Homework #3 (Due in class: Feb 4, 2015) Name:

- 1. (Prob. 13.30 in text) For the circuit shown, find the input impedance by:
 - a. Using the concept of reflected impedance Z_R
 - b. Replacing the linear transformer by its T equivalent circuit

Homework #3 (Due in class: Feb 4, 2015) Name:

2. (Prob. 13.35 from Text) Find currents I_1 , I_2 , and I_3 in the circuit below:

Homework #3 (Due in class: Feb 4, 2015) Name:

3. (Prob. 13.42 from Text) For the circuit shown, determine the power absorbed by the 2 Ω resistor. (Assume the 80 V is a rms value).

Homework #3 (Due in class: Feb 4, 2015) Name:

4. (Prob. 13.50 from Text) Calculate the input impedance for the network below:

Homework #3 (Due in class: Feb 4, 2015) Name:

- 5. ("Based on" Prob. 13.53 from Text) Refer to the figure below for the following:
 - a.) Find the turns ratio n for maximum power supplied to the 200 Ω load.
 - b.) Find the average power ($P_{ave} = I_{rms}^2 R$) in the 200 Ω load at this turns ratio.
 - c.) Find the average power in the 200 Ω load if the turns ratio n = 6.

Homework #3 (Due in class: Feb 4, 2015) Name:

- 6. An audio amplifier with an internal Thevenin impedance of 16Ω uses a source matching autotransformer shown below to match an 8Ω speaker for maximum power transfer.
 - a. Find the location of the tap N_2 for maximum power transfer to the speaker.
 - b. Find the Voltage V_o and Current I_o delivered to the speaker.
 - c. Find the average power P_{ave} delivered to the speaker.
 - d. Find the location of the tap N_2 if we replaced speaker with a 4 Ω speaker.
 - e. Find the average power P_{ave} delivered to the 4 Ω speaker.

