Swin Transformer / Video Swin Transformer

: Hierarchical Vision Transformer using Shifted Windows

University Of Seoul.

Machine Learning & Artificial Intelligence
Lab.

Junhyuk So Undergraduate Student

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu et al., ICCV 2021, Best Paper Award

```
| State of the Art | Object Detection on COCO test-dev (using additional training data) |
| State of the Art | Instance Segmentation on COCO minival (using additional training data) |
| State of the Art | Object Detection on COCO minival (using additional training data) |
| State of the Art | Instance Segmentation on COCO minival (using additional training data) |
| State of the Art | Instance Segmentation on COCO minival (using additional training data) |
| State of the Art | Semantic Segmentation on ADE20K (using additional training data) |
| State of the Art | Action Recognition on Something-Something V2 (using additional training data) |
| Ranked #2 | Action Classification on Kinetics-400 (using additional training data) |
| Ranked #2 | Action Classification on Kinetics-600 (using additional training data) |
```


Outline

- Background
 - Transformer
 - O Visual Transformer
- Swin Transformer
 - Motivation
 - Method
 - Experiments
- Video Swin Transformer
 - O Method
 - Experiments
- Conclusion

Transformer

- Transformer is introduced to solve problems of recurrent model
 - Long term dependancy
 - Non-parallable structure
- By Using,
 - (self) Attention Mechanism
 - Multi-head Attention
 - O Position Wise Feed Forward
 - Positional Encoding

Source: Attention is All you need

Attention

- To decide where to Attend
- 1. Transformation of layer map

$$Q = XW^Q$$
, $K = YW^K$, $V = YW^V$,

- if self-attention . X=Y
- 2. attention layer
 - Compare Every Q to Every K
 - by simple dot-product
 - Normalize and Softmax
 - Softmax with Q-dimension
 - Assign them(Multiply) to Value

Scaled Dot-Product Attention

$$\operatorname{Attention}(Q,K,V) = \operatorname{Softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V,$$

Multi Head Attention

- Single Head Attention may have restricted feature subspace
- Solution
 - Use Multiple Feature Subspace by Independent Heads

$$Q_i = XW^{Q_i}, K_i = XW^{K_i}, V_i = XW^{V_i},$$

$$Z_i = \operatorname{Attention}(Q_i, K_i, V_i), i = 1 \dots h,$$

$$\operatorname{MultiHead}(Q, K, V) = \operatorname{Concat}(Z_1, Z_2, \dots, Z_h)W^O,$$
(3)

Position Wise Feed Forward Network

- The Output of MHSA is then fed to Two Successive FFN $FFN(x) = RELU(W_1x + b_1)W_2 + b_2.$
- Position Wise ?
 - [Batch x N_seq x seq_emb1] -> [Batch x N_seq x seq_emb2]
 - O 512 -> 2048 -> 512

Positional Encoding

- Attention Mechanism handle All input sequence identically
 - -> the order of sequence is neglected
- Solution
 - add some positional information to input embedding

$$PE_{(pos,i)} = \begin{cases} \sin(pos \cdot \omega_k) & \text{if} \quad i = 2k\\ \cos(pos \cdot \omega_k) & \text{if} \quad i = 2k+1, \end{cases}$$
$$\omega_k = \frac{1}{10000^{2k/d}}, \quad k = 1, \dots, d/2,$$

where i,d are index, length

Vision Transformer

- Almost Same Architecture
 - Work Token -> Image Patch & Linear Projection
 - Normalization first

ViT (Vision Transformer)

- Patch Partioning & Linear Projection
 - H*W*C -> (H/16)x(W/16)*3
 - Mix accross channel dim.
 - Can be implmeneted by simple Conv2D.

Swin Transformer

Swin Transformer

Motivation

- problems of original ViT
 - No consideration for Vision domain.
 - Scale-Problem
 - Computational Inefficiency
 - Quadratic Computation
 - Memory Inefficiency

Scale problem

- Size of object can vary depending on Location of Camera
 - O Same Patch size ignores this issue.

