

PA 1074642

REC'D 06 JUL 2004

WIPO PCT

BEST AVAILABLE COPY

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 07, 2003

**THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE UNDER 35 USC 111.**

**APPLICATION NUMBER: 60/479,647
FILING DATE: June 19, 2003**

**CERTIFIED COPY OF
PRIORITY DOCUMENT**

**PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)**

**By Authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS**

**P. R. GRANT
Certifying Officer**

1653 U.S. PATENT & TRADEMARK OFFICE
6/19/03

604-79647-106190

APR 2003
AP

17602 U.S. PRO
60/479647
06/19/03

Attorney Docket No.: 10356.000-US

PATENT

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

Mail Stop Provisional Patent Application
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

This is a request for filing a provisional application under 37 CFR 1.53(c).

INVENTOR(S)		
First Name	Middle Name	Family Name
1.Shamkant	Anant	Patkar
2.Thomas	Lykke	Sorensen
3.Don		Higgins
4.Sabry		Madkor
5.Tine	Muxoll	Fatum
6.Jesper		Vind

TITLE OF THE INVENTION

Phospholipase Variants

The following application parts are enclosed:

specification 13 pages Sequence Listing ____ pages
 Abstract 1 page Drawings 3 pages

An application data sheet is enclosed.

Direct all correspondence to Customer Number 25908:

25908

Please charge the required fee, estimated to be \$160, to Novozymes North America, Inc., Deposit Account No. 50-1701. A duplicate of this sheet is enclosed.

Respectfully submitted,

Jason I. Garbell, Reg. No. 44,116
Novozymes North America, Inc.
500 Fifth Avenue, Suite 1600
New York, NY 10110
(212) 840-0097

Date: June 19, 2003

Attorney Docket No.: 10356.000-US

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
EXPRESS MAIL CERTIFICATE

Mail Stop Provisional Patent Application
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Re: U.S. Provisional Application for
"Phospholipase Variants"
Applicants: Patkar et al.

Sir:

Express Mail Label No. EV 138339476 US

Date of Deposit June 19, 2003

I hereby certify that the following attached paper(s) or fee

1. Filing Under 37 C.F.R. §1.53(c) (in duplicate)
2. Provisional Application
3. Application Data Sheet

are being deposited with the United States Postal Service "Express Mail Post Office to Addressee" under 37 C.F.R. 1.10 on the date indicated above and is addressed to the address indicated above.

Julie Tabarovsky
(Name of person mailing paper(s) or fee)

J. Tabarovsky
(Signature of person mailing paper(s) or fee)

Mailing Address:

Novozymes North America, Inc.
500 Fifth Avenue, Suite 1600
New York, NY 10110
(212) 840-0097

Application Data Sheet**Application Information**

Application Type:: Provisional
 Subject Matter:: Utility
 CD-ROM or CD-R:: None
 Sequence Submission:: None
 Computer Readable Form (CRF):: No
 Title:: Phospholipase Variants
 Attorney Docket Number:: 10356.000-US
 Request for Early Publication:: No
 Request for Non-Publication:: No
 Total Drawing Sheets:: 3
 Small Entity:: No
 Petition included:: No
 Secrecy Order in Parent Appl.: No

Applicant Information

Applicant Authority type:: Inventor
 Primary Citizenship Country:: Denmark
 Status:: Full Capacity
 Given Name:: Shamkant
 Middle Name:: Anant
 Family Name:: Patkar
 City of Residence:: Lyngby
 Country of Residence:: Denmark

Applicant Authority type:: Inventor
 Primary Citizenship Country:: Denmark
 Status:: Full Capacity

Given Name::	Thomas
Middle Name::	Lykke
Family Name::	Sorensen
City of Residence::	Allerod
Country of Residence::	Denmark
Applicant Authority type::	Inventor
Primary Citizenship Country::	US
Status::	Full Capacity
Given Name::	Don
Family Name::	Higgins
City of Residence::	Franklin
State or Province of Residence::	North Carolina
Country of Residence::	US
Applicant Authority type::	Inventor
Primary Citizenship Country::	Egypt
Status::	Full Capacity
Given Name::	Sabry
Family Name::	Madkor
City of Residence::	Raleigh
State or Province of Residence::	North Carolina
Country of Residence::	US
Applicant Authority type::	Inventor
Primary Citizenship Country::	Denmark
Status::	Full Capacity
Given Name::	Tine
Middle Name::	Muxoll
Family Name::	Fatum

City of Residence:: Allerod
Country of Residence:: Denmark

Applicant Authority type:: Inventor
Primary Citizenship Country:: Denmark
Status:: Full Capacity
Given Name:: Jesper
Family Name:: Vind
City of Residence:: Vaerlose
Country of Residence:: Denmark

Correspondence Information

Correspondence Customer Number:: 25908
Phone Number:: (212) 840-0097
Fax Number:: (212) 840-0221
E-Mail address:: Patents-US-NY@novozymes.com

Representative Information

Representative Customer Number:	25908
---------------------------------	-------

Title: Phospholipase variants**Field of invention**

The present invention relates to a variant enzyme derived from a parent enzyme having phospholipase activity, to a method of increasing the ratio of phospholipase/lipase activity in a variant lipolytic enzyme compared to a parent lipolytic enzyme having phospholipase activity. Also the present invention relates to a method for producing cheese.

