Advanced Materials Modeling

Center for Energy Science and Technology (CEST)
Skolkovo Institute of Science and Technology
Moscow, Russia

Introduction

Instructors and teaching assistant

Prof. Andriy Zhugayevych (Skoltech)

Prof. Xavier Gonze (UCLouvain Belgium, Skoltech)

Prof. Alexander Shapeev (Skoltech)

Dr. Christian Tantardini (Skoltech)

Prof. Sergey Levchenko - lead instructor

TA: Maria Pogodaeva

Course content

Schedule: https://cms-lab.github.io/edu/AMM2022/Schedule.htm

We are here for you!

Adjusted/refined topics based on your interests

Discussion of your research projects

Final projects according to your interests

Course content: Prerequisites

1) Quantum mechanics

2) Basic solid state theory (periodic boundary conditions, Brillouin zones, k-points)

3) Basic electronic-structure concepts (many-body Schrödinger equation, Born-Oppenheimer approximation, density functional theory, Hartree-Fock approximation)

We will briefly review some of the background topics for you

Goal: Teach advanced concepts and tools in materials modeling

Atomic structure

Electronic structure

Materials modeling:

- + Interpretation of experiments at the atomic scale
- + Prediction of unexplored materials' properties

$$i\frac{\partial \Psi}{\partial t} = \left(-\frac{1}{2}\sum_{j}\frac{\partial^{2}}{\partial \boldsymbol{r}_{j}^{2}} + \frac{1}{2}\sum_{j\neq k}\frac{Q_{j}Q_{k}}{\left|\boldsymbol{r}_{j}-\boldsymbol{r}_{k}\right|} + V^{\mathrm{ext}}(\left\{\boldsymbol{r}_{j}\right\},t)\right)\Psi$$

non-relativistic Schrödinger equation

 $\Psi(\{\mathbf{r}_i\}, \{\sigma_i\}, t)$ – wave function, depends on spatial (\mathbf{r}_i) and spin (σ_i) coordinates of ALL particles in the system, and time t

No analytic solutions for more than two particles → need approximations!

The Born-Oppenheimer approximation has separated the nuclear degrees of freedom, but we are still left with a many-body problem.

$$\sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_{i}^{2} + \frac{1}{2} \sum_{j \neq i}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} + \sum_{l_{0}}^{M} \frac{Z_{l}}{|\mathbf{r}_{i} - \mathbf{R}_{l_{0}}|} \right] \Phi(\{\mathbf{r}_{i}\}) = E^{e} \Phi(\{\mathbf{r}_{i}\})$$

■ How to simplify the problem further?

■ The Hartree-Fock approximation

Slater determinant fulfills the Pauli principle

$$\Phi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) = \frac{1}{N!} \begin{vmatrix} \psi_1(\mathbf{r}_1) & \psi_2(\mathbf{r}_1) & \dots & \psi_N(\mathbf{r}_1) \\ \psi_1(\mathbf{r}_2) & \psi_2(\mathbf{r}_2) & \dots & \psi_N(\mathbf{r}_2) \\ \dots & & & & \\ \psi_1(\mathbf{r}_N) & \psi_2(\mathbf{r}_N) & \dots & \psi_N(\mathbf{r}_N) \end{vmatrix}$$

Hartree-Fock equations

$$\left[-\frac{\hbar^2}{2m} \nabla_i^2 + V_{ext}(\mathbf{r}) \right] \psi_i(\mathbf{r}) + e^2 \sum_j \int \frac{\psi_j^*(\mathbf{r}') \psi_j(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' \psi_i(\mathbf{r})
- e^2 \sum_j \int \frac{\psi_j^*(\mathbf{r}') \psi_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' \psi_j(\mathbf{r}) = E_i \psi_i(\mathbf{r})$$

No self-interaction, but also no correlation

Density functional theory: Hohenberg-Kohn theorem

$$n(\mathbf{r}) \xrightarrow{\hat{H}} - \text{many-body Hamiltonian}$$

$$\Phi(\mathbf{r}_1\sigma_1,\dots,\mathbf{r}_N\sigma_N) - \text{many-body wave function}$$

$$E_{\text{tot}} - \text{total energy}$$

$$E_{\text{tot}} = T[n] - \sum_{I=1}^{M} Z_I \int \frac{n(\mathbf{r})}{|\mathbf{r} - \mathbf{R}_I|} d^3r + \frac{1}{2} \sum_{I=1}^{M} \sum_{J=1}^{M} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|} + \frac{1}{2} \int \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3r d^3r' + E_{XC}[n]$$

Standard approximations to $E_{\rm XC}[n]$: Local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA

Correlation is included (approximately), but also self-interaction

What can we do?

