Zadaća 4

iz predmeta Diskretna matematika

Prezime i ime: Šehalić Mirza

Broj indeksa: 17324

Grupa: DM-RI4

Odgovorni demonstrator: Emir Baručija

1. Data su tri neusmjerena grafa:

```
G_1 = \{\{x1, x2, x3, x4, x5, x6, x7, x8\}, \{\{x1, x4\}, \{x1, x6\}, \{x1, x7\}, \{x1, x8\}, \{x2, x3\}, \{x2, x4\}, \{x2, x6\}, \{x3, x5\}, \{x3, x6\}, \{x3, x8\}, \{x4, x7\}, \{x5, x7\}, \{x6, x8\}, \{x7, x8\}\}\}\}
G_2 = \{\{x1, x2, x3, x4, x5, x6, x7, x8\}, \{\{x1, x4\}, \{x1, x6\}, \{x2, x3\}, \{x2, x5\}, \{x2, x6\}, \{x2, x7\}, \{x3, x4\}, \{x3, x8\}, \{x4, x5\}, \{x4, x7\}, \{x5, x6\}, \{x5, x7\}, \{x6, x8\}, \{x7, x8\}\}\}\}
G_3 = \{\{x1, x2, x3, x4, x5, x6, x7, x8\}, \{\{x1, x2\}, \{x1, x3\}, \{x1, x4\}, \{x1, x6\}, \{x2, x4\}, \{x2, x5\}, \{x3, x5\}, \{x3, x6\}, \{x3, x7\}, \{x4, x6\}, \{x4, x8\}, \{x5, x7\}, \{x6, x7\}, \{x7, x8\}\}\}\}
```

Za ove grafove potrebno je uraditi sljedeće:

- -Predstavite ih pomoću matrica susjedstva i pomoću listi susjedstva.
- -Utvrdite ima li među ovim grafovima nekih koji su međusobno izomorfni. Ukoliko neka dva jesu izomorfna (ako takvih parova ima), prikažite kako glasi izomorfizam između njih. Ukoliko neka dva nisu izomorfna (ako takvih parova ima), argumentirano objasnite zašto nisu.
- -Utvrdite ima li među ovim grafovima planarnih grafova. Za one koji su planarni (ako ih ima), nacrtajte ih tako da im se grane ne presjecaju. Za one koji nisu planarni (ako ih ima), argumentirano objasnite zašto nisu.
- -Pronađite hromatske brojeve za ova tri grafa. Odgovor mora biti argumentiran.

Najprije predstavimo zasebne grafove preko matrica i lista susjedstva:

- Cacor	700 ~0	20001	c gre	aj o o o	Pren	70 1100	201 000	0 000
	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
x_1				1		1	1	1
x_2			1	1		1		
x_3		1			1	1		1
x_4	1	1					1	
x_5			1				1	
x_6	1	1	1					1
x_7	1			1	1			1
x_8	1		1			1	1	

$$G_1 = (\{x_4, x_6, x_7, x_8\}, \{x_3, x_4, x_6\}, \{x_2, x_5, x_6, x_8\}, \{x_1, x_2, x_7\}, \{x_3, x_7\}, \{x_1, x_2, x_3, x_8\}, \{x_1, x_4, x_5, x_8\}, \{x_1, x_3, x_6, x_7\})$$

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
x_1				1		1		
x_2			1		1	1	1	
x_3		1		1				1
x_4	1		1		1		1	
x_5		1		1		1	1	
x_6	1	1			1			1
x_7		1		1	1			1
x_8			1			1	1	

$$G_2 = (\{x_4, x_6\}, \{x_3, x_5, x_6, x_7\}, \{x_2, x_4, x_8\}, \{x_1, x_3, x_5, x_7\}, \{x_2, x_4, x_6, x_7\}, \{x_1, x_2, x_5, x_8\}, \{x_2, x_4, x_5, x_8\}, \{x_3, x_6, x_7\})$$

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
x_1		1	1	1		1		
x_2	1			1	1			
x_3	1				1	1	1	
x_4	1	1				1		1
x_5		1	1				1	
x_6	1		1	1			1	
x_7			1		1	1		1
x_8				1			1	

$$G_3 = (\{x_2, x_3, x_4, x_6\}, \{x_1, x_4, x_5\}, \{x_1, x_5, x_6, x_7\}, \{x_1, x_2, x_6, x_8\}, \{x_2, x_3, x_7\}, \{x_1, x_3, x_4, x_7\}, \{x_3, x_5, x_6, x_8\}, \{x_4, x_7\})$$

$b)\ Provjerimo\ izomorfnost\ grafova:$

Broj grana je isti u svim grafovima, što vrijedi i za broj grana i stepene pojedinačnih čvorova pa je potrebno brojati konture grafa. Najprije nacrtajmo sve grafove:

Graf G_1 :

Graf G_2 :

Prvi i treći graf sadrže po 3 konture dužine 3, dok graf 2 ne sadrži niti jednu takvu konturu pa samim time ne može biti izomorfan ni sa jednim od njih.

Ostaje još da provjerimo da li se čvorovi u grafovima 1 i 3 mogu preimenovati tako da se dobije onaj drugi graf.

