# class 14: RNASeq mini project

Eli Sobel 69027989

### library(pathview)

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

library(gage)

library(gageData)
library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Warning: package 'matrixStats' was built under R version 4.4.2

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

```
The following object is masked from 'package:MatrixGenerics': rowMedians
```

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

```
data(kegg.sets.hs)
data(sigmet.idx.hs)
```

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

```
columns(org.Hs.eg.db)
```

| [1]  | "ACCNUM"   | "ALIAS"    | "ENSEMBL"     | "ENSEMBLPROT" | "ENSEMBLTRANS" |
|------|------------|------------|---------------|---------------|----------------|
| [6]  | "ENTREZID" | "ENZYME"   | "EVIDENCE"    | "EVIDENCEALL" | "GENENAME"     |
| [11] | "GENETYPE" | "GO"       | "GOALL"       | "IPI"         | "MAP"          |
| [16] | "OMIM"     | "ONTOLOGY" | "ONTOLOGYALL" | "PATH"        | "PFAM"         |
| [21] | "PMID"     | "PROSITE"  | "REFSEQ"      | "SYMBOL"      | "UCSCKG"       |
| [26] | "UNTPROT"  |            |               |               |                |

# import data

We need two things - "Counts" and "Metadata" (what DESeq calls colData - as it describes the columns in Counts).

```
counts <- read.csv("GSE37704_featurecounts.csv", row.names=1)
metadata <- read.csv("GSE37704_metadata.csv")
head(counts)</pre>
```

|                 | length | SRR493366 | SRR493367 | SRR493368 | SRR493369 | SRR493370 |
|-----------------|--------|-----------|-----------|-----------|-----------|-----------|
| ENSG00000186092 | 918    | 0         | 0         | 0         | 0         | 0         |
| ENSG00000279928 | 718    | 0         | 0         | 0         | 0         | 0         |
| ENSG00000279457 | 1982   | 23        | 28        | 29        | 29        | 28        |
| ENSG00000278566 | 939    | 0         | 0         | 0         | 0         | 0         |
| ENSG00000273547 | 939    | 0         | 0         | 0         | 0         | 0         |
| ENSG00000187634 | 3214   | 124       | 123       | 205       | 207       | 212       |

|                 | SRR493371 |
|-----------------|-----------|
| ENSG00000186092 | 0         |
| ENSG00000279928 | 0         |
| ENSG00000279457 | 46        |
| ENSG00000278566 | 0         |
| ENSG00000273547 | 0         |
| ENSG00000187634 | 258       |

#### head(metadata)

id condition

1 SRR493366 control\_sirna

2 SRR493367 control\_sirna

3 SRR493368 control\_sirna

4 SRR493369 hoxa1\_kd

5 SRR493370 hoxa1\_kd

6 SRR493371 hoxa1\_kd

We want the columns in counts to match the rows in the metadata.

## colnames(counts)

[1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" [7] "SRR493371"

#### metadata\$id

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

We can get rid of the first column in counts to make these match.

```
countData <- counts[,-1]
head(countData)</pre>
```

|                 | SRR493366 | SRR493367 | SRR493368 | SRR493369 | SRR493370 | SRR493371 |
|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|
| ENSG00000186092 | 0         | 0         | 0         | 0         | 0         | 0         |
| ENSG00000279928 | 0         | 0         | 0         | 0         | 0         | 0         |
| ENSG00000279457 | 23        | 28        | 29        | 29        | 28        | 46        |
| ENSG00000278566 | 0         | 0         | 0         | 0         | 0         | 0         |
| ENSG00000273547 | 0         | 0         | 0         | 0         | 0         | 0         |
| ENSG00000187634 | 124       | 123       | 205       | 207       | 212       | 258       |

#### colnames(countData)

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

#### metadata\$id

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

```
all(colnames(countData) == metadata$id)
```

[1] TRUE

```
all(c(T,T,T,T))
```

[1] TRUE

```
x <- c(T,T,T)
if(all(x)) { cat("Me happy")} else {cat("Me no happy")}</pre>
```

Me happy

## head(counts)

|                 | length  | SRR493366 | SRR493367 | SRR493368 | SRR493369 | SRR493370 |
|-----------------|---------|-----------|-----------|-----------|-----------|-----------|
| ENSG00000186092 | 918     | 0         | 0         | 0         | 0         | 0         |
| ENSG00000279928 | 718     | 0         | 0         | 0         | 0         | 0         |
| ENSG00000279457 | 1982    | 23        | 28        | 29        | 29        | 28        |
| ENSG00000278566 | 939     | 0         | 0         | 0         | 0         | 0         |
| ENSG00000273547 | 939     | 0         | 0         | 0         | 0         | 0         |
| ENSG00000187634 | 3214    | 124       | 123       | 205       | 207       | 212       |
|                 | SRR4933 | 371       |           |           |           |           |
| ENSG00000186092 |         | 0         |           |           |           |           |
| ENSG00000279928 |         | 0         |           |           |           |           |
| ENSG00000279457 |         | 46        |           |           |           |           |
| ENSG00000278566 |         | 0         |           |           |           |           |
| ENSG00000273547 |         | 0         |           |           |           |           |
| ENSG00000187634 |         | 258       |           |           |           |           |

#### Filter out zero counts

It is standard practice to remove any genes/transcripts that we have no data for - i.e. zero counts in all columns.

```
to.keep.inds <- rowSums(countData) > 0
cleanCounts <- countData[to.keep.inds,]
head(cleanCounts)</pre>
```

|                 | SRR493366 | SRR493367 | SRR493368 | SRR493369 | SRR493370 | SRR493371 |
|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|
| ENSG00000279457 | 23        | 28        | 29        | 29        | 28        | 46        |
| ENSG00000187634 | 124       | 123       | 205       | 207       | 212       | 258       |
| ENSG00000188976 | 1637      | 1831      | 2383      | 1226      | 1326      | 1504      |
| ENSG00000187961 | 120       | 153       | 180       | 236       | 255       | 357       |
| ENSG00000187583 | 24        | 48        | 65        | 44        | 48        | 64        |
| ENSG00000187642 | 4         | 9         | 16        | 14        | 16        | 16        |

# Setup for DESetup

```
library(DESeq2)
```

```
dds <- DESeqDataSetFromMatrix(countData = cleanCounts, colData = metadata, design = ~condition</pre>
```

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

# **DESeq**

```
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates</pre>
```

```
mean-dispersion relationship

final dispersion estimates

fitting model and testing
```

```
res <- results(dds)</pre>
```

## Inspect results

#### head(res)

```
\log 2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns
```

```
baseMean log2FoldChange
                                            lfcSE
                                                         stat
                                                                  pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                <numeric>
                  29.9136
                               0.1792571 0.3248216
                                                    0.551863 5.81042e-01
ENSG00000279457
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                    3.040350 2.36304e-03
ENSG00000188976 1651.1881
                             -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.6379
                              0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583
                 47.2551
                               0.0405765 0.2718928 0.149237 8.81366e-01
                               0.5428105 0.5215598 1.040744 2.97994e-01
ENSG00000187642
                  11.9798
                      padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

#### Data Viz

```
plot(res$log2FoldChange, -log(res$padj))
```



# **Pathway Analysis**

# head(res)

 $\log 2$  fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

| baseMean |                 | ${\tt log2FoldChange}$ | lfcSE               | stat                | pvalue              |                     |
|----------|-----------------|------------------------|---------------------|---------------------|---------------------|---------------------|
|          |                 | <numeric></numeric>    | <numeric></numeric> | <numeric></numeric> | <numeric></numeric> | <numeric></numeric> |
|          | ENSG00000279457 | 29.9136                | 0.1792571           | 0.3248216           | 0.551863            | 5.81042e-01         |
|          | ENSG00000187634 | 183.2296               | 0.4264571           | 0.1402658           | 3.040350            | 2.36304e-03         |
|          | ENSG00000188976 | 1651.1881              | -0.6927205          | 0.0548465           | -12.630158          | 1.43990e-36         |
|          | ENSG00000187961 | 209.6379               | 0.7297556           | 0.1318599           | 5.534326            | 3.12428e-08         |
|          | ENSG00000187583 | 47.2551                | 0.0405765           | 0.2718928           | 0.149237            | 8.81366e-01         |
|          | ENSG00000187642 | 11.9798                | 0.5428105           | 0.5215598           | 1.040744            | 2.97994e-01         |
|          |                 |                        |                     |                     |                     |                     |

padj

<numeric>

ENSG00000279457 6.86555e-01 ENSG00000187634 5.15718e-03 ENSG00000188976 1.76549e-35 ENSG00000187961 1.13413e-07

```
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

# **Annotation of genes**

First I need to translate my Ensemble IDs in my res object to Entrez and gene symbol formats.

For this I will use the AnnotationDbi package and its mapIds() function.

Let's map to "SYMBOL", "ENTREZID", "GENENAME" from our "ENSEMBLE" ids.

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
colnames(res)
```

```
[1] "baseMean" "log2FoldChange" "lfcSE" "stat"
[5] "pvalue" "padj" "genename" "ENTREZID"
[9] "symbol"
```

#### head(res)

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

|                 | baseMean l          | og2FoldChange       | lfcSE               | stat                    | pvalue                             |
|-----------------|---------------------|---------------------|---------------------|-------------------------|------------------------------------|
|                 | <numeric></numeric> | <numeric></numeric> | <numeric></numeric> | <numeric></numeric>     | <numeric></numeric>                |
| ENSG00000279457 | 29.9136             | 0.1792571           | 0.3248216           | 0.551863                | 5.81042e-01                        |
| ENSG00000187634 | 183.2296            | 0.4264571           | 0.1402658           | 3.040350                | 2.36304e-03                        |
| ENSG00000188976 | 1651.1881           | -0.6927205          | 0.0548465           | -12.630158              | 1.43990e-36                        |
| ENSG00000187961 | 209.6379            | 0.7297556           | 0.1318599           | 5.534326                | 3.12428e-08                        |
| ENSG00000187583 | 47.2551             | 0.0405765           | 0.2718928           | 0.149237                | 8.81366e-01                        |
| ENSG00000187642 | 11.9798             | 0.5428105           | 0.5215598           | 1.040744                | 2.97994e-01                        |
|                 | padj                |                     | genename            | ENTREZID                | symbol                             |
|                 | <numeric></numeric> | <<                  | character>          | <character></character> | <pre><character></character></pre> |
| ENSG00000279457 | 6.86555e-01         |                     | NA                  | NA                      | . NA                               |
| ENSG00000187634 | 5.15718e-03         | sterile alpha       | a motif             | 148398                  | SAMD11                             |
| ENSG00000188976 | 1.76549e-35         | NOC2 like nuc       | cleolar             | 26155                   | NOC2L                              |
| ENSG00000187961 | 1.13413e-07         | kelch like fa       | amily me            | 339451                  | KLHL17                             |
| ENSG00000187583 | 9.19031e-01         | pleckstrin ho       | omology             | 84069                   | PLEKHN1                            |
| ENSG00000187642 | 4.03379e-01         | PPARGC1 and I       | ESRR ind            | 84808                   | PERM1                              |

Before going any further let's focus in on a subset of "top" hits.

We can use as a starting point  $\log 2FC$  of +2/-2 and a adjusted p-value of 0.05.

```
top.inds <- (abs(res$log2FoldChange) > 2) & (res$padj < 0.05)
top.inds[is.na(top.inds)] <- FALSE
head(top.inds, 20)</pre>
```

[1] FALSE FA

```
c(F,T,T,F) & c(T,T,F,NA)
```

#### [1] FALSE TRUE FALSE FALSE

Let's save our "top genes" to a  $\operatorname{CSV}$ 

```
top.genes <- res[top.inds,]
write.csv(top.genes, file="top_geneset.csv")</pre>
```

Now we can do some pathway analysis

```
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
```

The  $\mathbf{gage}$  function wants a vetor of importance as input with gene names as labels - KEGG speaks ENTREZ

```
foldchanges <- res$log2FoldChange
names(foldchanges) <- res$entrez
head(foldchanges)</pre>
```

 $\begin{bmatrix} 1 \end{bmatrix} \quad 0.17925708 \quad 0.42645712 \quad -0.69272046 \quad 0.72975561 \quad 0.04057653 \quad 0.54281049$ 

Run gage with these values

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

```
attributes(keggres)
```

#### \$names

[1] "greater" "less" "stats"

## head(keggres\$less)

|          |                                            | p.geomean | stat.mean | p.val | q.val |
|----------|--------------------------------------------|-----------|-----------|-------|-------|
| hsa00232 | Caffeine metabolism                        | NA        | NaN       | NA    | NA    |
| hsa00983 | Drug metabolism - other enzyme             | s NA      | NaN       | NA    | NA    |
| hsa00230 | Purine metabolism                          | NA        | NaN       | NA    | NA    |
| hsa04514 | Cell adhesion molecules (CAMs)             | NA        | NaN       | NA    | NA    |
| hsa04010 | MAPK signaling pathway                     | NA        | NaN       | NA    | NA    |
| hsa04012 | ErbB signaling pathway                     | NA        | NaN       | NA    | NA    |
|          |                                            | set.size  | exp1      |       |       |
| hsa00232 | Caffeine metabolism                        | 0         | NA        |       |       |
| hsa00983 | ${\tt Drug\ metabolism\ -\ other\ enzyme}$ | s 0       | NA        |       |       |

```
hsa00230 Purine metabolism 0 NA hsa04514 Cell adhesion molecules (CAMs) 0 NA hsa04010 MAPK signaling pathway 0 NA hsa04012 ErbB signaling pathway 0 NA
```

#### hsa04110

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

Warning: None of the genes or compounds mapped to the pathway! Argument gene.idtype or cpd.idtype may be wrong.

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/eliso/Desktop/Bioinformatics/class14

Info: Writing image file hsa04110.pathview.png

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gores = gage(foldchanges, gsets=gobpsets)
```

# head(gores\$less)

|                                                | p.geomean | ${\tt stat.mean}$ | p.val | q.val |
|------------------------------------------------|-----------|-------------------|-------|-------|
| GO:0000002 mitochondrial genome maintenance    | NA        | NaN               | NA    | NA    |
| GO:0000003 reproduction                        | NA        | NaN               | NA    | NA    |
| GO:0000012 single strand break repair          | NA        | NaN               | NA    | NA    |
| GO:0000018 regulation of DNA recombination     | NA        | NaN               | NA    | NA    |
| GO:0000019 regulation of mitotic recombination | NA        | NaN               | NA    | NA    |
| GO:0000022 mitotic spindle elongation          | NA        | NaN               | NA    | NA    |
|                                                | set.size  | exp1              |       |       |
| GO:0000002 mitochondrial genome maintenance    | 0         | NA                |       |       |
| GO:0000003 reproduction                        | 0         | NA                |       |       |
| GO:0000012 single strand break repair          | 0         | NA                |       |       |
| GO:0000018 regulation of DNA recombination     | 0         | NA                |       |       |
| GO:0000019 regulation of mitotic recombination | 0         | NA                |       |       |
| GO:0000022 mitotic spindle elongation          | 0         | NA                |       |       |

To run reactome online, we need to make a little text file where we have one gene id per line.

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote
```

```
head(sig_genes)
```

```
ENSG00000187634 ENSG00000188976 ENSG00000187961 ENSG00000188290 ENSG00000187608
"SAMD11" "NOC2L" "KLHL17" "HES4" "ISG15"
ENSG00000188157
"AGRN"
```

