CS1231(S) Cheatsheet

for Mid-term of AY 19/20 Semester 1, by Howard Liu

Appendix A of Epp is not covered. Theorems, corollaries, lemmas, etc. not mentioned in the lecture notes are marked with an asterisk (*).

Proofs

Basic Notation

- R: the set of all real numbers
- Z: the set of integers
- N: the set of natural numbers (include 0, i.e. $\mathbb{Z}_{>0}$)
- Q: the set of rationals
- ∃: there exists...
- ∃!: there exists a unique...
- ∀: for all...
- \in : member of...
- ∋: such that...
- ∼: not ...

Proof Types

- By Construction: finding or giving a set of directions to reach the statement to be proven true.
- By Contraposition: proving a statement through its logical equivalent contrapositive.
- By Contradiction: proving that the negation of the statement leads to a logical contradiction.
- By Exhaustion: considering each case.
- By Mathematical Induction: proving for a base case, then an induction step.
 - 1. P(a)
 - 2. $\forall k \in \mathbb{Z}, k \geq a \ (P(k) \rightarrow P(k+1))$
 - 3. $\forall n \in \mathbb{Z}, n > a (P(n))$
- By Strong Induction: mathematical induction assuming P(k), P(k-1), \cdots , P(a) are all true.
- By Structural Induction: MI assuming P(x) is true, prove P(f(x)) is true (f(x)) is the recursion set rule, i.e. if $x \in S$, $f(x) \in S$)

Order of Operations

In the ascending order (1 executes first, 3 is the latest, can be overwritten by parenthesis)

- 1. **Negation**: \sim (also represented as \neg)
- 2. Logic AND & OR: ∧ and ∨
- 3. Implication: \rightarrow

Universal & Existential Generalisation

'All boys wear glasses' is written as

$$\forall x (\text{Boy}(x) \to \text{Glasses}(x))$$

If conjunction was used, this statement would be falsified by the existence of a 'non-boy' in the domain of x.

'There is a boy who wears glasses' is written as

$$\exists x (\mathrm{Boy}(x) \wedge \mathrm{Glasses}(x))$$

If implication was used, this statement would true even if the domain of x is empty.

Valid Arguments as Tautologies

All valid arguments can be restated as tautologies.

Rules of Inference

Modus ponens

$$\begin{aligned} p &\to q \\ p \\ &\cdot q \end{aligned}$$
tollens

Modus tollens

$$p o q$$
 $\sim q$
 $\cdot \sim p$

Generalization

p				
p	V	q		

Specialization

P	/	`	q
	•	p	

Elimination

$p \lor q$
$\sim q$
· p

Transitivity

$$\begin{aligned} p &\to q \\ q &\to r \\ \cdot p &\to r \end{aligned}$$

Proof by Division into Cases

$$p \lor q$$
 $p \to r$
 $q \to r$
 $\cdot r$

Contradiction Rule

$$\sim p \rightarrow c(ontradiction)$$

Universal Rules of Inference

Only modus ponens, modus tollens, and transitivity have universal versions in the lecture notes.

Implicit Quantification

The notation $P(x) \implies Q(x)$ means that every element in the truth set of P(x) is in the truth set of Q(x), or equivalently, $\forall x, P(x) \rightarrow Q(x)$.

The notation $P(x) \iff Q(x)$ means that P(x)and Q(x) have identical truth sets, or equivalently, $\forall x, P(x) \leftrightarrow Q(x).$

Implication Law

$$p \to q \equiv \sim p \vee q$$

Universal Instantiation

If some property is true of everything in a set, then it is true of any particular thing in the set.

Universal Generalization

If P(c) must be true, and we have assumed nothing about c, then $\forall x, P(x)$ is true.

Regular Induction

$$P(0)$$

$$\forall k \in \mathbb{N}, P(k) \to P(k+1)$$

Epp T2.1.1 Logical Equivalences

Commutative Laws

$$p \land q \equiv q \land p$$
$$p \lor q \equiv q \lor p$$

Associative Laws

$$(p \land q) \land r \equiv p \land (q \land r)$$
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

Distributive Laws

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

Identity Laws

Negation Laws

$$p \wedge \mathbf{true} \equiv p$$

 $p \vee \mathbf{false} \equiv p$

$$p \lor \sim p \equiv \mathbf{true}$$

$$p \land \sim p \equiv \mathbf{false}$$

Double Negative Law

$$\sim (\sim p) \equiv p$$

Idempotent Laws

$$p \wedge p \equiv p$$

$$p \lor p \equiv p$$

Universal Bound Laws

$$p \vee \mathbf{true} \equiv \mathbf{true}$$

$$p \land \mathbf{false} \equiv \mathbf{false}$$

De Morgan's Laws

$$\sim (p \land q) \equiv \sim p \lor \sim q$$
$$\sim (p \lor q) \equiv \sim p \land \sim q$$

Absorption Laws

$$p \lor (p \land q) \equiv p$$
$$p \land (p \lor q) \equiv p$$

Negations of true and false

Definition 2.2.1 (Conditional)

$$\sim {f true} \equiv {f false}$$

\sim false \equiv true

If p and q are statement variables, the conditional of qby p is "if p then q" or "p implies q", denoted $p \to q$. It is false when p is true and q is false; otherwise it is true. We call p the hypothesis (or antecedent), and qthe conclusion (or consequent).

A conditional statement that is true because its hypothesis is false is called vacuously true or true by default.

Definition 2.2.2 (Contrapositive)

The contrapositive of $p \to q$ is $\sim q \to \sim p$. Note: one

will always be equivalent to the other.

Definition 2.2.3 (Converse)

The converse of $p \to q$ is $q \to p$.

Definition 2.2.4 (Inverse)

The inverse of $p \to q$ is $\sim p \to \sim q$.

Definition 2.2.6 (Biconditional)

The biconditional of p and q is denoted $p \leftrightarrow q$ and is true if both p and q have the same truth values, and is false if p and q have opposite truth values.

Definition 2.2.7 (Necessary & Sufficient)

"r is sufficient for s" means $r \to s$, "r is necessary for s" means $\sim r \rightarrow \sim s$ or equivalently $s \rightarrow r$.

Definition 2.3.2 (Sound & Unsound Arguments)

An argument is called sound, iff it is valid and all its premises are true.

Definition 3.1.2 (Universal Statement)

A universal statement is of the form

$$\forall x \in D, Q(x)$$

It is defined to be true iff Q(x) is true for every x in D. It is defined to be false iff Q(x) is false for at least one x in D.

Definition 3.1.3 (Existential Statement)

A existential statement is of the form

$$\exists x \in D \text{ s.t. } Q(x)$$

It is defined to be true iff Q(x) is true for at least one xin D. It is defined to be false iff Q(x) is false for all x in D.

Theorem 3.1.6 (Equivalent Forms of Universal and Existential State.)

By narrowing \mathcal{U} to be the domain D consisting of all values of the variable x that makes P(x) true,

$$\forall_{x \in \mathcal{U}}, P(x) \implies Q(x) \equiv \forall_{x \in D}, Q(x)$$

Similarly,

$$\exists x \text{ s.t. } P(x) \land Q(x) \equiv \exists x \in D \text{ s.t. } Q(x)$$

Theorem 3.2.1 (Negation of Universal State.) The negation of a statement of the form

$$\forall x \in D, P(x)$$

is logically equivalent to a statement of the form

$$\exists x \in D \text{ s.t. } \sim P(x)$$

Theorem 3.2.2 (Negation of Existential State.) The negation of a statement of the form

$$\exists x \in D \text{ s.t. } P(x)$$

is logically equivalent to a statement of the form

$$\forall x \in D, \sim P(x)$$

Note: for negation of ∃!, consider

$$\exists ! x \text{ s.t. } P(x) \equiv \exists x \text{ s.t. } (P(x) \land (\forall_{y \in \mathcal{U}} P(y) \rightarrow (y = x))$$

Theorem 3.2.4 (Vacuous Truth of Universal

In general, a statement of the form

$$\forall x \in D, P(x) \to Q(x)$$

is called vacuously true/true by default iff P(x) is Definition 6.3.8 (Non-symmetric Difference) **false** for every x in D

Sets

Definition 6.1.1 (Subsets & Supersets)

S is a subset of T if all the elements of S are elements of T, denoted $S \subseteq T$. Formally,

$$S \subseteq T \longleftrightarrow \forall x \in S(x \in T)$$

Definition 6.2.1 (Empty Set)

An empty set has no element, and is denoted \emptyset or $\{\}$. Formally, where \mathcal{U} is the universal set:

$$\forall Y \in \mathcal{U}(Y \not\in \varnothing)$$

Epp T6.24

An empty set is a subset of all sets.

$$\forall S, S \text{ is a set}, \varnothing \subseteq S$$

Definition 6.2.2 (Set Equality)

Two sets are equal iff they have the same elements.

Proposition 6.2.3

For any two sets X, Y, X and Y are subsets of each other iff X = Y. Formally,

$$\forall X, Y ((X \subseteq Y \land Y \subseteq X) \longleftrightarrow X = Y)$$

Epp C6.2.5 (Empty Set is Unique)

It's what it says.

Definition 6.2.4 (Power Set)

The power set of a set S denoted $\mathcal{P}(S)$, or 2^S ; is the set whose elements are all possible subsets of S. Formally,

$$\mathcal{P}(S) = \{X \mid X \subseteq S\}$$

Theorem 6.3.1

If a set X has n elements, $n \geq 0$, then $\mathcal{P}(X)$ has 2^n elements.

Definition 6.3.1 (Union)

Let S be a set of sets. T is the union of sets in S, iff each element of T belongs to some set in S. Formally,

$$T = \bigcup S = \bigcup_{X \in S} X = \{y \in \mathcal{U} \mid \exists X \in S(y \in X)\}$$

Definition 6.3.3 (Intersection)

Let S be a non-empty set of sets. T is the intersection of sets in S, iff each element of T also belongs to all the sets in S. Formally,

$$T = \bigcap S = \bigcap_{X \in S} X$$
$$= \{ y \in \mathcal{U} \mid \forall X ((X \in S) \to (y \in X)) \}$$

Definition 6.3.5 (Disjoint)

Let S, T be sets. S and T are disjoint iff $S \cap T = \emptyset$.

Definition 6.3.6 (Mutually Disjoint)

Let V be a set of sets. The sets $T \in V$ are mutually disjoint iff every two distinct sets are disjoint. Formally,

$$\forall X, Y \in V(X \neq Y \to X \cap Y = \emptyset)$$

Definition 6.3.7 (Partition)

Let S be a set, and V a set of non-empty subsets of S. Then V is a partition of S iff

- 1. The sets in V are mutually disjoint
- 2. The union of sets in V equals S

Let S, T be two sets. The (non-symmetric) difference of S and T denoted S-T or $S \setminus T$ is the set whose elements belong to S and do not belong to T. Formally,

$$S - T = \{ y \in \mathcal{U} \mid y \in S \land y \not\in T \}$$

This is analogous to subtraction for numbers.

Definition 6.3.10 (Set Complement)

Let $A \subseteq \mathcal{U}$. Then, the complement of A denoted \overline{A} is

Set Properties

Let A, B, C be sets, some properties are:

- $\bigcup \varnothing = \bigcup_{A \in \varnothing} A = \varnothing$
- $\bigcup \{A\} = A$
- Commutative Laws: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- Associative Laws: $A \cup (B \cup C) = (A \cup B) \cup C$. $A \cap (B \cap C) = (A \cap B) \cap C$
- Distributive Laws: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Identity Laws: $A \cup \emptyset = A$, $A \cap \mathcal{U} = A$
- Complement Laws: $A \cup \overline{A} = \mathcal{U}, A \cap \overline{A} = \emptyset$
- Double Complement Law: $\overline{(\overline{A})} = A$
- Idempotent Laws: $A \cup A = A$, $A \cap A = A$
- Universal Bound Laws: $A \cup \mathcal{U} = \mathcal{U}$. $A \cap \emptyset = \emptyset$
- De Morgan's Laws: $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}$
- Adsorption Laws: $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$
- Set Difference Law: $A B = A \cap \overline{B}$
- $\overline{\mathcal{U}} = \emptyset$, $\overline{\emptyset} = \mathcal{U}$
- $A \subseteq B \leftrightarrow A \cup B = B \leftrightarrow A \cap B = A$

Functions

Definition 7.1.1 (Function)

Let f be a relation such that $f \subseteq S \times T$. Then f is a function from S to T denoted $f: S \to T$ iff

$$\forall x \in S, \exists ! y \in T(x \ f \ y)$$

(Intuitively, this means that every element in S must have exactly one 'outgoing arrow', AND the 'arrow' must land in T.)

Definitions 7.1.[2-5]

Let $f: S \to T$ be a function, $x \in S$ and $y \in T$ such that f(x) = y; $U \subseteq S$, and $V \subseteq T$.

x is a pre-image (7.1.2) of y.

The inverse image of the element (7.1.3) y is the set of all its pre-images, i.e. $\{x \in S \mid f(x) = y\}$.

The inverse image of the set (7.1.4) V is the set that contains all the pre-images of all the elements of V, i.e. $\{x \in S \mid \exists y \in V(f(x) = y)\}.$

The restriction (7.1.5) of f to U is the set $\{(x,y)\in$ $U \times T \mid f(x) = y$.

Definition 7.2.1 (Injective, or One-to-one)

Let $f: S \to T$ be a function. f is injective (or one-to-

 $\forall y \in T, \forall x_1, x_2 \in S((f(x_1) = y \land f(x_2) = y) \to x_1 = x_2)$ (Intuitively, this means that every element in T has at most one 'incoming arrow'.)

Definition 7.2.2 (Surjective, or Onto)

Let $f: S \to T$ be a function. f is surjective (or onto) iff $\forall u \in T, \exists x \in S(f(x) = u)$

(Intuitively, this means that every element in T has at least one 'incoming arrow'.)

Definition 7.2.3 (Bijective)

A function is bijective (or is a bijection) iff it is injective and subjective.

(Intuitively, this means that every element in T has exactly one incoming arrow.)

Definition 7.2.4 (Inverse)

Let $f: S \to T$ be a function and let f^{-1} be the inverse relation of f from T to S. Then f is bijective iff f^{-1} is a function.

(Note: f^{-1} is defined but not necessary a function. When $A \subseteq T$, $f^{-1}(A)$ means finding all the preimages of each image in A, and this is not a function if the f is not bijective.)

Definition 7.3.1 (Composition)

Let $f: S \to T$, $q: T \to U$ be functions. The composition of f and a denoted $a \circ f$ is a function from S to U.

Definition 7.3.2 (Identity)

The identity function on a set A, \mathcal{I}_A is defined by,

$$\forall x \in A(\mathcal{I}_A(x) = x)$$

Proposition 7.3.3

Let $f:A\to A$ be an injective function of A. Then $f^{-1} \circ f = \mathcal{I}_A$.

Inclusive Map

Let B be a subset of A. Then function $\iota_B^A: B \to A; b \mapsto b$ is called the **inclusive map** of B in A

Equality of Functions Two functions f and g are equal, denoted f = g, iff:

- the domains of f and g are equal;
- the codomains of f and g are equal;
- f(x) = q(x) for all x in their domains

Properties of Composite Functions

Let $f: A \to B, g: B \to C$ and $h: C \to D$ to be functions. Then

- $h \circ (q \circ f) = (h \circ q) \circ f$
- If f and g are injective, $g \circ f$ is injective.
- If f and g are surjective, $g \circ f$ is surjective.
- If $a \circ f$ is injective, then f is injective.
- If $g \circ f$ is surjective, then g is surjective.

Cantor-Bernstein Theorem

Let $f: A \to B, g: B \to A$ be injective functions. Then \bullet $(a|1) \to a = \pm 1$ there exists a bijective function $h: A \to B$

Recursion

First-order Recurrence Relation

Let $k, d \in \mathbb{R} with k \neq 0$. Suppose that the sequence \bullet $(a|b) \rightarrow (ac|bc)$ a_1, a_2, \ldots of integers satisfies

$$a_{n+1} = ka_n + d$$

for all $n \in \mathbb{Z}^+$. Then

$$a_n = \begin{cases} k^{n-1}a_1 + \frac{k^{n-1}-1}{k-1}d, & \text{if } k \neq 1; \\ a_1 + (n-1)d, & \text{if } k = 1 \end{cases}$$

Second-order Recurrence Relation

Let $s, p \in \mathbb{R}$ with $p \neq 0$ and $s^2 > -4p$. Suppose that the sequence a_1, a_2, \ldots of integers satisfies

$$a_{n+2} = sa_{n+1} + pa_n$$

for all $n \in \mathbb{Z}^+$. Let α and β be the (real) roots of the quadratic equation $x^2 - sx - p = 0$. Then

$$a_n = \begin{cases} A\alpha^n + B\beta^n, & \text{if } \alpha \neq \beta; \\ (Cn + D)\alpha^n, & \text{if } \alpha = \beta \end{cases}$$

for all $n \in \mathbb{Z}^+$, where $A, B, C, D \in \mathbb{R}$ satisfy

$$\begin{cases} A\alpha + B\beta = a_1 \\ A\alpha^2 + B\beta^2 = a_2 \end{cases} \text{ and } \begin{cases} (C+D)\alpha = a_1 \\ (2C+D)\alpha^2 = a_2 \end{cases}$$

Recursively Defined Sets

A recursively defined set consists of following components:

- 1. Base: A statement that certain object is in the set. (e.g. $3 \in S$)
- 2. Recursion: A collection of rules saying how to form new objects that is in the set from those already known to be in the set. (e.g. $\forall x, y \in$ $S, x + y \in S$
- 3. Restriction: A statement that no object belong to the set other those from base and recursion.

Number Theory

Properties (of Numbers)

Closure, i.e.

$$\forall x, y \in \mathbb{Z}, \ x + y \in \mathbb{Z}, \ \text{and} \ xy \in \mathbb{Z}$$

Commutativity, i.e.

$$a+b=b+a$$
 and $ab=ba$

Distributivity, i.e.

$$a(b+c) = ab + ac$$
 and $(b+c)a = ba + ca$

Trichotomy, i.e.

$$(a < b) \oplus (b < a) \oplus (a = b)$$

(Can be used without proof)

Definition 1.3.1 (Divisibility)

If n and d are integers and $d \neq 0$,

$$d|n\iff \exists k\in\mathbb{Z} \text{ s.t. } n=dk$$

We must take note that k can be 0.

Example/Lemma on Divisibility $\forall a, b, c \in \mathbb{Z},$

- $(1|a) \wedge (a|a) \wedge (a|0)$
- $(0|a) \rightarrow a = 0$
- $(a|b) \leftrightarrow (-a|b) \leftrightarrow (a|-b)$
- $(a|b) \wedge (b|a) \rightarrow (a=b \vee a=-b)$
- $(a|b) \wedge (b|c) \rightarrow (a|c)$
- $(ac|bc) \land (c \neq 0) \rightarrow (a|b)$
- $(a|b) \land (b \neq 0) \rightarrow (|a| < |b|)$

Proposition 1.3.2 (Linear Combination)

 $\forall a, b, c \in \mathbb{Z}, \ a|b \land a|c \rightarrow \forall x, y \in \mathbb{Z}, \ a|(bx + cy)$

If a divides b and c, then it also divides their linear combination (bx + cy).

b-adic Expansion

Let $b, n \in \mathbb{Z}^+$ with $b \geq 2$. We say that n has a b-adic expansion/decomposition if there exist $k \in \mathbb{Z}^+, a_0, a_1, \ldots, a_k \in \mathbb{Z}$ with $1 \leq a_k < b$ and $0 \leq a_0, a_1, \ldots, a_{k-1} < b$ such that

$$n = a_0 b^0 + a_1 b^1 + \dots + a_k b^k$$

in which case, $a_0b^0 + a_1b^1 + \cdots + a_kb^k$ is the *b*-adic expansion of *n*. This expansion is **unique**

Representation of Integers (Algorithm for b-adic Expansion)

Given any positive integer n and base b, repeatedly apply the Quotient-Remainder Theorem to get.

$$n = bq_0 + r_0$$

$$q_0 = bq_1 + r_1$$

$$q_1 = bq_2 + r_2$$

$$\dots$$

$$q_{m-1} = bq_m + r_m$$

The process stops when $q_m = 0$. Eliminating the quotients q_i we get,

$$n = r_m b^m + r_{m-1} b^{m-1} + \dots + r_1 b + r_0$$

Which may be represented compactly in base b as a sequence of the digits r_i ,

$$n = (r_m r_{m-1} \cdots r_1 r_0)_b$$

Theorem 4.4.1 (Quotient-Remainder Theorem)

Given any integer a and any positive integer b, there exist unique integers q and r such that

$$a = bq + r$$
 and $0 \le r < b$

Definition 4.5.1 (Greatest Common Divisor)

Let a and b be integers, not both zero. The greatest common divisor of a and b, denoted $\gcd(a,b)$, is the integer d satisfying

1.
$$d \mid a \text{ and } d \mid b$$

2. $\forall c \in \mathbb{Z} ((c \mid a) \land (c \mid b) \rightarrow c < d)$

Greatest Common Divisor Example $\forall a, b \in \mathbb{Z} \land (a \neq 0),$

- gcd(a,0) = |a| = gcd(a,a)
- $(a|b) \to \gcd(a,b) = a$
- gcd(a, b) = gcd(|a|, |b|)

Proposition 4.5.2 (Existence of gcd)

For any integers a, b, not both zero, their gcd exists and is unique.

Theorem 4.5.3 (Bézout's Identity)

Let a, b be integers, not both zero, and let $d = \gcd(a, b)$. Then there exists integers x, y such that

$$ax + by = d$$

Or, the gcd of two integers is some linear combination of the said numbers, where x, y above have multiple solution pairs once a solution pair (x,y) is found. Also solutions, for any integer k,

$$(x + \frac{kb}{d}, y - \frac{ka}{d})$$

*Epp T8.4.8 (Euclid's Lemma)

For all $a, b, c \in \mathbb{Z}$, if gcd(a, c) = 1 and $a \mid bc$, then $a \mid b$.

*Epp Lemma 4.8.2 (modified)

If $a, b \in \mathbb{Z}^+$, and $q, r \in \mathbb{Z}$ s.t. r = a - bq, then

$$\gcd(a,b) = \gcd(b,r)$$

In particular, we have:

$$gcd(a, b) = gcd(b, a \mod b)$$

Euclidean Algorithm

By applying **Epp L4.8.2** we can find gcd of $a, b \in \mathbb{Z}$ (not both 0) using the following algorithm:

- 1. while not $(a \mod b = 0)$ do
 - 1.1 $r := a \mod b$
 - $1.2 \ a := b$
 - 1.3 b := r
- 2. enddo
- 3. return |b|;

Corollary on GCD

Let $a, b \in \mathbb{Z}$ (not both 0). We have:

- 1. Every common divisor of a and b divides gcd(a, b)
- 2. $gcd(a, b) = min\{n \in \mathbb{Z}^+ | \exists x, y \in \mathbb{Z}(n = ax + by)\}.$ That is, gcd(a, b) is the smallest positive integer linear combination of a and b.

Proposition 4.5.5

For any integers a, b, not both zero, if c is a common divisor of a and b, then $c \mid \gcd(a, b)$.

Definition 4.2.1 (Prime number)

$$n \text{ is prime } \iff \forall r, s \in \mathbb{Z}^+$$

 $n = rs \Rightarrow$

$$(r=1 \land s=n) \lor (r=n \land s=1)$$

$$n \text{ is composite } \iff \exists r,s \in \mathbb{Z}^+ \text{ s.t.}$$

$$n=rs \; \land \;$$

$$(1 < r < n) \land (1 < s < n)$$

Proposition 4.2.2

For any two primes p and p',

$$p \mid p' \rightarrow p = p'$$

Theorem 4.2.3

If p is a prime and x_1, x_2, \dots, x_n are any integers s.t. $p \mid x_1 x_2 \dots x_n$, then $p \mid x_i$ for some $x_i, i \in \{1, 2, \dots, n\}$.

Fundamental Theorem of Arithmetic

Given any integer n > 1

$$\exists k \in \mathbb{Z}^+,$$

$$\exists p_1, p_2, \cdots, p_k \in \text{ primes},$$

$$\exists e_1, e_2, \cdots, e_k \in \mathbb{Z}^+,$$

such that

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$

and any other expression for n as a product of prime numbers is identical, except perhaps for the order in which the factors are written.

Epp Proposition 4.7.3

For any $a \in \mathbb{Z}$ and any prime p,

$$p\mid a\to p\nmid (a+1)$$

Epp T4.7.4 (Infinitude of Primes)

The set of primes is infinite.

Definition 4.5.4 (Relatively Prime/Coprime)

Integers a and b are relatively prime (or coprime) iff gcd(a, b) = 1.

Definition 4.3.1 (Lower Bound)

An integer b is said to be a lower bound for a set $X \subseteq \mathbb{Z}$ if b < x for all $x \in X$.

Does not require b to be in X.

Theorem 4.3.2 (Well Ordering Principle)

If a non-empty set $S\subseteq \mathbb{Z}$ has a lower bound, then S has a least element.

Note three conditions: $|S|>0,\,S\subseteq\mathbb{Z},$ and S has lower bound.

Likewise, if ... upper bound ... has a greatest element.

Proposition 4.3.3 (Uniqueness of least element) If a set S has a least element, then the least element is

If a set S has a least element, then the least element is unique.

Proposition 4.3.4 (Uniqueness of greatest e.)

If a set S has a greatest element, then the greatest element is unique.

Definitoin 4.7.1 (Congruence modulo)

Let $m, z \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$. We say that m is congruent to n modulo d and write

$$m \equiv n \pmod{d}$$

iff

$$d \mid (m-n)$$

More concisely.

$$m \equiv n \pmod{d} \iff d \mid (m-n)$$

Epp T8.4.1 (Modular Equivalences)

Let $a, b, n \in \mathbb{Z}$ and n > 1. The following statements are all equivalent,

- 1. n | (a b)
- 2. $a \equiv b \pmod{n}$
- 3. a = b + kn for some $k \in \mathbb{Z}$
- 4. a and b have the same non-negative remainder when divided by n
- 5. $a \mod n = b \mod n$

Epp T8.4.3 (Modulo Arithmetic)

Let $a, b, c, d, n \in \mathbb{Z}, n > 1$, and suppose

$$a \equiv c \pmod{n}$$
 and $b \equiv d \pmod{n}$

Then

1. $(a+b) \equiv (c+d) \pmod{n}$

2. $(a-b) \equiv (c-d) \pmod{n}$

3. $ab \equiv cd \pmod{n}$ 4. $a^m \equiv c^m \pmod{n}$, for all $m \in \mathbb{Z}^+$

Lemmas on Modulo Congruences

Let $a,b,c,n\in\mathbb{Z},\ n>0.$ Suppose that $ac\equiv bc\ (\mathrm{mod}\ n).$ Then

$$a \equiv b \pmod{\frac{n}{\gcd(c,n)}}$$

Also, $\exists x \in \mathbb{Z} \text{ s.t. } ax \equiv b \pmod{n} \text{ iff. } \gcd(a,n)|b.$

This means, when we assume $gcd(a, n)|b, \forall x \in \mathbb{Z}$, we have

$$ax \equiv b \pmod{n} \Leftrightarrow \frac{a}{\gcd(a,n)}x \equiv \frac{b}{\gcd(a,n)} \pmod{\frac{n}{\gcd(a,n)}}$$

Epp Corollary 8.4.4

Let $a, b, c, d, n \in \mathbb{Z}, n > 1$, then

$$ab \equiv [(a \bmod n)(b \bmod n)] \pmod n$$

or equivalently,

$$ab \mod n = [(a \mod n)(b \mod n)] \mod n$$

In particular, if m is a positive integer, then

$$a^m \equiv [(a \bmod n)^m] \pmod n$$

Definition 4.7.2 (Multiplicative inv. modulo n)

For any integers a, n with n > 1, if an integer s is such that $as \equiv 1 \pmod{n}$, then s is the multiplicative inverse of a modulo n. We may write s as a^{-1} .

Because the commutative law still applies in modulo arithmetic, we also have

$$a^{-1}a \equiv 1 \pmod{n}$$

Multiplicative inverses are not unique. If s is an inverse, then so is (s + kn) for any integer k.

Corollary on m. inverse

Let $a, n \in \mathbb{Z}$ with n > 0. Suppose that a and n are coprime and let a' be a multiplicative inverse of a modulo n. Then

$$\forall x \in \mathbb{Z}(ax \equiv b \pmod{n} \Leftrightarrow x \equiv a'b \pmod{n})$$

Theorem 4.6.3 (Existence of multiplicative inverse)

For any integer a, its multiplicative inverse modulo n where n > 1, a^{-1} , exists iff a and n are coprime.

Finding the Multiplicative Inverse/Extended Euclidean Algorithm

For example, to find the multiplicative inverse of 5 mod 18.

$$18 = 3 \times 5 + 3$$

 $5 = 1 \times 3 + 2$
 $3 = 1 \times 2 + 1$

 $1 = 1 \times 1 + 0$

So

$$1 = 1 \times 1 + 0 = 1$$

$$= 1(3 - 1 \times 2) = 3 - 2$$

$$= 3 - (5 - 3) = 2 \times 3 - 5$$

$$= 2(18 - 3 \times 5) - 5 = 2 \times 18 - 7 \times 5$$

$$1 - 2 \times 18 = -7 \times 5$$

$$1 - 2 \times 18 \equiv -7 \times 5 \pmod{18}$$

$$1 \equiv -7 \times 5 \pmod{18}$$

Therefore, we have $5^{-1} \mod 18 = -7$, or equivalently under modulo 11.

Corollary 4.7.4 (Special case: n is prime)

If n = p is a prime number, then all integers a in the range 0 < a < p have multiplicative inverses modulo p.

Epp T8.4.9 (Cancellation Law for mod. arith.)

For all $a, b, c, n \in \mathbb{Z}$, n > 1, and a and n are coprime,

$$ab \equiv ac \pmod{n} \to b \equiv c \pmod{n}$$

Relations

Definition

A **relation** R from A to B is a subset of $A \times B$. Function can be thought as special cases of relations.

