

# **Document made available under the Patent Cooperation Treaty (PCT)**

International application number: PCT/IL05/000064

International filing date: 19 January 2005 (19.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: EP  
Number: 04000968.0  
Filing date: 19 January 2004 (19.01.2004)

Date of receipt at the International Bureau: 20 May 2005 (20.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)



World Intellectual Property Organization (WIPO) - Geneva, Switzerland  
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse



Europäisches  
Patentamt

European  
Patent Office

Office européen  
des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

04000968.0

Der Präsident des Europäischen Patentamts;  
Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets  
p.o.

R C van Dijk





Anmeldung Nr:  
Application no.: 04000968.0  
Demande no:

Anmeldetag:  
Date of filing: 19.01.04  
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Julius-Maximilians-Universität Würzburg  
Sanderring 2  
97070 Würzburg  
ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:  
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.  
If no title is shown please refer to the description.  
Si aucun titre n'est indiqué se referer à la description.)

Diagnostic test for Parkinson's disease detection

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s)  
revendiquée(s)  
Staat/Tag/Aktenzeichen/State>Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/  
Classification internationale des brevets:

G01N33/48

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of  
filing/Etats contractants désignés lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL  
PT RO SE SI SK TR LI



## Diagnostic test for Parkinson's disease detection

The present invention is related to the diagnosis of Parkinson's disease and means for that purpose.

Parkinson's disease (PD) is a progressive neurodegenerative disorder, with a prevalence of 1% in the population above 65 years of age, that results in degeneration of dopamine neurons in the substantia nigra (SN), and a consequent striatal dopamine deficiency [2]. The causes and mechanism for the degeneration of dopaminergic neurons is still elusive.

There have been numerous hypotheses concerning the etiology of PD, including genetic aberrations, involvement of endogenous and exogenous derived neurotoxins and oxidative stress (OS) as a consequence of accumulation of reactive oxygen species (ROS). Many studies have been performed to identify gene mutations in PD, and some candidate genes, including superoxide dismutase and catalase, have been excluded [24]. The first gene identified as directly involved in familial form of PD is  $\alpha$ -synuclein, coding for presynaptic protein that is defective in the disease [25,27]. Recently, a gene called Parkin, with structure similarity to the ubiquitin family of proteins, was found causing juvenile autosomal recessive form of PD [13]. Still, none of them was shown to play a common pathogenic role in idiopathic PD, since no mutations have been found in the sporadic form of the disease [26], which constitute more than 90% of the individuals affected.

A new concept in the etiology of PD is based on the study of changes in the up or down regulation of gene expression, which might increase the vulnerability of the neurons to cell death or even cause it. A number of recent studies have reported alterations in the expressions of various genes, such as a decrease in calcium-binding protein (28kDa calbindin-D) in the SN [10] and D<sub>3</sub> receptor mRNA in lymphocytes [20] from PD patients. Three gene alterations in the N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model for PD were observed. The first, an increase of

glutamate decarboxylase mRNA in a subpopulation of neurons in the putamen of parkinsonian monkeys, which provides further evidence that striato-pallidal GABAergic neurons are hyperactive in MPTP-treated parkinsonian monkeys [31]. The second was an increase in Bax mRNA expression (a cell death effector) in SN, with a concomitant increase in Bax immunoreactivity [9]. The third was an increase in the glutamate decarboxylase mRNA expression in a subpopulation of neurons in the putamen of Parkinsonian monkeys [31], as well as in adult rats striatum depleted of dopamine via 6-hydroxydopamine (6-OHDA), another animal model for PD, as neonates, with parallel increase in preproenkephalin and a decrease in preprodynorphin mRNA levels [15]. Furthermore, an increase in interleukine-1 beta (IL-1 $\beta$ ) mRNA was also reported in methamphetamine treated rats [34]. As well as toxic regimen of methamphetamine caused a significant increase in the pro-death Bcl-2 family genes BAD, BAX, and BID. Concomitantly, there were significant decreases in the anti-death genes Bcl-2 and Bcl-XL [4,12]. Nonetheless, no global assessment of gene expression has been made in PD so far, that might explain the genetic events occurring in nigro-striatal dopaminergic neurodegeneration.

Current accepted clinical criteria for the diagnosis of PD, such as Unified Parkinson's Disease Rating Scale (UPDRS) [6], provide high sensitivity for detecting parkinsonism [3]. There are no sensitive and specific biochemical markers that can be used to reliably diagnose clinical and especially preclinical PD. It is now known that some PD kindreds have a mutation of the  $\alpha$ -synuclein gene, but this cannot be used as a genetic marker for most familial and sporadic cases.

A further approach in the diagnosis of PD is functional imaging, which provides a means of discriminating typical from atypical PD, revealing characteristic patterns of loss of dopaminergic function. In addition, positron emission tomography (PET) and single photon emission tomography (SPECT) show preserved levels of striatal metabolism and dopamine receptor binding in PD, whereas levels are reduced in the atypical variants [3]. Still these tools do not give us an exact diagnosis of PD, often experts in PD changed their diagnoses infrequently during the 7.6-year follow-up [11].

More over, all these diagnostic methods are able to detect subjects with PD only after nearly 70% of the neurons have been degenerated, as only at this point symptoms appears [35]. This of course, makes treatment and may be even rescue of the neurons nearly impossible. In view of this, it is desirable to diagnose the disease at an early stage and for this reason, it is important to develop an early diagnostic method.

The problem underlying the present invitation is the fact, that no early diagnostic method in patients exists, which can be used for monitoring of PD at an early stage, before damage of neurons occurred and typical symptoms appeared [3]. It is most important to find an easy diagnostic tool for PD in biological material, as it will provide to treat before the symptoms occur. The test should be specific and sensitive and easy to perform.

