NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
AN INVESTIGATION OF METHODS FOR DETERMINING NOTCH ROOT STRESS F--ETC(U)
SEP 77 J C GARSKE AD-AU47 264 NL UNCLASSIFIED 1 of 2 ADA047264

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

An Investigation of Methods for Determining Notch Root Stress from Far Field Strain in Notched Flat Plates

by

John Charles Garske

September 1977

Thesis Advisor:

G.H. Lindsey

Approved for public release; distribution unlimited

AD NO.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO. 3- RECIPIENT'S CATALOG NUMBER 1. REPORT NUMBER Master's Thesis 4. TITLE (and Subtitle) An Investigation of Methods for Deter-September 1977 mining Notch Root Stress from Far Field 6. PERFORMING ORG. REPORT NUMBER Strain in Notched Flat Plates. AUTHOR(+) S. CONTRACT OR GRANT NUMBER(s) John Charles/Garske . PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Naval Postgraduate School Monterey, California 93940 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE September 1977 Naval Postgraduate School S. NUMBER OF PAGES Monterey, California 93940 99 4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 18. SECURITY CLASS. (of this report) Naval Postgraduate School Unclassified Monterey, California 93940 184. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Stress Concentration Factors Finite Element Analysis Notch Root Stress Neuber's Equation 20. ABSTRACT (Continue on reverse side if necessary and identify by block mumber) Notched flat plate specimens have been tested to examine Neuber's equation and other relations with respect to their application in the determination of stresses in the plastic range at the notch root when the far field strain is known. A nonlinear finite element solution has also been obtained for notched flat plates in plane stress to facilitate an evaluation of it as an analytical method for calculating the behavior of stresses at the notch root DD 1 JAN 73 1473 (Page 1)

S/N 0102-014-6601 251 450

EDITION OF 1 NOV 68 IS OBSOLETE

Experimental results indicate that Neuber's equation is ten to twenty-five percent in error for the notch geometry, strain level and material behavior encountered in the present study. Finite element analysis results were in close agreement with experimental results.

Approved for public release; distribution unlimited

An Investigation of Methods for Determining Notch Root Stress from Far Field Strain in Notched Flat Plates

by

John Charles Garske Lieutenant, United States Navy B.S., University of Idaho, 1969

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL September 1977

Author

Approved by:

Thesis Advisor

Chairman, Department of Aeronautics

Dean of Science and Engineering

ABSTRACT

Notched flat plate specimens have been tested to examine Neuber's equation and other relations with respect to their application in the determination of stresses in the plastic range at the notch root when the far field strain is known. A nonlinear finite element solution has also been obtained for notched flat plates in plane stress to facilitate an evaluation of it as an analytical method for calculating the behavior of stresses at the notch root.

Experimental results indicate that Neuber's equation is ten to twenty-five percent in error for the notch geometry, strain level and material behavior encountered in the present study. Finite element analysis results were in close agreement with experimental results.

TABLE OF CONTENTS

I.	INTRODUCTION		
II.	NOTCH	HED FLAT PLATE SPECIMEN TESTS	12
	A.	INTRODUCTION	12
	в.	UNIAXIAL TENSILE STRESS-STRAIN TESTS	12
		1. Description of Procedure	13
		2. Test Results	13
	c.	NOTCHED PLATE SPECIMEN TESTS	13
		1. Description of Procedure	17
		2. Test Results	17
III.	FINITE ELEMENT ANALYSIS		
	A.	INTRODUCTION	29
		 Survey of Available Finite Element Analysis Programs 	29
		2. The Finite Element Method	31
	B	FINITE ELEMENT METHODS USED	31
		1. Element Models	31
		2. Symmetry and Load Considerations	40
		3. Material Model	40
		4. Analysis Procedures	42
	c.	RESULTS OF FINITE ELEMENT ANALYSIS	42
IV.	INVESTIGATION OF METHODS TO RELATE FAR FIELD STRAIN TO NOTCH ROOT STRESS		
	Α.	A HEURISTIC ANALYSIS	49
	В.	A FAR FIELD STRESS AND STRAIN CONCENTRATION FACTOR POWER RELATION CURVE FIT	49

	c.	RELATING THE INVERSE OF THE FAR FIELD STRESS AND STRAIN CONCENTRATION FACTOR IN A LEAST SQUARES LINEAR CURVE FIT	RS	51
v.	CONCI	LUSIONS AND RECOMMENDATIONS		61
	A.	NEUBER'S RELATION		61
	в.	FINITE ELEMENT ANALYSIS		61
	c.	DETERMINATION OF NOTCH ROOT STRESS FROM FAR FIELD STRAIN		61
APPENDIX A				64
APPENDIX B				90
LIST OF REFERENCES				98
INITIAL DISTRIBUTION LIST				90

LIST OF FIGURES

1.	Photograph of Test Equipment	14
2.	Tensile Stress-Strain Curve	15
3.	Description of Notched Test Specimens	16
4.	Photograph of Notched Test Specimen	18
5.	Stress and Strain Concentration Factors vs. Notch Root Strain (Plate #1)	20
6.	Stress and Strain Concentration Factors vs. Notch Root Strain (Plate #2)	21
7.	Stress and Strain Concentration Factors vs. Notch Root Strain (Plate #3)	22
8.	Stress and Strain Concentration Factors vs. Notch Root Strain (Plate #4)	23
9.	Deviation from Nueber's Relation (Plate #1)	25
10.	Deviation from Neuber's Relation (Plate #2)	26
11.	Deviation from Neuber's Relation (Plate #3)	27
12.	Deviation from Nueber's Relation (Plate #4)	28
L3.	Coordinate Transform (Finite Element)	32
L4.	Gauss Quadrature Points	32
L5.	Finite Element Model (POINTS)	33
L6.	Finite Element Model (POINTS)	35
L7.	Finite Element Model (Plate #1)	36
L8.	Finite Element Model (Plate #2)	37
L9.	Finite Element Model (Plate #3)	38
20.	Finite Element Model (Plate #4)	39
21.	Boundary Conditions and Loads on a Finite Element Model	41
22.	Finite Element Bilinear Assumption and Stress-Strain Curve	43

23.	Comparison of Finite Element Analysis and Notched Specimen Tests (Plate #1)	45
24.	Comparison of Finite Element Analysis and Notched Specimen Tests (Plate #2)	46
25.	Comparison of Finite Element Analysis and Notched Specimen Tests (Plate #3)	47
26.	Comparison of Finite Element Analysis and Notched Specimen Tests (Plate #4)	48
27.	Influence Coefficient vs. Stress	52
28.	Algorithm for Subroutines SOLVE and SOLVE2	53
29.	Inverse of Concentration Factors (Plate #1)	54
30.	Inverse of Concentration Factors (Plate #2)	55
	Inverse of Concentration Factors (Plate #3)	56
	Inverse of Concentration Factors (Plate #4)	57
33.	Slope Factor, b, vs. Far Field Elastic Stress Concentration Factor	59

I. INTRODUCTION

A major goal of the Navy Aircraft Life Management Program is to reliably and accurately predict the fatigue life of aircraft structures. The method currently employed determines structural life as a function of known structural and material properties and of "g" loading, which is measured by accelerometers in each aircraft. Since loads carried by the aircraft structure for a given "g" load are also a function of variables such as airspeed, weight, altitude, angle of attack and stores distribution, all of which are not measured, the present method of estimating structural life, to be safe, per force must be conservative; thus, aircraft can not be employed at their optimum cost effectiveness.

In order to obtain a more accurate means of determining aircraft life, a fatigue monitoring system has been developed [Ref. 1]. This system provides a direct airborne capability for recording strains at critical locations in the structure through the use of strain gages. Placement of strain gages at a location of stress concentration is not practical for long term applications, because fatigue of the strain gage itself precludes the use of this method. Therefore, the strain gage must be located at a point on the structure near the site of interest but undisturbed by the effects of stress concentrations.

An accurate relationship between applied strain, or far field strain, and local stress behavior at a point of stress

concentration will, therefore, be necessary, if a strain monitoring system is to be a viable means of providing data for aircraft life monitoring. Calculating local stress for a known far field strain becomes complicated when the material in the area of the stress concentration is stressed beyond the elastic limit.

