

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
Operadores		1	2	3	4	5	6	7	8	9
	Medição 1	65.1	64.91	65.01	64.39	65.16	64.89	65.56	65.67	64.66
A	Medição 2	64.48	64.74	64.78	64.72	64.37	65.06	64.85	65.26	65.06
	Medição 3	64.89	64.7	65.58	65.45	65.29	64.12	65.08	64.7	64.66
	Medição 1	64.98	64.89	64.91	64.76	65	64.68	65.02	64.91	64.52
В	Medição 2	64.82	64.84	64.85	64.83	64.45	64.56	65.13	65	65.08
	Medição 3	65.19	64.32	64.24	64.68	64.67	64.82	64.98	64.55	65
	Medição 1	64.69	65.23	65.53	64.56	65.83	65.19	64.69	64.85	65.54
С	Medição 2	64.82	64.5	65	64.92	65.17	64.84	64.64	65.32	64.81
	Medição 3	64.66	64.69	64.69	64.38	64.16	64.67	64.91	65	65.01

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

Peso m (gramas)	200	300	400	500	600	700	800	900
Comprimento l (cm)	4.83	5.17	6.6	7.67	8.45	9.08	9.88	9.98

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 22°C e 26°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

N	1	2	3	4	5	6	7	8
$V_a(V)$	10.9	8.67	10.1	8.48	10.54	11.36	8.32	9.35
$I_a (mA)$	109.583	86.567	100.973	84.004	106.362	113.166	84.218	94.272

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão				
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$				
1000V	$\pm (1.0\% + 5D)$				

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza				
20mA	$\pm (0.8\% + 3D)$				
200mA	$\pm (1.2\% + 4D)$				
20A	$\pm (2.0\% + 5D)$				

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.