There are already many drugs that show neuroprotective effects in vitro and in vivo [5,7,8,14,21,22,28,29,32]. Additionally, gene therapy was shown to be most successful in delaying the neurodegenerative process [1,16-19,23,30,33]. The problem is, that these methods did no show any success in patients with PD, because the beginning of therapy is to late, the number of surviving neurons is too small. Therefore, an early diagnosis may provide a better time point for the submission of therapeutic strategies who can protect against the cell death occurring and to prevent the progress of the disease.

The problem underlying the present invention is solved by the use of a diagnostic test, whereby the test comprises the gene expression patterns of one or more genes with or without their combination.

The inventors have found 54 gene candidates (Table 1) encoding for specific proteins, which shows an increase or a decrease of expression in PD comparing to control. Using these gene patterns as molecular markers, single or in combination, a specific and sensitive method is created for early detection of individuals, who will develop PD.

Comparing to the methods used today, this method has the advantage not to use rare genetically mutations or familial history of the disease, but rather use general gene expression changes which occur also in sporadic PD. These gene expression alterations may be caused not only as a consequence of specific genetically background, but also of environmental background. Therefore, this method will detect not only patients who have gene mutations, but also the sporadic patients very early in the development of the disease.

The invention will provide for the first time the possibility to have an early diagnostic way for PD before the symptoms appear.

The problem underlying the present invention is solved by the determination of gene expression pattern by extraction of RNA from biological material, preferably blood samples or biopsy samples of skin. The RNA will be isolated rapidly by a commercial available Kit. The RNA will be tested through hybridization to a customized GeneChip array containing the 54 selected genes and relevant house-keeping genes serving for normalization, or by means of Real-time-reverse-transcription-PCR for each of the 54 genes. The gene expression pattern will be determined via comparison to the expression of positive and negative control RNA (with de-novo PD and healthy subjects, respectively). The pattern of the gene expression received via one of the techniques should be similar to the pattern described in table 1 in order to define the subject as PD patient.

Polypeptides, proteins and derivatives coded by up to 54 genes, which are increased or decreased in PD patients compared to healthy subjects, will be used as markers in a test, performed in biological material, preferably in blood. This test method is easy and rapidly to do and relative inexpensive.

**Table 1: Gene changes expected in PD****a) Inflammatory related genes****Chemokines C-X-C**

| Number | Affy ID     | Gene Name                                                               | EXPECTED EXPRESSION IN BLOOD | GeneBank    | Function                                                                                        |      | Protein Family                                                   |
|--------|-------------|-------------------------------------------------------------------------|------------------------------|-------------|-------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------|
|        |             |                                                                         |                              |             | Up                                                                                              | Down |                                                                  |
| 1      | 209774_X_at | chemokine (C-X-C motif) ligand 2                                        | Up                           | NM_057731.1 | Produced by activated monocytes and neutrophils and expressed at sites of inflammation          |      | Small cytokines<br>(Intercrine/chemokine),<br>interleukin-8 like |
| 2      | 206336_at   | chemokine (C-X-C motif) ligand 6<br>(granulocyte chemotactic protein 2) | Up                           | NM_002993.1 | Cytokine, Chemoattract, Heparin-binding, Signal                                                 |      | Small cytokines<br>(Intercrine/chemokine),<br>interleukin-8 like |
| 3      | 214446_s_at | pro-platelet basic protein<br>(chemokine (C-X-C motif) ligand 7)        | Up                           | R6413D      | Cytokine, Connective tissue, Growth factor, Chemotaxis, Mitogen, Platelet, Signal, 3D-structure |      | Small cytokines<br>(Intercrine/chemokine),<br>interleukin-8 like |
| 4      | 203915_at   | chemokine (C-X-C motif) ligand 9                                        | Up                           | NM_012416.1 | Cytokine, Interferon induction, Inflammatory response, Signal                                   |      | Small cytokines<br>(Intercrine/chemokine),<br>interleukin-8 like |
| 5      | 205242_at   | chemokine (C-X-C motif) ligand 13<br>(B-cell chemoattractant)           | Up                           | NM_006419.1 | Cytokine, Chemoattract, Signal, Inflammatory response                                           |      | Small cytokines<br>(Intercrine/chemokine),<br>interleukin-8 like |

