专题 16:常数项级数的敛散性

(一)级数的概念与性质

1. 级数的定概念

设 $\{u_n\}$ 是一数列,则表达式

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$$

称为**无穷级数**,简称**级数**. $s_n = \sum_{i=1}^n u_i$ 称为级数的**部分和**. 若部分和数列 $\{s_n\}$ 有极限 s, 即

$$\lim_{n\to\infty} s_n = s$$
,则称级数 $\sum_{n=1}^{\infty} u_n$ 收敛,并称这个极限值 s 为级数 $\sum_{n=1}^{\infty} u_n$ 的和,记为 $\sum_{n=1}^{\infty} u_n = s$.

如果极限 $\lim_{n\to\infty} s_n$ 不存在,则称级数 $\sum_{n=1}^{\infty} u_n$ 发散.

2. 级数的性质

- 1) 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛于 s, 则级数 $\sum_{n=1}^{\infty} ku_n$ 也收敛,且其和为 ks.
- 2) 若 $\sum_{n=0}^{\infty} u_n$ 和 $\sum_{n=0}^{\infty} v_n$ 分别收敛于 s, σ ,则 $\sum_{n=0}^{\infty} (u_n \pm v_n)$ 收敛于 $s \pm \sigma$.

【注】1)若
$$\sum_{n=1}^{\infty} u_n$$
 收敛, $\sum_{n=1}^{\infty} v_n$ 发散,则 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 必发散;

2)若 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 都发散,则 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 敛散性不定.

2) 若
$$\sum_{n=1}^{\infty} u_n$$
 和 $\sum_{n=1}^{\infty} v_n$ 都发散,则 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 敛散性不定

- 3) 在级数中去掉、加上或改变有限项,不会改变级数的敛散性.
- 4) 收敛级数加括号仍收敛目和不变.
- 【注】1)若级数加括号以后收敛,原级数不一定收敛;
 - 2) 若级数加括号以后发散,则原级数一定发散.
- 5) (级数收敛的必要条件) 若级数 $\sum_{n=0}^{\infty} u_n$ 收敛,则 $\lim_{n\to\infty} u_n = 0$.

【注】1)若
$$\lim_{n\to\infty}u_n=0$$
, 则级数 $\sum_{n=1}^{\infty}u_n$ 不一定收敛;

2) 若
$$\lim_{n\to\infty} u_n \neq 0$$
,则级数 $\sum_{n=1}^{\infty} u_n$ 一定发散.

(二)级数的审敛准则

1. 正项级数 (
$$\sum_{n=1}^{\infty} u_n$$
 , $u_n \ge 0$)

基本定理:
$$\sum_{n=1}^{\infty} u_n$$
 收敛 $\Leftrightarrow s_n$ 上有界。

1) 比较判别法: 设 $u_n \leq v_n$, 则

$$\sum_{n=1}^{\infty} v_n \ \text{\text{ψ}} \Longrightarrow \sum_{n=1}^{\infty} u_n \ \text{\text{ψ}} \Longrightarrow.$$

$$\sum_{n=1}^{\infty} u_n$$
 发散 $\Rightarrow \sum_{n=1}^{\infty} v_n$ 发散.

2) 比较法极限形式: 设
$$\lim_{n\to\infty}\frac{u_n}{v_n}=l(0\leq l\leq +\infty)$$

①若
$$0 < l < +\infty$$
,则 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 同敛散.

②若
$$l = 0$$
, 则 $\sum_{n=1}^{\infty} v_n$ 收敛 $\Rightarrow \sum_{n=1}^{\infty} u_n$ 收敛, $\sum_{n=1}^{\infty} u_n$ 发散 $\Rightarrow \sum_{n=1}^{\infty} v_n$ 发散.

③若
$$l = +\infty$$
, 则 $\sum_{n=1}^{\infty} v_n$ 发散 $\Rightarrow \sum_{n=1}^{\infty} u_n$ 发散, $\sum_{n=1}^{\infty} u_n$ 收敛 $\Rightarrow \sum_{n=1}^{\infty} v_n$ 收敛.

- 【注】使用比较法和比较法的极限形式时,需要适当的选择一个已知其敛散性的级数作为 比较的基准. 最常用的是 *p* 级数和等比级数.
 - 1) $\sum_{n=1}^{\infty} \frac{1}{n^p}. \quad \exists p > 1 \text{ Hwas, } \exists p \leq 1 \text{ Hyats};$
 - 2) $\sum_{n=0}^{\infty}aq^{n}$. 其中a和q为正数,当q<1时收敛,当q \geq 1时发散.

