Thapar Institute of Engineering and Technology, Patiala School of Mathematics

Optimization Techniques (UMA-035) Lab Experiment- 6 (The dual simplex method)

The dual simplex method

Convert the given linear programming problem in the following form:

(P)
$$\min / \max z = C^t X + O^t s$$

subject to $AX + Is = b, X, s > 0$

Where $s = (s_1, s_2, \dots, s_m)^t$ is a vector of slack variables and $O = (0, 0, \dots, 0)_{n \times 1}$ is a vector of zeros. Also Assume that at least one of the component b_i of the RHS vector $b = (b_1, b_2, \dots, b_m)$ is negative Initially define the following Input parameters:

- 1. Enter the Matrix $A = [A \ I]$, where I is an identity matrix of order m.
- 2. Enter the R.H.S. vector b and the cost matrix $C = [c \ O]_{(n+m)\times 1}$.
- 3. Define [m,n]=size (A)
- 4. Input the variables $s_1, s_2, \ldots s_m$ as initial basic variables.

Now construct the simplex table using s_1, s_2, \ldots, s_m as initial basic variables. If the simplex table depicts an **optimal but Infeasible solution**, then dual simplex method is applicable. So apply the following procedure.

- 1. Select the leaving variable as $X_{B_r} = \min_i \{X_{B_i} \mid X_{B_i} < 0\}$
- 2. Select the entering variable x_k using the formula $\frac{z_k c_k}{y_{rk}} = \min_j \left\{ \frac{|z_j c_j|}{|y_{rj}|} : y_{rj} < 0 \right\}$
- 3. Now update the basis as by removing r^{th} basic variable with k^{th} nonbasic variable. Again construct the simplex table and repeat the above procedure until an optimal basic feasible solution is not obtained.

Write a MATLAB code for the dual simplex method and test your program on the following examples:

1. Min.
$$z = 3x_1 + 5x_2$$
, S.T. $x_1 + 3x_2 \ge 3$, $x_1 + x_2 \ge 2$, $x_1, x_2 \ge 0$.

2.
$$Min. \ z = 12x_1 + 10x_2, \ S.T. \ 5x_1 + x_2 \ge 10, \ 6x_1 + 5x_2 \ge 30, \ x_1 + 4x_2 \ge 8, \ x_1, x_2 \ge 0.$$

6

3.
$$min.$$
 $z = 3x_1 + 2x_2$, $S.T.$ $x_1 + x_2 \le 1$, $x_1 + 2x_2 \ge 3$, $x_1, x_2 \ge 0$.

Thapar Institute of Engineering and Technology, Patiala School of Mathematics

Optimization Techniques (UMA-035) Lab Experiment- 7 (Least cost method)

Least cost method of Transportation problem

Consider a cost matrix representation of a Transportation problem:

			$u_i \downarrow$
c_{11}	c_{12}	 c_{1n}	
x_{11}	x_{12}	x_{1m}	a_1
c_{21}	c_{22}	 c_{2n}	
x_{21}	x_{22}	x_{2m}	a_2
•			
•			_
c_{m1}	c_{m2}	 c_{mn}	
x_{m1}	x_{m2}	x_{mn}	
b_1	b_2	 b_n	

Here a_i is the availability of the product at source S_i and b_j is the requirement of the same at destination D_j , c_{ij} represents the cost of trasporting a unit product from source S_i to destination D_j . The variable x_{ij} is the quantity to be transported from the source i to destination j.

Initially define Input parameters:

- 1. Enter the number of sources as m, and destinations as n.
- 2. Enter the cost coefficients c_{ij} , the availabilty at i^{th} source as a_i and demand at j^{th} destination as b_j for each $i=1,2\ldots m$, $j=1,2,\ldots n$.

Intially take k = 1

Step 1: Define $c_{pq} = \min(c_{ij})$, and assign $x_{pq} = \min(a_p, b_q)$, go to Step 2.

Step 2: If $\min(a_p, b_q) = a_p$, then update $b_q = b_q - a_p$, $a_p = a_p - x_{pq}$ else $\min(a_i, b_j) = b_q$, then update $a_p = a_p - b_q$, $b_q = b_q - x_{pq}$.

Step 3 Assigne $c_{pq} = 10^5$ (a very large no.), Setk = k + 1, if k = m + n - 1 go to Step 4 else go to Step 1.

