UT Austin CSE 386D

Homework 4

Jonathan Zhang EID: jdz357

Problem 7.1:

Prove that for $f \in H^1\left(\mathbb{R}^d\right)$, $\|f\|_{H^1\left(\mathbb{R}^d\right)}$ is equivalent to

$$\left[\int_{\mathbb{R}^d} \left(1+|\xi|^2\right) |\hat{f}(\xi)|^2 d\xi\right]^{1/2}$$

Generalize to $H^k(\mathbb{R}^d)$?

Solution Make use of Plancherel theorem. Let $f \in H^1(\mathbb{R}^d)$. Then f and Df are L^2 . The norm is

$$||f||_{H^1}^2 = ||f||_{L^2}^2 + ||Df||_{L^2}^2 = ||\hat{f}||_{L^2}^2 + ||(Df)^{\wedge}||_{L^2}^2 = \int |\hat{f}|^2 + |(Df)^{\wedge}|^2 = \int (1 + |\xi|^2) |\hat{f}|^2.$$

The result also generalizes to H^k . In this case, propose a norm

$$||f||_{H^k(\mathbb{R}^d)} = \left[\int_{\mathbb{R}^d} (1+|\xi|^2)^k |\hat{f}(\xi)|^2 d\xi \right]^{1/2}.$$

We need to show that there exist constants $C_1, C_2 > 0$ that bound the two norms. But, this boils down to showing that there exists C_1, C_2 such that

$$C_1 (1+x^2)^{k/2} \le \sum_{r=0}^k x^r \le C_2 (1+x^2)^{k/2}$$
.

Equivalently,

$$C_1 (1+x^2)^k \le \left(\sum_{r=0}^k x^r\right)^2 \le C_2 (1+x^2)^k$$
.

Consider the function

$$f(x) = \frac{\left(\sum_{r=0}^{k} x^r\right)^2}{(1+x^2)^k} \in C^0([0,\infty)).$$

Since f(0) = 1 and $\lim_{x \to \infty} f(x) = 1$, f has a maximum on $[0, \infty)$ which gives C_2 . Similarly, g(x) = 1/f(x) has a maximum, giving C_1 .

Oden Institute 1

CSE 386D UT Austin

Problem 7.2:

Prove that if $f \in H_0^1(0,1)$, then there exists C > 0 such that $||f||_{L^2(0,1)} \le C||f'||_{L^2(0,1)}$. If instead $f \in \left\{g \in H^1(0,1) : \int_0^1 g(x) dx = 0\right\}$, provide a similar estimate.

Proof: Go by contradiction. Suppose to the contrary that there exists a sequence $f_n \in H_0^1$ with $||f_n|| = 1$ and $||Df_n|| \to 0$. From every bounded sequence in a Hilbert space, we can extract a weakly convergent subsequence, $f_{n_k} \rightharpoonup f \in H_0^1$. The weak convergence in H^1 implies weak convergence of the derivative $Df_{n_k} \rightharpoonup Df \in L^2(\Omega)$. Since the norm is continuous, then we would conclude that Df = 0, that is, f must be a constant. But in order to satisfy the boundary condition, then f is indentically zero.

On the other side, the Rellich-Kondrachov Theorem tells us that weak convergence in H^1 implies $f_{n_k} \to f \in L^2$, which implies convergence in the L^2 norm. But, that would mean that $||f|| = \lim ||f_n|| = 1$, a contradiction to the above conclusion that f = 0.

2 Oden Institute

UT Austin CSE 386D

Problem 7.3:

Prove that $\delta_0 \notin (H^1(\mathbb{R}^d))^*$ for $d \geq 2$, but that $\delta_0 \in (H^1(\mathbb{R}))^*$. You will need to define that δ_0 applied to $f \in H^1(\mathbb{R})$ means.

Problem 7.4:

Prove that $H^1(0,1)$ is continuously embedded in $C_B(0,1)$, the set of bounded and continuous functions on (0,1).

Solution Need to show that the inclusion map

$$H^1(0,1) \ni f \to f \in C_B(0,1)$$

is bounded, i.e. there exists C > 0 such that $||f||_{\infty} \leq C||f||_{H^1}$.

Oden Institute