Bandy *et al.* Appl. No.: 09/323,206

()	4		identification number, wherein said passive/RFID tags are configured to receive
, []	5		and transmit signals; and
\).}	6	(B)	a tag reader having means for transmitting a signal to said passive RFID tags and
	7		means for resolving contention resolution between multiple RFID tags that
O	8		respond to said signal;
	9	(C)	wherein said passive RFID tags is configured to receive a signal from said reader,
	10		evaluate said signal relative to said first and second permanent identification
	11		numbers, and reply to said signal if appropriate.
	. ^		
	Buy	3 93.	The electronic inventory of claim 92, wherein at least one of said plurality of
	2	passive RFID	tags has a sensor; and means for transmitting the contents of said sensor.
(\bigcirc . b	/	į
		94.	The electronic inventory system of claim 92/wherein said signal is a clock signal,
	2	and said tag re	eader emits a series of clock signals, each clock signal defining a time slot.
~			/-
)	1	95.	The electronic inventory system of claim 94, wherein each passive RFID tag counts
\rightarrow	2	the clock signs	als and when the count is equivalent to said first permanent identification number,
	3	transmits its ic	dentification ID to said tag reader.
	1	96.	The electronic inventory system of claim 95, wherein said tag reader accumulates
	2	the identificat	ion numbers of each tag that responded.
			/.
	1	97.	The electronic inventory system of claim 96, wherein said tag reader polls all tags
	2	that responded	d. /
		•	
	1	98.	The electronic inventory of claim 92, wherein said first and second permanent
	2		numbers are a tag identification number (Tag ID) and a manufacturer number,
	3		signal is a clock signal, wherein each tag further comprises:
	4	means	for receiving a wake-up signal followed by a first clock signal;

means for incrementing a first tag count in response to said first clock signal;

5

Bandy *et al.* Appl. No.: 09/323,206

6	means for transmitting the Tag ID assigned to the tag when said Tag ID corresponds to				
7	said first tag count;				
8	means for receiving a second clock signal;				
9	means for incrementing a second tag count in response to said second clock signal; and				
10	means for transmitting the manufacturer number assigned to the tag when said				
11	manufacturer number of said each tag corresponds to said second count.				
1	99. The electronic inventory of claim 92, wherein said first and second permanent				
2	identification numbers are a tag identification number (Tag ID) and a manufacturer number,				
. 3	wherein said signal is a clock signal, wherein said tag reader comprises:				
4	means for transmitting a wake-up signal followed by a first clock signal;				
5	means for incrementing a first reader count in response to first clock signal,				
6	means for receiving a Tag ID transmitted by a tag in response to said first clock signal;				
7	means for storing a given first reader count when more than one tag responds to said first				
8	clock signal that corresponds to said given first reader count;				
9	means for transmitting said given first reader count followed by a second clock signal; and				
10	means for receiving a manufacturer number transmitted by a tag in response to said second				
11	clock signal.				
1	100. A method for conducting an electronic inventory of radio frequency identification				
2	tags, wherein each tag is assigned a permanent identification ID, a manufacturing number and a				
3	lot number, the method comprising the steps of:				
4	(A) transmitting a first clock signal to a a plurality of passive radio frequency				
5	identification (RFID) tags, wherein each tag is assigned a first permanent				
6	identification number and a second permanent identification number, wherein said				
7	RFID tags are configured to receive and transmit signals; and				
8	(B) a tag reader having preans for transmitting signals to said plurality of RFID tags,				
9	means for transmitting at least one signal to said RFID tags and means for				
10	resolving contention resolution between multiple RFID tags that respond to said				

11

		Appi. No.: 09/323,200
12	(C)	wherein said RFID tags are configured to receive a signal from said reader
13		compare said signal relative to said two permanent identification numbers, and
14		reply to said signal if appropriate.
0	, \	I
	101.	An automated, real-time electronic inventory system, comprising:
2	$\mathcal{Y}_{(A)}$	a plurality of passive radio frequency identification (RFID) tags, wherein each tag
3 /		is assigned a plurality of identification numbers, wherein said RFID tags are
4		configured to receive and transmit signals; and
5	(B)	a tag reader having means for transmitting a signal to said passive RFID tags and
6		means for resolving contention resolution between multiple RFID tags that
7		respond to said signal;
8	(C)	wherein said RFID tags is configured to receive a signal from said reader, evaluate
9		one or more of said plurality of identification numbers, and reply to said signal is
10		appropriate.
		1
1	102.	The electronic inventory system of claim 101, wherein said tag reader can initiate
2	3 immediate	read of said passive RFID tags, a specific RFID tag read, or a timed broadcast read
3	of said passive	e RFID tags.
100	la-	
	103.	The electronic inventory system of claim 101, wherein at least one of said plurality
2	of RFID tags	has a sensor.
1	0 104.	An automated, real-time electronic inventory system, comprising a plurality of
291	possive RAFID	tags and a tag reader that performs multiple reads of said passive RFID tag to avoid
3	time slot cont	
1	105.	An electronic article surveillance system, comprising:
2		a database having stored therein an inventory of merchandise, wherein each piece
3	of merchandis	se has associated therewith a tag identification;
4		a tag, wherein said tag is configured to be attached to said merchandise, said tag

having associated therewith a tag identification;

5