Step 4: Stop and note the BFS and calculate the objective function value $z = \sum_{i,j} c_{ij} x_{ij}$

Write a MATLAB code to compute the basic feasible solutions of a Transportation problem using Northwest corner rule and test your program on the following set of examples:

1. Consider the cost matrix of the following transportation roblem

	D_1	D_2	D_3	D_4	a_i
$\overline{S_1}$	2	10	4		12
$S_2 1$	6	12	8	11	25
$\tilde{S_3}$	3	9	5	7	20
$\overline{b_j}$	25	10	15	5	

2. Consider the cost matrix of the following transportation roblem

	D_1	D_2	D_3	D_4	D_5	$ a_i $
$\overline{S_1}$	3	11	4	14	15	15
S_2	6	16	18	2	28	25
S_3	10	13	15	19	17	10
S_4	7	12	4 18 15 5	8	9	15
$\overline{b_j}$	20	10	15	15	5	

Thapar Institute of Engineering and Technology, Patiala School of Mathematics

Optimization Methods (UMA-035)

Lab Experiment - 8 (Multi-objective LPP)

Algorithm of Weighted Sum Method to multi-objective LPP

Step 1:Transform the multi-objective linear programming problem (P1) into its equivalent single objective linear programming problem (P2).

(P1)

Maximize/Minimize (C_iX), i=1,2,...,m

Subject to

 $AX \le or = or >= b$

X > = 0.

(P1)

Maximize/Minimize $(C_1X + C_2X + ... + C_mX)/m$

Subject to

 $AX \le or = or >= b$

X > = 0.

Step 2: Find an optimal solution of the problem i.e., an efficient solution of the problem (P1) by an appropriate method (Simplex method or Big-M method or Two-Phase method).

Write a MATLAB code to solve the following multi-objective LPPs by weighted sum method:

1. Maximize $(3x_1 + 2x_2 + 4x_3)$

Maximize $(x_1 + 5x_2 + 3x_3)$

Subject to

 $2x_1 + 4x_2 + x_3 < = 8$,

 $3x_1 + 5x_2 + 4x_3 > = 15$,

 $x_1>=0, x_2>=0, x_3>=0$

2. Maximize $(x_1 + 4x_2 + x_3)$

Maximize $(2x_1 + 7x_2 + 5x_3)$

Subject to

 $x_1+x_2+x_3 < = 8$,

 $x_1 + 5x_2 + 4x_3 > = 15$,

 $x_1>=0, x_2>=0, x_3>=0$

Thapar Institute of Engineering and Technology, Patiala School of Mathematics

Optimization Methods (UMA-035)

Lab Experiment - 9 (Fibonacci Search Technique)

Algorithm of Fibonacci Search Technique

Fibonacci numbers

F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8
1	1	2	3	5	8	13	21	34

$$F_0 = 1, F_1 = 1, F_n = F_{n-1} + F_{n-2}, n > 1.$$

Step 1: Using the relation, Measure of effectiveness = $\frac{Interval \ of \ uncertainty}{L_0}$, find the value of Measure of effectiveness.

Step 2: Using the relation $\frac{1}{F_n} \le$ Obtained value of measure of effectiveness, find the smallest natural number n.

Step 3:Store the given interval [a, b]

Step 3: Find $L_0 = b - a$

Step 4: for i = n, find

$$x_1 = a + \frac{F_{i-2}}{F_i} L_0$$
, and $x_2 = a + \frac{F_{i-1}}{F_i} L_0$,

Step 5:If $f(x_1) > f(x_2)$ and the problem is of minimum. Then, repeat Step 3 with $n = n - 1a = x_1$ and b = b.

If $f(x_1) < f(x_2)$ and the problem is of minimum. Then, repeat Step 3 with n = n - 1a = a and $b = x_2$.

If $f(x_1) > f(x_2)$ and the problem is of maximum. Then, repeat Step 3 with n = n - 1a = a and $b = x_2$.

If $f(x_1) < f(x_2)$ and the problem is of maximum. Then, Then, repeat Step 3 with $n = n - 1a = x_1$ and b = b.

Step 6:Repeat Step 3 to upto i = 2.

Write a MATLAB code to solve the following problem

Example:

Minimize the function x(x-2), $0 \le x \le 1.5$ within the interval of uncertainty $0.25L_0$.