Espaces de Sobolev

24 octobre 2014

Table des matières

Ι	Rappels divers	2
1	Les espaces L^p	3
	1.1 Rappels d'analyse fonctionnelle	3
	1.2 Les espaces L^p	4
	1.3 2 rappels de mesure	6
	1.4 Supportabilité	7
	1.5 Caractérisation du dual	7
2	Densité dans L^p	8
	2.1 Notion de support	8
	2.2 Convolution	9
	2.2.1 Suites régularisantes	9
3	Distributions	10
Η	Espaces de Sobolev	13
1	Restriction à un ouvert	14

Introduction

On s'intéresse aux problèmes de la forme :

$$\begin{cases} Lu = -\sum_{i,j=1}^{N} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i \frac{\partial u}{\partial x_i} + cu = f \text{ sur } \Omega \subset \mathbb{R}^N \text{ born\'e ouvert} \\ u = g \text{ sur } \partial \Omega \end{cases}$$
(P)

fhölderienne d'exposant α si :

$$\exists c > 0; \forall x, y, |f(x) - f(y)| \le c|x - y|^{\alpha}, 0 < \alpha < 1$$

☼ Théorème: Unicité et existence

Soit $\partial\Omega$ de classe \mathcal{C}^1 , L uniformément elliptique :

$$\exists \alpha > 0; \forall x \in \overline{\Omega}, \forall \xi \in \mathbb{R}^N, \sum_{i,j=1}^N a_{ij}(x)\xi_i\xi_j \ge \alpha |\xi|^2$$

On suppose $a_{ij}, b_i, c \in \mathcal{C}^{0,\alpha}(\Omega)$ (continue et hölderienne), $\alpha \in]0, 1[, c \geq 0.$ $f \in \mathcal{C}^{0,\alpha}(\overline{\Omega}), g \in \mathcal{C}^0(\partial\Omega).$ Alors $\exists !u$ solution de (\mathbf{P}) tel que $u \in \mathcal{C}^{2,\alpha}(\Omega) \cap \mathcal{C}^0(\overline{\Omega}).$

Théorème: estimation de Schender

Si de plus, $\partial\Omega$ de classe $\mathcal{C}^{2,\alpha}$, $g\in\mathcal{C}^{2,\alpha}(\partial\Omega)$, alors $u\in\mathcal{C}^{2,\alpha}(\overline{\Omega})$ et on a :

$$||u||_{\mathcal{C}^{2,\alpha}(\overline{\Omega})} \le c \left(||f||_{\mathcal{C}^{0,\alpha}(\overline{\Omega})} + ||g||_{\mathcal{C}^{2,\alpha}(\partial\Omega)} \right)$$

Première partie

Rappels divers

Les espaces L^p 1

Rappels d'analyse fonctionnelle 1.1

Soit X un evn. On appelle dual de X l'espace

$$X' = \mathcal{L}(X, \mathbb{R})$$

Si $\phi \in X'$ et $x \in X$, on note souvent : $\phi(x) = \langle \phi, x \rangle_{X'X}$

$$\phi(x) = \langle \phi, x \rangle_{X'X}$$

appelé crochet de dualité.

🔩 Définition: Bidual

Soit X un evn. On appelle bidual de X l'espace

$$X'' = (X')'$$

qui est un Banach.

Remarque : On peut identifier X avec un sous-espace de X'' à travers une isométrie, de la manière suiva, te : $\forall x \in X$, on définit :

$$f_x: x' \in X' \mapsto \langle x', x \rangle_{X'X} \in \mathbb{R}$$

 f_x est dans X'' car linéaire, et $|\langle x', x \rangle| \leq ||x||_X ||x'||_{X'}$ donc f_x est borné.

On peut montrer que:

$$\mathcal{F}: x \in X \mapsto f_x \in X''$$

est une isométrie, ie $||x||_X = ||f_x||_{X''}$, $\forall x \in X$. Donc on identifie x avec f_x et on écrit $X \subset X''$. Question : a-t-on X = X''? autrement dit, \mathcal{F} est-elle surjective? En général, non.

Si \mathcal{F} est surjective, on dit que C est reflexif.

→ Théorème: représentation de Riesz-Fréchet

Soit H de Hilbert.

$$\forall F \in H', \exists! \tau(F) \in H; \forall x \in H, \langle F, x \rangle_{H'H} = (\tau(F), x)_H$$

De plus, l'application

$$\Phi: H' \to H$$

$$F \mapsto \tau(F)$$

est une isométrie.

