7. Model error and structural uncertainty

Gianluca Baio

Department of Statistical Science | University College London

```
■ g.baio@ucl.ac.uk

○ https://gianluca.statistica.it/
○ https://egon.stats.ucl.ac.uk/research/statistics-health-economics/
○ https://github.com/giabaio
○ https://github.com/StatisticsHealthEconomics

■ @gianlubaio
```

Bayesian Methods in Health Economics, Lausanne

Summary

- Probabilistic sensitivity analysis to structural assumptions
 - Model average vs model comparison
 - Structural PSA using DIC
 - Example

References ■ Bayesian Methods in Health Economics, chapters 3.6, 4.7.2 N Book website (CRC) Book website Code ■ The BUGS Book, chapter 8.6 N Book website

2/6

PSA to structural assumptions

Problem

- All the methods discussed so far assume that, while there may be uncertainty in the current knowledge, the model is "correct"
 - All variables that need to be considered have been considered
 - All distributional assumptions are reasonable (in fact, "correct")

– ..

PSA to structural assumptions

Problem

- All the methods discussed so far assume that, while there may be uncertainty in the current knowledge, the model is "correct"
 - All variables that need to be considered have been considered
 - All distributional assumptions are reasonable (in fact, "correct")

– ...

"All models are wrong, but some are useful" G. Box and N. Draper (1987). Empirical Model Building and Response Surfaces, Wiley & Sons, NY, p. 424

PSA to structural assumptions

Problem

- All the methods discussed so far assume that, while there may be uncertainty in the current knowledge, the model is "correct"
 - All variables that need to be considered have been considered
 - All distributional assumptions are reasonable (in fact, "correct")

– ...

"All models are wrong, but some are useful" G. Box and N. Draper (1987). Empirical Model Building and Response Surfaces, Wiley & Sons, NY, p. 424

- Possible (potential) solutions
 - Bayesian model averaging
 - Model comparison

Bayesian model averaging

- "Proper" Bayesian way to deal with the issue
 - Identify a set of *finite and exhausting models* $\mathcal{M} = (\mathcal{M}_1, \dots, \mathcal{M}_H)$
 - Each of the H models is characterised by a set of parameters $m{ heta}$ and a suitable prior $p(m{ heta}\mid \mathcal{M}_h)$
 - In addition, define a prior $p(\mathcal{M}_h)$ that model h is the "true" one
 - Update these as

$$p(\mathcal{M}_h \mid y) \propto p(\mathcal{M}_h) \int p(y \mid oldsymbol{ heta}, \mathcal{M}_h) p(oldsymbol{ heta} \mid \mathcal{M}_h) doldsymbol{ heta}$$

and use the posterior probabilities to compute a weighted average for any function of the parameters (eg utilities) over the space of models

Bayesian model averaging

- "Proper" Bayesian way to deal with the issue
 - Identify a set of *finite and exhausting models* $\mathcal{M} = (\mathcal{M}_1, \dots, \mathcal{M}_H)$
 - Each of the H models is characterised by a set of parameters $m{ heta}$ and a suitable prior $p(m{ heta}\mid \mathcal{M}_h)$
 - In addition, define a prior $p(\mathcal{M}_h)$ that model h is the "true" one
 - Update these as

$$p(\mathcal{M}_h \mid y) \propto p(\mathcal{M}_h) \int p(y \mid oldsymbol{ heta}, \mathcal{M}_h) p(oldsymbol{ heta} \mid \mathcal{M}_h) doldsymbol{ heta}$$

and use the posterior probabilities to compute a weighted average for any function of the parameters (eg utilities) over the space of models

• NB: requires that *all* possible models are completely specified and given a prior probability

Model comparison

- Compare a (not necessarily exhaustive!) set of models in terms of their out-of-sample prediction
 - Quantifies how well the predictive distribution for a given model would fit a replicated dataset based on the observed data
 - **NB**: especially in health economic evaluations, the possible models considered as merely a (rough) approximation to the complex phenomenon under study so no guarantee that any of those should be the "true" one!

Model comparison

- Compare a (not necessarily exhaustive!) set of models in terms of their out-of-sample prediction
 - Quantifies how well the predictive distribution for a given model would fit a replicated dataset based on the observed data
 - **NB**: especially in health economic evaluations, the possible models considered as merely a (rough) approximation to the complex phenomenon under study so no guarantee that any of those should be the "true" one!
- Need to consider a measure of *goodness of fit* for each model
- One possibility is the Deviance Information Criterion (DIC)

Model comparison

- Compare a (not necessarily exhaustive!) set of models in terms of their out-of-sample prediction
 - Quantifies how well the predictive distribution for a given model would fit a replicated dataset based on the observed data
 - **NB**: especially in health economic evaluations, the possible models considered as merely a (rough) approximation to the complex phenomenon under study so no guarantee that any of those should be the "true" one!
- Need to consider a measure of *goodness of fit* for each model
- One possibility is the Deviance Information Criterion (DIC)

