Numerics practical

Theoretical Meteorology I Cedrick Ansorge & Sally Issa February 4, 2024

Discussion Feb 16th, 4pm (neuer Hörsaal)

This practical gives a practical perspective on some aspects of the quasi-geostrophic approximation. We will use the Quasi-geostrophic barotropic vorticity with and without a forcing and the two-layer model to reflect on some of the theoretical findings derived during the semester.

We devote the final exercise on Feb 16^{th} to a discussion of your results. Please hand in your code and a small exposé consisting of some figures showing results from the model prior to this discussion. We expect a brief discussion / presentation of the exposé during this exercise.

1 Preliminaries - model infrastructure

3 P

You can use the model infrastructure provided for python that is provided on the whiteboard. (Alternatively, you may develop an infrastructure with similar capabilities in a programming/scripting language of your choice.)

Make sure you understand the following aspects before you get started to implement any other aspect of this assignment:

• How	is the model controlled (how does it learn about its input / parameters / configurations?)?
	h classes exist and what is there purpose?
1.	
4.	
	time integration scheme is used? In wich class and routine is it implemented?
Scheme	
Class	
Routine .	
• What	kind of output is generated to the following streams/files
stdout	
*.log	
*.iter	
*.nc	

2 Time integration

3 P

Check the time integration scheme implemented in the class INTEGRATOR. Setting rhs ¹ to exponential (a member of the class integrator) evaluates to the input, i.e. we solve the equation

$$\frac{dx}{dt} = x \Rightarrow \tilde{x}(t) = \frac{x_0}{e^{t_0}} e^t.$$

- a) What is the expected result for $t_0 = 0$ and $x_0 = 1$ when integrating up to t = 2? Check for $\Delta t = 1$!
- b) Varying the time step τ of the integration, check the order of the time integration scheme and produce a log-log plot of the error $x_{num} \tilde{x}$ as a function of τ .
- c) What is the order of the numerical error for the time integration scheme used?
- d) Why does the numerical error reach a limit as $\tau \to 0$?

3 Rossby waves

15 P

For this task, you need to use the rhs dummy routine rossby and the section Rossby in qg.ini

a) Implement the barotropic vorticity equation

$$\left[\frac{\partial}{\partial t} + (U_j + u'_j) \frac{\partial}{\partial x_j}\right] \nabla^2 \zeta - \beta v = 0$$

- b) Investigate the behavior of waves for a harmonic initial perturbation! Can you produce standing waves? Give the parmaeter setting!
- c) Investigate the behavior of a singular perturbation!
 - What do you observe?
 - How does the behavior differ from a harmonic initial condition?
 - Can you explain this?

4 Two-layer model

 $20\,\mathrm{P}$

- a) Implement the two-layer model using a prognostic equation for ζ at the 250 and 750 millibar level (assuming $p_{\rm sfc} = const. = 1000 \, \rm hPa)!$
- b) Investigate the growth rate of a baroclinic instability!
- c) Analyze the terms of the Lorenz energy cycle!

¹Note that with **rhs**, we are passing a function as argument, i.e. we are using the concept of function pointers