МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №8 по дисциплине «Машинное обучение»

Тема: Классификация (Линейный дискриминантный анализ, метод опорных векторов)

Студент гр. 8303	Гришин К. И.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург

Цель работы

Ознакомиться с методами кластеризации из библиотеки Sklearn.

Ход выполнения работы

Загрузка данных

1. Скачать датасет: https://archive.ics.uci.edu/ml/datasets/iris

2. Загрузить датасет в датафрейм

	0	1	2	3	4
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

- 3. Выделены данные и метки
- 4. Метки преобразованы к числам
- 5. Данные разбиты на обучающую и тестовую выборки

Линейный дискриминантный анализ

1. Проведена классификация LDA (Linear Discriminant Analysis)
Тестовая и обучающая выборки представляют собой исходные данные, поделенные пополам.

Неправильно классифицировано 3 значения.

Параметр	Описание
solver	Метод поиска компонент
	`svd` - поиск сингулярных значений без знаний о матрице кова-
	риации
	`lsqr` - метод наименьших квадратов
	`eigen` - метод собственных чисел
shrinkage	Сжатие матрицы ковариации. При `auto` - используется лемма
	Ледуа-Вольфа

priors	Априорные вероятности. Изначальное считается по результатам
	обучения
n_components	Количество компонентов разбиения. Параметр влияет только на
	transform

Атрибут	Описание
coef_	Весовые вектора дискриминанта Фишера.
covariance_	Взвешенная матрица ковариации
explained_variance_ratio_	Объясненная дисперсия каждой компоненты
means_	Мат. ожидания каждого класса
priors_	Вероятности классов
classes_	Метки классов

- 2. Точность классификации `score()` = 0.96
- 3. График зависимости количества неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. random_state = 830303. (рис. 1)

LinearDiscriminantAnalysis

Рисунок 1. Зависимость количества неправильно классифицированных данных и точности классификации от размера тестовой выборки *LDA default*.

4. Описание метода `transform`

Проведено понижение размерности до 2 при помощи методов PCA и LDA. (рис. 2).

Рисунок 2. Результат понижения размерности с помощью PCA и LDA.

Результат получился похож. Связано это с тем, компонента наибольшего разброса дисперсии совпадает с компонентой разделения классов.

5. Классификация при различных параметрах solver и shrinkage solver = SVD (рис. 3, 4)

solver='svd", shrinkage=None

Рисунок 3. LDA(solver="svd", shrinkage=None)

solver = LSQR (рис. 4, 5, 6, 7, 8, 9, 10)

solver='lsqr', shrinkage=None

Рисунок 4. LDA(solver="lsqr", shrinkage=None)

Рисунок 5. LDA(solver="lsqr", shrinkage="auto")

Рисунок 6. LDA(solver="lsqr", shrinkage=0)

Рисунок 7. LDA(solver="lsqr", shrinkage=0.25)

solver='lsqr', shrinkage=0.5

Рисунок 8. LDA(solver="lsqr", shrinkage=0.5)

Рисунок 9. LDA(solver="lsqr", shrinkage=0.75)

Рисунок 10. LDA(solver="lsqr", shrinkage=1)

solver = eigen (рис. 11, 12, 13, 14, 15, 16, 17)

solver='eigen', shrinkage=None

Рисунок 11. LDA(solver="eigen", shrinkage=None)

solver='eigen', shrinkage='auto'

Рисунок 12. LDA(solver="eigen", shrinkage="auto")

Рисунок 13. LDA(solver="eigen", shrinkage=0)

Рисунок 14. LDA(solver="eigen", shrinkage=0.25)

Рисунок 15. LDA(solver="eigen", shrinkage=0.5)

Рисунок 16. LDA(solver="eigen", shrinkage=0.75)

Рисунок 17. LDA(solver="igen", shrinkage=1)

6. Установка априорной вероятности 0.7 классу 1.

Неправильно классифицировано 4

$$`score()` = 4$$

График зависимости количества неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки представлен на рисунке 18.

Рисунок 18. Зависимость количества неправильно классифицированных данных и точности классификации от размера тестовой выборки LDA prior [0.15, 0.75, 0.15].

При использовании априорных вероятностей, результат изменился в лучшую сторону, хоть и не сильно. Однако стал менее равномерным.

Метод опорных векторов

Проведена классификация SVM (Support Vector Machine)
 Тестовая и обучающая выборки представляют собой исходные данные, поделенные пополам.

Неправильно классифицировано 3 значения.

- 2. Точность классификации `score()` = 0.96
- 3. Значение атрибутов классификации

Аттрибут	Значение
support_	Индексы опорных векторов
support_vectors_	Опорные вектора
n_support_	Количество опорных векторов для каждого класса

4. График зависимости количества неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. random_state = 830303.

SVC

Рисунок 19. Зависимость количества неправильно классифицированных данных и точности классификации от размера тестовой выборки *SVC default*.

5. Классификация при различных параметрах kernel, degree и max_shrinkage

kernel (рис. 20, 21, 22, 23)

kernel='linear'

Рисунок 20. SVC(kernel="linear")

Рисунок 21. SVC(kernel="poly")

kernel='rbf'

Рисунок 22. SVC(kernel="rbf")

Рисунок 23. SVC(kernel = "sigmoid")

kernel='poly', degree=1

Рисунок 24. SVC(kernel="poly", degree=1)

kernel='poly', degree=2

Рисунок 25. SVC(kernel="poly", degree=2)

Рисунок 26. SVC(kernel="poly", degree=3)

Рисунок 27. SVC(kernel="poly", degree=4)

Рисунок 28. SVC(kernel="poly", degree=1)

max_iter (рис. 29, 30, 31, 32).

Рисунок 29. SVC(max_iter=1)

Рисунок 30. *SVC*(*max_iter=11*)

Рисунок 31. SVC(max_iter=31)

Рисунок 32. *SVC*(*max_iter*=51)

6. Исследование методов NuSVC, LinearSVC

График зависимости количества неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки для методов *NuSVC* и *LinearSVC* представлены на рисунках 33 и 34 соответственно.

Рисунок 33. Зависимость количества неправильно классифицированных данных и точности классификации от размера тестовой выборки *NuSVC*.

LinearSVC

Рисунок 34. Зависимость количества неправильно классифицированных данных и точности классификации от размера тестовой выборки *LinearSVC*.

Вывод

В ходе лабораторной работы исследованы методы классификации: LinearDiscriminantAnalysis и SupportVectorMachines.

LinearDiscriminantAnalysis — представляет собой метод понижения размерности, основанный на расстоянии между классами. Выбираются компоненты, в которых классы находятся наиболее далеко друг от друга, а сами при этом максимально сжаты. Поскольку метод сводится к нахождению классовых компонент, его можно использовать для классификации.

SupportVectorMachines — метод классификации данных, основанный на линейном разделении пространства наблюдений. Несмотря на линейное разделение, разделяется пространство повышенной, с помощью ядра, размерности, что может приводить к нелинейным границам классов.