Temperature PID Control

A practical approach using Ziegler-Nichols Caramon Pi

Closed Loop System

PID algorithm
$$u(t) = MV(t) = K_p e(t) + K_i \int_0^t e(\tau) \, d\tau + K_d \frac{de(t)}{dt}$$
 Discrete form
$$u(n) = K_p e(n) + K_i \sum_{k=0}^n e(k) + K_d \left(e(n) - e(n-1) \right)$$

$$K_i = \frac{K_p T_d}{T_i}$$

$$K_d = \frac{K_p T_d}{T}$$

Improved controller, by basing the derivative term on the process value only

$$u(n) = K_p e(n) + K_i \sum_{k=0}^{n} e(k) + K_d (y(n) - y(n-1))$$

Ziegler-Nichols

KP=360, KI=0, KD=0 Set=13deg

Closed-loop tuning method

Ulitmate gain, Ku=360

Ultimate period, Pu=35 minutes = 2100 sec

Sample time, Ts = 10 minutes = 600 sec (*)

(*) Values measured 2016 using CMON R1Axx

	Кр	Ti	Td
Р	Ku / 2	-	-
PI	Ku / 2.2	Pu / 1.2	-
PID	Ku / 1.7	Pu / 2	Pu / 8

Controller Parameters

 Kp
 Ti [s]
 Td [s]

 P
 180.00

 PI
 163.64
 1750

 PID
 211.76
 1050
 262.50

Sample time decreased from 600s to 60s. Possible due to new hardware with SSR.

$$Kd = (Kp \times Td) / Ts$$

	Кр	Ki	Kd	Comment
PID-1	163.64	5.61	-	Z-N, PI
PID-2	211.76	12.10	926.45	Z-N, PID
PID-3	163.64	28.05	-	PID from CMON R1Axx

Step-up

Kp=163.64, Ki=28.05, Kd=0.00

Step-up

Kp=211.76, Ki=12.10, Kd=926.45

Step-down

Kp=163.64, Ki=28.05, Kd=0.00

Step-down

- 0

17.75

Kp=211.76, Ki=12.10, Kd=926.45

Conclusions

- PID-2 is a "true" ZN PID using Ts=60s.
- PID-3 was derived 2016 using Ts=600s.
 Not fitted for the new hardware using SSR and with less Ts. Is a PI and not PID.
- PID-2 has less overshot compared to PID-3.
- PID-2 settles faster than PID-3.
- PID-2 seems less "aggressive" on step-up.
- Both PIDs perform well on step-down.
- The slower decrease of temperature on step-down for PID-2 can be explained by the fact that outdoor temperature was higher during this experiment.
- Some questions can be raised about using the old values for Ku and Pu, as they were derived using Ts=600s. It could be necessary to perform new experiments using the new hardware with Ts=60s.