```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
%matplotlib inline

df = pd.read_csv('data_flats.csv', sep=';')
df
```

Out[1]:		id	full_sq	life_sq	floor	sub_area	preschool_quota	preschool_education_centers_raion	school_quota
	0	1	43	27.0	4.0	Bibirevo	5001.0	5	11065.0
	1	2	34	19.0	3.0	Nagatinskij Zaton	3119.0	5	6237.0
	2	3	43	29.0	2.0	Tekstil'shhiki	1463.0	4	5580.0
	3	4	89	50.0	9.0	Mitino	6839.0	9	17063.0
	4	5	77	77.0	4.0	Basmannoe	3240.0	7	7770.0
	•••								
	30464	30469	44	27.0	7.0	Otradnoe	5088.0	4	12721.(
	30465	30470	86	59.0	3.0	Tverskoe	1874.0	4	6772.(
	30466	30471	45	NaN	10.0	Poselenie Vnukovskoe	NaN	0	NaN
	30467	30472	64	32.0	5.0	Obruchevskoe	2372.0	6	6083.0
	30468	30473	43	28.0	1.0	Novogireevo	2215.0	4	5824.(

30469 rows × 56 columns

```
In [2]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30469 entries, 0 to 30468
Data columns (total 56 columns):

II.	~ 1	37 37 77 0	D.I.
#	Column	Non-Null Count	Dtype
0	id	30469 non-null	int64
1	full_sq	30469 non-null	int64
2	life_sq	24086 non-null	float64
3	floor	30302 non-null	float64
4	sub_area	30469 non-null	object
5	preschool_quota	23781 non-null	float64
6	<pre>preschool_education_centers_raion</pre>	30469 non-null	int64
7	school_quota	23784 non-null	float64
8	school_education_centers_raion	30469 non-null	int64
9	school_education_centers_top_20_raion	30469 non-null	int64
10	hospital_beds_raion	16029 non-null	float64
11	healthcare_centers_raion	30469 non-null	int64
12	university_top_20_raion	30469 non-null	int64
13	sport_objects_raion	30469 non-null	int64
14	additional_education_raion	30469 non-null	int64
15	culture_objects_top_25_raion	30469 non-null	int64
16	shopping_centers_raion	30469 non-null	int64
17	office raion	30469 non-null	int64
18	metro min avto	30469 non-null	float64
19	metro_km_avto	30469 non-null	float64

