A Performance Analysis of Parallel Differential Dynamic Programming on a GPU

Brian Plancher and Scott Kuindersma Harvard Agile Robotics Lab

Differential Dynamic Programming (DDP) has shown great promise for Model Predictive Control (MPC)

[Tassa et. al. IROS 2012]

[Erez et. al. Humanoids 2013]

[Koenemann et. al. IROS 2015]

[Neunert et. al. ICRA 2016]

[Neunert et. al. Humanoids 2017]

[Farshidian et. al. IEEE RAL 2017]

Differential Dynamic Programming (DDP) has shown great promise for Model Predictive Control (MPC)

- Frequency scaling is ending (CPUs aren't getting faster)
- Massive parallelism on GPUs and FPGAs may be a solution for trajectory optimization

[Shao and Brooks Synthesis Lectures on Computer Architecture 2015]

A Performance Analysis of Parallel Differential Dynamic Programming on a GPU

- Systematically analyze the algorithm level and instruction level parallelism in DDP
- Discuss the benefits and trade-offs of higher degrees of parallelization (GPU) versus a higher clock rate (CPU)
- Demonstrate real-time model predictive control using a GPU based implementation

DDP computes the optimal control via the recursive Bellman equation

$$\min_{x,u} l_f(x_N) + \sum_{k=1}^{N-1} l(x_k, u_k)$$

s.t.
$$x_{k+1} = f(x_k, u_k)$$

$$V_k(x) = \min_{u} l(x, u) +$$

$$V_{k+1}(f(x, u))$$

$$V_N(x_N) = l_f(x_N)$$

1. Compute the cost-to-go and feedback control update to the controls backward in time

- Compute the cost-to-go and feedback control update to the controls backward in time
- 2. Simulate the system **forward** in time to create a new nominal trajectory (using a line search)
- 3. Taylor approximate the dynamics and cost to setup for the next iteration
- 4. Repeat this process until convergence

Instruction Level Parallelism parallelizes the standard computations in DDP

- 1. Taylor Approximations of the Dynamics and Cost
- 2. Line Search
- 3. Cost Computation

Leading to **defects** between blocks x_N that need to be driven down to zero at convergence χ_{o} [Giftthaler et. al. 2017]

Using both instruction and algorithm level parallelism leads to the Parallel DDP Algorithm

As compared to CPUs, GPUs trade off clock rate, control logic, and cache size for ALU operations

We evaluated Parallel DDP on a GPU and CPU through two experiments in simulation

The GPU is able to exploit instruction level parallelism for a faster next iteration setup

Both the CPU and GPU are able to exploit algorithm level parallelism in the backward pass

The forward simulation does not parallelize well on the CPU

Algorithm level parallelism leads to delayed information and slower convergence

The forward simulation does not parallelize well on the CPU

The CPU is able to compute the serial forward consensus sweep faster than the GPU

Parallel DDP on a GPU can be used for real time Model Predictive Control

- GPU M=4
- 10ms control loop
- Only given current goal position at each solve

Let's air that dirty laundry

agile.seas.harvard.edu

brian_plancher@g.harvard.edu

- Usual DDP sticking points still apply as it is sensitive to:
 - Cost function choices
 - Initial state and input trajectories
 - Regularization scheme
- Sensitivities are heightened for higher degrees of parallelization
- MPC results need to be validated on hardware (I am actively working on that)

This work was supported by a Draper Internal Research and Development grant and by the National Science Foundation Graduate Research Fellowship (under grant DGE1745303). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the funding organizations.

A Performance Analysis of Parallel Differential Dynamic Programming on a GPU

agile.seas.harvard.edu

brian_plancher@g.harvard.edu

- Exploit instruction level parallelism for maximal performance
- Hardware specific tradeoffs exist for algorithm level parallelism
- If expensive operations can be parallelized then GPUs can provide higher performance
- DDP is not very parallelizable potential for direct methods?
- More evidence for real-time model predictive control

This work was supported by a Draper Internal Research and Development grant and by the National Science Foundation Graduate Research Fellowship (under grant DGE1745303). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the funding organizations.

Thank you for listening!

Questions?

2. Algorithm Level Parallelism

Algorithm level parallelism leads to delayed information and slower convergence

Quad

Arm

