特性

Cortex®-M4 CPU,运行在 240MHz, 亿点传输,支持空中运算功能

具有 DSP 指令集

- 存储器
 - 支持 Qaud-SPI Flash 接口
 - 8M 字节 32 位 SDRAM
 - 支持 TK80, 向下兼容 intel 70 个具有中断功能的 I/0 8080 接口
- LCD-TFT 控制器, 支持 1600 万色 RGB888, 支持双页切换, 乱序 4K 地址对齐
- 时钟、复位和电源管理
 - 2.5V 到 3.6V 供电和 IO
 - POR
 - 12MHz/24MHz 外部时钟
 - 内置 32KHz RTC 振荡器
- 低功耗
 - 睡眠、停机模式
 - V_{BAT}可为 RTC, 20X32 位备份寄 128LQFP 封装 存器+4KB 备份 SRAM 供电
- 1 个 12 位 ADC
- 通用 DMA 具有 FIFO 和突发支持

- - 多达 10 个 32 位定时器,每个定 时器都带有4~2个输入捕获/输 出比较/PWM,或脉冲计数器与正 交(增量)编码器输入

 - 多个通信接口
 - 3 个 I²C 接口
 - 1个 I²S 接口
 - 5个 UART 接口
 - 4个SPI接口
 - 1个QSPI接口
 - 2 个 CAN 接口
 - 2个SDIO接口
 - 1个USB接口
 - TouchPad 接口
 - CRC 计算单元

<u>目录 TK499</u>

录目

目录		2
表格索引.		3
图片索引		3
1 功能机	既述	4
1.1	ARM® Cortex®-M4,配有 FPU	4
1.2	支持 QSPI-FLASH 接口	4
1.3	CRC(循环冗余校验)计算单元	4
1.4	内置 SDRAM	4
1.5	Multi-AHB 总线矩阵	4
1.6	DMA 控制器	5
1.7	TK80	5
1.8	LCD-TFT 控制器	5
1.9	嵌套向量中断控制器 (NVIC)	6
1.10	外部中断/事件控制器(EXTI)	6
1.11	时钟和启动	6
1.12	自举模式	6
1.13	电源方案	7
1.14	电源监控器	7
1.15	实时时钟(RTC)、备份 SRAM、备份寄存器	7
1.16	低功耗模式	7
1.17	V _{BAT} 操作	7
1.18	定时器和看门狗	8
1.18.1	高级控制定时器(TIM1、TIM2)	8
1.18.2	通用定时器(TIMx)	8
1.18.3	基本定时器(TIM8、TIM9、TIM10)	9
1.18.4	独立看门狗	9
1.18.5	窗口看门狗	9
1.18.6	SysTick 定时器	9
1.19	内部集成电路接口 (I ² C)	10
1.20	通用异步收发器(UART)	10

表格索引 TK499

	1.21	串行外设接口(SPI)	10
	1.22	安全数字输入/输出接口(SDIO)	10
	1.23	控制器区域网络(CAN)	. 10
	1.24	通用串行总线(USB)	10
	1.25	通用输入/输出 (GPIO)	10
	1.26	模数转换器(ADC)	11
	1.27	I2S 接口	. 11
	1.28	触摸采集 (TouchPad)	11
2	系统框图		12
3	引脚排列	· 门和引脚说明	13
4	存储器则	央射	15
ネ	長格 索	表 引	
	表 1: 定	时器的特性比较	8
		脚排列表中使用的图例/缩略语	
	表 4: 奇	存器边界地址	. 16
2	图片索	表引	
	图 1Mu	lti_AHB 矩阵	5
		统框图	
	图 5: 存	储器映射	15

1 功能概述

1.1 ARM® Cortex®-M4,配有FPU

带有 FPU 处理器的 ARM®Cortex®-M4 是最新一代的嵌入式系统 ARM 处理器。该处理器引脚数少、功耗低,能够提供满足 MCU 实现要求的低成本平台,同时具备卓越的计算性能和先进的中断响应。

带有 FPU 内核的 ARM® Cortex®-M4 处理器是一款 32 位 RISC 处理器,具有优异的代码效率,采用通常 8 位和 16 位器件的存储器空间即可发挥 ARM 内核的高性能。该处理器支持一组 DSP 指令,能够实现有效的信号处理和复杂的算法执行。它的单精度 FPU(浮点单元) 通过使用元语言开发工具,可加速开发,防止饱和。

