

rechnical

TN no. N-1494

OPTIMUM DYNAMIC DESIGN OF NONLINEAR REINFORCED title:

CONCRETE SLABS UNDER BLAST LOADING

author: J. M. Ferritto

date: July 1977

SDONSOT: Naval Facilities Engineering Command

program nos: YF53.534.091.01.404

CIVIL ENGINEERING LABORATORY

NAVAL CONSTRUCTION BATTALION CENTER Port Hueneme, California 93043

Approved for public release; distribution unlimited.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
TN-1494 DN687101	2) Technical m
OPTIMUM DYNAMIC DESIGN OF NONLINEAR REINFORCED CONCRETE SLABS UNDER BLAST	Not final Jul 1976-Jan 1977
LOADING.	8. CONTRACT OR GRANT NUMBER(*)
J. M./Ferritto	16) F53534
9. PERFORMING ORGANIZATION NAME AND ADDRESS CIVIL ENGINEERING LABORATORY Naval Construction Battalion Center	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62760N:
Port Hueneme, California 93043	YF531534/q91/01.404
Naval Facilities Engineering Command Alexandria, Virginia 22332	Jule 77
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office,	15. SECURITY CLASS. (OF TIME
	Unclassified
	154. DECLASSIFICATION/DOWNGRADING
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	from Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block numbers) Nonlinear structural dynamics, plates, slabs, optimization, design, reinforced concrete.	
20. ABSTRACT (Continue on reverse side II necessary and identity by block numbers A computer program was developed to determine the	ne nonlinear dynamic response of
reinforced concrete slabs subjected to blast pressure loading and geometry of the slab, the program computes the blast resistance, mass, and stiffness of the slab and solves for the contains optimization subroutines that provide for automatructural slabs. The program will assist engineers in the d	environment and the structural e dynamic response. The program atic optimum design of least-cost
DD FORM 1472 EDITION OF LINOVES IS OBSOLETE	continued

over

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

391111 Dans

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. Continued

That are intended to contain the effects of accidental explosions. The report gives a user's guide and sample problems with data input and program output.

Wille Section D
Bull Section [
· 0 🖸
0:1
NAVERABEITY COORS BL. Berlyker Special

Library Card

Civil Engineering Laboratory

OPTIMUM DYNAMIC DESIGN OF NONLINEAR REINFORCED

CONCRETE SLABS UNDER BLAST LOADING, by J. M. Ferritto

TN-1494 47 pp illus July 1977 Unclassified

1. Nonlinear structural dynamics

2. Blast-res

I. YF53.534.091.01.404

A computer program was developed to det nonlinear dynamic response of reinforced concrete slabs subjected to blast pressure loading. Given the explosive parameters and geometry of the slab, the program computes the blast environment and the structural resistance, mass, and stiffness of the slab and solves for the dynamic response. The program contains optimization subroutines that provide for automatic optimum design of least-cost structural slabs. The program will assist engineers in the design and analysis of facilities that are intended to contain the effects of accidental explosions. The report gives a user's guide and sample problems with data input and program output.

CONTENTS

Pag	ge
INTRODUCTION	1
COMPUTER PROGRAM	2
Program Input	3
Example Problems	7
THEORETICAL DEVELOPMENT	7
Blast Loads and Structural Response	7
Structural Optimization	9
DISCUSSION	2
REFERENCES	4
APPENDIX	
Example Problems	37

INTRODUCTION

The Department of Defense (DOD) has numerous facilities engaged in the production of various types of explosives and munitions used by military services. In most cases the production of ammunition utilizes assembly line procedures. Projectiles pass through various stages of preparation: filling with explosive, fuzing, marking, and packing. Hazardous operations, such as the filling of the projectile case with an explosive in a powder form and the compaction of the powder by hydraulic press, are accomplished in protective cells that are intended to confine the effects of an accidental explosion.

Most of the existing production facilities were built in the 1940s. With few exceptions, the manufacturing technology and existing equipment represent the state of the art as of 1940. The production equipment was operated extensively during World War II, again during the Korean conflict, and recently during the Southeast Asia war. Much of this equipment and the housing structures have been operating beyond their designed capacities [1].

DOD is conducting an ammunition plant modernization program [2] that is intended to greatly enhance safety in the production plants by protective construction, automated processing, and reduction of personnel involved in hazardous operations.

In 1969 a joint-service manual [3] was published to provide guidance to the structural designers of munition plants. The objectives of the manual were to establish design procedures and construction techniques to prevent propagation of explosions from one building, or part of a building, to another; to prevent mass detonations; and to provide protection for personnel and equipment. The manual establishes blast-load parameters for designing protective structures, provides methods for calculating the dynamic response of concrete walls, and establishes construction details for developing required strength. The design method accounts for close-in effects of a detonation with its associated high pressures and nonuniformity of loading on protective barriers. A detailed method for assessing the degree of protection afforded by a protective facility did not exist prior to this manual's publication; consequently, the manual represents a significant improvement in design methods. The simplifications made in the development of the design procedures have been presented in the manual. The analysis of a structure using the design procedure will generally result in a conservative estimate of the structure's capacity; therefore, structures designed using these procedures will generally be adequate for blast loads exceeding the assumed load conditions [3].

Even with the simplifications presented in Reference 3, the computational procedures are complex and time-consuming. An automated procedure was required to give structural designers the capability to perform rapid analysis of the structural safety of blast-resistant construction. The design parameters interact in a complex way since the procedure is both nonlinear and dynamic. From a design point of view an optimization procedure was required to minimize cost and maximize safety since blast-resistant construction has been reported to cost 3 to 5 times as much as conventional construction. Therefore, the first objective was to automate the analysis procedures for determining structural response of reinforced concrete slabs having a bilinear stiffness representation and subjected to blast shock and gas pressures. Concrete slabs are the basic element forming sidewalls, roofs and floors of cells designed to confine the effects of accidental explosions. The second objective was to provide an optimum design procedure for laced and unlaced reinforced concrete slabs that will automatically produce a least-cost design for a given slab geometry, material properties, and explosive weight for both feasible and nonfeasible starting points.

COMPUTER PROGRAM

The computer program was written in FORTRAN IV for use with Control Data 6600 series computers. The program is composed of four areas:

- 1. Blast Load Determination
- 2. Structural Analysis Parameters
- 3. Dynamic Response
- 4. Optimization

The blast-load determination is accomplished by subroutines BLA, PIC, SGRID, HBA, RATIO, GRID, GAS INTERP, EQUIV, HEDATA, ARDC, SHOCK, and TNT. The subroutines read the explosive weight and type and cell geometry, and then compute the equivalent spherical weight of TNT and the equivalent pressure loading using the geometry of the wall and charge location. Both the shock pressure and its duration and the gas pressure and its duration are calculated. Using the duration and pressure data for both shock and gas, the program computes an equivalent triangular pressure loading for each part and adds both together to produce the resultant shown in Figure 1. The total impulse is then determined.

The structural analysis is accomplished by subroutines SSTIFF, LACE, DOOR 1, DOOR 2, DOOR 3, DOOR 4 and DOOR 5. These routines compute the stiffness, resistance, and equivalent mass of the slab using input material properties. Both flexure and shear are considered. Openings (doors or windows) in walls are allowed.

The dynamic response calculation is accomplished in subroutine RESP. The program determines the response of the slab modeled as an equivalent dynamic single-degree-of-freedom system with bilinear stiffness and pressure loading as shown in Figure 1. The solution technique is based on a Newmark iteration method.

When a thickness of sand is specified for composite construction (i.e., two slabs with sandfill), the program computes the impulse capacity of the first slab using half the mass of the sand as acting with the wall. Figures 6-38 and 6-39 of Reference 3 give the attenuation of the blast wave on sand for evaluation of the impulse capacity of the second wall. The optimization of an initial design is accomplished in subroutines OPT, MINIMZ, PMINZ, DMINZ, GETE, SUMRY, TLEFT, AND GCOMP. The methodology used is that of a penalty function with individual minimization sequences being accomplished by the Powell method.

Program Input

The program input consists of five or six cards per case. Additional cases can be grouped together. Two blank cards are used after the last case. The users guide contained in the program is given here to assist in understanding the input. Card format is 8F10.0 except as noted. Figure 2a is an input data sheet to be used in conjunction with Figures 2b and 2c, which show the slab geometry and orientation that must be followed. The input required for each card is described below.

CARD 1		
COL 2	COL 68	HEADING
COL 69	COL 70	OPTIMIZATION = 1.
COL 71	COL 72	FLAG EQ 0 FOR PRESSURE CALCULATION EQ 1.
		FOR INPUT PRESSURE
COL 73	COL 74	FLAG FOR REBAR DIAMETER RATHER THAN AREA = 1
COL 75	COL 76	FLAG FOR IMPULSE GRID = 1
COL 77	COL 78	DOOR $FLAG = 1$
COL 79	COL 80	DOOR EQUILIBRIUM ITERATION = 1
		OTHERWISE = 0
CARD 2		
COL 1	COL 10	WEIGHT OF ACTUAL EXPLOSIVE LB
COL 11	COL 20	EXPLOSIVE NUMBER SEE TABLE 2
COL 21	COL 30	EXPLOSIVE LENGTH/DIAMETER RATIO
COL 31	COL 40	PROJECTILE CASE WEIGHT/EXPLOSIVE WEIGHT RATIO
COL 41	COL 50	AMBIENT PRESSURE PSIA (DEFAULT 14.69 PSI)
COL 51	COL 60	AMBIENT TEMPERATUREOC (DEFAULT 200)
COL 61	COL 70	ALTITUDE KFT (WHEN PRESSURE AND TEMPERATURE
		NOT SPECIFIED)
COL 71	COL 80	EFFECTIVE IMPULSE FRACTION COMPOSITE CONSTRUCTION

