

Rapid Solution Exchange to Neuronal Culture Grown on Multi Electrode Arrays

by Nitzan Herzog

Thesis submitted to The University of Nottingham for the degree of Doctor of Philosophy, January 2017

Contents

\mathbf{Li}	List of Figures			4
\mathbf{A}	bstra	ct		7
A	Acknowledgements			8
1	Introduction			9
	1.1	The M	IEA culture model for network activity in neuronal ensembles	9
		1.1.1	Notable achievements of the neuronal culture on MEA model	9
	1.2	Volum	e transmission in neuroscience	9
		1.2.1	Neuromodulator transmission and plasticity	9
	1.3	Microf	duidics for cell culture	9
		1.3.1	Rapid drug delivery	9
		1.3.2	Microfluidics in neuroscience	10
		1.3.3	Neurons and flow	10
	1.4	Ph.D o	objectives	10
2	Methods			11
	2.1	Basic f	fabrication elements	11
		2.1.1	PDMS preparation	11
		2.1.2	Thin film spinning	11
		2.1.3	Soft lithography	11
		2.1.4	PDMS extraction	11
	2.2	Bondin	ng techniques	12
		2.2.1	Plasma bonding	12
		2.2.2	Double sided silicone tape	12
	2.3	Surfac	e coating	13
		2.3.1	Open surface	13
		2.3.2	Devices - Bond-then-PLL	13
		2.3.3	Devices - PEI-then-bond	13
	2.4	Seedin	g and maintaining of Neuronal cultures	13
	2.5	MEA 1	recording and stimulation	13
		2.5.1	Spike detection and noise removal	13

			2.5.1.1 Automatic quantification of active channels	13
		2.5.2	Electrical stimulation	14
			2.5.2.1 Automatic detection of responsive channels	14
		2.5.3	Correlation maps	14
		2.5.4	Burst detection	14
		2.5.5	Functional connectivity analysis	14
	2.6	Plastic	city protocol	18
	2.7	Condit	tioned media production	18
	2.8	Flow e	experiments	18
		2.8.1	Heated chamber	18
		2.8.2	Steady flow	18
		2.8.3	Pulsing	19
	2.9	Immur	nohistochemistry	20
3	Esta	ablishn	nent of a culture model for network activity in neuronal ensem-	-
	bles			21
	3.1	Introd	uction	21
	3.2	Develo	opment of spontaneous activity in Mouse cultures	22
		3.2.1	Statistics of activity and synchronicity measures	25
		3.2.2	Comparison between mouse and rat cultures	29
	3.3	Evoke	d activity	30
	3.4	Plastic	city induction in the presence of dopamine	33
		3.4.1	Examining changes in response to stimulation	35
		3.4.2	Examining changes in functional connectivity	39
	3.5	Chapt	er conclusion	41
4	Via	bility o	of neuronal cultures in microfluidic devices in static conditions	3
	and	under	steady flow	43
	4.1	Introd	uction	43
	4.2	Long t	erm neuronal cultures in microfluidic devices	45
		4.2.1	Development of protocol	45
			4.2.1.1 Evaporation and surface chemistry considerations	47
			4.2.1.2 Considerations of factor circulation	47
			4.2.1.3 Alternative bonding methods	51
			4.2.1.4 Extraction of PDMS	52
		4.2.2	Growing microcultures in plasma bonded devices	55
	4.3	Viabili	ity of neuronal cultures under steady microfluidic flow	59
		4.3.1	Pilot flow study	59
		4.3.2	Quantitative viability analysis	61
	4.4	Chapte	er conclusion	66

5	Act	ivity u	nder steady microfluidic flow	67		
	5.1	Introdu	uction	67		
	5.2	Neuron	nal cultures in cross flow devices on MEAs	68		
	5.3	Activit	y under flow for young cultures	. 71		
		5.3.1	Effect of flow rate	71		
		5.3.2	The semi-permeable membrane approach for shear reduction \dots	. 74		
		5.3.3	Considerations of diffusive flux	. 77		
	5.4	Activit	y under flow for old cultures	. 79		
		5.4.1	The effect of the media source	. 80		
		5.4.2	How old conditioned media performs on young cultures	. 83		
	5.5	Interpr	retation of the activity under flow results	86		
	5.6	Chapte	er conclusion	91		
6	Rap	oid Pro	grammatic Drug Delivery to a Neuronal Microculture	92		
	6.1	Pulsing	g performance in microculture devices	. 92		
		6.1.1	Analysis of pulsing visualized by fluorescein	93		
		6.1.2	Numerical simulation of drug pulsing	93		
		6.1.3	Effect of well depth on pulsing performance (optional)	93		
	6.2	Establ	ishment of long term Neuronal microcultures	96		
		6.2.1	PEI-then-all-tape devices	96		
		6.2.2	PEI-then-PDMS-tape device	. 96		
		6.2.3	Activity in normal conditions	. 96		
	6.3	Behavi	our under flow	100		
	6.4	Glutamate pulsing				
	6.5	Dopan	nine pulses	. 101		
7	Discussion 1					
	7.1	The ut	ility of the culture model	106		
	7.2	The sh	ear protection vs. conditioning protection issue	106		
		7.2.1	Limitation uncovered by the conducted experiments	106		
		7.2.2	Avenues for further expansion of the model	106		
	7.3	Import	ance of extrasynaptic environment	106		
	7.4	Prospe	ects of the <i>in vitro</i> volume transmission model	. 107		
\mathbf{A}	App	oendix		108		
	A.1	MEA 1	Data sheets	108		
	A.2	Heat to	ransfer for water flowing in a PTFE tube	108		
Ri	hlioo	ranhy		108		

