IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re	U.S. Patent Application of)	PT =
)	29
YOSI	HIBA et al.)	- 22 = 2
)	%
Appli	cation Number: To Be Assigned)	
Dilad.	Communication VI amountain)	===
rnea:	Concurrently Herewith)	
For:	TRANSGENIC RICE PLANT AND ITS FAMILY WITH)	
	ENVIRONMENTAL STRESS RESISTANT BY PROLINE	;)	
	ACCUMULATION OF HIGH LEVEL AND ITS)	
	PRODUCTION)	

Honorable Assistant Commissioner for Patents
Washington, D.C. 20231

REQUEST FOR PRIORITY UNDER 35 U.S.C. § 119 AND THE INTERNATIONAL CONVENTION

Sir:

In the matter of the above-captioned application for a United States patent, notice is hereby given that the Applicant claims the priority date of June 8, 2001, the filing date of the corresponding Japanese patent application 2001-174553.

The certified copy of corresponding Japanese patent application 2001-174553 is being submitted herewith. Acknowledgment of receipt of the certified copies is respectfully requested in due course.

Respectfully submitted,

Stanley P. Fisher

Registration Number 24,344

REED SMITH HAZEL & THOMAS LEP

3110 Fairview Park Drive Suite 1400 Falls Church, Virginia 22042 (703) 641-4200

December 27, 2001

JUANAN CARLOS A. MARQUEZ Regregistration No. 34,072

PATENT OFFICE JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the following application as filed with this office.

Date of Application : June 8, 2001

Application Number : Patent Application No. 174553 of 2001 Applicant (s) : Hitachi, Ltd.,

Bio-oriented Technology Research Advancement

Independent Administrative Institute

Japan International Research Center for

Agricultural Sciences,

and RIKEN.

Dated this 26th day of November, 2001

Kouzou OIKAWA Commissioner, Patent Office

Certificate No. 2001-3103583

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2001年 6月 8日

出願番号 Application Number:

特願2001-174553

出 願 人 Applicant(s):

株式会社日立製作所 生物系特定産業技術研究推進機構 独立行政法人国際農林水産業研究センター 理化学研究所

2001年11月26日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 NT01P0353

【提出日】 平成13年 6月 8日

【あて先】 特許庁長官 殿

【国際特許分類】 C12N 15/00

【発明者】

【住所又は居所】 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日

立製作所 中央研究所内

【氏名】 吉羽 洋周

【発明者】

【住所又は居所】 茨城県つくば市大わし1-1 独立行政法人国際農林水

産業研究センター内

【氏名】 篠崎 和子

【発明者】

【住所又は居所】 埼玉県和光市広沢二番一号 理化学研究所内

【氏名】 篠崎 一雄

【特許出願人】

【識別番号】 000005108

【氏名又は名称】 株式会社日立製作所

【特許出願人】

【識別番号】 000195568

【氏名又は名称】 生物系特定産業技術研究推進機構

【特許出願人】

【識別番号】 501174550

【氏名又は名称】 独立行政法人国際農林水産業研究センター

【特許出願人】

【識別番号】 000006792

【氏名又は名称】 理化学研究所

【代理人】

【識別番号】

100068504

【弁理士】

【氏名又は名称】

小川 勝男

【電話番号】

03-3661-0071

【選任した代理人】

【識別番号】

100086656

【弁理士】

【氏名又は名称】 田中 恭助

【電話番号】

03-3661-0071

【手数料の表示】

【予納台帳番号】

081423

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9003094

【包括委任状番号】 9403294

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 プロリン蓄積能力の高いイネ科植物およびその製造方法 【特許請求の範囲】

【請求項1】

配列番号1に記載の配列を含むイネの $P5CS(\Delta^1- ピロリン-5- カルボン酸合成酵素)$ 遺伝子が導入されたことを特徴とするイネ科植物。

【請求項2】

配列番号 2 に記載の配列を含むシロイヌナズナのP 5 C S (Δ^1 -ピロリンー 5 -カルボン酸合成酵素) 遺伝子が導入されたことを特徴とするイネ科植物。

【請求項3】

配列番号3に記載の配列を含むシロイヌナズナのProDH(プロリン脱水素酵素)遺伝子のアンチセンス(逆向きな塩基配列を持つ)遺伝子が導入されたことを特徴とするイネ科植物。

【請求項4】

配列番号1に記載の配列を含むイネのP5CS遺伝子または配列番号2に記載の配列を含むシロイヌナズナのP5CS遺伝子と配列番号3に記載の配列を含むシロイヌナズナのProDH遺伝子のアンチセンス遺伝子とが導入されたことを特徴とするイネ科植物。

【請求項5】

配列番号1に記載の配列を含むイネのP5CS遺伝子または配列番号2に記載の配列を含むシロイヌナズナのP5CS遺伝子と配列番号3に記載の配列を含むシロイヌナズナのProDH遺伝子のアンチセンス遺伝子とがタンデムに連結されて導入されたことを特徴とするイネ科植物。

【請求項6】

配列番号1に記載の配列を含むイネのP5CS遺伝子、配列番号2に記載の配列を含むシロイヌナズナのP5CS遺伝子、配列番号3に記載の配列を含むシロイヌナズナのProDH遺伝子のアンチセンス遺伝子の何れか、あるいは、前記イネ又はシロイヌナズナのP5CS遺伝子と前記シロイヌナズナのProDH遺伝子のアンチセンス遺伝子とがタンデムに連結されて取り込まれていることを特

徴とするベクター。

【請求項7】

請求項6に記載のベクターをイネ科植物由来のカルスに導入し、前記カルスを 増殖させた後に、前記カルスから植物体を再分化させて得られることを特徴とす るイネ科植物。

【請求項8】

請求項6に記載のベクターをイネ科植物由来のプロトプラストに導入し、前記 プロトプラストを増殖させたコロニーから植物体を再分化させて得られたことを 特徴とするイネ科植物。

【請求項9】

請求項6に記載のベクターを遺伝子操作により導入して得られたイネ科植物の 交雑によって得られ、請求項6に記載のベクターが導入されたことを特徴とする イネ科植物。

【請求項10】

請求項1から請求項9の何れかに記載のイネ科植物がイネであることを特徴と するイネ科植物。

【請求項11】

請求項1から請求項9の何れかに記載のイネ科植物から収穫されたことを特徴とするイネ科植物の種子。

【請求項12】

請求項1から請求項9の何れかに記載のイネ科植物がイネであり、前記イネから収穫されたことを特徴とするイネ科植物の種子。

【請求項13】

請求項6に記載のベクターをイネ科植物由来のカルスにアグロバクテリウムを 用いて導入し、前期カルスを増殖させた後に、前記カルスから植物体を再分化さ せることを特徴とするイネ科植物の製造方法。

【請求項14】

請求項6に記載のベクターをイネ科植物由来のプロトプラストに電気パルスの 印加により導入し、前記プロトプラストを増殖させたコロニーから植物体を再分 化させることを特徴とするイネ科植物の製造方法。

【請求項15】

請求項6に記載のベクターを遺伝子操作により導入して得られたイネ科植物と 交雑を行い、請求項6に記載のベクターが導入されたことを特徴とするイネ科植 物の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、プロリン蓄積能力が高く、耐塩性・耐乾燥性・耐冷性が向上したイネ料植物、及びその製造方法に関する。

[0002]

【従来の技術】

塩生植物を含む幾つかの植物において、植物が高塩ストレスや乾燥ストレスを受けると細胞内にアミノ酸の1つであるプロリンを蓄積することがで知られている。これは、蓄積したプロリンが植物細胞内の浸透圧調節やストレスによる機能タンパク質の変性を抑えるのに役立っていると考えられている。植物におけるプロリンは、 Δ^1 -ピロリン-5-カルボン酸合成酵素(P5CS)と Δ^1 -ピロリン-5-カルボン酸還元酵素(P5CR)の2つの酵素によってグルタミン酸から合成される。一方、プロリンはプロリン脱水素酵素(Prode DH)と Δ^1 -ピロリン-5-カルボン酸脱水素酵素(PsCDH)の2つの酵素によってグルタミン酸へと分解される。

[0003]

