Interactions et modifications d'effet en Epidémiologie

CERPOP, INSERM, EQUITY Team

Last compiled on 09 May, 2023

Contents

4 CONTENTS

Présentation

Ce document a été rédigé en tant que document de synthèse du travail du groupe "Interaction" de l'équipe EQUITY, CERPOP. Ce travail a consisté en une revue de la littérature et en une application détaillée des méthodes sur des analyses illustratives, dans un but d'auto-formation et pédagogique.

Les participant.e.s du groupe de travail sont :

- Hélène COLINEAUX
- Léna BONIN
- Camille JOANNES
- Benoit LEPAGE
- Lola NEUFCOURT
- Ainhoa UGARTECHE

The online version of this book is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Introduction

Comment telle prédisposition génétique et telle exposition environnementale *inter-agissent*-elles ? L'effet de tel traitement varie-t-il selon les circonstances ? Selon les caractéristiques du patient ? Telle intervention peut-elle être bénéfique pour un groupe social et délétère pour un autre ?

De nombreuses questions épidémiologiques impliquent des mécanismes d'interactions ou de modifications d'effet. Pourtant, étudier ces mécanismes restent encore complexe aujourd'hui sur le plan méthodologique : quelle démarche adopter ? sur quelle échelle mesurer cette interaction ? comment interpréter les coefficients ? et cetera.

Dans ce document, nous proposons une synthèse de la littérature et une démarche progressive et appliquée pour explorer ces questions.

2.1 Quand étudier les interactions?

2.1.1 Prediction versus causalité

La science des données cherche à répondre à 3 types d'objectifs ? :

Description

Résumer, décrire, visualiser

Axé sur les données : calculs simples +/- apprentissage non supervisé

Objectif: synthétiser l'information

Prédiction

Reconnaissance des schémas et prévision

Axé sur les données : modélisation statistique +/apprentissage supervisé

Objectif : Prédire la valeur de l'outcome

Inférence causale

Compréhension

Non uniquement axé sur les données: implique la combinaison de connaissances externes avec la modélisation statistique +/- apprentissage supervisé

Objectif : Estimer un effet causal

Selon le type d'objectif, la démarche d'analyse et les enjeux méthodologiques ne vont pas être les mêmes. Si l'objectif est prédictif, la démarche va être centrée sur la *prédiction de l'outcome*, à partir de covariables sélectionnées afin d'optimiser la précision de l'estimation, tout en prenant en compte leur disponibilité en pratique et la parcimonie du modèle.

Dans une démarche explicative, ou étiologique, au contraire, la démarche va être centré sur l'estimation d'un effet causal, en prenant en compte les covariables en fonction de leur rôle vis-à-vis de l'effet d'intérêt (facteurs de confusion, colliders, médiateurs...).

En épidémiologie, à l'exception des cas où l'on souhaite développer un test ou score diagnostic ou pronostic, les objectifs sont le plus souvent explicatifs. On cherche en effet, la plupart du temps, à identifier des liens de cause à effet, afin de pouvoir agir sur les causes pour modifier les effets.

Finalement, pour répondre à la question "quand doit-on prendre en compte les interactions ?", il est d'abord nécessaire d'identifier dans quel type de démarche l'on s'inscrit :

- **Démarche prédictive** : on ajoutera alors les interactions dans le modèle de prédiction, pour le rendre plus *flexible*, si cela améliore la précision de l'estimation ?.
- Démarche explicative/étiologique : on étudiera les interactions ou modifications d'effet, si cela répond directement à l'objectif. Par exemple :
 - Si l'objectif est du type "l'effet de X sur Y varie-t-il en fonction de V ?", on prendra en compte l'interactions entre X et V.
 - Les objectifs qui nécessitent la prise en compte de l'interaction peuvent aussi être du type : "Quel est l'effet conjoint de X et V sur Y ?" ou "Quel part de l'effet de X sur Y disparaît quand V est modifié ?", etc.
 - Par contre, si l'objectif est simplement d'estimer l'effet de X sur Y,
 ou l'effet médié par M, la prise en compte des interactions entre X
 et des covariables (facteurs de confusion ou médiateurs) n'est pas

indispensable. C'est l'effet "moyen" qui sera estimé. Des termes d'interactions peuvent cependant être ajoutés (mais non interprétés), si cela améliore la précision de l'estimation (enjeu d'optimisation du modèle).

2.1.2 Types d'objectifs

Dans ce document, nous nous intéresserons principalement aux interactions et modifications d'effet dans une démarche étiologique/ explicative.

Les objectifs pouvant nécessiter l'étude de l'interaction/modification d'effet sont ? :

- Cibler des sous-groupes. Par exemple, identifier des sous-groupes pour lesquels l'intervention aura le plus d'effet afin de pouvoir cibler l'intervention en cas de ressources limitées, ou s'assurer que l'intervention est bénéfice pour tous les groupes et pas délétères pour certains groupes.
- Explorer les mécanismes d'un effet. Par exemple, en cas d'intervention qui n'a d'effet qu'en présence ou absence d'une caractéristiques particulière (définition mécanistique de l'interaction) ou seulement conjointement à une autre intervention.
- Etudier l'effet d'une intervention pour éliminer une partie de l'effet d'une exposition non modifiable. Par exemple, quelle part de l'effet du niveau d'éducation des parents sur la mortalité disparaîtrait si on intervenait sur le tabagisme à l'adolescence ?

2.2 Les points les plus importants

La première étape importante consiste à définir précisément l'objectif :

- L'objectif est-il de type descriptif, prédictif ou explicatif ?
- Si l'on est dans une démarche explicative, d'inférence causale, est-ce que la mesure d'un effet d'interaction est nécessaire pour y répondre ? (identifier précisément l'effet que l'on cherche à estimer, ou estimand).

Ensuite, de **nombreuses questions** se posent pour réaliser une analyse d'interaction, auxquelles nous tentons de répondre dans ce document :

- S'agit-il d'une interaction ou une modification d'effet ?
- Sur quelle échelle la mesure-t-on ? Un effet d'interaction peut en effet être défini sur une échelle multiplicative ou additive, et les résultats entre ces échelles peuvent être contradictoires.

- $\bullet\,$ Comment estimer cette interaction ? Quels paramètres présenter et comment les interpréter ?
- Comment la représenter graphiquement ?

Part I Synthèse de la littérature

Notations

3.1 Variables et probabilités

On note :

• un outcome : Y,

- deux expositions : X et V

La probabilité de l'outcome Y dans chaque strate définie par les 2 expositions est notée :

$$\bullet \quad p_{xv} = P(Y=1|X=x,V=v)$$

Exemple

On a deux exposition X, le tabagisme actif à 20 ans, et V, le fait d'avoir vécu un évènement traumatique pendant l'enfance. L'outcome Y est binaire et représente le fait d'avoir au moins une pathologie chronique à 60 ans Y=1 ou aucune Y=0.

On décrit (données complètement fictives):

x\v	V = 0	V = 1
X = 0	$P_{00} = 0.1$	$P_{10} = 0.2$
X = 1	P ₀₁ = 0,4	P ₁₁ = 0,9

Interprétation : La probabilité d'avoir au moins une pathologie chronique à 60 ans quand on n'a pas vécu d'événement traumatique pendant l'enfance et pas fumé à 20 ans est de 10%, tandis qu'elle est de 90% quand on a vécu un événement traumatique et fumé.

3.2 Mesures d'effets

L'effet d'une variable X sur Y peut être mesuré sur deux échelles : additive (différence de risque/probabilité) ou multiplicative (rapport de risque/probabilité).

Concernant les différences de risques (DR, effets additifs)

On a donc:

- - qu'on peut estimer, si les conditions d'identifiabilité sont réunies,

- par
$$P(Y = 1|X = 1) - P(Y = 1|X = 0) = p_1 - p_0$$

- L'effet conjoint de X et V est : $DR(X, V) = p_{11} p_{00}$
- L'effet de X sur Y dans chaque strate de V est : $DR(X|V=0)=p_{10}-p_{00}$ et $DR(X|V=1)=p_{11}-p_{01}$

Exemple

Différences de risques pour l'exemple 1

x\v	V = 0	V = 1
X = 0	P ₀₀ = 0,1	P ₁₀ = 0,2
X = 1	P ₀₁ = 0,4	P ₁₁ = 0,9

- $DR(X \cap V) = p_{11} p_{00} = 0, 9 0, 1 = +0, 8$
- $DR(X|V=0) = p_{10} p_{00} = 0, 4 0, 1 = +0, 3$
- $DR(X|V=1) = p_{11} p_{01} = 0, 9 0, 2 = +0, 7$

Le fait d'être doublement exposé par rapport à pas du tout augmente le risque de +80%. Parmi les personnes n'ayant pas vécu d'événement traumatique, le fait de fumer à 20 augmente le risque de +30%, alors que parmi les personnes ayant vécu un événement traumatique, il est augmenté de +70%.

Concernant, les rapports de risque (effets multiplicatifs)

on peut notamment utiliser les risques relatifs (RR). On donc :

- L'effet d'un X binaire sur Y est : RR(X) = P(Y=1|do(X=1))/P(Y=1|do(X=0))
 - qu'on peut estimer, si les conditions d'identifiabilité sont réunies,
 - par $P(Y = 1|do(X = 1))/P(Y = 1|do(X = 0)) = p_1/p_0$

- L'effet conjoint de X et V est : $RR(X,V)=p_{11}/p_{00}$ L'effet de X sur Y dans chaque strate de V est : $RR(X|V=0)=p_{10}/p_{00}$ et $RR(X|V=1) = p_{11}/p_{01}$

Exemple

Risques relatifs pour l'exemple 1

x\v	V = 0	V = 1
X = 0	P ₀₀ = 0,1	P ₁₀ = 0,2
X = 1	P ₀₁ = 0,4	P ₁₁ = 0,9

- $RR(X \cap V) = 0,9/0,1 = \times 9$
- $RR(X|V=0) = 0,4/0,1 = \times 4$
- $RR(X|V=1) = 0,9/0,2 = \times 4,5$

Le risque quand on est doublement exposé par rapport à pas du tout est multiplié par 9. Parmi les personnes n'ayant pas vécu d'événement traumatique, le fait de fumer à 20 multiplie le risque par 4, alors que parmi les personnes ayant vécu un événement traumatique, il est multiplié par 4,5.

Interaction vs modification d'effets

Dans le champ des analyses d'interaction, deux termes peuvent être rencontrés : "interaction" et "modification d'effet". Quel est la différence entre ces deux termes ?

4.1 Modification d'effets

La question de la modification d'effet consiste à d'identifier si l'effet du traitement ou de l'exposition est différent dans différents groupes de patients ayant des caractéristiques différentes (estimer l'effet d'une exposition séparément en fonction d'une autre variable) ?.

Si l'on compare avec un essai d'intervention, c'est comme s'il y avait 1 seule intervention mais que l'analyse est stratifiée sur V. On analyse donc l'effet du scénario do(X) dans chaque groupe de V.

En observationnel, l'effet causal qui nous intéresse est donc celui de X mais pas celui de V. On ajustera sur les facteurs de confusion de $X \to Y$.

On ne fait pas d'hypothèse sur les mécanismes de la modification d'effet, qui peut être causale, de façon directe ou indirecte, ou pas du tout (par proxy ou cause commune)?.

Exemples d'objectifs : identifier des groupes pour lesquels le traitement ne serait pas utile, ou si l'effet du traitement est homogène/hétérogène en fonction de l'âge, du sexe, etc.

On a une modification de l'effet de X par V si l'effet de X est différent dans chaque strate définie par V:

- en additif : $DR(X|V=0) \neq DR(X|V=1)$ - soit $p_{10}-p_{00} \neq p_{11}-p_{01}$
- en multiplicatif : $RR(X|V=0) \neq RR(X|V=1)$ - soit $p_{10}/p_{00} \neq p_{11}/p_{01}1$

Exemple

Modification d'effet dans l'exemple 1

En additif:

- effet quand V=0 : DR(X|V=0) = 0, 4-0, 1 = +0, 3
- effet quand V=1 : DR(X|V=1) = 0, 9-0, 2 = +0, 7
- donc $DR(X|V=0) \neq DR(X|V=1)$

 $En \ multiplicatif:$

- effet quand V=0 : $RR(X|V=0)=0,4/0,1=\times 4$
- effet quand V=1 : $RR(X|V=1) = 0,9/0,2 = \times 4,5$
- donc $RR(X|V=0) \neq RR(X|V=1)$

Ici l'effet du tabagisme est différent selon que les personnes ont vécu un événement traumatique ou non, sur l'échelle additive et multiplicative. On peut donc dire que le fait d'avoir vécu un événement traumatique modifie l'effet du tabac. Attention, on fait l'hypothèse de l'absence de facteurs de confusion entre le tabagisme et l'outcome, ce qui est en réalité peu probable.

4.2 Interaction

Quand on s'intéresse à l'interaction, on s'intéresse plutôt à l'effet conjoints de 2 expositions (ou plus) sur un outcome. Il y a une interaction synergique si l'effet conjoint est supérieur à l'effet de la somme des individuels. Il y a une interaction antagoniste lorsque l'effet conjoint est inférieur à la somme des effets individuels ?.

Si l'on compare avec un essai d'intervention, c'est comme s'il y a plusieurs interventions selon le nombre de combinaison. On analyse donc l'effet du scénario do(X, V). Ici l'effet causal d'interêt est vraiment l'effet conjoint des deux variables.

4.3. SYNTHÈSE 19

Dans un schéma observationnel, l'effet causal qui nous intéresse est donc celui de X*V. On ajustera sur les facteurs de confusion de $X.V \to Y$. On fait l'hypothèse que les mécanismes de l'effet conjoint de X et V sont causaux.

On a une interaction si:

- en additif : $DR(X\cap V)\neq DR(X|V=0)+DR(V|X=0)$ $-p_{11}-p_{00}\neq (p_{10}-p_{00})+(p_{01}-p_{00})$ $-p_{11}\neq p_{10}+p_{01}-p_{00}$
- en multiplicatif $RR(X \cap V) \neq RR(X|V=0) + RR(V|X=0)$

$$- p_{11}/p_{00} \neq (p_{10}/p_{00}) + (p_{01}/p_{00}) - p_{11} \neq (p_{10} + p_{01})/p_{00}$$

Exemple

Interaction dans l'exemple 1

En additif:

- effet joint : $DR(X \cap V) = 0, 9 0, 1 = +0.8$
- somme des effets individuel : DR(X|V=0) + DR(V|X=0) = +0, 3+0, 1=+0, 4
- donc $DR(X \cap V) \neq DR(X|V=0) + DR(V|X=0)$

En multiplicatif:

- effet joint : $RR(X \cap V) = 0,9/0,1 = \times 9$
- produit des effets individuel : $RR(X|V=0) \times RR(V|X=0) = 4 \times 2 = \times 8$
- donc $DR(X \cap V) \neq DR(X|V=0) \times DR(V|X=0)$

Ici l'effet joint des 2 expositions est supérieur à la somme ou au produit des effets individuels, il y a donc une interaction synergique entre les deux expositions.