Domain of R is the set $a \in A | \exists b \in BaRb$ **Range** of R is the set $b \in B | \exists a \in AaRb$

Inverse of R, denoted R^{-1} , is the relation from B to A defined by

$$R^{-1} = \{(b, a) \in B \times A | aRb\}$$

We say that a binary relation R on A is:

- reflexive iff. $\forall x \in A, xRx$
- symmetric iff. $\forall x, y \in A, (xRy \rightarrow yRx)$
- transitive iff. $\forall x, y, z \in A, (xRy \land yRz \rightarrow xRz)$
- an equivalence relation iff. it satisfies all 3 above

Equivalence Classes

Let R be an equivalence relation on A (assumed nonempty). For each $a \in A$, the equivalence class of a with respect to R, denoted [a], is the set

$$[a] = \{x \in A | aRx\}$$

The set of all equivalence classes of R is denoted as A/R.

Any two distinct equivalence classes of an equivalence relation are disjoint. Also, A/R is a partition of A.

Every partition is a set of equivalence classes. That is, let $P \subseteq \mathcal{P}(A)$ be a partition of A, there exist a equivalence relation R s.t. A/R = P.

Partial Order

Keywords: partial order, \leq , Hasse diagram Refer to Lecture Notes 9 (IX), part II.

Counting and Probability

Application to Decimal Expansions of Fractions

By using pigeonhole principle, we can prove that the decimal expansion of any rational number either terminates or repeats.

Generalized Pigeonhole Principle

For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k, if for each $y \in Y$, $f^{-1}(\{y\})$ has at most k elements, then X has at most km elements. In other words, $n \leq km$.

Repetition Allowed - Combination If order does not matter (C) and repetition is allowed, we use:

$$\binom{k+n-1}{k}$$

Pascal's Formula

Suppose n and r are positive integers with $r \leq n$. Then

$$\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$$

Binomial Theorem

Given $a, b \in \mathbb{R}$ and $n \in \mathbb{Z}_{>0}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Consider a = b = 1, we have:

$$\binom{n}{0} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$$

Linearity of Expectation

For random variable X and Y (which can be dependent).

$$E[X+Y] = E[X] + E[Y]$$

Conditional Probability

$$P(A \cap B) = P(B|A) \cdot P(A)$$

Bayer's Theorem

Suppose that a sample space S is a union of mutually disjoint events $B_1, B_2, B_3, \ldots, B_n$.

Suppose A is an event in S, and suppose A and all B_i have non-zero probabilities.

If k is an integer with $1 \le k \le n$, then

$$P(B_k|A) = \frac{P(A|B_k) \cdot P(B_k)}{P(A|B_1) \cdot P(B_1) + \dots + P(A|B_n) \cdot P(B_n)}$$

Independent Events

Two events A and B are independent iff. $P(A \cap B) = P(A) \cdot P(B)$.

We can observe that P(A|B) = P(A).

We must take note that pairwise independent is different from mutually independent. $A,\ B$ and C are 3 events, they are pairwise independent if they satisfy condition 1-3 below. They are mutually independent if they satisfy all 4.

- 1. $P(A \cap B) = P(A) \cdot P(B)$
- 2. $P(A \cap C) = P(A) \cdot P(C)$
- 3. $P(B \cap C) = P(B) \cdot P(C)$
- 4. $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$

Important: Knowing 1-3 cannot deduct 4 above, and the converse (knowing 4 cannot deduct 1-3) is also applicable.

Graphs and Tree

Definitions

- graph, edges, endpoints, connect, vertices, adjacent XII-9
- directed graph XII-12
- simple graph XII-19
- complete (bipartite) graph XII-20/21
- walk, trail, path, closed walk, circuit/cycle, simple circuit XII-34

- connectedness XII-37
- Euler Circuit XII-44 (Existence condition: XII-48: Every vertex has positive even degree)
- Euler Trail XII-49 (Existence condition: XII-49)
- Hamiltonian Circuit XII-56 (properties: XII-61)
- matrices of graph (calculating walks) XII-66
- tree, trivial tree XIII-3
- rooted tree, height, level XIII-23
- child, sibling, parent, ancestor, descendent XIII-24
- (full) binary tree XIII-27
- spanning tree XIII-52

Handshake Theorem

Total degree of $G = 2 \times \text{(the number of edges of } G)$

Theorem 10.5.4(XIII-19)

If G is a connected graph with n vertices and n-1 edges, then G is a tree.

Full Binary Tree Theorem

If T is a full binary tree with n internal vertices, then T has a total of 2k+1 vertices and has k+1 terminal vertices.

Theorem 10.6.2(XIII-36)

A binary tree with height h has at most 2^h terminal vertices.

Minimum spanning tree

Kruskal's Algo (XIII-57): Add edges in order of low weight to high weight

Prim's Algo (XIII-62): Choose a starting point, then add edges of the least weight connecting the part of the tree and the part not in the tree