گزارش بخش 4

عرفان رفیعی - فربد فولادی - پارسا نوری (گروه 1)

ابتدا توضيح حافظه ي RAM:

با استفاده از RAM طراحی کردیم که هشت بیت آدرس، یک حافظه ی RAM طراحی کردیم که هشت بیت آدرس، هشت بیت ورودی، سیگنال کلاک، en، نوشتن داده و هشت بیت خروجی دارد.

```
module RAM mod(
   input [7:0] address,
   input [7:0] data,
   input w r,
   input clk,
   input cs,
   output [7:0] out
   );

B RAM your instance name (
   .clka(clk), // input clka
   .ena(cs), // input ena
   .wea(w r), // input [0:0] wea
   .addra(address), // input [7:0] addra
   .dina(data), // input [7:0] dina
   .douta(out) // output [7:0] douta
);
endmodule
```

برای محاسبه تایمینگ و نمایش خروجی، یک ماژول طراحی کردیم و IP طراحی شده را به عنوان یک instance ازآن ماژول طراحی شده قرار دادیم. همچنین برای تست صحت کد و IP طراحی شده، تست بنچ نیز طراحی کردیم که در فایل ضمیمه موجود میباشد.

ابتدا تاخیر بحرانی این RAM با رم بخش 1 را مقایسه میکنیم :

RAM بخش 1: تاخير بحراني 7.791

771-	-11-		D1
Clock	CIK	CO	Pau

D	1	clk (edge)	 	I	Clock
Destination		to PAD	Internal Clock(s)	4	Phase
data out<0>	Ī	6.870(R)	clk BUFGP	Ī	0.000
data out<1>	L	7.791(R)	clk BUFGP	1	0.000
data out<2>	L	7.497(R)	clk BUFGP	I	0.000
data out<3>	L	7.680(R)	clk BUFGP	1	0.000
data out<4>	L	7.104(R)	clk BUFGP	I	0.000
data out<5>	L	7.176(R)	clk BUFGP	I	0.000
data out<6>	L	6.876(R)	clk BUFGP	I	0.000
data out<7>	I	7.161(R)	clk BUFGP	ï	0.000

RAM بخش 4: تاخير بحراني **10.087**

Clock	clk	to	Pad

	1	clk (edge)	1	Clock	1
Destination	1	to PAD Internal Clock	(s)	Phase	1
	+		+		
out<0>	1	9.592(R) clk BUFGP	1	0.00	0
out<1>	1	8.768(R) clk BUFGP	1	0.00	0
out<2>	1	8.998(R) clk BUFGP	1	0.00	0
out<3>	1	10.087(R) clk BUFGP	1	0.00	0
out<4>	1	9.929(R) clk BUFGP	1	0.00	0
out<5>	1	9.782(R) clk BUFGP	1	0.00	0
out<6>	1	9.490(R) clk BUFGP	1	0.00	0
out<7>	1	9.950(R) clk BUFGP	1	0.00	0
	-+		+		

: design summary مقایسه

RAM بخش 1 :

Device Utilization Summary							
Logic Utilization	Used	Available	Utilization	Note(s)			
Number of Slice Flip Flops	8	1,920	1%				
Number of 4 input LUTs	177	1,920	9%				
Number of occupied Slices	89	960	9%				
Number of Slices containing only related logic	89	89	100%				
Number of Slices containing unrelated logic	0	89	0%				
Total Number of 4 input LUTs	177	1,920	9%				
Number used as logic	49						
Number used for 32x1 RAMs	128						
Number of bonded <u>IOBs</u>	27	66	40%				
IOB Flip Flops	8						
Number of BUFGMUXs	1	24	4%				
Average Fanout of Non-Clock Nets	6.85						

RAM بخش 4 :

Device Utilization Summary							
Logic Utilization	Used	Available	Utilization				
Number of Slices containing only related logic	0	0	0%				
Number of Slices containing unrelated logic	0	0	0%				
Number of bonded <u>IOBs</u>	27	66	40%				
Number of RAMB16s	1	4	25%				
Number of BUFGMUXs	1	24	4%				
Average Fanout of Non-Clock Nets	1.38						

توضيح حافظه ي ROM:

با استفاده از ROM طراحی کردیم که سه بیت آدرس، یک حافظه ی ROM طراحی کردیم که سه بیت آدرس، سیگنال کلاک، en و هشت بیت خروجی دارد.

```
module ROM mod(
    input clk,
    input cs,
    input [2:0] address,
    output [7:0] out
    );

B_ROM your instance_name (
    .clka(clk), // input clka
    .ena(cs), // input ena
    .addra(address), // input [2:0] addra
    .douta(out) // output [7:0] douta
);
endmodule
```

برای محاسبه تایمینگ و نمایش خروجی، یک ماژول طراحی کردیم و IP طراحی شده را به عنوان یک instance ازآن ماژول طراحی شده قرار دادیم. همچنین برای تست صحت کد و IP طراحی شده، تست بنج نیز طراحی کردیم که در فایل ضمیمه موجود میباشد.

حال به مقایسه تاخیر بحرانی دو ROM میپردازیم:

تاخير بحراني ROM بخش 1: 9.982

Destination	1	clk (edge) to PAD	 Internal Clock(s)	1	Clock Phase
out<0>	i	8.982(R)	clk BUFGP	1	0.000
out<1>	1	8.952(R)	clk BUFGP	1	0.000
out<2>	1	8.979(R)	clk BUFGP	1	0.000
out<3>	1	9.340(R)	clk BUFGP	1	0.000
out<4>	1	9.560(R)	clk BUFGP	1	0.000
out<5>	1	9.317(R)	clk BUFGP	1	0.000
out<6>	1	9.341(R)	clk BUFGP	1	0.000
out<7>	1	9.406(R)	clk BUFGP	1	0.000

تاخير بحراني ROM بخش 4: **9.455**

Destination	1	clk (edge) to PAD	 Internal Clock(s)	I	Clock Phase
out<0>	I		clk BUFGP	i	0.000
out<1>	1	9.035(R)	clk BUFGP	1	0.000
out<2>	1	9.455(R)	clk BUFGP	1	0.000
out<3>	1	9.001(R)	clk BUFGP	1	0.000
out<4>	1	8.786(R)	clk BUFGP	1	0.000
out<5>	1	9.285(R)	clk BUFGP	1	0.000
out<6>	1	9.216(R)	clk BUFGP	1	0.000
out<7>	1	8.995(R)	clk BUFGP	1	0.000

: design summary مقایسه

ROM بخش 1 :

Device Utilization Summary							
Logic Utilization	Used	Available	Utilization	Note(s)			
Number of Slices containing only related logic	0	0	0%				
Number of Slices containing unrelated logic	0	0	0%				
Number of bonded <u>IOBs</u>	18	66	27%				
Number of RAMB16s	1	4	25%				
Number of BUFGMUXs	1	24	4%				
Average Fanout of Non-Clock Nets	1.00						

ROM بخش 4:

Device Utilization Summary								
Logic Utilization	Used	Available	Utilization					
Number of Slices containing only related logic	0	0	0%					
Number of Slices containing unrelated logic	0	0	0%					
Number of bonded <u>10Bs</u>	13	66	19%					
Number of RAMB16s	1	4	25%					
Number of BUFGMUXs	1	24	4%					
Average Fanout of Non-Clock Nets	1.33							