群理论

Group theory

上节可的内容:

- 7+4+6
- 7中运算规律:封闭性,交换律。。。
- 4个特出元素:单位元,逆元,。。。
- 6类运算保持:满同态保持结合律,。。。

课堂练习1

设 <A,*> 和 <B,°> 是代数系统, $f:A\rightarrow B$ 是函数; f是满同态的必要条件之一是: |A| < |B|

- A 上述说法是正确的
- **B** 上述说法是错误的

课堂练习2

以下 *运算的单位元是 [填空1]。没有单位元填写0

*	a	b	c	
a	c	a	b	
b	a	b	c	
c	a	c	b	

正常使用填空题需3.0以上版本雨课堂

以下哪种判断正确。

- A 运算1满足等幂律
- B 运算2满足等幂律
- **运算3满足等幂律**
- D 运算4满足等幂律

*		a		b	c	*		a	b	c	
a		a		b	С	 a		a	b	С	
b		b		c	a	b		b	a	c	
c		c		a	b	c		c	c	c	
运算 1				年 1				运	算 2		
		ı		_			ı		_		
*			a	b	С	*		a	b	c	
a			a	b	c	a		a	b	c	
b			a	b	c	b		b	b	c	
c			a	b	c	c		c	c	b	
		运	算 3					运算	4		

提交

任意给定两个代数系统<A,*>和<B,°>,要么二者是单同态的,要么是满同态的,要么是同构的。

- A 上述论述正确
- B 上述论述错误

给定代数系统<A,*>,单位元e一定就是幂等元,任何幂等元也一定就是单位元。

- A 上述论述正确
- 上述论述错误

设 f 是<A,*> 到 <B,°>的同构映射。 e_A 是<A,*> 的单位元, e_B 是<B,°>的单位元,则 f $^{-1}(e_B)$ = e_A 。

- **上述论述正确**
- **上述论述错误**

--伽罗瓦

1811-1832

伽罗瓦

- 伽罗瓦是法国数学家,群论的创建者。1811年10月25日生于拉赖因堡, 1832年5月31日卒于巴黎。
- 于18岁时发表了第一篇论文。
- 伽罗瓦很早就开始了方程理论的研究,并提出了群的理论
- 伽罗瓦在解决代数方程的根式解问题中提出的群论,开辟了代数学的一个崭新的天地。

天才的童年

•伽罗瓦的双亲都受过良好的教育。在父母的熏陶下,伽罗瓦童年时代就表现出有才能、认真、热心等良好的品格。

•1823年I0月伽罗瓦年满12岁时,离开了双亲,考入有名的路易·勒·格兰皇家中学。从他的老师们保存的有关他在中学生活的回忆录和笔记中,记载着伽罗瓦是位具有"杰出的才干","举止不凡",但又"为人乖僻、古怪、过分多嘴"性格的人。

数学世界的顽强斗士

□ 伽罗瓦通过改进数学大师拉格朗目的思想,即设法绕过拉氏预解式,但又从拉格朗日那里继承了问题转化的思想,即把预解式的构成同置换群联系起来的思想,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化或归结为置换群及其子群结构的分析。

拉格朗日

2020/4/1

天才的陨落

- □ 伽罗瓦诞生在拿破仑帝国时代,经历了波旁王朝的复辟时期,又赶上路 易·腓力浦朝代初期,他是当时最先进的革命政治集团——共和派的秘密组织"人民之友"的成员,
 - •伽罗瓦敢于对政治上的动摇分子和两面派进行顽强的斗争,年轻热情的伽罗瓦对师范大学教育组织极为不满。
 - •在监狱中伽罗瓦一方面与官方进行不妥协的斗争,另一面他 还抓紧时间刻苦钻研数学。尽管牢房里条件很差,生活艰苦, 他仍能静下心来在数学王国里思考。

群论——跨时代的创造

□ 伽罗瓦最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,为了纪念他,人们称之为伽罗瓦理论。正是这套理论创立了抽象代数学,把代数学的研究推向了一个新的里程。正是这套理论为数学研究工作提供了新的数学工具—群论。它对数学分析、几何学的发展有很大影响,并标志着数学发展现代阶段的开始。

<**A**,*>

群,环,域格

Chapter 5

群 Group theory

5.1.1 半群的定义

定义:

设 <S,*> 是一个代数系统,如果 * 运算满足结合律,则称 <S,*> 是一个半群。

(1)

举例: <N,+>,<N,×>,<Z,+>, <Z,×>,<R,+>

<N,->,<N,+>,<Z,->,

举例: $< M_n(R), + >$,n是大于等于1的正整数。

举例: $< M_n(R), \bullet >$,**n**是大于等于**1**的正整数。

举例: <P(S),⊕>, S非空集合, ⊕是集合的对称差。

举例: <AA ,°>, A非空集合,°是函数的复合运算。

以上系统都可以组成半群。

§ 5.1 半群

(2)

例:假设S= $\{a,b,c\}$,在S上定义运算 Δ ,如运算表给出。证明< $S,\Delta>$ 是半群。

Δ	a	b	С
a	a	b	c
b	a	b	c
С	a	b	c

验证∆运算是可结合的。

$$(a \Delta b) \Delta c = a\Delta c = c$$

 $a \Delta (b\Delta c) = a \Delta c = c$
 $(a \Delta b) \Delta c = a \Delta (b\Delta c)$
 $(b \Delta a) \Delta c = b \Delta (a \Delta c)$ 等

(2)

例: <N, 。>, 在N上定义运算。, 如下:

a。b=a+b+a*b,证明<N,。> 是半群;

。定义如下: a。 b=a+b-a*b, 如何?

$$(a \circ b) \circ c = (a \circ b) + c + (a \circ b) *c$$

= $(a+b+a*b)+c+(a+b+a*b)*c$
= $a+b+c+a*b+a*c+b*c+a*b*c$
 $a \circ (b \circ c)=\cdots=(a \circ b) \circ c$

$$(a \circ b) \circ c = (a \circ b) + c - (a \circ b) *c$$

= $(a+b-a*b)+c+(a+b-a*b)*c$
= $a+b+c-a*b+a*c+b*c-a*b*c$
 $a \circ (b \circ c) = ?$ 封闭性

2020/4/1

(3)

5.1.1 半群的定义

定义:

假设 <S,*> 是一个半群, $a \in S$,n 是正整数,则 a^n 表示 n 个 a 的计算结果,即 $a^n = a_*a_*..._*a$ 对任意的正整数 m,n,

$$a^{m} * a^{n} = a^{m+n}, (a^{m})^{n} = a^{mn}$$

(4)

5.1.2 交换半群

定义:

如果半群 <S,*> 中的 * 运算满足交换律,则称 <S,*> 为交换半群。

在交换半群 <S,*> 中,若a,b \in S,n 是任意正整数,则 $(a_*b)^n = a^n * b^n$

§ 5.1 半群 (5)

5.1.3 独异点(含幺半群)

定义:

假设 <S,*> 是一个半群,如果 <S,*> 中有单位元,则称 <S,*> 是独异点,或含幺半群。

<N,+>,<N,×>,<Z,+>, <Z,×>,<R,+>是独异点吗?

<N-{0},+>,<N-{0},×>是独异点吗?

独异点(含幺半群)

举例: $< M_n(R), + >$,n是大于等于1的正整数。

举例: $< M_n(R), > , n是大于等于1的正整数。$

举例: <A^A,°>, A非空集合, °是函数的复合运算。

- 练习: <P(S),⊕>, S非空集合,⊕是集合的对称差,则⊕运 算的单位元是 [填空1]。
- <P(S),○>,则○运算的单位元是 [填空2]。
- <P(S),∪>,则∪运算的单位元是 [填空3]。

(6)

5.1.3 独异点(含幺半群)

定理: 假设 <S,*> 是独异点,如果a,b∈S,并且 a,b 有逆元 a⁻¹,b⁻¹存在,则:

- $(1) (a^{-1})^{-1} = a;$
- (2) $(a_*b)^{-1} = b^{-1} * a^{-1}$.

证明: $\langle S, * \rangle$ 是独异点,单位元一定存在**e** $\in S$, $a^{-1}a=a$ $a^{-1}=e$; 所以有 $(a^{-1})^{-1}=a$ $(a*b)*(b^{-1}*a^{-1})=a*e*a^{-1}=e$ $(a*b)^{-1}=b^{-1}*a^{-1}$

(7)

5.1.4 子半群

定义:

假设 <S,*> 是一个半群,若 T⊆S,且在*运 算下也构成半群,则称 <T,*> 是 <S,*> 的子半群。

假设A={a,b}, <P(A), ○> 是一个含幺半群

若B={a} 则P(B)⊆P(A)

并且<P(B),∩> 构成半群,是<P(A),∩>的子 半群。

还有否?

若B={b},则P(B)⊆P(A)

\cap	Ø	{a}	{b}	{a,b}	
Ø	Ø	Ø	Ø	Ø	
{a}	Ø	{a}	Ø	{a}	
{b}	Ø	Ø	{b}	{b}	
{a,b}	Ø	{a}	{b}	{a,b}	

(9)

5.1.4 子半群

定义:

设 <S,*> 是含幺半群,若 <T,*> 是它的子半群,并且 <S,*> 的单位元 e 也是 <T,*>单位元,则称 <T,*> 是 <S,*> 的子含幺半群。

设<S,*>是可交换的含幺半群,T={a|a∈S,且a*a=a},证明 <T,*>是<S,*>的子含幺半群。

(10)

例: 设 <S,*> 是 可 交 换 的 含 幺 半 群 , $T={a|a\in S, La*a=a}, 则 < T,*> 是 < S,*> 的子含幺半群。$

解:

- (1)封闭 ∵ a,b∈T a*a=a, b*b=b,(a*b)*(a*b)=a*a*b*b=a*b ∴ a*b ∈T
- (2)可结合*本来就是可结合的
- (3)单位元与S是同一个 ::e*e=e; ::e∈T

§ 5.2 群的概念及其性质

(1)

5. 2. 1 群的基本概念

定义:

设 <G,*> 是一代数系统,如果满足以下几点:

- (1) 运算是可结合的;
- (2) 存在单位元 e;
- (3) 对任意元素 a 都存在逆元 a-1;

则称 <G,*> 是一个群。 | G | 表示群的阶

例: <R,+>, <R-{0}, ×>,构成群

- (1)运算是封闭的
- (2)运算是可结合的;
- (3) 存在单位元 e;
- (4) 对任意元素 a 都存在逆元 a⁻¹;

举例: $< M_n(R), + >$,n是大于等于1的正整数。 $\sqrt{}$

举例: $\langle M_n(R), \bullet \rangle$,**n**是大于等于**1**的正整数。 ×

举例: <P(S),⊕>, S非空集合, ⊕是集合的对称差。 √

举例: <P(S),∩>, <P(S),∪> ×

举例: <A^A,°>,A非空集合,°是函数的复合运算。后续分析

§ 5.2 群的概念及其性质

(2)

