UNSW School of Mathematics and Statistics MATH5825 Measure, Integration and Probability Semester 2/2014

Assignment 2

- (1) [7 marks] Let μ and ν be probability measures on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.
 - (a) Show that the convolution $\mu \star \nu(B) = \int \nu(B-x)\mu(dx)$ of two finite measures μ and ν on $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$ is well defined, that is:
 - i. the mapping $x \mapsto \nu(B x)$ is measurable
 - ii. the integral exists.

(Hint: Tonelli.)

- (b) Show that if there is a bounded (resp. countable, resp. finite) set $F \in \mathcal{B}(\mathbb{R}^d)$ such that $\mu \star \nu(F) = 1$, then there are bounded (resp. countable, resp. finite) sets $G, H \in \mathcal{B}(\mathbb{R}^d)$ such that $\mu(G) = 1$ and $\nu(H) = 1$.
- (2) [7 marks] Let μ and ν be σ -finite positive measures on (Ω, \mathcal{F}) .
 - (a) Show that the following conditions are equivalent:
 - (i) $\mu \ll \nu$ and $\nu \ll \mu$
 - (ii) μ and ν have exactly the same set of measure zero, and
 - (iii) there is an \mathcal{F} -measurable function g that satisfies $0 < g(\omega) < +\infty$ at each $\omega \in \Omega$ and is such that $\nu(A) = \int_A g \ d\mu$ holds for each $A \in \mathcal{F}$.
 - (b) Show that if μ is a σ -finite measure on (Ω, \mathcal{F}) then there is a finite measure ν on (Ω, \mathcal{F}) such that $\nu \ll \mu$ and $\mu \ll \nu$.
- (3) **[6 marks]** Let X be a d-dimensional random vector with law μ .
 - (a) For any $c \in \mathbb{R}$, the characteristic function of cX is $\hat{\mu}(cu)$.
 - (b) X is said to have moments up to order n if the following holds: For all $\alpha=(\alpha_1,\ldots,\alpha_d)\in\mathbb{N}^d$ such that $|\alpha|:=\sum_{k=1}^d\alpha_k\leqslant n$

$$\mathbf{E}(|X|^{\alpha}) := \mathbf{E}\left(\prod_{k=1}^{d} |X_k|^{\alpha_k}\right) < \infty$$

Show that if X has moments up to order n, then

$$\frac{\partial^{\alpha}}{\partial u^{\alpha}}\hat{\mu}(u) := \frac{\partial^{\alpha_1}}{\partial u_1^{\alpha_1}} \cdots \frac{\partial^{\alpha_d}}{\partial u_d^{\alpha_d}}\hat{\mu}(u)$$

evaluated at u=0 equals $i^{|\alpha|}\mathbf{E}(X^{\alpha})$ where $X^{\alpha}:=\prod_{k=1}^d X_k^{\alpha_k}$.

(c) Let d=1 and let μ have the Lebesgue density

$$f(x) = \frac{C}{(1+x^2)\log(e+x^2)}, \quad x \in \mathbb{R}.$$

Show that $\mathbf{E}(X)$ is not defined but $\hat{\mu}(u)$ is differentiable at 0. (That is, the converse to (b) is not necessarily true.)

- (4) **[7 marks]** Let μ be the binomial distribution with n trials and probability of success p, that is, $\mu = \text{Bin}(n, p)$, and let ν be the Poisson distribution with mean $\lambda > 0$.
 - (a) Verify that $\hat{\mu}(u)=(1-p+pe^{iu})^n$. (Hint: μ is the convolution of n much easier measures.)
 - (b) Verify that $\hat{\nu}(u) = \exp(\lambda(e^{iu} 1))$.
 - (c) Let p_n be a sequence in [0,1] such that $p_n\downarrow 0$ and $np_n\to \lambda$. Let $\mu_n={\sf Bin}(n,p_n)$. Show that the weak convergence $\mu_n\to \nu$ holds.
 - (d) Is it true that $\mu_n(\{k\}) \to \nu(\{k\})$ for every $k \in \mathbb{N} \cup \{0\}$? Why or why not?
- (5) **[7 marks]** Consider the probability space $(\Omega, \mathcal{F}, \mathbf{P}) = ([0, 1], \mathcal{B}([0, 1]), \lambda)$, where $\mathcal{B}([0, 1])$ is the Borel- σ -algebra generated by open intervals $(a, b) \subset [0, 1]$ and where λ is Lebesgue measure. Every $\omega \in [0, 1]$ has a dyadic expansion

$$\omega = \sum_{n=1}^{\infty} \frac{d_n(\omega)}{2^n}.$$

If ω has two different dyadic expansions then it can be shown that one of the two has only a finite number of ones; in that case we choose the other expansion which has infinitely many ones. Let

$$B_n = \{ \omega \in [0, 1] : d_n(\omega) = 0 \}, \quad n \geqslant 1.$$

- (a) Show that $P(B_n) = 1/2$ for every $n \ge 1$.
- (b) Show that the events B_n form an infinite sequence of independent events.
- (c) What is the probability that a randomly sampled number ω has the sequence 5825 occur infinitely often in its decimal expansion? Prove your answer.
- (6) **[6 marks]** Let X and Y be independent and identically distributed random variables with finite variances. Show that if X + Y and X Y are independent, then X and Y are Gaussian.