SIE 330R Homework, Spring 2023

HW 3 (Chapter 2)

Due: Feb 7

Homework must be readable! Do not just send in numbers or charts. You must explain the homework answers Preferred to receive homework in Word doc format with any excel or Minitab results pasted into word document. You may choose to use pdf which is also OK.

Put answers to all questions in one document NOT in separate documents

2.3: Suppose that we are testing H_0 : $\mu = \mu_0$ vs H_1 : $\mu \neq \mu_0$.

Calculate the P-value for the following observed values of the test statistic.

- a) $Z_0 = 2.25$
- b) $Z_0 = 1.55$
- c) $Z_0 = 2.10$
- d) $Z_0 = 1.95$
- e) $Z_0 = -0.10$

2.5: Suppose that we are testing H_0 : $\mu_1 = \mu_2$ vs H_1 : $\mu_1 \neq \mu_2$ where the sample sizes are $n_1 = n_2 = 12$. Both sample variances are unknown but assumed to be equal. Find bounds on the P-value for the following observed values of the test statistic.

- a) $t_0 = 2.30$
- b) $t_0 = 3.41$
- c) $t_0 = 1.95$
- d) $t_0 = -2.45$

2.8. A computer program has produced the following output for the hypothesis testing problem:

Difference in sample means: 2.35

Degrees of freedom: 18

Standard error of the difference in the sample means: ?

Test statistic: $t_0 = 2.01$

P-Value = 0.0298

(a)	What is the missing value for the st	tandard (error?	
(b)	Is this a two-sided or one-sided test?			
(c)	If $lpha$ =0.05, what are your conclusions	?		
(d)	Find a 90% two-sided CI on the differ	ence in t	the means.	
	5. The shelf life of a carbonated bevion d, and the following results are obtain		of interes	t. Ten bottles are randomly selected and
			ays	
		108	138	
		124	163	
		124	159	
		106	134	
		115	139	
(a)	We would like to demonstrate that the me investigating this claim.	ean shelf	life exceeds	120 days. Set up appropriate hypotheses for
(b)	Test these hypotheses using α = 0.01	What a	are your co	nclusions?
(c)	Find the <i>P</i> -value for the test in part (b).		
(d)	Construct a 99 percent confidence in	terval or	n the mean	shelf life.

2.21. The time to repair an electronic instrument is a normally distributed random variable measured in hours. The repair time for 16 such instruments chosen at random are as follows:

Hours						
159	280	101	212			
224	379	179	264			
222	362	168	250			
149	260	485	170			

- (a) You wish to know if the mean repair time exceeds 225 hours. Set up appropriate hypotheses for investigating this issue.
- (b) Test the hypotheses you formulated in part (a). What are your conclusions? Use α = 0.05.
- (c) Find the P-value for this test.
- (d) Construct a 95 percent confidence interval on mean repair time.