2nd half overview

CSE 314A DCDS 510

Open Data Sets

- Quality and quantity of open data exploding
- Mature datasets are often provided with interactive dashboards and spreadsheet exports.
- API (Application Programming Interface)
 - Usually gets you more fine grained and complete data
- Web scraping: last resort but sometimes necessary

Real-world data is sourced from many sources & people

Common Open Data Sources

- US Census
- World Bank Open Data
- Social Media: <u>Twitter</u> and <u>Yelp</u>
- Movies: <u>OMDb</u>,
- Sports: <u>Sports-Reference</u>
- FiveThirtyEight
- Yahoo! Finance API
- St Louis Regional Data Exchange
- FEC (data), FEC (API), MEC
- Science: <u>Nature</u>, <u>PLoS One</u>
- ML/AI: <u>Kaggle</u>, <u>UCI ML Repository</u>

Other closed/personal data sources

- Business data:
 - Accounting, marketing, finance, inventory
- Organizational Data:
 - Contacts, personal information
- Science/Social Science Data:
 - Subjects, results, conditions
- Public Data
 - Freedom of Information Act (FOIA)

Your own experiment/survey

Anatomy of an API

- Application Programming
 Interface Terminology
- A reminder of how the Internet works →
- Stereotypically:
 - You tell the API what you want in a URL
 - The server responds with some JSON

API Clients in Python

- Requests package
- Provide common functionality that helps abstract away some web development knowledge (response handling, parsing, pagination, etc)
 - Prepackaged clients, e.g.: <u>Google API Python Client</u>, <u>Sportsipy</u>
 - Build your own client

Web Scraping/Crawling - when all else fails?

- Packages
 - BeautifulSoup
 - Scrapy
 - Selenium
 - Some API clients
 - Pandas

Web Scraping Ethics and Etiquette

- Be aware of Terms of Service and proprietary information
- Be aware of your network traffic and server load
- Follow the robots.txt

Beautiful Soup - Parsing your HTML

Scrapy -

https://docs.scrapy.org/en/latest/

Scrapy is an application framework for crawling web sites and extracting structured data which can be used for a wide range of useful applications, like data mining, information processing or historical archival.

Scrapy -

https://docs.scrapy.org/en/latest/

Even though Scrapy was originally designed for web scraping, it can also be used to extract data using APIs or as a general purpose web crawler.

Selenium

- Designed for automated UI/UX testing
- Most useful for Javascript-focused web browsing
 - Hidden/Dynamic Link navigation
 - Manual clicking processes
- Actually uses browser engines
- Requires some OS-level setup/drivers

Pandas

- Extracts tables directly from HTML
- Easy, convenient
- Still may require some manual pruning
- Won't help for data outside of tables

More on storing/caching data

- No go-to answer
- Pandas provides flexible options
- Common approach store a response and work from that response
 - VCRpy records "cassettes" designed for testing
- Keep memory limitations in mind, cache as you go
- Focus on what helps you in your development process
 - Don't repeat yourself
 - Choose good example cases

Historical context - ggplot2 (R Tidyverse)

ONE VARIABLE continuous c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg) c + geom_area(stat = "bin") x, y, alpha, color, fill, linetype, size c + geom_density(kernel = "gaussian") x, y, alpha, color, fill, group, linetype, size, weight c + geom_dotplot() x, y, alpha, color, fill c + geom_freqpoly() x, y, alpha, color, group, linetype, size c + geom_histogram(binwidth = 5) x, v, alpha, color, fill, linetype, size, weight c2 + geom_qq(aes(sample = hwy)) x, y, alpha, color, fill, linetype, size, weight discrete d <- ggplot(mpg, aes(fl)) d + geom_bar() x, alpha, color, fill, linetype, size, weight

Python Visualization in 2022

 Libraries can be used by Jupyter notebooks and Pandas API

Stack Overflow Trends

Viz-first data analysis

- When presenting findings
 - Keeps you focused on outcomes
 - Evaluate hypotheses
 - Keep your supervisors happy
- When exploring data
 - Narrows down possibilities
 - Fosters ongoing thinking about data structure and domain particularities
 - Familiarizes you with the data if it is external
- Simply more fun and less discouraging
- Answers a lot of philosophical questions up front
 - Resource: <u>Fundamentals of Data Visualization</u> by Claus O Wilke

Feeding your plot - Quality in, Quality Out

- Modern plotting libraries can do much of the data processing for common visualizations
- Organized data allows for single-command plotting
 - More on this next week for now use preorganized data in hw/demos
 - Fake your data if your data is unorganized or unavailable!

Basic plotting (Plotly)

- Raw Figure objects Just fancy dictionaries!
 - Use when customizing, examining structure, or testing
- Plotly Express
 - Works best (but not only)with "tidy" data but it essentially means that you have one row per observation.
 - "Wide" data support added in last year or two.
- Use templates
- Minimize tinkering
- Base level interactivity

Dashboard basics (Dash)

- Works with Flask under the hood (easily deployable relatively)
- Uses HTML to arrange components
 - Dash Bootstrap Components can make your app look pretty and provide some supplemental functionality
- Uses "callbacks" to update the dashboard on user actions
 - Just functions reads attributes from HTML components and updates them.
- Callbacks are chainable you can use use them to update other input components as well as your figure data

Exporting your images and deploying your dashboards

- Images
 - PNG button on dashboard
 - o I/O methods on Figure objects
 - Always use vector formats if possible .svg, .pdf, etc
 - Post-processing
 - Inkscape free and open source
 - Adobe Illustrator
- Deploying Dashboards tricky but doable
 - The Magical Guide

The future: 3D dataviz, VR/AR, and data storytelling

https://www.tiktok.com/@the.data.guy/video/7043589231066860846

https://www.tiktok.com/@the.data.guy/video/7028635623833488646

SQL from 10,000 feet -

```
1 SELECT
2 DISTINCT
3 SUM(cont.Amount) AS Total
4 FROM mec.Contributions AS cont
5 LEFT JOIN mec.Committees AS cmt
6 ON cont.MECID = cmt.MECID
7 WHERE cmt.Name = "Cori Bush for Congress"
8 GROUP BY cont.City
9 HAVING Total > 1000
10 ORDER BY Total
```

SQL order of execution - SELECT

 FROM clause ON clause OUTER clause 	6. HAVING clause7. SELECT clause8. DISTINCT clause		
		4. WHERE clause	9. ORDER BY clause
		5. GROUP BY clause	10. TOP clause

CRUD and ACID

- CRUD operations
 - Create
 - Read
 - Update
 - o Delete
- ACID transactions
 - o Atomicity All or nothing
 - Consistency Data is correct
 - o Isolation Independent of other transactions
 - o Durability changes are persistent

RDBMS systems

- User Permissions/Security
- Programmatic features
- Some architecture/indexing decisions
- Secret Sauce

NoSQL - Think "Nonrelational"

- Key-Value Databases (common for caching [Redis])
- Document Databases (MongoDB) think JSON/XML
- Graph Databases

Key Considerations:

- "Schema-less"
- Horizontal Scalability
- Performance gains at cost of ACID compliance