CEE432/CEE532/MAE541 Developing Software for Engineering Applications

Lecture 11: Matrix Algebra (Chapter 10)

Terminology

- Types of arrays, A_{mxn}
 - One-dimensional, vector, \mathbf{g}_{mx1}
 - Square matrix, A_{nxn}
 - Symmetric matrix, A_{ij}=A_{ji}
 - Diagonal matrix
 - Identity matrix, I_{nxn}
 - Upper Triangular Matrix, $A_{ij}=0$, i > j
 - Lower Triangular Matrix, A_{ij}=0, i < j

Terminology

Matrix Operations

- Addition and subtraction, $A_{mxn} = B_{mxn} \pm C_{mxn}$
- Multiplication, $A_{mxn} = B_{mxq} C_{qxn}$
- Inverse (Avoid!!),**A**-1
- Transpose, A^T
- Determinant (Avoid!!), det(A)

Linear Algebraic Equations

$$\mathbf{A}_{m\times n}\mathbf{x}_{n\times 1}=\mathbf{b}_{m\times 1}$$

- Unique, non-trivial solution iff
 - -m=n
 - $-\det(\mathbf{A})\neq 0$
 - b is not a null vector

Solution Strategies

- Direct Solver
 - Gaussian Elimination
 - LU Factorization
 - LDL^T (Cholesky) Factorization
- Iterative Solver
 - Preconditioned Conjugate Gradient Method

Important Issues

- How much storage space will be used?
- How can numerically accurate solution can be generated?
- How much time will be taken to obtain the solution?
- How much of additional effort is needed if a solution is to be generated for a new right-hand side vector?

Storage Scheme: Full

Storage requirement: $4^2=16$ locations. In general, storage requirement = n^2 locations

 $n=10^4 \rightarrow 800,000,000 \text{ bytes}$

1 GB = 1,073,741,824 bytes

Rowwise storage

$$\{A_{11}, A_{12}, ..., A_{1n}, A_{21}, A_{22}, ..., A_{2n}, ..., A_{n1}, A_{n2}, ..., A_{nn}\}$$

Columnwise storage

$$\{A_{11}, A_{21}, ..., A_{n1}, A_{12}, A_{22}, ..., A_{n2}, ..., A_{1n}, A_{2n}, ..., A_{nn}\}$$

$$(HBW)_i = c - i + 1$$
 $HBW = \max_i (HBW)_i$

$$\mathbf{A}_{10\times 6}^{banded} = \begin{bmatrix} A_{11} & A_{12} & 0 & 0 & A_{15} & A_{16} \\ A_{22} & 0 & 0 & 0 & A_{25} & A_{26} \\ A_{33} & A_{34} & A_{35} & A_{36} & 0 & 0 \\ A_{44} & A_{45} & A_{46} & 0 & 0 & 0 \\ A_{55} & A_{56} & 0 & 0 & 0 & 0 \\ A_{66} & A_{67} & A_{68} & A_{69} & A_{6,10} & 0 \\ A_{77} & A_{78} & 0 & 0 & 0 & 0 \\ A_{88} & 0 & 0 & 0 & 0 & 0 \\ A_{99} & K_{9,10} & 0 & 0 & 0 & 0 \\ A_{10,10} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} A_{11} & A_{12} & 0 & 0 & A_{15} & A_{16} \\ A_{22} & 0 & 0 & 0 & A_{25} & A_{26} \\ A_{33} & A_{34} & A_{35} & A_{36} & 0 & 0 \\ A_{44} & A_{45} & A_{46} & 0 & 0 & 0 \\ A_{55} & A_{56} & 0 & 0 & 0 & 0 \\ A_{66} & A_{67} & A_{68} & A_{69} & A_{6,10} & 0 \\ A_{77} & A_{78} & 0 & 0 & 0 & 0 \\ A_{88} & 0 & 0 & 0 & 0 & 0 \\ A_{99} & K_{9,10} & 0 & 0 & 0 & 0 \\ A_{10,10} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A_{i,j} = 0 \text{ if } (j-i+1) > HBW$$