1.2 支持 QSPI-FLASH 接口

1.3 CRC(循环冗余校验)计算单元

CRC(循环冗余校验) 计算单元使用一个固定的多项式发生器从一个 32 位的数据字中产生 CRC 码。在众多的应用中,基于 CRC 的技术还常用来验证数据传输或存储的完整性。

1.4 内置 SDRAM

采用叠封,内置 8M 字节 SDRAM。

1.5 Multi-AHB 总线矩阵

32位的multi-AHB总线矩阵将所有主设备(CPU、DMA、LCD-TFT)和从设备(ROM、TK80、AHB、APB 外设)互连,确保了即使多个高速外设同时工作时,工作也能无缝、高效。

功能概述 TK499

图 1 Multi AHB 矩阵

1.6 DMA 控制器

该器件具有两个通用 DMA(DMA1 和 DMA2),每个都有 8 个流。它们能够管理存储器到存储器、外设到存储器、存储器到外设的传输。这两个 DMA 控制器支持循环缓冲区管理,当控制器到达缓冲区末尾时,无需专门代码。每个数据流都与专用的硬件 DMA 请求相连,同时可以由软件触发每个通道。传输的长度、传输的源地址和目标地址都可以通过软件单独设置。

DMA 可与下列主要外设共同使用

- SPI
- 12C
- UART
- 通用、基本和高级控制定时器 TIMx
- SDIO
- ADC

1.7 TK80

向下兼容 intel 8080 接口。支持 1~24 位位宽设置。

1.8 LCD-TFT 控制器

LCD-TFT 显示控制器提供了 24 位的并行数字 RGB(红,绿,蓝),传送的所有信号可直接与广泛的 1600 万色 RGB888 的 LCD 和 TFT 面板接口,它具有下列特性:

- 支持标准 hsync/vsyn 格式数字视频输出
- 数字视频输出时序可调
- 输出格式支持最高的 RGB888

● 内部 2 个 480x64 dpram

1.9 嵌套向量中断控制器 (NVIC)

该器件内置有嵌套的向量中断控制器,可管理 16 个优先级,处理带 FPU 的 Cortex®-M4 内核的多个可屏蔽中断通道及 16 个中断线。

- 紧耦合的 NVIC 使得中断响应更快
- 直接向内核传递中断入口向量表地址
- 允许对中断进行早期处理
- 处理后到但优先级较高的中断
- 支持中断咬尾功能
- 自动保存处理器状态
- 退出中断时自动恢复现场,无需指令开销

此硬件模块以最短的中断延迟提供了灵活的中断管理功能。

1.10 外部中断/事件控制器(EXTI)

外部中断/事件控制器包含 20 根用于产生中断/事件请求的边沿检测中断线。每根中断线都可以独立配置以选择触发事件(上升沿触发、下降沿触发或边沿触发),并且可以单独屏蔽。挂起寄存器用于保持中断请求的状态。EXTI 可检测到脉冲宽度小于内部 APB2 时钟周期的外部中断线。外部中断线最多有 16根,可从最多 82 个 GPIO 中选择连接。

1.11 时钟和启动

复位时,内部振荡器被选为默认的 CPU 时钟。应用可选择内部振荡器或外部 12-24MHz 时钟源作为系统时钟。此时钟的故障可被监测。若检测到故障,则系统自动切换回内部振荡器并生成软件中断 (若启用)。此时钟源输入至 PLL,因此频率可增至 240MHz。类似地,必要时(例如,当间接使用的外部振荡器发生故障时)可以对 PLL 时钟输入进行完全的中断管理。可通过多个预分频器配置 AHB 总线、高速 APB 域。AHB 总线的最大频率为 240MHz,高速 APB 域的最大频率为 120MHz。

1.12 自举模式

启动时,通过自举引脚来选择一下两种自举模式之一:

- 从系统 ROM 自举
- 从 SDRAM 自举

自举程序位于系统 ROM 中。

1.13 电源方案

- VDD=2.5 至 3.6V: I/O 和内部调压器(若启用)的外部电源,通过 VDD 引脚外部提供。
- VSSA、VDDA=2.5 至 3.6V: ADC、DAC、复位模块、RC、PLL 的外部模拟 电源。 VDDA 和 VSSA 必须分别连至 VDD 和 VSS。
- V_{BAT}=1.65 到 3.6V: 当 VDD 不存在时,作为 RTC、32kHz 外部时钟振荡器和备份寄存器的电源 (通过电源开关供电)。

1.14 电源监控器

该器件具有一个集成的上电复位(POR)电路耦合。当上电时,POR一直激活,确保从 V_{POR} 开始正常工作。当 VDD 低于指定阈值 V_{POR} 时,器件无需外部复位电路便会保持复位模式。

1.15 实时时钟(RTC)、备份 SRAM、备份寄存器

备份域包括:

- 实时时钟(RTC)
- 4K 字节的备份 SRAM
- 20 个备份寄存器。

1.16 低功耗模式

支持两种低功耗模式:

• 睡眠模式

在睡眠模式下,只有 CPU 停止工作。所有外设继续运行并可在发生中断/时间是唤醒 CPU

• 停止模式

停机模式下可以实现最低功耗,同时保持 SRAM 和寄存器的内容。此时,1.2V 域中的所有时钟都会停止, PLL、HSI RC 和 HSE 晶振也被禁止。

1.17 V_{BAT}操作

V_{BAT} 引脚从外部电池、外部超级电容器为器件的 V_{BAT} 域供电,或当没有外部电池及外部超级电容器时从 VDD 供电。

当没有 VDD 存在时,激活 VBAT 的工作。

V_{BAT} 引脚为 RTC、备份寄存器、备份 SRAM 供电。

1.18 定时器和看门狗

包括两个高级控制定时器、五个通用定时器、三个基本定时器、两个看门狗定时器。在调试模式下可以冻结所有定时器计数器。

表 1 比较了高级定时器、通用定时器和基本定时器的特性

定时器 类型	Timer	计数器 分辨率	计数器 类型	预分频 系数	DMA 请求生成	捕获/ 比较通道	互补输出
高级	TIM1 TIM2	32 位	递增、递 减、递增\ 递减	1 和 65536 之 间的任意 整数	有	4	有
通用	TIM3 TIM4	32 位	递增、递 减、递增\ 递减	1 和 65536 之 间的任意 整数	有	4	无
	TIM5 TIM6 TIM7	32 位	递增	1 和 65536 之 间的任意 整数	无	2	无
基本	TIM8 TIM9 TIM10	32 位	递增	1 和 65536 之 间的任意 整数	有	0	无

表 1: 定时器的特性比较

1.18.1 高级控制定时器(TIM1、TIM2)

高级控制定时器(TIM1、TIM2) 可被看作是在 6 个通道上复用的三相 PWM 发生器。它们具有带可编程插入死区的互补 PWM 输出。它们也可看作一个完整的通用定时器。4 个独立通道可以用于:

- 输入捕获
- 输出比较
- PWM 生成(边沿或中心对齐模式)
- 单脉冲模式输出

高级控制定时器可通过定时器链接功能与 TIMx 定时器协同工作,提供同步或事件链接功能。 TIM1 和 TIM2 支持生成独立的 DMA 请求。

1.18.2 通用定时器(TIMx)

内置五个同步通用定时器。(请参加表1以了解器差别)

• TIM3 TIM4

功能概述 TK499

这些定时器基于一个 32 位自动重载递增/递减计数器和一个 16 位预分频器。TIM3、TIM4 都具有 4 个独立通道,用于输入捕获/输出比较、PWM、单脉冲模式输出。TIM3、TIM4 通用定时器可共同工作,或通过定时器链特性与其它通用定时器和高级控制定时器 TIM1 和 TIM2 共同工作以实现同步或事件链接。任何通用定时器都可用于产生 PWM 输出。TIM3、TIM4都可生成独立的 DMA 请求。它们能够处理正交(增量)编码器信号,也能处理 1 到 4 个霍尔效应传感器的数字输出。

• TIM5、TIM6、TIM7 这些定时器基于一个 32 位自动重载递增计数器和一个 16 位预分频器。 TIM5、TIM6 和 TIM7 具有两个独立的通道,用于输入捕获/输出比较、 PWM、单脉冲模式输出。它们可与 TIM3、TIM4 全功能通用定时器同步。 它们也可用作简单时基。

1.18.3 基本定时器(TIM8、TIM9、TIM10)

这些定时器主要用于生成 DAC 触发信号和波形。也可用作通用 32 位时基。TIM8、TIM9 和 TIM10 支持生成独立的 DMA 请求。

1.18.4 独立看门狗

独立看门狗基于 12 位递减计数器和 8 位预分频器。它由独立的 32kHz 内部 RC 提供时钟;由于内部 RC 独立于主时钟,因此它可在停机和待机模式下工作。它既可用作看门狗,以在发生问题时复位器件,也可用作自由运行的定时器,以便为应用程序提供超时管理。通过选项字节,可对其进行硬件或软件配置。

1.18.5 窗口看门狗

窗口看门狗基于可设置为自由运行的7位递减计数器。它可以作为看门狗以 在发生问题时复位器件。它由主时钟驱动。具有早期警告中断功能,并且计 数器可在调试模式下被冻结。

1.18.6 SysTick 定时器

此定时器专用于实时操作系统,但也可用作标准递减计数器。它具有以下特性:

- 24 位递减计数器
- 自动重载功能
- 当计数器位 0 时,产生可屏蔽系统中断
- 可编程时钟源

1.19 内部集成电路接口 (I²C)

4个 I²C 总线接口,能够工作于多主模式或从模式,支持标准和快速模式。 I²C 接口支持 7 位或 10 位寻址,7 位从模式时支持双从地址寻址。

1.20 通用异步收发器(UART)

5 个 UART 接口具有硬件的 CTS 和 RTS 信号管理。所有 UART 接口都可以使用 DMA 操作。

1.21 串行外设接口(SPI)

5个 SPI 接口,一个支持 Qaud-SPI 模式,在从或主模式下,全双工和半双工的通信速率可达 18 兆位/秒。3位的预分频器可产生 8 种主模式频率,可配置成每帧 8 位或 16 位。所有的 SPI 接口都可以使用 DMA 操作。

1.22 安全数字输入/输出接口(SDIO)

提供了 SD/SDIO/MMC 主机接口。符合多媒体卡系统规范版本 2.0~4.2符合 SD 存储卡规范版本 2.0。符合 SDIO 卡规范版本 1.10。

1.23 控制器区域网络(CAN)

CAN 接口兼容规范 2.0A 和 2.0B(主动), 位速率高达 1 兆位/秒。它可以接收和发送 11 位标识符的标准帧, 也可以接收和发送 29 位标识符的扩展帧。

1.24 通用串行总线(USB)

一个兼容全速 USB 的设备控制器, 遵循全速 USB 设备(12 兆位/秒) 标准,端点可由软件配置,具有待机/唤醒功能。

1.25 通用输入/输出 (GPIO)

每个 GPIO 引脚都可以由软件配置为输出 (推挽或开漏、带或不带上拉/下拉)、输入 (浮空、带或不带上拉/下拉) 或外设复用功能。大多数 GPIO 引脚都具有数字或模拟复用功能。所有 GPIO 都有大电流的功能,具有速度选择以更好地管理内部噪声、功耗、电磁辐射。如果需要,可在特定序列后锁定 I/O 配置,以避免对 I/O 寄存器执行意外写操作。

1.26 模数转换器(ADC)

内置有1个12位模数转换器(ADC)。

1.27 I2S 接口

内置 I2S 接口。

1.28 触摸采集 (TouchPad)

集成4线电阻触摸采集。

2 系统框图

图 2: 系统框图

3 引脚排列和引脚说明

<u>TK499</u>

表 2: 引脚排列表中使用的图例/缩略语

名称	缩写	定义	
	S	电源引脚	
引脚类型	1	仅输入引脚	
	I/O	输入/输出引脚	
	FT	5V 容限 I/O	
1/0 /± t/1	TTa	3.3V 容限 I/O 直接连至 ADC	
I/O 结构	В	专用 BOOTO 引脚	
	RST	配有弱上拉电阻的双向复位引脚	
复用功能	通过 GPIOx_AFR 寄存器选择的功能		
其他函数	通过外设寄存器直接选择/启用的功能		

4 存储器映射

存储器映射如图 3: 存储器映射图 3 所示

图 3: 存储器映射

TK499 存储器映射

表 3: 寄存器边界地址

总线	边界地址	外设
Cortex-M4	0xE000 0000 - 0xE00F FFFF	Coretex-M4 internal peripherals
COTTEX IVI I	0xD000 0000 - 0xD000 0FFF	SDRAM control register
AHB3	0xC000 0000 - 0xCFFF FFFF	SDRAM bank
AHB2	0x6000 0000 - 0x6FFF FFFF	TK80 control register
AIIDZ	0x4004 0000 - 0x4007 FFFF	LCD-TFT
	0x4002 6400 - 0x4002 67FF	DMA2
	0x4002 6400 - 0x4002 67FF	DMA1
	0x4002 4000 - 0x4002 4FFF	BKP SRAM
	0x4002 3800 - 0x4002 3BFF	RCC
AHB1	0x4002 3000 - 0x4002 38FF	CRC
АПОІ		
	0x4002 1000 - 0x4002 13FF	GPIOE
	0X4002 0C00 - 0x4002 0FFF	GPIOD
	0x4002 0800 - 0x4002 0BFF	GPIOC
	0x4002 0400 - 0x4002 07FF	GPIOB
	0x4002 0000 - 0x4002 03FF	GPIOA
	0x4001 6400 - 0x4001 67FF	TouchPad
	0x4001 6000 - 0x4001 63FF	QSPI
	0x4001 5C00 - 0x4001 5FFF	SPI4
	0x4001 5800 - 0x4001 5BFF	SPI3
	0x4001 5400 - 0x4001 57FF	SPI2
	0x4001 5000 - 0x4001 53FF	SPI1
	0x4001 3C00 - 0x4001 3FFF	EXTI
	0x4001 3800 - 0x4001 3BFF	SYSCFG
APB2	0x4001 3000 - 0x4001 33FF	SDIO2
AI DZ	0x4001 2C00 - 0x4001 2FFF	SDIO1
	0x4001 2000 - 0x4001 23FF	ADC1
	0x4001 1800 - 0x4001 1BFF	UART5
	0x4001 1400 - 0x4001 17FF	UART4
	0x4001 1000 - 0x4001 13FF	UART3
	0x4001 0C00 - 0x4001 0FFF	UART2
	0x4001 0800 - 0x4001 0BFF	UART1
	0x4001 0400 - 0x4001 07FF	TIM2
	0x4001 0000 - 0x4001 03FF	TIM1
	0x4000 7400 - 0x4000 77FF	12S
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6C00 - 0x4000 6FFF	USB
	0x4000 6800 - 0x4000 6BFF	CAN2
APB1	0x4000 6400 - 0x4000 67FF	CAN1
	0x4000 6000 - 0x4000 63FF	12C4
	0x4000 5C00 - 0x4000 5FFF	12C3
	0x4000 5800 - 0x4000 5BFF	12C2
	0x4000 5400 - 0x4000 57FF	12C1

存储器映射 TK499

总线	边界地址	外设
	0x4000 1C00 - 0x4000 1FFF	TIM10
	0x4000 1800 - 0x4000 1BFF	TIM9
	0x4000 1400 - 0x4000 17FF	TIM8
	0x4000 1000 - 0x4000 13FF	TIM7
	0x4000 0C00 - 0x4000 0FFF	TIM6
	0x4000 0800 - 0x4000 0BFF	TIM5
	0x4000 0400 - 0x4000 07FF	TIM4
	0x4000 0000 - 0x4000 03FF	TIM3

TK499 存储器映射

表 5: 测试计划

	JC 3. 7,	KI MULTI AU	
Pin	Scan Mode	BIST Mode	Analog Mode
	Test0 = 1	Test0 = 0	Test0 = 1
	Test1 = 0	Test1 = 1	Test1 = 1
	Boot0 = 0	Boot0 = 0	Boot0 = 0
OSC_IN	Scan Clock	Mbist Clock	
Reset	Scan Reset	Mbist Reset	
PA[0]			
PA[1]			
PA[2]			
PA[3]			
PA[4]			
PA[5]			
PA[6]			
PA[7]			
PA[8]	Scan Enable		MCO
PA[9]			
PA[10]			
PA[11]			
PA[12]			
PA[13]	Scan Compress		
PB[0]	Scan In[0]	Memory Sel[0]	mco_sel[0]
PB[1]	Scan In[1]	Memory Sel[1]	mco_sel[1]
PB[2]	Scan In[2]		mco_sel[2]
PB[3]	Scan In[3]		pll_dm[0](Pll1/2)
PB[4]	Scan In[4]		pll_dm[1](Pll1/2)
PB[5]	Scan In[5]		pll_dm[2](Pll1/2)
PB[6]	Scan In[6]		pll_dn[0](Pll1/2)
PB[7]	Scan In[7]		pll_dn[1](Pll1/2)
PB[8]	Scan Out[0]	Mbist Done	pll_dn[2](Pll1/2)
PB[9]	Scan Out[1]	Mbist Hfail	pll_dn[3](Pll1/2)
PB[10]	Scan Out[2]		pll_dn[4](Pll1/2)
PB[11]	Scan Out[3]		pll_dn[5](Pll1/2)
PB[12]	Scan Out[4]		
PB[13]	Scan Out[5]		
PB[14]	Scan Out[6]		
PB[15]	Scan Out[7]		

Memory[1], Memory[0] == 00: Rom Mbist	
Memory[1], Memory[0] == 01: BKP SRAM Mbist	