

Exercise 11C

Question 6:

$$BD = DC$$

In ∆BCD, we have

$$\angle BCD + \angle CBD + \angle CDB = 180^{\circ}$$

 $\Rightarrow 30^{\circ} + 30^{\circ} + \angle CDB = 180^{\circ}$
 $\Rightarrow \angle CDB = 180^{\circ} - 60^{\circ}$
 $= 120^{\circ}$

The opposite angles of a cyclic quadrilateral are supplementary. ABCD is a cyclic quadrilateral and thus,

$$\angle CDB + \angle BAC = 180^{\circ}$$

= $180^{\circ} - 120^{\circ} [\because \angle CDB = 120^{\circ}]$
= 60°
 $\angle BAC = 60^{\circ}$

Question 7:

Angle subtended by an arc is twice the angle subtended by it on the circumference in the alternate segment. Here arc ABC makes $\angle AOC = 100^{\circ}$ at the centre of the circle and $\angle ADC$ on the circumference of the circle

∴∠AOC = 2∠ADC
⇒ ∠ADC =
$$\frac{1}{2}$$
(∠AOC)
⇒ = $\frac{1}{2}$ ×100° [∠AOC = 100°]
⇒ ∠ADC = 50°

The opposite angles of a cyclic quadrilateral are supplementary ABCD is a cyclic quadrilateral and thus,