

Chris Messina introduce por primera vez el Hashtag (#) en Twitter

¿CÓMO FUNCIONA?

MAINSTREAM HASHTAGS

Hashtags normales, pero que además tienen:

- Alto volumen de uso global
- Amplia visibilidad en la plataforma

#KOBEDEAD

V.S.

#KOBEDEATH

PROBLEMAS A RESOLVER

Comprender el contexto a tiempo real

Los Tweets nuevos reaccionan a eventos
 emergentes (ej. #NewPope)

 Los métodos estáticos carecen de contexto actualizado

Selección de etiquetas populares

 Muchos hashtags pueden describir el mismo tema, pero solo unos pocos son mainstream.

 Mantener manualmente una lista de hashtags populares es costoso y poco escalable

¿CÓMO SE HA ABARCADO ESTE PROBLEMA?

ESTADO DEL ARTE

MÉTODOS DE RECUPERACIÓN

• BM25, SimCSE sobre un corpus histórico

Lo bueno:

 Asegura calidad de etiquetas preexistentes

Lo malo:

 No captan temas emergentes y requiere listas fijas

Usuario

Retrieval Model

Corpus

ESTADO DEL ARTE

MÉTODOS DE GENERACIÓN

• seq2seq (T5, mT5), LLMs (ChatGPT).

Lo bueno:

 Buena comprensión de Tweets, generan etiquetas semánticamente válidas.

Lo malo:

- No garantiza popularidad.
- Puede alucinar hashtags

Usuario

LLM

ESTADO DEL ARTE

MÉTODOS HÍBRIDOS

Utilizan Recuperación temprana (p.e. Noticias) para dar una mejor recomendación al LLM

Lo bueno:

- Mejor comprensión multidominio.
- Reduce alucionaciones

Lo malo:

- No optimizado a tiempo real.
- Alta complejidad y costo.

RIGHT

Retrieval-augmented Generation for Mainstream Hashtag Recommendation

3 PRINCIPALES COMPONENTES

3 PRINCIPALES COMPONENTES

1) BUSQUEDA RELEVANTE

3 PRINCIPALES COMPONENTES

- 1) BUSQUEDA RELEVANTE
- 2) IDENTIFICAR PRINCIPALES TRENDS

3 PRINCIPALES COMPONENTES

- 1) BUSQUEDA RELEVANTE
- 2) IDENTIFICAR PRINCIPALES TRENDS
- 3) INCORPORAR SELECCIONADOS Y GENERAR

3 PRINCIPALES COMPONENTES

1) BUSQUEDA RELEVANTE

RETRIEVER

2) IDENTIFICAR PRINCIPALES TRENDS

SELECTOR

3) INCORPORAR SELECCIONADOS Y GENERAR

GENERATOR

RETRIEVER

CONJUNTO DE DATOS (CORPUS):
$$C = \{(ilde{t}_i, ilde{H}_i)\}$$

$$egin{aligned} ilde{t}_i &= ext{tweet}_i \ ilde{h}_i &= ext{hashtag}_i \end{aligned}$$

RETRIEVER

CONJUNTO DE DATOS (CORPUS):
$$C = \{(ilde{t}_i, ilde{H}_i)\}$$

$$egin{aligned} ilde{t}_i &= ext{tweet}_i \ & & \ ilde{h}_i &= ext{hashtag}_i \end{aligned}$$

RELEVANCIA ENTRE TWEETS BASANDOSE EN SEMANTICA/LEXICA

RETRIEVER

CONJUNTO DE DATOS (CORPUS): $C = \{(ilde{t}_i, ilde{H}_i)\}$ $frac{ ilde{t}_i = ext{tweet}_i}{ ilde{h}_i = ext{hashtag}_i}$

RELEVANCIA ENTRE TWEETS BASANDOSE EN SEMANTICA/LEXICA

RETORNAR TOP-N PARES MAS SIMILARES: $\{(\tilde{t}_1, \tilde{H}_1, \tilde{s}_1), \ldots, (\tilde{t}_i, \tilde{H}_i, \tilde{s}_i)\} = R(t|C)$ $s_i = ext{similitud entre ty } t_i$

BM25 (RECUPERACIÓN BASADA EN TÉRMINOS) Y SIMCSE (RECUPERACIÓN DENSA BASADA EN EMBEDDINGS)

FILTRAR LOS HASHTAG DE BAJA CALIDAD Y/O NO MAINSTREAM ENCONTRADOS

MAINSTREAM FEATURES:

FILTRAR LOS HASHTAG DE BAJA CALIDAD Y/O NO MAINSTREAM ENCONTRADOS

MAINSTREAM FEATURES:

SIMILITUD TUIT INPUT Y TUIT RECUPERADO

SIMILITUD TUIT INPUT Y HASHTAG RECUPERADO

FRECUENCIA DE USO DE HASHTAG

TRAINING

TRAINING

EMBEDDINGS Y SU IMPORTANCIA

TRAINING

EMBEDDINGS Y SU IMPORTANCIA

AJUSTES Y PROPUESTA

$$t_i = ext{muestra original (tuit)}$$

$$t_i^+ = \mathrm{hashtag} \ \mathrm{positivo} \ \mathrm{(relevantes)}$$

$$t_i^- = \text{ hashtag positivo perturbada (no relevantes)}$$

TRAINING

 t_i

"KOBE BRYANT DIES IN HELICOPTER CRASH".

 t_i^+

#KOBEBRYANT

 t_i^-

SINÓNIMOS (70%): #KOBEBASKETBALL.

