Ö	Electronic Excitation Energy Balance Sheet	
	[C. Hu et al., PRA 74, 032508 ('06)] 5/28/12	
	Let {4} be a set of Kohn-Sham (KS) orbitals in density for	
	theory (DFT). The total energy of an N-electron system given by	n W
	$E = \sum_{j=1}^{N} \int d\mathbf{r} \phi_{j}^{*}(\mathbf{r}) \left(-\frac{1}{Z} \nabla^{2} + \mathcal{V}_{ext}(\mathbf{r}) \right) \phi_{j}(\mathbf{r})$	
	$+\frac{1}{2}\sum_{j,k=1}^{N}\iint dirdir' \frac{P_{j}(ir)P_{k}(ir)}{ ir-ir' } + E_{xc}[P]$	(1)
	where Vert(11) is the external potential, Exc[P] is the	
	exchange-correlation energy functional, and the	
-0-	electron density is $P(Ir) = \sum_{j=1}^{N} P_{j}(Ir) = \sum_{j=1}^{N} \phi_{j}(Ir) ^{2}$	(2)
	Let	
	$t_{j} = \int d\mathbf{r} \phi_{j}^{*}(\mathbf{r}) \left(\frac{1}{Z} \nabla^{2} + \mathcal{V}_{ext}(\mathbf{r}) \right) \phi_{j}(\mathbf{r})$	(3)
	Jk = [91+18]	(4)
	= Solvedir' B(11) R(11') (Coulomb integral)	(5)
	then the total energy, Eq.(1), is expressed as	
	then the total energy, $E_{q}(1)$, is expressed as $E = \sum_{j=1}^{N} t_j + \frac{1}{2} \sum_{j,k=1}^{N} J_{jk} + E_{xc}[\rho]$	(6)

Single excitation

Let the KS orbitals be numbered in ascending order of energy.

Then, the ground-state density is

$$\rho^{gr}(ir) = \sum_{j=1}^{N} \beta_{j}(ir)$$

We now consider single excitation, in which an electron is promoted from an occupied orbital, $i \in [1,N]$, to

an unoccupied orbital, a > N.

DSCF approximation

We evaluate the i→a excitation energy within ASCF approximation, neglecting the orbital relaxation effect.

(Single-particle term)

$$\Omega^{sp} = t_a - t_i$$

(8)

(Hartree term)

		3
	$\Omega^{\text{Hartree}} = \left(\frac{\sum_{j=1}^{N} J_{aj} - J_{ai}}{J_{ij} - J_{ai}}\right) + \frac{1}{2} J_{aa} - \left(\sum_{j=1}^{N} J_{ij} - \frac{1}{2} J_{ii}\right)$	
	$= \sum_{\bar{J}=1}^{N} (J_{a\bar{J}} - \bar{J}_{i\bar{J}}) + \frac{1}{2} (J_{i\bar{i}} + J_{a\bar{a}}) - J_{i\bar{a}}$	(9)
	(xc term)	
	$\Omega^{xc} = E_{xc} \left[\rho^{gr} + \rho_a - \rho_i \right] - E_{xc} \left[\rho^{gr} \right]$	(10)
	Let us define	
	$\frac{V_{xc}(ir) = \frac{\delta E_{xc}}{\delta \rho(ir)} _{\rho = \rho gr}$	(11)
	$\int_{xc} (1r, 1r') = \frac{S^2 E_{xc}}{SP(1r) SP(1r')} \int_{p=p}^{p} p^{2r}$	(12)
	We expand Eq.(10) around pgr:	
	$\Omega^{xc} = E_{xc}[\rho^{ar}] + \int d\mathbf{r} \ \mathcal{V}_{xc}(\mathbf{r}) \left[\rho_{a}(\mathbf{r}) - \rho_{i}(\mathbf{r}) \right]$	
	+ 1 [fdirdir [fa(ir) - fe(ir)] fxc(ir,ir) [fa(ir) - fe(ir)] + Exet	p8/1
	2 John Vic (ir) [A(ir) - A(ir)]	
	+ 1/2 dirdir [Q(Ir) - P(Ir)] fxc(Ir) Ir) [Q(Ir) - P(Ir)]	(13)
1300		
0		

