2.5V/3.3V SiGe Selectable Differential Clock and Data D Flip-Flop/Clock Divider with Reset and OLS*

The NBSG53A is a multi-function differential D flip-flop (DFF) or fixed divide by two (DIV/2) clock generator. This is a part of the GigaComm™ family of high performance Silicon Germanium products. A strappable control pin is provided to select between the two functions. The device is housed in a low profile 4x4 mm 16-pin Flip-Chip BGA (FCBGA) or a 3x3 mm 16 pin QFN package.

The NBSG53A is a device with data, clock, OLS*, reset, and select inputs. Differential inputs incorporate internal 50 Ω termination resistors and accept NECL (Negative ECL), PECL (Positive ECL), LVCMOS/LVTTL, CML, or LVDS. The OLS* input is used to program the peak–to–peak output amplitude between 0 and 800 mV in five discrete steps. The RESET and SELECT inputs are single–ended and can be driven with either LVECL or LVCMOS/LVTTL input levels.

Data is transferred to the outputs on the positive edge of the clock. The differential clock inputs of the NBSG53A allow the device to also be used as a negative edge triggered device.

Features

- Maximum Input Clock Frequency (DFF) > 8 GHz Typical (See Figures 4, 6, 8, 10, and 11)
- Maximum Input Clock Frequency (DIV/2) > 10 GHz Typical (See Figures 5, 7, 9, 10, and 11)
- 210 ps Typical Propagation Delay (OLS = FLOAT)
- 45 ps Typical Rise and Fall Times (OLS = FLOAT)
- DIV/2 Mode (Active with Select Low)
- DFF Mode (Active with Select High)
- Selectable Swing PECL Output with Operating Range: $V_{CC} = 2.375 \text{ V}$ to 3.465 V with $V_{EE} = 0 \text{ V}$
- Selectable Swing NECL Output with NECL Inputs with Operating Range: $V_{CC} = 0$ V with $V_{EE} = -2.375$ V to -3.465 V
- Selectable Output Level (0 V, 200 mV, 400 mV, 600 mV, or 800 mV Peak-to-Peak Output)
- 50 Ω Internal Input Termination Resistors on all Differential Inputs
- Pb-Free Packages are Available

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM*

FCBGA-16 BA SUFFIX CASE 489

QFN-16 MN SUFFIX CASE 485G

A = Assembly Location

L = Wafer Lot Y = Year

W = Work Week
■ Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 16 of this data sheet.

^{*}Output Level Select

Figure 1. BGA-16 Pinout (Top View)

Figure 2. QFN-16 Pinout (Top View)

Table 1. PIN DESCRIPTION

Р	in			
BGA	QFN	Name	I/O	Description
C2	1	VTCLK	-	Internal 50 Ω Termination Pin. See Table 4.
C1	2	CLK	ECL, CML, LVCMOS, LVDS, LVTTL Input	Inverted Differential Input.
B1	3	CLK	ECL, CML, LVCMOS, LVDS, LVTTL Input	Noninverted Differential Input.
B2	4	VTCLK	-	Internal 50 Ω Termination Pin. See Table 4.
A1	5	VTD	-	Internal 50 Ω termination pin. See Table 4.
A2	6	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Inverted Differential Input.
A3	7	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Noninverted Differential Input.
A4	8	VTD	-	Internal 50 Ω Termination Pin. See Table 4.
D1,B3	9,16	V _{CC}	-	Positive Supply Voltage
B4	10	Q	RSECL Output	NonInverted Differential Output. Typically Terminated with 50 Ω Resistor to V_{TT} = V_{CC} – 2 V.
C4	11	Q	RSECL Output	Inverted Differential Output. Typically Terminated with 50 Ω Resistor to V_{TT} = V_{CC} – 2 V.
C3	12	V _{EE}	-	Negative Supply Voltage
D4	13	OLS*	Input	Input Pin for the Output Level Select (OLS). See Table 2.
D3	14	SEL	LVECL, LVCMOS, LVTTL Input	Select Logic Input. Internal 75 k Ω to V_{EE} .
D2	15	R	LVECL, LVCMOS, LVTTL Input	Reset D Flip–Flop. Internal 75 k Ω to V _{EE} .
N/A	-	EP		The Exposed Pad (EP) and the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is not electrically connected to the die but may be electrically and thermally connected to V _{EE} on the PC board.

All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. The thermally exposed pad (EP) on package bottom (see case drawing) must be attached to a heat–sinking conduit.
 In the differential configuration when the input termination pins (VTD, VTD, VTCLK, VTCLK) are connected to a common termination voltage, and if no signal is applied then the device will be susceptible to self–oscillation.
 When an output level of 400 mV is desired and V_{CC} - V_{EE} > 3.0 V, 2KΩ resistor should be connected from OLS pin to V_{EE}.

