

# Recent Advances Concerning OWL and Rules

Pascal Hitzler
Kno.e.sis Center
Wright State University, Dayton, OH
http://www.knoesis.org/pascal/



#### **Textbook**



Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

Foundations of Semantic Web Technologies

Chapman & Hall/CRC, 2010

Choice Magazine Outstanding Academic Title 2010 (one out of seven in Information & Computer Science)



http://www.semantic-web-book.org



#### **Textbook – Chinese translation**



Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

## 语义Web技术基础

Tsinghua University Press (清华大学出版社), 2013.

**Translators:** 

Yong Yu, Haofeng Wang, Guilin Qi (俞勇,王昊奋,漆桂林)

http://www.semantic-web-book.org



## Semantic Web journal



 EiCs: Pascal Hitzler Krzysztof Janowicz

- New journal with significant initial uptake.
- We very much welcome contributions at the "rim" of traditional Semantic Web research – e.g., work which is strongly inspired by a different field.
- Non-standard (open & transparent) review process.



http://www.semantic-web-journal.net/



## The Kno.e.sis Center and My Lab



- Ohio Center of Excellence in Knowledge-enabled Computing Director: Amit Sheth
- 15 faculty (8 in Computer Science) across 4 Departments, with ca. 50 PhD students

Knowledge Engineering Lab (since January 2010)

Led by myself

Currently

8 PhD students

2 Master students

3 undergrads

http://www.knoesis.org/



#### The Semantic Web Stack







#### **Contents**



- 1. Description Logics and OWL
- 2. Rules expressible in description logics
- 3. Extending description logics with rules through nominal schemas
- 4. Algorithmizations for nominal schemas
- 5. Adding non-monotonicity
- 6. Conclusions



### **OWL**



#### Web Ontology Language (OWL)

- W3C Recommendation since 2004
- OWL 2 since 2009
- based on description logics
- essentially, a decidable fragment of first-order predicate logic



## **Description Logics (DLs)**



classes/concepts

A, B, C

unary predicates

A(x), B(X), C(x)

roles/properties

R, S

binary predicates

R(x,y), S(x,y)

individuals

a, b, c

constants

a, b, c



#### Some DL constructors



class conjunction

 $C \sqcap D$ 

 $C(x) \wedge D(x)$ 

existential restriction

∃R.C

 $\exists y (R(x,y) \land C(y))$ 

class inclusion/subsumption

 $C \sqsubseteq D$ 

 $C(x) \rightarrow D(x)$ 

 $C \equiv D$ 

 $C(x) \leftrightarrow D(x)$ 

role chains

$$R_1 \circ \dots \circ R_n \sqsubseteq R$$

$$R_1(x,x_1) \wedge ... \wedge R(x_n,x_{n+1}) \rightarrow R(x,x_{n+1})$$

#### Some DL constructors



ThaiDish ⊑ ∃contains.Nut
Nutallergic □ ∃eats.Nut ⊑ Unhappy
eats ∘ contains ⊑ eats

inverse roles

$$R \equiv S^{-}$$

$$R(x,y) \leftrightarrow S(y,x)$$

This logic is already undecidable! (see e.g. [ISWC 2007])

Name of the logic: ELRI

## **Decidability**



Decidability is a central characteristics of description logics.



## Retaining Decidability



1. Disallow ∃:

**Essentially leads to OWL RL.** 

Fragment of Datalog.

Tractable (i.e., polynomial complexity).

Disallow inverse roles:

**Essentially leads to OWL EL.** 

Akin "in spirit" to existential rules/Datalog+-.

Tractable.

3. Restrict recursion in role chains (a.k.a. *regularity* restriction): With further constructors, leads to OWL DL, a.k.a. SROIQ. Decidable, but not tractable.



#### Further essential DL constructors



The following can be used in OWL EL (logic remains tractable).

Self

$$C(x) \rightarrow R(x,x)$$

Can be used e.g. for typecasting.

nominals

a is a constant

$$C(x) \rightarrow x=a$$

$${a} \equiv {b}$$

$$\rightarrow$$
 a=b

 $A \sqcap \exists R.\{b\} \sqsubseteq C \text{ becomes } A(x) \land R(x,b) \to C(x)$ 

#### Further essential DL constructors



The following are used in expressive (intractable) DLs

class negation

 $\neg C$ 

 $\neg C(x)$ 

class disjunction

 $C \sqcup D$ 

 $C(x) \vee D(x)$ 

universal restriction

∀R.C

 $\forall y (R(x,y) \rightarrow C(y))$ 

There are some more of course.

