Equations of Motion and Articulated Robots

Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 2015

Equations of Motion MATLAB, Simulink, SimMechanics Articulated Robots

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

1

Inertia Matrix Expressed in Inertial Frame is Not Constant if Body is Rotating

Inertia Matrix Expressed in Inertial Frame is Not Constant if Body is Rotating

Newton's 2nd Law, applied to rotational motion (in inertial frame)

Rate of change of angular momentum = applied moment (or torque), m

$$\frac{d\mathbf{h}}{dt} = \frac{d(\mathbf{I}\mathbf{\omega})}{dt} = \mathbf{m} \quad [\text{moment vector}] \qquad \begin{vmatrix} h_x \\ \dot{h}_y \\ \dot{t} \end{vmatrix} = \begin{vmatrix} m_x \\ m_y \\ \vdots \end{vmatrix}$$

Chain Rule

$$\frac{d(\mathbf{I}\boldsymbol{\omega})}{dt} = \dot{\mathbf{h}} = \dot{\mathbf{I}}\boldsymbol{\omega} + \mathbf{I}\dot{\boldsymbol{\omega}}$$

... and in an inertial frame

$$|\dot{\boldsymbol{I}}_I = \frac{d\boldsymbol{I}_I}{dt} \neq \mathbf{0}|$$

How do We get Rid of dI_T/dt in the **Angular Momentum Equation?**

- Write the dynamic equation in bodyreferenced frame
 - With constant mass, inertial properties are unchanging in body reference frame
 - ... but the frame is "non-Newtonian" or "non-inertial"

Dynamic equation modified to account for rotating frame

Angular Momentum and Rate are Vectors

Can be expressed in either an inertial or body frame

Frames are transformed by the rotation matrix and its inverse

$$\mathbf{h}_{B} = \mathbf{H}_{I}^{B} \mathbf{h}_{I} \qquad \mathbf{h}_{I} = \mathbf{H}_{B}^{I} \mathbf{h}_{B}$$

$$\mathbf{\omega}_{B} = \mathbf{H}_{I}^{B} \mathbf{\omega}_{I} \qquad \mathbf{\omega}_{I} = \mathbf{H}_{B}^{I} \mathbf{\omega}_{B}$$

$$\mathbf{h}_{B} = \mathbf{H}_{I}^{B} \mathbf{h}_{I} \qquad \mathbf{h}_{I} = \mathbf{H}_{B}^{I} \mathbf{h}_{B}$$

$$\mathbf{\omega}_{B} = \mathbf{H}_{I}^{B} \mathbf{\omega}_{I} \qquad \mathbf{\omega}_{I} = \mathbf{H}_{B}^{I} \mathbf{\omega}_{B}$$

5

Vector Derivative Expressed in a Rotating Frame

Chain Rule

$$\dot{\mathbf{h}}_{I} = \mathbf{H}_{B}^{I} \dot{\mathbf{h}}_{B} + \dot{\mathbf{H}}_{B}^{I} \mathbf{h}_{B}$$

Alternatively

$$\dot{\mathbf{h}}_{I} = \mathbf{H}_{B}^{I} \dot{\mathbf{h}}_{B} + \mathbf{\omega}_{I} \times \mathbf{h}_{I} = \mathbf{H}_{B}^{I} \dot{\mathbf{h}}_{B} + \tilde{\mathbf{\omega}}_{I} \mathbf{h}_{I}$$

Cross-product-equivalent matrix of angular rate:

Consequently

$$\tilde{\boldsymbol{\omega}} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}$$

$$\dot{\mathbf{H}}_{B}^{I}\mathbf{h}_{B} = \tilde{\boldsymbol{\omega}}_{I}\mathbf{h}_{I}$$
$$= \tilde{\boldsymbol{\omega}}_{I}\mathbf{H}_{B}^{I}\mathbf{h}_{B}$$

Rate of Change of Angular Momentum due to External Moment

Positive rotation of Frame B w.r.t. Frame A is a negative rotation of Frame A w.r.t. Frame B

