Abstract:

This project will be based on classification problem to predict customer online shopping intention. we aim to help companies to be successful in a highly competitive eCommerce environment by predict whether the customer, visiting web pages of an online shop, will end up with a purchase or not. The dataset contains 12330 observation and 18 features divided into 80% training and 20% testing.

I have used three classification models which are logistic regression, Random Forest and decision tree. The results show The random forest outperform the other model in accuracy, precision, recall and F1 Score with 90%91%, 98%,94% respectively for not purchase. While for purchasing precision is is 84%, recall is 57%, F1 score is 68%.

Design:

The dataset consists of 10 numerical and 8 categorical attributes. I used five attributes (Month, operating system, Browser, Visitor type, Weekend, Revenue) in Eda part and in model training. The 'Revenue' attribute is used as class label. The dataset is clean, there are no missing values, but the dataset is unbalanced. There is a risk of bias, so the analysis must take the unbalanced dataset into consideration.

Algorithms:

I have used Random Forest, Logistic Regression and decision, the results showing in the figure below:

	precision	recall	f1-score	support
False	0.91	0.98	0.94	985
True	0.84	0.57	0.68	215
accuracy			0.90	1200
macro avg	0.88	0.77	0.81	1200
weighted avg	0.90	0.90	0.90	1200

Figure 1: Random forest performance

precision, recall and F1 Score with 91%, 98%,94% respectively for not purchase. While for purchasing the precision is 84%, recall is 57%,F1 score is 68%.

	precision	recall	f1-score	support
False	0.91	0.91	0.91	985
True	0.58	0.59	0.58	215
accuracy			0.85	1200
macro avg	0.75	0.75	0.75	1200
weighted avg	0.85	0.85	0.85	1200

Figure 2 : Decision Tree performance

precision, recall and F1 Score with 91%,91%, 91% respectively for not purchase . While for purchasing precision is 58%, recall is 59% ,F1 score is 58% .

	precision	recall	f1-score	support
False True	0.86 0.82	0.99 0.28	0.92 0.42	985 215
accuracy macro avg weighted avg	0.84 0.86	0.64 0.86	0.86 0.67 0.83	1200 1200 1200

Figure 3 : Logistic Regression performance

Tool:

- Numpy and Pandas for data manipulation
- Scikit-learn for modeling, confusion matrix and feature extraction
- Matplotlib and Seaborn for plotting