微胶囊化微生态制剂在 饲料工业中的应用

孙 梅 陈秋红 施大林 匡 群 江苏省苏微微生物研究有限公司

食品安全是一个全球性的问题, 也是中国当前 面临的严峻挑战之一。抗生素作为饲料添加剂使用 已有50年的历史,是目前饲料中用量最大和最广 的添加剂。使用抗生素会导致动物机体免疫功能下 降,特别是长期使用会在动物体内残留和富集,直 接影响人类的免疫和健康。保证养殖品食用安全关 键在于开发绿色、安全、高效饲料及其添加剂、以 减少或替代抗生素的使用,消除药物残留的隐患。

微生态制剂亦称微生态调节剂,是根据微生态 学原理,通过调整微生态失调,保持微生态平衡, 提高宿主的健康水平,利用对宿主有益的正常微生 物或促进物质所制成的制剂。我国微生态制剂的开 发利用起源于20世纪70年代末至80年代初,90 年代后进入产业化研制。近年来, 随着人们食品安 全意识的提高, 微生态制剂以其高效的保健功能、 无毒不良反应、无残留和不污染环境等特点成为替 代抗生素较为理想的产品。

1 微生态制剂微胶囊化的必要性

微生态制剂存在的不足:1)微生态制剂的有 些菌种在生长过程中不形成芽孢, 抗性较差, 如: 嗜酸乳杆菌、双歧杆菌和粪链球菌等。粉剂和颗粒 等固体微生物活菌制剂的制备要经过干燥、高温或 加热制粒处理,造成菌体严重失活,影响产品使 用效果;水剂微生物制剂不易保藏,时效性短。2)

微生态制剂必须通过胃环境以大量的存活菌到达肠 道并定植于肠黏膜上才能发挥其生理功能,由于胃 酸的杀菌作用,微生态制剂的活菌数在此过程中也 会大幅度下降。3)在水产养殖中,人们多数是采 取泼洒投加游离菌的方式,制剂中有益微生物进入 水体后易分散,环境的适应能力差且质量浓度低, 在水体环境中不易繁殖为优势种群, 容易随养殖水 的流动而流失,并容易被水中高等微生物捕食,因 此难以稳定长期的发挥作用,且微生物活菌制剂的 应用效果也由于峰和谷菌质量浓度的存在使活菌作 用不均衡, 作用时效缩短, 因此, 在养殖动物突然 爆发疾病或养殖水体严重污染时不能起到立竿见影 的效果。

微胶囊技术是当今世界上的一种发展迅速、用 途广泛而又比较成熟的高新技术。所谓微胶囊技术, 是将固体、液体或气体物质包埋和封存在一种微型 胶囊内, 成为固体微粒产品, 在需要时释放其有效 成分。微胶囊技术在保护生物活性分子、组织或细 胞以对抗不利的环境方面取得了较好的成效。微 胶囊化微生态制剂的优点在于:1)具有保护作用, 增加稳定性, 微胶囊的壁材可保护芯材, 使其免受 环境中水分、氧气、紫外线和 pH 等影响,能有效 地延缓其分解、氧化和挥发等变质过程的发生。2) 将同1种产品中2种或超过2种的混合在一起易发 生化学反应而失效的添加剂成分用微胶囊隔开,以 提高其稳定性。3) 具有缓释作用, 能控制有效成 分的释放速度, 使之长效化, 减少毒不良反应。4) 微胶囊还可以起到隔离作用, 阻止不同物质间的反 应,提高其稳定性。5)改变物料的状态,通过微

收稿日期:2011-03-29

基金项目:农业部淡水鱼类遗传育种和养殖生物学重点开放实 验室开放课题 BZ2009-21, 无锡市科技攻关(农业 支撑)项目 CMEN0904

설 화 수 있

通信作者: 匡群

科技动态

胶囊化可以改变物质的存在状态、质量、体积和密度等物理性质。如:将液态物质制成分散性好、便于运输、储藏及使用的微胶囊固态粉末。6)掩盖不良气昧,改善风味,微胶囊化可以屏蔽某些化合物的味道或气味。7)可使原来不溶于水的物质,如:油脂类,制成微胶囊后能均匀地分散于水性介质中,从而有效地发挥作用。

