Vibrations of thin piezoelectric shallow shells: Two-dimensional approximation

N SABU

T.I.F.R. Centre, IISc Campus, Bangalore 560 012, India E-mail: sabu@math.tifrbng.res.in

MS received 21 January 2003

Abstract. In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

Keywords. Vibrations; piezoelectricity; shallow shells.

1. Introduction

Lower dimensional models of shells are preferred in numerical computations to threedimensional models when the thickness of the shells is 'very small'. A lot of work has been done on the lower dimensional approximation of boundary value and eigenvalue problem for elastic plates and shells (cf. [2,3,4,5,6,8,9]). Recently some work has been done on the lower dimensional approximation of boundary value problem for piezoelectric shells (cf. [1]).

In this paper, we would like to study the limiting behaviour of the eigenvalue problems for thin piezoelectric shallow shells. We begin with a brief description of the problem and describe the results obtained.

Let $\hat{\Omega}^{\varepsilon} = \Phi^{\varepsilon}(\Omega^{\varepsilon}), \Omega^{\varepsilon} = \omega \times (-\varepsilon, \varepsilon)$ with $\omega \subset \mathbb{R}^2$, and the mapping $\Phi^{\varepsilon} : \overline{\Omega}^{\varepsilon} \to \mathbb{R}^3$ is given by

$$\Phi^{\varepsilon}(x^{\varepsilon}) = (x_1, x_2, \varepsilon \theta(x_1, x_2)) + x_3^{\varepsilon} a_3^{\varepsilon}(x_1, x_2)$$

for all $x^{\varepsilon}=(x_1,x_2,x_3^{\varepsilon})\in\overline{\Omega}^{\varepsilon}$, where θ is an injective mapping of class C^3 and a_3^{ε} is a unit normal vector to the middle surface $\Phi^{\varepsilon}(\overline{\omega})$ of the shell. Let $\gamma_0,\gamma_e\subset\partial\omega$ with meas $(\gamma_0)>0$ and meas $(\gamma_e)>0$. Let $\hat{\Gamma}_0^{\varepsilon}=\Phi^{\varepsilon}(\gamma_0\times(-\varepsilon,\varepsilon))$ and let $\hat{\Gamma}_e^{\varepsilon}=\Phi^{\varepsilon}(\gamma_e\times(-\varepsilon,\varepsilon))$. The shell is clamped along the portion $\hat{\Gamma}_0^{\varepsilon}$ of the lateral surface.

Then the variational form of the eigenvalue problem consists of finding the displacement vector u^{ε} , the electric potential φ^{ε} and $\xi^{\varepsilon} \in \mathbb{R}$ satisfying eq. (2.21). We then show that the component of the eigenvector involving the electric potential φ^{ε} can be uniquely determined in terms of the displacement vector u^{ε} and the problem thus reduces to finding $(u^{\varepsilon}, \xi^{\varepsilon})$ satisfying equations (2.43) and (2.44).

After making appropriate scalings on the data and the unknowns, we transfer the problem to a domain $\Omega = \omega \times (-1,1)$ which is independent of ε . Then we show that the scaled eigensolutions converge to the solutions of a two-dimensional eigenvalue problem (6.50).

2. The three-dimensional problem

N Sabu

Throughout this paper, Latin indices vary over the set $\{1,2,3\}$ and Greek indices over the set $\{1,2\}$ for the components of vectors and tensors. The summation over repeated indices will be used.

Let $\omega \subset \mathbb{R}^2$ be a bounded domain with a Lipschitz continuous boundary γ and let ω lie locally on one side of γ . Let $\gamma_0, \gamma_e \subset \partial \omega$ with meas $(\gamma_0) > 0$ and meas $(\gamma_e) > 0$. Let $\gamma_1 = \partial \omega \setminus \gamma_0$ and $\gamma_s = \partial \omega \setminus \gamma_e$. For each $\varepsilon > 0$, we define the sets

$$\begin{split} & \Omega^{\varepsilon} = \omega \times (-\varepsilon, \varepsilon), \quad \Gamma^{\pm, \varepsilon} = \omega \times \{\pm \varepsilon\}, \quad \Gamma^{\varepsilon}_{0} = \gamma_{0} \times (-\varepsilon, \varepsilon), \\ & \Gamma^{\varepsilon}_{1} = \gamma_{1} \times (-\varepsilon, \varepsilon), \quad \Gamma^{\varepsilon}_{e} = \gamma_{e} \times (-\varepsilon, \varepsilon), \quad \Gamma^{\varepsilon}_{s} = \gamma_{s} \times (-\varepsilon, \varepsilon). \end{split}$$

Let
$$x^{\varepsilon}=(x_1,x_2,x_3^{\varepsilon})$$
 be a generic point on Ω^{ε} and let $\partial_{\alpha}=\partial_{\alpha}^{\varepsilon}=\frac{\partial}{\partial x_{\alpha}}$ and $\partial_{3}^{\varepsilon}=\frac{\partial}{\partial x_{3}^{\varepsilon}}$.

We assume that for each ε , we are given a function $\theta^{\varepsilon} : \omega \to \mathbb{R}$ of class C^3 . We then define the map $\phi^{\varepsilon} : \omega \to \mathbb{R}^3$ by

$$\phi^{\varepsilon}(x_1, x_2) = (x_1, x_2, \theta^{\varepsilon}(x_1, x_2)) \quad \text{for all } (x_1, x_2) \in \omega. \tag{2.1}$$

At each point of the surface $S^{\varepsilon} = \phi^{\varepsilon}(\omega)$, we define the normal vector

$$a^{\varepsilon} = (|\partial_1 \theta^{\varepsilon}|^2 + |\partial_2 \theta^{\varepsilon}|^2 + 1)^{-1/2} (-\partial_1 \theta^{\varepsilon}, -\partial_2 \theta^{\varepsilon}, 1).$$

For each $\varepsilon > 0$, we define the mapping $\Phi^{\varepsilon} : \Omega^{\varepsilon} \to \mathbb{R}^3$ by

$$\Phi^{\varepsilon}(x^{\varepsilon}) = \phi^{\varepsilon}(x_1, x_2) + x_3^{\varepsilon} a^{\varepsilon}(x_1, x_2) \quad \text{for all } x^{\varepsilon} \in \Omega^{\varepsilon}.$$
 (2.2)

It can be shown that there exists an $\varepsilon_0 > 0$ such that the mappings $\Phi^{\varepsilon} : \Omega^{\varepsilon} \to \Phi^{\varepsilon}(\Omega^{\varepsilon})$ are C^1 diffeomorphisms for all $0 < \varepsilon \le \varepsilon_0$. The set $\hat{\Omega}^{\varepsilon} = \Phi^{\varepsilon}(\Omega^{\varepsilon})$ is the reference configuration of the shell. For $0 < \varepsilon \le \varepsilon_0$, we define the sets

$$\begin{split} \hat{\Gamma}^{\pm,\varepsilon} &= \Phi^{\varepsilon}(\Gamma^{\pm,\varepsilon}), \quad \hat{\Gamma}^{\varepsilon}_{0} &= \Phi^{\varepsilon}(\Gamma^{\varepsilon}_{0}), \quad \hat{\Gamma}^{\varepsilon}_{1} &= \Phi(\Gamma^{\varepsilon}_{1}), \quad \hat{\Gamma}^{\varepsilon}_{N} &= \hat{\Gamma}^{\varepsilon}_{i} \cup \hat{\Gamma}^{\pm\varepsilon}, \\ \hat{\Gamma}^{\varepsilon}_{s} &= \Phi(\Gamma^{\varepsilon}_{s}), \quad \hat{\Gamma}^{\varepsilon}_{s} &= \Phi(\Gamma^{\varepsilon}_{s}), \quad \hat{\Gamma}^{\varepsilon}_{sD} &= \hat{\Gamma}^{\varepsilon}_{s} \cup \hat{\Gamma}^{\pm\varepsilon} \end{split}$$

and we define vectors g_i^{ε} and $g^{i,\varepsilon}$ by the relations

$$g_i^{\varepsilon} = \partial_i^{\varepsilon} \Phi^{\varepsilon}$$
 and $g^{j,\varepsilon} \cdot g_i^{\varepsilon} = \delta_i^{j}$

which form the covariant and contravariant basis respectively of the tangent plane of $\Phi^{\varepsilon}(\Omega^{\varepsilon})$ at $\Phi^{\varepsilon}(x^{\varepsilon})$. The covariant and contravariant metric tensors are given respectively by

$$g_{ij}^{\varepsilon} = g_i^{\varepsilon} \cdot g_j^{\varepsilon}$$
 and $g^{ij,\varepsilon} = g^{i,\varepsilon} \cdot g^{j,\varepsilon}$.

The Christoffel symbols are defined by

$$\Gamma_{ij}^{p,\varepsilon} = g^{p,\varepsilon} \cdot \partial_j^{\varepsilon} g_i^{\varepsilon}.$$

Note however that when the set Ω^{ε} is of the special form $\Omega^{\varepsilon} = \omega \times (-\varepsilon, \varepsilon)$ and the mapping Φ^{ε} is of the form (2.2), the following relations hold:

$$\Gamma_{\alpha 3}^{3,\varepsilon} = \Gamma_{33}^{p,\varepsilon} = 0.$$

The volume element is given by $\sqrt{g^{\varepsilon}} dx^{\varepsilon}$ where

$$g^{\varepsilon} = \det(g_{ij}^{\varepsilon}).$$

It can be shown that there exist constants g_1 and g_2 such that

$$0 < g_1 \le g^{\varepsilon} \le g_2 \tag{2.3}$$

for $0 \le \varepsilon \le \varepsilon_0$.

Let $\hat{A}^{ijkl,\varepsilon}$, $\hat{P}^{ijk,\varepsilon}$ and $\hat{\mathcal{E}}^{ij,\varepsilon}$ be the elastic, piezoelectric and dielectric tensors respectively. We assume that the material of the shell is *homogeneous and isotropic*. Then the elasticity tensor is given by

$$\hat{A}^{ijkl,\varepsilon} = \lambda g^{ij} g^{kl} + \mu (g^{ik} g^{jl} + g^{il} g^{jk}), \tag{2.4}$$

where λ and μ are the Lamè constants of the material.

