

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E APLICADAS JOÃO MONLEVADE

João Marcos Torres Gardingo - 17.1.8102

Lista VI

CSI693 – Avaliação de Desempenho de Sistemas Professor: Alexandre Magno de Sousa

> JOÃO MONLEVADE/MG 9 de Fevereiro de 2023

a) As informações abaixo foram obtidas através de uma amostra "sample"dos dados originais, devido ao grande tamanho do arquivo original, 15500 linhas do arquivo .csv foram utilizadas para amostragem, representando 5% dos dados originais

	DURATION	SEND	RECEIVE
Contagem	15500.0000	15500.0000	15500.0000
Média	13.5380	18.1071	47.8745
Desvio Padrão	29.7168	127.7313	196.7760
Mediana	14.0016	14.4153	44.0664
Variância	49006676.0398	134376525.0735	180096570.1206
Coeficiente de Variação	2.1951	7.0542	4.1103
1° quartil	3.7164	0.8879	4.5694
2° quartil	7.6796	3.0625	13.5001
3° quartil	14.4651	10.7235	40.2584
\min	0.0689	0.0007	0.0250
max	2558.6003	11337.2172	14382.4323
Range	2558.5315	11337.2165	14382.4073
Soma	20702.5132	38356.4163	44616.0197

Tabela 1: Informações das features - 15500 amostras (5%)

b) • Histogramas

Figura 1: Duration - Histograma

Figura 2: Send - Histograma

Figura 3: Receive - Histograma

• Boxplot

Figura 4: Duration - Boxplot

Figura 5: Send - Boxplot

Figura 6: Receive - Boxplot

• Cumulative Distribution Function (CDF)

Figura 7: Duration - CDF

Figura 8: Send - CDF

Figura 9: Receive - CDF

• Dispersão

Figura 10: Duration x Send - Dispersão

Figura 11: Duration x Receive - Dispersão

Figura 12: Send x Receive - Dispersão

c) Foi realizada uma análise nos dados com objetivo de determinar a necessidade ou não de transformação nos mesmos. Nesse caso, seguindo os passos da seção 15.4 do livro The Art of Computer Systems Performance Analysis, de Raj Rain, encontrei uma fórmula que se encaixava no nosso problema, onde temos uma grande base de dados. Para determinar a necessidade de transformação dos dados, foi encontrada a razão entre o maior e o menor valor de cada *feature*, então, como sugerido, foi realizada uma transformação logarítimica, pois a grandeza dessa razão foi muito alta, justificando essa ação, como pode ser visto abaixo:

	DURATION	SEND	RECEIVE
y_{max}	2558.6003	11337.2172	14382.4323
y_{min}	0.0689	0.0007	0.0250
Razão	37145.4115	15763783.4019	575880.0157

Tabela 2: Razão entre os valores y_{min} e y_{max} das features

Após realizada a transformação logarítmica (logaritmo natural, restringido em valores > 0), obtivemos novos gráficos:

• Histogramas

Figura 13: Duration - Histograma

Figura 14: Send - Histograma

Figura 15: Receive - Histograma

• Boxplot

Figura 16: Duration - Boxplot

Figura 17: Send - Boxplot

Figura 18: Receive - Boxplot

• Cumulative Distribution Function (CDF)

Figura 19: Duration - CDF

Figura 20: Send - CDF

Figura 21: Receive - CDF

• Dispersão

Figura 22: Duration x Send - Dispersão

Figura 23: Duration x Receive - Dispersão

Figura 24: Send x Receive - Dispersão

Como pode ser observado, a introdução da transformação facilitou o entendimento de alguns gráficos, como o caso do bloxpot, onde podemos observar melhor a informação sem a necessidade de omitir os *outliers*.

- d) Confesso que tive bastante dúvidas com relação à remoção dos *outliers* ou parte deles, contudo, como estamos lidando com dados coletados por uma fonte confiável, isso nos sugere que esses outliers não são erros de medição (o que poderia ser removido) mas sim informações reais e sobre o tráfego dos usuários, como não tive certeza nessa etapa, optei por não remover os *outliers* por não conseguir mensurar de forma concreta o impacto dessa remoção no processo de caracterização.
- e) Conforme estudado em sala de aula, o cálculo do PCA foi feito utilizando funções da biblioteca *sklearn*, inicialmente, foi definido o número de componentes que o PCA teria, correspondendo ao número das *features* presentes (DURATION, SEND, RECEIVE).

