EJEMPLO 2.8.4 Obtención de una gráfica a partir de su representación matricial

Esboce la gráfica representada por la matriz

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

SOLUCIÓN \triangleright Como A es una matriz de 5×5 , la gráfica tiene cinco vértices. Vea la figura 2.5.

Figura 2.5La gráfica dirigida representada por *A*.

Observación

En los ejemplos presentados se tienen gráficas dirigidas que satisfacen las siguientes dos condiciones:

- i) Ningún vértice está conectado consigo mismo.
- ii) A lo más una arista lleva de un vértice a otro.

La matriz que representa una gráfica dirigida que satisface estas condiciones se denomina matriz de incidencia. Sin embargo, en términos generales es posible tener ya sea un 1 en la diagonal principal de una representación matricial (indicando una arista de un vértice hacia sí mismo) o un entero mayor que 1 en la matriz (indicando más de una trayectoria de un vértice a otro). Para evitar situaciones más complicadas (pero manejables), se ha supuesto, y se seguirá suponiendo, que i) y ii) se satisfacen.

Matriz de incidencia

EJEMPLO 2.8.5 Una gráfica dirigida que describe el dominio de un grupo

Las gráficas dirigidas se utilizan con frecuencia en sociología para estudiar las interacciones grupales. En muchas situaciones de esta naturaleza, algunos individuos dominan a otros. El dominio puede ser de índole física, intelectual o emocional. Para ser más específicos, se supone que en una situación que incluye a seis personas, un sociólogo ha podido determinar quién domina a quién (esto se pudo lograr mediante pruebas psicológicas, cuestionarios o simplemente por observación). La gráfica dirigida en la figura 2.6 indica los hallazgos del sociólogo.

Figura 2.6

La gráfica muestra quién domina a quién en el grupo.