PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-203695

(43) Date of publication of application: 09.08.1996

(51)Int.Cl.

H05H 1/46

C23C 16/50

C23F 4/00

H01L 21/205

H01L 21/3065

H05B 6/72

(21)Application number: 07-027582 (71)Applicant: ANERUBA KK

(22)Date of filing:

24.01.1995 (72)Inventor: TAKAGI KENICHI

(54) PLASMA TREATMENT DEVICE

Serial No. 10/748,277 Filed: December 31, 2003 Attorney Docket 249/409

(57)Abstract:

PURPOSE: To prevent the sputtering on a vessel wall and prevent the contamination of a semiconductor process by forming and arranging a high frequency power introducing antenna in such a manner that the area of the antenna projected part on the discharge vessel wall surface is minimized.

CONSTITUTION: A vacuum vessel 14 and a discharge vessel 12 are laid in vacuumed state, vacuuming is performed while a reaction gas is introduced into the vessel 14 by a mechanism 16 to keep a prescribed reduced pressure

state, a high frequency power is applied from a mechanism 13 to an annular antenna 21, and a high frequency discharge is excited in the vessel 12 to generate a plasma. The surface of a base 18 to be treated placed on a mechanism 17 is treated with the active species in the plasma. In this case, the antenna form in which the long axis of the sectional form of the antenna 21 is vertical to the wall surface of the vessel 12 is set so that the area projected to the vessel 12 is minimized.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-203695

(43)公開日 平成8年(1996)8月9日

(51) Int.Cl. ⁶ H 0 5 H	1/46	識別記号 L A	庁内整理番号 9216-2G 9216-2G	FI	技術表示箇所
C 2 3 C	16/50				
C 2 3 F	4/00	Α			
				H 0 1 L 21/302	В
			審査請求	未請求 請求項の数9 FD	(全 13 頁) 最終頁に続く

(21)出願番号

特願平7-27582

(22)出願日

平成7年(1995)1月24日

(71)出願人 000227294

アネルバ株式会社

東京都府中市四谷5丁目8番1号

(72)発明者 高木 憲一

東京都府中市四谷5丁目8番1号 日電ア

ネルパ株式会社内

(74)代理人 弁理士 田宮 寛祉

(54) 【発明の名称】 プラズマ処理装置

(57)【要約】

【目的】 プラズマ処理装置で、放電容器壁のスパッタを防止し、半導体プロセスの汚染を防止し、放電容器の耐久性と安全性を向上する。

【構成】 高周波電力を導入するための誘電体部12を備える真空容器14と、真空容器の内部を減圧状態に保持する排気機構15と、真空容器の内部に反応ガスを導入するガス導入機構16と、誘電体部に近接して配置されるアンテナ21と、アンテナに高周波電力を供給し、誘電体部を通して誘導結合によって真空容器の内部に高周波電力を導入する高周波電力導入機構13と、真空容器内で誘電体部に対向して設置される基板保持機構17を備え、アンテナの高周波電流が流れる方向に対して垂直な断面の形状が偏平であり、断面の長軸が誘電体部の表面に対して実質的に垂直で、アンテナの前記誘電体部に対する対向面積が小さくなるようにアンテナを配置するように構成される。

【特許請求の範囲】

【請求項1】 高周波電力を導入するための誘電体部を備える真空容器と、前記真空容器の内部を減圧状態に保持する排気機構と、前記真空容器の内部に反応ガスを導入するガス導入機構と、前記誘電体部に近接して配置されるアンテナと、前記アンテナに高周波電力を供給し、前記誘電体部を通して誘導結合によって前記真空容器の内部に高周波電力を導入する高周波電力導入機構と、前記真空容器内で前記誘電体部に対向して設置される基板保持機構を備えたプラズマ処理装置において、

前記アンテナの高周波電流が流れる方向に対して垂直な 断面の形状が偏平であり、前記断面の長軸が前記誘電体 部の表面に対して実質的に垂直で、前記アンテナの前記 誘電体部に対する対向面積が小さくなるように前記アン テナを配置することを特徴とするプラズマ処理装置。

【請求項2】 前記アンテナの前記断面の長軸と短軸の 比が3以上であることを特徴とする請求項1記載のプラ ズマ処理装置。

【請求項3】 前記アンテナの前記断面が前記誘電体部の表面に向かって鋭角となる縁部を有するように形成されることを特徴とする請求項1記載のプラズマ処理装置。

【請求項4】 前記誘電体部の形状は放電容器を形成する形状であり、前記アンテナは、前記誘電体部を一巻きする偏平な環状形状を有することを特徴とする請求項1~3のいずれか1項に記載のプラズマ処理装置。

【請求項5】 前記誘電体部の形状は放電容器を形成する形状であり、前記アンテナは、前記誘電体部を囲んで螺旋状に複数回巻かれた形状を有することを特徴とする請求項1~3のいずれか1項に記載のプラズマ処理装置。

