

① Veröffentlichungsnummer: 0 672 731 A1

EUROPÄISCHE PATENTANMELDUNG (12)

(51) Int. Cl.6: C09C 1/30 (21) Anmeldenummer: 94118099.4

22 Anmeldetag: 17.11.94

30 Priorität: 27.01.94 DE 4402370

43 Veröffentlichungstag der Anmeldung: 20.09.95 Patentblatt 95/38

84 Benannte Vertragsstaaten:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC **NL PT SE**

71) Anmelder: Degussa Aktiengesellschaft Weissfrauenstrasse 9 D-60311 Frankfurt (DE)

2 Erfinder: Ettlinger, Manfred, Dr.

Stifterstrasse 22 D-63791 Karlstein (DE) Erfinder: Kerner, Dieter, Dr. Am Hexenpafad 21 D-63450 Hanau (DE)

Erfinder: Meyer, Jürgen, Dr.

Thomaring 6

D-79618 Rheinfelden (DE)

54) Silanisierte Kieselsäuren.

🗊 Die silanisierte, pyrogen hergestellte Kieselsäuren werden hergestellt, indem man pyrogen hergestellte Kieselsäuren mit einem Organosilan aus der Gruppe (RO)₃SiC_nH_{2n+1}, wobei n = 10 bis 18 und R = Alkyl bedeuten, behandelt.

Die Erfindung betrifft silanisierte Kieselsäuren, das Verfahren zu ihrer Herstellung sowie ihre Verwendung als Verdickungsmittel.

Es ist bekannt, eine silanisierte, pyrogen hergestellte Kieselsäure herzustellen, indem man die pyrogen hergestellte Kieselsäure mit Dimethyldichlorsilan behandelt (DE-AS 11 63 784).

Weiterhin sind pyrogen hergestellte Kieselsäuren bekannt, die an der Oberfläche chemisch gebundene -SiC₈H₁₇-Gruppen, Trimethylsilylgruppen oder Polydimethylsiloxangruppen tragen (Schriftenreihe Pigmente Nr. 11, Seite 15, Ausgabe August 1991).

Gegenstand der Erfindung sind silanisierte, pyrogen hergestellte Kieselsäuren, welche dadurch gekennzeichnet sind, daß die pyrogen hergestellten Kieselsäuren mit einer Verbindung aus der Gruppe (RO)- $_3$ SiC_nH_{2n+1}, wobei n = 10 bis 18 und R = Alkyl-, wie zum Beispiel Methyl-, Ethyl- oder ähnliches bedeuten, behandelt sind.

Als pyrogen hergestellte Kieselsäure kann eine auf hochtemperaturhydrolytischem Wege aus SiCl $_4$ + H_2 und O_2 hergestellte Kieselsäure verwendet werden.

Insbesondere kann eine temperaturhydrolytisch hergestellte Kieselsäure eingesetzt werden, die die folgenden physikalisch-chemischen Kenndaten aufweist:

5	AEROSIL	009 I.I.		+ 50	404			ca. 60	1			< 2,5		< 2,5		3,6-4,5		> 99,8	< 0,05	< 0,003	< 0,03	< 0,025	< 0,05				stanz	3nz	
10	AEROSIL	0x 20		71 + 75	40			ca. 130	ı			< 1,5		< 1	•	3,8-4,8		8,66 <	80,	< 0,01	< 0,03	< 0,025				K 5101/20	°C getrocknete Substanz	°C geglühte Substanz	ustes
45	AEROSIL	380		380 + 30	1			ca. 50	ca. 120			< 1,5		< 2,5		3,6-4,3		8,66 <	< 0,05	< 0,003	< 0,03	< 0,025	< 0,05			in Anlehnung an DIN ISO 787/XVIII, JIS K 5101/20	bei 105 °C ge	Stunden bei 1000 °C g	HCI-Genait 1st Bestandtell des Glühverlustes
15	AEROSIL	300	, 0	Ι'	1 -			ca. 50	ca. 120			< 1,5		< 2		3,6-4,3		8,66 <	< 0,05	< 0,003	< 0,03	< 0,025	< 0,05			an DIN ISO 78	7	ie 2 Stunden † Bootsandteil	t Bestandtell
20	AEROSIL	200	Table and the Control of the Control	200 + 25	12			ca. 50	ca. 120			< 1,5		< 1 < 1	-	3,6-4,3	•	8'66 <	< 0,05	< 0,003	< 0,03	< 0,025	< 0,05			in Anlehnung	bezogen auf die	bezogen auf die	HCI-Genair is
25	AEROSIL	100		150 + 15	14			ca. 50	ca. 120			< 0,5 9)		< 1		3,6-4,3		8'66 <	< 0,05	< 0,003	< 0,03		< 0,05			(9	7 }	8 6	
30	AEROSIL	T 2 C		130 + 25	16			ca. 50	ca. 120			< 1,5		< 1		3,6-4,3		8'66 <	< 0,05	< 0,003	< 0,03	< 0,025	< 0,05				t gesiebt)	101/21	/23 5101/24
35	AEROSIL	0		90 + 15	2			ca. 80	1			< 1,0		< 1		3,6-4,5		8'66 <	< 0,05	< 0,003	< 0,03	< 0,025	< 0,05				5101/18 (nich	DIN ISO 787/II, ASTM D 280, JIS K 5101/21 DIN E6 921 BSTM D 1208 JIS K 5101/23	1208, JIS K 5101
40		Wasser		m ² / cr	. 1			9/1	g/1			e (ن	erwerkes	æ	_			8	æ	8	8	8	æ				87/XI, JIS K	DIN ISO 787/II, ASTM D 280,	87/IX, ASTM D
45		ew redinapan		nach BET 1)	röße der	hen	:e ²)	lare	te Ware	(_ ^	_	Stunden bei 1000 °C	en des Lief	Glühverlust 4)7) 8	bei 1000 °C)	(in 4 %iger	spersion)						nd 6)	r, 45 µm)	-	g an DIN 66131	g an DIN ISO 7		in Antennung an Din 35 921, Abim D 1200, U.S.N. 5101/23 in Anlehnung an Din ISO 787/IX, ASTM D 1208, JIS K 5101/24
	Tabelle 1	Verhelten		Oberfläche nach BET	Mittlere Größe	Primärteilchen	Stampfdichte	normale Ware	verdichtete Ware	(Susacz V		(2 Stunden	bei Verlass	Glühverlust	(2 Stunden bei 1000	pH-Wert 5) (in 4 %iger	wäßriger Dispersion)	SiO ₂ 8)	A1,03,8)	Fe ₂ O ₃ 8)	TiO, 8)	HCI 8) 9)	Siebrückstand	(Nach Mocker,		1) in Anlehnung an DIN 66131	2) in Anlehnung an DIN ISO 787/XI, JIS K 5101/18 (nicht gesiebt)	3) in Anlehnung an	4) in Anlehnun 5) in Anlehnun

Derartige pyrogene Kieselsäuren sind bekannt. Sie werden unter anderem beschrieben in: Winnacker-Küchler, Chemische Technologie, Band 3 (1983), 4. Auflage, Seite 77 und Ullmanns Encyklopädie der technischen Chemie, 4. Auflage (1982), Band 21, Seite 462.

Die pyrogen bergestellten Kieselsäuren werden mit einer Verbindung aus der Gruppe (B.

Die pyrogen hergestellten Kieselsäuren werden mit einer Verbindung aus der Gruppe (RO) $_3$ SiC $_n$ H $_{2n+1}$, wobei n = 10 bis 18 und R = Alkyl-, wie zum Beispiel Methyl-, Ethyl- oder ähnliches bedeuten, behandelt.

Insbesondere können die folgenden Verbindungen eingesetzt werden:

Silan I (CH₃O)₃SiC₁₆H₃₃ (Hexadecyltrimethoxysilan) (CH₃O)₃SiC₁₈H₃₇ (Octadecyltrimethoxysilan) Silan II

Die erfindungsgemäßen Kieselsäuren können hergestellt werden, indem man die pyrogen hergestellten Kieselsäuren in einen Mischer vorlegt, unter intensivem Mischen die Kieselsäuren gegebenenfalls zunächst mit Wasser und anschließend mit der Verbindung (Organosilan) aus der Gruppe (RO)₃SiC_nH_{2n+1} besprüht, 15 bis 30 Minuten nachmischt und anschließend bei einer Temperatur von 100 bis 160 °C über einen Zeitraum von 1 bis 3 Stunden tempert.

Das eingesetzte Wasser kann mit einer Säure, zum Beispiel Salzsäure, bis zu einem pH-Wert von 7 bis 1 angesäuert sein.

Das eingesetzte Organosilan kann in einem Lösungsmittel, wie zum Beispiel Ethanol, gelöst sein.

Die Temperung kann in einer Schutzgasatmosphäre, wie zum Beispiel unter Stickstoff, durchgeführt werden.

