Практическая электроника

Просто о сложном

TL431 схема включения, TL431 цоколевка

TL431 одна из самых массово выпускаемых интегральных микросхем, с начала своего выпуска в 1978 году TL431 устанавливалась в большинство блоков питания компьютеров, ноутбуков, телевизоров, видео-аудио техники и другой бытовой электроники.

TL431 является прецизионным программируемым источником опорного напряжения. Такая популярность обусловлена низкой стоимостью, высокой точностью и универсальностью.

Принцип работы TL431 легко понять по структурной схеме: если напряжение на входе источника ниже опорного напряжения Vref, то и на выходе операционного усилителя низкое напряжение соответственно транзистор закрыт и ток от катода к аноду не протекает (точнее он не превышает 1 мА). Если входное напряжение станет превышать Vref, то операционный усилитель откроет транзистор и от катода к аноду начнет протекать ток.

Самый простейший тип стабилизатора – параметрический, можно легко построить на TL431: для задания напряжения стабилизации понадобятся два резистора R1 и R2, напряжение на которое будет 'запрограммирована' TL431 можно определить по формуле:

Uвыx=Vref(1 + R1/R2).

Получается чем больше соотношение R1 к R2, тем больше выходное напряжение. Микросхема фактически стабилизирует напряжение на своем входе на уровне 2,5 В. Задавшись значением сопротивления R2 и требуемое выходное напряжение, рассчитать R1 можно по формуле:

R1=R2(Uвых/Vref – 1).

В данной схеме R3 рассчитывается точно также, как если бы использовался обычный стабилитрон, т.е. зависит от выходного напряжения, диапазона входного напряжения и диапазона токов нагрузки. Но есть и существенное отличие: в этой схеме на выход не стоит устанавливать конденсатор, так как этот конденсатор может вызвать генерацию паразитных колебаний. В схеме с обычным стабилитроном таких проблем не возникает.

TL431 цоколевка

TL431 выпускается в большом количестве разных корпусов, от древних TO-92 до современных SOT-23.

Также у TL431 имеется отечественный аналог: KP142EH19A.

Основные технические характеристики TL431:

- напряжение анод-катод: 2,5...36 вольт;
- ток анод-катод: 1...100 мА (если нужна стабильная работа, то не стоит допускать ток менее 5мА);

Точность опорного источника напряжения TL431 зависит от 6-той буквы в обозначении:

- без буквы 2%;
- буква А 1%;
- буква В 0,5%.

Видно, что TL431 может работать в широком диапазоне напряжений, но вот токовые способности не так велики всего 100 мА, да и мощность рассеиваемая такими корпусами не превышает сотен мили Ватт. Для получения более серьезных токов интегральный стабилитрон стоит использовать как источник опорного напряжения, регулирующую функцию доверив мощным транзисторам.

компенсационный стабилизатор напряжения

Принцип компенсационного стабилизатора на TL431 такой же как и на обычном стабилитроне: разность напряжений между входом и выходом компенсирует мощный биполярный транзистор. Но точность стабилизации получается выше, за счет того что обратная связь берется с выхода стабилизатора. Резистор R1 нужно рассчитывать на минимальный ток 5 мА, R2 и R3 рассчитываются, также как для параметрического стабилизатора.

Чтобы стабилизировать токи на уровне единиц и десятков Ампер одним транзистором в компенсационном стабилизаторе не обойтись, нужен промежуточный усилительный каскад. Оба транзистора работают по схеме с эмиттерного повторителя, т.е. происходит усиление тока, а напряжение не усиливается.

На рисунке представлена реальная схема компенсационного стабилизатора на TL431, в ней появились новые компоненты: резистор R2 ограничивающий ток базы VT1 (например 330 Ом), резистор R3 – компенсирующий обратный ток коллектора VT2 (что особенно актуально при нагреве VT2) (например 4,7 кОм) и конденсатор C1 – повышающий устойчивость работы стабилизатора на высоких частотах (например 0,01 мкФ).

Стабилизатор тока на TL431

Следующая схема представляет собой термостабильный стабилизатор тока. Резистор R2 является своеобразным шунтом на котором с помощью обратной связи поддерживается напряжения 2,5 В. Таким образом если пренебречь током базы по сравнению с током коллектора, то получим ток на нагрузке Iн=2,5/R2. Если значение подставлять в Омах, то ток будет в Амперах, если подставлять в кило Омах, то ток будет в мили Амперах.

