PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-257308

(43) Date of publication of application: 25.09.1998

(51)Int.Cl.

H04N 1/40

(21) Application number: **09-061179**

(71)Applicant: CANON INC

(22) Date of filing:

14.03.1997

(72)Inventor: SHIMIZU YUKIHIKO

ARIMOTO SHINOBU MATSUKUBO TAKESHI

UCHIDA YUKI

(54) IMAGE PROCESSOR AND METHOD THEREFOR

(57) Abstract:

PROBLEM TO BE SOLVED: To improve the quality of image provided by processing, based on a detected area by detecting the boundary area between a character/drawing area in an image and the other image area.

SOLUTION: A character/drawing/halftone detection part 2023 detects character, drawing and halftone areas, and a dot area detection part 2024 detects a dot area. In an image related to a signal PICT-ISO as the OR of detecting signals BINGRA and AMI at both the detecting parts, a non-detected area exists in the contour area between the dot area and the character area. Based on the isolation degree for white pixel, a redetection part 2027 discriminates whether or not the concerned pixel belongs to the non-detected area, and based on the result, the non-detected area is detected. Thus, the signal PICT-ISO is corrected and a proper detecting signal PICT is generated.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

Searching PAJ

rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-257308

(43)公開日 平成10年(1998) 9月25日

(51) Int.Cl.6

識別記号

FΙ

H 0 4 N 1/40

H 0 4 N 1/40

F

(外1名)

最終頁に続く

審査請求 未請求 請求項の数23 OL (全 21 頁)

(21)出願番号	特顧平9-61179	(71)出顧人	000001007	
			キヤノン株式会社	
(22)出願日	平成9年(1997)3月14日		東京都大田区下丸子3丁目30番2号	
		(72)発明者	清水 由紀彦	
			東京都大田区下丸子3丁目30番2号 キヤ	
			ノン株式会社内	
		(72)発明者	有本 忍	
			東京都大田区下丸子3丁目30番2号 キヤ	
			ノン株式会社内	
		(72)発明者	松久保 勇志	
			東京都大田区下丸子3丁目30番2号 キヤ	
			ノン株式会社内	

(54) 【発明の名称】 画像処理装置及びその方法

(57)【要約】

【課題】画像中の文字・線画領域と他の画像領域との境界領域を検出することにより、検出した領域に基づく処理により得られる画像を高品質化する。

【解決手段】文字・線画・中間調検出部2023により文字、線画、中間調領域を検出し、網点領域検出部2024により網点領域を検出する。両検出部の検出信号BINGRA及びAMIの論理和である信号PICT_ISOに係る画像には、網点領域と文字領域の境界領域において非検出領域が点在する。そこで、再検出部2027において、白画素の孤立度に基づいて注目画素が非検出領域に属するか否かを判定し、その結果に基づいて非検出領域を検出し、これにより信号PICT_ISOを修正し、適正な検出信号PICTを生成する。

(74)代理人 弁理士 大塚 康徳

【特許請求の範囲】

【請求項1】 画像の特徴を抽出してその結果に基づいて該画像を処理する画像処理装置であって、

画像中の文字・線画・中間調領域を検出する第1の検出 手段と、

画像中の網点領域を検出する第2の検出手段と、

画像中の文字・線画・中間調領域と網点領域との境界領域を検出する第3の検出手段と、

を備え、前記第1乃至第3の検出手段による検出結果に 基づいて画像を処理することを特徴とする画像処理装 置

【請求項2】 前記第3の検出手段は、前記第1及び第2の検出手段によって検出されていない領域より、画像中の文字・線画・中間調領域と網点領域との境界領域を検出することを特徴とする請求項1に記載の画像処理装置。

【請求項3】 前記第3の検出手段は、前記第1及び第2の検出手段によって検出されていない画素の分布に基づいて各画素が画像中の文字・線画・中間調領域と網点領域との境界領域に属する画素であるか否かを判定することによって該境界領域を検出することを特徴とする請求項1に記載の画像処理装置。

【請求項4】 前記第3の検出手段は、前記第1及び第2の検出手段によって検出されていない画素の連なりに基づいて各画素が画像中の文字・線画・中間調領域と網点領域との境界領域に属する画素であるか否かを判定することによって該境界領域を検出することを特徴とする請求項1に記載の画像処理装置。

【請求項5】 前記第3の検出手段は、前記第1及び第2の検出手段によって検出されていない画素が連なっている個数に基づいて各画素が画像中の文字・線画・中間調領域と網点領域との境界領域に属する画素であるか否かを判定することによって該境界領域を検出することを特徴とする請求項1に記載の画像処理装置。

【請求項6】 前記第3の検出手段は、前記第1または第2の検出手段の検出結果の集合により構成される画像より、画像中の文字・線画・中間調領域と網点領域との境界領域を検出することを特徴とする請求項1に記載の画像処理装置。

【請求項7】 前記第3の検出手段は、前記第1または第2の検出手段の検出結果の集合により構成される画像において未検出の画素の分布に基づいて各画素が画像中の文字・線画・中間調領域と網点領域との境界領域に属する画素であるか否かを判定することによって該境界領域を検出することを特徴とする請求項6に記載の画像処理装置。

【請求項8】 前記第3の検出手段は、前記第1または 第2の検出手段の検出結果の集合により構成される画像 において未検出の画素の連なりに基づいて各画素が画像 中の文字・線画・中間調領域と網点領域との境界領域に 属する画素であるか否かを判定することによって該境界 領域を検出することを特徴とする請求項6に記載の画像 処理装置。

【請求項9】 前記第3の検出手段は、前記第1または第2の検出手段の検出結果の集合により構成される画像において未検出の画素が連なっている個数に基づいて各画素が画像中の文字・線画・中間調領域と網点領域との境界領域に属する画素であるか否かを判定することによって該境界領域を検出することを特徴とする請求項6に記載の画像処理装置。

【請求項10】 前記第1乃至第3の検出手段による検出結果に基づいて画像領域のサイズを判定する判定手段をさらに備え、その判定結果に応じて画像を処理することを特徴とする請求項1乃至請求項9のいずれか1項に記載の画像処理装置。

【請求項11】 画像の特徴を抽出してその結果に基づいて該画像を処理する画像処理装置であって、

画像中の文字・線画領域及び前記文字・線画領域以外の 他の画像領域を検出する主検出手段と、

前記文字・線画領域と前記他の画像領域との境界領域を検出する副検出手段と、

を備え、前記主検出手段及び副検出手段による検出結果 に基づいて画像を処理することを特徴とする画像処理装 置。

【請求項12】 前記副検出手段は、前記主検出手段により検出されていない領域より、前記境界領域を検出することを特徴とする請求項11に記載の画像処理装置。

【請求項13】 前記副検出手段は、前記主検出手段に よって検出されていない画素の分布に基づいて各画素が 前記境界領域に属する画素であるか否かを判定すること によって前記境界領域を検出することを特徴とする請求 項11に記載の画像処理装置。

【請求項14】 前記副検出手段は、前記主検出手段に よって検出されていない画素の連なりに基づいて各画素 が前記境界領域に属する画素であるか否かを判定するこ とによって前記境界領域を検出することを特徴とする請 求項11に記載の画像処理装置。