H

Combining Egs. (8), (9) and (13), the ASCF excitation energy $\Omega^{\Delta SCF} = t_a - t_i^{\Delta} + \sum_{i=1}^{N} (J_{aj} - J_{ij}) + \frac{1}{2} (J_{ii} + J_{aa}) - J_{ia}$ + \ dir & (ir) [\(\hat{air} - \hat{e} \arr)] + \ \frac{1}{2} \ \ \dirdir \left[\hat{air} - \hat{e} \arr) \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arr) \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arr) \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arr) \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arr) \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arr) \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \frac{1}{2} \left[\dirdir \left[\hat{air} - \hat{e} \arrow \right] \fr (14) Now, consider the ground-state KS equation: $\left[-\frac{1}{2}\nabla^{2}+v_{\text{ext}}(\text{Ir})+\sum_{i=1}^{N}\left[\frac{\partial r}{\partial r}\frac{P_{i}(\text{Ir})}{\partial r}+v_{\text{xc}}(\text{Ir})\right]\Phi_{k}(\text{Ir})=C_{k}^{KS}\Phi_{k}(\text{Ir})$ (15) where Eks is the k-th KS energy. for φ (ir) × Eq. (15) te + E JRj + Sair Vxc(ir) R (ir) = CKS Using Eq. (16) in (14), $\Omega^{\Delta SCF} = \epsilon_{\alpha}^{KS} - \epsilon_{i}^{KS} + \frac{1}{Z}(J_{ii} + J_{ia}) - J_{ia}$ + 2 dirdir [Rain-Rain] facinin [Rain-Rain] Here, we consider a local xc functional: $f_{rc}(ir,ir') = f_{rc}(ir) \delta(ir ir')$ (18)

$$\Omega^{\Delta SCF} = C_a^{KS} + C_i^{KS} + \frac{1}{Z}(J_{ii} + J_{aa}) - J_{ia}$$

$$+ \frac{1}{2} \int d\mathbf{r} \, \mathbf{f}_{xc}^{local}(\mathbf{r}) \left[P_{a}(\mathbf{r}) - P_{c}(\mathbf{r}) \right]^{2} \tag{19}$$

$$\therefore \Omega^{\Delta SCF} = \left[\epsilon_a^{KS} + U_a \right] - \left[\epsilon_{\hat{i}}^{KS} - U_{\hat{i}} \right] - J_{\hat{i}a}$$

- Joir Pi(Ir) face (Ir) Pa(Ir)

(21)

where the self-interaction correction (SIC) termis are defined as

$$U_{k} = \frac{1}{2} \left[J_{kk} + \int d\mathbf{r} \, R_{k}(\mathbf{r}) \, f_{xc}^{local}(\mathbf{r}) \, R_{k}(\mathbf{r}) \right]$$

(22)

 $\Omega^{\Delta SCF}$ entails, even at the RPA level (i.e., Exc=0), two correct physics:

(1) SIC band-broadening by pushing up Ea by \$\frac{1}{2}Jaa}

(2) Electron-Role binding, - Jia, that narrows the gap.

* Note the conventional SIC only push down occupied level i, instead.

Linear-response TDDFT In linear-response (LR) time-dependent density functional theory (TDDFT), the electronic excitation energy is obtained by solving Casidas eigenvalue problem: $\Omega(\omega) \vec{F}_{I} = \omega_{T}^{2} \vec{F}_{I}$ where $\Omega_{ia\sigma, i'a\sigma'}(\omega) = \delta_{oo'} \delta_{ii'} \delta_{aa'} (\epsilon_{a\sigma}^{KS} \epsilon_{ia}^{KS})^2$ +2 (fir far) (car cir) Kiao, i'as (w) (fir far) (chs chs) (24)and the coupling matrix is $K_{iao,i'a'o'}(\omega) = \left[\Phi_{ao}^* \Phi_{io} \right]_{r} \left[\Phi_{a'o'}^* \Phi_{io'} \right]$ + [\(\phi_{a\sigma} \phi_{i\sigma} \) \[\frac{1}{2\color \phi_{a\sigma} \phi_{a\sigma} \] In Eq. (25), the Coulomb-like integral is define as Eflacolg] = | dirdir far halling gar) (26)Here, we denote the electron-hole excitation wave function $\Phi_{\nu}(\mathbf{r}) = \Phi_{ao}^{*}(\mathbf{r}) \Phi_{io}(\mathbf{r})$ (27)with the corresponding excitation energy $\omega_{\nu}^{KS} = \epsilon_{a\sigma}^{KS} - \epsilon_{i\sigma}^{KS}$ (28)

