Math 5102 – Linear Algebra– Fall 2024 w/Professor Penera

Paul Carmody Practice Final – NONE

1. Let V be a vector space over F, let W be an inner product space over F with inner product $\langle \cdot, \cdot \rangle_W$, and let $T: V \to W$ be a linear transformation. Show that

$$\langle \, x,y \, \rangle_V = \langle \, T(x),T(y) \, \rangle_W \, , x,y \in V$$

defines an inner product of V if and only if T is one-to-one.

Define $\langle \cdot, \cdot \rangle_V$ in this way

$$x \notin N(T)$$

$$0 = \langle x, 0 \rangle = \langle T(x), T(0) \rangle = 0$$

$$T(0) = 0$$

$$0 = \langle T(x), T(y) \rangle \to T(y) \in N(T)$$

- 2. Let V be an inner produce space over F and let W bve a subspace of V. Show that $(W^{\perp})^{\perp} = W$. Primarily, this is a 'set based' equation, thus we must show subset and superset in order to show equality
 - \subseteq that is, let $v \in (W^{\perp})^{\perp}$ then for every $x \in W^{\perp}, \langle x, v \rangle = 0$. Let $y \in W$ then $\langle x, y \rangle = \langle x, v \rangle = 0$. Then $2\langle x, y + v \rangle = 0$. x is arbitrary and non-zero therefore y + v = 0 and $v \in W$.
 - ⊇
- 3. Let V be an inner product space over F and let $\beta = \{v_1, \dots, v_n\}$ be an orthornormal basis for V. Show that

$$\langle x, y \rangle = \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle}$$

for all $x, y \in V$.

$$\begin{aligned} y &= \sum \langle y_i, v_i \rangle \\ x &= \sum \langle x, v_i \rangle \\ \langle x, y \rangle &= \left\langle x, \sum \langle y_i, v_i \rangle \right\rangle = \sum \langle x, \langle y_i, v_i \rangle \rangle = \end{aligned}$$

4. Let V be an inner product space and let T be an invertible linear operator on V. Show that T^* is invertible and $(T^*)^{-1} = (T^{-1})^*$.

$$I = TT^{-1}$$

$$I^* = (TT^{-1})^* = T^*(T^{-1})^*$$

$$(T^*)^{-1}I = (T^*)^{-1}T^*(T^{-1})^*$$

$$(T^*)^{-1} = (T^{-1})^*$$

5. Let $V = W \oplus W^{\perp}$ and let T be the projection on W along W^{\perp} . Show that $T^* = T$.

$$R(T) \perp W \to R(T) \subseteq W$$
$$\forall x \in V, \langle x, y \rangle$$