4.3 Synthèse

Mathématiquement, les formulations sont équivalentes :

- échelle additive: $p_{10} p_{00} \neq p_{11} p_{01} \iff p_{11} \neq (p_{10} + p_{01}) p_{00}$
- échelle multiplicative : $p_{10}/p_{00} \neq p_{11}/p_{01} \iff p_{11} \neq (p_{10} \times p_{01})/p_{00}$

La différence se joue plutôt sur :

- la façon dont la question est posée (effet de X selon V ou effet conjoint de X et V),
- sur les hypothèses causales formulées (scénarii do(X) ou do(X,V))
- et donc sur les sets de facteurs de confusion à considérer (seulement sur $X \to Y$ ou $X.V \to Y$).

Il existe des cas où l'identification d'une interaction ou d'une modification d'effet ne conduira pas à la même démarche et donc au même résultat ?. Prenons le DAG suivant :

Dans ce cas, il n'y a pas d'interaction entre A1 et A2, car si on intervient sur les 2 (do(A1,A2)), il n'y a plus de chemin entre A2 et Y. Il peut par contre y avoir une modification de l'effet $A1 \rightarrow Y$ par A2 (do(A1)). Dans ce cas, pour estimer cet effet, L1 et L2 seront considérés comme des facteurs de confusion, mais pas L3.

La question des échelles

Mesures des interactions

Echelle additive

Une façon simple de mesurer l'interaction est de mesurer à quel point l'effet conjoint de deux facteurs est différents de la somme de leurs effets individuels ?:

- $AI = DR(X \cap V) (DR(X|V=0) + DR(V|X=0))$
- $\bullet \ \ AI = (p_{11} p_{00}) [(p_{10} p_{00}) + (p_{01} p_{00})]$
- soit $AI = p_{11} p_{10} p_{01} + p_{00}$

Exemple

Mesure de l'interaction dans l'exemple 1

- $DR(X \cap V) (DR(X|V=0) + DR(V|X=0)) = 0.8 (0,3 + 0.00)$ (0,1) = +0,4
- soit $p_{11}-p_{10}-p_{01}+p_{00}=0,9-0,4-0,2+0,1=+0,4$ ou $(p_{11}-p_{01})-(p_{10}-p_{00})=(0,9-0,2)-(0,4-0,1)=$ 0, 7 - 0, 3 = +0, 4
- ou $(p_{11}-p_{10})-(p_{01}-p_{00})\,=\,(0,9-0,4)-(0,2-0,1)\,=\,$ 0, 5 - 0, 1 = +0, 4

soit:

Echelle multiplicative

En cas d'outcome binaire, c'est souvent le RR ou l'OR qui est utilisé pour mesurer les effets. La mesure de l'interaction sur une échelle multiplicative serait donc?:

$$\begin{split} \bullet & \ MI = \frac{RR_{11}}{RR_{10} \times RR_{01}} \\ \bullet & \ \text{soit} \ MI = \frac{p_{11}/p_{00}}{(p_{10}/p_{00}) \times (p_{01}/p_{00})} \\ \bullet & \ \text{soit} \ MI = \frac{p_{11} \times p_{00}}{p_{10} \times p_{01}} \end{split}$$

Exemple

Mesure de l'interaction dans l'exemple 1

$$\begin{array}{l} \bullet \quad \frac{RR(X\cap V)}{RR(X|V=0)*RR(V|X=0)} = 9/(4\times 2) = \times 1, 1 \\ \bullet \quad \text{soit} \quad \frac{p_{11}/p_{00}}{(p_{10}+p_{01})/p_{00}} = \frac{0,9/0,1}{(0,4\times 0,2)/0,1} = \times 1, 1 \\ \bullet \quad \text{ou} \quad \frac{p_{11}/p_{00}}{p_{10}/p_{00}} = \frac{0,9/0,2}{0,4/0,1} = \times 4, 5/\times 4 = \times 1, 1 \\ \bullet \quad \text{ou} \quad \frac{p_{11}/p_{10}}{p_{01}/p_{00}} = \frac{0,9/0,4}{0,2/0,1} = \times 2, 25 - \times 2 = \times 1, 1 \end{array}$$

211	•
Ju	

x\v	V = 0	V = 1	Effet V			
X = 0	P00 = +0,1	P01 = +0,2	x2 🛖			
X = 1	P10 = +0,4	P11 = +0,9	X2,25			
Effet X	x4 ~	→ X4,5 +1	,1 (x8)			
	+1	+1.1				

5.2 Lien entre les deux échelles

Un apparent paradoxe

Mesurer l'interaction sur une seule échelle peut être trompeur ?. On peut fréquemment observer une interaction positive dans une échelle (par exemple p11 - p10 - p01 + p00 > 0) et négative dans l'autre (par exemple p11.p00/p10.p01 < 1).

Exemple

Dans cet exemple (on a juste modifié la probabilité p_{11} , on observe une interaction additive positive (l'effet de X augmente de +20% quand V=1 par rapport à V=0) mais une interaction multiplicative négative (l'effet de X est multiplié par 0,9 - donc diminue - quand V=1 par rapport à V=0).

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	+0,1 👚
X = 1	P10 = +0,4	P11 = +0,7	+0,3 +0,2
Effet X	+0,3 +0,2	+0,5 +0	,2 (+0,5)

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	x2 🛖
X = 1	P10 = +0,4	P11 = +0,7	x1,75 <mark>x0,9</mark>
Effet X	×4×0,9	🔷 x3,5	(0,9 (x8)

Il a même été démontré que si on n'observe pas d'interaction sur une échelle, alors on en observera obligatoirement sur l'autre échelle...?.

Exemple

Dans cet exemple, il n'y a pas d'interaction multiplicative (effet de X identique quelque soit V), mais sur l'echelle additive, on observe une interaction positive.

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	+0,1 👚
X = 1	P10 = +0,4	P11 = +0,8	+0,4 +0,3
Effet X	+0,3+0,3	+0,6 +0	,3 (+0,5)

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	x2 🛖
X = 1	P10 = +0,4	P11 = +0,8	x2 x1
Effet X	x4 _{x1}	🔷 x4	(1 (x8)

et dans cet autre exemple, il n'y a pas d'interaction additive (effet de X identique quelque soit V), mais sur l'echelle multiplicative, on observe une interaction négative.

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	+0,1 👚
X = 1	P10 = +0,4	P11 = +0,5	+0,1 +0
Effet X	+0,3 +0	+0,3	+0 (+0,5)

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	x2 🛖
X = 1	P10 = +0,4	P11 = +0,5	X1,25 <mark>x0,6</mark>
Effet X	^{x4} x0,6	X2,5	(0,6 (x8)

Le continuum

Dans un article de 2019 ?, Vanderweele décrit le continuum existant entre les 2 échelles.

Par exemple, avec deux expositions ayant un effet positif (qui augmentent le risque) sur l'outcome en l'absence de l'autre exposition, lorsque l'effet joint est très important, l'interaction est positive sur les 2 échelles. Mais lorsque la taille de l'effet joint diminue, l'interaction multiplicative devient négative alors que l'interaction additive reste positive. Puis, lorsque la taille de l'effet joint diminue encore, l'interaction devient négative sur les deux échelles.

X1 \ X2	X2 = 0	X2 = 1	Effet X2
X1 = 0	P00 = +0,1	P01 = +0,2	+0,1
X1 = 1	P10 = +0,4	P11 = +Δ	E(X2 X1=1)
Effet X1	+0.3	F(X1 X2=1)	(+0.5)

X1 \ X2	X2 = 0	X2 = 1	Effet X2
X1 = 0	P00 = +0,1	P01 = +0,2	x2
X1 = 1	P10 = +0,4	P11 = +\D	RR(X2 X1=1)
Effet X1	x4	RR(X1 X2=1)	(+0,8)

	P11	MI	Al			RR(X1 X2=1) E(X1 X2=1)	RR(X2 X1=1) E(X2 X1=1)
4				M+	positive-multiplicative	4.5	2.3
1	0.9	1.1	+0.4	A+	positive-additive	+0.7	+0.5
2	0.8	1.0	+0.3	M ₀	no-multiplicative	4	2
	0.0	1.0	+0.5	A+	positive-additive	+0.6	+0.4
3	0.7	0.9	+0.2	M-	negative-multiplicative	3.5	1.75
3	0.7	0.9	10.2	A+	positive-additive	+0.5	+0.3
4	0.5	0.6	+0.0	M-	negative-multiplicative	2.5	1.25
7	0.5	0.0	10.0	A_0	zero-additive	+0.3	+0.1
5	0.45	0.56	-0.05	M-	negative-multiplicative	2.3	1.1
3	0.43	0.50	-0.03	A-	negative-additive	+0.25	+0.05
6	0.4	0.5	-0.1	M-	single	2	1
0	0.4	0.5	-0.1	A-	pure interaction	+0.2	0.0
7	0.3	0.4	-0.2	M-	single	1.5	0.75
	0.5	0.4	-0.2	A-	qualitative interaction	+0.1	-0.1
8	0.2	0.3	-0.3	M-	single-qualitative	1	0.5
	0.2	0.0	-0.0	A-	single-pure interaction	0.0	-0.2
9	0.15	0.2	-0.35	M-	double	8.0	0.4
9	0.13	0.2	-0.55	A-	qualitative interaction	-0.05	-0.25
10	0.1	0.1	-0.4	M-	perfect antagonism	0.5	0.3
10	0.1	0.1	-0.4	A-	periect antagonism	-0.1	-0.3
11	0.05	0.06	-0.45	M-	inverted interaction	0.3	0.1
- ' '	0.03	0.00	-0.40	A-	inverted interaction	-0.15	-0.35

Interaction pure et qualitative

Dans ce continuum, deux cas particuliers d'interaction peuvent être retrouvées .

• Interaction pure de X en fonction de V, si X n'a un effet que dans une strate de V. Par exemple, $p_{10}=p_{00}$ et $p_{11}\neq p_{01}$

Par exemple ici, V a un effet si X=0 mais pas si X=1 :

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	+0,1
X = 1	P10 = +0,4	P11 = +0,4	+0,0
Effet X	+0,3	+0,2	(+0,5)

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	x2
X = 1	P10 = +0,4	P11 = +0,4	x1
Effet X	x4	x2	(x8)

• Interaction qualitative de X1 en fonction de X2, , si l'effet de X1 dans une strate de X2 va dans la direction opposée de l'autre strate de X2

Par exemple ici, V a un effet positif si X=0 mais négatif si X=1:

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	+0,1
X = 1	P10 = +0,4	P11 = +0,3	-0,1
Effet X	+0,3	+0,1	(+0,5)

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	x2
X = 1	P10 = +0,4	P11 = +0,3	X0,75
Effet X	x4	X1,5	(x8)

5.3 Synthèse

Quelle échelle choisir pour mesurer un effet d'interaction ?

Même si en pratique l'échelle multiplicative est plus utilisée en raison de l'utilisation des modèles logistiques ?, il semble y avoir un consensus pour privilégier l'échelle additive, plus appropriée pour évaluer l'utilité en santé publique ? ?.

Si on reprend l'exemple ci dessous :

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	+0,1 👚
X = 1	P10 = +0,4	P11 = +0,7	+0,3 +0,2
Effet X	+0,3 +0,2	+0,5 +0	,2 (+0,5)

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	x2 🛖
X = 1	P10 = +0,4	P11 = +0,7	x1,75 <mark>x0,9</mark>
Effet X	x4x0,9	🔷 x3,5	(0,9 (x8)

X représente un traitement dont on ne dispose que de 100 doses et Y un outcome de santé favorable (guérison). Il faut choisir si on donne 100 doses au groupe V=0 ou au groupe V=1.

Si on donne 100 doses au groupe V=0, 30 personnes seront guéries grace au traitement (30 personnes de plus que l'évolution naturelle, X=0) contre 50 personnes si on les donne au groupe V=1. Donc il est préférable d'allouer les doses au groupe V=1.

Pour tant si on avait réfléchi à partir de l'échelle multiplicative, on au rait choisi le groupe V=0 car l'effet du traitement est de dans le groupe V=0 et RR=3,5 dans le groupe V=1...

On peut donc conclure à un effet multiplicatif plus fort d'un traitement dans un groupe alors qu'en terme d'utilité (nombre de personnes favorablement impactées), l'échelle additive nous conduirait à choisir l'autre groupe...

Idéalement, les interactions devraient cependant être reportées sur les 2 échelles ? ?.

Types de paramètres

Plusieurs paramètres peuvent être utilisés pour décrire une interaction, sur l'échelle additive ou multiplicative.

Avec les différences de risques (DR) 6.1

On a déjà défini un paramètre d'interaction sur l'échelle additive (AI) à partir des différences d'effets?:

- $AI = DR(X \cap V) (DR(X|V = 0) + DR(V|X = 0))$
- $\bullet \ \ AI = (p_{11} p_{00}) [(p_{10} p_{00}) + (p_{01} p_{00})]$
- soit $AI = p_{11} p_{10} p_{01} + p_{00}$

Avec les risques relatifs (RR)

On a aussi défini un paramètre d'interaction sur l'échelle multiplicative (MI) à partir des risques relatifs?:

- $$\begin{split} \bullet & \ MI = \frac{RR_{11}}{RR_{10} \times RR_{01}} \\ \bullet & \ \text{soit} \ MI = \frac{p_{11}/p_{00}}{(p_{10}/p_{00}) \times (p_{01}/p_{00})} \\ \bullet & \ \text{soit} \ MI = \frac{p_{11} \times p_{00}}{p_{10} \times p_{01}} \end{aligned}$$

Avec les Odds Ratio (OR) 6.3

Souvent en épidémiologie, lorsque l'outcome Y est binaire, les effets sont mesurés par des odds ratio estimé à partir de modèle de régression logistique.

Un paramètre d'interaction sur l'echelle multiplicative (MI_{OR}) peut être estimé à partir de ces OR ? :

•
$$MI_{OR} = \frac{OR_{11}}{OR_{10} \times OR_{01}}$$

En général, la mesure MI_{OR} et MI_{RR} seront proches si l'outcome est rare ?.

