

Goi Eskola Politeknikoa

Fundamentos para la validación de modelos II

Fundamentos del Aprendizaje Automático

Goi Eskola Politeknikoa

Validación y selección de modelo

- 1. Regresión
- 2. Clasificación
- 3. Clustering

Regresión

ejemplo: regresión linear

$$Y = mX + c$$

Objetivo: valores de m y c que mejor se adapten a los puntos: **error mínimo**

Regresión

- Mean Absolute Error (MAE)
 - Le media de la diferencia absoluta entre los valores reales y los predichos
 - Sean $y \in \hat{y}$ los valores real y predicho

$$MAE(y, \hat{y}) = \frac{1}{N} \sum_{i=0}^{N-1} |y_i - \hat{y}_i|$$

- Mejor valor possible: 0 (mínimo)
- Misma unidad que la variable de respuesta

Regresión

- Error cuadrático medio (Mean squared error MSE)
 - Sean $y \in \hat{y}$ los valores real y predicho

 $MSE(y, \hat{y}) = \frac{1}{N} \sum_{i=\hat{y}}^{N-1} (y_i - \hat{y}_i)^2$

Root Mean Squared Error

$$RMSE(y, \hat{y}) = \sqrt{\frac{\sum_{i=0}^{N-1} (y_i - \hat{y}_i)^2}{N}}$$

Mejor valor posible: 0

Escala similar a MAE

Python scikit-learn

Regression metrics

See the Regression metrics section of the user guide for further details.

<pre>metrics.explained_variance_score (y_true, y_pred)</pre>	Explained variance regression score function
metrics.max_error(y_true, y_pred)	max_error metric calculates the maximum residual error.
metrics.mean_absolute_error (y_true, y_pred)	Mean absolute error regression loss
<pre>metrics.mean_squared_error (y_true, y_pred[,])</pre>	Mean squared error regression loss
<pre>metrics.mean_squared_log_error (y_true, y_pred)</pre>	Mean squared logarithmic error regression loss
metrics.median_absolute_error (y_true, y_pred)	Median absolute error regression loss
<pre>metrics.r2_score (y_true, y_pred[,])</pre>	R^2 (coefficient of determination) regression score function.

Clasificación

Clasificación

- 1. Generalidades
- 2. Matriz de confusión
- 3. Scores relacionados con la matriz de confusión
 - 1. Acierto y error
 - 2. Ratios de aciertos y errores por clases
 - 3. Precisión
 - 4. F1-Score
 - 5. Area bajo la curva ROC
 - 6. Gráfica Precisión-Recall y precisión media
- 4. Scikit-learn

Generalidades

- Las funciones para selección de modelo y evaluación basadas en validación cruzada son válidas para clasificación:
 - Hay que elegir el score adecuado usando el parámetro scoring
- Objetivo: obtener el valor más alto posible

Scoring	Function	Comment
Classification		
'accuracy'	metrics.accuracy_score	
'balanced_accuracy'	metrics.balanced_accuracy_score	for binary targets
'average_precision'	metrics.average_precision_score	
'brier_score_loss'	metrics.brier_score_loss	
'f1'	metrics.f1_score	for binary targets
'f1_micro'	metrics.f1_score	micro-averaged
'f1_macro'	metrics.f1_score	macro-averaged
'f1_weighted'	metrics.f1_score	weighted average
'f1_samples'	metrics.f1_score	by multilabel sample
'neg_log_loss'	metrics.log_loss	requires predict_proba support
'precision' etc.	metrics.precision_score	suffixes apply as with 'f1'
'recall' etc.	metrics.recall_score	suffixes apply as with 'f1'
'roc_auc'	metrics.roc_auc_score	

Recoge los aciertos y errores de cada clase

		Predicción			
		Positivos	Negativos		
ación	Positivos	Verdaderos Positivos (VP)	Falsos Negativos (FN)		
Observ	Negativos	Falsos Positivos (FP)	Verdaderos Negativos (VN)		

Matriz de confusión (CM)

Mondragon Unibertsitatea Goi Eskola Politeknikoa

- Recoge los aciertos y errores de cada clase
- Ignora el desbalanceo entre las clases

