Exercises and Solutions: week 3 Financial Econometrics 2024-2025

Paolo Gorgi

CHAPTER 6: Multivariate GARCH models

1. Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}.$$

Apply the VECH operation to the following matrices: A, B, A^{\top} and B^{\top} .

Solution:

For the matrix A, we obtain that

$$\operatorname{vech}(A) = \begin{bmatrix} a \\ c \\ d \end{bmatrix},$$

and

$$\operatorname{vech}(A^{\top}) = \begin{bmatrix} a \\ b \\ d \end{bmatrix}.$$

The result for B can be trivially obtained as well.

2. Let

$$A = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Calculate $A \odot B$, AB, $A \odot C$ and AC.

Solution:

We obtain

$$A \odot B = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix} \odot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 \times 1 & 1 \times 1 \\ 0 \times 1 & 1 \times 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}.$$

$$A \odot C = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix} \odot \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 3 \times 1 & 1 \times 0 \\ 0 \times 0 & 1 \times 2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}.$$

3. We know that the conditional distribution of $\boldsymbol{y}_t = (y_{1t}, y_{2t})^{\top}$ given the past $Y^{t-1} = \{\boldsymbol{y}_{t-1}, \boldsymbol{y}_{t-2}, \dots, \}$ is $N_2(\boldsymbol{0}_2, \boldsymbol{\Sigma}_t)$, where

$$\Sigma_t = \begin{bmatrix} 1.2 & 0.5 \\ 0.5 & 1.5 \end{bmatrix}.$$

What is the conditional expectation of $y_{1,t}$ given $y_{2,t}$, i.e. $\mathbb{E}(y_{1,t}|y_{2,t},Y^{t-1})$.

Solution:

First, we revisit some properties of the bivariate normal distribution. Let two random variables X and Y have a joint bivariate normal distribution of the form

$$\begin{bmatrix} X \\ Y \end{bmatrix} \sim N \left(\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{bmatrix} \right)$$

Then, the conditional expectation and variance of X given Y are

$$\mathbb{E}(X|Y) = \mu_x + \rho_{xy} \frac{\sigma_x}{\sigma_y} (Y - \mu_y) = \mu_x + \frac{\sigma_{xy}}{\sigma_y^2} (Y - \mu_y),$$

$$Var(X|Y) = \sigma_x^2 (1 - \rho_{xy}^2),$$

where $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$. Therefore, we can use these properties of the bivariate normal to calculate the desired conditional expectation. In particular, we have that

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} | Y^{t-1} \sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{bmatrix} \right),$$

and therefore we obtain

$$\mathbb{E}(y_{1,t}|y_{2,t},Y^{t-1}) = \frac{0.5}{1.5}y_{2,t} = \frac{1}{3}y_{2,t}.$$

4. An econometrician has obtained the following estimate of the conditional covariance matrix of a DVECH model

$$\begin{bmatrix} \sigma_{1,t}^2 & \sigma_{21,t} \\ \sigma_{21,t} & \sigma_{2,t}^2 \end{bmatrix} = \begin{bmatrix} 0.8 & 0.2 \\ 0.2 & 0.6 \end{bmatrix} + \begin{bmatrix} 0.7 & 0.2 \\ 0.1 & 0.7 \end{bmatrix} \odot \begin{bmatrix} \sigma_{1,t-1}^2 & \sigma_{21,t-1} \\ \sigma_{21,t-1} & \sigma_{2,t-1}^2 \end{bmatrix} + \begin{bmatrix} 0.2 & 0.1 \\ 0.05 & 0.2 \end{bmatrix} \odot \begin{bmatrix} y_{1,t-1}^2 & y_{1,t-1}y_{2,t-1} \\ y_{1,t-1}y_{2,t-1} & y_{2,t-1}^2 \end{bmatrix}.$$

Can this result be correct? explain why.

Solution:

The result cannot be correct because the conditional covariance matrix Σ_t must be a symmetric matrix. This is indeed not the case for the estimation results of the DVECH model in the exercise.

5. The conditional covariance matrix Σ_t of a DVECH model is given by

$$\begin{bmatrix} \sigma_{1,t}^2 & \sigma_{21,t} \\ \sigma_{21,t} & \sigma_{2,t}^2 \end{bmatrix} = \begin{bmatrix} 0.9 & 0.2 \\ 0.2 & 0.5 \end{bmatrix} + \begin{bmatrix} 0.3 & 0.1 \\ 0.1 & 0.4 \end{bmatrix} \odot \begin{bmatrix} y_{1,t-1}^2 & y_{1,t-1}y_{2,t-1} \\ y_{1,t-1}y_{2,t-1} & y_{2,t-1}^2 \end{bmatrix}$$

- (a) Show that this model is a special case of a bivariate VECH model. Hint: write the model in VECH form.
- (b) Find the unconditional covariance matrix of $\mathbf{y}_t = (y_{1,t}, y_{2,t})^{\top}$.

