CH-471A

Motherboard

User's Manual

Connector and Jumper Settings

This chapter describes the main board's jumpers and connectors. For the system layout, please refer to Appendix A.

Connectors

J2: Power Supply Connector

J1: Keyboard Connector

J19:

1-4: Used for external battery connector.

PIN 1 : VDC

PIN 4 : GROUND

J3: Hardware Reset

Open: Normal

Short: Reset

1 : RESET INPUT PIN 2 : GROUND

RESET

Turbo Switch Open: Turbo

Short: Normal

PIN 1 : TURBO ACTIVE

: GROUND

Introduction

■ CPU support

80486DX/DX2, 80486SX, 80487SX PGA package INTEL

SL enhanced PGA package

P24T PGA package

P24C (80486DX4) PGA package

P24D PGA package

AM486DX/DX2/DXL/DX2L PGA package AMD CX486S, CX486DX, CX486DX2 PGA package Cyrix

☐ Frequency: support system running 25/33/40/50 MHz

☐ System chipset: SIS 85C471, 85C407

Cache size: write back direct mapped cache with size of

32/64/128/256KB/512K/1M selection.

■ SRAM type: TAG \$RAM 8KX8/16KX8/32KX8/64KX8

DATA SRAM 8KX8/32KX8/64KX8/128KX8.

DRAM size: four banks up to 128 MB

support 256K/512K/1M/2M/4M/8M/16M 72 pin SIMM DRAM type:

module.

☐ Slots:

seven 16 bit ISA slots, one 8 bit ISA slot, two VESA

master mode slots, one SLAVE mode slot, located at

ISA slot 1,2,3.

Dark Green-PC function:

1-2

Support: HDD standby

Monitor standby

CPU stop clock

-> INTEL SL enhanced Cvrix CX486S/DX/DX2

CPU slow clock (8 MHz) -> INTEL/AMD 486SX/DX/DX2.

■ Support green power supply connector for controlling AC output power and VESA VGA monitor control through VGA feature connector.

On board adjustable voltage regulator for INTEL 80486DX4(P24C) CPU.

Hardware power down switch supported.

Turbo LED

PIN 1 : LED POWER PIN 2 : LED CATHODE

TBLD

J8: Speaker Connector

0000

PIN 1 : DATA OUT : N. C. : GROUND PIN 4 : +5V VDC

SPKR

J7: Keylock and Power LED Connector

00000

PIN 1 : LED POWER

PIN 2 : N. C.

PIN 4 : KEYBOARD INHIBIT

PIN 3,5: GROUND

KBLOCK

Power Saving Switch Connector J4:

Open: Normal

Short: Power down state

NOTE:

When this switch is short, it will force the system to enter power down mode. At the same time the turbo LED will be off to indicate its status.

JP6:

Clock down control select.

Always 2-3 short by SMOUT 0 control.

JP38, 39: Green-PC function connector.

Detail description see page 2-12 and 2-13.

CPU Type Selection

Jumpers

A. CPU Clock Selection

JP8, 12, 13: Pin Header 1 x 2

Frequency	ЛР8	JP12	ЛР13	СРИ Туре
20 MHz	OPEN	OPEN	OPEN	486DX/SX-20 CX486S2/DX2-40
25 MHz	OPEN ,	OPEN	SHORT	486DX/SX-25, 487SX-25 486DX2-50/Cx486DX2-50 Cx486S/DX-25
33 MHz	SHORT	SHORT	SHORT	486DX/SX-33, 487SX-33, P24C 486DX2-66, Cx486DX2-66 Cx486S/DX-33
40 MHz	OPEN	SHORT	SHORT	486DX/SX-40 Cx486S/DX-40
50 MHz	SHORT	OPEN	OPEN	486DX-50 Cx486DX-50

NOTE:

CPU not shown above, please make sure their operation frequency works normally for example: INTEL P24CT series CPU.

