Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет инф	рормационных тех	кнологий и уп	равления
Кафедра интелл	ектуальных инфор	рмационных т	ехнологий

Отчет по лабораторной работе №1 по курсу «Модели решения задач в интеллектуальных системах» Тема: Сжатие графической информации линейной рециркуляционной сетью.

Вариант 14

Выполнил студент группы 021702:	Латышев А. Т.	
Проверил:	Жук А. А.	

Минск 2022

Цель: Ознакомиться, проанализировать и получить навыки реализации модели линейной рециркуляционной сети для задачи сжатия графической информации.

Задание:

Реализовать модель линейной рециркуляционной сети с адаптивным шагом обучения.

Описание модели:

В лабораторной работе выполняется сжатие изображений формата PNG, BMP.

Входные данные:

```
block_width — ширина прямоугольника;
block_height — высота прямоугольника;
alpha (α) — коэффициент обучения;
maximum_error (е) — максимальная допустимая ошибка;
compress — количество нейронов скрытого слоя.
```

Выходные данные:

Z – коэффициент сжатия (регулируется количеством нейронов скрытого слоя сети);

E – суммарная ошибка для обучающей выборки;

I — число итераций.

В отчёте содержатся графики и таблицы следующих зависимостей:

- 1) числа итераций обучения от коэффициента сжатия **Z** (для фиксированного изображения и параметров);
- 2) числа итераций обучения для разных изображений (для фиксированных параметров и \mathbf{Z});
- з) числа итераций от е (остальные параметры фиксированы);
- 4) числа итераций от α (остальные параметры фиксированы).

Входные параметры:

- 1) изображение 256х256
- 2) $block_width = block_hieght = 8$
- 3) e = 1

compress	Z	Ι
24	2.5	7
20	3.01	12
16	3.76	25
12	5.01	28

Входные параметры

- 1) изображение 256х256
- 2) $block_width = block_hieght = 8$
- 3) compress = 25

E	Ι
8	15
7.5	16
6.5	18
6	23

Входные параметры

- 1) изображение 256х256
- 2) block_width = block_hieght =8
- 3) compress = 25
- 4) error = 10

a	I
0.001	96
0.002	38
0.003	21
0.005	15
0.007	11

Пример работы:

Вывод:

В результате лабораторной работы была реализована модель линейной рециркуляционной сети с адаптивным шагом обучения. Были получены таблицы и графики зависимости кол-ва итераций от других параметров.

На их основе выявлено следующее:

1) При увеличении коэффициента сжатия Z количество итераций i увеличивается

- 2) При увеличении максимально допустимой ошибки е количество итераций і уменьшается
- 3) Количество итераций зависит от исходного изображения и его размера
- 4) При увеличение кол-ва нейронов на скрытом слое уменьшается коэффициента сжатия Z