BIG DATA AND CO

A glimpse on possibilities in Accounting

WHO AM !?

Assistant Professor of Accounting at Rady

- PhD in Finance Dauphine University, France
- Master in Finance Dauphine University, France
- Master in AI Toulouse University, France
- Master in CS Engineering INSA, France

RESEARCH

BEFORE

AI - Reinforcement Learning

RECENTLY

- Banking Regulation
- Impact of data on financing decisions

NOW

- Real effects implications of accounting rules
- Public disclosures and Information Processing

INTERNATIONAL EXPERIENCE

Hong Kong University

Harvard

Imperial College Business School

CONTACT

mmilone@ucsd.edu

And when we will be back on campus:

858-534-8511

Office 3W102

FINANCIAL ACCOUNTING

FINANCIAL ACCOUNTING

Aggregation of information into financial statements

FINANCIAL ACCOUNTING

Aggregation of information into financial statements

Provides information about past transactions

Produces information for management decisions

Produces information for management decisions

Focuses on the future

Produces information for management decisions

Needs a lot of Data

Focuses on the future

Produces information for management decisions

Needs a lot of Data

Focuses on the future

Need for prediction

Cost estimations

Cost estimations
Cost allocations

Cost estimations

Cost allocations

Breakeven Point

Cost estimations

Cost allocations

Breakeven Point

Sensitivity Analysis

Cost estimations

Cost allocations

Breakeven Point

Sensitivity Analysis

Transfer Pricing

ON THE NEED FOR PREDICTION

Forecast of Cash Flows Risk Management

• • •

Cost Analysis
Fraud detection

• • •

ON THE NEED FOR PREDICTION

ABOUT THE FUTURE

Forecast of Cash Flows Risk Management

• • •

Cost Analysis
Fraud detection

ON THE NEED FOR PREDICTION

ABOUT THE FUTURE

Forecast of Cash Flows Risk Management

• • •

ABOUT THINGS WE DO NOT KNOW

Cost Analysis

Fraud detection

DATA IS COMING ...

1 ZB = 1 Billion Terabytes

BIG DATA

ARE COMPANIES THERE YET?

Just a Big Buzzword?

Just a Big Buzzword?

Just a lot more data?

Just a Big Buzzword?

Just a lot more data?

The combination of previously separate datasets?

Just a Big Buzzword?

Just a lot more data?

The combination of previously separate datasets?

Structured vs unstructured data?

WHAT ARE COMPANIES DOING TODAY?

Microsoft power BI and co

Slowly Starting

WHAT ARE COMPANIES DOING TODAY?

BUSINESS ANALYTICS

Microsoft power BI and co

Slowly Starting

WHAT ARE COMPANIES DOING TODAY?

BUSINESS ANALYTICS

Microsoft power BI and co

PREDICTIVE ANALYTICS

Slowly Starting

RPA

= ROBOT PROCESSING AUTOMATION

RPA

= ROBOT PROCESSING AUTOMATION

Automation of routine rules-based business processes

RPA

= ROBOT PROCESSING AUTOMATION

Automation of routine rules-based business processes

Embedded into Enterprise Resource Planning (ERP) softwares

RPA

= ROBOT PROCESSING AUTOMATION

Automation of routine rules-based business processes

Embedded into Enterprise Resource Planning (ERP) softwares

UiPath, Blue Prism, Automation Anywhere

RPA EXAMPLES

Invoice processing

Data validation

Customer Relationship

HR processes (payroll, ...)

RPA EXAMPLES

Invoice processing

Data validation

Customer Relationship

HR processes (payroll, ...)

Digitization of processes

Digitization of processes

Enhances the creation and gathering of data

Digitization of processes

Enhances the creation and gathering of data

First step towards Intelligent Automation

< 50% of companies have started RPA

Data from EY, 2018

RPA

3% of enterprises have achieved scale

BEYOND RPA

FROM DATA TO DECISION MAKING

Data is not enough. We also need

- A way to make the data useful
- A way to convey the information learned

BEYOND RPA

FROM DATA TO DECISION MAKING

Data is not enough. We also need

- A way to make the data useful
- Prediction
- A way to convey the information learned

BEYOND RPA

FROM DATA TO DECISION MAKING

Data is not enough. We also need

- A way to make the data useful
- Prediction
- A way to convey the information learned
- Visualization

MACHINE LEARNING

AND HOW IT AFFECTS ACCOUNTING

PREDICTION PROBLEM?

DECISION PROBLEM?

PREDICTION PROBLEM?

Need to find a relationship between X and Y

DECISION PROBLEM?

PREDICTION PROBLEM?

Need to find a relationship between X and Y

DECISION PROBLEM?

Need to find an *Algorithm*

PREDICTION PROBLEM?

Need to find a relationship between X and Y

DECISION PROBLEM?

Need to find an *Algorithm*

= Steps to solve a problem

HOW ABOUT ML?

Supervised / Unsupervised Learning Reinforcement Learning

HOW ABOUT ML?

We want the machine to find the relationship or the algorithm by itself

Supervised / Unsupervised Learning
Reinforcement Learning

PREDICTION AND VISUALIZATION

How to gain insight using big data analytics with Power BI

HOW ABOUT ML?

