GS339

Single Supply Quad Comparator

Product Description

The GS339 consists of four independent precision voltage comparators. These were designed specifically to operate from a single power supply over a wide range of voltages.

Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Features

- Wide supply Voltage range: 2.0V to 36V.
- Low supply current drain independent of supply voltage.
- Low input biasing current: 25 nA typ.
- Low input offset current: 5 nA typ.
- Low input offset voltage: 2 mV typ.
- Input common-mode voltage range includes
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage.
- Output voltage compatible with TTL, MOS and CMOS logic.

Applications

Application areas include limit comparators, simple analog to digital converters; pulse, square wave and time delay generators; wide range VCO; multivibrators and high voltage digital logic gates.

Packages & Pin Assignments

1

Ordering Information

Device	Package	Quantity Reel
GS339SF	SOP-14	4000 PCS

Marking Information

Absolute Maximum Ratings

Symbol	Parameter	Val	Unit	
Vcc	Supply Voltage	±18 c	±18 or 36	
V _{DI}	Differential Input Voltage	±3	6	V
Vin	Input Voltage	3	36	
	Output Short-circuit to Ground (Note1)	Infir	Infinite	
PD	Power Dissipation	SOP-14	0.83	W
TA	Operating Temperature Range	-40 to 85		ōC
Т _{STG}	Storage temperature Range	-65 to 150		ōC
θυα	Junction to Ambient Thermal Resistance	SOP-14	150	ōC\M
θ _{JC}	Junction to Case Thermal Resistance	SOP-14	23	ºC/W
ESD	ESD Rating (HBM)	21	<	V

Note 1: Short-circuit from the output to $V_{\text{CC+}}$ can cause excessive heating and eventual destruction. The maximum output current is approximately 20mA independent of the magnitude of $V_{\text{CC+}}$.

Electrical Characteristics

at specified free-air temperature, Vcc=5V (unless otherwise noted)

Symbol	Parameter		Test condition	ons*	Min	Тур	Max	Unit	
Vio	V _{IO} Input offset voltage	$V_{CC} = 5 \text{ V to } 30\text{V},$ $V_{IC} = V_{ICR} \text{ min},$		25 ºC		2	5	mV	
VIO			=1.4 V	Full range			9	IIIV	
lio	Input offset	V _O =1.4V		25 ºC		5	50	nA	
IIO	current			Full range			150		
L-	Input bias	\/-	1 4\/	25 ºC		25	250		
I _{IB}	current	V _O =1.4V		Full range			400	nA	
	Common-mode			25 ºC	0 to V _{CC} -1.5				
Vicr	input voltage range**			Full range	0 to Vcc -2.0			V	
Avd	Large-signal differential voltage amplification	V_{CC} = 15 V, V_{O} = 1.4V to 11.4V, R_{L} ≥ 15 k Ω to V_{CC}		25 ºC	50	200		V/mV	
	High-level	V _{OH} = 5	V, V _{ID} =1V,	25 ºC		0.1	50	nA	
Іон	output current	V _{OH} = 3	0V, V _{ID} =1V	Full range			1	μΑ	
V	Low-level		- 4)/ 4)/	25 ºC		150	400		
VOL	V _{OL} output voltage		$I_{OL} = 4 \text{ mA}, V_{ID} = -1 \text{V}$				700	mV	
Ю	Low-level output current	V _{OL} = 1.5V, V _{ID} =-1V		25 ºC	6			mA	
	Cumply ourse at	D	Vcc=5V	25 ºC		8.0	2		
Icc	Supply current	R _L =∞	Vcc=30V	Full range			2.5	mA	

^{*} Full range (MIN to MAX), for the GS339 is -40°C to 85°C. All characteristics are measured with zero common-mode input voltage unless otherwise specified.

Switching Characteristics

Vcc=5V, T_A=25 °C

Parameter	Test c	Тур	Unit	
Response	R∟ connected to 5V through	100-mV input step with 5-mV overdrive	1.3	lie.
time	5.1 kΩ, C _L =15pF (Note 1)	TTL-level input step	0.3	μs

Note 1: C_L includes probe and jig capacitance.

Note 2: The response time specified is the interval between the input step function and the instant when the output crosses 1.4V.

^{*} The voltage at either input or common-mode should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V_{CC} -1.5V, but either or both inputs can go to 30V without damage.

