Rapport Projet Machine Learning

Explication du prix de l'électricité

Equipe:4

SENECHAL-Morgan

SEBBANE-Ryan

SAVORY-Edwin

PIMENTA SILVA-Lionel

Professeur: CHAKCHOUK, Faten

Table des matières

	I	Introduction	3
I.	[Description des données	4
	1)	Importation des données	4
	2)	Identification des données	4
	3)	Importation des librairie python	6
II.	F	Préparation des données	6
	1) (Chargement des données	6
	2)	Valeurs manquantes	7
	3)	Normalisation des données	8
	4)	Comparaison des attributs	10
Ш		Analyse exploratoire des données	11
1)	Ide	entification de la variable cible	11
	2)	Aperçus et éxamination des variables	11
	3)	Les Histogramme	14
	4)	Matrice des corrélations	19
	5)	Interprétation des résultats	20
ΙV	'. 「	Modélisation des données	21
	1)	Régression linéaire simple	21
V.	6	Evaluation des modèles	25
	1)	Corrélation de Spearman, R2 et RMSE	25
	(Conclusion	27

Introduction

L'alimentation électrique est un produit de tous les jours dont le montant varie en fonction de nombreux facteurs. Divers événements peuvent affecter simultanément la production et la demande d'électricité (rivalités géopolitiques, fluctuations des coûts des matières premières, trafic commercial entre les pays européens...). La modélisation du prix de l'alimentation électrique en fonction de ces facteurs peut donc être difficile. Dans ce contexte, notre projet cherche à modéliser le prix de l'alimentation électrique en France et en Allemagne en utilisant des données météorologiques, énergétiques et commerciales. Ce n'est pas seulement un problème de prédiction, c'est plutôt un problème d'explication de prix par d'autres variables simultanées. L'objectif est de créer un modèle qui évalue le changement quotidien du prix des contrats à terme (également appelés "futures") sur l'alimentation électrique en France ou en Allemagne, à partir des conditions actuelles du marché. Les futures sont des instruments financiers qui donnent une estimation de la valeur de l'alimentation électrique au moment de la maturité du contrat à partir des conditions actuelles du marché. Les variables explicatives comprennent des mesures quotidiennes de données météorologiques, de fabrication énergétique et d'utilisation de l'alimentation électrique. Le projet sera conduit en utilisant la méthodologie CRISP-DM (Cross-Industry Standard Process for Data Mining), qui est une méthode flexible et itérative en 6 étapes, allant de la compréhension du problème commercial à la mise en service. Pour mener à bien ce projet nous allons voir les étapes d'implémentation et description des données puis la préparation des données pour pouvoir par la suite mener une analyse exploratoire sur c'est donné et d'ainsi les modélisé en créant des modèles que nous évaluerons.

I. Description des données

1) Importation des données

Dans un premier temps nous avons importé les 3 fichiers.csv contenant les données du projet :

Data_X.csv : Les données d'entrée.

Data_Y.csv : Les données en sortie.

DataNew_X(1).csv: Nouvelles données en entrée non labélisées.

Les données en

L'affichage des données dans les fichiers se présente sous la forme ci-dessous:

Data_X.csv:

			FR_DE_EXCHANGE :	FR_NET_EXPORT :
1				0.6928595710148415
2				-1.1308376214004447
3				-1.6825866471237902
4				0.5632299001791123
5				0.9903236003835739
- 6				-0.20030541442285069
7				-0.9862353887047263
8				0.5695847995077787
9				0.37310888239179724
10				0.34205698573889515
11				0.9643914639062722
12				-1.0911416792551087
13				-1.31202947257174
14				1.0022432987844765
15				-1.8231174180606853
16				1.5873962390008236
17				1.1828575019651306
18				1.8794307012588038
19				-1.8632559305215006
20				<null></null>
21				1.1153512959412968
22				1.2522632040457966
23				0.7220109687498161
24				0.14420198033115422
25				<null></null>
26				1.006199662946874
27				0.19710352023049116
28				-1.0368983883540055
29				-0.42633140513059553
30				-2.335635366327745
31				-0.3540579831775868
32				-0.7425043482261339
33				1.1432367744019094
34				-1.691992481332515
35				0.7143130841288053

2) Identification des données

Les données d'entrée Data X et DataNew X correspondent aux mêmes variables explicatives, mais pour deux périodes distinctes.

Pour c'est deux fichiers, les données d'entrée possèdent 35 colonnes :

Identifiant:

-ID: identifiant associant jour (DAY_ID) et pays (COUNTRY)

-DAY_ID: Identifiant des jours

-COUNTRY: Identifiant des pays

Variation journalières du prix des matières premières :

-GAS RET : Gaz en Europe

-COAL RET: Charbon en Europe

-CARBON RET : Futures émissions de carbone

Mesure météorologique :

-X_TEMP: Température

-X_RAIN: Pluie

-X_WIND: Vent

Mesure de productions d'énergie journalière dans les pays :

X GAS: Gaz naturel

X COAL: Charbon

X_HYDRO: Hydraulique

X_NUCLEAR : Nucléaire

X SOLAR: Photovoltaïque

X_WINDPOW: Eolienne

X LIGNITE: Lignite

Mesure d'utilisation électrique journalières dans les pays :

-x_CONSUMPTON : Électricité totale consommée

-x_RESIDUAL LOAD : Électricité consommée après utilisation des d'énergies renouvelables

-x_NET_IMPORT : Électricité importée depuis l'Europe

-x_NET_EXPORT : Électricité exportée vers l'Europe

-DE_FR_EXCHANGE : Electricité 'échangée entre Allemagne et France

-FR_DE_EXCHANGE : Electricité échangée entre France et Allemagne.

