STAT 243: Software Manual for Model Selection with Genetic Algorithms using ga

Eddie Buehler, Yang Hu & Jin Rou New University of California, Berkeley

Version 1.0, December 9, 2014

1 Introduction

A genetic algorithm has the following steps:

- 1. Calculate fitness of chromosomes.
- 2. Select chromosomes to form a mating pool based on their fitness.
- 3. Recombine parent chromosomes from the mating pool.
- 4. Apply mutation to produce the resulting generation of chromosomes.

2 Code

```
ga <- select_model(data = data, yvar = "y", xvars = NULL,
model = "lm", glm_family = NULL, criterion = "AIC",
pop_size = 100, method_select = "rank",
method_recombine = "onepoint", prob_recombine = 0.6,
prob_mutate = 0.01, num_max_iterations = 100,
seed = 123, do_parallel = FALSE)</pre>
```

The result of this function is an object of ga class that contains the results

- 2.1 reproduce function
- 2.2 reproduce function
- 3 Testing
- 4 Contributions
- 5 Appendix

GA-package

Genetic algorithm for model variable selection

Description

Final project for Statistics 243. An R package that implements a genetic algorithm for variable selection in linear and GLM problems.

Details

Package: GA-package Type: Package

Version: 1.0

Date: 2014-12-13

Author(s)

Eddie Buehler, Yang Hu, JR New

References

G. Givens and J. Hoeting. Computational Statistics, 2nd ed. (2012).

See Also

https://github.com/jrnew/genetic-algo

Examples

```
# Select regression variables for airquality data using lm model and AIC criterion
select_model(
   data = airquality,
   yvar = "Ozone",
   xvars = NULL,
   model = "lm",
        criterion = "AIC",
   pop_size = 100L,
   method_select = "rank",
   method_recombine = "onepoint",
   prob_recombine = 0.6,
   prob_mutate = 0.01,
   num_max_iterations = 100L,
   seed = 123,
   do_parallel = FALSE
)
```

select_model

Carry out model selection with a genetic algorithm.

Description

Main function for carrying out model selection with a genetic algorithm.

Usage

```
select_model(data, yvar, xvars = NULL, model = "lm", glm_family = NULL,
    criterion = "AIC", pop_size = 100L, method_select = "rank",
    method_recombine = "onepoint", prob_recombine = 0.6, prob_mutate = 0.01,
    num_max_iterations = 100L, seed = 123, do_parallel = FALSE)
```

Arguments

data Data frame

yvar Character; Name of column containing response variable

xvars Character vector; Default is all column names that are not yvar; Name(s) of

column(s) containing set of explanatory variables to select on.

model Character; "lm" (default) or "glm"; Linear model or generalized linear model.

glm_family Character if model is "glm", NULL otherwise; "binomial", "gaussian" (de-

fault), "Gamma", "inverse.gaussian", "poisson", "quasi", "quasibinomial", "quasipois-

son"; A family function that gives the error distribution and link function to

be used in the model.

criterion "AIC" (default) or "BIC"; Criterion to be minimized.

pop_size Integer; Default is 100; Number of chromosomes per generation.

method_select

String; "rank" (linear rank selection) (default) or "tournament"; Method to

select chromosomes for inclusion in mating pool.

method_recombine

String; "onepoint" (default), "twopoint", "uniform"; Type of crossover, at one

point, at two points or uniformly (at all possible points).

prob_recombine

Numeric, between 0 and 1; Default is 0.6; Probability of recombination.

 $\begin{tabular}{ll} \textbf{prob_mutate} & Numeric, between 0 and 1; Default is 0.01; Probability of mutation. \\ \end{tabular}$

num_max_iterations

Non-negative integer; Default is 100; Maximum number of iterations before

algorithm is stopped.

seed Non-negative integer; Default is 123; Random seed for reproducibility.

do_parallel Logical; Default is FALSE; Do in parallel?

evaluate_once Do evaluation once.

Description

Do evaluation for a chromosome by calculating model selection criterion.

Usage

```
evaluate_once(model_data, xvars_select, model = "lm", glm_family = NULL,
    criterion = "AIC")
```

Arguments

model Character; "lm" (default) or "glm"; Linear model or generalized linear model.

glm_family Character if model is "glm", NULL otherwise; "binomial", "gaussian" (de-

fault), "Gamma", "inverse.gaussian", "poisson", "quasi", "quasibinomial", "quasipois-

son"; A family function that gives the error distribution and link function to

be used in the model.

criterion "AIC" (default) or "BIC"; AIC or BIC.

model_data; Object of class model_data.

xvars_select;

Logical vector;

Value

Numeric; Value of criterion.

evaluate

Do evaluation.

Description

Do evaluation for chromosomes in population by calculating model selection criterion.

