Project 1 & 2 - Regression

Machine Learning Spring 2021

UCI Bike Accidents Dataset

Data set Overview:

This UCI dataset describes how various factors like season, weather, weekday or holiday, temperature, climate, wind speed, humidity, etc have affected the total number of accidents in the United States. Here Target variable is the total number of accidents. The dataset has 17 variables and 17379 registered records.

Dataset Description and Link

Variables

6. hr: 0-23

1. instant: Unique id

2. dteday: day

3. season: Winter, Summer, Spring, Fall

4. **yr**: 2011 or 2012 5. mnth: 1-12

7. **holiday**: 1, if holiday, otherwise 0.

8. weekday: 0-6

9. workingday: 1 if neither holiday nor weekend, else 0

10. weathersit: Rain, Storm, Sunny, Cloudy, Snow, Thunderstorm, Fog, Mist

11. temp: Degree Celsius

12. atemp : Feels like Temperature in Degree Celsius

13. hum: humidity index 14. windspeed: wind speed 15. casual: no. of casual riders

16. registered: no. of registered riders 17. cnt: registered + casual riders

UCI DataSet: https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset (https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset)

Step 1: Data Initializations

In [12]:

- 1 #python packages
- 2 import pandas as pds
- import numpy as npy
- import seaborn as sb

In [13]:

```
#import python packages for visualization/Graph
import matplotlib.pyplot as plot
matplotlib inline
%matplotlib inline
```

In [14]:

```
##import excel file
dataframe_bike = pds.read_csv("hour_kaggle.csv")
```

In [15]:

```
##labelizing with right term
dataframe_bike = dataframe_bike.rename(columns = {'instant':'id','yr': 'year','weathers
dataframe_bike['season'] = dataframe_bike['season'].map({1:'Fall',2:'Summer',3:'Spring
dataframe_bike['year'] = dataframe_bike['year'].map({1:'2012',0:'2011'})
dataframe_bike['holiday'] = dataframe_bike['holiday'].map({1:'Yes', 0:'No'})
dataframe_bike['day_in_week'] = dataframe_bike['day_in_week'].map({0:'Monday', 1:'Tueson')
dataframe_bike['is_working_day'] = dataframe_bike['is_working_day'].map({1:'Yes',0:'No'})
dataframe_bike['weather_type'] = dataframe_bike['weather_type'].map({1:'Storm', 2:'Rair'})
```

In [16]:

```
#dataframe_bike.shape
dataframe_bike.head()
```

Out[16]:

	id	dteday	season	year	month	hr	holiday	day_in_week	is_working_day	weather_type
0	1	01-01- 2011	Fall	2011	1	0	No	Sunday	No	Storm
1	2	01-01- 2011	Fall	2011	1	1	No	Sunday	No	Storm
2	3	01-01- 2011	Fall	2011	1	2	No	Sunday	No	Storm
3	4	01-01- 2011	Fall	2011	1	3	No	Sunday	No	Storm
4	5	01-01- 2011	Fall	2011	1	4	No	Sunday	No	Storm
4										•

Step 2 : Adding Missing Values

In [17]:

```
##add 7% missing values of total
 2
   import random
   miss_number_of_accidents = round(len(dataframe_bike['id']) * 0.07)
   #temperature celcius
   miss_temperature_index = pds.Series(random.sample(range(1,len(dataframe_bike['id'])),mi
   for value in miss_temperature_index:
       dataframe_bike.at[value, 'temperature_celcius'] = npy.nan
 7
   #humidity_normalized
9
   miss_humidty_index = pds.Series(random.sample(range(1,len(dataframe_bike['id'])),miss_r
10
   for value in miss humidty index:
11
       dataframe_bike.at[value, 'humidity_normalized'] = npy.nan
12
   #windspeed
   miss_windspeed_index = pds.Series(random.sample(range(1,len(dataframe_bike['id'])),miss
13
   for value in miss_windspeed_index:
       dataframe_bike.at[value, 'windspeed'] = npy.nan
15
```

In [18]:

```
print('missing values : ' + str(miss_number_of_accidents), dataframe_bike.isna().sum().
missing values: 1217
id
                           0
dteday
                           0
                           0
season
                           0
year
                           0
month
hr
                           0
holiday
                           0
day_in_week
                           0
is_working_day
                           0
weather_type
                           0
temperature_celcius
                        1217
                           a
atemp
humidity_normalized
                        1217
windspeed
                        1217
```

Step 3: Data Preprocessing

In [19]:

casual

registered

dtype: int64

number_of_accidents

0 0

In [20]:

```
sample_for_visualization.head() #column head
#sample_for_visualization.info() # column details
```

Out[20]:

	season	is_working_day	weather_type	temperature_celcius	humidity_normalized	winds
4707	Spring	Yes	Storm	0.70	0.84	0
13755	Spring	Yes	Rain	0.66	0.78	0
10794	Summer	Yes	Storm	0.38	0.66	0
7665	Winter	Yes	Rain	0.46	0.94	0
9751	Fall	Yes	Rain	0.30	0.70	0
4						>

In [21]:

```
1 sample_for_visualization.describe() # statistics
```

Out[21]:

	temperature_celcius	humidity_normalized	windspeed	number_of_accidents
count	1634.000000	1619.000000	1636.000000	1738.000000
mean	0.498556	0.628011	0.188698	189.784810
std	0.188697	0.191657	0.121486	185.894058
min	0.020000	0.000000	0.000000	1.000000
25%	0.340000	0.480000	0.104500	37.250000
50%	0.520000	0.630000	0.194000	139.000000
75%	0.660000	0.790000	0.253700	279.000000
max	1.000000	1.000000	0.686600	905.000000

Step 4: Replacing Null Values

In [22]:

```
transformer = lambda x: x.fillna(x.mean())
sample_for_visualization['temperature_celcius'] = sample_for_visualization.groupby('season')['season'] = sample_for_visualization.groupby('season')['wire sample_for_visualization['windspeed'] = sample_for_visualization.groupby('season')['wire sample_for_visualization.groupby('season')]
```

In [23]:

```
sample_for_visualization.head() # data peak
# sample_for_visualization.describe() # statistics
# sample_for_visualization.shape # column row number_of_accidents
# sample_for_visualization.info() # column details
```

Out[23]:

	season	is_working_day	weather_type	temperature_celcius	humidity_normalized	winds
4707	Spring	Yes	Storm	0.70	0.84	0
13755	Spring	Yes	Rain	0.66	0.78	0
10794	Summer	Yes	Storm	0.38	0.66	0
7665	Winter	Yes	Rain	0.46	0.94	0
9751	Fall	Yes	Rain	0.30	0.70	0

Step 5: Visualization

In [24]:

```
# Analyzing correlation between number_of_accidents and season
sb.pairplot(sample_for_visualization, hue='weather_type', palette='Paired')
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:305: Use
rWarning: Dataset has 0 variance; skipping density estimate.
 warnings.warn(msg, UserWarning)
C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:305: Use
rWarning: Dataset has 0 variance; skipping density estimate.

warnings.warn(msg, UserWarning)
C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:305: Use
rWarning: Dataset has 0 variance; skipping density estimate.
warnings.warn(msg, UserWarning)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:305: Use
rWarning: Dataset has 0 variance; skipping density estimate.
 warnings.warn(msg, UserWarning)

Out[24]:

<seaborn.axisgrid.PairGrid at 0xa0cf25e130>

In [25]:

```
# Categorical data distribution for seasons and working day as per weather_type condition
axis = plot.subplots(2,1,figsize=(9,11))
sb.boxplot(x='weather_type', y='number_of_accidents', hue='season',data=sample_for_vist
sb.boxplot(x='is_working_day', y='number_of_accidents', hue='season',data=sample_for_vist
b
```

Out[25]:

<AxesSubplot:xlabel='is_working_day', ylabel='number_of_accidents'>

Step 6: Handeling Ordinal Data

In [26]:

```
# convert season to dummy variables
sample_for_visualization = pds.get_dummies(sample_for_visualization, columns=['season']
# convert working day yes, no to 1, 0 respectively
sample_for_visualization['is_working_day'] = sample_for_visualization['is_working_day']
# convert weather_type to orderinal numbers as per severity
sample_for_visualization['weather_type'] = sample_for_visualization['weather_type'].mag
# push number_of_accidents to end
sample_for_visualization = sample_for_visualization[[column for column in sample_for_visualization]
```

In [27]:

```
# #sample_for_visualization.shape # column row number_of_accidents
# sample_for_visualization.describe() # statistic details
# sample_for_visualization.info() # column list
# sample_for_visualization.head()
```

Out[27]:

	is_working_day	weather_type	temperature_celcius	humidity_normalized	windspeed	sea
4707	1	4	0.70	0.84	0.0000	
13755	1	3	0.66	0.78	0.1940	
10794	1	4	0.38	0.66	0.1343	
7665	1	3	0.46	0.94	0.0000	
9751	1	3	0.30	0.70	0.0896	
4						•

Step 7: Exporting Sample Dataset

```
In [28]:
```

```
sample_for_visualization.to_csv('input_sample_for_visualization.csv')
```

In [29]:

```
# import sample set
sample_for_visualization = pds.read_csv("input_sample_for_visualization.csv")
sample_for_visualization = sample_for_visualization.drop(sample_for_visualization.colur
```

Regression Task

In [30]:

```
# import regression packages
 2
   from sklearn.model_selection import GridSearchCV
 4 from sklearn.model selection import train test split
   from sklearn.model_selection import cross_val_score
   from sklearn.model_selection import KFold
 7
8  from sklearn.linear_model import Lasso
9
   from sklearn.linear_model import Ridge
   from sklearn.linear model import LinearRegression
10
11
   from sklearn.neighbors import KNeighborsRegressor
12
13 from math import sqrt
14
15 | from sklearn.svm import LinearSVR
16
   from sklearn.svm import SVR
17
   from sklearn.pipeline import Pipeline
18
19
20 from sklearn.preprocessing import MinMaxScaler
21
   from sklearn.preprocessing import PolynomialFeatures
22
23
   from sklearn.metrics import mean squared error, r2 score
24
```

In [31]:

```
# spliting training and testing data sets
trainset , testset = train_test_split(sample_for_visualization, test_size = 0.299)

x_trainset = trainset.drop('number_of_accidents', axis=1)
y_trainset = trainset['number_of_accidents']

x_testset = testset.drop('number_of_accidents', axis=1)
y_testset = testset['number_of_accidents']

X_sample = sample_for_visualization.drop('number_of_accidents', axis=1)
Y_sample = sample_for_visualization['number_of_accidents']
```

In [32]:

```
# scaling features
minMaxScalar = MinMaxScaler(feature_range=(0, 1))
# trainset and testset scaling
x_trainset_scaled = minMaxScalar.fit_transform(x_trainset)
x_trainset = pds.DataFrame(x_trainset_scaled)
x_testset_scaled = minMaxScalar.transform(x_testset)
x_testset = pds.DataFrame(x_testset_scaled)
```

In [33]:

```
1 # creating arrays to store results
2 model_results = {'regression_model':[],'regression_cvs':[]}
```

Regression Model 1: KNN Regressor

In [34]:

```
error value = []
 2
   trainset_score_array = []
 3
   testset_score_array = []
 4
   for j in range(1,20):
 5
        knn_regressor = KNeighborsRegressor(j)
 6
        knn_regressor.fit(x_trainset, y_trainset)
 7
 8
        prediction=knn_regressor.predict(x_testset)
 9
        error = sqrt(mean_squared_error(y_testset,prediction))
        error value.append(error)
10
11
12
        trainset_score_array.append(knn_regressor.score(x_trainset, y_trainset))
13
        testset_score_array.append(knn_regressor.score(x_testset, y_testset))
```

In [35]:

```
1
   # Visualization for KNN
   _, _ = plot.subplots(1,2,figsize=(12,6))
 2
 3
   x_{axis} = range(1,20)
 4
   for plot_position in range(1, 3):
 5
        plot.subplot(1, 2, plot_position)
 6
        if plot_position == 1:
 7
            plot.plot(x_axis,error_value, label='Mean Square Error')
 8
            plot.legend()
 9
            plot.xlabel('value of k')
10
            plot.ylabel('Root MSE:')
11
            plot.title('Actual vs Predicted: Elbow curve for root mean square error')
        if plot_position == 2:
12
            plot.plot(x_axis, trainset_score_array, c = 'r', label = 'TrainingScore')
13
14
            plot.plot(x_axis, testset_score_array, c = 'y', label = 'TestingScore')
15
            plot.legend()
            plot.xlabel('value of k: ')
16
17
            plot.ylabel('mean square error')
            plot.title('Values of KNNscore: ')
18
```


1.1: GridSearchCV for KNN Regressor

In [36]:

```
regressor_parameters = {'n_neighbors':range(2,11)}
knn_regressor = KNeighborsRegressor()

best_knn_regressor = GridSearchCV(knn_regressor, regressor_parameters, cv=5)
best_knn_regressor.fit(x_trainset,y_trainset)
best_k = best_knn_regressor.best_params_['n_neighbors']

model_results['regression_model'].append('KNNRegression')
model_results['regression_cvs'].append(best_knn_regressor.best_score_)
```

In [37]:

```
print('Regression 1: KNN')
print('---> Best K: %d' % best_k)
print('---> TrainSet Score: %.3f' % best_knn_regressor.score(x_trainset, y_trainset))
print('---> TestSet Score: %.3f' % best_knn_regressor.score(x_testset, y_testset))
print('---> CVS: %.3f' % best_knn_regressor.best_score_)
```

```
Regression 1: KNN
---> Best K: 10
---> TrainSet Score: 0.356
---> TestSet Score: 0.231
---> CVS: 0.194
```

1.2 : Cross Validation for KNN Regressor

In [38]:

```
1 errors = cross_val_score(knn_regressor, X_sample, Y_sample, cv=5)
2 mean_errors = npy.mean(errors)
3 print('Mean CVS: %.3f' % mean_errors)
```

Mean CVS: 0.193

Regression Model 2: Linear Regression

In [39]:

```
# linear regression on all attributes
linear_regressor = LinearRegression()
linear_regressor.fit(x_trainset, y_trainset)
print('TrainSet Score: %.4f' % linear_regressor.score(x_trainset, y_trainset))
print('TestSet Score: %.3f' %linear_regressor.score(x_testset, y_testset))
print('Equation:')
print('number_of_accidents')
print('= %.3f' % linear_regressor.intercept_)
for i in range(len(linear_regressor.coef_)):
    print(' + %.3f * ' % linear_regressor.coef_[i] + sample_for_visualization.columns[i]
```

```
TrainSet Score: 0.2354
TestSet Score: 0.229
Equation:
number_of_accidents
= -19242724239350164.000
+ 9.833 * is_working_day
+ -11.493 * weather_type
+ 466.805 * temperature_celcius
+ -255.539 * humidity_normalized
+ 26.799 * windspeed
+ 19242724239350292.000 * season_Fall
+ 19242724239350252.000 * season_Spring
+ 19242724239350248.000 * season_Summer
+ 19242724239350328.000 * season_Winter
```

In [40]:

```
# linear model for temperature celcius vs number of accidents
   x_trainset_temp = x_trainset[[2]]
   linear_regressor_temp = LinearRegression()
   linear_regressor_temp.fit(x_trainset_temp, y_trainset)
 5
   Y_predicted = linear_regressor_temp.predict(x_trainset_temp)
   # equation
   print('number_of_accidents vs Temperature')
 7
   print('number_of_accidents = %.3f + %.3f * temperature_celcius' % (linear_regressor_temperature_celcius)
9
   # linear plot
   plot.plot(x trainset temp, Y predicted, c = 'b')
10
   plot.scatter(x_trainset_temp,y_trainset, c='y')
   plot.xlabel('--Temperature(C)--')
```

number_of_accidents vs Temperature
number_of_accidents = 5.559 + 375.204 * temperature_celcius

Out[40]:

Text(0.5, 0, '--Temperature(C)--')

2.1: Cross Validation & Grid Search for Linear Regressor

In [41]:

```
linear_regressor = LinearRegression()
params = {'normalize':[False,True]}
best_linear_regressor = GridSearchCV(linear_regressor,params, cv=5, return_train_score=
best_linear_regressor.fit(x_trainset, y_trainset)
print("The finest Params: {}".format(best_linear_regressor.best_params_))
print("The top CVSscore: {:.3f}".format(best_linear_regressor.best_score_))
model_results['regression_model'].append('LinearRegression')
model_results['regression_cvs'].append(best_linear_regressor.best_score_)
mean_square_errors = cross_val_score(linear_regressor, X_sample, Y_sample, cv=5)
average_MSE = npy.mean(mean_square_errors)
print('Average CVS: %.3f' % average_MSE)
```

The finest Params: {'normalize': True}
The top CVSscore: 0.231
Average CVS: 0.230

Regression Model 3: Ridge Regressor

In [42]:

```
x range_exp = [pow(10,i) for i in range(-2,3)]
   trainset_score_array = []
   testset_score_array = []
4
5
   # Select best value of alpha to get high ridge score
 6
   for a in x_range_exp:
7
       ridge regressor = Ridge(a)
8
       ridge_regressor.fit(x_trainset,y_trainset)
9
       trainset_score_array.append(ridge_regressor.score(x_trainset,y_trainset))
10
       testset_score_array.append(ridge_regressor.score(x_testset, y_testset))
```

In [43]:

```
1  x_range_exp1 = npy.linspace(0.001, 1, 100).reshape(-1,1)
2  x_range_exp2 = npy.linspace(1, 10000, 10000).reshape(-1,1)
3  x_range = npy.append(x_range_exp1, x_range_exp2)
4  coefficients = []
5  for a in x_range:
6    ridge_regressor = Ridge(a)
7    ridge_regressor.fit(x_trainset,y_trainset)
8    coefficients.append(ridge_regressor.coef_ )
9
10  coefficients = npy.array(coefficients)
```

In [44]:

```
# Visualization of Feature response & Ridge scores
 2
   _, _ = plot.subplots(1,2,figsize=(12,6))
 3
 4
   x_axis = range(1,20)
 5
   for plot_position in range(1, 3):
 6
        plot.subplot(1, 2, plot_position)
 7
        if plot_position == 1:
            for i in range(0,9):
 8
 9
                plot.plot(x_range, coefficients[:,i], label = 'ftr {:d}'.format(i))
            plot.axhline(y=0, xmin=0.0001, xmax=10000, linewidth=2, c = 'b')
10
11
            plot.xlabel(r'alpha $\alpha$')
            plot.xscale('log')
12
            plot.legend(loc='center', bbox_to_anchor=(0.6, -0.5))
13
14
            plot.title('Features')
        if plot_position == 2:
15
            plot.plot(x_range_exp, trainset_score_array, c = 'r', label = 'TrainSetScore')
16
            plot.plot(x_range_exp, testset_score_array, c = 'g', label = 'TestSetScore')
17
            plot.xscale('log')
18
            plot.legend(loc='center', bbox_to_anchor=(0.6, -0.5))
19
            plot.xlabel(r'alpha $\alpha$')
20
            plot.title('Values of RidgeScore:')
21
```


3.1: Cross Validation & Grid Search for Ridge Regressor

In [45]:

```
ridge_regressor = Ridge()
parameters = {'alpha':[pow(10,i) for i in range(-3,5)]}

best_ridge_regression = GridSearchCV(ridge_regressor, parameters, cv=5)

best_ridge_regression.fit(X_sample, Y_sample)

print('The best Alpha Value: %.3f' % best_ridge_regression.best_params_['alpha'])

print('The best Score Value: %.3f' % best_ridge_regression.best_score_)

model_results['regression_model'].append('RidgeRegression')
model_results['regression_cvs'].append(best_ridge_regression.best_score_)
```

The best Alpha Value: 0.100 The best Score Value: 0.232

Regression Model 4: Lasso

In [46]:

```
1  x_range_exp = [pow(10,i) for i in range(-2,3)]
2  trainset_score_array = []
3  testset_score_array = []
4  for a in x_range_exp:
5     lasso_regressor = Lasso(a)
6     lasso_regressor.fit(x_trainset,y_trainset)
7     trainset_score_array.append(lasso_regressor.score(x_trainset,y_trainset))
8  testset_score_array.append(lasso_regressor.score(x_testset, y_testset))
```

In [47]:

```
1  x_range_exp1 = npy.linspace(0.001, 1, 1000).reshape(-1,1)
2  x_range_exp2 = npy.linspace(1, 1000, 1000).reshape(-1,1)
3  x_range = npy.append(x_range_exp1, x_range_exp2)
4  coefficients = []
5  for a in x_range:
6    lasso_regressor = Lasso(a)
7    lasso_regressor.fit(x_trainset,y_trainset)
8    coefficients.append(lasso_regressor.coef_ )
9
10  coefficients = npy.array(coefficients)
```

In [48]:

```
# Visualization of Feature responses and LassoScore
 2
    _, _ = plot.subplots(1,2,figsize=(12,6))
 3
 4
   x_axis = range(1,20)
 5
    for plot_position in range(1, 3):
 6
        plot.subplot(1, 2, plot_position)
 7
        if plot_position == 1:
            plot.plot(x_range_exp, trainset_score_array, c = 'r', label = 'TrainSetScore')
 8
 9
            plot.plot(x_range_exp, testset_score_array, c = 'g', label = 'TestSetScore')
10
            plot.xscale('log')
            plot.legend(loc='center', bbox_to_anchor=(0.6, -0.5))
11
            plot.xlabel(r'alpha $\alpha$')
12
13
            plot.title('LassoScore')
        if plot_position == 2:
14
            for i in range(0,9):
15
                plot.plot(x_range, coefficients[:,i], label = 'ftr {:d}'.format(i))
16
            plot.axhline(y=0, xmin=0.0001, xmax=10000, linewidth=2, c = 'b')
17
            plot.xlabel(r'alpha $\alpha$')
18
            plot.xscale('log')
19
            plot.legend(loc='center', bbox_to_anchor=(0.6, -0.5))
20
            plot.title('Features')
21
```


4.1 Cross Validation & Grid Search for Lasso Regressor

In [49]:

```
lasso_regressor = Lasso()
parameters = {'alpha':[pow(10,i) for i in range(-3,5)]}
best_lasso_regressor = GridSearchCV(lasso_regressor, parameters, cv=5)
best_lasso_regressor.fit(X_sample, Y_sample)
print('The best AlphaValue: %.3f' % best_lasso_regressor.best_params_['alpha'])
print('The best ScoreValue: %.3f' % best_lasso_regressor.best_score_)
model_results['regression_model'].append('LassoRegression')
model_results['regression_cvs'].append(best_lasso_regressor.best_score_)
```

The best AlphaValue: 0.100 The best ScoreValue: 0.232

Regression Model 5: Polynomial Regression

In [50]:

```
polynomial_pipeline=Pipeline([
 2
        ('features_polynomial', PolynomialFeatures()),
 3
        ('min_max_scaler',MinMaxScaler()),
 4
        ('linear_regression', LinearRegression())
 5
   1)
 6
 7
   # choosing grid search upto 5 degree
   parameters_polynomial = {'features_polynomial__degree':range(1,5)}
   best_polynomial_regressor = GridSearchCV(polynomial_pipeline, parameters_polynomial,cv=
   best polynomial regressor.fit(x trainset, y trainset)
10
   model results['regression model'].append('PolynomialRegression')
11
   model results['regression cvs'].append(best polynomial regressor.best score )
12
13
14 # regressor predictions
15 | y_trainset_pred = best_polynomial_regressor.predict(x_trainset)
   y testset pred = best polynomial regressor.predict(x testset)
```

5.1: Grid Search & Cross Validation for Polynomial Regressor

In [51]:

```
# Polynomial Regressor performance:
    print('TrainSet:')
    print('The Mean Square Error: {}'.format(mean_squared_error(y_trainset, y_trainset_pred
   print('Root Mean Square Error: {}'.format(sqrt(mean_squared_error(y_trainset, y_trainset))
    print('The R2 Error: {}'.format(r2_score(y_trainset, y_trainset_pred)))
    print('TestSet')
 7
    print('The Mean Square Error: {}'.format(mean_squared_error(y_testset, y_testset_pred))
    print('Root Mean Square Error: {}'.format(sqrt(mean_squared_error(y_testset, y_testset)
    print('The R2 Error: {}'.format(r2_score(y_testset, y_testset_pred)))
10 # top parameters
11 print('The Best params: ')
12 | print(best_polynomial_regressor.best_params_)
13 | # Calculate Score
14 | print("CVSscores - Train ", best_polynomial_regressor.cv_results_['mean_train_score'])
   print("CVSscores - Test ", best_polynomial_regressor.cv_results_['mean_test_score'])
TrainSet:
The Mean Square Error: 25343.216543513958
Root Mean Square Error: 159.19552928243291
The R2 Error: 0.24037165270120642
TestSet
The Mean Square Error: 28246.639423076922
Root Mean Square Error: 168.06736572897464
The R2 Error: 0.23873842165458914
The Best params:
{'features_polynomial__degree': 1}
CVSscores - Train [0.24040483 0.26111871 0.27763293 0.42019237]
CVSscores - Test [ 2.33791303e-01 2.09225490e-01 -2.96903744e+20 -4.963828
63e+22]
```

Regression Model 6: SimpleSVM

In [52]:

```
parmeters = {'C': [pow(10,i) for i in range(-2,3)], 'epsilon': [po
   2
   3
            # Searching Best Params
           support_vector_regressor = LinearSVR()
           best_support_vector_regressor = GridSearchCV(estimator = support_vector_regressor, para
            best_support_vector_regressor.fit(x_trainset, y_trainset)
   7
            support vector result = pds.DataFrame(best support vector regressor.cv results )
            model_results['regression_model'].append('Simple SVRRegression')
   9
            model_results['regression_cvs'].append(best_support_vector_regressor.best_score_)
10
11
           # Create best SVM
12
            support_vector_regressor = LinearSVR(C = best_support_vector_regressor.best_params_['C
13
            support_vector_regressor.fit(x_trainset, y_trainset)
14
15 # Calculate Score
16
           kfoldsplit10 = KFold(n_splits=10)
17
            score_result = cross_val_score(support_vector_regressor, x_trainset, y_trainset, cv=kf@
```

6.1 Cross Validation & Grid Search for SimpleSVM

In [53]:

```
print('Top Model:')
print('The bestParams: {}'.format(best_support_vector_regressor.best_params_))
print('CVS: {:.5f}'.format(best_support_vector_regressor.best_score_))
print('TrainSetScore: %.3f' % support_vector_regressor.score(x_trainset, y_trainset))
print('TestSetScore: %.3f' % support_vector_regressor.score(x_testset, y_testset))
print('Mean CVS: %.3f' % npy.mean(score_result))
```

Top Model:

The bestParams: {'C': 100, 'epsilon': 100}

CVS: 0.21003

TrainSetScore: 0.215 TestSetScore: 0.201 Mean CVS: 0.210

In [54]:

