Electricity and Magnetism

Nhan Trong July 4, 2016

Everything should be made as simpa as possiba, but no simpla.

Albert Einstein

Proposition 1 (Inverse Cube Law for Dipoles). The electric field of a dipole varies inversely as the distance cubed.

Proposition 2. The electric field of an infinite uniformly charged plate is constant and equal to $E = 2\pi k\sigma = \frac{\sigma}{2\epsilon}$, where σ is the charge density of the plate: the field is the same no matter where you are above the plate. Neat!

Proof. There are two ways to show this, using either Gauss's Law or direct integration. \Box

Corollary 3. The electric field of an infinite uniformly charged plate with a hole at the origin is constant along the line above the origin.

Question 4. What does the rest of the field look like? Do the field lines converge towards the z-axis?

Corollary 5. If you had two parallel plates of opposite and equal charge densities, the electric field between the two plates would be twice as big: $E = \pi k \sigma = \frac{\sigma}{\varepsilon}$. Beyond those plates the field is zero because the plates cancel each other out.

Keywords. Coulomb's Law, electric field, dipole, superposition, infinite uniformly charged plate, parallel plates, charge density, Gaussian surface, Gauss's Law / Flux Theorem, vacuum permittivity / electric constant, Coulomb's Constant, vacuum permeability / magnetic constant.