		Predicción		
		Positivos	Negativos	
ación	Positivos	Verdaderos Positivos (VP)	Falsos Negativos (FN)	
Observ	Negativos	Falsos Positivos (FP)	Verdaderos Negativos (VN)	

Mondragon Unibertsitatea Goi Eskola Politeknikoa

- Recoge los aciertos y errores de cada clase
- Ignora el desbalanceo entre las clases
- Se puede extender a múltiples clases

		Predicción		
		Positivos	Negativos	
ación,	Positivos	Verdaderos Positivos (VP)	Falsos Negativos (FN)	
Observ	Negativos	Falsos Positivos (FP)	Verdaderos Negativos (VN)	

- Recoge los aciertos y errores de cada clase
- Ignora el desbalanceo entre las clases
- Se puede extender a múltiples clases

		Predicción		
		Positivos	Negativos	
ación,	Positivos	Verdaderos Positivos (VP)	Falsos Negativos (FN)	
Observ	Negativos	Falsos Positivos (FP)	Verdaderos Negativos (VN)	

- Recoge los aciertos y errores de cada clase
- Ignora el desbalanceo entre las clases
- Se puede extender a múltiples clases

		P A	redicted	C	
	Α	2	2	0	4
True labels	В	1	2	0	3
	С	0	0	3	3

Total

		Predicción		
		Positivos	Negativos	
Observación	Positivos	Verdaderos Positivos (VP)	Falsos Negativos (FN)	
	Negativos	Falsos Positivos (FP)	Verdaderos Negativos (VN)	

		Prediction					
	c ₁ c ₂ c ₃ c _n				Total		
	<i>c</i> ₁	TP ₁	FN ₁₂	FN ₁₃		FN _{1n}	N ₁
_	<i>c</i> ₂	FN ₂₁	TP_2	FN ₂₃		FN_{2n}	N ₂
Actual	C3	FN ₃₁	FN ₃₂	TP ₃		FN _{3n}	N ₃
٨							
	Cn	FN _{n1}	FN _{n2}	FN _{n3}		TPn	N _n
	Total	Ñ ₁	Ñ ₂	Ñ ₃		Ñη	N

Matriz de confusión (CM)

```
from sklearn.model selection import cross validate
from sklearn.metrics import confusion matrix
# A sample toy binary classification dataset
X, y = datasets.make classification(n classes=2, random state=0)
svm = LinearSVC(random state=0)
def tn(y true, y pred): return confusion matrix(y true, y pred)[0, 0]
def fp(y true, y pred): return confusion matrix(y true, y pred)[0, 1]
def fn(y true, y pred): return confusion matrix(y true, y pred)[1, 0]
def tp(y true, y pred): return confusion matrix(y true, y pred)[1, 1]
scoring = {'tp': make scorer(tp), 'tn': make scorer(tn),
           'fp': make_scorer(fp), 'fn': make scorer(fn)}
cv results = cross validate(svm.fit(X, y), X, y,
                            scoring=scoring, cv=5)
# Getting the test set true positive scores
print(cv results['test tp'])
# Getting the test set false negative scores
print(cv results['test fn'])
```


Accuracy

Accuracy (ACC)

$$ACC = \frac{TP + TN}{FP + FN + TP + TN} = 1 - ERR$$

Error (ERR)

$$ERR = \frac{FP + FN}{FP + FN + TP + TN} = 1 - ACC$$

Problemas con desbalanceo

Fabricamos 1000 piezas

Defectivo: 3.8%

No defectivo 96.2 %

Accuracy: 96.2%

Nuestro modelo siempre dice que no tenemos defectivo

$$PRE = \frac{TP}{TP + FP}$$

Recall (REC) = Sensitivity (SEN) = True Positive Rate (TPR)

Specitifity (SPC) = True Negative Rate (TNR)

$$SPC = TNR = \frac{TN}{N} = \frac{TN}{FP + TN}$$

F1-score

 Puede ser una buena métrica si buscamos balance entre la precisión y el recall y las clases nos están distribuidas de forma equitativa

$$F_1 = 2 \cdot \frac{PRE \cdot REC}{PRE + REC}$$

F1-score

	Precisión	Recall	Media ((p + r) /2)
Algoritmo 1	0.5	0.4	0.45
Algoritmo 2	0.7	0.1	0.4
Algoritmo 3	0.02	1.0	0.51