3) 比值法: 若
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$$
, 则 $\sum_{n=1}^{\infty} u_n$ {收敛, $\rho < 1$, 发散, $\rho > 1$, 不一定, $\rho = 1$,

4) 根值法: 若
$$\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$$
, 则 $\sum_{n=1}^{\infty} u_n$ {收敛, $\rho < 1$, 发散, $\rho > 1$, 不一定, $\rho = 1$,

2. 交错级数 (
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n, u_n > 0$$
)

莱不尼兹准则: 若(1) $\{u_n\}$ 单调减; (2) $\lim_{n\to\infty}u_n=0$,

则
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n$$
 收敛.

【注】 $\{u_n\}$ 单调减, $\lim_{n\to\infty}u_n=0$ 是级数 $\sum_{n=1}^{\infty}(-1)^{n-1}u_n$ 收敛的充分条件,但非必要条件. 如交

错级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^{n+(-1)^n}}$$
 收敛,但 $u_n = \frac{1}{2^{n+(-1)^n}}$ 并不递减.

- 3. 任意项级数 $(\sum_{n=1}^{\infty} u_n, u_n)$ 为任意实数)
 - 1)绝对收敛与条件收敛概念

(1) 若级数
$$\sum_{n=1}^{\infty} |u_n|$$
 收敛,则 $\sum_{n=1}^{\infty} u_n$ 必收敛,此时称级数 $\sum_{n=1}^{\infty} u_n$ 绝对收敛;

(2) 若级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,但 $\sum_{n=1}^{\infty} |u_n|$ 发散,此时称级数 $\sum_{n=1}^{\infty} u_n$ 条件收敛;

- 2) 绝对收敛和条件收敛的基本结论
 - (1) 绝对收敛的级数一定收敛, 即 $\sum_{n=1}^{\infty} |u_n|$ 收敛 $\Rightarrow \sum_{n=1}^{\infty} u_n$ 收敛.
 - (2) 条件收敛收敛的级数的所有正项(或负项)构成的级数一定发散.

即:
$$\sum_{n=1}^{\infty} u_n$$
 条件收敛 $\Rightarrow \sum_{n=1}^{\infty} \frac{u_n + |u_n|}{2}$ 和 $\sum_{n=1}^{\infty} \frac{u_n - |u_n|}{2}$ 发散.

典型例题

【例1】级数
$$\sum_{n=1}^{\infty} (-1)^n \left(1 - \cos \frac{\alpha}{n}\right)$$
(常数 $\alpha > 0$)().

- (A) 发散 (B) 条件收敛
- (C) 绝对收敛
- (D) 收敛性与 α 有关

【例 2】设 $u_n = (-1)^n \ln \left(1 + \frac{1}{\sqrt{n}} \right)$,则级数 ().

(A)
$$\sum_{n=1}^{\infty} u_n$$
 与 $\sum_{n=1}^{\infty} u_n^2$ 都收敛

(A)
$$\sum_{n=1}^{\infty} u_n$$
 与 $\sum_{n=1}^{\infty} u_n^2$ 都收敛 (B) $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} u_n^2$ 都发散

(C)
$$\sum_{n=1}^{\infty} u_n$$
 收敛 $\sum_{n=1}^{\infty} u_n^2$ 而发散

(C)
$$\sum_{n=1}^{\infty} u_n$$
 收敛 $\sum_{n=1}^{\infty} u_n^2$ 而发散 (D) $\sum_{n=1}^{\infty} u_n$ 发散 $\sum_{n=1}^{\infty} u_n^2$ 而收敛

【例3】下列选项正确的是().