CARD 3		
COL 1	COL 10	RA DISTANCE CHARGE TO WALL FT
		OR EQUAL IMPULSE PSI-MS IF FLAG ≈ 1.0
COL 11	COL 20	H WALL HEIGHT FT
COL 21	COL 30	EL WALL LENGTH FT
COL 31	COL 40	HLIT HEIGHT CHARGE FT
COL 71		OR EQUAL PRESSURE PSI IF FLAG = 1.0
COL 41	COL 50	ELLIT DISTANCE CHARGE TO
COL II	00270	LEFT SIDE WALL FT
		OR EQUAL DURATION (MS) IF FLAG = 1.0
COL 51	COL 60	CELL VOLUME FOR GAS PRESSURE
COL 61	COL 70	CELL VENT AREA FOR GAS PRESSURE
COL 71	COL 70	EQ1 FOR FLOOR REFLECTION
COL 72		EQ1 FOR ROOF REFLECTION
COL 73		EQ1 FOR LEFT WALL REFLECTION
COL 74		EQ1 FOR RIGHT WALL REFLECTION
COL		OTHERWISE EQ 0
		OTHERWISE EQ 0
CARD 4		
COL 1	COL 10	FC DYNAMIC CONCRETE STRESS PSI
COL 11	COL 20	FY DYNAMIC STEEL STRESS PSI
COL 21	CGL 30	TC THICKNESS CONCRETE IN.
COL 31	COL 40	THETA ALLOWABLE ROTATION DEGREES
COL 41	COL 50	NSIDE NUMBER OF SIDES WALL FIXED
	1.0	BOTTOM SIDE FIXED
	2.0	BOTTOM AND SIDE FIXED
	3.0	2 SIDES AND BOTTOM FIXED
	4.0	4 SIDES FIXED
	5.0	SIMPLE SUPPORTED BEAM FIXED AT TOP AND BOTTOM
	6.0	FIXED BEAM AT TOP AND BOTTOM
	7.0	BEAM BOTTOM FIXED TOP SIMPLE
COL 51	COL 60	TSAND SAND THICKNESS FT
COL 61	COL 70	BL LACING LENGTH
COL 71	COL 80	SL LACING SPACING IN.
CARD 5		
OPTION $2 \approx 0$		
COL 1	COL 10	ASVT AREA VERTICAL STEEL BLAST SIDE/FT
COL 11	COL 20	ASVB AREA VERTICAL STEEL OPPOSITE SIDE/FT
COL 21	COL 30	ASHT AREA HORIZONTAL STEEL BLAST SIDE/FT
COL 31	COL 40	ASHB AREA HORIZONTAL STEEL OPPOSITE SIDE/FT
COL 41	COL 50	DVT DEPTH TO VERTICAL STEEL BLAST SIDE IN.
COL 51	COL 60	DVB DEPTH TO VERTICAL STEEL OPPOSITE SIDE IN.
COL 61	COL 70	DHT DEPTH TO HORIZONTAL STEEL BLAST SIDE IN.
COL 71	COL 80	DHB DEPTH TO HORIZONTAL STEEL OPPOSITE SIDE IN.
OPTION $2 \approx 1$		
COL 1	COL 10	BAR SIZE VERT OPPOSITE SIDE
COL 11	COL 20	BAR SIZE VERT BLAST SIDE
COL 21	COL 30	BAR SIZE HORIZ OPPOSITE SIDE
COL 31	COL 40	BAR SIZE HORIZ BLAST SIDE

COL 41	COL 50	BAR SPACING VERT OPPOSITE SIDE
COL 51	COL 60	BAR SPACING VERT BLAST SIDE
COL 61	COL 70	BAR SPACING HORIZ OPPOSITE SIDE
COL 71	COL 80	BAR SPACING HORIZ BLAST SIDE
CARD 6		
COL 1	COL 10	BAR DEPTH VERT OPPOSITE SIDE
COL 11	COL 20	BAR DEPTH VERT BLAST SIDE
COL 21	COL 30	BAR DEPTH HORIZ OPPOSITE SIDE
COL 31	COL 40	BAR DEPTH HORIZ BLAST SIDE
		DEPTH FROM OUTTER CONCRETE SURFACE
		TO CENTER OF BAR

OPTION 4 = 1CARD 6 **PLAST DOOR PARAMETERS**

COL 1	COL 10	DOOR HEIGHT
COL 11	COL 20	DOOR WIDTH
COL 21	COL 30	DISTANCE FROM LEFT SIDE TO DOOR
COL 31	COL 40	DOOR REACTION OR
COL 41	COL 50	DOOR RESISTANCE FOR CALCULATION OF REACTION
COL 51	COL 60	DISTANCE TO FLOOR

Note: All values are fixed point, except for reflection code and options.

The explosive number (Card 2) refers to the list of explosives in Table 1. This is used to compute explosive equivalence. The length/ diameter ratio for an explosive sphere is 0.0, which gives a shape factor of 1.0. For an uncased explosive the case explosive weight ratio is 0. For sea level calculations the ambient air pressure, P_{amb} , and temperature, T_{amb}, and altitude can be left blank and will default to 14.69 psi and 20°C. If the flag in the heading card is set to 1, the impulse, duration, and pressure will be read on Card 3. If the flag is left blank, the charge to wall distance, charge height, and distance from the left side will be read. If NSIDE is left blank, the program will sum the number of reflecting sidewall surfaces specified on Card 3. The separate use of NSIDE is helpful when a frangible wall is present, which creates a shock reflection but does not provide any support.

When optimization and composite construction are specified together, the program will optimize the design to resist the given or computed impulse. For the case when two walls are acting together each resisting a portion of the impulse it is necessary to specify the effective impulse to be applied to the wall under design. The total impulse is multiplied

by the decimal number specified on Card 2.

Table 1. List of Explosives

Explosive Number	Explosive Name and Composition
1	TNT
2	TNETB
3	EXPLOSIVE D
4	PENTOLITE (PETN/TNT 50/50)
5	PICRATOL (EXPLOSIVE D/TNT 52/48)
6	CYCLOTOL (RDX/TNT 70/30)
7	COMP B (RDX/TNT/WAX 59.4/39.6/1.0)
8	RDX/WAX (98/2)
9	COMP A-3 (RDX/WAX 91/9)
10	TNETB/AL (90/10)
11	TNETB/AL (78/22)
12	TNETB/AL (72/28)
13	TNETB/AL (65/34)
14	TRITONAL (TNT/AL80/70)
15	RDX/AL/WAX (88/10/2)
16	RDX/AL/WAX (89/20/2)
17	RDX/AL/WAX (74/21/5)
18	RDX/AL/WAX (74/22/4)
19	RDX/AL/WAX (62/33/5)
20	TORPEX II (RDX/TNT/AL 42/40/18)
21	H6 (RDX/TNT/AL/WAX 45/29/21/5)
22	HBX-1 (RDX/TNT/AL/WAX 40/38/16/5)
23	HBX-3 (RDX/TNT/AL/WAX 31/29/35/5)
24	TNETB/RDX/AL 39/26/35)
25	ALUMINUM
26	WAX
27	RDX
28	PETN
29	TETRYL

Example Problems

The first example is a sidewall of a blast cell with a roof. The concrete wall is 32 feet long, 12 feet high, and 2 feet thick with 4 feet of sand in composite action. Note that half of the input thickness of the sand is used by the program as added mass to the wall. The wall is restrained at the floor, roof, and left side; the right side is free. Since the three-side-fixed option condition assumes the sides and the bottom to be fixed, the wall must be reoriented when filling out the input form (Figure 3). Thus, a height of 32 feet and a length of 12 feet are used to properly orient the free edge. An allowable support rotation of 12 degrees is given which assumes lacing reinforcement will be used.

Figure 4 gives the results of the analysis. A blast impulse of 2,406 psi-ms was determined. The section properties are given. Since shear exceeds the allowable, lacing must be provided for the difference. The yield-line location is given. An ultimate resistance of 101.9 psi and a stiffness of 825 psi were determined. The impulse capacity of the wall is 4,365 psi-ms, which is much greater than the loading of 2,406 psi-ms; this indicates the design is conservative. If a second wall of the same construction were present and acted with the first in composite construction, Figures 6-38 and 6-39 of Reference 3 could be used to determine its impulse capacity and the total capacity of both walls; the scaled values of impulse, sand, and concrete thicknesses are used.

Figure 5 gives the input data for a roof of a blast cell 32 by 15 feet. The 32-foot side is used as the height to agree with the fixity condition. Figure 6 presents the computer analysis. In this case sand fill is not present, and the wall response is calculated.

A maximum deflection of 18.98 inches was determined; this can be compared with the allowable 12-degree-rotation deflection of 18.6 inches. Since the maximum deflection exceeds the 12-degree-rotation deflection, collapse of the wall is indicated. Average and maximum scale velocity are given. The appendix gives two additional examples, wherein hand calculations are compared with computer results.

THEORETICAL DEVELOPMENT

Blast Loads and Structural Response

In general, the methods used in the computer program follow Reference 3, and, as such, the accuracy of both is the same. Since these are discussed in detail in References 3 and 4, they will not be presented here. The solution of the dynamic response equation of motion has been found to agree very closely with the response chart of Reference 3. Additionally, the solution covers a wider range and, thus, is more accurate in the areas not defined by the response chart. When

the loading is less than one hundredth of the natural period, the response is determined by impulse equilibrium. The basic dynamic model is limited to one mode of response and does not consider higher modes.

The ultimate moment capacity, $M_{\rm u}$, of the slab is based on Equation 5-4 of Reference 3, as follows:

$$M_u = \frac{(A_s - A_s)f_s}{b}(d - \frac{a}{2}) + \frac{A_s f_s}{b}(d - d)$$

where A_{s}^{\bullet} = area of compression reinforcement

 A_{c} = area of tension reinforcement

b = width

a = depth of equivalent rectangular stress block

 f_{s} = design steel stress

d = distance from extreme compression fiber
to centroid of tension reinforcement

d' = distance from extreme compression fiber centroid to compression fiber

This equation for equal reinforcement in tension and compression reduces to

$$M_{u} = \frac{A_{s}' f_{s}}{b} (d - d')$$

The action of the concrete in compression is neglected, because crushing at high rotations is assumed to occur. This results in disengagement of the concrete cover. When support rotations are restricted by lack of lacing, this equation becomes conservative. However, the more conventional concrete analysis procedures were not included to conform with the methodology given in Reference 3.

The blast impulse computation is restricted to a geometry in which the slab height-to-length ratio is greater than 0.2. The modification made by the Naval Surface Weapons Center to the original Picatinny Arsenal Program did not affect the results significantly for most cases. However, it did remove several minor problem areas, such as the location of the charge. The blast impulse has all the limitations associated with the original Picatinny programs that are caused by limitations in the test data. It assumes the charge is an equivalent sphere of TNT. Shape effects, explosive equivalence, and explosive casings are considered, but only in an empirical manner as a result of limited available data.

Structural Optimization

The optimization problem consists of finding the least-cost structure that satisfies all the design constraints; or, stated in optimization terms:

Find \vec{X} such that $M(\vec{X})$ is a minimum and

$$g_{i}(\vec{X}) \leq 0$$
 $i = 1, 2, N$

where \vec{X} = vector of design variables

N = number of design constraints

g = vector of design constraints

M = objective function

Specifically for this problem, the design variables selected are areas of steel reinforcement and thickness of concrete. The design constraints are the flexural and shear limits. The objective function consists of the costs of formwork and concrete flexural and shear reinforcement.

Fixed Variables

W = explosive weight

H = wall height

EL = wall length

h = height of explosive above floor

1 = distance of explosive from left side of wall

 R_a = distance of explosive from wall

I = reflection code

 f_{dc} = ultimate dynamic concrete strength

 f_{dy} = dynamic yield strength of reinforcing steel

 θ = rotation criterion

Design Parameters, X

$$X = \begin{cases} t & \text{concrete thickness} \\ AV & \text{area of vertical reinforcing steel} \\ AH & \text{area of horizontal reinforcing steel} \end{cases}$$

Constraints, g (X)

 $\delta(X) = \delta(\theta)$, maximum deflection

 $V(X) \leq VC$ for $\theta \leq 2$ deg, maximum shear

t_c ≥ 12, minimum thickness

AV \geq 0.0025 bd and \geq 0.0025 bd minimum steel reinforcement

The methodology [5,6] selected uses the unconstrained minimization approach. The problem is converted to an unconstrained minimization by constructing a function, ϕ , of the general form

$$\phi(\vec{X}, r) = M(\vec{X}) + P[g_1(\vec{X}), ..., g_n(\vec{X}), r]$$

For this problem the interior penalty function technique was selected. This methodology is suitable when gradients are not available, and, because the method uses the feasible region, a useable solution always results. The objective function is augmented with a penalty term that is small at points away from the constraints in the feasible region, but increases rapidly as the contraints are approached. The form is as follows:

$$\phi(\vec{X}, r) = M(\vec{X}) - r \sum_{j=1}^{N} \frac{1}{g_j(\vec{X})}$$

where M is to be minimized over all \vec{X} satisfying g $(\vec{X}) \leq 0$, j = 2 ... N. Note that if r is postive, then, since at any interior point all of the terms in the sum are negative, the effect is to add a positive penalty to M(\vec{X}). As the boundary is approached, some g (\vec{X}) will approach zero, and the penalty will increase rapidly. The parameter, r, will be made successively smaller in order to obtain the constrained minimum of M.