```
# Visualization
plot.plot(range(support_vector_result.shape[0]), support_vector_result['mean_train_score
plot.plot(range(support_vector_result.shape[0]), support_vector_result['mean_test_score
plot.xticks(range(support_vector_result.shape[0]), support_vector_result['param_C'], re
plot.plot([best_support_vector_regressor.best_index_], support_vector_result['mean_train_score
plot.plot([best_support_vector_regressor.best_index_], support_vector_result['mean_train_score
plot.plot([best_support_vector_regressor.best_index_], support_vector_result['mean_train_score
plot.plot([best_support_vector_regressor.best_index_], support_vector_result['mean_train_score
plot.plot([best_support_vector_result.shape[0]), support_vector_result['mean_test_store
plot.plot([best_support_vector_regressor.best_index_], support_vector_result['mean_train_score
plot.plot([best_support_vector_regressor.best_index_], su
```

Out[54]:

Text(0.5, 0, 'alpha \$\\alpha\$')

Model 7: LinearSVM

In [55]:

```
parameters = {'C': [pow(10,i) for i in range(-2,3)]}
 2
 3
   # Searching Best Params
 4 | support vector linear regressor = SVR(kernel='linear')
   best_sv_linear_regressor = GridSearchCV(estimator = support_vector_linear_regressor, page 1)
   best_sv_linear_regressor.fit(x_trainset,y_trainset)
   support_vector_result = pds.DataFrame(best_sv_linear_regressor.cv_results_)
 7
   model_results['regression_model'].append('SVR LinearRegression')
 9
   model_results['regression_cvs'].append(best_sv_linear_regressor.best_score_)
10
   # Create best SVM
11
   support_vector_linear_regressor = SVR(kernel = 'linear',C = best_sv_linear_regressor.be
12
   support_vector_linear_regressor.fit(x_trainset, y_trainset)
13
14
15 # Calculate Score
16 kfoldsplit6 = KFold(n splits = 6)
   score result = cross_val_score(support_vector_linear_regressor, x_trainset, y_trainset)
17
```

7.1: Cross Validation & Grid Search for LinearSVM

In [56]:

```
print('Top Model:')
print('Params: {}'.format(best_sv_linear_regressor.best_params_))
print('CVS: {:.5f}'.format(best_sv_linear_regressor.best_score_))
print('TrainSetScore: %.3f' % support_vector_linear_regressor.score(x_trainset, y_train print('TestSetScore: %.3f' % support_vector_linear_regressor.score(x_testset, y_testset)
print('Average CVS: %.3f' % npy.mean(score_result))
```

Top Model:

Params: {'C': 100} CVS: 0.19524

TrainSetScore: 0.204 TestSetScore: 0.199 Average CVS: 0.195

In [57]:

```
# Visualization
plot.plot(range(support_vector_result.shape[0]), support_vector_result['mean_train_score
plot.plot(range(support_vector_result.shape[0]), support_vector_result['mean_test_score
plot.xticks(range(support_vector_result.shape[0]), support_vector_result['param_C'], re
plot.plot([best_sv_linear_regressor.best_index_], support_vector_result['mean_train_score
plot.plot([best_sv_linear_regressor.best_index_], support_vector_result['mean_test_score
plot.grid()
plot.legend()
plot.xlabel('ParameterC')
```

Out[57]:

Text(0.5, 0, 'ParameterC')

Regression Model 8: SVM with RBF kernel

```
In [58]:
```

```
parameters = {'C': [pow(10,i) for i in range(-1,3)], 'gamma': [pow(10,i) for i in range(-1,3)]
 1
 2
 3
   # Searching Best Params
   support vector radius regressor = SVR(kernel='rbf')
4
   best support vector regressor = GridSearchCV(estimator = support vector radius regressor
 6
   best_support_vector_regressor.fit(x_trainset,y_trainset)
 7
   support vector result = pds.DataFrame(best support vector regressor.cv results )
   model_results['regression_model'].append('SVR RBFRegression')
 9
   model_results['regression_cvs'].append(best_support_vector_regressor.best_score_)
10
11
   # Create best SVM
   support_vector_radius_regressor = SVR(kernel = 'rbf', C = best_support_vector_regressor.
12
13
   support_vector_radius_regressor.fit(x_trainset, y_trainset)
14
15
   # Calculate Score
   kfpldsplit6 = KFold(n splits = 6)
16
   score_result = cross_val_score(support_vector_radius_regressor, x_trainset, y_trainset)
17
```

8.1 Cross Validation & Grid Search for SVM with RBF kernel

In [59]:

```
print('Top Model:')
print('Parmas: {}'.format(best_support_vector_regressor.best_params_))
print('CVS: {:.5f}'.format(best_support_vector_regressor.best_score_))
print('TrainSetScore: %.3f' % support_vector_radius_regressor.score(x_trainset, y_train print('TestSetScore: %.3f' % support_vector_radius_regressor.score(x_testset, y_testset)
print('Average CVS: %.3f' % npy.mean(score_result))
```

Top Model:

Parmas: {'C': 100, 'gamma': 1}

CVS: 0.19913

TrainSetScore: 0.251 TestSetScore: 0.195 Average CVS: 0.208

In [60]:

```
# Visualization
plot.plot(range(support_vector_result.shape[0]), support_vector_result['mean_train_score
plot.plot(range(support_vector_result.shape[0]), support_vector_result['mean_test_score
plot.xticks(range(support_vector_result.shape[0]), support_vector_result['param_C'], re
plot.plot([best_support_vector_regressor.best_index_], support_vector_result['mean_train_score
plot.plot([best_support_vector_result.shape[0]), support_vector_result['param_C'], re
plot.plot([best_support_vector_regressor.best_index_], support_vector_result['mean_train_score
plot.plot([best_support_vector_regressor.best_index_], support_vector_result['mean_train_score
plot.plot([best_support_vector_result.shape[0]), support_vector_result['mean_test_store
plot.plot([best_support_vector_result.shape[0]), support_vector_result['mean_test_store
plot.plot([best_support_vector_regressor.best_index_], support_vector_result['mean_train_store
plot.plot([best_support_vector_regressor.best_index_], support_vector_result['mean_train_store
plot.plot([best_support_vector_regressor.best_index_], support_vector_result['mean_train_store
plot.plot([best_support_vector_regressor.best_index_], support_vector_result['mean_train_store
plot.grid()
plot.legend()
plot.legend()
plot.xlabel('ParameterC')
```

Out[60]:

Text(0.5, 0, 'ParameterC')

Regression Model 9: PolySVM

In [61]:

```
parameters = {'C': [pow(10,i) for i in range(0,5)], 'degree':[1,3]}
 2
 3
   # Searching Best Params
4 | support vector polynomial regressor = SVR(kernel='poly')
 5
   best_sv_polynomial_regressor = GridSearchCV(estimator = support_vector_polynomial_regre
   best_sv_polynomial_regressor.fit(x_trainset,y_trainset)
   support_vector_result = pds.DataFrame(best_sv_polynomial_regressor.cv_results_)
 7
   model_results['regression_model'].append('SVR PolynomialRegression')
9
   model_results['regression_cvs'].append(best_sv_polynomial_regressor.best_score_)
10
   # Create best SVM
11
   support_vector_polynomial_regressor = SVR(kernel = 'linear',C = best_sv_polynomial_regr
12
   support_vector_polynomial_regressor.fit(x_trainset, y_trainset)
13
14
15 # Calculate Score
16 kfoldsplit6 = KFold(n splits = 6)
   score_result = cross_val_score(support_vector_polynomial_regressor, x_trainset, y_train
```

9.1 Cross Validation & Grid Search for PolySVM

In [62]:

```
print('Top Model:')
print('Params: {}'.format(best_sv_polynomial_regressor.best_params_))
print('CVS: {:.4f}'.format(best_sv_polynomial_regressor.best_score_))
print('TrainSetScore: %.3f' % support_vector_polynomial_regressor.score(x_trainset, y_1 print('TestSetScore: %.3f' % support_vector_polynomial_regressor.score(x_testset, y_test)
print('Average CVS: %.3f' % npy.mean(score_result))
```

Top Model:

Params: {'C': 1000, 'degree': 3}

CVS: 0.2139

TrainSetScore: 0.207 TestSetScore: 0.202 Average CVS: 0.198

In [63]:

```
# Visualization
plot.plot(range(support_vector_result.shape[0]), support_vector_result['mean_train_score
plot.plot(range(support_vector_result.shape[0]), support_vector_result['mean_test_score
plot.xticks(range(support_vector_result.shape[0]), support_vector_result['param_C'], re
plot.plot([best_sv_polynomial_regressor.best_index_], support_vector_result['mean_train
plot.plot([best_sv_polynomial_regressor.best_index_], support_vector_result['mean_test_
plot.grid()
plot.legend()
plot.xlabel('ParameterC')
```

Out[63]:

Text(0.5, 0, 'ParameterC')

Regression Model 10: DecisionTree

In [64]:

```
#import DecisionTree package
from sklearn.tree import DecisionTreeRegressor
```

In [65]:

```
#creating datasets for DecisionTree Reressor
X_selected = x_trainset.to_numpy()[:50,3].reshape(-1,1)
Y_selected = y_trainset[:50]

tree_regressor = DecisionTreeRegressor()
tree_regressor.fit(X_selected, Y_selected)

X_selected_new=npy.linspace(X_selected.min(), X_selected.max(), 50).reshape(50, 1)
Y_predicted = tree_regressor.predict(X_selected_new)
```

In [66]:

In [67]:

```
grid_tree_regressor = GridSearchCV(tree_regressor, parmas, cv=5, return_train_score=True
grid_tree_regressor.fit(x_trainset, y_trainset)
```

Out[67]:

In [68]:

- df_tree_regressor = pds.DataFrame(grid_tree_regressor.cv_results_)
 df_tree_regressor.loc[:,['params','mean_train_score','mean_test_score','rank_test_score']

Out[68]:

	params	mean_train_score	mean_test_score	rank_test_score
0	{'min_samples_leaf': 4, 'min_samples_split': 4}	0.591580	-0.124168	49
1	{'min_samples_leaf': 4, 'min_samples_split': 8}	0.591580	-0.122743	48
2	{'min_samples_leaf': 4, 'min_samples_split': 12}	0.543380	-0.056009	47
3	{'min_samples_leaf': 4, 'min_samples_split': 16}	0.499259	-0.006406	46
4	{'min_samples_leaf': 4, 'min_samples_split': 20}	0.461998	0.044053	45
5	{'min_samples_leaf': 4, 'min_samples_split': 24}	0.442953	0.058457	44
6	{'min_samples_leaf': 4, 'min_samples_split': 28}	0.425702	0.067245	39
7	{'min_samples_leaf': 8, 'min_samples_split': 4}	0.454935	0.065287	40
8	{'min_samples_leaf': 8, 'min_samples_split': 8}	0.454935	0.065287	40
9	{'min_samples_leaf': 8, 'min_samples_split': 12}	0.454935	0.065287	40
10	{'min_samples_leaf': 8, 'min_samples_split': 16}	0.454935	0.065074	43
11	{'min_samples_leaf': 8, 'min_samples_split': 20}	0.437323	0.084246	38
12	{'min_samples_leaf': 8, 'min_samples_split': 24}	0.426735	0.102123	37
13	{'min_samples_leaf': 8, 'min_samples_split': 28}	0.410600	0.108167	36
14	{'min_samples_leaf': 12, 'min_samples_split': 4}	0.400734	0.129939	29
15	{'min_samples_leaf': 12, 'min_samples_split': 8}	0.400734	0.129579	35
16	{'min_samples_leaf': 12, 'min_samples_split': 12}	0.400734	0.129939	29
17	{'min_samples_leaf': 12, 'min_samples_split': 16}	0.400734	0.129939	29
18	{'min_samples_leaf': 12, 'min_samples_split': 20}	0.400734	0.129939	29
19	{'min_samples_leaf': 12, 'min_samples_split': 24}	0.400734	0.129939	29
20	{'min_samples_leaf': 12, 'min_samples_split': 28}	0.391953	0.129876	34
21	{'min_samples_leaf': 16, 'min_samples_split': 4}	0.366616	0.166023	24

	params	mean_train_score	mean_test_score	rank_test_score
22	{'min_samples_leaf': 16, 'min_samples_split': 8}	0.366616	0.166382	22
23	{'min_samples_leaf': 16, 'min_samples_split': 12}	0.366616	0.166023	24
24	{'min_samples_leaf': 16, 'min_samples_split': 16}	0.366616	0.166023	24
25	{'min_samples_leaf': 16, 'min_samples_split': 20}	0.366616	0.166382	22
26	{'min_samples_leaf': 16, 'min_samples_split': 24}	0.366616	0.166023	24
27	{'min_samples_leaf': 16, 'min_samples_split': 28}	0.366616	0.166023	24
28	{'min_samples_leaf': 20, 'min_samples_split': 4}	0.346302	0.181525	17
29	{'min_samples_leaf': 20, 'min_samples_split': 8}	0.346302	0.181525	17
30	{'min_samples_leaf': 20, 'min_samples_split': 12}	0.346302	0.181525	17
31	{'min_samples_leaf': 20, 'min_samples_split': 16}	0.346302	0.181832	15
32	{'min_samples_leaf': 20, 'min_samples_split': 20}	0.346302	0.181832	15
33	{'min_samples_leaf': 20, 'min_samples_split': 24}	0.346302	0.181525	17
34	{'min_samples_leaf': 20, 'min_samples_split': 28}	0.346302	0.181525	17
35	{'min_samples_leaf': 24, 'min_samples_split': 4}	0.331966	0.203453	10
36	{'min_samples_leaf': 24, 'min_samples_split': 8}	0.331966	0.203694	3
37	{'min_samples_leaf': 24, 'min_samples_split': 12}	0.331966	0.203453	10
38	{'min_samples_leaf': 24, 'min_samples_split': 16}	0.331966	0.203453	10
39	{'min_samples_leaf': 24, 'min_samples_split': 20}	0.331966	0.203453	10
40	{'min_samples_leaf': 24, 'min_samples_split': 24}	0.331966	0.203694	3
41	{'min_samples_leaf': 24, 'min_samples_split': 28}	0.331966	0.203453	10
42	{'min_samples_leaf': 28, 'min_samples_split': 4}	0.324127	0.203748	1
43	{'min_samples_leaf': 28, 'min_samples_split': 8}	0.324127	0.203546	5
44	{'min_samples_leaf': 28, 'min_samples_split': 12}	0.324127	0.203748	1
45	{'min_samples_leaf': 28, 'min_samples_split': 16}	0.324127	0.203546	5
46	{'min_samples_leaf': 28, 'min_samples_split': 20}	0.324127	0.203546	5

	params	mean_train_score	mean_test_score	rank_test_score	
47	{'min_samples_leaf': 28, 'min_samples_split': 24}	0.324127	0.203546	5	
48	{'min_samples_leaf': 28, 'min_samples_split': 28}	0.324127	0.203546	5	-

In [69]:

```
print("Best CV accuracy: {:.5f}".format(grid_tree_regressor.best_score_))
print("The BestParams: {}".format(grid_tree_regressor.best_params_))
print("TestSetScore: {:.2f}".format(grid_tree_regressor.score(x_testset, y_testset)))
print("TrainSetScore: {:.2f}".format(grid_tree_regressor.score(x_trainset, y_trainset))
```

Best CV accuracy: 0.20375

The BestParams: {'min_samples_leaf': 28, 'min_samples_split': 4}

TestSetScore: 0.21 TrainSetScore: 0.32

In [70]:

```
model_results['regression_model'].append('Decision Tree Regression')
model_results['regression_cvs'].append(grid_tree_regressor.best_score_)
```

In [71]:

```
#visualization
plot.subplots(figsize = (12,6))
plot.plot(X_selected_new, Y_predicted, c = 'b')
plot.xlabel('Median')
plot.scatter(X_selected, Y_selected)
```

Out[71]:

<matplotlib.collections.PathCollection at 0xa0d29638e0>

In [72]:

```
tree_regressor = DecisionTreeRegressor(min_samples_split=5,min_samples_leaf=25)
tree_regressor.fit(X_selected, Y_selected)

X_selected_new=npy.linspace(X_selected.min(), X_selected.max(), 50).reshape(50, 1)
Y_predicted = tree_regressor.predict(X_selected_new)

plot.subplots(figsize = (12,6))
plot.plot(X_selected_new, Y_predicted, c = 'b')
plot.xlabel('Median')
plot.scatter(X_selected, Y_selected)
```

Out[72]:

<matplotlib.collections.PathCollection at 0xa0d29d6250>

Cross Validation Score for each Regressors:

```
In [73]:
```

```
model_results
Out[73]:
{'regression_model': ['KNNRegression',
  'LinearRegression',
  'RidgeRegression',
  'LassoRegression',
  'PolynomialRegression',
  'Simple SVRRegression',
  'SVR LinearRegression',
  'SVR RBFRegression',
  'SVR PolynomialRegression',
  'Decision Tree Regression'],
 'regression_cvs': [0.19382051280140317,
  0.23111685352016992,
  0.23177909863391913,
  0.23177203525750628,
  0.23379130337674514,
  0.2100338286597027,
  0.19524455156203965,
  0.1991313920206221,
  0.2139199935228424,
  0.20374793014620046]}
```

SUMMARY: Best Regressor Model

In [74]:

```
model_dataframe = pds.DataFrame(data = model_results)
model_dataframe
```

Out[74]:

	regression_model	regression_cvs
0	KNNRegression	0.193821
1	LinearRegression	0.231117
2	RidgeRegression	0.231779
3	LassoRegression	0.231772
4	PolynomialRegression	0.233791
5	Simple SVRRegression	0.210034
6	SVR LinearRegression	0.195245
7	SVR RBFRegression	0.199131
8	SVR PolynomialRegression	0.213920
9	Decision Tree Regression	0.203748

In [75]:

```
# selecting best regressor with maximum cvScore
top_model = model_dataframe.loc[model_dataframe['regression_cvs'].idxmax()]
top_model
```

Out[75]:

regression_model PolynomialRegression regression_cvs 0.233791 Name: 4, dtype: object

In [76]:

```
top model name = top model['regression model']
 2
 3
   # selecting best regressor for all predictions
 4
   if top_model_name == 'KNNRegression':
 5
       y_predicted = best_knn_regressor.predict(X_sample)
   if top_model_name == 'LinearRegression':
 6
 7
       y_predicted = best_linear_regressor.predict(X_sample)
 8
   if top_model_name == 'RidgeRegression':
 9
       y_predicted = best_ridge_regression.predict(X_sample)
   if top_model_name == 'LassoRegression':
10
       y_predicted = best_lasso_regressor.predict(X_sample)
11
12
   if top_model_name == 'PolynomialRegression':
13
       y_predicted = best_polynomial_regressor.predict(X_sample)
14
   if top_model_name == 'Simple SVRRegression':
15
       y_predicted = best_support_vector_regressor.predict(X_sample)
16
   if top model name == 'SVR LinearRegression':
17
       y_predicted = best_sv_linear_regressor.predict(X_sample)
18
   if top_model_name == 'SVR RBFRegression':
19
       y_predicted = best_support_vector_regressor.predict(X_sample)
20
   if top model name == 'SVR PolynomialRegression':
21
       y_predicted = best_sv_polynomial_regressor.predict(X_sample)
```

In [77]:

```
## Visualization: Actual number_of_accident vs Predicted number_of_accidents
plot.scatter(Y_sample, y_predicted)
plot.title(top_model['regression_model'])
plot.xlabel('Actual number_of_accidents')
plot.ylabel('Predicted number_of_accidents')
plot.plot([0, 600], [0, 600], 'red', label = 'Expected Output')
plot.xlabel('ParameterC')
plot.legend()
```

Out[77]:

<matplotlib.legend.Legend at 0xa0d44ec070>

In [78]:

```
1 model_results
```

Out[78]:

```
{'regression_model': ['KNNRegression',
  'LinearRegression',
  'RidgeRegression',
  'LassoRegression',
  'PolynomialRegression',
  'Simple SVRRegression',
  'SVR LinearRegression',
  'SVR RBFRegression',
  'SVR PolynomialRegression',
  'Decision Tree Regression'],
 'regression_cvs': [0.19382051280140317,
  0.23111685352016992,
  0.23177909863391913,
  0.23177203525750628,
  0.23379130337674514,
 0.2100338286597027,
 0.19524455156203965,
  0.1991313920206221,
  0.2139199935228424,
 0.20374793014620046]}
```

highest CV score.

Best Regression model for this DataSet:

In [79]:

```
1 # Best Model among 10
2 top_model_name
```

Out[79]:

Hence, above stated regressor is the best model for this dataset so far.

End of Project 1: Regression

Initials:

-rp

Project Part 2: Regression

Step 1: Initializations

In [80]:

```
# Import Relevant libraries
from sklearn.metrics import accuracy_score
from sklearn.ensemble import VotingRegressor
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.decomposition import PCA
from keras.models import Sequential
from keras.layers import Dense
```

Recommended changes in Dataframes

^{&#}x27;PolynomialRegression'

In [96]:

```
# model_dataframe
model_dataframe = pds.DataFrame(data = model_results)
model_dataframe.columns = ['Model','Grid Search']
model_dataframe['PCA'] = npy.nan
model_dataframe
```

Out[96]:

	Model	Grid Search	PCA
0	KNNRegression	0.193821	NaN
1	LinearRegression	0.231117	NaN
2	RidgeRegression	0.231779	NaN
3	LassoRegression	0.231772	NaN
4	PolynomialRegression	0.233791	NaN
5	Simple SVRRegression	0.210034	NaN
6	SVR LinearRegression	0.195245	NaN
7	SVR RBFRegression	0.199131	NaN
8	SVR PolynomialRegression	0.213920	NaN
9	Decision Tree Regression	0.203748	NaN

In [77]:

```
# Creating funtion for displaying model statistics:
def printModSpecs(mod):
    print(f'The Best Mean CVSscore: {mod.best_score_}')
    print(f'The Best params: {mod.best_params_}')
    print(f'Train datset score: {mod.score(x_trainset,y_trainset)}')
    print(f'Test dataset score: {mod.score(x_testset,y_testset)}')
    print('r2Score: ', r2_score(y_testset,y_predicted))
```

Task 1: Bagging 1: SimpleSVR

In [78]:

```
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\_base.py:976: Converg
enceWarning: Liblinear failed to converge, increase the number of iteration
s.
   warnings.warn("Liblinear failed to converge, increase "
```

In [79]:

```
# Statistics
model_dataframe.at[5,'Bagging'] = best_bag_svrR.best_score_
printModSpecs(best_bag_svrR)
```

Best Mean Cross Validation Score: 0.18243483483299197

Best Parameters: {'base_estimator__C': 100, 'base_estimator__epsilon': 100, 'n_estimators': 25}

Train score: 0.19407469108335318

Test score: 0.23410301171300174

r2_score: 0.23410301171300174

Task 1: Bagging 2: LinearSVR

In [80]:

```
# Linear SVR
bag_svrLR = BaggingRegressor(base_estimator=SVR(kernel='linear'), bootstrap=True, rando
bag_svrLR_param = {'base_estimator_C': [pow(10,i) for i in range(-2,3)],'n_estimators'
best_bag_svrLR = GridSearchCV(bag_svrLR, bag_svrLR_param, cv=6, return_train_score=True
best_bag_svrLR.fit(x_trainset,y_trainset)
y_predicted = best_bag_svrLR.predict(x_testset)
```

In [81]:

```
# Statistics
model_dataframe.at[6,'Bagging'] = best_bag_svrLR.best_score_
printModSpecs(best_bag_svrLR)
```

```
Best Mean Cross Validation Score: 0.16103014538953012
Best Parameters: {'base_estimator__C': 100, 'n_estimators': 25}
Train score: 0.16982267242507365
Test score: 0.2136540614797091
r2_score: 0.2136540614797091
```

Task 2: Pasting 1: SimpleSVR

In [106]:

In [107]:

```
1 # Statistics
2 model_dataframe.at[5,'Pasting'] = best_pas_svrR.best_score_
3 printModSpecs(best_pas_svrR)
```

Best Mean Cross Validation Score: 0.19029663767959648
Best Parameters: {'base_estimator__C': 100, 'base_estimator__epsilon': 100,

'n_estimators': 10}

Train score: 0.2217538056205457 Test score: 0.2378640819642739 r2_score: 0.2378640819642739

Task 2: Pasting 2: LinearSVR

In [305]:

In [372]:

```
# Statistics
model_dataframe.at[6,'Pasting'] = best_pas_svrLR.best_score_
printModSpecs(best_pas_svrLR)
```

```
Best Mean Cross Validation Score: 0.2067496703829704
Best Parameters: {'base_estimator__C': 100, 'base_estimator__epsilon': 100,
'n_estimators': 25}
```

Train score: 0.22021452143271414
Test score: 0.2804394915883337
r2_score: 0.3163589705657385

Task 3: Adaboosting 1: SimpleSVR

In [307]:

```
# Simple SVR
 2
    adr_svrR =AdaBoostRegressor(base_estimator=SVR(),random_state=42)
    adr_svrR_param = {'base_estimator__C': [pow(10,i) for i in range(-2,3)],'base_estimator
                       'n_estimators' : [100,150], 'learning_rate' : [0.5,1.0,2],}
 5
    best_adr_svrR = GridSearchCV(adr_svrR, adr_svrR_param,cv=5, return_train_score=True, )
    best_adr_svrR.fit(x_trainset,y_trainset)
    y_predicted = best_adr_svrR.predict(x_testset)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Future
Warning: The default value of gamma will change from 'auto' to 'scale' in
version 0.22 to account better for unscaled features. Set gamma explicitly
to 'auto' or 'scale' to avoid this warning.
  "avoid this warning.", FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Future
Warning: The default value of gamma will change from 'auto' to 'scale' in
version 0.22 to account better for unscaled features. Set gamma explicitly
to 'auto' or 'scale' to avoid this warning.
  "avoid this warning.", FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Future
Warning: The default value of gamma will change from 'auto' to 'scale' in
version 0.22 to account better for unscaled features. Set gamma explicitly
to 'auto' or 'scale' to avoid this warning.
  "avoid this warning.", FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Future
Warning: The default value of gamma will change from 'auto' to 'scale' in
version 0.22 to account better for unscaled features. Set gamma explicitly
to 'auto' or 'scale' to avoid this warning.
In [373]:
    # Statistics
 1
    model_dataframe.at[5,'Adaboosting'] = best_adr_svrR.best_score_
    printModSpecs(best_adr_svrR)
Best Mean Cross Validation Score: 0.21680841081746885
Best Parameters: {'base_estimator__C': 100, 'base_estimator__epsilon': 1, 'l
earning rate': 0.5, 'n estimators': 100}
Train score: 0.24134983186629663
```

Task 3: Adaboosting 2: LinearSVR

Test score: 0.29764276063912254 r2 score: 0.3163589705657385

In [309]:

```
# Linear SVR
adr_svrLR =AdaBoostRegressor(base_estimator=SVR(kernel='linear'),random_state=42)
adr_svrLR_param = {'base_estimator__C': [pow(10,i) for i in range(-2,3)],'base_estimator__'n_estimators' : [100,150],'learning_rate' : [0.5,1.0,2],}
best_adr_svrLR = GridSearchCV(adr_svrLR, adr_svrLR_param,cv=5, return_train_score=True,best_adr_svrLR.fit(x_trainset,y_trainset)
y_predicted = best_adr_svrLR.predict(x_testset)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection_search.p y:814: DeprecationWarning: The default of the `iid` parameter will change fr om True to False in version 0.22 and will be removed in 0.24. This will chan ge numeric results when test-set sizes are unequal.

