

- 63 - ·

SEQUENCE LISTING

(1)	GENE	RAL IN	FOR	MATION:					
	(i)	APPLI	CAN'	T: Levy, Ga	ry				
	(ii)	TITLE	OF	INVENTION:	Methods	of	Modulating	Immune	Coagulation
	(iii)	NIMBE		SECUENCES	. 1				

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: BERESKIN & PARR
- (B) STREET: 40 King Street West
- (C) CITY: Toronto
- (D) STATE: Ontario
- (E) COUNTRY: Canada
- (F) ZIP: M5H 3Y3

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk

- (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:(B) FILING DATE:
- (C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Gravelle, Micheline
- (B) REGISTRATION NUMBER: 40,261
- (C) REFERENCE/DOCKET NUMBER: 9579-006

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (416) 364-7311 (B) TELEFAX: (416) 361-1398

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4630 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GATCTAGGGT	TGGAAGCCAG	GTCTCCTGAG	TATGCGAGAA	TAAATACAGT	CATGGAAGTG		60
TAAAGAGTCT	GCCAACATTT	TGAGAATGTG	AATAGGATTT	GGCTAAAATT	AAGGGGATAT		120
ACAGAAAAGT	CATAGGAAAT	CAGGTTAAAG	ACATAAATAT	GAGATAGGCT	ACAGAGTGTT		180
TTAAGTAATA	CAATAAAACA	TTTAGATTTT	TGCCCATGTC	AGTCATTTTG	TTTTATAAA	3	240
TAAAGCAAAA	AAACCCTTTT	TAAACAAGAA	ATCTTATGAG	ATGTCAATAT	GCAAAACAAA		300
TTAAAAGGAG	GTGGTTTCTC	TAACTGAAGC	TGTTCCTCTT	TCCTGCCTTC	AGCCTCTGAA		360

