Shortcut and Direct Formula Session

Courtesy: Olave Fortune

CHAPTER 1: STOICHIOMETRY

• Mole(n)

The number of mole formula is given by:

$$n = \frac{mass \ of \ substance}{molar \ mass \ of \ substance}$$

$$n = \frac{Number \ of \ particles}{6.02 \times 10^{23}}$$

$$n = \frac{Concemtration \times Volume(in \ mL)}{1000}$$

$$n = Concentration \times Volume(in \ L)$$

Note: The formulas can be related/equated to each other, when a question has more than two parameters

• Percentage Composition

% of element =
$$\frac{molar\ mass\ of\ element}{molar\ mass\ of\ compound} \times 100\%$$

% of element = $\frac{mass\ of\ element}{mass\ of\ compound} \times 100\%$

• Percentage Yield

$$\%\ yield = \frac{Actual\ yield}{Theoritical\ yield} \times 100\%$$

• Mass Percent and Mole fraction

$$\begin{aligned} \textit{Mass solute} &= \frac{\textit{mass solute}}{\textit{mass of solute} + \textit{mass of solvent}} \times 100\% \\ &\to \textit{Mass of solute} + \textit{Mass of solvent} = \textit{masss of solutuion} \\ &\textit{Mole fraction of element A} = \frac{\textit{Number of moles of A}}{\textit{Total Number of moles}} \end{aligned}$$

• *Molarity, Molality and Normality*

$$Molarity = \frac{No \ of \ moles \ of \ solute}{Volume \ of \ solution \ in \ Litres}$$

$$Molarity = \frac{mass \ of \ solute}{molar \ mass \ of \ solute} \times \frac{1000}{Volume \ in \ mL}$$

$$Molality = \frac{\textit{Mo of moles of solute}}{\textit{Mass of Solvent in Kg}} \times \frac{1000}{\textit{Mass of solvent in g}}$$

$$Normality = \frac{number\ of\ equivalent}{Volume\ of\ solution\ in\ L}$$

$$Normality = \frac{mass\ of\ solute}{molar\ mass\ of\ solute} \times \frac{Reacting\ unit}{Volume\ of\ solution\ in\ L}$$

- →The Reacting unit is the reacting of a compound, that is;
- 1. The Reacting unit of an acid is equal to the **Basicity of the Acid.** Hence for H_2SO_4 it is **two**, for H_3PO_4 it is 3.
- 2. The Reacting unit for oxidizing or reducing agent, it the **number of electrons gains or lost** during the reaction. Hence for $KMnO_4$ it is 5 and for $K_2Cr_2O_7$ it is 3.
 - Relationship between Molarity and Normality

$$Normality = Molarity \times Reacting unit$$

Relationship between Molarity and Molality

$$\frac{1}{\textit{Molality}} = \frac{\textit{density}}{\textit{Molarity}} - \frac{\textit{molar mass of solute}}{\textit{1000}}$$

• Stock Solution/Dilution Principle

$$C_1V_1=C_2V_2 \\ V_2=V_1+Volume\ of\ water\ added \\ C_1\&C_2\ are\ the\ initial\ and\ final\ concentration$$

CHAPTER 2: INTRODUCTION TO REDOX REACTION

- For complex redox equation questions, you can easily get your answers from the option rather than going through the long approach. To do this:
 - Firstly, balance your atoms on the left and right side of the equation. That is, the total number of atoms on the left must equal that on the right.
 - ii) Secondly, balance your charges on the left and right side of the equation. That is, the total number of charges on the left must equal that on the right.
- In other simple redox reduction, asking for the reducing agents or/and oxidizing agents. Note these;
 - The oxidizing agent is element that gained an electron. Examples; Most Non-metallic elements, $KMnO_4$, $K_2Cr_2O_7$ etc.
 - The reducing agent is the element that lost electron(s). Examples; Most Metallic elements, LiAlH₄, NaBH₄etc

CHAPTER 3&4: ACID, BASE AND SALT:REACTIONS

- $pH = -log_{10}[H^+]$
- $pOH = -\log[OH^{-}]$
- $[H^+][OH^-] = 10^{-14}$
- To determine the pH of an weak acid in a buffer solution use the equation; $pH = pK_a + \log[\frac{Salt\ concentration}{Acid\ concentration}]$

$$pH = pK_a + \log[\frac{Salt\ concentration}{Acid\ concentration}]$$

The pKa is calculated using:

$$pK_a = -log_{10}[K_a]$$

 K_a is the acid dissociation constant.