The theoretical solution to the nonlinear plasticity problem has been demonstrated for simple geometries; however, these solutions do not have a practical, wide application in aircraft geometries [Ref. 2]. As a consequence, the majority of the current literature has centered on using Neuber's relationship for finding stress at the edge of a hole. Neuber [Ref. 3] proposed that the geometric mean of the stress concentration factor, K_{\P} , and the strain concentration factor, K_{\P} , is equal to the elastic stress concentration factor, K_{\P} , in equation form this is

$$K_{\mathbf{1}}^{2} = K_{\mathbf{7}} K_{\mathbf{E}}$$

where

$$K_{\mathbf{T}} = \frac{\text{local stress}}{\text{nominal stress}} = \frac{\mathbf{T}}{\mathbf{S}}$$

and

$$K_{\varepsilon} = \frac{\text{local strain}}{\text{nominal strain}} = \frac{\varepsilon}{e}$$

Impellizzeri [Ref. 4] proposed a method of calculating local stress using Neuber's relationship, material properties, nominal strains and $K_{\frac{1}{2}}$; all of which are known quantities, since nominal strain is easily obtained from applied strain.

Although Neuber's relationship has had wide coverage in the available literature, the results of investigations have not been consistent. Crews [Ref. 5] found the relationship to be accurate within a factor of two. Griffis [Ref. 6] found the relationship to be in error by as much as twenty-five percent for a notched flat plate in plane stress. Horne [Ref. 7] found the relationship to be accurate within four percent for a flat plate with a circular hole in plane stress with up to one percent strain at the edge of the hole. From the above, it can be seen that more information is needed to evaluate the validity of Neuber's relationship.

In order to provide an accurate means for calculating local stress behavior from applied strain, the accuracy of Neuber's relationship in its application to flat plates in plane stress was tested during this investigation. Also, a nonlinear finite element analysis of plates in plane stress was compared with the results of material testing to provide an analytical means of evaluating local stress behavior. Additionally, a proposal for calculating local stress from applied strain was made for inclusion in reference 8.

II. NOTCHED FLAT PLATE SPECIMEN TESTS

A. INTRODUCTION

In view of the apparent discrepancy regarding the validity of Neuber's relation, tests were performed on notched flat plate specimens in plane stress to observe Neuber's relation and the relationship between far field strain and local stress behavior at the notch root. To insure uniformity, all flat plate specimens were manufactured from the same sheet of 0.090-inch thick 7075-T6 aluminum. In addition, all specimens were oriented the same direction on the original sheet of material and each plate was manufactured to fit a common loading fixture used in the Riehle testing machine.

In all phases of specimen testing, strain gages were connected to a Wheatstone bridge circuit, which has been calibrated for strain gage factor and temperature considerations. The output of each Wheatstone bridge was measured by a digital voltmeter and recorded on a stripchart recorder. An event marker on the stripchart recorder was used to coordinate the load with the strain gage trace. The load was recorded by hand at convenient increments.

B. UNIAXIAL TENSILE STRESS-STRAIN TESTS

To determine the stress-strain characteristics of the test plates, two flat plate uniaxial specimens were tested in plane stress.

1. Description of Procedure

The first specimen was tested to accurately determine the stress-strain relationship in the elastic range. Loads were applied, held, and strains were read on the digital voltmeter until creep in the specimen became significant. The second specimen was used to investigate the stress-strain relationship in the region of large strains. During this test, the load was applied at a constant rate and strain data were recorded simultaneously on the stripchart recorder. Figure 1 shows the instrumentation used to record strain data.

2. Test Results

For both specimens, stress was calculated from load data for a corresponding level of recorded strain. The results of the tests were combined to produce the stress-strain relationship for the test specimen material. Table 1 of Appendix A and Figure 2 contain the results of the uniaxial tensile stress-strain test.

From test results, the modulus of elasticity for the test material was determined to be 10575 ksi, and the yield stress was determined to be 75 ksi.

C. NOTCHED PLATE SPECIMEN TESTS

Notched flat plate specimens were tested in plane stress to investigate Neuber's relation and the relationship between far field strain and stress at the notch root. Four specimens with different notch geometries were utilized in the test. Figure 3 describes the four plate geometries and strain gage placement.

Figure 1 Photograph of Test Equipment

TENSILE STRESS-STRAIN CURVE

FIGURE 2

DESCRIPTION OF NOTCHED TEST SPECIMENS

SPECIMEN NUMBER

T E Z -	-D 1.7" 1.7" 1.8" 8.5"	H B.S. 1.B. 1.B. 3.B.
	NOTCH DEPTH -D	NOTCH ROOT CURVATURE -R

NOTES

BTRAIN

STRBIN GRGE TYPE: MICHRO-MERSUREMENTS ER-1302508G-120

STRAIN GAGE SIZE: 0.125*

STRAIN GAGE RANGE: 3X

STRAIN GAGE LOCATION: CENTER O GAGE LOCATED 0.070° FROM TIP O NOTCH ROOT

FIGURE 3

In addition to the strain gages shown in Figure 3, an extensometer was placed in the region of far field strain. Strain data from the extensometer were recorded by the Riehle testing machine as the machine recorder produced a graph of applied load versus extensometer strain.

1. Test Procedure

The instrumented specimens were loaded by the Riehle testing machine with a constantly increasing tensile load. Figure 4 shows test specimen number four mounted in the machine. As the load was applied, strain data were recorded in a manner similar to that described for the uniaxial tensile stress-strain tests.

The tests were terminated for plate number one when the gage limit of three percent was exceeded; for plates two and three after both gages had failed; and for plate four when the load limit of the loading fixture holding the specimen was reached.

2. Test Results

To analyze stress and strain behavior at the notch root, the data recorded at the notch roots were averaged. To determine stress from strain data, the data obtained in the uniaxial tensile specimen tests were used in a regression scheme that calculated a stress for any given strain. Far field stresses and strains and nominal stresses and strains were calculated from a knowledge of the load, plate geometry and modulus of elasticity of the test material.

Tabular data from the notched specimen tests are presented in Tables 2 to 27 of Appendix A. In the tables of

Figure 4. Photograph of Notched Test Specimen

Appendix A, stresses 1 and 2 and strains 1 and 2 refer to stresses and strains at the notch roots. Stress and strain number 3 refer to extensometer data. It can be seen that strains 1 and 2 are in disagreement by 10 percent for plate number 1 (Table 2). This is attributed to strain gage locations not being identical on both notches and the rapidly changing stress gradients in the notch root area of plate number 1. As the notches became less severe, the differences between notch root strain gage readings became less. notch root strains recorded for plate number four are almost identical. Figures 5-8 contain a graphical presentation of far field stress and strain concentration factors versus notch root strain for plates 1 thru 4, respectively. Far field stress concentration factors have been defined as the ratio of notch root stress to far field stress. The far field strain concentration factor has been defined similarly.

The experimentally determined elastic far field stress concentration factors for the notched test specimens were as follows:

Notched Plate Number	Elastic Far Field Stress Concentration Factor
1	3.60
2	3.23
3	2.45
4	1.65

The far field elastic stress concentration factor can be related to the traditional elastic stress concentration factor by the ratio of the far field area to the nominal area, which

is the net cross-sectional area of the plate taken at the notch.

Figures 9-12 show the deviation of the test data from Neuber's relation. The data plotted for plate number two in Figure 10 have a discontinuity in the region of 0.6 to 0.8 percent strain. This is attributed to poor data obtained from strain gage number two prior to its failure. It can be seen that once the notch root strains reach the region of plasticity, Neuber's relation is in error to a significant degree. It can also be seen that the error increases as the level of notch root strain increases.

III. FINITE ELEMENT ANALYSIS

A. INTRODUCTION

The finite element method has proven to be a powerful tool for analysis of complex problems in structural engineering. A dominant reason for its quick acceptance and extensive application in engineering practice is due to its complete generality.

For the reason of generality, this investigation examined the feasibility of forming an analytical method of observing local stress behavior in the area of stress concentrations for flat plates in plane stress. If the results of a finite element analysis compared favorably with actual test data, it could be postulated that models of other stress concentration factors and material properties would be equally valid.

1. Survey of Available Finite Element Analysis Programs

Finite element programs available at the Naval Postgraduate School were surveyed for the best available program to use in a nonlinear finite element analysis of flat plates in plane stress.

