

CONCEPTION ELECTRONIQUE

PROJET CARTE THERMOSTAT

Table des matières

1.	Objectifs	3
2.	Notation	4
3.	Les composants	5
4.	Rappel du schéma fonctionnel	5
5.	Règles imposées	6
6.	Liens utiles	7

1. Objectifs

Mise en situation : Lundi 16 décembre 2024, à Bordeaux, aux alentours des 9h00, il fait 2°C.

Pour ce projet, il vous est demandé de réaliser une carte « thermostat ». Ce système doit permettre de déclencher un radiateur lorsque la température de la pièce est inférieure à une température de référence sélectionnée par l'utilisateur.

Cette carte électronique doit pouvoir être alimentée en 12 VDC (Volts Continu), et va permettre à l'aide d'un montage composé de divers composants de travailler avec de la haute tension permettant le contrôle d'un chauffage (partie secondaire du système).

Pour l'interface homme-machine, la carte doit être équipée :

- D'une LED d'indication de mise sous tension de la partie primaire du circuit.
- D'une LED d'indication de la mise sous tension de la partie secondaire du circuit.
- D'un potentiomètre pour régler le seuil de déclenchement (température mesurée à laquelle le système doit allumer le radiateur).

Les objectifs sont les suivants :

- Réalisation du schéma de câblage sur une ou plusieurs feuilles « schématique ».
- Réalisation du routage de la carte en respectant une contrainte de taille de :

50mm x 40mm maximum

- Fournir un DRC sans erreur.
- Fournir les documents de fabrication.

Un dossier Altium vous est fourni au début de l'évaluation, comprenant :

- Une schématique vide
- Un PCB vide
- Une librairie de symboles de composants (SCH Lib)
- Une librairie d'empreintes de composants (PCB Lib)

2. Notation

Voici le barème utilisé pour la notation de vos travaux :

ATTENDUS	POINTS
Réalisation de la schématique	10
Câblage correct	7
Lisibilité de la schématique (nom des nets, câblage, nom de sections)	2
Schématique en mils	1
Réalisation du PCB	10
Respects des règles de routage et taille PCB	6
DRC sans erreurs	2
PCB en mm	1
Fichiers de fabrication	1

Votre dossier de travail est à push sur le repository GitHub suivant :

https://github.com/COURS-YNOV/Evaluation-2-M1-2024

3. Les composants

Voici les quatre références des principaux composants sur la carte :

- Relai : IM06GR

Potentiometre : PTV112-4420A-B104Amplificateur opérationnel : LM324NSR

Il y aura également :

- Des résistances
- Des condensateurs
- Des LEDs
- Transistor bipolaire
- Diodes

4. Rappel du schéma fonctionnel

Voici un schéma fonctionnel permettant de voir l'ensemble des fonctions du système :

5. Règles imposées

Divers:

- 1. Avoir la schématique en mils
- 2. Avoir le PCB en mm
- 3. Titre, révision et nom du dessinateur attendus sur la schématique

Routage:

1. Ne pas avoir d'angle droit :

2. Arriver le plus possible au milieu des pads et éviter les raccordements complexifiant les soudures :

- 3. Utilisation d'un plan de masse obligatoire
- 4. Aucun composant ne doit être mis sur le Bottom
- 5. Taille des via : pastille de 0.85mm et trou de 0.35mm
- 6. Taille de la sérigraphie (largeur) : 0.15mm

6. Liens utiles

Vous retrouverez ici des liens vers des articles/outils permettant de vous aider dans la conception de PCB.

DESCRIPTIONS	LIENS
Raccourcis clavier Altium	click
Guide de routage	click
Calculateur de résistance	click
Montage AOP comparateur à hystérésis	click
Compréhension des relais en électronique	<u>click</u>

« Bon courage à tous! »