Modern Physics Final Study Guide

PHYS-122

Fall 2024

CONTENTS 2

Contents

1	Special Relativity			
	1.1	Key Concepts	3	
	1.2	Essential Equations	4	
2	Early Quantum Theory and Quantum Mechanics			
	2.1	Key Concepts	4	
	2.2	Essential Equations	5	
3	Statistical Mechanics			
	3.1	Key Concepts	6	
	3.2	Essential Equations	6	
	3.3	Units and Unit Conversions		
4	Quick Reference			
	4.1	Mathematical Tools	7	
	4.2	Important Constants	8	
	4.3	Unit Conversions		

Special Relativity 3

1 Special Relativity

1.1 Key Concepts

• Postulates: Laws of physics are the same in all inertial frames; the speed of light is constant in a vacuum for all observers.

- Relativity of Simultaneity: two events that appear to happen at the same time for one observer may not appear simultaneous to another observer moving relative to the first.
- Relativistic velocity addition: These problems generally have 3 objects: A stationary object and 2 moving objects. Notation is usually (or u and v reversed):
 - -S = stationary frame
 - -S' = 2nd moving object reference frame
 - -v = velocity of 2nd object with respect to stationary frame
 - -u = velocity of 1st object with respect to stationary frame
 - -u' = velocity of 1st object with respect to 2nd object
- Relativistic Conservation Laws:
 - In an isolated system of particles, the relativistic total energy (kinetic energy plus rest energy) remains constant
 - In an isolated system of particles, the total linear momentum remains constant

1.2 Essential Equations

- Time dilation: $\Delta t = \gamma \Delta t_0$, where $\gamma = 1/\sqrt{1 v^2/c^2}$.
- Length contraction: $L = L_0 \gamma^{-1} = L_0 \sqrt{1 v^2/c^2}$.
- Relativistic addition of velocities: $u' = \frac{u+v}{1+uv/c^2}$.
- Lorentz transformation (time): $t' = \gamma(t \frac{vx}{c^2})$
- Lorentz transformation (space): $x' = \gamma(x vt)$
- Doppler Shift:

– Redshift (receeding):
$$f_{obs} = \sqrt{\frac{1 - v/c}{1 + v/c}} f_{source}$$
 and $\lambda_{obs} = \sqrt{\frac{1 + v/c}{1 - v/c}} \lambda_{source}$

– Blueshift (approaching):
$$f_{obs} = \sqrt{\frac{1+v/c}{1-v/c}} f_{source}$$
 and $\lambda_{obs} = \sqrt{\frac{1-v/c}{1+v/c}} \lambda_{source}$

- Kinetic energy: $KE = (\gamma 1)m_0c^2$
- Total energy: $E = \gamma m_0 c^2$
- Energy-momentum relation: $E^2 = (pc)^2 + (m_0c^2)^2$.

2 Early Quantum Theory and Quantum Mechanics

2.1 Key Concepts

- Blackbody radiation: Explained using Planck's quantum hypothesis E = nhf.
- Photoelectric effect: Energy of emitted electrons depends on frequency, not intensity.
- Wave-particle duality: Matter exhibits both particle and wave properties.
- Schrödinger equation: Governs quantum mechanical behavior of particles.

2.2 Essential Equations

• Planck's law: E = hf

• Photoelectric equation: $KE_{\text{max}} = hf - \phi$

• De Broglie wavelength: $\lambda = \frac{h}{p}$

• Schrödinger equation (time-independent):

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V\psi = E\psi$$

• 3D Schrödinger equation (spherical coordinates):

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V(r)\psi = E\psi$$

where

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

• General solution to the wave function:

$$\psi(r, \theta, \phi) = R(r)Y(\theta, \phi)$$

where:

- R(r): Radial part of the wave function, satisfying a differential equation dependent on the potential V(r).
- $-Y(\theta,\phi)$: Angular part, given by spherical harmonics:

$$Y_l^m(\theta,\phi) = (-1)^m \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_l^m(\cos\theta) e^{im\phi}$$

where P_l^m are associated Legendre polynomials, and l,m are quantum numbers.