Advanced topics:

Hybrid functionals, many-body perturbation theory (*GW*, Bethe-Salpeter equation)

Density functional perturbation theory (phonons, electron-phonon coupling, spectroscopy, electron transport)

Excited state dynamics

Advanced topics:

A DFT calculation corresponds to T = 0 K and p = 0 atm. We explain how to go beyond this approximation (molecular dynamics, *ab initio* atomistic thermodynamics, kinetic Monte Carlo)

Bridging materials gap (ab initio modeling versus real materials) \rightarrow use data analysis and machine learning

Assignments and assessment

1) Homeworks: based on the lectures, multiple-choice or free question-and-answer format.

Assessment: number of correctly answered questions

2) Lab reports: based on computational labs.

Assessment: Task completion, understanding, writing

3) Quizzes: based on the lectures, simple questions on the discussed topics

Assesment: number of correct answers

4) Progress reports on your final projects.

Assessment: Quality of presentation, understanding of the subject

5) Final project (https://cms-lab.github.io/edu/AMM/FinalProject.htm).

Assessment: Scientific quality, quality of presentation, answering questions

First homework: Introduce yourself

Homework assignment:

https://cms-lab.github.io/edu/AMM2022/homeworks/Homework1.pdf

- 1. Give a 10-min presentation of your research project most relevant to the course using the following plan:
 - Introduce yourself (1 min)
 - Why are you interested in the course (1 min)
 - Present your most relevant research projects (3-5 min)
 - Speculate on possible final project (1-3 min)
- 2. Look at the list of lectures (https://cms-lab.github.io/edu/AMM2022/Schedule.htm) and mark the most interesting from your point of view.

Due date: Friday 1.04 at 9:00 (presentations)

Office hours

No fixed office hours

Simply send me and Maria an email if you have a question or want to discuss something, we will answer by email or arrange an online or offline meeting

Lecture 1: Advanced DFT for solids 1

DFT approximations: What is missing?

Philipsen and Baerends, Phys. Rev. B, 54, p. 5326 (1996)

We do not know the exact exchange-correlation functional

but we can determine some of its properties!

☐ Fractional occupations

Time average → statistical mixture of *pure* states:

 $Ψ_1$, probability p_1 ; $Ψ_2$, probability p_2 ; etc. - ensemble Γ

□ Fractional occupations

Time average → statistical mixture of *pure* states:

 $Ψ_1$, probability p_1 ; $Ψ_2$, probability p_2 ; etc. - ensemble Γ

$$\langle \hat{O} \rangle_{\Gamma} = \sum_{i} p_{i} \langle \Psi_{i} | \hat{O} | \Psi_{i} \rangle$$
 - for any operator \hat{O}

$$E[n] = \min_{\Gamma \to n} \langle \hat{T} + \hat{V}_{ee} + \hat{V}_{ext} + \hat{V}_{xc} \rangle_{\Gamma}$$
 [minimize over all Γ giving the same $n(r)$]

□ Fractional occupations

Time average → statistical mixture of *pure* states:

 $Ψ_1$, probability p_1 ; $Ψ_2$, probability p_2 ; etc. - ensemble Γ

$$\langle \hat{O} \rangle_{\Gamma} = \sum_{i} p_{i} \langle \Psi_{i} | \hat{O} | \Psi_{i} \rangle$$
 - for any operator \hat{O}

$$E[n] = \min_{\Gamma \to n} \langle \hat{T} + \hat{V}_{ee} + \hat{V}_{ext} + \hat{V}_{xc} \rangle_{\Gamma}$$
 [minimize over all Γ giving the same $n(r)$]

Fractional number of electrons - ensemble of pure states with different integer charges:

$$p_1M + p_2(M-1) + p_3(M+1) + \dots = M + \omega, 0 < \omega < 1,$$

$$E[n] = p_1E_M + p_2E_{M-1} + p_3E_{M+1} + \dots, \qquad p_1 + p_2 + \dots = 1$$

Perdew et al., Phys. Rev. Lett. 49, 1691 (1982)

□ Fractional occupations

$$p_1M + p_2(M-1) + p_3(M+1) + \dots = M + \omega, 0 < \omega < 1,$$

$$E[n] = p_1E_M + p_2E_{M-1} + p_3E_{M+1} + \dots, \qquad p_1 + p_2 + \dots = 1$$

