大学物理期末模拟试题

班级	学号	姓名	成绩	_
— 情空	≦题 (共 55 分)			
	填空题答案写在卷面 一质点沿 <i>x</i> 轴作直约		方程为 <i>x</i> =3+5 <i>t</i> +6 <i>t</i> ² -	t ³ (SI) . 则
	质点在 $t=0$ 时刻的速			(2=) / //3
	加速度为零时,该质	v		
2 (4分)	两个相互作用的物体	x A 和 B , 无摩擦地a	在一条水平直线上运	动。物体 A 的动
量是时间	的函数,表达式为力	$P_A = P_0 - bt$,式中	P ₀ 、 b 分别为正值	常量 , <i>t</i> 是时间。
	i种情况下,写出物体			
(1) 🗗	开始时,若 B 静止,	则 P _{B1} =	;	
(2) $\overline{\mathcal{H}}$	开始时,若 B 的动量	为 $-P_0$,则 P_{B2} =	0	
3 (3分)	一根长为 / 的细绳的	一端固定于光滑水量	P面上的 O 点,另一	·端系一质量为 m
的小球,	开始时绳子是松弛的	$_{ m I}$, 小球与 $_{ m O}$ 点的距	离为 h 。使小球以某	个初速率沿该光
滑水平面	上一直线运动,该直	፲ 线垂直于小球初始	位置与 o 点的连线。	当小球与 o 点
的距离达	到 <i>l</i> 时,绳子绷紧从	而使小球沿一个以	o 点为圆心的圆形轨	ι迹运动,则小球
作圆周	周运动时的动	能 E _K 与 初 动)能 E _{KO} 的比	值 E_K / E_{K0}
=		о		
4(4分)	一个力 F 作用在质	量为 1.0 kg 的质点	上 , 使之沿 <i>x</i> 轴运动	」。已知在此力作
用下质点	的运动学方程为 $x=$	$3t - 4t^2 + t^3$ (SI)。 在	E 0 到 4 s 的时间间隔	尋内 ,
(1)	ΓF 的冲量大小 $I=$			
(2) カ	D F 对质点所作的功	W =	0	

大学物理 A1 共1页 第1页

5(5%) 一长为 l , 质量为 m 的均匀细棒 , 两端分别固定有质量分别为 m 和 $2m$ 的小
球(小球的尺寸不计)。棒可绕通过棒中点 O 的水平轴在铅直平面内自由转动,如图
所示。则由两个小球和细棒组成的这一刚体相对于转
轴 O 轴的转动惯量 J =。若棒从水平位 m O $2m$
置由静止开始转动,则该刚体在水平位置时的角加速
度 α =;该刚体通过铅直位置时的
角速度@=。
6(5分) 一长为 l 、重 W 的均匀梯子,靠墙放置,如
图。梯子下端连一劲度系数为 k 的弹簧 . 当梯子靠墙竖直
放置时,弹簧处于自然长度。墙和地面都是光滑的.当梯
子依墙而与地面成 θ 角且处于平衡状态时,
(1) 地面对梯子的作用力的大小为,
(2) 墙对梯子的作用力的大小为,
(3) W 、 k 、 l 、 θ 应满足的关系式为。
$7(3 分) A \setminus B \setminus C$ 三个容器中皆装有理想气体,它们的分子数密度之比为 n_A n_B
n_C = 4 2 1,而分子的平均平动动能之比为 $\overline{w_A}$ $\overline{w_B}$ $\overline{w_C}$ = 1 2 4,则它们的压
强之比 p_A p_B p_C =。
8(5) 用总分子数 N 、气体分子速率 V 和速率分布函数 $f(V)$ 表示下列各量:
(1) 速率大于 v_0 的分子数 =;
(2) 速率大于 v_0 的那些分子的平均速率 =;
(3) 多次观察某一分子的速率,发现其速率大于 v_0 的概率 =。
(3) 夕从观宗来 刀丁叮还平,及戏兵还平八丁 (0)叮佩平。
9(3分)一定量的某种理想气体在等压过程中对外作功为 200 J。若此种气体为单原
子分子气体,则该过程中需吸热
J。

