1	<u></u>	NZ																																		_	
E; 8	3 :																																				
8. Probar que la relación \leq_L es transitiva.																																					
0				,									1			,																					
Par	de	FINIC	- i a		æ			Z	(+); (< <u>0</u>																	9	ve	,									
Enta	nces	5 , /	2~	ose	F.																				+2	L №	25		+3	کاح	c) ve	e ;				
		//							L																												
									L																												
Can	e51	to '	vec)	90	e i				△				•			ภ																				
							χ	€ 0	Ĺ,	(ن ≤ ; ;	f	(x) (€ 0	L'	5	ii	9	1	CX	·))	ϵ	L	7													
0 5	69	:			X	e d		ڪ	ii	9,((_f	(x))	ε	L"																						
٨٠٠		- 1-																	0		1				, _												76
Ahar de 10											•																										
Teng) 0 Soj 0	Mj -L	Con	M	7 721	-7 -12	9'		М	J (1	х,	i > ,) -	= <i>J</i>	(x)[*]	7	>	1	М	9((()	(₎ 1	: \) =	9	(x.	ΙĮλ	7	Y		Scn	. ə <i>i</i>	~l.	265	
	- 1			1																																	
Loeg lo	ماه ناه	016 08 d	e	M M	M (2)	γ (^λ <, ^λ	(x ን)	, ^ <i>)</i>)) _j	Pa	n9	•	/ئ	0	+(C	1	7	9	1	c b	r~	g' .	so	۷ وا	e	te	ے د	و	i+6	% } c	محا		? la	en	'nd
E; 9	:																																				
				L el pero												on p	oaré	ente	esis	bieı	n fo	rma	idas	s. E	as de	ecir	:, ()),(()),((()()) ∈						
Algor	itr	no ;	(5	>>	51	rcil	79																														
C:= C													//	1 c	:1.	ا ء	5	١,	e	s (ノヘミ	e	≤ρe	cit	: d	re	Co	nt	ad		ď	2 /	20 c	érre	' Sig	5	
For (:					/	// :	[+	80		ρο	~	حا	S	5+1	inc)	١x	(=	S [
if (S1 ++		= =	'(') :	;						$\Big)$	S:	<u>(</u>	2) :e 1	ے م	ہے در	v (9'	: 251	5€ '∂	lee Su	و مر	\$	'	ا -د	5	e 11	le eva	5178	ر د	d	ک 48	c	ę	s:	25 1)'
if (SI	[i] =	- <u>-</u> 1	('د	;							(جر 2	-01	A1	ᢐ	50	P	140	'7	١,													9, n:F nc			
	Ι,	с <)v S(d0		~ ') '	S	in	υ Λ		/	91	-te	ric	V~e	X+(e ·	0	£	ز د	10		es	
		+ F										J																									
re+ (<i>C</i> =	- 0))			/,	/s h	.; v b	+0	103 101	کی	lo Car	s Hic) ا ے4لا	' / 3	+ i	ene	en Nen	Sv re	de de	\ D	l Vocé	1 n+	, d es.	ev is(jel√ = c	re mt	til.	ve.	p Ly.	عصا ودسمان

```
10. Probar que 2-COLOREO está en NL.
hint: Poro q' un grosso sed 2-COLOREO no debe tener ningún ciclo de longitud impor. (Grasse al ayz q' me tiró el hint, tipaso).
I dea: Sé lo dicho en la hint. Como NL=coNL, puedo ver g' -12-co20 PEO esta en NL y decir g' entonces 2-co20 PEO está en NL.
                     (ot una mig. no der. N) (G=(V,E) con V=Verrex E=Ealges)
Algoritmo: (6)
For (i=0; i < IVI; i++): // i es un nodo (inicio del ciclo 9 buscomos) O(log IVI)
                                       // C = Cont. de a cistas ya recercidas (A lo sumo IVI par encontrar un ciclo. O (log IVI)

// a ctual lleva el nodo en el q'estry parado del recoccido. O (log IVI)

// m limita la longitud possible del camino O (log IVI)
  acrual := i
m := 0
  while (m ( |VI);
      Z:= Genero un nada @ 20, ..., 1VI-1} // Noch random ()((og (VI))
     if ((actual, Z) EE):
                                                                     Si llego a un ciclo impor co más de
Larista devuelvo true.
        if ((c esimpor) y (c>1) y (z==i));
         ret true
     achal := Z
                                                                1/5: no, sigo alargando el recorrido.
     m ++
ret folse
Enfonces, el algoritho q' computa la mág. q' decide Z-Coloreo sería la q' compute N y luego niegue la salida de esta Máguina, como NL: COLV, esta máguina es NL.
                                                                       Digrafo donce se prede llegar
               11. Probar que los sigientes problemas son NL-completos.
                                                                       desde un nado à cualquier otro
                     • SCC = \{\langle G \rangle : G \text{ es un grafo fuertemente conexo}\}
                     • NFA-NO-VACIO = \{\langle A \rangle : A \text{ es un autómata no determinístico que reconoce un lenguaje no vacío.} \}
a) SCC es NC-Completo
Princro veo que SCC ENI, la idea del algoritmo es madifiar un paco el de
PATH para q' se convierta en el problema q' quiero computar.
```


if (gnext ∈ F); ret tre actual = gnext met Folse Cuego, delso ver g' Tt es NL-Hard. Por lo cual voy a guerre roducir desse PATH & TT, O sea PATH (1 TT XEPATH Sii f(x) ETT con f trabajo-l congarable. Tonno no instanto (6, s, t) de PATH, 109' harro serra generar un automoto M= (Q, go, E, F, 8) de la siguierre navera: - Q = nodes de 6 90 := 5 E := 11 / F := 1 t / = 1 g / 8 := 5 i existe el arísta (a, b) on 6, existe la transición 8(a, b, 1). Està fes tologo-l'amputable pg' va en orden 1 a 1 paniendo las casos en la cinta de salida. Liego denestra: XE PATH SII FOX) ETT Si (1) es Falso entancer desde el go de M no hay comino a ga por lo cuál el leguaje gi decide p 1=) Es muy anologa a la ida (=0) ya que par cres. si hay un camino de qua que es pay habra un comino de sat en G.