【請求項6】 前記誘電体部の形状は放電容器を形成する形状であり、前記アンテナは、前記誘電体部を囲んで一巻きの偏平な環状アンテナが適当な問隔を置いて複数個配置されてなることを特徴とする請求項1~3のいずれか1項に記載のプラズマ処理装置。

【請求項7】 前記アンテナが平板状の偏平な環状アンテナで、このアンテナが、前記誘電体部の表面に対して実質的に常に垂直に配置されることを特徴とする請求項1~6のいずれか1項に記載のプラズマ処理装置

【請求項8】 放電容器を形成する前記誘電体部の形状 は円筒形または半球形であることを特徴とする請求項4 ~6のいずれか1項に記載のプラズマ処理装置。

【請求項9】 前記真空容器内のプラズマを発生する空間に所定磁場を印加する磁場発生装置を設けたことを特徴とする請求項1~8のいずれか1項に記載のプラズマ処理装置

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はプラズマ処理装置に関 50

し、特に、プラズマCVDおよびプラズマエッチングに 利用されるプラズマ処理装置である。

2

[0002]

【従来の技術】誘導結合型プラズマ処理装置の従来例を 図19を参照して説明する。図19において、環状の高 周波電力導入用アンテナ11から高周波電力が誘電体で 形成された円筒形の放電容器12に導入される。アンテ ナ11は高周波電力導入機構13に接続される。内部で プラズマ処理が行われる真空容器 1 4 は金属材で作ら 10 れ、真空容器14と放電容器12は内部の空間が通じて いる。なお図中、真空容器14の手前壁部は内部の様子 を示すため切り欠いて示している。 真空容器 14と放電 容器12の内部は排気機構15によって所要レベルに減 圧され、さらにガス導入機構16によって反応ガスが導 入される。放電容器12と真空容器14に供給された反 応ガスは、アンテナ11より導入された高周波電力によ り放電し、これによりプラズマが発生する。そしてプラ ズマ内に存在する活性種は、基板保持機構17に配置さ れた被処理基板18の表面を処理する。従来のプラズマ 処理装置では、高周波電力導入用アンテナ11は帯形状 の長形板材を円形に曲げた環状形態を有し、この環状ア ンテナ11は、面が放電容器壁面に対向するような位置 関係で放電容器12の周囲に巻くような状態で配置され る。アンテナ11を形成する帯形状板材にはその幅が1 0~20mm程度の導電性部材が一般的に用いられる。 [0003]

【発明解決しようとする課題】上記放電容器 1 2 のごとき誘導結合型プラズマ源は、近年要求される半導体プロセスの高速処理に必要な高密度プラズマを容易に生成でき、また装置の構造上、比較的簡単に大口径化が可能なため、今後の被処理基板の大口径化に伴う均一性の良い大面積プラズマの生成に容易に対応できるという利点を有する。このため誘導結合型プラズマ源の様々な研究が盛んに行われている。

【0004】一般的な環状アンテナを用いた誘導結合型 プラズマ処理装置では、放電容器に巻かれた環状アンテ ナによって発生する振動磁場により生成されるプラズマ 中の誘導電場によりプラズマの生成維持を行っていると 考えられていた。しかし最近の研究(Y.Hikosaka, M.Na kamura and H. Sugai: Proc. 15th Symp. Dry Process (T okyo, 1993), pp. 97.) により、環状アンテナを用いた 誘導結合型プラズマ処理装置で、放電容器に対してアン テナを投影した部分が削られている現象が報告されてい る。この原因はアンテナとプラズマの間の容量結合によ ることから、容量結合によるプラズマ生成も無視できな いことが判ってきた。これは、アンテナ近傍に存在する 近接電場のために、誘電体で形成された放電容器に対し てアンテナが投影された放電容器の表面部分には強い負 の自己パイアスが形成され、強い電場のイオンシースが 形成され、このイオンシースによりイオンが放電容器に

30

40

.2

向かい加速されるために、放電容器が削られると考えられる。この現象は、通常の平行平板型プラズマ処理装置の主たるプラズマ生成維持機構である容量結合によるプラズマの生成と同一である。実際のプロセスにおいて、放電容器壁のスパッタは最終的に半導体プロセスの汚染の原因となる。また一般的に用いられる石英製放電容器では、耐久性、安全性の面で問題が起こる。これらの問題は、2つの環状アンテナを用いたヘリコン波プラズマ処理装置においても同様に起こっている。

【0005】本発明の目的は、上記の問題を解決するこ 10 とにあり、放電容器壁のスパッタを防止し、半導体プロセスの汚染を防止すると共に、放電容器の耐久性と安全性を向上した、簡単な構造を有するプラズマ処理装置を提供することにある。

[0006]

