Calculus III Lecture 1

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

Space

License to use and redistribute

These lecture slides and their LaTEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

Configurations of Lines and Planes

N

	pair of objects	intersection	parallelism	co-planar?
lines	intersecting lines	one point	not parallel	yes
	parallel lines	empty	parallel	yes
0	skew lines	none	not parallel	no
line & plane	line intersecting plane	one point	not parallel	no
	line parallel to a plane	none	parallel	no
	line lying in plane	line	-	yes
olanes	intersecting planes	line	not parallel	-
	parallel planes	none	parallel	-
$\overline{}$	1	1		

Distances and Angles

- In the preceding slides/lectures we saw distinguishing configurations of lines and planes does not require the notion of angle or distance. Nonetheless the latter are fundamental.
- Distance is a function that assigns to two points A, B the non-negative number |AB| that quantifies/measures how close/far apart are the points. We denote distance also by d(A, B).
- From elementary Euclidean geometry: if we know the lengths of the sides of a triangle, we know the magnitude of its angles.
- So the notion of magnitude of angle follows from that of distance.
- We note that knowing distances determines magnitudes of angles but not their signs.
- Signs of angles are a manifestation of the fundamental concept of orientation, which we will study later.
- We recall two intersecting lines are perpendicular when the angle between them is $\pm \frac{\pi}{2}$.

Line/Plane Configurations and Distances and Angles

- The planes \mathcal{P}_1 and \mathcal{P}_2 are perpendicular on each other.
- The lines L_2 and L are coplanar and perpendicular to each other.
- The lines L_1 and L_2 are skew and perpendicular to each other.
- The lines L_1 and L are coplanar and not perpendicular.
- The line L_2 is perpendicular to the plane \mathcal{P}_1 .
- The line L_1 is not perpendicular to the plane \mathcal{P}_2 .

Rectangular/Cartesian Coordinates

- A Cartesian coordinate system is given by fixing:
 - a point O (called the origin),
 - 3 pairwise perpendicular lines intersecting at the origin,
 - a direction in each of the coordinate axis.
- The three lines are labeled as x-axis, y-axis and z-axis.

Rectangular/Cartesian Coordinates

- P -point. We assign to it triple (x_P, y_P, z_P) .
- Assignment will be such that distinct points are assigned distinct triples.
- Q =base of perpendicular from P to x-axis.
- Define x_P as signed distance b-n O and Q.
- Take distance with + sign if OQ points in direction of x-axis, - sign else.
- Definitions of y_P , z_P are similar.
- (x_P, y_P, z_P) = Cartesian coordinates of P.
- x_P is called the x-coordinate of P, and so on for other axes.
- (x_P, y_P, z_P) = singed lengths of edges of the rectangular box indicated in the picture.

Euclidean Distance in Coordinates

Theorem (Can be taken as definition)

The distance b-n the points $A(x_A, y_A, z_A)$ and $B(x_B, y_B, z_B)$ is given by: $d(A, B) = |AB| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$

Why is this so? Geometric explanation:

$$|AC|^{2} = |AD|^{2} + |DC|^{2}$$

$$|AB|^{2} = |BC|^{2} + |AC|^{2}$$

$$= |BC|^{2} + |AD|^{2} + |DC|^{2}$$

$$= |BC|^{2} + |AD|^{2} + |DC|^{2}$$

$$= (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}$$

$$+ (z_{B} - z_{A})^{2},$$

Example:

$$d(P(3,1,2),Q(1,2,3)) = \sqrt{(1-3)^2 + (2-1)^2 + (3-2)^2} = \sqrt{6} .$$

Example

Find the distance between the points with coordinates

$$(1, -2, 3)$$
 and $(-4, 5, 6)$.

$$\frac{d((1,-2,3),(-4,5,6))}{\sqrt{83}} = \sqrt{(-4-1)^2 + (5-(-2))^2 + (6-3)^2} = \sqrt{83}.$$

Example

A cube has edge 3 cm. Find the distance between a vertex of the cube and the midpoint of one of the three opposing sides.

Sets in Space

X subset of a set Y:

$$X = \{A \text{ in } Y | A \text{ has property } \mathcal{P}\} \subset Y$$

Examples (Fixed point Q, fixed r > 0):

$$X = \{A \text{ in Space } | d(A, Q) = r\} = S_r(Q),$$

Sphere of radius *r* centered at *Q*.

$$B_r(Q) = \{A \text{ in Space } | d(A,Q) < r \},$$

Open ball of radius r centered at Q.

$$\overline{B}_r(Q) = \{A \text{ in Space } | d(A, Q) \leqslant r \},$$

Closed ball of radius r centered at Q.

Equation(s) of Subsets

$$X = \{(x, y, z) | x, y, z \text{ satisfy certain relation(s)} \}$$
.

Examples:

$$\{(x, y, z)|x^2 + y^2 + z^2 = 1\}$$
:

sphere of radius r = 1 centered at the origin (0, 0, 0)

Also refered to as: sphere $x^2 + y^2 + z^2 = 1$

$$\{(x, y, z)|x = 0\}$$
: coordinate Left-Up plane

$$\{(x, y, z)|x = 0 \text{ and } y = 0\}$$
:

intersection of coordinate planes → coordinate axis

Can be given by only one equation:

$$x^2 + y^2 = 0 \rightarrow x = 0, y = 0$$
, and z arbitrary \rightarrow vertical axis above $(0,0)$ in (x,y) -plane

Important: Equations in Plane vs. Space.

Recognizing Spheres from Equations

$$Q(x_0, y_0, z_0), r > 0, A(x, y, z).$$
 Remark: $d(A, Q) = r \longleftrightarrow d^2(A, Q) = r^2$

$$S_r(Q): (x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2$$

Example:

$$(x-2)^2 + (y-0)^2 + (z+1)^2 = 3^2$$
$$x^2 + y^2 + z^2 - 4x + 2z - 4 = 0$$

- no mixed terms xy, xz, or yz;
- quadratic terms x^2 , y^2 , and z^2 with the same coefficient.

Examples:

$$x^2 + y^2 + z^2 - 4x + 2y = 0$$

Complete the square:

$$(x-2)^2 + (y+1)^2 + z^2 = 5$$

Sphere of radius $\sqrt{5}$ centered at (2, -1, 0).

How about $x^2 + y^2 + z^2 - 4x + 2y = -6$? Passes both tests, but ...

Todor Miley Lecture 1