**Chemokine C-C**

| Number | Affy ID     | Gene Name                             | EXPECTED EXPRESSION IN BLOOD | GeneBank    | Function                                                                                                                                                                                                                                                                                                                                                                                                                           | Protein Family                                                |
|--------|-------------|---------------------------------------|------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 1      |             | chemokine (C-C motif) receptor-like 1 | Up                           | NM_016557.1 | Receptor for SCYA2/MCP1, SCYA8/MCP2, SCYA13/MCP4, SCYA19/MIP3beta/C, SCYA25/SLC and SCYA26/TECK.                                                                                                                                                                                                                                                                                                                                   | 7 transmembrane receptor (rhodopsin family)                   |
| 2      | 220351_at   |                                       |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| 3      |             |                                       |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| 4      | 216598_s_at | chemokine (C-C motif) ligand 2        | Down                         | SE9738.1    | Chemokine factor that attracts monocytes and basophils but not neutrophils or eosinophils. Augments monocyte adhesion activity. Has been implicated in the pathogenesis of diseases characterized by monocytic infiltrates, like psoriasis, rheumatoid arthritis or atherosclerosis. May be involved in the recruitment of monocytes into the arterial wall during the disease process of atherosclerosis. Binds to CCR2 and CCR4. | Small cytokines (interleukin/chemokine), interleukin-8 like   |
| 5      |             |                                       |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| 6      | 205592_s_at | chemokine (C-C motif) ligand 14       | Up                           | NM_004165.1 | Has weak activities on human monocytes and acts via receptors that also recognize MIP-1 alpha. It induced intracellular Ca2+ changes and enzyme release, but no chemotaxis, at concentrations of 100-1,000 nM, and was inactive on lymphocytes, neutrophils, and eosinophils/basophiles. Enhances the proliferation of CD34 myeloid progenitor cells.                                                                              | Small cytokines (interleukin/chemokine), interleukin-8 like 2 |
| 7      |             |                                       |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| 8      |             | chemokine (C-C motif) ligand 16       | Up                           | NM_004550.1 | SHOWS CHEMOTACTIC ACTIVITY FOR LYMPHOCYTES AND MONOCYTES BUT NOT NEUTROPHILS. ALSO SHOWS POTENT MYELOSUPPRESSIVE ACTIVITY, SUPPRESSES PROLIFERATION OF MYELOID PROGENITOR CELLS. RECOMBINANT SCYA16 SHOWS CHEMOTACTIC ACTIVITY FOR MONOCYTES AND THP-1 MONOCYTES, BUT NOT FOR RESTING LYMPHOCYTES AND NEUTROPHILS. INDUCES A CALCIUM FLUX IN THP-1 CELLS THAT WERE DESENSITIZED BY PRIOR EXPRESSION TO RANTES.                     | Small cytokines (interleukin/chemokine), interleukin-8 like   |
| 9      | 207354_at   |                                       | Up                           | NM_004550.1 | SHOWS CHEMOTACTIC ACTIVITY FOR MONOCYTES, RESTING T-LYMPHOCYTES, AND NEUTROPHILS, BUT NOT FOR ACTIVATED LYMPHOCYTES. INHIBITS PROLIFERATION OF MYELOID PROGENITOR CELLS IN COLONY FORMATION ASSAYS. THIS PROTEIN CAN BIND HEPARIN. BINDS CCR1.                                                                                                                                                                                     | Small cytokines (interleukin/chemokine), interleukin-8 like   |
| 10     | 210549_s_at | chemokine (C-C motif) ligand 23       | Up                           | U59833.1    |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| 11     | 207355_at   | chemokine (C-C motif) ligand 27       | Up                           | NM_036644.1 | CHEMOTACTIC FACTOR THAT ATTRACTS SKIN-ASSOCIATED MEMORY T-LYMPHOCYTES. MAY PLAY A ROLE IN MEDIATING HOMING OF LYMPHOCYTES TO CUTANEOUS SITES. BINDS TO CCR10.                                                                                                                                                                                                                                                                      |                                                               |

**Chemokine C**

| Number | Affy ID   | Gene Name                      | EXPECTED EXPRESSION IN BLOOD | GeneBank    | Function                                                                   | Protein Family                                              |
|--------|-----------|--------------------------------|------------------------------|-------------|----------------------------------------------------------------------------|-------------------------------------------------------------|
| 12     | 221460_at | chemokine (C motif) receptor 1 | Up                           | NM_005283.1 |                                                                            | Small cytokines (interleukin/chemokine), interleukin-8 like |
| 13     | 206365_at | chemokine (C motif) ligand 1   | Up                           | NM_002995.1 | CHEMOTACTIC ACTIVITY FOR LYMPHOCYTES BUT NOT FOR MONOCYTES OR NEUTROPHILS. |                                                             |

| Interleukins |             |                                                       |                              | Protein Family |                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|-------------|-------------------------------------------------------|------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number       | Affy ID     | Gene Name                                             | EXPECTED EXPRESSION IN BLOOD | GeneBank       | Function                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14           | 207493_at   | Interleukin 10                                        | Up                           | NM_000572.1    | Inhibits the synthesis of a number of cytokines, including IFN-gamma, IL-2, IL-3, TNF and GM-CSF produced by activated macrophages and by hepar T cells.                                                                                                                                                                                                                                                    |
| 15           | 206200_at   | Interleukin 1, alpha                                  | Up                           | NM_000675.1    | PRODUCED BY ACTIVATED MACROPHAGES, IL-1 STIMULATES THYMOCYTE PROLIFERATION BY INDUCING IL-2 RELEASE, B-CELL MATURATION & PROLIFERATION, & FIBROBLAST GROWTH FACTOR ACTIVITY. IL-4 PROTEINS ARE INVOLVED IN THE INFILTRATION & RESPONSE, BEING IDENTIFIED AS ENDIGENOUS PYROGENS, AND ARE REPORTED TO STIMULATE THE RELEASE OF PROSTAGLANDIN AND COLLAGENASE FROM SYNOVIAL CELLS.                            |
| 16           | 207539_S_at | Interleukin 4                                         | Up                           | NM_000589.1    | IL-4 PARTICIPATES IN AT LEAST SEVERAL B-CELL ACTIVATION PROCESSES AS WELL AS OF OTHER CELL TYPES. IT IS A COSTIMULATOR OF DNA-SYNTHESIS. IT INDUCES THE EXPRESSION OF CLASS II MHC MOLECULES ON RESTING B-CELLS. IT ENHANCES BOTH SECRETION AND CELL SURFACE EXPRESSION OF IGE AND IgG1. IT ALSO REGULATES THE EXPRESSION OF THE LOW AFFINITY FC RECEPTOR FOR IGE (CD28) ON BOTH LYMPHOCYTES AND MONOCYTES. |
| 17           | 206295_at   | Interleukin 18 (Interferon-gamma-inducing factor)     | Up                           | NM_001662.1    | AUGMENTS NATURAL KILLER-CELL ACTIVITY IN SPLEEN CELLS AND STIMULATES INTERFERON GAMMA PRODUCTION IN T HELPER TYPE 1 CELLS.                                                                                                                                                                                                                                                                                  |
| 18           | 207008_at   | Interleukin 21                                        | Up                           | NM_001557.1    | RECEPTOR TO INTERLEUKIN-8, WHICH IS A POWERFUL NEUTROPHIL'S CHEMOTACTIC FACTOR. BINDING OF IL-8 TO THE RECEPTOR CAUSES ACTIVATION OF NEUTROPHILS. THIS RESPONSE IS MEDIATED VIA A G-PROTEIN THAT ACTIVATE A PHOSPHATIDYLINOSITOL-CALCIUM SECOND MESSENGER SYSTEM. THIS RECEPTOR BINDS TO IL-8 WITH A HIGH AFFINITY AND TO GROWNSA AND NAP-2 ALSO WITH A HIGH AFFINITY.                                      |
| 19           | 221271_at   | Interferon, alpha 13                                  | Up                           | NM_008602.2    | 7 transmembrane receptor (rhodopsin family)                                                                                                                                                                                                                                                                                                                                                                 |
| 20           | 206344_X_at | tumor necrosis factor receptor superfamily, member 21 | Up                           | NM_021803.1    | Death domain, TNFRSF cytoskeletal region                                                                                                                                                                                                                                                                                                                                                                    |
| 21           | 214581_X_at |                                                       | Down                         | BEE88134       | May activate NF-kappa-B and JNK and promote apoptosis.                                                                                                                                                                                                                                                                                                                                                      |
| 22           | 206278_at   | platelet-activating factor receptor                   | Up                           | D10202.1       | RECEPTOR FOR PLATELET ACTIVATING FACTOR, A CHEMOTACTIC PHOSPHOLIPID MEDiator THAT POSSESSES POTENT INFLAMMATORY, SMOOTH-MUSCLE CONTRACTILE AND HYPOTENSIVE ACTIVITY. SEEM TO MEDIATE ITS ACTION VIA A G PROTEIN THAT ACTIVATE A PHOSPHATIDYLINOSITOL-CALCIUM SECOND MESSENGER SYSTEM.                                                                                                                       |
| 23           | 206048_at   | tachykinin receptor 1                                 | Up                           | NM_015271      | THIS IS A RECEPTOR FOR THE TACHYKININ NEUROPEPTIDE SUBSTANCE P. IT IS PROBABLY ASSOCIATED WITH G PROTEINS THAT ACTIVATE A PHOSPHATIDYLINOSITOL-CALCIUM SECOND MESSENGER SYSTEM.                                                                                                                                                                                                                             |

