Statystyka z modelami liniowymi

Lista 1 - Estymatory punktowe

Zadanie 1: Wygeneruj n~(n=50)obserwacji z rozkładu $N(\theta,\sigma^2)$. Rozważ przypadki:

- (a) $\theta = 0, \ \sigma = 1;$
- **(b)** $\theta = 0, \ \sigma = 2;$
- (c) $\theta = 4, \ \sigma = 1;$
- (d) $\theta = 4, \ \sigma = 2.$

Na tej podstawie oblicz wartość estymatora parametru θ postaci

(i)
$$\hat{\theta}_1 = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i;$$

- (ii) $\hat{\theta}_2 = \text{median}(X_1, \dots, X_n);$
- (iii) $\hat{\theta}_3 = \sum_{i=1}^n X_i \omega_i$, gdzie $0 \le \omega_i \le 1$, $\sum_{i=1}^n \omega_i = 1$ z własnym wyborem wag;
- (iv) $\hat{\theta}_4 = \sum_{i=1}^n X_{(i)}\omega_i$, gdzie $\omega_i = \varphi\left(\Phi^{-1}\left(\frac{i-1}{n}\right)\right) \varphi\left(\Phi^{-1}\left(\frac{i}{n}\right)\right)$ przy czym φ jest gęstością, a Φ dystrybuantą rozkładu N(0,1);
- (v) $\hat{\theta}_5 = \frac{n}{\sum_{i=1}^n \frac{1}{X_i}}$ (średnia harmoniczna);
- (vi) $\hat{\theta}_6 = \sqrt[3]{\frac{1}{n}\sum_{i=1}^n X_i^3}$ (średnia potęgowa rzędu 3);
- (vii) $\hat{\theta}_7$ własny estymator.

Doświadczenie powtórz 10000 razy. Porównaj estymatory przy pomocy wykresów pudełkowych. Oszacuj wariancję, błąd średniokwadratowy oraz obciążenie każdego z estymatorów. Przedyskutuj uzyskane wyniki.

Powtórz eksperyment dla n=20 i n=100. Porównaj i przedyskutuj uzyskane wyniki w zależności od n.

Zadanie 2: Wygeneruj n (n=50) obserwacji z rozkładów $N(\theta, \sigma^2)$, Logist (θ, σ) , Cauchy (θ, σ) . Rozważ przypadki:

- (a) $\theta = 0, \ \sigma = 1;$
- **(b)** $\theta = 0, \ \sigma = 2;$
- (c) $\theta = 4, \ \sigma = 1;$
- (d) $\theta = 4, \ \sigma = 2.$

Na tej podstawie oblicz wartość estymatora parametru θ postaci

(i)
$$\hat{\theta}_1 = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i;$$

(ii)
$$\hat{\theta}_2 = \text{median}(X_1, \dots, X_n)$$
.

Doświadczenie powtórz 10000 razy. Porównaj estymatory przy pomocy wykresów pudełkowych. Oszacuj wariancję, błąd średniokwadratowy oraz obciążenie każdego z estymatorów. Przedyskutuj uzyskane wyniki.

Zadanie 3: Wygeneruj n-1 (n=50) obserwacji z rozkładu N(0,1) i dodaj do tej próby obserwację $k, k=10,20,\ldots,100$. Na tej podstawie oblicz estymator wartości oczekiwanej postaci

(i)
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$$

(ii) $median(X_1,\ldots,X_n)$.

Doświadczenie powtórz 10000 razy. Porównaj obciążenie, wariancję, błąd średniokwadratowy przy pomocy wykresów w zależności od k. Oszacuj wariancję, błąd średniokwadratowy oraz obciążenie każdego z estymatorów w zależności od k. Przedyskutuj uzyskane wyniki.

Zadanie 4: Wygeneruj $n\ (n=50)$ obserwacji z rozkładu $N(\mu,\theta).$ Rozważ przypadki:

- (a) $\mu = 0, \ \theta = 1;$
- **(b)** $\mu = 0, \ \theta = 4;$
- (c) $\mu = 4, \ \theta = 1;$
- (d) $\mu = 4, \ \theta = 4.$

Na tej podstawie oblicz wartość estymatora parametru θ postaci

(i)
$$\hat{\theta}_1 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2;$$

(ii)
$$\hat{\theta}_2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \text{median}(X_1, \dots, X_n))^2;$$

(iii)
$$\hat{\theta}_3 = \text{median}((X_1 - \bar{X})^2, \dots, (X_1 - \bar{X})^2).$$

Doświadczenie powtórz 10000 razy. Porównaj estymatory przy pomocy wykresów pudełkowych. Oszacuj wariancję, błąd średniokwadratowy oraz obciążenie każdego z estymatorów. Przedyskutuj uzyskane wyniki.