WO 98/51335

- 64 -

GAGAAAGTTA	GAAAACTATT	ATCATTAATG	CTACATGTTT	TGAACAAGCT	GATATACCAA	420
GTGGCCCAGA	GAGCAGGTAG	AAGAACCAGC	GTGGAGACAG	AAAGCAAGAG	GCCCGCCTGC	480
CAGGGCTACC	TGCAGAAAGA	AAGGGCAAAG	ATGCTGTAGG	CAAGAGAAGT	TCAGGACAGA	540
CACTGGCATA	GCTCAAAGAT	TCACATTTGA	GCAGCTGTGG	AAGATGACAG	TACAATTACC	600
AAAATGTCGA	AGGGCAAAGG	AGGCAGCTAC	TGGTTTTGAT	GAAAGACAAT	TATGTCCTTT	660
TAAATGGGTC	TTAGACATTT	AGACATTTAT	ATACACTATG	CTACGGACAA	AGGAATAGAA	720
AGTAGCACTT	TTTTCTCCAC	TAGTTTTCTT	CTCTTTTTCA	AGTAGATGAA	GCAAAAGTCA	780
ACTGCAATAG	TCAGAAAGCT	GTACTTTGTT	ACACTTAGAA	ACTTCTAAAA	GTGCTTAAGA	840
TTTCACCTGA	AAGTCCAACA	TGAAGAAAAT	ACAGGCTCCC	CAATGCCCCA	TTCTAAGAAG	900
GAAAAAGGAC	CATTTTCATT	TTAGTAACGT	TTCTGTTCTA	TAGACAGTTT	GGATAACTAG	960
CTCTTACTTT	TTATCTTTAA	AAACTGTTTT	TCCAGTGAAG	TTACGTATAA	TTATTTACTT	1020
CAAGCGTAGT	ATACCAAATT	ACTTTAGAAA	TGCAAGACTT	TTCTTATACT	TCATAAAATA	1080
CATTATGAAA	GTGAATCTTG	TTGGCTGTGT	ACATTTGACT	ATAATAATTT	CAATGCATAT	1140
TATTTCTATT	GAGAGTAAGT	TACAGTTTTT	GGCAAACTGC	GTTTGATGAG	GGCTATCTCC	1200
TCTTCCTGTG	CGTTTCTAAA	ACTTGTGATG	CAAACGCTCC	CACCCTTTCC	TGGGAACACA	1260
GAAAGCCTGA	CTCAGGCCAT	GGCCGCTATT	AAAGCAGCTC	CAGCCCTGCG	CACTCCCTGC	1320
TGGGGTGAGC	AGCACTGTAA	AGATGAAGCT	GGCTAACTGG	TACTGGCTGA	GCTCAGCTGT	1380
TCTTGCCACT	TACGGTTTTT	TGGTTGTGGC	AAACAATGAA	ACAGAGGAAA	TTAAAGATGA	1440
AAGAGCAAAG	GATGTCTGCC	CAGTGAGACT	AGAAAGCAGA	GGGAAATGCG	AAGAGGCAGG	1500
GGAGTGCCCC	TACCAGGTAA	GCCTGCCCCC	CTTGACTATT	CAGCTCCCGA	AGCAATTCAG	1560
CAGGATCGAG	GAGGTGTTCA	AAGAAGTCCA	AAACCTCAAG	GAAATCGTAA	ATAGTCTAAA	1620
GAAATCTTGC	CAAGACTGCA	AGCTGCAGGC	TGATGACAAC	GGAGACCCAG	GCAGAAACGG	1680
ACTGTTGTTA	CCCAGTACAG	GAGCCCCGGG	AGAGGTTGGT	GATAACAGAG	TTAGAGAATT	1740
AGAGAGTGAG	GTTAACAAGC	TGTCCTCTGA	GCTAAAGAAT	GCCAAAGAGG	AGATCAATGT	1800
ACTTCATGGT	CGCCTGGAGA	AGCTGAATCT	TGTAAATATG	AACAACATAG	AAAATTATGT	1860
TGACAGCAAA	GTGGCAAATC	TAACATTTGT	TGTCAATAGT	TTGGATGGCA	AATGTTCAAA	1920
GTGTCCCAGC	CAAGAACAAA	TACAGTCACG	TCCAGGTATG	TATAATAATG	TTTTCTTATC	1980
ATATGTTCAT	Aaatgttata	CAGTCAGAGA	TGTATCTAAA	AGATTAACCT	GAGTCAGTAA	2040
GTTAAATAGA	TGACAGATTA	AGTCTTTTAT	TTATCAAGGT	GCACAGGAAA	AAATAAATAT	2100
CTTCTCAAAT	ATGACCACAT	AAATATGACC	TAATTACAAA	ATCATAGTTA	GTTCTGTATC	2160
CACTGGAAGT	CACTTTCAAT	TTTAAGATCT	TATTTGTTAA	TGCCAGACCT	ACTTGCAAGC	2220
AGAGATTAGA	GGTCCTTTCT	GCTTTATAAC	ATTAGGTTCT	TCTTGTGAGG	CCTTAAGCAT	2280
TTACTAAACA	CCTTCAAGTA	AGTTTAGTAA	AGTTTCATTA	CTGCCATTGA	TTCAATTATC	2340

plate

CTATCATACT	CTGAGGCCAA	TTTTATCTCC	AAAGCAATAA	TATCATTAAG	TGATTCACTT	4380
CATAGAAGGC	TAAGTTTCTC	TAGGACAGAT	AGAAAACATG	AATTTTGAAA	TATATAGAAC	4440
agtagttaaa	ATACTATATA	TTTCAACCCT	GGCTGGTAGA	TTGCTTATTT	TACTATCAGA	4500
AACTAAAAGA	TAGATTTTTA	CCCAAACAGA	AGTATCTGTA	ATTTTTATAA	TTCATCAATT	4560
CTGGAATGCT	ATATATAATA	TTTAAAAGAC	TTTTTAAATG	TGTTTAATTT	CATCATCGTA	4620
AAAAGGGATC						4630

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 439 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Lys Leu Ala Asn Trp Tyr Trp Leu Ser Ser Ala Val Leu Ala Thr
1 10 15

