Session 22: Relations

- Introduction to Relations
- Operation on Relations

Binary Relations

Definition: A **binary relation** R from a set A to a set B is a subset $R \subseteq A \times B$.

Binary Relations

Definition: A **binary relation** R from a set A to a set B is a subset $R \subseteq A \times B$.

Example:

```
Let A = \{0,1,2\} and B = \{a,b\}
\{(0, a), (0, b), (1,a), (2, b)\} is a relation from A to B.
```

Representation of Relations

Possible representation of relations from a set A to a set B

$$egin{array}{c|cccc} R & a & b \\ \hline 0 & \times & \times \\ 1 & \times \\ 2 & \times \\ \hline \end{array}$$

table

Functions and Relations

- A function $f: A \rightarrow B$ can also be defined as a subset of $A \times B$, i.e. as a relation.
- A function f from A to B contains one, and only one ordered pair (a, b) for every element $a \in A$.

Functions and Relations

- A function $f: A \rightarrow B$ can also be defined as a subset of $A \times B$, i.e. as a relation.
- A function f from A to B contains one, and only one ordered pair (a, b) for every element a ∈ A.

$$\forall x[x \in A \to \exists y[y \in B \land (x,y) \in f]]$$

$$\forall x, y_1, y_2[[(x,y_1) \in f \land (x,y_2) \in f] \to y_1 = y_2]$$

Functions and Relations

- A function $f: A \rightarrow B$ can also be defined as a subset of $A \times B$, i.e. as a relation.
- A function f from A to B contains one, and only one ordered pair (a, b) for every element a ∈ A.

$$\forall x[x \in A \to \exists y[y \in B \land (x,y) \in f]]$$

$$\forall x, y_1, y_2[[(x,y_1) \in f \land (x,y_2) \in f] \to y_1 = y_2]$$

Relations are more general than functions!

Combining Relations

Given two relations R_1 and R_2 , we can combine them using basic set operations to form new relations such as $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, and $R_2 - R_1$.

Combining Relations

Given two relations R_1 and R_2 , we can combine them using basic set operations to form new relations such as $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, and $R_2 - R_1$.

Example:

Let $A = \{1,2,3\}$ and $B = \{1,2,3,4\}$. Let $R_1 = \{(1,1),(2,2),(3,3)\}$ and $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$

Composition of Relations

Definition: Let *R* be a relation from a set *A* to a set *B*. Let *S* be a relation from *B* to a set *C*.

The **composite** of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.

We denote the composite of R and S by $S \circ R$.

Example

N-ary Relations

Definition: Let A_1 , A_2 ,..., A_n be sets. An **n-ary relation** on these sets is a subset of $A_1 \times A_2 \times \cdots \times A_n$. The sets A_1 , A_2 , ..., A_n are called the **domains** of the relation, and n is called its **degree**.

Example

Database tables are n-ary relations

TABLE 1 Students.			
Student_name	ID _number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

Summary

- Binary Relations
- Set-operations on Relations
- Composition of Relations
- N-ary Relations