## AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings of claims in the application:

## LISTING OF CLAIMS:

- 1. 26. (cancelled)
- 27. (currently amended) A method of producing a porous plastic film, the method comprising:

producing a stretchable preform from a raw material blend comprising a polymer-containing basic material and an additive;

stretching the preform so as to form a film comprising pores; and

charging the porous film by directing an electric field over the porous film, wherein,

the additive comprises a POS(S) chemical, [[and]]

at least part of the POS(S) chemical is in agglomerates, and

each agglomerate has a diameter in a range of  $1\mu m$  to  $5\mu m$  .

28. (previously presented) A method as claimed in claim 27, wherein the preform is stretched biaxially.

- 29. (previously presented) A method as claimed in claim 27, wherein the preform is stretched within a draw ratio range of 2:1 to 8:1.
- 30. (previously presented) A method as claimed in claim 27, wherein the POS(S) is in a solid state at room temperature.
- 31. (previously presented) A method as claimed in claim 30, wherein the POS(S) is blended with the basic material at a temperature lower than the melting temperature of the POS(S).
- 32. (previously presented) A method as claimed in claim 30, wherein the POS(S) is blended with the basic material at a temperature exceeding the melting temperature of the POS(S).
- 33. (previously presented) A method as claimed in claim 27, wherein the POS(S) is in a liquid state at room temperature.
- 34. (previously presented) A method as claimed in claim 27, wherein the POS(S) comprises one or more of the following chemicals: dodecaphenyl-POSS  $C_{17}H_{60}O_{18}Si_{12}$ , isooctyl-POSS  $[Me_3CCH_2CH(Me)CH_2]_n(SiO_{1.5})_n$ , wherein n=8, 10 or 12, octacyclohexyl-POSS  $C_{48}H_{88}O_{12}Si_8$ , octacyclopentyl-POSS  $C_{40}H_{72}O_{12}Si_8$ , octaisobutyl-POSS  $C_{32}H_{72}O_{12}Si_8$ , octamethyl-POSS  $C_{8}H_{24}O_{12}Si_8$ ,

octaphenyl-POSS  $C_{48}H_{40}O_{12}Si_8$ , octa-TMA-POSS  $C_{32}H_{96}O_{20}Si_8 \cdot \sim 60$   $H_2O$ , dodecatrifluoropropyl-POSS  $C_{36}H_{48}F_{36}O_{18}Si_{12}$ , octatrimethylsiloxy-POSS  $C_{24}H_{72}O_{20}Si_{16}$ , phenetyl-POSS  $(PhCH_2CH_2)_n(SiO_{1.5})_n$ , wherein n=8, 10 or 12, phenetylisobutyl-POSS  $C_{36}H_{72}O_{12}Si_8$ .

- 35. (previously presented) A method as claimed in claim 27, wherein the basic material comprises one or more of the following polymers: polypropylenes, cyclic olefin copolymers, cyclic olefin polymers, polymethylpentene, polyethylene terephthalate, polybutene terephthalate, polyethylene naphthalate, polyetherimide.
- 36. (previously presented) A method as claimed in claim 27, wherein the thickness of the porous plastic film is 5 to 200  $\,\mu m$  .
- 37. (previously presented) A method as claimed in claim 27, wherein the amount of POS(S) is 0.1 to 50 percent by weight calculated from the weight of the basic material.
- 38. (previously presented) A method as claimed in claim 27, wherein the pores comprised by the film are expanded with gas.
  - 39. (previously presented) A method as claimed in claim

27, wherein an electrically conductive element is prepared on at least one side of the porous film.

40. (currently amended) A porous plastic film produced from a raw material blend comprising:

a basic material and an additive mixed therewith; a plurality of pores being arranged in the structure of the plastic film, the pores being produced by stretching a preform made from the raw material blend; and

an electrical charge, wherein,

the additive comprises a POS(S) chemical, [[and]]

at least part of the POS(S) chemical is in agglomerates, and

each agglomerate has a diameter in a range of 1 $\mu m$  to 5 $\mu m$ .

- 41. (previously presented) A plastic film as claimed in claim 40, wherein the pores are produced by stretching the preform biaxially.
- 42. (previously presented) A plastic film as claimed in claim 40, wherein the draw ratio of the stretching is within a draw ratio range of 2:1 to 8:1.
  - 43. (previously presented) A plastic film as claimed in

claim 40, wherein the pores are closed pores.

- 44. (previously presented) A plastic film as claimed in claim 40, wherein the POS(S) comprises one or more of the following chemicals: dodecaphenyl-POSS  $C_{17}H_{60}O_{18}Si_{12}$ , isooctyl-POSS  $[Me_3CCH_2CH(Me)CH_2]_n(SiO_{1.5})_n$ , wherein n=8, 10 or 12, octacyclohexyl-POSS  $C_{48}H_{88}O_{12}Si_8$ , octacyclopentyl-POSS  $C_{40}H_{72}O_{12}Si_8$ , octaisobutyl-POSS  $C_{32}H_{72}O_{12}Si_8$ , octamethyl-POSS  $C_{8}H_{24}O_{12}Si_8$ , octaphenyl-POSS  $C_{48}H_{40}O_{12}Si_8$ , octa-TMA-POSS  $C_{32}H_{96}O_{20}Si_8 \cdot \sim 60$   $H_2O$ , dodecatrifluoropropyl-POSS  $C_{36}H_{48}F_{36}O_{18}Si_{12}$ , octatrimethylsiloxy-POSS  $C_{24}H_{72}O_{20}Si_{16}$ , phenetyl-POSS  $(PhCH_2CH_2)_n(SiO_{1.5})_n$ , wherein n=8, 10 or 12, phenetylisobutyl-POSS  $C_{36}H_{72}O_{12}Si_8$ .
- 45. (previously presented) A plastic film as claimed in claim 40, wherein the basic material comprises one or more of the following polymers: polypropylenes, cyclic olefin copolymers, cyclic olefin polymers, polymethylpentene, polyethylene terephthalate, polybutene terephthalate, polyethylene naphthalate, polyetherimide.
- 46. (previously presented) A plastic film as claimed in claim 40, wherein at least one of its surfaces is at least partly coated with an electrically conductive coating.
  - 47. (previously presented) A plastic film as claimed in

claim 40, wherein it is an electromechanical film and/or an electret film.

- 48. (previously presented) A plastic film as claimed in claim 47, wherein a change in electromechanical energy is arranged to take place through a change in the thickness of the film.
- 49. (previously presented) A plastic film as claimed in claim 47, wherein a change in electromechanical energy is based on variation of the location of the film in an electric field.