We want the machine to find the relationship or the algorithm by itself

HOW DO WE DO THAT?

Supervised / Unsupervised Learning Reinforcement Learning

HOW ABOUT ML?

We want the machine to find the relationship or the algorithm by itself

HOW DO WE DO THAT?

Supervised / Unsupervised Learning Reinforcement Learning

HOW DOES THE MACHINE LEARN?

Input: board, image

Output: move, number

Highly non-linear math function

HOW DOES THE MACHINE LEARN?

NEED TO MAP AN INPUT TO AN OUTPUT

Input: board, image

Output: move, number

Highly non-linear math function

HOW DOES THE MACHINE LEARN?

NEED TO MAP AN INPUT TO AN OUTPUT

Input: board, image

Output: move, number

HOW DO WE MAP THESE?!

Highly non-linear math function

POSSIBLE METHODS

POSSIBLE METHODS

Regression / Classification Trees

POSSIBLE METHODS

Regression / Classification Trees
Random Forests

POSSIBLE METHODS

Regression / Classification Trees

Random Forests

K-nearest neighbor

POSSIBLE METHODS

Regression / Classification Trees

Random Forests

K-nearest neighbor

Neural Networks

POSSIBLE METHODS

Regression / Classification Trees

Random Forests

K-nearest neighbor

Neural Networks

• • •

NEURAL NETWORKS

NEURAL NETWORKS

NEURAL NETWORKS

NEURAL NETWORKS

NEURAL NETWORKS

NEURAL NETWORKS

SURE, BUT HOW DOES IT LEARN?!

SURE, BUT HOW DOES IT LEARN?!

SURE, BUT HOW DOES IT LEARN?!

Supervised Learning

WHY DO WE CARE?

Real life problems are highly non-linear

Difficult to find rule based algorithms

EXAMPLES

Image recognition
Translations
Self-Driving
Natural Language Processing

• • •

MACHINE LEARNING IN ACCOUNTING

Error detections

High risk transactions detection

Transaction allocations

Fraud detections

MACHINE LEARNING IN ACCOUNTING

Error detections

High risk transactions detection

Transaction allocations

Fraud detections

ML requires a lot of data to learn

ML requires a lot of data to learn

Audit firms observe many firms over time

ML requires a lot of data to learn

Audit firms observe many firms over time

They observe errors in many different situations

ML requires a lot of data to learn

Audit firms observe many firms over time

They observe errors in many different situations

Increased ability to use ML methods

RPA + ML = INTELLIGENT AUTOMATION

THIS IS AWESOME!

THIS IS AWESOME!

NOT REALLY...

Overfitting problems Regularization methods

Techniques allow to tackle complex problems

But we do not yet have enough ressources

COMPUTERS ARE "TOO" SMART ...

Overfitting problems Regularization methods

Techniques allow to tackle complex problems

But we do not yet have enough ressources

COMPUTERS ARE "TOO" SMART ...

Overfitting problems Regularization methods

OR NOT GOOD ENOUGH...

Techniques allow to tackle complex problems

But we do not yet have enough ressources

COMPUTERS ARE "TOO" SMART ...

Overfitting problems Regularization methods

OR NOT GOOD ENOUGH...

Techniques allow to tackle complex problems

But we do not yet have enough ressources

BASICALLY, IT IS HARD TO DESIGN ...

ML (supervised) requires a lot of data to learn

Can only learn information from the given data

Can only learn information from the given data Garbage In = Garbage Out

Can only learn information from the given data

Garbage In = Garbage Out

Cannot adapt to unknown situations

Need to have a way to improve ...

Need to have a way to improve ...

... still need humans

IS THAT ALL?

BLOCKCHAIN

BLOCKCHAIN

Created to solve the double spending problem without trusted third party

TRADITIONALLY

Third party records all transactions

When asked for, can say if a new transaction is

All parties involved trust the third party

possible (i.e. pay)

BLOCKCHAIN IN ACCOUNTING

Like Accounting, Blockchain is about registering transactions

It seems likely to disrupt accounting

BLOCKCHAIN IN ACCOUNTING

Audit is about verifying transactions

Blockchain provides a way to trust the information

Implementations started in China

SHOULD WE BE WORRIED?

NOT REALLY ...

Accounting involves a lot of reasoning

1. Identifying Transactions

- 1. Identifying Transactions
- 2. Recording / Measuring -- Needs concepts (GAPP)

- 1. Identifying Transactions
- 2. Recording / Measuring -- Needs concepts (GAPP)
- 3. Communicating (BS, OE, IS, SCF)

MAYBE ONE DAY

MAYBE ONE DAY

BLOCKCHAIN + ML

MAYBE ONE DAY

BLOCKCHAIN + ML

But we should have some time

Learn as many concepts as you can now

Learn as many *concepts* as you can now Understand the big picture and how things fit together

Learn as many *concepts* as you can now Understand the big picture and how things fit together

Rely on this knowledge to adapt

Learn as many *concepts* as you can now Understand the big picture and how things fit together

Rely on this knowledge to adapt

The world will look a lot different in 30 years

Learn as many *concepts* as you can now Understand the big picture and how things fit together

Rely on this knowledge to adapt

The world will look a lot different in 30 years

Never stop learning!

THANK YOU