US Patent & Trademark Office Patent Public Search | Text View

Α1

United States Patent Application Publication 20250261892 Kind Code **Publication Date** August 21, 2025 Sterrett; Terry L. et al. Inventor(s)

High Density Electrode Mapping Catheter

Abstract

An integrated electrode structure can comprise a catheter shaft comprising a proximal end and a distal end, the catheter shaft defining a catheter shaft longitudinal axis. A flexible tip portion can be located adjacent to the distal end of the catheter shaft, the flexible tip portion comprising a flexible framework. A plurality of microelectrodes can be disposed on the flexible framework and can form a flexible array of microelectrodes adapted to conform to tissue. A plurality of conductive traces can be disposed on the flexible framework, each of the plurality of conductive traces can be electrically coupled with a respective one of the plurality of microelectrodes.

Inventors: Sterrett; Terry L. (Huntington Beach, CA), Crow; John J. (San Diego, CA), Lim;

Eric (Tustin, CA), Olson; Gregory K. (Elk River, MN), Schweitzer; Jeffrey A. (St.

Paul, MN)

Applicant: St. Jude Medical, Cardiology Division, Inc. (Saint Paul, MN)

Family ID: 1000008578070

St. Jude Medical, Cardiology Division, Inc. (Saint Paul, MN) Assignee:

Appl. No.: 19/028364

Filed: **January 17, 2025**

Related U.S. Application Data

parent US continuation 17946260 20220916 PENDING child US 19028364 parent US continuation 16781499 20200204 parent-grant-document US 11642064 child US 17946260

parent US continuation 15331562 20161021 parent-grant-document US 10595738 child US 16781499

us-provisional-application US 62244565 20151021 us-provisional-application US 62324067 20160418

Publication Classification

Int. Cl.: A61B5/287 (20210101); A61B5/00 (20060101); A61B5/283 (20210101); A61B17/00 (20060101); A61B18/00 (20060101); A61B18/14 (20060101); A61N1/362 (20060101); H05K3/06 (20060101); H05K3/14 (20060101)

U.S. Cl.:

CPC

A61B5/287 (20210101); **A61B5/283** (20210101); **A61B5/6858** (20130101); **A61B18/14** (20130101); **A61B18/1492** (20130101); **A61N1/362** (20130101); **H05K3/06** (20130101); **H05K3/143** (20130101); A61B2017/00526 (20130101); A61B2018/00267 (20130101); A61B2018/00351 (20130101); A61B2018/00357 (20130101); A61B2018/00839 (20130101); A61B2562/028 (20130101); A61B2562/125 (20130101); A61B2562/222 (20130101)

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] The present application is a Continuation of U.S. patent application Ser. No. 17/946,260 filed Sep. 16, 2022; which is a Continuation of U.S. patent application Ser. No. 16/781,499 filed Feb. 4, 2020 (now U.S. Pat. No. 11,642,064); which is a Continuation of Ser. No. 15/331,562 filed Oct. 21, 2016 (now U.S. Pat. No. 10,595,738); which claims priority to U.S. Provisional Appln Nos. 62/244,565 filed Oct. 21, 2015 and 62/324,067 filed Apr. 18, 2016; the full disclosures which are incorporated herein by reference in their entirety for all purposes. [0002] The present application is related to U.S. patent application Ser. No. 15/331,369 filed Oct. 21, 2016 (now U.S. Pat. No. 10,362,954) entitled HIGH DENSITY ELECTRODE MAPPING CATHETER, which is also incorporated herein by reference in its entirety for all purposes.

FIELD OF THE INVENTION

[0003] This disclosure relates to a high density electrode mapping catheter.

BACKGROUND OF THE INVENTION

[0004] Catheters have been used for cardiac medical procedures for many years. Catheters can be used, for example, to diagnose and treat cardiac arrhythmias, while positioned at a specific location within a body that is otherwise inaccessible without a more invasive procedure.

[0005] Conventional mapping catheters may include, for example, a plurality of adjacent ring electrodes encircling the longitudinal axis of the catheter and constructed from platinum or some other metal. These ring electrodes are relatively rigid. Similarly, conventional ablation catheters may comprise a relatively rigid tip electrode for delivering therapy (e.g., delivering RF ablation energy) and may also include a plurality of adjacent ring electrodes. It can be difficult to maintain good electrical contact with cardiac tissue when using these conventional catheters and their relatively rigid (or nonconforming), metallic electrodes, especially when sharp gradients and undulations are present.

[0006] Whether mapping or forming lesions in a heart, the beating of the heart, especially if erratic or irregular, complicates matters, making it difficult to keep adequate contact between electrodes and tissue for a sufficient length of time. These problems are exacerbated on contoured or trabeculated surfaces. If the contact between the electrodes and the tissue cannot be sufficiently maintained, quality lesions or accurate mapping are unlikely to result.

[0007] The foregoing discussion is intended only to illustrate the present field and should not be taken as a disavowal of claim scope.

BRIEF SUMMARY

[0008] Various embodiments herein provide an integrated electrode structure. In at least one embodiment, the integrated electrode structure can comprise a catheter shaft comprising a proximal end and a distal end, the catheter shaft defining a catheter shaft longitudinal axis. A flexible tip portion can be located adjacent to the distal end of the catheter shaft, the flexible tip portion comprising a flexible framework. A plurality of microelectrodes can be disposed on the flexible framework and can form a flexible array of microelectrodes adapted to conform to tissue. A plurality of conductive traces can be disposed on the flexible framework, each of the plurality of conductive traces can be electrically coupled with a respective one of the plurality of microelectrodes.

[0009] Various embodiments herein provide an integrated electrode structure that comprises a catheter shaft that includes a proximal end and a distal end, the catheter shaft defining a catheter shaft longitudinal axis. A flexible tip portion can be located adjacent to the distal end of the catheter shaft, the flexible tip portion comprising a flexible framework that includes an inner understructure and an outer understructure. A plurality of microelectrodes can be disposed on a top surface of the inner understructure and outer understructure and a bottom surface of the inner understructure and outer understructure, forming a flexible array of microelectrodes adapted to conform to tissue. A plurality of conductive traces can be disposed on the top surface of the inner understructure and outer understructure and outer understructure and outer understructure and outer understructure, each of the plurality of conductive traces being electrically coupled with a respective one of the plurality of microelectrodes.

[0010] Various embodiments herein provide a method for determining a degree of contact between a first electrode and tissue. In some embodiments, the method can include receiving a first electrical signal from the first electrode disposed on a first side of a tip portion of a medical device. In some embodiments, the method can include receiving a second electrical signal from a second electrode disposed on a second side of the tip portion of the medical device, wherein the first electrode and the second electrode are disposed vertically adjacent with respect to one another. In some embodiments, the method can include determining the degree of contact between the first electrode and the tissue based on a comparison between the first electrical signal and the second electrical signal.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. **1**A depicts a top view of a high density electrode mapping catheter, according to various embodiments of the present disclosure.

[0012] FIG. **1**B depicts an isometric side and top view of the high density electrode mapping catheter in FIG. **1**A, according to various embodiments of the present disclosure.

[0013] FIG. **2**A depicts an isometric side and top view of an inboard understructure of a high density electrode mapping catheter in FIG. **1**A, according to various embodiments of the present disclosure.

[0014] FIG. **2**B depicts an isometric side and top view of a coated inboard understructure of a high density electrode mapping catheter, according to various embodiments of the present disclosure. [0015] FIGS. **3**A to **3**K depict a top view and end view of a second inboard arm of the high density electrode mapping catheter and associated processing steps, according to various embodiments of the present disclosure.

[0016] FIG. **4**A depicts a top view of a processed inboard understructure, according to various embodiments of the present disclosure.

[0017] FIG. 4B depicts an enlarged portion (indicated by dotted oval 4B) of a first inboard arm of

- the processed inboard understructure depicted in FIG. **4**A, according to various embodiments of the present disclosure.
- [0018] FIG. **4**C depicts a cross-sectional view of the first outboard arm along the line cc, in FIG. **4**B, according to various embodiments of the present disclosure.
- [0019] FIG. **4**D depicts a cross-sectional view of the first outboard arm along line dd, in FIG. **4**B, according to various embodiments of the present disclosure.
- [0020] FIG. **5** depicts a cross-sectional view of patterned conductive traces formed on a top and bottom of a conductive flexible framework, according to various embodiments of the present disclosure.
- [0021] FIG. **6**A depicts the conductive flexible framework after an additional layer of dielectric material has been stripped from a distal portion of each of the electrically conductive traces, leaving an exposed area, according to various embodiments of the present disclosure.
- [0022] FIG. **6**B depicts a processed conductive flexible framework after the additional layer of dielectric material has been stripped from a distal portion of each of the electrically conductive traces, leaving an exposed area on which solder has been deposited, according to various embodiments of the present disclosure.
- [0023] FIG. **6**C depicts a cross-sectional end view of the processed conductive flexible framework depicted in FIG. **6**B along the line ee, according to various embodiments of the present disclosure. [0024] FIG. **6**D depicts a hollow cylindrical band, according to various embodiments of the present disclosure.
- [0025] FIG. **6**E depicts a hollow cylindrical band in which solder is deposited, according to various embodiments of the present disclosure.
- [0026] FIG. **6**F depicts an isometric side and front view of the hollow cylindrical band depicted in FIG. **6**D, according to various embodiments of the present disclosure.
- [0027] FIG. **6**G depicts a hollow cylindrical band coaxially aligned with the processed conductive flexible framework, according to various embodiments of the present disclosure.
- [0028] FIG. **6**H depicts a processing step associated with the hollow cylindrical band, according to various embodiments of the present disclosure.
- [0029] FIG. **6**I depicts a swaged hollow cylindrical band after performing the processing step described in relation to FIG. **6**H, according to various embodiments of the present disclosure. [0030] FIG. **6**J depicts the swaged hollow cylindrical band and the processed conductive flexible framework after a solder reflow process, according to various embodiments of the present
- [0031] FIGS. 7A-7C depict a top view and end view of a second inboard arm of the high density electrode mapping catheter, wherein a flexible framework of the high density electrode mapping catheter is formed from a flexible substrate and associated processing steps, according to various embodiments of the present disclosure.

disclosure.

- [0032] FIG. **8**A depicts a top view of a processed inboard understructure, according to various embodiments of the present disclosure.
- [0033] FIG. **8**B depicts an enlarged portion (indicated by dotted oval **8**B) of a first inboard arm of the processed inboard understructure depicted in FIG. **8**A, according to various embodiments of the present disclosure.
- [0034] FIG. **8**C depicts an enlarged portion (indicated by dotted oval **8**C) of a first inboard arm of the processed inboard understructure depicted in FIG. **8**A, according to various embodiments of the present disclosure.
- [0035] FIG. **9**A depicts a top view of a bottom mold for an overmolding process, according to various embodiments of the present disclosure.
- [0036] FIG. **9**B depicts a processed inboard understructure inserted into the bottom mold depicted in FIG. **9**A, according to various embodiments of the present disclosure.
- [0037] FIG. 9C depicts a cross-sectional side view of an assembled mold and the processed inboard

- understructure in FIG. **9**B along line hh in FIG. **9**B, according to various embodiments of the present disclosure.
- [0038] FIG. **9**D depicts a top view of bottom mold and an overmolded inboard understructure after an overmolding process has been performed, according to various embodiments of the present disclosure.
- [0039] FIG. **9**E depicts a cross-sectional side view of an assembled mold and the overmolded inboard understructure in FIG. **9**D along line ii in FIG. **9**D, according to various embodiments of the present disclosure.
- [0040] FIG. **10**A depicts a cross-sectional side view of an ablation fixture in which the overmolded inboard understructure has been placed, according to various embodiments of the present disclosure.
- [0041] FIG. **10**B depicts a top view of the ablation fixture in FIG. **10**A after an ablation processing step has been completed and an ablated overmolded inboard understructure, according to various embodiments of the present disclosure.
- [0042] FIG. **10**C depicts a top view of the ablated overmolded inboard understructure after being ejected from the ablation fixture depicted in FIG. **10**B, according to various embodiments of the present disclosure.
- [0043] FIG. **11** depicts mechanical properties of various materials that can be used for forming understructures of the flexible tip portion, according to various embodiments of the present disclosure.
- [0044] FIG. **12**A depicts a top view of a proximal end of an inboard understructure, according to various embodiments of the present disclosure.
- [0045] FIG. **12**B depicts a top view of an enlarged portion (indicated by dotted circle **12**B) of the frame locks depicted on a proximal end of the inboard understructure depicted in FIG. **12**A, according to various embodiments of the present disclosure.
- [0046] FIG. **12**C depicts a top view of an enlarged portion (indicated by dotted circle **12**C) of electrical connections depicted in FIG. **12**B, according to various embodiments of the present disclosure.
- [0047] FIG. **12**D is a cross-sectional view of FIG. **12**C along line mm, according to various embodiments of the present disclosure.
- [0048] FIG. **12**E depicts a top view of wires electrically coupled via an electrical connection, according to various embodiments of the present disclosure.
- [0049] FIG. **13**A depicts a top view of a plurality of electrical connections disposed on a first inboard arm; second inboard arm, first outboard arm; and second outboard arm of a flexible framework of a flexible tip portion of the high density electrode mapping catheter, according to various embodiments of the present disclosure.
- [0050] FIG. **13**B depicts a top view of a subset of the electrical connections disposed on an first inboard arm; second inboard arm, first outboard arm; and second outboard arm of a flexible framework of a flexible tip portion of the high density electrode mapping catheter depicted in FIG. **13**A, according to various embodiments of the present disclosure.
- [0051] FIG. **14** depicts a method flow diagram for a process for forming an integrated electrode structure that includes a conductive understructure, according to various embodiments of the present disclosure.
- [0052] FIG. **15** depicts a method flow diagram for a process for forming an integrated electrode structure that includes a substrate understructure, according to various embodiments of the present disclosure.
- [0053] FIG. **16** depicts a side view of an arm of the high density electrode mapping catheter, according to various embodiments of the present disclosure.
- [0054] FIGS. **17**A to **17**F depict a side view of an arm of the high density electrode mapping catheter and associated processing steps, according to various embodiments of the present

disclosure.

[0055] FIGS. **18**A to **18**G depict top views of embodiments of understructure of a high density electrode mapping catheter in FIG. **1**A, according to various embodiments of the present disclosure.

[0056] FIG. **19**A depicts a top view of a flexible tip portion of a high density electrode mapping catheter that includes a plurality of electrodes, according to various embodiments of the present disclosure

[0057] FIG. **19**B depicts an enlarged top view of a pair of contact pads disposed on the flexible tip portion depicted in FIG. **19**A, according to various embodiments of the present disclosure.

[0058] FIG. **19**C depicts an enlarged top view of a microelectrode disposed on the flexible tip portion depicted in FIG. **19**A, according to various embodiments of the present disclosure.

[0059] FIG. **19**D depicts a schematic side view of microelectrodes disposed on a top and bottom of the flexible tip portion depicted in FIG. **19**A, according to various embodiments of the present disclosure.

[0060] FIG. **20** depicts an isometric side, top, and distal end view of the flexible tip portion depicted in FIG. **19**A, according to various embodiments of the present disclosure.

[0061] FIG. **21** depicts a top view of an understructure of a flexible tip portion of a high density electrode mapping catheter, according to various embodiments of the present disclosure.

[0062] FIG. **22** depicts a top view of an alternate embodiment of an understructure of a high density electrode mapping catheter, according to various embodiments of the present disclosure.

[0063] FIGS. **23**A-**23**F depict an isometric top and side view of an arm of an understructure of a high density electrode mapping catheter, according to various embodiments of the present disclosure.

[0064] FIG. **24**A depicts a top view of an understructure of a flexible tip portion **660** of a high density electrode mapping catheter that includes a plurality of electrodes, traces, and a contact pad, according to various embodiments of the present disclosure.

[0065] FIG. **24**B depicts an enlarged top view of a portion of a second outboard arm of the flexible tip portion depicted in FIG. **24**A, according to various embodiments of the present disclosure.

[0066] FIG. **24**C depicts an enlarged top view of a portion of the flexible tip portion that includes a contact pad depicted in FIG. **24**A, according to various embodiments of the present disclosure.

[0067] FIG. **25**A depicts a top view of an understructure of a flexible tip portion of a high density electrode mapping catheter that includes a plurality of electrodes and rows of contact pads, according to various embodiments of the present disclosure.

[0068] FIG. **25**B depicts an enlarged view of the flexible tip portion depicted in FIG. **25**A, according to various embodiments of the present disclosure.

[0069] FIG. **25**C depicts an enlarged top view of the mounting portion of the flexible tip portion depicted in FIG. **25**A, according to various embodiments of the present disclosure.

[0070] FIG. **26** depicts a flexible tip portion of a high density electrode mapping catheter similar to that depicted in FIG. **19**A that includes a plurality of wires connected to contact pads disposed on a mounting portion, according to various embodiments of the present disclosure.

[0071] FIG. **27**A depicts sections of flex cable, according to various embodiments of the present disclosure.

[0072] FIG. **27**B depicts a cross-sectional end view of a ground trace of the flex cable depicted in FIG. **27**A, according to various embodiments of the present disclosure.

[0073] FIG. **28** depicts a flexible tip portion of a high density electrode mapping catheter disposed in a distal end of a catheter shaft, according to various embodiments of the present disclosure.

[0074] FIG. **29** depicts a high density electrode mapping catheter, according to various embodiments of the present disclosure.

[0075] FIG. **30** depicts another embodiment of a high density electrode mapping catheter, according to various embodiments of the present disclosure.

[0076] FIG. **31** depicts a schematic and block diagram view of an electromagnetic navigation system, according to various embodiments of the present disclosure.

[0077] FIG. **32** depicts a method control block flow diagram for determining a degree of contact between a first electrode and tissue, according to various embodiments of the present disclosure. [0078] FIG. **33** depicts a method control block flow diagram for determining a cardiac activation associated with endocardial tissue, according to various embodiments of the present disclosure. DETAILED DESCRIPTION

[0079] The contents of International Application No. PCT/US2014/011940 entitled Flexible High-Density Mapping Catheter Tips and Flexible Ablation Catheter Tips with Onboard High-Density Mapping Electrodes is hereby incorporated by reference.

[0080] FIG. 1A depicts a top view of a high density electrode mapping catheter 101 and FIG. 1B is an isometric side and top view of the high density electrode mapping catheter 101, according to various embodiments of the present disclosure. In some embodiments, the high density electrode mapping catheter 101 can include a flexible tip portion 110 that forms a flexible array of microelectrodes 102. This planar array (or 'paddle' configuration) of microelectrodes 102 comprises four side-by-side, longitudinally-extending arms 103, 104, 105, 106, which can form a flexible framework on which the microelectrodes 102 are disposed. The four microelectrode-carrier arms comprise a first outboard arm 103, a second outboard arm 106, a first inboard arm 104, and a second inboard arm 105. These arms can be laterally separated from each other.

[0081] Each of the four arms can carry a plurality of microelectrodes **102**. For example, each of the four arms can carry microelectrodes **102** spaced along a length of each of the four arms. Although each of the high density electrode mapping catheters **101** depicted in FIGS. **1**A and **1**B depict four arms, the high density electrode mapping catheters **101** could comprise more or fewer arms. Additionally, while the high density electrode mapping catheter **101** depicted in FIGS. **1**A and **1**B depict 18 electrodes (e.g., 5 microelectrodes on first outboard arm **103** and second outboard arm **106** and 4 microelectrodes on first inboard arm **104** and second inboard arm **103** and second outboard arm **106** can include more or fewer than 5 microelectrodes and the first inboard arm **104** and second inboard arm **105** can include more or fewer than 4 microelectrodes).

and/or mapping procedures. For example and without limitation, the microelectrodes **102** can be used for electrophysiological studies, pacing, cardiac mapping, and ablation. In some embodiments, the microelectrodes **102** can be used to perform unipolar or bipolar ablation. This unipolar or bipolar ablation can create specific lines or patterns of lesions. In some embodiments, the microelectrodes **102** can receive electrical signals from the heart, which can be used for electrophysiological studies. In some embodiments, the microelectrodes **102** can perform a location or position sensing function related to cardiac mapping.