These tensors satisfy the following coercive relations. There exists a constant C > 0 such that for all symmetric tensors (M_{ij}) and for any vector $(t_i) \in \mathbb{R}^3$,

$$\hat{A}^{ijkl,\varepsilon}M_{kl}M_{ij} \ge C\sum_{i,j=1}^{3} (M_{ij})^2, \tag{2.5}$$

$$\hat{\mathcal{E}}^{kl,\varepsilon}t_kt_l \ge C\sum_{j=1}^3 t_j^2. \tag{2.6}$$

Moreover we have the symmetries

$$\hat{A}^{ijkl,\varepsilon} = \hat{A}^{klij,\varepsilon} = \hat{A}^{jikl,\varepsilon}, \quad \hat{\mathcal{E}}^{kl,\varepsilon} = \hat{\mathcal{E}}^{kl,\varepsilon}, \quad \hat{P}^{ijk,\varepsilon} = \hat{P}^{kij,\varepsilon}.$$

Then the eigenvalue problem consists of finding $(\hat{u}^{\varepsilon}, \hat{\phi}^{\varepsilon}, \xi^{\varepsilon})$ such that

$$-\operatorname{div}\hat{\sigma}^{\varepsilon}(\hat{u}^{\varepsilon},\hat{\varphi}^{\varepsilon}) = \xi^{\varepsilon}\hat{u}^{\varepsilon} \text{ in } \hat{\Omega}^{\varepsilon} \\ \hat{\sigma}^{\varepsilon}(\hat{u}^{\varepsilon},\hat{\varphi}^{\varepsilon})v = 0 \text{ on } \hat{\Gamma}_{N}^{\varepsilon} \\ \hat{u}^{\varepsilon} = 0 \text{ on } \hat{\Gamma}_{0}^{\varepsilon} \end{cases}$$

$$\left. \right\}, \tag{2.7}$$

$$\left. \begin{array}{l} \operatorname{div} \hat{D}^{\varepsilon}(\hat{u}^{\varepsilon}, \hat{\varphi}^{\varepsilon}) = 0 \text{ in } \hat{\Omega}^{\varepsilon} \\ \hat{D}^{\varepsilon}(\hat{u}^{\varepsilon}, \hat{\varphi}^{\varepsilon}) v = 0 \text{ on } \hat{\Gamma}^{\varepsilon}_{s} \\ \hat{\varphi}^{\varepsilon} = 0 \text{ on } \hat{\Gamma}^{\varepsilon}_{eD}. \end{array} \right\},$$

$$(2.8)$$

where

$$\hat{\sigma}_{ij}^{\varepsilon} = \hat{A}^{ijkl,\varepsilon} \hat{e}_{ij}^{\varepsilon} - \hat{P}^{kij,\varepsilon} \hat{E}_{k}, \tag{2.9}$$

$$\hat{D}_{k} = \hat{P}^{kij,\varepsilon} \hat{e}_{ii}^{\varepsilon} + \hat{\mathcal{E}}^{kl,\varepsilon} \hat{E}_{l}, \tag{2.10}$$

where $\hat{e}_{ij}^{\varepsilon}(\hat{u}^{\varepsilon}) = \frac{1}{2}(\hat{\partial}_{i}^{\varepsilon}\hat{u}_{j}^{\varepsilon} + \hat{\partial}_{j}^{\varepsilon}\hat{u}_{i}^{\varepsilon}), \hat{\partial}_{i}^{\varepsilon} = \partial/\partial\hat{x}_{i}^{\varepsilon}$ and $\hat{E}_{k}(\hat{\varphi}^{\varepsilon}) = - \nabla(\hat{\varphi}^{\varepsilon})$. We define the spaces

$$\hat{V}^{\varepsilon} = \{ \hat{v} \in (H^1(\hat{\Omega}^{\varepsilon}))^3, \hat{v}|_{\hat{\Gamma}_0^{\varepsilon}} = 0 \}, \tag{2.11}$$

$$\hat{\Psi}^{\varepsilon} = \{ \hat{\psi} \in H^{1}(\hat{\Omega}^{\varepsilon}), \hat{\psi}|_{\hat{\Gamma}^{\varepsilon}_{eD}} = 0 \}. \tag{2.12}$$

Then the variational form of systems (2.7) and (2.8) is to find $(\hat{u}^{\varepsilon}, \hat{\varphi}^{\varepsilon}, \xi^{\varepsilon}) \in \hat{V}^{\varepsilon} \times \hat{\Psi}^{\varepsilon} \times \mathbb{R}$ such that

$$\hat{a}^{\varepsilon}((\hat{u}^{\varepsilon}, \hat{\varphi}^{\varepsilon}), (\hat{v}^{\varepsilon}, \hat{\psi}^{\varepsilon})) = \xi^{\varepsilon} \hat{l}^{\varepsilon}(\hat{v}^{\varepsilon}, \hat{\psi}^{\varepsilon}) \quad \text{ for all } (\hat{v}^{\varepsilon}, \hat{\psi}^{\varepsilon}) \in \hat{V}^{\varepsilon} \times \hat{\Psi}^{\varepsilon}, \quad (2.13)$$

where

$$\begin{split} \hat{a}^{\varepsilon}((\hat{u}^{\varepsilon},\hat{\varphi}^{\varepsilon}),(\hat{v}^{\varepsilon},\hat{\psi}^{\varepsilon})) &= \int_{\hat{\Omega}^{\varepsilon}} \hat{A}^{ijkl,\varepsilon} \hat{e}^{\varepsilon}_{kl}(\hat{u}^{\varepsilon}) \hat{e}^{\varepsilon}_{ij}(\hat{v}^{\varepsilon}) \mathrm{d}\hat{x}^{\varepsilon} \\ &+ \int_{\hat{\Omega}^{\varepsilon}} \hat{e}^{\hat{i}ij,\varepsilon} \hat{\partial}^{\varepsilon}_{i} \hat{\varphi}^{\varepsilon} \hat{\partial}^{\varepsilon}_{j} \hat{\psi}^{\varepsilon} \mathrm{d}\hat{x}^{\varepsilon} \\ &+ \int_{\hat{\Omega}^{\varepsilon}} \hat{P}^{mij,\varepsilon} (\hat{\partial}^{\varepsilon}_{m} \hat{\varphi}^{\varepsilon} \hat{e}^{\varepsilon}_{ij}(\hat{v}^{\varepsilon}) - \hat{\partial}^{\varepsilon}_{m} \hat{\psi}^{\varepsilon} \hat{e}^{\varepsilon}_{ij}(\hat{u}^{\varepsilon})) \mathrm{d}\hat{x}^{\varepsilon}, \\ \hat{l}^{\varepsilon}(\hat{v}^{\varepsilon}, \hat{\psi}^{\varepsilon}) &= \int_{\hat{\Omega}^{\varepsilon}} \hat{u}^{\varepsilon} \cdot \hat{v}^{\varepsilon} \mathrm{d}\hat{x}^{\varepsilon}. \end{split} \tag{2.14}$$

Since the mappings $\Phi^{\varepsilon}: \overline{\Omega}^{\varepsilon} \to \overline{\hat{\Omega}}^{\varepsilon}$ are assumed to be C^1 diffeomorphisms, the correspondences that associate with every element $\hat{v}^{\varepsilon} \in \hat{V}^{\varepsilon}$, the vector

$$v^{\varepsilon} = \hat{v}^{\varepsilon} \cdot \Phi^{\varepsilon} : \Omega^{\varepsilon} \to \mathbb{R}^3$$

and with every element $\hat{\psi}^{\varepsilon} \in \hat{\Psi}^{\varepsilon}$, the function

$$\psi^{\varepsilon} = \hat{\psi}^{\varepsilon} \cdot \Phi^{\varepsilon} : \Omega^{\varepsilon} \to \mathbb{R}$$

induce bijections between the spaces \hat{V}^{ε} and V^{ε} , and the spaces $\hat{\Psi}^{\varepsilon}$ and Ψ^{ε} respectively, where

$$V^{\varepsilon} = \{ v^{\varepsilon} \in (H^{1}(\Omega^{\varepsilon}))^{3} | v^{\varepsilon} = 0 \text{ on } \Gamma_{0}^{\varepsilon} \}, \tag{2.16}$$

$$\Psi^{\varepsilon} = \{ \psi^{\varepsilon} \in H^{1}(\Omega^{\varepsilon}) | \psi^{\varepsilon} = 0 \text{ on } \Gamma^{\varepsilon}_{eD} \}. \tag{2.17}$$

Then we have

$$\hat{\partial}_{j}^{\varepsilon}\hat{v}^{\varepsilon}(\hat{x}^{\varepsilon}) = (\partial_{i}^{\varepsilon}v^{\varepsilon})(g^{i,\varepsilon})_{j}, \tag{2.18}$$

$$\hat{e}_{ij}(\hat{v})(\hat{x}^{\varepsilon}) = e_{k|l}^{\varepsilon}(v^{\varepsilon})(g^{k,\varepsilon})_i(g^{l,\varepsilon})_j, \tag{2.19}$$

where

$$e_{i||j}^{\varepsilon}(v^{\varepsilon}) = \frac{1}{2} (\partial_{i}^{\varepsilon} v_{j}^{\varepsilon} + \partial_{j}^{\varepsilon} v_{i}^{\varepsilon}) - \Gamma_{ij}^{p,\varepsilon} v_{p}^{\varepsilon}.$$
(2.20)

Then the variational form (2.13) posed on the domain Ω^{ε} is to find $(u^{\varepsilon}, \varphi^{\varepsilon}, \xi^{\varepsilon}) \in V^{\varepsilon} \times \Psi^{\varepsilon} \times \mathbb{R}$ such that

$$a^{\varepsilon}((u^{\varepsilon}, \varphi^{\varepsilon}), (v^{\varepsilon}, \psi^{\varepsilon})) = \xi^{\varepsilon} l^{\varepsilon}(v^{\varepsilon}, \psi^{\varepsilon}) \quad \text{ for all } (v^{\varepsilon}, \psi^{\varepsilon}) \in V^{\varepsilon} \times \Psi^{\varepsilon},$$
 (2.21)

where

$$\begin{split} a^{\varepsilon}((u^{\varepsilon}, \boldsymbol{\varphi}^{\varepsilon}), (v^{\varepsilon}, \boldsymbol{\psi}^{\varepsilon})) &= \int_{\Omega^{\varepsilon}} A^{ijkl, \varepsilon} e^{\varepsilon}_{k\parallel l}(v^{\varepsilon}) e^{\varepsilon}_{i\parallel j}(v^{\varepsilon}) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} \\ &+ \int_{\Omega^{\varepsilon}} \mathscr{E}^{ij, \varepsilon} \partial^{\varepsilon}_{i} \boldsymbol{\varphi}^{\varepsilon} \partial^{\varepsilon}_{j} \boldsymbol{\psi}^{\varepsilon} \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} \\ &+ \int_{\Omega^{\varepsilon}} P^{mij, \varepsilon} (\partial^{\varepsilon}_{m} \boldsymbol{\varphi}^{\varepsilon} e^{\varepsilon}_{i\parallel j}(v^{\varepsilon}) \\ &- \partial^{\varepsilon}_{m} \boldsymbol{\psi}^{\varepsilon} e^{\varepsilon}_{i\parallel j}(u^{\varepsilon})) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon}, \end{split} \tag{2.22}$$

$$l^{\varepsilon}(v^{\varepsilon}, \psi^{\varepsilon}) = \int_{\Omega^{\varepsilon}} u^{\varepsilon} \cdot v^{\varepsilon} \sqrt{g^{\varepsilon}} dx^{\varepsilon}, \qquad (2.23)$$

$$A^{pqrs,\varepsilon} = \hat{A}^{ijkl,\varepsilon}(g^{p,\varepsilon})_i \cdot (g^{q,\varepsilon})_j \cdot (g^{r,\varepsilon})_k \cdot (g^{s,\varepsilon})_l, \tag{2.24}$$

$$\mathscr{E}^{pq,\varepsilon} = \widehat{\mathscr{E}}^{ij,\varepsilon}(g^{p,\varepsilon})_i \cdot (g^{q,\varepsilon})_j, \tag{2.25}$$

$$P^{pqr,\varepsilon} = \hat{P}^{ijk,\varepsilon}(g^{p,\varepsilon})_i \cdot (g^{q,\varepsilon})_i \cdot (g^{r,\varepsilon})_k. \tag{2.26}$$

Using the relations (2.3), (2.5) and (2.6), it can be shown that there exists a constant C > 0 such that for all symmetric tensor (M_{ij}) and for any vector $(t_i) \in \mathbb{R}^3$,

$$A^{ijkl,\varepsilon}M_{kl}M_{ij} \ge C\sum_{i,j=1}^{3} (M_{ij})^2,$$
 (2.27)

$$\mathcal{E}^{ij,\varepsilon}t_it_j \ge C\sum_{i=1}^3 t_i^2. \tag{2.28}$$

Clearly the bilinear form associated with the left-hand side of (2.21) is elliptic. Hence by Lax–Milgram theorem, given $f^{\varepsilon} \in V'^{\varepsilon}$ and $h^{\varepsilon} \in \Psi'^{\varepsilon}$, there exists a unique $(u^{\varepsilon}, \varphi^{\varepsilon}) \in V^{\varepsilon} \times \Psi^{\varepsilon}$ such that

$$a^{\varepsilon}((u^{\varepsilon}, \boldsymbol{\varphi}^{\varepsilon}), (v^{\varepsilon}, \boldsymbol{\psi}^{\varepsilon})) = \langle (f^{\varepsilon}, h^{\varepsilon}), (v^{\varepsilon}, \boldsymbol{\psi}^{\varepsilon}) \rangle \qquad \forall V^{\varepsilon} \times \boldsymbol{\Psi}^{\varepsilon} \in V^{\varepsilon} \times \boldsymbol{\Psi}^{\varepsilon}. \quad (2.29)$$

