1. Fréchet Derivatives

1.1. Overview

The Fréchet derivative generalizes the notion of derivative to functions between normed vector spaces. It provides a linear approximation to a function at a point that is "best" in a precise sense. This foundational concept underlies differentiation in infinite-dimensional spaces and is essential for optimization, dynamical systems, and the calculus of variations.

1.2. Core Definitions

1.2.1. Fréchet Differentiability

A function $f: E \to F$ between normed spaces is Fréchet differentiable at $x \in E$ if there exists a continuous linear map $f'(x): E \to F$ such that:

$$f(x + h) = f(x) + f'(x)(h) + o(||h||)$$

More precisely: ($\|f(x+h) - f(x) - f'(x)(h)\|$) / $\|h\| \to 0$ space "as" space $h \to 0$

The linear map f'(x) is called the Fréchet derivative of f at x.

1.2.2. Differentiability Variants

Within a Set (HasFDerivWithinAt):

- f has derivative f' at x within set s
- The limit is taken as $h \to 0$ with $x + h \in s$
- Useful for functions defined on manifolds or with boundaries

At a Point (HasFDerivAt):

- f has derivative f' at x in the whole space
- Equivalent to HasFDerivWithinAt f f' univ x

Strict Differentiability (HasStrictFDerivAt):

- Stronger notion: f(y) f(z) f'(y z) = o(||y z||) as $y, z \to x$
- Uniform approximation in a neighborhood
- Required for the inverse function theorem

1.3. Main Types and Notation

1.3.1. Type Classes

- HasFDerivWithinAt f f' s x: Derivative within a set
- HasFDerivAt f f' x: Derivative at a point
- HasStrictFDerivAt f f' x: Strict derivative
- DifferentiableWithinAt \Bbbk f s x: Existence of derivative within s
- DifferentiableAt k f x: Existence of derivative
- DifferentiableOn \Bbbk f s: Differentiable on set s
- Differentiable k f: Globally differentiable

1.3.2. Derivative Functions

- fderivWithin \Bbbk f s x: The derivative within s at x
- fderiv k f x: The derivative at x
- These return 0 when the derivative doesn't exist

1.4. Key Properties

1.4.1. Uniqueness

Unique Differentiability (UniqueDiffWithinAt): A point x satisfies this if the tangent cone at x within s spans a dense subspace. This ensures:

- The derivative within s is unique when it exists
- Important for manifolds and constrained optimization

Uniqueness Theorem: If HasFDerivWithinAt f f₁' s x and HasFDerivWithinAt f f₂' s x and UniqueDiffWithinAt k s x, then $f_1' = f_2'$.

1.4.2. Basic Properties

Continuity:

- Differentiability implies continuity
- HasFDerivAt f f' x → ContinuousAt f x

Linearity of Derivative:

- The derivative is linear in the function
- $(\alpha f + \beta g)' = \alpha f' + \beta g'$

Locality:

- Differentiability is a local property
- Depends only on behavior in a neighborhood

1.4.3. Convergence Characterization

Rescaling Lemma (HasFDerivWithinAt.lim): If f has derivative f' at x, and $c_n \to \infty$ while $c_n \cdot d_n \to v$, then: $c_n \cdot (f(x + d_n) - f(x)) \to f'(v)$

This characterizes the derivative through rescaled difference quotients.

1.5. Differentiation Rules

1.5.1. Elementary Functions

Constants: The derivative of a constant function is zero

Identity: The derivative of the identity map is the identity linear map

Linear Maps: A continuous linear map is its own derivative

1.5.2. Arithmetic Operations

Addition Rule: (f + g)'(x) = f'(x) + g'(x)

Scalar Multiplication: $(c \cdot f)'(x) = c \cdot f'(x)$

Subtraction: (f - g)'(x) = f'(x) - g'(x)

1.5.3. Product Rule

For scalar functions: $(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$

For bilinear maps $B: E \times F \to G$: D(B(f, g))(x) = B(f'(x), g(x)) + B(f(x), g'(x))

1.5.4. Chain Rule

General Form: If $g: E \to F$ is differentiable at x and $f: F \to G$ is differentiable at g(x): (f \circ g)'(x) = f'(g(x)) \circ g'(x)

Within Sets: The chain rule also holds for derivatives within sets, with appropriate domain conditions.

