fancy V1.0.1 units

Heiko Bauke*

2007/02/01

Abstract

The package fancyunits had been developed based on Marcel Heldoorn's package SIunits. Both packages are designed to support typesetting of physical units of the international system of units (Système International d'Unités) in LATEX2e.

The disadvantage of SIunits, however, is that units (and corresponding numbers) are always typeset using \mathrm, which can look very ugly in text with a sans serif font: The speed of light is $299\,792\,458$ $^{\rm m}/_{\rm s}$. The package fancyunits overcomes this problem and allows consistent typesetting of units. The units are displayed in the current font family: The speed of light is $299\,792\,458$ $^{\rm m}/_{\rm s}$.

Contents

1	Options	2
2	Using fancyunits 2.1 Base units and derived units	
3	Acknowledgements	5
Tn	ndex	15

 $^{{}^{*}\}mathrm{E}\text{-}\mathrm{mail}$: heiko.bauke@physics.ox.ac.uk

1 Options

To use fancyunits load the package by placing the command

 $\usepackage[\langle options \rangle] \{fancyunits\}$

into the preamble of your \LaTeX 2ε document. fancyunits depends on the packages textcomp (in base, so it should always be there) and amstext. Make sure that both of these packages are installed.

The fancyunits package provides the following options:

cdot A · (\cdot) is typeset between composed units, e.g. N·m.

thickspace A thick space (\;) is typeset between composed units, e.g. N m.

mediumspace This option causes a medium space (\:) to be typeset between the units, e.g. N m.

thinspace With this option, only a thin space $(\,)$ is put between the units, e.g. N m.

thick qspace A thick space $(\;)$ is typeset between the number and the unit, e.g. 1 N

mediumqspace Here, only a medium space (\:) is used, e.g. 1 N.

thinqspace Between number and unit a distance of a thin space (\,) is typeset, e.g. 1 N.

spaceqspace With this option, a ~ is used for the space between number and unit, e.g. 1 N.

derivedinbase Additional macros to typeset derived units in their base units are supplied.

derived With this option, a different set of macros for different typesetting of the same derived units is provided.

Default spacing options are thickspace and thickqspace. The macro \usk is used internally for the space between units and \qsk is used between numerical value and physical unit.

2 Using fancyunits

The central macro for typesetting units is \unit{}{}. Its first argument is the numerical value. Its second argument determines the unit. Also a prefix may be given, e.g. \unit{1}{\ampere} yields 1 A. The macro \unit works text mode and also in math mode.

2.1 Base units and derived units

Macros for all SI base units are given in table 1. In addition to the base units there are some derived units, see table 3. These units may be typeset in different variants. To choose between these variants, the user has to apply the package options derivedinbase or derived. Besides the SI units some non-SI units are defined, see table 2.

Table 1: SI base units

physical quantity	$\LaTeX 2_{\varepsilon}$ macro	output
length	\metre	m
	\meter	\mathbf{m}
mass	\kilogram	kg
time	\second	\mathbf{S}
electric current	\ampere	A
thermodynamic temperature	\kelvin	K
amount of substance	\mole	mol
luminous intensity	\candela	cd

Table 2: Typesetting non-SI units

14510 2	· Typeseu	ong non-or unios	
$\overline{\text{LAT}_{EX}} 2_{\varepsilon} \text{macro}$	output	$\LaTeX 2_{\varepsilon}$ macro	output
\minute	min	\atomicmass	u
\hour	h	\gram	g
\dday	d	\ton	\mathbf{t}
\degree	0	\tonne	\mathbf{t}
\paminute	,	\barn	b
\parsecond	"	\hectare	ha
\angstrom	Å	\are	are
\AstroE	AE	\bbar	bar
\lightyear	ly	\curie	Ci
\parsec	pc	\rem	rem
\gal	Gal	\roentgen	R
\liter	L	\oersted	Oe
\litre	1	\electronvolt	eV

