# Ordre dans $\mathbb{R}$

## Sommaire

| 1 | Ordre et comparaison                                                                                       | 1                  |
|---|------------------------------------------------------------------------------------------------------------|--------------------|
| 2 | Ordre et opérations 2.1 Addition                                                                           | 1                  |
| 3 | Encadrement                                                                                                | 2                  |
| 4 | Valeur absolue         4.1 Distance entre deux réels                                                       | <b>3</b> 3         |
| 5 | Approximations – Approximations décimales         5.1 Approximations          5.2 Approximations décimales | <b>4</b><br>4<br>4 |
| 6 | Intervalles de ℝ         6.1 Intervalles bornés                                                            | 5                  |
| 7 | Exercices                                                                                                  | 7                  |

Ordre dans  $\mathbb{R}$  Mathématiques

### 1 Ordre et comparaison

#### **Définitions**

Soient a et b deux nombres réels.

- a est dit «**supérieur ou égal** » à b, écrit  $a \ge b$ , si  $a b \ge 0$ .
- a est dit «**supérieur strictement** » à b, écrit a > b, si a b > 0.
- a est dit «**inférieur ou égal** » à b, écrit  $a \le b$ , si  $a b \le 0$ .
- a est dit «**inférieur strictement** » à b, écrit a < b, si a b < 0.

#### Remarques

Comparer deux nombres réels a et b revient à étudier le signe de a-b, et déterminer lequel d'eux est le plus grand.

Comparer  $a = \frac{3}{4}$  et  $b = \frac{5}{6}$ .

#### Propriété

Soient a,b et c des nombres réels. Si  $a \le b$  et  $b \le c$  alors  $a \le c$ .

#### 2 Ordre et opérations

#### 2.1 Addition

#### Propriétés

Soient *a,b,c* et *d* des nombres réels.

• Si  $a \le b$  alors  $a + c \le b + c$ .

• Si  $a \le b$  et  $c \le d$  alors  $a + c \le b + d$ .

#### **Exemples**

• Comparer  $a = 1 + \sqrt{12}$  et  $b = \frac{1}{3} + \sqrt{12}$ .

.....

• Comparer  $a = \frac{4}{5} + \sqrt{2}$  et  $b = \frac{5}{4} + \sqrt{3}$ .

#### 2.2 Multiplication

#### Propriétés

Soient a, b, c et d des nombres réels.

• Si  $a \le b$  et c > 0 alors  $ac \le bc$ .

- Si  $a \le b$  et c < 0 alors  $ac \ge bc$ .
- Si a, b, c et d sont positifs tels que  $a \le b$  et  $c \le d$  alors  $ac \le bd$ .

| Exem | ples |
|------|------|
|      |      |

• Comparer  $a = 6\sqrt{3}$  et  $b = 6\sqrt{7}$ .

• Comparer  $a = \frac{1}{2}$  et  $b = \frac{1}{3}$ .

• Comparer  $a = 2\sqrt{3}$  et  $b = 3\sqrt{7}$ .

Comparer  $u = 2\sqrt{3}$  et  $v = 3\sqrt{7}$ .

#### 2.3 Opposé et inverse

#### Propriétés

Soient a etb deux nombres réels.

• Si  $a \le b$  alors  $-a \ge -b$ .

• Si a et b sont non nuls et de même signe tels que  $a \le b$  alors  $\frac{1}{a} \ge \frac{1}{b}$ .

#### **Exemples**

Comparer  $a = -\frac{1}{2\sqrt{7}}$  et  $b = -\frac{1}{3\sqrt{3}}$ .

.....

#### 2.4 Carré et racine carrée

#### Propriétés

Soient a etb deux nombres réels positifs.

• Si  $a \le b$  et alors  $a^2 \le b^2$ .

• Si  $a \le b$  alors  $\sqrt{a} \le \sqrt{b}$ .

#### **Exemples**

Comparer  $a = (1 + \sqrt{2\sqrt{3}})^2$  et  $b = (1 + \sqrt{3\sqrt{7}})^2$ .

#### 3 Encadrement

#### **Définitions**

Soient *a*,*b* et *x* des réels.

Encadrer x signifie trouver deux réels a et b tels que :  $a \le x \le b$  ou  $a \le x \le b$  ou  $a < x \le b$ .

- Le nombre réel positif b a est appelé amplitude de l'encadrement.
- a est appelé une valeur approchée par défaut de x à b-a prés.

• b est appelé une valeur approchée par excès de x à b-a prés.

#### **Propriétés**

Soient a,b,c,d,x et y tels  $a \le x \le b$  et  $c \le y \le d$ .On a :

- $a + c \le x + y \le b + d$ .
- Si a, b, c et d sont positifs, alors  $ac \le xy \le bd$ .
- $a d \le x y \le b c$ .
- Si a, b, c et d sont positifs non nuls, alors  $\frac{a}{d} \le \frac{x}{v} \le \frac{b}{c}$ .

#### Exemples

Soient x et y deux réels, tels que  $\sqrt{2} < x < 2$  et  $1 < y < \sqrt{3}$ . Encadrer x + y, x - y, xy et  $\frac{x}{y}$ .

#### Valeur absolue

#### Distance entre deux réels

#### **Définitions**

La «distance entre deux réels x et y » est la différence entre le plus grand et le plus petit des deux, et se note d(x; y)ou |x-y|.

#### **Exemples**

Compléter ce qui suit :

- $d(3,2) = \cdots$   $d(-4, -\frac{1}{3}) = \cdots$

#### Interprétation graphique

Sur une droite graduée d'origine *O*, Soient *M* le point d'abscisse *x*, et *N* le point d'abscisse *y*. d(x; y) est la distance entre les points M et N, c'est à dire MN.



#### 4.2 Valeur absolue d'un réel

#### **Définitions**

On appelle valeur absolue d'un réel x, notée |x|, la distance entre x et 0, c'est à dire d(x;0).

#### **Exemples**

Compléter ce qui suit :

• 
$$|1-\sqrt{2}| = \cdots$$

#### Remarque

Soit x un nombre réel. On a :

• Si  $x \ge 0$  alors |x| = x - 0 = x.

• Si  $x \le 0$  alors |x| = 0 - x = -x.

#### Propriétés

Soient x, y et a des réels tels que a > 0.On a :

- |-x| = |x|.  $|x-y| \ge |x| |y|$ .  $|x|^2 = |x^2| = x^2$ . |xy| = |x||y|.
- Si |x| = a alors x = a ou x = -a.

- $\bullet \sqrt{x^2} = |x|.$   $\bullet \left| \frac{x}{y} \right| = \frac{|x|}{|y|} \text{ avec } y \neq 0.$   $\bullet |x+y| \leq |x| + |y|.$   $\bullet \text{ Si } |x| = 0 \text{ alors } x = 0.$
- Si |x| = |y| alors x = y ou x = -y.

### Approximations – Approximations décimales

#### Approximations

#### **Définitions**

Soient *a* et *x* deux réels et *r* un réel strictement positif.

- a est dit «approximation par défaut» (ou «valeur approchée par défaut») de x «à r près» (ou «à la précision r»), si  $a \le x \le a + r$  (i.e. :  $0 \le x - a \le r$ ).
- a est dit «approximation par excès» (ou «valeur approchée par excès») de x «à r près» (ou «à la précision r»), si  $a - r \le x \le a$  (i.e. :  $-r \le x - a \le 0$ ).
- a est dit «approximation» (ou «valeur approchée») de x «à r près» (ou «à la précision r»), si  $a r \le x \le a + r$ (i.e. :  $|x - a| \le r$ ).

#### 5.2 Approximations décimales

#### Définitions

Soient x un réel tel que  $p \times 10^{-n} \le x \le (p+1) \times 10^{-n}$ , où  $p \in \mathbb{Z}$  et  $n \in \mathbb{N}$ .

- $p \times 10^{-n}$  est dit «approximation décimale par défaut de x à  $10^{-n}$  près».
- $(p+1) \times 10^{-n}$  est dit «approximation par excès de x à  $10^{-n}$  près».

#### Intervalles de $\mathbb R$

#### Intervalles bornés

#### **Définitions**

Soient a et b deux réels.

| Ensemble de nombres                              | semble de nombres Représentation |                                          |          | Intervalle              |
|--------------------------------------------------|----------------------------------|------------------------------------------|----------|-------------------------|
| $\{x \in \mathbb{R} \mid a < x < b\}$            |                                  | 1//////////////////////////////////////  | -        | ] a; b[                 |
|                                                  | -∞                               | a $b$                                    | +∞       | ouvert                  |
| $\{x \in \mathbb{R} \ / \ a < x \le b\}$         |                                  | ],,,,,,,,,,,,,                           |          | ] a; b]                 |
|                                                  | -∞                               | $\stackrel{1}{a} \qquad \stackrel{1}{b}$ | +∞       | semi-ouvert à gauche    |
| $\{x \in \mathbb{R} \mid a \le x < b\}$          |                                  | [,,,,,,,,,,,,,                           | <b>—</b> | [ <i>a</i> ; <i>b</i> [ |
| $\{x \in \mathbb{R} \mid u \leq x < b\}$         | -∞                               | a $b$                                    | +∞       | semi-ouvert à droite    |
| $\{x \in \mathbb{R} \mid a \le x \le b\}$        |                                  |                                          |          | [a; b]                  |
| $\{x \in \mathbb{R} \mid \alpha \leq x \leq D\}$ |                                  | [                                        |          | £                       |

#### Exemples

- $\{x \in \mathbb{R} / -3 \le x \le 2\} = \cdots$   $\left[-5; -\frac{\sqrt{2}}{3}\right] = \cdots$
- $\left\{ x \in \mathbb{R} \mid \frac{1}{2} < x \le \frac{2}{3} \right\} = \cdots$

#### Remarques

- un intervalle réduit à un point a se note  $\{a\}$ .
- Un intervalle vide se note Ø.

- Pour tout réel a, on a  $[a; a] = \{a\}$ .
- Pour tout réel a, on a ] a; a[=  $\emptyset$ .

#### 6.2 Intervalles non bornés

#### **Définitions**

Soit a un réel.

| Ensemble de nombres                              | Représentation | Intervalle      |                  |
|--------------------------------------------------|----------------|-----------------|------------------|
| $\{x \in \mathbb{R} \mid x > a\}$                |                | ] <i>a</i> ;+∞[ |                  |
| $\{x \in \mathbb{N} \mid x > u\}$                | $-\infty$ a    | +∞              | ouvert           |
| $\{x \in \mathbb{R} \mid x \ge a\}$              |                | [ <i>a</i> ;+∞[ |                  |
| $\{x \in \mathbb{R} \mid x \geq u\}$             | $-\infty$ a    | +∞              | fermé            |
| $\{x \in \mathbb{R} \mid x < a\}$                |                | <b></b>         | ] −∞; <i>a</i> [ |
| $\{x \in \mathbb{N} \mid x < u\}$                | $-\infty$ a    | +∞              | ouvert           |
| $\{x \in \mathbb{R} \mid x \le a\}$              |                | -               | $]-\infty;a]$    |
| $\{\lambda \in \mathbb{N} \mid \lambda \leq u\}$ | $-\infty$ a    | +∞              | fermé            |

#### **Exemples**

- $\{x \in \mathbb{R} \mid x \le 2\} = \cdots$
- $\{x \in \mathbb{R} \mid x > -\frac{1}{3}\} = \cdots$   $[-3; +\infty[=\cdots]$

#### Remarques

- Les symboles  $+\infty$  se lit "plus l'infini", et  $-\infty$  se lit "moins l'infini". Ce ne sont pas des nombres.
- Les intervalles sont toujours ouvert du côté des symboles  $+\infty$  et  $-\infty$ .
- On a les notations suivantes :  $\mathbb{R} = ]-\infty; +\infty[$ ,  $\mathbb{R}^+ = [0; +\infty[$  et  $\mathbb{R}^- = ]-\infty; 0]$ .

#### Intervalles et valeur absolue 6.3

#### **Définitions**

Soient a un réel positif.

| estant w uni resi posturi             |       |                |   |                                |                                                  |                               |
|---------------------------------------|-------|----------------|---|--------------------------------|--------------------------------------------------|-------------------------------|
| Ensemble de nombres                   |       | Représentation |   |                                | Intervalle                                       |                               |
| $\{x \in \mathbb{R} \mid  x  < a\}$   |       | 111            |   | ' / / /                        | <b></b>                                          | ]-a;a[                        |
| (50 C 12 7   50   100)                | -∞    | -a             | 0 | a                              | +∞                                               | ouvert                        |
| $\{x \in \mathbb{R} \mid  x  \le a\}$ |       | [///           |   | ' / / / ]                      |                                                  | [-a;a]                        |
|                                       | -∞    | -a             | 0 | $\stackrel{1}{a}$              | +∞                                               | fermé                         |
| $\{x \in \mathbb{R} \mid  x  > a\}$   | -///  |                |   | 1111                           | <del>         </del>                             | $]-\infty;-a[\cup]a;+\infty[$ |
| $\{x \in \mathbb{N} \mid  x  > u\}$   | -∞    | -a             | 0 | $\stackrel{\scriptstyle 1}{a}$ | +∞                                               | ouvert                        |
| $\{x \in \mathbb{R} \mid  x  \ge a\}$ | -1111 |                |   | [////                          | <del>                                     </del> | $]-\infty;-a]\cup[a;+\infty[$ |
| $\{x \in \mathbb{K} \mid  x  \ge u\}$ | -∞    | -a             | 0 | l<br>a                         | +∞                                               | fermé                         |

#### **Exemples**

- $\{x \in \mathbb{R} \mid |x| \le 4\} = \cdots$
- $\bullet$  ]  $-\sqrt{3}$ ;  $\sqrt{3}$  [=  $\cdots$
- $\{x \in \mathbb{R} \mid |x| \le 0\} = \cdots$
- $\left\{x \in \mathbb{R} \mid |x| > \frac{3}{4}\right\} = \cdots$
- ]  $-\infty$ ; -1]  $\cup$  [1;  $+\infty$ [=  $\cdots$
- $\{x \in \mathbb{R} / |x| > 0\} = \cdots$

#### 6.4 Intersection et réunion d'intervalles

#### **Définitions**

Soient *I* et *J* deux intervalles quelconque (ouverts, semi-ouvert ou fermés).

- L'«intersection» des deux intervalles I et J est l'ensemble des nombres appartenant au premier et au deuxième intervalle, elle se note  $I \cap J$ , et se lit «I inter J».
- La «**réunion**» des deux intervalles *I* et *J* est l'ensemble des nombres appartenant au premier **ou** au deuxième intervalle, elle se note  $I \cup J$ , et se lit «I union J».

- 1. Représenter sur une même droite graduée les intervalles [-3;5], ]2;7[ et  $[6;+\infty[$ .
- 2. En déduire les intersections et les réunions deux à deux des intervalles [-3;5], ]2;7[ et  $[6;+\infty[$ .

#### **Exercices**

#### **Exercice 1**

1. Comparer les nombres *x* et *y* dans chacun des cas suivants :

(a) 
$$x = 1 - \frac{1732}{735}$$
 et  $y = \frac{1}{100} + 1$   
(c)  $x = \sqrt{3} - 1$  et  $y = \frac{2}{\sqrt{3} + 1}$ 

(b) 
$$x = \sqrt{2}$$
 et  $y = \frac{2}{\sqrt{2}+1}$ 

(c) 
$$x = \sqrt{3} - 1$$
 et  $y = \frac{2}{\sqrt{3} + 1}$ 

(d) 
$$x = 17\sqrt{2}$$
 et  $y = 15\sqrt{3}$ .

2. On donne les encadrements suivants :  $2 \le x \le 4$  et  $-6 \le y \le 1$ .

Donner un encadrement aux expressions suivantes :

(a) 
$$x^2$$

(b) 
$$y^2$$

(c) 
$$x + y$$

(d) 
$$2x - 3y$$

(f) 
$$\frac{1}{r}$$
.

#### Exercice 2

1. Déterminer les intervalles correspondants aux inégalités suivantes :

(a) 
$$x \ge 7$$

(b) 
$$x < 10$$

(c) 
$$x \le 3$$

(d) 
$$x > 5$$

(e) 
$$2 \le x \le 8$$

(f) 
$$-4 \le x < 7$$

(g) 
$$0 < x \le 3$$

(h) 
$$-7 < x < -2$$

2. Déterminer  $I \cup J$  et  $I \cap J$  dans les cas suivants :

(a) 
$$I = ]-2;6]$$
 et  $J = [-3; +\infty[$ 

(b) 
$$I = ]-\infty; 7]$$
 et  $J = \left[\frac{-3}{4}; +\infty\right[$ 

(c) 
$$I = ]-1;4[$$
 et  $J = [5;7]$ 

(d) 
$$I = ]1;4]$$
 et  $J = ]-2;4]$ 

(e) 
$$I = ]1;4]$$
 et  $J = [4; +\infty[$ 

(f) ] 
$$-\infty$$
; 3] et  $J = [5; +\infty[$ 

#### Exercice 3

1. Calculer ce qui suit:

(a) 
$$3|0,3-1|-4|2-1,3|+\frac{1}{2}|1-2,5|$$

(b) 
$$|3\sqrt{2}-2|-|2\sqrt{2}-3|+|\sqrt{2}-2|$$

(c) 
$$|\sqrt{2} - \sqrt{3}| + 2|\sqrt{3} - \sqrt{2}| - |2\sqrt{2} - 3\sqrt{3}|$$

(d) 
$$\sqrt{(\sqrt{3}-\sqrt{2})^2}$$
.

2. a et b sont deux nombres réels tels que  $a \in [-2, 5]$  et  $b \in [-3, -1]$ .

Simplifier 
$$A = 2|2a+7| - |3b| + 2|b+8| - |2b-a|$$
.

3. On pose  $A = \sqrt{55 - 12\sqrt{21}}$ . Calculer  $(3\sqrt{3} - 2\sqrt{7})^2$ , puis simplifier A.

#### Exercice 4

Soient a et b deux réels tels que  $|a+2| \le 3$  et  $b \in [-1;4]$ .

- 1. Établir que  $-5 \le a \le 1$  et que  $|a+b-1| \le 7$ .
- 2. On pose E = ab + 6b 5a.
  - (a) Vérifier que E = (a+6)(b-5) + 30.
  - (b) En déduire un encadrement de *E*, et déterminer son amplitude.

#### **Exercice 5**

Soit a un réel tel que  $a \in [1; +\infty[$ . On pose  $A = \sqrt{1 + \frac{1}{a}}$ .

- 1. Montrer que a(A+1)(A-1) = 1.
- Montrer que 2 ≤ 1 + A ≤ 3, puis conclure que 1 + <sup>1</sup>/<sub>3a</sub> ≤ A ≤ 1 + <sup>1</sup>/<sub>2a</sub>.
   Montre que 1,1 est une valeur approchée du √1,2 à <sup>1</sup>/<sub>30</sub> prés.

#### Exercice 6

Soit x un réel positif strictement.

- 1. Montrer que  $1 + \sqrt{1+x} > 2$ .
- 3. Montrer que  $1 < \sqrt{1+x} < 1 + \frac{x}{2}$ .

- 2. Conclure que  $0 < \frac{1}{1+\sqrt{1+x}} < \frac{1}{2}$ .
- 4. Donner un encadrement au nombre  $\sqrt{1,04}$ .

#### Exercice 7

Soient a et b deux réels tels que  $0 < a \le b \le 2a$ 

- 1. (a) Montrer que  $(a b)(2a b) \le 0$ .
- (b) Développer (a-b)(2a-b) et  $(a\sqrt{2}-b)^2$ .
- On pose A = <sup>2a²+b²</sup>/<sub>3ab</sub>. Montrer que <sup>2√2</sup>/<sub>3</sub> ≤ A ≤ 1.
   Montrer que <sup>(1+√2)²</sup>/<sub>6</sub> est une approximation du nombre A à <sup>(1-√2)²</sup>/<sub>6</sub> prés.

#### Exercice 8

- Soient  $x \in \mathbb{R}^*$  et  $E = \frac{\sqrt{x^2+1}}{x}$ . 1. Montrer que  $\frac{\sqrt{x^2+1}}{x} \frac{1}{x} = \frac{x}{\sqrt{x^2+1}+1}$ . 2. Montrer que  $\sqrt{x^2+1}+1 \ge 2$ , puis conclure que  $|E-\frac{1}{x}| \le \frac{1}{2}|x|$ . 3. Déterminer une valeur approchée du nombre  $\frac{\sqrt{1,0001}}{0,01}$  à  $5 \times 10^{-3}$  prés.