DECISION TREE & SVM KECERDASAN KOMPUTASIONAL - B

Dosen: Ibu Dr. Diana Purwitasari, S.Kom., M.Sc.

Kelompok 3

Kevin Angga Wijaya	05111840000024
Angelita Titiandes Br. Silalahi	05111840000088
Aflakah Nur Farhana	05111840000120

DEPARTEMEN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI ELEKTRO DAN INFORMATIKA CERDAS INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020

Berikut merupakan hasil percobaan penggunaan Decision Tree dan SVM. Data yang digunakan adalah *Car Evaluation* dataset sebanyak 1727 data. Dilakukan perubahan data *categorical* kedalam bentuk *numeric* dengan keterangan sebagai berikut :

Class values :	Maint:	Buyin	g :
Unacc = 1	Low = 1	Low	= 1
Acc = 2	Med = 2	Med	= 2
Good = 3	High $= 3$	High	= 3
Vgood = 4	Vhigh = 4	Vhigh	= 4
Lug boot:	Safety:	Person	n:
Lug_boot: Small = 1	Safety:	Person	n: = 1
Small = 1	Low = 1		-
Small = 1 $Med = 2$	Low = 1 $Med = 2$	1	= 1
Small = 1	Low = 1	1 2	= 1 = 2

Doors:

1 = 1 2 = 2 3 = 3 4 = 4 5More = 5

Decision Tree

Berikut merupakan hasil dari decision tree dengan melakukan variasi pada depth nya

	90%; 10%	80%; 20%	70%; 30%	60%; 40%	50%; 50%	40%; 60%
DT-D3	0.757	0.739	0.764	0.772	0.790	0.790
DT-D5	0.861	0.843	0.861	0.859	0.869	0.852
DT-D8	0.942	0.939	0.953	0.945	0.937	0.946

Gambar tree yang terbentuk A. DT-D3

Dari hasil tersebut dapat disimpulkan bahwa semakin besar jumlah kedalaman maka hasil akurasi yang dihasilkan akan semakin besar atau semakin akurat.

SVMBerikut merupakan hasil dari SVM dengan melakukan variasi pada metode yang di gunakan

CYIM	Akurasi			
SVM (data train;data test)	Linear	RBF	Poly	Sigmod
90%; 10%	0.872	0.965	0.947	0.838
80%; 20%	0.855	0.976	0.933	0.797
70%; 30%	0.859	0.976	0.936	0.801
60%; 40%	0.863	0.955	0.929	0.798
50%; 50%	0.865	0.956	0.935	0.810
60%; 40%	0.863	0.941	0.925	0.814

Dari hasil tersebut dapat disimpulkan bahwa metode RBF memiliki hasil akurasi paling besar dibandingkan dengan metode yang lain. Dengan menggunakan metode linear diperoleh hasil bahwasanya penggunaan data train sebanyak 90% terbukti memiliki akurasi yang paling akurat dibanding dengan penggunaan data train yang lebih kecil, begitu pula pada metode Poly dan Sigmod. Pada metode RBF diperoleh hasil bahwasanya hasil akurasi terbesar di peroleh dengan menggunakan data train sebanyak 80% data. Jika dirata rata, maka dapat disimpulkan bahwa semakin banyak data train yang digunakan maka hasil akurasi nya juga akan semakin baik, namun hal ini juga bergantung dengan metode yang digunakan.

Berdasarkan kedua metode tersebut data dengan jumlah train terbanyak biasanya memiliki hasil akurasi paling tinggi. Namun pada hasil percobaan kami di dapat hasil yang tidak seperti itu, hal tersebut di duga karena faktor faktor karena tidak melakukan remove pada outlier, data yang terpilih adalah data yang buruk