第三爷

幂级数

- 一、函数项级数的概念
- 二、幂级数及其收敛性
- 三、幂级数的运算

一、函数项级数的基本概念

1. 函数项级数

设 $u_n(x)$ $(n = 1, 2, \cdots)$ 为定义在区间 I 上的函数, 称 $\sum_{n=1}^{\infty} u_n(x) = u_1(x) + u_2(x) + \cdots + u_n(x) + \cdots$

为定义在区间 I 上的函数项级数.

2. 收敛点、发散点

对 $x_0 \in I$,若常数项级数 $\sum_{n=1}^{\infty} u_n(x_0)$ 收敛,称 x_0 为其收

敛点; 若常数项级数 $\sum_{n=1}^{\infty} u_n(x_0)$ 发散, 称 x_0 为其发散点.

3. 收敛域、发散域 所有收敛点的全体称为其收敛域; 所有发散点的全体称为其发散域 .

4. 和函数

在<mark>收敛域</mark>上,函数项级数的和是x的函数S(x),称它为级数的和函数,并写成 $S(x) = \sum_{n=0}^{\infty} u_n(x)$

5. 余项 $r_n(x) = S(x) - S_n(x)$

其中, $S_n(x) = \sum_{k=1}^n u_k(x)$ 表示函数项级数前 n 项的和.

则在收敛域上有 $\lim_{n\to\infty} S_n(x) = S(x)$, $\lim_{n\to\infty} r_n(x) = 0$

例1. 等比级数 $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$

它的收敛域是(-1,1),当 $x \in (-1,1)$ 时,有和函数

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

它的发散域是 $(-\infty, -1]$ 及 $[1, +\infty)$,或写作 $|x| \ge 1$.

二、幂级数及其收敛性

1. 幂级数

形如
$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots + a_n (x - x_0)^n + \cdots$$

的函数项级数称为幂级数,其中数列 a_n $(n = 0,1,\cdots)$ 称为幂级数的系数.

因为若令
$$t = x - x_0$$
 则 $\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} a_n t^n$

所以只研究

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

2. 幂级数的收敛域

定理.(Abel定理) 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$

在 $x = x_0$ 点收敛,则它在满足 $|x| < |x_0|$

的一切点x 处都绝对收敛.

反之, 若当 $x = x_0$ 时该幂级数发散,则它在满足 $x > |x_0|$ 的一切点 x 处也发散.

定理.(Abel定理) 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$

在 $x = x_0$ 点收敛,则它在满足 $|x| < |x_0|$

的一切点 x 处 都绝对收敛.

反之, 若当 $x = x_0$ 时该幂级数发散,则它在满足 $|x| > |x_0|$ 的一切点x处 也发散.

证(1):设 $\sum_{n=0}^{\infty} a_n x_0^n$ 收敛,则必有 $\lim_{n\to\infty} a_n x_0^n = 0$,于是存在

常数 M > 0, 使 $a_n x_0^n \le M \quad (n = 1, 2, \dots)$

$$|a_n x^n| = \left| a_n x_0^n \frac{x^n}{x_0^n} \right| = \left| a_n x_0^n \right| \cdot \left| \frac{x}{x_0} \right|^n \le M \left| \frac{x}{x_0} \right|^n$$

定理.(Abel定理) 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$

在 $x = x_0$ 点收敛,则它在满足 $|x| < |x_0|$

的一切点x处都绝对收敛.

反之, 若当 $x = x_0$ 时该幂级数发散,则它在满足 $|x| > |x_0|$ 的一切点 x处也发散.

$$\mathbf{IE}(1): |a_n x^n| = \left| a_n x_0^n \frac{x^n}{x_0^n} \right| = \left| a_n x_0^n \right| \cdot \left| \frac{x}{x_0} \right|^n \le M \left| \frac{x}{x_0} \right|^n$$

当
$$|x| < |x_0|$$
时, $\sum_{n=0}^{\infty} M |\frac{x}{x_0}|^n$ 收敛, $\therefore \sum_{n=0}^{\infty} |a_n x^n|$ 也收敛,

故原幂级数绝对收敛.

定理.(Abel定理) 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$

在 $x = x_0$ 点收敛,则它在满足 $|x| < |x_0|$

的一切点 x处都绝对收敛.

反之, 若当 $x = x_0$ 时该幂级数发散,则它在满足 $|x| > |x_0|$ 的一切 点x 处也发散.

证(2): 反证法

假设有一点 x_1 满足 $|x_1| > |x_0|$ 且使级数收敛,则由前面的证明可知,级数在点 x_0 也应收敛,与所设矛盾,故假设不真. 所以若当 $x = x_0$ 时幂级数发散,则对一切满足不等式 $|x| > |x_0|$ 的 x,原幂级数也发散.

由Abel 定理可以看出, $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域是以原点为中心的区间.

