

Introduction to System-On-Chip and its Applications

ARM Processors and Architectures

Outline

- ARM Mircoprocessor Applications
- ARM Architecture Overview
- Embedded applications
- Smart phone applications
- PC applications
- ARMv7-AR Architecture
 - ARM System Design

ARM Company History

- Advanced RISC Machines (ARM)
- 1985 Acorn Computer Group developed the world's first commercial RISC processor(developed by the team led by Steve Furber and Sophie)
- ARM founded in November 1990
- Company headquarters in Cambridge, UK
 - Processor design centers in Cambridge, Austin
 - Sales, support, and engineering offices all over the world

ARM Company History

- Best known for its range of RISC processor cores designs
 - Other products fabric IP, software tools, models, cell libraries –
 - Help partners develop and ship ARM-based SoCs
- ARM does not manufacture silicon
- SoftBank completes \$31 billion acquisition of ARM at Sep. 2016
- Nvidia acquire ARM for \$40 Billion from Softbank at Sep. 2021
- Nvidia terminated the bid for ARM at Feb. 2022

*Includes ARM-based and x86 processors. **Includes ARM-based and other RISC processors. Source: IC Insights

Where is ARM???

ARM is everywhere. 25 Billion ARM-based Chips in 2020

7.9 Billion ARM-Based Chips in 2011

ARM Applications

- PC, Mainframes, servers
- Cellphone
- Embedded Mircoprocessor

*Includes ARM-based and x86 processors. **Includes ARM-based and other RISC processors. Source: IC Insights

Markets for ARM in 2016

	Devices Shipped (Million of Units)	2016 Devices	Device CAGR	Chips/ Device	2016 Chips	Chip CAGR	Key Growth Areas for ARM
7	Smart Phone	1,300	23%	3-5	4,500	19%	—
	Feature Phone	400	-10%	2-4	1,200	-7%	`
Mobile	Low End Voice	740	1%	1-2	1,100	9%	
Ĕ	Portable Media Players	110	-5%	1-3	350	5%	
	Mobile Computing* (apps only)	850	25%	1	850	25%	
Home							—
Se	Desktop PCs & Servers (apps)	240	2%	1	240	2%	
	Networking	790	3%	1-2	1,600	16%	
Enterprise	Printers	120	4%	1-3	240	19%	17
<u> </u>	Hard Disk & Solid State Drives	1,000	7%	1	1,000	7%	—
g l	Automotive	3,500	7%	1	3,500	7%	1
Embedded	Smart Card	8,000	5%	1	8,000	5%	
e l	Microcontrollers	11,500	8%	1	11,500	8%	
5	Others **	2,900	8%	1-2	3,200	10%	Source: Gartner, InStat, SIA
\neg	Total	32,000	6%		40,000	9%	and ARM estimates

^{*} Including tablets, netbooks and laptops

^{* *} Includes other applications not listed such as headsets, DVD, game consoles, etc

ARM Classic and Cortex Cores

- Classic –for computer applications
- Cortex -Very wide range of scalable performance options
 - Cortex-M
 - microcontroller cores for a wide range of embedded applications
 - Cortex-R
 - high-performance cores for real-time applications
 - Cortex-A
 - application processor cores for a performance-intensive systems

Embedded Processors

Embedded System Requirements

Microprocessor-based computer hardware system with software that is designed to perform a dedicated function

- Simple calculation
- Small size memory

Large amount different platforms

Embedded System with ARM core

Which architecture is ARM processor?