Figure 3. Simplified Logic Diagram

Table 2. OUTPUT LEVEL SELECT (OLS)

OLS	Q/Q VPP	OLS Sensitivity
V _{CC}	800 mV	OLS – 75 mV
V _{CC} – 0.4 V	200 mV	OLS ± 150 mV
V _{CC} – 0.8 V	600 mV	OLS ± 100 mV
V _{CC} – 1.2 V	0	OLS \pm 75 mV
V _{EE} (Note 4)	400 mV	OLS + 100 mV
Float	600 mV	N/A

^{4.} When an output level of 400 mV is desired and $\rm V_{CC}$ – $\rm V_{EE}$ > 3.0 V, 2.0 k Ω resistor should be connected from OLS to V_{EE}.

Table 3. TRUTH TABLE

R	SEL	D	CLK	Q	Function
Н	х	х	х	L	Reset
L	Н	L	Z	L	DFF
L	Н	Н	Z	Н	DFF
L	L	х	Z	Q	DIV/2

Z = LOW to HIGH Transition

Table 4. INTERFACING OPTIONS

INTERFACING OPTIONS	CONNECTIONS
CML	Connect VTCLK, VTD and VTCLK, VTD to V _{CC}
LVDS	Connect VTCLK, VTD and VTCLK, VTD Together
AC-COUPLED	Bias VTCLK, VTD and VTCLK, VTD Inputs within Common Mode Range (V _{IHCMR})
RSECL, PECL, NECL	Standard ECL Termination Techniques
LVTTL, LVCMOS	An External Voltage (V_{THR}) should be Applied to the Unused Complementary Differential Input. Nominal V_{THR} is 1.5 V for LVTTL and $V_{CC}/2$ for LVCMOS Inputs. This Voltage must be within the V_{THR} Specification.

Table 5. ATTRIBUTES

Characteristi	Value	
Positive Operating Voltage Range for	2.375 V to 3.465 V	
Negative Operating Voltage Range for	-2.375 V to -3.465 V	
Internal Input Pulldown Resistor (R, SI	75 kΩ	
ESD Protection	> 1.5 kV > 50 V > 4 kV	
Moisture Sensitivity (Note 5)	FCBGA-16 16-QFN	Level 3 Level 1
Flammability Rating		UL 94 V-0 @ 0.125 in
Oxygen Index		28 to 34
Transistor Count		482
Meets or exceeds JEDEC Spec EIA/JI	ESD78 IC Latchup Test	

^{5.} For additional information, refer to Application Note AND8003/D.

Table 6. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	Positive Power Supply	V _{EE} = 0 V		3.6	V
V _{EE}	Negative Power Supply	V _{CC} = 0 V		-3.6	V
VI	Positive Input Negative Input	V _{EE} = 0 V V _{CC} = 0 V	$V_{I} \leq V_{CC}$ $V_{I} \geq V_{EE}$	3.6 -3.6	V V
V _{INPP}	Differential Input Voltage $ D - \overline{D} $	$\begin{array}{cc} V_{CC} - V_{EE} \geq & 2.8 \ V \\ V_{CC} - V_{EE} < & 2.8 \ V \end{array}$		2.8 V _{CC} – V _{EE}	V V
I _{IN}	Input Current Through R_T (50 Ω Resistor)	Static Surge		45 80	mA mA
I _{OUT}	Output Current	Continuous Surge		25 50	mA mA
T _A	Operating Temperature Range	FCBGA-16 QFN-16		-40 to +70 -40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 6)	0 Ifpm 500 Ifpm 0 Ifpm 500 Ifpm	FCBGA-16 FCBGA-16 QFN-16 QFN-16	108 86 41.6 35.2	°C/W °C/W °C/W
θJC	Thermal Resistance (Junction-to-Case)	2S2P (Note 6) 2S2P (Note 7)	FCBGA-16 QFN-16	5.0 4.0	°C/W °C/W
T _{sol}	Wave Solder Pb Pb-Free	< 3 sec @ 248°C < 3 sec @ 260°C		265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

6. JEDEC standard 51–6, multilayer board – 2S2P (2 signal, 2 power).

7. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 7. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT $V_{CC} = 2.5 \text{ V}$; $V_{EE} = 0 \text{ V}$ (Note 8)

