小组作业: 中介效应与调节效应

周诗怡、田微微、薛野、范佳玲、韩传亮、黄泰诚、黄婷、李名扬、王非池

1 模型验证

```
DATA:FILE IS data.txt;

NOBSERVATIONS ARE 1430;

VARIABLE:

NAMES ARE rc1 rc2 wo1 wo2 ss1 ss2 se1-se3 ee1-ee3 dp1 dp2 pa1-pa3 G;

USEVAR = rc1 rc2 wo1 wo2 ss1 ss2 ee1-ee3 dp1 dp2 pa1-pa3 ;

MODEL:
```

EE by ee1-ee3;

DP by dp1 dp2;

PA by pa1-pa3;

RC by rc1 rc2;

WO by wo1 wo2;

SS by ss1 ss2;

EE on WO;

EE on RC;

DP on RC;

DP on EE;

PA on DP;

PA on EE;

PA on SS;

MODEL indirect:

DP IND EE WO;

PA IND EE WO;

PA IND EE RC;

PA IND DP RC;

PA IND DP EE;

OUTPUT: mod(10) cinterval sampstat stdyx;

整体拟合指标结果较好, 该模型可以接受。

Chi-Square Test of Model Fit

Value	485.296
Degrees of Freedom	67
P-Value	0.0000

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.066	
90 Percent C.I.	0.061	0.072
Probability RMSEA <= .05	0.000	

CFI/TLI

CFI 0.962 TLI 0.948

测量模型各题载荷均在 0.4 以上, RC 与 EE 间路径不显著, 删除该路径, 检验模型 2 的

拟合情况,得到如下所示的整体拟合指标,将此模型作为模型 2。

Chi-Square Test of Model Fit

 Value
 486.138

 Degrees of Freedom
 68

 P-Value
 0.0000

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.066
90 Percent C.I. 0.060 0.071
Probability RMSEA <= .05 0.000

CFI/TLI

CFI 0.962
TLI 0.949

理论模型如下所示:

2 中介效应检验

根据路径分析结果、间接效应显著性检验结果与路径图,发现:

EE 在 WO 与 DP 间关系中起中介作用,即工作超负荷通过情感枯竭影响自我感丧失; EE 在 WO 与 PA 间关系中起中介作用,即工作超负荷通过情感枯竭影响个人成就感;

DP 在 RC 与 PA 间关系中起部分中介作用,即角色冲突通过自我感丧失影响个人成就感,且还有其他中介变量;

DP 在 EE 与 PA 间关系中起中介作用,即情感枯竭通过自我感丧失影响个人成就感。

		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
EE EE1 EE2 EE3	ВҮ	0.873 0.929 0.852	0.008 0.006 0.009	110.895 150.720 96.000	0.000 0.000 0.000
DP DP1 DP2	ВҮ	0.877 0.745	0.018 0.019	47.385 39.199	0.000 0.000
PA PA1 PA2 PA3	ВУ	0.814 0.816 0.748	0.014 0.014 0.015	58.683 60.189 49.725	0.000 0.000 0.000
RC RC1 RC2	ВҮ	0.678 0.798	0.018 0.016	37.856 50.612	0.000 0.000
₩0 ₩01 ₩02	ВҮ	0.806 0.640	0.015 0.019	53. 982 33. 636	0.000 0.000
SS SS1 SS2	ВҮ	0.892 0.906	0.015 0.015	58.856 59.842	0.000 0.000
EE WO	ON	0.664	0.020	33.728	0.000
DP RC EE	ON	0.207 0.428	0.037 0.035	5.519 12.396	0.000 0.000
PA DP EE SS	ON	-0.314 -0.169 0.193	0.037 0.035 0.030	-8.565 -4.776 6.456	0.000 0.000 0.000

