

23MT2014

THEORY OF COMPUTATION

Topic:

POSITIVE PROPERTIES OF CONTEXT-FREE LANGUAGE

Session - 1

AIM OF THE SESSION

The aim of the session is to introduce participants to the positive properties of Context-Free Languages (CFLs) and their significance in computer science and formal language theory.

INSTRUCTIONAL OBJECTIVES

This Session is designed to:

1. Understand and identify the positive properties of CFLs, such as closure under concatenation, closure under union, and the ability to generate nested structures.

LEARNING OUTCOMES

At the end of this session, you should be able to:

 recognize and analyze the positive properties of CFLs in different contexts, apply them to construct grammars and parse trees, and comprehend their relevance in programming language design and compiler construction.

Positive Properties of Context-Free languages

Union

Context-free languages are closed under: Union

 L_1 is context free

 L_2 is context free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

In general:

 L_1, L_2 For context-free languages with context-free grammars and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable and additional production $S \rightarrow S_1 \mid S_2$

Concatenation

Context-free languages are closed under: Concatenation

 L_1 is context free L_1L_2 L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Concatenation

8

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

In general:

 L_1, L_2 For context-free languages with context-free grammars G_1, G_2 and start variables S_1, S_2

The grammar of the concatenation L_1L_2 has new start variable and additional production $S \rightarrow S_1 S_2$

Star Operation

Context-free languages are closed under: Star-operation

10

L is context free

Example

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \lambda$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \lambda$$

, In general:

For context-free language L with context-free grammar G and start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \to SS_1 \mid \lambda$

Negative Properties of Context-Free Languages

13

Intersection

14

Context-free languages are **not** closed under:

intersection

is context free

 L_2 is context free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are **not** closed under:

complement

L is context free

not necessarily context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NATIONAL RANKED 27 NOT context-free

Intersection Context-free languages and Regular Languages

18

The intersection of

a context-free language and a regular language

is a context-free language

Machine M_1

NPDA for L_1

context-free

Machine M_2

DFA for L_2 regular

Construct a new NPDA machine M that accepts $L_1 \cap L_2$

20

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

DFA M_2

NPDA M

$$(q_1, p_1)$$
 $a, b \rightarrow c$ (q_2, p_2)

transition

DFA M_2

NPDA M

22

DFA M_2

initial state

NPDA M

Initial state

23

final state

final states

NPDA M

Example:

context-free

$$L_1 = \{w_1w_2 : |w_1| = |w_2|, w_1 \in \{a,b\}^*, w_2 \in \{c,d\}^*\}$$

NPDA M_1

regular
$$L_2 = \{a, c\}^*$$

DFA M_2

26

context-free

Automaton for:
$$L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$$

NPDA M

In General:

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

M accepts string w if and only if

 M_1 accepts string w and

 M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$

Therefore:

M is NPDA

 $L(M_1) \cap L(M_2)$ is context-free

 $L_1 \cap L_2$ is context-free

SELF-ASSESSMENT QUESTIONS

- Q.1. Which of the following is a positive property of Context-Free Languages?
- A) Inability to generate palindromes
- B) Closure under union
- C) Limited expressive power compared to Regular Languages
- D) Lack of nested structures

SELF-ASSESSMENT QUESTIONS

- Q.2. Which of the following is a negative property of Context-Free Languages?
- A) Ability to generate palindromes
- B) Closure under intersection
- C) Ability to recognize Regular Languages
- D) Lack of recursion

SELF-ASSESSMENT QUESTIONS

- Q.3. Which property makes Context-Free Languages suitable for designing programming languages?
- A) Closure under intersection
- B) Lack of nesting
- C) Closure under complement
- D) Closure under concatenation

TERMINAL QUESTIONS

Q.1 Question 1: Define a Context-Free Language (CFL) in your own words.

Question 2: Explain one positive property of Context-Free Languages and provide an example.

Question 3: Describe a negative property or limitation of Context-Free Languages.

Question 4: How are Context-Free Languages relevant in the field of compiler construction?

Team - TOC

