Cross-Methodological Comparison and Validation of Common Methods in NLP-based Psychosis Detection

Galina Ryazanskaya

1st advisor: Dr. Sherzod Hakimov 2nd advisor: Prof. Dr. Manfred Stede

Motivation

- Incoherent language is an important diagnostic feature of psychotic disorders
 - e. g. schizophrenia, schizoaffective disorder, etc
- Many NLP-based methods of detecting such incoherent language were proposed
- NLP-based psychosis detection tasks include
 - distinguishing patients from controls or healthy family members
 - predicting conversion in clinical high-risk populations
 - assessing or predicting symptom severity
 - positive vs negative symptom severity

Motivation

The commonly used NLP-based methods often

- lack replicability
 - different diagnosis and symptoms in the samples
 - different elicitation tasks
 - different metric implementation and text preprocessing
- have limited cross-linguistic validity
 - rarely evaluated on cross-linguistic samples
- are associated with confounding factors both internal and external
 - text or sentence length (patients are commonly reported to speak less)
 - sex, age, education, race, etc.
- are rarely directly evaluated against each other or against a simple baseline

Benchmarking study on two languages of the most common metrics

Literature Review

- 62 papers, theses, and conference proceedings
 - keywords & references to expand the search
 - excluded purely manual linguistic metrics & purely auditory / spoken metrics
- metrics were grouped by the units they operated on & assessed in performance
 - lexical, syntactic, semantic (graph and LM)
- languages, experiment designs, and preprocessing were explored
- degree of reported dependence on sentence length
- frequency of use
- reported performance
- cross-linguistic / cross-study applicability

Metrics

- Lexical: word count, LTR, MALTR
- Syntactic: POS rates, sentence length (mean, max, min, std) and count
- Graph-based:
 - co-occurrence graph (lemmas as nodes, co-occurrence as directed edges)
 - NN, NE, LCC, LSC, L1, L2, L3, PE, node degree (mean, std)
- LM:
 - models: w2v, GloVe, BERT
 - sentence embeddings:
 - average word vectors, TF-IDF weighted average
 - BERT last layer hidden-state CLS token embedding
 - local (first order) coherence, second order coherence, (centroid) coherence, cumulative global coherence
 - pseudo-perplexity, next sentence probability

global

Data

- German sample:
 - 59 NAP and 20 controls
 - PANSS, SANS, SAPS, verbal IQ more negative symptoms
 - Narrative Emotion Task
- Russian sample:
 - 31 NAP, 18 Dep, 30 controls
 - PANSS, TD (psychosis) and depression severity
 - 2 picture-elicited tasks ('sportsman', 'adventure')
 - 1 instruction task ('chair')
 - 1 personal story task (*'present'*)

Preprocessing: sentence segmentation, lemmatization, hesitation pauses and interviewer speech removal

Association with social confounding factors detected neither in symptoms nor in metrics

Research Questions

- which metric groups work best?
- which metrics outperform the simplest baselines?
 - word count, sentence count, mean sentence length
- which metrics are associated with sentence length?
- which metrics work for which scales?
- which metrics work across tasks?
 - elicitation task effects
- which metrics work on both languages?
 - cross-linguistic differences

Analysis

Bootstrap to assess metric stability wrt influential points (1000 samples)

Analysis:

- two-sided t-test
 - NAP vs control
- r squared:
 - control variables
 - symptoms
 - mean sentence length
- pseudo-r squared for ordinal response variables:
 - TD and depression severity

Results: German, cross-metric comparison (t)

Results: German, cross-metric comparison (R²)

Results: Russian, cross-metric comparison (R²)

Results: Relative Performance

German:

- t-test: sentence length metrics by far outperform all others
- correlation with symptoms:
 - graph, PART > syntactic, lexical, LM
 - best graph-based metrics (NN, NE, LCC, LSC), PART rate, and PPPL outperform the mean sentence length baseline

Russian:

- correlation with symptoms:
 - graph, lexical, PART > syntactic > LM
 - mean sentence length weak baseline; sentence count stronger baseline
 - best graph-based metrics (NN, NE, LCC, LSC) an lexical counts outperform sentence count

Results: Mean Sentence Length

Many metrics inherently correlate with verbosity either mean sentence length or sentence count

- Graph: number of nodes is unique lemma count over a moving window
- Synt (POS): proportional to sentence length
- LM: vector averaging hypothesis
- Lexical: word count incorporates sentence length and count

Verbosity itself can be regarded as a reasonable baseline

Results: German, Mean Sentence Length vs t-test

- general pattern of performance on t-test is proportional to correlation with mean sentence length

Results: German, Mean Sentence Length vs SANS r²

- general pattern of performance is proportional to correlation with mean sentence length
- important exception: graph-based metrics
 - correlate less than LM, perform better

Results: Russian, Mean Sentence Length vs SANS r²

- similar but much weaker general pattern
- graph-based methods are still the exception

cross-type metric comparison for correlation with PANSS total and inverse mean sentence length

Results: Mean Sentence Length for LMs

correlation with mean sentence length for LM metrcis across models

correlation with mean sentence length for LM metrcis across models and tasks

German Russian

Results: Metrics vs Scales

- German

- best metrics work for both negative (SANS, PANSS_neg) and general scales (PANSS_o, PANSS total score)
- lack of positive symptoms does not allow for thorough positive scale analysis (SAPS, PANSS_pos)

- Russian

- best metrics typically work across all scales

Results: Russian, Metrics across Tasks

- Best performing metrics show more consistency across tasks
 - Graph: NN, NE, LCC, LSC
 - Syntactic: n sentences, PART, to some degree mean sentence length
 - Lexical: word count, LTR

- In other metrics high variability in performance across tasks

Results: Russian, Graph-Based Metrics across tasks

Results: Russian, Syntactic Metrics across Tasks

Results: Metrics across tasks

Results: Metrics across tasks

Results: Metrics across Languages

- Different tasks between languages
- Best performing metrics show more consistency across languages
 - Graph: NN, NE, LCC, LSC
 - Syntactic: PART
 - Lexical: word count, LTR
- Mean sentence length serves as a better baseline for German, and sentence count for Russian (both work for some tasks)
- Surprising BERT differences between languages (but not tasks)
 - direction of correlation with symptom severity and with mean sentence length
 - PPPL & next sentence prediction differ in correlation with mean sentence length

Results: Summary

- which metrics work best: graph > lexical, syntactic > LM
- which metrics outperform the baselines: within each group simple is generally better than complex
- which metrics are associated with mean sentence length: apart from graph-based metrics, correlation with mean sentence length is strongly associated with performance
- which metrics work for which scales: best metrics work for all scales
- which metrics work across tasks:
 - best metrics work for all tasks
 - large differences between tasks
- which metrics work on both languages:
 - graph (NE, NN, LCC, LSC), lexical (word count, LTR), PART
 - unexplained cross-linguistic differences in BERT performance

Bootstrap

- Various non-outlier influence points that render correlation unstable
- Bootstrap subjects sampled with replacement for 1000 iterations
- 25-75% quantile interval to assess dispersion and approximate robustness of the metrics wrt influential points in question

Sentence Length VS Sentence Count, Russian

Sentence Length VS Sentence Count, German

number of words against number of sentences and mean sentence length

Russian: Depression Severity

Russian: TD Severity