```
20 metro_min_walk
                                         30444 non-null float64
                                         30444 non-null float64
21 metro km walk
22 kindergarten km
                                         30469 non-null float64
23 school km
                                         30469 non-null float64
24 park km
                                         30469 non-null float64
25 green zone km
                                        30469 non-null float64
26 industrial km
                                        30469 non-null float64
                                        30444 non-null float64
27 railroad station walk km
28 railroad station walk min
                                       30444 non-null float64
29 public_transport_station km
                                       30469 non-null float64
30 public transport station min walk
                                        30469 non-null float64
                                         30469 non-null float64
31 mkad km
32 ttk km
                                         30469 non-null float64
33 sadovoe km
                                         30469 non-null float64
34 bulvar_ring_km
                                         30469 non-null float64
35 kremlin km
                                         30469 non-null float64
36 big market km
                                        30469 non-null float64
37 market shop km
                                        30469 non-null float64
38 fitness km
                                         30469 non-null float64
39 swim pool km
                                         30469 non-null float64
40 ice rink km
                                        30469 non-null float64
41 stadium km
                                        30469 non-null float64
42 basketball km
                                         30469 non-null float64
43 hospice morgue km
                                        30469 non-null float64
44 university km
                                        30469 non-null float64
45 workplaces km
                                        30469 non-null float64
                                        30469 non-null float64
46 shopping centers km
47 office km
                                        30469 non-null float64
48 additional education km
                                        30469 non-null float64
                                        30469 non-null float64
49 preschool km
50 big church km
                                        30469 non-null float64
51 church synagogue km
                                        30469 non-null float64
52 theater km
                                        30469 non-null float64
                                         30469 non-null float64
53 museum km
54 ecology
                                        30469 non-null object
                                        30469 non-null int64
55 price doc
```

dtypes: float64(41), int64(13), object(2)

memory usage: 13.0+ MB

Out[3]:		id	full_sq	life_sq	floor	sub_area	preschool_quota	preschool_education_centers_raion	school_quota
	0	1	43	27.0	4.0	Bibirevo	5001.0	5	11065.0
	1	2	34	19.0	3.0	Nagatinskij Zaton	3119.0	5	6237.0
	2	3	43	29.0	2.0	Tekstil'shhiki	1463.0	4	5580.0
	4	5	77	77.0	4.0	Basmannoe	3240.0	7	7770.0
	6	7	25	14.0	10.0	Sokol'niki	933.0	5	5050.0
	•••								
	30461	30466	56	29.0	13.0	Severnoe Tushino	4116.0	5	9891.(
	30462	30467	56	51.0	19.0	Sviblovo	2057.0	1	3741.0
	30465	30470	86	59.0	3.0	Tverskoe	1874.0	4	6772.0
	30467	30472	64	32.0	5.0	Obruchevskoe	2372.0	6	6083.0
	30468	30473	43	28.0	1.0	Novogireevo	2215.0	4	5824.(

Выявить наличие ошибочных данных

В качестве зависимого признака выступает стоимость квартиры Y (цена квартиры, руб). В качестве независимых выбраны следующие:

- 1. full_sq общая площадь;+
- 2. life_sq жилая площадь;+
- 3. floor этаж;-
- 4. sub_area служебные площади;-
- 5. preschool_quota дошкольные образовательные центры;-
- 6. preschool_education_centers_raion районные дошкольные образовательные центры;+
- 7. school_quota школы;-
- 8. school_education_centers_raion районные школы;+
- 9. school_education_centers_top_20_raion рейтинг районных школ;-
- 10. hospital_beds_raion районные больницы;-
- 11. healthcare_centers_raion районные центры здоровья;-
- 12. university_top_20_raion рейтинг районных институтов;-
- 13. sport_objects_raion районные спортивные объекты;+
- 14. additional_education_raion дополнительные районные образовательные учереждения;-
- 15. culture_objects_top_25_raion рейтинг районных культурных объектов;-
- 16. shopping_centers_raion районные шоппинг центров;-
- 17. office_raion районные учереждения;-
- 18. metro_min_avto время до метро на машине;+
- 19. metro_km_avto расстояние до метро на машине;+
- 20. metro_min_walk время до метро пешком;+
- 21. metro_km_walk расстояние до метро пешком;+
- 22. kindergarten_km расстояние до детского сада;+
- 23. school_km расстояние до школы;+
- 24. park_km расстояние до парка;+
- 25. green_zone_km расстояние до зеленой зоны;-
- 26. industrial_km расстояние до промышленного предприятия;-
- 27. railroad_station_walk_km расстояние до станции;+
- 28. railroad_station_walk_min минимальное расстояние до станции;+
- 29. public_transport_station_km расстояние до остановки общественного транспорта;+
- 30. public_transport_station_min_walk минимальное расстояние до остановки общественного транспорта;+
- 31. mkad_km расстояние до МКАДа;+
- 32. ttk_km расстояние до TPK;-
- 33. sadovoe_km расстояние до Садового кольца;+
- 34. bulvar_ring_km расстояние до Бульварного кольца;+
- 35. kremlin_km расстояние до Кремля;+
- 36. big_market_km расстояние до крупного рынка;+
- 37. market_shop_km расстояние до рынка;+
- 38. fitness_km расстояние до фитнеса;+
- 39. swim_pool_km расстояние до бассейна;-
- 40. ice_rink_km расстояние до катка;+

- 41. stadium_km расстояние до стадиона;+
- 42. basketball_km расстояние до секции баскетбола;-
- 43. hospice_morque_km расстояние до хосписа;+
- 44. university_km расстояние до университета;-
- 45. workplaces_km расстояние до работы;-
- 46. shopping_centers_km расстояние до торгового центра;+
- 47. office_km расстояние до офиса;-
- 48. additional_education_km расстояние до центра доп.образования;+
- 49. preschool_km расстояние до дошкольного учреждения;+
- 50. big_church_km расстояние до церкви;-
- 51. church_synagogue_km расстояние до синагоги;+
- 52. theater_km расстояние до театра;-
- 53. museum_km расстояние до театра;-
- 54. ecology эколология;-

Следует отметить, что переменные, Y, X2 — X4 непрерывные, X1, X5, X8 — категориальные переменные.

Задача работы состоит в построении уравнения множественной регрессии для предложенных данных в виде:

$$Y = f(X_1, X_2, X_3, \dots, X_{54})$$

Исследуя распределение значиний каждого столбца, выяснили что некотороые данные не подчиняются нормальному закону распределения, поэтому мы исключаем их из выборки. Далее строим попарную корреляционную матрицу для дальнейшего исследования выбросов данных.

