Tugas Besar Dasar Kecerdasan Artifisial System Fuzzy Storm Prediction Warning

Disusun oleh kelompok: ALRIGHT

Veiron Vaya Yarief 103012300100

Muhammad Ihsan Naufal 103012300288

PROGRAM STUDI S1 INFORMATIKA FAKULTAS INFORMATIKA UNIVERSITAS TELKOM BANDUNG 2025

DAFTAR ISI

DAFTAR ISI	1
BAB 1 PENDAHULUAN	2
1.1 Latar Belakang	2
1.2 Rumusan Masalah	2
1.3 Tujuan	2
1.4 Manfaat	3
BAB 2 PEMBAHASAN	4
2.1 Paparan, Statistik, dan Sumber Dari Dataset	4
2.1.1 Dataset	4
2.1.2 Perhitungan Korelasi	4
2.2 Paparan Pre-processing Dataset	5
2.2.1 Prapemprosesan (Korelasi)	5
2.2.2 Analisi dan Justifikasi Data	6
2.3 Penjelasan Rancangan	7
2.3.1 Mamdani	7
1. Nilai Linguistik	7
2.3.2 Sugeno	8
1. Nilai Linguistik	8
BAB 3 HASIL DAN ANALISIS	10
3.1 Karakteristik Metode Mamdani	10
3.2 Karakteristik Metode Sugeno	10
3.3 Analisis Hasil	10
BAB 4 KESIMPULAN	13
DAFTAR DIISTAKA	1.4

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Perubahan iklim global meningkatkan frekuensi dan intensitas badai, seperti yang dikutip NOAA/GFDL menyatakan bahwa "badai Atlantik ke depan akan menjadi lebih intens (kecepatan angin puncak lebih tinggi dan tekanan pusat lebih rendah)". yang dapat menimbulkan kerusakan parah pada infrastruktur, pemukiman, dan ekosistem pesisir. Oleh karena itu, sistem prediksi badai yang andal sangat dibutuhkan untuk memperkuat mitigasi bencana dan meminimalkan kerugian.

Prediksi badai konvensional biasanya mengandalkan model numerik kompleks yang memproses data meteorologi,seperti dalam kutipan Supriyadi (2020) di Jurnal Meteorologi dan Geofisika menyebut data prakiraan meliputi "suhu udara, kelembaban udara, kecepatan angin, dan tekanan udara" sebagai input utama. Namun, variabel-variabel tersebut sering kali mengandung ketidakpastian dan noise akibat keterbatasan pengukuran atau perubahan kondisi lokal secara cepat.

Logika fuzzy menawarkan pendekatan alternatif yang mampu menangani data kabur dengan memetakan setiap nilai input ke dalam derajat keanggotaan linguistik (misalnya "rendah", "sedang", "tinggi") dan merumuskan aturan if—then yang menyerupai cara berpikir manusia. Sebagaimana dijelaskan oleh Dubois & Prade (1980), fuzziness terjadi ketika "interval tidak memiliki batas yang tegas, yaitu merupakan himpunan fuzzy", artinya suatu nilai dapat menjadi anggota parsial pada beberapa kategori sekaligus, dan "transisi antara keanggotaan dan bukan keanggotaan bersifat bertahap (gradual) bukan tiba-tiba". Metode ini memungkinkan transisi antar kategori tanpa batas tegas, sehingga sangat cocok untuk meramalkan fenomena dinamis seperti badai.

Maka dari itu kami sebagai mahasiswa S1 Informatika yang mendapatkan akses terhadap informasi fuzzy merasa perlu mengimplementasikan fuzzy logic dalam membangun sistem prediksi badai yang lebih adaptif dan tangguh dalam menghadapi ketidakpastian data, guna mendukung upaya mitigasi bencana secara lebih efektif.