2 微胶囊化微生态制剂的制备方法

2.1 挤压法

挤压法是最普遍的利用亲水胶体制备微胶囊的 方法,包括制备亲水胶体溶液,加入微生物细胞, 挤压细胞悬液, 使其通过注射式针头以液滴的形式 落人固定液中等过程。挤压法制备微胶囊最常用的 壁材是海藻酸钠, 具有制备条件温和、简单、价格 低廉和有较高的生物相容性的优点。形成微胶粒的 海藻酸钠溶液的质量浓度并不固定, 微胶粒的直径 为 2~3 mm, 颗粒的大小和外形取决于海藻酸钠溶 液的质量浓度和液滴下落的距离。随着海藻酸钠质 量浓度的提高,颗粒直径变小。挤压器的出口孔径 是另外一个重要影响因素,它可以控制液滴的大小。 周剑忠等将乳酸菌与 0.6 %的海藻酸钠溶液混合后 滴到 1 %的 CaCl₂ 溶液中固化, 所得产品在低温和 60 ℃条件下贮藏, 乳酸菌的活菌数分别较未固定 化产品提高2个和1个数量级。但由于菌体分散于 凝胶中, 打断了凝胶网络的均匀结构, 小分子物质 容易通过壁材, 因此不能很好地阻隔胃液, 产品不 具有耐胃酸性。近年来, 部分学者将益生菌菌液与 海藻酸钠在同化液中固化 在制得的胶粒中加入聚 赖氨酸或壳聚糖与海藻酸钠络合成膜, 这样制得的 微胶囊耐胃酸性较好。

挤压法使用的材料除了海藻酸钠,还有明胶、 卡拉胶、果胶、邻苯二甲酸醋酸纤维素和石蜡油, 1种或2种材料联用。挤压法操作简单,成本低, 能保持较高的菌体密度和活性,但很难获得干燥的 粉末产品。

2.2 喷雾干燥法

喷雾干燥法是用单一工序将溶液、乳液、悬浮 液或浆状液加工成粉状干燥制品的一种干燥方法。 它是食品工业应用最为悠久, 最为广泛, 也是成本 极为廉价的一种微胶囊方法,不少研究也尝试了应 用于益生菌的微胶囊化。喷雾干燥法干燥速率快, 时间短,物料温度较低,产品的分散性和溶解性好, 生产过程简单,适用于连续化生产,但产品存在菌 体分散不均匀及制备过程中病死率高的问题。谭文 乐等研究了醋酸菌喷雾干燥工艺,经干燥后菌体存 活率为23.1%,李宁等采用喷雾干燥的方法制成双 歧杆菌微胶囊,活菌存活率为53.5%。保持益生菌 的存活率, 重要的是在喷雾干燥过程后保持益生菌 的特性。近年来,喷雾干燥研究技术主要聚焦在工 艺参数的优化、适当培养基的选择、不同保护剂的 添加和不同储存条件下的存活率,另外也开始研究 其他可行的方法,如:微胶囊化和预处理能潜在提 高微牛物对干燥环境的耐受性。罗佳琦等通过优化 喷雾干燥工艺参数,微胶囊内嗜酸乳杆菌的存活率 达到 63 %。

2.3 乳化法

乳化包埋法是先将少量益生菌细胞悬液(非连 续相)加入到大量的植物油中(连续相),如:大豆 油、葵花籽油或玉米油,然后经过均质形成油水乳 化液。一旦油水乳化液形成,水溶性的多聚物相互 交联,在油中形成不溶性的微小胶粒。乳化液中不 连续相的体积越小,最后形成的微粒尺寸越小。形 成油不溶性微粒的方法取决于所选用的壁材, 最后 通过过滤收集微胶粒。微胶粒的大小取决于搅动的 速率,一般微粒的尺寸在25 µm 和2 mm。唐宝英 等将双歧杆菌冻干粉与壳聚糖溶液混匀,并悬浮于 大豆色拉油中(以 Span85 为乳化剂), 乳化后加入 对苯二甲酰氯交联反应,制备了双歧杆菌微胶囊。 曹永梅等将浓缩双歧杆菌菌液与海藻酸钠溶液混合 均匀后, 加入植物油, 搅拌形成均匀混浊乳状液, 然后快速加入 CaCl。水溶液,直至乳化液中水相/油 相被破坏, 形成海藻酸钙胶粒, 实现微胶囊化。微 胶囊化双歧杆菌经胃液处理后存活率大于50%, 比未微胶囊化产品提高了4个数量级;微胶囊化后 双歧杆菌的耐热性较强,在50℃时的存活率提高 了 3 个数量级,而未微胶囊化产品在 55 ℃已无活

