Ab WS 2024/2025 10/2024© Andreas Takó

NAME Vorname	Matr.Nr.	Platznr.	Semester
Meinschad Lukas	12104730	14	SS25

Datenblatt für Ausgangsmaterialien und Produkte

(Die Daten müssen für jede in der Reaktion und Aufarbeitung verwendete Chemikalie erhoben werden!)

Dieses Blatt muss zur Ansatzbestätigung ausgefüllt vorgelegt werden. Bei Abgabe des Präparates muss dieses Blatt im Protokollheft eingeklebt sein.

Informationsquellen: Ecomed Sorbe-PC, https://www.sigmaaldrich.com, GESTIS-Stoffdatenbank

Präparatename	Code
4-Methylcyclohex-3-en-1-one	U168

Sicherheitstechnische Kenndaten aller verwendeten Chemikalien

	PAC-Name G-Nummer]	<u>GHS</u>	<u>H-Sätze</u>	P-SÄTZE
1	4-Methylanisole [104-93-8]	02, 07, 09	H226, H302, H315, H319, H335, H411	P210, P273, P301+P312, P305+P351+P338
2	Ethylenediamine [107-15-3]	02, 05, 06, 08	H226, H302, H311, H314, H317, H334	P210, P280, P301+P330+P331, P303+P361+P353, P305+P351+P338, P342+P311
3	<i>Tert</i> -Butanol [75-65-0]	02, 07	H225, H319, H332, H335	P210, P261, P305+P351+P338
4	Lithium [7439-93-2]	02, 05	H260, H314	P223, P231+P232, P280, P305+P351+P338, P370+P378, P422
5	Tetrahydrofuran [109-99-9]	02, 07, 08	H225, H319, H335, H351	P210, P261, P280, P305+P351+P338, P370+P378
6	Ammonium chloride [12125-02-9]	07	H302, H319	P264, P270, P301+P312, P305+P351+P338, P330
7	Diethyl ether [60-29-7]	02, 07	H224, H302, H336, EUH019, EUH066	P210, P240, P403+P233
8	Sodium sulfate [7757-82-6]			
9	Oxalic acid [144-62-7]	05, 07	H302, H312, H318	P280, P301+P312, P305+P351+P338
10	Sodium bicarbonate [144-55-8]			
11	4-Methylcyclohex-3-en-1-one [5259-65-4]	07	H315, H319, H335	P261, P280, P305+P351+P338

Ab WS 2024/2025 10/2024© Andreas Takó

Physikalische Daten der verwendeten Chemikalien

Nur sinnvolle Daten erheben, Aggregatszustand bei Raumtemperatur beachten!

Bei Raumtemperatur flüssig → Angabe von Siedepunkt und Brechungsindex

Bei Raumtemperatur fest → Angabe von Schmelzpunkt (im Bereich von -20 bis +25 °C zusätzlich Siedepunkt angeben)

	AC-Name -Nummer]	Schmelzpunkt	<u>Siedepunkt</u>	Brechungsindex
1	4-Methylanisole [104-93-8]		175 °C	1.511
2	Ethylenediamine [107-15-3]		116 °C	1.457
3	<i>Tert</i> -Butanol [75-65-0]		82.5 °C	1.387
4	Lithium [7439-93-2]			
5	Tetrahydrofuran [109-99-9]		66 °C	1.407
6	Ammonium chloride [12125-02-9]			
7	Diethyl ether [60-29-7]		34.6 °C	1.353
8	Sodium sulfate [7757-82-6]			
9	Oxalic acid [144-62-7]	189-191 °C		
10	Sodium bicarbonate [144-55-8]			
11	4-Methylcyclohex-3-en-1-one [5259-65-4]		190-192 °C	1.470

Bemerkungen und besondere Anweisungen:

Organisch-Chemische Praktika Ab WS 2024/2025 10/2024© Andreas Tak			
Ab WS 2024/2025		10/2024© Andreas Take	
Datum:	Unterschrift Student	Unterschrift Betreuer	
Dataiii.	ontersenine student	ontersenine betreder	