【課題を解決するための手段】第1の本発明に係るプラズマ処理装置は、高周波電力を導入するための誘電体部を備える真空容器と、真空容器の内部を減圧状態に保持する排気機構と、真空容器の内部に反応ガスを導入するガス導入機構と、誘電体部に近接して配置されるアンテンナと、アンテナに高周波電力を供給し、誘電体部を通して誘導結合によって真空容器の内部に高周波電力を導入する高周波電力導入機構と、真空容器内で誘電体部に対向して設置される基板保持機構を備え、さらに、アンテナの高周波電流が流れる方向に対して垂直な断面の形状が偏平であり、断面の長軸が誘電体部の表面に対して実質的に垂直で、アンテナの前記誘電体部に対する対向面積が小さくなるようにアンテナを配置するように構成される。

【0007】第2の本発明は、第1の発明において、アンテナの断面の長軸と短軸の比が3以上であることを特徴とする。

【0008】第3の本発明は、第1の発明において、アンテナの断面が誘電体部の表面に向かって鋭角となる縁部を有するように形成されることを特徴とする。

【0009】第4の本発明は、第1~第3の発明において、誘電体部の形状は放電容器を形成する形状であり、アンテナは、誘電体部を一巻きする偏平な環状形状を有することを特徴とする。

【0010】第5の本発明は、第1~第3の発明において、誘電体部の形状は放電容器を形成する形状であり、アンテナは、前記誘電体部を囲んで螺旋状に複数回巻かれた形状を有することを特徴とする。

【0011】第6の本発明は、第1~第3の発明において、誘電体部の形状は放電容器を形成する形状であり、アンテナは、誘電体部を囲んで一巻きの偏平な環状アンテナが適当な間隔を置いて複数個配置されてなることを特徴とする。

【0012】第7の本発明は、第1~第6の発明において、アンテナが平板状の偏平な環状アンテナで、このア 50

ンテナが、誘電体部の表面に対して実質的に常に垂直に 配置されることを特徴とする。

【0013】第8の本発明は、第4~第6の発明において、放電容器を形成する誘電体部の形状は円筒形または 半球形であることを特徴とする。

【0014】第9の本発明は、第1~第8の発明において、真空容器内のプラズマを発生する空間に所定磁場を 印加する磁場発生装置を設けたことを特徴とする。

[0015]

【作用】本発明では、内部に配置された被処理基板を、生成されたプラズマで処理するための真空容器に設けられた誘電体部であって、誘導結合によって真空容器の内部にプラズマ生成用高周波電力を導入する誘電体部の周囲に、当該高周波電力を供給するアンテナが配置される。誘電体部の外部近傍におけるアンテナの配置は、高周波電流が流れる方向に垂直な断面が偏平に形成され、その長軸は誘電体部の表面に対してほぼ垂直に配置されることにより、誘電体部の表面に対するアンテナの対向面の面積が可能限り減少され、これにより、誘電体部におけるアンテナ投影部分のスパッタが最少限に抑制される。このように誘電体部を通して容量結合に起因して生じるプラズマ生成を最少限に低減した。

[0016]

【実施例】以下に、本発明の実施例を添付図面に基づいて説明する。

【0017】図1は本発明に係るプラズマ処理装置の実 施例を示し、図1で、図19で説明した要素と実質的に 同一の要素には同一の符号を付している。本実施例によ るプラズマ処理装置ではアンテナとして平板状の偏平な 環状アンテナが使用される。 真空容器 14の上には、上 部が塞がれた円筒形の放電容器12が設けられる。真空 容器14と放電容器12の内部空間は連通している。放 電容器12は、例えば容器内径266mm、少なくとも 容器側壁が石英等の誘電体で作られている。また放電容 器12の全体を石英等の誘電体で作ることもできる。真 空容器14は金属材で形成され、その内部には放電容器 12に対向する位置に基板保持機構17が設けられ、基 板保持機構17の上に被処理基板18が載置される。真 空容器14と放電容器12の内部は排気機構15によっ て所要のレベルに減圧され、さらにこの内部空間に対し てガス導入機構16が必要な反応ガスが供給される。放 電容器12の円筒側壁の周囲にはこれを取り巻くように 平板状の偏平な環状アンテナ21が配置される。この環 状アンテナ21は高周波電力導入機構13に接続され、 高周波電力導入機構13から高周波電力が供給される。

【0018】上記プラズマ処理装置の作動は次の通りである。最初に油回転ポンプ、油拡散ポンプ等からなる排気機構15により真空容器14および放電容器12内を所要レベルの真空状態にし、その後、ガス導入機構16により反応ガスを真空容器14に導入しながら、同時に

真空排気して所要の減圧状態を保ち、高周波電力導入機構13から環状アンテナ21に高周波電力を印加して放電容器12内で高周波放電を起しプラズマを生成する。これにより真空容器14内に導入された反応ガスは活性化し、プラズマ中の活性種によって基板保持機構17上に載置された被処理基板18の表面を処理する。

