

8 Virtual Memory 3= * EAT for a demand - paged memory. EAT = (1 - p) xma + p x page fault time Where P - probability of page fault eg ma = 200 ns, Avg page fault = 8 ms If one access out of 1000 causes a page fault -then P = 1/1000 - 0.009. 1 ms = 1 × 10 ms. EAT = (1-0.001) 200 + 0.001(8 × 106) = 8199.8 ms. * Proportional Allocation: a: = 5: xm where 3 = 2si. 7 m = Total no of frames = 9 62 frames, P, = 10 pages, P2 = 127 pages a1 - 10 x 62 = 4 10+127 az= 127 x 62 = 57. 10 +127

	Condition Check Need > INOVK *.		\$8 8 dd @								
P.		6	3	5	4	+	0 1	1. 1	= [6	4	62]
P.	Need & WOYK	6	4	6	5	+	41		= [10		
P ₃	Heed < WORK				_				=[11		
. P4	Need < WOrk							00	-		687
Ps	Heed < Work										797
Po	Need < WOIK	13	G	7	9	+	20	21	= [15	6	9 10]

Safe sequence - 3 P., Pz, P3, P4, P5, Po 3.

92		Need-		
	Allocation	Available	Max	Max-Allocated
Po	0 1 0	3 3 2	7 5 3	7 4 3
P,	200		3 2 2	1 2 2
P2	3 0 2		902	600
P ₃	211		222	0 11
P4	0 0 2	100	4 3 3	4 3 1

	Condition Check	Work = Work + allocation.
	Heed > Work*	
PI	Meed < WORK	3 3 2 + 200 = [5 3 2]
P3	Need > WOYKX	
14	Need CWOIK	7 + 2 11 = [1 4 3]
Po	Need < WOIK	1 3 + 0 0 2 = 17 4 51
P2	Need - sale	1 5 + 0 10 = 17 (1
4		755+300=11955]

(2) If hit ratio = 98% (AT = (0.98)(20+100) + (1-0.98)(20+100+100) = 122 ns.

* Two-level paging algorithm.

page size = 4KB = 212

Page no # 20 bits

page offset = 12 bits.

page	number	page offset		
Pi	P ₂	d		
10	10	12		

32 - bits

Company of the compan

Best Fit :	(accomedate	e all	processes)
212 Kb	-> 300 Kb		

417 Kb -> SOOKb

112Kb -> 200Kb

426 Kb -> 600 Kb

Worst Fit :

212 Kb -> 600 Kb

417 Kb -> 500Kb

112 Kb -> 300 Kb

426 Kb -> Wait

* Address translation:

290	July 19	limit/		
Segment	Base	length	logical Addr	Base+limit
0	219	600	430	819
1	2300	14	10	2314
2	90	100	500	190
3	1327	280	400	1907
4	1952	96	112	2048

Physical Address Base + logical.

430 + 219 = 649

10. + 2300 = 2310

500 + 90 = 590 (trap)(out of limit)

400 + 1327 = 1727

112 + 1952 = 2064 (trap) (out of limit).

3	
Memory Management :=.	6
* Swap in time = size of process/transfer rate	
eg: 100 MB process swapping to hard disk with transfer rate of 50 MB/sec.	ı
swap in time = 100/50 = 25ec.	
* sinap out time = sinap intime.	
* Total context switch time = swap in + swap out.	*
* Dynamic storage - allocation: O First fit (First hole; big enough) O Best fit (smallest hole; big enough)	Seg O
3 Worst Set (largest hale)	2
Memory Partitions: 100kb, SOOKb, 200kb, 300 kb, 600 kb Processes: 212 Kb, 417 Kb, 112 Kb, 426 Kb.	4
First Fit	
212Kb → SOOKb 417Kb → 600Kb 112Kb → 200Kb	
426kb -> Wait (Uc no partition available)	100