Explainable AI & Leverage Score Sampling

R. Teal Witter

New York University

Shapley Values & Leverage Score Sampling

Joint work with

Christopher Musco New York University

Al Prediction

f(x)**Temperature** 73° Wind speed 11mph Chance of rain 30% Helicopters Enjoyment Traffic

Explaining Predictions

Attribute the prediction to features relative to a baseline

Attribution value!

Explaining Predictions

Attribute the prediction to features relative to a baseline

"Since the traffic is 8 instead of 3, the ride is 1.7 less enjoyable."

 $\mathcal{L}(\cdot,\cdot)$

Temperature	73°	89°	🖟 🚓 🖶 🚗	$f(\mathbf{x})$
Wind speed	11mph	1mph	89° 11mph 30% 5 3	5/10
Chance of rair	30%	0%	89° 11mph 30% 5 8	4/10
Helicopters	2	5	73° 1mph 0% 5 3	6/10
Traffic	8	3	73° 1mph 0% 5 8	8/10
	L: J	L:J		,
	Explicand	Baseline		

Attribution Values

What is the effect of the feature in different settings?

Consider subsets $S \subseteq [n]$ and define $v(S) = f(x^S)$ where

$$S$$
 $\begin{picture}(2,3) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){$

Attribution Values

What is the effect of the feature in different settings?

Consider subsets $S \subseteq [n]$ and define $v(S) = f(x^S)$ where

$$S$$
 $\begin{picture}(2,3) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){$

Next: Define attribution value ϕ_i for every feature $i \in [n]$

Desirable Properties

Null Player: If a feature never changes the prediction, then its attribution value is 0

Symmetry: If two features always induce the same change, then their attribution values are the same

Additivity: For two predictive functions, the attribution value of a feature in the combined function is the sum of the attribution values for each function

Efficiency: The attribution values sum to the difference between the predictions on the explicand and baseline

Shapley Values for Feature Attribution

For a set function $v: 2^{[n]} \to \mathbb{R}$, the *i*th Shapley value is

$$\phi_i = \frac{1}{n} \sum_{S \subseteq [n] \setminus \{i\}} \frac{v(S \cup \{i\}) - v(S)}{\binom{n-1}{|S|}}$$

$$\phi_i = \frac{1}{n} \sum_{k \in [n-1]} \frac{1}{\binom{n-1}{k}} \sum_{S \subseteq [n] \setminus \{i\}: |S| = k} v(S \cup \{i\}) - v(S)$$

Average over sets of size k

Estimating Shapley values

$$\phi_i = \frac{1}{n} \sum_{S \subseteq [n] \setminus \{i\}} \frac{v(S \cup \{i\}) - v(S)}{\binom{n-1}{|S|}}$$

Monte Carlo Sampling: Sample $S, S \cup \{i\}$ to use $v(S \cup \{i\}) - v(S)$

... but samples only used for one Shapley value

Estimating Shapley values

$$\phi_{i} = \frac{1}{n} \sum_{S \subseteq [n] \setminus \{i\}} \frac{v(S \cup \{i\}) - v(S)}{\binom{n-1}{|S|}} = \frac{1}{n} \sum_{S: i \in S} \frac{v(S)}{\binom{n-1}{|S|}} - \frac{1}{n} \sum_{S: i \notin S} \frac{v(S)}{\binom{n-1}{|S|}}$$

Monte Carlo Sampling: Sample $S, S \cup \{i\}$ to use $v(S \cup \{i\}) - v(S)$

... but samples only used for one Shapley value

Maximum Reuse Sampling: Sample S to either add/subtract v(S) for all i

... but magnitude of v(S) is much larger than magnitude of $v(S \cup \{i\}) - v(S)$

Estimating Shapley values

$$\phi_i = \frac{1}{n} \sum_{S \subseteq [n] \setminus \{i\}} \frac{v(S \cup \{i\}) - v(S)}{\binom{n-1}{|S|}}$$

Monte Carlo Sampling: Sample $S, S \cup \{i\}$ to use $v(S \cup \{i\}) - v(S)$

... but samples only used for one Shapley value

Maximum Reuse Sampling: Sample S to either add/subtract v(S) for all i ... but magnitude of v(S) is much larger than magnitude of $v(S \cup \{i\}) - v(S)$

