Big Prime Field FFT on Multi-core Processors

Svyatoslav Covanov¹ Davood Mohajerani² Marc Moreno Maza^{2,3} Linxiao Wang^{2,3}

¹University of Lorraine, France ²ORCCA, University of Western Ontario, Canada ³IBM Center for Advanced Studies, Markham, Canada

ISSAC 2019, Beihang University, Beijing, China July 16, 2019

Outline

- 1 Introduction
- 2 Generalized Fermat prime field arithmetic
- **3** Implementation of the multiplication in $\mathbb{Z}/p\mathbb{Z}$
- 4 Implementation of the FFT
- **5** Experimental results
- **6** Conclusions

Outline

- 1 Introduction
- @ Generalized Fermat prime field arithmetic
- lacksquare Implementation of the multiplication in $\mathbb{Z}/p\mathbb{Z}$
- 4 Implementation of the FFT
- **6** Experimental results
- **6** Conclusions

Background

Big prime field FFT on GPUs (Chen, Covanov, Mohajerani, and Moreno Maza, ISSAC 2017)

- CUDA implementation for arithmetic operations and FFT in $\mathbb{Z}/p\mathbb{Z}$, where p is a Generalized Fermat prime of size 8 or 16 machine words.
- GPUs are suitable for fine-grained parallelism as GPU architectures offer a fine control of hardware resources.

Big prime fields are attractive

- Modular methods (e.g. in polynomial system solving) can take advantage of primes larger than the machine-word size.
- The work reported in the above mentioned ISSAC 2017 paper suggests that computing over a single big prime field can outperform computing over several small prime fields.

Big prime field FFT on Multicores

- GPU implementation techniques can not be easily ported and applied to the context of multi-core processors.
- On multi-cores: much higher overhead for thread management, memory levels managed by hardware and OS instead of programmer.

Challenges and contributions

Challenges

- Can a serial CPU implementation take advantage of the properties of the Generalized Fermat Prime Fields (GFPF) towards an efficient implementation of FFT over those fields?
- Can we implement an efficient multi-threaded FFT over such big prime fields on multi-core processors?

Contributions

- Fast arithmetic in GFPFs, including fast multiplication of two arbitrary elements.
- Parallel implementation of FFT over GFPFs for multi-core processors.
- Our implementation is part of the BPAS library which is publicly available at http://www.bpaslib.org/

Motivation of our project: an idea of Martin Fürer

Assumptions

- Let p be a k-machine-word prime and N>0 an integer diving p-1.
- Consider the FFT of a vector of size N over the prime field $\mathbb{Z}/p\mathbb{Z}$.
- Assume $N=K^e$ for some "small" K (say K=32) and an integer $e\geq 2$.
- Let ω be a N-th primitive root of unity in $\mathbb{Z}/p\mathbb{Z}$ and let $\eta = \omega^{N/K}$.
- Assume that multiplying an arbitrary element of $\mathbb{Z}/p\mathbb{Z}$ by η^i ($0 \le i \le K$) can be done within O(k) word ops. This assumption can hold when p is a GFP.

Consequences

- Then, every arithmetic operation involved in DFT_K , that is, an FFT on K points of $\mathbb{Z}/p\mathbb{Z}$, can be done within O(k) word ops.
- Therefore, DFT_K can be performed within $O(K\log(K)\,k)$ word ops instead of the "a priori" $O(K\log(K)\,M(k))$ word ops.
- Under our hypotheses, unrolling Cooley-Tukey formula, it follows that DFT_N can be performed within $O(N\,\log_2(N)\,k\,+\,N\,\log_k(N)\,k\log_2(k))$ word ops instead of $O(N\,\log_2(N)\,k\,+\,N\,k\log_2^2(k))$ word ops for small-primes+CRT.

Related work

FFT over finite fields

- For more than two decades, NTL has been a reference library for univariate polynomials over $\mathbb Z$ and finite fields; in the big prime field case (thus for multi-precision arithmetic) NTL falls back to GMP.
- Other computer algebra systems devote effort to polynomial arithmetic over finite fields. Among them: FLINT, Magma, Mathemagix, etc.
- Up to our knowledge, there are no specific implementations of FFT over big prime fields.

Implementation techniques for FFT in scientific computing

 The FFTW and SPIRAL projects have extensively investigated techniques for code generation of FFT kernels. They have inspired us in this work.