In particular, for each $f^{\varepsilon} \in (L^2(\Omega^{\varepsilon}))^3$, there exists a unique solution $(u^{\varepsilon}, \varphi^{\varepsilon}) \in V^{\varepsilon} \times \Psi^{\varepsilon}$ such that

$$a^{\varepsilon}((u^{\varepsilon}, \boldsymbol{\varphi}^{\varepsilon}), (v^{\varepsilon}, \boldsymbol{\psi}^{\varepsilon})) = \int_{\Omega^{\varepsilon}} f^{\varepsilon} v^{\varepsilon} \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} \quad \forall v^{\varepsilon} \times \boldsymbol{\psi}^{\varepsilon} \in V^{\varepsilon} \times \Psi^{\varepsilon}. \tag{2.30}$$

This is equivalent to the following equations.

$$\int_{\Omega^{\varepsilon}} A^{ijkl,\varepsilon} e^{\varepsilon}_{k\parallel l}(u^{\varepsilon}) e^{\varepsilon}_{i\parallel j}(v^{\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon} + \int_{\Omega^{\varepsilon}} P^{mij,\varepsilon} \partial_{m}^{\varepsilon} (\varphi^{\varepsilon}) e^{\varepsilon}_{i\parallel j}(v^{\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon} \\
= \int_{\Omega^{\varepsilon}} f^{\varepsilon} v^{\varepsilon} \sqrt{g^{\varepsilon}} dx^{\varepsilon} \quad \forall v^{\varepsilon} \in V^{\varepsilon} \tag{2.31}$$

and

$$\int_{\Omega^{\varepsilon}} \mathscr{E}^{ij,\varepsilon} \partial_{i}^{\varepsilon} \varphi^{\varepsilon} \partial_{j}^{\varepsilon} \psi^{\varepsilon} \sqrt{g^{\varepsilon}} dx^{\varepsilon} = \int_{\Omega^{\varepsilon}} P^{mij,\varepsilon} \partial_{m}^{\varepsilon} \psi^{\varepsilon} e_{i\parallel j}^{\varepsilon} (u^{\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon} \quad \forall \psi^{\varepsilon} \in \Psi^{\varepsilon}.$$
(2.32)

From relation (2.28), it follows that the bilinear form associated with the left-hand side of (2.32) is Ψ^{ε} -elliptic.

Also for each $h^{\varepsilon} \in V^{\varepsilon}$, the mapping

$$\psi^{\varepsilon} \to \int_{\Omega}^{\varepsilon} P^{mij,\varepsilon} \partial_m \psi^{\varepsilon} e_{i\parallel j}^{\varepsilon}(h^{\varepsilon}) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon}$$

defines a linear functional on Ψ^{ε} . Hence for each $h^{\varepsilon} \in V^{\varepsilon}$, there exists a unique $T^{\varepsilon}(h^{\varepsilon}) \in \Psi^{\varepsilon}$ such that

$$\int_{\Omega^{\varepsilon}} \mathcal{E}^{ij,\varepsilon} \partial_{i}^{\varepsilon} T^{\varepsilon}(h^{\varepsilon}) \partial_{j}^{\varepsilon} \psi^{\varepsilon} \sqrt{g^{\varepsilon}} dx^{\varepsilon} = \int_{\Omega^{\varepsilon}} P^{mij,\varepsilon} \partial_{m}^{\varepsilon} \psi^{\varepsilon} e_{i\parallel j}^{\varepsilon}(h^{\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon} \quad \forall \psi^{\varepsilon} \in \Psi^{\varepsilon}$$

and that $T^{\varepsilon}: V^{\varepsilon} \to \Psi^{\varepsilon}$ is continuous.

In particular, it follows from (2.32) and the above equation that $\varphi^{\varepsilon} = T^{\varepsilon}(u^{\varepsilon})$ and eqs (2.31) and (2.32) become

$$\int_{\Omega^{\varepsilon}} A^{ijkl,\varepsilon} e_{k\parallel l}^{\varepsilon}(u^{\varepsilon}) e_{i\parallel j}^{\varepsilon}(v^{\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon} + \int_{\Omega^{\varepsilon}} P^{mij,\varepsilon} \partial_{m}^{\varepsilon} (T^{\varepsilon}(u^{\varepsilon})) e_{i\parallel j}^{\varepsilon}(v^{\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon}
= \int_{\Omega^{\varepsilon}} f^{\varepsilon} v^{\varepsilon} \sqrt{g^{\varepsilon}} dx^{\varepsilon} \quad \forall v^{\varepsilon} \in V^{\varepsilon}, \qquad (2.34)$$

$$\int_{\Omega^{\varepsilon}} \mathcal{E}^{ij,\varepsilon} \partial_{i}^{\varepsilon} (T^{\varepsilon}(u^{\varepsilon})) \partial_{j}^{\varepsilon} \psi^{\varepsilon} \sqrt{g^{\varepsilon}} dx^{\varepsilon} = \int_{\Omega^{\varepsilon}} P^{mij,\varepsilon} \partial_{m}^{\varepsilon} \psi^{\varepsilon} e_{i\parallel j}^{\varepsilon}(u^{\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon}
\forall \psi^{\varepsilon} \in \Psi^{\varepsilon}. \qquad (2.35)$$

Lemma 2.1. For each $h^{\varepsilon} \in (L^2(\Omega^{\varepsilon}))^3$, there exists a unique $G^{\varepsilon}(h^{\varepsilon}) \in V^{\varepsilon}$ such that

$$\int_{\Omega^{\varepsilon}} A^{ijkl,\varepsilon} e^{\varepsilon}_{k\parallel l} (G^{\varepsilon}(h^{\varepsilon})) e^{\varepsilon}_{i\parallel j} (v^{\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon} + \int_{\Omega^{\varepsilon}} P^{mij,\varepsilon} \partial^{\varepsilon}_{m} (T^{\varepsilon}(G^{\varepsilon}(h^{\varepsilon}))) e^{\varepsilon}_{i\parallel j} (v^{\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon} \\
= \int_{\Omega^{\varepsilon}} h^{\varepsilon} v^{\varepsilon} \sqrt{g^{\varepsilon}} dx^{\varepsilon} \quad \forall v^{\varepsilon} \in V^{\varepsilon} \tag{2.36}$$

and that $G^{\varepsilon}: (L^2(\Omega^{\varepsilon}))^3 \to V^{\varepsilon}$ is continuous.

Proof. Let $B^{\varepsilon}(u^{\varepsilon}, v^{\varepsilon})$ denotes the bilinear form associated with the left-hand side of eq. (2.34). Using (2.35), we have

$$\begin{split} B^{\varepsilon}(u^{\varepsilon},v^{\varepsilon}) &= \int_{\Omega^{\varepsilon}} A^{ijkl,\varepsilon} e^{\varepsilon}_{k\parallel l}(u^{\varepsilon}) e^{\varepsilon}_{i\parallel j}(v^{\varepsilon}) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} \\ &+ \int_{\Omega^{\varepsilon}} P^{mij,\varepsilon} \partial^{\varepsilon}_{m}(T^{\varepsilon}(u^{\varepsilon})) e^{\varepsilon}_{i\parallel j}(v^{\varepsilon}) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} \\ &= \int_{\Omega^{\varepsilon}} A^{ijkl,\varepsilon} e^{\varepsilon}_{k\parallel l}(u^{\varepsilon}) e^{\varepsilon}_{i\parallel j}(v^{\varepsilon}) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} \\ &+ \int_{\Omega^{\varepsilon}} \mathcal{E}^{ij,\varepsilon} \partial^{\varepsilon}_{i}(T^{\varepsilon}(u^{\varepsilon})) \partial^{\varepsilon}_{j}(T^{\varepsilon}(v^{\varepsilon})) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} \end{split}$$

$$= \int_{\Omega^{\varepsilon}} A^{ijkl,\varepsilon} e^{\varepsilon}_{k\parallel l} (v^{\varepsilon}) e^{\varepsilon}_{i\parallel j} (u^{\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon}$$

$$+ \int_{\Omega^{\varepsilon}} \mathcal{E}^{ij,\varepsilon} \partial^{\varepsilon}_{i} (T^{\varepsilon} (v^{\varepsilon})) \partial^{\varepsilon}_{j} (T^{\varepsilon} (u^{\varepsilon})) \sqrt{g^{\varepsilon}} dx^{\varepsilon}$$

$$= B^{\varepsilon} (v^{\varepsilon}, u^{\varepsilon}).$$
(2.37)

Also, using (2.35) and the relations (2.27) and (2.28), we have

$$\begin{split} B^{\varepsilon}(u^{\varepsilon}, u^{\varepsilon}) &= \int_{\Omega^{\varepsilon}} A^{ijkl, \varepsilon} e_{k\parallel l}^{\varepsilon}(u^{\varepsilon}) e_{i\parallel j}^{\varepsilon}(u^{\varepsilon}) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} \\ &+ \int_{\Omega^{\varepsilon}} P^{mij, \varepsilon} \partial_{m}^{\varepsilon} (T^{\varepsilon}(u^{\varepsilon})) e_{i\parallel j}^{\varepsilon}(u^{\varepsilon}) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} \\ &= \int_{\Omega^{\varepsilon}} A^{ijkl, \varepsilon} e_{k\parallel l}^{\varepsilon}(u^{\varepsilon}) e_{i\parallel j}^{\varepsilon}(u^{\varepsilon}) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} \\ &+ \int_{\Omega^{\varepsilon}} \mathcal{E}^{ij, \varepsilon} \partial_{i}^{\varepsilon} (T^{\varepsilon}(u^{\varepsilon})) \partial_{j}^{\varepsilon} (T^{\varepsilon}(u^{\varepsilon})) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} \\ &\geq C \|u^{\varepsilon}\|_{V^{\varepsilon}}^{2}. \end{split} \tag{2.38}$$

Hence $B^{\varepsilon}(\cdots)$ is symmetric and V^{ε} -elliptic. Hence by Lax–Milgram theorem, there exists a unique $G^{\varepsilon}(h^{\varepsilon})$ satisfying (2.36). Letting $v^{\varepsilon} = G^{\varepsilon}(h^{\varepsilon})$ in (2.36), we get

$$\begin{split} &\int_{\Omega^{\varepsilon}} A^{ijkl,\varepsilon} e^{\varepsilon}_{k\parallel l}(G^{\varepsilon}(h^{\varepsilon})) e^{\varepsilon}_{i\parallel j}(G^{\varepsilon}(h^{\varepsilon})) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} \\ &\quad + \int_{\Omega^{\varepsilon}} P^{mij,\varepsilon} \partial^{\varepsilon}_{m}(T^{\varepsilon}(G^{\varepsilon}(h^{\varepsilon}))) e^{\varepsilon}_{i\parallel j}(G^{\varepsilon}(h^{\varepsilon})) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} \\ &\quad = \int_{\Omega^{\varepsilon}} h^{\varepsilon} G^{\varepsilon}(h^{\varepsilon}) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon}. \end{split} \tag{2.39}$$

Using (2.35), it becomes

$$\int_{\Omega^{\varepsilon}} A^{ijkl,\varepsilon} e_{k\parallel l}^{\varepsilon} (G^{\varepsilon}(h^{\varepsilon})) e_{i\parallel j}^{\varepsilon} (G^{\varepsilon}(h^{\varepsilon})) \sqrt{g^{\varepsilon}} dx^{\varepsilon}
+ \int_{\Omega^{\varepsilon}} \mathcal{E}^{ij,\varepsilon} \partial_{i}^{\varepsilon} (T^{\varepsilon}(G^{\varepsilon}(h^{\varepsilon}))) \partial_{j}^{\varepsilon} (T^{\varepsilon}(G^{\varepsilon}(h^{\varepsilon}))) \sqrt{g^{\varepsilon}} dx^{\varepsilon}
= \int_{\Omega^{\varepsilon}} h^{\varepsilon} G^{\varepsilon}(h^{\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon}.$$
(2.40)

Using the relations (2.27) and (2.28), we have

$$\|G^{\varepsilon}(h^{\varepsilon})\|_{V^{\varepsilon}}^{2} \leq C^{\varepsilon} \|G^{\varepsilon}(h^{\varepsilon})\|_{V^{\varepsilon}} \|h^{\varepsilon}\|_{(L^{2}(\Omega^{\varepsilon}))^{3}}. \tag{2.41}$$

Hence

$$\|G^{\varepsilon}(h^{\varepsilon})\|_{V^{\varepsilon}} \le C^{\varepsilon} \|h^{\varepsilon}\|_{(L^{2}(\Omega^{\varepsilon}))^{3}}$$
(2.42)

which implies that G^{ε} is continuous.

