Домашняя работа 4

Пасечник Даша

на 14.03.2019

Задача 1

Определите, являются ли задачи выполнимости и тавтологичности булевой формулы в ДН Φ \mathcal{P} , $\mathcal{NP}c$ или $co\mathcal{NP}c$.

Выполнимые ДНФ

Построим характеристическую функцию для L, т.е покажем, что $L \in \mathcal{P}$, значит $L \notin \mathcal{NP}c$, $L \notin co\mathcal{NP}c$. Заметим, что:

- 1. ДНФ выполнима, если в ней выполним хотя бы 1 коньюнкт;
- 2. коньюнкт выполним, если в нем не встречается одновременно переменная и ее отрицание.

Тогда χ_L делает следующее: идет по формуле и для каждого конъюнкта проверяет присутствует ли в нем переменная и ее отрицание одновременно. Если нашелся конъюнкт, для которого это не выполняется, значит ДНФ выполнима, χ_L возвращает 1. Иначе, если во всех конъюнктах содержатся и переменная, и ее отрицание одновременно, χ_L возвращает 0. Конъюнктов конечное число, переменных в конъюнкте – тоже, значит χ_L полиномиальна.

Тавтологичные ДНФ

Рассмотрим дополнение к L - язык нетавтологичных ДНФ, т.е. $L^* = \{\phi | \exists x : \phi(x) = 0\}$. Сведем SAT - язык выполнимых КНФ к нему. Рассмотрим $f(\phi) = \neg \phi$. f строит отрицание ϕ следующим образом:

- 1. Каждая конъюнкция заменяется на дизъюнкцию.
- 2. Каждая дизъюнкция заменяется на конъюнкцию.
- 3. Каждая переменная заменяется на ее отрицание.
- 4. Каждое отрицание переменной заменяется на переменную.

Это в точности применение правила де Моргана к отрицанию КНФ формы. Заметим, что после такого преобразование $f(\phi)$ окажется ДНФ. Если $\phi \in SAT$, то $\exists x : \phi(x) = 1$, тогда $\neg \phi(x) = 0$. Т.е. $\neg \phi$ нетавтологична и ДНФ, значит $f(\phi) \in L^*$. Аналогично, если $\phi \notin SAT$, то $\forall x : \phi(x) = 0$, тогда $\forall x : \neg \phi(x) = 1$, т.е. $f(\phi)$ по-прежнему ДНФ и тавтологична, значит $f(\phi) \notin L^*$. f полиномиальна, т.к. идем 1 раз циклом по длине входа, на каждом шаге операции занимают O(1).

Показали, что $SAT \leq_p L^*$. Значит $L^* \in \mathcal{NP}c$, $L \in co\mathcal{NP}c$. К слову, именно это и нужно было в 3 задаче прошлого лз.

Задача 2

Под 3SAT обычно имеется в виду множество выполнимых $KH\Phi$ с не более чем тремя переменными в каждом дизъюнкте. Покажите, что это полиномиально равнозначно EXACTLY3SAT, то есть с ровно тремя переменные в дизъюнкте.

$3SAT \leq_p EXACTLY3SAT$

Рассмотрим каждый дизъюнкт в 3SAT:

- \bullet Если в дизъюнкте 3 литерала, то f оставляет его как есть.
- Если в дизъюнкте 2 литерала, т.е. он имеет вид $(x \lor y)$, то f заменяет его на $(x \lor y \lor z) \land (x \lor y \lor \neg z)$. Понятно, что замена выполняется тогда и только тогда, когда выполняется исходная формула, при любых z.
- Если в дизъюнкте 1 литерал, т.е. он имеет вид (x), то f заменяет его на $(x \lor y) \land (x \lor \neg y)$ и тем сводит задачу к предыдущей.

Понятно, что f полиномиальна и $f(\phi)$ это ϕ , приведенная к КНФ. Значит $\phi \in 3SAT \Leftrightarrow f(\phi) \in EXACTLY3SAT$, это и есть определение полиномиальной сводимости.

$EXACTLY3SAT \leq_p 3SAT$

Рассмотрим каждый дизъюнкт в EXACTLY3SAT:

- \bullet Если в дизъюнкте 3 литерала, то f оставляет его как есть.
- Если в дизъюнкте 2 литерала, т.е. он имеет вид $(x \lor y)$, то f заменяет его на $(x \lor y \lor z \lor p)$. Понятно что такое преобразование неэквивалентно, но это и неважно.
- Если в дизъюнкте 1 литерал, т.е. он имеет вид (x), то f заменяет его на $(x \lor y \lor z \lor p)$.

