

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No.: 10/627,893
First Named Applicant: Eric C. Hannah
Filed: July 25, 2003
Art Unit: 2818
Examiner: Hoai V. Ho
Attorney Docket No.: 42390.P12034D2 (as amended)
Customer No.: 08791
For: **WRITE-ONCE POLYMER MEMORY WITH E-BEAM WRITING AND READING**

PETITION TO WITHDRAW NOTICE OF OMITTED ITEMS

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

This petition is in response to a Notice of Omitted Items dated October 12, 2004. This notice was filed for applicant's omission of pages one (1) and two (2) of the Specification, with the filing of the patent application. The aforementioned application was filed with a cover page entitled "PATENT APPLICATION, INITIAL INFORMATION DATA SHEET" ("page 1") as well as a subsequent page "2" that is entitled "REPRESENTATIVE INFORMATION". A copy of the Specification as it was filed and Notice of Omitted Items, as well as a petition fee under 37 CFR 1.17(h) are enclosed herewith.

APPLICANT HEREBY PETITIONS TO WITHDRAW NOTICE OF OMITTED ITEMS IN THIS NON-PROVISIONAL APPLICATION.

Eric C. Hannah
Appl. No. 10/627,893

In support of this petition, Applicant encloses the following:

1. Evidence that the Specification was filed in its entirety with the USPTO:

A. Date of Receipt and Express Mail date of deposit (37 CFR 1.6.), which was deposited on July 25, 2003.

B. Copy of Non-Provisional Application as it was filed.

2. Copy of the Notice of Omitted Items in a Non-provisional Application mailed on

October 12, 2004

3. Petition Fee under 37 CFR 1.17(h): \$130.00

Applicant is enclosing the evidence listed above in support of this Petition to Withdraw the Notice of Omitted Items in this Application.

Respectfully submitted,

Paul A. Mendonsa
Registration No. 42,879
(503) 439-8778

Date: December 13, 2004

Enclosures

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail with sufficient postage in an envelope addressed to Commissioner for Patents, P.O. Box 1450 Alexandria, VA 22313 on.

12/13/04

Rachael Brown

Bob

Signature _____ Date _____

12/13/04

Date _____

TRANSMITTAL FORM

(to be used for all correspondence after initial filing)

Total Number of Pages in This Submission	Application No.	10/627,893
	Filing Date	July 25, 2003
	First Named Inventor	Eric C. Hannah
	Art Unit	2818
	Examiner Name	Hoai V. Ho
	Attorney Docket Number	42P12034D2

ENCLOSURES (check all that apply)

<input checked="" type="checkbox"/> Fee Transmittal Form	<input type="checkbox"/> Drawing(s)	<input type="checkbox"/> After Allowance Communication to Group
<input checked="" type="checkbox"/> Fee Attached	<input type="checkbox"/> Licensing-related Papers	<input type="checkbox"/> Appeal Communication to Board of Appeals and Interferences
<input type="checkbox"/> Amendment / Response	<input checked="" type="checkbox"/> Petition	<input type="checkbox"/> Appeal Communication to Group (Appeal Notice, Brief, Reply Brief)
<input type="checkbox"/> After Final	<input type="checkbox"/> Petition to Convert a Provisional Application	<input type="checkbox"/> Proprietary Information
<input type="checkbox"/> Affidavits/declaration(s)	<input type="checkbox"/> Power of Attorney, Revocation Change of Correspondence Address	<input type="checkbox"/> Status Letter
<input type="checkbox"/> Extension of Time Request	<input type="checkbox"/> Terminal Disclaimer	<input checked="" type="checkbox"/> Other Enclosure(s) (please identify below):
<input type="checkbox"/> Express Abandonment Request	<input type="checkbox"/> Request for Refund	-Copy of Non-Provisional Application as filed
<input type="checkbox"/> Information Disclosure Statement	<input type="checkbox"/> CD, Number of CD(s)	-Return Receipt Postcard
<input type="checkbox"/> PTO/SB/08		
<input type="checkbox"/> Certified Copy of Priority Document(s)		
<input type="checkbox"/> Response to Missing Parts/ Incomplete Application		
<input type="checkbox"/> Basic Filing Fee		
<input type="checkbox"/> Declaration/POA		
<input type="checkbox"/> Response to Missing Parts under 37 CFR 1.52 or 1.53		
	Remarks	

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT

Firm or Individual name	Paul A. Mendonsa, Reg. No. 42,879 BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN LLP
Signature	
Date	December 13, 2004

CERTIFICATE OF MAILING/TRANSMISSION

I hereby certify that this correspondence is being deposited with the United States Postal Service on the date shown below with sufficient postage as first class mail in an envelope addressed to: Mail Stop Petition, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Typed or printed name	Rachael L. Brown
Signature	
Date	December 13, 2004

