EE 236 Devices Lab Lab - 04

Anupam Rawat, 22b3982 31^{st} August, 2024

I/V Characteristics of a Solar Cell

1 Measurement of I-V Characteristics

1.1 Aim of the experiment

Measure the I-V Characteristics of the Solar Cell under different Illumination conditions.

1.2 Design

Figure 1: Caption

1.3 Dark I-V Conditions

Vd	Id	Vd	Id	Vd	Id
0.0073	0.1	0.295	1	0.348	2
0.234	0.4	0.312	1.2	0.355	2.3
0.255	0.5	0.329	1.5	0.358	2.5
0.28	0.8	0.333	1.6	0.366	2.8
0.341	1.8				

Figure 2: Dark I/V Characteristic

1.4 Green I-V Solar Cell Characteristics

$ m V_d$	I_d	$ m V_d$	I_d	V_d	I_d
0.426	0.1	0.448	3	0.465	6
0.43	0.8	0.453	3.9	0.468	6.5
0.436	1.4	0.46	4.7	0.469	6.8
0.445	2.6	0.463	5.4	0.471	7.3

Table 1: I-V characteristics data of Green LED

Figure 3: Green I/V Characteristic

1.5 Blue I-V Solar Cell Characteristics

V_d	I_d	$ m V_d$	I_d	$\mathbf{V_d}$	I_d
0	0	0.35	2.7	0.41	6.2
0.09	0.1	0.38	3.9	0.42	6.9
0.3	1	0.39	4.7	0.434	7.6
0.33	1.7	0.4	5.5		

Table 2: I-V characteristics data of Blue LED

Figure 4: Blue I/V Characteristic

2 Solar cell as power source

2.1 Aim of the Experiment

Investigate the use case of Solar Cell as a power source for different intensities namely I_1 for Green and I_2 for Blue.

2.2 Design

Figure 5: Caption

2.3 Simulation

2.3.1 Code

2.3.2 Results

Figure 6: Simulation Results of Dark I-V Characteristics

Figure 7: Simulation Results of Illumination 1 (Green) I-V Characteristics

Figure 8: Simulation Results of Illumination 2 (Blue) I-V Characteristics

2.4 Experimental Results

$ m V_L$	I_{L}	$ m V_L$	I_{L}	$ m V_L$	I_{L}
0.084	6.43	0.282	5.85	0.346	4.83
0.152	6.38	0.307	5.59	0.382	3.62
0.228	6.2	0.323	5.32	0.395	3.03
0.255	6.07	0.336	5.02	0.402	2.61
0.407	2.13	0.412	1.93	0.45	1
0.46	0.05				

Table 3: Using Solar Cell as a power source for Intensity ${\cal I}_1$ Green

$V_{ m L}$	I_{L}	$V_{ m L}$	${ m I_L}$	$V_{ m L}$	I_{L}	$ m V_L$	I_{L}
0.131	10.33	0.314	9.29	0.402	6.2	0.442	2.54
0.212	10.15	0.334	8.91	0.611	5.62	0.447	1.92
0.259	9.9	0.362	8.16	0.421	4.84	0.434	3.56
0.289	9.65	0.377	7.5	0.429	4.03	0.447	1.8
0.297	9.52	0.391	6.82	0.439	2.94		

Table 4: Using Solar Cell as a power source for Intensity I_2 Blue

Figure 9: Experimental Results of Illumination 1 (Green) I-V Characteristics

Figure 10: Experimental Results of Illumination 1 (Blue) I-V Characteristics

2.5 Equations and Formulas

The Fill Factor for a Solar Cell is given by the ratio of maximum power to the product of Short Circuit Current (I_{sc}) and Open Circuit Voltage (V_{oc})

$$FF = \frac{I_{MP} \times V_{MP}}{I_{sc} \times V_{oc}} \tag{1}$$

2.6 Results

	$(Sim) I_{sc}$	$(Sim) V_{oc}$	$(Sim) P_{max}$	$(Exp) I_{sc}$	$(Exp) V_{oc}$	$(Exp) P_{max}$	(Sim) FF	(Exp) FF
Green	-0.003571 mA	1 V	$0.47619 \ \mu W$	$6.43~\mathrm{mA}$	0.46 V	$1.71836~\mathrm{mW}$	0.133	0.581
Blue	-0.003839 mA	0.440678 V	$0.44643~\mu W$	10.33 mA	0.447 V	$3.43382~\mathrm{mW}$	0.264	0.744

Table 5: Comparison of Simulated and Experimental Data for Different Illumination Intensities

3 Measurement of V_{OC} and I_{SC} at different illumination levels

3.1 Circuit Design

Figure 11: Experiment 3

3.2 Experimental Results

Vsupply (V)	I_{led} (mA)	V _{oc} (V)	I _{sc} (mA)
6.28	10	0.36	1.84
7.49	20	0.41	3.78
8.67	30	0.43	5.74
9.83	40	0.44	8.01
10.98	50	0.46	9.88

Table 6: V supply, $\rm I_{led},\, V_{oc},\, and\, I_{sc}$ measurements

4 Completion Status

All the experiments including the pre-lab, simulations, in-lab experiments and tabluation, was completed in due course of time, well before of deadline.