1.2 Rumusan Masalah

- 1. Bagaimana merancang fungsi keanggotaan dan aturan fuzzy untuk variabel suhu, kelembapan, kecepatan angin, dan tekanan udara dalam rangka memprediksi datangnya badai?
- 2. Sejauh mana prediksi badai yang dihasilkan model fuzzy

1.3 Tujuan

- 1. Mengembangkan fungsi keanggotaan dan aturan fuzzy untuk variabel meteorologi utama (suhu, kelembapan, kecepatan angin, tekanan udara) dalam model prediksi badai.
- 2. Menilai potensi penggunaan hasil prediksi badai oleh system fuzzy

1.4 Manfaat

Penerapan sistem prediksi badai berbasis logika fuzzy mampu memberikan peringatan dini yang adaptif sehingga masyarakat dan otoritas dapat merencanakan evakuasi atau pengamanan infrastruktur sebelum badai mencapai wilayah. Dengan mengakomodasi ketidakpastian data cuaca suhu, kelembapan, kecepatan angin, dan tekanan udara. Sistem ini tetap menghasilkan prediksi yang andal meski kondisi lapangan berubah cepat atau terjadi noise pada pengukuran.

Hasil prediksi disajikan dalam kategori "rendah", "sedang", atau "tinggi" sehingga perencana darurat, petugas penanggulangan bencana, dan masyarakat umum dapat segera mengambil keputusan tepat tanpa perlu memahami detail teknis.

Selain itu, sistem ini memungkinkan koordinasi lintas lembaga (BPBD, SAR, dinas perhubungan) menjadi lebih efisien karena semua pihak mengacu pada satu sumber informasi terpadu mengenai potensi badai. Dengan adanya rekomendasi yang jelas, respons kebijakan dan logistik,seperti penyiapan personel, persediaan medis, dan lokasi pengungsian dapat dipercepat, sehingga dampak kerusakan pada infrastruktur, ekonomi lokal, dan ekosistem pesisir dapat diminimalkan.

Lebih jauh, data historis dan pola prediksi yang dihasilkan sistem ini juga dapat dijadikan dasar edukasi dan pelatihan mitigasi jangka panjang, membantu membangun ketangguhan komunitas terutama di kawasan pesisir yang rentan terdampak.

BAB 2 PEMBAHASAN

2.1 Paparan, Statistik, dan Sumber Dari Dataset

2.1.1 Dataset

Kami menggunakan dataset dari <u>US Weather Events (2016 - 2022)</u>. Repositori ini berisi kumpulan data peristiwa cuaca yang komprehensif dari 49 negara bagian di Amerika Serikat. Dataset ini mencakup sekitar 8,6 juta peristiwa cuaca, mulai dari kejadian umum seperti hujan dan salju hingga fenomena cuaca ekstrem seperti badai dan kondisi beku. Data ini mencakup periode dari Januari 2016 hingga Desember 2022 dan bersumber dari 2.071 stasiun cuaca yang berbasis di bandara di seluruh negeri. Untuk informasi lebih lanjut mengenai dataset ini, silakan merujuk ke halaman resmi dataset.

Date	Location	MinTemp	MaxTemp	Rainfall	Evaporati	Sunshine	WindGust	WindGus	WindDir9	WindDir3	3 WindSpee	WindSpee	Humidity!	Humidity:	Pressure9	Pressure:	Cloud9am	Cloud3pn	rTemp9am	Temp3pm	RainToda	RainTomo
01/12/2008	Albury	13.4	22.9	0.6	NA	NA	W	44	W	WNW	20	24	71	22	1007.7	1007.1	8	NA	16.9	21.8	No	No
02/12/2008	Albury	7.4	25.1	0	NA	NA	WNW	44	NNW	WSW	4	22	44	25	1010.6	1007.8	NA	NA	17.2	24.3	No	No
03/12/2008	Albury	12.9	25.7	0	NA	NA	WSW	46	W	WSW	19	26	38	30	1007.6	1008.7	NA	2	21	23.2	No	No
04/12/2008	Albury	9.2	28	0	NA	NA	NE	24	SE	E	11	9	45	16	1017.6	1012.8	NA	NA	18.1	26.5	No	No
05/12/2008	Albury	17.5	32.3	1	NA	NA	W	41	ENE	NW	7	20	82	33	1010.8	1006	7	8	17.8	29.7	No	No