Background of the invention

10 Lipolytic enzymes (such as lipases and phospholipases) are capable of hydrolyzing carboxylic ester bonds in a substrate to release carboxylic acids. The hydrolytic activity on different ester bonds is important for the usefulness of the lipolytic enzyme in various industrial applications.

WO 00/32758 discloses lipolytic enzyme variants having phospholipase activity. WO 98/26057
15 discloses a *Fusarium oxysporum* phospholipase. WO 01/83770 describes variants. WO 00/54601 describes a process for producing cheese from enzyme-treated cheese milk.

Summary of the invention

The present invention relates to improved enzyme variants having phospholipase activity and
20 which enzymes variants have an increased ratio of phospholipase/lipase activity compared to a parent lipolytic enzyme having phospholipase activity.

In a first aspect the invention relates to a lipolytic enzyme derived from a parent enzyme, wherein the parent enzyme is at least 50 % identical to SEQ ID No. 1 and the parent enzyme
25 has phospholipase activity, and wherein the variant enzyme has a modified amino acid sequence, said modification comprises a substitution of an amino acid residue corresponding to R84W in SEQ ID No. 1.

In a second aspect the invention relates to a method of increasing the ratio of phospholipase/lipase activity in a variant lipolytic enzyme compared to a parent lipolytic enzyme having phospholipase activity, comprising introducing an amino acid substitution corresponding to R84W in SEQ ID No. 1 in the parent enzyme.

In a third aspect the invention relates to a method for producing cheese, which method comprises the steps of:

- a) treating cheese milk or a fraction of the cheese milk with a variant enzyme according to any of the claims 1-3; and
- 5 b) producing cheese from the cheese milk, wherein step a) is conducted before and/or during step b).

Brief description of drawings

Figure 1 shows an alignment of fungal lipolytic enzyme sequences: 1. *Absidia reflexa*, 2. *Absidia corymbifera*, 3. *Rhizomucor miehei*, 4. *Rhizopus delemar (oryzae)*, 5. *Aspergillus niger*, 6. *Aspergillus tubingensis*, 7. *Fusarium oxysporum*, 8. *Fusarium heterosporum*, 9. *Aspergillus oryzae*, 10. *Penicillium camembertii*, 11. *Aspergillus foetidus*, 12. *Aspergillus niger*, 13. *Aspergillus oryzae*, 14. *Thermomyces lanuginosus (Humicola lanuginosa)*.

15 Definitions

Identity: The term "at least 50% identical" in the context of the present invention relates to homologous polynucleotides or polypeptides. The degree of identity is at least 50%, more preferably at least 55%, more preferably at least 60%, more preferably at least 65%, more preferably at least 70%, more preferably at least 75%, more preferably at least 80%, even more preferably at least 85%, still more preferably at least 90%, more preferably at least 95%, and most preferably at least 98%. Whether two polynucleotide or polypeptide sequences have a sufficiently high degree of identity can suitably be investigated by aligning the two sequences using a computer program known in the art, such as "GAP" provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711)(Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-453). Using GAP with the following settings for DNA sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3.

30 An enzyme which exhibits phospholipase activity may be an enzyme which in the "monolayer phospholipase assay", as described in WO 0032758, has a phospholipase activity of at least 0.25 nmol/min, enzyme dose: 60 µg, at 25°C; more preferably at least 0.40 nmol/min, enzyme dose: 60 µg, at 25°C; more preferably at least 0.75 nmol/min, enzyme dose: 60 µg, at 25°C; more preferably at least 1.0 nmol/min, enzyme dose: 60 µg, at 25°C; more preferably at least

1.25 nmol/min, enzyme dose: 60 µg, at 25°C; and even more preferably at least 1.5 nmol/min, enzyme dose: 60 µg, at 25°C.

Phospholipase activity can also be determined by using a plate assay as described in WO 0032758 or by HPLC or by a phospholipid depletion assay as described below.

5

Variant enzyme: An enzyme derived from a parent enzyme by introducing at least one modification of the amino acid sequence of the parent enzyme.

Detailed description of the invention

10

Parent lipolytic enzyme

The parent lipolytic enzyme to be used in the present invention is classified in EC 3.1.1 Carboxylic Ester Hydrolases according to Enzyme Nomenclature (available at <http://www.chem.qmw.ac.uk/iubmb/enzyme>). More specifically the parent enzyme according to 15 the invention is an enzyme having phospholipase activity. Accordingly the parent enzyme according to the invention could be a phospholipase classified in EC 3.1.1.32 or EC 3.1.1.4.

Lipolytic enzymes not having phospholipase activity can be modified and screened in order to select variants having phospholipase activity as disclosed in WO 00/32758.

20

In the present invention the parent enzyme is derived from SEQ ID No 1 or a lipolytic enzyme which is at least 50 % identical to SEQ ID No 1, and which parent enzyme has phospholipase activity. The parent enzyme may additionally comprise further modifications in case of SEQ ID No 1 or an enzyme which is at least 50% identical to SEQ ID No 1 but which enzyme does not 25 have phospholipase activity. Such further modifications are described below.