【請求項15】 前記副検出手段は、前記主検出手段に よって検出されていない画素が連なっている個数に基づ いて各画素が前記境界領域に属する画素であるか否かを 判定することによって前記境界領域を検出することを特 徴とする請求項11に記載の画像処理装置。

【請求項16】 処理した画像を出力する出力手段をさらに備えることを特徴とする請求項1万至請求項15のいずれか1項に記載の画像処理装置。

【請求項17】 処理対象となる画像を入力する入力手 段をさらに備えることを特徴とする請求項16に記載の 画像処理装置。

【請求項18】 前記入力手段は、原稿画像を読み取って入力する手段を含むことを特徴とする請求項17に記

載の画像処理装置。

【請求項19】 フルカラー画像を対象として処理することを特徴とする請求項1乃至請求項18のいずれか1項に記載の画像処理装置。

【請求項20】 画像の特徴を抽出してその結果に基づいて該画像を処理する画像処理方法であって、

画像中の文字・線画・中間調領域を検出する第1の検出 工程と、

画像中の網点領域を検出する第2の検出工程と、

画像中の文字・線画領域と網点領域との境界領域を検出する第3の検出工程と、

を備え、前記第1万至第3の検出工程による検出結果に 基づいて画像を処理することを特徴とする画像処理方 法。

【請求項21】 画像の特徴を抽出してその結果に基づいて該画像を処理する画像処理方法であって、

画像中の文字・線画領域及び前記文字・線画領域以外の 他の画像領域を検出する主検出工程と、

前記文字・線画領域と前記他の画像領域との境界領域を 検出する副検出工程と、

を備え、前記主検出手段及び副検出工程による検出結果 に基づいて画像を処理することを特徴とする画像処理方 法。

【請求項22】 画像の特徴を抽出してその結果に基づいて該画像を処理するためのプログラムコードを収めたコンピュータ可読メモリであって、

画像中の文字・線画・中間調領域を検出する第1の検出 工程のコードと、

画像中の網点領域を検出する第2の検出工程のコードと、

画像中の文字・線画領域と網点領域との境界領域を検出する第3の検出工程のコードと、

を含むことを特徴とするコンピュータ可読メモリ。

【請求項23】 画像の特徴を抽出してその結果に基づいて該画像を処理するためのプログラムコードを収めたコンピュータ可読メモリであって、

画像中の文字・線画領域及び前記文字・線画領域以外の他の画像領域を検出する主検出工程のコードと、

前記文字・線画領域と前記他の画像領域との境界領域を 検出する副検出工程のコードと、

を含むことを特徴とするコンピュータ可読メモリ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、画像処理装置及び その方法に係り、特に、画像の特徴を抽出してその結果 に基づいて該画像を処理する画像処理装置及びその方法 に関する。

[0002]

【従来の技術】近年、カラー画像データをデジタル的に 処理し、カラープリンタに出力してカラー画像を得るカ ラープリント装置や、カラー原稿を色分解して電気的に 読み取り、得られたカラー画像データを記録紙上にプリ ント出力してカラー画像複写を行う所謂デジタルカラー 画像複写機などのカラー印刷システムの発展が著しい。 これらの普及に伴い、特に文字や線画をよりシャープに 印刷したいというカラー画像の印刷品質に対する要求が 高まっている。

【0003】そこで、文字や線画の太さを判別して、その太さに応じた画像処理を施すことにより、文字や線画をシャープに印刷する装置が本出願人により提案されている(特願平6-178501号)。

【0004】この提案は、文字・中間調領域の検出部と、網点領域の検出部とを設け、両検出部によって文字・中間調領域と網点領域を検出し、検出した領域の大きさに応した画像処理を実行するものである。

[0005]

【発明が解決しようとする課題】しかしながら、上記提案においては、網点領域中に文字や線画等が存在する場合に、網点と文字等とが接する境界部分の画像をいずれかの検出部によっても検出されない場合がある。このような非検出領域が存在すると、両検出部による検出結果に基づいて注目画素が属する画像領域の大きさを判定する際に、誤判定がなされることになる。この場合、前記境界部の画像に対して不適切な画像処理が施され、出力画像の品質の低下をもたらす。

【0006】本発明は、上記の問題点に鑑みてなされたものであり、画像中の文字・線画領域と他の画像領域との境界領域を検出することにより、検出した領域に基づく処理により得られる画像を高品質化することを目的とする。

[0007]

【課題を解決するための手段】本発明に係る画像処理装置は、画像の特徴を抽出してその結果に基づいて該画像を処理する画像処理装置であって、画像中の文字・線画・中間調領域を検出する第1の検出手段と、画像中の網点領域を検出する第2の検出手段と、画像中の文字・線画・中間調領域と網点領域との境界領域を検出する第3の検出手段と、を備え、前記第1乃至第3の検出手段による検出結果に基づいて画像を処理することを特徴とする。

【0008】前記画像処理装置において、前記第3の検 出手段は、前記第1及び第2の検出手段によって検出さ れていない領域より、画像中の文字・線画・中間調領域 と網点領域との境界領域を検出することが好ましい。

【0009】前記画像処理装置において、前記第3の検 出手段は、前記第1及び第2の検出手段によって検出さ れていない画素の分布に基づいて各画素が画像中の文字 ・線画・中間調領域と網点領域との境界領域に属する画 素であるか否かを判定することによって該境界領域を検 出することが好ましい。 【0010】前記画像処理装置において、前記第3の検 出手段は、前記第1及び第2の検出手段によって検出さ れていない画素の連なりに基づいて各画素が画像中の文 字・線画・中間調領域と網点領域との境界領域に属する 画素であるか否かを判定することによって該境界領域を 検出することが好ましい。

【0011】前記画像処理装置において、前記第3の検出手段は、前記第1及び第2の検出手段によって検出されていない画素が連なっている個数に基づいて各画素が画像中の文字・線画・中間調領域と網点領域との境界領域に属する画素であるか否かを判定することによって該境界領域を検出することが好ましい。

【0012】前記画像処理装置において、前記第3の検 出手段は、前記第1または第2の検出手段の検出結果の 集合により構成される画像より、画像中の文字・線画・ 中間調領域と網点領域との境界領域を検出することが好 ましい。

【0013】前記画像処理装置において、前記第3の検出手段は、前記第1または第2の検出手段の検出結果の集合により構成される画像において未検出の画素の分布に基づいて各画素が画像中の文字・線画・中間調領域と網点領域との境界領域に属する画素であるか否かを判定することによって該境界領域を検出することが好ましい。

【0014】前記画像処理装置において、前記第3の検出手段は、前記第1または第2の検出手段の検出結果の集合により構成される画像において未検出の画素の連なりに基づいて各画素が画像中の文字・線画・中間調領域と網点領域との境界領域に属する画素であるか否かを判定することによって該境界領域を検出することが好ましい。

【0015】前記画像処理装置において、前記第3の検出手段は、前記第1または第2の検出手段の検出結果の集合により構成される画像において未検出の画素が連なっている個数に基づいて各画素が画像中の文字・線画・中間調領域と網点領域との境界領域に属する画素であるか否かを判定することによって該境界領域を検出することが好ましい。

【0016】前記画像処理装置は、前記第1乃至第3の 検出手段による検出結果に基づいて画像領域のサイズを 判定する判定手段をさらに備え、その判定結果に応じて 画像を処理することが好ましい。