			-40°C			25°C		70°C(B	GA)/85°C	(QFN)**	
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	33	45	57	33	45	57	33	45	57	mA
V _{OH}	Output HIGH Voltage (Note 9)	1460	1510	1560	1490	1540	1590	1515	1565	1615	mV
V _{OL}	Output LOW Voltage (Note 9) $ (OLS = V_{CC}) $ $ (OLS = V_{CC} - 0.4 \text{ V}) $ $ (OLS = V_{CC} - 0.8 \text{ V}, OLS = FLOAT) $ $ (OLS = V_{CC} - 1.2 \text{ V}) $ $ (OLS = V_{EE}) $	555 1235 775 1455 1005	705 1295 895 1505 1095	855 1385 1015 1585 1215	595 1270 810 1490 1040	745 1330 930 1540 1130	895 1420 1050 1620 1250	625 1295 840 1510 1065	775 1355 960 1560 1155	925 1445 1080 1640 1275	mV
V _{OUTPP}	Output Voltage Amplitude $(OLS = V_{CC}) \\ (OLS = V_{CC} - 0.4 \text{ V}) \\ (OLS = V_{CC} - 0.8 \text{ V}, OLS = FLOAT) \\ (OLS = V_{CC} - 1.2 \text{ V}) \\ (OLS = V_{EE})$	670 125 510 0 325	800 215 615 5 415		660 120 505 0 320	795 210 610 0 410		655 120 500 0 320	790 210 605 5 410		mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Notes 11 and 13) CLK, CLK, D, D	V _{EE} + 1275	V _{CC} - 1000*	V _{CC}	V _{EE} + 1275	V _{CC} - 1000*	V _{CC}	V _{EE} + 1275	V _{CC} - 1000*	V _{CC}	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Notes 12 and 13) CLK, CLK, D, D	V _{EE}	V _{CC} - 1400*	V _{IH} - 150	V _{EE}	V _{CC} - 1400*	V _{IH} - 150	V _{EE}	V _{CC} - 1400*	V _{IH} - 150	mV
V _{IH}	Input High Voltage (Single-Ended) R, SEL	1290		V _{CC}	1355		V _{CC}	1415		V _{CC}	mV
V _{IL}	Input Low Voltage (Single-Ended) R, SEL	V _{EE}		890	V _{EE}		955	V _{EE}		1015	mV
V _{THR}	Input Threshold Voltage (Single-Ended) (Note 13)	V _{EE} + 1125		V _{CC} - 75	V _{EE} + 1125		V _{CC} - 75	V _{EE} + 1125		V _{CC} - 75	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10)	1.2		2.5	1.2		2.5	1.2		2.5	٧
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
I _{IH}	Input HIGH Current (@V _{IH}) R, SEL CLK, CLK, D, D		35 5	100 50		35 5	100 50		35 5	100 50	μΑ
I _{IL}	Input LOW Current (@V _{IL}) R, SEL CLK, CLK, D, D		20 5	100 50		20 5	100 50		20 5	100 50	μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{8.} Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.125 V to -0.965 V.

^{9.} All outputs loaded with 50 Ω to V_{CC} – 2.0 V.

 $^{10.}V_{IHCMR}$ min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential

^{11.} V_{IH} cannot exceed V_{CC}. |V_{IH} − V_{THR}| < 2600 mV.
12. V_{IL} always ≥ V_{EE}. |V_{IL} − V_{THR}| < 2600 mV.
13. V_{THR} is the voltage applied to one input when running in single–ended mode.

^{*}Typicals used for testing purposes.

^{**}The device packaged in FCBGA-16 have maximum ambient temperature specification of 70°C and devices packaged in QFN-16 have maximum ambient temperature specification of 85°C.

Table 8. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT V_{CC} = 3.3 V; V_{EE} = 0 V (Note 14)