It follows from (2.34) and the above lemma that $u^{\varepsilon} = G^{\varepsilon}(f^{\varepsilon})$. Since the inclusion $(H^1(\Omega^{\varepsilon}))^3 \hookrightarrow (L^2(\Omega^{\varepsilon}))^3$ is compact, it follows that $G^{\varepsilon} : (L^2(\Omega^{\varepsilon}))^3 \to (L^2(\Omega^{\varepsilon}))^3$ is compact. Also since the bilinear form $B^{\varepsilon}(\cdots)$ is symmetric, it follows that G^{ε} is self-adjoint. Hence from the spectral theory of compact, self-adjoint operators, it follows that there

exists a sequence of eigenpairs $(u^{m,\varepsilon}, \xi^{m,\varepsilon})_{m=1}^{\infty}$ such that

$$\int_{\Omega^{\varepsilon}} A^{ijkl,\varepsilon} e_{k\parallel l}^{\varepsilon}(u^{m,\varepsilon}) e_{i\parallel j}^{\varepsilon}(v^{\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon}
+ \int_{\Omega^{\varepsilon}} P^{mij,\varepsilon} \partial_{m}^{\varepsilon} (T^{\varepsilon}(u^{m,\varepsilon})) e_{i\parallel j}^{\varepsilon}(v^{\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon}
= \xi^{m,\varepsilon} \int_{\Omega^{\varepsilon}} u^{m,\varepsilon} v^{\varepsilon} \sqrt{g^{\varepsilon}} dx^{\varepsilon} \quad \forall v^{\varepsilon} \in V^{\varepsilon},$$
(2.43)

$$\int_{\Omega^{\varepsilon}} \mathscr{E}^{ij,\varepsilon} \partial_{i}^{\varepsilon} (T^{\varepsilon}(u^{m,\varepsilon})) \partial_{j}^{\varepsilon} \psi^{\varepsilon} \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon}$$

$$= \int_{\Omega^{\varepsilon}} P^{mij,\varepsilon} \partial_{m}^{\varepsilon} \psi^{\varepsilon} e_{i||j}^{\varepsilon} (u^{m,\varepsilon}) \sqrt{g^{\varepsilon}} dx^{\varepsilon} \quad \forall \psi^{\varepsilon} \in \Psi^{\varepsilon}, \tag{2.44}$$

$$0 < \xi^{1,\varepsilon} \le \xi^{2,\varepsilon} \le \dots \le \xi^{m,\varepsilon} \le \dots \to \infty, \tag{2.45}$$

$$\int_{\Omega^{\varepsilon}} u_i^{m,\varepsilon} u_i^{n,\varepsilon} \sqrt{g^{\varepsilon}} dx^{\varepsilon} = \varepsilon^3 \delta_{mn}. \tag{2.46}$$

The sequence $\{u^{m,\varepsilon}\}$ forms a complete orthonormal basis for $(L^2(\Omega))^3$. Define the Rayleigh quotient $R(\varepsilon)(v^{\varepsilon})$ for $v^{\varepsilon} \in V^{\varepsilon}$ by

$$R^{\varepsilon}(v^{\varepsilon}) = \frac{\int_{\Omega^{\varepsilon}} A^{ijkl,\varepsilon} e_{k\parallel l}(v^{\varepsilon}) e_{i\parallel j}(v^{\varepsilon}) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon} + \int_{\Omega^{\varepsilon}} P^{mij,\varepsilon} \partial_{m}^{\varepsilon} (T^{\varepsilon}(v^{\varepsilon})) e_{i\parallel j}^{\varepsilon}(v^{\varepsilon}) \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon}}{\int_{\Omega^{\varepsilon}} v_{i}^{\varepsilon} v_{i}^{\varepsilon} \sqrt{g^{\varepsilon}} \mathrm{d}x^{\varepsilon}}.$$
(2.47)

Then

$$\xi^{m,\varepsilon} = \min_{W^{\varepsilon} \in W_m^{\varepsilon}} \max_{v^{\varepsilon} \in W^{\varepsilon} \setminus \{0\}} R^{\varepsilon}(v^{\varepsilon}), \tag{2.48}$$

where W_m^{ε} denotes the collection of all *m*-dimensional subspaces of V^{ε} .

3. The scaled problem

We now perform a change of variable so that the domain no longer depends on ε . With $x = (x_1, x_2, x_3) \in \Omega$, we associate $x^{\varepsilon} = (x_1, x_2, \varepsilon x_3) \in \Omega^{\varepsilon}$. Let

$$\Gamma_0 = \gamma_0 \times (-1, 1), \quad \Gamma_1 = \gamma_1 \times (-1, 1), \quad \Gamma^{\pm} = \omega \times \{\pm 1\},$$

$$\Gamma_e = \gamma_e \times (-1, 1), \quad \Gamma_s = \gamma_s \times (-1, 1),$$

$$\Gamma_N = \Gamma_1 \cup \Gamma^+ \cup \Gamma^-, \quad \Gamma_{eD} = \Gamma^+ \cup \Gamma^- \cup \Gamma_e.$$

With the functions $\Gamma^{p,\varepsilon}, g^{\varepsilon}, A^{ijkl,\varepsilon}, P^{ijk,\varepsilon}, \mathcal{E}^{ij,\varepsilon} : \Omega^{\varepsilon} \to \mathbb{R}$, we associate the functions $\Gamma^{p}(\varepsilon), g^{\varepsilon}, A^{ijkl}(\varepsilon), P^{ijk}(\varepsilon), \mathcal{E}^{ij}(\varepsilon) : \Omega \to \mathbb{R}$ defined by

$$\Gamma^{p}(\varepsilon)(x) := \Gamma^{p,\varepsilon}(x^{\varepsilon}), \quad g(\varepsilon)(x) = g^{\varepsilon}(x^{\varepsilon}), \quad A^{ijkl}(\varepsilon)(x) = A^{ijkl,\varepsilon}(x^{\varepsilon}), \tag{3.1}$$

$$P^{ijk}(\varepsilon)(x) = P^{ijk,\varepsilon}(x^{\varepsilon}), \quad \mathscr{E}^{ij}(\varepsilon)(x) = \mathscr{E}^{ij,\varepsilon}(x^{\varepsilon}).$$
 (3.2)

Assumption. We assume that the shell is a shallow shell, i.e. there exists a function $\theta \in C^3(\omega)$ such that

$$\phi^{\varepsilon}(x_1, x_2) = (x_1, x_2, \varepsilon \theta(x_1, x_2)) \quad \text{for all } (x_1, x_2) \in \omega, \tag{3.3}$$

i.e., the curvature of the shell is of the order of the thickness of the shell.

We make the following scalings on the eigensolutions.

$$u_{\alpha}^{m,\varepsilon}(x^{\varepsilon}) = \varepsilon^{2} u_{\alpha}^{m}(\varepsilon)(x), \quad v_{\alpha}(x^{\varepsilon}) = \varepsilon^{2} v_{\alpha}(x), \tag{3.4}$$

$$u_3^{m,\varepsilon}(x^{\varepsilon}) = \varepsilon u_3^m(\varepsilon)(x), \quad v_3(x^{\varepsilon}) = \varepsilon v_3(x),$$
 (3.5)

$$T^{\varepsilon}(u^{m,\varepsilon}(x^{\varepsilon})) = \varepsilon^{3}T(\varepsilon)(u^{m}(\varepsilon)(x)), \quad T^{\varepsilon}(v(x^{\varepsilon})) = \varepsilon^{3}T(\varepsilon)(v(x)), \tag{3.6}$$

$$\xi^{m,\varepsilon} = \varepsilon^2 \xi^m(\varepsilon). \tag{3.7}$$

With the tensors $e_{i||j}^{\varepsilon}$, we associate the tensors $e_{i||j}(\varepsilon)$ through the relation

$$e_{i||j}^{\varepsilon}(v^{\varepsilon})(x^{\varepsilon}) = \varepsilon^{2} e_{i||j}(\varepsilon; v)(x).$$
 (3.8)

We define the spaces

$$V(\Omega) = \{ v \in (H^1(\Omega))^3, v|_{\Gamma_0} = 0 \}, \tag{3.9}$$

$$\Psi(\Omega) = \{ \psi \in H^1(\Omega), \psi|_{\Gamma_{aD}} = 0 \}. \tag{3.10}$$

We denote $\varphi^m(\varepsilon) = T(\varepsilon)(u^m(\varepsilon))$. Then the variational equations (eqs (2.43)–(2.46)) become

$$\int_{\Omega} A^{ijkl}(\varepsilon) e_{k\parallel l}(\varepsilon, u^{m}(\varepsilon)) e_{i\parallel j}(\varepsilon, v) \sqrt{g(\varepsilon)} dx
+ \int_{\Omega} P^{3kl} \partial_{3} \varphi^{m}(\varepsilon) e_{k\parallel l}(\varepsilon, v) \sqrt{g(\varepsilon)} dx
+ \varepsilon \int_{\Omega} P^{\alpha kl}(\varepsilon) \partial_{\alpha} \varphi^{m}(\varepsilon) e_{k\parallel l}(\varepsilon, v) \sqrt{g(\varepsilon)} dx
= \xi^{m}(\varepsilon) \int_{\Omega} [\varepsilon^{2} u_{\alpha}^{m}(\varepsilon) v_{\alpha} + u_{3}^{m}(\varepsilon) v_{3}] \sqrt{g(\varepsilon)} dx \quad \text{for all } v \in V(\Omega).$$
(3.11)
$$\int_{\Omega} \mathscr{E}^{33}(\varepsilon) \partial_{3} \varphi^{m}(\varepsilon) \partial_{3} \psi \sqrt{g(\varepsilon)} dx
+ \varepsilon \int_{\Omega} [\mathscr{E}^{3\alpha}(\varepsilon) (\partial_{\alpha} \varphi^{m}(\varepsilon) \partial_{3} \psi + \partial_{3} \varphi^{m}(\varepsilon) \partial_{\alpha} \psi)] \sqrt{g(\varepsilon)} dx
+ \varepsilon^{2} \int_{\Omega} \mathscr{E}^{\alpha\beta}(\varepsilon) \partial_{\alpha} \varphi^{m}(\varepsilon) \partial_{\beta} \psi \sqrt{g(\varepsilon)} dx$$

$$= \int_{\Omega} P^{3kl}(\varepsilon) \partial_{3} \psi e_{k\parallel l}(\varepsilon, u^{m}(\varepsilon)) \sqrt{g(\varepsilon)} dx
+ \varepsilon \int_{\Omega} [P^{\alpha kl}(\varepsilon) \partial_{\alpha} \psi e_{k\parallel l}(\varepsilon, u^{m}(\varepsilon))] \sqrt{g(\varepsilon)} dx \quad \text{for all } \psi \in \Psi(\Omega), \quad (3.12)$$

$$\int_{\Omega} [\varepsilon^{2} u_{\alpha}^{m}(\varepsilon) u_{\alpha}^{n}(\varepsilon) + u_{3}^{m}(\varepsilon) u_{3}^{n}(\varepsilon)] \sqrt{g(\varepsilon)} dx = \delta_{mn}. \quad (3.13)$$

4. Technical preliminaries

The following two lemmas are crucial; they play an important role in the proof of the convergence of the scaled unknowns as $\varepsilon \to 0$. In the sequel, we denote by $C_1, C_2, ..., C_n$ various constants whose values do not depend on ε but may depend on θ .