Fast algorithms for polynomial multiplication

- The quest for faster polynomial/integer multiplication initiated by Martin Fürer and extended by others including Harvey, van der Hoeven and Lecerf [2016,...,2019] and Covanov and Thomé [2019] has inspired this work too.
- More references can be found in the article.

Outline

- 1 Introduction
- ② Generalized Fermat prime field arithmetic
- lacksquare Implementation of the multiplication in $\mathbb{Z}/p\mathbb{Z}$
- 4 Implementation of the FFT
- **6** Experimental results
- 6 Conclusions

Generalized Fermat prime

Generalized Fermat prime

- Prime in the form of $p = r^k + 1$, where k is some power of 2 and the radix r is a machine-word size integer. Also, r is a 2k-th primitive root of unity modulo p.
- From now on, p is a Generalized Fermat prime and we refer to $\mathbb{Z}/p\mathbb{Z}$ as a GFPF.

Representing elements of $\mathbb{Z}/p\mathbb{Z}$

An element $x \in \mathbb{Z}/p\mathbb{Z}$ is represented in one of the following equivalent ways:

- by a vector $\vec{x}=(x_{k-1},\dots,x_0)$ of length k $x\equiv x_{k-1}\,r^{k-1}+x_{k-2}\,r^{k-2}+\dots+x_1\,r+x_0\mod p$
- by a polynomial $f_x \in \mathbb{Z}[R]$,

$$f_x = \sum_{i=0}^{k-1} x_i R^i$$

such that $x \equiv f_x(r) \mod p$.

- Either way, we have two cases for the value of *x*:
 - ① When $x \equiv p-1 \mod p$ holds, we have $x_{k-1} = r$ and $x_{k-2} = \cdots = x_0 = 0$.
 - \bigcirc When $0 \le x < p-1$ holds, we have $0 \le x_i < r$ for $i = 0, \dots, k-1$.

Arithmetic in $\mathbb{Z}/p\mathbb{Z}$

Using the radix representation

- Addition and multiplication can be computed like grade school arithmetic.
- p is too small in practice for considering multi-threaded addition or multiplication.

Multiplication of two arbitrary elements

- For $x,y\in \mathbb{Z}/p\mathbb{Z}$, multiplying $x\cdot y$ in $\mathbb{Z}/p\mathbb{Z}$, is done computing $f_x(R)\cdot f_y(R)$ in $\mathbb{Z}[R]/\left\langle R^k+1\right\rangle$ followed by a conversion into the radix r representation.
- Challenge: How to multiply the two polynomials $f_x(R) \cdot f_y(R)$ efficiently, when the size of the intermediate products $x_i y_j$ can be larger than one machine word?

Cheap multiplication: multiplying by a power of radix \boldsymbol{r}

- For an arbitrary element $x \in \mathbb{Z}/p\mathbb{Z}$, we want to compute $x \cdot r^i \mod p$, for $0 \le i < k$.
- Computing modulo $p = r^k + 1$, we can replace every r^k by -1.

• For
$$0 < i < k$$

$$xr^{i} \equiv (x_{k-1} r^{k-1+i} + \dots + x_{0} r^{i}) \mod p$$

$$\equiv \left(\sum_{h=i}^{h=k-1} x_{h-i} r^{h} - \sum_{h=k}^{h=k-1+i} x_{h-i} r^{h-k}\right) \mod p$$

• We reduce a multiplication to a subtraction.

Outline

- Introduction
- @ Generalized Fermat prime field arithmetic
- 3 Implementation of the multiplication in $\mathbb{Z}/p\mathbb{Z}$
- 4 Implementation of the FFT
- **6** Experimental results
- 6 Conclusions

FFT-based multiplication between arbitrary elements of $\mathbb{Z}/p\mathbb{Z}$

Computing $f_x(R) \cdot f_y(R)$

- Treat elements in $\mathbb{Z}/p\mathbb{Z}$ as polynomials over \mathbb{Z} .
- Using FFT over small prime fields to multiply two polynomials.
- Normalizing the result polynomial into an element in $\mathbb{Z}/p\mathbb{Z}$.
- Convolution computes $f_x \cdot f_y \mod (R^k 1)$.
- However, we need to compute $f_x \cdot f_y \mod (R^k + 1)$.

