Задача А. Автобусные остановки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

На улице есть n остановок. Улица представляет собой линию с системой координат. Координаты автобусных остановок: x_1, x_2, \ldots, x_n , где x_i — расстояние в метрах от i-й остановки до начала улицы. Первая автобусная остановка находится в начале улицы, а последняя находится в конце улицы.

Существует ровно один автобусный маршрут. Автобусы идут от начала до конца улицы со скоростью v метров в минуту с интервалом в w минут, начиная со времени 0. На каждой остановке останавливается автобус. Остановка не требует времени.

Есть q людей, которые хотят дойти до конца улицы. i-й человек появляется в точке p_i в момент времени t_i и может идти со скоростью не больше u_i метров в минуту. Человек может сесть на автобус и проехать на автобусе. Для каждого человека найдите минимальное время, когда этот человек может добраться до конца улицы.

Формат входных данных

В первой строке дано одно целое число $n\ (2\leqslant n\leqslant 150000)$ — число остановок.

Во второй строке через пробел дано n целых чисел x_i (0 = $x_1 < x_2 < \ldots < x_n \leqslant 10^9$) — координаты остановок.

В третей строке даны 2 числа w и v $(1 \leqslant w, v \leqslant 10^9)$ — интервал и скорость движения автобусов соответственно.

В четвёртой строке дано число $q\ (1\leqslant q\leqslant 150000)$ — число людей.

В следующих q строках идёт описание людей. В i-й из них записаны 3 числа p_i, t_i, u_i ($0 \le p_i < x_n, 0 \le t_i \le 10^9, 1 \le u_i \le 10^9$) — координата точки появления i-го человека, время его появления и его скорость.

Формат выходных данных

Выведите q строк. В i-й строке выведите минимальное время, когда i-й человек сможет добраться по конца упицы

Ответ считается корректным, если его абсолютная погрешность не превышает 10^{-6} .

Система оценки

Подзадача на 50 баллов:

• $n, q \leq 3000$

Пример

стандартный ввод	стандартный вывод	
4	10	
0 10 40 100	30	
20 10	5.75	
3		
0 0 4		
15 10 1		
40 2 16		

Задача В. Ретро

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Маленький Мирко получил игровую консоль на Рождество. Это не Playstation 4 и не Xbox one, а Atari 2600, на которой находилась одна бесплатная игра. Протагонист игры стоял внизу экрана, сверху появлялись различные объекты, которые падали вниз.

Говоря точнее, экран представлен в виде поля $R \times S$ пикселей, R строк и S столбцов. Протагонист занимал один пиксель, помеченный «М», и находился на нижней строчке поля. Остальные пиксели были помечены одним из следующих символов: «.» (пустая клетка), «*» (бомба), «(» (открывающая скобка), «)» (закрывающая скобка).

Протагонист мог перемещаться влево или вправо на один пиксель, или оставаться на месте, в то время как остальные объекты одновременно перемещаются на один пиксель вниз (возможно за экран). Когда персонаж попадает на скобку, она записывается в специальный массив. В конце игры требуется собрать в этом массиве максимально возможную по длине **правильную** скобочную последовательность.

Правильная скобочная последовательность (далее ПСП) определяется по следующим правилам:

- 1. «()» является ПСП.
- 2. Если $\mathbf{A} \mathbf{\Pi}\mathbf{C}\mathbf{\Pi}$, то «(A)» тоже является $\mathbf{\Pi}\mathbf{C}\mathbf{\Pi}$.
- 3. Если A и B Π С Π , то «AB» тоже является Π С Π .

Игра заканчивается, если позиция игрока совпала с позицией бомбы, или когда все объекты упали за экран.

Формат входных данных

В первой строке вводятся натуральные числа R и S ($1 \le R, S \le 300$) — размеры поля. В каждой из следующих R строк вводятся S символов «М», «.», «*», «(» или «)» — игровое поле.

Формат выходных данных

В первой строке выведите длину максимальной скобочной последовательности, которую Мирко может получить. Во второй строке выведите это последовательность. Если ответов несколько, выведите лексикографически минимальный из них.

Система оценки

Программы, верно работающие при $R\leqslant 15$ оцениваются в 25 баллов. Программы, верно работающие при $R\leqslant 100$ оцениваются в 50 баллов.