Lemma 4.1. The functions $e_{i||i}(\varepsilon, v)$ defined in (3.8) are of the form

$$e_{\alpha\parallel\beta}(\varepsilon;\nu) = \tilde{e}_{\alpha\beta}(\nu) + \varepsilon^2 e_{\alpha\parallel\beta}^{\sharp}(\varepsilon;\nu),$$
 (4.1)

$$e_{\alpha\parallel3}(\varepsilon;\nu) = \frac{1}{\varepsilon} \{ \tilde{e}_{\alpha3}(\nu) + \varepsilon^2 e_{\alpha\parallel3}^{\sharp}(\varepsilon;\nu) \}, \tag{4.2}$$

$$e_{3\parallel 3}(\varepsilon; \nu) = \frac{1}{\varepsilon^2} \tilde{e}_{33}(\nu), \tag{4.3}$$

where

$$\tilde{e}_{\alpha\beta}(v) = \frac{1}{2}(\partial_{\alpha}v_{\beta} + \partial_{\beta}v_{\alpha}) - v_{3}\partial_{\alpha\beta}\theta, \tag{4.4}$$

$$\tilde{e}_{\alpha 3}(v) = \frac{1}{2} (\partial_{\alpha} v_3 + \partial_3 v_{\alpha}), \tag{4.5}$$

$$\tilde{e}_{33}(v) = \partial_3 v_3 \tag{4.6}$$

and there exists constant C_1 such that

$$\sup_{0<\varepsilon\leq\varepsilon_0} \max_{\alpha,j} \|e_{\alpha,j}^{\sharp}(\varepsilon;\nu)\|_{0,\Omega} \leq C_1 \|\nu\|_{1,\Omega} \quad \text{for all } \nu\in V.$$
(4.7)

Also there exist constants C_2 , C_3 and C_4 such that

$$\sup_{0<\varepsilon\leq\varepsilon_0} \max_{x\in\Omega} |g(x)-1| \leq C_2\varepsilon^2, \tag{4.8}$$

$$\sup_{0<\varepsilon\leq\varepsilon_0} \max_{x\in\Omega} |A^{ijkl}(\varepsilon) - A^{ijkl}| \leq C_3\varepsilon^2, \tag{4.9}$$

where

$$A^{ijkl} = \lambda \delta^{ij} \delta^{kl} + \mu (\delta^{ik} \delta^{jl} + \delta^{il} \delta^{jk})$$
(4.10)

and

$$A^{ijkl}M_{kl}M_{ij} \ge C_4M_{ij}M_{ij} \tag{4.11}$$

for $0 < \varepsilon \le \varepsilon_0$ and for all symmetric tensors (M_{ij}) .

Proof. The proof is based on Lemma 4.1 of [2].

From relation (2.6) and definition (3.2), it follows that there exists a constant C_5 such that for any vector $(t_i) \in \mathbb{R}^3$,

$$\mathscr{E}^{ij}(\varepsilon)t_it_j \ge C_5 \sum_{i=1}^3 t_j^2. \tag{4.12}$$

We assume that there exists functions P^{kij} and \mathcal{E}^{ij} such that

$$\sup_{0<\varepsilon\leq\varepsilon_0} \max_{x\in\Omega} |P^{kij}(\varepsilon) - P^{kij}| \leq C_6\varepsilon, \tag{4.13}$$

$$\sup_{0<\varepsilon\leq\varepsilon_0} \max_{x\in\Omega} |\mathscr{E}^{ij}(\varepsilon) - \mathscr{E}^{ij}| \leq C_7 \varepsilon. \tag{4.14}$$

Lemma 4.2. Let $\theta \in C^3(\omega)$ be a given function and let the functions \tilde{e}_{ij} be defined as in (4.4)–(4.6). Then there exists a constant C_8 such that the following generalised Korn's inequality holds:

$$\|v\|_{1,\Omega} \le C_8 \left\{ \sum_{i,j} \|\tilde{e}_{ij}(v)\|_{0,\Omega}^2 \right\}^{1/2} \tag{4.15}$$

for all $v \in V(\Omega)$ where $V(\Omega)$ is the space defined in (3.9).

Proof. The proof is based on Lemma 4.2 of [2].

5. A priori estimates

In this section, we show that for each positive integer m, the scaled eigenvalues $\{\xi^m(\varepsilon)\}$ are bounded uniformly with respect to ε .

Let $\varphi \in H_0^2(\omega)$. Then

$$v_{\boldsymbol{\varphi}} := (-x_3 \partial_1 \boldsymbol{\varphi}, -x_3 \partial_2 \boldsymbol{\varphi}, \boldsymbol{\varphi}) \in V(\Omega)$$
(5.1)

and

$$\tilde{e}_{\alpha\beta}(v_{\varphi}) = -x_3 \partial_{\alpha\beta} \varphi - \varphi \partial_{\alpha\beta} \theta, \quad \tilde{e}_{i3}(v_{\varphi}) = 0.$$
 (5.2)

Hence

$$e_{\alpha\parallel\beta}(\varepsilon,\nu_{\varphi}) = -x_3 \partial_{\alpha\beta} \varphi - \varphi \partial_{\alpha\beta} \theta + O(\varepsilon^2), \tag{5.3}$$

$$e_{\alpha\parallel 3}(\varepsilon, \nu_{\varphi}) = O(\varepsilon),$$
 (5.4)

$$e_{3\parallel3}(\varepsilon,\nu_{\varphi})=0. \tag{5.5}$$

We need the following lemma to prove the boundedness of the scaled eigenvalues.

Lemma 5.1. There exists a constant $C_9 > 0$ such that

$$|\partial_3(T(\varepsilon)(\nu_{\varphi}))|_{0,\Omega} \le C_9|\varphi|_{2,\varphi},\tag{5.6}$$

$$|\varepsilon \partial_{\alpha}(T(\varepsilon)(v_{\varphi}))|_{0,\Omega} \le C_9 |\varphi|_{2,\omega}. \tag{5.7}$$

Proof. With the scalings (3.3)–(3.7), the variational equation (eq. (2.33)) posed on the domain Ω reads as follows:

For each $h \in (H^1(\Omega))^3$, there exists a unique solution $T(\varepsilon)(h) \in (H^1(\Omega))^3$ such that

$$\int_{\Omega} \mathcal{E}^{33}(\varepsilon) \partial_{3} T(\varepsilon)(h) \partial_{3} \psi \sqrt{g(\varepsilon)} dx
+ \varepsilon \int_{\Omega} [\mathcal{E}^{\alpha 3}(\varepsilon)(\partial_{\alpha} T(\varepsilon)(h) \partial_{3} \psi + \partial_{3} T(\varepsilon)(h) \partial_{\alpha} \psi)] \sqrt{g(\varepsilon)} dx
+ \varepsilon^{2} \int_{\Omega} \mathcal{E}^{\alpha \beta}(\varepsilon) \partial_{\alpha} T(\varepsilon)(h) \partial_{\beta} \psi \sqrt{g(\varepsilon)} dx
= \int_{\Omega} P^{3kl}(\varepsilon) \partial_{3} \psi e_{k||l}(\varepsilon, h) \sqrt{g(\varepsilon)} dx
+ \varepsilon \int_{\Omega} P^{\alpha kl}(\varepsilon) \partial_{\alpha} \psi e_{k||l}(\varepsilon, h) \sqrt{g(\varepsilon)} dx \quad \forall \psi \in \Psi.$$
(5.8)

Taking $h = v_{\varphi}$ and $\psi = T(\varepsilon)(v_{\varphi})$ in the above equation, we have

$$\int_{\Omega} \mathcal{E}^{33}(\varepsilon) \partial_{3} T(\varepsilon)(\nu_{\varphi}) \partial_{3} T(\varepsilon)(\nu_{\varphi}) \sqrt{g(\varepsilon)} dx
+ \varepsilon \int_{\Omega} [\mathcal{E}^{\alpha 3}(\varepsilon)(\partial_{\alpha} T(\varepsilon)(\nu_{\varphi}) \partial_{3} T(\varepsilon)(\nu_{\varphi})
+ \partial_{3} T(\varepsilon)(\nu_{\varphi}) \partial_{\alpha} T(\varepsilon)(\nu_{\varphi})] \sqrt{g(\varepsilon)} dx
+ \varepsilon^{2} \int_{\Omega} \mathcal{E}^{\alpha \beta}(\varepsilon) \partial_{\alpha} T(\varepsilon)(\nu_{\varphi}) \partial_{\beta} T(\varepsilon)(\nu_{\varphi}) \sqrt{g(\varepsilon)} dx
= \int_{\Omega} P^{3kl}(\varepsilon) \partial_{3} T(\varepsilon)(\nu_{\varphi}) e_{k||l}(\varepsilon, \nu_{\varphi}) \sqrt{g(\varepsilon)} dx
+ \varepsilon \int_{\Omega} P^{\alpha kl}(\varepsilon) \partial_{\alpha} T(\varepsilon)(\nu_{\varphi}) e_{k||l}(\varepsilon, \nu_{\varphi}) \sqrt{g(\varepsilon)} dx.$$
(5.9)

Using the relations (4.12) and (5.2)–(5.5), it follows that there exists a constant $C_9 > 0$ such that

$$\begin{aligned} |\partial_{3}(T(\varepsilon)(\nu_{\varphi}))|_{0,\Omega}^{2} + |\varepsilon\partial_{\alpha}(T(\varepsilon)(\nu_{\varphi}))|_{0,\Omega}^{2} \\ &\leq C_{9}\{|\partial_{3}T(\varepsilon)(\nu_{\varphi})|_{0,\Omega}|\varphi|_{2,\omega} + |\varepsilon\partial_{\alpha}T(\varepsilon)(\nu_{\varphi})|_{0,\Omega}|\varphi|_{2,\omega}\} \end{aligned} (5.10)$$

and hence the result follows.