To je zaista i moguće, preimenovanjem čvorova G_1 na način: $\mathbf{f}: x_1 \to x_3; x_2 \to x_2; x_3 \to x_4; x_4 \to x_5; x_5 \to x_8, x_6 \to x_7; x_7 \to x_7; x_8 \to x_6$ zaista dobijemo graf ekvivalentan grafu G_3 , pa su G_1 i G_3 međusobno izomorfni grafovi.

c) Već smo pokazali da su grafovi G_1 i G_3 planarni iz skice, potrebno je još dokazati da je graf G_2 neplanaran graf. Vrijedi potreban uslov planarnosti jer je $14 \leq (3 \cdot 8 - 6)$, odnosno $14 \leq 18$. Međutim, možemo pokazati da je G_2 svodiv na K_5 . Ukoliko utopimo čvorove $x_1 \rightarrow x_6$, $x_8 \rightarrow x_7$ i $x_2 \rightarrow x_5$ po Wagnerovoj teoremi, zaista dobijamo K-5 graf i graf G_2 sigurno nije planaran.

d) Obojimo grafove G_1 (odnosno i ekvivalentni G_3) pohlepnim algoritmom:

Najprije bojimo čvor x_1 u polaznu sivu boju. Nakon toga, imajući u vidu da x_2 ne može imati istu boju, njega bojimo u plavu boju. Čvorove x_3 i x_4 bojimo u crvenu boju jer imaju plavog susjeda. U čvor x_5 uviru čvorovi sve tri preostale boje pa njega bojimo u zeleno. U čvor x_6 uviru crveni i sivi čvorovi pa njega bojimo u plavo. U čvor x_7 uviru čvorovi sa zelenom, plavom i crvenom bojom, pa ga bojimo u sivo.

 $Naposlijetku,\ u\ \check{c}vor\ x_8\ uviru\ \check{c}vorovi\ sa\ sivom\ i\ crvenom\ bojom,\ pa\ ga\ mo\check{z}emo\ bojiti\ ili\ u$

plavo ili u zeleno, u ovom slučaju biramo plavu boju. Obzirom da su ovi grafovi planarni, vrijedi da njihov hromatski broj mora biti manji ili jednak četiri.

Očigledno da je hromatski broj grafova G_1 i G_3 jednak 4, imajući u vidu da je x_5 vezan sa čvorovima sve tri preostale boje.

Najprije bojimo čvor x_1 u polaznu sivu boju. Nakon toga, čvor x_6 bojimo u plavu boju, a x_2 i x_4 u crvenu. Čvorove x_5 i x_8 bojimo u sivo kako bismo mogli izvršiti bojanje čvorova sa 3 boje. Još nam preostaje da x_3 i x_7 obojimo u plavu boju, obzirom da su vezani za crvene i sive čvorove.

Očigledno da je hromatski broj grafa G_2 jednak 3.

2. Potrebno je povezati 12 lokacija L1 – L12 u računarsku mrežu. Zbog tehnoloških ograničenja, kablove nije moguće razvesti između proizvoljne dvije lokacije. Sljedeći spisak opisuje sve moguće načine kablovskog povezivanja lokacija, pri čemu trojka oblika (Li, Lj, dij) označava da je moguće spojiti lokacije Li i Lj, i to kablom dužine dij (u metrima):

(L1, L4, 940), (L1, L5, 670), (L1, L6, 1270), (L1, L10, 1390), (L2, L3, 1220), (L2, L4, 630), (L2, L6, 660), (L2, L9, 1180), (L2, L11, 340), (L3, L4, 1280), (L3, L7, 450), (L3, L8, 1230), (L4, L6, 1150), (L4, L10, 380), (L4, L11, 270), (L5, L8, 1380), (L5, L12, 350), (L6, L7, 670), (L6, L8, 920), (L6, L9, 690), (L6, L12, 390), (L7, L8, 850), (L7, L12, 880), (L9, L10, 740), (L9, L11, 550)

Dizajnirajte računarsku mrežu u skladu sa navedenim specifikacijama tako da ukupan utrošak kablova bude minimalan i obavezno naznačite koliko iznosi taj utrošak. Dizajn obavite

- -Primjenom Kruskalovog algoritma sa bojenjem čvorova;
- -Primjenom optimalnog Kruskalovog algoritma;
- -Primjenom optimiziranog (kvadratnog) Primovog algoritma.

U sva tri slučaja, nemojte crtati odgovarajući graf, nego sve neophodne radnje obavljajte "naslijepo", koristeći samo raspoložive podatke, eventualno uz bilježenje izvjesnih pomoćnih informacija.

a) Najprije ćemo primijeniti Kruskalov algoritam sa bojenjem čvorova:

Grana	Težina	Uzeti	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9	c_{10}	c_{11}	c_{12}
/	/	/	1	2	3	4	5	6	7	8	9	10	11	12
4-11	270	da				4							4	
2-11	340	da		4										
5-12	350	da					5							5
4-10	380	da										4		
6-12	390	da						5						
3-7	450	da			3				3					
9-11	550	da									4			
2-4	630	ne												
2-6	660	da					4	4						4
1-5	670	da	4											
6-7	670	da			4				4					
6-9	690	ne												
9-10	740	ne												
7-8	850	da								4				
7-12	880	ne												
6-8	920	ne												
1-4	940	ne												
4-6	1150	ne												
2-9	1180	ne												
2-3	1220	ne												
3-8	1230	ne												
1-6	1270	ne												
3-4	1280	ne												
5-8	1380	ne												
1-10	1390	ne												

Optimalni način povezivanja je koristeći kablove (1,5), (2,6), (2,11), (3,7), (4,10), (4,11), (5,12), (6,7), (6,12), (7,8), (9,11).

