Subdivision et IFS Modélisation Géométrique Itérative

Plan

Géraldine Morin* et Christian Gentil**

* VORTEX - IRIT-ENSEEIHT, ** LE2I-Université de Bourgogne

18 novembre 2010

Journée des jeunes chercheurs DIJON

Plan

- Introduction
- Notions de base
 - IFS
 - Formes fractales à pôles
 - CIFS et représentation par automates
 - IFS et formes à pôles : Algorithme de Chaikin
- BC-IFS et contrôle de la topologie des attracteurs
 - Etude du cas des courbes B-splines quadratiques
- 4 Etude des propriétés différentielles
 - Tangente à une courbe fractale
 - Cas des courbes construites par élimination des coins
- 5 Représentation par BCIFS des splines quadratiques non-uniformes

Introduction

Nouvel univers de formes

- Intérêt esthétique
- Structures aux propriétés physiques particulières
 - Antennes de téléphones portables
 - Coque en bois
- Modélisation de caractéristiques non-conventionnelles
 - lacunarité,
 - rugosité

Le modèle itératif : Iterated Function System (IFS)

Traduction de la propriété d'auto-similarité (Huchinson88, Barnsley88)

Formulation ensembliste

$$F = \bigcup_{i=0}^{N-1} T_i(F)$$

- T_i opérateurs contractants : $\forall x, y, d(T_i(x), T_i(y)) \leq s d(x, y), (s < 1)$
- $\bullet \Rightarrow F$ existe et est unique.
- $\mathbb{T} = \{T_i, i \in \Sigma\}$ est appelé IFS, $\Sigma = \{0, \dots, N-1\}$

Le modèle itératif : Iterated Function System (IFS)

Traduction de la propriété d'auto-similarité (Huchinson88, Barnsley88)

Formulation ensembliste

$$F = \bigcup_{i=0}^{N-1} T_i(F)$$

- T_i opérateurs contractants : $\forall x, y, d(T_i(x), T_i(y)) \leq s d(x, y), (s < 1)$
- $\bullet \Rightarrow F$ existe et est unique.
- $\mathbb{T} = \{T_i, i \in \Sigma\}$ est appelé IFS, $\Sigma = \{0, \dots, N-1\}$

Le modèles itératifs : Opérateur de Hutchinson

- T_i = opérateurs contractants de (E,d) un espace métrique complet.
- $\mathcal{H}(E)$ = ensemble des compacts non-vides de E.
- Opérateur de Hutchinson :

$$\mathbb{T} : \mathcal{H}(E) \longrightarrow \mathcal{H}(E)
O \in \mathcal{H}(E) \longmapsto \mathcal{T}(O) = \bigcup_{i=0}^{N-1} \mathcal{T}_i(O)$$

- \mathbb{T} opérateur contractant de $(\mathcal{H}(E), d_H)$,
- F unique point fixe de \mathbb{T} : $\mathbb{T}(F) = F$
- $\forall O \in \mathcal{H}(E), \lim_{j \to \infty} \mathbb{T}^{j}(O) = F$
- F est appelé attracteur de \mathbb{T} , noté $A(\mathbb{T})$.

Tormes fractales à pôles CIFS et représentation par automates FS et formes à pôles : Algorithme de Chaikir

ro Formes fractales à pôles CIFS et représentation par automates FS et formes à pôles : Algorithme de Chaikir

IFS Formes fractales à pôles CIFS et représentation par automates IFS et formes à pôles : Algorithme de Chaikir

IFS Formes fractales à pôles CIFS et représentation par automates IFS et formes à nôles : Algorithme de Chaikir

IFS -

Formes fractales à pôles CIFS et représentation par automates FS et formes à pôles : Algorithme de Chaikir

BC-IFS et contrôle de la topologie des attracteurs Etude des propriétés différentielles Représentation par BCIFS des splines quadratiques non-uniformes

Etude des propriétés différentielles Représentation par BCIFS des splines quadratiques non-uniformes

FS

Formes fractales à pôles CIFS et représentation par automates IFS et formes à pôles : Algorithme de Chaikin

BC-IFS et contrôle de la topologie des attracteurs Etude des propriétés différentielles Représentation par BCIFS des splines quadratiques non-uniformes