Based on PTO/SB/21 (04-04) as modified by Blakey, Sokoloff, Taylor & Zafman (wlr) 06/04/2004.
SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

12-16-04

PETITION FEE Under 37 CFR 1.17(f), (g), & (h) TRANSMITTAL (Fees are subject to annual revision)		Complete if Known	
		Application Number	10/627,893
		Filing Date	July 25, 2003
		First Named Inventor	Eric C. Hannah
		Examiner Name	Hoai V. Ho
		Art Unit	2818
		Attorney Docket No.	42p12034D2

Send completed form to: Commissioner for Patents
P.O. Box 1450, Alexandria, VA 22313-1450

DEC 14 2004
U.S. PATENT & TRADEMARK OFFICE
RECEIVED

Enclosed is a petition filed under 37 CFR 1.17(h) that requires a processing fee (37 CFR 1.17(f), (g), or (h)).
Payment of \$130 is enclosed.

This form should be included with the above-mentioned petition and faxed or mailed to the Office using the appropriate Mail Stop (e.g., Mail Stop Petition), if applicable. *For transmittal of processing fees under 37 CFR 1.17(i), see form PTO/SB/17i.*

Payment of Fees (small entity amounts are NOT available for the petition fees)

The Commissioner is hereby authorized to charge the following fees to Deposit Account No. 02-2666:

petition fee under 37 CFR 1.17(f), (g) or (h) any deficiency of fees and credit of any overpayments

Enclose a duplicative copy of this form for fee processing

Check in the amount of \$130 is enclosed.

Petition Fees under 37 CFR 1.17(f): Fee \$400 Fee Code 1462

For petitions filed under:

§ 1.53(e) - to accord a filing date.

§ 1.57(a) - to accord a filing date.

§ 1.182 - for decision on a question not specifically provided for.

§ 1.183 - to suspend the rules.

§ 1.378(e) - for reconsideration of decision on petition refusing to accept delayed payment of maintenance fee in an expired patent.

§ 1.741(b) - to accord a filing date to an application under § 1.740 for extension of a patent term.

Petition Fees under 37 CFR 1.17(g): Fee \$200 Fee Code 1463

For petitions filed under:

§ 1.12 - for access to an assignment record.

§ 1.14 - for access to an application.

§ 1.47 - for filing by other than all the inventors or a person not the inventor.

§ 1.59 - for expungement of information.

§ 1.103(a) - to suspend action in an application.

§ 1.136(b) - for review of a request for extension of time when the provisions of section 1.136(a) are not available.

§ 1.295 - for review of refusal to publish a statutory invention registration.

§ 1.296 - to withdraw a request for publication of a statutory invention registration filed on or after the date the notice of intent to publish issued.

§ 1.377 - for review of decision refusing to accept and record payment of a maintenance fee filed prior to expiration of a patent.

§ 1.550(c) - for patent owner requests for extension of time in ex parte reexamination proceedings.

§ 1.956 - for patent owner requests for extension of time in inter partes reexamination proceedings.

§ 5.12 - for expedited handling of a foreign filing license.

§ 5.15 - for changing the scope of a license.

§ 5.25 - for retroactive license.

Petition Fees under 37 CFR 1.17(h): Fee \$130 Fee Code 1464

For petitions filed under:

§ 1.19(g) - to request documents in a form other than that provided in this part.

§ 1.84 - for accepting color drawings or photographs.

§ 1.91 - for entry of a model or exhibit.

§ 1.102(d) - to make an application special.

§ 1.138(c) - to expressly abandon an application to avoid publication.

§ 1.313 - to withdraw an application from issue.

§ 1.314 - to defer issuance of a patent.

SUBMITTED BY		Complete (if applicable)		
Name (Print/Type)	Paul A. Mendonsa	Registration No. (Attorney/Agent)	42,879	Telephone (503) 684-6200
Signature			Date	12/13/04

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NUMBER	FILING OR 371 (c) DATE	FIRST NAMED APPLICANT	ATTORNEY DOCKET NUMBER
10/627,893	07/25/2003	Eric C. Hannah	42390P12034

Michael A. Bernadicou
Blakely, Sokoloff, Taylor & Zafman LLP
Seventh Floor
12400 Wilshire Boulevard
Los Angeles, CA 90025-1030

CONFIRMATION NO. 3477
FORMALITIES LETTER

OC000000014055127

Date Mailed: 10/12/2004

NOTICE OF OMITTED ITEM(S) IN A NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

A filing date has been accorded to the above-identified nonprovisional application papers; however, the following item(s) appear to have been omitted from the application:

- Page(s) 1 & 2 of the specification (description and claims).

I. Should applicant contend that the above-noted omitted item(s) was in fact deposited in the U.S. Patent and Trademark Office (USPTO) with the nonprovisional application papers, a copy of this Notice and a petition (and \$130.00 petition fee (37 CFR 1.17(h))) with evidence of such deposit **must** be filed within **TWO MONTHS** of the date of this Notice. The petition fee will be refunded if it is determined that the item(s) was received by the USPTO.

II. Should applicant desire to supply the omitted item(s) and accept the date that such omitted item(s) was filed in the USPTO as the filing date of the above-identified application, a copy of this Notice, the omitted item(s) (with a supplemental oath or declaration in compliance with 37 CFR 1.63 and 1.64 referring to such items), and a petition under 37 CFR 1.182 (with the \$130.00 petition fee (37 CFR 1.17(h))) requesting the later filing date **must** be filed within **TWO MONTHS** of the date of this Notice.

Applicant is advised that generally the filing fee required for an application is the filing fee in effect on the filing date accorded the application and that payment of the requisite basic filing fee on a date later than the filing date of the application requires payment of a surcharge (37 CFR 1.16(e)). To avoid processing delays and payment of a surcharge, applicant should submit any balance due for the requisite filing fee based on the later filing date being requested when submitting the omitted items(s) and the petition (and petition fee) requesting the later filing date.

III. The failure to file a petition (and petition fee) under the above options (I) or (II) within **TWO MONTHS** of the date of this Notice (37 CFR 1.181(f)) will be treated as a constructive acceptance by the applicant of the application as deposited in the USPTO. **THIS TWO MONTH PERIOD IS NOT EXTENDABLE UNDER 37 CFR 1.136(a) OR (b).** In the absence of a timely filed petition in reply to this Notice, the application will maintain a filing date as of the date of deposit of the application papers in the USPTO, and original application papers (*i.e.*, the original disclosure of the invention) will include only those application papers present in the USPTO on the date of deposit.

In the event that applicant elects not to take action pursuant to options (I) or (II) above (thereby constructively electing option (III)), amendment of the specification to renumber the pages consecutively and cancel incomplete sentences caused by any omitted page(s), and/or amendment of the specification to cancel all references to any

omitted drawing(s), relabel the drawing figures to be numbered consecutively (if necessary), and correct the references in the specification to the drawing figures to correspond with any relabeled drawing figures, is required. A copy of the drawing figures showing the proposed changes in red ink should accompany with any drawing changes . Such amendment and/or correction to the drawing figures, if necessary, should be by way of preliminary amendment submitted prior to the first Office action to avoid delays in the prosecution of the application.

Replies should be mailed to: Mail Stop Missing Parts
Commissioner for Patents
P.O. Box 1450
Alexandria VA 22313-1450

A copy of this notice MUST be returned with the reply.

Customer Service Center
Initial Patent Examination Division (703) 308-1202
PART 2 - COPY TO BE RETURNED WITH RESPONSE

BACKGROUND OF THE INVENTION

1. FIELD OF INVENTION

[0001] This invention relates generally to memory systems, and more specifically to systems and methods of writing data into a polymer and reading data from the polymer using an electron beam.

2. BACKGROUND

[0002] Write-once mass storage devices presently used in computer systems are relatively large, electromechanical devices that can store tens of gigabytes of data. CD-ROM and Write-once DVD media store and access data through a read/write head above a rapidly rotating disk. The read/write head is moved radially to access data in different tracks of the rotating disk. Data transfer is limited by the speed at which the disc rotates and the speed with which the read/write head is positioned over the required track. Even with the fastest devices, these times are on the order of tens of milliseconds, because relatively large mechanical motions and large masses are involved. This time scale is orders of magnitude slower than the nanosecond time scales at which processors operate. The difference in time scales leads to periods of time when the processor is starved for data.

[0003] During the time the processor is starved for data, either valuable computing time is lost or the processor must perform another task, which also may lead to data starvation. Such data starved conditions are referred to in the art as being input/output (I/O) bound.

BEST AVAILABLE COPY

BRIEF DESCRIPTION OF THE DRAWINGS

- [0004] The present invention is illustrated by way of example and is not limited in the figures of the accompanying drawings, in which like references indicate similar elements.
- [0005] **Figure 1** illustrates a polymer memory element.
- [0006] **Figure 2** illustrates a polymer/LED configuration.
- [0007] **Figure 3** illustrates a polymer/LED memory device.
- [0008] **Figure 4** shows an alternative embodiment of a memory device.

DETAILED DESCRIPTION

[0009] In the following detailed description of embodiments of the invention, reference is made to the accompanying drawings in which like references indicate similar elements, and in which is shown by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the invention is defined only by the appended claims.

[0010] Systems and methods are disclosed to store data using a write-once polymer memory without any moving parts. In one embodiment of the present invention, an electron beam (e-beam) is used to irradiate a volume of a polymer, which corresponds to an encoded data bit location. Exposure to a high-energy e-beam changes the conductivity of the polymer, creating at least two different states of conductivity, which can be associated with the binary states of a bit e.g., "0" and "1." Reading the stored data is accomplished with a lower energy e-beam that does not alter the state of conductivity created by the high-energy e-beam during data writing. The low energy e-beam may be used according to various embodiments of the invention to read the conductivity of the polymer, which corresponds to the data stored therein. The invention is not limited to storing and reading binary data. The invention is applicable to n -ary data, however to simplify the description, the example of binary data will be

followed. Moving parts have previously limited the data seek time associated with mechanically steering a read/write head.

[0011] In one embodiment of the present invention, a cross-linked polymer layer having a high level of electrical resistance (low conductivity) is exposed to a high-energy micro-column e-beam. The high-energy e-beam damages the cross-links, which lowers the level of electrical resistance (increased conductivity). An example of such a cross-linked polymer is Poly(methyl methacrylate) (PMMA) which possesses a high electrical resistance. Exposure to the high-energy electron beam creates radiation damage, which results in many broken chemical bonds between molecules. These broken bonds can then serve as hopping sites for incident electrons, resulting in a much lower electrical resistance state than when the polymer is more fully cross-linked.

[0012] In another embodiment of the present invention, a polymer may be used that is uncross-linked in the virgin state before data writing. In this uncross-linked state the polymer is conductive. Exposure to the high-energy e-beam source creates cross-links between molecules, which then change the conductivity of the polymer, making the polymer less conductive. Carbon impregnated polymers exhibit conductivity in the uncross-linked virgin state and can be used according to this embodiment of the present invention.

[0013] The association of the binary values for data e.g., "0" or "1" is completely arbitrary with respect to the state of conductivity within the polymer layer; the invention is not limited by the association made. An extension to n -ary data may be achieved by creating more than two distinct conductivity states

within the polymer. For example, three distinct conductivity states could be associated with trinary data.

[0014] According to either embodiment of the present invention, described above, a high-energy e-beam is incident upon a polymer as shown in **Figure 1**.

Figure 1 illustrates application of the invention to a polymer memory element.

With reference to **Figure 1**, system 100 includes a polymer 110 coupled with a conductor 112 and a conductor 114. A high-energy e-beam 120 is incident upon the polymer 110. Use of the term "high-energy" is application dependant and will depend upon several system design parameters. A non-exclusive list of system design parameters influencing the term 'high-energy" includes the particular polymer, the degree of conductivity change desired, the e-beam exposure time (corresponding to the time allotted to change the conductivity of the polymer), and the volume of the data cell within the polymer. A typical range of "high-energy" is 1,000 –10,000 electron volts (eV).

[0015] The polymer 110, shown in **Figure 1**, may correspond to a data cell within an array of data cells. In a data write phase, electron e-beam 120 (at high-energy) creates a change in conductivity within the volume of polymer 110. Reading the data is accomplished by introducing current into the volume of polymer 110 via a lower energy e-beam than the energy level of the "high-energy" e-beam used for writing the data. This low-energy e-beam used for reading may be approximately 100 mill-electron volts (meV), and shall be small enough so that it will not degrade the data state of the polymer at the data bit location.

[0016] The low-energy e-beam introduces a current into a data bit location corresponding with system 100 in **Figure 1**. The conductor 112 and reference conductor 116 provide a differential conducting path, which will conduct a majority of the current indicated by 122 when the polymer 110 is highly resistive. Alternatively, when the polymer 110 is highly conductive a majority of the electrons will propagate down through polymer 110 to conductor 114. The conductor 114 and the reference conductor 116 provide a second differential conducting path for a majority of the current indicated by 124. Either one or both of the currents may be used to associate the state of conductivity within the polymer 110 with the memory state of data stored in a bit. The e-beam 120 represents either the high-energy e-beam used to write the data or the low energy e-beam used to read the data.

[0017] Once the current has been steered, according to the state of the polymer 110, many embodiments of the present invention may be used to read the current. In one embodiment of the present invention, a fixed impedance reference layer (typically with an impedance much greater than the low impedance memory state of the polymer storage layer) is attached to the polymer on the side opposite to the electron-beam. The electron-beam's current distribution is then measured differentially between the conductor 112 and the conductor 114. The current will distribute differently based on the impedance of the polymer storage layer.

[0018] In another embodiment of the present invention, polymer 110 can be electroluminescent. The high-energy e-beam 120 can be used to change the

state of electroluminescence (EL) of the polymer 110. A non-exclusive list of typical examples of electroluminescent polymers are poly(phenylene vinylene) polythiophenes, polypyridines, poly(pyridyl vinylenes), polyphenylenes and copolymers of the preceding. In one embodiment, e-beam 120 in the high-energy mode (write mode), can be used to disable the electroluminescent behavior of the polymer 110, thereby creating at least a first state of EL and a second state of EL within the polymer 110 that can be used to represent storage of data within the material. Alternatively, e-beam 120 in the high-energy write mode can be used to enable the electroluminescent behavior of the polymer 110, thereby creating at least a first state of EL and a second state of EL within polymer 110 that can be used to represent storage of data within the material.

[0019] Reading the data stored within polymer 110 (EL material) can be done with e-beam 110 in low energy (read mode). The low energy e-beam incident upon polymer 110 will cause an emission of photons when polymer 110 is enabled to be electroluminescent and will not cause an emission of photons when the electroluminescent behavior of the material has been disabled.

[0020] In another embodiment of the present invention, the system 100 (Figure 1) may be coupled with a semiconductor P-N junction as shown in Figure 2 to achieve a differential light emission system 200 corresponding to the state of conductivity within the polymer 110. Figure 2 illustrates a polymer/LED configuration. With reference to Figure 2, a P-N junction 211 is placed beneath polymer 110. The P-N junction 211 may be created from a direct band semiconductor such as those commonly made from III-V elements, e.g., GaAs,

or other electron excited light emitting structures including light emitting polymers. In one embodiment, doping is arranged so that the N-type 210 layer of the P-N junction 211 is coupled with the polymer 110 allows for easy transport of the filtered electrons into the P-N junction 211. A very thin, conductive interlayer may be used to backward bias the P-N junction. Below a P-type 212 layer of the P-N junction, a conductor 214 is placed which may be a normal metal ground pad. The conductor 214 supplies holes to the P-N junction. The material used for the conductor 214 may be selected to optimize the reflection of the light generated in the P-N junction. An advantage of using a direct-band semiconductor is that the recombination of electrons and holes can create photons without requiring phonon emission to conserve momentum. The thickness of the N-type 210 layer and the P-type 212 layer must be sufficient to support the full transition region and optimally couple to external electromagnetic modes.

[0021] In another embodiment of the present invention, differential light emission is achieved by the system 200 by varying the amplitude of the current passed by the varying conductivity of the polymer 110 between the cross-linked and damaged states. In one conductivity state 218, the polymer 110 will conduct a majority of current through its thickness to the P-N junction resulting in a maximum emission of light. The maximum emission of light may correspond to one memory state for the data stored therein. The emitted light can be sensed by photo-detector 224. In another conductivity state 216, a minimum amount of current is conducted through the polymer 110, instead the majority of the current

is "bled off" via conductor 112, as previously described resulting in a minimum emission of light from the P-N junction. The minimum emission of light may correspond to a second memory state for the data stored therein.

[0022] The polymer/P-N junction structure, shown at 200, need not be etched out from the surrounding material to allow photons to escape the P-N junction 211. The material layer (conductor 112) above the P-N junction may be made very thin. Photons can penetrate more than a micron of metal conductor thickness and much further through polymers. Therefore, the conductor 112 may be on the order of a micron or less in thickness, thereby providing a sufficient electrically conductive path while allowing photons to pass therethrough. The system 200 acts as a tiny dot illuminator when irradiated with the read e-beam, causing the P-N junction to emit light in one conductivity (memory) state while the P-N junction remains dark in another conductivity (memory) state.

[0023] An embodiment of the present invention is shown in Figure 3 illustrating a polymer/P-N junction memory device. With reference to Figure 3, one or more polymer memory data elements are indicated at a polymer/LED 324 array. A vacuum shroud 326 and an end cap 312 form a closed container (a high vacuum environment) in which electron beam source 314 emits e-beam 120, incident upon the polymer/LED 324 array. Control electronics 310 may be used in conjunction with the electron beam source 314 as needed to control the e-beam source. The e-beam 120 may be steered by means of electron lens 316 and deflection electrodes 318.

[0024] The e-beam 120 may be used to write data to the polymer/LED 324 array, as previously described, as well as to read data written therein. Accordingly, the level of light generated by the polymer/P-N junction of the data bit is measured by a sensitive photo-detector 320, by methods well known in the art. The vacuum shroud 326 can be made reflective on the inside, thereby acting as an integrating sphere for the emitted photons, which increases the signal-to-noise ratio for the measurement made by the photo-detector 320. The output of the photo-detector 320 may be amplified as required by photo amp 322. The e-beam 120 is steered across the polymer/LED 324 array to read data stored in the data bit locations corresponding to dots on the surface of polymer/LED 324. Thus, writing and reading data is accomplished without the mechanically articulated parts required by the CD-ROM and the write-once DVD. Using the teachings of the present invention, the seek time to reach any block of data is on the order is tens of microseconds.

[0025] A read-after-write capability is provided during data bit writing by the conductivity state switching within the polymer 110. During data writing with the high-energy e-beam, the impedance of the polymer 110 will change – due to the induced state change, resulting in a sudden pulse of light as electron current is passed or removed from the P-N junction. Sensing this pulse of light will provide a read-after-write capability similar to that provided by the second head in a tape drive or similar polarization shift effect in a magneto-optic disc drive.

[0026] In an alternative embodiment, the substrate (conductor 214 in Figure 2) may be made sufficiently thin or transparent to allow photons to be

emitted from the opposite side that e-beam 120 is incident upon polymer 110. This opposite side is indicated as 220 in **Figure 2** and **Figure 3**. The emitted light may be sensed from the lower side of the structure as shown in **Figure 2** at photo-detector 224a and in **Figure 3** at photo-detector 320a. The photo-detector 320a may be configured with photo-amp 322a. This arrangement has the feature of removing the electron optics from the photo-detector's field of view. One way to provide a high vacuum environment to the lower side of vacuum shroud 326 is to couple fixture 326a with vacuum shroud 326 by mating as indicated at 330a and 330b.

[0027] The e-beam 120 may be on the order of 20 nanometers in diameter. It is possible to steer the e-beam 120 through an angle of approximately 20 degrees, as will be explained in conjunction with **Figure 4**. Very small e-beam sources may be manufactured, made using silicon processes. An example of such a device is the electron micro-column made by the Sensors Actuators and Microsystems Laboratory (SAMLAB), which is part of the Institute of Microtechnology, University of Neuchâtel, located in Switzerland. These very small e-beam sources (micro-column e-beam sources) can be produced in a form factor measuring approximately three millimeters wide and approximately one millimeter high. In one embodiment, using these parameters, a data storage device may be built to store approximately a terabyte of data on a polymer/LED area of several square centimeters.

[0028] The present invention may be incorporated into various memory devices. **Figure 4** shows an alternative embodiment of a memory device 400.

With reference to **Figure 4**, a cylindrical container 412 is shown having a polymer/LED layer 324 and an electron beam source 314. The e-beam source 314 may be steered through an angle 410 as shown. Thus, data may be written to an array having approximately 200 gigabytes of data in a device occupying a volume of approximately several cubic inches. These data storage devices may be configured in an array to achieve terabyte data storage capacities.

[0029] It is expected that many other shapes and configurations of data storage devices are possible within the teachings of the present invention. For example, a cube may be configured (not shown) with polymer arrays lining the interior surfaces thereof. One or more electron beam sources may be configured within the cube, each facing an interior surface of the cube and being capable of writing and reading data stored in each polymer array.

[0030] Thus, a novel solution to electron beam recording and sensing of data bits is disclosed. Although the invention is described herein with reference to specific preferred embodiments, many modifications therein will readily occur to those of ordinary skill in the art. Accordingly, all such variations and modifications are included within the intended scope of the invention as defined by the following claims.

CLAIMS

What is claimed is:

1. A method to store a bit of data, comprising:
exposing a volume of material, having a first conductivity, to an electron beam; and
damaging cross-links in the volume of material during said exposing,
wherein the first conductivity of the volume of material is changed to a second conductivity wherein the bit of data is stored.

2. Said method of claim 1, wherein the first conductivity is associated with a first memory state of the bit of data and the second conductivity is associated with a second memory state of the bit of data.

3. Said method of claim 1, wherein the volume of material is a polymer.

4. A method to store a bit of data, comprising:
exposing a volume of material, having a first conductivity, to an electron beam; and
forming cross-links in the volume of material during said exposing,
wherein the first conductivity of the volume of material is changed to a second conductivity wherein the bit of data is stored.

5. Said method of claim 4, wherein the volume of material is a polymer.

BEST AVAILABLE COPY

6. Said method of claim 4, wherein the first conductivity is associated with a first memory state of the bit of data and the second conductivity is associated with a second memory state of the bit of data.

7. A method to read a bit of data, comprising:
exposing a layer of material, having a first side and a second side, to an electron beam having a first energy level, the layer of material having a first conductor coupled with the first side and a second conductor coupled with the second side;
inducing a first current in the first conductor and a second current in the second conductor during said exposing; and
relating the first current and the second current to memory states of the bit of data.

8. Said apparatus of claim 7, wherein the layer of material has been modified before said exposing by an electron beam having a second energy level, the second energy level being larger than the first energy level.

9. Said method of claim 7, wherein said relating associates the first current in the first conductor with the memory states.

10. Said method of claim 7, wherein said relating associates the second current in the second conductor with the memory states.
11. Said method of claim 7, wherein the first conductor is part of a differentially conducting path.
12. Said method of claim 7, wherein the second conductor is part of a differentially conducting path.
13. Said method of claim 7, wherein the layer of material is a polymer.
14. An apparatus to store a bit of data, comprising:
 - a volume of material having a first side and a second side;
 - a first conductive material disposed on said first side; and
 - a second conductive material disposed on said second side, wherein an electron beam, irradiated on said volume of material, having damaged cross-links in said volume of material wherein a conductivity of said volume of material is changed thereby.
15. Said apparatus of claim 14, wherein said volume of material is a polymer.
16. An apparatus to store a bit of data, comprising:
 - a volume of material having a first side and a second side;

a first conductive material disposed on said first side; and
a second conductive material disposed on said second side, wherein an
electron beam, irradiated on said volume of material, having formed cross-links in
said volume of material wherein a conductivity of said volume of material is
changed thereby.

17. Said apparatus of claim 16, wherein said volume of material is a polymer.

18. An apparatus to read a bit of data, comprising:

a volume of material having a first side and a second side;
a first conductive material disposed on said first side;
a second conductive material disposed on said second side;
a reference conductor; and
an electron beam source, to generate an electron beam incident upon said
volume of material to create a first current to be measured between
said first conductive material and said reference conductor and a
second current to be measured between said second conductive
material and said reference conductor.

19. Said apparatus of claim 18, further comprising an amplifier to amplify the
first current.

20. Said apparatus of claim 18, further comprising an amplifier to amplify the second current.
21. Said apparatus of claim 18, wherein said volume of material is a polymer.
22. An apparatus to read a bit of data comprising:
 - a volume of material having a first side and a second side;
 - a first conductive material disposed on said first side;
 - a P-N junction disposed on said second side;
 - a reference conductor coupled with said P-N junction; and
 - an electron beam source, to generate an electron beam incident upon said volume of material to create a first current to be measured between said first conductive material and said reference conductor and a second current to be measured between said second conductive material and said reference conductor.
23. Said apparatus of claim 22, wherein said volume of material is a polymer.
24. Said apparatus of claim 22, wherein an N-type layer of said P-N junction is coupled with said volume of material.
25. Said apparatus of claim 22, wherein said P-N junction is a direct band semiconductor.

26. Said apparatus of claim 22, further comprising a thin conductive interlayer to backwards bias said P-N junction.

27. An apparatus to read a bit of data comprising:
a volume of material having a first side and a second side;
a first conductive material disposed on said first side;
a P-N junction disposed on said second side;
an electron beam source, to generate an electron beam incident upon said first side of said volume of material to cause an emission of photons from said P-N junction; and
a photo-detector responsive to the emission of photons, wherein an output of said photo-detector to be associated with the bit of data.

28. Said apparatus of claim 27, further comprising a substantially transparent layer coupled with said P-N junction, wherein the emission of photons to pass through said substantially transparent layer.

29. Said apparatus of claim 27, wherein said volume of material is a polymer.

30. Said apparatus of claim 27, wherein said P-N junction is a direct band semiconductor.

31. Said apparatus of claim 27, further comprising an enclosure to contain said electron beam source and said volume of material, in a vacuum, to create a data storage device.
32. Said apparatus of claim 31, further comprising:
a processor coupled with said data storage device;
a system bus coupled with said processor; and
a data storage device controller to control data transfer between said data storage device and said processor.
33. Said apparatus of claim 32, further comprising a display coupled with said system bus.
34. A method to store a bit of data, comprising:
exposing a volume of material, having a first electroluminescence intensity (EL), to an electron beam; and
changing the first EL intensity to a second EL intensity during said exposing, wherein the bit of data is stored.
35. Said method of claim 34, wherein the first EL intensity is associated with a first memory state of the bit of data and the second EL intensity is associated with a second memory state of the bit of data.

36. Said method of claim 34, wherein the volume of material is a polymer.
37. Said method of claim 36, wherein the polymer is selected from the group consisting of poly(phenylene vinylene), polythiophenes, polypyridines, poly(pyridyl vinylenes) and polyphenylenes.
38. Said method of claim 36, wherein the polymer is a copolymer of said polymer selected from the group consisting of poly(phenylene vinylene), polythiophenes, polypyridines, poly(pyridyl vinylenes) and polyphenylenes.
39. An apparatus to store a bit of data comprising:
 - a volume of material having a first side and a second side;
 - a first conductive material disposed on said first side; and
 - a second conductive material disposed on said second side, wherein an electron beam to be irradiated on said volume of material to change a first electroluminescence intensity (EL) of said volume of material to a second EL wherein the bit of data is stored.
40. Said apparatus of claim 39, wherein said volume of material is a polymer.
41. Said method of claim 40, wherein said polymer is selected from the group consisting of poly(phenylene vinylene), polythiophenes, polypyridines, poly(pyridyl vinylenes) and polyphenylenes.

42. Said method of claim 40, wherein said polymer is a copolymer of said polymer selected from the group consisting of poly(phenylene vinylene), polythiophenes, polypyridines, poly(pyridyl vinylenes) and polyphenylenes.
43. An apparatus to read a bit of data comprising:
a volume of material having a first side and a second side;
a first conductive material disposed on said first side;
a second conductive material disposed on said second side;
an electron beam source, to generate an electron beam having a first energy level, incident upon said first side of said volume of material to cause an emission of photons from said volume of material; and
a photo-detector responsive to the emission of photons, wherein an output of said photo-detector to be associated with the bit of data.
44. Said apparatus of claim 43, further comprising a substantially transparent layer coupled with said second conductive material, wherein the emission of photons to pass through said substantially transparent layer.
45. Said apparatus of claim 43, wherein said volume of material is a polymer.
46. Said apparatus of claim 43, further comprising an enclosure to contain said electron beam source and said volume of material, in a vacuum, to create a data storage device.

