Cheat Sheet

This is a compilation of worst-case complexities for various data-structures and algorithms.

Data-Structures

Data Structure	Worst Case Complexity		Notes
Array	Insert Retriev e	O(1) O(1)	
Linked List	Insert at Tail Insert at Head Retriev e	O(n) O(1) O(n)	Note that if new elements are added at the head of the linkedlist then insert becomes a O(1) operation.
Binary Tree			In worst case, the

Insert	O(n)	binary tree becomes a linked-list.
Retriev	V O(n)	
Insert	O(1)	Note by retrieving it is implied we are
Retriev	O(1)	retrieving from a specific index of the array.
Push	O(1) O(1)	There are no complexity trick questions asked for stacks or queues. We only mention them here for completeness. The two data-structures are more important from a last-in last-out (stack) and first in first out (queue) perspective.
Enque	O(1)	
Deque ue	O(1)	

Dynamic Array

Stack

Queue

Insert	O(lgn)
Delete	O(lgn)
Get	
Max/M	0(1)
in	

Priority Queue (binary heap)

Hashtable

Insert	O(n)
Retriev e	O(n)

Be mindful that a hashtable's average case for insertion and retrieval is O(1)

B-Trees

Insert	O(logn)
Retriev e	O(logn)

Red-Black Trees

Insert	O(logn)
Retriev e	O(logn)

Algorithms

Category	Worst Case Complexity		Notes
	Bubble Sort	$O(n^2)$	
	Inserti on Sort	O(n ²)	Note, even though worst case quicksort performance is O(n ²)
Sorting	Selecti on Sort	O(n ²)	but in practice quicksort is often used for sorting since
	Quick Sort	$O(n^2)$	its average case is O(nlgn).
	Merge Sort	O(nlgn)	
Trees			\boldsymbol{n} is the total number
	Depth		of nodes in the tree.
	First	O(n)	Most tree-traversal
	Search		algorithms will end up seeing every node
	Breadt		in the tree and their
	h First	O(n)	complexity in the
	Search		worst case is thus
	Pre-	O(n)	O(n).
	order.	O(n)	

In-	
order, Post-	
order Traver	
sals	