3 Algorithm and Turing Machines

3.1 Turing machines

An algorithm is a mechanical process to be followed in calculations or other problem-solving operation.

e.g. 3.1.

- $1. \ addition, substraction, multiplication, division$
- 2. **Euclidean algorithm** for gcd: gcd(210, 25) = gcd(45, 30) = gcd(30, 15) = gcd(15, 0)
- 3. selection quicksort
- 4. Dijkstra's algorithm for shortest path

In 1936 for the first time, Alan Turing rigorously defined algorithms

Figure 1: Schematic of a Turing machine

- 1. It uses an infinite tape as its unlimited memory
- 2. It has a tape head that can read and write symbols and move around on the tape

def 3.1. (Turing Machine)

A Turing machine is a 7-tuple,
$$(Q, \Sigma, \Gamma, \delta, q_0, \underbrace{q_{accept}, q_{reject}}_{q_{accept}})$$
, where:

- 1. Q is a set of states
- 2. Σ is the input alphabet not containing the blank symbol \sqcup
- 3. Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
- 4. $\delta: Q \times \Gamma \to Q \times \{L, R\}$ is the transive function
- 5. $q_0 \in Q$ is the start state

- 6. $q_{accept} \in Q$ is the accept state
- 7. $q_{reject} \in Q$ is the reject state, where $q_{accept} \neq q_{reject}$

e.g. 3.2.

1. Input a binary number n (least significant bit first), output n+1

 $\begin{array}{c} \textit{Input: } 101 \sqcup \sqcup \\ \textit{Output: } 011 \sqcup \sqcup \end{array}$

remark. this is a computation problem(6-tuple)

start
$$\rightarrow q_0$$
 $0 \rightarrow 1, S$ $\square \rightarrow 1, S$ q_{end} $1 \rightarrow 0, R$

- 2. decide if $w \in \{0,1\}^*$ is a palindrome, i.e. $w = w^R$
- 3. decide $L = \{0^{2^n}, n \ge 0\}$, where $\Sigma = \{0\}$

IDEA

- (a) If there is a single 0, accept it
- (b) Sweep left to right across the tape, crossing off every other 0.
- (c) If the tape contained more than a single 0 and the number of 0s was odd, reject
- (d) Return the head to the left-hand end of the tape
- (e) go to step1

Figure 2: State diagram for Turing machine M2

4. $L = \{w \# w, w \in \{0, 1\}^*\}$

Figure 3: State diagram for Turing machine M1

exercises 3.1.

- 1. Binary comparison. $L = \{x, y | x, y \in \{0, 1\}^* x \ge y, \text{ most significant bit first, no leading 0 unless the number is 0} \}$
- 2. Binary add 1
- 3. $L = \{0^n 1^n\}$

def 3.2. Let $L \subset \{0,1\}^*$, M be a Turing Machine. Say M decides L in time T(n) if for $\forall x \in \{0,1\}^*$:

- 1. M halts in T(n) steps
- 2. If $x \in L$, then M accepts x
- 3. If $x \notin L$, then M rejects x

def 3.3. Let $L \subseteq \{0,1\}^*$. Call L(Turing Machine) decidable if there is a Turing Machine decides it

remark. On an input x, a TM may accept, reject, or loop forever

In definition 3.2, the machine should never loop forever

def 3.4. Let M be a TM, the set of strings that M accepts is the language recognized by M, denoted by L(M)

def 3.5. Let $L \subseteq \{0,1\}^*$. Call L(Turing) recognizable if there is some TM recognizes it

remark. Obviously, every decidable language is recognizable. While the converse is not true, e.g. $L = \{ \langle M, x \rangle, M \text{ halts on } x \}$

def 3.6. Let $f: \{0,1\}^* \to \{0,1\}^* \cup \{undefined\}$. Say TM M computes f in time T(n) if for $\forall x \in \{0,1\}^*$, with $f(x) \neq undefined$, M halts with f(x) on its tape in at most T(|x|) steps

What is algorithm? An algorithm is A Turing Machine. Despite its simplicity, it is capable of implementing any computer algorithm.

"Everything should be made as simple as possible, but no simpler."

3.2 Variants of Turing Machines

lemma 3.7. If language $L \subseteq \{0,1\}^*$ is decidable in time T(n) by a Turing Machine on alphabet Γ , then it is decidable in time $O(\log |\Gamma|T(n)) = O_{\Gamma}(T(n))$ by a Turing Machine on alphabet $\Gamma = \{0,1,\sqcup,\rhd\}$

Proof. Encode any symbol in Γ using $k = \lceil log_2|\Gamma| \rceil = O(log|\Gamma|)$ bits. To simulate one step of M, the new Turing Machine will:

- 1. use k steps to read a symbol $a \in \Gamma$
- 2. transit to next step q', and get the new symbol b(to overwrite a)
- 3. overwrite a by b
- 4. go left or right for k steps, or stay

In total, the simulation (for one step) takes less than k+1+k+k = O(k)

def 3.8. A k-tape Turing Machine M is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where:

$$\delta: Q \times \varGamma^k \to Q \times \varGamma^k \times \{L,R,S\}^k$$

Usually, the first tape is the input tape, the last tape is the output tape, and the remaining tapes are work tapes.