where $\nu = i \rightarrow a$

Then, Casida's matrix elements become $\Omega_{i\alpha\sigma,i'\alpha\sigma'}(\omega) = \delta_{\alpha\sigma'} \delta_{ii'} \delta_{\alpha\alpha'} \omega_{i\alpha\sigma'}^{KS^2}$ + 2 /(fio-fao) ωκς Κιασ, ιάσ (w) / (fio-fao) ωκς (29) $K_{ia\sigma, i\acute{a}\acute{\sigma}}(\omega) = \left[\Phi_{ia\sigma}\right] + \left[\Phi_{ia\sigma}\right] + \left[\Phi_{ia\sigma}\right] + \left[\Phi_{ia\sigma}\right] \left[\Phi_{ia\sigma}\right$ (Diagonal approximation) $\omega_{ia\sigma}^{ks^2} + 2\omega_{ia\sigma}^{ks} \{ [\Phi_{ia\sigma}] + [\Phi_{ia\sigma}] + [\Phi_{ia\sigma}] + [\Phi_{ia\sigma}] \}$ (31) or $\omega_{\nu}^{\text{KS}^2} + 2\omega_{\nu}^{\text{KS}} \left\{ K_{\nu} + \left[\Phi_{\nu} | f_{xc}(ir, ir'; \omega_{I}) | \Phi_{\nu} \right] \right\} = \omega_{I}^{2}$ (32) where the exchange integral is $K_{\mathcal{V}} = \left[\overline{\mathfrak{g}} \right] + \left[\overline{\mathfrak{g}} \right] = \iint_{\text{dirdir}} \Phi_{\alpha}^{*}(n) \Phi_{\alpha}^{*}(n) + \left[\overline{\mathfrak{g}} \right] \Phi_{\alpha}^{*}(n) \Phi_{\alpha}^{*}(n) \Phi_{\alpha}^{*}(n) + \left[\overline{\mathfrak{g}} \right] \Phi_{\alpha}^{*}(n) \Phi_{\alpha}^{*}($ (Weak-coupling, adiabatic limit) In the weak-coupling limit, where the Coulombic interaction is small, we expand Eq. (32). We also assume that fac is frequency independent. $\omega_{\rm I} = \omega_{\nu}^{\rm KS} \left[1 + \frac{Z}{\omega^{\rm KS}} \left\{ K_{\nu} + \left[\Phi_{\nu} \right] \right]_{\rm xc} \left(K_{\nu} + \left[\Phi_{\nu} \right] \right]_{\rm xc} \right]$ ~ ω κς [1+ + + & ωκς (K)+ [\$,1]}]

 $: \omega_{\underline{I}} \simeq \omega_{\nu}^{KS} + K_{\nu} + [\underline{\Phi}_{\nu}|f_{\kappa c}(m,n')|\underline{\Phi}_{\nu}]$ (34)

With local xc approximation,

 $[\Phi_{\nu}|f_{xc}(\mathbf{i}\mathbf{r},\mathbf{i}\mathbf{r}')|\Phi_{\nu}] = \int d\mathbf{i}\mathbf{r} \, \Phi_{a}^{*}(\mathbf{i}\mathbf{r}) \, \Phi_{i}^{*}(\mathbf{i}\mathbf{r}) \, f_{xc}(\mathbf{i}\mathbf{r}) \, \Phi_{a}^{*}(\mathbf{i}\mathbf{r}) \, \Phi_{i}^{*}(\mathbf{i}\mathbf{r})$

 $= \int dir P_{a}(ir) \int_{xc}^{local}(ir) P_{c}(ir)$ (35)

Here, we assumed that KS orbitals are real.

 $\therefore \Omega^{LR-TDDFT, local} = \omega_{\nu}^{KS} + K_{\nu} + \int dir P_{i}(ir) f_{xc}^{local}(ir) P_{a}(ir)$ (38)

Ω^{LR-TDPFT, local} has (1) no SIC nor (2) electron-hole binding. The band gap is widened by the exchange integral and xc interaction.