Solution:

(a) A bivariate VECH(0,1) is given by

$$\begin{bmatrix} \sigma_{1,t}^2 \\ \sigma_{21,t} \\ \sigma_{2,t}^2 \end{bmatrix} = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} + \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \begin{bmatrix} y_{1,t-1}^2 \\ y_{1,t-1} y_{2,t-1} \\ y_{2,t-1}^2 \end{bmatrix}.$$

Therefore, the DVECH model in the exercise can be expressed as a bivariate VECH(0,1) with the following parameter values

$$\begin{bmatrix} \sigma_{1,t}^2 \\ \sigma_{21,t} \\ \sigma_{2,t}^2 \end{bmatrix} = \begin{bmatrix} 0.9 \\ 0.2 \\ 0.5 \end{bmatrix} + \begin{bmatrix} 0.3 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.4 \end{bmatrix} \begin{bmatrix} y_{1,t-1}^2 \\ y_{1,t-1}y_{2,t-1} \\ y_{2,t-1}^2 \end{bmatrix}.$$

(b) We know that for a VECH(0,1) of the form

$$\operatorname{vech}(\boldsymbol{\Sigma}_t) = W + A_1 + \operatorname{vech}(\boldsymbol{y}_{t-1}\boldsymbol{y}_{t-1}^{\top}),$$

the unconditional covariance matrix $Var(\boldsymbol{y}_t) = \boldsymbol{\Sigma}$ is

$$\operatorname{vech}(\mathbf{\Sigma}) = (I_3 - A_1)^{-1} W$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0.3 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.4 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 0.9 \\ 0.2 \\ 0.5 \end{bmatrix}$$

$$= \begin{bmatrix} 0.7 & 0 & 0 \\ 0 & 0.9 & 0 \\ 0 & 0 & 0.6 \end{bmatrix}^{-1} \begin{bmatrix} 0.9 \\ 0.2 \\ 0.5 \end{bmatrix}$$

$$= \begin{bmatrix} 1.43 & 0 & 0 \\ 0 & 1.11 & 0 \\ 0 & 0 & 1.67 \end{bmatrix} \begin{bmatrix} 0.9 \\ 0.2 \\ 0.5 \end{bmatrix}$$

$$= \begin{bmatrix} 1.29 \\ 0.22 \\ 0.83 \end{bmatrix}.$$

6. For the DVECH model in Exercise 5, find the conditional covariance and the conditional correlation between $y_{1,t}$ and $y_{2,t}$ having observed $y_{1,t-1} = -0.5$ and $y_{2,t-1} = -1.0$.

Solution:

The conditional covariance between $y_{1,t}$ and $y_{2,t}$ is given by

$$\sigma_{12,t} = 0.2 + 0.1y_{1,t-1}y_{2,t-1} = 0.2 + 0.1 \times (-0.5) \times (-1.0) = 0.25.$$

Whereas the conditional correlation is

$$\rho_{12,t} = \frac{\sigma_{12,t}}{\sigma_{1,t}\sigma_{2,t}} = \frac{0.25}{\sqrt{0.9 \times 0.975}} = 0.27,$$

where the conditional variances $\sigma_{1,t}^2$ and $\sigma_{2,t}^2$ are obtained as

$$\sigma_{1,t}^2 = 0.9 + 0.3y_{1,t-1}^2 = 0.9 + 0.3 \times (-0.5)^2 = 0.975,$$

 $\sigma_{2,t}^2 = 0.5 + 0.4y_{2,t-1}^2 = 0.5 + 0.4 \times (-1.0)^2 = 0.9.$

7. The conditional covariance matrix Σ_t of a BEKK model is given by

$$\begin{bmatrix} \sigma_{1,t}^2 & \sigma_{21,t} \\ \sigma_{21,t} & \sigma_{2,t}^2 \end{bmatrix} = \begin{bmatrix} 0.5 & 0 \\ 0.1 & 0.6 \end{bmatrix} \begin{bmatrix} 0.5 & 0.1 \\ 0 & 0.6 \end{bmatrix} + \begin{bmatrix} 0.5 & 0 \\ 0 & 0.6 \end{bmatrix} \begin{bmatrix} y_{1,t-1}^2 & y_{1,t-1}y_{2,t-1} \\ y_{1,t-1}y_{2,t-1} & y_{2,t-1}^2 \end{bmatrix} \begin{bmatrix} 0.5 & 0 \\ 0 & 0.6 \end{bmatrix}$$

Show that this model is a bivariate DVECH model. Write the model in DVECH form using the Hadamard product \odot notation.

Solution:

We can proceed as follows

$$\begin{bmatrix} \sigma_{1,t}^2 & \sigma_{21,t} \\ \sigma_{21,t} & \sigma_{2,t}^2 \end{bmatrix} = \begin{bmatrix} 0.5^2 & 0.1 \times 0.5 \\ 0.1 \times 0.5 & 0.1^2 + 0.6^2 \end{bmatrix} + \begin{bmatrix} 0.5y_{1,t-1}^2 & 0.5y_{1,t-1}y_{2,t-1} \\ 0.6y_{1,t-1}y_{2,t-1} & 0.6y_{2,t-1}^2 \end{bmatrix} \begin{bmatrix} 0.5 & 0 \\ 0 & 0.6 \end{bmatrix}$$

$$= \begin{bmatrix} 0.25 & 0.05 \\ 0.05 & 0.37 \end{bmatrix} + \begin{bmatrix} 0.5^2y_{1,t-1}^2 & 0.5 \times 0.6y_{1,t-1}y_{2,t-1} \\ 0.5 \times 0.6y_{1,t-1}y_{2,t-1} & 0.6^2y_{2,t-1}^2 \end{bmatrix}$$

$$= \begin{bmatrix} 0.25 & 0.05 \\ 0.05 & 0.37 \end{bmatrix} + \begin{bmatrix} 0.25y_{1,t-1}^2 & 0.3y_{1,t-1}y_{2,t-1} \\ 0.3y_{1,t-1}y_{2,t-1} & 0.36y_{2,t-1}^2 \end{bmatrix}$$

$$= \begin{bmatrix} 0.25 & 0.05 \\ 0.05 & 0.37 \end{bmatrix} + \begin{bmatrix} 0.25 & 0.3 \\ 0.3 & 0.36 \end{bmatrix} \odot \begin{bmatrix} y_{1,t-1}^2 & y_{1,t-1}y_{2,t-1} \\ y_{1,t-1}y_{2,t-1} & y_{2,t-1}^2 \end{bmatrix}$$

This immediately shows that the model is a bivariate DVECH(0,1) and also gives the Hadamard product representation $\Sigma_t = W + A_1 \odot y_{t-1} y_{t-1}^{\top}$.

8. For the BEKK model in Exercise 7, find the conditional covariance and the conditional correlation between $y_{1,t}$ and $y_{2,t}$ having observed $y_{1,t-1} = -0.5$ and $y_{2,t-1} = -1.0$.

Solution:

The conditional covariance between $y_{1,t}$ and $y_{2,t}$ is given by

$$\sigma_{12,t} = 0.05 + 0.3y_{1,t-1}y_{2,t-1} = 0.05 + 0.3 \times (-0.5) \times (-1.0) = 0.20.$$

Whereas the conditional correlation is

$$\rho_{12,t} = \frac{\sigma_{12,t}}{\sigma_{1,t}\sigma_{2,t}} = \frac{0.20}{\sqrt{0.312 \times 0.730}} = 0.419,$$

where the conditional variances $\sigma_{1,t}^2$ and $\sigma_{2,t}^2$ are obtained as

$$\begin{split} \sigma_{1,t}^2 &= 0.25 + 0.25 y_{1,t-1}^2 = 0.25 + 0.25 \times (-0.5)^2 = 0.312, \\ \sigma_{2,t}^2 &= 0.37 + 0.36 y_{2,t-1}^2 = 0.37 + 0.36 \times (-1.0)^2 = 0.730. \end{split}$$

CHAPTER 8: Econometric analysis with multivariate GARCH

1. Let $\mathbf{y}_t = (y_{1,t}, y_{2,t})^{\top}$ be generated by a DVECH model with conditional covariance matrix $\mathbf{\Sigma}_t$ given by

$$\begin{bmatrix} \sigma_{1,t}^2 & \sigma_{21,t} \\ \sigma_{21,t} & \sigma_{2,t}^2 \end{bmatrix} = \begin{bmatrix} 0.9 & 0.2 \\ 0.2 & 0.5 \end{bmatrix} + \begin{bmatrix} 0.3 & 0.1 \\ 0.1 & 0.4 \end{bmatrix} \odot \begin{bmatrix} y_{1,t-1}^2 & y_{1,t-1}y_{2,t-1} \\ y_{1,t-1}y_{2,t-1} & y_{2,t-1}^2 \end{bmatrix}$$

