This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WHAT IS CLAIMED IS:

- An electroluminescence display apparatus comprising:
 a first electrode formed above a substrate;
- an emissive element layer formed on said first electrode;
 - a second electrode formed on said emissive element layer; side faces of said first electrode are inclined and become broader toward the substrate side.

10

2. An electroluminescence display apparatus according to claim 1 wherein inclined side faces of said first electrode has an angle from 10 degrees to 45 degrees with respect to the plane of the lower layer and/or the substrate.

15

3. An electroluminescence display apparatus according to claim 1 wherein inclined side faces of said first electrode has an angle from 25 degrees to 35 degrees with respect to the plane of the lower layer and/or the substrate.

20

- 4. An electroluminescence display apparatus according to claim 3 wherein the thickness of said first electrode is less than 1/2 the film thickness of said emissive element layer.
- 25 5. An electroluminescence display apparatus according to claim 3 wherein the thickness of said first electrode is less than 1/3 the film thickness of said emissive element layer.

- 6. An electroluminescence display apparatus according to claim 1 wherein the thickness of said first electrode is less than 1/2 the film thickness of said emissive element layer.
- 5 7. An electroluminescence display apparatus according to claim 1 wherein the thickness of said first electrode is less than 1/3 the film thickness of said emissive element layer.
- 8. An electroluminescence display apparatus according to
 10 claim 1, wherein said first electrode is unique to a pixel,
 and the apparatus is an active-matrix type having a thin-film
 transistor for driving said emissive element.
- 9. An electroluminescence display apparatus according to 15 claim 8 further comprising a planarization insulating film formed so as to cover said thin-film transistor, with said first electrode formed on said planarization insulating film.
- 10. An electroluminescence display apparatus according to
 20 claim 1 is a passive-matrix type wherein said first electrode
 extends in a first direction and said second electrode extends
 in a second direction so as to intersect said first electrode.
- 11. An electroluminescence display apparatus according to
 25 claim 1 wherein said emissive element layer is laminated with
 a hole transport layer, an emissive layer, and an electron
 transport layer.

12. An electroluminescence display apparatus comprising: the first electrode formed above a substrate; the emissive element layer formed on said first electrode; and

the second electrode formed on said emissive element; the thickness of said first electrode is less than 1/2 the thickness of said emissive element layer.

5

- 10

20

25

13. An electroluminescence display apparatus comprising:
the first electrode formed above a substrate;
the emissive element layer formed on said first
electrode; and

the second electrode formed on said emissive element;
the thickness of said first electrode is less than 1/3

15 the thickness of said emissive element layer.

- 14. An electroluminescence display apparatus according to claim 12 is an active-matrix type comprising said first electrode formed independently at each pixel, and thin-film transistor for driving said emissive element.
- 15. An electroluminescence display apparatus according to claim 14 further comprising the planarization insulating film formed so as to cover said thin-film transistor, with said first electrode formed on said planarization insulating film.
- 16. An electroluminescence display apparatus according to

claim 14 wherein said emissive element layer is laminated with a hole transport layer, an emissive layer, and an electron transport layer.

- 17. An electroluminescence display apparatus according to claim 12 is a passive-matrix type wherein said first electrode extends in a first direction and said second electrode extends in a second direction so as to intersect said first electrode.
- 10 18. An electroluminescence display apparatus according to claim 17 wherein said emissive element layer is laminated with a hole transport layer, an emissive layer, and an electron transport layer.