November 3, 2022

1 Trees

Let T be a tree of order n. A crescent labelling of T is a map $L: E(T) \mapsto \{1, 2, ..., t\}$, such that the distance multiset of L(T) is of the form $\{d_1^1, d_2^2, ..., d_{n-1}^{n-1}\}$. The diameter of T, denoted Diam(T), is the length of the maximum shortest (u, v)-path in T. The max degree of T is denoted $\Delta(T)$.

1.1 Path Perspective: Crescent Labellings and r-Bounding Paths

This section establishes a simple arithmetic condition on long paths in a crescent labelled tree.

Lemma 1 (Arithmetic Condition). Let $k \geq 2t$. Let \mathbf{w} be a $\{1, 2, \ldots, t\}$ -word with length k containing at least two disjoint subwords of t-1 1s. Let $w_{a-t+2} = w_{a-t+3} = \cdots = w_a = 1 = w_b = w_{b+1} = \cdots = w_{b+t-2}$, where a and b are the smallest and largest satisfying a < b, respectively. Then all distances $1, 2, \ldots, \sum_{i=a}^{b-1} w_i$ occur with multiplicity at least 2.

Proof. Let $m = \sum_{i=a}^{b-1} w_i$ and observe that because $w_a = w_b = 1$, $m = \sum_{i=a+1}^b w_i$ as well. It is sufficient to show that for any such \mathbf{w} , the following set inclusion holds:

$$\{1, 2, \dots, m\} \subseteq \{d(w_{a+1-j}, w_i) : j \in [0, t-1], i \in [a-j+2, b-1]\}.$$

This is because, if true, the same property will hold for the distances between the all 1s subwords involving $w_b, w_{b+1}, \ldots, w_{b+t-2}$, which means that each such distance occurs at least twice. We show this by induction on the length of the word $\mathbf{w}' = (w_{a-t+2}, w_{a-t+3}, \ldots, w_a, w_{a+1}, \ldots, w_{a+r-1})$, which we denote by r+t-1. The statement clearly holds for r=0. If r=1, then $\mathbf{w}' = (1^{t-1}, 1)$ or $\mathbf{w}' = (1^{t-1}, u)$ for some $u \in [2, t]$, where concatenation means repeated consecutive word elements. In the former case, distances $1, 2, \ldots, t$ clearly occur at least once, and in the latter, distances $1, 2, \ldots, t-1+u$ each occur as well since for any $v \in [0, u-1], t-1+u-v$ is the sum of all but the first v elements of \mathbf{w}' . Suppose the inductive hypothesis holds for some $r \geq 1$ and set $m' = \sum_{i=a-t+2}^{a+r-1} w_i$. That is, we assume that the $\{1, 2, \ldots, t\}$ -word $\mathbf{w}' = (w_{a-t+2}, w_{a-t+3}, \ldots, w_a, w_{a+1}, \ldots, w_{a+r-1})$ attains the distances $1, 2, \ldots, m'$. Then the length (r+1)+t-1 word \mathbf{w}' with a 1 appended to the end clearly attains all distances $1, 2, \ldots, m'+1$. The other case is when u is appended to the end of \mathbf{w}' where $u \in [2, t]$. In this case, the word attains the distance $\sum_{i=a-t+2+v}^{a+r} w_i = m'+v$ for each $v \in [2, u]$, which is what we wanted to show.

Thus in particular, the distances $1, 2, \ldots, m$ each occur at least once in

$${d(w_{a+1-j}, w_i) : j \in [0, t-1], i \in [a-j+2, b-1]}$$

as well as at least once in

$${d(w_{b-1+j}, w_i) : j \in [0, t-1], i \in [a+1, b+j-2]},$$

as desired. \Box

Lemma 2 (Basic Diameter Lower Bound). Let t be a positive integer. If L(T) is a crescent labelling of the tree T with weights $\{1, 2, ..., t\}$, then $Diam(T) \ge \frac{n-1}{t}$.

Proof. Since there are at least n-1 distinct distances, there is a distance d with value at least n-1. Let $u,v\in V(T)$ such that d(u,v)=d, then since t is the max edge weight, this means that the number of edges on a (u,v)-path is at least $\frac{d}{t}\geq \frac{n-1}{t}$.

1.1.1 t-Bounded Paths

Let L(T) be a labelling of T with edge weights from $\{1, 2, ..., t\}$. If a path $P \subseteq T$ is labelled by L in such a way that (1) all edge weights are in $\{1, 2, ..., r\}$ for some $1 \le r \le t$, and (2) it is appended on each side by r-1 consecutive edges with weight 1, then we call P an r-bounded path of T. Define $b_L(T, r)$ to be the maximum weight sum over all edges of a r-bounded path of T under L.

Proposition 1.1. Let L(T) be a crescent labelling of T with weights $\{1, 2, ..., t\}$. Suppose L(T) contains a r-bounded path $P = (e_1, e_2, ..., e_k)$ of T. Then every distance $1, 2, ..., b_L(T, r)$ occurs with multiplicity at least 2.

Proof. The statement follows immediately from Lemma 1.

Proposition 1.2. Let L(T) be a crescent labelling of T with weights $\{1, 2, ..., t\}$. Then $b_L(T, r) \le n - 1$ for every $r \in \{1, 2, ..., t\}$.

