Facultat de Matemàtiques i Estadística Examen de topologia 17 de juny de 2020

Temps: 3,5 hores

Tots tres problemes puntuen igual

Al final dels enunciats teniu algunes definicions i resultats

- 1. Un espai topològic X es diu T_1 si els seus punts són conjunts tancats. Tot espai de Hausdorff és T_1 . Sigui X un espai topològic T_1 . Per a cada subconjunt $A \subseteq X$ sigui A' el seu derivat: el conjunt dels seus punts d'acumulació. Sigui $p \in X$ un punt. Demostreu que
 - 1. $\{p\}' = \emptyset;$
 - 2. $(A \setminus \{p\})' = A' = (A \cup \{p\})';$ OBSERVACIÓ: Podeu fer servir, sense demostrar-ho, que en tots els espais topològics es compleix la propietat $(A \cup B)' = A' \cup B'$.
 - 3. A' és un conjunt tancat;
 - 4. $(A')' \subseteq A'$.
- **2.** Sigui X un espai topològic i $Y \subseteq X$, un subespai de X. Suposem que Y és un retracte de X.
 - 1. Suposem que X és Hausdorff. Podem deduir que Y és un tancat de X?
 - 2. Suposem que X és Hausdorff. Podem deduir que Y és un obert de X?
 - 3. Suposem que X és compacte. Podem deduir que Y és un tancat de X?
 - 4. Suposem que X és compacte. Podem deduir que Y és un obert de X?
- 3. Un revestiment d'espais topològics és una aplicació contínua exhaustiva $p: \widetilde{X} \to X$ tal que per a tot punt $x \in X$ existeix un entorn obert $\mathcal{V}_x \subseteq X$ amb $p^{-1}(\mathcal{V}_x) = \sqcup_{i \in I} \mathcal{U}_i$, on els \mathcal{U}_i són oberts disjunts de \widetilde{X} tals que la restricció $p|_{\mathcal{U}_i} : \mathcal{U}_i \to \mathcal{V}_x$ de p a cadascun d'ells és un homeomorfisme $\mathcal{U}_i \cong \mathcal{V}_x$. Els oberts \mathcal{V}_x i \mathcal{U}_i satisfent la condició demanada es diuen entorns oberts regulars del revestiment.

Dos exemples importants de revestiments són les projeccions de la recta en la circumferència $x \mapsto e^{2\pi i x} \colon \mathbb{R} \twoheadrightarrow \mathbb{S}^1$ i de l'esfera en l'espai projectiu $x \mapsto [x] \colon \mathbb{S}^n \twoheadrightarrow \mathbb{P}^n$ obtinguda identificant punts antipodals.

Sigui $f \colon Y \to X$ una aplicació contínua d'un espai topològic Y en X. Un aixecament \widetilde{f} de f és una aplicació contínua $\widetilde{f} \colon Y \to \widetilde{X}$ tal que $p \circ \widetilde{f} = f$.

Sigui $p: \widetilde{X} \to X$ un revestiment. Siguin $\widetilde{x}_0 \in \widetilde{X}$ i $x_0 \in X$ punts amb $p(\widetilde{x}_0) = x_0$ (o sigui, tals que $\widetilde{x}_0 \in p^{-1}(x_0)$). Sigui \mathcal{V}_{x_0} un entorn regular de x_0 . Demostreu que

1. Tota aplicació contínua $f: Y \to X$ amb $f(y_0) = x_0$ i tal que $f(Y) \subseteq \mathcal{V}_{x_0}$ té un aixecament $\widetilde{f}: Y \to \widetilde{X}$ amb $\widetilde{f}(y_0) = \widetilde{x}_0$.

- 2. Si Y és connex una aplicació contínua $f: Y \to X$ amb $f(y_0) = x_0$ té $com\ a\ màxim$ un aixecament $\widetilde{f}: Y \to \widetilde{X}$ amb $\widetilde{f}(y_0) = \widetilde{x}_0$. INDICACIÓ: estudieu el subconjunt de Y on dos d'aquests aixecaments coincideixen.
- 3. Tot camí $\sigma: [0,1] \to X$ amb origen $\sigma(0) = x_0$ té un únic aixecament $\widetilde{\sigma}: [0,1] \to \widetilde{X}$ amb origen $\widetilde{\sigma}(0) = \widetilde{x}_0$.
- 4. L'aplicació p*: π¹(X, x₀) → π¹(X, x₀) induïda per p en els grups d'homotopia és injectiva.
 OBSERVACIÓ: Per demostrar això podeu fer servir, sense demostrar-ho, que tota aplicació contínua F: [0,1]² → X amb F(0,0) = x₀ té un únic aixecament F̃: [0,1]² → X̄ amb F̄(0,0) = x₀. Això es pot demostrar amb arguments anàlegs als de l'apartat 3, tal com s'ha vist a classe en dos casos particulars.

Algunes definicions i resultats

Definició 1 (Acumulació) Sigui A un subconjunt d'un espai topològic X. Un punt $x \in X$ és un punt d'acumulació de A si tot entorn obert \mathcal{U}_x de x interseca A en algun punt diferent d'ell mateix: $A \cap (\mathcal{U}_x \setminus \{x\}) \neq \emptyset$.

Es denota A' el conjunt de punts d'acumulació de A; de vegades se'l coneix pel nom de conjunt derivat de A.

Definició 2 (Retracte) Un subespai $Y \subseteq X$ és un retracte de l'espai X si existeix una aplicació contínua $r: X \to Y$ tal que r(y) = y, per a tot $y \in Y$.

Definició 3 (Morfisme induït) Sigui $f: X \to Y$ una aplicació contínua, $x \in X$ i $y \in Y$ punts amb f(x) = y. Es defineix l'aplicació $f_*: \pi_1(X, x) \to \pi_1(Y, y)$ posant

$$f_*([\sigma]) = [f \circ \sigma], \qquad \sigma \colon [0,1] \to X, \quad \sigma(0) = \sigma(1) = x.$$

Aquesta aplicació està ben definida i és un morfisme de grups.

Teorema 1 (Lema del nombre de Lebesgue) Sigui E un espai mètric compacte, X un espai topològic, $f: E \to X$ una aplicació contínua i $(\mathcal{U}_i)_{i\in I}$ un recobriment obert de X.

Existeix un nombre $\delta > 0$ tal que les imatges de totes les boles de radi δ estan contingudes en algun dels oberts del recobriment:

$$\forall x \in E \ \exists i \in I \ tal \ que \ f(B_{\delta}(x)) \subseteq \mathcal{U}_i.$$

Aquest enunciat no és exactament el mateix que el donat a classe però es pot veure molt fàcilment que tots dos són equivalents. Podeu usar aquest resultat, si us cal, en la resolució de l'examen.