

Введение в экономико-математическое моделирование

Лекция 14. Дискретные случайные величины

канд. физ.-матем. наук, доцент Д.В. Чупраков usr10381@vyatsu.ru

Структура лекции

- 1 Случайные величины
 - Определение
 - Закон распределения
- 2 Операции над случайными величинами
 - Сложение случайных величин
- З Числовые характеристики случайных величин
- 4 Законы распределения случайных величин
 - Биномиальный закон распределения
 - Геометирческий закон распределения
 - Гипергеометирческий закон распределения
 - Закон распределения Пуассона

Дискретная случайная величина

Пусть

- Ω пространство элементарных событий некоторого опыта,
- ➤ X конечное или счетное числовое множество.

Определение

Функция, сопоставляющая каждому исходу пространства Ω некоторый элемент множества X, называется дискретной случайной величиной.

$$X = X(\omega), \quad \omega \in \Omega$$

Событие связанное со случайной величиной X — любое подмножество ее множества значений.

Примеры случайных величин

- ▶ Опыт с подбрасыванием игральной кости.

 - ▶ Величина X "число очков, выпавших при однократном подбрасывании кости".
- Опыт с магазином.
 - Событие ω посещение магазина очередным покупателем.
 - Величина $Y = Y(\omega)$ "число покупателей в магазине в течение часа".

Закон распределения

Предположим, $X = X(\omega)$ — дискретная случайная величина, значениями которой являются числа

$$x_1 = X(\omega_1), x_2 = X(\omega_2), \dots, x_n = X(\omega_n), Idots$$

Сопоставим каждому х; вероятность

$$p_i = p(X = x_i) = p(\omega_i).$$

Сумма вероятностей всех значений случайной величины равна единице:

$$p_1 + p_2 + \ldots + p_n = 1.$$

Определение

Отображение, при котором каждому возможному значению дискретной случайной величины соответствует вероятность

Табличная форма закона распределения

Каждая таблица

задает некоторую дискретную случайную величину.

При этом
$$p(X = x_i) = p_i$$

График закона распределения называется многоугольником распределения

Пример

Делопроизводитель написал три письма и подписал три конверта. Его помощник, не задумываясь о содержании писем, разложил их по конвертам писем и отправил. Составьте закон распределения величины X — число человек, получивших адресованные именно им письма.

- Определим значения случайной величины X:
 - X = 0, если ни один из адресатов не получил своё письмо.
 - X = 1, если только один из адресатов получил своё письмо.
 - X = 2, если только два адресата получили свои письма.
 - X = 3, если все адресаты получили свои письма.
- Письма можно разложить по конвертам $P_3 = 3 \cdot 2 \cdot 1 = 6$ способами

► X = 3 можно получить одним способом: $P(X = 3) = \frac{1}{6}$

- ► X = 2 не наступит никогда: P(X = 2) = 0;
- ► X = 1 наступает в трех случаях $P(X = 1) = \frac{3}{6} \frac{1}{2}$:

► X = 0 наступает в трех случаях: $P(X = 0) = \frac{2}{6} = \frac{1}{3}$

Составим закон распределения:

▶ Проверим корректность

$$\sum_{i=1}^{4} p_i = \frac{1}{3} + \frac{1}{2} + 0 + \frac{1}{6} = 1$$

Пример IV

Построим многоугольник распределения:

Функция распределения

Определение

Функцией распределения случайной величины называется функция

$$F(x) = p(X < x).$$

- ightharpoonup определенная на $(-\infty; +\infty);$
- принимающая каждой точке х значение вероятности события "Значение случайной величины меньшее, чем х".

Геометирческий смысл

Функция распределения ДСВ

Для ДСВ X, значения которой x_1, x_2, \ldots, x_n функция распределения имеет вид

$$f(x) = \sum_{x_k < x} p(X = x_k)$$

Вычислим значения функции распределения F(x)

$$F(x) = P(X < x) = 0.$$

▶ При
$$x_1 < x \le x_2$$

$$F(x) = P(X < x) = P(X = x_1) = p_1.$$

▶ При
$$x_2 < x \le x_3$$

$$F(x) = P(X < x) = p_1 + p_2.$$

▶ При
$$x_{n-1} < x ≤ x_n$$

$$F(x) = p_1 + p_2 + \ldots + p_{n-1}.$$

$$ightharpoonup$$
 При $x > x_n$

$$F(x) = P(X < x) = 1.$$

Функция распределения ДСВ и ее график І

Пример

Рассмотрим закон распределения

и построим функцию распределения F(x):

