Phương pháp nhánh cận

Nguyễn Chí Bằng

Ngày 6 tháng 11 năm 2023

TÓM TẮT

- Giới thiệu về 2 mô hình chính trong phương pháp giải bài toán tối ưu tuyến tính nguyên:
 - Tối ưu nguyên hoàn toàn
 - Tối ưu nguyên bộ phận.
- Tập trung vào phương pháp giải bài toán tối ưu nguyên bộ phận thông qua thuật toán nhánh cận.

NỘI DUNG

- Giới thiệu
- 2 Mục tiêu
- 3 Thuật toán nhánh cận

Tối ưu nguyên hoàn toàn

$$(H) \quad z_h = c^T x \longrightarrow Max$$

$$\begin{cases} Ax \le b, \\ x \ge 0, \text{ nguyên} \end{cases}$$
 (1)

- ullet Trong đó $c^T=(c_1\ c_2\ \dots\ c_n)$, A là ma trận m imes n, $b=egin{pmatrix} c_1 \ b_2 \ \vdots \ b_m \end{pmatrix}$, với $x\in Z^n.$
- Bài toán (H) gọi là bài toán **Tối ưu nguyên hoàn toàn.**
- Tập $S_h:=\{x\in Z^n_+: Ax\leq b\}$ là tập nghiệm của bài toán Tối ưu nguyên hoàn toàn.

Hình: Tập nghiệm của bài toán Tối ưu nguyên hoàn toàn

Tôi ưu nguyên bộ phận

Giới thiêu

(B)
$$z_b = c^T x + h^T y \longrightarrow Max$$

$$\begin{cases} Ax + Gy \le b, \\ x \ge 0, \text{ nguyên} \\ y \ge 0. \end{cases}$$
(2)

ullet Trong đó $c^T=(c_1\ c_2\ \dots\ c_n)$, $h^T=(h_1\ h_2\ \dots\ h_p)$, A là ma trận $m imes n, \ G$ là ma trận $m imes p, \ b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \end{pmatrix}$, với $x \in Z^n$ và $y \in R^p$.

- Bài toán (B) gọi là bài toán Tối ưu nguyên bộ phận.
- Tập $S_b:=\{(x,y)\in Z^n_+ imes R^p_+: Ax+Gy\leq b\}$ là tập nghiệm của bài toán Tối ưu nguyên bô phân.

Hình: Tập nghiệm của bài toán Tối ưu nguyên bộ phận

Bài toán quan tâm

(P)
$$z_p = c^T x + h^T y \longrightarrow Max$$

$$\begin{cases} Ax + Gy \le b, \\ x, y \ge 0. \end{cases}$$
(3)

- ullet Trong đó (P) là bài toán (B) với nghiệm thuộc tập số thực.
- Bài toán (P) là một bài toán Tối ưu tuyến tính thông thường hay gọi đơn giản là bài toán Tối ưu tuyến tính.
- Tập $S_p:=\{(x,y)\in R^n_+\times R^p_+: Ax+Gy\leq b\}$ là tập nghiệm của bài toán Tối ưu tuyến tính.

Giả sử ta nhận được tập phương án tối ưu của bài toán (2) sau hữu hạn lần giải, ký hiệu (x_b^*,y_b^*) và giá trị tối ưu là z_b^* thì ta có nhân xét sau:

Nhân xét 2.1

- Nếu $S_b \subset S_p$ thì ta luôn nhận được $z_b^* < z_p$ và phương án có thể cải thiện.
- Nếu $S_b=S_p$ thì ta nhận được $z_b^*=z_p$ và bài toán được giải.

Vì thế, ta chọn xử lý bài toán (2) thông qua bài toán (3).

title