用±R表示幂级数收敛与发散的分界点,则

R = 0 时, 幂级数仅在 x = 0 收敛;

 $R = \infty$ 时, 幂级数在 $(-\infty, +\infty)$ 收敛;

 $0 < R < \infty$,幂级数在(-R,R)收敛;在[-R,R]

外发散; 在 $x = \pm R$ 可能收敛也可能发散.

R 称为收敛半径,(-R,R) 称为收敛区间.

(-R,R) 加上收敛的端点 称为收敛域.

发 散

火 の 敛

散

定理2. 若
$$\sum_{n=0}^{\infty} a_n x^n$$
 的系数满足 $\lim_{n\to\infty} a_{n+1} \to \rho$, 则

1) 当
$$0<\rho<\infty$$
 时, $R=\frac{1}{\rho}$;

2) 当
$$\rho = 0$$
 时, $R = \infty$;

3) 当
$$\rho = \infty$$
时, $R = 0$.

i.e.
$$\lim_{n\to\infty} \left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| = \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| \cdot |x| = \rho |x|$$

1) 若 $\rho \neq 0$,则根据比值审敛法可知:

当
$$\rho |x| < 1$$
,即 $|x| < \frac{1}{\rho}$ 时,原级数收敛;
当 $\rho |x| > 1$,即 $|x| > \frac{1}{\rho}$ 时,原级数发散.
因此级数的收敛半径 $R = \frac{1}{\rho}$.

定理2. 若
$$\sum_{n=0}^{\infty} a_n x^n$$
 的系数满足 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$,则

- 1) 当 $0<\rho<\infty$ 时, $R=\frac{1}{\rho}$;
- 2) 当 $\rho = 0$ 时, $R = \infty$;
- 3) 当 $\rho = \infty$ 时,R = 0.

i.e.
$$\lim_{n\to\infty} \left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| = \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| \cdot |x| = \rho |x|$$

- 2) 若 $\rho = 0$, 则根据比值审敛法可知, 对任意 x 原级数绝对收敛,因此 $R = \infty$;
- 3) 若 $\rho = \infty$,则对除 x = 0 以外的一切 x 原级数发散, 因此 R = 0.

定理2. 若
$$\sum_{n=0}^{\infty} a_n x^n$$
 的系数满足 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$,则

- 1) 当 $0 < \rho < \infty$ 时, $R = \frac{1}{\rho}$;
- 2) 当 $\rho = 0$ 时, $R = \infty$;
- 3) 当 $\rho = \infty$ 时,R = 0.

$$\sum_{n=0}^{\infty} a_n x^n$$
 的收敛半径为 $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$

例1. 求幂级数
$$x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots+(-1)^{n-1}\frac{x^n}{n}+\cdots$$
的收敛半径及收敛域.

解:
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{\frac{-n}{n}}{\frac{1}{n+1}} = 1$$

对端点 x = 1, 级数为交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$, 收敛;

对端点 x = -1, 级数为 $\sum_{n=1}^{\infty} \frac{-1}{n}$, 发散.

故收敛域为(-1,1].

例2. 求下列幂级数的收敛域:

规定:0!=1

(1)
$$\sum_{n=0}^{\infty} \frac{1}{n!} x^n$$
; (2) $\sum_{n=0}^{\infty} n! x^n$.

$$(2) \sum_{n=0}^{\infty} n! \, x^n.$$

解: (1)

$$\therefore R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{\frac{1}{n!}}{\frac{1}{(n+1)!}} = \lim_{n \to \infty} (n+1) = \infty$$

所以收敛域为 $(-\infty, +\infty)$.

例2. 求下列幂级数的收敛域:

规定:0!=1

(1)
$$\sum_{n=0}^{\infty} \frac{1}{n!} x^n$$
; (2) $\sum_{n=0}^{\infty} n! x^n$.

$$(2) \sum_{n=0}^{\infty} n! x^n.$$

解: (2)

$$\therefore R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0$$

所以级数仅在x=0处收敛.

例3. 求幂级数
$$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} x^{2n}$$
 的收敛半径.

解: 级数缺少奇次幂项,不能直接应用定理2, 故直接由比值审敛法求收敛半径.

例4. 求幂级数
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n n}$$
 的收敛域.

解: 令
$$t = x - 1$$
, 级数变为 $\sum_{n=1}^{\infty} \frac{1}{2^n n} t^n$

当
$$t=2$$
 时,级数为 $\sum_{n=1}^{\infty}$,此级数发散

当
$$t = -2$$
 时,级数为 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$,此级数收敛;

因此级数的收敛域为 $-2 \le t < 2$,

故原级数的收敛域为 $-2 \le x - 1 < 2$,即 $-1 \le x < 3$.

