CS633 Lecture 03 Polygon Triangulation

Jyh-Ming Lien
Dept. of Computer Science
George Mason University

Based on Chapter 3 of the textbook

Triangulation

- Chapter 3 of the Textbook
- Driving Applications
 - Guarding an art gallery
 - Rendering
 - Collision detection
 - Simulation (finite element method)

Guarding an Art Gallery

- Place as few cameras as possible
- Each part of the gallery must be visible to at least one of them
- Problems: how many cameras and where should they be located?

Art Gallery: Transform to Geometric Problem

- Floor plan may be sufficient and can be approximated as a simple polygon.
 - A simple polygon is a region enclosed by single closed polygonal chain that doesn't self-intersect
- A camera's position corresponds to a point in the polygon
- A camera sees those points in the polygon to which it can be connected with an open segment that lies in the interior of the polygon
 - assuming we have omni-cam that sees all directions

Art Gallery: Problem Analysis

• Bound the number of cameras needed in terms of *n*, number of vertices in the polygon

- 2 polygons with the same number of vertices may not be equally easy to guard
 - A convex polygon can always be guarded by 1

 Note: Find the minimum number of cameras for a specific polygon is NP-hard

Art Gallery: Our Plan

- ullet Triangulate the polygon P
 - Decompose P into a set of simpler shapes
 - Decompose each shape to triangle

Place a camera in each triangle

Triangulation of a Polygon

- Definition: A decomposition of a polygon into triangles by a maximal set of non-intersecting diagonals
- Triangulations are usually NOT unique

Can Any Polygon Be Triangulated?

Yes, but how?

Size of Triangulation

• Any triangulation of a simple polygon with *n* vertices consists of exactly *n-2* triangles

• How many diagonals?

Polygon Triangulation

- Brute force: Find a diagonal and triangulate the two resulting sub-polygons recursively: $O(n^2)$
- Ear clipping/trimming: $O(n^2)$

Clearly we need to do this more efficiently

Polygon Triangulation

- Triangulation of a convex polygon: O(n)
- First decompose a nonconvex polygon into convex pieces and then triangulate the pieces.
 - But, it is as hard to do a convex decomposition as to triangulate the polygon

=> Decompose a polygon into monotone pieces

Polygon Triangulations

- Decompose a simple polygon into a monotone polygon: O(nlogn)
 - Plane sweep algorithm

• Triangulation of a monotone polygon: O(n)

Total time to compute a triangulation: O(nlogn)

Partition a Polygon into Monotone Pieces

• A simple polygon is monotone w.r.t. a line *l* if for any line *l'* perpendicular to *l* the intersection of the polygon with *l'* is connected

Partition a Polygon into Monotone Pieces

• Property: If we walk from a topmost to a bottom-most vertex along the left (or right) boundary chain, then we always move downwards or horizontally, never upwards

Turn Vertex

Imagine walking from the topmost vertex of *P* to the bottommost vertex on the left/right boundary chain.....

 Definition: A vertex where the direction in which we walk switches from downward to upward or vice versa

Turn Vertex

Types of Turn Vertices

- Start Vertex its two neighbors lie below it and the interior angle < 180°
- End Vertex its two neighbors lie above it and the interior angle < 180°
- Split Vertex its two neighbors lie below it and the interior angle > 180°
- Merge Vertex its two neighbors lie above it and the interior angle > 180°

Types of Turn Vertices

Turn Vertex

 To partition a polygon into y-monotone pieces, get rid of split and merge vertices by adding diagonals

Property Summary

- The split and merge vertices are sources of local non-monotonicity
- A polygon is y-monotone if it has no split or merge vertices
- Use the plane-sweep method to remove split & merge vertices

Plane Sweep

- Input: A simple polygon P
 - $v_1 \dots v_n$: a counter-clockwise enumeration of vertices of P
 - $e_1 \dots e_n$: a set of edges of P, where $e_i = segment(v_i, v_{i+1})$
- Events (places where the sweep line status changes)
 - Polygon vertices
 - Sorted from top to bottom

Plane Sweep

Status of the sweep line

- Intersecting edges
 - Ordered from left to right
 - Only store edges that P is on the right (Should be clear later)
- Helper of the edge

• The helper of edge e_i

- Is a vertex
- The lowest vertex above l that can see e_i

Remove Split Point

- If the sweep line stops at a split point
 - add a diagonal
 - from the split point
 - To the lowest point (above *l*)
 between its left and right
 segment (in the status)
 - this is exactly the helper of the segment

Remove Merge Point

- If the sweep line stops at a merge point
 - add a diagonal
 - from the merge point
 - To the highest point (below *l*)
 between its left and right segment (in the status)

Remove Merge Point

- Merge point can be also handled using helper!
 - When the sweep line is at q, the helper of e_i is p
 - After at q, the helper of e_i is q
 - When a merge point is replaced we add a diagonal

Make Monotone: Algorithm

Input: A simple polygon *P*

Output: A partitioning of *P* into monotone subpolygons

- 1. Construct a priority queue Q on the vertices of P, using their y-coordinates as priority. If two points have the same y-coordinates, the one with smaller x has higher priority
- 2. Initialize an empty sweep line status T
- 3. while *Q* is not empty
- 4. do Remove v_i with the highest priority from Q
- Call the appropriate procedure to handle the vertex, depending on its type

Start Vertex

(Insert e_i)

