Exercícios

- 1. Sejam $U = \{0, 1, 2, 3, 4\}$, $A = \{0, 4\}$, $B = \{0, 1, 2, 3\}$, $C = \{1, 4\}$, $D = \{0, 1\}$. Determine os seguintes conjuntos:
- $\textbf{a.} \ A \cup B \qquad \qquad \textbf{c.} \ A \cap \overline{B} \qquad \qquad \textbf{e.} \ (A \cup B) \cap (A \cup C) \qquad \qquad \textbf{g.} \ A \cup \overline{B} \qquad \qquad \textbf{i.} \ B \overline{A}$

- b. $B \cap C$
- d. $A \cup (B \cap C)$ f. $(\overline{A \cap B}) \cup (\overline{A \cap C})$ h. A B j. $A \cup (B \cap C \cap D)$
- 2. Represente por meio de um diagrama de Venn a diferença simétrica entre dois conjuntos, A Δ B, definida por

$$A \Delta B := (A - B) \cup (B - A)$$

- 3. Sejam A, B e C subconjuntos de um conjunto universo U. Represente por meio de diagramas de Venn as seguintes situações.
 - (i) $A \subset B \subset C$

- (iii) $A \subset B \cup C$
- (v) $A \subset B C$

- (ii) $A \cap B = \emptyset$, $A \cap C = \emptyset$, $B \cap C = \emptyset$ (iv) $A \subset \overline{B}$
- 4. Verifique, usando os diagramas de Venn as seguintes igualdades:
 - (i) $(A B) \cup B = A \cup B$

(iv) $A - B = A \cap \bar{B}$

(vii) $(A \cap D) \cup \overline{D} = A \cup \overline{D}$

(ii) $(A - B) \cap B = \emptyset$

- $(v)(\bar{\bar{A}}) = A$
- (iii) $(A B) \cup (B A) = (A \cup B) (A \cap B)$ (vi) $A \cap (B C) = (A \cap B) (A \cap C)$
- **5.** Mostre que $A \subseteq B$ e $A \subseteq C \Rightarrow A \subseteq B \cap C$
 - Dica: Lembre-se da definição de inclusão de conjuntos (" $D \subseteq E$ " significa que "se $x \in D$ então $x \in E$ ").

Para mostrar que $A \subset B \cap C$ considere um elemento de A e deve chegar à conclusão de que $x \in B \cap C$ usando para isso as hipóteses da questão.

- 6. Mostre que $A \subseteq B \Leftrightarrow A B = \emptyset$
 - Dica: Mostre primeiro: $A \subseteq B \implies A B = \emptyset$. Depois mostre a implicação inversa:

$$A - B = \emptyset \implies A \subseteq B$$

Conjuntos: Diagramas de Venn e operações

- 7. Mostre que $A B \subseteq A$
- 8. Mostre que $A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A}$
- 9. Dados os conjuntos $C = \{x \in \mathbb{N} \mid x \text{ \'e m\'ultiplo de 2}\}$, $D = \{x \in \mathbb{N} \mid x \text{ \'e m\'ultiplo de 3}\}$, $E = \{x \in \mathbb{N} \mid x \text{ \'e m\'ultiplo de 6}\}$, verifique que $C \cap D = E$.
- **10.** Considere A = { $x \in \mathbb{N} \mid 5 \le x^2 \le 300$ }, B = { $x \in \mathbb{N} \mid 1 \le 3x 2 \le 30$ }. Calcule:
 - (i) $A \cup B$

(iii) A – B

(v) $\bar{A} \cap \bar{B}$

- (ii) $A \cap B$
- (iv) B A
- (vi) $\bar{A} \cup \bar{B}$
- 11. Dado $C = \{2, -1, 5\}$, considere o conjunto universo sendo o conjunto de partes de C, U = P(C). Calcule:
 - (i) **Ā**

(ii) $A \cap B$

para $A = \{ \{2, -1\}, \{2\} \}, B = \{ \{5\}, \{2, -1, 5\}, \{-1, 2\} \}.$

- 12. Use a propriedade distributiva da interseção em relação a união de conjuntos para provar que $(A\cap D)\cup \bar{D}=A\cup \bar{D}\;.$
- **13**. Prove que A (B C) = (A B) \cup (A \cap C).

Dica: Use a igualdade $A - B = A \cap \overline{B}$ vista no exercício 4(iv), uma das propriedades distributivas, uma das leis de Morgan e a identidade vista em 4(v).

