LED Dot Matrix Experiment

Frame

8*8 LED Dot Matrix

64x32

8x4(8x8)

4953 or 2311

Dual P-Chanel Enhancement Mode MOSFET

138

3-to-8 line decoder/demultiplexer

245

3-state bus compatible outputs in both send and receive directions.

595

8-bit serial-in, paralled-out shift register that feeds an 8-bit D-type storage register.

Schematic

schematic

Interface

Function

- **≻**Stop
- > Start
- **≻** Pause
- **≻** Resume
- ➤ Speed Up
- ➤ Speed Down
- ➤ Update Display
- > Exit

Resource

- >ASC16: 8*16 ASCII dot matrix library
- ➤ ASC32: 16*32 ASCII dot matrix library
- > HZK16: 16*16 Chinese dot matrix library
- ➤ HZK32: 32*32 Chinese dot matrix library
- disptext.txt : storage an text string to be displayed

Chinese dot matrix library

- Byteperchinese = (width/8)*height;
- \triangleright Offs = ((ch-0xa1) * 94 + (cl 0xa1)) * Byteperchinese

Application

- ➤ leddmio.h: the definition of IOCTL commands
- ➤ testleddm.c: the application for control and update display
 - >read display text
 - >transform the text to dot matrix using dot matrix library
 - > send the dot matrix data to driver
 - control the driver to update display

Driver

- ➤ leddmio.h: the definition of IOCTL commands
- > leddm.h: the definition of driver and GPIO
- > leddm.c: LED dot matrix driver
 - get new dot matrix data from application
 - rolling the dot matrix data on LED dot matrix