Sistemi Elettronici per Automazione e Robotica

5 DC/DC converters

Prof. Sergio Saponara DII, Università di Pisa

sergio.saponara@unipi.it

Agenda

- Principi convertitori DC/DC switching
- Buck converter (step-down)

Analisi in frequenza e nel tempo

- Half Bridge e Full Bridge
- Boost converter (step-up)
- Buck-Boost converter (invertente)
- MOS bridge anche per AC/DC

Principi convertitori DC-DC switching

- I regolatori switching sono costituiti da due blocchi:
 - Un "convertitore di potenza", che trasforma la tensione e la corrente in ingresso in una tensione e una corrente d'uscita di livello opportuno per alimentare correttamente il carico
 - Un anello di controllo che legge la tensione d'uscita (ed eventualmente altre grandezze) e pilota il convertitore per ottenere la tensione d'uscita voluta compensando le variazioni del carico e della tensione d'ingresso

Convertitori DC-DC switching

- □ Il convertitore ha elevata efficienza in quanto gli elementi attivi interni sono utilizzati come interruttori e non in linearità
- La legge che lega l'uscita all'ingresso del convertitore non è lineare e per di più varia a seconda delle condizioni di carico, quindi l'anello di controllo è difficile da progettare e da rendere stabile in tutte le condizioni d'utilizzo
- Nel seguito si studieranno i convertitori, mentre si darà solo uno schema di principio del controllore

- Analisi modo continuo
- □ Limiti modo continuo
- Convertitore buck: non linearità
- ➤ La caratteristica peculiare del convertitore buck è che la tensione d'uscita può solo essere più bassa di quella d'ingresso, da cui il nome di step-down
- \triangleright R_L rappresenta il carico del convertitore, C_u e C_i filtrano le correnti d'uscita e d'ingresso, il convertitore vero e proprio è costituito da S, D ed L

□ Ipotesi iniziali:

- S pilotato in modo periodico, da onda quadra, ON per tempo T₁, OFF per T₂.
- Studio a regime: tutti i cicli sono uguali (in particolare la corrente nell'induttanza all'inizio di T₁ è uguale a corrente all'inizio del ciclo successivo)
- V_I e V_U costanti in un ciclo

- Il comportamento del convertitore è diverso a seconda che la corrente nell'induttanza sia sempre diversa da 0: modo continuo (Continuous Current Mode) oppure vada a 0 per una parte di periodo (Discontinuous Current Mode)
- Si studierà prima la modalità CCM

Buck-converter analisi in dominio frequenziale

Tensione VX varia tra 0 e Vbat con andamento PWM (duty cycle D, Fsw) + Filtro LC low-pass per prelevare la DC (ft=1/2*pi*sqrt(LC) << Fsw)

Buck-converter analisi in dominio frequenziale

Se Vbat=10V
PWM (D=0.5, Fsw=1 kHz)
Filtro LC low-pass (L=10 mH, C=10 mF→ Ft=15.9
Hz<< 1kHz
Vout=D*Vbat=5 V

Buck-converter analisi nel tempo

- La chiave per ricavare la transcaratteristica dei convertitori switching consiste sempre nell'analisi di corrente e tensione nell'induttanza.
- Caratteristiche principali del componente ideale:
 - La corrente nell'induttanza non ha discontinuità
 - La relazione tra tensione e corrente in un induttore è la seguente

$$V_{L} = L \frac{di_{L}}{dt} \quad di_{L} = \frac{1}{L} V_{L} dt \quad i_{L}(t) = i_{L}(0) + \frac{1}{L} \int_{0}^{t} V_{L}(t) dt$$

- ∑ Si trascurano le cadute di tensione su D e su S
- Σ Con S chiuso, la tensione ai capi di L vale $V_L = V_{\bar{I}} V_U$
- Con S aperto, la corrente in L continua a scorrere tramite D. Perché sia possibile, occorre che il verso della corrente sia concorde col diodo. Quindi:
 - Nel convertitore buck V_I>V_U

- Indichiamo con I_a la corrente in L alla chiusura dell'interruttore
- \sum Con S chiuso, $i_L(t) = I_a + t(V_f V_U)/L$
- ightharpoonup Al termine di T_1 la corrente avrà raggiunto il valore $I_b = I_a + T_1(V_f V_U)/L$
- $I_b I_a = T_1(V_I V_U)/L$

- \supset Con S aperto, la tensione ai capi di L vale $V_L = -V_U$
- Σ Essendo V_U costante in un periodo, la corrente I_L sarà una rampa.
- ightharpoonup Il valore finale dovrà coincidere con I_a (ipotesi di regime)

