



## CS7.404: Digital Image Processing

Monsoon 2023: Image Segmentation - 2







Anoop M. Namboodiri
Biometrics and Secure ID Lab, CVIT,
IIIT Hyderabad



- Classification-based
  - Label pixels based on region properties
  - Label each pixel based on object models
- Region-based
  - Region growing and splitting
- Boundary-based
  - Find edges in the image and use them as region boundary
- Motion-based
  - Group pixels that have consistent motion (e.g., move in the same direction)







#### Segmentation by Pixel Classification

#### Two Primary Challenges:

- 1. How to use object / background properties to decide on pixel label?
  - e.g., Ducks are white and yellow, while background is green and brown
- 2. How to ensure that regions are continuous regions?
  - Avoid fragmentation of object regions



#### Segmentation as Optimal Labeling

- Model knowledge about the world
- Classify each pixel as belonging to a specific object
  - Independent classification does not work
  - Need to incorporate neighborhood information
- Consider a graph over the image
  - Each node in the graph need to be labeled
  - Edges in the graph represent neighborhood constraints
- Define a cost function, Q(f), using the above
- Compute the optimal labeling wrt Q(f).







How?

Cost function Models our knowledge about natural images

Optimize cost function to obtain the segmentation





Each vertex corresponds to a pixel

Edges define a 4-neighbourhood grid graph

Assign a label to each vertex from L = {obj,bkg}





Object - white, Background - green/grey

Cost of a labelling f: V → L

Per Vertex Cost

Cost of label 'obj' low Cost of label 'bkg' high





Cost of a labelling f: V → L

Per Vertex Cost



Cost of label 'obj' high Cost of label 'bkg' low

**UNARY COST** 





Cost of a labelling f: V → L

Per Edge Cost



Cost of same label low

Cost of different labels high





Object - white, Background - green/grey

Graph G = (V,E)

Cost of a labelling f: V → L

Per Edge Cost



Cost of same label high

Cost of different labels low

**PAIRWISE** COST





Problem: Find the labeling with minimum cost f\*







$$L = \{fg, bg\}$$

Vertex corresponds to a pixel Edges define grid graph

Problem: Find the labeling with minimum cost f\*



#### The General Problem



Graph G = (V, E)

Discrete label set  $L = \{1, 2, ..., h\}$ 

Assign a label to each vertex f: V → L

Cost of a labelling Q(f)