Ukupan utrošak kablova iznosi:

$$270 + 340 + 350 + 380 + 390 + 450 + 550 + 660 + 670 + 670 + 850 = 5580$$

b) Sada riješimo problem primjenom optimalnog Kruskalovog algoritma:

Grana	Težina	Uzeti				$\frac{r_{4}/1}{c_{4}/1}$	$c_5/1$			$c_{8}/1$			$c_{11}/1$	$c_{12}/1$
4-11	270	da	1/	2/	0/	$c_4/2$	07	07	• ,	0/	07	107	$c_4/1$	12/
2-11	340	da		$c_{4}/1$		$c_4/3$								
5-12	350	da		,		,	$c_{5}/2$							$c_{5}/1$
4-10	380	da				$c_{4}/4$						$c_4/1$		
6-12	390	da					$c_{5}/3$	$c_{5}/1$						
3-7	450	da			$c_{3}/2$				$c_{3}/1$					
9-11	550	da				$c_4/5$					$c_{4}/1$			
2-4	630	ne												
2-6	660	da				$c_{4}/9$	$c_{4}/4$							
1-5	670	da	$c_{4}/1$			$c_4/10$								
6-7	670	da				$c_4/11$			$c_4/1$					
6-9	690	ne												
9-10	740	ne												
7-8	850	da				$c_4/12$				$c_4/1$				
7-12	880	ne												
6-8	920	ne												
1-4	940	ne												
4-6	1150	ne												
2-9	1180	ne												
2-3	1220	ne												
3-8	1230	ne												
1-6	1270	ne												
3-4	1280	ne												
5-8	1380	ne												
1-10	1390	ne												

Utrošak kablova u ovom slučaju je jednak slučaju pod a) jer se koristi isti put obilaska.

c) Naposlijetku, riješimo zadatak primjenom kvadratnog Primovog algoritma. Na početku uzimamo x_1 kao referentni čvor:

						1	- <i>j</i> -					1
Ref. čvor	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9	c_{10}	c_{11}	c_{12}
iter. evor	0											
x_1				$940/x_1$	$670/x_1$							$1390/x_1$
x_5				$940/x_1$				$1380/x_5$				$350/x_{5}$
x_{12}				$940/x_1$		$390/x_{12}$	$880/x_{12}$	$1380/x_5$				
x_6		$660/x_{6}$		$940/x_1$			$670/x_{6}$	$920/x_{6}$	$690/x_{6}$			
x_2			$1220/x_2$	$630/x_2$			$670/x_{6}$	$920/x_{6}$	$690/x_{6}$		$340/x_2$	
x_{11}			$1220/x_2$	$270/x_{11}$			$670/x_6$	$920/x_6$	$550/x_{11}$			
x_4			$1220/x_2$				$670/x_6$	$920/x_6$	$550/x_{11}$	$380/x_4$		
x_{10}			$1220/x_2$				$670/x_6$	$920/x_6$	$550/x_{11}$			
x_9			$1220/x_2$				$670/x_{6}$	$920/x_{6}$				
x_7			$450/x_7$					$850/x_7$				
x_3								$880/x_7$				

Dobijamo isto minimalno povezujuće stablo kao i kod Kruskalovog algoritma. Međutim to ne mora biti slučaj jer MPS ne mora biti jedinstveno kada su težine barem dvije grane jednake (kod nas 1-5 i 6-7). Zbog redoslijeda uzimanja smo dobili jednako stablo. Ne bismo napravili grešku ni da smo te dvije grane uzeli suprotnim redoslijedom obzirom da je suma težina i dalje ista kao u a) i b).

3. Turistička agencija "Pljačkaš tours" ima poslovnice u 8 gradova: Lyapuz, Omacodi, Lamgu, Oxat, Uhsuru, Vezqes, Rekazga i Zote. U sljedećoj tablici su date cijene direktnih avionskih letova između pojedinih gradova izražene u škafiškafnjacima (crtica znači da direktan let ne postoji):

3 /	Lyapuz	Omacodi	Lamgu	Oxat	Uhsuru	Vezqes	Rekazga	Zote
Lyapuz	0	1490	1040	250	720	700	510	950
Omacodi	1490	0	500	230	1110	-	210	1370
Lamgu	1040	500	0	1470	250	330	-	920
Oxat	250	230	1470	0	650	1310	360	340
Uhsuru	720	1110	250	650	0	1380	430	240
Vezqes	700	-	330	1310	1380	0	470	720
Rekazga	510	210	-	360	430	470	0	450
Zote	950	1370	920	340	240	720	450	0

 $Prije\ primjene\ Dijkstrinog\ algoritma\ označimo\ gradove\ pogodnim\ slovima:$

A-Lyapuz

B-Omacodi

 $C ext{-}Lamgu$

D-Oxat

E-Uhsuru

F-Vezqes

G-Rekazga

 $H ext{-}Zote$

A-Lyapuz	

		Α	В	\mathbf{C}	D	${ m E}$	F	G	Н
	A (0)	0	1490/A	1040/A	250/A	720/A	700/A	510/A	950/A
	D (250)		$480/{ m D}$	1040/A		720/A	700/A	510/A	590/D
,	B (480)			$980/{ m B}$		720/A	700/A	510/A	590/D
'	G (510)			$980/{ m B}$		720/A	700/A		590/D
	H (590)			$980/{ m B}$		720/A	700/A		
	F (700)			$980/{ m B}$		720/A			
	E (720)			$970/\mathrm{E}$					
ı									

B-Omacodi

		A	В	\mathbf{C}	D	E	F	G	Н
	B(0)	$1490/{ m B}$	0	500/B	230/B	1110/B	_	210/B	1370/B
	G(210)	720/G		500/B	230/B	640/G	680/G		$660/\mathrm{G}$
	D (230)	480/D		500/B		640/G	590/D		570/D
L	A (480)			500/B		640/G	590/D		570/D
	C(500)					640/G	590/D		570/D
	H (570)					640/G	590/D		
	F (590)					640/G			