DeprecationWarning)

In [374]:

```
# Statistics
model_dataframe.at[6,'Adaboosting'] = best_adr_svrLR.best_score_
printModSpecs(best_adr_svrLR)
```

```
Best Mean Cross Validation Score: 0.21415342407485893
Best Parameters: {'base_estimator__C': 100, 'base_estimator__epsilon': 1, 'l earning_rate': 0.5, 'n_estimators': 100}
Train score: 0.22458185052979318
Test score: 0.2882730165399616
r2 score: 0.3163589705657385
```

Task 4: Gradient Boosting 1

In [311]:

```
# Gradient boosting Regression
 1
 2
 3
   gbr= GradientBoostingRegressor(random_state=42)
4
   gbr param = {
 5
                  'max_depth' : [2,3,4],
 6
                  'n_estimators' : [25,100],
 7
                  'learning rate' : [0.5,1.0,2],
8
9
   best_gbr = GridSearchCV(gbr, gbr_param,cv=5, return_train_score=True, )
10
   best gbr.fit(x trainset,y trainset)
   y predicted = best gbr.predict(x testset)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection_search.p y:814: DeprecationWarning: The default of the `iid` parameter will change fr om True to False in version 0.22 and will be removed in 0.24. This will chan ge numeric results when test-set sizes are unequal.

DeprecationWarning)

In [312]:

```
1 # Statistics
2 printModSpecs(best_gbr)
```

Best Mean Cross Validation Score: 0.21323662990755018
Best Parameters: {'learning_rate': 0.5, 'max_depth': 2, 'n_estimators': 25}
Train score: 0.33723565346890694
Test score: 0.3163589705657385
r2_score: 0.3163589705657385

Task 5: Ensemble Comparison

In [83]:

```
# Model Comparison
check_name = model_dataframe['Model'] == 'Simple SVR Regression'
ensemble_df = model_dataframe[check_name]
ensemble_df = ensemble_df.append(model_dataframe[model_dataframe['Model'] == 'Linear SV
```

In [376]:

```
# Visualization
 2 fig, ax = plot.subplots(figsize=(12,5))
 3 index = npy.arange(2)
 4
   bar_width = 0.1
 5
   opacity = 0.8
   rects1 = plot.bar(index, ensemble_df['Grid Search'], bar_width, alpha=opacity, color='&
 7
   rects2 = plot.bar(index + bar_width, ensemble_df['Bagging'], bar_width, alpha=opacity,
   rects3 = plot.bar(index + 2 * bar_width, ensemble_df['Pasting'], bar_width, alpha=opaci
 9
10
   rects4 = plot.bar(index + 3 * bar width, ensemble df['Adaboosting'], bar width, alpha=0
11
   plot.xlabel('Model')
12
   plot.ylabel('CV Scores')
13
   plot.title('Ensemble Modeling')
14
   plot.xticks(index + 2 * bar_width, ensemble_df['Model'])
15
16
   plot.legend()
17
18
   plot.tight_layout()
19
   plot.show()
```


Task 6: PCA Model: Data Initialization

In [82]:

```
#Creating PCA Model
pca = PCA(n_components = 0.95, random_state = 3)
pca.fit(x_trainset)

# creating x_trainset and x_testset
x_train_pca = pca.transform(x_trainset)
x_test_pca = pca.transform(x_testset)
```

Task 7: PCA Models for comparison

Regression Model 1: KNN

In [83]:

```
#KNN Regression

params = {'n_neighbors':[2,3,4,5,6,7,8,9,10]}
knn_R = KNeighborsRegressor()

best_KnnR_pca = GridSearchCV(knn_R, params, cv=5)
best_KnnR_pca.fit(x_train_pca,y_trainset)
k = best_KnnR_pca.best_params_['n_neighbors']

model_dataframe.at[0,'PCA'] = best_KnnR_pca.best_score_
print('KNN Regression')
print('The Best params: {}'.format(best_KnnR_pca.best_params_))
print('The Best CVSscore: {:.4f}'.format(best_KnnR_pca.best_score_))
```

```
KNN Regression
The Best params: {'n_neighbors': 10}
The Best CVSscore: 0.1450
```

Regression Model 2: Linear

In [84]:

```
#Linear Regression

lin_R = LinearRegression()
parameters = {'normalize':[True,False]}

best_linR_pca = GridSearchCV(lin_R,parameters, cv=6, return_train_score=True)
best_linR_pca.fit(x_train_pca, y_trainset)

model_dataframe.at[1,'PCA'] = best_linR_pca.best_score_
print('Linear Regression')
print('The Best params: {}'.format(best_linR_pca.best_params_))
print('The Best CVSscore: {:.4f}'.format(best_linR_pca.best_score_))
```

Linear Regression
The Best params: {'normalize': False}
The Best CVSscore: 0.1446

Regression Model 3: Ridge

In [85]:

```
# Ridge Regression

rid_R = Ridge()
params = {'alpha':[0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000]}

best_ridR_pca = GridSearchCV(rid_R, params, cv=5)
best_ridR_pca.fit(x_train_pca, y_trainset)

model_dataframe.at[2,'PCA'] = best_ridR_pca.best_score_
print('Ridge Regression')
print('The Best params: {}'.format(best_ridR_pca.best_params_))
print('The Best CVSscore: {:.4f}'.format(best_ridR_pca.best_score_))
```

Ridge Regression
The Best params: {'alpha': 0.1}
The Best CVSscore: 0.1482

Regression Model 4: Lasso

In [86]:

```
# Lasso Regression

las_R = Lasso()
params = {'alpha':[0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000]}
best_lasR_pca = GridSearchCV(las_R, params, cv=5)
best_lasR_pca.fit(x_train_pca, y_trainset)

model_dataframe.at[3,'PCA'] = best_lasR_pca.best_score_
print('Lasso Regression')
print('The Best params: {}'.format(best_lasR_pca.best_params_))
print('The Best CVSscore: {:.4f}'.format(best_lasR_pca.best_score_))
```

```
Lasso Regression
The Best params: {'alpha': 0.001}
The Best CVSscore: 0.1482
```

Regression Model 5: Polynomial

In [87]:

```
1
   # Polynomial Regression
 3
   pipe_poly=Pipeline([
 4
        ('polynomialfeatures', PolynomialFeatures()),
 5
        ('scaler',MinMaxScaler()),
 6
        ('norm_reg', LinearRegression())
 7
   ])
 8
   param_poly = {'polynomialfeatures__degree':range(1,5)}
   best_polR_pca = GridSearchCV(pipe_poly, param_poly,cv=5, n_jobs=-1, return_train_score
10
11
   best_polR_pca.fit(x_train_pca, y_trainset)
12
model_dataframe.at[4,'PCA'] = best_polR_pca.best_score_
   print('Polynomial Regression')
   print('The Best params: {}'.format(best_polR_pca.best_params_))
16 print('The Best CVSscore: {:.4f}'.format(best polR pca.best score ))
```

```
Polynomial Regression
The Best params: {'polynomialfeatures_degree': 3}
The Best CVSscore: 0.2192
```

Regression Model 6: SimpleSVM

In [88]:

```
# Simple SVM Regression
parms_svr = {'C': [pow(10,i) for i in range(-2,3)], 'epsilon' : [pow(10,i) for i in rangerous svr_R = LinearSVR()

best_svrR_pca = GridSearchCV(estimator = svr_R, param_grid = parms_svr, return_train_sometate best_svrR_pca.fit(x_train_pca, y_trainset)

model_dataframe.at[5,'PCA'] = best_svrR_pca.best_score_
print('Simple SVM Regression')
print('The Best params: {}'.format(best_svrR_pca.best_params_))
print('The Best CVSscore: {:.4f}'.format(best_svrR_pca.best_score_))
```

```
Simple SVM Regression
The Best params: {'C': 100, 'epsilon': 100}
The Best CVSscore: 0.1222
```

Regression Model 7: LinearSVM

In [89]:

```
# Linear SVM Regression
parms_svr = {'C': [0.01,0.1, 1, 10, 100]}
svrL_R = SVR(kernel='linear')

best_svrLR_pca = GridSearchCV(estimator = svrL_R, param_grid = parms_svr, return_train_best_svrLR_pca.fit(x_train_pca,y_trainset)

model_dataframe.at[6,'PCA'] = best_svrLR_pca.best_score_
print('Linear SVM Regression')
print('The Best params: {}'.format(best_svrLR_pca.best_params_))
print('The Best CVSscore: {:.4f}'.format(best_svrLR_pca.best_score_))
```

```
Linear SVM Regression
The Best params: {'C': 100}
The Best CVSscore: 0.1029
```

The Best CVSscore: 0.1310

Regression Model 8: RBF SVM

In [90]:

```
# RBF SVM Regression
parms_svr = {'C': [0.1, 1, 10, 100], 'gamma': [0.1, 1, 10, 100]}
svrR_R = SVR(kernel='rbf')

best_svrRR_pca = GridSearchCV(estimator = svrR_R, param_grid = parms_svr, return_train_best_svrRR_pca.fit(x_train_pca,y_trainset)

model_dataframe.at[7,'PCA'] = best_svrRR_pca.best_score_
print('RBF SVM Regression')
print('The Best params: {}'.format(best_svrRR_pca.best_params_))
print('The Best CVSscore: {:.4f}'.format(best_svrRR_pca.best_score_))

RBF SVM Regression
The Best params: {'C': 100, 'gamma': 1}
```

Regression Model 9: Poly SVM Regression

In [91]:

```
# Poly SVM Regression
parms_svr = {'C': [1, 10, 100,1000,10000], 'degree': [1,3]}
svrP_R = SVR(kernel='poly')
best_svrPR_pca = GridSearchCV(estimator = svrP_R, param_grid = parms_svr, return_train_best_svrPR_pca.fit(x_train_pca,y_trainset)

model_dataframe.at[8,'PCA'] = best_svrPR_pca.best_score_
print('Poly SVM Regression')
print('The Best params: {}'.format(best_svrPR_pca.best_params_))
print('The Best CVSscore: {:.4f}'.format(best_svrPR_pca.best_score_))
Poly SVM Regression
The Best params: ('C': 10000 | 'degree': 2)
```

```
Poly SVM Regression
The Best params: {'C': 10000, 'degree': 3}
The Best CVSscore: 0.1544
```

Regression Model 10: Decision Tree

In [99]:

```
#import DecisionTree package
from sklearn.tree import DecisionTreeRegressor
```

In [92]:

```
#creating datasets for DecisionTree Reressor
X_selected = x_trainset.to_numpy()[:50,3].reshape(-1,1)
Y_selected = y_trainset[:50]

tree_regressor = DecisionTreeRegressor()
tree_regressor.fit(X_selected, Y_selected)

X_selected_new=npy.linspace(X_selected.min(), X_selected.max(), 50).reshape(50, 1)
Y_predicted = tree_regressor.predict(X_selected_new)
print('Decision Tree Regression')
print('The Best params: {}'.format(best_svrR_pca.best_params_))
print('The Best CVSscore: {:.4f}'.format(best_svrR_pca.best_score_))
```

```
Decision Tree Regression
The Best params: {'C': 100, 'epsilon': 100}
The Best CVSscore: 0.1222
```

In [101]:

In [102]:

```
grid_tree_regressor = GridSearchCV(tree_regressor, parmas, cv=5, return_train_score=True
grid_tree_regressor.fit(x_trainset, y_trainset)
```

Out[102]:

In [104]:

```
#visualization
plot.subplots(figsize = (12,6))
plot.plot(X_selected_new, Y_predicted, c = 'b')
plot.xlabel('Median')
plot.scatter(X_selected, Y_selected)
```

Out[104]:

<matplotlib.collections.PathCollection at 0xac64c4250>

In [105]:

```
#Visualization
 2
 3
   tree_regressor = DecisionTreeRegressor(min_samples_split=5,min_samples_leaf=25)
   tree_regressor.fit(X_selected, Y_selected)
   X_selected_new=npy.linspace(X_selected.min(), X_selected.max(), 50).reshape(50, 1)
 6
   Y_predicted = tree_regressor.predict(X_selected_new)
 7
 9
   plot.subplots(figsize = (12,6))
   plot.plot(X_selected_new, Y_predicted, c = 'b')
10
   plot.xlabel('Median')
11
   plot.scatter(X_selected, Y_selected)
13
```

Out[105]:

<matplotlib.collections.PathCollection at 0xac66ffca0>

PCA Models Comparison

In [500]:

```
# create plot
   pca_df = model_dataframe.replace(r' Regression', '', regex = True)
 2
   pca_df['Model'].replace(' Regression', '')
 5
   fig, ax = plot.subplots(figsize=(12,5))
   index = npy.arange(9)
 7
   bar_width = 0.2
8
   opacity = 0.8
9
10
   rects1 = plot.bar(index, pca_df['Grid Search'], bar_width, alpha=opacity, color='b', la
   rects2 = plot.bar(index + bar_width, pca_df['PCA'], bar_width, alpha=opacity, color='g
11
12
13
   plot.xlabel('Model')
   plot.ylabel('CV Scores')
14
15
   plot.title('Ensemble Modeling')
16
   plot.xticks(index + bar_width, pca_df['Model'])
17
   plot.legend()
18
19
   plot.tight_layout()
20
   plot.show()
```


In [95]:

```
# print values for non-visual comparison
model_dataframe
```

Out[95]:

	Model	Grid Search	PCA	Bagging
0	KNNRegression	0.176396	0.127418	NaN
1	LinearRegression	0.206333	0.135710	NaN
2	RidgeRegression	0.228955	0.134282	NaN
3	LassoRegression	0.228949	0.134253	NaN
4	PolynomialRegression	0.199035	0.191203	NaN
5	Simple SVRRegression	0.177345	0.107605	0.182435
6	SVR LinearRegression	0.159569	0.088960	0.161030
7	SVR RBFRegression	0.168805	0.127953	NaN
8	SVR PolynomialRegression	0.175448	0.126137	NaN
9	Decision Tree Regression	0.149686	NaN	NaN

PCA Automation: Result

In [96]:

```
1
   # Find indexes with increasing accuracy
   inc count = 0
   inc_index = []
 3
   for index in range(9):
        if model_df['Grid Search'][index] < model_df['PCA'][index]:</pre>
 5
            inc count += 1
 6
 7
            inc_index.append(index)
 8
 9
   # Automate result display
   from colorama import Fore, Style
10
11
    if inc count > 4:
12
        print('By comapring with project 1 models, Since PCA increases accuracy for majorit
13
        print(f"{Fore.GREEN}\033[1m helps in getting better results.{Style.RESET ALL}")
14
   else:
15
        print('\033[1mBy comapring with project 1 models, Since PCA DOES NOT increase accur
        print('\033[1mWe can conclude that PCA ',end = '')
16
        print(f'{Fore.RED}\033[1mis not really helpful in getting better results.{Style.RES
17
18
        if inc_count > 0:
            print('\nHowever, PCA helps in getting better results for:')
19
20
            for index in inc index:
                print(f'{Fore.GREEN}\t' + model_df['Model'][index])
21
22
                print(Style.RESET ALL)
```

Since PCA DOES NOT increase accuracy for majority of models We can say, PCA is not helpful getting better results.

Task 8: Final Step: Deep Learning

In [94]:

```
#deep learning
 2 deep_learn = Sequential()
 3 deep_learn.add(Dense(9, input_dim=9, kernel_initializer='normal', activation='relu'))
 4 deep_learn.add(Dense(1, kernel_initializer='normal'))
   deep_learn.compile(loss='mse', optimizer='sgd', metrics = ['mse'])
   deep_learn.fit(x_trainset, y_trainset, epochs = 100, batch_size = 20)
Epoch 1/100
61/61 [============ ] - 6s 2ms/step - loss: 75407.1677 -
mse: 75407.1677
Epoch 2/100
61/61 [========== ] - 0s 2ms/step - loss: 36668.3161 -
mse: 36668.3161
Epoch 3/100
61/61 [================== ] - Øs 2ms/step - loss: 36485.5984 -
mse: 36485.5986
Epoch 4/100
61/61 [============ ] - 0s 2ms/step - loss: 33020.5171 -
mse: 33020.5171
Epoch 5/100
61/61 [============== ] - 0s 2ms/step - loss: 34312.0615 -
mse: 34312.0588
Epoch 6/100
61/61 [============== ] - 0s 2ms/step - loss: 36102.1905 -
mse: 36102.1905
Epoch 7/100
                                     0- 2---/-+--
                                                 1--- 24002 7020
```

In [95]:

```
#train and test models
y_pred_train = deep_learn.predict(x_trainset)
y_pred_test = deep_learn.predict(x_testset)

#model scores
print(f'The Train dataset score: ',r2_score(y_trainset,y_pred_train))
print(f'The Test dataset score: ',r2_score(y_testset,y_pred_test))
```

The Train dataset score: -9.925009772060456e-05 The Test dataset score: -0.008656217820685486

End of Project 2: Regression

Initials:

-rp