AI - Mid 1

- Cognition: Set of mental abilities and processes related to knowledge.
- **Turing Test**: Checks if a machine can pass itself as human.
- Rational Agent: Best, not most human.
- **Control Theory**: Self regulating AI to minimise error.
- **GPS**: General Problem Solver, first to implement human like thinking.
- Shakey Robotics Project: A* Search, Hough Transform,
 Visibility Graph Method.
- SOAR Whole Agent

Emphasis on data over algorithms.

Learning methods gained prominence.

Goal to handle full range capabilities of an intelligent system. Set of rules and learning techniques used.

- Definition Terms:

- Agent Diagram
- Percept
- Percept Sequence
- Sensors and Actuators
- Agent Function and Agent Program
- Agent Architecture
- Rational Agent Diagram
- Performance Measure environment definition, not agent definition
- 4 things Rationality Depends on :
 - Performance Measure
 - Knowledge of environment
 - Actions agent can perform
 - Percept sequence
- For each possible percept sequence, a rational agent should select an action that is expected to maximise its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has. - Definition of Rational Agent from Book
- Omniscience
- Information Gathering

- Exploration
- Learning
- Autonomy

- Task Environment — PEAS :: Properties

- Fully Observable vs Partially Observable
- Single Agent vs Multi Agent (Competitive vs Cooperative)
- Deterministic vs Stochastic
- Episodic vs Sequential
- Static vs Dynamic
- Discrete vs Continuous
- Known vs Unknown
- Uncertain Environment Partially Observable and Stochastic
- Indeterministic Environment Actions characterised by possible outcomes, not probabilities.
- Semi-dynamic Environment Agent's performance score changes environment.

- Agent Structure

- Agent Architecture, Agent Function vs Agent Program
- Simple Reflex based agents Diagram
- Condition Action Rule
- Model based Reflex Agents Diagram
- Goal based Agents Diagram
- Utility based Agents Diagram
- Utility
- Utility Function
- Expected Utility
- Learning Agents Diagram
- Learning Element
- Performance Element
- Problem Generator
- Critic

- Components of Agent Program

- Atomic Representation
- Factored Representation (Variable, Attribute, Value)
- Structured Representation
- Expressiveness Axis
- Problem Solving Agents Goal based with Atomic

- Representation.
- Planning Agents
- Goal Formation
- Problem Formulation Deciding what actions to take given a goal.
- Search Solution Execution
- Open Loop Systems
- Problem:
 - Initial State
 - Possible Actions.
 - Transition Model (What each action does)
 - Goal Test
 - Path Cost
- State Space of a Problem States + Actions + Transition
- Optimal Solution
- Incremental Formulation vs Complete Formulation
- Search Tree
- Expanding
- Frontier
- Redundant Path, Loopy Path
- Tree Search

- Measuring Problem Solving Performance

- Completeness
- Optimality
- Time Complexity
- Space Complexity
- Branching Factor
- Depth
- Search Cost
- Path Cost

- Uninformed Search Strategy:

- BFS
- Uniform Cost Search (Dijkstra) Time Complexity
- DFS
- Depth Limited Search
- Iterative Deepening Search
- Bidirectional Search

_

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete?	Yes^a	$Yes^{a,b}$	No	No	Yesa	$Yes^{a,d}$
Time	$O(b^d)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$	$O(b^m)$	$O(b^{\ell})$	$O(b^d)$	$O(b^{d/2})$
Space	$O(b^d)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$	O(bm)	$O(b\ell)$	O(bd)	$O(b^{d/2})$
Optimal?	Yesc	Yes	No	No	Yesc	$Yes^{c,d}$

- Informed Search Strategies:

- Best First Search Greedy
 - Heuristic Function
 - Straight Line Distance
- A* Best First Search
 - Conditions for Optimality:

Admissible Heuristic — *Never Overestimates cost to reach the goal.*

Consistency (for graph search) — Triangularity Rule for heuristic cost.

- Proof for Optimality.
- Absolute and Relative Error
- IDA*
- Recursive Best First Search
- Simplified Memory Bound A*
 Condition for Completeness