Permutation Sampling: Sample $S_1 \subset S_2 \subset \cdots \subset S_n$ to use $v(S_{\ell+1}) - v(S_{\ell})$... but only 2x reuse

$$\boldsymbol{\phi} = \underset{\boldsymbol{\beta}: \langle \boldsymbol{\beta}, \mathbf{1} \rangle = v([n]) - v(\emptyset)}{\operatorname{arg min}} \sum_{\boldsymbol{z} \in \{0,1\}^n : 0 < ||\boldsymbol{z}||_1 < n} w(||\boldsymbol{z}||_1) (\langle \boldsymbol{\beta}, \boldsymbol{z} \rangle - v(\boldsymbol{z}))^2$$

Best linear fit to set function under weighting

$$w(||z||_1) = \frac{1}{\binom{n}{||z||_1}(n-||z||_1)||z||_1}$$

$$\phi = \underset{\boldsymbol{\beta}: \langle \boldsymbol{\beta}, \mathbf{1} \rangle = v([n]) - v(\emptyset)}{\arg \min} \sum_{\boldsymbol{z} \in \{0, 1\}^n : 0 < ||\boldsymbol{z}||_1 < n} w \left(||\boldsymbol{z}||_1 \right) \left(\langle \boldsymbol{\beta}, \boldsymbol{z} \rangle - v(\boldsymbol{z}) \right)^2$$

$$\boldsymbol{z} \in \mathbb{R}^{2^{n-2} \times n} \quad \boldsymbol{\beta} \in \mathbb{R}^n \quad \boldsymbol{y} \in \mathbb{R}^{2^{n-2}}$$

$$= \underset{\boldsymbol{\beta}: \langle \boldsymbol{\beta}, \mathbf{1} \rangle = v([n]) - v(\emptyset)}{\arg \min} ||\boldsymbol{z} \boldsymbol{\beta} - \boldsymbol{y}||_2$$

$$\phi = \underset{\boldsymbol{\beta}: \langle \boldsymbol{\beta}, \mathbf{1} \rangle = v([n]) - v(\emptyset)}{\operatorname{arg min}} ||\boldsymbol{Z}\boldsymbol{\beta} - \boldsymbol{y}||_{2}$$

Kernel SHAP

$$\widetilde{\boldsymbol{\phi}} = \underset{\boldsymbol{\beta}: \langle \boldsymbol{\beta}, \mathbf{1} \rangle = v([n]) - v(\emptyset)}{\operatorname{arg min}} ||\widetilde{\boldsymbol{Z}}\boldsymbol{\beta} - \widetilde{\boldsymbol{y}}||_{2}$$

- 2. Solve subsampled problem exactly

Kernel SHAP

$$\widetilde{\boldsymbol{\phi}} = \underset{\boldsymbol{\beta}: \langle \boldsymbol{\beta}, \mathbf{1} \rangle = v([n]) - v(\emptyset)}{\operatorname{arg min}} ||\widetilde{\boldsymbol{Z}}\boldsymbol{\beta} - \widetilde{\boldsymbol{y}}||_{2}$$

Constrained to Unconstrained Regression

$$\phi = \underset{\boldsymbol{\beta}:\langle \boldsymbol{\beta}, \mathbf{1} \rangle = v([n]) - v(\emptyset)}{\arg \min} ||\boldsymbol{Z}\boldsymbol{\beta} - \boldsymbol{y}||_{2}$$
$$= \underset{\boldsymbol{\beta}}{\arg \min} ||\boldsymbol{A}\boldsymbol{\beta} - \boldsymbol{b}||_{2} + 1 \frac{v([n]) - v(\emptyset)}{n}$$

- By constraint, we know the component in the 1 direction
- Only optimize to residual target in space orthogonal to 1

Formulate as unconstrained problem so we can apply our favorite tools!

Regression Subsampling

$$\phi = \arg\min_{\beta} ||A\beta - b||_2 + 1 \frac{v([n]) - v(\emptyset)}{n}$$

Leverage Scores

Leverage Scores and Shapley Values

Row z has "leverage":

$$\ell_{\mathbf{z}} = \max_{\mathbf{x}} \frac{(\mathbf{A}\mathbf{x})^2_{\mathbf{z}}}{||\mathbf{A}\mathbf{x}||_2^2}$$

$$\ell_{\mathbf{z}} = \binom{n}{||\mathbf{z}||}^{-1}$$

Very similar to weighting in Shapley value definition!