例:假设R={0,60,120,180,240,300}表示平面几何上图形绕形心顺时针旋转的角度集合。*是定义在R上的运算。定义如下:对任意的a,b∈R,a*b表示图形顺时针旋转a角度,再顺时针旋转b角度得到的总旋转度数。并规定旋转360度等于原来的状态,即该运算是模360的。整个运算可以用运算表表示。

§ 5.2 群的概念及其性质

*	0	60	120	180	240	300
0	0	60	120	180	240	300
60	60	120	180	240	300	0
120	120	180	240	300	0	60
180	180	240	300	0	60	120
240	240	300	0	60	120	180
300	300	0	60	120	180	240

设 <R,*> 是一代数系统,满足以下几点:

- (1)运算*"顺时针旋转的角度"是封闭的
- (2) 运算*"顺时针旋转的角度"是可结合的;
- (3) 存在单位元 e=0;
- (4) 对任意元素 a 都存在逆元 a-1;

例: A是非空集合, $F = \{f | f : A \rightarrow A\}$, 双射集

运算"。"是函数的复合运算,

则<F,。>是群

例1: A={1,2,3}

解: 双射的个数 3! , $F=\{f_1,f_2,f_3,f_4,f_5,f_6\}$,

$$f_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$f_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, f_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix},$$

$$f_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

0	\mathbf{f}_1	f_2	f_3	f_4	f_5	f_6
f_1	\mathbf{f}_1	f_2	f ₃	f_4	f_5	f_6
f_2	f_2	\mathbf{f}_1	f_6	f_5	f_4	f_3
f_3	f_3	f_5	\mathbf{f}_1	f_6	f_2	f_4
f_4	f_4	f_6	f_5	\mathbf{f}_1	f_3	f_2
f_5	f_5	f_3	f_4	f_2	f_6	\mathbf{f}_1
f_6	f_6	f_4	f_2	f_3	\mathbf{f}_1	f_5

$$f_2 \circ f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = f_6$$

$$f_3 \circ f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = f_5$$

$$f_4 \circ f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = f_1$$

0	\mathbf{f}_1	f_2	f_3	f_4	f_5	f_6
f_1	\mathbf{f}_1	f_2	f_3	f_4	f_5	f_6
f_2	f_2	\mathbf{f}_1	f_6	f_5	f_4	f_3
f_3	f_3	f_5	\mathbf{f}_1	f_6	f_2	f_4
f_4	f_4	f_6	f_5	\mathbf{f}_1	f_3	f_2
f_5	f_5	f_3	f_4	f_2	f_6	\mathbf{f}_1
f_6	f_6	f_4	f_2	f_3	\mathbf{f}_1	f_5

- (1) 运算是可结合的;
- (2) 存在单位元 e; f1=I_A
- (3) 对任意元素 a 都存在逆元 a-1;

f1,f2,f3,f4自身为逆元,f5,f6互为逆元

5. 2. 1 群的基本概念

一个群如果运算满足交换律,则称该群 为交换群,或Abel群(阿贝尔)。

∀a,b ∈G 有a*b=b*a

勒让德、拉普拉斯、傅立叶、泊松、柯西。

例 $\langle Z_5, +_5 \rangle$ 是可交换群。 $\langle Z_m, +_m \rangle$ 也是可交换群

(1)
$$\forall$$
[i],[j],[k] \in **Z**₅
([i]+₅[j])+₅[k]=
[i]+₅([j]+₅[k])=
[(i+j+k)mod 5]

$$(2) e=[0]$$

(3)
$$\forall$$
[i] $\in \mathbf{Z_5}$
[i]⁻¹=[-i]=[5-i]

+5	[0] [1] [2] [3] [4]
[0]	[0] [1] [2] [3] [4]
[1]	[1] [2] [3] [4] [0]
[2]	[2] [3] [4] [0] [1]
[3]	[3] [4] [0] [1] [2]
[4]	[4] [0] [1] [2] [3]

(4)
$$\forall$$
[i],[j] \in **Z**₅
[i]+₅[j]= [j]+₅[i]= [(i+j)mod 5]

5.2.2 群的性质

- (1) 任何群都没有零元。
- (2) 设 <G,*> 是群,则 G 中消去律成立。

(5)

(3) 设 <G,*> 是群,单位元e是 G 中的唯一 幂等元。

(6)

5.2.2 群的性质

- (4) 设<G,*>,<H,。>是群,f是 G 到 H 的同态,若
 e 为<G,*>的单位元,则 f(e) 是<H,。> 的单位元,并且对任意 a∈G,有 f(a⁻¹)= f(a)⁻¹。
- (5) 设<G,*>是群,<H,。>是任意代数系统,若存在 G到H的满同态映射,则<H,。>必是群。

(9)

5.2.4 有限群的性质

定理:

设 <G,*> 是一个 n 阶有限群,它的运算表中的每一行(每一列)都是 G 中元素的一个全排列。

(10)

5. 2. 4 有限群的性质

*	e
e	e

一阶群

*	e	a	
e	e	a	
a	a	e	

二阶群

*	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

三阶群

??

5.2.4 有限群的性质

٠.			- 1	٠.				
. '								
		'n		4	_			
-		-	Ш					4
•			ш	_	•	~		٠.
	J		_	_	٠.			•
		_	_	_				
	•	-			▲.	•		-
• •		- 1	•	•		•		
		•					_	
		•			₹.			

*	e	a	b
e	e	a	b
a	a	e	?
b	b	?	e

填b

٠	4	•	-		4			4
	ø.			٠.	1		ı.	. 1
	ı				ч		ŀ	-
1	ж	١.	1	-		÷	۲.	•
٠	•	•						▰.

*	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

b e b a

b b

?

三阶群 (唯一)

(11)

5.2.4 有限群的性质

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

每个元素自身为逆元

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	a	e
c	c	b	e	a

*	e	a	b	c
e	e	a	b	c
a	a	b	c	e
b	b	c	e	a
c	c	e	a	b

*	e	a	b	c
e	e	a	b	c
a	a	c	e	h
b	b	e	c	a
c	c	b	a	e

两个元素(包括**e**)自身为逆元 另两个元素互为逆 元

例: ⟨G,*⟩ 是可交换(ABEL)群的充要条件是 ∀a,b ∈G 有 (a*b)*(a*b)=(a*a)*(b*b)

解: 充分性 ∀a,b ∈**G** 有(**a*****b**)*(**a*****b**)=(**a*****a**)*(**b*****b**) 则⟨**G**,*⟩ 是可交换(**ABEL**)群。

必要性〈G,*〉是可交换(ABEL)群则有∀a,b ∈G 有(a*b)*(a*b)=(a*a)*(b*b)

例: 任何阶数是1,2,3,4阶的群都是可交换 (ABEL)群。

1阶群是可交换(ABEL)群,G={e}

2阶群是可交换(ABEL)群, G={e,a}

3阶群是可交换(ABEL)群, G={e,a,b}

若a*b=a 则a⁻¹*a*b=a⁻¹*a =e, b=e 若a*b=b 则a*b*b⁻¹=b*b⁻¹=e, a=e

只有 $a*b=e,b*a=b*a*e=b*a*(b*b^{-1})$ = $b*(a*b)*b^{-1})=b*e*b^{-1}=b*b^{-1}=e$

a*b=b*a

*	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

4阶的群都是可交换(ABEL)群。

4阶群是可交换(ABEL)群,G={e,a,b,c} (1)a,b,c自为逆元, 则a*b=b*a=c; b*c=c*b=a; c*a=a*c=b 交换律满足

(2) a,b,c两个元素互为逆元,如a,b互为逆元 若a*b=b*a=e 则c*c =e, a*c≠e, a*c=b 同理c*a=b 所以a*c=c*a, 同理 b*c=c*b

例:假设<G,*>是一个二阶群,则<G×G,*>是一个Klein群。且是可交换(abel)群。

$$G \times G = \{ \langle e, e \rangle, \langle e, a \rangle, \langle a, e \rangle, \langle a, a \rangle, \}$$
 $\langle e, e \rangle^* \langle e, e \rangle = \langle e^* e, e^* e \rangle = \langle e, e \rangle$
 $\langle e, e \rangle^* \langle e, a \rangle = \langle e^* e, e^* a \rangle = \langle e, a \rangle$
 $\langle a, a \rangle^* \langle a, a \rangle = \langle a^* a, a^* a \rangle = \langle e, e \rangle$
2020/4/1

*	<e,e></e,e>	<e,a></e,a>	<a,e></a,e>	<a,a></a,a>
<e,e></e,e>	<e,e></e,e>	<e,a></e,a>	<a,e></a,e>	<a,a></a,a>
<e,a></e,a>	<e,a></e,a>	<e,e></e,e>	<a,a></a,a>	<a.e></a.e>
<a,e></a,e>	<a,e></a,e>	<a.a></a.a>	<e,e></e,e>	<e,a></e,a>
<a,a></a,a>	<a,a></a,a>	<a,e></a,e>	<e,a></e,a>	<e,e></e,e>

同构 ≅

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

$$G \rightarrow G \times G$$
;定义如下双射
 $e \rightarrow \langle e, e \rangle$, $a \rightarrow \langle e, a \rangle$,
 $b \rightarrow \langle a, e \rangle$, $c \rightarrow \langle a, a \rangle$

(7)

5.2.3 半群与群

- (1) 假设<G,*>是半群,并且
 - ① <G,*>中有一左单位元 e, 使得对任意的 a∈G, 有 e * a = a;
 - ② <G,*>中任意元素 a 都有"左逆元" a⁻¹,使得 a⁻¹* a = e。则 <G,*> 是群。

```
a^{-1}*a = e,有a^{-1} \in G, (a^{-1})^{-1} \in G

a a^{-1} = e a a^{-1} = ((a^{-1})^{-1} a^{-1}) a a^{-1} = e

a e = a(a^{-1}a) = ea = e
```

(8)

5.2.3 半群与群

(2) 有限半群,如果消去律成立,则必为群。

*	e	a	b
e	e	a	b
a	a	?	?
b	b	?	?

任何群中都有单位元e,且单位元是群中的唯一幂等元。

- **上述论述正确。**
- 上述论述错误。

一阶群<A,*>中有单位元e,即e∈A,而一阶群|A|=1,也就说集合A中只有一个元素,所以单位元e的逆元不存在。

- A 上述论述正确。
- 上述论述错误。

设G=R×R, R是实数集, G上的二元运算定义如下;

∀⟨x, y⟩ ∈R×R代表平面坐标系中的一点,定义+运算

$$\langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle = \langle x_1 + x_2, y_1 + y_2 \rangle$$

则<G,+> 是群。

- **上述论述正确。**
- 上述论述错误。

设**G**=R×R,R是实数集,**G**上的二元运算定义如下; $\forall \langle x, y \rangle \in R \times R$ 代表平面坐标系中的一点,定义+运算 $\langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle = \langle x_1 + x_2, y_1 + y_2 \rangle$,则 $\langle G, + \rangle$ 构成群。

- 设H={<x,y>|y=2x},则<H,+>是G的子群。
 - **上述论述正确。**
 - 上述论述错误。

代数系统<R,+>, <R-{0}, ×>都可以构成群。+的单位元是 [填空1]; ×的单位元是 [填空2]。

5.3.1 子群

定义:

设 <G,*> 是一个群,非空集合 H \subseteq G。如果 H 在 G 的运算下也构成群,则称 <H,*> 是 <G,*> 的子群。

(2)

5.3.1 子群

定理:

设 <H,*> 是 <G,*> 的子群,则 (1) <H,*> 的单位元 e_H 一定是 <G,*> 的单位元,即

 $e_H = e_G$.