6.4 Excès de risque à partir des RR (RERI)

Lorsque seulement les risques relatifs sont donnés mais que l'on souhaite évaluer l'interaction sur l'échelle additive, "l'excès de risque du à l'interaction" (RERI) ou "interaction contrast ratio" (ICR), peut être estimé à partir des risques relatifs ? :

•
$$RERI = RR_{11} - RR_{10} - RR_{01} + 1$$

Il faut noter que, bien que le RERI donne la direction direction (positive, négative ou nulle) de l'interaction additive, nous ne pouvons pas utiliser le RERI pour évaluer l'ampleur de l'interaction additive, à moins de connaître au moins p_{00} .

Si l'on a seulement l'OR et que l'outcome est rare, les OR peuvent approximé les RR, on a donc :

•
$$RERI_{OR} = OR_{11} - OR_{10} - OR_{01} + 1 \approx RERI_{RR}$$

6.5 Autres

D'autres paramètres ont aussi été proposé?, tels que :

Le "Synergie index" (SI)

Il s'agit d'un paramètre explorant l'interaction additive :

$$\bullet \ \ S = \tfrac{RR_{11}-1}{(RR_{10}-1)+(RR_{01}-1)}.$$

Il mesure à quel point le rapport de risque joint dépasse 1, et si cette mesure est supérieure à la somme de "à quel point" les rapports de risque de chaque exposition dépasse 1.

Si le dénominateur est positif:

6.5. AUTRES 29

- $\begin{array}{l} \bullet \ \ {\rm si\ S} > 1, \ {\rm alors}\ RERI_{RR} > 0 \\ \bullet \ \ {\rm si\ S} < 1, \ {\rm alors}\ RERI_{RR} < 0 \\ \end{array}$

L'interprétation de l'indice de synergie devient difficile dans les cas où l'effet de l'une des expositions est négatif et que le dénominateur de S est donc inférieur à 1.

Proportion attribuable (AP) 6.5.1

Il s'agit aussi d'un paramètre explorant l'interaction additive :

•
$$AP = \frac{RR_{11} - RR_{10} - RR_{01} + 1}{RR_{11}}$$
.

Ce paramètre mesure la proportion du risque dans le groupe doublement exposé qui est due à l'interaction.

L'AP est en lien avec le $RERI_{RR}$:

- $\begin{array}{l} \bullet \quad {\rm AP}>0 \ {\rm si} \ {\rm et} \ {\rm seulement} \ {\rm si} \ RERI_{RR}>0 \\ \bullet \quad {\rm AP}<0 \ {\rm si} \ {\rm et} \ {\rm seulement} \ {\rm si} \ RERI_{RR}<0. \end{array}$

En fait
$$AP = \frac{RERI_{RR}}{RR_{11}-1}$$
.

Part II

Estimations, Interprétations, Présentations

Présentation des résultats

7.1 Recommendations

Knol et VanderWeele ont émis des recommendations concernant la présentation des résutalts d'une analyses d'intéractions ?. Ces recommandations sont :

Pour une analyse d'une modification d'effet de A1 sur Y par A2

- Présenter les effectifs dans chaque catégorie
 - avec et sans l'outcome $(N_{a1,a2}(Y=1)etN_{a1,a2}(Y=0))$
- Présenter les risques relatifs (RR), les OR ou les différences de risque (RD)
 - avec les intervalles de confiance (IC)
 - pour chaque strate de A1 et de A2 avec une seule catégorie de référence
 - (éventuellement prise comme la strate A1.A2 présentant le plus faible risque de Y).
- Présenter les RR, OR ou RD avec les IC
 - de l'effet de A1 sur Y dans les strates de A2
- Présenter les mesures de la modification de l'effet avec les IC, sur des échelles
 - additives (par exemple, RERI)
 - et multiplicatives.
- Énumérez les facteurs de confusion pour lesquels la relation entre A1 et Y a été ajustée.

Interaction A1.A2 sur Y

- Présenter les effectifs dans chaque catégorie
 - avec et sans l'outcome $(N_{a1,a2}(Y=1)etN_{a1,a2}(Y=0))$
- Présenter les risques relatifs (RR), les OR ou les différences de risque (RD)
 - avec les intervalles de confiance (IC)
 - pour chaque strate de ${\rm A1}$ et de ${\rm A2}$ avec une seule catégorie de référence
 - (éventuellement prise comme la strate A1.A2 présentant le plus faible risque de Y).
- Présenter les RR, OR ou RD avec les IC
 - de l'effet de A1 sur Y dans les strates de A2
 - et de A2 sur Y dans les strates de A1.
- Présenter les mesures d'e la modification de l'effet'interaction avec les IC sur des échelles
 - additives (par exemple, RERI)
 - et multiplicatives.
- Énumérez les facteurs de confusion pour lesquels la relation entre A1 et Y et la relation entre A2 et Y ont été ajustées.

7.2 Proposition

Dans la suite de ce document, nous proposons des résultats présentées selon une variante de ce que proposent Knol et VanderWeele. Nous proposons en effet :

- De présenter les effets marginaux ou proportions prédites de Y dans chaque strate A1.A2,
 - plutot les effectifs avec et sans l'outcome
- Ne pas forcément présenter une différence de risque ou un rapport de risque
 - pour chaque strate de A1 et de A2 avec une seule catégorie de référence
- Mais présenter les effets
 - de A1 dans chaque strate de A2 $\,$
 - et de A2 dans chaque strate de A1 (si analyse d'interaction)
 - dans une échelle multiplicative et additive.

Simulations

Pour la description des différents types d'estimation, on a simulé des données selon le DAG suivant (toutes les variables sont binaires):

Le code ayant permis de simuler les données est le suivant :

```
b_{L2}Y = 0.02,
                                  b_L3_Y = -0.02,
                                  b_A1_Y = 0.3,
                                  b_A2_Y = 0.1,
                                  b_A1A2_Y = 0.4 ) { # <- effet d'interaction Delta)</pre>
  # coefficients pour simuler l'exposition
  # exposition A1 # vérif
 try(if(b_A1 + b_L1_A1 + b_L1_A1 > 1)
    stop("la somme des coefficient du modèle A1 dépasse 100%"))
  # exposition A2 # vérif
  try(if(b_A2 + b_L1_A2 + b_L3_A2 > 1)
    stop("la somme des coefficients du modèle A2 dépasse 100%"))
  # coefficients pour simuler l'outcome, vérif
 try(if(b_Y + b_L1_Y + b_L2_Y + b_L3_Y + b_A1_Y + b_A2_Y + b_A1A2_Y > 1)
    stop("la somme des coefficients du modèle Y dépasse 100%"))
 try(if(b_Y + b_L1_Y + b_L2_Y + b_L3_Y + b_A1_Y + b_A2_Y + b_A1A2_Y < 0)
    stop("la somme des coefficients du modèle Y est inférieure à 0%"))
 coef \leftarrow list(c(p_L1 = p_L1, p_L2 = p_L2, p_L3 = p_L3),
               c(b_A1 = b_A1, b_L1_A1 = b_L1_A1, b_L2_A1 = b_L2_A1),
               c(b_A2 = b_A2, b_L1_A2 = b_L1_A2, b_L3_A2 = b_L3_A2),
               c(b_Y = b_Y, b_{L1}Y = b_{L1}Y, b_{L2}Y = b_{L2}Y, b_{L3}Y = b_{L3}Y,
                 b_A1_Y = b_A1_Y, b_A2_Y = b_A2_Y, b_A1A2_Y = b_A1A2_Y)
 return(coef)
generate.data <- function(N, b = param.causal.model()) {</pre>
 L1 \leftarrow rbinom(N, size = 1, prob = b[[1]]["p_L1"])
 L2 \leftarrow rbinom(N, size = 1, prob = b[[1]]["p_L2"])
 L3 \leftarrow rbinom(N, size = 1, prob = b[[1]]["p_L3"])
 A1 \leftarrow rbinom(N, size = 1, prob = b[[2]]["b_A1"] +
                  (b[[2]]["b_L1_A1"] * L1) + (b[[2]]["b_L2_A1"] * L2))
 A2 \leftarrow rbinom(N, size = 1, prob = b[[3]]["b_A2"] +
                  (b[[3]]["b_L1_A2"] * L1) + (b[[3]]["b_L3_A2"] * L3))
 Y \leftarrow rbinom(N, size = 1, prob = (b[[4]]["b_Y"] +
                                       (b[[4]]["b_L1_Y"] * L1) +
                                       (b[[4]]["b_L2_Y"] * L2) +
                                       (b[[4]]["b_L3_Y"] * L3) +
                                       (b[[4]]["b A1 Y"] * A1) +
                                       (b[[4]]["b_A2_Y"] * A2) +
                                       (b[[4]]["b_A1A2_Y"] * A1 * A2)))
```

```
data.sim <- data.frame(L1, L2, L3, A1, A2, Y)
  return(data.sim)
}

#### On simule une base de données
  set.seed(12345)
  # b = param.causal.model(b_A1A2_Y = -0.45)
  b = param.causal.model()
  df <- generate.data(N = 10000, b = b)
  summary(df)
  prop.table(table(df$Y, df$A1, df$A2, deparse.level = 2))</pre>
```

Au final, les probabilités de l'outcome P(Y=1), dans chaque catégorie sont :

A2	label	levels	value
0	A1	0	0.10 (0.30)
0		1	0.41(0.49)
1	A1	0	0.20(0.40)
1		1	$0.90 \ (0.30)$

A partir de modèles de régression

Dans une première étape exploratoire, on peut simplement utiliser les modèles de régression habituels.

9.1 Régression logistique

Lorsque l'on étudie un outcome binaire, on utilise souvent les modèles de régression logistique.

```
##
## Call:
## glm(formula = Y ~ as.factor(A1) + as.factor(A2) + as.factor(A1) *
      as.factor(A2) + as.factor(L1) + as.factor(L2) + as.factor(L3),
##
      family = binomial, data = df_f)
##
## Coefficients:
                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                               -2.16540 0.06708 -32.281 < 2e-16 ***
## as.factor(A1)1
                                1.75607
                                           0.07604 23.093 < 2e-16 ***
## as.factor(A2)1
                                0.75332
                                           0.06831 11.028 < 2e-16 ***
## as.factor(L1)1
                                0.15753
                                           0.05702 2.763 0.00573 **
## as.factor(L2)1
                                0.14128
                                           0.06878 2.054 0.03996 *
## as.factor(L3)1
                               -0.14926
                                           0.06141 -2.431 0.01507 *
## as.factor(A1)1:as.factor(A2)1 1.78587
                                           0.14131 12.638 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
##
       Null deviance: 11037.7 on 9999 degrees of freedom
## Residual deviance: 8460.4 on 9993
                                        degrees of freedom
## AIC: 8474.4
##
## Number of Fisher Scoring iterations: 4
```

A partir de cette sortie, on peut extraire :

• A1|A2=0

- à partir du coefficient as.factor(A1)1
- qui correspond à l'effet de A1 dans la catégorie de référence de A2,
- soit $OR_{A1|A2=0} = exp(1.756) = 5.789$.

• A1|A2=1

- à partir du coefficient as.factor(A1)1:as.factor(A2)1,
- qui correspond à la différence d'effet de A1 quand on passe dans l'autre catégorie de A2.
- L'effet de A1 dans la catégorie A2=1 est donc
- $-OR_{A1|A2=1} = exp(1.756 + 1.786) = 34.536.$

• L'interaction multiplicative (IM)

- peut être estimée à partir du coefficient as.factor(A1)1:as.factor(A2)1
- par IM = exp(1.786) = 5.966,
- qu'on peut retrouver en faisant $OR_{A1|A2=1}/OR_{A1|A2=0}$.
- Ici l'interaction est significative (p-value > 0.05).

• A2|A1=0 et A2|A1=1

- On aurait aussi pu décrire l'interaction à partir de l'effet d'A2 dans chaque strate de A1
- à partir de as.factor(A2)1 et as.factor(A1)1:as.factor(A2)1,
- avec : $OR_{A2|A1=0} = exp(0.753) = 2.123$
- et $OR_{A2|A1=1} = exp(0.753 + 1.786) = 12.667$

• L'interaction additive

- On peut explorer l'interaction sur l'échelle additive en estimant le RERI par
- $-\ RERI \approx OR_{11} OR_{10} OR_{01} + 1 =$
- $\begin{array}{l} -\ OR_{A1,A2} OR_{A1|A2=0} OR_{A2|A1=0} + 1 = \\ -\ exp(1.786 + 0.753 + 1.786) exp(1.786) exp(0.753) + 1 = 68.477. \end{array}$

En résumé, (le package finalfit permet de sortir quelques résultats proprement):

names	OR
A1 A2=0	5.79 (4.99-6.72, p<0.001)
A2 A1=0	2.12 (1.86-2.43, p<0.001)
Interaction	5.96 (4.54-7.90, p<0.001)

```
explanatory = c("as.factor(A1)",
                "as.factor(A2)",
                "as.factor(A1)*as.factor(A2)",
                "as.factor(L1)",
                "as.factor(L2)"
                "as.factor(L3)")
dependent = "Y"
df f %>%
  finalfit(dependent, explanatory)-> t
# le tableau t entier peut être imprimé, mais ici je sélectionne seulement les effets d'intéret
# pour éviter la table 2 fallacy (les coefficient des facteurs de confusion L ne sont pas interpa
cbind(names = c("A1|A2=0", "A2|A1=0", "Interaction"),
      OR = t[c(12,14,13),6]) \%
  as.data.frame %>%
     kbl() %>%
     kable_classic()
```

Attention, les modèles de régressions logistiques sont biaisés car les données sont générées à partir de modèles additifs.

9.2 Régression lineaire

Même si l'outcome binaire, on peut en théorie utiliser un modèle de régression linéaire et explorer les effets sur une échelle additive. Si l'outcome est quantitatif, on utilise aussi, en général, les modèles de régression linéaire.

```
## -0.93110 -0.19602 -0.10494 -0.08426 0.91574
## Coefficients:
##
                                 Estimate Std. Error t value Pr(>|t|)
                                            0.008146 12.746 < 2e-16 ***
## (Intercept)
                                 0.103835
## as.factor(A1)1
                                 0.300796
                                            0.011592 25.948 < 2e-16 ***
## as.factor(A2)1
                                            0.008671 10.642 < 2e-16 ***
                                 0.092280
## as.factor(L1)1
                                 0.020677
                                            0.007495
                                                      2.759 0.00581 **
## as.factor(L2)1
                                 0.019476
                                            0.009410
                                                      2.070 0.03851 *
## as.factor(L3)1
                                -0.019574
                                            0.008085 -2.421 0.01549 *
## as.factor(A1)1:as.factor(A2)1 0.394034
                                            0.017854 22.070 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3615 on 9993 degrees of freedom
## Multiple R-squared: 0.2856, Adjusted R-squared: 0.2852
## F-statistic: 665.8 on 6 and 9993 DF, p-value: < 2.2e-16
```

A partir de cette sortie, on peut extraire :

• A1|A2=0

- à partir du coefficient as.factor(A1)1
- qui correspond à l'effet de A1 dans la catégorie de référence de A2,
- soit DR = +30,08%.