Negacyclic convolution computes $f_u = f_x \cdot f_y \mod (R^k + 1)$ in a field:

- Assume that θ is a 2k-th primitive root of unity.
- With $\vec{A}=(1,\theta,\dots,\theta^{k-1})$ and $\vec{A'}=(1,\theta^{-1},\dots,\theta^{1-k})$, negacyclic convolution computes:

$$\vec{u} = \vec{A'} \cdot \mathsf{InverseDFT}(\mathsf{DFT}(\vec{A} \cdot \vec{x}) \cdot \mathsf{DFT}(\vec{A} \cdot \vec{y}))$$

Implementation of the FFT-based multiplication in BPAS(1/4)

Each $|u_i|$ is at most kr^2 ; it can exceed the size of a machine word!

$$f_{u}(R) = f_{x}(R) \cdot f_{y}(R) \mod (R^{k} + 1)$$

$$= \sum_{m=0}^{2k-2} \sum_{0 \le i,j < k}^{i+j=m} x_{i} y_{j} R^{m} \mod (R^{k} + 1)$$

$$= (x_{k-1} y_{0} + x_{k-2} y_{1} + x_{k-3} y_{2} + \dots + x_{1} y_{k-2} + x_{0} y_{k-1}) R^{k-1}$$

$$+ (x_{k-2} y_{0} + x_{k-3} y_{1} + \dots + x_{1} y_{k-3} + x_{0} y_{k-2} - x_{k-1} y_{k-2}) R^{k-2}$$

$$\dots$$

$$+ (x_{0} y_{0} - x_{k-1} y_{1} - \dots - x_{1} y_{k-1})$$

$$= \sum_{m=0}^{k-1} (\sum_{0 \le i,j < k}^{i+j=m} x_{i} y_{j} - \sum_{0 \le i,j < k}^{i+j=k+m} x_{i} y_{j}) R^{m}$$

Implementation of the FFT-based multiplication in BPAS(2/4)

CRT step

- Choose $\mathbb{Z}/q_1\mathbb{Z}$ and $\mathbb{Z}/q_2\mathbb{Z}$, where q_1 and q_2 are machine word size primes.
- Compute FFT over $\mathbb{Z}/q_i\mathbb{Z}$ and deduce FFT over $\mathbb{Z}/(q_1\,q_2)\mathbb{Z}$ via CRT.

LHC step

- After CRT, coefficients of $f_u = f_x \cdot f_y \mod (R^k + 1) \in \mathbb{Z}$ are 128-bit numbers.
- Each coefficient u_i of f_u is re-written as $u_i = c_i \, r^2 + h_i \, r + \ell_i$ where $0 \le \ell_i, h_i < r$ and $c_i \in [-k, k]$. Doing so, we have:

$$f_{u}(R) = f_{x}(R) \cdot f_{y}(R) \mod (R^{k} + 1)$$

$$= (c_{0}R^{2} + h_{0}R + \ell_{0}) + (c_{1}R^{2} + h_{1}R + \ell_{1})R + (c_{2}R^{2} + h_{2}R + \ell_{2})R^{2}$$

$$+ \cdots$$

$$+ (c_{k-2}R^{2} + h_{k-2}R + \ell_{k-2})R^{k-2} + (c_{k-1}R^{2} + h_{k-1}R + \ell_{k-1})R^{k-1}$$

$$= \sum_{i=0}^{k-1} (c_{i}R^{2+i} + h_{i}R^{1+i} + \ell_{i}R^{i})$$

$$= R^{2} \sum_{i=0}^{k-1} (c_{i}R^{i}) + R \sum_{i=0}^{k-1} (h_{i}R^{i}) + \sum_{i=0}^{k-1} (\ell_{i}R^{i})$$

Implementation of the FFT-based multiplication in BPAS(3/4)