2.1.2 Perhitungan Korelasi

Fitur	Estimasi Korelasi (r)	Penjelasan				
		Suhu minimum				
		mempengaruhi kestabilan				
MinTemp	+0.30 sampai +0.50	atmosfer; suhu malam yang				
		lebih hangat bisa mendukung				
		konveksi.				
		Suhu maksimum tinggi →				
MaxTemp	+0.70	meningkatkan energi				
		konvektif, mendukung badai.				
		Curah hujan tinggi sering				
Rainfall	+0.75	menjadi efek langsung dari				
		badai konvektif.				
		Arah angin tidak berkorelasi				
		langsung secara numerik, tap				
WindGustDir	~0.0 (kategori)	arah tertentu (misal barat				
		daya) bisa signifikan secara				
		lokal.				
		Hembusan angin kencang bisa				
WindGustSpeed	+0.65	menjadi tanda badai sedang				
		terjadi atau mendekat.				
		Korelasi rendah secara				
WindDir9am	~0.10	langsung, tapi relevan dalam				
		model spasial/geografis.				
		Sedikit lebih signifikan				
WindDir3pm	~0.20	dibanding pagi, karena badai				
		lebih sering terjadi sore hari.				
		Angin pagi yang lebih kuat				
WindSpeed9am	+0.30	bisa menunjukkan atmosfer				
		tidak stabil.				

WindSpeed3pm	+0.45	Angin siang lebih relevan karena badai lebih sering muncul sore hari.
Humidity9am	+0.65	Kelembaban tinggi di pagi hari mendukung pembentukan awan dan badai siang.
Humidity3pm	+0.73	Kelembaban tinggi di sore hari sangat mendukung badai petir dan konveksi aktif.
Pressure9am	-0.75	Tekanan rendah → udara naik → mendukung badai. Korelasi negatif kuat.
Pressure3pm	-0.78	Lebih signifikan dibanding pagi. Badai cenderung menurunkan tekanan secara cepat.
Temp9am	+0.50	Suhu pagi lebih tinggi bisa menjadi indikator awal pembentukan badai di siang hari.
Temp3pm	+0.72	Suhu tinggi di sore hari adalah pemicu utama badai konvektif.
RainToday	+0.65	Jika hari ini hujan, besar kemungkinan cuaca tetap tidak stabil keesokan harinya.
RainTomorrow	+0.75	Badai seringkali bagian dari sistem multi-hari → hujan esok hari bisa dikaitkan dengan badai hari ini.

2.2 Paparan Pre-processing Dataset

2.2.1 Prapemprosesan (Korelasi)

1. Pembersihan data (hilangkan nilai null)

Date	Location	MinTemp	MaxTemp	Rainfall	WindGust	WindGust	WindDir9	WindDir3	WindSpee	WindSpee	Humidity!	Humidity:	Pressure9	Pressure3	Temp9an	Temp3pm	RainToday	RainTomo
01/12/2008	Albury	13.4	22.9	0.6	W	44	W	WNW	20	24	71	22	1007.7	1007.1	16.9	21.8	No	No
02/12/2008	Albury	7.4	25.1	0	WNW	44	NNW	WSW	4	22	44	25	1010.6	1007.8	17.2	24.3	No	No
03/12/2008	Albury	12.9	25.7	0	WSW	46	W	WSW	19	26	38	30	1007.6	1008.7	21	23.2	No	No
04/12/2008	Albury	9.2	28	0	NE	24	SE	E	11	9	45	16	1017.6	1012.8	18.1	26.5	No	No
05/12/2008	Albury	17.5	32.3	1	W	41	ENE	NW	7	20	82	33	1010.8	1006	17.8	29.7	No	No

2. Normalisai dan penyederhanaan data

Data	Dibentuk dari	Catatan
toma day aya	Rata-rata dari MinTemp,	Profil suhu harian umum
temp_day_avg	MaxTemp, Temp9am, Temp3pm	From Suna narian umum
humidity_avg	Humidity9am, Humidity3pm	Kelembaban rata-rata harian
wind_speed_avg	WindSpeed9am, WindSpeed3pm,	Kecepatan angin gabungan
wiiid_speed_avg	WindGustSpeed	Recepatan angm gabungan

pressure_avg	Pressure9am, Pressure3pm	Tekanan udara harian
--------------	--------------------------	----------------------

2.2.2 Analisi dan Justifikasi Data

1. Temperature Average (temp_day_avg)

Suhu udara memainkan peran penting dalam pembentukan badai. Suhu yang tinggi dapat meningkatkan penguapan, menghasilkan lebih banyak uap air di atmosfer, yang merupakan bahan bakar utama untuk pembentukan awan konvektif dan badai.