Concernant les données en sortie Data_Y, les données se composent en deux colonnes :

Identifiant:

-ID: identifiant identique aux données d'entrée

Variation du prix de l'électricité :

-TARGET : Variation journalière du prix de l'électricité dans le futur (maturité 24h)

3) Importation des librairie python

Après avoir importé et identifié nos données, nous avons importé toutes les librairie python qui nous serons nécéssaire pour réalisé ce projet :

```
import pandas as pd
import numpy as np
import seaborn as sns
import sklearn.cluster as skc
import sklearn.preprocessing as skp
import csv
```

- -pandas: Manipuler et analyser des données de manière efficace et intuitive.
- **-numpy:** Outils pour travailler avec des tableaux multidimensionnels (arrays) et effectuer des opérations mathématiques sur ces derniers.
- **-seaborn:** Créer facilement des visualisations statistiques attractives et informatives à partir de données structurées.
- **-sklearn.cluster:** Fournit des algorithmes de clustering pour regrouper des données similaires en fonction de leurs caractéristiques communes. Utile pour la segmentation de données et la détection de motifs.
- -sklearn.preprocessing: Outils pour prétraiter et transformer les données en vue de les utiliser dans des modèles d'apprentissage automatique, notamment pour la normalisation, la binarisation, l'encodage et l'imputation de données manquantes.
- -csv: Fournit des fonctionnalités pour lire, écrire et manipuler des fichiers au format CSV

II. Préparation des données

1) Chargement des données

Pour commencer, nous avons créé une classe : DataLoad() nous permettant de charger les données à partir des fichiers csv :

```
class DataLoad():
    """"Classe permettant de charger les données"""

def __init__(self):
    self.dfX = pd.read_csv("Data_X.csv")
    self.dfY = pd.read_csv("Data_Y.csv")
    self.dfNew_X = pd.read_csv("DataNew_X (1).csv")
    self.FR_dfX = self.dfX[self.dfX['COUNTRY'] == 'FR']
    self.FR_dfY = self.dfY[self.dfX['COUNTRY'] == 'FR']
    self.DE_dfX = self.dfY[self.dfX['COUNTRY'] == 'DE']
    self.DE_dfY = self.dfY[self.dfX['COUNTRY'] == 'DE']
```


Lorsque la classe est instanciée, les fichiers "Data_X.csv", "Data_Y.csv" et "DataNew_X (1).csv" sont lus et les données sont stockées dans les attributs dfX, dfY et dfNew_X respectivement. Quatre nouveaux DataFrame sont créés pour les données correspondantes aux pays 'FR' et 'DE' dans les DataFrames dfX et dfY, et stockés dans les attributs FR_dfX, FR_dfY, DE_dfX et DE_dfY.

2) Valeurs manquantes

Une fois nos donnée afficher, nous avons remarqué qu'il y avait des données manquante. Nous avons donc crée une méthode missing_values() pour afficher le nombre de valeurs manquantes dans cacune des DataFrame :

```
def missing_values(self):
    print(self.dfX.isnull().sum())
    print(self.dfY.isnull().sum())
    print(self.dfNew_X.isnull().sum())
```

La méthode utilise la fonction isnull() de pandas pour déterminer les valeurs manquantes et la fonction sum() pour calculer la somme de ces valeurs manquantes. Les résultats sont affichés par un print() pour chaque DataFrame.

Output de la méthode :

Pour Data_X:

Pour Data_Y:

ID 0
TARGET 0
dtype: int64

Pour DataNew_X:

```
DE_CONSUMPTION
FR_CONSUMPTION
DE_FR_EXCHANGE
FR_DE_EXCHANGE
DE GAS
FR_GAS
DE_COAL
DE_SOLAR
FR SOLAR
DE_WINDPOW
FR_WINDPOW
DE RAIN
FR_RAIN
DE_WIND
FR_WIND
COAL_RET
CARBON_RET
```

On peux voir que toutes les variable ou il y a des valeurs manquantes on une somme différentes de 0.