【0019】次に平板状の偏平な上記環状アンテナ21 の構成を詳述する。図2は環状アンテナの第1実施例を 示し、(A)は外観斜視図、(B)はC1-C1線断面 図である。図2(B)に示す断面はアンテナ21におけ 10 る高周波電流が流れる方向に垂直な断面であり、このこ とは以下に説明する図2 (B) と同等な断面図でも同じ である。実験装置に用いた実際の環状アンテナ21は、 図2(B)に示すようにその断面寸法において厚さ (a) が15mm、アンテナ幅(b) が2mmである。環状 アンテナ21の断面形状は、厚さ(a=15㎜)が長 辺、アンテナ幅(b=2m)が短辺となる長方形となっ ている。なお、アンテナにおいて放電容器12に面する 寸法を「アンテナ幅」、放電容器12に垂直な寸法を 「厚さ」といい、さらに、高周波電流が流れるアンテナ 20 における高周波電流が流れる方向に垂直である偏平な断 面では、長軸および短軸が定義される。

【0020】環状アンテナと放電容器の間の容量結合によるプラズマへの電力供給は、放電容器に対して投影された環状アンテナの面積に比例している。そのため、放電容器12に対して投影される面積を小さくできると考えられる。従って、放電容器12に対して投影された面積を小さくするには、環状アンテナ11の寸法(b)を小さくすることである。しかし、単にアンテナの寸法(b)を小さくした場合、アンテナ自身の抵抗が増加してしまうために、アンテナ表面電流によるジュール熱の発生が大きく、電力損失が大きくなる。さらに、アンテナに流すことが可能な許容電流値が低くなる。これを解決するためには、環状アンテナの偏平断面においてその長軸の方向が、放電容器12の側壁の表面に対して垂直となることが最適である。

【0021】環状アンテナ21は、上記条件を満たす断面形状を有するように形成される。このような構造の環状アンテナ21は、従来例で用いたアンテナ幅15m×厚さ1mの前記アンテナ11と比較して、放電容器12の側壁の表面に対向するアンテナ幅の寸法を約1/8にしているにもかかわらず、高周波電流の流れる表面積をほぼ同一とすることができ、アンテナ表面電流によるジュール熱の発生による電力損失を抑え、アンテナ21を流れる許容電流値を従来例のアンテナ11と等しくすることができる。

【0022】放電容器12の壁面に対して環状アンテナ 21の断面形状の長軸(または長辺)が垂直となるアン テナ形状は、放電容器12に対して投影された面積を最 50 小とする。放電容器12の内部空間に対する環状アンテ ナ21からの影響は、容量結合、および誘導結合の両方 共にアンテナ表面全体での積分に依って決定される。そ して、容量結合はアンテナの対向面からの距離(d)に 対して1/d2 で依存し、誘導結合はアンテナの対向面 からの距離(d)に対して1/dで依存する。このた め、放電容器12に最も近いアンテナの面部分の幅を小 さくし、放電容器12の壁面に対してアンテナ断面形状 の長軸が垂直となるアンテナ形状によって、放電容器1 2に対して投影された面積を最小とすることで、容量結 合を誘導結合に対して相対的に小さくすることができ る。この結果、従来例で用いたアンテナ幅15㎜×厚さ 1 mmのアンテナ11と比較して、アンテナ表面を流れる 髙周波電流がほぼ同一であることから誘導結合によるプ ラズマへの電力供給をあまり変化させることなく、容量 結合によるプラズマへの電力供給を小さくすることが可 能である。

【0023】一般的な平行平板電極によるプラズマ生成 においては、電力測定等の際のプラズマを挟む平行平板 電極の両端における電圧に対する電流の位相差の測定が 報告されている (F. Tochikubo, T. Kokubo, S. Kakuta, A. Suzuki and T. Makabe, J. Phys. D: Appl. Phys. 23 (1990) 1184) 。それらの報告によれば、工業周波数で ある13.56MHzでは、電圧に対する電流の位相の 進みから容量性の議論がなされている。これはプラズマ を含む平行平板電極を1つの電気素子と考えた場合、交 流回路において電圧に対する電流の位相の進みは容量性 が強くなることを示している。同様に、誘導結合型プラ ズマ源において、プラズマに対する電力供給が誘導結合 によるか、容量結合によるかの判定は、アンテナ両端で の位相角の差により可能であると考えられる。プラズマ を含むアンテナの等価回路を図3に示す。図3で、プロ ック31はアンテナの等価回路、プロック32、33は プラズマの等価回路を示す。C: およびC2 はアンテナ とプラズマの間の容量、Rrはプラズマの抵抗、Raは アンテナの自己抵抗、Lはアンテナの誘導成分、Mはア ンテナとプラズマの間の相互誘導成分である。ただし図 3では誘導結合による生成と容量結合による生成とに大 別するために、プラズマの電気的成分を、誘導結合によ る成分32と容量結合による成分33の2種類に分割し て考えた。このアンテナの両端間のインピーダンス2 は、次式で与えられる。

[0024]

