- Što možemo reći o odnosu $a = f(\mathbf{x})$ i $b = f(\mathbf{x} \delta \frac{df(\mathbf{x})}{d\mathbf{x}}^{\mathsf{T}})$
 - (a) $b \ge a$ ako je δ dovoljno mali
 - (b) $b \le a$ ako je δ dovoljno veliki
 - (c) a ≤ b
 - (d) $b \le a$ ako je δ dovoljno mali

- Uzorkovanje manjeg broja uzoraka (minigrupe) umjesto uporabe čitavog skupa uzoraka za učenje pri izračunu gradijenta opravdano je jer:
 - (a) preciznost određivanja gradijenta ne ovisi o broju uzoraka mini-grupe
 - (b) preciznost određivanja gradijenta raste kvadratno s brojem uzoraka
 - (c) preciznost određivanja gradijenta s povećanjem broja uzoraka raste ispodlinearno
 - (d) preciznost određivanja gradijenta nema nikakvog utjecaja na rad algoritma strojnog učenja

- Promotrimo funkciju koja opisuje stvaranje slike projiciranjem točaka scene na slikovnu ravninu. Navedite dimenzije Jakobijeve matrice te funkcije.
 - (a) 1×2
 - (b) 1×1
 - (c) ta funkcija nema derivaciju
 - (d) 2x3
- 4. Koju od ponuđenih tehnika ne ubrajamo u regularizaciju?
 - (a) normalizacija po grupi podataka
 - (b) učenje sa zaletom
 - (c) usrednjavanje predikcije većeg broja modela
 - (d) vezivanje parametara modela
- Označite razred koji ima metodu backward_parameters:
 - (a) L2Regularizer
 - (b) SoftmaxCrossEntropyWithLogits
 - (c) MinPooling
 - (d) ReLU
- 6. Izraz za trojni gubitak jest:
 - (a) $\max\{d(a,p)-d(a,n)+m,0\}$
 - (b) max{d(a,p)-d(p,n)+m,0}
 - (c) $min\{d(a,p)+d(a,n)+m,0\}$
 - (d) $min\{d(n,p)-d(p,n)+m,0\}$
- Koji od sljedećih izraza odgovara unakrsnoj entropiji?
 - (a) (Yoh_*logprobs).sum()
 - (b) torch.log_softmax(h2)
 - (c) torch.relu(torch.matmul(hfc1, wfc2) bfc2)
 - (d) torch.matmul(hfc1, wfc2) + bfc2
- Transformaciju kojom modeliramo slučajne varijable s binomnom razdiobom možemo izraziti funkcijom:
 - (a) $\sqrt{|s|}$
 - (b) $A \cdot s + B$
 - (c) $[\sum_{j} e_{j}^{s}/e_{i}^{s}]_{i=1}^{C}$
 - (d) $e^{s}/(1+e^{s})$

- Navedite izraz za ažuriranje memorije LSTM ćelije:
 - (a) $c[t] = f[t] + c[t-1] + i[t] + \hat{c}[t]$
 - (b) $c[t] = f[t] \odot c[t-1] + i[t] \odot \hat{c}[t]$
 - (c) $c[t] = f[t] \odot c[t-1]$
 - (d) $c[t] = \tanh(c[t-1] + \hat{c}[t])$
- 10. Koji je odnos razreda nn.Sequential i nn.Module?
 - (a) nn.Sequential nasljeđuje nn.Module
 - (b) svaki objekt tipa nn.Module referencira objekte tipa nn.Sequential
 - (c) svi objekti tipa nn.Module sadrže barem jedan objekt tipa nn.Sequential
 - (d) nn.Module nasljeđuje nn.Sequential
- Razmatramo višerazrednu logističku regresiju s n značajki na ulazu. Ako prilikom učenja tog modela koristimo stohastičko izostavljanje značajki (dropout), jednim unaprijednim prolazom kroz tako naučeni model možemo dobiti:
 - (a) geometrijsku sredinu predikcije $O(2^n)$ modela
 - (b) aritmetičku sredinu predikcije $O(n^2)$ modela
 - (c) aritmetičku sredinu predikcije O(n) modela
 - (d) geometrijsku sredinu predikcije O(n) modela
- 12. Razmatramo L2 regulariziranu funkciju gubitka dubokog modela tijekom provedbe jednog koraka stohastičkog gradijentnog spusta. Negativni gradijent regularizacije pomiče model u smjeru:
 - (a) suprotnom od ishodišta prostora modela
 - (b) ne utječe na pomak modela
 - (c) ishodišta prostora modela
 - (d) okomitom na gradijent ne-regularizirane funkcije gubitka