$$A_{i,j} = 0 \text{ if } (j < i)$$

$$A_{i,j} \Rightarrow A_{i,j-i+1}^{banded}$$

Storage Scheme: Symmetric, Skyline

Storage Scheme: Symmetric, Skyline

$$\mathbf{A}_{35\times 1}^{skyline} = \left\{ A_{11}, A_{22}, A_{12}, A_{33}, A_{44}, A_{34}, \dots, A_{10,10}, A_{9,10}, A_{8,10}, A_{7,10}, A_{6,10}, A_{5,10} \right\}$$

$$\mathbf{D}_{11}^{loc} = \{1, 2, 4, 5, 7, 12, 18, 21, 25, 30, 36\}$$

$$A_{i,j} = 0 \text{ if } (j-i) > (D_{j+1}^{loc} - D_{j}^{loc})$$

$$A_{i,j} = 0$$
 if $(j < i)$

$$A_{i,j} \Longrightarrow l = D_j^{loc} + j - i \Longrightarrow A_l^{skyline}$$

Storage Scheme: Comparison

Storage Scheme	Storing	Equivalent Integer Words
Full	$\mathbf{A}_{n imes n}$	$2n^2$
Symmetric Banded	$\mathbf{A}_{n imes hbw}^{banded}$	2nq
Symmetric Skyline	$\mathbf{A}_{m}^{skyline},\mathbf{D}_{n+1}^{loc}$	2m+n+1

Storage Scheme: Sparse

$$\mathbf{A}_{31\times 1}^{sparse} = \left\{ A_{11}, A_{12}, A_{15}, A_{16}, A_{22}, A_{25}, A_{26}, \dots, A_{88}, A_{99}, A_{9,10}, A_{10,10} \right\}$$

$$\mathbf{C}_{31\times 1} = \left\{ 1,2,5,6,2,5,6,3,4,5,6,\dots,8,9,10,10 \right\}$$

$$\mathbf{R}_{11\times 1} = \left\{ 1,5,8,12,15,21,26,28,29,31,32 \right\}$$

Comparison w/ Example

Storage Scheme	Equivalent Integer Words*
Full	$10 \times 10 \times 2 = 200$
Banded (HBW=6)	$10 \times 6 \times 2 = 120$
Skyline	$35 \times 2 + 11 = 81$
Sparse	$31 \times 2 + 31 + 10 = 103$

^{*}Assuming elements of **A** are *double*.

Direct Solvers: Gaussian Elimination

- To obtain another equivalent Ax=b
 - We can interchange two rows.
 - Multiply both sides by a constant.
 - Multiply one equation by a constant and add it to another equation.

$$\begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ \times & \times & \times \end{bmatrix} = \begin{Bmatrix} \times \\ \times \\ \times \end{Bmatrix} \Rightarrow \begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ \times \\ \times \end{Bmatrix} = \begin{Bmatrix} \times \\ \times \\ \times \end{Bmatrix}$$

Example

$$\begin{bmatrix} 8 & -1 \\ 4 & 7 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} 6 \\ 18 \end{Bmatrix} \Rightarrow \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} 1 \\ 2 \end{Bmatrix}$$

Multiply first

equation by (-4/8)

and add to second

$$= \begin{bmatrix} 8 & -1 \\ 0 & 7.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 15 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Gaussian Elimination

Forward Elimination

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{1i} & A_{1n} \\ A_{21} & A_{22} & A_{23} & A_{2i} & A_{2n} \\ A_{31} & A_{32} & A_{33} & A_{3i} & A_{3n} \\ A_{i1} & A_{i2} & A_{i3} & A_{ii} & A_{in} \\ A_{n1} & A_{n2} & A_{n3} & A_{ni} & A_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_i \\ x_n \end{bmatrix} = \begin{cases} b_1 \\ b_2 \\ b_3 \\ b_i \\ b_n \end{cases}$$

$$\begin{bmatrix} det(\mathbf{A}) = 0 \\ |A_{ii}^{(i-1)}| \le \varepsilon \end{bmatrix}$$

