FULLSCALE XT/XL

คู่มือการใช้งาน

FULLSCALE XT/XL

Excellent 3D printing effect with huge size

สารบัญ

ข้อควรรู้	3
FULLSCALE XT	4
Specifications	5
หลักการทำงานของเครื่อง	5
การติดตั้ง	6
แกะกล่อง	6
รายละเอียดของจอแสดงผล	9
ซอฟแวร์	10
เริ่มใช้งาน	15
บำรุงรักษา	19
วิธีแก้ปัญหา	20
การพิมพ์ชิ้นงานสองสี	24

ข้อควรรู้

การกำหนดค่าเบื้องต้นของ ของการพิมพ์

<u>PLA</u> อุณหภูมิหัวฉีด 190-230 องศา อุณหภูมิฐานพิมพ์ประมาณ 45 องศา (หรือไม่จำเป็นต้องเปิดความร้อน ที่ฐาน)

Extruding Speed (ความเร็วขณะฉีด) 40-70 mm/sec Traveling Speed (ความเร็วเมื่อไม่ได้ฉีด) 60-80 mm/sec

ABS อุณหภูมิหัวฉีด 220-250 องศา อุณหภูมิฐานพิมพ์ 90-110 องศา

Extruding Speed (ความเร็วขณะฉีด) 30-50 mm/sec Traveling Speed (ความเร็วเมื่อไม่ได้ฉีด) 60-80 mm/sec

ด้านไหนคือ ด้านซ้าย หรือ ขวา?

ให้ยึดหลักมองเข้าหาเครื่องด้านซ้ายมือของเราคือ หัวซ้าย , ด้านขวามือของเรา คือ หัวขวา

คำศัพท์ที่ควรรู้

Extruder – หัวฉีด

<u>Heated Bed /Build Plate</u> – ฐานพิมพ์ หรือแท่นพิมพ์

Filament – คือเส้นพลาสติกที่เป็นวัสดุในการพิมพ์

Raft – การสร้างแพที่ฐาน ช่วยทำให้การยึดเกาะชิ้นงานกับฐานได้ดีขึ้น

<u>Brim</u> – การพิมพ์ขอบของชิ้นงานที่ฐาน โดยเครื่องจะวาดเส้นๆหลายๆรอบที่ฐานให้ชิ้นงานติดฐานมากขึ้น

<u>Overhang</u> – จุดที่ชิ้นงานลอยตัวในอากาศ ไม่มีส่วนที่รองรับหรือ support (หากเปรียบถ้าเทียบกันการพิมพ์
คนที่ยืนกางแขนอยู่ ส่วนที่ห้อยคือส่วนแขน เพราะไม่มีอะไรมารองใต้แขน

Support – เป็นส่วนที่โปรแกรมสร้างขึ้นเพื่อรองรับ ส่วนที่เป็น Overhang

Blue Tape – เทปของ 3M นิยมใช้กับเครื่อง 3D Printer ข้อดีคือ ทำให้ชิ้นงานยึดกับฐานได้ดีขึ้น อีกข้อคือ ช่วยรักษาฐานพิมพ์ป้องกันไม่ให้หัวฉีดสัมผัสฐานพิมพ์โดยตรง

<u>การบำรุงรักษาเบื้องต้น</u>

- ควรมีการปรับฐานพิมพ์เป็นระยะ (อาจจะปรับ เมื่อพิมพ์ 2-3 ครั้ง และปรับครั้งหนึ่ง)
- ควรเปลี่ยน Blue Tape บ้าง (เปลี่ยนทุกการพิมพ์ 5-10 ครั้ง)
- อาจจะมีการหยดน้ำมัน บ้างเมื่อใช้งานไปซักระยะ (ทุกๆ 1-2 เดือน)
- หัวฉีดมีอายุการใช้งานโดยเฉพาะ (6-12 เดือน)

<u>เทคนิคง่าย ๆที่น่าสนใจ</u>

- ควรสังเกตตอนพิมพ์ 5-10 ชั้นแรก (ซึ่งมีความสำคัญที่สุด) หากออกมาได้ดี ก็ค่อนข้างมั่นใจได้ว่างานที่ สำเร็จออกมาจะดี
- การพิมพ์ผ่าน SD Card จะเสถียร และได้ผลที่แน่นอนที่สุด

1

FULLSCALE XT/XL

ขอต้อนรับสู่ประสบการณ์ใหม่จากเครื่องพิมพ์สามมิติ Fullscale XT/XL คู่มือนี้จะ ช่วยให้คุณเข้าใจการทำงาน ของเครื่องพิมพ์นี้อย่างรวดเร็ว ง่ายดาย และช่วย การสร้างงานจากจินตนาการ และความคิดสร้างสรรค์ของคุณอย่างไม่มีขีดจำกัด อีกต่อไป ในการใช้งานระยะเริ่มแรก คุณจำเป็นต้องฝึกฝน ทดลองเพื่อเพิ่ม ประสบการณ์

ความปลอดภัย

สายดิน

ข้อควรระวัง : โปรดติดตั้งและเชื่อมต่อสายดิน เพื่อป้องกันความเสียหายของแผงวงจรจากไฟฟ้าสถิต

ความร้อน และชิ้นส่วนที่เคลื่อนไหว

คำเตือน: เครื่องพิมพ์สามมิติ Fullscale XT สามารถกำเนิดความร้อนสูง และมีชิ้นส่วนที่เคลื่อนไหวได้ อาจทำให้เกิดการบาดเจ็บ โปรดอย่าแตะหัวพิมพ์ แท่นพิมพ์ และจุดกำเนิดความร้อนหลังจากเปิดทำความร้อนแล้ว มิฉะนั้นอาจถูกความร้อนลวกมือได้ ระวัง: อย่าปล่อยเครื่องพิมพ์ทำงานไว้ตามลำพังโดยไม่มีคนดูแล หากจำเป็นต้องแน่ใจว่า:

- ชิ้นงานชั้นแรกได้ถูกพิมพ์อย่างเรียบร้อยแล้วบนแท่นพิมพ์ และเส้นพลาสติกถูกม้วนอย่างเรียบร้อย ไม่พันกัน
- ควรกลับมาดูเครื่องพิมพ์เป็นระยะ

ระวัง: พลาสติกที่หลอมละลายจะส่งกลิ่นออกมา โปรดใช้งานในที่ที่อากาศถ่ายเทได้สะดวก

ระวัง: กรณีที่เกิดเหตุฉุกเฉินให้ปลดสายไฟออกจากเต้ารับโดยเร็ว

ระวัง: การดัดแปลงเครื่องโดยพลการอาจทำให้เครื่องใช้งานไม่ได้ และไม่ปลอดภัยอีกต่อไป ทำให้การรับประกันสิ้นสุดลงทันที
COMPLIANCE: เครื่องพิมพ์สามมิติ Fullscale XT ได้รับการทดสอบอย่างเข้มงวดจาก SGS โดยความยินยอมของ FCC, CE, IC,
C-Tick และ ROHS. และเป็นไปตามกฎและข้อจำกัดของ EMC, MD และ ROHS, ที่จะปกป้องผู้ใช้งานจากกระแสแม่เหล็กไฟฟ้า
ผลกระทบใดๆ จากลักษณะทางกายภาพ และเคมี