	I	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value		
	Effects from WO to DP						
	Sum of indirect	0.285	0.025	11.483	0.000		
	Specific indirect						
	DP EE WO	0.285	0.025	11.483	0.000		
	Effects from WO to PA	A					
	Sum of indirect	-0.112	0.024	-4.721	0.000		
	Specific indirect						
	PA EE WO	-0.112	0.024	-4.721	0.000		
	Effects from RC to PA	A					
	Sum of indirect	-0.065	0.014	-4.680	0.000		
	Specific indirect						
	PA DP RC	-0.065	0.014	-4.680	0.000		
	Effects from EE to PA	A					
	Sum of indirect	-0.135	0.020	-6.794	0.000		
	Specific indirect						
	PA DP EE	-0.135	0.020	-6.794	0.000		
.540 (.024)	rel						
.363 (.025)	rc2678 (.018) 1.000 (.000) rc				pa1 .338 (.023)		
.350 (.024)	.907(.019) wo1 .806(.015)	.207 (.037)		.726 (.024)	.814 (.014)		
.590 (.024)	wo2 1.566 (.026) wo			(.030) 169 (.035)			
.205 (.027)	ss1 .892 í.ôôő (.000) ss	.559 (.026)	.007 (.023)	314 (.037)	.748 (.015) pa3 .440 (.023)		
.179 (.027)	.906 (.015)	ee .428 (.	035) dp	r	·		
'		.873 (.929 (.852 (.009)	.877 (.745)(.	019)			

3 跨组检验

选取 EE 通过 DP 对 PA 产生影响这一中介效应对男生组和女生组的跨组相等假设进行

检验。

3.1 model0:男女两组分别检验

男性组整体拟合情况如下:

Chi-Square Test of Model Fit

 Value
 233.783

 Degrees of Freedom
 68

 P-Value
 0.0000

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.061 90 Percent C.I. 0.053 0.070 Probability RMSEA <= .05 0.015

CFI/TLI

CFI 0.966 TLI 0.954

女性组整体拟合情况如下:

Chi-Square Test of Model Fit

 Value
 339.872

 Degrees of Freedom
 68

 P-Value
 0.0000

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.072 90 Percent C.I. 0.064 0.079 Probability RMSEA <= .05 0.000

,

CFI/TLI

CFI 0.955 TLI 0.940

从整体拟合情况来看,男女两组在本模型下拟合尚可,可进行后续检验。

3.2 model 1: configural invariance (baseline)

DATA:FILE IS data.txt;

NOBSERVATIONS ARE 1430;

VARIABLE:

NAMES ARE rc1 rc2 wo1 wo2 ss1 ss2 se1-se3 ee1-ee3 dp1 dp2 pa1-pa3 g;

USEVAR = rc1 rc2 wo1 wo2 ss1 ss2 ee1-ee3 dp1 dp2 pa1-pa3;

GROUPING IS g (1=male 2=female);

MODEL:

RC by rc1 rc2;

WO by wo1 wo2;

SS by ss1 ss2;

EE by ee1-ee3;

DP by dp1 dp2;

PA by pa1-pa3;

EE on WO;

DP on RC;

DP on EE;

```
PA on EE;
PA on SS;
MODEL indirect:
PA IND DP EE;
MODEL female:
RC by rc2;
WO by wo2;
SS by ss2;
EE by ee2 ee3;
DP by dp2;
PA by pa2 pa3;
[RC@0];
[WO@0];
[SS@0];
[EE@0];
[DP@0];
[PA@0];
[rc1-rc2];
[wo1-wo2];
[ss1-ss2];
[ee1-ee3];
[dp1-dp2];
[pa1-pa3];
OUTPUT: cinterval sampstat stdyx;
  得到模型 1 整体拟合指标如图所示,建立基线。
        Chi-Square Test of Model Fit
                   Value
                                                     573.655
                  Degrees of Freedom
                                                         136
                  P-Value
                                                      0.0000
        Chi-Square Contributions From Each Group
                                                     233.783
339.872
                   MALE
                  FEMALE
        RMSEA (Root Mean Square Error Of Approximation)
                  Estimate
                                                       0.067
                  90 Percent C.I.
                                                       0.061
                                                               0.073
                  Probability RMSEA <= .05
                                                       0.000
        CFI/TLI
```

0.960 0.946

3.2 model 2: weak invariance

PA on DP;

限定载荷相等, 计算模型 2。

CFI TLI

DATA:FILE IS data.txt;

NOBSERVATIONS ARE 1430;

```
VARIABLE:
NAMES ARE rc1 rc2 wo1 wo2 ss1 ss2 se1-se3 ee1-ee3 dp1 dp2 pa1-pa3 g;
USEVAR = rc1 rc2 wo1 wo2 ss1 ss2 ee1-ee3 dp1 dp2 pa1-pa3;
GROUPING IS g (1=male 2=female);
MODEL:
RC by rc1 rc2;
WO by wo1 wo2;
SS by ss1 ss2;
EE by ee1-ee3;
DP by dp1 dp2;
PA by pa1-pa3;
EE on WO;
DP on RC;
DP on EE;
PA on DP;
PA on EE;
PA on SS;
MODEL indirect:
PA IND DP EE;
MODEL female:
[RC@0];
[WO@0];
[SS@0];
[EE@0];
[DP@0];
[PA@0];
[rc1-rc2];
[wo1-wo2];
[ss1-ss2];
[ee1-ee3];
[dp1-dp2];
[pa1-pa3];
OUTPUT: cinterval sampstat stdyx;
```

得到如下所示的整体拟合结果:

Chi-Square Test of Model Fit

 Value
 587.257

 Degrees of Freedom
 144

 P-Value
 0.0000

Chi-Square Contributions From Each Group

MALE 241.792 FEMALE 345.464

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.066
90 Percent C.I. 0.060 0.071
Probability RMSEA <= .05 0.000

CFI/TLI

CFI 0.959 TLI 0.949

相比于模型 1, $\Delta \chi 2(8)$ = 13.602,p>0.05,表明卡方值变化不显著,弱等价性成立。 3.3 中介效应等价性检验

由于弱等价性成立,则进一步进行中介效应等价检验,限定中介效应中的 a、b、c'在男性组和女性组中相等。

DATA:FILE IS data.txt;

NOBSERVATIONS ARE 1430;

VARIABLE:

NAMES ARE rc1 rc2 wo1 wo2 ss1 ss2 se1-se3 ee1-ee3 dp1 dp2 pa1-pa3 g;

USEVAR = rc1 rc2 wo1 wo2 ss1 ss2 ee1-ee3 dp1 dp2 pa1-pa3;

GROUPING IS g (1=male 2=female);

MODEL:

RC by rc1 rc2;

WO by wo1 wo2;

SS by ss1 ss2;

EE by ee1-ee3;

DP by dp1 dp2;

PA by pa1-pa3;

EE on WO;

DP on RC;

DP on EE(a);

PA on DP(b);

PA on EE(c);

PA on SS;

MODEL indirect:

PA IND DP EE;

MODEL female:

EE on WO;

DP on RC;

DP on EE(a);

PA on DP(b);

```
PA on EE(c);
PA on SS:
[RC@0];
[WO@0];
[SS@0];
[EE@0];
[DP@0];
[PA@0];
[rc1-rc2];
[wo1-wo2];
[ss1-ss2];
[ee1-ee3];
[dp1-dp2];
[pa1-pa3];
OUTPUT: cinterval sampstat stdyx;
  得到如下所示的整体拟合指标:
```

Chi-Square Test of Model Fit

Value	588.763
Degrees of Freedom	147
P-Value	0.0000

Chi-Square Contributions From Each Group

MALE 242.675 **FEMALE** 346.088

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.065 0.059 0.070 90 Percent C.I. Probability RMSEA <= .05 0.000

CFI/TLI

0.960 0.950

相比于模型 2, Δχ2(3)=1.506, p>0.05, 表明卡方值变化不显著,中介效应在男性组和 女性组里跨组相等。

4 交互作用检验

4.1 乘积指标方法

研究假设为: 教师 self esteem (潜变量)与 student support (潜变量)之间可能存在交互 作用,即对不同自尊水平的教师而言,学生支持对其个人成就感的影响程度不同。

首先对数据进行中心化,得出潜变量载荷大小并配对乘积项,使用乘积指标方法计算交 互作用。

DATA:FILE IS burnout.dat;

VARIABLE:

NAMES ARE g rc1 rc2 wo1 wo2 ss1 ss2 se1-se3 ee1-ee3 dp1 dp2 pa1-pa3;

USEVAR = rc1 rc2 wo1 wo2 ss1 ss2 se1-se3 ee1-ee3 dp1 dp2 pa1-pa3 mm1 mm2;

