- · ZERO SUM GAMES
- . CONSIDER A WAR BETWEEN B AND E, CONTENDING 3 MOUNTAIN PASSES

EACH B AND E HAVE S SOLDIERS.

- . DECISION BY COMMANDERS → HOW TO DIVIDE THE 5-SOLDIERS. (K, l, m); K & l & m; K+l+m=5

 THE CROVES OF SOLDIERS DIVIDES THEMSELVES RANDOMLES BETWEEN THE 3 MOUNTAIN PASSES
- · GIVEN A MOUNTAIN PASS, WHO SENDS MORE SOLDIERS CAPTURES THE PASS, IF HOR SOLDIERS IS THE SAME, YOU HAVE A DRAW.
- · OBSECTIVE IS MAXIMIZING THE PROBABILITY OF WIGHIN . THIS PROBLEM IS CALLED ZERO-SUM GAME SINCE PROFIT OF ONE IS LOSS OF OTHER.

EXAMPLE: B(0,0,5); $E(0,0,5) \rightarrow TWO$ CASES: @ BOTH GO IN SAME SPOT $\left(\frac{4}{3}\right) \rightarrow DRAW \rightarrow OUTCOME: O$

(6) THEY GO IN DIFFERENT SPOT (3) - 1 PASS EACH - CUTCOME:0

THE VARIOUS CASES ARE SUMMARIZED IN THE TABLE BELOW:

	(0, 0, 5)	(0, 1, 4)	(0, 2, 3)	(1, 1, 3)	(1, 2, 2)
(0,0,5)	0	$-\frac{1}{3}$	$-\frac{1}{3}$	-1	-1
(0, 1, 4)	$\frac{1}{3}$	0	0	$-\frac{1}{3}$	$-\frac{2}{3}$
(0, 2, 3)	$\frac{1}{3}$	0	0	0	$\frac{1}{3}$
(1, 1, 3)	1	$\frac{1}{3}$	0	0	$-\frac{1}{3}$
(1, 2, 2)	1	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	0

(0,2,3) 15 UNIQUE

DEFINITION: NASH EQUILIBRIUM: PAIR OF STRATEGY WINCH ARE BOTH RESPONSE TO ONE-ANOTHER (PURE-MASH IT CHOICE IS UNIQUE)

· LET'S TAKE ANOTHER EXAMPLE - ROCH, PAPER, SCISSOR

	R	۴	<u> </u>	
		-1		THERE IS NO SINGLE ACTION THAT COULD BE BEST RESPONSE TO ANOTHER
P	1	0	-1	A: $X = (X_4, X_2, X_3)$, $X_4, X_2, X_3 \ge 0$; $X_4 + X_2 + X_3 = 4 \rightarrow MIXED$ STRATEGS
5	- 1	1	0	,

FACT: EVERY ZERO-SUM GAME HAS A MIXED - NASH EQUILIBRIUM

NEW PROBLEM: ROCK-PAPER-SCISSOR BY SANTA-CLAUS AND EASTER BUNNY

	R P	
	0 -1	LET'S FIX SC STRATEGS : X= (X+, X2, X3)
P	1 0	min $\underset{y}{\not=}$ x.: M., y. ; $\underset{y}{\not=}$ [OUTCOME, GINEN X] \rightarrow 3 3 5.T. OUTCOME(x,5) $\underset{x}{\not=}$ E [OUTCOME(x,5)]
5	-1 1	y 4,3

· CHOICE FOR SANTA - CLAUS : ADD VARIABLE: X = arg max min { x2- x3 ; -x++x3}

RAX X0
S.T.

$$x_0 \le x_1 - x_3$$

 $x_0 \le x_3 - x_4$
 $x_4 + x_4 + x_3 = 1$
 $x_4 \cdot x_4 \cdot x_5 > 0$
PARCE SCISSOR
OPTIMAL $\left(\frac{1}{3}, 0, \frac{2}{3}, \frac{1}{3}\right)$

· CHOICE FOR EASTER BUNNS: Y = argmin max {-52, 74, -74 + 72 } : ADD VARIABLE

·LINEAR SPACE: SE 12 S.T. CLOSED TO MULTIPLICATION BY SCALAR AND ADDITION OF VECTORS. LINES/PLANES PASSING THROUGH ORIGIN.

- · LINEAR INDEPENDENCE | Xx... Xx | LIM. DEREMBERS IF 3 4... 3x 53: X; =0 WITH AT LEAST ONE 3; #0.
- * AFFINE SPACE: S= L + x , L & 12 LINEAR SPACE. EX: LINE SHIPTED , THAT DOES NOT PASS TO THE ORIGIN
- . AFFINE HULL: X = { X1... X4 } , NOVE THIS SET TO TOUCH ORIGIN: X1-X4,..., X4...-X4,0. TAKE NOW C. COMB OF THIS
- → B (X4 X4) + ... + B, (X4-4-X4) + X4 TO SHIFT IT BACK

GRAPHICALLS :

DEFINITION (AFFINE HULL): CIVEN X AFF. HULL (X) =
$$\bigcap_{A \in A} A$$
; A = $\{A \mid AFFINE \}$

DEFINITION: X IS AFFINE DEPENDENT IF 3 2,... 2, 5.T. 22=0 AND 22:X=0, WITH AT LEAST ONE 2; \$0

EXAMPLE:

- SAYING
$$(X_1-X_n)$$
..., $(X_{n+1}-X_n)$ ARE LINEARLS DEPENDENT IS EQUIVALENT TO WHAT SAID A DONE.

SINCE IT MEANS

 $p_1(X_1-X_n) + ... + p_{n+1}(X_{n+1}-X_n) = 0$ $(=>)$ $p_1X_1 + ... + p_{n+1}X_{n+1} - p_{n+1}X_n \rightarrow \text{SEC COEFFICIENTS}$ Sum up to 2000

$$\beta_1(x_1, x_n) + \dots + \beta_{n-1}(x_{n-1}, x_n) = 0$$
 $(x_1, x_n) + \dots + \beta_{n-1}(x_n) + \dots + \beta_{$

TAKE MATAIX A WITH 1-TH COLUMN (x:-xn)
$$A = \begin{pmatrix} & & & & \\ & & & & & \\ & & & & & \end{pmatrix} d$$
 nows x is an enough $z = z$ det(a) $\neq 0$