Thumb 16-bit ISA

Why

- Limited instruction memory in embedded system
- Code density
- Smaller size instruction to do the same job
- What is thumb?
 - ISA (Instruction Set Architecture)
 - 16-bit
 - Independent of 32-bit ARM instructions
- Thumb
 - Improve compiled code-density
 - Processors since the ARM7TDMI have featured the **Thumb** Instruction set state

Comparison of ARM and Thumb ISA

Thumb/Thumb-2 Technology

Thumb-2 ISA

- A superset of the Thumb instruction set
- **32-bit** instructions that are intermixed with the 16-bit instructions/without Thumb state
- Covers almost all the functionality of the ARM instruction set
- Thumb-2 technology made its debut in the ARM1156 core
- ThumbEE (Thumb Execution Environment)
 - For Limbo, Java, C#, Perl and Python

Jazelle

Jazelle

- Java Bytecode is the instruction set of the Java virtual machine
- Java byte code suitable for different hardware platforms
- Jazelle DBX (Direct Bytecode eXecution)
 - ARM1025EJ-S
 - Execute Java bytecode in hardware as a third execution state alongside the existing ARM and Thumb modes.

Jazelle Technology Instruction Pipeline

ARM/Thumb/Jazelle

Instruction sets

ARM/ Thumb/ J azelle

		ARM ($cpsr\ T = 0$)	Thumb ($cpsr\ T = 1$)			
Instruction size		32-bit	16-bit			
Core instructions		58	30			
Conditional execution ^a Data processing instructions Program status register Register usage		most access to barrel shifter and ALU read-write in privileged mode 15 general-purpose registers	only branch instructions separate barrel shifter and ALU instructions no direct access 8 general-purpose registers			
		+pc	+7 high registers +pc			
	Jazell	e (cpsr T = 0, J = 1)				
Instruction size	8-bit	t				
Core instructions		60% of the Java bytecodes are implemented in hardware; e rest of the codes are implemented in software.				

Enterprise System-Real time applications

Robot arm - detects object distance/position (complex computation)
- control robot movement (real time requirement)

Enterprise System ARM Architecture

Cortex-R8: Advanced Real-Time, High-Performance

Leading edge performance

- Quad cores with superscalar out-of-order execution
- Advanced I I-stage pipeline

Reliability support

 Enhanced fault detection and control – MPU, ECC, DCLS

Rapid responsiveness

- Large Tightly-Coupled Memory up to 2 MB per core
- Predictable low-latency access
- · Hard real-time determinism

Software compatibility

 Modem software and system level design and simulation assets built around ARMv7-R

Scalability

- · Option from one to four cores
- Exploit workload parallelism
- Power down individual cores according to workload

Extensibility

- · Rich set of interface ports
- Coherent integration with closely coupled accelerators

Mobile -Applications

- Multi-tasking (Multimedia/texting/voice call –heterogeneous core)
- Multimedia (NEON)
- Low power (RISC arch)
- 95% smart phones use ARM chip

Mobile System ARM Architecture

Cortex A7-Multicore architecture with NEON Data

engine

Application Processors

What is NEON?

- NEON is a wide SIMD data processing architecture
 - Extension of the ARM instruction set (v7-A)
 - 32 x 64-bit wide registers (can also be used as 16 x 128-bit wide registers)
- NEON instructions perform "Packed SIMD" processing
 - Registers are considered as vectors of elements of the same data type
 - Data types available: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single prec. float

Advanced SIMD (NEON)

- A combined 64- and 128-bit single instruction multiple data (SIMD) instruction set
- Provides standardized acceleration for media and signal processing applications
- NEON
 - can execute MP3 audio decoding on CPUs running at 10 MHz
 - can run the GSM AMR (Adaptive Multi-Rate) speech codec at no more than 13 MHz

Data Sizes and Instruction Sets

- ARM is a 32-bit load / store RISC architecture
 - The only memory accesses allowed are loads and stores
 - Most internal registers are 32 bits wide
 - Most instructions execute in a single cycle
- When used in relation to ARM cores
 - Halfword means 16 bits (two bytes)
 - Word means 32 bits (four bytes)
 - Doubleword means 64 bits (eight bytes)
- ARM cores implement two basic instruction sets
 - ARM instruction set instructions are all 32 bits long
 - Thumb instruction set instructions are a mix of 16 and 32 bits
 - Thumb-2 technology added many extra 32- and 16-bit instructions to the original 16-bit Thumb instruction set
- Depending on the core, may also implement other instruction sets
 - VFP instruction set 32 bit (vector) floating point instructions
 - NEON instruction set 32 bit SIMD instructions
 - Jazelle-DBX provides acceleration for Java VMs (with additional software support)
 - Jazelle-RCT(Runtime Compilation Target)- based on ThumbEE mode and supports ahead-of-time(AOT) and just-in-time (JIT) compilation with Java and other execution environments. - provides support for interpreted languages

