

We claim:

- 1 1. A process for the production of atorvastatin calcium in amorphous form comprising:
 - 3 a) reacting a solution of (*4R*-*cis*)-1,1-dimethylethyl-6-{2-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)-carbonyl]-1*H*-pyrrol-1yl]ethyl}-2,2-dimethyl-1,3-dioxane-4-acetate (Compound H) in a water-miscible solvent with an acid to obtain [*R*-(*R*^{*},*R*^{*})]-1,1-dimethylethyl-2-(4-fluorophenyl)- β , δ -dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino) carbonyl]-1*H*-pyrrole-1-heptanoate (Compound I);
 - 9 b) treating Compound I with an alkali metal hydroxide to obtain an alkali metal salt of atorvastatin;
 - 11 c) washing the solution of alkali metal salt of atorvastatin with a solvent immiscible or slightly miscible in water;
 - 13 d) treating the washed solution of alkali metal salt of atorvastatin with a calcium salt or calcium hydroxide to obtain atorvastatin calcium;
 - 15 e) isolating crude atorvastatin calcium;
 - 16 f) purifying crude atorvastatin calcium by dissolving in a mixture of tetrahydrofuran and methanol, and precipitating with water to obtain pure atorvastatin calcium in crystalline form; and
 - 19 g) converting crystalline pure atorvastatin calcium so obtained into amorphous form.
- 1 2. A process for purifying atorvastatin calcium comprising dissolving crude atorvastatin calcium in a mixture of tetrahydrofuran and methanol, and precipitating with water to obtain pure atorvastatin calcium in crystalline form.
- 1 3. The process of claim 2, wherein the acid used is an inorganic acid.

- 1 4. The process of claim 3, wherein the acid is selected from the group consisting of
2 hydrochloric, hydrobromic, sulphuric, phosphoric and nitric acids.
- 1 5. The process of claim 1, wherein the water-miscible solvent is selected from the
2 group consisting of acetonitrile, alcohols, cyclic ethers, ketones and mixtures
3 thereof.
- 1 6. The process of claim 5, wherein alcohols are selected from the group consisting of
2 methanol, ethanol, propanol, and isopropanol.
- 1 7. The process of claim 1, wherein the reaction of step b) is carried out at a pH of
2 about 12.
- 1 8. The process of claim 1, wherein the alkali metal hydroxide is selected from the
2 group consisting of sodium hydroxide, potassium hydroxide and lithium
3 hydroxide.
- 1 9. The process of claim 1, wherein the solvent immiscible or slightly miscible in
2 water is selected from the group consisting of ethers, esters, and hydrocarbons.
- 1 10. The process of claim 9, wherein ethers are selected from the group consisting of
2 methyl tertiary butyl ether, diethyl ether, methyl ethyl ether and dibutyl ether.
- 1 11. The process of claim 1, wherein the pH of the solution of step c) is lowered to
2 about 7.8 to 8.2 with an acid before proceeding with step d).
- 1 12. The process of claim 1, wherein step d) is performed at a temperature of about 45
2 to 55 °C.
- 1 13. The process of claim 1, wherein the calcium salt is selected from the group
2 consisting of calcium acetate, calcium chloride, calcium sulfate, calcium nitrate
3 and calcium phosphate.
- 1 14. The process of claim 1, wherein any residual solvent immiscible or slightly
2 miscible in water remaining in the reaction mixture is removed after step d) is
3 removed under reduced pressure.
- 1 15. The process of claim 1, wherein crude atorvastatin calcium is precipitated by
2 addition of water.

- 1 16. The process of claim 15, wherein water is added at a temperature of about 55 to
2 65°C.
- 1 17. The process of claim 1, 15 or 16, wherein seeds of crystalline atorvastatin calcium
2 are added to the reaction mixture.
- 1 18. The process of claim 1, or 15 to 17, wherein crude atorvastatin calcium is isolated
2 by cooling the reaction mixture to a temperature of about 20 to 35 °C.
- 1 19. The process of claim 1 or 2, wherein tetrahydrofuran, methanol and water are in
2 the volume ratio 1:1:4.
- 1 20. The process of claim 1, 2 or 19, wherein water is added at a temperature of about
2 60 to 65 °C.
- 1 21. The process of claims 1, 2, 19 or 20, wherein seeds of crystalline atorvastatin
2 calcium are added to facilitate the precipitation.
- 1 22. The process of claim 21, wherein seeds of crystalline atorvastatin calcium are
2 added at a temperature of about 50 °C.
- 1 23. The process of claims 1, or 19 to 22, wherein pure atorvastatin calcium is isolated
2 by cooling the mixture to a temperature of about 30 to 35 °C.
- 1 24. The process of claim 1, which comprises an additional step wherein the pure
2 crystalline atorvastatin calcium obtained after step f) is suspended in a mixture of
3 methanol and water in the volume ratio 1 to 5 and stirred with seed crystals of
4 crystalline form I, to obtain atorvastatin calcium in crystalline form I.
- 1 25. The process of claim 24, wherein the stirring is performed at a temperature of
2 about 30 to 45°C.
- 1 26. The process of claim 1, which comprises an additional step wherein the pure
2 crystalline atorvastatin calcium obtained after step f) is suspended in 15 to 25
3 volumes (w.r.t weight of atorvastatin calcium) of a mixture of methanol and water
4 in the volume ratio 3 to 2 and stirred with seed crystals of crystalline form II, to
5 obtain atorvastatin calcium in crystalline form II.