 $\rightarrow x \leq 0$:

$$F(x) = p(X < x) = 0$$

▶ $0 < x \le 1$:

$$F(x) = p(X < x) = p(X = 0) = \frac{1}{3}$$

Функция распределения ДСВ и ее график II

▶ $1 < x \le 2$:

$$F(x) = p(X < x) = p(X \in \{0, 1\}) = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$

► 2 < *x* ≤ 3:

$$F(x) = p(X < x) = p(X \in \{0, 1, 2\}) = \frac{1}{3} + \frac{1}{2} + 0 = \frac{5}{6}$$

► *x* > 3:

$$F(x) = p(X < x) = p(X \in \{0, 1, 2, 3\}) = 1$$

Функция распределения ДСВ и ее график III

Функция распределения имеет вид:

$$F(x) = \begin{cases} 0, & x \leq 0, \\ 1/3, & 0 < x \leq 1, \\ 5/6, & 0 < x \leq 3, \\ 1, & 3 < x. \end{cases}$$

Ее график:

Свойства функции распределения

- $ightharpoonup 0 \leqslant F(x) \leqslant 1$
- ► F(x) не убывающая: $x_1 < x_2 \Rightarrow F(x_1) \leq F(x_2)$;

Вероятность попадания случайной величины X в интервал (a, b) равна разности значений функции распределения в правом и левом концах интервала:

$$P(a < X < b) = F(b) - F(a)$$

Независимые случайные величины

Определение

Две случайные величины называются независимыми, если закон распределения одной из них не меняется от того, какие возможные значения приняла другая величина.

Умножение ДСВ на число

Определение

Произведением kX случайной величины X на постоянную величину k называется случайная величина, которая принимает значения kx_i с теми же вероятностями p_i .

Пример:

Пусть

$$X: \begin{array}{c|cccc} x_i & -2 & 1 & 2 \\ \hline p_i & 0.5 & 0.3 & 0.2 \end{array}$$

Tогда Y = 3X имеет вид

$$Y: \begin{array}{c|cccc} y_i & -6 & 3 & 6 \\ \hline p_i & 0.5 & 0.3 & 0.2 \\ \end{array}$$

Степень ДСВ

Определение

n-й степенью случайной величины X, называется случайная величина X^n , которая принимает значения x_i^n с теми же вероятностями p_i

Пример:

$$ightharpoonup$$
 Тогда $Y = X^2$ имеет вид

▶ По теореме о сумме несовместных событий:

$$f: \begin{array}{c|ccc} y_i & 1 & 4 \\ \hline p_i & 0.3 & 0.7 \end{array}$$

Сумма и произведение независимых ДСВ

Определение

Суммой независимых ДСВ X и Y называется случайная величина Z = X + Y, которая принимает все возможные значения вида $z_{ij} = x_i + y_j$ с вероятностями

$$p_{ij} = P((X = x_i) \cdot (Y = y_j)) = p_i \cdot p_j'$$

Определение

Произведением независимых ДСВ X и Y называется случайная величина $Z = X \cdot Y$, которая принимает все возможные значения вида $z_{ij} = x_i \cdot y_j$ с вероятностями

$$p_{ij} = P((X = x_i) \cdot (Y = y_j)) = p_i \cdot p_j'$$

Пример вычисления суммы ДСВ

 $Y: \begin{array}{c|cccc} y_i & 0 & 2 & 4 \\ \hline p_i' & 0.1 & 0.6 & 0.3 \end{array}$

Вычислить сумму Z = X + Y.

$$\begin{array}{c|ccccc}
x_i + y_j \\
\hline
y_j & 0 & 2 & 4 \\
\hline
-2 & -2 & 0 & 2 \\
1 & 1 & 3 & 5 \\
2 & 2 & 4 & 6
\end{array}$$

$$\begin{array}{c|cccc} p_{ij} = p_i \cdot p'_j \\ \hline p'_j & 0.1 & 0.6 & 0.3 \\ \hline 0.5 & 0.05 & 0.3 & 0.15 \\ 0.3 & 0.03 & 0.18 & 0.09 \\ 0.2 & 0.02 & 0.12 & 0.06 \\ \hline \end{array}$$

$$p(Z = 2) = 0.15 + 0.02 = 0.17$$

$$X + Y$$
: $\begin{bmatrix} z_i & -2 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \Sigma \\ p_i & 0.05 & 0.3 & 0.03 & 0.17 & 0.18 & 0.12 & 0.09 & 0.06 & 1 \end{bmatrix}$

Пример вычисления произведения ДСВ

Даны ДСВ
$$X: \begin{bmatrix} x_i & -2 & 1 & 2 \\ p_i & 0.5 & 0.3 & 0.2 \end{bmatrix}$$

 $Y: \begin{array}{c|cccc} y_i & 0 & 2 & 4 \\ \hline p_i' & 0.1 & 0.6 & 0.3 \\ \end{array}$

Вычислить произведение $Z = X \cdot Y$.

$$\begin{array}{c|cccc} p_{ij} = p_i \cdot p'_j \\ \hline p'_j & 0.1 & 0.6 & 0.3 \\ \hline 0.5 & 0.05 & 0.3 & 0.15 \\ 0.3 & 0.03 & 0.18 & 0.09 \\ 0.2 & 0.02 & 0.12 & 0.06 \\ \hline \end{array}$$

$$p(Z = 0) = 0.05 + 0.03 + 0.02 = 0.1$$

 $p(Z = 4) = 0.09 + 0.12 = 0.21$

Числовые характеристики случайных величин

Мода и медиана

Определение

Мода Mo(X) — значение случайной величины X, имеющей максимальную вероятность.

В зависимости от вида распределения случайная величина может иметь разное количество мод.

- Распределение одномодальное, если мода одна
- Распределение двумодальное, если моды две
- Распределение мультимодальное, если мод больше двух.

Математическое ожидание

Определение

Математическим ожиданием M(X) называют сумму произведений всех возможных значений случайной величины x_i на соответствующие вероятности p_i :

$$M(X) = x_1 \cdot p_1 + x_2 \cdot p_2 + \ldots + x_n \cdot p_n = \sum_{i=1}^n x_i p_i$$

Математическое ожидание — это среднее значение случайной величины X, которое следует ожидать в результате многократного проведения опыта.

Закон распределения случайной величины Х задан таблицей:

Вычислить математическое ожидание X.

Добавим в таблицу строку x_ip_i и столбец Σ

- ▶ Каждое значение третьей строки произведение $x_i \cdot p_i$.
- $M(X) = x_1p_1 + x_2p_2 + x_3p_3 + x_4p_4 = -0.5 + 0 + 0.6 + 2.4 = 2.5$

Свойства математического ожидания

$$M(X) = x_1 \cdot p_1 + x_2 \cdot p_2 + \ldots + x_n \cdot p_n = \sum_{i=1}^n x_i p_i$$

1.
$$M(C) = C$$
,

если C — константа;

2.
$$M(kX) = k \cdot M(x)$$

если k — константа;

3.
$$M(X \pm Y) = M(X) \pm M(Y)$$
;

4.
$$M(XY) = M(X) \cdot M(Y)$$
,

4. $M(XY) = M(X) \cdot M(Y)$, если X, Y — независимые CB.

Дисперсией случайной величины X называют математическое ожидание квадрата ее отклонений от среднего значения:

$$D(X) = \sum_{i=1}^{n} (x_i - M(X))^2 p_i$$

- Дисперсия характеризует степень отклонения значений случайной величины от ее среднего значения.
- Чем больше дисперсия, тем большую случайность проявляет величина.
- ▶ На практике дисперсия служит для оценки меры риска.

Закон распределения случайной величины 🗶 задан таблицей:

Вычислить дисперсию X.

ightharpoonup Добавим в таблицу строки $x_i p_i$, $x^2 p_i$ и столбец Σ

ightharpoonup Дисперсия равна $D(X) = M(X^2) - (M(X))^2 = 18.1 - 2.5^2 = 11.85$

Свойства дисперсии

Вычисление дисперсии удобно выполнять по формуле:

$$D(X) = M(X^2) - (M(X))^2$$

Свойства:

 \triangleright D(C)=0,

если С — константа;

 \triangleright $D(kX) = |k| \cdot D(X),$

если k — константа;

 $ightharpoonup D(X \pm Y) = D(X) + D(Y)$, если X, Y — независимые CB.

Среднее квадратическое отклонение

Дисперсия имеет размерность квадрата случайной величины. Для того, чтобы оценка рассеяния значений случайной величины была соизмерима с самой величиной, вычисляют среднеквадратичное отклонение.

Определение

Средним квадратическим отклонением (стандартным отклонением) называется арифметический квадратный корень из дисперсии случайной величины:

$$\sigma(X) = \sqrt{D(X)}$$

Прибыльность двух инвестиционных проектов Х, Ү (млн. руб) задана законами распределения:

$$X: \begin{bmatrix} x_i & -1 & 2 & 5 \\ p_i & 0.2 & 0.6 & 0.2 \end{bmatrix}$$
 $Y: \begin{bmatrix} y_i & -5 & 6 & 10 \\ p_i & 0.4 & 0.5 & 0.1 \end{bmatrix}$

Какой инвестиционный проект целесообразно выбрать для реализации?

▶ Вычислим характеристики обоих проектов:

$$X: \begin{array}{|c|c|c|c|c|c|c|c|}\hline x_i & -1 & 2 & 5 & \Sigma \\ p_i & 0.2 & 0.6 & 0.2 & 1 \\ \hline x_ip_i & -0.2 & 1.2 & 1 & 2 \\ x_i^2p_i & 0.2 & 2.4 & 5 & 7.6 \\ \hline \end{array}$$

$$M(X) = 2$$
 $D(X) = 7.6 - 2^2 = 3.6$ $\sigma(X) = \sqrt{3.6} \approx 1.90$
 $M(Y) = 2$ $D(Y) = 38 - 2^2 = 34$ $\sigma(Y) = \sqrt{34} \approx 5.84$

- ▶ Математические ожидания величин одинаковые, значит проекты принесцт в среднем равный доход.
- Среднее квадратичное отклонение второго проекта выше, чем у первого, тем самым риск выше.

Биномиальный закон распределения вероятностей

Повторение испытаний

- Пусть дискретная случайная величина X количество "успехов" в последовательности из n независимых случайных экспериментов, таких что вероятность "успеха" в каждом из них постоянна и равна p.
- ▶ Величина X может принять любое значение от 0 до n
- $P(X = x_i) = C_n^{x_i} p^{x_i} (1-p)^{n-x_i}$

Если значения ДСВ X являются всевозможными числами появления заданного события при фиксированном числе независимых испытаний, то X имеет биномиальный закон распределения.

Биномиальный закон

Биномиальный закон

ДСВ 🗶 подчинена биномиальному закону распределения, если

- она имеет конечное число значений x_1, \ldots, x_n ,
- вероятность каждого значения определена формулой Бернулли

$$p_i = C_n^{x_i} p^{x_i} q^{n-x_i}$$

Числовые храктеристики биномиального закона:

$$M(X) = np$$
, $D(X) = npq$, $\sigma(X) = \sqrt{npq}$,

$$np - q \leq Mo(X) \leq np + p$$

Пример биномиального распределения І

В городе 4 коммерческих банка. У каждого риск банкротства в течение года составляет 20%. Составить ряд распределения числа банков, которые могут обанкротиться в течение следующего года. Вычислить его числовые характеристики.

- Пусть X дискретная случайная величина, равная числу банков, которые могут обанкротиться в течение следующего года.
- Она может принимать значения 0, 1, 2, 3 и 4.
- ▶ Вероятность обанкротиться постоянна и банкротство банка не влияет на другие банки.
- ▶ Поэтому X распределена по биномиальному закону с параметрами n=4, p=0.2.

