 {Ø} {{Ø}}, {Ø}} Ø {{{Ø}}, {Ø}} 2.) Let A, B, C be sets and let X = (A ∩ B) \ ((A ∪ B) ∩ C). Write an expression for X using necessarily all) set operations ∪, ∩, and \ in which A, B, C appear at most once. (1 B) 3.) Let A, B, C be sets such that (A ∪ B) × (C ∪ B) = 3 and A ∩ B = Ø. Write all the power values of A + C . (2 P) 4.) Let A = {a,b,c,d}. Find the smallest relation ρ on A such that {(a,b), (d,b)} ⊆ ρ and ρ = ρ̂ and ρ² ⊆ ρ. (2 P) 5.) Consider the poset ({1,2,3,4,8,9,24,36};) and let S = {2,3}. Write all upper bounds in A. If there are least upper bounds of S in A, identify them, or else, write that none (2 P) (★) Let X be a set and let ρ and σ be equivalence relations on X. Prove or disprove that 						•
 cross all sets y such that y ⊆ A. (1 In {∅} {∅} {{∅}}, {∅}} 2.) Let A, B, C be sets and let X = (A ∩ B) \ ((A ∪ B) ∩ C). Write an expression for X using necessarily all) set operations ∪, ∩, and \ in which A, B, C appear at most once. (1 In the provided set of A + C . (2 P) 3.) Let A, B, C be sets such that (A ∪ B) × (C ∪ B) = 3 and A ∩ B = ∅. Write all the provided set of A + C . (2 P) 4.) Let A = {a, b, c, d}. Find the smallest relation ρ on A such that {(a, b), (d, b)} ⊆ ρ and ρ = ρ̂ and ρ² ⊆ ρ. (2 P) 5.) Consider the poset ({1, 2, 3, 4, 8, 9, 24, 36};) and let S = {2, 3}. Write all upper bounds in A. If there are least upper bounds of S in A, identify them, or else, write that none (2 P) (*) Let X be a set and let ρ and σ be equivalence relations on X. Prove or disprove that 			rect answer gives t	he number of poin	its indicated in the b	orackets. N
 2.) Let A, B, C be sets and let X = (A∩B) \ ((A∪B)∩C). Write an expression for X using necessarily all) set operations ∪, ∩, and \ in which A, B, C appear at most once. (1 B) 3.) Let A, B, C be sets such that (A∪B) × (C∪B) = 3 and A∩B = Ø. Write all the posalues of A + C . (2 P) 4.) Let A = {a, b, c, d}. Find the smallest relation ρ on A such that {(a, b), (d, b)} ⊆ ρ and ρ = p̂ and ρ² ⊆ ρ. (2 P) 5.) Consider the poset ({1, 2, 3, 4, 8, 9, 24, 36};) and let S = {2, 3}. Write all upper bounds in A. If there are least upper bounds of S in A, identify them, or else, write that none (2 P) (*) Let X be a set and let ρ and σ be equivalence relations on X. Prove or disprove that 				llowing list, circle	e all sets x such that	$x \in A$, ar (1 Poin
 necessarily all) set operations ∪, ∩, and \ in which A, B, C appear at most once. (1 In the provided of the provide	$\{\varnothing\}$		$\{\{\varnothing\},\{\varnothing\}\}$	Ø	$\{\{\{\varnothing\}\},\varnothing\}$	
 values of A + C . (2 P) 4.) Let A = {a, b, c, d}. Find the smallest relation ρ on A such that {(a, b), (d, b)} ⊆ ρ and ρ = ρ̂ and ρ² ⊆ ρ. (2 P) 5.) Consider the poset ({1, 2, 3, 4, 8, 9, 24, 36};) and let S = {2,3}. Write all upper bounds in A. If there are least upper bounds of S in A, identify them, or else, write that none (2 P) (★) Let X be a set and let ρ and σ be equivalence relations on X. Prove or disprove that 						X using (no
 ρ = ρ̂ and ρ² ⊆ ρ. (2 P) 5.) Consider the poset ({1, 2, 3, 4, 8, 9, 24, 36};) and let S = {2,3}. Write all upper bounds in A. If there are least upper bounds of S in A, identify them, or else, write that none (2 P) (★) Let X be a set and let ρ and σ be equivalence relations on X. Prove or disprove that 			that $ (A \cup B) \times (C) $	$(C \cup B) = 3 \text{ and } A$	$\cap B = \emptyset$. Write all	the possib
in A. If there are least upper bounds of S in A, identify them, or else, write that none (2 P $^{\prime}$) Let X be a set and let ρ and σ be equivalence relations on X. Prove or disprove that			the smallest rela	tion ρ on A such t	that $\{(a,b),(d,b)\}\subseteq$	ρ and bot (2 Point
•						
		•	and σ be equivalen	ace relations on X .	Prove or disprov	e that $\rho \cap$ (4 Point