B. Cache SRAM Size Selection

JP2,3,4,5,14,16: pin header 1x3 JP1: pin header 1x5

C 1 C'	7724	7700	****				
Cache Size	JP1	JP2	JP3	JP4	JP5	JP14	JP16
32K	1-2, 3-4	2-3	1-2	1-2	1-2	1-2	1-2
64K	2-3, 4-5	1-2	1-2	2-3	1-2	1-2	1-2
128K	1-2, 3-4	2-3	2-3	2-3	1-2	1-2	2-3
256K	2-3, 4-5	1-2	2-3	2-3	2-3	1-2	2-3
512K	1-2, 3-4	2-3	2-3	2-3	2-3	2-3	2-3
1M	2-3, 4-5	1-2	2-3	2-3	2-3	2-3	2-3

C. CPU Type Selection

2-4

TUMPER CPU TYPE	IP20	JP21	129	1831	JP25	JP23	JP26	JP24	ıığı	JP 10	JP30	JP33	JP36	IP28	JP27
486SX	2-3	OPEN	2-3	OPEN	OPEN	OPEN	OPEN	OPEN	2-3	1-2	OPEN	OPEN	OPEN	OPEN	OPEN
486DX	1-2	SHORT	2-3	ĭ	OPEN	OPEN	OPEN	OPEN	23	1.2	OPEN	OPEN	OPEN	OPEN	OPEN
P24T	1.2	SHORT	1-2	53	‡	OPEN	2-3	1-2	1-2	1-2	1-2	1-2	1-2	OPEN	OPEN
SL-ENHANCE 486SX	2-3	OPEN	2-3	OPEN	ĭ	1.2	2-3	₹.	2-3	1-2	OPEN	OPEN	17	OPEN	OPEN
SL-ENHANCE 486DX2	1-2	SHORT	23	ĭ	Ţ	1-2	2-3	\$ \$	2-3	1-2	OPEN	OPEN	1-2	OPEN	OPEN
SL-ENHANCE 486DX	1-2	SHORT	23	ĭ	1	7	2-3	4-5	2-3	1-2	OPEN	OPEN	1.2	OPEN	OPEN
CYRIX 486S (M6)	2-3	OPEN	2.3	OPEN	2-3, 4-5	OPEN	OPEN 1-2, 3-4 2-3	2-3	1-2	2-3	2.3	2-3	1-2	OPEN	OPEN
CYRLX 486DX/DX2	1-2	SHORT	23	7	2-3	OPEN	1-2, 3-4 2-3	23	1-2	2-3	2-3	23	1-2	OPEN	OPEN
P24D	1-2	SHORT	1-2	ĭ	1-2, 3-4 2-3	2.3	2-3	4-5	23	1-2	OPEN	OPEN	1-2	SHORT	SHOKT
INTEL DX4 (P24C)	1-2	SHORT	2-3	ĭ	1	1-2	2-3	<u>\$</u>	2-3	1-2	OPEN	OPEN	7	OPEN	OPEN
AMAREDYI DYEE	1	Taons	7	4	15.5	*****	NEW OPEN	4	-	+	†	OPER	\$	CFEIN	OTEM

JP22: Short for Cx486S2 only

D. VESA Local Bus ID Selection

JP44, JP47: Pin Header 1x3

Wait state selection	JP44	
High speed 0-wait	1-2 Short	
High speed 1-wait	2-3 Short	

VL-Bus operation clock	ЈР47
VESA clock and CPU clock >33 MHz	2-3 Short
VESA clock and CPU clock <=33 MHz	1-2 Short

ı	,				
	LAIOTE				
	NOTE	-			
	امما	486DX2-50	COLLalack	_	25 MHz
	e.g.	400DAZ-50	CF C CIOCK	_	ZU WII IZ
	1	486DY2 66	CPU clock	=	33 MHz
		700D/\Z-00	CI C CIDEX	-	33 W 12

E. CMOS Clear

JP7: Pin Header 1x3

1-2 Short - Normal

2-3 Short - Clear CMOS Data

CAUTION:

Before shorting JP7, first power off the mainboard and should be kept 1-2 short in normal operation.

