网络协议分析与实现

鲍青

杭州电子科技大学网络空间安全学院

E-mail: qbao@hdu.edu.cn

目录

- ICMP 原理
- ICMP 报文格式
- ICMP 软件整体结构
- PING 程序实现

Overview

- IP lack of
 - error control

- a router cannot find a route to the final destination Time-to-live field has a 0 value destination discards all fragments of a datagram
- IP has no error-reporting or error-correcting mechanism
- assistance mechanism
 - A mechanism for host and management requires
- ICMP (Internet Control Message Protocol)
 - A companion to the IP, to compensate for the above two deficiencies
 - Provide error reporting (而不是 error-correcting!) for IP
 - Provide assistance mechanism for other layers (TCP/UDP and application)
 - 主机可以通过使用 ICMP 与 Internet 中路由器或者主机实现控制报 文的通信

Error Reporting VS Error Correction

- IP 传输过程中出现差错是不可避免的
 - IP 分组传输出现差错时,会产生相应的 ICMP 报文
 - 通过 ICMP 报文提供差错报告
- ICMP 差错报告只能送给 IP 分组的源站,协议只 提供差错处理建议
 - 原因:
 - IP 数据报中只记录了 IP 源和目的地址,而没有记录完整路由
 - 检查到错误的路由器无法了解分组经过了哪些中间路由器
 - 差错纠正由上层协议负责

源站可能无法确定差错源, 需要与网络管理员一起协作处理

Internet Control Message Protocol

- RFC792: Internet Control Message Protocol, 1981
- RFC1256: ICMP Router Discovery Messages, 1991

Message delivery and Encapsulation

- ICMP在IP之上实现,逻辑上与IP同在网络层
 - Connectionless communication
 - <mark>直接送达目的站点</mark>,沿途的转发路由器不能获知 ICMP 报文内容 ICMP
- Encapsulation

message

Protocol = 1

IP header IP data

Frame Frame data Trailer (if any)

24/1/15 TCP/IP Analysis

Chapter 8 ICMP

- Overview
- Types of messages
 - Message format
 - Error reporting
 - Query
 - Checksum
 - ICMP package

Types of Messages

ICMP messages

Error-reporting 差錯振告

To report problems
that a router or a
destination host may
encounter when it
processes an IP packet

Query 测试查询

To help a host or a network manager get specific information from a router or another host

过时:

15 Information request Types 16 Information response

Category	Type	Message	Reason
	3	Destination unreachable	Unreachable
Error-	4	Source quench	Congestion
reporting messages	11	Time exceeded	Too long route
	12	Parameter problem	Format error
	5	Redirection	Route changed
Query messages	8 or 0	Echo request or reply	Reachability
	13 or 14	Timestamp request or reply	Synchronization
	17 or 18	Address mask request or reply	Mask maintenance
	10 or 9	Router solicitation or advertisement	Coincidence between routers

Message Format

Error Reporting

- ICMP just simply report errors → not correct
- ICMP always reports error messages to the original source
- ICMP error message will NOT be generated for:
 - A datagram carrying an ICMP error message
 - A fragmented datagram that is NOT the first fragment
 - A datagram having a multicast address
 - A datagram having a special address such as 127.0.0.0 or 0.0.0.0

Contents of Data Field for Error Messages

Received datagram

Destination Unreachable

- When a router cannot route a datagram or a host cannot deliver a datagram
 - The datagram is discarded
 - The router or the host sends a destination unreachable message back to the source

不可达的原因

Type = 3

Code = 0~12

Checksum

A router cannot detect all problems that prevent the delivery of a packet

0x00000000

IP header + 8 bytes IP data

供源站分析错误

Destination Unreachable Codes

Code	Description	Code	Description
0	网络不可达	7	目的主机未知
1	主机不可达	8	源主机被隔离
2	协议不可达	9	与目的网络的通信被禁止
3	端口不可达	10	与目的主机的通信被禁止
4	需要分片,但 DF=1	11	对指定 TOS ,网络不可 达
5	源路由失败	12	对指定 TOS ,主机不可 达

哪些目的不可达报文只能由目的主机产生?

哪些目的不可达报文只能由路由器产生?