## b) Ubiquitin-proteasome system

### *Ubiquitination*

| Number | Affy ID      | Gene Name                                                                       | EXPECTED EXPRESSION IN BLOOD | GeneBank    | Function                                                                                                                                                                                                                                                                                                                       | Protein Family                                                                           |
|--------|--------------|---------------------------------------------------------------------------------|------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 24     | 207974_s_at  | Sphosphate kinase-associated protein 1A (019A)                                  | Down                         | NM_003930.1 | Essential component of the SCF (SKP1-CUL1-F-box protein) ubiquitin ligase complex, which mediates the ubiquitination of proteins involved in cell cycle progression, signal transduction and transcription. In the SCF complex, serves as an adapter that links the F-box protein to CUL1.                                     | Skp1 family, dimers/trimers, tetramerisation domain, Skp1 family, tetramerisation domain |
| 25     | 206624_at    | ubiquitin specific protease 6, Y chromosome (rat facets-like Drosophila)        | Down                         | NM_014654.2 | MAY FUNCTION AS A UBIQUITIN-PROTEIN OR POLYUBIQUITIN HYDROLASE INVOLVED BOTH IN THE PROCESSING OF UBIQUITIN PRECURSORS AND OF UBIQUITINATED PROTEINS. MAY THEREFORE PLAY AN IMPORTANT ROLE REGULATORY ROLE AT THE LEVEL OF PROTEIN TURNOVER BY PREVENTING DEGRADATION OF PROTEINS THROUGH THE REMOVAL OF CONjugATED UBIQUITIN. | Ubiquitin carboxyl-terminal hydrolase                                                    |
| 26     | 210339_5_at  | heat shock 70kDa protein 8                                                      | Down                         | ABP34951.1  | Chaperone, isoform 2 may function as an endogenous inhibitory regulator of HSP70 by competing the co-chaperones.                                                                                                                                                                                                               | Hsp70 protein                                                                            |
| 27     | 210650B_5_at | synophilin, beta 1 (dystrophin-associated protein A1, Esdra, basic component 1) | Up                           | NM_021021.1 | Adaptor protein that binds to and probably organizes the subcellular localization of a variety of membrane proteins. May link various receptors to the actin cytoskeleton and the dystrophin/glycoprotein complex.                                                                                                             | PIN2 domain (Also known as DHR or GGF), PH domain                                        |

### *Vesicular and membrane traffic*

| Number | Affy ID     | Gene Name                                                                       | EXPECTED EXPRESSION IN BLOOD | GeneBank    | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Protein Family                           |
|--------|-------------|---------------------------------------------------------------------------------|------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 28     | 214441_at   | Syndrin 5                                                                       | Up                           | NM_005819.1 | Involved in intracellular vesicle trafficking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SNARE domain                             |
| 28     | 205824_at   | RAB35, member RAS oncogene family                                               | Down                         | BC050565.1  | Protein transport. Probably involved in vesicular traffic. (By similarity).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ras family                               |
| 30     | 205461_at   | RAB35, member RAS oncogene family                                               | Up                           | NM_003087.1 | POSSIBLY ACTIVITY-3'UTR-blunting protein/CTPases/peptidase evidence Hydrolase/experimental evidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ras family                               |
| 31     | 205850_s_at | nucleophosmin 140kDa                                                            | Down                         | NM_004298.1 | ESSENTIAL COMPONENT OF NUCLEAR PORE COMPLEX. NUCLEOPORINS MAY BE INVOLVED BOTH IN BINDING AND TRANSPORTING PROTEINS DURING NUCLEOCYTOSMIC TRANSLOCATION. (By similarity).                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-repetitive/N/GA-negative nucleoparin |
| 32     | 205857_at   | soluble carrier family 18 (vesicular monocarboxylic acid transporter), member 2 | Down                         | A129290     | INVOLVED IN THE ATP-DEPENDENT VESICULAR TRANSPORT OF BILOGENIC AMINE NEUROTRANSMITTERS. REQUISITE FOR VESICULAR AMINE STORAGE PRIOR TO SECRETION VIA EXOCYTOSIS. (VMAT2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 33     | 205198_at   | soluble carrier family 22 (organic cation transporter), member 4                | Down                         | NM_003088.1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |
| 34     | 219561_at   | coatomer protein complex, subunit zeta 2                                        | Up                           | NM_010429.1 | THE COATOMER IS A CYTOSOLIC PROTEIN COMPLEX THAT BINDS TO DILYSINE MOTIFS AND REVERSIBLY ASSOCIATES WITH GOLGIN-CLATHRIN-COATED VESICLES, WHICH FURTHER MEDIATE BIOSYNTHETIC PROTEIN TRANSPORT FROM THE ER, VIA THE GOLGI UP TO THE TRANS GOLGI NETWORK. COATOMER COMPLEX IS REQUIRED FOR BUDDING FROM GOLGIN MEMBRANES, AND IS ESSENTIAL FOR THE RETROGRADE GOLGI-ER TRANSPORT OF DILYSINE-TAGGED PROTEINS. THE ZETA SUBUNIT MAY BE INVOLVED IN REGULATING THE COAT ASSEMBLY AND, HENCE, THE RATE OF BIOSYNTHETIC PROTEIN TRANSPORT DUE TO ITS ASSOCIATION-DISSOCIATION PROPERTIES WITH THE COATOMER COMPLEX. By Clathrin adapt complex | small chain                              |

