Faculdade de Computação e Informática Hardware para Computação

Representação de Números

(Inteiros, Frações – positivos e negativos)

Representação de Dados

- Sinal e Magnitude
- Complemento de Dois
- Interros

- Representação em Ponto Flutuante IEEE 754
 - Padrão criado em 1985 pela IEEE
 - Passou a ser adotado por todos os computadores

Sinal e Magnitude

- Representação para números inteiros positivos e negativos
 - Foi usada em computadores antigos
- Os números são organizados em 2 partes:
 - Sinal (bit usado para representar o sinal do número (0: + e 1: -)
 - Magnitude (módulo ou valor absoluto do dado)
- O bit reservado para o sinal é sempre o mais significativo: o bit mais à esquerda no número
- A magnitude é simplesmente representada em base 2 com n – 1 bits
 - n é o número de bits usado pela máquina para representar o número.

Exemplos usando 8 bits: -37 e +99

Operação de Soma

- Se os bits de sinal dos dois números são iguais:
 - Separe as magnitudes e as some
 - Bit de sinal do resultado é igual ao bit de sinal dos operandos

Caso contrário

- Separe as magnitudes e subtraia a menor da maior.
- O bit de sinal do resultado é igual ao bit de sinal do operando de maior magnitude.

Outras operações

 Para subtração, pode-se trocar o sinal do subtraendo (inverter bit de sinal) e transformar em soma a operação. Exemplo:

$$8 - 3 = 8 + (-3)$$

- Para divisão e multiplicação, opera-se apenas sobre a magnitude
 - Se operandos têm mesmo sinal, resultado terá bit de sinal 0.
 - Se operandos têm sinal diferente, resultado terá bit de sinal 1.

Limites de Representação do Sinal e Magnitude

- Suponha 8 bits para representar um número em Sinal e Magnitude
- Qual o maior número (maior positivo) que pode ser representado?
 - Primeiro bit 0 e todos os outros iguais a 1.
 - Para 8 bits: $0 11111111_2 = 127_{10}$.
- Qual o menor número (negativo) que pode ser representado?
 - Primeiro bit é 1 e todos os outros iguais a 1.
 - Para 8 bits: $\frac{1}{1}$ 11111111₂ = 127₁₀.

E se usarmos 4 bits?

Qual o limite de representação?

Generalizando...

Maior número:

$$2^{(n-1)}-1$$

Menor número:

$$-2^{(n-1)}-1$$

Exemplos:

- Para n = 8: de -127 a 127
- Para n = 16: de -32767 a 32767.
- Para n = 32: de -2147483647 a 2147483647

Problema

Duplicidade do valor 0. Considere os números:

00000000 e 10000000

Assim, ambos são 0 (zero): **positivo** e **negativo**

Exercícios

- 1. Represente os números seguintes em Sinal e Magnitude usando 8 bits de representação:
 - a. 80
 - b. 75
 - c. 103
 - d. 121
 - e. 65
- 2. Represente os números seguintes em Sinal e Magnitude usando 16 bits de representação:
 - a. 198
 - b. 246
 - c. 12561
 - d. 23890

Exercícios

- Faça as seguintes operações, considerando que os números estão representados em sinal em magnitude, usando 8 bits:
 - a) 10011001 + 00100110
 - b) 00011000 + 00110011
 - c) 10100000 10001100
 - d) 00011000 00000111

Complemento de 2 (C2)

Representação de números inteiros

- Números positivos:
 - Idêntica ao número escrito em base 2.
 - Zeros a esquerda s\(\tilde{a}\) adicionados para que n\(\tilde{u}\)mero fique com n
 bits.
 - Bit mais significativo tem que ser igual a 0
- Números negativos:
 - Escreve-se o número em binário
 - Invertem-se os bits
 - Soma-se um ao número
- O Complemento de Dois é o esquema de representação mais popular nos computadores modernos.

Exemplos (com 5 bits):

- . Complemento a dois de 01011:
 - 1º inverte: 10100; 2º soma-se 1 = 10100 + 1 = 10101.
- Complemento a dois de 11001 é 00110 + 1 = 00111.
- Complemento a dois de 10010 é 01101 + 1 = 01110.
- . Complemento a dois de 10101 é 01010 + 1 = 01011.

Propriedades

- Dado um número representado em Complemento de Dois com n bits, podemos estendê-lo para mais bits:
 - Se o número positivo, basta adicionar zeros à esquerda.
 - Se o número é negativo, basta adicionar uns.
 - De forma geral, repete-se o bit mais significativo tantas vezes quanto necessário.