• A1|A2=1

- à partir du coefficient as.factor(A1)1:as.factor(A2)1,
- qui correspond à la différence d'effet de A1 quand on passe dans l'autre catégorie de A2.
- L'effet de A1 dans la catégorie A2=1 est donc
- -DR = 30.08 + 39.40 = 69.48 %.

• L'interaction additive

- à partir du coefficient as.factor(A1)1:as.factor(A2)1
- avec AI = +39.40%,
- qu'on peut retrouver en faisant DR(A1|A2=1) DR(A1|A2=0).
- Ici l'interaction est significative (p-value >0.05).

• A2|A1=0 et A2|A1=1

- On aurait aussi pu décrire cette interaction à partir de l'effet d'A2 dans chaque strate de A1
- à partir de as.factor(A2)1 et as.factor(A1)1:as.factor(A2)1,
- $\text{ avec}: DR_{A1|A2=0} = +9.23\%$
- et $DR_{A1|A2=1} = 9.23 + 39.40 = 48.63\%$.

names	DR
A1 A2=0	0.30 (0.28 to 0.32, p<0.001)
A2 A1=0	0.09 (0.08 to 0.11, p<0.001)
Interaction	0.39 (0.36 to 0.43, p<0.001)

En résumé, (le package ${\tt finalfit}$ permet de sortir quelques résultats proprement) :

Analyses confirmatoires

10.1 Estimation par G-computation

Il s'agit d'une "G-methods" aussi appelée "standardisation" par Hernàn ?. Le principe est le suivant :

```
## 1.a) on crée 4 tables correspondant aux 4 interventions contrefactuelles
    df.A1_0.A2_0 <- df.A1_1.A2_0 <- df.A1_0.A2_1 <- df.A1_1.A2_1 <- df
    df.A1 \ 0.A2 \ 0$A1 \leftarrow df.A1 \ 0.A2 \ 0$A2 \leftarrow rep(0, nrow(df))
    df.A1_1.A2_0$A1 <- rep(1, nrow(df))
    df.A1_1.A2_0$A2 \leftarrow rep(0, nrow(df))
    df.A1_0.A2_1$A1 \leftarrow rep(0, nrow(df))
    df.A1_0.A2_1$A2 <- rep(1, nrow(df))
    df.A1_1.A2_1$A1 <- df.A1_1.A2_1$A2 <- rep(1, nrow(df))
## 1.b) on modélise le critère de jugement
    \# model.Y <- glm(Y ~ L1 + L2 + L3 + A1 + A2 + A1:A2, data = df, family = "binomial")
    # modèle logistique biaisé (il y a des interactions avec les baseline)
    model.Y \leftarrow glm(Y \sim L1 + L2 + L3 + A1 + A2 + A1:A2, data = df,
                   family = "gaussian") # modèle non biaisé
    # en pratique la régression logistique n'est pas tellement biaisée,
    # mais peut être car il n'y a pas la place de mettre beaucoup de confusion
    # par rapport aux effets importants de A1 et A2 ? (10 fois plus grands)
## 1.c) on prédit le critère de jugement sous les interventions contrefactuelles
    Y.A1 0.A2 0 <- predict(model.Y, newdata = df.A1 0.A2 0, type = "response")
    Y.A1_1.A2_0 <- predict(model.Y, newdata = df.A1_1.A2_0, type = "response")
```

```
Y.A1_0.A2_1 <- predict(model.Y, newdata = df.A1_0.A2_1, type = "response")
    Y.A1_1.A2_1 <- predict(model.Y, newdata = df.A1_1.A2_1, type = "response")
## 1.d) on va enregistrer l'ensemble des résultats pertinents dans une table de longue
    int.r <- matrix(NA,</pre>
                     ncol = 26,
                     nrow = nlevels(as.factor(df$A1)) * nlevels(as.factor(df$A2)))
    int.r <- as.data.frame(int.r)</pre>
    names(int.r) <- c("A1", "A2", "p", "p.lo", "p.up",</pre>
                       "RD.A1", "RD.A1.lo", "RD.A1.up", "RD.A2", "RD.A2.lo", "RD.A2.up",
                       "RR.A1", "RR.A1.lo", "RR.A1.up", "RR.A2", "RR.A2.lo", "RR.A2.up",
                       "a.INT", "a.INT.lo", "a.INT.up", "RERI", "RERI.lo", "RERI.up",
                       "m.INT", "m.INT.lo", "m.INT.up" )
    int.r[,c("A1","A2")] \leftarrow expand.grid(c(0,1), c(0,1))
# marginal effects (Y moyen dans chaque scénario) in the k1 x k2 table
    \# A1 = 0 \ et \ A2 = 0
    int.r$p[int.r$A1 == 0 & int.r$A2 == 0] \leftarrow mean(Y.A1_0.A2_0)
    # A1 = 1 et A2 = 0
    int.r$p[int.r$A1 == 1 \& int.r$A2 == 0] \leftarrow mean(Y.A1_1.A2_0)
    # A1 = 0 et A2 = 1
    int.rp[int.rA1 == 0 \& int.rA2 == 1] \leftarrow mean(Y.A1_0.A2_1)
    # A1 = 1 et A2 = 1
    int.r$p[int.r$A1 == 1 & int.r$A2 == 1] \leftarrow mean(Y.A1_1.A2_1)
# risk difference (contrastes entre Y contrefactuels)
    # RD.A1.A2is0
    int.r$RD.A1[int.r$A1 == 1 \& int.r$A2 == 0] \leftarrow mean(Y.A1_1.A2_0) - mean(Y.A1_0.A2_0)
    # RD.A1.A2is1
    int.r$RD.A1[int.r$A1 == 1 \& int.r$A2 == 1] \leftarrow mean(Y.A1_1.A2_1) - mean(Y.A1_0.A2_1)
    # RD.A2.A1is0
    int.r$RD.A2[int.r$A1 == 0 \& int.r$A2 == 1] \leftarrow mean(Y.A1_0.A2_1) - mean(Y.A1_0.A2_0)
    # RD.A2.A1is1
    int.r$RD.A2[int.r$A1 == 1 \& int.r$A2 == 1] <- mean(Y.A1_1.A2_1) - mean(Y.A1_1.A2_0)
# relative risk (rapports entre Y contrefactuels)
    # RR.A1.A2is0
    int.r$RR.A1[int.r$A1 == 1 & int.r$A2 == 0] \leftarrow mean(Y.A1_1.A2_0) / mean(Y.A1_0.A2_0)
    # RR.A1.A2is1
    int.r$RR.A1[int.r$A1 == 1 & int.r$A2 == 1] <- mean(Y.A1_1.A2_1) / mean(Y.A1_0.A2_1)
    # RR.A2.A1is0
    int.r$RR.A2[int.r$A1 == 0 \& int.r$A2 == 1] \leftarrow mean(Y.A1_0.A2_1) / mean(Y.A1_0.A2_0)
    # RR.A2.A1is1
    int.r$RR.A2[int.r$A1 == 1 \& int.r$A2 == 1] \leftarrow mean(Y.A1_1.A2_1) / mean(Y.A1_1.A2_0)
```

```
# additive interaction
    int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] \leftarrow mean(Y.A1_1.A2_1) -
                                                    mean(Y.A1_1.A2_0) -
                                                    mean(Y.A1_0.A2_1) +
                                                    mean(Y.A1_0.A2_0)
    # RERI
    int.r$RERI[int.r$A1 == 1 \& int.r$A2 == 1] <- (mean(Y.A1_1.A2_1) -
                                                      mean(Y.A1_1.A2_0) -
                                                      mean(Y.A1_0.A2_1) +
                                                      mean(Y.A1_0.A2_0)) /
                                                      mean(Y.A1_0.A2_0)
    # multiplicative interaction
    int.r$m.INT[int.r$A1 == 1 & int.r$A2 == 1] \leftarrow (mean(Y.A1_1.A2_1) *
                                                     mean(Y.A1_0.A2_0)) /
                                                     (mean(Y.A1_1.A2_0) *
                                                      mean(Y.A1_0.A2_1))
## 1.e) Intervalles de confiance par bootstrap
   set.seed(5678)
   B <- 1000
    bootstrap.est <- data.frame(matrix(NA, nrow = B, ncol = 15))</pre>
    colnames(bootstrap.est) <- c("p.A1is0.A2is0", "p.A1is1.A2is0", "p.A1is0.A2is1", "p.A1is1.A2is
                                  "RD.A1.A2is0", "RD.A1.A2is1", "RD.A2.A1is0", "RD.A2.A1is1",
                                  "lnRR.A1.A2is0", "lnRR.A1.A2is1", "lnRR.A2.A1is0", "lnRR.A2.A1is
                                  "INT.a", "lnRERI", "lnINT.m")
    for (b in 1:B){
      # sample the indices 1 to n with replacement
      bootIndices <- sample(1:nrow(df), replace=T)</pre>
      bootData <- df[bootIndices,]</pre>
      if ( round(b/100, 0) == b/100 ) print(paste0("bootstrap number ",b))
      # model (unbiased in this case)
      model.Y \leftarrow glm(Y \sim L1 + L2 + L3 + A1 + A2 + A1:A2,
                     data = bootData,
                                                            # use BootData here +++
                     family = "gaussian")
      # conterfactual data sets
      boot.A1_0.A2_0 <- boot.A1_1.A2_0 <- boot.A1_0.A2_1 <- boot.A1_1.A2_1 <- bootData
      boot.A1_0.A2_0$A1 <- boot.A1_0.A2_0$A2 <- rep(0, nrow(df))
      boot.A1_1.A2_0$A1 \leftarrow rep(1, nrow(df))
      boot.A1_1.A2_0$A2 <- rep(0, nrow(df))</pre>
      boot.A1_0.A2_1$A1 <- rep(0, nrow(df))
```

```
boot.A1_0.A2_1$A2 \leftarrow rep(1, nrow(df))
  boot.A1_1.A2_1$A1 <- boot.A1_1.A2_1$A2 <- rep(1, nrow(df))
  # predict potential outcomes under counterfactual scenarios
  Y.A1_0.A2_0 <- predict(model.Y, newdata = boot.A1_0.A2_0, type = "response")
  Y.A1_1.A2_0 <- predict(model.Y, newdata = boot.A1_1.A2_0, type = "response")
  Y.A1_0.A2_1 <- predict(model.Y, newdata = boot.A1_0.A2_1, type = "response")
  Y.A1_1.A2_1 <- predict(model.Y, newdata = boot.A1_1.A2_1, type = "response")
  # save results in the bootstrap table
  bootstrap.est[b,"p.A1is0.A2is0"] <- mean(Y.A1_0.A2_0)</pre>
  bootstrap.est[b,"p.A1is1.A2is0"] <- mean(Y.A1 1.A2 0)
  bootstrap.est[b,"p.A1is0.A2is1"] <- mean(Y.A1_0.A2_1)</pre>
  bootstrap.est[b,"p.A1is1.A2is1"] <- mean(Y.A1_1.A2_1)</pre>
  bootstrap.est[b,"RD.A1.A2is0"] <- mean(Y.A1_1.A2_0) - mean(Y.A1_0.A2_0)
  bootstrap.est[b,"RD.A1.A2is1"] \leftarrow mean(Y.A1_1.A2_1) - mean(Y.A1_0.A2_1)
  bootstrap.est[b,"RD.A2.A1is0"] \leftarrow mean(Y.A1_0.A2_1) - mean(Y.A1_0.A2_0)
  bootstrap.est[b,"RD.A2.A1is1"] \leftarrow mean(Y.A1_1.A2_1) - mean(Y.A1_1.A2_0)
  bootstrap.est[b,"lnRR.A1.A2is0"] <- log(mean(Y.A1_1.A2_0) / mean(Y.A1_0.A2_0))
  bootstrap.est[b,"lnRR.A1.A2is1"] <- log(mean(Y.A1_1.A2_1) / mean(Y.A1_0.A2_1))
  bootstrap.est[b,"lnRR.A2.A1is0"] <- log(mean(Y.A1_0.A2_1) / mean(Y.A1_0.A2_0))
  bootstrap.est[b,"lnRR.A2.A1is1"] <- log(mean(Y.A1_1.A2_1) / mean(Y.A1_1.A2_0))
  bootstrap.est[b,"INT.a"] <- mean(Y.A1_1.A2_1) -</pre>
    mean(Y.A1_1.A2_0) - mean(Y.A1_0.A2_1) + mean(Y.A1_0.A2_0)
  bootstrap.est[b,"lnRERI"] <- log((mean(Y.A1_1.A2_1) -</pre>
    mean(Y.A1_1.A2_0) - mean(Y.A1_0.A2_1) + mean(Y.A1_0.A2_0)) / mean(Y.A1_0.A2_0)
  bootstrap.est[b,"lnINT.m"] <- log( (mean(Y.A1_1.A2_1) *</pre>
    mean(Y.A1_0.A2_0)) / (mean(Y.A1_1.A2_0) * mean(Y.A1_0.A2_1)))
}
# head(bootstrap.est)
# summary(bootstrap.est)
\# par(mfrow = c(4,4))
# for(c in 1:ncol(bootstrap.est)) {
   hist(bootstrap.est[,c], freq = FALSE, main = names(bootstrap.est)[c])
   lines(density(bootstrap.est[,c]), col = 2, lwd = 3)
   curve(1/sqrt(var(bootstrap.est[,c]) * 2 * pi) *
            exp(-1/2 * ((x-mean(bootstrap.est[,c])) / sd(bootstrap.est[,c]))^2),
          col = 1, lwd = 2, lty = 2, add = TRUE)
\# par(mfrow = c(1,1))
# ok, on a des belles lois normales dans les distributions bootstrap, tout va bien
# pour les IC95%, je peux utiliser la déviation standard des distributions
```

```
# pour des distributions plus asymétriques, on utiliserait plutôt les percentiles 2.5% et 97
    # }
# marginal effects in the k1 x k2 table
    # A1 = 0 et A2 = 0
    int.r$p.lo[int.r$A1 == 0 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 0] -
      qnorm(0.975) * sd(bootstrap.est$p.A1is0.A2is0)
   int.r$p.up[int.r$A1 == 0 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 0] +
      qnorm(0.975) * sd(bootstrap.est$p.A1is0.A2is0)
    # A1 = 1 et A2 = 0
   int.r$p.lo[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 0] -
      qnorm(0.975) * sd(bootstrap.est$p.A1is1.A2is0)
   int.r$p.up[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 0] +
      qnorm(0.975) * sd(bootstrap.est$p.A1is1.A2is0)
    # A1 = 0 et A2 = 1
   int.r$p.lo[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 1] -
      qnorm(0.975) * sd(bootstrap.est$p.A1is0.A2is1)
   int.r$p.up[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 1] +
     qnorm(0.975) * sd(bootstrap.est$p.A1is0.A2is1)
    # A1 = 1 et A2 = 1
   int.r$p.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1] -
      qnorm(0.975) * sd(bootstrap.est$p.A1is1.A2is1)
    int.r$p.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1] +
      qnorm(0.975) * sd(bootstrap.est$p.A1is1.A2is1)
# risk difference
    # RD.A1.A2is0
   int.r$RD.A1.lo[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 0] -
      qnorm(0.975) * sd(bootstrap.est$RD.A1.A2is0)
   int.r$RD.A1.up[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 0] +
      qnorm(0.975) * sd(bootstrap.est$RD.A1.A2is0)
    # RD.A1.A2is1
   int.r$RD.A1.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 1] -
      qnorm(0.975) * sd(bootstrap.est$RD.A1.A2is1)
   int.r$RD.A1.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 1] +
      qnorm(0.975) * sd(bootstrap.est$RD.A1.A2is1)
    # RD.A2.A1is0
    int.r$RD.A2.lo[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 0 & int.r$A2 == 1] -
      qnorm(0.975) * sd(bootstrap.est$RD.A2.A1is0)
   int.r$RD.A2.up[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 0 & int.r$A2 == 1] +
      qnorm(0.975) * sd(bootstrap.est$RD.A2.A1is0)
    # RD.A2.A1is1
   int.r$RD.A2.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 1 & int.r$A2 == 1] -
      qnorm(0.975) * sd(bootstrap.est$RD.A2.A1is1)
   int.r$RD.A2.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 1 & int.r$A2 == 1] +
```

```
qnorm(0.975) * sd(bootstrap.est$RD.A2.A1is1)
# relative risk
        # RR.A1.A2is0
        int.r$RR.A1.lo[int.r$A1 == 1 \& int.r$A2 == 0] <- exp(log(int.r$RR.A1[int.r$A1 == 1 + int.r$A1 == 1 + int.r$A
                                                                                                                             qnorm(0.975) * sd(bootstrap)
        int.r$RR.A1.up[int.r$A1 == 1 & int.r$A2 == 0] <- exp(log(int.r$RR.A1[int.r$A1 == 1
                                                                                                                             qnorm(0.975) * sd(bootstrap)
        # RR.A1.A2is1
        int.r$RR.A1.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A1[int.r$A1 == 1
                                                                                                                             qnorm(0.975) * sd(bootstrap
        int.r$RR.A1.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A1[int.r$A1 == 1
                                                                                                                             qnorm(0.975) * sd(bootstrap)
        # RR.A2.A1is0
        int.r$RR.A2.lo[int.r$A1 == 0 \& int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 0])
                                                                                                                             qnorm(0.975) * sd(bootstrap
        int.r$RR.A2.up[int.r$A1 == 0 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 0 & int.r$A2 == 0])
                                                                                                                             qnorm(0.975) * sd(bootstrap
        # RR.A2.A1is1
        int.r$RR.A2.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 1
                                                                                                                             qnorm(0.975) * sd(bootstrap
        qnorm(0.975) * sd(bootstrap)
# additive interaction
        int.r$a.INT.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$a.INT[int.r$A1 == 1 & int.r
            qnorm(0.975) * sd(bootstrap.est$INT.a)
        int.r$a.INT.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$a.INT[int.r$A1 == 1 & int.r
            qnorm(0.975) * sd(bootstrap.est$INT.a)
        # RERI
        int.r$RERI.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RERI[int.r$A1 == 1 &
                                                                                                                           qnorm(0.975) * sd(bootstrap.
        int.r$RERI.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RERI[int.r$A1 == 1 &
                                                                                                                           qnorm(0.975) * sd(bootstrap.
        # multiplicative interaction
        int.r$m.INT.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$m.INT[int.r$A1 == 1
                                                                                                                             qnorm(0.975) * sd(bootstrap
        int.r$m.INT.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$m.INT[int.r$A1 == 1
```