Source Quench (源点抑止)

- The lack of flow control in IP → congestion
 - 拥塞: 路由器中队列溢出
 - 源站点,中继节点(Router),目的站点间没有关于流量信息的通信
 - 主机产生的数据量可能比网络快
 - 不适当的路由使流量过分集中,超过信道容量
 - 路由器的转发性能低
- 路由器或主机因拥塞丢弃 IP 分组时,向源站发送 ICMP 源抑制报文,通知源站
 - The datagram has been discarded
 - There is a congestion somewhere in the path and the source should slow down the sending process
 —quench

Source Quench (源点抑止)

- Congested router or destination sends one source-quench ICMP for each discarded datagram to the source
- There is no mechanism to tell the source that the congestion has been relieve

Type = 4	Code = 0	Checksum	
0x0000000			
IP header			
3 bytes IP data			

24/1715

TCP/IP Analysi

The Solution of the Congestion

- 发送队列缓冲: 缓解短暂的突发数据
- 丢弃报文,产生源抑制 ICMP 报文给源站
 - 丢弃算法 QoS
 - 源站减缓发送速率
 - 源站没有收到源抑制报文后逐步提高发送速率
- 源抑制报文的拥塞控制能力
 - 只能解决因某个特定主机问题造成的拥塞
 - 对因路由或路由器问题造成的拥塞不起作用

Time Exceeded

- 若数据报的 TTL = 0 , 路由器丢弃分组,并向源站发送 ICMP 超时报文
 - 路由器对每一个被处理数据报的 TTL 值自动减 1
- <mark>目的主机</mark>为需要重组的数据报启动定时器,如果重组无法 在定时内完成,丢弃分组,并向源站发送 I*CMP* 超时报文

```
Code = 0 —— 路由器检测到分组的 TTL 值为 0
Code = 1 —— 目的站在规定时间内没有收到所有分片
```

Type = 11	Code = 0,1	Checksum		
0x0000000				
	IP header			
+				
	8 bytes IP data			

Parameter Problem

路由器或主机因首部字段格式或取值错误 而丢弃报文时,向源站发送 ICMP 参数问

```
Code = 0 —— 首部字段错误,指针字段指向错误字节 Code = 1 —— 缺少所需的选项部分,指针字段无效
```

Type = 12	Code = 0,1	Checksum	
Pointer	0x0000000		
IP header			
+			
8 bytes IP data			

Redirection

• 重定向(改变路由): 主机配置最少的路由信息,可以从路由器了解新的路由

Net 1	直接交付
Net 2	直接交付
0,0,0,0/0	R1

A want to send datagrams to B, but it doesn't know R2 is the better choice. What will it do?

Redirection message

20

Format

Type = 5	Code = 0~3	Checksum		
IP address of the target router				
IP header				
+				
	8 bytes IP data			

Code	Description
0	Network specific
1	Host specific
2	Network specific (specified service)
3	Host specific (specified service)

思考

• 在以下情况中,重定向报文是否有用?

R2 发出的重定向 报文应该送给谁?

Query

- 功能:
 - 帮助主机从某个路由器或主机处得到特定的信息
- 这种类型的 ICMP 报文的通信特点:成对 出现
 - 一个节点产生请求 ICMP
 - 目的节点用特定的 ICMP 报文应答

Query

Echo Request and Reply For diagnostic purposes: whether two systems can communicate with each other 一确定 即是能否通信

Timestamp Request and Reply

Type = 13, 14	Code = 0	Checksum
Identifier		Sequence number
Original timestamp (filled by source)		
Receive timestamp (filled by destination)		
Transmit timestamp (filled by destination)		

- Used to calculate the round-trip time (ms)
 - 发时间 = 收时戳 初始时戳,收时间 = 返回时间 发时戳
 - 往返时间 = 发时间 + 收时间
- Used to synchronize two clocks in two machines
- 由于路径、传输,难以得到非常精确的时间

Calculate the time

Mask Request and Reply

Type = 17, 18	Code = 0	Checksum
Identifier		Sequence number
Mask		

• 应用

- 供 IP 协议软件使用
- 主机知道路由器地址时,可以向路由器发送请求
- 不知道路由器时,可广播发送,路由器作应答

Route Solicitation and Advertisement

• 主机发送路由器询问报文,查询本网中的路由器

Type = 10	Code = 0	Checksum
Identifier		Sequence number

路由器发送路由器通告报文,通告自己以及所知的本网中其他路由器的存在

Type = 10	Code = 0	Checksum	
Identifier		Sequence number	
	Router a	ddress 1	
	Address preference 1		
	Router address 2		
Address preference 2			
	•••••		

ICMP Package

Summary

- ICMP
 - 作用、通信方式
- ICMP 报文
 - 封装: 直接封装在 IP 分组中
 - 类型: 差错报告(传输特点)、测试查询
 - 作用、特点