COMP3002 Artificial Intelligence Semester 1, 2003

Assignment 1. Uninformed and Informed Search Strategies Due in week 6 (at the beginning of your tutorial class); can be done in pairs.

The 3 digit-puzzle problem

We are given two 3 digits numbers called S and G, and also a set of numbers called forbidden. To solve the puzzle, we want to get from S to G in the fewest possible moves. A move consists of transforming a number into another by adding or subtracting 1 to one of its digits; for instance, a move can take you from 123 to 124, or 953 to 853. Moves are subjects to the following constraints:

- You cannot add to the digit 9 or subtract from the digit 0;
- You cannot make a move that transforms the current number into one of the forbidden numbers;
- You cannot change the same digit twice in two successive moves.

Since the numbers have 3 digits, there are at most 6 possible moves from S at the start. Then, the branching factor is at most 4 due to the constraints above.

Ouestions

- 1. Find a simple admissible heuristic for this problem (one that does not involve extensive mathematical calculation, but that is still powerful). Justify why your heuristic is admissible.
- 2. Write a program (in a language of your choice) performing BFS, DFS, IDS, Greedy and A* to find the solution to the puzzle.
 - Use the input file called puzzle.txt, provided with this assignment. The first line specifies the start number, the second the goal number, the third the forbidden numbers separated by commas.
 - Perform the search according to the search strategy defined by the user (B for BFS, D for DFS, I for IDS, G for Greedy and A for A*).
 - Assume that the order of children for a node is: 1) 1 is subtracted to the first digit, 2) 1 is added to the first digit, 3) 1 is subtracted to the second digit, 4) 1 is added to the second digit, 5) 1 is subtracted to the third digit, 6) 1 is added to the third digit. Example: the order of children for node 678 coming from parent 668 is (578,778,677,679).
 - > For the heuristic search strategies assume also that amongst the nodes with the same h-value, the last added is used first.
 - ➤ Do not let your program run indefinitely if it cannot find a solution. Set a limit of 1000 nodes maximum. When it cannot find a solution, your program should state it explicitly.
 - Return the *solution* found, the *memory costs* in number of nodes (maximum number of nodes stored at any given time), the total *number of nodes expanded* and the *time* to perform the search.
 - If the user requests so, your program should also trace all the nodes expanded with their respective f, g, and h values.
- 3. Present the results for each search strategy in a table and discuss them (what was found and if it is consistent with the theory; if there are any discrepancies, how they can be explained.)

Strategy	Complete	Optimal	Memory cost (in number of nodes)	Number of expanded odes	Search time
BFS			number of nodes)	expanded odes	
DFS					
IDS					
Greedy					
A*					

Submission

1) hard copy (report+code) in a folder to your tutor at the beginning of your tutorial class and 2) electronically (only the code) by e-mail or netfile to your tutor.

Marking scheme (guidelines)

1. 1 mark

- 0.5 mark for giving a suitable heuristic
- 0.5 mark for justifying why it is admissible

2. 8 marks

- 2 marks for the code: well-written, well-commented
- 5 marks for the correct implementation of the 5 search strategies
- 1 mark marker's discretion.

If the code does not compile or does not run you - 0 marks for this part.

3. 3 marks

- 1 mark for a table showing reasonable results
- 2 mark for the discussion