c) Glutamate and dopamine metabolism

| <b>Glutamate and dopamine neurotransmission</b> |                |                                                                                              |                                     | <b>Function</b> | <b>Protein Family</b>                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------|----------------|----------------------------------------------------------------------------------------------|-------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Number</b>                                   | <b>Affy ID</b> | <b>GENE NAME</b>                                                                             | <b>EXPECTED EXPRESSION IN BLOOD</b> | <b>GeneBank</b> |                                                                                                                                                                                                                                                                                                                                           |
| 35                                              | 210577_at      | calcium-sensing receptor (hypocalciuric hypocalcemia 1, severe neonatal hyperparathyroidism) | Up                                  | U20760.1        | SENSE CHANGES IN THE EXTRACELLULAR CONCENTRATION OF CALCIUM IONS. THE ACTIVITY OF THIS RECEPTOR IS MEDIATED BY A G-PROTEIN THAT ACTIVATES A PHOSPHATIDYLINOSITOL-CALCIUM SECOND MESSENGER SYSTEM.                                                                                                                                         |
| 36                                              | 207454_at      | glutamate receptor, kainotropic, kainate 3                                                   | Up                                  | NM_000631.1     | Receptor for glutamate. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. The postsynaptic actions of Glu are mediated by a variety of receptors that are named according to their selective agonists. This receptor binds domoate > kainate > L-glutamate > quisqualate >> AMPA = NMDA. |
| 37                                              | 214559_at      | dopamine receptor D3                                                                         | Up                                  | NM_000796.1     | THIS IS ONE OF THE FIVE TYPES (D1 TO D5) OF RECEPTORS FOR DOPAMINE. THE ACTIVITY OF THIS RECEPTOR IS MEDIATED BY G PROTEINS WHICH INHIBIT ADENYLYL CYCLASE.                                                                                                                                                                               |
| 38                                              | 207732_s_at    | dise, large ( <i>Drosophila</i> ) homolog 3 (neuroendocrine-dlg)                             | Up                                  | NM_021120.1     | INTERACTS WITH THE CYTOPLASMIC TAIL OF THE NMDA RECEPTOR SUBUNIT NR2B (BY SIMILARITY).                                                                                                                                                                                                                                                    |

**c) Amyloidosis and glucose metabolism involved genes**

**Amyloidosis and glucose metabolism**

| Number | AffyID      | Gene Name                                                     | EXPECTED EXPRESSION IN BLOOD | GeneBank    | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Protein Family                                            |
|--------|-------------|---------------------------------------------------------------|------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 39     | 210838_at   | insulin promoter factor 1, homeodomain transcription factor   | Up                           | U30320_1    | ACTIVATES INSULIN, SOMATOSTATIN, GLUCOKINASE, ISLET AMYLOID POLYPEPTIDE AND GLUCOSE TRANSPORTER TYPE 2 GENE TRANSCRIPTION. PARTICULARLY INVOLVED IN GLUCOSE-DEPENDENT REGULATION OF INSULIN GENE TRANSCRIPTION. BINDS PREFERENTIALLY THE DNA MOTIF 5'-CTTAATTG-3' DURING DEVELOPMENT, SPECIFIES THE EARLY PANCREATIC EPITHELIUM, PERMITTING ITS PROLIFERATION, BRANCHING AND SUBSEQUENT DIFFERENTIATION. AT ADULT STAGE, REQUIRED FOR MAINTAINING THE HORMONE-PRODUCING PHENOTYPE OF THE BETA-CELL. Homeobox domain |                                                           |
| 40     | 208510_s_at | peroxisome proliferative activated receptor gamma             | Up                           | NM_015869.1 | Receptor that bind peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis.                                                                                                                                    |                                                           |
| 41     | 220570_at   | found in inflammatory zone 3                                  | Up                           | NM_020415.2 | Hormone that seems to suppress insulin ability to stimulate glucose uptake into adipose cells. Potentially links obesity to diabetes.                                                                                                                                                                                                                                                                                                                                                                               | Secreted.                                                 |
| 42     | 204261_s_at | presenilin 2 (Alzheimer disease 4)                            | Up                           | AA716657    | MAY PLAY A ROLE IN INTRACELLULAR SIGNALING AND GENE EXPRESSION OR IN LINKING CHROMATIN TO THE NUCLEAR MEMBRANE. MAY FUNCTION IN THE CYTOPLASMIC PARTITIONING OF PROTEINS. IS INVOLVED IN THE PROTEOLYTICAL PROCESSING OF AMYLOID PRECURSOR PROTEIN (APP) AND OF NOTCH1.                                                                                                                                                                                                                                             | Presenilin                                                |
| 43     | 2109650_at  | transthyretin (prealbumin, amyloidosis type 1)                | Up                           | AF162860.1  | Thyroid hormone-binding protein. Probably transports thyroxine from the bloodstream to the brain.                                                                                                                                                                                                                                                                                                                                                                                                                   | Transthyretin precursor (formerly prealbumin)             |
| 44     | 210031_at   | advanced glycosylation end product-specific receptor          | Up                           | AB036432.1  | Mediates interactions of advanced glycosylation end products (AGE). These are nonenzymatically glycosylated proteins which accumulate in vascular tissue in aging and at an accelerated rate in diabetes. Receptor for amyloid beta peptide.                                                                                                                                                                                                                                                                        | Type I membrane protein (isoform 1); secreted (isoform 2) |
| 45     | 203676_at   | glucosamine (N-acetyl)-6-sulfatase (Sanfilippo disease III/D) | Up                           | NM_002076.1 | Hydrolase, Glycoprotein, Lysosome, Signal, Mucopolysaccharidosis                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sulfatase                                                 |

