Introdução Folheações em característica p > 0Um critério via redução **mod** 2

Não-algebricidade de folheações via redução mod 2

Wodson Mendson

Universidade Federal Fluminense - UFF Seminários do IME/UERJ

16 de Outubro, 2025

Estrutura

- Parte I: Introdução
- ullet Parte II: Folheações em característica p
- \bullet Parte III: Um critério via redução $\mathbf{mod}\ 2$

Parte I: Introdução

Folheações

Hoje: folheações em
$$\mathbb{P}^2_K$$

$$K=\overline{K}$$

Folheações

Hoje: folheações em \mathbb{P}^2_K

$$K = \overline{K}$$

Seja $d \in \mathbb{Z}_{>0}$

Uma folheação, \mathcal{F} , de grau d no plano projetivo \mathbb{P}^2_K é dada, módulo K^* , por elemento não-nulo $\omega \in \mathrm{H}^0(\mathbb{P}^2_K, \Omega^1_{\mathbb{P}^2_K}(d+2))$ com conjunto singular finito.

Folheações

Hoje: folheações em \mathbb{P}^2_K

$$K = \overline{K}$$

Seja $d \in \mathbb{Z}_{>0}$

Uma folheação, \mathcal{F} , de grau d no plano projetivo \mathbb{P}^2_K é dada, módulo K^* , por elemento não-nulo $\omega \in \mathrm{H}^0(\mathbb{P}^2_K, \Omega^1_{\mathbb{P}^2_K}(d+2))$ com conjunto singular finito.

Explicitamente:

 \bullet Pela sequencia exata de Euler, podemos ver ω como uma 1-forma projetiva:

$$\omega = Adx + Bdy + Cdz$$

em \mathbb{A}^3_K tais que $A,B,C\in K[x,y,z]$ são homogêneos de grau d+1 e Ax+By+Cz=0com

$$sing(\omega) = \mathcal{Z}(A, B, C) = \{ p \in \mathbb{P}^2_K \mid A(p) = B(p) = C(p) = 0 \}$$

finito.

Folheações via campos

Suponha que a característica de Knão divide $d+2. \label{eq:kindow}$

Folheações via campos

Suponha que a característica de K não divide d+2.

 \bullet Uma folheação de grau d em \mathbb{P}^2_K é determinada, modulo $K^*,$ por um campo homogêneo em \mathbb{A}^3_K :

$$v = A_0 \partial_x + A_1 \partial_y + A_2 \partial_z \in \mathfrak{X}_d(\mathbb{A}_K^3)$$

onde $A_0,A_1,A_2\in K[x,y,z]$ são homogêneos de grau d com

$$\mathbf{div}(v) = \partial_x A_0 + \partial_y A_1 + \partial_z A_2 = 0$$

Folheações via campos

Suponha que a característica de K não divide d+2.

 \bullet Uma folheação de grau d em \mathbb{P}^2_K é determinada, modulo $K^*,$ por um campo homogêneo em $\mathbb{A}^3_K\colon$

$$v = A_0 \partial_x + A_1 \partial_y + A_2 \partial_z \in \mathfrak{X}_d(\mathbb{A}_K^3)$$

onde $A_0,A_1,A_2\in K[x,y,z]$ são homogêneos de grau d com

$$\mathbf{div}(v) = \partial_x A_0 + \partial_y A_1 + \partial_z A_2 = 0$$

O seguinte resultado demonstra a equivalência:

Proposição

^a Existe uma bijeção entre o conjunto de 1-formas projetivas em \mathbb{A}^3_K de grau d+1 e campos homogêneos de grau d com divergente nulo.

^aJouanolou - Equations de Pfaff algébriques

Suponha que ${\mathcal F}$ seja dada pela 1-forma:

$$\omega = Adx + Bdy + Cdz$$

e escreva

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

Suponha que ${\mathcal F}$ seja dada pela 1-forma:

$$\omega = Adx + Bdy + Cdz$$

e escreva

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

O campo homogêneo de grau d com divergente zero associado é:

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

Suponha que ${\mathcal F}$ seja dada pela 1-forma:

$$\omega = Adx + Bdy + Cdz$$

e escreva

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

O campo homogêneo de grau d com divergente zero associado é:

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

Exemplo: Seja $\alpha \in K^*$ e considere:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Suponha que ${\mathcal F}$ seja dada pela 1-forma:

$$\omega = Adx + Bdy + Cdz$$

e escreva

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

O campo homogêneo de grau d com divergente zero associado é:

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

Exemplo: Seja $\alpha \in K^*$ e considere:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

 ω define uma folheação de grau um em \mathbb{P}^2_K e o campo associado é dado por:

$$v = \left(\frac{2\alpha - 1}{3}\right)x\partial_x + \left(\frac{2 - \alpha}{3}\right)y\partial_y + \left(\frac{-1 - \alpha}{3}\right)z\partial_z$$

Seja ${\mathcal F}$ uma folheação em ${\mathbb P}^2_K$ dada por uma 1-forma $\omega.$

Seja ${\mathcal F}$ uma folheação em ${\mathbb P}^2_K$ dada por uma 1-forma $\omega.$

Seja
$$C=\{F=0\}\subset \mathbb{P}^2_K$$
uma curva algébrica dada por um polinômio irredutível $F\in K[x,y,z].$

Seja ${\mathcal F}$ uma folheação em ${\mathbb P}^2_K$ dada por uma 1-forma $\omega.$

Seja $C=\{F=0\}\subset \mathbb{P}^2_K$ uma curva algébrica dada por um polinômio irredutível $F\in K[x,y,z].$

Definição

A curva C é \mathcal{F} -invariante, ou é uma solução algébrica de \mathcal{F} , se existe uma 2-forma homogênea σ em \mathbb{A}^3_K tal que

$$dF \wedge \omega = F\sigma$$

Seja ${\mathcal F}$ uma folheação em ${\mathbb P}^2_K$ dada por uma 1-forma $\omega.$

Seja $C=\{F=0\}\subset \mathbb{P}^2_K$ uma curva algébrica dada por um polinômio irredutível $F\in K[x,y,z].$

Definição

A curva C é \mathcal{F} -invariante, ou é uma solução algébrica de \mathcal{F} , se existe uma 2-forma homogênea σ em \mathbb{A}^3_K tal que

$$dF \wedge \omega = F\sigma$$

Exemplo: folheações com curvas algébricas invariantes

• a folheação dada por

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

possui $\{x=0\},\,\{y=0\}$ e $\{z=0\}$ como curvas algébricas invariantes.

Exemplo: folheações com curvas algébricas invariantes

a folheação dada por

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

possui $\{x=0\},\,\{y=0\}$ e $\{z=0\}$ como curvas algébricas invariantes.

• folheações logarítmicas: sejam $d_1, d_2, \ldots, d_r \in \mathbb{Z}_{>0}$ e $F_1, \ldots, F_r \in K[x, y, z]$ polinômios homogêneos com $d_i = \deg(F_i)$. Suponha que F_1, \ldots, F_r são irredutíveis e coprimos. Sejam $\alpha_1, \ldots, \alpha_r \in K^*$ tais que $\sum_{i=1}^r \alpha_i d_i = 0$ e considere a 1-forma

$$\Omega = F_1 F_2 \cdots F_{r-1} F_r \sum_{i=1}^r \alpha_i \frac{dF_i}{F_i}.$$

A 1-forma Ω define, \mathcal{F}_{Ω} , uma folheação de grau $d = \sum_i d_i - 2$ em \mathbb{P}^2_K . Dizemos que \mathcal{F}_{Ω} é uma **folheação logarítmica** de tipo (d_1, \ldots, d_r) . As curvas $C_i = \{F_i = 0\}$ são \mathcal{F}_{Ω} -invariantes.