(A) 若
$$\sum_{n=1}^{\infty} u_n^2$$
和 $\sum_{n=1}^{\infty} v_n^2$ 都收敛,则 $\sum_{n=1}^{\infty} (u_n + v_n)^2$ 收敛

(B) 若
$$\sum_{n=1}^{\infty} |u_n v_n|$$
收敛,则 $\sum_{n=1}^{\infty} u_n^2 与 \sum_{n=1}^{\infty} v_n^2$ 都收敛

(C) 若正项级数
$$\sum_{n=1}^{\infty} u_n$$
 发散,则 $u_n \ge \frac{1}{n}$

(D) 若级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,且 $u_n \ge v_n (n = 1, 2, \cdots)$,则级数 $\sum_{n=1}^{\infty} v_n$ 也收敛

【解】 因为
$$\sum_{n=1}^{\infty} (u_n + v_n)^2 = \sum_{n=1}^{\infty} (u_n^2 + v_n^2 + 2u_n v_n)$$
,又 $|u_n v_n| \le \frac{1}{2} (u_n^2 + v_n^2)$,所以 $\sum_{n=1}^{\infty} 2u_n v_n$

也收敛,故应选(A).

【例 4】设
$$a_n > 0 (n=1,2,3,\cdots)$$
,且 $\sum_{n=1}^{\infty} a_n$ 收敛,常数 $\lambda \in \left(0,\frac{\pi}{2}\right)$,则级数

$$\sum_{n=1}^{\infty} (-1)^n \left(n \tan \frac{\lambda}{n} \right) a_{2n} \quad () .$$

- (A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 收敛性与 λ 有关

【解】 因正项级数
$$\sum_{n=1}^{\infty} a_n$$
 收敛,则 $\sum_{n=1}^{\infty} a_{2n}$ 也收敛. 又

$$\lim_{n\to\infty} \frac{n\tan\frac{\lambda}{n}a_{2n}}{a_{2n}} = \lim_{n\to\infty} n\tan\frac{\lambda}{n} = \lambda, \lambda > 0.$$

故由正项级数的比较审敛法知结论为(C).

【例5】设有以下命题:

①若
$$\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$$
收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛

②若
$$\sum_{n=1}^{\infty} u_n$$
 收敛,则 $\sum_{n=1}^{\infty} u_{n+1000}$ 收敛

③若
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} > 1$$
,则 $\sum_{n=1}^{\infty} u_n$ 发散

④若
$$\sum_{n=1}^{\infty} (u_n + v_n)$$
收敛,则 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 都收敛.

则以上命题中正确的是().

【解】 取
$$u_{2n-1} = 1, u_{2n} = -1$$
,则 $\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$ 收敛,但 $\sum_{n=1}^{\infty} u_n$ 发散;取 $u_n = 1, v_n = -1$,

则
$$\sum_{n=1}^{\infty} (u_n + v_n)$$
 收敛,但 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 均发散,故①,④错误,应选(B). 另外,由于级数

增加或减少有限项不影响其敛散性,故②正确. 若 $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}>1$,由保号性知: 存在整数 N ,

当
$$n>N$$
时, $\left|u_{n+1}\right|>\left|u_{n}\right|$. 所以 $\lim_{n\to\infty}\left|u_{n}\right|\neq0$, $\lim_{n\to\infty}u_{n}\neq0$,从而 $\sum_{n=1}^{\infty}u_{n}$ 发散,故③正确.

【例 6】设
$$a_n > 0, n = 1, 2, \cdots$$
,若 $\sum_{n=1}^{\infty} a_n$ 发散, $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛,则下列结论正确的是().

(A)
$$\sum_{n=1}^{\infty} a_{2n-1}$$
 收敛, $\sum_{n=1}^{\infty} a_{2n}$ 发散 (B) $\sum_{n=1}^{\infty} a_{2n}$ 收敛, $\sum_{n=1}^{\infty} a_{2n-1}$ 发散

(B)
$$\sum_{n=1}^{\infty} a_{2n}$$
 收敛, $\sum_{n=1}^{\infty} a_{2n-1}$ 发散

(C)
$$\sum_{n=1}^{\infty} (a_{2n-1} + a_{2n})$$
 收敛 (D) $\sum_{n=1}^{\infty} (a_{2n-1} - a_{2n})$ 收敛

【解】由于收敛级数任意加括号后仍收敛,而将 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 两两加括号后即得

$$\sum_{n=1}^{\infty} (a_{2n-1} - a_{2n})$$
,故应选(D).

特别取
$$a_n = \frac{1}{n} > 0$$
 $(n = 1, 2, \cdots)$,则 $\sum_{n=1}^{\infty} a_{2n-1}$, $\sum_{n=1}^{\infty} a_{2n}$, $\sum_{n=1}^{\infty} (a_{2n-1} + a_{2n})$ 均发散,也应选 (D).

【例7】若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则级数 ().