Fractional occupations

$$p_1M + p_2(M-1) + p_3(M+1) + \dots = M + \omega, 0 < \omega < 1,$$

$$E[n] = p_1E_M + p_2E_{M-1} + p_3E_{M+1} + \dots, \qquad p_1 + p_2 + \dots = 1$$

The exact energy changes piece-wise linearly with N

Perdew et al., Phys. Rev. Lett. 49, 1691 (1982)

Fractional occupations in Kohn-Sham formalism

$$n(\mathbf{r}) = \sum_{i} |\psi_i(\mathbf{r})|^2$$
 sum over occupied states

$$\begin{aligned} &E_{\mathrm{KS}}(\{\psi_i\},\{f_i\}) = \sum_i t_i + E_{\mathrm{C}}[n] + E_{\mathrm{XC}}[n], \\ &\text{kinetic energy} \quad \text{Coulomb energy} \quad \text{exchange-correlation} \\ &t_i = -\frac{1}{2} \langle \psi_i | \nabla^2 | \psi_i \rangle & \frac{1}{2} \int \frac{n(r)n(r')}{|r-r'|} d^3r d^3r' \\ & - \int d^3r \sum_J \frac{Z_J}{|r-R_J|} n(r) \end{aligned} \quad \text{energy}$$

Fractional occupations in Kohn-Sham formalism

$$n(\mathbf{r}) = \sum_{i} |\psi_i(\mathbf{r})|^2$$

$$E_{KS}(\{\psi_i\}, \{f_i\}) = \sum_i t_i + E_{C}[n] + E_{XC}[n], \ t_i = -\frac{1}{2} \langle \psi_i | \nabla^2 | \psi_i \rangle$$

Let us define:

$$n(\mathbf{r}) = \sum_{i} f_{i} |\psi_{i}(\mathbf{r})|^{2}$$
, $\sum_{i=1}^{\infty} f_{i} = N, 0 \le f_{i} \le 1$

$$\tilde{E}(\{\psi_i\},\{f_i\}) = \sum_i f_i t_i + E_{\mathcal{C}}[n] + E_{\mathcal{X}\mathcal{C}}[n]$$

□ Fractional occupations in Kohn-Sham formalism

Let us define:

$$n(\mathbf{r}) = \sum_{i} f_{i} |\psi_{i}(\mathbf{r})|^{2}$$
, $\sum_{i=1}^{\infty} f_{i} = N, 0 \le f_{i} \le 1$

$$\tilde{E}(\{\psi_i\},\{f_i\}) = \sum_i f_i t_i + E_{\mathcal{C}}[n] + E_{\mathcal{X}\mathcal{C}}[n]$$

Lagrangian:

$$Q[\{\psi_i\}, \{f_i\}] = \tilde{E}(\{\psi_i\}, \{f_i\}) + \sum_i \lambda_i (\int |\psi_i|^2 d\mathbf{r} - 1) - \mu(\sum_i f_i - N),$$

$$\min_{\psi_i, f_i} Q \to n, \tilde{E}[n], \psi_i$$

□ Fractional occupations in Kohn-Sham formalism

Let us define:

$$n(\boldsymbol{r}) = \sum_{i} f_{i} |\psi_{i}(\boldsymbol{r})|^{2}$$
, $\sum_{i=1}^{\infty} f_{i} = N.0 \leq f_{i} \leq 1$

$$\tilde{E}(\{\psi_i\},\{f_i\}) = \sum_i f_i t_i + E_{\mathcal{C}}[n] + E_{\mathcal{X}\mathcal{C}}[n]$$

Lagrangian:

$$Q[\{\psi_i\}, \{f_i\}] = \tilde{E}(\{\psi_i\}, \{f_i\}) + \sum_i \lambda_i (\int |\psi_i|^2 d\mathbf{r} - 1) - \mu(\sum_i f_i - N),$$

$$\frac{\delta Q}{\delta \psi_i^*} = 0 \rightarrow \text{Kohn-Sham equations by choosing } \lambda_i = f_i \varepsilon_i$$

$$-\frac{1}{2}\nabla^2\psi_i + \left(\int d^3r' \frac{n(r')}{|r-r'|} - \sum_J \frac{Z_J}{|r-R_J|}\right)\psi_i + \frac{\delta E_{\rm XC}}{\delta n(r)}\psi_i = \varepsilon_i\psi_i$$

□ Fractional occupations in Kohn-Sham formalism

Let us define:

$$n(\boldsymbol{r}) = \sum_{i} f_{i} |\psi_{i}(\boldsymbol{r})|^{2}$$
, $\sum_{i=1}^{\infty} f_{i} = N.0 \leq f_{i} \leq 1$

$$\tilde{E}(\{\psi_i\},\{f_i\}) = \sum_i f_i t_i + E_{\mathcal{C}}[n] + E_{\mathcal{X}\mathcal{C}}[n]$$