#### **Contents**



- 1. Description Logics and OWL
- 2. Rules expressible in description logics
- 3. Extending description logics with rules through nominal schemas
- 4. Algorithmizations for nominal schemas
- 5. Adding non-monotonicity
- 6. Conclusions



#### Rules in OWL



#### Which rules can be encoded in OWL?

$$A \sqsubseteq B \text{ becomes } A(x) \to B(x)$$

$$R \sqsubseteq S \text{ becomes } R(x,y) \to S(x,y)$$

$$A \sqcap \exists R. \exists S.B \sqsubseteq C \text{ becomes } A(x) \land R(x,y) \land S(y,z) \land B(z) \rightarrow C(x)$$

$$\{a\} \equiv \{b\} \text{ becomes } \rightarrow a = b.$$

$$A \sqcap B \sqsubseteq \bot \text{ becomes } A(x) \land B(x) \to f$$

$$R \circ S \sqsubseteq T$$
 becomes  $R(x,y) \wedge S(y,z) \to T(x,z)$ 

#### Rules in OWL



#### Which rules can be encoded in OWL?

$$A \sqsubseteq \neg B \sqcup C \text{ becomes } A(x) \land B(x) \to C(x)$$

$$A \sqsubseteq \forall R.B \text{ becomes } A(x) \land R(x,y) \rightarrow B(y)$$

$$A \sqsubseteq B \land C \text{ becomes } A(x) \to B(x) \text{ and } A(x) \to C(x)$$

$$A \sqcup B \to C$$
 becomes  $A(x) \to C(x)$  and  $B(x) \to C(x)$ 

#### Rolification



$$Elephant(x) \land Mouse(y) \rightarrow biggerThan(x, y)$$

• Rolification of a concept A:  $A \equiv \exists R_A.Self$ 

Elephant 
$$\equiv \exists R_{\text{Elephant}}.\text{Self}$$
  
Mouse  $\equiv \exists R_{\text{Mouse}}.\text{Self}$ 

 $R_{\text{Elephant}} \circ U \circ R_{\text{Mouse}} \sqsubseteq \text{biggerThan}$ 

#### Rolification



$$A(x) \wedge R(x,y) \to S(x,y)$$
 becomes  $R_A \circ R \sqsubseteq S$   
 $A(y) \wedge R(x,y) \to S(x,y)$  becomes  $R \circ R_A \sqsubseteq S$   
 $A(x) \wedge B(y) \wedge R(x,y) \to S(x,y)$  becomes  $R_A \circ R \circ R_B \sqsubseteq S$ 

Woman
$$(x) \wedge \text{marriedTo}(x, y) \wedge \text{Man}(y) \rightarrow \text{hasHusband}(x, y)$$
  
 $R_{\text{Woman}} \circ \text{marriedTo} \circ R_{\text{Man}} \sqsubseteq \text{hasHusband}$ 

#### careful – regularity of RBox needs to be retained:

hasHusband  $\sqsubseteq$  marriedTo

#### Rolification



 $\begin{aligned} \text{worksAt}(x,y) \land \text{University}(y) \land \text{supervises}(x,z) \land \text{PhDStudent}(z) \\ \rightarrow \text{professorOf}(x,z) \end{aligned}$ 

 $R_{\exists worksAt.University} \circ supervises \circ R_{PhDStudent} \sqsubseteq professorOf.$ 

## Tree-shaped rules



$$R_1(x,y) \wedge C_1(y) \wedge R_2(y,w) \wedge R_3(y,z) \wedge C_2(z) \wedge R_4(x,x) \rightarrow C_3(x)$$



$$\exists R_1.(C_1 \sqcap \exists R_2. \top \sqcap \exists R_3.C_2) \sqcap \exists R_4.Self \sqsubseteq C_3$$



## **Acyclic Rules**



$$R_1(y,x) \wedge C_1(y) \wedge R_2(w,y) \wedge R_3(y,z) \wedge C_2(z) \wedge R_4(x,x) \rightarrow C_3(x)$$



$$\exists R_1^-.(C_1 \sqcap \exists R_2^-.\top \sqcap \exists R_3.C_2) \sqcap \exists R_4.Self \sqsubseteq C_3$$