Consider the portfolio $y_{pt} = 0.5y_{1,t} + 0.5y_{2,t}$. Find

- (a) The conditional variance of the portfolio $y_{p,t}$, i.e. $\sigma_{p,t}^2$.
- (b) The conditional variance of the portfolio at time T+1, having observed $y_{1,T}=0.9$ and $y_{2,T}=1.1$.
- (c) The conditional α -VaR of the portfolio at time T+1 for $\alpha=0.05$.
- (d) The conditional probability that $y_{p,T+1} > 0.6$.

Solution:

(a) The conditional variance of the portfolio is

$$Var(y_{p,t}|Y^{t-1}) = 0.5^{2}Var(y_{1,t}|Y^{t-1}) + 0.5^{2}Var(y_{2,t}|Y^{t-1}) + 2 \times 0.5 \times 0.5\mathbb{C}ov(y_{1,t}, y_{2,t}|Y^{t-1})$$
$$= 0.25\sigma_{1,t}^{2} + 0.25\sigma_{2,t}^{2} + 0.5\sigma_{12,t}.$$

(b) The conditional variance of the portfolio at time T+1 depends on $\sigma_{1,T+1}^2$, $\sigma_{2,T+1}^2$ and $\sigma_{12,T+1}$. Therefore, we fist obtain these quantities

$$\sigma_{1,T+1}^2 = 0.9 + 0.3y_{1,T}^2 = 1.14,$$

$$\sigma_{2,T+1}^2 = 0.5 + 0.4y_{2,T}^2 = 0.98,$$

$$\sigma_{12,T+1}^2 = 0.2 + 0.1y_{1,T}y_{2,T}^2 = 0.3.$$

Finally, the conditional variance is

$$\sigma_{p,T+1}^2 = 0.25\sigma_{1,T+1}^2 + 0.25\sigma_{2,T+1}^2 + 0.5\sigma_{12,T+1} = 0.68.$$

(c) The α -VaR_{T+1} of level $\alpha = 0.05$ is

$$\alpha\text{-VaR}_{T+1} = z_{\alpha}\sigma_{n,T+1} = -1.64 \times \sqrt{0.68} = -1.35.$$

(d) The desired probability is

$$P(y_{p,T+1} > 0.6|Y^T) = P\left(\frac{y_{p,T+1}}{\sigma_{p,T+1}} > \frac{0.6}{\sigma_{p,T+1}}|Y^T\right)$$
$$= 1 - \Phi\left(\frac{0.6}{\sigma_{p,T+1}}\right)$$
$$= 1 - \Phi\left(\frac{0.6}{\sqrt{0.68}}\right)$$
$$= 1 - \Phi\left(0.73\right).$$

2. Repeat points (a), (b), (c) and (d) of the previous exercise but now assuming that $\mathbf{y}_t = (y_{1t}, y_{2t})^{\top}$ is generated by a bivariate CCC model with $\rho_{12} = 0.5$ and the following conditional variances

$$\sigma_{1,t}^2 = 0.1 + 0.3y_{1,t-1}^2 + 0.2\sigma_{1,t-1}^2,$$

$$\sigma_{2,t}^2 = 0.1 + 0.2y_{2,t-1}^2 + 0.3\sigma_{2,t-1}^2.$$

For points (b), (c) and (d) consider $\sigma_{1,T}^2 = 0.8$ and $\sigma_{2,T}^2 = 0.7$.

Solution:

(a) The expression of the conditional variance of the portfolio is equivalent to the one of the previous exercise, i.e. $\sigma_{p,t}^2 = 0.25\sigma_{1,t}^2 + 0.25\sigma_{2,t}^2 + 0.5\sigma_{12,t}$.

