Introduction to data science & artificial intelligence (INF7100)

Arthur Charpentier

#291 Time Series

été 2020

Time Series

via When Did Charts Become Popular?

Time Series

via http://stat4701.github.io/

Time Series

A time series is a sequence of observations (Y_t) ordered in time, at regular dates.

Buys-Ballot (1847, Les changements périodiques de température, dépendants de la nature du soleil et de la lune, mis en rapport avec pronostic du temps, déduits d'observations néerlandaises de 1729 à 1846) - original probably in Dutch.

Date.		Temp.	Temp. calculée.	Différ.	Temp. calculée.	Differ.		Date.		Temp.		Temp. calculée.	Diffée.		Temp. calculée.	Différ.	
10	Janv.	32.58	3 2.5 8	0	32.58		0	17	Juin.		0.58	+ 0.24			63.68		0.66
15	4		+0.78		+ 0.88		0.13		α			64.33			64.03		0.05
20	4		34.14	+ 0.25			0.05		α	+	0.50	64.57			64.37		0.21
25	ĸ		34.92	+ 0.30			0	1	Aont			64.83	+		64.71	+	0.13
30	4		35.70		+ 0.59		0.67	6	•	1+	0.22	65.06		0	65.06		0
4	Fett.		36.47	0 .	36.40		0.07	1		1			1			١.	
9	q		+ 0.55		36.99		0.13		Œ	1-					- 0.50		0.05
14	•	+ 0.36			37.58		0.36		α	1		64.22			64.05		0.22
19	45		38.13		38.17		1.00		α	1		63.80	1+	0.05	63.55		0.30
24	•	+ 1.59		+ 0.08				26	α	1	0.66	63 38	1+		63.04		0.15
1	Mars		39.24	0	+ 0.69		0.25		Sept.			62.96	١.	0	62.54	+	0.42
6	«		+ 0.73		40.14		0.65		α	1		- 1.13			62.03		0
11	4		40.69		40.83		1.23		Œ	1		60.71			- 1.26	١.	0
17	•		41.42		41.52		0.09		Œ			59.59	+		59.51		0.51
22	ĸ		42.15	+ 0.07	42.22		0	21	W.		1.37	58.46 57.33	1+	0.19	58.25 56.99		0.41
27	۹		42.89	0	+ 1.29	-	0.62		. «			- 1.32			55.74	+	0.34
1	Avril		45.61		44.80		0.57		Oct.	1		- 1.32 54.69	1		- 1.43	١.	0.35
6 11	4			+ 0.52			0.04		«			53,37	_		52.88		0.35
	€		46.99	+ 0.37			0.02		«		1.43	52.05	匚		51.46		0.28
16 21	«		48.36 49.70	- 0.11	43.67		0.42		*6			50.73	1-	0.12	50.03		0.40
21 26	*		+ 1.21		51.26			21 26	«		0.12	- 1,63	_		43.60	T	0.70
	Wai		52.13	+ 0.33	+ 1.12		0.44		Nov.			47.44	П	0.30		느	
7			53.34	+ 0.69			0.44 0.82		NOV.			45.82			45.77		0.53
12	:		54.56	- 0.98	53.50		0.62		1			44.20	_	0.50	44.36		0.16
17	ď.		55.79	- 0.01	55.74		0.05		:			- 0.76	1		42.95		0.10
22	4		+ 0.95	+ 0.34			0.00					42.68			41.53	1	0.00
27			57.69	+ 0.30	57.00			26	à			41.92		0.07	- 0.70	4	0.12
	Juin		58.64	T 0.30	+ 0.66		0.40		Déc.	4		41.15	Г.	0.07	40.13		0.76
ê	ď		59.60	+ 0.02	FO 22		0.30		g a	١.		- 0.85	_	0.49	39.43		0.27
11	:		60.55	0.02	59.98		0.57		à			39.19			38.73		0.06
16			+ 0.55	+ 0.02			0.47					38.33	—	0.29	38.04		0
21			61.65		61.31		0.13					37.40		0	- 1.04	+	0.40
							0.02					- 1.14	_		35.96		0.17
16		0.77		- 0.25 - 0.13								35.12			34.92		0.18
16	Juill.	0.68	62.20 62.75 63.31	- 0.12	62.63 + 0.35			31			1.05		-	0.38		_	

Moving Average

$$\widetilde{y}_t = \frac{1}{2h} \left(\frac{y_{t-h}}{2} + \dots + y_{t-1} + y_t + y_{t+1} + \frac{y_{t+h}}{2} \right)$$

Autocorrelation

Time Series & Causality

"an old variable explains 85% of the change in a new variable. So we can talk about causality" Emmanuel Todd (no!!)

Time Series & Causality

$$\begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \begin{bmatrix} x_{t-1} \\ y_{t-1} \end{bmatrix} + \begin{bmatrix} u_t \\ v_t \end{bmatrix}, \ \mathsf{Var} \begin{bmatrix} u_t \\ v_t \end{bmatrix} = \begin{bmatrix} \sigma_u^2 & \rho \sigma_u \sigma_u \\ \rho \sigma_u \sigma_v & \sigma_v^2 \end{bmatrix}$$

- ▶ $a_{1,2} \neq 0$: causal effect, $y \rightarrow x$
- $ightharpoonup a_{2,1} \neq 0$: causal effect, $x \rightarrow y$
- $\rho \neq 0$: (instantaneous) causal effect, $x \leftrightarrow y$

see Tents, Tweets, and Events: The Interplay Between Ongoing Protests and Social Media (on Indignados, Occupy, and Brazilian Vinegar protests)

Forecasting Time Series

See monthly deaths in Québec province

using Exponential Smoothing...