

Count Inv (A)	
1. if $(A) \in \mathbb{P}$, trivial.	
2. Letz Inv = Count Inv (left hat of A)	
3 right InV = (ount Inv (right hard of A)	
4 Split Inv = Countsplit Inv CH)	
5 return + +	
max (plit) 10 8 8 7 7 4 1 3 2	
$n/2 \times n/2 = n^2/4$	
(ovne Split InV CA)	
splitInv = 0	
j = 1	
for K=1 to n	
if clid < DGD	
1 = 1 + 1	
else	
$SplitInV = SplitInV + (\frac{n}{2} - i + 1)$	
J= j+1	
return spla Lnv.	
Sort - and - Count In (A)	
1. if 1/41 E2 trivial.	
2. (C, left Inv) = Sort - and - count Inv (left host of A)	
3 (D), 1-39he Inv) = sort-and-complete (right hard of A)	
4 (B, Splitinu) = merge and - (vuna splintinu)	

5. re-(m (B, " ' + " ") Nergo - and - (oun(Spla Inv (c, D) i=1; j=1; split Inv = 0. 2. for K=1 to n if ([i] < D [i] B[K] = ([i]) i=i+1 else 11 ([i]> Dij] 13CK) = D[j] sp67 Lnv = sp67 Lnv + (2 -1+1) roturn (B, SpritInV) T(n) = 2T(n/2) + O(n) = 5 T(n) = O(n(49n))T(1) = (Closest Pair Problem Input: a sex of n points on a plane p; = (xi, yi) (ascume xi + xi) and y; + yi)

Pi = (xi, yi) (for any i ti) Output: the pair (Pi, Pi) with smallest distance d (Pi, PJ) := J(xi, -xi) = (yi-yi)=

U(n) such pain

1, if [P] = 3, trival

(S) ·	麦比比	
Form 1:	$T(n) = aT(\frac{n}{b}) + O(n^2) \qquad T(1) = o(1)$	
1>	$a = b^{d}$ $T(n) = o(n^{d} log n)$	
	a < bd $T(n) = O(nd)$	
3>	$\frac{a > b^{d}}{T(n)} = O(n^{\log_b a})$	
Form 2.	$T(n) = \alpha T(\frac{n}{5}) + f(n) \qquad T(1) = O(1)$	
1)	$a, f(T) = f(n)$ $T(n) = o(f(n) \cdot (\log n))$	
2)	$a_1 f(f) = r \cdot f(n) \qquad r < 1$	
3 >	$T(n) = O(f(n))$ $a \cdot f(\frac{h}{b}) = rf(h) \qquad r > 1$	
	$T(n) = O(n^{109} + 7)$	