Inicialmente, o seguinte trecho de código foi executado nos dados transformados:

```
df = df_transformed
pca = PCA(n_components=3)

X=df[['DURATION','SEND','RECEIVE']].values
pca.fit(X)

X_pca = pca.transform(X)
// pca.explained_variance_ratio == [0.44, 0.37, 0.19]
```


Figura 25: Componentes PCA x Taxa de Variância Explicada

Figura 26: Correlação entre os componentes PC1 e PC2

- f) Com base no gráfico dos componentes do PCA com relação a taxa de variância explicada é possível observar que a soma cumulativa dos 3 componentes é necessária para superar 85%, além disso é possível ver que para os dados transformados, a correlação entre os componentes PC1 e PC2 (os que possuem significancia maior no contexto da taxa de variância explicada) não nos diz tanta coisa, pois a faixa de grandeza dos dois componentes é praticamente a mesma.
- g) Em seguida, foi executado o algoritmo *KMeans*, onde primeiramente descobrimos o valor de clusters ideais e, em seguida, utilizamos esse valor para finalizar a clusterização, como pode ser visto abaixo:

```
1 lsilhouette = []
2 lknumber = range(2, 19)
3
4 for k in lknumber:
5     np.random.seed(int(time.time()))
6     rand_number = np.random.randint(2**11)
7     kmeans = KMeans(n_clusters=k, random_state= rand_number)
```

Resultando em:

```
Rand number = 277, K = 2: 0.28
Rand number = 618, K = 3: 0.30
Rand number = 1859, K = 4: 0.25
Rand number = 1040, K = 5: 0.25
Rand number = 1097, K = 6: 0.24
Rand number = 124, K = 7: 0.24
Rand number = 1176, K = 8: 0.24
Rand number = 928, K = 9: 0.23
Rand number = 640, K = 10: 0.23
Rand number = 1988, K = 11: 0.23
Rand number = 825, K = 12: 0.23
Rand number = 1010, K = 13: 0.23
Rand number = 1148, K = 14: 0.22
Rand number = 822, K = 15: 0.23
Rand number = 2010, K = 16: 0.23
Rand number = 1187, K = 17: 0.23
Rand number = 1890, K = 18: 0.23
```

Assim, podemos observar que o valor K=3 é onde o índice de Silhouette se estabiliza.

Figura 27: Índice de Silhouette - KMeans

h) Dados dos Clusters:

• Cluster 0

	DURATION	SEND	RECEIVE
Contagem	6640.0000	6640.0000	6640.0000
Média	2.1306	1.0262	1.7874
Desvio Padrão	0.9419	0.6726	0.7792
Mediana	2.1206	0.9838	1.8162
Variância	6699171.4368	6689738.7082	6693695.5634
Coeficiente de Variação	0.4421	0.6554	0.4359
1° quartil	1.4321	0.4369	1.1915
2° quartil	2.1105	0.9413	1.8449
3° quartil	2.7239	1.5504	2.4423
\min	0.0733	0.0050	0.0352
max	5.7827	2.7597	3.1962
Range	5.7094	2.7546	3.1610
Soma	6663.4671	6651.7859	6656.6898

Tabela 3: Cluster 0

• Cluster 1

	DURATION	SEND	RECEIVE
Contagem	5100.0000	5100.0000	5100.0000
Média	2.2604	1.2622	4.2801
Desvio Padrão	0.9134	0.8598	0.9057
Mediana	2.2399	1.2056	4.1973
Variância	3956717.1263	3951414.2617	3965773.2743
Coeficiente de Variação	0.4041	0.6812	0.2116
1° quartil	1.6641	0.5525	3.5756
2° quartil	2.2194	1.1490	4.1145
3° quartil	2.7849	1.8456	4.8025
min	0.0945	0.0057	2.9342
max	6.5028	4.7008	8.9727
Range	6.4083	4.6952	6.0385
Soma	5125.4919	5116.9576	5140.0327

Tabela 4: Cluster 1

• Cluster 2

	DURATION	SEND	RECEIVE
Contagem	3760.0000	3760.0000	3760.0000
Média	2.1926	3.4760	2.5402
Desvio Padrão	0.9365	0.9445	1.0895
Mediana	2.1728	3.3844	2.5422
Variância	2155039.5141	2158217.5154	2154788.7753
Coeficiente de Variação	0.4271	0.2717	0.4289
1° quartil	1.5335	2.7802	1.7718
2° quartil	2.1530	3.2928	2.5442
3° quartil	2.7259	3.9518	3.2550
min	0.0915	2.0257	0.0469
max	8.0993	8.5742	6.8139
Range	8.0078	6.5484	6.7670
Soma	3788.3400	3795.2497	3787.7995

Tabela 5: Cluster 2

Figura 28: Clusters e Centróides

- i) Eu tive dificuldades de rotular os clusters, o que pude observar é que as sessões dos usuários de todos os Clusters costumam ter aproximadamente o mesmo tempo, porém os usuários no Cluster 1 enviam mais que o dobro de dados em comparação aos outros clusters. Podemos dizer que os usuários do Cluster 1 tem mais demanda de upload, uma espécie de *Heavy User*, já os outros são usuários comuns.
- j) Já acabei respondendo no item anterior.

1 Link para os códigos:

https://github.com/joaomarcostg/ADS/blob/main/listaVI.ipynb