Scale problem

Solution

- O Use Different Patch Size!
- Aggregate differently scaled feature map to make final prediction.
 - E.g) FPN

Quadratic Computation

- Attention Mechnaism -> Quadratic Complexity
 - hard to use larger image size (resolution)

- But why we need larger image Size?
 - O Vision tasks tend to generalize well when use bigger image size
 - E.g) EfficientNet B0: 224, EfficientNetB7: 600

$$A(Q, K, V) = softmax(QK^{T})V$$

Quadratic Computation

- Solution
 - Local Attention (W MSA)
 - Attend only in windows
- Can have Linear computational complexity:)
- Can add inductive bias :)?
- Can't handle long range-dependancy :(
 - Use Shifted Window (SW-MSA)

$$\Omega(MSA) = 4hwC^{2} + 2(hw)^{2}C,$$

$$\Omega(W-MSA) = 4hwC^{2} + 2M^{2}hwC,$$

Overall Architecture

Details

- Patch Merging Block
- Relative Positional Bias
- Cyclic Shifted Batch Computing

Patch Merging Block

- If we simply merge 2x2 Neighbor patches..
 - \bigcirc 1C -> 4C
- Use Linear projection across Channel dimension.
 - \bigcirc 4C -> 2C

Relative Position Bias

Relative position bias In computing self-attention, we follow [49, 1, 32, 33] by including a relative position bias $B \in \mathbb{R}^{M^2 \times M^2}$ to each head in computing similarity:

$$\operatorname{Attention}(Q,K,V) = \operatorname{SoftMax}(QK^T/\sqrt{d} + B)V, \quad (4)$$

where $Q, K, V \in \mathbb{R}^{M^2 \times d}$ are the *query*, *key* and *value* matrices; d is the *query/key* dimension, and M^2 is the number of patches in a window. Since the relative position along each axis lies in the range [-M+1, M-1], we parameterize a smaller-sized bias matrix $\hat{B} \in \mathbb{R}^{(2M-1) \times (2M-1)}$, and values in B are taken from \hat{B} .

M=2

С

C

Relative Position Bias

M=2

Relative Position Bias

Cyclic Shifted Batch Computing

- Problem: If we use SW-MSA, Window sizes are not same
 - O Naive solution: Pad every small windows
 - But this make # Patch N+1,N+1. \rightarrow More Computation!
- Solution: Cyclic Shift and Masked MSA

Figure 4. Illustration of an efficient batch computation approach for self-attention in shifted window partitioning.

Cyclic Shifted Batch Computing

Masked MSA

Figure 4. Illustration of an efficient batch computation approach for self-attention in shifted window partitioning.

Datasets

- Classification
 - O Imagenet 1k
 - Imagenet 1k ImageNet 22K Pretrained
- Detection
 - O COCO 2017
- Segmentation
 - O ADE20K

Settings

- Optimizer , LR
 - AdamW (1e-3, bs 1024)
- Augmentation
 - O RandAug, Mixup, Cutmix, Cutout
 - O Stochastic Depth.
 - No Repeated Aug.
- Regularization
 - O Weight decay, Gradient clipping

Shifted Windows w/o, Positional Embedding w/po

	ImageNet			OCO	ADE20k
	top-1	top-5	APbox	AP ^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Table 4. Ablation study on the *shifted windows* approach and different position embedding methods on three benchmarks, using the Swin-T architecture. w/o shifting: all self-attention modules adopt regular window partitioning, without *shifting*; abs. pos.: absolute position embedding term of ViT; rel. pos.: the default settings with an additional relative position bias term (see Eq. (4)); app.: the first scaled dot-product term in Eq. (4).