Structural PSA via DIC

- ullet Consider $\mathcal{M}=(\mathcal{M}_1,\ldots,\mathcal{M}_H)$
 - \bigcirc Compute the value DIC_h for each of them
 - 2 Derive the respective weights (model posterior probabilities) by simply re-proportioning them, eg

$$w_h = rac{ \mathsf{exp}(-0.5\Delta \mathsf{DIC}_h)}{\sum_{h=1}^{H} \mathsf{exp}(-0.5\Delta \mathsf{DIC}_h)}, \qquad \Delta \mathsf{DIC}_h = \mid \min_h(\mathsf{DIC}_h) - \mathsf{DIC}_h \mid$$

 $oldsymbol{3}$ Use the weights w_h to build an average model accounting for the (limited set) of plausible models

lew:	Statins

91 Placebo-controlled studies: CHD death plus non-fatal MI

Cad.	•		
Study or subcategory	Treatment n/N	Control n/N	
01 Atoryastatin	900000	492.5	
DALI ⁸⁶	0/145	1/72	
ASCOT-LLA 102	100/5168	154/5137	
Mohler ²¹	7/240	3/114	
CARDS ¹⁰³	43/1428	65/1410	
Subtotal (95% CI)	6981	6733	
Total events: 150 (treatment)). 223 (control)		
Test for heterogeneity: $\chi^2 = 1$ Test for overall effect: $z = 4$.	1.32, df = 3 (p = 0.973), l^2 = 0% 09 (p < 0.0001)		
02 Fluvastatin			
FLARE ¹⁰⁸	6/409	17/425	
LiSA ⁹³	2/187	5/178	
LIPS110	42/844	60/833	
Subtotal (95% CI)	1440	1436	
Total events: 50 (treatment),		1730	
	1.91, df = 2 (p = 0.39), l^2 = 0%		
Test for overall effect: $z = 2$.	76 (b = 0.006)		
rest for overall effect. 2 - 2.	70 (p = 0.000)		
03 Pravastatin			
PMSG ⁹⁶	0/530	7/532	
KAPS ¹³³	5/224	8/223	
WOSCOPS ⁸²	174/3302	248/3293	
CAIUS ¹⁰⁷	2/151	2/154	
CAREIII	212/2081	274/2078	
LIPID ¹¹²	557/4512	715/4502	
PROSPER ⁸¹	292/2891	356/2913	
Subtotal (95% CI)	13,691	13,695	
Total events: 1242 (treatmen			
Test for heterogeneity: $\chi^2 =$ Test for overall effect: $z = 7$.	4.95 , df = 6 (p = 0.55), $I^2 = 0\%$		
04 Simvastatin			
4S ⁹⁷	431/2221	622/2223	
CIS98	2/129	7/125	
HPS ⁷⁴	898/10,269	1212/10.26	
Subtotal (95% CI)	12.619	12,615	
Total events: 1331 (treatmen		,	
	2.38, df = 2 (p = 0.30), l^2 = 15.9%		
Test for overall effect: $z = 8$.	29 (p < 0.00001)		
Total (95% CI)	34,731	34,479	
Total (95% CI) Total events: 2773 (treatmen		37,77	
Total events: 2773 (treatmen	15.28, df = 16 (p = 0.50), l ² = 0%		
Test for everall effect: - ''	13.20, u1 = 10 (p = 0.30), 1° = 0%		
Test for overall effect: $z = 12$	2.74 (p < 0.00001)		

- Based on published data on RCTs comparing statins to placebo
- Complex formulation: in particular, model the response for the controls as

$$y_{sj}^{ ext{ctr}} \sim ext{Binomial}(heta_s, n_{sj}^{ ext{ctr}}) \ ext{logit}(heta_s) = lpha_s$$

and then use 2 formulations for the prior on α_s

Normal

- $\alpha_s \sim \mathsf{Normal}(\mu_\alpha, au_\alpha)$
- $\mu_{\alpha} \sim \text{Normal}(0, 0.00001)$
- $\sigma_{\alpha} = \tau_{\alpha}^{-2} \sim \mathsf{Uniform}(0,20)$
- Half-Cauchy (robust alternative)
 - $\alpha_s = \mu_{\alpha} + \xi \eta_s$
 - $\mu_{lpha} \sim \mathsf{Normal}(0, 0.00001)$
 - ullet $\xi\sim \mathsf{Normal}(0, au_{\mathcal{E}})$
 - ullet $\eta_s \sim \mathsf{Normal}(0, au_\eta)$
 - ullet $au_n\sim$ Gamma(0.5,0.5); $au_{ar{arepsilon}}=12^{-2}$

6/6

Model \mathcal{M}_1

```
> ...
> ## Priors for the hyperparameters
> ## Exchangeable normal prior
> for (s in 1:Nstatins) {
    alpha[s] ~ dnorm(mu.alpha, tau.alpha)
+ }
> sigma.alpha ~ dunif(0,20)
> tau.alpha <- pow(sigma.alpha,-2)</pre>
> mu.alpha ~ dnorm(0.0.0001)
> sigma.alpha <- abs(xi) / sqrt(tau.eta)</pre>
> prior.scale <- 12</pre>
> mu.alpha ~ dnorm(0,.0001)
> ...
```