Gaussian Elimination

Backward Substitution

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{1i} & A_{1n} \\ 0 & A_{22}^{(1)} & A_{23}^{(1)} & A_{2i}^{(1)} & A_{2n}^{(1)} \\ 0 & 0 & A_{33}^{(2)} & A_{3i}^{(2)} & A_{3n}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2^{(1)} \\ b_2^{(2)} \\ b_3^{(2)} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ x_i \\ x_i \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2^{(1)} \\ b_3^{(2)} \\ b_i^{(i-1)} \\ b_n^{(i-1)} \\ b_n^{(i)} \end{bmatrix}$$

$$x_{n} = \frac{b_{n}}{A_{nn}}$$

$$b_{i} - \sum_{j=i+1}^{n} A_{ij} x_{j}$$

$$x_{i} = \frac{b_{i} - \sum_{j=i+1}^{n} A_{ij} x_{j}}{A_{ii}}$$
 $i = n-1, n-2, ..., 1$

Matrix Toolbox

- Example Program 10.3.1
 - CMatrixToolBox class
 - Several matrix functionalities

Gaussian Elimination Method

Client Code

```
CMatToolBox<double> MTBDP; // double precision version
... . .
   const int NUMEQNS=3;
   const double TOL = 1.0e-6;
   CMatrix<double> dMA(NUMEQNS,NUMEQNS);
   CVector<double> dVx(NUMEQNS), dVb(NUMEQNS);
   dMA(1,1) = 10.0; dMA(1,2) = -5.0; dMA(1,3) = 2.0;
   dMA(2,1) = 3.0; dMA(2,2) = 20.0; dMA(2,3) = 5.0;
   dMA(3,1) = -2.0; dMA(3,2) = 7.0; dMA(3,3) = 15.0;
   dVb(1) = 6.0; dVb(2) = 58.0; dVb(3) = 57.0;
   if (MTBDP.AxEqb (dMA, dVx, dVb, TOL))
       MTBDP.Display ("Vector x in Ax = b", dVx);
   else
       std::cout << "Error in AxEqb.\n";</pre>
```

Error Analysis

• How good is the "numerical" solution?

Residual Vector

$$\mathbf{r} = \mathbf{A}\mathbf{x} \cdot \mathbf{b} \neq \mathbf{0}$$

Absolute Error

$$\varepsilon_{abs} = \|\mathbf{r}\|$$

Residual Vector

$$oldsymbol{arepsilon}_{rel} = rac{\left\| \mathbf{r}
ight\|}{\left\| \mathbf{b}
ight\|}$$

Error magnitude is a function of the condition number of **A**.

$$cond(\mathbf{A}) = \frac{\lambda_{\max}}{\lambda_{\min}}$$

Improving the Solution

Partial Pivoting

 Locate the largest remaining element (in the current column) and switch rows.

Full Pivoting

 Locate the largest remaining element and switch rows and columns.

Scaling

 Multiply the equations by a constant so that the ratio of the largest to the smallest element in the matrix is reduced.

For a general A

$$A = LU$$

L: lower triangular matrix

U: upper triangular matrix

Crout's Method

$$\mathbf{A}_{n\times n}\mathbf{x}_{n\times 1}=\mathbf{b}_{n\times 1}$$

$$\mathbf{L}_{n\times n}\mathbf{U}_{n\times n}\mathbf{x}_{n\times 1}=\mathbf{b}_{n\times 1} -$$

Factorization

$$\mathbf{A} = \mathbf{L}\mathbf{U}$$

Forward Substitution

$$\mathbf{L}_{n \times n} \mathbf{y}_{n \times 1} = \mathbf{b}_{n \times 1} \Longrightarrow \text{Solve for } \mathbf{y}$$

Backward Substitution

$$\mathbf{U}_{n \times n} \mathbf{x}_{n \times 1} = \mathbf{y}_{n \times 1} \Longrightarrow \text{Solve for } \mathbf{x}$$

Storage Scheme

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix} \Rightarrow \begin{bmatrix} U_{11} & U_{12} & U_{13} & U_{14} \\ L_{21} & U_{22} & U_{23} & U_{24} \\ L_{31} & L_{32} & U_{33} & U_{34} \\ L_{41} & L_{42} & L_{43} & U_{44} \end{bmatrix}$$

Note
$$i = 1, 2, ..., n$$

$$i = 1, 2, ..., j \Rightarrow U_{ij} = A_{ij} - \sum_{k=1}^{i-1} L_{ik} U_{kj}$$

$$i = j+1, j+2, ..., n \Rightarrow L_{ij} = \frac{A_{ij} - \sum_{k=1}^{j-1} L_{ik} U_{kj}}{U_{jj}}$$

Storage Scheme

$$\begin{cases} y_1 \\ y_2 \\ ... \\ y_n \end{cases} \Rightarrow \begin{cases} x_1 \\ x_2 \\ ... \\ x_i = \frac{y_i - \sum_{j=i+1}^n U_{ij} x_j}{U_{ii}} \quad i = n-1, n-2, ..., 1$$

LU Factorization: Advantages

- Clearly separates factorization from forward and backward substitutions (helps solve multiple RHS vectors).
- No additional storage required.
- Easy to compute determinant

$$\det(\mathbf{A}) = \det(\mathbf{U}) = U_{11}U_{22}\cdots U_{nn}$$

Example

$$\begin{bmatrix} 10 & -5 & 2 \\ 3 & 20 & 5 \\ -2 & 7 & 15 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{Bmatrix} 6 \\ 58 \\ 57 \end{Bmatrix}$$

Factorization

$$U_{11} = A_{11} = 10$$

$$\mathbf{j=1} \qquad L_{21} = \frac{A_{21}}{U_{11}} = \frac{3}{10} = 0.3$$

$$L_{31} = \frac{A_{31}}{U_{11}} = \frac{-2}{10} = -0.2$$

$$\begin{bmatrix} 10 & -5 & 2 \\ 3 & 20 & 5 \\ -2 & 7 & 15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 58 \\ 57 \end{bmatrix} \qquad \mathbf{U}_{12} = A_{12} = -5 \\ U_{22} = A_{22} - L_{21} - U_{12} = 21.5 \\ L_{32} = \frac{A_{32} - L_{31}U_{12}}{U_{22}} = 0.27907$$

$$U_{13} = A_{13} = 2$$

$$\mathbf{j=3} \quad U_{23} = A_{23} - L_{21}U_{13} = 4.4$$

$$U_{33} = A_{33} - L_{31}U_{13} - L_{32}U_{23} = 14.1721$$

$$\mathbf{LU} = \begin{bmatrix} 10 & -5 & 2 \\ 0.3 & 21.5 & 4.4 \\ -0.2 & 0.27907 & 14.1721 \end{bmatrix}$$

Example

Forward Substitution

$$y_{1} = \frac{b_{1}}{L_{11}} = 6$$

$$y_{2} = \frac{b_{2} - L_{21}y_{1}}{L_{22}} = 56.2$$

$$y_{3} = \frac{b_{3} - L_{31}y_{1} - L_{32}y_{2}}{L_{33}} = 42.5163$$

Backward Substitution

$$x_{3} = \frac{y_{3}}{U_{33}} = 3$$

$$x_{2} = \frac{y_{2} - U_{23}x_{3}}{U_{22}} = 2$$

$$x_{1} = \frac{y_{1} - U_{12}x_{2} - U_{13}x_{3}}{U_{11}} = 1$$

$$\det(A) = U_{11}U_{22}U_{33} = (10)(21.5)(14.1721) = 3047$$

Cholesky Decomposition

For a symmetric, positive definite A

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T$$

L: lower triangular matrix (1's on the diagonal)

D: diagonal matrix

$$\begin{bmatrix} K_{11} & K_{12} & . & K_{1n} \\ K_{12} & K_{22} & . & K_{2n} \\ . & . & . & . \\ K_{1n} & K_{2n} & . & K_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & . & 0 \\ L_{21} & 1 & . & 0 \\ . & . & . & . \\ L_{n1} & L_{n2} & . & 1 \end{bmatrix} \begin{bmatrix} D_1 & 0 & . & 0 \\ 0 & D_2 & . & 0 \\ . & . & . & . \\ 0 & 0 & . & D_n \end{bmatrix} \begin{bmatrix} 1 & L_{21} & . & L_{n1} \\ 0 & 1 & . & L_{n2} \\ . & . & . & . \\ 0 & 0 & . & D_n \end{bmatrix}$$

$$= \begin{bmatrix} D_1 & D_1L_{21} & D_1L_{31} & . & D_1L_{n1} \\ D_2L_{21}^2 & D_1L_{21}L_{31} + D_2L_{32} & . & D_1L_{21}L_{n1} + D_2L_{n2} \\ & D_1L_{31}^2 + D_2L_{32}^2 + D_3 & . & D_1L_{31}L_{n1} + D_2L_{32}L_{n2} + D_3L_{n3} \\ & . & . & . \\ \hline sym & & & D_1L_{n1}^2 + D_2L_{n2}^2 + ... + D_n \end{bmatrix}$$

Cholesky Decomposition

$$\mathbf{A}_{n\times n}\mathbf{x}_{n\times 1}=\mathbf{b}_{n\times 1}$$

$$\mathbf{L}_{n\times n}\mathbf{D}_{n\times 1}\mathbf{L}_{n\times n}^{\mathbf{T}}\mathbf{x}_{n\times 1}=\mathbf{b}_{n\times 1}$$

Decomposition

$$A = LDL^{T}$$

Forward Substitution

$$\mathbf{L}_{n \times n} \mathbf{y}_{n \times 1} = \mathbf{b}_{n \times 1} \Longrightarrow \text{Solve for } \mathbf{y}$$

Backward Substitution

$$\mathbf{D}_{n \times n} \mathbf{L}_{n \times n}^{\mathbf{T}} \mathbf{x}_{n \times 1} = \mathbf{y}_{n \times 1} \Longrightarrow \text{Solve for } \mathbf{x}$$

Note

$$\mathbf{DL^T} = egin{bmatrix} D_1 & D_1 L_{12} & . & D_1 L_{1n} \ & D_2 & . & D_2 L_{2n} \ & . & . & . \ & & . & . \ & & D_n \ \end{pmatrix}$$

Cholesky Decomposition: Advantages

- Clearly separates factorization from forward and backward substitutions (helps solve multiple RHS vectors).
- Can store all required elements (**L** and **D**) in the upper (or lower) triangular portion of **A**. No additional storage required.

Example

$$\begin{bmatrix} 3.5120 & 0.7679 & 0 & 0 & 0 \\ 0.7679 & 3.1520 & 0 & -2 & 0 \\ 0 & 0 & 3.5120 & -0.7679 & 0.7679 \\ 0 & -2 & -0.7679 & 3.1520 & -1.1520 \\ 0 & 0 & 0.7679 & -1.1520 & 3.1520 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -0.04 \\ 0 \end{bmatrix}$$

Decomposition

i=1
$$D_1 = A_{11} = 3.5120$$

 $L_{21} = \frac{A_{21}}{D_1} = 0.21865$
 $L_{31} = L_{41} = L_{51} = 0$

composition
$$D_{1} = A_{11} = 3.5120$$

$$L_{21} = \frac{A_{21}}{D_{1}} = 0.21865$$

$$L_{31} = L_{41} = L_{51} = 0$$

$$i=2$$

$$D_{2} = A_{22} - L_{21}^{2}D_{1} = 2.9841$$

$$L_{32} = \frac{A_{32} - L_{31}D_{1}L_{21}}{D_{2}} = 0$$

$$L_{42} = \frac{A_{42} - L_{41}D_{1}L_{21}}{D_{2}} = -0.670219$$

$$L_{52} = 0$$

Example

i=3

$$D_{3} = A_{33} - L_{31}^{2}D_{1} - L_{32}^{2}D_{2} = 3.5120$$

$$L_{43} = \frac{A_{43} - L_{41}D_{1}L_{31} - L_{42}D_{2}L_{32}}{D_{3}} = -0.21865$$

$$L_{53} = \frac{A_{53} - L_{51}D_{1}L_{31} - L_{52}D_{2}L_{32}}{D_{3}} = 0.21865$$

i=4

$$\begin{split} D_4 &= A_{44} - L_{41}^2 D_1 - L_{42}^2 D_2 - L_{43}^2 D_3 = 1.64366 \\ L_{54} &= \frac{A_{54} - L_{51} D_1 L_{41} - L_{52} D_2 L_{42} - L_{53} D_3 L_{43}}{D_4} = -0.598724 \end{split}$$

Example

i=5

$$D_5 = A_{55} - L_{51}^2 D_1 - L_{52}^2 D_2 - L_{53}^2 D_3 - L_{54}^2 D_4 = 2.3949$$

$$\mathbf{L} \& \mathbf{D} \Rightarrow \begin{bmatrix} 3.5120 & 0 & 0 & 0 & 0 \\ 0.21865 & 2.9841 & 0 & 0 & 0 \\ 0 & 0 & 3.5120 & 0 & 0 \\ 0 & -0.670219 & -0.21865 & 1.64366 & 0 \\ 0 & 0 & 0.21865 & -0.598724 & 2.3949 \end{bmatrix}$$

Forward Substitution

$$Ly = b$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0.21865 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -0.670219 & -0.21865 & 1 & 0 \\ 0 & 0 & 0.21865 & -0.598724 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -0.04 \\ 0 \end{bmatrix}$$

$$y_1 = b_1 = 0$$

$$y_2 = b_2 - L_{21}y_1 = 0$$

$$y_3 = b_3 - L_{31}y_1 - L_{32}y_2 = 0$$

$$y_4 = b_4 - L_{41}y_1 - L_{42}y_2 - L_{43}y_3 = -0.04$$

$$y_5 = b_5 - L_{51}y_1 - L_{52}y_2 - L_{53}y_3 - L_{54}y_4 = -0.023949$$

Backward Substitution

$$\mathbf{D}\mathbf{L}^{\mathrm{T}}\mathbf{D} = \mathbf{y}$$

$$\begin{bmatrix} 3.5120 & 0.21865 & 0 & 0 & 0 \\ 0 & 2.9841 & 0 & -0.670219 & 0 \\ 0 & 0 & 3.5120 & -0.21865 & 0.21865 \\ 0 & 0 & 0 & 1.64366 & -0.598724 \\ 0 & 0 & 0 & 0 & 2.3949 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -0.04 \\ -0.023949 \end{bmatrix}$$

$$x_5 = \frac{y_5}{D_5} = -0.01$$

$$x_4 = \frac{y_4}{D_4} - L_{45}x_5 = -0.0303232$$

$$x_3 = \frac{y_3}{D_3} - L_{34}x_4 - L_{35}x_5 = -0.00444367$$

$$x_{5} = \frac{y_{3}}{D_{5}} = -0.01$$

$$x_{2} = \frac{y_{2}}{D_{2}} - L_{23}x_{3} - L_{24}x_{4} - L_{25}x_{5}$$

$$x_{4} = \frac{y_{4}}{D_{4}} - L_{45}x_{5} = -0.0303232$$

$$x_{3} = \frac{y_{3}}{D_{3}} - L_{34}x_{4} - L_{35}x_{5} = -0.00444367$$

$$x_{1} = \frac{y_{1}}{D_{1}} - L_{12}y_{2} - L_{13}y_{3} - L_{14}y_{4} - L_{15}y_{5}$$

$$= 0.00444367$$

Handling Constraints

Solve equations with special conditions

$$Ax = b$$

$$(a) x_i = c$$

$$(b) c_i x_i + c_j x_j = c$$

Case (a)

Solve
$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
with $x_2 = c$

Solution

$$A_{11}x_1 + A_{12}x_2 + A_{13}x_3 = b_1$$

$$A_{11}x_1 + (0)x_2 + A_{13}x_3 = b_1 - A_{12}c$$

$$A_{21}x_1 + A_{22}x_2 + A_{23}x_3 = b_2$$

$$A_{31}x_1 + A_{32}x_2 + A_{33}x_3 = b_3$$

$$A_{31}x_1 + (0)x_2 + A_{33}x_3 = b_3 - A_{32}c$$

Case (a)

$$\begin{bmatrix} A_{11} & 0 & A_{13} \\ 0 & 1 & 0 \\ A_{31} & 0 & A_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 - A_{12}c \\ c \\ b_3 - A_{32}c \end{pmatrix}$$

Algorithm
$$x_j = c$$

- 1. Modify the right-hand side vector as $b_i = b_i A_{ij}c$, i = 1,...,n
- 2. Modify the coefficient matrix as $A_{ij} = 0$, i = 1,...n $A_{ii} = 0$, i = 1,...n
- 3. Set $A_{ii} = 1$

Example

$$\begin{bmatrix} 10 & -5 & 2 \\ 3 & 20 & 5 \\ -2 & 7 & 15 \end{bmatrix} \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} = \begin{cases} 6 \\ 58 \\ 57 \end{cases} \text{ with } x_2 = 3$$

Modified Equations

$$\begin{bmatrix} 10 & 0 & 2 \\ 0 & 1 & 0 \\ -2 & 0 & 15 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{Bmatrix} 6+5(3) \\ 3 \\ 57-7(3) \end{Bmatrix} = \begin{Bmatrix} 21 \\ 3 \\ 36 \end{Bmatrix}$$

Case (b)

Minimization Problem

$$\Pi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{x}^{\mathsf{T}}\mathbf{b}$$

leads to the solution to

$$\frac{\partial \Pi}{\partial \mathbf{x}} = 0 = \mathbf{A}\mathbf{x} - \mathbf{b}$$

Case (b)

$$\Pi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} - \mathbf{x}^{\mathrm{T}}\mathbf{b} + \frac{1}{2}C(c_{i}x_{i} - c_{j}x_{j} - c)^{2}$$
Large number

Minimum is when $c_i D_i - c_j D_j - c = 0$

$$\frac{\partial \Pi}{\partial \mathbf{x}} = 0$$

$$C = 10^4 \max |A_{pq}|, 1 \le p, q \le n$$

Case (b)

$$\begin{bmatrix} A_{11} & A_{1i} & A_{1j} & A_{1n} \\ & \ddots & & & \\ A_{i1} & A_{ii} + Cc_{i}^{2} & A_{ij} + Cc_{i}c_{j} & A_{in} \\ & & \ddots & & \\ A_{j1} & A_{ji} + Cc_{i}c_{j} & A_{jj} + Cc_{j}^{2} & A_{jn} \\ & & & \ddots & \\ A_{n1} & A_{ni} & A_{nj} & A_{nn} \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{i} \\ x_{i} \\ x_{j} \\ x_{n} \end{pmatrix} = \begin{pmatrix} b_{1} \\ \vdots \\ b_{i} + Ccc_{i} \\ \vdots \\ b_{j} + Ccc_{j} \\ \vdots \\ b_{n} \end{pmatrix}$$

© 1998-2005, S. D. Rajan

Example

$$\begin{bmatrix} 10 & -5 & 2 \\ -5 & 20 & 5 \\ 2 & 5 & 15 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{Bmatrix} 6 \\ 58 \\ 57 \end{Bmatrix} \text{ with } 2x_1 + x_3 = 3$$

Modified Equations

$$\begin{bmatrix} 10+20(10^{4})2^{2} & -5 & 2+20(10^{4})(2)(1) \\ -5 & 20 & 5 \\ 2+20(10^{4})(2)(1) & 5 & 15+20(10^{4})1^{2} \end{bmatrix} \begin{Bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{Bmatrix} = \begin{cases} 6+20(10^{4})(3)(2) \\ 58 \\ 57+20(10^{4})(3)(1) \end{cases}$$

Matrix Toolbox

• Specifications