Jouanolou: folheações sem curvas algébricas invariantes

Seja $d \in \mathbb{Z}_{>1}$ e considere a folheação em \mathbb{P}^2_K dada pela 1-forma:

$$\begin{split} \mathcal{F}_d \colon \Omega_d &= (x^dz - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^dy - x^{d+1})dz \\ v_d &= z^d\partial_x + x^d\partial_y + y^d\partial_z \end{split}$$

Wodson Mendson

 $^{^1\}mathrm{Zoladek}$ - New examples of holomorphic foliations without algebraic leaves

 $^{^2\}mathrm{J.V.}$ Pereira, P. F. Sanchez - Automorphisms and non-integrability

 $^{^3{\}rm Claudia}$ R. Alcántara - Foliations on ${\mathbb C \mathbb P}^2$ of degree d with a singular point with Milnor number d^2+d+1

⁴Claudia R. Alcántara, Petra Rubí Pantaleón - Foliations on CP² with a unique singular point without invariant algebraic curves

 $^{^5\}mathrm{S.}$ C. Coutinho, Filipe Ramos Ferreira - Foliations with one singularity and finite isotropy group

 $^{^6}$ Percy Fernández, Liliana Puchuri, Rudy Rosas - Foliations on \mathbb{P}^2 with only one singular point

Jouanolou: folheações sem curvas algébricas invariantes

Seja $d \in \mathbb{Z}_{>1}$ e considere a folheação em \mathbb{P}^2_K dada pela 1-forma:

$$\begin{split} \mathcal{F}_d \colon \Omega_d &= (x^dz - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^dy - x^{d+1})dz \\ v_d &= z^d\partial_x + x^d\partial_y + y^d\partial_z \end{split}$$

Teorema (Jouanolou)

 a Se $K=\mathbb{C}$ a folheação \mathcal{F}_d não tem curvas algébricas invariantes

^aJouanolou - Equations de Pfaff algébriques

Wodson Mendson

 $^{^{1}}$ Zoladek - New examples of holomorphic foliations without algebraic leaves

²J.V. Pereira, P. F. Sanchez - Automorphisms and non-integrability

 $^{^3{\}rm Claudia}$ R. Alcántara - Foliations on ${\mathbb C}{\mathbb P}^2$ of degree d with a singular point with Milnor number d^2+d+1

Claudia R. Alcántara, Petra Rubí Pantaleón - Foliations on CP² with a unique singular point without invariant algebraic curves

 $^{^5\}mathrm{S.~C.}$ Coutinho, Filipe Ramos Ferreira - Foliations with one singularity and finite isotropy group

 $^{^6}$ Percy Fernández, Liliana Puchuri, Rudy Rosas - Foliations on \mathbb{P}^2 with only one singular point

Jouanolou: folheações sem curvas algébricas invariantes

Seja $d \in \mathbb{Z}_{>1}$ e considere a folheação em \mathbb{P}^2_K dada pela 1-forma:

$$\begin{split} \mathcal{F}_d \colon \Omega_d &= (x^dz - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^dy - x^{d+1})dz \\ v_d &= z^d\partial_x + x^d\partial_y + y^d\partial_z \end{split}$$

Teorema (Jouanolou)

 a Se $K=\mathbb{C}$ a folheação \mathcal{F}_d não tem curvas algébricas invariantes

O resultado implica, em particular, que em $\mathbb{P}^2_{\mathbb{C}}$ quase toda folheação não tem curva algébrica invariante. Na prática, construir exemplos concretos de folheações sem soluções algébricas é algo difícil e fonte de diversos trabalhos 123456 .

 $[^]a$ Jouanolou - Equations de Pfaff algébriques

 $^{^{1}\}mathrm{Zoladek}$ - New examples of holomorphic foliations without algebraic leaves

²J.V. Pereira, P. F. Sanchez - Automorphisms and non-integrability

 $^{^3{\}rm Claudia}$ R. Alcántara - Foliations on ${\mathbb C}{\mathbb P}^2$ of degree d with a singular point with Milnor number d^2+d+1

⁴Claudia R. Alcántara, Petra Rubí Pantaleón - Foliations on CP² with a unique singular point without invariant algebraic curves

 $^{^5\}mathrm{S.}$ C. Coutinho, Filipe Ramos Ferreira - Foliations with one singularity and finite isotropy group

 $^{^6}$ Percy Fernández, Liliana Puchuri, Rudy Rosas - Foliations on \mathbb{P}^2 with only one singular point

Introdução Folheações em característica p > 0 Um critério via redução mod 2

Parte II: Folheações em característica p>0

 $K=\overline{K}$ de característica p>0.

 $K = \overline{K}$ de característica p > 0.

Seja ${\mathcal F}$ uma folheação em ${\mathbb P}^2_K$ de grau d definida por

$$\omega = Adx + Bdy + Cdz$$

e suponha que $p \nmid d + 2$.

 $K = \overline{K}$ de característica p > 0.

Seja $\mathcal F$ uma folheação em $\mathbb P^2_K$ de grau d definida por

$$\omega = Adx + Bdy + Cdz$$

e suponha que $p \nmid d+2$. Escreva $d\omega=(d+2)(Ldy\wedge dz-Mdx\wedge dz+Ndx\wedge dy)$ e seja v_ω o campo de grau d associado a $\mathcal F$ dado por

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

 $K = \overline{K}$ de característica p > 0.

Seja $\mathcal F$ uma folheação em $\mathbb P^2_K$ de grau d definida por

$$\omega = Adx + Bdy + Cdz$$

e suponha que $p \nmid d+2$. Escreva $d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy)$ e seja v_{ω} o campo de grau d associado a $\mathcal F$ dado por

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

O p-divisor é definido pondo

$$\Delta_{\mathcal{F}} = \{i_{v_{\omega}^p} \omega = 0\} \in \operatorname{Div}(\mathbb{P}^2_K).$$

Note que $\Delta_{\mathcal{F}}$ possui grau p(d-1)+d+2.

 $K = \overline{K}$ de característica p > 0.

Seja ${\mathcal F}$ uma folheação em ${\mathbb P}^2_K$ de grau d definida por

$$\omega = Adx + Bdy + Cdz$$

e suponha que $p \nmid d+2$. Escreva $d\omega=(d+2)(Ldy\wedge dz-Mdx\wedge dz+Ndx\wedge dy)$ e seja v_ω o campo de grau d associado a $\mathcal F$ dado por

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

O p-divisor é definido pondo

$$\Delta_{\mathcal{F}} = \{i_{v_{\omega}^p} \omega = 0\} \in \operatorname{Div}(\mathbb{P}^2_K).$$

Note que $\Delta_{\mathcal{F}}$ possui grau p(d-1)+d+2.

Definição

A folheação \mathcal{F} é p-fechada se $\Delta_{\mathcal{F}} = 0$.

Seja $\alpha \in K^*$ e considere

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Seja $\alpha \in K^*$ e considere

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

 ω define uma folheação de grau 1 em $\mathbb{P}^2_K.$ O campo associado é:

$$v = \left(\frac{2\alpha - 1}{3}\right) x \partial_x + \left(\frac{2 - \alpha}{3}\right) y \partial_y + \left(\frac{-1 - \alpha}{3}\right) z \partial_z$$

Seja $\alpha \in K^*$ e considere

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

 ω define uma folheação de grau 1 em \mathbb{P}^2_K . O campo associado é:

$$v = \left(\frac{2\alpha - 1}{3}\right) x \partial_x + \left(\frac{2 - \alpha}{3}\right) y \partial_y + \left(\frac{-1 - \alpha}{3}\right) z \partial_z$$

Por iteração, obtemos

$$v^p = \left(\frac{2\alpha^p - 1}{3}\right)x\partial_x + \left(\frac{2 - \alpha^p}{3}\right)y\partial_y + \left(\frac{-1 - \alpha^p}{3}\right)z\partial_z$$

Seja $\alpha \in K^*$ e considere

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

 ω define uma folheação de grau 1 em \mathbb{P}^2_K . O campo associado é:

$$v = \left(\frac{2\alpha - 1}{3}\right) x \partial_x + \left(\frac{2 - \alpha}{3}\right) y \partial_y + \left(\frac{-1 - \alpha}{3}\right) z \partial_z$$

