Arquitectura de Computadoras

Clase 2 Interrupciones

Interrupciones

- Mecanismo mediante el cual se puede interrumpir el procesamiento normal de la CPU.
 - Ejecución secuencial de instrucciones de un programa
- Pueden ser de origen interno o externo a la CPU.

¿Porqué Interrumpir?

- Por resultado de una ejecución de una instrucción
 - Ej: desbordamiento aritmético ("overflow"), división por cero
- Por un temporizador interno del procesador.
 - Permite al S.O. realizar ciertas funciones de manera regular.
- Por una operación de E/S.
 - Ej: para indicar la finalización normal de una operación.
- Por un fallo de hardware.
 - Ej: error de paridad en la memoria, pérdida de energía.

¿Qué hacer si interrumpen?

- En casi todos los casos, implica transferir el control a otro programa (el GESTOR) que:
 - salve el estado del procesador
 - corrija (o responda a) la causa que ocasionó la interrupción
 - restaure el estado original del procesador
 - retorne a la ejecución normal del programa interrumpido
- ¿continúo ó repito la instrucción interrumpida?

Jerarquía de interrupciones

Si hay múltiples fuentes que pueden solicitar interrupción se establece cuales son mas importantes.

Ser consideran

- No Enmascarables: las que NO pueden ignorarse
 - Indican eventos peligrosos o de alta prioridad.
- Enmascarables: pueden ser ignoradas.
 - Con instrucciones podemos inhibir la posible solicitud.

Interrupciones por hardware

- Son las generadas por dispositivos de E/S.
- Son las "verdaderas" interrupciones.
- El sistema de cómputo tiene que manejar estos eventos externos "no planeados" ó "asincrónicos".
- No están relacionadas con el proceso en ejecución en ese momento.
- Son conocidas como interrupt request.

Traps/excepciones

- Interrupciones por hardware creadas por el procesador en respuesta a ciertos eventos como:
 - Condiciones excepcionales: overflow en ALU de punto flotante.
 - Falla de programa: tratar de ejecutar una instrucción no definida.
 - Fallas de hardware: error de paridad de memoria.
 - Accesos no alineados ó a zonas de memoria protegidos

Interrupciones por software

Muchos procesadores tienen instrucciones explícitas que afectan al procesador de la misma manera que las interrupciones por hardware.

- Generalmente usadas para hacer llamadas a funciones del SO.
 - Esta característica permite que las subrutinas del sistema se carguen en cualquier lugar.
- No requieren conocer la dirección de la rutina en tiempo de ejecución.

Interrupciones por software (2)

Hay sistemas que no permiten hacer una llamada directa a una dirección de la función del SO, por estar en una zona reservada.

- ¿Qué pasa si no tuviera las int. por software?
 - Debería escribir todas las funciones que necesito ó
 - Al cargar un programa habría que "mirar" todas las llamadas a funciones del BIOS y SO y reemplazar en el código las direcciones de todas estas funciones invocadas.

Ciclo de instrucción

- Tres pasos:
 - Captación
 - Ejecución
 - Gestión de interrupciones

Ciclo de interrupción

- Se comprueba si se ha solicitado alguna interrupción.
 - indicada por una señal (flag) de pedido de interrupción.
- Si no hay señal se capta la siguiente instrucción.
- Si hay algún pedido de interrupción pendiente:
 - Se suspende la ejecución del programa en curso
 - Guarda su contexto (próxima instrucción a ejecutar y el estado del procesador)
 - Carga el PC con la dirección de comienzo de una rutina de gestión de interrupción. Se inhiben otras interrupciones.
 - Finalizada la rutina de gestión, el procesador retoma la ejecución del programa del usuario en el punto de interrupción.

Diagrama de estados de un ciclo de instrucción con interrupciones

Interrupciones múltiples (1)

- Interrupciones inhabilitadas
 - El procesador puede y debe ignorar la señal de petición de interrupción si se produce una interrupción en ese momento.
 - Si se hubiera generado una interrupción se mantiene pendiente y se examinará luego una vez que se hayan habilitado nuevamente.
 - Ocurre una interrupción, se inhabilitan, se gestiona la misma y luego se habilitan otra vez.
 - Por lo tanto las interrupciones se manejan en un orden secuencial estricto.

Interrupciones múltiples (2)

- Definir prioridades
 - Una interrupción de prioridad más alta puede interrumpir a un gestor de interrupción de prioridad menor.
 - Cuando se ha gestionado la interrupción de prioridad más alta, el procesador vuelve a las interrupciones previas (de menor prioridad).
 - Terminadas todas las rutinas de gestión de interrupciones se retoma el programa del usuario.

Procesamiento de interrupciones secuenciales

Procesamiento de interrupciones anidadas (priorización)

Reconocimiento de interrupciones

Interrupciones multinivel

- Cada dispositivo que puede provocar interrupción tiene una entrada física de interrupción conectada a la CPU.
- Es muy sencillo, pero muy caro.

Línea de interrupción única

- Una sola entrada física de pedido de interrupción a la que están conectados todos los dispositivos.
- Se debe "preguntar" a cada dispositivo si ha producido el pedido de interrupción (técnica Polling/encuesta).

Reconocimiento de interrupciones (2)

Interrupciones vectorizadas

- El dispositivo que quiere interrumpir además de la señal de pedido de interrupción, debe colocar en el bus de datos un identificador (vector).
 - Lo coloca el periférico directamente ó
 - Controlador de Interrupciones (que se ocupa de todo).

Escenario de trabajo

- Si el procesador tiene una única entrada de pedido de interrupciones.
- Si tenemos varios productores de interrupciones

¿Cómo lo solucionamos?

 Dispositivo controlador programable de interrupciones 'PIC'.

Conexionado

Interrupciones del MSX88

- Hardware
 - Línea INT
 - Con respuesta de reconocimiento INTA
 - Línea NMI

Procesos de atención son por salto indirecto

- Software
 - Instrucción INT xx

Para retorno desde el gestor debe usarse la instrucción IRET

Proceso de atención vectorizado

Tabla de vectores de Interrupción

- Es el nexo entre tipo de interrupción (0...255) y el procedimiento designado para atenderla.
- Cada entrada es una doble palabra (4 bytes).
 - Dirección del procedimiento que brinda el servicio.
 - Ej: 0000yyyy, donde yyyy es la dirección lógica/física.
- Vectores preasignados
 - Tipo 0 finaliza ejecución de programa
 - Tipo 3 punto de parada para depuración/seguimiento
 - Tipo 6 lectura de entrada std. Requiere el uso de BX.
 - Tipo 7 escritura de salida std. Requiere BX y AL.

Controlador de Interrupciones

Registros internos PIC

- EOI: para comandos
 - Para fin de int escribir 20H
- IMR: máscara de int
 - enmascara con '1'
- IRR: petición de int
 - Indica con bit en 1
- ISR: int en servicio
 - Indica con bit en 1
- INT0...INT7
 - c/u con su vector

Conexionado y direccionamiento

- Los registros internos del PIC se sitúan a partir de la dirección 20H.
- Son accedidos con operaciones lectura y escritura en el espacio de E/S (IN y OUT).
- Interrupciones hardware asignadas
 - INT0 tecla F10
 - INT1 Timer
 - INT2 Handshake
 - INT3 DMA
 - INT4 a INT7 no usadas

Referencias

- William Stallings, Capítulo 3.
- MSX88, Manual de usuario.

Lecturas recomendadas

- "Interrupciones en la arquitectura INTEL IA32", Blázquez, J.M. 2004.
- "sobre interrupciones y MSX88", Quiroga et al., Apunte de. cátedra. 2017