DEFINE:

```
MODEL = nomeanstructure;
INFORMATION = expected;
MODEL:
EE by ee1-ee3;
DP by dp1 dp2;
PA by pa1-pa3;
RC by rc1 rc2;
WO by wo1 wo2;
SS by ss1 ss2;
SE by se1-se3;
SSSE by mm1 mm2;
EE on WO;
DP on RC;
DP on EE;
PA on DP;
PA on EE;
PA on SS SE;
PA on SSSE;
MODEL indirect:
DP IND EE WO;
PA IND EE WO;
PA IND DP RC;
PA IND DP EE;
OUTPUT: standardized;
  整体拟合情况如下表所示:
        Chi-Square Test of Model Fit
                  Value
                                                     787.043
                  Degrees of Freedom
                                                        134
                  P-Value
                                                      0.0000
        RMSEA (Root Mean Square Error Of Approximation)
                                                       0.058
                  Estimate
                  90 Percent C.I.
                                                      0.054
                                                              0.062
                  Probability RMSEA <= .05
                                                      0.000
        CFI/TLI
                  CFI
TLI
                                                       0.955
                                                       0.942
```

mm1 = se2*ss2; mm2 = se3*ss1; ANALYSIS:

查看标准化结果,发现 SS 和 SE 与 PA 的主效应显著,但 INT 与 PA 的交互作用不显著,即对不同自尊水平的教师而言,学生支持对其个人成就感的影响程度没有差异。

PA	ON				
DP		-0.272	0.035	-7.705	0.000
EE		-0.089	0.036	-2.494	0.013
SS		0.181	0.029	6.270	0.000
SE		0.260	0.030	8.572	0.000
SSSE		0.031	0.030	1.034	0.301

4.2 潜调节结构方程法

研究假设为:教师 self esteem (潜变量)与 student support (潜变量)之间可能存在交互作用,即对不同自尊水平的教师而言,学生支持对其个人成就感的影响程度不同。

首先对数据进行中心化,再使用 LMS 计算交互作用。

DATA:FILE IS burnout.dat;

VARIABLE:

NAMES ARE g rc1 rc2 wo1 wo2 ss1 ss2 se1-se3 ee1-ee3 dp1 dp2 pa1-pa3;

USEVAR = rc1 rc2 wo1 wo2 ss1 ss2 se1-se3 ee1-ee3 dp1 dp2 pa1-pa3;

ANALYSIS:

TYPE = RANDOM;

ALGORITHM = INTEGRATION:

MODEL:

EE by ee1-ee3;

DP by dp1 dp2;

PA by pa1-pa3;

RC by rc1 rc2;

WO by wo1 wo2;

SS by ss1 ss2;

SE by se1-se3;

INT | SS XWITH SE;

EE on WO;

DP on RC;

DP on EE;

PA on DP;

PA on EE;

PA ON SS SE INT;

拟合情况如下图所示:

MODEL FIT INFORMATION

Number of Free Parameters

65

Loglikelihood

HO Value -27748.599
HO Scaling Correction Factor 1.2384
for MLR

Information Criteria

Akaike (AIC) 55627.197
Bayesian (BIC) 55969.450
Sample-Size Adjusted BIC 55762.967
(n* = (n + 2) / 24)

由于 LMS 没有标准化结果,直接看模型检验情况。结果发现 SS 和 SE 与 PA 的主效应显著,但 INT 与 PA 的交互作用不显著,即对不同自尊水平的教师而言,学生支持对其个人成就感的影响程度没有差异。

MODEL RE	SULTS				
		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
EE WO	ON	0.841	0.038	22.204	0.000
DP RC EE	ON	0.285 0.350	0.064 0.040	4.476 8.754	0.000 0.000
PA DP EE SS SE INT	ON	-0.209 -0.058 0.120 0.553 0.012	0.036 0.026 0.023 0.089 0.069	-5. 771 -2. 185 5. 332 6. 208 0. 181	0.000 0.029 0.000 0.000 0.856

5 问题

- (1) 模型修正时,是否需要单独将测量模型拿出来先行计算?
- (2) 在理论模型中未画出直接效应的中介是否需要检验? Mplus 可以按照侯老师中介效应检验流程先计算 c 的结果再按流程计算 ab 及 c'吗?
- (3) 多组比较应当如何做?是否应当先限定整体模型,在满足弱等价性条件后再进行中介效应的跨组比较?
 - (4)调节效应是应当在完整模型中检验还是应单独拿出来做?