Metodos Quantitativos - A15

Marcelo Wzorek Filho, Rafael Leal Machado March 2024

1 Introdução

O objetivo deste projeto é realizar uma simulação do Problema 5.28, disponível no livro "Estatística Aplicada: Economia, Administração e Contabilidade", do autor John E. Freund. O problema envolve a geração de palavras de quatro letras seguindo regras específicas e escolha aleatoria de letras e de um conjunto predefinido de consoantes e vogais para formar palavras sem sentido. A simulação envolve a geração de palavras e a análise estatística de sua distribuição em diferentes cenários de sorteios, a implementação deste problema está disponível no GitHub.

2 Implementação

A implementação deste projeto em Python utiliza um conjunto de funções para gerar palavras de acordo com as regras estabelecidas e realizar a contagem de ocorrências em um número específico de sorteios. Além disso, as funções são capazes de calcular o número esperado de ocorrências de cada palavra percentualmente, levando em consideração o número total de sorteios em cada cenário.

O processo de implementação é dividido em etapas, sendo elas a **Geração de palavras**, **Contagem de ocorrências** e o **Cálculo do número esperado**. Por meio desse processo, a implementação proporciona uma análise estatística abrangente da distribuição de palavras geradas em diferentes cenários de sorteios, contribuindo para a compreensão do problema.

3 Resultados

Palavra	72 sorteios	216 sorteios	720 sorteios	2160 sorteios	7200 sorteios	72000 sorteios	Esperado (%)
qace	2	3	8	32	100	964	6.25%
qice	0	5	11	38	99	1009	6.25%
qoce	0	0	0	0	0	0	6.25%
quce	2	5	11	32	86	1017	6.25%
wace	0	4	8	22	101	1020	6.25%
wice	2	1	7	23	102	1053	6.25%
woce	0	0	0	0	0	0	6.25%
wuce	1	5	11	31	89	1073	6.25%
xace	1	5	6	25	93	1015	6.25%
xice	2	1	12	33	99	929	6.25%
хосе	0	0	0	0	0	0	6.25%
xuce	0	4	10	38	93	1017	6.25%
zace	1	2	11	34	110	1030	6.25%
zice	1	1	17	45	101	1052	6.25%
zoce	0	0	0	0	0	0	6.25%
zuce	2	2	6	36	87	992	6.25%

4 Perguntas:

4.1 O número de vezes que cada palavra sorteada foi igual em cada conjunto de sorteios?

Não. Devido à natureza aleatória dos sorteios, é possível que as ocorrências de cada palavra variem em cada conjunto de sorteios. No entanto, em uma grande quantidade de sorteios, espera-se que a distribuição das ocorrências se aproxime do número esperado para cada palavra.

4.2 Em todas as colunas os números são iguais percentualmente? Por quê?

Sim. Isso ocorre porque o cálculo do número esperado de ocorrências é realizado de forma proporcional ao número total de sorteios em cada cenário. Assim, independentemente do número de sorteios realizado, a porcentagem de ocorrências para cada palavra permanece a mesma.

4.3 Há alguma tendência à medida que se realizam mais sorteios? Em caso positivo, qual?

Sim. Conforme o número de sorteios aumenta, espera-se que as ocorrências observadas se aproximem mais do número esperado para cada palavra. Isso é uma consequência da Lei dos Grandes Números, que afirma que, em um grande número de tentativas independentes, a frequência com que um evento ocorre se aproximará de sua probabilidade real.

4.4 O que se pode concluir deste experimento?

Pode-se concluir que, conforme mais sorteios são realizados, as ocorrências de cada palavra se aproximam do número esperado, conforme previsto pela teoria das probabilidades. Além disso, a distribuição uniforme e aleatória das palavras geradas é evidente, já que a porcentagem esperada de ocorrências para cada palavra permanece constante em diferentes cenários de sorteios. Isso sugere que o processo de geração de palavras é efetivamente aleatório e uniforme, conforme especificado no problema.