Tangente à une courbe

Spé Maths 1ère - JB Duthoit

CLes maths faciles!

Soit une courbe C quelconque et « suffisamment régulière » , ainsi qu'un point A sur cette courbe.

La tangente à C en A est la droite qui épouse « le mieux » la forme de la courbe au voisinage du point A.

Si l'on imagine que C est la forme d'une route suivie par une voiture, alors la direction de la tangente est celle que suivra cette voiture si, au point A, une grosse plaque de glace la fait subitement patiner et qu'elle ne peut plus contrôler sa direction.

Pour visualiser la tangente, on peut faire des zooms de plus en plus resserré autour de A.

Si C est assez régulière, en zoomant « de plus en plus », on s'aperçoit qu'au voisinage immédiat de A, la courbe se confond pratiquement avec une ligne droite.

ullet À mesure que l'on zoome sur le point A, le morceau de courbe autour de A se confond de plus en plus avec la droite tangente en A

2.2.1 Définition d'une tangente

Définition

Soit f une fonction définie sur un intervalle I et soit $a \in I$

On suppose de plus que la fonction f est dérivable en a.

La <u>tangente à la courbe C_f en a</u> est <u>la</u> droite passant par A(a; f(a)) et de coefficient directeur f'(a).

Savoir-Faire 2.10

I SAVOIR CONSTRUIRE DES TANGENTES À UNE COURBE

Savoir-Faire 2.11

SAVOIR DÉTERMINER GRAPHIQUEMENT UN NOMBRE DÉRIVÉ 🖝 SF en ligne!

2.2.2 Equation d'une tangente à une courbe

Propriété

Soit f une fonction définie sur un ensemble D_f et soit C_f sa courbe représentative dans un repère $(O; \vec{\imath}, \vec{\jmath})$.

Soit $a \in D_f$. On suppose que f est dérivable en a.

Une équation de la tangente à C_f en a est :

$$y - f(a) = f'(a)(x - a)$$

Savoir-Faire 2.12

SAVOIR DÉTERMINER UNE ÉQUATION DE TANGENTE À UNE COURBE Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3$.

Déterminer les équations des tangentes T_2 , T_{-2} et T_1 .

• Exercice 2.5

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$. Donner une équation de la tangente à C_f en 4, notée T_4 .