EE602 Overview

- EE 602 : STATISTICAL SIGNAL PROC.
- SSP
- · DETECTION ~
- · ESTIMATION~
- * TIME SERIES ANALYSIS X
 - · PROBABILITY/STATISTICSV
 - · LINEAR ALGEBRA X
 - · FOURIER ANALYSIS V
 - · DSP V
 - · ETC.... (RANDOM PROCESSES,)
 VECTORS,...

WE WILL STICK TO V' and NOT TO 'X'
EACH WILL BE DEALT WITH AS PER COURSE
CONTENT

DETECTION THEORY (HYPOTHESIS TESTING)

TAKE MEASUREMENTS AND ESTIMATE WHICH STATE THE UNDERLYING PROCESS RESIDES.

DETECT SIGNALS IN RADAR/SONAR DECODE SYMBOLS IN COMMN RECOGNIZE SPEECH CLASSIFY PICTURES/IMAGES SEARCH VO CODEBOOKS ETG...

ESTIMATION THEORY (PARAMETER EST)
TAKE MEASUREMENT & ESTIMATE NUMERICAL VALUE OF VECTOR
IDENTIFY LINEAR/NON LINEAR S/M
IDENTIFY COMMN. CX
IDENTIFY PITCH PERIOD/FILTER
ESTIMATE FEATURES IN SPEECH
IN IMAGES
ESTIMATE SOURCE DIRECTION IN ARR

Structure of Statistical Reasoning

S(.10): Determ. function F(x10): Distribution fn., that generates'X'.

S (.18): Estimate of S(.10) C: Minimization Criterion

X: Measurement

EXAMPLE CASES

I. IF $S(\cdot|\theta) = m$; $\theta \in \Theta_m$, m = 0,1,..., M-1Estimate which of the 'M' classes ' θ ' lies? DECISION/DETECTION THEORY Criterion is Misclassification RATE/PROBABIL.

II IF $S(\cdot|\theta) = \theta$; THEN PROBLEM IS HOW TO ESTIMATED THE PARAMETER ITSELF? \Rightarrow PARAMETER ESTIMATION

III IF $S(\cdot|\theta) = F(x|\theta)$; Then problem is to est.

the distribution function.

IV IF s(.10) = HO; Estimate the linear model HO (MMSE)

Z IF $S(\cdot | \theta) = S(e^{j\omega} | \theta)$; Then estimate PSD/MVE

Eg. Detection Problem

Let
$$x_1, x_2, x_3, \dots x_N$$
 denote 'N' Scalar meas with $x_t = \theta s_t + n_t$; $t = 1, \dots, N$
 s_t : Sequence of numbers; θ : Scalar paramtr. Define $H_0: \theta \in \Theta_0$ Observe x_t and decide between $H_1: \theta \in \Theta_1$ Ho and H_1 is Detection pbm.'

Eg. $\Theta_0 = -M$; Then $\Theta_1 = M$; signals $M \in M$ are symbols in commn. $M \in M$

Correlation Statistic

Let
$$n_t$$
 be noise like, $t=1,2,...,N$

Define a correlation statistic

 $C_N = \sum_{j=1}^{N} S_t x_t$;

Substituting x_t
 $C_N = 0 \sum_{j=1}^{N} S_t^2 + \sum_{j=1}^{N} S_t n_t$
 $t=1$
 $t=$

Correlation Detector (CD) False detn. CD using a filter $\int_{0}^{b_{N}} \int_{0}^{a} g(b_{N}) = \begin{cases} 1 \sim H_{1} & \text{if } b_{N} > 0 \\ 0 \sim H_{1} & \text{if } b_{N} \leq 0 \end{cases}$ and $h_n = s_{N-n}$ Impulse response is time, reversa n=0