Fullscale XT		Hardware		
Forming Tech.	Fused deposition modeling (FDM)	Controller	Arduino ATmega2560 R3Micro Controller	
Extruder Number	1 or 2 (Dual extruders Perfect supported)	Mother Board	Stable Main Board V3.x	
Build Size	250*250*300mm, 300*250*520mm	Stepper Motor	X, Y axis 42*48, 1.3A; Z axis 42*63, 1.5A	
Specification		Geared Motor	E42*42, Ratio 1:10	
Precision	X,Y 0.01mm, Z 0.015mm	Power Input	110~220V, 1.5A	
Layer Resolution	0.04mm-0.4mm	Power Output	24V, 10.5A	
Nozzle Diameter	0.4mm	Software		
Max. Travel Speed	250mm/sec.	Operating System	XP, Vista, Win7, Win8, Mac, Linux/Unbutu	
Max. Print Speed	180mm/sec.	File Format	STL, OBJ, GCode	
Max. Extruder Temperature 270Deg.		Printing Software and Slicer CreatWare		
Max. Hot Bed Temperature 105Deg.		Software Language	English, Deutsch, French, Nederland, Spanish,	
		Polish		
Max. Extrude Speed	100mm/sec	Machinery		
Filament		Dimensions	380*420*530mm	
Filament Type	ABS, PLA(Spec.), PVA, PS, Nylon	Weight Around	34KG	
Filament Diameter	3mm			
Filament Temperatur	e 150~270Deg.			
Filament Colors	Black, White, Red, Green, Blue, etc.			

หลักการทำงานของเครื่อง

เครื่องพิมพ์สามมิติ Fullscale XT สร้างชิ้นงานสามมิติขึ้นจากการหลอมเส้นพลาสติก ไฟล์งาน สามมิติจะถูกแปลงเป็นคำสั่งการพิมพ์โดยผ่านทางแผ่น SD Card จากนั้นเครื่องพิมพ์จะหลอมเส้นพลาสติกแล้วฉีดผ่านหัวฉีด ลงบนแท่นพิมพ์เพื่อสร้างชิ้นงานทีละชั้นๆ กระบวนการนี้เรียกว่า Fused Deposition Modeling [FDM]

2

การติดตั้ง

เครื่อง Fullscale XT ผลิตขึ้นอย่างประณีต และมีการหีบห่ออย่างแน่นหนามั่นคง ก่อนการส่งให้คุณ เราได้ประกอบชิ้นส่วนสำคัญ และทำการตรวจสอบคุณภาพ และทดสอบการใช้งานให้เป็นที่เรียบร้อยแล้ว

แกะกล่อง

วางกล่องบนพื้นที่เรียบและ กว้างพอสมควร

ภายในกล่องจะมีการหีบห่ออย่างแน่น

แกะกล่องและเอาโฟมกันกระแทกออก เปิดถุงพลาสติก

ยกเครื่องพิมพ์ออกจากกล่อง ระวังอย่าจับถูกสายพาน หรือแกนเหล็กของระบบขับเคลื่อนหัวพิมพ์

วางเครื่องลงบนพื้นผิวที่เรียบและมั่นคง

ตัดฟิล์มพลาสติกออก และนำอุปกรณ์ ออกมาจากเครื่อง

นำฝาปิดออกจากเครื่อง

ต่อสายไฟเข้ากับเครื่อง เปิดสวิทซ์แล้วกดปุ่ม ที่จอ LCD เลือก Prepare > Autohome เพื่อ ยกขาเหล็กขึ้น

นำเส้นพลาสติกออกจากเครื่อง

4. Gear motor ความเที่ยงตรงสูงป้อนเส้นพลาสติกอย่าง สม่ำเสมอ

อุปกรณ์ที่มากับเครื่องพิมพ์

- 1. เส้นพลาสติกขนาด 3 ม.ม. สองม้วน
- 2. แท่นพิมพ์

3. กล่องเครื่องมือและอะไหล่

อุปกรณ์และอะไหล่ที่มาพร้อมกับเครื่อง (บางชิ้นเราได้ติดตั้งให้คุณแล้วก่อน การส่งมอบ)

- 1. สาย USB ใช้เชื่อมต่อเครื่องพิมพ์กับเครื่องคอมพิวเตอร์
- 2. สายไฟ
- 3. SD Card เพื่อการโอนย้ายข้อมูล และมีการบรรจุโปรแกรมของ เครื่อง ตัวอย่างชิ้นงาน วิดีโอสาธิตการพิมพ์
- 4. หูจับ ติดตั้งให้แล้ว

- 5. แกนยึดม้วนเส้นพลาสติก
- 6. สลักเกลียวยึดแท่นพิมพ์ 5 อัน ติดตั้งให้แล้ว สำรอง 1 อัน
- 7. น็อตสำหรับปรับแท่นพิมพ์ (สำรอง)
- 8. สลักเกลียวยึดมอเตอร์ป้อนเส้น ติดตั้งแล้ว สำรอง 1 อัน
- 9. ฟิวส์สำรอง
- 10. สวิทซ์สำรอง
- 11. ลูกบิดสำรอง
- 12. ตัวทำความร้อนสำรอง
- 13. สายควบคุมอุณหภูมิสำรอง
- 14. น้ำมันหล่อลื่น
- 15. Kapton tape
- 16. เหล็กขูดสำหรับนำชิ้นงานออกจากแท่นพิมพ์
- 17.- 20 เครื่องมือ
- 21. เข็มสำหรับทำความสะอาดหัวพิมพ์

หมายเหตุ อุปกรณ์บางชิ้นอาจแตกต่างไป หรือไม่เท่ากันตามแต่ละภูมิภาค

การติดตั้งตัวเครื่อง

1. ติดตั้งหูจับเครื่อง– ติดตั้งให้ แล้ว

3. ติดตั้งมอเตอร์ป้อนสาย – ติดตั้งให้แล้ว

5. หยอดน้ำมันในส่วนที่ เคลื่อนไหว

- 1. ช่องใส่ SD Card
- 2. ปุ่มควบคุมคำสั่ง
- 3. จอแสดงคำสั่ง
- 4. ตัวปรับระดับแท่นพิมพ์
- 5. แท่นพิมพ์
- 6. หัวพิมพ์
- 7. ท่อนำเส้นพลาสติก
- 8. หูจับ
- 9. ปุ่มเปิด-ปิดเครื่อง
- ้ 10. ช่องเสียบสายไฟฟ้า
- 11. ป้ายชื่อเครื่อง
- 12. แกนม้วนเส้นพลาสติก
- 13. มอเตอร์
- 14. ชองเสียบสาย USB

3

รายละเอียดของจอแสดงผล

เมนูช่วงระหว่างพิมพ์งาน ในขณะที่เครื่องกำลังพิมพ์งาน คุณสามารถกดปุ่มเพื่อปรับตัวเลือกบางอย่างได้ ได้แก่

Tune: เพื่อปรับค่าต่างๆ

F/R: เพื่อเพิ่มหรือลดความเร็วในการพิมพ์

Nozzle: ปรับอุณหภูมิของหัวพิมพ์ซ้าย

Nozzle2: ปรับอุณหภูมิของหัวพิมพ์ขวา

Bed: ปรับอุณหภูมิของแท่นพิมพ์

Flow: ปรับอัตราการใหลของเส้นพลาสติก

Flow 1: ปรับอัตราการไหลของหัวพิมพ์ด้านขวา Flow 0: ปรับอัตราการไหลของหัวพิมพ์ด้านซ้าย Fan speed: ปรับความเร็วพัดลม

Change Filament: หยุดชั่วคราวเพื่อเปลี่ยนเส้นพลาสติก

Control: ไม่ควรปรับค่าในหัวข้อนี้ Pause: หยุดเครื่องพิมพ์ชั่วคราว

Stop Print: ยกเลิกการพิมพ์

ซอฟแวร์

แสดงวิธีติดตั้ง วิธีใช้ การตั้งค่าต่าง ๆ

การติดตั้งโปรแกรม CreatWare เปิดโปรแกรมจากแผ่น SD card ที่มาพร้อมเครื่อง เลือก Creat-

Ware_Setup_V6.3.3.msi จากนั้นทำตามที่โปรแกรมแนะนำ *** โปรแกรมที่มีมาให้ใช้ทำงานบน Windows หากคุณใช้ platform อื่นโปรดดาวน์โหลดได้ที่ http://www.creatbot.com/en/download.html

- 1. โหลดโมเดลสามมิติ ที่เป็นไฟล์ประเภท STL / OBJ / DAE / AMF.

 หมายเหตุ: CreatWare สามารถอ่านไฟล์ประเภท สองมิติและแปลงให้เป็นสามมิติได้ด้วย
 เช่นไฟล์ประเภท JPG / BMP / PNG.
- 2. บันทึกเป็นไฟล์ Gcode
- 3. หากมีการเปลี่ยนแปลงการตั้งค่าใด ๆ ให้กดปุ่มนี้เพื่อให้เครื่องคำนวณเวลาในการพิมพ์ และ ปริมาณพลาสติกที่ใช้
- 4. เวลาในการพิมพ์ และปริมาณพลาสติกที่ใช้จริง
- 5. จำลองการพิมพ์ในแบบต่างๆ
 - 5.1 Normal: ฐปแบบปกติ
 - 5.2 Overhang: แสดงส่วนที่ลอยและจำเป็นต้องมี support
 - 5.3 Transparent: แบบโปร่งใส 5.4 X-Ray: มุมมองแบบ X-Ray
 - 5.5 Layers: มุมมองแบบชั้นๆ เหมือนการพิมพ์จริง เมื่อกดเม้าส์ปุ่มขวาบนชิ้นงานจะมีเมนูดังนี้
 - ย้ายชิ้นงานไปอยู่กลางแท่นพิมพ์
 - ลบชิ้นงาน
 - เพิ่มจำนวนชิ้นงาน
 - โหลดชิ้นงานทั้งหมดใหม่
- รวมชิ้นงานเพื่อพิมพ์สองสี
- แยกส่วนชิ้นงาน (อาจใช้เวลานาน)
- ลบชิ้นงานทั้งหมด

นำเมาส์ไปวางบนตัวเลือก จะแสดง ข้อความอธิบายโดยอัตโนมัติ

การตั้งค่าต่างๆ

Quality

Layer height: ความสูงระหว่างชั้น ตัวเลข ยิ่งน้อยยิ่งละเอียด

- ความละเอียดสูงมาก: แนะนำว่าให้ใช้ค่า 0.1
- ความละเอียดสูง: แนะนำว่าให้ใช้ค่า 0.2
- ความละเอียดที่เหมาะสม คุณภาพดีและ งานเสร็จเร็ว: แนะนำว่าให้ใช้ค่า 0.25
- ความเร็วสูง: แนะนำว่าให้ใช้ค่า 0.3
- ***ไม่ควรกำหนดให้ต่ำกว่า 0.1 ***

Shell thickness: ความหนาของผนัง โดยรอบ ควรเป็นจำนวนเท่าของขนาด หัวพิมพ์ 0.4mm

Flow: การชดเชยจำนวนเนื้อพลาสติกว่าให้ ใช้มากขึ้นหรือน้อยลง

Fill

Bottom/Top thickness: ใช้สร้างฝาปิด ด้านบน-ล่าง ปกติจะตั้งให้เป็นจำนวนเท่า ของ layer height ควรตั้งให้มีขนาด ใกล้เคียงกับ wall thickness เพื่อให้วัตถุมี ความแข็งแรงเท่ากันทุกด้าน

Fill Density: คือการสร้างโครงตาข่าย ภายในตัววัตถุ 0% คือภายในกลวง 100% คือทึบตัน

Speed and Temperature

Printing Speed: ความเร็วของหัวพิมพ์ค่า จากโรงงานคือ 30mm สามารถตั้งได้ถึง 50-70mm/s แต่ต้องเพิ่มอุณหภูมิให้สมดุลย์ ด้วย เพื่อป้องกันเส้นขาด ความเร็วนี้ยัง ขึ้นอยู่กับรูปแบบของชิ้นงานด้วย ไม่ควร ปรับให้เร็วเกิน 70mm/s เพราะจะทำให้เสีย ความแม่นยำในการพิมพ์

Printing Temperature: ตั้งอุณหภูมิของ หัวพิมพ์หลัก(ปกติอยู่ที่ข้างซ้าย)ขึ้นอยู่กับ วัสดุที่ใช้

2nd extruder temperature: ตั้งอุณหภูมิ ของหัวพิมพ์รอง(ปกติอยู่ที่ข้างขวา)ขึ้นอยู่ กับวัสดุที่ใช้

Default main extruder: เลือกหัวพิมพ์ หลักในการพิมพ์ คุณสามารถพิมพ์ชิ้นงานที่ หนึ่งที่หัวซ้ายจบแล้วมาเปลี่ยนเป็นหัวขวา เพื่อพิมพ์ชิ้นงานที่สองอีกสีหนึ่งที่หัวซ้ายได้ เลยโดยไม่เสียเวลา

Bed temperature: ตั้งอุณหภูมิที่แท่นพิมพ์ Close bed after layer: ตัดความร้อนที่ แท่นพิมพ์เมื่อถึง layer ที่ตั้งไว้ เพื่อ ประหยัดไฟฟ้าและยืดอายุแท่นพิมพ์ ตั้งเป็น 0 เพื่อปิดตัวเลือกนี้

