Solved selected problems of Real Analysis - Carothers

Franco Zacco

Chapter 6 - Connectedness

Proof. 1 To finalize the Lemma 6.3 proof we need to prove the Claim which states that $B_{\epsilon_x/2}(x) \cap B_{\delta_y/2}(y) = \emptyset$ for every $x \in U$ and $y \in V$.

Let $z \in M$ such that $d(x, z) < \epsilon_x/2$ and $d(y, z) < \delta_y/2$ we want to arrive to a contradiction then

$$d(x,y) \le d(x,z) + d(z,y) < \epsilon_x/2 + \delta_y/2$$

Since $y \notin B_{\epsilon_x}(x)$ then $d(x,y) > \epsilon_x$ and since $x \notin B_{\delta_y}(y)$ then $d(x,y) > \delta_y$ so we have that $\epsilon_x < \epsilon_x/2 + \delta_y/2$ and $\delta_y < \epsilon_x/2 + \delta_y/2$ and then $\epsilon_x > \delta_y$ and $\epsilon_x < \delta_y$ which is a contradiction. Therefore $B_{\epsilon_x/2}(x) \cap B_{\delta_y/2}(y) = \emptyset$.

Proof. **3** Let A and B be disjoint open sets in M and $E \subset A \cup B$ be connected in M we want to show that $E \subset A$ or $E \subset B$ by contradiction. We know that if $x \in E$ it must happen that $x \in A$ or $x \in B$ because they are disjoint. But then if we Let $x, y \in E$ such that $x \in A$ and $y \in B$ we have that $A \cap E \neq \emptyset$ and $B \cap E \neq \emptyset$. That, in addition to $E \subset A \cup B$ implies that E is disconnected which is a contradiction, then either $x, y \in A$ or $x, y \in B$. Therefore $E \subset A$ or $E \subset B$.

Proof. **5** Suppose $E \cup F$ is disconnected we want to arrive at a contradiction. Then there are $A, B \subset E \cup F$ such that A and B are disjoint, nonempty open sets of $E \cup F$ and $A \cup B = E \cup F$. Also, since E is connected and $E \subset A \cup B$ because of problem 3 we have that $E \subset A$ of $E \subset B$ and in the same way $F \subset A$ or $F \subset B$. It must happen that both $E, F \subset A$ or $E, F \subset B$ because otherwise $E \cap F = \emptyset$ which cannot happen because we know that $E \cap F \neq \emptyset$. But then if $E, F \subset A$ then $E \cup F \subset A$ but we know that $E \cup F = A \cup B$ where A and B are disjoint therefore we have a contradiction and $E \cup F$ must be connected. □

Proof. 6 Let \mathcal{C} be a collection of connected subsets of M. Suppose $\bigcup \mathcal{C}$ is disconnected we want to arrive at a contradiction.

Then there are $A, B \subset \bigcup \mathcal{C}$ such that A and B are disjoint nonempty open sets of $\bigcup \mathcal{C}$ and $A \cup B = \bigcup \mathcal{C}$. Let $C, D \in \mathcal{C}$ be connected sets of M then $C \subset A \cup B$ and $D \subset A \cup B$ also, because of proof 3 we have that $C \subset A$ or $C \subset B$ and $D \subset A$ or $D \subset B$. But since C and D share a point it must happen that $C, D \subset A$ or $C, D \subset B$ because A and B are disjoint, let us suppose that $C, D \subset A$ (if $C, D \subset B$ the proof is analogous) then all subsets of C must be in A because they share a point but $A \cup B = \bigcup \mathcal{C}$ so B must be empty, a contradiction. Therefore $\bigcup \mathcal{C}$ is connected.

Finally, we want to prove that \mathbb{R} is connected. We know that $(-\infty, a]$ and $[a, \infty)$ are connected sets so $(-\infty, a] \cup [a, \infty) = \mathbb{R}$ is connected because of what we proved before.

Proof. 7 Let $a \in M$ then for every $x \in M$ there is a connected set $E_x \subset M$ such that $a, x \in E_x$ then $M = \bigcup E_x$ and since each connected set E_x share the element a with every other connected set E_x we have that M is connected because of proof 6.

Proof. 9 Let $A \subset B \subset \bar{A} \subset M$ and let A be connected. Suppose that B is disconnected, we want to arrive at a contradiction. If B is disconnected then there are $C, D \subset B$ such that they are disjoint nonempty open sets of B and $C \cup D = B$ but since A is connected then $A \subset C$ or $A \subset D$. Suppose $A \subset C$ i.e. $A \cap C \neq \emptyset$ and $A \cap D = \emptyset$. Now let us take $x \in B$ such that $x \in D$ since $x \in \bar{A}$ it must happen that $B_{\epsilon}(x) \cap A \neq \emptyset$ for every $\epsilon > 0$ in particular D is an open neighborhood of x so it must happen that $D \cap A \neq \emptyset$ which is a contradiction. Therefore B is connected.