Tyr Gly Phe Leu Val Val Ala Asn Asn Glu Thr Glu Glu Ile Lys Asp 20 25 30

Glu Arg Ala Lys Asp Val Cys Pro Val Arg Leu Glu Ser Arg Gly Lys
35 40 45

Cys Glu Glu Ala Gly Glu Cys Pro Tyr Gln Val Ser Leu Pro Pro Leu 50 55 60

Thr Ile Gln Leu Pro Lys Gln Phe Ser Arg Ile Glu Glu Val Phe Lys 70 75 80

Glu Val Gln Asn Leu Lys Glu Ile Val Asn Ser Leu Lys Lys Ser Cys 85 90 95

Gln Asp Cys Lys Leu Gln Ala Asp Asp Asn Gly Asp Pro Gly Arg Asn 100 105 110

Gly Leu Leu Pro Ser Thr Gly Ala Pro Gly Glu Val Gly Asp Asn 115 120 125

Arg Val Arg Glu Leu Glu Ser Glu Val Asn Lys Leu Ser Ser Glu Leu 130 135 140

Lys Asn Ala Lys Glu Glu Ile Asn Val Leu His Gly Arg Leu Glu Lys 145 150 155 160

Leu Asn Leu Val Asn Met Asn Asn Ile Glu Asn Tyr Val Asp Ser Lys 165 170 175

Val Ala Asn Leu Thr Phe Val Val Asn Ser Leu Asp Gly Lys Cys Ser

Lys Cys Pro Ser Gln Glu Gln Ile Gln Ser Arg Pro Val Gln His Leu 195 200 205

Ile Tyr Lys Asp Cys Ser Asp Tyr Tyr Ala Ile Gly Lys Arg Ser Ser 210 220

Glu 225	Thr	Tyr	Arg	Val	Thr 230	Pro	Asp	Pro	Lys	Asn 235	Ser	Ser	Phe	Glu	Va 24
Tyr	Cys	Asp	Met	Glu 245	Thr	Met	Gly	Gly	Gly 250	Trp	Thr	Val	Leu	Gln 255	Ala
Arg	Leu	Asp	Gly 260	Ser	Thr	Asn	Phe	Thr 265	Arg	Thr	Trp	Gln	Asp 270	Tyr	Ly
Ala	Gly	Phe 275	Gly	Asn	Leu	Arg	Arg 280	Glu	Phe	Trp	Leu	Gly 285	Asn	Asp	Ly
Ile	His 290	Leu	Leu	Thr	Lys	Ser 295	Lys	Glu	Met	Ile	Leu 300	Arg	Ile	Asp	Le
Glu 305	Asp	Phe	Asn	Gly	Val 310	Glu	Leu	Tyr	Ala	Leu 315	Tyr	Asp	Gln	Phe	Ty:
Val	Ala	Asn	Glu	Phe 325	Leu	Lys	Tyr	Arg	Leu 330	His	Val	Gly	Asn	Tyr 335	Ası
Gly	Thr	Ala	Gly 340	Asp	Ala	Leu	Arg	Phe 345	Asn	Lys	His	Tyr	Asn 350	His	Ası
Leu	Lys	Phe 355	Phe	Thr	Thr	Pro	Asp 360	Lys	Asp	Asn	Asp	Arg 365	Tyr	Pro	Sea
Gly	Asn 370	Cys	Gly	Leu	Tyr	Tyr 375	Ser	Ser	Gly	Trp	Trp 380	Phe	Asp	Ala	Суз
Leu 385	Ser	Ala	Asn	Leu	Asn 390	Gly	Lys	Tyr	Tyr	His 395	Gln	Lys	Tyr	Arg	Gly 400
Val	Arg	Asn	Gly	Ile 405	Phe	Trp	Gly	Thr	Trp 410	Pro	Gly	Val	Ser	Glu 415	Ala
His	Pro	Gly	Gly 420	Tyr	Lys	Ser	Ser	Phe 425	Lys	Glu	Ala	Lys	Met 430	Met	Ile
Arg	Pro	Lys 435	His	Phe	Lys	Pro									

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5403 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CATAAGGCGT	GTCTGACAAA	TTCTTCATAC	ACACATTTCC	CCTTTGCACA	TTCAGTCTGT	60
ATAGGTTATT	TCTATAGGAG	AAAAAAAA	TTCAAATTCC	TTGTGCACTG	GTAACAGGCA	120
TGAAGGCTCA	GCAAAGCCAA	TACGTGTTAT	GTCCAGTTGG	AGACAGTGCC	AGGGCCAACA	180
TTCCAGACTT	CTCAGATAGA	AAGTGCGCCT	GCCTGCCCTG	CTCTGAGAAT	TTGAAGAGAG	240
TAGTTCAGTT	AGAATTAAGA	GGCAGTAGAG	AAAAGTCTTG	GGAAATCTGG	TTAGAGATAT	300
AAATATGAGA	ACTGGACATG	GTGGTACACA	CCTGTGATCT	CTGTGTTTAG	GAGGGAGAGG	360

CAGAGAGATC	AGGAGTTCAA	GGCCAGCCTG	AGCTACTTGA	GACCCAGTCT	AAATAAATAA	420
GAGATAGATT	ACAGAGTGCC	TTTAACTAGT	ACAGAGAAAG	AATTTGGGTT	TATCTGTGTC	480
AGTTACGCTG	AAATAATTTT	TAAGTAATAA	AATCCCTTTT	AATAAGAAAC	CTTATGAGGT	540
CAGTATGCAC	AATGAACTTA	AGAGAGACCC	CCAGCTCCTG	AGCTGAGTGA	TGGGGAAGGA	600
CAGCCACTGC	CTGTGATGTG	TGAGTGACGT	GCTTCCAAGT	GTTTTAACCA	CTGACGATTA	660
CATAGCCTGC	ACAGTCAGGA	GAAAACAGCC	GTATTCTCTG	CCAGTTCTCT	TCCCTTTTAC	720
AAACAGATGA	GAGACACACA	CAGAGAATCC	ATTTAAAGAG	CGGACCTTTG	TTCTGATTAG	780
GGGCAATTTT	AAGTACTTAA	GAGTTCACAC	AAAGTCTAGC	CTTCAAAAAG	AAAACAGGTT	840
CCCAAACTAG	GGAGGAAACA	GAATCATTTC	CATTTTGGTG	ACATTTAGTG	GGAAGAAGCT	900
CACAGACATT	TAGACGTTCC	AACTCTTTCC	CCACTAGTGG	ACCAAGTATA	TAATATGGTA	960
TCTTTTGGGC	ACTGGTATTA	CAACTGTTTT	TTAAACAAAA	GACTTTCCTT	GTGCTTTACT	1020
AAAAACCCAG	ACGGTGAATC	TTGAATACAA	TGCGTGGCAC	CCACGGCAGG	CATTCTATTG	1080
TGCATAGTTT	TGACTGACAG	GAGATGACAG	CATTTGGCTG	GCTGCGCTTG	CTGAGGACCC	1140
TCTCCTCCTG	TGTGGCGTCT	GAGACTGTGA	TGCAAATGCG	CCCGCCCTTT	TCTGGGAACT	1200
CAGAACGCCT	GAGTCAGGCG	GCGGTGGCTA	TTAAAGCGCC	TGGTCAGGCT	GGGCTGCCGC	1260
ACTGCAAGGA	TGAGGCTTCC	TGGTTGGTTG	TGGCTGAGTT	CTGCCGTCCT	CGCTGCCTGC	1320
CGAGCGGTGG	AGGAGCACAA	CCTGACTGAG	GGGCTGGAGG	ATGCCAGCGC	CCAGGCTGCC	1380
TGCCCCGCGA	GGCTGGAGGG	CAGCGGGAGG	TGCGAGGGGA	GCCAGTGCCC	CTTCCAGCTC	1440
ACCCTGCCCA	CGCTGACCAT	CCAGCTCCCG	CGGCAGCTTG	GCAGCATGGA	GGAGGTGCTC	1500
AAAGAAGTGC	GGACCCTCAA	GGAAGCAGTG	GACAGTCTGA	AGAAATCCTG	CCAGGACTGT	1560
AAGTTGCAGG	CTGACGACCA	TCGAGATCCC	GGCGGGAATG	GAGGGAATGG	AGCAGAGACA	1620
GCCGAGGACA	GTAGAGTCCA	GGAACTGGAG	AGTCAGGTGA	ACAAGCTGTC	CTCAGAGCTG	1680
AAGAATGCAA	AGGACCAGAT	CCAGGGGCTG	CAGGGGCGCC	TGGAGACGCT	CCATCTGGTA	1740
AATATGAAĆA	ACATTGAGAA	CTACGTGGAC	AACAAAGTGG	CAAATCTAAC	CGTTGTGGTC	1800
AACAGTTTGG	ATGGCAAGTG	TTCCAAGTGT	CCCAGCCAAG	AACACATGCA	GTCACAGCCG	1860
GGTAGGTGTA	ATGAGGGTCA	TACAGTTTGT	TCATGAAAGC	TGTATAGCCA	GATAGTGGCC	1920
ATAAACATTA	ACCCGAGGGA	GCATAAGTTA	GTCAGACTTT	CACCTGTTAA	GTTATGGCAG	1980
GAGAAACAAG	TGTTTTCTCA	AATGAGACAA	CAGAAATGGT	AAATGATCCA	CGTACAAAAA	2040
CCTATTAGT	TGTACTCGTT	AGAGACCGTC	ACTTGCAAGT	CTCTAGACCT	TCCCTGCTAG	2100
GTCGACCAAC	AGACGAGCAG	AAACAGATTC	CTCCCGGAAT	CTGAACACAT	ATTTGAACAC	2160
AGGACAGGTA	TGGCAAGGTT	CCTGGCTCTG	CTTGCTTAGG	TCCCTGGGAA	TCAGATCTTG	2220
GGTGGCTGAT	GGGCTTTATA	AGGCTTTCAC	AAACAATCTG	CTGTGCTAGG	TTCTCAAATA	2280
TCTAGTGAGA	ATGGGAGATT	TTTATACATG	GAAGCATCTC	TCCTCTCTCT	CTCCTCTCTC	2340

1. 1. 15 m **发展**

- 70 -

CAGGCTGGTG	GTTTGATTCA	TGTCTCTCTG	CCAATTTAAA	TGGCAAATAT	TACCACCAGA	4380
AATACAAAGG	TGTCCGTAAT	GGGATTTTCT	GGGGCACCTG	GCCTGGTATA	AACCAGGCAC	4440
AGCCAGGTGG	CTACAAGTCC	TCCTTCAAAC	AGGCCAAGAT	GATGATTAGG	CCCAAGAATT	4500
TCAAGCCATA	AATTGCTAGT	GTTCATCTCT	CTGGGCACTC	ACTATCTAAG	AGGACGATGA	4560
ATTCCTTCAG	CCCTTTACCA	TATGTCTCAG	TTTATATTCC	TTTCCTATGG	CTAAACATTT	4620
CCTTTAAAGC	TTTACAGCTT	TTAGAATAAA	GCTGAAAAGA	TCTAAAAAGA	CTCCTATGTT	4680
GCTGTTATAT	GAGGAATGCT	TGAAAGCACT	GGAAATATTG	ACAATTATAC	ATTATAATTG	4740
CAAAACCTTT	CATTTTTATT	AGTTGAAAAG	TTTCCTAATA	TTTTTATTAT	TTTTATAATA	4800
AAAACTAAAT	TATTCAGCAA	GCTAGATTCT	ATATACGCAA	GTTTTATTTT	CACTAGGGCT	4860
AAATATACAC	ATTTGAGAAT	ATACCAGTCC	TTCCAGGTAC	AACTGAAAGC	CAAGAACTGT	4920
AGTATTATCT	TTCGTCTAAG	AAGAACTTAA	AGCATTTTAG	TTCTCAAGAA	GAAGGGCAGG	4980
GATGGGATTG	GGGGCCAGGG	ACAATATGTA	TAGCTAAATG	TATTCATCTA	ATGCAAAATA	5040
IGGCATTAAA	ATACCTAAAA	ATGTGGTAGC	ATAATATATG	TCTCTTCCCT	CTCCAATTGA	5100
AAAATAATGT	TACCCTGTAG	ACTTTGGTTT	AGTGGTAATT	CACTTACTGT	TTATAGCCTG	5160
TTAGACCGCG	ATACAAAAGC	TGCTTTATCC	TCTCCCTCTG	CTCTCTGTGC	ACAATGGTTT	5220
GTGATGTAAG	GTGCTAGACT	ACTGTAAGGT	TTCCTTGGGG	AAAGGCATGG	TAAGGGAAAA	5280
CACACTGGTT	TATATTTTGA	AAGCCAATCC	TAATCCCAAA	GCAATACTGT	TGTCGAGGAG	5340
CAACGTTCT	AGGAAGCTGA	CTTTTCTAGA	ACAAATGTAT	TTATTAGGAT	GAATTTGGGA	5400
ATT						5403

