Introduction to Week Five

Initial Value Problems

- Video: Euler Method | Lecture 48 7 min
- Reading: When the Euler Method is Exact

 10 min
- Video: Modified Euler Method | Lecture 49 9 min
- Reading: When the Modified Euler
 Method is Exact
 10 min
- Video: Runge-Kutta Methods |
 Lecture 50
 12 min
- Video: Second-Order Runge-Kutta Methods | Lecture 51 7 min
- Reading: Ralston's Method 5 min
- Reading: Runge-Kutta Methods and Quadrature Formulas

 10 min
- Video: Higher-Order Runge-Kutta
 Methods | Lecture 52
 10 min
- Reading: Fourth-Order Runge-Kutta
 Method and Simpson's Rule
 10 min

Systems of Differential Equations
Initial Value Problems in MATLAB
Boundary Value Problems

Quiz

Programming Assignment: The Two-Body Problem

When the Euler Method is Exact

Let $\dot x=b$, with initial condition $x(0)=x_0$ and b a constant. With $t=n\Delta t$, show that the Euler method results in the exact solution

 $x(t) = x_0 + bt.$

✓ Completed

Go to next item

🖒 Like

□ Dislike

Report an issue