Principles of Communications Lecture 3: Analog Modulation Techniques (1)

Chih-Wei Liu 劉志尉 National Chiao Tung University

cwliu@twins.ee.nctu.edu.tw

Outlines

- Linear Modulation
- Angle Modulation
- Interference
- Feedback Demodulators
- Analog Pulse Modulation
- Delta Modulation and PCM
- Multiplexing

Types of Modulation m(t) —

- Analog modulation and Digital modulation
 - A process to translate the information data to a new spectral location depending on the intended frequency for transmission.
- Modulation, historically, is done on the RF transmission system. Thus, the conversion from message signals to RF signals is called modulation.
- Analog modulation: continuous-wave modulation and pulse modulation (sampled data)
 - Continuous-wave modulation: linear modulation (AM) and angle modulation (FM)

Linear Modulation

- General form: $x_c(t) = A_c(t) \cos \omega_c t$
 - $A_c(t)$: 1-to-1 correspondence to the message m(t)

 $\cos(\omega_c t)$: carrier ($\omega_c t$ is fixed)

DSB (Double-Sideband) Suppressed Carrier (SC)

$$x_c(t) = A_C m(t) \cos \omega_c t$$

$$\Leftrightarrow X_{C}(f) = \frac{1}{2}A_{C}M(f + f_{C}) + \frac{1}{2}A_{C}M(f - f_{C})$$

DSB-SC

Coherent (Synchronous) Demodulator (Detector): The receiver knows exactly the phase and frequency of the carrier in the received signal.

$$d(t) = x_c(t) \cdot 2\cos\omega_c t = [A_C m(t)\cos\omega_c t] \cdot 2\cos\omega_c t$$

$$= A_C m(t) + A_C m(t)\cos 2\omega_c t$$

$$\det \text{ desired part } \text{ High freq. noise}$$

Message *m*(*t*) is recovered!

- What if the receiver reference is not coherent?
 - -- A phase error occurs ($\theta(t)$, unknown, random,

time-varying, ...)

$$d(t) = 2A_C m(t) \cos \omega_c t \cdot \cos(\omega_c t + \theta(t))$$

= $A_C m(t) \cos \theta(t) + A_C m(t) \cos(2\omega_c t + \theta(t))$

$$y_D(t) = m(t)\cos\theta(t), \qquad -1 \le \cos\theta(t) \le 1$$
 It is time-varying!!

Carrier Recovery

- **Carrier recovery:** Regenerate the carrier $(f_c \text{ and } \theta(t))$ at the receiver site
- Example: Square circuit

$$x_r^2(t) = A_C^2 m^2(t) \cos^2 \omega_c t = \frac{1}{2} A_C^2 m^2(t) + \frac{1}{2} A_C^2 m^2(t) \cos 2\omega_c t$$
DC | Carrier (2xf)!

Carrier Recover (2)

How to extract the carrier? It becomes clearer when we examine it in the frequency domain.

FT of $x_r^2(t)$:

Remarks

- The spectrum of DSB signal does not contain a discrete spectral component at the carrier frequency unless m(t) has a DC component.
- DSB systems with no carrier frequency component present are often referred to as suppressed carrier (SC) systems.
- If the carrier frequency is transmitted along with DSB signal, the demodulation process can be rather simplified.
- Alternatively, let's see the following amplitude modulation (AM) scheme.

Amplitude Modulation

- A DC bias A is added to m(t) prior to the modulation process
 - The result is that a carrier component is present in the transmitted signal
- Definition $x_c(t) = [A + m(t)]A'_c \cos \omega_c t$ $= A_c[1 + am_n(t)]\cos \omega_c t$

Amplitude Modulation (AM): DSB with carrier

$$x_c(t) = A_c[1 + am_n(t)]\cos \omega_c t$$

$$m_n(t) = \frac{m(t)}{\left|\min_{t} m(t)\right|}, \quad m_n(t)$$
: the normalized message

$$m_n(t) = \frac{m(t)}{\left|\min_t m(t)\right|}, \quad m_n(t)$$
: the normalized message $m(t)$: the original message $a = \frac{\left|\min_t m(t)\right|}{A}$ A: the DC bias a : the modulation index (had better be less than 1)