Table 3: Composed units derived from the base units

		loaded with	th	loaded with	cn
		derivedinbase	ase	derived	1
$\overline{\text{LATEX}} 2_{\mathcal{E}} \text{ macro}$	output	$\text{LATEX}2_{\mathcal{E}}$ macro	output	$\text{LATEX} 2_{\mathcal{E}} \text{ macro}$	output
\rad	$_{ m rad}$				
\sterad	$_{ m Sr}$				
\radian	rad	\radianbase	${ m m}\ { m m}^{-1}$	\derradian	${ m m~m}^{-1}$
\steradian	$_{ m Sr}$	\steradianbase	$\mathrm{m}^2~\mathrm{m}^{-2}$	\dersteradian	$\mathrm{m}^2~\mathrm{m}^{-2}$
\hertz	$_{ m Hz}$	\hertzbase	s^{-1}	\derhertz	s^{-1}
\newton	Z	\newtonbase	${ m m~kg~s^{ extsf{-}2}}$	\dernewton	${ m m~kg~s^{-2}}$
\pascal	Pa	\pascalbase	$\mathrm{m}^{\text{-}1}~\mathrm{kg~s^{\text{-}2}}$	\derpascal	${ m N~m^{-2}}$
\joule	ſ	\joulebase	$\mathrm{m}^2~\mathrm{kg}~\mathrm{s}^{\text{-}2}$	\derjoule	$_{ m N}$ m
\watt	M	\wattbase	$\mathrm{m}^2~\mathrm{kg}~\mathrm{s}^{ ext{-}3}$	\derwatt	$ m J~s^{-1}$
\coulomb	C	\coulombbase	s A	\dercoulomb	A s
\volt	^	\voltbase	${ m m}^2 \; { m kg \; s^{\text{-}3} \; A^{\text{-}1}}$	\dervolt	${ m W~A^{-1}}$
\farad	ഥ	\faradbase	${ m m}^{-2}~{ m kg}^{-1}~{ m s}^4~{ m A}^2$	\derfarad	$ m C~V^{-1}$
\ohm	ប	\ohmbase	${ m m}^2 \ { m kg \ s^{\text{-}3} \ A^{\text{-}2}}$	\derohm	$ m V~A^{-1}$
\weber	Wb	\weberbase	${ m m}^2 \; { m kg \; s^{\text{-}2} \; A^{\text{-}1}}$	\derweber	${ m m}^2 \ { m kg \ s^{-2} \ A^{-1}}$
\tesla	Н	\teslabase	${ m kg~s^{-2}~A^{-1}}$	\dertesla	$ m Wb~m^{-2}$
\henry	Η	\henrybase	${ m m}^2 \ { m kg \ s^{-2} \ A^{-2}}$	\derhenry	$\mathrm{Wb}~\mathrm{A}^{\text{-}1}$
\celsius	Ç	\celsiusbase	K	\dercelsius	K
\degreecelsius	Ç	\degreecelsiusbase	K	\derdegreecelsius	K
/lumen	lm	\lumenbase	$ m cd~m^2~m^{-2}$	\derlumen	cd sr
\lnx	lx	\luxbase	$ m cd~m^2~m^{-4}$	\derlux	${ m lm\ m^{-2}}$
\becquerel	Bq	\becquerelbase	s-1	\derbecquerel	s^{-1}
\Gray*	Gy	\Graybase*	$\mathrm{m}^2~\mathrm{s}^{-2}$	ackslash	$ m J~kg^{-1}$
\sievert	S	\sievertbase	$\mathrm{m}^2~\mathrm{s}^{-2}$	\dersievert	.J kg ⁻¹

* In contrast to Slunits, the captitalized macro Gy is used for the unit gray. Thus, conflicts with color macros are avoided.

2.2 Composing units

The package fancyunits defines the unit prefixes given in table 4. If the macros for decimal prefixes are not enough or you don't want them, you may use powers with \power{}{}: \power{10}{-36} yields 10⁻³⁶.

The user can create new macros for units, that are not predefined by fancyunits, by using \addunit{}{}. The first argument is the macro name for the unit, the second determines how the unit is typeset. \addunit{\ounce}{oz}, for example, defines the macro \ounce which yields oz.

The fancyunits package provides some additional macros for typesetting composed units in a convenient manner. Unit fractions can by typeset in different ways. The \per-variant is only provided for reasons of compatibility to SIunits.

\per provides a very simple way to typeset fractions. \kilogram\per\second yields kg/s.

\ufrac produces small fractions, e.g. \ufrac{\kilogram}{\second} yields \(\frac{\kilogram} \)

\Ufrac produces medium sized fractions, e.g. \Ufrac{\kilogram}{\second} yields $\frac{kg}{s}$.

\UFrac finally produces big fractions, e.g. \UFrac{\kilogram}{\second} yields $\frac{kg}{s}$.

To set a unit to a power, use the macros in Table 5. Since \square is yet defined in amssymb.sty, \Square is used in fancyunits. The units square metre and cubic metre are so frequently used, that shorthand macros \Squaremetre (yields m²) and \cubicmetre (yields m³) are defined.

And finally, there is a whole bunch of complex macros for composed units. Table 6 gives an overview over all those composed units in fancyunits.

3 Acknowledgements

Many thanks to Frank Küster². He has traslated the original German documentation of fancyunits into English. This document is based on his work.

¹Note that numbers are *not* typeset in math mode. Therefore you cannot use 10^{-36} in the first argument to \unit, and switching to math mode again yields roman numbers, even if you are using a sans serif or typewriter font.