List of Figures

2.1	profiles	11
2.2	microwell profile	12
3.1	Representative images of a cortical mouse culture developing on a planar multi	
	electrode array	23
3.2	Development of synchrony in the spontaneous activity of a representative	
	mouse culture	24
3.3	Averaged statistics of development of activity measures in mouse cultures $$	26
3.4	Averaged statistics of development of bursting measures in mouse cultures	28
3.5	Comparison between spontaneous activity in mouse and rat based cultures $$.	30
3.6	Example of responses to test stimuli applied at 2 different electrodes $\ \ldots \ \ldots$	32
3.7	Outline of the combined dopamine-and-tetanus-induced open bath plasticity	
	experiments	35
3.8	Example response rasters from the combined dopamine and tetanus plasticity	
	$induction\ experiment\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	36
3.9	Example stimulation response maps for the combined dopamine and tetanus	
	plasticity induction experiment	37
3.10	Statistics of changes to evoked responses in the combined dopamine and	
	tetanus plasticity induction experiment	38
3.11	Statistics of Change to functional connectivity and average unit firing rate in	
	the combined dopamine and tetanus plasticity induction experiment \dots	40
4.1	Schematics of the standard single layer microfluidic devices	46
4.2	Effects of osmolarity drift in early protocol for long term culturing of neurons	
	in microfluidic devices	48
4.3	The immersion maintenance configuration	49
4.4	Demonstration of the limitations of circulation in planar microfluidic devices	50
4.5	Effect of the pre-polymer bonding approach on the development of neuronal	
	cultures in microfluidic devices	51
4.6	Comparison between cultures growing in plasma bonded devices and tape	
	based devices	53

4.7	Demonstration of PDMS related contaminations and the extraction procedure	54
4.8	Schematics of the 2-layered microfluidic devices with microwells	56
4.9	Neuronal microcultures growing without a support culture	56
4.10	Development of neuronal microcultures	57
4.11	Statistics of microculture viability over development	58
4.12	Demonstration of the microculture isolation issue with the bond-then-surface	
	approach	59
4.13	Time lapse of neuronal culture under steady microfluidic flow	60
4.14	Effect of media conditioning and flow rate on viability of neuronal cultures	
	under steady microfluidic flow	62
4.15	Example of viability curves from individual steady flow experiments	63
4.16	Statistics of death rates for various steady flow conditions	65
5.1	Illustration of the cross flow devices used for measuring culture activity under	
	flow	69
5.2	Images of a neuronal culture growing in cross flow devices $\dots \dots \dots$.	70
5.3	Example for the Effect of flow rate on the activity of a young culture under	
	flow	73
5.4	Averaged time course of activity measures in young cultures placed under	
	flow at different rates	75
5.5	Bright field and staining images of a culture in a cross flow device inclusive	
	of a semi-permeable membrane \hdots	76
5.6	Averaged time course of activity measures in young cultures separated from	
	the fast flow by means of a semi-permeable membrane $\ldots \ldots \ldots$	77
5.7	Example for the effect of culture age on the network activity under flow $$	80
5.8	Averaged time course of activity measures in young versus old cultures under	
	flow	81
5.9	Averaged time course of activity measures in old cultures under flow with	
	different media types	84
5.10	Averaged time course of activity measures in young cultures under flow with	
	old media	85
5.11	Illustration of a synaptic cleft with flow running through it $\dots \dots \dots$	89
6.1	Microcultures grown in pure tape devices exhibit bad surface adhesion	96
6.2	Development of microcultures is hybrid PDMS-tape devices	96
6.3	Immunohistochemistry of microcultures in hybrid PDMS-tape devices $\ \ldots \ \ldots$	97
6.4	Effectiveness of surface-then-bond in maintaining an isolated microculture $$. $$.	98
6.5	Channel PSTH before and after administration of pulsing protocol with dopamine	:
	or control solutions	102

6.6	Channel PSTH before and after administration of pulsing protocol with dopamine	nine	
	or control solutions	03	