USN		10								
-----	--	----	--	--	--	--	--	--	--	--

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU) II Semester B. E. Examinations Oct/Nov-2022

DIFFERENTIAL EQUATIONS AND NUMERICAL METHODS

Common to all branches

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

PART A

1	1.1	LUC IIIAUIA A IS	01
	1.2		01
	1.3	If $x = e^{-3t}$ is the solution of the differential equation $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + kx = 0$, then	
		k = 3	01
	1.4	The particular integral of the differential equation $\frac{d^2x}{dt^2} + \frac{1}{a}(x - b) = 0$ is	
1		b dt ² a	01
Participation of the Participa	1.5	The value of $\Delta^3[(1+3x)(1-5x)(1-4x)]$ taking interval of differencing h = 1	
-	1.0	is 360.	01
	1.6	While applying Simpson's three-eight rule, the number of sub intervals	
	1.0	should be taken as Mulhale of 3	01
-	1.7	The root of the equation $x\log_{10}(x) = 2$ lies in the interval $(1, 4)$	01
	1.8	The coefficient of x^2 in the Maclaurin series expansion of $\cos(3x)$ is $\frac{1}{x^2}$	01
	1.9	Find the eigenvalues of the matrix $A = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$. $\lambda = -1, -6$. 4 cb. eq. (1)	02
	1.10	The complementary function of the differential equation is	
		$(c_1 + c_2 x)e^{2x}$, then the Wronskian is	02
	1.11	One of the solution of the Lagrange's partial differential	
		$(x+yz)\left(y\frac{\partial z}{\partial y}-xy\frac{\partial z}{\partial x}\right)=y^2 \text{ is } \underline{\qquad}, \text{A. 2.0.} \text{for } x+y=0.$	02
150	1.12		
-		a and b from the equation $z = axy + b$ is Pf \sqrt{y}	02
	1.13	1 4 4 4 1 1 3 F 7 Famour	
		-1,0,1,2. finding y D & diff (1)	02
	1.14	I - 100,000 100 100 100 100 100 100 100 100	
		series up to first degree term is $y(x) : 1+x$.	02
		Series up to inst degree term is	

PART B

		method of separation of variables and discuss the suitable solution.	0
	b	ii) Eliminating arbitrary function from $z = (x + y)f(x^2 - y^2)$ Obtain various possible solutions of one-dimensional heat equation by the	08
6	а	Form the partial differential equations by: i) Eliminating arbitrary constants m and n from	
		OR	
	b	Use the method of separation of variables to solve the partial differential equation $u_{xx} - 2u_x + u_y = 0$.	08
.		Solve $x(x^2 + 3y^2) \frac{\partial z}{\partial x} - y(3x^2 + y^2) \frac{\partial z}{\partial y} = 2z(y^2 - x^2)$.	08
5	a		
		$E(t) = 100\sin(60t)$ Volts, a resistor of 2 Ohms, an inductor of 0.1 Henry and a capacitor of $\frac{1}{260}$ Farads. If the initial current and the initial charge on the capacitor are both zero, find the charge on the capacitor at any time $t > 0$.	08
		$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = E(t)$. A circuit has in series an electromotive force given by	
	b	The current in an LRC circuit is governed by the differential equation	08
		$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = \frac{1}{1+e^x}$ using the method of variation of parameters.	
4	a	Find the general solution of the differential equation	
		OR	
		same.	08
		linear differential equation with constant coefficients and hence solve the	
	b	Reduce the differential equation $x \frac{d^2y}{dx^2} - 3 \frac{dy}{dx} + \frac{4}{x}y = x^2 \log_e x$, where $x > 0$, to a	08
		Obtain the general solution of the differential equation $2\frac{d^3x}{dt^3} - 3\frac{d^2x}{dt^2} + 6\frac{dx}{dt} - 9x = \cos^2\left(\frac{\sqrt{3}t}{2}\right) + t.$	
3	a		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	06
		$x + 2y + 4z = \lambda$ $x + 4y + 10z = \lambda^2$	
		x + y + z = 1	
	С	as $[1 \ 0 \ 0]^T$. Perform 4 iterations. Find the values of λ for which the system	05
		matrix $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ by Rayleigh power method taking the initial vector	
	J		
	b	2a + 5b + 2c = 7. Find the dominant eigenvalue and the corresponding eigenvector of the	05
		2a + 7b + 7c = -1	
2	a	Apply Gauss Jordon method to solve the system of equations: a + 3b + 2c = 2	

toe method 2 marter.

7	8	3	The following table gives the relation between steam pressure and	
			temperature.	
			T°C 361 367 378 387 399	
			P 154.9 167.9 191 212.5 244.2	
			Using Suitable interpolation formula, find the pressure at the temperature	
				8
	b)	The following data was collected for the distance travelled versus time:	
			t(sec): 0 25 50 75 100 125	
To the second			y(km): 0 32 59 78 92 100	
			Use numerical differentiation to calculate velocity and acceleration at	
A September 1			t=25.	08
			OR	
8	a		From the following data, estimate the number of students who obtained	
			marks between 40 and 45 using Newton's interpolation method	
Principles			Marks: 30-40 40-50 50-60 60-70 70-80	
			Number of Students: 31 42 51 35 31	08
	b		π	
			Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cos(x)} dx$ by dividing the interval into six equal parts using	
			Simpson's one-three rule, Simpson's three-eight rule and Weddle's rule.	80
9	a		Using Newton- Raphson method, find the root of the equation	
			$3x = \sqrt{1 + \sin(x)}$ correct to 4 decimal places choosing the initial guess	Des .
			$x_0 = 0.5.$	08
	b		Use the Runge-Kutta method of fourth order with $h = 0.1$ to find	
			approximate value for the solution of the initial value problem	
			$\frac{dy}{dx} + 2y = x^3 e^{-2x}$, $y(0) = 1$, at $x = 0.1$.	
			$dx^{1/2}y - x c^{-1}$, $y(0) = 1$, $dc x = 0.1$.	08
			1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	
		1	OR	
1.0				
10	a		Find a real root of $xe^x = \cos(x)$ correct to 4 decimal places by using Regula -	
			Falsi method that lies between 0.4 and 0.6.	08
	b		Use Milne's predictor - corrector method to find the solution of the	
			differential equation $\frac{dy}{dx} = x^2 - y$ at $x = 0.4$, 0.5, given that $y(0) = 1$, $y(0.1) =$	
				1000
			0.9051, y(0.2) = 0.8212, y(0.3) = 0.7491.	08