[0082] In some embodiments, the microelectrodes **102** can be used in diagnostic, therapeutic,

[0083] In some embodiments, the high density electrode mapping catheter 101 can include a catheter shaft 107. The catheter shaft 107 can include a proximal end and a distal end. The distal end can include a connector 108, which can couple the distal end of the catheter shaft 107 to a proximal end of the planar array. The catheter shaft 107 can define a catheter shaft longitudinal axis aa, as depicted in FIG. 1A, along which the first outboard arm 103, first inboard arm 104, second inboard arm 105, and second outboard arm 106 can generally extend parallel in relation therewith. The catheter shaft 107 can be made of a flexible material, such that it can be threaded through a tortuous vasculature of a patient. In some embodiments, the catheter shaft 107 can include one or more ring electrodes 111 disposed along a length of the catheter shaft 107. The ring electrodes 111 can be used for diagnostic, therapeutic, and/or mapping procedures, in an example.

[0084] As depicted in FIG. 1B, the flexible tip portion 110 can be adapted to conform to tissue

(e.g., cardiac tissue). For example, when the flexible tip portion **110** contacts tissue, the flexible tip portion can deflect, allowing the flexible framework to conform to the tissue. In some

embodiments, the arms (or the understructure of the arms) comprising the paddle structure (or multi-arm, electrode-carrying, flexible framework) at the distal end of the catheters depicted in FIGS. 1A and 1B are preferably constructed from a flexible or spring-like material such as Nitinol and/or a flexible substrate, as discussed herein. The construction (including, for example, the length and/or diameter of the arms) and material of the arms can be adjusted or tailored to be created, for example, desired resiliency, flexibility, foldability, conformability, and stiffness characteristics, including one or more characteristics that may vary from the proximal end of a single arm to the distal end of that arm, or between or among the plurality of arms comprising a single paddle structure. The foldability of materials such as Nitinol and/or flexible substrate provide the additional advantage of facilitating insertion of the paddle structure into a delivery catheter or introducer, whether during delivery of the catheter into the body or removal of the catheter from the body at the end of a procedure.

[0085] Among other things, the disclosed catheters, with their plurality of microelectrodes, are useful to (1) define regional propagation maps of particularly sized areas (e.g., one centimeter square areas) within the atrial walls of the heart; (2) identify complex fractionated atrial electrograms for ablation; (3) identify localized, focal potentials between the microelectrodes for higher electrogram resolution; and/or (4) more precisely target areas for ablation. These mapping catheters and ablation catheters are constructed to conform to, and remain in contact with, cardiac tissue despite potentially erratic cardiac motion. Such enhanced stability of the catheter on a heart wall during cardiac motion provides more accurate mapping and ablation due to sustained tissueelectrode contact. Additionally, the catheters described herein may be useful for epicardial and/or endocardial use. For example, the planar array embodiments depicted herein may be used in an epicardial procedure where the planar array of microelectrodes is positioned between the myocardial surface and the pericardium. Alternatively the planar array embodiments may be used in an endocardial procedure to quickly sweep and/or analyze the inner surfaces of the myocardium and quickly create high-density maps of the heart tissue's electrical properties. [0086] FIG. **2**A is an isometric side and top view of an inboard understructure **120** (also referred to herein as inner understructure) of a high density electrode mapping catheter in FIG. 1A, according to various embodiments of the present disclosure. In some embodiments, the inboard understructure **120** can be formed from a flexible or spring-like material such as Nitinol and/or a flexible substrate, as discussed herein. The inboard understructure **120** can include a first inboard arm understructure 121 and a second inboard arm understructure 122. Although not shown, the outboard understructure (also referred to herein as outer understructure) that provides the understructure for the first outboard arm **103** and the second outboard arm **106** can be formed and/or processed in a manner analogous to that discussed in relation to the inboard understructure **120**. Further, if the high density electrode mapping catheter includes additional arms, those arms can be formed and/or processed in a manner analogous to that discussed in relation to the inboard understructure **120**. For the sake of brevity, discussion is directed towards the inboard understructure **120**. As depicted, the inboard understructure **120** can include a first inboard mounting arm 123 and a second inboard mounting arm 124. The inboard mounting arms can be inserted into a distal end of the catheter **107** and through the connector **108** and can be used to connect the flexible tip portion **110** to the distal end of the catheter **107**. In some embodiments, the inboard mounting arms can be inserted through a torsional spacer, as discussed herein. [0087] As depicted in FIG. 2A, the inboard understructure **120** (and although not depicted, the outboard understructure) can be formed from a planar piece of material. However, in some embodiments, the inboard understructure **120** (and the outboard understructure) can be formed from a cylindrical, square, or other shape of understructure. In some embodiments, the inboard understructure **120** and the outboard understructure can be formed from a single unitary piece of material, as discussed in relation to FIGS. **18**A to **18**G.

[0088] FIG. 2B depicts an isometric side and top view of a coated inboard understructure 122-1 of

a high density electrode mapping catheter **101**, according to various embodiments of the present disclosure. In some current practices, high density electrode mapping catheters can be assembled using tubular subassemblies for the inboard understructure and the outboard understructure. One reason for the use of tubing when assembling the understructures is to allow wire to be threaded through the tubing for connection of each individual microelectrode. This process can be labor and/or cost intensive, since each wire may be individually threaded through the tubing and individually connected with each microelectrode. Further, ensuring that a reliable electrical connection is established between each microelectrode and its wire can be challenging. [0089] In addition, use of tubing can result in a less predictable deflection of the flexible tip portion since the walls of the tubing may be symmetrical and are not biased to bend in a particular manner. Embodiments of the present disclosure can provide for a less labor and cost intensive assembly process, as well as provide for a more predictable deflection of the flexible tip portion 110. In some embodiments, a plurality of patterned conductive traces can be disposed on a flexible framework of an expandable structure. For instance, the plurality of patterned conductive traces can be disposed on a flexible framework of an expandable medical device structure. Some embodiments of the present disclosure can provide for a flexible tip portion **110** that includes a plurality of patterned conductive traces disposed on the flexible framework of the flexible tip portion **110**, as discussed herein, in lieu of individually run wires. The patterned conductive traces can be electrically coupled with the plurality of microelectrodes **102** disposed on the flexible tip portion **110**. The patterned conductive traces can be formed via a process that is less labor and/or cost intensive than current practices. Some embodiments of the present disclosure can provide a means for testing an electrical connection between the microelectrodes 102 and the patterned conductive traces and/or wires, which electrically connect the plurality of microelectrodes **102**. [0090] In some embodiments of the present disclosure, the inboard understructure can be coated with a dielectric material. In some embodiments, examples of the dielectric material can include parylene. Other dielectric materials such as a polyimide (e.g., PI-2771 or HD-4004 available from HD Microsystems) and/or an epoxy (e.g., SU8 epoxy available from MicroChem Corp), etc. can be used in accordance with design and end-use requirements. In some embodiments where the understructure is an electrically conductive material, the dielectric can electrically insulate the conductive traces, as discussed herein, from the electrically conductive material. [0091] FIGS. **3**A to **3**K depict a top view and end view of a second inboard arm of the high density electrode mapping catheter and associated processing steps, according to various embodiments of the present disclosure (the top view is depicted above the end view in FIGS. 3A to 3K). FIG. 3A depicts a conductive flexible framework **130** of the inboard understructure **120** coated with a dielectric material **131**, according to various embodiments of the present disclosure. In an example, the dielectric material can be applied to the conductive flexible framework **130** to coat the conductive flexible framework **130** in the dielectric material **131** to provide an electrically insulative layer, upon which patterned conductive traces can be disposed. [0092] FIG. **3**B depicts the conductive flexible framework **130** of the inboard understructure **120** (also referred to as flexible framework) coated with the dielectric material 131 and a mask 134 (also referred to as masked portion), according to various embodiments of the present disclosure. In an example, one or more unmasked trace pattern portions 132-1, 132-2, 132-3 can be formed on the dielectric coating of the conductive flexible framework **130** via the mask **134**. In some embodiments, the mask **134** can form channels **136** along the dielectric material, in which a conductive material can be deposited to form the electrically conductive traces. [0093] FIG. **3**C depicts seed layers **138-1**, **138-2**, **138-3** deposited in the unmasked trace pattern portions 132-1, 132-2, 132-3 of FIG. 3B, according to various embodiments of the present disclosure. In some embodiments, the seed layers can be deposited within the channels 136 to partially fill the channels with the seed layers **138-1**, **138-2**, **138-3**. In some embodiments, the seed layers 138-1, 138-2, 138-3 can include copper (Cu), nickel (Ni), aluminum (Al), etc. The seed

layers **138-1**, **138-2**, **138-3** can provide a base layer upon which a layer of conductive material can be deposited. In an example, the seed layers **138-1**, **138-2**, **138-3** can provide an interface between the dielectric material **131** and a conductive material which is deposited on the conductive flexible framework **130** to form electrically conductive traces. For instance, the seed layer can allow for the conductive material to be adhered to the dielectric material **131** (e.g., the conductive material is adhered to the dielectric material **131** via the seed layers **138-1**, **138-2**, **138-3**). [0094] FIG. 3D depicts the seed layers **138-1**, **138-2**, **138-3** being plated with a conductive material (e.g., copper) to form electrically conductive traces 140-1, 140-2, 140-3, according to various embodiments of the present disclosure. In an example, the conductive material is deposited on the seed layers **138-1**, **138-2**, **138-3** and is thus adhered to the dielectric material **131**. However, because the portions surrounding the electrically conductive traces **140-1**, **140-2**, **140-3** are masked, the conductive material is not deposited in those locations. [0095] FIG. **3**E depicts the conductive flexible framework **130** coated with the dielectric **131** and the electrically conductive traces 140-1, 140-2, 140-3, according to various embodiments of the present disclosure. In some embodiments, the masked portion **134** can be stripped, leaving the electrically conductive traces **140-1**, **140-2**, **140-3** exposed on the dielectric material **131** that coats the conductive flexible framework **130**. In an example, the dielectric material **131** can insulate the electrically conductive traces **140-1**, **140-2**, **140-3** from the conductive flexible framework **130**, thus preventing shorts from occurring between the electrically conductive traces **140-1**, **140-2**, **140**-[0096] FIG. **3**F depicts the conductive flexible framework **130** coated with an additional layer of dielectric material **141**, according to various embodiments of the present disclosure. The additional layer of dielectric material **141** can be deposited over the initial layer of dielectric material **131** and over the electrically conductive traces **140-1**, **140-2**, **140-3**. In some embodiments, the additional layer of dielectric material **141** may only be deposited on the side of the conductive flexible framework **130** upon which the electrically conductive traces **140-1**, **140-2**, **140-3** are disposed. [0097] FIG. **3**G depicts the conductive flexible framework **130** after the additional layer of dielectric material **141** has been stripped from a distal portion of each of the electrically conductive traces 140-1, 140-2, 140-3, leaving an exposed area 142-1, 142-2, 142-3. In some embodiments, laser ablation can be used to strip the distal portion of each of the electrically conductive traces **140-1**, **140-2**, **140-3** to create the exposed area **142-1**, **142-2**, **142-3**. In some embodiments, the additional layer of dielectric material can be removed via laser ablation. In some embodiments, the exposed area 142-1, 142-2, 142-3 can be formed using photo-definable dielectric materials, wherein the exposed area **142-1**, **142-2**, **142-3** is masked and the dielectric material is patterned over the masked area. The photo-definable dielectric material can be developed and the masked material can be stripped to generate the exposed area **142-1**, **142-2**, **142-3**. [0098] FIG. 3H depicts mask defined areas 143-1, 143-2, 143-3 on the conductive flexible framework **130**, according to various embodiments of the present disclosure. In some embodiments, a mask material (e.g., masked portions 144-1, 144-2, 144-3) can be a photodefinable mask material, wherein the mask material can be patterned over the masked portions 144-**1**, **144-2**, **144-3** and developed to generate the masked portions **144-1**, **144-2**, **144-3**. The masked portions can be located proximally and distally with respect to the distal portion of each of the plurality of conductive traces 140-1, 140-2, 140-3 (and the exposed areas 142-1, 142-2, 142-3) to form the mask defined areas **143-1**, **143-2**, **143-3**. [0099] FIG. 3I depicts seed layers **145-1**, **145-2**, **145-3** deposited on the mask defined areas **143-1**, **143-2**, **143-3**, according to various embodiments of the present disclosure. As previously discussed, the seed layers 145-1, 145-2, 145-3 can be deposited within the mask defined areas. In some embodiments, the seed layers **145-1**, **145-2**, **145-3** can include copper (Cu), nickel (Ni), aluminum

(Al), etc. The seed layers **145-1**, **145-2**, **145-3** can provide a base layer upon which a layer of conductive material can be deposited. In an example, the seed layers **145-1**, **145-2**, **145-3** can

```
provide an interface between the additional layer of dielectric material 141 and the distal portion of
the electrically conductive traces 140-1, 140-2, 140-3 and subsequently applied conductive material
that forms the microelectrodes 102. For instance, the seed layer can allow for the conductive
material that forms the microelectrodes to be adhered to the additional dielectric material 141. And
the distal portion of the electrically conductive traces 140-1, 140-2, 140-3.
[0100] FIG. 3J depicts microelectrodes 146-1, 146-2, 146-3 that have been formed on the
conductive flexible framework 130 via a plating process, according to various embodiments of the
present disclosure. In some embodiments, the seed layers 145-1, 145-2, 145-3 can be plated with a
conductive material to form the microelectrodes 146-1, 146-2, 146-3. The conductive material that
is used to form the microelectrodes 146-1, 146-2, 146-3 can include platinum iridium (Pt—Ir) in
some embodiments. The platinum iridium coating process can be performed as described in Rao,
Chepuri R. K. and Trivedi, D. C., Chemical and electrochemical depositions of platinum group
metals and their applications, Coordination Chemistry Reviews, 249, (2005) pp 613-631; Sheela
G., et al., Electrodeposition of Iridium, Bulletin of Electrochemistry, 15 (5-6) May-June 1999, pp
208-210; Wu, Feng, et al., Electrodeposition of Platinum-Iridium Alloy on Nickel-Base Single-
Crystal Superalloy TMS75, Surface and Coatings Technology Volume 184, Issue 1, 1 Jun. 2004;
Baumgartner, M. E. and Raub, Ch. J., The Electrodeposition of Platinum and Platinum Alloys,
Platinum Metals Review, 1988, 32, (4), 188-197; Ohno, Izumi, Electroless Deposition of Palladium
and Platinum, Modern Electroplating, 5th Edition, Edited by Mordechay Schlesinger and Milan
Paunovic, Copyright 2010, John Wiley & Sons, Inc. Chp 20, 477-482; Electroplating the Platinum
Metals-A RECENT SURVEY OF PROCESSES AND APPLICATIONS, Platinum Metals Rev.,
1970, 14, (3) pp 93-94; and/or Yingna Wu et al., Characterization of Electroplated Platinum-
Iridium Alloys on the Nickel-Base Single Crystal Superalloy, Materials Transactions, Vol. 46, No.
10 (2005) pp 2176-2179, which are hereby incorporated by reference.
[0101] In some embodiments, the conductive material can be plated circumferentially around the
flexible framework 130. For example, the conductive material can extend circumferentially around
one of the first and second inboard arm understructures 121, 122. As such, the seed layers 145-1,
145-2, 145-3, as well as the masked portions 144-1, 144-2, 144-3 can extend circumferentially
around the first and second inboard arm understructures 121, 122, such that the conductive material
can be plated circumferentially around the flexible framework 130. As such, the microelectrodes
146-1, 146-2, 146-3 can be formed as ring electrodes that are axial with a respective one of the first
inboard arm understructure 121 and the second inboard arm understructure 122.
[0102] FIG. 3K depicts the dielectric 131 coated conductive flexible framework 130 that includes
the additional layer of dielectric material 141, electrically conductive traces 140-1, 140-2, 140-3,
and the microelectrodes 146-1, 146-2, 146-3. In some embodiments, the masked portions 144-1,
144-2, 144-3 can be stripped, thus exposing the dielectric coated electrically conductive traces 140-
1, 140-2, 140-3 on the dielectric 131 coated conductive flexible framework 130. The
microelectrodes 146-1, 146-2, 146-3 can be electrically coupled to each respective electrically
conductive trace 140-1, 140-2, 140-3, while remaining insulated from one another as a result of the
additional dielectric material 141 that coats the electrically conductive traces 140-1, 140-2, 140-3.
[0103] FIG. 4A depicts a top view of a processed inboard understructure 160, according to various
embodiments of the present disclosure. FIG. 4B depicts an enlarged portion (indicated by dotted
oval 4B) of a first inboard arm 164 of the processed inboard understructure depicted in FIG. 4A,
according to various embodiments of the present disclosure. As depicted, the processed inboard
understructure 160 can have a dielectric coating 161 that coats a conductive flexible framework
(e.g., conductive flexible framework 130) of the processed inboard understructure 160. The
dielectric coating 161 can be disposed between each of a plurality of patterned conductive traces
162-1, 162-2, 162-2 and the conductive flexible framework. The dielectric coating 161 can insulate
the patterned conductive traces 162-1, 162-2, 162-2 from the conductive flexible framework, thus
preventing a short from occurring between the patterned conductive traces 162-1, 162-2, 162-2. In
```

some embodiments, a first patterned conductive trace **162-1** can be electrically coupled to a first microelectrode **163-1**; a second patterned conductive trace **162-2** can be electrically coupled to a second microelectrode **163-2**; and a third patterned conductive trace **162-3** can be electrically coupled to a third microelectrode **163-3**.

[0104] In some embodiments, the plurality of microelectrodes **163-1**, **163-2**, **163-3** can be arranged in a group. For example, the plurality of microelectrodes **163-1**, **163-2**, **163-3** disposed along the first inboard arm **164** can be arranged in a respective group of three microelectrodes, as depicted in FIG. **4**A, although more or fewer than three microelectrodes **163-1**, **163-2**, **163-3** can be arranged in a group along the first inboard arm **164**. In addition, groups of microelectrodes can be arranged along the second inboard arm **165**, along the first outboard arm, and/or along the second outboard arm, as depicted in FIG. **1**A. In some embodiments, the high density electrode mapping catheter **101** can include more than or fewer than four arms.

[0105] The plurality of groups of microelectrodes can be arranged in respective rows of longitudinally aligned microelectrodes that are aligned parallel to a catheter shaft longitudinal axis a'a'. In some embodiments, the plurality of patterned conductive traces **162-1**, **162-2**, **162-2** can be aligned parallel to the catheter shaft longitudinal axis a'a', depicted in FIG. **1**A.

[0106] FIG. 4C depicts a cross-sectional view of the first outboard arm 164 along the line cc, in FIG. 4B, according to various embodiments of the present disclosure. FIG. 4D depicts a cross-sectional view of the first outboard arm 164 along line dd, in FIG. 4B, according to various embodiments of the present disclosure. As depicted, the first outboard arm 164 includes the conductive flexible framework 165 that has been coated with a dielectric material 166′, 166″. In some embodiments, the conductive flexible framework 165 can be coated with an upper layer of dielectric material 166′ and a lower layer of dielectric material 166″. However, the conductive flexible framework 165 can be coated circumferentially with the dielectric material, as discussed herein, such that microelectrodes that are circumferentially and coaxially disposed around the conductive flexible framework 165 are insulated from the conductive flexible framework 165, preventing short circuiting between multiple microelectrodes disposed on the conductive flexible framework 165.

