НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет прикладної математики Кафедра прикладної математики

Звіт

із лабораторної роботи
з дисципліни «Алгоритми і системи комп'ютерної математики»
на тему
Інтегрування

 Виконав:
 Перевірила:

 студент групи КМ-51
 асистент кафедри ПМА

 Бешта В.О.
 Ковальчук-Химюк Л. О.

Київ — 2018

3MICT

Вступ
4
1 Індивідуальне
завдання5
2 Опис
методу6
3 Опис алгоритму методу
7
4 Верифікація розробленої
програми8
Висновки
9
Перелік
посилань
Додаток А Результати верифікації
програм11
Додаток Б Лістинг
програми
Додаток В Граф потоку
керування143

ВСТУП

Мета лабораторної роботи: розробити програмне забезпечення, призначене для обчислення визначеного інтегралу визначеним методом.

Постановка задачі:

- а) визначити метод обчислення визначеного інтегралу;
- б) описати визначений метод;
- в) описати алгоритм визначеного методу;
- г) визначити формати вхідних даних та результатів;
- д) реалізувати програмно визначений метод;
- е) провести верифікацію розробленої програми.

1 ІНДИВІДУАЛЬНЕ ЗАВДАННЯ

Завдання: розробити програмне забезпечення для обчислення визначеного інтегралу $\int_{0.2}^{0.2e} \ln(5x) dx$ методом правих прямокутників прямокутників [1].

Вимоги до розроблюваного програмного забезпечення:

- а) у програмі повинно бути передбачено перевірки на некоректне уведення для всіх полів уведення:
 - 1) порожнє уведення;
- 2) синтаксично некоректні введення для числових коефіцієнтів недопустимі літери в полі;
 - 3) введення спеціальних символів у числових полях;

2 ОПИС МЕТОДУ ЛІВИХ ПРЯМОКУТНИКІВ

Ідея метода полягає в розбитті відрізку інтегрування на дрібні частини $[x_{i-1},x_i]$ і в побудові прямокутників, які спираються на відрізки $[x_{i-1},x_i]$ й мають висоту $f(\xi_i)$. Якщо розбиття відрізку рівномірне, то $x_i = a+i\cdot h$, де h- крок:

$$h = \frac{(a-b)}{n}, \ i = \overline{0,n} \tag{2.1}$$

Інтеграл вважається приблизно рівним сумі площ побудованих прямокутників [2].

При використанні методу лівих прямокутників заданий інтеграл

$$\int_{a}^{b} f(x)dx \tag{2.2}$$

замінюється кінцевою сумою

$$\sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} f(x) dx, \qquad (2.3)$$

кожен член якої замінюється наступним чином

$$\int_{a}^{b} f(x)dx = (b - a)f(b). \tag{2.4}$$

Отже, обчислення заданого визначеного інтегралу зводиться до додавання елементів вигляду (2.4)[2].

3 ОПИС АЛГОРИТМУ МЕТОДУ ЛІВИХ ПРЯМОКУТНИКІВ

- 1. Розбити заданий відрізок [a; b] на менші відрізки заданої довжини h;
- 2. На кожному такому відрізку обчислити інтеграл $\int_{x_{i-1}}^{x_i} f(x) dx$;
- 3. Додати отримані результати $\sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} f(x) dx$ [3].

4 ВЕРИФІКАЦІЯ РОЗРОБЛЕНОЇ ПРОГРАМИ

Під час верифікації розробленої програми було зроблено:

- а) перевірку на те, чи ϵ границі інтегралу вірно заданими;
- б) розроблено наступні тестові випадки для 100% покриття вимог до програмного забезпечення:
 - 1) порожнє поле для введення;
 - 2) літери в полі для введення;
 - 3) спеціальні символи в полі для введення;
 - 4) контрольний приклад: a=0.2, b=0.54, n=10;
 - 5) невірно розставлені границі: а=0.54, b=0.54е;
- в) розроблено модульні тести для покриття 100% рішень, наведені у Додатку А (рис. А.3, рис А.4,). Тести розроблено на основі графу потоків керування, наведеному у Додатку В (рис. В.1). В якості тестового оракулу було використано результат роботи вбудованих функцій пакету MatLab.

