

'Nel villaggio di Cantù

c'e' un barbiere

che rade tutti e soli i barbieri che non si radono da soli

6. Lezione Corso di Logica 2020/2021

16 ottobre 2020

Maria Emilia Maietti

email: maietti@math.unipd.it

TABELLA di verità di un SEQUENTE

La tabella di verità di un sequente

$$\Gamma \vdash \Delta$$

è la tabella di verità della proposizione

$$\Gamma^{\&} \to \Delta^{\lor}$$

classificazione verità di un SEQUENTE

$\Gamma \vdash \Delta$ è TAUTOLOGIA/OPINIONE/PARADOSSO

sse

 $\Gamma^{\&} o \Delta^{\lor}$ è TAUTOLOGIA/OPINIONE/PARADOSSO

$\Gamma \vdash \Delta$	TAUTOLOGIA	sse	$ eg(\Gamma^\& o \Delta^ee) $	PARADOSSO
$\Gamma \vdash \Delta$	PARADOSSO	sse	$\neg (\Gamma^\& o \Delta^ee)$	TAUTOLOGIA
$\Gamma \vdash \Delta$	OPINIONE	sse	$\neg ({f \Gamma}^\& ightarrow {f \Delta}^ee)$	OPINIONE
$\Gamma \vdash \Delta$	NON TAUTOLOGIA	sse	$ eg(oldsymbol{\Gamma}^\& ightarrow oldsymbol{\Delta}^ee)$	NON PARADOSSO
$\Gamma \vdash \Delta$	NON PARADOSSO	sse	$ eg(\Gamma^\& o \Delta^ee)$	NON TAUTOLOGIA

Utile tautologia su vero

$$(\mathtt{tt}{\to}\mathbf{A})\leftrightarrow\mathbf{A}$$

è una tautologia

e ANALOGAMENTE per ogni proposizione pr

$$(\mathtt{tt} {
ightarrow} \mathtt{pr}) \leftrightarrow \mathtt{pr}$$

è tautologia

la tautologia $(tt \rightarrow pr) \leftrightarrow pr$

ci dice che

tt→pr è una tautologia

sse

pr è una tautologia

(infatti essendo proposizioni equivalenti hanno ugual tabella di verità!)

Utile tautologia su falso

$$(\mathbf{A} \rightarrow \perp) \leftrightarrow \neg \mathbf{A}$$

è una tautologia

e ANALOGAMENTE per ogni proposizione pr

$$(pr \rightarrow \perp) \leftrightarrow \neg pr$$

è tautologia

la tautologia $(pr \rightarrow \bot) \leftrightarrow \neg pr$

ci dice che

pr→⊥ è una **tautologia**

sse

¬pr è una tautologia

(infatti essendo proposizioni equivalenti hanno ugual tabella di verità!)

ATTENZIONE a dove PORRE il segno di sequente

data una proposizione pr

Quindi

```
"affermare pr" = "affermare \vdash pr"

"affermare \neg pr" = "affermare pr \vdash"
```


Formalizzare e classificare in LC_P

"Se passerete l'esame di logica al I appello, allora a giugno farete una vacanza alle Hawai, oppure

se a giugno farete una vacanza alle Hawai allora passerete l'esame di logica al I appello"

ponendo

A=Passerete l'esame di logica al I appello

 ${f B}$ =A giugno farete una vacanza alle Hawai

La proposizione formale ottenuta

$$(A \rightarrow B) \lor (B \rightarrow A)$$

è una tautologia

sse

il sequente

$$\vdash (A \rightarrow B) \lor (B \rightarrow A)$$

ha un albero di derivazione in $\mathbf{LC}_{\mathbf{P}}$

Derivazione in $LC_{\mathbf{P}}$

ax-id

$$\begin{array}{c} A, B \vdash A, B \\ \hline A \vdash B \rightarrow A, B \\ \hline A \vdash B, B \rightarrow A \\ \hline + A \rightarrow B, B \rightarrow A \\ \hline \vdash (A \rightarrow B) \lor (B \rightarrow A) \\ \end{array} \rightarrow - D$$

Quindi la proposizione

$$(A \rightarrow B) \lor (B \rightarrow A)$$

è una tautologia

perchè derivare con sequenti?

le regole del calcolo dei sequenti

CONSERVANO verità dei sequenti

dall'ALTO di TUTTE le FOGLIE verso il BASSO ↓

e (ANCHE!!!) dal basso verso l'alto ↑

SIGNIFICATO della DERIVAZIONE

$$A \& B \rightarrow A \lor B$$

$$\updownarrow$$

$$A \rightarrow (B \rightarrow A) \lor B$$

$$\updownarrow$$

$$A \rightarrow B \lor (B \rightarrow A)$$

$$\updownarrow$$

$$tt \rightarrow (A \rightarrow B) \lor (B \rightarrow A)$$

Dunque siccome $A \& B \rightarrow A \lor B$ è una **ovvia TAUTOLOGIA**

se le equivalenze sono tutte corrette

ne segue che

 $\mathsf{tt} \to (A \to B) \lor (B \to A)$ è pure una **tautologia**!

SIGNIFICATO della DERIVAZIONE

$$A \& B \rightarrow A \lor B$$

$$\updownarrow$$

$$A \rightarrow (B \rightarrow A) \lor B$$

$$\updownarrow$$

$$A \rightarrow B \lor (B \rightarrow A)$$

$$\updownarrow$$

$$tt \rightarrow (A \rightarrow B) \lor (B \rightarrow A)$$

Dunque queste equivalenze mostrano che

$$\begin{array}{c} \mathbf{tt} \ \to \ (\ A {\to} B\) \lor (B {\to} A) \ \text{\'e} \ \text{una tautologia} \\ \text{e dalla tautologia} \ (\mathbf{tt} {\to} \mathbf{pr}) \ \leftrightarrow \ \mathbf{pr} \ \text{sappiamo che} \\ \\ \ (\ A {\to} B\) \lor (B {\to} A) \end{array}$$

è una tautologia