Ma 6a PS2

Om Sanan

October 2025

§1 Find all $x \in \mathbb{Z}$ such that $35x \equiv 10 \pmod{50}$.

Compute the greatest common divisor:

$$\gcd(35, 50) = 5.$$

Divide the entire equation by 5:

$$7x \equiv 2 \pmod{10}$$
.

Find the multiplicative inverse of 7 mod 10:

$$7 \cdot 3 = 21 \equiv 1 \pmod{10}.$$

The inverse of 7 is 3.

Multiply both sides by 3:

$$x \equiv 3 \cdot 2 \equiv 6 \pmod{10}$$
.

The reduced solution is

$$x \equiv 6 \pmod{10}$$
.

Because we divided the original modulus 50 by gcd(35,50) = 5, we must lift the solutions back to mod 50:

$$x \equiv 6 + 10k \pmod{50}, \quad k = 0, 1, 2, 3, 4.$$

$$x = 6, 16, 26, 36, 46 \pmod{50}$$
.

§2 Find all integers that leave remainders 1, 2, and 3 when divided by 9, 8, and 7, respectively

We are asked to find all integers x such that

$$x \equiv 1 \pmod{9}$$
, $x \equiv 2 \pmod{8}$, $x \equiv 3 \pmod{7}$.

Since 9, 8, and 7 are pairwise coprime, there exists a unique solution modulo

$$N = 9 \cdot 8 \cdot 7 = 504.$$

Using CRT, let

$$N_1 = \frac{N}{9} = 56$$
, $N_2 = \frac{N}{8} = 63$, $N_3 = \frac{N}{7} = 72$.

Next, find the inverses of N_i modulo their respective moduli:

$$56 \equiv 2 \pmod{9} \implies 2^{-1} \equiv 5 \pmod{9}$$
,

$$63 \equiv 7 \pmod{8} \implies 7^{-1} \equiv 7 \pmod{8},$$

$$72 \equiv 2 \pmod{7} \implies 2^{-1} \equiv 4 \pmod{7}.$$

Then, the combined congruence is given by

$$x \equiv 1 \cdot 56 \cdot 5 + 2 \cdot 63 \cdot 7 + 3 \cdot 72 \cdot 4 \pmod{504}$$
.

Simplifying,

$$x \equiv 280 + 882 + 864 = 2026 \equiv 10 \pmod{504}$$
.

$$x = 10 + 504k, \quad k \in \mathbb{Z}.$$

§3 Prove that if an odd integer n > 1 is not a prime or a prime power, then there exists a nontrivial square root of 1 modulo n

Since n is odd and not a prime power, it has at least two odd prime factors. Therefore

$$n = \prod_{i=1}^{t} p_i^{e_i} \qquad (t \ge 2, \ p_i \text{ odd primes}, \ e_i \ge 1).$$

Now, let's pick two distinct indices, say 1 and 2. By CRT, there exists an integer x satisfying the simultaneous congruences

$$x \equiv 1 \pmod{p_1^{e_1}}, \qquad x \equiv -1 \pmod{p_2^{e_2}}, \qquad x \equiv 1 \pmod{p_i^{e_i}} \text{ for } i = 3, \dots, t.$$

For each i, we then have $x^2 \equiv 1 \pmod{p_i^{e_i}}$, hence by CRT again,

$$x^2 \equiv 1 \pmod{n}$$
.

Moreover, $x \not\equiv 1 \pmod{n}$ because $x \equiv -1 \pmod{p_2^{e_2}}$, and $x \not\equiv -1 \pmod{n}$ because $x \equiv 1 \pmod{p_1^{e_1}}$.

Therefore, x is a nontrivial square root of 1 modulo n.

§4 Decrypt an RSA message (01 \leftrightarrow A, ..., 26 \leftrightarrow Z) with e=5,

n=2881: 2688 0559 0752 0915 2112 0564 2743 2783

Setup (per RSA method in class). Factor n: $2881 = 43 \cdot 67$ (both prime), so

$$\varphi(n) = (43 - 1)(67 - 1) = 42 \cdot 66 = 2772.$$

Compute the decryption exponent $d \equiv e^{-1} \pmod{\varphi(n)}$ for e = 5:

$$5d \equiv 1 \pmod{2772} \quad \Rightarrow \quad d = 1109.$$

Decryption proces. For each ciphertext block C, compute $M \equiv C^d \pmod{n}$ and then split M into two 2-digit numbers (01–26) to map back to letters.

C	$M \equiv C^{1109} \pmod{2881}$	2-digit split	Letters
2688	715	07 15	GO
0559	301	03 01	CA
0752	1220	12 20	LT
0915	503	05 03	EC
2112	802	08 02	HB
0564	501	05 01	EA
2743	2205	22 05	VE
2783	1819	18 19	RS

Result:

GO CALTECH BEAVERS

§5 The number 1288119601 is composite. Find a Miller-Rabin witness.

We are given n = 1288119601. Then

$$n-1 = 1288119600 = 2^4 \cdot 80507475, \quad \therefore \quad (s=4, \ d=80507475).$$

Take base a = 2. Compute

$$x_0 \equiv 2^d \pmod{n} \equiv 95,382,061 \not\equiv 1 \pmod{n}.$$

Then let's continuously square modulo n:

$$x_1 \equiv x_0^2 \equiv 2,066,916, \quad x_2 \equiv x_1^2 \equiv 737,154,140, \quad x_3 \equiv x_2^2 \equiv 745,370,093 \pmod{n}.$$

None of x_0, x_1, x_2, x_3 is congruent to $-1 \pmod n$ (i.e. to n-1=1,288,119,600). Since $x_0 \not\equiv 1 \pmod n$ and no other one hits $-1 \pmod n$, the base

$$a=2$$

is a Miller-Rabin witness. (I think $a=3,5,\ldots$ also works.)