Dissonance Reduction Tooling for HPC Pedagogy

1st Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

4th Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address 2nd Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

5th Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address 3rd Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

6th Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

Abstract—We describe a general work-flow which scales intuitively to high-performance computing clusters for disparate domains of scientific computation. We demonstrate our methodology with a radial distribution function calculation in three languages; FORTRAN, C++ and Python. We show that incorporating appropriate tooling, namely Git, CMake, TORQUE/SLURM, and nix-language expressions for packaging into the pedagogical practice allows for high-performance, platform-independent, reproducible scientific software. For domain specific algorithms, we show that there is a language-independent pedagogical methodology which may be leveraged to ensure best practices for the scientific HPC (high-performance computing) community with minimal cognitive dissonance for practitioners and students.

Index Terms—pedagogy, best-practices, tooling, methodology, reproducible-research

- I. INTRODUCTION
- II. FROM COMPUTING TO HIGH PERFORMANCE

 COMPUTING

III. LOCAL PERSPECTIVE