Last time ...

leoo m

Simple harmonic motion

 $F_{sp} = -k(\chi - \chi_e)$

FNET=FSP= Max

 $ma_{x}=-k(x-x_{e})$

Xe: equilibrium position

 $\frac{md^2x}{dt^2} = -k(x-xe)$

 $\frac{d^2x}{dt^2} = \frac{1}{m}(x - x_e)$ $call this <math>w = \sqrt{\frac{1}{m}}$

x(t)=Asin(cot+80)

phase constant
amplitude angular frequency

Today Pendulum

 $(Fnet)_{+} = -(Fa)_{+} = -mg\sin\theta$

(Fret) += ma < acceleration along the circle

$$\alpha = \frac{d^2s}{dt^2} = \frac{d^2}{dt}(\theta L) = L \frac{d^2\theta}{dt^2}$$

$$(Fnet)_{t}=m\lfloor \frac{d^2\theta}{dt^2}=-mgsin\theta$$

$$\frac{d^2\theta}{dt} = \frac{-mg}{mL} \sin\theta = -\frac{g}{L} \sin\theta$$

$$\approx -(0)^2\theta$$

Compare with $\frac{d^2x}{dt^2} = \frac{-k}{m}(x-xe)$ for the disent spring system.	
For small angles, sind f	
f(t)=Acos (cot+po) satisfies	
$\frac{d^2\theta}{dt^2} = -\omega^2\theta, \text{ where } \omega(\text{"omega"}) = \sqrt{\frac{9}{L}} = \alpha_0$	gular frequency
dt²	
energy = $\frac{1}{2}mv_x^2 + \frac{1}{2}kx^2 \cdots$ object on spring	
X=Acos(t) or $X=Asin(t)$	1
	} FTOTAL is constant
$Vx = \frac{dx}{dt} = -\omega A \sin(\omega t)$ or $Vr = \frac{dx}{dt} = \omega A \cos(\omega t)$	