Insert e_i in T and set $helper(e_i)$ to v_i

End Vertex

(Delete e_{i-1})

- 1. if $helper(e_{i-1})$ is a merge vertex then Insert diagonal connecting v_i to $helper(e_{i-1})$ in D
- **2.** Delete e_{i-1} from T

Split Vertex

(Update e_i)

Search in T to find the edge e_j directly left of v_i

Insert diagonal connecting v_i to $helper(e_j)$ in D

 $helper(e_j) \leftarrow v_i$

(Insert e_i)

Insert e_i in T and set $helper(e_i)$ to v_i

Merge Vertex

(Delete e_{i-1})

if $helper(e_{i-1})$ is a merge vertex then Insert diagonal connecting v_i to $helper(e_{i-1})$ in D

Delete e_{i-1} from T

(Update e_j)

Search in T to find the edge e_j directly left of v_i

if $helper(e_i)$ is a merge vertex then Insert diagonal connecting v_i to $helper(e_i)$ in D

 $helper(e_j) \leftarrow v_i$

Regular Vertex

the interior of P lies to the right of v_i
(Delete e_{i-l})
if helper(e_{i-l}) is a merge vertex
then Insert diag. connect v_i to helper(e_{i-l}) in D
Delete e_{i-l} from T
(Insert e_i)
Insert e_i in T and set helper(e_i) to v_i

the interior of P lies to the left of v_i (Update e_j)

Search in T to find the edge e_j directly left of v_i if $helper(e_j)$ is a merge vertex

then Insert diag. connect v_i to $helper(e_j)$ in D $helper(e_i) \leftarrow v_i$ CS633

Regular Vertex

• the interior of P lies to the right of v_i

(Delete e_{i-1}) (Insert e_i)

Regular Vertex

• the interior of P lies to the left of v_i

(Update e_j)

Partitioning Analysis

- Construct priority queue: O(nlogn)
- Initialize T: *O*(1)
- Handle an event: $O(\log n)$
 - one operation on Q: O(logn)
 - at most 1 query, 1 insertion & 1 deletion on T: O(logn)

- Total run time: O(n log n)
- Storage: O(n)

Example

Example

Polygon Triangulation

- Decompose a simply polygon into a monotone polygon: O(nlogn)
 - Plane sweep algorithm

• Triangulation of a monotone polygon: O(n)

Total time to compute a triangulation: O(nlogn)

 Walk from top to bottom on both chains (Sweep line, again)

 Greedy algorithm. Add as many diagonals as possible from each vertex

- Assuming all vertices are one the same side
- We maintain a stack S
- S contains vertices
 - Above the sweep line
 - Not be triangulated
 - Forms an upside-down funnel

- Now there is a vertex on the other side of the chain
- Maintain the same stackS
- When the sweep line stops at this new vertex, add diagonals from it to all the vertices in S

- This funnel is an invariant of the algorithm
 - consisted of a singe edge & a chain of reflex vertices
 - only the highest vertex (at the bottom of S) is convex

Summary

When the sweep line is at a vertex V_j

On the single edge side

- must be the lower end point of the edge: add diagonals to all reflex edges, except last one.
- This vertex and first are pushed back to stack

On the chain of reflex vertices

- pop one; this one is already connected to V_j
- pop vertices from stack till not possible

Input: A strictly y-monotone polygon P stored in a d.-c. e. list D Output: A triangulation of P stored in doubly-connected edge list D

- 1. Merge the vertices on the left and right chains of P into one sequence, sorted on decreasing y-coordinate, with the leftmost comes first. Let $u_1 \dots u_n$ denote sorted sequence
- **2.** Push u_1 and u_2 onto the stack S
- 3. for $j \leftarrow 3$ to $n \leftarrow 1$
- 4. if u_i and vertex on top of S are on different chains
- 5. Add diagonals from u_i to all vertices in S
- 6. if u_i and vertex on top of S are on same chains
- 7. Add diagonals from u_i to vertices in S until you cannot do so
- 8. Add diagonals from u_n to all stack vertices except the

Triangulation Algorithm Analysis

- A strictly y-monotone polygon with *n* vertices can be triangulated in linear time
- A simple polygon with n vertices can be triangulated in $O(n \log n)$ time with an algorithm that uses O(n) storage

Art Gallery Problem

- We can guard a gallery by n-2 cameras
- We can do better by placing cameras at the diagonals, then we only need n/2
- Even better by placing cameras at vertices of the polygons => $\lfloor n/3 \rfloor$ needed by using 3-coloring scheme of a triangulated polygon (ex) combshape like polygon
 - 3-coloring of a polygon always exists

Art Gallery Problem

Art Gallery Problem

Art Gallery Theorem

 For a simple polygon with n vertices, [n/3] cameras are occasionally necessary and always sufficient to have every point in the polygon visible from at least one of the cameras

Chvátal's Comb

Conclusion

• Triangulation in O(nlogn) time

- n is the number of vertices
- Decompose a polygon into monotone subpolygons: O(nlogn) time (plane-sweep algorithm)
- Triangulate each subpolygons: O(n) time

Art gallery problem

- Represent the floor plan as a polygon
- Triangulate the polygon
- 3 coloring the vertices of the "graph of the triangulation"
- Place cameras at the color with fewest vertices
- Art gallery theorem: $\lfloor n/3 \rfloor$ cameras is always sufficient but sometime necessary

Practice!

• Exercises 3.6 & 3.13.