Problem 1. Define: modular lattice, distributive lattice, complement, atom, boolean lattice, relative complement, join irreducible element, complete lattice, congruence, equivalence relation.

Solution. Modular lattice: Let L be a lattice. L is said to be modular if it satisfies the modular law,

$$(\forall a, b, c \in L)a \ge c \Rightarrow a \land (b \lor c) = (a \land b) \lor c.$$

Distributive lattice: Let L be a lattice. L is said to be distributive if it satisfies the distributive law,

$$(\forall a, b, c \in L)a \land (b \lor c) = (a \land b) \lor (a \land c)$$

Complement: Let L be a lattice with 0 and 1. For $a \in L$, we say $b \in L$ is a complement of a if $a \wedge b = 0$ and $a \vee b = 1$. If a has a unique complement, we denote this complement by a'.

Atom: Let L be a lattice with least element 0. Then $a \in L$ is called an atom if $0 \prec a$. The set of atoms of L is denoted by $\mathcal{A}(L)$. The lattice L is called atomic if, given $a \neq 0$ in L, there exists $x \in \mathcal{A}(L)$ such that $x \leq a$. Every finite lattice is atomic.

Boolean Lattice: A lattice L is called a Boolean lattice if

- (i) L is distributive,
- (ii) L has 0 and 1,
- (iii) each $a \in L$ has a (necessarily unique) complement $a' \in L$

Relative complement:

Join irreducible element: Let L be a lattice. An element $x \in L$ is join irreducible if

- (i) $x \neq 0$ (in case L has a zero),
- (ii) $x = a \lor b$ implies x = a or x = b for all $a, b \in L$.

Condition (ii) is equivalent to the more pictorial, (ii) a < x and b < x imply $a \lor b < x$ for all $a, b \in L$. A meet-irreducible element is defined dually.

Complete Lattice: Let P be a non-empty ordered set. If $\bigvee S$ and $\bigwedge S$ exist for all $S \subseteq P$, then P is called a complete lattice.

Congruence: An equivalence relation on a lattice L which is compatible with both join and meet is called a congruence on L.

Equivalence Relation: An equivalence relation on a set A is a binary relation on A which is reflexive, symmetric and transitive. We write $a \equiv b \pmod{\theta}$ or $a \theta b$ to indicate that a and b are related under the relation θ .

Problem 2. Show that M_3 is a modular lattice but not distributive lattice.

Solution. Consider the M_3 lattice in the fig,

Let us take 1, a, 0 with $1 \ge 0 \Rightarrow 1 \land (a \lor 0) = 1 \land a = a = (1 \land a) \lor 0$.

Similarly, 1, b, 0 with $1 \ge 0 \Rightarrow 1 \land (b \lor 0) = 1 \land b = b = (1 \land b) \lor 0$.

and, 1, c, 0 with $1 \ge 0 \Rightarrow 1 \land (c \lor 0) = 1 \land c = c = (1 \land c) \lor 0$.

Hence, M_3 is modular.

Now, we need to prove that, M_3 is not distributive.

Consider, $a, b, c \in M_3$, $a \land (b \lor c) = a \land 1 = a$, but $(a \land b) \lor (a \land c) = 0 \lor 0 = 0$.

Thus, $a \wedge (b \vee c) \neq (a \wedge b) \vee (a \wedge c)$ and hence, M_3 is not distributive.

Problem 3. N_5 is not modular and (also not distributive).

Problem 4. The $M_3 - N_5$ theorem.

Solution.

Theorem 0.1. Let L be a lattice.

- (i) L is non-modular if and only if $N_5 \mapsto L$.
- (ii) L is non-distributive if and only if $N_5 \mapsto L$ or $M_3 \mapsto L$.

Problem 5. Show that every distributive lattice is modular, but the converse is not true.

Problem 6. Let L be a lattice, then L is modular iff it has no sub-lattice isomorphic to N_5 .

Problem 7. Prove: Let $f: B \to C$ where B and C boolean algebras.

Problem 8. Zorn's Lemma.

Problem 9. A lattice L is distributive iff for any two ideals I and J of L

$$I \vee J = \{x \in L | x = i \vee j, \text{ for some } i \in I \text{ and } j \in J\}$$