Imagenet Classification on ImageNet-1k

(a) Regular ImageNet-1K trained models							
method	image size	_		41	ImageNet		
RegNetY-4G [48]	224 ²	21M	4.0G	1156.7	80.0		
RegNetY-8G [48]	224 ²	39M	8.0G	591.6	81.7		
RegNetY-16G [48]	224 ²	84M	16.0G	334.7	82.9		
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6		
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9		
EffNet-B5 [58]	456 ²	30M	9.9G	169.1	83.6		
EffNet-B6 [58]	528 ²	43M	19.0G	96.9	84.0		
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3		
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9		
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	76.5		
DeiT-S [63]	224 ²	22M	4.6G	940.4	79.8		
DeiT-B [63]	224 ²	86M	17.5G	292.3	81.8		
DeiT-B [63]	384 ²	86M	55.4G	85.9	83.1		
Swin-T	224 ²	29M	4.5G	755.2	81.3		
Swin-S	224 ²	50M	8.7G	436.9	83.0		
Swin-B	224 ²	88M	15.4G	278.1	83.5		
Swin-B	384 ²	88M	47.0G	84.7	84.5		

	NT.	2217			
(b) Ima					
method	image size	#param.	FLOPs	throughput (image / s)	ImageNet
				(iiiage / s)	
R-101x3 [38]	384 ²	388M	204.6G	-	84.4
R-152x4 [38]	480^{2}	937M	840.5G	-	85.4
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2
Swin-B	224 ²	88M	15.4G	278.1	85.2
Swin-B	384 ²	88M	47.0G	84.7	86.4
Swin-L	384 ²	197M	103.9G	42.1	87.3

Object detection on COCO

(a) Various frameworks								
Method	Backbone	AP ^{box}	AP ₅₀ box	AP ₇₅ box	#param.	FLOPs	FPS	
Cascade	R-50	46.3	64.3	50.5	82M	739G	18.0	
Mask R-CNN	Swin-T	50.5	69.3	54.9	86M	745G	15.3	
ATSS	R-50	43.5	61.9	47.0	32M	205G	28.3	
Alss	Swin-T	47.2	66.5	51.3	36M	215G	22.3	
RepPointsV2	R-50	46.5	64.6	50.3	42M	274G	13.6	
Reprofitts v 2	Swin-T	50.0	68.5	54.2	45M	283G	12.0	
Sparse	R-50	44.5	63.4	48.2	106M	166G	21.0	
R-CNN	Swin-T	47.9	67.3	52.3	110M	172G	18.4	

(b) Various backbones w. Cascade Mask R-CNN									
	AP ^{box}	AP ₅₀	AP ₇₅	AP ^{mask}	AP ₅₀	AP ₇₅ ^{mask}	param	FLOPs	FPS
DeiT-S [†]									
						43.4			
Swin-T	50.5	69.3	54.9	43.7	66.6	47.1	86M	745G	15.3
X101-32	48.1	66.5	52.4	41.6	63.9	45.2	101M	819G	12.8
Swin-S	51.8	70.4	56.3	44.7	67.9	48.5	107M	838G	12.0
X101-64	48.3	66.4	52.3	41.7	64.0	45.1	140M	972G	10.4
Swin-B	51.9	70.9	56.5	45.0	68.4	48.7	145M	982G	11.6

Video Swin Transformer

Ze Liu et al, 2021 Arxiv

Motivation

- Spatio-temporal adaption of Swin Transformer
- strictly follows the hierarchical structure of the original Swin
 - but extends the scope of local attention computation
 from only the spatial domain to the spatiotemporal domain

Overall Architecture

Figure 1: Overall architecture of Video Swin Transformer (tiny version, referred to as Swin-T).

Details

- No patch merging between T-dimension
- 3D Relative Position Bias

3D local window to

perform self-attention

A token

Layer 1+1

window: 3×3×3=27

3D Relational Position Bias

3D Relative Position Bias Numerous previous works [31, 2, 16, 17] have shown that it can be advantageous to include a relative position bias to each head in self-attention computation. Thus, we follow [28] by introducing 3D relative position bias $B \in \mathbb{R}^{P^2 \times M^2 \times M^2}$ for each head as

$$Attention(Q, K, V) = SoftMax(QK^{T}/\sqrt{d} + B)V,$$
 (2)

where $Q, K, V \in \mathbb{R}^{PM^2 \times d}$ are the *query*, *key* and *value* matrices; d is the dimension of *query* and *key* features, and PM^2 is the number of tokens in a 3D window. Since the relative position along each axis lies in the range of [-P+1, P-1] (temporal) or [-M+1, M-1] (height or width), we parameterize a smaller-sized bias matrix $\hat{B} \in \mathbb{R}^{(2P-1)\times(2M-1)\times(2M-1)}$, and values in B are taken from \hat{B} .