10(4分)熵是 的定量量度。若一定量的 理想气体经历一个等温膨胀过程,它的熵将______。(填入:增加, 减少,不变。) 11(3分)一质点作简谐振动。其振动曲线如图所示。 根据此图,它的周期 $T = _____, 用余弦函数描述$ 时初相 $\phi=$ 。 12(4) 如图所示,假设有两个同相的相干点光源 S_1 和 S_2 ,发出波长为 λ 的光。A是它们连线的中垂线上的一点。若在 S_1 与 A 之间插 入厚度为 e、折射率为 n 的薄玻璃片,则两光源发 出的光在 A 点的相位差 $\Delta \phi =$ _____。若已知 $\lambda =$ 500 nm , n = 1.5 , A 点恰为第四级明纹中心 , 则 $e = _{nm_{o}} (1 \text{ nm} = 10^{-9} \text{ m})$ 13 (3分) 已知在迈克耳孙干涉仪中使用波长为ℓ的单色光。在干涉仪的可动反射 镜移动距离 d的过程中,干涉条纹将移动 条。 14 (3分)用波长为 λ 的单色平行光垂直入射在一块多缝光栅上,已知光栅常数 d=3 μm , 缝宽 a=1 μm ,则在单缝衍射的中央明条纹中共有_____条谱线(主极大);该 光栅缺级的主极大级次为 k =15(3分)一束自然光垂直穿过两个偏振片,两个偏振片的偏振化方向成

45°角。已知通过此两偏振片后的光强为 I,则入射至第二个偏振片的线偏振光强度

为_____。

二 计算题(共 45 分)

请将计算题答案写在答题本上。

- 1. $(10\ f)$ 用波长为 $600\ nm$ 的单色光垂直入射到宽度为 $a=0.10\ mm$ 的单缝上,来观察夫琅禾费衍射图样。若已知透镜焦距 $f=1.0\ m$,屏在透镜的焦平面处。求:
 - (1) 中央衍射明条纹的宽度 Δx_0 ;
 - (2) 屏幕上第二级暗纹离中央明纹中心的距离x2。
- 2.(10分)唱机的转盘可绕着通过盘心的固定竖直轴转动,如图所示。将唱片放到转动的唱盘上去,它会受到转盘摩擦力作用而随转盘转动。已知唱片质量为m,半径为R,

可被看成均匀薄圆盘 ,且唱片与转盘之间的滑动摩擦系数为 μ_k 。 若转盘原来以角速度 ω 匀速转动 ,唱片刚放上去时它受到的摩擦力矩是多大?唱片达到角速度 ω 需要多长时间?

 $3(10 \ final fi$

4 (10 分) 如图所示,在绝热刚性容器中有一可无摩擦移动且不漏气的极薄导热隔板,将容器分为 A、B 两部分。A、B 中分别有 1 mol 的氦气和 1 mol 的氦气,它们可被视为刚性分子理想气体。已知初态氦气和氦气的温度分别为 $T_{\rm A}=300~{
m K}$ 、 $T_{
m B}=400~{
m K}$,压强 $p_{
m A}=p_{
m B}=1~{
m atm}$ 。忽略导热板的质量并不计其体积

的变化,求:

- (1) 整个系统达到平衡时两种气体的温度。
- (2) 整个系统达到平衡时两种气体压强。
- (3) 氮气末态与初态的熵差。

5(5分)已知在同一直线上两个频率不同的简谐振动

$$y_1 = A\cos(\omega_1 t + \varphi) = y_2 = A\cos(\omega_2)$$

 $t+\varphi$)

的合振动为

$$y = y_1 + y_2 = 2A\cos\left(\frac{\omega_1 - \omega_2}{2}\right)t \cdot \sin\left(\frac{\omega_1 + \omega_2}{2}t + \varphi\right)$$

当两个振动频率都较大且相近时,合振动会产生拍的现象。

将两个正弦波信号发生器的输出端各接一个扬声器,并在这两个扬声器之间放置一个麦克风。已知两个信号发生器发出的信号的频率相近,将麦克风的输出信号经放大接到示波器后,观察到如图所示图形。求(1)图示合振动的拍频(2)这两个信号发生器发出的信号频率各为多大?