MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Summer-13 EXAMINATION

Model Answer

Subject code:CIP(12208)

Important instructions to examiners:

- 1. The answers should be examined by keywords and not as word to word as given in the model answer scheme.
- 2. The model answer and the answer written by candidate may vary, but the examiner may try to assess the understanding level of the candidate.
- 3. The language errors such as grammatical, spelling errors should not given more importance.
- 4. While assessing figures, examiner may give credit for principal components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answer and model answer.
- 6. In case of some questions credit may be given by judgment of relevant answer based on candidates understanding.

Q	Answer	mark	Total
no:			mark
			S
1A	Four static characteristics	1 mark	4
a	Accuracy: It is the instruments ability to indicate or record the true	each for	
	value of the variable being measured	any	
	Reproducibility: It is the degree of closeness with which a given value	four	
	may be repeatedly measured ,over a period of time approaching from	points	
	both directions		
	Sensitivity: It denotes the smallest change in the value of measured		
	variable to which an instrument responds : that is the instrument has a		
	dead zone		
	<u>Precision</u> : It is the degree of exactness for which an instrument is		

	designed to perform		
	Resolution: It is the least incremental value of input or output that can		
	be detected, caused or discriminated by the measuring device.		
	<u>Calibration:</u> it is defined as the process for the determination, by		
	measurement or comparison with a standard of the correct value of each		
	scale reading		
	Repeatability: It is_defined as the closeness of_ agreement among a		
	number of consecutive measurements of the output for the same value		
	of input under same operating conditions		
b.	Material of construction for RTD	2	4
	Platinum, nickel or nickel alloys are the commonly used. Gold, copper,		
	silver, tungsten are rarely used		
	Principle of RTD: Electrical resistance of the substance(conductor)	2	
	changes with temperature		
c.	Advantages of inclined leg manometer:	1 mark	4
	To measure very small pressure differences.	each	
	2. High sensitivity		
	3. Easy to read		
	4. Large reading in the inclined leg can be obtained even for very		
	small pressure difference.		
	<u>Ultrasonic level detector</u>	2	4
d.	Diagram:		
	Smitter Power Source Receiver To indicator, Receiver or 1 Yecorder		
	At can be used for Action.		

	Advantages:		
	1. High accuracy	2	
	2. It provides continuous level measurement		
	3. Suitable for level measurement in liquid and solid		
1 B	Radiation pyrometer		6
a	Diagram:	2	
	Diaphyagm Theymopile Signor Vacuum htings theymoteuple Lens Indica to:		
	Construction: It consists of a lens, diaphragm, radiation receiving element, sighting	1	
	hole and recorder or indicator.		
	Working: Radiation of all possible wave lengths from a hot body is	3	
	focused by the lens on the radiation receiving element. When thermopile		
	or vacuum thermocouple is used as radiation receiving element, the		
	radiant energy from the target is focused in blackened measuring		
	junction. Due to absorption of radiant energy, the measuring junction		
	temperature rises. According to Seebeck effect, emf is developed		
	between output leads which is proportional to temperature difference		
	between measuring and reference junction.		
	The emf developed is calibrated in terms of target temperature by using		
	either a voltmeter or Wheatstone bridge circuit		
1.B	Pressure measurement below atmosphere:		6
b.	Devices used are McLeod gauge or capsule gauge.	1	
	Capsule Gauge:		
	Diagram:	2	

	Description: A capsule is formed by welding or soldering of two diaphragms at their periphery. Number of such capsules are arranged in the stack. Pointer mechanism is connected to topmost capsule that represents pressure on calibrated scale. When pressure inside the first capsule changes, the free end of the last capsule in the stack gets deflected. This deflection depends on the diameter of the capsule, thickness of the material, elasticity of the diaphragm material, shape and number of corrugations on the diaphragm. (Marks may be given for diagram and explanation for McLeord gauge in the same distribution format)	3	
2a	Measurement of solid level : Capacitance level detector Diagram	2	8

Electric measuring instrument Calibrated terms of lique Citanus Probe hiquid (as dielectric) Metal tank	in 2	
Principle: The electrical conscitence of consing probe changes with level	of	
The electrical capacitance of sensing probe changes with level		
material and hence level changes can be recorded in terms of changes	ın	
electrical capacitance of the sensing probe.		
Construction:	. 2	
It consists of two conductors separated from each other by dielectrical transfer and the second conductors are also from each other by dielectrical transfer and the second conductors are also from each other by dielectrical transfer and the second conductors are also from each other by dielectrical transfer and the second conductors are also from each other by dielectrical transfer and the second conductors are also from each other by dielectrical transfer and the second conductors are also from each other by dielectrical transfer and the second conductors are also from each other by dielectrical transfer and the second conductors are also from each other by dielectrical transfer and the second conductors are also from each other by dielectrical transfer and transfer and transfer are also from each other by dielectrical transfer and transfer are also from each other by dielectrical transfer and transfer are also from the second conductors are also from		
material between them. There is an insulated capacitance probe fixed		
near and parallel to tank wall such that the probe and metal tank wa		
acts as conductors with conducting liquidas the dielectric medium	m.	
These two conductors are connected to capacitance detecting element		
Working		
As the solid level changes, the dielectric constant changes due to which		
capacitance changes. Thus any change in solid level can be measured	ın	
terms of change in capacitance.		
(Marks may be given for ultrasonic method or radiation method	in	
the same distribution format)		
2.b <u>Ultrasonic flow meter</u> :		8
Diagram :		
	2	

Principle:

Measurement of flow rate is determine by the variation in parameters of ultrasonic oscillations. These devices measure flow by measuring the time taken for ultrasonic wave to transverse a pipe section, both with and against the flow of liquid within the pipe.

Working:

It consist of two transducers , A and B , inserted into a pipe line, and working both as transmitter and receiver. The ultrasonic waves are transmitted from transducer A to transducer B and vice versa. An electronic oscillator is connected to supply ultrasonic waves alternately to A or B which is working as transmitter through a change over switch , when the detector is connected simultaneously to B or A which is working as receiver. The detector measure the transit time from

4

	upstream to downstrea	am transducer and vice	versa.			
	The time T_{AB} for u	ltrasonic wave to tra	avel from transducer	A to		
	transducer B is given l	by $T_{AB} = L/(C + V \cos \theta)$				
	The time T_{BA} for u	ltrasonic wave to tra	avel from transducer	B to		
	transducer A is given	by $T_{BA} = L/(C-V\cos\theta)$	Where			
	L – Acoustic path leng	gth between A & B				
	C – Velocity of sound	in fluid.				
	θ – Angle of path with	h respect to pipe axis.				
	V – Velocity of fluid i	n pipe.				
	$V = \Delta TC/2LCos\theta$ wh	ere $\Delta T = T_{BA} - T_{AB}$				
	Since this type of flow	v meter relies upon an	ultrasonic signal trave	ersing		
	across the pipe, the	liquid must be relativ	vely free of solids an	nd air		
	bubbles.					
2.c	Differentiation bety	veen electronic coi	ntrollers and pneu	matic	1 mark	8
	controllers.				for each	
					point	
	Property	Pneumatic	Electronic]		
		Controller	Controller			
	Initial Cost	Low	High			
	Design	Simple	Complex			
	Start up period	Short	Long			

	Accuracy	Low	High			
	Speed of response	Fast	Slow			
	Maintenance	Less	More			
	Environment	Can be installed in	Installation in			
		Hazardous	Hazardous area			
		environment	require proper			
			housing			
	Compatibility	Air signal is more	Electronics signal is			
		compatible with	less compatible and			
		control valves.	requires additional			
			hardware .			
3.a	a) Thermistors	are also called the	ermal resistor. They	are	1 mark	4
	semiconductor	rs made from mixture	of pure specific mixtu	ire of		
	pure oxides of	nickel, manganese, co	pper etc			
	NTC means I	Negative Temperature	Coefficient where a	s the	1	
	temperature in	creases resistance of th	nermistor decreases			
	PTC means I	Positive Temperature	Coefficient where a	s the	1	
	temperature in	creases resistance of th	nermistor increases)			
	Diagram					
					1	

Fig. 7.5 Float-operated Liquid Level Indicator.

Float operated level indicator is used to measure liquid levels in a tank in which a float rests on the surface of liquid and follows the changing level of liquid. The movement of the float is transmitted to a pointer through a suitable mechanism which indicates the level on a calibrated scale. Various types of floats are used such as hollow metal spheres, cylindrical-shaped floats and disc-shaped floats.

Construction and Working Figure shows the simplest form of float operated mechanism for the continuous liquid level measurement. In this case, the movement of the float is transmitted to the pointer by stainless steel or phosphor-bronze flexible cable wound around a pulley, and the pointer indicates liquid level in the tank. The float is made of corrosion resisting material (such as stainless steel) and rests on liquid level surface between two grids to avoid error due to turbulence. With this type' of instrument, liquid level from 4 ft. (152 mm) to 60, ft. (1.52 m) can be easily measured.

2

	$T_{AB} = \frac{L}{(C + V\cos\theta)}$ and, the time (T_{BA}) to travel from B to A is given as, $T_{BA} = \frac{L}{(C - V\cos\theta)}$ where, L = the acoustic path length between A and B C = velocity of sound in the fluid θ = angle of path with respect to the pipe axis V = velocity of fluid in pipe The time difference between T_{AB} and T_{BA} can be calculated as, $\Delta T = T_{AB} - T_{BA} = \frac{2 LV \cos\theta}{C}$ $V = \Delta TC/2L\cos\theta$		
3.e	In P mode there is a continuous linear relation between the value of the controlled variable or deviation and the position of the final control element. $m = K_c e$ In proportional controller even if the set point is equal to the process variable there is some output known as offset. Offset can be removed by adding integral controller to P controller. As the integral control mode will continuously increment or	2	4
	decrement the controller's output to make the process variable equal to set point.		

	controller output fast, if the error is small, the changes will be slower.		
	For a given error, the speed of the integral action is set by the		
	controller's integral time setting (Ti). A large value of Ti (long integral		
	time) results in a slow integral action, and a small value of T _i (short		
	integral time) results in a fast integral action.I		
	If the integral time is set too long, the controller will be sluggish, if it is		
	set too short, the control lop will oscillate and become unstable.		
4.A -b	Control Valve Coefficient. It is defined as the U.S gallons per	1	4
-0	minute of water at 60^{0} F that a control valve will pass with 1 psi		
	pressure drop across the valve		
	ActuatorPneumatically operated control valve actuators are the	1.5	
	most popular type in		
	use, but electric, hydraulic, and manual actuators are also		
	widely used.		
	The spring-and-diaphragm pneumatic actuator is most		
	commonly type also called as linear actuator. It consist of a		
	diaphragm with the input pressure from the controller on one		
	side and atmospheric pressure on the other side. The diaphragm		
	is usually made of rubber which is sandwiched in its center		
	between two circular steel disc. Spring is used for providing the		
	restoring force		
	Valve Positioner The function of valve positioner is to sense	1.5	
	•	1.3	
	both the instrument signal and the valve position and from these		
	measurement ensure that the valve position is directly		
	proportional to its controller output signal Positioner is mounted		
	on the control valve to be able to measure the stem position.		

4.A	An optical pyrometer consists of an incandescent lamp filament	3	4
-d	which is used as the reference source of radiation. The filament is		
	heated by a 2 volts battery in series with a rheostat by which the		
	temperature of the filament is adjusted. This filaments is connected		
	in one arm of a wheat-stone bridge circuit across which is connected		
	a moving coil galvanometer. On rotating the Rheostat the		
	temperature of the filament is progressively increased until the		
	visible radiation matches that of the hot object. At this stage the tip		
	of the filament becomes invisible and the temperature is read from		
	the galvanometer.		
	Optical Tungsten Ribbon Filament Strip Lamps are used to calibrate	1	
	Optical pyrometers.		
4.B	The basic 4 control action are	1 mark	6
-a	1. On-Off or Two position control action	each	
	$M=M_1$ for $e>0$		
	$M=M_2$ for e<0		
	2. Proportional (P)controller		
	$m=K_Pe$		
	3.Integral (I)or reset action		
	$m = \frac{1}{T_i} \int_0^t e dt$		
	4. Derivative (D)or Rate controller		
	$m=T_d de/dt$		
	The derivative mode cannot, by itself, control a process. One reason for	2	
	this is that a constant deviation from the set point makes the above		
	expression equal to zero. As well, if a sudden change in the process		
	variable occurs, an infinite signal is sent to the controller, which causes		
	the relevant mechanical apparatus to fully open or close. This leads to an		
	unending instability.		
		l	

4.B	Th	ne selection criteria for control valve are presented below.	1mark	6
-b	1	The first step in control valve selection involves collecting all	each	
	1.	relevant data and completing the ISA Form \$20.50. The piping		
		size must be set prior to valve sizing, and determining the supply		
		pressure may require specifying a pump		
	2	The size of the valve is required; select the smallest valve C_v that		
	۷.	satisfies the maximum C_v requirement at 90% opening. While		
		performing these calculations, checks should be made regarding		
		flashing, cavitation, sonic flow and Reynolds number to ensure		
		that the proper equation and correction factors are used. As		
		many difficulties occur due to oversized valves as to undersized		
		•		
		valves. Adding lots of "safety factors" will result in a valve that		
		is nearly closed during normal operation and has poor		
	2	rangeability.		
	3.	The trim characteristic is selected to provide good performance;		
		goals are usually linear control loop behavior along with		
	4	acceptable rangeability.		
	4.	,		
		the pipe size or slightly less, for example, a 3-inch pipe with a 2-		
		inch globe valve body. When the valve size is smaller than the		
		process piping, an inlet reducer and outlet expander are required		
	~	to make connections to the process piping.		
	5.	The actuator is now selected to provide sufficient force to		
		position the stem and plug.		
	6.	Finally, auxiliaries can be added to enhance performance. A		
		booster can be increase the volume of the pneumatic signal for		
		long pneumatic lines and large actuators. A positioner can be		
		applied for slow feedback loops with large valves or valves with		
		high actuator force or friction. A hand wheel is needed if		

Electromagnetic flow meter		
Diagram:		
output a 3 source	2	
to electropedic Harmeton electro		
magnetic field 1 to 1 for some		
coil		
Electrodes		
Excitation		
Vollage		
an atting and One dailed transported &		
Flow and a day of the state of		
flowtube with insulating linear		
Principle:		
Electromagnetic flow meter works on the principle of Faraday's law of	2	
electromagnetic induction which states that when a current carrying		
conductor moves through stationary transverse magnetic field, an emf is		
induced between the ends of the conductor and this emf. is proportional		
induced between the ends of the conductor and this emf. is proportional to relative velocity between the conductor and magnetic field. The		
induced between the ends of the conductor and this emf. is proportional to relative velocity between the conductor and magnetic field. The induced emf is given by		
induced between the ends of the conductor and this emf. is proportional to relative velocity between the conductor and magnetic field. The induced emf is given by E=Blv where E-emf		
induced between the ends of the conductor and this emf. is proportional to relative velocity between the conductor and magnetic field. The induced emf is given by E=Blv where E-emf l-Length of conductor		
induced between the ends of the conductor and this emf. is proportional to relative velocity between the conductor and magnetic field. The induced emf is given by E=Blv where E-emf l-Length of conductor B-Magnetic flux density		
induced between the ends of the conductor and this emf. is proportional to relative velocity between the conductor and magnetic field. The induced emf is given by E=Blv where E-emf l-Length of conductor B-Magnetic flux density v-Velocity of conductor		
induced between the ends of the conductor and this emf. is proportional to relative velocity between the conductor and magnetic field. The induced emf is given by E=Blv where E-emf l-Length of conductor B-Magnetic flux density v-Velocity of conductor Construction:	2	
induced between the ends of the conductor and this emf. is proportional to relative velocity between the conductor and magnetic field. The induced emf is given by E=Blv where E-emf l-Length of conductor B-Magnetic flux density v-Velocity of conductor Construction: It consist of a permanent magnet or electro magnet around a non	2	
induced between the ends of the conductor and this emf. is proportional to relative velocity between the conductor and magnetic field. The induced emf is given by E=Blv where E-emf l-Length of conductor B-Magnetic flux density v-Velocity of conductor Construction: It consist of a permanent magnet or electro magnet around a non conducting, non magnetic pipe. It is insulated from flowing fluid. Two	2	
induced between the ends of the conductor and this emf. is proportional to relative velocity between the conductor and magnetic field. The induced emf is given by E=Blv where E-emf l-Length of conductor B-Magnetic flux density v-Velocity of conductor Construction: It consist of a permanent magnet or electro magnet around a non	2	

emf direction along the line joining the electrode.		
Working:		
As the fluid flows through the pipe, due to magnetic field an emi	f is 2	
induced between the electrodes. The emf induced is proportional to	the	
velocity of fluid. As the flow rate varies, velocity of fluid chan	ges	
causing the induced emf to change.		
5.b PLC system:		
Block diagram :	3	8
Programming device Power supply CPU Memory		
I/O System mudules Output device Output device		
Solenoids, motor Switches, push starters buttons	5	
Description :		
PLCs are industrially hardened micro computers that perform discrete	e or	
continuous control functions in a variety of processing plant and fact	ory	
environments. A PLC architecture consists of the following main unit	s.	
1. Power supply: Power supply unit converts power line volta	ges	
to those required by the solid state components.		
2. Input / Output system : Inputs are real world signals of senso	ors .	
These signals can be Analog or Digital, low or high frequen	ıcy,	
continuous or momentary		
Outputs can be of discrete, register and analog.		
3. Central Processing Unit (CPU): It performs the tasks necess	ary	
to fulfill the PLC functions such as scanning, I/O bus tra	ffic	
control , program execution, peripheral and external dev	rice	

		communications, data handling and self diagnostics.		
	4.	Memory Unit: This is the library where the application program,		
		input data, as well as output data are being stored.		
	5.	Programmer Unit : Programmer unit provides an interface		
		between the PLC and user during program development, start-up		
		and trouble shooting.		
	6.	Peripheral Devices : Peripheral devices are grouped in to		
		categories such as programming aids, operational aids, I/O		
		enhancements and computer interface devices.		
5.c	Factor	rs to be considered for sizing of control valve	2 marks	8
	The fo	ollowing factors are considered while deciding the size of a control	per	
	valve.		each	
	1.	Flow rate: For a fixed flow rate the valve size should not be	point.	
		neither too low or too high. Ideal valve will be the one that will		
		function between 40% and 70% of the full operating range so		
		that for maximum flow, it is not wide open and for minimum		
		flow not closing down too near to its seated position.		
	2.	Liquid flash point: when in the down stream side, pressure		
		suddenly drops and the liquid with low flash point may vaporize		
		and expand. In such cases over size valves are normally		
		employed.		
	3.	Pressure drop across the valve: if the valve is installed in a		
		long piping then pressure drop across the valve should be		
		estimated at maximum flow with reasonable allowance for		
		pressure losses in series with the valve.		
	4.	Rangebility and turndown: Rangebility of the control valve is		
		the ratio of maximum controllable flow to minimum controllable		
		flow. Turndown of a control valve is the ratio of a normal		
		maximum flow to minimum controllable flow. For valve sizing		
		the maximum flow considered should be the required maximum		
		flow and not the full capacity of the valve.		
	ı		I	

6.a	Application of PLC :	2	4
	A PLC produces ON/OFF voltage output and can actuate elements such		
	as electric motors, solenoids, fans, heaters, and light switches (Any two)		
	Application of DCS:		
	DCSs were originally designed for continuous processes. Now a days	2	
	DCS has become a powerful integrated control system having		
	capabilities such as data acquisition, advanced process control and batch		
	control capabilities for various industrial environments such as cement		
	factories, oil refineries, power plant.		
6.b	McLeod gauge:		
	Diagram:	2	4
	Working: To operate the gauge, the piston is first withdrawn, causing the level of mercury in the lower part of the gauge to fall below the level of the junction between the two tubes. The unknown pressure source is connected to the gauge from where it also flows and fills the bulb and capillary. Next, the piston is pushed in, moving the mercury level up to	2	

	block the junction. At this stage,, the fluid in the capillary and the bulb		
	is at pressure P. Further movement of the piston compresses the fluid in		
	the tube and the mercury level is raised till it reaches the zero reference		
	point in R. Measurement of the height above the mercury column in the		
	capillary allows the calculation of the compressed volume of the fluid.		
	The expression for calculating the unknown pressure is		
	$P = A\rho g y^2 / V$		
	Where A is capillary area		
	ρ is density of fluid		
	y is height above the mercury column in capillary		
6.c	Open- loop and Closed-loop control system :		4
	Open-loop System :		
	Block diagram :	1	
	Reference input r (t) Controller Process Controlled output c (t)		
	Definition :	1	
	When the input is independent of the output, the system is called open-		
	loop system. The control action is based on only some predetermined		
	settings.		

Closed-loop Control System: Block diagram: 1 - Forward path elements Controller Error detector Error Reference signal Control Plant Controlled input elements output c(t) b(t) Feedback signal c(t) Feedback path element **Definition:** 1 When the input is dependent of the output, the system is called closedloop control system. The output is continuously measured and fed to the input. Sources of static error in pressure spring thermometer : 6.d The various sources of static error in pressure spring thermometer are as One 4 follows: (any four can be considered) mark 1. Ambient-temperature effect: The ambient-temperature changes for each at the capillary and at the receiving element of a liquidpoint expansion thermometer is to cause the instrument to be in error. 2. Head effect: The head effect in a pressure thermometer is caused by placing the thermometer bulb at a considerably higher or lower position than the receiving element. 3. Barometric effect: The barometric effect in a pressure spring thermometer is the error due to barometric pressure changes. 4. Immersion effect: The immersion effect result from conduction of heat along the bulb and thermal well, thereby reducing the temperature at the bulb and causing an error. 5. Radiation effect: Radiation error exist in the measurement on gas and air temperatures because the ability of the thermometer bulb to "see" solid bodies whose temperatures are lower or

	higher than that of the gas.		
6.e	<u>Lobbed impeller type flow-meter</u> : (Out-of syllabus)		4
	Diagram :		
	Construction Inlet Impeller	2	
	The motor Concrete of ton vi		
	Working:	2	
	As rotor rotates, the measuring chamber is formed by the wall of the	_	
	cylinder and the surface of one half of one rotor. When one of the rotor		
	is in a vertical position, the measuring compartment has certain fixed		
	volume of fluid which gets discharged through the bottom of the meter.		
	This action takes place four times for one revolution. The impeller speed		
	drives the counter that registers total flow over certain time period.		