MATLAB PROJECT for ATW EURECOM January, 2023

- Read carefully the following questions, and using matlab, provide the answers/plots in the form of a report.
- The report should include a title page, and should be properly labeled and named. The report should be in the form of a pdf.
- Graphs should include labels, titles, and captions.
- Each graph should be accompanied with pertinent comments.
- Use optimal (maximum likelihood) decoders, unless stated otherwise.
- To compare the empirical results with the corresponding theoretical result, you should superimpose the two corresponding graphs, and should provide comments and intuition on the comparison.
- For each plot, describe the theoretical background that guides the proper choice of parameters for simulations (i.e., power constraint).
- You can work in groups of four.
- Regarding grading:
 - -25% of total grade
 - All questions are weighted equally.
 - Submit your report (labeled and named), via email, to elia@eurecom.fr
 - Submission deadline is February 16th, 2023.
- Enjoy!

PROBLEM 1 (SPACE-TIME CODES, DIVERSITY TECHNIQUES, ML DECODING)

Consider communication over the 3×1 quasi-static fading MISO channel, using a diagonal code (see below for details) such that the channel model is given by

where $h_i \sim \mathbb{C}N(0,1)$ and $w_i \sim \mathbb{C}N(0,1)$, and where θ is the power normalization factor that lets you regulate SNR.

Here, you are supposed to do a simulation of the action of decoding. Provide the details of how you simulated. Tell us which variables you change in each iteration: h_i , codewords, noise, and tell us how you power normalize (emphasis on θ). Naturally, in each iteration, you decode, using the ML rule

$$\hat{X} = argmin_{X \in \mathcal{X}_{tr}} \|y - \theta \underline{h}X\|^2$$

going over all choices of X in the code \mathcal{X}_{tr} .

NOTE: Do many iterations so that your plots are 'smooth'. In all the above, the y-axis is the probability of error, in log scale ($\log_{10}(\text{Prob})$), and the x-axis is the SNR, in dB.

- 1. Plot the probability of error on a logarithmic scale as a function of SNR(dB) by performing Monte-Carlo simulations for when x_1, x_2, x_3 are independently chosen from 16-PAM
- 2. when $\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} = \begin{pmatrix} s_1 & s_2 & s_3 \end{pmatrix} \cdot R$, where s_1, s_2, s_3 are independently chosen from a QAM constellation such that the rate is 4 bits per channel use, and where R is a nice rotation (orthogonal) matrix of your choice. Justify your choice.
 - Compare and explain the two plots in the above.
 - Comment on each plot, and specifically comment on
 - (a) the value of the minimum SNR that gives a non-zero slope in the probability of error in your plot, as well as
 - (b) comment on the diversity (slope) that your results suggest.

For the above, use ML decoder, and plot for SNR values - in steps of 4dB - up to an SNR value for which your probability of error drops below 10^{-4} . Again, clearly explain how you calculate θ in each case.

PROBLEM 2 - RECEIVER BEAMFORMING WITH CSIR, MRC, SIMO

Recall that when multiple antennas are used at the receiver side, the channel between the transmitter and the receiver becomes a vector. Therefore, the channel model becomes

$$\mathbf{y} = \mathbf{h}x + \mathbf{z}$$

where the channel coefficients are represented by a vector \mathbf{h} of N_r entries (one for each receive antenna). So are the received signal \mathbf{y} and noise \mathbf{z} . In particular, we assume that the noises at different antennas are i.i.d. circularly symmetric Gaussian distributed. We also consider i.i.d. Rayleigh fading for the channel coefficients with the following normalization $\mathbb{E}\{\|\mathbf{h}\|^2\}=1$. For simplicity, we order the antennas in such a way that $|h_1|\geq |h_2|\geq \cdots \geq |h_{N_r}|$.

Also recall that Maximum ratio combining (MRC) is optimal, in the sense that the resulting equivalent channel $\mathbf{h}^H\mathbf{y} = \|\mathbf{h}\|^2x + \mathbf{h}^H\mathbf{z}$ has the same capacity as the original SIMO channel for a given channel realization \mathbf{h} . In the following, you will calculate the outage probability $P_{out} = P(\log(1+SNR||\mathbf{h}||^2) < R)$ for different values of SNR and for different values of rate of your choice.