Leverage SHAP

$$\widetilde{\boldsymbol{\phi}} = \arg\min_{\boldsymbol{\beta}} ||\widetilde{\boldsymbol{A}}\boldsymbol{\beta} - \widetilde{\boldsymbol{b}}||_2 + 1 \frac{v([n]) - v(\emptyset)}{n}$$

Leverage SHAP selects row **z** with probability proportional to leverage score!

- + Paired Sampling
- + Bernoulli Sampling

Leverage SHAP vs Kernel SHAP Probabilities

Leverage SHAP vs Kernel SHAP

	IRIS	California	Diabetes	Adult	Correlated	Independent	NHANES	Communities
Kernel SHAP								
Mean	0.00261	0.0208	15.4	0.000139	0.00298	0.00324	0.0358	130.0
1st Quartile	5.69e-07	0.0031	3.71	1.48e-05	0.00166	0.00163	0.0106	33.5
2nd Quartile	9.52e-06	0.0103	8.19	3.86e-05	0.00249	0.00254	0.0221	53.6
3rd Quartile	0.00181	0.029	20.1	0.000145	0.00354	0.00436	0.0418	132.0
Optimized Kernel SHAP								
Mean	3.28e-14	0.00248	2.33	1.81e-05	0.000739	0.000649	0.00551	21.8
1st Quartile	2.12e-14	0.000279	0.549	2.16e-06	0.00027	0.000187	0.000707	5.85
2nd Quartile	3.55e-14	0.00138	1.26	5.43e-06	0.000546	0.000385	0.0024	13.0
3rd Quartile	4.22e-14	0.0036	3.03	1.63e-05	0.00101	0.000964	0.00665	25.1
Leverage SHAP								
Mean	3.28e-14	0.000186	0.63	5.21e-06	0.000458	0.000359	0.00385	14.7
1st Quartile	2.12e-14	1.91e-05	0.0631	6.3e-07	0.000139	9.51e-05	0.000333	3.6
2nd Quartile	3.55e-14	8.31e-05	0.328	2.33e-06	0.000376	0.000235	0.00149	8.9
3rd Quartile	4.22e-14	0.000231	0.769	7.09e-06	0.000617	0.000556	0.00401	15.3

Table 1: Summary statistics of the ℓ_2 -norm error for every dataset. We adopt the Olympic medal convention: gold, silver and bronze cells signify first, second and third best performance, respectively. Except for ties, Leverage SHAP gives the best performance across all settings.

Accuracy by Sample Size

Accuracy by Noise

Robustness is useful, e.g., $v(S) = \mathbb{E}_{\mathbf{x}^S}[f(\mathbf{x}^S)]$

Theoretical Guarantee

As long as $m = O\left(n\log n + \frac{n}{\epsilon}\right)$, the Leverage SHAP solution $\widetilde{\boldsymbol{\phi}}$ satisfies

$$||A\tilde{\phi} - b||_2^2 \le (1 + \epsilon)||A\phi - b||_2^2$$

with probability 9/10.

Guarantee similar to standard leverage analysis but proof requires

- Modifications for paired sampling
- Modifications for sampling without replacement

Interpretable Corollary

As long as $m = O\left(n\log n + \frac{n}{\epsilon}\right)$, the Leverage SHAP solution $\widetilde{\boldsymbol{\phi}}$ satisfies

$$||\widetilde{\boldsymbol{\phi}} - \boldsymbol{\phi}||_2^2 \le \epsilon \, \gamma ||\boldsymbol{\phi}||_2^2$$

with probability 9/10 where $\gamma = \frac{||A \phi - b||_2^2}{||A \phi||_2^2} \in [0, \infty)$

Intuition: We can find $\widetilde{\boldsymbol{\phi}}$ close to the optimal in objective value but, when optimal solution is bad, $\widetilde{\boldsymbol{\phi}}$ will be far from $\boldsymbol{\phi}$

γ in Practice

Takeaway: γ is a parameter of regression (not artifact of analysis)

Banzhaf Values & Leverage Score Sampling

Joint work with

Yurong Liu NYU

Flip Korn Google

Google

Tarfah Alrashed Dimitris Paparas Google

Juliana Freire NYU

Another Attribution Value?

