

https://www.melbournebioinformatics.org.au/tutorials/tutorials/qiime2/qiime2/

https://dashboard.rc.nectar.org.au/project/

https://qiime2.org/

Linux/Unix/macOS command line

- Tab: autofill (if it doesn't autofill something is incorrect)
- Ctrl-C: Abort command
- ls: list directory contents
- tree: visualize directories, recursively
- pwd: print working (i.e., current) directory
- cd: change directory
- mkdir: make directory
- rmdir: remove a directory
- nano: open a text editor
- cp: copy a directory or a file
- cat/more/less: print contents of a file to the terminal
- rm: remove a file (rm -r: removes a directory)
- mv: move (i.e., rename) a directory or a file
- head: print the first ten lines of a file to the terminal
- tail: print the last ten lines of a file to the terminal
- curl or wget: download a file from a URL (you will see this in other QIIME2 tutorials)
- man: learn about a command (also, most other cmds: -h; --help)

Cnidarian holobiont

Background on data

Short-Term Exposure to Sterile Seawater Reduces Bacterial Community Diversity in the Sea Anemone, *Exaiptasia diaphana*

Ashley M. Dungan^{1*}, Madeleine J. H. van Oppen¹² and Linda L. Blackall¹

School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia, Australian Institute of Marine Science, Townsville, OLD, Australia

Sterile SW 3 weeks

Import data into QIIME2

What do you know about your data?

- Single vs paired end?
 - o Single: one direction of sequencing
 - o Paired: forward and reverse reads
- Multiplexed vs demultiplexed?
 - Multiplexed: fastq.gz file(s) for each read set and another that contains the associated barcodes
 - o Demultiplexed: one fastq.gz file per sample

Multiplexed Data

Barcoded per-sample

Pool and sequence samples

Track per-sample barcodes (e.g., in spreadsheet)

sample-metadat	a.tsv		
SampleID	BarcodeSequence		
4ac2	AACGCAC		
e375	AAGAGAT		
4gd8	ACAGCAG		
9872	ACAGCTA		

sequences.fastq(.gz)

@HWI-6X 9267:1:1:25:1051

```
GACGAAGGTGACGACCGTTGCTCGGAATCACTGGGCATAAAGCGCGCGTAGGTGGC
TTGGTAAGTCCATGGTGAAATCCCTCGGCTCAACCGAGGAACTG
abaaaaa`^`a ]^\``\``a`^`]]]^^`a[VXGX``Z \\\ ^\a^SYOZVVSV
@HWI-6X 9267:1:1:25:267
TACGTAT GGGGCAAGCGTTATC CGGAAT TATT TGGGCGTAA AGA GTGCGT AGGTGGT
GGCTTAAGCGCAGGGTTTAAGGCAATGG
                            barcodes.fastq(.qz)
@HWI-6X 9267:1:1:25:1051
WWURZUYY]XXRZRNVTRTNTWUUU^VJ
                            AACGCAC
@HWI-6X 9267:1:1:25:609
TACGTAGGGGCAAGCGTTATCCGGATT
                            TGGACAAGTCTGATGTGAAAGGCTGGGG
                            @HWI-6X 9267:1:1:25:267
                            AAGAGAT
aaab`aaa`aaaaaaaaaaaaaaaaa
[I^^aZZ^WW^ ^`ZZ T]XY^^\^ZX\
                            bbbbbbbb
@HWI-6X 9267:1:1:25:519
                            @HWI-6X 9267:1:1:25:609
GACGGAGGATGCAAGTGTTATCCGGAAT
                            AACGCAC
TTACTAAGTCAACTGTTAAATCTTGAGG
                            bbbbbbb
abaaaaaa`aaaaaa\aaaaaaaa```aa
                            @HWI-6X 9267:1:1:25:519
]] Z XX\\[]]]^`[\XTVX]`T VZ[
                            ACAGCAG
@HWI-6X_9267:1:1:25:1109
TACGGAGGGTGCGAGCGTTAATCGGAAT
                            bbbbbbbb
TAGGTAAGTCAGATGTGAAAGCCCCGGG
                            @HWI-6X 9267:1:1:25:1109
                            ACAGCTA
aaaba^`a^N `\ ``a a]Zaa^^\Z
VH PHOWZM[PTRPTRYUBBBBBBBBBBB
                            bbbbbbbb
                            @HWI-6X 9267:1:1:25:434
                            ACACGAG
```

Demultiplexed Data

Pool and sequence samples

Track per-sample barcodes (e.g., in spreadsheet)

What do you know about your data?

- Single vs paired end?
 - o Single: one direction of sequencing
 - o Paired: forward and reverse reads
- Multiplexed vs demultiplexed?
 - Multiplexed: fastq.gz file(s) for each read set and another that contains the associated barcodes
 - o Demultiplexed: one fastq.gz file per sample
- Have your adapters and primers been removed?
- Will your files come zipped? (ending in .gz)

Unsure? Make sure you ask the sequencing facility and know the answers to these specific details.