上記の植物では、高塩ストレスや乾燥ストレスなどの水ストレス(水を吸収しにくい状態)を受けるとP5CS遺伝子の発現レベルが上昇し、P5CSが活性化するが、P5CR活性およびその遺伝子発現は、一定で低いレベルにある。また、代謝系の遺伝子発現および酵素活性も抑制された状態になる。ところが、一旦水ストレスが解除されると、今度は逆に合成系の遺伝子発現と酵素活性が抑制され、ProDH遺伝子の発現が急速に誘導され、酵素活性も高まり、細胞内に蓄積されていたプロリンは速やかにグルタミン酸へと代謝される。

[0004]

以上のことから、水ストレス時におけるプロリン合成はP5CSが律速となっており、また水ストレス解除後のプロリン代謝にはProDHが律速となっていると考えられる(YoshibaらPlant Cell Physiol. 38:1095-1102(1997))。

[0005]

【発明が解決しようとする課題】

地球環境の悪化に伴って乾燥、半乾燥による塩類土壌の増加や人口増加による 食料不足が今後益々深刻化することが予想される。高塩ストレス、乾燥ストレス 及び低温ストレス(水を吸収しにくい状態)耐性作物の育種は、世界の食料問題 を解決する上で重要な役割を果たすものとして、各方面から研究が進められ、そ の成果が期待されている。

[0006]

本発明の目的は、植物のプロリン合成系及び代謝系の律速酵素である Δ^1 -ピロリン-5-カルボン酸合成酵素(P5CS)とプロリン脱水素酵素(ProDH)の重要性に注目し、遺伝子組換え技術によりこれら酵素遺伝子の発現制御を行い、プロリン蓄積能力が高く、これにより耐塩性・耐乾燥性・耐冷性が向上したイネ科植物、及びその製造方法を提供するところにある。

[0007]

【課題を解決するための手段】

プロリン合成系のP5CS遺伝子を導入して過剰に発現させたり、代謝系のProDH遺伝子のアンチセンス(逆向きの塩基配列を持つ)遺伝子を導入してプロリンの分解を抑制したり、P5CS遺伝子及びProDH遺伝子のアンチセンス遺伝子の両方を導入して、プロリンの分解を抑制しながらプロリン合成を促進させることにより、イネ及びイネ科植物の細胞にプロリンを高濃度蓄積させる。

[0008]

本発明では、プロリンを高濃度蓄積させることにより、耐塩性、耐乾燥性あるいは耐冷性を持つイネ及びイネ科植物を分子レベルで育種(分子育種)することが可能となる。

[0009]

これまで、イネ及びイネ科植物において適合溶質としてのプロリン濃度を、合成促進及び分解抑制することにより、高めることを可能とした報告は知られていない。本発明の発明者らは、P5CS遺伝子とProDH遺伝子の重要性に注目し、従来知られていない新規な技術課題を解決するために、遺伝子の導入が行いやすいイネ品種の選定、カルス形成律を向上させる研究、イネ用遺伝子導入ベクターの構築の研究など各方面から研究を行い、新規な技術解明を行い本発明を完成させるに至った。

[0010]

本発明では、イネ又はシロイヌナズナ由来のプロリン合成遺伝子、プロリン代 謝遺伝子のアンチセンス遺伝子を個別にあるいは組み合わせて導入して形質転換 されたイネ科植物、及びその製造方法が提供される。

[0011]

本発明のイネ科植物にはアミノ酸の1つであるプロリンの合成酵素タンパク質をコードする遺伝子、プロリン分解酵素のアンチセンス遺伝子の何れか、あるいは、これら双方の遺伝子が導入されている。この構成により、耐塩性、耐乾燥性及び耐冷性が向上したイネ科植物が実現できる。更に、本発明のイネ科植物から収穫された完熟種子、特にイネの種子は、複数世代にわたって高いプロリン蓄積能力を維持していく可能性を有する点に特徴がある。

[0012]

また本発明は、イネ及びイネ科植物を対象とし、イネ科植物に属する植物であれば特に制限はない。イネ科植物に属する植物の例としては、イネ、トウモロコシ、コムギ、オオムギ、ライムギ、シバ、アワ、ヒエ等がある。本発明は、特に、イネに、より好適に適用できる。

[0013]

【発明の実施の形態】

本発明の実施例のイネ科植物では、イネ又はシロイヌナズナ由来のプロリン (適合溶質)合成遺伝子とプロリン代謝遺伝子のアンチセンス遺伝子の何れか、あ るいは、これら双方の遺伝子が導入されて形質転換がなされている。

[0014]

本発明の実施例のイネ科植物に導入される1種類の遺伝子の例としては、

- (1) 列番号1 に記載の配列(塩基配列及びアミノ酸配列)を含むイネのP 5 C S $(\Delta^1-$ ピロリンー5 カルボン酸合成酵素)遺伝子、
- (2) 配列番号 2 に記載の配列(塩基配列及びアミノ酸配列)を含むシロイヌナズナの P 5 C S (Δ^1 -ピロリンー5-カルボン酸合成酵素)遺伝子、
- (3)配列番号3に記載の配列(塩基配列及びアミノ酸配列)を含むシロイヌナズナのProDH(プロリン脱水素酵素)遺伝子のアンチセンス(逆向きの塩基配列を持つ)遺伝子、

がある。

[0015]

本発明の実施例のイネ科植物に導入される2種類の遺伝子の例としては、

- (1) 配列番号1に記載の配列を含むイネのP5CS(Δ^1 -ピロリン-5-カルボン酸合成酵素)遺伝子又は配列番号2に記載の配列を含むシロイヌナズナのP5CS遺伝子と、配列番号3に記載の配列を含むシロイヌナズナのProDH(プロリン脱水素酵素)遺伝子のアンチセンス(逆向きの塩基配列を持つ)遺伝子との2つの遺伝子、
- (2)配列番号1に記載の配列を含むイネのP5CS(Δ^1 -ピロリン-5-カルボン酸合成酵素)遺伝子又は配列番号2に記載の配列を含むシロイヌナズナのP5CS遺伝子と、配列番号3に記載の配列を含むシロイヌナズナのProDH(プロリン脱水素酵素)遺伝子のアンチセンス(逆向きの塩基配列を持つ)遺伝子とがタンデム(直列)に連結されている2つの遺伝子、がある。

[0016]

遺伝子とがタンデムに連結されて2つの遺伝子が取り込まれている。

[0017]

本発明の実施例のイネ科植物は、例えば、次の何れかにより得ることができる。 (1)上記のベクターをイネ科植物由来のカルスに導入し、このカルスを増殖させた後にカルスから植物体を再分化させる。

- (2)上記のベクターをイネ科植物由来のプロトプラストに導入し、このプロトプラストを増殖させたコロニーから植物体を再分化させる。
- (3)上記のベクターを遺伝子操作により導入して得られたイネ科植物と交雑を行う。

[0018]

本発明の実施例のイネ科植物の製造方法として、例えば次の例をあげることができる。

- (1)上記のベクターをイネ科植物由来のカルスにアグロバクテリウムを用いて 導入し、このカルスを増殖させた後にカルスから植物体を再分化させる。
- (2)上記のベクターを電気パルスの印加によりイネ科植物由来のプロトプラストに導入し、このプロトプラストを増殖させたコロニーから植物体を再分化させる。
- (3)上記のベクターを遺伝子操作により導入して得られたイネ科植物と交雑を 行う。

[0019]

これらの製造方法では、プロリンの蓄積能力が高くしかも耐塩性・耐乾燥性・耐冷性レベルが向上したイネ科植物の製造方法が提供される。

[0020]

また、本発明の実施例のイネ科植物から収穫された完熟した種子、特にイネの 種子は、複数世代にわたって高いプロリン蓄積能力を維持していく。

[0021]

本発明の実施例のイネ科植物及びその製造方法を実現する例を、イネを代表的な例にとり、以下、手順に従って詳細に説明する。以下に説明する手順はイネ以外のイネ科植物にも、各種条件をそのまま又は変更して適用されることは言うま

でもない。

[0022]

(遺伝子のクローニング)