1.2 Les espaces L^p

Dans la suite, O est un ouvert de $\mathbb{R}^N,\ N\geq 2$ Ω est un ouvert borné de \mathbb{R}^N dx la mesure de Lebesgue

♣ Définition:

Soit $1 \le p < +\infty$.

$$L^p(O) = \{f:O \to \mathbb{R} \text{ mesurable }; \int |f|^p dx < \infty\}$$

$$L^p(O) = \{f:O \to \mathbb{R} \text{ mesurable }; |f| < \infty \text{ p.p. dans } O\}$$

$$\forall 1 \leq p \leq +\infty, L^p_{loc}(O) = \{f \in L^p(\omega), \forall \omega \text{ ouvert born\'e}, \bar{\omega} \subset O\}$$

${f i} Propri\'et\'e:$

 $L^p(O)$ est de Banach muni de la norme :

$$||f||_{L^p(O)} = \begin{vmatrix} (\int_O |f|^p dx)^{\frac{1}{p}} & \text{si} \quad p < \infty \\ \inf\{C; |f| \le C \text{ pp}\} & \text{si} \quad p = \infty \end{vmatrix}$$

IRemarque:

Si $p=2,\,L^2(O)$ est un Hilbert par rapport au produit scalaire

$$(f,g)_{L^2(O)} = \int_O f(x)g(x)dx$$

I Propriété: inégalité de Holder

Soit $1 \le p \le +\infty$. On pose

$$p' = \begin{vmatrix} \frac{p}{p-1} & \text{si} & 1$$

appelé le conjugué.

$$\forall f \in L^p(O), \forall g \in L^{p'}(O), \int_O |f(x)g(x)| dx \le ||f||_{L^p(O)} ||g||_{L^{p'}(O)}$$

⇔ Corollaire:

 $1 \le p \le +\infty$, p' son conjugué. Si $f_n \to f$ dans $L^p(O)$ et $g \in L^{p'}(O)$ alors :

$$\lim_{n \to +\infty} \int_{O} f_n g dx = \int_{O} f g dx$$

⇔ Corollaire:

 $1 \leq p < q \leq +\infty$, Ω ouvert borné de \mathbb{R}^N . Alors $L^q(\Omega) \subset L^p(\Omega)$ et $||f||_{L^p(\Omega)} \leq c||f||_{L^q(\Omega)}$ où $c = c(|\Omega|, p, q)$.

⇔ Lemme: inégalité de Young

Soient $a, b \ge 0$ et 1 . Alors

$$ab \le \frac{1}{p}a^p + \frac{1}{p'}b^{p'}$$

avec p' le conjugué de p.

⇒ Théorème: inégalité d'interpolation

Soit $1 \leq p \leq r < +\infty$. Si $f \in L^p(O) \cap L^r(O)$ alors $f \in L^q(O)$, $\forall p \leq q \leq r$. De plus, $\|f\|_{L^q(O)} \leq \|f\|_{L^p(O)}^{\alpha} \|f\|_{L^r(O)}^{1-\alpha}$ avec $\alpha \in [0,1]$ tel que $\frac{\alpha}{p} + \frac{1-\alpha}{r} = \frac{1}{q}$

$$||f||_{L^{q}(O)} \le ||f||_{L^{p}(O)}^{\alpha} ||f||_{L^{r}(O)}^{1-\alpha}$$

1.3 2 rappels de mesure

⇔ Lemme: de Fatou

Soit $\{f_n\}\subset L^1(O)$ positives bornées dans $L^1(O)$. On pose $f(x)=\liminf_{n\to+\infty}f_n(x) \text{ p.p. dans }O$ Alors $f\in L^1(O)$ et $\|f\|_{L^1(O)}\leq \liminf_{n\to+\infty}\|f_n\|_{L^1(O)}$

$$f(x) = \liminf_{n \to +\infty} f_n(x)$$
 p.p. dans O

$$||f||_{L^1(O)} \le \liminf_{n \to +\infty} ||f_n||_{L^1(O)}$$

→ Théorème: convergence dominée de Lebesgue

- $\{f_n\} \subset L^1(O)$ telle que : 1. $f_n \to f$ presque partout dans O2. $\exists h \in L^1(O)$ telle que $|f_n(x)| \leq h(x)$ presque partout dans $O, \forall n \in \mathbb{N}$.

IPropriété:

 $1 \leq p \leq +\infty$ tel que $f_n \xrightarrow{L^p} f$. Alors $\exists \{f_{n_k}\}$ une sous-suite telle que $f_{n_k} \to f$ presque partout dans O.

