Uniswap V3 Pricing Review for Lenders

Abstract

With the creation of Uniswap, thorough stochastic pricing analysis has been reviewed by Bardoscia and Milionis describing it's spot pricing dynamics. Since it's release, only a few protocols have been created to address leveraged perpetual options using Uniswap V3 pricing dynamics, effectively creating a "loan" based on backed collateral for position holders. Below is a review of simulation using Mathematica to generate empirical risk profiles for V3 positions with standard techniques in Stochastic Calculus.

Stochastic Calculus Review

Ito's Lemma

Single Variable Ito's Lemma

Out[136]=

14.2.3 Ito's Lemma

The central tool in stochastic differential equations is **Ito's lemma**, which basically says that a smooth function of an Ito process is itself an Ito process.

THEOREM 14.2.1 Suppose that $f: R \to R$ is twice continuously differentiable and that $dX = a_t dt + b_t dW$. Then f(X) is the Ito process

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) a_s ds + \int_0^t f'(X_s) b_s dW + \frac{1}{2} \int_0^t f''(X_s) b_s^2 ds$$

for $t \geq 0$.

In differential form, Ito's lemma becomes

$$df(X) = f'(X) a dt + f'(X) b dW + \frac{1}{2} f''(X) b^2 dt.$$
 (14.9)

In[49]:= SVIto[F_, var_, stocs_] := Sum[i[2] * D[F, var] * dli[1], {i, {{t,
$$\alpha$$
}, {W, β }}}] + $\frac{1}{2}\beta^2$ * D[F, {var, 2}] * dlt /. stocs // Simplify

Multivariable Ito's Lemma

THEOREM 14.2.3 Let W_1, W_2, \ldots, W_m be Wiener processes and let $X \equiv (X_1, X_2, \ldots, X_m)$ X_m) be a vector process. Suppose that $f: R^m \to R$ is twice continuously differentiable and X_i is an Ito process with $dX_i = a_i dt + b_i dW_i$. Then df(X) is the following Ito process,

$$df(X) = \sum_{i=1}^{m} f_i(X) dX_i + \frac{1}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} f_{ik}(X) dX_i dX_k,$$

Out[50]=

with the following multiplication table:

×	dW_i	dt
$\overline{dW_k}$	ρ _{ik} dt	0
dt	0	0

Here, ρ_{ik} denotes the correlation between dW_i and dW_k .

Sanity Checks

The Single Variable Ito should correctly return GBM.

In [52]:= SVI to @@
$$\left\{e^{S}, S, \left\{dS \rightarrow \mu dI + \sigma dIW, \alpha \rightarrow \mu, \beta \rightarrow \sigma\right\}\right\}$$
 // $\left(\frac{\sharp}{e^{S}}\right)$ & // Simplify Out [52]:= $\left(\mu + \frac{\sigma^{2}}{2}\right)dI + \sigma dIW$

The Multi-variable Ito should correctly return the Forward Contract process.

In[53]:= MVIto @@
$$\{ S * e^{y (T-t)}, \{ S, t \}, \{ d \mid S \rightarrow \mu S d \mid t + \sigma S d \mid W \} \}$$
Out[53]:= $\frac{1}{2} e^{(-t+T)y} S (-2 + y d \mid t) ((y - \mu) d \mid t - \sigma d \mid W)$

In[54]:=

The Multi-variable Ito should correctly return the Log Normal process.

In[55]:= MVIto @@ { Log[S], {S, t}, {dIS
$$\rightarrow \mu$$
SdIt + σ SdIW}} //

Expand //

(# /. {(dIt)² \rightarrow 0, (dIW)² \rightarrow dIt, dItdIW \rightarrow 0}) & //

Simplify

Out[55]= $\left(\mu - \frac{\sigma^2}{2}\right)$ dIt + σ dIW

Geometric Brownian Motion

Geometric Brownian Motion is a process that assumes random percent changes. Rather than random step changes, this has features where the value is not negative and is modeled in lots of natural processes.

In[56]:= diffGBM =
$$d$$
 S \rightarrow S $\left(\mu + \frac{\sigma^2}{2}\right) d$ t + S σd W;

Ornstien-Uhlenbeck

Ornstien-Uhlenbeck processes drive to the mean μ as time goes on. This is in effect a mean reverting process model.

In[57]:= diffOrnstienUhlenbeck =
$$dIX \rightarrow \kappa (\mu - X) dIt + \sigma dIW$$
;

In[58]:= SVIto[X^2 , X , $\{\alpha \rightarrow -\kappa * X$, $\beta \rightarrow \sigma\}$]

Out[58]:= $\left(-2 X^2 \kappa + \sigma^2\right) dIt + 2 X \sigma dIW$

In[59]:= MVIto[X^2 , $\{X, t\}$, $\{dIX \rightarrow -\kappa * X dIt + \sigma dIW\}$] //

Expand //

 $\left(\# /. \left\{(dIt)^2 \rightarrow 0, (dIW)^2 \rightarrow dIt, dIt dIW \rightarrow 0\right\}\right) \& //$