Theorem 5.2. For each positive integer m, there exists a constant C(m) > 0 such that

$$\xi^m(\varepsilon) < C(m). \tag{5.11}$$

Proof. Since problem (3.11) was derived from (2.43) after a change of scale, we still have the variational characterization of the scaled eigenvalues $\xi^m(\varepsilon)$. Let V_m denote the collection of all m-dimensional subspaces of $V(\Omega)$. Then

$$\xi^{m}(\varepsilon) = \min_{W \in V_{m}} \max_{v \in W} \frac{N(\varepsilon)(v, v)}{D(\varepsilon)(v, v)},$$
(5.12)

where

$$N(\varepsilon)(v,v) = \int_{\Omega} A^{ijkl} e_{k\parallel l}(\varepsilon,v) e_{i\parallel j}(\varepsilon,v) \sqrt{g(\varepsilon)} dx$$

$$+ \int_{\Omega} P^{3kl} \partial_3 T(\varepsilon)(v) e_{k\parallel l}(\varepsilon,v) \sqrt{g(\varepsilon)} dx$$

$$+ \varepsilon \int_{\Omega} P^{\alpha kl} \partial_\alpha T(\varepsilon)(v) e_{k\parallel l}(\varepsilon,v) \sqrt{g(\varepsilon)} dx, \qquad (5.13)$$

$$D(\varepsilon)(v,v) = \int_{\Omega} [\varepsilon^2 v_\alpha v_\alpha + v_3 v_3] \sqrt{g(\varepsilon)} dx. \qquad (5.14)$$

Let W_m be the collection of all m-dimensional subspaces of $H_0^2(\omega)$. Let $W \in W_m$. Define

$$\mathbf{W} = \{ \nu_{\boldsymbol{\varphi}} | \boldsymbol{\varphi} \in W \}. \tag{5.15}$$

It follows that $\mathbf{W} \in V_m$. Hence, it follows from (5.12) that

$$\xi^{m}(\varepsilon) \leq \min_{W \in W_{m}} \max_{\varphi \in W} \frac{N(\varepsilon)(\nu_{\varphi}, \nu_{\varphi})}{D(\varepsilon)(\nu_{\varphi}, \nu_{\varphi})}.$$
(5.16)

Now,

$$D(\varepsilon)(\nu_{\varphi}, \nu_{\varphi}) = \int_{\Omega} [\varepsilon^{2} x_{3}^{2} |\partial_{\alpha} \varphi|^{2} + |\varphi|^{2}] \sqrt{g(\varepsilon)} dx.$$

$$\geq \int_{\omega} \varphi^{2} d\omega. \tag{5.17}$$

Using the relations (5.3)–(5.5) and Lemma 5.1, it follows that

$$\int_{\Omega} A^{ijkl} e_{k||l}(\varepsilon, \nu_{\varphi}) e_{i||j}(\varepsilon, \nu_{\varphi}) \sqrt{g(\varepsilon)} dx \le C \int_{\omega} |\triangle \varphi|^2 d\omega, \tag{5.18}$$

$$\int_{\Omega} P^{3kl} \partial_3 T(\varepsilon)(v_{\varphi}) e_{k||l}(\varepsilon, v_{\varphi}) \sqrt{g(\varepsilon)} dx \le C \int_{\omega} |\triangle \varphi|^2 d\omega, \tag{5.19}$$

$$\varepsilon \int_{\Omega} P^{\alpha k l} \partial_{\alpha} T(\varepsilon)(\nu_{\varphi}) e_{k \parallel l}(\varepsilon, \nu_{\varphi}) \sqrt{g(\varepsilon)} dx \le C \int_{\omega} |\triangle \varphi|^{2} d\omega.$$
 (5.20)

Hence

$$\xi^{m}(\varepsilon) \leq C \min_{W \in W_{m}} \max_{\varphi \in W} \frac{\int_{\omega} |\triangle \varphi|^{2} d\omega}{\int_{\omega} \varphi^{2} d\omega}$$

$$\leq C\lambda^{m}, \tag{5.21}$$

where λ^m is the mth eigenvalue of the two-dimensional elliptic eigenvalue problem

$$\triangle^2 u = \lambda u \quad \text{in } \omega$$

$$u = \partial_{\nu} u = 0 \quad \text{on } \partial \omega. \tag{5.22}$$

This completes the proof of the theorem on setting $C(m) = C\lambda^m$.

6. The limit problem

Theorem 6.1. (a) For each positive integer m, there exists $u^m \in H^1(\Omega)$, $\varphi^m \in L^2(\Omega)$ and $\xi^m \in \mathbb{R}$ such that

$$u^m(\varepsilon) \to u^m \text{ in } H^1(\Omega), \quad \varphi^m(\varepsilon) \to \varphi^m \text{ in } L^2(\Omega),$$
 (6.1)

$$(\varepsilon \partial_1 \varphi^m(\varepsilon), \varepsilon \partial_2 \varphi^m(\varepsilon), \partial_3 \varphi^m(\varepsilon)) \to (0, 0, \partial_3 \varphi^m) \text{ in } L^2(\Omega), \tag{6.2}$$

$$\xi^m(\varepsilon) \to \xi^m.$$
 (6.3)

(b) Define the spaces

$$V_H(\omega) = \{ (\eta_\alpha) \in (H^1(\omega))^2; \eta_\alpha = 0 \text{ on } \gamma_0 \}, \tag{6.4}$$

$$V_3(\omega) = \{ \eta_3 \in H^2(\omega); \eta_3 = \partial_\nu \eta_3 = 0 \text{ on } \gamma_0 \}, \tag{6.5}$$

$$V_{KL} = \{ v \in H^1(\Omega) | v = \eta_\alpha - x_3 \partial_\alpha \eta_3, (\eta_i) \in V_H(\omega) \times V_3(\omega) \}, \tag{6.6}$$

$$\Psi_I = \{ \psi \in L^2(\Omega), \partial_3 \psi \in L^2(\Omega) \}, \tag{6.7}$$

$$\Psi_{l0} = \{ \psi \in L^2(\Omega), \partial_3 \psi \in L^2(\Omega), \psi | \Gamma^{\pm} = 0 \}. \tag{6.8}$$

Then there exists $(\zeta_{\alpha}^m, \zeta_3^m) \in V_H \times V_3(\omega)$ such that

$$u_{\alpha}^{m} = \zeta_{\alpha}^{m} - x_{3} \partial_{\alpha} \zeta_{3}^{m} \quad \text{and} \quad u_{3}^{m} = \zeta_{3}^{m}, \tag{6.9}$$

$$\varphi^{m} = (1 - x_{3}^{2}) \frac{p^{3\alpha\beta}}{p^{33}} \partial_{\alpha\beta} \xi_{3}^{m}$$
(6.10)

and $(\zeta^m, \xi^m) \in V_H \times V_3 \times \mathbb{R}$ satisfies

$$-\int_{\omega}m_{\alpha\beta}(\zeta^{m})\partial_{\alpha\beta}\eta_{3}\mathrm{d}\omega+\int_{\omega}n_{\alpha\beta}^{\theta}(\zeta^{m})\partial_{\alpha\beta}\theta\eta_{3}\mathrm{d}\omega+\frac{2}{3}\int_{\omega}\frac{p^{3\alpha\beta}p^{3\rho\tau}}{p^{33}}\partial_{\rho\tau}\zeta_{3}^{m}\partial_{\alpha\beta}\eta_{3}\mathrm{d}\omega$$

$$= \xi^m \int_{\omega} \zeta_3^m \eta_3 d\omega \quad \forall \eta_3 \in V_3(\omega), \tag{6.11}$$

$$\int_{\omega} n_{\alpha\beta}^{\theta} \partial_{\beta} \eta_{\alpha} d\omega = 0 \quad \forall \eta_{\alpha} \in V_{H}(\omega), \tag{6.12}$$

where

$$m_{\alpha\beta}(\zeta) = -\left\{ \frac{4\lambda\mu}{3(\lambda + 4\mu)} \triangle \zeta_3 \delta_{\alpha\beta} + \frac{4\mu}{3} \partial_{\alpha\beta} \zeta_3 \right\}$$
 (6.13)

$$n_{\alpha\beta}^{\theta}(\zeta) = \frac{4\lambda\mu}{\lambda + 2\mu} \tilde{e}_{\sigma\sigma}(\zeta) \delta_{\alpha\beta} + 4\mu \tilde{e}_{\alpha\beta}(\zeta)$$
(6.14)

$$p^{33} = \frac{1}{\mu} P^{3\alpha 3} P^{3\alpha 3} + \frac{1}{\lambda + 2\mu} P^{333} P^{333} + \mathcal{E}^{33}$$
(6.15)

$$p^{3\alpha\beta} = P^{3\alpha\beta} - \frac{\lambda}{\lambda + 2\mu} P^{333} \delta^{\alpha\beta}. \tag{6.16}$$

Proof. For the sake of clarity, the proof is divided into several steps.

Step (i). Define the vector $\tilde{\varphi}_i^m(\varepsilon)$ and the tensor $\tilde{K}^m(\varepsilon) = (\tilde{K}_{ii}^m(\varepsilon))$ by

$$\tilde{\varphi}_{i}^{m}(\varepsilon) = (\varepsilon \partial_{1} \varphi^{m}(\varepsilon), \varepsilon \partial_{2} \varphi^{m}(\varepsilon), \partial_{3} \varphi^{m}(\varepsilon)), \tag{6.17}$$

$$\tilde{K}_{\alpha\beta}^{m}(\varepsilon) = \tilde{e}_{\alpha\beta}(u^{m}(\varepsilon)), \quad \tilde{K}_{\alpha3}^{m}(\varepsilon) = \frac{1}{\varepsilon}\tilde{e}_{\alpha3}(u^{m}(\varepsilon)), \quad \tilde{K}_{33}^{m}(\varepsilon) = \frac{1}{\varepsilon^{2}}\tilde{e}_{33}(u^{m}(\varepsilon)). \tag{6.18}$$

Then there exists a constant $C_{10} > 0$ such that

$$\|u^{m}(\varepsilon)\|_{1,\Omega} \le C_{10}, \quad |\tilde{K}_{ii}^{m}(\varepsilon)|_{0,\Omega} \le C_{10}, \quad |\tilde{\varphi}_{i}^{m}(\varepsilon)|_{0,\Omega} \le C_{10}$$
 (6.19)

for all $0 < \varepsilon \le \varepsilon_0$.

Letting $v = u^m(\varepsilon)$ in (3.11), we have

$$\int_{\Omega} A^{ijkl}(\varepsilon) e_{k\parallel l}(\varepsilon) (u^{m}(\varepsilon)) e_{i\parallel j}(\varepsilon) (u^{m}(\varepsilon)) \sqrt{g(\varepsilon)} dx
+ \int_{\Omega} P^{3kl}(\varepsilon) \partial_{3} \varphi^{m}(\varepsilon) e_{k\parallel l}(\varepsilon) (u^{m}(\varepsilon)) \sqrt{g(\varepsilon)} dx
+ \varepsilon \int_{\Omega} P^{\alpha kl}(\varepsilon) \partial_{\alpha} \varphi^{m}(\varepsilon) e_{k\parallel l}(\varepsilon) (u^{m}(\varepsilon)) \sqrt{g(\varepsilon)} dx
= \xi^{m}(\varepsilon) \int_{\Omega} [\varepsilon^{2} u_{\alpha}^{m}(\varepsilon) u_{\alpha}^{m}(\varepsilon) + u_{3}^{m}(\varepsilon) u_{3}^{m}(\varepsilon)] \sqrt{g(\varepsilon)} dx.$$
(6.20)

Letting $\psi = \varphi^m(\varepsilon)$ in (3.12) and using it in the above equation, we get

$$\int_{\Omega} A^{ijkl}(\varepsilon) e_{k\parallel l}(\varepsilon, u^{m}(\varepsilon)) e_{i\parallel j}(\varepsilon, u^{m}(\varepsilon)) \sqrt{g(\varepsilon)} dx
+ \int_{\Omega} \mathscr{E}^{ij}(\varepsilon) \tilde{\varphi}_{i}^{m}(\varepsilon) \tilde{\varphi}_{j}^{m}(\varepsilon) \sqrt{g(\varepsilon)} dx
= \xi^{m}(\varepsilon) \int_{\Omega} [\varepsilon^{2} u_{\alpha}^{m}(\varepsilon) \cdot u_{\alpha}^{m}(\varepsilon) + u_{3}^{m}(\varepsilon) u_{3}^{m}(\varepsilon)] \sqrt{g(\varepsilon)} dx.$$
(6.21)