[0107] A first patterned conductive trace **162-1** can be disposed on top of the upper layer of dielectric material **166**′ and can be electrically coupled with the first microelectrode **163-1**′ via an exposed area located at a distal portion of the first patterned conductive trace **162-1**, as discussed herein. In an example, the first microelectrode **163-1**′ can be coupled to the first patterned conductive trace **162-1** by plating a masked defined area (e.g., mask defined area **145-3**), as discussed in relation to FIGS. **31** to **3**K. The first microelectrode **163-1**′ can contact the exposed area **168** (e.g., exposed area **142-3**) of the first patterned conductive trace **162-1**, thus electrically coupling the first patterned conductive trace **162-1** with the first microelectrode **163-1**′. In some embodiments, the first microelectrode **163-1**′ can be electrically coupled to the exposed area **168** of the first patterned conductive trace **162-1** at a location that is proximal to a distal end **167** of the first patterned conductive trace **162-1**.

[0108] As depicted in FIG. **4**C, the second patterned conductive trace **162-2** (and third patterned conductive trace **162-3**, which is obscured by the second patterned conductive trace **162-2**) can extend distally with respect to the first microelectrode **163-1**′ and can be electrically coupled with the second microelectrode **163-2** (and third microelectrode **163-3**). The second patterned conductive trace **162-2** (and the third patterned conductive trace **162-3**) can be electrically insulated from the first microelectrode **163-1**′ via an additional layer of dielectric material **169**, as discussed herein.

[0109] In some embodiments, single layers or multiple layers of patterned conductive traces can be formed on the conductive flexible framework **165**. For example, the processed inboard understructure **160** is depicted as including a single layer of patterned conductive traces **162-1**, **162-2**, **162-3**. However, in some embodiments, the processed inboard understructure **160** can have

multiple layers of patterned conductive traces. This can be desirable where an increased number of microelectrodes are placed on one or more of the inboard arms and/or outboard arms; a width of the frame is decreased, thus decreasing an area for placement of the patterned conductive traces; and/or a width of the patterned conductive traces is increased (e.g., due to a material selection associated with the traces). For example, with an increased number of microelectrodes, a width of the arms may not be sufficient such that the patterned conductive traces are adequately separated from one another to prevent cross-talk and/or shorting between the patterned conductive traces. As such, multiple layers of patterned conductive traces can be formed on the arms, each layer being separated from one another by a dielectric material.

[0110] Connection between each patterned conductive trace and an associated microelectrode can be made by filled vias, in some embodiments, for example, as discussed in relation to FIG. **16**. In some embodiments of the present disclosure, depending on a width of each respective arm, five patterned conductive traces and associated microelectrodes can be formed in a single layer of patterned conductive traces and along a single arm using a 0.001 inch line (e.g., conductive trace) and space (e.g., spacing between the conductive traces) substrate design. For example, each of the patterned conductive traces can be 0.001 inches wide and each patterned conductive trace can be spaced 0.001 inches away from an adjacent patterned conductive trace. In some embodiments, where a greater number of microelectrodes and/or patterned conductive traces are desired, multiple layers of patterned conductive traces can be employed and/or additional traces can be formed on an opposite side of the conductive flexible framework, as depicted in FIG. **5**.

[0111] FIG. 5 depicts a cross-sectional view of patterned conductive traces formed on a top and bottom of a conductive flexible framework, according to various embodiments of the present disclosure. In some embodiments, a conductive flexible framework 180 can be coated with a dielectric material, as discussed herein. The dielectric material can be disposed between patterned conductive traces **181-1**, **181-2**, **181-3**, **181-4** and the conductive flexible framework **180**, which can serve to insulate the patterned conductive traces **181-1**, **181-2**, **181-3**, **181-4** from the conductive flexible framework **180**. In some embodiments, one or more patterned conductive traces can be formed on a top of the conductive flexible framework **180** (e.g., patterned conductive traces 181-1, 181-2) and one or more patterned conductive traces can be formed on a bottom of the conductive flexible framework 180 (e.g., patterned conductive traces 181-3, 181-4) in a manner analogous to that discussed in relation to FIGS. 3A to 3K. Accordingly, four microelectrodes can be disposed along the conductive flexible framework **180**. For example, a first microelectrode **182** can be disposed proximally with respect to a second microelectrode **183**, in some embodiments. [0112] FIG. **6**A depicts the conductive flexible framework **130**′ after the additional layer of dielectric material **141**′ has been stripped from a distal portion of each of the electrically conductive traces 140-1', 140-2', 140-3', leaving an exposed area 142-1', 142-2', 142-3', according to various embodiments of the present disclosure. In an example, process steps associated with FIGS. 3A to **3**G can be performed to arrive at the embodiment depicted in FIG. **6**A. In some embodiments, rather than plating the exposed areas 142-1', 142-2', 142-3', solder can be deposited on the distal portions of each of the electrically conductive trace (e.g., traces 140-1', 140-2', 140-3'). For example, FIG. **6**B depicts a processed conductive flexible framework **199** after the additional layer of dielectric material **141**' has been stripped from a distal portion of each of the electrically conductive traces **140-1**′, **140-2**′, **140-3**′, leaving an exposed area **142-1**′, **142-2**′, **142-3**′ on which solder **191-1**, **191-2**, **191-3** has been deposited, according to various embodiments of the present disclosure. FIG. **6**C depicts a cross-sectional end view of the processed conductive flexible framework **199** depicted in FIG. **6**B along the line cc.

[0113] FIG. **6**D depicts a hollow cylindrical band **200**, according to various embodiments of the present disclosure. FIG. **6**E depicts a hollow cylindrical band **203** in which solder **208** is deposited, according to various embodiments of the present disclosure. FIG. **6**F depicts an isometric side and front view of the hollow cylindrical band **200** depicted in FIG. **6**D, according to various

embodiments of the present disclosure. In some embodiments, the hollow cylindrical band **200** can be the same or similar to the hollow cylindrical band **203** depicted in FIG. **6**E. In some embodiments, the hollow cylindrical band **200** can include a split **201**, which can extend longitudinally down a sidewall of the hollow cylindrical band. Although, as depicted in FIG. **6**D (and FIG. **6**F), the split **201** extends parallel with a longitudinal axis of the hollow cylindrical band **200**, the split **201** can be divergent with the longitudinal axis of the hollow cylindrical band **200**. [0114] In some embodiments, as depicted in FIG. **6**G the hollow cylindrical band **200** can be coaxially aligned with the processed conductive flexible framework 199. In some embodiments, the hollow cylindrical band **200** can be slipped over a proximal end of an arm of the processed conductive flexible framework **199** into position over the solder **191-1**. For example, the hollow cylindrical band **200** can be placed over the solder **191-1** such the solder **191-1** is aligned with the hollow cylindrical band 200 between a proximal end and a distal end of the hollow cylindrical band **200**. In some embodiments, a circumferential width of the split **201** in the hollow cylindrical band **200** (defined by line gg in FIG. **6**D) can be greater than a height of the processed conductive flexible framework (defined by line ff in FIG. 6C), such that the hollow cylindrical band 200 (e.g., the slit **201** of the hollow cylindrical band **200**) can be laterally slid over the processed conductive flexible framework 199, instead of being slipped over a proximal end of the arm of the processed conductive flexible framework 199.

[0115] FIG. 6H depicts a processing step associated with the hollow cylindrical band 200, according to various embodiments of the present disclosure. In some embodiments, as discussed herein, the hollow cylindrical band 200 can be coaxially aligned with the processed conductive flexible framework 199 and the solder 191-1 can be aligned with the hollow cylindrical band 200 between a proximal end and a distal end of the hollow cylindrical band 200. The hollow cylindrical band 200 can be swaged onto the processed conductive flexible framework 199. In an example, a force can be applied to the hollow cylindrical band 200 in a direction of at least one of the arrows (e.g., arrow 205) to swage the hollow cylindrical band 200 onto the processed conductive flexible framework 199. FIG. 6I depicts the swaged hollow cylindrical band 206 after the processing step described in relation to FIG. 6H, according to various embodiments of the present disclosure. As depicted, a circumferential width of the split 202 can be decreased as a result of the swaging process and the swaged hollow cylindrical band 206 can contact portions of the processed conductive flexible framework 199 (e.g., the corners of the processed conductive flexible framework 199 and the solder 191-1).

[0116] FIG. **6**J depicts the swaged hollow cylindrical band **206** and the processed conductive flexible framework **199** after a solder reflow process, according to various embodiments of the present disclosure. In an example, a reflow process can be performed to reflow the solder depicted in FIG. **6**I, such that the reflowed solder **207** is distributed and contacts both the swaged hollow cylindrical band **206** and the processed conductive flexible framework **199**. The solder **207** can connect the swaged hollow cylindrical band **206** and the processed conductive flexible framework **199** and can electrically couple the electrically conductive trace **140-1** and the swaged hollow cylindrical band **206**. As such, the swaged hollow cylindrical band **206** forms the microelectrode, as discussed herein.

[0117] With reference to FIG. **6**E, where solder **208** is deposited on the hollow cylindrical band **203**, solder (e.g., solder **191-1**) may or may not be placed on the exposed area **142-1**′, **142-2**′, **142-3**′ of the electrically conductive traces **140-1**′, **140-2**′, **140-3**′. In an example, the hollow cylindrical band **203** can be placed over the processed conductive flexible framework **199** such that the solder **208** is in close proximity to the exposed area **142-1**′, **142-2**′, **142-3**′ of the electrically conductive traces **140-1**′, **140-2**′, **140-3**′. In some embodiments, the processing steps depicted and described in relation to FIGS. **6**G-**6**J can be performed to swage the hollow cylindrical band **203** and reflow the solder **208** to establish a connection between the hollow cylindrical band **203** and the processed conductive flexible framework **199** and an electrical connection between the hollow cylindrical

band **203** and the electrically conductive trace **140-1**′. In some embodiments, solder can be deposited on the hollow cylindrical band **203** and the exposed area **142-1**′, **142-2**′, **142-3**′ of the electrically conductive traces **140-1**′, **140-2**′, **140-3**′ to allow for an increased distribution of solder in the reflowing process.

[0118] FIG. 7A depicts a top view and end view of a second inboard arm of the high density electrode mapping catheter, wherein a flexible framework 220 of the high density electrode mapping catheter is formed from a flexible substrate and associated processing steps, according to various embodiments of the present disclosure (the top view is depicted above the end view in FIGS. 7A to 7C). In some embodiments, the flexible framework 220 can be formed from a flexible substrate, in some embodiments. The flexible substrate can include for example, those discussed in relation to FIG. 11. In some embodiments, the flexible substrate can include a printed circuit board. For example, the printed circuit board can be formed from a fiberglass and/or a plastic, which does not conduct electricity. In some embodiments, the printed circuit board can be formed from a polymer. As depicted in FIG. 7A, in some embodiments, the flexible substrate 220 can be coated with a conductive material 222. The conductive material 222 can include Cu, for example, although other conductive materials can be used.

[0119] FIG. 7B depicts a top view and end view of the second inboard arm of the high density electrode mapping catheter, wherein a mask layer is deposited on the conductive material **222** coating the flexible framework **220** to form a masked trace pattern **223-1**, **223-2**, **223-3** on the coated flexible framework and an unmasked portion, according to various embodiments of the present disclosure. In an example, the surrounding areas of the masked trace pattern **223-1**, **223-2**, **223-3** include the uncoated conductive material **222**.

[0120] FIG. 7C depicts a top view and end view of the second inboard arm of the high density electrode mapping catheter, wherein the surrounding areas of the masked trace pattern 223-1, 223-2, 223-3 have been stripped of the conductive material 222. In an example, the conductive material 222 can be stripped such that the flexible substrate 220 that surrounds the masked trace pattern 223-1 is exposed. As depicted in FIG. 7C, the masked trace pattern 223-1, 223-2, 223-3 has also been stripped thus exposing electrically conductive traces 224-1, 224-2, 224-3. The electrically conductive traces 224-1, 224-2, 224-3 can be directly connected with the flexible substrate 220, which is electrically insulative. Accordingly, the electrically conductive traces 224-1, 224-2, 224-3 can be electrically insulated from one another, thus preventing short circuits from occurring between the electrically conductive traces 224-1, 224-2, 224-3.

[0121] In some embodiments, as will be apparent to those of skill in the art, the embodiment depicted in FIG. 7C can be processed further using the processing steps depicted and described in relation to FIGS. 3E to 3K and/or FIGS. 6A to 6J. For example, a dielectric coating can be deposited on the electrically conductive traces 224-1, 224-2, 224-3 as well as the flexible substrate 220 and exposed areas of the electrically conductive traces 224-1, 224-2, 224-3 can be formed. [0122] FIG. 8A depicts a top view of a processed inboard understructure 228, according to various embodiments of the present disclosure. FIG. 8B depicts an enlarged portion (indicated by dotted oval 8B) of a first inboard arm 230 of the processed inboard understructure 228 depicted in FIG. 8A, according to various embodiments of the present disclosure. The processed inboard understructure 228 includes a first inboard arm 230 and a second inboard arm 231. The processed inboard understructure 228 can be formed from a flexible substrate, in some embodiments, as discussed herein. For example, the flexible substrate include a printed circuit board and/or polymer, in some embodiments. The flexible substrate can be coated with a dielectric material 232, in some embodiments.

[0123] The first inboard arm **230** of the processed inboard understructure **228** includes electrically conductive traces **224-1**, **224-2**, **224-3** and microelectrodes **227-1**, **227-2**, **227-3**. A first electrically conductive trace **224-1** can be electrically coupled to a first microelectrode **227-1**; a second electrically conductive trace **224-2** can be electrically coupled to a second microelectrode **227-2**;

and a third electrically conductive trace **224-3** can be electrically coupled to a third microelectrode **227-3**. The second inboard arm **231** of the processed inboard understructure **228** includes electrically conductive traces **226-1**, **226-2**, **226-3** and microelectrodes **229-1**, **229-2**, **229-3**. A first electrically conductive trace **226-1** can be electrically coupled to a first microelectrode **229-1**; a second electrically conductive trace **226-2** can be electrically coupled to a second microelectrode **229-2**; and a third electrically conductive trace **226-3** can be electrically coupled to a third microelectrode **229-3**.

[0124] FIG. **8**C depicts an enlarged portion (indicated by dotted oval **8**C) of the first inboard arm 230 of the processed inboard understructure 228 depicted in FIG. 8A, according to various embodiments of the present disclosure. In an example, FIG. **8**C depicts the first electrically conductive trace **224-1** electrically coupled to a first proximal termination contact pad **235-1**; the second electrically conductive trace **224-2** electrically coupled to a second proximal termination contact pad 235-2; and the third electrically conductive trace 224-3 electrically coupled to a third proximal termination contact pad **235-3**. The proximal termination contact pads are not depicted in FIG. **8**A. In some embodiments, the flexible framework of the flexible tip portion **110** of the high density electrode mapping catheter **101** can include the proximal termination contact pads. For example, each arm of the inboard understructure and/or each arm of the outboard understructure (and/or additional understructures not shown) can include the proximal termination contact pads along a proximal portion of the inboard understructure and/or outboard understructure. [0125] In some embodiments, the proximal termination contact pads **235-1**, **235-2**, **235-3** can provide electrical connection points for electrically connecting the microelectrodes (e.g., microelectrodes 227-1, 227-2, 227-3). For example, the proximal termination contact pads 235-1, 235-2, 235-3 can provide an increased area for an electrical connection to be made with each of the electrically conductive traces 224-1, 224-2, 224-3 and thus each of the microelectrodes 227-1, 227-2, 227-3. In some embodiments, the proximal termination contact pads 235-1, 235-2, 235-3 can be used to electrically test continuity between each of the electrically conductive traces and respective microelectrodes. For example, each of the proximal termination contact pads can be probed with an electrical testing device to ensure that an uninterrupted electrical connection exists between each of the proximal termination contact pads, a respective one of the electrically conductive traces, and a respective microelectrode. In some embodiments, the proximal termination contact pads can provide an increased area for probing with the electrical testing device (e.g., versus proving each individual electrically conductive trace).

[0126] FIG. **9**A depicts a top view of a bottom mold **245** for an overmolding process, according to various embodiments of the present disclosure. The bottom mold **245** includes a mold cavity **246**, which can be size and configured to accept an understructure (e.g., processed understructure) of the flexible tip portion **110**. In some embodiments, different molds can be used for the outboard understructure and the inboard understructure (and additional understructures if included). In some embodiments, the bottom mold **245** can be sized and configured to accept the processed inboard understructure **160** and/or the processed inboard understructure **228** in the mold cavity **246**, as depicted in FIG. **9**B.

[0127] FIG. **9**B depicts a top view of a processed inboard understructure **228** inserted into the bottom mold **245**, according to various embodiments of the present disclosure. In an example, the processed inboard understructure **228** depicted in FIG. **8**A is depicted as being inserted in the mold cavity **246** of the bottom mold **245**. FIG. **9**C depicts a cross-sectional side view of an assembled mold **250** along line hh in FIG. **9**B, according to various embodiments of the present disclosure. [0128] FIG. **9**C depicts a top mold **247** and the bottom mold **245** in a closed position, thus enclosing the processed inboard understructure **228** (consisting of distal portion **228-1** of the processed inboard understructure **228** and proximal portion **228-2** of the processed inboard understructure **228**) in the mold cavity and forming assembled mold **250**. In an example, the assembled mold **250** includes a bottom mold cavity **246**. The cross-sectional view of the bottom

mold cavity **246** depicts a distal bottom mold cavity **246-1** and a proximal bottom mold cavity **246-2**. The bottom mold cavity **246** can be formed in the bottom mold **245**. In an example, the assembled mold **250** includes a top mold cavity **248.** The cross-sectional view of the top mold cavity **248** depicts a distal top mold cavity **248-1** and a proximal top mold cavity **248-2**. The top mold cavity **248** can be formed in the top mold **247** of the assembled mold **250**. [0129] In some embodiments, the bottom mold **245** and the top mold **247** can include standoffs (not shown) that extend into the bottom mold cavity **246** and the top mold cavity **248** to position the processed inboard understructure **228** a particular distance away from walls of the bottom mold **245** and the top mold **247** that form the bottom mold cavity **246** and the top mold cavity **248**. In an example, the distance between the processed inboard understructure **228** and the walls of the bottom mold **245** and the top mold **247** can define a thickness of an overmolding that covers the understructure.

[0130] In some embodiments, the top mold **247** and/or the bottom mold **245** can include a port **249** configured for introduction of an overmolding material into the bottom mold cavity **246** and the top mold cavity **248**. In some embodiments, the assembled mold **250** can include a gate and runner system to help with distribution of the overmolding material into the bottom mold cavity **246** and the top mold cavity **248**. The gate and runner system can be designed in accordance with rheological properties of an overmolding material.

[0131] FIG. 9D depicts a top view of bottom mold **245** and an overmolded inboard understructure **260** after an overmolding process has been performed, according to various embodiments of the present disclosure. FIG. **9**E depicts a cross-sectional side view of an assembled mold and the overmolded inboard understructure in FIG. **9**D along line ii in FIG. **9**D, according to various embodiments of the present disclosure. As depicted, the processed inboard understructure **228** has been overmolded with an overmolding material **261**. The overmolding material **261** is injected via the port **249** and fills the space existing between the processed inboard understructure **228** and the walls of the bottom mold **245** and the top mold **247** (e.g., assembled mold **250**). In some embodiments, the overmolding material **261** can include a polyether block amide (e.g., PEBAX® available from Arkema). In some embodiments, the overmolding material can be a polyurethane (e.g., Pellethane 2363-80A or 2363-90A, or Tecoflex EG93A or EG100A both available from Lubrizol Corp.) or other suitable materials having the required biocompatibility, elastomeric, and mechanical properties required by specific design and end-use requirements.

