Theorem 4.2.9 (Best Approximation). Let V be a subspace of \mathbb{R}^n , \mathbf{b} be any vector in \mathbb{R}^n , and $\mathbf{p} = \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}$. Then \mathbf{p} is the closest point in V to \mathbf{b} , in the sense that $\|\mathbf{b} - \mathbf{p}\| < \|\mathbf{b} - \mathbf{p}\| < \|\mathbf{b} - \mathbf{v}\|$

for all other \mathbf{v} in V.

Example 4.2.10. Let $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$ and find the closest point in W to \mathbf{y} where

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ \mathbf{0} \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \quad \text{and } \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

(see https://www.geogebra.org/m/hybndwvh)

Closest point is
$$\rho = A\vec{x}$$
 where $A = [x_i, u_z]$ and \hat{x} is solv
$$A^{\dagger}A\hat{x} = A^{\dagger}\vec{b}$$

1 find ATA and ATL

$$A = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$$

$$ATA = \begin{bmatrix} 2 & 1 & -1 \\ -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & -4 \\ -4 & 6 \end{bmatrix}$$

$$ATb = \begin{bmatrix} 2 & 1 & -1 \\ -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$

Solve $ATA\hat{x} = ATb$ $\begin{bmatrix} 6-4 \\ -46 \end{bmatrix} \hat{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \\
\begin{bmatrix} 6-4 \\ 1 \end{bmatrix} \\
\begin{bmatrix} -46 \\ 3 \end{bmatrix} \\
\hat{x}_{2} = 1.1$

$$\overrightarrow{p} = A \widehat{\chi} = \begin{bmatrix} 2 & -2 \\ 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0.9 \\ 1851 \end{bmatrix} = \begin{bmatrix} -0.4 \\ 2 \\ 0.2 \end{bmatrix}$$

Example 4.2.11. The distance from a point \mathbf{u} in \mathbb{R}^n to a subspace V is defined as the distance from \mathbf{u} to the nearest point in V. Find the distance from \mathbf{u} to $V = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ where

$$\mathbf{u} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, \qquad \mathbf{v}_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \qquad \text{and } \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}.$$

 $({\tt see \ https://www.geogebra.org/m/p9q2n95j})$

4.3 Least squares

4.3. Key Ideas

- The least squares solution $\hat{\mathbf{x}}$ minimizes $E = ||A\mathbf{x} \mathbf{b}||^2$. This is the sum of squares of the errors in the m equations (m > n).
- The best $\hat{\mathbf{x}}$ comes from the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$.
- To fit m points by a line b = C + Dt, the normal equations give C and D.
- The heights of the best line are $\mathbf{p} = (p_1, \dots, p_m)$. The vertical distances to the data points are the errors $\mathbf{e} = (e_1, \dots, e_m)$.
- If we try to fit m points by a combination of n < m functions, the m equations $A\mathbf{x} = \mathbf{b}$ are generally unsolvable. The n equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ give the least squares solution the combination with the smallest mean square error.

Example 4.3.1. Find the closest line y = a + bx to the points (0,6), (1,0) and (2,0). (see https://www.geogebra.org/m/aqtkdpbm)

ATA=
$$\begin{bmatrix} 33\\ 35\\ 0 \end{bmatrix}$$
 $ATb=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATA=\begin{bmatrix} 33\\ 35\\ 0 \end{bmatrix}$ $ATb=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATA=\begin{bmatrix} 33\\ 35\\ 0 \end{bmatrix}$ $ATb=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATA=\begin{bmatrix} 33\\ 35\\ 0 \end{bmatrix}$ $ATb=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATA=\begin{bmatrix} 33\\ 35\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 33\\ 35\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 33\\ 35\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 33\\ 35\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 33\\ 35\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 33\\ 35\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 33\\ 35\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 33\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 33\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 33\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 33\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 33\\ 0 \end{bmatrix}$ $ATB=\begin{bmatrix} 6\\ 0 \end{bmatrix}$ $ATB=$

Observation 4.3.2. When $A\mathbf{x} = \mathbf{b}$ has no solution, solve $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ instead. In this example, the heights of the best line are $\mathbf{p} = (p_1, \dots, p_m)$. The vertical distances to the data points are the errors $\mathbf{e} = (e_1, \dots, e_m)$.

Y= a+bx+cx2

Example 4.3.3. Find the parabola $y = \frac{a + bx + x^2}{a + bx + x^2}$ through the points (0, 6), (1, 0) and (2, 0). (see https://www.geogebra.org/m/aqtkdpbm)

[100 | 6] ~ [100 | 6] ~ [100 | 6] ~ [100 | 6]

CONSISTENT

There is a parabola thru these Pts

4= 6- 9x +3x2

Example 4.3.4. Find the plane through the points (1,1,1), (1,1,3) and (1,2,3). Use the fact that a plane in \mathbb{R}^3 has the equation

$$x = ay + bz + c$$
.

(see https://www.geogebra.org/m/rgespmyf)

Example 4.3.5. Find a plane that best fits (1,1,1), (2,2,1), (1,1,3) and (1,2,3). Use the fact that a plane in \mathbb{R}^3 has the equation

$$x = ay + bz + c$$
.

(see https://www.geogebra.org/m/rgespmyf)

Definition 4.3.6. For an $m \times n$ matrix A and a vector \mathbf{b} , we cannot always get the error $\mathbf{e} = \mathbf{b} - A\mathbf{x}$ down to zero. When \mathbf{e} is zero, \mathbf{x} is an exact solution to $A\mathbf{x} = \mathbf{0}$. When the length of \mathbf{e} is as small as possible, $\hat{\mathbf{x}}$ is a least squares solution. This happens when $\hat{\mathbf{x}}$ is a solution to $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

In English...

Example 4.3.7. You're taking average temperatures each month for the winter and spring months of 2020. You find the following data

After sketching a scatterplot, you guess that a curve of the form $y = a + b\sqrt{x}$ will fit the data best. Find an equation of this type that best fits the data. How well does it fit?

(see https://www.geogebra.org/m/maf7nqrv)

$$A = \frac{3}{100} = 0.4 \text{ (1)} \text{ b}$$

$$4 = 0.4 \text{ (2)} \text{ b}$$

$$5 = 0.4 \text{ (2)} \text{ b}$$

$$5 = 0.4 \text{ (2)} \text{ b}$$

$$5 = 0.4 \text{ (2)} \text{ c}$$

$$A^{T}A = \begin{bmatrix} 5 & 8.38 \\ 8.38 & 15 \end{bmatrix} A^{T}b = \begin{bmatrix} 21 \\ 36.76 \end{bmatrix}$$

$$A^{T}A \hat{x} = A^{T}b \implies \alpha = 1.46$$

$$b = 1.64$$
So $y = 1.46 + 1.64 \text{ (2)} \text{ minimizes}$

Observation 4.3.8. The least squares solution $\hat{\mathbf{x}}$ minimizes $E = \frac{1}{n} ||\mathbf{e}||^2 = \frac{1}{n} ||A\mathbf{x} - \mathbf{b}||^2$. This is the sum of squares of the errors in the m equations (m > n).