Por iteração, obtemos

$$v^{p} = \left(\frac{2\alpha^{p} - 1}{3}\right)x\partial_{x} + \left(\frac{2 - \alpha^{p}}{3}\right)y\partial_{y} + \left(\frac{-1 - \alpha^{p}}{3}\right)z\partial_{z}$$

e o p-divisor é:

$$i_{v^p}\omega = yzv^p(x) - \alpha xzv^p(y) + (\alpha - 1)xyv^p(z) = (\alpha^p - \alpha)xyz$$

Seja $\alpha \in K^*$ e considere

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

 ω define uma folheação de grau 1 em \mathbb{P}^2_K . O campo associado é:

$$v = \left(\frac{2\alpha - 1}{3}\right)x\partial_x + \left(\frac{2 - \alpha}{3}\right)y\partial_y + \left(\frac{-1 - \alpha}{3}\right)z\partial_z$$

Por iteração, obtemos

$$v^p = \left(\frac{2\alpha^p - 1}{3}\right)x\partial_x + \left(\frac{2 - \alpha^p}{3}\right)y\partial_y + \left(\frac{-1 - \alpha^p}{3}\right)z\partial_z$$

e o p-divisor é:

$$i_{vp}\omega = yzv^p(x) - \alpha xzv^p(y) + (\alpha - 1)xyv^p(z) = (\alpha^p - \alpha)xyz$$

Se $\alpha \notin \mathbb{F}_n$:

$$\Delta_{\mathcal{F}} = \{x = 0\} + \{y = 0\} + \{z = 0\}.$$

O p-divisor

Principal propriedade:

O p-divisor

Principal propriedade:

Proposição

- a Sejam ${\mathcal F}$ uma folheação não p-fechada em ${\mathbb P}^2_k$ e $C\subset {\mathbb P}^2_k$ uma curva algébrica
 - Se C é \mathcal{F} -invariante então $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;

O p-divisor

Principal propriedade:

Proposição

- a Sejam ${\mathcal F}$ uma folheação não p-fechada em ${\mathbb P}^2_k$ e $C\subset {\mathbb P}^2_k$ uma curva algébrica
 - Se $C \notin \mathcal{F}$ -invariante então $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;
 - $Se \operatorname{ord}_C(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$ então $C \notin \mathcal{F}$ -invariante.

^aW.Mendson - Foliations on smooth algebraic surface in positive characteristic

Principal propriedade:

Proposição

- a Sejam ${\mathcal F}$ uma folheação não p-fechada em ${\mathbb P}^2_k$ e $C\subset {\mathbb P}^2_k$ uma curva algébrica
 - Se $C \notin \mathcal{F}$ -invariante então $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;
 - Se $\operatorname{ord}_C(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$ então $C \notin \mathcal{F}$ -invariante.

^aW.Mendson - Foliations on smooth algebraic surface in positive characteristic

Corolário

No plano projetivo sobre característica p>0 qualquer folheação de grau d com $p\nmid d+2$ possui uma curva algébrica invariante.

Principal propriedade:

Proposição

- ^a Sejam $\mathcal F$ uma folheação não p-fechada em $\mathbb P^2_k$ e $C\subset \mathbb P^2_k$ uma curva algébrica
 - Se $C \notin \mathcal{F}$ -invariante então $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;
 - Se $\operatorname{ord}_C(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$ então $C \notin \mathcal{F}$ -invariante.

^aW.Mendson - Foliations on smooth algebraic surface in positive characteristic

Corolário

No plano projetivo sobre característica p>0 qualquer folheação de grau d com $p\nmid d+2$ possui uma curva algébrica invariante.

Proposição (J.V.Pereira)

^a Seja $\mathcal F$ uma folheação $\mathbb P^2_K$ e suponha que $\deg(\mathcal F) < p-1$. Então, $\mathcal F$ possui uma curva algébrica invariante.

^aJ. V. Pereira - Invariant Hypersurfaces for Positive Characteristic Vector Fields

Seja C_p a folheação em \mathbb{P}^2_K definida pela 1-forma:

$$\omega = zx^{p-1}dx + zy^{p-1}dy - (x^p + y^p)dz.$$

 $^{^{7}}$ aqui, usamos a fórmula: $(fD)^{p}=f^{p}D^{p}+fD^{p-1}(f^{p-1})D$

Seja \mathcal{C}_p a folheação em \mathbb{P}^2_K definida pela 1-forma:

$$\omega = zx^{p-1}dx + zy^{p-1}dy - (x^p + y^p)dz.$$

O campo associado é:

$$v = y^{p-1}\partial_x - x^{p-1}\partial_y$$

⁷ aqui, usamos a fórmula: $(fD)^p = f^p D^p + f D^{p-1} (f^{p-1}) D$

Seja C_p a folheação em \mathbb{P}^2_K definida pela 1-forma:

$$\omega = zx^{p-1}dx + zy^{p-1}dy - (x^p + y^p)dz.$$

O campo associado é:

$$v = y^{p-1}\partial_x - x^{p-1}\partial_y$$

Definindo $\tilde{v} = (xy)^p v = y^p x \partial_x - x^p y \partial_y$, temos $\tilde{v}^p = y^{p^2} x \partial_x - x^{p^2} y \partial_y$ e assim⁷:

$$i_{v^p}\omega = \frac{i_{\tilde{v}^p}\omega}{(xy)^p} = \frac{zx^{p-1}\tilde{v}(x) - zy^{p-1}\tilde{v}(y)}{(xy)^p} = \frac{zx^py^{p^2} - zy^px^{p^2}}{(xy)^p} = zx^py^p(y^{p-1} - x^{p-1})^p$$

 $^{^{7}}$ aqui, usamos a fórmula: $(fD)^{p}=f^{p}D^{p}+fD^{p-1}(f^{p-1})D$

Seja C_p a folheação em \mathbb{P}^2_K definida pela 1-forma:

$$\omega = zx^{p-1}dx + zy^{p-1}dy - (x^p + y^p)dz.$$

O campo associado é:

$$v = y^{p-1}\partial_x - x^{p-1}\partial_y$$

Definindo $\tilde{v} = (xy)^p v = y^p x \partial_x - x^p y \partial_y$, temos $\tilde{v}^p = y^{p^2} x \partial_x - x^{p^2} y \partial_y$ e assim⁷:

$$i_{v^p}\omega = \frac{i_{\tilde{v}^p}\omega}{(xy)^p} = \frac{zx^{p-1}\tilde{v}(x) - zy^{p-1}\tilde{v}(y)}{(xy)^p} = \frac{zx^py^{p^2} - zy^px^{p^2}}{(xy)^p} = zx^py^p(y^{p-1} - x^{p-1})^p$$

O p-divisor de C_p é dado por:

$$\Delta_{\mathcal{C}_p} = \{z = 0\} + p\{y^{p-1} - x^{p-1} = 0\}$$

e assim $\{z=0\}$ é a **única solução algébrica** de \mathcal{F} .

⁷aqui, usamos a fórmula: $(fD)^p = f^p D^p + f D^{p-1} (f^{p-1}) D$

Corolário

No plano projetivo sobre característica p>0 qualquer folheação não p-fechada possui uma curva algébrica invariante de grau menor do que ou igual a p(d-1)+d+2.

Corolário

No plano projetivo sobre característica p>0 qualquer folheação não p-fechada possui uma curva algébrica invariante de grau menor do que ou igual a p(d-1)+d+2.

Problema

Seja \mathcal{F} uma folheação em \mathbb{P}^2_K .

- Qual a estrutura do p-divisor?
- F possui quantas curvas algébricas invariantes?

Corolário

No plano projetivo sobre característica p>0 qualquer folheação não p-fechada possui uma curva algébrica invariante de grau menor do que ou igual a p(d-1)+d+2.

Problema

Seja \mathcal{F} uma folheação em \mathbb{P}^2_K .

- Qual a estrutura do p-divisor?
- F possui quantas curvas algébricas invariantes?

Proposição

^a Uma folheação é p-fechada se e somente se ela possui uma infinidade de curvas algébricas invariantes.

