INFORME FINAL – SISTEMA DE MONITOREO ELECTROQUÍMICO

Universidad de Manizales - Facultad de Ingeniería

Estudiante: Camilo Rubio Fecha: Junio de 2025

Desarrollar una plataforma visual amigable que permita al usuario cargar, consultar y analizar sesiones electroquímicas generadas por PStrace 5.9, y visualizar curvas, PCA y estimaciones de ppm. Todo esto con almacenamiento estructurado en una base de datos PostgreSQL y funcionalidades adicionales como exportación de resultados y búsqueda avanzada.

2. Estructura del Proyecto

pgsql

CopiarEditar

```
├── db_connection.py
├── interfaz_grafica.py (GUI principal)
├── pstrace_session.py (lectura del .pssession)
├── insert_data.py (carga en BD)
├── db_connection.py
├── limits_ppm.json
├── debug.log
├── schema.sql
```

3. 🧠 Metodología Modular por "Bloques"

El desarrollo del código sigue una metodología modular por bloques, donde cada bloque representa una funcionalidad autónoma que puede mantenerse, corregirse o mejorarse sin romper el resto del sistema. Esta filosofía de trabajo facilita la depuración, pruebas y expansión futura.

Funcionalidad

Estructura de bloques:

Bloau

3

е	
1	Carga de archivo .pssession + inserción en BD
2	Consultas (búsqueda simple, avanzada, metadatos, tabla, exportaciones)

Detalle JSON técnico del session info

- 4 Gráfica de curvas individuales + promedio ±σ
- 5 Gráfico PCA con varianza acumulada y anotaciones
- 6 Estimación de PPM con resaltado y exportación

4. Script de la Base de Datos (b_d.txt)

La estructura implementada incluye:

- Tabla sessions: ID, nombre de archivo, timestamp de carga.
- Tabla measurements: ID, FK a sessions, título, timestamp, serial, curva count, pca data, ppm estimations.
- Tabla curves: FK a measurement_id, curva_index, num_points.
- Tabla points: FK a curve_id, potencial y corriente.

Relaciones completas, con índices y claves foráneas. Modelo relacional escalable.

5. 1 Errores Presentados y Soluciones Aplicadas

Durante el desarrollo y refactorización se presentaron múltiples errores que fueron solucionados de forma estructurada, gracias al enfoque por bloques y la inclusión de debug. log. A continuación el resumen:

Error detectado Causa Solución aplicada

AttributeError: no attribute 'validate_int'	Se intentó registrar una función inexistente	Se eliminó el uso de validatecommand y se hizo validación manual dentro de query_sessions()
AttributeError: no attribute 'on_session_select'	Se enlazó método antes de estar definido	Se reorganizó la definición de bloques; se definió el bloque 2.4 completamente
AttributeError: no attribute 'load_devices'	Método no estaba definido aún	Se implementó el Bloque 2.5 para cargar seriales de dispositivos
AttributeError: no attribute 'update_overview'	Faltaba la definición de método	Se implementó Bloque 2.6 con conexión a BD y actualización de labels
AttributeError: no attribute 'set_default_date_range	Método inexistente	Se implementó Bloque 2.7 correctamente para preseleccionar últimos 7 días
pg8000 error: Only %s and %% are supported	Error de sintaxis SQL con %()	Se reemplazó por placeholders tipo %s y se pasó tupla de parámetros
ERROR: no se puede convertir double precision[] a numeric	Se intentó usar MAX directamente sobre array	Se corrigió usando JOIN LATERAL unnest() AS ppm(val) para iterar arrays

6. **V** Estado Actual del Sistema

- ✓ La interfaz gráfica se ejecuta sin errores.
- ✓ Se consultan correctamente las sesiones por fecha o ID.
- ✓ El sistema muestra la tabla, estadísticas generales y detalles técnicos.
- ✓ Se integran los arreglos ppm_estimations correctamente.
- ✓ Todos los paneles de la pestaña "

 Consultas" están activos.

7. Recomendación sobre device_combobox

Aunque no es obligatorio en esta etapa inicial (Bloque 2), sí es altamente recomendable prever un Combobox para device_serial, debido a que:

- Está contemplado como futuro filtro avanzado (INFORME5.pdf, sección 7 y 8).
- load_devices() ya obtiene los valores de la BD.
- Servirá para:
 - Filtrar por dispositivo específico.
 - Detectar dispositivos sin mediciones.
 - Generar estadísticas por hardware.

```
¿Dónde ubicarlo?
En el Bloque 2.2.2 – _create_filters_panel(), justo debajo de "ID Sesión".
¿Cómo? Añadiendo:
```

python

CopiarEditar

```
ttk.Label(container, text="Dispositivo:").grid(row=2, column=0,
sticky="e", padx=5)

self.device_combobox = ttk.Combobox(container, state="readonly",
width=20)

self.device_combobox.grid(row=2, column=1, padx=5)
```

8. Próximos pasos

- 1. Implementar el Combobox de dispositivo para permitir filtro por hardware.
- 2. Conectar la Mini PC para recibir datos remotos en tiempo real (streaming).
- 3. Añadir tooltips explicativos en la GUI.
- 4. Implementar exportación automática de PDF con tablas y gráficas.
- 5. Mejorar la arquitectura multiusuario si se escala el sistema.

9. / Recomendaciones Finales

- Mantener la metodología por bloques numerados.
- En cada edición futura, reemplazar bloques completos como piezas de LEGO.
- Anotar los cambios en un CHANGELOG. md para rastrear el historial.
- Mantener los print("[DEBUG] ...") para seguimiento interno y guardar errores en debug.log.

10. 📌 Conclusión

Se ha construido un sistema estable, escalable y organizado, basado en una estructura modular clara. Los errores fueron detectados y solucionados uno a uno gracias a la depuración intensiva y los principios de separación de responsabilidades.

El siguiente ciclo puede enfocarse ya en visualización avanzada, exportaciones gráficas y conexión remota para cerrar el sistema completo de monitoreo.