遞歸神經網絡 Recurrent Neural Network

aGENDA

- Sequence Data的分析(1)Time Series
- Sequence Data的分析(2)NLP
- 遞歸神經網絡
 Recurrent Neural Network

NLP in security

Sequence Data 的分析(1) Time Series

Time Series https://en.wikipedia.org/wiki/Time_series

一組按照時間發生先後順序進行排列的數據點序列。

通常一組時間序列的時間間隔為一恆定值(如1秒,5分鐘,12小時,7天,1年), 因此時間序列可以作為離散時間數據進行分析處理。

時間序列廣泛應用:

- 數理統計、
- 信號處理、
- 模式識別、
- 計量經濟學、
- 數學金融、
- 天氣預報、
- 地震預測、
- 腦電圖、

控制工程、航空學、通信工程以及絕大多數涉及到時間數據測量的應用科學與工程學。

Time Series Analysis

時間序列模型基本概念:AR, MA, ARMA, ARIMA 模型

https://mropengate.blogspot.com/2015/11/time-series-analysis-ar-ma-arma-arima.html

http://yongfeng.me/attach/time-series-analysis-zhang.pdf

https://ocw.mit.edu/courses/mathematics/18-s096-topics-in-mathematics-with-applications-in-finance-fall-2013/video-lectures/lecture-8-time-series-analysis-i/

Home » Courses » Mathematics » Topics in Mathematics with Applications in Finance » Video Lectures » Lecture 8: Time Series Analysis I

Lecture 8: Time Series Analysis I

Deep Time Series Classification

- 預測股票每日最高價
- 空氣污染預測
- 地震預測
- PM2.5預測
- GDP預測
- 人口數預測

空氣污染預測

https://raw.githubusercontent.com/jbrownlee/Datasets/master/pollution.csv

Multivariate LSTM Forecast Model https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/

https://www.itread01.com/content/1544492764.html

https://www.kaggle.com/

https://faridrashidi.github.io/kaggle-solutions/

Kaggle Solutions

The Most Comprehensive List of Kaggle Solutions and Ideas

This is a list of almost all available solutions and ideas shared by top performers in the past Kaggle competitions. This list will get updated as soon as a new competition finished. If you find other solutions beside the ones listed here I would suggest you to contribute to this repo by making a pull request. The symbols were used in this list is described here.

If you found it interesting you can give a star or make a fork

C) Star 20 O Fork 6

Check out the following markdown pages about Top Kagglers Tips/Tricks and all Kernels of The week.

- · Top Kagglers Interviews and Lectures

https://www.kaggle.com/c/career-con-2019

https://www.kaggle.com/purplejester/pytorch-deep-time-series-classification https://github.com/ammar1y/My-Solution-to-Help-Navigate-Robots-Competition

https://www.youtube.com/watch?v=ageh45rxyXU

Kaggle Earthquake Prediction Challenge

https://www.kaggle.com/c/LANL-Earthquake-Prediction/data

https://github.com/Kaggle/kaggle-api

https://www.youtube.com/watch?v=TffGdSsWKIA

https://github.com/llSourcell/Kaggle_Earthquake_challenge

DNA Sequence Data Analysis

Working with DNA sequence data for ML

https://www.kaggle.com/thomasnelson/working-with-dna-sequence-data-for-ml

Time series analysis in cybersecurity

International Journal of Research in Engineering, Science and Management Volume-3, Issue-7, July-2020

journals.resaim.com/ijresm | ISSN (Online): 2581-5792

Analyzing and Predicting Cyber Hacking with Time Series Models

C. Soundarya^{1*}, S. Usha²

¹PG Scholar, Department of Computer Science and Engineering, Anna University, BIT-Campus, Tiruchirappalli, India

²Assistant Professor, Department of Computer Science and Engineering, Anna University, BIT-Campus, Tiruchirappalli, India

*Corresponding author: csoundarya1995@gmail.com

A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems

January 2018 · International Journal of Engineering & Technology 7(3):479-482

Authors:

Ranjit Panigrahi Sikkim Manipal Institute of Technology

Samarjeet Borah
Sikkim Manipal Institute of Technology

 $https://www.researchgate.net/publication/329045441_A_detailed_analysis_of_CICIDS2017_dataset_for_designing_Intrusion_Detection_Systems$

class imbalance problem

Table 2: Overall characteristics of CI	CIDS201 / dataset	_	Table 4: Class	prevalence rati	to of CICIDS2017	dataset
Dataset Name	CICIDS2018					% of

	Table 2: Overall characteristics of Ci	CIDS201 / dataset		Table 4: Class p	revalence rati	o of CICIDS2017 o	dataset
١	Dataset Name	CICIDS2018			NII	0/ - 0	% of preva-
	Dataset Type	Multi class	Sl	Normal /	Number	% of preva-	lence w.r.t.
	Year of release	2017	No	Attack Labels	of in-	lence w.r.t. the	the total
	Total number of distinct instances	2830540			stances	majority class	instances
	Number of features	83	1	BENIGN	2359087	1	83.34406
	Number of distinct classes	15	2	Bot	1966	0.000833	0.06946
			3	DDoS	41835	0.017734	1.47799
Table 3: Class wise instance occurrence of CICIDs2017 dataset		4	DoS GoldenEye	10293	0.004363	0.36364	
	Class Labels	Number of instances	5	DoS Hulk	231072	0.09795	8.16353
	BENIGN	2359087	6	DoS Slow-	5499	0.002331	0.19427
	DoS Hulk	231072	6	httptest	3499	0.002331	0.19427
ı	PortScan	158930	7	DoS slowloris	5796	0.002457	0.20477

Class Labels	Number of instances	3	Dos Huik	2310/2	0.09795	8.10333
BENIGN	2359087	6	DoS Slow-	5499	0.002331	0.19427
DoS Hulk	231072	6	httptest	3499	0.002331	0.19427
PortScan	158930	7	DoS slowloris	5796	0.002457	0.20477
DDoS	41835	8	FTP-Patator	7938	0.003365	0.28044
DoS GoldenEye	10293	9	Heartbleed	11	0.000005	0.00039
FTP-Patator	7938	10	Infiltration	36	0.000015	0.00127
SSH-Patator	5897	11	PortScan	158930	0.067369	5.61483
DoS slowloris	5796	12	SSH-Patator	5897	0.0025	0.20833
DoS Slowhttptest	5499	13	Web Attack -	1507	0.000639	0.05324
Bot	1966	13	Brute Force	1307	0.000039	0.03324
Web Attack – Brute Force	1507	14	Web Attack -	21	0.000009	0.00074
Web Attack – XSS	652	14	Sql Injection	21	0.000007	0.00074

•					
	15	Web Attack – XSS	652	0.000276	0.02303

Table 5: Characteristics of new attack labels with their prevalence rate in CICIDS2017 dataset

Tutte II	I CICIDS201	/ dataset			
SI No	New Labels	Old Labels	Number of instances	% of prevalence w.r.t. the majori- ty class	% of prevalence w.r.t. the total instances
1	Normal	Benign	2359087	100	83.34
2	Botnet ARES	Bot	1966	0.083	0.06
3	Brute	FTP-Patator,	13835	0.59	0.48
3	Force	SSH-Patator	13633	0.39	0.40
4	Dos/DDos	DDoS, DoS GoldenEye, DoS Hulk, DoS Slow- httptest, DoS slowloris, Heartbleed	294506	12.49	10.4
5	Infiltration	Infiltration	36	0.001	0.001
6	PortScan	PortScan	158930	6.74	5.61
7	Web At- tack	Web Attack – Brute Force, Web Attack – Sql Injection, Web Attack – XSS	2180	0.092	0.07

Sequence Data 的分析(2) NLP

NLP Natural Language Processing 自然語言處理

https://zh.wikipedia.org/wiki/自然語言處理

- 自然語言處理(Natural Language Processing,NLP)是人工智慧和語言學領域的分支學科。
- 此領域探討如何處理及運用自然語言;自然語言處理包括多方面和步驟,基本有認知、 理解、生成等部分。
- 自然語言認知和理解是讓電腦把輸入的語言 變成有意思的符號和關係,然後根據目的再 處理。自然語言生成系統則是把電腦資料轉 化為自然語言。

Natural Language Processing

1700 benchmarks • 517 tasks • 1498 datasets • 15621 papers with code

Language Modelling

https://paperswithcode.com/area/natural-language-processing

2D Classification

Question Answering

▶ See all 14 tasks

Machine Translation

Information	Information	Network Traffic	Malware	Event Detection and Prediction
Gathering	Generation	Analysis	Analysis	
Audio / Textual	Identity / Private	Anomaly	Code	Threat
Impersonation	Information	Detection	Analysis	Intelligence
(Spear-)	Censorship and	Domain	Vulnerability	Risk
Phishing	Disinformation	Classification	Assessment	Management

linkedin.com/in/ursachi/

https://www.masernet.com/project/role-and-applications-of-nlp-incybersecurity

RNN for....

列到序列翻譯(sequence to sequence translation),包括將語音轉為文字或翻譯不同語言

Sequential patterns

Text

Speech

Audio

Video

Physical processes

Anything embedded in time (almost everything)

https://brohrer.mcknote.com/zh-Hant/how_machine_learning_works/how_rnns_lstm_work.html

NLP應用

```
文字朗讀(Text to speech)/語音合成(Speech)
synthesis)
語音識別(Speech recognition)
中文自動分詞 ( Chinese word segmentation )
詞性標註(Part-of-speech tagging)
句法分析 ( Parsing )
自然語言生成(Natural language generation)
文字分類 ( Text categorization )
資訊檢索(Information retrieval)
資訊抽取(Information extraction)
文字校對(Text-proofing)
問答系統(Question answering)
機器翻譯(Machine translation)
自動摘要(Automatic summarization)
文字蘊涵(Textual entailment)
命名實體辨識(Named entity recognition)
```


Negative(負雷)

情緒分析

搜尋建議更正

類標示 機器翻譯

人名辨識擷取

Chinese Word Segmentation中文分詞

Chinese word segmentation is the task of splitting Chinese text (a sequence of Chinese characters) into words.

'上海浦東開發與建設同步' → ['上海', '浦東', '開發', '與', '建設', '同步']

- ♠ marks the system that uses character unigram as input. ♠ marks the system that uses character bigram as input.
 - Huang et al. (2019): BERT + model compression + multi-criterial learing ◆
 - Yang et al. (2018): Lattice LSTM-CRF + BPE subword embeddings ◆◆
 - Ma et al. (2018): BiLSTM-CRF + hyper-params search♠♠
 - Yang et al. (2017): Transition-based + Beam-search + Rich pretrain◆◆
 - Zhou et al. (2017): Greedy Search + word context♠
 - Chen et al. (2017): BiLSTM-CRF + adv. loss♠♠
 - Cai et al. (2017): Greedy Search+Span representation●
 - Kurita et al. (2017): Transition-based + Joint model♠
 - Liu et al. (2016): neural semi-CRF♠
 - · Cai and Zhao (2016): Greedy Search◆
 - Chen et al. (2015a): Gated Recursive NN♠♠
 - Chen et al. (2015b): BiLSTM-CRF◆◆

https://github.com/sebastianruder/NLP-progress/blob/master/chinese/chinese_word_segmentation.md

Chinese Word Segmentation中文分詞

chapter-3 中文分詞技術 chapter-4 詞性標注與命名實體識別 chapter-5 關鍵字提取 chapter-6 句法分析

chapter-7 文本向量化 chapter-8 情感分析 chapter-9 NLP中用到的機器學習演算法 chapter-10 基於深度學習的NLP演算法

https://github.com/nlpinaction/learning-nlp

Chinese Word Segmentation中文分詞

https://github.com/fxsjy/jieba

支持繁體分詞 支持自訂字典 MIT 授權協議

支持三種分詞模式:

全模式,把句子中所有的可以成詞的詞語都掃描出來,速度非常快,但是不能解決歧義;

精確模式,試圖將句子最精確地切開,適合文本分析;

搜索引擎模式,在精確模式的基礎上,對長詞再次切分,提高召回率,適合用於搜尋引擎分詞。

jieba

"結巴"中文分詞:做最好的 Python 中文分片語件
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.

import jieba

sent = '中文分詞是文本處理不可或缺的一步!'

seg_list = jieba.cut(sent, cut_all=True) print('全模式:','/'.join(seg_list))

seg_list = jieba.cut(sent, cut_all=False) print('精確模式:','/'.join(seg_list))

seg_list = jieba.cut(sent) print('預設精確模式:','/'.join(seg_list))

seg_list = jieba.cut_for_search(sent) print('搜尋引擎模式', '/ '.join(seg_list))

```
1 moort jieba
3 sent = '中文分詞是文本處理不可或缺的一步!'
  seg list = jieba.cut(sent, cut all=True)
7 print('全模式: ', '/' . join(seg list))
9 seg_list = jieba.cut(sent, cut_all=False)
10 print('精確模式: ', '/ '. join(seg_list))
12 seg list = jieba.cut(sent)
13 print('預設精確模式: ', '/'. join(seg_list))
15 seg_list = jieba.cut_for_search(sent)
16 print('搜尋引擎模式', '/'. join(seg_list))
17
```

全模式: 中文/分/詞/是/文本/處/理/不可/不可或缺/或缺/的/一步// 精確模式: 中文/分詞/是/文本/處理/不可或缺/的/一步/! 預設精確模式: 中文/分詞/是/文本/處理/不可或缺/的/一步/! 搜尋引擎模式 中文/分詞/是/文本/處理/不可/或缺/不可或缺/的/一步/!

搜索引擎模式,在精確模式的基礎上,對長詞再次切分,提高召回率,適合用於搜尋引擎分詞。

http://terms.naer.edu.tw/detail/1678982/

字詞(word)是語言系統中具有獨立語意或扮演特定語法功能,且可以自由使用的最小語言單位。

依據字詞在句法結構或語言形態上扮演的角色, 經由詞性分類賦予語句中每個字詞適當之詞性符號或標記的過程, 則稱為詞性標記(part-of-speech tagging,或稱POS tagging)。

隨著語言的不同,詞性分類的方式也有所差異。 基本上可分為動詞(verb)、名詞(noun)、形容詞(adjective)、副詞(adverb),以及其他類別,例如:代名詞(pronoun)、介係詞(preposition)、連接詞(conjunction)或感嘆詞(interjection)

http://terms.naer.edu.tw/detail/1678982/

詞性標記的範例

Tagging is the task of labeling (or tagging) each word in a sentence with its appropriate part of speech.

Tagging_VBG is_BEZ the_AT task_NN of_IN labeling_VBG (_(or_CC tagging_VBG)_) each_DT word_NN in_IN a_AT sentence_NN with_IN its_PP\$ appropriate_JJ part_NN of_IN speech_NN ._.

VBG為動名詞或現在分詞,BEZ代表is,AT為冠詞, NN為名詞,IN為介係詞,CC為連接詞,DT為限定 詞,PP\$為所有格,JJ為形容詞。

!pip list | grep nltk

```
import nltk
from nltk import word_tokenize, pos_tag

nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')

print(pos_tag(word_tokenize("I'm learning NLP")))
# [('I', 'PRP'), ("'m", 'VBP'), ('learning', 'VBG'), ('NLP', 'NNP')]
```

The complete list of POS tags in nltk with examples https://medium.com/@faisal-fida/the-complete-list-of-pos-tags-in-nltk-with-examples-eb0485f04321

pos_tag load the Standard treebank POS tagger

- 1. CC Coordinating conjunction
- 2. CD Cardinal number
- 3. DT Determiner
- 4. EX Existential there
- 5. FW Foreign word
- 6. IN Preposition or subordinating conjunction
- 7. JJ Adjective
- 8. JJR Adjective, comparative
- 9. JJS Adjective, superlative

•••••

請參閱https://blog.csdn.net/fxjtoday/article/details/5841453

```
1 nltk. download()
NLTK Downloader
   d) Download 1) List u) Update c) Config h) Help q) Quit
Downloader> 1
Packages:
  [ ] abc..... Australian Broadcasting Commission 2006
  [ ] alpino..... Alpino Dutch Treebank
 [*] averaged_perceptron_tagger_Averaged_Perceptron_Tagger_
  [ ] averaged_perceptron_tagger_ru Averaged Perceptron Tagger (Russian)
     basque grammars..... Grammars for Basque
 [ ] biocreative_ppi.... BioCreAtIvE (Critical Assessment of Information
                      Extraction Systems in Biology)
  [ ] bllip_wsj_no_aux.... BLLIP Parser: WSJ Model
     book_grammars..... Grammars from NLTK Book
     brown..... Brown Corpus
     brown_tei..... Brown Corpus (TEI XML Version)
     cess cat..... CESS-CAT Treebank
     cess_esp..... CESS-ESP Treebank
```

Complete guide for training your own Part-Of-Speech Tagger

https://nlpforhackers.io/training-pos-tagger/

http://www.nltk.org/book/

Natural Language Processing with Python

- Analyzing Text with the Natural Language Toolkit

Steven Bird, Ewan Klein, and Edward Loper

This version of the NLTK book is updated for Python 3 and NLTK 3. The first edition of the book, published by O'Reilly, is available at http://nltk.org/book_led/. (There are currently no plans for a second edition of the book.)

- 0. Preface
- 1. Language Processing and Python
- 2. Accessing Text Corpora and Lexical Resources
- 3. Processing Raw Text
- 4. Writing Structured Programs
- 5. Categorizing and Tagging Words (minor fixes still required)
- 6. Learning to Classify Text
- 7. Extracting Information from Text
- 8. Analyzing Sentence Structure
- 9. Building Feature Based Grammars
- 10. Analyzing the Meaning of Sentences (minor fixes still required)
- 11. Managing Linguistic Data (minor fixes still required)
- 12. Afterword: Facing the Language Challenge

Bibliography

Term Index

命名實體識別(Named Entity Recognition, NER)

在句子的序列中,定位並識別人名、地名、機構名等任務。

"There was nothing about this storm that was as expected," said Jeff Masters, a meteorologist and founder of Weather Underground. "Irma could have been so much worse. If it had traveled 20 miles north of the coast of Cuba, you'd have been looking at a (Category) 5 instead of a (Category) 3."

Person

Organization

Location

圖片來源:https://blog.paralleldots.com/data-science/named-entity-recognition-milestone-models-papers-and-technologies/

https://ithelp.ithome.com.tw/articles/10209418

Text classification 文本分類

- 1.詞嵌入向量化:word2vec, FastText等等
- 2. 卷積神經網路特徵提取:Text-CNN, Char-CNN等等
- 3.上下文機制:Text-RNN,BiRNN,RCNN等等
- 4.記憶存儲機制:EntNet,DMN等等
- 5.注意力機制:HAN等等

text classification 文本分類

傳統機器學習時代的主流分類器:Naive Bayes,Maximum Entropy, K-NN,和SVM。 經典特徵模型:經典距離定義模型Vector Space Model(Rocchio), N-grams等等。

Text classification 文本分類

- 1. 詞嵌入向量化:word2vec, FastText等等
- 2. 卷積神經網路特徵提取:Text-CNN, Char-CNN等等
- 3. 上下文機制:Text-RNN,BiRNN,RCNN等等
- 4. 記憶存儲機制:EntNet, DMN等等
- 5. 注意力機制:HAN等等

Question-Answering system 智能問答

Question-Answering Systems

- Systems that answer questions asked in natural language
- Goal-oriented (to complete one or more tasks):
 - Obtain information/facts
 - Seek recommendations
 - Make an appointment
 - Ask for help
 - 0 ...

[AAAI 2019 tutorial] End-to-end goal-oriented question answering systems https://www.slideshare.net/QiHe2/aaai-2019-tutorial-endtoend-goaloriented-question-answering-systems

Question-Answering system 智能問答

https://github.com/l11x0m7/book-of-qna-code

智能問答與深度學習 王海良,等電子工業出版社 2018-11-01 Question And Answer Demo Using BERT NLP

Paragraph *

California, nicknamed the Googleplex. In August 2015,
Google announced plans to reorganize its various interests
as a conglomerate called Alphabet Inc. Google is
Alphabet's leading subsidiary and will continue to be the
umbrella company for Alphabet's Internet interests. Sundar
Pichai was appointed CEO of Google, replacing Larry Page
who became the CEO of Alphabet.

*Maximum 1000 characters

Question 1 *

Who is current CEO?

Sundar Pichai

https://www.tenlong.com.tw/products/97871 21349218 https://www.pragnakalp.com/demos/BERT-NLP-QnA-Demo/

NLP Transfer Learning 遷移學習

面向文本分類的通用語言模型微調 Universal Language Model Fine-tuning for Text Classification Jeremy Howard & Sebastian Ruder https://arxiv.org/abs/1801.06146

https://kknews.cc/code/6qqggj3.html

https://medium.com/mlreview/understanding-building-blocks-of-ulmfit-818d3775325b

Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch.

We propose **Universal Language Model Fine-tuning (ULMFiT)**, an effective transfer learning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a language model.

Our method significantly outperforms the state-of-the-art on six text classification tasks, reducing the error by 18-24% on the majority of datasets. Furthermore, with only 100 labeled examples, it matches the performance of training from scratch on 100x more data. We open-source our pretrained models and code.

機器翻譯

Machine Translation

Transformer(2017)

BERT(2018)

XLNet(2019)

ELMO, BERT, GPT https://www.youtube.com/watch?v=UYPa347-DdE

Seq2Seq(2014)

Sequence to Sequence Learning with Neural Networks

Ilya Sutskever
Google
ilyasu@google.com

Oriol Vinyals
Google
vinyals@google.com

Quoc V. Le Google qvl@qooqle.com

Sequence to Sequence 是由 Encoder 與 Decoder 兩個 RNN 構成

運作原理:當看到一段話時,會先將這句話理解吸收,再 根據我們理解的內容說出回覆,Sequence to Sequence 就 是在模擬這個過程。

https://zake7749.github.io/2017/09/28/Sequence-to-Sequence-tutorial/#Sequence_to_Sequence

號歸和經經經 Recurrent Neural Network 模型

SimpleRNN

所有迴圈神經網路結構都是由完全相同結構的(神經網路)模組進行複製而成的。 在普通的RNNs中,這個模組結構非常簡單,比如僅是一個單一的 tanh 層

LSTMs 也有類似的結構,但是它們不再只是用一個單一的 tanh 層,而是用了四個相互作用的層

https://brohrer.mcknote.com/zh-Hant/how_machine_learning_works/how_rnns_lstm_work.html

https://blog.csdn.net/fendouaini/article/details/80198994

GRU

https://blog.csdn.net/mpk_no1/article/details/72875185

Understanding LSTM Networks

Posted on August 27, 2015

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://blog.csdn.net/menc15/article/details/71271566

https://blog.csdn.net/Jerr__y/article/details/58598296

About

Hacker's guide to Neural Networks

The Unreasonable Effectiveness of Recurrent Neural **Networks**

May 21, 2015

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://github.com/karpathy/char-rnn

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

An example RNN with 4-dimensional input and output layers, and a hidden layer of 3 units (neurons)

A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor.

This chain-like nature reveals that recurrent neural networks are intimately related to sequences and lists.

They're the natural architecture of neural network to use for such data.

The Problem of Long-Term Dependencies

長時期依賴的問題

consider a language model trying to predict the next word based on the previous ones.

the clouds are in the? the clouds are in the sky

不需要更多的資訊,我們就能夠自然而然的想到下一個詞應該是"sky"。

所要預測的內容和相關資訊之間的間隔很小,這種情況下 RNNs 就能夠利用過去的資訊, 很容易的實現

長時期依賴的問題

預測 "I grew up in France … (此處省略1萬字)… I speak ?"

"I grew up in France... I speak fluent French."

預測資訊和相關資訊間的間隔增大,RNNs很難去把它們關聯起來

SimpleRNN

所有迴圈神經網路結構都是由完全相同結構的(神經網路)模組進行複製而成的。 在普通的RNNs中,這個模組結構非常簡單,比如僅是一個單一的 tanh 層

https://www.deviantart.com/toxicpaprika/art/Short-term-memory-88267010

LONG SHORT-TERM MEMORY

NEURAL COMPUTATION 9(8):1735–1780, 1997

Sepp Hochreiter
Fakultät für Informatik
Technische Universität München
80290 München, Germany
hochreit@informatik.tu-muenchen.de
http://www7.informatik.tu-muenchen.de/~hochreit

Jürgen Schmidhuber
IDSIA
Corso Elvezia 36
6900 Lugano, Switzerland
juergen@idsia.ch
http://www.idsia.ch/~juergen

設計初衷是希望能夠解決神經網路中的長期依賴問題,讓記住長期資訊成為神經網路的預設行為,而不是需要很大力氣才能學會。

LSTMs 也有類似的結構,但是它們不再只是用一個單一的 tanh 層,而是用了四個相互作用的層

https://brohrer.mcknote.com/zh-Hant/how_machine_learning_works/how_rnns_lstm_work.html

https://blog.csdn.net/fendouaini/article/details/80198994

Cell State 長時期的記憶保留

LSTMs 最關鍵的地方在於 cell 狀態 和 結構圖上面的那條橫穿的水平線。

cell 狀態的傳輸就像一條傳送帶,向量從整個 cell 中穿過,只是做了少量的線性操作。這種結構能夠很輕鬆地實現資訊從整個 cell 中穿過而不做改變。(這樣就可以實現長時期的記憶保留)

使用Gate來添加或者刪除資訊

每個 LSTM 有三個這樣的門結構,來實現保護和控制資訊。 (分別是 "forget gate layer", 遺忘門; "input gate layer", 傳入門; "output gate layer", 輸出門)

遺忘門 (forget gates)

決定要讓那些資訊繼續通過這個 cell?

sigmoid 神經層

輸出是一個數值都在 0, 1 之間的向量(向量長度和 cell 的狀態 \$ C_{t-1} \$ 一樣),表示讓 \$ C_{t-1} \$ 的各部分資訊通過的比重。

- 0表示"不讓任何資訊通過",
- 1表示"讓所有資訊通過"。

pointwise multiplication operation

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

傳入門 (input gates)

決定讓多少新的資訊加入到 cell 狀態

[1] a sigmoid layer called the "input gate layer" decides which values we'll update.

[2]a tanh layer creates a vector of new candidate values, C~t, that could be added to the state

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

http://blog.csdn.net/Jerr_

combine these two to create an update to the state

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

This output will be based on our cell state, but will be a filtered version

First, we run a sigmoid layer which decides what parts of the cell state we're going to output.

Then, we put the cell state through tanh (to push the values to be between −1 and 1) and multiply it by the output of the sigmoid gate, so that we only output the parts we decided to.

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

GRU

https://blog.csdn.net/mpk_no1/article/details/72875185

雙向LSTM(Bi-directional LSTM)

https://blog.csdn.net/fendouaini/article/details/80198994