- 1 27. The process of claim 24, which comprises a further additional step wherein the
2 obtained crystalline form I of atorvastatin calcium is suspended in 15 to 25
3 volumes (w.r.t weight of atorvastatin calcium) of a mixture of methanol and water
4 in the volume ratio 3 to 2 and stirred with seed crystals of crystalline form II, to
5 obtain atorvastatin calcium in crystalline form II.
- 1 28. The process of claim 26 or 27, wherein the stirring is performed at a temperature of
2 about 10 to 65 °C.
- 1 29. The process of claim 1, wherein amorphous atorvastatin calcium is obtained by
2 dissolving pure crystalline atorvastatin calcium in tetrahydrofuran and adding the
3 resulting solution to cyclohexane.
- 1 30. The process of claim 29, wherein water is added to tetrahydrofuran to dissolve
2 pure crystalline atorvastatin calcium.
- 1 31. A process for the production of stabilized, amorphous atorvastatin calcium
2 comprising:
 - 3 a) dissolving crystalline atorvastatin calcium and an antioxidant in a solvent;
 - 4 b) adding the atorvastatin calcium and antioxidant solution to an antisolvent;
5 and
 - 6 c) separating precipitated, amorphous atorvastatin calcium from the resulting
7 suspension to obtain stabilized, amorphous atorvastatin calcium.
- 1 32. A process for the production of atorvastatin calcium in amorphous form
2 comprising:
 - 3 a) dissolving crystalline atorvastatin calcium in a hydroxylic solvent;
 - 4 b) adding the obtained solution of atorvastatin calcium to a non-hydroxylic
5 anti-solvent, wherein the non-hydroxylic anti-solvent has a higher boiling
6 point than the hydroxylic solvent;
 - 7 c) concentrating the solution so obtained to remove the hydroxylic solvent;
8 and
 - 9 d) separating precipitated amorphous atorvastatin calcium from the resulting
10 suspension to obtain amorphous atorvastatin calcium.

- 1 33. The process of claim 32, wherein an antioxidant is added to the solution of
2 atorvastatin calcium in hydroxylic solvent.
- 1 34. The process of claim 31 or 33, wherein the antioxidant is selected from the group
2 consisting of butylated hydroxyanisole, butylated hydroxytoluene and tertiary-
3 butylated hydroquinone.
- 1 35. The process of claim 1, wherein the conversion to amorphous form is achieved
2 according to the process of claim 31, 32 or 33.
- 1 36. The process of claim 30 to 33, wherein the solution of atorvastatin calcium is dried
2 before precipitation of amorphous atorvastatin calcium.
- 1 37. The process of claim 36, wherein the solution is filtered through dry molecular
2 sieves.
- 1 38. The process of claim 36, wherein the solution is made using excess of solvent,
2 which is then concentrated to achieve drying.
- 1 39. The process of claim 31, wherein the solvent is selected from the group consisting
2 of ketones, esters, chlorinated hydrocarbons, cyclic ethers, alcohols, nitriles,
3 dipolar aprotic solvents, and mixtures thereof with water.
- 1 40. The process of claim 39, wherein the cyclic ethers are selected from the group
2 consisting of dioxan, tetrahydrofuran, and mixtures thereof.
- 1 41. The process of claim 31, wherein the anti-solvent is selected from the group
2 consisting of hydrocarbons and dialkyl ethers.
- 1 42. The process of claim 32, wherein the hydroxylic solvent is selected from the group
2 consisting of alcohols, and mixtures thereof with water.
- 1 43. The process of claim 39 or 42, wherein alcohols are selected from the group
2 consisting of methanol, ethanol, propanol, and isopropanol.
- 1 44. The process of claim 32, wherein the non-hydroxylic anti-solvent is selected from
2 the group consisting of hydrocarbons and dialkyl ethers.
- 1 45. The process of claim 41 or 44, wherein the hydrocarbons are selected from the
2 group consisting of cyclohexane, hexane, heptane, petroleum ethers, toluene, and
3 xylene.

1 46. The process of claim 1, wherein (*4R-cis*)-1,1-dimethylethyl-6-{2-[2-(4-
2 fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)-carbonyl]-1*H*-pyrrol-
3 1yl]ethyl}-2,2-dimethyl-1,3-dioxane-4-acetate (Compound H) is obtained by
4 a) treating (*R*)-ethyl 4-cyano-3-hydroxybutanoate (Compound A) with 1,1-
5 dimethylethylacetate (Compound B), in the presence of n-butyl lithium and
6 diisopropyl amine to obtain (*R*)-1,1-dimethylethyl-6-cyano-5-hydroxy-3-
7 oxohexanoate (Compound C),
8 b) treating Compound C with diethyl methoxyborane and sodium borohydride
9 to obtain [*R*-(*R*^{*},*R*^{*})]-1,1-dimethylethyl-6-cyano-3,5-dihydroxyhexanoate
10 (Compound D),
11 c) treating Compound D with 2,2-dimethoxy propane and methanesulfonic
12 acid to obtain (*4R-cis*)-1,1-dimethylethyl-[6-cyanomethyl-2,2-dimethyl-1,3-
13 dioxan]-4-acetate (Compound E),
14 d) treating Compound E under reducing conditions to obtain (*4R-cis*)-1,1-
15 dimethylethyl-[6-(2-aminoethyl)-2,2-dimethyl-1,3-dioxan-4-yl] acetate
16 (Compound F), and
17 e) condensing Compound F with (\pm)-4-fluoro- α -(2-methyl-1-oxopropyl)- γ -
18 oxo-*N*, β -diphenylbenzenebutaneamide (Compound G) to obtain (*4R-cis*)-1,1-
19 dimethylethyl-6-{2-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-
20 (phenylamino)carbonyl]-1*H*-pyrrol-1yl]ethyl}-2,2-dimethyl-1,3-dioxane-4-acetate
21 (Compound H).
1 47. A process for the production of atorvastatin calcium in amorphous form, as herein
2 described and exemplified by the examples.