【0017】本発明に係る画像処理装置は、画像の特徴を抽出してその結果に基づいて該画像を処理する画像処理装置であって、画像中の文字・線画領域及び前記文字・線画領域以外の他の画像領域を検出する主検出手段と、前記文字・線画領域と前記他の画像領域との境界領域を検出する副検出手段とを備え、前記主検出手段及び副検出手段による検出結果に基づいて画像を処理することを特徴とする。

【0018】前記画像処理装置において、前記副検出手 段は、前記主検出手段により検出されていない領域よ り、前記境界領域を検出することが好ましい。

【0019】前記画像処理装置において、前記副検出手段は、前記主検出手段によって検出されていない画素の分布に基づいて各画素が前記境界領域に属する画素であるか否かを判定することによって前記境界領域を検出することが好ましい。

【0020】前記画像処理装置において、前記副検出手段は、前記主検出手段によって検出されていない画素の連なりに基づいて各画素が前記境界領域に属する画素であるか否かを判定することによって前記境界領域を検出することが好ましい。

【0021】前記画像処理装置において、前記副検出手段は、前記主検出手段によって検出されていない画素が連なっている個数に基づいて各画素が前記境界領域に属する画素であるか否かを判定することによって前記境界領域を検出することが好ましい。

【0022】前記の各画像処理装置は、処理した画像を出力する出力手段をさらに備えることが好ましい。

【0023】前記の各画像処理装置は、処理対象となる 画像を入力する入力手段をさらに備えることが好まし い。

【0024】前記画像処理装置において、前記入力手段は、原稿画像を読み取って入力する手段を含むことが好ましい。

【0025】前記の各画像処理装置は、フルカラー画像を対象として処理する機能を有することが好ましい。

【0026】本発明に係る画像処理方法は、画像の特徴を抽出してその結果に基づいて該画像を処理する画像処理方法であって、画像中の文字・線画・中間調領域を検出する第1の検出工程と、画像中の網点領域を検出する第2の検出工程と、画像中の文字・線画領域と網点領域との境界領域を検出する第3の検出工程とを備え、前記第1乃至第3の検出工程による検出結果に基づいて画像を処理することを特徴とする。

【0027】本発明に係る画像処理方法は、画像の特徴を抽出してその結果に基づいて該画像を処理する画像処理方法であって、画像中の文字・線画領域及び前記文字・線画領域以外の他の画像領域を検出する主検出工程と、前記文字・線画領域と前記他の画像領域との境界領域を検出する副検出工程とを備え、前記主検出手段及び副検出工程による検出結果に基づいて画像を処理することを特徴とする。

【0028】本発明に係るコンピュータ可読メモリは、画像の特徴を抽出してその結果に基づいて該画像を処理するためのプログラムコードを収めたコンピュータ可読メモリであって、画像中の文字・線画・中間調領域を検出する第1の検出工程のコードと、画像中の網点領域を検出する第2の検出工程のコードと、画像中の文字・線

画領域と網点領域との境界領域を検出する第3の検出工程のコードとを含むことを特徴とする。

【0029】本発明に係るコンピュータ可読メモリは、 画像の特徴を抽出してその結果に基づいて該画像を処理 するためのプログラムコードを収めたコンピュータ可読 メモリであって、画像中の文字・線画領域及び前記文字 ・線画領域以外の他の画像領域を検出する主検出工程の コードと、前記文字・線画領域と前記他の画像領域との 境界領域を検出する副検出工程のコードとを含むことを 特徴とする。

[0030]

【発明の実施の形態】以下、添付図面を参照しながら本 発明の好適な実施の形態を説明する。

【0031】図1は、本発明の好適な実施の形態に係る画像処理装置の断面構成を示す図である。同図において、201はイメージスキャナ部であり、原稿を読み取って読み取り画像信号に対して所定の信号処理を行う。228は、ホストコンピュータであり、画像信号を生成し、コントローラ227を介してイメージスキャナ部201に送出する。200は、プリンタ部であり、イメージスキャナ部201において読み取られた原稿画像信号またはホストコンピュータ228より送出された画像信号に基づいて記録媒体上にフルカラー画像を出力する。すなわち、この画像処理装置は、複写機としてもプリンタとしても機能する。

【0032】イメージスキャナ部201では、原稿圧板202により原稿台ガラス203上に載置された原稿204を押圧した状態で、ハロゲンランプ205により光を照射し、原稿204からの反射光をミラー206及び207で反射し、レンズ208により3ラインセンサ(CCD)210上に結像させる。

【0033】CCD210は、原稿204からの反射光を色分解して、フルカラー情報のレッド(R)、グリーン(G)、ブルー(B)成分を読み取って、その読み取り信号を信号処理部209に送る。

【0034】原稿の読み取りの際、ハロゲンランプ205及びミラー206は速度 v で、ミラー207は速度 (1/2) v で、3ラインセンサ210における電気的な走査方向(以下、主走査方向)に対して垂直な方向(以下、副走査方向)に機械的に移動し、原稿204の全面を走査する。

【0035】標準白色板211は、3ラインセンサ210を構成するR, G, Bセンサ210-1~210-3による読み取りデータを補正するための補正データを生成するために設けられている。この標準白色板211は、可視光で略均一な反射特性を有し、その色は白色である。

【0036】画像信号処理部209では、原稿204を 読み取った原稿画像信号またはホストコンピュータ22 8から送られてくる画像信号を選択して、選択に係る画 像信号をマゼンタ (M)、シアン (C)、イエロー (Y)、ブラック (Bk) の各色成分に分解して画像処理し、 その処理結果をプリンタ部200に送る。

【0037】プリンタ部200では、画像処理された M, C, Y, Bkの各画像信号がレーザドライバ212 に送られる。レーザドライバ212は、この画像信号に 応じて半導体レーザ213をPWM変調しながら駆動する。半導体レーザ213から照射されたレーザ光は、ポリゴンミラー214、 $f-\theta$ レンズ215、ミラー216を介して感光ドラム217上を走査することになる。 なお、プリンタ部200は、解像度として、200線/400線を切り替えることができる。

【0038】現像器は、マゼンタ現像器219、シアン現像器220、イエロー現像器221、ブラック現像器222により構成され、こららの4つの現像器が交互に感光ドラムに接触し、感光ドラム217上に形成されるM. C, Y, Bkに関する静電潜像を対応するトナーで現像する。転写ドラム223は、用紙カセット224または225より供給された用紙を吸着するようにして巻き付け、感光ドラム217上に形成されたトナー像を用紙に転写する。

【0039】以上のようにして、M, C, Y, Bkの4色のトナー像が用紙に順次転写された後に、この用紙は、定着ユニット226を通過して排紙される。

【0040】図2は、イメージスキャナ部201の画像処理部209の詳細な構成例を示す図である。3ラインセンサ210から出力される画像信号は、アナログ信号処理回路101に入力され、ここでゲイン調整、オフセット調整された後に、A/D変換回路102において各色信号毎に8bitのデジタル画像信号R1、G1、B1に変換される。デジタル画像信号R1、G1、B1は、シェーディング補正部103に入力され、各色信号毎に、標準色板211の読み取り信号を用いたシェーディング補正が施される。

