Typing

Types of expressions:

Types of locations:

 T_{loc} ::= intref

 $T ::= \inf \mid \mathsf{bool} \mid \mathsf{unit}$

Write T and T_{loc} for the sets of all terms of these grammars.

Let Γ range over TypeEnv, the finite partial functions from locations \mathbb{L} to T_{loc} . (int) $\Gamma \vdash n$:int for $n \in \mathbb{Z}$ (bool) $\Gamma \vdash b$:bool for $b \in \{\text{true}, \text{false}\}\$

 $(\text{op} +) \quad \frac{\Gamma \vdash e_1 \text{:int}}{\Gamma \vdash e_2 \text{:int}} \qquad (\text{op} \geq) \quad \frac{\Gamma \vdash e_1 \text{:int}}{\Gamma \vdash e_2 \text{:int}}$

(if) $\frac{\Gamma \vdash e_1 : \text{bool}}{\Gamma \vdash \text{if}} \frac{\Gamma \vdash e_2 : T}{e_3 : T} \frac{\Gamma \vdash e_3 : T}{e_3 : T}$ (assign) $\frac{\Gamma(\ell) = \text{intref}}{\Gamma \vdash \ell := e : \text{unit}}$

 $(deref) \quad \frac{\Gamma(\ell) = \mathsf{intref}}{\Gamma \vdash ! \ell \cdot \mathsf{int}}$

(skip) $\Gamma \vdash \mathbf{skip}$:unit (seq) $\frac{\Gamma \vdash e_1 : \mathsf{unit} \quad \Gamma \vdash e_2 : T}{\Gamma \vdash e_1 : e_2 : T}$

(while) $\frac{\Gamma \vdash e_1 : \mathsf{bool} \qquad \Gamma \vdash e_2 : \mathsf{unit}}{\Gamma \vdash \mathsf{while} \quad e_1 \quad \mathsf{do} \quad e_2 : \mathsf{unit}}$