WO 00/32758 also discloses a lipolytic enzyme from *Humicola lanuginosa*, the amino acid sequence of which is shown in sequence nr. 14 in figure 1 and in SEQ ID No 1, as well as various variants of SEQ ID No 1 with phospholipase activity and a method of how to obtain such 30 variants. These variants may be the starting point for the phospholipase variants according to the present invention in which an amino acid substitution at the position corresponding to position 84 in SEQ ID No 1 is introduced. In SEQ ID No 1 the position 84 is an arginine. According to the present invention this arginine is substituted by a tryptophan or a

corresponding substitution at a corresponding position in an enzyme at least 50 % identical to SEQ ID No 1.

Surprisingly the variants of the invention comprising the substitution at position 84 or a 5 position corresponding to position 84 in other phospholipases, e.g. in the sequences shown in sequence 1-13 in figure 1, results in phospholipases with improved properties in applications for preparing cheese.

The variant enzyme according to the invention may comprise further modifications than just the substitution at position 84. Such modifications comprises substitutions which will result 10 in a parent enzyme with phospholipase activity as disclosed in WO 00/32758.

In another embodiment the variant enzyme of the invention therefore comprises substitutions corresponding to D57G, V60G/C/K/R/L/S/Q, D62E/F/W/H/V/L/G/A/P/Q, S83T, S85Y, G91E/A/V/R; L93K, D96W/F/G, E99K, R125K, V203T, V228A, L259V/R/S, F262L, G263Q, L264A, I265T, G266D, T267A, L269N.

15 The starting parent enzyme for producing the variants of the present invention may also be a phospholipase from *Fusarium oxysporum* which is described in WO 98/26057, and the amino acid sequence of which is shown in the alignment in figure 1, sequence number 7 and in SEQ ID No 2. If the starting point for making the variants according to the invention is SEQ ID No 2, it is evident from the alignment shown in figure 1 that the position corresponding to 20 position 84 is position I81 in SEQ ID No 2.

In addition to the modifications described above in order to arrive at the parent enzyme having phospholipase activity, modifications of the variants according to the invention may additionally comprise modifications such as insertions or deletions. Also modifications at the N- 25 or C-terminus, e.g. by adding residues after position 269 are comprised. Such C-terminal additions could e.g. comprise addition of 270A, 271G, 272G, 273F, 274S, 275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS. N-terminal additions comprise the addition of the amino acid residues SPIR.

30 The above mentioned additional modifications such as insertions, deletions and C- and N-terminal modifications should not be considered, when calculating the % identity of the parent enzyme with SEQ ID No 1.

The parent enzyme shown in SEQ ID No 2 was C-terminal processed during expression from *A. oryzae*, and the results indicate that positions 270, 271, 272 or 284 in SEQ ID NO 2 is the most likely C-terminal residue in the expressed mature active enzyme.

- 5 Phospholipases has been shown to be able to increase the yield of cheese when added during a cheese making process as described in WO 00/54601. Both phospholipase (PLA1) hydrolysing at the Sn1 position and phospholipase (PLA2) that hydrolyse at the Sn2 position works in this application. Often the PLA1 phospholipases also works on triglycerides found in milk. Lipase activity on short chained lipids gives the cheese a different flavour due to the short
10 chained free fatty acids. This can be a desired flavour, but may also been undesired.

Surprisingly we have seen that to high lipase activity on triglycerides can lead to problems in the cheese-making process, possibly due to the generation of to many free fatty acids. Thus it could be desirable to diminish the lipase activity on triglycerides of a PLA1
15 phospholipase, such as for example, the parent *Thermomyces lanuginosa* lipase of the invention which is a variant of the lipase shown in SEQ ID No 1 having phospholipase activity.

The variants of the invention has the surprising effect of increasing the ratio of phospholipase/lipase activity in a variant lipolytic enzyme compared to a parent lipolytic enzyme
20 having phospholipase activity. By lipase activity is meant lipase activity on triglycerides. Variants according to the invention therefore have a higher phospholipase/lipase activity ratio compared to the parent enzyme according to the invention. These variants according to the invention surprisingly result in an increased yield and at the same time avoids the changes in taste and smell, which may result from the generation of to many free fatty acids, when lipolytic enzymes
25 are used in the production of cheese. Thus the variants according to the invention combines the desirable effect of having improved yields when applying phospholipases in cheese production and at the same time avoids getting a cheese product having changed properties in terms of smell and taste when phospholipases are applied.

- 30 It could also be desirable to increase the ratio of phospholipase/lipase activity of the phospholipase from *Fusarium oxysporum* shown in SEQ ID No 2.

Homology and alignment

For purposes of the present invention, the degree of homology may be suitably determined by means of computer programs known in the art, such as GAP provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-45), using GAP with the following settings for polypeptide sequence comparison: GAP creation penalty of 3.0 and GAP extension penalty of 0.1.