Supportabilité 1.4

Soit B un espace de Banach. B est dit séparable s'il existse $A\subset B$ avec A au plus dénombrable tel que $\overline{A}=B$.

1 Propriété:

 $L^p(O)$ est séparable si $1 \le p < +\infty$.

Caractérisation du dual 1.5

⇔ Théorème: représentation de Green

 $1 \leq p < +\infty, \, p'$ son conjugué. Si $f \in (L^p(O))',$ alors $\exists ! g_f \in L^p(O)$ tel que

$$\forall v \in L^{p'}(O), \langle f, v \rangle_{(L^p(O))'L^p(O)} = \int_O g_f(x)v(x)dx$$

De plus,

$$\Phi: (L^p(O))' \to L^p(O)$$

$$f \mapsto g_f$$

est une isométrie.

Remarque: On peut donc identifier f avec g_f .

De plus, Φ est surjective. On identifie donc $(L^p)'$ avec $L^{p'}$ si $1 \leq p \leq +\infty$.

$$-1$$

$$-p = 1, (L^1)' = L^{\infty}$$

$$-p = +\infty, L^1 \subset (L^\infty)'$$

Ceci implique en particulier que $L^p(O)$ reflexif si $1 . Mais <math>L^1$ et L^∞ non reflexifs.

2 Densité dans L^p

2.1Notion de support

$$supp(\phi) = \{x \in O; \phi(x) \neq 0\}$$

♦ Définition:

 $\mathcal{D}(O) = \{v : O \to \mathbb{R}; v \in \mathcal{C}^{\infty}(O) \text{ et } supp(v) \text{ est un compact de } \mathbb{R}^n \text{ contenu dans } O\}$

 $\mathcal{C}^0_C(O) = \{v : O \to \mathbb{R}; v \in \mathcal{C}^0(O) \text{ et } supp(v) \text{ est un compact de } \mathbb{R}^n \text{ contenu dans } O\}$

IPropriété:

$$1 \le p \le +\infty, \ f \in L^p(O).$$
 On pose
$$\mathcal{A} = \{A \text{ ouvert de } O; f=0 \text{ p.p. dans } A\}$$
 Alors si $w=1$ for a $f=0$ p.p. dans A

Alors si $w = \bigcup_{A \in \mathcal{A}} A$, on a f = 0 p.p. dans A.

On pose alors $supp(f) = O \backslash w$.

♦ Définition:

 $L_c^p(O) = \{ f \in L^p(O); supp(f) \text{ est un compact de } \mathbb{R}^n \text{ inclu de } O \}$

Convolution 2.2

 $1 \le p \le +\infty$, $f \in L^1(\mathbb{R}^N)$, $g \in L^p(\mathbb{R}^n)$. On définit le produit de convolution par : $\forall x \in \mathbb{R}^n, (f*g)(x) = \in_{\mathbb{R}} f(x-y)g(y)dy \text{ p.p.}$

$$\forall x \in \mathbb{R}^n, (f * g)(x) = \in_{\mathbb{R}} f(x - y)g(y)dy$$
 p.p

IPropriété:

$$||f * g||_{L^p(\mathbb{R}^n)} \le ||f||_{L^1(\mathbb{R}^N)} ||g||_{L^p(\mathbb{R}^N)}$$

- 1. $f \in L^1(\mathbb{R}^N)$, $g \in L^p(\mathbb{R}^N)$. f * g est bien définie et $f * g \in L^p(\mathbb{R}^N)$, et : $||f * g||_{L^p(\mathbb{R}^n)} \leq ||f||_{L^1(\mathbb{R}^N)} ||g||_{L^p(\mathbb{R}^N)}$ 2. $f, g \in L^1(\mathbb{R}^N)$, f * g = g * f3. Si $f \in \mathcal{D}(\mathbb{R}^N)$, $g \in L^p(\mathbb{R}^N)$, alors $f * g \in \mathcal{C}^{\infty}(\mathbb{R}^N)$ (mais pas nécessairement à support compact).

$$\frac{\partial}{\partial x_i}(f * g) = \frac{\partial f}{\partial x_i} * g$$

 $\frac{\partial}{\partial x_i}(f*g) = \frac{\partial}{\partial x_i}*g$ Si de plus, $g \in L^p_c(\mathbb{R}^N)$, alors $f*g \in \mathcal{D}(\mathbb{R}^N)$ et $supp(f*g) \subset supp(f) + supp(g)$.