F1-score

	Precisión	Recall	Media ((p + r) /2)
Algoritmo 1	0.5	0.4	0.45
Algoritmo 2	0.7	0.1	0.4
Algoritmo 3	0.02	1.0	0.51

F1-score

	Precisión	Recall	Media ((p + r) /2)	F1
Algoritmo 1	0.5	0.4	0.45	0.444
Algoritmo 2	0.7	0.1	0.4	0.175
Algoritmo 3	0.02	1.0	0.51	0.0392

$$F_1 = 2 \cdot \frac{PRE \cdot REC}{PRE + REC}$$

- Objetivo final:
 - Alta precisión + recall alto para cada clase:
 - Cada clase es clasificada correctamente por el modelo

accuracy =
$$\frac{9620 + 0}{9620 + 380 + 0 + 0}$$
not defective =
$$\frac{9620}{380 + 9620}$$

defective =
$$\frac{0}{\text{recall}} = \frac{0}{0 + 380}$$
not defective =
$$\frac{9620}{\text{recall}} = \frac{9620 + 0}{9620 + 0}$$

$$Acc = 96,2\%$$

 Contiene la proporción de aciertos en la clase positiva (VP o TP) para diferentes niveles de fallos en ella (FP)

- Contiene la proporción de aciertos en la clase positiva (VP o TP) para diferentes niveles de fallos en ella (FP)
- El área por debajo de la curva indica la bondad del clasificador.

- Contiene la proporción de aciertos en la clase positiva (VP o TP) para diferentes niveles de fallos en ella (FP)
- El área por debajo de la curva indica la bondad del clasificador.
- El clasificador perfecto (sin fallo) tendría una proporción de TP de 1 para cualquier FP (área = 1).

Area Under the ROC Curve (AUC)

- Contiene la proporción de aciertos en la clase positiva (VP o TP) para diferentes niveles de fallos en ella (FP)
- El área por debajo de la curva indica la bondad del clasificador.
- El clasificador perfecto (sin fallo) tendría una proporción de TP de 1 para cualquier FP (área = 1).
- Un clasificador aleatorio (lanzamiento de moneda se correspondería con la línea roja (área = 0.5)

Area Under the ROC Curve (AUC)

- Contiene la proporción de aciertos en la clase positiva (TP) para diferentes niveles de fallos en ella (FP)
- El área por debajo de la curva indica la bondad del clasificador.
- El clasificador perfecto (sin fallo) tendría una proporción de TP de 1 para cualquier FP (área = 1).
- Un clasificador aleatorio (lanzamiento de moneda se correspondería con la línea roja (área = 0.5)
- Suele considerarse como bueno un valor de AUC por encima de 0.75

Precision-Recall plot

Politeknikoa

Precision-Recall plot

Se obtienen pares de valores de PRE y REC para diferentes *thresholds* que cubran la totalidad del rango [0, 1] para ambos *scores*

- Precision-Recall plot
- Trade off precisión y recall

Regresión logística $0 \le h0(x) \le 1$

Predice 1 si $h0(x) \ge 0.5$

Predice 0 si h0(x) < 0.5

- Supongamos que queremos predecir y = 1 (cáncer)

Precision-Recall plot

$$PRE = \frac{TP}{TP + FP}$$

 $SEN = TPR = REC = \frac{TP}{P} = \frac{TP}{FN + TP}$

Trade off precisión y recall

Regresión logística $0 \le h0(x) \le 1$

Predice 1 si $h0(x) \ge 0.9$

Predice 0 si h0(x) < 0.9

		Т	F
Observado	Т	TP	FN
	F	FP	TN

- Supongamos que queremos predecir y = 1 (cáncer), solo si estamos muy seguros de que lo tienen
 - Hemos disminuido los Falsos Positivos => mayor precisión (-FP)
 - Menos recall => teniendo cáncer les comunicamos que no lo tienen (+ FN)

