

Market Concentration, Capital Misallocation, and Asset Pricing

Thu N.M. Nguyen, Job market candidate

University of Amsterdam & Tinbergen Institute, n.m.t.nguyen@uva.nl

Research question

Figure 1: The rise of superstar firms

Caption. Contribution of superstar firms to total market capitalization

- Stock markets concentrated in superstars are associated with higher capital misallocation (Bae, Bailey, and Kang, 2021).
- Capital misallocation determines economic growth (Hsieh and Klenow, 2009; Dou et al., 2023).

Q: Do superstar firms matter for asset pricing?

My paper: Yes, via the channel of capital misallocation.

Capital Misallocation

- Capital misallocation $\sigma^2_{mpk}=$ cross-sectional dispersion of marginal product of capital (MPK).
 - Implies the economy forgoes the opportunity to increase the aggregate output by reallocating capital from low MPK to high MPK firms.
 - Data: Quarterly Compustat US listed firms.
- Shocks to misallocation: $\Delta \sigma_{mpk,t}^2 = \sigma_{mpk,t}^2 \sigma_{mpk,t-4}^2$.

Decomposing capital misallocation

$$\frac{\sigma_{mpk}^2}{\text{Misall}_{\text{total}}} = \underbrace{\frac{N_0 - 1}{N - 1} \sigma_{mpk, \text{rest}}^2}_{\text{Misallocation among the rest (Misall}_{\text{rest}})} + \underbrace{\frac{N_* - 1}{N - 1} \sigma_{mpk, \text{top}}^2}_{\text{Misallocation among superstars (Misall}_{\text{top}})} + \underbrace{\frac{N_0 N_*}{N(N - 1)} (\mu_{mpk, \text{rest}} - \mu_{mpk, \text{top}})^2}_{\text{MPK spread}}$$

- MPK spread = Capital misallocation $\underline{between}$ superstars and the rest.
- Superstars = top 5% firms within the industry by markup and market cap.

Main findings

- Shocks to capital misallocation between superstars and the rest $(\Delta MPK \text{ spread})$ are **negatively priced** in the cross-section of stock returns.
- Capital misallocation between superstars and the rest negatively predict economic growth and aggregate stock returns.

Consistent with the ICAPM,

- Capital misallocation between superstars and the rest is a key state variable.
- Its shocks capture an important macroeconomic risk factor.
 - Negative news to investors whose marginal utility depends on long-run consumption risk.

Result 1: Negative price of risk

$$R_{it}^e = \lambda_{0,t} + \lambda_{MKT,t} \hat{\beta}_{i,MKT} + \lambda_{f,t} \hat{\beta}_{i,f} + \varepsilon_{i,t},$$

where $f \in \{\Delta Misall_{total}, \Delta Misall_{rest}, \Delta Misall_{top}, \Delta MPK spread\}$.

Table 1: Pricing 25 size×book-to-market and 10 momentum portfolios

	(1)	(2)	(3)	(4)	(5)	(6)
λ_0 (%)	12.090***	10.792***	10.894***	11.410***	14.109***	13.966***
	(3.67)	(3.25)	(3.28)	(3.47)	(4.26)	(4.43)
MKT	-0.257	-0.057	-0.056	-0.319	-1.191	-1.093
	(-0.25)	(-0.05)	(-0.05)	(-0.31)	(-1.17)	(-1.10)
$\Delta Misall_{total}$,	-0.435	,	· ,	,	,
		(-0.99)				
$\Delta Misall_{rest}$,	-0.410			-0.032
			(-0.87)			(-0.10)
$\Delta Misall_{top}$,	-0.353		0.204
'				(-1.40)		(0.91)
Δ MPK spread				,	-1.077***	-1.037***
•					(-3.54)	(-3.72)
R^2	0.012	0.064	0.050	0.131	0.668	0.688

Fama-Macbeth t-statistics in parentheses

- ullet Only ΔMPK spread are significantly and **negatively** priced.
- Robust results to alternative definitions of superstars, pricing Giglio and Xiu (2021)'s 202 portfolios, value-weighted capital misallocation, etc.

Result 2: Factor-mimicking portfolios

$$R_{it}^e = \alpha_i + \beta_{it} \Delta \mathsf{MPK} \; \mathsf{spread}_t + \varepsilon_{it}, \quad t = t - 20 \to t.$$

Table 2: Portfolios sorted on stock exposure to ΔMPK spread

	Low β	Q2	Q3	Q4	High β	High-Low
Ret-rf	11.633***	5.243***	3.707***	2.062***	6.816***	-4.818***
	(6.52)	(5.95)	(5.87)	(4.88)	(5.45)	(-2.64)
α_{CAPM}	0.594	0.843	1.258*	-1.617**	-3.213**	-3.807**
	(0.41)	(1.16)	(1.79)	(-2.08)	(-2.57)	(-2.12)
$\alpha_{FF3+UMD}$	1.329	1.253	1.647**	-1.673**	-2.056	-3.384*
	(0.83)	(1.51)	(2.27)	(-2.09)	(-1.59)	(-1.68)
α_{FF5}	2.419	0.569	0.103	-2.455***	-1.694	-4.113**
	(1.64)	(0.71)	(0.15)	(-3.14)	(-1.38)	(-2.06)

t statistics in parentheses

- Stocks (–) exposed to Δ MPK spread outperform stocks (+) exposed to Δ MPK spread by **4.8%** per year.
 - Stocks (-) exposed to shocks earn higher expected returns \rightarrow risky.
 - Stocks (+) exposed to shocks earn lower expected returns \rightarrow hedge.

Result 3: Predicting negative economic growth

$$\Delta Y_{t:t+q} = \alpha + \beta \mathsf{MPK} \; \mathsf{spread}_t + \epsilon_{t:t+q},$$

where $Y \in \{CG, IP, E, R_{mkt}^e\}$.

Table 3: Long-run predictive regressions

	q=1	q=4	9=8	q=12
Per capita real consumption growth	-0.271***	-0.750***	-0.757***	-0.336
	(-3.39)	(-3.24)	(-2.59)	(-0.87)
R^2	0.039	0.089	0.051	0.007
Industrial production growth	-0.283	-1.176**	-2.427***	-1.667*
	(-1.57)	(-2.19)	(-3.38)	(-1.70)
R^2	0.014	0.040	0.080	0.027
Employment growth	-0.152**	-0.497**	-0.888***	-0.586**
	(-2.28)	(-2.49)	(-4.05)	(-2.25)
R^2	0.013	0.056	0.096	0.032
Market excess returns	-1.084**	-1.654***	-2.613**	-2.815*
	(-2.43)	(-2.66)	(-2.53)	(-1.87)
R_{IS}^2	0.018	0.018	0.028	0.024
$R_{OOS}^{\overline{2}}$	0.002	0.003	0.005	0.011

t-ratio of Hodrick (1992) with k-1 lags in parentheses.

- MPK spread negatively predicts economic growth, proxied by consumption growth, industrial production growth, and employment growth, and stock market returns. → MPK spread is a state variable.
- Aggregate misallocation and other components **do not** yield significant predictive power.

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

^{*} p < 0.10, ** p < 0.05, *** p < 0.01