

DATA SCIENCE

BIG DATA ARCHITECTURING & DATA INTEGRATION Prof. Dr. Renê de Ávila Mendes

Objetivos da disciplina

DISCIPLINA: Big Data Architecturing & Data Integration

OBJETIVOS: Entenda as principais arquiteturas para ingestão, processamento e análise de grandes volumes de dados. Conheça as principais ferramentas open-source de Big Data como Hadoop, MapReduce, Spark, Sqoop, NiFi, Flume, Kafka, Zookeeper, HBase, Hive e as integre com as ferramentas de extração, transformação e carga de dados em modelos dimensionais. Entenda conceitos sobre computação paralela e distribuída, aplicação do Hadoop e bases Apache e arquiteturas serverless e desacopladas. Veja como visualizar os dados estruturados ou não estruturados com ferramentas de Self-Service Business Intelligence como PowerBI, utilizando as melhores práticas de visualização de dados.

Assuntos – 1º Semestre

- Introdução a Big Data
- Conceitos Computação Paralela e Distribuída, Lei de Moore, Sistema HDFS
- Aplicação Hadoop. Usos e Administração de Ambientes Hadoop
- Introdução a MapReduce
- Introdução à Integração de Dados
- Integração entre SQL e Hadoop SQOOP
- Bases Apache
- Bases Apache PIG
- Introdução da Data Streaming FLUME
- Introdução a análise de dados com SPARK

Sistemas distribuídos – o gargalo dos dados

- Tradicionalmente os dados são armazenados em um local central
- Os dados são copiados para os processadores em tempo de execução
- Este modelo funciona bem para poucos dados
- No entanto, os sistemas modernos têm muito mais dados:
 - Terabytes por dia
 - Petabytes no total

http://www.cloudera.com/content/cloudera/en/resources/library/training/cloudera-essentials-for-apache-hadoop-the-motivation-for-hadoop.html and the content of the conten

Hadoop

- Projeto código aberto mantido pela Apache Foundation.
- Fornece uma implementação de código aberto do modelo de programação *MapReduce* de forma confiável e escalável.
- Projetado para ampliar o processamento de um único servidor em milhares de máquinas, onde cada uma das máquinas oferece poder de processamento e armazenamento local.
- Esta ferramenta é utilizada **para processamento em** *batch* de grandes volumes de dados (*Big Data*).

-

Haddop – Uma boa solução FI△P

- Suporta grande volume de dados
- Armazenamento eficiente
- Boa solução de recuperação de dados
- Escalabilidade Horizontal
- Bom custo/benefício
- Simples para programadores e não-programa

Fonte: IBM

FIAP

Hadoop

- "Hadoop é um storage confiável e um sistema analítico"
- Composto por duas partes essenciais:
 - o Hadoop Distributed Filesystem (HDFS), sistema de arquivos distribuído e confiável, responsável pelo armazenamento dos dados
 - Hadoop MapReduce, responsável pela análise e processamento dos dados.

• O nome do projeto veio do elefante de pelúcia que pertencia ao filho do criador, Doug Cutting.

Diagrama Básico dos Componentes

 $Fonte: http://www.tutorialspoint.com/hadoop/hadoop_introduction.htm\\$

 $FI \land P$

Componentes do Hadoop

- O *framework* Hadoop é composto pelos seguintes módulos:
 - Hadoop Common: composto por bibliotecas JAVA e utilitários necessários para outros módulos. As bibliotecas oferecem abstração no nível do Sistema Operacional e sistema de arquivos e também possuem todos os arquivos e scripts necessários para inicializar o Hadoop;

Componentes do Hadoop

- Hadoop YARN: framework para agendamento de tarefas (jobs) e gerenciamento de recursos do cluster;
- Hadoop Distributed File System (HDFS): sistema de arquivos distribuído que fornece acesso aos dados com elevadas taxas de transferência;
- Hadoop MapReduce: sistema baseado no Hadoop YARN para processamento paralelo de grandes volume de dados.

