Translacijski (linearni) motori

- Ako se obod statora i rotora uz zračni raspor razvije u ravninu, rotacijsko gibanje se pretvara u translacijsko.
- lako postavljeno načelo vrijedi za sve vrste strojeva, kao translacijski motori najčešće se koriste asinkroni motori s punim rotorom umjesto kaveza
- Zašto se uopće koriste translacijski motori? Odgovor tamo gdje se traži translacijsko gibanje radnog mehanizma.
- Korištenje rotacijskog motora za translacijsko gibanje zahtijeva odgovarajući mehanički prijenosnik snage i gibanja; Primjer: zupčanik sa zupčastom letvom
- Učvršćenjem pogona zupčanika (lokomotiva) pomiče se zupčasta letva. Alternativno, ako se fiksira zupčasta letva, onda se pomiče translacijski motor koji je na pomičnoj platformi (načelo "lokomotive")

Translacijski (linearni) motori

$$v_s = 2f\tau_p \ [m/s]$$

Ako polni korak s najmanje 3 utora ne može biti kraći od 5cm, kolika se najmanja brzina translacijskog polja može dobiti?

- d) Dvostruki primar sa sekundarom (Cu il Al)
- e) Jednostruki primar sa sekundarom od Al na podlozi od Fe

ISTOSMJERNI STROJEVI

KRATKI OPIS OSNOVNIH KOMPONENATA

Stator

Nepokretni dio, uglavnom je masivna željezna jezgra (jaram statora) koja ne mora biti lamelirana. Glavni magnetski polovi (ili elektromagneti) su pričvršćeni za stator i osiguravaju nezavisnu uzbudu (magnetski tok). Taj tok se može mijenjati (ako se koristi elektromagnetska uzbuda), a može biti stalan (permanentni magnet)

Rotor (Armatura)

Pokretni dio, izrađen od lameliranog željeza (zbog izmjenične struje u rotoru istosmjernog stroja) u kojem se nalaze utori za smještaj vodiča rotora. Rotorski namot se sastoji iz jednog ili više svitaka od kojih je svaki spojen na segment kolektora

Kolektor

Segment kolektora je spojen s rotorskim zavojem (dio namota) spojnicom prikazanom na slici. Struja dolazi iz vanjskog izvora preko nosača četkica koji je priključen na kućište motora i preko spoja četkica i lamele kolektora ulazi u namot (na mjestu neutralne zone, nema induciranog napona u tom zavoju)!

Segment kolektora s četkicom- načelo rada

Budući da magnetska sila djeluje na krak poluge koji se mijenja po sinusnom zakonu, i zakretni moment se mijenja po istom zakonu.

DC motor – dijelovi motora

STATOR→permanentni magnet (el-magnet); ROTOR→armaturni namot

DC motor – uzdužni i poprečni presjek

Suvremena izvedba DC motora

DC motor – funkcija pojedinih dijelova stroja

CRVENO → Magnet ili namot s obilježjem "N" pola

ZELENO → Magnet ili namot s obilježjem "S" pola

Stator je sastavljen iz više dijelova permanentnog magneta

Rotorski namoti su spojeni na lamele kolektora (**smeđa boja**), 3 para polova Četkice su **tamno-sive**.

Razmak između lamela je **crni** prostor.

DC motor – prikaz stvaranja momenta i brzine vrtnje rotora

DC stroj kao GENERATOR istosmjernog napona

Sustav "četkica-kolektor" ispravlja IZMJENIČNI inducirani napon armaturnog namota u ISTOSMJERNI napon na četkicama

DC motor – matematički model

$$e_{a} = k_{E}\omega_{m}$$

$$u_{a} = e_{a} + R_{a}i_{a} + L_{a}\frac{di}{dt}$$

$$m_{em} = k_{T}i_{a}$$

$$\frac{d\omega_{m}}{dt} = \frac{1}{J_{eq}}(m_{em} - m_{t})$$

Stacionarno stanje

$$I_{a} = \frac{M_{em} (= M_{t})}{k_{T}}$$

$$\omega = \frac{U - I_{a} \cdot R_{a}}{k_{1} \cdot \Phi} = \frac{U - I_{a} \cdot R_{a}}{k_{E}}$$

Kako mijenjati brzinu vrtnje istosmjernog stroja?

- (1) Promjenom napona armature
- (3) Promjenom otpora armature

(2) Promjenom uzbude (magnetskog toka)

(1) Promjenom napona armature

- Povijesno gledano, prvo kvalitetno rješenje upravljanja bez značajnijih gubitaka je kao na slici (Ucrtati reg. transformator, diodni ispravljač i DC motor). Slika!
- Za veće snage se kasnije koristi sustav izmjenični AM koji vrti istosmjerni stroj kao generator (IG), koji je električki napaja istosmjerni motor (IM) s nezavisnom uzbudom. Regulacijom uzbudne struje IG-a regulira se direktno napon armature IM-a koji ima konstantnu uzbudu (slika)
- Nova rješenja su sa mrežnim pretvaračem u armaturnom krugu motora kojim se osigurava 4Q pogon (slika)

DC motor – Vanjske karakteristike

(2) Promjenom uzbude (magnetskog toka)

- Jednostavan način koji vrijedi samo onda ako uzbuda nije izvedena pomoću permanentnih magneta. Ako je uzbuda izvedena pomoću elektromagneta, promjenom uzbudne struje proporcionalno se mijenja i magnetski tok (sve do zasićenja magnetskog kruga)
- Uzbudna struja se prije mijenjala mjenjajući otpor uzbudnog kruga s
 promjenljivim otpornikom. Gubici, razvija se toplina na otporniku. Zbog
 topline se mijenja i ukupan otpor namota uzbude pa se ne može osigurati ni
 konstantan magnetski tok (radnu točku stalno treba podešavati!)
- Nova rješenja koriste usmjerivački sklop energetske elektronike koji može vrlo jednostavnu regulirati konstantnu uzbudnu struju a s time i tok

(3) Promjenom otpora armature

- Mijenjajući otpor armature mijenja se nagib karakteristika n=f(M). Pri tome se brzina praznog hoda ne mijenja.
- Nekada se koristilo značajno u istosmjernoj vuči gdje su se radne točke i u motorskom i u kočnom režimu podešavale promjenom otpora u armaturnom krugu (primjer tramvaja, još uvijek je jedna serija takvih tramvaja u redovnom prometu u Zagrebu.
- Loša energetska bilanca, veliki dio energije se pretvara u toplinu na regulacijskim otpornicima

DC motor – Vanjske karakteristike

- U seriju s armaturnim namotom postavlja se otpornik (otpornici)
- Promjenom iznosa tog otpornika mijenja se nagib vanjske karakteristike
- Ako se pretpostavi konstantan moment opterećenja

- Rotorski otpornik u funkciji startera (pokretača)
- Za pokretanje se polazi od najvećeg dodatnog otpornika R_{d1} (brzina=0) do kratko spojenog dodatnog otpora, R_d=0
- Veliki gubici u otpornicima, neekonomično

Fig. 3.5.16: Characteristics for controlled drive with variation of armature voltage and field weakening

DC motor – Karakteristike regulacije

Područje **KONSTANTNOG MOMENTA** konstantan → UZBUDNI TOK mijenja se → NAPON armature

Područje **KONSTANTNE SNAGE** konstantan → NAPON mijenja se → UZBUDNI TOK

DC motor - upravljanje

Valni oblici napona na motoru U_a i struje motora I_a

Upravljanje iz autonomnog izvora

DC motor - upravljanje

Antiparalelni spoj usmjerivača s vremenskim zatezanjem prilikom reverziranja, (bez kružnih struja)

Antiparalelni spoj usmjerivača bez vremenskog zatezanjem prilikom reverziranja (s kružnim strujama).

Literatura

- 1. http://www.physclips.unsw.edu.au/jw/electricmotors.html#DCmotors
- 2. http://electronics.howstuffworks.com/motor.htm
- 3. R.Wolf."Osnove električnih strojeva", str.220-246, Školska knjiga, Zagreb, 1985.

Koračni motori

- Foračni motori su elektromehanički pretvornici energije, koji *pulsnu* električnu pobudu pretvaraju *u koračni mehanički pomak (rotacijski ili translacijski).*
 - Koračnim brzina kod komercijalnih motora se kreće od oko 100 do preko 10.000 koraka u sekundi [k/s].
 - Na malim koračnim brzinama rotor se zaustavlja na svakome koračnom položaju. Na srednjim brzinama nema zaustavljanja rotora na svakome koračnom položaju, ali kutna brzina oscilira ovisno o položaju. Na velikim koračnim brzinama kutna brzina prelazi u kontinuirano gibanje.

Tipovi koračnih motora:

- permanentnomagnetski;
- koračni motori s promjenljivom reluktancijom;
- hibridni koračni motori.