The scope of nonlinear programs available was quite narrow. Program EPLAS [Ref. 6] has been translated to FORTRAN IV and made operational. Programs NONSAP [Ref. 9] and ADINA [Ref. 10] were also operational and available. Program EPLAS used a scheme of constant strain triangles in an analysis of plates in plane stress. Because the intricacy of the small

triangles required to define the area of stress concentration did not lead to easily redefining the model, program EPLAS was not considered appropriate for this investigation. Program NONSAP contained a library of element models as well as material models, and it was considered appropriate for this investigation. However, the most flexible and convenient to use of the three programs surveyed was program ADINA (Automatic Dynamic Incremental Nonlinear Analysis).

Program ADINA is a general purpose linear and non-linear static and dynamic finite element program. Structural matrices are stored in compacted form and element information is stored by blocks in low speed storage. The program is an out-of-core solver; i.e., the equilibrium equations are processed in blocks, and very large finite element systems can be considered. There is practically no high speed storage limit on the number of finite elements used.

For nonlinear response, an incremental solution of the equilibrium equations is used. The linear effective stiffness matrix, the linear stiffness matrix and the load vectors are assembled in low speed storage. During a step-by-step solution, the linear effective stiffness matrix is updated for the nonlinearities in the system. The incremental solution scheme corresponds to a modified Newton iteration. To control accuracy, the number of steps between equilibrium iterations and between reforming a new effective stiffness matrix can be controlled by the user.

2. The Finite Element Method

The finite element method of stress analysis is well known and widely used; therefore, only the basic aspects of isoparametric elements in plane stress need review.

A coordinate transform from the γ , plane to the x,y plane as shown in Figure 13 allows the element to be represented as an arbitrary shape in the x,y plane. Applying the concepts of minimum potential energy, a stiffness matrix is determined by integrating numerically over the γ , plane using gauss quadrature. Therefore, stresses are calculated at each gauss quadrature point in the element. Figure 14 shows a typical isoparametric element and gauss quadrature points for a four point gauss quadrature.

B. FINITE ELEMENT METHODS USED

1. Element Models

Since it was necessary to generate a variety of models for flat plates in plane stress, two FORTRAN IV computer programs, POINTS and NPOINTS, were created to generate the appropriate element data for program ADINA.

Program POINTS created a grid that modeled one quadrant of the entire test plate. This model contained 507 nodes and 228 finite elements; the model generated by this program for plate number one is shown in Figure 15. Through a minor modification to the program, a smaller model consisting of 351 nodes and 156 elements was generated. The mesh generated in this manner for plate number one is shown

FIGURE 13

GRUSS QUADRATURE POINTS (4 POINT GRUSS QUADRATURE)

FIGURE 14

FINITE ELEMENT MODEL GENERATED BY PROGRAM POINTS

FIGURE 15

in Figure 16. In view of the theories of St Venant, the smaller model was considered adequate for use in this analysis.

Program NPOINTS was a smaller version of program

POINTS. It created a grid that was the same size as the

smaller model generated by POINTS. Although equal in physical

size, the model generated by NPOINTS contained 189 nodes and

78 elements. A model generated by NPOINTS for plate number

1 is shown in Figure 17.

Both mesh generation programs were general in nature. By simply redefining the vector of variables which described the notch at the edge of the plate, a new mesh could be generated. Both mesh schemes were tested for accuracy and efficiency in program ADINA.

For the plate model tested, the two elastic stress concentration factors calculated using the two mesh schemes were essentially equal. The mesh generated by POINTS required 26.5 minutes of computer time for 20 load applications, while the mesh generated by NPOINTS required 23 minutes of computer time for 20 load applications. On the basis of relative efficiency, the mesh generated by NPOINTS was selected as the model to use for the finite element analysis portion of this investigation. Models generated by NPOINTS for notched specimens 2, 3, and 4 are shown in Figures 18-20 respectively. All plates were modeled so that Gauss quadrature point number 3 in element number 1 coincided with the center of the strain gage on the actual test specimen.

FINITE ELEMENT MODEL GENERATED BY PROGRAM POINTS

FIGURE 16

FINITE ELEMENT MODEL FOR PLATE \$1 GENERATED BY PROGRAM NPOINTS

FIGURE 17

FINITE ELEMENT MODEL FOR PLATE #2 GENERATED BY PROGRAM NPOINTS

FIGURE 18

FINITE ELEMENT MODEL FOR PLATE #3 GENERATED BY PROGRAM NPOINTS

FIGURE 19

FINITE ELEMENT MODEL FOR PLATE \$4 GENERATED BY PROGRAM NPOINTS

FIGURE 20

2. Symmetry and Load Considerations

Meshes generated by program NPOINTS, as shown in the above mentioned figures, model only one quarter of the plate. The plates are symmetrical and two planes of symmetry cut through the plates. Therefore, as shown in Figure 21, by imposing the boundary conditions of zero displacement in the y-direction for boundary 1, and zero displacement in the z-direction for boundary 2, it is necessary to model only one quarter of the plate for a complete analysis.

Loads can be applied to the model only at nodal points; Figure 21 shows the formulation of the applied loads. A uniform stress is assumed across the boundary where the loads are applied. A load that would produce one half the stress in the element is applied at one node and an equal load is applied to the opposite node. If two elements share a common node, the loads are summed at that node.

Material Model

Program ADINA provided for the use of a bilinear stress-strain relationship when defining the material properties of the two-dimensional continuum elements. The material model used was the elastic-plastic (von Mises isotropic hardening) model. This model is defined by Young's modulus, Poisson's ratio, yield stress in simple tension and a strain hardening modulus. To model the actual properties of the test material, the modulus of elasticity as determined in the uniaxial tensile stress-strain test was used as Young's modulus and 0.3, a standard for aluminum, was used as Poisson's ratio. A linear least squares fit of the uniaxial

tensile stress-strain data between 1.0 percent and 2.1 percent strain was used to calculate a hardening modulus of 399.606 ksi. The intersection of the modulus of elasticity and the line defining the hardening modulus was taken to be the yield stress of 77.173 ksi for the model. Figure 22 shows the bilinear stress-strain assumption compared with the uniaxial tensile test data.

4. Analysis Procedures

A four point Gauss quadrature, which is the allowable maximum, was specified in the program input parameters to obtain results as close to the notch root boundary as possible. Because of this requirement, out of core storage requests in the standard ADINA JCL cards of reference 10 had to be modified to accommodate the size of the system being analyzed. The loads applied to the nodes shown in Figure 21 were applied in thirty increments. The first four loads were scaled to create a stress at the notch root equal to the yield stress. The remaining twenty-six increments were evenly spaced between load number four and the highest load recorded during the corresponding notched flat plate specimen test.

C. RESULTS OF FINITE ELEMENT ANALYSIS

Tabular results of the finite element analysis using program ADINA are in Appendix B. The comparison of far field stress concentration factors from the finite element analysis and the notched test specimens were as follows:

Far Field Elastic
Stress Concentration Factors

Plate	Finite Element	Specimen Test	Variance
1	3.92	3.60	8.9%
2	3.33	3.23	3.2%
3	2.51	2.45	2.4%
4	1.63	1.65	1.2%

The results of the finite element analysis compared favorably with the results obtained from the notched specimen tests for plates 2, 3 and 4. In addition, if the far field elastic stress concentration factor for notched specimen number one was calculated using gage number 2 only, the variance would be 3.4 percent, comparable to the other plates modeled.

Figures 23-26 compare notch root stress versus far field strain for the tensile test specimens and the finite element model. The correlation between finite element analysis and tensile test specimen data also compares favorably in Figures 23-26. The trend of the notch root stress to increase more rapidly after reaching the 80 ksi range is attributed to Gauss quadrature points in element number two becoming plastic and dramatically changing its ability to carry a load. The effect is especially noticeable because of the difference in size of the elements.

IV. INVESTIGATION OF METHODS TO RELATE FAR FIELD STRAIN TO NOTCH ROOT STRESS

A. A HEURISTIC ANALYSIS

A heuristic analysis of far field strain and notch root stress was pursued after observing in Figures 23-26 that the plot of notch root stress versus far field strain maintained the same shape, although in a compressed form, as the original stress-strain relationship obtained in the uniaxial tensile stress-strain tests. Therefore, a local stress far field strain relationship was developed by dividing the local strains by the far field stress concentration factor, for a given stress.