菌存在, 微胶囊化产品在 60 ℃处理 3 min 仍有部 分活菌, 可见微胶囊壁材作为一种物理屏障, 减缓 了热传递过程。

3 微胶囊化微生态制剂的应用

3.1 在水产养殖中的应用

微生态制剂在水产养殖中主要作为体内微生态 改良剂和水质微生态改良剂。微生态制剂中的许多 细菌本身含有丰富的蛋白质、氨基酸和维生素等营 养物质,是优质饲料添加剂或动物幼体的优良饵料。 它作为饲料添加剂经常用于水产养殖的各个时期, 尤其在育苗期的动物性饵料培养过程及育成期自制 饵料的搭配中。在饲料中添加微生态制剂,通过鱼 类的摄食,进入肠道中的微生态制剂形成优势菌群, 经一系列生理生化反应产生促生长类的生理活性物 质、酶类并提高动物体内消化酶的活性等,有助于 养殖动物对饲料的消化及吸收,促进鱼类生长和发 育。Gatesoupe 发现, 芽孢杆菌能提高大龄鲆仔鱼 和日本比目鱼仔鱼的生长率, 粪链球菌能促进鲤鱼 的生长,并提高饲料利用率。

微生态制剂作为水质改良剂在水产养殖过程中 能改良水环境的水质和底质,调节水色和浮游生物 组成,保护动物健康和促进动物生长。刘淇等用活 菌生物净水剂进行了南美白对虾饲养试验, 结果表 明:微生态制剂产品能显著提高对虾成活率,试验 组平均成活率为87.3%,而对照组为80.5%。

因此, 微生态制剂的使用在水产健康安全养殖 中具有十分重要的意义,但微生态制剂也存在一些 缺陷,如:菌体易失活,在水产养殖过程中采用泼 洒方式投放益生菌, 菌体进入水体后质量浓度低, 不易形成优势菌群等。

微胶囊技术被广泛应用于微生物、动植物细胞、 酶和其他多种生物活性物质和化学药物的固定化方 面。微生态制剂经过微胶囊化处理后能够经过缓释 达到控制释放速度的目的,并且通过隔离外界不利 环境起到保护菌体的作用。微胶囊化微生态制剂作 为饲料添加剂在水产养殖中的应用具有以下几个优 点:1) 水中的稳定性较好, 而且可以延缓活性物 质释放速度,提高其稳定性。2)提高鱼类运输成 活率。3)提高鱼苗育种的成活率。4)抑制有害 菌生长,间接起到防制鱼病的作用。因此,微胶囊 化微生态制剂在水产养殖中具有广阔的应用前景。 3.2 在畜禽养殖中的应用

随着畜牧业的发展,人们日益重视畜产品安 全。微生态制剂作为一种绿色饲料添加剂逐渐在饲 料中推广应用。但在实际应用中, 由于微生物耐热 性和耐酸性差,在饲料高温制粒过程中容易失活, 且在动物胃肠道中难以经受胃酸和胆汁酸的作用, 难以有足够的活菌数量到达肠道或定植肠道而发挥 作用, 微生物实际应用效果并不理想。近年来, 研 究表明:经过微胶囊化后的微生态制剂能够避免或 降低环境的影响,保持活菌的稳定,同时具有提 高畜禽的生产能力、抑病和防病的作用。冯华等研 究以包埋乳酸菌作为蛋鸡的饲料添加剂,测定其对 蛋鸡的抑菌和促生产作用。结果表明:添加未包埋 乳酸菌试验组的产蛋率、蛋质量及日采食量比对照 组分别提高 1.96 %、9.91 %和 3.09 %,添加包埋 乳酸菌试验组分别提高 6.54 %、4.69 %和 4.76 %。 赵红波等试验研究有益微生物微胶囊的肠溶性对断 奶仔猪生产性能的影响,结果表明:与未包被的微 生物组和土霉素组相比, 微胶囊组日增质量显著提 高,料肉比显著降低,而且添加微胶囊组仔猪腹泻 率为0。

4 展望

微胶囊技术的应用有望提高益生菌在生产、贮 存和消费过程中的稳定性, 生产出耐贮存、耐高温、 耐高压和耐酸性的微生物制剂,该技术在饲用微生 物制剂的应用潜力巨大。总之,微胶囊化技术为微 生态制剂提供了一条可行的工业化途径。微胶囊技 术尽管存在生产成本高和工艺复杂的不足,但由于 微胶囊技术有其不可替代的许多独特优点, 随着技 术的不断改进,它在饲料工业中的应用将会越来越 广泛。

通信地址:江苏省无锡市钱荣路7号江苏苏微 微生物研究有限公司 214063

标准组进术的原理 1 (XZSW 200901-K)