10 $\Omega^{\Delta HF} = \epsilon_{\alpha}^{HF} - \epsilon_{i}^{HF} - [\rho_{\alpha}|_{r}^{+}|\rho_{i}] + [\Phi_{i\alpha}|_{r}^{+}|\Phi_{i\alpha}]$ $= \omega_{\nu}^{HF} - J_{\nu} + K_{\nu}$ (41) (42)

Hybrid exact-exchange (exx) LR-TDDFT

Casidas eigenvalue equation in this case becomes

$$\frac{A}{B^*} \frac{B}{A^*} \begin{pmatrix} X_{I} \\ Y_{I} \end{pmatrix} = \omega_{I} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X_{I} \\ Y_{I} \end{pmatrix} \tag{43}$$

$$A_{iao,i'ao'} = \delta_{oo'} \delta_{ii'} \delta_{aa'} (\epsilon_{ao'}^{exx} - \epsilon_{io'}^{exx}) + K_{iao,i'a'o'}$$
(14)

$$B_{i\alpha\sigma,i'\alpha'\sigma'} = K_{i\alpha\sigma,\alpha'i'\sigma'}$$
 (45)

$$K_{iao,iao} = \left[\Phi_{iao} \right] \left[\Phi_{iao} \right] - \delta_{oo} \left[\rho_{iio} \right] \left[erf(\mu r) \right] + \left[\rho_{aa'c} \right]$$

(Diagonal approximation) A, X >> B, Y

$$\frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1}{100} =$$

$$+ \left[\Phi_{y} \right] \left(f_{xx} - f_{xx}^{LR} \right) \left[\Phi_{y} \right]$$

I for local

(49)

(48)

In summary	,
	1

4	·			
	$\Omega^{\Delta SCF} = \widetilde{\omega}_{\nu}^{KS} + J_{\nu}$		Sdir A (ir) focal (ir) Pa (ir)	(21)
	$\Omega^{\Delta HF} = \omega_{\nu}^{HF} + J_{\nu} + J_{\nu}$	$-K_{\nu}$		(42)
			A 0	
	DER-TODFT, book = WX KS	tKv t	Sdir Pi(ir) fixe(ir) Pa(ir)	(36)
	$\Omega^{LR-TDPFT,exx} = \omega_{\nu}^{exx} - [\rho_{i}]^{enf(\mu r)}[\rho_{a}]$	+Kν·	for Pi (ir) (fx-fx) boal Pa (ir)	(49)
	e-h e-h excitation Coulomb	RPA		P
	excitation coulomb			
ł		751A FA	and the second s	

In Eq.(21), we have introduced the SIC-KS excitation energy,

$$\widetilde{\omega}_{\nu}^{KS} = \epsilon_{\alpha}^{KS} + U_{\alpha} - (\epsilon_{\dot{\nu}}^{KS} - U_{\dot{\nu}})$$

$$\widetilde{\epsilon}_{\alpha}^{KS} \qquad \widetilde{\epsilon}_{\dot{\nu}}^{KS}$$

$$(50)$$

 $\langle \Omega^{LR-TDDFT,local} \rangle = \Omega^{\Delta SCF} + K_{\nu} + \int dir R(ir) f_{xc}(ir) P_{\alpha}(ir)$ (56) Substituting Eq. (21) in (56), $\langle \Omega^{LR-TODFT, local} \rangle = \widetilde{w}_{y}^{KS} - J_{y} - \int_{\sigma} dir P_{\sigma}(ir) F_{xc}(ir) P_{\alpha}(ir)$ + Ky + Sour Pi (in) flood (in) Pa (ir) $\therefore \langle \Omega^{LR-TDPFT,local} \rangle \equiv \int_{0}^{1} df_{a} \Omega^{LR-TDDFT,local}$ where the SIC-KS excitation energy is $\omega_{\nu}^{KS} = \frac{C_{KS} + \frac{1}{2} \left[J_{aa} + \int d\mathbf{r} R_{a}(\mathbf{r}) f_{xc}(\mathbf{r}) R_{a}(\mathbf{r}) \right]}{2}$ - [EKS - I [Jii + Joir R(Ir) face (Ir) P(Ir)]} (58)(A) Occupation-number integration of LR-TDDFT excitation energy with local xc functional has correct (1) SIC band widening & (2) electron-hale binding. (B) For HOMO→LUMO excitation, reasonable approximation (from = flux = 1) Mid-point method