7

Rate of Change of Angular Momentum due to External Moment

Angular momentum change in the body frame

$$\dot{\mathbf{h}}_{B} = \mathbf{H}_{I}^{B} \dot{\mathbf{h}}_{I} + \dot{\mathbf{H}}_{I}^{B} \mathbf{h}_{I} = \mathbf{H}_{I}^{B} \dot{\mathbf{h}}_{I} - \boldsymbol{\omega}_{B} \times \mathbf{h}_{B}$$

$$= \mathbf{H}_{I}^{B} \dot{\mathbf{h}}_{I} - \tilde{\boldsymbol{\omega}}_{B} \mathbf{h}_{B} = \mathbf{H}_{I}^{B} \mathbf{m}_{I} - \tilde{\boldsymbol{\omega}}_{B} \mathbf{I}_{B} \boldsymbol{\omega}_{B}$$

$$= \mathbf{m}_{B} - \tilde{\boldsymbol{\omega}}_{B} \mathbf{I}_{B} \boldsymbol{\omega}_{B}$$

Inertial-frame moments (torques) transformed to body-frame moments

$$\mathbf{m}_{I} = \begin{bmatrix} m_{x} \\ m_{y} \\ m_{z} \end{bmatrix}; \quad \mathbf{m}_{B} = \mathbf{H}_{I}^{B} \mathbf{m}_{I} = \begin{bmatrix} m_{x} \\ m_{y} \\ m_{z} \end{bmatrix}_{B}$$

Rate of Change of Body-Referenced **Angular Rate due to External Moment**

Angular momentum rate of change expressed in the body frame

$$\dot{\mathbf{h}}_{B} = \mathbf{I}_{B}\dot{\mathbf{\omega}}_{B} = \mathbf{m}_{B} - \tilde{\mathbf{\omega}}_{B}\mathbf{I}_{B}\mathbf{\omega}_{B}$$

Angular velocity rate of change

$$\dot{\boldsymbol{\omega}}_{B} = \boldsymbol{I}_{B}^{-1} \left(\mathbf{m}_{B} - \tilde{\boldsymbol{\omega}}_{B} \boldsymbol{I}_{B} \boldsymbol{\omega}_{B} \right)$$

9

Translational Dynamics

Rate of change of the center of mass's translational position

$$\dot{\mathbf{r}}_I = \mathbf{v}_I = \mathbf{H}_B^I \mathbf{v}_B$$

Express translational dynamics in the body frame of reference

$$\dot{\mathbf{v}}_I = \frac{1}{m} \mathbf{f}_I$$
Body-axis force and velocity vectors

$$\begin{aligned} \dot{\mathbf{v}}_{B} &= \mathbf{H}_{I}^{B} \dot{\mathbf{v}}_{I} - \tilde{\mathbf{\omega}}_{B} \mathbf{v}_{B} = \frac{1}{m} \mathbf{H}_{I}^{B} \mathbf{f}_{I} - \tilde{\mathbf{\omega}}_{B} \mathbf{v}_{B} \\ &= \frac{1}{m} \mathbf{f}_{B} - \tilde{\mathbf{\omega}}_{B} \mathbf{v}_{B} \end{aligned} \qquad \mathbf{f}_{B} = \begin{bmatrix} f_{x} \\ f_{y} \\ f_{z} \end{bmatrix}_{B} \mathbf{v}_{B} = \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix}_{B} = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

$$\mathbf{f}_{B} = \begin{bmatrix} f_{x} \\ f_{y} \\ f_{z} \end{bmatrix}_{B} \quad \mathbf{v}_{B} = \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix}_{B} = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

Same form as the body-axis angular rate equation

$$\dot{\boldsymbol{\omega}}_{B} = \boldsymbol{I}_{B}^{-1} \left(\mathbf{m}_{B} - \tilde{\boldsymbol{\omega}}_{B} \boldsymbol{I}_{B} \boldsymbol{\omega}_{B} \right)$$