【数1】 $Z = \{2R_1 R_1 \gamma + 2R_1 \alpha^2 + R_1 \beta^2 \}$ / $\{(\alpha - \beta)^2 + \gamma^2\} + j \{4R_1^2 \alpha + \alpha \beta^2 - \alpha^2 \beta - R_1^2 \beta\}$ / $\{(\alpha - \beta)^2 + \gamma^2\}$ ここで、

 $\alpha = L \omega + M \omega$ $\beta = (C_1 + C_2) / C_1 C_2 \omega$ $\gamma = R_2 + 2 R_2$

【0025】アンテナ部分の容量成分(C1 および C_2) が小さくなると、 β が増加する。 β は α および γ に比較して大きいため、インピーダンスのリアクタンス はβに支配される。リアクタンスは正の方向に大きくな る。このため、プラズマを含むアンテナ部分を1つの電 気素子と考えた場合、誘導成分が大きい場合には位相差 は90度に近づき、容量成分が大きくなると-90度に 近づくと考えられる。従って、プラズマを含むアンテナ 部分のアンテナ両端の位相差の測定に基づいてプラズマ を含むアンテナ部分の電気的成分を判定すると、アンテ 10 ナとプラズマの間の結合度合を判定できる。

【0026】次に以上の考察を踏まえて、本実施例によ るアンテナ21の特徴を従来のアンテナ11の特性を実 験的に比較して考察する。高周波電力1000Wで酸素 プラズマを生成した際の環状アンテナの両端における電 圧波形41 (実線で表す) と電流波形42 (点線で表 す)の測定結果を、環状アンテナの放電容器12に対向 する面の幅(図2の寸法bに対応する;以下「対向面 幅」という) が 2 mm、 1 5 mm、 1 5 0 mm の場合について* *それぞれ図4、図5、図6に示す。対向面幅が2皿は本 実施例による環状アンテナ21の場合であり、対向面幅 15mm、150mmは従来の環境アンテナ11の場合であ る。各図において(A)と(B)は、図7の整合回路図 に示すように、それぞれ環状アンテナ51 (アンテナ2 1またはアンテナ11に対応)の高周波電源側A1と接 地側B1の特性を示す。なお図7で、52は高周波電力 導入機構13に含まれる高周波電源であり、可変容量成 分53、誘導成分54は整合回路を形成する電気的要素 である。図4~図6によれば、高周波電源側A1におけ る電流電圧位相差を基準にすると、接地側B1における 電流電圧位相差は遅れていることが判る。そして、アン テナの対向面幅が細くなると、接地側B1における電流 電圧位相差の遅れは大きくなっていた。表1に、各高周 波電力におけるアンテナ両端間での位相差の測定結果を 示す。

8

[0027]【表1】

アンテナ幅 (nm) 2 15 150 本実施例 従来例 従来例 高周波電力(V) 300 88. 2 58.5 0. 4 500 93. 2 62. 2 2. 0 1000 94. 9 64.3 7. 5

アンテナ両端での位相差 (単位:度)

【0028】また、これらの位相差の各高周波電力依存 特性を図8に示す。図8の高周波電力依存特性は、放電 ガスがO2 、放電圧力が1.3Paという放電条件の下 で得られた。図8において、特性61はアンテナの対向 面幅が2mmの場合、特性62は対向面幅が15mmの場 合、特性63は対向面幅が150㎜の場合を示す。アン テナの対向面幅が2㎜の場合、すなわち本実施例による 環状アンテナ21の場合には、特性61に示されるよう に高周波電力に依らずほぼ90度の位相差が観測され、

(数1)の式を考慮した場合、プラズマを含むアンテナ 40 部分はほぼ完全な誘導成分のみであると考えられる。な おアンテナの対向面幅が2㎜の場合には、電流波形に高 周波成分によるノイズが大きく、位相差の算出する際の 誤差により90度以上の値が算出されていると考えられ る。

【0029】従来装置を用いてSi〇2 エッチングプロ セスにおいて用いられるC。F。ガスを用いた放電実験 を行った際、石英製放電容器ではアンテナ投影部分でス パッタが起きた。アンテナの対向面幅150㎜の場合に は、放電容器のアンテナ投影部分が数百μm/時間程度 50 線断面図である。平板の偏平な環状アンテナ121の断

のスパッタ速度を持ち、対向面幅が15㎜の場合には、 対向面幅が150㎜程のスパッタ速度ではないが、アン テナ投影部分のスパッタの発生が確認された。これに対 して、本実施例によるアンテナ21を備えた装置で対向 面幅 2 mmの場合には、アンテナ投影部分のスパッタは観 測されなかった。すなわち、本実施例による環状アンテ ナ21を備えたプラズマ処理装置を用いることで、アン テナ投影部分のスパッタを最小限に抑えることができ た。この実験結果および酸素プラズマの生成を行った場 合におけるアンテナ両端での位相差の結果から、アンテ ナとプラズマの間の容量は放電容器のスパッタと明確な 関係があることが判明した。また以上の結果から概算し た場合、プラズマを含むアンテナ部分の位相差が70度 以上であるような誘導結合が強く、放電容器のスパッタ が少ないプラズマ生成を行う場合には、アンテナ断面の 長方形の長辺と短辺の比が3以上であることが望まし