6

Estimation Problem

Let x_t , $t = 1, \dots, N-1$ are N-1 observations such that

$$x_t = \theta + n_t$$

Problem: Estimate 0 Plausible estimator is the Sample Mean

Let
$$\theta_{N-1} = \frac{1}{N-1} \sum_{t=1}^{N-1} x_t$$

For θ_N recursively $\sum_{t=1}^{N} x_t = N\theta_N$

But $\sum_{t=1}^{N} x_t = (N-1) \hat{\theta}_{N-1} + \chi_N = N \hat{\theta}_{N-1} + \chi_N - \hat{\theta}_{N-1}$

$$\hat{\theta}_{N} = \hat{\theta}_{N-1} + \frac{1}{N} (x_{N} - \hat{\theta}_{N-1})$$

Now lets measure performance of the Estimator En

$$E_{N} = O_{N} - O = \frac{1}{N} \sum_{t=1}^{N} (x_{t} - O) = \frac{1}{N} \sum_{t=0}^{N-1} \gamma_{t}$$

If errors
$$n_t$$
 are i.i.d with mean = 0
 $Var = 6^2$ then $E(\xi_N) = 0$
 $E(\hat{\theta}_N) = 0$

Mean of the squared Error

$$E(\epsilon_{N^2}) = E(\hat{\theta}_{N} - \theta)^2 = Var \hat{\theta}_{N} = \frac{1}{N} \sigma^2$$

$$\theta_N$$
 is unbiased of its mean = θ
Consistent : $\sigma^2 \rightarrow 0$ as $N \rightarrow \infty$

:. If
$$n_t$$
, $t = 0, 1, ..., N-1$ are iid $[N(0, 6^2)]$
then $\hat{\theta}_N$ is distributed as $N[0, 6^2/N]$

Notations and Terminology

Notations: x = [xo,x1,..., xm-1]; z ∈ RN means z is a point in an N-dimensional space RN. Xm: random variable where m = 0,1,..., M-1 xm: realization of a random variable $F_{\theta}(x)$ or $F(x|\theta)$: Distribution of random vector X: O is a px1 vector that parameterizes the distribution $X:(m,R) \rightarrow X$ has mean m and Cov. RX: N(m, R) -> X is normally distributed When θ is random and jointly distd. with x $f(x|\theta) = f(x,\theta)/f(\theta)$ where $f(\theta) = f(x,\theta) dx$

Quick Look at linear models

where X = HO; $H = [h_1, h_2, ... hp]$. O [NXP] $[p \times 1]$ Where $H \in \mathbb{R}^{NXP}$ and $O \in \mathbb{R}^{p}$ is $x \in \mathbb{R}^{N}$ These form basis of Signal Processing

 \widehat{T} H as a row matrix $x_n = c_n \theta$; System matrix is a $x_n = c_n \theta$; Set of correlators $[c_n]_{,n}^{N}$ $[N \times P][P \times A]$ Set of correlators $[c_n]_{,n}^{N}$

nth entry is a correlation of vector cn with o

(1) Has column matrix

$$x = \begin{bmatrix} h_1, h_2, \dots, h_p \end{bmatrix} \begin{bmatrix} 0_1 \\ \vdots \\ 0_p \end{bmatrix}$$

$$x = \begin{bmatrix} b \\ 0_i h_i \\ \vdots \\ 0_p \end{bmatrix}$$

Each 'n' is linear combn. of he by their co. eff. o

Each 'hi' is

Each 'hi' is $h_i = [h_1 \dots h_p] [i] = H \delta_i$

System matrix

Linear Model Eg. ARMA Impulse Response

$$H(z) = b_0 + b_1 z^{-1} + \cdots + b_{p-1} z^{-(p-1)}$$

$$1 + a_1 z^{-1} + \cdots + a_p z^{-p}$$

Partial fraction expansion yeilds $H(z) = \sum_{i=1}^{p} A_i \frac{1}{1-z^i z^{-1}}$ Corresponding $h(t) = \sum_{i=1}^{p} A_i z_i^t$; $t = 0, 1, 2, \dots$ = 0, t < 0

٠.

$$h = \begin{bmatrix} h_0 \\ h_1 \\ \vdots \\ h_{N-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ z_1 & z_2 & \cdots & z_p \\ \vdots & \vdots & \cdots & \vdots \\ z_1' & z_2' & \cdots & z_p' \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_p \end{bmatrix}$$

$$h = H\theta$$

$$\delta_{\frac{1}{2}} H(z) \rightarrow h$$

h: First N values of h(n) 0: mode weights H: Vandermonde Matrix

Introduction to Estimation

Recieved data can be analyzed using "time Series Analysis"

Bearing B

 $B = \arccos \left[\frac{c r_0}{d} \right]$

c: speed of sound in water

To: Delay between senson

d: dist. betn. sensors

Speech Processing

- I. Speech sounds (discussion)
- II. Spectral envelope modeling (LPC, FFT)

Discuss with examples and plots

Image Processing, Biomedicine, Commns. Seismology.