Понятно, что f полиномиальна. Если $\phi \in EXACTLY3SAT$, то $f(\phi) = \phi$, а значит $f(\phi) \in 3SAT$ по определению. Если $\phi \notin EXACTLY3SAT$, то либо в f изначально есть дизъюнкты с количеством литералов большим 3, либо все дизъюнкты содержат ровно 3 литерала и f невыполнима, либо изначально в f есть только дизъюнкты с меньше либо равным 3 количеством литералов. В первом случае в $f(\phi)$ также окажутся дизъюнкты с количеством литералов большим 3, т.к. f их не трогает, значит $f(\phi) \notin 3SAT$. Во втором случае $f(\phi) = \phi$, значит $f(\phi) \notin 3SAT$ как невыполнимая. В третьем случае $f(\phi)$ преобразует все дизъюнкты с количеством литералов меньшим $f(\phi) \notin 3SAT$. Искомая сводимость доказана.

 $3SAT =_{p} EXACTLY3SAT$

Задача 3

Докажите, что задача VERTEX- $COVER \in \mathcal{NP}c$

$VERTEX\text{-}COVER \in \mathcal{NP}$

Предикат получает на вход набор вершин V размера k и проверяет для каждого ребра есть ли хотя бы 1 из его вершин в V. Ребер конечное число, значит предикат полиномиален.

$VERTEX-COVER \in \mathcal{NP}c$

Построим сводимость $CLIQUE \leq_p VERTEX - COVER$.

Рассмотрим f((G,k)) = (G',k'), где k' = n-k, n - количество вершин в графе, G' - дополнение к G, т.е. есть ребра, которых нет в G, нет ребер, которые есть в G. f один раз проходит по матрице смежности, значит полиномиальна. Пусть $(G,k) \in CLIQUE$. Обозначим за G множество вершин, образующих клику, за G - множество оставшихся вершин. Заметим, что у каждого ребра из G' хотя бы G вершина лежит в G Значит вершины G образуют вершинное покрытие и его размер G . Т.е. G (G) G G G G готя бы G готя бы G готя бы G готя бы G готя вершина лежит в G готя вершина G готя

Пусть $(G,k) \notin CLIQUE$. Пусть в G', есть вершинное покрытие размера k', рассмотрим множество вершин, не входящих в него - A. Все вершины из A в G' не связаны между собой, но тогда в G они образовывали клику размера n-k'=k. Противоречие. Значит $f((G,k)) \notin VERTEX-COVER$.

Задача 4

Докажите, что задача ПРОТЫКАЮЩЕЕ-МНОЖЕСТВО $\in \mathcal{NP}c$.

$L \in \mathcal{NP}$

Предикат получает на вход множество A из k элементов и проверяет пересечение со всеми множествами из A_{ϕ} . Если все пересечения непусты - выдает 1. Множеств в A_{ϕ} конечное число, и каждое конечно, значит предикат полиномиален.

$L \in \mathcal{NP}c$

Построим сводимость $CNFSAT \leq_p L$. Пусть $\phi((x_1, \cdots, x_n))$ КНФ. Построим по КНФ семейство подмножеств A_ϕ базового множества $\{x_1, \cdots, x_n, \neg x_1, \cdots, \neg x_n\}$. Во-первых, включим в A_ϕ n подмножеств вида $A_i = \{x_i, \neg x_i\}, \quad i = 1, \cdots, n$. Во-вторых, для каждого дизъюнкта C, входящего в ϕ , добавим к A_ϕ подмножество A_C , состоящее из всех входящих в C логических переменных (если в C входит логическая переменная x_i , то включаем в A_C элемент x_i , а если в C входит переменная $\neg x_i$, то включаем в A_C элемент $\neg x_i$).