(b) The conditional variance of the portfolio at time T+1 is given by

$$\sigma_{n,T+1}^2 = 0.25\sigma_{1,T+1}^2 + 0.25\sigma_{2,T+1}^2 + 0.5\sigma_{12,T+1}$$

Therefore we first need to obtain $\sigma_{1,T+1}^2$, $\sigma_{2,T+1}^2$ and $\sigma_{12,T+1}$. In particular, the conditional variances are obtained as

$$\sigma_{1,T+1}^2 = 0.1 + 0.3y_{1,T}^2 + 0.2\sigma_{1,T}^2 = 0.1 + 0.3 \times 0.9^2 + 0.2 \times 0.8 = 0.503,$$

$$\sigma_{2,T+1}^2 = 0.1 + 0.2y_{2,T}^2 + 0.3\sigma_{2,T}^2 = 0.1 + 0.2 \times 1.1^2 + 0.3 \times 0.7 = 0.552,$$

whereas the conditional covariance of the CCC model is obtained as

$$\sigma_{12,T+1}^2 = \rho_{12}\sigma_{1,T+1}\sigma_{2,T+1} = 0.5 \times \sqrt{0.503 \times 0.552} = 0.263.$$

As a result we obtain that the conditional variance of the portfolio is given by

$$\sigma_{p,T+1}^2 = 0.25 \times 0.503 + 0.25 \times 0.552 + 0.5 \times 0.263 = 0.395.$$

(c) The 5% level conditional VaR at time T+1 is

$$\alpha$$
-VaR_{p,T+1} = $z_{0.05}\sigma_{p,T+1} = (-1.64) \times \sqrt{0.395} = -1.03$

(d) The conditional probability is given by

$$P\left(y_{p,T+1} > 0.6 | Y^T\right) = P\left(\frac{y_{p,T+1}}{\sigma_{p,T+1}} > \frac{0.6}{\sigma_{p,T+1}} | Y^T\right) = 1 - \Phi\left(\frac{0.6}{\sigma_{p,T+1}}\right) = 1 - \Phi\left(\frac{0.6}{\sqrt{0.395}}\right) = 1 - \Phi\left(0.955\right),$$

where $\Phi(\cdot)$ is the cdf of a standard normal distribution.

3. We have 2 stocks with log-returns denoted by $\mathbf{y}_t = (y_{1t}, y_{2t})^{\top}$. An appropriate multivariate GARCH model is estimated and we obtain the following conditional covariance matrix $\mathbf{\Sigma}_{T+1}$ at time T+1

$$\begin{bmatrix} \sigma_{1,T+1}^2 & \sigma_{21,T+1} \\ \sigma_{21,T+1} & \sigma_{2,T+1}^2 \end{bmatrix} = \begin{bmatrix} 0.3 & 0.1 \\ 0.1 & 0.2 \end{bmatrix}.$$

Furthermore, the expected log-returns are $\boldsymbol{\mu}_{T+1} = (\mu_1, \mu_2)^{\top} = (0.01, 0.01)^{\top}$. Two econometricians (a) and (b) propose the following weights for the portfolio

- (a) The first econometrician proposes $k_{1,T+1} = k_{2,T+1} = 0.5$;
- (b) The second econometrician proposes $k_{1,T+1} = 0.4$ and $k_{2,T+1} = 0.6$;

Which of them is proposing the best portfolio at time T+1 in terms of Sharpe Ratio? Obtain the Sharpe Ratio for each of the two portfolios.

Solution

(a) The return of the first portfolio is $y_{p,T+1} = 0.5y_{1,T+1} + 0.5y_{2,T+1}$. The conditional expectation and variance are

$$\mu_{p,T+1} = 0.5\mu_{1,T+1} + 0.5\mu_{2,T+1} = 0.5 \times 0.01 + 0.5 \times 0.01 = 0.01.$$

$$\sigma_{p,T+1}^2 = 0.25\sigma_{1,T+1}^2 + 0.25\sigma_{2,T+1}^2 + 0.5\sigma_{12,T+1} = 0.175.$$

Therefore, the Sharpe Ratio is

$$S_{p,T+1} = \frac{\mu_{p,T+1}}{\sigma_{p,T+1}} = \frac{0.01}{\sqrt{0.175}} = 0.0239.$$

(b) The return of the second portfolio is $y_{p,T+1} = 0.4y_{1,T+1} + 0.6y_{2,T+1}$. The conditional expectation and variance are

$$\mu_{p,T+1} = 0.4\mu_{1,T+1} + 0.6\mu_{2,T+1} = 0.4 \times 0.01 + 0.6 \times 0.01 = 0.01.$$

$$\sigma_{p,T+1}^2 = 0.16\sigma_{1,T+1}^2 + 0.36\sigma_{2,T+1}^2 + 0.48\sigma_{12,T+1} = 0.168.$$

Therefore, the Sharpe Ratio is

$$S_{p,T+1} = \frac{\mu_{p,T+1}}{\sigma_{p,T+1}} = \frac{0.01}{\sqrt{0.168}} = 0.0244.$$

We conclude that the second portfolio is better in terms of Sharpe Ratio.