[0132] FIG. **10**A depicts a cross-sectional side view of an ablation fixture **270** in which the

overmolded inboard understructure **260** has been placed, according to various embodiments of the present disclosure. As depicted, the microelectrodes **229-1**, **229-2**, **229-3** have been overmolded with the overmolding material **261**. In some embodiments, the ablation fixture **270** can include an ablation reference point **271**, which can be referenced by an ablation tool, in some embodiments. Although a location of the ablation reference point **271** is depicted as being proximal to the overmolded inboard understructure **260**, the reference point **271** can be located distally with respect to the overmolded inboard understructure **260**, and/or to either side of the overmolded inboard understructure **260**. The ablation tool can be a laser and/or other type of ablation tool, in some embodiments, which can reference the reference point **271** such that the overmolding material **261** covering (e.g., covering an outer surface of) the microelectrodes **229-1**, **229-2**, **229-3** can be accurately removed by the ablation tool.

[0133] In some embodiments, and as depicted, the reference point **271** can be located a particular distance away from each of the microelectrodes, represented by line jj, line kk, and line ll. In some embodiments, the ablation tool can ablate the overmolding material **261** proximally and/or distally with respect to an end point of each of the lines to remove the overmolding material **261** from the outer surface of the microelectrodes **229-1**, **229-2**, **229-3**. In some embodiments, the ablation tool can be programmed to ablate at specific locations based on programmable instructions. For example, a processor (e.g., computer) can execute computer executable instructions stored on a

non-transitory computer readable medium to cause the ablation tool to ablate at specific locations. [0134] FIG. **10**B depicts a top view of the ablation fixture **270** in FIG. **10**A after an ablation processing step has been completed and an ablated overmolded inboard understructure **280**, according to various embodiments of the present disclosure. As depicted, the overmolding material **261** has been removed from the microelectrodes **227-1**, **227-2**, **227-3**, **229-1**, **229-2**, **229-3**, thus exposing the microelectrodes **227-1**, **227-2**, **227-3**, **229-1**, **229-2**, **229-3**. In some embodiments, overmolding material **261** can be removed from the proximal termination contact pads **235** in a similar manner. In some embodiments, a first side of the overmolded inboard understructure **260** can be ablated and can then be turned over so a second side of the partially ablated inboard understructure can be ablated. Thus, the overmolding material **261** can be circumferentially removed from the overmolded inboard understructure **260**. FIG. **10**C depicts a top view of the ablated overmolded inboard understructure **280** after being ejected from the ablation fixture **270**, according to various embodiments of the present disclosure.

[0135] FIG. **11** depicts mechanical properties of various materials that can be used for forming understructures of the flexible tip portion **110**, according to various embodiments of the present disclosure. In some embodiments, as discussed herein, the understructure can be formed from a flexible material. In some embodiments, the flexible material can be a super elastic material, such as Nitinol. Examples of Nitinol can include Nitinol available from NDC; Cu doped Nitinol available from Johnson Matthey Medical Components; Nitinol available from Fort Wayne Metals; and/or Nitinol available from Euroflex.

[0136] In some embodiments, the flexible material forming the understructure can include a flexible substrate. In some embodiments, the understructures of the flexible tip portion 110 can be formed from a flexible substrate, such as a polymer and/or printed circuit board, as discussed herein. In some embodiments, the flexible substrate can have mechanical properties that are similar to Nitinol. For example, the flexible substrate can have an elastic modulus that is the same or similar to Nitinol; an ultimate tensile strength that is the same or similar to Nitinol; a loading plateau that is the same or similar to Nitinol; and/or a flexural strength that is the same or similar to Nitinol. In some embodiments, the flexible substrate can include a liquid crystalline polymer (LCP) circuit material, such as Ultralam 3850HT available from Rogers Corporation; a glass microfiber reinforced polytetrafluoroethylene (PTFE) composite such as RT/Duroid® 5870/5880 available from Rogers Corporation; a glass-reinforced epoxy laminate (FR4) in accordance with IPC 4101C/21/24/26/121/124/129; a glass-reinforced epoxy laminate (FR4) in accordance with Characterization of the material properties of two FR4 printed circuit board laminates, E. T. Haugan and P. Dalsjo, Norwegian Defense Research Establishment (FFI), Report 10 Jan. 2014; S1141 available from Shengyi Sci. Tech. Co. Ltd.; FR408HR available from Isola Group; a Bismaleimide/Triazine (BT) and epoxy resin blend such as BT G200 available from Isola; and/or a Bismaleimide/Triazine (BT) and epoxy resin blend such as N5000-32 available from Nelco®. [0137] In some embodiments, the flexible tip portion **110** depicted in FIGS. **1**A and **1**B can have an array buckling force of less than or equal to 200 grams of force. For example, to cause the flexible tip portion **110** to deflect, an amount of force less than or equal to 200 grams of force can be applied to the flexible tip portion. For instance, the flexible tip portion can be deflected as shown in FIG. **1**B when an amount of force less than or equal to 200 grams of force has been applied to a distal end of the flexible tip portion, which can be formed from the materials discussed herein. [0138] FIG. **12**A depicts a top view of a proximal end of an inboard understructure **290**, according to various embodiments of the present disclosure. In some embodiments, the inboard understructure **290** can include frame locks **291-1**, **291-2**, **291-3**, **291-4** on the proximal end of the inboard understructure **290**. It should be noted that an outboard understructure can include frame locks that correspond with frame locks 291-1, 291-2, 291-3, 291-4 on the inboard understructure. [0139] FIG. **12**B depicts a top view of an enlarged portion (indicated by dotted circle **12**B) of frame locks **291-1**, **291-2**, **291-3**, **291-4** depicted on a proximal end of the inboard understructure depicted

in FIG. **12**A, according to various embodiments of the present disclosure. In some embodiments, one or more electrical connections **292-1**, **292-2**, . . . **292-8** can be disposed on one or more of the frame locks **291-1**, **291-2**, **291-3**, **291-4** and/or on one of the arms of the understructure. For example, the electrical connections **292-1**, **292-2**, . . . **292-8** can be formed on a proximal portion of the arms of the understructure.

[0140] FIG. 12C depicts a top view of an enlarged portion (indicated by dotted circle 12C) of electrical connections 292-3, 292-4 depicted in FIG. 12B, according to various embodiments of the present disclosure. In some embodiments, a third electrical connection 292-3 can include a distal contact pad 295-1 and a proximal contact pad 295-2 and a fourth electrical connection 292-4 can include a distal contact pad 295-4 and a proximal contact pad 295-3. As discussed herein, the electrical connections can be disposed on the proximal portion of an understructure of the flexible tip portion 110. In some embodiments, the electrical connections can be insulated from the understructure (e.g., where the understructure is electrically conductive) to prevent short circuiting from occurring between the electrical connections. With reference to the fourth electrical connection 295-4, the distal contact pad 295-4 and the proximal contact pad 295-3 can be electrically couple to one another via a trace 296-2.

[0141] FIG. 12D depicts a cross-sectional view of FIG. 12C along line mm, according to various embodiments of the present disclosure. In some embodiments, the understructure 290 can be coated with a dielectric 297 material, such as parylene. The dielectric material 297 can electrically insulate the electrical connections from a conductive understructure 290, as discussed herein. In some embodiments, a metallization can be completed on a surface of the dielectric, thus allowing for a secure connection between the electrical connection 292-4 to the understructure 290. In an example, a metal such as aluminum can be deposited on the surface of the dielectric material 297 and the electrical connection 292-4 can be disposed on top of the metal 298.

[0142] FIG. 12E depicts a top view of wires electrically coupled via an electrical connection depicted in 12C, according to various embodiments of the present disclosure. In an example, a distally running wire 300 and/or a proximally running wire 301 can be electrically coupled to the third electrical connection 292-3. In some embodiments the distally running wire 300 and the proximally running wire 301 can be connected via the third electrical connection 292-3. In an example, the distally running wire 300 can be soldered to the distal contact pad 295-4 and/or the proximally running wire 301 can be soldered to the proximal contact pad 295-3. In some embodiments where the flexible tip portion does not include electrically conductive traces that are electrically coupled with each of the microelectrodes, wires (e.g., distally running wires) can be electrically coupled with each of the microelectrodes.

[0143] In some embodiments, a proximal end of the distally running wires can be electrically coupled with distal contact pads of each of the electrical connections. Accordingly, the flexible tip portion 110 can be formed as a module, wherein the individual distally running wires are connected at a distal end to each of the microelectrodes and at a proximal end to a distal contact pad of the electrical connections. In some embodiments, the proximal contact pad can be left open (e.g., a wire may not be electrically coupled to the proximal contact pad) such that the module can be tested. For example, each of the proximal contact pads can be probed with an electrical testing device to establish that continuity exists and that a signal noise associated with each of the microelectrodes and associated distally running wire does not exceed a defined amount. This can be accomplished prior to assembling the entire high density electrode mapping catheter 101. [0144] In contrast, some prior methods assemble the entire high density electrode mapping catheter 101 before testing is performed. In addition, the electrical connectors can decrease a complexity associated with connecting the proximally running wires and the distally running wires of the high density electrode mapping catheter 101. For example, rather than directly connecting the proximally and distally running wires, the proximal end of the distally running wire can be coupled

with the distal pad of the electrical connection and the distal end of the proximally running wire

can be coupled with the proximal pad of the electrical connection.

[0145] In some embodiments, a pre-made substrate (e.g. flex substrate) can be employed, wherein the pre-made substrate includes the electrical connections and can be bonded to the understructure (e.g., the parylene coated frame). In an example, the substrate design can copy the basic electrical connection configuration discussed and depicted in relation to FIGS. **12**B to **13**B. This can allow for a microelectrode density to be increased on an array formed by the flexible tip portion **110** (e.g. increase number of microelectrodes from **22** to **32** to **64**) by forming multilayer substrates. In some embodiments, the pre-made substrate can be attached to the understructure using adhesive materials, such as epoxy.

[0146] FIG. 13A depicts a top view of a plurality of electrical connections disposed on an first inboard arm 310; second inboard arm 311, first outboard arm 312; and second outboard arm 313 of a flexible framework of a flexible tip portion 110 of the high density electrode mapping catheter 101, according to various embodiments of the present disclosure. The plurality of electrical connections are generally discussed in relation to electrical connections 314-1, 314-2, 314-3, 314-4. As discussed in relation to FIGS. 12A to 12E, the electrical connections can be disposed on frame locks (e.g., frame lock 315) and/or a proximal portion of the arms 310, 311, 312, 314. In some embodiments, a number of electrical connections disposed on each frame lock can range from 1 to 10. Electrical connection density can be increased in accordance with targeted device dimensions and pad/trace line and space requirements. If the design provides sufficient real estate, the number of connections can be increased as needed. With reference to a first electrical connection 314-1, each of the electrical connections can include a proximal contact pad and a distal contact pad electrically coupled by a trace 317. For example, the first electrical connection 314-1 can include a distal contact pad 316-1 and a proximal contact pad 316-2 connected by a trace 317, as discussed herein.

[0147] In some embodiments, distally extending wires, for example distally extending wire **321** can extend distally along the flexible framework of the high density electrode mapping catheter **101**. As depicted in FIG. **13** B, a proximal end of each of the distally extending wires can be electrically coupled to a distal contact pad (e.g., distal contact pad **316-1**) of each of the electrical connections. Connection of the distall end of each of the distally extending wires can result in a single module that can be tested, as discussed herein.

[0148] In some embodiments, each of the arms can extend through a torsional spacer **320**, which can be configured to maintain an alignment between the arms. In some embodiments, an overmolding and ablation process can be employed, as discussed in relation to FIGS. **9**A to **10**C, which can overmold each arm of the flexible framework (e.g., arms **310**, **311**, **312**, **314**) as well as the torsional spacer **320**. In addition, the connector **108**, depicted in FIGS. **1**A and **1**B, can be overmolded as well. In some embodiments, an overmolding material can include PEBAX® as discussed herein.

[0149] FIG. 13B depicts a top view of a portion of a subset of the electrical connections disposed on a first inboard arm 310; second inboard arm 311, first outboard arm 312; and second outboard arm 313 of a flexible framework of a flexible tip portion 110 of the high density electrode mapping catheter 101 depicted in FIG. 13A, according to various embodiments of the present disclosure. The subset of electrical connections is generally discussed in relation to electrical connections 314-1, 314-2, 314-3, 314-4. In an example, a proximal end of each of a plurality of distally extending wires can be electrically coupled to a respective one of a plurality of distal contact pads of each of the plurality of electrical connections and a distal end of each of a plurality of proximally extending wires can be electrically coupled to a respective one of proximal contact pads of each of the plurality of electrical connections. For example, with specific reference to electrical connection 314-2, distally extending wire 330 and proximally extending wire 331, the proximal end of the distally extending wire 330 can be electrically coupled to the distal contact pad 316-1 and the distal end of the proximally extending wire 331 can be electrically coupled to the proximal contact pad

316-2 of the electrical connection **314-2**. The contact pads **316-1**, **316-2** can be electrically coupled via the trace **317** as discussed herein, and thus the wires **330**, **331** can be electrically coupled with one another.

[0150] FIG. **14** depicts a method flow diagram **340** for a process for forming an integrated electrode structure that includes a conductive understructure, according to various embodiments of the present disclosure. In some embodiments, the method can include coating a flexible framework of a flexible tip portion of the integrated electrode structure with a first dielectric material at step **331**. A trace pattern on the coated flexible framework can be masked with a masking material to form a masked portion and an unmasked trace pattern portion at step **332**. In some embodiments, a seed layer can be deposited on the unmasked trace pattern portion at step **333**. The method can include plating the seed layer with a conductive material to form an electrically conductive trace at step **334**. At step **335**, the method can include stripping the masking material from the masked portion.

[0151] The method can include coating the electrically conductive trace with a second dielectric material at step **336**. At step **337**, the method can include stripping the second dielectric material from a distal portion of the electrically conductive trace. The method can include electrically connecting a microelectrode to the distal portion of the electrically conductive trace at step 338. Electrically connecting the microelectrode to the distal portion of the electrically conductive trace can include masking the flexible framework of the integrated electrode structure proximally and distally with respect to the distal portion of the electrically conductive trace to form a mask defined area; depositing a second seed layer across the mask defined area; and plating the mask defined area with an electrically conductive material to form the microelectrode, as discussed herein. In some embodiments, masked portions of the flexible framework can be stripped of the masking material, as discussed herein. In some embodiments wherein the microelectrodes are to extend circumferentially around the flexible framework, the method can include circumferentially masking the flexible framework of the integrated electrode structure proximally and distally with respect to the distal portion of the electrically conductive trace to form a circumferential mask defined area. [0152] In some embodiments, the microelectrode may not be formed through a plating process (e.g., depositing a conductive material to form the microelectrode), rather a hollow cylindrical band can be electrically connected to the distal portion of the electrically conductive trace, wherein the hollow cylindrical band is coaxial with the flexible framework of the flexible tip portion. In some embodiments, electrically connecting the hollow cylindrical band to the distal portion of the electrically conductive trace can include depositing solder on the distal portion of the electrically conductive trace; coaxially aligning the hollow cylindrical band with the distal portion of the electrically conductive trace and the flexible framework; and reflowing the solder to electrically couple the hollow cylindrical band with the distal portion of the electrically conductive trace. [0153] FIG. **15** depicts a method flow diagram **350** for a process for forming an integrated electrode structure that includes a substrate understructure, according to various embodiments of the present disclosure. In some embodiments, the method can include coating a flexible framework substrate of a flexible tip portion of the integrated electrode structure with a conductive material at step **351**. In some embodiments, the flexible framework can be formed of a flexible substrate. The method can include masking a trace pattern on the coated flexible framework with a masking material to form a masked trace pattern portion and an unmasked portion at step **352**. At step **353**, the method can include etching the unmasked portion to expose the flexible framework substrate. In some embodiments, the method can include stripping the masking material from the masked trace pattern portion to expose an electrically conductive trace at step **354**. The method can include coating the electrically conductive trace with a dielectric material at step 355. In some embodiments, the method can include stripping the dielectric material from a distal portion of the electrically conductive trace at step **356**. At step **357**, the method can include electrically connecting a microelectrode to the distal portion of the electrically conductive trace.

[0154] As discussed herein, the method can further include overmolding the integrated electrode structure with a polymer such as PEBAX®, in some embodiments. The overmolding can be removed from an outer surface of the microelectrode via a ablating step, as discussed herein, in some embodiments.

[0155] FIG. **16** depicts a side view of an arm **369** of the high density electrode mapping catheter, according to various embodiments of the present disclosure. In some embodiments, a dielectric material **371** can coat an understructure **370** of the arm **369** of the high density electrode mapping catheter. In some embodiments, one or more electrically conductive traces **372** can be formed on an outer facing surface of the dielectric material **371** (facing away from the understructure **370**), as discussed herein. For example, in a manner analogous to that discussed herein, a mask can be applied to the dielectric material **371** to form unmasked trace pattern portions. A seed layer can be applied to coat the unmasked trace pattern portions. The electrically conductive trace **372** can be formed on top of the seed layer, which can adhere the electrically conductive trace **372** to the dielectric material **371**.

[0156] In some embodiments, multiple layers of electrically conductive traces **372** can be formed on the arm **369** of the high density electrode mapping catheter, as depicted in FIG. **16**. One or more additional electrically conductive traces **373** can be formed on a second layer of dielectric material **374**. The second layer of dielectric material **374** can be applied over the first layer of dielectric material **371** and over the electrically conductive trace **372**. In some embodiments, a first via **375** can be formed in the dielectric material **374** that coats the electrically conductive trace **372**. In an example, a mask can be applied over a portion of the electrically conductive trace **372** (e.g., a portion where the via **375** will be formed) before the second layer of dielectric material **374** is applied and/or the second layer of dielectric material **374** can be removed to create the first via **375**. Additional electrically conductive traces can be constructed in this manner.

[0157] In some embodiments, the additional electrically conductive trace **373** can be applied over a portion of the second layer of dielectric material **374**. In an example, a distal end of the additional electrically conductive trace can be disposed proximally with respect to the first via **375**. In some embodiments, the additional electrically conductive trace **373** and the electrically conductive trace **370**. In some embodiments, a third layer of dielectric material **376** can coat a portion (e.g., outer facing surface) of the second layer of dielectric material **374** and the additional electrically conductive trace **373**. In some embodiments, a mask can be applied over the additional electrically conductive trace **373** (e.g., a portion where the via **377** will be formed) before the third layer of dielectric material **376** can be removed to create the via **377** for the second electrically conductive trace **373**.

[0158] In some embodiments, the mask applied to the electrically conductive trace **372** can be removed after application of the third layer of dielectric material **376**, thus creating the first via **375** in the second layer of dielectric material **374** and a second via **378** in the third layer of dielectric material **376** to form via **379**. As depicted in FIG. **16**, multiple layers of electrically conductive traces **372**, **373** can be formed on the understructure **370** of the arm **369**. As discussed herein, this can be beneficial when a real estate associated with a surface of the arm **369** is not large enough to support formation of more than a particular number of electrically conductive traces next to one another. Accordingly, some embodiments of the present disclosure can allow for electrically conductive traces to be formed in different layers.

[0159] In some embodiments, a similar formation can be formed on another side of the understructure **370** of the arm **369**. For example, another side of the arm **369** (e.g., opposite side of the arm **369** with respect to the electrically conductive traces **372**, **373**) can include a similar formation that supports formation of electrically conductive traces in different layers, as discussed herein.

[0160] FIGS. **17**A to **17**E depict a side view of an understructure of an arm of the high density

electrode mapping catheter and associated processing steps, according to various embodiments of the present disclosure. FIG. 17A depicts an understructure 385-1 associated with the arm of the high density electrode mapping catheter. As depicted in FIG. 17B, in some embodiments, a first via 386-1 and second via 386-2 can be formed in the understructure 385-2. In an example, the vias 386-1, 386-2 can be cut via a laser, drilled, etc. As depicted in FIG. 17C, in some embodiments, the understructure 385-2 can be coated with a first coating of dielectric material 387, such as parylene, for example.

