THIS IS NOT REPRESNITATIVE OF CURRENT CLASS MATERIAL

STOR 455 Midterm 2 **INSTRUCTIONS:**

November 2, 2010

BOTH THE EXAM AND THE BUBBLE SHEET WILL BE COLLECTED. YOU MUST PRINT YOUR NAME AND SIGN THE HONOR PLEDGE ON THE BUBBLE SHEET. YOU MUST BUBBLE-IN YOUR NAME & YOUR STUDENT IDENTIFICATION NUMBER.

EACH QUESTION HAS ONLY ONE CORRECT CHOICE (decimals may need rounding).

USE "NUMBER 2" PENCIL ONLY - DO NOT USE INK - FILL BUBBLE COMPLETELY.

NO NOTES OR REMARKS ARE ACCEPTED - DO NOT TEAR OR FOLD THE BUBBLE SHEET.

A GRADE OF ZERO WILL BE ASSIGNED FOR THE ENTIRE EXAM IF THE BUBBLE SHEET IS NOT FILLED OUT ACCORDING TO THE ABOVE INSTRUCTIONS.

QUESTIONS are worth **1 point** each.

Consider the following SAS print out for questions 1-3:

Analysis of Variance

Source	DF	Sum of Squares		Mean Square	F Value	Pr > F
Model Error Corrected Total	1 23 24	252378 54825 307203		52378 3.71562	???	<.0001
Root MS Depende Coeff Va	- ent Mean r	15.63	447	R-Squa Adj R-S		38
		447	Adj R-S	Sq 0.813	38	

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	62.36586	26.17743	2.38	0.0259
size	1	3.57020	0.34697	10.29	<.0001

1. The value of the F statistic is

A) 0.8215 B) 0.8138 C) 10.29 D) 105.88 E) None of the above

	of R-Square B) 0.8138		D) 105.88	E) None of the above
A) 0.8215 (48.8)	a=blah;		D) 105.88 questions 4	,
A) clm (clb)	B) covb e prediction f	C) cli	D) ss1	meters we use E) None of the above oress uncertainty in our E) None of the above
6. If we desir mean we use A) clm above	-			ral for the subpopulation 1 E) None of the
7. If we desir A) clm	e type I sum B) covb	of squares we C) cli		E) None of the above
Consider th	Number of 0	SAS output for Dbservations Use sis of Variance		8-11:
Source	S DF	um of Mea Squares	an Square F Val	ue Pr>F
Model Error Correcte		91645 1649.47024 96295	91645 315.3 290.59189	38 <.0001
	Root MSE Dependent Mea Coeff Var	17.04676 an 630.05556 2.70560	•).9517 .9487
	Paramete	er Estimates		
Varial	Paramole DF E		d or t Value P	r > t
Interc tempe			2866 ??? 7445 ???	??? ???

8. What is the value of the t-statistic for testing H_0 : β_1 =0 vs. H_1 : $\beta_1 \neq 0$? A)-13.75 B) -17.76 C) 17.76 D) 54.05 E) None of the above							
 9. Is the test H₀: β₁=0 vs. H₁: β₁≠0 statistically significant? A) yes B) no C) Cannot tell from the info provided 							
10. What is the value of the t-statistic for testing $H_0:\beta_0=0$ vs. $H_1:\beta_0\neq 0$? A)-13.75 B) 54.05 C) 17.76 D) -17.76 E) None of the above							
11. What is the 99% confidence interval for β_1 ? A) (875.72, 975.78) B) (-16.03, -11.49) C) (-15.98, -11.52) D) (-15.40, -12.11) E) None of the above							
Consider the model Y= β_0 + β_1 X ₁ + β_2 X ₂ + ϵ and the following info for questions 12-15 n=30, MSE=0.09689, $X'X = \begin{pmatrix} 40 & -4.394974844 & -4.340158967 \\ -4.394974844 & 32.444165213 & -0.522920052 \\ -4.340158967 & -0.522920052 & 44.611345727 \end{pmatrix} X'Y = \begin{pmatrix} 124.52133375 \\ -77.81767379 \\ 32.129310345 \end{pmatrix}$ $X'X = \begin{pmatrix} 40 & -4.394974844 & -4.340158967 \\ -4.394974844 & 32.444165213 & -0.522920052 \\ -4.340158967 & -0.522920052 & 44.611345727 \end{pmatrix}$							
12. Find the value of b ₁ A) -77.8 B) 32.4 C) -1.98 D) 3.00 E) None of the above							
13. Find the standard error of b_1 A) 0.055 B) 0.003 C) 0.097 D) 0.311 E) None of the above							
14. When the data were generated we used the value of β_1 =-2. Compute the 80% confidence interval for β_1 . Does it contain the true value? A) no B) not enough information C) it does not because 80% is too low. D) there is an 80% chance it does E) yes							
15. What are the degrees of freedom for the ANOVA F test F=MSR/MSE? A) df_R =2, df_E =27 B) df_R =1, df_E =28 C) df_R =3, df_E =27 D) Not enough info E) None of the above							
For questions 16-18 use the extra sum of squares $SSR(X_1, X_2, X_3 X_4, X_5)$ 16. $SSR(X_1, X_2, X_3 X_4, X_5)$ is equal to A) $SSR(X_1, X_2, X_3, X_4, X_5)$ - $SSR(X_4, X_5)$ B) $SSE(X_4, X_5)$ - $SSE(X_1, X_2, X_3, X_4, X_5)$ C) $SSR(X_1, X_2, X_3, X_4 X_5)$ - $SSR(X_4 X_5)$ D) all three A, B and C are correct E) both A and B are correct but C is not correct							
17. The number of degrees of freedom associated with SSR(X_1 , X_2 , $X_3 X_4$, X_5) is A) 3 B) 2 C) 5 D) n-3 E) None of the above							

