Tangent Lines

For each problem, find the equation of the line tangent to the function at the given point. Your answer should be in slope-intercept form.

1)
$$y = x^3 - 3x^2 + 2$$
 at $(3, 2)$

2)
$$y = -\frac{5}{x^2 + 1}$$
 at $\left(-1, -\frac{5}{2}\right)$

3)
$$y = x^3 - 2x^2 + 2$$
 at $(2, 2)$

4)
$$y = -\frac{3}{x^2 - 25}$$
 at $\left(-4, \frac{1}{3}\right)$

5)
$$y = -\frac{3}{x^2 - 4}$$
 at $(1, 1)$

6)
$$y = (5x + 5)^{\frac{1}{2}}$$
 at $(4, 5)$

7)
$$y = \ln(-x)$$
 at $(-2, \ln 2)$

8)
$$y = -2\tan(x)$$
 at $(-\pi, 0)$

Tangent Lines

For each problem, find the equation of the line tangent to the function at the given point. Your answer should be in slope-intercept form.

$$y = 9x - 25$$

3)
$$y = x^3 - 2x^2 + 2$$
 at $(2, 2)$
 $y = 4x - 6$

5)
$$y = -\frac{3}{x^2 - 4}$$
 at $(1, 1)$
$$y = \frac{2}{3}x + \frac{1}{3}$$

7)
$$y = \ln(-x)$$
 at $(-2, \ln 2)$
$$y = -\frac{1}{2}x + \ln 2 - 1$$

2)
$$y = -\frac{5}{x^2 + 1}$$
 at $\left(-1, -\frac{5}{2}\right)$

$$y = -\frac{5}{2}x - 5$$

4)
$$y = -\frac{3}{x^2 - 25}$$
 at $\left(-4, \frac{1}{3}\right)$
$$y = -\frac{8}{27}x - \frac{23}{27}$$

6)
$$y = (5x + 5)^{\frac{1}{2}}$$
 at $(4, 5)$
 $y = \frac{1}{2}x + 3$

8)
$$y = -2\tan(x)$$
 at $(-\pi, 0)$
 $y = -2x - 2\pi$