- ightharpoonup Con S aperto, $i_L(t) = I_b + t(-V_U) / L$

$$\supset I_b - I_a = T_2 V_U / L$$

- ightharpoonup La relazione trovata tra V_U e V_i dà una prima idea dei compiti dell'anello di controllo. Per variare la tensione d'uscita si dovrà agire su T_1 T_2 .
- Sono possibili diverse strategie:
 - 1. T_1 costante, T_2 variabile
 - 2. T_1 variabile, T_2 costante
 - 3. T_1 variabile, T_2 variabile, ma $T_1 + T_2$ costante
- Le prime due scelte implicano variazione della frequenza di commutazione, la terza no
- La scelta 3 permette filtraggio più semplice dei disturbi prodotti dalle commutazioni dell'interruttore

- Eguagliando le due espressioni di $I_b I_a$ si ottiene:
 - $T_1(V_I V_U) / L = T_2 V_U / L$
 - $T_1 V_I = (T_1 + T_2) V_U$
 - $V_U = V_I T_1 / (T_1 + T_2)$
- □ La relazione tra le tensioni di ingresso e di uscita è solo funzione dei valori di T₁ e T₂

(Vu<Vi → è detto anche step-down; siccome efficienza teorica è 100% allora Pu=Pi e dunqe lu>li)

- ∑ Si definisce Duty-Cycle D la quantità
 - $D = T_1 / (T_1 + T_2)$
- \supset La relazione tra V_u e V_i per il convertitore buck diventa:
 - $V_U/V_I = D$
- □ Il rapporto V_U / V_i nei convertitori switching si indica normalmente con M
 - M = D per un convertitore buck in CCM
- \supset Poiché D è compreso fra 0 e 1, si è riottenuto il risultato che V_{ii} è minore o uguale a V_i

- Quali sono le condizioni per lavorare in CCM?
- Σ La funzione di C_u è di assorbire la parte variabile di I_L
- $\supset I_U$ coincide col valor medio di I_L e vale

$$I_U = V_U / R_L$$

ightharpoonup II limite del funzionamento in CCM si ha per $I_a = 0$

$$\frac{I_a + I_b}{2} = \frac{V_U}{R_L}$$
$$I_b - I_a = \frac{V_U}{L} T_2$$

- Espressione della corrente media nell'induttanza
- La differenza tra corrente massima e minima era già stata trovata prima, ma occorre esprimerla in funzione di D

$$\frac{I_a + I_b}{2} = \frac{V_U}{R_L}$$
$$I_b - I_a = \frac{V_U}{L} T_2$$

Dalla definizione di D si può ricavare un'espressione alternativa per T₂

$$D = \frac{T_1}{T_1 + T_2} = \frac{T_1}{T_{SW}}$$

$$T_2 = T_{SW} (1 - D)$$

$$T_2 = \frac{1 - D}{f_{SW}}$$

$$\frac{I_a + I_b}{2} = \frac{V_U}{R_L}$$

$$I_b - I_a = \frac{V_U}{L}T_2$$

$$D = \frac{T_1}{T_1 + T_2} = \frac{T_1}{T_{SW}}$$

$$T_2 = T_{SW}(1 - D)$$

$$T_2 = \frac{1 - D}{f_{SW}}$$

Le relazioni trovate finora possono essere combinate per ottenere un sistema

$$\begin{cases} I_b + I_a = \frac{2V_U}{R_L} \\ I_b - I_a = \frac{V_U}{L \cdot f_{SW}} (1 - D) \end{cases}$$

Spesso si dimensiona per la=0→ lb=lmax=2*Vu/RL=2*lu

Risolvendo il sistema per I_a e imponendo che sia maggiore di zero si ottiene:

$$I_{a} = \frac{V_{U}}{R_{L}} - \frac{V_{U}}{2L \cdot f_{SW}} (1 - D)$$

$$L \cdot f_{SW} > \frac{R_{L}(1 - D)}{2}$$

Spesso si dimensiona per la=0→ L=RL*(1-D)/2Fsw

- Risolvendo il sistema per I_a e imponendo che sia maggiore di zero si ottiene:
- Quali sono i gradi di libertà?
 - R_L rappresenta il carico, i limiti sono dati di progetto
 - D dipende dalla tensione d'ingresso

$$I_{a} = \frac{V_{U}}{R_{L}} - \frac{V_{U}}{2L \cdot f_{SW}} (1 - D)$$

$$L \cdot f_{SW} > \frac{R_{L} (1 - D)}{2}$$

- f_{SW} si sceglie con considerazioni su ingombro, efficienza e EMC (50kHz-1MHz)
- L è l'unico grado di libertà