Support

Support type: ชิ้นงานที่มีส่วนยื่นไปใน อากาศต้องมีเสามารับ เพื่อป้องกันการเสีย รูป

-None: ไม่พิมพ์

-Touching Build Plate: จะสร้าง support เฉพาะจุดที่สัมผัสท่าพิมพ์เท่านั้น

-Everywhere: สร้างทุกจุดที่มีการยื่น ออกไป

Note: การสร้าง support จะมีผลกับผิวของ ชิ้นงานและความเร็วในการพิมพ์ ถ้าไม่ จำเป็นควรแยกชิ้นงานในการพิมพ์เพื่อลด การใช้ support

Platform adhesion type: ตัวช่วยให้ ชิ้นงานติดกับแท่นพิมพ์ได้ดีขึ้น

- None: ไม่พิมพ์
- Brim: สร้าง layer 1 ชั้นรอบชิ้นงาน
- Raft: สร้างแพที่หนากว่า Brim รอบ ชิ้นงาน

Support dual extrusion: เลือกหัวพิมพ์ที่ จะใช้พิมพ์ support ในกรณีที่ใช้วัสดุ เดียวกับชิ้นงานเลือกได้ทั้งสองหัว ถ้าใช้ แบบละลายทิ้งให้เลือกตรงข้ามกับหัวพิมพ์ หลัก

Infill

Solid infill top ปิดฝาด้านบนของชิ้นงาน

Solid infill bottom ปิดพื้นของชิ้นงาน

Spiralize the outer contour พิมพ์แบบผนังชั้นเดียวโดยวนเป็นเกลียวขึ้นไปอย่างต่อเนื่อง

Retraction

Enable retraction: เลือกให้เครื่องดึงเส้นพลาสติกกลับขณะเคลื่อนหัวพิมพ์ข้ามชิ้นงานส่วนที่ ไม่ได้พิมพ์ เพื่อไม่ให้พลาสติกไหลเลอะชิ้นงาน

-Retraction speed: ความเร็วในการดึงเส้นกลับ ไม่ควรตั้งให้เร็วเกินไป

-Distance: ระยะการดึงกลับ ตั้งค่าเป็น 0 เพื่อยกเลิกคำสั่งนี้ ค่าที่เหมาะสมคือ 5

Quality

Initial layer thickness: ความหนาของชั้นพิมพ์ชั้นแรกตั้งให้หนากว่าเพื่อการยึดติดกับแท่น พิมพ์ดีขึ้น ตั้งค่า 0.0 เพื่อให้หนาเท่ากับชั้นอื่นๆ

Initial layer flow: ปริมาณเนื้อพลาสติกที่ชั้นแรก

Cut off object bottom: ตัดฐานของชิ้นงานออกที่ความสูงที่กำหนด

Continue print from cut off: เริ่มพิมพ์ชิ้นงานที่ความสูงจากพื้นจากค่าใน Cut off

Note: ต้องปิด brim. raft และ skirt ในกรณีที่ใช้คำสั่งนี้

Speed and Temperature

Travel Speed: ความเร็วของหัวพิมพ์ในขณะที่ไม่ได้ฉีดเส้นพลาสติก ควรตั้งที่ 70

Bottom layer speed: ความเร็วที่ฐานของชิ้นงาน ควรตั้งที่ 20 ไม่ควรตั้งให้เร็วมากเพราะจะทำให้ชิ้นงานไม่ติดกับแท่นพิมพ์

Solid layer speed ความเร็วขณะพิมพ์ส่วนที่เป็นพื้นเต็ม ระบุเป็น % ของความเร็วในหน้า Basic

Outer shell speed: ความเร็วขณะพิมพ์ผิวด้านนอกของชิ้นงาน พิมพ์ช้าจะได้ผิวงานที่เรียบร้อยกว่า แต่ไม่ควรตั้งให้ค่านี้ต่างกันมาก ระหว่าง inner shell speed กับ outer shell speed ชิ้นงานจะออกมาไม่ดี ระบุเป็น % ของความเร็วในหน้า Basic

Inner shell speed: ความเร็วในการพิมพ์ผนังด้านใน สามารถตั้งให้สูงกว่าด้านนอกเพื่อให้งานเสร็จเร็วขึ้น ควรตั้งค่าให้อยู่ในระหว่าง outer shell speed กับ infill printing speed ระบุเป็น % ของความเร็วในหน้า Basic

Infill speed: ความเร็วในการพิมพ์โครงด้านใน ไม่ควรตั้งให้เร็วเกินไป ระบุเป็น % ของความเร็วในหน้า Basic

Expert Setting

Nozzle

Nozzle size: กำหนดขนาดหัวฉีด มาตรฐานคือ 0.4 มม.

Filament

Diameter: ขนาดของเส้นพลาสติกที่ใช้ต้องระบุให้ตรงกับขนาด

Diameter 2: ขนาดของเส้นพลาสติกของหัวพิมพ์รอง

Retraction

Minimum travel ระยะทางที่กำหนดหรือน้อยกว่าจะไม่ retract

Minimal extension before retracting ระยะทางที่ฉีดพลาสติกก่อนถึงการ retract หากมีการ retract ก่อนระยะนี้ การ retract จะถูกยกเลิก

Z hop when retracting ระยะทางที่แท่นพิมพ์จะถอยห่างจากหัวพิมพ์ Enable combing หลีกเลี่ยงการข้ามไปมาของหัวพิมพ์บนชิ้นงาน

Dual Extrusion การพิมพ์พร้อมกันสองหัว

Wipe &prime tower: หอคอยเพื่อเช็ดหัวพิมพ์ในขณะที่สลับหัวพิมพ์

Tower volume per layer: กำหนดปริมาณพลาสติกที่จะใช้สร้างหอคอย

Ooze shield: เป็นกำแพงบางๆ ที่สร้างเพื่อรับพลาสติกที่หยดออกมาจากหัวที่ไม่ได้พิมพ์

Dual extrusion overlap: การทับซ้อนของเส้นพลาสติกจากทั้งสองหัวพิมพ์ ช่วยให้ชิ้นงานติดเป็นชิ้นเดียวกัน

Dual extrusion switch amount: ระยะของการดึงเส้นพลาสติกกลับเมื่อมีการสลับหัวพิมพ์ เพื่อป้องกันการไหลหยด ของพลาสติก ตั้งค่าเป็น 0 เพื่อยกเลิกคำสั่ง ค่าที่เหมาะสมคือ 25

Infill

Infill overlap: ตั้งค่าการเชื่อมต่อ in-fill กับตัวชิ้นงานให้แข็งแรงค่าที่เหมาะสมคือ 10

Skirt

Line count: พิมพ์ลายเส้นรอบ ๆ ชิ้นงานในชั้นแรก เพื่อเตรียมหัวพิมพ์ และตรวจดูว่าชิ้นงานพอดีกับแท่นพิมพ์หรือไม่ ควรตั้งค่าไว้ที่ 1 ถ้า ตั้ง 0 จะไม่พิมพ์ลายเส้น หากตั้งมากกว่า 1 จะช่วยได้ดีกว่าในกรณีที่พิมพ์ชิ้นงานเล็ก ๆ

Start distance: ตั้งค่าระยะห่างของ skirt กับชิ้นงาน

Minimal length: ความยาวน้อยสุดของลายเส้น หากพิมพ์ลายเส้นแล้วยังไม่ถึงค่าที่ตั้งไว้ เครื่องจะพิมพ์อีกเส้นหนึ่งจนถึงค่าที่ตั้งไว้ ค่าที่ เหมาะสมคือ 250 ถ้าตั้งไว้ที่ 0 จะเป็นการยกเลิกคำสั่ง หากชิ้นงานเล็กมากๆ จะไม่ได้ประโยชน์

Cool

Enable cooling fan: เปิดพัดลมระบายความร้อนให้พลาสติก

Minimal layer time: เวลาที่น้อยที่สุดในการพิมพ์ 1 ชั้นเพื่อรอให้เย็นลงก่อนจะพิมพ์ชั้นต่อไป ถ้าความเร็วในการพิมพ์เร็วเกินไปจะถูก

ชะลอด้วยคำสั่งนี้

Fan full on at height: กำหนดให้พัดลมทำงานเต็มที่ ณ ความสูงที่เท่าใด

Fan speed min: ความเร็วพัดลมที่น้อยที่สุดขณะพิมพ์

Fan speed max: ความเร็วพัดลมที่มากที่สุดขณะพิมพ์ช้าลง

Minimum speed: ความเร็วน้อยที่สุดในการพิมพ์แต่ละชั้น ค่าที่เหมาะสมที่สุดคือ 10

Cool head lift: หากค่า Minimal layer time ไม่พอ จะยกหัวพิมพ์ออกจากงานเพื่อให้ชิ้นงานเย็นลง

Support

Structure type เลือกรูปแบบของการสร้าง support มีแบบ Grid และ Line

Distance X/Y: ระยะห่างระหว่างชิ้นงานกับ support ในแนวแกน X/Y ค่าที่เหมาะสมคือ 1.0mm

Distance Z: ระยะห่างของชิ้นงานกับ support ในแนวแกน Z ค่าที่เหมาะสมคือ 0.10mm.

Birm

Birm line amount: ค่าที่เหมาะสมคือ 5 ค่าที่มากขึ้นจะติดได้ดีขึ้น แต่จะลดขนาดพื้นที่พิมพ์ลง

Raft

Extra margin: ถ้าเปิดใช้ raft จะเพิ่มขนาดของ raft ตามที่กำหนด

Line spacing: ระยะความถี่ของเส้น raft

Fix Horrible

Combing everything (Type-A)/ (Type-B): คำสั่งนี้จะเชื่อมต่อชิ้นงานรวมเป็นชิ้นเดียวกัน ปกติโพรงภายในชิ้นงานจะหายไป ผลของ คำสั่งนี้อาจไม่เป็นไปตามที่ต้องการ โปรดใช้ด้วยความระมัดระวัง

Type-A จะพยายามคงช่องว่างภายในไว้

Type-B จะเน้นรูปร่างภายนอกเท่านั้น

Keep open faces: คงช่องว่างเอาไว้ทั้งหมด ปกติเครื่องจะปิดช่องว่างเล็กๆ และเปิดช่องให้สำหรับช่องว่างที่ใหญ่ แต่คำสั่งนี้จะคงช่องว่าง ทุกช่องไว้อาจจะทำให้ชิ้นงานเสียหายได้ ผลของคำสั่งนี้อาจไม่เป็นไปตามที่ต้องการ โปรดใช้ด้วยความระมัดระวัง

Extensive stitching: คำสั่งนี้จะพยายามปิดช่องว่างของชิ้นงานทุกช่อง อาจใช้เวลาคำนวณนานมาก ผลของคำสั่งนี้อาจไม่เป็นไปตามที่ ต้องการ โปรดใช้ด้วยความระมัดระวัง

เราให้ plugins มา 3 อัน ซึ่งจะช่วยให้คุณ ควบคุมการทำงานของเครื่องให้ดีขึ้น คุณสามารถ ตั้งค่าที่แตกต่างกันในแต่ละความสูง ให้กับชิ้นงาน เพื่อความเที่ยงตรงที่สูงขึ้น ให้ Double-click ที่ plugin ที่ต้องการเพื่อเปิดใช้

ให้ Double-click ที่ plugin ที่ต้องการเพื่อเปิดใช้ งาน แล้วตั้งค่าตามต้องการ ถ้าต้องการปิด plugin ใดให้กดปุ่มกากบาทบนมุม ขวาบน

Change Filament At Z: กำหนดว่าต้องการ
เปลี่ยนเส้นพลาสติก ณ ความสูงใดชองชิ้นงาน
Pause at height: กำหนดให้หยุดพิมพ์ชั่วคราว ณ
ตำแหน่งความสูงใดๆ ในแนวแกน Z
Tweak At Z: คุณสามารถ reset ค่าที่ตั้งไว้ แล้วใช้
ค่าที่กำหนดใหม่ ณ ตำแหน่งความสูงใดๆ ใน
แนวแกน Z

5

เริ่มใช้งาน

แสดงวิธีใช้งานเครื่องเบื้องต้น การติดแผ่น Kapton Tape

Kapton tape ช่วยให้ชิ้นงานติดกับแท่น พิมพ์ได้ดีขึ้น ประกอบด้วยฟิล์มสามชั้น

ทำความสะอาดแท่นพิมพ์ให้ดี อย่าให้มี ฝุ่นผงใดๆ การติดให้เต็มแท่นพิมพ์ต้องติด 3 แถบ

ลอกแผ่นรองด้านหนึ่งออก และติดลงบน แท่นพิมพ์ ระวังอย่าให้มีฟองอากาศ

ใช้แผ่นปาดที่ให้มาในกล่องช่วยทำให้ติด ได้เรียบขึ้น

ตัดให้พอดีกับแท่นพิมพ์

ติดชิ้นต่อไปด้วยวิธีเดียวกัน

ตัดเว้นช่องตรงหัวน็อต

หากมีฟองอากาศให้ใช้เข็มเจาะแล้วรีดให้ เรียบ

ลอกแผ่นรองอีกด้านหนึ่งออกด้วย ** หลังจากใช้ไปสักพักเมื่อกาวไม่เหนียว แล้วก็ต้องเปลี่ยน Kapton tape