Représentation par BCIFS des splines quadratiques non-uniformes

Représentation par BCIFS des splines quadratiques non-uniformes

FS

Formes fractales à pôles CIFS et représentation par automates IFS et formes à pôles : Algorithme de Chaikir

BC-IFS et contrôle de la topologie des attracteurs Etude des propriétés différentielles Représentation par BCIFS des splines quadratiques non-uniformes

- S'il existe $\mathbb{T} = \{T_i, i \in \Sigma\}$ tel que $F = \bigcup_{i=0}^{N-1} T_i(F)$
- La forme F peut être codée par $\mathbb{T} = \{T_i, i \in \Sigma\}$
- ullet est un processus de construction
- L'évaluation se fait par le calcul de $\mathbb{T}^j(O)$, avec $O \in \mathcal{H}(E)$ quelconque et $j \in \mathbb{N}^*$ fixé.

- S'il existe $\mathbb{T} = \{T_i, i \in \Sigma\}$ tel que $F = \bigcup_{i=0}^{N-1} T_i(F)$
- La forme F peut être codée par $\mathbb{T} = \{T_i, i \in \Sigma\}$
- ullet ${\mathbb T}$ est un processus de construction
- L'évaluation se fait par le calcul de $\mathbb{T}^j(O)$, avec $O \in \mathcal{H}(E)$ quelconque et $j \in \mathbb{N}^*$ fixé.

- S'il existe $\mathbb{T} = \{T_i, i \in \Sigma\}$ tel que $F = \bigcup_{i=0}^{N-1} T_i(F)$
- La forme F peut être codée par $\mathbb{T} = \{T_i, i \in \Sigma\}$
- ullet est un processus de construction
- L'évaluation se fait par le calcul de $\mathbb{T}^j(O)$, avec $O \in \mathcal{H}(E)$ quelconque et $j \in \mathbb{N}^*$ fixé.

- S'il existe $\mathbb{T} = \{T_i, i \in \Sigma\}$ tel que $F = \bigcup_{i=0}^{N-1} T_i(F)$
- La forme F peut être codée par $\mathbb{T} = \{T_i, i \in \Sigma\}$
- ullet est un processus de construction
- L'évaluation se fait par le calcul de $\mathbb{T}^j(O)$, avec $O \in \mathcal{H}(E)$ quelconque et $j \in \mathbb{N}^*$ fixé.

- S'il existe $\mathbb{T} = \{T_i, i \in \Sigma\}$ tel que $F = \bigcup_{i=0}^{N-1} T_i(F)$
- La forme F peut être codée par $\mathbb{T} = \{T_i, i \in \Sigma\}$
- ullet est un processus de construction
- L'évaluation se fait par le calcul de $\mathbb{T}^j(O)$, avec $O \in \mathcal{H}(E)$ quelconque et $j \in \mathbb{N}^*$ fixé.

- S'il existe $\mathbb{T} = \{T_i, i \in \Sigma\}$ tel que $F = \bigcup_{i=0}^{N-1} T_i(F)$
- La forme F peut être codée par $\mathbb{T} = \{T_i, i \in \Sigma\}$
- ullet est un processus de construction
- L'évaluation se fait par le calcul de $\mathbb{T}^j(O)$, avec $O \in \mathcal{H}(E)$ quelconque et $j \in \mathbb{N}^*$ fixé.

Autres exemples d'objets auto-similaires

$$\mathbb{T} = \{\frac{1}{2}x, \frac{1}{2}x + \frac{1}{2}\}$$

Autres exemples d'objets auto-similaires

$$c_1$$
 c_2
 c_3

$$\mathbb{T} = \{\frac{1}{2}x, \frac{1}{2}x + \frac{1}{2}\}$$

$$\mathbb{T} = \{ Ho(\frac{1}{2}, c_i), i = 0, 1, 2, 3 \}$$

IFS et formes fractales à pôles

•
$$N(t) \in BI^n = \{\lambda | \sum_{i=0}^{n-1} \lambda_i = 1\}$$

$$\bullet C(t) = PN(t) = (P_0 \cdots P_{n-1}) \begin{pmatrix} N_0(t) \\ \vdots \\ N_{n-1}(t) \end{pmatrix} = \sum_{i=0}^{n-1} N_i(t) P_i,$$

IFS et formes fractales à pôles

- si T_i tels que la somme des coeff. de chaque colonne =1 alors $A(\mathbb{T}) \in BI^n = \{\lambda | \sum_{i=0}^{n-1} \lambda_i = 1\}$
- $C = PA = \{ \sum_{i=0}^{n-1} \lambda_i P_i, \lambda \in A \},$

IFS et représentation par automates

$$T_0, T_1, T_2, T_3$$

IFS et représentation par automates

IFS et représentation par automates

IFS et formes à pôles : Algorithme de Chaikin

$$\begin{split} &C(t) = PN(t) = \sum_{i=0}^{n-1} N_i(t) P_i \\ &C([0,1]) = PT_0 N([0,1]) \bigcup PT_1 N([0,1]) \\ &N([0,1]) = T_0 N([0,1]) \bigcup T_1 N([0,1]) \end{split}$$

$$N([0,1]) = A(\{T_0, T_1\})$$

 $N(t) \in BI^3$
 T_0 et T_1 = opérateurs de
 $BI^3 \Rightarrow$ matrices (3×3)

$$T_0 = \begin{pmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 3/4 & 3/4 \\ 0 & 0 & 1/4 \end{pmatrix}$$

$$T_1 = \begin{pmatrix} 1/4 & 0 & 0 \\ 3/4 & 3/4 & 1/4 \\ 0 & 1/4 & 3/4 \end{pmatrix}$$

Boundary Controlled Iterated Function System (BC-IFS)

BC-IFS=

- la topologie de la BREP
- la géométrie des formes à pôles
- le calcul itératif des IFS

Intérêt :

- Contrôle de la topologie
- Contrôle de la géométrie
 - Globale (formes à pôles)
 - Locale : lisse, rugueux

Plan

Exemple des B-splines quadratiques

- $P^{j+1} = P^{j}S$
- S matrice de subdivision

$$[P_0 P_1 P_2] \begin{pmatrix} 3/4 & 1/4 & 0 & 0 \\ 1/4 & 3/4 & 3/4 & 1/4 \\ 0 & 0 & 1/4 & 3/4 \end{pmatrix} = [q_0 q_1 q_2 q_3]$$

Algorithme de Chaikin

$$C(t) = PN(t)$$

 $PN(t) = PT_0N([0,1]) \cup PT_1N([0,1])$
 $N([0,1]) = T_0N([0,1]) \cup T_1N([0,1])$

$$T_0 = \begin{pmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 3/4 & 3/4 \\ 0 & 0 & 1/4 \end{pmatrix}$$

$$\mathcal{T}_1 = \begin{pmatrix} 1/4 & 0 & 0\\ 3/4 & 3/4 & 1/4\\ 0 & 1/4 & 3/4 \end{pmatrix}$$

Représentation par BCIFS des splines quadratiques non-uniformes

Calcul de l'extrémité C(0)

$$[P_0^{j+1}P_1^{j+1}] = [P_0^jP_1^j]T_s$$

avec
$$T_s = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix}$$

 $T_s^{\infty} \Rightarrow C(0)$

C(0) est l'attracteur de $\{T_s\}$ C(1) est l'attracteur de $\{T_s\}$ T_s opérateur de l'espace barycentrique de dimension 2 T_s =matrice (2×2)

$$T_0 = \begin{pmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 3/4 & 3/4 \\ 0 & 0 & 1/4 \end{pmatrix} T_1 = \begin{pmatrix} 1/4 & 0 & 0 \\ 3/4 & 3/4 & 1/4 \\ 0 & 1/4 & 3/4 \end{pmatrix}$$

Représentation par BCIFS des splines quadratiques non-uniformes

Propriétés des matrices de Chaikin : Condition d'adjacence

Plan

$$T_0 = \begin{pmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 3/4 & 3/4 \\ 0 & 0 & 1/4 \end{pmatrix} T_1 = \begin{pmatrix} 1/4 & 0 & 0 \\ 3/4 & 3/4 & 1/4 \\ 0 & 1/4 & 3/4 \end{pmatrix}$$

BC-IFS: Introduction

Représentation par BCIFS des splines quadratiques non-uniformes

Si T_0 et T_1 quelconques, on peut obtenir tout type de structures topologiques:

Plan

BC-IFS: Introduction

$$BC-IFS = C-IFS + Formes à Pôles + BREP$$

- Formes à Pôles = IFS dans un espace barycentrique
- BREP = opérateurs d'incidences
 - définition de cellules
 - définition de relations d'adjacence
 - définition de relations d'incidence

BC-IFS

Attracteur = stucture BREP

A chaque cellule on associe:

- un état
- une dimension (nb de points de contrôle)
- un IFS

Exemple : Arête-Sommet Arête

- état = "a"
- dimension = 3 (3 points de contrôle)
- IFS ={ T_0, T_1 }

Sommet

- état = "*s*"
- dimension = 2 (2 points de contrôle)
- IFS = $\{T_s\}$

BC-IFS : opérateurs d'incidence

Opérateurs de bord d'une cellule :

- définissent quelles cellules bordent celle-ci
- définissent de quels points de contrôle elle dépend
- définissent l'imbrication des sous-espaces barycentriques et des sous attacteurs.

Exemple : une arête est bordée par 2 sommets:

BC-IFS : opérateurs d'incidence

BC-IFS: Automate

Relations d'incidence et d'adjacence

Equations d'adjacence:

$$s_g = s_d \Rightarrow T_{s_g} = T_{s_d} = T_s$$

 $T_0 b_1 = T_1 b_0$

Equations d'incidence :

$$b_0 T_s = T_0 b_0, \ b_1 T_s = T_1 b_1$$

Relations d'incidence et d'adjacence

Résolution des contraintes

$$\begin{pmatrix} a_0 & b_0 & c_0 \\ d_0 & e_0 & f_0 \\ g_0 & h_0 & i_0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \\ g_1 & h_1 & i_1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} b_0 & c_0 \\ e_0 & f_0 \\ h_0 & i_0 \end{pmatrix} = \begin{pmatrix} a_1 & b_1 \\ d_1 & e_1 \\ g_1 & h_1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a_s & b_s \\ d_s & e_s \end{pmatrix} = \begin{pmatrix} a_0 & b_0 & c_0 \\ d_0 & e_0 & f_0 \\ g_0 & h_0 & i_0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} a_s & b_s \\ d_s & e_s \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a_0 & b_0 \\ d_0 & e_0 \\ g_0 & h_0 \end{pmatrix}$$

Représentation par BCIFS des splines quadratiques non-uniformes

BC-IFS: Structure des matrices

Il ne reste que 2 degrés de liberté

Structure des matrices : Cas général d'une courbe

Pour *n* points de contrôle et des sommets de dimension *p*

Rappel sur les tangentes pour une courbe définie par IFS

Plan

- On regarde les demi-tangentes aux extrémités de la courbe
- On déduit les demi-tangentes aux autres points par auto-similarité

Elles sont données par les vecteurs propres associés aux plus grandes valeurs propres de L_0 et L_{N-1} . (L_i = partie linéaire de T_i)

Cas d'opérateurs définies dans BIⁿ

- If y a toujours une valeur propre = 1.
- Le vecteur propre associé est le point fixe de la transformation.
- le vecteur propre associé à la valeur propre sous-dominante λ_{i_0} détermine la demi-tangente

Conditions nécessaires

$$|\lambda_i| < \lambda_{i_0} < 1, \forall i \neq i_0$$

Cas des courbes définies dans BIⁿ

Vecteur tangent = vecteur propre associé à la valeur propre sous dominante.

Plan

Rq : les valeurs propres de T_s sont valeurs propres de T_0 et T_1

Etude des valeurs et vecteurs propres

Valeurs propres de T_0 (1, 1 - a - b, a) Valeurs propres de T_1 (1, 1 - a - b, b)

$$\begin{pmatrix} 0 \\ \frac{b}{a+b} \\ \frac{a}{a+b} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} a+2b-1 \\ 1-2b \\ -a \end{pmatrix}$$

$$\begin{pmatrix} \frac{b}{a+b} \\ \frac{a}{a+b} \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \begin{pmatrix} -b \\ 1-2a \\ 2a+b-1 \end{pmatrix}$$

Valeur propre = $1 \rightarrow$ vecteur propre =Point fixe à gauche à droite valeur propre sous-dominante \rightarrow vecteur propre = vecteur tangent

Tangentes aux extrémités

- Si $1 a b \ge a$ $\overrightarrow{t_+} = \overrightarrow{P_0P_1}$ sinon dépend des 3 points de contrôle
- Si $1 a b \ge b$ $\vec{t_-} = \overrightarrow{P_1P_2}$ sinon dépend des 3 points de contrôle

Condition de différentiabilité au point de raccord

$$C_0(t) = PT_0N(t) = [q_0 q_1q_2]N(t)$$

 $C_1(t) = PT_1N(t) = [q_1q_2 q_3]N(t)$

Condition nécessaire

 $\vec{t_-}$ en $C_0(1)=\vec{t_+}$ en $C_1(0)$ ssi 1-a-b est la valeur propre sous-domiante de T_0 et T_1

$$\begin{cases} 1 - 2a - b \geq 0 \\ 1 - a - 2b \geq 0 \end{cases}$$

Condition de différentiabilité au point de raccord

Splines non-uniformes: Algorithme d'insertion des noeuds

$$Q_{2i} = \frac{(u_i + 2u_{i+1})P_i + u_i P_{i+1}}{2(u_i + u_{i+1})}$$
(1)

$$Q_{2i+1} = \frac{u_{i+1}P_i + (2u_i + u_{i+1})P_{i+1}}{2(u_i + u_{i+1})}$$
(2)

Splines non-uniforme : Automate du BCIFS

Splines non-uniformes : Les matrices de subdivision

$$\begin{split} & p_0(u,v,w) = \begin{bmatrix} 1-a(u,v) & b(u,v) & 0 \\ a(u,v) & 1-b(u,v) & 1-a(v,w) \\ 0 & 0 & 0 & a(v,w) \end{bmatrix} \qquad r_0 = \begin{bmatrix} 1-c & d & 0 \\ c & 1-d & 1-c \\ 0 & 0 & c \end{bmatrix} \\ & p_1(u,v,w) = \begin{bmatrix} b(u,v) & 0 & 0 \\ 1-b(u,v) & 1-a(v,w) & b(v,w) \\ 0 & a(v,w) & 1-b(v,w) \end{bmatrix} \qquad r_1 = \begin{bmatrix} d & 0 & 0 \\ 1-d & 1-c & d \\ 0 & c & 1-d \end{bmatrix} \\ & q_0(u,v,\cdot) = \begin{bmatrix} 1-a(u,v) & b(u,v) & 0 \\ a(u,v) & 1-b(u,v) & 1-c \\ 0 & 0 & c \end{bmatrix} \qquad q_1(u,v,\cdot) = \begin{bmatrix} b(u,v) & 0 & 0 \\ 1-b(u,v) & 1-c & d \\ 0 & c & 1-d \end{bmatrix} \\ & q_2(\cdot,v,w) = \begin{bmatrix} 1-c & d & 0 \\ c & 1-d & 1-a(v,w) \\ 0 & 0 & a(v,w) \end{bmatrix} \qquad q_3(\cdot,v,w) = \begin{bmatrix} d & 0 & 0 & 0 \\ 1-d & 1-a(v,w) & b(v,w) \\ 0 & a(v,w) & 1-b(v,w) \\ 0 & a(v,w) & 1-b(v,w) \end{bmatrix} \end{split}$$

Conclusion

C-IFS= outils de description d'un processus de subdivision

- Représentation à l'aide d'un automate
- Implémentation simple
- Une seule implémentation pour les courbes, surfaces et fractals.

Conclusion

BC-IFS= BREP + Formes à Pôles + C-IFS

- Contrôle de la topologie :
 - Relations d'incidences et conditions d'adjacences
 - Equations matricielles
 - Contraintes sur les structures des matrices
- Contrôle de la géométrie:
 - Forme globale à l'aide de points de contrôle
 - Forme locale, à l'aide des degrés de liberté restants
 - Différentiabilité, à l'aide des vecteurs propres et valeurs