Tutorial 1: Propositional Logics

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Logic in Programs

```
(1) \quad \text{if } ((i+j \leq p+q) \&\& \ (i \leq p) \&\& \\ ((j>q) \mid | \ (\text{List1}[i] \leq \text{List2}[j]))) \\ (2) \quad \quad \text{List3}[k] = \text{List1}[i] \\ (3) \quad \quad i = i+1 \\ (4) \quad \text{else} \\ (5) \quad \quad \text{List3}[k] = \text{List2}[j] \\ (6) \quad \quad j = j+1 \\ (7) \quad k = k+1 \\ \end{cases}
```

```
(1) if (((i+j \le p+q) \&\& (i \le p) \&\& (j > q)) || ((i+j \le p+q) \&\& (i \le p) \&\& (List1[i] \le List2[j])))

(2) List3[k] = List1[i]

(3) i = i+1

(4) else

(5) List3[k] = List2[j]

(6) j = j+1

(7) k = k+1
```

Consider the above two pieces of code. They are taken from two different versions of *Mergesort*. Do they do the same thing? (Note that &&= "and", ||= "or".)

Observation: The two pieces of code are the same except for line 1.

Logic in Programs

- $(1) \ \left((i+j \leq p+q) \ \&\& \ (i \leq p) \ \&\& \ ((j>q) \ || \ (List1[i] \leq List2[j])) \right)$
- (1') $(((i+j \le p+q) \&\& (i \le p) \&\& (j > q)) || ((i+j \le p+q) \&\& (i \le p) \&\& (List1[i] \le List2[j])))$

Are they equivalent?

Let's rewrite using

$$s \sim (i+j \le p+q)$$
 $t \sim (i \le p)$ $u \sim (j > q)$ $v \sim (List[i] \le List2[j])$

- (1) s and t and (u or v)
- (1') (s and t and u) or (s and t and v)

Now set $w \sim (s \text{ and } t)$

(1)
$$w$$
 and $(u \text{ or } v) \stackrel{\text{equal?}}{\longleftrightarrow} (1') (w \text{ and } u) \text{ or } (w \text{ and } v)$

Logic in Programs

We just transformed our code into compound propositions and next want to develop a theory of how to determine whether two such propositions are equal (equivalent).

Are $s \oplus t$ and $(s \land \neg t) \lor (\neg s \land t)$ logically equivalent? If yes, prove it by truth table. Otherwise, give a counterexample to show that they are not logically equivalent.

Solution:

S	t	$s \oplus t$	$s \wedge \neg t$	$\neg s \wedge t$	$(s \wedge \neg t) \vee (\neg s \wedge t)$
T	Т	F	F	F	F
T	F	Т	Т	F	Т
F	Т	Т	F	Т	Т
F	F	F	F	F	F

Are $w \wedge (s \oplus t)$ and $(w \vee s) \oplus (w \vee t)$ logically equivalent? If yes, prove it by truth table. Otherwise, give a counterexample to show that they are not logically equivalent.

Solution:

No, they are not logically equivalent. Set w = F, s = F and t = T. $w \land (s \oplus t) = F$ but $(w \lor s) \oplus (w \lor t) = T$.

For each of the following pairs of propositions, either prove they are logically equivalent, or give a counterexample.

- (a) $p \rightarrow q$ and $q \rightarrow p$
- (b) $p \rightarrow q$ and $\neg q \rightarrow \neg p$
- (c) $(p \rightarrow q) \rightarrow q$ and $p \rightarrow q$
- (d) $(p \rightarrow p) \rightarrow q$ and q
- (e) $q \rightarrow (p \land \neg p)$ and $\neg q$
- (f) $q \rightarrow (p \land \neg p)$ and $\neg p$

Solution:

- (a) Not equivalent. Set p=T, q=F, then $p \to q=F$ but $q \to p=T$.
- (b) Equivalent. $p \to q \equiv \neg p \lor q \equiv (\neg \neg q) \lor (\neg p) \equiv \neg q \to \neg p$. Or truth table.

p	q	p o q	$\neg q$	$\neg p$	eg q o eg p
T	Т	Т	F	F	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	T	Т	Т

(c) Not equivalent. Set p=F, q=F, then $(p \to q) \to q=F$ but $p \to q=T$

(d) Equivalent. $(p \to p) \to q \equiv T \to q \equiv q$. Or truth table.

		()	1 / 1	
p	q	p o p	(p ightarrow p) ightarrow q	q
Т	Т	Т	Т	Т
T	F	Т	F	F
F	Т	Т	Т	Т
F	F	Т	F	F

(e) Equivalent. $q \to (p \land \neg p) \equiv q \to F \equiv \neg q$. Or truth table.

p	q	$p \wedge \neg p$	$q \to (p \land \neg p)$	$\neg q$
Т	Т	F	F	F
Т	F	F	Т	Т
F	Т	F	F	F
F	F	F	Т	Т

(f) Not equivalent. Set p=T, q=F, then $q \to (p \land \neg p)=T$ but $\neg p=F$

For each of the following pair of propositions, either prove that the two propositions are logically equivalent without using truth table, or give a counterexample to show that the propositions are not logically equivalent.

- (a) (i) $p \rightarrow (q \rightarrow r)$
 - (ii) $(p \land q) \rightarrow r$
- (b) (i) $(\neg(p \rightarrow \neg q)) \rightarrow (\neg(p \land r) \lor s)$ (ii) $(\neg r \rightarrow p) \rightarrow ((p \land q) \rightarrow s)$

Solution:

(a) Consider

$$p \to (q \to r) = \neg p \lor (q \to r)$$
$$= \neg p \lor (\neg q \lor r)$$
$$= \neg p \lor \neg q \lor r$$

Consider

$$(p \land q) \rightarrow r = \neg(p \land q) \lor r$$
$$= (\neg p \lor \neg q) \lor r$$
$$= \neg p \lor \neg q \lor r$$

Thus, $p \to (q \to r)$ is equivalent to $(p \land q) \to r$.

(b) Set p=T, q=T, r=F, s=F, $(\neg(p\to\neg q))\to(\neg(p\land r)\lor s)$ becomes true and $(\neg r\to p)\to((p\land q)\to s)$ becomes false. Thus they are not equivalent.