Curse of Dimensionality in Pivot-based Indexes

Ilya Volnyansky, Vladimir Pestov

Department of Mathematics and Statistics University of Ottawa Ottawa, Ontario, Canada

SISAP 2009, Prague, 29/09/2009

Outline

- Overview
 - The Setting for Similarity Search
 - Previous Work
- Our Work
 - Framework
 - Concentration of Measure
 - Statistical Learning Theory
 - Asymptotic Bounds

Similarity Workloads

- Universe Ω : metric space with metric ρ .
- Dataset $X \subset \Omega$, always finite, with metric ρ .
- A range query: given $q \in \Omega$ and r > 0 find $\{x \in X | \rho(x, q) < r\}$

For analysis purposes, we add:

- A measure μ on Ω .
- Treat X as i.i.d. sample $\sim \mu$ of size n

Similarity Workloads

- Universe Ω : metric space with metric ρ .
- Dataset $X \subset \Omega$, always finite, with metric ρ .
- A range query: given $q \in \Omega$ and r > 0 find $\{x \in X | \rho(x, q) < r\}$

For analysis purposes, we add:

- A measure μ on Ω .
- Treat X as i.i.d. sample $\sim \mu$ of size n

Curse of dimensionality conjecture

All indexing schemes suffer from the curse of dimensionality: (conjecture)

If $d = \omega(\log n)$ and $d = n^{o(1)}$, any sequence of indexes built on a sequence of datasets $X_d \subset \Sigma_d$ allowing similarity search in time polynomial in d must use $n^{\omega(1)}$ space.

Handbook of Discrete and Computational Geometry

The Hamming cube Σ_d of dimension d: The set of all binary sequences of length d.

Curse of dimensionality conjecture

All indexing schemes suffer from the curse of dimensionality: (conjecture)

If $d = \omega(\log n)$ and $d = n^{o(1)}$, any sequence of indexes built on a sequence of datasets $X_d \subset \Sigma_d$ allowing similarity search in time polynomial in d must use $n^{\omega(1)}$ space.

Handbook of Discrete and Computational Geometry

The Hamming cube Σ_d of dimension d: The set of all binary sequences of length d.

Fixed dimension

Examples of previous work:

Let *n* the size of *X* vary, but the space (Ω, ρ, μ) be fixed.

- The usual "asymptotic" analysis in the CS sense.
- Does not investigate the curse of dimensionality.

Fixed *n*

Let the dimension and hence (Ω, ρ, μ) vary but the size n of X stay the same.

- e.g. [Weber 98], [Chávez 01]
- Too small sample size n makes it easier to index spaces of high dimension d.
- When both d and n vary, the math is more challenging.

Points to keep in mind

- Distinction between X and Ω .
- Both d and n grow.
- Need to make assumptions about the sequence of Ω's
- (?) Need to make assumption about the indexes.

Gameplan

- Pick an index type to analyze.
- Pick a cost model.
- \odot The sequence of Ω's exhibits concentration of measure, the "intrinsic dimension" grows.
- Statistical Learning Theory: linking properties of Ω's and properties of X's.
- Conclusion: if all conditions are met, the Curse of Dimensionality will take place.

Main Result

From a sequence of metric spaces with measure $(\Omega_d, \rho_d, \mu_d)$, where $d=1,2,3,\ldots$ take i.i.d. samples (datasets) $X_d \sim \mu_d$. Assume

- $(\Omega_d, \rho_d, \mu_d)$ display the concentration of measure.
- The VC dimension of closed balls in (Ω_d, ρ_d) is O(d).
- We build a pivot-index using k pivots, where $k = o(n_d/d)$.
- Sample size n_d satisfies $d = \omega(\log n_d)$ and $d = n_d^{o(1)}$.

Suppose we perform queries of radius=NN. Then: If we fix arbitrarily small $\varepsilon, \eta > 0$, $\exists D$ such that for all $d \ge D$, the probability that at least half the queries on dataset X_d take less than $(1 - \varepsilon)n_d$ time is less than η .