3) Normalisation des données

Après avoir trouver le nombre de valeursm manquantes dans nos DataFrame, nous avons normalisé nos DataFrame à l'aide de la méthode normalisaion() :

```
def normalisation(self):
    #Normalisation des données
    pd.options.mode.chained_assignment = None
    self.FR_dfX.drop(['DE_FR_EXCHANGE', 'FR_NET_EXPORT', 'DE_NET_EXPORT'], axis=1, inplace=True)
    self.DE_dfX.drop(['DE_FR_EXCHANGE', 'FR_NET_EXPORT', 'DE_NET_EXPORT'], axis=1, inplace=True)

self.FR_dfX.drop(['COUNTRY', 'DAY_ID'], axis=1, inplace=True)

self.DE_dfX.drop(['COUNTRY', 'DAY_ID'], axis=1, inplace=True)

self.FR_dfX['TARGET'] = self.dfY['TARGET']
    self.DE_dfX['TARGET'] = self.dfY['TARGET']
    self.FR_dfX.fillna(self.FR_dfX.mean(), inplace=True)

self.DE_dfX.fillna(self.DE_dfX.mean(), inplace=True)
```

Tout d'abord, les colonnes 'DE_FR_EXCHANGE', 'FR_NET_EXPORT' et 'DE_NET_EXPORT' sont supprimées des deux DataFrames. Ensuite, les colonnes 'COUNTRY' et 'DAY_ID' sont également supprimées. Les colonnes 'TARGET' sont ensuite ajoutées aux deux DataFrames à partir du DataFrame dfY. Enfin, les valeurs manquantes de chaque DataFrame sont remplacées par la moyenne de la colonne correspondante. Le résultat final est deux DataFrames normalisés qui peuvent être utilisés pour entamer l'analyse de données.

De plus, nous utilisons la méthode verifNA pour être sur qu'il y a aucune valeur manquante dans nos DataFrame :

```
def verifNA(self):
    print(self.FR_dfX.isnull().sum())
    print(self.DE_dfX.isnull().sum())
    print(self.FR_dfY.isnull().sum())
    print(self.DE_dfY.isnull().sum())
```

isnull() est utilisé pour détecter les valeurs manquantes et la fonction sum() pour calculer la somme de ces valeurs manquantes. Nous avons choisie d'utiliser cette méthode pour vérifier rapidement s'il y a des valeurs manquantes dans les données avant de poursuivre l'analyse des données.

Output de la méthode :

FR_dfX:

DE_dfX:

FR_dfY:

DE_dfY:

On voit bien que toute nos variable on une somme de 0. Se qui se traduit pas l'absence de valeur null dans nos DataFrame.

4) Comparaison des attributs

Enfin, pour finir la préparation des données, nous allons vérifier si les valeurs des colonnes des données de nos DataFrame sont compparables avec la variable cible à étudié dans ce projet (TARGET) :

```
def comparable_values(self):
    for i in self.FR_dfX.columns:
        if(self.FR_dfX[i].dtypes==self.FR_dfX['TARGET'].dtypes):
            print("Les valeurs sont comparables")
        else:
            print("Les valeurs ne sont pas comparables")
```

La méthode parcourt toutes les colonnes du DataFrame FR_dfX en utilisant une boucle for et compare le type de données de chaque colonne avec celui de la colonne TARGET en utilisant la méthode dtypes() de pandas. Si les types de données sont les mêmes, la méthode affiche "Les valeurs sont comparables", sinon elle affiche "Les valeurs ne sont pas comparables". Cette méthode est utile pour vérifier si toutes les colonnes du DataFrame FR_dfX ont des types de données appropriés pour l'analyse ou la modélisation de données.

Output de la méthode :

```
Les valeurs ne sont pas comparables
Les valeurs sont comparables
```

Nous pouvons voir que toutes les variables sont comparables avec TARGET sauf ID étant donnée que ID est de type INT et non de type FLOAT.

III. Analyse exploratoire des données

1) Identification de la variable cible

Comme dit précédemment, TARGET est la variable cible de ce projet. Etant donc la variable à étudier, nous avons donc décidé de l'implémenter dans les DataFrame X d'entrée pour FR et DE. Cela nous permet de faciliter l'études de Target avec les différentes DataFrame de FR et DE.

```
def normalisation(self):
    #Normalisation des données
    pd.options.mode.chained_assignment = None
    self.FR_dfX.drop(['DE_FR_EXCHANGE'_k'FR_NET_EXPORT'_k'DE_NET_EXPORT'], axis=1, inplace=True)
    self.DE_dfX.drop(['DE_FR_EXCHANGE'_k'FR_NET_EXPORT', 'DE_NET_EXPORT'], axis=1, inplace=True)

self.FR_dfX.drop(['COUNTRY', 'DAY_ID'], axis=1, inplace=True)

self.DE_dfX.drop(['COUNTRY', 'DAY_ID'], axis=1, inplace=True)

self.FR_dfX['TARGET'] = self.dfY['TARGET']
self.FR_dfX['TARGET'] = self.dfY['TARGET']
self.FR_dfX.fillna(self.FR_dfX.mean(), inplace=True)
self.DE_dfX['Tillna(self.DE_dfX.mean(), inplace=True)
```

2) Aperçus et éxamination des variables

Pour commencer, nous avons utilisé la méthode info nous permettant d'obtenir les types des colonnes de nos DataFrame :

```
#Les types des colonnes
5 usages (4 dynamic)

def info(self):
    print(self.FR_dfX.info())
    print(self.DE_dfX.info())
    print(self.FR_dfY.info())
    print(self.DE_dfY.info())
```

La méthode info() affiche des informations sur les colonnes de chaque DataFrame, telles que le nom de la colonne, le nombre de valeurs non nulles, le type de données et la mémoire utilisée. Cela nous permet de comprendre les données et à diagnostiquer les problèmes potentiels tels que les valeurs manquantes ou les types de données incorrects.

