

가계기반 소비 활동 지표를 통한 지역별 Segmentation 및 ESG 경영서비스 제안

FSI Data Challenge 2022

용믄: 금융을 뒤집어 놓으셨다

목차 Contents

1 개요

3P

활용 데이터

10P

3 분석 결과

2 D

아이디어 제안 및 기대효과

FSI DATA
CHALLENGE

5 Appendix

41P

주제선정배경

프로젝트요약

주제 선정 배경: 기존 경제지표의 한계

KOSIS 지역경제상황판

지역별 물가와 고용 등 경제지표를 인터넷에서 한눈에 볼 수 있는 서비스 제공

1. 고용

경제활동참가율 고용률 실업률

2. 물가

소비물가지수 생활물가지수 신선식품물가지수

3. 생산과 소비

광공업생산 서비스업 생산 소매판매액 지수

개인의 소비를 부분별로 나타내는 지표가 부족

가계 & 개인의 라이프스타일 및 소비성향을 중심으로 한 지표 생성의 필요성

분석 방향 설정: 선행 연구 사례

[2021 한국 소비생활지표]

소비생활지표: 국민이 체감하는 소비생활 여건 인식, 만족도, 문제 경험 등을 측정하여 분석

활용사례

지역 소비생활 모니터링

지자체 과학적 정책 수립 및 추진의 근거 자료

교육, 정보 콘텐츠 및 정책 컨설팅 추진의 기초자료

ESG경영 이란?

01. 개요 ESG경영 이란?

기후금융 지지 선언

- ▶ 환경에 대한 책임을 다하는지
- ▶ 기업이 고객, 직원 등에게 얼마나 기여하는지
- ▶ 기업 운영과 지배구조가 투명한지

등을 다각적으로 평가할 수 있는 지속가능한 경영의 비재무적 핵심요소

사회적 책임 투자의 지표

ESG경영 이란?

프로젝트 요약

1 | 데이터 정제

3 시 지역 세분화

4 | ESG 서비스 제안

- 01) 활용 데이터 선정
- 02 데이터 전처리

- 01 지표 선정
- 02 지표 생성 방법
- **03** 지표 설명력 검증

- 01) 클러스터링
- 02 지역 세분화
- 03 세분화 지역 해석

- 01 지역 세분화 기대효과
- 02 ESG 서비스 제안
- 03 마케팅 기대효과

활용 데이터

활용 데이터 목록

02 데이터 전처리

02. 활용데이터

활용 데이터 목록

Grandata 3-1

지역별 개인의 라이프 스타일에 대한 데이터 세분화를 위한 지표의 대부분을 차용

Grandata 3-2

선호 쇼핑 장소 관련 하이엔드 관련 등

KB 손해보험

보험매출 보험건수 한국투자증권

국내주식 해외주식 채권 연금

KB국민카드가맹점

교통/숙박/여행 여가/오락 의료 의류/패션잡화 관련 가맹점 매출정보

02. 활용데이터

데이터 전처리

1. 지역기반정리

2. 기간

3. 피쳐 엔저니어링

4. 결측치 처리

EX)

KB손해보험 데이터

부천시 소사구, 부천시 오정구, 부천시 원<mark>미</mark>구

∀ 부천시

- ▶ Grandata 시군구 기준 행 재조정
- ▶ 보조 데이터에서 시군구 범위 <mark>수정</mark>
- ▶ 띄어쓰기 등 세부사항 수정

• Grandata 3-1: 2020년 1분기 ~ 4분기

- Grandata 3-2: 2020년 말 기준
- 한국투자증권: 2019년 1월 ~2021년 12월
- KB손해보험: 2020년 1월 ~ 2021년 4월
- KB국민카드 가맹점: 2019년 7월 ~ 2021년 6월

