

Data Driven Engineering II: Advaced Topics

State Space Models II

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

Dynamical Datasets: Time Series

- * Time Series : Overview
- * Statistical Models for time series
- \star State space models ⇒ DDE I
- Machine Learning Part I
- * Machine Learning Part II

Time Series Analysis

* Components of time series

- i) Long term trends
- ii) ST Seasonal variations
- in Cyclic variations
- iv) Randon fluctuations

Time Series Analysis

Spurious Correlations

Case: Energy Demand Forecasting

- * 8 years data of Temp & Load (Dt=hr)
- ? Power Demand foreeasting

Short Term Long Term

Case: Energy Demand Forecasting

* Short term load forecasting

: ~ 1 hr to 24 hr ~demand/supply

e near past is used

Feature is an important feature

Long term LF: ~ I week to months } Planning & ~ years } investment

Seasonal patterns

Long term trends
Climate Models

Typial	STLF	LTLF
Horizon	1hr-2 days	> 1 months
Granularity	~hr	~hr—day
History Range	~2 years	~], 5 years
Accuracy	€5% ernor	< 25% esnor
Forecasting freq.	-hr to day	> month

Data Exploration: Temporal Nature of data

1) How to handle "time stamps,

	Date	Hour	load	T
0	01/01/2004	1	NaN	37.33
1	01/01/2004	2	NaN	37.67
2	01/01/2004	3	NaN	37.00
3	01/01/2004	4	NaN	36.33
4	01/01/2004	5	NaN	36.00

	load	T
2012-01-05 00:00:00	3167.0	19.00
2012-01-05 01:00:00	3014.0	22.33
2012-01-05 02:00:00	2921.0	22.33
2012-01-05 03:00:00	2874.0	22.00
2012-01-05 04:00:00	2876.0	21.67

Data Exploration: Temporal Nature of data

2 Temporal data decomposition Trend
Stationarity
Stationarity
Norse
Now stable your system of Intuition

1 Tests

"Self Correlations,

the past reflects itself on future &

how much we should expect

Bayesian Structural Time Series

BSTS (linear Gaussian Model < Kalman F.

Bayesian Structural Time Series

* General psudo-algorithm:

- (1) Define a structural model
- (2) speafy priors.
- (3) Update estimates of states based on observation
- (4) Perform variable selection (eg. spike & slab method)
- 15) Apply Bayesian model averaging
- (6) Forecasting

How fitting works ?

Mpnimire Kullback - Leibler divergence (see VAE, DDE-I)

Variational Encoders:

Gaussian Sampling

[enforced via cost-function]

Kullback - Leibler
(KL) Divergence
(N & p')

•
$$\mathcal{L}_{i} = -\frac{1}{2} \sum_{i} 1 + \delta_{i} - \exp(\delta_{i}) - \overline{\lambda}_{i}^{2}$$

•
$$Y_i = ln(\sigma_i^2)$$

$$\rho(z|x) = \frac{\rho(x|z)}{\rho(x)} \Rightarrow \rho(x) = \int_{\infty}^{\infty} \rho(x,z) dz$$

Variational:
$$= q^*(z) = min KL(q(z) || p(z|x))$$
Inference

condidate
approximations

$$KL\left(q(x) \| \rho(x|x)\right) = E\left(\log\left(q(x)\right)\right) - E\left[\log\left(\rho(x|x)\right)\right] + \log\left(\rho(x)\right)$$

(- ELBO): evidence lover band

ELBO
$$(q) = E \left[log(p(z, x)) - E \left[log(q(z)) \right] \right]$$

$$= E \left[log(p(x|z)) - KL \left(q(z) || p(z) \right) \right]$$
~ balance btw. expected ~ prior

How fitting works ?

- Variational := $q^*(z) = \min_{q \in \partial} ELBO(q)$
 - condidate approximations

- /8³//
- Create variational posteriors;
 - Sample prior distributions
 - Select an optimizer
 - Fit posteriors by min. ELBO

- # Building the variational surrogate posteriors `qs`:
 #https://www.tensorflow.org/probability/api_docs/python/tfp/sts/build_f
 variational_posteriors = tfp.sts.build_factored_surrogate_posterior(
 model=load_model)
- num_variational_steps = 120
 optimizer = tf.optimizers.Adam(learning_rate=.1)

```
elbo_loss_curve = tfp.vi.fit_surrogate_posterior(
  target_log_prob_fn=load_model.joint_log_prob(
    observed_time_series=train),
  surrogate_posterior=variational_posteriors,
  optimizer=optimizer,
  num_steps=num_variational_steps)
```


colab

* Priverted after MC @ Los Alanos (1953) > liq. phace eq. with its vapor (Eq. Therrodynamics) Ly Metropolis Algorithm M-Hasting

Gibbs Sampler

Simulates

posterior dist. Enables full Bayesian interface

- * Markov Chains >> early 20th lest; alternations of letters in a poem; "Onegin, by Poeshkin
 - © Characterization of Sequence of random variables;
 - $X_1, X_2, X_3, X_4, \dots, X_n, X_{n+1} \begin{cases} (n+1) \text{ depends only} \\ (n) \end{cases}$

- * Hidden Markov Models \$\improx Kalman Filter
 - o variables we observe may not be the most descriptive
 - "unsupervised learning,

 we have an idea about how system worky.

Eg	/
//	

State	L	6
L	0-6	0.4
G	0.2	0.8

$$\begin{cases}
(0) & \text{state} \rightarrow L \\
(1) & 60\% \Rightarrow L \\
40\% \Rightarrow G
\end{cases}$$

$$\lambda \left(\pi_{ij}, b_{ij}, a_{ij} \right)$$

- We can describe a system if we know:
 - initial state of the system (π_{ij})
 - · emission probability; prob. of observing y; given X; (bij)
 - Transition probability; $X_i \rightarrow X_{i+n} (a_{ij})$

iterative solution

22

colab

Chapman & Hall/CRC
Handbooks of Modern
Statistical Methods

Handbook of Markov Chain Monte Carlo

Edited by
Steve Brooks
Andrew Gelman
Galin L. Jones
Xiao-Li Meng

01.07.2021

Variational Inference: A Review for Statisticians

David M. Blei Department of Computer Science and Statistics Columbia University

> Alp Kucukelbir Department of Computer Science Columbia University

> Jon D. McAuliffe
> Department of Statistics
> University of California, Berkeley

May 11, 2018

Additional Notes

