Ariel Kellison

Postdoctoral Associate at Sandia National Laboratories ak2485@cornell.edu | ak-2485.github.io

Current Position

Postdoctoral Associate, Sandia National Laboratories

Dec. 2024 - current

I am developing novel static analysis tools for core numerical components of simulation software central to Sandia's mission. My work combines rich type systems with dynamic analysis techniques to ensure numerical accuracy and stability while also improving code maintainability.

Education

Cornell University

PhD in Computer Science, Fall 2020 - Fall 2024

Thesis: Type-Based Approaches to Rounding Error Analysis

Advisement: co-advised by David Bindel (Cornell) & Andrew Appel (Princeton)

University of California Santa Cruz

BSc in Astrophysics with Honors in the Major

Work Experience

Sandia National Labs Digital Foundations & Mathematics Department	June 2021 – current
Postdoctoral Research Associate	Dec. 2024 – current
Formal Methods Intern Supervisor: Heidi Thornquist	June 2021 – Dec. 2024
Cornell University Department of Computer Science	Jan. 2020 – Aug. 2020
• Lecturer, Intro. to Computing Using Python	June 2020 - Aug. 2020
• Head Graduate Teaching Assistant, Intro. to Computing Using Python	Jan. 2020 – May 2020
Cornell University NuPRL Research Group	July 2016 – Jan. 2020
Research Support Specialist I	July 2018 – Jan. 2020
 Research Aide IV Principal Investigator: Robert Constable 	July 2016 – July 2018
Santa Cruz City Schools Harbor High School, Santa Cruz, CA, USA	Aug. 2014 - June 2016
Mathematics Teacher	Aug. 2015 - June 2016
Mathematics Teacher in Training	Aug. 2014 – Aug. 2015
Mathematics Teacher in Training	Aug. 2014 – Aug.

Refereed Publications

(1) Bean: A Language for Backward Error Analysis

Ariel E. Kellison, Laura Zielinski, David Bindel, and Justin Hsu Conditionally accepted to the 46th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2025)

(2) Numerical Fuzz: A Type System for Rounding Error Analysis

Ariel E. Kellison, Justin Hsu

45th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2024)

(3) VCFloat2: Floating-point Error Analysis in Coq

Andrew W. Appel, Ariel E. Kellison

13th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2024)

- (4) LAProof: A Library of Formal Proofs of Accuracy and Correctness for Linear Algebra Programs Ariel E. Kellison, Andrew W. Appel, Mohit Tekriwal, David Bindel 30th IEEE International Symposium on Computer Arithmetic (ARITH 2023)
- (5) Verified Correctness, Accuracy, and Convergence of a Stationary Iterative Linear Solver: Jacobi Method Mohit Tekriwal, Andrew W. Appel, Ariel E. Kellison, Jean-Baptiste Jeannin, David Bindel 16th International Conference on Intelligent Computer Mathematics (CICM 2023)
- (6) Global Stochastic Optimization of Stellarator Coil Configurations Silke Glas, Misha Padidar, Ariel E. Kellison, David Bindel Journal of Plasma Physics, Volume 88 (2), 2022
- (7) Verified Numerical Methods for Ordinary Differential Equations Ariel E. Kellison, Andrew Appel 15th International Workshop on Numerical Software Verification (NSV 2022)
- (8) A Machine-Checked Direct Proof of the Steiner-Lehmus Theorem Ariel E. Kellison 11th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2022)
- (9) Towards Verified Rounding Error Analysis for Stationary Iterative Methods Ariel E. Kellison, Mohit Tekriwal, Jean-Baptiste Jeannin, Geoffrey Hulette 6th IEEE/ACM International Workshop on Software Correctness for HPC Applications (Correctness 2022)
- (10) Implementing Euclid's Straightedge and Compass Constructions in Type Theory
 Ariel E. Kellison, Mark Bickford, Robert Constable
 Annals of Mathematics and Artificial Intelligence, Volume 85, Pages 175-192, 2019

Reports & Position Papers

- (1) Report on the First Tri-Lab Workshop on Formal Verification (SAND2024-02142)
 Samuel D. Pollard, Jon M. Aytac, Ariel E. Kellison, Ignacio Laguna, Srinivas Nedunuri, Sabrina Reis, Matthew J. Sottile, Heidi K. Thornquist. Feb. 2024
- (2) Real(istic) Specifications of Software (SAND2021-14778C)
 Samuel D. Pollard, Ariel E. Kellison, John Bender, Geoffrey C. Hulette. U.S. Department of Energy ASCR Workshop on the Science of Scientific-Software Development and Use. Dec. 2021
- (3) Formal Methods Based Certification Frameworks for Scientific Computing Applications (SAND2021-13614C)

 Ariel E. Kellison, Geoff C. Hulette, John Bender, Samuel D. Pollard, Heidi K. Thornquist. U.S. Department of Energy ASCR Workshop on Cybersecurity and Privacy for Scientific Computing Ecosystems. Nov. 2021

Awards and Honors

Department of Energy Computational Science Graduate Fellowship

A highly-competitive graduate fellowship program providing, for four years, an annual \$45,000 living stipend, an annual \$1,000 professional development allowance, and full university tuition and fees. The program requires substantial (six courses total) graduate level coursework in science & engineering, mathematics & statistics, and computer science, as well as a minimum of one graduate level course in high-performance computing.

UCSC Physics Department Honors

Awarded to students with a grade point average above 3.5 in the major.

California Space Grant Consortium

A competitively awarded program supporting undergraduate students in aero/space-related research.

Selected Talks

Designing Type Systems for Rounding Error Analysis	C
FPBench Community Meeting (invited virtual talk)	Sept. 202
Type-Based Approaches to Rounding Error Analysis	
Department of Energy CSGF Annual Program Review	July 202
FPTalks 2024 Annual Workshop (invited virtual talk)	July 202
A Type System for Numerical Error Analysis	
 Cornell Programming Languages Discussion Group (invited seminar talk) 	Mar. 202
 New Jersey Programming Languages and Systems Seminar 	Nov. 202
LAProof: A Library of Formal Proofs of Accuracy and Correctness for Linear Algebra	a Programs
 Midwest Programming Languages Summit, University of Michigan 	Oct. 202
Verified Numerical Methods for Ordinary Differential Equations	
Cornell Programming Languages Retreat, Cornell University	Dec. 202
• FPBench Community Meeting (virtual contributed talk)	Jan. 202
A Machine-Checked Direct Proof of the Steiner-Lehmus Theorem	
Cornell Programming Languages Retreat, Cornell University	Dec. 202
Service	
Program Committee, PLDI 46th ACM SIGPLAN Conference on Programming Language Design and Implementation	202
External Reviewer, CAV 37th International Conference on Computer Aided Verification	202
External Reviewer, ICALP 52nd EATCS International Colloquium on Automata, Languages, and Programming	202
Journal Article Reviewer, TACO	202
ACM Transactions on Architecture and Code Optimization	
Artifact Evaluation Committee, POPL 52nd ACM SIGPLAN Symposium on Principles of Programming Languages	202
External Reviewer, POPL 52nd ACM SIGPLAN Symposium on Principles of Programming Languages	202
External Reviewer, CADE 29th International Conference on Automated Deduction	202
External Reviewer, CSL 30th EACSL Annual Conference on Computer Science Logic	202
Student Project Advisement	
<u> </u>	Fall 2025 – currer
Student Project Advisement Laura Zielinski (Cornell, CS PhD student) Max Fan (Cornell, CS PhD student)	
Laura Zielinski (Cornell, CS PhD student)	Fall 2025 – currer Fall 2025 – currer Summer 2024 – currer