Using the coerciveness properties (4.11) and (4.12), the inequality $(a-b)^2 \ge a^2/2 - b^2$ and the generalized Korn's inequality (4.15), we have for $\varepsilon \le \min\{\varepsilon_0, 1\}$,

$$\begin{split} &\int_{\Omega} A^{ijkl}(\varepsilon) e_{k\parallel l}(\varepsilon, u^m(\varepsilon)) e_{i\parallel j}(\varepsilon, u^m(\varepsilon)) \sqrt{g(\varepsilon)} \mathrm{d}x \\ &+ \int_{\Omega} \mathscr{E}^{ij}(\varepsilon) \tilde{\varphi}_i^m(\varepsilon) \tilde{\varphi}_j^m(\varepsilon) \sqrt{g(\varepsilon)} \mathrm{d}x \\ &\geq C_{11} \sum_{i,j} \|e_{i\parallel j}(\varepsilon, u^m(\varepsilon))\|_{0,\Omega}^2 + C_{11} \sum_i \|\tilde{\varphi}_i^m(\varepsilon)\|_{0,\Omega}^2 \end{split}$$

$$= C_{11} \sum_{\alpha,\beta} \|\tilde{e}_{\alpha\beta}(u^{m}(\varepsilon)) + \varepsilon^{2} e_{\alpha\beta}^{\sharp}(\varepsilon, u^{m}(\varepsilon))\|_{0,\Omega}^{2}$$

$$+ 2C_{11} \sum_{\alpha} \left\| \frac{1}{\varepsilon} \tilde{e}_{\alpha3}(u^{m}(\varepsilon)) + \varepsilon e_{\alpha3}^{\sharp}(\varepsilon, u^{m}(\varepsilon)) \right\|_{0,\Omega}^{2}$$

$$+ C_{11} \left\| \frac{1}{\varepsilon^{2}} \tilde{e}_{33}(u^{m}(\varepsilon)) \right\|_{0,\Omega}^{2} + C_{11} \sum_{i} \|\tilde{\varphi}_{i}^{m}(\varepsilon)\|_{0,\Omega}^{2}$$

$$\geq C_{11} \left\{ \frac{1}{2} \sum_{i,j} |\tilde{K}_{ij}^{m}(\varepsilon)|_{0,\Omega}^{2} - C_{1}^{2}(2\varepsilon^{2} + \varepsilon^{4}) \|u^{m}(\varepsilon)\|_{1,\Omega}^{2} \right\}$$

$$+ C_{11} \sum_{i} \|\tilde{\varphi}_{i}^{m}(\varepsilon)\|_{0,\Omega}^{2}$$

$$\geq C_{11} \left\{ \frac{1}{2} \sum_{i,j} \|\tilde{e}_{ij}(u^{m}(\varepsilon))\|_{0,\Omega}^{2} - 3\varepsilon^{2} C_{1}^{2} \|u^{m}(\varepsilon)\|_{1,\Omega}^{2} \right\}$$

$$+ C_{11} \sum_{i} \|\tilde{\varphi}_{i}^{m}(\varepsilon)\|_{0,\Omega}^{2}$$

$$\geq C_{11} \left\{ \frac{1}{2} (C_{8})^{-2} - 3\varepsilon^{2} C_{1}^{2} \right\} \|u^{m}(\varepsilon)\|_{1,\Omega}^{2} + C_{11} \sum_{i} \|\tilde{\varphi}_{i}^{m}(\varepsilon)\|_{0,\Omega}^{2}. \tag{6.22}$$

Combining eqs (6.21) and (6.22) with relations (3.13) and (5.11), we get the relation (6.19).

Step (ii). From Step (i) it follows that there exists a subsequence $(\tilde{\varphi}_i^m(\varepsilon))$ and $(\tilde{\varphi}_i^m) \in L^2(\Omega)$ such that

$$(\varepsilon \partial_1 \varphi^m(\varepsilon), \varepsilon \partial_2 \varphi^m(\varepsilon), \partial_3 \varphi^m(\varepsilon)) \rightharpoonup (\tilde{\varphi}_1^m, \tilde{\varphi}_2^m, \tilde{\varphi}_3^m) \quad \text{in } (L^2(\Omega))^3. \tag{6.23}$$

Since Γ_{eD} contains Γ^- , we have

$$\boldsymbol{\varphi}^{m}(\boldsymbol{\varepsilon})(x_{1},x_{2},x_{3}) = \int_{-1}^{x_{3}} \partial_{3}\boldsymbol{\varphi}^{m}(\boldsymbol{\varepsilon})(x_{1},x_{2},s)\mathrm{d}s$$
 (6.24)

and it follows that $\|\varphi^m(\varepsilon)\|_{0,\Omega} \leq \sqrt{2} \|\partial_3 \varphi^m(\varepsilon)\|_{0,\Omega}$. This implies that $\varphi^m(\varepsilon)$ is bounded in $L^2(\Omega)$. Therefore there exists a φ^m in $L^2(\Omega)$ and a subsequence, still indexed by ε , such that $\varphi^m(\varepsilon)$ converges weakly to φ^m . Hence it follows from (6.23) that

$$(\varepsilon \partial_1 \varphi^m(\varepsilon), \varepsilon \partial_2 \varphi^m(\varepsilon), \partial_3 \varphi^m(\varepsilon)) \rightharpoonup (0, 0, \partial_3 \varphi^m). \tag{6.25}$$

Step (iii). From Step (i) it follows that there exists a subsequence, indexed by ε for notational convenience, and functions $u^m \in V(\Omega)$ and $\tilde{K}^m_{ij} \in (L^2(\Omega))^9$ such that

$$u^m(\varepsilon) \rightharpoonup u^m \quad \text{in } H^1(\Omega), \quad \tilde{K}^m(\varepsilon) \rightharpoonup \tilde{K}^m \quad \text{in } L^2(\Omega) \text{ as } \varepsilon \to 0.$$
 (6.26)

Then there exist functions $(\zeta_{\alpha}^m) \in H^1(\omega)$ and $\zeta_3^m \in H^2(\omega)$ satisfying $\zeta_i^m = \partial_{\nu} \zeta_3^m = 0$ on γ_0 such that

$$u_{\alpha}^{m} = \zeta_{\alpha}^{m} - x_{3} \partial_{\alpha} \zeta_{3}^{m} \quad \text{and} \quad u_{3}^{m} = \zeta_{3}^{m}$$
 (6.27)

and

$$\tilde{K}_{\alpha\beta}^{m} = \tilde{e}_{\alpha\beta}(u^{m}), \quad \tilde{K}_{\alpha3}^{m} = -\frac{1}{\mu}P^{3\alpha3}\partial_{3}\varphi^{m},$$

$$\tilde{K}_{33}^{m} = -\frac{1}{\lambda + 2\mu}(P^{333}\partial_{3}\varphi^{m} + \lambda\tilde{K}_{\beta\beta}^{m}).$$
(6.28)

From definition (6.18) and the boundedness of $(\tilde{K}_{ij}^m(\varepsilon))$, we deduce that

$$||e_{\alpha 3}(u^m(\varepsilon))||_{0,\Omega} \le \varepsilon C_{13}$$
 and $||e_{33}(u^m(\varepsilon))||_{0,\Omega} \le \varepsilon^2 C_{13}$,

where $e_{ij}(v) = \frac{1}{2}(\partial_i v_j + \partial_j v_i)$. Since norm is a weakly lower semicontinuous function

$$||e_{i3}(u^m)||_{0,\Omega} \le \liminf_{\varepsilon \to 0} ||e_{i3}(u^m(\varepsilon))||_{0,\Omega} = 0,$$
 (6.29)

we obtain $e_{i3}(u^m) = 0$. Then it is a standard argument that the components u_i^m of the limit u^m are of the form (6.27).

Since $u^m(\varepsilon) \rightharpoonup u^m$ in $H^1(\Omega)$, definition (4.4) of the functions $\tilde{e}_{\alpha\beta}(v)$ shows that the function $\tilde{K}^m_{\alpha\beta}(\varepsilon) = \tilde{e}_{\alpha\beta}(u^m(\varepsilon))$ converges weakly in $L^2(\Omega)$ to the function $\tilde{e}_{\alpha\beta}(u^m)$.

We next note the following result. Let $w \in L^2(\Omega)$ be given; then

$$\int_{\Omega} w \partial_3 v dx = 0 \quad \text{ for all } v \in H^1(\Omega) \text{ with } v = 0 \text{ on } \Gamma_0, \text{ then } w = 0.$$
 (6.30)

Multiplying (3.11) by ε^2 , taking $(v_{\alpha}) = 0$ and letting $\varepsilon \to 0$, we get

$$\int_{\Omega} (\lambda \tilde{K}_{\sigma\sigma}^{m} + (\lambda + 2\mu)\tilde{K}_{33} + P^{333}\partial_{3}\varphi^{m})\partial_{3}v_{3}dx = 0$$

$$(6.31)$$

which implies $(\lambda \tilde{K}_{\sigma\sigma}^m + (\lambda + 2\mu)\tilde{K}_{33} + P^{333}\partial_3\varphi^m) = 0$ and hence the third relation in (6.28) follows.

Again, multiplying (3.11) by ε , taking $v_3 = 0$ and letting $\varepsilon \to 0$, we get

$$\int_{\Omega} (\mu \tilde{K}_{\alpha 3}^m + P^{3\alpha 3} \partial_3 \varphi^m) \partial_3 v_{\alpha} dx = 0$$
(6.32)

which implies $(\mu \tilde{K}_{\alpha 3}^m + P^{3\alpha 3} \partial_3 \varphi^m) = 0$ and hence the second relation in (6.28) follows.

Step (iv). The function φ^m is of the form (6.10).

Letting $\varepsilon \to 0$ in eq. (3.12), we get

$$\int_{\Omega} (P^{3\alpha\beta} \tilde{K}_{\alpha\beta}^m - \mathcal{E}^{33} \partial_3 \varphi^m) \partial_3 \psi dx = 0 \quad \forall \psi \in \Psi(\Omega).$$
 (6.33)

Since $D(\Omega)$ is dense in Ψ_{l0} (and hence in $\Psi(\Omega)$) for the norm $\|.\|_{\Psi_l}$, eq. (6.33) is equivalent to

$$\partial_3(P^{3\alpha\beta}\tilde{K}^m_{\alpha\beta} - \mathcal{E}^{33}\partial_3\varphi^m) = 0 \quad \text{in } D'(\Omega)$$
(6.34)

which implies that $(P^{3\alpha\beta}\tilde{K}^m_{\alpha\beta}-\mathscr{E}^{33}\partial_3\varphi^m)=d^1$, with $d^1\in D(\omega)$. Then

$$\partial_3 \varphi^m = \frac{p^{3\alpha\beta}}{p^{33}} [\tilde{e}_{\alpha\beta}(\zeta^m) - x_3 \partial_{\alpha\beta} \zeta_3^m] - \frac{1}{p^{33}} d^1$$

$$\tag{6.35}$$

which gives

$$\varphi^{m} = \frac{p^{3\alpha\beta}}{p^{33}} [x_{3}\tilde{e}_{\alpha\beta}(\zeta^{m}) - x_{3}^{2}\partial_{\alpha\beta}\zeta_{3}^{m}] - \frac{x_{3}}{p^{33}}d^{1} + d^{0}.$$
 (6.36)

Since φ^m satisfies the boundary conditions $\varphi^m_{|\Gamma^+} = \varphi^m_{|\Gamma^-} = 0$, we have

$$d^{0} = \frac{p^{3\alpha\beta}}{2p^{33}} \partial_{\alpha\beta} \zeta_{3}^{m}, \quad d^{1} = p^{3\alpha\beta} \tilde{e}_{\alpha\beta} (\zeta^{m}). \tag{6.37}$$

Thus the conclusion follows.

Step (v). The function (ζ_i^m) satisfies (6.11) and (6.12).