2.2.1 Suites régularisantes

 $B(0,1) \subset \mathbb{R}^N$. Soit $\rho \in \mathcal{D}(\mathbb{R}^N)$, $\rho \geq 0$, $\|\rho\|_{L^1(\mathbb{R}^N)} = 1$, $supp(\rho) \subset \overline{B(0,1)}$. $\forall n \in \mathbb{N}$, on pose $\rho_n(x) = n^N \rho(nx)$, $\forall x \in \mathbb{R}^N$. $\{\rho_n\}_n$ s'appelle une suite régularisante.

 $1 \le p < +\infty, f \in L^p(\mathbb{R}^N)$. $\forall \{\rho\}_n$ suite régularisante : $\underbrace{\rho_n * f}_{\mathcal{C}^\infty(\mathbb{R}^N)} \to f \text{ dans } L^p(\mathbb{R}^N)$

$$\underbrace{\rho_n * f}_{\in \mathcal{C}^{\infty}(\mathbb{R}^N)} \to f \text{ dans } L^p(\mathbb{R}^N)$$

9

⇔ Théorème:

 $\mathcal{D}(\mathbb{R}^N)$ est dense dans $L^p(\mathbb{R}^N), \, \forall 1 \leq p < +\infty.$ (Faux pour L^∞ !)

⇔ Lemme: de Urysohn

O ouvert de \mathbb{R}^N , K compact de \mathbb{R}^N , $K \subset O$. Alors $\exists \psi \in \mathcal{D}(0)$ telle que $\psi \equiv 1$ sur K et $0 \leq \psi < 1$.

 $\forall O\subset\mathbb{R}^N,\,\exists\{\psi_n\}\subset\mathcal{D}(O)$ tel que $\forall n\in\mathbb{N},0\leq\psi_n\leq1,\psi_n\to1\text{ p.p. dans }O$

⇔ Théorème:

 $1 \leq p < \infty.$ Soit $v \in L^p(\mathbb{R}^N).$ On prolonge v par zéro :

$$\tilde{v} = \left\{ \begin{array}{cc} v & \text{dans} & O \\ 0 & \text{sinon} \end{array} \right.$$

Donc $\tilde{v} \in L^p(\mathbb{R}^N)$

⇔ Théorème:

$$\int_{O} f(x)\phi(x)dx = 0 \ \forall \phi \in \mathcal{D}(O)$$

alors f = 0 presque partout dans O.

Distributions 3

\blacktriangle Définition: Convergence des suites dans $\mathcal{D}(O)$

$$\{\phi_n\} \subset \mathcal{D}(O), \ \phi \in \mathcal{D}(O)$$
 $\phi_n \to \phi \text{ dans } \mathcal{D}(O) \text{ si :}$
1. $\exists K \text{ compact, } K \subset O;$

$$\forall n, supp(\phi_n) \subset K$$
$$supp(\phi) \subset K$$

2. $\forall \alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n, \ \partial^{\alpha} \phi_n \to \partial^{\alpha} \phi \text{ uniformément dans } K$

Remarque: $\mathcal{D}(O)$ n'est pas métrisable, cela ne définit pas une topologie mais on peut en définir une telle que la convergence des suites dans cette topologie soit celle-ci.

♦ Définition:

Une application $T: \mathcal{D}(O) \to \mathbb{R}$ est une distribution si :

- 1. T linéaire

2. Si $\phi_n \to \phi$ dans $\mathcal{D}(O)$, alors $T(\phi_n) \to T(\phi)$ L'ensemble des distributions sur O est noté $\mathcal{D}'(O)$. On notera :

$$\langle T, \phi \rangle_{\mathcal{D}'(O)\mathcal{D}(O)} = T(\phi)$$

Remarque: L'application $\Phi: f \in L^1_{loc}(O) \to T_f \in \mathcal{D}'(O)$ est injective et linéaire car si $T_f(\phi) = O \forall \phi \in \mathcal{D}(O) \text{ alors } f = 0$ Donc on identifie f et T_f et on écrit :

$$L^1_{loc}(O) \subset \mathcal{D}'(O)$$

 $T \in \mathcal{D}'(O)$ est une régulière si :

$$\exists f \in L^1_{loc}(O); T = T_f$$

Remarque: On peut montrer qu'il existe des distributions non régulières.