Normalized message $\rightarrow 1+m_n(t)>=0$

Envelope Detection

- The modulation index is defined such that if a=1, the minimum value of $A_c[1+am_n(t)]$ is zero
 - a < 1, it results in $A_c[1+am_n(t)] > 0$ for all t
- In AM, all the information is just the envelop.
- The envelop detection is a simple and straightforward technique

AM (2)

- Over-modulation: modulation index a > 1
- DC bias: the shifted level of the zero-value message

Figure 3.2 Amplitude modulation. (a) Message signal. (b) Modulator output for a < 1. (c) Modulator.

Figure 3.4 Modulated carrier and envelope detector outputs for various values of the modulation index. (a) a = 0.5. (b) a = 1.0. (c) a = 1.5.

AM Demodulation

- Coherent detection: precise but requires carrier recovery circuit.
- Incoherent detection, envelope detection: simple receiver (LPF) but requires sufficient carrier power (a < 1) and f_c >> W. (In theory, f_c>W is sufficient, but a "good" LPF is needed.)
- Impulse response of RC circuit:

$$h(t) = \frac{1}{RC}e^{-t/RC}u(t)$$

Remarks

- The time constant RC of the envelop detector is an important design parameter.
- The appropriate RC time constant is related to the carrier frequency f_c and to the bandwidth W of the original signal m(t)
 - □ $1/f_c$ << RC << 1/W, between then and must be well separated from both

Figure 3.3
Envelope detection. (a) Circuit. (b) Waveforms. (c) Effect of RC time constant.

Power Efficiency of AM

Suppose that m(t) has zero mean, then the total power contained in the AM modulator output is

$$\left\langle x_c^2(t) \right\rangle = \left\langle \left[A + m(t) \right]^2 (A_C')^2 \cos^2 \omega_c t \right\rangle \quad \langle \cdot \rangle \text{ denotes the time average value}$$

$$= \left\langle \frac{1}{2} [A + m(t)]^2 (A_C')^2 \right\rangle + \left\langle \frac{1}{2} [A + m(t)]^2 (A_C')^2 \cos 2\omega_c t \right\rangle$$

$$= \frac{1}{2} A_C'^2 [A^2 + 2A \left\langle m(t) \right\rangle + \left\langle m^2(t) \right\rangle]$$

$$= \frac{1}{2} A_C'^2 [A^2 + \left\langle m^2(t) \right\rangle]$$

The power efficiency: the power ratio of the input information to

the transmitted signal
$$\langle m^2(t) \rangle \times 100\% = \frac{a^2 \langle m_n^2(t) \rangle}{1 + a^2 \langle m_n^2(t) \rangle} \times 100\%$$

Power Efficiency Example

$$E = Efficiency = \frac{\left\langle m^{2}(t) \right\rangle}{A^{2} + \left\langle m^{2}(t) \right\rangle} (100\%) = \frac{a^{2} \left\langle m_{n}^{2}(t) \right\rangle}{1 + a^{2} \left\langle m_{n}^{2}(t) \right\rangle} (100\%)$$

$$m_{n}(t) = \frac{m(t)}{\left| \min_{t} m(t) \right|},$$

- If the signal has symmetrical value, i.e. $|\min m(t)| = |\max m(t)|$, then $|m_n(t)| \le 1$ and hence $\langle m_n^2(t) \rangle \le 1$.
 - □ If $a \le 1$, the maximum efficiency is 50%, e.g. the square wave-type
 - □ For a sine wave, $\langle m_n^2(t)\rangle = 1/2$, for a=1, the efficiency is 33.3%
 - \Box If we allow a>1,
 - Efficiency can exceed 50%, ($a \rightarrow \infty$, the efficiency=100%)
 - But, the envelope detector is precluded.

