# Machine Listening for Music and Sound Analysis

#### **Lecture 4 - Environmental Sound Analysis**

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://machinelistening.github.io



#### **Overview & Learning Objectives**

- Introduction
- Sound Event Detection
- Acoustic Scene Classification
- Acoustic Anomaly Detection
- Application Scenarios



#### **Introduction Motivation**

- Sound carries information about our environment
- Challenging attempt to mimic the human's abilities
  - Environment perception
  - Context-awareness & localization of sound sources
  - Acoustic scene understanding
- Complementary sensory path to vision → multimodality
- Related to other content analysis domains (speech, music)



#### **Introduction Environmental Sounds (Recap)**

- Sound sources
  - Nature, climate, humans, machines, etc.
- Sound characteristics
  - Structured or unstructured, stationary or non-stationary, repetitive or without any predictable nature
- Sound duration
  - From very short (gun shot, door knock, shouts) to very long and almost stationary (running machines, wind, rain)











## Introduction Tasks / Categories

- Sound event detection (SED)
- Acoustic scene classification (ASC)
- Acoustic anomaly detection (AAD)



#### **Sound Event Detection**Introduction

- Sound event detection  $\rightarrow$  2 simultaneous tasks
  - Segmentation (detection of temporal boundaries)
  - Classification (type of sound)
- Sound polyphony
  - Number of simultaneous sounds
  - Depends on the acoustic scene composition & sound sources





#### **Sound Event Detection**Introduction

- Sound source categories
  - Humans, animals, vehicles, tools, machines, climate, ...
- Hierarchies of sounds (e.g. urban sounds)





## **Sound Event Detection Challenges**

- Large range of different timbre characteristics
  - Short transients, noise-like signals, harmonic / inharmonic signals
- Different sound durations
  - Short (gun shot, door knock)  $\rightarrow$  long / stationary (machines, wind)
- Ill-defined temporal boundaries
  - Complicates annotation & detection





### **Sound Event Detection Challenges**

- Sound appear in the foreground & background
  - depending on relative sound source position
- Non-local / sparse energy distribution
  - Fundamental frequency & overtones



- Sounds are "transparent"
  - Phase-dependent overlap, possible cancelations



- Supervised learning pipeline
  - Feature extraction & pre-processing
  - Label encoding
  - Acoustic modeling





- Feature extraction
  - 1D features (audio samples) → "end-to-end learning"
  - 2D features (mel-spectrogram, STFT)
- Feature pre-processing
  - Log-magnitude scaling
  - Per-channel energy (PCEN)
    - Dynamic range compression
    - Adaptive gain control
    - Suppresses stationary (background) noise



(a) Logarithmic transformation.



(b) Per-channel energy normalization (PCEN).



- Annotation
  - Quality of "ground truth"? (limited agreement / reliability)
  - Different granularities
    - Tagging / Global level ("weak" labels) → cheap
    - Event-level ("strong" labels) → expensive





- Label encoding
  - Binarized sound activity (0/1)
    - Multilabel classification
    - 1 (independent) binary detector per class
  - Temporal resolution (duration of each annotated time frame)





- Typical neural network architectures
  - CNN



#### CRNN





- Data Augmentation
  - Cope with limited amount of training data
  - Approach 1: Apply signal transformations
    - Adding noise
    - Time-stretching/Pitch-shifting
    - Mix-up data augmentation [Zhang]
      - Random mix of two items (audio & targets)
      - Example: 0.7 x car + 0.3 x speaker
  - Approach 2: Data synthesis
    - Generative Neural Network Models (e.g. Generative Adversarial Networks (GAN), SampleRNNs)



#### **Sound Event Detection Evaluation**

- Recap: Binary classification evaluation
  - True/false positives (TP/FP)
  - True/false negatives (TN/FN)
  - Metrics
    - Precision
    - Recall
    - Accuracy
    - F-score



- Evaluate SED → binary classification results on a frame-level
- Compare reference with predictions
- Count TP/FN/FP→ aggregate over time → compute metrics