Usage

```
evaluate(pop, model_data, model = "lm", glm_family = NULL,
    criterion = "AIC", do_parallel = FALSE)
```

Arguments

pop Matrix of population of chromosomes.

model_data Object of class model_data.

model Character; "lm" (default) or "glm"; Linear model or generalized linear model.

glm_family Character if model is "glm", NULL otherwise; "binomial", "gaussian" (de-

fault), "Gamma", "inverse.gaussian", "poisson", "quasi", "quasibinomial", "quasipois-

son"; A family function that gives the error distribution and link function to

be used in the model.

criterion "AIC" (default) or "BIC"; Criterion to be minimized.

do_parallel Logical; Default FALSE; Do in parallel?

Value

Numeric vector; Evaluation values for all chromosomes in the current generation.

initialize Initialize first generation of chromosomes.

Description

Initialize first generation of chromosomes completely randomly.

Usage

initialize(pop_size, num_vars)

Arguments

pop_size Non-negative integer; Number of chromosomes in population.

num_vars Non-negative integer; Number of variables in model under consideration/ num-

ber of genes in each chromosome.

Value

A matrix of size pop_size x num_vars with 1's and 0's.

mutate

Mutate genes in the population.

Description

Mutate each gene in the population at a pre-defined rate.

Usage

```
mutate(pop, prob_mutate = 0.01)
```

Arguments

pop Matrix; Population of chromosomes.

prob_mutate Numeric, between 0 and 1; Default is 0.01; Probability of mutation.

Value

Matrix of population of chromosomes that have undergone mutation.

plot.ga

Plots results from the genetic algorithm.

Description

Plots the best model evaluation criterion in each generation against the generation iteration.

Usage

```
## S3 method for class 'ga'
plot(ga, num_view = 3)
```

Arguments

ga Object of class ga.

num_view Number of top models to display.

Value

Prints summary of top models and associated value of model selection criterion.

process_data

Process data for input into genetic algorithm.

Description

Process data for input into genetic algorithm.

Usage

```
process_data(data, yvar, xvars = NULL)
```

Arguments

data Data frame

yvar Character; Name of column containing response variable.

xvars Character vector; Default is all column names that are not yvar; Name(s) of

column(s) containing set of explanatory variables to select on.

Value

A list object named model_data containing:

data Data frame; Processed data with only relevant columns.

yvar Character; Name of column containing response variable.

xvars Character vector; Name(s) of column(s) containing set of explanatory variables to select on.

num_vars Integer; Length of xvars.

recombine_once

Recombine once.

Description

Carry out crossover of two parent chromosomes to produce one child chromosome.

Usage

```
recombine_once(parent1, parent2, method = "onepoint")
```

Arguments

parent1 Integer vector of 1st parent chromosome containing 1's and 0's.
parent2 Integer vector of 2nd parent chromosome containing 1's and 0's.

method String; "onepoint" (default), "twopoint", "uniform"; Type of crossover, at one

point, at two points or uniformly (at all possible points).

Value

Integer vector of child chromosome containing 1's and 0's.

recombine

Recombine.

Description

Carry out crossover of parent chromosomes in a mating pool.

Usage

```
recombine(pop_mating, pop_size, method = "onepoint", prob_recombine = 0.6,
   do_parallel = FALSE)
```

Arguments

pop_mating Matrix of population of chromosomes that form the mating pool.

pop_size Integer; Number of chromosomes in a generation.

method String; "onepoint" (default), "twopoint", "uniform"; Type of crossover, at one

point, at two points or uniformly (at all possible points).

prob_recombine

Numeric, between 0 and 1; Default is 0.6; Probability of recombination.

do_parallel Logical; Default FALSE; Do in parallel?

Value

Matrix of population of chromosomes resulting from recombination.

reproduce

Wrapper function for reproduction stage.

Description

Wrapper function for reproduction stage.

Usage

```
reproduce(ga, iteration, do_parallel = FALSE)
```

Arguments

ga Object of class ga. iteration Iteration number.

Value

Updated ga list object.

select

Select chromosomes for recombination.

Description

Select chromosomes for recombination based on fitness.

Usage

```
select(pop, evaluation, method = "rank", do_parallel = FALSE)
```

Arguments

pop Matrix; Population of chromosomes.

evaluation Numeric vector; Evaluation values of all chromosomes in population.

method String; "rank" (linear rank selection) (default) or "tournament"; Method to

select chromosomes for inclusion in mating pool.

do_parallel Logical; Default FALSE; Do in parallel?

Value

Matrix of population of chromosomes that form the mating pool.

Display summary of results from the genetic algorithm.

summary.ga

Description

Outputs the top models selected from the genetic algorithm.

Usage

```
## S3 method for class 'ga'
summary(ga, num_view = 5)
```

Arguments

ga Object of class ga.

Value

Prints summary of top models and associated value of model selection criterion.