Adapted from Aubrey et al., 2014

Cutadapt = cutting off adapters (overhang+primer)

Overview of removed sequences length count expect max.err error counts 0.0 3 0.0 0.0 19 14 3 0 2 106 0.0 1047 0.0 705 330 9 3 11931 11512 405 14 0.017 0.0

Accessing output files

Mac users:

scp FILENAME username@your_IP_address:/PATH/TO/TARGET/FOLDER/

- Windows users: Use FileZilla to transfer to your local drive
- Go to https://view.giime2.org/
- Drag file into qiime2 view

Quality Scores

Phred Quality Score = Q-score

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Quality Score Encoding

In FASTQ files, quality scores are encoded into a compact form, which uses only 1 byte per quality value. In this encoding quality score is represented as the character with an ASCII code equal to its value + 33. The following table demonstrates relationship between the encoding character, its ASCII code, and the quality score represented.

When Q-score binning is in use, the subset of Q-scores applied by the bins is displayed.

Table 2 ASCII Charactern Encoding Q-across 0-40

Symbol	ASCII Code	Q-Score	Symbol	ASCII Code	Q-Score
1	33	0	6	54	21
	34	1	7	55	22
#	35	2	8	56	23
\$	36	3	9	57	24
%	37	4	10	58	25
8.	38	5	1	59	26
e.	39	6	<	60	27
(40	7		61	28
)	41	8	>	62	29
	42	9	7	63	30
+	43	10	@	64	31
	44	-11	A	65	32
2	45	12	В	66	33
	46	13	С	67	34
1	47	14	D	68	35
0	48	15	E	69	36
1	49	16	F	70	37
2	50	17	G	71	38
3	51	18	н	72	39
4	52	19	1	73	40
5	53	20		_U	15

DADA2: What is it?

- Divisive Amplicon Denoising Algorithm, version 2 (<u>Callahan et al. 2016</u>)
- DADA2 ...
 - ... is a software package (QIIME2 add-on) that models and corrects Illumina-sequenced amplicon errors
 - ... infers sample sequences exactly and resolves differences of as little as one nucleotide (ASVs). This allows for the identification of variants and reveal diversity in a given taxonomic group
 - o ... is reference free and applicable to any genetic locus

DADA2: How does it do that?

Denoising

- <u>Filtering</u> user defined. Trims sequences to a specified length, removes sequences shorter than that length
- Model errors within a read and between reads
- Abundance sequences too abundant to be explained by errors in sequencing are kept
- Sequence comparison (i.e. excluding reads whose pairs have >10% mismatch)

Clustering

- Reads with exact overlaps are merged by sample
- Reads with the same sequence are grouped into unique sequences with an associated abundance and consensus quality profile
- These are called **A**mplicon **S**equencing **V**ariants (ASVs) or <u>Features</u> in some tutorials
- Chimera removal identifying sequences that are two-parent chimeras of more abundant output sequences

Sample metadata: formatting

Keemei: cloud-based validation of tabular bioinformatics file formats in Google Sheets.

Rideout JR, Chase JH, Bolyen E, Ackermann G, González A, Knight R, Caporaso JG. GigaScience. 2016;5:27.

https://keemei.qiime2.org

Head to tutorial and complete Sections 1&2

Section 1: Importing, cleaning and quality control of the data

The dada2 denoise-paired step must be run sequentially.

Section 2: Taxonomic Analysis

Run feature-classifier classify-sklearn code using screen function.

Taxonomic assignment of observed sequences (ASVs)

FeatureData[Sequence]

>feature5

 ${\tt GACGAAGGTGACCGTTGCTCGGAATCACTGGGCATAAAGCCCGCGTAGGTGGCTTGGTAAGTCCATGGTGAAATCCCTCGGCTCAACCGAGGAACTG}$

>feature4

 ${\tt TACGTAGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGAAGGCTGGGGCTCAACCCCGGGACGG}\\$

>feature/

 ${\tt TACGTATGGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGTGCGTAGGTGGCTTAAGCGCAGGGTTTAAGCGCAAGGCTAACTATTGTTCTC}$

>feature1

AATCTTGAGGCTCAACCTCGAAATCG

>feature3

Taxonomic assignment of observed sequences.

Reference Database Silva, Greengenes, etc.

FeatureData[Sequence]

>feature5

AATCCCTCGGCTCAACCGAGGAACTG

TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGA AAGGCTGGGGCTCAACCCCGGGACGG

TACGTATGGGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGTGCGTAGGTGGTGGCTTAAGCGCAGGGTTT

AAGGCAATGGCTTAACTATTGTTCTC

>feature1

GACGGAGGATGCAAGTGTTATCCGGAATCACTGGGCGTAAAGCGTCTGTAGGTGGTTTACTAAGTCAACTGTTA

AATCTTGAGGCTCAACCTCGAAATCG

>feature3

AAGCCCCGGGCTCCACCTGGGAATGG

Taxonomic assignment of observed sequences.