For each notched test specimen, the new stress-strain relationship was developed and the far field strains from each test were used to verify the relationship by calculating stresses using the new stress-strain relation. The results are found in Tables 5, 12, 18, and 24 of Appendix A.

As can be seen from the tabular data, the stresses computed in this manner vary up to 4 percent from the stresses actually recorded during the testing of the notched specimen. It can also be observed that the error increases as the notch root strain increases.

B. A FAR FIELD STRESS AND STRAIN CONCENTRATION FACTOR POWER RELATION CURVE FIT

Another attempt to relate the far field strain and notch root stress involved finding a relation between the far field

stress and strain concentration factors. The method used to relate the two concentration factors was a power curve fit. In equation form it was assumed that

$$K_{\mathbf{T}} = (a) (K_{\mathbf{\epsilon}})^{b}$$

or

$$(\pi/s) = (a) (\epsilon/e)^{b}$$

Assuming that for every stress, there exists an influence coefficient, E', such that stress is the product of
E' and strain, the above equation can be written

$$\mathbf{T} = Sa(\mathbf{T}/E'e)^b$$

solving for the notch root stress,

$$\mathbf{A} = \mathbf{e}(\mathbf{E}\mathbf{a}/(\mathbf{E}')^{\mathbf{p}})^{\frac{1-\mathbf{p}}{1-\mathbf{p}}}$$

Since this relation must also hold in the elastic limit (E'=E), the coefficient, a, must be given by

$$a = (\nabla / Ee)^{1-b} = (K_{+}(ff))^{1-b}$$

Therefore, substituting into the above,

$$\nabla = e(K_{+}(ff)) (E/(E')^{b})^{\frac{1}{1-b}}$$

Two unknowns still remain in the above equation, the notch root stress and the influence coefficient, E'. Therefore, an iteration scheme using the relationship between stress and E' is necessary to calculate the notch root stress using this method.

To evaluate the relation of stress and E', the stresses of the stress-strain relationship (Figure 2 and Table 1) were divided by their corresponding strains to calculate an E' for that stress. The results are found in Table 6 of Appendix A and a plot of E' versus stress is found in Figure 27. A power curve fit method was used to calculate the power factor, b, from the data of far field stress and strain concentration factors.

Subroutine SOLVE of a data reduction program calculated the notch root stresses given an input of the far field strains. Figure 28 is a flowchart describing how subroutine SOLVE functioned.

The tabular results of the notch root stresses calculated by SOLVE are presented in Tables 7, 13, 19, and 25.

Table 26 provides the data calculated to be the curve fit exponent. The tabular results show differences of up to fifteen percent between calculated stresses and actual stresses found in the notched specimen tests. It should be noted, however, that only one refinement was made in iterating to find the E' that related to the calculated stress.

C. RELATING THE INVERSE OF THE FAR FIELD STRESS AND STRAIN CONCENTRATION FACTORS IN A LEAST SQUARES LINEAR CURVE FIT

A third method of relating the far field strain to the notch root stress was to use the observation that the inverse of the far field strain concentration factor plotted against the inverse of the far field stress concentration factor was essentially linear. Figures 29-32 describe this relation

PLEDRITHM FOR SUBROUTINES SOLVE & SOLVEZ

FIGURE 29

54

as well as the computed slopes and correlation coefficients using a least squares polynomial regression of degree one. Figure 33 shows the relation of slope, b, to the far field elastic stress concentration factor.

The elastic limit in Figures 29-32 is at the point where the inverse of the strain concentration factor equals the inverse of the stress concentration factor. All data in the elastic range will, theoretically, be plotted at this point. Therefore, it can be shown that

$$(1/K_{\varepsilon} (ff)) = (1/K_{\varepsilon} (ff)) -b [(1/K_{\varepsilon} (ff)) - (1/K_{\varepsilon} (ff))]$$

or

$$e/\epsilon = (1/K_{\epsilon} (ff)) -b [(S/\tau) - (1/K_{\epsilon} (ff))]$$

Assuming as in the power curve fit method that stress is the product of an influence coefficient, E', and strain, then solving for stress, it can be shown that

$$\mathbf{T} = \text{EeK}_{+} (\text{ff}) [(b+(E'/E))/(b+1)]$$

It is obvious that if E is substituted for E' in the above equation, the elastic condition is satisfied.

Subroutine SOLVE2 of a data reduction program used the same influence coefficient concept as described previously in Table 6 of Appendix A and Figure 27. The scheme for calculating the notch root stress for a given input strain was the same as described in Figure 28.

Tabular results using this method are presented in Tables 8, 14, 20 and 26. Examination of the tabular data shows that the stresses calculated using the linear curve fit method

CPLATE +1 SASE +2> S. RE SLOPE COEFFICIENT "B"
VS
VS
FAR FIELD ELASTIC STRESS CONCENTRATION FACTOR 4.58 CPLATE +1 SASE +12 FAR FIELD ELASTIC STRESS CONCENTRATION FACTOR H. SR • CPLATE 43> 3.88 CPLATE 423 FIBURE 33 2.58 4 2.80 CPLATE 443 . 88 B.SB B. 88 N. 18 H. F.B *8* TNG13177300 340.E

differed by as much as ten percent from the actual stresses recorded in the notched specimen tests. It should be noted, however, that only one iteration was used in determining the coefficient, E', to use when calculating the notch root stress for a far field strain.

The relation between the slope factor and far field elastic stress concentration factor as shown in Figure 33 was not readily apparent and not considered further during this investigation.

V. CONCLUSIONS AND RECOMMENDATIONS

A. NEUBER'S RELATION

The results of the notched specimen tests indicate that Neuber's relation is in error by as much as ten percent when strains are less than one percent. As the strains at the notch root became more significant, Neuber's relation became less accurate with fifteen percent error at two percent strain and twenty percent at three percent strain. It can be concluded that methods of calculating local stress using Nueber's relation would be susceptible to the same inaccuracies.

B. FINITE ELEMENT ANALYSIS

The results of the finite element analysis of notched flat plates in plane stress using program ADINA correlated well with the results obtained in the notched specimen tests. The only limitation on program ADINA appears to be its modeling the element material in the plastic range in a bilinear stress-strain relationship. It is therefore recommended that element model number fifteen of program ADINA be developed in order to define the material more closely throughout the range of strains to be encountered in the area of the notch root.

C. DETERMINATION OF NOTCH ROOT STRESS FROM FAR FIELD STRAIN

The Heuristic analysis investigated in Section IV is

simple to use and economical with respect to computer time

used to perform the calculations. The heuristic method is much more accurate in the nonlinear range than Neuber's relation for the notch geometries and material properties used in this investigation. In view of the computational requirements to process the input strain data, the heuristic method of calculating notch root stress is recommended for inclusion in reference 8, provided a four percent error is tolerable, and the concept is proven for other materials.

The power curve fit method of calculating the notch root stress was found to be in error by as much as fifteen percent. In addition, the fit of the curve to the stress and strain concentration factors data was poor, as shown in Table 27. In view of the poor fit of the data, and the increased computation time necessary to make this method useful, it is not recommended as a means of calculating notch root stress from far field strain.

The linear fit of the inverse of the stress and strain concentration factors was more accurate than the power curve fit method. Because of the good correlation coefficients determined while calculating the slope factor, b, it has been concluded that a refinement of the iteration scheme to determine the proper influence coefficient E' would produce results more accurate than the heuristic method.

In view of the above, it is recommended that an improved iteration scheme be developed to calculate notch root stress using the linear relation between the inverse of the stress and strain concentration factors. It is also recommended that further investigation be done to determine the slope

factor as a function of material and elastic stress concentration factor. Furthermore, if the computational time is deemed to be worth the accuracy, it is recommended that the linear fit of the inverse of the stress and strain concentration factors method be used to calculate the notch root stress in reference 8.