## So how can we pinpoint this?



- Tree-shaped bodies
- First argument of the conclusion is the root
- $C(x) \land R(x,a) \land S(x,y) \land D(y) \land T(y,a) \rightarrow E(x)$ 
  - C  $\sqcap \exists R.\{a\} \sqcap \exists S.(D \sqcap \exists T.\{a\}) \sqsubseteq E$



duplicating nominals is ok



## Rule bodies as graphs



$$C(x) \land R(x, a) \land S(x, y) \land D(y) \land T(y, a) \rightarrow P(x, y)$$
 
$$a_1 \longleftarrow x \longrightarrow y \longrightarrow a_2$$

C □ ∃R.{a} ⊑ ∃R1.Self D□ ∃T.{a}) ⊑ ∃R2.Self R1 ∘ S ∘ R2 ⊑ P

## So how can we pinpoint this?



- Tree-shaped bodies
- First argument of the conclusion is the root
- $C(x) \land R(x,a) \land S(x,y) \land D(y) \land T(y,a) \rightarrow V(x,y)$



#### **Contents**



- 1. Description Logics and OWL
- 2. Rules expressible in description logics
- 3. Extending description logics with rules through nominal schemas
- 4. Algorithmizations for nominal schemas
- 5. Adding non-monotonicity
- 6. Conclusions



## Rule bodies as graphs



hasReviewAssignment $(v, x) \land \text{hasAuthor}(x, y) \land \text{atVenue}(x, z)$   $\land \text{hasSubmittedPaper}(v, u) \land \text{hasAuthor}(u, y) \land \text{atVenue}(u, z)$  $\rightarrow \text{hasConflictingAssignedPaper}(v, x)$ 



#### with y,z constants:

 $R_{\exists \text{hasSubmittedPaper.}(\exists \text{hasAuthor.}\{y\} \sqcap \exists \text{atVenue.}\{z\})} \circ \text{hasReviewAssignment} \circ R_{\exists \text{hasAuthor.}\{y\} \sqcap \exists \text{atVenue.}\{z\}}$ 

 $\sqsubseteq$  hasConflictingAssignedPaper



## Non-hybrid syntax: nominal schemas



hasReviewAssignment $(v, x) \land \text{hasAuthor}(x, y) \land \text{atVenue}(x, z)$   $\land \text{hasSubmittedPaper}(v, u) \land \text{hasAuthor}(u, y) \land \text{atVenue}(u, z)$  $\rightarrow \text{hasConflictingAssignedPaper}(v, x)$ 

assume y,z bind only to named individuals
we introduce a new construct, called
nominal schemas
or nominal variables



 $R_{\exists \text{hasSubmittedPaper.}(\exists \text{hasAuthor.}\{y\} \sqcap \exists \text{atVenue.}\{z\})} \circ \text{hasReviewAssignment}$   $\circ R_{\exists \text{hasAuthor.}\{y\} \sqcap \exists \text{atVenue.}\{z\}}$   $\sqsubseteq \text{hasConflictingAssignedPaper}$ 

## Nominal schema example 2



 $\operatorname{hasChild}(x,y) \wedge \operatorname{hasChild}(x,z) \wedge \operatorname{classmate}(y,z) \to C(x)$ 

 $\exists \mathsf{hasChild.} \{z\} \sqcap \exists \mathsf{hasChild.} \exists \mathsf{classmate.} \{z\} \sqsubseteq C$ 



## Adding nominal schemas to OWL 2 DL



- Decidability is retained.
- Complexity is the same.

A naïve implementation is straightforward:

Replace every axiom with nominal schemas by a set of OWL 2 axioms, obtained from *grounding* the nominal schemas.

However, this may result in a lot of new OWL 2 axioms. The naïve approach will probably only work for ontologies with few nominal schemas.

