# Problem Sheet 6 for the Tutorial, November 3. (Partial Derivatives.)

## **Problem 1.** Find equations for the

- (a) tangent plane and
- (b) normal line at the point  $P_0(0,0,1)$  on the given surface defined by  $ye^x ze^{y^2} = z$ .

**Problem 2.** Find the linearization L(x,y) of the function  $f(x,y)=x^2-3xy+5$  at  $P_0(2,1)$ . Then find an upper bound for the magnitude |E| of the error in the approximation  $f(x,y)\cong L(x,y)$  over the rectangle  $R:|x-2|\leq 0.1,\ |y-1|\leq 0.1.$ 

**Problem 3.** Find the absolute maxima and minima of the function  $T(x,y) = x^2 + xy + y^2 - 6x + 2$  on the rectangular plate  $0 \le x \le 5$ ,  $-3 \le y \le 0$ .

**Problem 4.** A rectangular box is inscribed in the region in the first octant bounded above by the plane with x-intercept 6, y-intercept 6, and z-intercept 6.



- a) Find an equation for the plane.
- b) Find the dimensions of the box of maximum volume.

# **Problem 5.** Use the method of Lagrange multipliers to find

- a) Minimum on a hyperbola: The minimum value of x + y, subject to the constraints xy = 16, x > 0, y > 0.
- b) Maximum on a line: The maximum value of xy, subject to the constraint x+y=16. Comment on the geometry of each solution.