ENAE 404 - 0101 Homework 02: 2BP

Due on February 11th, 2025 at 11:59 PM $Dr.\ Barbee,\ 09{:}30$

Vai Srivastava

February 21, 2025

Problem 1:

Given the following position and velocity vectors, calculate the Keplerian orbital elements, assuming Earth is the central body. Do not use a computer code to do this. Vectors are in units of km and $\frac{km}{s}$.

$$\vec{r} = 3634.1\hat{x} + 5926\hat{y} + 1206.6\hat{z}$$

$$\vec{v} = -6.9049\hat{x} + 4.3136\hat{y} + 2.6163\hat{z}$$

Problem 2:

- 1. Write code to convert form Cartesian coordinates to orbital elements.
- 2. Using subplot, plot the osculating orbital elements for the orbit of Didymos from HW00.
- 3. Describe why your plots make sense (in reference to both the time variation of the orbital elements as well as the plot of the orbit in 3D space).

Problem 3:

Given the following orbit: $a=2\times 10^4$ km, $e=0.4, i=100^\circ, \Omega=30^\circ, \omega=15^\circ, \nu=15^\circ$

- $1. \ \,$ Write code to convert from orbital elements to Cartesian coordinates.
- 2. Propogate the orbit (around Earth) for one period.
- 3. State the period of the orbit.
- 4. Plot the orbit in 3D (use equal-length axes).
- 5. Plot the deviation of the energy as compared to the inital energy $(E_i E_0)$.
- 6. Plot the osculating orbital elements.

Problem 4:

Sketch the following orbits in 2D and 3D. Assume that none of the spacecraft impact Earth.

- $\bullet\,$ In the 2D orbit, label:
 - periapsis
 - angular momentum vector
 - ascending node
 - descending node
 - spacecraft location
 - portion of the orbit in the southern hemisphere
- In the 3D orbit, label:
 - angular momentum vector
 - ascending node
 - periapsis

Spacecraft ID	e	i (°)	$\Omega\left(^{\circ}\right)$	ω (°)	ν (°)
A	0.3	60	30	160	30
В	0.3	60	330	90	10
С	0.5	120	30	30	180