Architecture ARMv7 (32-bit ISA) profiles

- Application profile (ARMv7-A)
 - Memory management support (MMU)
 - Highest performance at low power
 - Influenced by multi-tasking OS system requirements
 - Trust Zone —to isolate security components in a system by separating physical system into two virtual system: one for rich operating system the other for secure operation system
 - Jazelle-RCT for a safe, extensible system
 - e.g. Cortex-A5, Cortex-A9
- Real-time profile (ARMv7-R)
 - Protected memory (MPU)
 - Low latency and predictability 'real-time' needs
 - Evolutionary path for traditional embedded business
 - e.g. Cortex-R4
- Microcontroller profile (ARMv7-M, ARMv7E-M, ARMv6-M)
 - Lowest gate count entry point
 - Deterministic and predictable behavior a key priority
 - Deeply embedded use
 - e.g. Cortex-M3

ARMv8-A (for high end smart phones/ PC)

- 64-bit/32-bit ARM CPU
 - Compatible with ARMv7-A/R
 - Adv. SIMD (4x128b or 2x128b)
 - Crypto for security such as AES encrytion

High End Smart phone

- Cortex-A32../Firestorm/Icestorm
 - Decode (2-wide,..8-wide(firestorm), 6wide(icestorm)
 - Pipeline depth (8-16)
 - 3~12-stage out-of-order pipeline

Apple A14 Bionic ARMv8.5-A

- Apple A14 Bionic is a 64-bit ARMv8.5-A^[5] system on a chip (SoC)
- iPhone 12 / iPad
- Two Firestorm (Armv8.5-A) CPU (red box)
- Four Icestorm (Armv8.5-A) CPU (green box)

Apple M1 Max Chip

- Apple M1 Max (announces Oct. 18/2021)
 - Eight performance cores
 - 192 KB of L1 instruction cache and
 - 128 KB of L1 data cache and share a 12 MB L2 cache
 - Two efficiency cores
 - 128 KB L1 instruction
 - cache, 64 KB L1 data cache, and a shared 4 MB L2 cache.
 - ●24 to 32 GPU cores
 - 16MB System Level shared Cache
 - 16 Neural Engine cores
 - 64GB unified RAM with 400GB/s memory bandwidth
 - 57 billion transistor
 - Support 7 streams 8K videos

M1 Max

Conclusion

- ARM is a trend.
 - An ARM ecosystem have been created
 - ARM is seen everywhere in our daily life.

Reference

http://www.arm.com/

- http://www.androidauthority.com/intel-readying-serious-contender-for-use-in-android-devices-in-2012-39524/
- http://www-cs-faculty.stanford.edu/~eroberts/courses/soco/projects/2000-01/risc/risccisc/
- http://news.cnyes.com/content/20110826/KDYNZBJB0O23I.shtml
- http://www.technolog.msnbc.msn.com/technology/technolog/china-overtakes-uslargest-smartphone-market-118874
- http://www.dazeinfo.com/2011/12/15/global-smartphone-penetration-2011/
- http://en.wikipedia.org/wiki/Porter_five_forces_analysis
- http://gigaom.com/mobile/arm-vs-intel-just-starting-or-already-over/
- http://tech.hexun.com.tw/2011-10-07/133967251.html
- http://www.eetimes.com/electronics-news/4234459/ARM-customers
- http://www.heyrick.co.uk/assembler/riscvcisc.html
- http://zh.wikipedia.org/wiki/ARM%E6%9E%B6%E6%A7%8B