🛂 Définition: Dérivée d'une distribution

Soit $T \in \mathcal{D}'(O)$. On appelle dérivée de T (au sens des distributions) par rapport à la ième variable et on la note $\frac{\partial T}{\partial x_i}$ la distribution définie par :

$$\forall \phi \in \mathcal{D}(O), \langle \frac{\partial T}{\partial x_i} \rangle_{\mathcal{D}'(O)\mathcal{D}(O)} = -\langle T, \frac{\partial \phi}{\partial x_i} \rangle_{\mathcal{D}'(O)\mathcal{D}(O)}$$

Deuxième partie

Espaces de Sobolev

$$1 \leq p \leq +\infty. \text{ On définit, pour } O \text{ ouvert de } \mathbb{R}^N:$$

$$W^{1,p}(O) = \{v \in L^p(O); \frac{\partial v}{\partial x_i} \in L^p(O), \forall i=1,...,N\}$$
 où $\frac{\partial v}{\partial x_i}$ est donnée au sens des distributions. On munit cet espace de la norme :

$$\|w\|_{W^{1,p}(O)}=\|w\|_{L^p(O)}+\sum_{i=1}^N\left\|\frac{\partial w}{\partial x_i}\right\|_{L^p(O)}$$
 Pour $p=2,$ on note $W^{1,p}(O)=H^1(O).$

1 $\leq p < +\infty$. La norme $\| \bullet \|_{W^{1,p}(O)}$ est équivalente à la norme : $\| u \| = \left(\| u \|_{L^p(O)}^p + \| \nabla u \|_{L^p(O)}^p \right)^{\frac{1}{p}}$ in $\sum_{n=1}^{N} \| \underline{\partial u} \|^p$

$$||u|| = (||u||_{L^p(O)}^p + ||\nabla u||_{L^p(O)}^p)^{\frac{1}{p}}$$

$$\|\nabla u\|_{L^p(O)}^p = \sum_{i=1}^N \left\| \frac{\partial u}{\partial x_i} \right\|_{L^p(O)}^p$$

Remarque: Puisque les constantes de l'inégalité sont indépendantes de l'ouvert et ne dépend que de W et p, on utilisera l'une des deux indifférement.

- $1 \le p \le +\infty$, $W^{1,P}(O)$ est un espace de Banach avec la norme associée $H^1(O)$ est un Hilbert par rapport au produit scalaire :

$$(u,v)_{H^1(O)} = (u,v)_{L^2(O)} + \sum_{i=1}^N \left(\frac{\partial u}{\partial x_i}, \frac{\partial v}{\partial x_i}\right)_{L^2(O)}$$

I Propriété:

 $W^{1,p}(O)$ séparable si $1 \leq p < +\infty$, réflexif si 1

I Propriété:

$$\begin{split} & -1 \leq p < +\infty, \, \forall O_1 \subset O, \, u \in W^{1,p}(O) \Rightarrow u \in W^{1,p}(O_1) \\ & -\psi \in \mathcal{D}(O), \, u \in W^{1,p}(O), \, \text{alors } \psi u \in W^{1,p}(O) \text{ et} \end{split}$$

$$\frac{\partial(\psi u)}{\partial x_i} = u \frac{\partial \psi}{\partial x_i} + \psi \frac{\partial u}{\partial x_i}$$

⇔ Lemme:

$$1 \le p \le +\infty, \ \phi \in \mathcal{D}(\mathbb{R}^N), \ u \in W^{1,p}(\mathbb{R}^N).$$

1
$$\leq p \leq +\infty$$
, $\phi \in \mathcal{D}(\mathbb{R}^N)$, $u \in W^{1,p}(\mathbb{R}^N)$.
$$\phi * u \in \mathcal{C}^{\infty}(\mathbb{R}^N) \text{ et } \frac{\partial}{\partial x_i}(\phi * u) = \phi * \frac{\partial u}{\partial x_i}$$

$$1 \le p < +\infty$$

 $\mathcal{D}(\mathbb{R}^N)$ est dense dans $W^{1,p}(\mathbb{R}^N)$

Restriction à un ouvert 1

🛂 Définition: ouvert à frontière lipschitzienne

Soit $N \geq 2$, Ω ouvert borné.

