

CENTRE FOR DIGITAL HUMANITIES

3 June 2022

# **Basics of Statistics** Session Three

training for researchers and teachers in the Humanities

#### **Hugo Quené**

h.quene@uu.nl www.hugoquene.nl

Centre for Digital Humanities, Utrecht University Utrecht inst of Linguistics OTS, Utrecht University Why statistical analysis?

aims to discover pattern in data, to discern meaningful **signal** from noise, to learn from data.

to **make sense** of data

(e.g. Peck & Devore, 2012; Spiegelhalter, 2020)

1

# (hypotheses about) relations between variables

• **H0:** data = constant+error **no** pattern (no effect of IV on DV) some effect H1: data = constant+**pattern+error** 

• falsification principle (Popper): reject H0 if data provide **significant** evidence against H0 i.e., if P(data | H0) is very low (we know what data to expect if H0 were true)

• decision is based on imperfect (sampled) data, containing errors, hence decision may be incorrect!

#### false positives and false negatives

• Type I error: false positive incorrect rejection of H0 healthy AND positive (quarantaine) • Type II error: false negative incorrect failure to reject H0

infected AND negative (infecting!)

• vaccine is effective (H0 is false) but its effectiveness is not detected (H0 not rejected)

|                        | PCR test result                   |                                                    |                                                        |
|------------------------|-----------------------------------|----------------------------------------------------|--------------------------------------------------------|
|                        | neg                               | pos                                                |                                                        |
| healthy                | true neg                          | false pos,<br>quarantaine                          | specificity<br>estim 98%                               |
| COVID19                | false neg,<br>infectuous          | true pos                                           | sensitivity,<br>recall,<br><b>88%</b><br>(N=3818 pat.) |
| prevalence,<br>unknown | NPV<br>estim 96%                  | precision,<br>PPV<br>estim 94%                     |                                                        |
|                        | sence of SARS-CoV-2 virus, and an | estim 94%<br>tibodies to SARS-CoV-2, to inform COV | ID-19 diagnosis: a rapid systematic r                  |

|                                                       | test result                           |                                          |  |
|-------------------------------------------------------|---------------------------------------|------------------------------------------|--|
|                                                       | neg<br>keep H0                        | pos<br>reject H0                         |  |
| H0 true                                               | true neg                              | false pos,<br>spurious<br>(Type I error) |  |
| H0 false                                              | false neg,<br>miss<br>(Type II error) | true pos                                 |  |
| prevalence,<br>unknown<br>proportion of<br>false H0's |                                       |                                          |  |

# P for significance

effect has low P

7

- significance = risk of Type I error (false positive outcome)
- P(data | **H0**)
  - frequentist: in large number of repeated samples
- not P(H1|data)
- not 1-P(H0|data)
- significance = **effect size** × **size of study** (Rosnow & Rosenthal, 2008)

ES for effect size

6

- amount of difference standardized to amount of dispersion
- many different measures of effect size
- e.g. d = (M<sub>1</sub>-M<sub>0</sub>) / s
   similar to Z score: difference divided by pooled sd
- not sensitive to N
  - while significance is sensitive to N
- example: gender effect in adult voice pitch, d = 9 semitones / 5 semitones = 1.7

power
1 - P(Type II error)
power is P ( reject H0 | H0 false )
H0 is false and H0 is rejected: *correct* decision to reject H0
should be determined a priori
depends ... power increases with... on effect size, larger effect on sample size N, on chosen level of significance



9





#### Principle 4-a: Statistical tests may produce misleading results

isMale (dummy):

error: defined as

from dashed line (ffrom prediction)

0 for Female,

1 for Male

13

replication crisis:

*n*=100 replications of high-impact psych studies,

- only 39 replications show similar effect
- effect size about half of original study
- problems due to insufficient power (probability of rejecting H0)
  - due to small effect size and/or small sample size
- and due to base rate fallacy (cf breast cancer analogy): low prevalence of true H1 hypotheses



13

14

# data = model + error



- f0: voice pitch, in semitones relative to 110 Hz (piano keys re A2)
- M0:  $f0 = b_0 + error$ (baseline model, purple)  $b_0 = 10.5 \text{ ST}$ RMSE = 6.1 predicted pitch: 10.5 ST for all speakers

• M1: F0 =  $b_0$  + isMale\* $b_1$  + error (complex model)

 $b_0 = 15.4 ST$  $b_1 = -11.2 ST$ 

RMSE = 2.5

predicted pitch: for females 15.4 ST, for males 4.2 ST

• M1 has lower error, better fit to data (p<.0001), prefer M1

Intermezzo: know your symbols

English Dutch symbol

P, p **p**robability kans, waarschijnlijkheid N, n **n**umber aantal

S, s **s**pread spreiding (st.dev)

D. d **d**ifference verschil M. m gemiddelde **m**ean R, r cor-**r**elation cor-relatie

likelihood

Roman symbols for known properties of sample (M, s)

Greek symbols for unknown properties of population  $(\mu, \sigma)$ 

data = model + error

 also applies to... x<sup>2</sup> test, t test, ANOVA (for categorical predictor/s), regression, GLM (for continuous predictor/s)

• BUT only under several assumptions and conditions

#### key assumptions

· independence:

each observation is independently drawn from population - otherwise: use hierarchical models

robustness:

model has only few parameters (e.g. N/20)

- otherwise: overspecification, poor generalizability

multicollinearity:

predictors should not be mutually correlated



18



## Skilled interpretation is required

- how was sample drawn? possible biases?
- which "noisy" variables have been considered? how?
   e.g. player position, league, previous encounters...
- was analysis appropriate and adequate for these data? for this RQ? for this design of study? https://www.hugoquene.nl/qm/CheatSheetQuantRes.pdf
- how robust is analysis? how generalizable are results?

22

#### questions?

- · questions?
- next: hands-on practical session
- build and explore your own statistical models!

23

22 23

#### **Additional slides**

21 July 2021 24

# Principle 3: Probability rules

 Probability (P) of an event is a number between 0 (impossible) and 1 (certain), based on many repeated throws, draws, etc

• in Dutch *Scrabble*:  $P(\Theta)=0$ , P(any)=1

Complement rule: P(X) = 1 - P(NOT X)
 Addition rule: P(A OR B) = P(A) + P(B)
 Multiplication rule: P(A AND B) = P(A) × P(B)

• if A and B are independent events, cf *Titanic* example

21 July 2021 25

24

#### Probability is counter-intuitive and difficult ORGANIZED MIND Base Rate Fallacy low prevalence: 0.01 (1%) (e.g. N=1000 mammograms) accuracy: 0.90 (90%) L, 9+99 positive tests BANKL J. LEWITIN 9/108 (precision 8%) of women tested positive actually have breast cancer (i.e., most positives are false positives) THINKING. Prosecutor Fallacy confusing low P(Ev|Inno) with low P(Inno|Ev) FAST-SLOW Simpson's Paradox ... and many more (Spiegelhalter, 2020) DANIEL KAHNEMAN 21 July 2021 26

