1、实验名称及目的

视觉控制撞击小球实验:通过调用平台接口进行对 RflySim3D 软件内图像的捕获,并利用 opencv 进行图像处理,并进行控制指令解算,控制无人机运动。

2、实验原理

通过平台图像提取文件 ScreenCapApiV4 中的相关接口进行对 RflySim 中的图像提取,

然后在函数 calc_centroid(img_bgr) 中通过 opencv 中进行对图像识别出质心及半径,并计算出相应的位置结果。然后在函数 controller(p_i) 中根据位置结果计算出无人机的控制指令控制无人机运动。

3、实验效果

通过利用 RflySim 平台接口,运行 python 程序提取 RflySim3D 场景图像,并利用 open cv 对提取的图像进行处理,并解算出控制指令让无人机撞向红色小球。

4、文件目录

文件夹/文件名称	说明
ShootBall3SITL.bat	启动仿真配置文件
ShootBall3.py	功能主程序文件

5、运行环境

序号	软件要求	硬件要求	
1, 4	————————————————————————————————————	名称	数量(个)
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版及以上	Pixhawk 6C 飞控 ^②	1
3	Visual Studio Code	MicroUSB 线	1

- ① : 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②: 须保证平台安装时的编译命令为: px4_fmu-v6c_default, 固件版本为: 1.13.3。其他配套 飞控请见: http://doc.rflysim.com/hardware.html

6、实验步骤

软件在环步骤:

Step 1:

启动 ShootBall3SITL.bat 脚本将会启动 $1 \land QGC$ 地面站, $1 \land CopterSim$ 软件且其软件下侧日志栏必须打印出 GPS 3D fixed & EKF initialization finished 字样代表初始化完成,并且有 $2 \land RflySim3D$ 软件各有 1 架无人机。如下图所示:

Step 2:

用 VScode 打开到本实验路径文件夹,打开 ShootBall3.py,并运行程序,一个是前置摄像头,一个是上帝视角观测。在图像提取,opencv 进行图像处理,控制指令解算后,可看到无人机向红球撞击。并且按 T 键开启或关闭飞机轨迹记录功能, T+数字*开启/更改轨迹粗细为*号。然后在 VScode 终端上就会出现无人机的仿真状态数据。

硬件在环步骤:

Step 1:

首先一定要确保飞控固件为平台标准固件,这是运行该硬件在环实验的前提条件,然后用 USB 数据线将飞控与电脑连接,以管理员方式运行 ShootBall3HITL.bat,输入端口号开启一个飞机的硬件在环仿真。脚本将会启动 1 个 QGC 地面站,1 个 CopterSim 软件且其软件下侧日志栏必须打印出 GPS 3D fixed & EKF initialization finished 字样代表初始化完成,并且有 2 个 RflySim3D 软件各有 1 架无人机。如下图所示:

Step 2:

用 VScode 打开到本实验路径文件夹,打开 ShootBall3.py,并运行程序,一个是前置摄像头,一个是上帝视角观测。在图像提取,opencv 进行图像处理,控制指令解算后,可看到无人机向红球撞击。并且按 T 键开启或关闭飞机轨迹记录功能 ,T+数字*开启/更改轨迹粗细为*号。然后在 VScode 终端上就会出现无人机的仿真状态数据。

7、参考文献

[1]. PX4MavCtrlV4.py 是通过 Mavlink 到 Pixhawk(和通过 UDP 到 UE4 的通信 API)

[2]. ScreenCapApiV4.py 是屏幕捕获 API。值"isNewUE=False"将启用 RflySim3D 屏幕捕获 的旧 API, 其速度更快,但不兼容 UE4.23+;值 isNewUE=True"将为 RflySim3D 屏幕捕获 获启用新的 API, 其速度略慢,但兼容所有 UE4 版本。

8、常见问题

Q1: 无

A1: 无