²E-mail: frank@kuesterei.ch

Table 4: Unit prefixes

$\overline{\text{LAT}_{\text{E}} X 2_{\varepsilon} \text{macro}}$	output	$ \underline{\text{FTEX } 2_{\varepsilon} \text{ macro}} $	output
			10 ⁻²⁴
\yocto	У	\yoctod	10
\zepto	${f z}$	\zeptod	10^{-21}
\atto	a	\attod	10^{-18}
\femto	f	\femtod	10^{-15}
\pico	p	\picod	10^{-12}
\nano	n	\nanod	10^{-9}
\micro	μ	\microd	10^{-6}
\milli	\mathbf{m}	\millid	10^{-3}
\centi	\mathbf{c}	\centid	10^{-2}
\deci	d	\decid	10^{-1}
\deca	da	\decad	10^{-1}
\deka	da	\dekad	10^{-1}
		\decaD	10
\hecto	h	\hectod	10^{2}
\kilo	k	\kilod	10^{3}
\mega	\mathbf{M}	\megad	10^{6}
\giga	G	\gigad	10^{9}
\tera	${ m T}$	\terad	10^{12}
\peta	P	\petad	10^{15}
\exa	\mathbf{E}	\exad	10^{18}
\zetta	Z	\zettad	10^{21}
\yotta	Y	\yottad	10^{24}

Table 5: Unit exponents

	o. ome emponemes	
$\overline{\text{LATEX } 2_{\mathcal{E}} \text{ macro}}$	example	output
\Square	\Square\metre	m^2
\Squared	\metre\Squared	m^2
\cubic	\cubic\metre	m^3
\cubed	\metre\cubed	m^3
\fourth	\fourth\metre	m^4
\reciprocal	\reciprocal\metre	$\mathrm{m}^{\text{-}1}$
\rp	\rp\metre	$\mathrm{m}^{\text{-}1}$
\rpsquare	\rpsquare\metre	$\mathrm{m}^{\text{-}2}$
\rpsquared	\metre\rpsquared	$\mathrm{m}^{\text{-}2}$
\rpcubic	\rpcubic\metre	$\mathrm{m}^{\text{-}3}$
\rpcubed	\metre\rpcubed	$\mathrm{m}^{\text{-}3}$
\rpfourth	\rpfourth\metre	$\mathrm{m}^{\text{-}4}$

Table 6: Different variants of composed units

Table 6	3: Different variants of composed units	
physical quantity	$\LaTeX 2_{\mathcal{E}} \ \mathrm{macro}$	output
absorbed dose rate	\Graypersecond	Gy/s
	\Graypersecondnp	$\mathrm{Gy}\;\mathrm{s}^{\text{-}1}$
	\Grayperseconduf	$\frac{\mathrm{Gy}}{\mathrm{s}}$
	\GraypersecondUf	$\frac{Gy}{s}$
		Gy
	\GraypersecondUF	<u>s</u>
acceleration	\metrepersquaresecond	m/s^2
	\metrepersquaresecondnp	$\mathrm{m}\;\mathrm{s}^{\text{-}2}$
	\metrepersquareseconduf	$^{\mathrm{m}}/_{\mathrm{s}^{2}}$
	\metrepersquaresecondUf	$\frac{\mathrm{m}}{\mathrm{s}^2}$
	\	$^{ m s}$
	\metrepersquaresecondUF	$\overline{\mathrm{s}^2}$
angular acceleration	\radianpersquaresecond	rad/s^2
	$\$ radianpersquaresecondnp	$rad s^{-2}$
	\radianpersquareseconduf	$^{\rm rad}/_{\rm s^2}$
	\radianpersquaresecondUf	$\frac{\text{rad}}{\text{s}^2}$
	\ 1:	rad
	\radianpersquaresecondUF	$\overline{\mathrm{s}^2}$
angular moment	\kilogramsquaremetrepersecond	${\rm kg} \ {\rm m}^2/{\rm s}$
	\kilogramsquaremetreperseconduf	$\frac{\text{kg m}^2}{\text{s}}$
	\kilogramsquaremetrepersecondUf	$\frac{\text{kg m}^2}{\text{s}}$
	\kilogramsquaremetrepersecondUF	$\frac{\text{kg m}^2}{\text{s}}$
angular velocity	\radianpersecond	rad/s
	\radianperseconduf	rad/s
	\radianpersecondUf	$\frac{\text{rad}}{\text{s}}$
	\radianpersecondUF	$\frac{\text{rad}}{\text{s}}$
area per volume	\Squaremetrepercubicmetre	$\mathrm{m}^2/\mathrm{m}^3$
•	\Squaremetrepercubicmetrenp	$\mathrm{m^2}^{'}\mathrm{m}^{-3}$
	\Squaremetrepercubicmetreuf	$^{\mathrm{m}^{2}}/_{\mathrm{m}^{3}}$
	\SquaremetrepercubicmetreUf	$\frac{\text{m}^2}{\text{m}^3}$
	\SquaremetrepercubicmetreUF	$\frac{\text{m}^2}{\text{m}^3}$
density per charge	\kilogrampercubicmetrecoulomb	kg/m^3 C
	\kilogrampercubicmetrecoulombnp	$kg m^{-3} C^{-1}$
	\kilogrampercubicmetrecoulombuf	$^{\mathrm{kg}}\!/_{\mathrm{m}^{3}}$ C
	\kilogrampercubicmetrecoulombUf	$\frac{\text{kg}}{\text{m}^3 \text{ C}}$
	\kilogrampercubicmetrecoulombUF	$\frac{\mathrm{kg}}{\mathrm{m}^3 \mathrm{C}}$
	continued	on next page
	Continued	on next page