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 432 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
- Met Arg Leu Pro Gly Trp Leu Trp Leu Ser Ser Ala Val Leu Ala Ala
- Cys Arg Ala Val Glu Glu His Asn Leu Thr Glu Gly Leu Glu Asp Ala 20 25 30
- Ser Ala Gln Ala Ala Cys Pro Ala Arg Leu Glu Gly Ser Gly Arg Cys
- Glu Gly Ser Gln Cys Pro Phe Gln Leu Thr Leu Pro Thr Leu Thr Ile 60
- Gln Leu Pro Arg Gln Leu Gly Ser Met Glu Glu Val Leu Lys Glu Val 65 75 80

- 71 -

Ara	ጥ ከ ድ	ī.en	Lve	Glu	Δla	Val	Asp	Ser	Len	Lvs	Lvs	Ser	Cvs	Gln	Asn
AL 9	****	Deu	Dy 5	85	7.40	val	nap	Ser	90	2,3	2,0	501	د ړ د	95	nsp
Cys	Lys	Leu	Gln 100	Ala	Asp	Asp	His	Arg 105	Asp	Pro	Gly	Gly	Asn 110	Gly	Gly
Asn	Gly	Ala 115	Glu	Thr	Ala	Glu	Asp 120	Ser	Arg	Val	Gln	Glu 125	Leu	Glu	Ser
Gln	Val 130	Asn	Lys	Leu	Ser	Ser 135	Glu	Leu	Lys	Asn	Ala 140	Lys	Asp	Gln	Ile
Gln 145	Gly	Leu	Gln	Gly	Arg 150	Leu	Glu	Thr	Leu	His 155	Leu	Val	Asn	Met	Asn 160
Asn	Ile	Glu	Asn	Tyr 165	Val	Asp	Asn	Lys	Val 170	Ala	Asn	Leu	Thr	Val 175	Val
Val	Asn	Ser	Leu 180	Asp	Gly	Lys	Cys	Ser 185	Lys	Cys	Pro	Ser	Gln 190	Glu	His
Met	Gln	Ser 195	Gln	Pro	Val	Gln	His 200	Leu	Ile	Tyr	Lys	Asp 205	Cys	Ser	Asp
His	Tyr 210	Val	Leu	Gly	Arg	Arg 215	Ser	Ser	Gly	Ala	Tyr 220	Arg	Val	Thr	Pro
Asp 225	His	Arg	Asn	Ser	Ser 230	Phe	Glu	Val	Tyr	Cys 235	Asp	Met	Glu	Thr	Met 240
Gly	Gly	Gly	Trp	Thr 245	Val	Leu	Gln	Ala	Arg 250	Leu	Asp	Gly	Ser	Thr 255	Asn
Phe	Thr	Arg	Glu 260	Trp	Lys	Asp	Tyr	Lys 265	Ala	Gly	Phe	Gly	Asn 270	Leu	Glu
Arg	Glu	Phe 275	Trp	Leu	Gly	Asn	Asp 280	Lys	Ile	His	Leu	Leu 285	Thr	Lys	Ser
Lys	Glu 290	Met	Ile	Leu	Arg	Ile 295	Asp	Leu	Glu	Asp	Phe 300	Asn	Gly	Leu	Thr
Leu 305	Tyr	Ala	Leu	Tyr	Asp 310	Gln	Phe	Tyr	Val	Ala 315	Asn	Glu	Phe	Leu	Lys 320
Tyr	Arg	Leu	His	Ile 325	Gly	Asn	Tyr	Asn	Gly 330	Thr	Ala	Gly	Asp	Ala 335	Leu
Arg	Phe	Ser	Arg 340	His	Tyr	Asn	His	Asp 345	Leu	Arg	Phe	Phe	Thr 350	Thr	Pro
Asp	Arg	Asp 355	Asn	Asp	Arg	Tyr	Pro 360	Ser	Gly	Asn	Cys	Gly 365	Leu	Tyr	Tyr
Ser	Ser 370	Gly	Trp	Trp	Phe	Asp 375	Ser	Cys	Leu	Ser	Ala 380	Asn	Leu	Asn	Gly
Lys 385	Tyr	Tyr	His	Gln	Lys 390	Tyr	Lys	Gly	Val	Arg 395	Asn	Gly	Ile	Phe	Trp 400
Gly	Thr	Trp	Pro	Gly 405	Ile	Asn	Gln	Ala	Gln 410	Pro	Gly	Gly	Tyr	Lys 415	Ser
Ser	Phe	Lys	Gln 420	Ala	Lys	Met	Met	Ile 425	Arg	Pro	Lys	Asn	Phe 430	Lys	Pro