2.1 method of Moment Likelihood

Steven Cheung 1 February 2022

Definition:

Let $f(X_1, \ldots, X_n, \theta)$, $\theta \in \Omega_\theta \subset \mathbb{R}^k$, be the joint probability mass (or density) function function of n random variables X_1, \ldots, X_n with sample values x_1, \ldots, x_n . The likelihood function of the sample is given by

$$L(\theta, x_1, \dots, x_n) = h(x_1, \dots, x_n), [L = (\theta), \text{ in a breifer notation}]$$

we emphasize that L is a function of θ for fixed sample values

If X_1, \ldots, X_n are discrete *i.i.d* random variables with probability mass function $p(x, \theta)$, then the likelihood function is given by

$$L(\theta) = P(X_1 = x_1, \dots, X_n = x_n)$$

= $\prod_{i=1}^n P(X_i = x_i) = \prod_{i=1}^n p(x_i, \theta)$

and in a continuous case, if the probability density function is $f(x,\theta)$, then the likelihood function is

$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta)$$

Definition:

Let $L(\theta) = \prod_{i=1}^n p(x_i, \theta)$ (or $L(\theta) = \prod_{i=1}^n f(x_i, \theta)$) be the likelihood function. Corresponding to random sample x_1, \ldots, x_n drawn from the discrete p.d.f $p(x, \theta)$ (or from the continuous p.d.f $p(x, \theta)$), where θ is an unknown parameter. Let \hat{p} be a value of the parameter such that $L(\hat{\theta}) \geq L(\theta)$ for all possible values of the parameter θ . Then $\hat{\theta}_l$ is called a **maximum likelihood estimate** of θ .

The Maximum Likelihood Estimates of θ is

$$L(\hat{\theta}_l, x_1, \dots, x_n) = max_\theta \in \Omega_\theta L(\theta, x_1, \dots, x_n)$$

where Ω_{θ} is the set of possible values of parameter θ

Procedure to Find Maximum Likelihood Estimate(s) (MLEs):

- 1. Define the likelihood function, $L(\theta)$
- 2. Often it is easier to take the natural logarithm of $L(\theta), \ln(L(\theta))$
- 3. When applicable, differentiate $ln(L(\theta))$ with respect to θ , and then equate the derivative to 0
- 4. Solve for the parameter θ to obtain $\hat{\theta}$
- 5. Check whether it is a maximiser of global maximiser $\hat{\theta}_l$