FFT-based multiplication algorithm

```
1: procedure FFT-BASEDMULTIPLICATION(\vec{x}, \vec{y}, r, k)
           \vec{z_1} := \mathsf{NegacyclicConvolution}(\vec{x}, \vec{y}, p_1, k)
 2.
          \vec{z_2} := \mathsf{NegacyclicConvolution}(\vec{x}, \vec{y}, p_2, k)
 3.
          for 0 \le i \le k do
 4.
                 [s_{0i}, s_{1i}] := \mathsf{CRT}(p_1, p_2, m_1, m_2, z_{1i}, z_{2i})
 5.
           end for
 6.
          for 0 \le i \le k do
 7.
                [\ell_i, h_i, c_i] := \mathsf{LHC}(s_{0i}, s_{1i}, r)
 8.
           end for
 g.
          \vec{c} := \mathsf{MulPowR}(\vec{c}, 2, k, r)
10:
       \vec{h} := \mathsf{MulPowR}(\vec{h}, 1, k, r)
11:
          \vec{u} := \mathsf{BigPrimeFieldAddition}(\vec{\ell}, \vec{h}, k, r)
12:
           \vec{u} := \mathsf{BigPrimeFieldAddition}(\vec{u}, \vec{c}, k, r)
13:
           return \vec{u}
14.
15: end procedure
```

Implementation of the FFT-based multiplication in BPAS(4/4)

Problem: Lots of modular multiplications in the negacyclic convolutions

Solution: We use Montgomery multiplication inside convolutions!

Problem: CRT and LHC parts need multi-precision arithmetic!

- gcc provides 128-bit arithmetic, however, it is not the most efficient way!
- Solution: Using assembly code for CRT and LHC computation.

Example: inline assembly for multiplying two 64-bit integers

```
void mult_u64_u64
(const usfixn64 *a, const usfixn64 *b,
usfixn64 *s0 out.usfixn64 *s1 out)
{
  usfixn64 s0=0, s1=0;
  __asm__ __volatile__(
  "movq %2, %%rax; n t"// rax = a
  "movq %3, %%rdx;\n\t"// rdx = b
  "mulq \%rdx;\n\t" // rdx:rax = a * b
  "movq \frac{1}{2} rax, \frac{1}{2}0; \n\t"// s0 = rax (low part)
  "movq \frac{1}{n} rdx, \frac{1}{n} \tau' // s1 = rdx (high part)
  : "=&q" (s0), "=&q" (s1)
  :"q"(*a), "q"(*b)
  :"%rax", "%rdx", "memory");
  *s0 out = s0;
  *s1 out = s1:
```

Outline

- Introduction
- @ Generalized Fermat prime field arithmetic
- lacksquare Implementation of the multiplication in $\mathbb{Z}/p\mathbb{Z}$
- 4 Implementation of the FFT
- 6 Experimental results
- **6** Conclusions

The big prime field FFT in the BPAS library

Our implementation is based on the six-step FFT algorithm:

$$DFT_N = L_K^N (I_J \otimes DFT_K) L_J^N D_{K,J} (I_K \otimes DFT_J) L_K^N \text{ with } N = JK.$$

Here, \otimes denotes the tensor product of two matrices A and B:

$$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}$$

• The stride permutation L_m^{mn} permutes an input vector \vec{x} of length mn:

$$\vec{x}[in+j] \mapsto \vec{x}[jm+i].$$

• The twiddle factor $D_{K,J}$ is a diagonal matrix of the powers of ω .

$$D_{K,J} = \bigoplus_{j=0}^{K-1} \text{diag}(1, \omega_i^j, \dots, \omega_i^{j(J-1)}).$$

Computing DFT_{K^e} through base-case DFT_{K}

- Since $p=r^k+1$, we know that $r^k=-1 \mod p$, r is a 2k-th primitive root of unity in $\mathbb{Z}/p\mathbb{Z}$.
- We know that multiplying by powers of the radix r is cheap.

Recall Fürer's trick

- Define $\eta = \omega^{N/K}$, let $J = K^{e-1}$, and assume that multiplying an arbitrary element of $\mathbb{Z}/p\mathbb{Z}$ by η^i $(0 \le i \le K)$ can be done within O(k) word ops.
- Every arithmetic operation involved in DFT_K at η costs O(k) word ops.
- Therefore, such DFT_K can be performed within $O(K\,\log(K)\,k)$ word ops.

Reducing to base-case

- Let $N = K^e$, then we can compute DFT_{K^e} by DFT_K .
- By choosing K=2k, the multiplication inside DFT_{2k} is cheap.