Output de la méthode :

FR_dfX:

DE_dfX:

FR_dfY:

```
Index: 851 entries, 0 to 1492

Data columns (total 2 columns):

# Column Non-Null Count Dtype

-------

0 ID 851 non-null int64

1 TARGET 851 non-null float64

dtypes: float64(1), int64(1)
memory usage: 19.9 KB
```

DE_dfY:

```
Index: 643 entries, 3 to 1493
Data columns (total 2 columns):

# Column Non-Null Count Dtype
--- 0 ID 643 non-null int64
1 TARGET 643 non-null float64
dtypes: float64(1), int64(1)
memory usage: 15.1 KB
```

Nous pouvons bien voir le type chaque variable dans les Data Frame étant tous des FLOAT mis à part ID qui est un INT.

Ensuite nous affichons les distributions et les plages de valeurs des variables de nos DataFrame grâce à la méthode describe :

```
#Les distributions des colonnes, les moyennes, les écarts-types, les min/max et les quartiles
8 usages (7 dynamic)

def describe(self):
    print(self.FR_dfX.describe())
    print(self.DE_dfX.describe())
    print(self.FR_dfY.describe())
    print(self.DE_dfY.describe())
```


La méthode describe() calcule des statistiques de base pour chaque colonne de chaque DataFrame, telles que le nombre d'observations, la moyenne, l'écart type, le minimum et le maximum. Cela nous aide à comprendre la distribution des données et à identifier les valeurs aberrantes ou les erreurs potentielles.

Output de la méthode :

FR_dfX:

	ID	DE_CONSUMPTION		CARBON_RET	TARGET			
count	851.000000	851.000000		851.000000	851.000000			
mean	1532.453584	0.463432		0.074805	0.046026			
std	352.601046	0.664918		1.096573	1.023512			
min	933.000000	-2.265563		-4.281790	-6.519268			
25%	1222.500000	0.027082		-0.530523	-0.178023			
50%	1525.000000	0.410629		0.054056	-0.003619			
75%	1839.500000	0.967994		0.633048	0.174344			
max	2146.000000	2.033851		5.471818	7.786578			
[8 row	[8 rows x 31 columns]							

DE_dfX:

	ID	DE_CONSUMPTION		CARBON_RET	TARGET				
count	643.000000	643.000000		643.000000	643.000000				
mean	464.360809	0.379809		0.088062	0.148044				
std	269.765446	0.682092		1.102142	1.047022				
min	0.000000	-2.265563		-4.281790	-3.075929				
25%	234.000000	-0.069473		-0.506085	-0.324693				
50%	468.000000	0.288112		0.054056	0.005057				
75%	690.500000	0.895751		0.580153	0.386596				
max	930.000000	2.033851		5.471818	7.138604				
[8 row	[8 rows x 31 columns]								

FR_dfY:

ID	TARGET
851.000000	851.000000
1532.453584	0.046026
352.601046	1.023512
933.000000	-6.519268
1222.500000	-0.178023
1525.000000	-0.003619
1839.500000	0.174344
2146.000000	7.786578
	851.000000 1532.453584 352.601046 933.000000 1222.500000 1525.000000 1839.500000

DE_dfY:

	ID	TARGET
count	643.000000	643.000000
mean	464.360809	0.148044
std	269.765446	1.047022
min	0.000000	-3.075929
25%	234.000000	-0.324693
50%	468.000000	0.005057
75%	690.500000	0.386596
max	930.000000	7.138604

Nous pouvons voir ici les différentes informations statistique fournit :count(Nombres de valeurs), mean(Moyenne), std(écart type), min(minimum), 25%(1^{er} quartile), 50%(2^{ème} quartile ou médiane), 75%(3^{ème} quartile), max(maximum).

On remarque que pour **FR_dfX** et **DE_dfX**, la taille des tableaux nous est donnée avec (...) étant donnée le terminal ne peux pas tout nous afficher en 1 seule fois.

3) Les Histogramme

Maintenant, nous allons afficher les histogrammes de chaque variable deb nos DataFrame :

```
def showHisto(self):
    """
    Affiche les histogrammes pour chaqune des colones
    """
    for i in self.FR_dfX.columns:
        self.FR_dfX[i].hist()
        plt.title(i)
        plt.show()
    for i in self.DE_dfX.columns:
        self.DE_dfX[i].hist()
        plt.title(i)
        plt.show()
    for i in self.FR_dfY.columns:
        self.FR_dfY[i].hist()
        plt.title(i)
        plt.show()
    for i in self.DE_dfY.columns:
        self.DE_dfY[i].hist()
        plt.title(i)
        plt.title(i)
        plt.title(i)
        plt.show()
```

A l'aide de la fonction hist() de la bibliothèque matplotlib. La méthode itère à travers chaque colonne des DataFrames et crée un histogramme pour chaque colonne, puis affiche le titre de la colonne. show() est appelée à la fin de chaque boucle pour afficher chaque histogramme des DataFrame.