```
In [15]: sns.set()
    sns.displot(df['full_sq'])
```

Out[15]: <seaborn.axisgrid.FacetGrid at 0x1e6c6e4b9a0>

Out[4]:	full_sq	life_sq	preschool_education_centers_raion	school_education_centers_raion	sport_objects_raion	metro_
0	43	27.0	5	5	7	
1	34	19.0	5	8	6	
2	43	29.0	4	7	5	
4	77	77.0	7	9	25	
6	25	14.0	5	5	17	
•••						
30461	56	29.0	5	5	1	
30462	56	51.0	1	2	4	
30465	86	59.0	4	4	29	
30467	64	32.0	6	8	11	
30468	43	28.0	4	4	7	

13652 rows × 31 columns

```
In [5]:
    correlation = df_cut.corr()
    fig = plt.figure()
    axes = fig.add_axes([0,0,5,5])
    sns.heatmap(correlation, annot=True, cmap='rainbow')
```

Out[5]: <Axes:>


```
In [6]: np.linalg.matrix_rank(correlation)
```

Out[6]: 2

In [7]: np.linalg.det(correlation)

Out[7]: -8.510628290780297e-58

По получивышейся матрице видно, что требуется убрать зависящие друг от друга данные: это - metro_min_avto, metro_km_avto, metro_min_walk, metro_km_walk, park_km;

Out[8]:		full_sq	life_sq	sport_objects_raion	metro_min_avto	mkad_km	kremlin_km	fitness_km	shopping_centers_kn
	0	43	27.0	7	2.590241	1.422391	15.156211	0.485841	0.648488
	1	34	19.0	6	0.936700	9.503405	8.698054	0.668364	0.51931 ⁻
	2	43	29.0	5	2.120999	5.604800	9.067885	0.733101	1.486533

	full_sq	life_sq	sport_objects_raion	metro_min_avto	mkad_km	kremlin_km	fitness_km	shopping_centers_kn
4	77	77.0	25	1.257186	11.616653	2.578671	0.220288	0.429052
6	25	14.0	17	1.453762	8.618597	6.468719	0.132256	0.513689
•••		•••						
30461	56	29.0	1	2.622565	1.486707	16.626186	1.003262	0.232778
30462	56	51.0	4	0.815305	5.363124	10.514468	0.378930	0.187828
30465	86	59.0	29	1.060577	13.100989	3.269284	0.398831	0.540003
30467	64	32.0	11	3.377814	2.327138	13.622569	0.412813	1.108672
30468	43	28.0	7	0.584636	1.920884	11.812614	0.819001	0.22460 ⁻

13652 rows × 11 columns

```
In [9]:
    correlation = df_cut.corr()
    fig = plt.figure()
    axes = fig.add_axes([0,0,2,2])
    sns.heatmap(correlation, annot=True, cmap='rainbow')
```

Out[9]: <Axes:>