Lagrangian:

$$Q[\{\psi_i\},\{f_i\}] = \tilde{E}(\{\psi_i\},\{f_i\}) + \sum_i \lambda_i (\int |\psi_i|^2 d\mathbf{r} - 1) - \mu(\sum_i f_i - N),$$

$$\frac{\partial Q}{\partial f_i} = 0 \Rightarrow \text{set } f_i = \cos^2 \theta_i \Rightarrow \frac{\partial Q}{\partial \theta_i} = -\left(\frac{\partial \tilde{E}}{\partial f_i} - \mu\right) \sin 2\theta_i = 0$$

$$\frac{\partial \tilde{E}}{\partial f_i} = \mu, 0 \le f_i \le 1, \qquad \frac{\partial \tilde{E}}{\partial f_i} \ne \mu, f_i = 1, \qquad \frac{\partial \tilde{E}}{\partial f_i} \ne \mu, f_i = 0$$

Approximate functionals

 \square Dependence E(N) for an approximate functional:

Approximate functionals

\square Dependence E(N) for an approximate functional:

Hartree-Fock is a functional within generalized Kohn-Sham scheme: $E = E[\{\psi\}]$

More "DFT-like": Optimized effective potentials (local potentials that approximate the non-local HF exchange) - numerically complex and computationally expensive

Approximate functionals

□ Connection between the self-interaction (delocalization) error (SIE) and the convex behavior

Mori-Sánchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)

Band gap problem

□ Observable gap:

$$E_{gap}^{obs} = (E(M+1) - E(M)) - (E(M) - E(M-1))$$

☐ Kohn-Sham gap:

$$E_{gap}^{KS} = \varepsilon_{LUMO}^{M} - \varepsilon_{HOMO}^{M}$$

Are they the same?

□ Fractional occupations in Kohn-Sham formalism

Let us define:

$$n(\boldsymbol{r}) = \sum_i f_i |\psi_i(\boldsymbol{r})|^2$$
 , $\sum_{i=1}^{\infty} f_i = N, 0 \le f_i \le 1$

$$\tilde{E}(\{\psi_i\},\{f_i\}) = \sum_i f_i t_i + E_{\mathcal{C}}[n] + E_{\mathcal{X}\mathcal{C}}[n]$$

Lagrangian:

$$Q[\{\psi_i\},\{f_i\}] = \tilde{E}(\{\psi_i\},\{f_i\}) + \sum_i \lambda_i (\int |\psi_i|^2 d\mathbf{r} - 1) - \mu(\sum_i f_i - N),$$

$$\frac{\partial Q}{\partial f_i} = 0 \Rightarrow \text{set } f_i = \cos^2 \theta_i \Rightarrow \frac{\partial Q}{\partial \theta_i} = -\left(\frac{\partial \tilde{E}}{\partial f_i} - \mu\right) \sin 2\theta_i = 0$$

$$\frac{\partial \tilde{E}}{\partial f_i} = \mu, 0 \le f_i \le 1, \qquad \frac{\partial \tilde{E}}{\partial f_i} \ne \mu, f_i = 1, \qquad \frac{\partial \tilde{E}}{\partial f_i} \ne \mu, f_i = 0$$

□ Fractional occupations in Kohn-Sham formalism

Derivative w.r.t. f:

$$n(\mathbf{r}) = \sum_{i} f_{i} |\psi_{i}(\mathbf{r})|^{2} \qquad \tilde{E}(\{\psi_{i}\}, \{f_{i}\}) = \sum_{i} f_{i} t_{i} + E_{C}[n] + E_{XC}[n]$$

$$E_{C}[n] = \frac{1}{2} \int \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d^{3}r d^{3}r' - \int d^{3}r \sum_{J} \frac{Z_{J}}{|\mathbf{r}-R_{J}|} n(\mathbf{r})$$

$$-\frac{1}{2} \nabla^{2} \psi_{i} + \left(\int d^{3}r' \frac{n(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} - \sum_{J} \frac{Z_{J}}{|\mathbf{r}-R_{J}|} \right) \psi_{i} + \frac{\delta E_{XC}}{\delta n(\mathbf{r})} \psi_{i} = \varepsilon_{i} \psi_{i}$$