qnorm(0.975) * sd(bootstrap

	A2=0	A2=1	RD.A2 A1	RR.A2 A1
A1=0	\$p_{00}\$=0.104 [0.095,0.114]	\$p_{01}\$=0.197 [0.182,0.211]	0.092 [0.075,0.109]	1.89 [1.68,2.11]
A1=1	\$p_{10}\$=0.405 [0.379,0.431]	\$p_{11}\$=0.891 [0.87,0.913]	$0.486 \ [0.453, 0.52]$	2.2 [2.05,2.36]
RD.A1 A2	0.301 [0.272,0.329]	0.695 [0.669,0.721]		
RR.A1 A2	3.89 [3.47,4.35]	4.54 [4.19,4.91]		

```
Note:
```

```
\begin{split} & \text{additive Interaction} = 0.394 \; [0.357; 0.431] \\ & \text{RERI} = 3.78 \; [3.36; 4.25] \\ & \text{multiplicative Interaction} = 1.17 \; [1.02; 1.33] \end{split}
```

10.2 Estimation par Modèle Structurel Marginal

```
# On récupère les Y prédit précédents, que l'on fusionne
    Y \leftarrow c(Y.A1_0.A2_0, Y.A1_1.A2_0, Y.A1_0.A2_1, Y.A1_1.A2_1)
    length(Y)
    # on aura une base de données de 40000 lignes
# On récupère les valeurs d'exposition qui ont servi dans les scénarios contrefactuels
    # (qarder le même ordre que pour les Y.A1.A2)
    X \leftarrow rbind(subset(df.A1_0.A2_0, select = c("A1", "A2")),
                subset(df.A1_1.A2_0, select = c("A1", "A2")),
               subset(df.A1_0.A2_1, select = c("A1", "A2")),
               subset(df.A1_1.A2_1, select = c("A1", "A2")))
   # dim(X)
## Modèle structurel marginal
    msm.RD \leftarrow glm(Y \sim A1 + A2 + A1:A2,
                  data = data.frame(Y,X),
                  family = "gaussian") # ne pas ajuster sur les facteurs de confusion
    msm.RD
## tableau des effets marignaux
    results.MSM <- matrix(NA, ncol = 4, nrow = 4)
    colnames(results.MSM) \leftarrow c("A2 = 0", "A2 = 1",
                                "RD within strata of A1".
                                "RR within strata of A1")
    rownames(results.MSM) \leftarrow c("A1 = 0", "A1 = 1",
                                "RD within strata of A2",
                                "RR within strata of A2")
# 4 risques marginaux
    results.MSM["A1 = 0", "A2 = 0"] <- msm.RD$coefficients["(Intercept)"]
    results.MSM["A1 = 0", "A2 = 1"] <- msm.RD$coefficients["(Intercept)"] +
```

	A2 = 0	A2 = 1	RD within strata of A1	RR within strata of A1
A1 = 0	0.107	0.198	0.091	1.851
A1 = 1	0.411	0.889	0.478	2.164
RD within strata of A2	0.303	0.690	NA	NA
RR within strata of A2	3.834	4.483	NA	NA

Note:

additive Interaction = 0.387multiplicative Interaction = 1.17

```
msm.RD$coefficients["A2"]
   results.MSM["A1 = 1", "A2 = 0"] <- msm.RD$coefficients["(Intercept)"] +
      msm.RD$coefficients["A1"]
   results.MSM["A1 = 1","A2 = 1"] <- msm.RD$coefficients["(Intercept)"] +</pre>
      msm.RD$coefficients["A2"] + msm.RD$coefficients["A1"] + msm.RD$coefficients["A1:
# within strata of A2
   results.MSM["RR within strata of A2", "A2 = 0"] <- results.MSM["A1 = 1", "A2 = 0"]
      results.MSM["A1 = 0", "A2 = 0"]
   results.MSM["RD within strata of A2", "A2 = 0"] <- results.MSM["A1 = 1", "A2 = 0"]
      results.MSM["A1 = 0", "A2 = 0"]
   results.MSM["RR within strata of A2", "A2 = 1"] <- results.MSM["A1 = 1", "A2 = 1"]
      results.MSM["A1 = 0", "A2 = 1"]
   results.MSM["RD within strata of A2", "A2 = 1"] <- results.MSM["A1 = 1", "A2 = 1"]
      results.MSM["A1 = 0", "A2 = 1"]
# within strata of A1
   results.MSM["A1 = 0", "RR within strata of A1"] <- results.MSM["A1 = 0", "A2 = 1"]
     results.MSM["A1 = 0", "A2 = 0"]
   results.MSM["A1 = 0", "RD within strata of A1"] <- results.MSM["A1 = 0", "A2 = 1"]
      results.MSM["A1 = 0","A2 = 0"]
   results.MSM["A1 = 1", "RR within strata of A1"] <- results.MSM["A1 = 1", "A2 = 1"]
      results.MSM["A1 = 1", "A2 = 0"]
   results.MSM["A1 = 1", "RD within strata of A1"] <- results.MSM["A1 = 1", "A2 = 1"]
      results.MSM["A1 = 1", "A2 = 0"]
   results.MSM <- round(results.MSM,3)
   RD.interaction <- msm.RD$coefficients["A1:A2"]
   RR.interaction <- (results.MSM["A1 = 1", "A2 = 1"] *
                         results.MSM["A1 = 0", "A2 = 0"]) /
                      (results.MSM["A1 = 0", "A2 = 1"] *
                          results.MSM["A1 = 1", "A2 = 0"] )
```

Au final, on a (sans les IC):

