Calcolo delle Probabilità e Statistica 2021/2022

Scheda di esercizi 1 - Spazi di probabilità

Esercizio 1. Si osservano i risultati del lancio di una moneta e di un dado. Determinare uno spazio campionario Ω che descriva tutti gli esiti dell'esperimento.

Esercizio 2. Chiara e Marco acquistano insieme uno dei 50 biglietti di una pesca di beneficenza. Ci sono 50 premi di cui 7 piacciono a Chiara, 5 a Marco e 1 solo ad entrambi.

- 1. Determinare uno spazio campionario che descriva i possibili esiti della pesca di beneficenza.
- 2. Si considerino gli eventi:
 - C = "il premio piacerà a Chiara",
 - M = "il premio piacerà a Marco".

Scrivere in termini di C ed M gli eventi:

- (a) il premio piacerà a entrambi,
- (b) il premio piacerà ad almeno uno dei due,
- (c) a nessuno dei due piacerà il premio,
- (d) il premio piacerà a uno solo dei due.

Esercizio 3. Sia Ω uno spazio campionario e siano A, B e C tre eventi. Tradurre in formule i seguenti eventi associati ad A, B e C:

- (1) almeno un evento si verifica,
- (2) al più un evento si verifica,
- (3) nessun evento si verifica,
- (4) tutti gli eventi si verificano,
- (5) si verifica esattamente un evento,
- (6) due eventi su tre si verificano.

Tradurre in termini probabilistici le seguenti affermazioni:

- (7) $A \in C$ si escludono a vicenda,
- (8) almeno un evento fra $B \in C$ si verifica certamente.

Esercizio 4. Una moneta viene lanciata due volte. Alessandro vince se al primo lancio esce testa mentre Bernardo vince se al secondo lancio esce croce. Indichiamo con A e B questi due eventi.

- 1. Determinare uno spazio campionario che descriva tutti i possibili esiti dell'esperimento.
- 2. Esprimere i seguenti eventi in termini di A e B:
 - (a) Alessandro non vince,
 - (b) Bernardo non vince,
 - (c) Alessandro e Bernardo vincono entrambi,
 - (d) vince Alessandro ma non Bernardo,
 - (e) vince Bernardo ma non Alessandro,

- (f) almeno uno dei due vince,
- (g) nessuno dei due vince,
- (h) vince soltanto uno dei due,
- (i) esce testa al primo lancio ed esce croce al primo lancio,
- (j) esce testa o croce al secondo lancio.

Esercizio 5. Sia Ω uno spazio campionario e siano A, B, C e D quattro eventi. Tradurre in formule i seguenti eventi associati ad A, B, C e D.

- 1. Esattamente tre eventi su quattro si verificano.
- 2. Si verifica solo C.
- 3. Si verifica solo C oppure si verifica solo D.
- 4. Almeno un evento si verifica.

Esercizio 6. Si consideri $\Omega = \{0,1\}^5$, lo spazio degli esiti di cinque **prove di Bernoulli**¹. Si considerino gli eventi

$$E_n$$
 = "successo alla prova n", per ogni $n = 1, ..., 5$.

Scrivere in termini di E_1, E_2, E_3, E_4, E_5 oppure come sottoinsiemi di Ω i seguenti eventi:

- 1. solo insuccessi,
- 2. solo la terza prova dà un successo,
- 3. nelle prove dispari ci sono solo successi,
- 4. solo un successo.

Esercizio 7. Si consideri $\Omega = \{1 \dots, 6\}^4$, lo spazio degli esiti di quattro lanci di un dado. Per $\ell = 1, \dots, 6$ ed n = 1, 2, 3, 4 si considerino gli eventi

$$E_n^{\ell}$$
 = "faccia ℓ al lancio n ".

Determinare i seguenti eventi:

- (a) esce sempre 1,
- (b) esce sempre 5,
- (c) solo il terzo lancio dà un 3,
- (d) solo un 4.

Esercizio 8. Una ditta riceve richieste di forniture, che possono essere urgenti oppure no, e richiedere la consegna in città oppure fuori città. Per una data richiesta è noto che:

- (i) la probabilità che sia una consegna fuori città è 0.4,
- (ii) la probabilità che sia una consegna urgente è 0.3,
- (iii) la probabilità che sia una consegna non urgente in città è 0.4.

Calcolare:

 $^{^{1}}$ Una prova di Bernoulli è un esperimento aleatorio con solo due esiti possibili, che vengono generalmente indicati con 0 e 1 e chiamati rispettivamente "insuccesso" e "successo".

- (a) la probabilità che sia una consegna urgente fuori città,
- (b) la probabilità che sia una consegna urgente in città.