$$\frac{\partial \tilde{E}}{\partial f_{i}} = t_{i} + \int d^{3}r |\psi_{i}(\mathbf{r})|^{2} V_{C}(\mathbf{r}) + \int d^{3}r \frac{\delta E_{XC}}{\delta n(\mathbf{r})} |\psi_{i}|^{2} = \varepsilon_{i} = \frac{d\tilde{E}}{df_{i}}$$

from KS equations

from stationary condition with respect to ψ_i^*

□ Fractional occupations in Kohn-Sham formalism Lagrangian:

$$Q[\{\psi_i\}, \{f_i\}] = \tilde{E}(\{\psi_i\}, \{f_i\}) + \sum_i \lambda_i \left(\int |\psi_i|^2 d\mathbf{r} - 1\right) - \mu(\sum_i f_i - N),$$
$$\frac{\partial Q}{\partial f_i} = 0 \Rightarrow \text{set } f_i = \cos^2 \theta_i \Rightarrow \frac{\partial Q}{\partial \theta_i} = -(\varepsilon_i - \mu) \sin 2\theta_i = 0$$

Three cases:
$$\varepsilon_i = \mu, 0 \le f_i \le 1$$
 $\varepsilon_i \ne \mu, f_i = 1$ $\varepsilon_i \ne \mu, f_i = 0$

Note: There can be additional constraints on f_i (electronic smearing for metals, finite temperature)

□ Fractional occupations in Kohn-Sham formalism Janak's theorem:

$$\frac{dE[n]}{df_i} = \varepsilon_i$$

Also: E[n] is minimized when the fractional occupation is in ε_{HOMO} , and

$$\left. \frac{dE[n]}{dN} \right|_{M-\delta} = \frac{dE[n]}{df_{HOMO}} = \varepsilon_{HOMO} = \mu(M-\delta)$$

From the piece-wise linear behavior of the exact functional $\rightarrow \varepsilon_{HOMO}(M-\delta)=const$ for $0<\delta<1$ for exact KS potential (IP theorem)

What's up with the band gap?

□ Observable gap:

$$E_{gap}^{obs} = (E(M+1) - E(M)) - (E(M) - E(M-1))$$

From Janak's theorem and the exact functional condition:

$$E(M+1) - E(M) = \int_0^1 \varepsilon_{M+1}(f)df = \varepsilon_{M+1}^{M+1} = \varepsilon_{HOMO}^{M+1}$$

$$E(M) - E(M-1) = \int_0^1 \varepsilon_M(f) df = \varepsilon_M^M = \varepsilon_{HOMO}^M$$

$$E_{gap}^{obs} = \varepsilon_{HOMO}^{M+1} - \varepsilon_{HOMO}^{M}$$

BUT!

$$E_{gap}^{KS} = \varepsilon_{LUMO}^{M} - \varepsilon_{HOMO}^{M}$$

■ Derivative discontinuity

$$E_{gap}^{obs} - E_{gap}^{KS} = \varepsilon_{HOMO}^{M+1} - \varepsilon_{LUMO}^{M} = \frac{\delta E_{XC}[n]}{\delta n(\mathbf{r})} \bigg|_{M+\delta} - \frac{\delta E_{XC}[n]}{\delta n(\mathbf{r})} \bigg|_{M-\delta}$$

For the exact functional, the KS gap is not the same as the observable gap!

Thus, there are TWO problems:

- 1) non-straight-line behavior of the total energy with number of electrons for approximate functionals
- 2) $E_{gap}^{obs} \neq E_{gap}^{KS}$ for exact functional, and we do not know how large the difference is

Observation: improving E(N) behavior improves the KS gaps compared to experiment

□ Generalized Kohn-Sham (GKS):

Hartree-Fock "overcorrects" the discontinuity (correlation part is missing)

Mori-Sánchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)

□ Hartree-Fock is self-interaction free, but...

Brice Arnaud, Universit'e de Rennes, France

Hybrid functionals

Idea: combine HF with GGA to reduce the self-interaction error:

$$E[\{\psi\}] = \alpha E_X^{HF} + (1 - \alpha) E_X^{GGA} + E_C^{GGA}, 0 < \alpha \le 1$$

Approximate E(N) is not exactly straight and may have a different slope: some errors remain

Mori-Sánchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)

■ Hybrid functionals $E = \alpha E_X^{HF} + (1 - \alpha) E_X^{LDA/GGA} + E_C^{LDA/GGA}$

The mixing parameter α depends on the choice of (semi)local exchange/correlation

 $E^{PBE0} = 0.25 E_X^{HF} (\{\psi^{KS}\}) + 0.75 E_X^{PBE} + E_C^{PBE}$ (choice of α is based on perturbation theory (MP4))

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)

■ Hybrid functionals $E = \alpha E_X^{HF} + (1 - \alpha) E_X^{LDA/GGA} + E_C^{LDA/GGA}$

The mixing parameter α depends on the choice of (semi)local exchange/correlation

 $E^{PBE0} = 0.25 E_X^{HF} (\{\psi^{KS}\}) + 0.75 E_X^{PBE} + E_C^{PBE}$ (choice of α is based on perturbation theory (MP4))

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)

There can be other parameters

$$E^{HSE} = 0.25E_X^{HF,SR}(\omega) + 0.75E_X^{PBE,SR}(\omega) + E_X^{PBE,LR}(\omega) + E_C^{PBE}$$

$$\frac{1}{r} = SR_{\omega}(r) + LR_{\omega}(r) = \frac{\text{erfc}(\omega r)}{r} + \frac{1 - \text{erfc}(\omega r)}{r}$$

J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

Hybrid functionals

$$E^{PBE0} = 0.25E_X^{HF}(\{\psi^{KS}\}) + 0.75E_X^{PBE} + E_C^{PBE}$$

From: "Advanced Calculations for Defects in Materials: Electronic Structure Methods", Alkauskas, Deák, Neugebauer, Pasquarello, Van de Walle (eds.), Willey-VCH (2011)

Hybrid functionals

"An ideal hybrid would be sophisticated enough to optimize n [SVL: $\alpha = 1/n$] for each system and property..."

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)

How can we do this?

Determine the best α by comparing to more accurate approaches

$$E^{HSE} = 0.25E_X^{HF,SR}(\omega) + 0.75E_X^{PBE,SR}(\omega) + E_X^{PBE,LR}(\omega) + E_C^{PBE}$$

\Box Determine the best α

$$E^{HSE} = 0.25E_X^{HF,SR}(\omega) + 0.75E_X^{PBE,SR}(\omega) + E_X^{PBE,LR}(\omega) + E_C^{PBE}$$

HSE formation energies for varying α : strong dependence for F⁺ and F²⁺!

Which α to use?

lacksquare Determine the best lpha

$$E^{HSE} = 0.25E_X^{HF,SR}(\omega) + 0.75E_X^{PBE,SR}(\omega) + E_X^{PBE,LR}(\omega) + E_C^{PBE}$$
Request:

Ionization energies with opt-HSE and with G_0W_0 @opt-HSE should agree

calculated using an Mg₆O₉ embedded cluster

From total energy differences

\Box Determine the best α

$$E^{HSE} = 0.25E_X^{HF,SR}(\omega) + 0.75E_X^{PBE,SR}(\omega) + E_X^{PBE,LR}(\omega) + E_C^{PBE}$$
Request:

Ionization energies with opt-HSE and with G_0W_0 @opt-HSE should agree

calculated using an Mg₆O₉ embedded cluster

From highest occupied orbital

From total energy differences

\Box Determine the best α

$$E^{HSE} = 0.25E_X^{HF,SR}(\omega) + 0.75E_X^{PBE,SR}(\omega) + E_X^{PBE,LR}(\omega) + E_C^{PBE}$$
Request:

Ionization energies with opt-HSE and with G_0W_0 @opt-HSE should agree

calculated using an Mg₆O₉ embedded cluster

From highest occupied orbital

From total energy differences

Example: Fe_{Mg} substitutional defects in MgO

\square Is $\alpha = 0.25$ always good?

$$E^{HSE} = 0.25E_X^{HF,SR}(\omega) + 0.75E_X^{PBE,SR}(\omega) + E_X^{PBE,LR}(\omega) + E_C^{PBE}$$

$$\frac{1}{r} = SR_{\omega}(r) + LR_{\omega}(r) = \frac{\text{erfc}(\omega r)}{r} + \frac{1 - \text{erfc}(\omega r)}{r}$$

Electron addition energy $E_{add} = E(N+1) - E(N)$ for the Fe_{Mq} defect

Optimal $\alpha \approx 0.6$

There IS an α for which $\varepsilon^{HOMO} \approx const$

Hybrid functionals

"An ideal hybrid would be sophisticated enough to optimize n [SVL: $\alpha = 1/n$] for each system and property..."

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)

How can we do this?

1) $\alpha = 1/\varepsilon_{\infty}$ (self-consistent or not)

Skone, Govoni, and Galli, Phys. Rev. B 89, 195112 (2014)

2) $\alpha \rightarrow \alpha(r)$ - local hybrids

Maier, Arbuznikov, and Kaupp, WIREs Comput Mol Sci. 9, 1 (2019)

Other approaches: Self-interaction correction

Hybrids are a consistent way to improve accuracy, but they are computationally expensive (30-40 times PBE)

Perdew-Zunger self-interaction correction:

$$E^{PZ-SIC} = E^{DFA} - \frac{1}{2} \sum_{i\sigma} \left(\int d^3r d^3r' \frac{n_{i\sigma}(\boldsymbol{r}) n_{i\sigma}(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} + E_{XC}[n_{i\sigma}] \right)$$

where $n_{i\sigma}$ are single-orbital densities

Perdew and Zunger, Phys. Rev. B 23, 5048 (1981)

- + exact for any one-electron density
- + fast
- depends on the choice of orbitals representing the density
- not good for many-electron densities in general

Other approaches: Self-interaction correction

Aquino, Shinde, and Wong, J. Comput. Chem. 41, 1200 (2020)

Locally scaled SIC: reduce SIC in many-electron regions

Vydrov and Scuseria, J. Chem. Phys. 124, 094108 (2006)

Transition-metal atoms with LOCALIZED orbitals (d, f)

Self-interaction error → dramatic effects on electronic structure

Idea: Correct ON-SITE errors (locally on each atom) only

How?

Idea: Penalize fractional occupations of localized atomic orbitals

Idea: Penalize fractional occupations of localized atomic orbitals

Electron-electron interaction of localized electrons in meanfield approximation (Hartree-Fock) → concave

Hartree-Fock energy of localized electrons in a solid:

$$\begin{split} E^{loc} &= \frac{1}{2} \sum_{\{m\}\sigma} \{ \langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle n^{\sigma}_{mm''} n^{-\sigma}_{m'm'''} + \\ &(\langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle - \langle \phi_m \phi_{m'} | V | \phi_{m'''} \phi_{m''} \rangle) n^{\sigma}_{mm''} n^{\sigma}_{m'm'''} \} \end{split}$$

$$n_{mm'}^{\sigma} = \sum_i f_{i\sigma} \langle \phi_m | \psi_i \rangle \langle \psi_i | \phi_{m'} \rangle$$
 -- occupation matrix atomic orbitals KS states

occupation of KS states

Hartree-Fock energy of localized electrons in a solid:

$$\begin{split} E^{loc} &= \frac{1}{2} \sum_{\{m\}\sigma} \{ \langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle n^{\sigma}_{mm''} n^{-\sigma}_{m'm'''} + \\ & (\langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle - \langle \phi_m \phi_{m'} | V | \phi_{m'''} \phi_{m''} \rangle) n^{\sigma}_{mm''} n^{\sigma}_{m'm'''} \} \end{split}$$

$$n_{mm'}^{\sigma} = \sum_i f_{i\sigma} \langle \phi_m | \psi_i \rangle \langle \psi_i | \phi_{m'} \rangle$$
 -- occupation matrix atomic orbitals KS states

occupation of KS states

V - screened Coulomb interaction (due to other atomic orbitals s,p,...)

Hartree-Fock energy of localized electrons in a solid:

$$E^{loc} = \frac{1}{2} \sum_{\{m\}\sigma} \{ \langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle n_{mm''}^{\sigma} n_{m'm'''}^{-\sigma} + \\ (\langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle - \langle \phi_m \phi_{m'} | V | \phi_{m'''} \phi_{m''} \rangle) n_{mm''}^{\sigma} n_{m'm'''}^{\sigma} \}$$

$$n_{mm'}^{\sigma}=\sum_i f_{i\sigma}\langle\phi_m|\psi_i\rangle\langle\psi_i|\phi_{m'}\rangle$$
 -- occupation matrix

atomic orbitals KS states

occupation of **KS** states

Approximating
$$\langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle \approx U \delta_{mm''} \delta_{m'm'''}$$

$$\langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle - \langle \phi_m \phi_{m'} | V | \phi_{m'''} \phi_{m''} \rangle \approx (U - J) (\delta_{mm''} \delta_{m'm'''} - \delta_{mm'''} \delta_{m'm''})$$

$$E^{loc} \approx \frac{1}{2} \sum_{\{m\}\sigma} \{ U n_{mm}^{\sigma} n_{m'm'}^{-\sigma} + (U - J) n_{mm}^{\sigma} n_{m'm'}^{\sigma} - (U - J) n_{mm'}^{\sigma} n_{m'm}^{\sigma} \}$$

$$E^{loc} \approx \frac{1}{2} \sum_{\{m\}\sigma} \{U n_{mm}^{\sigma} n_{m'm'}^{-\sigma} + (U - J) n_{mm}^{\sigma} n_{m'm'}^{\sigma} - (U - J) n_{mm'}^{\sigma} n_{m'm}^{\sigma} \}$$