What is the effect of the feature in different settings?

Consider subsets $S \subseteq [n]$ and define $v(S) = f(x^S)$ where

$$S$$
 $\begin{picture}(2,3) & 89^{\circ} & 11mph & 30\% & 5 & 3 & 5/10 \\ \{2,3,5\} & 89^{\circ} & 11mph & 30\% & 5 & 8 & 4/10 \end{picture}$

Next: Define <u>another</u> attribution value ϕ_i for every feature $i \in [n]$

Desirable Properties

Null Player: If a feature never changes the prediction, then its attribution value is 0

Symmetry: If two features always induce the same change, then their attribution values are the same

Additivity: For two predictive functions, the attribution value of a feature in the combined function is the sum of the attribution values for each function

- **Efficiency:** The attribution values sum to the difference between the predictions on the explicand and baseline
- + **2-Efficiency:** If two features are combined, their combined attribution value is the sum of the features' individual attribution values

John Banzhaf is an activist lawyer, he used Banzhaf values to argue a Nassau County voting system was unfair.

Banzhaf Values

For a set function $v: 2^{[n]} \to \mathbb{R}$, the *i*th Banzhaf value is

$$\phi_i = \frac{1}{2^{n-1}} \sum_{S \subseteq [n] \setminus \{i\}} v(S \cup \{i\}) - v(S)$$

Banzhaf values are

- Simpler
- Empirically easier to approximate

Estimating Banzhaf values

$$\phi_i = \frac{1}{2^{n-1}} \sum_{S \subseteq [n] \setminus \{i\}} v(S \cup \{i\}) - v(S)$$

Monte Carlo (MC): Sample $S, S \cup \{i\}$ to use $v(S \cup \{i\}) - v(S)$

... but samples only used for one Banzhaf value

Maximum Sampling Reuse (MSR): Sample S to either add/subtract v(S) for all i ... but magnitude of v(S) is much larger than magnitude of $v(S \cup \{i\}) - v(S)$

$$\phi = \underset{\beta}{\operatorname{arg min}} ||A\beta - b||_2$$

Special case known since 90's [HH 1992]

Each row/entry corresponds to binary vector

$$\mathbf{z} \in \left\{-\frac{1}{2}, \frac{1}{2}\right\}^n$$

Leverage Scores and Banzhaf Values

Row z has "leverage":

$$\ell_{\mathbf{z}} = \max_{\mathbf{x}} \frac{(\mathbf{A}\mathbf{x})^2_{\mathbf{z}}}{||\mathbf{A}\mathbf{x}||_2^2}$$

$$\ell_{\mathbf{z}} = \frac{n}{2^n}$$

Very similar to weighting in Banzhaf value definition!

Kernel Banzhaf

$$\widetilde{\boldsymbol{\phi}} = \arg\min_{\boldsymbol{\beta}} ||\widetilde{\boldsymbol{A}}\boldsymbol{\beta} - \widetilde{\boldsymbol{b}}||_2$$

Kernel Banzhaf selects row **z** with probability proportional to leverage score!

+ Paired Sampling

(But not Bernoulli Sampling)

Accuracy by Number of Samples

Accuracy by Noise

Theoretical Guarantees

As long as $m = O\left(n\log n + \frac{n}{\epsilon}\right)$, the Kernel Banzhaf solution $\widetilde{\boldsymbol{\phi}}$ satisfies

$$||A\tilde{\phi} - b||_2^2 \le (1 + \epsilon)||A\phi - b||_2^2$$

and, for
$$\gamma = \frac{||A \phi - b||_2^2}{||A \phi||_2^2} \in [0, \infty)$$
, Equivalent for Banzhaf values

$$||\widetilde{\boldsymbol{\phi}} - \boldsymbol{\phi}||_2^2 \le \epsilon \, \gamma ||\boldsymbol{\phi}||_2^2$$

with probability 9/10

Shapley vs Banzhaf Estimators

Why do Leverage SHAP and Kernel Banzhaf perform differently?

Condition Number of \widetilde{A}

Subsampled Banzhaf problem is more well-conditioned.

...an ill-conditioned subsampled problem is not close to the full problem.

Thank you!

Please let me know if you have any questions or comments!

Email: rtealwitter@nyu.edu