Пусть $\phi \in CNFSAT$. Значит $\exists x = (x_1, \cdots, x_n) : \phi(x) = 1$. Рассмотрим множество A: для каждого $i = 1, \cdots n$ в A входит x_i , если в наборе x $x_i = 1$, иначе в A входит $\neg x_i$. Таким образом, в A ровно k элементов. Покажем, что A - протыкающее множество для A_ϕ от противного. Заметим, что A имеет непустое пересечение со всеми подмножествами A_i . Пусть существует подмножество A_C , построенное на основе дизъюнкта C, такое, что $A \cup A_C = \emptyset$. Рассмотрим логические переменные в дизъюнкте $C - \{x_{k_i}\}$. Если в C содержится x_{k_i} , то в A содержится $\neg x_{k_i}$. Значит в наборе x $x_{k_i} = 0$. Если в C содержится x_{k_i} то в A содержится x_{k_i} значит в наборе x $x_{k_i} = 1$. Выходит что для набора x дизъюнкт $x_{k_i} = 0$ 0, тогда $x_{k_i} = 0$ 1. Противоречие. Значит все $x_{k_i} = 0$ 2 имеют непутое пересечение $x_{k_i} = 0$ 3 протыкающее множество для $x_{k_i} = 0$ 4 размера $x_{k_i} = 0$ 5 протыкающее множество для $x_{k_i} = 0$ 6 гогда $x_{k_i} = 0$ 6 гогда $x_{k_i} = 0$ 8 гогда $x_{k_i} = 0$ 9 размера $x_{k_i} = 0$ 9 гогда $x_{k_i} = 0$ 9

Пусть $\phi \notin CNFSAT$. Покажем от противного, что в A_{ϕ} нет протыкающего множества A размера n. Пусть есть, тогда построим набор x следующим образом: если в A содержится переменная, то в x ее значение будет равно 1, если отрицание переменной, то 0. Очевидно, что для каждого x_i , $i=1,\cdots,x_n$ в A входит либо x_i , либо ее отрицание, т.к. иначе нет пересечения с множеством $A_i = \{x_i, \neg x_i\}$. Рассмотрим $\phi(x)$. Для каждого дизъюнкта A содержит хотя бы 1 литерал из него (т.е переменную, если в дизъюнкте содержится переменная, и отрицание переменной, если в дизъюнкте содержится отрицание переменной). Тогда в наборе x значение этого литерала 1 по построению x. Значит значение каждого дизъюнкта 1. Значит $\phi(x) = 1$. Значит $\phi \in CNFSAT$. Противоречие. Значит в A_{ϕ} нет протыкающего множества A размера n.

Построение A_{ϕ} - полиномиально.

*Понятно, что $CNFSAT \cup \neg CNFSAT$ это все булевы $KH\Phi$, иначе построение A_{ϕ} было бы некорректно.

Задача 5

Покажите, что VERTEX- $COVER \leqslant_p SET$ -COVER.

Построим $f: (G = (V, E), k) \in VERTEX\text{-}COVER \Leftrightarrow f((G, k)) = (U, S, k) \in SET\text{-}COVER$. U множество элементов, S семейство подмножеств U, k - число такое, что $\exists k$ подмножеств из S, таких что их объединение это U. Пусть U = E, B S добавим $S_v = \{e \in E : e$ инцидентно $v\}$ для всех $v \in V$.

Пусть $(G,k) \in VERTEX$ -COVER, т.е. $\exists X$ – вершинное покрытие G размера k. Тогда множества $S_v: v \in X$ образуют искомое set-cover для U. Его размер k, т.к. в X k вершин. Если некоторый элемент из U не принадлежит никакому S_v значит в X нет вершины, покрывающей это ребро и X - не vertex-cover. Значит S_v действительно set-cover U размера k.

Пусть $(U, S, k) \in SET\text{-}COVER$. Тогда $X = \{v : S_v \text{ входит в set-cover } U\}$ - vertex-cover размера k для G, где G такое, что f((G, k)) = (U, S, k). Действительно, все элементы U входят в какое-нибудь множество S_v , значит все ребра G покрыты вершинами из X.

f полиномиальна, т.к. множества вершин и ребер графа конечны.