- Non è possibile progettare un regolatore Buck che funzioni in CCM per qualunque condizione di carico e tensione d'ingresso
- Il modo di funzionamento dipende dal valore dei parametri di progetto e dalle condizioni operative
- Data la corrente minima del carico(R_{LMAX}) e la tensione massima d'ingresso (D_{MIN}) è possibile trovare la L_{MIN} che garantisce il CCM in condizioni nominali

$$L > \frac{R_{LMAX}(1 - D_{MIN})}{2 \cdot f_{SW}}$$

- □ Il convertitore buck CCM è un buon alimentatore?
- ightharpoonup Regolazione di carico: $\Delta V_U / \Delta I_U = 0$
 - La tensione d'uscita dipende solo da tensione d'ingresso e Duty-Cycle, quindi è un buon generatore di tensione (finché si è in CCM)
- ightharpoonup Regolazione di linea: $\Delta V_U / \Delta V_I = D$
 - E' compito del sistema di controllo stabilizzare la tensione d'uscita: il guadagno d'anello deve essere elevato
- Con Se diodo ideali il rendimento è del 100%

- Che cosa succede in caso di anomalie in ingresso o uscita?
- Cortocircuito in uscita: OK
 - il sistema di controllo può facilmente controllare la corrente d'uscita e ridurre D in caso di sovraccarico
- ∑ Sovratensioni in ingresso: KO
 - L'interruttore è collegato direttamente all'ingresso, quindi è esposto alle sovratensioni d'ingresso

Buck-converter, correnti ingresso

- Abbiamo visto le forme d'onda sull'induttore. E il resto del circuito?
- ∑ i_S, corrente nell'interruttore, scorre solo
 quando Sè chiuso, ed è
 la stessa di L durante T₁
- □ La corrente in C_i è quella dell'interruttore privata del valor medio
- La corrente d'ingresso I_i
 è il valor medio di I_s

Buck-converter, correnti di uscita

- ightharpoonup La corrente nel diodo scorre solo quando S è aperto, ed è anch'essa pari a I_L (durante T_2)
- □ La corrente in C_u è pari al ripple della corrente nell'induttanza
- La corrente I_u è pari al valor medio della corrente nell'induttanza

Buck-converter, correnti

- Dall'esame delle correnti si deduce che:
 - Il convertitore produce bassi disturbi in uscita (non vi sono salti di corrente).
 - La corrente d'ingresso invece è impulsiva, quindi un convertitore buck inietta facilmente disturbi nei circuiti a monte.
 - Considerazioni analoghe portano a dire che il condensatore d'uscita sarà sottoposto a bassi stress (corrente RMS bassa) mentre quello d'ingresso sarà molto più sollecitato.

Buck-converter esempio di dimensionamento

Specifiche: Vi sia 36V DC e Vu 12V DC, con lu 10 A

Ne segue che Pout=120W e RL=1.2 Ohm

Duty cycle D=Vu/Vin=1/3
Se scelgo componenti di potenza pilotati con frequenza di switch Fsw=100 kHz (periodo Tsw=10 us) → T1=3.33 μs, T2=6.66 μs

Imponendo che Ia=0 →
L=RL*(1-D)/2Fsw= 1.2 *0.66/200k H=4 µH e
Ib=Imax=2*Iu=20A

C in uscita è tale che 1/sqrt(LC)<<2*3.14*Fsw=628k rad/s Es con C= 100µF si ha 1/sqrt(LC)=50k rad/s

Buck-converter esempio di dimensionamento

Ingresso ha corrente media pari a quella dello switch S che è in media 10A durante T1 e 0 durante T2 e dunque vale in media 10A*T1/(T1+T2)= 3.33A (varia tra 0 e 20 A)

Buck-converter, perdite suswitch

- Come variano le caratteristiche considerando la caduta di tensione sul diodo e sullo switch?
- \triangleright Per quanto riguarda il diodo, esso modifica la tensione ai capi di \angle durante T_2 :

$$i_L(t) = I_b + t(-V_U - V_D)/L$$

Buck-converter, perdite su switch

- \supset Se lo switch è un BJT, provoca una caduta di tensione costante V_S , che cambia il valore di V_L durante T_1 :
 - $i_L(t) = I_a + t(V_T V_U V_S)/L$
- - $V_S = i_L \cdot R_{ON}$
 - Il valor medio di $i_L \grave{e} I_U$, quindi $V_S = V_U \cdot R_{ON} / R_L$

