Advanced Machine Learning

Bilel GUETARNI, PhD

bilel.guetarni@junia.com

How to learn with a linear perceptron?

- Training stage
 tuning the weights until the desired behavior is reached
- Pay attention to the learning rate parameter η
 - Too big risk of non convergence
 - Too small many iterations

- The final solution (values of weights) depends
 - Initial weights
 - Training learning rate
 - The organization of the training base (appearance order)

- The final solution (values of weights) depends
 - Initial weights
 - Training learning rate
 - The organization of the training base (appearance order)
- Robustness of solution

- The final solution (values of weights) depends
 - Initial weights
 - Training learning rate
 - The organization of the training base (appearance order)
- Robustness of solution

- The final solution (values of weights) depends
 - Initial weights
 - Training learning rate
 - The organization of the training base (appearance order)
- Robustness of solution
- The linear perceptron will not converge if samples are not linearly separable

Limitation of linear perceptron

How to deal with nonlinear data?

Multi Layer Perceptron MLP

- Multiple layers
 - Neurons distributed over q layers c_0 , c_1 ,...., c_q
 - c_0 input layer
 - c_q output layer
 - $c_1,...,c_{q-1}$ hidden layers

Multi Layer Perceptron MLP

- Multiple layers
 - Neurons distributed over q layers c_0 , c_1 ,...., c_q
 - c_0 input layer
 - c_q output layer
 - $c_1,...,c_{q-1}$ hidden layers

Multi Layer Perceptron MLP

Multi Layer Perceptron MLP algorithm (forward backward propagation) – Stochastic Gradient Descent

Input layer

- Set randomly weights w_{ij} in [-0.5, 0.5]
- Repeat
 - Take an example (X,c) from S
 - Calculate $\sigma(x_i)$ for each hidden neurone i
 - Calculate the outputs $o_{\tilde{i}}$
 - For each output neuron i
 - $\delta_i = o_{\tilde{i}} * (1 o_{\tilde{i}}) * abs(c o_{\tilde{i}})$

 $\sigma'(x)$ the derivative of sigmoid log in this example

For each hidden neuron i of current layer

•
$$\delta_i = \sigma(x_i) * (1 - \sigma(x_i)) * \sum_{j \in succ(i)} \delta_j * w_{ij}$$

$$\sigma'(x_i)$$

The loss

 $\begin{array}{ccc}
x_i/\sigma(x_i) & \overline{x_j/\sigma(x_j)} \\
& w_{ij} & \delta_j \\
& & \delta_j
\end{array}$

Output layer

- For each weight w_{ij} [update weights based on the gradient]
 - $w_{ij} = w_{ij} \eta * \delta_j * \sigma(x_i)$ where $\sigma(x_i) = x_i$ for input layer
- EndRepeat when covering all examples from S
- Calculate the MSE
 - If (MSE ≠ 0 and total epochs not reached) then go to Repeat

The gradient

descente rule

MLP and gradient descent for optimization

Find the best weights that minimizes the Mean Square Error - MSE

(Gradient descent method)

$$MSE(w) = \frac{1}{n} \sum_{(X,c) \text{ in } S} (c - o)^2$$

Lab session

- Implement your MLP algorithm to learn 'XOR' function and test it
 - using normal distribution of weights [0, 1]
 - using 3 different architectures (network depth and hidden layer size)
 - using different learning rates [20,2,0.2, 0.02, 0.002]
 - by replacing sigmoid log activation function by Relu
 - by changing the order of the examples
- Provide your own analysis based on the different results