Лабораторная работа №4

Цель работы:

Отправка и прием данных в Simulink.

Программное обеспечение:

STM32CubeIDE, Matlab.

Общие сведения:

Схема разрабатываемой системы:

Для формирования сигнала в Matlab можно собрать такую схему:

Для корректного обмена данными с Simulink в блоке Receive необходимо указать Header и Terminator, соответственно в отправляемом пакете от микроконтроллера должны быть байты отвечающие за начало и конец пакета.

Необходимые функции НАL

Запуск таймера в режиме генерации прерывания.

HAL_TIM_Base_Start_IT TIM_HandleTypeDef* htim)

• *htim* – указатель на структуру конфигурации типа TIM_HandleTypeDef.

Передача данных с использованием DMA:

HAL_UART_Transmit_DMA (UART_HandleTypeDef * huart, uint8_t * pData, uint16_t Size)

- *huart* указатель на структуру конфигурации типа UART_HandleTypeDef.
- *pData* указатель на буфер передаваемых данных.
- *Size* количество данных, которые надо передать.

Прием данных с использованием прерывания:

HAL_UART_Receive_DMA (UART_HandleTypeDef * huart, uint8_t * pData, uint16_t Size)

- *huart* указатель на структуру конфигурации типа UART_HandleTypeDef.
- *pData* указатель на буфер для принятых данных.
- *Size* количество данных, которые необходимо принять.

Callback-функция обработки прерывания от таймера:

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef* htim)

• *htim* – указатель на структуру конфигурации типа TIM_HandleTypeDef.

Порядок выполнения работы:

Часть I. Разработка программы при помощи кодгенератора.

- 1. Запустите STM32CubeIDE, в открывшемся окне выберете путь к вашей рабочей папке. В пути к рабочей папке и названии проекта не должно быть русских букв. В этой папке должны храниться все лабораторные работы.
- 2. На основе документации выберете таймер, который будет использован для генерации периодического прерывания.
- 3. В окне графической инициализации контроллера (name.IOC), для USART, с которым работали в прошлой работе добавить передачу данных через DMA для приема и передачи, для потока для приема данных установить циклический режим работы.
- 4. В окне графической инициализации контроллера (name.IOC), задать для Таймера, определенного в предыдущем пункте, Prescaller, Counter Period. Чатота прерывания должна

быть равно 100Гц, для расчета значения делителей взять частоту шины таймер равной 16МГц. Включить прерывания от таймра.

4. В main файле удалить callback-функцию USART, и добавить функцию обработки прерывания от таймера:

```
/* USER CODE BEGIN 4 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef* htim)
{

/* USER CODE END 4 */
```

- 5. В main функции в соответствующей области запустить прием данных по UART при помощи DMA и запустить таймер для работы в режиме прерывания.
- 6. Реализовать следующий алгоритм работы программы:
 - Отправка результата вычислений в Simulink по прерыванию от таймера;
 - B Simulink сформировать пакет для отправки параметров функции на контроллер;
- В контроллере обработать принятый пакет и вычислить новое значение периодической функции;
 - Сформировать пакет для отправки результата вычислений на компьютер;
 - Повторить. алгоритм сначала

Часть II. Разработка программы при помощи регистров.

- 1. Запустите STM32CubeIDE, в открывшемся окне выберете путь к вашей рабочей папке. В пути к рабочей папке и названии проекта не должно быть русских букв. В этой папке должны храниться все лабораторные работы.
- 2. На основе схемы стенда определить, какой UART используется для передачи данных на компьютер и выбрать таймер для генерации периодического прерывания.
- 3. Проинициализировать UART для приема и передачи данных при помощи DMA, включить прерывание по приему дынных. При настройке регистра BRR, принять частоту работы шины, к которой подключён UART, равной 16МГц.
- 4. Инициализировать таймер для генерации периодического прерывания с частотой 100Гц.
- 4. В обработчике прерывания реализовать алгоритм из Части I п.6.

Задания

- 1. Выполните все действия из части І.
- 2. По возможности выполните все действия из части II.

Все пункты заданий по очереди продемонстрируйте преподавателю.

Варианты:

$\mathcal{N}_{\underline{0}}$	Частота	Амплитуда
варианта		
1	1	6
2	2	5

3	3	4
4	4	3
5	5	2
6	6	1
7	6	6
8	5	5
9	4	4
10	3	3
11	2	2
12	1	1