การปรับระดับแท่นพิมพ์

- หมุนหัวปรับให้แน่นขึ้น (หมุนไปทางขวา) เพื่อลดความสูงของแท่นพิมพ์
- หมุนหัวปรับให้คลายลง (หมุนไปทางซ้าย) เพื่อเพิ่มความสูงของแท่นพิมพ์
- ระยะห่างระหว่างหัวพิมพ์กับท่านพิมพ์ควรจะเป็น 75% ของ Layer thickness ที่ตั้งไว้ในโปรแกรม การปรับระดับแท่นพิมพ์มีความจำเป็นมาก เพราะหากไม่ได้ระดับ หรือหัวพิมพ์อยู่ใกล้หรือห่างจากแท่นพิมพ์เกินไป ชิ้นงานจะออกมาไม่ดี มีโอกาสเสียหายสูง ควรทำการปรับระดับบ่อยๆ

วิธีการปรับระดับ

หมุนตัวปรับให้แน่นเพื่อป้องกันแท่น พิมพ์ชนหัวพิมพ์

ปรับเมนูดังนี้ Prepare > Auto home หัวพิมพ์และแท่นพิมพ์จะปรับไปอยู่ ณ จุดเริ่มต้น

ใช้กระดาษ A4 วางไว้ระหว่างหัวพิมพ์
และแท่นพิมพ์ ลองขยับกระดาษ หาก
ระยะที่พอดีจะรู้สึกฝืดเล็กน้อย หาก
หลวมหรือฝืดเกินไป ให้หมุนที่ปุ่มใต้
แท่นพิมพ์จนกระทั่งพอดี

ปรับอีกสามมุมด้วยวิธีเดียวกัน

ทำซ้ำอีก 3-4 ครั้งให้แน่ใจว่าได้ระดับที่ดีที่สุด

เมนูสำหรับเครื่อง FULLSCALE XL

- 1. เลื่อนแท่นพิมพ์ขึ้น
- 2. เลื่อนไปเมนูก่อนหน้า
- 3. เปิดข้อมูลใน SD card
- 4. เปิดความร้อนที่หัวพิมพ์ที่ 1 -> 1+2 -> 2 โดยกดวนไปเรื่อยๆ
- 5. กดเข้าเมนู และเลือกตัวเลือก
- 6. ไปยังตำแหน่ง Home
- 7. เลื่อนแท่นพิมพ์ลง
- 8. เลื่อนไปเมนูถัดไป
- 9. หยุดชั่วคราว/ทำต่อไป

การใส่เส้นพลาสติก

Preheat the nozzle: กดเลือก "Prepare">"preheat PLA
(หรือ ABS)" จากเมนู เลือกหัวพิมพ์ที่จะทำ

ใส่เส้นพลาสติกเข้าไปในท่อนำ

ดันจนเส้นพลาสติกเข้าไปจนสุดถึง หัวพิมพ์ อย่าออกแรงมากเกินไป จะทำ ให้หัวพิมพ์เสียได้

ข้อควรระวัง

- 1. การหมุนปุ่มให้แน่นหรือหลวมเกินไป จะทำให้การป้อนเส้นพลาสติกมีปัญหาและ พิมพ์ชิ้นงานพิมพ์ไม่ได้
- 2. หลังจากการป้อนเส้นเสร็จสมบูรณ์แล้ว ให้ตรวจดูเส้นพลาสติกอย่าให้พันกัน หรือ มัดเป็นปม
- 3. หมั่นหยอดน้ำมันที่แกนเหล็กของหัวพิมพ์ และส้วนที่เคลื่อนไหวอื่นๆ เพื่อป้องกัน การติดขัด

หมุนปุ่มยึดเส้นพลาสติก ให้แค่ตึงมือเท่านั้น

พิมพ์งานจาก SD card

เปิดไฟล์งาน 3D ในโปรแกรม Creatware และบันทึกลงในแผ่น SD card

เลือกคำสั่ง Print from SD

นำแผ่น SD card ไปใส่ในเครื่องพิมพ์

เมื่อพิมพ์เสร็จแท่นพิมพ์จะเลื่อนลง ในการแกะชิ้นงาน ใช้เหล็กที่ให้ มาแซะชิ้นงานด้วยความระมัดระวัง

การนำเส้นพลาสติกออกจากเครื่อง

Preheat the nozzle: กดเลือก "Prepare">"preheat PLA (หรือ ABS)" จากเมนู เลือกหัวพิมพ์ที่จะทำความร้อน

เมื่อความร้อนได้ที่แล้ว ให้ดันเส้นพลาสติกให้ออกมาทาง หัวพิมพ์ประมาณ 15 ซ.ม. แล้วดึงเส้นพลาสติกออกมา ตรงๆ อย่างรวดเร็ว

- *** หากเส้นขาดติดอยู่ภายในให้อ่านหัวข้อวิธีแก้ปัญหา
- *** อย่าเพื่อป้องกันเส้นพลาสติกไหม้ ทำให้หัวพิมพ์ตันได้ ทำความสะอาดแท่นพิมพ์ เพื่อยืดอายุ Kapton tape

บำรุงรักษา

แท่นพิมพ์

โปรดรักษาแท่นพิมพ์ให้สะอาด ปราศจากฝุ่น รอยขีดข่วน ฟองอากาศ และน้ำมัน/ไขมันจากมือ

- ใช้ปากคืบในการหยิบเศษพลาสติกออกจากแท่นพิมพ์
- อย่าใช้ของมีคมสัมผัสแท่นพิมพ์
- หากไม่ได้ใช้เครื่องเป็นเวลานาน ควรทำความสะอาดเทป กระจก และคลายเกลียวของปุ่มปรับระดับแท่นพิมพ์

ทำความสะอาดเครื่องป้อนเส้นพลาสติก

หลังจากพิมพ์ชิ้นงานมาจำนวนหนึ่ง เฟืองขับเส้นพลาสติกอาจมีเศษพลาสติกสะสมอยู่ ควรใช้แปรงทำความสะอาดตามขั้นตอนต่อไปนี้

คลายน็อตที่มอเตอร์ด้านหลังจนสุด

เลือกที่เมนู "Prepare">"Filament" > "move ใช้แปรงปัดจนความสะอาด

ทำความสะอาดรางเลื่อนทุกอัน

หยอดน้ำมันที่รางทุกอัน ระวังอย่าให้มากเกินไป

วิธีแก้ปัญหา

ปัญหาการติดตั้งและการปรับแต่ง

Q: การตั้งอุณหภูมิสำหรับพลาสติกชนิดต่างๆ

A: PLA: อุณหภูมิที่หัว: 200-215°C อุณหภูมิที่แท่นพิมพ์:45°C ABS: อุณหภูมิที่หัว: 245-255°C อุณหภูมิที่แท่นพิมพ์: 80-95°C

PVA: อุณหภูมิที่หัว: 190-220°C อุณหภูมิที่แท่นพิมพ์:45°C

- Q: ความสัมพันธ์ของ layer thickness, print speed และ nozzle temperature?
- A: จุดประสงค์คือให้เวลาที่เพียงพอที่จะให้พลาสติกร้อนและเย็น ปกติถ้า layer thickness เพิ่มขึ้นควรเพิ่มความเร็ว และเพิ่ม อุณหภูมิให้เหมาะสม เช่นถ้าความเร็วเกิน 60 เพิ่มอุณหภูมิ 5°C หากเกิน 90 ให้เพิ่มเป็น 10°C ในทางกลับกันถ้าลด layer thickness ให้ลดความเร็ว และลดอุณหภูมิลง
- Q: จะตั้งค่าการพิมพ์อยางไรเมื่อต้องการพิมพ์ชิ้นงานที่มีฝาปิด ด้านบนและล่าง
- A: เพิ่มความหนาของ top/bottom thickness ในหน้า Basic
- Q: ถ้าจะพิมพ์ single layer thickness จะตั้งค่าอย่างไร
- A: ปกติให้คง layer thickness ให้มากกว่า 1mm และเลือกคำสั่ง "Spiralize" ในหน้า "Expert"setting.