		A	В	С		D		E	I	7	(J	Н
	C(0)	1040/C	500/0	C = 0	147	70/C	250	0/C	330)/C	١.	-	920/C
	E (250)	970/E	500/0	C	90	0/E			330	$\overline{\rm C}$	680	0/E	490/E
C I amagu	F (330)	970/E	500/0	C	90	0/E					680	0/E	$490/\mathrm{E}$
C-Lamgu	H (490)	970/E	500/0	C	83	0/H					680	0/E	
	B (500)	970/E			73	0/B					680	0/E	
	G(680)	970/E			73	0/B							
	D(730)	970/E											
Г	ı	A	D			D							
	D (0)	A 250/D	В	C 1.470	/ D	D	E	D	F	/ D	G		H
-	D (0)	,	230/D	1470		0	650/		1310/		360		340/D
-	B (230)	250/D		730/			650/		1310/		360		340/D
D-Oxal	A (250) H (340)			$\frac{730}{730}$			650/I		950/		360		340/D
-	H (340) G (360)			$\frac{730}{730}$			590/3 590/3		950/ 830/		360,	עו	
	E (590)			$\frac{730}{730}$			<u> </u>	11	830/				
-	C (730)			130/	Ъ				$\frac{830}{}$				
L	C (100)								000/	<u> </u>			
		A	В		$\overline{\mathrm{C}}$		D	Ε	F	١		J	Н
	E(0)	$720/\mathrm{E}$	1110/1	E 25	0/E	65	0/E	0	1380	0/E	430	0/E	$240/\mathrm{E}$
	H (240)	720/E	1110/1	E 25	$\overline{0/\mathrm{E}}$	58	0/H		960	H/H	430)/E	,
E-Uhsuru	C (250)	720/E	750/0			58	0/H		580	$/\mathrm{C}$	430	$\rm 0/E$	
E-Offsur	G (430)	720/E	640/0	3		58	0/H		580	/C			
	D (580)	720/E	640/0	ž					580	/C			
	C(580)	720/E	640/0	T L									
	B (640)	720/E											
					, ,				-	-		4 1	7.7
	E (0)	A 700 /F	В	220			$\frac{O_{C}(E)}{O_{C}(E)}$		E /F	F	470		H 720 /F
	F(0)	$700/\mathrm{F}$	-	330	/ F		0/F		80/F	0	470		720/F
	C(330)		830/C				$\frac{0}{\mathrm{F}}$		0/C		470	<u>/ </u>	$\frac{720/F}{720/F}$
F-Vezqes	$\frac{G (470)}{E (580)}$,	680/G)/G)/G	580	0/C				$\frac{720/F}{720/F}$
	E (580) B (680)		680/G	+)/G)/G						$\frac{720/F}{720/F}$
	A (700))/G						$\frac{720/F}{720/F}$
	H (720))/G						120/1
	11 (120)	'				000	,, u						
		A	В		С		D		E]	F	G	Н
	G(0)			G	_	36	60/G		0/G		$^{\circ}$	0	450/G

G-Rekazga

		A	В	С	D	Е	F	G	Н
	G(0)	510/G	210/G	-	360/G	430/G	470/G	0	450/G
	B (210)	510/G		710/B	360/G	430/G	470/G		450/G
	D (360)	510/G		710/B		430/G	470/G		450/G
ı	E(430)	510/G		$680/\mathrm{E}$			470/G		450/G
	H (450)	510/G		$680/\mathrm{E}$			470/G		
	F (470)	510/G		$680/\mathrm{E}$					
	A (510)			$680/\mathrm{E}$					

В С D Е F G A Η H(0)950/H1370/H920/H 340/H240/H 720/H450/H0 E (240) 1350/E490/E720/H $450/{\rm H}$ 950/H340/HD (340) 590/D560/D490/E720/H450/HH-Zote G (450) 590/D560/D490/E720/HC (490) 590/D560/D720/HB (560) 590/D 720/HA (590) 720/H

Tablica najkraćih puteva između pojedinih gradova:

					$F \circ J \circ \cdots \circ \cdots$	J		
	Lyapuz/A	Omacodi/B	Lamgu/C	Oxat/D	Uhsuru/E	Vezqes/F	Rekazga/G	Zote/H
Lyapuz/A	0	$480/{ m D}$	970/E	250/A	720/A	700/A	510/A	590/D
Omacodi/B	480/D	0	500/B	230/B	640/G	590/D	210/B	570/D
Lamgu/C	970/E	$500/\mathrm{C}$	0	730/B	$250/\mathrm{C}$	$330/\mathrm{C}$	$680/\mathrm{E}$	$490/{ m E}$
Oxat/D	250/D	230/D	730/B	0	590/H	830/G	360/D	$340/{ m D}$
Uhsuru/E	$720/\mathrm{E}$	640/G	$250/\mathrm{E}$	$580/{ m H}$	0	$580/\mathrm{C}$	430/E	$240/\mathrm{E}$
Vezqes/F	700/F	680/G	$330/{ m F}$	830/G	$580/\mathrm{C}$	0	$470/{ m F}$	$720/{ m F}$
Rekazga/G	510/G	210/G	680/E	$360/\mathrm{G}$	430/G	470/G	0	450/G
Zote/H	590/D	560/D	$490/{ m E}$	$340/{ m H}$	$240/{ m H}$	720/H	$450/{ m H}$	0

4. Dat je usmjereni težinski graf $G = \{\{A, B, C, D, E, F, G, H, I, J\}, \{(A, D, 12), (A, I, -21), (B, J, -19), (C, A, 13), (C, E, 15), (C, G, 11), (D, B, 9), (D, J, 12), (E, D, 4), (F, D, 14), (G, A, 16), (G, F, -13), (H, A, 5), (H, C, -17), (I, E, 13), (J, C, -6), (J, F, 10), (J, I, 8)\}\}$ Koristeći Bellman-Fordov algoritam, dokažite da u ovom grafu postoji kontura sa negativnom sumom težina u konturi.

Nakon toga pronađite makar jednu takvu konturu. Postupak obavite "naslijepo", bez crtanja grafa, koristeći samo raspoložive informacije (eventualno uz bilježenje raznih pomoćnih informacija).

Za dokazivanje da u grafu postoji barem jedna kontura sa negativnom sumom težina moramo dobiti da je λ_A negativno u nekoj od iteracija algoritma:

						Iteracij	ia 1:				
x_j	A	В	С	D	E	$\overline{\mathbf{F}}$	G	Н	I	J	1.
x_i	0	∞	∞	∞	∞	∞	∞	∞	∞	∞	λ_i
A				12					-21		0
В										-19	∞ , 9
С	13				15		11				∞ , -17
D		9								12	∞ , 12, 4
Е				4							$\infty, 15, 13$
F				14							∞ , -13
G	16					-13					∞ , 11
Н	5		-17								∞
I					13						∞ , -21
J			-6			10			8		∞ , -19
				1	1	Iteracij	1				1
x_j	A	В	С	D	Е	F	G	Н	I	J	λ_i
x_i	0	9	-17	4	13	-13	11	∞	-21	-19	
A				12					-21		0
В										-10	9
С	-4				-2		-6				-17, -25
D		13								16	4, 1
Е				4							13, -2, -8
F				1							-13
G	27					-2					11, -6
I					-8						-21
J			-25			-9			-11		-19

Pošto smo u drugoj iteraciji dobili da je λ_A negativno, time je dokazano da postoji barem jedna kontura sa negativnom sumom težina. Jedna takva kontura je A-D-B-J-C-A čija je suma:

$$12 + 9 - 19 - 25 - 4 = -27.$$

5. Dat je usmjereni težinski graf

 $G = \{\{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11\}, \{(x1, x5, 28), (x1, x11, 15), (x2, x1, 11), (x2, x11, 21), (x3, x4, 28), (x3, x8, 27), (x4, x8, 17), (x4, x10, 14), (x5, x4, 32), (x5, x10, 16), (x6, x2, 12), (x6, x7, 32), (x6, x9, 34), (x7, x1, 34), (x7, x5, 16), (x9, x2, 25), (x9, x7, 13), (x10, x8, 28), (x11, x3, 12), (x11, x4, 38)\}\}$

- -Pokažite da u ovom grafu ima tačno jedan izvor (čvor ulaznog stepena 0) i tačno jedan ponor (čvor izlaznog stepena 0), te da se radi o acikličkom grafu;
- -Izvršite topološko sortiranje čvorova ovog grafa obavljajući DFS pretragu počev od izvora grafa;
- -Primjenom Dijkstrinog algoritma, pronađite najkraći put od izvora do ponora grafa i navedite koliko iznosi dužina tog puta;
- -Primjenom Bellman-Fordovog algoritma, pronađite najkraći put od izvora do ponora grafa i navedite koliko iznosi dužina tog puta;
- -Primjenom Bellman-Fordovog algoritma, pronađite najduži put od izvora do ponora grafa i navedite koliko iznosi dužina tog puta.

Postupak provedite "naslijepo", bez crtanja grafa, koristeći samo raspoložive informacije (eventualno uz bilježenje raznih pomoćnih informacija).

Za lakše dokazivanje napišimo graf u formi matrične tabele:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}
x_1	1		0	T	28	0	•	0	3	10	15
x_2	11										21
x_3				28				27			
x_4								17		14	
x_5				32						16	
x_6		12					32		34		
x_7	34				16						
x_8											
x_9		25					13				
x_{10}								28			
x_{11}			12	38							

Očigledno je (iz tabele) izvor čvor x_6 , a ponor čvor x_8 .

Sada izvršimo topološko sortiranje čvorova putem DFS pretrage. Potrebno je invertirati graf, odnosno zamijeniti kolone i redove, obaviti DFS pretragu od izvora i obrnuti dobijenu sekvencu:

Topološko sortiranje daje sekvencu:

$$x_6 \to x_9 \to x_7 \to x_2 \to x_1 \to x_{11} \to x_3 \to x_5 \to x_4 \to x_{10} \to x_8$$

Niti u jednom trenutku nismo naišli na prethodno posjećen čvor, samim time je graf acikličan. Primijenimo Dijkstrin algoritam za pronalazak najkraćeg puta:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}
$x_6(0)$		$12/x_{6}$				0 (ref)	$32/x_{6}$		$34/x_{6}$		
x_2 (12)	$23/x_{2}$						$32/x_{6}$		$34/x_6$		$33/x_2$
x_1 (23)					$51/x_1$		$32/x_{6}$		$34/x_{6}$		$33/x_2$
$x_7 (32)$					$48/x_7$				$34/x_6$		$33/x_2$
$x_{11} (33)$			$45/x_{11}$	$71/x_{11}$	$48/x_7$				$34/x_{6}$		
$x_9 (34)$			$45/x_{11}$	$71/x_{11}$	$48/x_7$						
x_3 (45)				$71/x_{11}$	$48/x_7$			$72/x_3$			
x_5 (48)				$71/x_{11}$				$72/x_3$		$64/x_{5}$	
x_{10} (64)				$71/x_{11}$				$72/x_3$			
$x_4 (71)$								$72/x_3$			
$x_8 (72)$											

Najkraći put od izvora do ponora je $x_6 \to x_2 \to x_{11} \to x_3 \to x_8$, dužina puta je 72.

Sada primijenimo Bellman-Fordov algoritam za traženje najkraćeg puta od izvora do ponora grafa:

x_j	1	2	3	4	5	6	7	8	9	10	11	١.
x_i	∞	∞	∞	∞	∞	0	∞	∞	∞	∞	∞	λ_i
x_1					51						38	∞ , 23
x_2	23										33	∞ , 12
x_3				73				72				∞ , 50
x_4								95		92		∞ , 71
x_5				80						64		∞ , 48
x_6		12					32		34			0
x_7	66				48							∞ , 32
x_8												∞ , 72
x_9		59					47					∞ , 34
x_{10}							-	92				∞ , 64
x_{11}			45	71								∞ , 33

Najkraći put od izvora do ponora je $x_6 \to x_2 \to x_{11} \to x_3 \to x_8$, dužina puta je 72.

Naposlijetku nadimo i najduži put pomoću Bellman-Fordovog algoritma:

	1	J			J		1				J	J
x_j	1	2	3	4	5	6	7	8	9	10	11	λ_i
x_i	∞	∞	∞	∞	∞	0	∞	∞	∞	∞	∞	λ_i
x_1					-98						-85	∞ , -23, -70
x_2	-70										-80	∞ , -12, -59
x_3				-125				-124				∞ , -97
x_4								-147		-141		∞ , -130
x_5				-130						-110		∞ , -98
x_6		-12					-32		-34			0
x_7	-66				-48							∞ , -32, -47
x_8												∞ , -147, -172
x_9		-59					-47					∞ , -34
x_{10}								-172				∞ , -144
x_{11}			-97	-119								∞ , -85

Druga iteracija:

x_j	1	2	3	4	5	6	7	8	9	10	11	λ_i
x_i	-70	-59	-97	-130	-98	0	-47	-172	-34	-141	-85	$ \wedge_i $
x_1					-98						-85	-70
x_2	-70										-80	-59
x_3				-125				-124				-97
x_4								-147		-144		-130
x_5				-130						-110		-98
x_6		-12					-32		-34			0
x_7	-66				-48							-47
x_9		-59					-47					-34
x_{10}								-172				-144
x_{11}			-97	-119								-85

Najduži put je
$$x_6 \to x_9 \to x_2 \to x_1 \to x_5 \to x_4 \to x_{10} \to x_8$$
, dužina je $34+25+11+28+32+14+28=172$.

6. Klijentski računar K vrši istovremeni download neke datoteke sa 3 servera S1, S2 i S3. Put od tih servera do klijentskog računara vrši se putem mreže posrednika (rutera) R1 – R8. Ispod je naveden popis raspoloživih komunikacionih kanala, pri čemu trojka oblika (X, Y, b) označava da je moguća komunikacija od čvorišta X do čvorišta Y maksimalnom brzinom od b Mbita/s:

(S1, R8, 150) (S2, R3, 90) (S2, R8, 30) (S3, R1, 100) (S3, R3, 130) (R1, R3, 110) (R1, R4, 90) (R2, K, 80) (R3, R2, 150) (R3, R5, 70) (R4, R2, 50) (R4, R5, 110) (R5, K, 110) (R6, K, 80) (R7, R5, 70) (R7, R6, 90) (R8, R7, 130)

Primjenom Ford-Fulkersonovog algoritma odredite maksimalnu brzinu kojom klijent može izvršiti download posmatrane datoteke kao i kolika će pri tome biti aktuelna brzina prenosa

podataka kroz svaki od navedenih raspoloživih komunikacionih kanala. Postupak obavite "naslijepo", bez crtanja grafa, vršeći samo manipulacije sa matricom kapaciteta grana.

Obzirom da imamo tri izvora, napravimo jedan superizvor (SI) i povežimo ga sa ta tri izvora beskonačnim kapacitetima. Imamo:

	SI	S_1	S_2	S_3	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	K	
SI	0	∞	∞	∞	0	0	0	0	0	0	0	0	0	$\leftarrow -/0$
S_1	0	0	0	0	0	0	0	0	0	0	0	150	0	$\leftarrow SI/1$
S_2	0	0	0	0	0	0	90	0	0	0	0	30	0	$\leftarrow SI/1$
S_3	0	0	0	0	100	0	130	0	0	0	0	0	0	$\leftarrow SI/1$
R_1	0	0	0	0	0	0	110	90	0	0	0	80	0	$\leftarrow S_3/2$
R_2	0	0	0	0	0	0	0	0	0	0	0	0	80	$\leftarrow R_3/3$
R_3	0	0	0	0	0	150	0	0	70	0	0	0	0	$\leftarrow S_2/2 - S_3/2$
R_4	0	0	0	0	0	50	0	0	110	0	0	0	0	$\leftarrow R_1/3$
R_5	0	0	0	0	0	0	0	0	0	0	0	0	110	$\leftarrow R_3/3$
R_6	0	0	0	0	0	0	0	0	0	0	0	0	80	$\leftarrow R_7/4$
R_7	0	0	0	0	0	0	0	0	70	90	0	0	0	$\leftarrow R_8/3$
R_8	0	0	0	0	0	0	0	0	0	0	130	0	0	$\leftarrow S_1/2 - S_2/2$
K	0	0	0	0	0	0	0	0	0	0	0	0	0	$] \leftarrow R_5/4$

Povećavajući lanac 1:
$$S_1 \rightarrow R_8 \rightarrow R_7 \rightarrow R_6 \rightarrow K$$

 $\Delta_{max} = \min \{90, 130, 80, 150\} = 80;$

	SI	S_1	S_2	S_3	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	K	
SI	0	∞	∞	∞	0	0	0	0	0	0	0	0	0	← -/0
S_1	0	0	0	0	0	0	0	0	0	0	0	70	0	$\leftarrow SI/1$
S_2	0	0	0	0	0	0	90	0	0	0	0	30	0	$\leftarrow SI/1$
S_3	0	0	0	0	100	0	130	0	0	0	0	0	0	$\leftarrow SI/1$
R_1	0	0	0	0	0	0	110	90	0	0	0	80	0	$\leftarrow S_3/2$
R_2	0	0	0	0	0	0	0	0	0	0	0	0	80	$\leftarrow R_3/3$
R_3	0	0	0	0	0	150	0	0	70	0	0	0	0	$\leftarrow S_2/2$
R_4	0	0	0	0	0	50	0	0	110	0	0	0	0	$\leftarrow R_1/3$
R_5	0	0	0	0	0	0	0	0	0	0	0	0	110	$\leftarrow R_3/3$
R_6	0	0	0	0	0	0	0	0	0	0	80	0	0	$\leftarrow R_7/4$
R_7	0	0	0	0	0	0	0	0	70	10	0	80	0	$\leftarrow R_8/3$
R_8	0	0	80	0	0	0	0	0	0	0	50	0	0	$\leftarrow S_1/2 - S_2/2$
K	0	0	0	0	0	0	0	0	0	80	0	0	0	$\leftarrow R_5/4$

Povećavajući lanac 2:
$$S_2 \to R_3 \to R_2 \to K$$

 $\Delta_{max} = \min \{150, 90, 80\} = 80;$

	SI	S_1	S_2	S_3	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	K	
SI	0	∞	∞	∞	0	0	0	0	0	0	0	0	0	$\leftarrow -/0$
S_1	0	0	0	0	0	0	0	0	0	0	0	70	0	$\leftarrow SI/1$
S_2	0	0	0	0	0	0	10	0	0	0	0	30	0	$\leftarrow SI/1$
S_3	0	0	0	0	100	0	130	0	0	0	0	0	0	$\leftarrow SI/1$
R_1	0	0	0	0	0	0	110	90	0	0	0	80	0	$\leftarrow S_3/2$
R_2	0	0	0	0	0	0	80	0	0	0	0	0	0	$\leftarrow R_3/3$
R_3	0	0	80	0	0	70	0	0	70	0	0	0	0	$\leftarrow S_2/2$
R_4	0	0	0	0	0	50	0	0	110	0	0	0	0	$\leftarrow R_1/3$
R_5	0	0	0	0	0	0	0	0	0	0	0	0	110	$\leftarrow R_3/3$
R_6	0	0	0	0	0	0	0	0	0	0	80	0	0	$\leftarrow R_7/4$
R_7	0	0	0	0	0	0	0	0	70	10	0	80	0	$\leftarrow R_8/3$
R_8	0	0	80	0	0	0	0	0	0	0	50	0	0	$\leftarrow S_1/2 - S_2/2$
K	0	0	0	0	0	80	0	0	0	80	0	0	0	$\leftarrow R_5/4$

Povećavajući lanac 3: $S_2 \rightarrow R_8 \rightarrow R_7 \rightarrow R_5 \rightarrow K$ $\Delta_{max} = \min \{70, 50, 30, 110\} = 30;$

	SI	S_1	S_2	S_3	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	K	
SI	0	∞	∞	∞	0	0	0	0	0	0	0	0	0	$\leftarrow -/0$
S_1	0	0	0	0	0	0	0	0	0	0	0	70	0	$\leftarrow \text{SI/1}$
S_2	0	0	0	0	0	0	10	0	0	0	0	0	0	$\leftarrow \text{SI/1}$
S_3	0	0	0	0	100	0	130	0	0	0	0	0	0	$\leftarrow \text{SI}/1$
R_1	0	0	0	0	0	0	110	90	0	0	0	80	0	$\leftarrow S_3/2$
R_2	0	0	0	0	0	0	80	0	0	0	0	0	0	$\leftarrow R_3/3$
R_3	0	0	80	0	0	70	0	0	70	0	0	0	0	$\leftarrow S_2/2$
R_4	0	0	0	0	0	50	0	0	110	0	0	0	0	$\leftarrow R_1/3$
R_5	0	0	0	0	0	0	0	0	0	0	30	0	80	$\leftarrow R_3/3$
R_6	0	0	0	0	0	0	0	0	0	0	80	0	0	$\leftarrow R_7/4$
R_7	0	0	0	0	0	0	0	0	40	10	0	110	0	$\leftarrow R_8/3$
R_8	0	0	110	0	0	0	0	0	0	0	20	0	0	$\leftarrow S_1/2 - S_2/2$
K	0	0	0	0	0	80	0	0	30	80	0	0	0	$\leftarrow R_5/4$

Povećavajući lanac 4:
$$S_3 \rightarrow R_1 \rightarrow R_4 \rightarrow R_5 \rightarrow K$$

 $\Delta_{max} = \min \{100, 90, 110, 80\} = 80;$

	SI	S_1	S_2	S_3	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	K	
SI	0	∞	∞	∞	0	0	0	0	0	0	0	0	0	← -/0
S_1	0	0	0	0	0	0	0	0	0	0	0	70	0	$\leftarrow SI/1$
S_2	0	0	0	0	0	0	10	0	0	0	0	0	0	$\leftarrow SI/1$
S_3	0	0	0	0	20	0	130	0	0	0	0	0	0	$\leftarrow SI/1$
R_1	0	0	0	80	0	0	110	10	0	0	0	80	0	$\leftarrow S_3/2$
R_2	0	0	0	0	0	0	80	0	0	0	0	0	0	$\leftarrow R_3/3$
R_3	0	0	80	0	0	70	0	0	70	0	0	0	0	$\leftarrow S_2/2$
R_4	0	0	0	0	80	50	0	0	30	0	0	0	0	$\leftarrow R_1/3$
R_5	0	0	0	0	0	0	0	80	0	0	30	0	0	$\leftarrow R_3/3$
R_6	0	0	0	0	0	0	0	0	0	0	80	0	0	$\leftarrow R_7/4$
R_7	0	0	0	0	0	0	0	0	40	10	0	110	0	$\leftarrow R_8/3$
R_8	0	0	110	0	0	0	0	0	0	0	20	0	0	$\leftarrow S_1/2 - S_2/2$
K	0	0	0	0	0	80	0	0	110	80	0	0	0	$\leftarrow R_5/4$

Algoritam terminira jer smo iscrpili sve povezujuće grane. Sada nađimo optimalan protok oduzimanjem kapaciteta rezervi kroz pojedine grane od kapaciteta grana koje su zadane na početku.

Ukupan maksimalni protok je 110 + 80 + 80 = 30 + 80 + 80 + 80 = 270 Mbit/s

7. Na nekoj zabavi, šest atraktivnih djevojaka D1 – D6 upoznalo je pet isto tako atraktivnih momaka M1 – M5. Tom prilikom rodile su se i uzajamne simpatije. Pri tome, djevojke su se pokazale pomalo neodlučne, jer se svakoj od njih sviđa više momaka. U sljedećoj tablici prikazano je kojoj djevojci se sviđaju koji momci:

Djevojka:	Momci:
D_1	M_3, M_4
D_2	M_2, M_3, M_4
D_3	M_1, M_4, M_5
D_4	M_2, M_3, M_4
D_5	M_2, M_3, M_4, M_5
D_6	M_2, M_4

Sto se tiče momaka, oni su se pokazali kao potpuno indiferentni, to jest svakom od njih se sviđa svaka od djevojaka (što se ovdje pokazalo kao dobro, jer se u ovom zadatku oni svakako ništa ne pitaju). Pronađite maksimalan broj parova koji se može formirati tako da ni jedna djevojka ne bude u vezi sa nekim od momaka koji joj se ne sviđa (s obzirom da ima "višak" djevojaka u odnosu na momke, jedna od djevojaka će nažalost morati "izvisiti"). Podrazumijeva se da jedna djevojka može biti u vezi samo sa jednim momkom i obrnuto (tj. poligamija i poliandrija su isključeni). Problem riješite svođenjem ovog problema na problem maksimalnog protoka i primjenom Ford-Fulkersonovog algoritma (bez obzira što se, zbog male dimenzionalnosti, ovaj problem može lako riješiti intuitivno).

Pretpostavimo da su svi ulazni čvorovi (djevojke) povezani na jedan izvor (I), a svi izlazni čvorovi (momci) povezani na ponor (P). Maksimalno uparivanje dobijamo Ford-Fulkersonovim algoritmom pri čemu označavamo izabrani protok (pozitivno uparivanje) zelenom, a nemoguća crvenom bojom:

		M_1	M_2	M_3	M_4	M_5
	D_1			1	1	
	D_2		1	1	1	
Iteracija 1:	D_3	1			1	1
	D_4		1	1	1	
	D_5		1	1	1	1
	\overline{D}		-1		-1	

Dobili smo uparivanje D_3 - M_1 .

		M_1	M_2	M_3	M_4	M_5
	D_1			1	1	
	D_2		1	1	1	
Iteracija 2:	D_3	1			1	1
	D_4		1	1	1	
	D_5		1	1	1	1
	D_6		1		1	

Dobili smo uparivanje D_5 - M_5 .

	M_1	M_2	M_3	M_4	M_5
D_1			1	1	
D_2		1	1	1	
D_3	1			1	1
D_4		1	1	1	
D_5		1	1	1	1
D_6		1		1	
	D_3 D_4	$ \begin{array}{c cccc} D_1 & & & \\ D_2 & & & \\ D_3 & 1 & & \\ D_4 & & & \\ \end{array} $	$egin{array}{c cccc} D_1 & & & & & \\ \hline D_2 & & 1 & & & \\ \hline D_3 & 1 & & & & \\ \hline D_4 & & 1 & & & \\ \hline \end{array}$	$\begin{array}{c cccc} D_1 & & & 1 \\ D_2 & & 1 & 1 \\ D_3 & 1 & & & \\ D_4 & & 1 & 1 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Dobili smo uparivanje D_2 - M_4 .

		M_1	M_2	M_3	M_4	M_5
	D_1			1	1	
	D_2		1	1	1	
Iteracija 4:	D_3	1			1	1
	D_4		1	1	1	
	D_5		1	1	1	1
	D_6		1		1	

Dobili smo uparivanje D_1 - M_3 .

 $\overline{M_1}$ M_2 M_3 M_4 $\overline{M_5}$ $\overline{D_1}$ $\overline{D_2}$ 1 1 1 Iteracija 5: D_3 1 1 $\overline{D_4}$ 1 1 1 D_5 1 1 1 $\overline{D_6}$

Dobili smo uparivanje D_6 - M_2 .

Primijetimo da je "izvisila" djevojka D₄ iako ovo naravno nije jedino moguće uparivanje djevojaka kao što znamo iz postavke. Dobijeni rezultat odgovara činjenici da nije dozvoljena poligamija ni poliandrija pa je naše uparivanje:

 $Djevojka \overline{D_4 \ je \ s}lobodna.$