```
Out[10]: 11
In [11]:
         np.linalg.det(correlation)
        0.00415845664671564
Out[11]:
In [12]:
         from sklearn.model selection import train test split
         from sklearn.linear model import LinearRegression
         from sklearn import metrics
         X = df cut.iloc[:, 0:10].values
         Y = df cut.iloc[:,10].values
         X train, X test, Y train, Y test = train test split(X, Y, test size=0.3)
         my model = LinearRegression()
         my model.fit(X train, Y train)
         y pred = my model.predict(X test)
         print(my model.intercept_,my_model.coef_)
         print('MAE:', metrics.mean absolute error(Y test, y pred))
         print('MSE:', metrics.mean squared error(Y test, y pred))
         print('R 2:', metrics.r2 score(Y test,y pred))
        4635337.874932846 [ 10239.38405155 129535.52205714 3439.8884422
                                                                            -26550.48497499
           93980.24797157 -110508.22765728 -712115.79411557 -134789.69964381
            6861.51310649 -259882.8599155 ]
        MAE: 2789188.533963208
        MSE: 26381757876418.07
        R 2: 0.29691794125069515
In [28]:
                                                  , ..., 0.64848764,
        array([[43. , 27. , 7.
Out[28]:
                8.14859077, 0.62818655],
                                                   , ..., 0.51931132,
               [34. , 19. , 6.
                 6.12707278, 0.47144652],
               [43. , 29. , 5.
                                                  , ..., 1.48653302,
                0.76756877, 0.75594602],
                                                  , ..., 0.54000281,
                     , 59. , 29.
               [86.
                2.96573222, 0.31002056],
               [64. , 32. , 11.
                                                   , ..., 1.1086716 ,
                2.37410568, 0.47602088],
                                                  , ..., 0.22460143,
               [43. , 28. , 7.
                 3.64165629, 0.86733182]])
In [13]:
         median = df cut.price doc.median()
         print (median)
         IQR = df cut.price doc.quantile(0.75, interpolation='midpoint') - df cut.price doc.quantil
         perc25 = df_cut.price_doc.quantile(0.25, interpolation='midpoint')
         perc75 = df cut.price doc.quantile(0.75, interpolation='midpoint')
         print('25-й перцентиль:{},'.format(perc25),
               '75-й перцентиль: {},'.format(perc75),
               "IQR: {}, ".format(IQR),"Гарницы выбросов: [{f}, {l}].".format(f=perc25 - 1.5*IQR,
                                                                          l=perc75+1.5*IQR))
         df cut.price doc.loc[df cut.price doc.between(perc25-1.5*IQR,
                                                     perc75+1.5*IQR)].hist(bins=30,
                                                                          range=(1e+5, 8e+7),
```

```
plt.legend()
        df cut = df cut.loc[df cut.price doc.between(perc25-1.5*IQR,
                                       perc75+1.5*IQR)]
        df cut.price doc.describe()
        6700000.0
        25-й перцентиль: 5250000.0, 75-й перцентиль: 9100000.0, IQR: 3850000.0, Гарницы выбросов:
        [-525000.0, 14875000.0].
        count
               1.273600e+04
Out[13]:
               6.770514e+06
        mean
               3.054684e+06
               1.000000e+05
        min
        25%
               5.100000e+06
        50%
               6.500000e+06
        75%
               8.400000e+06
               1.485000e+07
        max
        Name: price doc, dtype: float64
                                                IOR
        5000
        4000
        3000
        2000
        1000
                                                  8
                                                  le7
In [14]:
        X = df cut.iloc[:, 0:10].values
        Y = df cut.iloc[:,10].values
        X train, X test, Y train, Y test = train test split(X, Y, test size=0.4)
        my model = LinearRegression()
        my model.fit(X train, Y train)
        y pred = my model.predict(X test)
        print(my model.intercept ,my model.coef )
        print('MAE:', metrics.mean absolute error(Y test, y pred))
        print('MSE:', metrics.mean squared error(Y test, y pred))
        print('R 2:', metrics.r2 score(Y test, y pred))
        44389.19661411 -45061.0936616 -411071.365728 -216257.75805989
            7514.55780977 -66484.0761289 ]
        MAE: 2108057.6841243743
        MSE: 8031448007010.996
        R 2: 0.15343000540758012
In [19]:
        len(X)
        12736
Out[19]:
```

In [15]:

label='IQR')

```
full_sq life_sq sport_objects_raion kremlin_km price_doc
Out[15]:
             0
                   43
                         27.0
                                             7
                                                 15.156211
                                                            5850000
             1
                   34
                         19.0
                                             6
                                                 8.698054
                                                           6000000
             2
                                            5
                                                9.067885 5700000
                   43
                         29.0
             4
                   77
                         77.0
                                            25
                                                 2.578671 16331452
                                                 6.468719 5500000
             6
                   25
                         14.0
                                            17
          30461
                   56
                         29.0
                                            1
                                                 16.626186 12000000
                  56
         30462
                        51.0
                                            4
                                                10.514468 10262010
         30465
                  86
                        59.0
                                           29
                                                3.269284 25000000
          30467
                  64
                         32.0
                                           11
                                                13.622569 13500000
          30468
                  43
                         28.0
                                                11.812614 5600000
```

13652 rows × 5 columns

