B} is $\mathsf{P}(\mathcal{A}|\mathcal{B})$.
- ullet Uppercase letters, X,Y,\ldots are used for random variables.
- Random variables may take values from finite sets $\mathcal{X}, \mathcal{Y}, ...$ or from the real line \mathbb{R} .
- $X = \emptyset$ means that X is a degenerate random variable (a constant).
- The probability of the event $X \in \mathcal{A}$ is $\mathsf{P}\{X \in \mathcal{A}\}$
- Sequences or column vectors of random variables are $X_i^j=(X_i,X_{i+1},...X_j).$ In case i=1 then $X^j=(X_1,X_2,...X_j).$

Notation for probability and random variables (II)

- $X^n \sim p(x^n)$ means that $p(x^n)$ is the probability mass function (pmf) of the discrete random vector X^n .
- $X^n \sim f(x^n)$ means that $f(x^n)$ is the probability density function (pdf) of the continuous random vector X^n .
- $(X^n,Y^n)\sim p(x^n,y^n)$ means that $p(x^n,y^n)$ is the joint pmf of X^n and Y^n .
- ullet Given a random variable X, the expected value of a function g(X) is denoted by $\mathsf{E}_X(g(X))$ or simply $\mathsf{E}(g(X))$.

Notation for probability and random variables (and III)

- $X \sim \mathrm{Bern}(p)$ means X is a Bernoulli random variable with parameter $p \in [0,1]$, i.e., X=1 with probability p and X=0 with probability 1-p.
- $X \sim \mathsf{Unif}(\mathcal{A})$ means X is a discrete uniform random variable over the set \mathcal{A} .
- $X \sim \mathsf{Unif}[i:j]$ for integers j > i means X is a discrete uniform random variable over [i:j].
- $X \sim \mathsf{Unif}[a,b]$ for b > a means X is a continuous uniform random variable over [a,b].
- $X \sim N(\mu, \sigma^2)$ means X is a Gaussian random variable with mean μ and variance σ^2 .

Common functions

- ullet The function $\log p$ is assumed to be the base 2 logarithm funcion of p.
- The binary entropy function: $H(p) = -p \log p \bar{p} \log \bar{p}$ for $p \in [0,1].$
- The Gaussian capacity: $C(x) = \frac{1}{2} \log(1+x)$, for $x \ge 0$.
- $[x]^+ = \max\{x, 0\}.$