e) Signal transduction  
Signal transduction

| Number | Affy ID   | Gene Name                                                                                    | EXPECTED IN BLOOD | GeneBank    | Function                                                                                                                                                                                                                                                                                                                                                                                                     | Protein Family                                                                                                                                                                                                                                                                                                                                 |
|--------|-----------|----------------------------------------------------------------------------------------------|-------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 46     | 204579_at | fibroblast growth factor receptor 4                                                          | Up                | NM_0020112  | RECEPTOR FOR ACIDIC FIBROBLAST GROWTH FACTOR. BINDS FGF19.                                                                                                                                                                                                                                                                                                                                                   | Immunoglobulin domain, Protein kinase domain                                                                                                                                                                                                                                                                                                   |
| 47     | 205014_at | heparin-binding growth factor binding protein                                                | Up                | NM_005130.1 | Inhibitor or repressor not recorded                                                                                                                                                                                                                                                                                                                                                                          | Protein kinase domain, PI3-kinase family, p85-binding domain, PI3-kinase family, ras-binding domain, Phosphotidylinositol 3-kinase family, accessory domain (PIK domain)                                                                                                                                                                       |
| 48     | 203679_at | phosphatidylserine 3-kinase, catalytic, delta polypeptide                                    | Up                | UB6453.1    | Transferase, Kinase, Mitogene family                                                                                                                                                                                                                                                                                                                                                                         | Phosphatidylserine 3- and 4-kinase, C2 domain, PI3-kinase family, ras-binding domain, Phosphatidylserine 3-kinase family, accessory domain (PIK domain)                                                                                                                                                                                        |
| 49     | 208370_at | granma polypeptide growth differentiation factor 5 (cartilage-derived morphogenic protein-1) | Up                | NM_002649.1 | 3-PHOSPHORYLATES THE CELLULAR PHOSPHONOSITIDE PTDNs4,5,6-BIPHOSPHATE (PTDNs4,5P2).                                                                                                                                                                                                                                                                                                                           | Transforming growth factor beta like domain, TGF-beta propeptide                                                                                                                                                                                                                                                                               |
| 50     | 208814_at | epidermal growth factor (transforming growth factor beta)                                    | Up                | NM_000557.2 | COULD BE INVOLVED IN BONE FORMATION.<br>THE GROWTH FACTOR STIMULATES THE GROWTH OF VARIOUS EPIDERMAL AND EPITHELIAL TISSUES IN VIVO AND IN VITRO AND OF SOME FIBROBLASTS IN CELL CULTURE.                                                                                                                                                                                                                    | Low-density lipoprotein receptor repeat class B                                                                                                                                                                                                                                                                                                |
| 51     | 205254_at | nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (pfeip100)              | Up                | NM_001983.2 | P100 IS THE PRECURSOR OF THE P52 SUBUNIT OF THE NUCLEAR FACTOR NF-KAPPA-B, WHICH BINDS TO THE KAPPA-B CONSENSUS SEQUENCE 5'-GGRNNYCCG'; LOCATED IN THE ENHANCER REGION OF GENES INVOLVED IN IMMUNE RESPONSE AND ACUTE PHASE REACTIONS. THE PRECURSOR PROTEIN ITSELF DOES NOT BIND TO DNA. ISOFORM P49 IS A SUBUNIT OF THE NF-KAPPA-B PROTEIN COMPLEX, WHICH STIMULATES THE HIV ENHANCER IN SYNERGY WITH P55. | Ankyrin repeat, Death domain, Rel homology domain (RHD), IP77/5 domain                                                                                                                                                                                                                                                                         |
| 52     | 207335_at | nitric oxide synthase 2A (inducible, hepatocytes)                                            | Up                | NM_002502.1 |                                                                                                                                                                                                                                                                                                                                                                                                              | FAD binding domain, Flavodoxin, Oxidoreductase NAD-binding domain, Nitric oxide synthase, oxygenase domain                                                                                                                                                                                                                                     |
| 53     | 210037_at | nitric oxide synthase 2A (inducible, hepatocytes)                                            | Up                | U24553.1    | PRODUCES NITRIC OXIDE (NO) WHICH IS A MESSENGER MOLECULE WITH DIVERSE FUNCTIONS THROUGHOUT THE BODY IN MACROPHAGES, NO MEDIATES TUMORICIDAL AND BACTERICIDAL ACTIONS.                                                                                                                                                                                                                                        | NUCLEAR PHOSPHOPROTEIN WHICH FORMS A TIGHT BUT NON-COVALENTLY LINKED COMPLEX WITH THE C-UNIPAP-1 TRANSCRIPTION FACTOR. C-GFs HAS A CRITICAL FUNCTION IN REGULATING THE DEVELOPMENT OF CELLS DESTINED TO FORM AND MANTAIN THE SKELETON. IT IS THOUGHT TO HAVE AN IMPORTANT ROLE IN SIGNAL TRANSDUCTION, CELL PROLIFERATION AND DIFFERENTIATION. |
| 54     | 208169_at | ras FB, murine osteosarcoma viral oncogene homolog                                           | Down              | BG004490.1  |                                                                                                                                                                                                                                                                                                                                                                                                              | Low-density lipoprotein receptor repeat class B                                                                                                                                                                                                                                                                                                |