Proof. Suppose $b_L(T,r) \geq n-1$. Then by the proposition, every distance $1,2,\ldots,n-1$ has multiplicity at least 2, which contradicts L(T) inducing n-1 distinct distances such that exactly one is unique.

Corollary 1.3. Let L(T) be a crescent labelling of T with weights $\{1, 2, ..., t\}$. Define a_i to be the number of weight i edges on an r-bounding path of T with length k and maximum weight sum under L. Then $\sum_{i=1}^{r} ia_i \leq n-1$ and $\sum_{i=1}^{r} a_i = k$.

Proposition 1.4. Let L(T) be a crescent labelling of T with weights $\{1, 2, ..., t\}$. If $P = (e_1, e_2, ..., e_k)$ is an r-bounding path of T under L, then $k \le n - 1 - \sum_{i=2}^{r} (i-1)a_i$.

The next proposition suggests that, when t = 2, the larger the maximum distance becomes (over n - 1), the more weight 2 edges there should be on the tails of the path inducing maximum distance.

Proposition 1.5. Let L(T) be a crescent labelling with weights $\{1, 2, ..., t\}$. For every path $F = (v_1v_2, v_2v_3, ..., v_{t-1}v_t)$ satisfying $w(v_iv_{i+1}) = 1$ for each $i \in [1, t-1]$, define X and Y to be the vertices of T connected to v_1 and v_t , respectively, but not through those in F. Then for every $x \in X$, $d(v_1, x) \le n$ and for every $y \in Y$, $d(v_t, y) \le n$.

Proof. Let $P=(e_1,e_2,\ldots,e_k)$ be a path such that the longest distance in L(T) is $\sum_{i=1}^k w(e_i)$. Let $P'=(e_a,e_{a+1},\ldots,e_b)$ be any smallest path satisfying $\sum_{i=a}^b w(e_i) \geq n$ for some $1\leq a < b \leq k$. If there is a $j\in\{1,2,\ldots,a-1\}\cup\{b+1,b+2,\ldots,k\}$ such that $w(e_j)=w(e_{j+1})=\cdots=w(e_{j+t-1})=1$, then every distance $1,2,\ldots,n$ occurs at least once (by similar reasoning to the proof of Lemma 1, a contradiction. So, if t=2, then all edges connected to $P\setminus P'$ have to have weight 2 since otherwise there would be a path beginning with a weight 1 edge containing P', which again means there would be more than n-1 distinct distances. In general, there can be no path of t-1 consecutive weight 1 edges in $P\setminus P'$.

Proposition 1.6. Let L(T) be a crescent labelling with both weights $\{1,2\}$. Let P be a path in T where $P = (e_1, e_2, \ldots, e_k)$ such that the following two properties hold:

- 1. $\sum_{i=1}^{k} w(e_i) = d_{max}$.
- 2. P contains a subpath $P' = (e_a, e_{a+1}, \dots, e_{a+b-1})$ satisfying $\sum_{i=a}^{a+b-1} w(e_i) \in [n+1, n+2]$ where a and b are chosen so that the maximum number of weight 2 edges are to the "right" of b.

Then $k \leq \frac{3n}{4}$.

Proof. Note by proposition, no edge e_h for any $h \in [1, a-1] \cup [a+b, k]$ satisfies $w(e_h) = 1$. Suppose for a contradiction that k > 3n/4. Then either P' contains an edge with weight 1 or it does not. If P' contains only weight 2 edges, then since $k \geq 3n/4$ and there exists an edge with weight 1, Suppose for some $j \in [a, a+b-1]$, $w(e_j) = 1$. Thus the sums $\sum_{i=1}^{j} w(e_i) \leq n$ and $\sum_{i=j}^{k} w(e_i) \leq n$ both hold. But since $\sum_{i=a}^{a+b-1} w(e_i) \in [n+1, n+t]$, we have that, say, $n+1=a_1+2a_2$, where a_1 and a_2 are the number of 1s and 2s in P'. Since b-a>n/2 and k>3n/4, either $w(e_1)=\cdots=w(e_{n/4})=2$ or $w(e_k)=w(e_{k-1})=\cdots=w(e_{k-1-n/4})=2$. Since $w(e_j)=1$ and $j\in [a,a+b-1]$, each of these tail edges with weight 2 correspond to at least 2 distinct distances each, implying that there are at least n/2 distinct distances from these tails. Then for each $h\in [1,j]$ there is a distinct distance as well. That is, if j=n/C, and if J_1 and J_2 are the number of weights 1 and 2 edges with index larger than j, respectively, then there are $2J_2+J_1$ distinct distances to the right of j and n/C to the left. Thus we require $n-1\geq 2J_2+J_1+n/C$. If there are n/4 twos and n/4 ones and n/4 ones and n/4 ones and n/4 ones are that n/40 and n/41 ones are that n/42 and n/43 ones are that n/44 ones are the number of n/45.

Lemma 3. Let L(T) be a crescent labelling of T using weights $\{1, 2, ..., t\}$. Then for every $r \in \{2, 3, ..., t\}$, L(T) cannot contain a subpath $P = (e_1, e_2, ..., e_{(n-1)/r})$ such that $w(e_i) \in \{1, 2, ..., r\}$ where $i \in \{1, 2, ..., (n-1)/r\}$ and P is preceded by a path of r-1 weight 1 edges.