第 23 回 適合度検定(12.3)

村澤 康友

2024年1月15日

今日のポイント

- 1. 母集団分布に対する標本の適合度を検定する
- 2. 分布の範囲を k 階級に分割したときの母 比率の両側検定を χ^2 適合度検定という. 2 階級ならベルヌーイ母集団の母比率の両 側検定となる.
- 3. χ^2 適合度検定を応用して 2 変量の独立性 を検定できる.

目次

1	母比率の検定	1
1.1	片側検定	1
1.2	両側検定(p. 250)	1
2	適合度検定	2
2.1	適合度検定問題(p. 245)	2
2.2	ピアソンの χ^2 適合度検定(p. 246)	2
2.3	独立性の χ^2 検定(p. 248)	3
3	今日のキーワード	4
4	次回までの準備	4

1 母比率の検定

1.1 片側検定

母集団分布を $\mathrm{Bin}(1,p)$ とする. 次の片側検定問題を考える.

$$H_0: p = p_0 \text{ vs } H_1: p > p_0$$

有意水準を 5 %とする. Bin(1,p) の平均は p, 分散 は p(1-p). 大きさ n の無作為標本の標本比率(=標本平均)を \hat{p} とすると,中心極限定理より

$$\hat{p} \stackrel{a}{\sim} N\left(p, \frac{p(1-p)}{n}\right)$$

標準化すると

$$\frac{\hat{p} - p}{\sqrt{p(1-p)/n}} \stackrel{a}{\sim} N(0,1)$$

検定統計量は

$$Z := \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

 H_0 の下で

$$Z \stackrel{a}{\sim} N(0,1)$$

標準正規分布表より H_0 の下で

$$\Pr[Z \ge 1.65] \approx .05$$

したがって近似的な棄却域は $[1.65,\infty)$.

1.2 両側検定 (p. 250)

次の両側検定問題を考える.

$$H_0: p = p_0 \text{ vs } H_1: p \neq p_0$$

有意水準を 5 %とする.標準正規分布表より H_0 の下で

$$\Pr[|Z| \ge 1.96] \approx .05$$

したがって近似的な棄却域は $(-\infty, -1.96]$ \cup $[1.96, \infty)$.

注 $1. Z^2$ を検定統計量としてもよい. すなわち

$$Z^2 = \frac{n(\hat{p} - p_0)^2}{p_0(1 - p_0)}$$

$$H_0$$
 の下で

$$Z^2 \stackrel{a}{\sim} \chi^2(1)$$

 χ^2 分布表より H_0 の下で

$$\Pr\left[Z^2 \ge 3.84146\right] \approx .05$$

したがって近似的な棄却域は $[3.84146,\infty)$. もちろん $1.96^2 \approx 3.84146$ で両検定は同等.

2 適合度検定

2.1 適合度検定問題 (p. 245)

母集団分布の cdf を F(.) とする(ノンパラメトリックでもよい).

定義 1. 母集団分布に対する標本の適合度の検定を **適合度検定**という.

注 2. 適合度検定問題は

$$H_0: F(.) = F_0(.)$$
 vs $H_1: F(.) \neq F_0(.)$

k 階級に分割して分布を表すと

階級	F(.)	$F_0(.)$
1	p_1	$p_{0,1}$
:	:	:
k	p_k	$p_{0,k}$
計	1	1

次の適合度検定問題を考える(元の問題と同等ではない).

$$H_0: \begin{pmatrix} p_1 \\ \vdots \\ p_{k-1} \end{pmatrix} = \begin{pmatrix} p_{0,1} \\ \vdots \\ p_{0,k-1} \end{pmatrix}$$

$$vs \quad H_1: \begin{pmatrix} p_1 \\ \vdots \\ p_{k-1} \end{pmatrix} \neq \begin{pmatrix} p_{0,1} \\ \vdots \\ p_{0,k-1} \end{pmatrix}$$

未知母数は k-1 個. k=2 なら母比率の両側検定. $k\geq 3$ なら多次元母数の両側検定となる.

例 1. U[0,1] と N(0,1) の標本(100 個の乱数)の 適合度(図 1).

2.2 ピアソンの χ^2 適合度検定 (p. 246)

大きさnの無作為標本における第j階級の度数を N_i とする.

定義 2. ピアソンの χ^2 適合度検定統計量は

$$\chi^2 := \sum_{j=1}^k \frac{(N_j - np_{0,j})^2}{np_{0,j}}$$

注 3. N_j を観測度数, $np_{0,j}$ を期待度数という.

注 4. 第j階級の相対度数を $\hat{p}_j := N_j/n$ とすると,

$$\chi^{2} = \sum_{j=1}^{k} \frac{(n\hat{p}_{j} - np_{0,j})^{2}}{np_{0,j}}$$
$$= \sum_{j=1}^{k} \frac{n(\hat{p}_{j} - p_{0,j})^{2}}{p_{0,j}}$$

k=2 なら

$$\begin{split} \chi^2 &= \frac{n(\hat{p}_1 - p_{0,1})^2}{p_{0,1}} + \frac{n(\hat{p}_2 - p_{0,2})^2}{p_{0,2}} \\ &= \frac{n(\hat{p}_1 - p_{0,1})^2}{p_{0,1}} + \frac{n[(1 - \hat{p}_1) - (1 - p_{0,1})]^2}{1 - p_{0,1}} \\ &= \frac{n(\hat{p}_1 - p_{0,1})^2}{p_{0,1}} + \frac{n(\hat{p}_1 - p_{0,1})^2}{1 - p_{0,1}} \\ &= \frac{(1 - p_{0,1})n(\hat{p}_1 - p_{0,1})^2 + p_{0,1}n(\hat{p}_1 - p_{0,1})^2}{p_{0,1}(1 - p_{0,1})} \\ &= \frac{n(\hat{p}_1 - p_{0,1})^2}{p_{0,1}(1 - p_{0,1})} \end{split}$$

すなわち母比率の検定統計量と一致する.

定理 1. H₀ の下で

$$\chi^2 \stackrel{a}{\sim} \chi^2(k-1)$$

証明.「統計学入門」の水準を超えるので略. [

例 2 (p. 245, メンデルの法則). えんどう豆の形質 の遺伝に関する実験結果:

階級	N_{j}	\hat{p}_{j}	$p_{0,j}$
黄・丸	315	.5665	.5625
黄・しわ	101	.1817	.1875
緑・丸	108	.1942	.1875
緑・しわ	32	.0576	.0625
計	556	1	1

図 1 U[0,1] と N(0,1) の標本(100 個の乱数) の適合度

適合度検定問題は

$$H_0: \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} p_{0,1} \\ p_{0,2} \\ p_{0,3} \end{pmatrix}$$
vs $H_1: \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \neq \begin{pmatrix} p_{0,1} \\ p_{0,2} \\ p_{0,3} \end{pmatrix}$

有意水準を 5%とする. H_0 の下で

$$\chi^2 \sim \chi^2(3)$$

 χ^2 分布表より H_0 の下で

$$\Pr\left[\chi^2 \ge 7.81473\right] \approx .05$$

したがって近似的な棄却域は $[7.81473,\infty)$. $\chi^2=.47$ となるので H_0 は棄却されない(ただし捏造の疑いあり?).

2.3 独立性の χ^2 検定 (p. 248)

2 変量母集団分布を $F_{X,Y}(.,.)$, その周辺分布を $F_{X}(.),F_{Y}(.)$ とする. 独立性の検定問題は

$$H_0: F_{X,Y}(.,.) = F_X(.)F_Y(.)$$

vs $H_1: F_{X,Y}(.,.) \neq F_X(.)F_Y(.)$

 $k \times l$ 分割表で分布を表すと

階級	1	 l	計
1	$p_{1,1}$	 $p_{1,l}$	$p_{1,.}$
÷	:	÷	:
k	$p_{k,1}$	 $p_{k,l}$	$p_{k,.}$
計	$p_{.,1}$	 $p_{.,l}$	1

次の適合度検定問題を考える(元の問題と同等ではない).

$$H_{0}: \begin{bmatrix} p_{1,1} & \dots & p_{1,l-1} \\ \vdots & & \vdots \\ p_{k-1,1} & \dots & p_{k-1,l-1} \end{bmatrix}$$

$$= \begin{bmatrix} p_{1,p,1} & \dots & p_{1,p,l-1} \\ \vdots & & \vdots \\ p_{k-1,p,1} & \dots & p_{k-1,p,l-1} \end{bmatrix}$$

$$vs \quad H_{1}: \begin{bmatrix} p_{1,1} & \dots & p_{1,l-1} \\ \vdots & & \vdots \\ p_{k-1,1} & \dots & p_{k-1,l-1} \end{bmatrix}$$

$$\neq \begin{bmatrix} p_{1,p,1} & \dots & p_{1,p,l-1} \\ \vdots & & \vdots \\ p_{k-1,p,1} & \dots & p_{k-1,p,l-1} \end{bmatrix}$$

未知母数は (k-1)(l-1) 個. 大きさ n の無作為標本における相対度数を $\hat{p}_{i,j},\hat{p}_{i,.},\hat{p}_{.,j}$ などとする.

定義 3. 独立性の χ^2 検定統計量は

$$\chi^2 := \sum_{i=1}^k \sum_{j=1}^l \frac{n(\hat{p}_{i,j} - \hat{p}_{i,j}\hat{p}_{i,j})^2}{\hat{p}_{i,i}\hat{p}_{i,j}}$$

定理 2. H₀ の下で

$$\chi^2 \stackrel{a}{\sim} \chi^2((k-1)(l-1))$$

証明.「統計学入門」の水準を超えるので略.

例 3 (pp. 248-250). 2 つの試験の成績 (n = 42)

成績	A	В	C	計
A	.10	.05	.07	.21
В	.19	.10	.14	.43
\mathbf{C}	.14	.07	.14	.36
計	.43	.21	.36	1.00

独立なら

成績	A	В	С	計
A	.09	.05	.08	.21
В	.18	.09	.15	.43
\mathbf{C}	.15	.08	.13	.36
計	.43	.21	.36	1.00

独立性の検定問題は

$$\begin{split} H_0: \begin{bmatrix} p_{1,1} & p_{1,2} \\ p_{2,1} & p_{2,2} \end{bmatrix} &= \begin{bmatrix} p_{1,.}p_{.,1} & p_{1,.}p_{.,2} \\ p_{2,.}p_{.,1} & p_{2,.}p_{.,2} \end{bmatrix} \\ \text{vs} \quad H_1: \begin{bmatrix} p_{1,1} & p_{1,2} \\ p_{2,1} & p_{2,2} \end{bmatrix} \neq \begin{bmatrix} p_{1,.}p_{.,1} & p_{1,.}p_{.,2} \\ p_{2,.}p_{.,1} & p_{2,.}p_{.,2} \end{bmatrix} \end{split}$$

有意水準を 5%とする。 H_0 の下で

$$\chi^2 \sim \chi^2(4)$$

 χ^2 分布表より H_0 の下で

$$\Pr\left[\chi^2 \ge 9.48773\right] \approx .05$$

したがって近似的な棄却域は $[9.48773,\infty)$. $\chi^2=.19$ となるので H_0 は棄却されない(ただし捏造の疑いあり?).

例 4. 男女の相性は血液型で決まるとの俗説がある. その真偽を科学的に検証したい. そこで無作為に選んだ 117 組の夫婦の血液型を調べたところ,次表の結果が得られた(数値は百分率を四捨五入).

夫\妻	A	О	В	AB	計
A	.15	.14	.06	.07	.41
O	.10	.07	.10	.03	.30
В	.08	.09	.04	.01	.22
AB	.04	.00	.03	.00	.07
計	.37	.30	.23	.10	1.00

独立なら

夫\妻	A	О	В	AB	計
A	.1517	.1230	.0943	.0410	.41
O	.1110	.0900	.0690	.0300	.30
В	.0814	.0660	.0506	.0220	.22
AB	.0259	.0210	.0161	.0070	.07
計	.37	.30	.23	.10	1.00

有意水準を5%とする. H₀の下で

$$\chi^2 \sim \chi^2(9)$$

 χ^2 分布表より H_0 の下で

$$\Pr\left[\chi^2 \ge 16.919\right] \approx .05$$

したがって近似的な棄却域は $[16.919,\infty)$. $\chi^2=14.2309624$ となるので H_0 は棄却されない.

3 今日のキーワード

母比率の片側検定,母比率の両側検定,適合度検定,ピアソンの χ^2 適合度検定,観測度数,期待度数,独立性の χ^2 検定

4 次回までの準備

復習 教科書第 12 章 3 節,復習テスト 23 **予習** 教科書第 3 章 4 節,第 13 章 1-2.1 節