Remarks

- The main advantage of AM:
 - □ A coherent reference is not necessary for demodulation as long as $a \le 1$
- The disadvantage of AM:
 - The power efficiency
 - □ The DC value of the message signal m(t) cannot be accurately recovered. (mixed with carrier)

Single Sideband (SSB) Modulation

- Why SSB?
 - In DSB, either the USB and the LSB have equal amplitude and odd phase symmetry about the carrier frequency

Send only "half" signal (USB & LSB symmetric);

Good power efficiency; Good bandwidth utilization Basis of more advanced modulations

- Methods to generate SSB signals
- Method 1: Sideband (BPF) filtering
 Easy to understand, but difficult to implement.
- Method 2: Phase-shift modulation

Sideband Filtering

- An ideal passband filter is necessary
- The (very) low frequency component will be encapulated

24

SSB Modulation

Figure 3.7 Generation of lower-sideband SSB. (a) Sideband filtering process. (b) Generation of lower-sideband filter.

SSB Signal Generation

DSB signal:
$$X_{DSB}(f) = \frac{A_C}{2}M(f + f_c) + \frac{A_C}{2}M(f - f_c)$$

LPF: $H_L(f) = \frac{1}{2}[sgn(f + f_c) - sgn(f - f_c)]$
 $X_c(f) = X_{DSB}(f) \cdot H_L(f)$
 $= \frac{1}{4}A_C[M(f + f_c)sgn(f + f_c) + M(f - f_c)sgn(f + f_c)]$
 $-\frac{1}{4}A_C[M(f + f_c)sgn(f - f_c) + M(f - f_c)sgn(f - f_c)]$
 $= \frac{A_C}{4}[M(f - f_c) + M(f + f_c)]$ part-A
 $+\frac{A_C}{4}[M(f + f_c)sgn(f + f_c) - M(f - f_c)sgn(f - f_c)]$ part-B

SSB Signal Generation (2)

Part-A
$$\leftrightarrow$$
 (FT of) DSB signal: $\frac{A_C}{2}m(t)\cos\omega_c t$

Part-B: Let $\hat{m}(t) \equiv \mathfrak{I}^{-1}\{-j \operatorname{sgn}(f) \cdot M(f)\}\$

■ Define Hilbert Transform:
$$\xrightarrow{m(t)}$$
 $\xrightarrow{-j \text{sgn}(f)}$ $\xrightarrow{\hat{m}(t)}$

Thus,
$$\hat{M}(f) = -j \operatorname{sgn}(f) \cdot M(f)$$

$$\hat{M}(f - f_c) \longleftrightarrow \hat{m}(t)e^{j2\pi f_c t}$$

$$\mathfrak{I}^{-1}\{\text{part-B}\} = \frac{A_C}{4} [j\hat{m}(t)e^{-j2\pi f_c t} - j\hat{m}(t)e^{j2\pi f_c t}]$$

$$= \frac{A_C}{2}\hat{m}(t)[j\frac{1}{2}(e^{j2\pi f_c t} - e^{-j2\pi f_c t})] = \frac{A_C}{2}\hat{m}(t)\sin\omega_c t$$

Phase-shift SSB Modulator

Lower-Side Band:
$$x_c(t) = \frac{A_C}{2}m(t)\cos\omega_c t + \frac{A_C}{2}\hat{m}(t)\sin\omega_c t$$

Figure 3.8 Phase-shift modulator.

$$x_c(t) = \frac{A_C}{2} m(t) \cos \omega_c t + \frac{A_C}{2} \hat{m}(t) \sin \omega_c t$$

Phase-shift SSB Modulator (2)

Upper-Side Band: $x_c(t) = \frac{A_C}{2}m(t)\cos\omega_c t - \frac{A_C}{2}\hat{m}(t)\sin\omega_c t$ M(f) $M_n(f)$ $-W = 0 \quad W$ (a) $X_c(f)$ $M_n(f+f_c)$ (b) $X_c(f)$ $M_p(f+f_c)$ $-f_c$

Figure 3.9 Alternative derivation of SSB signals. (a) M(f), $M_p(f)$, and $M_n(f)$. (b) Upper-sideband SSB signal. (c) Lower-sideband SSB signal.

29

(c)