- % Karis Mao, Jack Shapiro, Lillian Kagy, Trevor Swan
- % ENGR 130 Module 6.1 Report
- % Section E
- % November 16th, 2023

1. Report your group's filled in Table 1, Table 2, Table 3, and Table 4.

 Table 1: Open Loop Control

Final Value (RPM) Max Overshoot %		Rise Time (t _r)	Settling Time (t _s)	
499.9935	25.5822 %	0.9836 s	5.4098 s	

Table 2: *P* Control

P	Final Value (RPM)	Max Overshoot %	Rise Time (t _r)	Settling Time (t _s)	
20	952.3930	67.7767	.2740	5	
40	975.6128	75.7923	.1471	5.0490	
60	983.6038	79.7028	.1207	5.3119 5.3054	
80	987.6655	82.1372	.1047		
100	990.0873	83.8530	.0938	5.0938	

Table 4: *D* Control

D	Final Value (RPM)	Max Overshoot %	Rise Time (t _r)	Settling Time (t _s)	
4	975.6098	32.0994	0.1799	1.1511	
8	975.6098	16.5723	0.1615	0.6862	
12	975.6098	9.7556	0.1267	0.5987	
16	975.6098	6.3302	0.1099	0.4525	
20	975.6098	4.4554	0.0874	0.1166	

Table 3: *I* Control

I	Final Value (RPM)	Max Overshoot %	Rise Time (t _r)	Settling Time (t _s)	
4	996.8911	2.3699	0.0971	0.1311	
8	999.6897	2.2291	0.0970	0.1310	
12	999.9783	2.3477	0.0969	0.1309	
16	999.9992	2.4959	0.0969	0.1308	
20	1000	2.6483	0.0968	0.1307	

- 2. What waveform characteristic does the P gain of the controller affect most?
 - The waveform characteristic that the P gain of the controller affects the most is max overshoot and rise time. These characteristics have the most significant change with the increase of P.
- 3. How does the D gain help the controller achieve our goal?
 - D helps to calculate how much is left before reaching the goal value which helps it slow down as it approaches to decrease the overshoot and the settling time.
- 4. What was your deviation from the setpoint without the I gain? Is it beneficial to use the I gain in this scenario?
 - The deviation from the setpoint was about 25 RPM without I, so it is beneficial to use the I gain in this scenario.

- 5. Can you think of any other devices where a PID controller is critical to use?
 - PID controller devices like heaters for your house would be a beneficial use of a control system that can adapt and recognize change in the environment. A heater with an adaptive thermostat would be able to keep the house at a proper temperature while only using the optimal amount of energy to do so.

	ENGR 130 Module Planning		Module	<u>6</u>	Section	E	Team	1	
			Scheduled		Actual				
#	Task	Deadline	Start	End	Start	End	Primary	Secondary	% Complete
	Type teams code for Lab 1	11/14	11/14	11/14	11/14	11/14	Karis	Lily	100
Г	Write algorithm for Lab 1	11/14	11/14	11/14	11/14	11/14	Trevor	Jack, Lily	100
	Double check function	11/14	11/14	11/14	11/14	11/14	Trevor	All	100
	Fill out table 1	11/14	11/14	11/14	11/14	11/14	Karis	n/a	100
	Type teams code for Lab 2	11/16	11/16	11/16	11/16	11/16	Trevor	Karis	100
Г	Fill out table 2	11/16	11/16	11/16	11/16	11/16	Jack	Trevor	100
	Fill out table 3	11/16	11/16	11/16	11/16	11/16	Karis	Trevor	100
	Fill out table 4	11/16	11/16	11/16	11/16	11/16	Lily	Trevor	100
	Test electrical componets	11/16	11/16	11/16	11/16	11/16	Trevor	Jack	100
	Build circut for lab 2	11/16	11/16	11/16	11/16	11/16	Lily	Jack	100
	Discuss Lab 2 Questions	11/19	11/16	11/19	11/16	11/16	Jack	Lily	100
	Type teams responses for Lab 2	11/19	11/16	11/19	11/16	11/16	Lily	Jack	100
	Assemble Module 6 Part 1 Report	11/20	11/19	11/20	11/16	11/16	Trevor	n/a	100
	Proofread Module 6 Part 1 Report	11/20	11/19	11/20	11/16	11/16	All	n/a	100
	Submit Module 6 Part 1 Report	11/20	11/19	11/20	11/16	11/16	Trevor	n/a	100
	Build the circut for Lab 3	12/4	11/28	11/28			Jack	Lily	0
	Use the osciliscope with the circut	12/4	11/28	11/28			Karis	Trevor	0
	Calibrate the Infared Sensor	12/4	11/28	11/28			Trevor	Karis	0
	Build the Puck Levitation System	12/4	11/28	11/28			Lily	Jack	0
	Control the Puck manually	12/4	11/28	11/28			Trevor	all	0
	Type code for Lab 3	12/4	11/28	11/28			Lily	Karis	0
	Discuss Lab 3 Questions	12/4	11/28	11/30			all	n/a	0
	Type Responses for Lab 3	12/4	11/28	11/30			all	n/a	0
	Type Code for Lab 4	12/4	11/30	11/30			Karis	Jack	0
	Use Oscilliscope for Lab 4	12/4	11/30	11/30			Trevor	Karis	0
	Discuss Lab 4 Questions	12/4	11/30	12/2			Lily	Trevor	0
	Type teams responses for Lab 4	12/4	11/30	12/2			all	n/a	0
	Assemble Module 6 Part 2 Report	12/4	12/2	12/2			Karis	all	0
Г	Proofread Module 6 Part 2 Report	12/4	12/2	12/3			all	n/a	0
	Submit Module 6 Part 2 Report	12/4	12/2	12/3			Trevor	n/a	0
			Loct	Indated					
			1	pdated 11/16					
			Jack	11/16					