

example of transfinite induction

 ${\bf Canonical\ name} \quad {\bf Example Of Transfinite Induction}$

Date of creation 2013-03-22 17:51:12 Last modified on 2013-03-22 17:51:12

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771) Entry type Example Classification msc 03B10 Suppose we are interested in showing the property $\Phi(\alpha)$ holds for all ordinals α using transfinite induction. The proof basically involves three steps:

- 1. (first ordinal) show that $\Phi(0)$ holds;
- 2. (successor ordinal) if $\Phi(\beta)$ holds, then $\Phi(S\beta)$ holds;
- 3. (limit ordinal) if $\Phi(\gamma)$ holds for all $\gamma < \beta$ and $\beta = \sup{\{\gamma \mid \gamma < \beta\}}$, then $\Phi(\beta)$ holds.

Below is an example of a proof using transfinite induction.

Proposition 1. $0 + \alpha = \alpha$ for any ordinal α .

Proof. Let $\Phi(\alpha)$ be the property: $0 + \alpha = \alpha$. We follow the three steps outlined above.

- 1. Since 0 + 0 = 0 by definition, $\Phi(0)$ holds.
- 2. Suppose $0 + \beta = \beta$. By definition $0 + S\beta = S(0 + \beta)$, which is equal to $S\beta$ by the induction hypothesis, so $\Phi(S\beta)$ holds.
- 3. Suppose $\beta = \sup\{\gamma \mid \gamma < \beta\}$ and $0 + \gamma = \gamma$ for all $\gamma < \beta$. Then $0 + \beta = 0 + \sup\{\gamma \mid \gamma < \beta\} = \sup\{0 + \gamma \mid \gamma < \beta\}.$

The second equality follows from definition. Furthermore, the last expression above is equal to $\sup\{\gamma \mid \gamma < \beta\} = \beta$ by the induction hypothesis. So $\Phi(\beta)$ holds.

Therefore $\Phi(\alpha)$ holds for every ordinal α , which is the statement of the theorem, completing the proof.