Задача.

}

Для связного взвешенного графа /орграфа/ G с множеством вершин $\{v_1, v_2, \mathbf{K}, v_n\}$ и неотрицательными весами w_{ij} ребер $\{i, j\}$ /дуг (i, j)/, заданного матрицей смежности, реализуйте алгоритм Флойда–Уоршелла. В качестве выходных данных выведите матрицу кратчайших расстояний между всеми парами вершин, а также кратчайшие маршруты от некоторой вершины v^* до всех остальных вершин графа.

В алгоритме участвуют две матрицы:

- 1) Матрица расстояний $D^k = [d^k_{ij}] \in \mathbf{R}^{n \times n}$. Каждый ее элемент d^k_{ij} равен длине кратчайшего k -пути из вершины v_i в вершину v_j . Здесь k -путем называется такой простой путь с начальной вершиной v_i и конечной вершиной v_j , все промежуточные вершины которого (если они есть) принадлежат множеству $\{v_1, v_2, \mathbf{K}, v_k\}$.
- 2) Матрица путей $P^k = [p_{ij}^k] \in \mathbf{N}^{n \times n}$. Всякий ее элемент p_{ij}^k равен номеру вершины, предшествующей конечной вершине v_i в кратчайшем k -пути из v_i в v_j .

Элементы матриц D^k и P^k , стоящие на главной диагонали, не участвуют в вычислениях, поэтому их можно считать равными любому числу. Здесь они полагаются равными 0.