Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Campus Florianópolis
Curso Superior de Engenharia Eletrônica
Eletrônica I

FONTE DE TENSÃO LINEAR SIMÉTRICA

Bruno Eduardo Ferreira Alexsandro Gehlen

Florianópolis, 06 de julho de 2015.

Utilizando um transformador para reduzir a tensão da rede em cerca de 12V, seguido por uma ponte completa que retifica a onda de entrada em paralelo com o filtro puramente capacitivo para que a tensão decresça linearmente.

Para a saída do transformador foi realizado o seguinte cálculo:

$$V_p = 12.\sqrt{2} = 16,97V$$

Considerando a queda de tensão sobre 2 diodos da ponte retificadora, a tensão para o restante do circuito é expressa por:

$$V_p - 1.4 = 16.97 - 1.4 = 15.57V$$

O filtro capacitivo foi calculado conforme segue:

$$\frac{V_o}{2fRC} = V_r$$

$$C = \frac{1}{2.60.0,2} = 830\mu F$$

Neste caso, por não existir um capacitor comercial com o valor calculado, foi utilizado um capacitor de 1000µF.

Na sequência foi inserido um circuito regulador tipo série conforme a Figura 1 a seguir:

Figura 1: Regulador tipo série com amp-op

Neste circuito o regulador o amp-op faz a comparação entre a tensão de referência do diodo Zener com a tensão realimentada nos resistores R_1 e R_2 . Caso a tensão de saída varie, o transistor Q_1 mantém a tensão de saída constante.

O diodo Zener escolhido foi de 5,1V, o R_2 de $10k\Omega$, e R_1 foi calculado da seguinte forma para que se tenha 7,0V na saída.

$$V_o = \left(1 + \frac{R_1}{R_2}\right) \cdot V_z$$

$$7 = \left(1 + \frac{R_1}{10 \cdot 10^3}\right) \cdot 5.1$$

$$R_1 = 3.73k\Omega$$

Para que a tensão de saída fique o mais próximo possível do valor desejado (7,0V), foi inserido um trimpot para alterar a resistência e assim chegar ao valor desejado.

Como a potência máxima suportada pelo Zener é de 0,5W, foi calculado o valor de R₃ para que o Zener atue em uma faixa de tensão adequada, para isto foram calculados valores mínimo e máximo para este resistor.

$$I_{zmax=\frac{P_z}{V_z}}$$

$$I_{zmax=\frac{0.5}{5.1}}$$

$$I_{zmax=0.098}$$

Para a corrente mínima consideramos que seja 10% do valor encontrado para a corrente máxima, ou seja, I_{zmin}=0,0098.

Como valor máximo da tensão de entrada, foi adotado 16V, e 13,9V como valor mínimo.

$$R_{3max=\frac{V_i-V_z}{Izmin}}$$

$$R_{3max=\frac{16-5,1}{0,0098}}$$

$$R_{3max=1112,24\Omega}$$

$$R_{3min=\frac{13,9-5,1}{0.098}}$$

$$R_{3min=89.80\Omega}$$

Identificadas as faixas de resistência em que o R_3 irá atuar, foi escolhido um resistor de 470Ω .

Em paralelo com o diodo Zener, foram inseridos 2 capacitores de $100\mu F$ em paralelo como.

Com o objetivo de realizar uma proteção contra curto-circuito ou sobrecarga, foi adicionado ao circuito mostrado anteriormente, um circuito limitador de corrente conforme Figura 2 a seguir:

Figura 2: Circuito regulador com limitador de corrente

O circuito limitador funciona de modo que quando I_L aumenta, a queda de tensão sobre o resistor R_{SC} também aumenta, de modo que, ao atingir um determinado valor, o transistor Q_2 começa a conduzir, desviando a corrente que passa pelo outro transistor, reduzindo então a corrente que passa sobre Q_1 .

Para encontrar o valor de R_{SC} , foi realizado o cálculo dele para o pior caso, que é quando a corrente é máximo sobre a carga, ou seja, quando a carga é mínima, neste caso foi utilizado o valor de 50Ω .

$$I_{max} = \frac{7}{50} = 0,140mA$$
$$140mA + 10\% = 154mA$$

Considerando a queda no transistor de 0,7V:

$$0.7 = 150.10^{-3} R_{SC}$$

 $R_{SC} = 4.5\Omega$

Para sair uma tensão de -7,0V na carga, foi elaborado o mesmo circuito porém com transistor PNP onde anteriormente havia um NPN, a alimentação do amp-op foi invertida sendo o positivo ligado ao terra e o negativo à saída de

tensão negativa vindo da ponte retificadora, além de inverter o diodo Zener. Ambos os circuitos montados são mostrados na Figura 3 a seguir:

Figura 3: Esquemático da fonte de tensão

O cálculo da corrente dissipada sobre os transistors foi calculada da seguinte forma:

$$P = (V_i - V_o).I$$

 $P = (12 - 7).0,140$
 $P = 700 \text{ mW}$

Os transistors utilizados foram o BC338 e o BC212. De acordo com o datasheet dos fabricantes dos transistors, o BC338 suporta uma potência dissipada de 625 mW, e o BC212 suporta 350mW. Devido ao motivo de que a potência no circuito ser maior que a potência suportada pelos transistors, houve um aquecimento muito alto, sendo recomendado utilizar transistors que suportem maiores potências.