Main Result

From a sequence of metric spaces with measure $(\Omega_d, \rho_d, \mu_d)$, where $d=1,2,3,\ldots$ take i.i.d. samples (datasets) $X_d \sim \mu_d$. Assume

- $(\Omega_d, \rho_d, \mu_d)$ display the concentration of measure.
- The VC dimension of closed balls in (Ω_d, ρ_d) is O(d).
- We build a pivot-index using k pivots, where $k = o(n_d/d)$.
- Sample size n_d satisfies $d = \omega(\log n_d)$ and $d = n_d^{o(1)}$.

Suppose we perform queries of radius=NN. Then: If we fix arbitrarily small $\varepsilon, \eta > 0$, $\exists D$ such that for all $d \ge D$, the probability that *at least half* the queries on dataset X_d take less than $(1 - \varepsilon)n_d$ time is less than η .

Pivot indexing scheme

Build an index:

- Pick $\{p_1 \dots p_k\}$ from X
- 2 Calculate $n \times k$ array of distances

$$\rho(x,p_i), 1 \leqslant i \leqslant k, x \in X$$

Perform query given q and r:

- ① Compute $\rho_k(q, x) := \sup_{1 \leq i \leq k} |\rho(q, p_i) \rho(x, p_i)|$.
- ② Since $\rho(q, x) \geqslant \rho_K(q, x)$, no need to compute $\rho(q, x)$ if $\rho_K(q, x) > r$
- **3** Compute $\rho(q, x)$ otherwise.

Pivot indexing scheme

Build an index:

- Pick $\{p_1 \dots p_k\}$ from X
- 2 Calculate $n \times k$ array of distances

$$\rho(x,p_i), 1 \leqslant i \leqslant k, x \in X$$

Perform query given q and r:

- Compute $\rho_k(q, x) := \sup_{1 \leq i \leq k} |\rho(q, p_i) \rho(x, p_i)|$.
- ② Since $\rho(q, x) \geqslant \rho_k(q, x)$, no need to compute $\rho(q, x)$ if $\rho_k(q, x) > r$
- **3** Compute $\rho(q, x)$ otherwise.

Framework Concentration of Measure Statistical Learning Theory Asymptotic Bounds

The cost model

- Only one cost: $\rho(q, x)$
- Computing $\rho_k(q, x)$ costs k.
- Let $C_{q,r,p_1,...,p_k}$ denote all the discarded points in X:

$$\{x \in X | \rho_k(q, x) > r\}$$

- Let n = |X|.
- Total cost: $k + n |C_{q,r,p_1,...,p_k}|$.

The cost model

- Only one cost: $\rho(q, x)$
- Computing $\rho_k(q, x)$ costs k.
- Let $C_{q,r,p_1,...,p_k}$ denote all the discarded points in X:

$$\{x \in X | \rho_k(q, x) > r\}$$

- Let n = |X|.
- Total cost: $k + n |C_{q,r,p_1,...,p_k}|$.

A function $f: \Omega \to \mathbb{R}$ is 1-Lipschitz if

$$|f(\omega_1) - f(\omega_2)| \leq \rho(\omega_1, \omega_2) \ \forall \omega_1, \omega_2 \in \Omega$$

Examples:

- \bullet f(x) = x
- $f(x) = \frac{1}{2}x$
- $f(x) = \sqrt{(x^2 + 1)}$

Its median is a number M such that

$$\mu\{\omega|f(\omega)\leqslant M\}\geqslant 1/2 \text{ and } \mu\{\omega|f(\omega)\geqslant M\}\geqslant 1/2$$

A function $f: \Omega \to \mathbb{R}$ is 1-Lipschitz if

$$|f(\omega_1) - f(\omega_2)| \leq \rho(\omega_1, \omega_2) \ \forall \omega_1, \omega_2 \in \Omega$$

Examples:

- \bullet f(x) = x
- $f(x) = \frac{1}{2}x$
- $f(x) = \sqrt{(x^2 + 1)}$

Its median is a number M such that

$$\mu\{\omega|f(\omega)\leqslant M\}\geqslant 1/2 \text{ and } \mu\{\omega|f(\omega)\geqslant M\}\geqslant 1/2$$

A sequence of spaces $(\Omega_d, \rho_d, \mu_d)_{d=1}^{\infty}$ exhibits (normal) concentration of measure if there are C, c > 0 such that for every 1-Lipschitz function $f: \Omega \to \mathbb{R}$ with median M:

$$\forall \epsilon > 0, \quad \mu\{\omega | |f(\omega) - M| > \epsilon\} < Ce^{-c\epsilon^2 d}$$

Examples

- The Spheres \mathbb{S}^d in \mathbb{R}^{d+1}
- The Balls \mathbb{B}^d .
- The Hamming Cubes Σ^d .

