ZetaChain

The Multichain Solution to Blockchain's Gas Problem?

The Problem?

Computation on some chains (ex. ETH Mainnet) can be **very expensive**

Other chains have cheaper gas prices...

But Valuable Assets are stored in the Main Chain...

Computational Arbitrage.

Daniyal after CSCD71 Tutorial

Arbitrage

/ˈärbəˌträZH/

purchase and sale of the same asset in different markets to profit from differences in listing prices

Why not apply it to Compute ?

Compute where prices are low, use result where prices are high

Name	Current cost to transfer ETH
	\$0.17 ×
→ ZKSync	\$0.20 ~
Polygon Hermez	\$0.25 ~
Optimistic Ethereum (9)	\$1.45 ×
Arbitrum One (1)	\$1.83 ×
♦ Ethereum	\$4.83 ×

Universal Blockchain

——— ZetaChain Docs

What is ZetaChain?

- Layer 1 Blockchain
- EVM-compatible (Smart Contracts)
- Cosmos BFT Consensus (Proof of Stake)
- Purpose? Provide
 cross-chain smart
 contract interactions

Hub and Spoke Architecture

ZetaChain (Hub) connects external EVM chains (Spokes)

Core Validators

Participate in the core Proof-of-Stake consensus on ZetaChain, using the Comet BFT consensus protocol.

Observer-Signer Validators

Monitor and vote between
ZetaChain and external chains,
for specific **events** signifying steps
of cross-chain transactions (CCTx)

ZRC-20 Tokens

ZetaChain's token standard represents tokens from external blockchains

 A Stablecoin with value pegged to the respective gas token value

Cross-Chain Transaction (CCTx) Workflow

3 Things are Certain in Life: Death, Taxes and Undocumented Code

Every Story needs Characters

(it's not Alice, Bob and Mallory)

Chain A

ZetaChain

Chain B

Every Story needs Characters

(it's not Alice, Bob and Mallory)

Contract we deployed on Chain A

Deployed by "Zeta" on Chain A

Found in all supported External Chains to handle transactions into and out of ZetaChain

Bank for the External Chain's native token

Invokes Chain A Gateway EVM's DepositAndCall with transaction data

Send "Gas for Remaining CCTx" amount to Chain A TSS EOA

Emits DepositAndCalled **Event** with transaction data

Observer-Signer validators monitor **blocks** in Chain A for any new events emitted

Vote on the validity of the observed pending "inbound message" by leveraging TSS

Once voting passes, **Protocol Address** initiates corresponding transaction in ZetaChain

Important! Observer-Signer monitoring and voting all happens **off-chain**

Contract that we deploy on ZetaChain

Deployed Contract/EOA on ZetaChain

Handle transactions into and out of ZetaChain

The only wallet with authority to pass incoming transaction calls to Gateway ZEVM

Think of it as an EOA that only the blockchain can initiate transactions from it

Invokes Gateway ZEVM's *DepositAndCall* with transaction data

DepositAndCall mints "Gas for Remaining CCTx" amount of ZRC-20 representative of ETH/ERC-20 sent to TSS EOA

Minted ZRC-20 token is then transferred to Contract 2

Lastly, *DepositAndCall* invokes Contract 2's .onCall with transaction data passed

All Universal Apps on ZetaChain need to implement a .onCall method

Entry point for any incoming transaction from an external chain to ZetaChain

Before passing transaction to Chain B, Contract 2 (Universal App) **is responsible for:**

1. Estimating Gas Breakdown for Outgoing Transaction in the Deposited *ZRC-20* units

2. Converting Estimated Gas to Chain B's Native Token Unit by doing a swap with **Uniswap V2** (found in ZetaChain)

Contract 2 invokes Gateway ZEVM's WithdrawAndCall with transaction data

Send ZRC-20 amount that will be rewarded to facilitating Validators to the Protocol Address

Burn ZRC-20 amount that will be withdrawn from Chain B's TSS EOA to cover for CCTx execution on Chain B

Emits a withdrawAndCalled event with transaction data

Validating Events from ZetaChain into External Chain

Observer-Signer validators monitor **blocks** in ZetaChain for any new events emitted

Validating Events from ZetaChain into External Chain

Vote on the validity of the observed pending "outbound message" by leveraging TSS

Validating Events from ZetaChain into External Chain

Once voting passes, **Chain B's TSS EOA** initiates corresponding transaction in Chain B

Chain B TSS EOA invokes *execute* of Chain B's GatewayEVM with transaction data

Only Chain B TSS EOA is authorized to invoke GatewayEVM's *execute*

Execute invokes .onCall of our Contract 3 in Chain B with transaction data passed

All Contracts on External Chain needs to implement a .onCall method

Entry point for any outgoing transaction from ZetaChain to Deployed External Chain

5/

Once .onCall succeeds, Gateway EVM emits executed event

Inside Chain B Observer-Signer Validators .onCall Execute Chain B Chain B Contract 3 Gateway EVM TSS EOA

executed **event** will be monitored and voted by Observer-Signer Validators to confirm CCTx completion

Back to our Problem

How to Perform Computational Arbitrage?

1

Naive Method

2

Proof of Concept Method

What We Have

Computation Arbitrage - The Naive Method (We also have PoC for this)

Computation Arbitrage - The Proof of Concept

Two-Way "Promise-based" Transaction:

Chain A begins a computation, encounters an **expensive** function

Wants to offload to Chain B for cheaper gas

Chain B computes the function requested on the content received

Packages the result and sends it back

Chain A can now take the result and continue whatever computation it intended.

Proof of Concept

We have Computational Arbitrage... But at What 'Cost'?

Mais on ne peut vaincre le mal que par un autre mal

- Jean-Paul Sartre, I think

Observer-Signer Validator Concerns

- VOTING RUNS OFF-CHAIN
- ADMINS <u>FEDERATE</u> OBSERVER-SIGNER VALIDATORS
- CUSTOM CRYPTO LIBRARY...
- EVENTS MAY EXPOSE INTERNAL VARIABLES

Comet BFT has 5 second confirmation time but...

- OBSERVER-SIGNER VALIDATOR MONITOR BLOCKS
- THUS <u>WORSE CASE</u> SCENARIO: For CCTx to complete, it takes Chain A Confirmation Time + Chain B Confirmation Time + 5 Seconds

The Problem of Reverting Cross-Chain Transactions (CCTx)

- MAIN ISSUE CCTX IS NON ATOMIC
- DEPENDING ON WHERE IT FAILS, MAY REQUIRE CROSS-CHAIN REVERT TRANSACTION
- AS A RESULT, GAS FEE INCREASES UPON FAILURE
- REVERT SCOPE IS ONLY WITHIN 1 TRANSACTION...
 NOT SUITABLE FOR 2 STEP PROCESSES

Even performing CCTx is **expensive** due to multiple transactions...

It may not even be worth the gas difference

NO TRUST MECHANISM BUILT IN...

Must trust Gateway, but Trusted Gateway Address is posted on their website...

Top 3 Resources:

- https://github.com/zeta-chain/node/tree/develop/docs
- https://github.com/zeta-chain/protocol-contracts
- https://github.com/zeta-chain/example-contracts

Thank you for the semester!

