Niveau: Première année de PCSI

COLLE 22 = ESPACES EUCLIDIENS

Connaître son cours:

- 1. Soit F un sous-espace vectoriel d'un espace euclidien E, montrer que les sous-espaces F et F^{\perp} sont supplémentaires dans E et que $F^{\perp^{\perp}} = F$.
- 2. Soit F et G deux sous-espaces vectoriels d'un espace euclidien E, montrer que $F^{\perp} \cap G^{\perp} = (F + G)^{\perp}$.
- 3. Soit E un espace euclidien et F un sous-espace de E, donner et démontrer l'inégalité de Bessel pour la projection orthogonale p_F sur F.

Exercices:

Exercice 1. (*) (Isométrie vectorielle)

Soit E un espace préhilbertien et $f \in \mathcal{L}(E)$. Montrer que

$$\forall x, y \in E, (f(x)|f(y)) = (x|y) \iff \forall x \in E, ||f(x)|| = ||x||.$$

Exercice 2. (**) (Projection sur un espace de matrices)

Soit $E = \mathcal{M}_2(\mathbb{R})$ que l'on munit du produit scalaire

$$\langle M, N \rangle = \text{Tr}(M^T N).$$

On pose

$$F = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}; \ (a, b) \in \mathbb{R}^2 \right\}.$$

- 1. Déterminer une base orthonormée de F^{\perp} .
- 2. Calculer la projection de $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur F^{\perp} .
- 3. Calculer la distance de J à F.

Exercice 3. (*)

On considère $E = \mathbb{R}_2[X]$ muni du produit scalaire

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)dt.$$

- 1. Justifier que la famille (1; 1+X; $1+X+X^2$) forme une base de E.
- 2. Donner l'unique base orthonormale associée sous les conditions du théorème de Gram-Schmidt.

Niveau: Première année de PCSI

Exercice 4. (***) (Estimateur des moindres carrés)

Soit n et p deux entiers naturels avec $p \leq n$. On munit \mathbb{R}^n du produit scalaire canonique et on identifie \mathbb{R}^n avec $\mathcal{M}_{n,1}(\mathbb{R})$. On considère une matrice $A \in \mathcal{M}_{n,p}(\mathbb{R})$ de rang p et $B \in \mathcal{M}_{n,1}(\mathbb{R})$.

1. Démontrer qu'il existe une unique matrice X_0 de $\mathcal{M}_{p,1}(\mathbb{R})$ telle que

$$||AX_0 - B|| = \inf\{||AX - B||; X \in \mathcal{M}_{p,1}(\mathbb{R})\}.$$

2. Montrer que X_0 est l'unique solution de

$$A^T A X = A^T B$$
.

3. Application : déterminer

$$\inf\{(x+y-1)^2+(x-y)^2+(2x+y+2)^2;\ (x,y)\in\mathbb{R}^2\}.$$