Implementierung eines Schnitt-Algorithmus für die Level-Set-Methode und Untersuchung der kollabierenden Wassersäule mit XFEM

Markus Sons

6. April 2011

Inhaltsverzeichnis

Lit	eratı	ırverze	ichnis	4
1.	Einle	eitung		4
2.	Gru	ndlagen		5
	2.1.	Navier	-Stokes Gleichung	5
		2.1.1.	Grundgleichung	5
		2.1.2.	Zweiphasenströmung und Oberflächenspannung	5
	2.2.	Level-S	Set-Methode	5
	2.3.	Diskre	tisierung	5
		2.3.1.	Standard-Galerkin FEM	5
		2.3.2.	eXtended Finite Element Method	5
		2.3.3.	Zeitintegration	5
3.	Schr	nittalgo	orithmus	6
		_	ndene Algorithmen	6
		3.1.1.	Tetgen	6
			Hexahedra	6
	3.2.	Implen	nentierter Algorithmus	6
		3.2.1.	Zerlegung in Tetraeder	6
		3.2.2.	Schnittfälle	6
		3.2.3.	Verbesserungsmöglichkeiten	6
4.	Erge	bnisse		7
	4.1.	Zalesal	κs-Disk	7
		4.1.1.	Massenverlust	7
		4.1.2.	Geometrieerhaltung	7
	4.2.		sing Watercolumn	7
5.	Ausl	olick		8
Δ	Cod	Δ		a

1. Einleitung

2. Grundlagen

- 2.1. Navier-Stokes Gleichung
- 2.1.1. Grundgleichung
- 2.1.2. Zweiphasenströmung und Oberflächenspannung
- 2.2. Level-Set-Methode

Zur Beschreibung des Interfaces kann entweder die "Interface Tracking' oder die "Interface Capturing' Methode verwendet werden. Bei der Interface-Tracking-Methode wird das Interface explizit durch die Vernetzung beschrieben. Das Netz wird mit dem Interface weiterbewegt. Ein Problem dieser Methode ist, dass Topologie-Änderungen wie z.B. das Rekombinieren von zwei Blasen zu einer Größeren nicht dargestellt werden können. Finite Element Method

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0$$

- 2.3. Diskretisierung
- 2.3.1. Standard-Galerkin FEM
- 2.3.2. eXtended Finite Element Method
- 2.3.3. Zeitintegration

3. Schnittalgorithmus

In BACI sind bereits zwei verschiedene Schnittalgorithmen implementiert. Der gewünschte Algorithmus kann über den Parameter

3.1. Vorhandene Algorithmen

- 3.1.1. Tetgen
- 3.1.2. Hexahedra
- 3.2. Implementierter Algorithmus
- 3.2.1. Zerlegung in Tetraeder
- 3.2.2. Schnittfälle
- 3.2.3. Verbesserungsmöglichkeiten

4. Ergebnisse

- 4.1. Zalesaks-Disk
- 4.1.1. Massenverlust
- 4.1.2. Geometrieerhaltung
- 4.2. Collapsing Watercolumn

5. Ausblick

A. Code