Реле времени

ТL431 нашел свое применение не только как источник опорного напряжения, а и во многих других применениях. Например благодаря тому что входной ток TL431 составляет 2-4мкА, то на основе этой микросхемы можно построить реле времени: при размыкании контакта S1 C1 начинает медленно заряжаться через R1, а когда напряжение на входе TL431 достигнет 2,5 В выходной транзистор DA1 откроется и через светодиод оптопары PC817 начнет протекать ток, соответственно откроется и фототранзистор и замкнет внешнюю цепь.

В этой схеме резистор R2 ограничивает ток через оптрон и стабилизатор (например 680 Ом), R3 нужен чтобы предупредить зажигание светодиода от тока собственных нужд TL431 (например 2 кОм).

Простое зарядное устройство для литиевого аккумулятора.

Главное отличие зарядного устройства от блока питания – четкое ограничение зарядного тока. Следующая схема имеет два режима ограничения:

- по току;
- по напряжению;

Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается.

На следующей схеме ограничение тока осуществляют транзисторы VT1, VT2 и резисторы R1-R3. Резистор R1 выполняет функцию шунта, когда напряжение на нем превышает 0,6 В (порог открывания VT1), транзистор VT1 открывается и закрывает транзистор VT2. Из-за этого падает напряжение на базе VT3 он начинает закрываться и следовательно снижается выходное напряжение, а это ведет к снижению выходного тока. Таким образом работает обратная связь по току и его стабилизация. Когда напряжение подбирается к уровню 4,2 В в работу начинает вступать DA1 и ограничивать напряжение на выходе зарядного устройства.

А теперь список номиналов компонентов схемы:

- DA1 TL431C;
- R1 2,2 Ом;
- R2 470 Ом;
- R3 100 кОм;
- R4 15 кОм;
- R5 22 кОм;
- R6 680 Ом (нужен для подстройки выходного напряжения);
- VT1, VT2 BC857B;
- VT3 BCP68-25;
- VT4 BSS138.

Запись опубликована 22.01.2016 автором в рубрике Электроника для начинающих.

31 thoughts on "**TL431 схема включения, TL431 цоколевка**"

solder 28.01.2016 B 20:29

К1242ЕР1АП производства «Интеграл» Минск

Greg 23.03.2016 в 06:17

Я бы не называл малоточность TL431 ее недостатком, это ведь не стабилизатор, как таковой, а источник опорного напряжения для него. Применяя различную периферию можно решать различные задачи по мощности, точности, надежности и т.д. Вот, внешние цепи могут быть любыми, а управляются одним и тем же устройством — TL431. Что и делает ее такой распространенной и востребованной.

Понравилась схема зарядки, где необходима регулировка и по току и по напряжению, применены и биполярный и униполярный транзисторы — каждый в своем режиме.

Root 28.03.2016 в 19:56

Да, конденсатор между анодом и катодом этого «стабилитрона» ставить не следует ни в коем случае. Я так столкнулся с самовозбуждением схемы стабилизатора напряжения, когда по неопытности решил, что с конденсатором на выходе источника опорного напряжения на TL431 схема будет работать стабильнее. Поставил конденсатор на 10 нФ, и схема «завелась», выдавая на выходе «кашу» из импульсов вместо постоянного напряжения. Что неудивительно, для операционного усилителя входящего в состав TL431 такой параметр как максимальная емкость нагрузки нужно учитывать как и для всякого другого ОУ.

Greg 29.03.2016 в 02:15

Уже писал выше, что использовать источник прецизионного опорного напряжения в виде стабилизатора странно. Еще более странно, какой стабильности можно добиться емкостью в десяток нан. Стабильности задаваемого напряжения, шунтируя и устраивая паразитную ОС? Или выходного? Конечно возбудится.

Root 31.03.2016 в 06:47

А что там было о источнике опорного в виде стабилизатора? Опорное в стабилизаторе применялось в своем прямом назначении, в качестве опорного, с которым сравнивалось выходное ©

олександр 03.04.2016 в 12:40

Думаю в русско язычной литературе вход опорное напряжение надо было назватьнапряжением порога или срабатывания. Интересно производитель пробовал U опр подавать на инвертирующий вход операционного усилителя может и не было само возбуждения.

