ZhdanovDS 26012025-091749

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 1. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r+mf_{\Pi^q}|$ Какой комбинацией $\{n;m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 2? (Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 1 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{11;-2\} \quad 2) \ \{5;-9\} \quad 3) \ \{11;-58\} \quad 4) \ \{17;-2\} \quad 5) \ \{11;-58\} \quad 6) \ \{14;-65\} \quad 7) \ \{5;12\}$$

8) {8; 5} 9) {8; 5}

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 3770 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 11 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 581 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 3 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 8170 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 3138 МГп до 3188 МГп.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -86 дБм 2) -89 дБм 3) -92 дБм 4) -95 дБм 5) -98 дБм 6) -101 дБм 7) -104 дБм 8) -107 дБм 9) -110 дБм

Для полного подавления **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 11 градусов.

Чему равна индуктивность компонента фазовращателя, если частота ПЧ равна 179 МГц?

Варианты ОТВЕТА:

1) 45.3 нГн 2) 36.6 нГн 3) 53.9 нГн 4) 45.1 нГн

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

 $s_{21} = 0.29516 + 0.10955i, s_{31} = 0.11352 - 0.30584i.$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -33 дБн 2) -35 дБн 3) -37 дБн 4) -39 дБн 5) -41 дБн 6) -43 дБн 7) -45 дБн 8) -47 дБн 9) 0 дБн

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_3$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно мгновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 147 МГц, частота ПЧ 31 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 116 MΓ_{II}
- 2) 588 MΓ_{II}
- 3) 410 МГц
- 4) 735 МГц.

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 1.5 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 21 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 15.3 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 7.9 дБ 2) 8.5 дБ 3) 9.1 дБ 4) 9.7 дБ 5) 10.3 дБ 6) 10.9 дБ 7) 11.5 дБ 8) 12.1 дБ 9) 12.7 дБ