Exploring & Self Learning Robots

• • •

November 2nd 2017

The Team

Gareth Pulham

MEng Software Engineering

Background in embedded and GPGPU

Sam Dixon

MEng Software Engineering

Background in distribution and machine-learning

The Project

- Exploring and learning robots
- Why is this important?
 - Increasing robotic exposure to unfamiliar environments
 - Increasing robotic exposure to novel tasks
 - Combination of the two in a mutable world

Previous work - Where we're coming from

MSc student working on robotic capture-the-flag

MEng student implementing computer vision

Self-driving cars

Autonomous exploration

Our Proposal - What we want to do

Arrival & SLAM

The robot arrives at the mission destination.

- Begin to map the mission area SLAM
- Identify resources, goals, hazards, etc

Self Training

Once mission objectives have been identified, simulate strategies to complete the mission.

Jetson accelerated
GA and learning

Execution

Carry out the mission according to surroundings and learning controllers.

Incorporate real world execution fitness to the learned model.

Our Proposal - Technology

- Thymio II
 - Cheap, simple robot with a multitude of sensors
- Nvidia Jetson
 - Tegra SoC development boards
 - Accelerated training and robot control
 - o TX1 and TX2 models
 - o 256 CUDA cores

Our Proposal - Results and Deliverables

Deliverable 1 Porting robot simulator to Jetson Implementing SLAM on Jetson-robot Deliverable 2 Optimise tooling and systems Deliverable 3 Deliverable 4 Documentation and Report

Our Proposal - Potential Problems

- Jetson weight
- Jetson/Robot power consumption
- Robot maneuverability
- Reality gap
- Scope of project

Questions