(A)
$$\sum_{n=1}^{\infty} |a_n|$$
 收敛, (B) $\sum_{n=1}^{\infty} (-1)^n a_n$ 收敛 (C) $\sum_{n=1}^{\infty} a_n a_{n+1}$ 收敛 (D) $\sum_{n=1}^{\infty} \frac{a_n + a_{n+1}}{2}$ 收敛

【解】由收敛的数项级数之和仍收敛知应选(D)

取
$$a_n = (-1)^n \frac{1}{\sqrt{n}}$$
,则 $\sum_{n=1}^{\infty} a_n$ 收敛,但 $\sum_{n=1}^{\infty} |a_n|$, $\sum_{n=1}^{\infty} (-1)^n a_n$, $\sum_{n=1}^{\infty} a_n a_{n+1}$ 均发散,故(A),(B),

(C)均不正确.

【例8】设有两个数列 $\{a_n\},\{b_n\}$,若 $\lim_{n\to\infty}a_n=0$,则().

(A) 当
$$\sum_{n=1}^{\infty}b_n$$
 收敛时, $\sum_{n=1}^{\infty}a_nb_n$ 收敛 (B) 当 $\sum_{n=1}^{\infty}b_n$ 发散时, $\sum_{n=1}^{\infty}a_nb_n$ 发散

(C) 当
$$\sum_{n=1}^{\infty} |b_n|$$
收敛时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 收敛 (D) 当 $\sum_{n=1}^{\infty} |b_n|$ 发散时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 发散

【解】 取
$$a_n = b_n = (-1)^n \frac{1}{\sqrt{n}}$$
,则 $\sum_{n=1}^{\infty} b_n$ 收敛,但 $\sum_{n=1}^{\infty} a_n b_n$ 发散,故(A) 不正确;取 $a_n = \frac{1}{n^3}$,

$$b_n = n$$
 , 则 $\sum_{n=1}^{\infty} b_n$ 及 $\sum_{n=1}^{\infty} |b_n|$ 均发散,但 $\sum_{n=1}^{\infty} a_n b_n$ 及 $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 均收敛,故(B),(D) 均不正确.

因
$$\lim_{n \to \infty} a_n = 0$$
,故 $\{a_n\}$ 有界. 设 $\left|a_n\right| \le M$,则 $\sum_{n=1}^{\infty} a_n^2 b_n^2 \le M^2 \sum_{n=1}^{\infty} b_n^2$. 再由 $\sum_{n=1}^{\infty} \left|b_n\right|$ 收敛知 $\sum_{n=1}^{\infty} b_n^2$

收敛. 故 $\sum_{n=0}^{\infty} a_n^2 b_n^2$ 收敛, 故应选(C).

【例 9】设 $\{u_n\}$ 是数列,则下列命题正确的是().

(A) 若
$$\sum_{n=1}^{\infty} u_n$$
收敛,则 $\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$ 收敛

(B) 若
$$\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$$
收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛

(C) 若
$$\sum_{n=1}^{\infty} u_n$$
 收敛,则 $\sum_{n=1}^{\infty} (u_{2n-1} - u_{2n})$ 收敛

(D) 若
$$\sum_{n=1}^{\infty} (u_{2n-1} - u_{2n})$$
收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛

【解】由于 $\sum_{n=1}^{\infty} u_n$ 收敛,则其加括号以后的级数 $\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$ 也收敛,故应选(A).

【例 10】已知级数 $\sum_{n=1}^{\infty} (-1)^n \sqrt{n} \sin \frac{1}{n^a}$ 绝对收敛,级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{2-a}}$ 条件收敛,则

(A)
$$0 < \alpha \le \frac{1}{2}$$
.

$$(B) \ \frac{1}{2} < \alpha \le 1.$$

(C)
$$1 < \alpha \le \frac{3}{2}$$
.

(D)
$$\frac{3}{2} < \alpha < 2$$
.

【解】由于级数 $\sum_{n=1}^{\infty} (-1)^n \sqrt{n} \sin \frac{1}{n^a}$ 绝对收敛,则 $\sum_{n=1}^{\infty} \sqrt{n} \sin \frac{1}{n^a}$ 收敛,又

$$\sin\frac{1}{n^{\alpha}}\sim\frac{1}{n^{\alpha}}$$

$$\sinrac{1}{n^{lpha}}\simrac{1}{n^{lpha}}$$
则 $\sum_{n=1}^{\infty}\sqrt{n}\cdotrac{1}{n^{lpha}}$ 收敛,即 $\sum_{n=1}^{\infty}rac{1}{n^{lpha-rac{1}{2}}}$ 收敛,由此可得 $lpha-rac{1}{2}>1$,故 $lpha>rac{3}{2}$.

