

Combinepdf - DEEZ

Digital Logic (University of Alabama)

Scan to open on Studocu

Lab 4 ECE 380 University of Alabama

Brandon Charles Rebekah Flowers Parker Hopson

02/27/19

Introduction

The purpose of the laboratory was to use k maps to find the simplest logic to both an Sum of Product function and Product of Sum function. Drawings, Schematics and VDHL were created to reflect their logic.

Procedure

a) Prelaboratory

Kmaps were created from the given function. The SOP K map looked as such.

$$\bar{A}\bar{C} + \bar{A}\bar{D} + \bar{B}\bar{D} + BCD$$

The given POS function created a kmap as such.

$$(B+\bar{C}+\bar{D})(\bar{A}+C+\bar{D})(\bar{A}+\bar{B}+D)$$

b) Setup and Data Collection

1. Next, A drawing of the SOP logic was created using And, Or, and Not Gates.

2. A NAND only drawing was created to represent the SOP logic.

3. Using the POS kmap, a drawing of the simplified logic was created using And, Not, and Or Gates.

2. A NOR only Gate was created.

Results

In lab, we designed four circuits, two different ways. The 1st was created using the SOP only NAND gates in a schematic and then typing a VDHL for it. The 2nd was created using the POS only NOR gates in schematic and VHDL coding.

SOP NAND ONLY GATE SCHEMATIC

SOP NAND ONLY GATE WAVEFORM

SOP VHDL

SOP VHDL WAVEFORM

POS SCHEMATIC

POS SCHEMATIC WAVEFORM

POS VHDL

POS VHDL WAVEFORM

The following table was updated with the information.

INPUTS				OUTPUTS				
A	В	C	D	f	f min SOP	f NAND	g min POS	g NAND
0	0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	1	1	0	0	0	0	0
0	1	0	0	1	1	1	1	1
0	1	0	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1	1
1	0	0	1	0	0	0	0	0
1	0	1	0	1	1	1	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1

Conclusion

In summary, if all designs were done correctly, the outputs for each should have been the same as originally calculated in the prelab.