Image compression:

On-demand systems seeking minimal latency.

Optimisation techniques for mobile

Graduation work

Graphics Textures

Software Loading time

Files Compression

Web pages

Not everything is an app

Environments change

Web pages are universal

- Chrome OS
- iPhone

On-demand Systems

- Web pages
- Games
- Adverts
- Chats
- Etc.

Timing not known
Resources not known

Request > Response

Image compression

- Important
- Large
- Ubiquitous

Long loading times Visual delays

Analysis

1. Request Lag

2. Response Network latency

3. Download Network bandwidth Resource size

4. Processing Decompression time

5. Ready Buffer update time

Analysis Network

- Network speed
- File size

$$T = (size * ratio)/speed + latency$$

Analysis Network

Comparing two functions

speed < size * (ratio1 - ratio2)/(latency2 - latency1)

Analysis Decompression

- Time complexity
- Initialisation
- Error

$$latency = O(size) * factor * (1 \pm error) + base$$

Benchmark

Source • Size
| Time
Archive • Size
| Time

Soucre

Benchmark

Executables Reference implementation

Contraint Single threaded

Environment RAM disk

Script PowerShell

Derived values

Exact dataCompression ratio

• Variable data

Download time

• Theoretical data

Complexity approximation

Assumptions

Complexity
 Hard to measure correctly

> O(n)

Theoretical model
 Based on complexity

Web formats

Jpeg Not lossless

PNG Lossless

WebP "Format for the Web"

(Google. 2012)

Jpeg XL Recent JPEG format

AVIF Free HEVC (AV1) codec

Formats

Formats

General formats

```
(Deflate) LZ77 .png .gif .zip ...
Gzip .gz
```

LZMA .xz .7z

bzip2 .bz

PPMd .7z

Formats

Niche formats

Flic Alexander Rhatushnyak

Qlic (Rhatushnyak. 2010)

Qic

Kvick DCGC

EMMA (MSU Media Group. 2020)

Benchmark

7 Quick test ~5 minutes

500 Decent test ~7 hours

16000 Thorough test ~? Days

Benchmark

Complexity

Source file size Decompression time

 $latency = O(size) * factor * (1 \pm error) + base$

Model

Variable network

 $T = (size_0 * ratio)/speed + size_0 * factor + base$

All formats

Source file: 5 MB

Model

Variable size

 $T = (size_0 * ratio)/speed + size_0 * factor + base$

All formats

Network speed: 650 KB/s

Real data

Real data Network speed: 650 KB/s 1.00 WEBP JXL Ratio (%) in time v.s. raw download GZIP 0.75 0.50 0.25 0.00 0.1 100 Source file size (MB)

Ranking

Combined average

Ranking

Combined average

Effort

Effort

Compression time

Effort

Conclusion

• Jpeg XL

Best (absolute)

• WebP

Best (browser support)

• Flic

Honourable mention

Questions?