## What do we gain?



- A powerful macro.
- A conceptual bridge to rule formalism:

We can actually also express all DL-safe Datalog rules!

$$R(x,y) \wedge A(y) \wedge S(z,y) \wedge T(x,z) \rightarrow P(z,x)$$

$$\exists U.(\{x\} \sqcap \exists R.\{y\})$$
$$\sqcap \exists U.(\{y\} \sqcap A)$$
$$\sqcap \exists U.(\{z\} \sqcap \exists S.\{y\})$$
$$\sqcap \exists U.(\{x\} \sqcap \exists T.\{z\})$$
$$\sqsubseteq \exists U.(\{z\} \sqcap \exists P.\{x\})$$

#### **Contents**



- Description Logics and OWL
- 2. Rules expressible in description logics
- 3. Extending description logics with rules through nominal schemas
- 4. Algorithmizations for nominal schemas
- 5. Adding non-monotonicity
- 6. Conclusions



## Naïve implementation – experiments



|           | No axioms added |       | 1 different ns |       | 2 different ns |        | 3 different ns |       |
|-----------|-----------------|-------|----------------|-------|----------------|--------|----------------|-------|
| Fam $(5)$ | 0.01"           | 0.00" | 0.01"          | 0.00" | 0.01"          | 0.00"  | 0.04"          | 0.02" |
| Swe (22)  | 3.58"           | 0.08" | 3.73"          | 0.07" | 3.85"          | 0.10"  | 10.86"         | 1.11" |
| Bui (42)  | 2.7"            | 0.16" | 2.5"           | 0.15" | 2.75"          | 0.26"  | 1' 14'         | 6.68" |
| Wor (80)  | 0.11"           | 0.04" | 0.12"          | 0.05" | 1.1"           | 0.55"  | OOM *          | OOM*  |
| Tra (183) | 0.05"           | 0.03" | 0.05"          | 0.02" | 5.66"          | 1.76"  | OOM            | OOM   |
| FTr (368) | 0.03"           | 4.28" | 0.05           | 5.32" | 35.53"         | 42.73" | OOM            | OOM   |
| Eco (482) | 0.04"           | 0.24" | 0.07"          | 0.02" | 56.59"         | 13.67" | OOM            | OOM   |

 $\overline{\text{OOM}} = \text{Out of Memory}$ 

from the TONES repository:

| Ontology | Classes | Data P. | Object P. | Individuals |
|----------|---------|---------|-----------|-------------|
| Fam      | 4       | 1       | 11        | 5           |
| Swe      | 189     | 6       | 25        | 22          |
| Bui      | 686     | 0       | 24        | 42          |
| Wor      | 1842    | 0       | 31        | 80          |
| Tra      | 445     | 4       | 89        | 183         |
| FTr      | 22      | 6       | 52        | 368         |
| Eco      | 339     | 8       | 45        | 482         |



## **Delayed grounding**



Adding nominal schemas to existing tableaux algorithms:

grounding: if 
$$C \in L(s), \{z\}$$
 is a nominal schema in  $C$ ,  $C[z/a_i] \notin L(s)$  for some  $i, 1 \le i \le \ell$  then  $L(s) := L(s) \cup \{C[z/a_i]\}$ 

plus some restrictions on existing tableaux rules, essentially to ensure that (1) no variable binding is broken and (2) nominal schemas are not propagated through the tableau.

## **Further Tableaux Optimizations**



- variant of absorption [Steigmiller, Glimm, Liebig, IJCAI-13]
- essentially, a sort of smart rewriting as pre-processing

**Example 1** Our running example  $\exists r.(\{x\} \sqcap \exists a.\{y\} \sqcap \exists v.\{z\}) \sqcap \exists s.(\exists a.\{y\} \sqcap \exists v.\{z\}) \sqsubseteq \exists c.\{x\} \text{ can be almost completely absorbed into the following axioms:$ 

$$\begin{array}{lll} O \sqsubseteq \downarrow x.T_x & T_z \sqsubseteq \forall v^-.T_2 & (T_1 \sqcap T_2) \sqsubseteq T_3 \\ O \sqsubseteq \downarrow y.T_y & T_3 \sqsubseteq \forall s^-.T_4 & (T_3 \sqcap T_x) \sqsubseteq T_5 \\ O \sqsubseteq \downarrow z.T_z & T_5 \sqsubseteq \forall r^-.T_6 & (T_4 \sqcap T_6) \sqsubseteq T_7. \\ T_y \sqsubseteq \forall a^-.T_1 & T_7 \sqsubseteq gr(\exists c.\{x\}), \end{array}$$

where  $T_x$ ,  $T_y$ ,  $T_z$ ,  $T_1, \ldots, T_7$  are fresh atomic concepts. Only  $\exists c.\{x\}$  cannot be absorbed and has to be grounded on demand.

