XIV: The First Law

1: First Law of thermodynamics

1.1: Definition

 Usually referred as the Law of Conservation of Energy: Energy cannot be created or destroyed, but can be transformed from one state to another.

1.2: Balance for a closed system

•

- $\Delta E = Q W$ or $\Delta E = Q + W$
- $\Delta E = Q W$, which is used for sign convention of Clausius.
- E = U + KE + PE
- $Q-W=\Delta U$
- We use specific terms(per unit mass):

$$q - w = \Delta u$$

1.3: Work for a closed system

• Total work for the sum of all the little changes.

$$\int_{1}^{2} p dV$$

•

1.4: Enthalpy,H

- ullet H=U+PV, where U is internal energy and PV is work of the fluid.
- $\bullet \;\;$ It we marks the q as the heat of a reaction:

$$\Delta H = q$$

• Note it is under the constant pressure conditions.

1.3: Specific heat capacity

- $Q=cm\Delta T$ or $q=c\Delta T$
- ullet For ideal gases at constant volume: $\Delta U = c_v m \Delta T$
- Use the ideal gas law, $p\Delta V=mR\Delta T$
- ullet Then, $Q=mc_v\Delta T+mR\Delta T$
- So we can find the specific heat capacity in constant pressure: $c_p = c_v + R = \frac{\Delta h}{\Delta T}$
- ullet $H=U_pV$ and h=u+pv

2: Polytropic processes

2.1: Boundary work

•

2.2: Isochoric process (V=constant)

•

- · Work done
- Heat transfer
- For gases with constant c_v

- $W_{12} = \int_{V_1}^{V_2} p \, dV = 0$
- $Q = \Delta U = mc_v \Delta T$
- $Q = mc_v(T_2 T_1)$

2.3: Isobaric process (P=constant)

- · Work done
- · Change in internal energy
- · Heat transfer

 $W_{12} = \int_{V_1}^{V_2} p \, dV = p(V_2 - V_1)$

$$\Delta U = mc_v \Delta T$$

$$Q = mc_p \Delta T$$

- · Work done
- For an ideal gas

$$W_{12} = \int_{V_1}^{V_2} p \, dV$$
$$pV = nR_0 T$$

$$W_{12} = \int_{V_1}^{V_2} \frac{nR_0T}{V} dV = nR_0T \int_{V_1}^{V_2} \frac{1}{V} dV = nR_0T \ln \frac{V_2}{V_1}$$

2.4: Isothermal process (T=constant)

•

- · Work done
- · For an ideal gas

 $W_{12} = \int_{V_1}^{V_2} p \, dV$ $pV = nR_0 T$

$$W_{12} = \int_{V_1}^{V_2} \frac{nR_0T}{V} dV = nR_0T \int_{V_1}^{V_2} \frac{1}{V} dV = nR_0T \ln \frac{V_2}{V_1}$$

2.5: Polytropic process (multiple process)

- Many real processes follow
- Equivalent to
- · Or using the ideal gas law

$$pV^n = \text{const}$$

 $pv^n = \text{const}$

$$TV^{n-1} = const$$
 $pT^{-n/(n-1)} = const$

• Work done (using $pV^n = \alpha$)

$$W_{12} = \int_{V_1}^{V_2} p \, dV = \alpha \int_{V_1}^{V_2} V^{-n} \, dV = \alpha \left[\frac{V^{-n+1}}{1-n} \right]_{V_1}^{V_2} = \frac{p_2 V_2 - p_1 V_1}{1-n}$$

2.6: Isentropic process (entropy process)

- · Adiabatic means no heat crosses the system boundary
- · An adiabatic process that is reversible is called isentropic
- · Special case of a polytropic process where

$$n = \gamma = \frac{c_p}{c_v}$$
 (note $\gamma = 1.4$ for air)

Adiabatic means

$$Q_{12} = 0$$

• From polytropic work (with $n = \gamma$)

$$W_{12} = \frac{p_2 V_2 - p_1 V_1}{1 - \gamma}$$

Value of n	Process	Description	Result of IGL
∞	iso <i>cho</i> ric	constant volume ($V_1 = V_2$)	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$
0	iso <i>bar</i> ic	constant pressure $(p_1 = p_2)$	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$
1	iso <i>thermal</i>	constant temperature $(T_1 = T_2)$	$p_1V_1=p_2V_2$
$1 < n < \gamma$	polytropic	-none-	$\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^n = \left(\frac{T_1}{T_2}\right)^{\frac{n}{n-1}}$
γ	is <i>entrop</i> ic	constant entropy $(S_1 = S_2)$ adiabatic & reversible	$p_2 (V_1) (T_2)$

2.7: Polytropic work

Process	Boundary Work	
iso <i>chor</i> ic	$W_{12} = p(V_2 - V_1) = 0$	
iso <i>bar</i> ic	$W_{12} = p(V_2 - V_1)$	
iso <i>thermal</i>	$W_{12} = RT \ln \frac{V_2}{V_1}$	
polytropic	$W_{12} = \frac{p_2 V_2 - p_1 V_1}{1 - n}$	
is <i>entrop</i> ic		