Erdős-Rado Theorem

Strengthened DSLT

Let L be a first order language.

Theorem 1: (Downward) Löwenheim-Skolem Theorem.

For every structure N in L, and every subset $A \subset |N|$, there exists a structure M in L such that

- A ⊂ |M|
- $M \leq N$
- $||M|| \le |A| + |L| + \aleph_0$

Theorem 2: Strengthened DSLT.

For every structure N in L, and every subset $A \subset |N|$, and every cadinal κ where $\kappa \geq 2^{|A|+L+\aleph_0}$, there exists a structure M in L such that

- $A \subset |M|$
- $M \leq N$
- $\|M\| < \kappa$
- For every $\bar{a} \in |N|$, $\mathsf{tp}(\bar{a}/A, N)$ is realized in M

Erdős-Rado Theorem

Theorem 3: Erdős-Rado Theorem.

For every natural number n and every infinite cardinal κ , we have that

$$\beth_n(\kappa)^+ \to \left(\kappa^+\right)_\kappa^{n+1}$$

Pf. We proceed by indction on $n < \omega$ to show that for very infinite κ , the partition relation

$$\beth_n(\kappa)^+ \to (\kappa^+)_\kappa^{n+1}$$

holds.

1. When n=0.

 $\kappa^+ \to (\kappa^+)^1_{\kappa}$ is true because κ is regular (same as the Pigeonhole Principle).

2. Suppose the statement holds for n, we want to show that it holds for n+1. *i.e.*

$$\beth_{n+1}(\kappa)^+ \to \left(\kappa^+\right)_{\kappa}^{n+2}$$

i.e.

For every infinite κ and every coloring function $F: \left[\beth_{n+1}(\kappa)^+\right]^{n+1} \to \kappa$, there is a monochromatic subset of $\beth_{n+1}(\kappa)^+$ of cardinality κ^+ .

Let $N=\langle \beth_{n+1}(\kappa)^+,<,F,c_i \rangle_{i<\kappa}$, where the set of constant symbols $\left\{c_i\right\}_{i<\kappa}$ denotes the colors.

By the Strengthened DLST, we can define an increasing continous elementary chain of structures $N_i \preceq \text{for } i < \beth_n(\kappa)^+$ such that

- for all i, $\|N_i\| \preceq \beth_{n+1}(\kappa)$
- for every $B\subset N_i$ with cardinality $\leq \beth_n(\kappa)$ and $\bar{a}\in |N|$, $\operatorname{tp}(\bar{a}/B,N_i)$ is realized in N_{i+1}

Let $M \coloneqq \bigcup_{i < \kappa} N_i,$ then the construction implies $\|M\| < 2^{\beth_n(\kappa)}.$ Since

$$\|N\| = \beth_{n+1}(\kappa)^+$$

is regular, we may fix $\alpha^* \in |N| \setminus \sup(|M|).$

By induction on $i < \beth_{n(\lambda)}^+,$ define $\{a_i\} \subset |N|$ such that the following holds,

$$\operatorname{tp}\!\left(a_i/\!\left\{a_j\right\}_{j< i}, N\right) = \operatorname{tp}\!\left(\alpha^*/\!\left\{a_j\right\}_{j< i}, N\right)$$

By the second requirement on ${\cal N}_i,$ this construction is possible.

It's easy to see that for all $i < j < \beth_n(\kappa)^+$, $a_i < a_j$. Moreover, for every $i_1 < \ldots < i_{n+2} < \beth_n(\kappa)^+$, we have that

$$F\!\left(a_{i_1},...,a_{i_{n+2}}\right) = F\!\left(a_{i_1},...,a_{i_{n+1}},\alpha^*\right)$$

Now define the new coloring $G:\left[\left\{a_i\right\}\right]^{n+1}
ightarrow \kappa$ by

$$G\!\left(a_{i_1},...,a_{i_{n+1}}\right) = F\!\left(a_{i_1},...,a_{i_{n+1}},\alpha^*\right)$$

Since $\beth_n(\kappa)^+ \to (\kappa^+)^{n+1}_\kappa$, there is a monochromatic set $B \subset \{a_i\}_{i<\beth_n(\kappa)^+}$ of cardinality κ^+ and $i_0 \in \kappa$ such that

for every $a_1 < ... < a_{n+2} \in B, F(a_1,...,a_{n+2}) = F(a_1,...,a_{n+1},\alpha^*) = G(a_1,...,a_{n+1}) = i_0$. Then for every $a_1 < ... < a_{n+2} \in B$,

$$F(a_1,...,a_{n+2})=F(a_1,...,a_{n+1},\alpha^*)=G(a_1,...,a_{n+1})=i_0$$