10.3 Estimation avec TMLE

```
## 3- int.ltmleMSM()
                             pour estimer les différentes quantités d'intérêt,
###
                            par gcomputation, IPTW ou tmle
int.ltmleMSM <- function(data = data,</pre>
                        Q_formulas = Q_formulas,
                        g_formulas = g_formulas,
                        Anodes = Anodes,
                        Lnodes = Lnodes,
                        Ynodes = Ynodes,
                        final.Ynodes = final.Ynodes,
                        SL.library = list(Q="SL.glm",
                                         g="SL.glm"),
                        gcomp = gcomp,
                        iptw.only = iptw.only,
                        survivalOutcome = FALSE,
                        variance.method = "ic",
                        B = 2000.
                        boot.seed = 12345) {
  # regime=
  # binary array: n x numAnodes x numRegimes of counterfactual treatment or a list of 'rule' fund
 regimes.MSM[,,1] <- matrix(c(0,0), ncol = 2, nrow = nrow(data), byrow = TRUE) # exposé ni à A1,
 regimes.MSM[,,2] <- matrix(c(1,0), ncol = 2, nrow = nrow(data), byrow = TRUE) # exposé à A1 un
 regimes.MSM[,,3] <- matrix(c(0,1), ncol = 2, nrow = nrow(data), byrow = TRUE) # exposé à A2 un
 regimes.MSM[,,4] <- matrix(c(1,1), ncol = 2, nrow = nrow(data), byrow = TRUE) # exposé à A1 et
  # summary.measures = valeurs des coefficients du MSM associés à chaque régime
  # array: num.regimes x num.summary.measures x num.final.Ynodes -
  # measures summarizing the regimes that will be used on the right hand side of working.msm
  # (baseline covariates may also be used in the right hand side of working.msm and do not need
  summary.measures.reg \leftarrow array(NA, dim = c(4, 3, 1))
  summary.measures.reg[,,1] <- matrix(c(0, 0, 0, # aucun effet ni de A1, ni de A2
                                      1, 0, 0, # effet de A1 isolé
                                      0, 1, 0, # effet de A2 isolé
                                      1, 1, 1), # effet de A1 + A2 + A1:A2
                                    ncol = 3, nrow = 4, byrow = TRUE)
 colnames(summary.measures.reg) <- c("A1", "A2", "A1:A2")</pre>
 if(gcomp == TRUE) {
    # test length SL.library$Q
   SL.library$Q <- ifelse(length(SL.library$Q) > 1, "SL.glm", SL.library$Q)
```

```
# simplify SL.library$g because g functions are useless with g-computation
  SL.library$g <- "SL.mean"
  iptw.only <- FALSE</pre>
}
ltmle_MSM <- ltmleMSM(data = data,</pre>
                       Anodes = Anodes,
                       Lnodes = Lnodes,
                       Ynodes = Ynodes,
                       Qform = Q formulas,
                       gform = g_formulas,
                       #deterministic.g.function = det.g,
                       regimes = regimes.MSM, # à la place de abar
                       working.msm= "Y ~ A1 + A2 + A1:A2",
                       summary.measures = summary.measures.reg,
                       final.Ynodes = final.Ynodes,
                       msm.weights = NULL,
                       SL.library = SL.library,
                       gcomp = gcomp,
                       iptw.only = iptw.only,
                       survivalOutcome = survivalOutcome,
                       estimate.time = FALSE,
                       variance.method = variance.method)
bootstrap.res <- data.frame("beta.Intercept" = rep(NA, B),</pre>
                             "beta.A1" = rep(NA, B),
                             "beta.A2" = rep(NA, B),
                             "beta.A1A2" = rep(NA, B))
if(gcomp == TRUE) {
  set.seed <- boot.seed</pre>
  for (b in 1:B){
    # sample the indices 1 to n with replacement
    bootIndices <- sample(1:nrow(data), replace=T)</pre>
    bootData <- data[bootIndices,]</pre>
    if ( round(b/100, 0) == b/100 ) print(paste0("bootstrap number ",b))
    boot_ltmle_MSM <- ltmleMSM(data = bootData,</pre>
                                Anodes = Anodes,
                                Lnodes = Lnodes,
                                Ynodes = Ynodes,
```

```
Qform = Q_formulas,
                                  gform = g_formulas,
                                  #deterministic.g.function = det.g,
                                  regimes = regimes.MSM, # à la place de abar
                                  working.msm= "Y ~ A1 + A2 + A1:A2",
                                  summary.measures = summary.measures.reg,
                                  final.Ynodes = final.Ynodes,
                                  msm.weights = NULL,
                                  SL.library = SL.library,
                                  gcomp = gcomp,
                                  iptw.only = iptw.only,
                                  survivalOutcome = survivalOutcome,
                                  estimate.time = FALSE.
                                  variance.method = variance.method)
      bootstrap.res$beta.Intercept[b] <- boot_ltmle_MSM$beta["(Intercept)"]</pre>
      bootstrap.res$beta.A1[b] <- boot_ltmle_MSM$beta["A1"]</pre>
      bootstrap.res$beta.A2[b] <- boot_ltmle_MSM$beta["A2"]</pre>
      bootstrap.res$beta.A1A2[b] <- boot_ltmle_MSM$beta["A1:A2"]</pre>
    }
  }
 return(list(ltmle_MSM = ltmle_MSM,
              bootstrap.res = bootstrap.res))
}
### 4- summary.int()
                        pour enregistrer l'ensemble des estimations
summary.int <- function(data = data,</pre>
                         ltmle_MSM = ltmle_MSM,
                         estimator = c("gcomp", "iptw", "tmle")) {
  if(estimator == "gcomp") {
    try(if(ltmle_MSM$ltmle_MSM$gcomp == FALSE)
      stop("The ltmle function did not use the gcomp estimator, but the iptw +/- tmle estimator")
    beta <- ltmle_MSM$ltmle_MSM$beta</pre>
  if(estimator == "iptw") {
    try(if(ltmle_MSM$ltmle_MSM$gcomp == TRUE)
      stop("The ltmle function used the gcomp estimator, iptw is not available"))
    beta <- ltmle_MSM$ltmle_MSM$beta.iptw</pre>
```

```
IC <- ltmle_MSM$ltmle_MSM$IC.iptw</pre>
if(estimator == "tmle") {
  try(if(ltmle_MSM$ltmle_MSM$gcomp == TRUE) stop("The ltmle function used the gcomp
  beta <- ltmle_MSM$ltmle_MSM$beta</pre>
  IC <- ltmle_MSM$ltmle_MSM$IC</pre>
# on va enregitrer l'ensemble des résultats pertinent dans une table de longueur k1
int.r <- matrix(NA,</pre>
                 ncol = 34,
                 nrow = nlevels(as.factor(data$A1)) * nlevels(as.factor(data$A2)))
int.r <- as.data.frame(int.r)</pre>
names(int.r) <- c("A1", "A2", "p", "sd.p", "p.lo", "p.up",</pre>
                   "RD.A1", "sd.RD.A1", "RD.A1.lo", "RD.A1.up",
                   "RD.A2", "sd.RD.A2", "RD.A2.lo", "RD.A2.up",
                   "RR.A1", "sd.lnRR.A1", "RR.A1.lo", "RR.A1.up",
                   "RR.A2", "sd.lnRR.A2", "RR.A2.lo", "RR.A2.up",
                   "a.INT", "sd.a.INT", "a.INT.lo", "a.INT.up", "RERI", "sd.lnRERI", "RE
                   "m.INT", "sd.ln.m.INT", "m.INT.lo", "m.INT.up" )
int.r[,c("A1","A2")] \leftarrow expand.grid(c(0,1), c(0,1))
# on peut retrouver les IC95% par delta method
# A1 = 0 et A2 = 0
int.r$p[int.r$A1 == 0 & int.r$A2 == 0] <- plogis(beta["(Intercept)"])</pre>
# A1 = 1 et A2 = 0
int.r$p[int.r$A1 == 1 \& int.r$A2 == 0] <- plogis(beta["(Intercept)"] +
                                                      beta["A1"])
# A1 = 0 et A2 = 1
int.r$p[int.r$A1 == 0 & int.r$A2 == 1] <- plogis(beta["(Intercept)"] +
                                                      beta["A2"])
# A1 = 1 et A2 = 1
int.r$p[int.r$A1 == 1 \& int.r$A2 == 1] \leftarrow plogis(beta["(Intercept)"] +
                                                      beta["A1"] +
                                                      beta["A2"] +
                                                      beta["A1:A2"])
# RD.A1.A2is0
int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 0]
```

```
# RD.A1.A2is1
int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p
 # RD.A2.A1is0
 int.r$RD.A2[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 1] - int.r$p
int.r$RD.A2[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p
 # RR.A1.A2is0
 int.r$RR.A1[int.r$A1 == 1 \& int.r$A2 == 0] \leftarrow exp(log(int.r$p[int.r$A1 == 1 \& int.r$A2 == 0]) - exp(log(int.r$p[int.r$A1 == 1 & int.r$A1 == 1 & int.r$A1 == 0]) - exp(log(int.r$p[int.r$A1 == 1 & int.r$A1 == 0]) - exp(log(int.r$A1 == 0 & int.r$A1 == 0]) - exp(log(int.r$A1 ==
 # RR.A1.A2is1
int.r$RR.A1[int.r$A1 == 1 \& int.r$A2 == 1] <- exp(log(int.r$p[int.r$A1 == 1 & int.r$A2 == 1]) -- exp(log(int.r$p[int.r$A1 == 1 & int.r$A1 == 1 & int.r$A2 == 1]) -- exp(log(int.r$p[int.r$A1 == 1 & int.r$A1 ==
int.r$RR.A2[int.r$A1 == 0 \& int.r$A2 == 1] \leftarrow exp(log(int.r$p[int.r$A1 == 0 \& int.r$A2 == 1]) \rightarrow exp(log(int.r$p[int.r$A1 == 0 & int.r$A1 == 0 &
 # RR.A2.A1is1
 int.r$RR.A2[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$p[int.r$A1 == 1 & int.r$A2 == 1]) -
 # additive interaction
int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p
         int.r$p[int.r$A1 == 0 \& int.r$A2 == 1] + int.r$p[int.r$A1 == 0 \& int.r$A2 == 0]
 # RERI
int.r$RERI[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - i
                                                                                                                                                                                                                                               int.r$p[int.r$A1 == 0 & int.r$A2 == 1] +
                                                                                                                                                                                                                             log(int.r$p[int.r$A1 == 0 & int.r$A2 == 0])
 # multiplicative interaction
 int.r$m.INT[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$p[int.r$A1 == 1 & int.r$A2 == 1]) -
                                                                                                                                                                                                                                  log(int.r$p[int.r$A1 == 0 & int.r$A2 == 1])
 ## IC95%
if(estimator == "iptw" | estimator == "tmle") {
          # A1 = 0 et A2 = 0
        grad \leftarrow c(int.r\$p[int.r\$A1 == 0 \& int.r\$A2 == 0] * (1 - int.r\$p[int.r\$A1 == 0 \& int.r\$A2 == 0]
        v <- t(grad) %*% var(IC) %*% grad</pre>
         int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 0] <- sqrt(v / nrow(data))
         int.r$p.lo[int.r$A1 == 0 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 0] -
                  qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 0]
         int.r$p.up[int.r$A1 == 0 \& int.r$A2 == 0] \leftarrow int.r$p[int.r$A1 == 0 & int.r$A2 == 0] +
                  qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 0]
```

```
# A1 = 1 et A2 = 0
grad \leftarrow c(int.r$p[int.r$A1 == 1 \& int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$p[int.r$A1 == 1
                                                       int.r$p[int.r$A1 == 1 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 0] <- sqrt(v / nrow(data))
int.r$p.lo[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 0
           qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 0]
int.r$p.up[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 0
           qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 0]
# A1 = 0 et A2 = 1
grad \leftarrow c(int.r$p[int.r$A1 == 0 \& int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$p[int.r$A1 == 0
                                                       int.r$p[int.r$A1 == 0 \& int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 1] <- sqrt(v / nrow(data))
int.r$p.lo[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 1
          qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 1]
int.r$p.up[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 1
           qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 1]
# A1 = 1 et A2 = 1
grad <- rep(int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 &
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 1] \leftarrow sqrt(v / nrow(data))
int.r$p.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1
          qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 1]
int.r$p.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1
          qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 1]
# RD.A1.A2is0
grad \leftarrow c(int.r$p[int.r$A1 == 1 \& int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$p[int.r$A1 == 1
                                                                  int.r$p[int.r$A1 == 0 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 0 &
                                                       int.r$p[int.r$A1 == 1 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & in
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.RD.A1[int.r$A1 == 1 \& int.r$A2 == 0] \leftarrow sqrt(v / nrow(data))
int.r$RD.A1.lo[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$RD.A1[int.r$A1 == 1 & int.r
          qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 0]
int.r$RD.A1.up[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$RD.A1[int.r$A1 == 1 & int.r
           qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 0]
# RD.A1.A2is1
```

```
grad \leftarrow c(int.r\$p[int.r\$A1 == 1 \& int.r\$A2 == 1] * (1 - int.r\$p[int.r\$A1 == 1 \& int.r\$A2 == 1]
                       int.r$p[int.r$A1 == 0 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 ==
                   int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1]
                   int.r$p[int.r$A1 == 1 \& int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1]
                       int.r$p[int.r$A1 == 0 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 ==
                   int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1]
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.RD.A1[int.r$A1 == 1 \& int.r$A2 == 1] \leftarrow sqrt(v / nrow(data))
int.r$RD.A1.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 1] -
   qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 1]
int.r$RD.A1.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 1] +
    qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 1]
# RD.A2.A1is0
grad \leftarrow c(int.r\$p[int.r\$A1 == 0 \& int.r\$A2 == 1] * (1 - int.r\$p[int.r\$A1 == 0 \& int.r\$A2 == 1]
                       int.r$p[int.r$A1 == 0 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 == 0]
                   int.r$p[int.r$A1 == 0 \& int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 == 1]
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.RD.A2[int.r$A1 == 0 & int.r$A2 == 1] \leftarrow sqrt(v / nrow(data))
int.r$RD.A2.lo[int.r$A1 == 0 & int.r$A2 == 1] \leftarrow int.r$RD.A2[int.r$A1 == 0 & int.r$A2 == 1] \leftarrow int.r$A2 == 1] \leftarrow int.r$A2 == 1] \leftarrow int.r$A2[int.r$A1 == 0 & int.r$A2 == 1] \leftarrow int.r$A2 == 1] \leftarrow int.r$A2[int.r$A1 == 0 & int.r$A2 == 1] \leftarrow int.r$A2[int.r$A2 == 1] 
    qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 0 & int.r$A2 == 1]
int.r$RD.A2.up[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 0 & int.r$A2 == 1] +
    qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 0 & int.r$A2 == 1]
# RD.A2.A1is1
grad \leftarrow c(int.r\$p[int.r\$A1 == 1 \& int.r\$A2 == 1] * (1 - int.r\$p[int.r\$A1 == 1 \& int.r\$A2 == 1]
                       int.r$p[int.r$A1 == 1 \& int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 0]
                   int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1
                       int.r$p[int.r$A1 == 1 \& int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 0]
                   int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1
                   int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.RD.A2[int.r$A1 == 1 \& int.r$A2 == 1] \leftarrow sqrt(v / nrow(data))
int.r$RD.A2.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 1 & int.r$A2 == 1] -
    qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 1 & int.r$A2 == 1]
int.r$RD.A2.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 1 & int.r$A2 == 1] +
   qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 1 & int.r$A2 == 1]
# RR.A1.A2is0
grad \leftarrow c(int.r$p[int.r$A1 == 0 \& int.r$A2 == 0] - int.r$p[int.r$A1 == 1 & int.r$A2 == 0],
                    1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 0], 0, 0)
v <- t(grad) %*% var(IC) %*% grad</pre>
```

additive interaction

```
int.r$sd.lnRR.A1[int.r$A1 == 1 & int.r$A2 == 0] <- sqrt(v / nrow(data))
int.r$RR.A1.lo[int.r$A1 == 1 & int.r$A2 == 0] <- exp(log(int.r$RR.A1[int.r$A1 == 1
                                                      qnorm(0.975) * int.r$sd.lnR
qnorm(0.975) * int.r$sd.lnR
# RR.A1.A2is1
grad <- c(int.r$p[int.r$A1 == 0 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.r$A
         1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1],
         int.r$p[int.r$A1 == 0 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.r$A
         1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1])
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.lnRR.A1[int.r$A1 == 1 & int.r$A2 == 1] <- sqrt(v / nrow(data))
int.r$RR.A1.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A1[int.r$A1 == 1
                                                          qnorm(0.975) * int.r$sd
int.r$RR.A1.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A1[int.r$A1 == 1
                                                          qnorm(0.975) * int.r$sd
# RR.A2.A1is0
grad <- c(int.r$p[int.r$A1 == 0 & int.r$A2 == 0] - int.r$p[int.r$A1 == 0 & int.r$A
          1 - int.rp[int.rA1 == 0 & int.rA2 == 1], 0)
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.lnRR.A2[int.r$A1 == 0 \& int.r$A2 == 1] \leftarrow sqrt(v / nrow(data))
int.r$RR.A2.lo[int.r$A1 == 0 \& int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 0 + oxering))
                                                      qnorm(0.975) * int.r$sd.lnR
int.r$RR.A2.up[int.r$A1 == 0 \& int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 0 + oxering))
                                                      qnorm(0.975) * int.r$sd.lnR
# RR.A2.A1is1
grad <- c(int.r$p[int.r$A1 == 1 & int.r$A2 == 0] - int.r$p[int.r$A1 == 1 & int.r$A
         int.r$p[int.r$A1 == 1 & int.r$A2 == 0] - int.r$p[int.r$A1 == 1 & int.r$A
         1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1],
          1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1])
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.lnRR.A2[int.r$A1 == 1 \& int.r$A2 == 1] <- sqrt(v / nrow(data))
int.r$RR.A2.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 1])
                                                      qnorm(0.975) * int.r$sd.lnR
int.r$RR.A2.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 1])
                                                      qnorm(0.975) * int.r$sd.lnR
```

