Printed Pages: 02 Sub Code: RCA201

Paper Id: 214233 Roll No.

MCA

(SEM. II) THEORY EXAMINATION 2018-19 COMPUTER BASED NUMERICAL & STATISTICAL TECHNIQUES

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

- a. Round off the number 865250 to four significant figures and final absolute, relative and percentage error.
- b. Prove that $\delta = E^{1/2} E^{-1/2}$
- c. Differentiate false position method and secant method.
- d. Write the formula of Bessel for the Interpolation.
- e. What do you mean by the term numerical differentiation?
- f. Discuss the basic concept used in the Gauss elimination approach.
- g. What is the meaning of highly significant and probably significant?

SECTION B

2. Attempt any *three* of the following:

 $7 \times 3 = 21$

- a. Find a real root of the equation cos x = 3x 1 correct to three places of decimal by using Iteration method.
- b. Derive the Gauss-Forward Difference formula for equal intervals.
- c. Solve the following system of equations by Gauss-Elimination method:

$$2x + y + 4z = 12$$

 $8x - 3y + 2z = 23$
 $4x + 11y - z = 33$

- d. Given that $\frac{dy}{dx} = log_x(x + y)$ with the initial condition that y = 1 when x = 0. Find y for x = 0.2 and x = 0.5 using Euler's modified formula.
- e. How do you fit a curve of the following type:

(i)
$$y = ae^{bx}$$

(ii)
$$y = ax^b$$

(iii)
$$y = ax + bx^2$$

(iv)
$$y = ax + \frac{b}{x}$$

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Find a real root of the equation log x cos x = 0 correct to three places of decimal by Newton-Raphson's method.
- (b) Write a algorithm and explain Regula-Falsi method for finding simple roots of f(x) = 0.

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a) Find the value of $log_{10}337.5$ from the following data:

x	310	320	330	340	350	360
log10x	2.4913	2.5051	2.5185	2.5314	2.5440	2.5563

Sub Code: RCA201

(b) Given $log_{10}654 = 2.8156$, $log_{10}658 = 2.8182$, $log_{10}659 = 2.8189$, $log_{10}661 = 2.8202$, find the value of $log_{10}656$ by the divided difference formula.

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a) Find f'(1) for $f(x) = \frac{1}{1+x^2}$ using the following table:

х	1.0	1.1	1.2	1.3	1.4
f(x)	0.5000	0.4524	0.4098	0.3717	0.3378

(b) Use Simpson's 1/3 rule to prove that $log_e 7$ is approximately 1.9587 using $\int_{1}^{7} \frac{dx}{x}$

6. Attempt any one part of the following:

 $7 \times 1 = 7$

(a) Using the method of least square fit the non-linear of the form $y = ae^{bx}$ to the following data

x	0	2	4
у	5.012	10	31.62

(b) The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 men:

٠	ap of to men.				
		\boldsymbol{x}	у		
	Mean	53	142		
	Variance	130	165		

and $\sum (x - \bar{x})(y - \bar{y}) = 1220$. Find the approximate regression equation and use it to estimate the blood pressure of a man whose age is 45.

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) A manufacture claims that only 4% of his products supplied by him are defective. A random sample of 600 products contained 36 defectives. Test the claim of the manufacture.
- (b) Define the following terms:
 - (i) Statistical Hypothesis
 - (ii) Null Hypothesis
 - (iii) Alternative Hypothesis