拉格朗日插值

Lagrange Interpolation

Idea: 给定 n 个点 $P_i(x_i, y_i)$,求过这 n 个点的 n-1 次多项式 f(x).

我们对于每个 i,找到一个多项式函数 $g_i(x)$ 使之过 P_i 和所有 $j \neq i$ 的 $(x_j,0)$. 容易知道, $g_i(x)$ 可以如下构造:

$$g_i(x) = y_i \prod_{\substack{j=1 \ i
eq i}}^n rac{x-x_j}{x_i-x_j}$$

这样就可以有 $g_i(x_i) = 0$ $(j \neq i)$ 以及 $g_i(x_i) = y_i$.

现在把所有 $g_i(x)$ 加起来, 就得到了 f(x):

$$f(x)=\sum_{i=0}^ng_i(x)=\sum_{i=0}^ny_i\prod_{\substack{j=1\j
eq i}}^nrac{x-x_j}{x_i-x_j}$$

因为,如此有: $f(x_j) = \sum\limits_{i=0}^n g_i(x_j) = y_j$,也即 f(x) 过所有点 $P_i(x_i,y_i)$.

Implemention: 分子和分母分别计算后再算逆元相乘,复杂度的瓶颈就不会在求逆元上。

Complexity: $O(n^2)$

Code:

```
int n, k;
2
    pair<int, int> p[N];
    int main(){
4
        scanf("%d%d", &n, &k);
5
6
        for(int i = 1; i <= n; i++)
7
             scanf("%d%d", &p[i].first, &p[i].second);
        int ans = 0; // ans = f(k)
8
9
         for(int i = 1; i <= n; i++){
            int up = p[i].second, dn = 1;
10
             for(int j = 1; j \le n; j++){
11
                if(j == i) continue;
12
                up = 1ll * up * (k - p[j].first) % MOD;
13
                dn = 1ll * dn * (p[i].first - p[j].first) % MOD;
14
15
            if(up < MOD) up += MOD;
16
            if(dn < MOD)
                           dn += MOD;
             ans = (ans + 1ll * up * fpow(dn, MOD-2) % MOD) % MOD;
18
19
        printf("%d\n", ans);
21
         return 0;
22
    }
```