•Exemplos:

- 01101 com cinco bits tem o mesmo valor de 00001101 com 8 bits.
- 10001 com cinco bits tem o mesmo valor de 11110001 com 8 bits

Como determinar o valor de número?

- Se o número é positivo (bit mais significativo é 0), basta convertê-lo para decimal
- Se o número é negativo (bit mais significativo é 1):
 - Invertem-se os bits, e soma-se um
- Exemplo:

```
1101 (-3)

<u>1100</u>+ (-4)

1001 (-7)
```

Subtração

Transforma o subtraendo em negativo e faz a soma. Só inverter os bits e somar 1.

Exercícios

1. Represente os números seguintes em C2 usando 8 bits de representação:

```
a. - 80
```

2. Represente os números seguintes em C2 usando 16 bits de representação:

```
a. - 198
```


Faculdade de Computação e Informática Hardware para Computação

Ponto Flutuante IEEE 754

(float e double)

Os números

- Semelhante a notação científica:
 - -3,45 x 10³²
 - +1,2 x 10⁻¹⁴
- Números binários = ± 1,bbbbbb x 2^e
 - Exemplo: +1,0011 x 2¹²
- Tipos de dados em linguagens:
 - Float (4 Bytes) e double (8 Bytes)
- Padrão especificado e definido por IEEE 754 (1985)
- 2 representações possíveis:
 - Precisão simples (32 bits): float
 - Precisão dupla (64 bits): double

Tipos de dados

tipo	descrição	número de bits	
byte	inteiro	8	
short	inteiro	16	
int	inteiro	32	
long	inteiro	64	
float	vírgula flutuante	32	
double	vírgula flutuante	64	
char	caracter	16	
logical	booleano	8	

Ponto Flutuante: notação

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent + Bias)}$$

S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$

Ponto Flutuante

• Os números devem ser representados na **forma normalizada** (1, alguma coisa):

Parte inteira do número sempre igual a 1

Exemplos:

- 130,75 = ? Binário
- 0,125 = ? Binário

E na forma normalizada?

Ponto Flutuante

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent + Bias)}$$

S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$

- Precisão Simples:
 - Bias = **127**
- Precisão Dupla:
 - Bias = **1023**

Valores Especiais – convenção

Valor	Sinal	Expoente	Mantissa
Zero	0	0s	Os
+ Infinito	0	1s	Os
- Infinito	1	1 s	Os
NaN	0	1 s	Diferente de 0s

No padrão IEEE 754, os **NaN** (Not a Number), possuem sinal 0, expoente 1 e mantissa com qualquer valor, exceto tudo 0s, pois isso caracteriza +infinito, e representam exceções como divisão por zero, raiz de negativos etc.

Exemplo: -9,5 (PS)

Sinal negativo $\rightarrow 1$

9,5 para binário \rightarrow 1001,1

Forma Normal = $1,0011 \times 2^{3}$

Agora que temos o expoente = 3, devemos normalizá-lo (e+bias):

$$3+127 = 130$$

Em binário temos 3 = 11 e 127 = 1111111, somando os dois temos \rightarrow 10000010 (130)

Resultado (sinal, expoente, fração):

1 10000010 001100000000000000000000

Convertendo número binário para decimal

Para converter binários de ponto flutuante para decimal, devemos fazer o inverso do que fizemos antes. Devemos identificar os componentes e dividí-los em sinal, expoente (8 ou 11 bits) e o restante será a mantissa. Não devemos esquecer de recompor a parte inteira, ou seja o 1. Exemplo:

expoente (e - bias) \rightarrow 10000010 = 130; logo 130 - 127 = 3 reconstituindo a **parte inteira** (1) e adicionando-a a **mantissa** \rightarrow **10011** adicionando a vírgula e o expoente \rightarrow 1,0011 x 2³ deslocando a vírgula, de acordo com o expoente \rightarrow 1001,1 convertendo para decimal \rightarrow 9,5 adicionando o sinal \rightarrow - 9,5

Exercícios

- Represente os números usando IEEE 754 com precisão simples e com precisão dupla:
 - a. 116,125
 - b. -32,75
 - c. -29,500
 - d. 75,250
- Responda quais valores estão representados se os números a seguir estão na notação IEEE 754 precisão simples: