

MONASH ENGINEERING ENG1060

PLOTTING DATA

Presented by Tony Vo

Slides by Tony Vo

PLOTS

- Visualising the data allows you to interpret more information and more quickly
- Easier to characterise trends
 - I.e. Is it increasing or decreasing with increasing x?
 - How many maximum or minimums are there?
- Your bosses and clients want easy interpretation!

PLOTS CAN BE INFORMATIVE

Examples only! Not MATLAB generated

PLOTS CAN BE PRETTY

THE PLOT FUNCTION

- Syntax: plot(x, y)
 - x: independent variable
 - y: dependent variable
- E.g. x = -6:0.01:6 $y = x.^3$ plot(x, y)

THE PLOT FUNCTION: OPTIONAL ARGUMENTS

- The plot function has many optional arguments plot(x, y, 'argument')
- Some examples include:
 - Line colour, type and width
 - Marker colour, symbol and size
- Line specifications available in plot documentation

THE PLOT FUNCTION: OPTIONAL ARGUMENTS

Specifier	Marker
0	Circle
+	Plus sign
*	Asterisk
	Point
х	Cross
3	Square
d	Diamond
^	Upward-pointing triangle
v	Downward-pointing triangle
>	Right-pointing triangle
<	Left-pointing triangle
р	Pentagram
h	Hexagram

Specifier	Line Style
-	Solid line (default)
	Dashed line
:	Dotted line
	Dash-dot line

Specifier	Color
У	yellow
m	magenta
С	cyan
r	red
g	green
b	blue
W	white
k	black

THE PLOT FUNCTION: OPTIONAL ARGUMENTS

Examples:

x = -6:6

 $y = x.^3$

 $plot(x, y, 'r^{\prime})$

plot(x, y, 'ms')

plot(x, y, 'go')

THE PLOT FUNCTION: COMPLEMENTARY FUNCTIONS

- There are some functions that should be used together with the plot function
- Some examples include:

```
xlabel('string')
ylabel('string')
title('string')
```

LABELLING PLOTS

- It is very important to label plots
 - Otherwise how do we know what's being plotted?

```
plot(x,y,'kx')
xlabel('x')
ylabel('y')
title('y vs. x')
```


CONVEY THE INFORMATION APPROPRIATELY

- On the 23rd of September 1999, NASA lost its \$US125 million Mars Orbiter climate satellite when it crashed into Mars
 - NASA uses metric units (metres, centimetres)
 - Lockheed Martin was working in Imperial units (feet, inches)
- Data labels and unit consistency are important, especially in group work

SUMMARY

- The significance of plots
- Create plots
- Label plots
- Is it possible to have two sets of data on the one figure?