Mathematical Estimation Problem

If N point data set {x[o], x[1], ..., x[N-1]} which depends on 'B' then parameter estimation is determining parameter $\theta = g\{x[0], x[i], \dots, x[N-i]\}$ where 'g' is some function g(1) can be taken as p(1) \therefore $\phi(\pi[0], \pi[1], \dots, \pi[N-1])$ is life p.d.f.

Mathematical Estimation Problem (Contd.)

If
$$N=1$$
 and θ denotes mean' then
$$\phi(x[0];\theta) = \frac{1}{\sqrt{2\pi}6^2} \exp\left[-\frac{1}{262}(x[0]-\theta)^2\right]$$
if $x[0]$ is θ ve, then $\theta = \theta_1$ is most likely. $x[0]$
Selection of θ : (a) consistent with constraints.

(b) Mathematically tractable.

Eg: Straight line embedded in random noise

 $\mathcal{R}[n] = A + Bn + w[n]; n = 0,1,...,N-1$ Reasonable model for w[n] is $\mathcal{N}(0,r^2) \rightarrow Gaussian$ Then: 0 = [AB] T and x[n] = [x[0], x[1], ..., x[N-1]]T $p(x;\theta) = \frac{1}{(2\pi6^2)^{N/2}} \exp \left[-\frac{1}{26^2} \sum_{n=0}^{N-1} (\pi[n] - A - Bn)^2 \right].$

Eg: Dow Jones: A models constant hovering
B>0 models increase in index.

Types of Estimators

Classical Estimation: 'A' is 'deterministic'.

Bayesian Estimation: 'B' is 'Random', described by a pdf.

BE:
$$p(x;\theta) = p(x|\theta) p(\theta)$$

Family of conditional prior pdf. $pdf's$.

: Estimate of '0' is the value of 0, given a realization of 'x'

Lets assess Estimator performance

Assessing Estimator Performance

Consider
$$x[n] = A + w[n]$$

Estimate $A = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$; \Rightarrow Sample Mean'
$$x[n] \xrightarrow{\uparrow_{-2\cdot0}} MMMMMMM$$

$$x[n] \xrightarrow{\uparrow_{-2\cdot0}} 100$$

Another estimate = x[0], or USE A HISTOGRAM
HISTOGRAM: No. of times the estimator produces
a given range of values
. AND: An approx to the PDF

Assessing Estimator Performance

Is A or A better ?

100 realizations with diff. w[n]

À better : Hist more Concentrated? Better way: Show variance is less.

HENCE
$$E(\hat{A}) = E\left(\frac{1}{N} \sum_{N=0}^{N-1} \chi[n]\right) \mid E(\hat{A}) = E(\chi[0])$$

$$= \frac{1}{N} \sum_{N=0}^{N-1} (\chi[n]) = A$$

$$= A$$

$$var\left(\stackrel{\wedge}{A}\right) = var\left(\frac{1}{N}\sum_{n=0}^{N-1}x_{n}\right) = *a\frac{1}{N^{2}}\sum_{n=0}^{N-1}var\left(x_{n}\right)$$

$$= \frac{1}{N^{2}}N\sigma^{2} = \frac{\sigma^{2}}{N}$$

$$var\left(\stackrel{\wedge}{A}\right) = var\left(x_{n}\right) = \sigma^{2}$$

$$var\left(\stackrel{\wedge}{A}\right) > var\left(\stackrel{\wedge}{A}\right)$$
Hence $\stackrel{\wedge}{A}$ better estimator

* Performance and computational complexity tradeoff-discuss.