APPENDIX A EXPERIMENTAL TEST DATA

TABLE 1
STRESS-STRAIN CURVE DATA
STRESS STRAIN

00000000000000000000000000000000000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TABLE 2
DATA FOR TEST PLATE 1

RECUPDED DATA

LOAD	STRAIN 1	STRAIN 2	STRAIN 3
00000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.0040000 0.00170000 0.00170000 0.00310000 0.00310000 0.00310000 0.00310000 0.00450000 0.005100000 0.005100000 0.00650000 0.00650000 0.00750000 0.00850000 0.00850000 0.00850000 0.00850000 0.012700000 0.01450000 0.01550000 0.01550000 0.01550000 0.01550000 0.01550000 0.012350000 0.02350000 0.02350000 0.02350000 0.02350000 0.02350000 0.02350000 0.023550000 0.033550000	G. 00026750 0.00043750 0.00043750 0.000762750 0.000762750 0.000762750 0.00076250 0.00114750 0.00114750 0.0011477050 0.0011477050 0.001177000 0.00117000 0.001170000 0.00117000 0.00117000 0.00117000 0.00117000 0.00117000 0.00117000 0.00117000 0.00117000 0.00117000 0.00117000 0.00117000 0.001

TABLE 3 DATA FOR TEST PLATE 1

CALCULATED STRESSES

LOAD NO.	STRESS 1	STRESS 2	STRESS 3
1234567890100000000000000000000000000000000000	353323193828846488886814686800455000000000000000000000000000000	9339212904884640196040991318323332212904884640199131831656619631833313324575631833333333333333333333333333333333333	5245499059168183600993883006196876442171 6678-18-18-18-18-18-18-18-18-18-18-18-18-18

TABLE 4
DATA FOR TEST PLATE 1

STRESSES AND STRAINS BASED ON LOAD (NOMINAL AND APPLIED)

LCAD NO.	NCM STRESS	NOM STRAIN	APP STRESS	APP STRAIN
123450765012345678001230222222222222222222222222222222222	97531864210997765410987654321997765543221 9699988888877777777666666655555555555555	711668249372996307429274296307529630976315593825996309763615593825996309763615593828369763685946803223346888997600000000000000000000000000000000	3838384946925702565803581369146952803962 97643108765543321987765443211146952803962 577913577806284062817395173881477395258 27728387394691447924657702581739517029518 977643100876554322148776554432113688517029518 97897012856789012345677789990122333333333333333333333333333333333	0.00043786123446172861283446170000433834665146273398123446170000131887834612344617000013188783514628314972818981497151898149746885516428244339449149728189863378889827151898633788898271518986498863378889827151898688784981898271518988868878498189827151898886887849818982715189888868878498189827151898888888888888888888888888888888888

TABLE 5
HEURISTIC DATA FOR PLATE 1

LOAD NU.	HEU STRESS	ACT STRESS	RATIO
12345 6789 0123 456789012345678901234567890	1.6384150552546369548861989.16596443964948 4.0794909552546369548861989.165964443964948 6.365231088099151239262441631443219466430 2.9739906888712512392624441631443219466430 3.973990688871251239262434059134444443219466430 1.223444556666677777777777777777777777777777	3913111986520444585495456801888315534456 2288387791033410206177350689711018074324 38642051994103341020617735069897110180074324 38642051991236692911735701189901180074324 3864205191355689991101880774324 38642051913556899911018899911233457788999	0.89491366844046211829 994917777882884840877277882877777882884884847776211829 9949179778828848446336874776211829 994919367339687477621182936873368879776814160773368879775756672 1.002234844776818293678368777676783339944707338888888888888877755664737881160733888888888872118118118118118118118118118118118118118

TABLE 6 DATA FOR TEST PLATE 1

STRESS AND E PRIME DATA STRESS E PRIME

3	C PRIME
00000000000000000000000000000000000000	105752133.0 105752133.0 105752133.0 1057752133.0 1057752133.0 1057752133.0 1057752133.0 1057752133.0 1057752133.0 1057752133.0 1057752133.0 1057752133.0 104763771.0 10476371.0

TABLE 7

EXPONENTIAL CURVE FIT DATA FOR TEST PLATE 1

CALCULATED	ACTUAL	RATIO	E PRIME
4197520827171055941191601055683890544009 27116161570733077719335852755368107794051 39633963969714913269782697826537830860 3963396396971498132697169553785114 396396396533669377777888784419134608877774955114 39639639655566665777777888788859998877774955114	3913119865204458549545645958018831553456428838777912206952829174754762858831877147562883877791033410206173506989718901880743248640650660369135688950000111222222333333334012222223333333334012334556666777777888888888888888888888888888	1.0185250146675485909447193256146148590944710.0943325014667548590994332501.09998983369506421466991.099989898999999999999999999999999999	00000000000000000000000000000000000000

TABLE 8
INVERSE RELATION CURVE FIT DATA FOR PLATE 1

CALCULATED	ACTUAL	RATIO	E PRIME
3841638569534690163913195080639458018349 3963963985696051.6818125355516923023191 39639639826962053666666525355499967242080 3963963982696727535449997242096 3963963982696554246666665253544999672554265 396396396398269763844667777788388888888988199963075	39131198652044585495456459580188315534456428581511986520445854954762858831155344562288387799103341020617350698971890743248386406373060290516925813579112300578333334555666667777777888888888888888888888888	1.017911 08195315197 70631270 08195315190 97195115190 996490726673960 0.99832811607193520 0.99832811607193520 0.99832811607193520 0.99839073190 0.99839073190 0.99839073190 0.99839073190 0.99839073190 0.99839073190 0.99839073190 0.99839073190 0.9983907311 0.0207334161160 1.020733441831 1.02073441831 1.020	00000000000000000000000000000000000000

TABLE 9
DATA FOR TEST PLATE 2

RECORDED DATA

LOAD	STRAIN 1	STRAIN 2	STRAIN 3
00000000000000000000000000000000000000	0.0035500000 0.0025500000 0.0035500000 0.0035500000 0.0035500000 0.0055500000 0.0055500000 0.0055500000 0.0055500000 0.00555000000 0.00555000000 0.00555000000 0.00555000000 0.00555000000 0.00555000000 0.00555000000 0.00555000000 0.005550000000 0.0055500000000	0.0090000 0.001750000 0.002550000 0.002550000 0.004500000 0.0045100000 0.005100000 0.005700000 0.005700000 0.006600000 0.006600000 0.006740000 0.006740000 0.0079500000 0.0079500000 0.0079500000 0.00795000000 0.007950000000 0.0079500000000 0.00795000000000000000000000000000000000	0.00736000 0.00736000 0.001319000 0.00139000 0.00149000 0.001497000 0.001576000 0.001576000 0.001576000 0.00175000 0.00175000 0.00175000 0.00175000 0.00175000 0.00177000 0.00213000 0.00311000

TABLE 10 DATA FOR TEST PLATE 2

CALCULATED STRESSES

LUAD NO.	STRESS 1	STRESS 2	STRESS 3
123.45.67890123.45.6789012345.6789012345.678.9	062919239235849538308486038139546306343 280015972847841719108930518866250606343 72216706515182762910245068961418190655313 33652606329741673418360897370234455 87652681460122451865369897370234455 876526814601224518699900011112222222	99579192082986934408486038139546306343 117.63.6691823986931408486038139546306343 117.63.665316332250614692506141892506141892506141819065535531790855531796859594659455966691335177777777788809234455966691335177777777788888888888888888888888888	33118755405984886958311197505011488804 21270940583016549583120940583016549584844129510386230782211555505946 21289405830165495884844129510388635555555555555555555555555555555555

TABLE 11 DATA FOR TEST PLATE 2

STRESSES AND STRAINS BASED ON LOAD (NOMINAL AND APPLIED)

LCAD NO.	NCM STRESS	NOM STRAIN	APP STRESS	APP STRAIN
12111111111111112222222222200000000000	741843210987654321098765432199776554443 9998888777777777776555555555555555555555	133467742963074296307752963029765320 63050674429630742963075296624799624456791244567912445679124456791234456791234456791234456689912344567922222222233334456792445679224456792244567922445679244567922445679222223373344567803333333333344544780333344567887334456789768767676767676767676767676767676767	85311914692570257035803581369146925284075311881469284406297765311881469147022977653118814691470251773311881469147025177395117288147702517739511728147043651772883851774062517739511728147022222222222335333333333333333333333333	74417 5206394617 622886394617 622886394617 6228886394617 6228886394617 6228886394617 6228886394617 622888639461 62288866318621 62288866318621 62288866318621 62288866318621 62288866318621 62288866318621 6228886631 6228886631 6228886631 6228886631 623886631