In the present invention, corresponding positions in the lipase sequences of *Absidia reflexa*, *Absidia corymbifera*, *Rhizomucor miehei*, *Rhizopus delemar*, *Thermomyces lanuginosa* (former; *Humicola lanuginosa*), *Penicillium camembertii* and *Fusarium oxysporum*, *Fusarium heterosporum*, *Aspergillus tubingensis*, *Aspergillus oryzae*, *Aspergillus foetidus*, *Aspergillus niger* are defined by the alignment shown in Figure 1.

To find the homologous positions in lipase sequences not shown in the alignment, the sequence of interest is aligned to the sequences shown in Figure 1.. The new sequence is aligned to the present alignment in Fig. 1 by using the GAP alignment to the most homologous sequence found by the GAP program. GAP is provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-45). The following settings are used for polypeptide sequence comparison: GAP creation penalty of 3.0 and GAP extension penalty of 0.1.

Use of variant

The use of phospholipases in the production of cheese products has been described in WO 00/54601. The phospholipases applied in WO 00/54601 result in an increased yield in the cheese production as well as in improving the stability of the fat in the cheese. The variant enzymes according to the present invention are also suitable for the treatment of cheese and can be applied as described in WO 00/54601 in a process for producing cheese. The variants of the invention will result in an increased yield and at the same time avoids the changes in taste and smell, which may result from the generation of too many free fatty acids, when the variant lipolytic enzymes of the invention are used in the production of cheese, e.g. in a process or method as described in WO 00/54601.

In a further embodiment the invention therefore relates to a method for producing cheese, which method comprises the steps of:

a) treating cheese milk or a fraction of the cheese milk with a variant enzyme according to the invention; and
 b) producing cheese from the cheese milk, wherein step a) is conducted before and/or during step b).

5

Examples**Example 1. Construction of variants having a increased phospholipase/lipase activity ratio compared to the parent enzyme.**

10 Variants according to the invention were constructed as described in WO 00/32758.
 Examples of a variant enzymes derived from SEQ ID No 1 according to the invention are given in Table 1 below.

Table 1.

15

Variant	Mutation (numbering according to SEQ ID No 1)
1	R84W,D96W,E99K,G263Q,L264A,I265T,G266D,T267A,L269N,270A,271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
2	R84W,G91E,D96W,E99K,G263Q,L264A,I265T,G266D,T267A,L269N,270A,271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
3	V60G,D62E,R84W,G91A,D96F,E99K,G263Q,L264A,I265T,G266D,T267A,L269N
4	R84W,G91V,D96F,E99K,G263Q,L264A,I265T,G266D,T267A,L269N
5	R84W,G91R,L93K,D96G,E99K,G263Q,L264A,I265T,G266D,T267A,L269N,270A,271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
6	V60G,D62F,R84W,G91A,D96W,E99K,G263Q,L264A,I265T,G266D,T267A,L269N,270A,271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
7	R84W,S85Y,G91A,D96W,E99K,G263Q,L264A,I265T,G266D,T267A,L269N,270A,

	271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEY VKNNQARS
8	R84W,G91A,D96W,E99K,L259V,G263Q,L264A,I265T,G266D,T267A,L269N,270A, 271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEY EVVKNNQARS
9	S83T,R84W,G91A,D96W,E99K,G263Q,L264A,I265T,G266D,T267A,L269N,270A, 271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEY VKNNQARS
10	V60G,D62W,R84W,G91A,D96F,E99K,G263Q,L264A,I265T,G266D,T267A,L269N
11	R84W,G91R,D96F,E99K,G263Q,L264A,I265T,G266D,T267A,L269N,270A,271G, 272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNN QARS
12	V60C,D62H,R84W,G91A,D96F,E99K,G263Q,L264A,I265T,G266D,T267A,L269N
13	V60G,D62V,R84W,G91A,D96F,E99K,G263Q,L264A,I265T,G266D,T267A,L269N
14	V60K,D62L,R84W,G91A,D96F,E99K,G263Q,L264A,I265T,G266D,T267A,L269N
15	V60R,D62L,R84W,G91A,D96F,E99K,G263Q,L264A,I265T,G266D,T267A,L269N
16	V60G,D62G,R84W,G91A,D96W,V228A,E99K,G263Q,L264A,I265T,G266D,T267 A,L269N,270A,271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKL NSYVQMDKEYVKNNQARS
17	V60L,D62A,R84W,G91A,D96W,E99K,R125K,G263Q,L264A,I265T,G266D,T267A ,L269N,270A,271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLN SYVQMDKEYVKNNQARS
18	D62E,R84W,G91A,D96W,E99K,G263Q,L264A,I265T,G266D,T267A,L269N,270A, 271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEY VKNNQARS

19	V60S,D62L,R84W,G91A,D96F,E99K,F262L,G263Q,L264A,I265T,G266D,T267A,L269N
20	D57G,V60Q,D62P,R84W,G91A,D96F,E99K,G263Q,L264A,I265T,G266D,T267A,L269N
21	R84W,G91A,D96W,E99K,L259R,G263Q,L264A,I265T,G266D,T267A,L269N,270A,271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
22	S83T,R84W,G91A,D96F,E99K,G263Q,L264A,I265T,G266D,T267A,L269N
23	D62Q,R84W,G91A,D96W,E99K,G263Q,L264A,I265T,G266D,T267A,L269N,270A,271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
24	R84W,G91A,D96W,E99K,L259S,G263Q,L264A,I265T,G266D,T267A,L269N,270A,271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
25	R84W,G91A,D96W,E99K,V203T,G263Q,L264A,I265T,G266D,T267A,L269N,270A,271G,272G,273F,274S,275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

The above variants were improved compared to the parent enzyme when measuring the ratio of phospholipase acitivity to lipase activity. This was determined by measuring the depletion of phospholipids in milk-fat (%PL depletion) as described below and by measuring the activity (SLU) of the variants on triglyceride by titration with a pH stat as described in WO 00/32758. From this the %PL depletion/SLU ratio was calculated.

Depletion of phospholipids in cream:

10 Cream was treated with two different amounts of a phospholipase to determine the depletion of phospholipids by the action of the enzyme.

Substrate Preparation and Enzyme/Substrate Reaction.

Cream was standardized to a fat content of 25% (w/w) using skim milk. Two samples of 1 ml each were incubated with 0.02 mg enzyme protein and 0.1 mg enzyme protein per gram of milk fat, respectively, of a phospholipase (Lecitase[®], Novozymes A/S, Bagsværd, Denmark) at 35°C
5 for 1.5 hr without shaking. Reactions were stopped by the addition of organic solvent for lipid extraction.

Lipid Extraction.

Total milk lipids were extracted by mixing each sample with 1 ml of water followed by 9 ml of
10 chloroform/methanol (2:1). Samples were mixed vigorously for 1 min and centrifuged at 3000 rpm for 5 min. Six millilitres of the lower organic phase were removed and dried down under vacuum. Samples were reconstituted in 2 ml of chloroform. Each chloroform extract was applied to an aminopropyl SPE column (Phenomenex, Inc.) under vacuum. The column was washed first with 4 ml of chloroform/isopropanol (2:1) to remove neutral lipids and then with 4 ml
15 of diethylether acidified with glacial acetic acid (2% v/v) to remove free fatty acids.

Phospholipids were then eluted with 4 ml of methanol, dried down in a rotary evaporator, and reconstituted in 0.6 ml of mobile phase A for HPLC analysis.

HPLC determination of phosphatidylethanolamine (PE)

20 HPLC was performed on a Agilent 1100 system containing a quaternary pump, degasser, auto sampler, thermo stated column compartment, evaporative light scattering detector (Polymer Laboratories, Inc.), and a personal computer with Agilent ChemStation software. The stationary phase consisted of a Luna Silica (150 x 4.6 mm, 5 μ , 100 Å) analytical column and a Security Guard Cartridge (4.0 x 3.0 mm) consisting of the same packing material. Both analytical and
25 guard columns were from Phenomenex (Torrance, CA USA). The mobile phases consisted of an A mixture containing 80% chloroform, 19.5% methanol, 0.5% ammonium hydroxide and a B mixture of 60% chloroform, 34% methanol, 5.5% water, 0.5% ammonium hydroxide. The following linear gradieht was utilized: a starting composition of 80% A/20% B was held for 2 min, proceeding to 100% B from 2 min to 14 min; 100% B was maintained from 14 min to 20 min,
30 returning to 80% A/20% B from 20 min to 23 min. The time required to re-equilibrate the column in a sequence of runs was 7 min. With a flow rate of 1.0 ml/min and a column temperature of 30°C, the pressure increased from approximately 43 to 55 bar. The evaporator temperature of the light scattering detector was 80°C and the nebulizer temperature was 42°C. The nebulization gas was nitrogen used at a flow rate of 1.0 SLM. Highly pure

phosphatidylethanolamine (PE) (Avanti Polar Lipids, Inc.) was used as standard. Stock solution was prepared in chloroform in the concentration range of 2-10 mg/ml. HPLC calibrators were prepared from stock solutions by dilution to the appropriate concentration in mobile phase A.

5 Table 2. Results of example 1

Enzyme dose (mg enzyme protein/g fat)	% PE Depletion (versus control without phospholipase treatment)
0.02	80%
0.10	>90% *

*Peak below lowest limit of quantification

Example 2. Evaluation of cheese yield using selected variants of the invention

Variants according to the invention were evaluated in a method of producing cheese with the 10 addition of a phospholipase. The controls were without phospholipase addition.

The following variants according to the invention was tested:

Variant # 2, 4, 5, 8, 9, 10, 16, 22 and 24.

15 The method was a bench top cheese yield evaluation test and was performed as described below.

Bench top cheese making.

Standard procedure of bench top cheese processing was conducted as follow:

20 1. Standardize 0.5 kg cheese milk w/ pasteurized skim milk and cream.

2. Prepare a single starter by adding 0.1 g Rhodia LH100 and 0.3 g Rhodia TA061 starter cultures (for mozzarella) to 50 ml of the skim milk and equilibrate to 35°C w/ gentle, continuous stirring.

25 3. Equilibrate cheese milk to 35°C and add 0.07 mg enzyme protein per g fat, check initial pH and add 5 ml starter to each cheese milk with gentle agitation .

30 4. When pH reaches 6.45 – 6.50 add 0.5 ml of 10x diluted Chymax (available from Christian

Hansen); stir vigorously for three minutes then remove stirrers from milk, cover water bath and allow milk to coagulate.