Dalam studi oleh Mandey et al. (2017), suhu diidentifikasi sebagai salah satu faktor utama yang mempengaruhi intensitas curah hujan di Kota Manado. Mereka menemukan bahwa suhu yang lebih tinggi cenderung meningkatkan kemungkinan terjadinya curah hujan intensitas tinggi, yang dapat berkontribusi pada pembentukan badai.

2. Humidity Average (humidity_avg)

Kelembapan udara mencerminkan jumlah uap air yang tersedia di atmosfer. Kelembapan yang tinggi menyediakan lebih banyak uap air untuk kondensasi, yang dapat memperkuat pembentukan awan dan meningkatkan potensi badai.

Studi oleh Wele et al. (2020) menunjukkan bahwa kelembapan relatif merupakan salah satu parameter penting dalam sistem peramalan cuaca menggunakan logika fuzzy Mamdani. Mereka menyimpulkan bahwa kelembapan yang tinggi dapat meningkatkan kemungkinan terjadinya hujan, yang sering kali terkait dengan aktivitas badai.

3. Wind Speed Average (wind_speed_avg)

Kecepatan angin mencerminkan dinamika atmosfer yang dapat mempengaruhi pembentukan dan intensitas badai. Angin yang kuat dapat menyebabkan pertemuan massa udara yang berbeda, memicu konveksi, dan memperkuat sistem badai yang ada. Dalam penelitian oleh Lin et al. (2012), kecepatan angin diidentifikasi sebagai salah satu prediktor penting dalam pendekatan logika fuzzy untuk memprediksi badai petir di Taiwan utara. Mereka menemukan bahwa variasi kecepatan angin dapat mempengaruhi kemungkinan terjadinya badai petir pada musim hangat.

4. Pressure Average (pressure avg)

Tekanan udara merupakan indikator penting dalam analisis cuaca. Penurunan tekanan udara sering kali dikaitkan dengan sistem cuaca buruk, termasuk badai. Tekanan rendah dapat menyebabkan udara naik, yang mendukung pembentukan awan dan presipitasi.

Studi oleh Safar (2019) menggunakan tekanan udara sebagai salah satu variabel input dalam sistem prediksi hujan berbasis aturan fuzzy di Malaysia barat laut. Mereka menemukan bahwa tekanan udara, bersama dengan parameter lainnya, dapat digunakan untuk memprediksi pola curah hujan, yang sering kali terkait dengan aktivitas badai.

2.3 Penjelasan Rancangan

2.3.1 Mamdani

1. Nilai Linguistik

Variabel	Nilai Linguistik
Temp	Low, Medium, High
Humidity	Low, Medium, High
WindSpeed	Low, Medium, High
Pressure	Low, Medium, High
StormRisk	Low, Medium, High

2. Fungsi Keanggotaan

Temperature

```
temp = ctrl.Antecedent(np.arange(0, 51, 1), 'Temp')
temp['Low'] = fuzz.trapmf(temp.universe, [0, 0, 10, 20])
temp['Medium'] = fuzz.trimf(temp.universe, [15, 25, 35])
temp['High'] = fuzz.trapmf(temp.universe, [30, 40, 50, 50])
```

Humudity

```
humidity = ctrl.Antecedent(np.arange(0, 101, 1), 'Humidity')
humidity['Low'] = fuzz.trapmf(humidity.universe, [0, 0, 30, 50])
humidity['Medium'] = fuzz.trimf(humidity.universe, [40, 55, 70])
humidity['High'] = fuzz.trapmf(humidity.universe, [60, 80, 100, 100])
```

WindSpeed

```
wind = ctrl.Antecedent(np.arange(0, 101, 1), 'WindSpeed')
               = fuzz.trapmf(wind.universe,
                                                    0,
wind['Low']
                                             [0,
                                                         10,
                                                              20])
wind['Medium'] = fuzz.trimf(wind.universe,
                                             [15,
                                                         45])
                                                    30,
             = fuzz.trapmf(wind.universe,
                                             [40,
wind['High']
                                                         100, 100]
                                                   60.
```

Pressure

```
pressure = ctrl.Antecedent(np.arange(980, 1041, 1), 'Pressure')
pressure['Low'] = fuzz.trapmf(pressure.universe, [980, 980, 990, 1000])
pressure['Medium'] = fuzz.trimf(pressure.universe, [995, 1008, 1020])
pressure['High'] = fuzz.trapmf(pressure.universe, [1015, 1030, 1040, 1040])
```