^aBrunella, Nicolau - Sur les hypersurfaces solutions des équations de Pfaff

Jouanolou

Teorema

- a Seja K um corpo algebricamente fechado e de característica p>0. Seja $d\in\mathbb{Z}_{>0}$ tal que
 - $p < d \ e \ p \not\equiv 1 \mod 3$;
 - $d^2 + d + 1$ is primo.

Então a folheação de Jouanolou, \mathcal{F}_d , possui p-divisor irredutível ou

$$\Delta_{\mathcal{F}_d} = C + pR$$

 $com \deg(C) = pl + d + 2, l > 0 \ e \ R \ n\~{a}o \ \mathcal{F}_d$ -invariante.

^aW.Mendson - Arithmetic aspects of the Jouannlou foliation

Jouanolou

Teorema

 a Seja K um corpo algebricamente fechado e de característica p>0. Seja $d\in\mathbb{Z}_{>0}$ tal que

- $p < d \ e \ p \not\equiv 1 \mod 3$;
- $d^2 + d + 1$ is primo.

Então a folheação de Jouanolou, \mathcal{F}_d , possui p-divisor irredutível ou

$$\Delta_{\mathcal{F}_d} = C + pR$$

 $com \deg(C) = pl + d + 2, l > 0 \ e \ R \ n\~{a}o \ \mathcal{F}_d$ -invariante.

^aW.Mendson - Arithmetic aspects of the Jouanniou foliation

Consequência: folheação de Jouanolou \mathcal{F}_d possui única curva algébrica invariante

característica p = 5 e $d \le 100$

d	$d^2 + d + 1$	$\deg(C)$	l	R
6	43	18	2	$\{xyz = 0\}$
12	157	39	5	$\{xyz = 0\}$
17	307	54	7	$\{xyz = 0\}$
21	463	63	8	$\{xyz = 0\}$
27	757	84	11	$\{xyz = 0\}$
41	1723	123	16	$\{xyz = 0\}$
57	3307	174	23	$\{xyz = 0\}$
62	3907	189	25	$\{xyz = 0\}$
66	4423	198	26	$\{xyz = 0\}$
71	5113	213	28	$\{xyz=0\}$
77	6007	234	31	$\{xyz = 0\}$

• para $d \in \{2, 14, 24, 54, 59, 69, 89, 99\}, \Delta_{\mathcal{F}_d}$ é irredutível;

• outros casos: $\Delta_{\mathcal{F}_d} = 0$.

Exemplos curiosos

lacktriangle Suponha que K possui característica 3 e considere a folheação de Jouanolou de grau 2 sobre K. Então o 3-divisor é irredutível com $\operatorname{sing}(\Delta_{\mathcal{F}}) \not\subset \operatorname{sing}(\mathcal{F})$.

 $^{^8\}mathrm{T}$. Fassarella, W. Mendson, F. Touzet, J. P. Santos - Foliations with small singular set in arbitrary characteristic, trabalho em andamento

Exemplos curiosos

- **③** Suponha que K possui característica 3 e considere a folheação de Jouanolou de grau 2 sobre K. Então o 3-divisor é irredutível com $\operatorname{sing}(\Delta_{\mathcal{F}}) \not\subset \operatorname{sing}(\mathcal{F})$.
- 2 Considere a folheação 5-fechada:

$$\omega = 2z(x+y)dx + z(2z+x)dy + 4(2x^2 + 3xy + 2yz)dz$$

A curva $C = \{-x^4 + x^3y + x^2yz + y^2z^2 = 0\}$ é \mathcal{F} -invariante com $[0:0:1] \in \text{sing}(C)$ mas não em sing (\mathcal{F}) . ⁸

⁸T. Fassarella, W. Mendson, F. Touzet, J. P. Santos - Foliations with small singular set in arbitrary characteristic. trabalho em andamento

Exemplos curiosos

- **③** Suponha que K possui característica 3 e considere a folheação de Jouanolou de grau 2 sobre K. Então o 3-divisor é irredutível com $\operatorname{sing}(\Delta_{\mathcal{F}}) \not\subset \operatorname{sing}(\mathcal{F})$.
- 2 Considere a folheação 5-fechada:

$$\omega = 2z(x+y)dx + z(2z+x)dy + 4(2x^2 + 3xy + 2yz)dz$$

A curva $C = \{-x^4 + x^3y + x^2yz + y^2z^2 = 0\}$ é \mathcal{F} -invariante com $[0:0:1] \in \text{sing}(C)$ mas não em $\text{sing}(\mathcal{F})$. ⁸

lacktrianglet Para todo primo $p>0,\ n>2,$ existem folheações de codimensão um em \mathbb{P}^n_K que não possuem hipersuperfície invariante. De fato, em andamento, um tal exemplo é dado pela seguinte 1-forma:

$$\omega = d \left(\sum_{i=0}^{n-1} x_i x_{i+1}^{2p-1} \right) + x_n^p x_{n-1}^{p-1} dx_{n-1} - x_{n-1}^p x_n^{p-1} dx_n$$

⁸T. Fassarella, W. Mendson, F. Touzet, J. P. Santos - Foliations with small singular set in arbitrary characteristic, trabalho em andamento

Considere o caso onde $K=\mathbb{C}.$ Seja $\mathcal F$ uma folheação $\mathbb{P}^2_{\mathbb{C}}$ de grau d definida pela 1-forma projetiva:

$$\omega = Adx + Bdy + Cdz$$
 $A, B, C \in \mathbb{C}[x, y, z]_{d+1}$

Considere o caso onde $K=\mathbb{C}.$ Seja \mathcal{F} uma folheação $\mathbb{P}^2_{\mathbb{C}}$ de grau d definida pela 1-forma projetiva:

$$\omega = Adx + Bdy + Cdz$$
 $A, B, C \in \mathbb{C}[x, y, z]_{d+1}$

e seja $\mathbb{Z}[\mathcal{F}]$ a
 \mathbb{Z} -álgebra de tipo finito obtida por junção de todos os coeficientes, e seus inversos, que ocorre
mA,BeC

Considere o caso onde $K=\mathbb{C}.$ Seja \mathcal{F} uma folheação $\mathbb{P}^2_{\mathbb{C}}$ de grau d definida pela 1-forma projetiva:

$$\omega = Adx + Bdy + Cdz \qquad A, B, C \in \mathbb{C}[x, y, z]_{d+1}$$

e seja $\mathbb{Z}[\mathcal{F}]$ a \mathbb{Z} -álgebra de tipo finito obtida por junção de todos os coeficientes, e seus inversos, que ocorrem A,Be C

Exemplo

Seja \mathcal{F} a folheação em $\mathbb{P}^2_{\mathbb{C}}$ dada pela 1-forma:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

para algum $\alpha \in \mathbb{C} - \mathbb{Q}$. Então, a álgebra associada é $\mathbb{Z}[\alpha, \alpha^{-1}]$

Considere o caso onde $K=\mathbb{C}.$ Seja \mathcal{F} uma folheação $\mathbb{P}^2_{\mathbb{C}}$ de grau d definida pela 1-forma projetiva:

$$\omega = Adx + Bdy + Cdz \qquad A, B, C \in \mathbb{C}[x, y, z]_{d+1}$$

e seja $\mathbb{Z}[\mathcal{F}]$ a \mathbb{Z} -álgebra de tipo finito obtida por junção de todos os coeficientes, e seus inversos, que ocorrem A,B e C

Exemplo

Seja \mathcal{F} a folheação em $\mathbb{P}^2_{\mathbb{C}}$ dada pela 1-forma:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

para algum $\alpha \in \mathbb{C} - \mathbb{Q}$. Então, a álgebra associada é $\mathbb{Z}[\alpha, \alpha^{-1}]$

Exemplo: Para a folheação de Jouanolou, $A,B,C\in\mathbb{Z}[x,y,z]$ de modo que $\mathbb{Z}[\mathcal{F}_d]=\mathbb{Z}.$

Fato: Para cada ideal maximal $\mathfrak{p} \in \mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$ o corpo residual $\mathbb{F}_{\mathfrak{p}} = \mathbb{Z}[\mathcal{F}]/\mathfrak{p}$ é finito, em particular, de característica p > 0.