In the same way, suppose now that \bar{A} is disconnected we want to arrive at a contradiction. If \bar{A} is disconnected then there are $C, D \subset \bar{A}$ such that they are disjoint nonempty open sets and $C \cup D = \bar{A}$ but since A is connected then $A \subset C$ or $A \subset D$. Suppose $A \subset C$ i.e. $A \cap C \neq \emptyset$ and $A \cap D = \emptyset$. Now let us take $x \in \bar{A}$ such that $x \in D$ it must happen that $B_{\epsilon}(x) \cap A \neq \emptyset$ for every $\epsilon > 0$ in particular D is an open neighborhood of x so it must happen that $D \cap A \neq \emptyset$ which is a contradiction. Therefore \bar{A} is connected.

Proof. 12 Let $a, b \in M$ and let us define f(x) = d(x, a) we want to show that $f(M) \subset \mathbb{R}$ is an interval. Suppose f(M) is not an interval we want to arrive at a contradiction. Then if $f(a), f(b) \in f(M)$ there exist $c \in M$ such that f(a) < f(c) < f(b) and $f(c) \not\in f(M)$. We know that since M is connected then f(M) is connected because d is continuous. So let us take the sets

$$A = \{ f(x) \in f(M) : f(x) < f(c) \} \quad \text{ and } \quad B = \{ f(x) \in f(M) : f(x) > f(c) \}$$

Then we have that $f(M) = A \cup B$ and A and B are disjoint, nonempty, open sets so this would imply that f(M) is disconnected, a contradiction. Therefore f(M) is an interval.

Now let us prove that f is surjective and f(M) is not a singleton. Let us start with surjective-ness for that let $c \in f(M)$ we know that c is of the form d(e,a) for some $e \in M$ then f is surjective. Also, let $a,b \in M$ by definition, then $f(a), f(b) \in f(M)$ and $d(a,a) = 0 \neq d(b,a)$ otherwise a = b so f(M) is not a singleton.

Finally, suppose M is countable we want to arrive at a contradiction. Since f is surjective this would imply that f(M) is countable, which is a contradiction since it is an interval from \mathbb{R} . Therefore it must be that M is uncountable.

Proof. 26 Let $H = \{(x, f(x)) : x \in (0, 1]\}$ and $G = \{(x, f(x)) : x \in [0, 1]\}$. We want to prove that H is connected. Let $h : (0, 1] \to \mathbb{R}^2$ where h(x) = (x, f(x)) we know because of Lemma 5.8 that h is continuous because f is continuous in (0, 1]. Then since (0, 1] is connected we have that h((0, 1]) = H is also connected.

Let $x_n = 1/n\pi$ and $y_n = \sin(n\pi)$ where $(x_n) \subset (0,1]$ and $(y_n) \subset (0,1]$. We know that $x_n \to 0$ and $y_n \to 0$ so it must happen that $(x_n, y_n) \to (0,0)$ which implies that $(0,0) \in \operatorname{cl}(H)$ hence $G \subset \operatorname{cl}(H)$ but also we have that $H \subset G \subset \operatorname{cl}(H)$ therefore since H is connected G is also connected i.e. the graph of the function f is connected.

Proof. 27 We want to prove that f(t) = x + t(y - x) is a homeomorphism from [0,1] to V where $x \neq y$.

First, we want to prove f is continuous. Let $\epsilon > 0$ and let $s, t \in [0, 1]$ if $|s-t| < \delta$ where $\delta = \epsilon/\|y-x\|$ (we can do this since $x \neq y$) we have that

$$\begin{split} |s-t| < \frac{\epsilon}{\|y-x\|} \\ \|(s-t)(y-x)\| < \epsilon \\ \|s(y-x)-t(y-x)\| < \epsilon \\ \|x+s(y-x)-(x+t(y-x))\| < \epsilon \\ \|f(s)-f(t)\| < \epsilon \end{split}$$

Therefore f is continuous.

To prove that f is one-to-one suppose f(t) = f(s) then x + t(y - x) =x + s(y - x) which implies that t = s and therefore f is one-to-one.

To prove that f is onto let $w \in V$ then there is $t \in [0,1]$ where t =(w-x)/(y-x) such that $f(t)=x+\frac{(w-x)}{(y-x)}(y-x)=w$ therefore f is onto. If $f(t_n)\to f(t)$ then given $\epsilon'>0$ there is $N\in\mathbb{N}$ such that when $n\geq N$

we have that $||f(t_n) - f(t)|| < \epsilon'$ so we have that

$$||x + t_n(y - x) - (x + t(y - x))|| < \epsilon'$$
 $||t_n(y - x) - t(y - x))|| < \epsilon'$
 $|t_n - t|||y - x|| < \epsilon'$
 $|t_n - t| < \frac{\epsilon'}{||y - x||} = \epsilon$

Therefore when $f(t_n) \to f(t)$ we have that also must happen that $t_n \to t$ so f^{-1} is also continuous.

Finally, since f and f^{-1} are continuous and f is one-to-one and onto then f is a homeomorphism from [0,1] to V.

Proof. 28 Let f be a homeomorphism from [0,1] to V where V is a normed vector space and it's defined as f(t) = x + t(y - x) where $x \neq y \in V$.

We know that [0,1] is connected then f([0,1]) = [x,y] is also connected because of Theorem 6.6 and the interval notation is justified because f is a homeomorphism then $E = \bigcup_{x \neq y \in V} [x, y]$ is also connected so every pair of points of V is in E and because of the result of problem 7 we have that Vis also connected.