【0041】クロック発生部121は、1画素単位のクロック信号を発生する。また、主走査アドレスカウンタ122では、クロック発生部121から供給されるクロック信号をカウントし、主走査アドレスを生成する。デコーダ123は、主走査アドレスカウンタ122からの主走査アドレスをデコードして、シフトパルスやリセットパルス等のライン単位のCCD駆動信号や、3ラインセンサ210から供給される1ライン分の読み取り信号中の有効領域を示すVE信号、ライン同期信号HSYNCを生成する。なお、主走査アドレスカウンタ122は、このHSYNC信号でクリアされ、次のラインの主走査アドレスのカウントを開始する。

【0042】3ラインセンサ210を構成する各センサ210-1~210-3は、相互に所定の距離を隔てて配置されているため、ラインディレイ回路105において、福走査方向の空間的なずれを補正する。入力マスキ

ング部106は、NTSCの標準色空間に変換する。

【0043】画像信号切り替え部1064では、ホストコンピュータ228から送られてくる画像信号Rif,Gif,Bifまたは3ラインセンサ210による読み取りに係る画像信号R4,G4,B4を選択し、画像信号R40、G40、B40として出力する。

【0044】下地処理部1065では、画像信号R40,G40,B40の下地成分の検出及び除去を行う。 下地除去を行うか否かは、操作部101により指示することができる。

【0045】光量/濃度変換部(LOG変換部)107は、ルックアップテーブルROMを含み、これを参照することによりR5,G5,B5の輝度信号がC0,M0,Y0の濃度信号に変換する。ライン遅延メモリ108は、後述する黒文字判定部113において画像信号R40,G40,B40に基づいて生成されるUCR、FILTER,SENの判定信号の発生タイミングに適合するように、画像信号C0,M0,Y0を遅延させる。【0046】マスキングUCR部109は、C1,M1,Y1の3原色信号より、黒信号(K)を抽出し、さらに、ブリンタ部200における記録色材の色濁りを補正する演算を施して、Y,M,C,Kに関しての所定ビット数(例えば、8bit)の画像信号Y2,M2,C2,K2を面順次に出力する。

【0047】主走査方向変倍回路110は、公知の補間 演算により画像信号Y2,M2,C2,K2及び黒文字 判定信号FILTER,SENを主走査方向に変倍処理 し、画像信号Y3,M2,C2,K2及び黒文字判定信 号FILTER',SEN'とする。

【0048】出力フィルタ(空間フィルタ)部111は、エッジ強調処理/スムージング処理の選択を指示する黒文字判定信号FILTER'に基づいて、エッジ強調またはスムージング処理を選択し、選択した処理を画像信号Y3,M3,C3,K3に対して施し、画像信号Y4,M4,C4,K4として出力する。

【0049】このようにして生成されたM4, C4, Y4, K4の面順次の画像信号と、200線/400線の選択を指示する黒文字判定信号SEN'は、プリンタ部200のレーザドライバ212に送られ、プリンタ部200においてPWMによって濃度を表現した出力画像が形成される。

【0050】次に黒文字判定部113の動作を説明する。この黒文字判定部113では、画像信号切り替え部1064から出力された画像信号R40,G40,B40に基づいて、黒文字判定信号UCR,FILTER,SENを生成する。

【0051】 [エッジ検出部の説明] 画像信号切り替え 部1064から出力された画像信号R40, G40, B 40は、黒文字判定部113のエッジ検出部115の R, G, B端子に入力され、ここで画像中のエッジが検 出される。図3は、エッジ検出部113の構成例を示す ブロック図である。

【0052】輝度算出回路250は、画像信号R(R40), G(G40), B(B40)に基づいて、例えば、式(1)により輝度を算出する。

[0053]

Y=0.25R+0.5G+0.25B・・・(1) 図4は、輝度算出回路250の詳細な構成例を示すプロック図である。輝度算出回路250は、入力信号R、G、Bに対して夫々乗算器401~403で所定の係数を乗じた結果を、加算器404と405で加算して、輝度信号Yを得る。

【0054】エッジmin方向検出回路251は、入力された輝度信号Yからエッジ量の絶対値が最小の値をとる方向(以下「エッジmin方向」という)を求める。

【0055】図5は、エッジmin方向検出回路251の機能を説明するための図である。エッジmin方向検出回路251は、入力された輝度信号YをFIFO501と502によって1ラインずつ遅延させて、3×3画素の周知のラプラシアンフィルタ処理を施す。ラプラシアンフィルタ503~506は、それぞれ、図示のような縦方向、対角線方向、横方向、対角線方向のフィルタである。エッジmin方向検出回路251は、この4方向のフィルタの出力値であるエッジ量の絶対値が最小の値をとる方向を求め、その方向をエッジmin方向とする。

【0056】エッジmin方向スムージング回路252 は、得られたエッジmin方向に対してスムージング処理 を施す。この処理により、エッジ成分の最も大きい方向 のみを保存し、その他の方向を平滑化することができ る。すなわち、複数の方向に対してエッジ成分が大きい 網点成分は、エッジ成分が平滑化されるので、その特徴 は減少する。他方、一方向にのみエッジ成分が存在する 文字や細線の特徴は保存されることになる。必要に応じ てこの処理を繰返すことで、文字・線成分と網点成分の 分離がより一層効果的に行われ、一般的なエッジ検出法 では検知できない網点中に存在する文字成分も検知する ことが可能になる。

【0057】エッジ検出回路253では、輝度算出回路250から直接入力された輝度信号Yに係る画像に関しては、所定の閾値th_edge1以下の画素の画素値を"0"とし、閾値th_edge1を越える画素の画素値を"1"としてエッジ検出画像を生成する。また、エッジmin方向スムージング回路252を通過した信号に係る画像に関しては、上記のようなラプラシアンフィルタ処理を施して、所定の閾値th_edge2を越える画素の画素値を"0"とし、閾値th_edge2を越える画素の画素値を"1"としてエッジ検出画像を生成する。このように、2種類の性質を持った画像を用意し、白地中の文字に関してはエッジmin方向スムージング部252を通過しない画像を用いることにより、より

細かい文字の細部についてもエッジを検出することが可能になり、逆に網点中の文字に対しては、エッジmin方向スムージング部252を通過した画像を用いてエッジ検出を行うことにより、網点成分を検出せずに、文字や線のみを検出することができる。

【0058】図6は、画像中のエッジの検出処理の一例を示す図である。(a)は輝度データYに係る画像の一例、(b)はエッジ検出画像の一例である。

【0059】エッジ検出部253では、さらに、閾値 t h_e dge 1による検出結果(エッジ検出画像)を7 \times 7,5 \times 5,3 \times 3のブロックサイズで膨張した結果、膨張しない結果、エッジを検出しないことを示す結果と、閾値 t h_e dge 2 による検出結果を7つのコードで表わした3ビットの信号EDGEを出力する。ここで、信号の膨張とは、ブロック内の全画素値をOR演算することをいう。

【0060】 [彩度判定部の説明] 図7は、彩度判定部 116の詳細な構成例を示すブロック図である。彩度判 定部116では、画像信号切り替え部1064から出力 された画像信号R40,G40,B40は、最大値検出部601及び最小値検出部602のR,G,B端子に入力され、最大値Max(R,G,B) と最小値Min(R,G,B) が抽出される。