ปัญหาการป้อนเส้นแล้วการฉืดพลาสติก

- Q: หัวพิมพ์ตัน
- A: 1. เส้นพลาสติกที่ใช้สกปรกและไปสะสมในหัวพิมพ์ ต้องทำ ความสะอาดหัวพิมพ์โดยใช้เข็ม หรือถอดหัวพิมพ์ออกมาแล้วใช้ เข็มและดอกสว่านทำความสะอาด
 - 2. ใช้ความร้อนมากเกินไปทำให้เส้นพลาสติกไหม้อยู่ข้างใน ต้องทำความสะอาดหัวพิมพ์โดยใช้เข็ม หรือถอดหัวพิมพ์ออก มาแล้วใช้เข็มและดอกสว่านทำความสะอาด
 - 3. รูหัวพิมพ์ผิดรูป ต้องเปลี่ยนหัวพิมพ์ใหม่
- Q: หัวพิมพ์ไม่ร้อน
- A: 1. ขั้วต่อลวดทำความร้อนหลวม ต้องขันให้แน่น
 - 2. ลวดความร้อน หรือ ตัวควบคุมอุณหภูมิ หรือ สายไฟ เสีย โปรดเช็คดูว่าถ้าหัวพิมพ์ด้านหนึ่งทำงานปกติแต่อีกด้านหนึ่งไม่ ทำความร้อนให้ทำตามนี้
 - 1) เปิดฝาเครื่องออกหาสายไฟที่ต่อเข้ากับลวดความร้อน สลับ สายไฟ แล้วลองให้ความร้อน ถ้าหัวที่เคยไม่ร้อนกลับมาร้อนได้ ก็ให้เปลี่ยนลวดความร้อนที่เสียออกไป
 - 2) ถ้าสลับสายแล้วหัวที่ไม่ร้อนก็ยังไม่ร้อนเหมือนเดิม ให้สลับ สายกลับมาเหมือนเดิม แล้วมาสลับสายของตัวควบคุมอุณหภูมิ แล้วทำความร้อนอีกครั้ง ถ้าหัวที่เคยไม่ร้อนกลับมาร้อนได้ ก็ ต้องเปลี่ยนตัวควบคุมอุณหภูมิ
 - 3) ถ้าลองทำตามด้านบนแล้วยังไม่แก้ปัญหา จะต้องเปลี่ยน

- 1. Layer thickness ไม่สามารถตั้งให้สูงกว่า 0.8 เท่าของขนาด หัวพิมพ์ (ตัวอย่างเช่นหัวพิมพ์ขนาด 0.4mm, layer thickness ตั้ง ได้ไม่เกิน0.32mm)
- อุณหภูมิสูงสุดที่หัวพิมพ์ทำได้คือ 270°C , และที่แท่นพิมพ์
 110°C. วัสดุจากแหล่งต่างๆ จะมีการตั้งค่าอุณหภูมิที่ต่างกัน
- Q: มีรอยร้าวบนชิ้นงาน หรือรอยต่อระหว่างชั้น

Notes:

- A: 1. แท่นพิมพ์ไม่ได้ระดับ ปรับระดับแท่นพิมพ์อีกครั้ง
 - 2. เส้นพลาสติกไม่ติดกับแท่นพิมพ์ ควรใช้ Blue tape หรือ kapton tap บนแท่นพิมพ์
- Q: พัดลมทำงานตัวเดียวในขณะที่เครื่องกำลังรอพิมพ์
- A: เป็นเรื่องปกติ พัดลมจะทำงานเพียงตัวเดียว(โดยทั่วไปจะเป็น ตัวขวามือ) อีกตัวหนึ่งจะทำงานเมื่อพิมพ์ชิ้นงานชั้นแรกเสร็จ
- Q: หัวพิมพ์ข้างที่ไม่ได้พิมพ์ขูดชิ้นงาน (ในกรณีที่พิมพ์สีเดียว)
- A: 1. หัวพิมพ์ด้านนั้นอยู่ต่ำกว่า ให้ใช้ประแจขันด้านนั้นให้แน่นขึ้น ทำให้มันสูงขึ้นอีกเล็กน้อย
 - 2. ตั้งค่า printing flow มากเกินไป ทำให้ความสูงของชั้นเกินค่า ที่ตั้งไว้ ให้ลด printing flow ลง

Power tube บน mainboard

MAXTEMP/ MINTEMP

- Q: อุณหภูมิหัวพิมพ์สูงเกินไป
- A: 1. ให้ลดอุณหภูมิที่ preset temperature.
 - 2. ตัวควบคุมอุณหภูมิเสีย ต้องเปลี่ยน
- Q: หัวพิมพ์ติด ไม่ขยับ
- A: 1. น้ำมันหล่อลืนไม่เพียงพอ ให้ทำความสะอาดและหยอดน้ำมัน ที่แกน
 - 2. โครงสร้างของเครื่องเสียรูปจากการกระแทกขณะขนส่ง
 - 3. สายเชื่อมมอเตอร์ของแกน X/Y หลวม ให้เปิดฝาใต้เครื่อง แล้วเสียบใหม่
 - 4. น็อตยึดลูกรองสายพานหลวม ให้ขันให้แน่น
 - 5. สายพานหย่อน ให้เปลี่ยนสายพานใหม่
- Q: หัวพิมพ์ชนกับเครื่อง
- A: สายไฟที่เชื่อม limit switch หลวม หรือ limit switch เสีย ลอง ขยับสายไฟ ถ้าไม่หายให้เปลี่ยน limit switch
- Q: มอเตอร์ป้อนเส้นพลาสติกมีเสียงดัง
- A: 1. ขันน็อตแน่นเกินไป ให้คลายออก
 - 2. หัวพิมพ์ตัน ทำให้ไม่สามารถป้อนเส้นพลาสติกได้ ให้ทำ ความสะอาดหัวพิมพ์

ปัญหาเกี่ยวกับแท่นพิมพ์

Q: หัวพิมพ์กับแท่นพิมพ์ห่างกันมาก แม้จะหมุนตัวปรับจนสุดแล้ว A: ปรับ limit switch ของแกน Z ที่ด้านหลังของเครื่องให้สูงขึ้น