# **Further Tableaux Optimizations**



#### [Steigmiller, Glimm, Liebig, IJCAI-13]

Table 2: DL-safe Rules for UOBM-Benchmarks

| Name | DL-safe Rule                                                                                                | Matches |
|------|-------------------------------------------------------------------------------------------------------------|---------|
| R1   | $isFirendOf(?x,?y), like(?x,?z), like(?y,?z) \rightarrow hasLink1(?x,?y)$                                   | 4,037   |
| R2   | $isFirendOf(?x,?y), takesCourse(?x,?z), takesCourse(?y,?z) \rightarrow hasLink2(?x,?y)$                     | 82      |
| R3   | $takesCourse(?x,?z), takesCourse(?y,?z), hasSameHomeTownWith(?x,?y) \rightarrow hasLink3(?x,?y)$            | 940     |
| R4   | hasDoctoralDegreeFrom(?x,?z), hasMasterDegreeFrom(?x,?w), hasDoctoralDegreeFrom(?y,?z),                     | 369     |
|      | $hasMasterDegreeFrom(?y,?w), worksFor(?x,?v), worksFor(?y,?v), \rightarrow hasLink4(?x,?y)$                 |         |
| R5   | $isAdvisedBy(?x,?z), isAdvisedBy(?y,?z), like(?x,?w), like(?y,?w), like(?z,?w) \rightarrow hasLink5(?x,?y)$ | 286     |

Table 3: Comparison of the increases in reasoning time of the consistency tests for  $UOBM_1 \setminus D$  extended by rules in seconds

| Rule | upfront grounding |      | direct propagation |         | representative propagation |         | HermiT | Pellet |
|------|-------------------|------|--------------------|---------|----------------------------|---------|--------|--------|
|      |                   |      | without BC         | with BC | without BC                 | with BC | 1.3.7  | 2.3.0  |
| R1   | (10.99)           | mem  | 9.12               | 7.10    | 5.06                       | 3.38    | 31.46  | 6.33   |
| R2   | (10.92)           | 4.05 | 3.33               | 2.33    | 2.13                       | 2.11    | 4.79   | 7.4    |
| R3   | (13.33)           | 3.55 | 1.98               | 0.62    | 2.20                       | 0.76    | 1.67   | 142.25 |
| R4   | (16.44)           | 0.30 | 1.08               | 0.09    | 1.06                       | 0.07    | 1.42   | 122.85 |
| R5   | (time)            | -    | 1.87               | 0.50    | 1.80                       | 0.43    | 28.41  | mem    |
|      |                   |      |                    |         |                            |         |        |        |



# **Algorithm for ELROVn**



#### Based on [Krötzsch, JELIA10]

| Ontology               | Individuals | no ns | 1 ns          | 2  ns      | 3 ns | 4 ns | 5  ns |
|------------------------|-------------|-------|---------------|------------|------|------|-------|
|                        | 100         | 263   | 263 (321)     | 267 (972)  | 273  | 275  | 259   |
| Rex (full ground.)     | 1000        | 480   | 518 (1753)    | 537 (OOM)  | 538  | 545  | 552   |
|                        | 10000       | 2904  | 2901 (133179) | 3120 (OOM) | 3165 | 3192 | 3296  |
|                        | 100         | 22    | 191 (222)     | 201 (1163) | 198  | 202  | 207   |
| Spatial (full ground.) | 1000        | 134   | 417 (1392)    | 415 (OOM)  | 421  | 431  | 432   |
|                        | 10000       | 1322  | 1792 (96437)  | 1817 (OOM) | 1915 | 1888 | 1997  |
|                        | 100         | 62    | 332 (383)     | 284 (1629) | 311  | 288  | 280   |
| Xenopus (full ground.) | 1000        | 193   | 538 (4751)    | 440 (OOM)  | 430  | 456  | 475   |
|                        | 10000       | 1771  | 2119 (319013) | 1843 (OOM) | 1886 | 2038 | 2102  |

# **Approximating OWL through ELROVn**



- We rewrite mincardinality restrictions into maxcardinality restrictions or approximate using an existential.
- We rewrite universal quantification into existential quantification.
- We approximate maxcardinality restrictions using functionality.
- We approximate inverse roles and functionality using nominal schemas.
- We approximate negation using class disjointness.
- We approximate disjunction using conjunction.
  - inverses:  $\{x\} \sqcap \exists R. \{y\} \sqsubseteq \{y\} \sqcap \exists S. \{x\}$
  - functionality  $C \sqsubseteq \leq 1R.D$ :

$$C \sqcap \exists R.(\{z1\} \sqcap D) \sqcap \exists R.(\{z2\} \sqcap D) \sqsubseteq \exists U.(\{z1\} \sqcap \{z2\})$$

