ENGG1003 - Monday Week 8

Solving nonlinear algebraic equations

Steve Weller

University of Newcastle

26 April 2021

Last compiled: April 24, 2021 4:36pm +10:00

Lecture overview

- Solving nonlinear algebraic equations pp. 175-176
 - general setting
 - two problems: flight time, fluid level
- Bisection method §7.4
- Secant method §7.3
 - Newton's method
- Extensions
 - bisection & secant methods: re-write as functions
 - timing code in Python
 - speed comparisons: bisection vs. secant

1) Solving nonlinear algebraic equations

- *linear* equations: ax + b = 0
 - ightharpoonup solution x = -b/a
- nonlinear equations
 - quadratic $ax^2 + bx + c = 0$: solution $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
 - cubic and quartic (orders 3 and 4): exact solutions exist but are very complicated
 - quintic (order 5) equations: exact solutions do not exist in general, proving that needs serious mathematics
- most equations in engineering applications have no exact "pen and paper" solutions!

Numerical solutions to equations

"Far better an approximate answer to the right question...
than an exact answer to the wrong question"
—John Tukey

General problem: find x satisfying

$$f(x) = 0$$

where f(x) is a formula involving x

Example

$$f(x) = e^{-x}\sin(x) - \cos(x)$$

has solution x = 7.85359326 because

$$e^{-7.85359326}\sin(7.85359326) - \cos(7.85359326) = 0.000$$

Flight time

• one more time!

image of measuring cup Engineering applications: water in dam, coal in stockpile

• volume V (in millilitres, mL) depends on depth L (in cm) as follows:

$$V = 0.0268L^3 + 1.884L^2 + 44.15L$$

- plot V vs L
- link to proof: volumes of solids of revolution (needs calculus, MATH1110)

https://www.sjsu.edu/me/docs/hsu-Chap

- Question: depth L when cup holds $500~\mathrm{mL}$ of water?
- solve f(L) = 0 where

$$F(L) = 0.0268L^3 + 1.884L^2 + 44.15L - 500$$

2) Bisection method

basic idea: visualisation

Bisection method: pseudocode

```
INPUT: function f
       endpoint values xLO, xHI
       tolerance TOL
CONDITIONS: xLO < xHI
       f(xLO) < 0 and f(xHI) > 0 or f(xLO) > 0 and f(xHI) < 0
xMID = (xLO + xHI)/2
WHILE |f(xMID)| > TOL
  IF f(xMID) is same sign as f(xLO)
    # case A
    set xLO = xMID
  ELSE
    # case B
    set xHT = xMTD
  ENDIF
  xMID = (xLO + xHI)/2
END WHILE
```

Bisection method: Python code

```
bisection.pv
 1 import numpy as np
 3 def f(L):
        return L**3 + 70.3*L**2 + 1647.39*L - 18656.72
 6 \text{ eps} = 1e-6
7 \times_{L} 0 = 6
8 \times HI = 10
10 \times MID = (\times LO + \times HI)/2
11 itCnt = 0
12 while abs(f(x_MID)) > eps:
13
       if f(x_MID)*f(x_LO) > 0:
            \times LO = \times MID
14
    else:
15
            \times HI = \times MID
16
    \times_{-}MID = (\times_{-}LO + \times_{-}HI)/2
17
        itCnt += 1
18
19
20 print('Solution: {}'.format(x_MID))
21 print('Number of iterations: {}'.format(itCnt))
print('Check: f(\{:.8f\}) = \{:.8f\}'.format(x_MID, f(x_MID)))
```

