Multiple Linear Regression

Phase 3

Key Ideas

- ➤ A Linear Regression models the relation between a dependent variable *Y* and an independent variable *X*.
- Most of the time this is not enough to explain all the variability in Y.
- ➤ We can incorporate more variables to the model → Multiple Linear Regression.
- As the number of variables increases, we may need to adjust R².
- For inference, we are concerned with both the entire model and the individual variables.

Simple regression vs Multiple Linear Regression

Simple linear regression:

Y is predicted by one variable X

Multiple linear regression:

Y is predicted by a combination of many variables X_1 , X_2 , X_3 ...

Multiple Linear Regression

Y is predicted by a combination of many variables X_1 , X_2 , X_3 ...:

$$Y_i = \alpha + \beta_1 \cdot X_{i1} + \beta_2 \cdot X_{i2} + \dots + \beta_k \cdot X_{ik} + \epsilon_i$$
$$= \alpha + \sum_{i=1}^k \beta_i \cdot X_{ij} + \epsilon_i$$

Multiple Linear Regression

Y is predicted by a combination of many variables X_1 , X_2 , X_3 ...:

$$Y_i = \alpha + \beta_1 \cdot X_{i1} + \beta_2 \cdot X_{i2} + \dots + \beta_k \cdot X_{ik} + \epsilon_i$$

$$= \alpha + \sum \beta_j \cdot X_{ij} + \epsilon_i$$

<u>Notation</u>

α: Intercept

 β_i : slope of the independent variable j.

i: A particular observation.

N: Number of observations.

k: the number of independent variables.

Practice question

An article from 1992 carried out an experiment with 30 observations to assess the impact of force, power, temperature and time on ball bond shear strength.

- What is the dependent variable?
- What is N, the number of observations?
- \triangleright What is k, the number of independent variables?
- What are the independent variables?

Assumptions

Assumptions: Linear regression (Recall)

- Linearity. The relationship between X and Y should actually be linear!
- Normality of residuals: (It's actually okay if the X and Y are non-normal, as long as the residuals are normal).
- Residuals are independent of each other.
- ➤ Homogeneity of variance. Residuals generated from a normal distribution with mean 0, and with the same standard deviation for every single residual.
- No extreme outliers: Data points very far away from the rest can exert undue influence on the model parameters.

Assumptions: Linear regression + no collinearity

- Linearity. The relationship between X and Y should actually be linear!
- > Normality of residuals: (It's actually okay if the X and Y are non-normal, as long as the residuals are normal).
- Residuals are independent of each other.
- ➤ **Homogeneity of variance**. Residuals generated from a normal distribution with mean 0, and with the same standard deviation for every single residual.
- No extreme outliers: Data points very far away from the rest can exert undue influence on the model parameters.
- Uncorrelated independent variables.

Recall: Understanding the linear regression model

Once we have estimated the regression model, we can make predictions on a new X.

$$\hat{Y}_i = \hat{\alpha} + \hat{\beta} \cdot X_i$$

ightharpoonup Slope: For each unit increase in X, Y is expected to be **higher/lower** on average by the **slope**. ho_u

$$\hat{\beta} = r \frac{\sigma_y}{\sigma_x}$$

➤ Intercept: When X=0 , the intercept is the expected value of Y.

$$\hat{\alpha} = \langle Y \rangle - \hat{\beta} \langle X \rangle$$

Understanding the multiple linear regression model

 \triangleright Once we have estimated the **multiple** regression model, we can make predictions given a new set of values for **ALL** X_i 's.

$$\hat{Y}_i = \hat{\alpha} + \sum_{j=1}^k \hat{\beta}_j \cdot X_{ij}$$

- > Slopes (β_j) : For each unit increase in X_j , Y is expected to be higher/lower on average by the slope, when ALL other X variables are held constant.
- \rightarrow Intercept (α): the expected value of Y, when ALL the $X_i=0$.

Practice question

A trucking company considered a multiple regression model to relate the total daily travel hours of their drivers (Y) to the distance travel in miles (X_1) and the number of deliveries made (X_2). Suppose that the estimated regression model is:

$$Y = -0.8 + 0.06 \cdot X_1 + 0.9 \cdot X_2 + \epsilon$$

- A) What is the expected travel time when 50 miles are traveled and three delivered are made?
- B) How would you interpret the coefficients 0.06 and 0.9?