[0161] As depicted in FIG. **17**D, an electrically conductive trace **388** can be applied on the first coating of dielectric material 387 that coats the understructure 385-2. In some embodiments, the electrically conductive trace **388** can be applied to a top surface and bottom surface associated with the first coating of dielectric material **387** that coats the understructure **352-2**. The electrically conductive trace **388** can fill the via **386-2**, thus electrically coupling a bottom portion of the electrically conductive trace **388** applied to the bottom surface associated with the first coating of dielectric material **387** and a top portion of the electrically conductive trace **388** applied to the top surface associated with the first coating of dielectric material **387**. In some embodiments, the electrically conductive trace **388** can extend proximally with respect to the via **386-2**. In some embodiments, the electrically conductive trace 388 can extend distally with respect to the second via **386-2**. For example, and as depicted in FIG. **17**D, a distal end of the electrically conductive trace **388** can be disposed between the first via **386-1** and the second via **386-2**. [0162] As depicted in FIG. **17**E, a second coating of dielectric material **390** can be applied to a top surface and bottom surface of the first coating of dielectric material **387** and the electrically conductive trace **388**. In some embodiments, the second coating of dielectric material **390** may not be applied to the first via **386-1** and/or can be removed from the first via **386-1**. FIG. **17**F depicts a processed understructure **392** that includes a second electrically conductive trace **391** applied to a top surface and bottom surface of the second coating of dielectric material **390**. In some embodiments, as depicted in FIG. 17F, the second electrically conductive trace 391 can be applied to the portions of the first coating of dielectric material 387 surrounding the first via 386-1, that are not coated with the second coating of dielectric material **390**. In an example, the second coating of dielectric material **390** can be applied proximally and/or distally with respect to the first via **386-1**, leaving the first coating of dielectric material **387** exposed for coating with the second electrically conductive trace **391**. The second electrically conductive trace **391** can extend along a top portion and a bottom portion of processed understructure **392**. The second electrically conductive trace **391** can extend through the via **386-1**, thus electrically coupling portions of the second electrically conductive trace **391** extending along the top portion and the bottom portion of the processed understructure **392**.

[0163] In some embodiments, the first electrically conductive trace **388** can be laterally offset from the second electrically conductive trace **391**. As such, a via can be formed in the second coating of dielectric material **390**, which can be used to electrically connect a microelectrode or other device to the first electrically conductive trace **388**, while electrically insulating the microelectrode or other device from the second electrically conductive trace **391**. In some embodiments, a third coating of dielectric material can be applied to the second electrically conductive trace **391** and a microelectrode can be electrically coupled with the second electrically conductive trace **391** through a via formed in the third coating of dielectric material.

[0164] FIGS. **18**A to **18**G depict top views of embodiments of an understructure of a high density electrode mapping catheter in FIG. **1**A, according to various embodiments of the present disclosure. The embodiments depicted in FIGS. **18**A to **18**G can be constructed from a unitary piece of material. For example, FIG. **18**A depicts an understructure **410** that includes an inner understructure **411** (also referred to herein as inboard understructure) and an outer understructure **412** (also referred to herein as outboard understructure), which can be formed from a single piece of material. In some embodiments, the inner understructure **411** and the outer understructure **412**

can be laser cut from a single piece of material and/or photo etched from a single piece of material. [0165] As depicted in FIG. 18A, a distal end of the inner understructure 411 can be connected to a distal end of the outer understructure 412 via a connective portion 413. The connective portion 413 can be formed from the same unitary piece of material as the inner understructure 411 and the outer understructure 412. The connective portion 413 can extend from a distal side of the distal end of the inner understructure 411 to a proximal side of the distal end of the outer understructure 412. In some embodiments, the connective portion 413 can be planar and can be equal in thickness with the inner understructure 411 and the outer understructure 412. The connective portion can extend between the distal end of the inner understructure 411 and the distal end of the outer understructure 412 on either side of an understructure longitudinal axis nn defined by the inner understructure 411 and the outer understructure 411 and the outer understructure 411 and the outer understructure 412, which is depicted in FIG. 18A.

[0166] As depicted in FIG. **18**A, outer edges **415-1**, **415-2** can be radiused toward the understructure longitudinal axis nn. In some embodiments, the radiused outer edges **415-1**, **415-2** can help with minimizing strain existing between the inner understructure **411** and the outer understructure **412**, as the understructure **410** is inserted and/or deployed from a sheath. For example, in some embodiments where the outer edges are straight, and are not radiused, the portions of the inner understructure **411** and the outer understructure **412** located adjacent to the outer edges of the connective portion **413** can experience an increased strain. In contrast, the radiused outer edges **415-1**, **415-2** can better distribute the strain as the understructure **410** is deflected and/or inserted into or deployed from the sheath.

[0167] FIG. **18**B depicts an embodiment of an understructure **420** that includes an inner understructure **421** and an outer understructure **422**. As depicted in FIG. **18**B, a distal end of the inner understructure **421** can be connected to a distal end of the outer understructure **422** via a connective portion **423**. The connective portion **423** can be formed from a same unitary piece of material as the inner understructure **421** and the outer understructure **422**. The connective portion **423** can extend from a distal side of the distal end of the inner understructure **421** to a proximal side of the distal end of the outer understructure **422**, in some embodiments.

[0168] In some embodiments, the connective portion **423** can be planar and can be equal in thickness with the inner understructure 421 and the outer understructure 422. The connective portion **423** can extend between the distal end of the inner understructure **421** and the distal end of the outer understructure **422** on either side of an understructure longitudinal axis oo defined by the inner understructure **421** and the outer understructure **422**, which is depicted in FIG. **18**B. In contrast to FIG. **18**A, the connective portion **423** may not extend as far to either side of the understructure longitudinal axis oo for reasons discussed herein. As discussed in relation to FIG. **18**A, the connective portion can include radiused outer edges **425-1**, **425-2**, which can better distribute strain between the inner understructure **421**, the connective portion **423**, and the outer understructure **422**, as the understructure **420** is deflected and/or inserted into or deployed from a sheath. In some embodiments, because the connective portion 423 does not extend as far to either side of the understructure longitudinal axis oo, the understructure may be deflected with less force, in some embodiments, and/or can be introduced and/or deployed from a sheath more easily. [0169] In some embodiments, the understructure **420** can include first and second outer connective members **426-1**, **426-2**, which connect a flared distal head **427** of the inner understructure **421** to the outer understructure **422**. For example, the flared distal head **427** can include a first flared segment **428-1** that is flared away from the understructure longitudinal axis oo and a second flared segment **428-2** that is flared away from the understructure longitudinal axis oo. In some embodiments, a first outer connective member 426-1 can connect the first flared segment 428-1 to the outer understructure 422 and a second outer connective member 426-2 can connect the second flared segment **428-2** to the outer understructure **422**. The first and second outer connective members **426-1**, **426-2** can connect with the outer understructure **422** at points on the outer understructure that are adjacent to a respective one of the first flared segment **428-1** and the second flared segment 428-2.

[0170] In some embodiments, the first connective member **426-1** can be flared towards the connective portion 423 and the second connective member 426-2 can be flared towards the connective portion **423**, in some embodiments. Alternatively, the first and second connective members **426-1**, **426-2** can be flared away from the connective portion **423**. By flaring the connective members 426-1, 426-2, the members can be lengthened or shortened as the understructure is deflected and/or inserted into or deployed from a sheath (e.g., slack can built into the connective members **426-1**, **426-2**). For example, as the understructure **420** is introduced into a sheath, the outer understructure **422** can be compressed towards the understructure longitudinal axis oo, causing an increase in axial length. To compensate for this increase in axial length, the flared distal head 427 can straighten (become less flared) as the outer understructure 422 is compressed and lengthened. This can effectively increase a length of the inner understructure **421**, and prevent the inner understructure **421** from pulling on the outer understructure **422**, thus preventing the outer understructure 422 from hooking within the sheath. As the inner understructure **421** straightens and elongates, the first and second connective members **426-1**, **426-**2 can straighten (become less flared) and elongate to allow the outer understructure 422 to elongate. In some embodiments, as the outer understructure **422** is compressed, the first and second connective members 426-1, 426-2 can help pull the first and second flared segments 428-1, 428-2 of the flared distal head 427 and cause the flared distal head 427 to elongate with the outer understructure 422.

[0171] FIG. 18C depicts an understructure 430 that includes an inner understructure 431 and an outer understructure 432, which can be formed from a single piece of material. In some embodiments, the inner understructure 431 and the outer understructure 432 can be laser cut from a single piece of material and/or photo etched from a single piece of material. As depicted in FIG. 18C, a distal end of the inner understructure 431 can be connected to a distal end of the outer understructure 432 via a connective portion 433. The connective portion 433 can be formed from the same unitary piece of material as the inner understructure 431 and the outer understructure 432. The connective portion 433 can extend from a distal side of the distal end of the inner understructure 431 to a proximal side of the distal end of the outer understructure 432. In some embodiments, the connective portion 433 can be planar and can be equal in thickness with the inner understructure 431 and the outer understructure 432 and the distal end of the outer understructure 432 on either side of an understructure longitudinal axis pp defined by the inner understructure 431 and the outer understructure 432, which is depicted in FIG. 18C.

[0172] As depicted in FIG. 18C, the connective portion 433 can extend from the understructure

longitudinal axis pp to an outermost portion of the first and second flared segments **436-1**, **436-2**. In some embodiments, the connective portion **433** can extend from the understructure longitudinal axis pp to a point that is distal of the outermost portion of the first and second flared segments **436-1**, **436-2**, as depicted in FIG. **18**C. The connective portion **433** can include radiused outer edges **435-1**, **435-2**, which can better distribute strain as the understructure **430** is deflected and/or inserted into or deployed from a sheath, as discussed in relation to FIG. **18**A. [0173] FIG. **18**D depicts an understructure **440** that includes an inner understructure **441** and an outer understructure **442**, which can be formed from a single piece of material. In some embodiments, the inner understructure **441** and the outer understructure **442** can be laser cut from a single piece of material and/or photo etched from a single piece of material. As depicted in FIG. **18**D, a distal end of the inner understructure **441** can be connected to a distal end of the outer understructure **442** via connective portions **443-1**, **443-2**. The connective portions **443-1**, **443-2** can be formed from the same unitary piece of material as the inner understructure **441** and the outer

understructure **442**. The connective portions **443-1**, **443-2** can extend from a distal side of the distal end of the inner understructure **441** to a proximal side of the distal end of the outer understructure

442. In some embodiments, the connective portions **443-1**, **443-2** can be planar and can be equal in thickness with the inner understructure **441** and the outer understructure **442**. The connective portions **443-1**, **443-2** can extend between the distal end of the inner understructure **441** and the distal end of the outer understructure **442** on either side of an understructure longitudinal axis qq defined by the inner understructure **441** and the outer understructure **442**, which is depicted in FIG. **18**D.

[0174] As depicted in FIG. **18**D, a first connective portion **443-1** can extend between a first distally angled segment **448-1** of the inner understructure **441** and a corresponding segment of the outer understructure **442**. A second connective portion **443-2** can extend between a second distally angled segment **448-2** of the inner understructure **441** and a corresponding segment of the outer understructure **442**. In some embodiments, a side of the first connective portion **443-1** located towards the understructure longitudinal axis qq can include an inner edge **444-1** radiused away from the understructure longitudinal axis qq and a side of the second connective portion **443-2** located towards the understructure longitudinal axis qq can include an inner edge 444-2 radiused away from the understructure longitudinal axis qq, such that a gap **449** is defined between the inner edges **444-1**, **444-1** of the connective portions **443-1**, **443-2** and distal ends of the inner and outer understructures **441**, **442**. In some embodiments, the gap **449** can allow for better flexibility of the understructure **440** as it is deflected and/or inserted into or deployed from a sheath. In some embodiments, the connective portions **443-1**, **443-2** can include outer edges **445-1**, **445-2** that are radiused towards the distal end of the understructure 440, as discussed in relation to FIG. 18A. The radiused inner edges 444-1, 444-2 and radiused outer edges 445-1, 445-2 can better distribute strain, as discussed herein.

[0175] FIG. **18**E depicts an embodiment of an understructure **450** that includes an inner understructure **451** and an outer understructure **452**. In some embodiments, the understructure **450** can include first and second outer connective members **456-1**, **456-2**, which connect a flared distal head **457** of the inner understructure **451** to the outer understructure **452**. For example, the flared distal head **457** can include a first flared segment **458-1** that is flared away from the understructure longitudinal axis rr and a second flared segment **458-2** that is flared away from the understructure longitudinal axis rr. In some embodiments, a first outer connective member **456-1** can connect the first flared segment **458-1** to the outer understructure **452** and a second outer connective member **456-2** can connect the second flared segment **458-2** to the outer understructure **452**. The first and second outer connective members **456-1**, **456-2** can connect with the outer understructure **452** at points on the outer understructure **452** that are adjacent to a respective one of the first flared segment **458-1** and the second flared segment **458-2**.

[0176] In some embodiments, the first connective member **456-1** can be flared towards the distal ends of the inner and outer understructures **451**, **452** and the second connective member **456-2** can be flared towards the distal ends of the inner and outer understructures **451**, **452**, in some embodiments. Alternatively, the first and second connective members **456-1**, **456-2** can be flared away from the distal ends of the inner and outer understructures **451**, **452**. By flaring the connective members **456-1**, **456-2**, the members can be lengthened or shortened as the understructure **450** is deflected and/or inserted into or deployed from a sheath, as discussed herein.

[0177] FIG. **18**F depicts an embodiment of an understructure **460** that includes an inner understructure **461-1**, **461-2** and an outer understructure **462**. In some embodiments, the understructure **460** can include first and second outer connective members **466-1**, **466-2**, which connect a flared distal head **467** of the inner understructure **461-1**, **461-2** to the outer understructure **462**. In contrast to FIG. **18**E, the inner understructure **461-1**, **462-2** can be terminated at a first flared segment **468-1** and a second flared segment **468-2** and may not extend distally from the first and second flared segments **468-1**, **461-2**, as depicted, extends proximally from the first and second flared segments **468-1**, **468-2**. In some embodiments, a first outer connective member **466-1** can connect the first flared segment **468-1** to the outer

understructure **462** and a second outer connective member **466-2** can connect the second flared segment **468-2** to the outer understructure **462**. The first and second outer connective members **466-1**, **466-2** can connect with the outer understructure **462** at points on the outer understructure **462** that are adjacent to a respective one of the first flared segment **468-1** and the second flared segment **468-2**.

[0178] In some embodiments, the first connective member **466-1** can be flared towards the distal ends of the inner and outer understructures **461-1**, **461-2**, **462** and the second connective member **466-2** can be flared towards the distal ends of the inner and outer understructures **461-1**, **461-2**, **462**, in some embodiments. Alternatively, the first and second connective members **466-1**, **466-2** can be flared away from the distal ends of the inner and outer understructures **461-1**, **461-2**, **462**. By flaring the connective members **466-1**, **466-2**, the members can be lengthened or shortened as the understructure **460** is deflected and/or inserted into or deployed from a sheath, as discussed herein.

[0179] FIG. **18**G depicts an embodiment of an understructure **470** that includes an inner understructure **471-1**, **471-2** and an outer understructure **472**. In some embodiments, a first and second arm of the inner understructure **471-1**, **472-2** can extend distally from a proximal end of the understructure **470**. A distal portion of the first and second arms of the inner understructure **471-1**, **472-2** can extend parallel to a understructure longitudinal axis tt and can be terminated proximally with respect to a respective one of first and second radiused segments **473-1**, **473-2** of the outer understructure **472**. In some embodiments, connective arms **474-1**, **474-2**, . . . **474-6** can extend from the first and second arms of the inner understructure **471-1**, **472-2** transversely to and away from the understructure longitudinal axis tt towards the outer understructure **472**. The connective arms **474-1**, **474-2**, . . . **474-6** can be connected with the inner understructure **471-1**, **471-2** and the outer understructure **472**.

[0180] FIG. **19**A depicts a top view of a flexible tip portion **500** of a high density electrode mapping catheter that includes a plurality of microelectrodes **502-1**, **502-2**, . . . , **502-16**, according to various embodiments of the present disclosure. Hereinafter the plurality of microelectrodes **502**-1, 502-2, . . . , 502-16 are referred to in the plural as microelectrodes 502 (also referred to herein as electrodes). In some embodiments, the flexible tip portion **500** forms a flexible array of microelectrodes **502**, which can be disposed at a distal end of a catheter shaft. This planar array (or 'paddle' configuration) of microelectrodes 502 comprises four side-by-side, longitudinallyextending arms 504, 506, 508, 510, which can form a flexible framework on which the microelectrodes **502** are disposed. The four microelectrode-carrier arms comprise a first outboard arm **504**, a second outboard arm **510**, a first inboard arm **506**, and a second inboard arm **508**. These arms can be laterally separated from each other. The inboard portion of the flexible tip **500** can include a flared head portion **512** and the outboard portion of the flexible tip **500** can include a head portion **514**. The first outboard arm **504** and the second outboard arm **510** can be part of an outboard understructure and the first inboard arm **506** and the second inboard arm **508** can be part of an inboard understructure, as previously discussed. The first and second inboard arms 506, 508, as well as the flared head portion **512**, can form the inboard arm understructure that comprises an element that includes a planar cross-section and the first and second outboard arms **504**, **510**, as well as the head portion **514**, can form the outboard arm understructure that comprises an element that includes a planar cross-section. In some embodiments, the flexible tip portion **500** can be formed from a flexible metal, such as nitinol. In some embodiments, the flexible tip portion **500** can be formed from a flexible printed circuit board. In some embodiments, the flexible tip portion **500** can include a mounting portion **516**. In an example, the first and second outboard arms **504**, **510** and the first and second inboard arms **506**, **508** can be connected to the mounting portion **516**. In some embodiments, the mounting portion **516**, the first and second outboard arms **504**, **510**, the first and second inboard arms **506**, **508**, the flared head portion **512**, and the head portion **514** can all be formed from a unitary piece of material. The mounting portion 516 can be inserted into a

distal end of a catheter shaft, in some embodiments.

[0181] In some embodiments, the flexible tip portion **500** can include a plurality of electrically conductive traces **518-1**, **518-2**, **518-3**, **518-4** disposed along the mounting portion **516**, the first and second outboard arms **504**, **510**, the first and second inboard arms **506**, **508**, the flared head portion **512**, and/or the head portion **514**. Hereinafter, the electrically conductive traces **518-1**, **518-2**, **518-3**, **518-4** are referred to in the plural as electrically conductive traces **518**. Each one of the electrically conductive traces **518** can be electrically coupled with one of the microelectrodes **502**. For example, a first microelectrode **502-1** can be electrically coupled with a first electrically conductive trace **518-1**, a second microelectrode **502-2** can be electrically coupled with a second electrically conductive trace **518-2**, a third microelectrode **502-3** can be electrically coupled with a third electrically conductive trace **518-3**, and/or a fourth microelectrode **502-4** can be electrically coupled with a fourth electrically conductive trace **518-4**. Although more than four traces are disposed on the flexible tip portion, for clarity only the traces **518-1**, **518-2**, **518-3**, **518-4** are discussed herein.