ELIMINACIÓN (10%): #BRYANT.

INTERCAMBIO (10%): #BRYANTKOBE.

SINÓNIMOS (10%): #KOBELEGENDBRYANT.

TRAINING

FUNCION DE PERDIDA →

- MINIMIZAR SIMILITUDES ENTRE INCORRECTOS
- MAXIMIZAR SIMILITUDES CON CORRECTOS

CONSIDERANDO EMBEDDINGS

$$\mathcal{L}_S = -\log rac{e^{ ext{sim}(\mathbf{h}_{t_i}, \mathbf{h}_{t_i}^+)/ au}}{\sum_{j=1}^L \left(e^{ ext{sim}(\mathbf{h}_{t_i}, \mathbf{h}_{t_j}^+)/ au} + e^{ ext{sim}(\mathbf{h}_{t_i}, \mathbf{h}_{t_j}^-)/ au}
ight)}$$

ROBERTA-LARGE (INGLÉS) O BERT-BASE-CHINESE (CHINO)

INFERENCE

INPUT: TOP-N TUITS ANTERIOMENTE GENERADOS

$$\{(ilde{t}_1, ilde{H}_1, ilde{s}_1),\ldots,(ilde{t}_i, ilde{H}_i, ilde{s}_i)\}$$

INFERENCE

INPUT: TOP-N TUITS ANTERIOMENTE GENERADOS

$$\{(ilde{t}_1, ilde{H}_1, ilde{s}_1),\dots,(ilde{t}_i, ilde{H}_i, ilde{s}_i)\}$$

AGRUPACIÓN DE HASHTAGS

INFERENCE

INPUT: TOP-N TUITS ANTERIOMENTE GENERADOS

$$\{(ilde{t}_1, ilde{H}_1, ilde{s}_1),\dots,(ilde{t}_i, ilde{H}_i, ilde{s}_i)\}$$

AGRUPACIÓN DE HASHTAGS

$$\{ ilde{h}_1,\ldots, ilde{h}_M\}$$

CONSOLIDACION DE TODOS LOS HASHTAGS

$$\{ ilde{s}_{i,1},\dots, ilde{s}_{i,f_i}\}$$

SIMILITUDES ASOCIADAS

$$\{f_1,\dots,f_M\}$$

NUMERO DE TUITS QUE LO CONTIENEN

INFERENCE

CALCULO Y SELECCIÓN TOP-K

$$\ddot{s}_m = \mathcal{S}(t, ilde{h}_m)$$

SIMILITUD ENTRE EL TUIT T Y EL MODELO ANTERIOMENTE ENTRENADO

$$s_i = \left(\left(rac{1}{f_i}\sum_{j=1}^{f_i} ilde{s}_{i,j}
ight) + \ddot{s}_i
ight) imes \left(1 + \left(rac{f_i-1}{10}
ight)
ight)$$

CALCULO SIMILITUD PONDERIZADA PARA LUEGO SELECCION FINAL

GENERAR HASHTAGS DE CALIDAD DADO UN TUIT (T)
SELECCIONADO Y UN SET DE HASHTAGS SELECCIONADOS

$$(ilde{h}_1, ilde{h}_2,\ldots, ilde{h}_k)$$

GENERAR HASHTAGS DE CALIDAD DADO UN TUIT (T)
SELECCIONADO Y UN SET DE HASHTAGS SELECCIONADOS
POR SELECTOR

$$(ilde{h}_1, ilde{h}_2,\dots, ilde{h}_k)$$

CONCATENAR TUITS Y HASHTAGS

$$I = \langle t, ext{SEP1}, ilde{h}_1, ext{SEP1}, ilde{h}_2, \dots, ext{SEP1}, ilde{h}_k
angle$$

CONCATENACION CON SEPARACIONES ENTRE LOS ELEMENTOS

GENERAR HASHTAGS DE CALIDAD DADO UN TUIT (T)
SELECCIONADO Y UN SET DE HASHTAGS SELECCIONADOS
POR SELECTOR

$$(ilde{h}_1, ilde{h}_2,\dots, ilde{h}_k)$$

CONCATENAR TUITS Y HASHTAGS

$$I = \langle t, ext{SEP1}, ilde{h}_1, ext{SEP1}, ilde{h}_2, \dots, ext{SEP1}, ilde{h}_k
angle$$

