CLAIMS

1. A crosslinked polymer obtainable by radical polymerisation of ethylerically unsaturated monomers including

a zwitterionic monomer of the general formula I

YBX

I

wherein

B is a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene chain optionally containing one or more fluorine atoms up to and including perfluorinated chains or, if X or Y contains a terminal carbon atom bonded to B, a valence bond;

X is a zwitterionic group; and

Y is an ethylenicall unsaturated polymerisable group selected from

 $CH_2=C(R)-CH_2-O-$, $CH_2=C(R)-CH_2$ C(O)-, $CH_2=C(R)OC(O)-$, $CH_2=C(R)-O-$, $CH_2=C(R)CH_2OC(O)N(R^1)-$, $R^2OOC(R=CRC(O)-O-$, RCH=CHC(O)O-, $RCH=C(COOR^2)CH_2-C(O)-O-$,

wherein:

R is hydrogen or a C₁-C₄ alkyl group;

R¹ is hydrogen or a C₁-C₄ alkyl group or R¹ is -B-X where B and X are as defined above; and

 R^2 is hydrogen or a C_{1-4} alkyl group or BX where B and X are as defined above; A is -O- or -NR¹-;

K is a group - $(CH_2)_pOC(O)$ -, - $(CH_2)_pC(O)O$ -,

- $(CH_2)_pOC(O)O$ -, $-(CH_2)_pNR^3$ -, $-(CH_2)_pNR^3C(O)$ -,
- $-(CH_2)_pC(O)NR^3-$, $-(CH_2)_pNR^3C(O)O-$, $-(CH_2)_pOC(O)NR^3-$,

 $(CH_2)_pNR^3C(O)NR^3$ - (in which the groups R^3 are the same or different), $-(CH_2)_pO$ -, $-(CH_2)_pSO_3$ -, or, optionally in combination with B, a valence bond and p is from 1 to 12 and R^3 is hydrogen or a C_1 - C_4 alkyl group.

b) an aromatic group containing monomer of the general formula II

 Y^1R^4 II

wherein Y1 is selected from

 $CH_2=C(R^5)-CH_2-O-$, $CH_2=C(R^5)-CH_2$ OC(O)-, $CH_2=C(R^5)OC(O)-$, $CH_2=C(R^5)-O-$, $CH_2=C(R^5)CH_2OC(O)N(R^6)-$, $R^7OOCCR^5=CR^5C(O)-O-$, $R^5CH=CHC(O)O-$, $R^5CH=C(COOR^7)CH_2-C(O)-O-$,

wherein:

R⁵ is hydrogen or a C₁-C₄ alkyl group;

R⁶ is hydrogen or a C₁-C₄ alkyl group or R⁵ is R³; and

R⁷ is hydrogen or a C₁₋₄ alkyl group or R³

 A^1 is -O- or -NR⁶-;

 K^1 is a group -(CH₂)_qOC(O)-, -(CH₂)_qC(O)O-,

- (CH₂)_qOC(O)O-, -(CH₂)_qNR⁸-, -(CH₂)_qNR⁸C(O)-,

 $-(CH_2)_qC(O)NR^8-$, $-(CH_2)_qNR^8C(O)O-$, $-(CH_2)_qOC(O)NR^8-$,

- $(CH_2)_qNR^8C(O)NR^8$ - (in which the groups R^8 are the same or different), - $(CH_2)_qO$ -, - $(CH_2)_qSO_3$ -, or a valence bond and p is from 1 to 12 and R^8 is hydrogen or a C_1 - C_4 alkyl

group;

and R4 is an aromatic group; and

c) a cross-linking monomer of the general formula III

(Y²)_nR⁹ III

 in which n is an integer of at least 2, each Y2 is selected from

 $CH_2=C(R^{10})-CH_2-O-$, $CH_2=C(R^{10})-CH_2$ OC(O)-, $CH_2=C(R^{10})$ OC(O)-, $CH_2=C(R^{10})-O-$, $CH_2=C(R^{10})$ CH₂OC(O)N(R¹¹)-, $R^{12}OOCCR^{10}=CR^{10}C(O)-O-$, $R^{10}CH=CHC(O)O-$, $R^{10}CH=CHC(O)O-$,

wherein:

R¹⁰ is hydrogen or a C₁-C₄ alkyl group;

R¹¹ is hydrogen or a C₁-C₄ alkyl group or R¹¹ is R⁴; and

R¹² is hydrogen or a C₁₋₄ alkyl group or R³

A² is -O- or -NR¹¹-;

 K^2 is a group -(CH₂)_rOC(O)-, -(CH₂)_rC(O)Q-,

- (CH₂)_rOC(O)O-, -(CH₂)_rNR¹²-, -(CH₂)_rNR¹²C(O)-,
- $-(CH_2)_rC(O)NR^{12}-$, $-(CH_2)_rNR^{12}C(O)O-$, $-(CH_2)_rOC(O)NR^{12}-$,
- -(CH₂)_rNR¹²C(O)NR¹²- (in which the groups R¹² are the same or different), -(CH₂)_rO-,
- $-(CH_2)_rSO_3$ or a valence bond and r is from 1 to 12 and R^{12} is hydrogen or a C_1 - C_4 alkyl group;

and R9 is an n-functional organic group.

- 2. A polymer according to claim 1 in which R⁴ is benzyl or phenyl.
- 3. A polymer according to any preceding claim in which V and Y² are the same, and are preferably CH₂=CR*COA, in which R* is R and R¹⁰ and is methyl or hydrogen and A is O.
- 4. A polymer according to any preceding claim in which R⁹ is an aromatic group preferably a bis-phenol A group.

- 5. A polymer according to any preceding claim which includes a crosslinking agent in which R⁹ is an aliphatic group, preferably an ethylene or an oligo(ethyleneoxy)ethylene group.
- A polymer according to any of claims 1 to 3 in which the monomers include a mixture of at least two cross-linking monomers of the general formula III, in at least one of which R⁹ is an aromatic group, preferably a bisphenol A group, and at least one of which R⁹ is an aliphatic group, preferably an ethylene or oligo (ethyleneoxy)ethylene group.
- 7. A polymer according to claim 6 in which the molar ratio of crosslinking monomer in which R⁹ is aromatic to crosslinking monomer in which R⁹ is aliphatic is in the range 10:1 to 1:10, preferably 5:1 to 1:5, most preferably 2:1 to 1:2.
- 8. A polymer according to any preceding claim in which the zwitterionic monomer is present in molar amount in the range 1 to 95%, preferably 5 to 50%, more preferably 10 to 25%, based on total ethylenically unsaturated monomer.
- 9. A polymer according to any preceding claim in which the aromatic group containing monomer is present in a molar amount in the range 10 to 99%, preferably 50 to 95%, more preferably 75 to 90%, based on total ethylenically unsaturated monomer.
- 10. A polymer according to any preceding claim in which the crosslinking monomer is present in a molar amount in the range 0.01 to 10%, preferably 0.1 to 5%, more preferably in the range 0.5 to 3% based on total ethylenically unsaturated monomer.
- 11. A polymer according to any preceding claim in which the zwitterionic group has the general formula IV

$$X^4$$
 $\stackrel{\bigcirc}{\underset{\bigcirc}{\mathbb{P}}} X^5$ $\stackrel{\bigoplus}{\underset{\bigcirc}{\mathbb{P}}}$ V

in which the moieties X^4 and X^5 , which are the same or different, are -O-, -S-, -NH- or a valence bond, preferably -O-, and W^+ is a group comprising an ammonium, phosphonium or sulphonium cationic group and a group linking the anionic and cationic moieties which is preferably a C_{1-12} -alkylene group,

preferably in which W⁺ is a group of formula
-W¹-N⁺R¹⁴₃, -W¹-P⁺R¹⁵₃, -W¹-S⁺R¹⁵₂ or -W¹-Het⁺ in which:

W¹ is alkylene of 1 or more, preferably 2-6 carbon atoms optionally containing one or more ethylenically unsaturated double or triple bonds, disubstituted-aryl, alkylene aryl, aryl alkylene, or alkylene aryl alkylene, disubstituted cycloalkyl, alkylene cycloalkyl, cycloalkyl alkylene or alkylene cycloalkyl alkylene, which group W¹ optionally contains one or more fluorine substituents and/or one or more functional groups; and

either the groups R¹⁴ are the same or different and each is hydrogen or alkyl of 1 to 4 carbon atoms, preferably methyl, or aryl, such as phenyl or two of the groups R¹⁴ together with the nitrogen atom to which they are attached form a heterocyclic ring containing from 5 to \(\text{atoms} \) or the three groups R¹⁴ together with the nitrogen atom to which they are attached form a fused ring structure containing from 5 to 7 atoms in each ring, and optionally one or more of the groups R¹⁴ is substituted by a hydrophilic functional group, and

the groups R^{15} are the same or different and each is R^{14} or a group OR^{14} , where R^{14} is as defined above; or

Het is an aromatic nitrogen phosphorus or sulphur, preferably nitrogen, containing ring, for example pyridine,

12. A polymer according to claim 11 in which X is a group of formula V:

$$\begin{array}{c|c}
 & \bigcirc & \bigcirc \\
 & \bigcirc & \bigcirc & \bigcirc
\end{array}$$

$$\begin{array}{c|c}
 & \bigcirc & \bigcirc & \bigcirc \\
 & \bigcirc & \bigcirc & \bigcirc & \bigcirc$$

$$\begin{array}{c|c}
 & \bigcirc & \bigcirc & \bigcirc & \bigcirc
\end{array}$$

$$\begin{array}{c|c}
 & \bigcirc & \bigcirc & \bigcirc & \bigcirc$$

where the groups R¹⁶ are the same or different and each is hydrogen or C₁₋₄ alkyl, and m is from 1 to 4,

in which preferably the groups R^{16} are the same.

- 13. A gel comprising a polymer according to any preceding claim swollen by a liquid.
 - 14. A gel according to claim 13 in which the liquid is aqueous.
- 15. A refractive device formed of a polymer according to any of claims 1 to 12.
- 16. A device according to claim 15 which has an average transmission for visible light in the range 400 to 700nm wavelength of at least 90% (when swollen by water).

- 17. A device according to claim 15 or claim 16 which comprises an absorber of electromagnetic radiation, preferably of U.V. light.
- 18. A device according to any of claims 15 to 17, having a refractive index when fully swollen in water in the range 1.45-1.60.
- 19. A polymerisation process in which a polymerisation mixture containing ethylenically unsaturated monomers is subjected to radical polymerisation, whereby addition polymerisation of the ethylenically unsaturated groups takes place, and in which the monomers include
 - a) a zwitterionic monomer of the general formula I

XX I

wherein

B is a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene chain optionally containing one or more fluorine atoms up to and including perfluorinated chains or, if X or Y contains a terminal carbon atom bonded to B, a valence bond;

X is a zwitterionic group; and

Y is an ethylenically unsaturated polymerisable group selected from

 $CH_2=C(R)-CH_2-O-, CH_2=C(R)-CH_2 OC(O)-, CH_2=C(R)OC(O)-, CH_2=C(R)-O-, CH_2=C(R)CH_2OC(O)N(R^1)-, R^2OOCCR=CRC(O)-Q-, RCH=CHC(O)O-, RCH=C(COOR^2)CH_2-C(O)-O-,$

wherein:

R is hydrogen or a C₁-C₄ alkyl group;

 R^1 is hydrogen or a C_1 - C_4 alkyl group or R^1 is -B-X where B and X are as defined above; and

 R^2 is hydrogen or a C_{1-4} alkyl group or BX where B and X are as defined above; A is -O- or -NR¹-;

 $(CH_2)_pOC(O)$ -, $-(CH_2)_pC(O)O$ -,

- $(CH_2)_p OC(O)O$ -, - $(CH_2)_p NR^3$ -, - $(CH_2)_p NR^3C(O)$ -,

 $-(CH_2)_{p}C(O)NR^3-$, $-(CH_2)_{p}NR^3C(O)O-$, $-(CH_2)_{p}OC(O)NR^3-$,

- $(CH_2)_pNR^3C(Q)NR^3$ - (in which the groups R^3 are the same or different), - $(CH_2)_pO$ -, - $(CH_2)_pSO_3$ -, or, optionally in combination with B, a valence bond and p is from 1 to 12 and R^3 is hydrogen or a C_1 - C_4 alkyl group.

b) an aromatic group containing monomer of the general formula II

 \mathbf{II}

 $CH_2=C(R^5)-CH_2-O-$, $CH_2=C(R^5)-CH_2$ OC(0)-, $CH_2=C(R^5)OC(O)-$, $CH_2=C(R^4)-O-$, $CH_2=C(R^5)CH_2OC(O)N(R^6)-$, $R^7OOCCR^5=CR^5C(O)-O-$, $R^5CH=CHC(O)O-$, $R^5CH=C(COOR^7)CH_2-C(O)-O-$,

wherein:

R⁵ is hydrogen or a C₁-C₄ alkyl group;

R⁶ is hydrogen or a C₁-C₄ alkyl group or R⁶ is R⁴; and

R⁷ is hydrogen or a C₁₋₄ alkyl group or R⁴

 A^1 is -O- or -NR⁶-;