5. Cut curd at the appropriate time (30-45 minutes) w/ $\frac{1}{2}$ " knives. To determine cutting time, make a downward cut into the curd with knife or spatula. The curd is ready for cutting when the cut separates upon lifting and sharp edges are maintained on the top surface at the edge of the cut.. Allow the curd to rest for 5 minutes then gently and intermittently stir curd to prevent coalescence of curd particles.
- 10 6. Increase temperature to 41°C and hold until curd pH reaches 5.65 – 5.70, then drain and pour curd particles into stainless steel bowls. Float bowls in 41°C water bath to maintain curd temperature. Periodically drain excess whey, leaving only enough to cover curds for maintenance of heat.
- 15 7. When curd pH ~ 5.25 - 5.3, drain all whey and flood curd w/ D.I. water at 57°C for 5 min. Stretch the curd by hand for ~ 1min in 59°C water, then place the curd in ice water for 15 min and dry blot. Record weight of curd and refrigerate until further analysis.

Result

- 20 All the tested variants according to the invention resulted in improved yield compared to the control, when calculated as moisture adjusted yield.

Claims

1. A lipolytic enzyme derived from a parent enzyme, wherein the parent enzyme is at least 50 % identical to SEQ ID No. 1 and the parent enzyme has phospholipase activity, and wherein the variant enzyme has a modified amino acid sequence, said modification comprises a substitution of an amino acid residue corresponding to R84W in SEQ ID No. 1.
2. The variant according to any of the preceding claims, wherein the parent enzyme is derived from the enzyme shown in SEQ ID No 1 by introducing at least one amino acid substitution of an amino acid residue resulting in phospholipase activity of the parent enzyme,
10 which substitution comprises substitutions corresponding to D57G, V60G/C/K/R/L/S/Q, D62E/F/W/H/V/L/G/A/P/Q, S83T, S85Y, G91E/A/V/R, L93K, D96W/F/G, E99K, R125K, V203T, V228A, L259V/R/S, F262L, G263Q, L264A, I265T, G266D, T267A, L269N.
3. A method of increasing the ratio of phospholipase/lipase activity in a variant lipolytic
15 enzyme compared to a parent lipolytic enzyme having phospholipase activity, comprising introducing an amino acid substitution corresponding to R84W in SEQ ID No. 1 in the parent enzyme.
4. A method for producing cheese, which method comprises the steps of:
20 a) treating cheese milk or a fraction of the cheese milk with a variant enzyme according to any of the claims 1-3; and
b) producing cheese from the cheese milk, wherein step a) is conducted before and/or during step b).

Abstract

The invention relates to a lipolytic enzyme derived from a parent enzyme, wherein the parent enzyme is at least 50 % identical to SEQ ID No. 1 and the parent enzyme has phospholipase activity, and wherein the variant enzyme has a modified amino acid sequence, said modification 5 comprises a substitution of an amino acid residue corresponding to R84W in SEQ ID No. 1. The variants according to the invention combines the desirable effect of having improved yields when applying phospholipases in cheese production and at the same time avoids getting a cheese product having changed properties in terms of smell and taste when phospholipases are applied.

10

1/3

Figure 1.