٦١.	() I - t (Y)) has a most I - t , he the militim on Y defined on full most	
a)	(\star) Let (X, \preceq) be a poset. Let \prec be the relation on X defined as follows:	
	$a \prec b \iff a \leq b \land a \neq b.$	
	_ ,	
	Prove or disprove that distransitive	
	Prove or disprove that \prec is transitive.	
		(6 Points)
		(= = = = = = = = = = = = = = = = = = =

e.		<u> </u>	9 Pa

\mathbf{a}	Sho	rt Questions. Each correct answer	er gives 1 point. No justification is required.	(4 Poi
	1.)	Compute $R_{13}(2^{4536})$.		
	2.)	Find distinct $k, \ell, m \in \mathbb{N}$ such that	t $\varphi(k) = \varphi(\ell) = \varphi(m)$, where φ denotes Eule	r's funct
	3.)	Compute $gcd(81, 48 + 3^{25})$.		
	4.)	Compute the multiplicative inverse	of 13 modulo 17.	
b)	(*)	Compute the set of solutions (x, y)	$\in \mathbb{Z}_{11} \times \mathbb{Z}_{11}$ to the congruence system	
			$2x + 9y \equiv_{11} 7$	
			$2x + 7y \equiv_{11} 5$	
	CI.	w your work.	$4x + 5y \equiv_{11} 1.$	(4 Poi
				(7 - 00

d) (**) Let φ denote the Euler's function. **Prove or disprove** that for all $n \in \mathbb{N} \setminus \{0\}$ the equation $\varphi(x) = n$ has finetely many solutions $x \in \mathbb{N}$. (5 Points)

