CS-EJ3311 -

Deep Learning with Python

Regularization

Alexander Jung

What I want to teach you today:

- basic idea of regularization
- regularization via data augmentation
- regularization via transfer learning

What is ML?

informal: learn hypothesis out of a hypothesis space or "model" that incurs minimum loss when predicting labels of datapoints based on their features

$$\hat{h} = \operatorname*{argmin}_{h \in \mathcal{H}} \mathcal{E}(h|\mathcal{D})$$
 "training error"
$$\sum_{h \in \mathcal{H}}^{m} \operatorname{argmin}(1/m) \sum_{i=1}^{m} \mathcal{L}((\mathbf{x}^{(i)}, y^{(i)}), h).$$

see Ch. 4.1 of mlbook.cs.aalto.fi

Data and Model Size

crucial parameter is the ratio d/m

bring d/m below critical value 1:

- increase m by using more training data
- decrease d by using smaller hypothesis space

Data Augmentation

bring d/m below critical value 1:

increase m by using more training data

decrease d by using smaller hypothesis space

add a bit of noise to features

we have enlarged dataset by factor 3!

rotated cat image is still cat image

flipped cat image is still cat image

shifted cat image is still cat image


```
In [19]: plt.figure(figsize=(8, 8))
    for images, _ in train_ds.take(1):
        for i in range(9):
            augmented_images = data_augmentation(images)
            ax = plt.subplot(3, 3, i + 1)
            plt.imshow(augmented_images[0].numpy())
            plt.axis("off")|
        plt.show()
```


Transfer Learning

bring d/m below critical value 1:

increase m by using more training data

decrease d by using smaller hypothesis space

replace original ERM

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}((x^{(i)}, y^{(i)}), h)$$

with ERM on smaller $\widehat{\mathcal{H}} \subset \mathcal{H}$

$$\min_{h \in \widehat{\mathcal{H}}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}((x^{(i)}, y^{(i)}), h)$$

Prune Network Architecture

Prune Hypospace by Early Stopping

Transfer Learning

25.12.2022

reference hypothesis \hat{h} ("pretrained net")

all possible maps h(.)

- Problem I: classify image as "shows border collie" vs. "not"
- Problem II: classify image as "shows a dog" vs. "not"
- ML Problem I is our main interest
- ullet only little training data $\mathcal{D}^{(1)}$ for Problem I
- much more labeled data $\mathcal{D}^{(2)}$ for Problem II
- ullet pre-train a hypothesis on $\mathcal{D}^{(2)}$, fine-tune on $\mathcal{D}^{(1)}$

learn h by fine-tuning \hat{h}

 $\mathcal{D}^{(2)}$ pre-train hypothesis \hat{h}

fine tuning on $\mathcal{D}^{(1)}$

distance to hypothesis \hat{h} which is pre-trained on $\mathcal{D}^{(2)}$

Fine Tuning a Pretrained Net

learning rate/step size used during fine tuning determines effective model size

```
tf.keras.applications.vgg16.VGG16(
    include_top=True, weights='imagenet', input_tensor=None,
    input_shape=None, pooling=None, classes=1000,
    classifier_activation='softmax'
)
```

https://www.tensorflow.org/api_docs/python/tf/keras/applications/vgg16/VGG16

Layer-Wise Fine Tuning

fine –tune deeper layers "freeze" input layers

https://www.quora.com/What-is-the-VGG-neural-network

Feature Extraction

"frozen" input layers perform feature extraction

"feature extractor" or "base" model

"head"

https://www.quora.com/Wnat-is-the-VGG-neural-network

```
base_model = keras.applications.Xception(
    weights='imagenet', # Load weights pre-trained on ImageNet.
    input_shape=(150, 150, 3),
    include_top=False) # Do not include the ImageNet classifier at the top.
```

Then, freeze the base model.

```
base_model.trainable = False
```

https://keras.io/guides/transfer_learning/

Questions?