Subjectul 1

Se dă un graf neorientat conex G cu n>3 vârfuri, m muchii, m>n. Să se determine doi arbori parțiali T și T' ai lui G cu proprietățile:

- T este arbore de distante față de vârful 1: $d_T(1,v) = d_G(1,v)$ pentru orice vârf v din G
- În T' există cel puțin un vârf v cu $d_{T'}(1, v) \neq d_G(1, v)$.

Se vor afișa muchiile celor doi arbori parțiali determinați și, în plus, se vor afișa toate vârfurile v pentru care $d_{T}(1,v) \neq d_G(1,v)$. Complexitate O(m)

Informațiile despre graf se citesc din fișierul graf.in cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii

 $(d_G(x,y) = distanța de la x la y în G)$

graf.in	lesire pe ecran (solutia nu este unica)
5 7	T:
12	12
13	13
2 3	2 4
2 4	35
3 4	T':
35	12
45	2 4
	45
	3 4
	v: 3 5

Subjectul 2

Se citesc informații despre un graf **orientat fără circuite** G din fișierul graf.in. Fișierul are următoarea structură:

- Pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, m>=n
- Pe următoarele m linii sunt câte 3 numere întregi reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf (costul unui arc poate fi și **negativ**).
- Pe ultima linie sunt două noduri sursa s₁ și s₂
 - a) Să se determine dacă există un vârf din graf v egal depărtat de s_1 și s_2 : $d(s_1,v)=d(s_2,v)$. Dacă există mai multe astfel de vârfuri se va afișa cel mai apropiat de cele două surse (cel cu $d(s_1,v)$ cea mai mică). **Complexitate O(m)**
 - b) Pentru vârful v determinat la a) (dacă există) să se determine dacă există mai multe drumuri minime de la s_1 la v. Daca exista doar unul, se va afișa acest drum, dacă nu se vor afișa două dintre drumurile minime de la s la v_1 Complexitate O(m)

graf.in	lesire pe ecran
8 11	a)
1 2 10	v=4
2 3 -3	b)
137	1234
382	134
3 4 1	
481	Explicații:
511	d(1,4) = d(5,4) = 8
5 3 9	
563	
671	
744	
15	

Subjectul 3

Fisierul graf.in conține următoarele informații despre un graf bipartit conex:

- pe prima linie sunt 2 numere naturale n și m reprezentând numărul de vârfuri și numărul de muchii
- pe următoarele m linii sunt perechi de numere x y (separate prin spațiu) reprezentând extremitătile unei muchii

Se consideră graful G dat în fișierul graf.in. Notăm cu k numărul de vârfuri de grad impar din graf.

- a) Folosind un algoritm de determinare a unui flux maxim într-o rețea de transport, determinați un cuplaj maxim în subgraful indus de mulțimea vârfurilor de grad impar din G.
- b) Folosind punctul a) determinați dacă exista k/2 muchii care se pot elimina din G astfel încât să se obțină un graf cu următoarele proprietăți:
- gradul fiecărui vârf din G' este egal cu cel din G sau cu unu mai mic.
- în G' în fiecare componentă conexă există câte un ciclu care conține toate muchiile din componentă (o singura dată) Complexitate O(nm²)

graf.in	lesire pe ecran (solutia nu este unica)
8 9	16
15	2 5
16	3 7
17	
2 5	
3 5	
3 7	
3 4	
8 7	
8 4	