Objective Function, F

Cost = F = H • EL •
$$t_c$$
 • C_c + (AV + AH)(EL • H) C_s + (A_S)(EL • H) C_L

where $C_c = cost of concrete (\$/cu ft)$

 C_s = cost of horizontal and vertical reinforcement (\$/cu in.)

 C_{T} = cost of lacing reinforcement (\$/cu in.)

 A_{s} = area lacing reinforcement (\$/cu in.)

$$\phi = F + r \sum_{j=1}^{N} \left[\frac{1}{g_{j}(X)} \right]$$

where r = penalty parameter.

The program requires a starting point in the feasible region before optimization can proceed. This is accomplished automatically by the program by incrementing the design variables until a feasible point is reached.

An algorithm which comprises the steps most commonly used is as follows:

- 1. Given a starting point, X , satisfying all gj(X) < 0 and an initial value for r, minimize φ to obtain X $_{min}$
- 2. Check for convergence of \mathbf{X}_{\min} to the optimum.
- 3. If the convergence criterion is not satisfied, reduce r by $r \leftarrow rc$, where c < 1.
- 4. Compute a new starting point for the minimization, initialize the minimization algorithm, and repeat from step 1.

The logic diagram for the interior penalty functions technique is shown in Figure 7.

The minimization for $\phi(X, r)$ shown in Figure 7 is accomplished by a method developed by Powell using conjugate directions [5,6].

Powell's method can be understood as follows: Given that the function has been minimized once in each of the coordinate directions and then in the associated pattern direction. Discard one of the coordinate directions in favor of the pattern direction for inclusion in the next m minimizations, since this is likely to be a better direction than the discarded coordinate direction. After the next cycle of minimizations, generate a new pattern direction, and again replace one of the coordinate directions. This process is illustrated in Figure 8.

Figure 9 is a logic diagram for the unconstrained minimization algorithm. The pattern move is constructed in block A, then used for a minimization step (blocks B and C), and then stored in S_n (block D) as all of the directions are up-numbered and S_1 is discarded. The direction S_n will then be used for a minimizing step just before the construction of the next pattern direction. Consequently, in the second cycle, both X and Y in block A are points that are minima along S_n , the last pattern direction. This sequence will impart special properties to $S_{n+1} = X - Y$ that are the source of the rapid convergence of the method.

Figure 9 shows a block requiring a one-dimensional minimization of α^* of the function $\phi(\tilde{X}+\alpha S_q)$. The one-dimensional minimization uses a four-point cubic interpolation. It finds the minimum along the direction S_q , where \tilde{X} is the coordinate of the previous minimum. By trial and error it finds three points with the middle one less than the other two. It makes a quadratic interpolation, and then a cubic interpolation. If the actual function evaluated at the new interpolated point is not sufficiently close to that of the preceding point or if

it is not sufficiently close to the interpolated function, then another cubic interpolation is made. The logic for this algorithm is shown in Figure 10.

DISCUSSION

The objective function is linearly dependent on the design variables; however, the constraints are both linearly and nonlinearly related to the design variables. The minimum area of steel is a linear constraint. Figures 11 and 12 show the shear stress and the deflection as being nonlinearly related to the thickness of the concrete. Note that the shear stress is almost linear and is constant (independent of thickness). Figure 13 shows the useable region bounded by flexure, shear, and minimum steel constraints. The optimum least-cost solution is shown. This specific example solution considers an unlaced section; thus, the maximum shear constraint is active. Laced sections eliminate the shear constraint. If the number of sides supported were increased from N=2 to N=3, the design space would change as shown in Figure 14. There are two regions that are useable areas. Obviously, the lower one offers the least cost and, therefore, is more desirable.

There is clearly a complex interaction of constraints. Unfortunately, the optimum solution found by the program depends on the starting point selected. The program converges on the closest relative optimum. Several alternative starting points should be used to verify a questionable optimum. Revising the design parameters could possibly shift the constraints such that only one useable solution would appear. However, a slight increase in shear stress (10%) can significantly reduce cost by allowing the near-optimum nonfeasible solution to be accepted.

The dual-space problem of finding a useable solution is limited to unlaced concrete slabs only because lacing eliminates the shear constraint. Nonautomated design for these conditions is almost impossible when one considers the complexity of the design space and the large number of iterations required when an initial solution is not feasible.

Cost data used in the program can be selected by the user. However, the data used herein is based on work by Picatinny Arsenal on contract with Ammann and Whitney [7]. Table 2 shows a comparison of unlaced and laced concrete walls with and without sand. The example considers a 15-foot-high by 12-foot-wide wall subjected to a 200-psi, 10-ms triangular loading function. In all cases the laced concrete (12-degree rotation) is less expensive than unlaced (2-degree rotation) designs. The costs for sand/concrete composite construction are for only the front wall. When the rear wall is included, the costs almost double, thereby making this form of construction unsuitable for relatively low pressure loadings. It should be pointed out that, for the N=3 and 4 conditions, the optimum design selected is actually a near optimum with the shear capacity slightly exceeded as shown in Figure 15.

Table 2. Comparison of Optimum Solutions

(200 psi; 10 ms; wall, 12L x 15H)

N Side	Theta (°)	Sand (in.)	Cost (\$)
N=2	2	0	3,290
	12	0	2,289
	2	24	2,209 ^a
hamm	12	24	1,856 ^{\alpha}
N=3	2	0	2,753 ^b
1	12	0	2,019
3 [2	24	1,944 ^{a,b}
himmi	12	24	1,943 ^a
N=4	2	0	2,001 ^b
	12	0	1,958
1	2	24	2,001 ^{a,b}
muney	12	24	1,943 ^a

 $^{^{}lpha}$ One wall only in composite construction.

The program contains an option to analyze walls with openings. During many analyses it was noted that blast doors with resistances much higher than those of the walls transfer significant reactions to the walls such that the walls are incapable of accepting these and fail. Computational problems arise in the program when this happens in that yield regions cannot be brought into equilibrium by yield analysis methods. To avoid termination of the solution at this point the door resistance is reduced automatically by a factor of 2 to reduce the reaction. This usually allows for a successful termination. Unfortunately, this destroys the original starting point for optimization, and creates problems when a nonfeasible low-cost solution is lost and cannot be used to provide direction. It is, therefore, not possible to perform optimization solutions of walls with openings. Generally, it has been found that compatible designs occur when the door is designed to have approximately the same resistance as the wall.

 $[^]b{
m Shear}$ capacity exceeded.

REFERENCES

- 1. J. O. Gill et al. "Preliminary report on the modernization of the Naval ordnance production base and application of hazard risk analysis technique," paper presented at the Fifteenth Explosive Safety Seminar, Department of Defense Explosive Safety Board, San Francisco, Calif, Sep 1973.
- 2. Arthur Mendolia. "A new approach to explosives safety," paper presented at the Fifteenth Explosive Safety Seminar, Department of Defense Explosive Safety Board, San Francisco, Calif, Sep 1973.
- 3. Departments of the Army, Navy, and Air Force. TM5-1300, NAVFAC P-397, and AFM 88-22: Structures to resist the effects of accidental explosions. Washington, DC, Jun 1969.
- 4. Civil Engineering Laboratory. Technical Note TN-1434: Development of a computer program for the dynamic nonlinear response of reinforced concrete slabs under blast loading, by J. M. Ferritto. Port Hueneme, Calif, Apr 1976.
- 5. R. L. Fox. Optimization methods for engineering design. Addison Wesley, Reading, Mass, 1971.
- $6.\,$ Advisory Group for Aerospace Research and Development. AGAARD No. 149: Structural design applications of mathematical programming techniques. NATO
- 7. Picatinny Arsenal. TR-4441: Preliminary estimate of concrete thickness and construction costs of laced reinforced concrete structures, by R. Dede, R. Dobbs, N. Porcaro, and J. Rindner. Dover, N.J., Oct 1972.

Figure 1. Equivalent pressure loading.

Door Pr		7980														
gninoqO		71 7273 7475 7677 78 79 80	Impulse Effective				иķ		n.)		2					
1 Grid		75 76	lse Ef				SL Lacing		D'HB (in.)		HB Space					
A _s or D		73 74	lmpu		L R		S		D		Ξ					
*1 10 d		71 72			FR											
mumitqO		70	cft)		1.3		S.		.)		,					
		61	Altitude (kft)		Vent Area		BI. Lacing		D'HT (in.)		HT Space					
		51 60	T _{amb} (^o C)		Cell Vol		t Sand		D'VB (in.)		VB Space				Dist to Floor	
		41 50	P _{amb} (psia)		I (ft)/t _o (ms)*		N Side		D'VT (in.)		VT Space				Door RU	
	ling	31 40	Case/Explo		h (ft)/P _O (psi)*		Theta (deg)		A _s HB (in. ² /ft)		HB Bar No.		D'HB (in.)		Door Reaction	
	Heading	21 30	I/d Ratio		L (ft)		T _c (in.)		A _S HT (in. ² /ft)		HT Bar No.		D'HT (in.)		Dist to Left	
		11 20	Expo No.		H (ft)		F _{dy} (psi)		A _S VB (in. ² /ft)		VB Bar No.		D'VB (in.)		Door Width	
		1 10	W (Ib)		R _a (ft)/1 (psi-ms)		F _{dc} (psi)		A _s VT (in. ² /ft)		VT Bar No.		D'VT (in.)		Door Height	
CARD	-	•		2		e.		+		5a	5	5b		5b		9

OPTIONS 0 to 1

Figure 2a. Input data form.

Figure 2b. Wall geometry.

Wall three sides supported with door.

Figure 2c. Wall geometry with opening for door.

							OP	OPTIONS 0 or 1	or 1	
						mumizqO	•1 10 q	A _s or D	Opening	
Heading		Test Case, Example 1	Example 1							
10	10 11 20	21 30	31 40 41	41 50 51	51 60 61		71727	70 71727374 7576 77 787980	76 77	787
W (lb)	Expo No.	I/d Ratio	Case/Explo	P _{amb} (psia)	T _{amb} (^o C)	Altitude (kft)		Effective Impulse	ndul :	Sc
310	1.0	0								
Ra (ft)/1 (psi-ms)*	H (ft)	T (tr)	h (ft)/P _o (psi)*	I (ft)/t _o (ms)*	Cell Vol	Vent Area	H R	L R		
3.	32.	12.	17.	3.			1 0	1 1		
F _{dc} (psi)	F _{dy} (psi)	T _c (in.)	Theta (deg)	N Side	t Sand	BL Lacing		SI. L	SI. Lacing	
5000.	48000.	24.	12.	3.	4					
A _s VT (in. ² /ft)	A _S VB (in. ² /ft)	A _s HT (in. ² /tt)	A _S HB (in. ² /ft)	D'VT (in.)	D'VB (in.)	D'HT (in.)		D'HE	D'HB (in.)	
1.58	1.58	1.58	1.58	2.	2.	3.			3.	