Hubbard-like parameter ($U\sum_{m{i}} \widehat{m{n}}_{m{i}}^{\uparrow} \widehat{m{n}}_{m{i}}^{\downarrow}$)

Penalty for fractional occupations:

$$\Delta E = E^{loc}(n_{mm'}^{\sigma} \text{ in solid}) - E^{loc}(n_{mm'}^{\sigma} \text{ in ion})$$

$$\begin{split} &E^{loc}\left(n_{mm'}^{\sigma} \text{ in ion }\right) \\ &= \frac{1}{2} \sum_{\{m\}\sigma} \{U n_{mm}^{\sigma} n_{m'm'}^{-\sigma} + (U-J) n_{mm}^{\sigma} n_{m'm'}^{\sigma}\} - \frac{(U-J)}{2} \sum_{m\sigma} n_{mm}^{\sigma} \end{split}$$

$$E^{loc} \approx \frac{1}{2} \sum_{\{m\}\sigma} \{U n_{mm}^{\sigma} n_{m'm'}^{-\sigma} + (U - J) n_{mm}^{\sigma} n_{m'm'}^{\sigma} - (U - J) n_{mm'}^{\sigma} n_{m'm}^{\sigma} \}$$

Hubbard-like parameter ($U\sum_{i}\widehat{n}_{i}^{\uparrow}\widehat{n}_{i}^{\downarrow}$)

Penalty for fractional occupations:

$$\Delta E = E^{loc}(n_{mm'}^{\sigma} \text{ in solid}) - E^{loc}(n_{mm'}^{\sigma} \text{ in ion})$$

$$E^{loc}(n_{mm'}^{\sigma} \text{ in ion }) = \frac{1}{2} \sum_{\{m\}\sigma} \{U n_{mm}^{\sigma} n_{m'm'}^{-\sigma} + (U - J) n_{mm}^{\sigma} n_{m'm'}^{\sigma}\} - \frac{(U - J)}{2} \sum_{m\sigma} n_{mm}^{\sigma}$$

$$E_{DFA+U} = E_{DFA} + \Delta E = E_{DFA} + \frac{(U-J)}{2} \left\{ \sum_{m\sigma} n_{mm}^{\sigma} - \sum_{mm'\sigma} n_{mm'}^{\sigma} n_{m'm}^{\sigma} \right\}$$

$$E_{DFA+U} = E_{DFA} + \Delta E = E_{DFA} + \frac{(U-J)}{2} \left\{ \sum_{m\sigma} n_{mm}^{\sigma} - \sum_{mm'\sigma} n_{mm'}^{\sigma} n_{m'm}^{\sigma} \right\}$$

Notes:

- U J can be considered as an effective U
- First derivations were not rotationally invariant
- ullet One can go beyond mean-field, then need both U and J
- ullet $E^{loc}(n_{mm'}^{\sigma} ext{ in ion})$ is called double-counting term
- ullet Depends on the choice of atomic basis $oldsymbol{\phi}_m$
- U depends on atom, orbital (d, f), atom environment

How to determine U?

$$E_{DFA+U} = E_{DFA} + \Delta E = E_{DFA} + \frac{(U-J)}{2} \left\{ \sum_{m\sigma} n_{mm}^{\sigma} - \sum_{mm'\sigma} n_{mm'}^{\sigma} n_{m'm}^{\sigma} \right\}$$

How to determine U?

- Compare DFA+U with experiment (band gap, structure) often unavailable
- Compare DFA+U with accurate methods (GW) expensive
- Ensure linear E(N) done using linear-response DFT
- From constrained random-phase approximation calculations expensive, complex formalism

Pavarini, Koch, Vollhardt, and Lichtenstein, The LDA+DMFT approach to strongly correlated materials Modeling and Simulation Vol. 1 Forschungszentrum Juelich, 2011, ISBN 978-3-89336-734-4

U depends on atom, orbital (d, f), atom environment

Take-home messages:

Know what you are doing!

Non-linearity of $E(N) \rightarrow DFA$ failures

Functional development - active field of research (SIC, DFA+U, local hybrids, $lpha=rac{1}{arepsilon_{\infty}}$, meta-GGA)

Strongly constrained and appropriately normed semilocal density functional

J Sun, A Ruzsinszky, JP Perdew Physical review letters 115 (3), 036402