ВИСНОВКИ

Під час виконання лабораторної роботи було розроблено програмне забезпечення, призначене для обчислення інтегралу заданого вигляду методом правих прямокутників. Розроблено тест-кейси для 100% покриття коду. Розроблено модульні тести для автоматизації тестування. Обчислено заданий контрольний приклад $\int_{0.2}^{0.2e} \ln(5x) dx$. Отриманий результат співпадає з тестовим оракулом. Результат отримано з точністю 10^{-5} . Було з'ясовано, що точність знаходження інтегралу прямопропорційно залежить від кількості розбиттів відрізку.

ПЕРЕЛІК ПОСИЛАНЬ

- 1. http://www.mathros.net.ua/obchyslennja-vyznachenyh-integraliv-metodom-prjamokutnykiv.html
- 2. Методи та алгоритми обчислень: навчальний посібник/автори Ю.М.Зорін, В.П.Тарасенко. К. : Видавництво «Корнійчук»,2016-168с
- 3. Мальцев А.М. Алгоритмы и рекурсивные функции. –М:Наука, 1986-368c.

Додаток А Результати верифікації програми

```
>> fun = @(x) log(5*x);
>> q = integral(fun,0.2,0.54)
q =
    0.1964
```

Рисунок A.1 – Виконання контрольного прикладу в MatLab

Рисунок А.2 – Виконання контрольного прикладу в розробленій програмі на мові програмування Python

Рисунок А.3 – Модульні тести для перевірки на коректність введиних полів

$$a = 2$$

$$b = 1$$

$$n = 10$$
Answer= 0.0

Рисунок А.4 – Модульні тести для перевірки на коректність роботи програми при більшій нижні межі

Додаток Б Лістинг програми

```
from math import *
def rec(a,b,n):
  if a >= b:
     return 0.0
  else:
     h=(b-a)/n
     S=0
     x=b
     while x>=a:
       S=S+log(5 * x)
       x=x-h
     S=S*h
     return round(S,2)
def eshka(m):
  k = e*m
  return round(k,3)
import sys
from gui import *
import rect
from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtWidgets import QApplication, QWidget, QInputDialog, QLineEdit
from PyQt5.QtGui import QIntValidator
class MyWin(QtWidgets.QMainWindow):
  def __init__(self, parent=None):
     QtWidgets.QWidget.__init__(self, parent)
     self.ui = Ui_MainWindow()
     self.ui.setupUi(self)
     self.ui.pushButton.clicked.connect(self.MyFunction)
     self.ui.pushButton_2.clicked.connect(self.MyEXP)
  def MyFunction(self):
     try:
       a = float(self.ui.textEdit.toPlainText())
       b = float(self.ui.textEdit_2.toPlainText())
       n = float(self.ui.textEdit_3.toPlainText())
       self.ui.plainTextEdit.setPlainText("")
       S = rect.rec(a,b,n)
       self.ui.textEdit_4.setPlainText(str(S))
     except ValueError:
       self.ui.plainTextEdit.setPlainText("Input numbers")
  def MyEXP(self):
     try:
       p = float(self.ui.textEdit_7.toPlainText())
       self.ui.plainTextEdit.setPlainText("")
       k = rect.eshka(p)
       self.ui.textEdit_6.setPlainText(str(k))
     except ValueError:
       self.ui.plainTextEdit.setPlainText("Input numbers")
if __name__=="__main__":
  app = QtWidgets.QApplication(sys.argv)
  myapp = MyWin()
  myapp.show()
  sys.exit(app.exec_())
```

Додаток В Граф потоку керування

Рисунок В.1 – Граф потоку керування