Operating Systems

Redundant Array of Inexpensive Disks (RAID)

Thomas Ropars

thomas.ropars@imag.fr

Équipe ERODS - LIG/IM2AG/UJF

2015

References

The content of these lectures is inspired by:

► Operating Systems: Three Easy Pieces by R. Arpaci-Dusseau and A. Arpaci-Dusseau

Other references:

- ▶ Modern Operating Systems by A. Tanenbaum
- Operating System Concepts by A. Silberschatz et al.

Agenda

Introduction

RAID levels

Summary

Agenda

Introduction

RAID levels

Summary

Motivation

In the previous lecture, we have seen how disks basically work.

Motivation

In the previous lecture, we have seen how disks basically work.

Sometimes we would like more:

- Storage space
 - What if I have too many data for a single disk?
- Performance
 - ▶ What if I do a lot of reads and writes (I/O bound)?
- Reliability
 - What if my disk fails?

RAID

History

- ▶ A Case for Redundant Arrays of Inexpensive Disks (RAID) by D. Patterson, G. Gibson and R. Katz (1988)
 - Argue that RAID can perform better than expensive disks
 - Argue that this is true despite decreased MTTF (mean time to failure)
 - Defines 5 levels of RAID (still valid)
- Some manufacturers talk about "Redundant Array of Independent Disks"

RAID

Interface

- ► From the point of view of the OS, a RAID system is just a large, reliable, efficient disk.
- ► Logical I/O: The OS issues logical I/Os to the RAID system

Internals

- A standard connection (eg., SATA, SCSI)
- A set of disks
- Volatile memory for buffering
- Microcontroller(s) that operate the RAID logic
- ▶ Physical I/O: The RAID issues the physical I/Os to the disks

Metrics

- ► Capacity: Given N disks, how much client data can be stored?
- Reliability: How many disks failures may a design tolerate?
 - ▶ In the following, we assume a fail-stop failure model: a disk fail by crashing.
- Performance:
 - ► Latency: single-request latency
 - Steady-state throughput: total throughput of many concurrent requests (sequential or random)

Agenda

Introduction

RAID levels

Summary

RAID 0: Striping

- RAID level 0 is no RAID!
 - no redundancy
- Spread the blocks across the disks in round robin fashion.
 - With N disks, N blocks read/write in parallel
 - ► Often implemented at the granularity of blocks (other: bit-level, byte-level) can be multiple blocks

Disk 0	Disk 1	Disk 2	Disk 3
0	2	4	6
1	3	5	7
8	10	12	14
9	11	13	15

Figure: Striping 16 blocks on 4 disks (2-block granularity)

RAID 0: Striping

Metrics

▶ Reliability: does not tolerate failure

▶ Capacity: $C \times N^1$

Performance: optimal performance

Throughput	2	Latency	y ³
Sequential Read: Sequential Write: Random Read:	$N \times S$	Read: Write:	-
Random Write:			

¹C: capacity of one disk; N: number of disks

2015

²S/R: throughput of one disk with sequential/random accesses

³T: latency of read/write with a single disk

RAID 1: Mirroring

- ► RAID level 1 targets reliability
- ▶ It keeps several copies of each block
- Copies are stored on different disks

Disk 0	Disk 1	Disk 2	Disk 3
0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3

Figure: Mirroring 4 blocks on 4 disks

RAID 1: Mirroring

Metrics

- ▶ Reliability: tolerates N-1 disk failures
- ► Capacity: *C*
- Performance:
 - With random read, multiple reads can be issued in parallel on different disks
 - Write latency increases because we have to wait for slowest disk to finish

Throughput

Latency

Sequential Read: S Read: T Sequential Write: S Write: $\geq T$

Random Read: $N \times R$

Random Write: R

2015

RAID 1+0: Mirroring + striping

- Apply striping across pairs of mirrored disks
- ► RAID 0+1 is also possible (mirror a striping array of disks)
 - Considered less reliable: one disk failure makes a full array unusable.

Disk 0	Disk 1	Disk 2	Disk 3
0	0	2	2
1	1	3	3
4	4	6	6
5	5	7	7

Figure: RAID 1+0 on 4 disks

RAID 1+0: Mirroring + striping

Metrics

- ► Reliability: tolerates 1 disk failure (worst case)
- ▶ Capacity: $N/2 \times C$
- Performance:
 - ► Throughput is improved thanks to striping
 - Mirrored disks can serve different requests on random reads
 - Write latency increases because we have to wait for slowest disk to finish (worst case seek and rotational delay)

Throughput

Latency

Sequential Read: $N/2 \times S$ Read: TSequential Write: $N/2 \times S$ Write: > T

Random Read: $N \times R$ Random Write: $N/2 \times R$

RAID 4: Parity-based redundancy

- Fault tolerance with reduced capacity lost
- Computes a parity block for each strip of blocks and store it on a separate disk
 - ▶ A bit-wise XOR is used to compute parity data (a parity block has the same size as a normal block)
 - If one disk fails, its data can be recovered based on the parity data and the data in the other disks

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	PP_0
4	5	6	7	PP_1
8	9	10	11	PP_2
12	13	14	15	PP_3

Figure: RAID level 4 on 5 disks

RAID 4: Parity-based redundancy

Metrics

- Reliability: tolerates 1 disk failure
- ▶ Capacity: $(N-1) \times C$
- Performance:
 - For sequential writes, parity blocks can be written in parallel with the data stride
 - Writing a single block requires reading the block and the parity block first to be able to update the parity block
 - For random writes, the parity disk becomes the bottleneck (problem of small writes)

I hrough	Laten	cy	
Sequential Read:	$(N-1) \times S$	Read:	Τ
Sequential Write:	(N-1) imes S	Write:	2

Random Read: $(N-1) \times R$

Random Write: R/2

2015

RAID 5: Rotating Parity

- Same advantages as RAID 4 but without the small writes performance issue
- ▶ Rotates the parity blocks across disks

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	PP_0
4	5	6	PP_1	7
8	9	PP_2	10	11
12	PP_3	13	14	15
PP_4	16	17	18	19

Figure: RAID level 5 on 5 disks

RAID 5: Rotating Parity

Metrics

- ▶ Reliability: tolerates 1 disk failure
- ▶ Capacity: $(N-1) \times C$
- Performance:
 - Random reads can use all disks
 - Random writes allow using all disks in parallel but each write require 4 I/0 operations (read/write of data and parity block)

Throughput Latency

Sequential Read: $(N-1) \times S$ Read: T Sequential Write: $(N-1) \times S$ Write: 2T

Random Read: $N \times R$ Random Write: $N/4 \times R$

2015

Agenda

Introduction

RAID levels

Summary

Summary

- Only interested in performance: RAID 0
- ► Random I/O performance and reliability: RAID 1+0
- Reliability and capacity: RAID 4
- ▶ Reliability and capacity + Random I/O performance: RAID 5

References for this lecture

- Operating Systems: Three Easy Pieces by R. Arpaci-Dusseau and A. Arpaci-Dusseau
 - ► Chapter 38: Redundant Disk Arrays (RAID)
- ▶ If you are interested in the topic:
 - ▶ D. Patterson, G. Gibson, and R. Katz. *A case for redundant arrays of inexpensive disks (RAID)*. ACM, 1988.

2015