A multiple Turing Machine is an O(1)-tape Turing Machine.

Figure 4: 3-tape Turing Machine

lemma 3.9. Let $L \subseteq \Sigma^*$, If L is decidable by a k-tape Turing Machine in time T(n), then it is decidable by a single-tape Turing Machine in time $O(kT(n)^2) \neq O(T(n)^2)$

Proof. Use location i-1, k+i-1, 2k+i-1, ... to store the contents of the i^{th} tape, where i=1,2,...,k. For $\forall a \in \Gamma$, introduce $a, \widehat{a} \in \Gamma$, where \widehat{a} denotes the location of the head.

To simulate one step of M, single-tape Turing Machine M' will:

- 1. sweep the tape from left to right to read k symbols marked by ^
- 2. apply M's transition function δ to determine the next state
- 3. sweep back from right to left to update k symbols, if needed, and move if needed

In total, 1.2.3. take
$$T(n)+1+O(kT(n)) = O(kT(n))$$

Figure 5: A two tape Turing Machine

Head		Head										
+	*											
1	0	0	1	X	0	X	X	1	0	0	0	Ш

Figure 6: Representing two tapes with one

A Bidirectional-tape Turing Machine is a Turing Machine whose tape is infinite in both directions

Figure 7: A bidirectional-tape $Turing\ Machine$

lemma 3.10. Let $L \subseteq \Sigma^*$. If L is decidable by a bidirectional-tape Turing Machine in T(n), then it is decidable by a single-tape Turing Machine in O(T(n)) time.

Proof. Index the biderectional tape by \mathbb{Z} , map location i to

$$\begin{cases} 2i, i \ge 0 \\ -2i - 1, i < 0 \end{cases}$$

For every step of M, M' will

- 1. read the symbol
- 2. transit to the next state
- 3. update the symbol
- 4. move left or right for two steps, if needed

It takes O(1) to simulate one step. In total, the running time is O(T(n))

def 3.11. Random access memory(RAM) Turing machine is a TM with random access memory:

- 1. M has an infinite memory tape A indexed by N
- 2. One of M's tapes is the address tape
- 3. Γ contains two speed symbols R(read) and W(write)
- 4. Q has some special states $Q_{access} \subseteq Q$ Whenever M gets into a state $q \in Q_{access}$
 - (a) If the address tape contains iR, the value A[i] is written to the cell next to R
 - (b) If the address tape contains $iW\sigma$, then set A[i] to symbol σ

Assume the TAM Turing Machine M has k work tapes and an address.

 $Then \ M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject}, Q_{access}), \ \delta: Q \times \Gamma^{k+1} \rightarrow Q \times \Gamma^{k+1} \times \{L, R, S\}^{k+1}$

lemma 3.12. Let $L \subseteq \{0,1\}^*$. If L is decidable by an RAM Turing Machine in time T(n), then it is decidable by a multi-tape Turing Machine in time $O(T(n)^3)$. Moreover, if the length of the address is O(1), then L is decidable by a multi-tape Turing Machine in $O(T(n)^2)$

Proof. Use an extra work tape as memory that contains pairs (i, A[i]), where i is an integer in binary, $A[i] \in \Gamma$, for all memory addresses that have been referred to.

To simulate one step of M, if M is in an access state, the new multi-tape Turing Machine M' will:

- 1. scans tape A to find an address that matches i in the address tape
- 2. if i does not exist, add a new pair (i, A[i])
- 3. read or write A[i] accordingly

$$1,2,3\ take\ O(T(n)^2) + O(T(n)) + O(T(n)) = O(T(n)^2)$$

In total, M' runs in time $T(n) * O(T(n)) = O(T(n)^3)$

If address length is O(1), then $\#pairs \leq T(n)$, length of each pair is O(1),1,2,3 take O(T(n)) steps to simulate

remark. Ignoring polynomial factors, all Turing Machine variants are equivalent.

$$\underbrace{C + +}_{T(n)} \to \underbrace{AssemblyLanguage}_{O(T(n))} \to \underbrace{RAMTM}_{O(T(n^3))(O(T(n^2)))} \to \underbrace{single - tapeTM}_{O(T(n^6))(O(T(n^4)))}$$

def 3.13. Let $T: \mathbb{N} \to \mathbb{N}$, language $L \subseteq \{0,1\}^*$ is in $\mathbf{DTIME}(T(N))$ iff there exists a multi-tape Turing Machine M that decides L in time O(T(n))

def 3.14.
$$P = \bigcup_{c>1} DTIME(n^c)$$