Computing base-case DFT_K (1/3)

Reducing DFT_K to DFT_2 for $K = 2^n$

• Definition of DFT₂:

$$DFT_2(x_0, x_1) = (x_0 + x_1, x_0 - x_1)$$

- Six-step factorization of DFT_{2^n} : $\mathrm{DFT}_{2^n} = L_2^{2^n} \left(I_{2^{n-1}} \otimes \mathrm{DFT}_2 \right) L_{2^{n-1}}^{2^n} \, D_{2,2^{n-1}} \left(I_2 \otimes \mathrm{DFT}_{2^{n-1}} \right) L_2^{2^n}$
- Example of DFT_8 through DFT_2 :

$$DFT_{8} = L_{2}^{8}(I_{4} \otimes DFT_{2}) L_{4}^{8} D_{2,4} (I_{2} \otimes DFT_{4}) L_{2}^{8}$$
(1)

$$DFT_4 = L_2^4 (I_2 \otimes DFT_2) L_2^4 D_{2,2} (I_2 \otimes DFT_2) L_2^4$$
 (2)

$$DFT_{8} = L_{2}^{8} (I_{4} \otimes DFT_{2}) L_{4}^{8} D_{2,4} (I_{2} \otimes L_{2}^{4}) (I_{4} \otimes DFT_{2})$$

$$(I_{2} \otimes L_{2}^{4}) (I_{2} \otimes D_{2,2}) (I_{4} \otimes DFT_{2}) (I_{2} \otimes L_{2}^{4}) (L_{2}^{8}).$$
(3)

Computing base-case DFT_K (2/3)

Avoiding permutation

- Avoiding the permutation and actually data movement.
- Pre-compute the position of elements after each permutation and hard-code those values in the algorithm for computing the base-case.
- Index of input data: $\vec{M} = (0, 1, 2, 3, 4, 5, 6, 7)$

$$\vec{M}_1 = L_2^8 \vec{M} = (0, 2, 4, 6, 1, 3, 5, 7) \tag{4}$$

$$\vec{M}_2 = (I_2 \otimes L_2^4)\vec{M}_1 = (0, 4, 2, 6)(1, 5, 3, 7) \tag{5}$$

$$DFT_2(0,4) \rightarrow DFT_2(2,6) \rightarrow DFT_2(1,5) \rightarrow DFT_2(3,7)$$
(6)

Twiddle multiplications

• Then, we have the following twiddle matrices as part of DFT₈: $D_{2,2} = \operatorname{diag}(1,1,\omega_1^0,\omega_1^1), \quad D_{2,4} = \operatorname{diag}(1,1,1,1,\omega_0^0,\omega_0^1,\omega_0^2,\omega_0^3)$

• We have
$$\omega_0 = r$$
 and $\omega_1 = r^2$ ($r^8 \equiv 1 \mod p$, for $p = r^4 + 1$).

- Then, the twiddle matrices are updated as follows:
 - $D_{2,4} = \text{diag}(1,1,1,1,1,r,r^2,r^3)$

$$D_{2,2} = \operatorname{diag}(1, 1, 1, r^2) \tag{9}$$

(7)

(8)

Computing base-case DFT_K (3/3)

Example: Computing DFT_8 for vector \vec{a}

```
1: DFT2(a_0, a_4); DFT2(a_1, a_5);
 2: DFT2(a_2, a_6); DFT2(a_3, a_7);
 3: a_6 := a_6 \omega^2:
 4: a_7 := a_7 \omega^2:
 5: DFT2(a_0, a_2); DFT2(a_1, a_3);
 6: DFT2(a_4, a_6); DFT2(a_5, a_7);
 7: a_5 := a_5 \omega^1;
 8: a_3 := a_3 \omega^2;
 9: a_7 := a_7 \omega^2:
10: DFT2(a_0, a_1); DFT2(a_2, a_3);
11: DFT2(a<sub>4</sub>, a<sub>5</sub>); DFT2(a<sub>6</sub>, a<sub>7</sub>);
12: swap(a_1, a_4);
13: swap(a_3, a_6);
14: return \vec{a};
```

Parallelization of the FFT

Choice of the FFT algorithm

- The six-step FFT can be implemented in an iterative fashion.
- Unroll $I_K \otimes \mathrm{DFT}_J$ until there's only DFT on K points.
- There is no data dependency between the iterations of each inner-loop.

Programming considerations

- \bullet CILK: work-stealing scheme, light-weight threads (re-use of the threads), etc.
- The FFT over the crafted BPAS implementation of GFPF incurs less memory accesses than the FFT based on GMP arithmetics; see experimental results.