Fato: Para cada ideal maximal $\mathfrak{p} \in \mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$ o corpo residual $\mathbb{F}_{\mathfrak{p}} = \mathbb{Z}[\mathcal{F}]/\mathfrak{p}$ é finito, em particular, de característica p > 0.

Denote por $\omega_{\mathfrak{p}}$ a 1-forma sobre $\overline{\mathbb{F}}_{\mathfrak{p}}$ obtida via redução módulo \mathfrak{p} dos coeficientes que aparecem em $A, B \in C$. Assim, obtemos um elemento não nulo de $\mathrm{H}^0(\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}, \Omega^1_{\mathbb{P}^2_{\mathbb{F}_{\mathfrak{p}}}} \otimes \mathcal{O}_{\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}}(d+2))$ e $\omega_{\mathfrak{p}}$ determina uma folheação em $\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}$:

$$\omega_{\mathfrak{p}} = Adx + Bdy + Cdz \mod \mathfrak{p}$$

Fato: Para cada ideal maximal $\mathfrak{p} \in \mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$ o corpo residual $\mathbb{F}_{\mathfrak{p}} = \mathbb{Z}[\mathcal{F}]/\mathfrak{p}$ é finito, em particular, de característica p > 0.

Denote por $\omega_{\mathfrak{p}}$ a 1-forma sobre $\overline{\mathbb{F}}_{\mathfrak{p}}$ obtida via redução módulo \mathfrak{p} dos coeficientes que aparecem em $A, B \in C$. Assim, obtemos um elemento não nulo de $\mathrm{H}^0(\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}, \Omega^1_{\mathbb{P}^2_{\mathbb{F}_{\mathfrak{p}}}} \otimes \mathcal{O}_{\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}}(d+2))$ e $\omega_{\mathfrak{p}}$ determina uma folheação em $\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}$:

$$\omega_{\mathfrak{p}} = Adx + Bdy + Cdz \mod \mathfrak{p}$$

Definição

A folheação determinada por $\omega_{\mathfrak{p}}$ é denotada por $\mathcal{F}_{\mathfrak{p}}$ e chamada de a **redução módulo** p **de** \mathcal{F} .

Questão natural:

Questão natural:

Problema

Suponha que uma propriedade abstrata P vale para $\mathcal{F}_{\mathfrak{p}}$ para uma infinidade de primos (ou quase-todos primos) $\mathfrak{p} \in Spm(\mathbb{Z}[\mathcal{F}])$. O que podemos dizer sobre \mathcal{F} ?

Questão natural:

Problema

Suponha que uma propriedade abstrata P vale para $\mathcal{F}_{\mathfrak{p}}$ para uma infinidade de primos (ou quase-todos primos) $\mathfrak{p} \in Spm(\mathbb{Z}[\mathcal{F}])$. O que podemos dizer sobre \mathcal{F} ?

- infinidade de primos = primos num subconjunto denso de $Spm(\mathbb{Z}[\mathcal{F}])$;
- quase-todos primos = primos num aberto não vazio de $Spm(\mathbb{Z}[\mathcal{F}])$.

Questão natural:

Problema

Suponha que uma propriedade abstrata P vale para $\mathcal{F}_{\mathfrak{p}}$ para uma infinidade de primos (ou quase-todos primos) $\mathfrak{p} \in Spm(\mathbb{Z}[\mathcal{F}])$. O que podemos dizer sobre \mathcal{F} ?

- infinidade de primos = primos num subconjunto denso de $Spm(\mathbb{Z}[\mathcal{F}])$;
- quase-todos primos = primos num aberto não vazio de $Spm(\mathbb{Z}[\mathcal{F}])$.

Quando $\mathbb{Z}[\mathcal{F}]=\mathbb{Z}$ as noções: infinidade de primos e quase-todos são as noções usuais.

A propriedade \mathbf{P} pode ser:

 \bullet a existência de curvas $\mathcal{F}_{\mathfrak{p}}\text{-invariantes};$

A propriedade ${f P}$ pode ser:

- ullet a existência de curvas $\mathcal{F}_{\mathfrak{p}}$ -invariantes;
- \bullet a folheação $\mathcal{F}_{\mathfrak{p}}$ é p-fechada;

A propriedade ${f P}$ pode ser:

- ullet a existência de curvas $\mathcal{F}_{\mathfrak{p}}$ -invariantes;
- ullet a folheação $\mathcal{F}_{\mathfrak{p}}$ é p-fechada;
- a folheação $\mathcal{F}_{\mathfrak{p}}$ possui *p*-divisor irredutível/reduzido;

A propriedade P pode ser:

- a existência de curvas $\mathcal{F}_{\mathfrak{p}}$ -invariantes;
- a folheação $\mathcal{F}_{\mathfrak{p}}$ é p-fechada;
- a folheação $\mathcal{F}_{\mathfrak{p}}$ possui p-divisor irredutível/reduzido;

Proposição

Seja $\mathcal F$ uma folheação de grau d em $\mathbb P^2_{\mathbb C}$ e suponha que $\mathcal F_{\mathfrak p}$ tem uma curva algébrica invariante de grau menor do que $\mathbf h$ para quase-todos primos $\mathfrak p$. Então, $\mathcal F$ possui uma curva algébrica invariante de grau menor do que $\mathbf h$.

A propriedade **P** pode ser:

- a existência de curvas $\mathcal{F}_{\mathfrak{p}}$ -invariantes;
- a folheação $\mathcal{F}_{\mathfrak{p}}$ é *p*-fechada;
- a folheação $\mathcal{F}_{\mathfrak{p}}$ possui p-divisor irredutível/reduzido;

Proposição

Seja $\mathcal F$ uma folheação de grau d em $\mathbb P^2_{\mathbb C}$ e suponha que $\mathcal F_{\mathfrak p}$ tem uma curva algébrica invariante de grau menor do que h para quase-todos primos $\mathfrak p$. Então, $\mathcal F$ possui uma curva algébrica invariante de grau menor do que h.

Ideia: o conjunto $S(\mathcal{F},K,d)$ de folheações de grau d em \mathbb{P}^2_K que possuem curvas algébricas de grau $\leq h$ é uma variedade algébrica sobre K. Em particular, $S(\mathcal{F},\mathbb{C},d)\neq\varnothing$ se e somente se $S(\mathcal{F},\overline{\mathbb{F}}_{\mathfrak{p}},d)\neq\varnothing$ para quase-todos primos \mathfrak{p} .

Folheações em característica p > 0Um critério via redução mod 2

Parte III: Um critério via redução $\mathbf{mod}\ 2$

Soluções algébricas

 ${\bf Objetivo:}$ usar redução módulo p para provar não-algebricidade de folheações holomorfas

 $^{^9\}mathrm{Carnicer}$ - The Poincare problem in the nondicritical case

Soluções algébricas

 ${\bf Objetivo:}$ usar redução módulo p para provar não-algebricidade de folheações holomorfas

Proposição

^a Seja \mathcal{F} uma folheação não dicrítica em $\mathbb{P}^2_{\mathbb{C}}$ definida pela 1-forma $\omega = Adx + Bdy + Cdz$ com $A, B, C \in \mathbb{Z}[x,y,z]$. Seja p um primo tal que p > d + 2. Se $\Delta_{\mathcal{F}_p}$ é irredutível então \mathcal{F} não possui soluções algébricas.

^aW.Mendson - Foliations on smooth algebraic surfaces in position characteristic

 $^{^{9}}$ Carnicer - The Poincare problem in the nondicritical case

Soluções algébricas

Objetivo: usar redução módulo p para provar não-algebricidade de folheações holomorfas

Proposição

^a Seja $\mathcal F$ uma folheação não dicrítica em $\mathbb P^2_{\mathbb C}$ definida pela 1-forma $\omega = Adx + Bdy + Cdz$ com $A, B, C \in \mathbb Z[x,y,z]$. Seja p um primo tal que p > d+2. Se $\Delta_{\mathcal F_p}$ é irredutível então $\mathcal F$ não possui soluções algébricas.

^aW.Mendson - Foliations on smooth algebraic surfaces in position characteristic

Ideia: Suponha que existe uma curva invariante $C = \{F = 0\}$. Podemos assumir $F \in \mathbb{Z}[x,y,z]$. A cota de Carnicer⁹ implica que $\deg(C) \leq d+2$. Reduzindo módulo p e usando a irredutibilidade de $\Delta_{\mathcal{F}_p}$ chegamos numa contradição.

 $^{^{9}}$ Carnicer - The Poincare problem in the nondicritical case

Aplicações

Corolário

A folheação de Jouanolou de grau 2 não possui soluções algébricas.

Aplicações

Corolário

A folheação de Jouanolou de grau 2 não possui soluções algébricas.

Seja $\mathcal F$ uma folheação em $\mathbb P^2_{\mathbb C}.$

Proposição

Se o p-divisor $\Delta_{\mathcal{F}_{\mathfrak{p}}}$ é irredutível para quase todo primo \mathfrak{p} então \mathcal{F} não possui soluções algébricas.

Aplicações

Corolário

A folheação de Jouanolou de grau 2 não possui soluções algébricas.

Seja \mathcal{F} uma folheação em $\mathbb{P}^2_{\mathbb{C}}$.

Proposição

Se o p-divisor $\Delta_{\mathcal{F}_{\mathfrak{p}}}$ é irredutível para quase todo primo \mathfrak{p} então \mathcal{F} não possui soluções algébricas.

Ideia: Suponha que exista uma curva algébrica invariante $C=\{F=0\}$ de grau e. Para primos grandes p obtemos $C \mod p = \Delta_{\mathcal{F}_p}$, uma contradição visto que o grau do p-divisor depende de p.

Teorema

 a Seja ${\mathcal F}$ uma folheação não-dicrítica em ${\mathbb P}^2_{\mathbb C}$ definida pela 1-forma

$$\omega = Adx + Bdy + Cdz \qquad A,B,C \in K[x,y,z]$$

onde K é um corpo de números. Se $\Delta_{\mathcal{F}_2}$ é irredutível, então $\mathcal F$ não possui soluções algébricas.

^aJ. P. Figueredo, W. Mendson - Non-algebraicity of foliations via reduction modulo 2

 $^{^{10}\}mathrm{W}.~\mathrm{Mendson}$ - Arithmetic aspects of the Jouannlou foliation

Teorema

 a Seja ${\mathcal F}$ uma folheação não-dicrítica em ${\mathbb P}^2_{\mathbb C}$ definida pela 1-forma

$$\omega = Adx + Bdy + Cdz \qquad A,B,C \in K[x,y,z]$$

onde K é um corpo de números. Se $\Delta_{\mathcal{F}_2}$ é irredutível, então \mathcal{F} não possui soluções algébricas.

^aJ. P. Figueredo, W. Mendson - Non-algebraicity of foliations via reduction modulo 2

Ideia: Usar o fato que se C é uma curva algébrica \mathcal{F} -invariante então $C\otimes \mathbb{F}_2$ não é um 2-fator.

 $^{^{10}\}mathrm{W}.~\mathrm{Mendson}$ - Arithmetic aspects of the Jouannlou foliation

Teorema

 a Seja ${\mathcal F}$ uma folheação não-dicrítica em ${\mathbb P}^2_{\mathbb C}$ definida pela 1-forma

$$\omega = Adx + Bdy + Cdz \qquad A,B,C \in K[x,y,z]$$

onde K é um corpo de números. Se $\Delta_{\mathcal{F}_2}$ é irredutível, então $\mathcal F$ não possui soluções algébricas.

^aJ. P. Figueredo, W. Mendson - Non-algebraicity of foliations via reduction modulo 2

Ideia: Usar o fato que se C é uma curva algébrica \mathcal{F} -invariante então $C\otimes \mathbb{F}_2$ não é um 2-fator.

Corolário

A folheação de Jouanolou em $\mathbb{P}^2_{\mathbb{C}}$ de grau impar não admite curvas algébricas invariantes.

Ideia: Pode-se verificar que a folheação de Jouanolou é não-dicrítica e admite boa redução módulo 2. Em grau ímpar, seu 2-divisor é **irredutível**¹⁰.

 $^{^{10}\}mathrm{W}$. Mendson - Arithmetic aspects of the Jouannlou foliation

Observação: No Teorema anterior, podemos substituir a propriedade de ser não-dicritica pela seguinte propriedade:

 $^{^{11}\}omega=\omega_l+\cdots+\omega_e$: se $i_R\omega_e=0$ então a folheação induzida em \mathbb{P}^2 tem grau e-1

Observação: No Teorema anterior, podemos substituir a propriedade de ser não-dicritica pela seguinte propriedade:

 C: se F possui uma curva algébrica D, então existe uma curva algébrica de grau e ≤ deg(N_F)

 $^{^{11}\}omega=\omega_l+\cdots+\omega_e$: se $i_R\omega_e=0$ então a folheação induzida em \mathbb{P}^2 tem grau e-1

Observação: No Teorema anterior, podemos substituir a propriedade de ser não-dicritica pela seguinte propriedade:

• C: se \mathcal{F} possui uma curva algébrica D, então existe uma curva algébrica de grau $e \leq \deg(N_{\mathcal{F}})$

Considere as seguintes folheações em $\mathbb{P}^2_{\mathbb{C}}$:

$$\mathcal{G}_d(u, a, b, c) : \omega = (a + bx + cx^{d-1} + y^{d+1})dx - (u + xy^d)dy$$
$$\mathcal{F}_e(a, b, c) : \omega = (ax^e y - cy^2)dx - (ax^2 y^{e-1} + bx)dy$$

com $a,b,c,u\in\mathbb{Z}$ e $uabc\neq 0\mod 2$. Note que $\mathcal{F}_e(a,b,c)$ tem grau e+1 and $\mathcal{G}_d(u,a,b,c)$ tem grau $d.^{11}$

 $^{^{11}\}omega=\omega_l+\cdots+\omega_e$: se $i_R\omega_e=0$ então a folheação induzida em \mathbb{P}^2 tem grau e-1

Observação: No Teorema anterior, podemos substituir a propriedade de ser não-dicritica pela seguinte propriedade:

 C: se F possui uma curva algébrica D, então existe uma curva algébrica de grau e ≤ deg(N_F)

Considere as seguintes folheações em $\mathbb{P}^2_{\mathbb{C}}$:

$$\mathcal{G}_d(u, a, b, c) : \omega = (a + bx + cx^{d-1} + y^{d+1})dx - (u + xy^d)dy$$
$$\mathcal{F}_e(a, b, c) : \omega = (ax^e y - cy^2)dx - (ax^2 y^{e-1} + bx)dy$$

com $a,b,c,u\in\mathbb{Z}$ e $uabc\neq 0\mod 2$. Note que $\mathcal{F}_e(a,b,c)$ tem grau e+1 and $\mathcal{G}_d(u,a,b,c)$ tem grau $d.^{11}$

?Teorema?

No plano projetivo complexo, $l_{\infty} = \{z = 0\}$ é a única curva algébrica invariante de $\mathcal{F}_e(a,b,c)$ $(e \geq 6)$ e $\mathcal{G}_d(u,a,b,c)$ $(d \geq 5)$ não admite curva algébrica invariante.

 $^{^{11}\}omega=\omega_l+\cdots+\omega_e$: se $i_R\omega_e=0$ então a folheação induzida em \mathbb{P}^2 tem grau e-1

Em característica dois

Teorema

^a Sejam K um corpo de característica dois e $a, b, c, u \in K^*$. Considere a folheação em \mathbb{P}^2_K de gau d definida em $D_+(z)$ pela 1-forma:

$$G_d(u, a, b, c) : \omega = (a + bx + cx^{d-1} + y^{d+1})dx - (u + xy^d)dy$$

Se $d \geq 5$ é um inteiro ímpar, então o 2-divisor $\Delta_{\mathcal{G}_d(u,a,b,c)}$ é irredutível.

^aJ. P. Figueredo, W. Mendson - Non-algebraicity of foliations via reduction modulo 2

Em característica dois

Teorema

^a Sejam K um corpo de característica dois e $a, b, c, u \in K^*$. Considere a folheação em \mathbb{P}^2_K de gau d definida em $D_+(z)$ pela 1-forma:

$$G_d(u, a, b, c) : \omega = (a + bx + cx^{d-1} + y^{d+1})dx - (u + xy^d)dy$$

Se $d \ge 5$ é um inteiro ímpar, então o 2-divisor $\Delta_{\mathcal{G}_d(u,a,b,c)}$ é irredutível.

^aJ. P. Figueredo, W. Mendson - **Non-algebraicity of foliations via reduction modulo** 2

Teorema

a Sejam K um corpo de característica dois e a,b,c $\in K^*.$ A folheação de grau $e\geq 6$ em \mathbb{P}^2_K definida por

$$\mathcal{F}_e(a, b, c) : \omega = (ax^ey - cy^2)dx - (ax^2y^{e-1} + bx)dy$$

possui 2-divisor irredutível.

^aJ. P. Figueredo, W. Mendson - Non-algebraicity of foliations via reduction modulo 2

Folheações com única curva invariante

Teorema (sobre C)

^a Seja $d \in \mathbb{Z}_{>1}$ um inteiro impar e defina

$$f(d) = d^2 + d + 1 \qquad s(d) = d^2 + \frac{d+3}{2} \qquad h(d) = \frac{d^2 + d + 2}{2} \qquad g(d) = \frac{d+1}{2}.$$

Seja \mathcal{F}_d a folheação definida pela 1-forma em $D_+(z)$:

$$\mathcal{F}_d : \omega = (x + ay^{g(d)} + by^{h(d)} + cy^{s(d)})dx - y^{f(d)}dy$$

onde $a, b, c \in \mathbb{Z}$ são tais que $abc \neq 0 \mod 2$. Então, $l_{\infty} = \{z = 0\}$ é a única curva algébrica invariante de \mathcal{F}_d .

 $[^]a$ J. P. Figueredo, W. Mendson - Non-algebraicity of foliations via reduction modulo 2

Folheações com única curva invariante

Teorema (sobre C)

^a Seja $d \in \mathbb{Z}_{>1}$ um inteiro impar e defina

$$f(d) = d^2 + d + 1 \qquad s(d) = d^2 + \frac{d+3}{2} \qquad h(d) = \frac{d^2 + d + 2}{2} \qquad g(d) = \frac{d+1}{2}.$$

Seja \mathcal{F}_d a folheação definida pela 1-forma em $D_+(z)$:

$$\mathcal{F}_d : \omega = (x + ay^{g(d)} + by^{h(d)} + cy^{s(d)})dx - y^{f(d)}dy$$

onde $a, b, c \in \mathbb{Z}$ são tais que $abc \neq 0 \mod 2$. Então, $l_{\infty} = \{z = 0\}$ é a única curva algébrica invariante de \mathcal{F}_d .

^aJ. P. Figueredo, W. Mendson - Non-algebraicity of foliations via reduction modulo 2

Note que

- f(d) > s(d) > h(d) > g(d);
- \mathcal{F}_d tem grau f(d) e l_{∞} é invariante

Característica 2

Teorema (sobre $\overline{\mathbb{F}}_2$)

^a Seja $d \in \mathbb{Z}_{>1}$ um inteiro impar e defina

$$f(d) = d^2 + d + 1 \qquad s(d) = d^2 + \frac{d+3}{2} \qquad h(d) = \frac{d^2 + d + 2}{2} \qquad g(d) = \frac{d+1}{2}.$$

Seja \mathcal{F}_d a folheação definida pela 1-forma em $D_+(z)$:

$$\mathcal{F}_d: \omega = (x + ay^{g(d)} + by^{h(d)} + cy^{s(d)})dx - y^{f(d)}dy$$

onde $a,b,c\in\mathbb{Z}$ são tais que $abc\neq 0\mod 2$. Então, $\mathcal F$ não é 2-fechada e possui 2-divisor dado por

$$\Delta_{\mathcal{F}_d} = dl_{\infty} + (f(d) - 1)\{y = 0\} + C$$

onde C é uma curva irredutível de grau $2d^2 + d + 3$.

^aJ. P. Figueredo, W. Mendson - Non-algebraicity of foliations via reduction modulo 2

Característica 2

Teorema (sobre $\overline{\mathbb{F}}_2$)

^a Seja $d \in \mathbb{Z}_{>1}$ um inteiro impar e defina

$$f(d) = d^2 + d + 1 \qquad s(d) = d^2 + \frac{d+3}{2} \qquad h(d) = \frac{d^2 + d + 2}{2} \qquad g(d) = \frac{d+1}{2}.$$

Seja \mathcal{F}_d a folheação definida pela 1-forma em $D_+(z)$:

$$\mathcal{F}_d: \omega = (x + ay^{g(d)} + by^{h(d)} + cy^{s(d)})dx - y^{f(d)}dy$$

onde $a,b,c\in\mathbb{Z}$ são tais que $abc\neq 0\mod 2$. Então, $\mathcal F$ não é 2-fechada e possui 2-divisor dado por

$$\Delta_{\mathcal{F}_d} = dl_{\infty} + (f(d) - 1)\{y = 0\} + C$$

onde C é uma curva irredutível de grau $2d^2 + d + 3$.

^aJ. P. Figueredo, W. Mendson - Non-algebraicity of foliations via reduction modulo 2

Principal dificuldade: Mostrar que C é irredutível.

• d=1: a folhação possui grau 3 e é dada pelo campo:

$$v = y^3 \partial_x + (x + ay + by^2 + cy^3) \partial_y$$

O 2-divisor é dado por:

$$\Delta_{\mathcal{F}_1} = \{z=0\} + 2\{y=0\} + \{aby^3 + axy + b^2y^4 + by^5 + x^2 + xy^3 + y^4 = 0\}$$

• d=1: a folhação possui grau 3 e é dada pelo campo:

$$v = y^3 \partial_x + (x + ay + by^2 + cy^3) \partial_y$$

O 2-divisor é dado por:

$$\Delta_{\mathcal{F}_1} = \{z = 0\} + 2\{y = 0\} + \{aby^3 + axy + b^2y^4 + by^5 + x^2 + xy^3 + y^4 = 0\}$$

• d=3: a folheação possui grau 13 e é dada pelo campo:

$$v = y^{13}\partial_x + (x + ay^2 + by^7 + cy^{12})\partial_y$$

O 2-divisor é:

$$\Delta_{\mathcal{F}_3} = 3\{z=0\} + 12\{y=0\} + \{a^2y^4 + aby^9 + bxy^7 + by^{19} + x^2 + y^{24} + y^{14} = 0\}$$

 \bullet Passo 1: Suponha, por contradição, que \mathcal{F}_d possui uma curva algébrica D de grau $e \text{ em } D_+(z)$

 $^{^{12}\}mathrm{Carnicer}$ - The Poincare problem in the nondicritical case

- \bullet Passo 1: Suponha, por contradição, que \mathcal{F}_d possui uma curva algébrica D de grau e em $D_+(z)$
- Passo 2: Sem perda de generalidade podemos supor que D está definida sobre \mathbb{Z} . A cota de Carnicer¹² implica que $e \leq d + 2$ (\mathcal{F}_d é não-dicrítica)

¹²Carnicer - The Poincare problem in the nondicritical case

- \bullet Passo 1: Suponha, por contradição, que \mathcal{F}_d possui uma curva algébrica D de grau e em $D_+(z)$
- Passo 2: Sem perda de generalidade podemos supor que D está definida sobre \mathbb{Z} . A cota de Carnicer¹² implica que $e \leq d + 2$ (\mathcal{F}_d é não-dicrítica)
- Passo 3: Como $C \otimes \mathbb{F}_2$ não é um 2-fator, segue que existe um fator irredutível Q de $C \otimes \mathbb{F}_2$ tal que Q define uma curva invariante de $\mathcal{F}_2 := \mathcal{F} \otimes \mathbb{F}_2$