[0182] In some embodiments, the traces 518 and/or microelectrodes 502 can be formed as previously discussed herein. In some embodiments, the traces 518 and/or microelectrodes 502 can be formed in a manner such as that discussed in relation to FIGS. 23A to 23F. As depicted, the first trace **518-1** can extend from a proximal side of the first microelectrode **502-1**. In some embodiments, each of the traces **518** can be electrically coupled with a respective one of the microelectrodes **502** through a via, as further discussed herein. As depicted, the microelectrodes **502** can be disposed along a longitudinal length of each one of the arms. In some embodiments, the traces 518 can be routed around each one of the microelectrodes 502 that the traces 518 are not electrically coupled with to avoid contacting those microelectrodes, and thus preventing a short from occurring. In an example and as depicted, the second electrically conductive trace **518-2** can be routed around the first microelectrode **502-1** to avoid contact with the first microelectrode **502-1**. The second electrically conductive trace **518-2** can be extend along an inner side of the first microelectrode **502-1** and can be coupled with the second microelectrode **502-2**. The third trace 518-3 can be routed around an outer side of the first microelectrode 502-1 and second microelectrode **502-2** and can be coupled with the third microelectrode **502-3**. The fourth trace **518-4** can be routed around an inner side of the first microelectrode **502-1**, second microelectrode **502-2**, and third microelectrode **502-3** and can be coupled with the fourth microelectrode **502-4**. In an example, a trace associated with each longitudinally alternating microelectrodes **502** can be routed around alternating sides of the preceding microelectrodes **502**, as depicted. For example, the second trace 518-2 associated with the second microelectrode can be routed on an inside of the preceding first microelectrode **502-1**; the third trace **518-3** associated with the third microelectrode **502-3** can be routed on an outside of the preceding first and second microelectrodes **502-1**, **502-3**; and the fourth trace **518-4** associated with the fourth microelectrode **502-4** can be routed on an inside of the preceding first microelectrode 502-1, second microelectrode 502-2, and third microelectrode **502-3**. This can allow for a more even distribution of the traces **518** on either side of the microelectrodes **502**, thus allowing for the microelectrodes **502** to be more evenly spaced in the center of each arm.

[0183] In some embodiments, each of the traces **518** can be routed proximally along each one of the arms **504**, **506**, **508**, **510** to the mounting portion **516**. In some embodiments, the mounting portion **516** can include a plurality of contact pads **520-1**, **520-2**, . . . , **520-9**, hereinafter referred to in the plural as contact pads **520**, arranged in a first row **522-1** and a second row **522-2**. For clarity only contact pads **520-1**, **520-2**, . . . , **520-9** are discussed. In some embodiments, a proximal end of each one of the traces **518** can terminate at a respective one of the contact pads **520**. [0184] In some embodiments, each row of contact pads **522-1**, **522-2** can be divergent with a longitudinal axis of the flexible tip portion **500**. In an example, each row of contact pads **522-1**, **522-2** can extend away from the longitudinal axis of the flexible tip portion **500** as the row of

contact pads **522-1**, **522-2** extends distally. Accordingly, each row of contact pads **522-1**, **522-2** can extend laterally away from one another as the rows extends distally. In some embodiments, each row of contact pads **522-1**, **522-2** can be linear. In an example, the mounting portion **516** can have a limited lateral width. Accordingly, the contact pads **520** can be longitudinally and laterally staggered with respect to one another. For instance, from the distal end to the proximal end of the mounting portion **516**, the contact pads **520** can be longitudinally staggered toward the proximal end and laterally staggered toward the longitudinal axis of the flexible tip portion **500**. [0185] In some embodiments, the trace **518-3** can be connected to the proximal end of the contact pad **520-1**. Accordingly, the contact pad **520-1** can be electrically coupled with the microelectrode **502-3**. In some embodiments, a test trace can extend proximally with respect to one or more of the contact pads **520**. For example, a test trace can extend proximally with respect to the contact pad **520-1**. The test trace can lead to a test portion (not shown) that can include a larger contact test pad, which can be probed with a test instrument to ensure continuity between the contact pad **520-1**, the electrical trace **518-3**, and the microelectrode **502-3**. In some embodiments, a contact test pad can be electrically coupled with each one of the contact pads **520** via a test trace. In some embodiments, the test traces can extend proximally from each one of the contact pads **520**. The longitudinal and lateral staggering of the contact pads **520** allow for an electrical trace to extend distally from each one of the contact pads **520** and a test trace to extend proximally from each one of the contact pads, as depicted.

[0186] FIG. **19**B depicts an enlarged top view of a pair of contact pads **520-8**, **520-9** disposed on the flexible tip portion depicted in FIG. 19A, according to various embodiments of the present disclosure. In some embodiments, the contact pads **520** can be formed from an electrically conductive material. For example, the contact pads **520** can be formed from copper, gold, etc. In some embodiments, the contact pads **520** can have a lateral width of approximately 0.2 millimeters, although the contact pads can have a smaller or larger lateral width. In some embodiments, the contact pads **520** can have a longitudinal length of approximately 0.45 millimeters, although the contact pads can have a shorter or longer longitudinal length. As depicted, electrically conductive traces **518-5**, **518-6** can extend distally from contact pads **520-8**, **520-9** and can be electrically coupled with the contact pads **520-8**, **520-9**. For example, the electrically conductive traces **518-5**, **518-6** can electrically couple the contact pad **520-8** with the microelectrode **502-8** and can electrically couple the contact pad **520-9** with the microelectrode **502-12**, respectively. In some embodiments, the contact pads **520-8**, **520-9** can include test traces **532-8**, **532-9** that extend proximally from each one of the contact pads **520-8**, **520-9**, respectively, as previously discussed. As depicted, other test traces **532-4**, **532-5**, **532-6**, **532-7**, **532-8** can extend longitudinally along the mounting portion **516**. In some embodiments, the test traces **532** can be laterally spaced apart from one another by approximately 0.05 millimeters, although the test traces can be spaced apart by a smaller or greater distance in some embodiments. In some embodiments, the test traces can have a lateral width of approximately 0.03 millimeters, although the test traces can have a lateral width that is greater than or less than 0.03 millimeters.

[0187] FIG. **19**C depicts an enlarged top view of a microelectrode **502-1** disposed on the flexible tip portion **500** depicted in FIG. **19**A, according to various embodiments of the present disclosure. In some embodiments, the microelectrode **502-1** can have an electrically conductive trace **518-1** that extends proximally from the microelectrode **502-1**. In some embodiments, the microelectrode **502-1** can have a longitudinal length in a range from 0.1 to 5 millimeters and can have a lateral width in a range from 0.1 to 5 millimeters. However, in some embodiments, the microelectrode **502-1** can have a longitudinal length of approximately 0.92 millimeters and can have a lateral width of approximately 0.9 millimeters. However, in some embodiments, the microelectrode **502-1** can have a longitudinal length of approximately 0.92 millimeters and a lateral width of approximately 0.3 millimeters. As depicted, electrically conductive traces can extend on either side of the microelectrode **502-1**, connecting other microelectrodes **502** with a respective one of the

contact pads 520.

[0188] FIG. **19**D depicts a side view of microelectrodes disposed on a top and bottom of the flexible tip portion **500** depicted in FIG. **19**A, according to various embodiments of the present disclosure. FIG. **19**A depicts a top of the flexible tip portion **500** with microelectrodes **502** disposed on the first outboard arm **504**. In some embodiments, a bottom of the flexible tip portion **500** can include the same features as those of the top of the flexible tip portion **500**. For example, as depicted in FIG. 19D, a bottom of the flexible tip portion 500 can also include microelectrodes **502-17**, **502-18**, **502-19**, **502-20**, hereinafter referred to in the plural as microelectrodes **502**, electrically conductive traces **518** (not shown), contact pads **520** (not shown), etc. In an example, this can enable investigation of different unipolar and bipolar electrogram configurations. In an example, where the electrodes disposed on the top of the flexible tip portion **500** are disposed against tissue and the electrodes of the bottom of the flexible tip portion 500 are disposed in a blood pool, or vice versa, a different electrical signal can be received by the top electrodes than the bottom electrodes. In some embodiments, the signal (e.g., impedance) received from the top electrodes can be analyzed with respect to the signal (e.g., impedance) received from the bottom electrodes to determine whether the flexible tip portion **500** is in contact with tissue. In some embodiments, a degree of contact between the flexible tip portion **500** and associated microelectrodes **502** and tissue can be determined based on the analysis of the signals received from the bottom electrodes and the top electrodes. In an example, where the signals from both bottom electrodes and the top electrodes are the same, this can be an indication that the entire flexible tip portion **500** is disposed in a blood pool and is not in contact with tissue. [0189] In an example, using this 'bottom minus top' bipolar configuration can result in electrograms that are distinctly different in morphology compared to bipolar electrograms that use a 'bottom minus adjacent bottom' bipolar configuration. For example, some medical devices that are used to produce electrograms receive electrical signals from electrodes that are adjacent to one another and located on a same side of the medical device. Electrograms produced with devices of the present disclosure, for example, those that include electrodes on both sides (e.g., top and bottom) of the device (e.g., flexible tip portion **500**), can produce distinctly different electrograms. [0190] As depicted in FIG. **19**D, the microelectrodes **502** can be disposed on the top and/or bottom of the flexible tip portion **500**. For example, the microelectrodes **502** can be disposed on a top and/or bottom of the first outboard arm **504**, the second outboard arm **510** (FIG. **19**A), the first inboard arm **506** (FIG. **19**A), and/or the second inboard arm **508** (FIG. **19**A). Each of the top microelectrodes **502** can have a vertically adjacent bottom microelectrode **502**. In an example, a first top microelectrode **502-1** can be vertically adjacent to a bottom electrode **502-17** that is located directly beneath the first top microelectrode **502-1**. In some embodiments, a vertical spacing (Vs) between an outer surface of each of the microelectrodes 502 on the top and bottom of the flexible tip portion **500** can be in a range from 0 to 3 millimeters. In some embodiments, the vertical spacing (Vs) between an outer surface of each of the microelectrodes **502** on the top and bottom of the flexible tip portion **500** can approximately 0.22 millimeters. The vertical spacing Vs between the microelectrodes **502** disposed on the top and those disposed on the bottom can provide a third dimension between the microelectrodes **502**, enabling the microelectrodes **502** disposed on the top and bottom of the flexible tip portion **500** to receive extracellular matrix (ECM) signals. [0191] Some medical devices can include electrodes that are disposed along a single line, providing one-dimensional spacing, or along a plane (e.g., that are laterally adjacent to one another), providing two-dimensional spacing. However, embodiments of the present disclosure can provide microelectrodes **502** that are laterally adjacent to one another and also vertically adjacent to one another and can be configured to receive ECM signals with both the bottom electrodes and top electrodes that are vertically adjacent to one another. In some embodiments of the present disclosure, the vertical spacing Vs between the microelectrodes **502** can provide a greater resolution of extracellular matrix (ECM) signals. In addition, clean bi-pole signals can be generated

between the microelectrodes **502** disposed on the top of the flexible tip portion **500** and the microelectrodes **502** disposed on the bottom of the flexible tip portion **500**. [0192] As previously discussed, a determination of whether any of the microelectrodes on the flexible tip portion **500** are in contact with tissue can be made based on a difference in a bottom signal that is received by a microelectrode **502** disposed on the bottom of the flexible tip portion **500** and a top signal that is received by a microelectrode **502** disposed on the top of the flexible tip portion **500**. For example, if the bottom microelectrode **502** is in contact with tissue and the top microelectrode **502** is disposed in a blood pool, the bottom signal will be different than the top signal. If both the bottom and top microelectrodes **502** are disposed in the blood pool, the bottom signal and the top signal can be the same in some embodiments. This determination can be made by an electronic control that is in communication with each one of the microelectrodes, such as that discussed in relation to FIG. 31. [0193] As further depicted in FIG. **19**D, the microelectrodes **502** can extend vertically from a surface of the understructure (e.g., first outboard arm **504**). In some embodiments, microelectrodes **502** can have a thickness in a range from 0.1 to 1000 microns. In some embodiments, the microelectrodes **502** can have a thickness of 0.5 microns. By raising the microelectrodes **502** off of a surface of the understructure, the microelectrodes **502** can more easily contact tissue. [0194] FIG. **20** depicts an isometric side, top, and distal end view of the flexible tip portion **500** depicted in FIG. **19**A, according to various embodiments of the present disclosure. The flexible tip portion **500** includes those features as discussed in relation to FIGS. **19**A to **19**C. In an example, the flexible tip portion 500 includes the longitudinally-extending arms 504, 506, 508, 510, flared head portion **512**, head portion **514**, and mounting portion **516**. As depicted, the different elements (e.g., longitudinally-extending arms 504, 506, 508, 510, flared head portion 512, head portion 514, and mounting portion **516**) that form the flexible tip portion **500** can include planar cross-sections. For example, a thickness of each element can be less than a lateral width of each element. Accordingly, a top surface of the flexible tip portion **500** and a bottom surface of the flexible tip portion **500** can be flat, which can prove to be beneficial when forming the microelectrodes **502**, the electrically conductive traces **518**, and/or the contact pads **520** on the flexible tip portion **500**. As discussed herein, an understructure of the flexible tip portion **500** can be formed from a flexible metal, such as nitinol, and/or a flexible printed circuit board, upon which the microelectrodes 502, the electrically conductive traces **518**, and/or the contact pads **520** can be disposed. [0195] FIG. **21** depicts a top view of an understructure of a flexible tip portion **540** of a high density electrode mapping catheter, according to various embodiments of the present disclosure. In some embodiments, the flexible tip portion **540** can include four microelectrode-carrier arms that

comprise a first outboard arm 542, a second outboard arm 548, a first inboard arm 544, and a second inboard arm **546**. These arms can be laterally separated from each other. The inboard portion of the flexible tip **540** can include a flared head portion **550** and the outboard portion of the flexible tip **540** can include a head portion **552**, which are connected via a connective portion **554**. In some embodiments, the flared head portion **550** can include a lateral apex portion **556**. In some embodiments, a lateral width L.sub.1 of the lateral apex portion **556** can be in a range from 0.08 to 0.32 millimeters. In an example, the lateral width L.sub.1 of the apex portion **556** can be approximately 0.16 millimeters. The flared head portion **550** can additionally include a tapered head arm **558** that can have a width La in a range from 0.10 to 0.45 millimeters. In an example, the width L.sub.2 of the tapered head arm **558** can be approximately 0.21 millimeters. In some embodiments, the arms that form the head portion **552** can have a width L.sub.3 in a range from −0.1 to 0.45 millimeters. In an example, the width L.sub.3 of the arms that form the head portion **552** can have a width of approximately 0.21 millimeters. The connective portion **554** can have a lateral width L.sub.4 in a range from 0.08 to 0.32 millimeters. In some embodiments, the connective portion **554** can have a lateral width La of approximately 0.16 millimeters. [0196] The first outboard arm **542** and the second outboard arm **548** can include an outboard

understructure and the first inboard arm **544** and the second inboard arm **546** can include an inboard understructure, as previously discussed. In some embodiments, a lateral width L.sub.5 of the first and second inboard arms **544**, **546** can be in a range from 0.10 to 1.0 millimeters. In some embodiments, the lateral width L.sub.5 of the first and second inboard arms **544**, **546** can be approximately 0.51 millimeters. In some embodiments, a lateral width L.sub.6 of the first and second outboard arms **542**, **548** can be in a range from 0.10 to 1.0 millimeters. In some embodiments, the lateral width L.sub.6 of the first and second outboard arms **542**, **548** can be approximately 0.51 millimeters.

[0197] In some embodiments, a first outboard transition arm **562** can connect the first outboard arm **542** to the mounting portion **560**; a first inboard transition arm **564** can connect the first inboard arm **544** to the mounting portion **560**; a second inboard transition arm **566** can connect the second inboard transition arm **568** can connect the second outboard arm **548** to the mounting arm **560**. In some embodiments, the width L.sub.7 of the first and second outboard transition arms **562**, **568** can be in a range from 0.10 to 1.0 millimeters. In some embodiments, the width L.sub.7 of the first and second outboard transition arms **562**, **568** can be approximately 0.51 millimeters.

[0198] In some embodiments, the flexible tip portion **540** can include a mounting portion **560**, as previously discussed. In some embodiments, a longitudinal length L.sub.8 of the mounting portion **560** can be in a range from 5 to 20 millimeters. In some embodiments, the longitudinal length L.sub.8 of the mounting portion **560** can approximately 11.1 millimeters. In some embodiments, a longitudinal length L.sub.9 of the inboard and outboard transition arms can be in a range from 3 to 20 millimeters. In some embodiments, the longitudinal length L.sub.9 of the portion of the flexible tip that includes the transition arms can be 9.1 millimeters. In some embodiments, a longitudinal length L.sub.10 of the inboard and outboard arms can be in a range from 8 to 50 millimeters. In some embodiments, the longitudinal length L.sub.10 of the inboard and outboard arms can be 13.9 millimeters. In some embodiments, a longitudinal length L.sub.11 of the flared head portion **550** and the head portion **552** can be in a range from 3 to 20 millimeters. In some embodiments, the longitudinal length L.sub.11 of the flared head portion **550** and the head portion **552** can be 9.8 millimeters.

[0199] In some embodiments, a lateral spacing L.sub.12 between the first inboard arm **544** and the second inboard arm **546** can be in a range from 0.10 to 4 millimeters. In some embodiments, the lateral spacing L.sub.12 between the first inboard arm **544** and the second inboard arm **546** can be approximately 4 millimeters. In some embodiments, a lateral spacing L.sub.13 between the first inboard arm **544** and the first outboard arm **542** and between the second inboard arm **546** and the second outboard arm **548** can be in a range from 0.10 to 4 millimeters. In some embodiments, the lateral spacing L.sub.13 between can be approximately 4 millimeters.

[0200] FIG. **22** depicts a top view of an alternate embodiment of an understructure of a flexible tip portion **580** of a high density electrode mapping catheter, according to various embodiments of the present disclosure. In some embodiments, the flexible tip portion **580** can include four microelectrode-carrier arms that comprise a first outboard arm **582**, a second outboard arm **588**, a first inboard arm **584**, and a second inboard arm **586**, which can be mounted to a mounting portion **596**. The mounting portion **596**, the inboard and outboard arms **582**, **584**, **586**, **588**, the flared head portion **590**, and head portion **592** can be formed from a single piece of material. The inboard portion of the flexible tip **580** can include a flared head portion **590** and the outboard portion **594**. In some embodiments, the flared head portion **590** and the head portion **592** can have a greater longitudinal length that those depicted in FIG. **21**. In some embodiments, the elements that form the flared head portion **590** and the head portion **592** can have a width that is less than that depicted in relation to FIG. **21**. In an example, by decreasing a width of the flared head portion **590** or the head portion **592**, or other parts of the flexible tip **580**, a force which is required to deflect the

flared head portion **590**, head portion **592** or other parts of the flexible tip **580** can be decreased. Accordingly, the various portions of the flexible tip **580** can be made more atraumatic. For example, the portions of the flexible tip **580** can more readily deflect when they contact tissue as a result of the reduced deflection force.

[0201] FIGS. **23**A-**23**F depict an isometric top and side view of an arm of an understructure of a high density electrode mapping catheter and associated processing steps, according to various embodiments of the present disclosure. As depicted in FIG. 23A, the understructure 610 can be formed from a flexible material in some embodiments. In an example, the flexible material can include nitinol and can be approximately 160 microns thick, however the flexible material can be greater or less than 160 microns thick. In some embodiments, the understructure **610** can be coated with a top dielectric layer **612-1** and/or bottom dielectric layer **612-2**, as depicted in FIG. **23**B. In an example, the dielectric material can include, for example, a parylene, a polyimide, an epoxy, etc., as previously discussed herein. However, the dielectric material can include other types of dielectrics. In some embodiments, the dielectric layer **612-1**, **612-2** can be in a range from 1.0 to 30 microns thick. In an example, the dielectric layer **612-1**, **612-2** can be approximately 10 microns thick, however, the dielectric material can be greater than or less than 10 microns thick. In some embodiments, the dielectric material can electrically insulate the understructure from conductive traces that are formed on top of the dielectric layers. In some embodiments, a tie layer can be disposed between the dielectric material and the flexible material. In an example, the tie layer can be sputtered chrome with a thickness of approximately 1000 angstroms, although the thickness of the sputtered chrome can be greater than or less than 1000 angstroms thick.