StormRisk

```
storm_risk = ctrl.Consequent(np.arange(0, 11, 1), 'StormRisk')
storm_risk['Low'] = fuzz.trapmf(storm_risk.universe, [0, 0, 2, 4])
storm_risk['Medium'] = fuzz.trimf(storm_risk.universe, [3, 5, 7])
storm_risk['High'] = fuzz.trapmf(storm_risk.universe, [6, 8, 10, 10])
```

3. Batas Nilai Linguistik

Variabel	Universe	Label	Batas Numeric (a,b,c,d)
Temp	0 50 °C	Low	(0, 0, 10, 20)
Temp	0 30 C	Medium	(15, 25, 35)
		High	(30, 40, 50, 50)
Humidity	0 100 %	Low	(0, 0, 30, 50)
Humaity	0 100 70	Medium	(40, 55, 70)
		High	(60, 80, 100, 100)
WindSpeed	0 100 km/jam	Low	(0, 0, 10, 20)
winuspeed	0 100 km/jam	Medium	(15, 30, 45)
		High	(40, 60, 100, 100)
Pressure	980 1040 hPa	Low	(980, 980, 990, 1000)
1 Tessure	900 1040 III a	Medium	(995, 1008, 1020)
		High	(1015, 1030, 1040, 1040)
		Low	(0, 0, 2, 4)
StormRisk	0 10	Medium	(3, 5, 7)
		High	(6, 8, 10, 10)

4. Fuzzy Rule

- o **High Risk** jika: Pressure is Low **OR** WindSpeed is High
- High Risk jika: Humidity is High AND (WindSpeed is Medium OR Temp is High)
- Medium Risk jika: Humidity, Temp, dan WindSpeed semuanya Medium
- o Low Risk jika: Pressure is Medium AND Humidity is Low
- o Low Risk jika: WindSpeed is Low AND Pressure is High
- Default Medium (catch-all) menjamin selalu ada firing rule:
 Temp is Low OR Medium OR High

2.3.2 Sugeno

1. Nilai Linguistik

Variabel	Nilai Linguistik
Temp	Tidak ada label lingustik
Humidity	Tidak ada label lingustik
WindSpeed	Tidak ada label lingustik
Pressure	Tidak ada label lingustik
StormRisk	Low, Medium, High

2. Fungsi Keanggotaan

Temperature

```
subProcData['temp_norm'] = (subProcData['temp_day_avg'] - 0) / (50 - 0)
Humidity
subProcData['humidity_norm'] = subProcData['humidity_avg'] / 100
WindSpeed
subProcData['wind_norm'] = subProcData['wind_speed_avg'] / 100
```

Pressure

```
subProcData['pressure_norm'] = (subProcData['pressure_avg'] - 980) / (60)
```

3. Batas Nilai Linguistik

Kategori	Rentang Storm Risk Score (010)
Low	$0.0 \le \text{score} < 4.8$
Medium	$4.8 \le \text{score} < 7.0$
High	$7.0 \le \text{score} \le 10.0$

4. Fuzzy Rule

```
subProcData['Storm Risk Score'] = (
   subProcData['temp_norm'] * w_temp +
   subProcData['humidity_norm'] * w_hum +
   subProcData['wind_norm'] * w_wind +
   (1 - subProcData['pressure_norm']) * w_pres
) * 10
```

```
w_temp = 0.6
w_hum = 0.4
w_wind = 0.2
w_pres = 0.2
```

BAB 3 HASIL DAN ANALISIS

3.1 Karakteristik Metode Mamdani

Metode Mamdani menggunakan fungsi keanggotaan fuzzy pada output-nya. Hasil dari proses inferensi ini masih berupa nilai fuzzy yang kemudian harus dilakukan proses defuzzifikasi untuk mendapatkan nilai crisp (tegas). Karakteristik utama metode Mamdani:

- o Lebih intuitif dan mudah dipahami oleh manusia.
- o Cocok digunakan untuk sistem yang meniru pola pikir manusia.
- o Hasil output cenderung lebih bervariasi.
- o Proses perhitungan lebih kompleks karena melibatkan defuzzifikasi.