Alignment of fungal lipolytic enzyme sequences

5		1			50	
	seq1	SSSSTQDYRI	ASEAEIKAHT	FYTALSANA.YCR	TVIPG.....
	seq2	.SSSTQDYRI	ASEAEIKAHT	FYTALSANA.YCR	TVIPG.....
	seq3	..SIDGGIRA	ATSQEINELT	YYTTLANS.YCR	TVIPG.....
10	seq4	.SASDGGKV	AATTAQIQEF	TKYAGIAATAYCR	SVVPG.....
	seq5TAGHAL	AASTQ.GISE	DLYSRL.VEM	ATISQAAYAD	LCNIPST...
	seq6TAGHAL	AASTQ.GISE	DLYSRL.VEM	ATISQAAYAD	LCNIPST...
	seq7	GVTTTDFSNF	KFYIQHQAAAYC.	.NSEAAAGSK
	seq8	TVTTODLSNF	RFYIQLQHADAAYC.	.NFNTAVGKP
15	seq9	DIPTTQLEDF	KFWVQYAAATYCP	NNYVAKDGEK
	seq10	DVSTSELDQF	EFWVQYAAASYYE	ADYTAQVGDK
	seq11	SVSTSTLDEL	QLFAQWSAAAYCS	NNID.SKDSN
	seq12	SVSTSTLDEL	QLFSQWSAAAYCS	NNID.SDDSN
	seq13	DVSSSLNNL	DLFAQYSAAAYCD	ENLN.STGTK
20	seq14	EVSQDLFNQF	NLFAQYSAAAYCG	KNNDAPAGTN
						33
		51			100	
	seq1	GRWSCPBCGV	AS..NLQITK	TFST..LITD	TNVLVAVGEK	EKTIYVVFRG
25	seq2	GQWSCPBCDV	AP..NLNITK	FTFT..LITD	TNVLVAVGEN	EKTIYVVFRG
	seq3	ATWDICIHCDA	TE..DLKIIK	TWST..LIYD	TNAMVARGDS	EKTIYIVFRG
	seq4	NKWDVCVQCQK	WVP.DGKIIT	TFTS..LLSD	TNGYVLRDKQ	KTIYLVFRGT
	seq5	IIK GEKIYNSQTD	INGWILRDDS	SKEIITVFRG	
	seq6	IIK GEKIYNSQTD	INGWILRYC.	.NSEAAAGSK	
30	seq7	ITCSNNGCPT	VQGNNGATIVT	SF..VGSKTG	IGGYVATDSA	RKEIVVSFRG
	seq8	VHCSAGNCPD	IEKDAAIVVG	SV..VGTKTG	IGAYVATDNA	RKEIVSVVRG
	seq9	LNCSCVGNCPD	VEAAGSTVKL	SFS.DDTITD	TAGFVAVDNT	NKAIVVAFRG
	seq10	LSCSKGNCP	VEATGATVSY	DFS.DSTITD	TAGYIAVDHT	NSAVVLAFRG
	seq11	LTCCTANACPS	VEEASTTML	EFDLTNDFFG	TAGFLAADNT	NKRLVVAFRG
35	seq12	VTCTADACPS	VEEASTKML	EFDLTNNFFG	TAGFLAADNT	NKRLVVAFRG
	seq13	LTCSCVGNCP	VEAASTQSLD	EFNESSYYGN	PAGYLAADET	NKLLVLSFRG
	seq14	ITCTGNACPE	VEKADATFLY	SFE.DSGVGD	VTGFLALDNT	NKLIVLHSFRG
						82
		40	101		150	
	seq1	TSSIRNAIAD	IVFVPVNYP	V...NGAKVH	KGFLDSYNEV	QDKLVAEVKA
	seq2	TSSIRNAIAD	IVFVPVNYP	V...NGAKVH	KGFLDSYNEV	QDKLVAEVKA
	seq3	SSSIRNWIAD	LTFVPVSYPP	V...SGTKVH	KGFLDSYGEV	QNELVATVLD
	seq4	NSFRSAITDI	VFNFSDYKPV	...KGAKVHA	GFLSSYEQVV	NDYFPVVQEQ
45	seq5	TGSDTNLQLD	TNYTLTPFDT	LPQCNCGEVH	GGYYIGWVSV	QDQVESLVKQ
	seq6	ITCSNNGCPT	VQGNNGATIVT	SF..VGSKTG	IGGYVATDDS	SKEIITVFRG
	seq7	SINIRNWLTN	LDFG.QEDCS	L..VSGCGVH	SGFQRRAWNEI	SSQATAAVAS
	seq8	SINVRNWITN	FNFG.QKTC	L..VAGCGVH	TGFGLDAWEV	AANVKAAVSA
	seq9	SYSIRNWVTD	ATFP.QTDPG	L..CDGCKAE	LGFWTAWKVV	RDRIIKTLDE
50	seq10	SYSVRNWVAD	ATFF.HTNPG	L..CDGCLAE	LGPWSSWKLV	RDDIIKELKE
	seq11	SSTIENWIAN	LDFFILEDNDD	L..CTGCKVH	TGFWKAWESA	ADELTSKIKS
	seq12	SSTIKNWIA	LDFILQDNDD	L..CTGCKVH	TGFWKAWEEA	ADNLTSKIKS
	seq13	SADLANWVAN	LNFGLEDASD	L..CSGCEVH	SGFWKAWSEI	ADTITSKVES
55	seq14	SRSIENWIGN	LNFDLKBEIND	I..CSGCRGH	DGFTSSWRSV	ADTLRQKVED
						130

2/3

Fig. 1 cont.

