中国传媒大学

2014年全国硕士研究生入学统一考试程序设计 试题

答题说明:答案一律写在答题纸上,不需抄题,标明题号即可,答在试题上无效。

<u>-</u>	、単坝选择尟 (1-20 尟,母小尟 2 分	ト, 共 40 分)
1.	若用一个大小为6的数组来实现循环	队列,且当前 rear 和 front 的值分别为 0
	和 3, 当从队列中删除一个元素, 再活	加入两个元素后,rear 和 front 的值分别
	为 ()。	
	A. 1和5	B. 2和4
	C. 4和2	D. 5和1
2.	在最好和最坏情况下的时间复杂度均为	为 0(nlogn) 且稳定的排序方法是()。
	A. 希尔排序	B. 归并排序
	C. 快速排序	D. 堆排序
3.	在常用的描述二叉排序树的存储结构	中,关键字值最大的结点()。
	A. 左指针一定为空	B. 右指针一定为空
	C. 左右指针均为空	D. 左右指针均不为空
4.	下列关于二叉树的说法中,正确的是	. ()。
	A. 含有 n 个结点的二叉树, 其高度;	为 $\log_2 n \rfloor_{+1}$
	B. 度为2的有序树就是二叉树	
	C. 完全二叉树中, 若一个结点没有;	左孩子,则它必是叶子结点
		删除某结点后又将其插入,则所得的二叉
	排序树与删除前原二叉排序树相同	/441/4·2144/4/10/10/24/4/24/24/24/24/24/24/24/24/24/24/24/2
5.		好组成的串,其行下标 i=0, 1, ···, 8, 列下标
		节。若 A 按行先存储,元素 A[8,5]的起始
	地址与当 A 按列先存储时起始地址相	
	A. A[8, 5]	B. A[3, 10]
	C. A[5, 8]	D. A[0, 9]
6 . (以下与数据的存储结构无关的术语是	()。
	A. 循环队列	B. 链表
	C. 哈希表	D. 栈
7.	元素 a、b、c、d、e 依次进入初始为空	空的栈中,若元素进栈后可停留、可出栈,

直到	所有的元素都出栈,则所有可能的出	栈序列中,以元素 d 开头的序列个数是
()。	
	A. 3	B. 4
	C. 5	D. 6
8. L	以下算法的时间复杂度是()。	
	<pre>void fun(int n) {</pre>	
	int i=1;	
	while $(i \le n)$	
	i=i*2;	
	}	
	A. O(n)	B. $0(n^2)$
	C. $0(n\log_2 n)$	$D. 0(\log_2 n)$
9	一棵度为4的树T中,有20个度为4	的结点,10个度为3的结点,1个度为2
的结	点, 10 个度为 1 的结点,则树 T 的叶	十子结点个数是()。
	A. 41	B. 82
	C. 113	D. 122
10.	用邻接表存储图时所占用的空间大小	· ()。
	A. 与图的顶点数和边数都有关	B. 只与图的边数有关
	C. 只与图的顶点数有关	D. 与图的边数的平方有关
11.	己知一个长度为 16 的顺序表,其元	素按关键字有序排列,若采用折半查找法
查找	一个不存在的元素,则比较的次数最	多是()次。
	A. 4	B. 5
	C. 6	D. 7
12.	在一棵m阶B-树中删除一个关键字台	会引起合并,则该结点原有()个关
键字	₹ ° o	
	A. 1	B. $\left\lceil \frac{m}{2} \right\rceil$
		4
	C. $\left\lceil \frac{m}{2} \right\rceil - 1$	D. $\left\lceil \frac{m}{2} \right\rceil + 1$
12	向一个带头结点 HS 的链栈中插入一	个。所指结占时,则执行操作 ()。
10.	A. $HS n \neq s$;	
	B. $s next = S$, $next$; $HS next$	_ c·
	C. $s \rightarrow next = HS$; $HS = s$;	,
	D. $s > next = HS$; $HS = HS - next$;	
	D. S / HEAU - HO, HO - HO / HEAU,	
14.	设森林F中有三棵树,第一,第二,	第三棵树的结点个数分别为 N1, N2 和 N3。