Bisection method: simulation results

- code commentary
- simulation results
- live demo

3) Secant method

basic idea: visualisation

secant method: key equations

Secant method: Python code

secant.py

```
1 import numpy as np
3 def f(L):
      return L**3 + 70.3*L**2 + 1647.39*L - 18656.72
6 \text{ eps} = 1e-6
7 \times 0 = 6
8 \times 1 = 10
9 \text{ itCnt} = 0 # iteration counter
10 while abs(f(x1)) > eps:
  # line (=secant) through (x0, f(x)) and (x1, f(x1)) intersects
11
# horizontal axis at (x,0)
13 x = x1 - f(x1)*((x1 - x0)/(f(x1) - f(x0)))
   x0 = x1
14
x1 = x
   itCnt += 1
16
17
18 print('Solution: {}'.format(x))
19 print('Number of iterations: {}'.format(itCnt))
20 print('Check: f(\{:.8f\}) = \{:.8f\}'.format(x,f(x)))
```

Secant method: simulation results

- code commentary
- simulation results
- live demo

Newton's method

- aka Newton–Raphson method
- discussion of derivatives, and how they're needed in Newton's method
- we won't consider Newton's method in this course, as can't assume knowledge of calculus
- secant as approximation to Newton's method
- Newton's method is really popular

Newton's method

4) Extensions

bisection_fn.py

```
1 def f(L):
       return L**3 + 70.3*L**2 + 1647.39*L - 18656.72
  def my_bisection(f, x_LO, x_HI, tol):
       x_MID = (x_LO + x_HI) / 2
       itCnt = 0
       while abs(f(x_MID)) > tol:
           if f(x_MID) * f(x_LO) > 0:
               \times IO = \times MID
10
          else:
               x_HI = x_MID
11
          x_MID = (x_LO + x_HI) / 2
12
           itCnt += 1
13
       return x_MID, itCnt
14
15
16 x, numlt = my_bisection(f, 6, 10, 1e-6)
17
18 print('Solution: {}'.format(x))
19 print('Number of iterations: {}'.format(numlt))
20 print('Check: f(\{:.8f\}) = \{:.8f\}'.format(x, f(x)))
```

Bisection method as a function

- code commentary
- simulation results
- live demo

Secant method as a function

secant_fn.py

```
1 def f(L):
      return L**3 + 70.3*L**2 + 1647.39*L - 18656.72
  def my_secant(f, x0, x1, tol):
      itCnt = 0
      while abs(f(x1)) > tol:
          x = x1 - f(x1) * ((x1 - x0) / (f(x1) - f(x0)))
          x0 = x1
          x1 = x
          itCnt += 1
10
      return x1. itCnt
11
13 x, numlt = my_secant(f, 6, 10, 1e-6)
14
print('Solution: {}'.format(x))
print('Number of iterations: {}'.format(numlt))
print('Check: f(\{:.8f\}) = \{:.8f\}'.format(x, f(x)))
```

Secant method as a function

- code commentary
- simulation results
- live demo

Timing code in Python

- often useful to measure time taken to perform calculations; easy in Python!
- start by importing time module:

```
1 import time
```

- function time.perf_counter() returns value of a clock
 - float value (in seconds)
- elapsed time is difference between two successive calls

```
tStart = time.perf_counter()
2 xB, numltB = my_bisection(f, 6, 10, 1e-6)
3 tStop = time.perf_counter()
4 tBisect = tStop - tStart
```

Speed comparisons: bisection vs. secant

• live demo bisectionvssecant.py

```
Solution (bisection): 8.15660098195076
Number of iterations (bisection): 26
Check: f(8.15660098) = -0.00000099
Run-time (bisection): 6.166e-05 seconds
Solution (secant): 8.156600987863818
Number of iterations (secant): 4
Check: f(8.15660099) = -0.00000052
Run-time (secant): 1.257e-05 seconds
Secant method is 4.9 times as fast as bisection method
```

Lecture summary

- Solving nonlinear algebraic equations
- Bisection method
- Secant method
 - Newton's method

Extensions

More information

- Newton's method in textbook §7.2
 - ▶ needs differentiation from calculus (MATH1110)
 - in particular: need expression for tangent lines to function f(x), written as f'(x)
- "optimised" versions of bisection and secant methods in textbook §7.3 and §7.4
 - ightharpoonup maximise speed of computation by minimising number of function evaluations f(x)