**References:**

- [1] Azzouz, M., Martin-Rendon, E., Barber, R.D., Mitrophanous, K.A., Carter, E.E., Rohll, J.B., Kingsman, S.M., Kingsman, A.J. and Mazarakis, N.D., Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease, *J Neurosci*, 22 (2002) 10302-12.
- [2] Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K. and Seitelberger, F., Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations, *J Neurol Sci*, 20 (1973) 415-55.
- [3] Brooks, D.J., The early diagnosis of Parkinson's disease, *Ann Neurol*, 44 (1998) S10-8.
- [4] Cadet, J.L., Jayanthi, S., McCoy, M.T., Vawter, M. and Ladenheim, B., Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: evidence from cDNA array, *Synapse*, 41 (2001) 40-8.
- [5] Drukarch, B. and van Muiswinkel, F.L., Neuroprotection for Parkinson's disease: a new approach for a new millennium, *Expert Opin Investig Drugs*, 10 (2001) 1855-68.
- [6] Fahn, S., Elton, R. and committee, m.o.t.U.d., Unified Parkinson's disease rating scale. In S. Fahn, C. Marsden and M. Goldstein (Eds.), *Recent developments in Parkinson's disease*, Macmillan, New York, 1987, pp. 153-167.
- [7] Grunblatt, E., Mandel, S., Maor, G. and Youdim, M.B., Effects of R- and S-apomorphine on MPTP-induced nigro-striatal dopamine neuronal loss, *J Neurochem*, 77 (2001) 146-56.
- [8] Grunblatt, E., Schlosser, R., Gerlach, M. and Riederer, P., Preclinical versus clinical neuroprotection, *Adv Neurol*, 91 (2003) 309-28.
- [9] Hassouna, I., Wickert, H., Zimmermann, M. and Gillardon, F., Increase in bax expression in substantia nigra following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment of mice, *Neurosci Lett*, 204 (1996) 85-8.
- [10] Iacopino, A.M. and Christakos, S., Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases, *Proc Natl Acad Sci U S A*, 87 (1990) 4078-82.
- [11] Jankovic, J., Rajput, A.H., McDermott, M.P. and Perl, D.P., The evolution of diagnosis in early Parkinson disease. Parkinson Study Group, *Arch Neurol*, 57 (2000) 369-72.
- [12] Jayanthi, S., Deng, X., Bordelon, M., McCoy, M.T. and Cadet, J.L., Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex, *Faseb J*, 15 (2001) 1745-52.
- [13] Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y. and Shimizu, N., Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism, *Nature*, 392 (1998) 605-8.
- [14] Koller, W.C., Treatment of early Parkinson's disease, *Neurology*, 58 (2002) S79-86.
- [15] Laprade, N. and Soghomonian, J.J., Gene expression of the GAD67 and GAD65 isoforms of glutamate decarboxylase is differentially altered in subpopulations of striatal neurons in adult rats lesioned with 6-OHDA as neonates, *Synapse*, 33 (1999) 36-48.
- [16] Le, H.N. and Frim, D.M., Gene therapy for Parkinson's disease, *Expert Opin Biol Ther*, 2 (2002) 151-61.
- [17] Luo, J., Kaplitt, M.G., Fitzsimmons, H.L., Zuzga, D.S., Liu, Y., Oshinsky, M.L. and During, M.J., Subthalamic GAD gene therapy in a Parkinson's disease rat model, *Science*, 298 (2002) 425-9.
- [18] McBride, J.L. and Kordower, J.H., Neuroprotection for Parkinson's disease using viral vector-mediated delivery of GDNF, *Prog Brain Res*, 138 (2002) 421-32.
- [19] Monville, C., Gene therapy in Parkinson's disease: dream or reality?, *Neuroreport*, 13 (2002) 743.
- [20] Nagai, Y., Ueno, S., Saeki, Y., Soga, F., Hirano, M. and Yanagihara, T., Decrease of the D3 dopamine receptor mRNA expression in lymphocytes from patients with Parkinson's disease, *Neurology*, 46 (1996) 791-5.
- [21] Olanow, C., Jenner, P. and Brooks, D., Dopamine agonists and neuroprotection in Parkinson's disease. In C. Olanow and P. Jenner (Eds.), *Beyond the decade of the Brain. Neuroprotection in Parkinson's disease*, Vol. 3, Wells Medical Limited, Kenton, UK, 1998, pp. 331-340.
- [22] Olanow, C., Jenner, P. and Youdim, M., *Neurodegeneration and neuroprotection in Parkinson's disease*, Academic Press, London, 1996.
- [23] Olanow, C.W., Surgical therapy for Parkinson's disease, *Eur J Neurol*, 9 Suppl 3 (2002) 31-9.
- [24] Parboosingh, J.S., Rousseau, M., Rogan, F., Amit, Z., Chertkow, H., Johnson, W.G., Manganaro, F., Schipper, H.N., Curran, T.J., Stoessl, J. and et al., Absence of mutations in superoxide dismutase and catalase genes in patients with Parkinson's disease, *Arch Neurol*, 52 (1995) 1160-3.
- [25] Polymeropoulos, M.H., Autosomal dominant Parkinson's disease and alpha-synuclein, *Ann Neurol*, 44 (1998) S63-4.
- [26] Polymeropoulos, M.H., Genetics of Parkinson's disease, *Ann NY Acad Sci*, 920 (2000) 28-32.
- [27] Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E.S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W.G., Lazzarini, A.M., Duvoisin, R.C., Di Iorio, G., Golbe, L.I. and Nussbaum, R.L., Mutation in the alpha-synuclein gene identified in families with Parkinson's disease, *Science*, 276 (1997) 2045-7.

