Naïve Bayesians

Back to Basics Series

02 Jan 2021

Developing the Bayesian muscle to solve a wide range of problems

Naïve Bayesian Philosophy

Intuitive (Visual)
Understanding of the
Bayesian Reasoning

Ability to model real world problems in a Bayesian Setting

Starting from Simple Probabilistic modelling

Adapting it in a a Bayesian setting
And moving towards ML models

Fluency in the Calculus of Bayesian Stats & ML model

Recap of the previous seasons | Ways to get to the Posterior

Recap of the previous seasons | Ways to get to the Posterior

Season 2: Back to Basics

		Canonical Problem	Applications
Ep 1	Bayes Theorem	There are 2 boxes from which cookies can be taken from. Box A and Box B. Box A contains 10 chocolate cookies, Box B contains 5 ginger cookies. Given that you get a chocolate cookie which box was it taken from?	The Shy Librarian Problem Naive Bayes algorithm
Ep 2 Ep 3	Problems with Binomial Likelihoods	You have 2 coins C1 and C2. p(heads for C1) = .7 & P(heads for C2) = 0.6 You flip the coin 10 times. What is the probability that the given coin you picked is C1 given you have 7 heads and 3 tails?	A/B Testing
Ep 4	Disease Detection	A particular disease affects 1% of the population. There is an imperfect test for this disease: The test gives a positive result for 90% of people who have the disease, and 5% of the people who are disease-free. Given a positive test result – what is the probability of having the disease?	COVID Tests (PCR & Antibody)! Fraud Detection
Ep 5	Naive Bayes Classification	Given these words occur in this text what's the probability it's spam?	Any Classification Problem
Ep 6	Gaussian Naive Bayes Classification	Given the weights and heights of basketball players, what's the probability that person a is a basketball player given weight = w and height = h?	

Canonical Problem **Applications** Ep 7 Suppose tanks were given a serial number based on the order in which they were German Tank manufactured. Given that you've observed a tank with serial number "10", how Problem many tanks were actually manufactured in total? Waiting Times Suppose you need to gather 10 patients for a trial. Each signup happens at time Planning Trials t_i (i=1, 10). How long do you have to wait after it took you 3 weeks to accrue 2 (Continuous Estimating Queues Distributions) signups?

Bayes Rule

Posterior Likelihood Prior
$$P(\theta_i \mid D) = P(D \mid \theta_i) P(\theta_i)$$

$$P(D)$$

$$P(D)$$
Normalising Constant

Bayes Rule

Posterior Likelihood Prior
$$P(\theta_i \mid D) = P(D \mid \theta_i) P(\theta_i)$$

$$\sum_{all j} P(D \mid \theta_j) P(\theta_j)$$
Normalising Constant

Bayes Rule

Posterior Likelihood Prior
$$P(\theta \mid D) = P(D \mid \theta) P(\theta)$$

$$\int P(D \mid \theta') P(\theta') d\theta'$$
Normalising Constant

Odds of the cookie being from A vs B

A : **B**

2:1

So the probability of it coming from A

$$= 2/3$$

$$P(\theta_{i} \mid D) = P(D \mid \theta_{i}) P(\theta_{i})$$

$$\sum_{all j} P(D \mid \theta_{j}) P(\theta_{j})$$

$$P(A \mid cc) = P(cc \mid A) P(A)$$

$$P(cc \mid A) P(A) + P(cc \mid B) P(B)$$

$$P(A \mid cc) = \frac{100\% P(A)}{100\% P(A) + 50\% P(B)}$$

$$P(A) = P(B) = 50\%$$

$$P(A \mid cc) = \frac{100\%}{150\%} = \frac{2}{3}$$

What if there are 3,4 or10 boxes?

В

 θ_1

$$P(\theta_{i} \mid D) = P(D \mid \theta_{i}) P(\theta_{i})$$

$$\sum_{all j} P(D \mid \theta_{j}) P(\theta_{j})$$

What about continuous parameters?

Moving from a discrete set of hypothesis to a continuous parameters can be thought of having an infinite number of "boxes" to choose from

Incorporating informative priors

$$P(\theta_{i} \mid D) = P(D \mid \theta_{i}) P(\theta_{i})$$

$$\sum_{all j} P(D \mid \theta_{j}) P(\theta_{j})$$

$$P(A \mid cc) = P(cc \mid A) P(A)$$

$$P(cc \mid A) P(A) + P(cc \mid B) P(B)$$

$$P(A) \neq P(B)$$

Incorporating informative priors

Let
$$P(A) = 1/8 \quad P(B) = 7/8$$

$$P(A \mid cc) = \frac{100\% (1/8)}{100\% P(1/8) + 50\% (7/8)}$$

$$P(A \mid cc) = 2/9$$

$$P(B \mid cc) = 7/9$$

Incorporating informative priors

Takeaways

Bayesian Inference is all about finding which box did your chocolate chip cookie come from

References

1. <u>Bayes Theorem</u>: A Visual Introduction for Beginners by Dan Morris

2. <u>Bayes theorem</u> by 3Blue1Brown (YouTube)