【0030】図9は本発明に係る環状アンテナの第2実 施例を示し、(A)は外観斜視図、(B)はC2-C2

9

面における寸法は厚さ(a)が15mm、アンテナ幅(b)が2mmである。アンテナ121の放電容器壁側の内縁部121aは、その断面が鋭角なるように小刃形状に形成される。これにより放電容器12におけるアンテナ投影部分の面積をさらに小さくすることができ、これに伴い、アンテナとプラズマの間の容量を小さくすることができる。第2実施例による環状アンテナ121の実質的な対向面幅は、第1実施例の環状アンテナ21の対向面幅よりも小さく、第1実施例の環状アンテナ21よりもさらにスパッタを抑制することができる。

【0031】図10図は本発明に係る環状アンテナの第3実施例を示し、(A)は外観斜視図、(B)はC3-C3線断面図である。環状アンテナ221の断面における寸法は厚さ(a)が15㎜、アンテナ幅(b)が2㎜である。またアンテナ221の放電容器壁側の内縁部221aは、鋭角に形成され、ナイフ状とされる。これにより、放電容器12におけるアンテナ投影部分の面積をさらに小さくすることが可能であり、これに伴ってアンテナとプラズマの間の容量は小さくなる。第3実施例による環状アンテナ21の実質的な対向面幅は、第1実2の施例の環状アンテナ21の対向面幅よりも小さく、第1実施例の環状アンテナ21よりもさらにスパッタを抑制することができる。

【0032】図11図は本発明に係る環状アンテナの第4実施例を示し、(A)は外観斜視図、(B)はC4-C4線断面図である。環状アンテナ321の断面における寸法は厚さ(a)が15㎜、最大アンテナ幅(b)が2㎜で、断面形状は楕円形状に形成される。またアンテナ321の放電容器壁側の内縁部321aは、鈍角の凸部に形成される。これにより、放電容器12におけるア30ンテナ投影部分の面積をさらに小さくすることが可能であり、これに伴ってアンテナとプラズマの間の容量は小さくなる。第4実施例による環状アンテナ321の実質的な対向面幅は、第1実施例の環状アンテナ21の対向面幅よりも小さく、第1実施例の環状アンテナ21よりもさらにスパッタを抑制することができる。

【0033】図12は本発明に係る環状アンテナの第5 実施例を示し、(A)は外観斜視図、(B)はC5-C 5線断面図である。この環状アンテナは螺旋形態を有 し、以下螺旋状アンテナ421という。螺旋状アンテナ 421の一巻分の各環状アンテナ421aの断面におけ る寸法は、図2で説明した環状アンテナ21と同じであ る。螺旋状アンテナ421の各環状アンテナは、放電容 器12におけるアンテナ投影部分の面積を小さくでき、 これに伴ってアンテナとプラズマの間の容量を小さくで きる。本実施例による螺旋状アンテナ421を用いた場 合、放電容器12のスパッタに対してもこれを抑制でき る。螺旋状アンテナ421の放電容器側縁部は、第2実 施例や第3実施例に示したような小刀形状またはナイフ 形状の断面形状に形成することもできる。これにより、50 10

放電容器 1 2 におけるアンテナ投影部分は実質的に最小限とすることが可能であり、実質的なアンテナの対向面幅は第 5 実施例の螺旋状アンテナ 4 2 1 の場合よりも小さく、さらにスパッタを抑制することができる。

【0034】図13は本発明に係る環状アンテナの第6 実施例を示し、(A)は外観斜視図、(B)はC6-C 6線断面図である。このアンテナ521は、ヘリコン波 励起用アンテナとして適用したアンテナである。アンテ ナ521は、第1実施例の環状アンテナ11と同一のア ンテナ断面形状を有する2つの環状アンテナ521aを 使用し、2つのアンテナ521aは接続部材521bで 結合される。本実施例に示すようなヘリコン波励起用ア ンテナ521を用いて所定の定常磁場を印加した場合、 放電容器12のスパッタを従来に比し抑制できる。アン テナ521の放電容器側縁部は、第2実施例や第3実施 例に示したような小刀形状またはナイフ形状の断面形状 に形成することもできる。これにより、放電容器12に おけるアンテナ投影部分は実質的に最小限とすることが 可能であり、実質的なアンテナの対向面幅は第6実施例 のアンテナ521の場合よりも小さく、さらにスパッタ を抑制することができる。

【0035】上記の各実施例では、一巻の環状アンテナ、または螺旋状アンテナ等の複数巻の環状アンテナを利用して構成される内径266mの円筒形放電容器12を採用した誘導結合型プラズマ処理装置に適用した例を示した。しかし、どのような放電容器形状においても、使用するアンテナ径または巻数等に依存する誘導成分に対して位相差が70度以上となるアンテナの対向面幅(b)を適用し、誘導結合の強いプラズマを生成することで、放電容器12の壁面のスパッタを最小とすることが可能であることはいうまでもない。

