Lecture 8 Clustering Aggregation

- Clustering: a group of clusters output by some clustering algorithm
- Cluster: A group of points
- Goals of clustering Aggregation
 - Compare clusterings
 - o Combine the information from multiple clusterings to make a new clustering
- Disagreement Distance
 - o Given two clustering's P and C (For two partitions P and C of the dataset)
 - o $D(P,C) = \sum_{x,y} Ip, c(x,y)$ where
 - \circ Ip, c(x, y) =

1 if P and C disagree which cluster x and y belong to and 0 otherwise

o Formally,

0

$$I_{C,P}(x,y) = \begin{cases} 1 & \text{if } C(x) = C(y) \text{ and } P(x) \neq P(y) \\ & \text{OR} \\ & \text{if } C(x) \neq C(y) \text{ AND } P(x) = P(y) \\ 0 & \text{otherwise} \end{cases}$$

- Disagreement distance is a measure of how different two clusterings of a set of data points are, counting the number of disagreeing object pairs between
- o P(x) is the cluster index in partition P that contains object x
- o C(x) is the cluster index in partition C that contains object x
- Comparing rows in table not cols
- N choose k pairs

$$\bullet \quad \frac{n}{k} = \frac{n!}{k!(n-k)!}$$

Object Cluster in C Cluster in P

- x1
 1

 x2
 1

 x3
 2

 x4
 3

 x5
 3
 - $\bullet \quad (x1, x2):$
 - o P: same $(1 \neq 2) \rightarrow$ different
 - C: same $(1 = 1) \rightarrow \text{same} \rightarrow \text{Disagree} \rightarrow 1$
 - (x1, x3):
 - \circ P: same (1 = 1)
 - \circ C: different $(1 \neq 2) \rightarrow$ **Disagree** $\rightarrow 1$
 - (x1, x4):
 - o P: different
 - \circ C: different \rightarrow Agree \rightarrow 0

- (x1, x5):
 - o P: different
 - o C: different \rightarrow Agree \rightarrow 0
- $\bullet \quad (x2, x3):$
 - o P: different $(2 \neq 1)$
 - C: different $(1 \neq 2) \rightarrow Agree \rightarrow 0$
- (x2, x4):
 - o P: different
 - o C: different \rightarrow Agree \rightarrow 0
- (x2, x5):
 - o P: different
 - o C: different \rightarrow Agree \rightarrow 0
- (x3, x4):
 - o P: different
 - o C: different \rightarrow Agree \rightarrow 0
- (x3, x5):
 - o P: different
 - \circ C: different \rightarrow Agree \rightarrow 0
- (x4, x5):
 - \circ P: different $(3 \neq 4)$
 - \circ C: same $(3 = 3) \rightarrow$ Disagree $\rightarrow 1$

So the total disagreement distance:

$$\circ$$
 D(P,C)=1+1+1=3

- Aggregate Clustering
 - Can identify best number of clusters
 - o Can handle and detect outliers
 - o Combining clusterings can produce better results
 - Preserves privacy
 - o Problem is in NP Hard