Figure 3. Computer form, Example 1.

5a

CARD

Preceding Page BLank - NOT FILMED

_:
Example 1
results,
Computer
4.
Figure

EXPLUSIVE PR NUMBER EGWT 1 1.000 PAMB(PSIA)	VE PROPERTIES EGWT EFURM EXPL KCAL/G .000078400	EXPLOSIVE COMPOSIVE COMPOSITE COMPOSIVE COMPOSIVE COMPOSIVE COMPOSIVE COMPOSITE COMPOSIVE COMPOSITE COMPOS	GE WEIGHT(LB) = 310.0 COMPOSITION BY WEIGHT H N O AL 022 .185 .423 0.000 (C) = 20.00
SHOCK MAVE CALCULA INPUT PARAMETERS CHARGE WEIGHT(L8) EXPLOSIVE NUMBER L/O RATIO CASE/CHARGE WT RAT CHAMBER PRESSURE(P CHAMBER TEMP(C) ALTITUDE (KFT)	AVE CALCULATION ARAMETERS WEIGHT(LB) NE NUMBER 10 ANGE WT RATIO H PRESSURE(PSIA) H TEMP(C) E (KFT)	310.0 10.0 14.69	CHARGE WEIGHT ADJUSTMENTS ADJUSTED WTCLB TNT) 8 310.0 HE ENERGY FACTUR 8 1.000 CHARGE SHAPE FACTUR 8 1.000 CASE WEIGHT FACTUR 8 1.000 PRESSURE SCALE FACTOR8 1.000 DISTANCE SCALE FACTOR8 1.477 TIME SCALE FACTOR 8 1470 NURMAL REFL FACTOR 8 1490
0	25	000	
TIME AFTER EXPLOSION (MSEC) • 1156	TIME AFTER SHOCK ARK CASEC)	INCIDENT OVERPRESS (PSI) 2736	NORM REFL UVERPRESS (PSI) 26.6323E+03
6 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	24 W W W W W W W W W W W W W W W W W W W	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 M 00 00
. 6945	578	21.48	224.9

	32	9031	69	3698	77	155	59.	3.	24.	
	273	62.	43.	353.0	30.	48.	1.6	6.0	1.4	
		12	19	.2573	32	38	45	51	~	79
1	115	544	308	.3729	437	501	565	630	769	758

INCIDENT # 351.9
REFLECTED# 3683

IMPULSE (PSI, MSEC) --

....CAUTION--CONTACT SURFACE HAS ARRIVED.
DATA ARE CRUDE BEYOND T(MSEC) AFTER SHUCK ARRIVAL 12.3181E-03

3.00 310.00 32.00	17.00 17.00 3.00
F 88 F F F F F F F F F F F F F F F F F	4 14 14
DISTANCE OF CHARGE FROM BLAST WALL Charge Weight Blast Wall Height	BLAST WALL LENGTH MEIGHT OF CHARGE ABOVE GROUND MIN. DIST. BETWEEN CHARGE + ADJ. WALL REFLECTION CODE

TOTAL IMPULSE 2406.90 PSI-MS
DURATION OF LOAD 7.64583 MSEC
FICTITIOUS F K PRESSURE 629.59763 PSI

DYNAMIC CONCRETE STRENGTH 5000.00
DYNAMIC STEEL STRESS 48000.00
THICKNESS CONCRETE INCHES 24.0000
THICKNESS UF SAND INCHES 48.0000
THETA ALLUMABLE DEGREES 12.0000

2.0000 3.0000 3.0000		2475,99 LBS/IN WIDTH 15486,00 LBS/IN WIDTH		110011 110011
NNMM	_			ZZ
	372			LB/IN PSI PSI
COC V	44146 278177169 2971910372	H H		
0000	644146 6 0 0 1 2781 29719	g g		m 0 m 5
2000		115.16 720.00 LE 2 DEG 26400.00 113760.00		72.00 111.37 101.9133 6592.36 6809.89 0URT 217.36 14.8890
1.5800 1.5800 1.5800	386. 382.00 382.20 742.13	115. 720. LE 2 DE 26400.00 26400.00		111. 911.3 98. 98. 98. 98. 98.
	177	11400 E		9 4 4
				10
			90	TERRET
	E T E	AR UNKEINFURCED WERT SUPPORT CED CONCRETE THE VERTICAL MOMENT HORIZONTAL MOMENT HORIZONTAL MOMENT	FLUOR	TIELD LINE LENGTH CAD CAPACITY RU R LOAD AT SUPPOR R LOAD AT SUPPORT R AT DIST FROM SUP MAX DEFLECTION
****	M W W W W W W W W W W W W W W W W W W W	7	w	TH 0 2 C C C C C C C C C C C C C C C C C C
	W SHENGE	NOZ AAZ	SIDES	TAA HOUN
P STEEL/FT T STEEL/FT OP STEEL/FT OT STEEL/FT	EELS N	AR UNKEINFU CED CONCRET VERTICAL MO MORIZONTAL	Ø	0000
801	SCENE TO SE	2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		HE RELL
VERT TOP S VERT BOT S HURIZ TOP HORIZ BOT	MOOOM && OEXSO E MM+ME	110 MMMM MMK 440 >>11	INE	THIMIMS S MAMAM MAMAMANAPH X
>>11	3 0 0 0 5 4 0 0	33H FFFF	ORT O L	Z S S S S S S S S S S S S S S S S S S S
	CONCRETE MUDULUS PSI RATIO MOD STEEL/CONCRETE GROSS MOMENT INERTIA AVE CRACKED MOM INERTIA AVE MOMENT INERTIA AVERAGE PERCENT STEEL D FACTOR MUSI/6 D FACTOR MUSI/6	ALLOW SHEAR UNREINFURCED ALLOW SHEAK AT SUPPORT UNREINFORCED CONCRETE TO POSITIVE VERTICAL MOMENT POSITIVE HORIZONTAL MOMENT NEGATIVE HORIZONTAL MOMENT	SUPPORT ON YIELD LINE	LOCATION YIELD LINE LENGTH LOCATION YIELD LINE HEIGHT ULTIMATE LOAD CAPACITY RU 101 HORIZ SHEAR LOAD AT SUPPORT VERT SHEAR LOAD AT SUPPORT HORIZ SHEAK AT DIST FROM SUPPORT VERT SHEARAT DIST FROM SUPPORT ALCOWABLE MAX DEFLECTION 14
4444	0 2 3 4 4 4 5 5	440 020Z	ø ≻	><1<1CFF

LUCATION YIELD LINE HEIGHT 111.37

ULTIMATE LOAD CAPACITY RU 101.9133

HORIZ SHEAR LOAD AT SUPPORT 6592.36 LB/IN WIDTH

VERT SHEAR LOAD AT SUPPORT 6809.89 LB/IN WIDTH

HORIZ SHEAR AT DIST FROM SUPPORT 217.36 PSI

VERT SHEARAT DIST FROM SUPPORT 243.92 PSI

ALCOWABLE MAX DEFLECTION 14.8890

SHEAR CAPACITY EXCEEDED

5869.	3766.44
MASS FACTOR	MASS CONCRETE ONLY
LUAD	MASS

	702		9.6		101.91	17
FIRST YIELD PUINT AT PTZ ELASTIC LIMIT RE PSI	LASTIC DEFLECTION X	ECOND YIELD AT PT	ELASTO PLASTIC LIMIT	LASTO-PLASTIC DEFL	LTIMATE RESISTANCE	LASTIC DEFLECTION

101,91	XE .1234	825.77
ULTIMATE RESISTANCE RU	ELASTIC DEFLECTION LIMIT	STIFFNESS KE

17,323021	4364.5	645.01	.5911	9562.
NATURAL PERIOD	CAPACITY ONE WA	SCALLED IMPULSE CAPACITY	SCALED SAND THICKNESS	SCALED CUNCRETE THICKNESS

Door Pr		7980	1,							
Opening		70 7172 7374 75 76 7778 7980	Effective Impulse				cing		(in.)	
LGrid		1 75 7	ctive l				SI. Lacing		D'HB (in.	8
O to SA		2 737.	Effe		Α				-	
*I 10 d		7172			± ≃	0 1				
MumingO		70	(kft)		rea		gui		n.)	
		19	Altitude (kft)		Vent Area		Bl. Lacing		D'HT (in.)	3.
		51 60 61	T _{amb} (^o C)		Cell Vol	0.	t Sand		D'VB (in.)	2.
		41 50 51	P _{amb} (psia)		I (ft)/t ₀ (ms)*	7.5	N Side	3.	D'VT (in.)	2.
	Test Case, Example 2	31 40 41	Case/Explo		h (ft)/P _O (psi)*	16.	Theta (deg)	12.	A _S HB (in. ² /ft)	1.58
	Test (21 30 31	I/d Ratio	o'	L (ft)	15.	T _c (in.)	24.	A _s HT (in. ² /ft)	1.58
		11 20 21	Expo No.	-	H (ft)	32.	Fdy (psi)	48000.	A _s VB (in. ² /ft)	1.58
	Heading	1 10 11	W (lb)	. 650	R _a (ft)/I (psi-ms)	œ	F _{dc} (psi)	5000.	A _s VT (in. ² /ft)	1.58
CARD	-			~1		~		+		5.4

OPTIONS 0 or 1

Figure 5. Computer form, Example 2.

650 11.0000 11.0000 11.0000 11.0000 7.0000

Figure 6. Computer results, Example 2.

	E16H10.00.000	
	2 2 2 4 8 2 2 4 8 2 2 4 8 2 2 2 2 2 2 2	
n.	6H1CL 81710 N	20.00
Б. Б. Ж. Ж. Ж.	COMPO	11
د	MOIN	ပ
1	~ w	20
Σ	SIVE C	TA
4	0000	
×	APLOS J	
ш	• 10	
	ME GO	
•	HILL	6
TEST CASE	TH AL	14.69
v	A Y .	-
4	940	
U	0 × 0	
_	M3 0	MB(PSIA)
		တ
30	LOSIV BER E	9
	78 -	00
r Z	XPLO VUMBE	Ž
•	1.4 -	-

3	2	,	
,	7	=	,
1		_	
-		_	•
		1	
	=		
	•		,
-	L		•
	-	1	Ì
	<	1	
	Ĺ	1)
	u	V	ļ
	3	>	,
,	4	1	
	3		
		,	
-	ī	,	
-	-		
	-	-	•
		1	•

NPUT PARAMETER		HARGE WEIGHT
CHARGE WEIGHT (LB) #	0.059	DJUSTED
XPLUSIVE NUMBE	1	E ENERGY FACTO
ID HATI	-0-	HARGE SHAPE FA
ASE/CHARGE WT RATI	•0•	ASE WEIGHT FACTO
HAMBER PRESSURE (PSIA)	4.6	RESSURE SCALE FAC
HAMBER TEMP(C)	20.00	ISTANCE SCALE F
LTITUDE CKF	•0•	ALE FACTOR
1	8.00	
(£3)	E 243.8	
IME AFTER TIME AFT	CIDEN	RM REF
OSION SHOCK	ERPR	S. S.
(MSEC) (M	PSI	PSI
229 0.	97.	69
505.	14.	74
.9770 .4541	198.1	-
.128 .605	28.	12
.280 .756	4.1	34.
.431 ,908	4.2	3.
.583 1.06	3.4	
.734 1.21	8.5	62.
.885 1.36	. 83	6.5
151		