Задача 7

Докажите, что $\Sigma_k \cup \Pi_k \subset \Sigma_{k+1} \cap \Pi_{k+1}$.

```
Распишем по определению (б.о.о. k - четное, для нечетного аналогично):
```

$$\Sigma_k = x \in A \Leftrightarrow \exists y_1 \forall y_2 \exists y_3 \dots \forall y_k : V(x, y_1, y_2, \dots, y_k) = 1$$

$$\Sigma_{k+1} = x \in A \Leftrightarrow \exists y_1 \forall y_2 \exists y_3 \dots \forall y_k \exists y_{k+1} V (x, y_1, y_2, \dots, y_{k+1}) = 1$$

$$\Pi_k = x \in A \Leftrightarrow \forall y_1 \exists y_2 \exists y_3 \dots \exists y_k : V(x, y_1, y_2, \dots, y_k) = 1$$

$$\Pi_{k+1} = x \in A \Leftrightarrow \forall y_1 \exists y_2 \exists y_3 \dots \exists y_k \forall y_{k+1} : V(x, y_1, y_2, \dots, y_{k+1}) = 1$$

Покажем явно 4 вложения:

$$\Sigma_k \subset \Sigma_{k+1}$$
. Пусть $A \in \Sigma_k$, т.е $x \in A \Leftrightarrow \exists y_1 \forall y_2 \exists y_3 \dots \forall y_k : V\left(x, y_1, y_2, \dots, y_k\right) = 1$. Тогда $x \in A \Leftrightarrow \exists y_1 \forall y_2 \exists y_3 \dots \forall y_k \exists y_{k+1} : Y_k \in X_k$

 $V\left(x,y_{1},y_{2},\ldots,y_{k}\right)=1$, где $y_{k}+1$ фиктивная переменная, и предикат V ее не использует. По определению $A\in\Sigma_{k+1}$. Значит $\Sigma_{k}\subset\Sigma_{k+1}$.

 $\Sigma_k \subset \Pi_{k+1}$. Пусть $A \in \Sigma_k$, т.е $x \in A \Leftrightarrow \exists y_1 \forall y_2 \exists y_3 \dots \forall y_k : V\left(x, y_1, y_2, \dots, y_k\right) = 1$. Тогда $x \in A \Leftrightarrow \exists y_0 \forall y_1 \exists y_2 \dots \forall y_k : V\left(x, y_1, y_2, \dots, y_k\right) = 1$, где y_0 фиктивная переменная, и предикат V ее не использует. По определению $A \in \Pi_{k+1}$. Значит $\Sigma_k \subset \Pi_{k+1}$.

 $\Pi_k \subset \Pi_{k+1}$. Пусть $A \in \Pi_k$, т.е $x \in A \Leftrightarrow \forall y_1 \exists y_2 \forall y_3 \dots \exists y_k : V\left(x,y_1,y_2,\dots,y_k\right) = 1$. Тогда $x \in A \Leftrightarrow \forall y_1 \exists y_2 \dots \forall y_k \exists y_{k+1} : V\left(x,y_1,y_2,\dots,y_k\right) = 1$, где y_{k+1} фиктивная переменная, и предикат V ее не использует. По определению $A \in \Pi_{k+1}$. Значит $\Pi_k \subset \Pi_{k+1}$.

 $\Pi_k \subset \Sigma_{k+1}$. Пусть $A \in \Pi_k$, т.е $x \in A \Leftrightarrow \forall y_1 \exists y_2 \forall y_3 \dots \exists y_k : V\left(x, y_1, y_2, \dots, y_k\right) = 1$. Тогда $x \in A \Leftrightarrow \exists y_0 \forall y_1 \exists y_2 \dots \forall y_k : V\left(x, y_1, y_2, \dots, y_k\right) = 1$, где y_0 фиктивная переменная, и предикат V ее не использует. По определению $A \in \Sigma_{k+1}$. Значит $\Pi_k \subset \Sigma_{k+1}$.

Это и значит, что $\Sigma_k \cup \Pi_k \subset \Sigma_{k+1} \cap \Pi_{k+1}$.

Задача 9

Докажите, что полиномиальная иерархия «схлопывается», если существует РНс задача. Под схлопыванием имеется в виду $\exists k : \mathcal{PH} = \Sigma_k = \Pi_k$.

Действительно, если язык $A \in \mathcal{NP}c$, то $A \in \mathcal{NP}$ и значит $\exists k : A \in \Sigma_k$. Т.к. $\forall B \in \mathcal{PH} \to B \leq_p A$, то $B \in \Sigma_k$. Значит $\mathcal{PH} = \Sigma_k$.

 $\mathcal{PH} = \cup \Pi_k = \Sigma_k$, значит $\Pi_{k+n} \subseteq \Sigma_k$, $\forall n \in \mathbf{N}$. Но $\Sigma_k \subseteq \Pi_{k+n}$, $\forall n \in \mathbf{N}$. Тогда $\Pi_k = \Sigma_k = \mathcal{PH}$.