Name:	COMBN
Signature:	

P525/1 Chemistry Paper 1 MARCH 2023 2 hours

Uganda Advanced Certificate of Education S.5 CHEMISTRY Paper 1 2 hours

INSTRUCTIONS TO CANDIDATES:

- Answer all questions in section A and any three questions in section B
- All questions must be answered in the spaces provided
- The Periodic Table, with relative atomic masses, is supplied.
- Mathematical tables(3 figure tables) are adequate or non-programmable scientific electronic calculators may be used
- Illustrate your answers with equations where applicable.

Where necessary, use the following:

- Molar gas constant R = 8.31 JK -1 mol -1
- Molar volume of a gas at s.t.p is 22.4 litres.
- Standard temperature = 273 K
- Standard pressure = 101325 N m ⁻²

For Examiner's Use Only																	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

KIBUGO Page 1 of 14

SECTION A

1.	(a)	State Graham's l	aw of diffusi	on.		(01 mark)
		•••••					
	••••						
Unde	r t	the s	tain volume of oxy ame conditions, th	e same volur	_	X diffused	in 112s.
Calcu	ılat	te th	e formula mass of	X		(04	marks)
•••••	••••	•••••					
•••••	••••	•••••		••••••	••••••	••••••	
•••••	••••	•••••					
2	0	nly v	4.90g of an orgar vas burnt in oxygel formed. Calculate	n, 15.78g of	carbon did	oxide and 5.	• •
	•••••	•••••					
•••••	••••	••••••	•••••	••••••	••••••	••••••	
•••••	•••••	•••••		••••••	••••••	•••••	
•••••	••••	••••••			•••••	•••••	
	••••					•••••	

KIBUGO Page 2 of 14

J.	(a)	What is mea	nt by first	ionisa	tion er	nergy?	(01 mark	:)	
••••••	•••••		••••••	••••••	••••••	•••••	•	•••••	••••
	(b) V	Vrite an equat	ion for firs	st ionis	ation e	nergy of	magnesiun	n. (01 mar	k)
			••••	••••	•••••	•••••			••••
		rable below sho group (VII) c				ionisatio	on energie	s of	
Elem	ent				F	Cl	Br	I	
First	ionis	ation energy($(KJmol^{-1})$		1681	1255	1142	1007	
			, ,	1				<u> </u>	
(i)		State the tr	<u> </u>	t ioni <i>s</i> a			the elemen	nts. (01 m	k)
(i) (ii)	• • • • • • • • • • • • • • • • • • • •	State the tr	rend in firs		ation er		the elemen (04 ma		k)
	• • • • • • • • • • • • • • • • • • • •		rend in firs		ation er				ık)
	• • • • • • • • • • • • • • • • • • • •		rend in firs		ation er				
	• • • • • • • • • • • • • • • • • • • •		rend in firs		ation er				
	• • • • • • • • • • • • • • • • • • • •		rend in firs		ation er				

KIBUGO Page 3 of 14

4. The combustion of a hydrocarbon $\bf P$ gave 8.8g of carbon did water, if the molecular mass of $\bf P$ is 58. Determine the (a) Empirical formula of $\bf P$	_
(b) Molecular formula of P	
4. State two examples of an s-block element and write the electronic configurations.	
Elements andand	(01 mark)
Respective electronic configuration. (02 marks)	

KIBUGO Page 4 of 14

(i)	What is the critical temperature of the gas.	(01 mark)
(ii)	Which isothermal almost represents an ideal gas.	(01 mark)
(iii)	What does the region ABC represent.	(01 mark)
(b) State	two conditions for liquefying a gas.	(01 mark)

6. (a) The diagram below shows the isothermals of a gas.

KIBUGO Page 5 of 14

7. A com oxygen.	pound P contains 52.2% carbon and	13.0% hydrogen and the rest being
(a) De	etermine the empirical formula of P	(02 marks)
(b) Wher	n vaporized, 0.1g of P occupied 78 .	8cm³ at 157 °C and 740mmHg .
Determin (i)	ne the Formula mass of P	(02marks)
(ii)	Molecular formula of P	(01 mark)

KIBUGO Page 6 of 14

(a) St (i)	ate what is meant by the terms Radioactivity.	(01 mark)
(ii)) Half life.	(01 mark)
	an experiment, the rate of radioactive of minutes. Calculate the half-life of brom	•
	·	•

