- Linguagem Recursiva
 - Problema decidível
 - Possui solução algorítmica

Solução é tratável computacionalmente?

- O fato de um algoritmo resolver um dado problema não significa que seja aceitável na prática
- Exemplo:
 - Caixeiro Viajante
 - Um caixeiro viajante deseja visitar n cidades de tal forma que sua viagem inicie e termine em uma mesma cidade, e cada cidade deve ser visitada uma única vez
 - Supondo que sempre há uma estrada entre duas cidades quaisquer, o problema é encontrar a menor rota para a viagem.

- A figura ilustra o exemplo para quatro cidades c1, c2, c3, c4, em que os números nos arcos indicam a distância entre duas cidades.
- O percurso < c1, c3, c4, c2, c1> é uma solução para o problema, cujo percurso total tem distância 24.

- Um algoritmo simples seria verificar todas as rotas e escolher a menor delas.
- Há (n 1)! rotas possíveis e a distância total percorrida em cada rota envolve n adições, logo o número total de adições é n!
- Suponha agora 50 cidades: o número de adições seria 50! ≈ 10⁶⁴
- Em um computador que executa 10º adições por segundo, o tempo total para resolver o problema com 50 cidades seria maior do que 10⁴⁵ séculos só para executar as adições

Classes de complexidade

Classes de Complexidade

	10	100	10 ³	10 ⁴	10 ⁵	10 ⁶
log ₂ n	3	6	9	13	16	19
n	10	100	1000	104	10 ⁵	10 ⁶
n log ₂ n	30	664	9965	105	10 ⁶	107
n ²	100	104	10 ⁶	108	10 ¹⁰	10 ¹²
n ³	10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	10 ¹⁸
2 ⁿ	10 ³	1030	10300	10300	103000	10300000

```
1 ano = 365 \times 24 \times 60 \times 60 \approx 3 \times 10^7 segundos

1 século \approx 3 \times 10^9 segundos

1 milénio \approx 3 \times 10^{10} segundos
```

Custo Assintótico

- O custo assintótico de uma função f(n) representa o limite do comportamento de custo quando n cresce
- Notação O
- Notação Ω
- Notação Θ

- Notação O
 - Trazida da matemática por Knuth (1968):
 - -g(n) = O(f(n))
 - Lê-se:
 - g(n) é de ordem no máximo f(n)
 - f(n) domina assintoticamente g(n)
 - (f(n) é um limite assintótico superior para g(n))

Formalmente:

$$g(n) = O(f(n)), c > 0 e n0 | 0 \le g(n) \le c.f(n), \forall n >= n0$$

Notação Ω

- Ω define um limite inferior para a função, por um fator constante.
 - Escreve-se $g(n) = \Omega(f(n))$, se existirem constantes positivas c e n0 | para n >= n0, o valor de g(n) é maior ou igual a c.f(n)
- Neste caso, diz-se que f(n) é um limite assintótico inferior para g(n).

Formalmente:

$$g(n) = \Omega(f(n)), c > 0 e n0 | 0 \le c.f(n) \le g(n), \forall n >= n0$$

- Notação Θ
 - A notação Θ limita a função por fatores constantes
 - g(n) = Θ(f(n)) se existirem constantes positivas c1 e c2 e n0 tais que para n >= n0, o valor de g(n) está sempre entre c1.f(n) e c2.f(n) inclusive.

Formalmente:

$$g(n) = \Theta(f(n)), c1 > 0 e c2 > 0 e n0 |$$

0 <= c1.f(n) <= g(n) <= c2.f(n), \forall n >= n0