Introduction to Grammar / Languages

By: Dr. Archana Gupta

What is Automata Theory?

- Study of abstract computing devices, or "machines"
- Automaton = an abstract computing device
 - Note: A "device" need not even be a physical hardware!
- A fundamental question in computer science:
 - Find out what different models of machines can do and cannot do
 - The theory of computation
- Computability vs. Complexity

(A pioneer of automata theory)

Alan Turing (1912-1954)

- Father of Modern Computer Science
- English mathematician
- Studied abstract machines called *Turing machines* even before computers existed
- Turing test?

Theory of Computation: A Historical Perspective

1930s	 Alan Turing studies Turing machines Decidability Halting problem 	
1940-1950s	 "Finite automata" machines studied Noam Chomsky proposes the "Chomsky Hierarchy" for formal languages 	
1969	Cook introduces "intractable" problems or "NP-Hard" problems	
1970-	Modern computer science: compilers, computational & complexity theory evolve	S

Languages & Grammars

An alphabet is a set of symbols:

Or "words"

{0,1}

Sentences are strings of symbols:

A language is a set of sentences:

$$L = \{000,0100,0010,..\}$$

A grammar is a finite list of rules defining a language.

$$S \longrightarrow 0A$$
 $B \longrightarrow 1B$
 $A \longrightarrow 1A$ $B \longrightarrow 0F$
 $A \longrightarrow 0B$ $F \longrightarrow \varepsilon$

- <u>Languages</u>: "A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols"
- Grammars: "A grammar can be regarded as a device that enumerates the sentences of a language" - nothing more, nothing less
- N. Chomsky, Information and Control, Vol 2, 1959

The Chomsky Hierachy

• A containment hierarchy of classes of formal languages

The Central Concepts of Automata Theory

Alphabet

An alphabet is a finite, non-empty set of symbols

- We use the symbol ∑ (sigma) to denote an alphabet
- Examples:
 - Binary: $\Sigma = \{0,1\}$
 - All lower case letters: $\Sigma = \{a,b,c,..z\}$
 - Alphanumeric: $\Sigma = \{a-z, A-Z, 0-9\}$
 - DNA molecule letters: $\Sigma = \{a,c,g,t\}$
 - ...

Strings

A string or word is a finite sequence of symbols chosen from ∑

- Empty string is ε (or "epsilon")
- Length of a string w, denoted by "|w|", is equal to the number of (non- ε) characters in the string
 - E.g., x = 010100|x| = 6
 - x = 01 ε 0 ε 1 ε 00 ε |x| = ?
- xy = concatentation of two strings x and y

Powers of an alphabet

Let Σ be an alphabet.

- $-\sum^{k}$ = the set of all strings of length k
- $\sum^* = \sum^0 U \sum^1 U \sum^2 U \dots$
- $\sum^{+} = \sum^{1} U \sum^{2} U \sum^{3} U \dots$

Languages

L is a said to be a language over alphabet Σ , only if L $\subseteq \Sigma^*$

Examples:

1. Let L be *the* language of <u>all strings consisting of *n* 0's followed by *n* 1's:</u>

```
L = \{\epsilon, 01, 0011, 000111,...\}
```

2. Let L be *the* language of <u>all strings of with equal number of 0's and 1's:</u>

```
L = \{\epsilon, 01, 10, 0011, 1100, 0101, 1010, 1001,...\}
```

Canonical ordering of strings in the language

Definition: Ø denotes the Empty language

• Let $L = \{\epsilon\}$; Is $L = \emptyset$?

The Membership Problem

Given a string $w \in \Sigma^*$ and a language L over Σ , decide whether or not $w \in L$

Example:

Let w = 100011

Q) Is w = the language of strings with equal number of 0s and 1s?

Finite Automata

Some Applications

- Software for designing and checking the behavior of digital circuits
- Lexical analyzer of a typical compiler
- Software for scanning large bodies of text (e.g., web pages) for pattern finding
- Software for verifying systems of all types that have a finite number of states (e.g., stock market transaction, communication/network protocol)

Finite Automata: Examples

On/Off switch

Start Off On Push 7"

Modeling recognition