三、幂级数的运算

1. 幂级数的加减运算

设幂级数
$$\sum_{n=0}^{\infty} a_n x^n$$
 及 $\sum_{n=0}^{\infty} b_n x^n$ 的收敛半径分别为 R_1 , R_2 ,

$$R = \min\{R_1, R_2\}$$
,则在(-R,R)内 $\sum_{n=0}^{\infty} (a_n \pm b_n) x^n$ 绝对收敛,

且:

$$\sum_{n=0}^{\infty} (a_n \pm b_n) x^n = \sum_{n=0}^{\infty} a_n x^n \pm \sum_{n=0}^{\infty} b_n x^n$$

2. 幂级数的分析运算

若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径 R > 0,则其和函

数S(x)在收敛域上连续,且在收敛区间内可逐项求导与

逐项求积分,运算前后收敛半径相同:

$$S'(x) = \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=1}^{\infty} n a_n x^{n-1}, \quad x \in (-R, R)$$

$$\int_0^x S(x) \, dx = \sum_{n=0}^{\infty} a_n \int_0^x x^n \, dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}, \quad x \in (-R, R)$$

$$S(x) - S(0)$$
帮助求和函数!

幂级数三个主要问题:

1. R及收敛域

2.
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 展开

$$3. \sum_{n=0}^{\infty} a_n x^n = S(x) \mathfrak{R}$$

例5 求幂级数 $\sum_{i=1}^{\infty} n x^{n-1}$ 的和函数 S(x).

解: 易求出幂级数的收敛半径为1,x=±1时级数发

散, 故当 $x \in (-1,1)$ 时,

$$S(x) = \sum_{n=1}^{\infty} nx^{n-1}$$

$$\int_0^x S(x) dx = \sum_{n=1}^\infty \int_0^x nx^{n-1} dx = \sum_{n=1}^\infty x^n = \frac{x}{1-x}$$

$$S(x) = \left(\frac{x}{1-x}\right)' = \frac{1}{\left(1-x\right)^2}$$

注 幂级数特点: xn-1系数为n比x次数大1

方法: 先积分后求导 系指差1先求积

例6 求级数 $\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$ 的和函数 S(x)

PR:
$$S(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$$

$$S'(x) = \sum_{n=0}^{\infty} \left(\frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \quad -1 < x < 1$$

两边取变限积分得
$$\int_0^x S'(x) dx = \int_0^x \frac{1}{1-x} dx$$

$$S(x) - S(0) = -\ln(1-x)$$
, $\therefore S(x) = -\ln(1-x)$, $-1 < x < 1$

因为x=-1时级数收敛 而- $\ln(1-x)$ 连续,所以

$$S(x) = -\ln(1-x), -1 \le x < 1$$

注: 幂级数的一般项特点: x^{n+1} 系数为x次数的倒数

方法: 先求导后积分 系指互倒先求导

例7 求级数 $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$ 的和函数 S(x) 及 $\sum_{n=0}^{\infty} \frac{1}{(n+1)2^n}$.

解: 易求出幂级数的收敛半径为 1, 且 x = -1 时级数收敛, 则当 $x \neq 0$ 时,有

$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1} = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} = \frac{1}{x} \sum_{n=0}^{\infty} \int_{0}^{x} x^n dx = \frac{1}{x} \int_{0}^{x} \left(\sum_{n=0}^{\infty} x^n\right) dx$$

$$\overrightarrow{\text{mi}} \quad S(0) = 1, \quad S(x) = \begin{cases} -\frac{1}{x} \ln(1-x), & x \in [-1,0) \cup (0,1) \\ 1, & x = 0 \end{cases}$$

$$\sum_{n=0}^{\infty} \frac{1}{(n+1)2^n} = S(\frac{1}{2}) = -2\ln(1 - \frac{1}{2}) = 2\ln 2$$

内容小结

- 1. 求幂级数收敛域的方法

 - 2) 对非标准型幂级数(缺项或通项为复合式) 求收敛半径时直接用比值法或根值法, 也可通过换元化为标准型再求.
- 2. 幂级数的性质
 - 1) 两个幂级数在公共收敛区间内可进行加、减运算.
 - 2) 在收敛区间内幂级数的和函数连续;
 - 3) 幂级数在收敛区间内可逐项求导和求积分.

思考与练习

1. 已知 $\sum_{n=0}^{\infty} a_n x^n$ 在 $x = x_0$ 处 条件收敛, 问该级数收敛

半径是多少?

答: 根据Abel 定理可知, 级数在 $|x| < |x_0|$ 收敛, $|x| > |x_0|$ 时发散. 故收敛半径为 $R = |x_0|$.

2*. 在幂级数
$$\sum_{n=0}^{\infty} \frac{2+(-1)^n}{2^n} x^n$$
 中,

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{1}{2} \frac{2 + (-1)^{n+1}}{2 + (-1)^n} = \begin{cases} \frac{3}{2}, & n \text{ 为奇数} \\ \frac{1}{6}, & n \text{ 为偶数} \end{cases}$$

能否确定它的收敛半径不存在?

答:不能.因为

$$\lim_{n\to\infty} \sqrt[n]{|u_n(x)|} = \lim_{n\to\infty} \sqrt[n]{2 + (-1)^n} \frac{|x|}{2} = \frac{|x|}{2}$$

当|x|<2时级数收敛,|x|>2时级数发散,:: R=2.

说明:可以证明

比值判别法成立 根值判别法成立