			-40°C			25°C		70°C(B	GA)/85°C	(QFN)***	
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	35	47	59	35	47	59	35	47	59	mA
V _{OH}	Output HIGH Voltage (Note 15)	2260	2310	2360	2290	2340	2390	2315	2365	2415	mV
V _{OL}	Output LOW Voltage (Note 15) $(OLS = V_{CC})$ $(OLS = V_{CC} - 0.4 \text{ V})$ $(OLS = V_{CC} - 0.8 \text{ V}, OLS = FLOAT)$ $(OLS = V_{CC} - 1.2 \text{ V})$ $**(OLS = V_{EE})$	1320 2030 1550 2260 1785	1470 2090 1670 2310 1875	1620 2180 1790 2390 1995	1360 2065 1585 2290 1820	1510 2125 1705 2340 1910	1660 2215 1825 2420 2030	1390 2090 1615 2315 1850	1540 2150 1735 2365 1940	1690 2240 1855 2445 2060	mV
V _{OUTPP}	Output Amplitude Voltage $(OLS = V_{CC})$ $(OLS = V_{CC} - 0.4 \text{ V})$ $(OLS = V_{CC} - 0.8 \text{ V}, OLS = FLOAT)$ $(OLS = V_{CC} - 1.2 \text{ V})$ $**(OLS = V_{EE})$	705 130 535 0 345	815 220 640 0 435		695 125 530 0 340	805 215 635 0 430		690 125 525 0 335	800 215 630 0 425		mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Notes 17 and 19) CLK, CLK, D, D	V _{EE} + 1275	V _{CC} - 1000*	V _{CC}	V _{EE} + 1275	V _{CC} - 1000*	V _{CC}	V _{EE} + 1275	V _{CC} - 1000*	V _{CC}	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Notes 18 and 19) CLK, CLK, D, D	V _{IH} - 2600	V _{CC} - 1400*	V _{IH} - 150	V _{IH} - 2600	V _{CC} - 1400*	V _{IH} - 150	V _{IH} - 2600	V _{CC} - 1400*	V _{IH} - 150	mV
V _{IH}	Input High Voltage (Single-Ended) R, SEL	2090		V _{CC}	2155		V _{CC}	2215		V _{CC}	mV
V _{IL}	Input Low Voltage (Single-Ended) R, SEL	V _{EE}		1690	V _{EE}		1755	V _{EE}		1815	mV
V _{THR}	Input Threshold Voltage (Single-Ended) (Note 19)	V _{EE} + 1125		V _{CC} - 75	V _{EE} + 1125		V _{CC} - 75	V _{EE} + 1125		V _{CC} - 75	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 16)	1.2		3.3	1.2		3.3	1.2		3.3	V
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
I _{IH}	Input HIGH Current (@V _{IH}) R, SEL CLK, CLK, D, D		35 5	100 50		35 5	100 50		35 5	100 50	μА
I _{IL}	Input LOW Current (@V _{IL}) R, SEL CLK, CLK, D, D		20 5	100 50		20 5	100 50		20 5	100 50	μА

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{14.} Input and output parameters vary 1:1 with V $_{CC}$. V $_{EE}$ can vary +0.925 V to -0.165 V. 15. All outputs loaded with 50 Ω to V $_{CC}$ - 2.0 V.

^{16.} V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

^{17.} V_{IH} cannot exceed V_{CC} . $|V_{IH} - V_{THR}| < 2600$ mV. 18. V_{IL} always $\geq V_{EE}$. $|V_{IL} - V_{THR}| < 2600$ mV. 19. V_{THR} is the voltage applied to one input when running in single–ended mode.

^{*}Typicals used for testing purposes.

*Typicals used for testing purposes.

**When an output level of 400 mV is desired and $V_{CC} - V_{EE} > 3.0 \text{ V}$, a 2 k Ω resistor should be connected from OLS to V_{EE} .

***The device packaged in FCBGA-16 have maximum ambient temperature specification of 70°C and devices packaged in QFN-16 have maximum ambient temperature specification of 85°C.