[0202] In some embodiments, the dielectric layers **612-1**, **612-2** can extend laterally outward with respect to the understructure **610** to form an atraumatic inboard and/or outboard edge. In an example, the understructure **610** can have a planar cross-section, as previously discussed herein, having a thickness that is less than a width of the understructure **610**. In some embodiments, a lateral edge of the understructure **610** can be sharp, due to a relatively thin thickness of the understructure **610**. To provide an atraumatic lateral edge (e.g., outboard and/or inboard edge) of the understructure **610**, the dielectric layers **612-1**, **612-2** can extend laterally outward with respect to the understructure **610**, as depicted in FIG. **23**C. The atraumatic edge can act as a protector/bumper to prevent the understructure **610** from contacting other materials (e.g., inner diameter of an introducer sheath, tissues in the heart, etc.).

[0203] FIG. **23**C is a cross-sectional view of the coated understructure **610** depicted in FIG. **23**B, along the line **23**C-**23**C. For example, the first and second dielectric layers **612-1**, **612-2** can include a first and second outboard overhang **614-1**, **614-2** and the first and second dielectric layers **612-1**, **612-2** can include a first and second inboard overhang **616-1**, **616-2**, as depicted in FIG. **23**C. In some embodiments, the first and second outboard overhang **614-1**, **614-2** and/or the first and second inboard overhang **616-1**, **616-2** can be formed on each portion of a flexible tip portion of a high density electrode mapping catheter, such as that discussed in relation to FIGS. 19A to 22. For example, with respect to the flexible tip portion **540** depicted and discussed in relation to FIG. **21**, an outboard understructure **622** that includes the first outboard transition arm **562**, the first outboard arm **542**, the head portion **552**, the second outboard arm **548**, and the second outboard transition arm **568** can have a first and second outboard overhang **614-1**, **614-2** disposed along an outboard edge **618** that extends along a perimeter of the outboard understructure **622** (FIG. **21**). In some embodiments, the first and second outboard overhang **614-1**, **614-2** can be disposed along the outboard edge **618** of one or more of the first outboard transition arm **562**, the first outboard arm **542**, the head portion **552**, the second outboard arm **548**, and/or the second outboard transition arm **568**. In some embodiments, the outboard understructure **622** can have a first and second inboard overhang **616-1**, **616-2** disposed along an inboard edge **620** of the outboard understructure **622**. In some embodiments, the first and second inboard overhang **616-1**, **616-2** can be disposed along the inboard edge **620** of one or more of the first outboard transition arm **562**, the first outboard arm

542, the head portion **552**, the second outboard arm **548**, and/or the second outboard transition arm **568**.

[0204] With further reference to FIG. **21**, in some embodiments, an inboard understructure **624** that includes the first inboard transition arm **564**, the first inboard arm **546**, and the second inboard transition arm **566** can have a first and second outboard overhang **614-1**, **614-2** disposed along an outboard edge **626** that extends along a perimeter of the inboard understructure **624** (FIG. **21**). In some embodiments, the first and second outboard overhang **614-1**, **614-2** can be disposed along the outboard edge **624** of one or more of the first inboard transition arm **564**, the first inboard arm **626**, the flared head portion **550**, the second inboard arm **546**, and/or the second inboard transition arm **566**. In some embodiments, the inboard understructure **624** can have a first and second inboard overhang **616-1**, **616-2** disposed along an inboard edge **628** of the inboard understructure **624**. In some embodiments, the first and second inboard overhang **616-1**, **616-2** can be disposed along the inboard edge **628** of one or more of the first inboard transition arm **564**, the first inboard arm **544**, the flared head portion **550**, the second inboard arm **546**, and/or the second inboard transition arm **566**.

[0205] As depicted in FIG. 23D, one or more electrically conductive traces 636-1, 636-2 and/or electrically conductive pads 638 can be formed on an outer surface of the dielectric material 612-1, 612-2. In some embodiments, one or more electrically conductive traces 636-1, 636-2 and/or electrically conductive pads 638 can be formed on the outer surface of the first dielectric layer 612-1 and/or the outer surface of the second dielectric layer 612-2. In some embodiments, the electrically conductive traces 636-1, 636-2 and/or the electrically conductive pads 638 can be formed from an electrically conductive material, such as copper. The copper can have a thickness of approximately 7 microns, although the thickness of the copper can be greater or less than 7 microns. In some embodiments, a tie layer can be included between the electrically conductive traces 636-1, 636-2 and the dielectric material 612-1, 612-2. In an example, the tie layer can be sputtered chrome with a thickness of approximately 130 angstroms. However, the thickness of the tie layer can be greater than or less than 130 angstroms.

[0206] As depicted in FIG. 23E, the first dielectric layer 612-1 has been coated with a first overcoat dielectric layer **640-1** and the second dielectric layer **612-2** has been coated with a second overcoat dielectric layer **640-2**. In some embodiments, the overcoat dielectric layers **640-1**, **640-2** can protect the one or more electrically conductive traces 636-1, 636-2 and/or the one or more electrically conductive pads **638** and/or prevent the one or more electrically conductive traces **636**-**1**, **636-2** and/or the one or more electrically conductive pads **638** from contacting tissue. In some embodiments, an exposed area **642** can be created in the overcoat dielectric layer **640-1** and the overcoat dielectric layer **640-2** (although not shown). In an example, the exposed area **642** can be a via that extends through the overcoat dielectric layer **640-1**, such that the electrically conductive pad **638** can be accessed. In some embodiments, the overcoat dielectric layers **640-1**, **640-2** can have a thickness of approximately 10 microns, although the thickness of the overcoat layers can be greater than or less than 10 microns. As depicted in FIG. **23**F, an electrode **644** can be disposed on an outer surface of the overcoat dielectric layer **640-1**. In an example, the electrode **644** can be formed from an electrically conductive material, such as gold. The gold can be approximately 0.5 microns thick, although the thickness of the gold can be greater than or less than 0.5 microns thick. In some embodiments, a tie layer can be disposed between the conductive pad **638** and the electrode **644**. In an example, the tie layer can include nickel. In some embodiments, the nickel can have a thickness of approximately 0.4 microns, although the thickness of the nickel can be greater than or less than 0.4 microns.

[0207] FIG. **24**A depicts a top view of an understructure of a flexible tip portion **660** of a high density electrode mapping catheter that includes a plurality of electrodes **662-1**, **662-2**, **662-3**, **662-4**, hereinafter referred to in the plural as electrodes **662**, traces **664**, and a mounting portion **666**, according to various embodiments of the present disclosure. As discussed herein, the flexible tip

portion **660** can include a first outboard arm **668**, a first inboard arm **670**, a second inboard arm **672**, and a second outboard arm **674**. In some embodiments, the flexible tip portion **660** can include a first outboard transition arm **676**, a first inboard transition arm **678**, a second inboard transition arm **680**, and a second outboard transition arm **682**. A proximal end of the transition arms can be connected to the mounting portion, which includes a contact pad **684**. As discussed in relation to FIGS. **8**A to **8**C, electrically conductive traces **664** can be connected to each one of the electrodes disposed on the understructure of the flexible tip portion **660**. The electrically conductive traces **664** can extend proximally from each one of the electrodes **662** down each of the outboard arms **668**, **674**, inboard arms **670**, **672**, outboard transition arms **676**, **682**, and inboard transition arms **678**, **680**, to the mounting portion **666**. In some embodiments, the electrically conductive traces **664** can terminate at a first or second row of contact pads **684-1**, **684-2**, as previously discussed in relation to FIG. **19**A. In some embodiments, test traces can extend proximally from each one of the contact pads in the first and second row of contact pads **684-1**, **684-2**. As generally depicted in FIG. **24**A, a density of electrically conductive traces **664** covering the understructure of the flexible tip portion **660** increases in the proximal direction. For example, as depicted, a proximal portion of the outboard mounting arms 668, 674 and inboard mounting arms 678, 680; each one of the outboard transition arms 676, 682 and the inboard transition arms 678, 680; and the mounting portion 666 can include electrically conductive traces **664** that cover a majority of their surfaces, as depicted. [0208] As depicted in FIG. **24**B, the junction between the proximal end of the second outboard arm **674** and the second outboard transition arm **682** can include a plurality of electrically conductive traces **664** that cover a majority of the second outboard arm **674** and the second outboard transition arm **682**. In some embodiments, the traces can extend beneath each one of the plurality of electrodes 662, as previously discussed herein, for example, in relation to FIG. 4D. In some embodiments, vias 688-1, 688-2, 688-3, 688-4, hereinafter referred to in the plural as vias 688, can be formed in a dielectric coating that covers the understructure of the flexible tip portion **660** and can provide an electrical connection between each one of the electrically conductive traces **664** and each one of the electrodes **662**. In some embodiments, each one of the electrically conductive traces **664** can be routed around each one of the vias **688**. In an example, each one of the electrically conductive traces 664 can have a routing bend 690-1, 690-2, 690-3, 690-4, 690-4, 690-5, hereinafter referred to in the plural as routing bends 690, in a portion of the electrically conductive trace **664** that is adjacent to each one of the vias **688**. In an example, the routing bends **690** can be formed towards a proximal end of the outboard and inboard arms, where a density of the electrically conductive traces **664** is increased. For instance, in order to route the electrically conductive traces **664** around the vias **688**, the traces **664** can be routed outward or inwardly with respect to a longitudinal axis of the flexible tip portion **660** around the vias **688**. As depicted in FIG. **24**B, routing bends **690-1**, **690-2**, **690-3** can be included in the trace **664**. The routing bends 690-1, 690-2, 690-3 can become larger (e.g., extend further outward or inward), in some embodiments, as the trace 664 extends proximally along the understructure (e.g., second outboard arm **674**).

[0209] FIG. **24**C depicts an enlarged top view of a portion **696** of the flexible tip portion **660** that includes first and second rows of contact pads **684-1**, **684-2** depicted in FIG. **24**A, according to various embodiments of the present disclosure. As depicted, the plurality of traces **664** can extend along the outboard and inboard transition arms **676**, **682**, **678**, **680** and the mounting portion **666** to contact pads (e.g., contact pad **692**). In some embodiments, the mounting portion **666** can include flared contact pad portions **694-1**, **694-2**. In an example, the flared contact pad portions **694-1**, **694-2** can extend laterally from either side of the mounting portion **666** and can provide an area that includes an increased lateral width, which can provide increased space for mounting the first and second rows of contact pads **684-1**, **684-2**.

[0210] FIG. **25**A depicts a top view of an understructure of a flexible tip portion **700** of a high density electrode mapping catheter that includes a plurality of electrodes **702-1**, **702-2**, **702-3**, **702-**

4 and rows of contact pads 704-1, 704-2, 704-3, 704-4, according to various embodiments of the present disclosure. The flexible tip portion 700 can include a first outboard arm 706, second outboard arm 712, first inboard arm 708, and a second inboard arm 710. In some embodiments, the flexible tip portion 700 can include a mounting portion 714 that is connected to the outboard arms 706, 712 via a first outboard transition arm 716 and second outboard transition arm 722. The mounting portion 714 can be connected to the first and second inboard arms 708, 710 via a first inboard transition arm 718 and a second inboard transition arm 720.

[0211] As depicted in FIG. 25A, a plurality of electrodes (e.g., electrodes 702-1, 702-2, 702-3, 702-4) can be disposed along the arms of the flexible tip portion 700. FIG. 25B depicts an enlarged view of a portion 724 of the flexible tip portion 700 depicted in FIG. 25A, according to various embodiments of the present disclosure. In some embodiments, portions of the understructure that form the outboard arms 706, 712 and/or the inboard arms 708, 710 can include bumpouts 726-1, 726-1, 726-3, 726-4, 726-5, hereinafter referred to in the plural as bumpouts 726. In some embodiments, the bumpouts 726 can laterally extend from areas of the understructure that include the electrodes 702. As previously discussed in relation to FIG. 24B, traces that proximally extend from each of the electrodes 702 can have routing bends 690 (FIG. 24B). In some embodiments, the routing bends 690 can be disposed on the bumpouts 726.

[0212] FIG. **25**C depicts an enlarged top view of the mounting portion **714** of the flexible tip portion depicted in FIG. 25A, according to various embodiments of the present disclosure. As depicted, the mounting portion **714** can include flared contact pad portions **730-1**, **730-2**. In some embodiments, the flared contact pad portions **730-1**, **730-2** can increase a lateral width of the mounting portion 714, such that rows of contact pads 704-1, 704-2, 704-3, 704-4 can be disposed on the mounting portion 714, as previously discussed herein. In some embodiments, each row of contact pads **704** can include a plurality of laterally spaced apart contact pads **732-1**, **732-2**, . . . , **732-8**. In some embodiments, each row of contact pads **704** can include a common ground **734**. In some embodiments, each row of contact pads **704** can correspond to the set of electrodes **702** disposed on the outboard and inboard arms. In an example, a first row of contact pads **704-1** can correspond to microelectrodes disposed on the first outboard arm **706**; the second row of contact pads **704-2** can correspond to microelectrodes disposed on the first inboard arm **708**; the third row of contact pads **704-3** can correspond to microelectrodes disposed on the second inboard arm **710**; and the fourth row of contact pads **704-4** can correspond to microelectrodes disposed on the second outboard arm 712. In some embodiments, as depicted, each row of contact pads 704 can include a ground pad **734**, which can serve as a ground for electrodes disposed on a corresponding arm of the flexible tip portion **700**. In some embodiments, each row of contact pads **704** can be longitudinally spaced apart from one another, as depicted. Although not depicted, an opposite side of the mounting portion **714** can include additional rows of contact pads. For example, where electrodes are disposed on both sides of the outboard understructure and the inboard understructure, contact pads can be disposed on either side of the mounting portion 714. Contact pads disposed on a first side of the mounting portion **714** can be electrically coupled to electrodes disposed on a first side of the outboard and inboard understructure, while contact pads disposed on a second side of the mounting portion **714** can be electrically coupled to electrodes disposed on a second side of the outboard and inboard understructure.

[0213] FIG. **26** depicts a flexible tip portion **740** of a high density electrode mapping catheter similar to that depicted in FIG. **19**A that includes a plurality of wires **746** connected to contact pads disposed on a mounting portion **742**, according to various embodiments of the present disclosure. In an example, as discussed herein, the flexible tip portion can include a mounting portion **742** upon which a plurality of contact pads are disposed (hidden from view in FIG. **26**). In some embodiments, a wire (e.g., wire **746**) can be connected to each one of the contact pads, electrically coupling each electrode (e.g., electrode **748**) disposed on the flexible tip portion **740** and an associated electrically conductive trace **750** with the wire **746**.

[0214] FIG. 27A depicts sections of flex cable 752, according to various embodiments of the present disclosure. In some embodiments, a first section of flex cable **754-1**, a second section of flex cable **754-2**, and a third section of flex cable **754-3**, hereinafter referred to in the plural as flex cable **754** are depicted. In an example, each section of flex cable includes a plurality of electrically conductive traces. For example, the first section of flex cable **754-1** can include the electrically conductive traces **758-1**, **758-2**, . . . , **758-8**, hereinafter referred to in the plural as electrically conductive traces **758**. In some embodiments, the plurality of electrically conductive traces **758** can be disposed on a polymer backing **766**, as further discussed in relation to FIG. **27**B. Additionally, each one of the sections of flex cable can include a ground trace **764** that extends parallel with the electrically conductive traces 758. In some embodiments, test sections 756-1, 756-2 can be disposed between the sections of flex cable **754**. In an example, each test section **756-1**, **756-2** can include a plurality of test traces **762-1**, **762-2**, . . . , **762-8**, hereinafter referred to in the plural as test traces **762**, that are connected to each one of the electrically conductive traces **758**. In some embodiments, each test section **756-1**, **756-2** can also include a ground test trace **764** that is electrically connected to the ground trace **764**. In some embodiments, the test traces **762** and the ground test trace **764** can have a wider lateral width than the electrically conductive traces **758** to allow for an instrument to probe the traces of the test section **756**. The ground test trace **764** can include a via **768** that extends through the polymer backing **766** and electrically couples the ground test trace **764** to a grounding pad **772** (FIG. **27**B).

[0215] In some embodiments, the ground test trace **764** can include a via that electrically connects it to a grounding pad **772**, as further depicted in FIG. **27**B. FIG. **27**B depicts a cross-sectional end view of a ground trace **760** of the flex cable **752** depicted in FIG. **27**A, according to various embodiments of the present disclosure. In some embodiments, the ground trace **760** can be formed from copper and can be disposed on top of a polymer backing **766**. The ground trace **760** can have a thickness of approximately 10 micrometers, although the thickness of the ground trace **760** can be greater than or less than 10 micrometers. In an example, the polymer backing **766** can be formed from a polyimide. The polymer backing **766** can have a thickness of approximately 25 micrometers, although the thickness of the polymer backing **766** can be greater than or less than 25 micrometers. In some embodiments, each flex cable can have a ground trace **760**, providing signal noise reduction and improving electrocardiogram signals that are received by the microelectrodes and passed through the flex cable **752**.

[0216] In some embodiments, a grounding pad 772 can be disposed on an opposite side of the polymer backing **766** from the ground trace **760**. The grounding pad **772** can have a thickness of approximately 12 micrometers, although the thickness of the grounding pad **772** can be greater than or less than 12 micrometers. In some embodiments, as discussed in relation to FIG. 27A, a via (not depicted) can be formed in the polymer backing **766** and can electrically couple the ground trace **760** to the grounding pad **772**. In some embodiments, a first layer of polymer **770** can be disposed on a top of the flex circuit and a second layer of polymer **774** can be disposed on a bottom of the flex circuit to protect the traces (e.g., ground trace 760) and/or the grounding pad 772. The first layer of polymer **770** can have a thickness of approximately 15 micrometers, although the thickness of the first layer of polymer **770** can be greater than or less than 15 micrometers. The second layer of polymer 774 can have a thickness of approximately 25 micrometers, although the thickness of the second layer of polymer **774** can be greater than or less than 15 micrometers. In some embodiments, the first and second layer of polymer can include a polymer, such as a polymer selected from a Dissipation Factor-Photo Sensitive Resist (DF-PSR) group of materials. [0217] In some embodiments, one or more flex cables **752** can be electrically coupled with microelectrodes disposed on a flexible tip portion of a high density electrode mapping catheter, as discussed herein. As depicted, the flex cable **752** can include eight test traces **762** and a common ground. In some embodiments, five flex cables can be attached to each side of the flexible tip portion of the high density electrode mapping catheter to allow for forty microelectrodes per side of the flexible tip portion. This can save time and resources as a result of providing a semi-automated process versus the individual soldering of forty contacts per side. In an example, each flex cable **752** can have a mating pattern on a contact pad disposed on the flexible tip portion. For example, the flex cable **752** can be mated with a row of contact pads **704** (FIG. **25**C).

[0218] FIG. **28** depicts a flexible tip portion **780** of a high density electrode mapping catheter disposed in a distal end of a catheter shaft **782**, according to various embodiments of the present disclosure. The flexible tip portion **780** of the high density electrode mapping catheter can include those features as discussed herein. As depicted, a proximal portion of the flexible tip portion **780** is disposed in the distal end of the catheter shaft **782**. Although not depicted, a mounting portion of the flexible tip portion **780**, as discussed herein, can be disposed in a lumen defined by the distal end of the catheter shaft **782**. In some embodiments, a connector **784** can be disposed at the distal end of the catheter shaft **782** and can connect the flexible tip portion **780** to the distal end of the catheter shaft **782**. As depicted, a first outboard transition arm **786**, a second outboard transition arm **790** can extend distally from the connector **784** and the distal end of the catheter shaft **782**. In some embodiments, and as depicted, an adhesive **794** (e.g., epoxy) can be disposed around the proximal end of the transitional arms and the connector **784** to secure the flexible tip portion **780** with the catheter shaft **782**.