각 데이터에서 중복되는 기간

2020년 10월, 11월, 12월

금융 거래 다양성

분석 대상을 중심으로 가까운 K개 요소 중 가장 많은 수인 집단으로 분류하는 방법

- Scailing: MinMax_Scaler
- N_neighbor: 5
- KNN_imputation
- Rescailing

KNN Imputation

- 지표 선정
- 지표 생성 방법
- 지표 설명력 검증
- 클러스터링
- 지역 세분화와 해석

03. 분석결과: 지표선정

지표생성 및 활용 데이터

쇼핑 소비

대중교통 소비

고객 신용 소비

재태크 소비

의료 소비

디지털 소비

03. 분석결과: 지표선정

지표생성 및 활용 데이터

디지털 소비

지표 데이터 목적

1. 전처리를 통한 지역 상대성 해결

데이터를 통합하는 과정에서 생기는 상대성을 전처리를 통해 지역별로 비슷한 수준의 정보를 생성

2. 다양한 분야의 지표 생성

주어진 데이터에서 개인의 전반적인 소비활동을 표현할 수 있는 다양한 분야를 생성

- ▶ 지표 생성 시 사용가능한 데이터가 4개 이상인 지표만 사용
- ▶ Entropy Weight를 통해 다양한 정보를 가질 수록 중요한 데이터라고 판단

지표 데이터 목적

1. 전처리를 통한 지역 상대성 해결

데이터를 통합하는 과정에서 생기는 상대성을 전처리를 통해 지역별로 비슷한 수준의 정보를 생성

2. 다양한 분야의 지표 생성

주어진 데이터에서 개인의 전반적인 소비활동을 표현할 수 있는 다양한 분야를 생성

- ▶ 지표 생성 시 사용가능한 데이터가 4개 이상인 지표만 사용
- ▶ Entropy Weight를 통해 다양한 정보를 가질 수록 중요한 데이터라 판단

지표 데이터 목적

1. 전처리를 통한 지역 상대성 해결

데이터를 통합하는 과정에서 생기는 상대성을 전처리를 통해 지역별로 비슷한 수준의 정보를 생성

2. 다양한 분야의 지표 생성

주어진 데이터에서 개인의 전반적인 소비활동을 표현할 수 있는 다양한 분야를 생성

- ▶ 지표 생성 시 사용가능한 데이터가 4개 이상인 지표만 사용
- ▶ Entropy Weight를 통해 다양한 정보를 가질 수록 중요한 데이터라 판단

지표 데이터 목적

1. 전처리를 통한 지역 상대성 해결

데이터를 통합하는 과정에서 생기는 상대성을 전처리를 통해 지역별로 비슷한 수준의 정보를 생성

2. 다양한 분야의 지표 생성

주어진 데이터에서 개인의 전반적인 소비활동을 표현할 수 있는 다양한 분야를 생성

- ▶ 지표 생성 시 사용가능한 데이터가 4개 이상인 지표만 사용
- ▶ Entropy Weight를 통해 다양한 정보를 가질 수록 중요한 데이터라고 판단

지표 생성 방법

주어진 데이터의 Scale이 상이하여 동일 Scale로 변경

변경Step1) MinMaxscale을 통해 데이터 열별 0 ~ 1사이의 Scale로 변경

	SP_SSM_CNT	SP_DPRT_CNT	 SP_OTLT_CNT	SP_SM_CNT
세종특별시	0.308	0.343	 0.284	0.248
가평군	0.076	0.086	 0.066	0.049
화천군	0.131	0.229	0.072	0.035
횡성군	0.114	0.302	 0.081	0.054

MinMax 결과

데이터들이 같은 Scale을 가지는 것을 획인

<u>#2</u> 반영 비율

해당 지역의 지표 데이터의 반영 비율로 변환

Setp1) 데이터로 부터 지표를 만드는데 필요한 Feature Selection

Step2) Selection한 Feature를 총합한 새로운 열 생성

Step3) Selection한 Feature를 Step2의 열로 나누어 반영 비율로 변환

		SP_SSMCNT	SP_DPRT_CNT	•••	SP_OTLT_CNT	SP_SM_CNT
세종	등특별시	0.103	0.236		0.026	0.192
7	·평군	0.059	0.143		0.025	0.079
호	가천군	0.013	0.309		0.029	0.043
혿	빙성군	0.076	0.093		0.030	0.108

반영 비율 결과

데이터들의 값이 변한 것을 확인

지표 생성 방법

1. 행렬 구성

$$D = \begin{pmatrix} \vdots & \ddots & \vdots \\ x_{m,1} & \cdots & x_{m,n} \end{pmatrix}$$

n은 세부지표 개수 m은 분석하고자 하는 지역 개수

2. 정규화

$$p_{i,j} = \frac{x_{i,j} - min(x)}{max(x) - min(x)}$$

자료의 단위가 다르기 때문에 정규화를 위해 MinMax 사용

3. 세부지표별 Entropy -

$$E_j = -k \sum_{1=1}^{m} P_{i,j} \ln p_{i,j}$$

(k = 1/ln(m))