1.5.5. Inverse Function

If f has an inverse g near x, and f'(x) is invertible: $g'(f(x)) = (f'(x))^{-1}$

1.6. Special Cases

1.6.1. One-Dimensional Derivatives

For $f : \mathbb{k} \to E$ where \mathbb{k} is the scalar field:

- The derivative can be identified with an element of E
- deriv f x denotes this scalar derivative
- Related by: fderiv k f x 1 = deriv f x

1.6.2. Partial Derivatives

For $f: E_1 \times E_2 \to F$:

- Partial derivatives are projections of the total derivative
- $\partial_1 f(x_1, x_2) = fderiv k f(x_1, x_2) \circ inl$
- $\partial_2 f(x_1, x_2) = fderiv \ k f(x_1, x_2) \circ inr$

1.6.3. Directional Derivatives

The derivative in direction v: $D_v f(x) = f'(x)(v)$

Characterized by: $D_v f(x) = \lim \text{ "as" space } t \to 0 : \text{space } (f(x + tv) - f(x))/t$

1.7. Automation and Tactics

1.7.1. Simplifier Setup

The simplifier can automatically prove differentiability:

```
example (x : \mathbb{R}): Differentiable \mathbb{R} (fun x \mapsto \sin(\exp(3 + x^2)) - 5 * \cos x) := by simp
```

For divisions, provide non-vanishing proofs:

```
example (x : \mathbb{R}) (h : 1 + \sin x \neq 0) :
DifferentiableAt \mathbb{R} (\text{fun } x \mapsto \exp x / (1 + \sin x)) x := by simp [h]
```

1.7.2. Lemma Organization

Tagged Lemmas:

- Basic operations tagged with @[simp]
- Composition handled specially to avoid matching issues
- Function-specific lemmas (e.g., differentiable_exp)

Naming Convention:

- hasFDerivAt_*: Existence of specific derivative
- differentiable_*: Differentiability assertions
- fderiv_*: Computing the derivative

1.8. Advanced Topics

1.8.1. Mean Value Theorems

Rolle's Theorem: For differentiable $f:[a,b]\to\mathbb{R}$ with f(a)=f(b), there exists $c\in(a,b)$ with f'(c)=0.

Mean Value Theorem: There exists $c \in (a, b)$ with: f(b) - f(a) = f'(c)(b - a)

Vector-Valued MVT: More subtle for vector-valued functions; involves integration or special estimates.

1.8.2. Taylor's Theorem

For sufficiently smooth $f: f(x + h) = \Sigma$ "from" space k=0 space "to" space $n: (1/k!) D^k f(x)(h^k) + R_n(h)$

Where $R_n(h) = o(\|h\|^n)$ is the remainder.

1.8.3. Implicit Function Theorem

If $F: E \times F \to G$ satisfies:

- 1. $F(x_0, y_0) = 0$
- 2. $\partial_y F(x_0, y_0)$ is invertible
- 3. F is continuously differentiable

Then locally there exists $g: E \to F$ with F(x, g(x)) = 0 and: $g'(x_0) = -(\partial y F(x_0, y_0))^{-1} - \partial x F(x_0, y_0)$

1.9. Applications

1.9.1. Optimization

First-Order Conditions: At a local extremum x^* of differentiable $f: f'(x^*) = 0$

Second-Order Conditions: For twice differentiable f:

- Minimum: $f''(x^*)$ positive definite
- Maximum: $f''(x^*)$ negative definite

1.9.2. Differential Equations

The Fréchet derivative appears in:

- Linearization of nonlinear ODEs
- Variational equations
- Stability analysis via linearization

1.9.3. Functional Analysis

Calculus of Variations: Finding extrema of functionals uses Fréchet derivatives in function spaces.

Newton's Method in Banach spaces: Next iterate: $x' = x - [f'(x)]^{-1} f(x)$

1.10. Implementation Notes

1.10.1. Design Principles

- 1. Definitional Choices: Multiple equivalent definitions; chose for computational convenience
- 2. Bundled Derivatives: Derivatives are continuous linear maps, not just linear maps
- 3. Filters: Use filter language for flexibility in stating limits

1.10.2. File Organization

The theory is split across multiple files:

- Defs.lean: Basic definitions
- Basic.lean: Fundamental properties (this file)
- Linear.lean: Linear and bounded linear maps
- Comp.lean: Chain rule
- Mul. lean: Products and scalar multiplication
- Special functions in SpecialFunctions/

1.11. Historical Context

The Fréchet derivative was introduced by Maurice Fréchet in 1925, generalizing the derivative to infinite-dimensional spaces. It built upon earlier work by:

- Volterra (1887): Functional derivatives
- Gâteaux (1913): Directional derivatives in function spaces
- Fréchet (1925): The modern formulation

This concept enabled rigorous calculus in:

- Functional analysis
- Partial differential equations
- Infinite-dimensional optimization
- Modern differential geometry