

Christopher Feliz August 2020 ~ Springboard Data Science Fellow

## TWEETS CAN'T HURT RIGHT...?



### Tesla shares tank after Elon Musk tweets the stock price is 'too high'

PUBLISHED FRI, MAY 1 2020-11:16 AM EDT | UPDATED FRI, MAY 1 2020-4:01 PM EDT



### NEGATIVE SENTIMENT

- Tesla stock price fell 11%.
- Loss of investors capital.
- Raises concerns if
   Musk is mentally fit
   to run the company.



Replying to @elonmusk

Dude...l just lost \$10k because of this tweet. Wtf is wrong with u







### POSITIVE SENTIMENT

- Retweeted over 3.4 millions times, 3rd place all time.
- Free marketing for Wendy's Restaurant.
- Great publicity for the brand.
- Created an entire movement with over a million people in order to get free nuggets for a year.



## IS THERE A WAY TO INTERPRET TWEETS?

- Twitter is a platform where individuals are allowed to post their thoughts and opinions as they see fit.
- But for some it can do more damage than good, such as having the ability to drop a company's stock price.
- On the other hand Wendy's tweet went viral with a total of 3.4million retweets. This tweet generated massive amounts of free marketing and good publicity for Wendy's.

# THE GOAL

In this project I plan to build a model that can classify a tweet as containing positive, negative or neutral sentiments.

This model can help companies understand the public's perception of them, both good and bad. As well as help brands who would like the benefits of free marketing from going viral on Twitter.

### METHODOLOGY

- Tweets are limited to 280 characters, which means users are more likely to use acronyms.
- In order to provide as much info to my machine learning algorithms I
  iterated through each tweet and replaced any acronyms with their full
  meaning.
- Continued with basic NLP preprocessing removing numbers, special characters, and links.

### DATA PREPROCESSING SAMPLE

| clean_tweets                                   | sentiment | text                                           |
|------------------------------------------------|-----------|------------------------------------------------|
| few grilled mushrooms and olives feta cheese a | neutral   | few grilled mushrooms and olives, feta cheese  |
| more days till bh comes back to laughing aloud | neutral   | 94 more days till bh comes back to la          |
| laughing out loud i know and hahadid you fall  | negative  | lol i know and hahadid you fall asleep?? o     |
| wanted to visit the animals but whatever wer   | negative  | http://twitpic.com/663vr - wanted to visit the |
| in spoke to you yesterday and you didnt respon | neutral   | in spoke to you yesterday and u didnt respond  |
| so i get up early and i feel good about the da | positive  | so i get up early and i feel good about the da |
| enjoy you are night                            | positive  | enjoy ur night                                 |
| wish whatever could come see you on denver hus | negative  | wish we could come see u on denver husband I   |
| ive wondered about rake to the client has made | negative  | i've wondered about rake to. the client has    |
| yay good for both of you enjoy the break you   | positive  | yay good for both of you. enjoy the break - y  |
| but it was worth it                            | positive  | but it was worth it ****.                      |
|                                                |           |                                                |

MODEL SELECTION + PERFORMANCE

|   | Models                    | CountVectorizer | TFIDFVectorizer | Accuracy | F1 Score ▼ | Difference |
|---|---------------------------|-----------------|-----------------|----------|------------|------------|
| 1 | Convolutional NN*         |                 |                 | 0.70     | 0.70       | 94% ▲      |
| 2 | Support Vector Classifier | ~               | ×               | 0.70     | 0.69       | 92% ▲      |
| 3 | Basic NN*                 |                 |                 | 0.69     | 0.69       | 92% ▲      |
| 4 | Random Forest Classifier  | ~               | ×               | 0.68     | 0.68       | 89% ▲      |
| 5 | Naive Bayes Multinominal  | ~               | ×               | 0.65     | 0.64       | 78% ▲      |
| 6 | DummyClassifier           | ~               | ×               | 0.35     | 0.36       | 0% =       |

#### \*Neural Network

The best performing classification model was the Convolutional Neural Network with a accuracy and F1 score of .70%.

The differences in accuracy between our baseline model and the Convolutional Neural Network was 94%.

### FINAL CONCLUSIONS

- After looking at the performances of all the models it's no surprise that most of them struggled with predicting the 'neutral' class. It's easier to predict 'positive' or 'negative' sentiments because they'll usually have a couple of words that lean towards one sentiment or another.
- In regards to using either
  CountVectorizer or TFIDF for data
  transformation there wasn't a significant
  difference in overall accuracy.
- For future iterations I plan on collecting more data, this will especially help in determining 'neutral' sentiments. We could also implement pretrained embedding layers such as word2vec or glove.