[0219] FIG. **29** depicts a high density electrode mapping catheter **800**, according to various embodiments of the present disclosure. In some embodiments, the high density electrode mapping catheter **800** can include a flexible tip portion **802** disposed at a distal end of a catheter shaft **804**. In some embodiments, the catheter shaft 804 can include one or more ring electrodes 806-1, 806-2, as discussed herein. In some embodiments, the flexible tip portion **802** can include electrodes disposed on both sides of the flexible tip portion **802**. In some embodiments, a cable to shaft coupler can be disposed at a proximal end of the catheter shaft **804** and can couple a first sensing cable **808-1** and a second sensing cable **808-2** with the catheter shaft. In some embodiments, the first sensing cable **808-1** can include electrical connections for electrodes disposed on a first side of the flexible tip portion **802** and the second sensing cable **808-2** can include electrical connections for electrodes disposed on a second side of the flexible tip portion 802. In some embodiments, the first sensing cable 808-1 can include electrical connections for the electrodes disposed on the flexible tip portion 802 and the second sensing cable 808-2 can include electrical connections for the ring electrodes **806-1**, **806-2**. In some embodiments, a proximal end of the first and second sensing cables 808-1, 808-2 can include a first and second connector 810-1, 810-2, which can be connected to a computer configured to analyze signals received from the electrodes disposed on the flexible tip portion **802**.

[0220] FIG. 30 depicts another embodiment of a high density electrode mapping catheter 820, according to various embodiments of the present disclosure. In some embodiments, the high density electrode mapping catheter 820 can include a flexible tip portion 822 disposed at a distal end of a catheter shaft 824. In contrast to FIG. 29, the catheter shaft 824 does not include ring electrodes. In some embodiments, the flexible tip portion 822 can include electrodes disposed on both sides of the flexible tip portion 822. In some embodiments, a cable to shaft coupler 826 can be disposed at a proximal end of the catheter shaft 824 and can couple a first sensing cable 828-1 and a second sensing cable 828-2 with the catheter shaft 824. In some embodiments, the first sensing cable 828-1 can include electrical connections for electrodes disposed on a first side of the flexible tip portion 822 and the second sensing cable 828-2 can include electrical connections for electrodes disposed on a second side of the flexible tip portion 822. In some embodiments, a proximal end of the first and second sensing cables 828-1, 828-2 can include a first and second connector 820-1, 820-2, which can be connected to a computer configured to analyze signals received from the electrodes disposed on the flexible tip portion 822.

[0221] FIG. 31 depicts a schematic and block diagram view of a medical system 840, in accordance

with embodiments of the present disclosure. System **840**, as depicted, includes a main electronic control unit **842** (e.g., a processor) having various input/output mechanisms **844**, a display **846**, an optional image database **848**, an electrocardiogram (ECG) monitor **850**, a localization system, such as a medical positioning system **852**, a medical positioning system-enabled elongate medical device **854**, a patient reference sensor **856**, a magnetic position sensor **858**, an electrode **860** (e.g., position sensing electrode), and a microelectrode **862** configured to sense electrical signals produced by the heart. For simplicity, one magnetic position sensor **858**, one electrode **860**, and one microelectrode **862** are shown, however, more than one magnetic position sensor **858**, more than one electrode **860**, and/or more than one microelectrode **862** can be included in the system **300**. [0222] Input/output mechanisms **844** may comprise conventional apparatus for interfacing with a computer-based control unit including, for example, one or more of a keyboard, a mouse, a tablet, a foot pedal, a switch and/or the like. Display **846** may also comprise conventional apparatus, such as a computer monitor.

[0223] System **840** may optionally include image database **848** to store image information relating to the patient's body. Image information may include, for example, a region of interest surrounding a destination site for medical device **854** and/or multiple regions of interest along a navigation path contemplated to be traversed by medical device **854**. The data in image database **848** may comprise known image types including (1) one or more two-dimensional still images acquired at respective, individual times in the past; (2) a plurality of related two-dimensional images obtained in real-time from an image acquisition device (e.g., fluoroscopic images from an x-ray imaging apparatus), wherein the image database acts as a buffer (live fluoroscopy); and/or (3) a sequence of related two-dimensional images defining a cine-loop wherein each image in the sequence has at least an ECG timing parameter associated therewith, adequate to allow playback of the sequence in accordance with acquired real-time ECG signals obtained from ECG monitor 314. It should be understood that the foregoing embodiments are examples only and not limiting in nature. For example, the image database may also include three-dimensional image data as well. It should be further understood that the images may be acquired through any imaging modality, now known or hereafter developed, for example X-ray, ultra-sound, computerized tomography, nuclear magnetic resonance or the like.

[0224] ECG monitor **850** is configured to continuously detect an electrical timing signal of the heart organ through the use of a plurality of microelectrodes **862**. The timing signal generally corresponds to a particular phase of the cardiac cycle, among other things. Generally, the ECG signal(s) may be used by the control unit **842** for ECG synchronized play-back of a previously captured sequence of images (cine loop) stored in database **848**. ECG monitor **850** and ECGelectrodes may both comprise conventional components. In some embodiments, the main control **842** can include a computing device, which can include hardware and/or a combination of hardware and programming that is configured to determine a difference in signals received by microelectrodes, as discussed in relation to FIG. 19D. For example, the main control 842 can include a non-transitory computer readable medium that stores instructions, which are executable by a processor, in communication with the main control **842**, to determine a difference in signals received from microelectrodes. Medical positioning system **852** is configured to serve as the localization system and therefore to determine position (localization) data with respect to one or more magnetic position sensors **858** and/or electrodes **860** and output a respective location reading. [0225] FIG. **32** depicts a method **870** control block flow diagram for determining a degree of contact between a first electrode and tissue, according to various embodiments of the present disclosure. In some embodiments, as previously discussed herein, for example in relation to FIG. **19**D, the method **870** can include receiving a first electrical signal from the first electrode disposed on a first side of a tip portion of a medical device, at method control block **872**. The method **870** can further include receiving a second electrical signal from a second electrode disposed on a second side of the tip portion of the medical device, at method control block **874**. As previously

discussed, the first electrode and the second electrode can be disposed vertically adjacent with respect to one another. For example, the first electrode can be disposed directly beneath the second electrode, as depicted and discussed in relation to FIG. **19**D.

[0226] In some embodiments, the method **870** can include determining the degree of contact between the first electrode and the tissue based on a comparison between the first electrical signal and the second electrical signal, at method control block **876**. In an example, when the first electrode is disposed against tissue, the second electrode can be disposed on the opposite side of the medical device and in a blood pool. As such, a different electrical signal (e.g., voltage) can be received from the first electrode versus the second electrode. Accordingly, in some embodiments, the comparison between the first electrical signal and the second electrical signal can include comparing a first voltage associated with the first electrical signal and a second voltage associated with the second electrical signal.

[0227] In an example, cardiac tissue can generate a voltage whenever it depolarizes. The voltage can propagate through the heart muscle and also through the blood pool and can be picked up by both the first electrode and the second electrode. If one of the electrodes (e.g., first electrode) is touching the tissue, then that voltage will be different than the voltage picked up by the electrode disposed in the blood pool (e.g., second electrode). The difference between the first electrical signal associated with the first electrode and the second electrical signal associated with the second electrode will be greater when the first electrode is touching the tissue and the second electrode is disposed in the blood pool. The difference between the first electrical signal associated with the first electrode and the second electrical signal associated with the second electrode will be smaller when the first electrode and second electrode are both disposed in the blood pool.

[0228] Based on the differences in electrical signals (e.g., voltages), a determination of contact between the medical device (e.g., first electrode) and the tissue can be made. For example, the method 870 can include determining that the first electrode is not in contact with the tissue when

the first voltage associated with the first electrical signal and the second voltage associated with the second electrical signal are the same. For example, when the voltages associated with the first electrode and the second electrode are the same, this can be an indication that the first electrode and the second electrode are disposed in the blood pool and are not in contact with the tissue. In some embodiments, the method can include determining that the first electrode is not in contact with the tissue when a difference between the first voltage associated with the first electrical signal and the second voltage associated with the second electrical signal is less than a threshold voltage (e.g., the voltages are close to being the same). For example, the voltages associated with each of the first and second electrodes may not be exactly the same due to electrical interference in the blood pool. [0229] Alternatively, in some embodiments, the method **879** can include determining that the first electrode is in contact with the tissue when the first voltage associated with the first electrical signal is different than the second voltage associated with the with the second electrical signal. In an example, the method 879 can include determining that the first electrode is in contact with the tissue when a difference between the first voltage associated with the first electrical signal and the second voltage associated with the second electrical signal is greater than a threshold value. For instance, the method **879** can include determining that the first electrode is in contact with the tissue when the first voltage associated with the first electrical signal is greater than the second voltage associated with the second electrical signal (e.g., is greater than a defined threshold value). As discussed, when the first electrode is disposed against the tissue and the second electrode is disposed in the blood pool, the first electrical signal associated with the first electrode can have a greater voltage than the second electrical signal.

[0230] In some embodiments, the method **870** can include determining that a degree of contact between the first electrode and the tissue is increasing based on the first voltage associated with the first electrical signal being increased with respect to the second voltage associated with the second electrical signal. For example, if the first voltage associated with the first electrical signal increases

at a greater rate than the second voltage associated with the second electrical signal and/or increases while the second voltage stays the same, a determination can be made that a degree of contact between the first electrode and the tissue is increasing. In some embodiments, ensuring that sufficient contact exists between the medical device and the tissue can be beneficial where diagnostic information is being collected by the medical device (e.g., electrodes) and/or therapeutic energy is being delivered to the tissue from the medical device (e.g., electrodes). Alternatively, the method 870 can include determining that a degree of contact between the first electrode and the tissue is decreasing based on the first voltage associated with the first electrical signal being decreased with respect to the second voltage associated with the second electrical signal. [0231] In some embodiments, the first and/or second electrode can be configured to be driven by an electrical current (e.g., high frequency electrical current). In an example, the first and/or second electrode can be driven with the electrical current and a voltage (e.g., high frequency voltage) can be induced by the electrical current. For instance, a voltage can be induced in the cardiac tissue and/or in the blood pool. Accordingly, an induced voltage, which is generated by one or more of the electrodes, rather than the heart, can be received by one or more of the electrodes on the medical device. The induced voltage (e.g., impedance) associated with an electrical signal received from one of the electrodes can be measured. Depending on whether an electrode from which the electrical signal is received is disposed in the blood pool or is in contact with the tissue, the electrical signal can vary. In an example, the induced voltages that are measured from an electrical signal received from the first electrode and the second electrode can be different if one of the electrodes is disposed against tissue and one of the electrodes is disposed in the blood pool and can be similar if both electrodes are disposed in the blood pool.

[0232] In some embodiments, one or both of the first electrode and the second electrodes can be driven with the current and one or more other electrodes disposed on the medical device or an electrode disposed on a skin patch can receive an induced voltage. In some embodiments, the current can be induced in the first electrode and an induced voltage can be received by the second electrode. Depending on whether the second electrode is disposed in the blood pool or in contact with cardiac tissue can affect a magnitude of the induced voltage. Likewise, the current can be induced in the second electrode and an induced voltage can be received by the first electrode. Depending on whether the first electrode is disposed in the blood pool or in contact with cardiac tissue can affect a magnitude of the induced voltage. In some embodiments, a current can be induced in another electrode disposed on the medical device and an induced voltage can be received by one or both of the first and second electrodes. Induced voltages associated with electrical signals received from the first and second electrodes can vary depending on whether one or more of the first and second electrodes are disposed in the blood pool or disposed against cardiac tissue, as discussed herein.

[0233] FIG. **33** depicts a method **880** control block flow diagram for determining a cardiac activation associated with endocardial tissue, according to various embodiments of the present disclosure. As discussed in relation to FIG. **33**, the method **880** can include receiving a first electrical signal from a first electrode disposed on a first side of a tip portion of a medical device, at method control block **882**. In some embodiments, the method **880** can include receiving a second electrical signal from a second electrode disposed on a second side of the tip portion of the medical device, at method control block **884**. As previously discussed, the first electrode and the second electrode can be disposed vertically adjacent with respect to one another in a manner analogous to that depicted and discussed in relation to FIG. **19**D.

[0234] In some embodiments, the method **880** can include determining a characteristic associated with the cardiac activation, wherein the cardiac activation is in a direction that is normal to a surface of the endocardial tissue, at method control block **886**. In an example, because the first electrode and the second electrode are vertically adjacent to one another, as a cardiac activation travels through endocardial tissue, an electrical activation signal can be received by the first

electrode disposed against the tissue and can then be received by the second electrode that is vertically adjacent to the first electrode. For instance, as the electrical activation signal travels toward a surface of the endocardial tissue on which the first electrode is disposed, the electrical activation signal can travel in a direction that is normal to the surface of the endocardial tissue, toward the first electrode. As the electrical activation signal reaches the surface of the endocardial tissue on which the first electrode is disposed, a first electrical signal can be received from the first electrode. The electrical activation signal can then travel through a portion of the blood pool and can be received by the second electrode disposed vertically adjacent to the first electrodes are disposed vertically adjacent to one another.

[0235] In some embodiments, the characteristic associated with the cardiac activation can include a direction of the cardiac activation. For example, a determination that a component of a directional vector of the cardiac activation is normal to a surface of the endocardial tissue can be made. In some embodiments, it can be common for cardiac activation to be in a direction that is normal to the surface of the endocardial tissue, cardiac activation can be in a direction that is normal to the surface of the endocardial tissue.

[0236] In some embodiments, the method **880** can include filtering out noise from the first electrical signal based on the second electrical signal. For example, where the first electrode is disposed against the surface of the endocardial tissue, surrounding noise can have negative effects on the first electrical signal associated with the first electrode. The surrounding noise can be caused by stray electrical signals that are flowing through the blood pool in some embodiments. Accordingly, the second electrode, which is disposed in the blood pool can receive any stray electrical signals that are flowing through the blood pool, which can be represented in the second electrical signal associated with the second electrode. In some embodiments, the second electrical signal can be used to filter out the stray electrical signals from the first electrical signal. [0237] In some embodiments, the method **870** and method **880** can be executed by a computer such as that discussed in relation to FIG. **31**. In some embodiments, the method control blocks (e.g., control blocks **872**, **874**, **876**, **882**, **884**, **886**) can represent computer executable instructions that can be stored on a non-transitory computer readable medium (CRM), which can be executed by a processor in communication with the computer to perform a particular function (e.g., receive a first electrical signal from the first electrode disposed on a first side of a tip portion of a medical device).

[0238] Embodiments are described herein of various apparatuses, systems, and/or methods. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it may be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments, the scope of which is defined solely by the appended claims.

[0239] Reference throughout the specification to "various embodiments," "some embodiments," "one embodiment," or "an embodiment", or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment(s) is included in at least one embodiment. Thus, appearances of the phrases "in various embodiments," "in some embodiments," in one embodiment," or "in an embodiment," or the like, in places throughout the specification, are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.

Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features, structures, or characteristics of one or more other embodiments without limitation given that such combination is not illogical or non-functional.

[0240] It will be appreciated that the terms "proximal" and "distal" may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term "proximal" refers to the portion of the instrument closest to the clinician and the term "distal" refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as "vertical," "horizontal," "up," and "down" may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.

[0241] Although at least one embodiment for a high density electrode mapping catheter has been described above with a certain degree of particularity, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this disclosure. All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present disclosure, and do not create limitations, particularly as to the position, orientation, or use of the devices. Joinder references (e.g., affixed, attached, coupled, connected, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected and in fixed relationship to each other. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the spirit of the disclosure as defined in the appended claims.

[0242] Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims

- 1. (canceled)
- 2. An apparatus comprising: a catheter assembly having a proximal end and a distal end, the catheter assembly defining a longitudinal axis, the catheter assembly including an outer sheath; a flexible tip portion associated with the distal end of the catheter assembly, the flexible tip portion comprising a paddle structure, the paddle structure being configured to transition between a compressed state and an expanded state, the paddle structure being configured to fit within the outer sheath in the compressed state, the paddle structure being configured to expand outwardly away from the longitudinal axis into a generally planar configuration in the expanded state when deployed from the outer sheath, the paddle structure comprising a flexible circuit substrate and including a plurality of arms extending along the longitudinal axis, at least a portion of the plurality of arms being connected to each other; and a plurality of microelectrodes positioned along the plurality of arms.

- **3.** The apparatus of claim 2, the outer sheath being operable to translate relative to the flexible tip portion between a first longitudinal position and a second longitudinal position, the outer sheath being configured to contain the flexible tip portion in the first longitudinal position, the outer sheath being configured to deploy the flexible tip portion in the second longitudinal position.
- **4.** The apparatus of claim 2, the flexible tip portion being operable to translate relative to the outer sheath between a first longitudinal position and a second longitudinal position, the flexible tip portion being configured to be inserted into the outer sheath in the first longitudinal position, the flexible tip portion being configured to be deployed from the outer sheath in the second longitudinal position.
- **5**. The apparatus of claim 2, the plurality of arms being expandable outwardly away from the longitudinal axis in the expanded state when deployed from the outer sheath.
- **6**. The apparatus of claim 2, the paddle structure defining a profile, the profile having a first surface area in the compressed state and a second surface area in the expanded state, the surface area in the expanded state being larger than the surface area in the compressed state.
- **7**. The apparatus of claim 2, the plurality of microelectrodes being arranged in a planar array.
- **8**. The apparatus of claim 2, the plurality of microelectrodes comprising at least one pair of bipolar sensing microelectrodes configured to sense potentials in tissue.
- **9**. The apparatus of claim 2, further comprising a position sensor, the position sensor being operable to generate data indicative of a position of one or both of at least a portion of the catheter assembly or at least a portion of the flexible tip portion in a three-dimensional space.
- **10**. The apparatus of claim 9, the position sensor being located on a portion of the paddle structure.
- **11.** The apparatus of claim 2, the plurality of arms comprising a super elastic material.
- **12.** The apparatus of claim 2, wherein the plurality of arms comprise four arms.
- **13**. The apparatus of claim 2, wherein the plurality of microelectrodes comprise a plurality of rows of longitudinally-aligned microelectrodes aligned parallel to the longitudinal axis.
- **14**. The apparatus of claim 2, wherein the catheter assembly comprises an elongated shaft coaxially located within the outer sheath.
- **15**. The apparatus of claim 2, wherein the paddle structure further comprises a plurality of conductive traces, wherein each of the plurality of conductive traces is electrically coupled with a respective one of the plurality of microelectrodes.
- **16**. The apparatus of claim 2, wherein at least the portion of the plurality of arms are connected at a distal portion of the flexible tip portion to form a planar connective portion between the plurality of arms.
- **17**. The apparatus of claim 2, wherein the plurality of arms form at least an inboard understructure and an outboard understructure, wherein the inboard understructure and the outboard understructure each have a top surface and a bottom surface.
- **18**. The apparatus of claim 17, wherein the plurality of microelectrodes are patterned onto the top surface and the bottom surface of the inboard understructure and the outboard understructure so as to form a flexible top planar array of microelectrodes on the top surface of the inboard and outboard understructure and a flexible bottom planar array of microelectrodes on the bottom surface of the inboard and outboard understructure.
- **19**. The apparatus of claim 18, wherein the flexible top planar array of microelectrodes is parallel to the flexible bottom planar array of microelectrodes.
- **20**. The apparatus of claim 17, wherein a planar connective portion extends from a distal side of a distal end of the inboard understructure to a proximal side of a distal end of the outboard understructure.
- **21**. The apparatus of claim 2, wherein the plurality of arms are formed from a unitary piece of material.