- [28] Riederer, P., Gille, G., Muller, T., Przuntek, H., Reichmann, H., Riess, O., Schwartz, A., Schwarz, J. and Vogt, T., Practical importance of neuroprotection in Parkinson's disease, *J Neurol*, 249 (2002) III53-III56.
- [29] Riederer, P., Sian, J. and Gerlach, M., Is there neuroprotection in Parkinson syndrome?, *J Neurol*, 247 (2000) IV/8-11.
- [30] Senior, K., Gene therapy for Parkinson's disease, *Drug Discov Today*, 7 (2002) 88-9.
- [31] Soghomonian, J.J. and Laprade, N., Glutamate decarboxylase (GAD67 and GAD65) gene expression is increased in a subpopulation of neurons in the putamen of Parkinsonian monkeys, *Synapse*, 27 (1997) 122-32.
- [32] Soto-Otero, R., Mendez-Alvarez, E., Hermida-Ameijeiras, A., Lopez-Real, A.M., Labandeira-Garcia, J.L., Dajas, F., Costa, G., Abin-Carriquiry, J.A., McGregor, R., Urbanavicius, J., Mitsuoka, T., Kaseda, Y., Yamashita, H., Kohriyama, T., Kawakami, H., Nakamura, S., Yamamura, Y., Allam, M.F., Ross, G.W., Petrovitch, H., Belluardo, N., Mudo, G., Blum, M., Amato, G., Fuxe, K., Quik, M. and Jeyarasasingam, G., Effects of (-)-nicotine and (-)-cotinine on 6-hydroxydopamine-induced oxidative stress and neurotoxicity: relevance for Parkinson's disease  
Involvement of nicotinic acetylcholine receptors in the protection of dopamine terminals in experimental parkinsonism  
Effects of nicotine chewing gum on UPDRS score and P300 in early-onset parkinsonism  
Transdermal nicotine in PD: a randomized, double-blind, placebo-controlled study  
Current evidence for neuroprotective effects of nicotine and caffeine against Parkinson's disease  
Neurotrophic effects of central nicotinic receptor activation  
Nicotine prevents striatal dopamine loss produced by 6-hydroxydopamine lesion in the substantia nigra  
Nicotinic receptors and Parkinson's disease, *Biochem Pharmacol*, 64 (2002) 125-135.
- [33] Tenenbaum, L., Chtarto, A., Lehtonen, E., Blum, D., Baekelandt, V., Velu, T., Brotchi, J. and Levivier, M., Neuroprotective gene therapy for Parkinson's disease, *Curr Gene Ther*, 2 (2002) 451-83.
- [34] Yamaguchi, T., Kuraishi, Y., Minami, M., Nakai, S., Hirai, Y. and Satoh, M., Methamphetamine-induced expression of interleukin-1 beta mRNA in the rat hypothalamus, *Neurosci Lett*, 128 (1991) 90-2.
- [35] Zigmond, M.J., Berger, T.W., Grace, A.A. and Stricker, E.M., Compensatory responses to nigrostriatal bundle injury. Studies with 6-hydroxydopamine in an animal model of parkinsonism, *Mol Chem Neuropathol*, 10 (1989) 185-200.

## Claims

1. Use of molecular markers for Parkinson's disease, whereby the markers comprise genes described in table 1 as chemokines (C-X-C motif) ligand 2; chemokines (C-X-C motif) ligand 6; chemokines (C-X-C motif) ligand 7; chemokines (C-X-C motif) ligand 9; chemokines (C-X-C motif) ligand 13; chemokine (C-C motif) receptor like 1; chemokine (C-C motif) ligand 2; chemokine (C-C motif) ligand 14; chemokine (C-C motif) ligand 16; chemokine (C-C motif) ligand 23; chemokine (C-C motif) ligand 27; chemokine (C motif) ligand 1; interleukin 10; interleukin alpha 1; interleukin 4; interleukin 18; interleukin beta 8 receptor; interleukin 21; interleukin alpha 13; interferon alpha 13; tumor necrosis factor receptor superfamily member 21; platelet-activating factor receptor; tachykinin receptor 1; S-phase kinase-associated protein 1A; ubiquitin specific protease 9 Y chromosome; heat shock 70 kDa protein 8; syntrophin beta 1; syntaxin 6; RAB3B; RAB35; nucleoporin 155 kDa; solute carrier family 18 member 2; solute carrier family 22 member 4; coatomer protein complex subunit zeta 2; calcium-sensing receptor; glutamate receptor; dopamine receptor D3; discs large (*Drosophila*) homolog 3; insulin promoter factor 1; peroxisome proliferative activated receptor gamma; gene named with the gene bank code: NM 020415.2; presenilin 2; transthyretin; gene named with the gene bank code: AB036432.1; glucosamine (N-acetyl)-6-sulfatase; fibroblast growth factor receptor 4; heparin-binding growth factor binding protein; phosphoinositide-3-kinase delta polypeptide; phosphoinositide-3-kinase gamma polypeptide; growth differentiation factor 5; epidermal growth factor; nuclear factor of kappa light polypeptide gene enhancer in B-cells 2; nitric oxide synthase 2A; v-fos FBJ murine osteosarcoma viral homolog.
2. Use of molecular markers for detection of Parkinson's disease, whereby the markers comprise polypeptides expressed by the genes in claim 1.

3. Use of molecular markers for detection of Parkinson's disease, whereby the markers comprise proteins and derivatives thereof expressed by the genes in claim 1.
4. A method for using molecular markers single or in combination (claim 1-3) to detect Parkinson disease.
5. A diagnosis test for Parkinson's disease comprising molecular markers (claim 1-3) single or in combination.

## Diagnostic test for Parkinson's disease detection

### Abstract

The present invention is related to a diagnosis test for Parkinson's disease detection at an early stage, whereby the test comprises as molecular markers

- a) gene expression alterations of up to 54 genes
- b) polypeptides and/or proteins expressed by one or more of the 54 genes.