【0036】図14は本発明に係る環状アンテナの第7 実施例を示し、(A)は外観斜視図、(B)はC7-C 7線断面図である。このアンテナは、半球状放電容器を 持つ誘導結合型プラズマ処理装置に適用した場合の螺旋 状アンテナ621である。螺旋状アンテナ621の断面 形状は、第1実施例の環状アンテナ21とほぼ同一であ る。本実施例に示すような螺旋状アンテナを用いた場 合、従来の通常の螺旋状アンテナを用いた場合の放電容 器スパッタに比較しスパッタを抑制できる。アンテナ6 21の放電容器側縁部は、第2実施例や第3実施例に示 したような小刀形状またはナイフ形状の断面形状に形成 することもできる。これにより、半球状放電容器におけ るアンテナ投影部分は実質的に最小限とすることが可能 であり、実質的なアンテナの対向面幅は第7実施例のア ンテナ621の場合よりも小さく、さらにスパッタを抑 制することができる。

[0037] 図15は本発明に係る環状アンテナの第8 実施例を示し、(A) は外観斜視図、(B) はC8-C 8線断面図である。この実施例による環状アンテナ72

1は、高周波電力導入用誘電体部分として平板状のものを有する誘導結合型プラズマ処理装置に適用した場合のアンテナである。図15 (B)に示す71は平板状の高周波電力導入用誘電体部である。環状アンテナ721の断面形状は、第1実施例の環状アンテナ21をほぼ同一である。本実施例による環状アンテナ721を用いた場合、従来の通常の環状アンテナを用いた場合の放電容器のスパッタに比較してスパッタを抑制できる。アンテナ721の誘電体部71側の縁部は、第2実施例や第3実施例に示したような小刀形状またはナイフ形状の断面形 10 状に形成することもできる。これにより、放電容器の誘電体部71におけるアンテナ投影部分は実質的に最小限とすることが可能であり、実質的なアンテナの対向面幅は第8実施例のアンテナ721の場合よりも小さく、さらにスパッタを抑制することができる。

【0038】図16は本発明に係るアンテナの第9実施 例を示し、(A) は外観斜視図、(B) はC9-C9線 断面図である。この実施例によるアンテナ821は、第 8 実施例と同様に、髙周波電力導入用誘電体部分として 平板状のものを有する誘導結合型プラズマ処理装置に適 20 用した場合のすだれ状アンテナである。図16(B)に 示す71は平板状の髙周波電力導入用誘電体部である。 すだれ状アンテナ821における誘電体部71に接触す る平板部の断面は、第1実施例の環状アンテナ21の断 面形状とほぼ同じである。本実施例によるすだれ状アン テナ821を用いた場合、従来の通常のすだれ状アンテ ナを用いた場合の放電容器のスパッタに比較してスパッ タを抑制できる。すだれ状アンテナ821の誘電体部7 1 側の縁部は、第2 実施例や第3 実施例に示したような 小刀形状またはナイフ形状の断面形状に形成することも できる。これにより、放電容器の誘電体部71における アンテナ投影部分は実質的に最小限とすることが可能で あり、実質的なアンテナの対向面幅は第9実施例のアン テナ821の場合よりも小さく、さらにスパッタを抑制 することができる。

【0039】以上の各実施例の説明では、実際必要であるアンテナの冷却機構については説明の便宜上省略した。上記のいずれのアンテナを用いて連続放電を行っても、アンテナには大量の高周波電流が流れるためにアンテナはジュール熱により加熱され、その結果、アンテナ40自身のインピーダンスが変化し整合条件が変化するため、放電が不安定となる場合も起こり得る。そこで、アンテナの加熱を抑制するためのアンテナの冷却機構を備えた環状アンテナの実施例を以下に説明する。

【0040】図17は本発明に係る環状アンテナの第10実施例を示し、(A)は外観斜視図、(B)はC10-C10線断面図である。環状アンテナ921は、実施例1で説明したスパッタの抑制効果を損ねず、アンテナの冷却を行うための冷却機構を内蔵する。この実施例の環状アンテナ921は、外観形状が第1実施例の環状ア 50

ンテナ21と同じであって、かつ管状に形成され、内部の通路921aを冷却水用経路として使用している。また図17(A)に示す921bは通路921aの入り口または出口である。冷却水経路921aに冷却水を流すことにより、前述したスパッタの抑制効果を損ねず、ジュール熱によるアンテナの加熱を抑え、放電を安定に保つことが可能となる。

【0041】図18は本発明に係る環状アンテナの第11実施例を示し、(A)は外観斜視図、(B)はC11-C11線断面図である。この実施例による構造は、第1実施例の環状アンテナ21の外周に冷却水用経路を有するチューブ81を設けている。本実施例による環状アンテナは、前述したスパッタの抑制効果を損ねず、チューブ81を流れる冷却水によってアンテナ21を冷却できるため、ジュール熱によるアンテナ21の加熱を抑え、放電を安定に保つことができる。