physical quantity	IATEX 2_{ε} macro	output
dynamic fluidity	\Squaremetrepernewtonsecond	$\mathrm{m^2/N~s}$
	$\Squaremetrepernewtonsecondnp$	${ m m^2~N^{-1}~s^{-1}}$
	$\verb \Squaremetrepernewtonsecond uf $	$^{\mathrm{m}^{2}}/_{\mathrm{N}\ \mathrm{s}}$
	\SquaremetrepernewtonsecondUf	$\frac{\text{m}^2}{\text{N s}}$
	\SquaremetrepernewtonsecondUF	$\frac{\text{m}^2}{\text{N s}}$
dynamic viscosity	\pascalsecond	Pas
	\pascalsecondnp	$\mathrm{kg}\;\mathrm{s}^{\text{-1}}$
	\pascalseconduf	$\frac{\text{kg}}{\text{m s}}$
	\pascalsecondUf	$\frac{\text{kg}}{\text{m s}}$
	\pascalsecondUF	$\frac{\text{kg}}{\text{m s}}$
electrical charge density	\coulombpercubicmetre	$\rm C/m^3$
Ų V	\coulombpercubicmetrenp	$ m C^{'}m^{-3}$
	\coulombpercubicmetreuf	$^{\text{C}}\!/_{\text{m}^3}$
	\coulombpercubicmetreUf	$\frac{\mathrm{C}}{\mathrm{m}^3}$
	\coulombpercubicmetreUF	$\frac{\mathrm{C}}{\mathrm{C}}$
		$\overline{\mathrm{m}^3}$
electrical charge per	\coulombpermol	C/mol
amount of substance	\coulombpermol	C/mol
	$\Squaremetrepercubicmetrenp$	$\mathrm{m^2~m^{-3}}$
	\Squaremetrepercubicmetreuf	$^{\mathrm{m}^{2}}/_{\mathrm{m}^{3}}$
	\SquaremetrepercubicmetreUf	$\frac{\text{m}^2}{\text{m}^3}$
	\SquaremetrepercubicmetreUF	$\frac{\mathrm{m}^2}{\mathrm{m}^3}$
electrical current density	\amperepersquaremetre	A/m^2
·	\amperepersquaremetrenp	$ m A^{'}m^{-2}$
	\amperepersquaremetreuf	A_{m^2}
	\amperepersquaremetreUf	$\frac{A}{m^2}$
		$\overset{\mathbf{m^2}}{\mathbf{A}}$
	\amperepersquaremetreUF	$\frac{n}{m^2}$
electrical dipole moment	\amperemetresecond	Ams
electrical field strength	\voltpermetre	V/m
· ·	\voltpermetrenp	$ m V^{'}m^{-1}$
	\voltpermetreuf	$V_{\rm m}$
	\voltpermetreUf	$\frac{V}{m}$
	\woltnermetrellF	$\underline{\mathbf{V}}$
	\voltpermetreUF	m
energy	\kilowatthour	kWh
energy density	\joulepercubicmetre	$ m J/m^3$
	\joulepercubicmetrenp	$ m J\ m^{-3}$
	continue	d on next page

physical quantity	$\LaTeX 2_{\varepsilon}$ macro	output
	\joulepercubicmetreuf	$J_{\rm m^3}$
	\joulepercubicmetreUf	$\frac{\mathrm{J}}{\mathrm{m}^3}$
	\joulepercubicmetreUF	$\frac{\mathrm{J}}{\mathrm{m}^3}$
energy density	\joulepersquaremetre	J/m^2
(per area)	\joulepersquaremetrenp	$ m J\ m^{-2}$
	\joulepersquaremetreuf	J_{m^2}
	\joulepersquaremetreUf	$\frac{\mathrm{J}}{\mathrm{m}^2}$
	\joulepersquaremetreUF	$\frac{\mathrm{J}}{\mathrm{m}^2}$
force density	\newtonpercubicmetre	N/m^3
	\newtonpercubicmetrenp	${ m N~m^{\text{-}3}}$
	\newtonpercubicmetreuf	$^{\mathrm{N}}\!/_{\mathrm{m}^3}$
	\newtonpercubicmetreUf	$\frac{N}{m^3}$
	\newtonpercubicmetreUF	$\frac{ m N}{ m m^3}$
force per mass	\newtonperkilogram	N/kg
1	\newtonperkilogramnp	$N \text{ kg}^{-1}$
	\newtonperkilogramuf	$^{ m N}\!/_{ m kg}$
	\newtonperkilogramUf	$\frac{N}{kg}$
	\newtonperkilogramUF	$\frac{ m N}{ m kg}$
heat capacity, entropy	\jouleperkelvin	J/K
1 0, 10	\jouleperkelvinnp	$ m J^{'}K^{-1}$
	\jouleperkelvinuf	$^{\mathrm{J}}\!/_{\mathrm{K}}$
	\jouleperkelvinUf	$\frac{J}{K}$
	\jouleperkelvinUF	$\frac{\mathrm{J}}{\mathrm{K}}$
kinetical energy	\Squaremetrepersquaresecond	m^2/s^2
of turbulences	\rpsquaremetrepersquaresecond	$\mathrm{m^2\ s^{-2}}$
	\Squaremetrepersquaresecondnp	$\mathrm{m^2~s^{-2}}$
	\Squaremetrepersquareseconduf	$^{\mathrm{m}^2}\!/_{\mathrm{s}^2}$
	\SquaremetrepersquaresecondUf	$\frac{\text{m}^2}{\text{s}^2}$
	\SquaremetrepersquaresecondUF	$\frac{\mathrm{m}^2}{\mathrm{s}^2}$
kinetical viscosity	\Squaremetrepersecond	$\rm m^2/s$
	\rpsquaremetrepersecond	$\mathrm{m^2\ s^{-1}}$
	\Squaremetrepersecondnp	$\mathrm{m^2~s^{\text{-}1}}$
	\Squaremetreperseconduf	$^{\mathrm{m}^2}/_{\mathrm{s}}$
	\SquaremetrepersecondUf	$\frac{\text{m}^2}{\text{s}}$
	continued	l on next pag

