The 69th William Lowell Putnam Mathematical Competition Saturday, December 6, 2008

- A1 Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function such that f(x,y) + f(y,z) +f(z,x) = 0 for all real numbers x, y, and z. Prove that there exists a function $g: \mathbb{R} \to \mathbb{R}$ such that f(x,y) =g(x) - g(y) for all real numbers x and y.
- A2 Alan and Barbara play a game in which they take turns filling entries of an initially empty 2008×2008 array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all the entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?
- A3 Start with a finite sequence a_1, a_2, \dots, a_n of positive integers. If possible, choose two indices j < k such that a_i does not divide a_k , and replace a_i and a_k by $gcd(a_i, a_k)$ and $lcm(a_i, a_k)$, respectively. Prove that if this process is repeated, it must eventually stop and the final sequence does not depend on the choices made. (Note: gcd means greatest common divisor and lcm means least common multiple.)
- A4 Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x & \text{if } x \le e \\ xf(\ln x) & \text{if } x > e. \end{cases}$$

Does $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ converge?

- A5 Let $n \ge 3$ be an integer. Let f(x) and g(x) be polynomials with real coefficients such that the points $(f(1),g(1)),(f(2),g(2)),\ldots,(f(n),g(n))$ in \mathbb{R}^2 are the vertices of a regular n-gon in counterclockwise order. Prove that at least one of f(x) and g(x) has degree greater than or equal to n-1.
- A6 Prove that there exists a constant c > 0 such that in every nontrivial finite group G there exists a sequence of length at most $c \log |G|$ with the property that each element of G equals the product of some subsequence.

- (The elements of G in the sequence are not required to be distinct. A subsequence of a sequence is obtained by selecting some of the terms, not necessarily consecutive, without reordering them; for example, 4,4,2 is a subsequence of 2,4,6,4,2, but 2,2,4 is not.)
- B1 What is the maximum number of rational points that can lie on a circle in \mathbb{R}^2 whose center is not a rational point? (A rational point is a point both of whose coordinates are rational numbers.)
- B2 Let $F_0(x) = \ln x$. For $n \ge 0$ and x > 0, let $F_{n+1}(x) =$ $\int_0^x F_n(t) dt$. Evaluate

$$\lim_{n\to\infty}\frac{n!F_n(1)}{\ln n}.$$

- $\lim_{n\to\infty}\frac{n!F_n(1)}{\ln n}.$ B3 What is the largest possible radius of a circle contained in a 4-dimensional hypercube of side length 1?
- B4 Let p be a prime number. Let h(x) be a polynomial with integer coefficients such that $h(0), h(1), \dots, h(p^2 - 1)$ are distinct modulo p^2 . Show that $h(0), h(1), \dots, h(p^3 -$ 1) are distinct modulo p^3 .
- B5 Find all continuously differentiable functions $f: \mathbb{R} \to \mathbb{R}$ such that for every rational number q, the number f(q)is rational and has the same denominator as q. (The denominator of a rational number q is the unique positive integer b such that q = a/b for some integer a with gcd(a,b) = 1.) (Note: gcd means greatest common divisor.)
- B6 Let n and k be positive integers. Say that a permutation σ of $\{1,2,\ldots,n\}$ is k-limited if $|\sigma(i)-i| \leq k$ for all i. Prove that the number of k-limited permutations of $\{1,2,\ldots,n\}$ is odd if and only if $n \equiv 0$ or $1 \pmod{2k+1}$.