Implementation of the six-step FFT

```
1: procedure DFT GENERAL(\vec{x}, K, e, \omega,)
2:
        for 0 \le i < e-1 do
3:
            for 0 < i < K^i do
                                                                                 ▶ Can be replaced with Parallel-For.
                \mathsf{stride\_permutation}(x_{iK^{e-i}}, K, K^{e-i-1})
4:
                                                                                                               ⊳ Step 1
5:
           end for
6:
        end for
       \omega_a := \omega^{K^{e-1}}
7:
8:
        for 0 \le j < K^{e-1} do
                                                                                 ▶ Can be replaced with Parallel-For.
9:
            idx := iK
10:
            DFT K(x_{idx}, \omega_a)
                                                                                                               ⊳ Step 2
11:
        end for
12:
        for e-2 \geq i \geq 0 do
            \omega_i := \omega^{K^i}
13.
14.
            for 0 \le i \le K^i do
                                                                                 ▶ Can be replaced with Parallel-For.
                idx := j K^{e-i}
15:
                twiddle(x_{idx}, K^{e-i-1}, K, \omega_i)
16:
                                                                                                               ⊳ Step 3
                stride\_permutation(x_{idx}, K^{e-i-1}, K)
17:
                                                                                                               ⊳ Step 4
18:
            end for
19:
            for 0 \le j < K^{e-1} do
                                                                                 ▶ Can be replaced with Parallel-For.
20:
                idx := iK
21:
                DFT_K(x_{idx}, \omega_a)
                                                                                                               ⊳ Step 5
22:
            end for
23:
            for 0 \le j \le K^i do
                                                                                 ▶ Can be replaced with Parallel-For.
24:
                idx := jK^{e-i}
                stride\_permutation(x_{idx}, K, K^{e-i-1})
25:
                                                                                                               ⊳ Step 6
26.
            end for
27:
        end for
28: end procedure
```

Outline

- Introduction
- @ Generalized Fermat prime field arithmetic
- lacksquare Implementation of the multiplication in $\mathbb{Z}/p\mathbb{Z}$
- 4 Implementation of the FFT
- **6** Experimental results
- **6** Conclusions

Benchmarks

Two approaches: GFPF vs. GMP

- Generalized Fermat prime field arithmetic relying on FFT-based multiplication
- GMP arithmetic.

Benchmarks: Comparing performance of the following

- Multiplication of two arbitrary elements of the big prime field.
- Serial vs. parallel implementation of each approach for computing FFT of large vectors over different big prime fields.
- Each step of an FFT computation.

Experimentation Setup

Table: The set of big primes of different sizes which are used for experimentations.

prime	K(=2k)	k	r
P_8	16	8	$2^{59} + 2^{57} + 2^{39}$
P_{16}	32	16	$2^{58} + 2^{55} + 2^{45}$
P_{32}	64	32	$2^{58} + 2^{55} + 2^{17}$
P_{64}	128	64	$2^{57} + 2^{56} + 2^{11}$

- Intel-i7-7700K: 4-cores @4.50 GHz (8 threads when hyper-threading is enabled), 16 GB of memory (@2133 MHz).
- Xeon-X5650: 6-cores @2.66 GHz (12 threads when hyper-threading is enabled), 48 GB of memory (@1133 MHz).

Multiplication between arbitrary elements in big prime fields

Table: The running-time of computing 10^6 modular multiplications in $\mathbb{Z}/p\mathbb{Z}$ for P_8 , P_{16} , P_{32} , and P_{64} (measured on Intel-i7-7700K).

prime	k	GFPF	GMP	Ratio $(\frac{t_{GFPF}}{t_{GMP}})$
P_8	8	645 (ms)	171(ms)	3.77x
P_{16}	16	1318 (ms)	417 (ms)	3.16x
P32	32	2852 (ms)	1179 (ms)	2.41x
P ₆₄	64	6101 (ms)	3452 (ms)	1.76x

Table: Time (in milliseconds) and percentage (%) of the total time spent in different steps of computing 10^6 GFPF multiplications of arbitrary elements in $\mathbb{Z}/p\mathbb{Z}$ for primes P_8 , P_{16} , P_{32} , and P_{64} (measured on Intel-i7-7700K).

