AIFA Searching Game Trees

21/01/2025

Koustav Rudra

Searching Game Trees

- Consider an OR tree with two types of OR nodes, namely Min nodes and Max nodes
- In Min nodes, select the min cost successor
- In Max nodes, select the max cost successor
- Terminal nodes are winning or losing states
 - It is often infeasible to search up to the terminal nodes
 - We use heuristic costs to compare non-terminal nodes

Searching Game Trees

• We will expand these moves upto a certain depth

• We will have some heuristic functions to evaluate the position of the game after that many lookaheads

AIFA MinMax Trees

21/01/2025

Koustav Rudra

- Looked ahead up to this many number of moves
- Found out the cost value
 - How much cost I have to incur to win the game

Shallow and Deep Pruning

Max

Min

AIFA AlphaBeta Pruning

21/01/2025

Koustav Rudra

Alpha-Beta Pruning

- Alpha bound of J
 - The max current val of all MAX ancestors of J
 - Exploration of a min node, J, is stopped when its value equals or falls below alpha
 - In a min node, we update beta

What are we looking in MIN node?

Whether its current value fallen below the value backed up in the max ancestor of the node

 $\alpha(J) = Current \max val \ of \ all \ MAX \ ancestors \ of \ J$

Alpha-Beta Pruning

Alpha bound of J

- The max current val of all MAX ancestors of J
- Exploration of a min node, J, is stopped when its value equals or falls below alpha
- In a min node, we update beta

Beta bound of J

- The min current val of all MIN ancestors of J
- Exploration of a max node, J, is stopped when its value equals or exceeds beta
- In a max node, we update alpha
- In both min and max nodes, we return when $\alpha \ge \beta$

Alpha-Beta Pruning

- Alpha = best already explored option along path to the root for maximizer
- Beta = best already explored option along path to the root for minimizer

Alpha-Beta Procedure: $V(J; \alpha, \beta)$

1. If J is a terminal, return V(J) = h(J)

2. If J is a max node:

- 1. For each successor J_k of J in succession:
 - 1. Set $\alpha = \max \left\{ \begin{matrix} \alpha \\ V(J_k; \alpha, \beta) \end{matrix} \right\}$
 - 2. If $\alpha \geq \beta$, then return β , else continue
- 2. Return α

3. If J is a min node:

- 1. For each successor J_k of J in succession:
 - 1. Set $\beta = min \begin{cases} \beta \\ V(J_k; \alpha, \beta) \end{cases}$
 - 2. If $\alpha \geq \beta$, then return α , else continue
- 2. Return β

Thank You