

Lecture 4: Features and Fitting

Pattern Recognition (in Computer Vision)

Jinhua Ma,

School of Computer Science and Engineering, Sun Yat-Sen University

What we will learn today?

- A model fitting method for line detection
 - RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector

What we will learn today?

- A model fitting method for line detection
 - RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector

Fitting as Search in Parametric Space

- Let's say we have chosen a parametric model for a set of features:
- For example, we have a line equation that we want to fit to a set of edge points
- We can 'search' in parameter space by trying many potential parameter values and see which set of parameters 'agree'/fit with our set of features
- Three main questions:
- 1. What model represents this set of features best?
- 2. Which of several model instances gets which feature?
- 3. How many model instances are there?
- Computational complexity is important
- It is infeasible to examine every possible set of parameters and every possible combination of features

Example: Line Fitting

 Why fit lines? Many objects characterized by presence of straight lines:

Difficulty of Line Fitting

- Extra edge points (clutter), multiple models:
- Which points go with which line, if any?

- Only some parts of each line detected, and some parts are missing:
- How to find a line that bridges missing evidence?
- Noise in measured edge points, orientations:
- How to detect true underlying parameters?

Voting as a fitting technique

- It's not feasible to check all combinations of features by fitting a model to each possible subset. For example, the naïve line fitting between every pair of two points is $O(N^2)$.
- Voting is a general technique where we let the features vote for all models that are compatible with it.
 - Cycle through features, cast votes for model parameters.
 - Look for model parameters that receive a lot of votes.
- Noise & clutter features will cast votes too, but typically their votes should be inconsistent with the majority of "good" features.
- Ok if some features not observed, as model can span multiple fragments.

RANSAC (RANdom SAmple Consensus)

- RANSAC [Fischler & Bolles 1981]
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use only those.
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.
- RANSAC loop:
- Randomly select a seed group of points on which to perform a model estimate (e.g., a group of good points)
- 2. Compute model parameters from seed group
- Find inliers to this model
- 4. If the number of inliers is sufficiently large, re-compute leastsquares estimate of model on all of the inliers
 - Keep the model with the largest number of inliers

- Task: Estimate the best line
 - How many points do we need to estimate the line?

Algorithm of RANSAC

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

```
Determine:
    n — the smallest number of points required
    k — the number of iterations required
    t — the threshold used to identify a point that fits well
    d — the number of nearby points required
      to assert a model fits well
Until k iterations have occurred
    Draw a sample of n points from the data
      uniformly and at random
    Fit to that set of n points
    For each data point outside the sample
       Test the distance from the point to the line
         against t; if the distance from the point to the line
         is less than t, the point is close
    end
    If there are d or more points close to the line
      then there is a good fit. Refit the line using all
      these points.
end
Use the best fit from this collection, using the
  fitting error as a criterion
```

RANSAC: How many iterations "k"?

- How many samples (iterations) are needed?
 - Suppose w is fraction of inliers (points from line).
 - n points needed to define hypothesis (2 for lines)
 - k samples chosen.
- Prob. that a single sample of n points is correct: wⁿ
- Prob. that a single sample of n points fails: $1 w^n$
- Prob. that all k samples fail is: $(1 w^n)^k$
- Prob. that at least one of the k samples is correct:

$$1 - (1 - \mathbf{w}^n)^k$$

• \Rightarrow Choose k high enough to keep this below desired failure rate.

RANSAC: Computed k (p=0.99)

$$k = \frac{\log(z)}{\log(1 - w^n)} \qquad z = 1 - p$$

Sample size	Proportion of outliers						
n	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Refining RANSAC estimate

- RANSAC computes its best estimate from a minimal sample of n points, and divides all data points into inliers and outliers using this estimate.
- We can improve this initial estimate by estimation over all inliers (e.g. with standard least-squares minimization).
- But this may change inliers, so alternate fitting with reclassification as inlier/outlier.

RANSAC: Pros and Cons

Pros:

- General method suited for a wide range of model fitting problems
 - Easy to implement and easy to calculate its failure rate (1-p)

Cons:

- Only handles a moderate percentage of outliers without cost blowing up
- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
- A voting strategy, The Hough transform [Hough, 1959], can handle high percentage of outliers
 - Each point votes separately
- But complexity of search time increases exponentially with the number of model parameters (e.g. 3 for circle)

Summary

RANSAC

- Algorithm
- Analysis
 - Number of samples
 - Pros and cons

What we will learn today?

- A model fitting method for line detection
 - RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector

Some background reading: Rick Szeliski, Chapter 4.1.1; David Lowe, IJCV 2004

Template

Different photos of the same location, Roma Trevi Fountain

Harder case:

Harder Still?

NASA Mars Rover images

Answer Below (Look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches

Motivation for using local features

- Global representations have major limitations.
- Instead, describe and match only local regions
- Increased robustness to
 - Occlusions

Intra-category variations

Articulation

General Approach

- 1. Find a set of distinctive key-points
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Common Requirements

- Problem 1:
 - Detect the same point independently in both images

No chance to match!

We need a repeatable detector!

Common Requirements

- Problem 1:
 - Detect the same point independently in both images
- Problem 2:
 - For each point correctly recognize the corresponding one

We need a repeatable detector!

Feature Invariances: Geometric Transformations

Feature Invariances: Photometric Transformations

Often modeled as a linear transformation:

– Scaling + Offset

Requirements for Local Features

- Region extraction needs to be repeatable and accurate
 - Invariant to translation, rotation, scale changes
 - Robust or covariant to out-of-plane (≈affine) transformations
 - Robust to lighting variations, noise, blur, quantization
- Locality: Features are local, therefore robust to occlusion and clutter.
- Quantity: We need a sufficient number of regions to cover the object.
- Distinctiveness: The regions should contain "interesting" structure.
- Efficiency: Close to real-time performance.

Many Existing Detectors Available

- Hessian & Harris [Beaudet '78], [Harris '88]
- Laplacian, DoG [Lindeberg '98], [Lowe '99]
- Harris-/Hessian-Laplace [Mikolajczyk & Schmid '01]
- Harris-/Hessian-Affine [Mikolajczyk & Schmid '04]
- EBR and IBR [Tuytelaars & Van Gool '04]
- MSER [Matas '02]
- Salient Regions [Kadir & Brady '01]
- Others...

 Those detectors have become a basic building block for many applications in Computer Vision

Summary

Region extraction needs to be repeatable and accurate

- Invariant to translation, rotation, scale changes
- Robust or covariant to out-of-plane (≈affine) transformations
- Robust to lighting variations, noise, blur, quantization

Local invariant features

- Motivation
- General approach and requirements

What we will learn today?

- A model fitting method for line detection
 - RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector

Keypoint Localization

Goals:

- 1. Repeatable detection
- Precise localization
- 3. Interesting content
- ⇒ Look for two-dimensional signal changes

What are good keypoints?

Finding Corners

Key property:

In the region around a corner, the image gradient has two or more dominant directions.

Corners are repeatable and distinctive

Corners as Distinctive Interest Points

Design criteria

- 1. We should easily recognize the corner point by looking through a small window (**locality**).
- 2. Shifting the window in any direction should give a large change in intensity (**good localization**).

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Corners versus edges

- Localize patches that result in large change of intensity when shifted in any direction.
- When we shift by [u, v], the intensity change at the center pixel is:

I(x+u,y+v)

 Measure change as intensity difference:

$$(I(x+u,y+v)-I(x,y))$$

• That's for a single point, but we have to accumulate over the patch or "small window" around that point...

"corner": significant change in all directions

• When we shift by [u, v], the change in intensity for the "small window" is:

This measure of change can be approximated by (Taylor expansion):

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

Auto-correlation matrix of gradients
$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_xI_y \\ I_xI_y & I_y^2 \end{bmatrix} \qquad \begin{array}{c} \text{Gradient with} \\ \text{respect to } x, \\ \text{times gradient} \\ \text{with respect to } y \\ \text{are checking for corner} \end{array}$$

 where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Gradient with respect to x , times gradient with respect to y

Sum over image region – the area we are checking for corner

$$M = \begin{bmatrix} \sum_{I_x I_x} & \sum_{I_x I_y} \\ \sum_{I_x I_y} & \sum_{I_y I_y} \end{bmatrix} = \sum_{I_y I_y} \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y]$$

Pixels with $I_{\nu}^2 \gg 0$

What Does This Matrix Reveal?

- First, let's consider an axis-aligned corner.
- In that case, the dominant gradient directions align with the x or the y axis.

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}_{\text{Pixels with } I_x = \mathbf{0}}$$

- This means: if either λ is close to 0, then this is not a corner, so look for image windows where both λ are large.
- What if we have a corner that is not aligned with the image axes?

General Case

• Since
$$M = \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 is symmetric, we can re-rewrite

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$
 . (Eigenvalue decomposition)

• We can think of M as an ellipse with its axis lengths determined by the eigenvalues λ_1 and λ_2 ; and its orientation determined by R

Direction of the slowest change

• A rotated corner would produce the same eigenvalues as its non-rotated version.

Interpreting the Eigenvalues

Classification of image points using eigenvalues of M:

Corner Response Function

$$\theta = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1} \lambda_{2} - \alpha (\lambda_{1} + \lambda_{2})^{2}$$

Fast approximation [Harris and Stephens, 1988]

- Avoid computing the eigenvalues
- α: constant(0.04 to 0.06)

 $\Lambda_{_{_{1}}}$

Window Function w(x,y)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Option 1: uniform window
 - Sum over square window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Problem: not rotation invariant

1 in window, 0 outside

- Option 2: Smooth with Gaussian
 - Gaussian already performs weighted sum

$$M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Result is rotation invariant

Summary: Harris Detector

Compute second moment matrix (autocorrelation matrix)

 σ_D : for Gaussian in the derivative calculation σ_I : for Gaussian in the windowing function

- 2. Square of derivatives
 - 3. Gaussian filter $g(\sigma_I)$

1. Image derivatives

4. Cornerness function – two strong eigenvalues

$$\theta = \det[M(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(M(\sigma_{I}, \sigma_{D}))]^{2}$$

$$= g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Perform non-maximum suppression

SUN YAT-SEN UNIVERSITY

Input image

- Input Image
- Compute corner response function θ

- Input Image
- Compute corner response function θ
- Take only the local maxima of θ , where θ > threshold

- Input Image
- Compute corner response function θ
- Take only the local maxima of θ , where θ > threshold

Harris Detector – Responses

Harris Detector – Responses

Harris Detector – Responses

Results are well suited for finding stereo correspondences

Harris Detector: Properties

Translation invariance?

Harris Detector: Properties

- Translation invariance
- Rotation invariance?

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response θ is invariant to image rotation

Harris Detector: Properties

- Translation invariance
- Rotation invariance
- Scale invariance?

Not invariant to image scale!

Summary

- Harris corner detector
 - Formulation
 - Examples

Next time:

Feature descriptors

Pattern Recognition (in Computer Vision)

Jinhua Ma, School of Computer Science and Engineering, Sun Yat-Sen University