Estimation: Ordinary Least Squares

Like the usual linear regression model, we want to estimate the intercept α and slopes β_i such that the residuals are as small as possible

$$\sum_{i} \epsilon_i^2 = \sum_{i} (Y - \hat{Y}_i)^2$$

Estimation: Ordinary Least Squares

Like the usual linear regression model, we want to estimate the intercept α and slopes β_i such that the residuals are as small as possible

$$\hat{\beta} \equiv (\hat{\alpha}, \hat{\beta}_1, \dots, \hat{\beta}_k)$$

$$\sum_{i} \epsilon_i^2 = \sum_{i} (Y - \hat{Y}_i)^2$$

$$\begin{bmatrix} 1 & X_{11} & \dots & X_{1k} \\ 1 & X_{21} & \dots & X_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{N1} & \dots & X_{Nk} \end{bmatrix}$$

$$\hat{\beta} = (X^t X)^{-1} X^t Y$$

- ➤ We saw previously that the performance of the fit of a regression model can be evaluated using the coefficient of determination, R².
- Formally, it is defined as the part of variability explained by our predictors out of the total variability.

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

- ➤ We saw previously that the performance of the fit of a regression model can be evaluated using the coefficient of determination, R².
- Formally, it is defined as the part of variability explained by our predictors out of the total variability.

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

- ➤ We saw previously that the performance of the fit of a regression model can be evaluated using the coefficient of determination, R².
- > Formally, it is defined as the part of variability explained by our predictors out of the total variability.

$$R^{2} = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$\sum_{i} (Y_{i} - \langle Y \rangle)^{2}$$

- We saw previously that the performance of the fit of a regression model can be evaluated using the coefficient of determination, R^2 .
- Formally, it is defined as the part of variability explained by our predictors out of the total variability.

$$R^{2} = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$\sum_{i} (Y_{i} - \hat{Y}_{i})^{2}$$

$$SS_{tot}$$

$$\sum_{i} (Y_{i} - \langle Y \rangle)$$

- ➤ We saw previously that the performance of the fit of a regression model can be evaluated using the coefficient of determination, R².
- Formally, it is defined as the part of variability explained by our predictors out of the total variability.

Properties:

- If our predictors explain all the variability of Y, $SS_{res} = 0 \rightarrow R^2 = 1$
- If our predictors explained none variability of Y, $SS_{res} = SS_{tot} \rightarrow R^2 = 0$

- ➤ We saw previously that the performance of the fit of a regression model can be evaluated using the coefficient of determination, R².
- Formally, it is defined as the part of variability explained by our predictors out of the total variability.

$$R^{2} = 1 - \frac{\sum_{i} (Y_{i} - \hat{Y}_{i})^{2}}{\sum_{i} (Y_{i} - \langle Y \rangle)^{2}}$$

Adjusted coefficient of determination R^2

- There is one issue with the previous formula: as we add more predictors into the model, R^2 will ALWAYS increase (or at least not decrease)
- \triangleright As a result, for multiple linear regression, it's common to adjust R^2 to take into account the number of predictors.

adj.
$$R^2 = 1 - \left(\frac{SS_{res}}{SS_{tot}} \times \frac{N-1}{N-k-1}\right)$$

Adjusted coefficient of determination R^2

- There is one issue with the previous formula: as we add more predictors into the model, R^2 will ALWAYS increase (or at least not decrease)
- \succ As a result, for multiple linear regression, it's common to adjust R^2 to take into account the number of predictors.
- Property: If we add a variable that does not really provide any new information
 or is completely unrelated- the adjusted R² does not increase.

Adjusted coefficient of determination R^2

- There is one issue with the previous formula: as we add more predictors into the model, R^2 will ALWAYS increase (or at least not decrease)
- ➤ As a result, for multiple linear regression, it's common to adjust R² to take into account the number of predictors.
- Property: If we add a variable that does not really provide any new information
 or is completely unrelated- the adjusted R² does not increase.
- <u>Limitation</u>: Not clear interpretation like R² (cannot interpret as a variability explained portion).

Inference

- > We've talked about estimating the regression model and its performance. But how do all these relate to our assumed model (i.e. null hypothesis)?
- Here we have two different (but related) kinds of null hypothesis testing:
 - 1- Does our regression model perform significantly better 0?
 - 2 Which independent variables significantly contribute to this?
- <u>Example:</u> Is anxiety significantly explained by the amount of time spent exercising and of sleep a person? And if so, which of these is significant?
- Analogy: ANOVA and t-tests for post-hoc analysis.

Inference

- We've talked about estimating the regression model and its performance. But how do all these relate to our assumed model (i.e. null hypothesis)?
- Here we have two different (but related) kinds of null hypothesis testing:
 - 1- Does our regression model perform significantly better 0?
 - 2 Which independent variables significantly contribute to this?
- <u>Example:</u> Is anxiety significantly explained by the amount of time spent exercising and of sleep a person? And if so, which of these is significant?
- Analogy: ANOVA and t-tests for post-hoc analysis. Indeed, all come down to regression in the end... → Next week!

> Null Hypothesis
$$\mathbf{H_0}$$
: $\hat{\beta_1} = \hat{\beta_2} = \cdots = \hat{\beta_k} = 0$

> Test statistic:
$$F = \frac{(SS_{tot} - SS_{res})/k}{SS_{res}/N - k - 1}$$

➤ Alternative Hypothesis **H**_A:

At least one $\hat{\beta}_j \neq 0$ $(j = 1 \dots k)$

Recall: one way ANOVA test (Week 7)

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 = \mu_2 = ... = \mu_1$

> Test statistic:
$$F = \frac{V_b/df_b}{V_w/df_w} \sim F$$
-distribution (df_b, df_w)

 \rightarrow Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$ at least two of the $\mu_{\mathbf{i}}$'s are different

> Null Hypothesis
$$\mathbf{H_0}$$
: $\hat{\beta_1} = \hat{\beta_2} = \cdots = \hat{\beta_k} = 0$

> Test statistic:
$$F = \frac{(SS_{tot} - SS_{res})/k}{SS_{res}/N - k - 1}$$
 ~ F-distribution(k , N - k -1)

➤ Alternative Hypothesis **H**_A:

At least one $\hat{\beta}_j \neq 0$ $(j = 1 \dots k)$

ightharpoonup Null Hypothesis $\mathbf{H_0}$: $\hat{\beta_1} = \hat{\beta_2} = \cdots = \hat{\beta_k} = 0$

> Test statistic:
$$F = \frac{(SS_{tot} - SS_{res})/k}{SS_{res}/N - k - 1}$$
 F-distribution(k , N - k -1)

Alternative Hypothesis H_A:

At least one
$$\hat{\beta}_j \neq 0$$
 $(j = 1 \dots k)$

ightharpoonup Null Hypothesis $\mathbf{H_0}$: $\hat{\beta_1} = \hat{\beta_2} = \cdots = \hat{\beta_k} = 0$

> Test statistic:
$$F = \frac{(SS_{tot} - SS_{res})/k}{SS_{res}/N - k - 1}$$
 F-distribution(k, N -k -1)

Degrees of freedom of the **residuals** (question: Why also this -1?)

 \rightarrow Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$:

At least one
$$\hat{\beta}_j \neq 0$$
 $(j = 1 \dots k)$

> Null Hypothesis $\mathbf{H_0}$: $\hat{\beta_1} = \hat{\beta_2} = \cdots = \hat{\beta_k} = 0$

$$ho$$
 Test statistic: $F=rac{(SS_{tot}-SS_{res})/k}{SS_{res}/N-k-1}$

Alternative Hypothesis $\mathbf{H_A}$: Rejection region for $\mathbf{\alpha}$ At least one $\hat{\beta_j} \neq 0$ $(j=1\dots k)$ $\mathbf{F} \geq \mathbf{F}_{\mathbf{\alpha},\{k,N-k-1\}}$

> Null Hypothesis
$$\mathbf{H_0}$$
: $\hat{\beta_1} = \hat{\beta_2} = \cdots = \hat{\beta_k} = 0$

> Test statistic:
$$F = \frac{(SS_{tot} - SS_{res})/k}{SS_{res}/N - k - 1}$$

lm(formula, data)

Practice question

An article from 1992 carried out an experiment with 30 observations to assess the impact of force, power, temperature and time on ball bond shear strength. A multiple linear regression model was estimated, with the following results:

$$SS_{tot} = 2325.2587$$

$$SS_{res} = 665.1187$$

- A) How much variability of ball bond shear strength do the four variables explain?
- B) Is this variability statistically greater than 0 at a significance level of 0.05? (Hint: $F_{4, 25} = 6.49$)

Beyond the full model: inference for each predictor

- \rightarrow Null Hypothesis $\mathbf{H_0}$: $\beta_i = 0$
- > Test statistic: $t = \frac{\beta_j}{SE(\hat{\beta}_i)}$
- Alternative Hypothesis H_A:

$$\beta_i > 0$$
 (one-sided right tail)

$$\beta_i$$
 < 0 (one-sided left tail)

$$\beta_i \neq 0$$
 (two-sided)

Beyond the full model: inference for each predictor

- \rightarrow Null Hypothesis $\mathbf{H_0}$: $\beta_i = 0$
- > Test statistic: $t = \frac{\beta_j}{SE(\hat{\beta}_i)}$ ~ Student's t (*N-k-1*)
- \rightarrow Alternative Hypothesis H_A :

$$\beta_i > 0$$
 (one-sided right tail)

$$\beta_i$$
 < 0 (one-sided left tail)

$$\beta_i \neq 0$$
 (two-sided)

Beyond the full model: inference for each predictor

- \rightarrow Null Hypothesis $\mathbf{H_0}$: $\beta_i = 0$
- > Test statistic: $t = \frac{\hat{\beta}_j}{SE(\hat{\beta}_i)}$ ~ Student's t (*N-k-1*)
- Alternative Hypothesis H_A: Reject

$$\beta_j > 0$$
 (one-sided right tail)

$$\beta_i$$
 < 0 (one-sided left tail)

$$\beta_i \neq 0$$
 (two-sided)

Rejection region for α

$$t \ge t_{\alpha,N-k-1}$$

$$t \le t_{\alpha,N-k-1}$$

$$|t| \ge |t_{\alpha/2,N-k-1}|$$

Beyond the full model: inference for each predictor

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\beta_i = 0$

> Test statistic:
$$t = \frac{\hat{\beta}_j}{SE(\hat{\beta}_j)}$$
 ~ Student's t (*N-k-1*)

$$\beta_i > 0$$
 (one-sided right tail)

$$\beta_i$$
 < 0 (one-sided left tail)

$$\beta_i \neq 0$$
 (two-sided)

Rejection region for α (in P-VALUES)

$$P(T \ge t \mid H_0) \le \alpha$$

$$P(T \le t \mid H_0) \le \alpha$$

$$P(T \ge |\mathbf{t}| | \mathbf{H}_0) \le \alpha$$

Beyond the full model: inference for each predictor

> Null Hypothesis $\mathbf{H_0}$: $\beta_j = 0$

lm(formula, data)

> Test statistic: $t = \frac{\hat{\beta}_j}{SE(\hat{\beta}_j)}$ ~ Student's t (*N-k-1*)

R gives the p-values for each predictor in addition to the full model!!

Alternative Hypothesis H_A:

$$\beta_i > 0$$
 (one-sided right tail)

$$\beta_i$$
 < 0 (one-sided left tail)

$$\beta_i \neq 0$$
 (two-sided)

Rejection region for α (in P-VALUES)

$$P(T \ge t \mid H_0) \le \alpha$$

$$P(T \le t \mid H_0) \le \alpha$$

$$P(T \ge |\mathbf{t}| | \mathbf{H}_0) \le \alpha$$

Practice question (Continuation)

An article from 1992 carried out an experiment with 30 observations to assess the impact of force, power, temperature and time on ball bond shear strength. A multiple linear regression model was estimated, with the following results for each regression coefficient:

C) Which independent variables have a significant association (\neq 0) with ball bond shear strength at a usual 0.05 significance level? (Hint: $t_{0.025,25} = 2.06$)

Coefficient	Estimate	SE
intercept	-37.47667	13.09964
force	0.2116667	0.210574
power	0.4983333	0.070191
temp	0.1296667	0.042115
time	0.2583333	0.210574

Confidence intervals for the coefficients

- Like in any other parameter estimation, estimated regression coefficients will exhibit some variability with respect to the true value.
- We can easily build the $100*(1-\alpha)\%$ confidence intervals around these as follows:

$$\hat{\alpha} \pm t_{\alpha/2,N-k-1} \times SE(\hat{\alpha})$$
$$\hat{\beta}_j \pm t_{\alpha/2,N-k-1} \times SE(\hat{\beta}_j)$$