Die erfindungsgemäßen, mit Silan I silanisierten, pyrogen hergestellten Kieselsäuren weisen die in Tabelle 2 aufgeführten physikalisch-chemischen Kenndaten auf:

20 25 30 40

35

45

50

5	
10	
15	
20	
25	
30	
35	
40	
45	

50

Edukt	A 90	A 130	A 150	A 200	A 300	A 380	0X 20	TT 600
Mittlere Größe der Primärteilchen [nm]	20	16	14	12	7	7	40	40
Oberfläche nach BET $[m^2/g]$ 40-90	40-90	60-130	75-150	100-200	100-200 150-300 200-380		20-50	100-250
Stampfdichte [g/l]	40-140	40-140	40-140	40-140	40-140	40-140	40-140	40-140
Trocknungsverlust [8]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Glühverlust [8]	0,1-10	0,1-10 0,1-10	0,1-10	0,5-15	0,5-20 0,5-25	0,5-25	0,1-10	0,5-20
C-Gehalt [8]	0,1-10	0,1-10	0,1-10	0,5-15	0,5-20 0,5-25	0,5-25	0,1-10	0,5-20
pH-Wert	3,5-5,5	3,5-5,5	3,5-5,5 3,5-5,5 3,5-5,5 3,5-5,5 3,5-5,5 3,5-5,5 3,5-5,5 3,5-5,5	3,5-5,5	3,5-5,5	3,5-5,5	3,5-5,5	3,5-5,5

Die erfindungsgemäßen Kieselsäuren können als Verdickungsmittel in Flüssigkeiten, wie wasserverdünnbare Lacke, und Harze, wie zum Beispiel Epoxyharze, eingesetzt werden. Weiterhin können die erfindungsgemäßen Kieselsäuren in Silikonkautschuk, Gummi, Kosmetikartikel, Tonerpulvern sowohl als Mittel zur Verbesserung der Rieselfähigkeit als auch als Verstärkerfullstoff eingesetzt werden.

Tabelle 2

Beispiele

Die eingesetzten, pyrogen hergestellten Kieselsäuren weisen die physikalisch-chemischen Kenndaten, die in der Tabelle 1 aufgeführt sind, auf.

Als Organosilane werden die folgenden Verbindungen der allgemeinen Formel $(RO)_3SiC_nH_{2n+1}$ eingesetzt:

```
\begin{array}{ll} \text{(Silan I)} & \text{(CH}_3\text{O})_3\text{SiC}_{16}\,\text{H}_{33} \\ \text{(Silan II)} & \text{(CH}_3\text{O})_3\text{SiC}_{18}\,\text{H}_{37} \end{array}
```

Die Kieselsäure wird in einem Mischer vorgelegt und unter intensivem Mischen zunächst mit Wasser und anschließend mit Organosilan besprüht.

Nachdem das Besprühen beendet ist, wird noch 15 bis 30 Minuten nachgemischt und anschließend 1 bis 3 Stunden bei 100 bis 160 °C getempert. Die Temperung kann auch unter Schutzgas, zum Beispiel Stickstoff, erfolgen.

Die einzelnen Reaktionsbedingungen können der Tabelle 3 entnommen werden.

Die physikalisch-chemischen Kenndaten der erhaltenen silanisierten Kieselsäuren sind in der Tabelle 3 bis 4 aufgeführt.

20

5

10

25

30

35

40

45

50

5	

Tabelle 3

	,	,					
Temper- temperatur (°C)	120	120	140	140	140	140	140
Temperzeit (h)	2	2	2	2	2	2	2
Ethanolmenge (g/100 g Aerosil)	0	o.	0	0	0	0	0
Wassermenge (/100 g Aerosil)	0	0	0	Ŋ	2,5	1,25	1,25
Silarmenge (g/100 g Aerosil)	15	H	2,5	20	10	Ŋ	2,5
Silan	Silan II	Silan I					
Aerosil	A 200	A 300	A 200				
Beispiel	Т	2	3	4	5	9	7

5		Glühverlust (%)	5,2	1,8	2,5	12,7	7,1	3,4	2,5
10 15		Trocknungs- verlust (%)	0,5	0,4	0,3	9'0	0,6	9'0	0,7
20		Oberfläche (m²/g)	127	253	176	116	144	167	171
25		C-Gehalt (8)	6,7	1,3	1,7	10,1	5,7	5,6	1,9
<i>30 35</i>		Stampfdichte (g/1)	52	50	49	89	72	52	51
40		pH-Wert	4,8	4,3	4,4	9'5	4,5	4,7	4,5
45	Tabelle 4	Beispiel	1	2	т	4	S.	9	7
••		<u> </u>	<u> </u>	<u></u>	L	<u> </u>	l	L	1

An den erfindungsgemäß hergestellten Kieselsäuren wird die Verdickungswirkung untersucht. Als Modellsystem wird ein Propanol/Wasser-Gemisch 1:1 gewählt, 150 g Ansätze, Einwaage 7,5 g.Kieselsäure (5 Gew.-%). 5 Minuten bei 2500 U/min mit Disolver dispergiert und mit Brookfield-Viskosimeter RVT (Spindel 4) gemessen:

Beispiel	System bzw. Kieselsäure	Viskosität
8	Propanol/Wasser 1:1	80
9	Aerosil 200	200
10	gemäß Beispiel 3	400
11	gemäß Beispiel 4	14000
12	gemäß Beispiel 5	9800
13	gemäß Beispiel 6	800
14	gemäß Beispiel 7	400

Es ist ersichtlich, daß die erfindungsgemäßen silanisierten Kieselsäuren bezüglich Verdickung der unbehandelten Ausgangskieselsäure A 200 überlegen sind.