#### Sound Event Detection Related tasks

- Sound event localization & tracking
  - Multichannel audio recordings (e.g., first-order ambisonic microphones)
  - Estimate direction-of-arrival (DOA) & track source movement







#### Sound Event Detection Related tasks

- Source separation
  - Prior to sound event detection
- Chicken-egg problem
  - Alternative: soundinformed sourceseparation





#### **Acoustic Scene Classification**Task

- Acoustic scene classification (ASC)
  - Multi-class (1 of N) classification scenario
  - Summative label (tagging)
- Acoustic scene
  - Typical set of sounds
  - Example: office
    - Keyboard clicks
    - Human conversations
    - Printer
    - Air conditioner









#### Acoustic Scene Classification Pipeline

- Label encoding
  - One-hot-encoded (global) target
- Example
  - 4 scene classes (bus, office, home, forest)
  - Encoding of an office recording





#### Acoustic Scene Classification Pipeline

- Network architectures
  - Similar to SED (CNN & CRNN)
- Differences
  - Temporal result aggregation within network
  - Dense layer / pooling
  - Final layer: softmax activation function (multiclass classification)
- Current Research Topics
  - Attention → learn to focus on spectrogram regions
  - $\blacksquare$  Open-set classification  $\rightarrow$  detect unknown classes
  - Transfer learning → fine-tune pre-trained models with less data



#### Acoustic Anomaly Detection Task

#### Goal

- Detect deviations from "normal" state
- Identify whether emitted sound from target object is normal or anomalous
- Challenges
  - Often only training examples for normal state available
  - Acoustic anomalies are often subtle compared to louder background noise
- Application Scenarios
  - Detecting machine failures
  - Intrusion detection (glass break...)





### Acoustic Anomaly Detection Approaches

- Traditional methods
  - Distribution outlier detection
    - Modelling normal state distribution
    - Detect distribution outliers
    - E.g.: One-class GMM / SVM
  - Time-series analysis
    - AD via local deviation from prediction
    - E.g.: Autoregressive models, Hidden-Markov-Models (HMM)







#### Acoustic Anomaly Detection Approaches

- Novel methods
  - Autoencoder (encoder → decoder) models
    - Idea: normal sounds can be better reconstructed than unknown anomalous sounds
    - Dense, convolutional, variational AE
    - Interpolation DNN
      - Interpolate spectrogram frame from surrounding frames





#### **Application Scenarios Urban Noise Monitoring**

stadt Lerm

- Joint R&D project (2016 2018)
  - Fraunhofer IDMT, IMMS, SSJ GmbH, BE
- Goal
- Develop distributed sensor network for
  - Sound level measurement
  - Sound classification
- Approach
  - Mobile sensor units
    - Raspberry Pi 3, quad-core ARM, 1GB RAM
    - Battery + MEMS microphones
    - Sensor locations (light poles)







#### **Application Scenarios**Urban Noise Monitoring



- Measurements
  - Different loudness values (8/s)
  - Sound event detection (1/s)
    - 9 sound event classes (car, conversation, music, roadworks, siren, train, tram, truck, wind)

Spectrogram examples (2 s long)



CNN architecture





## **Application Scenarios Traffic Monitoring**

- Traffic monitoring
  - Vehicle detection & direction of movement
    - Stereo channel cross-correlation



Example: movement left → right

- Vehicle type classification (car, truck, bus, motorcycle)
- Challenges
  - Microphone type
  - Vehicle speed
  - Street surface quality & weather conditions









#### **Application Scenarios Production Chain Monitoring**

#### Challenges

- Real-time analysis & classification of industrial sounds
- Energy-efficient Al algorithms
- Sound variations due to different machine states
- Acoustic anomalies subtle compared to background noises





#### **Summary**

- Introduction
- Sound Event Detection
  - Challenges
  - Pipeline
  - Evaluation
- Acoustic Scene Classification
- Acoustic Anomaly Detection
- Application Scenarios
  - Urban Noise Monitoring
  - Traffic Monitoring
  - Product Chain Monitoring