Precision-Recall plot

$$PRE = \frac{TP}{TP + FP}$$

Regresión logística $0 \le h0(x) \le 1$

Predice 1 si $h0(x) \ge 0.1$

Predice 0 si h0(x) < 0.1

		Т	F
Observado	Т	TP	FN
	F	FP	TN

 $SEN = TPR = REC = \frac{TP}{P} = \frac{TP}{FN + TP}$

- Queremos evitar que se nos escapen casos de cáncer
 - Hemos aumentado los Falsos Positivos => menor precisión (+FP)
 - Mayor recall => menos casos detectados incorrectamente (- FN)

Precision-Recall plot

Se obtienen pares de valores de PRE y REC para diferentes *thresholds* que cubran la totalidad del rango [0, 1] para ambos *scores*

Precision-Recall plot & Average Precision score (AP)

Se obtienen pares de valores de PRE y REC para diferentes *thresholds* que cubran la totalidad del rango [0, 1] para ambos *scores* (izda)

Se plasman en una gráfica, llamada *precision-recall plot* los pares para diferentes *thresholds*

Precision-Recall plot & Average Precision score (AP)

Se obtienen pares de valores de PRE y REC para diferentes *thresholds* que cubran la totalidad del rango [0, 1] para ambos *scores* (izda)

Se plasman en una gráfica, llamada *precision-recall plot* los pares para diferentes *thresholds*

El área bajo esa curva poligonal a trozos se llama Average Precision score

06.10.19 Recall 42

Precision-Recall plot & Average Precision score (AP)

Se obtienen pares de valores de PRE y REC para diferentes *thresholds* que cubran la totalidad del rango [0, 1] para ambos *scores*

Se plasman en una gráfica, llamada *precision-recall plot* los pares para diferentes *thresholds*

El área bajo esa curva poligonal a trozos se llama Average Precision score

06.10.19 Recall 43

Politeknikoa

Métricas de clasificación en scikit-learn

<pre>metrics.accuracy_score (y_true, y_pred[,])</pre>	Accuracy classification score.
<pre>metrics.auc (X, y[, reorder])</pre>	Compute Area Under the Curve (AUC) using the trapezoidal rule
<pre>metrics.average_precision_score (y_true, y_score)</pre>	Compute average precision (AP) from prediction scores
<pre>metrics.balanced_accuracy_score (y_true, y_pred)</pre>	Compute the balanced accuracy
<pre>metrics.brier_score_loss (y_true, y_prob[,])</pre>	Compute the Brier score.
<pre>metrics.classification_report (y_true, y_pred)</pre>	Build a text report showing the main classification metrics
metrics.cohen_kappa_score (y1, y2[, labels,])	Cohen's kappa: a statistic that measures inter-annotator agreement.
<pre>metrics.confusion_matrix (y_true, y_pred[,])</pre>	Compute confusion matrix to evaluate the accuracy of a classification
metrics.f1_score (y_true, y_pred[, labels,])	Compute the F1 score, also known as balanced F-score or F-measure
metrics.fbeta_score (y_true, y_pred, beta[,])	Compute the F-beta score
metrics.hamming_loss (y_true, y_pred[,])	Compute the average Hamming loss.
<pre>metrics.hinge_loss (y_true, pred_decision[,])</pre>	Average hinge loss (non-regularized)
<pre>metrics.jaccard_similarity_score (y_true, y_pred)</pre>	Jaccard similarity coefficient score
metrics.log_loss (y_true, y_pred[, eps,])	Log loss, aka logistic loss or cross- entropy loss.
metrics.matthews_corrcoef (y_true, y_pred[,])	Compute the Matthews correlation coefficient (MCC)
metrics.precision_recall_curve (y_true,)	Compute precision-recall pairs for different probability thresholds
<pre>metrics.precision_recall_fscore_support ()</pre>	Compute precision, recall, F-measure and support for each class
<pre>metrics.precision_score (y_true, y_pred[,])</pre>	Compute the precision
metrics.recall_score (y_true, y_pred[,])	Compute the recall
metrics.roc_auc_score (y_true, y_score[,])	Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.
metrics.roc_curve (y_true, y_score[,])	Compute Receiver operating characteristic (ROC)
metrics.zero_one_loss (y_true, y_pred[,])	Zero-one classification loss.

Clustering

To be seen...

Aitor Agirre / Carlos Cernuda aaguirre@mondragon.edu