Tinkoff Generation A. Дистанционный тур - 4 Водный Стадион, 13.10.2018

Примеры

стандартный ввод	стандартный вывод
5 4	4
).	(())
.)(.	
(.)*	
(.	
M.	
6 3	4
)(.	()()
*	
(**	
)()	
().	
M	
6 3	2
((.	()
*	
(**	
)()	
().	
M	

Замечание

Пояснения к первому примеру: движения протагониста такие: влево, влево, вправо, вправо.

<u>Пояснения ко второму примеру:</u> движения протагониста такие: не двигаться, не двигаться, не двигаться, вправо, влево.

<u>Пояснения ко третьему примеру:</u> движения протагониста такие: не двигаться, не двигаться, вправо.

Задача С. Ханы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Элли недавно узнала про Булгарских ханов — правителей кочевых народов, которые путешествовали по континенту сотни лет, прежде чем они наконец поселились навсегда в местах, где сейчас находится Болгария.

Континент, по которому они скитались, разделен на N*M регионов, расположенных в форме прямоугольника с N строками и M столбцами. Ханы останавливались ровно на один год в определенном регионе, и пока они жили там, их клан съедал всю еду в этом регионе. В конце года они перемещались в один из (не более чем) четырех соседних по стороне регионов, там они проводили следующий год, съедая всю еду в нем, и так далее. Будем считать, что перемещения в соседний регион происходят мгновенно (в конце концов, что такое несколько дней путешествия по сравнению с целым годом). Ханы никогда не проводили два года подряд в одном регионе, в этом случае их клан мог бы погибнуть от голода.

Для каждого региона известно максимальное количество еды, которое может в нем находиться. Обозначим это значение целым числом A_{ij} .После того, как ханы съедали всю еду в регионе и уезжали со своим кланом в соседний регион, еда в нем начинала восстанавливаться. Через год после отъезда ханов в регионе появлялась 1 единица еды. После этого каждый год количество еды в регионе удваивалось, пока оно не достигало максимального значения A_{ij} для этого региона. Обратите внимание, что количество еды никогда не превышало максимального количества, которое могло находиться в регионе. Например, если $A_{ij} = 55$, то количество еды в этом регионе в начале каждого из первых десяти лет после отъезда ханов из этого региона, было, соответственно, 0,1,2,4,8,16,32,55,55,55.

Ханы никогда не возвращались в регион, пока он не восстанавливался полностью и количество еды в нем не достигало максимума. Из-за этого могла, например, сложиться ситуация, что ханы переместились в регион, где меньше еды (скажем, 42 единицы, но это максимальное количество), а не в регион, где больше еды (скажем, 64, а максимум 71). В примере в предыдущем параграфе ханы могли бы вернуться в регион в начале 8 года после своего отъезда, это первый год, в который в этом регионе количество еды максимально.

Элли знает информацию о максимальном количестве еды в каждом регионе континента, заданную как матрицу A с N строками и M столбцами. Зная, что ханы проведут первый год в левом верхнем регионе, а исходно каждый регион содержит максимальное возможное для этого региона количество еды, выясните, какое максимальное количество еды ханы смогут суммарно съесть за K

Формат входных данных

На первой строке входных данных заданы три целых числа N, M, и K ($1 \leqslant N, M \leqslant 10,$ $1 \leqslant K \leqslant 100$), задающих, соответственно, количество строк, количество столбцов в матрице и количество лет. На каждой из следующих N строк находятся по M целых чисел A_{ij} ($10 \leqslant A_{ij} \leqslant 100$), задающих максимальное количество еды в соответствующем регионе.

Формат выходных данных

Выведите одну строку, содержащую одно целое число — максимальное суммарное количество еды, которое ханы смогут съесть, если они будут путешествовать оптимально.

Гарантируется, что всегда будет путь, который не нарушает правила, что нельзя повторно посещать регион до момента, когда в нем полностью восстановится максимальное количество еды.

Система оценки

В данной задаче каждый тест оценивается отдельно

• В тестах, имеющих стоимость в 20

Tinkoff Generation A. Дистанционный тур - 4 Водный Стадион, 13.10.2018

• В тестах, имеющих стоимость в еще 20

Пример

стандартный ввод	стандартный вывод
4 4 11	254
11 17 13 96	
10 12 18 15	
13 12 16 17	
24 10 14 22	

Замечание

В первом примере регионы, которые ханы могут посетить, чтобы съесть максимальное количество еды $(254\ \text{единицы})$ — регионы с максимальным количеством еды 11,17,13,96,15,17,22,14,16,18,15, соответственно. При этих перемещениях они посетят дважды лишь один регион — с максимальным количеством еды 15. Обратите внимание, что после последнего года все регионы, соседние с последним регионом, посещенном ханами, не содержат максимального возможного количества еды. Для приведенного теста это не проблема, поскольку это последний год. Но если бы ханам необходимо было продолжить перемещения (например, K было бы равно 12, а не 11), то им пришлось бы выбрать другой путь. Вариант оптимального пути для K=12 по континенту из первого примера: 11,17,13,96,15,18,16,17,22,14,10,24, с суммой 273.

