Import Library

```
import pandas as pd
import matplotlib.pyplot as plt
```

Load Dataset from Local Directory

```
from google.colab import files
uploaded = files.upload()
```

```
Choose Files Mall_Customers.csv
```

 Mall_Customers.csv(text/csv) - 3981 bytes, last modified: 4/12/2023 - 100% done Saving Mall_Customers.csv to Mall_Customers.csv

Load Dataset

```
dataset = pd.read_csv('Mall_Customers.csv')
```

Summarize Dataset

```
print(dataset.shape)
print(dataset.describe())
print(dataset.head(5))
```

(200,	5)								
	Customer	ID	Age	e Ann	ual Inco	ome ((k\$)	Spending Sco	ore (1-100)
count	200.0000	00 200	.000000	9	200	.000	9000		200.000000
mean	100.5000	00 38	.850000	9	60	.560	0000		50.200000
std	57.8791	85 13	.969007	7	26	.264	1721		25.823522
min	1.0000	00 18	.000000	9	15	.000	9000		1.000000
25%	50.7500	00 28	.750000	9	41	.500	0000		34.750000
50%	100.5000	00 36	.000000	9	61	.500	0000		50.000000
75%	150.2500	00 49	.000000	9	78	3.000	9000		73.000000
max	200.0000	00 70	.000000	9	137	.000	0000		99.000000
Cus	stomerID	Gender	Age A	Annual	Income	(k\$)) Sp	ending Score	(1-100)
0	1	Male	19			15	5		39
1	2	Male	21			15	5		81
2	3	Female	20			16	5		6
3	4	Female	23			16	5		77
4	5	Female	31			17	7		40

Label Encoding

```
from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()
dataset['Gender'] = label_encoder.fit_transform(dataset['Gender'])
dataset.head()
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	1	19	15	39
1	2	1	21	15	81
2	3	0	20	16	6
3	4	0	23	16	77
4	5	0	31	17	40

Dendrogram Data Visualization

```
import scipy.cluster.hierarchy as clus

plt.figure(1, figsize = (16, 8))
dendrogram = clus.dendrogram(clus.linkage(dataset, method="ward"))

plt.title('Dendogram Tree Graph')
plt.xlabel('Customers')
plt.ylabel('Distances')
plt.show()
```


Finding the Hierarchial clustering to the dataset with n=5

```
from sklearn.cluster import AgglomerativeClustering
model = AgglomerativeClustering(n_clusters=5, metric='euclidean', linkage='average')
y_means = model.fit_predict(dataset)
y_means

array([3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,
```

Visualizing the number of clusters n=5

Cluster 1: Customers with Medium Income and Medium Spending

Cluster 2: Customers with High Income and High Spending

Cluster 3: Customers with Low Income and Low Spending

Cluster 4: Customers with High Income and Low Spending

Cluster 5: Customers with Low Income and High Spending

```
X = dataset.iloc[:, [3,4]].values
plt.scatter(X[y_means==0, 0], X[y_means==0, 1], s=50, c='purple', label='Cluster 1')
plt.scatter(X[y_means==1, 0], X[y_means==1, 1], s=50, c='orange', label='Cluster 2')
plt.scatter(X[y_means==2, 0], X[y_means==2, 1], s=50, c='red', label='Cluster 3')
plt.scatter(X[y_means==3, 0], X[y_means==3, 1], s=50, c='green', label='Cluster 4')
plt.scatter(X[y_means==4, 0], X[y_means==4, 1], s=50, c='blue', label='Cluster 5')
plt.title('Income Spent Analysis - Hierarchical Clustering')
plt.xlabel('Income')
plt.ylabel('Spent')
plt.show()
```