Table 9. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT

 $V_{CC} = 0 \text{ V}; V_{EE} = -3.465 \text{ V to } -2.375 \text{ V (Note 20)}$

			-40°C			25°C		70°C(B0	GA)/85°C	(QFN)***	
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	35	47	59	35	47	59	35	47	59	mA
V _{OH}	Output HIGH Voltage (Note 21)	-1040	-990	-940	-1010	-960	-910	-985	-935	-885	mV
V _{OL}	Output LOW Voltage (Note 21) -3.465 V \leq V _{EE} \leq -3.0 V										mV
	$(OLS = V_{CC})$ $(OLS = V_{CC} - 0.4 V)$ $(OLS = V_{CC} - 0.8 V, OLS = FLOAT)$	-1980 -1270 -1750	-1830 -1210 -1630	-1680 -1120 -1510	-1940 -1235 -1715	-1790 -1175 -1595	-1640 -1085 -1475	-1910 -1210 -1685	-1760 -1150 -1565	-1610 -1060 -1445	
	$(OLS = V_{CC} - 1.2 V)$ **(OLS = V _{EE})	-1040 -1515	-990 -1425	-910 -1305	-1010 -1480	-960 -1390	-880 -1270	-985 -1450	-935 -1360	-855 -1240	
	$-3.0 \text{ V} < \text{V}_{\text{EE}} \le -2.375 \text{ V}$ (OLS = V _{CC}) (OLS = V _{CC} - 0.4 V)	-1945 -1265	-1795 -1205	-1645 -1115	-1905 -1230	-1755 -1170	-1605 -1080	-1875 -1205	-1725 -1145	-1575 -1055	
	$(OLS = V_{CC} - 0.4 V)$ $(OLS = V_{CC} - 0.8 V, OLS = FLOAT)$ $(OLS = V_{CC} - 1.2 V)$ $(OLS = V_{EE})$	-1205 -1725 -1045 -1495	-1205 -1605 -995 -1405	-1115 -1485 -915 -1285	-1230 -1690 -1010 -1460	-1170 -1570 -960 -1370	-1080 -1450 -880 -1250	-1203 -1660 -990 -1435	-1145 -1540 -940 -1345	-1420 -860 -1225	
V _{OUTPP}	Output Voltage Amplitude -3.465 V ≤ V _{EE} ≤ -3.0 V										mV
	$(OLS = V_{CC})$ $(OLS = V_{CC} - 0.4 V)$ $(OLS = V_{CC} - 0.8 V)$	705 130 535	815 220 640		695 125 530	805 215 635		690 125 525	800 215 630		
	OLS = FLOAT) (OLS = $V_{CC} - 1.2 \text{ V}$)	0	0		0	0		0	0		
	**(OLS = V_{EE}) -3.0 V < $V_{EE} \le -2.375$ V (OLS = V_{CC})	345 670	435 800		340 660	430 795		335 655	425 790		
	$(OLS = V_{CC} - 0.4 V)$ $(OLS = V_{CC} - 0.8 V)$ OLS = FLOAT)	125 510	215 615		120 505	210 610		120 500	210 605		
	$(OLS = V_{CC} - 1.2 V)$ $(OLS = V_{EE})$	0 325	5 415		0 320	0 410		0 320	5 410		
V _{IH}	Input HIGH Voltage (Single-Ended) (Notes 23 and 25) CLK, CLK, D, D	V _{EE} + 1275	V _{CC} - 1000*	V _{CC}	V _{EE} + 1275	V _{CC} - 1000*	V _{CC}	V _{EE} + 1275	V _{CC} - 1000*	V _{CC}	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Notes 24 and 25) CLK, $\overline{\text{CLK}}$, D, $\overline{\text{D}}$	V _{IH} - 2600	V _{CC} - 1400*	V _{IH} - 150	V _{IH} - 2600	V _{CC} - 1400*	V _{IH} - 150	V _{IH} - 2600	V _{CC} - 1400*	V _{IH} - 150	mV
V _{IH}	Input High Voltage (Single–Ended)	-1210		V _{CC}	-1145		V _{CC}	-1085		V _{CC}	mV
V _{IL}	Input Low Voltage (Single-Ended) R, SEL	V _{EE}		-1610	V _{EE}		-1545	V _{EE}		-1485	mV
V _{THR}	Input Threshold Voltage (Single-Ended) (Note 25)	V _{EE} + 1125		V _{CC} - 75	V _{EE} + 1125		V _{CC} - 75	V _{EE} + 1125		V _{CC} - 75	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{20.} Input and output parameters vary 1:1 with $\ensuremath{V_{CC}}$

^{21.} All outputs loaded with 50 Ω to V_{CC} – 2.0 V.

 $^{22.} V_{IHCMR} \text{ min varies 1:1 with } V_{EE}, V_{IHCMR} \text{ max varies 1:1 with } V_{CC}. \text{ The } V_{IHCMR} \text{ range is referenced to the most positive side of the differential } V_{CC} \text{ and } V_{CC} \text{ and } V_{CC} \text{ are the positive side of the differential } V_{CC} \text{ and } V_{CC} \text{ are the positive side of the differential } V_{CC} \text{ are the positive side of the differential } V_{CC} \text{ are the positive side of the differential } V_{CC} \text{ are the positive side of the differential } V_{CC} \text{ are the positive side of the differential } V_{CC} \text{ are the positive side of the differential } V_{CC} \text{ are the positive side } V_{CC} \text{$

^{23.} V_{IH} cannot exceed V_{CC}. $|V_{IH} - V_{THR}| < 2600$ mV. 24. V_{IL} always $\geq V_{EE}$. $|V_{IL} - V_{THR}| < 2600$ mV. 25. V_{THR} is the voltage applied to one input when running in single–ended mode.

^{*}Typicals used for testing purposes.

^{**}When an output level of 400 mV is desired and V_{CC} – V_{EE} > 3.0 V, a 2 k Ω resistor should be connected from OLS to V_{EE} .
***The device packaged in FCBGA–16 have maximum ambient temperature specification of 70°C and devices packaged in QFN–16 have maximum ambient temperature specification of 85°C.

Table 9. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT

 $V_{CC} = 0 \text{ V}; V_{EE} = -3.465 \text{ V to } -2.375 \text{ V (Note 20)}$ (continued)