(2) 对 a∈H, a 在 H 中的逆元 a', 一定是a 在 G 中的逆元。

(3)

5.3.2 由子集构成子群的条件

(1) 设 H 是群 <G,*> 中 G 的非空子集,则 H构成 <G,*> 子群的充要条件是:

- ① 对 ∀a,b∈H, 有 a*b∈H;
- ② 对 ∀a∈H,有a⁻¹∈H。

由① 对 ∀a,b∈H,有 a*b∈H; ② 对 ∀a∈H,有a⁻¹∈H。 a* a⁻¹ ∈H;e ∈H

(4)

- 5.3.2 由子集构成子群的条件
 - (2) 推论(子群的判定条件)

假设 <G,*> 是群, H是G的非空子集,则

<H,*> 是 <G,*> 子群的充要条件是:

对 ∀a,b∈H,有 a*b⁻¹∈H。

对 ∀a,b∈H, 有 a*b⁻¹∈H。

有 $a*a^{-1} \in H$; $e \in H$; $a*b = a*(b^{-1})^{-1} \in H$

(5)

5.3.2 由子集构成子群的条件

(3) (子群的判定条件)

假设 <G,* > 是一个群,H 是 G 的非空有限子集,则 <H,* > 是<G,* > 子群的充要条件是: 对 \forall a,b \in H,有 a*b \in H。

分析证明。多种思路

假设 < G,* > 是一个群,H 是 G 的非空<mark>有限</mark>子集,则 < H,* > 是 < G,* > 子群的充要条件是:对 \forall a,b \in H, 有 a*b \in H 。 证明: 充分性,H $\neq \varnothing$,H \subseteq G, 且 \mid H \mid = m,若 a \in H

则 $a*a \in H$, $a*a*a \in H$...

即 $a,a^2,...a^m,a^{m+1} \in H(\mathbf{a}^0=\mathbf{e})$,而H只有m个元素,

∴ a的m+1个幂元素中至少有两个相等,不妨设 $a^t=a^s$ (1≤t<s≤m+1),

 $\therefore a^t = a^s = a^{s-t} * a^t$

即 $a^0*a^t=a^{s-t}*a^t$ 根据消去率有, $a^{s-t}=a^0(e) \in H(有单位元)$

设r=s -t 则e=a^r=a^{r-1}*a=a*a^{r-1}

则a与a^{r-1}互为逆元

:H为G的子群

必要性: 略

(6)

5.3.3 元素的周期

(1) 群中元素的幂运算

```
假设 <G,*> 是一个群,a \inG。
则 a^0 = e; a^{i+1} = a^i * a;
(a^i)^{-1} = a^{-i} = (a^{-1})(a^{-1}) ...(a^{-1})
= (a^{-1})^i \quad (i \ge 0);
a^m * a^n = a^{m+n};
(a^m)^n = a^{mn} \quad (m,n为整数)。
```

(7)

5.3.3 元素的周期

(2) 元素的周期

定义: 设<G,*>是一个群,a∈G。若存在正整数n,使得 a^n = e,则将满足该条件的最小正整数n称为元素a的周期 或阶。若这样的n不存在,则称元素a的周期无限。元素a的周期记为: |a|

例: $\langle Z_4, +_4 \rangle$ 是一个群,其中 $Z_4 = \{[0], [1], [2], [3]\}$, 其运算表如右图。

$$[0]^{1}=[0]$$
 $|[0]|=1$
 $[1]^{4}=[0]$ $|[1]|=4$
 $[2]^{2}=[0]$ $|[2]|=2$
 $[3]^{4}=[0]$ $|[3]|=4$

+4	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

元素的周期有三种值1,2,4

```
例: <Z<sub>5</sub>,+<sub>5</sub>>是一个群,其
中Z_5 = \{[0], [1], [2], [3],
[4]}, 其运算表如右图。
[0]^1 = [0] \qquad |[0]| = 1
[1]^5 = [0] [1] = 5
[2]^5 = [0] \quad |[2]| = 5
[3]^5 = [0] |[3]| = 5
[4]^5 = [0]
            |[4]|=5
```

+5	[0][1][2][3][4]
[0]	[0] [1] [2] [3] [4]
[1]	[1] [2] [3] [4] [0]
[2]	[2] [3] [4] [0] [1]
[3]	[3] [4] [0] [1] [2]
[4]	[4] [0] [1] [2] [3]

元素的周期有三种值1,5

例: 群 < Z₄, +₄ > 的子群。

子群:
$$\langle Z_1, +_4 \rangle$$
, $\langle Z_4, +_4 \rangle$
 $Z_1 = \{[0]\}$,
 $Z_4 = \{[0], [1], [2], [3]\}$

子群: $\langle Z_2, +_4 \rangle$ $Z_2 = \{[0], [2]\}$

元素的周期有三种值1,2,4; 有三种阶的子群

+4	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

例: 群 < Z₅, +₅ > 的子群。

子群: $\langle Z_1, +_5 \rangle$, $\langle Z_5, +_5 \rangle$ $Z_5 = \{[0], [1], [2], [3], [4]\}$, $Z_1 = \{[0]\}$,

元素的周期有亮种值1,5;也有两种阶的子群

 $Z_2 = \{[0], [2]\}$? $\langle Z_2, +_5 \rangle$,不封闭所以不是!

定义:循环群(下节)

设 <G,*> 是一个群,若在 G 中存在一个元素 a,使得 G 中任意元素都由 a 的幂组成,即 G = $(a) = {a^i \mid i \in Z}$,则称该群为循环群,元素 a 称为循环群的生成元。

例: <Z₄,+₄>群

$$Z_4 = \{[0], [1], [2], [3]\},$$

循环(子)群

$$Z_1 = \{[0]\} = ([0]) = \{[0]^0\},\$$
 $Z_2 = ([2]) = \{[2]^0, [2]^1\}$
 $= \{[0], [2]\}$

+4	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

$$[1]^1 = [1], [1]^2 = [2], [1]^3 = [3], [1]^4 = [4]$$

([1]) = {[1]¹, [1]², [1]³, [1]⁴} = Z₄, [1]是Z₄生成元

例: <Z₅,+₅>是一个群, 其中 Z₅ ={[0],[1],[2],[3],[4]},

$$[1]^1 = [1], [1]^2 = [2], [1]^3 = [3], [1]^4 = [4], [1]^5 = [0]$$

([1])= {[1]¹, [1]², [1]³, [1]⁴, [1]⁵}= Z_{5} , [1]是生成元

$$[2]^{1}=[2], [2]^{2}=[4], [2]^{3}=[1], [2]^{4}=[3],$$

 $[2]^{5}=[0]$ 所以([2])= Z₅ [2]是生成元

$$([3]) = Z_5 \quad ([4]) = Z_5$$

对 $<Z_5,+_5>$ 群除[0]外其它元素都是生成元

```
例: <Z<sub>4</sub>,+<sub>4</sub>>群
Z_4 = \{[0], [1], [2], [3]\},
循环(子)群
([0])=\{[0]\}, 一阶群; |[0]|=1 元素[0]的周期是1
([2])={[0],[2]} 二阶群; |[2]|=2 元素[2]的周期是1
|[0]|=[0]元素的周=1
                        |([0])| = 元素[0] 生成的循环群的阶为1
            所以有|[0]|=|([0])|=1
            同样有 |[2]|=|([2])|=2
```

结论: a 的周期等于 a 生成的循环子群(a)的阶。 即 |a| = |(a)|;

例: 群R={0,60,120,180,240,300}

$$(60) = R,$$

 $(120) = \{120^{0}, 120^{1}, 120^{2}\} = \{0, 120, 240\}$
 $|60| = 6, |(60)| = 6, |120| = 3, |(120)| = 3$
 $|60| = |(60)| = 6, |120| = |(120)| = 3$

满足: a 的周期等于 a 生成的循环子群(a)的阶。 即 |a| = |(a)|;

例:

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	a	e
c	c	b	e	a

- 5.3.3 元素的周期
 - (3) 元素周期的性质

设<G,*>是一个群,a∈G。

① a 的周期等于 a 生成的循环子群(a)的阶。

即 |a| = |(a)|;

② 若 a 的周期为 n, 则 a^m = e 的充分必要条件 是 n|m。

设<G,*>是一个群, a∈G

① a的周期等于 a 生成的循环子群(a)的阶。 即 |a| = |(a)|

设a的周期为有限n, 即|a|=n, $(a)=\{a^0,a^1,a^2,...a^{n-1}\}$

 $\forall a^i \in (a)$, 则i=kn+r, 其中 $k,r \in \mathbb{Z}$, $0 \le r < n$

$$a^{i}=a^{kn+r}=a^{kn}a^{r}=(a^{n})^{k}a^{r}=(e^{n})^{k}a^{r}=a^{r}$$

$$a^{i} \in \{a^{0}, a^{1}, a^{2}, \dots a^{n-1}\}\$$
 $(a) \subseteq \{a^{0}, a^{1}, a^{2}, \dots a^{n-1}\}$

又因为 $\{a^0,a^1,a^2,...a^{n-1}\}$ <u>(a)</u> 所以 $\{a^0,a^1,a^2,...a^{n-1}\}$ = (a)

设<G,*>是一个群, a∈G

- ① a的周期等于 a 生成的循环子群(a)的阶。 即 |a| = |(a)|
- ② 若 a 的周期为 n,则 $a^m = e$ 的充分必要条件是 n|m。

必要性: 若 $n \mid m$, 有 $a^m = e$

若 n|m , 设m=kn,k ∈**Z** 所以 a^m=(a^k)ⁿ=(aⁿ)^k=e^k=e

充分性: $a^m = e$,则n|m ,

设m=kn+r, 其中 k ∈ z, 0≤r<n

所以 a^m=(a^k)ⁿa^r=(aⁿ)^ka^r=e^ka^r=a^r
a^r=e, 0≤r<n, 因为a的周期为n,

所以只能r=0,即n|m

5.3.3 元素的周期

(3) 元素周期的性质

推论:

设 <G,*> 是一个群,a \in G。若 a的周期为 n,则 $(a) = \{a^0, a^1, ..., a^{n-1}\}.$

例1 假设<G,*>是一个群, |G|=2n, 证明G中至少有一个周期为2的元素。 (在偶数阶群中至少有一个周期为2的元素)

