Project Documentation

1. Project Overview

This project is a Loan Prediction System that combines a data preprocessing pipeline with a deployable application. The goal is to analyze loan applicant data, clean and preprocess it, train a model, and provide predictions via an application interface. It is divided into two main components: a Jupyter notebook for dataset preprocessing, and a Python application script for running the system.

2. System Requirements

To run this project successfully, ensure that the following are installed on your system:

- Python 3.8 or above
- Jupyter Notebook
- Required Python libraries: pandas, numpy, scikit-learn, (and others used in app.py)
- A dataset file named 'Loandata.csv'

3. Project Structure

The project has the following structure:

Loandata.csv → Dataset used for loan prediction

4. Workflow Explanation

The project follows a structured workflow from data preparation to application deployment:

Step 1: Data Loading and Cleaning (script.ipynb)

- The dataset is loaded from Loandata.csv
- Columns are standardized (lowercase, no spaces)
- Missing values are handled:
 - * Categorical columns: filled with mode
 - * Numerical columns: filled with median
 - * Credit history: filled with mode

Also, categorical variables were encoded, and log transformations were applied to reduce skewness for income and loan amount features.

Step 2: Model Training (inside script or app.py)

- Data is split into training/testing sets
- Different machine learning model is trained to predict loan eligibility
- Model performance is evaluated and Linear Regression is selected for saving model

```
Accuracy
                                   Precision
                                                 Recall
                                                                     ROC-AUC
                                               0.988235
                                                                    0.847988
  Logistic Regression
                         0.861789
                                    0.840000
                                                         0.908108
1
         Random Forest
                         0.861789
                                    0.861702
                                               0.952941
                                                         0.905028
                                                                    0.826316
2
                         0.837398
                                    0.849462
```

Step 3: Running the Application (app.py)

- The trained model is integrated into a Streamlit web application
- Users can interact with the application to make loan eligibility predictions

5. How to Use

To run the application:

- 1. Navigate to the 'app' directory.
- 2. Run the following command: python app.py
- 3. The application will start a local server. Open your browser and visit http://127.0.0.1:5000/ to access the interface.

To run the notebook:

1. Open Jupyter Notebook.

- 2. Navigate to 'script/script.ipynb'.
- 3. Run all cells to preprocess the dataset and explore results.

6. Outputs / Results

The system produces the following outputs:

- Cleaned and preprocessed dataset ready for model training.
- Machine learning model capable of predicting loan eligibility.
- A web-based interface where users can input applicant data and get predictions.

7. Future Improvements

The project can be improved in several ways:

- Use advanced machine learning models for better accuracy.
- Deploy the application on cloud platforms
- Enhance the frontend design for better usability.

8. Conclusion

This project demonstrates the integration of data preprocessing, machine learning, and application deployment. The Loan Prediction System not only prepares data effectively but also provides a practical way to use machine learning in real-world applications. It is suitable for academic purposes, demonstrations, or as a base project for further development.