又级数
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{2-a}}$$
 条件收敛,则 $0 < 2 - \alpha \le 1$,即 $1 \le \alpha < 2$.

综上所述,
$$\frac{3}{2}$$
< α < 2 .故应选(D).

【例 11】设 $\{a_n\}$ 为正项数列,下列选项正确的是

(A) 若
$$a_n > a_{n+1}$$
,则 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛;

- (B) 若 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛,则 $a_n > a_{n+1}$;
- (C) 若 $\sum_{n=0}^{\infty} a_n$ 收敛,则存在常数 p > 1,使 $\lim_{n \to \infty} n^p a_n$ 存在;
- (D) 若存在常数 p > 1, 使 $\lim_{n \to \infty} n^p a_n$ 存在,则 $\sum_{n=1}^{\infty} a_n$ 收敛 .
- 【解】若存在常数 p > 1, 使 $\lim_{n \to \infty} n^p a_n$ 存在,即 $\lim_{n \to \infty} \frac{a_n}{1}$ 存在,而级数 $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ 收敛,由比较法

的极限形式可知级数 $\sum_{i=1}^{\infty} a_n$ 收敛,故应选(D).

【例 12】下列级数中发散的是()

$$(A) \sum_{n=1}^{\infty} \frac{n}{3^n}.$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \ln(1 + \frac{1}{n}).$$

(C)
$$\sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n}$$
.

(D)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}.$$

【解】由交错级数的莱布尼兹准则知级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln n}$ 收敛,又

$$\frac{1}{\ln n} > \frac{1}{n}$$

 $\frac{1}{\ln n} > \frac{1}{n}$ 而级数 $\sum_{n=2}^{\infty} \frac{1}{n}$ 发散,由比较法可知级数 $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ 发散,故级数 $\sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n}$ 发散,选(C).

【例 13】级数
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) \sin(n+k)$$
 (k 为常数) ()

(A) 绝对收敛

(B) 条件收敛

(C) 发散

(D) 收敛性与k有关

【解】由于
$$\left| (\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}) \sin(n+k) \right| \le \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}$$

= $\frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n}\sqrt{n+1}} = \frac{1}{\sqrt{n}\sqrt{n+1}(\sqrt{n+1} + \sqrt{n})}$

$$\overline{m} \quad \lim_{n \to \infty} \frac{\frac{1}{\sqrt{n}\sqrt{n+1}(\sqrt{n+1} + \sqrt{n})}}{\frac{1}{n^{\frac{3}{2}}}} = \frac{1}{2}$$

级数 $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ 收敛,则原级数绝对收敛,故选(A).

【例 14】若级数
$$\sum_{n=2}^{\infty} \left[\sin \frac{1}{n} - k \ln(1 - \frac{1}{n}) \right]$$
 收敛,则 $k = ($)

(A) 1.

(B) 2.

(C) -1.

(D) -2.

【解】由于
$$\lim_{n\to\infty} \frac{\sin\frac{1}{n} - k\ln(1-\frac{1}{n})}{\frac{1}{n}} = 1+k$$

如果 $1+k \neq 0$,则级数 $\sum_{n=2}^{\infty} \left[\sin\frac{1}{n} - k \ln(1-\frac{1}{n})\right]$ 与级数 $\sum_{n=2}^{\infty} \frac{1}{n}$ 同敛散,而级数 $\sum_{n=2}^{\infty} \frac{1}{n}$ 发散,

则选项(A)(B)(D)都不正确,故应选(C).

【例 15】设
$$a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$$
,

(1) 求
$$\sum_{n=1}^{\infty} \frac{1}{n} (a_n + a_{n+2})$$
 的值; (2) 试证: 对任意的常数 $\lambda > 0$, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛.

