

MOSFET

Metal Oxide Semiconductor Field Effect Transistor

CoolMOS™ CE

500V CoolMOS™ CE Power Transistor IPD50R500CE

Data Sheet

Rev. 2.2 Final

IPD50R500CE

1 Description

CoolMOS™ is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies. CoolMOS™ CE is a price-performance optimized platform enabling to target cost sensitive applications in Consumer and Lighting markets by still meeting highest efficiency standards. The new series provides all benefits of a fast switching Superjunction MOSFET while not sacrificing ease of use and offering the best cost down performance ratio available on the market.

DPAK tab

Features

- Extremely low losses due to very low FOM Rdson*Qg and Eoss
- Very high commutation ruggedness
- Easy to use/drive
- Pb-free plating, Halogen free mold compound
- Qualified for standard grade applications

PFC stages, hard switching PWM stages and resonant switching stages for e.g. PC Silverbox, Adapter, LCD & PDP TV and indoor lighting.

Please note: For MOSFET paralleling the use of ferrite beads on the gate or separate totem poles is generally recommended.

Table 1 Key Performance Parameters

Parameter	Value	Unit
V _{DS} @ T _{j,max}	550	V
R _{DS(on),max}	0.5	Ω
$Q_{g.typ}$	18.7	nC
I _{D,pulse}	24	A
E _{oss} @400V	2.02	μJ
Body diode di/dt	500	A/µs

Type / Ordering Code	Package	Marking	Related Links
IPD50R500CE	PG-TO 252	50S500CE	see Appendix A

IPD50R500CE

Table of Contents

Description	2
Maximum ratings	4
Thermal characteristics	4
Electrical characteristics	5
Electrical characteristics diagrams	7
Test Circuits	1
Package Outlines	2
Appendix A	3
Revision History	4
Disclaimer	4

2 Maximum ratings at $T_j = 25^{\circ}$ C, unless otherwise specified

Table 2 Maximum ratings

Damanastan	Ol	Value	S		Note / Took Condition		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current1)	I _D	-	-	7.6 4.8	А	T _C = 25°C T _C = 100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	24	Α	T _C =25°C	
Avalanche energy, single pulse	E _{AS}	-	-	129	mJ	I _D =2.9A; V _{DD} = 50V	
Avalanche energy, repetitive	E AR	-	-	0.20	mJ	I _D =2.9A; V _{DD} = 50V	
Avalanche current, repetitive	I _{AR}	-	-	2.9	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	50	V/ns	V _{DS} =0400V	
Gate source voltage	V _{GS}	-20 -30	-	20 30	V	static; AC (f>1 Hz)	
Power dissipation (non FullPAK) TO-252	P _{tot}	-	-	57	W	T _C =25°C	
Operating and storage temperature	T _j , T _{stg}	-55	-	150	°C	-	
Continuous diode forward current	Is	-	-	6.6	Α	T _C =25°C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	24.0	Α	T _C = 25°C	
Reverse diode dv/dt ³⁾	dv/dt	-	-	15	V/ns	$V_{\rm DS}$ =0400V, $I_{\rm SD}$ <= $I_{\rm S}$, $T_{\rm j}$ =25°C $t_{\rm cond}$ <2 μ s	
Maximum diode commutation speed ³⁾	di _f /dt	-	-	500	A/μs	$V_{DS} = 0400 \text{V}, I_{SD} <= I_S, T_j = 25^{\circ}\text{C}$ $t_{\text{cond}} < 2\mu\text{s}$	

3 Thermal characteristics

Table 3 **Thermal characteristics DPAK**

Parameter	Symbol	Values			l lmi4	Note / Took Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Thermal resistance, junction - case	R _{thJC}	-	-	2.19	°C/W	-	
Thermal resistance, junction - ambient ⁴	R_{thJA}	-	- 35	62 -	°C/W	SMD version, device on PCB, minimal footprint SMD version, device on PCB, 6cm ² cooling area ⁴⁾	
Soldering temperature, wave- & reflowsoldering allowed	T _{sold}	-	-	260	°C	reflow MSL 1	

 $^{^{1)}}$ Limited by $T_{j\,max}$. Maximum duty cycle D=0.75 $^{2)}$ Pulse width t_p limited by $T_{j,max}$ $^{3)}$ V_{DClink} =400V; $V_{DS,peak}$
 $V_{(BR)DSS}$; identical low side and high side switch with identical R_G $^{4)}$ Device on 40mm*40mm*1.5mm one layer epoxy PCB FR4 with 6cm² copper area (thickness 70µm) for drain connection. PCB is vertical without air stream cooling.

4 Electrical characteristics

Table 4 Static characteristics

Davamatan	Cymphol		Values			Note / Took Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Drain-source breakdown voltage	V _{(BR)DSS}	500	-	-	V	V_{GS} =0V, I_D =1mA	
Gate threshold voltage	$V_{(GS)th}$	2.50	3	3.50	V	$V_{\rm DS}=V_{\rm GS},\ I_{\rm D}=0.2{\rm mA}$	
Zero gate voltage drain current	I _{DSS}	-	- 10	1 -	μΑ	V _{DS} =500V, V _{GS} =0V, T _j =25°C V _{DS} =500V, V _{GS} =0V, T _j =150°C	
Gate-source leakage curent	I _{GSS}	-	-	100	nA	V _{GS} =20V, V _{DS} =0V	
Drain-source on-state resistance	R _{DS(on)}	-	0.45 1.18	0.50	Ω	V _{GS} =13V, I _D =2.3A, T _j =25°C V _{GS} =13V, I _D =2.3A, T _j =150°C	
Gate resistance	R _G	-	3	-	Ω	f=1 MHz, open drain	

Table 5 Dynamic characteristics

Demonstra	Oh a l		Values				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Input capacitance	C _{iss}	-	433	-	pF	V _{GS} =0V, V _{DS} =100V, f=1MHz	
Output capacitance	Coss	-	31	-	pF	V _{GS} =0V, V _{DS} =100V, f=1MHz	
Effective output capacitance, energy related ¹⁾	C _{o(er)}	-	25	-	pF	V _{GS} =0V, V _{DS} =0400V	
Effective output capacitance, time related ²⁾	C _{o(tr)}	-	100	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0400V	
Turn-on delay time	t _{d(on)}	-	6	-	ns	V_{DD} =400V, V_{GS} =13V, I_{D} =2.9A, R_{G} =3.4 Ω	
Rise time	t _r	-	5	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =2.9A, $R_{\rm G}$ =3.4 Ω	
Turn-off delay time	$t_{ m d(off)}$	-	30	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =2.9A, $R_{\rm G}$ =3.4 Ω	
Fall time	t _f	-	12	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13 V, $I_{\rm D}$ =2.9A, $R_{\rm G}$ =3.4 Ω	

Table 6 Gate charge characteristics

Parameter	Oh. a.l.		Values			Nets / Test Osmalities	
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Gate to source charge	$Q_{\rm gs}$	-	2.3	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =2.9A, $V_{\rm GS}$ =0 to 10V	
Gate to drain charge	$Q_{ m gd}$	-	10	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =2.9A, $V_{\rm GS}$ =0 to 10V	
Gate charge total	Qg	-	18.7	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =2.9A, $V_{\rm GS}$ =0 to 10V	
Gate plateau voltage	V _{plateau}	-	5.3	-	V	$V_{\rm DD}$ =400V, $I_{\rm D}$ =2.9A, $V_{\rm GS}$ =0 to 10V	

 $^{^{1)}}$ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% $V_{\text{(BR)DSS}}$ $^{2)}$ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% $V_{\text{(BR)DSS}}$

IPD50R500CE

Table 7 Reverse diode characteristics

Doromotor	Symbol	Values			Unit	Note / Test Condition	
Parameter	Symbol	Min.	Тур.	Max.	Ollit	Note / Test Condition	
Diode forward voltage	V _{SD}	-	0.85	-	V	V _{GS} =0V, I _F =2.9A, T _f =25°C	
Reverse recovery time	t _{rr}	-	180	-	ns	V _R =400V, I _F =2.9A, di _F /dt=100A/μs	
Reverse recovery charge	Qrr	-	1.2	-	μC	V _R =400V, I _F =2.9A, di _F /d <i>t</i> =100A/μs	
Peak reverse recovery current	I _{rrm}	-	12	-	Α	V _R =400V, I _F =2.9A, d <i>i</i> _F /d <i>t</i> =100A/μs	

5 Electrical characteristics diagrams

6 Test Circuits

Table 8 Diode characteristics

Table 9 Switching times

Table 10 Unclamped inductive load

7 Package Outlines

*) mold flash not included

DIM	MILLIN	IETERS	INCI	HES			
DIM	MIN	MAX	MIN	MAX			
Α	2.16	2.41	0.085	0.095			
A1	0.00	0.15	0.000	0.006			
b	0.64	0.89	0.025	0.035			
b2	0.65	1.15	0.026	0.045			
b3	5.00	5.50	0.197	0.217			
С	0.46	0.60	0.018	0.024			
c2	0.46	0.98	0.018	0.039			
D	5.97	6.22	0.235	0.245			
D1	5.02	5.84	0.198	0.230			
E	6.40	6.73	0.252	0.265			
E1	4.70	5.60	0.185	0.220			
е	2.	.29 (BSC)	0.0	0.090 (BSC)			
e1	4.	.57 (BSC)	0.1	80 (BSC)			
N		3	3				
Н	9.40	10.48	0.370	0.413			
L	1.18	1.70	0.046	0.067			
L3	0.90	1.25	0.035	0.049			
L4	0.51	1.00	0.020	0.039			
F1	10	10.60		117			
F2	6	.40	0.252				
F3	2	.20	0.0)87			
F4	5	.80	0.2	228			
F5	5	.76	0.2	227			
F6	1	.20	0.0)47			

SCALE 0
2.0
0 2.0
4mm

EUROPEAN PROJECTION

ISSUE DATE 01-09-2015
REVISION 05

Figure 1 Outline PG-TO 252, dimensions in mm/inches

8 Appendix A

Table 11 Related Links

• IFX CoolMOS Webpage: www.infineon.com

• IFX Design tools: www.infineon.com

500V CoolMOS™ CE Power Transistor

IPD50R500CE

Revision History

IPD50R500CE

Revision: 2015-11-17, Rev. 2.2

Previous Revision

Flevious r	Flevious Revision						
Revision	Date	Subjects (major changes since last revision)					
2.0	2012-06-29	Release of final version					
2.1	2013-07-16	update to Halogen free mold compound					
2.2	2015-11-17	Updated to qualified for standard grade & updated package drawing					

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2015 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.