```
/* SAS code for analyzing data
  from the two factor experiment
  with no data for one combination
  of factors> This code is posted
  as littell.sas */
data set1;
 input A B y;
 cards;
1 1
      5
1 1
      6
1 2
     2
1 2 3
1 2 5
1 2
      6
1 2 7
2 1
      2
2 1
      3
2 2 8
2 2 8
2 2 9
2 3 4
2 3 4
2 3 6
2 3 6
2 3
      7
run;
/* Print the data */
proc print data=set1;
run;
```

```
/* Compute sample means for all
  factor combinations with data.
  Make a profile plot. */
proc sort data=set1; by a b;
proc means data=set1 noprint; by a b;
 var Y;
 output out=means mean=my;
 run;
axis1 label=(f=swiss h=2.0)
     value=(f=swiss h=1.8)
     w=3.0;
axis2 label=(f=swiss h=2.0 a=90 r=0)
     value=(f=swiss h=1.8)
     w = 3.0;
SYMBOL1 V=circle H=2.0 w=3 l=1 i=join;
SYMBOL2 V=diamond H=2.0 w=3 1=3 i=join;
proc gplot data=means;
 plot my*b=a / vaxis=axis2 haxis=axis1;
 title ls=0.8in H=3.0 F=swiss "Sample Means";
      label my='Mean';
      label b = 'Factor B';
 footnote ls=0.4in ' ';
run;
```

Sample Means


```
/* Perform analysis of variance where
  facror A is entered into the model
  before factor B. Use the LSMEANS
  statement to compare means for
  different combinations of factor A
  and factor B. */
proc glm data=set1;
 class A B;
 model y = A B A*B / solution ss1 ss2
          ss3 ss4 e e1 e2 e3 e4 p;
 means A B A*B;
 lsmeans A*B / pdiff tdiff stderr;
   estimate 'A1-A2' A 1 -1 / e;
   contrast 'A1-A2' A 1 -1 / e;
   estimate 'A1-A2 within B1' A 1 -1
             A*B 1 0 -1 0 0 / e;
   estimate 'A1-A2 within B2' A 1 -1
             A*B 0 1 0 -1 0 / e;
   estimate 'A1-A2 over B' A 1 -1
             A*B .5 .5 -.5 -.5 0 / e;
   estimate 'B1-B2 over A' B 1 -1 0
             A*B .5 -.5 .5 -.5 0 / e;
   estimate 'B3-.5(B1+B2) in A2' B -.5 -.5 1
             A*B 0 0 -.5 -.5 1 / e;
   estimate 'interaction' A*B 1 -1 -1 1 0 / e;
```

run;

General Form of Estimable Functions

Effect		Coefficients
Interce	pt	L1
Α	1	L2
Α	2	L1-L2
В	1	L4
В	2	L5
В	3	L1-L4-L5
A*B	1 1	L7
A*B	1 2	L2-L7
A*B	2 1	L4-L7
A*B	2 2	-L2+L5+L7
A*B	2 3	L1-L4-L5

Type III Estimable Functions

				Coeffic	ients	
Effect			Α	В	A*E	3
Interd	ept		0	0	0	
Α	1		L2	0	0	
Α	2		-L2	0	0	
В	1		0	L4	0	
В	2		0	L5	0	
В	3		0	-L4-L5	0	
A*B	1	1	0.5*L2	0.25*L4	I-0.25*L5	L7
A*B	1	2	0.5*L2	-0.25*L	.4+0.25*L5	- L7
A*B	2	1	-0.5*L2	0.75*L4	1+0.25*L5	- L7
A*B	2	2	-0.5*L2	0.25*L	1+0.75*L5	L7
A*B	2	3	0	-L4-L5	0	

Type IV Estimable Functions

		Coefficients			
Effect		Α	В	A*B	
Interc	ept	0	0	0	
Α	1	L2	0	0	
Α	2	-L2	0	0	
_	_	_		_	
В	1	0	L4	0	
В	2	0	L5	0	
В	3	0	-L4-L5	0	
A*B	1 1	0.5*L2	0	L7	
A*B	1 2	0.5*L2	0	-L7	
A*B	2 1	-0.5*L2	L4	- L7	
A*B	2 2	-0.5*L2	L5	L7	
A*B	2 3	0	-L4-L5	0	

```
/* Do everything with a one-factor ANOVA by
   combining the two factors into a single
   factor with 5 categories. */
data set1; set set1;
 C=10*A+B;
 run;
proc glm data=set1;
 class C;
 model y = C / solution e e2;
 estimate 'C11-C21' C 1 0 -1 0 0;
 estimate 'C12-C22' C O 1 O -1 O;
 estimate '.5(C11+C12-C21+C22)' C .5 .5 -.5 -.5 0;
 estimate '.5(C11-C12+C21-C22)' C .5 -.5 .5 -.5 0;
 estimate 'C23-.5(C21+C22)' C 0 0 -.5 -.5 1;
 estimate 'C11-C12-C21+C22' C 1 -1 -1 1 0;
 lsmeans C / stderr tdiff pdiff;
 run;
```

General Form of Estimable Functions

Effect		Coefficients
Interc	ept	L1
С	11	L2
С	12	L3
С	21	L4
С	22	L5
С	23	L1-L2-L3-L4-L5

Type II Estimable Functions

Effect		-Coefficients- C
Interce	ept	0
С	11	L2
С	12	L3
С	21	L4
С	22	L5
С	23	-L2-L3-L4-L5

Dependent Variable: y

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	4	45.81568627	11.45392157	5.27	0.0110
Error	12	26.06666667	2.17222222		
Corrected Total	16	71.88235294			

Parameter				
	Estimate	Error	t Value	Pr > t
C11-C21	3.0000000	1.47384606	2.04	0.0645
C12-C22	-3.73333333	1.07634498	-3.47	0.0046

.5(C11+C12-C21+C22)	-0.36666667	0.91251585	-0.40	0.6949
.5(C11-C12+C21-C22)	-2.46666667	0.91251585	-2.70	0.0192
C235(C21+C22)	-0.01666667	0.94180186	-0.02	0.9862
C11-C12-C21+C22	6.73333333	1.82503171	3.69	0.0031

The GLM Procedure Least Squares Means

		Standard		LSMEAN
С	y LSMEAN	Error	Pr > t	Number
11	5.50000000	1.04216655	0.0002	1
12	4.60000000	0.65912400	<.0001	2
21	2.50000000	1.04216655	0.0336	3
22	8.33333333	0.85092542	<.0001	4
23	5.40000000	0.65912400	<.0001	5

Least Squares Means for Effect C t for HO: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: y

i/j	1	2	3	4	5
1		0.729863	2.035491	-2.10589	0.081096
		0.4795	0.0645	0.0569	0.9367
2	-0.72986		1.703014	-3.46853	-0.85824
	0.4795		0.1143	0.0046	0.4076
3	-2.03549	-1.70301		-4.33566	-2.35178
	0.0645	0.1143		0.0010	0.0366
4	2.105892	3.468529	4.335661		2.725272
	0.0569	0.0046	0.0010		0.0184
5	-0.0811	0.858238	2.351781	-2.72527	
	0.9367	0.4076	0.0366	0.0184	