Пример биномиального распределения II

Найдем соответствующие вероятности по формуле Бернулли, полагая p = 0.2, q = 1 - 0.2 = 0.8:

$$p(X = 0) = C_4^0 0.2^0 0.8^4 = 0.8^4 = 0.4096$$

$$p(X = 1) = C_4^1 0.2^1 0.8^3 = 4 \cdot 0.2 \cdot 0.8^3 = 0.4096$$

$$p(X = 2) = C_4^2 0.2^2 0.8^2 = 6 \cdot 0.2^2 \cdot 0.8^2 = 0.1536$$

$$p(X = 3) = C_4^3 0.2^3 0.8^1 = 4 \cdot 0.2^3 \cdot 0.8^1 = 0.0256$$

$$p(X = 4) = C_4^4 0.2^4 0.8^0 = 0.2^4 = 0.0016$$

Таблица закона распределения

$$X: \begin{bmatrix} x_i & 0 & 1 & 2 & 3 & 4 \\ p_i & 0.4096 & 0.4096 & 0.1536 & 0.0256 & 0.0016 \end{bmatrix}$$

Пример биномиального распределения III

Числовые характеристики

Xi	0	1	2	3	4	Σ
pi	0.4096	0.4096	0.1536	0.0256	0.0016	1
$x_i p_i$	0				0.0064	
$x_i^2 p_i$	0	0.4096	0.6144	0.2304	0.0256	1.28

$$M(X) = np = 4 \cdot 0.2 = 0.8$$

$$D(X) = npq = 4 \cdot 0.2 \cdot 0.8 = 0.64 \ D(X) = 1.28 - 0.8^2 = 0.64$$

$$\sigma(X) = \sqrt{0.64} = 0.8$$

▶ Многоугольник распределения:

Пример биномиального распределения IV

Геометрический закон распределения вероятностей

Геометрическое распределение ДСВ

Геометрическое распределение

Пусть происходит серия независимых испытаний, в каждом из которых событие A может появится с вероятностью p.

Случайная величина *X* — "количество испытаний до первого появления события *A*", имеет <u>геометрическое распределение</u> вероятностей:

$$P(X=x_i)=q^{i-1}\cdot p,$$

где $i \in \{1, 2, 3, \ldots\}$.

Числовые храктеристики геометрического закона:

$$M(X) = \frac{q}{p}, \qquad D(X) = \frac{q}{p^2}, \qquad \sigma(X) = \frac{\sqrt{q}}{p}, \qquad Mo(X) = x_1$$

Вероятности последовательных значений геометирческого распределения образуют геометрическую прогрессию.

Производятся многократные испытания некоторого элемента на надежность до тех пор, пока элемент не откажет. Вероятность отказа элемента в каждом опыте равна 0.1. Составить закон распределения и найти Характеристики величины.

В револьвере 6 патронов. Вероятность поражения цели 0.8. Стрелок стреляет до первого промаха. Определить случайную величину и составить ее закон распределения.

Гипергеометрический закон распределения вероятностей

Гипергеометрическое распределение ДСВ

В совокупности из **N** объектов содержатся объектов **M**, обладающие некоторым признаком. Из этой совокупности случайным образом и без возвращения извлекается **n** объектов. Случайная величина **X** — «количество "особых" объектов в выборке» — распределена по гипергеометрическому закону.

Гипергеометрическое распределение

Случайная величина X имеет гипергеометрическое распределение, если

$$X \in \{x_0, x_1, x_2, \dots x_n\}$$

$$p(X = x_i) = \frac{C_M^i \cdot C_{N-M}^{n-i}}{C_M^n}$$

Числовые храктеристики гипергеометрического закона:

$$M(X) = n \cdot \frac{M}{N}, \qquad D(X) = n \cdot \frac{M}{N} \cdot \frac{N-n}{N} \cdot \frac{N-M}{N-1}$$

Из урны, содержащей 6 белых и 4 черных шара, случайным образом и без возвращения извлекают 2 шара. Составить функцию распределения случайной величины X — числа черных шаров среди взятых.

Закон распределения Пуассона

Распределение Пуассона

Распределение Пуассона

Пусть ДСВ X имеет бесконечное число значений $X \in \{x_0, x_1, x_2, \ldots\}$ Если вероятности значений подчинены закону

$$P(X = x_i) = \frac{\lambda^i}{i!} e^{-\lambda}$$

то X подчинена распределению Пуассона с параметром λ .

Числовые характеристики распределения Пуассона:

$$M(X) = \lambda, \qquad D(X) = \lambda$$

Если $p\to 0$, $n\to \infty$, но $np\to \lambda$, то закон распределения Пуассона является предельным случаем биномиального закона.

Многоугольники Пуассона

Распределение Пуассона моделирует случайную величину *X*— "число событий, произошедших за заданное время", при условии, что события происходят с заданной интенсивностью независимо друг от друга.