prime	k	Convolution		CRT		LHC		Normalization	
printe	, a	Time	%	Time	%	Time	%	Time	%
P_8	8	323	45	150	21	208	29	35	5
P ₁₆	16	851	52	288	18	425	26	64	4
P_{32}	32	2083	57	563	15	847	23	177	5
P_{64}	64	4751	61	1115	14	1497	19	434	6

FFT over big prime fields: measured on Intel-i7-7700K

Table: The running-time (in milliseconds) and ratio ($t_{\rm GFPF}/t_{\rm GMP}$) of serial and parallel computation of FFT on vectors of size $N=K^e$ over $\mathbb{Z}/p\mathbb{Z}$ for P_4 , P_8 , P_{16} , P_{32} , P_{64} , and P_{128} (measured on Intel-i7-7700K).

prime	k	K			Serial		Parallel			Parallel Speedups	
prime	K	, A	e	GFPF	GMP	tGFPF tGMP	GFPF	GMP	tGFPF tGMP	GFPF	GMP
P_4	4	8	2	0.019	0.030	0.63x	0.057	0.118	0.48x	0.33	0.25
P_4	4	8	3	0.314	0.363	0.86x	0.215	0.276	0.77x	1.46	1.32
P_8	8	16	2	0.181	0.202	0.89x	0.117	0.143	0.81x	1.55	1.41
P_8	8	16	3	5.771	5.486	1.05x	1.603	2.247	0.71x	3.60	2.44
P ₁₆	16	32	2	1.644	1.730	0.95x	0.513	0.693	0.74x	3.20	2.50
P ₁₆	16	32	3	103.423	104.620	0.98x	24.052	35.017	0.68x	4.30	2.99
P ₃₂	32	64	2	14.815	20.341	0.72x	3.507	5.411	0.64x	4.22	3.76
P ₃₂	32	64	3	1922.373	2431.867	0.79x	462.746	702.163	0.65x	4.15	3.46
P ₆₄	64	128	2	140.995	278.188	0.50x	33.507	69.879	0.47x	4.21	3.98
P ₁₂₈	128	256	2	580.961	3745.353	0.15x	154.064	905.799	0.17x	3.77	4.13

FFT over big prime fields: measured on Xeon-X5650

Table: The running-time (in milliseconds) and ratio ($t_{\rm GFPF}/t_{\rm GMP}$) of serial and parallel computation of FFT on vectors of size $N=K^e$ over $\mathbb{Z}/p\mathbb{Z}$ for P_4 , P_8 , P_{16} , P_{32} , P_{64} , and P_{128} (measured on Xeon–X5650).

prime	k	K	_		Serial			Parallel		Parallel :	Speedups
prime	K	Λ.	e	GFPF	GMP	tGFPF tGMP	GFPF	GMP	tGFPF tGMP	GFPF	GMP
P_4	4	8	2	0.051	0.071	0.71x	0.155	0.114	1.35x	0.33	0.62
P_4	4	8	3	0.843	0.917	0.91x	0.452	0.577	0.78x	1.87	1.59
P_8	8	16	2	0.472	0.546	0.86x	0.217	0.320	0.67x	2.18	1.71
P_8	8	16	3	16.661	15.231	1.09x	2.837	4.806	0.59x	5.87	3.17
P ₁₆	16	32	2	4.444	5.085	0.87x	0.877	1.371	0.63x	5.07	3.71
P ₁₆	16	32	3	284.080	297.904	0.95x	41.012	66.635	0.61x	6.93	4.47
P32	32	64	2	39.809	64.307	0.61x	5.701	11.640	0.48x	6.98	5.52
P ₃₂	32	64	3	4674.079	6501.669	0.71x	696.311	1289.061	0.54x	6.71	5.04
P ₆₄	64	128	2	376.450	909.041	0.41x	53.578	140.610	0.38x	7.03	6.46
P ₁₂₈	128	256	2	1395.310	13371.369	0.10x	240.362	1811.282	0.13x	5.81	7.38

Time spent in each step of FFT

Time spent in each step of FFT

Table: Time spent (milliseconds) in different steps of serial and parallel computation of DFT of size $N=K^3$ over $\mathbb{Z}/p\mathbb{Z}$, for prime P_{32} (K=2k=64) measured on Intel-i7-7700K.

