We assume that (W_t) is a Wiener process and $Z \sim \mathcal{N}(0; 1)$.

Expected values and variances

$$E(Z^{2k+1}) = 0.$$

For example, $E(Z^7) = 0$.

$$E(Z^{2k}) = (2k-1) \cdot (2k-3) \cdot \dots \cdot 5 \cdot 3 \cdot 1.$$

For example, $E(Z^6) = 5 \cdot 3 \cdot 1 = 15$.

$$\mathsf{E}(W_t^{2k+1}) = 0.$$

For example, $E(W_9^{11}) = 0$.

$$E(W_t^{2k}) = t^k (2k - 1) \cdot (2k - 3) \cdot \dots \cdot 5 \cdot 3 \cdot 1.$$

For example, $\mathrm{E}(W_9^8) = 9^4 \cdot 7 \cdot 5 \cdot 3 \cdot 1.$

Three stochastic integrals

$$\int_0^t 1 \, dW_u = W_t$$

For example, $\int_0^5 3 dW_u = 3W_5$.

$$\int_0^t W_t dW_u = \frac{W_t^2 - t}{2}$$

For example, $\int_0^5 8W_u \, dW_u = 4W_5^2 - 20$.

$$\int_0^t \exp(aW_u - \frac{1}{2}a^2u) \, dW_u = \frac{1}{a} \left(\exp(aW_t - \frac{1}{2}a^2t) - 1 \right)$$