CONCATENACION CON SEPARACIONES ENTRE LOS ELEMENTOS

GENERAR SECUENCIALMENTE Y CON AJUSTES

$$O = \langle h_1, ext{SEP2}, h_2, \dots, ext{SEP2}, h_{|H|}
angle$$

OUTPUT GENERADO

GENERAR HASHTAGS DE CALIDAD DADO UN TUIT (T)
SELECCIONADO Y UN SET DE HASHTAGS SELECCIONADOS
POR SELECTOR

$$(ilde{h}_1, ilde{h}_2,\ldots, ilde{h}_k)$$

CONCATENAR TUITS Y HASHTAGS

$$I = \langle t, ext{SEP1}, ilde{h}_1, ext{SEP1}, ilde{h}_2, \dots, ext{SEP1}, ilde{h}_k
angle$$

CONCATENACION CON SEPARACIONES ENTRE LOS ELEMENTOS

GENERAR SECUENCIALMENTE Y CON AJUSTES

$$O = \langle h_1, ext{SEP2}, h_2, \dots, ext{SEP2}, h_{|H|}
angle$$

OUTPUT GENERADO

$$\mathcal{L}_g = \sum_{(I,O) \in \mathcal{D}} -\log p(O|I; heta_g)$$
 perdida asociada al Generar

$$\mathcal{L}_g = \sum_{(I,O) \in \mathcal{D}} -\log p(O|I; heta_g)$$
 perdida asociada al Generar sobre los tokens de Salida.

T5, BART

GPT

TESTEO PARA CADA COMPONENTE, DATASET EMPLEADO

THG

ENGLISH TWITTER

WHG

CHINESE WEIBO

TESTEO PARA CADA COMPONENTE, DATASET EMPLEADO

THGYWHG

METRICAS

ROUGE

SUPERPOSICIÓN EN TÉRMINOS DE PALABRAS

PRESICION Y RECALL

TESTEO PARA CADA COMPONENTE, DATASET EMPLEADO

THG Y WHG

MÉTRICAS ROUGE Y F1@K

COMPARACIÓN CON OTROS MODELOS

MÉTODOS BASADOS EN **RECUPERACIÓN** (BM25 Y SIMCSE)

MÉTODOS BASADOS EN GENERACIÓN (CHATGPT, SEQ2SEQ, SEGTRM SOFT)

MÉTODOS **HÍBRIDOS** (RIGHT)

Model	\mathbf{THG}					\mathbf{WHG}				
	RG-1	RG-2	RG-L	F1@1	F1@5	RG-1	RG-2	RG-L	F1@1	
Retrieval-based Methods										
BM25	16.23	4.17	15.11	5.92	9.84	61.98	58.76	61.81	48.20	
SimCSE	28.43	10.34	26.38	12.40	15.15	59.71	55.81	59.54	47.65	
$Generation\mbox{-}based\ Methods$										
ChatGPT	44.60	27.67	39.29	9.72	26.08	32.27	24.54	31.80	7.9	
SEGTRM Soft	51.18	37.15	47.05	27.17	29.02	55.51	51.28	54.30	30.72	
Seq2Seq	59.90	41.39	59.15	29.75	41.71	66.64	61.71	66.39	48.60	
Retrieval-augmented Generative Methods (Ours)										
$RIGHT^{ChatGPT}$	47.54	25.63	44.47	22.39	31.09	48.17	41.51	47.75	26.15	
${ m RIGHT_{BM25}}$	61.60	43.77	60.85	30.27	42.98	70.62^*	66.12^{*}	70.35^{*}	53.85^*	
$\mathrm{RIGHT_{SimCSE}}$	62.11^{*}	43.86*	61.39^{*}	30.58^{*}	43.23^{*}	68.84	64.19	68.56	<u>51.50</u>	

PRUEBAS DE ABLACIÓN PARA JUSTIFICAR CADA COMPONENTE DEL MODELO.

Model	ROUGE-1	ROUGE-2	ROUGE-L	F1@1	F1@5
RIGHT	62.11	43.86	61.39	30.58	43.23
w/o Retriever	59.91	$\frac{1}{41.63}$	59.23	$\overline{29.66}$	-41.70
w/o Selector	60.49	42.06	59.76	30.22	41.95
w/o Generator	36.24	16.02	32.86	24.61	26.73

IMPACTO DEL NÚMERO DE HASHTAG AUMENTADOS

RESUMEN Y CONTRIBUCIONES

- Arquitectura híbrida modular
- Selector con señales de popularidad
- Actualización automática de Corpus
- Ganancias empíricas significativas
- Impacto en el mundo real

MUCHAS GRACIAS ; PREGUNTAS?

POR:

RENÉ SAAVEDRA CARLOS OLGUÍN GERALDINE COLI ACEVEDO

BIBLIOGRAFÍA

- Parker. A, (2011). Twitter's Secret Handshake. The New York Times https://www.nytimes.com/2011/06/12/fashion/hashtags-a-new-way-for-tweets-cultural-studies.html
- Fan, R.-Z., Fan, Y., Chen, J., Guo, J., Zhang, R., & Cheng, X. (2023). RIGHT:
 Retrieval-augmented generation for mainstream hashtag recommendation.
 arXiv. https://arxiv.org/abs/2312.10466