Problem 5

You are given that:

- $\varepsilon_t = exp[\int_0^t \gamma_u \ dW_u \frac{1}{2} \int_0^t \gamma_u^2 \ du]$ γ_u is assumed to be deterministic and continuous in t and the integral $\int_0^t \gamma_u \ dW_u$ is well defined For all $t \geq 0$, the following non-explosiveness condition holds:

$$exp(\int_0^t \gamma_u^2 du) < \infty$$

- Under \mathbb{P} , W_t is a standard Wiener process
- (a) Determine the distribution of $\int_0^t \gamma_u \ dW_u$ under $\mathbb{P} \int_0^t \gamma_u \ dW_u$ is an Ito integral. So:

$$\int_0^t \gamma_u \ dW_u \sim \mathcal{N}(0, \int_0^t \gamma_u^2 \ du)$$

(b) Calculate $E^{\mathbb{P}}(\varepsilon_t)$

$$E^{\mathbb{P}}(\varepsilon_t) = E^{\mathbb{P}}(exp[\int_0^t \gamma_u \ dW_u - \frac{1}{2} \int_0^t \gamma_u^2 \ du])$$

From part (a), we know this is a log-normal random variable with parameters $\mu = -\frac{1}{2} \int_0^t \gamma_u^2 du$ and $\sigma^2 = \int_0^t \gamma_u^2 du$. So, the expected value of ε_t is:

$$E^{\mathbb{P}}(\varepsilon_t) = e^{\mu + \frac{1}{2}\sigma^2}$$

$$E^{\mathbb{P}}(\varepsilon_t) = e^{-\frac{1}{2}\int_0^t \gamma_u^2 du + \frac{1}{2}\int_0^t \gamma_u^2 du}$$

$$E^{\mathbb{P}}(\varepsilon_t) = 1$$

(c) Determine the stochastic differential equation for $d\varepsilon_t$ under \mathbb{P}

$$d\varepsilon_t = d\left[e^{\int_0^t \gamma_u \ dW_u - \frac{1}{2} \int_0^t \gamma_u^2 \ du}\right]$$

Let $Y_t = \int_0^t \gamma_u \ dW_u$. Then

$$\varepsilon_t = f(Y_t, t) = e^{Y_t - \frac{1}{2} \int_0^t \gamma_u^2 \ du}$$

First, note that:

$$f_t = -\frac{1}{2}\gamma_t^2 \varepsilon_t$$

$$f_{Y_t} = f_{Y_t Y_t} = \varepsilon_t$$

$$d_{Y_t} = \gamma_t dW_t$$

$$(d_{Y_t})^2 = \gamma_t^2 dt$$

Then using Ito's lemma:

$$d\varepsilon_t = f_t dt + f_{Y_t} dY_t + \frac{1}{2} f_{Y_t Y_t} (dY_t)^2$$

$$= -\frac{1}{2}\gamma_t^2 \varepsilon_t dt + \varepsilon_t dY_t + \frac{1}{2}\varepsilon_t (dY_t)^2$$

$$= -\frac{1}{2}\gamma_t^2 \varepsilon_t dt + \varepsilon_t \gamma_t dW_t + \frac{1}{2}\varepsilon_t \gamma_t^2 dt$$

$$= \varepsilon_t \gamma_t dW_t$$

Therefore,

$$d\varepsilon_t = \varepsilon_t \gamma_t dW_t$$

(d) Simplify the following quantity: $E^{\mathbb{P}}[exp(\int_0^t (\alpha + \gamma_u)dW_u - \frac{1}{2}\int_0^t (\alpha + \gamma_u)^2 du)]$

The quantity is log-normally distributed since $\int_0^t (\alpha + \gamma_u) dW_u$ is an Ito integral. The mean of a log-normal distribution is $e^{\mu + \frac{1}{2}\sigma^2}$

$$\mu = -\frac{1}{2} \int_0^t (\alpha + \gamma_u)^2 du$$

$$\sigma^2 = \int_0^t (\alpha + \gamma_u)^2 du$$

$$E^{\mathbb{P}}[exp(\int_0^t (\alpha + \gamma_u)dW_u - \frac{1}{2} \int_0^t (\alpha + \gamma_u)^2 du)] = exp(-\frac{1}{2} \int_0^t (\alpha + \gamma_u)^2 du + \frac{1}{2} \int_0^t (\alpha + \gamma_u)^2 du)$$

$$= e^0 = 1$$

Additionally you are given that: $\overline{W_t} = W_t - \int_0^t \gamma_u du$

(e) Prove that:

$$\begin{split} E^{\mathbb{Q}}[exp(\alpha\overline{W_t})] &= E^{\mathbb{P}}[exp(\int_0^t (\alpha + \gamma_u)dW_u - \frac{1}{2}\int_0^t (2\alpha\gamma_u + \gamma_u^2)du)] = e^{\frac{\alpha^2t}{2}} \\ &E^{\mathbb{Q}}[exp(\alpha\overline{W_t})] = E^{\mathbb{Q}}[exp(\alpha(W_t - \int_0^t \gamma_u du))] \end{split}$$

To convert between \mathbb{Q} and \mathbb{P} one must multiply by the Radon-Nikodym derivative,

$$\begin{split} E^{\mathbb{Q}}[exp(\alpha\overline{W_t})] &= E^{\mathbb{P}}[exp(\alpha(W_t - \int_0^t \gamma_u du) + \int_0^t \gamma_u \ dW_u - \frac{1}{2} \int_0^t \gamma_u^2 \ du)] \\ &= E^{\mathbb{P}}[exp(\alpha W_t - \int_0^t \alpha \gamma_u du + \int_0^t \gamma_u \ dW_u - \frac{1}{2} \int_0^t \gamma_u^2 \ du)] \\ &= E^{\mathbb{P}}[exp(\int_0^t \alpha dW_u - \int_0^t \alpha \gamma_u du + \int_0^t \gamma_u \ dW_u - \frac{1}{2} \int_0^t \gamma_u^2 \ du)] \\ &= E^{\mathbb{P}}[exp(\int_0^t (\alpha + \gamma_u) dW_u - \int_0^t \alpha \gamma_u du - \frac{1}{2} \int_0^t \gamma_u^2 \ du)] \\ &= E^{\mathbb{P}}[exp(\int_0^t (\alpha + \gamma_u) dW_u - \frac{1}{2} \int_0^t (2\alpha \gamma_u + \gamma_u^2) \ du)] \end{split}$$

So,

$$E^{\mathbb{Q}}[exp(\alpha \overline{W_t})] = E^{\mathbb{P}}[exp(\int_0^t (\alpha + \gamma_u)dW_u - \frac{1}{2} \int_0^t (2\alpha \gamma_u + \gamma_u^2) \ du)]$$

Note, $exp(\int_0^t (\alpha + \gamma_u) dW_u - \frac{1}{2} \int_0^t (2\alpha \gamma_u + \gamma_u^2) du)$ is log-normally distributed. So,

$$\begin{split} \mu &= -\frac{1}{2} \int_0^t (2\alpha \gamma_u + \gamma_u^2) \; du \\ \sigma^2 &= \int_0^t (\alpha + \gamma_u)^2 du \\ E^{\mathbb{P}}[exp(\int_0^t (\alpha + \gamma_u) dW_u - \frac{1}{2} \int_0^t (2\alpha \gamma_u + \gamma_u^2) \; du)] = e^{\mu + \frac{1}{2}\sigma^2} \\ &= exp(-\frac{1}{2} \int_0^t (2\alpha \gamma_u + \gamma_u^2) \; du + \frac{1}{2} \int_0^t (\alpha + \gamma_u)^2 du) \\ &= exp(-\frac{1}{2} \int_0^t (2\alpha \gamma_u + \gamma_u^2) \; du + \frac{1}{2} \int_0^t (\alpha^2 + 2\alpha \gamma_u + \gamma_u^2) du) \\ &= exp(-\frac{1}{2} \int_0^t (2\alpha \gamma_u + \gamma_u^2) \; du + \frac{1}{2} \int_0^t (2\alpha \gamma_u + \gamma_u^2) du + \frac{1}{2} \int_0^t \alpha^2 du) \\ &= exp(\frac{1}{2} \int_0^t \alpha^2 du) \\ &= exp(\frac{1}{2} \int_0^t \alpha^2 du) \end{split}$$

- (f) Identify the distribution of $\overline{W_t}$ under the probability measure \mathbb{Q} . $\overline{W_t}$ is normally distributed with mean $\mu=0$ and variance $\sigma^2=t$.
 - (g) Is the Radon-Nikodym derivative a martingale under \mathbb{P} ? Yes, the Radob-Nikodym derivative is a martingale under \mathbb{P} . We can see this from part (c). The stochastic differential equation $d\epsilon_t$ has no drift term.
 - (h) Suppose that $\gamma_t = 0$ for all t. In this case, what is the value of the Radon-Nikodym derivative? The value of the Radon-Nikodym derivative is

$$\varepsilon_t = e^{\int_0^t \gamma_u \ dW_u - \frac{1}{2} \int_0^t \gamma_u^2 \ du}$$
$$= e^0 = 1$$