Typical Performance Characteristics

Response Time For Various Input

Typical Applications (V_{CC}=5V)

These quad comparators feature high gain, wide bandwidth characteristic. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance.

This oscillation manifests itself during output transitions (V_{OL} to V_{OH}). To alleviate this situation, input resistors < $10k\Omega$ should be used.

The addition of positive feedback (<10 mV) is also recommended. It is good design practice to ground all unused pins.

Differential input voltages may be larger than supply voltage without damaging the comparator's input. Voltage is more negative than -0.3V should not be used.

Inverting Comparator With Hysteresis

$$R2 >> R_{REF} IIR1$$

 $R3 = R1 IIR_{REF} IIR2$
 $V_{REF} = V_{CC} \times R1 / (R_{REF} + R1)$

$$\begin{array}{l} Amount \ of \ Hysteresis \\ V_{\text{H}} \ = \ (R1 \ II \ R_{\text{REF}} \ / \ R1 \ II \ R_{\text{REF}} \ + \ R2) \\ \times \ [\ V_{\text{OUT(MAX)}} \ - \ V_{\text{OUT(MIN)}}] \end{array}$$

Non-Inverting Comparator With Hysteresis

R2
$$=$$
 R_{REF} II R1
R3 $=$ R1 II R_{REF} II R2
 $V_{REF} =$ $V_{CC} \times$ R1 / (R_{REF} + R1)

$$\begin{array}{c} \text{Amount of Hysteresis} \\ V_{\text{H}} = \left[\; \text{R2} \; / \left(\; \text{R2} + \; \text{R3} \; \right) \; \right] \\ \times \left[\; V_{\text{OUT(MAX)}} \; - \; V_{\text{OUT(MIN)}} \; \right] \end{array}$$

Typical Application (Continue)

Square-Wave Oscillator

Pulse Generator

Two-Decade High Frequency Voltage Controlled Oscillator (Vco)

 $+250mV \leq Vc \leq +50V \quad ; \quad 700Hz \leq fo \leq 100kHz$

Crystal Controlled Oscillator

Driving CMOS

Typical Application (Continue)

Driving TTL

Low Frequency Op Amplifier

Output Strobing

<And> Gate

<Or> Gate

Large Fan-In < And > Gate

GS333

Limit Comparator

Typical Application(Continue)

Vcc 2N2222 5.1k +V_{IN} 0 W -V_{IN} 0 W 1/2 GS393

Oring The Outputs

Zero Crossing Detector (Single Power Supply)

One-Shot Multivibrator

Bi-Stable Multivibrator

One-Shot Multivibrator With Input Lock Out

Zero Crossing Detector

Typical Application (Continue)

Comparator With A Negative Reference

Time Delay Generator

Split-Supply Applications MOS Clock Driver

Package Dimension

SOP-14 PLASTIC PACKAGE

	Dimensions				
OVMPOL	Millin	neters	Inches		
SYMBOL	MIN	MAX	MIN	MAX	
Α	1.35	1.75	.053	.069	
A1	0.10	0.25	.004	.010	
A2	1.25	1.65	.049	.065	
b	0.31	0.51	.012	.020	
b1	0.28	0.48	.011	.019	
С	0.17	0.25	.007	.010	
D	8.65	(TYP)	.341 (TYP)		
E	6.00	(TYP)	.236 (TYP)		
E1	3.90	(TYP)	.154	(TYP)	
е	1.27	(TYP)	.050 (TYP)		
L	0.40	1.27	.016	.050	
L1	1.04	(TYP)	.041	(TYP)	
L2	0.25	(TYP)	.010	(TYP)	
R	0.07	-	.003	-	
R1	0.07 -		.003	-	
h	0.25 0.50		.010	.020	
θ	0°	8°	0°	8°	
θ1	5°	15°	5°	15°	
θ2	0°	-	08	-	

NOTICE

Information furnished is believed to be accurate and reliable. However Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

CONTACT US

GS Headquarter					
	4F.,No.43-1,Lane11,Sec.6,Minquan E.Rd Neihu District Taipei City 114, Taiwan (R.O.C)				
Co	886-2-2657-9980				
	(I) 886-2-2657-3630				
@	sales_twn@gs-power.com				

	RD Division
\	824 Bolton Drive Milpitas. CA. 95035
	1-408-457-0587