**Unary Cost** 

**Pairwise Cost** 

Find  $f^* = arg min Q(f)$ 



#### Formulation: Energy Function



Random Variables  $V = \{V_a, V_b, ....\}$ 

Labels  $L = \{l_0, l_1, ....\}$  Data D

Labelling f:  $\{a, b, ....\} \rightarrow \{0, 1, ...\}$ 





Q(f) = 
$$\sum_{a} \theta_{a;f(a)}$$
  
Unary Potential

Easy to minimize

Neighbourhood





E: 
$$(a,b) \in E \text{ iff } V_a \text{ and } V_b \text{ are neighbours}$$
  
E =  $\{ (a,b), (b,c), (c,d) \}$ 



Energy Function

Label 1<sub>1</sub>

Label l<sub>0</sub>



**Pairwise Potential** 

Q(f) = 
$$\sum_{a} \theta_{a;f(a)}$$
 +  $\sum_{(a,b)} \theta_{ab;f(a)f(b)}$ 



Energy Function

Label 1

Label 1<sub>0</sub>



$$Q(f; \theta) = \sum_{a} \theta_{a;f(a)} + \sum_{(a,b)} \theta_{ab;f(a)f(b)}$$

**Parameter** 



Label 1<sub>1</sub>



$$Q(f; \theta) = \sum_{a} \theta_{a;f(a)} + \sum_{(a,b)} \theta_{ab;f(a)f(b)}$$



Label 1<sub>1</sub>



$$Q(f; \theta) = \sum_{a} \theta_{a;f(a)} + \sum_{(a,b)} \theta_{ab;f(a)f(b)}$$

$$2+1+2+1+3+1+3=13$$



Label 1<sub>1</sub>



$$Q(f; \theta) = \sum_{a} \theta_{a;f(a)} + \sum_{(a,b)} \theta_{ab;f(a)f(b)}$$



Label 1<sub>1</sub>



$$Q(f; \theta) = \sum_{a} \theta_{a;f(a)} + \sum_{(a,b)} \theta_{ab;f(a)f(b)}$$

$$5+1+4+0+6+4+7=27$$



Label 1<sub>1</sub>



$$q^* = \min Q(f; \theta) = Q(f^*; \theta)$$

$$Q(f; \theta) = \sum_{a} \theta_{a;f(a)} + \sum_{(a,b)} \theta_{ab;f(a)f(b)}$$

$$f^* = arg min Q(f; \theta)$$



# MAP Estimation 16 possible labellings

$$f^* = \{1, 0, 0, 1\}$$
 $q^* = 13$ 

| f(a) | f(b) | f(c) | f(d) | $Q(f; \theta)$ |
|------|------|------|------|----------------|
| 0    | 0    | 0    | 0    | 18             |
| 0    | 0    | 0    | 1    | 15             |
| 0    | 0    | ~    | 0    | 27             |
| 0    | 0    | ~    | 1    | 20             |
| 0    | ~    | 0    | 0    | 22             |
| 0    | ~    | 0    | 1    | 19             |
| 0    | 1    | 1    | 0    | 27             |
| 0    | 1    | 1    | 1    | 20             |

| f(a) | f(b) | f(c) | f(d) | $Q(f; \theta)$ |
|------|------|------|------|----------------|
| 1    | 0    | 0    | 0    | 16             |
| 1    | 0    | 0    | 1    | 13)            |
| 1    | 0    | 1    | 0    | 25             |
| ~    | 0    | 1    | 1    | 18             |
| ~    | 1    | 0    | 0    | 18             |
| 1    | 1    | 0    | 1    | 15             |
| 1    | 1    | 1    | 0    | 23             |
| 1    | 1    | 1    | 1    | 16             |



#### Computational Complexity

Segmentation

2|1|





|V| = number of pixels  $\approx 320 * 480 = 153600$ 

Can we do better than brute-force?

MAP Estimation is NP-hard!!



#### Computational Complexity

Segmentation

2|1|





|V| = number of pixels  $\approx 320 * 480 = 153600$ 

Exact algorithms do exist for special cases

Good approximate algorithms for general case



Questions?



#### Watershed Segmentation

- Consider the intensity profile of an image as a topographical surface
- We can identify three types of points:
  - 1. Local minima, where water collects
  - 2. Points where water flows to a single minima (catchment basin)
  - 3. Points where water can flow to any one of multiple minima (watershed lines)
- Principal Goal: Find the watershed lines (object boundaries)







#### Watershed Segmentation

- Original Image, Topographical view
- Various stages of flooding.















#### The Watershed Algorithm

- Let M<sub>1</sub>, M<sub>2</sub>, .., M<sub>R</sub> be the regional minima.
- Let C(M<sub>i</sub>) be points in the catchment area of M<sub>i</sub>.
- Let T[n] represent the set of co-ordinates for which g(s,t) < n.</li>
- Flood the topography in integer increments
  - From  $n = \min + 1$  to  $n = \max + 1$ .
- At each stage, we compute  $C_n(M_i)$  from  $C_{n-1}(M_i)$  and T[n] using morphological operators
  - Essentially, add pixels of value n to the corresponding C(M<sub>i</sub>)



#### Watershed Example

**FIGURE 10.59** 

 Watershed is often performed on the gradient image (top right).





#### Over-segmentation from Watershed





a b

#### **FIGURE 10.60**

- (a) Electrophoresis image.
- (b) Result of applying the watershed segmentation algorithm to the gradient image.

Over-segmentation is evident.



#### Over-segmentation from Watershed



#### **FIGURE 10.61**

(a) Image showing internal markers (light gray regions) and external markers (watershed lines).

(b) Result of segmentation. Note the improvement over Fig. 10.60(b).







Questions?