最初に、イネ幼苗からmRNAを抽出し、このmRNAを用いてcDNAを合 成する。このcDNAをプラスミドまたはファージからなるベクターと連結して 宿主微生物に導入し組換え体DNAを調整する。この組換え体DNAが導入され た形質転換微生物は、シロイヌナズナからのP5CS遺伝子をプローブに用いる プラークハイブリダイゼーション法によりスクリーニングする。イネ及びシロイ ヌナズナのP5CS遺伝子の配列は既に報告されている (Yoshibaら Plant J. (1995)7:751-760、Igarashiら Plant Mol. Biol. (1997) 33:857-865) ので、これ をもとに適当なプライマーを設計しPCRによってスクリーニングし、目的とす る形質転換体を選び出す。得られた形質転換体から目的とするプラスミドを単離 し、必要があれば適当な制限酵素で切断しプラスミドベクターにサブクローニン グしてクローン化する。シロイヌナズナのP5CS遺伝子も、イネと同様な方法 にてクローン化することができる。ただし、mRNAを抽出するサンプルは、通 常の環境で育成したものよりも、髙塩ストレス(250mM NaC1溶液など に漬ける)や乾燥ストレス処理を施したものの方が好ましい。これは、P5CS 遺伝子が、髙塩ストレスや乾燥ストレスといった水ストレスに応答して誘導され るからである (Yoshibaら Plant J. (1995)7:751-760、Igarashiら Plant Mol. B iol. (1997) 33:857-865, Yoshibab Plant Cell Physiol. (1997) 38:1095-1102)。

[0023]

一方、シロイヌナズナのProDH遺伝子(配列はKiyosueら Plant Cell (19 96) 8:1323-1335に既に報告済み) も上述した方法によりクローン化することができる。ただし、mRNAを抽出するサンプルは、乾燥ストレスを与えた(約1 0時間処理)後、再び水に漬け吸水させたものあるいはプロリン溶液に漬けてプロリンを吸収させたものなどを用いるとよい。これはProDH遺伝子が、水ストレスを受けている間は、その発現が抑制されていること、また高濃度のプロリンによってその遺伝子発現が誘導されるからである(Kiyosueら Plant Cell (19

96) 8:1323-1335, Yoshiba & Plant Cell Physiol. (1997) 38:1095-1102) .

[0024]

以上のようなサンプルを用いればイネやシロイヌナズナばかりではなく他のイネ科植物からもP5CS遺伝子とProDH遺伝子の単離が可能である。

[0025]

(遺伝子導入ベクターの構築)

クローン化した各P5CS遺伝子およびProDH遺伝子は、適当な制限酵素でプラスミドから切り出し、図1に示すように、pBIベクターを改変したイネ用ベクターのカリフラワーモザイクウイルスの35Sプロモーターの後に連結する。図1において、RBはライトボーダー、35SProはカリフラワーモザイクウイルスのプロモーター、P5CSはイネまたはシロイヌナズナのプロリン合成系酵素遺伝子、ProDHはシロイヌナズナのプロイン代謝系酵素遺伝子、Nosterはノパリン合成酵素遺伝子のターミネーター、HTPはハイグロマイシン耐性遺伝子、LBはレフトボーダーを、それぞれ表している。また、矢印は遺伝子のセンスの方向を示している。

[0026]

図1において、Aは、RB-35SPro-P5CS-Noster-35SPro-HTP-Noster-LBの順に配列したベクター(コンストラクト)を構築した例を示す図である。Bは、上記Aに対して、RB-35SPro-P5CS-Noster-35SPro-HTP-Noster-LBの順に上記Aのコンストラクトと同じように配列されるが、遺伝子P5CSがアンチセンスに配列された例を示す図である。Cは、上記Aのコンストラクトの遺伝子P5CSに代えて、遺伝子ProDHをアンチセンスに配列して置換し、RB-35SPro-ProDH(アンチセンス)-Noster-35SPro-HTP-Noster-LBの順に配列したベクターを構築した例を示す図である。Dは、上記Aのコンストラクトに、さらに、遺伝子ProDHをアンチセンスに配列し、上記Cに示すコンストラクトをタンデムに連結した、RB-35SPro-P5CS-Noster-35SPro-ProDH(アンチセンス)-Noster-35SPro-HTP-Noster-LBの順に配列したベクターをまといる。

を構築した例を示す図である。

[0027]

35Sプロモーターは強力で恒常的にどの組織でも遺伝子発現を誘導するプロモーターとしてよく知られている。また、遺伝子を組み込む方向はP5CS遺伝子の場合はセンス方向に、ProDH遺伝子の場合はアンチセンス方向に連結する。

[0028]

そして各遺伝子を連結したベクターはエレクトロポレーションによりアグロバクテリウムEHA101菌に導入する。各コンストラクト(図1に示すA~D)が導入されたアグロバクテリウムはBacto Pepton (10g/1)、Bacto Yeast Extract (10g/1)、塩化ナトリウム (5g/1)、1M塩化マグネシウム (2m1/1)、ハイグロマイシンB (50mg/1)を含むYEP培地により28℃で培養し増殖させる。遺伝子導入は各コンストラクト(図1に示すA~D)を導入したアグロバクテリウムをイネのカルス細胞に感染させることにより行う。コンストラクトDは、2つの遺伝子 (P5CS遺伝子とProDH遺伝子)をタンデムに連結して同時に導入するように設計されているが、コンストラクトAとCを混ぜて共感染させてもコンストラクトDと同様な効果が得られる。

[0029]

なお、各コンストラクトにはHPT (ハイグロマイシン耐性)遺伝子が連結されているが、これは導入遺伝子の効果を解析する基礎研究用として形質転換された細胞及び植物体を効率よく選抜するためのもので、実際の塩害地や乾燥地などで栽培する場合には組み込んでおく必要はない。

[0030]

(遺伝子導入用イネカルスの誘導)

完熟したイネ種子は、籾殻を剥離した後、70%エチルアルコールで10分間、3%次亜塩素酸ナトリウムで1時間殺菌する。殺菌後、種子は滅菌水で3回洗 浄し1g/1のcasamino酸、30g/1のショ糖、2mg/1の2, 4-ジクロロフェノキシ酢酸(2, 4-D)、2g/1のジェランガムを含んだ p H 5.8 のN 6 培地(2 N 6 培地)に置床し、2 8 C 、暗黒下で3 \sim 5 週間培養する。

[0031]

(イネカルスへの遺伝子導入)

上記で誘導したイネカルスは、大きさが1~3mm径のものを再び2N6培地に置床し、28℃、暗黒下で3~4日培養する。これにより、カルス細胞の分裂活性を高めることができる。遺伝子導入はこの培養したカルスとYEP培地で増殖した各コンストラクトを導入したアグロバクテリウム液(菌の濃度をOD660nmで測定して0.1になるように希釈したもの)とを混ぜ合わせ感染させることで行う。その後カルスは25℃、暗黒下で3日間培養する。培養後、カルスは1mg/4m1濃度のクラフォラン水溶液でカルス表面に付いた余分な菌を数回洗浄殺菌し、滅菌したキムタオルなどで拭き取った後、250mg/1のクラフォラン、10mg/1のハイグロマイシンBを含む2N6培地(一次選抜培地)に置床し、28℃、暗黒下で1週間培養する。

[0032]

(形質転換カルスの選抜と植物体の再分化)

クラフォランを含む培地で培養したカルスは、ハイグロマイシンBを30mg/1に増やした培地(二次選抜培地)に置床し、28℃、暗黒下で3週間培養する。その後、カルスはショ糖30g/1、ソルビトール30g/1、casamino酸2g/1、MES緩衝剤11g/1、ナフタレン酢酸(NAA)2mg/1、カイネチン1mg/1、クラフォラン250mg/1、ハイグロマイシンB30mg/1、ジェランガム4g/1を含むpH5.8のMS培地(再分化誘導培地)に移し、28℃、明所で3週間培養する。遺伝子の導入されたカルスは、グリーンスポットを形成し、そこから芽と根が分化してくる。分化したカルスは、更に植物ホルモンを抜いた、ショ糖30g/1、クラフォラン250mg/1、ハイグロマイシンB30mg/1、寒天8g/1を含むpH5.8のMS培地(植物体形成培地)に移し、28℃、明所で数週間培養することで、植物体をさらに大きく育成する。

[0033]

(形質転換イネ植物体の育成と種子形成)

再分化したイネは、シャーレ内で約4~5cm位の大きさ(草丈)になったら

育苗用土壌の入ったプランターに移し代え、照度が約2万ルクス位の人工気象機内で28℃の温度条件で第4葉から5葉が展開するまで育成する。その後、幼苗は更に適度に肥料を加えた黒土を入れたワグネルポットに移し温室内で種子が稔るまで成育させる。再分化した当代の植物体は T_0 世代であり、この植物体から取れる種子を T_1 世代とすると T_2 世代~ T_3 世代まで育成させる。実際の農地で栽培する場合には、更に世代を重ね種々の安全性評価試験を行ない、安全性を確認した後、市場に出す必要がある。

