Predictive Analytics for Diabetes Detection

By Group 10

Suraj Nihal, Pushyap Navdeep, Suthar

Problem Statement

Developing a predictive model to accurately identify individuals at high risk of diabetes within the Pima Indian community, using advanced machine learning techniques to facilitate early intervention and support CDC's HI-5 health initiative.

Project Overview

Pima Diabetes Dataset

Hosted on Kaggle from the National Institute of Diabetes and Digestive and Kidney Diseases.

The dataset comprises data from female patients of Pima Indian heritage, aged 21 and above.

kaggle

Features Overview

8 features

768 patients

1 target variable

Blood Pressure Skin Thickness Pregnancies **Features BMI** Insulin Glucose Age Diabetes Pedigree Function

500 Not Diabetic

Target

268 Diabetic

Exploratory Data Analysis

Feature	Missing Value (%)
Glucose	0.65
BloodPressure	4.56
SkinThickness	29.56
Insulin	48.70
BMI	1.43

Distribution of Diabetes Predictors

Exploratory Data Analysis

Diabetic vs. Non-Diabetic Cases

Heatmap of Variable Correlations

Data Cleaning

Modeling Method

Model Evaluation

Models Selected

Evaluation Metrics

Random Forest

Metric	Score
Sensitivity	92%
Specificity	85%
AUC	94%

XG Boost

Metric	Score
Sensitivity	93%
Specificity	80%
AUC	92%

KNN

Metric	Score
Sensitivity	89%
Specificity	74%
AUC	89%

Random Forest Reco

Best Model

Accuracy

Recall

Confusion Matrix

Metric	Score
Sensitivity	92%
Specificity	85%
AUC	94%

ROC Curve

Metric	Score
AUC	94%

Intervention

- Implement personalized health programs targeting high-risk individuals identified through our model, incorporating lifestyle changes and preventive care.
- Utilize a Tableau dashboard to track intervention effectiveness, monitoring engagement rates and health outcomes, with interactive features for real-time data analysis.

Monitoring

- Displays trends and relationships through plots and a pie chart for quick insights.
- Highlights key metric relationships to guide predictive modeling.
- Allows customized exploration with dynamic feature selection.

Data Infrastructure

Target Audience

High-Risk Individuals

Healthcare Providers

Local Community Organizations

Data Science Learnings

Modeling Proficiency

Data Engineering

Real-World Application

Collaboration

Challenges

Ethics

Healthcare Implementation

- Enhanced Patient Outcomes: Utilize predictive analytics to enable healthcare providers to identify and intervene with high-risk patients earlier, improving patient management and outcomes.
- Alignment with CDC's HI-5 Initiative: Project supports the CDC's HI-5 model by advancing community-wide health interventions that focus on prevention and have proven health impacts and cost-effectiveness.
- **Dashboard for Real-Time Intervention Monitoring:** Deploy an interactive Tableau dashboard that allows healthcare professionals and community organizations to monitor, evaluate, and enhance the effectiveness of health interventions in real-time.

Future Works

- Advanced Model Development: Enhance accuracy with advanced algorithms and integrate more diverse datasets to improve robustness.
- **Healthcare System Integration**: Develop capabilities for seamless integration with electronic health records (EHR) to facilitate real-time patient risk identification and notifications.
- Expansion to Other Conditions: Extend the predictive model to cover additional chronic conditions, leveraging existing model infrastructure.
- Global Application: Adapt the model for use in low-resource settings, aligning with global health initiatives to broaden impact.

Together, we can beat diabetes.

Eat Healthy

Exercise Regularly

Maintain a Healthy
Weight

Thank You