与森	k林 F 对应的二叉树根结点的右子树上	的结点个数是 ()。
	A. N1	B. N1+N2
	C. N3	D. N2+N3
15.	对关键码序列(23, 17, 72, 60, 25, 8,	68,71,52) 进行堆排序,输出两个最小关
键码	品的剩余堆是()。	
	A. (23, 72, 60, 25, 68, 71, 52)	B. (23, 25, 52, 60, 71, 72, 68)
	C. (71, 25, 23, 52, 60, 72, 68)	D. (23, 25, 68, 52, 60, 72, 71)
16.	并发进程指的是()	
	A. 可并行执行的进程	B. 可同一时刻执行的进程
	C. 可同时执行的进程	D. 不可中断的进程
17.	下列进程状态转换中,绝对不可能发	生的是()。
	A. 就绪→执行	B. 执行→就绪
	C. 就绪→阻塞	D. 阻塞→就绪
18.	在操作系统中,P、V操作是一种()。
	A. 机器指令	B. 时钟中断
	C. 作业控制命令	D. 低级进程通信原语
19.	发生了中断后,进入中断处理的程序	属于 ()。
	A. 用户程序 B. 可能	是用户程序也可能是 0S 程序
	C. OS 程序 D. 单独	的程序,既不是用户程序也不是 0S 程序
20.	死锁产生的原因之一是()。	
	A. 系统中没有采用 SP00Ling 技术	B. 使用的 P、V 操作过多
	C. 有共享资源存在	D. 资源分配不当
,	综合应用题 (21-31 题, 共 110 分)	
		1 40 25 26 36 37}。哈希派数为H(key)

- 21. (10分)对下面的关键字集{30,15,21,40,25,26,36,37},哈希函数为H(key) = key MOD 7,采用线性探测再散列方法解决冲突:
 - (1) 画出哈希表 (表长为10);
 - (2) 计算查找成功的平均查找长度。
- 22. (10 分)假设非空二叉树 bt 采用二叉链表存储,其中所有结点数据域为正整数,设计一个递归算法求其中的最大值(要求首先给出算法设计思想)。
- 23. (15分) 对于下图所示的 AOE-网,计算各事件(顶点)的 ve(vi)和 vl(vi)函数值、各活动弧的 e(ai)和 l(ai)函数值;并列出各条关键路径。

事件	1	2	3	4	5	6	7	8	9	10
最早发生时间										
最晚发生时间	:									

活动	a1	a2	a3	a4	a5	a6	a7	a8	a9	a10
最早发生时间										
最晚开始时间										
时间余量										
活动	a11	a12	a13							
最早发生时间										
最晚开始时间										
时间余量									<u> </u>	

关键路径:

关键活动:

24. (10分)已知二叉树中的结点类型用 BinTreeNode 表示,被定义为:

struct BinTreeNode{

char data;

BinTreeNode *leftChild, *rightChild;

} :

其中 data 为结点值域; leftChild 和 rightChild 分别为指向左、右孩子结点的指针域,根据下面函数声明编写出求一棵二叉树高度的算法,该高度由函数返回(要求首先给出算法设计思想)。参数 BT 初始指向这棵二叉树的根结点。

int BtreeHeight (BinTreeNode *BT);

25. (10 分) 有四个元素A、B、C、D依次进栈,任何时候都可以出栈,请写出所有不可能的出栈序列。

26. (10 分)设有两个单链表 A、B, 其中元素递增有序,编写算法将 A、B 归并成一个按元素值递减(允许有相同值)有序的链表 C, 要求用 A、B 中的原结点形成,不能重新申请结点(要求首先给出算法设计思想)。

27. (5 分) 判断序列(46,74,16,53,14,26,40,38) 是否为一个小根堆,如果不是,绘图描述由该序列构建一个小根堆的过程。

28. (10 分)如果信号量 S 的初值是 5,现在信号量的值是-5,那么系统中的相关进程至少执行了几个 P(S)操作?与信号量 S 相关的处于阻塞状态的进程有几个?如果要使信号量 S 的值大于 0,应该进行怎样的操作?

29. (10分) 什么是多线程? 多线程与多任务有什么区别?

30. (10 分)(1) 写出 P、V 操作的定义。(2) 有 3 个进程 PA、PB 和 PC 协作解决文件打印问题: PA 将文件记录从磁盘读入主存的缓冲区 1,每执行一次读一个记录; PB 将缓冲区 1 的内容复制到缓冲区 2,每执行一次复制一个记录; PC 将缓冲区 2 的内容打印出来,每执行一次打印一个记录。缓冲区的大小和一个记录的大小一样。请用 P、V 操作来保证文件的正确打印。

31. (10分) 某系统利用银行家算法进行资源分配中的死锁避免,资源的使用情况和可用情况如下表所示: (四个进程和三类资源)

进程	当前已分配资源数量 (Allocation)				需求量 (Need)		系统可用资源数量 (Available)			
(Process)	R1	R2	R3	R1	R2	R3	R1	R2	R3	
P1	2	0	0	1	2	0	1	. 1	0	
P2	1	1	0	2	0	0				
P3	1	1	0	. 0	3	1				
P3	0	1	1	0	1	0			:	

- (1) 分析目前系统状态是否安全?如安全,给出安全序列。
- (2) 若进程 P3 提出请求 Request (0, 1, 0), 系统能否将资源分配给它?如不能,为什么?如能,给出进行安全性检查找到的安全序列。