In particular, use simulations to establish the probability of deep fade

$$P(|\mathbf{h}||^2) < SNR^{-1}$$

for the 1×4 SIMO model

$$y = h \cdot x + w$$

(in the presence of the optimal MRC) for the following three cases (recall $\mathbf{h}=[h_1 \ h_2 \ h_3 \ h_4])$

- 1. $h_i \sim \mathbb{C}N(0,1)$ i.i.d
- 2. $h_2 = h_4 = h_1 \times h_3$ where $h_1, h_3 \sim i.i.d.$ $\mathbb{C}N(0, 1)$.
- 3. $h_4 = \frac{1}{3}(h_1 + h_2 + h_3)$ where now $h_1, h_2, h_3 \sim i.i.d.\mathbb{C}N(0, 1)$.

In all the above, the y-axis is the probability of deep fade, in log scale $(\log_{10}(\text{Prob}))$, and the x-axis is the SNR, in dB.

Problem 3 - Fading Statistics and Ergodic Capacity

Consider a SISO fast fading channel. Let us assume that at each instance, the fading coefficient h is circularly symmetric Gaussian distributed (fast Rayleigh fading).

• Plot the instantaneous capacity

$$C(h) = \log(1 + SNR|h|^2)$$

for different values of SNR, for 100 fading realizations.

• Then plot the ergodic capacity versus SNR from -10 to 30 dB and the outage probability versus SNR for the same SNR range and a target rate R=2 bits per channel use. Comment.

PROBLEM 4 - MISO, TRANSMIT DIVERSITY, AND TRANSMIT BEAMFORMING

Recall that in the single-user MISO case with CSIT (no rate adaptation here), the optimal transmit beamformer is indeed matched filtering (MF), in which case, under the channel model

$$y = \mathbf{h}^T \cdot \mathbf{x} + w$$

the optimal (instantaneous) capacity, under a given SNR ρ , takes the form

$$C(\mathbf{h}) = \log(1 + \rho ||\mathbf{h}||^2).$$

Use simulations to establish — under the assumption of the optimal MF beamforming — the probability of $deep\ fade$

$$P(|\mathbf{h}||^2) < \rho^{-1}$$

as well as the probability of outage

$$P(C(\mathbf{h}) < R)$$

for R=4 bits per channel use, both for the scenarios:

- \bullet 2 × 1 MISO quasi-static channel with i.i.d channel coefficients
- 3 × 1 MISO quasi-static channel with i.i.d channel coefficients
- 5×1 MISO quasi-static channel with i.i.d channel coefficients
- \bullet 5 \times 1 MISO quasi-static channel when all the fading coefficients are the same.

Do so for increasing SNR (dB), where again the fading coefficients are drawn randomly i.i.d. from a Gaussian distribution $\mathbb{C}N(0,1)$).

PROBLEM 5 - CHANNEL AND NOISE STATISTICS

Create different experiments to check the validity of each of the following assumptions

- For Gaussian random variables $h_r \sim \mathcal{N}(0,1)$, the far tail $P(|||h_r|| > \alpha)$ is approximated by the Q-function $Q(\alpha)$. (See https://en.wikipedia.org/wiki/Q-function)
- For $h \sim \mathbb{C}\mathcal{N}(0,1)$ (complex Gaussian), the near-zero behavior is approximated as follows

$$P(|||h||^2 < \epsilon) \approx \epsilon.$$

(i.e., validate with equations that $P(|||h||^2 < \epsilon) \approx \epsilon$.)

- Same as the above, but for $h \sim \mathbb{C}\mathcal{N}(0, 10)$. Show how the near-zero behavior is approximated.
- For $\mathbf{h} = [h_1 \ h_2 \ h_3 \cdots h_k]$ with $h_i \sim \mathbb{C}\mathcal{N}(0,1)$, simulate the near zero behavior of a chi-squared random variable $\|\mathbf{h}\|^2$ with 2k degrees of freedom. In particular show how the near zero behavior is approximated for small values of ϵ as

$$P(|\|\mathbf{h}\|^2 < \epsilon) \approx \epsilon^k$$
.

(do this for smaller values of k.)

NOTE: In the above exercise, describe how you perform the different experiments.

NOTE: We need statistical experiments, i.e., experiments that involve the generation of random variables, and the measuring of their behavior using - if you wish - histograms.

PROBLEM 6 - BASIC CAPACITY APPROXIMATIONS

Check, using matlab, the validity of the following assumptions

- $\log_2(1 + SNR) \approx \log_2(SNR)$ for high SNR
- $\log_2(1 + SNR) \approx SNR \cdot \log_2 e$ for low values of SNR

Note, this is not a statistical experiment.