Taking $v \in V_{KL}$ and letting $\varepsilon \to 0$ in (3.11) we get

$$\int_{\Omega} A^{\alpha\beta kl} \tilde{K}_{kl}^{m} \tilde{K}_{\alpha\beta}(v) dx + \int_{\Omega} P^{3\alpha\beta} \partial_{3} \varphi^{m} \tilde{K}_{\alpha\beta}(v) dx = \xi^{m} \int_{\Omega} u_{3}^{m} \cdot v_{3} dx.$$
 (6.38)

Replacing u^m and \tilde{K}_{ij}^m by the expressions obtained in (6.27) and (6.28), and taking v of the form

$$v_{\alpha} = \eta_{\alpha} - x_3 \partial_{\alpha} \eta_3$$
 and $v_3 = \eta_3$

with $(\eta_i) \in V_H(\omega) \times V_3(\omega)$, it is verified that (6.38) coincides with eqs (6.11) and (6.12).

Step (vi). The convergences $u^m(\varepsilon) \rightharpoonup u^m$ in $H^1(\Omega)$ and $\varphi^m(\varepsilon) \rightharpoonup \varphi^m$ in $L^2(\Omega)$ are strong. To show that the family $(u^m(\varepsilon))$ converges strongly to u^m in $H^1(\Omega)$, by Lemma 4.2, it is enough to show that

$$\tilde{e}_{ij}(u^m(\varepsilon)) \to \tilde{e}_{ij}(u^m) \quad \text{in } L^2(\Omega).$$
 (6.39)

Since $\tilde{e}_{i3}(u^m) = 0$ and

$$\sum_{i,j} \|\tilde{e}_{ij}(u^{m}(\varepsilon)) - \tilde{e}_{ij}(u^{m})\|_{0,\Omega}^{2}$$

$$= \sum_{\alpha,\beta} \|\tilde{K}_{\alpha\beta}^{m}(\varepsilon) - \tilde{K}_{\alpha\beta}^{m}\|_{0,\Omega}^{2} + 2\varepsilon^{2} \sum_{\alpha} \|\tilde{K}_{\alpha3}^{m}(\varepsilon)\|_{0,\Omega}^{2} + \varepsilon^{4} \|\tilde{K}_{33}^{m}(\varepsilon)\|_{0,\Omega}^{2}, \quad (6.40)$$

convergence (6.39) is equivalent to showing that

$$\tilde{K}^m(\varepsilon) \to \tilde{K}^m \quad \text{in } L^2(\Omega).$$
 (6.41)

We define a norm on $(L^2(\Omega))^9 \times (L^2(\Omega))^3$ by letting for any matrix $M \in (L^2(\Omega))^9$ and any vector $\chi \in (L^2(\Omega))^3$,

$$\|(M,\chi)\| = \left\{ \int_{\Omega} A^{ijkl} M : M \sqrt{g(\varepsilon)} dx + \int_{\Omega} \mathscr{E}^{ij} \chi_i \chi_j \sqrt{g(\varepsilon)} dx \right\}^{1/2}.$$
 (6.42)

Let $X^m(\varepsilon)$ be the norm of $(\tilde{K}^m(\varepsilon), \varepsilon \partial_1 \varphi^m(\varepsilon), \varepsilon \partial_2 \varphi^m(\varepsilon), \partial_3 \varphi^m(\varepsilon))$ in $(L^2(\Omega))^{12}$. Using the weak convergence equation (eqs (6.25) and (6.26)) and the relation (6.28), it can be shown that

$$\lim_{\varepsilon \to 0} X^m(\varepsilon) = X^m = \left(\int_{\Omega} A^{ijkl} \tilde{K}^m : \tilde{K}^m dx + \int_{\Omega} \mathcal{E}^{33} (\partial_3 \varphi^m)^2 dx \right)^{1/2}$$
 (6.43)

which is the norm of $(\tilde{K}^m,0,0,\partial_3\varphi^m)$. Since we have already proved that $(\tilde{K}^m(\varepsilon),\varepsilon\partial_1\varphi^m(\varepsilon),\varepsilon\partial_2\varphi^m(\varepsilon),\partial_3\varphi^m(\varepsilon))$ converges weakly to $(\tilde{K},0,0,\partial_3\varphi^m)$ in $(L^2(\Omega))^{12}$, we have the following strong convergences:

$$\tilde{K}^m(\varepsilon) \to \tilde{K}^m$$
 strongly in $(L^2(\Omega))^9$, (6.44)

$$(\varepsilon \partial_1 \varphi^m(\varepsilon), \varepsilon \partial_2 \varphi^m(\varepsilon), \partial_3 \varphi^m(\varepsilon)) \to (0, 0, \partial_3 \varphi^m) \text{ strongly in } (L^2(\Omega))^3. \tag{6.45}$$

Hence $u^m(\varepsilon)$ converges strongly to u^m in $H^1(\Omega)$ and since $\varphi^m(\varepsilon) - \varphi^m$ is in Ψ_{l0} , the equivalence of norms $\|\psi\|_{\Psi_l}$ and $\psi \to |\partial_3\psi|_{\Omega}$ in Ψ_{l0} proves that $\varphi^m(\varepsilon)$ converges strongly to φ^m in $L^2(\Omega)$.

Equation (6.12) can be written as

$$\int_{\omega} \left[\frac{2\lambda\mu}{\lambda + 2\mu} e_{\rho\rho}(\zeta) \delta_{\alpha\beta} + 2\mu e_{\alpha\beta}(\zeta) \right] \partial_{\beta} \eta_{\alpha} d\omega$$

$$= \int_{\omega} \left[\frac{2\lambda\mu}{\lambda + 2\mu} (\partial_{\sigma}\theta \partial_{\sigma}\zeta_{3}) \delta_{\alpha\beta} + \mu (\partial_{\alpha}\theta \partial_{\beta}\zeta_{3} + \partial_{\beta}\theta \partial_{\alpha}\zeta_{3}) \right] \partial_{\beta} \eta_{\alpha} d\omega. \quad (6.46)$$

Clearly, the bilinear form

$$\tilde{b}(\zeta_{\alpha}, \eta_{\alpha}) = \int_{\omega} \left[\frac{2\lambda \mu}{\lambda + 2\mu} e_{\rho\rho}(\zeta) \delta_{\alpha\beta} + 2\mu e_{\alpha\beta}(\zeta) \right] \partial_{\beta} \eta_{\alpha} d\omega$$

$$= \int_{\omega} \left[\frac{2\lambda \mu}{\lambda + 2\mu} e_{\rho\rho}(\zeta) e_{\sigma\sigma}(\eta) + 2\mu e_{\alpha\beta}(\zeta) e_{\alpha\beta}(\eta) \right] d\omega \qquad (6.47)$$

is $V_H(\omega)$ elliptic. Also for a given $\zeta_3 \in V_3(\omega)$, the functional

$$\langle \zeta_3, \eta_\alpha \rangle = \int_{\omega} \left[\frac{2\lambda \mu}{\lambda + 2\mu} (\partial_{\sigma} \theta \partial_{\sigma} \zeta_3) \delta_{\alpha\beta} + \mu (\partial_{\alpha} \theta \partial_{\beta} \zeta_3 + \partial_{\beta} \theta \partial_{\alpha} \zeta_3) \right] \partial_{\beta} \eta_{\alpha} d\omega$$
(6.48)

is continous on $V_H(\omega)$. Thus, given $\zeta_3 \in V_3(\omega)$, there exists a unique vector $(\zeta_\alpha) \in V_H(\omega)$ such that

$$\tilde{b}(\zeta_{\alpha}, \eta_{\alpha}) = \langle \zeta_{3}, \eta_{\alpha} \rangle. \tag{6.49}$$

We denote by $T\zeta_3 \in V_H(\omega) \times V_3(\omega)$ the vector (ζ_α, ζ_3) . In particular, $T\zeta_3^m = (\zeta_\alpha^m, \zeta_3^m)$. Substituting this in (6.11), we get

$$b(\zeta_3^m, \eta_3) = \xi^m \int_{\omega} \zeta^m \eta_3 d\omega \quad \text{for all } \eta_3 \in V_3(\omega), \tag{6.50}$$

where

$$b(\zeta_{3}, \eta_{3}) = -\int_{\omega} m_{\alpha\beta} \partial_{\alpha\beta} \eta_{3} d\omega + \int_{\omega} n_{\alpha\beta}^{\theta} (T\zeta_{3}) \partial_{\alpha\beta} \theta \eta_{3} d\omega$$
$$+ \frac{2}{3} \int_{\omega} \frac{p^{3\alpha\beta} p^{3\rho\tau}}{p^{33}} \partial_{\rho\tau} \zeta_{3} \partial_{\alpha\beta} \eta_{3} d\omega. \tag{6.51}$$

Lemma 6.2. *The bilinear form* $b(\cdots)$ *defined by* (6.51) *is* $V_H(\omega)$ -*elliptic and symmetric.*

Proof. It follows from Lemma 6.2 in [8] that the bilinear form $\tilde{b}(\cdots)$ defined by

$$\tilde{b}(\zeta_3, \eta_3) = -\int_{\omega} m_{\alpha\beta}(\zeta_3) \partial_{\alpha\beta} \eta_3 d\omega + \int_{\omega} n_{\alpha\beta}^{\theta}(T\zeta_3) \partial_{\alpha\beta} \theta \eta_3 d\omega \tag{6.52}$$

is $V_H(\omega)$ -elliptic and symmetric. Hence it is clear that $b(\cdots)$ is also $V_H(\omega)$ -elliptic and symmetric.

Lemma 6.3. Let $(\zeta_3^m, \xi^m), m \ge 1$, be the eigensolutions of problem (6.51) found as limits of the subsequence $(u^m(\varepsilon), \xi^m(\varepsilon)), m \ge 1$ of eigensolutions of the problem (3.11). Then the sequence $(\xi^m)_{m=1}^{\infty}$ comprises all the eigenvalues, counting multiplicities, of problem (6.51) and the associated sequence $(\xi_3^m)_{m=1}^{\infty}$ of eigenfunctions forms a complete orthonormal set in the space $V_3(\omega)$.

Proof. The proof is similar to the proof of Lemma 5.4 in [3].

References

- [1] Bernadou M and Haenel C, Modelization and numerical approximation of piezoelectric thin shells, Parts I, II, III: Rapport de Recherche, DER-CS (Ecole Supérieure d'Ingénierie Léonard de Vinci, France) (2002) No RR-6, 7, 8
- [2] Busse S, Ciarlet P G and Miara B, Justification d'un modèle linéaire bi-dimensional de coques 'faiblment courbèes' en coordonnèes curvilignes, M²NA, 31 (3) (1997) 409–434
- [3] Ciarlet P G and Kesavan S, Two-dimensional approximation of three-dimensional eigenvalue problem in plate theory, Comp. Methods Appl. Mech. Engg. 26 (1981) 145–172
- [4] Ciarlet P G and Lods V, Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equation, *Arch. Rational Mech. Anal.* **136** (1996) 119–161
- [5] Ciarlet P G, Lods V and Miara B, Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations, Arch. Rational Mech. Anal. 136 (1996) 162–190
- [6] Ciarlet P G and Miara B, Justification of the two-dimensional equations of a linearly elastic shell, Comm. Pure Appl. Math. 45 (1992) 327–360
- [7] Kesavan S, Homogenization of elliptic eigenvalue problem, Part I, *Appl. Math. Optim.* **5** (1979) 153–167
- [8] Kesavan S and Sabu N, Two-dimensional approximation of eigenvalue problem in shallow shells, *Math. Mech. Solids* 4 (1999) 441–460
- [9] Kesavan S and Sabu N, Two-dimensional approximation of eigenvalue problem for flexural shells, *Chinese Ann. Math.* 21(B) (2000) 1–16