【0061】図8は、LUT (ルックアップテーブル) 603における彩度判定用のルックアップテーブルの特性を示す図である。LUT603は、最大値Max

(R, G, B) と最小値Min(R, G, B) が、領域BK(黒)、領域GRY(色と黒との中間)、領域COL(色)、領域W(白)のいずれの領域に属するかを判定し、その結果を2ビットの判定信号COLとして出力する。

【0062】 [文字太さ判定部の説明] 図9は、文字太さ判定部114の詳細な構成例を示すブロック図である。画像信号切り替え部1064から出力された画像信号R40,G40,B40は、最小値検出部2011のR,G,B端子に入力される。

【0063】最小値検出部2011は、画像信号R(R40),G(G40),B(G40)の最小値Min(R,G,B)を検出してMINRGB信号として出力する。そして、平均値検出部2022は、注目画素及びその近傍の5×5画素のMINRGB信号の平均値AVE5と、3×3画素のMINRGB信号の平均値AVE3とを算出する。

【0064】文字・線画・中間調検出部2023は、注 目画素の濃度と、注目画素からその周辺に向かっての濃 度変化に基づいて、注目画素が文字・線画または中間調 領域の一部であるか否かを判定する。

【0065】図10は、文字・線画・中間調検出回路2023の詳細な構成例を示すブロック図である。文字・ 線画・中間調検出回路2023では、加算器2030で AVE3に適当なオフセット値OFST1を加え、その値とAVE5とをコンパレータ20310で比較する。また、コンパレータ2032では、加算器2030からの出力と、適当なリミット値LIM1とを比較する。そして、それぞれのコンパレータからの出力値が、OR回路2033に入力される。

【0066】OR回路2033の出力信号BINGRA

AVE3+OFST1>AVE5 stat.

AVE3+OFST1>LIM1

の時に"1"になる。つまり、この文字・中間調検出回路2023によって、注目画素を含む局部領域(3×3画素の領域)からその周辺(5×5画素の領域)に向かって濃度変化が存在する場合(文字・線画のエッジ部)、または、注目画素を含む局部領域(3×3画素の領域)が、所定値以上の濃度を持っている場合(文字・線画の内部及び中間調部)に、文字・線画・中間調領域であることを示す信号BINGRAが"1"になる。

【0067】図11は、網点領域検出部2024の詳細な構成例を示す図である。網点領域検出部2024では、網点領域を検出するため、最小値検出回路2021により生成された信号MINRGBの値に、加算器2041により適当なオフセット値OFST2を加え、その結果をコンパレータ2041においてAVE5と比較する。また、コンパレータ2042では、加算器2040からの出力と適当なリミット値LIM2とを比較する。各コンパレータからの出力値は、OR回路2043に入力される。

【0068】OR回路2043の出力信号BINAMI

MINRGB+OFST2>AVE5 **tt

MINRGB+OFST2>LIM2

の時に"1"になる。、このBINAMI信号を用いて、エッジ方向検出回路2044により画素毎のエッジの方向が求められる。

【0069】図12は、エッジ方向検出回路2044におけるエッジ方向検出の規則を示す図である。なお、同図において、注目画素は、 3×3 画素群の中心の画素である。エッジ方向検出回路2044は、注目画素近傍の8 画素の画素値が、図12に示す(0)~(3)のいずれかの条件を満たす場合に、4 ビットのエッジ方向信号 DIRAMIのビット0~3のうち該当するビットを"1"にする。

【0070】次段の対向エッジ検出回路2045においては、注目画素を中心とする5×5画素の領域内で互いに対向するエッジを検出する。図13は、注目画素のDIRAMI信号をA33とした5×5画素領域を示す図である。

【0071】ここでは、対向エッジ検出の規則として、下記の(条件1)~(条件4)のいずれかを満たす場合に、対向エッジを検出したものとする規則を採用している。対向エッジ検出回路2045は、対向エッジを検出した場合、EAAMI信号を"1"にする。

(条件1): A11, A21, A31, A41, A5 1, A22, A32, A42, A33のいずれかのビットのが"1"、かつ、A33, A24, A34, A4 4, A15, A25, A35, A45, A55のいずれかのビット1が"1"である。

(条件2): A11, A21, A31, A41, A51, A22, A32, A42, A33のいずれかのビット1が"1"、かつ、A33, A24, A34, A44, A15, A25, A35, A45, A55のいずれかのビット0が"1"である。

(条件3): A11, A12, A13, A14, A15, A22, A23, A24, A33のいずれかのビット2が"1"、かつ、A33, A42, A43, A44, A51, A52, A53, A54, A55のいずれかのビット3が"1"である。

(条件4): A11, A12, A13, A14, A15, A22, A23, A24, A33のいずれかのビット3が"1"、かつ、A33, A42, A43, A44, A51, A52, A53, A54, A55のいずれかのビット2が"1"である。

【0072】膨張回路2046では、EAAMI信号に対して3画素 $\times 4$ 画素の膨張を行い、これにより注目画素近傍の 3×4 画素の領域内にEAAMIが"1"の画素があれば、注目画素のEAAMI信号を"1"に置き換える。

【0073】さらに、収縮回路2047と膨張回路2048を用いて 5×5 画素の領域における孤立した検出結果を除去し、出力信号EBAMIを得る。ここで、収縮回路2047は、入力されたすべての信号が"1"の時にのみ"1"を出力する回路である。

【0074】次に、カウンタ2049では、適当な大きさを持つウィンドウ内において、膨張回路2048の出力信号EBAMIが"1"である画素の個数をカウントし、カウント値を出力する。ここでは注目画素を含む5×64画素のウインドウを採用している。

【0075】図14は、このウインドウの一例を示す図である。図14において、ウィンドウ内のサンプル点は、主走査方向に4画素おきに9点、副走査方向に5ライン分の合計45点ある。1つの注目画素に対して、ウィンドウが主走査方向に移動することにより、図14の(1)~(9)の9つのウインドウが用意されたことになる。すなわち、注目画素を中心として5×64画素の領域を参照したことになる。

【0076】コンパレータ2050は、カウンタ204 9が夫々のウィンドウ内においてEBAMI信号が" 1"の個数をカウントし、EBAMIが"1"となる個数が適当な閾値LIM3を越えた場合に、網点であることを示す網点領域検出信号AMIを"1"にする。

【0077】この網点領域検出回路2014により、文字・線画・中間調検出部2013において孤立点(孤立した白画素)の集合として検出される網点画像を、網点領域として適切に検出することができる。文字・線画・中間調領域を検出したことを示す信号BINGRAと網点領域信号AMIは、OR回路2025おいてOR演算され、結果として入力画像を2値化した2値化信号PICT_ISOが生成される。より詳しくは、2値化信号PICT_ISOは、文字・線画・中間調領域及び網点領域を検出しその画素値を"1"とし、それ以外の画素を"0"とした2値の画像信号である。

【0078】しかしながら、この2値化信号PICT_ISOは、網点または中間調領域内に文字または線画領域が存在する場合、換言すると、文字または線画領域と網点または中間調領域が接している場合において、その境界部分を画像領域(文字、線画、中間調または網点領域)として、文字・線画・中間調検出部2013または網点領域検出部2014により検出可能な場合が混在する。