G={元素与元素的逆元不同} U {元素与元素的逆元相同}

证明:因为群<G,*>中的元素互逆,即元素a的逆元是a⁻¹,a⁻¹的逆元是a。因而G中逆元不等于自身的元素必为偶数个(包括零个)。

但是G有偶数个元素,因此G的逆元等于自身的元素个数也必为偶数个,而G的单位元e的逆元是其本身,所以G中至少还有另一个元素a其逆元是它本身,即a-1=a。

从而 $a^2=a*a=a*a^{-1}=e$,并且 $e\neq a$ 。即 a是一个周期为2 的元素

所以至少存在一个周期为2的元素。

例2 假设<G,*>是可交换群,a,b ∈G, |a|=2,|b|=3

证明 |a*b|=6

证明: 因为(a*b)⁶=a⁶*b⁶=(a²) *³*(b³) *²=e

故 a*b必有有限周期 设|a*b|=n,则n|6

故 n有4种可能,即n=1,2,3,6

若n=1,则a*b=e,所以 b=a-1, b2=(a-1)2=(a2)-1=e, b2=e 矛盾

若n=2,则(a*b)²=a²*b²=b²=e,b²=e矛盾

若n=3,则(a*b)³=a³*b³=a³=a*a²=a=e,a=e矛盾

因此,n=6。

例3 $\langle G, * \rangle$ 是群, $a \in G$,则元素a的周期与a⁻¹ 的周期相同。

证明:设元素a的周期为r,元素 a^{-1} 的周期为t, $a^{r}=e$, $(a^{-1})^{t}=e$

则(a⁻¹)^r=(a^r)⁻¹=e⁻¹=e;因为元素a⁻¹的周期为t, 所以t≤r 另t|r

又有 $a^t=(a^{-t})^{-1}=((a^{-1})^t)^{-1}=e^{-1}=e$,因为元 素a的周期为r,所以 $r \leq t$ gr|t

所以 r=t

在 $<Z_5,+_5>$ 群中,其中 $Z_5=\{[0],[1],[2],[3],[4]\}$,各元 **素的周期分别为**。元素[0]的周期为 [填空1],元素[1]的周期为 [填空2],元素[2]的周期为 [填空3],元素[3]的周期为 [填空4],元素[4]的周期为 [填空5]。

- 1、群的阶 |G| 有限/无限
- 2、子群 S ⊆ G 如 S={e}
- 3、群中元素的周期 ∀a∈G |a|=n n可以是自然数(奇,偶数) 也可能是无限
- **4**、**<G**,*>群中,∀a∈G,|a| = |(a)|

 $||a|| = ||a^{-1}||$,在偶数阶群中至少有一个周期为**2**的元素。

0 0

?,群中任何元素的周期一定是群的阶的正因子?循环群,置换群,群同态?

(1)

5.4.1 定义

设 <G,*> 是一个群,若在 G 中存在一个元素 a,使得 G 中任意元素都由 a 的幂组成,即 G = (a) = $\{a^i \mid i \in Z\}$,则称该群为循环群,元素 a 称为循环群的生成元。

例: 群R={0,60,120,180,240,300} (60)=R,生成元是60

例: $\langle Z_n, +_n \rangle$, 生成元是1, ([1])= Z_n 还有其它生成元?

例:

*	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	a	e
c	c	b	e	a

生成元是a或b (a)=G;(b)=G 生成元是b或c (b)=G;(c)=G a为什么不 是生成元。 例: $\langle G, \times_7 \rangle$ 是一个群,即 $\langle Z_{7-}\{[0]\}, \times_7 \rangle$ 其中G= $\{[1],[2],[3],[4],[5],[6]\}$,其运算表如图。

是否是循环群?生成元是什么?

× ₇	[1] [2] [3] [4] [5][6]
	[1] [2] [3] [4] [5][6]
[2]	[2] [4] [6] [1] [3][5]
[3]	[3] [6] [2] [5] [1] [4]
[4]	[4] [1][5] [2] [6] [3]
[5]	[5] [3][1] [6] [4] [2]
[6]	[6] [5][4] [3] [2] [1]

$$[3]^0 = [1] (e)$$

 $[3]^1 = [3]$
 $[3]^2 = [2]$
 $[3]^3 = [6]$
 $[3]^5 = [5]$

还有其它生成元吗?

例: $\langle G, \times_7 \rangle$ 是一个群,即 $\langle Z_{7-}\{[0]\}, \times_7 \rangle$ 其中G= $\{[1],[2],[3],[4],[5],[6]\}$,其运算表如图。

- A [5]是群的生成元
- B [6]是群的生成元
- [5],[6]都是群的生成元
- D [5],[6]都不是群的生成元

× ₇	[1] [2] [3] [4] [5][6]
	[1] [2] [3] [4] [5][6]
[2]	[2] [4] [6] [1] [3][5]
[3]	[3] [6] [2] [5] [1] [4]
[4]	[4] [1][5] [2] [6] [3]
[5]	[5] [3][1] [6] [4] [2]
[6]	[6] [5][4] [3] [2] [1]

提交

例: <Z,+>是循环群,生成元有几个?解: (1) ={i|i ∈ Z}=Z

 $1^0=0$ (e), $1^\infty=0$ (e)

∀m∈Z,m=1+1+...+1=1^m(是一种表示方式)

∀-m∈**Z**,

$$-m = (-1) + (-1) + ... + (-1) = (-1)^{m}$$
$$= (1^{-1})^{m} = 1^{-m}$$

(2) ={2i|i ∈ Z } ≠ Z 所以1不是生成元

另外-1是生成元吗?

生成元有2个, 1, -1 (<Z,+>是无限循环群)

5.4.2 循环群的性质

- (1) 设 〈G, *> 是一个循环群。
 - ① 若 <G,*> 是 n 阶有限群循环群,则 <G,*> \cong <Z_n,+_n>;
 - ② 若 <G,*> 是无限群循环群,则 <G,*> ≅ <Z,+>。

- (1) 设 <G, *> 是一个循环群。
 - ① 若 <G,*> 是 n 阶有限群,则 <G,*> \cong <Z_n,+_n>;

G是n解有限循环群,则一定存在生成元a, G = (a) = $\{a^i \mid i \in N\} = \{a^0, a^1, ..., a^{n-1}\}$

定义映射 $f:[i] \rightarrow a^i$, $\forall [i] \in Z_n$

显然f是满射.

若i ≠j 即[i] ≠[j],并有 a^i ≠ a^j 所以f也是单射 所以f是双射

 $f([i]+_n[j])=f([i+j])=a^{i+j}=a^{i}*a^{j}=f([i])*f([j])$

所以G与 Z_n 同构($G \cong Z_n$)

无限循环群同构于整数加群。证明类似

5.4.2 循环群的性质

(2) 循环群的子群必为循环群

```
例: <Z<sub>6</sub>,+<sub>6</sub>>群Z<sub>6</sub>={[0],[1],[2],[3],[4],[5]},
循环(子)群:
([0])={[0]},
([2])={[0],[2],[4]}={[2]<sup>0</sup>,[2]<sup>1</sup>,[2]<sup>2</sup>}
```

证明: 循环群的子群必为循环群

G是循环群,则一定存在生成元a, G = (a) 设H是其子群,

- (1) 若 $H=\{e\}=\{a^0\},e$ 是H的生成元
- (2) 若H ≠{e}则H={aⁿ¹, aⁿ², aⁿ³, ...}

 $\diamondsuit_{i_0}=\min\{n_i|\ a^{n_i}\in H,\ n_i>0\}$ (只要证明 $H=(a^{i_0})$)

对于 \forall a^i ∈ H, $i>i_0$

则 $i=ki_0+r$, $0 \le r < i_0$, $k \in N$

aⁱ=a^{ki₀+r}=a^{ki₀}a^r
a^r=a^{-ki₀}aⁱ 由封闭性可知a^r∈ H
因为0≤r<i₀且 i₀是最小正指数,所以r=0
aⁱ=a^{ki₀}=(a^{i₀})^k 所以H=(a^{i₀})

5.4.2 循环群的性质

(3) 设 <G, *> 是 n 阶循环群, m 是正整数, 并且 m|n, 则 G 中存在唯一一个m 阶子群。

其2阶子群是谁? {[0],[3]}

5.4.2 循环群的性质

设〈G, *> 是 n 阶循环群, m 是正整数, 并且 m|n, 则 G 中存在唯一一个m阶子群。因为m|n ,设n=dm, $(a^d)^m=a^{dm}=a^n=e$, $(a^d)^m=a^{dm}=a^n=e$, $(a^d)^m=a^{dm}=a^{m}=e$, $(a^d)^m=a^{dm}=a^{m}=e$, $(a^d)^m=a^{dm}=a^{m}=e$, $(a^d)^m=a^{dm}\neq e$, 所以ad的周期是m(说明m是最小的) 所以ad作为生成元生成的是m阶子群。 $A=(a^d)$, |A|=m , 找到了m

所以 a^d 作为生成元生成的是m阶子群, $A = (a^d)$, |A| = m ;找到了m 阶子群,唯一吗?

设H是G的另一m阶子群,即 H = (a'), (a') = a' = e 所以有n im 即 dm im 所以有d i 设i=kd , $a^i=a^{kd}=(a^d)^k$ 所以有aⁱ∈A,对于j ∈Z, (aⁱ) ^j∈ A H⊂A. 因为H和A=(a^d)均有m个元素, H=A, H = (a^d) 设 (G, *> 是 n 阶循环群, m 是正整数, 并且 m n. 则 G 中存在唯一一个m阶子群。

对于n的每个正因子m都存在唯一一个m阶子群。

n阶循环群的子群个数恰为n的正因子数。

例1 证明循环群的同态像必为循环群。

解: <G, *> 是循环群, a是生成元, f是同态映射, 则<f(G), *>是同态像 $\forall a^n$, $a^m \in G$, 有 $f(a^n * a^m) = f(a^n) * f(a^m)$ n=1时 f(a)=f(a)n=2时 $f(a^2)=f(a)*f(a)=(f(a))^2$ n=k-1时 f(a^{k-1})=(f(a)) k-1 $f(a^{k}) = f(a^{k-1}*a) = f(a^{k-1})*f(a) = (f(a))^{k-1}*f(a) = (f(a))^{k}$ 所以f(G)中的每个元都可以表示成f(a)的若干次幂 即 (f(a)) = f(G)

例2 〈G, *〉是无限循环群,则只有两个生成元a和a-1。

解: $\forall b \in G=(a)$,则 $\exists \mathbf{n} \in Z$,有b=aⁿ

 $b=(a^{-n})^{-1}=(a^{-1})^{-n}=(a^{-1})^{n1}$ 其中 $n1=-n\in Z$

a-1也是群的生成元

若c是另一生成元,则∃**k,m**∈Z c=a^k (1)a=c^m(2)

(2) 代入(1) 所以 c=ckm 即ckm-1=e

若km ≠1 则有削去律可知c的阶是有限的,这与G是无线阶群矛盾

若km =1 k=m=1或k=m=-1

所以 c=a或c=a⁻¹

群只有两个生成元a和a-1

§ 5.5 置换群

5.5.1 置换及其运算

(1) 有限集 S 到其自身的双射称为 S 上的一个置换。当 |S| = n 时, S 上的置换称为 n 次置换。

5.5.1 置换及其运算

(2) 定义:设 S 上有如下置换

$$f = \begin{pmatrix} a_1 & a_2 & \dots & a_{i-1} & a_i & a_{i+1} & \dots & a_n \\ a_2 & a_3 & \dots & a_i & a_1 & a_{i+1} & \dots & a_n \end{pmatrix}$$

称该置换为循环置换,记为 $(a_1,a_2,...,a_i)$,i为循环长度。当 i=2 时称为对换。

单位置换,即恒等映射也视为循环置换,记为(1)或(n)。

5.5.2 置换群

(1) 定义: 一个阶为**n**的有限集合**S**上所有的置换所组成的集合 S_n 及其复合运算°构成群**,**称 $<S_n$,°> 为 n 次对称群(Symmetric group of degree n),而 $<S_n$,°> 的任意子群称为 n 次置换群。

n 次对称群的阶? $|S_n|=?$ n!