10

Numerical Solutions Using MATLAB and Simulink

11

Task: Calculate $x_1(t)$ and $x_2(t)$ for t = 1 to 10 sec

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} x_2(t) \\ -x_1(t) - x_2(t) \end{bmatrix}$$

with initial conditions

$$\left[\begin{array}{c} x_1(0) \\ x_2(0) \end{array}\right] = \left[\begin{array}{c} 0 \\ 10 \end{array}\right]$$

MATLAB Models of Dynamic Systems

Systems are described by instructions

Main Script

```
% Linear 2<sup>nd</sup>-Order Example
clear
tspan = [0 10];
xo = [0, 10];
[t,x] = ode23('Lin',tspan,xo);

subplot(2,1,1)
plot(t,x(:,1))
ylabel('Position'), grid
subplot(2,1,2)
plot(t,x(:,2))
xlabel('Time'), ylabel('Rate'), grid
```

Function

```
function xdot = Lin(t,x)

% Linear Ordinary Differential Equation
% x(1) = Position
% x(2) = Rate
xdot = [x(2)
-x(1) - x(2)];
```

13

14

MATLAB Initial-Condition Output

Simulink Models of Dynamic Systems

Systems are described by block diagrams

$$\frac{d^2x(t)}{dt^2} = \ddot{x}(t) = -x(t) - \dot{x}(t) + u(t)$$

15

Alternative Simulink Models of 2nd-Order Systems

State-space model (two 1st-order equations), with step input and damping

17

Dynamics of Angular Position

Relationship Between Euler-Angle Rates and Body-Axis Rates

- Body-axis angular rate vector components are orthogonal
- P Euler angles form a non-orthogonal vector
- Euler-angle rate vector is not orthogonal

$$\dot{\mathbf{\Theta}} = \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} \neq \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} = \mathbf{\omega}_I$$

19

Transformation From EulerAngle Rates to Body-Axis Rates

 $\dot{\psi}$ is measured in the Inertial Frame

θ is measured inIntermediate Frame #1

φ is measured inIntermediate Frame #2

Sequential Transformations from Euler-Angle Rates to Body-Axis Rates

 $\dot{\psi}$ is measured in the Inertial Frame

 $\dot{\theta}$ is measured in Intermediate Frame #1

 $\dot{\phi}$ is measured in Intermediate Frame #2

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} \dot{\phi} \\ 0 \\ 0 \end{bmatrix} + \mathbf{H}_{2}^{B} \begin{bmatrix} 0 \\ \dot{\theta} \\ 0 \end{bmatrix} + \mathbf{H}_{2}^{B} \mathbf{H}_{1}^{2} \begin{bmatrix} 0 \\ 0 \\ \dot{\psi} \end{bmatrix}$$

... which is

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\sin\theta \\ 0 & \cos\phi & \sin\phi\cos\theta \\ 0 & -\sin\phi & \cos\phi\cos\theta \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} \triangleq \mathbf{L}_{I}^{B}\dot{\mathbf{\Theta}}$$

21

Inversion to Transform Body-Axis Rates to Euler-Angle Rates

Transformation is not orthonormal

$$\mathbf{L}_{I}^{B} = \begin{bmatrix} 1 & 0 & -\sin\theta \\ 0 & \cos\phi & \sin\phi\cos\theta \\ 0 & -\sin\phi & \cos\phi\cos\theta \end{bmatrix}$$

Inverse transformation is not the transpose

$$\left(\mathbf{L}_{I}^{B}\right)^{-1} \triangleq \mathbf{L}_{B}^{I} \neq \left(\mathbf{L}_{I}^{B}\right)^{T}$$

Inverse Transformation for **Euler-Angle Rates**

$$(\mathbf{L}_{I}^{B})^{-1} = \frac{Adj(\mathbf{L}_{I}^{B})}{\det(\mathbf{L}_{I}^{B})} = \begin{bmatrix} 1 & 0 & -\sin\theta \\ 0 & \cos\phi & \sin\phi\cos\theta \\ 0 & -\sin\phi & \cos\phi\cos\theta \end{bmatrix}^{-1} = \begin{bmatrix} 1 & \sin\phi\tan\theta & \cos\phi\tan\theta \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi\sec\theta & \cos\phi\sec\theta \end{bmatrix}$$

Euler-angle rates from body-axis rates

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} 1 & \sin\phi \tan\theta & \cos\phi \tan\theta \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi \sec\theta & \cos\phi \sec\theta \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \mathbf{L}_{B}^{I} \mathbf{\omega}_{B}$$

Can the inversion become singular? What does this mean?