Mode	Variant	Precomputation	Permutation	DFT_K	Twiddle
Serial	GFPF	14 (ms)	72 (ms)	444 (ms)	1406 (ms)
Jenai	GMP	6 (ms)	177 (ms)	1229 (ms)	1026 (ms)
Parallel	GFPF	14 (ms)	51 (ms)	82 (ms)	330 (ms)
rafallel	GMP	6 (ms)	181 (ms)	284 (ms)	237 (ms)

Average multiplication time in FFT

K	16			32				64			
e	1	2	3	4	1	2	3	4	1	2	3
FFT-based	0.32	2.96	3.53	3.77	0.65	5.72	6.84	7.31	1.44	10.87	12.98
GMP	4.17	4.17	4.17	4.17	11.79	11.79	11.79	11.79	34.53	34.53	34.53

Table: Average time (in milliseconds) spent in one modular multiplication during computation of FFT over big prime fields, presented for the three implementations measured on Intel-i7-7700K.

Comparing memory accesses GFPF vs. GMP

The number of memory references measured for each variant (and the ratio $\frac{\#_{\text{GFPF D refs}}}{\#_{\text{GMP D refs}}}$) of serial computation of FFT on vectors of size $N=K^2$ over $\mathbb{Z}/p\mathbb{Z}$ for P_{16} , P_{32} , P_{64} , and P_{128} .

Table: Measured on Intel-i7-7700K using Valgrind.

input size		D1 miss	s rate (%)		
$N = K^2$	GFPF	GMP	# GMP refs # GFPF refs	GFPF	GMP
K=16	689,220	1,042,440	1.51x	0.2	0.9
K=32	5,704,483	7,810,065	1.36x	0.5	0.7
K=64	50,718,515	82,608,297	1.62x	0.4	0.5
K=128	535,935,616	1,063,157,320	1.98x	8.0	0.5

Table: Measured on Xeon-X5650 using Valgrind.

input size		D1 miss rate (%)			
$N = K^2$	GFPF	GMP	# GMP refs # GFPF refs	GFPF	GMP
K=16	645,018	1,043,169	1.61x	0.2	0.9
K=32	5,340,965	7,824,678	1.46x	0.5	0.7
K=64	49,143,357	82,748,934	1.68x	0.4	0.5
K=128	556,770,530	1,070,452,476	1.92x	0.7	0.5

Outline

- 1 Introduction
- @ Generalized Fermat prime field arithmetic
- lacktriangle Implementation of the multiplication in $\mathbb{Z}/p\mathbb{Z}$
- 4 Implementation of the FFT
- **6** Experimental results
- **6** Conclusions

Conclusions and future work

Conclusions

- FFT can be used effectively to improve multiplication time in big prime field.
- Using Generalized Fermat prime fields can lower the average time spent in multiplications in FFT.
- The big prime field FFT can be implemented on CPU efficiently.
- Multiplication of arbitrary elements in $\mathbb{Z}/p\mathbb{Z}$ is still a bottleneck.

Future work

- Improving multiplication of arbitrary elements in $\mathbb{Z}/p\mathbb{Z}$, by making each part more efficient.
- Use different polynomial multiplication algorithms for different sizes of the primes.

Thank You!

Your Questions?

Appendix

System cache specifications

Metric	Intel-i7-7700K	xeonnode02
Line size	64	64
L1d cache	32K	32K
L1i cache	32K	32K
L2 cache	256K	256K
L3 cache	8192K	12288K

Considerations for GMP implementation

- Function mpz_mul is not in-place, better to have a separate destination than input arguments.
- Immediate mpz functions are cheaper to use (such mpz_add_ui).
- Due to memory management overhead, mpz_mod is more expensive than mpz_tdiv_r.

Precomputation of twiddle factors

Twiddle matrices are in the form of $\ D_{K,K^{e-s}}$ where $\omega_i = \omega^{K^{(s-1)}} (1 \leq s < e)$

- We know that $\omega^N \equiv r^{2k} \equiv r^K \equiv 1 \mod p$.
- For $y = x \cdot \omega^{i(N/K)+j}$, we only need to compute:
 - ① $y' = x \cdot \omega^{i(N/K)} = x \cdot r^i$ (a cheap multiplication), and
 - 2 $y = y' \cdot \omega^j$ (arbitrary multiplication).
- We can pre-compute ω^j with 0 < j < N/K, leading to a lower pre-computation expense and less memory usage.