EMPULSE (PSI, MSEC) --

1 2 2	669	74	1123	73.	2.2	
RED	97.0	100	128.7	E W	8.5	1
TIME AFTER	(MSEC)	305	. 6055	906	300	-
0	CMSEC	825	1.128	2 60	73	03

CCM) E CM2)

IMPULSE (PSI, MSEC) == INCIDENT = 301.8 REFLECTED= 2633

....CAUTIUN--CONTACT SURFACE HAS ARRIVED.
DATA ARE CRUDE BEYOND T(MSEC) AFTER SHUCK ARRIVALE 94,0671E-03

8.00 650.00 32.00	15.00 16.00 7.50
. α. π . α. τ 	
DISTANCE OF CHARGE FROM BLAST WALL CHARGE WEIGHT BLAST WALL HEIGHT	BLAST WALL LENGTH HEIGHT OF CHARGE ABOVE GROUND MIN. DIST. BETWEEN CHARGE + ADJ. MALL REFLECTION CUDE

TOTAL IMPULSE 3142,94 PSI-MS

DURATION OF LOAD 5.01601 MSEC

FICTITIOUS PEAK PRESSURE 1253,16399 PSI

		2.0000 3.0000 3.0000	J. Au	2475.99 LBS/IN FIDTH 15480.00 LBS/IN FIDTH		
180.00		CCC CCC CCC CCC CCC CCC CCC CCC CCC CC	3644146 96 00 26 13 61 2781771691 2971910372		0.0	
	50000.00 24.0000.00 0.0000.00 12.00000	1.5800 1.5800 1.5800	364 332.26 342.13 742.13	115.16 720.00 LE 2 DEG	126400.00 126400.00 113760.00 113760.00	
LENGTH	S E N C I I E C I I E C		7 F F F F F F F F F F F F F F F F F F F	CED WEB	2 2	IDES ABOVE FLUOR
384.00	CCNCRETE STRENGTH STEEL STRESS S CUNCRETE INCHE S OF SAND INCHE LUXABLE DEGREE	VERT TOP STEEL/FT VERT BOT STEEL/FT HORIZ TOP STEEL/FT HORIZ BOT STEEL/FT	MUDULUS PSI MENT INERTIA KEU MUM INER NT INERTIA NUM INER MUM 0.3	SHEAR UNREINFORCED SHEAR AT SUPPORT FURGED CONCRETE TE	VERTICAL MOMENT VERTICAL MOMENT HORIZONTAL MOMENT HURIZONTAL MOMENT	3 SIDES Y ABOVE
HEIGHT	DYNAMIC CONCRETE STRENDYNAMIC STEEL STRESS THICKNESS CUNCRETE INTELNESS OF SAND INTELNESS OF SAND INTELN ALLOWABLE DEC	AREA VERT TUP S AREA VERT BUT S AREA HORIZ TOP AREA HORIZ BUT	CONCRETE MUDULUS PSI HATIO MOD STEEL/CONCRETE GRUSS MUMENT INERTIA AVE CRACKED MUM INERTIA AVE MOMENT INERTIA AVERAGE PERCENT STEEL D FACTUR MUE1/6 D FACTUR MUE1/6	ALLOW SHEAR UNKEINFOR ALLOW SHEAR AT SUPPOR UNKEINFURCED CONCRETE	POSITIVE VER NEGATIVE VER POSITIVE HOR NEGATIVE HUR	SUPPORT UN YIELD LINE

LUCIN FIDER

5221.07 5499.91 186.51

137.30

LOCATION YIELD LINE LENGTH
QUCATION YIELD LINE HEIGHT
13
ULTIMATE LUAD CAPACITY NU 66,4
HORIZ SHEAR LUAD AT SUPPORT
VERT SHEAR LUAD AT SUPPORT
HUMIZ SHEAR AT DIST FRUM SUPPORT
VERT SHEARAT DIST FRUM SUPPORT

126400.00	126400.00	113760.00	113760.00
MOMENT	LOMENT	MOMENT	MUMENT
VERTICAL M	VERTICAL "	HURIZUNTAL MUMENT	HURIZUNTAL
POSITIVE	NEGATIVE	POSITIVE	NEGATIVE

SUPPORT UN 3 SIVES

VIELU LINE Y ABOVE FLUOR

			BILL FIDTH	B/IN	18	81	
00.00	7.89	4754	221.07 1	9.91 L	6.51 P	8.23 P	112
	13	66	DRT	12	SUPPORT	SUPPORT	18.61
	LINE HEIGH	APACITY	D AT SUPPORT	AT SUPPUR	DIST FRUM	FRUM	EFLECTION
VIELD	VIELD	LUAD C	EAR LOA	SHEAR LUAD	SHEAR AT	SHEARAT DIST	LE MAX D
LUCATION	LUCATIO	ULTIMATE	HORIZ SI	VERT SH		VERT SH	ALLOWABI

SHEAR CAPACITY EXCEEDED

3738.85	41.90	50.67 .1406 66.48 .2242	
LOAD MASS FACTUR Mass concrete unly	FIRST YIELD POINT AT PTZ ELASTIC LIMIT RE PSI ELASTIC DEFLECTIUN XE	SECOND YIELD AT PT 1 ELASTO PLASTIC LIMIT ELASTO-PLASTIC DEFLECTION ULTIMATE RESISTANCE PLASTIC DEFLECTION	

ULTIMATE RESISTANCE RU 66.48 ELASTIC DEFLECTION LIMIT XE .1775 STIFFNESS KE 374.50

-					
NANA	1253.164 5.016 66.47 374.496				
URATI	0.00		100	45	5 5 5 5 5 5
2447	4150	086	7 6	186.514	400
7000	9	2 2	4 10	53.215	107
DESCOOP .	1000	3745	3174	919.9	9
86743	92	86	63	86.617	6.475
66007	57	80	861	53.318	6.475
93454	121	24	.202.	20.019	6.475
60897	8	60	.574	86.720	6.475
.00165	20	72	.968	53,421	8
.53520	014	62	.374	20.122	6.475
.06875	17	9	. 782	.000	6.475
.60231	017	-	.184	.000	6.475
.13586	17	4	.582	.000	6.475
.66941	17	33	.974	.000	6.475
.20297	17	53	.361	.000	9.475
.73652		7	.744	.000	5
.27007	11	70	.121.	.000	6.475
.80363	17	9.5	.493	.000	6.475
.33718	17	85	.860	000.	6.475
.87073	011	76	.225	000.	6.475
.40429	17	99	.579	000.	6.475
.93784	17	57	.931	.000	.475
1.47159	17	47	.277	000.	6.475
56700.	017	38	.619	000.	6.475
2.53850	017	00	.956	.000	6.475
.07205	.017	0	.287	0000	6.475
.60561	017	60	.614	000	.475
.13916	017	0	. 936	0000	6.475
.67271	011	0	. 252	000.	6.475
.20627		8	. 563	000.	6.475
.73982	.017	7	9.870	000	6.475
.27337	.017	20	171	000	6.475
.80693	1	2	0.40	000	0.673
34048	017	57	0.758	000	6.475
.87403	-	33	1.044	000	6.475
.40759	0178	. 5243	1.325	000	ġ.
94114	-0178	7 1	. 60	000	0.473
.47469	0178	2	976.	000	90.4734
	大田 一日			0.000	

96.4754 96.4754 96.4754 66.4754 66.4754 99.4754 66.4754 96.4754 66.4754 192199 96.4754 66.4754 96.4754 96.4754 66.4754 4524.99 96.4754 66.4754 96.4754 96.4754 66.4754 96.4754 66.4754 96.4754 45.4754 56.4754 45.4754 66.4754 96.4754 66.4754 66.4754 96.4754 66.4754 192199 66.4754 96.4754 4514.99 4514.99 66.4754 66.4754 66.4754 56.4754 454.4754 56.4754 66.4754 66.4754 96.4754 56.4754 56.4754 96.4754 66.4754 96.4754 96.4754 1921999 66.4754 000000 00000 00000 00000 00000 00000 00000 000000 0000 00000 0000 00000 00000 00000 00000 0000 00000 00000 00000 00000 00000 000000 0000 00000 00000 00000 0000 00000 00000 00000 0000 0000 00000 00000 00000 000000 000000 000000 000000 00000 0000 000000 000000 0.0000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 2.6546 6.9360 1.8724 .6447 1.8676 0.1713 0.4674 1,3256 1,6015 2.1382 2.3989 2.9052 3.1508 3,3913 4.0824 4.3026 4.7280 4.9330 5.1330 5.3280 6.8547 9.2524 9.8700 0.7585 1.0446 3.6267 3.8571 4.5178 5.5178 5.7027 5.8824 6.5508 0666.9 7.1383 7.2725 .4016 8.0702 8.2525 9.5637 6.3913 6.7053 7.9714 8.1639 8.5565 8.6199 8.6782 8.7314 6.0571 7.5257 7.7587 8.3361 8.4147 8.4881 8.7795 6.2267 .1355 .0974 4389 7627 4104 6007 3915 3820 3725 3630 3535 3440 3345 3250 3156 2966 2776 2672 2397 2302 0879 5622 5527 5243 5053 4958 4863 4768 4673 4199 2207 2112 1733 1638 1258 .1163 1069 5812 5717 5432 5337 5148 4579 2871 2017 1922 1828 1543 .1448 6002 5907 3061 2681 2586 1811 ..0178 -.0178 ..0178 -.0178 -.0178 ..0178 ..0178 -.0178 -.0178 ..0178 -. 017ª -.0178 -.0178 -.0178 -.0178 -.0178 .0178 -.0178 ..0178 -.0178 ..0178 ..0178 -.0178 -.0178 -.0178 -.0178 -.0178 -.0178 -.0178 -.0178 ..0178 -.0178 -.0178 -.0178 -.0178 -.0178 ..0178 ..0178 ..0178 ..0178 ..0178 -.0178 -.0178 ..0178 -.0178 ..0178 ..0178 ..0178 -.0179 .0178 .0178 4.139165 9.216175 9.749728 41.350389 7.340486 7.874039 8.941146 9.474699 0.541806 21.075359 22.142466 22.676020 23.743126 24.276680 25.877340 26.410893 26.944447 27.478000 28.011554 9.076660 9.612214 11.212874 12.813534 3.347088 14.414194 4.947748 16.014855 801815.0 17.615515 8.682622 10.283282 10.816835 11,883942 12.417495 5.206272 5.739825 6.273379 6.806932 8.407592 0.008253 21,608913 23.209573 24.810233 25.343787 28.545107 10.145767 11.746427 13.880641 5.481301 8.149068 18.279981 10.679321 7.081961

		,	1
		ì	/
4	1	-	3
d	-	-	

175	•	8.985	.0025	-	
00.4754	000000	18.9826	.0120	0178	7
175	•	8.974	.0215	-	6.6
175	•	8.962	.0310	011	6.1
99.4724	•	8.944	.0405	-	5.6
175	•	8.921	0670.	017	5.0
99.4724	•	8.893	7650.	017	4.5
175	•	8.860	6890.	-	4.0
175	•	8.825	*0187	017	3.4
96.4754	•	8.779	.0879	017	2.9
175	•	8.731	7460.	017	2.4
175	•	8.678	.1069	017	1.8
175	•	8.619	.1163	011	-
175	•	8.556	.1258	017	9.0
175	•	8.488	.1355	011	0.0
175	•	8.414	.1448	-	9.7
112	•	8.336	.1543	017	9.2
175	•	8.252	.1638	017	8.6
175	•	8.163	.1733	017	6.1
175	•	8.070	.1828	017	7.6
175	•	7.971	.1922	017	7.0
66.4754	•	7.867	.2017	011	5.0
175	•	7.758	.2112	-	0.0
175		779.	.2207	017	5.4
66.4754		. 525	.2302	-	6.7
2		108.	18391	110	

19,852943	18,995192	TION 47.753029	. 252658	18.851540	111 .177506	OCITY F1/8EC 63.6881
NATURAL PEHIUD	MAXIMUM DEFLECTION	TIME TO MAXIMUM DEFLECTION	DURATION/NATURAL PERIOD	LUADZKESISTANCE	ELASTIC DEFLECTION LIMIT	MAX FRAGMENT SPALL VELOCITY FT/SEC 63,688186

MALL COLLAPSES AVERAGE SCAB VELC TY 9.70 MAX SCAB VELUCITY 48.48

Preceding Page BLANK - NOT FILMES

Figure 9. Logic diagram for minimization of $\phi(X)$.

satisfies $F_3 > F_1 > F_2$ or $F_1 > F_3 > F_2$

Figure 10. One-dimensional minimization algorithm.

