Faith Jones Engineering Design Portfolio

Introduction

Hello, my name is Faith Jones!

I am recent graduate. I studied Mechanical Engineering with a concentration in Industrial Design.

I am interested in product engineering, but in particular I have a love for thoughtful and playful design.

faith.jones2.718@gmail.com (773) 677-4046

Battle Boats Spring 2018

Battle Boats is a toy product prototype I designed with a team of 4 other MIT freshmen for an introductory product design course.

How it works

Shooting Driving

Early Prototyping

How to play

A remoted controlled toy boat

designed for competitive play

My Role

As part of this team I designed CAD models for the boat, prototyped and user tested boats aesthetics, and fabricated waterproof boat enclosure

- -Solidworks CAD
- -Foam Rapid Protoyping
- -Thermoforming
- -Lasercutting

Solace was design by myself and a team of 15 other students for the mechanical engineering product development capstone course.

Final Prototype

Iterations of Form

Solace Story Board

Material Testing

We performed puncture tests as well as tensile tests on connection with different adhesives to determine the best materials

Full Scale Prototype

Industrial Design

My Role

On this team I worked on the adhesive and seam teams. Toward the final prototype creation I lead the Graphics and Industrial Design teams.

- -Rapid Prototyping
- -Material Property testing
- -Adobe Illustrator and Photoshop
- -Fabrication using soft materials

Control of the Contro

Passive pushing mechanism

Game Board and Strategy

-Driving up and down incline -Picking up and placing game objects -Cutting rope above game board -Pushing game objects

Design Calculations

Based on feedback and calculations made reductions and improvements to make subsystem more robust

· · · · · · · · · · · · ·

Sisek ber

Project Takeaways

In designing and manufacturing this robot by hand I learned I was able to leanr more about materials by working directly with them.

- -Sketching
- -Fusion 360
- -Fabrication using table top tools

For this class we designed this yo-yo and manufactured over 200 units.

Parts and Molds

Injection Molding and Press Fits

Final Touches

Each yo-yo half includes an overmolded washer for weight, and an overmolded nut in the base to connect the two halves together.

My Role

On this team I did CAD for yoyo parts, planed CAM to mill molds, and 3D printed mold for thermoforming.

- -CNC Milling
- -Injection Molding
- Design thinking for mass production