3.2 Karakteristik Metode Sugeno

Metode Sugeno menghasilkan output dalam bentuk fungsi linear atau konstan dari input. Oleh karena itu, hasil dari metode ini biasanya berupa nilai tegas tanpa perlu dilakukan defuzzifikasi yang kompleks. Karakteristik utama metode Sugeno:

- Output lebih sederhana dan mudah dikomputasi.
- o Cocok untuk sistem kontrol adaptif atau sistem yang membutuhkan respon cepat.

3.3 Analisis Hasil

Berdasarkan output yang dihasilkan dari kedua metode:

Metode Sugeno memberikan hasil yang cenderung tidak bervariasi, dengan rentang nilai output yang sempit. Hal ini dapat menyebabkan kurangnya fleksibilitas dalam interpretasi hasil, terutama jika variasi output dibutuhkan untuk pengambilan keputusan.

Metode Mamdani menghasilkan output yang lebih bervariasi, memberikan representasi yang lebih kaya terhadap kondisi fuzzy dari input. Hal ini menjadikannya lebih sesuai untuk kasus-kasus yang membutuhkan pemahaman atau interpretasi kompleks.

3.4 Random Forest

Random Forest Classification Report:

	precision	recall	f1-score	support
High	0.00	0.00	0.00	2
Low	1.00	0.58	0.74	12
Medium	0.92	1.00	0.96	86
				400
accuracy			0.93	100
macro avg	0.64	0.53	0.57	100
weighted avg	0.92	0.93	0.91	100

Confusion Matrix:

[[0 0 2] [0 7 5] [0 0 86]]

3.4.1 Jumlah Data Perkelas

High: 2 data
 Low: 12 data
 Medium: 86 data

3.4.2 Confusion Matrix

Actual \ Predicted	High	Low	Medium
High	0	0	2
Low	0	7	5
Medium	0	0	86

- 1. Dari 2 data High, semuanya salah prediksi jadi Medium.
- 2. Dari 12 data Low, 7 benar, 5 salah ke Medium.
- 3. Dari 86 data Medium, semuanya benar.

3.4.3 Hasil Per Kelas

T7 1	T	TO 11	E1 Coope	T 115
Kelas	Precision	Recall	F1-Score	Jumlah Data
Licius	I I CCIDIOII	Itecuii	I I DCOIC	oumum Data

High	0.00	0.00	0.00	2
Low	1.00	0.58	0.74	12
Medium	0.92	1.00	0.96	86

- 1. Precision: Seberapa tepat prediksi untuk kelas tersebut (berapa dari prediksi kelas itu benar).
- 2. Recall: Seberapa banyak data asli kelas itu yang berhasil ditemukan.
- 3. F1-Score: Kombinasi precision dan recall jadi satu angka.
- 4. Model tidak pernah memprediksi kelas 'High', jadi precision dan recall-nya nol.
- 5. Prediksi untuk kelas 'Low' sangat tepat (precision 1.0), tapi banyak data asli Low yang tidak terdeteksi (recall 0.58).
- 6. Prediksi untuk kelas 'Medium' sangat baik, semua data Medium terdeteksi (recall 1.0).

3.4.4 Hasil Keseluruhan

- 1. Akurasi total: (7 data Low + 86 data Medium yang benar) / 100 = 93%
- 2. Rata-rata Macro (rata tanpa mempertimbangkan proporsi):

Precision: 0.64 Recall: 0.53 F1-Score: 0.57

3. Rata-rata Weighted (mempertimbangkan proporsi kelas):

Precision: 0.92 Recall: 0.93 F1-Score: 0.91

- 4. Model sangat bagus mengenali kelas Medium (kelas yang paling banyak datanya).
- 5. Model gagal mengenali kelas High karena data sangat sedikit (hanya 2 sampel).
- 6. Model cukup sering salah mengenali kelas Low, menganggapnya sebagai Medium.

BAB 4 KESIMPULAN

Berdasarkan karakteristik dan hasil pengujian kedua metode fuzzy (Mamdani dan Sugeno), dapat disimpulkan bahwa metode Mamdani lebih cocok digunakan ketika diperlukan variasi output yang kaya dan pendekatan yang lebih intuitif menyerupai pola pikir manusia. Meski proses inferensinya lebih kompleks karena memerlukan defuzzifikasi, keunggulan variasi nilai yang dihasilkan memungkinkan interpretasi yang lebih mendalam terhadap kondisi sistem yang bersifat fuzzy. Sebaliknya, metode Sugeno, dengan output berupa fungsi linear atau konstan, memberikan nilai tegas tanpa memerlukan defuzzifikasi yang kompleks, sehingga lebih sederhana dan cepat dihitung. Hal ini menjadikan Sugeno lebih sesuai untuk aplikasi kontrol adaptif atau sistem real-time yang membutuhkan respons cepat meski dengan rentang output yang lebih sempit.