Figure 11. Shear stress as a function of thickness.

AS constant

Figure 12. Deflection as a function of thickness.

Figure 13. Design space, N=2.

Figure 14. Design space, N=3.

Figure 15. Revised design space, N=3.

Appendix

EXAMPLE PROBLEMS

This Appendix presents several example problems showing the use of optimization. Test Case A-1 is shown in Figures A-1 and A-2. The input estimated 24-inch-thick concrete and 1.58 sq in. of steel per foot with a cost of \$8,199. The final design resulted in a 12-inch-thick concrete section with vertical steel 0.41 sq in./ft and horizontal steel 1.23 sq in./ft costing \$4,958.

Input for Test Cast A-2 is shown in Figure A-3. The preliminary cost was \$3,433; however, the shear capacity of the proposed section was inadequate. The final design was a 23.6-inch-thick concrete section with 0.86 sq in./ft of vertical steel and 0.98 sq in./ft of horizontal steel costing \$3,192, as shown in Figure A-4.

	Door Pr		7980									
-	gninəqO		71727374757677787980	ılse								
S 0 or	bin D I	1	7576	Imp.	1.0			SL Lacing	9.	D'HB (in.)	8	
OPTIONS 0 or 1	A _s or D		73 74	Effective Impulse	-	L R	1 1	SL I		D'HE		
0	*1 10 q		71 72	Ef		FR	1 0					
	mumitqO	-	70	kft)		ea.		gı		()		
			60 61	Altitude (kft)		Vent Area		BL Lacing	.9	D'HT (in.)	3	
			51 60	T _{amb} (°C)		Cell Vol		t Sand	4.	D'VB (in.)	2	
		41 50	P _{amb} (psia)		I (ft)/t _o (ms)*	3	N Side	3.	D'VT (in.)	2		
		se, Example A-1	Test Case, Example A-1	31 40	Case/Explo		h (ft)/P _O (psi)*	9	Theta (deg)	12.	A _S HB (in. ² /ft)	1.58
		Test Ca	21 30	1/d Ratio		L (ft)	12	T _c (in.)	24	A _S HT (in. ² /ft)	1.58	
			11 20	Expl No.	1	H (ft)	32	F _{dy} (psi)	48000.	A _S VB (in. ² /ft)	1.58	
		Heading	1 10	W (1b)	210	R_a (ft)/I (psi-ms)*	3	F _{dc} (psi)	5000.	A _S VT (in. ² /ft)	1.58	

Figure A-1. Input for Test Case A-1.

54

CARD

Figure A-2. Results for Test Case A-1.

	MEIGHT	
	E S	• 00
4	ME LGH	20.00
	V F G F C C C C C C C C C C C C C C C C C	1 AMB(C)=
E 4 4	PLUS 1	. 5/0 TA
	m 5 G	
n a	PRUPERTIES METORR KCAL/G	1 1.0000764 16(PSIA) = 14.69
-		
» -	EXPLOSIVE NUMBER E	PAMB(PSIA)
- Z	S S	4

SHUCK MAVE CALCULATION

CHARGE WEIGHT ADJUSTMENTS ADJUSTED WITLE TNT) R 210.0 HE ENERGY FACTUR R 1.000 CASE WEIGHT FACTOR R 1.000 PRESSURE SCALE FACTORR 1.000 DISTANCE SCALE FACTORR 1.000 DISTANCE SCALE FACTORR 1.000 IIME SCALE FACTOR R 1.000		## ## ## ## ## ## ## ## ## ## ## ## ##
THOUSE THE STANDARD TO STANDARD SOLUTION STANDAR		2000 2000
210.0 1 0. 14.69 20.00	3.000	1
FERS (CLB) HBER T RATIO H H FURE (PSIA) H H H	ANCE(FT) H	SHUCK AFTER CONSECTION SECTION
INPUT PARAMETERS CHARGE WEIGHT(LB EXPLOSIVE NUMBER L/O RATIO CASE/CHARGE WT R CHAMBER TEMP(C) ALTITUDE (KFT)	DESIRED DISTANCE(FI	TIME AFTER (MSEC)

IMPULSE (PSI, MSEC) --

-	0	-	M	-	.90	449.3	. 68	• 0
45.	69	. 70	. 56	28.	9.1	43.49	8.5	• 0
125	187	250	312	375	437	.5000	562	2
255	315	77	077	502	565	.6276	9	52

IMPULSE (PSI.MSEC) -INCIDENT # 295.2
REFLECTED# 3015

.....CAUTIUN--CONTACT SURFACE HAS ARRIVED.
DATA ARE CRUDE BEYOND 1(MSEC) AFTER SHOCK ARRIVALE 14.5548E-03

(

3.00	210.00	32.00	12.00	00.9	3.00	1 0 1 1
FT.	LBS.	۴٦.	F1.	FT.	FT.	
DISTANCE UF CHANGE FROM BLAST MALL	CHARGE MEIGHT	BLAST MALL HEIGHT	BLAST WALL LENGTH	HEIGHT OF CHARGE ABOVE GROUND	MIN. DIST. BETWEEN CHARGE + ADJ. MALL	REFLECTION CUDE

THE WEFLECTED IMPULSE (PSI-MSEC) AT EACH GRID POINT ON THE BLAST WALL IS... (MACH REFLECTIONS NOT INCLUDED)

739.6	821.2	921.9	1008	1124	1254	1454	1747	1577	1748	2334
715.5	787.1	874.7	972.3	1075	1201	1367	1296	1419	1527	1606
686.1	756.3	840.1	941.1	1002	1121	1268.	1436	1380	1487	1587
674.0	738.3	817.2	883.5	983.0	1128	1331	1500	1772	2130	1852
665.2	717.3	1.611	957.9	924.6	1099	1296	1548	1922	2631	3948
J= 17	J= 16	J= 15	J= 14	J= 13	Js 12	Ja 11	Je 10	• =5	6 97	7 = 1

	•	1	,	
	1	_	_	
	1		1	1
	1			
/				

-	7 17	957.9	883.5	941.1	972.3	1008
J# 13	13	924.6	983.0	1062	1075	1124
5	Je 12	1099	1128	1121	1201	1254
•	=	1296	1331	126A.	1387	1454
•	01	1548	1500	1456	1296	1747
-	•	1922	1772	1380	1419	1577
-	6 0	2631	2130	1487	1527	1748
•	-	3948	1852	1587	1606	2334
-	•	6701	5056	1664	1663	8672
-	S	1.18376+04	2160	1718	1707	2543
5	7	5780	2270	1805	1794	2592
5	•	1.21506+04	2484	2031	1663	2773
-	~	7463	2817	5455	2310	2963
5	-	7263	5214	4902	2780	3745
		1 1	~	•	3	\$
1	TAI	TOTAL TMPULSE 1738-06				

717.3 738.3 756.3 787.1 821.2

921.9

874.7

840.1

817.2

7.611

Ja 15

J# 16

TOTAL IMPULSE 1738.06

1885.68 PSI-MS

TUTAL IMPULSE

DURATION OF LOAD 15.99917 MSEC

FICTITIOUS PEAK PRESSURE 235.72224 PSI

		2.0000 3.0000 3.0000		1148.51 LBS/IN WIUTH 7038.09 LBS/IN WIUTH
144.00	\$000.00 48000.00 12.2751 48.0000 12.0000	.4172 COVER 2.11.2316 COVER 3.1.2316	3644146 154.15 31.33 92.73 .0072 347585935	117.49 PSI 720.00 PSI 13809.47 13809.47 13809.47 30913.33
HEIGHT 384.00 LENGTH	DYNAMIC CUNCRETE STRENGTH DYNAMIC STEEL STRESS THICKNESS CUNCRETE INCHES THICKNESS UF SAND INCHES THETA ALLOWABLE DEGREES	AREA VERT TOP STEEL/FT AREA VERT BOT STEEL/FT AREA HURIZ TOP STEEL/FT AREA HURIZ BOT STEEL/FT	CONCRETE MODULUS PSI RATIO MOD STEEL/CONCRETE GRUSS MOMENT INERTIA AVE CRACKED MOM INERTIA AVERAGE PERCENT STEEL D FACTOR MUBIS	ALLOW SHEAR UNREINFURCED WEB ALLOW SHEAR AT SUPPORT UNREINFURCED CONC TE THETA POSITIVE VERTICAL MOMENT NEGATIVE VERTICAL MOMENT POSITIVE HURIZUNTAL MUMENT NEGATIVE HURIZUNTAL MUMENT

72.00

LOCATION YIELD LINE LENGTH LOCATION YIELD LINE HEIGHT

TIELD LINE Y ABOVE FLOOR

SUPPURT DN 3 SIDES

30913.33 13809.47 HURIZUNTAL MUMENT HURIZONTAL MUMENT VERTICAL MOMENT VERTICAL MOMENT PUSITIVE PUSITIVE NEGATIVE

SUPPORT ON 3 SIDES

ABOVE FLOUR > TIELD LINE

FIDIE HIDIM LB/11N LB/11N PSI PSI 1150.83 98.65 1794.37 72.00 26.6405 14.8885 HORIZ SHEAR AT DIST FRUM SUPPURT VENT SHEARAT DIST FROM SUPPORT HURIZ SHEAR LOAD AT SUPPURT VERT SHEAR LUAD AT SUPPORT LOCATION YIELD LINE LENGTH LOCATION YIELD LINE HEIGHT ULTIMATE LUAD CAPACITY RU ALLUMABLE MAX DEFLECTION

SHEAR CAPACITY EXCEEDED

•	00.9	0	9.28	9. 7	7.4	0.00	•	3.00
1	HIO	NGTH	EIGHT		TRESS		G RE	Z
•	3	G LE	I		S	88	AC	AC
100	=	=	ERTIC/	-		STR	33	1SER
	-	ŝ	>	w	S	1	4	ž
	2 4 5	BAK	BAR	S	X	STE	RE	BAR

1946.17 MASS CONCRETE UNLY LUAD MASS FACTUR

.7057

13,15 FIRSA VIELD POINT AT PTS ELASTIC LIMIT RE PSI

36.64 16.28 ELASTO-PLASTIC DEFLECTION SECOND YIELD AT PT 2 ELASTO PLASTIC LIMIT ULTIMATE RESISTANCE PLASTIC DEFLECTION

.1675

.3493

.2893 92.07 56.64 × ELASTIC DEFLECTION LIMIT ULTIMATE RESISTANCE HU STIFFNESS KE

.1124	
XE	~
DEFLECTION	SECOND VIELO AT PT
ELASTIC	SECTIND

	I-PLASTIC DEFLECTION .1675		PLASTIC DEFLECTION .3493	
ELASTO PLAS	ELASTO-PLAS	ULTIMATE RE	PLASTIC DEFI	

26.64	. 289	92.07
	×	
2	-	
TANCE	ELASTIC DEFLECTION	
RESIS	FLEC	¥
ATE A	10 08	NESS
111	LAST	116

43.840488	1885.6	317,30	.0731	11721		
L PERIUD	LSE CAPACITY ONE WALL	SCALLED IMPULSE CAPACITY	CAL	CAL	TUTAL COST 4957.63	COUNT 1030.00

OPTIONS 0 or 1

Figure A-3. Input for Test Case A-2.

