MATEMÁTICAS BÁSICAS Tercera entrega (Tipo 1)

1. Sean $f y g : \mathbb{R} \to \mathbb{R}$ las funciones definidas por $f(x) = x^2 y g(x) = x^2 - 1$. Hallar las funciones $f \circ f, f \circ g, g \circ f, g \circ g$ y determinar el conjunto

$$\{x \in \mathbb{R} : (f \circ q)(x) = (q \circ f)(x)\}.$$

2. Se define en \mathbb{R}^2 la relación $(x,y)\mathcal{R}(a,b)$ si y solo si $y-b=x^2-a^2$. Demuestra que \mathcal{R} es una relación de equivalencia. Describe las clases de equivalencia [(0,0)], [(0,2)] y [(1,1)]. Describe la clase de un punto cualquiera $(a,b) \in \mathbb{R}^2$. Describe el conjunto cociente \mathbb{R}^2/\mathcal{R} .

MATEMÁTICAS BÁSICAS Tercera entrega (Tipo 2)

- 1. Sean X un conjunto y $f: X \to X$ y $g: X \to X$ dos aplicaciones tales que la composición $f \circ g \circ f: X \to X$ es biyectiva. Demostrar que f es biyectiva.
- 2. Se define en \mathbb{R}^2 la relación $(x,y)\mathcal{R}(a,b)$ si y solo si |x|=|a|. Demuestra que \mathcal{R} es una relación de equivalencia. Describe las clases de equivalencia [(0,0)],[(1,-2)],[(0,2)] y [(-1,1)]. Describe la clase de un punto cualquiera $(a,b)\in\mathbb{R}^2$. Describe el conjunto cociente \mathbb{R}^2/\mathcal{R} .

MATEMÁTICAS BÁSICAS Tercera entrega (Tipo 3)

- 1. Sea $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ la aplicación que a cada número natural positivo n le asigna la suma de los dígitos de n.
 - (1) Decidir si f es inyectiva y si es sobreyectiva y explica los porqués.
 - (2) Para todo $i \geq 1$ sea \mathcal{R}_i la relación de equivalencia en \mathbb{Z}^+ definida por:

$$x \mathcal{R}_i y \iff f^i(x) = f^i(y),$$

donde f^i es la composición de f consigo mismo i veces. Describa la clase $[1]_{\mathcal{R}_1}$. Demuestra que si $1 \leq i \leq j$, entonces $[n]_{\mathcal{R}_i} \subseteq [n]_{\mathcal{R}_j}$ para todo número natural positivo n. ¿Es $[1]_{\mathcal{R}_1} = [1]_{\mathcal{R}_2}$?.

MATEMÁTICAS BÁSICAS Tercera entrega (Tipo 4)

- 1. Sean $f:A\to B$ una aplicación y $X\subset A$. ¿Es cierto en general que $f^{-1}(f(X))=X$? ¿Y si f es inyectiva? ¿Y si f es sobreyectiva?
- 2. Se define en \mathbb{R}^2 la relación $(x,y)\mathcal{R}(a,b)$ si y solo si $y^2 b^2 = x^2 a^2$. Demuestra que \mathcal{R} es una relación de equivalencia. Describe las clases de equivalencia [(0,0)], [(0,2)] y [(1,1)]. Describe la clase de un punto cualquiera $(a,b) \in \mathbb{R}^2$. Describe el conjunto cociente \mathbb{R}^2/\mathcal{R} .