Entropy값은 지표 값의 분산이 클수록 크게 산정

4. 가중치 산정

$$d_{j} = 1 - E_{j}$$

$$w_{j} = \frac{d_{j}}{\sum_{j=1}^{n} d_{j}}$$

Entropy값을 활용하여 속성 값의 다양성(d_j) 및 가중치(w_j) 산정

지표 생성 방법

#3 Entropy Weight

Entropy Weight 방식이란 새넌의 정보 이론을 바탕으로 지표의 속성정보를 활용하여 가중치를 산정하는 방법

- ► Entropy란 정보 속성의 다양성으로 결정되며 지표 값의 응집도가 낮을수록 Entropy Weight가 높게 산정
- ▶ 수학적으로 가중치를 산정하기 때문에 주관을 배제하고 객관적으로 가중치를 산정할 수 있다는 장점

	ı				
	SP_SSMCNT	SP_DPRT_CNT	•••	SP_OTLT_CNT	SP_SM_CNT
세종특별시	4	4		3	5
가평군	2	2	···	1	2
화천군	2	1		2	2
횡성군	1	2		2	2

#4 RFM Score

RFM Score 방식을 기반으로 새로운 지표 (Score)생성

(Score)생성 Step1) Pandas의 qcut을 활용하여 데이터를 5등급으로 분할

Step2) 앞서 구한 Entropy Weight와 Step1의 값을 곱함

Step3) Step2의 값을 합산하여 Score 산출

Score =
$$x_1 \cdot w_1 + x_2 \cdot w_2 + \cdots + x_n \cdot w_n$$

지표 생성 방법

#5 지수 생성 후처리

RFM Score 방식으로 Score를 생성한 이후 지표로 활용하기 위한 후처리 작업

지수 생성 후처리 Flow

- ▶ MinMax Scaler를 이용하여 지수를 0 ~ 100으로 Rescaling
- ▶ 위 과정을 반복해 각 분야별로 적용

	Shoppin g Score	CS Score	•••	Digital Score	Car Score
세종특별시	71.98	37.38		56.79	80.71
가평군	53.48	32.31	•••	90.96	77.14
	•••	•••	•••	•••	•••
횡성군	55.36	51.16	•••	89.03	77.84
화천군	30.32	63.52		83.99	75.44

지표 설명력

<u>#1) 지표 설명력</u>

제안한 지표가 얼마나 설명력이 있는지를 파악

가계 소비 지표 설명력

- ► 제안한 소비 지표의 설명력을 확인하기 위한 작업으로, 주어진 데이터에서 소비를 가장 잘 표현 할 수 있는 Grandata의 카드 소비액을 Target값으로 선정
- ▶ OLS모델을 활용하여 선형회귀를 진행
- ▶ 제안한 지표가 R-Squared 점수 하에서 약 82.8% 소비를 표현

클러스터링

클러스터링

▶ 집단 간 정보와 분류 규칙 없이 개체들의 다양한 특성 관계를 기반으로 개체들을 유사 집단으로 분류 가능

▶ 10개의 지표를 통해 지역들을 유사한 정도로 분류한 후 해당 집단의 특성을 파악 함으로써 기존에 파악할 수 없었던 지역별 특징 발견

기대 #1-1 고려사항

- ▶ 지표를 구성하는 71개의 Feature 들을 클러스터링의 Feature로 사용
- ▶ 모든 Feature 들에 대해 MinMax Scaling을 진행한 후 클러스티링을 실행

25

클러스터링 선정 방법

#1

Silhouette Score

DBSCAN

Score는 가장 높으나 군집의 수가 3개로 부족

#2

Scree Plot

- ▶ Scree Plot을 통해 K개 수가 변경될 때마다 비율 분산 확인
 하여 기울기가 유의미하게 변하는 부분을 군집의 개수 K로 설정
- ► Scree Plot의 결과와 앞서 진행한 Silhouette Score를 바탕으로 K(군진)이 개수를 7개로 설정

26

Clustering 선정 방법

Score는 가장 높으나 군집의 수가 3개로 부족

► Scree Plot의 결과와 앞서 진행한 Silhouette Score를 바탕으로 K(구진)이 개수를 7개로 설정

UMAP 이란?

- ▶ PCA, TSNE와 더불어 대표적인 차원축소 기법 중 하나
- ▶ PCA보다 고차원 정보를 잘 다루며, TSNE보다 빠르고 수식적으로 탄탄함

225개의 지역의 군집화가 잘 이루어졌는지 육안으로 확인하기 위해 UMAP을 활용해 시각화 결과 군집이 잘 형성되었다고 판단

군집 해석 및 지역 세분화

유형 1

유형 2

유형 3

- ▶ 클러스터 별로 지표를 Bar Plot으로 시각화 하여 0 ~ 100으로 책정된 지표가 클러스터 별로 얼마나 상이하게 분포하는지 확인

군집 해석 및 지역 세분화

Box Plot

Strip Plot

Box Plot을 통해 1, 3 분위 수와 중위 수 및 이상치 등을 파악
Strip Plot을 통해 분산과 개별 관측치가 클러스터별로 균등히 분배되었는지 파악

앞선 Plot들을 통해 클러스터들의 특성을 성공적으로 파악하여 225개 지역

지역 세분화 해석

지수 별 평균을 기준으로

낮으면 빨강색

보통이면 노랑색

높으면 초록색

지역 세분화 해석

- ▶ 첫번째 유형: 1번 클러스터에 해당
- ▶ Public Transportation, Car, High End지수가 높은 편
- ▶ Medical과 Digital 지수는 낮은 편
- ▶ 지역: 주로 강원도, 경상북도, 전라북도 지역 등 해당

지역 세분화 해석

유형 2

- ▶ 두번째 유형: 2번, 5번, 6번 클러스터에 해당
- ▶ 공통적으로 Shopping, Medical, High End, Car 지수가 높게 나오는 편
- ▶ 공통적으로 Travel 지수가 낮게 나오는 편
- ▶ 지역: 주로 서울 / 경기지역 등에 해당

지역 세분화 해석

- ▶ 세번째 유형: 경우 3번, 4번, 7번 클러스터에 해당
- ▶ 공통적으로 Finance, Culture Self, Travel 지수가 높은 편
- ▶ 공통적으로 Car, Credit 지수 등은 관심이 떨어지는 편
- ▶ 지역: 경기, 서울, 인천 등을 제외한 전반적인 지역 및 제주 지역에 해당

01 지역세분화 기대효과

02 ESG 서비스 제안

03) 마케팅 기대효과

가계 체감률이 높은 지수 활용

지역세분화 기반 새로운 서비스 제안

ESG 서비스 현황

#2 새로운 서비스 제안

- ▶ 다양한 카드사에서 그린카드를 제공 중: 국민, 하나, IBK 기업은행 등
- ▶ 현재 그린카드에서 제공하는 혜택: 대중교통(버스, 지하철 등), 문화/레저시설 현장 할인, 대형할인점 및 백화점 등 할인 혜택 제공

지역별로 추가적인 혜택을 제공하여 카드 사용량을 더증가시킬 수 있는 새로운 버전의 그린카드를 출시하고자 함

04. 아이디어 제안 및 기대효과

지역세분화 마케팅

서비스 예시

유형 3

그린카드로 친환경 여행 시 혜택

- ▶ 친환경 여행시 숙소비 할인, 페이백 등 혜택 제공
- ▶ 이를 통해 카드 사용량 증가 및 홍보 효과
- ▶ Ex) 제주 저탄소 여행시 숙소비 할인

그린 문화 제공 및 활성화

- ▶ 그린 카드를 이용하여 공공시설 및 친환경 문화활동 이용 시 이용료 할인
- ▶ 친환경 문화 친밀감 상승 및

그린카드 실적에 따른 그린론 제공

- ▶ 그린카드의 실적이 일정 이상이면 그린론 이용 가능
- ▶ 전기차, 수소차 구매 시 낮은 금리와 높은 한도의 대출

04. 아이디어 제안 및 기대효과

ESG서비스 기대효과

[2022 신년사] 5大그룹 신년사 공통 키워드는 '혁신과 ESG'

류은주 기자

입력 2022.01.03 11:53

5대 그룹(삼성·현대차·SK·LG·롯데)이 임인년 신년사에서 혁신과 환경·사회·지배구조(ESG) 경영을 강조했다.