- 18. The expression $SSR(X_1, X_2, X_3 | X_4, X_5)/SSE(X_4, X_5)$ gives
- A) Nothing of significance
- B) The F test statistic testing if adding X_1 , X_2 , X_3 to a model containing X_4 , X_5 results in a statistically significant reduction in sum of squares.
- C) Partial correlation measuring the reduction in the sum of square error resulting from adding X_1 , X_2 , X_3 to a model containing X_4 , X_5 .
- D) Type I sum of squares

- E) None of the above
- 19. The expression $MSR(X_1, X_2, X_3 | X_4, X_5)/MSE(X_1, X_2, X_3, X_4, X_5)$ gives
- A) Nothing of significance
- B) The F test statistic testing if adding X_1 , X_2 , X_3 to a model containing X_4 , X_5 results in a statistically significant reduction in sum of squares.
- C) Partial correlation measuring the reduction in the sum of square error resulting from adding X_1 , X_2 , X_3 to a model containing X_4 , X_5 .
- D) Type I sum of squares

E) None of the above

Questions 20-21 relate to the following SAS statement model y= x2 x3 x1;

- 20. The type I sum of squares corresponding to this model statement are
- A) SSR(x2|x1, x3), SSR(x3|x1, x2), SSR(x1|x2, x3)
- B) SSE(x1), SSE(x2, x1), SSE(x3 x1, x2)
- C) SSR(x1), SSR(x2|x1), SSR(x3|x1, x2)
- D) SSR(x2), SSR(x3|x2), SSR(x1|x2, x3)
- E) None of the above
- 21. The type II sum of squares corresponding to this model statement are
- A) SSR(x2|x1, x3), SSR(x3|x1, x2), SSR(x1|x2, x3)
- B) SSE(x1), SSE(x2, x1), SSE(x3 x1, x2)
- C) SSR(x1), SSR(x2|x1), SSR(x3|x1, x2)
- D) SSR(x2), SSR(x3|x2), SSR(x1|x2, x3)
- E) None of the above
- 22. When working on residual analysis the plot of response variable Y vs. the studentized residuals r should
- A) never be examined, examine the plot of predicted values \hat{Y} vs. r instead;
- B) always be examined;
- C) studentized residuals should never be used, use regular residuals e instead;
- D) should be examined only if the number of predictors is large.
- E) None of the above
- 23. To fit quadratic regression Y= $\beta_0+\beta_1$ x+ β_2 x²+ ϵ in SAS we
- A) create variable $x2=x^*x$; in the data step first and than use it in proc reg writing model y=x x2;
- B) in proc reg write model y=x x*x;
- C) both A and B are correct
- D) proc reg is for linear regression only, it cannot handle quadratic regression
- E) None of the above

Consider the following SAS output for questions 24 - 25

Parameter Estimates

		Parameter	Standar	d				Variance
Variable	DF	Estimate	Error	t Value	e Pr > t	Type I SS	Type II SS	Inflation
Intercept	1	1.41233	0.41564	3.40	0.0022	8192.95154	14.20146	0
x1	1	-0.05413	1.49021	-0.04	0.9713	2137.70546	0.00162	4069.04361
x2	1	1.03129	1.49076	0.69	0.4952	0.65472	0.58864	4068.96105
x3	1	-0.53272	0.20240	-2.63	0.0141	8.52098	8.52098	1.00216

- 24. Based on the SAS output, is there a problem with multicolinearity?
- A) not enough info
- B) no
- 25. Notice that the Type I and Type II SS for x3 are equal. Does this give us any useful information?
- A) Yes, x3 must be an important predictor.
- B) No, the type I and type II SS are always equal for the last variable in the model.
- C) No, type II SS are never useful
- D) Yes, but we would need to assess the p-value first
- E) None of the above

Questions 26-28 are based on the following

Consider a simple linear regression $Y=\beta_0+\beta_1 X_1+\epsilon$. In matrix notation we write this model as $Y=X\beta+\epsilon$. The data was given in the following table

Υ	5	11	4	9
Χ	1	-1	1	-1

26. The matrix X is

$$A) \ X = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} \qquad B) \ X = \begin{pmatrix} 5 & 1 \\ 11 & -1 \\ 4 & 1 \\ 9 & -1 \end{pmatrix} \qquad C) \ X = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad D) \ X = \begin{pmatrix} 1 & 5 \\ 1 & 11 \\ 1 & 4 \\ 1 & 9 \end{pmatrix}$$

E) None of the above

27. The hat matrix H

27. The nat matrix H
$$A) \ H = \begin{pmatrix} .25 & 0 \\ 0 & .25 \end{pmatrix} \quad B) \ H = \begin{pmatrix} .25 & -.25 & .25 & -.25 \\ -.25 & .25 & -.25 & .25 \\ .25 & -.25 & .25 & -.25 \\ -.25 & .25 & -.25 & .25 \end{pmatrix} \quad C) \ H = \begin{pmatrix} .5 & 0 & .5 & 0 \\ 0 & .5 & 0 & .5 \\ .5 & 0 & .5 & 0 \\ 0 & .5 & 0 & .5 \end{pmatrix}$$

$$D) \ H = \begin{pmatrix} 0.5323 & 0.0505 & 0.4959 & -0.0223 \\ 0.0505 & 0.5699 & 0.0118 & 0.4924 \\ 0.4959 & 0.0118 & 0.4642 & -0.0517 \\ -0.0223 & 0.4924 & -0.0517 & 0.4336 \end{pmatrix}$$

E) None of the above

C is correct

28. The mean square error is

- A) 70.91
- **B) 1.25** C) 0.833 D) 2.5
- E) None of the above