Koračni motor – načelo rada

Prekidački dvofazni koračni motor

Koračni motor- Animacija

Koračni motori Permanentnomagnetski koračni motori (1)

- Radijalno magnetizirani permanentnomagnetski rotor i višefazni stator
- Uzastopnim ukapčanjem ili okretanjem smjera struje pojedinih statorskih faza ili njihovih kombinacija po određenom redoslijedu, rezultantno magnetsko polje statora se skokovito mijenja u jednome ili u drugom smjeru.
- Rotor se postavlja u smjeru rezultantnoga statorskog polja koračna rotacija.

Korak	FAZ	ZA 1	FAZA 2		
	A	В	C	D	
1.	+(+)	-(-)	0(0)	0(0)	
2.	0(0)	0(0)	+(-)	-(+)	
3.	-(-)	+(+)	0(0)	0(0)	
4.	0(0)	0(0)	-(+)	+(-)	

Dvofazni permanentnomagnetski koračni motor – *koračni hod*. (oznake u zagradama→ drugi smjer brzine vrtnje)

Koračni motori - Permanentnomagnetski (2)

Varials	FAZ	ZA 1	FAZA 2		
Korak	A B		C	D	
1.	+(+)	-(-)	0	0	
2.	+(+)	-(-)	+(-)	-(+)	
3.	0	0	+(-)	-(+)	
4.	4(-)		+(-)	-(+)	

Dvofazni permanentnomagnetski koračni motor – polukoračni hod

Koračni motori - Permanentnomagnetski (2)

Koračni hod

Polukoračni hod

Koračni motori Permanentnomagnetski koračni motori (3)

Vowalz	FAZE			
Korak	I	II II		II
1	+	0		0
2	0	+		0
3	0	0		+

Trofazni permanentnomagnetski koračni motor – koračni hod od 2π/3

Koračni motori Permanentnomagnetski koračni motori (4)

Warak	FAZE			
Korak	Ι	II	III	
1	+	0	0	
2	+	+	0	
3	0	+	0	
4	0	+	+	
5	0	0	+	
6	+	0	+	

Trofazni permanentnomagnetski koračni motor – koračni hod od $\pi/3$.

Zelena strelica (I faza), Crvena strelica (II faza),

Crna strelica-rezultantno protjecanje

Koračni motori Permanentnomagnetski koračni motori (5)

ko	FAZE			ko	FAZE		
korak	Ι	II	III	korak	Ι	II	III
1	+	ı	0	7	ı	+	0
2	+	ı	ı	8	ı	+	+
3	+	0	ı	9	ı	0	+
4	+	+	ı	10	ı	I	+
5	0	+	ı	11	0	I	+
6	ı	+	ı	12	+	ı	+

Trofazni permanentnomagnetski koračni motor – *koračni hod* od $\pi/6$. Nakon pobude s dvije faze slijedi uvijek pobuda sve tri faze

Koračni motori - Reluktantni (1)

- Imaju nazubljeni višefazni namotani stator i nazubljeni rotor od mekog željeza.
- Kut koračanja im ovisi o broju zuba statora i rotora, o načinu namatanja statorskih faza te načinu njihove pobude.
- Trofazna verzija, na primjeru (slijedeći slide) ima dvanaest statorskih i osam rotorskih zuba, pa zubni kut među statorskim zubima iznosi 30°, a među rotorskim 45°.

Prekidački reluktantni

Napomena: Rotor NIJE permanentni magnet već željezo

Koračni motori - Reluktantni (2)

Trofazni koračni motor s promjenljivom reluktancijom.

- Pobuđivanjem faza prema slici, rotor se zakreće za 15° (45°- 30°) u smjeru suprotnom od redoslijeda ukapčanja faza (u lijevu stranu).
- Maizmjeničnim pobuđivanjem jedne pa dvije faze, npr. kad se poslije faze 1. zajednički pobude faze 1. i 2., postiže se polukoračni pomak od 7,5° u lijevom smjeru

Koračni motori Hibridni koračni motori

- Kombinacija načela na kojima se zasniva rad permanentnomagnetskih i motora s promjenljivom reluktancijom .
- S nazubljenim statorom na kojem se nalaze elektromagnetski svici i nazubljenim rotorom postižu se dobra svojstva promjenljive reluktancije i permanentnoga magnetskog polja.
- Zubi su najčešće istoimeni permanentni magneti ali ponekad mogu biti i bez uzbude

Poprečni presjek osampolnoga hibridnog motora, dva susjedna položaja

Koračni motori – vanjska karakteristika (primjer)