			-40°C			25°C 7			GA)/85°C	(QFN)***	
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 22)	V _{EE}	+ 1.2	0.0	V _{EE}	+ 1.2	0.0	V _{EE}	+ 1.2	0.0	٧
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
I _{IH}	Input HIGH Current (@V _{IH}) R, SEL CLK, CLK, D, D		35 5	100 50		35 5	100 50		35 5	100 50	μΑ
I _{IL}	Input LOW Current (@V _{IL}) R, SEL CLK, CLK, D, D		20 5	100 50		20 5	100 50		20 5	100 50	μΑ
lols	$\begin{array}{c} \text{OLS Input Current} \\ \text{(See Figure 12)} \\ & \text{(OLS = V_{CC})} \\ \text{(OLS = V_{CC} - 0.4 V)} \\ \text{(OLS = V_{CC} - 0.8 V,} \\ \text{OLS = FLOAT)} \\ \text{(OLS = V_{CC} - 1.2 V)} \\ -3.465 \text{ V} \leq \text{V}_{EE} \leq -3.0 \text{ V} \\ & \text{*(OLS = V_{EE})} \\ -3.0 \text{ V} < \text{V}_{EE} \leq -2.375 \text{ V} \\ \text{(OLS = V_{EE})} \end{array}$		300 100 5 -100 -600	900 300 100	-300 -1500 -1000	300 100 5 -100 -600	900 300 100	-300 -1500 -1000	300 100 5 -100 -600	900 300 100	Ац

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{20.} Input and output parameters vary 1:1 with V_{CC}.

^{21.} All outputs loaded with 50 Ω to V_{CC} – 2.0 V.

^{22.} V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential

^{23.} V_{IH} cannot exceed V_{CC}. $|V_{IH} - V_{THR}| < 2600 \text{ mV}$. 24. V_{IL} always $\geq V_{EE}$. $|V_{IL} - V_{THR}| < 2600 \text{ mV}$. 25. V_{THR} is the voltage applied to one input when running in single–ended mode.

^{*}Typicals used for testing purposes.

^{**}When an output level of 400 mV is desired and $V_{CC} - V_{EE} > 3.0 \text{ V}$, a 2 k Ω resistor should be connected from OLS to V_{EE} .
***The device packaged in FCBGA-16 have maximum ambient temperature specification of 70°C and devices packaged in QFN-16 have maximum ambient temperature specification of 85°C.

Table 10. AC CHARACTERISTICS for FCBGA-16

 V_{CC} = 0 V; V_{EE} = -3.465 V to -2.375 V or V_{CC} = 2.375 V to 3.465 V; V_{EE} = 0 V

			-40°C			25°C			70°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (See Figures 4, 6, 8, 10, and 11) (See Figures 5, 7, 9, 10, and 11) (Note 26) DIV/2		8 10			8 10			8 10		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential CLK \rightarrow Q, \overline{Q} (OLS = V _{CC}) (OLS = V _{CC} - 0.4 V) (OLS = V _{CC} - 0.8 V, OLS = FLOAT) **(OLS = V _{EE})	160 150 155 155	210 200 205 205	260 250 255 255	160 155 160 160	215 205 210 210	270 255 260 260	165 160 160 160	220 210 215 215	275 260 270 270	ps
	$\begin{array}{c} \text{SEL}{\rightarrow}\text{Q}, \overline{\text{Q}}\\ \text{(OLS} = \text{V}_{\text{CC}})\\ \text{(OLS} = \text{V}_{\text{CC}} - 0.4 \text{V})\\ \text{(OLS} = \text{V}_{\text{CC}} - 0.8 \text{V}, \text{OLS} = \text{FLOAT})\\ \text{**}(\text{OLS} = \text{V}_{\text{EE}}) \end{array}$	165 160 160 160	220 210 215 210	275 260 270 260	170 160 165 160	225 210 220 215	280 260 275 270	170 160 165 165	225 210 220 220	280 260 275 275	
	$\begin{array}{c} R{\rightarrow}Q,\overline{Q}\\ (OLS=V_{CC})\;DIV/2\\ (OLS=V_{CC})\;DFF\\ (OLS=V_{CC}-0.4\;V)\;DIV/2\\ (OLS=V_{CC}-0.4\;V)\;DFF\\ (OLS=V_{CC}-0.8\;V,\;OLS=FLOAT)\;DIV/2\\ (OLS=V_{CC}-0.8\;V,\;OLS=FLOAT)\;DFF\\ **(OLS=V_{EE})\;DIV/2\\ **(OLS=V_{EE})\;DFF\\ \end{array}$	220 200 215 195 220 200 215 195	295 270 285 260 290 265 285 260	370 340 355 325 360 330 355 325	225 205 220 200 220 200 220 200	300 275 290 265 295 270 290 265	375 345 360 330 370 340 360 330	225 205 220 200 220 200 220 200	300 275 290 265 295 270 290 265	375 345 360 330 370 340 360 330	
t _{SKEW}	Duty Cycle Skew (Notes 27 and 29) DFF		5	20		5	20		5	20	ps
^t JITTER	RMS Random Clock Jitter $f_{in} \leq 8 \text{ GHz}$ (See Figures 4 and 6) (Note 26) $Peak-to-Peak \text{ Data Dependent Jitter}$ $f_{in} = 8 \text{ Gb/s}$		0.5	1.5		0.5	1.5		0.5	1.5	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 28)	75		2600	75		2600	75		2600	mV
t _r t _f	Output Rise/Fall Times (20% – 80%) @ 1 GHz $Q, \overline{Q} \\ (OLS = V_{CC}) \\ (OLS = V_{CC} - 0.4 \text{ V}) \\ (OLS = V_{CC} - 0.8 \text{ V}, OLS = FLOAT) \\ **(OLS = V_{EE})$	30 20 25 25	50 40 45 45	65 60 65 65	30 20 25 25	50 40 45 45	65 60 65 65	30 20 25 25	50 40 45 45	65 60 65 65	ps
t _s	Setup Time D→CLK	30	14		30	10		30	13		ps
t _h	Hold Time D→CLK	25	12		25	7		25	9		ps
t _{rr}	Reset Recovery DFF, DIV/2	40	9		40	12		40	10		ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{26.} Measured using a 500 mV source, 50% duty cycle clock source. Repetitive 1010 input data pattern. All outputs loaded with 50 Ω to V_{CC} - 2.0 V. Input edge rates is 40 ps (20% – 80%).
27. See Figure 14. t_{SKEW} = |t_{PLH} - t_{PHL}| for a nominal 50% differential clock input waveform.
28. V_{INPP} (MAX) cannot exceed V_{CC} - V_{EE} (Applicable only when V_{CC} - V_{EE} < 2600 mV).
29. See Figure 10. Duty Cycle % vs. Frequency.
**When an output level of 400 mV is desired and V_{CC} - V_{EE} > 3.0 V, a 2 kΩ resistor should be connected from OLS to V_{EE}.