【0079】その結果、2値化信号PICT_ISOには、部分的に文字・線画・中間調領域または網点領域としての検出に失敗した領域が点在することになる。

【0080】そこで、この検出に失敗した画像領域(非 検出領域)を検出することが必要になる。再検出部20 27は、非検出領域を検出して、これにより2値化信号 PICT_ISOを修正し、適正な2値化信号PICT (文字・線画・中間調領域及び網点領域を示す信号)を 生成する。

【0081】図15は、再検出部2027の詳細な構成例を示す図である。2値化信号PICT_ISOの注目画素が"1"(黒)の時は、注目画素は既に検出されているから、注目画素におけるPICT信号は、PICT_ISO信号と同じ"1"とする。一方、2値化信号PICT_ISOの注目画素が"0"(白)の時は、注目画素は非検出領域に属する可能性があるから、この注目画素が文字・線画・中間調領域または網点領域として検出すべき領域に属するか否かを判定する。

【0082】この判定は、画素値が"0"の画素(白画素)の分布に基づいて行う。この実施の形態においては、孤立度(白画素が孤立している度合)を検査し、孤立度が大きければ非検出領域(検出すべき領域)であると判定する。具体的には、画素値が"0"の注目画素に、画素値が"0"の画素が連なっている個数(白連結数)を検査し、白連結数が小さければ孤立度が大きいものと看做して、注目画素が非検出領域に属するものと判定(2値化信号PICTを"1"とする)し、一方、白連結数が大きければ孤立度が小さいものと看做して、注

目画素が非検出領域に属しないものと判定する(2値化信号PICTを"0"とする)。

【0083】白連結数の検査の規則としては、種々の規則が適用可能である。この再検出部2027では、注目画素の周囲の検査対象画素(例えば、周囲の8画素、上下左右の4画素)が、夫々白画素であるか否かを判定し、検査対象画素が白画素であったら、さらに、当該白画素を中心とし、その周囲の検査対象画素に関して同様の処理を行ない、この処理を連鎖的に繰り返して得られる白画素の個数を白連結数としている。

【0084】以下、再検出部2027における白連結数の検査処理の方法を説明する。

【0085】白連結数検出部2091は、2値化信号PICT_ISOに基づいて白連結数を検出する。白連結数検出部2091は、CPU102から供給されるフラグ信号con_flgに基づいて、検査対象画素のパターンを選択する。図16は、フラグ信号con_flgに基づいて選択される検査対象画素のパターンの例を示す図である。

【0086】図16(a)は、中心画素3002の上下左右の4画素を検査対象画素とするパターンであり、図16(b)は、中心画素3003の周囲の8画素を検査対象画素とするパターンである。

【0087】先ず、図16(a)に示すパターンを使用した場合の白連結数検出部2091の動作例を図17を参照しながら説明する。図17は、2値化信号PICT_ISOに係る2値画像の一例を示す図である。ここでは、①~⑨が白画素、その他の画素が黒画素、①が注目画素とする。

【0088】先ず、図16(a)に示すパターンの中心 画素3002を注目画素①に一致させ、検査対象画素3 001に対応する画素が白画素であるか否かを判定す る。この場合、画素②、③、⑥が白画素である。

【0089】次に、前工程で白画素であると判定した画素②、③、⑥に図16(a)に示すパターンの中心画素3002を順次一致させ、検査対象画素3001に対応する画素が白画素であるか否かを判定する。この場合、画素④及び⑤が新たに発見される白画素である。

【0090】次に、前工程で白画素であると判定した画素④及び⑤に図16(a)に示すパターンの中心画素3002を順次一致させ、検査対象画素3001に対応する画素が白画素であるか否かを判定する。この場合、画素⑨が新たに発見される白画素である。

【0091】次に、前工程で白画素であると判定した画素⑨に図16(a)に示すパターンの中心画素3002を順次一致させ、検査対象画素3001に対応する画素が白画素であるか否かを判定する。この場合、新たに発見される白画素は存在しない。したがって、白連結数の検出処理を終了する。

【0092】この処理により、注目画素①に連結する白

画素は、画素②、③、④、⑤、⑥、⑨の6画素であることが検出される。したがって、白画素の連結数は7であり、この連結数が連結数信号CONTとして次段のコンパレータ2092に入力される。

【0093】次に、図16(b)に示すパターンを使用した場合を一例として、白連結数検出部2091の動作例を図17を参照しながら説明する。

【0094】先ず、図16(b)に示すパターンの中心 画素3002を注目画素①に一致させ、検査対象画素3 001に対応する画素が白画素であるか否かを判定す る。この場合、画素②、③、④、⑤、⑥が白画素である

【0095】次に、前工程で白画素であると判定した画素②、③、④、⑤、⑥に図16(b)に示すパターンの中心画素3002を順次一致させ、検査対象画素3001に対応する画素が白画素であるか否かを判定する。この場合、画素⑦及び⑨が新たに発見される白画素である。

【0096】次に、前工程で白画素であると判定した画素®及び⑨に図16(b)に示すパターンの中心画素3002を順次一致させ、検査対象画素3001に対応する画素が白画素であるか否かを判定する。この場合、新たに発見される白画素は存在しない。したがって、白連結数を検出する処理を終了する。

【0097】この処理により、注目画素①に連結する白画素は、画素②~⑨の8画素であることが検出される。したがって、白画素の連結数は9であり、この連結数が連結数信号CONTとして次段のコンパレータ2092に入力される。

【0098】図18は、白連結数の検査処理の手順を示すフローチャートである。図19は、図18に示す手順を実行するための回路構成を示す図である。CPU1910は、図18のフローチャートに係る手順をコード化したプログラム1921に基づいて動作し、白連結数の検査処理を実行する。

【0099】2値化信号PICT_ISOに係る画像が画像メモリ1901上に準備されると、ステップS1801において、CPU1910は、フラグ信号con_flgにより指定された検査対象画素のパターンを適用し、注目画素の周囲の各検査対象画素が白画素であるか否かを判定し、ステップS1802において、白画素であると判定された画素をマッピングメモリ1902にマッピングする。

【0100】ステップS1803では、ステップS1802においてマッピングメモリ1902にマッピングされた白画素を中心画素3002として、画像メモリ1901において中心画素3002の周囲に位置する検査対象画素3001が白画素であるか否かを判定し、ステップS1804において、白画素であると判定された画素をマッピングメモリ1902にマッピングする。

【0101】ステップS1805では、ステップS1803において白画素を発見したか否かを判定し、白画素を発見している場合にはステップS1803に戻り、白画素を発見していない場合にはステップS1806に進む。

【0102】ステップS1806では、マッピングメモリ1902にマッピングされた白画素の個数をカウントし、これにより白画素の連結数を求め、該連結数を出力ポート1930に書き込むことにより、白連結数を示す白連結数信号CONTをコンパレータ2092に対して出力する。

【0103】コンパレータ2092は、白連結数信号CONTは示す白連結数と、CPU102から供給される 関値信号con_thとを比較し、その結果として比較 結果信号COMPを出力する。関値信号con_th は、CPU102により適宜変更可能である。

【0104】白連結数信号CONTが、閾値信号con_flgよりも小さい場合、換言すると、白画素の孤立度が所定値よりも高い場合、コンパレータ2092は、非検出領域(検出すべき領域)を検出したことを示す"1"を出力する。一方、白連結数信号CONTが、閾値信号con_flg以上の値を有する場合、換言すると、白画素の孤立度が所定値以下の場合、コンパレータ2092は、当該注目画素が非検出領域(検出すべき領域)ではないことを示す"0"を出力する。