A partir da Figura 3, foi desenvolvido o layout da placa de circuito conforme mostra a Figura 4.

Figura 4: Layout da placa

Tendo como base os cálculos realizados, foram escolhidos os seguintes componentes:

Tabela 1 – Lista de componentes utilizados

Componente	Valor/Tipo	Quantidade
Diodo	1N4007	4
Capacitor	1000µF	2
Capacitor	100µF	4
Capacitor	100nF	2
Resistor	4,7Ω	2
Resistor	10kΩ	2
Resistor	470Ω	2
Trimpot	10kΩ	2
Zener	5,1V	2
Amp-op	LM358	2
Transistor	BC338	2
Transistor	BC212	2
Led	Vermelho	2

As seguintes medidas foram realizadas utilizando um multímetro de precisão:

Tabela 2: Medidas de tensão sobre a carga

Tensão de	Tensão de	Carga (Ω)	Tensão	Ripple	Percentual
entrada no	saída no Trafo		sobre a	(mV)	de Ripple
Trafo (V)	(V)		carga(V)		(%)
200	10,30	50	-6,96	4,24	0,06
200		500	-6,98	1,70	0,02
200		50	6,97	3,82	0,05
200		500	7,00	0,99	0,01
220	11,40	50	-6,96	3,45	0,05

220		500	-6,99	1,56	0,02
220		50	6,99	3,14	0,04
220		500	7,02	0,93	0,01
240	12,40	50	-6,99	3,18	0,05
240		500	-7,02	1,51	0,02
240		50	7,00	2,73	0,04
240		500	7,03	0,85	0,01

A imagem a seguir demonstra a forma de onda do filtro capacitivo na saída da ponte retificadora.

Figura 5: Onda retificada

Sobre a carga foi gerado o gráfico da onda de Ripple sobre ela, neste caso o foi realizada a medição sobre uma carga de 50Ω. As figuras 6, e 7 mostram o ripple com a tensão de saída 7,0V e -7,0V, com a tensão da rede aplicada na entrada do circuito.

Figura 6: Ripple sobre a carga com tensão de 7,0V

Figura 7: Ripple sobre a carga com tensão de -7,0V

Novamente sobre a carga de 50Ω foram realizadas as medidas do ripple. Desta vez foi aplicada uma tensão de 240,0V na entrada do circuito.

Figura 8: Ripple sobre a carga com tensão de -7,0V

Figura 9: Ripple sobre a carga com tensão de 7,0V

As figuras 10 e 11 mostram o ripple sobre a carga de 50Ω quando aplicada uma tensão de entrada no circuito de 220,0V.

Figura 10: Ripple sobre a carga com tensão de 7,0V

Figura 11: Ripple sobre a carga com tensão de -7,0V

As figuras 12 e 13 mostram o ripple sobre a carga de 50Ω quando aplicada uma tensão de entrada no circuito de 200,0V.

Figura 12: Ripple sobre a carga com tensão de 7,0V

Figura 13: Ripple sobre a carga com tensão de -7,0V

Para testar o limitador de corrente, foi verificada inicialmente a tensão de saída no circuito que marcou 7,0V sobre uma carga de 50Ω , em seguida a carga foi trocada para 20Ω . As figuras 14 e 15 mostram respectivamente as duas situações.

Figura 14: Tensão sobre a carga de 50Ω

Figura 15: Tensão sobre a carga de 20Ω

O mesmo teste realizado para o limitador de corrente para 7,0V foi realizado também para -7,0V, conforme as figuras 16 e 17 a seguir.

Figura 16: Tensão sobre a carga de 50Ω

Figura 17: Tensão sobre a carga de 20Ω

A placa final é mostrada nas figuras 18 e 19:

Figura 18: PCB visão superior

Figura 19: PCB visão inferior

REFERÊNCIAS

BARBI, Ivo. Eletrônica de Potência. 6.ed Florianópolis: Edição do Autor, 2006.

BOYLESTAD, R. L. **Dispositivos eletrônicos e teoria de circuitos**. 8 ed. São Paulo: Pearson- Prentice Hall, 2004.