Security and Privacy, Blatt 3

Franziska Hutter (3295896) Felix Truger (3331705) Felix Bühler (2973410)

12. Juni 2018

Problem 1: Sum of negligible functions

Definition: v is negligible $\Longrightarrow \exists N \in \mathbb{N}$ such that $\forall n > N$ and for all positive polynomials p: $v(n) < \frac{1}{n(n)}$

v and v' negligible: $\exists N_1, N_2 \in \mathbb{N}$, such that:

$$\forall n > N_1 : v(n) < \frac{1}{p(n)}$$

$$\forall n > N_2 : v'(n) < \frac{1}{p(n)}$$

(by Definition)

Let w(n) = v(n) + v'(n): For w to be negligible, we need an $N_3 \in \mathbb{N}$, such that $\forall n > N_3 : w(n) < \frac{1}{p(n)}$. We conclude from the above, that $\forall n > (N_1 + N_2) : v(n) + v'(n) < \frac{1}{p(n)} + \frac{1}{p(n)}$, Thus $N_3 = N_1 + N_2 \implies \forall n > N_3 : w(n) < \frac{2}{p(n)}$.

Since we're looking at the inverses of *all* positive polynomials, we can easily generate $\frac{1}{p(n)}$ from $\frac{2}{p(n)}$ by multiplying p(n) by 2, which makes just another polynomial 2p(n), at which we are looking anyways. This means, that also $\forall n > N_3 : w(n) < \frac{1}{p(n)}$ holds.

Problem 2: Deterministic verifier in IPS

 $L \in \mathcal{IP} \implies L$ has an interactive proof

V deterministic $\implies V$ does not use any randomness. Thus the output of V for a given input (under same conditions) is always the same. That means, that one can think of a prover P' that just replays the messages between P and V. By definition there are only polynomially many messages. A deterministic P' can be constructed to convince V.

Witnesses:

 $x \in L...$

 $x \notin L...$

Problem 3: Anonymous credentials and IPS

Problem 4: Equivalent definition of computational ZK

Problem 5: Reducing the error probability 1 \bigstar