Model \mathcal{M}_2

```
> ## Priors for the hyperparameters
> ## Half-Cauchy prior
> for (s in 1:Nstatins) {
    alpha[s] <- mu.alpha + xi*eta[s]</pre>
   eta[s] ~ dnorm(0.tau.eta)
+ }
> xi ~ dnorm(0,tau.xi)
> tau.xi <- pow(prior.scale,-2)</pre>
> tau.eta ~ dgamma(.5,.5)
> sigma.alpha <- abs(xi) / sqrt(tau.eta)</pre>
> prior.scale <- 12</pre>
> mu.alpha ~ dnorm(0,.0001)
> ...
```

6/6


```
\mathsf{print}(\mathsf{m1}) \to \mathsf{R} object containing the MCMC simulations for \mathcal{M}_1
Inference for Bugs model at "model.txt", fit using jags, 2 chains, each with 100000
iterations (first 9500 discarded), n.thin = 181 n.sims = 1000 iterations saved
                      sd 2.5%
                                 25%
                                        50%
                                            75% 97.5% Rhat n.eff
              mean
cost.hosp[1] 238.7 137.0 91.7 168.6 213.5 278.2 482.0
                                                                980
cost.hosp[2] 315.6 168.8 124.2 219.2 290.2 372.7 668.5
                                                               1000
cost.hosp[3] 523.1 451.0 144.0 297.0 427.9 619.9 1358.0
                                                               1000
DIC info (using the rule, pD = var(deviance)/2)
pD = 71.1 and DIC = 2233.9
DIC is an estimate of expected predictive error (lower deviance is better)
print(m2) \rightarrow R object containing the MCMC simulations for \mathcal{M}_2
Inference for Bugs model at "model.txt", fit using jags, 2 chains, each with 100000
iterations (first 9500 discarded), n.thin = 181 n.sims = 1000 iterations saved
                      sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
              mean
cost.hosp[1] 228.9 108.0 82.9 161.6 209.3 272.9 502.5
                                                               1000
cost.hosp[2] 301.5 143.0 101.2 211.2 276.6 366.5 621.8 1
                                                                960
cost.hosp[3] 469.8 277.1 128.6 280.5 402.1 583.2 1184.6 1 1000
DIC info (using the rule, pD = var(deviance)/2)
pD = 63.9 and DIC = 2226.0
DIC is an estimate of expected predictive error (lower deviance is better)
```



```
> library(BCEA)
 > # Objects containing the MCMC simulations from the posteriors for the two models
> m1.sims <- m1$sims.list;</pre>
 > m2.sims <- m2$sims.list</pre>
 > # Defines suitable variables of clinical benefits & costs
 > e1 <- m1.sims$effect;</pre>
> e2 <- m2.sims$effect</pre>
 > c1 <- m1.sims$cost.tot:</pre>
 > c2 <- m2.sims$cost.tot</pre>
> # Runs BCEA's function to do PSA to structural assumptions
> avg <- struct.psa(list(m1,m2),list(e1,e2),list(c1,c2),ref=2)</pre>
> # Weights associated with each model (based on DIC)
> avg$w
Γ17 0.01901127 0.98098873
> # Actual DIC computed for each model
> avg$DIC
```

Γ17 2233.875 2225.988

Model 1 (Normal prior)

Model 2 (HC prior)

Model average

- DIC = 2233.875
- $w_1 = 0.019$

Model 1 (Normal prior)

Model 2 (HC prior)

Model average

- DIC = 2225.988
- $w_2 = 0.981$

Model 1 (Normal prior)

Model 2 (HC prior)

Model average

Model \mathcal{M}_2

Analysis for willingness to pay parameter k = 25000

	Expected	utility
Atorvastatin		22824
Fluvastatin		22437
Lovastatin		21389
Pravastatin		21734
Rosuvastatin		22528
Simvastatin		22741

			EIB	CEAC	ICER
Atorvastatin	٧S	Fluvastatin	387.804	0.760	3943.45
Atorvastatin	٧S	Lovastatin	1435.830	0.833	1455.71
Atorvastatin	٧S	Pravastatin	1090.236	0.955	348.42
Atorvastatin	٧S	Rosuvastatin	296.181	0.733	5254.11
Atorvastatin	٧S	Simvastatin	83.889	0.591	19195.85

Optimal intervention (max expected utility) for k = 25000: Atorvastatin

EVPI 201.33

Model average

Analysis for willingness to pay parameter k = 25000

	Expected	utility
Atorvastatin		22823
Fluvastatin		22435
Lovastatin		21381
Pravastatin		21731
Rosuvastatin		22526
Simvastatin		22738

	EIB	CEAC	ICER
Atorvastatin vs Fluvastatin	388.695	0.768	3919.60
Atorvastatin vs Lovastatin	1442.154	0.843	1432.44
Atorvastatin vs Pravastatin	1092.152	0.958	336.72
Atorvastatin vs Rosuvastatin	297.304	0.738	5227.07
Atorvastatin vs Simvastatin	85.002	0.594	19129.49

Optimal intervention (max expected utility) for k = 25000: Atorvastatin

EVPI 193.22