On définit un système de coordonnées locales de la manière suivante : On suppose qu'il existe $m \in \mathbb{N}^*$ et m fonctions

$$\psi_i: Q =]-1, 1[^{N-1} \times \mathbb{R} \to \mathbb{R}$$

que :
$$\psi_i: \ U=Q\times]-r, r[\ \to \ \psi_i(U) \\ (y',y_N) \ \mapsto \ (y',y_N+\psi_i(y'))$$

alors ψ_i est un homéomorphisme entre U et $\psi_i(U)$ et $\forall i$:

$$\Gamma_{i} = \psi_{i}(Q \times \{0\}) \subset \partial \Omega$$

$$U_{i}^{+} = \psi_{i}(Q \times]0, r[) \subset \Omega$$

$$U_{i}^{-} = \psi_{i}(Q \times]-r, 0[) \subset \Omega$$

$$\partial\Omega = \bigcup_{i=1}^{m} \Gamma_i$$

On dit que $\partial\Omega$ est lipschitienne (resp. \mathcal{C}^k) s'il existe un système de coordonnées locales tel que $\forall i, \, \psi_i$ est lipschitzienne (resp. \mathcal{C}^k)

⇔ Théorème: de prolongement

Soit $\Omega \subset \mathbb{R}^N$ et on suppose 3 cas :

- $\begin{array}{l} -N=1:\Omega \text{ est un intervalle ouvert de }\mathbb{R} \text{ (born\'e ou non)}\\ -N\geq 2:\\ -\Omega \text{ est le demi-espace }\mathbb{R}^{n-1}\times\mathbb{R}_+^*\\ -\Omega \text{ ouvert born\'e avec }\partial\Omega \text{ lipschitzienne} \end{array}$

Alors il existe un opérateur de prolongement p linéaire et continu

$$p: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^N)$$

tel que :

- 1. $Pu = u \text{ sur } \Omega$ 2. $||Pu||_{L^{p}(\mathbb{R}^{N})} \leq c||u||_{L^{p}(\Omega)}$ $||Pu||_{W^{1,p}(\mathbb{R}^{N})} \leq c||u||_{W^{1,p}(\Omega)}$ où $c = c(\Omega, p)$.

♣ Définition:

 $\Omega \subset \mathbb{R}^N$ comme dans le théorème de prolongement. On note $\mathcal{D}(\overline{\Omega})$ (resp. $\mathcal{C}^1_c(\overline{\Omega})$) l'ensemble des restrictions à $\overline{\Omega}$ de fonctions de $\mathcal{D}(\mathbb{R}^N)$ (resp.

Si
$$\Omega = \mathbb{R}^{N-1} \times \mathbb{R}^+_*$$
, on note $\mathcal{D}(\mathbb{R}^{N-1} \times \mathbb{R}^+)$

Remarque: $\mathcal{D}(\Omega) \subsetneq \mathcal{D}(\overline{\Omega})$ car les fonctions de $\mathcal{D}'\overline{\Omega}$) ne s'annulent pas forcément sur $\partial\Omega$.

⇔ Théorème:

 Ω ouvert de \mathbb{R}^N comme dans le théorème de prolongement, $1 \leq p < +\infty$. Alors $\mathcal{D}(\overline{\Omega})$ est dense dans $W^{1,p}(\Omega)$.

⇔ Théorème: chain rule

 $1 \leq p \leq +\infty$, $\Omega \subset \mathbb{R}^N$ comme dans le théorème de prolongement. Soit $G \in C^1(\mathbb{R})$ tel que G(0) = 0 et $\forall s, |G'(s)| \leq M$

Alors $\forall u \in W^{A,p}(\Omega), G(u) \in W^{1,p}(\Omega)$ et on a (au sens des distributions) :

$$\nabla G(u) = G'(u)\nabla u$$

⇔ Théorème: Stampacchia

 $1 \leq p \leq +\infty, \, \Omega \subset \mathbb{R}^N$ comme dans le théorème de prolongement. $\forall u \in W^{1,p}(\Omega)$, on pose

$$u_{+} = \max\{u, 0\}, \ u_{-} = \min\{u, 0\}, \ _{=}u_{-} + u_{+}$$

Alors $u_+,\,u_-$ et |u| appartiennent) $W^{1,p}(\Omega)$ et on a presque partout :

$$\nabla u_{+} = \begin{vmatrix} \nabla u & \text{où} & u > 0 \\ 0 & \text{où} & u \leq 0 \end{vmatrix}$$

$$\nabla u_{-} = \begin{vmatrix} 0 & \text{où} & u \geq 0 \\ \nabla u & \text{où} & u < 0 \end{vmatrix}$$

$$\nabla |u| = \begin{vmatrix} \nabla u & \text{où} & u > 0 \\ 0 & \text{où} & u = 0 \\ -\nabla u & \text{où} & u < 0 \end{vmatrix}$$