Simplify

Out[59]:= $\left(-2 X^2 \kappa + \sigma^2\right) dIt + 2 X \sigma dIW$

Uniswap V3 Stochastic Analysis

Value of a Uniswap V3 Position

Uniswap State Equations

Pricing Derivations for Impermanent Loss

```
In[66]:= ethDailyVol = 0.0034;
        ethMeanYearly = 0.1;
        currentPrice = 1628;
        lowerBound = 1600;
        upperBound = 1700;
        initialValue = 10000;
 In[109]:= currentLiquidityParams =
          Liquidity[lowerBound, upperBound, currentPrice, initialValue] // N
Out[109]=
        \{\{x \rightarrow 4.37661, y \rightarrow 2874.87, L \rightarrow 8249.71\}\}
 In[110]:= originalValue =
           x*p + y /. tokensGivenLiquidity /. \{p_a \rightarrow lower, p_b \rightarrow higher, p \rightarrow startPrice\};
        currentValue = x * p + y /. tokensGivenLiquidity /. \{p_a \rightarrow lower, p_b \rightarrow higher\};
        \label{eq:humanReadable} \text{humanReadable} \, = \, \Big\{ \, \text{lower} \, \rightarrow \, p_a \, , \, \, \text{higher} \, \rightarrow \, p_b \, , \, \, \text{startPrice} \, \rightarrow \, p_\theta \Big\};
  In[77]:= IL /. humanReadable // Simplify;
```

Plotting to Understand Value Curves

In[78]:= valueCurve = currentValue /. currentLiquidityParams;

```
In[79]:= GraphicsGrid[{{
          Plot valueCurve /.
              \Big\{ \text{lower} \, \rightarrow \, \text{lowerBound}, \, \, \text{higher} \, \rightarrow \, \text{upperBound}, \, \, \text{startPrice} \, \rightarrow \, \text{currentPrice} \Big\},
            \{p, lowerBound\}, AxesLabel \rightarrow \{"Price", "USD Value"\}\}
            IL /. {lower → lowerBound, higher → upperBound, startPrice → currentPrice},
            {p, lowerBound, upperBound}, AxesLabel → {"Price", "Percent Change"}
         }}]
```


Pricing With IL

resultIL /. humanReadable

$$\text{Out[81]=} \quad \frac{d \, W \left(4 \, p \, \sigma - 4 \, \sqrt{p} \, \sigma \, \sqrt{p_b}\right) + d \, t \left(2 \, p \left(2 \, \mu + \sigma^2\right) - \sqrt{p} \, \left(4 \, \mu + \sigma^2\right) \, \sqrt{p_b}\right)}{4 \left(p_0 + \left(-2 \, \sqrt{p_0} \, + \sqrt{p_a}\right) \, \sqrt{p_b}\right)}$$

In[82]:= preprocessIL = resultIL /. currentLiquidityParams[[1]]/.

$$\left\{ \text{p} \rightarrow \text{p[t], W} \rightarrow \text{W[t], lower} \rightarrow \text{lowerBound, higher} \rightarrow \text{upperBound, } \mu \rightarrow \frac{\text{ethMeanYearly}}{365} \right. \\ \sigma \rightarrow \text{ethDailyVol, startPrice} \rightarrow \text{currentPrice} \right\} \text{ } \text{\textit{W} N / Simplify}$$

 $\texttt{Out[82]=} \quad \textbf{0.000228404} \ \textit{d} \ \textit{t} \ \sqrt{\textit{p[t]}} \ + \ \textbf{0.0028049} \ \textit{d'W[t]} \ \sqrt{\textit{p[t]}} \ - \ \textbf{5.59742} \times 10^{-6} \ \textit{d't} \ \textit{p[t]} - \ \textbf{0.0000680288} \ \textit{d'W[t]} \times \textit{p[t]}$

```
In[83]:= procIL = ItoProcess dV[t] == preprocessIL,
            V[t], {V, 10000}, {t, 0}, {W \approx WienerProcess[], p \approx
               GeometricBrownianMotionProcess \left[\frac{\text{ethMeanYearly}}{365}, \text{ethDailyVol, currentPrice}\right];
        fsIL = RandomFunction[procIL, \{0, 90\}, 5];
  In[85]:= Mean[fsIL[90]]
 Out[85]= 10000.
 In[108]:= Show[{
           ListLinePlot[fsIL, FillingStyle → Axis]
         }]
Out[108]=
        10000.00
        10000.00
        10000.00
         9999.99
         9999.98
         9999.97
         9999.96
                                      40
                          20
                                                   60
                                                               80
```

Pricing with Position Value

```
In[129]:= preprocessPV =
            currentValue /. {lower \rightarrow lowerBound, higher \rightarrow upperBound, p \rightarrow p[t]} /.
              currentLiquidityParams;
 In[130]:=
        preprocessPV
Out[130]=
         \left\{8249.71\left(-40+\sqrt{p[t]}\right)+200.085\left(10\sqrt{17}-\sqrt{p[t]}\right)\sqrt{p[t]}\right\}
 ln[131]:= procPV = TransformedProcess[preprocessPV, {p \approx }
                 Geometric Brownian Motion Process \Big[ \frac{\text{eth Mean Yearly}}{365} \, , \, \, \text{eth Daily Vol}, \, \, \text{current Price} \Big] \Big\},
              t];
         fsPV = RandomFunction[procPV, {0, 90, 1}, 5];
```

In[134]:= Mean[fsPV[90]]

Out[134]=

10048.

ListLinePlot fsPV, FillingStyle → Axis

Out[135]=

Further Research

Out[94]//TableForm=

Impermanent Loss in Uniswap V3

Uniswap Liquidity V3 Math

https://lambert-guillaume.medium.com/an-analysis-ofimpermanent-loss-in-uniswap-bfbfebbefed2

http://atiselsts.github.io/pdfs/uniswap-v3-liquidity

Perpetual Lending Stochastic Analysis

Mean-Reverting Additional Value Term

TBD