A Survey of Relaxations and Approximations of the Power Flow Equations

Capítulos 1-3

Uma análise dos conceitos fundamentais

Daniel K. Molzahn e lan A. Hiskens

Introdução: O Problema das Equações de Fluxo de Potência

Desafios:

- Não linearidade: As equações são inerentemente não lineares, o que resulta em problemas de otimização não convexos.
- Complexidade Computacional: Problemas como o Fluxo de Potência Ótimo (OPF) são geralmente NP-Hard.
- Múltiplas Soluções: Podem existir múltiplas soluções locais, tornando difícil encontrar o ótimo global.

Figura 1: Ilustração de ótimos locais (triângulos azuis) e o ótimo global (estrela verde).

Relaxações vs. Aproximações

Relaxações Convexas:

- Ampliam o espaço de soluções não convexo para um espaço convexo maior que o contém.
- Garantem limites para o valor ótimo da função objetivo e podem certificar a inviabilidade de um problema.
- Em alguns casos, podem garantir a obtenção de ótimos globais.

Aproximações:

- Simplificam as equações de fluxo de potência com base em certas premissas sobre as grandezas do sistema.
- Podem representar o comportamento do sistema com boa precisão sob condições operacionais típicas.
- Não oferecem as garantias teóricas das relaxações.

Visualizando Relaxações e Aproximações

Figura 2: Ilustração conceitual de uma relaxação convexa (à esquerda) e uma aproximação (à direita) para um espaço não convexo.

Capítulo 2: Visão Geral das Equações de Fluxo de Potência

As equações de fluxo de potência modelam a relação entre fasores de tensão e injeções de potência nos nós (barras) de um sistema elétrico.

Notação Básica:

- ullet $V_i=|V_i|e^{j heta_i}$: Fasor de tensão no barramento i em coordenadas polares.
- ullet $V_i=V_{di}+jV_{qi}$: Fasor de tensão no barramento i em coordenadas retangulares.
- $S_i = P_i + jQ_i$: Injeção de potência complexa no barramento i.
- Y = G + jB: Matriz de admitância nodal do sistema.

Formulação I-V:

Esta formulação se baseia na relação linear entre os fasores de tensão e as injeções de corrente, e na definição de potência complexa:

$$I_i = \sum_{k=1}^n Y_{ik} V_k$$

$$P_i + jQ_i = V_i \overline{I_i}$$

As não linearidades estão isoladas nos produtos bilineares da segunda equação.

Formulações Baseadas em Tensão

Substituindo a corrente na equação de potência, obtemos um sistema de equações polinomiais em termos dos fasores de tensão:

$$P_i + jQ_i = V_i \sum_{k=1}^n \overline{Y}_{ik} \overline{V}_k \ |V_i|^2 = V_i \overline{V}_i$$

Dependendo da representação (coordenadas polares ou retangulares), obtemos diferentes formulações matemáticas, como as quadráticas (em coordenadas retangulares) ou as trigonométricas (em coordenadas polares).

Equações DistFlow (Fluxo de Ramo)

Propostas por Baran e Wu, são válidas para sistemas radiais e focam nas grandezas que fluem nas linhas. Para uma linha entre as barras i e k:

- P_{ik}, Q_{ik} : Fluxos de potência ativa e reativa na linha.
- l_{ik} : Quadrado da magnitude do fluxo de corrente.
- $|V_i|^2$, $|V_k|^2$: Quadrado das magnitudes de tensão.

As equações são:

$$egin{align} P_{ik} &= R_{ik} l_{ik} - P_k + \sum_{m:k o m} P_{km} \ Q_{ik} &= X_{ik} l_{ik} - Q_k + \sum_{m:k o m} Q_{km} \ |V_k|^2 &= |V_i|^2 - 2(R_{ik} P_{ik} + X_{ik} Q_{ik}) + (R_{ik}^2 + X_{ik}^2) l_{ik} \ l_{ik} |V_i|^2 &= P_{ik}^2 + Q_{ik}^2 \ \end{gathered}$$

A não convexidade está na última equação.

Capítulo 3: Ferramentas de Otimização

Para criar relaxações e aproximações, são utilizadas ferramentas de otimização convexa.

Programação Linear (LP)

- Forma canônica:
 - \circ minimizar $c^T x$
 - \circ sujeito a $Ax=b,x\geq 0$
- Envelopes de McCormick: Formam o casco convexo de produtos bilineares xy, muito úteis em relaxações.

Programação Quadrática (QP)

- Permite uma função objetivo quadrática: minimizar $rac{1}{2}x^TCx + c^Tx$.
- É um programa quadrático convexo se a matriz C for positiva semidefinida.

Programação Cônica de Segunda Ordem (SOCP)

Generaliza a LP, permitindo restrições de cone de segunda ordem:

$$||E_i x + b_i||_2 \leq g_i^T x + d_i$$

- Restrições quadráticas convexas podem ser representadas como restrições SOCP.
- A QP convexa é um caso especial da SOCP.
- Restrições SOCP Rotacionadas são particularmente úteis:

$$|x \cdot y \ge ||z||_2^2, \quad x \ge 0, y \ge 0$$

Programação Semidefinida (SDP)

Generaliza a SOCP, usando uma matriz simétrica X como variável de decisão.

- Forma canônica:
 - \circ minimizar tr(CX)
 - \circ sujeito a $tr(A_iX)=b_i, X\geq 0$ (positiva semidefinida)
- A SDP pode ser formulada com variáveis complexas, o que é relevante para as equações de fluxo de potência.

Conclusões dos Capítulos Iniciais

- Complexidade: As equações de fluxo de potência são a fonte de não convexidade em muitos problemas de otimização em sistemas de potência.
- **Soluções:** Relaxações e aproximações são estratégias chave para tornar esses problemas tratáveis computacionalmente.
- Ferramentas: A otimização convexa (LP, QP, SOCP, SDP) fornece as ferramentas matemáticas fundamentais para construir essas formulações simplificadas.
- Trade-off: A escolha entre diferentes formulações (relaxações ou aproximações) e ferramentas de otimização envolve um compromisso entre precisão, garantias teóricas e tratabilidade computacional.