3.) Compute $R_{x^2+x+1}(x^4+x^2)$ in $\mathbb{Z}_5[x]$. (2 P 4.) Find the smallest integer $n>8$ such that \mathbb{Z}_n^* is isomorphic to \mathbb{Z}_8^* . (2 P 5.) Compute $\gcd(x^3+x^2+x+1,\ 2x^3+x+3)$ in $\mathbb{Z}_5[x]$. (2 P (*) Let $\langle G;\ \star,\hat{\ },e\rangle$ be a group and $Z(G):=\{h\mid h\in G,\ g\star h\star \hat{g}=h \text{ for all }g\in G\}$ the so-	l.) G	ive the number of subgroups of $\langle \mathbb{Z}_2 \times \mathbb{Z}_6; \oplus \rangle$.	(1 Poin
$(a,b)*(c,d) = (a \odot_9 c, b \odot_5 d) \text{ for } (a,b), (c,d) \in \mathbb{Z}_9^* \times \mathbb{Z}_5^*. $ $(2 P)$ 3.) Compute $R_{x^2+x+1}(x^4+x^2)$ in $\mathbb{Z}_5[x]$. $(2 P)$ 4.) Find the smallest integer $n > 8$ such that \mathbb{Z}_n^* is isomorphic to \mathbb{Z}_8^* . $(2 P)$ 5.) Compute $\gcd(x^3+x^2+x+1,\ 2x^3+x+3)$ in $\mathbb{Z}_5[x]$. $(2 P)$ $(*) \text{ Let } \langle G; \star, \hat{\ }, e \rangle \text{ be a group and } Z(G) := \{h \mid h \in G,\ g \star h \star \hat{g} = h \text{ for all } g \in G\} \text{ the so-}$:l	
4.) Find the smallest integer $n > 8$ such that \mathbb{Z}_n^* is isomorphic to \mathbb{Z}_8^* . (2 P 5.) Compute $\gcd(x^3 + x^2 + x + 1, \ 2x^3 + x + 3)$ in $\mathbb{Z}_5[x]$. (2 P (**) Let $\langle G; \star, \hat{\ }, e \rangle$ be a group and $Z(G) := \{h \mid h \in G, \ g \star h \star \widehat{g} = h \text{ for all } g \in G\}$ the so-			te its order, whe
5.) Compute $\gcd(x^3+x^2+x+1,\ 2x^3+x+3)$ in $\mathbb{Z}_5[x]$. (2 P (*) Let $\langle G; \star, \hat{\ }, e \rangle$ be a group and $Z(G) := \{h \mid h \in G,\ g \star h \star \widehat{g} = h \text{ for all } g \in G\}$ the so-	B.) C	ompute $R_{x^2+x+1}(x^4+x^2)$ in $\mathbb{Z}_5[x]$.	(2 Point
(*) Let $\langle G; \star, \hat{\ }, e \rangle$ be a group and $Z(G) := \{ h \mid h \in G, \ g \star h \star \widehat{g} = h \text{ for all } g \in G \}$ the so-	1.) F:	ind the smallest integer $n > 8$ such that \mathbb{Z}_n^* is isomorphic to \mathbb{Z}_8^* .	(2 Point
	5.) C	ompute $gcd(x^3 + x^2 + x + 1, 2x^3 + x + 3)$ in $\mathbb{Z}_5[x]$.	(2 Point
	5.) C	ompute $gcd(x^3 + x^2 + x + 1, 2x^3 + x + 3)$ in $\mathbb{Z}_5[x]$.	(2 Point
	*) Le	et $\langle G;\star,,e\rangle$ be a group and $Z(G):=\{h\mid h\in G,\;g\star h\star \widehat{g}=h\;\text{for all}\;g$,
	*) Le	et $\langle G;\star,,e\rangle$ be a group and $Z(G):=\{h\mid h\in G,\;g\star h\star \widehat{g}=h\;\text{for all}\;g$	$\in G$ } the so-calle
	*) Le	et $\langle G;\star,,e\rangle$ be a group and $Z(G):=\{h\mid h\in G,\;g\star h\star \widehat{g}=h\;\text{for all}\;g$	$\in G$ } the so-calle
	*) Le	et $\langle G;\star,,e\rangle$ be a group and $Z(G):=\{h\mid h\in G,\;g\star h\star \widehat{g}=h\;\text{for all}\;g$	$\in G$ } the so-calle
	*) Le	et $\langle G;\star,,e\rangle$ be a group and $Z(G):=\{h\mid h\in G,\;g\star h\star \widehat{g}=h\;\text{for all}\;g$	$\in G$ } the so-calle
	*) Le	et $\langle G;\star,,e\rangle$ be a group and $Z(G):=\{h\mid h\in G,\;g\star h\star \widehat{g}=h\;\text{for all}\;g$	$\in G$ } the so-calle
	*) Le	et $\langle G;\star,,e\rangle$ be a group and $Z(G):=\{h\mid h\in G,\;g\star h\star \widehat{g}=h\;\text{for all}\;g$	$\in G$ } the so-call-
	*) Le	et $\langle G;\star,,e\rangle$ be a group and $Z(G):=\{h\mid h\in G,\;g\star h\star \widehat{g}=h\;\text{for all}\;g$	$\in G$ } the so-call-
	*) Le	et $\langle G;\star,,e\rangle$ be a group and $Z(G):=\{h\mid h\in G,\;g\star h\star \widehat{g}=h\;\text{for all}\;g$	$\in G$ } the so-call-
	*) Le	et $\langle G;\star,,e\rangle$ be a group and $Z(G):=\{h\mid h\in G,\;g\star h\star \widehat{g}=h\;\text{for all}\;g$	$\in G$ } the so-call-
	*) Le	et $\langle G;\star,,e\rangle$ be a group and $Z(G):=\{h\mid h\in G,\;g\star h\star \widehat{g}=h\;\text{for all}\;g$	$\in G$ } the so-call-
		et $\langle G;\star,,e\rangle$ be a group and $Z(G):=\{h\mid h\in G,\;g\star h\star \widehat{g}=h\;\text{for all}\;g$	$\in G$ } the so-call

(*) Let $\langle R; +, *, -, ^{-1}, 0, 1 \rangle$ be a commutative ring. **Prove** that the following are equivalent:

			/		
•	For all $p(x)$ and $q(x)$	in $R[x]$ it holds tha	$t \deg (p(x) \cdot q(x))$	$(c) = \deg(p(x))$	$(q(x)) + \deg(q(x)).$

(4 Points)

	(4 1 011113)
(\star) Let F be a finite field. Prove that there exist infinitely many irreducible polynomial	nials in $F[x]$.
	(6 Points)

d)	(⋆) Let	F be a	i finite	field.	Prove	that	there	exist	infinitely	many	irreducible	polyno	$_{ m mials}$	in	F[x]
													(6	Po	ints)

(6 Points)

$(\star \star)$ Let $\langle G; \star, \hat{\ }, e \rangle$ be an abelian group, $k \in \mathbb{N}$ and $H := \{x \mid x \in G, \operatorname{ord}(x) = k\} \cup \{x \in G, \operatorname{ord}(x) = k\} \cup \{x \in G, \operatorname{ord}(x) = k\}$ that H is a subgroup of G if and only if $H = \{e\}$ or k is prime.	$\{e\}$. Pro

$\left(\forall x P(f(x),y)\right) \land \exists y Q(x,g(y)).$ 2.) Circle all the formulas in CNF and cross all formulas in DNF in the list below. (2 Pole A \lambda B \lambda - C A \lambda - (B \lambda C) A A \lambda - (B \lambda C) A A \lambda - (B \lambda C) A \q	Short Question justification is r		orrect answer gives the	e number of poi	ints indicated in the	brackets.
2.) Circle all the formulas in CNF and cross all formulas in DNF in the list below. (2 Pole A \land B \land ¬C	1.) Circle all sq	ymbols that of	occur free in the form	nula		(2 Poi
$A \wedge B \wedge \neg C$ $A \wedge \neg (B \vee C)$ $A \vee (\neg B \wedge C)$ $A \vee \neg B \vee \neg G$ 3.) Let $F = \forall x P(x)$. Circle all formulas G in the following list such that $F \models G$. (2 Polytrap $A \vee Q(x) = A \vee Q(x)$ $A \vee Q(x)$			$\Big(\forall x P(f(x), y) \Big)$	$)$) $\land \exists y Q(x, g(y))$	r)).	
3.) Let $F = \forall x P(x)$. Circle <i>all</i> formulas G in the following list such that $F \models G$. (2 Power Particles) $P(y) = P(y) =$	2.) Circle all th	ne formulas i	in CNF and cross all	formulas in DN	F in the list below.	(2 Poi
$\forall xQ(x) \qquad P(y) \qquad Q(y) \to P(z) \qquad \exists yQ(y) \qquad (Q(z) \to Q(y)) \lor (Q(y) \to Q(y)) \lor Q(y) \to Q(y) $ 4.) Find a formula in prenex normal form equivalent to $\exists x \bigg(P(y) \land \neg \Big(\forall y \big(Q(x,y) \land \exists z R(z,y) \big) \Big) \Big).$ $(3\ Polynomial P(y) \land \neg \Big(\forall y \big(Q(x,y) \land \exists z R(z,y) \big) \Big) \Big).$ $(3\ Polynomial P(y) \land \neg \Big(\forall y \big(Q(x,y) \land \exists z R(z,y) \big) \Big) \Big).$ $(3\ Polynomial P(y) \land \neg \Big(\forall y \big(Q(x,y) \land \exists z R(z,y) \big) \Big) \Big).$ $(3\ Polynomial P(y) \land \neg \Big(\forall y \big(Q(x,y) \land \exists z R(z,y) \big) \Big) \Big).$ $(3\ Polynomial P(y) \land \neg \Big(\forall y \big(Q(x,y) \land \exists z R(z,y) \big) \Big) \Big).$ $(4)\ \textbf{Disprove} \ \text{that the resolution calculus is complete, that is disprove that for all sets of class \mathcal{K} and for all clauses K it holds that $\mathcal{K} \models K \Longrightarrow \mathcal{K} \vdash_{Res} K.$	$A \wedge B \wedge$	$\neg C$	$A \wedge \neg (B \vee C)$	$A \lor (\neg B)$	$(\wedge C)$ A	$\vee \neg B \vee \neg C$
4.) Find a formula in prenex normal form equivalent to $\exists x \bigg(P(y) \land \neg \Big(\forall y \big(Q(x,y) \land \exists z R(z,y) \big) \Big) \bigg).$ $(\star) \textbf{ Disprove that the resolution calculus is complete, that is disprove that for all sets of class \mathcal{K} and for all clauses K it holds that \mathcal{K} \models K \Longrightarrow \mathcal{K} \vdash_{Res} K.$	3.) Let $F = \forall x$	P(x). Circle	e all formulas G in t	he following list	such that $F \models G$.	(2 Poi
