If an algorithm samples exact knockoff for any distribution with only access to evaluating the distribution's unnormalized density Φ , then almost surely,

number of evaluations of the density $\geq 2^{\left|\{j:X_j\neq \tilde{X}_j\}\right|}-1$

Theorem 2 (Bates, Candès, Janson and Wang, 2019, informal version)

```
•Make | \{j: X_j 
eq 	ilde{X}_j\} | small, but we will give up power
```

Settle for approximate knockoffs?

Focus on important class of distributions

parametric family (e.g., Gaussian, discrete Markov chains)


```
Recall: need density at all points of the
form (Z_1,Z_2,\ldots,Z_p), Z_j equal to X_j or X_j
```


reduced degree of freedom of the densities at these points

graphical structure

Theorem 2 (Bates, Candès, Janson and Wang, 2019, informal version)

If an algorithm samples exact knockoff for any distribution with only access to evaluating the distribution's unnormalized density Φ , then almost surely,

number of evaluations of the density $\geq 2^{\left|\{j:X_j\neq \tilde{X}_j\}\right|}-1$

- -Make $|\{j: X_j \neq \tilde{X}_j\}|$ small, but we will give up power
 - Settle for approximate knockoffs?
 - Focus on important class of distributions
 - •parametric family (e.g., Gaussian, discrete Markov chains)

graphical structure

Recall: need density at all points of the form $(Z_1, Z_2, ..., Z_p)$, Z_j equal to X_j or \tilde{X}_j

reduced degree of freedom of the densities at these points

Graphical model and junction tree

 X_i independent of X_j given the remaining variables if no edge connects i and j