F. Others

JP37: Regulator voltage selection

1	1-2 short: 3.3 V 3-4 short: 3.15 V
---	---------------------------------------

JP37

JP32,34,35: CPU power selection (for P24C/P24CT) jumper.

Pin header 3 x 3

1-2 (all) : +5 V voltage

2-3 (all) : +3.3/3.15 V (select the JP37

voltage selection).

SRAM Configuration

Cache size	TAG SRAM size	Data SRAM size	Q'ty	Banks	Cacheable memory range
32KB	8K x 8	8K x 8	4 pcs	1	8MB
64KB	8K x 8	8K x 8	8 pcs	2	16MB
128KB	8K x 8	32K x 8	4 pcs	1	32MB
256KB	16K x 8	32K x 8	8 pcs	2	64MB
512KB	32K x 8	128K x 8	4 pcs	1	128MB
1MB	64K x 8	128K x 8	8 pcs	2	128MB

NOTE:

Locations:

TAG SRAM : U11

Data SRAM : Bank 0 - U1, 3, 5, 7

Bank 1 - U2, 4, 6, 8

Cache Speed Options

The external cache can be configured as non-interleaved or interleaved for two bank SRAM installed, for two-bank interleaved cache can use slower cache DATA SRAMs.

The BIOS support Cache Read Burst timing and write cycles for SRAM setting. The cache read provide four options: 2-1-1-1, 3-1-1-1, 2-2-2-2 and 3-2-2-2, and cache write provide two options: 2T or 3T.

DATA SRAM Specification of speed

Cache Configu	ration	Interleave	25MHz	33 MHz	40MHz	50MHz
Read 2-1-1-1	Write 2T	Yes	-35ns	-20ns	-12ns	
Read 2-1-1-1	Write 2T	No	-25ns	-15ns	*****	
Read 2-1-1-1	Write 3T	Yes	-40ns	-25ns	-20ns	
Read 2-1-1-1	Write 3T	No	-25ns	-15ns		
Read 3-1-1-1	Write 3T	Yes	-45ns	-25ns	-20ns	-12ns
Read 3-1-1-1	Write 3T	No	-25ns	-15ns		
Read 2-2-2-2	Write 2T	No	-35ns	-20ns	-12ns	
Read 2-2-2-2	Write 3T	No	-40ns	-25ns	-20ns	
Read 3-2-2-2	Write 3T	No	-65ns	-45ns	-35ns	-25ns
Read 3-2-2-2	Write 3T	Yes	-80ns	-55ns	-45ns	-30ns

TAG SRAM Specification of speed

Cache Configuration		25MHz	33MHz	40Ml l z	50MHz
Read 2-1-1-1/2-2-2-2	Write 2T	-25ns	-20ns	-12ns	
Read 2-1-1-1/2-2-2-2	Write 3T	-25ns	-25ns	-15ns	
Read 3-2-2-2	Write 3T	-45ns	-35ns	-25ns	-20ns

DRAM Bank Configuration

DRAM Speed Options

The DRAM socket SIM1, SIM2, SIM3 and SIM4 support single side or double side 72 pin SIMM DRAM module.

The BIOS support 4 read and 2 write speed options. The 4 read options are "Fastest", "Faster", "Slower" and "Slowest", and 2 write options are OWS or IWS (WS means wait state). The 4 options of DRAM access timing is shown below.

	Fastest 25MHz	Faster 33MHz	Slower 40MHz	Slowest 50MHz
RAS-to-CAS delay	1.5T	2T	2T	3T
Read CAS pulse width	1.5T	2Т	3T	3T
RAS percharge	3T	3T	4 T	5T
CAS percharge	0.5T	1T	1 T	2 T

NOTE:

The CAS percharge can be selected in BIOS "DRAM Write CAS" for 1T or 2T.