¹²Carnicer - The Poincare problem in the nondicritical case

- \bullet Passo 1: Suponha, por contradição, que \mathcal{F}_d possui uma curva algébrica D de grau e em $D_+(z)$
- Passo 2: Sem perda de generalidade podemos supor que D está definida sobre \mathbb{Z} . A cota de Carnicer¹² implica que $e \leq d + 2$ (\mathcal{F}_d é não-dicrítica)
- Passo 3: Como $C \otimes \mathbb{F}_2$ não é um 2-fator, segue que existe um fator irredutível Q de $C \otimes \mathbb{F}_2$ tal que Q define uma curva invariante de $\mathcal{F}_2 := \mathcal{F} \otimes \mathbb{F}_2$
- Passo 4: Pela estrutura do 2-divisor segue que

$$\Delta_{\mathcal{F}_2} = (f(d) - 1)\{y = 0\} + D$$

e daí resulta que Q=D, pois $\{y=0\}$ não é \mathcal{F}_2 -invariante

 $^{^{12}}$ Carnicer - The Poincare problem in the nondicritical case

- \bullet Passo 1: Suponha, por contradição, que \mathcal{F}_d possui uma curva algébrica D de grau e em $D_+(z)$
- Passo 2: Sem perda de generalidade podemos supor que D está definida sobre \mathbb{Z} . A cota de Carnicer¹² implica que $e \leq d + 2$ (\mathcal{F}_d é não-dicrítica)
- Passo 3: Como $C \otimes \mathbb{F}_2$ não é um 2-fator, segue que existe um fator irredutível Q de $C \otimes \mathbb{F}_2$ tal que Q define uma curva invariante de $\mathcal{F}_2 := \mathcal{F} \otimes \mathbb{F}_2$
- Passo 4: Pela estrutura do 2-divisor segue que

$$\Delta_{\mathcal{F}_2} = (f(d) - 1)\{y = 0\} + D$$

- e daí resulta que Q=D, pois $\{y=0\}$ não é \mathcal{F}_2 -invariante
- Passo 5: Daí, resulta:

$$d+2 \ge \deg(C) \ge \deg(Q) = 2d^2 + d + 3$$

e daí $2d^2 \leq -1$, uma contradição.

¹²Carnicer - The Poincare problem in the nondicritical case

Como checar a irredutibilidade

Seja $f(x_1,\ldots,x_n)=\sum_{\vec{i}}a_{\vec{i}}x_1^{i_1}\cdots x_n^{i_n}\in K[x_1,\ldots,x_n]$. Podemos ver (i_1,\ldots,i_n) como um elemento de \mathbb{R}^n . O politopo de Newton de f, denotado por $P_f\subset\mathbb{R}^n$, é o fecho convexo do conjunto dos exponentes (i_1,\ldots,i_n) que ocorrem em f.

Como checar a irredutibilidade

Seja $f(x_1,\ldots,x_n)=\sum_{\bar{i}}a_{\bar{i}}x_1^{i_1}\cdots x_n^{i_n}\in K[x_1,\ldots,x_n]$. Podemos ver (i_1,\ldots,i_n) como um elemento de \mathbb{R}^n . O politopo de Newton de f, denotado por $P_f\subset\mathbb{R}^n$, é o fecho convexo do conjunto dos exponentes (i_1,\ldots,i_n) que ocorrem em f.

Proposição

 $^aSe\ f=hg\ com\ g\ e\ h\ n\~ao\ constantes\ ent\~ao\ P_f=P_h+P_g\ (soma\ de\ Minkowski).$

^aShuhong Gao - Absolute irreducibility of polynomials via Newton polytopes

Como checar a irredutibilidade

Seja $f(x_1,\ldots,x_n)=\sum_{\overline{i}}a_{\overline{i}}x_1^{i_1}\cdots x_n^{i_n}\in K[x_1,\ldots,x_n]$. Podemos ver (i_1,\ldots,i_n) como um elemento de \mathbb{R}^n . O politopo de Newton de f, denotado por $P_f\subset\mathbb{R}^n$, é o fecho convexo do conjunto dos exponentes (i_1,\ldots,i_n) que ocorrem em f.

Proposição

 $^aSe\ f=hg\ com\ g\ e\ h\ n\~ao\ constantes\ ent\~ao\ P_f=P_h+P_g\ (soma\ de\ Minkowski).$

^aShuhong Gao - Absolute irreducibility of polynomials via Newton polytopes

Observação

^a Seja P um polígono em \mathbb{R}^2 . Seja $v(P) = \{\overline{p_1p_2}, \overline{p_2p_3}, \ldots, \overline{p_np_1}\}$ onde $\partial P = \{p_1, \ldots, p_n\}$. Se v(P) não pode ser particionado em duas subsequências disjuntas, com cada uma somando zero, então P não pode ser escrito como soma de Minkowski de dois polígonos menores.

 $^a\mathrm{David} \to \mathrm{Speyer}$ - (https://mathoverflow.net/users/297/david-e-speyer), Irreducibility of polynomials in two variables

Considere o polinômio:

$$f(x,y)=ay^2+by+cxy+d+ex+fx^2+gx^3\in K[x,y]$$

com $adg \neq 0.$ O polígono de Newton de fé:

Considere o polinômio:

$$f(x,y)=ay^2+by+cxy+d+ex+fx^2+gx^3\in K[x,y]$$

com $adg \neq 0$. O polígono de Newton de f é:

Considere o polinômio:

$$f(x,y)=ay^2+by+cxy+d+ex+fx^2+gx^3\in K[x,y]$$

com $adg \neq 0$. O polígono de Newton de f é:

Note que

$$v(P) = \{(0, -1), (0, -1), (1, 0), (1, 0), (1, 0), (-3, 2)\}.$$

Considere o polinômio:

$$f(x,y)=ay^2+by+cxy+d+ex+fx^2+gx^3\in K[x,y]$$

com $adg \neq 0$. O polígono de Newton de f é:

Note que

$$v(P) = \{(0, -1), (0, -1), (1, 0), (1, 0), (1, 0), (-3, 2)\}.$$

Como v(P) não pode ser particionado em duas subsequências disjuntas somando zero, segue que f é irredutível.

Problemas

• Precisamos da condição não-dicrítica no critério de redução mod 2?

Problemas

- Precisamos da condição não-dicrítica no critério de redução mod 2?
- Entender a "correspondência": folheações em $\mathbb{P}^2_{\mathbb{C}}$ sem curva algébrica invariante se "correspondem" no conjunto de folheações $\mathbb{P}^2_{\mathbb{F}_p}$ com única curva algébrica invariante

Problemas

- Precisamos da condição não-dicrítica no critério de redução mod 2?
- Entender a "correspondência": folheações em $\mathbb{P}^2_{\mathbb{C}}$ sem curva algébrica invariante se "correspondem" no conjunto de folheações $\mathbb{P}^2_{\overline{\mathbb{F}}_p}$ com única curva algébrica invariante
- Seja \mathcal{F} uma folheação em $\mathbb{P}^2_{\mathbb{C}}$ definida sobre \mathbb{Z} e suponha que $\Delta_{\mathcal{F}_p}$ é irredutível para algum primo p. Existe um conjunto denso $S \subset Spm(\mathbb{Z})$ tal que $\Delta_{\mathcal{F}_a}$ é irredutível para todo primo em S?

Problemas

- Precisamos da condição não-dicrítica no critério de redução mod 2?
- Entender a "correspondência": folheações em $\mathbb{P}^2_{\mathbb{C}}$ sem curva algébrica invariante se "correspondem" no conjunto de folheações $\mathbb{P}^2_{\overline{\mathbb{F}}_p}$ com única curva algébrica invariante
- Seja F uma folheação em P²_C definida sobre Z e suponha que Δ_{Fp} é irredutível para algum primo p. Existe um conjunto denso S ⊂ Spm(Z) tal que Δ_{Fa} é irredutível para todo primo em S?
- Entender o p-divisor para folheações que admitem única singularidade.

Folheações em característica p > 0Um critério via redução mod 2

Obrigado ;-)