5.5.2 置换群

例1: 假设 $S = \{1,2,3\}$,写出 S 的 3 次对称群和所有的 3 次置换群。

解:
$$S_3 = \{f_1, f_2, f_3, f_4, f_5, f_6\}$$
,并且
$$f_1 = (1), f_2 = (1, 2), f_3 = (1, 3), f_4 = (2, 3),$$

$$f_5 = (1, 2, 3), f_6 = (1, 3, 2)$$

$$f_{1} = (1) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \qquad f_{2} = (1,2) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$f_{3} = (1,3) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \qquad f_{4} = (2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix},$$

$$f_{5} = (1,2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_{6} = (1,3,2) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

0	\mathbf{f}_1	f_2	f_3	\mathbf{f}_4	f_5	f_6
$\overline{\mathbf{f}_1}$	\mathbf{f}_1	f_2	f ₃	f_4	f_5	f_6
f_2	f_2	\mathbf{f}_1	f_6	f_5	f_4	f_3
f_3	f_3	f_5	\mathbf{f}_1	f_6	f_2	f_4
f_4	f_4	f_6	f_5	\mathbf{f}_1	f_3	f_2
f_5	f_5	f_3	f_4	f_2	f_6	\mathbf{f}_1
f_6	f_6	f_4	f_2	f_3	\mathbf{f}_1	f_5

$$f_1$$
是单位元, $(f_1) = \{f_1\}$
群中元素 f_2 , f_3 , f_4 的阶是2,
 $(f_2) = \{f_2, f_2^2\} = \{f_1, f_2\}$
 $(f_3) = \{f_3, f_3^2\} = \{f_1, f_3\}$
 $(f_4) = \{f_4, f_4^2\} = \{f_1, f_4\}$
元素 f_5 , f_6 的阶是3,
 $(f_5) = \{f_5, f_5^2, f_5^3\} = \{f_1, f_5, f_6\}$
 $(f_6) = \{f_6, f_6^2, f_6^3\} = \{f_1, f_5, f_6\}$
 $\{f_1\}$, $\{f_1, f_2\}$, $\{f_1, f_3\}$, $\{f_1, f_4\}$
 $\{f_1, f_5, f_6\}$ 是子群,即3次置换群

但3次置换群的阶有1,2,3阶

例:有那些置换群是可交换群(ABEL群)?解: $\{f_1\}$, $\{f_1, f_2\}$, $\{f_1, f_3\}$, $\{f_1, f_4\}$, $\{f_1, f_5, f_6\}$ 是子群,即3次置换群

$$(f_1) \equiv \{f_1\}$$

 $(f_2) \equiv \{f_1, f_2\}$
 $(f_3) \equiv \{f_1, f_3\}$
 $(f_4) \equiv \{f_1, f_4\}$
 $(f_5) \equiv \{f_1, f_5, f_6\}$
 $(f_6) \equiv \{f_1, f_5, f_6\}$

0	\mathbf{f}_1	f_2	f_3	f_4	f_5	f_6
$\overline{\mathbf{f}_1}$	\mathbf{f}_1	f_2	f_3	f_4	f_5	f_6
\mathbf{f}_2	f_2	\mathbf{f}_1	f_6	f_5	f_4	f_3
f_3	f_3	f_5	\mathbf{f}_1	f_6	f_2	f_4
f_4	f_4	f_6	f_5	\mathbf{f}_1	f_3	f_2
f_5	f_5	f_3	f_4	f_2	f_6	$\mathbf{f_1}$
f_6	f_6	f_4	f_2	f_3	\mathbf{f}_1	f_5

都是可交换群 (ABEL群)

5.5.2 置换群

(2) 性质: (Cayley 凯利定理)

任意 n 阶群必同构于一个 n 次置换群。

任何有限阶群都是循环群。

- A 正确
- **B** 错误

在偶数阶群中至少有一个周期为2的元素,也可以有3个周期为2的元素,但周期为2的元素不能为偶数个。

- **正确**
- B 错误

n次对称群的阶一定是n。

- A 正确
- B 错误

n次置换群的阶一定是n。

- A 正确
- B 错误

任何循环群的子群一定还是循环群。

- ▲ 正确
- B 错误

任何循环群一定是可交换群(ABEL群)。

- **A** 正确
- B 错误

问:什么是无穷(-∞,+∞)?

答: 无穷就是...,...

§ 5.6 陪集 (1)

5.6.1 左同余关系(左陪集关系)

定义:

设<G,*>是一个群,<H,*>是其子群。利用 H 在 G 上定义 关系:

 $R_{H} = \{ \langle a,b \rangle | a,b \in G, b^{-1}*a \in H \}$ $R'_{H} = \{ \langle a,b \rangle | a,b \in G, a*b^{-1} \in H \}$

则称 R_H 为 G 上的模 H 左同余关系(左陪集关系); R'_H 为 G 上的模 H 右同余关系(右陪集关系)。

§ 5.6 陪集 (2)

5.6.1 左同余关系(左陪集关系)

定理:

设 <H,*> 是 <G,*> 的一个子群,则 G 中模 H 左同余 关系是等价关系。

(1)自反 (2)对称 (3)传递 $R_H = \{ < a,b > | a,b \in G,b^{-1}*a \in H \}$ $< a,a > \in R_{H,} a^{-1}*a \in H H 是 子 群$ $< a,b > \in R_{H,} b^{-1}*a \in H H 是 子 群$ $_{/} (b^{-1}*a)^{-1} \in H a^{-1}*b \in H < b,a > \in R_{H,} < b,c > \in R_{H} b^{-1}*a \in H, c^{-1}*b \in H, c^{-1}*a \in H < a,c > \in R_{H}$

(3)

5.6.2 左陪集

定义:

设 <H,*>是<G,*>的一个子群,则 $a \in G$ 为代表元的模H同余关系的等价类[a]= $\{a*h|h \in H\}$,称为H在G内由a确定的左陪集。

简记为: aH=[a]={...}。 陪集着实有些抽象!

例1:设G=R×R,R是实数集,G上的二元运算定义如下;

∀⟨x, y⟩ ∈R×R代表平面坐标系中的一点,

 $\langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle = \langle x_1 + x_2, y_1 + y_2 \rangle$

则<G,+> 是群。

设H={<x,y>|y=2x},H是G的子群。

取 $a=\langle x_0,y_0\rangle$,aH,Ha的意义是什么?

(3)

(5)

5.6.2 左陪集

例2: G={e,a,b,c,d,e,f}。

- 1、写出子群(a)
- 2、证明 (a) *c=c* (a)
- 3、找出所有两个元素的子群
- 4、求(d)的右陪集

*	е	a	ъ	С	đ	f
е	е	a	ъ	С	d	f
а	a	ъ	е	d	f	С
ъ	ъ	е	а	f	С	đ
С	С	f	đ	е	b	a
đ	d.	С	f	а	е	ъ
f	f	d.	С	ъ	a	е

- 1、写出子群(a)= $\{a^0, a^1, a^2\}$ = $\{e, a, b\}$
- 2、证明(a)*c=c*(a)
- (a) $*c=\{e, a, b\}*c=\{c, d, f\}$
- $c*(a) = c *{e, a, b} = {c, d, f}$

sk:	е	a	ъ	С	d	f
е	е	а	ъ	С	d	f
а	a	ъ	е	đ	f	С
ъ	ь	е	а	f	С	đ
С	С	f	đ	е	ь	a
d	d.	С	f	а	е	ъ
f	f	d	С	ь	а	е

- 3、找出所有两个元素的子群 {e, c}, {e, d}, {e, f}
- 4、求(d)的右陪集(d)=[e,d]
- $(d)*a={e, d}*a={a, c}$
- $(d)*d={e, d}*d={e, d}$
- $(d) *b = {e, d} *b = {b, f}$
- $(d) *e = {e, d} *e = {e, d}$
- $(d)*c={e, d}*c={a, c}$
- (d) *f= $\{e, d\}$ *f= $\{b, f\}$

- (d) $*a={e, d} *c={a, c}$
- (d) $*b=\{e, d\}*f=\{b, f\}$
- $(d) *c = {e, d} *e = {e, d}$

(d)的右陪集六个结果只有三个不同的集合 且是G的划分。

(5)

5.6.2 左陪集

例**3**: 设< Z_6 ,+ $_6$ >是一个群, Z_6 ={[0],[1],[2],[3],[4],[5]}, 试写出< Z_6 ,+ $_6$ >中每个子群及相应的左陪集。

 $H1 = \{[0]\}$ $H2 = \{[0],[3]\}$ $H3 = \{[0],[2],[4]\}$

+	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

5.6.2 左陪集

+	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

 $H_1 = \{[0]\},$

 $H_2 = \{[0], [3]\},$

H1有6个不同的陪集

左陪集:
$$[0]H_1 = \{[0]\}, [1]H_1 = \{[1]\},$$

$$[2]H_1, [3]H_1, [4]H_1, [5]H_1 = \{[2]\}, \{[3]\}, \{[4]\}, \{[5]\}$$

H2有3个不同的陪集

左陪集:
$$[0]H_2=\{[0],[3]\}$$
, $[3]H_2=\{[0],[3]\}$, $[1]H_2=[4]H_2=\{[1],[4]\}$, $[2]H_2=[5]H_2=\{[2],[5]\}$

H3有2个不同的陪集

$$H_3 = \{[0], [2], [4]\}$$

左陪集: $\{[0]H_3, [1]H_3, [2]H_{3,}[3]H_3, [4]H_3, [5]H_3$
 $[0]H_3 = [2]H_3 = [4]H_3 = \{[0], [2], [4]\},$
 $[1]H_3 = [3]H_3 = [5]H_3 = \{[1], [3], [5]\}$

(4)

5.6.2 左陪集

定理:

设 <H,*> 是 <G,*> 的一个子群,则:

- (1) eH = H;
- (2) $\forall a,b \in G$, $aH = bH \Leftrightarrow b^{-1}*a \in H$
- (3) $\forall a \in G$, $aH = H \Leftrightarrow a \in H$

证明: 设 <H,*> 是 <G,*> 的一个子群,则:
(1) eH = H; ∀x∈eH,∃h₁∈H有x=eh₁=h₁ ∈H,
所以有eH⊆H; 又 H⊆eH, 所以eH = H

证明: 设 $\langle H, * \rangle$ 是 $\langle G, * \rangle$ 的一个子群,则: (2) 对 $\forall a, b \in G$, $aH = bH \Leftrightarrow b^{-1}*aH = b^{-1}*bH \Leftrightarrow b^{-1}*aH = eH \Leftrightarrow b^{-1}*aH = H \Leftrightarrow b^{-1}*a \in H$