		151	200	
5	seq1	QLDRHPGYKI VVTGHSLGGA TAVLSALDLY HHGHA....N	IEIYTQQQPR	
	seq2	QLDRHPGYKI VVTGHSLGGA TAVLSALDLY HHGHD....N	IEIYTQQQPR	
	seq3	QFKQYPSYKV AVTGHSLGGA TALLCALDLY QREEGLSSSN LFLYTOGQPR		
	seq4	LTAHPTYKVVI VTGHSLGAAQ ALLAGMDLYQ REPRILSPKNL SIFTVGGPRV		
	seq5	QVSQYPDYAL TVTGHSLGAS LAALTAAQL. SATYD....N	IRLYTFGEPR	
10	seq6	TGSDTNLQLD TNYTLTPFDT LPQCNSCVEH GGGYIGWISV QDQVESLVQQ		
	seq7	ARKANPSFNV ISTGHSLGGA VAVLAAANLR VGGT....P	VDIYTYGSPR	171
	seq8	AKTANPTFKF VVTGHSLGGA VATIAAAYLR KDF....P	FDLTYTYGSPR	
	seq9	LKPEHSDYKI VVVGHSLGAA IASLAAADLR TKNY....D	AILEYAYAAPR	
	seq10	VVAQANPNYEL VVVGHSLGAA VATLAATDLR GKGYP....S	AKLYAYASPR	
15	seq11	AMSTYSGYTL YFTGHSLGGA LATLGATVLR NDGY....S	VELYTYGCPR	
	seq12	AMSTYSGYTL YFTGHSLGGA LATLGATVLR NDGY....S	VELYTYGCPR	
	seq13	ALSDHSDYSL VLTGHSYGAA LAALAATALR NSCH....S	VELYNYGQPR	
	seq14	AVREHPDYRV VFTGHSLGGA LATVAGADLR GNGY....D	IDVFSYGAPE	175
20		201	250	
	seq1	IGTPAFANYV IGT..... KIPYQRLVHE RDIVPHLPPG AFGFLHAGEE		
	seq2	IGTPEFANYV IGT..... KIPYQRLVNE RDIVPHLPPG AFGFLHAGEE		
	seq3	VGDPAFANYV VST..... GIPYRRTVNE RDIVPHLPPA AFGFLHAGEE		
25	seq4	GNPTEFAYYVE ST.....G IPFQRTVHXR DIVPHVPPQS FGFLHPGVES		
	seq5	SGNQAFASYM NDAFQASSPD TTQYFRVTHA NDGIPNLPV EQGYAHGGVE		
	seq6	QVSQYPDYAL TVTGHSLGAS LAALTAAQL. SATYD....N	IRLYTFGEPR	
	seq7	VGNAQLSAFV SNQ..... AGGEYRVTHA DDPVPLPPL IFGYRHTTPE		
	seq8	VGNDFFFANFV TQO..... TGAEYRVTHG DDPVPLPPI VFGYRHTSPE		
30	seq9	VANKPLAEFI TNQ..... GNNYRFTHN DDPVKLPLL TMGYVHISPE		
	seq10	VGNAALAKYI TAQ..... GNNFRFTHT NDPVKLPLL SMGYVHVSPE		
	seq11	IGNYALAEHI TSQ.....G SGANFRVTHL NDIVPRVPPM DFGFSQPSPE		
	seq12	IGNYALAEHI TSQ.....G SGANFPVTBL NDIVPRVPPM DFGFSQPSPE		
	seq13	LGNEALATYI TDQ.....N KGGNYRVTHA NDIVPKLPTT LLGYHHFSPE		
35	seq14	VGNRAFAEFL TVQ.....T GGTLRYRITHA NDIVPRLPPR EFGYSHSSPE		219
		251	300	
40	seq1	FWIMK..... DSSLRV CPNGIETDNC SNSIVPFT.. SVIDHLSYLD		
	seq2	FWIMK..... DSSLRV CPNGIETDNC SNSIVPFT.. SVIDHLSYLD		
	seq3	YWITD..... NSPETVQV CTSDELETSDC SNSIVPFT.. SVLDHLSYFG		
	seq4	WIKS..... GTSNVQIC TSEIETKDCS NSIVPFT..S ILDHLSYFDI		
	seq5	YWSV....DP YSAQNTFVCT GDEVQCCE.A QGGQGVN... NAHTTYF.		
	seq6	S.NQAFASYM NDAFQASSPD TTQYFRVTHA NDGIPNLPV DEGYAHGVVE		
45	seq7	FWLSSGGGDK VDYTISDVKV CEGAANLG.C NGGTLGL... DIAAHLHYF.		259
	seq8	YWLNQ.GPLD KDYTWTTEIKV CEGIANVM.C NGGTIGL... DILAHITYF.		
	seq9	YYITA..PDN TTVDNDQVTV LDGYVNFK.G NTGTSGGLPD LLAFHSHVWY		
	seq10	YWITS..PNN ATVSTS迪KV IDGDSFD.G NTGTGLPLT DFEAHIWYF.		
	seq11	YWITS..GNG ASVTASDIEV IEGINSTA.G NAGEATV... SVLAHLWYF.		
50	seq12	YWITS..GTG ASVTASDIEL IEGINSTA.G NAGEATV... DVLAHLWYF.		
	seq13	YYIIS..ADE ATVTTTDVTE VTGIDATG.G NDGTDGT... SIDAKRWYF.		
	seq14	YWIKS..GTL VPVTRNDIVK IEGIDATG.G NNQPNIP... DIPANLWYF.		262

55

60

3/3

Fig. 1 cont.

	301	350
5	seq1 MNTGL.CL..	
	seq2 MNTGL.CL..	
	seq3 INTGL.CT..	
	seq4 NEGS..CL..	
	seq5 GMTSGACTW..	
10	seq6 YWSV....DP YSAQNTFVCT GDEVQCCE.A QGGQQGVN... NAHTTYF.	
	seq7 QATDA.CNAG GFSWRYYRSA ESVDKR..	284
	seq8 QSMAT.CAPI AIPWKR..	
	seq9 FIHADACKGP GPLLR..	
15	seq10 VQVDAGKGPG LPFKR..	
	seq11 FAISE.CLL..	
	seq12 FAISE.CLL..	
	seq13 IYISE.CS..	
	seq14 GLIGT.CL..	269
20		
	351	366
	seq1	
	seq2	
	seq3	
25	seq4	
	seq5	
	seq6 GMTSGHCTW..	
	seq7	
	seq8	
30	seq9	
	seq10	
	seq11	
	seq12	
	seq13	
35	seq14	

40

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.