

Solution: The shaded area can be obtained by removing the quarter circle and the isosceles triangle from the square as shown in Fig. 8.3.15 (a).

TECHNICAL PUBLICATIONS - An up thrust for knowledge

The calculations are tabulated as follows:

 omponer	CONTRACTOR OF	Component area A (mm²)	x (mm)			y (mm)	
 1.		(90) (90)		45	144	45	
2.		$\frac{-\pi \times 50^2}{4}$	90	$-\frac{4\times 50}{3\pi}$	1.3	$\frac{4\times50}{3\pi}$	
3.		$-\frac{1}{2}$ (20) (30)		30		50+10	

$$\sum A = 5836.5 \, mm^2$$

$$\sum Ax = 220452.08 \, mm^3$$

$$\sum Ax = 220452.08 \, mm^3$$

$$\sum Ay = 304833.33 \, mm^3$$

$$\overline{X} = \frac{\sum Ax}{\sum A} = \frac{220452.08}{5836.5}$$

$$\overline{X} = 37.77 mm$$

$$\overline{Y} = \frac{\sum Ay}{\sum A} = \frac{304833.33}{5836.5}$$

$$\therefore \qquad \overline{Y} = 52.23 \quad mm$$

Example 8.3.16 Determine centroid of the shaded area with reference apex.

Fig. 8.3.16

The shaded area can be obtained by removing the circle, rectangle and solution: The shaded area can be obtained by removing the circle, rectangle and solution the triangle. As the area is symmetric about a vertical line passing through the centre, centroid lies on this line of symmetry. We take base of the triangle as reference for writing Y-co-ordinates of centroid.

For triangle,
$$A_1 = \frac{1}{2} (160) (240) mm^2$$
; $y_1 = \frac{1}{3} (240) = 80 mm$

For semicircle,
$$A_2 = -\frac{\pi \times 40^2}{2} mm^2$$
; $y_2 = \frac{4 \times 40}{3\pi} mm$

For rectangle,
$$A_3 = -60 \times 40 \text{ mm}^2$$
; $y_3 = 100 \text{ mm}$

For circle,
$$A_4 = -\pi \times 20^2 \ mm^2$$
; $y_4 = 180 \ mm$

$$\tilde{\gamma} = \frac{A_1 y_1 + A_2 y_2 + A_3 y_3 + A_4 y_4}{A_1 + A_2 + A_3 + A_4}$$

$$= \frac{\frac{1}{2}(160)(240)(80) - \frac{\pi \times 40^{2}}{2} \times \frac{4 \times 40}{3\pi} - 60 \times 40 \times 100 - \pi \times 20^{2} \times 180}{\frac{1}{2}(160)(240) - \frac{\pi \times 40^{2}}{2} - 60 \times 40 - \pi \times 20^{2}}$$

 \ddot{Y} = 82.02 mm from the base of the triangle.

The distance from apex = $240 - 82.02 = 157.98 \ mm$

example 8.3.18 Determine the position of the centroid of the plane shown in Fig. 8.3.18 with respect to the base.

VTU: Aug.-07, Marks 13

Solution: Choose X and Y axis as shown in Fig. 8.3.18 (a) and divide the given into a semicircle and two rectangles.

TECHNICAL PUBLICATIONS" - An up thrust for knowledge

8-47

Fig. 8.3.18 (a)

The calculations are tabulated as follows:

Component No.	Component area A	x	y	
1.	$\frac{\pi \times 50^2}{2}$	$50 - \frac{4 \times 50}{3\pi}$	50	
2.	(10) (90)	55 × 35	45	
3.	(60) (10)	80	95	

$$\sum A = 5426.99$$

$$\sum Ax = 210516.2$$

$$\sum Ay = 293849.54$$

$$\overline{X} = \frac{\sum Ax}{\sum A} = \frac{210516.2}{5426.99}$$

$$\overline{X} = 38.79$$

$$\overline{Y} = \frac{\sum Ay}{\sum A} = \frac{293849.54}{5426.99}$$

$$\overline{Y} = 54.15$$

.:.

Example 8.3.19 Determine the position of the centroid for the shaded area with respect the to axes shown Fig. 8.3.19. VTU : Feb.-08, Marks 10

Fig. 8.3.19

Solution: The shaded region can be obtained by adding areas of square, rectangle, quartercircle and then subtracting a quarter circle as shown in Fig. 8.3.19 (a).

Fig. 8.3.19 (a)

The calculations are tabulated as follows:

Component No.	Component area A (mm ²)	x (mm)	y (mm)
1.	(100) (100)	- 50	50
2.	(200) (20)	0	-10

3.
$$\frac{\pi \times 100^{2}}{4} \qquad \frac{4 \times 100}{3\pi} \qquad \frac{4 \times 100}{3\pi}$$
4.
$$\frac{-\pi \times 100^{2}}{4} \qquad -\left(100 - \frac{4 \times 100}{3\pi}\right) \qquad 100 - \frac{4 \times 100}{3\pi}$$

8 - 49

$$\sum A = 14000 \, mm^2$$

$$\sum Ax = 285398.16 \, mm^3$$

$$\sum Ay = 341268.5 \ mm^3$$

$$\overline{X} = \frac{\sum Ax}{\sum A} = \frac{285398.16}{14000}$$

$$\overline{X} = 20.39 \ mm$$

$$\overline{Y} = \frac{\sum Ay}{\sum A} = \frac{341268.5}{14000}$$

$$\overline{Y} = 24.38 \ mm$$