Reference Database

Silva, Greengenes, etc.

AAGCCCCGGGCTCCACCTGGGAATGG

Compare observed sequences to annotated reference sequences to make taxonomic assignments.

```
feature5 Bacteria; Proteobacteria
feature4 Bacteria; Proteobacteria
feature2 Bacteria; Bacteroidetes; Flavobacteria; Flavobacteriales
feature1 Bacteria; Proteobacteria
feature3 Bacteria; Proteobacteria; Deltaproteobacteria
```


http://upload.wikimedia.org/wikipedia/commons/d/d3/Staphylococcus aureus VISA 2.ipg

Classify Taxonomies

qiime2 feature-classifier (Bokulich et al. 2018)

FIG. 1. Overall classification accuracy by query size (exhaustive leave-one-out testing using the Bergey corpus). Numbers are percentages of tests correctly classified.

Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Wang et al. **2007**. Applied and Environmental Microbiology.

Phylogenetic reconstruction of observed sequences

FeatureData[Sequence]

>taxon5

GACGAAGGTGACCGACCGTTCCTCGGAATCACTGGGCATAAAGCCCGCGTAGGTGGCTTGGTAAGTCCATGGTGA
AATCCCTCGGCTCAACCGACGAACTG

>taxon4

TACGTAGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGA AAGGCTGGGGCTCAACCCCGGGACGG

>taxon2

AAGGCAATGGCTTAACTATTGTTCTC

>taxon1

GACGGAGGATGCAAGTGTTATCCGGAATCACTGGGCGTAAAGCGTCTGTAGGTGGTTTACTAAGTCAACTGTTA
AATCTTGAGGCTCAACCTCGAAATCG

>taxon3

Align sequences, filter highly variable (i.e., randomly evolving) positions, and build phylogenetic tree.

Head to tutorial and complete Section 2&3

Finish Section 2: Taxonomic Analysis

Section 3: Build a phylogenetic tree

Basic visualizations and statistics

https://docs.giime2.org/2021.4/tutorials/moving-pictures/#alpha-and-beta-diversity-analysis

Visualizing taxonomic profiles

Interactive barplots support:

- Taxonomic level selection
- Multi-level sorting
- Filtering
- Coloring
- Exporting plots (SVG) and raw data

31

TCAGATGTGAAAGCCCCGGGCTCCACCTGGGAATGG

Comparing microbial communities

Alpha diversity metrics operate on a single sample (i.e., within sample diversity).

Beta diversity metrics operate on a pair of samples (i.e., between sample diversity).

Taxonomic profiling, differential abundance testing.

Does anything concern you about this table?

FeatureTable[Freq					
	feature1	feature2	feature3	feature4	feature5
4ac2	84	1	73	198	2
e375	24	2	44	176	1
4gd8	11	0	10	30	0
9872	0	0	25	2	0

Diversity metrics in ordinations are often impacted by the total frequency observed in samples, such that in this example 4gd8 might look more similar to 9872 than to e375.

FeatureTable[Frequency]						
	feature1	fea	ture2	feature3	feature4	feature5
4ac2	84	1		73	198	2
e375	24	2		44	176	1
4gd8	11	0		10	30	0
9872	0	0		25	2	0

	Total frequency
4ac2	358
e375	247
4gd8	51
9872	27

This is most commonly handled by <u>rarefaction</u>, which is currently* a necessary evil. Frequencies are subsampled without replacement until all samples have the same total. Samples with fewer sequences than your <u>even sampling</u> depth will be filtered out of the feature table.

FeatureTable[Free						
	feature1	fea	ture2	feature3	feature4	feature5
g345	11	1		10	29	0
c5d7	4	0		7	40	0
f6ee	11	0		10	30	0
cfd3	θ	Ә		θ	θ	θ

	Total frequency
g345	51
c5d7	51
f633	51
cfd3	Ө

^{*} A good project would be developing diversity metrics that are not sensitive to total frequency.

Alpha rarefaction

Phylogenetic diversity metrics incorporate evolutionary relationships between taxa, but assume that we know what those relationships are. These require a phylogenetic tree.

- Weighted Unifrac
- Unweighted Unifrac*

Non-phylogenetic diversity metrics assume that all taxa are equally related, so don't make assumptions about evolutionary relationships. No tree required.

- Bray-Curtis
 - Jaccard*

^{*}Unweighted doesn't consider abundance, just presence/absence

PCoA

Color = Genotype

Shape = SW treatment

Head to tutorial and complete Section 4

Section 4: Basic visualizations and statistics

QIIME2 → R → phyloseq

SampleType

QIIME2 \rightarrow R \rightarrow microbiome

Other R packages

- indicspecies
- DeSeq2
- vegan
- MicrobiotaProcess
- metagenomeSeq
- mixOmics
- PICRUSt2
- LEfSe
- ALDEx2

Head to tutorial and complete Section 5

Section 5: Exporting data for further analysis in R