Output de la méthode :

SENECHAL-SEBBANE-SAVORY-PIMENTA.SILVA-GroupeC-L3

SENECHAL-SEBBANE-SAVORY-PIMENTA.SILVA-GroupeC-L3

Une fois les histogramme afficher, on peut s'intéréssé a une autre manière de représenté les variables de nos DataFrame qui sont les Boxplot. Nous avons choisit de coder 2 méthode pour les Boxplot : Une pour afficher les DataFrame de FR et l'autre pour les DataFrame de DE.

Pour FR:

```
def boxplot(self):
    for i,j in enumerate(self.FR_dfX.describe().columns):
        #plt.subplot(3, 3, i+1)
        sns.boxplot(x=self.FR_dfX[j])
        plt.title('{} Boxplot'.format(j))
        plt.tight_layout()
        plt.show()
```

Cette méthode crée des boxplots pour chacune des colonnes du DataFrame **self.FR_dfX** en utilisant la bibliothèque Seaborn. Les boxplots permettent de visualiser la distribution des données en affichant des quartiles, des valeurs aberrantes et la médiane.

Output de la méthode :

Pour DE:

```
def DEBoxplot(self):
    for i, j in enumerate(self.DE_dfX.describe().columns):
        # plt.subplot(3, 3, i+1)
        sns.boxplot(x=self.DE_dfX[j])
        plt.title('{} Boxplot'.format(j))
        plt.tight_layout()
        plt.show()
        print("success")
```

Cette méthode et la même que boxplot, nous avons juste changer modifié le DataFrame pour l'appliqué cette fois-ci à DE.

Output de la méthode :

Nous avons décidé de ne pas afficher tout les Boxplot pour FR_dfX et DE_dfX car il fournissent moins d'information nécéssaire que les histogrammes.

4) Matrice des corrélations

Ici, nous avons crée une matrice des corrélations afin de connêtre les corrélations entre TARGET et les autres variables des DataFrame FR_dfX et DE_dfX. Pour cela, nous utilisons la méthode showCorrelation() :

```
def showCorrelation(self):
    dfco= self.FR_dfX.select_dtypes(exclude=['object'])
    dfco2 = self.DE_dfX.select_dtypes(exclude=['object'])
    print(dfco.corr())
    print(dfco2.corr())
```

La méthode calcule la matrice de corrélation entre les variables numériques des DataFrames FR_dfX et DE_dfX. Il exclut les variables de type "object" (variables catégorielles) de ces deux DataFrames avant de calculer la matrice de corrélation pour éviter les erreurs de calcul. Les matrice sont affiché à l'aide du print().

Output de la méthode :

Matrice pour FR:

		DE_CONSUMPTION	CARBON_RET	
ID			0.030683	-0.010347
DE_CONSUMPTION			-0.009315	-0.048551
FR_CONSUMPTION		0.817513	-0.055423	0.009998
DE_FR_EXCHANGE			-0.017042	0.034180
FR_DE_EXCHANGE			0.017042	-0.034180
DE_NET_EXPORT		0.527090	-0.087281	-0.067811
FR_NET_EXPORT			-0.026648	-0.042689
DE_NET_IMPORT		-0.527090	0.087281	0.067811
FR_NET_IMPORT			0.026648	0.042689
DE_GAS	0.002465		0.076407	0.031626
FR_GAS	0.071332		-0.024409	0.007433
DE_COAL			0.041833	0.021014
FR_COAL		0.511505	0.004457	0.031529
DE_HYDRO	0.009178		0.070531	0.052827
FR_HYDRO			-0.050332	0.070002
DE_NUCLEAR			0.017768	0.037859
FR_NUCLEAR	-0.592205		-0.040680	0.007304
DE_SOLAR		-0.648407	0.012136	0.029904
FR_SOLAR		-0.589741	0.012084	0.013828
DE_WINDPOW	0.056017			-0.073254
FR_WINDPOW			-0.062313	
DE_LIGNITE	-0.309844		0.051627	0.005673
DE_RESIDUAL_LOAD			0.104482	0.048185
FR_RESIDUAL_LOAD			-0.040585	0.038176
DE_RAIN	-0.023630		0.063732	-0.066065
FR_RAIN	-0.019908	0.060211	0.055235	-0.039813
DE_WIND	0.654784		0.003758	-0.045335
FR_WIND		0.065927	0.031636	-0.032737
DE_TEMP	0.046404	0.020897	0.035049	-0.042812
FR_TEMP	0.094109		-0.017343	-0.032827
GAS_RET	0.066085	-0.053785		0.057536
COAL_RET	-0.025066	0.046824		-0.002330
CARBON_RET	0.030683	-0.009315		0.064776
TARGET	-0.010347	-0.048551	0.064776	

Matrice pour DE:

Matrice pour DL.									
	ID	DE_CONSUMPTION		CARBON_RET	TARGET				
		0.065917		0.032089	-0.015254				
DE_CONSUMPTION	0.065917	1.000000		0.030435	-0.051182				
FR_CONSUMPTION	-0.032720	0.807458		-0.021087	-0.019582				
DE_FR_EXCHANGE		0.408951		-0.005872	-0.084194				
FR_DE_EXCHANGE	-0.454821			0.005872	0.084194				
DE_NET_EXPORT	0.079323	0.521918		-0.057404					
FR_NET_EXPORT	-0.564410			-0.020565	0.001544				
DE_NET_IMPORT	-0.079323	-0.521918		0.057404					
FR_NET_IMPORT	0.564410			0.020565	-0.001544				
DE_GAS		0.218463		0.097121					
FR_GAS				-0.006712	0.048483				
DE_COAL		0.453990		0.067699	0.097803				
FR_COAL		0.537287		0.040573	0.004934				
DE_HYDRO	-0.268177			0.069217					
FR_HYDRO				-0.035065	0.038172				
DE_NUCLEAR	-0.666844			0.045496	-0.006729				
FR_NUCLEAR		0.577100		-0.006897	0.009855				
DE_SOLAR	0.092331			-0.013889	0.007162				
FR_SOLAR	0.291754	-0.552846		0.002730	0.022717				
DE_WINDPOW	0.049938			-0.081380					
FR_WINDPOW	0.052644			-0.051674					
DE_LIGNITE				0.073441	0.095619				
DE_RESIDUAL_LOAD	-0.078528				0.250898				
FR_RESIDUAL_LOAD	-0.081118			-0.007027	0.029686				
DE_RAIN	-0.037453			0.083207	-0.005246				
FR_RAIN	0.007414	0.054356		0.041185	-0.039429				
DE_WIND		0.285461		0.013900	-0.139548				
FR_WIND	0.673225	0.186874			-0.081716				
DE_TEMP	0.077865			0.006144	-0.043109				
FR_TEMP	0.127300	-0.093784		-0.047991	-0.062655				
GAS_RET	0.031087	-0.004098		0.425886	0.020087				
COAL_RET	0.003830	0.057806		0.300706	-0.019866				
CARBON_RET	0.032089	0.030435			0.003538				
	-0.015254	-0.051182		0.003538					

Ci-dessous les corrélation des variables avec la variable cible TARGET pour les DataFrame FR_dfX et DE_dfX.

TARGET DE-CONSUMPTION DE-CONSUMPTION TR-COAL TR-SOLAN TR-MICHEAN TR-MICH

5) Interprétation des résultats

Pour interpréter les résultats, nous avons choisie de représenté cela sous la forme d'un organigramme. Dans cette organigramme, **TARGET** et nôtre variable cible. En regardant, nos différentes corrélations avec **TARGET**, nous avons sélectionner les corrélations les plus importantes que nous représentons ci-dessous.

Comme nous pouvons le voir, **TARGET** est le plus corrélé avec **DE-IMPORT** et **DE-EXPORT**. De plus, nous pouvons remarquer d'autre corrélation secondaire qui reste corrélé avec TARGET comme FR-EXPORT, FR-IMPORT, DE-RESIDUAL_LOAD, DE_CONSUMPTION, FR-RESIDUAL_LOAD, FR_CONSUMPTION, DE_FR_EXCHANGE, FR_DE_EXCHANGE...

Les liaisons faites avec entre chaque variable représentent le niveau de corrélation entre elle.

Par exemple si l'on prend **TARGET** et **DE_IMPORT**, on peut voir que la liaison entre ces deux variables est directe ce qui montre une très forte corrélation. Tandis que si l'on prend **FR_IMPORT**, avec TARGET, on peut voir que celui-ci n'est pas en lien directement avec notre variable cible. Ce qui nous montre que la corrélation entre c'est deux variable et plus faible que la précédente. Ce qui est logique car en effet, la France est l'un des pays les plus avancés en terme de nucléaire et donc n'a pas forcément de grand besoin d'importé de l'électricité contrairement à l'Allemagne qui utilise beaucoup moins le nucléaire et qui a donc besoin d'importer plus d'électricité.

IV. Modélisation des données

1) Régression linéaire simple

Nous allons effectué une régression linéaire sur les données de DE et FR. Pour cela, nous avons choisit de crée une fonction qui fait une régrétion linaire sur FR et une autre sur DE :

Pour DE:

```
def regressionlinearDE(self):
    DEX_train, DEX_test, DEy_train, DEy_test = train_test_split(self.DE_dfX, self.DE_dfY, test_size=0.3,random_state=42)
    model2 = LinearRegression()
    model2.fit(DEX_train, DEy_train)
    DEy_pred = model2.predict(DEX_test)
    plt.scatter(DEy_test, DEy_pred)
    plt.plot(DEy_test, DEy_pred)
    plt.plot(DEy_test, DEy_test, color='red')
    plt.xlabel("True Values")
    plt.ylabel("Predictions")
    plt.show()
```

Régression linéaire sur les données DE_dfX et DE_dfY. La fonction train_test_split de Scikit-learn pour diviser les données en ensemble d'entraînement et ensemble de test avec un ratio de 0,3. Ensuite, il crée une instance de l'algorithme de régression linéaire de Scikit-learn et l'entraîne sur l'ensemble d'entraînement. Il prédit ensuite les valeurs de la variable cible sur l'ensemble de test en utilisant la méthode predict de l'instance du modèle de régression linéaire. Enfin, il affiche un nuage de points pour comparer les valeurs prédites aux valeurs réelles, ainsi qu'une ligne rouge qui représente la relation linéaire idéale entre les deux.

