Série d'exercices

Exercice 1
Exercice 1
1 Répondre par vrai ou faux
☐Le dosage est une méthode destructrice.
Lors du dosage, le réactif titré est introduit dans la burette graduée.
Le dosage conductimétrique est plus précis que le dosage colorimétrique.
□ Il est possible de titrer deux espèces chimiques en même temps, à condition qu'elles
soient dans la même solution.
☐Le réactif titré peut-être un corps solide.
Lors du dosage et avant l'équivalence, le réactif limitant est le titrant.

Exercice 2

☐À l'équivalence du dosage , le mélange devient stœchiométrique.

Pour déterminer la concentration C_B d'une solution (S_B) d'hydroxyde de sodium $(Na_{(aq)}^+ + HO_{(aq)}^-)$, on dose par conductimétrie un volume V_B de cette solution par une solution (S_A) de l'acide chlorhydrique $(H_3O_{(aq)}^+ + Cl_{(aq)}^-)$ de concentration $C_A = 1, 5 \times 10^{-2} mol. L^{-1}$. L'état d'équivalence de de ce dosage est attient après avoir versé

- un volume $V_B = 10mL$. Les couples mis en jeu sont: $H_3O_{(aq)}^+/H_2O_{(l)}$ et $H_2O_{(l)}/HO_{(aq)}^-$ Identifier la solution titrée et la solution titrante de ce dosage.
- 2 Écrire l'équation de la réaction du dosage, en déterminant sa nature.
- **6** Déterminer les espèces chimiques responsables de la conductivité du mélange du bécher, en comparant leurs conductivités molaires ioniques:
- **4** Calculer la concentration C_B de la solution (S_B) .

Exercice 3

On dose par titrage colorimétrique un volume $V_1=15mL$ d'une solution (S_1) du diiode I_2 par une solution (S_2) du thiosulfate de sodium $(2Na^+_{(aq)}+S_2O^{2^-}_{3(aq)})$ de concentration $C_2=3\times 10^{-3}mol.\,L^{-1}$.

Les couples mis en jeu lors de ce dosage sont : $I_{2(aq)}/I_{(aq)}^-$; $S_4O_{6(aq)}^{2-}/S_2O_{3(aq)}^{2-}$

- Quelles sont les caractéristiques de la réaction du dosage.
- Écrire les demi-équations d'oxydoréduction qui se produisent lors de cette réaction du dosage et déduire son équation bilan.
- § La couleur jaune caractéristique du diiode disparaît immédiatement après l'ajout d'un volume $V'_2 = 15mL$.
 - a −Que représente ce volume ?
 - b Comment expliquer la disparition immédiate de la couleur jaune caractéristique du diiode ?
 - C Construire le tableau d'avancement associé à la réaction du dosage à l'état d'équivalence?
 - d En exploitant le tableau d'avancement, établir la relation d'équivalence.
 - e Calculer la concentration C_1 de la solution (S_1)

Série d'exercices

Exercice 4

On titre un volume $V_1 = 8mL$ d'une solution (S_1) de l'eau oxygénée $H_2O_{2(aq)}$ (solution incolore), par une solution (S_2) de permanganate potassium acidifiée $(K^+_{(aq)} + MnO^-_{4(aq)})$ (solution violette) de concentration $C_2 = 4 \times 10^{-2} mol. L^{-1}$.

- 1 Faire un schéma légendé du montage expérimental du dosage.
- **2** Écrire les demi-équations d'oxydoréduction qui se produisent lors de ce dosage et déduire l'équation bilan. Les couples mis en jeu sont: $MnO_{4(aq)}^{-}/Mn_{(aq)}^{2+}$ et $O_{2(q)}/H_{2}O_{2(aq)}$
- © Lors de ce dosage, l'équivalence est atteint après l'ajout d'un volume $V_2 = 12mL$ de la solution S_2 . Calculer la concentration C_1 de la solution de l'eau oxygénée.
- ② Pour un volume vrsé $V'_2 = 9mL$ de solution (S_2) de permanganate potassium, déterminer: a La couleur du mélange.
 - **b** Le réactif limitant de la réaction du dosage .
 - c Le tableau d'avancement de la réaction du dosage .
 - d La composition du système à l'état final.

Exercice 5

On prépare une solution (S_0) du méthanoate de sodium $(Na_{(aq)}^+ + HCOO_{(aq)}^-)$, en dissolvant une masse m_0 des cristaux du méthanoate de sodium HCOOHNa dans un litre de l'eau distillée.

Dans le but de déterminer la masse m_0 par dosage, on procède d'abord à une dilution de 1/50 d'un volume $V_0 = 1mL$ de la solution (S_0) . Soit (S_1) la solution obtenue.

On prélève un volume $V_B=5mL$ de la solution (S_1) et on réalise le dosage conductimétrique avec une solution (S_2) de l'acide chlorhydrique $(H_3O^+_{(aq)}+Cl^-_{(aq)})$, de concentration molaire $C_2=2\times 10^{-2}mol.L^{-1}$.

Les couples mis en jeu sont : $HCOOH_{(aq)}/HCOO_{(aq)}^-$ et $H_3O_{(aq)}^+/H_2O_{(l)}$

- 1 Faire un schéma légendé du montage expérimental du dosage.
- 2 Écrire l'équation de la réaction du dosage.
- **8** Les mesures ont permis de tracer la courbe ci-contre qui représente les variations de la conductivité σ du mélange en fonction du volume V_2 de l'acide chlorhydrique versé.
 - a Déterminer le volume de l'acide chlorhydrique ajouté à l'équivalence
 - **b** Calculer la concentration C_1 de la solution (S_1) et déduire la concentration C_0 de la solution (S_0)
 - c Calculer la masse m_0 du méthanoate de sodium dissout dans la solution (S_0) .

- **9** Pour un volume vrsé $V_2 = 9mL$ de solution de la solution titrante déterminer:
 - a -Le réactif limitant
 - **b** Le tableau d'avancement de la réaction du dosage .
 - c La composition du système à l'état final.

Données

 $M(C) = 12g.mol^{-1}; M(H) = 1g.mol^{-1}; M(O) = 16g.mol^{-1}$