Consider a Ranky-Tupster selup w/

A & B label the halos. Assume each halo has average made occupation of & no respectively. Then, we can also write the relevant anomalous moments as:

$$|m_{12}|^2 = |\langle \hat{\alpha}_1 \hat{\alpha}_2 \rangle|^2 = |m_A|^2 = n_A(Hn_A)$$

 $+ |m_{34}|^2 = |m_B|^2 = n_B(Hn_B)$

With these in hand, it is straightforward to construct the relevant coincidence counts as:

Cij =
$$\frac{1}{2} \left(n_A^2 + n_B^2 \right) + \frac{1}{4} \left(|m_A|^2 + |m_B|^2 \right)$$

 $\pm \frac{1}{2} |m_A||m_B| \cos \left(\Delta \phi \right)$
 $\pm \frac{1}{2} |m_A||m_B| \cos \left(\Delta \phi \right)$

$$E(\Delta \phi) = \frac{2|m_A||m_B| \cos(\Delta \phi)}{2(n_A^2 + n_B^2) + |m_A|^2 + |m_B|^2}$$

05/

$$\frac{2 \left[n_A(1+n_A) n_B(1+n_B) \right]^{1/2}}{3n_A^2 + 3n_B^2 + n_A + n_B} \cos(\Delta \phi)$$