47. Said apparatus of claim 46, further comprising:
- a processor coupled with said data storage device;
 - a system bus coupled with said processor; and
 - a data storage device controller to control data transfer between said data storage device and said processor.
48. Said apparatus of claim 47, further comprising a display coupled with said system bus.
49. A method to read a bit of data, comprising:
- exposing a first layer of polymer, having a first side and a second side, to an electron beam having a first energy level, the first layer of polymer having a first conductor coupled with the first side and a second layer of polymer coupled with the second side and a second conductor coupled with the second layer of polymer;
 - inducing a first current in the first conductor and a second current in the second conductor during said exposing; and
 - relating the first current and the second current to memory states of the bit of data.
50. Said apparatus of claim 49, wherein a conductivity of the first layer of polymer has been modified before said exposing by an electron beam having a

second energy level, the second energy level being larger than the first energy level.

51. Said method of claim 49, wherein said relating associates the first current in the first conductor with the memory states.

52. Said method of claim 49, wherein said relating associates the second current in the second conductor with the memory states.

53. Said method of claim 49, wherein the first conductor is part of a differentially conducting path.

54. Said method of claim 49, wherein the second conductor is part of a differentially conducting path.

55. An apparatus to read a bit of data, comprising:
a first volume of polymer having a first side and a second side;
a first conductive material disposed on said first side;
a second volume of polymer disposed on said second side, wherein a conductivity of said second volume of polymer remaining substantially constant;
a second conductive material disposed on said second volume of polymer;
and

an electron beam source, to cause an electron beam incident on said first volume of polymer, wherein an electron beam current distribution to be measured differentially between said first conductor and said second conductor reads the bit of data.

56. Said apparatus of claim 55, wherein an impedance of said second polymer layer is greater than an impedance of said first polymer layer.
57. Said apparatus of claim 55, further comprising an amplifier to amplify a current of the electron beam current distribution.

ABSTRACT

Storing a data bit includes exposing a volume of a polymer, having a first conductivity, to an electron beam. Exposing damages cross-links in the volume of material. A first conductivity of the polymer is changed to a second conductivity and the data is stored in the bit.

BEST AVAILABLE COPY

PATENT APPLICATION INITIAL INFORMATION DATA SHEET

INVENTOR INFORMATION

Inventor One Given Name::

Family Name::

Postal Address Line One::

Postal Address Line Two::

City::

State or Province::

Postal Zip Code::

Citizenship Country::

Eric C.
Hannah
3046 Strawberry Hill

Pebble Beach
CA
93953
USA

Inventor Two Given Name::

Family Name::

Postal Address Line One::

Postal Address Line Two::

City::

State or Province::

Postal Zip Code::

Citizenship Country::

Michael A.
Brown
16013 S36th Street

Phoenix
AZ
85048-7323
USA

CORRESPONDENCE INFORMATION

Name Line One::

Name Line Two::

Name Line Three::

Address Line One::

Address Line Two::

City::

State or Province::

Postal Zip Code::

Telephone::

Fax::

Electronic Mail::

Michael A. Bernadicou
Blakely, Sokoloff, Taylor & Zafman
LLP
12400 Wilshire Boulevard
Seventh Floor
Los Angeles
CA
90025-1030
(408) 720-8300
(408) 720-9397
mike_bernadicou@bstz.com

APPLICATION INFORMATION

Title Line One::

Title Line Two::

Title Line Three::

Total Drawing Sheets::

Formal Drawings?::

Application Type::

Docket Number::

WRITE-ONCE POLYMER
MEMORY WITH E-BEAM
WRITING AND READING

4

No

Utility

42390P12034

REPRESENTATIVE INFORMATION

Registration Number One:: **35,934**

BEST AVAILABLE COPY

Application No.:

Date Mailed: 07/25/2003 Filing Date: BS1Z Docket #: 042390.P12034D2 Atty/Sec: EHT/GDC/PIES/agp.
Docket Due Date(s): Client: INTEL CORPORATION

Title WRITE-ONCE POLYMER MEMORY WITH E-BEAM WRITING AND READING

Title WRITE-ONCE POLYMER MEMORY WITH E-BEAM WRITING AND READING

Inventor(s) Hannah, Brown

The following has been received in the U.S. Patent & Trademark Office on the date stamped hereon:

Lo

Assignee: Intel Corporation

EV325525719US

BEST AVAILABLE COPY

7125103 PES

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.