Lecture SQL03 Relational Algebra Examples

Unless otherwise noted, lecture notes are derived from *Visual Quickstart Guide: SQL, Third Edition*, by Chris Fehily

Relational Algebra Operators

Selection

$$\sigma_{condition}(R)$$

Projection

Rename

$$\rho_{\text{New} \leftarrow \text{Old}}(R)$$

Cartesian Product

RXS

Difference

R-S

Intersection

 $R(X) \cap S(X)$

Union

 $R(X) \cup S(X)$

Theta/Equi Join

 $R \bowtie_{\text{condition}} S$

Natural Join

 $R \bowtie S$

customers

Relations

pets

UID	Last Name	First Name
128	Smith	John
324	Doe	John
245	Jones	Mark
756	Smith	Jane
459	Moore	Sara
721	Parks	Ralph

vets

UID
324
245

accounts

UID	Balance
128	0
756	45
459	0
721	10

UID	Pet Name	Туре
128	Spot	Dog
324	Rex	Dog
756	Tiger	Cat
756	Fluffy	Cat
459	Tweety	Bird
721	Yippy	Dog
128	Rover	Dog
245	Stripes	Cat
324	Cupcake	Dog
459	Chewy	Dog

Find the names of all dogs at the vet clinic.

$$\Pi_{PetName}(\sigma_{Type = Dog}(pets))$$

	UID	Pet Name	Type		Pet Name
	128	Spot	Dog		Spot
$\sigma_{Type = Dog}$	324	Rex	Dog	π	Rex
pets -	721	Yippy	Dog	∏ PetName	Yippy
	128	Rover	Dog		Rover
	324	Cupcake	Dog		Cupcake
	459	Chewy	Dog		Chewy

 Find the UIDs of all customers that owe money to the clinic.

$$\Pi_{UID}(\sigma_{Balance > 0}(accounts))$$

accounts

UID	Balance					
128	0	_	UID	Balance	π	UID
756	45	O Balance > 0	756	45	11 _{UID}	756
	40		721	10		721
459	0		121	10		
721	10					

 Find the names of all customers that owe money to the clinic.

customers

UID	Last Name	First Name
128	Smith	John
324	Doe	John
245	Jones	Mark
756	Smith	Jane
459	Moore	Sara
721	Parks	Ralph

Examples – 3 continued

UID **UID First** Last Name Name 128 Smith John 756 721 128 Smith John 324 756 Doe John 324 John 721 Doe 756 245 Jones Mark Mark 245 Jones 721 756 Smith Jane 756 721 756 Smith Jane 459 Moore Sara 756 Sara 721 459 Moore Ralph 756 721 Parks 721 Parks Ralph 721

Compute natural join

UID	Last Name	First Name
756	Smith	Jane
721	Parks	Ralph

Examples – 3 continued

$$\Pi_{LastName,FirstName}$$
 (customers \bowtie

$$\Pi_{UID}(\sigma_{Balance > 0} (accounts)))$$

UID	Last Name	First Name
756	Smith	Jane
721	Parks	Ralph

Last	First
Name	Name
Smith	Jane
Parks	Ralph

 Find the names of all customers that owe money to the clinic.

Alternative solution. Better or worse?

```
\Pi_{FirstName,LastName}(\sigma_{Balance})
\Pi_{LastName,FirstName,Balance}(customers \bowtie accounts)))
```

relations pets

UID	Last Name	First Name	
128	Smith	John	
324	Doe	John	
245	Jones	Mark	
756	Smith	Jane	
459	Moore	Sara	
721	Parks	Ralph	
vote	accounts		

vets

324 245

accounts		
UID	Balance	
128	0	
756	45	
459	0	
721	10	

UID	Pet Name	Type
128	Spot	Dog
324	Rex	Dog
756	Tiger	Cat
756	Fluffy	Cat
459	Tweety	Bird
721	Yippy	Dog
128	Rover	Dog
245	Stripes	Cat
324	Cupcake	Dog
459	Chewy	Dog

 Find the names of all pets owned by Jane Smith.

$$\Pi_{PetNames}$$
 (pets \bowtie

$$\Pi_{UID}(\sigma_{FN = Jane\ AND\ LN = Smith} (customers)))$$

What may go wrong here?