Statistical Mechanics 6

3 Statistical Mechanics

3.1 Key Concepts

- Microstates and macrostates: Connection between microscopic and macroscopic descriptions.
- Boltzmann distribution: $P_i = \frac{e^{-E_i/k_B T}}{Z}$.
- Partition function: Summation of states to understand thermodynamic properties, $Z = \sum_i e^{-E_i/k_BT}$.
- Occupation numbers: Average number of particles in a state, $n_i = \frac{1}{e^{(E_i \mu)/k_B T} \pm 1}$ (for fermions and bosons).
- Degeneracy: The number of microstates corresponding to a single energy level.
- Distinguishable vs. indistinguishable particles: Boltzmann distribution for distinguishable particles; Fermi-Dirac and Bose-Einstein distributions for indistinguishable particles.

3.2 Essential Equations

Boltzmann distribution:
$$P_i = \frac{e^{-E_i/k_BT}}{Z}$$

Partition function:
$$Z = \sum_{i} g_i e^{-E_i/k_B T}$$

Fermi-Dirac distribution:
$$n_i = \frac{1}{e^{(E_i - \mu)/k_B T} + 1}$$

Bose-Einstein distribution:
$$n_i = \frac{1}{e^{(E_i - \mu)/k_B T} - 1}$$

Average energy:
$$\langle E \rangle = \sum_i P_i E_i = -\frac{\partial \ln Z}{\partial \beta}$$

Probability of a state:
$$P(E) = \frac{g_i e^{-E/k_B T}}{Z}$$

Quick Reference 7

3.3 Units and Unit Conversions

- Energy: $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}.$
- Temperature: Convert between Kelvin and energy using $k_B = 1.38 \times 10^{-23}$ J/K.
- Wavelength and frequency: $E=hf,\;\lambda=\frac{c}{f},\; {\rm with}\; hc=1240\; {\rm eV}\cdot {\rm nm}.$

4 Quick Reference

4.1 Mathematical Tools

• Trigonometric Identities:

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$
$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$
$$\sin(2x) = 2\sin x \cos x$$

- Series:
 - Taylor Series Expansion: $\sum_{n=0}^{\infty} C_n (x-a)^n \text{ where } C_n = \frac{f^{(n)}(a)}{n!}$
 - Binomial Series Expansion: $(1 \pm x)^r = 1 \pm rx \pm ...$
- Integration Tips:
 - For even functions: $\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$
 - For odd functions: $\int_{-a}^{a} f(x)dx = 0$
 - Gaussian integrals often appear in wave packets

Quick Reference 8

- Complex Numbers Review
 - Complex conjugate: $z^* = a bi$ for z = a + bi
 - Modulus: $|z| = \sqrt{a^2 + b^2}$
 - Euler's formula: $e^{i\theta} = \cos \theta + i \sin \theta$
 - Argument: $\arg(z) = \tan^{-1}\left(\frac{y}{x}\right)$
- Second Order Differential Equations
 - If ODE has this form: $\frac{d^2f}{dx^2}=k^2f$ where k is a constant The solution is:

$$f(x) = Ae^{kx} + Be^{-kx}$$

4.2 Important Constants

- Stefan-Boltzmann constant: $\sigma = 5.67 \times 10^{-8} \ \mathrm{W/m}^2 \cdot K^4$
- Planck's constant: $h=6.626\times 10^{-34}\,\mathrm{J\cdot s}=4.136\times 10^{-15}~\mathrm{eV\cdot s}$
- Electron mass: $m_e = 9.11 \times 10^{-31} \,\mathrm{kg}$
- Speed of light: $c = 3.0 \times 10^8 \,\mathrm{m/s}$
- Bohr radius: $a_0 = 0.0529 \times 10^{-9} \,\mathrm{m}$
- Compton wavelength of the electron: $\frac{h}{m_e c} = 0.002426 \text{ nm}$

4.3 Unit Conversions

- $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
- $hc = 1240 \text{ eV} \cdot \text{nm}$
- $\hbar c = \frac{1240}{2\pi} \text{ eV} \cdot \text{nm}$