另法 $\forall a,b \in G$,aH = bH 则 $∃ h_1$, $h_2 \in H$ 有 $ah_1 = bh_2$ $a = bh_2h_1^{-1}$ 所以 $b^{-1}*a = b^{-1}bh_2h_1^{-1} = eh_2h_1^{-1} = h_2h_1^{-1} \in H$ $b^{-1}*a \in H$ 设 $b^{-1}*a = h_1$ 所以 $a = bh_1$ $\forall ah \in aH$ $ah = bh_1h = bh_2 \in bH$ 同理 $bH \subseteq aH$ 所以 aH = bH

证明: (3) 对∀a∈G, aH = H ⇔ a∈H
则∃ h1, h2∈H 有 ah1 =h2 a=h2h1⁻¹ ∈H a∈H
若a∈H 由运算封闭性 aH = H

另法 利用(1)(2) $aH = H = eH \Leftrightarrow e^{-1}*a∈H \Leftrightarrow a∈H$

§ 5.6 陪集 (4)

定理:

设 <H,*> 是 <G,*> 的一个子群,则:

- (1) eH = H;
- (2) $\forall a,b \in G$, $aH = bH \Leftrightarrow b^{-1}*a \in H$
- (3) $\forall a \in G$, $aH = H \Leftrightarrow a \in H$
- (1)单位元的陪集还是子群自身
- (2)两个元素的陪集相同,则两个元素有模H左同余关系(等价关系)
- (3)某元素的陪集与子群相同,则该元素一定是子群中的元素。

(6)

5.6.3 左商集和右商集

定义:

设 <H,*> 是 <G,*> 的一个子群,由 H 所确定的 G 上所有元素的左陪集构成的集合称为 G 对 H 的左商集,记为: $S_L=\{ aH|a\in G \}$; 所有右陪集构成的集合称为 G 对 H 的右商集,记为: $S_R=\{ Ha|a\in G \}$ 。

设 <H,*> 是群 <G,*> 的子群。

 $R_H = \{ < a,b > | a,b \in G,b^{-1}*a \in H \}$ $R'_H = \{ < a,b > | a,b \in G,a*b^{-1} \in H \}$ 则称 R_H 和 R'_H 分别为 G 上的模 H 左同余关系(左陪集 关系)和右同余关系(右陪集关系)。

- (2) H 在 G 内由 a 确定的左、右陪集简记为: aH=[a] ={a*h|h∈H}={ah|h ∈H} Ha=[a] ={h*a|h∈H}={ha|h ∈H}
- (3) 左、右商集 $S_L = \{aH | a \in G\}$ 、 $S_R = \{Ha | a \in G\}$

为什么?

求(d)的右陪集、(d)的左陪 集, 左商集S_L 右商集S_R

$$(d) = \{e, d\}$$

右陪集:

(d)
$$*a=$$
 (d) $*c=$ {a, c}

(d)
$$*b=$$
 (d) $*f=\{b, f\}$

(d)
$$*e=$$
 (d) $*d=$ {e, d}

左陪集:

$$a* (d) = f* (d) = {a, f}$$

$$c* (d) = b* (d) = \{b, c\}$$

$$e^*(d) = d^*(d) = \{d, e\}$$

右商集
$$S_R = \{\{a,c\},\{b,f\},\{e,d\}\}\}$$

左商集 $S_L = \{\{a,f\},\{b,c\},\{d,e\}\}\}$

 $S_{I} \neq S_{R} | S_{I} | = | S_{R} |$ 商集不同但商集等势

例: 设< Z_6 ,+ $_6$ >是一个群, Z_6 ={[0],[1],[2],[3],[4],[5]}, 运算表如下:

+	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

```
H_1 = \{[0]\},
   S_{L} = \{[0]H_{1}, [1]H_{1}, [2]H_{1}, [3]H_{1}, [4]H_{1}, [5]H_{1}\}
      ={{[0]}, {[1]}, {[2]}, {[3]}, {[4]}, {[5]}}
   S_R = \{H_1[0], H_1[1], H_1[2], H_1[3], H_1[4], H_1[5]\}
                                                                    S_{\rm I} = S_{\rm R} |S_{\rm I}| = |S_{\rm R}|
      =\{\{[0]\}, \{[1]\}, \{[2]\}, \{[3]\}, \{[4]\}, \{[5]\}\}
 H_2 = \{[0], [3]\},
    S_L = \{[0]H_2, [1]H_2, [2]H_2, [3]H_2, [4]H_2, [5]H_2\}
        =\{\{[0],[3]\},\{[1],[4]\},\{[2],[5]\}\}
    S_R = \{H_2[0], H_2[1], H_2[2], H_2[3], H_2[4], H_2[5]\}
                                                                    S_{I} = S_{R} |S_{I}| = |S_{R}|
       = \{\{[0],[3]\},\{[1],[4]\},\{[2],[5]\}\}
H_3 = \{[0], [2], [4]\}
    S_L = \{[0]H_3, [1]H_3, [2]H_3, [3]H_3, [4]H_3, [5]H_3\}
        =\{\{[0],[2],[4]\},\{[1],[3],[5]\}\}
    S_R = \{H_3[0], H_3[1], H_3[2], H_3[3], H_3[4], H_3[5]\}
                                                                    S_1 = S_R |S_1| = |S_R|
        ={{[0],[2],[4]},{[1],[3],[5]}}
```

5.6.3 左商集和右商集

定理:

设 <H,*> 是任意群 <G,*> 的子群,则 G 关于 H 的左、右商集必等势。

定义映射 f:S_L→S_R,
对∀a∈G, f(aH)=Ha⁻¹

(8)

5.6.3 左商集和右商集

定义:设 <H,*> 是群 <G,*> 的子群, S_L 的基数称为 H 在G 内的指数。记为:

 $[G:H]=|S_L|$ 或 $[G:H]=|S_R|$

例: G={e,a,b,c,d,f}。

求(d)的右陪集、(d)的左陪 集, 左商集 $S_{L,}$ 右商集 S_R

$$(d) = \{e, d\}$$

右陪集:

(d)
$$*a=$$
 (d) $*c=$ {a, c}

(d)
$$*b=$$
 (d) $*f=$ {b, f}

(d)
$$*e=$$
 (d) $*d=$ {e, d}

左陪集:

$$a* (d) = f* (d) = {a, f}$$

$$c* (d) =b* (d) = \{b, c\}$$

$$e^*(d) = d^*(d) = \{d, e\}$$

右商集 $S_R = \{\{a,c\},\{b,f\},\{e,d\}\}\}$ 左商集 $S_L = \{\{a,f\},\{b,c\},\{d,e\}\}$

$$[G:H]=[G:(d)]=|S_L|=3$$

*	е	a	ъ	С	đ	f
е	е	a	ь	С	d	f
а	a	ъ	е	đ	f	С
ъ	ъ	е	a	f	С	đ
С	С	f	đ	е	ь	a
đ	d	С	f	а	е	ъ
f	f	đ	С	ь	а	е

例: 设<Z₆,+₆>是一个群,Z₆ ={[0],[1],[2],[3],[4],[5]}, 运算表如下:

+	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

$$\begin{split} [Z_6:\{[0]\}] = & \quad H_1 = \{[0]\}, \\ [Z_6:H1] = & \quad S_L = \{\{[0]\}, \{[1]\}, \{[2]\}, \{[3]\}, \{[4]\}, \{[5]\}\} \\ S_R = \{\{[0]\}, \{[1]\}, \{[2]\}, \{[3]\}, \{[4]\}, \{[5]\}\} \end{split}$$

$$[Z_6:H2]=3$$
 $[Z_6:H3]=2$

(9)

5.6.3 左商集和右商集

定理:

设 <H,*> 是群 <G,*> 的子群,H 的任意左陪集(右陪集)与 H 等势。 ∀a∈G, |aH|=|H| 或 |Ha|=|H|

(10)

5.6.4 Lagrange 定理

定理:

假设 <G,*> 是有限群,<H,*> 是 <G,*> 的子群,则 H 的阶必整除 G 的 阶,并且 |G|=[G:H]|H|。

(11)

5.6.4 Lagrange 定理

- (1) 任何素数阶的群不可能有非平凡的子群。
- (2) 素数阶的群必为循环群。
- (3) 假设<G,*>是 n 阶有限群,则对 ∀a∈G, |a| n (形象表述?)。
- (4) 假设<G,*>是 n 阶有限群,则对 ∀a∈G,aⁿ = e。

§ 5.6 陪集 (11)

(1)任何素数阶的群不可能有非平凡的子群。 平凡的子群 S⊆G,S=G,或S={e} 由拉格朗日定理得,素数阶群的子群的阶只能是1或 素数自身,所以。。。

(11)

(3) 假设<G,*>是 n 阶有限群,则对 ∀a∈G, |a| n (形象表述?)。

n 阶有限群中任意元素的周期一定整除n; n 阶有限群中任意元素的周期只能是n 的正因子; (4) 假设<G,*>是 n 阶有限群,则对 $\forall a \in G$, $a^n = e$ 。

 $\forall a \in G$,由拉格朗日定理得 |a|整除 |G|设 |a|=m, |G|=n, n=km $|a|=a^{km}=(a^m)^k=e^k=e$

§ 5.6 ∱ 陪集

(11)

例1:证明素数阶循环群的每个非单位元都是生成元。(素数阶的群必为循环群)

证明:设<G,*>是p阶循环群,p是素数。对G中任一非单位元a。设a的阶为k,则k≠1

由拉格朗日定理,k是p的正整数因子。因为p是素数,故k=p。a的阶就是p,即群G的阶。故a是G的生成元。

§ 5.6 ∱ 陪集

(11)

例1:证明素数阶循环群的每个非单位元都是生成元。(素数阶的群必为循环群)

证明: |G|=n且p是素数,p>1, $a \in G$ a $\neq e$ 设|(a)|=m,则m>1由拉格朗日定理知m|p 因为p是素数,所以m=p,(a)是p阶循环群即G的p个元素都在(a)中,(a)=G

(11)

例2:证明9阶群必有3阶子群。

证明,设a是9阶群的一个非单位元元素则a的周期只能是3或9如果a的周期是3,则(a)={a¹, a², a³}是3阶子群如果a的周期是9,则(a³)={a³, a⁶, a⁹}={a³, (a³)², (a³)³}是3阶子群

例3: G是有限群,K是G的子群,H是K的子群

则 [G:H]=[G:K][K:H]

证明, K是G的子群, |G|=[G:K]|K|

又H是K的子群

|K| = [K:H]|H|

又H是G的子群

|G|=[G:H]|H|

则 [G:H]=[G:K][K:H]