A sequence of spaces $(\Omega_d, \rho_d, \mu_d)_{d=1}^{\infty}$ exhibits (normal) concentration of measure if there are C, c > 0 such that for every 1-Lipschitz function $f: \Omega \to \mathbb{R}$ with median M:

$$\forall \epsilon > 0, \quad \mu\{\omega | |f(\omega) - M| > \epsilon\} < Ce^{-c\epsilon^2 d}$$

Examples:

- The Spheres \mathbb{S}^d in \mathbb{R}^{d+1}
- The Balls \mathbb{B}^d .
- The Hamming Cubes Σ^d .

The concentration functions of various spheres

The concentration functions of various spheres

The concentration of measure in spheres

- We can replace $f: \Omega \to \mathbb{R}$ by $f: \Omega \to \mathbb{R}^N$.
- Suppose $f: \mathbb{S}^d \to \mathbb{R}^2$.
- d = 10, 20, 50, 100.

The concentration of measure in spheres

d= 20 Proj= 2

Distribution of distances of projected spheres

d= 10 Proj= 2

Distribution of distances of spheres

Ilya Volnyansky, Vladimir Pestov

Curse of Dimensionality in Pivot-based Indexes

Observe that

$$\rho(\cdot, \boldsymbol{p}) : \Omega \to \mathbb{R} : \omega \mapsto \rho(\omega, \boldsymbol{p})$$

is a 1-Lipschitz function, as the Δ -inequality:

$$\rho(\omega_1, p) \leqslant \rho(\omega_1, \omega_2) + \rho(\omega_2, \omega_p)$$

$$\rho(\omega_2, p) \leqslant \rho(\omega_2, \omega_1) + \rho(\omega_1, \omega_p)$$

Leads to:

$$\rho(\omega_1, p) - \rho(\omega_2, \omega_p) \leqslant \rho(\omega_1, \omega_2)$$

$$\rho(\omega_2, p) - \rho(\omega_1, \omega_p) \leqslant \rho(\omega_2, \omega_1)$$

and hence
$$|\rho(\omega_1, p) - \rho(\omega_2, \omega_p)| \leqslant \rho(\omega_1, \omega_2)$$
.

$\rho(\cdot, p)$ is a 1-Lipschitz function.

- Recall $C_{q,r,p_1,...,p_k} = \{\omega \in \Omega | \rho_k(q,\omega) > r\}.$
- Compare to $C_{q,r,p_1,...,p_k} = \{x \in X | \rho_k(q,x) > r\}.$
- If concentration of measure is present, it follows that $\mu_d(\mathcal{C}_{q,r,p_1,...,p_k}) < C \mathrm{e}^{-cr^2 d}$.
- We want to know about $|C_{q,r,p_1,...,p_k}|$.

 $\rho(\cdot, p)$ is a 1-Lipschitz function.

- Recall $C_{q,r,p_1,...,p_k} = \{\omega \in \Omega | \rho_k(q,\omega) > r\}.$
- Compare to $C_{q,r,p_1,...,p_k} = \{x \in X | \rho_k(q,x) > r\}.$
- If concentration of measure is present, it follows that $\mu_d(\mathcal{C}_{q,r,p_1,...,p_k}) < Ce^{-cr^2d}$.
- We want to know about $|C_{q,r,p_1,...,p_k}|$.

 $\rho(\cdot, p)$ is a 1-Lipschitz function.

- Recall $C_{q,r,p_1,...,p_k} = \{\omega \in \Omega | \rho_k(q,\omega) > r\}.$
- Compare to $C_{q,r,p_1,...,p_k} = \{x \in X | \rho_k(q,x) > r\}.$
- If concentration of measure is present, it follows that $\mu_d(\mathcal{C}_{q,r,p_1,...,p_k}) < Ce^{-cr^2d}$.
- We want to know about $|C_{q,r,p_1,...,p_k}|$.