3D Bias LUT

Table 1: Comparison to state-of-the-art on Kinetics-400. " $384\uparrow$ " signifies that the model uses a large spatial resolution of 384×384 . "Views" indicates # temporal clip × # spatial crop. The magnitude are Giga (10^9) and Mega (10^6) for FLOPs and Param respectively.

Method	Pretrain	Top-1	Top-5	Views	FLOPs	Param
R(2+1)D [37]	-	72.0	90.0	10 × 1	75	61.8
I3D [6]	ImageNet-1K	72.1	90.3	-	108	25.0
NL I3D-101 [40]	ImageNet-1K	77.7	93.3	10×3	359	61.8
ip-CSN-152 [36]	-	77.8	92.8	10×3	109	32.8
CorrNet-101 [39]	-	79.2	-	10×3	224	-
SlowFast R101+NL [13]	-	79.8	93.9	10×3	234	59.9
X3D-XXL [12]	-	80.4	94.6	10×3	144	20.3
MViT-B, 32×3 [10]	-	80.2	94.4	1 × 5	170	36.6
MViT-B, 64×3 [10]	-	81.2	95.1	3×3	455	36.6
TimeSformer-L [3]	ImageNet-21K	80.7	94.7	1×3	2380	121.4
ViT-B-VTN [29]	ImageNet-21K	78.6	93.7	1 × 1	4218	11.04
ViViT-L/16x2 [1]	ImageNet-21K	80.6	94.7	4×3	1446	310.8
ViViT-L/16x2 320 [1]	ImageNet-21K	81.3	94.7	4×3	3992	310.8
ip-CSN-152 [36]	IG-65M	82.5	95.3	10×3	109	32.8
ViViT-L/16x2 [1]	JFT-300M	82.8	95.5	4×3	1446	310.8
ViViT-L/16x2 320 [1]	JFT-300M	83.5	95.5	4×3	3992	310.8
ViViT-H/16x2 [1]	JFT-300M	84.8	95.8	4×3	8316	647.5
Swin-T	ImageNet-1K	78.8	93.6	4×3	88	28.2
Swin-S	ImageNet-1K	80.6	94.5	4×3	166	49.8
Swin-B	ImageNet-1K	80.6	94.6	4×3	282	88.1
Swin-B	ImageNet-21K	82.7	95.5	4×3	282	88.1
Swin-L	ImageNet-21K	83.1	95.9	4×3	604	197.0
Swin-L (384↑)	ImageNet-21K	84.6	96.5	4×3	2107	200.0
Swin-L (384↑)	ImageNet-21K	84.9	96.7	10×5	2107	200.0

Video Classification

- Pretraining on ImageNet
 - O Directly duplicate weights in Swin Twice
 - Multiply whole matrix 0.5

Source: Video Swin Transformer:

Ablation Study

Temporal dimension/window size

Table 5: Ablation study on temporal dimension of 3D tokens and temporal window size with Swin-T on K400.

temporal dimension	Window size	Top 1	Top 5	FLOPs	Param
16	$16 \times 7 \times 7$	79.1	93.8	106	28.5
8	$8 \times 7 \times 7$	78.5	93.2	44	28.2
4	$4\times7\times7$	76.7	92.5	20	28.0
16	$16 \times 7 \times 7$	79.1	93.8	106	28.5
16	$8 \times 7 \times 7$	78.8	93.6	88	28.2
16	$4 \times 7 \times 7$	78.6	93.4	79	28.0

Temporal shifting Effect

Table 6: Ablation study on the 3D shifted window approach with Swin-T on K400.

	Top-1	Top-5
w. 3D shifting	78.8	93.6
w/o temporal shifting	78.5	93.5
w/o 3D shifting	78.1	93.3

Conclusion

Swin Transformer

- Solve scale problem by Dynamic Patch Size
- Solve Quadratic Time Complexity probelm by Local Attention
 - O Solve Long range dependancy problem by Shifted Window

Future research?

- Temporal Hierarchy
- Temporal scale problem

Q&A

