CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) — 11 SETTEMBRE 2025

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. La forma proposizionale $p \to (p \to (p \to (p \to (p \to (p \to p)))))$ è una tautologia?

Esercizio 2. Si consideri l'applicazione $f:(x,y)\in \mathcal{P}(S)\times \mathcal{P}(S)\mapsto (x\vartriangle\{1\},x\cap\{1\})\in \mathcal{P}(S)\times \mathcal{P}(S),$ dove $S=\{1,2,3\}$. Determinare:

- $(i) \ \overleftarrow{f}(\{(\varnothing,\varnothing)\}), \ \overleftarrow{f}(\{(\{1\},\varnothing)\}) \ \mathrm{e} \ \overleftarrow{f}(\{(\varnothing,\{1\})\});$
- (ii) $\vec{f}(\mathcal{P}(S) \times \{\{2\}\}) \in \vec{f}(\{\{2\}\}) \times \mathcal{P}(S)$.
- (iii) f è iniettiva? È suriettiva? È invertibile?
- (iv) Indicata con \Re_f la relazione di equivalenza associata ad f (cioè il nucleo di equivalenza di f), determinare $[(S, \{2,3\})]_{\Re_f}$ e $|[(S, \{2,3\})]_{\Re_f}|$.

Esercizio 3. Sia τ la relazione binaria in $\mathcal{P}(\mathbb{N})$ definita da: $\forall x, y \in \mathcal{P}(\mathbb{N})$ ($x \tau y \iff x \triangle y$ è infinito). Stabilire se τ è una relazione di equivalenza e, nel caso, descrivere in modo esplicito $[\{0,5\}]_{\tau}$ e decidere se τ è compatibile con l'operazione \cap in $\mathcal{P}(\mathbb{N})$.

Ripetere l'esercizio dopo aver sostituito τ con σ , definita sempre in $\mathcal{P}(\mathbb{N})$ da: $\forall x, y \in \mathcal{P}(\mathbb{N})$ ($x \sigma y \iff x \triangle y$ è finito).

Esercizio 4. Sia $S=\{1,2,3\}$ e sia ρ la relazione d'ordine in $\mathcal{P}(S)\times\mathcal{P}(S)$ definita da: per ogni $a,b,c,d\in\mathcal{P}(S)$

$$(a,b) \rho (c,d) \longleftrightarrow ((a,b) = (c,d) \lor |a| \cdot |b| < |c| \cdot |d|)$$

In $(\mathcal{P}(S) \times \mathcal{P}(S), \rho)$, determinare:

- (i) eventuali minimo, massimo, elementi minimali, elementi massimali;
- (ii) l'insieme dei minoranti e l'eventuale estremo inferiore di $X = \{(\{1\}, \{2,3\}), (\{2,3\}, \{2\})\},$ l'insieme dei maggioranti e l'eventuale estremo superiore di $Y = \{(S, \{1,2\}), (S, \{1,3\})\};$
- (iii) una catena (cioè un sottoinsieme totalmente ordinato) di cardinalità massima.
- (iv) $(\mathcal{P}(S) \times \mathcal{P}(S), \rho)$ è un reticolo?
- (v) Šia $L = \{(\{1\}, \{\hat{1}\}), (\{1\}, \{2\}), (\{1\}, \{1, 2\}), (\{1\}, S), (\{1, 2\}, S), (S, \{1, 2\}), (S, \emptyset), (S, \{1\}), (S, S)\}$. Dopo averne disegnato un diagramma di Hasse, si stabilisca se l'insieme ordinato (L, ρ) è un reticolo. Se lo è, è distributivo? È complementato? È booleano?
- (vi) Che cardinalità può avere un reticolo booleano finito?
- (vii) Tutti i reticoli di cardinalità 8 sono booleani?

Esercizio 5. Sia * l'operazione binaria in \mathbb{Z}_{21} definita da:

$$\forall a, b \in \mathbb{Z}_{21} \quad (a * b = a + \bar{7}b).$$

- (i) Che tipo di struttura (semigruppo, monoide, gruppo, ...) è $(\mathbb{Z}_{21}, *)$?
- (ii) Determinare in $(\mathbb{Z}_{21}, *)$ gli elementi neutri a destra e quelli neutri a sinistra.
- (iii) $A = \{\overline{0}, \overline{6}, \overline{9}, \overline{15}\}$ è una parte stabile (ovvero chiusa) in $(\mathbb{Z}_{21}, *)$? Se lo è, che tipo di struttura è (A, *)? Rispondere alle stesse domande per $B = \{\overline{0}, \overline{7}, \overline{14}\}$ al posto di A.

Solo per studenti immatricolati prima dell'a.a. 2024/25

Esercizio 6. Se possibile, aggiungere al grafo a destra un vertice e due lati in modo che il grafo risultante abbia un circuito euleriano. È possibile farlo in più di un modo, ottenendo due grafi semplici tra loro non isomorfi?

Esercizio 7. Sia f il polinomio $x^4 + \bar{8}x^2 + \bar{2} \in \mathbb{Z}_{11}$.

- (i) Dopo aver calcolato $f(\bar{1})$, scrivere f come prodotto di polinomi irriducibili monici;
- (ii) decidere se f ha divisori di grado tre con coefficiente direttore $\bar{5}$; nel caso ne esistano, esibirne uno:
- (iii) determinare l'insieme degli $a \in \mathbb{Z}_{11}$ tali che f + a sia associato a f in $\mathbb{Z}_{11}[x]$.