* الأعداد المركبة *

① الشكل الجبري ، الشكل المثلثي وَ الشكل الأسي لعدد مركب غير معدوم

الشكل الأسي	الشكل المثلثي	الشكل الجبري	
$z = r e^{i\theta}$	$z = r\left(\cos\theta + i\sin\theta\right)$	$i^2 = -1 \text{as } z = x + i y$	
$e^{i\theta} = \cos \theta + i \sin \theta$ ترميز أولر: $^{\odot}$	$r= z =\sqrt{x^2+y^2}:z$ طویلة $^{\circ \circ}$	$x = \operatorname{Re}(z)$: الجزء الحقيقي *	
$\sin \theta = \frac{y}{r} \text{ (s) } \cos \theta = \frac{x}{r}$	$rg(z) = heta + 2k\pi: z$ عمدة $^{f \circ}$	$y = \operatorname{Im}(z)$: الجزء التخيلي $^{\infty}$	
r	$.k\in\mathbb{Z}$ مع	$\overline{z} = x - i y : z$ مرافق \overline{z}	
خواصه	خواصه	خواصه	
$-e^{i\theta} = e^{i(\theta+\pi)} \ \ \bigcirc$	arg(z.z') = arg(z) + arg(z') ①	y=0 و $x=0$ إذا كان $z=0$	
$z.z' = r.r'e^{i(\theta+\theta')} \bigcirc$	$\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z') \ 2$ $\arg\left(\frac{1}{z}\right) = -\arg(z) \ 3$	y = y' و $x = x'$ إذا كان $z = z'$	
$\frac{z}{z'} = \frac{r}{r'} e^{i(\theta - \theta')} 3$		z' = x' + i y'مع	
v -		$z=\overline{z}$ حقيقي إذا كان $z=\overline{z}$	
$\frac{1}{7} = \frac{1}{r} e^{-i\theta} $ (4)		$z=-\overline{z}$ تخيلي صرف إذا كان $z=-\overline{z}$	
$\frac{z}{z} = r e^{-i\theta} $ §	$\arg\left(\overline{z}\right) = -\arg\left(z\right) \stackrel{\text{\tiny 4}}{}$	$z \times \overline{z} = x^2 + y^2 \ \boxed{5}$	
$z^n = r^n e^{in\theta} \ 6$	$n \in \mathbb{Z}$ مع $\arg(z^n) = n \arg(z)$ (5)	$z \times \overline{z} = z ^2$, $ z = \overline{z} $ 6	

② توظيف الطويلة و العمدة في الهندسة

العبارة المركبة	التفسير الهندسي	
$AB = z_B - z_A $	B و A المسافة بين النقطتين	
$z_{\overline{AB}} = z_B - z_A$	\overrightarrow{AB} الشيعاع	
$z_I = \frac{z_A + z_B}{2}$	igl[AB igr] منتصف القطعة I	
$z_G = \frac{z_A + z_B + z_C}{3}$	ABC مركز ثقل المثلث G	
$z_G = \frac{\alpha z_A + \beta z_B + \lambda z_C}{\alpha + \beta + \lambda}$	$ig\{ig(A;lphaig),ig(B;etaig),ig(C;\lambdaig)ig\}$ مرجح الجملة G	
عدداً حقيقياً $rac{z_B-z_A}{z_C-z_A}$	$(\overrightarrow{AB}//\overrightarrow{AC})$ على استقامة C و B ، A	
عدداً تخيلياً صرفاً $rac{z_B-z_A}{z_C-z_A}$	الشعاعان \overrightarrow{AB} و \overrightarrow{AC} متعامدان	
$arg(z_B-z_A)$	$\left(\overrightarrow{OI}; \overrightarrow{AB} ight)$ قيس بالرديان للزاوية الموجهة	
$\arg\left(\frac{z_C - z_A}{z_B - z_A}\right)$	$\left(\overline{AB};\overline{AC} ight)$ قيس بالرديان للزاوية الموجهة	

