CHAMP A FORCE CENTRALE

Exercice n°1

Déterminer la masse m_T de la Terre sachant que la Lune tourne autour de cette dernière sur une orbite approximativement circulaire de rayon r_1 =3.85×10⁵ km et que sa période est voisine de T_L =27.25 jours. G= 6,67 10⁻¹¹ N.m².kg⁻².

Exercice n°2

La masse M de la planète Jupiter peut se déterminer à partir des données issues de l'observation de ses satellites.

- 1. Quelle relation lie les périodes T des mouvements des satellites aux rayons r de leurs orbites (supposées circulaires)
- 2. Le tableau qui suit donne les valeurs de T et r relatives à quelques satellites de Jupiter. En déduire la masse de Jupiter

Satellites	lo	Europe	Ganymède	Callisto
T (jours)	1,768	3,551	7,155	16,69
r (km)	4,220.10 ⁵	6,710.10 ⁵	10,70.10 ⁵	18,80.10 ⁵

 $G = 6.67 \cdot 10^{-11} \text{N.m}^2 \cdot \text{kg}^{-2}$

Exercice n°3

Un satellite de masse m décrit une trajectoire circulaire uniforme autour de la terre (masse m_T , rayon R_T), d'altitude h_0 .

- 1. Calculer la norme v de sa vitesse, son énergie mécanique E_m et sa période T.
- 2. Les hautes couches de l'atmosphère freinent très lentement le mouvement, de sorte que la trajectoire sur un tour reste quasi circulaire. Quelle sera la forme globale de la trajectoire ?
- 3. On suppose que l'altitude décroît linéairement en fonction du temps : dh = $-\alpha$ dt, où α est une constante. Calculer la variation d'altitude Δ h pendant un tour. En déduire la variation correspondante de la vitesse Δ v en fonction de α . Commenter.

Exercice n°4

La Terre est supposée à symétrie sphérique, de centre C, de rayon r_0 . On note g_0 l'intensité du champ de pesanteur terrestre au niveau du sol. On donne $r_0 = 6400$ km et $g_0 = 9.8$ m.s⁻².

- 1. Un satellite de masse m décrit une trajectoire circulaire rasante de rayon r_0 . Quelles sont alors les expressions de la vitesse v_0 et de la période T_0 du satellite ? Faire une application numérique.
- 2. Un satellite géostationnaire décrit une trajectoire circulaire située dans le plan équatorial, et semble fixe pour un observateur terrestre. Déterminer le rayon r₁ de l'orbite d'un satellite géostationnaire. Calculer sa vitesse v₁
- 3. On veut faire passer un satellite de l'orbite circulaire rasante de rayon r_0 à l'orbite géostationnaire de rayon r_1 au moyen d'une orbite elliptique tangente en son apogée A à l'orbite géostationnaire et en son périgée P à l'orbite circulaire rasante. Un moteur auxiliaire permet de modifier la vitesse du satellite aux points P et A. Le satellite décrit la demi-orbite elliptique.
- 3.1. Faire un schéma.
- 3.2. Déterminer les vitesses v'₀ et v'₁ du satellite en P et A sur sa trajectoire elliptique.
- 3.3. Calculer la durée du transfert.

Exercice n°5

Lors de son lancement, le satellite d'observation Hipparcos est resté sur son orbite de transfert à cause d'un problème technique. On l'assimile à un point matériel M de masse m = 1,1t. L'orbite de transfert est elliptique et la distance Terre-Satellite varie entre $d_p = 200$ km au périgée et $d_A = 35.9 \, 10^3$ km à l'apogée. On appelle le périgée le point le plus proche de la Terre et l'apogée le point le plus éloigné. On mesure la vitesse du satellite à son apogée $v_A = 3.5 \, 10^2$ m.s⁻¹.

- 1. Faire un schéma de la trajectoire en faisant apparaître la position O du centre de la Terre, l'apogée A et le périgée P
- 2. Déterminer le demi-grand axe a de la trajectoire.
- 3. En déduire l'énergie mécanique et la période du satellite.
- 4. On note v_A et v_P les vitesses du satellite en A et P. Exprimer le module du moment cinétique calculé au point O du satellite à son apogée puis à son périgée.
- 5. En déduire la vitesse du satellite à son périgée.

On donne La masse de la terre $M_T = 5.97 \cdot 10^{24} \text{ kg et G} = 6.67 \cdot 10^{-11} \text{N.m}^2 \cdot \text{kg}^{-2}$