```
In [16]:
    correlation = df_cut.corr()
    fig = plt.figure()
    axes = fig.add_axes([0,0,2,2])
    sns.heatmap(correlation, annot=True, cmap='rainbow')
```

Out[16]: <Axes:>


```
In [17]:
         median = df cut.price doc.median()
         print (median)
         IQR = df cut.price doc.quantile(0.75, interpolation='midpoint') - df cut.price doc.quantil
         perc25 = df cut.price doc.quantile(0.25, interpolation='midpoint')
         perc75 = df cut.price doc.quantile(0.75, interpolation='midpoint')
         print('25-й перцентиль:{},'.format(perc25),
                '75-й перцентиль: {},'.format(perc75),
                "IQR: {}, ".format(IQR),"Гарницы выбросов: [{f}, {l}].".format(f=perc25 - 1.5*IQR,
                                                                               l=perc75+1.5*IQR))
         df cut.price doc.loc[df cut.price doc.between(perc25-1.5*IQR,
                                                        perc75+1.5*IQR)].hist(bins=30,
                                                                               range=(100000,20000000
                                                                               label='IQR')
         plt.legend()
         df cut = df cut.loc[df cut.price doc.between(perc25-1.5*IQR,
                                          perc75+1.5*IQR)]
         df cut.price doc.describe()
         6700000.0
         25-й перцентиль:5250000.0, 75-й перцентиль: 9100000.0, IQR: 3850000.0, Гарницы выбросов:
         [-525000.0, 14875000.0].
                 1.273600e+04
         count
Out[17]:
```

mean 6.770514e+06 std 3.054684e+06 min 1.000000e+05 25% 5.100000e+06 50% 6.500000e+06 75% 8.400000e+06

max 1.485000e+07
Name: price doc, dtype: float64


```
In [18]:
         from sklearn.model selection import train test split
         from sklearn.linear model import LinearRegression
         from sklearn import metrics
         X = df cut.iloc[:, 0:4].values
         Y = df cut.iloc[:,4].values
         X train, X test, Y train, Y test = train test split(X, Y, test size=0.3)
         my model = LinearRegression()
         my model.fit(X train, Y train)
         y pred = my model.predict(X test)
         print(my model.intercept ,my model.coef )
         print('MAE:', metrics.mean absolute error(Y test, y pred))
         print('MSE:', metrics.mean squared error(Y test, y pred))
         print('R 2:', metrics.r2 score(Y test, y pred))
        5988651.062510242 [ 3298.70480272 51856.61088341 -5809.9270071 -71888.46582746]
        MAE: 2105834.8919098536
        MSE: 7993092993899.628
```

In [29]: df.describe(include=['bool','object'])

R 2: 0.1331818786509401

Out[29]: sub_area ecology

 count
 13652
 13652

 unique
 83
 5

 top
 Nekrasovka
 poor

 freq
 585
 4766

In [30]: df.describe()

Out[30]: id full_sq life_sq floor preschool_quota preschool_education_centers_raion 13652.000000 13652.000000 13652.000000 13652.000000 13652.000000 **count** 13652.000000 mean 15019.892616 52.851084 6.943525 2743.145327 4.723923 33.052959

	id	full_sq	life_sq	floor	preschool_quota	preschool_education_centers_raion
std	8856.988104	50.719559	19.660150	5.017495	1459.098589	1.863767
min	1.000000	1.000000	0.000000	0.000000	0.000000	1.000000
25%	7578.750000	38.000000	20.000000	3.000000	1768.000000	4.000000
50%	15198.500000	45.000000	29.000000	6.000000	2508.000000	5.000000
75%	22367.250000	61.000000	42.000000	10.000000	3494.000000	6.000000
max	30473.000000	5326.000000	637.000000	77.000000	7610.000000	10.000000

8 rows × 54 columns

-	-	-	
l n		- 1	
	L		۰