physical quantity	$\LaTeX 2_{\varepsilon}$ macro	output
	\SquaremetrepersecondUF	$\frac{\mathrm{m}^2}{}$
		S
luminosity	\candelapersquaremetre	$\rm cd/m^2$
	\candelapersquaremetrenp	$cd m^{-2}$
	\candelapersquaremetreuf	$^{\mathrm{cd}}\!/_{\mathrm{m}^2}$
	$\c \c \$	$\frac{\mathrm{cd}}{\mathrm{m}^2}$
	\candelapersquaremetreUF	$\frac{\mathrm{cd}}{\mathrm{m}^2}$
magnetical	\amperepermetre	A/m
field strength	\amperepermetrenp	${ m A~m^{-1}}$
	\amperepermetreuf	$^{\mathrm{A}}\!/_{\mathrm{m}}$
	\amperepermetreUf	$\frac{A}{m}$
	\amperepermetreUF	$\frac{\mathrm{A}}{\mathrm{m}}$
magnetical moment	\joulepertesla	$_{ m J/T}$
	\jouleperteslanp	$_{ m J} { m T}^{-1}$
	\jouleperteslauf	J_{T}
	\jouleperteslaUf	$\frac{\mathrm{J}}{\mathrm{T}}$
	\jouleperteslaUF	$rac{ ext{J}}{ ext{T}}$
mass density	\kilogrampercubicmetre	$\frac{1}{\mathrm{kg/m^3}}$
	\kilogrampercubicmetrenp	kg m ⁻³
	\kilogrampercubicmetreuf	$\frac{\text{kg}}{\text{m}^3}$
	\kilogrampercubicmetreUf	$\frac{\mathrm{kg}}{\mathrm{m}^3}$
	\kilogrampercubicmetreUF	$\frac{\mathrm{kg}}{\mathrm{m}^3}$
mass density	\kilogrampersquaremetre	kg/m^2
(per area)	\kilogrampersquaremetrenp	${ m kg~m^{-2}}$
	\kilogrampersquaremetreuf	$^{\mathrm{kg}}\!/_{\mathrm{m}^{2}}$
	$\kilogrampersquaremetreUf$	$\frac{\text{kg}}{\text{m}^2}$
	\kilogrampersquaremetreUF	$\frac{\mathrm{kg}}{\mathrm{m}^2}$
mass density	\kilogrampermetre	kg/m
(per length)	\kilogrampermetrenp	${ m kg~m^{-1}}$
	\kilogrampermetreuf	$\frac{\mathrm{kg}}{\mathrm{m}}$
	\kilogrampermetreuf	$^{\mathrm{kg}}\!/_{\mathrm{m}}$
	\kilogrampermetreUf	$\frac{\text{kg}}{\text{m}}$
	\kilogrampermetreUF	$\frac{\text{kg}}{\text{m}}$
mass flux rate	\kilogrampersecond	kg/s
	\kilogrampersecondnp	$kg s^{-1}$
	\kilogramperseconduf	kg/s
		ued on next pag

