Cálculo Numérico - IME/UERJ

Lista de Exercícios 4

Interpolação polinomial e Método dos Mínimos Quadrados

1. Em cada função abaixo determine uma aproximação para f(z) e uma cota superior do erro cometido usando interpolação de Lagrange.

(a)
$$f(x) = \log x, z = 2.35, f(1) = 0, f(2) = 0.3010, f(3) = 0.4771$$

(b)
$$f(x) = e^{-x}, z = 2.5, f(2) = 0.13, f(3) = 0.04, f(4) = 0.01$$

2. Suponha que $f(x) = \operatorname{sen}(x)$ é aproximada em [0, 1] por um polinômio interpolador em (n+1) pontos distintos equidistantes $0 = x_0 < x_1 < \cdots < x_{n-1} < x_n = 1$. Determine n tal que o erro de truncamento seja menor que 10^{-4} para todo $x \in [0, 1]$.

3. Seja a tabela

x	0,81	0,83	0,86	0,87
f(x)	16,94410	17,56492	18,50515	18,82091

Calcule um valor aproximado de f(0,84), usando:

(a) Forma de Newton para polinômio interpolador de grau $n \leq 1, 2, 3$.

(b) Calcule uma cota superior do erro em cada caso, se possível.

4. Construa a tabela de diferenças divididas com os dados

x	0	0.5	1.5	2	2.5	3.5
f(x)	-2.78	-2.241	-1.65	-0.594	1.34	4.564

(a) Estime o valor f(1.7) da melhor maneira possível, de forma que se possa estimar o erro cometido.

(b) Justifique o grau do polinômio que você escolheu para resolver o item (a).

5. Dada a tabela da população de uma vila no início de cada ano, estime a população na metade de 2018 usando o polinômio de Newton e justifique o grau do polinômio.

Ano	2015	2016	2017	2018	2019
População	6000	6200	6600	7200	8000

6. Considere a tabela a seguir. Usando um polinômio interpolador de grau 3, determine x tal que f(x) = 2.3. Dê uma estimativa do erro cometido.

x	0	0.2	0.4	0.6	0.8	1.0
f(x)	1.0	1.2408	1.5735	2.0333	2.6965	3.7183

7. Considere a tabela:

x	0	1.2	2.3	3.1	3.9
f(x)	0	1.5	5.3	9.5	10

Dê uma aproximação para a raiz da equação f(x) = 2 usando interpolação quadrática. Dê uma estimativa do erro cometido.

8. Os seguintes dados correspondem a um polinômio de grau \leq 5. Qual é o grau do polinômio? Use a tabela de diferenças divididas.

x	-2	-1	0	1	2	3
f(x)	-5	1	1	1	7	25

- 9. Ajuste os dados abaixo pelo Método dos Mínimos Quadrados (MMQ) utilizando:
 - (a) uma reta
 - (b) uma parábola

x	1	2	3	4	5	6	7	8
y	0,5	0,6	0,9	0,8	1,2	1,5	1,7	2,0

10. O número de bactérias, por unidade de volume, existente em uma cultura após \boldsymbol{x} horas é dado na tabela abaixo:

número de horas	0	1	2	3	4	5	6
número de bactérias	32	47	65	92	132	190	275

- (a) Ajuste os dados acima à curva $y=ae^{bx}$ pelo método dos mínimos quadrados.
- (b) Quantas horas são necessárias para que o número de bactérias por unidade de volume ultrapasse 2000?

11. Aproxime a tabela abaixo por uma função do tipo $g(x) = 1 + ae^{bx}$ usando mínimos quadrados.

x	0	0,5	1,0	2,5	3,0
y	2,0	2,6	3,7	13,2	21,0

12. Considere a tabela abaixo:

Altura (cm)	183	173	188	163	178
Peso (kg)	79	69	82	63	73

- (a) Usando um Polinômio Interpolador de grau dois, calcule a altura aproximada de uma pessoa com peso de 70 kg.
- (b) Dê uma estimativa de erro para o caso anterior.
- (c) Determine a melhor função da forma $\psi(x) = \alpha \operatorname{sen}(x) + \beta \cos(x)$ que ajusta estes pontos e calcule a altura aproximada de uma pessoa com peso de 70 kg (**Obs.:** Configure neste caso sua calculadora científica para calcular em graus).
- 13. Sabe-se que ao longo da linha vermelha a velocidade máxima permitida é de 90 km/h e foram colocados radares para medir a velocidade instantânea dos carros. Suponha que numa distância d=1,0 km, um motorista conferiu através do velocímetro (suponha que o velocímetro seja exato) as seguintes velocidades:

distância	0	0,2	0,3	0,5	0,8	1,0
velocidade	80	85	88	92	85	80

Pergunta-se:

- (a) Considere um radar colocado na posição d=0,4. Usando um polinômio interpolador de grau dois ou menor, calcule:
 - i. Velocidade aproximada neste ponto.
 - ii. Erro da interpolação neste ponto.
 - iii. Podemos concluir que o carro não será multado?
- (b) Usando o Método dos Mínimos Quadrados, faça uma regressão linear e calcule a velocidade esperada em d=1,1.
- (c) Usando o Método dos Mínimos Quadrados, determine o polinômio de segundo grau ótimo e calcule a velocidade esperada em d = 1, 1.