例4: G是群,H是G的子群,令M={x|x \in G ,xHx⁻¹=H}, 则M也是G的子群

$M = \{x \mid x \in G, xHx^{-1} = H\},$

证明: $(1)M \neq \Phi$, 因为 $e \in G$, 且 $eHe^{-1}=H$, $e \in M$

(2) ∀ x,y ∈ M ,有M的定义得, xHx⁻¹=H, yHy⁻¹=H
x⁻¹Hx=H, y⁻¹Hy=H
xy⁻¹H(xy⁻¹)⁻¹=xy⁻¹H(y⁻¹)⁻¹x⁻¹=xy⁻¹Hyx⁻¹=XHX⁻¹=H
∴xy⁻¹ ∈ M
M是G的子群,

素数阶的群必为循环群,而偶数阶的群一定不是循环群。

- A 正确
- B 错误

设 <H,*> 是 <G,*> 的一个子群,则单位元e关于H的左, 右陪集都等于H。

- **A** 正确
- B 错误

设 <H,*> 是 <G,*> 的一个子群,群中两个元素的左陪集相同,则两个元素一定具有模H左同余关系。

- **A** 正确
- B 错误

设 $\langle H, * \rangle$ 是 $\langle G, * \rangle$ 的一个子群,则对 $\forall a \in G$,都有 aH = H 。

- A 正确
- B 错误

设
$$$$
 是 $$ 的一个子群,对 $∀a∈G$,若a $H=H$ $⇔ a^{-1}∈H$

- **正确**
- B 错误

设 <H,*> 是 <G,*> 的一个子群,子群H中任意两元素的 左陪集都等于H。即若 $\forall a,b \in H$,则 aH=bH=H

- (4) 正确
- B 错误

设 <H,*> 是任意群 <G,*> 的子群,则 G 关于 H 的左、 右商集可以不同,但H 的左、右商集必等势。

- 正确
- B 错误

假设 <G,*> 是有限群,<H,*> 是 <G,*> 的子群,则 H 的阶整除 G 的阶所得到的商称为 H 在G 内的指数。 $\mathbb{P}[S_L] = \mathbb{P}[H] / \mathbb{F}[G]$

- **正确**
- B 错误

§ 5.7 正规子群

(1)

5.7.1 正规子群的定义

设 <H,*> 是群 <G,*> 的子群,如果对 ∀a∈G 有 aH=Ha,则称 <H,*> 是<G,*> 的正规子群(不变子群)。

例: 假设 S={1,2,3},S₃={f₁,f₂,...,f₆}

$$f_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, f_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, f_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

		f_2				
$\overline{f_1}$	f_1	$egin{array}{c} f_2 \\ f_1 \end{array}$	f_3	f_4	f_5	f_6
	f_2	f_1	f_6	f_5	f_4	f_3
f_3	f_3	f_5	f_1	f_6	f_2	f_4
f_4	f_4	f_6	f_5	f_1	f_3	f_2
f_5	f_5	f_3	f_4	f_2	f_6	f_1
f_6	f_6	f_4	f_2	f_3	f_1	f_5

$$f_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, f_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, f_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$<\{f_1\}, o>, <\{f_1,f_2\}, o>, <\{f_1,f_3\}, o>, <\{f_1,f_4\}, o>, <\{f_1,f_5,f_6\}, o>,$$

是三次置换群,是三次对称群的子群,是否为正规子群?

		f_2			f_5	
$\overline{\mathbf{f}_1}$	f_1	f_2 f_1 f_5	f_3	f_4	f_5	f_6
f_2	f_2	f_1	f_6	f_5	f_4	f_3
f_3	f_3	f_5	f_1	f_6	f_2	f_4
	f_4		f_5	f_1	f_3	f_2
	f_5		f_4	f_2	f_6	f_1
f_6	f_6	f_4	f_2	f_3	f_1	f_5

$$H_1 = \{f1\}, \forall a \in S_3$$
 是否都有 $aH_1 = H_1a$ $H_1 = \{f1\}$ 是 S_3 的正规子群 $H_2 = \{f_1, f_2\}, \forall a \in S_3$ 是否都有 $aH_2 = H_2a$ $f_1 \{f_1, f_2\} = \{f_1, f_2\} = f_2 \{f_1, f_2\}, \{f_1, f_2\} f_1 = \{f_1, f_2\} = \{f_1, f_2\} f_2$ $f_3 \{f_1, f_2\} = \{f_3, f_5\} = f_5 \{f_1, f_2\}, \{f_1, f_2\} f_3 = \{f_3, f_6\} = \{f_1, f_2\} f_6$ $f_4 \{f_1, f_2\} = \{f_4, f_6\} = f_6 \{f_1, f_2\}, \{f_1, f_2\} f_4 = \{f_4, f_5\} = \{f_1, f_2\} f_5$

$$f_3\{f_1,f_2\} = \{f_3,f_5\} \neq \{f_3,f_6\} = \{f_1,f_2\}f_3$$

 $f_4\{f_1,f_2\} = \{f_4,f_6\} \neq \{f_4,f_5\} = \{f_1,f_2\}f_4$

 $H_2=\{f_1,f_2\}$ 不是 S_3 的正规子群,但 H_2 是可交换群。

§ 5.7 正规子群

(4)

5.7.2 判定正规子群的条件

定理:

设 <H,*>是群<G,*>的一个子群,则以下条件等价:

- (1) 对∀a∈G, aH=Ha
- (2) 对∀a∈G,h∈H,必存在h'∈H,使 h*a=a*h'
- (3) 对∀a∈G,h∈H, a*h*a⁻¹∈H, 或者 a⁻¹*h*a ∈H。

设 <H,*>是群<G,*>的一个子群,则以下条件等价:

- (1) 对∀a∈G, aH=Ha
- (2) 对∀a∈G,h∈H,必存在h'∈H,使 h*a=a*h'
- (3) 对 $\forall a \in G, h \in H, a*h*a^{-1} \in H,$
- (1)→(2)对∀a∈G,h∈H, h*a∈Ha, aH=Ha, h*a ∈aH ∃h'∈H, 所以 h*a=a*h'
- (2)→(3)对 \forall a∈G,h∈H,∃h'∈H aH=Ha, a*h*a⁻¹=Haa⁻¹,所以 a*h*a⁻¹=H, a*h*a⁻¹∈H

§ 5.7 正规子群

(3)

5.7.2 判定正规子群的条件

定理:

群 <G,*> 的子群 <H,*> 是正规子群的充要

条件是:

对 ∀a∈G, h∈H 有 a*h*a⁻¹∈H, 或者 a⁻¹*h*a ∈H。 ⇒对 ∀a∈G,h∈H 有 a*h*a⁻¹∈H, ∀x∈aH, ∃h∈H,x=ah,x=ah(a⁻¹a)=(aha⁻¹)a=h'a ∴ x ∈ Ha aH⊂Ha 同理 Ha⊂aH ∴ Ha = aH

Ha = aH 对 $\forall a \in G, h \in H, ah \in aH, aH = Ha,$ ah $\in Ha$, $\exists h' \in H$, \therefore ah = h' a $h' = aha^{-1}, \therefore aha^{-1} \in H$

§ 5.7 正规子群

(3)

5.7.3 商群

定义:

子群 <H,*>是群 <G,*> 的正规子群在G/H上 定义新的运算 o:

对 ∀a,b∈G,有 aHobH=(a*b)H,

称为G对H的商群。

G/H={不同陪集作为元素}

- (1)封闭性 aHobH=(a*b)H
- (2)可结合 (aHobH)ocH = aHo(bHocH)
- =(a*b*c)H
- (3)单位元 eH eHobH=(e*b)H = bH
- (4)逆元 aH的逆元a⁻¹H aHoa⁻¹H=(a*a⁻¹)H = eH

5.7.3 商群

例: $\langle N_6, +_6 \rangle$, $H = \{0, 2, 4\}$, H为 N_6 的正规子群, 故有商群

 $N_6/H = \langle \{0H, 1H\}, o \rangle$

 $0H=0+_{6}\{0,2,4\}=\{0,2,4\}=H\ (=2H,4H);$

 $1H=0+_{6}\{0,2,4\}=\{1,3,5\}(3H,5H)$

其运算如下: (OH) o(OH)=(O+6O)H=OH;

 $(1H) \circ (1H) = 2H = 0H;$

 $(OH) \circ (1H) = (1H) \circ (OH) = 1H;$

 $(OH)^{-1}=O^{-1}H=OH;$

 $(1H)^{-1}=1^{-1}H=5H=1H.$

0	ОН	1H
ОН	0H	1H
1H	1H	0H

§ 5.7 正规子群

5.7.3 商群

例: 三次置换群<{f₁,f₅,f₆}, o>所产生的商 集 $S_3/H_3=\{f_1H_3,f_2H_3\}$, $H_3 = \{f_1, f_5, f_6\}$ $f_1H_3=f_1\circ\{f_1,f_5,f_6\}=H_3$ $f_2H_3=f_2\circ\{f_1,f_5,f_6\}=\{f_2,f_3,f_4\}$ $f_3H_3=f_3\circ\{f_1,f_5,f_6\}=\{f_2,f_3,f_4\}$ $f_4H_3=f_4\circ\{f_1,f_5,f_6\}=\{f_2,f_3,f_4\}$ $f_5H_3=f_4\circ\{f_1,f_5,f_6\}=\{f_1,f_5,f_6\}$ $f_6H_3=f_4\circ\{f_1,f_5,f_6\}=\{f_1,f_5,f_6\}$

0	f ₁	f_2	f_3	f_4	f_5	f_6
$\overline{\mathbf{f}_1}$	f_1	f_2	f_3		f_5	f_6
f_2	f_2	f_1	f_6	f_5	f_4	f_3
	\int f ₃	f_5		f_6	f_2	f_4
f_4	$\int f_4$	f_6	f_5	f_1	f_3	f_2
f_5	f_5	f_3	f_4	f_2	f_6	\mathbf{f}_1
f_6	$\int f_6$	f_4	f_2	f_3	f_1	f_5

§ 5.7 正规子群

5.7.3 商群

三次置换群< $\{f_1,f_5,f_6\}$, o>所产生的商集 $S_3/H_3=\{f_1H_3,f_2H_3\}$ 关于运算 Δ 构成一个商群。

在S₃/H₃上所定义的运算如右表所示:

Δ	f_1H_3	f_2H_3
f_1H_3	f_1H_3	f_2H_3
f_2H_3	f_2H_3	f_1H_3

例: 设<Z₆,+₆>是一个群, Z₆={[0],[1],[2],[3],[4],[5]},

运算表如下: H={[0],[3]}是其子群

							١,
+	[0]	[1]	[2]	[3]	[4]	[5]	
[0]	[0]	[1]	[2]	[3]	[4]	[5]	
[1]	[1]	[2]	[3]	[4]	[5]	[0]	
[2]	[2]	[3]	[4]	[5]	[0]	[1]	
[3]	[3]	[4]	[5]	[0]	[1]	[2]	
[4]	[4]	[5]	[0]	[1]	[2]	[3]	
[5]	[5]	[0]	[1]	[2]	[3]	[4]	

```
H={[0],[3]},

左陪集: [0]H={[0],[3]}, [3]H={[0],[3]},

        [1]H=[4]H={[1],[4]}, [2]H=[5]H={[2],[5]}

右陪集: H[0]={[0],[3]}, H[3]={[0],[3]},

        H[1]=H[4]={[1],[4]}, H[2]=H[5]={[2],[5]}

满足 aH=Ha 是正规子群

Z<sub>6</sub>/H={[0]H, [1]H, [2]H}

对 ∀a,b∈Z<sub>6</sub>/H ,有 aHobH=(a+<sub>6</sub>b)H
```