Summary of Six-Degree-of-Freedom (Rigid Body) Equations of Motion

$$\begin{aligned} \dot{\mathbf{r}}_{I} &= \mathbf{H}_{B}^{I} \mathbf{v}_{B} \\ \dot{\mathbf{v}}_{B} &= \frac{1}{m} \mathbf{f}_{B} - \tilde{\boldsymbol{\omega}}_{B} \mathbf{v}_{B} \\ \dot{\boldsymbol{\Theta}} &= \mathbf{L}_{B}^{I} \boldsymbol{\omega}_{B} \\ \dot{\boldsymbol{\omega}}_{B} &= \boldsymbol{I}_{B}^{-1} \left(\mathbf{m}_{B} - \tilde{\boldsymbol{\omega}}_{B} \boldsymbol{I}_{B} \boldsymbol{\omega}_{B} \right) \end{aligned} \quad \begin{array}{c} \mathbf{r}_{I} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}; \quad \mathbf{v}_{B} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} \\ \mathbf{Rotational position and velocity} \\ \boldsymbol{\omega}_{B} &= \begin{bmatrix} \varphi \\ \theta \\ y \end{bmatrix}; \quad \boldsymbol{\omega}_{B} = \begin{bmatrix} p \\ q \\ r \end{bmatrix} \end{aligned}$$

Translational position and velocity

and velocity
$$\mathbf{r}_{I} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}; \quad \mathbf{v}_{B} = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
Rotational positional velocity

Rotational position and velocity

$$\mathbf{\Theta} = \left[\begin{array}{c} \varphi \\ \theta \\ \psi \end{array} \right]; \quad \mathbf{\omega}_B = \left[\begin{array}{c} p \\ q \\ r \end{array} \right]$$

Articulated Robots

25

Assembly Robot Configurations

26

Assembly Robot Workspaces

Cylindrical

Articulated Revolute

McKerrow, 1991

Serial Robotic Manipulators

Proximal link: closer to the base Distal link: farther from the base

- Serial chain of robotic links and joints
 - Large workspace
 - Low stiffness
 - Cumulative errors from link to link
 - Proximal links carry the weight and load of distal links
 - Actuation of proximal joints affects distal links
 - Limited load-carrying capability at end effecter

27

Humanoid Robots

29

NASA/GM Robonaut

Disney Audio-Animatronics, 1967

31

Baxter, Sawyer, and the PR2

Parallel Robotic Mechanisms

- End plate is directly actuated by multiple links and joints (*kinematic chains*)
 - Restricted workspace
 - Common link-joint configuration
 - Light construction
 - Stiffness
 - High load-carrying capacity

Stewart Platform

http://www.youtube.com/watch? v=QdKo9PYwGaU

Pick-and-Place Robot http://www.youtube.com/watch? v=i4oBExI2KiQ

33

Four-Bar Linkage

- · Closed-loop structure
- Rotational joints
- Planar motion
- Proportions of link lengths determine pattern of motion
- Examples
 - Double wishbone suspension
 - Pantograph
 - Scissor lift

More on Simulink

35

SimulinkLibrary of blocks, sources, and sinks

Simulink Blocks

SimMechanics Called from Simulink

Simple Pendulum with Scope and XY Graph

40

More examples in Supplemental Material

41

Simulink Demonstration of 1-Inch Robot (MAE 345 Mid-Term Project, 2009)