[0034]

(形質転換イネからのプロリン抽出とその濃度測定)

プロリンは、T2世代あるいはT3世代の形質転換イネの幼苗(第4葉が展開したもの)の葉から抽出する。人工気象機内で育成したイネ幼苗の葉はハサミなどで約200mg分切り取り、乳鉢で液体窒素を加えパウダー状になるまで磨りつぶす。パウダー状になったサンプルは、純水を加えホモジナイザーなどを用いてさらに磨砕する。粉砕したサンプルは、97℃で6分間加熱した後、氷冷し、4℃で約17,000×G、10分間遠心して上清を分離する。得られた上清は、最終濃度が5%になるようにトリクロロ酢酸を加え混ぜ合わせ、再び4℃で約17,000×G、10分間遠心してタンパク質を沈殿させる。適合溶質としてのプロリンは、この時の上清に含まれており、濃度は液体クロマトグラフィー(HPLC)を用いて測定する。プロリンの定性定量は各種アミノ酸の標品を一定の濃度に溶かしたものをあらかじめHPLCで測定しておき、そのリテンションタイムをもとに換算することで実際の遺伝子組換えイネの葉に含まれるプロリン量を定量する。

[0035]

図2は、各種遺伝子を導入した組換えイネのストレスを与えていない時のプロリン含量を示している。左端の白抜きのグラフは、プロリン関連遺伝子を組み込んでいない対照を、右側5つの黒塗りで示したグラフはプロリン関連遺伝子を組み込んだ遺伝子組換えイネの各系統をそれぞれ示している。プロリン量は導入した遺伝子の種類により異なることが認められる。

[0036]

左から2列目のイネのP5CS遺伝子(OsP5CS)をアンチセンスに導入した(図1に示すB)ものは、ほとんど蓄積しないことがわかる。左から3列目のシロイヌナズナのP5CS遺伝子(AtP5CS)をセンスに導入した(図1に示すA)ものは、対照に対してプロリンの蓄積量が増加していることが認められる。同様に、左から4列目および5列目のシロイヌナズナのProDH遺伝子(AtProDH)をアンチセンスに導入した(図1に示すC)ものおよびイネのP5CS遺伝子(OsP5CS)をセンスに導入した(図1に示すA)ものは、それぞれ、対照に対してプロリンの蓄積量が増加していることが認められる。これらに対して、右端のイネのP5CS遺伝子(OsP5CS)をセンスに、シロイヌナズナのProDH遺伝子(AtProDH)をアンチセンスに導入したものは、上記の1種類の遺伝子を導入したものに比べて、蓄積するプロリン量がかなり高い(高いもので対照に対して100倍以上)ことが認められる。そして遺伝子をセンスに導入したものではAtP5CS(左から3列目)よりもOsP5CS(左から5列目)の方がプロリン蓄積にはやや効果のあることが認められる。

[0037]

(耐塩性試験と遺伝子組換えイネの耐塩性の向上)

図3は、図2の右側4列に示すプロリン蓄積が認められた遺伝子組換えイネを数系統用いて、250mMの濃度(海水の塩濃度の約半分)で耐塩性試験を行った結果を示している。白抜きのグラフは、プロリン関連遺伝子を組み込んでいない対照を、黒塗りで示したグラフが遺伝子組換えイネを表している。耐塩性試験は、公知の生存率を指標にした試験方法(特開平09-266726号、発明の名称:植物の耐塩性の簡易評価方法)に準じておこなった。プロリン関連の遺伝子を導入していない対照は塩処理3日ですべて枯死してしまうのに対して、プロリンを蓄積する組換えイネは3日目で95%、5日処理しても65%と高い生存率を示すことが認められる。このことから、イネを遺伝子組換えによりプロリン蓄積能力を高めることで耐塩性を向上させることができる。

[0038]

従って、本発明により作成されたイネ科作物は、更に安全性評価など詳細な解

析を進め品種化すれば、将来、塩類の集積した土壌や砂漠化した土壌において栽培が可能となり食料生産を向上させることが期待できる。また、発展途上国における人口増加にも対処できることが大いに期待できる。

[0039]

【発明の効果】

本発明によって、プロリン蓄積能力を高めた遺伝子組換えイネ科植物を作成することが可能になった。また、本方法により作成したイネ科植物はプロリン蓄積量が高まったことにより、耐塩性レベルを向上させることが可能となった。

[配列表]

<110> Hitachi, LTD.

RIKEN

Japan International Research Center for Agricaltural Science Bio-oriented Technology Research Advancement Institute (BRAIN)

<120> Transgenic rice plant and its family with environmental stress resistant by proline accumulation of high level and its production.

<130> NT01P0353

<160> 3

<210> 1

<211> 2549

<212> DNA

<213> Oryza sativa L.

<220>

<221> CDS

<222> 99..2249

<300>

<301> Yumiko Igarashi, Yoshu Yoshiba, Yukika Sanada, Kazuko Yamaguchi-Shinozaki, Keishiro Wada, Kazuo Shinozaki

 $\langle 302 \rangle$ Characterization of the gene for Δ^1 -pyrroline-5-carboxylate synth etase and correlation between the expression of the gene and salt tolera

nce in Oryza sativa L.			
<303> Plant Molecular b	oiology		
⟨304⟩ 33			
<306> 857-865			
<307> 1996-12-03			
<308> D49714			
<309> 1995-03-16			
<400> 1		•	
gcggctgcgg cggcaaggcg g	cgagacgtg ggagaggga	t ttacaggtag agggagaggg 60)
	•		
tggaggagga gaggctgagg c	taggaagcg gtttcgcc	atg gcg agc gtc gac ccg 11	16
		Met Ala Ser Val Asp Pro	
		1 5	
tcc cgg agc ttc gtg agg	gac gtg aag cgc gt	c atc atc aag gtg ggc 16	34
Ser Arg Ser Phe Val Arg	Asp Val Lys Arg Va	l lle lle Lys Val Gly	
10	15	20	
act gca gtt gtc tcc aga	caa gat gga aga tt	g gct ttg ggc agg gtt 21	12
Thr Ala Val Val Ser Arg	Gln Asp Gly Arg Le	u Ala Leu Gly Arg Val	
25	30	35	
gga gct ctg tgc gag cag	gtt aag gaa ctg aa	c tet tta gga tac gaa 26	30
Gly Ala Leu Cys Glu Gln	Val Lys Glu Leu As	n Ser Leu Gly Tyr Glu	
40	45	50	
gtg att ttg gtc acc tca	ggt gct gtt gga gt	g ggg cga cag cga ctt 30	80
Val Ile Leu Val Thr Ser	Gly Ala Val Gly Va	l Gly Arg Gln Arg Leu	

70

65

60

55

agg	tac	cgg	aag	ctt	gtc	aat	agc	agc	ttt	gct	gat	ctg	caa	aag	cca	356
Arg	Tyr	Arg	Lys	Leu	Val	Asn	Ser	Ser	Phe	Ala	Asp	Leu	Gln	Lys	Pro	
				75					80)				8	35	
cag	atg	gag	tta	gat	gga	aag	gct	tgt	gcc	gct	gtt	ggt	cag	agt	gga	404
Gln	Met	Glu	Leu	Asp	Gly	Lys	Ala	Cys	Ala	Ala	Val	Gly	Gln	Ser	Gly	
			90					Ş	95				1	00		
ctg	atg	gct	ctt	tac	gat	atg	ttg	ttt	aac	caa	ctg	gat	gtc	tcg	tca	452
Leu	Met	Ala	Leu	Tyr	Asp	Met	Leu	Phe	Asn	Gln	Leu	Asp	Val	Ser	Ser	
		105					110	0				1	15			
tct	caa	ctt	ctt	gtc	acc	gac	agt	gat	ttt	gag	aac	cca	aag	ttc	cgg	500
Ser	Gln	Leu	Leu	Val	Thr	Asp	Ser	Asp	Phe	Glu	Asn	Pro	Lys	Phe	Arg	
	120					125	5				1	30				
gag	caa	ctc	act	gaa	act	gtt	gag	tca	tta	tta	gat	ctt	aaa	gtt	ata	548
Glu	Gln	Leu	Thr	Glu	Thr	Val	Glu	Ser	Leu	Leu	Asp	Leu	Lys	Val	Ile	
135					14	0				1	45					150
cca	ata	ttt	aat	gaa	aat	gat	gcc	atc	agc	act	aga	aag	gct	cca	tat	596
Pro	Ile	Phe	Asn	Glu	Asn	Asp	Ala	Ile	Ser	Thr	Arg	Lys	Ala	Pro	Tyr	
				15	5				1	60					165	
gag	gat	tca	tct	ggt	ata	ttc	tgg	gat	aat	gac	agi	tta	ı gca	gga	ctg	644
Glu	Asp	Ser	Ser	Gly	ılle	Phe	Trp	Asp	Asn	Asp	Sei	: Lei	ı Ala	Gly	/ Leu	
			17	70				1	75					180		

