语音信号降噪研究方法介绍

海狸谷 音频降噪小组 徐高鹏

- 1 传统语音降噪方法介绍
- 2 常规神经网络语音降噪介绍
- 3 GAN简介
- 4 GAN在语音增强领域的应用

传统的语音降噪算法

时域
$$y(t) = S(t) + n(t)$$
 频域
$$Y_k = S_k + N_K$$

方法		设计准则	增益函数(suppression rule)
谱减法		$ S_{\mathbf{k}} = Y_{\mathbf{k}} - N_{\mathbf{k}} $	$G_{\mathbf{k}} = \sqrt{\frac{\xi_{\mathbf{k}}}{\xi_{\mathbf{k}} + 1}}$
维纳滤波		$\arg\min_{\mathbf{w}} E\{\left \mathbf{w}^H\mathbf{y} - \mathbf{s}\right ^2\}$	$G_{\mathbf{k}} = \frac{\xi_{\mathbf{k}}}{\xi_{\mathbf{k}} + 1}$
统计模型 (最大似然, 贝叶斯, MMSE)	Log-MMSE	$\arg\min E\{\log S_k^{\wedge} - \log S_k^{2}\}$	$G_{k} = \frac{\xi_{k}}{\xi_{k} + 1} \exp\{\frac{1}{2} \int_{v_{k}}^{\infty} \frac{e^{-t}}{t} dt\}$

判决引导法
$$\xi_k = \alpha \frac{\left|S_k(t-1)\right|^2}{\lambda_d(t-1)} + (1-\alpha) \max \left[\gamma_k(t) - 1, 0\right]$$
 (历史先验SNR和当前先验SNR的加权平均)

传统的语音降噪算法

传统的语音降噪算法的实现步骤:

- 1.分帧,加窗,FFT
- 2.噪声功率谱的估计
- 3.计算对应得先验和后验SNR,利用判决引导法更新先验SNR
- 4.根据对应的增益函数计算增益值
- 5.增益值乘以带噪声的STFT,并IFFT, 得到降噪后的时域信号

基于神经网络的语音降噪算法

Ideal Binary Mask: 0 or 1

Soft Mask: $G_k = \frac{\xi_k}{\xi_{k+1}}$

Method	input	Ideal_output
分类	每个子带的特征	IBM
回归	当前帧与前后若干帧联合 的带噪语音log谱	Soft mask
回归	当前帧与前后若干帧联合 的带噪语音log谱	Clean_feature

基于神经网络的语音降噪算法

Lvan Tashev,2017 泛化能力更强

GAN简介

生成对抗网络(Generative Adversarial Network,GAN)最早由lan Goodfellow 在2014年提出,是目前深度学习领域最具潜力的研究成果之一,它的核心思想是:同时训练两个相互协作,同时又相互竞争的深度神经网络(一个为生成器,一个为判别器)目前已经在图像领域取得很大的成果,但在语音方面,目前应用较少,本次介绍两个关于GAN在语音方面的应用。

GAN简介

菜鸟画家: 生成器

菜鸟鉴赏家: 判别器

- 1.新手画家画出一幅蒙娜丽莎画作
- 2.新手鉴赏家通过和真实画作对比,进行判断。并给出反馈意见
- 3.根据鉴赏家的建议,改进工艺,进行画作,然后再给鉴赏家鉴赏
- 4.重复整个流程,画家技术越来越好,同时鉴赏家的鉴赏能力也不断提高,直到 鉴赏家再区分不出真假

基于GAN语音降噪算法

SEGAN: Speech Enhancement Generative Adversarial Network

整个网络由CNN组成。

Encoder (由步长为2的1维卷积层构成): 16384X32、8192x16、4096X32、2048X32......... 16X512、8X1024

G:Encoder-Decoder

D:结构为Encoder,接降维层,将参数降为8个

基于GAN语音降噪算法

先训练一个判别器,判别器的输入分别为纯净语音信号的经过生成器增强 后的信号

固定判别器,改变生成器参数号

基于GAN语音降噪算法

百度基于GAN的语音识别框架

Embeding distance:语义相似性

谢 谢!