http://cs231n.s	unses.cs.ut.ee/LTAT.02.001/2022_spring/uploads/Main/matrix_calc.pdf un.stanford.edu/teaching/cs231n/handouts/derivatives.pdf un.stanford.edu/class/cs224n/readings/gradient-notes.pdf unmework together with course mates, please write here their names (answers still have to be your own!). Ecture Materials (5 pts) Italian questions are about the material covered in the lecture about "Back-propagation" agation Tratives of scalars, vectors and matrices (1pt) ask you what are the dimensions of the gradient vector/matrix when taking the derivative of the object noted in the standard propagation of the propagation of the object noted in the standard propagation of the object noted in the standard propagation of the standard propagation of the object noted in the standard propagation of the object noted in the standard propagation of the object noted in the standard propagation of the standard propagation of the object noted in the standard propagation of the object noted in the standard propagation of the standard propagation of the object noted in the standard propagation of the object noted in the standard propagation of the standard propagation of the object noted in the standard propagation of the object noted in the standard propagation of the standard propagation of the object noted in the standard propagation of the object noted in the standard propagation of the standard propagation of the object noted in the standard propagation of the object noted in the standard propagation of the standard propagation of the object noted in the standard propagation of the standard propagation of the object noted in the standard propagation of the object noted in the standard propagation of the object noted in the standard propagation of the standard propagation of the object noted in the standard propagation of the object noted in the standard propagation of the standard propagation of the object noted in the standard propagation of the object noted in the standard propagation of the object noted in the standard propagat
should be enough	$\frac{\frac{\partial}{\partial}}{\partial scalar} \qquad \begin{array}{c} \textbf{scalar} \qquad \textbf{vector} \in \mathbf{R}^n \\ \\ \textbf{scalar} \qquad \textbf{M-Dimension} \qquad \textbf{KxN} \\ \\ \textbf{vector} \in \mathbf{R}^k \textbf{KxM} \qquad \textbf{MxN} \\ \end{array}$
You are given a linearity (no acchidden node acchidden acchiden a	$\frac{+1}{N}$
$\frac{\partial L}{\partial h_N} = \frac{\partial L}{\partial h_{N+1}} \frac{\partial h_N}{\partial h}$	$\frac{\partial L}{\partial X} = \frac{\partial L}{\partial Y} \frac{\partial Y}{\partial X} = \frac{\partial L}{\partial Y} \frac{\partial XW}{\partial X} = \frac{\partial L}{\partial Y} W^{T}$ $\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y} \frac{\partial Y}{\partial W} = \frac{\partial L}{\partial Y} \frac{\partial XW}{\partial W} = X^{T} \frac{\partial L}{\partial Y}.$ $\frac{\partial W^{+1}}{\partial W} = \frac{\partial L}{\partial h_{N+1}} \frac{\partial h_{N}W_{n}}{\partial W_{N}} = h_{T}^{N} \frac{\partial L}{\partial h_{N+1}}$ $\frac{\partial L}{\partial h_{N+1}} = \frac{\partial L}{\partial h_{N+1}} W_{N}^{T}$
$\frac{\partial L}{\partial h_{N-1}} = \frac{\partial L}{\partial h_N} \frac{\partial h}{\partial h_N}$ Task 1.3: Com How many multiple the production of	$\frac{h_N}{h_{N-1}} = \frac{\partial L}{\partial h_{N+1}} W_N^T \frac{\partial h_{N-1} W_{N-1}}{\partial W_{N-1}} = \frac{\partial L}{\partial h_{N+1}} W_N^T h_{N-1}$ $\frac{N}{h_N} = \frac{\partial L}{\partial h_{N+1}} W_N^T \frac{\partial h_{N-1} W_{N-1}}{\partial h_{N-1}} = \frac{\partial L}{\partial h_{N-1}} W_N^T W_{N-1}$ $\frac{\partial L}{\partial h_{N+1}} W_N^T \frac{\partial h_{N-1} W_{N-1}}{\partial h_{N-1}} = \frac{\partial L}{\partial h_{N-1}} W_N^T W_{N-1}$ $\frac{\partial L}{\partial h_{N+1}} W_N^T W_N^$
and you are us output is 10 pr How many scal to: • perform a NB!	bu have a neural network with one hidden layer with 100 nodes (a "two-layer network", because it has two weighting RELU activation function at the nodes (for both layers). The inputs to the network are RGB images of size 32x3 obability values (obtained by passing the results through Softmax function). ar operations (additions, subtractions, multiplications, divisions, exponentiations, logarithms and comparisons) do forward pass on one data point (to calculate the cross-entropy loss)
 The numb way) or se operation Your Answer: p Part 2: P Applied TI 	er of operations for the softmax depends on how you would "implement" it. Is the denominator calculated once (parately for each value (inefficient way). You can decide yourself which way you use it but please state it when represent. Sill this in. ractical Tasks (25 pts)
2. we use ma	ach of samples instead of one sample, atrix calculus for gradients, regularization to the loss.
input la	output layer hidden layer
• Y is $N \times C$ • c is N -dime • W ⁽¹⁾ is D • W ⁽²⁾ is M • b ⁽¹⁾ is bia • b ⁽²⁾ is bia • 1_N is a column	input matrix, where N is number of samples in batch and D is number of features. one-hot coded target matrix, where N is number of samples in batch and C is number of classes. ensional vector of correct classes for all samples, $\mathbf{c}_i \in \{1,, C\}$. × M weight matrix of the first layer, where D is the number of features and M is number of hidden nodes. × C weight matrix of the second layer, where M is the number of hidden nodes and C is the number of classes. It is vector of the first layer with dimension of $1 \times M$. It is vector of the second layer with dimension of $1 \times C$. It is unapproximately M is rectified linear unit activation function.
	$\mathbf{x}(\mathbf{A})$ converts activations into probabilities row by row $\mathbf{P}_{ij} = \frac{e^{\mathbf{A}_{ij}}}{\sum_k e^{\mathbf{A}_{ik}}}$.
$\frac{1}{N}$ in the loss fusum, both loss each batch size	rix multiplication and $A \odot B$ is element-wise multiplication. nction produces mean instance loss, which is good because then loss value does not depend on batch size. If we value and gradients would have different magnitude for different batch sizes and we would need to adapt learning.
Derivatives of r	matrix multiplication natrix multiplication work very similarly to the scalar case. However, as the order of elements in product matters (and transposes and also on which side of the overall expression the derivative ends up. Suppose $L = f(Y), \qquad Y = XW.$ $\frac{\partial L}{\partial X} = \frac{\partial L}{\partial Y} \frac{\partial Y}{\partial X} = \frac{\partial L}{\partial Y} \frac{\partial XW}{\partial X} = \frac{\partial L}{\partial Y} W^T$ $\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y} \frac{\partial Y}{\partial W} = \frac{\partial L}{\partial Y} \frac{\partial XW}{\partial W} = X^T \frac{\partial L}{\partial Y}.$
Derivative of $ReLU(x) = max($	multiplication with transposed matrix is from different sides in these two cases.
	Foftmax and $L = CE(P, Y)$ and N is the number of samples in the batch, then $\frac{\partial L}{\partial A} = \frac{1}{N}(P - Y)$ for $\mathbf{W}^{(1)}$ using chain rule: $\frac{\partial L_{CE}}{\partial \mathbf{W}^{(1)}} = \frac{\partial L_{CE}}{\partial \mathbf{A}^{(1)}} \frac{\partial \mathbf{A}^{(1)}}{\partial \mathbf{W}^{(1)}}$ (chain rule)
	$ \frac{\partial \mathbf{W}^{(1)}}{\partial \mathbf{W}^{(1)}} = \frac{\partial L_{CE}}{\partial \mathbf{A}^{(1)}} \frac{\partial L_{CE}}{\partial \mathbf{W}^{(1)}} \qquad \text{(chain rule)} $ $ = X^{T} \frac{\partial L_{CE}}{\partial \mathbf{A}^{(1)}} \frac{\partial \mathbf{H}^{(1)}}{\partial \mathbf{A}^{(1)}} \qquad \text{(chain rule)} $ $ = X^{T} \left(\frac{\partial L_{CE}}{\partial \mathbf{H}^{(1)}} \odot (\mathbf{A}^{(1)} > 0) \right) \qquad \text{(ReLU formula)} $ $ = X^{T} \left(\frac{\partial L_{CE}}{\partial \mathbf{A}^{(2)}} \frac{\partial \mathbf{A}^{(2)}}{\partial \mathbf{H}^{(1)}} \odot (\mathbf{A}^{(1)} > 0) \right) \qquad \text{(chain rule)} $
otherwise.	$= X^{T} \left(\left(\frac{\partial L_{CE}}{\partial \mathbf{A}^{(2)}} (\mathbf{W}^{(2)})^{T} \right) \odot (\mathbf{A}^{(1)} > 0) \right) \qquad \text{(matrix multiplication formula)}$ $= \frac{1}{N} X^{T} \left(\left((P - Y)(\mathbf{W}^{(2)})^{T} \right) \odot (\mathbf{A}^{(1)} > 0) \right) \qquad \text{(softmax formula)}$ (softmax formula) $\text{(denotes a matrix whose value at row } i \text{ and column } j \text{ is one, if the corresponding value in matrix } \mathbf{A} \text{ is greater than}$
Task 2.1 (4 Write down the	e partial derivatives of classification loss function with respect to other weights and biases. Verify that the dimensi $\frac{\partial L_{CE}}{\partial \mathbf{W}^{(2)}} = \dots \qquad (M \times C)$ $\frac{\partial L_{CE}}{\partial \mathbf{b}^{(1)}} = \dots \qquad (1 \times M)$ $\frac{\partial L_{CE}}{\partial \mathbf{b}^{(2)}} = \dots \qquad (1 \times C)$
• You can re	the matrix multiplication derivative rules for the partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row)). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row)). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row)). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row)). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row)). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row)). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row)). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row)). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row)). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row)). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row)). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row)). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row)). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row). The partial derivative for the bias (since it is also multiplication of two dentity matrix and bias itself (matrix with 1 row). The partial derivative for the bias (since it is also multiplicat
n the final loss	$L_r = \sum_{ij} (\mathbf{W}_{ij}^{(1)})^2 + \sum_{ij} (\mathbf{W}_{ij}^{(2)})^2$ the classification loss and regularization loss are added together. $L = L_c + \lambda L_r$ regularization is determined by regularization coefficient λ .
Write down the	e partial derivatives of regularization loss with respect to weights: $\frac{\partial L_r}{\partial \mathbf{W}^{(1)}} = \dots \qquad (D \times M)$ $\frac{\partial L_r}{\partial \mathbf{W}^{(2)}} = \dots \qquad (M \times C)$
<pre>import num import mate from neural %matplotlil plt.rcParan plt.rcParan plt.rcParan plt.rcParan from auto # for auto # see http</pre>	<pre>pre import print_function py as np plotlib.pyplot as plt L_net import TwoLayerNet printine ns['figure.figsize'] = (10.0, 8.0) # set default size of plots ns['image.interpolation'] = 'nearest' ns['image.cmap'] = 'gray' -reloading external modules c://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython</pre>
# see http %load_ext a %autoreload def rel_er """ re return We will use the in the instance and a toy mode	cor(x, y): curns relative error """ np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y)))) class TwoLayerNet in the file neural_net.py to represent instances of our network. The network parameters variable self.params where keys are string parameter names and values are numpy arrays. Below, we initialize that we will use to develop your implementation.
<pre># Note tha input_size hidden_size num_classe: num_inputs def init_te</pre>	<pre>e = 10 s = 3 = 5 by_model(): dom.seed(0) TwoLayerNet(input_size, hidden_size, num_classes, std=1e-1)</pre>
np.rane X = 10 y = np return net = init X, y = init	<pre>dom.seed(1) * np.random.randn(num_inputs, input_size) array([0, 1, 2, 2, 1]) X, y toy_model() c_toy_data() d pass: compute scores</pre>
Open the file written for the parameters. Implement the softmax) for all	neural_net.py and look at the method TwoLayerNet.loss. This function is very similar to the loss functions of Softmax exercise: It takes the data and weights and computes the class scores, the loss, and the gradients on the first part of the forward pass which uses the weights and biases to compute the scores (activations in last layer, because of the forward pass which uses the weights and biases to compute the scores (activations in last layer, because of the forward pass which uses the weights and biases to compute the scores (activations in last layer, because of the forward pass which uses the weights and biases to compute the scores (activations in last layer, because of the forward pass which uses the weights and biases to compute the scores (activations in last layer, because of the forward pass which uses the weights and biases to compute the scores (activations in last layer, because of the forward pass which uses the weights and biases to compute the scores (activations in last layer, because of the forward pass which uses the weights and biases to compute the scores (activations in last layer, because of the forward pass which uses the weights and biases to compute the scores (activations in last layer, because of the forward pass which uses the weights and biases to compute the scores (activations in last layer).
<pre>scores = no print('You print(score print() print('core correct_score [-0.8123] [-0.1712 [-0.5159] [-0.1541]</pre>	rect scores:') rect scores:') res = np.asarray([3741, -1.27654624, -0.70335995], 6677, -1.18803311, -0.47310444], 6475, -1.01354314, -0.8504215], 6291, -0.48629638, -0.52901952], 63733, -0.12435261, -0.15226949]])
print() # The different ('Different (np.st) Your scores [[-0.812337 [-0.171296 [-0.515904 [-0.154192 [-0.006187]	erence should be very small. We get < 1e-7 Gerence between your scores and correct scores:') Imm (np.abs (scores - correct_scores))) 1.
correct sco [[-0.812337 [-0.171296 [-0.515904 [-0.154192 [-0.006187 Difference 3.680272074	res: 41 -1.27654624 -0.70335995] 77 -1.18803311 -0.47310444] 75 -1.01354314 -0.8504215] 91 -0.48629638 -0.52901952] 33 -0.12435261 -0.15226949]] petween your scores and correct scores:
rask 2.4 (2) In the same fur loss, _ = n correct_los # should be print('Diff print(np.se	contion, implement the second part that computes the Cross Entropy loss and regularization loss. met.loss(X, y, reg=0.05) ss = 1.30378789133 e very small, we get < 1e-12 ference between your loss and correct loss:') am(np.abs(loss - correct_loss)))
Backwa Task 2.5 (6) Implement the that you (hope	pts) rest of the function. This will compute the gradient of the loss with respect to the variables W1, b1, W2, and buildy!) have a correctly implemented forward pass, you can debug your backward pass using a numeric gradient control of the loss with respect to the variables w1, b1, w2, and buildy!)
<pre># Use nume # If your # analytic loss, grad # these sh for param_n f = lan param_e</pre>	ent_check import eval_numerical_gradient ric gradient checking to check your implementation of the backward pass. implementation is correct, the difference between the numeric and gradients should be less than 1e-8 for each of W1, W2, b1, and b2. s = net.loss(X, y, reg=0.05) puld all be less than 1e-8 or so name in grads: nbda W: net.loss(X, y, reg=0.05)[0] grad_num = eval_numerical_gradient(f, net.params[param_name], verbose=False) l%s max relative error: %e' % (param_name, rel_error(param_grad_num, grads[param_name])))
W2 max rela b2 max rela W1 max rela b1 max rela Train th	tive error: 3.440708e-09 tive error: 4.447646e-11 tive error: 4.090896e-09 tive error: 2.738421e-09 The network Spts) work we will use stochastic gradient descent (SGD), similar to the Softmax classifier. Look at the function
TwoLayerNet procedure you periodically pe Once you have ess than 0.2. net = init	work we will use stochastic gradient descent (SGD), similar to the Softmax classifier. Look at the function and fill in the missing sections to implement the training procedure. This should be very similar to the training procedure. This should be very similar to the training description to the Softmax classifier. You will also have to implement a TwoLayerNet.predict, as the training process forms prediction to keep track of accuracy over time while the network trains. Implemented the method, run the code below to train a two-layer network on toy data. You should achieve a training_model() Intrain(X, y, X, y, learning_rate=1e-1, reg=5e-6, num_iters=100, verbose=False)
<pre># plot the plt.plot(s plt.xlabel plt.ylabel plt.title(plt.show()</pre>	num_iters=100, Verbose=False) al training loss: ', stats['loss_history'][-1]) loss history tats['loss_history']) ('iteration') ('training loss') 'Training Loss history') ing loss: 0.017143643532923757 Training Loss history
1.0 -	
0.4 -	
Now that you h	20 40 60 80 100 iteration ne data have implemented a two-layer network that passes gradient checks and works on toy data, it's time to load up ou so we can use it to train a classifier on a real dataset. attils import load_CIFAR10
def get_CI: """ Load tl it for we used """ # Load cifar1 X_train # Subsemask =	FAR10_data(num_training=49000, num_validation=1000, num_test=1000): ne CIFAR-10 dataset from disk and perform preprocessing to prepare the two-layer neural net classifier. These are the same steps as d for the SVM, but condensed to a single function. the raw CIFAR-10 data 0_dir = '/datasets/cifar-10-batches-py' n, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) ample the data list(range(num_training, num_training + num_validation))
<pre>mask = X_val : y_val : y_val : mask = X_train y_train mask = X_test y_test # Norm mean_in X_train X_val :</pre>	<pre>list(range(num_training, num_training + num_validation)) = X_train[mask] = y_train[mask] list(range(num_training)) n = X_train[mask] n = y_train[mask] list(range(num_test)) = X_test[mask] = y_test[mask] = y_test[mask] alize the data: subtract the mean image mage = np.mean(X_train, axis=0) n -= mean_image = mean_image</pre>
<pre># Resh X_train X_val : X_test return # Invoke t. X_train, y print('Train print('Train)</pre>	-= mean_image ape data to rows n = X_train.reshape(num_training, -1) = X_val.reshape(num_validation, -1) = X_test.reshape(num_test, -1) X_train, y_train, X_val, y_val, X_test, y_test ne above function to get our data. train, X_val, y_val, X_test, y_test = get_CIFAR10_data() in data shape: ', X_train.shape) in labels shape: ', y_train.shape)
print('Traprint('Traprint('Val.print('Val.print('Tesprint('Tesprint('Tesprint('Tesprint('Tesprint)'Tesprint('Tesprint)'Tesprint('Tesprint)'Tesprint('Tesprint)'Tesprint('Tesprint)'Tesprint('Tesprint)'Tesprint('Tesprint)'Tesprint('Tesprint)'Tesprint('Tesprint)'Tesprint('Tesprint)'Tesprint('Tesprint)'Tesprint('Traprint)'Tesprint('Traprint)'Tesprint('Traprint)'Tesprint('Traprint)'Tesprint('Traprint)'Tesprint('Traprint)'Tesprint('Traprint)'Tesprint('Traprint)'Tesprint('Traprint)'Tesprint('Traprint)'Tesprint('Traprint)'Tesprint('Traprint)'Tesprint('Traprint)'Tesprint('Traprint)'Tesprint('Tesprint)'Tesprin	in data shape: ', X_train.shape)
Train a To train our new proceeds; after input_size hidden_size num_classe; net = Two La	network Towork we will use SGD. In addition, we will adjust the learning rate with an exponential learning rate schedule as of each epoch, we will reduce the learning rate by multiplying it by a number smaller than one called "decay rate". 32 * 32 * 3
<pre># Train the stats = ne # Predict val_acc = print('Val. iteration 0 iteration 1 iteration 2</pre>	<pre>e network c.train(X_train, y_train, X_val, y_val, num_iters=1000, batch_size=200, learning_rate=1e-4, learning_rate_decay=0.95, reg=0.25, verbose=True) on the validation set (net.predict(X_val) == y_val).mean() idation accuracy: ', val_acc) / 1000: loss 2.302762 00 / 1000: loss 2.302358 00 / 1000: loss 2.297404</pre>
iteration 2 iteration 3 iteration 4 iteration 5 iteration 6 iteration 7 iteration 8 iteration 9 Validation	100 / 1000: loss 2.297404 100 / 1000: loss 2.258897 100 / 1000: loss 2.202975 100 / 1000: loss 2.116816 100 / 1000: loss 2.049789 100 / 1000: loss 1.985711 100 / 1000: loss 2.003726 100 / 1000: loss 1.948076
good. One strategy for optimization. Another strategy for optimization. # Plot the plt.subplo	
plt.subplot plt.plot(s plt.title(plt.xlabel plt.ylabel plt.subplot plt.plot(s plt.plot(s plt.title(plt.xlabel	<pre>cats['loss_history']) tloss history') ('Iteration') ('Loss') c(2, 1, 2) cats['train_acc_history'], label='train') cats['val_acc_history'], label='val') 'Classification accuracy history')</pre>
2.3 - 2.2 - 2.1 - 2.0 -	Loss history
0.30 - 0.25 - 0.20 - 0.	zion 400 600 800 1000 Classificatidire atieuracy history
from vis_u: # Visualize def show_ne	0.5 10 15 2.0 2.5 3.0 3.5 4.0 Epoch cils import visualize_grid the weights of the network et_weights(net):
W1 = ne W1 = Wi plt.im	et.params['W1'] 1.reshape(32, 32, 3, -1).transpose(3, 0, 1, 2) show(visualize_grid(W1, padding=3).astype('uint8')) a().axis('off') bw()
What's wrong the learning ratused has low coverfitting, white funing. Tuning Networks, so we	Dur hyperparameters 2. Looking at the visualizations above, we see that the loss is decreasing more or less linearly, which seems to sug the may be too low. Moreover, there is no gap between the training and validation accuracy, suggesting that the mapacity, and that we should increase its size. On the other hand, with a very large model we would expect to see in the characteristic of the various part of using the layer parameters and developing intuition for how they affect the final performance is a large part of using the want you to get a lot of practice. Below, you should experiment with different values of the various hyperparameters and large part of training appears and regularization strength. You might also consider tuning
ncluding hidde earning rate de Approximate of gets over 52% Task 2.7 (4) Experiment: You every 1% above	en layer size, learning rate, numer of training epochs, and regularization strength. You might also consider tuning ecay, but you should be able to get good performance using the default value. results. You should be aim to achieve a classification accuracy of greater than 48% on the validation set. Our best on the validation set. -pts) ou goal in this exercise is to get as good of a result on CIFAR-10 as you can, with a fully-connected Neural Network 52% on the Test set we will award you with one extra bonus point. Feel free implement your own techniques (e.g.
best_net = ######### # TODO: Tu. # model in #	None # store the best model into this ###################################
<pre># ones we # differen #</pre>	<pre># hyperparameters by hand can be fun, but you might find it useful to # de to sweep through possible combinations of hyperparameters # cally like we did on the previous exercises. ###################################</pre>
<pre># ones we # differen # # Tweaking # write co # automati ######## best_acc = for i in ra hidden learni reg = ra std = ra num_ita</pre>	<pre>TwoLayerNet(input_size, hidden_dim, num_classes, std=std) = net.train(X_train, y_train, X_val, y_val,</pre>
# ones we # different # # Tweaking # write co # automati ######## best_acc = for i in ra hidden learni reg = ra num_ite net = ra stats: val_aca train_a params	<pre>verbose=False, num_iters=num_iters, learning_rate=learning_rate, reg=reg) c = np.max(stats['val_acc_history']) acc = np.max(stats['train_acc_history']) = (hidden_dim, learning_rate, reg, std)</pre>
# ones we # different # # Tweaking # write co # automatic ######## # ###### ##################	<pre>verbose=False, num_iters=num_iters, learning_rate=learning_rate, reg=reg) c = np.max(stats['val_acc_history']) acc = np.max(stats['train_acc_history']) = (hidden_dim, learning_rate, reg, std) barams, "\t", train_acc, "\t", val_acc) c_acc < val_acc: st_acc = val_acc st_net = net ###################################</pre>
# ones we # different # # Tweaking # write co # automatic ######## # # ###### # ###### # ###### #	<pre>verbose=False, num_iters=num_iters, learning_rate=learning_rate, reg=reg) c = np.max(stats['val_acc_history']) acc = np.max(stats['train_acc_history']) = (hidden_dim, learning_rate, reg, std) barams, "\t", train_acc, "\t", val_acc) c=acc < val_acc st_acc = val_acc st_net = net ###################################</pre>
# ones we # different # # Tweaking # write co # automatic ######## # # ###### # ###### # ###### #	verbose=False, num_iters=num_iters, learning_rate=learning_rate, reg=reg) c = np.max(stats['val_acc_history']) acc = np.max(stats['train_acc_history']) = (hidden_dim, learning_rate, reg, std) barams, "\t", train_acc, "\t", val_acc) c:_acc < val_acc: st_acc = val_acc st_acc = val_acc st_acc = val_acc st_acc = net ###################################
# ones we # differend # # Tweaking # write co # automatic ######## # # ##### # #### # ### # # # #	verbose=False, num_iters=num_iters, learning_rate=learning_rate, reg=reg) c = np.max(stats['val_acc_history']) acc = np.max(stats['train_acc_history']) = (hidden_dim, learning_rate, reg, std) barams, "\t", train_acc, "\t", val_acc) c:_acc < val_acc: st_acc = val_acc st_acc = val_acc st_acc = val_acc st_acc = net ###################################
# ones we # differen # Tweaking # write co # automati ######## best_acc = for i in ra hidden learnin reg = ra std = ra num_ita net = ra stats : val_ac train_a params print (ra if best best best ########## (150, 0.002 (150, 0.000 (150, 0.000 (150, 0.000 (150, 0.001 Task 2.8 (2 Describe how of the control of the control which are less if four answer: (four answer: (four answer: (four answer)) # visualize show_net_we # visualize show_net_we # visualize show_net_we # visualize # visuali	verbose=False, num_iters=num_iters, learning_rate=learning_rate, reg=reg) c = np.max(stats['val_acc_history']) acc = np.max(stats['train_acc_history']) = (hidden_dim, learning_rate, reg, std) barams, "\t", train_acc, "\t", val_acc) c:_acc < val_acc: st_acc = val_acc st_acc = val_acc st_acc = val_acc st_acc = net ###################################
# ones we # different # different # Tweaking # write co. # automati. ####### best_acc = for i in randing for	verbonce*Pales* nut feoraming trace* earning sate*,