Output de la méthode :

Pour FR:

Même fonctionnement que la méthode regressionlinearDE.

Output de la méthode :

Puis on a réalisé les autres modèles de modélisation à part le KNN afin de pouvoir modéliser nos données.


```
def REDEEregression(self):
    ridge = Ridge()
    parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-3, 1e-2, 1, 5, 10, 20, 30, 35, 40, 45, 50, 55, 100]}
    ridge_regressor = GridSearchCV(ridge, parameters, scoring='neg_mean_squared_error', cv=5)
    ridge_regressor = GridSearchCV(ridge, parameters, scoring='neg_mean_squared_error', cv=5)
    ridge_regressor.fit(self,10E_dfX, self,DE_dfY, self,DE_dfY, test_size=0.3_random_state=42)
    pridrictions = ridge_regressor.predict(DEX_test)
    print(predictions)
    print(ridge_regressor.best_params_)
    print(ridge_regressor.best_params_)
    print(ridge_regressor.best_params_)
    print(ridge_regressor.best_params_)
    print(ridge_regressor.best_params_)
    print("Rsse",msse)
    print("Rsse",msse)

    print("Rsse",msse)

    print("Rsse",msse)

    print("Rsse",msse)

    def_LRSSOnegression(self):

    def_LRSSOnegression(self):

    def_LRSSOnegression(self):

    def_LRSSOnegression(self):

    def_LRSSOnegressor.fit(self,DE_dfX, self,DE_dfY)

    DEX_train_DEX_trait,DEX_trait,DEX_trait,DEX_trait,DEX_dfY)

    DEX_train_DEX_trait,DEX_trait,DEX_trait,DEX_trait,DEX_dfY)

    print(regical_regressor.best_params_)
    print(lasso_regressor.best_params_)
    print(lasso_regr
```

```
def DecisionTreeregression(self):
    regressor = DecisionTreeRegressor()
    regressor.fit(self.DE_dfX, self.DE_dfY)
    DEX_train, DEX_test, DEY_train, DEY_test = train_test_split(self.DE_dfX, self.DE_dfY, test_size=0.3_random_state=42)
    predictions = regressor.predict(DEX_test)
    print(predictions)
    sns.displot(DEy_test - predictions)
    plt.show()
    print(regressor.best_params_)
    print(regressor.best_params_)
    print(regressor.best_score_)
    rmse = np.sqrt(mean_squared_error(DEy_test, predictions))
    print("R2 score : %.2f" % r2_score(DEy_test, predictions))
    ress_ stats.spearmanr(DEy_test, predictions)
    print(res)
    plt.show()
```

```
def RandomForestregression(self):
    regressor = RandomForestRegressor()
    regressor.fit(self.DE_dfX, self.DE_dfY)
    DEX_train, DEX_test, DEY_train, DEY_test = train_test_split(self.DE_dfX, self.DE_dfY, test_size=0.3_random_state=42)
    predictions = regressor.predict(DEX_test)
    print(predictions)
    sns.displot(DEy_test - predictions)
    plt.show()
    print(regressor.best_params_)
    print(regressor.best_params_)
    print(regressor.best_score_)
    rmse = np.sqrt(mean_squared_error(DEy_test, predictions))
    print("R2 score : %.2f" % r2_score(DEy_test, predictions))
    res_ stats.spearmanr(DEy_test, predictions)
    print(res)
```

La régression ridge ajoute une pénalité L2 à la fonction de coût de la régression linéaire. Cette pénalité est égale à la somme des carrés des coefficients de la régression. Cela signifie que les coefficients sont régularisés en étant contraints à de plus petites valeurs, ce qui peut réduire le surajustement (overfitting) du modèle. La force de la régularisation est contrôlée par un hyperparamètre λ , qui doit être choisi à l'aide d'une validation croisée.

La régression Lasso ajoute une pénalité L1 à la fonction de coût de la régression linéaire. Cette pénalité est égale à la somme des valeurs absolues des coefficients de la régression. Cela signifie que certains coefficients peuvent être mis à zéro, ce qui peut réduire la complexité du modèle et

SENECHAL-SEBBANE-SAVORY-PIMENTA.SILVA-GroupeC-L3

améliorer sa généralisation. La force de la régularisation est contrôlée par l'hyperparamètre λ , qui doit être choisi à l'aide d'une validation croisée.

La méthode des forêts aléatoires (ou Random Forest en anglais) est un algorithme d'apprentissage automatique supervisé qui combine plusieurs arbres de décision pour améliorer la précision et la stabilité des prédictions. Elle est utilisée pour des tâches de classification ou de régression.