【0042】前述の各実施例において、真空容器14の外部に磁場発生装置を設けることにより、真空容器14または放電容器12の内部に磁場を印加するように構成することも可能である。

[0043]

【発明の効果】以上の説明から明らかなように本発明によれば、石英等の誘電体で形成された放電容器に巻かれる高周波電力導入用アンテナを、放電容器壁面におけるアンテナ投影部分の面積ができる限り小さくなるように形成して配置したため、放電容器壁におけるアンテナ投影部分のスパッタを最小限に抑えることができ、また被処理基板の処理中における汚染を最小に抑えることができ、誘電体の放電容器の破壊を抑え、誘電体部分の耐久性および安全性を向上できる。

【図面の簡単な説明】

【図1】本発明の係るプラズマ処理装置の実施例を示す 概略構成図である。

【図2】図1で示した実施例で使用される平板状の偏平な環状アンテナの第1実施例を示し、(A)は外観斜視図、(B)はC1-C1線断面図である。

【図3】誘導結合型プラズマ源におけるプラズマを含むアンテナ部分の等価回路図である。

【図4】第1実施例の環状アンテナ(アンテナの対向面幅2mm)を用いた場合のアンテナ両端での電圧電流波形図を示し、(A)は高周波電力供給側の電圧電流波形図、(B)は接地側での電圧電流波形図を示す。

【図5】従来の通常の環状アンテナ(アンテナの対向面幅15mm)を用いた場合のアンテナ両端での電圧電流波形図を示し、(A)は高周波電力供給側の電圧電流波形図、(B)は接地側での電圧電流波形図を示す。

【図6】従来の環状アンテナ(アンテナの対向面幅150mm)を用いた場合のアンテナ両端での電圧電流波形図を示し、(A)は高周波電力供給側の電圧電流波形図、

(B) は接地側での電圧電流波形図を示す。

【図7】図1で示した装置の整合回路の回路図である。

【図8】第1 実施例の環状アンテナと従来の環状アンテナを用いた場合のアンテナ両端での位相差の高周波電力依存性を示す図である。

【図9】本発明の環状アンテナの第2実施例を示し、 (A) は外観斜視図、(B) はC2-C2線断面図である。

【図10】本発明の環状アンテナの第3実施例を示し、 (A) は外観斜視図、(B) はC3-C3線断面図である。

【図11】本発明の環状アンテナの第4実施例を示し、 (A) は外観斜視図、(B) はC4-C4線断面図である。

【図12】本発明のアンテナの第5実施例を示し、環状アンテナを複数組み合わせて螺旋形状に形成し、(A)は外観斜視図、(B)はC5-C5線断面図である。

【図13】本発明のアンテナの第6実施例を示し、環状アンテナを2個組み合わせて形成し、(A)は外観斜視図、(B)はC6-C6線断面図である。

【図14】本発明のアンテナの第7実施例を示し、高周波電力導入用半球状放電容器を持つ誘導結合型プラズマ処理装置に適用した場合の例であり、(A)は外観斜視図、(B)はC7-C7線断面図である。

【図15】本発明のアンテナの第8実施例を示し、高周 波電力導入用平板状誘電体部を持つ誘導結合型プラズマ 処理装置に適用した場合の例であり、(A)は外観斜視 図、(B)はC8-C8線断面図である。

【図16】本発明のアンテナの第9実施例を示し、高周 波電力導入用平板状誘電体部を持つ誘導結合型プラズマ 14 処理装置に適用した場合の例であり、(A) は外観斜視 図、(B) はC9-C9線断面図である。

【図17】本発明の環状アンテナの第10実施例であ り、(A)は外観斜視図、(B)はC10-C10線断 面図である。

【図18】本発明の環状アンテナの第11実施例であ り、(A)は外観斜視図、(B)はC11-C11線断 面図である。

【図19】従来の誘導結合型プラズマ処理装置を示す構 10 成図である。

【符号の説明】

	1 2	放電容器
	1 3	髙周波電力導入機構
	1 4	真空容器
	1 5	排気機構
	1 6	ガス導入機構
	1 7	基板保持機構
	1 8	基板
	2 1	環状アンテナ
20	4 1	電圧特性
	4 2	電流特性
	1 2 1	環状アンテナ
	2 2 1	環状アンテナ
	3 2 1	環状アンテナ
	4 2 1	螺旋状アンテナ
	5 2 1	アンテナ
	6 2 1	アンテナ
	7 2 1	アンテナ
	8 2 1	すだれ状アンテナ

【図1】

【図2】

【図10】

【図12】

(B)

(B)

【図13】

【図14】

フロントページの続き

H 0 1 L 21/205

21/3065

H 0 5 B 6/72 6908-3K