Glivenko-Cantelli and the generalization

Let X be an i.i.d. sample of size n from (\mathbb{R}, μ) (any* prob. measure). If we let $\mu_n(A) := |X \cap A|$ then

$$\sup_{A\in\mathcal{A}}|\mu_n(A)-\mu(A)|\stackrel{P}{\longrightarrow} 0$$

where

$$\mathcal{A} = \{(a, b] | a, b \in \mathbb{R}\}.$$

This is known as the Glivenko-Cantelli theorem.

Generalization of Glivenko-Cantelli

Let X be an i.i.d. sample of size n from (Ω, μ) . If we let $\mathcal A$ be a collection of subsets with the "finite Vapnik-Chervonenkis (VC) dimension Δ " property then

$$\sup_{A\in\mathcal{A}}|\mu_n(A)-\mu(A)|\stackrel{P}{\longrightarrow} 0$$

Furthermore:

We know the rate of convergence: $\exp(-\Delta \varepsilon^2 n)$.

Generalization of Glivenko-Cantelli

Let X be an i.i.d. sample of size n from (Ω, μ) . If we let \mathcal{A} be a collection of subsets with the "finite Vapnik-Chervonenkis (VC) dimension Δ " property then

$$\sup_{A\in\mathcal{A}}|\mu_n(A)-\mu(A)|\stackrel{P}{\longrightarrow} 0$$

Furthermore:

We know the rate of convergence: $\exp(-\Delta \varepsilon^2 n)$.

Examples of Spaces with bounds on VC

- The VC dimension of half-spaces in \mathbb{R}^d is d+1.
- ullet The VC-dimension of all open (or closed) balls in \mathbb{R}^d

$$\{x \in \mathbb{R}^d | \|x - v\| < r\}$$

is also d+1.

• axis-aligned rectangular parallelepipeds in \mathbb{R}^d ,

$$[a_1,b_1]\times[a_2,b_2]\times\ldots\times[a_d,b_d]$$

have a VC dimension of 2d

Bounds on k-fold Intersections of Spherical Shells

Below Δ denotes the VC dimension of C:

- For (\mathbb{R}^d, L^2) , $\Delta \le k(8d + 12) \ln(6k)$.
- For $(\mathbb{R}^d, L^{\infty})$, $\Delta \leqslant k(16d + 4) \ln(6k)$.
- For (Σ^d, ρ) , $\Delta \le k(8d + 8 \log_2 d + 4) \ln(6k)$.

Main Result

From a sequence of metric spaces with measure $(\Omega_d, \rho_d, \mu_d)$, where $d=1,2,3,\ldots$ take i.i.d. samples (datasets) $X_d \sim \mu_d$. Assume

- $(\Omega_d, \rho_d, \mu_d)$ display the concentration of measure.
- The VC dimension of closed balls in (Ω_d, ρ_d) is O(d).
- We build a pivot-index using k pivots, where $k = o(n_d/d)$.
- Sample size n_d satisfies $d = \omega(\log n_d)$ and $d = n_d^{o(1)}$.

Suppose we perform queries of radius=NN. Then: If we fix arbitrarily small $\varepsilon, \eta > 0$, $\exists D$ such that for all $d \ge D$, the probability that at least half the queries on dataset X_d take less than $(1 - \varepsilon)n_d$ time is less than η .

Main Result

From a sequence of metric spaces with measure $(\Omega_d, \rho_d, \mu_d)$, where $d=1,2,3,\ldots$ take i.i.d. samples (datasets) $X_d \sim \mu_d$. Assume

- $(\Omega_d, \rho_d, \mu_d)$ display the concentration of measure.
- The VC dimension of closed balls in (Ω_d, ρ_d) is O(d).
- We build a pivot-index using k pivots, where $k = o(n_d/d)$.
- Sample size n_d satisfies $d = \omega(\log n_d)$ and $d = n_d^{o(1)}$.

Suppose we perform queries of radius=NN. Then: If we fix arbitrarily small $\varepsilon, \eta > 0$, $\exists D$ such that for all $d \geqslant D$, the probability that *at least half* the queries on dataset X_d take less than $(1 - \varepsilon)n_d$ time is less than η .

Discussion

- Rigorous, linear bounds.
- Independent of choice of pivots.
- Somewhat artificial situation of growth in d and n.