# PREDICTING CONTRIBUTORY CAUSES OF CAR ACCIDENTS IN CHICAGO

PRESENTATION BY: MAUREEN WANJERI

### Overview

Objective: Develop a predictive model to identify the primary contributory cause of car accidents in Chicago.

#### Stakeholders:

- Vehicle Safety Board:
   Interested in identifying key factors contributing to accidents.
- City of Chicago: Seeks
   data-driven strategies to
   reduce traffic accidents and
   improve public safety.

# **Business Understanding**

- Challenge: High rates of traffic accidents in Chicago leading to injuries, fatalities, and financial losses.
- Goal: Identify patterns in accident data that can inform targeted interventions to reduce accidents.
- Key Questions:
  - What are the most common causes of traffic accidents?
  - How can we predict the primary cause of an accident based on available data?

# **Data Understanding**

#### **Data Sources:**

- Traffic Crashes Crashes
- Traffic Crashes People
- Traffic Crashes Vehicles

#### **Data Description**

- Key Variables:
  - Target Variable: Injury Classification (e.g., Incapacitating Injury, Non-Incapacitating Injury)
  - Features: Vehicle Type, Weather Conditions, Traffic Control Device, etc.
- Preprocessing Steps:
  - Handling missing values
  - Merging datasets











# **Data Preparation**

**Data Cleaning:** Addressed missing values and inconsistencies to ensure data integrity.

**Feature Engineering:** Created new features to enhance model performance.

**Categorical Encoding:** Transformed categorical variables into numerical format for accurate model interpretation. **Train-Test Split:** To ensure balanced and robust training and testing datasets.



### Correlation Matrix After Dropping Features ED\_SPEED\_LIMIT -1.00 0.020.040.060.080.010.030.060.040.06 0.020.010.010.040.020.030.030.040.000.05