ttg	gca	ctg	gaa	ctg	aaa	gct	gat	ctc	ctt	att	ctg	ctc	agt	gat	gtg	692
Leu	Ala	Leu	Glu	Leu	Lys	Ala	Asp	Leu	Leu	Ile	Leu	Leu	Ser	Asp	Val	
		185				-	190)				19	95			
gat	ggg	ttg	tat	agt	ggt	cca	cca	agt	gaa	cca	tca	tca	aaa	atc	ata	740
Asp	Gly	Leu	Tyr	Ser	Gly	Pro	Pro	Ser	Glu	Pro	Ser	Ser	Lys	Ile	Ile	
	200					205	5				2	10				
										•						•
cac	act	tat	att	aaa	gaa	aag	cat	cag	caa	gaa	atc	act	ttt	gga	gac	788
His	Thr	Tyr	Ile	Lys	Glu	Lys	His	Gln	Gln	Glu	Ile	Thr	Phe	Gly	Asp	
215					220)				22	25				2	230
aaa	tct	cgt	gta	ggt	aga	gga	ggc	atg	aca	gca	aaa	gtg	aag	gct	gct	836
Lys	Ser	Arg	Val	Gly	Arg	Gly	Gly	Met	Thr	Ala	Lys	Val	Lys	Ala	Ala	
				235	5				24	10				4	245	
gtc	ttg	gct	tca	aat	agc	ggc	aca	cct	gtg	gtt	att	aca	agt	ggg	ttt	884
Val	Leu	Ala	Ser	Asn	Ser	Gly	Thr	Pro	Val	Val	Ile	Thr	Ser	Gly	Phe	
			250	0				25	55				4	260		
gaa	aat	cgg	agc	att	ctt	aaa	gtt	ctt	cat	ggg	gaa	aaa	att	ggt	act	932
Glu	Asn	Arg	Ser	Ile	Leu	Lys	Val	Leu	His	Gly	Glu	Lys	Ile	Gly	Thr	
		265	5				27	70				2	275			
ctc	ttt	cac	aag	aat	gcg	aat	ttg	tgg	gaa	tca	tct	aag	gat	gtt	agt	980
Leu	Phe	His	Lys	Asn	Ala	Asn	Leu	Trp	Glu	Ser	Ser	Lys	Asp	Val	Ser	
	280					285	5				29	90				

act cgt gag atg gct gtt gcc gca aga gat tgt tca agg cat cta cag 1028

Thr	Arg	Glu	Met	Ala	Val	Ala	Ala	Arg	Asp	Cys	Ser	Arg	His	Leu	Gln	
295					300)				30)5				3	10
aat	ttg	tca	tca	gag	gaa	cga	aaa	aag	ata	ttg	cta	gat	gtt	gca	gat	1076
Asn	Leu	Ser	Ser	Glu	Glu	Arg	Lys	Lys	Ile	Leu	Leu	Asp	Val	Ala	Asp	
				315	5				32	20				3	325	
gct	ttg	gag	gca	aat	gag	gat	tta	ata	agg	tct	gag	aat	gaa	gct	gat	1124
Ala	Leu	Glu	Ala	Asn	Glu	Asp	Leu	Ile	Arg	Ser	Glu	Asn	Glu	Ala	Asp	
			330	0				33	35				:	340		
gta	gct	gcg	gcc	caa	gtt	gct	gga	tat	gag	aag	cct	ttg	gtt	gct	aga	1172
Val	Ala	Ala	Ala	Gln	Val	Ala	Gly	Tyr	Glu	Lys	Pro	Leu	Val	Ala	Arg	
		349	5				39	50				3	55			
ttg	act	ata	aaa	cca	gga	aag	ata	gca	agc	ctt	gca	aaa	tct	att	cgt	1220
Leu	Thr	Ile	Lys	Pro	Gly	Lys	Ile	Ala	Ser	Leu	Ala	Lys	Ser	Ile	Arg	
	360					36	5				3′	70				
acc	ctt	gca	aat	atg	gaa	gac	cct	ata	aac	cag	ata	ctt	aaa	aag	aca	1268
Thr	Leu	Ala	Asn	Met	Glu	Asp	Pro	Ile	Asn	Gln	Ile	Leu	Lys	Lys	Thr	
375					38	0				3	85				3	390
gag	gtt	gct	gat	gat	tta	gtt	ctt	gag	aaa	aca	tct	tgc	cca	tta	ggt	1316
Glu	Val	Ala	Asp	Asp	Leu	Val	Leu	Glu	Lys	Thr	Ser	Cys	Pro	Leu	Gly	
				39	5				4	00					405	
gtt	ctc	tta	att	gtt	ttt	gag	tcc	cga	cct	gat	gcc	ttg	gtt	cag	att	1364
Val	Leu	Leu	Ile	· Val	Phe	Glu	Ser	Arg	Pro	Asp	Ala	Leu	Val	Gln	Ile	

			410)				41	.5				4	20		
gca	tct	ttg	gca	att	cga	agt	ggt	aat	ggt	ctt	ctc	cta	aaa	ggt	gga	1412
Ala	Ser	Leu	Ala	Ile	Arg	Ser	Gly	Asn	Gly	Leu	Leu	Leu	Lys	Gly	Gly	
		425	5				43	30				4	135			
aaa	gaa	gct	atc	aga	tca	aac	acg	ata	ttg	cat	aag	gtt	ata	act	gat	1460
Lys	Glu	Ala	Ile	Arg	Ser	Asn	Thr	Ile	Leu	His	Lys	Val	Ile	Thr	Asp	
	440					445	5				48	50				
gct	att	cct	cgt	aat	gtt	ggt	gaa	aaa	ctt	att	ggc	ctt	gtt	aca	act	1508
Ala	Ile	Pro	Arg	Asn	Val	Gly	Glu	Lys	Leu	Ile	Gly	Leu	Val	Thr	Thr	
455					460	C				46	35				. 4	170
aga	gat	gag	atc	gca	gat	ttg	cta	aag	ctt	gat	gat	gtc	att	gat	ctt	1556
Arg	Asp	Glu	Ile	Ala	Asp	Leu	Leu	Lys	Leu	Asp	Asp	Val	Ile	Asp	Leu	
				47	5				48	80				4	485	
					•											
gtc	act	cca	aga	gga	agt	aat	aag	ctt	gtc	tct	caa	atc	aag	gcg	tca	1604
Val	Thr	Pro	Arg	Gly	Ser	Asn	Lys	Leu	Val	Ser	Gln	Ile	Lys	Ala	Ser	
			49	0				49	95				!	500		
act	aag	att	cct	gtt	ctt	ggg	cat	gct	gat	ggt	ata	tgc	cac	gta	tat	1652
Thr	Lys	Ile	Pro	Val	Leu	Gly	His	Ala	Asp	Gly	Ile	Cys	His	Val	Tyr	
		50	5				5	10					515			
att	gac	aaa	tca	gct	gac	atg	gat	atg	gca	aaa	ctt	att	gta	atg	gat	1700
Ile	Asp	Lys	Ser	Ala	Asp	Met	Asp	Met	Ala	Lys	Leu	Ile	Val	Met	Asp	