$\exists x \bigg(P(y) \land \neg \Big(\forall y \big(Q(x,y) \land \exists z R(z,y) \big) \Big) \bigg).$ $(\star) \textbf{Disprove} \text{that the resolution calculus is complete, that is disprove that for all sets of class \mathcal{K} and for all clauses K it holds that \mathcal{K} \models K \Longrightarrow \mathcal{K} \vdash_{Res} K.$	$\forall x Q(x)$	P(y)	$Q(y) \to P(z)$	$\exists y Q(y)$	$(Q(z) \to Q(y))$	$V(Q(y) \to f$
) (*) Disprove that the resolution calculus is complete, that is disprove that for all sets of class \mathcal{K} and for all clauses K it holds that $\mathcal{K} \models K \Longrightarrow \mathcal{K} \vdash_{Res} K.$	4.) Find a form	nula in prene	ex normal form equiv	alent to		(3 Poi
(\star) Disprove that the resolution calculus is complete, that is disprove that for all sets of class \mathcal{K} and for all clauses K it holds that $\mathcal{K} \models K \Longrightarrow \mathcal{K} \vdash_{Res} K.$						
$\mathcal{K} \models K \Longrightarrow \mathcal{K} \vdash_{Res} K.$			$\exists x \bigg(P(y) \land \neg \Big(\forall y \big((x - y) \big) \Big) \Big) $	$Q(x,y) \wedge \exists z R(z)$	$(x,y)\big)\bigg)\bigg).$	
\mathcal{K} and for all clauses K it holds that $\mathcal{K} \models K \Longrightarrow \mathcal{K} \vdash_{Res} K.$			$\exists x \bigg(P(y) \land \neg \Big(\forall y \Big) \bigg)$	$Q(x,y) \wedge \exists z R(z)$	$(x,y))\Big)\Bigg).$	
\mathcal{K} and for all clauses K it holds that $\mathcal{K} \models K \Longrightarrow \mathcal{K} \vdash_{Res} K.$			$\exists x \bigg(P(y) \land \neg \Big(\forall y \Big) \bigg)$	$Q(x,y) \wedge \exists z R(z)$	$(x,y))\Big)\Bigg).$	
·	(*) Disprove t	hat the reso	,		,	sets of cla
(* 2 * 3)			lution calculus is con	aplete, that is d	,	sets of cla
			lution calculus is con	aplete, that is d	,	
			lution calculus is con	aplete, that is d	,	
			lution calculus is con	aplete, that is d	,	
			lution calculus is con	aplete, that is d	,	
			lution calculus is con	aplete, that is d	,	
			lution calculus is con	aplete, that is d	,	
			lution calculus is con	aplete, that is d	,	sets of clar
			lution calculus is con	aplete, that is d	,	
			lution calculus is con	aplete, that is d	,	

 (\star) We extend the resolution calculus with two new rules ext and tnd. The rules work as follows for all clauses K and all literals L:

$$K \vdash_{\mathsf{ext}} K \cup \{L\}, \\ \vdash_{\mathsf{tnd}} \{L, \overline{L}\},$$
 (1)

where

$$\overline{L} = \begin{cases} \neg A & \text{if } L = A \text{ for some atomic formula } A, \\ A & \text{if } L = \neg A \text{ for some atomic formula } A. \end{cases}$$

Prove that the rules ext and tnd are correct.	(3 Points)

 $(\star \star \star)$ **Prove** that the extended calculus ResExt = {ext, res, tnd} is complete, that is, for all clausets \mathcal{K} and all clauses K it holds that:

Hint: What is the clause set corresponding to the negation of K ?	(11 Points)

 $(\star \star)$ Consider the formulas

- $F = \forall x \exists y Q(x, y),$ $G = \forall x Q(x, f(x)).$

Prove or disprove that if F is satisfiable then G is satisfiable.	(7 Points)