사진 왼쪽부터 시계방향으로 한종희 삼성전자 부회장, 경계현 삼성전자 사장, 정의선 현대차그룹 회장, 최태원 SK그룹 회장, 구광모 LG그룹 회장, 신동빈 롯데그룹 회장 / 각 사

- ► 주요 기업들이 내세운 ESG가 신년사에 언급되는 수준에 그치지 않고 구체적 실천으로 이어지는 추세
- ▶ ESG에 대한 최고경영진의 관심도가 66.3%로 <u>노게 나타난</u>

#2

▶ 'ESG 준비실태 및 인식조사'의 결과에 따르면 기업이 ESG를 실시하는 가장 큰 목적은 기업의 이미지를 제고하기 위함임을 알 수 있음

#3

ESG에 대한 전반적 인식

▶ 그러나 실제 연구결과에 따르면 기업의 ESG 활동에 대한 소비자의 인식은 매우 낮은 수준에 머무르고 있다는 사실을 알 수 있음

ESG와 관련된 적극적인 홍보를 통한 고객 참여 유도 필요

- 필요 앞서 제시한 ESG 서비스를 지역 특성에 맞게 특화해 제공 시 서비스에 대한 개인의 체감률이 높아질 것으로 예상
- ▶ 보다 직접적으로 영향을 끼치는 서비스 제공을 통해 ESG에 대한 활발한 고객 참여 예상
- ▶ 서비스를 제공하는 기업의 이미지가 빠른 속도로 제고될 가능성이 높아질 것으로 예상
- ▶ 기업의 이미지 제고가 곧 국내외 수익 제고 와도 직결되므로

기업 수익 향상 예상

5. 다섯번째 순서 Appendix

지수 생성 및 활용 데이터

<u>각 데이터 별 지수 생성 활용</u> <u>데이터</u> ____

쇼핑 소비

- 백화점 이용금액
- 대형할인점 이용금액
- 소형유통점 이용금액
- 선호 쇼핑_대형할인점
- 선호 쇼핑 백화점 선호
- 쇼핑 브랜드 선호
- 쇼핑_슈퍼마켓 선호
- 쇼핑_아울렛

문화 생활 및 자기 투자

- 스포츠/문화/레저 이용금액
- 미용 이용금액
- 스타벅스 이용금액
- 의류/잡화 이용금액
- 유흥 이용금액
- 게임 이용등급
- 골프 이용등급
- 선호 레저 이용수
- 여가/오락 의류/패션잡화

하이엔드 소비

- 하이엔드명품_정보
- 하이엔드백화점_정보
- 하이엔드_소비수준
- 하이엔드_소득수준
- 하이엔드_법인대표
- 명품구매여부

여행 소비

- 숙박 이용금액 여행
- 이용금액 특급호텔
- 이용금액 제주도지역
- 이용금액 해외여행
- 이용금액 국내여행 등급
- 선호 관광지 사용자 수
- 교통/숙박/여행

지수 생성 및 활용 데이터

<u>각 데이터 별 지수 생성 활용</u> <u>데이터</u> ____

대중교통 소비

- 교통이용금액
- 버스주중이용건수
- 택시주중이용건수
- KTX주중이용건수
- 버스주말이용건수
- 택시주말이용건수
- KTX주말이용건수
- 지하철 이용횟수

자차 관련 소비

- 자동차판매이용금액
- 자동차서비스/용품이용금 액
- 주유이용금액
- 하이패스주중이용건수
- 하이패스주말이용건수
- 네비이용횟수
- 자동차수입_정보 차량
- 보유 수 자동차이용여부

고객 신용 소비

- 주택담보대출잔액
- 신용대출잔액
- 분기신규주담대출여부
- 분기신규신용대출여부
- 최근차량할부약정액

재태크 소비

- 주택보유건수
- 증권사_정보
- 암호화폐_정보 금융거래 다양성
- 금융 거래 금액
- 국내주식
- 해외주식
- 채권
- 연금

지수 생성 및 활용 데이터

각 데이터 별 지수 생성 활용 데이터

의료 관련 소비

- 의료이용금액
- 보험 건수
- 보험 매출
- 의료

디지털 소비

- 배달앱 이용금액
- 전자상거래 이용금액
- 디지털 음악 이용
- 앱 구매 등급

지수 생성 및 활용 데이터

#2 지역별 시각화 결과

