Data Structures (DS) GTU # 3130702

Unit-3 Non-Linear Data Structure (Graph)

Graphs

- \square What is Graph? $G = (V, E) \dots Tree is a Subset of Graph....$
- □ Representation of Graph
 - Matrix representation of Graph
 - ☐ Linked List representation of Graph
- □ Elementary Graph Operations
 - Breadth First Search (BFS)
 - Depth First Search (DFS)
 - Spanning Trees
 - Minimal Spanning Trees
 - Shortest Path

Adjacency matrix

- ☐ A diagrammatic representation of graph may have limited usefulness. However such a representation is not feasible when no. of nodes and edges in graph is large.
- ☐ It is easy to store and manipulate matrices and hence graph is represented by them in the computer.
- Let G = (V, E) be a simple diagraph in which $V = \{v_1, v_2, ..., V_n\}$ and the nodes are assume to be ordered from V_1 to V_n .
- \square An n x n matrix **A** is called **Adjacency Matrix** of the graph G whose **elements** are \mathbf{a}_{ij} , given by

$$\mathbf{a}_{ij} = \begin{cases} 1 & if(V_i, V_j) \in E \\ 0 & otherwise \end{cases}$$

Adjacency matrix

- ☐ An **element** of the adjacency matrix is either **0** or **1**
- ☐ Any matrix whose elements are either 0 or 1 is called bit matrix or Boolean matrix
- ☐ For a given graph G =m (V, E), an **adjacency matrix** depends upon the ordering of the elements of V
- ☐ For different ordering of the elements of V we get different adjacency matrices.

Adjacency matrix

- ☐ The number of elements in the ith row whose value is 1 is equal to the out-degree of node V_i
- \Box The number of elements in the jth column whose value is 1 is equal to the in-degree of node V_j
- ☐ For a **NULL graph** which consist of only n nodes but no edges, the **adjacency matrix** has **all its elements 0**. i.e. the adjacency matrix is the NULL matrix

Power of Adjacency matrix

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad \mathbf{A}^3 = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A^2 = A \times A =} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{A^4 =} \begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 3 & 0 & 2 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$\mathbf{A}^3 = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A^4} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 3 & 0 & 2 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

- \Box Entry of 1 in ith row and jth column of A shows existence of an edge (V_i , V_i), that is a path of length 1
- \square Entry in A^2 shows no of different paths of exactly length 2 from node V_i to V_i
- ☐ Entry in A³ shows no of different paths of exactly length 3 from node V_i to V_i

Path matrix or reachability matrix

- Let G = (V,E) be a simple diagraph which contains n nodes that are assumed to be ordered.
- Anxn matrix P is called path matrix whose elements are given by

$$P_{ij} = \begin{cases} 1, if \ there \ exists \ path \ from \ node \ V_i \ to \ V_j \\ 0, otherwise \end{cases}$$

Adjacency List Representation

Graph Traversal

- Two Commonly used Traversal Techniques are
 - Depth First Search (DFS)
 - Breadth First Search (BFS)

Depth First Search (DFS)

- ☐ It is like preorder traversal of tree
- □ Traversal can start from any vertex V_i
- \Box V_i is visited and then all vertices adjacent to V_i are traversed recursively using DFS

Depth First Search (DFS)

ABDCFE

Breadth First Search (BFS)

- ☐ This methods **starts** from vertex **V**₀
- \square V_0 is marked as visited. All vertices adjacent to V_0 are visited next
- \square Let vertices adjacent to V_0 are V_1 , V_2 , V_2 , V_4
- \bigcup V₁, V₂, V₃ and V₄ are marked visited
- \square All unvisited vertices adjacent to V_1 , V_2 , V_3 , V_4 are visited next
- ☐ The method continuous until all vertices are visited
- ☐ The algorithm for BFS has to maintain a list of vertices which have been visited but not explored for adjacent vertices
- ☐ The vertices which have been visited but not explored for adjacent vertices can be stored in **queue**

Breadth First Search (BFS)

$$V_0 | V_1 V_2 | V_4 V_6 V_3 | V_5$$

Write DFS & BFS of following Graphs

Procedure: DFS (vertex V)

- ☐ This procedure **traverse the graph G in DFS** manner.
- □ V is a starting vertex to be explored.
- ☐ Visited[] is an array which tells you whether particular vertex is visited or not.
- W is a adjacent node of vertex V.
- ☐ S is a Stack, PUSH and POP are functions to insert and remove from stack respectively.

Procedure : DFS (vertex V)

```
1. [Initialize TOP and Visited]
  TOP 2 0
2. [Push vertex into stack]
  PUSH (V)
3. [Repeat while stack is not Empty]
   Repeat Step 3 while stack is not empty
      v POP()
      if visited[v] is 0
      then visited [v] 2 1
           for all W adjacent to v
              if visited [w] is 0
        then PUSH (W)
           end for
      end if
```

Procedure : BFS (vertex V)

- ☐ This procedure **traverse the graph G in BFS** manner
- V is a starting vertex to be explored
- Q is a queue
- visited[] is an array which tells you whether particular vertex is visited or not
- ☐ W is a adjacent node f vertex V.

Procedure : BFS (vertex V)

```
1. [Initialize Queue & Visited]
   F ? R ? 0
2. [Marks visited of V as 1]
   visited[v] № 1
3. [Add vertex v to Q]
   InsertQueue(V)
4. [Repeat while Q is not Empty]
   Repeat while Q is not empty
     v ② RemoveFromQueue()
     For all vertices W adjacent to v
      If visited[w] is 0
    Then visited[w] <a>□</a> 1
            InsertQueue(w)
```

Spanning Tree

- □ A Spanning tree of a graph is an undirected tree consisting of only those edges necessary to connect all the nodes in the original graph
- ☐ A spanning tree has the **properties** that
 - ☐ For any **pair** of nodes there exists **only one path between them**
 - Insertion of any edge to a spanning tree forms a unique cycle
- ☐ The particular **Spanning for a graph** depends on the **criteria** used to **generate** it
- □ If DFS search is use, those edges traversed by the algorithm forms the edges of tree, referred to as Depth First Spanning Tree
- ☐ If **BFS Search** is used, the spanning tree is formed from those edges traversed during the search, producing **Breadth First Spanning tree**

Construct Spanning Tree

B C G F G

DFS Spanning Tree

BFS Spanning Tree

DFS Spanning Tree

BFS Spanning Tree

Minimum Cost Spanning Tree

- ☐ The **cost of a spanning tree** of a weighted undirected graph is the sum of the costs(weights) of the edges in the spanning tree
- ☐ A minimum cost spanning tree is a spanning tree of least cost
- Two techniques for Constructing minimum cost spanning tree
 - Prim's Algorithm
 - Kruskal's Algorithm

Prims Algorithm

A - B 4	A - D 6	C - E 5
A - E 5	B - E 3	C - D 1
A - C 6	B - C 2	D – E 7

Let X be the set of nodes explored, initially X = { A }

Step 1: Taking minimum Weight edge of all Adjacent edges of X={A}

Step 2: Taking minimum weight edge of all Adjacent edges of X = { A , B }

We obtained minimum spanning tree of cost:

$$4 + 2 + 1 + 3 = 10$$

Step 3: Taking minimum weight edge of all Adjacent edges of X = { A , B , C }

Step 4: Taking minimum weight edge of all Adjacent edges of X = {A ,B ,C ,D }

Kruskal's Algorithm

Step 1: Taking min edge (C,D)

Step 2: Taking next min edge (B,C)

Step 3: Taking next min edge (B,E)

Step 4: Taking next min edge (A,B)

so we obtained minimum spanning tree of cost:

$$4 + 2 + 1 + 3 = 10$$

Construct Minimum Spanning Tree

Shortest Path Algorithm

- \Box Let **G** = (**V**,**E**) be a simple diagraph with **n** vertices
- ☐ The problem is to **find out shortest distance** from a **vertex to all other vertices** of a graph
- □ **Dijkstra Algorithm** it is also called Single Source Shortest Path Algorithm

1st Iteration: Select Vertex A with minimum distance

	A	В	С	D	E	F
Distance	0	ф	රා	00	∞	∞
Visited	1	0	0	0	0	0

2nd Iteration: Select **Vertex B** with minimum distance

Cost of going to C via B = dist[B] + cost[B][C] = 1 + 1 = 2 Cost of going to D via B = dist[B] + cost[B][D] = 1 + 2 = 3 Cost of going to E via B = dist[B] + cost[B][E] = 1 + 4 = 5 Cost of going to F via B = dist[B] + cost[B][F] = 1 + ∞ = ∞

	A	В	С	D	E	F
Distance	0	1	5	00	00	00
Visited	1	0	0	0	0	0

3rd Iteration: Select Vertex C via B with minimum distance

Cost of going to D via C = dist[C] + cost[C][D] = 2 + ∞ = ∞ Cost of going to E via C = dist[C] + cost[C][E] = 2 + ∞ = ∞ Cost of going to F via C = dist[C] + cost[C][F] = 2 + ∞ = ∞

	A	В	C	D	E	F
Distance	0	1	2	3	5	oo
Visited	1	1	0	0	0	0

	A	В	С	D	Ε	F
Distance	0	1	2	3	5	∞
Visited	1	1	1	0	0	0

4th Iteration: Select Vertex D via path A - B with minimum distance

Cost of going to E via D = dist[D] + cost[D][E] = 3 + 7 = 10

Cost of going to F via D = dist[D] + cost[D][F] = 3 + 6 = 9

	A	В	С	D	E	F
Distance	0	1	2	3	5	00
Visited	1	1	1	0	0	0

	A	В	C	D	E	F
Distance	0	1	2	3	5	9
Visited	1	1	1	1	0	0

4th Iteration: Select Vertex E via path A – B – E with minimum distance

Cost of going to F via E = dist[E] + cost[E][F] = 5 + 2 = 7

	A	В	C	D	Е	F
Distance	0	1	2	3	5	9
Visited	1	1	1	1	0	0

	A	В	C	D	E	F
Distance	0	1	2	3	5	7
Visited	1	1	1	1	1	0

Shortest Path from A to F is $A \boxtimes B \boxtimes E \boxtimes F = 7$

Shortest Path

Find out shortest path from node 0 to all other nodes using Dijkstra Algorithm