Table 11. AC CHARACTERISTICS for QFN-16

 $V_{CC} = 0 \text{ V}$; $V_{FF} = -3.465 \text{ V}$ to -2.375 V or $V_{CC} = 2.375 \text{ V}$ to 3.465 V; $V_{FF} = 0 \text{ V}$

			-40°C			25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (See Figures 4, 6, 8, 10, and 11) (See Figures 5, 7, 9, 10, and 11) (Note 30) DIV/2		8 10			8 10			8		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential (Note 34) CLK \rightarrow Q, \overline{Q} SEL \rightarrow Q, \overline{Q} R \rightarrow Q, \overline{Q} D _{IN} /2 DFF	150 160 215 195	215 190 280 270	285 280 375 345	150 160 215 195	215 190 280 270	285 280 375 345	150 160 215 195	215 190 280 270	285 280 375 345	ps
t _{SKEW}	Duty Cycle Skew (Notes 31 and 33) DFF		5	20		5	20		5	20	ps
UITTER	RMS Random Clock Jitter $f_{in} \leq 8 \text{ GHz}$ (See Figures 4 and 6) (Note 30) $Peak-to-Peak \text{ Data Dependent Jitter}$		0.5	1		0.5	1		0.5	1	ps
	f _{in} = 8 Gb/s		TBD			TBD			TBD		
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 32)	75		2600	75		2600	75		2600	mV
t _r t _f	Output Rise/Fall Times (20% – 80%) @ 1 GHz $Q, \overline{Q} \\ (OLS = V_{CC}) \\ (OLS = V_{CC} - 0.4 \text{ V}) \\ (OLS = V_{CC} - 0.8 \text{ V}, OLS = FLOAT) \\ ***(OLS = V_{EE})$	28 15 25 20	40 40 35 35	65 65 65 65	28 15 25 20	40 40 35 35	65 65 65 65	28 15 25 20	40 40 35 35	65 65 65 65	ps
t _s	Setup Time D→CLK	30	14		30	10		30	13		ps
t _h	Hold Time D→CLK	25	12		25	7		25	0		ps
t _{rr}	Reset Recovery DFF, DIV/2	40	9		40	12		40	10		ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{30.} Measured using a 500 mV source, 50% duty cycle clock source. Repetitive 1010 input data pattern. All outputs loaded with 50 Ω to V_{CC} - 2.0 V. Input edge rates is 40 ps (20% - 80%).

^{31.} See Figure 14. $t_{SKEW} = |t_{PLH} - t_{PHL}|$ for a nominal 50% differential clock input waveform. 32. V_{INPP} (MAX) cannot exceed $V_{CC} - V_{EE}$ (Applicable only when $V_{CC} - V_{EE} < 2600$ mV). 33. See Figure 10. Duty Cycle % vs. Frequency.

^{34.} For all OLS Configuration.

^{**}When an output level of 400 mV is desired and V_{CC} – V_{EE} > 3.0 V, a 2 k Ω resistor should be connected from OLS to V_{EE} .

^{***}The device packaged in FCBGA-16 have maximum ambient temperature specification of 70°C and devices packaged in QFN-16 have maximum ambient temperature specification of 85°C.