HADOOP DISTRIBUTED FILE SYSTEM

HDFS – Hadoop Distributed File System

- Arquivos são quebrados em blocos
- Blocos são replicados entre os nós
- Nó master armazena os metadados (nomes dos arquivos, localizações etc.)
- Otimizado para arquivos grandes e leituras sequenciais

Fonte: "Tackling the Challenges of Big Data - Big Data Storage: Distributed Computing Platforms" - Matei Zaharia , 2014, Massachusetts Institute of Technology

Worker nodes

Namenode e Datanodes

O HDFS possui uma arquitetura mestre/escravo. Um cluster HDFS consiste em um único NameNode, um servidor mestre que gerencia o namespace do sistema de arquivos e regula o acesso aos arquivos pelos clientes. Além disso, há vários DataNodes, geralmente um por nó no cluster, que gerenciam o armazenamento nos nós em que são executados. O HDFS expõe um namespace do sistema de arquivos e permite que os dados do usuário sejam armazenados em arquivos. Internamente, um arquivo é dividido em um ou mais blocos e esses blocos são armazenados em um conjunto de DataNodes. O NameNode executa operações no namespace do sistema de arquivos, tais como abrir, fechar e renomear arquivos e diretórios. Ele também determina o mapeamento de blocos para DataNodes. Os DataNodes são responsáveis por atender solicitações de leitura e gravação dos clientes do sistema de arquivos. Os DataNodes também executam a criação, exclusão e replicação de blocos mediante instruções do NameNode.

HDFS – Escrita de um arquivo

- 1. Cria o novo arquivo no namespace do Namenode; calcula a topologia do bloco;
- 2. Faz streaming dos dados para o primeiro nó;
- 3. Faz streaming dos dados para o segundo nó;
- 4. Faz streaming dos dados para o terceiro nó;
- 5. ACK sucesso/falha
- 6. ACK sucesso/falha
- 7. ACK sucesso/falha

Fonte: "Hadoop Distributed File System (HDFS) Overview" (http://www.coreservlets.com/hadoop-tutorial/)

Problema

- Sua máquina local não possui os mesmos programas que você precisa para estudar e trabalhar
- Sua máquina local nem mesmo possui o mesmo Sistema Operacional que você encontrará em ambientes corporativos

Máquina Virtual

- Executa o sistema operacional completo
- Usa o hardware da sua máquina local
- Requer um virtualizador

Fonte: https://learn.microsoft.com/pt-br/virtualization/windowscontainers/about/containers-vs-vm

Container

- Usa o sistema operacional da máquina local
- Usa o hardware da sua máquina local
- Requer uma plataforma de containerização

Fonte: https://learn.microsoft.com/pt-br/virtualization/windowscontainers/about/containers-vs-vm

VM Hadoop

• Alterar a configuração do local:

Arquivo > Preferências > Pasta padrão para máquinas: "D:\"

- Importar a imagem
- Usuário e senha
 - hadoop / hadoop

 $FI \land P$

Linux - Comandos

- ls lista o diretório
 - Is
 - ls > teste.txt
- cat lista o conteúdo de um arquivo
 - cat teste.txt
- mkdir cria diretório
 - mkdir teste

 $FI \land P$

Linux - Comandos

- cp copia arquivo
 - cp teste.txt teste1.txt
- mv move um arquivo
 - mv teste1.txt /etc/teste2.txt
- rm apaga arquivo
 - rm /etc/teste2.txt

FIAP

Comandos frequentemente usados

- Comandos shell são usados para executar várias operações Hadoop HDFS e para gerenciar os arquivos presentes em clusters HDFS.
- Todos os comandos são invocados pelo script bin/hdfs ou bin/hadoop.
- version.
 - Imprime a versão do hadoop
 - hadoop version

Comandos frequentemente usados

- classpath.
 - Exibe o caminho das classes e bibliotecas do Hadoop. Definido no arquivo hadoop-config.sh.
 - hadoop classpath

25

http://namenode-name:50070/

 $FI \land P$

Comandos frequentemente usados

- getconf.
 - Exibe informações de configuração do diretório de configurações.
 - hdfs getconf -namenodes
 - hdfs getconf -secondaryNameNodes
 - hdfs getconf -backupNodes
 - hdfs getconf -includeFile
 - hdfs getconf -excludeFile
 - hdfs getconf -nnRpcAddresses

- -namenodes gets list of namenodes in the cluster.
- -secondaryNameNodes gets list of secondary namenodes in the cluster.
- -backupNodes gets list of backup nodes in the cluster.
- -includeFile gets the include file path that defines the datanodes that can join the cluster.
- -excludeFile gets the exclude file path that defines the datanodes that need to decommissioned.
- -nnRpcAddresses gets the namenode rpc addresses
- -confKey [key] gets a specific key from the configuration

Comandos frequentemente usados

- mkdir.
 - Cria um diretório no path informado.
 - hadoop dfs -mkdir testel-seunome
 - hadoop dfs -mkdir teste2-seunome
 - hadoop dfs -mkdir teste3-seunome

Comandos frequentemente usados

- ls.
 - Exibe uma lista do conteúdo de um diretório especificado no path.
 Pode exibir permissões, proprietário, tamanho e data de criação/alteração de cada arquivo.
 - hadoop dfs -ls
 - hadoop dfs -ls -R

Comandos frequentemente usados

- copyFromLocal.
 - Copia um arquivo ou diretório do file system local para o destino especificado no HDFS.
 - -hadoop dfs -copyFromLocal
 /usr/local/hadoop/etc/hadoop/*.xml testel seunome

FIVP

Comandos frequentemente usados

- cat.
 - Exibe o conteúdo de um arquivo na console ou na **stdout**.
 - -hadoop dfs -cat testel-seunome/coresite.xml

Comandos frequentemente usados

- copyToLocal.
 - Copia um arquivo ou diretório do HDFS para o file system local.
 - -hadoop dfs -copyToLocal teste1seunome/core-site.xml .
 - -hadoop dfs -ls teste1-seunome

Comandos frequentemente usados

- cp
 - Copia um arquivo ou diretório de uma origem identificada no comando para um destino identificado no comando
 - -hadoop dfs -cp teste1-seunome/*.xml
 teste2-seunome

Comandos frequentemente usados

- mv
 - Move um arquivo ou diretório de uma origem identificada no comando para um destino identificado no comando
 - -hadoop dfs -mv teste1-seunome/coresite.xml teste3-seunome

Comandos frequentemente usados

- chmod
 - Altera as permissões de leitura, gravação e execução de um arquivo
 - -hadoop dfs -chmod 777 teste2-seunome/*

	Owner	Group	Other
Read (r)	4	4	4
Write (w)	2	2	2
Execute (x)	1	1	1
Total	7	7	7

Comandos frequentemente usados

- rm
 - Apaga um arquivo ou diretório
 - -hadoop dfs -rm teste2-seunome/core-site.xml
 - -hadoop dfs -rm -r testel-seunome
 - -hadoop dfs -rm -r teste2-seunome
 - -hadoop dfs -rm -r teste3-seunome

Namespace

 $FI \land P$

 "É um delimitador abstrato (container) que fornece um contexto para os itens que ele armazena (nomes, termos técnicos, conceitos), o que permite uma desambiguação para itens que possuem o mesmo nome mas que residem em espaços de nomes diferentes. Como um contexto distinto é fornecido para cada container, o significado de um nome pode variar de acordo com o espaço de nomes o qual ele pertence" (O'Reilly Strata, 2015)

 $FI \land P$

- Conhecido do como nó mestre (master node)
- É o servidor que armazena os metadados da árvore de diretório, réplicas, número de bloco de dados e outros detalhes
- Os metadados estão disponíveis na memória para recuperação mais rápida dos dados.

 $FI \land P$

- Mantém e gerencia os nós escravos e atribui tarefas a eles.
- Normalmente implementado em hardware confiável pois é peça central do HDFS.

