Week 3 Notes

Relational Model and SQL

Data Model

Integrated collection of concepts for - describing data - relationships on the data - constraints on the data - describing finns awesomeness

• It doesn't matter how the data is stored on the disk we always only look at tables or diagramatic representation

Levels of Abstraction

- Conceptual Model
 - o ER Diagrams, UML
- Logical Layer
 - Relational data model (simple, record based)
 - Object data model
- Physical level (describes physical storage and implementation details)

Three Schema Architecture

- External or (end user view) | Different roles see different things
- Logical View (Conceptual view / conceptual schema) or community view
- Internal or physical view

Data Independance

- Logical Data Independence | Refers to the immunity of external views to changes in logical schema
- Physical Data Independence | Immunity of conceptual schema to changes in the physical schema

Relational model

- Is a logical data model
- In the relational model, data are organized into 2-dimensional tables | called relations
 - Each relation has a number of columns and rows
- A relational DB is a collection of relations
- The name of each column is called an attribute
- The name of each row in a table is called a **tuple**
- The set of all possible values for a columnm is called the domain for that attribute

Rules for a table

- Every table must have a unique name
- Every column within a table has a unique name

- No duplicate rows in a table
- Each data item in a cell should be an atomic value | Single value
- Each data item in a cell should not consist of multiple components

Attribute Domains

- Atomic values in each cell
- Null can be used if the value is unknown

Relation Schema vs Instance

- Relation Schema | Structure of a table
- Relation Instance | data in the table at any point in time
- Relational DB Scheme | The collection of relational schemas
- Relational DB Instance | The collection of relation instances

Keys in Relations

Superkey

A set of attributes whose values can uniquely identify a row

• A set of attributes in a relation is a superkey iff no two tuples can agree in value on them

Candidate Key (CK):

Is a minimal superkey (if you remove any attribute from it it will no longer be a super key)

Primary Key

A selected candidate key

Foreign Key

An attribute or set of attributes within one relation that matches the candidate key of some relation

Integrity Constraints

Entity Integrity

• No **primary key** can be null

Referential Integrity

• FK values must either be NULL or appear in the referenced relation

Domain Constraints

• Specify the possible values an attribute can be

Null-value constraints

• Specify whether Null value is allowed in a certain attribute

General Constraints

 Additional rules specified by the users or DB admins that define or constrain some aspect of the enterprise.

Database Languages and SQL

Database languages

Data Definition Language (DDL)

• Allows the DBA or user to descrive the structure and constraints (define the data schema)

Data Manipulation Language (DML)

• Basic data manipulation on data in the database

Data Control Language (DCL)

Access control

Query Languages

Is used to retrieve data from DB

- Procedural query language
 - Tells the system what data is needed and how to get it
- Non-procedural (declaritive) language
 - o Only tells the system **what data** is needed and not how to get it

SQL

SQL can be used as all three types of database languages ^^