- 14. Mostre as seguintes igualdades:
 - (i) $(A B) \cup (B A) = (A \cup B) (A \cap B)$ (isto é, $A \triangle B = (A \cup B) (A \cap B)$)
 - (ii) $A \cap (B C) = (A \cap B) (A \cap C)$
- **15**. Dados os seguintes conjuntos: $A = \{x \in \mathbb{Z} \mid 0 \le x \le 7\}$, $B = \{x \in \mathbb{N} \mid 0 \le x \le 7\}$ Verifique que:
 - (i) A = B

(ii) $\bar{A} \neq \bar{B}$

16. Exercício comentado: Mostre a seguinte igualdade

$$[(A - B) \cup (B - A)] \cap C = [(A \cap C) - B] \cup [(B \cap C) - A)$$

Prova: Raciocínio correto:

$$[(A-B)\cup(B-A)]\cap C =$$

(propriedade da diferença
$$A - B = A \cap \overline{B}$$
) = $[(A \cap \overline{B}) \cup (B \cap \overline{A})] \cap C$ =

(propriedade distributiva) =
$$[(A \cap \overline{B}) \cap C] \cup [(B \cap \overline{A}) \cap C]$$
 =

(prop. comutativa e associativa da interseção) =
$$[(A \cap C) \cap \overline{B}] \cup [(B \cap C) \cap \overline{A}]$$
 =

(propriedade da diferença) =
$$[(A \cap C) - B] \cup [(B \cap C) - A]$$

Raciocínio incorreto:
$$[(A - B) \cup (B - A)] \cap C = [(A \cap C) - B] \cup [(B \cap C) - A]$$

$$[(A \cap \overline{B}) \cup (B \cap \overline{A})] \cap C \ = \ [(A \cap C) \cap \overline{B}] \cup [(B \cap C) \cap \overline{A}]$$

$$[(A \cap \bar{B}) \cap C] \cup [(B \cap \bar{A}) \cap C] \ = \ [(A \cap C) \cap \bar{B}] \cup [(B \cap C) \cap \bar{A}]$$

$$[(A \cap C) \cap \overline{B}] \cup [(B \cap C) \cap \overline{A}] \ = \ [(A \cap C) \cap \overline{B}] \cup [(B \cap C) \cap \overline{A}]$$

Portanto, a igualdade é verdadeira.

Ainda que cada passagem esteja bem justificada, o raciocínio continua incorreto.

Porquê? Tente você mesmo responder à pergunta. Pense ... e depois veja a resposta.

O erro deste raciocínio está em que para provar a igualdade está se partindo justamente dela e através de raciocínios corretos chega-se a uma identidade, de um lado exatamente igual ao outro. Você poderia ter partido de uma falsidade e ter chegado a uma verdade, mas com este raciocínio está se supondo que chegou-se a provar o que queria, ou seja, a igualdade inicial.

Não está convencido? Vejamos o seguinte exemplo.

Prove que
$$-1 = 1$$

Prova: Usamos o raciocínio incorreto:

$$-1 = 1$$

$$(-1)^2 = 1^2$$

$$1 = 1$$

Chegamos a uma identidade então, por este raciocínio incorreto temos que -1 = 1. Partimos de uma proposição falsa e chegamos a uma verdadeira.

Atenção: Partir do que está tentando-se provar não pode ser feito da maneira mecânica como no raciocínio incorreto.

Modificação do raciocínio incorreto

Provar que
$$[(A - B) \cup (B - A)] \cap C = [(A \cap C) - B] \cup [(B \cap C) - A]$$
 é equivalente a provar que

$$[(A \cap \bar{B}) \cup (B \cap \bar{A})] \cap C = [(A \cap C) \cap \bar{B}) \cup [(B \cap C) \cap \bar{A}] \quad \text{devido a propriedade da diferença.}$$

Pela propriedade distributiva, mostrar esta última igualdade é equivalente a provar que

$$[(A \cap \overline{B}) \cap C] \cup [(B \cap \overline{A}) \cap C] = [(A \cap C) \cap \overline{B}] \cup [(B \cap C) \cap \overline{A}]$$

Pelas propriedades associativa e comutativa, mostrar esta última igualdade é equivalente a provar que

$$[(A \cap C) \cap \overline{B}] \cup [(B \cap C) \cap \overline{A}] = [(A \cap C) \cap \overline{B}] \cup [(B \cap C) \cap \overline{A}] \ \ que \ \acute{e} \ verdadeira.$$

Logo, pelas igualdades equivalentes provamos que $[(A-B) \cup (B-A)] \cap C = [(A \cap C) - B] \cup [(B \cap C) - A]$ é verdadeira.

(Observe que, -1 = 1 não é equivalente a $(-1)^2 = 1^2$)

Outra modificação:

$$[(A-B)\cup(B-A)]\cap C =$$

(propriedade
$$A - B = A \cap \overline{B}$$
) = $[(A \cap \overline{B}) \cup (B \cap \overline{A})] \cap C =$

(propriedade distributiva) =
$$[(A \cap \overline{B}) \cap C] \cup [(B \cap \overline{A}) \cap C] =$$

 $(\text{prop. comutativa e associativa da interseção}) \ = \ [(A \cap C) \cap \overline{B}] \cup [(B \cap C) \cap \overline{A}] \quad \ (1)$

Por outro lado temos que: $[(A \cap C) - B] \cup [(B \cap C) - A] =$

$$(propriedade A - B = A \cap \overline{B}) = [(A \cap C) \cap \overline{B}] \cup [(B \cap C) \cap \overline{A}]$$
 (2)

De (1) e (2) resulta que
$$[(A - B) \cup (B - A)] \cap C = [(A \cap C) - B] \cup [(B \cap C) - A]$$

cederi