【证】(1) 因为
$$\frac{1}{n}(a_n + a_{n+2}) = \frac{1}{n} \int_0^{\frac{\pi}{4}} \tan^n x (1 + \tan^2 x) dx$$

$$= \frac{1}{n} \int_0^{\frac{\pi}{4}} \tan^n x \sec^2 x dx = \frac{\tan x = t}{n} \int_0^1 t^n dt = \frac{1}{n(n+1)},$$

$$S_n = \sum_{i=1}^n \frac{1}{i} (a_i + a_{i+2}) = \sum_{i=1}^n \frac{1}{i(i+1)} = 1 - \frac{1}{n+1}$$

所以
$$\sum_{n=1}^{\infty} \frac{1}{n} (a_n + a_{n+2}) = \lim_{n \to \infty} S_n = 1.$$

(2) 因为

$$a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx \frac{\tan x = t}{\int_0^1 \frac{t^n}{1 + t^2} dt} < \int_0^1 t^n dt = \frac{1}{n + 1},$$

$$\frac{a_n}{n^{\lambda}} < \frac{1}{n^{\lambda}(n+1)} < \frac{1}{n^{\lambda+1}}.$$

由 $\lambda + 1 > 1$ 知 $\sum_{n=1}^{\infty} \frac{1}{n^{\lambda+1}}$ 收敛,从而 $\sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛.

【 **例** 16 】 已 知 函 数 f(x) 可 导 , 且 $f(0) = 1,0 < f'(x) < \frac{1}{2}$. 设 数 列 $\{x_n\}$ 满 足 $x_{n+1} = f(x_n)$ ($n = 1, 2, \dots$). 证明:

(I) 级数
$$\sum_{n=1}^{\infty} (x_{n+1} - x_n)$$
 绝对收敛;

(II)
$$\lim_{n\to\infty} x_n$$
 存在,且 $0 < \lim_{n\to\infty} x_n < 2$.

【证】(I) 由于 $x_{n+1} = f(x_n)$,所以

$$|x_{n+1}-x_n|=|f(x_n)-f(x_{n-1})|=|f'(\xi)(x_n-x_{n-1})|$$
, 其中 ξ 介于 x_n 与 x_{n+1} 之间.

又因为 $0 < f'(x) < \frac{1}{2}$,所以

$$|x_{n+1} - x_n| \le \frac{1}{2} |x_n - x_{n-1}| \le \dots \le \frac{1}{2^{n-1}} |x_2 - x_1|$$

由于级数 $\sum_{i=1}^{\infty} \frac{1}{2^{n-1}} |x_2 - x_1|$ 收敛,所以级数 $\sum_{i=1}^{\infty} (x_{n+1} - x_n)$ 绝对收敛.

(II) 设级数
$$\sum_{n=1}^{\infty} (x_{n+1} - x_n)$$
 的前 n 项和为 S_n ,则 $S_n = x_{n+1} - x_1$.
由(I)知,极限 $\lim_{n \to \infty} S_n$ 存在,即 $\lim_{n \to \infty} (x_{n+1} - x_1)$ 存在,所以 $\lim_{n \to \infty} x_n$ 存在.

设 $\lim_{n\to\infty} x_n = a$, 由 $x_{n+1} = f(x_n)$ 及 f(x) 的连续性,等式两端取极限得 a = f(a).

即 a 是函数 g(x) = x - f(x) 的零点. 由于

$$g(0) = -1 < 0$$

$$g(2) = 2 - f(2) = 1 - [f(2) - f(0)] = 1 - 2f'(\eta) > 0, \text{ } \sharp \vdash \eta \in (0,2).$$

又 g'(x) = 1 - f'(x) > 0, 所以 g(x) 存在唯一的零点, 且零点位于区间 (0,2) 内, 于是 $0 < \lim_{n \to \infty} x_n < 2.$

【例 17】设 f(x) 在 $[0,+\infty)$ 上二阶可导,且 f''(x) < 0, $\lim_{x \to +\infty} f(x) = 1$.

(I) 证明级数
$$\sum_{n=1}^{\infty} [f(n) - f(n-1)]$$
 收敛, 并求其和;

(II) 证明级数
$$\sum_{n=1}^{\infty} f'(n)$$
 收敛.

$$S_n = [f(1) - f(0)] + [f(2) - f(1)] + \dots + [f(n) - f(n-1)]$$
$$= f(n) - f(0)$$

由 $\lim_{x\to +\infty} f(x) = 1$ 可知, $\lim_{n\to \infty} S_n = 1 - f(0)$,则级数 $\sum_{n=1}^{\infty} [f(n) - f(n-1)]$ 收敛,且其和为 1 - f(0).