Gearing and Leverage

Force multiplication Displacement ratios

43

- Machine tools
 - Grinding, sanding
 - Inserting screws
 - Drilling
 - Hammering
- Paint sprayer
- Gripper, clamp
- Multi-digit hand

End Effectors

DARPA Prosthetic Hand http://www.youtube.com/watch? v=QJg9igTnjlo&feature=related

Links and Joints

45

Human Joints

Gray's Anatomy, 1858

Skeleton and Muscle-Induced Motion

Prismatic Robotic Joints

Sliding along a single axis

49

Universal

Other Robotic Joints

Flexible

Constant-Velocity

Roller Screw

Planar (sliding and turning composite)

Cylindrical (sliding and turning composite)

Characteristic Transformation of a Link

Link: solid structure between two joints

- Each link type has a characteristic transformation matrix relating the proximal joint to the distal joint
- Link n has
 - Proximal end: Joint n,
 coordinate frame n 1
 - <u>Distal end</u>: Joint n + 1,
 coordinate frame n

Links Between Revolute Joints

- Link: solid structure between two joints
 - Proximal end: closer to the base
 - Distal end: farther from the base
- 4 Link Parameters
 - Length of the link between rotational axes, I, along the common normal
 - Twist angle between axes, α
 - Angle between 2 links, θ (revolute)
 - Offset between links, d (prismatic)

52

 <u>Joint Variable</u>: single <u>link parameter</u> that is free to vary

Links Involving Prismatic Joints

Joint n +

- y_n $\lim_{n \to \infty} d_n$ $\lim_{n \to \infty} \int_{n} d_n$ $\lim_{n \to \infty} \int_{n} d_n$ $\lim_{n \to \infty} \int_{n} d_n$
- Link n extends along z_{n-1} axis
 - $I_n = 0$, along x_{n-1}
 - $d_n = \text{length}$, along z_{n-1} (variable)
 - $\theta_n = 0$, about z_{n-1}
 - a_n = fixed orientation of n + 1 prismatic axis about x_{n-1}
- Link *n* extends along *z_{n-1}* axis
 - $I_n = 0$, along x_{n-1}
 - $d_n = \text{length}$, along z_{n-1} (fixed)
 - θ_n = variable joint angle n about z_{n-1}
 - a_n = fixed orientation of n + 1 prismatic axis about x_{n-1}

McKerrow, 1991

53

Type 6 Link

Intersecting revolute and prismatic joints

Two-Link/Three-Joint Manipulator

Assignment of coordinate frames

Parameters and Variables for 2-link manipulator

- Link lengths (fixed)
- · Joint angles (variable)

McKerrow, 1991

54

Four-Joint (SCARA*) Manipulator

Arm with Three Revolute Link Variables (Joint Angles)

Operation
http://www.youtube.com/watch?v=3sbtCCyJXo

McKerrow, 1991

*Selective Compliant Articulated Robot Arm

55

Joint Variables Must Be Actuated and Observed for Control

•Frames of Reference for Actuation and Control

- World coordinates
- Actuator coordinates
- Joint coordinates
- Tool coordinates

Sensors May Observe Joints Directly, Indirectly, or Not At All **Linear Actuator**

Next Time: Transformations, Trajectories, and Path Planning

57

Supplemental Material

By-Passing the Euler Angle Singularity at $\theta = \pm 90^{\circ}$

Replace Euler angles as primary definition of angular attitude

More than 3 angle parameters are necessary to avoid singularity

Two alternatives to Euler angles

Direction cosine (rotation) matrix [9 parameters]

Quaternions [4 parameters]

(See Supplemental Material)

59

Propagating the Rotation Matrix without Euler Angles [9 Parameters]

Recall that
$$\dot{\mathbf{H}}_{B}^{I}\mathbf{h}_{B} = \tilde{\boldsymbol{\omega}}_{I}\mathbf{H}_{B}^{I}\mathbf{h}_{B}$$
 $\therefore \dot{\mathbf{H}}_{B}^{I} = \tilde{\boldsymbol{\omega}}_{I}\mathbf{H}_{B}^{I}$

$$\therefore \dot{\mathbf{H}}_{B}^{I} = \tilde{\mathbf{\omega}}_{I} \mathbf{H}_{B}^{I}$$