physical quantity	$\LaTeX 2_{\varepsilon}$ macro	output
	\kilogrampersecondUf	$\frac{\text{kg}}{\text{s}}$
	\\rilogramporgocondUE	kg
	\kilogrampersecondUF	s
mass flux	$\kilogrampersquaremetresecond$	${\rm kg/m^2~s}$
	\kilogrampersquaremetresecondnp	$kg m^{-2} s^{-1}$
	\kilogrampersquaremetreseconduf	$\frac{\text{kg}}{\text{m}^2}$ s
	\kilogrampersquaremetresecondUf	$\frac{\text{kg}}{\text{m}^2 \text{ s}}$
	\kilogrampersquaremetresecondUF	$\frac{\mathrm{kg}}{\mathrm{m}^2 \mathrm{\ s}}$
mass flux per volume	\kilogrampersecondcubicmetre	$kg/s m^3$
	$\kilogrampersecondcubicmetrenp$	${ m kg~s^{\text{-}1}~m^{\text{-}3}}$
	$\kilogrampersecondcubicmetreuf$	$\frac{\text{kg}}{\text{s m}^3}$
	\kilogrampersecondcubicmetreUf	$\frac{\text{kg}}{\text{s m}^3}$
	\kilogrampersecondcubicmetreUF	$\frac{\text{kg}}{\text{s m}^3}$
molar energy	\joulepermole	J/mol
	\joulepermolenp	$\mathrm{J}\;\mathrm{mol}^{\text{-}1}$
	\joulepermoleuf	$J_{\rm mol}$
	\joulepermoleUf	$\frac{\mathrm{J}}{\mathrm{mol}}$
	\joulepermoleUF	$\frac{ m J}{ m mol}$
molar density	\molepercubicmetre	mol/m^3
v	\molepercubicmetrenp	$\mathrm{mol}^{'}\mathrm{m}^{-3}$
	\molepercubicmetreuf	$\frac{\text{mol}}{\text{m}^3}$
	\molepercubicmetreUf	$\frac{\text{mol}}{\text{m}^3}$
	\molepercubicmetreUF	$\frac{\text{mol}}{\text{m}^3}$
molar heat capacity,	\joulepermolekelvin	J/mol K
molar entropy	\joulepermolekelvinnp	$\mathrm{J}\;\mathrm{mol^{-1}}\;\mathrm{K^{-1}}$
	\joulepermolekelvinuf	$J_{\text{mol K}}$
	\joulepermolekelvinUf	$\frac{J}{\text{mol } K}$
	\joulepermolekelvinUF	$\frac{\mathrm{J}}{\mathrm{mol}\;\mathrm{K}}$
molar mass	\kilogramperkilomole	kg/kmol
	\kilogramperkilomolenp	kg kmol ⁻¹
	\kilogramperkilomoleuf	kg/kmol
	\kilogramperkilomoleUf	$\frac{\text{kg}}{\text{kmol}}$
	\kilogramperkilomoleUF	$\frac{\mathrm{kg}}{\mathrm{kmol}}$
momentum	\kilogrammetrepersecond	kg m/s
	\kilogrammetrepersecondnp	$kg m s^{-1}$
	\kilogrammetreperseconduf	kg m/s
	/1111001 ammont obot pocontant	/ S

physical quantity	$\LaTeX 2_{arepsilon}$ macro	output
	\kilogrammetrepersecondUf	$\frac{\text{kg m}}{\text{s}}$
	\kilogrammetrepersecondUF	$\frac{\text{kg m}}{\text{s}}$
momentum of force,	\newtonmetre	Nm
energy	\newtonmetrenp	N m
momentum of inertia	\kilogramsquaremetre	${\rm kg} {\rm m}^2$
	\kilogramsquaremetrenp	${ m kg} { m m}^2$
change of momentum	\kilogrammetrepersquaresecond	${\rm kg} {\rm m/s^2}$
	\kilogrammetrepersquaresecondnp	${ m kg~m~s^{-2}}$
	\kilogrammetrepersquareseconduf	kg m/s ²
	$\verb \kilogrammetrepersquaresecondUf $	$\frac{\text{kg m}}{\text{s}^2}$
	\kilogrammetrepersquaresecondUF	$\frac{\text{kg m}}{\text{s}^2}$
particle emission rate	\persquaremetresecond	$1/\mathrm{m}^2$ s
	\persquaremetresecondnp	${ m m}^{-2} { m s}^{-1}$
	\persquaremetreseconduf	$^{1}/_{m^{2} s}$
	\persquaremetresecondUf	$\frac{1}{\text{m}^2 \text{ s}}$
	\persquaremetresecondUF	$\frac{1}{\text{m}^2 \text{ s}}$
permeability	\henrypermetre	H/m
	\henrypermetrenp	$ m H^{'} m^{-1}$
	\henrypermetreuf	$H_{\rm m}$
	\henrypermetreUf	$\frac{H}{m}$
	\henrypermetreUF	$\frac{\mathrm{H}}{\mathrm{m}}$
permittivity	\faradpermetre	F/m
ı v	\faradpermetrenp	$F^{'}m^{-1}$
	\faradpermetreuf	$F_{\rm m}$
	\faradpermetreUf	$\underline{\mathbf{F}}$
	· · · · · ·	$\overset{\mathrm{m}}{\mathrm{F}}$
	\faradpermetreUF	_
power density	\uattnersquaremetre	$\frac{\mathrm{m}}{\mathrm{W/m^2}}$
(per area)	\wattpersquaremetre	$ m W~m^{-2}$
(Por area)	\wattpersquaremetrenp \wattpersquaremetreuf	$\frac{W}{m^2}$
	\wattpersquaremetreUf	$\frac{W}{m^2}$
	\wattpersquaremetreUF	$\frac{\mathrm{W}}{\mathrm{m}^2}$
power per mass	\wattperkilogram	W/kg
power per mass	\wattperkilogramnp	$W kg^{-1}$
	\wattperkilogramuf	W _{kg}
	\wattperkilogramUf	$\frac{W}{kg}$
		on next pa

physical quantity	IATEX 2_{ε} macro	output
	\wattperkilogramUF	W
		kg
power per volume	\wattpercubicmetre	W/m^3
	$\$ \wattpercubicmetrenp	$\mathrm{W}\;\mathrm{m}^{\text{-}3}$
	\wattpercubicmetreuf	$^{\mathrm{W}}\!/_{\mathrm{m}^3}$
	\wattpercubicmetreUf	$\frac{\mathrm{W}}{\mathrm{m}^3}$
	\wattpercubicmetreUF	$rac{ m W}{ m m^3}$
pressure	\newtonpersquaremetre	N/m^2
	\newtonpersquaremetrenp	$ m N^{'}m^{-2}$
	\newtonpersquaremetreuf	N_{m^2}
	\newtonpersquaremetreUf	$\frac{N}{m^2}$
	\newtonpersquaremetreUF	$\frac{N}{m^2}$
radiance	\wattpersquaremetresteradian	$W/m^2 sr$
	\wattpersquaremetresteradiannp	$W \text{ m}^{-2} \text{ sr}^{-1}$
	\wattpersquaremetresteradianuf	$W_{\rm m^2 sr}$
	\wattpersquaremetresteradianUf	$\frac{W}{m^2 sr}$
	\wattpersquaremetresteradianUF	$\frac{\mathbf{v}}{\mathbf{m}^2 \text{ sr}}$
radiation exposure	\coulombperkilogram	C/kg
	\coulombperkilogramnp	$ m C~kg^{-1}$
	\coulombperkilogramuf	$\frac{\mathrm{C}}{\mathrm{kg}}$
	\coulombperkilogramUf	$\frac{\mathrm{C}}{\mathrm{kg}}$
	\coulombperkilogramUF	$\frac{\mathrm{C}}{\mathrm{kg}}$
rate of change of	\Squaremetrepercubicsecond	$\mathrm{m}^2/\mathrm{s}^3$
energy of turbulence	\Squaremetrepercubicsecondnp	$\mathrm{m^2\ s^{-3}}$
chors, or cars arone	\Squaremetrepercubicseconduf	2 .
		m ⁻ /_3
	\SquaremetrepercubicsecondUf	$\frac{\text{m}^2}{\text{s}^3}$ $\frac{\text{m}^2}{\text{s}^3}$
	-	$\frac{m^{2}}{s^{3}}$ $\frac{m^{2}}{s^{3}}$ $\frac{m^{2}}{s^{3}}$
specific area	\SquaremetrepercubicsecondUf	$\frac{\frac{m^2}{s^3}}{\frac{m^2}{s^3}}$ $\frac{m^2}{s^3}$
specific area	\SquaremetrepercubicsecondUf \SquaremetrepercubicsecondUF \Squaremetreperkilogram	$\frac{\frac{m^2}{s^3}}{\frac{m^2}{s^3}}$ $\frac{m^2}{s^3}$
specific area	\SquaremetrepercubicsecondUf \SquaremetrepercubicsecondUF \Squaremetreperkilogram \rpsquaremetreperkilogram	$\frac{\frac{m^2}{s^3}}{\frac{m^2}{s^3}}$ $\frac{m^2/kg}{m^2 kg^{-1}}$ $m^2 kg^{-1}$
specific area	\SquaremetrepercubicsecondUf \SquaremetrepercubicsecondUF \Squaremetreperkilogram \rpsquaremetreperkilogram \Squaremetreperkilogramnp	$\frac{\frac{m^{2}}{s^{3}}}{\frac{m^{2}}{s^{3}}}$ $\frac{m^{2}}{s^{3}}$ m^{2}/kg $m^{2} kg^{-1}$ $m^{2} kg^{-1}$
specific area	\SquaremetrepercubicsecondUf \SquaremetrepercubicsecondUF \Squaremetreperkilogram \rpsquaremetreperkilogram	$\begin{array}{c} \frac{m^2}{s^3} \\ \frac{m^2}{s^3} \\ \hline m^2/kg \\ m^2/kg^{-1} \\ m^2/kg^{-1} \\ \end{array}$
specific area	\SquaremetrepercubicsecondUf \SquaremetrepercubicsecondUF \Squaremetreperkilogram \rpsquaremetreperkilogram \Squaremetreperkilogramnp	$\begin{array}{c} \frac{m^2}{s^3} \\ \frac{m^2}{s^3} \\ \hline m^2/kg \\ m^2/kg^{-1} \\ m^2/kg^{-1} \\ \frac{m^2}{kg} \\ \\ \frac{m^2}{kg} \end{array}$
specific area	\SquaremetrepercubicsecondUf \SquaremetrepercubicsecondUF \Squaremetreperkilogram \rpsquaremetreperkilogram \Squaremetreperkilogramnp \Squaremetreperkilogramuf	$\begin{array}{c} \frac{m^2}{s^3} \\ \frac{m^2}{s^3} \\ \\ m^2/kg \\ m^2/kg^{-1} \\ m^2/kg \\ \frac{m^2}{kg} \\ \\ m^2 \end{array}$
	\SquaremetrepercubicsecondUf \SquaremetrepercubicsecondUF \Squaremetreperkilogram \rpsquaremetreperkilogram \Squaremetreperkilogramnp \Squaremetreperkilogramuf \SquaremetreperkilogramUf \SquaremetreperkilogramUF	$\begin{array}{c} \frac{m^2}{s^3} \\ \frac{m^2}{s^3} \\ \end{array}$ $\frac{m^2/kg}{m^2 \ kg^{-1}} \\ m^2 \ kg^{-1} \\ \frac{m^2}{kg} \\ \frac{m^2}{kg} \\ \frac{m^2}{kg} \end{array}$
specific area	\SquaremetrepercubicsecondUf \SquaremetrepercubicsecondUF \Squaremetreperkilogram \rpsquaremetreperkilogram \Squaremetreperkilogramnp \Squaremetreperkilogramuf \SquaremetreperkilogramUf \SquaremetreperkilogramUF	$\begin{array}{c} \frac{m^2}{s^3} \\ \frac{m^2}{s^3} \\ \\ m^2 \ kg \\ \\ m^2 \ kg^{-1} \\ \\ m^2 \ kg^{-1} \\ \\ \frac{m^2}{kg} \\ \\ \frac{m^2}{kg} \\ \\ \frac{m^2}{kg} \\ \\ \\ J/kg \\ \end{array}$
	\SquaremetrepercubicsecondUf \SquaremetrepercubicsecondUF \Squaremetreperkilogram \rpsquaremetreperkilogram \Squaremetreperkilogramnp \Squaremetreperkilogramuf \SquaremetreperkilogramUf \SquaremetreperkilogramUF	$\begin{array}{c} \frac{m^2}{s^3} \\ \frac{m^2}{s^3} \\ \end{array}$ $\frac{m^2/kg}{m^2 \ kg^{-1}} \\ m^2 \ kg^{-1} \\ \frac{m^2/kg}{kg} \\ \frac{m^2}{kg} \\ \frac{m^2}{kg} \end{array}$

physical quantity	I₄TEX 2_{ε} macro	output		
	\jouleperkilogramUf	$\frac{\mathrm{J}}{\mathrm{kg}}$		
	\	$ m \bar{J}$		
	\jouleperkilogramUF	$\overline{\mathrm{kg}}$		
specific heat capacity,	\jouleperkilogramkelvin			
specific entropy	\jouleperkilogramkelvinnp	J kg ⁻¹ K ⁻¹		
	\jouleperkilogramkelvinuf	$^{\mathrm{J}}\!/_{\mathrm{kg~K}}$		
	\jouleperkilogramkelvinUf	$\frac{\mathrm{J}}{\mathrm{kg}\;\mathrm{K}}$		
	\jouleperkilogramkelvinUF	$\frac{ m J}{ m kg~K}$		
specific resistance	\ohmmetre	Ω m		
specific volume	\cubicmetreperkilogram	m^3/kg		
	\rpcubicmetreperkilogram	$\mathrm{m^3~kg^{-1}}$		
	\cubicmetreperkilogramnp	$\mathrm{m^3~kg^{-1}}$		
	\cubicmetreperkilogramuf	$\frac{m^3}{kg}$		
	\cubicmetreperkilogramUf	$\frac{\text{m}^3}{\text{kg}}$		
	\cubicmetreperkilogramUF	$\frac{\mathrm{m}^3}{\mathrm{kg}}$		
surface tension	\newtonpermetre	N/m		
	\newtonpermetrenp	$ m N^{'}m^{-1}$		
	\newtonpermetreuf	$^{\mathrm{N}}\!/_{\mathrm{m}}$		
	\newtonpermetreUf	$\frac{N}{m}$		
	\newtonpermetreUF	$\frac{\mathrm{N}}{\mathrm{m}}$		
thermal conductivity	\wattpermetrekelvin	W/m K		
v	\wattpermetrekelvinnp	$W^{'}m^{-1}K^{-1}$		
	\wattpermetrekelvinuf	$^{\mathrm{W}}\!/_{\mathrm{m}~\mathrm{K}}$		
	\wattpermetrekelvinUf	$\frac{W}{m K}$		
	\wattpermetrekelvinUF	$\frac{\mathrm{W}}{\mathrm{m}\;\mathrm{K}}$		
velocity	\metrepersecond	m/s		
. 515 510 j	\metrepersecondnp	$\mathrm{m}\mathrm{s}^{-1}$		
	\metreperseconduf	m/s		
	\metrepersecondUf	/s <u>m</u> s		
	\metrepersecondUF	<u>m</u>		
	\cubicmotronomaccond	$\frac{\mathrm{s}}{\mathrm{m}^3/\mathrm{s}}$		
volume flux	\cubicmetrepersecond	$\frac{\text{m}^3/\text{s}}{\text{m}^3 \text{s}^{-1}}$		
	\cubicmetrepersecondnp	m ³ /		
	\cubicmetreperseconduf	/ S		
	\cubicmetrepersecondUf	$\frac{\text{m}^3}{\text{s}}$		
	\cubicmetrepersecondUF	$\frac{\mathrm{m}^3}{}$		
	, - 22 2 5 m 3 0 2 0 p 3 2 3 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	\mathbf{s}		

Change History

v1.0		v1.0.1		
General: First resease version.	 1	General: Bugfix resease	. :	1