【0105】例えば、フラグ信号 con_flg が、検査対象画素のパターンとして、図16(a)に示すパターンを指定しており、図17に示す2値画像を構成する2値化信号 $PICT_ISO$ が入力された場合、白連結数信号CONTは"7"を示す。この場合、例えば、閾値信号 con_this "8"であれば、比較結果信号COMPは、"1"、すなわち、注目画素が非検出領域(検出すべき領域)に属することを示す。

【0106】また、例えば、フラグ信号 con_flg が、検査対象画素のパターンとして、図16(b)に示すパターンを指定しており、図17に示す2値が像を構成する2値化信号 $PICT_ISO$ が入力された場合、白連結数信号CONTは"9"を示す。この場合、例えば、閾値信号 con_th が"8"であれば、比較結果信号COMPは、"0"、すなわち、注目画素が非検出域(検出すべき領域)に属しないことを示す。

【0107】OR回路2093は、2値化信号PICT _ISOと比較結果信号COMPとの値をOR演算し、 非検出領域の再検出後の2値化信号PICTを出力する。

【0108】この2値化信号PICTは、エリアサイズ 判定部2026(図9参照)に入力される。

【0109】図20は、エリアサイズ判定部2026の詳細な構成例を示すブロック図である。エリアサイズ判定部2026は、複数の収縮回路2081と膨張回路2

082とのペアを有し、各ペアが参照する領域のサイズは互いに異なる。2値化信号PICTは、収縮回路の大きさに合わせてライン遅延された後に、まず収縮回路群2081に入力される。図示の構成例において、23×23画素サイズから35×35画素サイズまでの7種類の収縮回路を有する。

【0110】収縮回路群2081の出力は、ライン遅延された後に膨張回路群2082に入力される。図示の構成例においては、収縮回路の7つの出力に対応して、27×27画素サイズから39×39画素までの7種類の膨張回路を有する。膨張回路群2082は、7つの膨張回路からなる7ビットの信号PICT_FHを出力する。

【0111】注目画素が文字・線画の一部である場合は、その文字の太さに応じた信号PICT_FHが生成される。図21は、信号PICT_FHの生成処理の一例を説明するための図である。図示の例は、入力された2値化信号PICTに係る画像が、26画素幅の帯状画像である場合を示している。この画像に対して、27×27より大きいサイズの収縮を行い、これを対応する膨張回路で膨張すると、該膨張回路の出力は"0"になり、25×25より小さいサイズの収縮を行った後に、これを対応する膨張回路で膨張すると、該膨張回路の出力は"1"になる。したがって、信号PICT_FHのビット(0),(1)は"1"、ビット(2)~(6)は"0"となる。この場合、信号PICT_FHは、30画素幅であることを示している。

【0112】エンコーダ2083は、信号PICT_F Hをエンコードすることによって、注目画素が属する画 像領域の大きさを示す画像領域信号ZONE_Pを決定 する。

【0113】図22は、エンコーダ2083におけるエンコードルールの一例を示す図である。図示の例においては、画像領域信号ZONE_Pとして3ビットの信号を用い、信号PICT_FHに基づいて、文字・線画等の画像の太さを8段階で示す。図示のように、最も細い文字・線画等の画像に関しては、信号ZONE_Pは"0"になり、最も太い文字・線画等の画像に関しては、信号ZONE_Pは"7"になる。この処理によって、広い領域において2値化信号PICTが"1"である写真画像や網点画像等に関しては、信号ZONE_Pは"7"(最大値)に定義され、2値化信号が"1"である領域が最大値よりも小さい領域(例えば、文字・線画等の画像)に関しては、当該領域の太さに応じて信号ZONE Pの値が定義される。

【0114】ところで、再検出部2027を備えない場合、すなわち、2値化信号PICT_ISOを直接にエリアサイズ判定部2026に入力した場合、例えば、網点中に文字や線画等が存在すると、網点領域と文字等の領域との境界において前述の非検出領域が点在すること

になる。このように非検出領域が点在した画像を構成する2値化信号PICT_ISOをエリアサイズ判定部2026の収縮回路2081において収縮すると、点在していた複数の非検出領域が結合して、大きな領域を形成し、次段の膨張回路2082による膨張処理を施した後においても、該大きな領域が残る。したがって、例えば一面の大きな網点領域と判定されるべき領域であるにも拘わらず、網点領域中の文字等の周囲に、細い文字領域が点在するものと誤判定することになる。

【0115】一方、前述のように、再検出部2027を設け、非検出領域を再検出し、2値化信号PICT_ISOを修正した2値化信号に基づいて領域を判定することにより、上記の誤判定を避けることができる。

【0116】信号ZONE_Pは、ZONE補正部2084の料本体域例を示すブロック図である。信号ZONE Pは、複数のFIFOを有するライン遅延部2111によりライン遅延されて、例えば、10×10画素の領域の信号ZONE_Pの値の平均値を算出する平均値算出部2111に入力される。信号ZONE_Pの値は、文字・線画等が太いほど大きく、細いほど小さいくなる。したがって、信号ZONE_Pの値の平均値である信号ZONEの値も、文字・線画等が太いほど大きく、細いほど小さいくなる。したがって、信号ZONE_Pの値の平均値である信号ZONEの値も、文字・線画等が太いほど大きく、細いほど小さいくなる。この補正に用いるブロックサイズは、文字等の太さを判定するためのブロックサイズに応じて定めることが望ましい。

【0117】補正したZONE信号を用いて、後段の処理を行うことで、急激に文字や線等の太さが変化する部分においても、太さの判定結果が滑らかに変化することになり、黒文字処理の変化による画像品位の低下をより改善することができる。

【0118】ここで、前述したように、信号ZONEが"7"の領域は、中間調または網点領域であると看做すことができる。そこで、信号ZONEと信号EDGEより、中間調や網点領域の内部に存在する文字や線を、他の領域(白地)中の文字や線と区別することが可能である。

【0119】次に、図9を参照して、画像の縁の検出処理を説明する。

【0120】先ず、2値化信号PICTに対して、5×5の膨張回路2111によって膨張処理を施す。この処理により、不完全な検出がなされる可能性がある網点領域に関して、検出結果を補正することができる。

【0121】次に、膨張回路2111の出力信号に対して、11×11の収縮回路2112によって収縮処理を施し、その結果を信号FCHとして出力する。このようにして生成された信号FCHは、信号PICTを3画素分収縮させた信号となる。

【0122】図24は、中間調または網点領域中の文字 等を検出するためのアルゴリズムの一例を示す図であ る。上記のように、信号FCH信号は信号PICTを収縮させた信号であるため、FCH、信号ZONE、信号EDGEを組合わせることにより、白地中のエッジと、中間調・網点領域中のエッジとを区別することができ、網点画像中に文字等が存在する場合において網点成分を強調してしまうことなく、また、写真の縁等の黒文字処理が不要な部分を処理することなく、黒文字処理を行うことができる。

【0123】 [LUTの説明] LUT117は、文字の太さ判定部114、エッジ検出部115、彩度判定部116の出力信号である信号ZONE、信号FCH、信号EDGE、信号COLの各値と、図25に一部を示す参照テーブルとに従って、黒文字判定信号UCR、FILTER、SENの値を決定する。これらは、マスキングUCR係数、空間フィルタ係数、プリンタ解像度を選択するための信号である。なお、各信号の値は次のような意味を有する。

[0124]

EDGE=0: 閾値 t h_e d g e 1 でエッジと判定されない

1: 閾値 t h __ e d g e 1 でエッジと判定(膨張なし) 2: 閾値 t h __ e d g e 1 でエッジと判定(3×3膨 張)

3:閾値 t h __ e d g e 1 でエッジと判定(5×5膨 張)

4:閾値 t h __ e d g e 1 でエッジと判定(7 × 7 膨 張)

5: 閾値 t h __ e d g e 2 でエッジと判定されない

FCH=0:画像の縁

1:画像の縁でない

UCR=0:黒多い

1: • 2: •

.

6 : ·

7:黒少ない

FILTER=0:スムージング

1:強エッジ強調

2:中エッジ強調

3:弱エッジ強調

SEN=0:200線

1:400線

以上のように、この実施の形態に拠れば、再検出部 2 0 2 7 を設け、これにより非検出領域を再検出して、2 値 化信号 P I C T __ I S O を修正することにより、注目画素が属している領域(例えば、中間調領域、網点領域)を正しく判定することができる。したがって、高品位の出力画像を形成することができる。

【0125】上記の実施の形態においては、再検出部2

027の入力として、2値化信号PICT_ISOを用いたが、この代わりに、文字・線画・中間調検出部2023の出力である信号BINGRAを用いても良い。この場合、再検出部2027の出力と網点領域検出部2024との論理和をエリアサイズ判定部2026に入力すれば良い。また、再検出部2027の入力として、網点領域検出部2024の出力である信号AMIを用いても良い。この場合、再検出部2027の出力と文字・線画・抽出完了検出部2023の出力との論理和をエリアサイズ判定部2026に入力すれば良い。

【0126】なお、本発明は、複数の機器(例えば、ホストコンピュータ、インタフェイス機器、リーダ、プリンタなど)から構成されるシステムに適用しても、一つの機器からなる装置(例えば、複写機、ファクシミリ装置など)に適用してもよい。

【0127】また、本発明の目的は、前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(またはCPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても、達成されることは言うまでもない。

【0128】この場合、記憶媒体から読出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明を構成することになる。

【0129】プログラムコードを供給するための記憶媒体としては、例えば、フロッピディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどを用いることができる。

【0130】また、コンピュータが読出したプログラムコードを実行することにより、前述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。

【0131】さらに、記憶媒体から読出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。

[0132]

【発明の効果】本発明に拠れば、画像中の文字・線画領域と他の画像領域との境界領域を検出することにより、 検出した領域に基づく処理により得られる画像を高品質 化することができる。

[0133]

【図面の簡単な説明】

【図1】本発明の好適な実施の形態に係る画像処理装置 の断面構成を示す図である。

【図2】イメージスキャナ部の画像処理部の詳細な構成例を示す図である。

【図3】エッジ検出部の構成例を示すブロック図である。

【図4】輝度算出回路の詳細な構成例を示すブロック図である。

【図5】エッジmin方向検出回路の機能を説明するための図である。

【図6】図6は、画像中のエッジの検出処理の一例を示す図である。

【図7】彩度判定部の詳細な構成例を示すブロック図である。

【図8】LUT(ルックアップテーブル)における彩度 判定用のルックアップテーブルの特性を示す図である。

【図9】文字太さ判定部の詳細な構成例を示すブロック 図である。

【図10】文字・中間調検出回路の詳細な構成例を示す ブロック図である。

【図11】網点領域検出部の詳細な構成例を示す図であ ス

【図12】エッジ方向検出回路におけるエッジ方向検出の規則を示す図である。

【図13】注目画素のDIRAMI信号をA33とした 5×5 画素領域を示す図である。

【図14】カウントの対象とするウインドウの一例を示す図である。

【図15】再検出部の詳細な構成例を示す図である。

【図16】フラグ信号con_flgに基づいて選択される検査対象画素のパターンを示す図である。

【図17】2値化信号PICT_ISOの2値画像の一例を示す図である。

【図18】白連結度の検査処理の手順を示すフローチャートである。

【図19】図18に示す手順を実行するための回路構成を示す図である。

【図20】エリアサイズ判定部の詳細な構成例を示すブロック図である。

【図21】信号PICT_FHの生成処理の一例を説明するための図である。

【図22】エンコーダにおけるエンコードルールの一例を示す図である。

【図23】ZONE補正部の詳細な構成例を示すブロック図である。

【図24】中間調または網点領域中の文字等を検出する ためのアルゴリズムの一例を示す図である。

[図1]

【図4】

【図11】

【図12】

【図14】

【図15】

【図16】

【図19】

【図20】

[図21]

[図23]

【図24】

標準

宗牛	入力			出力			
COL	ZONE	EDGE	FCH	UCR	FILTER	SEN	
(H) 3	0	0 1 2 3 4	Don't care Don't care Don't care Don't care Don't Care	7 0 0 0	0 1 1 1 1	0 1 1 1	
	1	0 1 2 3 4	Don't care Don't care Don't care Don't care Don't Care	7 1 1 1 7	0	0 1 1 1 0	
	2	0 12 3 4	Don't care Don't care Don't care Don't care Don't Care	7 2 2 7	0 1 0 0	0 1 1 0 0	
	3	0 1 2 3 4	Don't care Don't care Don't care Don't care Don't care Don't care	7 33 7 7	0000	0000	
A CONTRACTOR OF THE CONTRACTOR	4	0 1 2 3 4	Don't care Don't care Don't care Don't care Don't Care	7 4 4 7 7	0 2 2 0 0	00000	
	5	01234	Don't care Don't care Don't care Don't care Don't Care	7 5 5 7 7	0 2 2 0 0	00000	
	ô	0 1 2 3 4	Don't care Don't care Don't care Don't care Don't Care	7 6 7 7 7	0000	0000	
	7	5 6	l i	7 7	3 3	0	
		5 6	0	7 7	3 2	0	
	0	0 1 2 3 4	Don't care Don't care Don't care Don't care Don't Care	7 7 7 7 7	02222	0	
((1))	1	0 1 2 3 4	Don't care Don't care Don't care Don't care Don't care Don't Care	7 7 7 7 7		0 1 1 1 0	
	2	0 1 2 3 4	Don't care Don't care Don't care Don't care Don't care Don't Care	7 7 7 7	0 2 2 0 0	0 1 0 0	
	3	0 1 2 3 4	Don't care Don't care Don't care Don't care Don't Care	7 7 7 7	0 2 2 0 0	0000	
	4	0 1 2 3 4	Don't care Don't care Don't care Don't care Don't care Don't Care	7 7 7 7	0 2 2 0 0	00000	
	5	0 1 2 3 4	Don't care Don't care Don't care Don't care Don't Care	7 7 7 7	0 2 2 0 0	00000	
	6	0 1 2 3	Don't care Don't care Don't care Don't care Don't Care	7 7 7 7 ?	0 2 0 0	0 0 0 0	
	7	5 6	1	7 7	3 3	0	
		5 6	0	7 7	3 2	0	

フロントページの続き

(72)発明者 内田 由紀 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内