[0]Ho [1]H =([0]+
$$_6$$
[1])H=[1]H [0]Ho [2]H =([0]+ $_6$ [2])H=[2]H [1]Ho [2]H =([1]+ $_6$ [2])H=[3]H

O	OH	1 H	2H
ОН	ОН	1H	2H
1 H	1H	2H	0H
2H	2H	ОН	1H

[0]H自身为逆元 [1]H, [2]H互为逆元

构造了一个三阶商群, <**Z**₆/**H**, o> 商群的运算对象是陪集。

§ 5.7 正规子群

(5)

5.7.4 子集的乘积

(1) 定义

§ 5.7 正规子群

(6)

5.7.4 子集的乘积

(2) 性质

(I) 子集的乘积满足结合律。即 (A*B)*C=A*(B*C)

(II) 在子集的运算下,任何子群都为幂等元,即HH=H。

§ 5.7 正规子群

(7)

5.7.4 子集的乘积

定理:

设<H,*>是群<G,*>的正规子群, 则对∀a,b∈G, aH*bH=(a*b)H

0	f_1	f_2	f_3	f_4	f_5	f_6
$\overline{f_1}$	f_1	f_2	f ₃	f_4	f_5	f_6
f_2	f_2	f_1	f_6	f_5	f_4	f_3
f_3	f_3	f_5	f_1	f_6	f_2	f_4
f_4	f_4	f_6	f_5	f_1	f_3	f_2
f_5	f_5	f_3	f_4	f_2	f_6	f_1
f_6	f_6	f_4	f_2	f_3	\mathbf{f}_1	f_5

$$H_2=\{f_1,f_2\}$$
不是 S_3 的正规子群

对∀a,b∈G, aH*bH=(a*b)H不一定成立

$$H_2 = \{f_1, f_2\}$$

$$f_1 \{f_1, f_2\} \circ f_2 \{f_1, f_2\} = \{f_1, f_2\}$$

$$f_1 \circ f_2 \{f_1, f_2\} = f_2 \{f_1, f_2\} = \{f_1, f_2\}$$

$$f_3\{f_1,f_2\} \circ f_5\{f_1,f_2\} = \{f_3,f_5\} \circ \{f_3,f_5\} = \{f_1,f_2,f_4,f_6\}$$

 $f_3 \circ f_5\{f_1,f_2\} = f_2\{f_1,f_2\} = \{f_1,f_2\}$

$$\therefore f_3\{f_1,f_2\} \circ f_5\{f_1,f_2\} \neq f_3 \circ f_5\{f_1,f_2\}$$

1、任何正规子群不一定是可交换群(ABEL)。

- A 正确
- B 错误

2、三次置换群< $\{f_1,f_2\},o>$ 是三次对称群< S_3 , o >的子群,< $\{f_1,f_2\},o>$ 是正规子群吗?

B 不是

0	f_1	f_2	f_3	f_4	f_5	f_6
	_	f_2	ŭ	f_4	f_5	f_6
		\mathbf{f}_1	f_6	f_5	f_4	f_3
f_3	f_3	f_5	f_1	f_6	f_2	f_4
f_4	f_4	f_6	f_5	f_1	f_3	f_2
f_5	_	f_3	f_4	f_2	f_6	f_1
f_6	f_6	f_4	f_2	f_3	f_1	f_5

提交

3、因为三次置换群< $\{f_1,f_4\}$,o>虽是三次对称群< S_3 ,o>的子群,但不满足正规子群的条件,所以< $\{f_1,f_4\}$,o>不是正规子群,但是可交换群。

B 错误

0	f_1	f_2	f_3	f_4	f_5	f_6
$\overline{\mathbf{f}_1}$	f_1	f_2	f_3	f_4	f_5	f_6
f_2	f_2	\mathbf{f}_1	f_6	f_5	f_4	f_3
f_3	f_3	f_5	f_1	f_6	f_2	f_4
f_4	f_4	f_6	f_5	\mathbf{f}_1	f_3	f_2
f_5	f_5	f_2 f_1 f_5 f_6	f_4	f_2	f_6	f_1
f_6	f_6	f_4	f_2	f_3	f_1	f_5

提交

单选题 2分

4、子群 <H,*>是群 <G,*> 的任意正规子群,在**G**/H上定义新的运算 o , 对 ∀a,b∈G, 有 **a**Ho**b**H = (**a*****b**)H , 则商群 <**G**/H, o>的单位元是 () 。

- (A) H
- B 1H
- c eH
- D GH

$$5 \cdot \langle N_6, +_6 \rangle$$
, $H = \{0, 2, 4\}$, $H \to N_6$ 的正规子群,存在商群 $N_6/H = \langle \{0H, 1H\}, o \rangle$,下列哪些论述正确(多选题)。

- A H=0H=2H=4H
- B 1H为商群 < N₆ / H₇ o > 的单位元
- c eH为商群<N₆/H, o >的单位元
- D 0H的逆元是自身,1H的逆元也是自身

6、设 <H,*>是<G,*>的一个子群,对某个 a∈G, a在满足下列哪个条件下左陪集aH一定可以构成群(**多选题**)。

- a=e(e 是群G 的单位元)
- c a ∈H
- □ 対a ∈G, ∃b∈G,都有b⁻¹*a∈H

7、任何循环群的子群一定是可交换群。

- **正确**
- B 错误

8、任何素数阶循环群只有两个生成元, $a \in G$,它们分别是a和 a^{-1} 。

- A 正确
- B 错误

9、任何无限群G有且仅有两个生成元a和a-1。(a ∈ G)

- A 正确
- B 错误

10、因为在有限群中任何元素的周期一定是群的阶的正因子,所以偶数阶群中一定没有奇数阶的元素。

- A 正确
- B 错误

11、<G, \times_7 >是一个群,即< Z_7 -{[0]}, \times_7 > 其中G={[1],[2],[3],[4],[5],[6]},其运算表如图。下列哪些论述正

确(多选题)

						٠.		٠.						. 1		٠.	1	1			. 1			٠.	٠.	1						٠.	1	٠.				
	ь.					1						-			-			-		8			1	1				•			1	-						
	ш.	٠.	10	10	100			. 1			!	-	١.	٠.	E		10	л	П		L	16	4	Æ	_ ;		F.	٠.	14	10	_			٠.			_	1
Λ								- 4	-)		4.0			┡	-		-		7	1				П			-					_	٦.,	-		_	
						-11						1	100	-		_		7	-	7	-	- 6	-1	1	11	٠,		1.5	A.			٠١	7			п		
	H .	٠.	10	100	٠			. T	4	Ζ.	٠.	1	г.	14	7.1	-	. '	- 4		-	-			∵.	ы.	. 1	_	1.0	_	٠.,		L٨	₩.	a i	. 1	7.1		10
	100							- 4				4.0	H		N	_	_	4	ш	-1			4	-	_				4.4	: /			•	4.	_	9.1		
	III . 1		. 1	. 1	М.	. 1	-	٥.	100		. i		1.79	•	. 10		-	1	7		1.1			17			$\overline{}$	_		. /	10	-		٠,	•	. "		_
	B is				1		-				- 3	- 1	٠.		1		40								. 1						- 1		- 1					

[3]是群的生成元
and the state of t
to a contract the second of the contract to the second of the second of the contract to the co
I a compared to the compared t
.

ı																																										
ı					٠.		-				_	_		_	-	۸.		_			· 🖍				- 1																	
ı		- 1							-											rv	w		4.5	W 2	- /	,		. 1	•							₽.			_	_	_	
ı															-			_	ш		-	_	-	-	у.	=	▶.	- 4	_		-	4.0	-		•	_					4.0	
ı								- 4						-		8.				г.	ш.		-		₽.			. //					м	4.5		-		_	-	-	_	
ı									9				 _	_	_	-	١.	. 9	-		-	•	-		A	vН		₽.			-			-	٠.				-			
ı							- 1			ь.			. 1	•	_			-7				۸.	- 16		М)		7.4	-	-	-		4		- 4	₩.			#		100	
ı										٠.			-4	М.		-	٠.	-/1		_		-	-	- 41		100							и.	_		ĸ	4					4-
ı													•		_		_ `	٠.			ш.		-	_	١.	$\overline{}$	Ι.					Ac.	₽`	▾		•	4.	- 4	<i>y</i> .		_	ĸ.
ı						_					_		 •		٠.	_			_				,		٠.,	`	٠.,		-	-	-	-,	,		•	. •	ъ,	_			_	٠.
1																		- 4			100																					

	in the contract of the contrac	2.5
	[5]是群的生成元	•
1		
1		_
		100
1		- 1
		- 1
1		

[6]是群的生成元

× ₇	[1] [2] [3] [4] [5][6]
	[1] [2] [3] [4] [5][6]
[2]	[2] [4] [6] [1] [3][5]
[3]	[3] [6] [2] [5] [1] [4]
[4]	[4] [1][5] [2] [6] [3]
[5]	[5] [3][1] [6] [4] [2]
[6]	[6] [5][4] [3] [2] [1]

提交

12、给定群<**G**,*> 的任意正规子群<**H**,*>,则商群<**G**/**H**, o>一定是唯一的。

- **上述论述正确**
- **上述论述错误**

13、<H,*>是群<G,*>的子群,如果<H,*>是可交换群,则<H,*>不一定是<G,*>的正规子群。

- ▲ 上述结论正确
- B 上述结论错误

14、假设 <G,* > 是一个群,H 是 G 的非空子集,则 <H,*> 是<G,*> 子群的<mark>充要条件是:</mark> 对 $\forall a,b \in H$,有 a*b∈H。

- A 上述论述正确
- 上述论述错误

15、假设<G,*>是 n 阶有限群,则对 ∀a∈G, |(a)| n 。

- **上述论述正确**
- 上述论述错误

第五章 作业

习题一 1,3

习题二 2, 5, 6

习题三 3,4,6,7

习题四 1,2,4

习题五 1,3

习题六 1,3,5,7

习题七 1,3,5

$$\langle 2 \rangle$$
 M_R $\stackrel{\cdot}{\cdot}$ $\stackrel{\cdot}{\cdot}$

$$67890112314... : A^2 \cup \cap \in A^2 \cup A$$

```
\infty^{\pm} \{ Z : X \le B \} 
 αβσρυωζψηδεφλμπΔ θ ±ΠΛν \ ...
≥≈~∞⊃∩∪°C䳲∵□∈∑<≯1/21/4 §
 ¥{}?±
                                                                                                                                                     \leftrightarrow\vee\wedge\rightarrow\leftrightarrow\Rightarrow\Leftrightarrow
 \downarrow\uparrow \land \oplus \neq \bigcirc - \langle \rangle
 $\dagger \neq \tau \rangle \r
   ( [-] \div \cdot \circ \cdot \langle 2, b \rangle \sim \Phi
```