# Approximation results (using IRIS)



| Ontology       | HermiT | Fact++ | Pellet | Ours | Ours Recall |
|----------------|--------|--------|--------|------|-------------|
| BAMS           | 3      | 2      | 10     | 107  | 100%        |
| DOLCE          | 1      | 1      | 4      | 53   | 100%        |
| GALEN          | 4      | 2      | 17     | 7840 | 90.8%       |
| $\mathbf{GO}$  | 36     | 75     | 59     | N/A  | N/A         |
| GardinerCorpus | 14     | 6      | 17     | 89   | 92.3%       |
| OBO            | 34     | 61     | 139    | N/A  | N/A         |

### **Contents**



- 1. Initial examples
- 2. Rules expressible in description logics
- Extending description logics with rules through nominal schemas
- 4. Algorithmizations for nominal schemas
- 5. Adding non-monotonicity
- 6. Conclusions



# **Adding non-monotonicity**



- [Knorr, Hitzler, Maier ECAI2012]
- Extension of an autoepistemic description logic approach by nominal schemas.
- Results in a language which incorporates most of the major approaches to non-monotonic extensions of DLs.
- E.g. covers
  - hybrid MKNF [Motik & Rosati], which in turn covers
  - non-disjunctive ASP
  - DL Programs / dlvhex (Eiter et al.)
- Also covers OWL / SROIQ(D) of course.



# **Contents**



- 1. Initial examples
- 2. Rules expressible in description logics
- Extending description logics with rules through nominal schemas
- 4. Algorithmizations for nominal schemas
- 5. Adding non-monotonicity
- 6. Conclusions



# **Conclusions**



- Paradigms are converging.
- More work needed e.g. re.
  - algorithmizations
  - relating OWL EL and existential rules research
  - making non-monotonic reasoning fit for semantic web applications



# **Collaborators**





Collaborators on the covered topics

David Carral, Kno.e.sis Center, Wright State University
Matthias Knorr, UN Lisboa, Portugal
Adila Krisnadhi, Kno.e.sis Center, Wright State University
Markus Krötzsch, Oxford University, UK
Frederick Maier, Kno.e.sis Center, Wright State University
Sebastian Rudolph, Karlsruhe Institute of Technology, Germany
Kunal Sengupta, Kno.e.sis Center, Wright State University
Cong Wang, Kno.e.sis Center, Wright State University





#### A tutorial:

 Adila A. Krisnadhi, Frederick Maier, Pascal Hitzler, OWL and Rules. In: A. Polleres, C. d'Amato, M. Arenas, S. Handschuh, P. Kroner, S. Ossowski, P.F. Patel-Schneider (eds.), Reasoning Web. Semantic Technologies for the Web of Data. 7th International Summer School 2011, Galway, Ireland, August 23-27, 2011, Tutorial Lectures. Lecture Notes in Computer Science Vol. 6848, Springer, Heidelberg, 2011, pp. 382-415.

#### **Background reading:**

- Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations of Semantic Web Technologies. Textbooks in Computing, Chapman and Hall/CRC Press, 2009. http://www.semantic-web-book.org/
- Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, Sebastian Rudolph, OWL 2 Web Ontology Language: Primer (Second Edition). W3C Recommendation, 11 December 2012. http://www.w3.org/TR/owl2-primer/





- Markus Krötzsch, Frederick Maier, Adila Alfa Krisnadhi, Pascal Hitzler, A Better Uncle For OWL – Nominal Schemas for Integrating Rules and Ontologies. In: S. Sadagopan, Krithi Ramamritham, Arun Kumar, M.P. Ravindra, Elisa Bertino, Ravi Kumar (eds.), WWW '11 20th International World Wide Web Conference, Hyderabad, India, March/April 2011. ACM, New York, 2011, pp. 645-654.
- Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, Description Logic Rules. In: Malik Ghallab, Constantine D. Spyropoulos, Nikos Fakotakis, Nikos Avouris (eds.), Proceedings of the 18th European Conference on Artificial Intelligence, ECAI2008, Patras, Greece, July 2008. IOS Press, 2008, pp. 80-84.
- Markus Krötzsch. Description Logic Rules. Studies on the Semantic Web, Vol. 008, IOS Press, 2010. http://www.semantic-web-studies.net/





- Matthias Knorr, David Carral Martinez, Pascal Hitzler, Adila A. Krisnadhi, Frederick Maier, Cong Wang, Recent Advances in Integrating OWL and Rules (Technical Communication).
   In: Markus Krötzsch, Umberto Straccia (eds.), Web Reasoning and Rule Systems, 6th International Conference, RR2012, Vienna, Austria, September 10-12, 2012, Proceedings. Lecture Notes in Computer Science Vol. 7497, Springer, Heidelberg, 2012, pp. 225-228.
- Matthias Knorr, Pascal Hitzler, Frederick Maier, Reconciling OWL and Non-monotonic Rules for the Semantic Web. In: De Raedt, L., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P. (eds.), ECAI 2012, 20th European Conference on Artificial Intelligence, 27-31 August 2012, Montpellier, France. Frontiers in Artificial Intelligence and Applications, Vol. 242, IOS Press, Amsterdam, 2012, pp. 474-479.



- David Carral, Cong Wang, Pascal Hitzler, Towards an Efficient Algorithm to Reason over Description Logics extended with Nominal Schemas. In: Wolfgang Faber, Domenico Lembo (eds.), Proceedings of the 7th International Conference on Web Reasoning and Rule Systems, RR2013, Mannheim, Germany, July 27-29, 2013. Lecture Notes in Computer Science, Vol. 7994, Springer, Heidelberg, 2013, pp. 65-79.
- Cong Wang, David Carral and Pascal Hitzler, SROIQ Syntax Approximation by Using Nominal Schemas. In: Thomas Eiter, Birte Glimm, Yevgeny Kazakov, Markus Krötzsch, DL 2013, Informal Proceedings of the 26th International Workshop on Description Logics, Ulm, Germany, July 23-26, 2013. CEUR Workshop Proceedings Vol. 1014, 2013, pp. 988-999.
- Cong Wang, Pascal Hitzler, A Resolution Procedure for Description Logics with Nominal Schemas. In: H. Takeda and Y. Giu and R. Mizoguchi and Y. Kitamura, Semantic Technology, Second Joint International Conference, JIST 2012, Nara, Japan, December 2-4, 2012, Proceedings. Lecture Notes in Computer Science Vol. 7774, Springer, Heidelberg, 2013, pp. 1-16.





- Adila Krisnadhi, Pascal Hitzler, A Tableau Algorithm for Description Logics with Nominal Schemas. In: Markus Krötzsch, Umberto Straccia (eds.), Web Reasoning and Rule Systems, 6th International Conference, RR2012, Vienna, Austria, September 10-12, 2012, Proceedings. Lecture Notes in Computer Science Vol. 7497, Springer, Heidelberg, 2012, pp. 234-237.
- Andreas Steigmiller, Birte Glimm, Thorsten Liebig, Nominal Schema Absorption. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), AAAI Press/The MIT Press, 2013
- Markus Krötzsch. Efficient Inferencing for OWL EL. In Tomi Janhunen, Ilkka Niemelä, eds.: Proceedings of the 12th European Conference on Logics in Artificial Intelligence, pp. 234–246. Springer 2010.



- Benjamin N. Grosof, Ian Horrocks, Raphael Volz, Stefan Decker: Description logic programs: combining logic programs with description logic. WWW 2003: 48-57
- Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, Mike Dean, SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission 21 May 2004. http://www.w3.org/Submission/SWRL/
- Boris Motik, Ulrike Sattler, Rudi Studer: Query Answering for OWL-DL with rules. J. Web Sem. 3(1): 41-60 (2005)
- Boris Motik, Riccardo Rosati: Reconciling description logics and rules. J. ACM 57(5) (2010)
- Michael Kifer, Harold Boley, RIF Overview (Second Edition). W3C Working Group Note 5 February 2013. http://www.w3.org/TR/rifoverview/
- Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler: ELP: Tractable Rules for OWL 2. International Semantic Web Conference 2008: 649-664





 Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, Conjunctive Queries for a Tractable Fragment of OWL 1.1. In: Karl Aberer, Key-Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-II Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, Philippe Cudre-Mauroux (eds.): The Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007. Lecture Notes in Computer Science 4825, Springer 2007, pp. 310-323.