Preceding Page BLANK - NOT FILMED

Figure A-4. Results of Test Case A-2.

144.00

LENGTH

180.00

HE I GHT

DYNAMIC CUNCRETE STRENGTH DYNAMIC STEEL STRESS THICKNESS CONCRETE INCHES THICKNESS OF SAND INCHES THETA ALLOWABLE DEGREES	28000 28000 28000 20000 20000		
AREA VERT TOP STEEL/FT AREA VERT BOT STEEL/FT AREA HORIZ TOP STEEL/FT AREA HORIZ BOT STEEL/FT	.8631 .8631 .9768	CCCC CCC CCC CCC CCC CCC CCC CCC CCC C	00000
CONCRETE MODULUS PSI RATIU MOD STEEL/CONCRETE GRUSS MOMENT INERTIA AVE CRACKED MOM INERTIA AVE MOMENT INERTIA AVERAGE PERCENT STEEL D FACTUR MURI/6 D FACTUR MURI/6	3646 1092.62 211.43 652.03 6036	3644146 96 62 43 03 2444021713 2611074626	
ALLOW SHEAR UNREINFORCED WEB	109.69 PSI	I Sa	2367.15 LBS/IN WIDTH

15537.86 LBS/IN WIDTH D S THETA LE 2 DEG ALLOW SHEAR AT SUPPORT UNREINFORCED CONCRETE

67596.85 POSITIVE VERTICAL MOMENT NEGATIVE VERTICAL MOMENT POSITIVE HORIZONTAL MOMENT NEGATIVE HORIZONTAL MOMENT

76500,64

76500.64

16500.64 67596.85 67596.85 VERTICAL MUMENT POSITIVE

76500.64 POSITIVE VERTICAL MOMENT POSITIVE HORIZONTAL MOMENT NEGATIVE HORIZONTAL MOMENT NEGATIVE

2 SIDES SUPPORT ON ABOVE FLOUR > VIELD LINE

FIOTH LEVIN FIDTE LB/IN PSI 2820.29 2663.65 109.69 102,55 144.00 29,1558 5.0329 HORIZ SHEAR AT DIST FRUM SUPPURT VERT SHEARAT DIST FROM SUPPORT HURIZ SHEAR LOAD AT SUPPORT LOCATION YIELD LINE LENGTH LOCATION YIELD LINE HEIGHT ULTIMATE LOAD CAPACITY RU VERT SHEAR LUAD AT SUPPORT ALLOWABLE MAX DEFLECTION

MASS CUNCRETE UNLY LOAD MASS FACTUR

.5958 3156.54

FIRST YIELD POINT AT PTZ

ELASTIC LIMIT RE PSI ELASTIC DEFLECTION XE ULTIMATE RESISTANCE PLASTIC DEFLECTION

11.56

.3563

29.16

.3037 29.16 ELASTIC DEFLECTION LIMIT ULTIMATE RESISTANCE RU ¥ STIFFNESS

0.00 29,156 0000 200.000 10,000 GAS PRESSURE RESISTANCE STIFFNESS DURATION DURATION LOAD

3156,536 MASS

Figure A-4. Continued

RESISTANCE	247	454	40		9.565	0.353	4.889	0.107	0 70	1 1 1	1133	9.155	9.155	9.155	9.155	9.155	155	1	2010	4.155	4.155	9.155	9.155	9.155	155	155	661.	9.155	9,155	9.155	9.155	9,155	9.155	9,155	9.155	9.155	9.155	9.155	9.155	9.155	9.155	0.155		011	9.155	9.155	9,155	9.155	29,1558	9.155	CONTROL OF SOMEON AND ASSESSMENT OF SOMEON ASSESSME
LUAD	95.958	87.875	70 702		11.110	63.627	55.544	47.461	40. 378	100 12	31.670	23.215	5.130	07.047	796.86	0.882	2.799	7 . 6	0110	0.033	8.550	0.468	2.385	4.302	6.219	1 2	200	550.0	. 47.	0000	000.	.000	000.	0000	000.	000	000	000	000	000	000	000			000	000	000	000	000000	.000	A CONTRACTOR OF STREET
DISPLACEMENT	~		, 1	:	0	7	5	6	270	7 2 2	0	9	3	505	00	738	A 20	100	3		.117	.217	.317	418	0	100		191	.820	.917	.014	.108	.202	.293	.383	472	.559	645	729	812	893	072		000	.127	.202	.276	.348	. 41	487	SETAM DE
VELOCITY	~	17	1	0	85	02	21	18	1540	1 1	6	8	6	02	-	0	10		3	2	7	9	0	250	2 4	2 0	1	4	7 7	07	37	33	59	25	22	18	14	=	07	0 3	0	0	0 0	7	89	18	-	17	.1736	0	and adversariable of the teleforments
ACCELERATION	~	20	V	1	2	100	77	07	35	12	200	2	27	77	22	19	-			= 5	60	90	70	001	000	000		0 9	9	0	0	60	600	60	600	600	600	600	600	600	600	000	0	5	2000	0	600	600	00	000	The second control of
TIME	0207	0621	01035			.81865	.22277	.62691	.03105	4 3510		.03433	.24347	.64761	.05175	.45589	.86004	24418	6494	35000	017/0.	.47660	.88074	.28488	.68902	.09316	10770	2000	*****	0.30558	0.70972	1,11386	1.51800	1.92214	2.32629	2.73043	3.134	3.53871	3.94285	66975 7	4.75113	5.15527	S S S S S S S S S S S S S S S S S S S		5.46355	6.36769	183	7.175	17.580119		THE RESIDENCE OF THE PARTY OF THE PROPERTY OF THE PARTY O

2

- COS

				-		4000	
	1.53871	0	=	645	000	.155	
	.94285	0	07	729	000	1155	
	. 34699	0	03	812	000	. 155	
	.75113	0		893	000	.155	
	115527	600	9	972	000	.155	
	.55941	600	92	020	000	155	
	. 96355	600	88	127	000	.155	
	\$ 36769	0		202	000	4010	
	20177	000	= !	2		1000	
	14671	000		240		661.	
	11000	000	173	100		155	
	C 2 4 0 4 6 7		100			155	
	7000	, 0	ŏ.	0 0		25.1	
	19668		100	686	000	155	
	60082	000	7 7 7 7	748	000	155	
	96700	600	5.0	910	000	155	
	016070	600	147	870	000	1.155	
	.81324	600	143	926	000	1,155	
	1.21738	.009	140	985	000	.155	
	1.62152	•	136	041	000	1.155	
	.02566	· 000	132	960	000	1.155	
	42980	600	128	147	000	115	
	.83394	000	125	198	000	155	
	5.23808	500	121	247	000	1.155	
	3.64222	500	117	295	000	1.155	
	1.04636	500	113	346	000	155	
	4.4509	000	10	507		661.	
	V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5	106	4 50		7.155	
	1007	5	102	1		. 153	
	2,00673	_ ;	600	316			
	70,000	-	560	200		1010	
	9.4/161		7	900		1010	
	27040		6	, 0 k		151	
	A 2 4 4		0 0	100			
	0.07777		9 6	7.2	000	9 1 5	
	8.49191	. 5		75	000	9.155	
	9.89605	0	5	.781	000	9.15	
	9.30019	~	5	.806	000	9.159	
	9.70433	0	5	83	00	9.155	
	0.10847	0	5	.857	0	9.159	
	0.31600	5	2	200	•	61.0	
	10002	5	Š				
	103601	5	3				
	2.12916	5 0	3 %	. 0		91.0	
	2.5333	0	7 %	96	00	9.15	
	2,93746	ò	7	981	000	9.15	
	3.3416	0	2	66.	00.	9.15	
	3.74574	0	2	.00	00	9.15	
	4.1496	0	~	0	00	9.15	
	34.554026	- 0005	.0168	5.0192	0000	29.1558	
Contract Contract of the	4.950	0		20	000		

				_
			-	7
			4	
		1	c	7
		•	٠.	1
			ø	
	4	,		
i	ı	•		-

30.108479	0092	0.879	4.8572	0.0000	29.155
30.512620	0095	.0542	4.8795	000000	29.155
30.916760	0092	7050	1006 7	0.0000	29.155
31,320901	0092	1980	4.9195	0.0000	29.155
31.725042	2600	.0430	4.9373	0.0000	29.155
32.129182	2600.	.0392	4.9535	0.0000	29,155
32.533323	0092	.0355	4.9682	0.0000	29.155
32.937464	2600.	.0318	4.9815	000000	29,155
33.341604	2600.	.0280	4.9932	0.0000	29.155
33.745745	2600.	.0243	5.0034	0.000	29,155
34.149886	0092	.0206	5.0121	000000	29.155
34.554026	0092	.0168	5.0192	0.0000	29.155
34,958167	2.000-	.0131	5.0249	000000	29.155
35.362307	2.000-	7600	5.0291	000000	29.155
35.766448	2600.	•0020	5.0318	000000	29.155
36.170589	2600.	.0019	5.0329	000000	29.155
36.574729	₹600.	0018	5.0325	0.0000	29.155

36.030769	5.032911	36.372659	.277541	6.859708	.303740	IY FT/SEC 20.8609
NATURAL PERIOD	MAXIMUM DEFLECTION	TIME TO MAXIMUM DEFLECTION	DURATION/NATURAL PERIOD	LOAD/RESISTANCE	ELASTIC DEFLECTION LIMIT	MAX FRAGMENT SPALL VELOCITY TOTAL COST 3192.18 COUNT 805.00

DISTRIBUTION LIST

AFB CESCH, Wright-Patterson; SAMSO/DEB, Norton AFB CA; Stinfo Library, Offutt NE

ARMY AMSEL-GG-TD, Fort Monmouth NJ; BMDSC-RE (H. McClellan) Huntsville AL; DAEN-MCE-D Washington DC; Tech. Ref. Div., Fort Huachuca, AZ

