Computer Organization

Architecture diagrams:

Hardware module analysis:

Simple_Single_CPU:整個 CPU 的架構,將 modules 用對應的線連接起來。

Adder:兩個輸入等於輸出,用來算地址

MUX_2to1:依照輸入的 select 從兩個 data 中選擇一個輸出。

Decoder: 把得到的訊息分成 ALUOp, ALUSrc, branch, RegWrite, RegDst

ALU_Ctrl:把輸入的訊息換成 ALU 要做的運算方式

ALU:依照 ALU_Ctrl 的輸出做運算 Sign_Extend:將 16bits 變成 32bits Shift_Left_Two_32:往左一兩個 bits

Finished part:

casel		case2:	
r0=	0	r0=	0
r1=	10	r1=	1
r2=	4	r2=	0
r3=	0	r3=	0
r4=	0	r4=	0
r5=	6	r5=	0
r6=	0	r6=	0
r7=	0	r7=	14
r8=	0	r8=	0
r9=	0	r9=	15
r10=	0	r10=	0
r11=	0	r11=	0
r12=	0	r12=	0

Problems you met and solutions:

輸出與預期不符:經過檢查後,發現問題出在 ALU_Ctrl。把 test case 改成少一點的指令,檢查輸出,並對照 CO_Lab_2. pdf 給的表格,發現 beq 的的狀況下有誤,並修改一些細節,最後終於輸出預期的答案。

Summary:

這次的 lab 較上次更加複雜,花了許多時間思考。這次 lab 讓我比較了解 CPU 的運行方式和結構。