Buck-converter, perdite

- Le equazioni precedenti permettono di calcolare facilmente la transcaratteristica tenendo conto delle cadute su diodo e switch.
- Altro parametro da considerare è la componente resistiva dell'induttore.
- Tutte queste considerazioni portano ad una definizione leggermente diversa della transcaratteristica, che viene però compensata dall'anello di controllo (D deve essere leggermente più alto per avere V
 voluta).
- Le cadute di tensione su diodo, switch e sulla componente resistiva dell'induttanza provocano anche dissipazione di potenza
- Altra potenza viene dissipata nelle commutazioni dell'interruttore e nella ESR dei condensatori
- □ In generale, il fattore predominante per il rendimento è il comportamento dello switch, ma anche la caduta sul diodo può essere un problema, specie in caso di basse tensioni d'uscita.

Synchronous rectifier

- Un modo per migliorare il rendimento è sostituire il diodo con uno switch: si parla di synchronous rectifier.
- Σ S₂ deve essere chiuso durante T_2 ma deve essere aperto se I_{S2} va a zero (DCM).
- \supset Anello di controllo più complesso (deve leggere I_{SO})

Da Half a Full Bridge

Può funzionare nei quattro quadranti del piano corrente-tensione sul carico. Corrente e tensione di carico possono essere sia positive che negative. Per un carico induttivo, es. un motore in continua, questo tipo di convertitore può controllare il flusso di potenza e la velocità del motore nel funzionamento diretto (tensione e corrente di carico positive), nella frenatura a recupero diretto (tensione di carico positiva e corrente di carico negativa), nel funzionamento inverso (tensione e corrente di carico negative). Lo schema del convertitore viene realizzato mediante una struttura detta "ponte H"

Da Half a Full Bridge

La tensione di ingresso è fissa e pari a Vd, mentre quella di uscita è pari a V0 e può essere controllata in ampiezza e polarità, variando gli istanti di conduzione degli switch. Gli switch dello stesso ramo non possono condurre simultaneamente, ovvero non può avvenire l'accensione contemporanea dei transistors di una stessa gamba, per evitare i cosiddetti "corti di gamba", che distruggerebbero i componenti del ramo, nella pratica vi sarà un intervallo di tempo molto piccolo (detto blanking time) in cui gli switch della stessa gamba saranno in condizione di off.

Controlli da MCU per Half e Full Bridge

MCU con algoritmo di controllo genera internamente i segnali per comandare half e full bridge (Gate driver necessari se out di MCU non ha abbastanza tensione/corrente per pilotare Power Switch, es IGBT con 2500 pF 10V su Gate in 100 ns chiede 250 mA (I=C*dV/dt)

Boost converter(detto anche Step-up converter)

Una volta compreso il buck converter, le altre topologie sono ricavabili seguendo gli stessi principi.

Ad esempio il boost converter è usato per avere una tensione di uscita più grande di quella di ingresso (la corrente sarà minore non potendo avere rendimenti maggiori di uno) Vo=VI/(1-D)

Boost converter

Boost converter

Buck-Boost converter

Buck-Boost converter usato per avere una tensione di uscita in opposizione di fase a quella di ingresso, sia minore che maggiore in modulo

Abs(Vo)=Abs(Vi)*D/(1-D)

Buck-Boost converter

MOS Bridge anche per AC/DC

Totem-Pole Bridgless AC/DC conversion con SiC MOSFET per onboard power charger (grazie a SiC Mosfet reggono tensione di linea)

MOS Bridge anche per AC/DC

A differenza di AC/DC con regolatori a SCR sorgente in AC (rete) vede assorbimento come se carico fosse resistivo anche se carico ha parte reattiva → ottima PFC (Power Factor Correction) https://www.ti.com/lit/ug/tidu e54b/tidue54b.pdf?ts=15931 08591005&ref url=https%25 3A%252F%252Fwww.ti.com %252Ftool%252FTIDA-01604

Figure 2. Totem-Pole Bridgeless PFC Operation During Positive Half Cycle: (A) While S₂ is Switched ON (B) While S₂ is Switched OFF

Figure 3. Totem-Pole Bridgeless PFC Operation During Negative Half Cycle:
(A) While S₁ is Switched ON (B) While S₁ is Switched OFF

6.6 kW on-board charger con SiC MOSFET Bridge (trifase e neutro)