 $\label{eq:continuous} Figure~4.~Output~Voltage~Amplitude~(V_{OUTPP})~/~RMS~Jitter~vs.\\ Input~Frequency~(f_{in})~for~DFF~Mode~(V_{CC}-V_{EE}=3.3~V~@~25^{\circ}C;~Repetitive~1010~Input~Data~Pattern)$

Figure 5. Output Voltage Amplitude (V_{OUTPP}) / RMS Jitter vs. Input Frequency (f_{in}) for DIV/2 Mode (V_{CC} – V_{EE} = 3.3 V @ 25°C)

^{*}When an output level of 400 mV is desired and V_{CC} – V_{EE} > 3.0 V, a 2 k Ω resistor should be connected from OLS to V_{EE} .

Figure 6. Output Voltage Amplitude (V_{OUTPP}) / RMS Jitter vs. Input Frequency (f_{in}) for DFF Mode (V_{CC} – V_{EE} = 2.5 V @ 25°C; Repetitive 1010 Input Data Pattern)

Figure 7. Output Voltage Amplitude (V_{OUTPP}) / RMS Jitter vs. Input Frequency (f_{in}) for DIV/2 Mode (V_{CC} – V_{EE} = 2.5 V @ 25°C)

*When an output level of 400 mV is desired and V_{CC} – V_{EE} > 3.0 V, a 2 k Ω resistor should be connected from OLS to V_{EE} .

Figure 8. V_{OH}/V_{OL} (Q/Q) vs. Input Frequency (f_{in}) for DFF Mode ($V_{CC}-V_{EE}=3.3~V~@~25^{\circ}C$ and OLS = $V_{CC}-0.8~V$, OLS = FLOAT)

Figure 9. V_{OH}/V_{OL} (Q/Q) vs. Input Frequency (f_{in}) for DIV/2 Mode ($V_{CC}-V_{EE}=3.3~V~@~25^{\circ}C$ and OLS = $V_{CC}-0.8~V$, OLS = FLOAT)

Figure 10. Duty Cycle % vs. Input Frequency (f_{in}) (V_{CC} – V_{EE} = 3.3 V @ 25°C)

Figure 11. Duty Cycle % vs. Input Frequency (f_{in}) (V_{CC} – V_{EE} = 2.5 V @ 70°C)

Figure 12. Typical OLS Input Current vs. OLS Input Voltage (V_{CC} – V_{EE} = 3.3 V @ 25°C)

Figure 13. OLS Operating Area

Figure 14. AC Reference Measurement

Figure 15. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020/D – Termination of ECL Logic Devices)

ORDERING INFORMATION

Device	Package Type	Shipping [†]
NBSG53ABAHTBG	FCBGA-16 (Pb-Free)	100 / Tape & Reel
NBSG53ABA	FCBGA-16, 4x4 mm	100 Units / Tray (Contact Sales Representative)
NBSG53ABAR2	FCBGA-16, 4x4 mm	100 / Tape & Reel (Contact Sales Representative)
NBSG53AMN	QFN-16, 3x3 mm	123 Units / Rail
NBSG53AMNG	QFN-16, 3x3 mm (Pb-Free)	123 Units / Rail
NBSG53AMNR2	QFN-16, 3x3 mm	3000 / Tape & Reel
NBSG53AMNR2G	QFN-16, 3x3 mm (Pb-Free)	3000 / Tape & Reel
NBSG53AMNHTBG	QFN-16 (Pb-Free)	100 / Tape & Reel

Board	Description
NBSG53ABAEVB	NBSG53ABA Evaluation Board

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

FCBGA-16 **BA SUFFIX**

PLASTIC 4 X 4 (mm) BGA FLIP CHIP PACKAGE CASE 489-01 ISSUE O

- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO DATUM PLANE Z.
 4. DATUM Z (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
 5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

	MILLIMETERS		
DIM	MIN	MAX	
Α	1.40 MAX		
A1	0.25	0.35	
A2	1.20 REF		
b	0.30	0.50	
D	4.00 BSC		
Е	4.00 BSC		
е	1.00 BSC		
S	0.50 BSC		

PACKAGE DIMENSIONS

16 PIN QFN CASE 485G-01 **ISSUE C**

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED
 TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

 L_{max} CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP AND FLAG

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.80	1.00	
A1	0.00	0.05	
А3	0.20 REF		
b	0.18	0.30	
D	3.00 BSC		
D2	1.65	1.85	
E	3.00 BSC		
E2	1.65	1.85	
е	0.50 BSC		
K	0.18 TYP		
L	0.30	0.50	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GigaComm is a trademark of Semiconductor Components Industries, LLC.

16

16X b

0.10 С A B

0.05 С NOTE 3 13

BOTTOM VIEW

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative