

第三讲 地理空间数据的组成与特征

张新长 教授/博士生导师 中山大学 地理科学与规划学院

章节结构

地理空间数据的基本结构

矢量数据的结构特征

栅格数据的结构特征

矢量和栅格数据格式的转换

第一节 地理空间数据的基本结构

知识点

地理空间数据的分类

地理空间数据结构和组织

空间对象

空间对象是指GIS处理的客体,是现实世界中客观存在的实体或现象。

空间对象可以抽象成点、线、面和体等多种数据类型及其组合。

点对象的表达

相对集中于一个较小范围,且按比例尺缩小后仅能呈现点状分布的实体或现象。

- 抽象的点
- 非比例符号

温度监测站的分布

点状实体的表达

线对象的表达

呈线状或带状分布的实体或动态现象。

- 网络分析
- 度量距离

物流配送线路

城市道路网

面对象的表达

分布于较大范围, 且按比例尺缩小后仍能明确显示其轮廓的实体或现象。

建筑物与道路面

土地利用类型图

体对象的表达

通常用来表示人工或自然的具有长、宽、高的三维目标。

建筑物三维建模

三维场景

在GIS中,地理数据是表示地理位置、分布特点的自然现象和社会现象的诸要素文件。 它包括自然地理数据和社会经济数据。

地 躩 数 据 非地理空间数据

表示空间实体的位置、形状、 大小及其分布特征的数据。

表示空间实体的属性特征,是 对地理空间数据的说明。

地理空间数据的特征

空间特征

指空间物体的几何特征以及拓扑关系。

属性特征

与空间现象的属性信息相关联。

时间特征

地理空间数据是动态的信息。

地理空间数据分类

根据数据来源, 地理空间数据可分为以下四类:

图形数据的概念

把构成<mark>地图要素的点、线、面</mark>以点的坐标对(x,y)形式记录下来,形成有规律的数据集合体。

图形数据 的表现

图形数据的 存储结构

图形数据的来源

纸质地图的数字化

空间分析的结果

外业测量获得

由图像数据转换而得

图形数据的表达

结 特 征

("代码", 1, X₁, Y₁)

以多个坐标对来表示。

("代码", n, X₁, Y₁, X₂, Y₂,..., X_n, Y_n)

以多个坐标对来表示, 且最后一个坐标对与第一个 坐标对相重合。

图形数据的组织

图形数据的结构特征

点		线							属性表	
	Pt. ID	X	Y	Ln. ID	Pt. 1	Pt. 2	Pol. ID	Ln. ID	Pol. ID	Attrib.
	1 2 3 4 5 	24.5 24.8 27.8 30.1 14.2	27.4 24.1 22.5 29.9 30.1	35 36 37 38 39 	1 4 6 2 8 	3 2 8 10 11 	74 74 74 75 75	38 35 29 28 42 	74 75 76 77 78 	104.2 100.1 105.7 102.7 106.1
		7.15		-0.0		16		7	111111	

图形数据的比例尺

比例尺是反映了制图区域和地图的比例关系。地图上某线段的 长度与实地相应线段的水平长度之比,称为地图比例尺。

图上 1cm = 实地 1公里。 即地图比例尺为 1:100000

同一区域在不同地图比例尺下所能展示的<mark>地物数量</mark>不同;同一地物在不同地图比例尺下的<mark>详略程度</mark>不同。

小比例尺地图

中比例尺地图

大比例尺地图

图形数据的拓扑结构

拓扑结构是指基本要素点、线、面和体之间具有邻接、关联和包含的拓扑关系,与长度、面积无关。

拓扑学是几何学的一个分支,它研究在拓扑变换下能保持不变的几何属性——拓扑属性。

欧几里德平面上实体对象都具有着拓扑和非拓扑属性。

拓扑属性

一个点在一个弧段的端点。

一个弧段是一个简单弧段。(自身不相交)

一个点在一个区域的边界上。

一个面的连接性。(给定面上任意两点, 从一点可以完全在面的内部沿任意路径走 向另一点) 非拓扑属性

两点之间的距离 弧段的长度

一个区域的周长

一个区域的面积

基本拓扑关系

拓扑 邻接

指存在于空间图形<mark>同类要素</mark>之间的拓扑关系,如节点邻接关系,多边形邻接关系。

行政区划的邻接关系

- 多边形P1和P2, P1和P3 在空间上相邻接;
- 弧段L2,L3,和L5在空间上相邻接;
- 节点V1与V9, V9与V4等在空间上相邻接。

基本拓扑关系

拓扑 关联

指存在于空间图形中不同类要素之间的拓扑关系,如多边形与弧段、弧段与节点之间的关联关系。

- 节点V9与弧段L3,L5,L6关联
- 多边形P1与弧段 L1,L3,L6关联

道路与建筑之间的关联关系

多边形	弧		
p1	L1, L3, L6, L7		
p2	L2, L3, L5		
р3	L4, L5, L6		
p4	L7		

基本拓扑关系

拓扑 包含

指存在于空间图形中<mark>同类但不同级</mark>的基本要素 之间的拓扑关系。

● 多边形P1包含多边形P4。

城市市域与主体功能区的包含关系

图像数据的概念

图像数据的最小单元为像元或像素,像元的数值可用于描述客观世界中存在的现象。

图像数据 的表现

图像数据的 存储结构

图像数据的实质

图像数据的实质是像元的阵列,每个像元由行列号确定其位置,且具有 实体属性的编码值。

图像栅格数据是地表一定面积内数据的近似、离散化的表示。

空间分辨率

图像数据的结构特征

指像元所代表的的地面范围的大小,即扫描仪的瞬时视场,或地面物体能分辨的最小单元。

高 空间分辨率

低 空间分辨率

图像数据的表达

图像数据的组织形式

面向栅格单元的 组织方式

以不同层中对应于同一象元位置上的各个属性值表示为一个数组。

面向地理实体的 组织方式

以多边形为单位,记录属性值及组成多边形的各个像元坐标。

以 "层" 方式 存储

以层为基础,每层以像元为序,记录其坐标和属性值。

图像数据的方向表达

i, j-1 i, j i, j+	1
i+1, j	

四邻域

i-1, j-1	i-1, j	i-1, j+1
i, j-1	i,j	i, j+1
i+1, j-1	i+1, j	i+1, j+1

八邻域

在水文分析中的应用

谢谢大家!