③ متوازى الأضلاع ، المعين ، المربع ، المستطيل و المثلثات

ABCD معين يعنى أحد الشرطين:

$$z_B - z_A = z_C - z_D$$
 أي: $\overrightarrow{AB} = \overrightarrow{DC}$ \overrightarrow{D} $|z_B - z_A| = |z_D - z_A|$ أي: $|AB = AD$

② القطر ان متناصفان و َ متعامدان أي :

$$\arg\left(\frac{z_{C}-z_{A}}{z_{D}-z_{B}}\right) = \pm \frac{\pi}{2} \ \ 9 \ \frac{z_{A}+z_{C}}{2} = \frac{z_{B}+z_{D}}{2}$$

متوازى الأضلاع

متوازى أضلاع يعنى أحد الشرطين: $A\overline{BCD}$

$$z_B - z_A = z_C - z_D : \overrightarrow{AB} = \overrightarrow{DC}$$
 (1)

$$\frac{z_A + z_C}{2} = \frac{z_B + z_D}{2}$$
: القطران متناصفان أي: 2

: مستطيل يعنى أحد الشرطين ABCD

$$z_B - z_A = z_C - z_D$$
 : اثي: $\overrightarrow{AB} = \overrightarrow{DC}$

② القطران متناصفان وَ متساويان أي:

$$|z_A - z_C| = |z_B - z_D| \cdot \frac{z_A + z_C}{2} = \frac{z_B + z_D}{2}$$

$$\operatorname{arg}\left(\frac{z_D - z_A}{z_B - z_A}\right) = \pm \frac{\pi}{2} : \emptyset \left(\overrightarrow{AB}; \overrightarrow{AD}\right) = \pm \frac{\pi}{2}$$

2 القطران متناصفان و متعامدان و متساويان أى:

$$rgigg(rac{z_C-z_A}{z_D-z_B}igg)=\pmrac{\pi}{2}$$
 و $rac{z_A+z_C}{2}=rac{z_B+z_D}{2}$ $\left|z_A-z_C\right|=\left|z_B-z_D\right|$ و $\left|z_B-z_D\right|$ و $\left|z_B-z_D\right|$ مثلث قائم في A و مثلث قائم في A و مثلث قائم في A

ABC مثلث متقايس الأضلاع بعني أحد الشرطين:

 $\arg\left(\frac{z_C - z_A}{z_C - z_A}\right) = \pm \frac{\pi}{3} \cdot 9 \left|\frac{z_C - z_A}{z_C - z_A}\right| = 1 \quad \bigcirc$ $|z_A - z_B| = |z_A - z_C| = |z_B - z_C|$ 2

$$\arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = \pm \frac{\pi}{2} \circ \left|\frac{z_C - z_A}{z_B - z_A}\right| = 1$$

التحويلات النقطية في المستوى المركب

$z^{\prime}=az+b:$ العبارة المركبة للتحويل f هي					
عدد مرکب $($ غیر حقیقي a		عدد حقيقي a			
a ≠ 1	a =1	<i>a</i> ≠ 1	a = 1		
$k=a$ تشابه مباشر نسبته f $ heta=rg(a)$ زاویته مرکزه النقطه Ω ذات اللاحقة $z_{\Omega}=rac{b}{1-a}$	Ω دوران مرکزه النقطة $z_{\Omega}=rac{b}{1-a}$ ذات اللاحقة $ heta=rgig(aig)$ زاويته	$k=a$ تحاكي نسبته Ω مركزه النقطة $z_{\Omega}=rac{b}{1-a}$ ذات اللاحقة	$\stackrel{ ightharpoonup}{u}$ انسحاب شعاعه f ذات اللاحقة $(b eq0)b$		
f العبارة المختصر للتحويل					
$z'-z_{\omega}=k e^{i\theta}\left(z-z_{\omega}\right)$	$z'-z_{\omega}=e^{i\theta}\left(z-z_{\omega}\right)$	$z'-z_{\omega}=k\left(z-z_{\omega}\right)$	z' = z + b		