(II) 由 f''(x) < 0 可知, f'(x) 在 $[0,+\infty)$ 上单调减少,又 $\lim_{x \to +\infty} f(x) = 1$,则 f'(x) 下 有界.否则 $\lim_{x \to +\infty} f'(x) = -\infty$,又

$$f(x+1) - f(x) = f'(\xi)$$
 $(x < \xi < x+1)$ (1)

曲
$$\lim_{x \to +\infty} f(x) = 1$$
 可知, $\lim_{x \to +\infty} [f(x+1) - f(x)] = \lim_{x \to +\infty} f(x+1) - \lim_{x \to +\infty} f(x) = 0$

又由 $\lim_{x\to +\infty} f'(x) = -\infty$ 可知, $\lim_{x\to +\infty} f'(\xi) = -\infty$,矛盾.则 f'(x) 下有界. 又 f'(x) 在 $[0,+\infty)$ 上

单调减少,则 $\lim_{x\to +\infty} f'(x)$ 存在,由(1)式知 $\lim_{x\to +\infty} f'(x) = 0$,则 $f'(x) \ge 0$,从而级数 $\sum_{n=1}^{\infty} f'(n)$

为正项级数,又

$$f(n) - f(n-1) = f'(\xi) \qquad (n-1 < \xi < n)$$
$$> f'(n)$$

由于级数 $\sum_{n=1}^{\infty} [f(n) - f(n-1)]$ 收敛,则级数 $\sum_{n=1}^{\infty} f'(n)$ 也收敛.

思考题:

1. 设
$$a_n > 0, p > 1$$
,且 $\lim_{n \to \infty} n^p (e^{\frac{1}{n}} - 1) a_n = 1$. 若 $\sum_{n=1}^{\infty} a_n$ 收敛,则 p 的取值范围为______.

- 2. 若级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n^p+a}}$ (a>0) 为条件收敛,则 p 的取值范围为______.
- 3. 设 $u_n = \int_{n\pi}^{(n+1)\pi} \frac{\sin x}{x} dx$,则 $\sum_{n=1}^{\infty} u_n$ 为(
 - (A) 发散的正项级数.
- (B) 收敛的正项级数.
- (C) 发散的交错级数.
- (D) 收敛的交错级数.

- 4. 下列命题正确的是
 - (A) 若 $\sum_{n=1}^{\infty} u_n$ 收敛, 则 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 条件收敛;
- (B) 若 $\lim_{n\to\infty} \frac{u_{n+1}}{u} < 1$,则 $\sum_{n=1}^{\infty} u_n$ 收敛.
- (C) 若 $\sum_{n=0}^{\infty} u_n$ 收敛, 则 $\sum_{n=0}^{\infty} (-1)^{n-1} u_n^2$ 收敛.
- (D) 若 $\sum_{n=0}^{\infty} u_n$ 绝对收敛,则 $\sum_{n=0}^{\infty} u_n^2$ 收敛.
- 5. 设 $\sum_{n=0}^{\infty} a_n$ 收敛, $\sum_{n=0}^{\infty} b_n$ 发散 $(b_n \neq 0)$,则下列级数中一定发散的是
 - (A) $\sum_{n=0}^{\infty} \frac{a_n}{h}$;

(B) $\sum_{n=0}^{\infty} a_n b_n$;

- (C) $\sum_{n=0}^{\infty} (|a_n| + |b_n|)$; (D) $\sum_{n=0}^{\infty} (a_n^2 + b_n^2)$;
 - 6.若 $a_n > 0$, $S_n = a_1 + a_2 + \dots + a_n$, $\sum_{n=0}^{\infty} a_n$ 发散, 试证 $\sum_{n=0}^{\infty} \frac{a_n}{S^2}$ 收敛.
 - 7. 己知函数 f(x) 可导,且 $f(x) > 0, |f'(x)| \le k |f(x)|$, 其中 0 < k < 1. 设数列 $\{x_n\}$ 满足

$$x_{n+1} = \ln f(x_n)$$
 $(n = 1, 2, \dots)$. 证明:级数 $\sum_{n=1}^{\infty} (x_{n+1} - x_n)$ 绝对收敛.

思考题答案:

- 1. p > 2 2. $0 3.D 4.D 5.C 6.提示: <math>\frac{a_n}{S^2} = \frac{S_n S_{n-1}}{S^2}$