เล็กน้อย

Q: แท่นพิมพ์เคลื่อนที่ไม่ปกติ

A: 1. น็อตยึดแกน Z ที่ด้านบนของเครื่องหลวม ให้ขันให้แน่น

2. สายมอเตอร์ของแกน Z-axis หลวม ให้ขยับให้แน่น

3. แกน Z ขาดการหล่อลื่น ให้หยอดน้ำมันที่ตัวแกน

ปัญหาในการพิมพ์

ปัญหาเกี่ยวกับการพิมพ์ชั้นแรก

Q: พลาสติกไม่ติดกับแท่นพิมพ์

- A1: แท่นพิมพ์ห่างจากหัวพิมพ์เกินไป

- A2: แท่นพิมพ์ยังไม่ได้ปรับระดับให้ถูกต้อง

- A3: ยังไม่ได้คิด Kapton tape หรือไม่ได้ลอกแผ่นรองของ Kapton tape ออก

- A4: การพิมพ์ชั้นแรกน้อยเกินไป ควรตั้งให้อยู่ที่ 0.2 หรือมากกว่า

Q: พลาสติกติดที่แท่นพิมพ์น้อยมาก

A: ระยะห่างระหว่างหัวพิมพ์กับแท่นพิมพ์น้อยเกินไปจนพลาสติก ออกมาไม่ได้

Q: ไม่มีพลาสติกออกมาจากหัวพิมพ์เลย

A: ยังไม่ได้ใส่เส้นพลาสติก

Q: ขอบชิ้นงานเผยอขึ้น หรือมีการแตกเมื่อพิมพ์ด้วย ABS

A: ต้องเปิดความร้อนที่แท่นพิมพ์ตลอดเวลา หรือเปลี่ยน Kapton tape; ลดความเร็วในการพิมพ์ลง; ปิดฝาเครื่องเอาไว้เพื่อรักษา ระดับอุณหภูมิให้คงที่; อย่าให้มีลมผ่านเข้าไปในเครื่อง

Q: ผิวชิ้นงานแตกหรือหยาบ

A: Layer thickness ตั้งไว้สูงเกินไป; หรือใช้ความเร็วมากเกินไป หรืออุณหภูมิต่ำเกินไป หรือผนังหนาเกินไป หรือไฟล์ชิ้นงานไม่ สมบูรณ์ หรือตัวยึดเส้นพลาสติกที่มอเตอร์หลวม หรือใส่เส้น พลาสติกผิดขนาด หรือ เส้นพลาสติกคุณภาพต่ำ หรือการป้อนเส้น พลาสติกติดขัด

Q: ชิ้นงานมี flow line

A: อุณหภูมิสูงเกินไป; หรือเส้นพลาสติกไหม้ (ABS) หรือเหลว เกินไป (PLA)

Q. ผิวชิ้นงานไม่เรียบ

A: ลดระยะการถอยกลับของเส้นพลาสติก หรือลด minimal extrusion before retracting;

Note: ควรลดระยะการถอยกลับของเส้นพลาสติก หากมีการถอย กลับบ่อยๆ

Q. ชิ้นงานหลุดร่วงจากแท่นพิมพ์

off object bottom ช่วย

A: ไม่ได้ติด Kapton tape หรือ the Kapton tape ไม่เหนียวแล้ว หรือชิ้นงานมีฐานเล็กเกินไป คุณสามารถใช้ปืนกาว hot melting glue ช่วยได้; เพิ่ม support เข้าไปในชิ้นงาน; ใช้คำสั่ง Advance-Quality-Cut

Q: มีจุดเชื่อมของสีสองสีที่อยู่ผิดตำแหน่ง เมื่อพิมพ์งานสองสี A: ปรับ relative position coordinate ในโปรแกรม Creatware ที่ คำสั่ง Machine > Machine settings > Extruder 2

เมื่อเส้นพลาสติกติดในเครื่อง วิธีแก้ไขดังนี้ หมุนน็อตออกมาให้สุด

ดึงเส้นพลาสติกออกมา

Q: แกะ Support ยาก

A: หมุนชิ้นงานเพื่อให้ใช้ support ให้น้อยลง; ปรับ support density ให้น้อยลง แบ่งชิ้นงานออก เป็นส่วนๆ ถ้าจำเป็น

A: ในการพิมพ์ชิ้นงานเล็กๆ หัวพิมพ์จะขยับอยู่ในพื้นที่แคบๆ จะ ทำให้ความร้อนสะสม ควรพิมพ์ชิ้นงาน 3-4 ชิ้นบนแท่นพิมพ์ เพื่อให้หัวพิมพ์ย้ายไปพิมพ์ที่ชิ้นงานอื่น ทำให้มีเวลาให้พลาสติก เย็นตัวลง

Q: บางครั้ง Fullscale XT หยุดทำงาน

A: 1. ไฟล์ Gcode file ไม่สมบูรณ์ ให้ลองบันทึกใหม่

- 2. สาย USB ไม่ดี หรือคอมพิวเตอร์เปลี่ยนสถานะไปอยู่โหมด standby
 - 3. สายไฟไม่สมบูรณ์
- 4. หากเปิดเครื่องแล้วไม่มีไฟเข้า ฟิวส์อาจจะขาด ให้เปลี่ยน ฟิวส์

Q: บางส่วนของชิ้นงานไม่อยู่ทรง

A: เปิดใช้งานคำสั่ง Support ในโปรแกรม

ตัดตรงจุดที่บางที่สุด

ใช้ปากคีบดึงชิ้นที่ติดขัดออกมา

วิธีล้างหัวพิมพ์

เปิดความร้อนที่หัวพิมพ์ไปที่ 260, สิ่งสกปรกที่อุดตันอาจจะไหล ออกมา ถ้าไม่เป็นผล รอให้หัวพิมพ์เย็นตัวลงแล้วใช้ประแจขัน ออกมา

ข้อระวัง: ไม่ควรถอดหัวพิมพ์บ่อย จะทำให้อายุการใช้งานของ PEEK สั้นลง

ใช้เข็มและดอกสว่านทำความสะอาดแล้วใส่หัวพิมพ์กลับเข้าไป

การแก้ไขพลาสติกรั่วที่หัวพิมพ์ ในกรณีที่มีพลาสติกรั่วไหลออกมาให้ดำเนินการตามนี้

2 พันท่อนำสีขาวด้วยเทปพันท่อ (เทฟล่อน)

1 ใช้หกเหลี่ยมขันหัวฉีดออกมา

3 ใส่หัวฉีดกลับเข้าไป ขันให้แน่น

การพิมพ์ชิ้นงานสองสี

เปิดไฟล์งานขึ้นมาทั้งสองชิ้น คลิ๊กเมาส์ปุ่มขวาแล้วเลือก Dual

extrusion merge

เลือกหัวพิมพ์หลักและหัวพิมพ์รองในโปรแกรมเพื่อพิมพ์ทั้งสองสี

