Aufgabe 5

Berechnen Sie jeweils die Inverse folgender Matrizen, falls diese existiert:

a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 3 & 2 & 2 \end{pmatrix}$$

b)
$$B = \begin{pmatrix} 2 & -1 & 1 \\ 1 & -2 & 0 \\ 0 & 3 & 1 \end{pmatrix}$$

Lösung 5

Aufgabe 6

Gegeben sei die folgende Matrix:

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

- a) Berechnen Sie A^k für $k = 1 \dots 3$.
- b) Stellen Sie eine Vermutung auf für A^n und beweisen Sie diese.

Lösung 6

Aufgabe 7

A sei eine 3×3 -Matrix.

- a) Welche Beziehung $(=, \neq, \subseteq, \subset, \supset, \supseteq)$ besteht zwischen dem Kern von A und dem Kern von A^2 (und dem von A^3)?
- b) Verifizieren Sie ihr Ergebnis aus (a) mit der Matrix $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Lösung 7

Aufgabe 8

Die Spur einer quadratischen Matrix $A = (a_{ij})$ ist definiert durch

$$Spur(A) = \sum_{i=1}^{n} a_{ii}.$$

Ausgabe: 11.04.2023

Abgabe: 16.04.2023

- Ausgabe: 11.04.2023 Abgabe: 16.04.2023
- a) Zeigen Sie, dass die Spur eine lineare Abbildung darstellt.
- b) Sei $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \end{pmatrix}$ und $B = A^T$. Verifizieren Sie Spur(AB) = Spur(BA).
- c) Zeigen Sie, dass Spur(AB) = Spur(BA), wobei $A \in \mathbb{R}^{m \times n}$ und $B \in \mathbb{R}^{n \times m}$.
- d) Zeigen Sie, dass Spur(A^TA) = 0 genau dann, wenn A = (0).
- e) Man zeige weiter: Spur(ABC) = Spur(BCA), aber i.a. $Spur(ABC) \neq Spur(BAC)$.

Lösung 8