To determine the pOH of an weak base in a buffer solution use the equation;

$$pOH = pK_b + \log[\frac{Salt\ concentration}{Base\ concentration}]$$

The pKb is calculated using:

$$pK_b = -log_{10}[K_b]$$

 K_b is the base dissociation constant.

If a minimal strong acid or base is added to the buffer solution, the equation can be given as:

$$pH = pK_a + \log[\frac{salt - Added\ acid}{Acid + Added\ Acid}]$$

$$pH = pK_a + \log[\frac{salt - Added\ Acid}{Acid + Added\ Base}]$$

$$\begin{aligned} pOH &= pK_b + \log[\frac{salt + Added\ acid}{Base - Added\ Acid}] \\ pOH &= pK_b + \log[\frac{salt - Added\ base}{Base + Added\ base}] \end{aligned}$$

Note that the value of the salt, acid, base and added base is in $moldm^{-3}$.

Solubility product(K_{sp})

If you have a salt, given by:

$$X_pY_q$$

The solubility is given by:

$$K_{sp} = (p^p \times q^q)(solubility)^{p+q}$$

Examples 1: AgCl

$$K_{sp} = (1^1 \times 1^1)(solubility)^{1+1}$$

 $K_{sp} = (solubility)^2$

Example 2: PbCl₂

$$K_{sp} = (1^{1} \times 2^{2})(solubility)^{1+2}$$

$$K_{sp} = 4(solubility)^{3}$$

Solubility product in another solvent(common ion effect)

The shortcut is given as: If salt XY_n is dissolved in salt ZY_r of concentration P, the solubility of salt XY_n is given as:

$$x = \frac{K_{sp} \ of \ XY_n}{[rP]^n}$$

If you still don't understand contact FORTUNE (08163721142)

CHAPTER 5: COLLIGATIVE PROPERTIES OF SOLUTION

• Raoult's Law

$$P_{solutiion} = X_{solvent} \cdot P_{solvent}^{0}$$
$$\Delta P = X_{solute} \cdot P_{solvent}^{0}$$

 ΔP is the vapor pressure change, $P_{solution}$ is the new vapor pressure, $X_{solvent} \& X_{solute}$ are the mole solvent and mole solute, $P_{solvent}^0$ is pure vapour pressure of the solvent.

• Elevation Of Boiling point of the solvent

$$\Delta T_b = \frac{mass \ of \ solute \times 1000 \times K_b}{molar \ mass \ of \ solute \times mass \ of \ solvent \ in \ g}$$

$$New \ B. \ P - Normal \ B. \ P = \Delta T_b$$

 K_b is the molar boiling point elevation constant

• Depression of the Freezing point of the solvent

$$\Delta T_f = \frac{mass\ of\ solute \times 1000 \times K_f}{molar\ mass\ of\ solute \times mass\ of\ solvent\ in\ g}$$

$$New\ F.P-Normal\ F.P=\Delta T_f$$

 K_f is the molar freezing point depression constant

• Osmotic Pressure

$$\pi = \frac{MRT}{M_O}$$

$$\pi = \frac{dRT}{M_O}$$

 π is the osmotic pressure in atm ,M is molar concentration in $moldm^{-3}$,d is density, Mo is molar mass, T is temperature in K &R is the gas constant.

Solvent	B.P	K_b	F.P	K_f
Water	100	0.512	0	1.86
Benzene	80	2.53	5.5	5.12

CHAPTER 6: CHEMICAL EQUILIBRIUM

•
$$mA + nB \longleftrightarrow pC + qD$$

$$K_c = \frac{[C]^p [D]^q}{[A]^m [B]^n}$$

 $n = (p+q) - (m+n)$

•
$$K_p = K_c(RT)^{\Delta n}$$

Note:

- 1. $\Delta n > 0$: Then $K_p > K_c$
- 2. $\Delta n < 0$: Then $K_p < K_c$
- 3. $\Delta n = 0$: Then $K_p = K_c$

 K_p is the is the equilibrium pressure constant & K_c is the equilibrium constant, R is the gas constant and T is temperature