multiplicative interaction

```
grad \leftarrow c(int.r\$p[int.r\$A1 == 1 \& int.r\$A2 == 1] * (1 - int.r\$p[int.r\$A1 == 1 \& int.r\$A2 == 1]
                                    int.r$p[int.r$A1 == 1 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 ==
                                    int.r$p[int.r$A1 == 0 \& int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 \& int.r$A2 == 0 & int.r$
                                    int.r$p[int.r$A1 == 0 \& int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 == 0]
                              int.r$p[int.r$A1 == 1 \& int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 \& int.r$A2 == 1]
                                    int.r$p[int.r$A1 == 1 \& int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 ==
                              int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1]
                                    int.r$p[int.r$A1 == 0 \& int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 == 0 & int.r$
                              int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.a.INT[int.r$A1 == 1 & int.r$A2 == 1] <- sqrt(v / nrow(data))
int.r$a.INT.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] -
      qnorm(0.975) * int.r$sd.a.INT[int.r$A1 == 1 & int.r$A2 == 1]
int.r$a.INT.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] +
      qnorm(0.975) * int.r$sd.a.INT[int.r$A1 == 1 & int.r$A2 == 1]
# RERI
grad <- c((int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 ==
                                       int.r$p[int.r$A1 == 1 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 =
                                       int.r$p[int.r$A1 == 0 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 == 0] * (1 - int.r$A1 == 0 & int.r$A2 == 0] * (1 - int.r$A1 == 0 & int.r$A2 == 0] * (1 - int.r$A1 == 0 & int.r$A2 == 0] * (1 - int.r$A1 == 0 & int.r$A2 == 0] * (1 - int.r$A1 == 0 & int.r$A2 == 0] * (1 - int.r$A1 == 0 & int.r$A1 == 0] * (1 - int.r$A1 == 0 & int.r$A1 == 0] * (1 - int.r$A1 == 0 & int.r$A1 == 0] * (1 - int.r$A1 == 0 & int.r$A1 == 0] * (1 - int.
                                       int.r$p[int.r$A1 == 0 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 =
                                     (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.r$A2 == 0]
                                              int.r$p[int.r$A1 == 0 & int.r$A2 == 1] + int.r$p[int.r$A1 == 0 & int.r$A2 == (
                                     (1 - int.r$p[int.r$A1 == 0 & int.r$A2 == 0]),
                              (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 ==
                                       int.r$p[int.r$A1 == 1 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 =
                                     (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.r$A2 == 0]
                                              int.r$p[int.r$A1 == 0 & int.r$A2 == 1] + int.r$p[int.r$A1 == 0 & int.r$A2 == (
                              (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 ==
                                       int.r$p[int.r$A1 == 0 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 =
                                     (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.r$A2 == 0]
                                              int.r$p[int.r$A1 == 0 & int.r$A2 == 1] + int.r$p[int.r$A1 == 0 & int.r$A2 == (
                              (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 ==
                                     (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.r$A2 == 0]
                                              int.r$p[int.r$A1 == 0 & int.r$A2 == 1] + int.r$p[int.r$A1 == 0 & int.r$A2 == 0
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.lnRERI[int.r$A1 == 1 & int.r$A2 == 1] <- sqrt(v / nrow(data))</pre>
int.r$RERI.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RERI[int.r$A1 == 1 & int.r$A2 =
                                                                                                                                                                    qnorm(0.975) * int.r$sd.lnRERI[int.r$A1
int.r$RERI.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RERI[int.r$A1 == 1 & int.r$A2 =
                                                                                                                                                                   qnorm(0.975) * int.r$sd.lnRERI[int.r$A
```

```
grad <- c(int.r$p[int.r$A1 == 1 & int.r$A2 == 0] + int.r$p[int.r$A1 == 0 & int.r$A
                          int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p[int.r$A1 == 0 & int.r
                      int.r$p[int.r$A1 == 1 & int.r$A2 == 0] - int.r$p[int.r$A1 == 1 & int.r$A1 ==
                      int.r$p[int.r$A1 == 0 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.r$A
                      1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1])
   v <- t(grad) %*% var(IC) %*% grad</pre>
   int.r$sd.ln.m.INT[int.r$A1 == 1 & int.r$A2 == 1] <- sqrt(v / nrow(data))
   qnorm(0.975) * int.r$sd.ln.
   int.r m.INT.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$m.INT[int.r$A1 == 1
                                                                                                          qnorm(0.975) * int.r$sd.ln.
   bootstrap.res <- ltmle_MSM$bootstrap.res</pre>
}
if(estimator == "gcomp") {
   ltmle_MSM$bootstrap.res$p.A1_0.A2_0 <- plogis(ltmle_MSM$bootstrap.res$beta.Interce
   ltmle_MSM$bootstrap.res$p.A1_1.A2_0 <- plogis(ltmle_MSM$bootstrap.res$beta.Interce
                                                                                  ltmle_MSM$bootstrap.res$beta.A1)
   ltmle_MSM$bootstrap.res$p.A1_0.A2_1 <- plogis(ltmle_MSM$bootstrap.res$beta.Interce
                                                                                  ltmle_MSM$bootstrap.res$beta.A2)
   ltmle_MSM$bootstrap.res$p.A1_1.A2_1 <- plogis(ltmle_MSM$bootstrap.res$beta.Interce
                                                                                  ltmle_MSM$bootstrap.res$beta.A1 +
                                                                                  ltmle_MSM$bootstrap.res$beta.A2 +
                                                                                 ltmle_MSM$bootstrap.res$beta.A1A2)
   ltmle_MSM$bootstrap.res$RD.A1.A2_0 <- ltmle_MSM$bootstrap.res$p.A1_1.A2_0 - ltmle_l
   ltmle_MSM$bootstrap.res$RD.A1.A2_1 <- ltmle_MSM$bootstrap.res$p.A1_1.A2_1 - ltmle_l
   ltmle_MSM$bootstrap.res$RD.A2.A1_0 <- ltmle_MSM$bootstrap.res$p.A1_0.A2_1 - ltmle_l
   ltmle_MSM$bootstrap.res$RD.A2.A1_1 <- ltmle_MSM$bootstrap.res$p.A1_1.A2_1 - ltmle_l
   ltmle_MSM$bootstrap.res$lnRR.A1.A2_0 <- log(ltmle_MSM$bootstrap.res$p.A1_1.A2_0 / 1
   ltmle_MSM$bootstrap.res$lnRR.A1.A2_1 <- log(ltmle_MSM$bootstrap.res$p.A1_1.A2_1 / 1
   ltmle_MSM$bootstrap.res$lnRR.A2.A1_0 <- log(ltmle_MSM$bootstrap.res$p.A1_0.A2_1 / 1
   ltmle_MSM$bootstrap.res$lnRR.A2.A1_1 <- log(ltmle_MSM$bootstrap.res$p.A1_1.A2_1 / 1
   ltmle_MSM$bootstrap.res$a.INT <- ltmle_MSM$bootstrap.res$p.A1_1.A2_1 -
                                                                      ltmle_MSM$bootstrap.res$p.A1_1.A2_0 -
                                                                      ltmle_MSM$bootstrap.res$p.A1_0.A2_1 +
                                                                      ltmle_MSM$bootstrap.res$p.A1_0.A2_0
   ltmle_MSM$bootstrap.res$lnRERI <- log((ltmle_MSM$bootstrap.res$p.A1_1.A2_1 -</pre>
                                                                                ltmle_MSM$bootstrap.res$p.A1_1.A2_0 -
                                                                                ltmle_MSM$bootstrap.res$p.A1_0.A2_1 +
```

```
ltmle_MSM$bootstrap.res$p.A1_0.A2_0) / ltmle_MSM$boo
ltmle_MSM$bootstrap.res$ln.m.INT <- log((ltmle_MSM$bootstrap.res$p.A1_1.A2_1 * ltmle_MSM$bootstrap.res
                                           (ltmle_MSM$bootstrap.res$p.A1_1.A2_0 * ltmle_MSM$bo
\# A1 = 0 \ et \ A2 = 0
int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 0] <- sd(ltmle_MSM$bootstrap.res$p.A1_0.A2_0)
int.r$p.lo[int.r$A1 == 0 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 0] -
  qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 0]
int.r$p.up[int.r$A1 == 0 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 0] +
  qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 0]
# A1 = 1 et A2 = 0
int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 0] <- sd(ltmle_MSM$bootstrap.res$p.A1_1.A2_0)
int.r$p.lo[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 0] -
  qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 0]
int.r$p.up[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 0] +
  qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 0]
# A1 = 0 et A2 = 1
int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$p.A1_0.A2_1)
int.r$p.lo[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 1] -
  qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 1]
int.r$p.up[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 1] +
  qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 1]
\# A1 = 1 \ et \ A2 = 1
int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$p.A1_1.A2_1)
int.r$p.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1] -
  qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 1]
int.r$p.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1] +
  qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 1]
# RD.A1.A2is0
int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 0] <- sd(ltmle_MSM$bootstrap.res$RD.A1.A2_0)
int.r$RD.A1.lo[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 0] -
  qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 0]
int.r$RD.A1.up[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 0] +
  qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 0]
# RD.A1.A2is1
int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$RD.A1.A2_1)
int.r$RD.A1.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 1] -
  qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 1]
int.r$RD.A1.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 1] +
```

additive interaction

```
qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 1]
# RD.A2.A1is0
int.r$sd.RD.A2[int.r$A1 == 0 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$RD.A2..
int.r$RD.A2.lo[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 0 & int.r
    qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 0 & int.r$A2 == 1]
int.r$RD.A2.up[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 0 & int.r
    qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 0 & int.r$A2 == 1]
# RD.A2.A1is1
int.r$sd.RD.A2[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$RD.A2..
int.r$RD.A2.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 1 & int.r
    qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 1 & int.r$A2 == 1]
int.r$RD.A2.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 1 & int.r
    qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 1 & int.r$A2 == 1]
# RR.A1.A2is0
int.r$sd.lnRR.A1[int.r$A1 == 1 & int.r$A2 == 0] <- sd(ltmle_MSM$bootstrap.res$lnRR
int.r$RR.A1.lo[int.r$A1 == 1 & int.r$A2 == 0] <- exp(log(int.r$RR.A1[int.r$A1 == 1
                                                                                                              qnorm(0.975) * int.r$sd.lnR
int.r$RR.A1.up[int.r$A1 == 1 & int.r$A2 == 0] <- exp(log(int.r$RR.A1[int.r$A1 == 1
                                                                                                              qnorm(0.975) * int.r$sd.lnR
# RR.A1.A2is1
int.r$sd.lnRR.A1[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$lnRR
int.r$RR.A1.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A1[int.r$A1 == 1
                                                                                                                      qnorm(0.975) * int.r$sd
int.r$RR.A1.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A1[int.r$A1 == 1
                                                                                                                      qnorm(0.975) * int.r$sd
# RR.A2.A1is0
int.r$sd.lnRR.A2[int.r$A1 == 0 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$lnRR
int.r$RR.A2.lo[int.r$A1 == 0 \& int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 0 + oxering))
                                                                                                              qnorm(0.975) * int.r$sd.lnR
int.r$RR.A2.up[int.r$A1 == 0 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 0 & int.r$A2 == 0])
                                                                                                              qnorm(0.975) * int.r$sd.lnR
# RR.A2.A1is1
\label{lnrr} int.r\$sd.lnRR.A2[int.r\$A1 == 1 \& int.r\$A2 == 1] <- sd(ltmle\_MSM\$bootstrap.res\$lnRR.A2[int.r\$A1 == 1 \& int.r\$A2 == 1] <- sd(ltmle_MSM\$bootstrap.res\$lnRR.A2[int.r\$A1 == 1 \& int.r\$A2 == 1] <- sd(ltmle_MSM\$bootstrap.res\$lnRR.A2[int.r\$A2 == 1] <- sd(ltmle_MSM\$bootstrap.res$lnRR.A2[int.r\$A2 == 1] <- sd(ltmle_MSM\$bootstrap.res$lnRR.A2[int.r\$A2 == 1] <- sd(ltmle_MSM\$bootstrap.res$lnRR.A2[int.r\$A2 == 1] <- sd(ltmle_MSM\$bootstrap.res$lnRR.A2[int.r\$A2 == 1] <- sd(ltmle_MSM\$bootstrap.res$lnRR.A2[int.r\$A3 == 1] <- sd(ltmle_MSM\$bootstrap.res$lnRR.A2[int.r\$A3 == 1] <- sd(ltmle_MSM\$bootstrap.res$lnRR.A3[int.r\$A3 == 1] <- sd(ltmle_MS
int.r$RR.A2.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 1])
                                                                                                              qnorm(0.975) * int.r$sd.lnR
int.r$RR.A2.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 1])
                                                                                                              qnorm(0.975) * int.r$sd.lnR
```

```
int.r$sd.a.INT[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$a.INT)
    int.r$a.INT.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] -
      qnorm(0.975) * int.r$sd.a.INT[int.r$A1 == 1 & int.r$A2 == 1]
    int.r$a.INT.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] +
      qnorm(0.975) * int.r$sd.a.INT[int.r$A1 == 1 & int.r$A2 == 1]
    int.r$sd.lnRERI[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$lnRERI)
    int.r$RERI.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RERI[int.r$A1 == 1 & int.r$A2 =
                                                           qnorm(0.975) * int.r$sd.lnRERI[int.r$A
    int.r$RERI.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RERI[int.r$A1 == 1 & int.r$A2 =
                                                           qnorm(0.975) * int.r$sd.lnRERI[int.r$A1
    # multiplicative interaction
    int.r$sd.ln.m.INT[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$ln.m.INT)
    int.r$m.INT.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$m.INT[int.r$A1 == 1 & int.r$A2
                                                            qnorm(0.975) * int.r$sd.ln.m.INT[int.n
    int.r$m.INT.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$m.INT[int.r$A1 == 1 & int.r$A2
                                                            qnorm(0.975) * int.r$sd.ln.m.INT[int.n
   bootstrap.res <- ltmle_MSM$bootstrap.res</pre>
  }
 return(list(int.r = int.r,
              bootstrap.res = bootstrap.res))
### Obtention du MSM par la fonction ltmle, estimation par gcomp, iptw ou tmle
# avec la fonction int.ltmleMSM()
# on définit les arguments de la fonction ltmleMSM du package ltmle
library(ltmle)
library(SuperLearner)
## arguments à renseigner
Q_{\text{formulas}} = c(Y="Q.kplus1 \sim L1 + L2 + L3 + A1 * A2") # useful to add A1 * A2 interaction here
g_formulas = c("A1 \sim L1 + L2",
               "A2 \sim L1 + L3")
SL.library = list(Q=list("SL.glm", c("SL.glm", "screen.corP"),
                         "SL.xgboost", "SL.rpartPrune", #"SL.randomForest",
                         "SL.step.interaction", c("SL.step.interaction", "screen.corP"),
                         "SL.glmnet", "SL.stepAIC",
                         "SL.mean"),
                  g=list("SL.glm", c("SL.glm", "screen.corP"),
                         "SL.xgboost", "SL.rpartPrune", #"SL.randomForest",
```

```
"SL.step.interaction", c("SL.step.interaction", "screen.corP")
                          "SL.glmnet", "SL.stepAIC",
                          "SL.mean"))
### estimation par IPTW et TMLE
  interaction.ltmle <- int.ltmleMSM(data = df,</pre>
                                   Q_formulas = Q_formulas,
                                   g_formulas = g_formulas,
                                   Anodes = c("A1", "A2"),
                                   Lnodes = c("L1", "L2", "L3"),
                                   Ynodes = c("Y"),
                                   final.Ynodes = "Y",
                                   SL.library = SL.library,
                                   gcomp = FALSE,
                                                               # si FALSE, fait tmle + IP
                                   iptw.only = FALSE,
                                   # si (gcomp = FALSE et iptw.only = TRUE), fait uniqu
                                   survivalOutcome = FALSE,
                                   variance.method = "ic")
### estimation par g-computation
  # par défaut, il fait une régression logistique à partir de la formule Q_formulas
  # si on veut faire un régression linéaire pour le modèle additif, on peut créer une
  # à partir de la fonction SL.qlm
 SL.glm.gaussian <- function (Y, X, newX,
                                family = "gaussian",
                                # tout est comme SL.glm, sauf cette famille "gaussian"
                                obsWeights, model = TRUE, ...) {
  if (is.matrix(X)) {
    X = as.data.frame(X)
 fit.glm <- glm(Y ~ ., data = X, family = family, weights = obsWeights,
                 model = model)
  if (is.matrix(newX)) {
   newX = as.data.frame(newX)
 pred <- predict(fit.glm, newdata = newX, type = "response")</pre>
 fit <- list(object = fit.glm)</pre>
  class(fit) <- "SL.glm"</pre>
 out <- list(pred = pred, fit = fit)</pre>
 return(out)
environment(SL.glm.gaussian) <-asNamespace("SuperLearner")</pre>
interaction.gcomp <- int.ltmleMSM(data = df,</pre>
                                   Q_formulas = Q_formulas,
```

```
g_formulas = g_formulas,
                                   Anodes = c("A1", "A2"),
                                   Lnodes = c("L1", "L2", "L3"),
                                   Ynodes = c("Y"),
                                   final.Ynodes = "Y",
                                   # SL.library = SL.library,
                                   SL.library = list(Q="SL.glm.gaussian", #
                                                     g="SL.mean"),
                                   gcomp = TRUE,
                                                            # si FALSE, fait tmle + IPTW
                                   iptw.only = FALSE,
                                   # si (gcomp = FALSE et iptw.only = TRUE), fait uniquement iptw
                                   survivalOutcome = FALSE,
                                   variance.method = "ic",
                                   B = 1000, # nombre d'échantillons bootstrap
                                   boot.seed = 54321) # seed pour l'échantillonnage bootstrap
### 3) Calcul des paramètres utiles pour l'analyse de l'interaction
    # avec la fonction summary.int()
    ### récupération des résultats tmle
    summary.tmle <- summary.int(data = df,</pre>
                                 ltmle_MSM = interaction.ltmle,
                                 estimator = c("tmle"))
    # summary.tmle$int.r
    ### récupération des résultats iptw
    summary.iptw <- summary.int(data = df,</pre>
                                 ltmle MSM = interaction.ltmle,
                                 estimator = c("iptw"))
    # summary.iptw$int.r
    ### récupération des résultats gcomputation
    summary.gcomp <- summary.int(data = df,</pre>
                                 ltmle_MSM = interaction.gcomp,
                                 estimator = c("gcomp"))
    # summary.gcomp$int.r
    # head(summary.qcomp$bootstrap.res)
    # # vérifier la normalité des estimations bootstrap
          bootstrap.est <- subset(summary.gcomp$bootstrap.res,</pre>
    #
                                     c("p.A1_0.A2_0",
    #
                                       "p.A1_1.A2_0",
```

```
#
                                                                                                                                                                            "p.A1_0.A2_1",
#
                                                                                                                                                                            "p.A1_1.A2_1",
                                                                                                                                                                           "RD.A1.A2_0",
#
                                                                                                                                                                           "RD.A1.A2_1",
#
                                                                                                                                                                           "RD.A2.A1_0",
                                                                                                                                                                            "RD.A2.A1_1",
                                                                                                                                                                            "lnRR.A1.A2 0",
                                                                                                                                                                           "lnRR.A1.A2_1",
                                                                                                                                                                           "lnRR.A2.A1_0",
                                                                                                                                                                           "lnRR.A2.A1_1",
                                                                                                                                                                            "a.INT",
#
                                                                                                                                                                           "lnRERI",
                                                                                                                                                                            "ln.m.INT"))
\# par(mfrow = c(4,4))
# for(c in 1:ncol(bootstrap.est)) {
                  hist(bootstrap.est[,c], freq = FALSE, main = names(bootstrap.est)[c])
#
                  lines(density(bootstrap.est[,c]), col = 2, lwd = 3)
                   curve(1/sqrt(var(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootstrap.est[,c])*2*pi)*exp(-1/2*((x-mean(bootst
                                                  col = 1, lwd = 2, lty = 2, add = TRUE)
\# par(mfrow = c(1,1))
# }
```