525

520

530

gca	aaa	act	gat	tac	cca	gca	gcc	tgc	aat	gca	atg	gag	acc	tta	cta	1748
Ala	Lys	Thr	Asp	Tyr	Pro	Ala	Ala	Cys	Asn	Ala	Met	Glu	Thr	Leu	Leu	
535					540)				54	15				5	50
gtt	cat	aag	gat	ctt	atg	aag	agt	cca	ggc	ctt	gac	gac	ata	tta	gta	1796
Val	His	Lys	Asp	Leu	Met	Lys	Ser	Pro	Gly	Leu	Asp	Asp	Ile	Leu	Val	
				555	5				56	50				5	565	
gca	cta	aaa	aca	gaa	gga	gtt	aat	att	tat	ggt	gga	cct	att	gcg	cac	1844
Ala	Leu	Lys	Thr	Glu	Gly	Val	Asn	Ile	Tyr	Gly	Gly	Pro	Ile	Ala	His	
			570					575					580			
aaa	gct	ctg	gga	ttt	cca	aaa	gct	gtt	tca	ttt	cat	cat	gag	tat	agt	1892
Lys	Ala	Leu	Gly	Phe	Pro	Lys	Ala	Val	Ser	Phe	His	His	Glu	Tyr	Ser	
		58	5				5	90				Į.	595			
tct	atg	gcc	tgc	act	gtt	gag	ttt	gtt	gat	gat	gtt	caa	tca	gca	att	1940
Ser	Met	Ala	Cys	Thr	Val	Glu	Phe	Val	Asp	Asp	Val	Gln	Ser	Ala	Ile	
	600					60	5				6	10				
gac	cat	att	cat	cgt	tat	gga	agt	gct	cat	aca	gat	tgt	atc	gtc	act	1988
Asp	His	Ile	His	Arg	Tyr	Gly	Ser	Ala	His	Thr	Asp	Cys	Ile	Val	Thr	
615					62						25					30
aca	gat	gat	aag	gta	gca	gag	act	ttt	cta	cgc	aga	gtt	gat	agt	gct	2036
		_													Ala	
		P	-,,-	63						40	J		•		645	

Ala Val Phe His Asn Ala Se 650								65	55				ε	660		
Ala	Val	Phe	His	Asn	Ala	Ser	Thr	Arg	Phe	Ser	Asp	Gly	Ala	Arg	Phe	
gct	gta	ttt	cat	aat	gca	agt	acg	aga	ttc	tct	gat	ggg	gct	cgt	ttt	2084

gga ttg ggt gct gag gtt ggc ata agc aca ggg cgt atc cat gcc cgt 2132 Gly Leu Gly Ala Glu Val Gly Ile Ser Thr Gly Arg Ile His Ala Arg 665 670 675

gga cca gtg ggt gtt gaa ggt ctc tta act aca cga tgg atc ttg cga 2180 Gly Pro Val Gly Val Glu Gly Leu Leu Thr Thr Arg Trp Ile Leu Arg 680 685 690

gga cgt ggg caa gtg gtg aat ggt gac aag gat gtc gtg tac acc cat 2228 Gly Arg Gly Gln Val Val Asn Gly Asp Lys Asp Val Val Tyr Thr His 695 700 705 710

aag agt ctt cct ttg caa tga ggtcaaatgc tccttttagc ctgttcagga 2279 Lys Ser Leu Pro Leu Gln

715

gtaggtgaat atccttttaa gaatggattg actactttat tttgtcatct tgtacaagca 2339 tcttattgcg gcattccgat ggattattga ttttgggggt tcccactttc aaatgtgaca 2399 ccaaaaataa attcatcagt tctgagagca agattttgga ggttcagctt ctccatgtaa 2459 taagtaaatt cagttctgag aacttgtgta ccaacgcgct atgttgcttg taatgagcga 2519 tactaacatc tgtgattgca catatactaa

2549

4

<210> 2

<211> 2571

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> 107...2260

<301> Yoshu Yoshiba, Tomohiro Kiyasue, Takeshi Katagiri, Hiroko Ueda, Ts uyoshi Mizoguchi, Kazuko Yamaguchi-Shinozaki, Keishiro Wada, Yoshinori H arada, Kazuo Shinozaki

 $\langle 302 \rangle$ Correlation between the induction of a gene for Δ^1 -pyrroline-5-ca rboxylate synthetase and the accumulation of proline in Arabidopsis thal iana under osmotic stress.

(303) The Plant Journal

<304> 7

<305> 5

⟨306⟩ 751-760

⟨307⟩ 1995-01-20

<308> D32138

<309> 1994-07-12

<400> 2

ctgatattta ttttcttacc ttaaatacga cggtgcttca ctgagtccga ctcagttaac 60

tcgttcctct ctctgtgtgt ggttttggta gacgacgacg acgata atg gag gag 115
Met Glu Glu

1

cta gat cgt tca cgt gct ttt gcc aga gac gtc aaa cgt atc gtc gtt 163 Leu Asp Arg Ser Arg Ala Phe Ala Arg Asp Val Lys Arg Ile Val Val

Lys	Asp	Arg	Pro	Ile	Val	Tyr	Asn	Thr	Ile	Gln	Ala	Tyr	Leu	Arg	Asp	
			310	0				3	15					320		
														•		
gcc	ggt	gag	aga	ctg	cat	ttg	gca	gta	caa	aat	gct	gag	aaa	gag	aat	1126
Ala	Gly	Glu	Arg	Leu	His	Leu	Ala	Val	Ģlņ	Asn	Ala	Glu	Lys	Glu	Asn	
		328	ō				33	30	0.				335			
•																
gtt	cct	atg	ggg	ttc	aag	ttg	gtg	aga	ggg	gct	tac	atg	tct	agc	gaa	1174
Val	Pro	Met	Gly	Phe	Lys	Leu	Val	Arg	Gly	Ala	Tyr	Met	Ser	Ser	Glu	
	340			•		345	5		٠		38	50				
														٠		
cgt	agc	ttg	gcg	gat	tcc	ctg	ggt	tgc	aag	tcg	cca	gtc	cac	gac	aca	1222
Arg	Ser	Leu	Ala	Asp	Ser	Leu	Gly	Cys	Lys	Ser	Pro	Val	His	Asp	Thr	
355	`		•		360)				36	6 5				3	370
	`								-							370
àtt					tčt	tgt				tgt	atg			ctg	atg	370 1270
àtt				His	tct Ser	tgt			Asp	tgt Cys	atg			ctg Leu	atg	
àtt					tct Ser	tgt				tgt Cys	atg			Leu	atg	
att	Gln	Asp	Thr	His 375	tct Ser	tgt Cys	Tyr	Asn	Asp 38	tgt Cys	atg Met	Thr	Phe	Leu 3	atg Met	1270
att Ile	Gln aaa	Asp	Thr	His 375	tct Ser	tgt Cys tct	Tyr	Asn	Asp 38	tgt Cys 30	atg Met	Thr	Phe	Leu	atg Met 385	
att Ile	Gln aaa	Asp	Thr .tca Ser	His 375 aac Asn	tct Ser	tgt Cys tct	Tyr	Asn ttc Phe	Asp 38 ggt Gly	tgt Cys 30	atg Met	Thr	Phe gca Ala	Leu 3 aca Thr	atg Met 385	1270
att Ile	Gln aaa	Asp	Thr	His 375 aac Asn	tct Ser	tgt Cys tct	Tyr	Asn	Asp 38 ggt Gly	tgt Cys 30	atg Met	Thr	Phe gca Ala	Leu	atg Met 385	1270
att Ile	Gln aaa	Asp	Thr .tca Ser	His 375 aac Asn	tct Ser	tgt Cys tct	Tyr	Asn ttc Phe	Asp 38 ggt Gly	tgt Cys 30	atg Met	Thr	Phe gca Ala	Leu 3 aca Thr	atg Met 385	1270
att Ile gag Glu	Gln aaa Lys	gca Ala	tca Ser	His 375 aac Asn	tct Ser ggt Gly	tgt Cys tct Ser	Tyr ggt Gly	ttc Phe	Asp 38 ggt Gly 95	tgt Cys 30 gtc Val	atg Met gtt Val	Thr ctc Leu	Phe gca Ala	Leu aca Thr	atg Met 385 cat His	1270 1318
att Ile gag Glu	Gln aaa Lys gct	gca Ala	tca Ser 390	His 375 aac Asn	tct Ser ggt Gly	tgt Cys tct Ser	ggt Gly gcg	ttc Phe 39	Asp 38 ggt Gly 35	tgt Cys 30 gtc Val	atg Met gtt Val	Thr ctc Leu	Phe gca Ala	Leu 3 aca Thr	atg Met 385 cat His	1270

