APPENDIX A

Power Transfer & Reactive Power

Consider the transfer of power from a source bus (A) to a load bus (B), through a line of impedance $Z = R + jX = |Z| \angle \alpha$.

Then,

$$I = \frac{E \angle \delta - V \angle 0^{\circ}}{R + jX} = \frac{E \angle \delta - V \angle 0^{\circ}}{Z \angle \alpha}$$
$$= \frac{E}{Z} \angle (\delta - \alpha) - \frac{V}{Z} \angle - \alpha$$

.: Power delivered to B

$$S_{B} = V_{B}I_{B}^{*} = [V \angle 0^{\circ}] \left[\frac{E}{Z} \angle (\alpha - \delta) - \frac{V}{Z} \angle \alpha \right]$$
$$= \frac{VE}{Z} \angle (\alpha - \delta) - \frac{V^{2}}{Z} \angle \alpha$$

Since $S_B = P_B + jQ_B$

$$\Rightarrow P_{B} = S_{B} \cos \theta$$
$$Q_{B} = S_{B} \sin \theta$$

⇒ Real power delivered

$$P_{\rm B} = \frac{VE}{Z}\cos(\alpha - \delta) - \frac{V^2}{Z}\cos\alpha \tag{1}$$

& Reactive power delivered

$$Q_{\rm B} = \frac{VE}{Z}\sin(\alpha - \delta) - \frac{V^2}{Z}\sin\alpha \tag{1}$$

Let us understand these relations from the vector diagram.

 $\underline{\text{Note}}: \theta \text{ is power factor angle at } B \text{ i.e. } I \text{ lags } V \text{ by } \theta \text{ (assumed)}.$

$$\sin \delta = \frac{\Delta V_q}{E} \Rightarrow \Delta V_q = E \sin \delta$$

$$\cos \delta = \frac{V + \Delta V_{p}}{E} \Rightarrow E \cos \delta = V + \Delta V_{p}$$

$$\Rightarrow \Delta V_{p} = E \cos \delta - V$$
(1a)

But
$$\Delta V_p = CD + DE = CD + FG$$

= $IR \cos \theta + IX \sin \theta$
= $\frac{1}{V} [(VI \cos \theta) R + (VI \sin \theta) X]$

$$\Rightarrow \Delta V_{p} = \frac{1}{V} (PR + QX) \tag{2}$$

Also,
$$\Delta V_q = HG - EG = HG - DF$$

= $IX \cos \theta - IR \sin \theta$
= $\frac{1}{V} [(VI \cos \theta) X - (VI \sin \theta) R]$

$$\Rightarrow \Delta V_{q} = \frac{1}{V} (PX - QR)$$
 (3)

Let R << X, then Z \geq X & $\alpha \geq 90^{\circ}$ (R ≥ 0)

 \Rightarrow From (1)

$$P_{B} = \frac{VE}{X} \sin \delta$$

$$\& Q_{B} = \frac{VE}{X} \cos \delta - \frac{V^{2}}{X}$$
(4)

 \Rightarrow From (2)

$$\Delta V_{p} = \frac{PR + QX}{V} = \frac{QX}{V} \tag{5}$$

 \Rightarrow From (3)

$$\Delta V_{q} = \frac{PX - QR}{V} = \frac{PX}{V} \tag{6}$$

Since in physical systems E & V do not vary much, and X is a constant, we conclude that:

- Real power P depends only on
 - (i) $\sin \delta$ [see eqn. 4]
 - (ii) ΔV_q (which is a slightly different measure of δ) : [see eqn. 6]

 δ is called the <u>power angle</u> or torque angle.

 $\Delta V_q \rightarrow quadrature \ component \ of \ voltage \ difference \ betn. \ V \& E.$

 \Rightarrow P flows primarily due to phase angle difference between E & V; i.e. due to angle δ .

Hence, if:

$$\angle E > \angle V$$
 Real power will flow from A to B

$$\angle E < \angle V$$
 Real power will flow from B to A

$$\angle E = \angle V$$
 No Real power will flow

- Reactive power Q depends only on
 - (i) ΔV_p [see eqn. 5]
 - (ii) when $\delta \simeq \text{small}$, $\Delta V_p \simeq E V$ [see eqn. 1a]

Q primarily depends on the magnitude difference between E & V measured in terms of ΔV_p (the inphase component of voltage difference)

Hence, if:

$$|V| = |E| & \delta \sim \text{ small},$$

Then Q = 0 [see eqn. set 1]

If
$$|E| > |V|$$
 Q flows from A to B
If $|E| < |V|$ Q flows from B to A

Summary:

- 1) P flows from a bus with greater voltage phase angle relative to a bus with smaller phase angle of voltage.
- 2) Q flows from a bus at a higher voltage magnitude to a bus with a lower voltage magnitude.