Extended Mathematical Framework of DWARF Theory

Tyler Nagel

2025

Abstract

We extend the DWARF (Dynamic Wake Accretion in Relativistic Fluids) theory by enriching its mathematical formalism. Building upon the original Lagrangian and flow-based constructs, we derive the inverse-square wake profile, introduce flow-based time dilation, model quantum analogs via field interference, and reformulate lensing phenomena as refractive index saturation. These findings provide the groundwork for a unification between fluid dynamics, emergent gravity, and quantum-like coherence in a non-geometric medium.

1 1. Classical DWARF Flow Equation

$$\frac{\partial \vec{v}}{\partial t} = -\nabla \Phi + \nu \nabla^2 \vec{v} - \beta \vec{v} \tag{1}$$

2 2. Relativistic Generalization

$$u^{\nu}\nabla_{\nu}u^{\mu} = -\nabla^{\mu}\Phi + \nu\nabla^{2}u^{\mu} - \beta u^{\mu} \tag{2}$$

$$\nabla_{\mu}(\rho u^{\mu}) = 0 \tag{3}$$

3 3. Emergent Potential and Pressure

$$\Phi = f(\rho) + \gamma \nabla_{\mu} u^{\mu} \tag{4}$$

$$P = \rho \frac{d\Phi}{d\rho} - \Phi(\rho) \tag{5}$$

4 4. Lagrangian Formalism

$$\mathcal{L}_{\text{DWARF}} = -\frac{1}{2}\rho u^{\mu}u_{\mu} - \rho\Phi(\rho) \tag{6}$$

Euler-Lagrange Equations:

$$\nabla_{\mu}(\rho u^{\mu}) = 0 \tag{7}$$

$$\delta \mathcal{L}/\delta \rho = -\frac{1}{2}u^{\mu}u_{\mu} - \Phi(\rho) - \rho \frac{d\Phi}{d\rho}$$
 (8)

5 5. Inverse-Square Wake Derivation

From spherical symmetry and continuity:

$$\nabla \cdot (\rho \vec{v}) = 0 \tag{9}$$

$$\Rightarrow \Phi(r) \propto \frac{1}{r^2} \tag{10}$$

This demonstrates that wake strength naturally follows an inverse-square decay in radial flow fields.

6 6. Flow-Based Time Dilation

Time slows in denser or faster-moving regions of the field:

$$d\tau = \frac{dt}{\sqrt{1 + k|\vec{v}_{\text{field}}|^2}} \tag{11}$$

where k is a coupling constant governing time flow sensitivity to velocity field intensity.

7 7. Quantum Superposition via Field Interference

$$\Phi_{\text{net}} = \Phi_1 + \Phi_2 + 2\sqrt{\Phi_1 \Phi_2} \cos(\delta) \tag{12}$$

Random phase noise $\delta(t)$ induces decoherence, replicating collapse behavior.

8 8. Gravitational Lensing via Refractive Index Saturation

Let $n(x) \propto \rho(x)$ be the refractive index:

$$\theta \sim \int \nabla n(x) \, dx$$
 (13)

This model captures light deflection as a natural outcome of medium density gradients, achieving achromatic lensing.

9 9. Optional: Tensor Bridge Hypothesis

Speculative mapping from DWARF flow to Einstein tensor:

$$G_{\mu\nu} \sim \langle \partial_{\mu} \vec{v} \partial_{\nu} \vec{v} \rangle_{\text{stat}} - \eta_{\mu\nu} \langle |\vec{v}|^2 \rangle$$
 (14)

Ensemble statistics of wake gradients may approximate spacetime curvature macroscopically.

10 10. Summary and Outlook

These equations extend DWARF's capabilities into the relativistic, quantum-analog, and optical regimes. Future work will incorporate orbital mechanics, amplitude regulation, and full 3D simulations, forming a bridge between classical fluid models and post-Newtonian physics.