Eliminating Channel Feedback in Next Generation Cellular Networks

Deepak Vasisht Swarun Kumar, Hariharan Rahul, Dina Katabi

Cellular Traffic is Increasing

Global mobile data traffic will increase 8 fold in 2015-2020

More Antennas

LTE standard body, 3GPP, is proposing multi-antenna solutions in new releases:

- Beamforming
- Coordinated Multi-point
- Full-Dimensional MIMO

Base station needs to know channels to client

Channel Acquisition

Use feedback from the client

Feedback overhead is overwhelming

Feedback is Overwhelming

• Large in current networks, uses lossy compression [3GPP TS 36.211 2010, Irmer et al IEEE Communications 2011]

Prohibitive for future deployments with up to 32 antennas

According to LTE standard body, 3GPP:

"Identifying the potential issues of CSI acquisition and developing the proper solutions are of great importance"

R2F2

- Uses uplink channels to estimate downlink channels
- Removes feedback overhead
- Evaluated indoors and outdoors in white spaces

Idea: Use Reciprocity Like in WiFi

Idea: Use Reciprocity Like in WiFi

Does not work for cellular networks: Uplink and downlink on different frequencies

Problem Statement

How do we estimate channels on one frequency from channels on a different frequency?

Problem Statement

Uplink Channels at Frequency 1

Downlink Channels at Frequency 2

Idea: Same Paths on Uplink & Downlink

RF-based Localization Systems

RF-based Localization Systems

Idea: Same Paths on Uplink & Downlink

Paths to Channels: Ideal Representation

Paths to Channels: Measured Representation

Paths to Channels: Superposition

Paths to Channels: FFT

Uplink to Downlink Channels

Uplink to Downlink Channels

Channels to Paths

Base Station

Goal: To find a set of paths, that can produce channels $\overline{h_1}$

Recall: Each path is represented by (a, ϕ, θ)

Channels to Paths

Base Station

Goal: To find $\{a_i, \phi_i, \theta_i\}_{i=1}^N$, that can produce channels $\overrightarrow{h_1}$

Recall: Each path is represented by (a, ϕ, θ)

Channels to Paths

Goal: To find $\{a_i, \phi_i, \theta_i\}_{i=1}^N$, that can produce channels $\overline{h_1}$

$$\overrightarrow{h_{est}} = FFT\left(\sum_{i=1}^{N} S_f(a_i, \phi_i, \theta_i)\right)$$

$$\{a_i, \phi_i, \theta_i\}_{i=1}^N = argmin_{\{a_i, \phi_i, \theta_i\}} \left\| \overrightarrow{h_1} - \overrightarrow{h_{est}} \right\|^2$$

Getting Paths from Wireless Channels

Optimization is non-linear and constrained

Solved using standard interior point method

Approximate initialization using RF-localization methods

Uplink to Downlink Channels

Evaluation

Goal: To measure the accuracy of R2F2 channel estimates

Experimental Setup

Used USRP N210 software radios as clients and base stations

Implemented a 5 antenna LTE base station

Located base station close to a commercial base station

Frequency Separation

- Used frequencies from 640 to 690 MHz in the White Spaces
- Evaluation at 30 MHz Uplink-Downlink separation
- Same as major AT&T and Verizon deployments

Indoor Testbed

Outdoor Testbed

Beamforming

Beamforming

Beamforming Comparison

R2F2 delivers 90% of the MIMO SNR gains, with zero feedback

Beamforming Comparison: Data Rate

R2F2's achieves 1.7x data rate improvement

Comparison with RF-localization

Delivers only 40% of MIMO SNR gains

Effect of Frequency Separation

Application: Edge Client Nulling

Application: Edge Client Nulling

Edge Nulling

Related Work

- **Cellular Networks:** Channel feedback compression [Shuang et al *VTC 11*, Rao et al *14*, Xu et al *Access IEEE 14*], Statistical channel prediction across frequency bands [Han et al *CHINACOM 10*, Hugl et al *COST 02...*]
- **Beyond Cellular Networks:** Channel quality prediction [Sen et al *Mobicom 13*, Shi *et al* NSDI 14, Radunovic et al *CONEXT 11...*], Temporal channel predictions [Cao et al *PMRC 04*, Wong et al *GLOBECOM'05*, Dong et al *GLOBECOM'01*]

Conclusion

 R2F2 estimates channels on one frequency from channels on a different frequency

 R2F2 accurately estimates downlink LTE channels from uplink LTE channels

 R2F2 enables MIMO techniques for FDD systems with zero channel feedback