KIBUGO Page 7 of 14

(ii)An orbital	(01 mark)
b) Write the electronic configuration of the following	
(i)Magnesium	(01 mark)
(ii) Phosphorous	(01 mark)
(iii)Calcium	(01 mark)
(iv)Manganese	(01 mark)
(v)Zinc ion (Zn ²⁺)	(01 mark)
10. A sample of concentrated ammonia solution was placed 0.8m glass tube held horizontally. At the other end 'B' was concentrated hydrochloric acid and both ends of the tub tube was left for some time, a whit ring was formed inside	as placed a sample of e sealed. When the
Glass wool soaked in amine White ring Glass	wool soaked conc. HCl
(a) Write equation for the formation of the white	ring

KIBUGO Page 8 of 14

(b) Calculate th	e distance be	etween B and the	e white ring	
			••••••	
		••••••		
•••••	•	••••••••••••	••••••	
•••••		•••••	•••••	
		SECTION	I B	
Attempt any th	ree questions	from this secti		
			aken for gases of rrow opening und	
conditions.		3	, 3	
<i>t</i> (s)	25.00	34.23	41.67	47.62
Mr (g)	16	30	44	58
Plot a araph of	rate of diffu	sion, 1/t against	1/Mr (04	1 marks)
		_		·
(b) Using	your graph ii	n (a) above, find	the molecular m	ass of a gas. (3mks)
			••••••	•••••••••••••••••••••••••••••••••••••••
•••••		•••••	••••••	

KIBUGO Page 9 of 14

(iii)	Determine	the mass	that take	s 38.42 s	econds 1	to diffuse	(02mark)
				••••••			
12. (a) St	ate what is	meant by	an ideal g	as	(01 mar	k)	
(b) Expla (i) Pressu	in how liquef re.	ication of	-		·	·	marks)
(ii))Temperatur	е				(0	2 marks)

KIBUGO Page 10 of 14

(c)	The curves below show deviations of some gases from the ideal behaviour
(i)	State why hydrogen shows a small deviation from the ideal behaviour compared to other gases. (01 mark)
(ii) Comp oehaviou	are the deviations of oxygen and carbon dioxide from the ideal r. (03 marks)

KIBUGO Page 11 of 14

	(01 mark)
	•••••
	•••••••••••••
(i) State two methods that they may be used to	produce positive ions in a
mass Spectrometer.	(01 mark)
mass open emerer:	(0-111411)
(ii) What property of the ions does the mass spectrom	eter measure? (01 mark)
(b) The mass spectrum of an element \boldsymbol{A} contained 4 li	ines at mass: charge ratio
of	
54, 56, 57 and 58 with relative abundance of 5.84,	01 68 2 17 and 0 31
	91.00, 2.17 and 0.31
respectively	91.00, 2.17 and 0.31
respectively (i) Explain what the term relative abundance me	
(i) Explain what the term relative abundance me	eans. (01 mark)
(i) Explain what the term relative abundance me	eans. (01 mark)
(i) Explain what the term relative abundance me	eans. (01 mark)
(i) Explain what the term relative abundance me	eans. (01 mark)
(i) Explain what the term relative abundance me	eans. (01 mark)
(i) Explain what the term relative abundance me	eans. (01 mark)
(i) Explain what the term relative abundance me	eans. (01 mark)

KIBUGO Page 12 of 14

(e) Explain why the values of R.A.M have no units.	(01 mark)
14. (a) What is meant by the term atomic radius.	(01mark)
(b)Describe how atomic radius varies (i) Down a group.	(04 marks)
(i)Across a given period.	(04 marks)

WELCOME TO S5 CHEMISTRY CLASS 2023.

KIBUGO Page 13 of 14

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1														1.0 H 1	4.0 H 2		
6.9 Li 3	9.0 Be 4											10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ai 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	100000000000000000000000000000000000000	50.9 V 23	52.0 Cr 24			1	58.7 Ni 28				72.6 Ge 32	74.9 As 33	79.0 Se 34	79.9 Br 35	83.8 Ki 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41			101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89									1						
125	\$3.273	i ba	139 La 57	140 Ce 58		144 Nd 60		150 Sm 62	152 Eu 63				165 Ho 67		169 Tm 69	173 Yb 70	175 Lu 71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95				Es	257 Fm 100	256 Md 101	No	260 Lw 103

END

KIBUGO Page 14 of 14