 K^1 is a group -(CH₂)₀OC(O)-, -(CH₂)₀C(O)O-,

- (CH₂)_qOC(O)O-, -(CH₂)_qNR⁸-, -(CH₂)_qNR⁸C(O)-,

 $-(CH_2)_qC(O)NR^8-$, $-(CH_2)_qNR^8C(O)O-$, $-(CH_2)_qOC(O)NR^8-$,

- $(CH_2)_qNR^8C(O)NR^8$ - (in which the groups R^8 are the same or different), - $(CH_2)_qO$ -, - $(CH_2)_qSO_3$ -, or a valence bond and p is from 1 to 12 and R^8 is hydrogen or a C_1 - C_4 alkyl group.

and R4 is an aromatic group; and

a cross-linking monomer of the general formula III

(Y²)_nR⁹

III

in which n is an integer of at least 2, each Y2 is selected from

$$H_2C = C - A^2 - K^2$$

 $CH_2 = C(R^{10}) - CH_2 - O^{-}, CH_2 = C(R^{10}) - CH_2 OC(O)^{-}, CH_2 = C(R^{10}) OC(O)^{-}, CH_2 = C(R^{10})^{-}O^{-}, CH_2 = C(R^{10}) CH_2 OC(O)N(R^{11})^{-}, R^{12}OOCCR^{10} = CR^{10}C(O)^{-}O^{-}, R^{10}CH = CHC(O)O^{-}, R^{10}CH = C(COOR^{12})CH_2 - C(O)^{-}O^{-}, R^{10}CH = C(C$

wherein:

 R^{10} is hydrogen or a C_1 - C_4 alkyl group;

R¹¹ is hydrogen or a C₁-C₄ alkyl group or R¹¹ is R⁴; and

 R^{11} is hydrogen or a C_{1-4} alkyl group or R^3 ;

 A^2 is -O- or -NR¹¹-;

 K^2 is a group -(CH₂)_rOC(O)-, -(CH₂)_rC(O)O-,

- (CH₂)_rOC(O)O-, -(CH₂)_rNR¹²-, -(CH₂)_rNR¹²C(O)-,

 $\hbox{-(CH$_2)$_r$C(O)NR12-, -(CH$_2)$_r$NR12C(O)O-, -(CH$_2)$_r$OC(O)NR12-,}$

- $(CH_2)_rNR^{12}C(O)NR^{12}$ - (in which the groups R^{12} are the same or different), - $(CH_2)_rO$ -, - $(CH_2)_rSO_3$ - or a valence bond and r is from 1 to 12 and R^{12} is hydrogen or a C_1 - C_4 alkyl group;

and R9 is an n-functional organic group.

- 20. A process according to claim 19 in which the zwitterionic monomer is present in molar amount in the range 1 to 95%, preferably 5 to 50%, more preferably 10 to 25%, based on total ethylenically unsaturated monomer.
- A process according to claim 19 or claim 20 in which the aromatic group containing monomer is present in a molar amount in the range 10 to 99%, preferably 50 to 95%, more preferably 75 to 90%, based on total ethylenically unsaturated monomer.
- A process according to any of claims 19 to 21 in which the crosslinking monomer is present in a molar amount in the range 0.01 to 10%, preferably 0.1 to 5%, more preferably in the range 0.5 to 3% based on total ethylenically unsaturated monomer.
- 23. A process according to any of claims 19 to 22 in which polymerisation is initiated by a thermal, a redox or a U.V. initiator.
- A process according to any of claims 19 to 23 in which the zwitterionic monomer and aromatic group containing monomer are immiscible in the absence of a cosolvent, and in which the polymerisation mixture contains a co-solvent which is a non-polymerisable liquid whereby the polymerisation mixture is a homogeneous solution.
 - 25. A process according to claim 24 in which the co-solvent is an alcohol.
- 26. A process according to claim 24 or claim 25 in which the co-solvent is present in the polymerisation mixture in an amount in the range 5 to 90% by weight, preferably in the range 10 to 75%, more preferably 10 to 50% by weight.
- A process of forming a refractive device in which a polymerisation process according to any of claims 24 to 26 is carried out, the co-solvent is removed from the product polymer and the xerogel which is substantially free of co-solvent is shaped by cutting to a predetermined three dimensional shape.
- 28. A process according to claim 27 in which the product is used as an intraocular lens.
- 29. A process of forming a refractive device in which a polymerisation process according to any of claims 24 to 26 is carried out whilst the polymerisation mixture is in a mould and, after polymerisation, the solvent is removed from the polymer, usually after removal from the mould, preferably by replacement with a second solvent.
- 30. A process according to any of claims 27 to 29 in which polymer product is water-swellable and the shaped or moulded product is swollen in aqueous liquid.

31. A process according to any of claims 19 to 30 having the further features defined in any of claims 2 to 7, 11 and 12.

Ald AI