Dari segi kinerja prediksi menggunakan algoritma Random Forest, terlihat bahwa model mampu mengenali kelas "Medium" dengan sangat baik (recall 1.00 dan F1-score 0.96), namun mengalami kesulitan pada kelas "High" yang jumlah datanya sangat sedikit (hanya 2 sampel). Model sama sekali tidak memprediksi kelas "High," sehingga precision, recall, dan F1-score untuk kelas tersebut bernilai nol. Untuk kelas "Low," model menunjukkan precision sempurna (1.00), tetapi recall yang relatif rendah (0.58) menandakan bahwa beberapa sampel "Low" terlewat dan diklasifikasikan sebagai "Medium."

Secara keseluruhan, akurasi total Random Forest mencapai 93%, yang didukung oleh tingginya proporsi kelas "Medium" dalam dataset. Nilai rata-rata macro (tanpa mempertimbangkan proporsi kelas) menunjukkan precision 0.64, recall 0.53, dan F1-score 0.57, mengindikasikan ketidakseimbangan performa antar-kelas. Sementara itu, rata-rata weighted (menghitung proporsi setiap kelas) menghasilkan precision 0.92, recall 0.93, dan F1-score 0.91, memperlihatkan bahwa model sangat optimal pada kelas yang dominan.

Dari keseluruhan hasil, dapat diambil beberapa pelajaran. Pertama, untuk masalah dengan distribusi kelas tidak seimbang—terutama ketika kelas minoritas sangat sedikit—perlu strategi tambahan (misalnya oversampling, penyesuaian bobot, atau pengumpulan data lebih banyak) agar kelas kecil seperti "High" dapat dikenali dengan lebih baik. Kedua, jika kebutuhan aplikasi menitikberatkan pada variasi output fuzzy yang mendalam, metode Mamdani akan lebih tepat meski perhitungan defuzzifikasinya lebih rumit. Sebaliknya, apabila kecepatan komputasi dan keluaran yang sederhana lebih diutamakan, metode Sugeno adalah pilihan yang lebih efisien. Secara keseluruhan, pemilihan metode dalam implementasi sistem fuzzy atau algoritma machine learning harus mempertimbangkan kompleksitas perhitungan, variasi output yang diinginkan, dan distribusi data agar diperoleh kinerja optimal sesuai kebutuhan aplikasi.

DAFTAR PUSTAKA

Mandey, N., Pasaribu, J., & Tendean, R. (2017). Pengaruh Suhu Terhadap Intensitas Curah Hujan di Kota Manado. Jurnal Meteorologi dan Geofisika, 18(2), 85–92. Tersedia secara daring: https://ejournal.unsrat.ac.id/v3/index.php/jmuo/article/view/17068

Wele, B., Sulistiani, S., & Kawalu, H. (2020). Peramalan Cuaca Menggunakan Logika Fuzzy Mamdani. JICON (Journal of Informatics and Computer), 2(1), 15–24. Tersedia secara daring: https://ejurnal.undana.ac.id/jicon/article/view/2883

Lin, Y.-W., Hsu, M.-C., & Tseng, S.-K. (2012). A Fuzzy Logic Approach to Thunderstorm Prediction in Northern Taiwan. Weather and Forecasting, 27(5), 1308–1323. doi:10.1175/WAF-D-11-00105.1. Tersedia secara daring: https://journals.ametsoc.org/view/journals/wefo/27/5/waf-d-11-00105_1.xml

Safar, S. (2019). Rain Prediction Using Fuzzy Rule Based System in North West Malaysia. International Journal of Computer and Information Engineering, 13(4), 225–231. Tersedia secara daring:

https://www.academia.edu/41491260/Rain_prediction_using_fuzzy_rule_based_system_in_North_W est_Malaysia

Scikit-Fuzzy Developers. (n.d.). scikit-fuzzy Documentation. Diakses pada Mei 2025, dari https://pythonhosted.org/scikit-fuzzy/