TABLE 12
HEURISTIC CATA FOR PLATE 2

LOAD NO.	HEU STRESS	ACT STRESS	RATIO
128454789012845678601254567890128456789	149049810357744906698190035060015666651495 14904981035774490669819003506015666651495 12565432121949153066763655037738256776 125657036923556666777777777818557776 8877615769235556666677777777781855777777777818557777777777	55056095122211413190508486038139546306343 779•••5673122211413190508486038139546306343 779•••6731221114131905084860038139546306343 886777676767676767676767676767676767676	100-5030699 654860756195800 100-5036627733360699 6536653692694241355038176467828667754653692892503817646782886677569 100-5030505050505050505050505050505050505

TABLE 13

EXPONENTIAL CURVE FIT DATA FOR TEST PLATE 2

CALCULATED	ACTUAL	RATIO	E PRIME
258034559650990559983668431360010908514 246915938822510726189053918605025158234 6000147103985947105666013263852634243397 8642098881793728378664982482344641271363 999988817913819912346582344641271363 876548383771381997822482344641271363 8765483837713819978248888877554387933	505609512211413190508486038139546306343 542056732748413190508486038139546306343 779600776520767954925068961418190655313 16537623767970234666775777777777888888888888888888888888	1.088524461209773389425581311067844436261610010665344120977331412097733894110010678341100010678575667256078799999999999999999999999999999999999	00000000000000000000000000000000000000

TABLE 14

INVERSE RELATION CURVE FIT DATA FOR PLATE 2

CALCULATED	ACTUAL	RATIO	E PRIME
01234481545600499641958940508805393041 6284051305966615431958940508805393041 864236036137259836130436130344 99999988605705372599933574785698465609 8776547705677259933574785608313049609 8776547705677777777888888888888888888888888888	5056095122111413190508486038129546306343 77-6	990 9023 9033 9	0.000000000000000000000000000000000000

TABLE 15 DATA FOR TEST PLATE 3

RECORDED DATA

LCAD	STRAIN 1	STRAIN 2	STRAIN 3
COOCOCCCOOCCCOCCCCCCCCCCCCCCCCCCCCCCCC	0.000000000000000000000000000000000000	0.0080000 0.001550000 0.00245000 0.003400000 0.005000000 0.005500000 0.006695000 0.006950000 0.00747000 0.007755000 0.007755000 0.007755000 0.00745000 0.00810000 0.00810000 0.008850000 0.008850000 0.008950000 0.009900000 0.009900000 0.009900000 0.009900000 0.009900000 0.009900000 0.009900000 0.009900000 0.009900000 0.01150000 0.012250000 0.012850000 0.012850000 0.01350000 0.01480000	G. 033000 0. 0070000 0. 001050000 0. 001720000 0. 001720000 0. 001720000 0. 0023500000 0. 002890000 0. 0028950000 0. 0028950000 0. 0028950000 0. 0028950000 0. 0033130000 0. 0033130000 0. 0033540000 0. 0033540000 0. 0033540000 0. 0033540000 0. 0033540000 0. 0033540000 0. 0033540000 0. 0033640000 0. 0033640000 0. 0033640000 0. 0033640000 0. 0033640000 0. 0033640000 0. 0034020000 0. 0034020000 0. 00344140000 0. 0044140000 0. 0044140000 0. 0044140000

TABLE 16 DATA FOR TEST PLATE 3

CALCULATED STRESSES

LCAD NO.	STRESS 1	STRESS 2	STRESS 3
127.45.6789.0123.45.6789.0123.45.6789.0123.45.6789	15445993941815808584358830843865086961112345575777777788865985888584358830843865086538653131403112346511418158885843588308438650865345667777777788865988588888888888888888888	20181039935884448803331698040506436981111 8671683360.888444880333169804050643698136069813606080405648051618111 86717683360.88844488080804050643698177911223417632661881.0080443698181605981816059818160598181605981818181818181818181818181818181818181	845222502599 03399388199525597214513841407 8452225042935255538150835785879980285304 009775554123252525254447469951470555411853546 9012780212339514431851852062958452468243 37119678635643173061735818580396552468243 111122222333333333333333333333333333

TABLE 17 DATA FOR TEST PLATE 3

STRESSES AND STRAINS BASED ON LOAD (NOMINAL AND APPLIED)

LOAD NO.	NOM STRESS	NOM STRAIN	APP STRESS	APP STRAIN
123456789012M456789012M2022M7 388678883	4936264689012839505162839505162839505172 48362646801273840516273884055162738840516273840516273840516273840516273840516273840516273840516273840516273884051627384051627384051627384051627384051627384051627384051627388405162738405162738405162738405162738405162738405162738405162738840516273840516273840516273840516273840516273840516273840516273884051627388405162738787805787878788788787887887887887887887887887	7411 2741	741192249947928517306295174063952849773962555 741181238406281473332211110009988887776665555 7411812384091844703369528411747025581477036692551 374188123384091844773952841173062851740629551 374188123384091844773952841173062851740629551 377778883827222333333333333333333333333	2.5 2.25 2

TABLE 18
HEURISTIC DATA FOR PLATE 3

LOAD NO.	HEU STRESS	ACT STRESS	RATIO
123456789012345678901234567890123456789	62.62.70.97.85.44.19.31.45.63.41.380.05.14.4.8.35.59.4.60.16.15.29.29.45.60.70.44.8.16.39.75.14.7.68.50.73.4.67.7.64.50.30.8.37.87.49.83.35.79.74.42.10.79.73.44.2.33.35.79.74.22.10.73.44.2.77.77.77.77.77.77.77.77.77.77.77.77.7	736888088555816398850988576884444866351633816339885098857638163398850988576381633988509885763816354442602523446663577777777777888557998024666777777777777777778885888888888888888	55592904460221179323016072871891980 34529800460221179323016072871891980 2029764177558387970983622660465223277346486449735422160046522327734648644973542811 050997709836726635512446522508649883821110 099970983677666355124465225086988386280 11000233077060333345764866698888280 110003333764485516809888890 11000333376485111111111111111111111111111111111111

TABLE 19
EXPONENTIAL CURVE FIT DATA FOR TEST PLATE 3

CAT CITETITIE	031	TOR THE TEATE	-
CALCULATED	ACTUAL	RATIO	E PRIME
7483427401504701955439904x585383196151599999999999999999999999999999999	736880885581639885098036994110895696111 8447631255816398850980369941108957696111 848514641325535095241923446635444426844442684444663644657777777777777777777777777777	844368666430446442712144465517440990945622959 901.005984624748358282111446555174609009 91.005994622963885120871548140073528116256338905 99999999999999999999999999999999999	133333642.000000000000000000000000000000000000

TABLE 20

INVERSE RELATION CURVE FIT DATA FOR PLATE 3

CALCULATED ACTUAL RATIO E PRIME

909201775163196864488085344981884212469 02022017751631968644880 123656414480.131968648880326334884212469 07421456414480.1319686488803263342823652 074214656414480.1319686883233323332888888888888888888888888	736880865581639885098036594110895696111 6768862727386C118875653699803695696111 6844763125536611887565510119835885696111 68514812344260497777844260985754904384 68514640887377778442670985575813397866554 976875498640867777778888889999999999999999999999999	710 710 710 710 710 710 710 710	00000000000000000000000000000000000000

TABLE 21 DATA FOR TEST PLATE 4

RECORDED DATA

LCAD	STRAIN 1	STRAIN 2	STRAIN 3
00000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.0050000 0.00130000 0.00130000 0.00170000 0.00220000 0.00350000 0.004400000 0.004450000 0.004450000 0.004450000 0.004500000 0.005500000 0.005500000 0.005500000 0.005500000 0.005500000 0.005600000 0.005800000 0.00670000 0.00670000 0.00670000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000 0.007800000	0.00262500 0.00078750 0.00078750 0.00105050 0.00131500 0.0011837500 0.001210000 0.0022122000 0.0022800000 0.0022800000 0.0022800000 0.0022800000 0.0022800000 0.0022800000 0.0023060000 0.0023150000 0.0033150000 0.003350000 0.003350000 0.00335760000 0.00336760000 0.00336760000 0.00336760000 0.0033760000 0.0033760000 0.0033760000 0.0033760000 0.00337600000 0.00337600000 0.0033760000 0.0033760000 0.0033760000 0.0033760000 0.0033760000 0.0033760000 0.0033760000 0.0033760000 0.00337600000 0.0033760000 0.0033760000 0.0033760000 0.0033760000 0.0033760000 0.0033760000 0.0033760000 0.0033760000 0.0033760000 0.0047762500 0.0047600 0.0047600 0.

TABLE 22 DATA FOR TEST PLATE 4

CALCULATED STRESSES

LCAD NO.	STRESS 1	STRESS 2	STRESS 3
1204567890123456789012345678901234567890	60568219759843098745898046484410583980883220.080806217921763618040464844205839808833320.5211486638531122638486385311226384868567471884868567471081228776678855556666777777777777788	303944394591430987498980633446058658034 71.70.998.009459143098745990.00558658034 71.70.990.00558658034 71.70.990.0055865803 11.70.990.0055865803 11.70.990.005865803 11.70.	211953 958560965883061908640177581002328273971552922202202405300013238404832073967375 7115529222022405300013238404832073967375 6443164855722958854256671322222226632586562 8413988576548899416913725222226632586562 8110098376548899864577664210987546885 8111112222222333333333333334444444444455555555

TABLE 23 DATA FOR TEST PLATE 4

STRESSES AND STRAINS BASED ON LOAD (NOMINAL AND APPLIED)

LOAD NO.	NCM STRESS	NEM STRAIN	APP STRESS	APP STRAIN
1254567890125456789012545678901254567890	0111122223333333333444444444555555556666666666	0.000143333338449 0.000143344334461177268330 0.0002228866627566168 0.0002228866627566168 0.0002228866627566168 0.000222886662766168 0.000222886662766168 0.000222886662766168 0.00022288666276877668 0.00022288666276877668 0.00022288666276877668 0.00022288666276877668 0.00022288666276877668 0.00022288666276877668 0.000222886662768 0.000222886662768 0.000222886662768 0.000222886662768 0.000222886662768 0.000222886662768 0.000222886662768 0.000222886662768 0.00022286666776 0.00022286666778 0.00022286666778 0.00024448867718 0.0002448867718 0.0002448867718 0.000244886778 0.000244886778 0.000244886778 0.000244886778 0.000244886778 0.000244886778 0.000244886778 0.000244886778 0.000244886778 0.000244886778 0.000244886788 0.00024488678 0.00024488678 0.00024488678 0.00024488678 0.00024488678 0.00024488678 0.00024488678 0.00024488678 0.00024488678 0.00024488678 0.00024488678 0.00024488678 0.00024488678 0.00024488678 0.00024488678 0.00024488678 0.000244886788 0.00024888 0.00024888 0.00024888 0.00024888 0.00024888 0.00024888 0.00024888 0.00024888 0.00024888 0.00024888 0.00024888 0.00024888 0.00024888 0.00024888 0.00024888 0.00024888 0.0002488 0.000248888 0.00024888 0.00024888 0.00024888 0.0002488 0.00024888 0.0002488 0.00024888 0.00024888 0.00024888 0.00024888 0.0002	8531196520803581369146924792570368136 753318642077654432110988876554332100987765 75331864207035517389517728406284005177395 7531186422070258035813688146914792247002577025 811369257890123345677889765554322100987765 11169257890123345677889765555555555555555555555555555555	0.0001357301646529 0.000135730164652839 0.000135730164652839 0.000135730164652839 0.000123678991628394955170839 0.0000123367889901532242973944055170839 0.00000000000000000000000000000000000

TABLE 24
FEURISTIC DATA FOR PLATE 4

LCAD NO.	HEU STRESS	ACT STRESS	RATIO
12345.67890123456789012345678901234567890	6252307891787633130516166955684569653198 50453866805914787633130516166955684569653198 624444241875320589123638469645193441271555 4193345460956789644603846964519381459662 4938375609905873787878788788772777777777777777777777	5.54.3.1.4.6.5.3.8.6.5.4.5.4.6.5.3.3.1.4.8.0.5.6.5.4.5.4.6.6.3.3.1.4.8.0.5.6.5.4.5.4.6.6.3.3.1.4.8.0.5.6.5.4.5.4.5.4.5.7.3.3.6.6.6.5.4.5.4.5.4.5.7.3.3.3.3.4.4.6.7.3.0.5.3.3.1.4.8.0.5.6.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	1.00.00.00.00.00.00.00.00.00.00.00.00.00

TABLE 25
EXPONENTIAL CURVE FIT DATA FOR TEST PLATE 4

CALCULATED	ACTUAL	RATIO	E PRIME
4937262605689123187830464190481983985686 62952851846863572333176358609381132035 49383727166663572333176358609381232035 86532997624703581775349890712223344283949400360732335666344463394981252 112223344465555555555556666666677777777777777	654311326939722888653869805654549058148058 7774669401064778217763618070247465253488578 77746505662758811263869805654549088148058 71968305198602758112263848209692463672727167902467802357473501872737777777788 11222334444555555566666666777777777777777777	1.286.169.0747.35.65.98.98.293.80.00.20.78.1.23.6.82.29.35.21.50.80.29.35.21.67.99.05.42.23.35.21.67.99.05.42.23.35.21.67.99.99.99.99.99.99.99.99.99.99.99.99.99	00000000000000000000000000000000000000

TABLE 28 INVERSE RELATION CURVE FIT DATA FOR PLATE 4

		J., J. C.	
CALCULATED	ACTUAL	RATIO	E PRIME
48261564821875213693748556846188191098888 855320875475213693748556846188336851383 46454949886470366847036833685118 866532093838649850570383803660470621093 5117326506283949403898348125967429468118 1182726615355555566666667747777777777777777777777	6543132693972288653869805654549058148058	0.885310811 0.02533110811 0.02533110811 0.0253310811 0.02513302219865 1.02513302219865 1.02513302219865 1.02513302219865 1.02513302219865 1.02513302219865 1.02513302219865 1.02513302219865 1.02513302219865 1.02513302219865 1.02513302219865 1.02513302219865 1.02513302219865 1.02513302219865 1.02513302 1.0251302 1	33333333333333333333333333333333333333

TABLE 27
EXPONENTIAL CURVE FIT DATA

PLATE NO.	EXPONENT	CORRELATION
1 2	5.054 2.018	-36.32 -154.5
4	1.095 2.210	3.014 6.590

APPENDIX B

FINITE ELEMENT ANALYSIS DATA

TABLE 28 COMPUTER DATA FOR PLATE 1

APPLIED LCAD AND RESULTANT STRESSES (NOTCH ROOT, APPLIED, AND NOMINAL STRESSES)

LCAD NC.	LOAD (LBS)	NOTCH ROOT	NOMINAL	APPLIED
123456789012345678501234567890	481504938372616050493837261605 988752974297429742964196419 75331406173944062739506283951 1245666667133946898989999999999 122222222223333333333444444444444444444	1877666.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 6.0000 6.00000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00000 6	086533693603603603603603603603603603603603603603	1112345566778899001223334455667788 6284949494949505050505050505050505050505050

TABLE 29 COMPUTER DATA FOR PLATE 1

LCAD NO.	NOTCH ROOT	NOMI NAL	APPLIED
123456780-01234567890-1234567890	0.0017682777 0.0017235578 0.0077845528 0.007785466838 0.007785466838 0.00785466838 0.007854838 0.0011231231 0.01124681386 0.0111281 0.01124681386 0.0111781 0.01124681386 0.0111781 0.011246813 0.01124681 0.01124681 0.011704054 0.011704054 0.011704054 0.01170405 0.012326288 0.012326283 0.02236283 0.02236283 0.02236283 0.02337 0.03337 0.03337	0.001886772 0.00125157822 0.001251398921 0.00251398921 0.00251398921 0.0025139891 0.0025139891 0.0033136328449 0.00331363284499 0.00331363284499 0.0033338777 0.004412331723449412332 0.0044125744941217 0.0044777777 0.0044748911 0.00553494812 0.005577	0.00138071470.00138071470.00138071470.00138071870.00188918140.001898989740.0012124365442590.000224365442590.000224365442590.00022787090.0002787090.0003367599447314370.000338437314370.000338437314370.0004115

TABLE 30

COMPUTER DATA FOR PLATE 2

APPLIED LCAE AND RESULTANT STRESSES (NOTCH ROOT, APPLIED, AND NOMINAL STRESSES)

LCAD NO.	LOAD (LBS)	NCTCH ROOT	NOMINAL	APPLIED
123456789012345678901234567890	134630741852963074185307418529 74134630741852963074185307418529 753074073063963962952851831 753074073063963962952851831 6307654297553086319652851831 6307456788850123455678901223455 1122222222233333333333344444444	1752000000000000000000000000000000000000	9865791357913579135791357913579135791357913	628593704826028259370482602825937048260285174073962752801123407396235780235780235780133197532222222223344575333333333333333333333

TABLE 31
COMPUTER DATA FOR PLATE 2

LCAD NC.	NOTCH ROCT	NOMINAL	APPLIED
123,45678901234567890	0.01694574 0.0133957477 0.0133957574 0.00699732088 0.00699732088 0.0069975208 0.00699633594 0.006988825998 0.006988855985 0.0069885 0.0069885 0.006985 0	0.000334456 0.000278984499 0.000227898567 0.000227898567 0.00023898567 0.00023898567 0.00033123425 0.000335644523 0.000335644526 0.00033578566958 0.0003357856958 0.000447783045 0.00044789044 0.000447834 0.00044785 0.00044785 0.0004478 0.0004478 0.0004478 0.0005512456 0.000555456 0.000556 0.000556 0.000556 0.0005666 0.0005666 0.0005666 0.0005666 0.0005666 0.0005666 0.00	0.00.001493873 0.00014996613 0.0014996613 0.00149952483 0.0012014873 0

TABLE 32 COMPUTER CATA FOR PLATE 3

(NOTCH ROCT, APPLIED, AND NOMINAL STRESSES)

LEAD NC.	LOAD (LBS)	NOTCH ROOT	NOMINAL	APPLIED
12345678901234567890	00000358146925703681469257036661 00000358146925703681469257036667 7418024680246802468024680 7494887654482210092468024680 4944863074488034468024680 742235334455667888930741885299529 1223533333333333333333444444444444444444	17.11.00 34.713.000 17.12.	00000244689235791355689024689287.5556954.5579135569334486356954.5543211.3579135693344563344863344466319098.33448633333334414446636542.9099999999999999999999999999999999999	6307306306396396396396396307306306306396396396429752085364297520854826048827159371596788990112344556678899900122334456667889990112234444444444444444444444444444444444

TABLE 33
COMPUTER CATA FOR PLATE 3

LOAD NO.	NOTCH ROCT	NOMINAL	APPLIED
12345673901234567890123 4567890	0.014646 0.014646 0.014791 0.004925 0.0049827 0.0046608 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.00671665 0.0067165 0.0067165 0.006716 0.00	C.00133676 001231523445 00023152364189 0.00231523641400 0.00332968860 0.003335555523970 0.00335555523970 0.0033555552975 0.0033677503299 0.0033677503299 0.0033677503299 0.0033677503299 0.0033677503299 0.0033677503299 0.0033677503299 0.0044241468522964 0.004443435922964 0.00444770308 0.00444770308 0.00444770308 0.004448964 0.004448964 0.004448964 0.00446964 0.0046964 0.0046964 0.0046964 0.0046964 0.0046964 0.0046964 0.0046964 0.0046964 0.0046964 0.0046964 0.0046964	0.001962643 0.001962643 0.001962643 0.00196264683 0.0022686881 0.0022746741 0.00228028918 0.00228918978 0.002298918 0.002298918 0.002333417321 0.0033341732351 0.003334173451 0.003359556287 0.003377777388623 0.003377777388623 0.003377777388751 0.0033777777388751 0.0033777777388751 0.0033777777388751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.0033777777888751 0.003377777888751 0.003377777888751 0.003377777888751 0.003377777888751 0.00337778788878788787878787878887878788878787

AD-AU47 264

NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
AN INVESTIGATION OF METHODS FOR DETERMINING NOTCH ROOT STRESS F--ETC(U)
SEP 77 J C GARSKE

UNCLASSIFIED

NL

2 OF 2 ADA047264

END DATE FILMED 1 - 78

TABLE 34
COMPUTER CATA FOR PLATE 4

(NOTCH ROOT, APPLIED, AND NOMINAL STRESSES)

LCAD NO.	LOAD (LBS)	NOTCH ROOT	NOMINAL	APPL I ED
12345678901234567890	998815815815815825825825825825825825825825825825825825	17354.000 7354.000 7354.000 71534.000 71534.000 71534.000 71534.000 71534.000 71534.000 715575.000 715575.000 717732.000 71773.000 71774.000 71774.000 71775.000 71777777777777777777777777777777777	123444938393839383938393839383938393839383	87543221100988766554433211099887653251500988766554493211009887666554433211099887666554433211099887666554433211099887666556667788990001112333445566616776186990001112233344555555555555555555555555555555

TABLE 35 COMPUTER CATA FOR PLATE 4

LCAD NO.	NOTCH ROOT	NOMI NAL	APPLIED
123456789012345678901234567890	0.CC16469 0.CC32766479 0.CC32766479 0.CC32766479 0.CC36531675 0.CC366876992 0.CC3669992763 0.CC3669992763 0.CC3717768667 0.CC37777672 0.CC77767768667 0.CC77767768667 0.CC7776776886678 0.CC37776886678 0.CC37776886678 0.CC37776886678 0.CC37776886678 0.CC37776886678 0.CC377767886678 0.CC377767886678 0.CC377767886678 0.CC377767886678 0.CC377767886678 0.CC38778878446827 0.CC3971166827	C.00149998 C.002199398 C.002199398 C.002199398 C.002199398 C.00214498 C.0024498 C.00244650 C.0024650 C.0024650 C.0024650 C.0024650 C.0024650 C.0024650 C.0024650 C.0024650 C.0024650 C.0024650 C.0024650 C.0024650 C.0025	0.00106499 0.002012948 0.002012948 0.002012948 0.002402577 0.00442167177 0.004261297 0.004261297 0.004261297 0.004261297 0.004456377 0.004456377 0.0044592777 0.0044695277 0.00447428 0.0047428 0.0047428 0.0047428 0.0047428 0.0047428 0.0047428 0.0047428 0.0047428 0.0047428 0.0047428 0.0047428 0.0047428 0.0047428 0.0047428 0.0047428 0.0047428 0.0047428 0.005226 0.005226 0.005226 0.005226

LIST OF REFERENCES

- 1. Butler, C. L., <u>Software Design for a Fatigue Monitoring Acquisition System</u>, Master's Thesis, Naval Postgraduate School, Monterey, California, September 1976.
- Wetzel, R.M., "Smooth Specimen Simulation of Fatigue Behavior of Notches," <u>Journal of Materials</u>, March 1969.
- Neuber, H., "Theory of Stress Concentration for Shear Strained Prismatical Bodies with Arbitrary Nonlinear Stress-Strain Law," <u>Journal of Applied Mechanics</u>, December 1961.
- Impellizzeri, L. F., "Cumulative Damage Analysis in Structural Fatigue," <u>Effects of Environment and Complex</u> Load History on Fatigue Life, ASTM Stp 462, January 1970.
- 5. NASA Technical Note D-5253, Elastoplastic Stress-Strain
 Behavior at Notch Roots in Sheet Specimens Under ConstantAmplitude Loading, by J. A. Crews, Jr., June 1969.
- 6. Naval Research Laboratory Report 7278, Finite Element Analysis of Notched Tensile Specimens in Plane Stress, by C. A. Griffis, 30 March 1971.
- 7. Horne, M. H., An Investigation of Stress etermination for Aircraft Fatigue Life Estimation From In-Flight Strain Data, Master's Thesis, Naval Postgraduate School, Monterey, California, September 1976.
- 8. Atkinson, S.J., A Study of Spectrum Loading and Range-Pair Counting Method Effects on Cumulative Fatigue

 Damage, Master's Thesis, Naval Postgraduate School,
 Monterey, California, February 1977.
- Bathe, K.J., Wilson, E.L., and Iding, F.E., NONSAP, Structural Engineering Laboratory, University of California, Berkeley, California, February 1974.
- Bathe, K.J., <u>ADINA</u>, Acoustics and Vibration Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, September 1975.

INITIAL DISTRIBUTION LIST

	N	ο.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, VA 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, CA 93940		2
3.	Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, CA 93940		2
4.	Associate Professor G. H. Lindsey, Code 67Li Department of Aeronautics Naval Postgraduate School Monterey, CA 93940		1
5.	LT John Charles Garske, USN 2726 West Upton Spokane, WA 99205		1