A Fast Algorithm for Particle Simulation

Traditional Method

N×N work

Fast Algorithm

1. Computation of the <u>coefficients</u> of $\Phi(x_0)$ due to the charges about x_0 . mp work

2. Evaluation the coefficients of $\Phi(x_0)$ at all points y_j .

mp + np work

• Theorem 2.1. (Multipole expansion). Suppose that **m** charges of strengths $\{q_i, i=1,...,m\}$ are located at points $\{z_i, i=1,...,m\}$ with $|z_i| < r$. Then for any $z \in C$ with |z| > r, the potential $\Phi(z)$ is given by

$$\Phi(z) = Q \log(z) + \sum_{k=1}^{p} \frac{a_k}{z^k} \qquad \left(Q = \sum_{i=1}^{m} q_i \qquad a_k = \sum_{i=1}^{m} \frac{-q_i z_i^k}{k} \right)$$

$$p \approx -\log_2 \varepsilon \qquad \varepsilon \text{ is relative precision}$$

Traditional Method and Fast Algorithm

For a system of n particles, the amount of work that is needed to evaluate potential at m point

The strategy of fast algorithm

Computational Box

- Level of refinement: $n \approx \log_4 N$
- The number of boxes at mesh level I is equal to 4^l

Computational Box

Interaction list:

Children of the nearest neighbors of ibox's parent which are well separated from ibox

Notation used

p-term multipole expansion

 $\Phi_{l,i}$

the *p*-term multipole expansion (about the box <u>center</u>) of the potential field created by the <u>particles</u> contained <u>inside</u> box *i* at level *l*.

Notation used

p-term expansion

$$\Psi_{l,i}$$

the p-term expansion about the center of ibox at level I, describing the potential field due to <u>all particles inside</u> the <u>interaction list of ibox</u>.

Notation used

p-term local expansion

the p-term local expansion about the center of ibox at level I, describing the potential field due to all particles inside the interaction list of ibox and ibox's parent.

Step 1.

Form $\Phi_{finest\ mesh,ibox}(box\ center)$ due to particles in each child box

ullet Form a ${ t p-term multipole expansion} \ \Phi_{finest \ mesh,ibox}$, by using ${ t \underline{Theorem 2.1}}.$

Step 2.

Form $\Phi_{coarser\ mesh,ibox}(box\ center)$ due to particles in each child box

• Form a <u>p-term multipole expansion</u> $\Phi_{coarser\ mesh,ibox}$, by using <u>Lemma 2.3</u> to shift the center of each child box's expansion to the current box center and adding them together.

Step 3.

Form a **local expansion** about the center of each box at **coarser** mesh $l \leq n-1$

- Form $\Psi_{l,ibox}$ by using Lemma 2.4 to convert multipole expansion $\Phi_{l,interaction\ list}$ to local expansion, adding these expansions together.
- Adding result to $\widetilde{\Psi}_{l,ibox}$
- ullet Form $\widetilde{\Psi}_{l+1,ibox's\ children}$ by using $\underline{\text{lemma 2.5}}$ to $\underline{\text{expand}}\ \Psi_{l,ibox}$ about the $\underline{\text{children's box centers}}$.

Step 4.

Form a local expansion at finest mesh level l=n

- Form $\Psi_{l.ibox}$ by using Lemma 2.4 to convert multipole expansion $\Phi_{l,interaction\ list}$ to local expansion, adding these expansions together.
- ullet Adding result to $\widetilde{\Psi}_{l,ibox}$

\sim .		
	n	5
Ste	Μ	◡.

Evaluate local expansion $\widetilde{\Psi}_{n,ibox}(z_j)$ at particle positions

Step 6.

Compute potential due to nearest neighbors directly

Step 7.

For every particle in box ibox, add direct and far field terms together

• Step 1

- Form <u>coefficients</u> of $\Phi_{n,ibox}$ (<u>potential field</u> due to <u>particles in each box</u> about the <u>box</u> <u>center</u>) by using <u>theorem 2.1</u> at the <u>finest mesh level</u>.
- Theorem 2.1. (Multipole expansion). Suppose that **m** charges of strengths $\{q_i, i=1,\ldots,m\}$ are located $\{z_i, i=1,\ldots,m\}$. Then for any $z\in\mathcal{C}$, the potential $\Phi(z)$ is given by

$$\Phi(z) = Q \log(z) + \sum_{k=1}^{p} \frac{a_k}{z^k}$$

$$Q = \sum_{i=1}^{m} q_i \quad a_k = \sum_{i=1}^{m} \frac{-q_i z_i^k}{k}$$

Form these coefficients at the finest mesh level

Lemma 2.3.

