13.
$$F(x, y, z) = xi + yj + zk$$

14.
$$F(x, y, z) = yzi + xzj + xyk$$

15.
$$\mathbf{F}(x, y, z) = (x^2 + y^2 + z^2)(3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k})$$

16.
$$\mathbf{F}(x,y,z) = \frac{yz\mathbf{i} - xz\mathbf{j} + xy\mathbf{k}}{x^2 + y^2 + z^2}$$

En los Ejercicios 17 a 20, calcular el rotacional escalar de cada uno de los campos vectoriales.

17.
$$\mathbf{F}(x,y) = \sin x \mathbf{i} + \cos x \mathbf{j}$$

18.
$$F(x,y) = yi - xj$$

19.
$$\mathbf{F}(x,y) = xy\mathbf{i} + (x^2 - y^2)\mathbf{j}$$

20.
$$F(x, y) = xi + yj$$

21. Sea
$$\mathbf{F}(x, y, z) = (x^2, x^2y, z + zx)$$
.

(a) Verificar que
$$\nabla \cdot (\nabla \times \mathbf{F}) = 0$$
.

(b) ¿Puede existir una función
$$f: \mathbb{R}^3 \to \mathbb{R}$$
 tal que $\mathbf{F} = \nabla f$? Explicar la respuesta.

- **22.** (a) ¿Cuáles de los campos vectoriales de los Ejercicios 13–16 podrían ser campos gradiente?
 - (b) ¿Cuáles de los campos vectoriales de los Ejercicios 9–12 podrían ser el rotacional de algún campo vectorial $\mathbf{V}: \mathbb{R}^3 \to \mathbb{R}^3$?

23. Sea
$$\mathbf{F}(x, y, z) = (e^{xz}, \text{sen}(xy), x^5y^3z^2)$$
.

- (a) Hallar la divergencia de \mathbf{F} .
- (b) Hallar el rotacional de **F**.
- **24.** Supongamos que $f: \mathbb{R}^3 \to \mathbb{R}$ es una función escalar de clase C^2 . ¿Cuáles de las siguientes expresiones tienen sentido y cuáles no lo tienen? Para aquellas que tengan sentido, indicar si la

expresión define una función escalar o un campo vectorial.

- (a) rot(grad f)
- (d) $\operatorname{grad}(\operatorname{div} f)$
- (b) $\operatorname{grad}(\operatorname{rot} f)$)
- (e) rot(div f)
- (c) $\operatorname{div}(\operatorname{grad} f)$
- (f) $\operatorname{div}(\operatorname{rot} f)$
- **25.** Supongamos que $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ es un campo vectorial de clase C^2 . ¿Cuáles de las siguientes expresiones tienen sentido y cuáles no lo tienen? Para aquellas que tengan sentido, indicar si la expresión define una función escalar o un campo vectorial.
 - (a) $rot(grad \mathbf{F})$
- (d) $\operatorname{grad}(\operatorname{div} \mathbf{F})$
- (b) $grad(rot \mathbf{F})$
- (e) rot (div **F**)
- (c) div(grad **F**)
- (f) $\operatorname{div}(\operatorname{rot} \mathbf{F})$
- **26.** Supongamos que $f, g, h: \mathbb{R} \to \mathbb{R}$ son diferenciables. Demostrar que el campo vectorial $\mathbf{F}(x, y, z) = (f(x), g(y), h(z))$ es irrotacional.
- **27.** Supongamos que $f, g, h: \mathbb{R}^2 \to \mathbb{R}$ son diferenciables. Demostrar que el campo vectorial $\mathbf{F}(x,y,z) = \left(f(y,z), g(x,z), h(x,y)\right)$ tiene divergencia cero.
- **28.** Demostrar la identidad 13 de la lista de identidades vectoriales.

En los Ejercicios 29 a 32 verificar que $\nabla \times (\nabla f) = \mathbf{0}$ para las funciones dadas.

29.
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$

30.
$$f(x, y, z) = xy + yz + xz$$

31.
$$f(x,y,z) = 1/(x^2 + y^2 + z^2)$$

32.
$$f(x,y,z) = x^2y^2 + y^2z^2$$

- **33.** Demostrar que $\mathbf{F} = y(\cos x)\mathbf{i} + x(\sin y)\mathbf{j}$ no es un campo vectorial gradiente.
- **34.** Demostrar que $\mathbf{F} = (x^2 + y^2)\mathbf{i} 2xy\mathbf{j}$ no es un campo gradiente.
- **35.** Demostrar la identidad 10 de la lista de identidades del análisis vectorial.

36. Supongamos que $\nabla \cdot \mathbf{F} = 0$ y $\nabla \cdot \mathbf{G} = 0$. ¿Cuál de las siguientes tiene necesariamente divergencia igual a cero?

(a)
$$\mathbf{F} + \mathbf{G}$$

(b)
$$\mathbf{F} \times \mathbf{G}$$

- **37.** Sean $\mathbf{F} = 2xz^2\mathbf{i} + \mathbf{j} + y^3zx\mathbf{k}$ y $f = x^2y$. Calcular las siguientes cantidades.
 - (a) ∇f
- (c) $\mathbf{F} \times \nabla f$
- (b) $\nabla \times \mathbf{F}$
- (d) $\mathbf{F} \cdot (\nabla f)$
- **38.** Sean $\mathbf{r}(x,y,z)=(x,y,z)$ y $r=\sqrt{x^2+y^2+z^2}=\|\mathbf{r}\|.$ Demostrar las siguientes identidades.