The following is the configuration table:

Bank 0 (SIM 1)	Bank 1 (SIM 2)	Bank 2 (SIM 3)	Bank 3 (SIM 4)	Total
256K x 36-S				1MB
256K x 36-S	256K x 36-S			2MB
512K x 36-D				2MB
256K x 36-S	256K x 36-S	512K x 36-D		4MB
512K x 36-D	512K x 36-D			4MB
1M x 36-S				4MB
256K x 36-8	1M x 36-S			5MB
256K x 36-S	256K x 36-S	1M x 36-S		6MB
512K x 36-D	1M x 36-S			6МВ
256K x 36-S	256K x 36-S	512K x 36-D	IM x 36-S	8MB
512K x 36-D	512K x 36-D	1M x 36-S		8MB
1M x 36-S	1M x 36-S		<u> </u>	8MB
2M x 36-D				8MB
256K x 36-S	256K x 36-S	1M x 36-S	1M x 36-S	10MB
256K x 36-S	256K x 36-S	4M x 36-S		18MB
512K x 36-D	512K x 36-D	1M x 36-S	1M x 36-S	12MB
1M x 36-S	1M x 36-S	1M x 36-S		12MB
1M x 36-S	1M x 36-S	1M x 36-S	1M x 36-S	16MB
2M x 36-D	2M x 36-D			16MB
4M x 36-S				16MB
256K x 36-S	4M x 36-\$			17MB
512K x 36-D	4M x 36-S			18MB
512K x 36-D	512K x 36-D	4M x 36-S		20MB
1M x 36-S	4M x 36-S			20MB
512K x 36-D	512K x 36-D	1M x 36-S	4M x 36-S	24MB
1M x 36-S	1M x 36-S	4M x 36-S		24MB

2M x 36-D	2M x 36-D	2M x 36-D		24MB
4M x 36-S	4M x 36-S			32MB
2M x 36-D	2M x 36-D	2M x 36-D	2M x 36-D	32MB
8M x 36-D				32MB
512K X 36-D	512K x 36-D	4M x 36-S	4M x 36-S	36MB
1M x 36-S	4M x 36-S	4M x 36-S		36MB
1M x 36-S	8M x 36-D			36MB
1M x 36-S	1M x 36-S	4M x 36-S	4M x 36-S	40MB
1M x 36-S	1M x 36-D	8M x 36-D'		40MB
4M x 36-S	4M x 36-S	4M x 36-S		48MB
4M x 36-S	8M x 36-D			48MB
4M x 36-S	4M x 36-S	4M x 36-S	4M x 36-S	64MB
4M x 36-S	4M x 36-S	8M x 36-D		64MB
1M x 36-S	16M x 36-S		·	68MB
16M x 36-S				64MB
8M x 36-D	8M x 36-D			64MB
256K x 36-S	16M x 36-S			65MB
1M x 36-S	8M x 36-D	8M x 36-D		68MB
1M x 36-S	1M x 36-D	8M x 36-D	8M x 36-D	72MB
1M x 36-S	1M x 36-S	16M x 36-S		72MB
4M x 36-S	16M x 36-S			80MB
4M x 36-S	8M x 36-D	8M x 36-D		80MB
4M x 36-S	4M x 36-S	8M x36-D	8M x 36-D	96 M B
8M x 36-D	8M x 36-D	8M x 36-D		96MB
4M x 36-S	4M x 36-S	16M x 36-S		96MB
8M x 36-D	8M x 36-D	8M x 36-D	8M x 36-D	128MB
16M x 36-8	16M x 36-S			128MB

NOTE:

2-10

S = Single side, D = Double side.

Green PC Function Support

Monitor Power Down Control

The connector JP38 support hardware method to control peripheral deivce. When power down, it will reduce power consumption. The JP38 are active after system "Doze Time" period.

The following is the application for the JP38.

For peripheral device using power supply AC output control pinout:

1 2

pin 1: Control signal to power supply

pin 2: Ground

Appendix A: System Layout