Calculating the potential due to a set of m charges about a point inside the circle (by using the location of each charge)

Theorem 2.1. (Multipole expansion). Suppose that m charges of strengths $\{q_i \text{ , } i=1 \text{ , ... , } m\}$ are located **inside** the circle C. Then for any $z \in C$ inside the circle C, the potential $\Phi(z)$ is given by

$$\Phi(z) = Q \log(z) + \sum_{k=1}^{p} \frac{a_k}{z^k} \quad \left(Q = \sum_{i=1}^{m} q_i \ a_k = \sum_{i=1}^{m} \frac{-q_i z_i^k}{k} \right)$$

Lemma 2.3. Suppose that **m** charges of strengths $\{q_i, d_i\}$ i = 1, ..., m are located **inside** the circle C with center at z_0 . Then for any $z \in C$ outside the circle C, the potential $\Phi(z)$ is given by

$$\Phi(z) = Q \log(z) + \sum_{k=1}^{p} \frac{a_k}{z^k} \quad \left(Q = \sum_{i=1}^{m} q_i \ a_k = \sum_{i=1}^{m} \frac{-q_i z_i^k}{k} \right) \qquad \Phi(z) = Q \log(z) + \sum_{l=1}^{p} \frac{b_l}{z^l} \quad \left(b_l = \left(\sum_{k=1}^{l} a_k z_0^{l-k} \binom{l-1}{k-1} \right) - \frac{Q z_0^l}{l} \right)$$

• Step 2

Form $\Phi_{l,ibox}$ (l=0,...,n-1) by using <u>lemma 2.3</u> to <u>shift</u> the <u>center</u> <u>of each child box's expansion</u> to the <u>current box center</u> and <u>adding</u> them together.

$$\Phi(z) = Q \log(z) + \sum_{l=1}^{p} \frac{b_l}{z^l}$$

$$b_l = \left(\sum_{k=1}^l a_k z_0^{l-k} {l-1 \choose k-1} \right) - \frac{Q z_0^l}{l}$$

coarser Finest mesh mesh level level

Lemma 2.4.

Multipole expansion

Theorem 2.1. (Multipole expansion). Suppose that m charges of strengths $\{q_i, i=1,...,m\}$ are located **inside** the circle C. Then for any $z \in C$ inside the circle C, the potential $\Phi(z)$ is given by

$$\Phi(z) = Q \log(z) + \sum_{k=1}^{p} \frac{a_k}{z^k} \quad \left(Q = \sum_{i=1}^{m} q_i \ a_k = \sum_{i=1}^{m} \frac{-q_i z_i^k}{k} \right)$$

Lemma 2.4. Suppose that **m** charges of strengths $\{q_i, q_i\}$ i = 1, ..., m are located **inside** the circle C with center at z_0 . Then the <u>corresponding multipole</u> expansion converges inside the circle C'.

$$\Phi(z) = Q \log(z) + \sum_{k=1}^{p} \frac{a_k}{z^k} \qquad \left(Q = \sum_{i=1}^{m} q_i \ a_k = \sum_{i=1}^{m} \frac{-q_i z_i^k}{k} \right) \qquad \Phi(z) = \sum_{l=0}^{p} b_l \cdot z^l \qquad \left(b_0 = \sum_{k=1}^{p} \frac{a_k}{z_0^k} (-1)^k + Q \log(-z) \right) \\ b_l = \left(\frac{1}{z_0^l} \sum_{k=1}^{p} \frac{a_k}{z_0^k} \binom{l+k-1}{k-1} (-1)^k \right) - \frac{Q}{l \cdot z_0^l}$$

- Form a <u>local expansion</u> about the center of each box at coarser mesh $l \le n-1$
- Form $\Psi_{l,ibox}$ by using <u>lemma 2.4</u> to <u>convert</u> $\Phi_{l,j}$ of each box j in <u>interaction</u> list of box *ibox* about the <u>center of box *ibox*</u>, <u>adding</u> these local expansion together.
- riangle Adding result to $\widetilde{\Psi}_{l,ibox}$

• Step 3

Form $\widetilde{\Psi}_{l+1,ibox's\ children}$ by using <u>lemma</u> 2.5 to <u>expand</u> $\Psi_{l,ibox}$ <u>about the</u> children's box centers.

• Lemma 2.5

For any complex z_0, z and $\{a_k\}, k = 0, 1, 2, \dots, n$,

$$\sum_{k=0}^{n} a_k (z - z_0)^k = \sum_{k=0}^{n} \left(\sum_{k=l}^{n} a_k \binom{k}{l} (-z_0)^{k-l} \right) z^l$$

- Form a <u>local expansion</u> at <u>finest</u> mesh level l = n
- Form $\Psi_{l,ibox}$ by using <u>lemma 2.4</u> to <u>convert</u> $\Phi_{l,j}$ of each box j in <u>interaction</u> list of box *ibox* about the <u>center of box *ibox*</u>, <u>adding</u> these local expansion together.
- riangle Adding the result to $\widetilde{\Psi}_{l,ibox}$

- Evaluate local expansion at particle positions
- For every particle p_j located at the point z_j in ibox, evaluate $\widetilde{\Psi}_{n,ibox}(z_j)$

- Compute <u>potential</u> due to <u>nearest</u> neighbors directly
- For every particle p_j located at the point z_j compute interactions with all other particles within the box and its nearest neighbors.

Thank you For your attention