Задача D. Ghiţă, Lică Sămădăul и Buză Spartă

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 512 мегабайт

«Ghiţă» очень любит программирование. Его любимые занятия — играть с перестановками и проводить время со своей женой Зинаидой. На свою 10-летнюю годовщину свадьбы Зинаида подарила ему очень красивую перестановку, ведь она знала, что это лучший подарок, который может получить «Ghiţă». Пусть P_i — это j-элемент перестановки для каждого $1 \le j \le N$.

«Ghiţă» был так рад такому подарку, что начал вычислять значение Q_i для каждого i что $1 \le i \le N$. Q_i — это число возрастающих подпоследовательностей на префиксе длины і в перестановке.

Более формально для каждого $1 \leqslant i \leqslant N$, Q_i равняется числу последовательностей $j_1, j_2, \ldots j_k$, что $1 \leqslant j_1 < j_2 < \ldots < j_{k-1} < j_k \leqslant i$ и $P_{j_1} < P_{j_2} < \ldots < P_{j_k}$.

Q конечно не перестановка, но тоже крутая штука, поэтому «Ghită» положил её рядом с P.

Все было нормально, пока не появился «Lică Sămădăul». Он хотел использовать систему эпиднадзора «Ghiţă» для аморальных целей, а «Ghiţa», будучи честным человеком, не помог ему. Разгневанный ответом «Ghiţă», «Lică Sămădăul» нанял «Buză Spartă», чтобы помочь ему украсть самые ценные активы «Ghiţā»: его перестановку и его жену. И так он и сделал.

На следующий день «Ghiţă» выяснил, что P отсутствует, и теперь единственная возможность для «Ghiţă» восстановить перестановку — это использовать массив Q, который у него есть. Как вы уже догадались, ваша задача — помочь «Ghiţă» восстановить перестановку P, используя массив Q.

Формат входных данных

В первой строке ввода записано одно число N ($1 \le N \le 70\,000$).

Во второй строке через пробел записаны N целых чисел Q_1, Q_2, \ldots, Q_N .

Размер входного файла не превышает 115 МБ.

Мы советуем вам самостоятельно проверять время работы и использование памяти читающей части вашей программы, чтобы убедиться, что возможная неэффективность вашей программы не связана с этой частью.

Формат выходных данных

В первой и единственной строке выведите P — украденную перестановку.

Гарантируется, что существует ровно один возможный ответ (только один P имеет заданный Q).

Система оценки

№	Баллы	Ограничения	$T=$ длине Q_i	Размер входных данных
0	0	Тесты из условия	_	_
1	10	$N \leqslant 9$	_	_
2	15	$N \leqslant 400$	$T \leqslant 18$	_
3	18	$N \leqslant 700$	_	_
4	17	$N \leqslant 40000$	$T \leqslant 171$	4.5 MB
5	11	$N \leqslant 70000$	$T \leqslant 258$	10 MB
6	7	$N \leqslant 70000$	$T \leqslant 314$	16 MB
7	16	$N \leqslant 70000$	_	85 MB
8	6	$N \leqslant 70000$	_	115 MB

Примеры

стандартный ввод	стандартный вывод	
4	3 2 4 1	
1 2 5 6		
6	1 6 3 4 2 5	
1 3 5 9 11 21		

Tinkoff Generation A. Дистанционный тур - 4 Водный Стадион, 13.10.2018

Замечание

В первом примере N=4 и $P=\{3,2,4,1\}$

 $Q_1 = 1$, так как $\{3\}$ — единственная возрастающая подпоследовательность $\{3\}$

 $Q_2=2$, потому что $\{3\}$ и $\{2\}$ — единственные возрастающие подпоследовательности $\{3,2\}$

 $Q_3=5$, потому что $\{3\},\{3,4\},\{2\},\{2,4\}\{4\}$ — единственные возрастающие подпоследовательности $\{3,2,4\}$

 $Q_4=6$, потому что $\{3\},\{3,4\},\{2\},\{2,4\},\{4\}\{1\}$ — единственные возрастающие подпоследовательности $\{3,2,4,1\}$.