Cinex

Łopatecki Domnik Paluch Mariusz Soroka Hubert Strójwąs Kamil Tymoftyjewicz Maciej

Wstęp

Projekt Cinex został stworzony w ramach przedmiotu Projektowanie i Integracja Systemów prowadzonego przez dr. Koperwasa na Politechnice Warszawskiej. Projekt był tworzony pod opieką Macieja Malewicza i Marcina Kwaczyńskiego z firmy Goldman Sachs, którzy pomagali nam przy realizacji projektu.

Ogólny zarys projektu

Celem naszego projektu, było stworzenie od podstaw serwisu poświęconemu filmom. Naszą inspiracją przy tworzeniu tej aplikacji był serwis filmweb. Nasza aplikacja miała na celu implementacje następujących funkcjonalności:

- Logowanie / rejestrowanie użytkowników
- Nadawanie roli poszczególnym osobom w filmie
- Wyświetlanie listy filmów
- Wyszukiwanie filmów po tytule
- Wyświetlanie informacji dla pojedynczego filmu
- Dodawanie / wyświetlanie ocen użytkowników
- Dodawanie filmów do bazy z poziomu aplikacji

Technologie i narzędzia użyte do realizacji projektu

1. Jira

Za pomocą Jiry koordynowaliśmy naszą pracę. Dzięki temu byliśmy w stanie zachować porządek pracy i odnotowywać postępy przy tworzeniu aplikacji. Używaliśmy go także w procesie recenzowania naszego kodu.

Link do jiry: https://prawoiskalowalnosc.atlassian.net/jira/software/c/projects/PIS/boards/1

2. Jenkins

Jenkins został przez nas wykorzystany do automatyzacji procesu wytwarzania oprogramowania. Został on zintegrowany z Githubem co pozwoliło nam na automatyczne sprawdzanie występowania regresji w kodzie i zapobieganie wypuszczanie wadliwego kodu.

3. Nexus

Do zbierania artefaktów kolejnych wersji aplikacji zostało użyte repozytorium nexus. Zbierane są artefakty zarówno z frontendu, jak i z backendu. Nexus został skonfigurowany na maszynie wirtualnej znajdującej się na PW.

4. PostgreSQL

W ramach aplikacji została użyta postgresowa baza danych w wersji 14. Jest to jeden z najpopularniejszych otwartych systemów zarządzania relacyjnymi bazami danych co pozwala nam korzystać w pełni ze wszystkich możliwości takiej bazy danych.

5. React

Po stronie frontendu zdecydowaliśmy się na używanie biblioteki react wraz z typescriptem. Jest to popularne narzędzie dające nam duże możliwości przy tworzeniu nowoczesnych aplikacji webowych. Przy tworzeniu aplikacji zostały wykorzystane biblioteki bootstrap oraz materialUI.

Oto przykładowy screen strony, stworzonej przy użyciu reacta:

6. Spring

Po stronie backendu zdecydowaliśmy na używanie frameworka springboot. Pozwala on na łatwe połączenie aplikacji z bazą danych, wystawienie webowego api, oraz implementacje logowania i rejestrowania.

7. DigitalOcean

Naszą bazę danych i Jenkinsa postawiliśmy na DigitalOcean. Jest to firma świadcząca usługi chmurowe. Dla nowych użytkowników oferowane są bezpłatne środki o wartości \$200 w celu przetestowania usług co zostało przez nas wykorzystane i obie aplikacje zostały zdeployowane w chmurze.

8. Github

Jako narzędzie do kontroli wersji wybraliśmy serwis Github. Na nim znajduje się kod zarówno dla frontendu jak i backendu. Link do repozytorium znajduje się tutaj: https://github.com/Prawo-I-Skalowalnosc/PIS 2022Z.

Podział prac

- Łopatecki Dominik frontend
- Paluch Mariusz Nexus, backend
- Soroka Hubert backend
- Strójwąs Kamil baza danych, frontend
- Tymoftyjewicz Maciej Jenkins, frontend

Architektura systemu

System jest zbudowany w architekturze trójwarstowej. Podział na warstwy wygląda następująco:

- Warstwa prezentacji aplikacja webowa stworzona przy użyciu Reacta
- Warstwa logiki biznesowej aplikacja zbudowana w javie z pomocą springa
- Warstwa danych postgresowa baza danych zdeployowana w chmurze