- 1.0

| ED_SI EED_EIIIII |                                                                                                 |                                                                                                          |       |
|------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------|
| _                | 0.0 <mark>2<mark>1.00</mark>0.000.010.020.010.010.010.010.03</mark>                             | 0.010.010.000.040.010.030.010.040.000.02                                                                 |       |
| )F_OCCURRENCE    | 0.040.00 <mark>1.00</mark> 0.010.050.010.020.040.020.02                                         | 0.000,000,000,000,010,000,010,000,010,03                                                                 |       |
| _                | -0.060.010.01 <mark>1.00</mark> 0.22 <mark>0.050.110.170.10</mark> 0.16                         | -0.010.000.010.040.030.05 <mark>0.46</mark> 0.040.000.06                                                 | - 0.8 |
| INJURIES_TOTAL   | -0.080.02-0.0 <mark>50.22<mark>1.00</mark>0.12<mark>0.35</mark>0.79<mark>0.56</mark>0.11</mark> | 0.000.000.010.040.050.060.100.040.00 <mark>0.15</mark>                                                   |       |
| INJURIES_FATAL   | -0 010 01-0 010 05 <mark>0 12<mark>1 00</mark>0 070 050 020 02</mark>                           | -0.000.000.000.010.000.010.020.000.000.01                                                                |       |
| INCAPACITATING   | -0.030.01-0.020.11 <mark>0.35</mark> 0.07 <mark>1.00</mark> 0.090.020.05                        | -0.000.000.010.000.010.020.050.000.000.04                                                                |       |
| INCAPACITATING   | -0.060.01-0.04 <mark>0.170.79</mark> 0.050.09 <mark>1.00</mark> 0.020.09                        | 0.000.000.010.040.050.050.080.040.000.11                                                                 | - 0.6 |
| D_NOT_EVIDENT    | -0.040.01-0.020.10 <mark>0.56</mark> 0.020.020.02 <mark>1.00</mark> 0.05                        | 0.010.000.000.020.030.020.050.020.000.10                                                                 |       |
| _NO_INDICATION   | -0.060.030.02 <mark>0.16</mark> 0.110.020.050.090.05 <mark>1.00</mark>                          | 0.050.010.000.020.110.030.07-0.020.00 <mark>0.61</mark>                                                  |       |
| RIES_UNKNOWN     |                                                                                                 |                                                                                                          |       |
| CRASH_HOUR       | 0.020.010.000.010.000.000.000.000.010.05                                                        | 1.00 <mark>0.07</mark> 0.010.000.020.010.000.000.000.03                                                  | - 0.4 |
| 1_DAY_OF_WEEK    | 0.010.010.000.000.000.000.000.000.000.0                                                         | 0.07 <mark>1.00</mark> 0.010.000.000.000.000.000.000.00                                                  |       |
| CRASH_MONTH      | 0.010.000.000.010.010.000.010.010.000.00                                                        | 0.010.0 <mark>11.00</mark> 0.030.000.030.000.030.000.00                                                  |       |
| VEHICLE_ID_x     | 0.040.040.000.040.040.010.000.040.020.02                                                        | 0.000.000.0 <mark>31.00-</mark> 0.0 <mark>10.98</mark> 0.02 <mark>0.98</mark> 0.000.01                   | 0.3   |
| AGE              | 0.020.010.010.030.050.000.010.050.030.11                                                        | -0.020.000.000.01 <mark>1.00-</mark> 0.010.010.010.000.09                                                | - 0.2 |
| CRASH_UNIT_ID    | 0.030.03-0.000.050.060.010.020.050.020.03                                                       | 0.010.000.03 <mark>0.98</mark> 0.01 <mark>1.00</mark> 0.02 <mark>0.98</mark> 0.000.02                    |       |
| UNIT_NO          | -0.030.010.01 <mark>0.46</mark> 0.100.020.050.080.050.07                                        | -0.000.000.000.020.010.02 <mark>1.00</mark> 0.010.010.03                                                 |       |
| VEHICLE_ID_y     | 0.040.040.000.040.040.000.000.040.020.02                                                        | 0.000.000.03 <mark>0.98</mark> 0.01 <mark>0.98</mark> 0.01                                               | - 0.0 |
| VEHICLE_YEAR     | 0.000.000.010.000.000.00-0.000.000.000.0                                                        | 0.000.000.000.000.000.000.010.00 <mark>1.00-</mark> 0.00                                                 |       |
| OCCUPANT_CNT     | 0.050.020.030.06 <mark>0.15</mark> 0.010.040.110.10 <mark>0.61</mark>                           | 0.030.000.000.010.090.020.030.010.001.00                                                                 |       |
|                  | AIT - VO - CE - CE - CE - TS - TS - VG - V                        | DUR - FEEK - NTH - NTH - NTH - T_ID - T_ID - ND - T_ID - CNT -                                           |       |
|                  | STREET_NO SCURRENCE NUM_UNITS RIES_TOTAL RRIES_FATAL RACITATING PACITATING DT_EVIDENT           | LUNKNOWN ASH_HOUR SY_OF_WEEK SH_MONTH HICLE_ID_X AGE SH_UNIT_ID UNIT_NO HICLE_ID_Y HICLE_ID_Y HICLE_YEAR |       |
|                  | PEEC<br>CUR<br>VUM<br>VUM<br>VIES<br>VACI<br>PACI<br>PACI<br>PACI<br>ONDIC                      | ASH                                                                  |       |
|                  |                                                                                                 |                                                                                                          |       |

### **Modelling**

#### **Decision Tree Baseline Model**

- Developed a basic model using a Decision Tree to predict the main cause of car accidents in Chicago.
- Model Performance:
  - Prediction Accuracy: The model was able to accurately predict most cases where there was no indication of injury, as seen in the confusion matrix.
- Model Quality: The ROC curve, which measures the model's ability to differentiate between classes, showed a strong performance with a score of 0.91.
- Challenges Encountered
  - Memory Constraints:
    - While trying to improve the model and test other types like Logistic Regression, we faced significant memory limitations.
    - These limitations meant we couldn't run more complex models or tune the existing model further.
- Impact on Project:
  - Due to these technical challenges, we were only able to present results from the baseline Decision Tree model without further refinements or additional models.
- Conclusion
  - Despite the challenges, the baseline Decision Tree model provided valuable insights, but further work is needed with more robust resources to refine and expand the analysis.





#### **Recommendations**

- Focus on improving intersection safety, as many accidents are associated with "TRAFFIC SIGNAL" as a primary cause.
- Increase awareness and enforcement of traffic laws in areas with frequent "NONINCAPACITATING INJURY" accidents.
- Deploy targeted interventions during peak hours and under specific weather conditions identified as high-risk.

## **Next Steps**

Implement the model in a real-time system for predicting accident causes.



Consider additional features like traffic density and real-time traffic data.

Regularly update the model with new data to maintain accuracy.