Consequently,
$$\dot{\mathbf{H}}_{I}^{B}(t) = -\tilde{\mathbf{\omega}}_{B}(t)\mathbf{H}_{I}^{B}(t)$$

$$= -\begin{bmatrix} 0 & -r(t) & q(t) \\ r(t) & 0 & -p(t) \\ -q(t) & p(t) & 0(t) \end{bmatrix}_{B} \mathbf{H}_{I}^{B}(t)$$

Retrieving Euler Angles from the Rotation Matrix

	$\cos\theta\cos\psi$	$\cos \theta \sin \psi$	$-\sin\theta$	_
$\mathbf{H}_{I}^{B} = $	$-\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi$	$\cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi$	$\sin\phi\cos\theta$	$= \left(\mathbf{H}_{B}^{I}\right)^{T}$
	$\sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi$	$-\sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi$	$\cos\phi\cos\theta$	

Trigonometry: for example, for $\theta \neq \pm \pi/2$

$$\theta = -\sin^{-1} h_{1,3}$$

$$\psi = -\sin^{-1} \left(h_{1,2} / \cos \theta \right)$$

$$\phi = -\sin^{-1} \left(h_{2,3} / \cos \theta \right)$$

Ambiguity between ψ and ϕ remains for $\theta = \pm \pi/2$

61

Quaternion Vector

Single rotation from inertial to body frame (4 parameters)

$$\begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{bmatrix} = \begin{bmatrix} \text{Rotation angle, } \theta, \text{ rad} \\ x\text{-component of rotation axis} \\ y\text{-component of rotation axis} \\ z\text{-component of rotation axis} \end{bmatrix} = \begin{bmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} \end{bmatrix} \begin{bmatrix} x_R \\ y_R \\ z_R \end{bmatrix}$$

Normality conditions

$$e_1^2 + e_2^2 + e_3^2 + e_4^2 = 1$$

$$x_R^2 + y_R^2 + z_R^2 = 1$$

Quaternion Vector Initialized from Non-Singular Euler Angles

$$\begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{bmatrix} = \begin{bmatrix} \cos\frac{\phi}{2}\cos\frac{\theta}{2}\cos\frac{\psi}{2} + \sin\frac{\phi}{2}\sin\frac{\theta}{2}\sin\frac{\psi}{2} \\ \sin\frac{\phi}{2}\cos\frac{\theta}{2}\cos\frac{\psi}{2} - \cos\frac{\phi}{2}\sin\frac{\theta}{2}\sin\frac{\psi}{2} \\ \cos\frac{\phi}{2}\sin\frac{\theta}{2}\cos\frac{\psi}{2} + \sin\frac{\phi}{2}\cos\frac{\theta}{2}\sin\frac{\psi}{2} \\ \cos\frac{\phi}{2}\cos\frac{\theta}{2}\sin\frac{\psi}{2} - \sin\frac{\phi}{2}\sin\frac{\theta}{2}\cos\frac{\psi}{2} \end{bmatrix}$$

63

Propagating the Quaternion Vector

Then compute rotation matrix from quaternion

$$\mathbf{H}_{I}^{B} = \begin{bmatrix} e_{1}^{2} + e_{2}^{2} - e_{3}^{2} - e_{4}^{2} & 2(e_{2}e_{3} - e_{1}e_{4}) & 2(e_{2}e_{4} + e_{1}e_{3}) \\ 2(e_{2}e_{3} + e_{1}e_{4}) & e_{1}^{2} - e_{2}^{2} + e_{3}^{2} - e_{4}^{2} & 2(e_{3}e_{4} - e_{1}e_{2}) \\ 2(e_{2}e_{4} - e_{1}e_{3}) & 2(e_{3}e_{4} + e_{1}e_{2}) & e_{1}^{2} - e_{2}^{2} - e_{3}^{2} + e_{4}^{2} \end{bmatrix} = (\mathbf{H}_{B}^{I})^{T}$$