Дмитрий 08.11.2016 в 08:21

Транзистор подключенный к выходу ОУ инвертирует сигнал.

mobilandser 02.08.2016 в 12:21

Делал в свое время самодельный лабораторный блок питания с регулировкой напряжения и ограничения по току. Очень понравилась работа МС ТL431 как регулятора тока. Практически исполнил регулировку от 0 до 10А, хотя она, действительно мало точная, но как управляющее звено очень даже то, что нужно.

Сергей 29.02.2020 в 23:43

Класс. Спасибо. Попробую этот вариант

Greg 08.08.2016 в 17:53

Насчет использования TL431 не только как источника опорного напряжения... Если использовать в задающей цепи терморезистор, то можно, к примеру, прикрепив его на радиатор, регулировать вращение охлаждающего (этот радиатор) кулера. Очень удобно для блоков питания, работающих на динамическую нагрузку и лабораторных.

Если же использовать фотоэлементы, то можно, к примеру регулировать подсветку, в зависимости от окружающего освещения. Очень удобно для уличных фонариков на солнечных батареях: светит солнце — заряжаются, село — начинают светить, чем темнее на улице, тем ярче.

Вит

17.03.2018 в 13:04

Здравствуйте, не могли бы скинуть схему на терморезисторе для кулера, спасибо

D13c

01.06.2019 в 20:39

думаю примерно так https://ibb.co/CsGRwXR

АНАТОЛИЙ

28.12.2019 в 19:04

А где же цокаллёвка

Дмитрий

20.08.2017 в 17:58

А можно ли заменить на схеме мощного стабилизатора напряжения дискретные транзисторы сборкой Дарлингтона, например TIP142?

admin

Автор записи 2017 в 11:44

Да, можно.

александр

21.12.2017 B 12:08

перепутал цоколевку.....

Игорь

12.03.2019 в 14:39

Есть TL432 у нее другая распиновка!!!

Сергей

24.05.2018 B 17:16

Судя по «напряжение анод-катод: 2,5...36 вольт» Vref=2,5B? А то заострили внимание почему-то только на точности.

Spirit

18.08.2018 в 08:56

а как быстро сгорит vt2 в схеме зарядника, если контакты батареи случайно замкнутся? Или предполагается что R3 в 100к должен спасти ситуацию за счёт не очень высокой беты vt2? При 15 вольтах и средней бете, на нём будет рассеваться не менее

60 ма, это при максимальном токе в 100ма... По уму, последовательно с коллектором, или эмиттером vt2 должен стоять резистор ом в 350 и R3 уменьшен килоом до 5-10..

Руслан 30.09.2018 в 01:01

Нихрена не понял.. хоть бы параметры деталей указали.. так бы хоть чуть было понятнее что где и скоко.. А так хз.. какой транзистор, какой резистор и т.д.

AT 09.12.2018 в 22:13

на SOT-23-3 перепутаны местами катод и управляющий вывод.

oleg 27.10.2019 в 12:14

на ТО22/ТО226 тоже маркировка не верная катод и управляющий наоборот.

Лекс 02.02.2019 в 10:09

А как ограничивается ток тл431 после окончания процесса зарядки?, через транзистор вт2, тл431 коротит на минус?!

Игорь 12.03.2019 в 14:42

Есть TL431 и TL432 распиновки зеркальные!!!

Денис 16.11.2019 в 04:03

Мне одному кажется, что автор этой статьи упустил самое главное — спецификацию на эту микросхему?

Михаил 30.12.2019 в 19:06

это практическое применение, а спецификация есть в гугле)

Вячеслав 23.04.2020 в 23:49

Никогда не заморачивался ctl431 .Собирал схемы все работали.А сейчас мне надо в ИБП повысить c19 в до 24в.Все в гугле рекомендуют по плюсу .Тепер спасибо этой статье все получилось.

Андрей Берег 18.10.2020 в 08:53

Автор молодец! Спасибо! Схема на стабилизацию напряжения работает на 100%.С точностью 0,02 вольта. При перепадах переменного напряжения в сети 40 вольт.

Даниил 25.11.2020 в 16:18

Здравствуйте, я правильно понимаю, что К142EH19 является отечественным аналогом? А можно как-то умощнить эту интегральную микросхему? Хотя бы даже Ваш пример на составных транзисторах подойдет?

алексей AlexeiEP@yandex.ru

16.01.2021 в 02:04

спасибо пригодится как памятка

алексей AlexeiEP@yandex.ru

16.01.2021 B 02:05

К142ЕН19 является отечественным аналогом