Au final, on a (présentation selon recommandation Knol et al. ?):

TMLE

```
## $out.table
##
                                    A2=0
## A1=0
            $p_{00}$=0.104 [0.095,0.113] $p_{01}$=0.195 [0.18,0.21]
## A1=1
            $p_{10}$=0.408 [0.378,0.439] $p_{11}$=0.903 [0.88,0.927]
## RD.A1|A2
                     0.304 [0.272,0.336]
                                                  0.708 [0.68, 0.737]
## RR.A1|A2
                         3.93 [3.5,4.41]
                                                     4.63 [4.55, 4.72]
##
                       RD.A2|A1
                                        RR.A2|A1
## A1=0
            0.091 [0.073,0.109] 1.88 [1.67,2.11]
## A1=1
            0.495 [0.457,0.534] 2.21 [2.04,2.4]
## RD.A1|A2
## RR.A1|A2
## $interaction.effects
## [1] "additive Interaction = 0.404 [0.362;0.447]"
## [2] "RERI = 3.89 [3.45;4.4]"
## [3] "multiplicative Interaction = 1.18 [1.02;1.36]"
```

IPTW

```
## $out.table
                                    A2=0
## A1=0
            $p_{00}$=0.104 [0.095,0.113] $p_{01}$=0.195 [0.18,0.21]
## A1=1
            p_{10}=0.408 [0.377,0.439] p_{11}=0.904 [0.88,0.927]
## RD.A1 | A2
                     0.304 [0.272,0.336]
                                                  0.709 [0.68, 0.737]
## RR.A1|A2
                         3.93 [3.5,4.41]
                                                    4.63 [4.55,4.72]
                       RD.A2|A1
                                        RR.A2|A1
            0.091 [0.073,0.109] 1.88 [1.67,2.11]
## A1=0
## A1=1
            0.496 [0.457,0.534] 2.22 [2.05,2.4]
## RD.A1|A2
## RR.A1|A2
##
## $interaction.effects
## [1] "additive Interaction = 0.405 [0.362;0.447]"
## [2] "RERI = 3.9 [3.45;4.4]"
## [3] "multiplicative Interaction = 1.18 [1.02;1.36]"
```

G-computation

```
## $out.table
##
                                     A2 = 0
                                                                   A2 = 1
            $p_{00}$=0.104 [0.095,0.112] $p_{01}$=0.197 [0.183,0.211]
## A1=0
## A1=1
              $p_{10}$=0.4 [0.373,0.427] $p_{11}$=0.893 [0.872,0.914]
## RD.A1|A2
                     0.296 [0.268, 0.325]
                                                   0.697 [0.671,0.722]
## RR.A1|A2
                         3.86 [3.46,4.31]
                                                       4.54 [4.46,4.61]
##
                      RD.A2|A1
                                       RR.A2|A1
## A1=0
            0.093 [0.077,0.11] 1.9 [1.7,2.12]
## A1=1
            0.494 [0.46,0.527] 2.23 [2.08,2.4]
## RD.A1|A2
## RR.A1 | A2
##
## $interaction.effects
## [1] "additive Interaction = 0.4 [0.363;0.438]"
## [2] "RERI = 3.86 [3.46;4.32]"
## [3] "multiplicative Interaction = 1.18 [1.03;1.34]"
```

Représentations graphiques

Part III En pratique

Proposition d'étapes

1. Formuler l'objectif

- Est-ce un objectif prédictif ou explicatif ?
- Si démarche explicative, s'agit-il plutot d'une analyse d'interaction ou de modification d'effet?

2. Stratégies et méthodes

- Poser les hypothèses sur un DAG ou schéma conceptuel
- Identifier le ou les estimand(s), c'est-à-dire l'effet ou le paramètre que l'on va chercher à estimer pour répondre à l'objectif, par exemple :
 - effet conjoint de X et V sur Y, sur l'échelle multiplicative = $OR_{X\,V}$
 - effet de X sur Y dans chaque strate de Y, sur l'échelle additive = $DR_{X|V=0}$ et $DR_{X|V=1}$
 - effet d'interaction sur l'échelle additive et multiplicative AI et MI
- Elaborer l'estimateur, notamment :
 - quelles est(sont) l'exposition(s) d'intérêt ?
 - quels sont les facteurs de confusion +/- les médiateurs si besoin ?
 - quels types de modèlisation va être utilisée?

3. Analyses descriptives

- Description habituelle de la population
- Décrire, dans un tableau croisé,
 - le Y moyen ou la proportion de Y = 1
 - pour chaque catégorie de X et V

4. Analyses exploratoires

- Analyses stratifiées
 - pour une analyse de modification d'effet,
 - il est possible en exploratoire, d'estimer l'effet de X sur Y
 - de façon stratifiée sur V (on découpe la population)
 - les effets ne seront directement pas comparables
- Régressions avec terme d'interaction
 - un modèle dans la population totale peut être utilisé
 - avec un terme d'interaction entre X et V
 - les différents paramètres peuvent être déduits des résultats du modèle
 - voir Chapitre??
- Marges/ Effets prédits

_

5. Analyses confirmatoires, voir Chapitre??

- G-computation
- MSM
- TMLE

Exemple 1 - Y binaire

Exemple 2 - Y quantitatif

1. Formuler les objectifs

Dans cette étude ?, on s'est intéressé à :

- comment l'effet du sexe sur le taux de cholestérol LDL vers 45 ans varie en fonction de la défavorisation sociale précoce,
- comment l'effet de la défavorisation sociale précoce sur le taux de cholestérol LDL varie en fonction du sexe.

La démarche ici est explicative : on cherche à comprendre des mécanismes causaux.

A partir de la formulation des objectifs, on pourrait dire qu'on s'intéresse ici plutot à deux modifications d'effet. On va donc devoir à la fois agir sur le sexe do(S) et sur la défavorisation sociale do(D). Donc la démarche, en fait, sera plutôt une analyse d'interaction do(S,D)

2. Stratégies et méthodes

Le DAG (sans les médiateurs) était :

Les estimands étaient définis sur l'échelle additive par :

Sexe	Défavorisation	Mean(Chol LDL)
Male	Non	3.57
Male	Oui	3.60
Female	Non	3.24
Female	Oui	3.37

• La modification de l'effet du sexe en fonction par la défavorisation sociale précoce :

$$\begin{array}{l} -\ (Y_{s=1|d=0}-Y_{s=0|d=0})-(Y_{s=1|d=1}-Y_{s=0|d=1}) \\ -\ \mathrm{ou}\ (Y_{s=1,d=0}-Y_{s=0,d=0})-(Y_{s=1,d=1}-Y_{s=0,d=1}) \end{array}$$

• La modification de l'effet de la défavorisation sociale précoce par la sexe

$$\begin{array}{l} -\ (Y_{d=1|s=0}-Y_{d=0|s=0})-(Y_{d=1|s=1}-Y_{d=0|s=1}) \\ -\ \mathrm{ou}\ (Y_{d=1,s=0}-Y_{d=0,s=0})-(Y_{d=1,s=1}-Y_{d=0,s=1}) \end{array}$$

Les deux formulations sont ici équivalentes car il n'y pas de facteurs de confusion, donc, par exemple, $Y_{d=1|s=0}=Y_{s=0|d=1}=Y_{d=1,s=0}$

L'estimateur: Les effets ont été estimés par g-computation (standardisation par régression)? Des régressions linéaires ont été utilisées pour estimer les potential outcomes pour chaque scénario, désignées par Q(S, D) = E(Y|S, D), avec L les facteurs de confusion. A partir des fonctions Q(S, D) estimées, nous avons prédit la valeur de l'outcome Y pour chaque individu i pour chaque scénario. Les valeurs moyennes de Y dans chaque scénario vont ensuite nous permettre d'estimer les estimands selon leurs définitions précisées ci-dessus. Ces modèles Q(S, D) vont comprendre 2 variables : le sexe et la défavorisation sociale précoce (il n'y a pas ici de facteurs de confusion).

3. Analyse descriptive

Dans cette population (N=17 272), il y avait 51,4% d'hommes et 60,5% de personnes ayant été précocement défavorisées.

On peut commencer par décrire les moyennes de cholestérol dans chaque catégorie de sexe et de défavorisation sociale :

4. Analyse exploratoire

La sortie d'une modèle linéaire simple serait :

```
# Call:
# lm(formula = t8_ldl ~ as.factor(sex) + as.factor(soc_group) +
# as.factor(sex) * as.factor(soc_group), data = ba_1)
```

```
#
# Residuals:
    Min
             1Q Median
                             3Q
                                    Max
# -3.1996 -0.6427 -0.0688 0.5318 4.6312
# Coefficients:
                                            Estimate Std. Error t value Pr(>|t|)
# (Intercept)
                                             3.24270
                                                       0.01594 203.475 < 2e-16 ***
# as.factor(sex)1
                                             0.32553
                                                        0.02227 14.616 < 2e-16 ***
# as.factor(soc_group)2.Défav
                                                       0.02052 6.148 8.02e-10 ***
                                             0.12614
# as.factor(sex)1:as.factor(soc_group)2.Défav -0.09473
                                                        0.02863 -3.308 0.000941 ***
# Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
# Residual standard error: 0.9194 on 17268 degrees of freedom
# Multiple R-squared: 0.0231, Adjusted R-squared: 0.02293
# F-statistic: 136.1 on 3 and 17268 DF, p-value: < 2.2e-16
```

On peut en déduire (échelle additive) que :

- L'effet du sexe (d'être homme plutot que femme) est :
 - Quand on est favorisé : DR(S|D=0) = +0.326 mmol/L
 - Quand on est défavorisé : DR(S|D=1) = 0.326 0.095 = +0.231 mmol/L
- L'effet de la défavorisation est :
 - Quand on est une femme : DR(D|S=0) = +0.126 mmol/L
 - Quand on est une homme : DR(D|S=1) = 0.126 0.095 = +0.031 mmol/L
- L'effet d'être un homme et défavorisé
 - plutot que femme et favorisé est DR(D,S) = 0.326 + 0.126 0.095 = +0.357 mmol/L
- L'effet d'interaction/modification d'effet est : AI = -0.095 mmol/L

On pourrait aussi déduire :

```
 \begin{array}{l} \bullet \  \, Y_{00} = 3.24 \ \mathrm{mmol/L} \\ \bullet \  \, Y_{10} = 3.243 + 0.326 = 3.57 \ \mathrm{mmol/L} \\ \bullet \  \, Y_{01} = 3.243 + 0.126 = 3.37 \ \mathrm{mmol/L} \\ \bullet \  \, Y_{11} = 3.243 + 0.326 + 0.126 - 0.095 = 3.6 \ \mathrm{mmol/L} \\ \end{array}
```