Confidence intervals for the coefficients

- Like in any other parameter estimation, estimated regression coefficients will exhibit some variability with respect to the true value.
- We can easily build the $100*(1-\alpha)\%$ confidence intervals around these as follows:

 $\frac{\mathbb{R}}{\text{confint}(\text{Im.model, level} = (1-\alpha))}$

$$\hat{\alpha} \pm t_{\alpha/2,N-k-1} \times SE(\hat{\alpha})$$

$$\hat{\beta}_j \pm t_{\alpha/2,N-k-1} \times SE(\hat{\beta}_j)$$

Regression and categorical variables

- > All the previous example used **continuous independent variables**.
- <u>In this case</u>: any **change** in the independent variable triggers a change in the dependent variable **proportional** with the **slope** □.
- How about categorical variables? How are these changes defined?
- In these cases, categorical variables are usually encoded using dummy variables.
- A dummy variable concentrates on one particular level of a categorical variable, with a value 1 if that observation has that particular level, and 0 otherwise.

The article "Estimating Urban Travel Times: A Comparative Study" (Trans. Res., 1980: 173–175) described a study relating the dependent variable Y, travel time between locations in a certain city, and the independent variable X_2 , the distance between locations. There was another variable X_1 : types of vehicle (cars or truck).

The article "Estimating Urban Travel Times: A Comparative Study" (Trans. Res., 1980: 173–175) described a study relating the dependent variable Y, travel time between locations in a certain city, and the independent variable X_2 , the distance between locations. There was another variable X_1 : types of vehicle (cars or truck).

 \triangleright **Dummy variable encoding** of X_1 :1 if a truck; 0 if a car.

The article "Estimating Urban Travel Times: A Comparative Study" (Trans. Res., 1980: 173–175) described a study relating the dependent variable Y, travel time between locations in a certain city, and the independent variable X_2 , the distance between locations. There was another variable X_1 : types of vehicle (cars or truck).

- \triangleright **Dummy variable encoding** of X_1 :1 if a truck; 0 if a car.
- \succ The regression model is still **the same**: $Y=lpha+eta_1X_1+eta_2X_2+\epsilon$

The article "Estimating Urban Travel Times: A Comparative Study" (Trans. Res., 1980: 173–175) described a study relating the dependent variable Y, travel time between locations in a certain city, and the independent variable X_2 , the distance between locations. There was another variable X_1 : types of vehicle (cars or truck).

- \triangleright **Dummy variable encoding** of X_1 :1 if a truck; 0 if a car.
- \succ The regression model is still **the same**: $Y=\alpha+\beta_1X_1+\beta_2X_2+\epsilon$
- > One regression line for each level:

$$\hat{Y}=\hat{\alpha}+\hat{\beta}_2X_2 \ \ \text{(Car)}$$

$$\hat{Y}=\hat{\alpha}+\hat{\beta}_1+\hat{\beta}_2X_2 \ \ \text{(Truck)}$$

The article "Estimating Urban Travel Times: A Comparative Study" (Trans. Res., 1980: 173–175) described a study relating the dependent variable Y, travel time between locations in a certain city, and the independent variable X_2 , the distance between locations. There was another variable X_1 : types of vehicle (cars or truck).

- \triangleright **Dummy variable encoding** of X_1 :1 if a truck; 0 if a car.
- \succ The regression model is still **the same**: $Y=lpha+eta_1X_1+eta_2X_2+\epsilon$
- One regression line for each level:

$$\hat{Y}=\hat{\alpha}+\hat{\beta}_2X_2 \ \ {\rm (Car)}$$

$$\hat{Y}=\hat{\alpha}+\hat{\beta}_1+\hat{\beta}_2X_2 \ \ {\rm (Truck)}$$

<u>Interpretation</u>

 eta_1 : difference in average travel time between trucks and cars.

 β_1 > 0 \rightarrow trucks have longer travel times than cars.

Recap

- Most of the time a simple Linear Regression this is not enough to explain all the variability in Y.
- ➤ We can incorporate more variables to the model → Multiple Linear Regression.
- As the number of variables increase, we may need to adjust R².
- For inference, we are concerned with both the entire model and the individual variables.