Esercizio 9. Sia (Ω, \mathbb{P}) uno spazio di probabilità e siano A e B due eventi con probabilità $\mathbb{P}(A) = 0.4$ e $\mathbb{P}(B) = 0.7$, rispettivamente. Date le seguenti affermazioni dire quali sono sicuramente false, quali sono sicuramente false, quali possono essere false:

- 1. $\mathbb{P}(A \cup B) = 0.4$,
- 2. $\mathbb{P}(A \cup B) = 0.7$,
- 3. $\mathbb{P}(A \cup B) \ge 0.7$,
- 4. $\mathbb{P}(A \cup B) = 1.1$,
- 5. $\mathbb{P}(A \cap B) = 0.28$,
- 6. $\mathbb{P}(A \cap B^c) \le 0.3$,
- 7. $\mathbb{P}(A^c \cap B) \geq 0.3$.

Soluzioni

Esercizio 1. $\Omega = \{T, C\} \times \{1, \dots, 6\}$, quindi

$$\Omega = \{(T,1), (T,2), (T,3), (T,4), (T,5), (T,6), (C,1), (C,2), (C,3), (C,4), (C,5), (C,6)\}.$$

Esercizio 2.

- 1. $\Omega = \{1, \dots, 50\}$
- 2. (a) $C \cap M$
 - (b) $C \cup M$
 - (c) $(C \cup M)^c$
 - (d) $(C \cup M) \setminus (C \cap M)$

Esercizio 3.

- (1) $A \cup B \cup C$
- $(2) \ (A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B^c \cap C^c)$
- (3) $(A^c \cap B^c \cap C^c)$
- $(4) (A \cap B \cap C)$
- $(5) (A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C)$
- (6) $(A^c \cap B \cap C) \cup (A \cap B^c \cap C) \cup (A \cap B \cap C^c)$
- (7) $\mathbb{P}(A \cap C) = 0$
- (8) $\mathbb{P}(B \cup C) = 1$

Esercizio 4.

- 1. $\Omega = \{(T,T), (T,C), (C,T), (C,C)\}$
- 2. (a) A^{c}
 - (b) B^c
 - (c) $A \cap B = \{(T, C)\}$
 - (d) $A \cap B^c$
 - (e) $A^c \cap B$
 - (f) $A \cup B$
 - (g) $A^c \cap B^c = \{(C, T)\}$
 - (h) $(A \cap B^c) \cup (A^c \cap B) = \{(T, T), (C, C)\}$
 - (i) Ø
 - (j) Ω

Esercizio 5.

- 1. $(A \cap B \cap C \cap D^c) \cup (A \cap B \cap C^c \cap D) \cup (A \cap B^c \cap C \cap D) \cup (A^c \cap B \cap C \cap D)$
- 2. $A^c \cap B^c \cap C \cap D^c$

- 3. $(A^c \cap B^c \cap C \cap D^c) \cup (A^c \cap B^c \cap C^c \cap D)$
- 4. $A \cup B \cup C \cup D$

Esercizio 6.

- (a) $\bigcap_{n=1}^{5} E_n^c = \{(0,0,0,0,0)\}$
- (b) $E_3 \cap (\cap_{n \neq 3} E_n^c) = \{(0, 0, 1, 0, 0)\}$
- (c) $E_1 \cap E_3 \cap E_5 = \{(1,0,1,0,1), (1,1,1,0,1), (1,0,1,1,1), (1,1,1,1,1)\}$
- (d) $\{(1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0),(0,0,0,1,0),(0,0,0,0,1)\}$, che in termini degli eventi E_n diventa

$$(E_1^c \cap E_2 \cap E_3 \cap E_4 \cap E_5) \cup (E_1 \cap E_2^c \cap E_3 \cap E_4 \cap E_5) \cup (E_1 \cap E_2 \cap E_3^c \cap E_4 \cap E_5) \cup (E_1 \cap E_2 \cap E_3 \cap E_4 \cap E_5) \cup (E_1 \cap E_2 \cap E_3 \cap E_4 \cap E_5).$$

Esercizio 7.

- (a) $E_1^1 \cap E_2^1 \cap E_3^1 \cap E_4^1 = \{(1, 1, 1, 1)\},\$
- (b) $E_1^5 \cap E_2^5 \cap E_3^5 \cap E_4^5 = \{(5,5,5,5)\},\$
- (c) $(E_1^3)^c \cap (E_2^3)^c \cap E_3^3 \cap (E_4^3)^c$,
- (d) $(E_1^4 \cap (E_2^4)^c \cap (E_3^4)^c \cap (E_4^4)^c) \cup ((E_1^4)^c \cap E_2^4 \cap (E_3^4)^c \cap (E_4^4)^c) \cup ((E_1^4)^c \cap (E_2^4)^c \cap (E_3^4)^c \cap (E_4^4)^c) \cup ((E_1^4)^c \cap (E_1^4)^c) \cup ((E_1^4)^c \cap (E_1^4)^c$

Esercizio 8.

- (a) 0.1
- (b) 0.2

Esercizio 9.

- 1. F
- 2. V/F
- 3. V
- 4. F
- 5. V/F
- 6. V
- 7. V