64

Euler Angles Retrieved from Quaternion Vector

$$\begin{bmatrix} \phi \\ \theta \\ \psi \end{bmatrix} = \begin{bmatrix} \operatorname{atan2} \left[2(e_1 e_2 + e_3 e_4), \left[1 - 2(e_2^2 + e_3^2) \right] \right] \\ \operatorname{arcsin} \left[2(e_1 e_3 - e_2 e_4) \right] \\ \operatorname{atan2} \left[2(e_0 e_3 + e_1 e_2), \left[1 - 2(e_3^2 + e_4^2) \right] \right] \end{bmatrix}$$

$$\frac{y}{\sqrt{x^2 + y^2} + x}$$

65

Construction Cranes

Links Between Revolute Joints - 2

Type 3 Link Two revolute joints with intersecting rotational axes (e.g., shoulder)

- Joint n + 1 $\lim_{X_n \to 0} \theta_{n+1}$ $\lim_{X_n \to 0} \theta_{n+1}$ $\lim_{X_n \to 0} \theta_{n} = 0$ $\lim_{X_n \to 0} x_{n-1} + y_n$ Origins coincide
- Link *n* extends along z_{n-1} axis
 - $I_n = 0$, along x_{n-1}
 - $d_n = \text{length}$, along z_{n-1} (fixed)
 - θ_n = variable joint angle n about z_{n-1}
- a_n = fixed orientation of n + 1 rotational axis about x_{n-1}

McKerrow, 1991

- Link n extends along -z_n axis
 - $I_n = 0$, along x_{n-1}
 - $d_n = 0$, along z_{n-1}
 - θ_n = variable joint angle n about z_{n-1}
 - a_n = fixed orientation of n + 1 rotational axis about x_{n-67}

Type 4 Link

perpendicular

revolute

joints with

common

origin (e.g.,

elbow-wrist)

Links Involving Prismatic Joints - 2

- Link n extends along x_{n-1} axis
 - I_n = length along x_{n-1}
 - $d_n = 0$, along z_{n-1}
 - θ_n = variable joint angle n about z_{n-1}
 - $a_n = 0$, orientation of n + 1prismatic axis about x_{n-1}
- Link n extends along z_{n-1} axis
 - $I_n = 0$, along x_{n-1}
 - d_n = length, along z_{n-1} (variable)
 - $\theta_n = 0$, about z_{n-1}
 - a_n = fixed orientation of n + 1 rotational axis about x_{n-1} 68

McKerrow, 1991

Prosthetic Arms and Hands

Jesse Sullivan, 2007 Rehabilitation Institute of Chicago ©CBS NEWS VIDEO

experience.

Jesse with the DEKA/DARPA Arm, 2009 http://www.youtube.com/watch?v=ddInW6sm7JE

Open Bionics 3D-Printed Hand

http://techcrunch.com/2015/09/02/open-bionicswants-to-bring-down-the-cost-of-prostheticswith-3d-printed-robotic-hands/

"Terminator Arm"

https://www.youtube.com/watch? v=_qUPnnROxvY

Toward the Bionic Man

https://www.youtube.com/watch? v=xBiOQKonkWs

60

Simulink

Graphic modeling of dynamic systems
Library of functions
Generation of MATLAB code

SimMechanics Library - 1

SimMechanics Library - 2

Simulink/SimMechanics Representation of Four-Bar Linkage

73

Conveyer-Loader Demonstration

Conveyer-Loader Demonstration

75

Position Controller for Conveyor-Loader Demonstration

(Simulink)

X Link:untitled/Sensors & Actuators *

600

900

File Edit View Simulation Forma Tools Help

SimMechanics Body Actuator

SimMechanics Body Sensor

SimScape Mechanical Sensors

SimScape Mechanism Models

SimMechanics, Simulink 3D Animation 'Product Help' Demos

Robotic Manipulator

Vehicle Dynamics

http://www.mathworks.com/products/simmechanics/demos.html