Patentansprüche

5

10

20

30

35

40

45

- 1. Silanisierte, pyrogen hergestellte Kieselsäuren, dadurch gekennzeichnet, daß die pyrogen hergestellten Kieselsäuren mit einer Verbindung aus der Gruppe (RO)₃SiC_nH_{2n+1}, wobei n = 10 bis 18 und R = Alkyl bedeuten, behandelt sind.
- 2. Silanisierte, pyrogen hergestellte Kieselsäuren gemäß Anspruch 1, dadurch gekennzeichnet, daß die pyrogen hergstellten Kieselsäuren mit der Verbindung (CH₃O)₃SiC₁₆H₃₃ (Hexadecyltrimethoxysilan) behandelt wurden.
 - 3. Silanisierte, pyrogen hergestellte Kieselsäuren gemäß Anspruch 1, dadurch gekennzeichnet, daß die pyrogen hergestellten Kieselsäuren mit der Verbindung (CH₃O)₃SiC₁₈H₃₇ (Octadecyltrimethoxysilan) behandelt wurden.
 - 4. Verfahren zur Herstellung der silanisierten, pyrogen hergestellten Kieselsäuren gemäß den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man die pyrogen hergestellten Kieselsäuren in einem Mischer vorlegt, unter intensivem Mischen die Kieselsäuren, gegebenenfalls zunächst mit Wasser und anschließend mit der Verbindung aus der Gruppe (RO)₃SiC_nH_{2n+1} besprüht, 15 bis 30 Minuten nachmischt und anschließend bei einer Temperatur von 100 bis 160 °C über einen Zeitraum von 1 bis 3 Stunden tempert.
 - 5. Verwendung der silanisierten, pyrogen hergestellten Kieselsäuren zum Verdicken von Flüssigkeiten.

55

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 94 11 8099

	EINSCHLÄGIG	E DOKUMEN	ITE	· · · · · · · · · · · · · · · · · · ·			
(ategorie	Kennzeichnung des Dokume der maßgeblic	nts mit Angabe, sow hen Teile	eit erforderlic		trifft pruch	KLASSIFIKATIO ANMELDUNG (N DER Int.Cl.6)
X	EP-A-0 216 047 (THE COMPANY) * Seite 5, Zeile 12 * Seite 5, Zeile 27	- Zeile 24 - Zeile 29	* *	1-3	,5	C09C1/30	
A	* Seite 8, Zeile 27 * Anspruch 1 *	- Zelle 30	•	4			
X	PATENT ABSTRACTS OF vol. 12, no. 258 (0 & JP-A-63 043 976 (25. Februar 1988	-513) 20. Ju	li 1988 IND. CO	.)	,5		
A				4			
	* Zusammenfassung *	- <u>-</u> -					
A	WORLD SURFACE COATI Bd.64, Nr.583, 1991 Seite 1, Nr. 91/000 * ZUSAMMENFASSUNG * & LANGMUIR, Bd.6, Nr.4, 1990 Seiten 792 - 801 BADLEY R. D. ET AL. OF COLLOIDAL SILICA	, OXFORD GB 02 'SURFACE MO		1,3		RECHERCHIE SACHGEBIETE CO9C	
A	EP-A-0 475 132 (IDE * Spalte 2, Zeile 5 *	MITSU KOSAN 0 - Spalte 3	COMPANY B, Zeile	25 1			
	di and Dakan bashaish	la fiir alla Patentona	nrijoho avetali				
Der vo	orliegende Recherchenbericht wur		prüche erstell tum der Recherch			Prüfer	
	Recherchenort DEN HAAG		ebruar		Van	Bellingen,	I
X:von Y:von and A:tec O:nic	KATEGORIE DER GENANNTEN I besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindun leren Veröffentlichung derselben Kate hnologischer Hintergrund httschriftliche Offenbarung ischenliteratur	OOKUMENTE tet q mit einer	T: der Erfin E: älteres P nach den D: in der Ai L: aus ander	dung zugrunde atentdokument n Anmeldedatu nmeldung ange rn Gründen an der gleichen P	liegende das jedo n veröffer ührtes D geführtes	Theorien oder Grund ch erst am oder ntlicht worden ist okument	sätze

EPO FORM 1503 03.82 (P04C03)