ARMY BALLISTIC RSCH LABS AMXBR-XA-LB, Aberdeen Proving Ground MD

ARMY COASTAL ENGR RSCH CEN R. Jachowski, Fort Belvoir VA

ARMY CONSTR ENGR RSCH LAB Library, Champaign IL

ARMY CORPS OF ENGINEERS MRD-Eng. Div., Omaha NE; Seattle Dist. Library, Seattle WA

ARMY ENG DIV ED-CS (S.Bolin) Huntsville, AL; HNDED-CS, Huntsville AL

ARMY ENG WATERWAYS EXP STA Library, Vicksburg MS

ARMY MATERIALS & MECHANICS RESEARCH CENTER Dr. Lenoe, Watertown MA

ARMY MISSILE R&D CMD Redstone Arsenal AL Sci. Info. Cen (Documents)

ARMY MOBIL EQUIP R&D COM Mr. Cevasco, Fort Belvoir MD

ARMY-PLASTEC Picatinny Arsenal (A M Anzalone, SMUPA-FR-M-D) Dover NJ

ASST SECRETARY OF THE NAVY Spec. Assist Energy (P. Waterman), Washington DC

CINCLANT Civil Engr. Supp. Plans. Ofr Norfolk, VA

CNM NMAT 08T246 (Dieterle) Wash, DC

CNO Code NOP-964, Washington DC

DEFENSE CIVIL PREPAREDNESS AGENCY J.O. Buchanan, Washington DC

DEFENSE DOCUMENTATION CTR Alexandria, VA

DEFENSE INTELLIGENCE AGENCY Dir., Washington DC

DOD Explosives Safety Board (Library), Washington DC

ENERGY R&D ADMIN. Dr. Cohen

LANTNAVFACENGCOMCONTRACTS Roice, Keflavik

MARINE CORPS AIR STA Facil. Engr. Div. Cherry Point NC

MARINE CORPS BASE M & R Division, Camp Lejeune NC; PWO, Camp S. D. Butler, Kawasaki Japan

MARINE CORPS HQS Code LFF-2, Washington DC

MCAS Code PWE, Kaneohe Bay HI; PWD, Dir. Maint. Control Div., Iwakuni Japan; PWO Kaneohe Bay HI

MCDEC AROICC Ches Div. NAVFAC Contracts, Quantico VA

MCRD PWO, San Diego Ca

MCSC B520, Barstow CA

NAD Code 011B-1, Hawthorne NV; Engr. Dir. Hawthorne, NV

NAF PWO Sigonella Sicily

NAS CO, Guantanamo Bay Cuba; Code 114, Alameda CA; Code 183 (Fac. Plan BR MGR); Code 18700, Brunswick ME; Dir. Util. Div., Bermuda; PW (J. Maguire), Corpus Christi TX; PWO (M. Elliott), Los Alamitos CA; PWO Belle Chasse, LA; PWO Chase Field Beeville, TX; PWO Key West FL; PWO Whiting Fld, Milton FL; PWO, Dallas TX; PWO, Glenview IL; PWO, Kingsville TX; PWO, Miramar, San Diego CA; SCE Lant Fleet Norfolk, VA; SCE Norfolk, VA; SCE, Barbers Point HI

NATL RESEARCH COUNCIL Naval Studies Board, Washington DC

NAVACT PWO, London UK

NAVAEROSPREGMEDCEN SCE, Pensacola FL

NAVAIRPAC CE, NI, San Diego CA

NAVAIRPROPTESTCEN PWO, Trenton NJ

NAVAL FACILITY PWO, Barbados; PWO, Brawdy Wales UK

NAVCOASTSYSLAB CO, Panama City FL; Library Panama City, FL

NAVCOMMAREAMSTRSTA SCE Unit 1 Naples Italy

NAVCOMMSTA Code 401 Nea Makri, Greece; PWO Kenitra Morocco; PWO, Adak AK

NAVCONSTRACEN CO (CDR C.L. Neugent), Port Hueneme, CA

NAVFACENGCOM Code 043 Alexandria, VA; Code 044 Alexandria, VA; Code 0451 Alexandria, VA; Code 0453 (D. Potter) Alexandria, VA; Code 0454B Alexandria, Va; Code 04B5 Alexandria, VA; Code 1023 (T. Stevens); PL-2 Ponce P.R. Alexandria, VA

NAVFACENGCOM - CHES DIV. Code 101 Wash, DC; Code 402 (R. Morony) Wash, DC; Code FPO-1 (C. Bodey) Wash, DC; Code FPO-1 (Ottsen) Wash, DC; Code FPO-1SP (Dr. Lewis) Wash, DC; Code FPO-1SP13 (T F Sullivan) Wash, DC; Code FPO-IP12 (Mr. Scola), Washington DC

NAVFACENGCOM - LANT DIV. RDT&ELO 09P2, Norfolk VA

NAVFACENGCOM - NORTH DIV. Code 1028, RDT&ELO, Philadelphia PA; Design Div. (R. Masino), Philadelphia

PA; ROICC, Contracts, Crane IN

NAVFACENGCOM - PAC DIV. Code 402, RDT&E, Pearl Harbor HI

NAVFACENGCOM - SOUTH DIV. Code 90, RDT&ELO, Charleston SC; Dir., New Orleans LA

NAVFACENGCOM - WEST DIV. 408, San Bruno CA; AROICC, Point Mugu CA; Code 04B; Codes 09PA

NAVFACENGCOM CONTRACT Bethesda, Design Div. (R. Lowe) Alexandria VA; Eng Div dir, Southwest Pac, Manila, PI; OICC/ROICC, Balboa Canal Zone; ROICC LANT DIV., Norfolk VA; ROICC, Pacific, San Bruno CA; TRIDENT (CDR J.R. Jacobsen), Bremerton WA 98310

NAVMARCORESTRANCEN ORU 1118 (Cdr D.R. Lawson), Denver CO

NAVMIRO OIC, Philadelphia PA

NAVOCEANSYSCEN Code 6565 (Tech. Lib.), San Diego CA

NAVORDSTA PWO, Louisville KY

NAVPHIBASE CO, ACB 2 Norfolk, VA; UCT I (MacDougal) Norfolk, VA

NAVREGMEDCEN SCE (LCDR B. E. Thurston), San Diego CA

NAVSCOLCECOFF C44A (R. Chittenden), Port Hueneme CA; CO, Code C44A Port Hueneme, CA

NAVSEC Code 6034 (Library), Washington DC

NAVSECGRUACT PWO, Torri Sta, Okinawa

NAVSHIPREPFAC Library, Guam

NAVSHIPYD Code 202.4, Long Beach CA; Code 400, Puget Sound; Code 410, Mare Is., Vallejo CA; Code 440
Portsmouth NH; Code 440, Norfolk; Code 440.4, Charleston SC; Library, Portsmouth NH; PWD (LT N.B. Hall),
Long Beach CA; PWO Portsmouth, NH; PWO, Mare Is.

NAVSTA CO Naval Station, Mayport FL; CO Roosevelt Roads P.R.; Engr. Dir., Rota Spain; Maint. Div. Dir/Code 531, Rodman Canal Zone; PWD/Engr. Div, Puerto Rico; PWO, Keflavik Iceland; PWO, Mayport FL; PWO, Puerto Rico; SCE, Guam; SCE, Subic Bay, R.P.; Utilities Engr Off. (LTJG A.S. Ritchie), Rota Spain

NAVSUPPACT AROICC (LT R.G. Hocker), Naples Italy; CO, Seattle WA; Engr. Div. (F. Mollica), Naples Italy

NAVSUPSYSCOM Code NSUP-0323, Washington Dc

NAVSURFWPNCEN PWO, White Oak, Silver Spring, MD

NAVTECHTRACEN SCE, Pensacola FL

NAVTRAEQUIPCEN Technical Library, Orlando FL

NAVWPNCEN PWO (Code 70), China Lake CA; ROICC (Code 702), China Lake CA

NAVWPNENGSUPPACT Code ESA-1163, Washington DC

NAVWPNSTA ENS G.A. Lowry, Fallbrook CA; PW Office (Code 09C1) Yorktown, VA; PWO Yorktown, VA

NAVWPNSUPPCEN Code 09 (Boennighausen) Crane IN

PMTC Code 4253-3, Point Mugu CA

NAVEDTRAPRODEVCEN Tech. Library

NAVFACENGCOM - LANT DIV. Eur. BR Deputy Dir, Naples Italy

NAVSUBASE LTJG D.W. Peck, Groton, CT

NCBC CEL (CAPT N. W. Petersen), Port Hueneme, CA; CEL AOIC Port Hueneme CA; Code 10 Davisviffe, Rf; PW Engrg, Gulfport MS; PWO (Code 80) Port Hueneme, CA

NCR 20 Code R31; 20. Commander

NMCB 5, Operations Dept.; THREE, Operations Off.

NRL Code 8400 (J. Walsh), Washington DC; Code 8441 (R.A. Skop), Washington DC

NSC Code 54.1 (Wynne), Norfolk VA

NTC Commander Orlando, FL

NUSC Code EA123 (R.S. Munn), New London CT; Code TA131 (G. De la Cruz), New London CT

ONR Code 700F Arlington VA; Dr. A. Laufer, Pasadena CA

PMTC Pat. Counsel, Point Mugu CA

PWC ACE Office (LTJG St. Germain) Norfolk VA; CO, Great Lakes IL; Code 120, Oakland CA; Code 120C (A. Adams) San Diego, CA; Code 120C (Library) San Diego, CA; Code 200, Great Lakes IL; Code 220.1, Norfolk VA; Code 30C (Boettcher) San Diego, CA; OIC CBU-405, San Diego CA; XO Oakland, CA

USAF SCHOOL OF AEROSPACE MEDICINE Hyperbaric Medicine Div. Brooks AFB, TX

USCG (G-ECV/61) (Burkhart) Washington, DC; G-EOE-4/61 (T. Dowd), Washington DC; MMT-4, Washington DC

USCG R&D CENTER Tech. Dir. Groton, CT

USNA Ch. Mech. Engr. Dept Annapolis MD; PWD Engr. Div. (C. Bradford) Annapolis MD; PWO Annapolis MD

LEHIGH UNIVERSITY Bethlehem PA (Fritz Engr. Lab No. 13, Beedle)

LIBRARY OF CONGRESS WASHINGTON, DC (SCIENCES & TECH DIV)

MASSACHUSETTS INST. OF TECHNOLOGY Cambridge MA (Rm 10-500, Tech. Reports, Engr. Lib.); Cambridge MA (Rm 14 E210, Tech. Report Lib.); Cambridge MA (Whitman)

SOUTHWEST RSCH INST R. DeHart, San Antonio TX

U.S. MERCHANT MARINE ACADEMY KINGS POINT, NY (REPRINT CUSTODIAN)

UNIVERSITY OF ILLINOIS URBANA, IL (LIBRARY)
UNIVERSITY OF TEXAS Inst. Marine Sci (Library), Port Aransas TX
CONCRETE TECHNOLOGY CORP. TACOMA, WA (ANDERSON)
NEWPORT NEWS SHIPBLDG & DRYDOCK CO. Newport News VA (Tech. Lib.)
NORWAY Norwegian Tech Univ (Brandtzaeg), Trondheim
PACIFIC MARINE TECHNOLOGY LONG BEACH, CA (WAGNER)