MAST20009 Vector Calculus

Practice Class 1 Questions

We say $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ has the limit L as (x, y) approaches (x_0, y_0) :

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

if when (x,y) approaches (x_0,y_0) along ANY path in the domain D, f(x,y)gets close to L.

The limit can exist if f(x,y) is undefined at (x_0,y_0) .

- 1. Evaluate the following limits if they exist. If they do not exist, explain why.
 - (a) $\lim_{(x,y)\to(0,0)} \frac{xy}{x+y+1} = 0$

f(x,y) is continuous at $(x,y)=(x_0,y_0)$ if

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0).$$

2. Show that the following function f is not continuous at (x, y) = (1, 0).

$$f(x,y) = \begin{cases} \frac{x^2 - 2x + 1 + y^2}{x^3 - 2x^2 + x + xy^2}, & (x,y) \neq (1,0) \\ 2, & (x,y) = (1,0) \end{cases}$$

Can f(x,y) be defined differently at (1,0) so that the function is continuous there?

1

$$\lim_{(x,y)\to(0)} \frac{x^{1}-x^{2}+x+xy^{2}}{x^{1}-x^{2}+x+xy^{2}} = [$$

f(x,y) is differentiable at (x_0,y_0) if

- (i) $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ exist at (x_0, y_0)
- (ii) a tangent plane exists at (x_0, y_0) and is a good approximation to f(x, y)

exist and are continuous at (x_0, y_0) then f(x, y) is differentiable at (x_0, y_0) .

3. Consider the function

$$f(x,y) = \frac{y^3}{x^2 + y^2}.$$

$$f_{\chi} = \frac{-2 \times y^3}{(x^2 + y^2)^2}$$

$$f_{\chi} = \frac{-2 \times y^3}{(x^2 + y^2)^2}$$

$$f_{\chi} = \frac{-2 \times y^3}{(x^2 + y^2)^2} = \frac{y^3 + 3 \times y^2}{(x^2 + y^2)^2}$$

- (a) What is the largest possible domain for f? Is $f = C^1$ function on this domain?

 (b) Define f(0,0) = 0
- (b) Define f(0,0) = 0.

(b) Define
$$f(0,0) = 0$$
.

(i) Calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the origin.

(ii) Are $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ continuous at the origin?

(iii) What conclusion can we make about the differentiability of f at the origin?

= -2k3

(iii) What conclusion can we make about the differentiability of f at the origin?

depend on k When you have finished the above questions, continue working on the questions in the Vector Calculus Problem Sheet Booklet.