graph-based SLAM の解説

千葉工業大学 上田隆一 2017年4月15日

1 はじめに

この文章は、[1] などのチュートリアルを見ても数式の細かいところが分からない graph-based SLAM について、実際の計算方法を細かく解説するためのものです。

2 問題

平面上を移動し、向きを持ち、カメラでランドマーク観測ができるロボットで graph-based SLAM を実行する方法を考える。ランドマークは環境にいくつか存在し、ロボットからは互いに識別でき、距離と見える方角が観測できる。また、2 つの観測がどの方角から観測されたものか、相対的に分かるものとする。

2.1 ロボットの姿勢と座標系

世界座標系 $\Sigma_{\rm w}$ におけるロボットの姿勢(位置と向き)を

$$\boldsymbol{x} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} \tag{1}$$

で表す。また、 $[x\ y]^T$ を原点として、X 軸が世界座標系で θ の方向を向いているロボット座標系 Σ_r を考える。これらの関係を図 1 に示す。

離散的な時刻 $t=0,1,2,\ldots,T$ を考える。時刻 t における世界座標系でのロボットの姿勢を \boldsymbol{x}_t で表す。

2.2 観測

2.2.1 ランドマークの識別

環境中にいくつかランドマークが存在していると仮定する。時刻 t におけるロボット座標系 $\Sigma_{\rm r}$ を $\Sigma_{\rm r}$ と表すこととすると、ロボットは $\Sigma_{\rm r}$ において、ランドマークのうちのいくつかを 1 回観測できることとする。ロボットからは、一度観測したランドマークは、後の時刻で観測したときに、

 $^{\ \}odot$ 2017 Ryuichi Ueda

図1 世界座標系とロボットの姿勢

どのランドマークか識別できることとする。ロボットは観測したランドマークに ID を与えて管理することにする。ID は c と表し(番号でも文字列でもなんでも良い)、ID として c を与えられたランドマークを L_c と表す。

2.2.2 ランドマークの位置計測

ロボットは Σ_{rt} においてランドマーク L_c を観測したとき、 L_c までの距離 $d_{t,c}$ と、ランドマークが見える方向 $\varphi_{t,c}$ を計測値として得る。図 2 にこれらの記号の関係を示す。

図2 計測値

また、ランドマークにはなんらかの模様がついていて、2 箇所からの計測値から、ランドマークの面を観測したか相対的に分かると仮定する。この相対的な向きの差を図 2 のように $\omega_{t,t',c}$ と表す。向きは、 θ,φ,ω 共に反時計回りを正とする。

参考文献

[1] Grisetti, G., Kmmerle, R., Stachniss, C. and Burgard, W.: A Tutorial on Graph-Based SLAM, *IEEE Intelligent Transportation Systems Magazine*, Vol. 2 (2010), 31–43.