tou α = definite sols per $\alpha \neq \frac{\pi}{2} + K\pi$ $K \in \mathbb{Z}$

toud pué ommere qualsion volere -00 < toud < +00

tan (a + KTT) = tand

a. Finché B percorre il primo quarto di circonferenza, l'ordinata di T è positiva e aumenta man mano che B si avvicina al punto F. Quando $B \equiv F$, la tangente non esiste.

b. Quando *B* percorre la circonferenza nel secondo quadrante, l'ordinata *T* è negativa e aumenta fino a quando $B \equiv G$, in cui $y_T = 0$.

c. Se B si trova nel terzo quadrante, l'ordinata di Tè di nuovo positiva e aumenta fino a quando B = H e T non esiste più. La tangente di $\frac{3\pi}{2}$ non esiste.

d. Quando *B* percorre l'ultimo quarto di circonferenza, l'ordinata di *T* ritorna negativa e aumenta fino allo 0.

I trionggli OXBB e OAC sons simili

cos &: 1 = sind: tand

2°RFL. FONDAMENAIF DEVA GONDHETON

 $Cod \neq 0$ $L \Rightarrow d \neq \frac{\pi}{2} + K\pi$

v°		sind	Cos L	tand = sind	_
0°	0	0	1	0	
45°	T14	<u>V2</u> 2	1/2 2	1	
30°	#6	1 2	<u>13</u> 2	<u>V3</u> 3	1.13 = 13
60°	#\ 3	<u>V3</u> 2	1 2	V3	

$$\frac{\sin\frac{7}{2}\pi - \cos(-7\pi) + 2\sin\left(-\frac{11}{2}\pi\right)}{2\sin\left(-\frac{3}{2}\pi\right) + \cos 4\pi - 4\cos\frac{5}{2}\pi}$$
Sin $(\alpha + 2k\pi) = \sin \lambda$

$$(\alpha + 2k\pi) = \cos \lambda$$

$$=\frac{\sin(3\pi+\frac{\pi}{2})-\cos(-\pi-6\pi)+2\cdot\sin(-5\pi-\frac{\pi}{2})}{2\cdot 1+1-4\cos(2\pi+\frac{\pi}{2})}=$$

$$-\frac{3}{2}\pi$$

$$= \frac{-1 - (-1) + 2 \cdot 1}{2 + 1 - 4 \cdot 0} = \frac{-1 + 1 + 2}{3} = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$$

$$-5\pi - \frac{\pi}{2}$$

$$\sin \alpha = \frac{4}{5} e^{\frac{\pi}{2}} < \alpha < \pi.$$

) quota informarine mi dice che i l'angols "rosse" (quindr cos d'e negotino)

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 x = 1 - \sin^2 x = 1 - \frac{16}{25} = \frac{9}{25}$$

$$\Rightarrow \omega = -\frac{3}{5}$$

$$tom x = \frac{\sin x}{\cos x} = \frac{4}{5} = -\frac{4}{3}$$