atc gat aaa cag aac ggg aag ata gag ttt gca cag cta tat ggt atg 1414

410

405

415

Ile	Asp	Lys	Gln	Asn	Gly	Lys	Ile	Glu	Phe	Ala	Gln	Leu	Tyr	Gly	Met	
	420			•		42	5				4:	30				
tca	gat	gca	ttg	tcc	ttc	ggg	tta	aag	aga	gca	ggg	ttc	aat	gtt	agc	1462
Ser	Asp	Ala	Leu	Ser	Phe	Gly	Leu	Lys	Arg	Ala	Gly	Phe	Asn	Val	Ser	
435					44	0				4	45				45	50
							-									
aag	tac	atg	ccg	ttt	gga	ссс	gtc	gca	acc	gct	ata	ccg	tat	ctt	ctc	1510
Lys	Tyr	Met	Pro	Phe	Gly	Pro	Val	Ala	Thr	Ala	Ile	Pro	Tyr	Leu	Leu	
			-	45	5				46	60				4	465	
	•															
cga	cgc	gct	tat	gag	aac	cgg	gga	atg	atg	gcc	acc	gga	gct	cat	gac	1558
Arg	Arg	Ala	Tyr	Glu	Asn	Arg	Gly	Met	Met	Ala	Thr	Gly	Ala	His	Asp	
			470)		٠		47	' 5			•	. 4	180	•	
										-			•		٠	
cgt	çaa	ctc	atg	agg	atg	gaa	ctt	aag	agg	aga	tta	atc	gcc	ggg	att	1606
Arg	Gln	Leu	Met	Arg	Met	Glu	Leu	Lys	Arg	Arg	Leu	Ile	Ala	Gly	Ile	
-		485					490		:			4	95			
						•				· .						
gcg	taaa	gaga	ga g	tatg	gago	c at	taaa	tgaa	att	ggga	aat	gtag	atga	at		1659
Ala	,				=					•				_		
				•												
			•	•				.:								
aaat	ttct	tc t	atgt	agtt	t aa	gaaa	ttga	aaa	caaa	aaa	ttat	aata	ta a	gaaa	tggag	1719
															÷	
tagg	taag	aa c	attt	cctg	t gg	ctaa	atat	ttt	tcat	gag	ggac	tatg	tt t	ttac	tatca	1779
						•										

atatatcatt cacaaatgta tattcacctt atcaataaaa atgcttttta cttt

出土をよったとは、 ちょんりこう

1833

【図面の簡単な説明】

【図1】

プロリン合成系酵素 P 5 C S 遺伝子とプロリン代謝系酵素 P r o D H 遺伝子およびそのアンチセンス遺伝子を組み込んだイネ用ベクターを示す図。

【図2】

図1で示したベクターを遺伝子操作により導入したイネのストレスを与えていない時のプロリン蓄積量を示す図。

【図3】

図2で示したプロリン関連遺伝子を組み込んだ遺伝子組換えイネの耐塩性を示した図。

- 11127440001 0100

Val	Ala	a Arg	g Lei	ı Va	l Me	t Th	r Pr	o Gl	y Ly	s []	e Se	r Se	r Le	u Al	a Ala	. .
				3	60					365					370	
tca	gtt	cgt	aag	ct	a gc	t gat	t at	g ga	a ga	t cc	a at	c gg	c cg	t gt	t tta	1267
Ser	Val	Arg	Lys	Le	u Ala	a Asp	Me	t Gli	u As	p Pr	o Il	e Gl	y Ar	g Va	l Leu	
			37	5				Ş	380					385		
															a tca	1315
Lys				Va]	Ala	Asp			ı Val	l Ļei	ı Glı	ı Lys	S Th	r Sei	Ser	
•		390					39	15		:		4	100	•		
CC2	tta	77 0	ata		- 44-	~	4.4									``.
															ctt	1363
	405	uıy,	Val	·Lcu	Leu			Pne	Glu	Ser			Asp	Ala	Leu	
						41	U				. 4	15		٠		
gta	Cag	ata	gct	tca	ctt	øcc	atc	cat	2 ort	gg?	224			-4-	ctg	
Val	•															1411
420					42				501		30	. GIY	Leu	Leu		25
				•		· :	.; -		*	, * .					. 4	35
aag į	ggt	gga	aag	gag	gcc	cgg	cga	tca	aat	gct	atc	tta	cac	aag	gtø	1459
Lys (•	1400
		:		44(•				15					450	
•			9							•						•
atc	ict .	gat	gca	at _i t _.	cca	gag	act	gtt	ggg	ggt	aaa	ctc	att	gga	ctt	1507
Ile 1																
			455					46			•			165		

gtg act tca aga gaa gag att cct gat ttg ctt aag ctt gat gac gtt 1555 Val Thr Ser Arg Glu Glu Ile Pro Asp Leu Leu Lys Leu Asp Asp Val 470

475

480

atc gat ctt gtg atc cca aga gga agc aac aag ctt gtt act cag ata 1603

Ile Asp Leu Val Ile Pro Arg Gly Ser Asn Lys Leu Val Thr Gln Ile

485 490 495

aaa aat act aca aaa atc cct gtg cta ggt cat gct gat gga atc tgt 1651 Lys Asn Thr Thr Lys Ile Pro Val Leu Gly His Ala Asp Gly Ile Cys 500 505 510 515

cat gta tat gtc gac aag gct tgt gat acg gat atg gca aag cgc ata 1699
His Val Tyr Val Asp Lys Ala Cys Asp Thr Asp Met Ala Lys Arg Ile
520 525 530

gtt tct gat gca aag ttg gac tat cca gca gcc tgt aat gcg atg gaa 1747

Val Ser Asp Ala Lys Leu Asp Tyr Pro Ala Ala Cys Asn Ala Met Glu

535 540 545

acc ctt ctt gtg cat aag gat cta gag cag aat gct gtg ctt aat gag 1795

Thr Leu Leu Val His Lys Asp Leu Glu Gln Asn Ala Val Leu Asn Glu

550 555 560

ctt att ttt gct ctg cag agc aat gga gtc act ttg tat ggt gga cca 1843 Leu Ile Phe Ala Leu Gln Ser Asn Gly Val Thr Leu Tyr Gly Gly Pro 565 570 575

agg gca agt aag ata ctg aac ata cca gaa gca cgg tca ttc aac cat 1891

Arg Ala Ser Lys Ile Leu Asn Ile Pro Glu Ala Arg Ser Phe Asn His

580 585 590 595

			44 -40		+0+ 1020
gag tac tgt					
Glu Tyr Cys		Cys Thr Val	Glu Val Val		
	600		605	(610
			ggg agt gca		
Gly Ala Ile	Asp His Ile	His Arg His	Gly Ser Ala	His Thr Asp	Cys
	615	- 6	20	625	
att gtg aca	gag gat cac	gaa gtt gca	gag cta ttc	ctt cgc caa	gtg 2035
Ile Val Thr	Glu Asp His	Glu Val Ala	Glu Leu Phe	Leu Arg Gln	Val
630	0	635		640	·
			·		
gat agc gct	gct gtg ttc	cac aac gcc	agc aca aga	ttc tca gat	ggt 2083
Asp Ser Ala	Ala Val Phe	His Asn Ala	Ser Thr Arg	Phe Ser Asp	Gly
645		650	. 6	55	
•			•	•	
ttc cga ttt	gga ctt ggt	gca gag gtg	ggg gta agc	acg ggc agg	atc 2131
Phe Arg Phe	Gly Leu Gly	Ala Glu Val	Gly Val Ser	Thr Gly Arg	Ile
660	66	5	670		675
			•		
cat gct cgt	ggt cca gto	ggg gtc gaa	gga tta ctt	aca acg aga	tgg 2179
•			Gly Leu Leu		
	680	·	685		690
ata ato aoa	ଫଟ ର ରରର ଫଟ	caa gtt gto	c gac gga gac	; : aat gga ati	t gtt 2227
			Asp Gly Asp		A
lic Met Wig			700	705	
	695	•	VV	700	

tac acc cat cag gac att ccc atc caa gct taaacaagac ttccgagtgt 2277

Tyr Thr His Gln Asp Ile Pro Ile Gln Ala

710

715

gtgtttgtgt atttggttga gacttgagga gagacacaga ggaggatggg cttttttgtt 2337

tectetetge ttagtactea tateetatea ttattattat taetaetaet tattattgaa 2397

accetegett atgtagtggt tttgatttag ggttaggatt geaccaaaaa taagateeac 2457

tttaccactt agtcttgctc ataagtacga tgaagaacat ttaattagct tctcttcttg 2517

tcattgtaag ctacctacac atttctgatc tttatcaaga tactactact tttc 2571

<210> 3

⟨211⟩ 1833

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

⟨222⟩ 113...1612

<301> Tomohiro Kiyasue, Yoshu Yoshiba, Kazuko Yamaguchi-Shinozaki, Kazuo Shinozaki

<302>Title: A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis.

<303> The Plant Cell

<304> 8

⟨306⟩ 1323-1335

<307> 1996-05-27 <308> D83025 <309> 1995-12-25 <400> 3 agcgtttaga aaaaaacagc gataaaaccg aaacatcaag caaacaaaaa aaaaagagaa 60 gagaaattat tttttttgt tttcgttttc aaaaacaaaa tctttgaatt tt atg gca 118 Met Ala 1 acc cgt ctt ctc cga aca aac ttt atc cgg cga tct tac cgt tta ccc Thr Arg Leu Leu Arg Thr Asn Phe Ile Arg Arg Ser Tyr Arg Leu Pro 5 10 15 gct ttt agc ccg gtg ggt cct ccc acc gtg act gct tcc acc gcc gtc 214 Ala Phe Ser Pro Val Gly Pro Pro Thr Val Thr Ala Ser Thr Ala Val 20 30 gtc ccg gag att ctc tcc ttt gga caa caa gca ccg gaa cca cct ctt 262 · Val Pro Glu Ile Leu Ser Phe Gly Gln Gln Ala Pro Glu Pro Pro Leu 35 40 50 45 cac cac cca aaa ccc acc gag caa tct cac gat ggt ctc gat ctc tcc 310 His His Pro Lys Pro Thr Glu Gln Ser His Asp Gly Leu Asp Leu Ser 55 60 65 gat caa gcc cgt ctt ttc tcc tct atc cca acc tct gat ctc ctc cgt Asp Gln Ala Arg Leu Phe Ser Ser Ile Pro Thr Ser Asp Leu Leu Arg 70 75 80

tcc	acc	gcc	gtg	ttg	cat	gcg	gcg	gcg	ata	ggt	cct	atg	gtc	gac	cta	406		
Ser	Thr	Ala	Val	Leu	His	Ala	Ala	Ala	Ile	Gly	Pro	Met	Val	Asp	Leu			
		85					90	9					95	5				
ggg	acg	tgg	gtc	atg	agc	tct	aaa	ctt	atg	gac	gct	tcg	gtg	acg	cgt.	454		
Gly	Thr	Trp	Val	Met	Ser	Ser	Lys	Leu	Met	Asp	Ala	Ser	Val	Thr	Arg			
	100			105					110							•		
ggc	atg.	gtt	tta	ggg	ctt	gtg	aaa	agt	acg	ttt	tat	gac	cat	ttt	tgc	502		
Gly	Met	Val	Leu	Gly	Leu	Val	Lys	Ser	Thr	Phe	Tyr	Asp	His	Phe	Cys			
115		120						125						130				
gcc	ggt	gaa	gat	gcc	gac	gca	gcc	gct	gag	cgc	gtg	aga	agc	gtt	tat	550		
Ala	Gly	Glu	Asp	Ala	Asp	Ala	Ala	Ala	Glu	Arg	Val	Arg	Ser	Val	Tyr			
	135							140					145					
						•								:	ř			
gaa	gct	act	ggt	ctt	aaa	ggg	atg	ctt	gtc	tat	ggc	gtc	gaa	cac	gcc	598		
Glu	Ala	Thr	Gly	Leu	Lys	Gly	Met	Leu	Val	Tyr	Gly	Val	Glu	His	Ala			
	150					. 155							160					
gat	gac	gct	gta	tct	tgt	gat	gat	aac	atg	caa	caa	ttc	att	cga	acc	646		
Asp	Asp	Ala	Val	Ser	Cys	Asp	Asp	Asn	Met	Gln	Gln	Phe	Ile	Arg	Thr			
165						170												
att	gaa	gct	gcc	aaa	tct	tta	cca	aca	tct	cac	ttt	agc	tca	gtg	gtt	694		
Ile	Glu	Ala	Ala	Lys	Ser	Leu	Pro	Thr	Ser	His	Phe	Ser	Ser	Val	Val			
	180 185						190											

gtg	aag	ata	act	gcc	att	tgt	cca	att	agt	ctt	ctg	aaa	cga	gtg	agc	742	
Val	Lys	Ile	Thr	Ala	Ile	Cys	Pro	Ile	Ser	Leu	Leu	Lys	Arg	Val	Ser		
195	200					0	· 205					210					
								•	•								
gat	ctg	ctg	cgg	tgg	gaa	tac	aaa	agt	ccg	aac	ttc	aaa	ctc	tca	tgg	790	
Asp	Leu	Leu	Arg	Trp	Glu	Tyr	Lys	Ser	Pro	Asn	Phe	Lys	Leu	Ser	Trp		
	215						220					225					
				-								•		-			
aag	ctc	aaa	tcg	ttt	ccg	gtt	ttc	tcc	gaa	tcg	agt	cct	ctc	tac	cac	838	
Lys	Leu	Lys	Ser	Phe	Pro	Val	Phe	Ser	Glu	Ser	Ser	Pro	Leu	Tyr	His		
	230						235						240				
							•										
aca	aac	tça	gaa	ccg	gaa	ccg	tta	acc	gcg	gaa	gaa	gaa	agg	gag	ctc	886	
Thr	Asn	Ser	Glu	Pro	Glu	Pro	Leu	Thr	Ala	Glu	Glu	Glu	Arg	Glu	Leu		
	245					250					255						
											-						
gaa	gca	gct	cat	gga	agg	att	caa	gaa	atc	tgt	agg	aaa	tgc	caa	gag	934	
Glu	Ala	Ala	His	Gly	Arg	Ile	Gln	Glu	Ile	Cys	Arg	Lys	Cys	Gln	Glu		
	260)				265	5			270							
tcc.	aat	gta	cca	ttg	ttg	att	gat	gcg	gaa	gac	aca	atc	ctc	caa	ссс	982	
Ser	Asn	Val	Pro	Leu	Leu	Ile	Asp	Ala	Glu	Asp	Thr	Ile	Leu	Gln	Pro		
275	280					2					35			2	90		
		ė															
gcg	atc	gat	tac	atg	gct	tat	tca	tcg	gcg	atc	atg	ttc	aat	gct	gac	1030	
Ala	Ile	Asp	Tyr	Met	Ala	Tyr	Ser	Ser	Ala	Ile	Met	Phe	Asn	Ala	Asp		
•	295							300					305				

aaa gac cga cca atc gtt tac aac acg att cag gcg tac ttg aga gac 1078

10 1027440001 010000

【書類名】

図面

【図1】

図 1

【図2】

【図3】

図 3

塩化ナトリウムの処理時間(h)

| :対照 (ベクター)

:遺伝子組換え体

【書類名】 要約書

【要約】

【課題】 プロリン蓄積能力を高め、これにより耐塩性レベルの向上した形質転換イネ科植物を得る。

【解決手段】 イネのP5CS (デルタ¹-ピロリン-5-カルボン酸合成酵素) 遺伝子またはシロイヌナズナのP5CS遺伝子とシロイヌナズナのProDH (プロリン脱水素酵素) 遺伝子のアンチセンス (逆向きな塩基配列を持つ) 遺伝子とを遺伝子操作技術を利用してイネ科植物に導入する。

【選択図】図1

出 願 人 履 歴 情 報

識別番号

[000005108]

1. 変更年月日

1990年 8月31日

[変更理由]

新規登録

住 所

東京都千代田区神田駿河台4丁目6番地

氏 名

株式会社日立製作所

出願人履歴情報

識別番号

[000195568]

1. 変更年月日 2001年 5月15日

[変更理由] 住所変更

住 所 埼玉県さいたま市日進町1丁目40番地2

氏 名 生物系特定産業技術研究推進機構

出願人履歴情報

識別番号

[501174550]

1. 変更年月日 2001年 4月27日

[変更理由] 新規登録

住 所 茨城県つくば市大わし1-1

氏 名 独立行政法人 国際農林水産業研究センター

出願人履歴情報

識別番号

[000006792]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住 所 埼玉県和光市広沢2番1号

氏 名 理化学研究所