FIMP

```
cd $HADOOP_HOME/etc/hadoop/
ls -ltr
vi core-site.xml
```

• A property fs.defaultFS especifica a localização do namenode.

```
<name>fs.defaultFS</name>
  <value>hdfs://ip-172-31-45-216.ec2.internal:8020</value>
```

• Este arquivo fica disponível em todos o **nodes** do **cluster** permitindo que todos **nodes** saibam a localização do **namenode**.

Tarefas do NameNode

FIMP

- Gerencia o *namespace* do sistema de arquivos
- Regula o acesso do cliente aos arquivos
 - Não existe quota de usuário
- Executa operações do file system
 - nomeação, abertura e fechamento de arquivos ou diretórios.

Tarefas do NameNode

FIMP

- Todos os DataNodes enviam *Heartbeats* e *block reports* para o NameNode.
 - Heartbeats garantem que o nó está ativo
 - Block Report contém a lista de blocos do datanode
- Responsável por cuidar do Replicator Factor de todos os blocos.

Arquivos do NameNode

FIMP

- Arquivos presentes nos metadados do NameNode:
- FsImage
 - É um "arquivo de imagem".
 - Contém o namespace inteiro do sistema de arquivos
 - Armazenado como um arquivo no file system no namenode
 - Contém uma forma serializada de todos os diretórios e arquivos *inode* do sistema
 - Inode é uma representação interna dos metadados dos arquivos e diretórios.

EditLogs

- Contém todas as alterações recentes feitas no **FsImage** mais recente.
- Ao receber uma solicitação de criação, atualização ou exclusão do cliente, o Namenode primeiro registra essa solicitação no arquivo de edição.

Arquivos do NameNode Primary namenode Master Namenode Write latest changes into logs fsimage and store in main memory fsimage Disk Storage metadados alterações

DataNode

FIMP

- Conhecido como Slave.
- Armazena dados reais no HDFS.
- Executa a operação de leitura e gravação de acordo com a solicitação do cliente.
- DataNodes podem ser implantados em hardware de commodities.

FIMP

cd etc/hadoop
ls -ltr
vi hdfs-site.xml

- **dfs.namenode.name.dir** especifica onde o **NameNode** pode armazenar seus arquivos, localmente.
- **dfs.datanode.name.dir** especifica onde o **DataNode** pode armazenar arquivos e blocos, localmente
- **dfs.namenode.http.address** fornece o endereço no **NameNode**. O endereço pode ser acessado através de um *browser* e fornecer informações sobre o HDFS.

<name>dfs.namenode.http-address

<value>ec2-54-92-244-237.compute-1.amazonaws.com:50070

Tarefas do DataNode

FIMP

- Bloquear a criação, exclusão e replicação conforme as instruções enviadas pelo **Namenode**.
- Gerenciar o armazenamento de dados do sistema.
- Enviar heartbeats para o NameNode
 - Por padrão, a freqüência é de 3 segundos.

Replicação

 $FI \land P$

- Replicação de blocos fornece tolerância a falhas.
- Se uma cópia não for acessível ou estiver corrompida, pode ser lida de outra cópia.
- O número de cópias ou réplicas de cada bloco de um arquivo é o fator de replicação (3, por padrão). Cada bloco e replicado três vezes e é armazenado em diferentes **DataNodes**.
- Em uma configuração padrão, um arquivo de 128 MB em HDFS ocupa 384 MB (3 * 128 MB) de espaço.
- NameNode recebe relatório de bloco do **DataNode** periodicamente para manter o fator de replicação.
- Se um bloco estiver super-replicado / sub-replicado, o **NameNode** adiciona ou exclui as réplicas conforme necessário.

Replicação

 $FI \land P$

- -hadoop dfs -ls teste3-seunome
- -hadoop dfs -Ddfs.replication=2 -cp teste2seunome/yarn-site.xml teste2-seunome/teste.xml
- -hadoop dfs -ls teste2-seunome
- -hadoop dfs -ls teste2-seunome/teste.xml

ΔC

Checkpoint 1

Data: 27/03

Data de entrega: 02/04

Entrega: Portal do aluno