Le fonctionnement des forêts aléatoires consiste à créer un grand nombre d'arbres de décision indépendants, chacun étant entraîné sur un sous-ensemble aléatoire des données d'entraînement et des variables d'entrée. Cela permet de réduire les effets du surapprentissage (overfitting) et d'améliorer la capacité de généralisation du modèle.

Lors de la prédiction, chaque arbre de décision donne une prédiction pour la variable cible, et la prédiction finale est obtenue en moyennant (pour une tâche de régression) ou en effectuant un vote majoritaire (pour une tâche de classification) sur les prédictions de tous les arbres.

La méthode des forêts aléatoires présente plusieurs avantages : elle est robuste aux valeurs aberrantes, peut gérer de grandes quantités de données et de variables d'entrée, et fournit des informations sur l'importance des variables pour la prédiction.

Cependant, elle peut être moins interprétable que d'autres modèles d'apprentissage automatique, et peut nécessiter une optimisation des hyperparamètres pour obtenir les meilleures performances.

V. Evaluation des modèles

1) Corrélation de Spearman, R2 et RMSE

Nous avons introduit la corrélation de Spearman (une mesure non paramétrique) pour savoir si on avait une monotonie entre nôtre Data set de teste et notre prédiction.

Ensuite nous avons calculer le R2_score qui nous permet de savoir si la droite de régression colle à l'ensemble des points du data frame.

Enfin nous avons calculé le RMSE qui est l'erreur quadratique moyenne qui permet de fournir une indication sur la dispersion ou la variabilité de la qualité de la prédiction. Il est relié à la variance du modèle.

```
def RIDGEregressionFR(self):
    ridge = Ridge()
    parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-3, 1e-2, 1, 5, 10, 20, 30, 35, 40, 45, 50, 55, 100]}
    ridge_regressor = GridSearchCV(ridge, parameters, scoring='neg_mean_squared_error', cv=5)
    ridge_regressor.fit(self.FR_dfX, self.FR_dfY)

    FRX_train, FRX_test, FRy_train, FRy_test = train_test_split(self.FR_dfX, self.FR_dfY, test_size=0.3_random_state=42)
    predictions = ridge_regressor.predict(FRX_test)
    print(predictions)
    sns.displot(FRy_test - predictions)
    plt.show()
    print(ridge_regressor.best_params_)
    print(ridge_regressor.best_score_)
    rmse = np.sqrt(mean_squared_error(FRy_test, predictions))
    print(rmse)
    print("R2 score : %.2f" % r2_score(FRy_test, predictions))
    res=_ stats.spearmanr(FRy_test, predictions)
    print(res)
```

Output de la méthode des méthodes avec Spearman :

On a ensuite calculé les meilleurs paramètres pour chaque modèle


```
print(ridge_regressor.best_params_)
print(ridge_regressor.best_score_)
```

On a ainsi pu obtenir les meilleurs paramètres pour notre modèle en ayant fait varier le alpha. GridSearchCV nous a permis de chercher automatiquement les meilleurs paramètres optimums pour notre modèle de modélisation des données afin d'obtenir le meilleur résultat possible

Ainsi grâce au GridSearchCV on a trouvé le alpha optimal ainsi que le MSE optimal. Alors on a pu aussi déterminer une liste des modèles en termes de performance :

- 1-Forêts Aléatoires
- 2-Régression RIDGE
- 3-LASSO
- 4-Arbres de décision
- 5-Régression linéaire simple
- 6-K-NN

On a pu obtenir une très bonne performance en augmentant le n_estimators (améliore la précision)

on a augmenté Maxdepth pour avoir une bonne performance (améliorer la précision) et on a augmenté la profondeur sans overfitter la modélisation.

Pour éviter l'overfitting on a augmenté le min_samples_split et le min_samples_leaf pour éviter l'overfitting. On a réduit max_features pour réduire le sure apprentissage.

Conclusion

Notre projet de modélisation du prix de l'alimentation électrique en France et en Allemagne en utilisant des données météorologiques, énergétiques et commerciales a été mené à bien en respectant les différentes étapes de la méthodologie CRISP-DM. Nous avons réussi à créer un modèle qui évalue le changement quotidien du prix des contrats à terme sur l'alimentation électrique en se basant sur les conditions actuelles du marché et des variables explicatives telles que les mesures quotidiennes de données météorologiques, de fabrication énergétique et d'utilisation de l'alimentation électrique.

Malgré les difficultés rencontrées, ce projet nous a apporté une grande expérience en matière de traitement et de modélisation des données, ainsi que de gestion de projet. Nous avons également appris à travailler en équipe et à collaborer avec des experts dans différents domaines, ce qui a renforcé notre capacité à résoudre des problèmes complexes. En outre, nous avons pu acquérir une compréhension plus approfondie du marché de l'énergie et de ses facteurs d'influence, ainsi que de l'importance de l'analyse prédictive pour prendre des décisions éclairées.

Finalement, ce projet nous a permis de mettre en pratique nos connaissances en analyse de données et de développer des compétences utiles pour notre future carrière professionnelle. Notre travail nous rend ainsi plus confiant et prêts quant à nos futurs examens.