Topic Specific PageRank

Topic-Specific PageRank

- Instead of generic popularity, can we measure popularity within a topic?
- Goal: Evaluate Web pages not just according to their popularity, but by how close they are to a particular topic, e.g. "sports" or "history"
- Allows search queries to be answered based on interests of the user
 - Example: Query "Trojan" wants different pages depending on whether you are interested in sports, history and computer security

Topic-Specific PageRank

- Random walker has a small probability of teleporting at any step
- Teleport can go to:
 - Standard PageRank: Any page with equal probability
 - To avoid dead-end and spider-trap problems
 - Topic Specific PageRank: A topic-specific set of "relevant" pages (teleport set)
- Idea: Bias the random walk
 - When walker teleports, she pick a page from a set S
 - S contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic/query
 - For each teleport set S, we get a different vector r_s

Example: Flow Equations & M

$$M = \begin{bmatrix} y & a & m \\ y & \frac{1}{2} & \frac{1}{2} & 0 \\ a & \frac{1}{2} & 0 & 1 \\ m & 0 & \frac{1}{2} & 0 \end{bmatrix}$$

$$r = M \cdot r$$

Green edges are due to random jumps. This is how teleports solve the problem. Score of node y is 7 over 33, Score of node a is 5 over 33, Score of node m is 21 over 33

Matrix Formulation

To make this work all we need is to update the teleportation part of the PageRank formulation:

$$A_{ij} = \begin{cases} \beta M_{ij} + (1 - \beta)/|S| & \text{if } i \in S \\ \beta M_{ij} + 0 & \text{otherwise} \end{cases}$$

- A is stochastic!
- We weighted all pages in the teleport set 5 equally
 - Could also assign different weights to pages!
- Compute as for regular PageRank:
 - Multiply by M, then add a vector
 - Maintains sparseness

Example: Topic-Specific PageRank

If we run pagerank power iteration algorithm then page 3 and page 4 will get good pagerank score.

Example: Topic-Specific PageRank

Suppose $S = \{1\}, \beta = 0.8$

Node	Iteration			
	0	1	2	stable
1	0.25	0.4	0.28	0.294
2	0.25	0.1	0.16	0.118
3	0.25	0.3	0.32	0.327
4	0.25	0.2	0.24	0.261
	2.530 3.550			

S={1},
$$\beta$$
=0.90:
r=[0.17, 0.07, 0.40, 0.36]
S={1}, β =0.8:
r=[0.29, 0.11, 0.32, 0.26]
S={1}, β =0.70:
r=[0.39, 0.14, 0.27, 0.19]

$$S=\{1,2,3,4\}, \beta=0.8:$$

 $r=[0.13, 0.10, 0.39, 0.36]$
 $S=\{1,2,3\}, \beta=0.8:$
 $r=[0.17, 0.13, 0.38, 0.30]$
 $S=\{1,2\}, \beta=0.8:$
 $r=[0.26, 0.20, 0.29, 0.23]$
 $S=\{1\}, \beta=0.8:$
 $r=[0.29, 0.11, 0.32, 0.26]$

Discovering the Topic Vector S

- Create different PageRanks for different topics
 - The 16 DMOZ top-level categories:
 - arts, business, sports,...
- Which topic ranking to use?
 - User can pick from a menu
 - Classify query into a topic
 - Can use the context of the query
 - E.g., query is launched from a web page talking about a known topic

Web Spam

What is Web Spam?

Spamming:

 Any deliberate action to boost a web page's position in search engine results,
 Not Appropriate with page's real value

Spam:

- Web pages that are the result of spamming
- This is a very broad definition
 - SEO industry might disagree!
 - SEO = search engine optimization
- Approximately 10-15% of web pages are spam

Web Search

Early search engines:

- Crawl the Web
- Index pages by the words they contained
- Respond to search queries (lists of words) with the pages containing those words

Early page ranking:

- Attempt to order pages matching a search query by "importance"
- First search engines considered:
 - (1) Number of times query words appeared
 - (2) Prominence of word position, e.g. title, header

First Spammers

 As people began to use search engines to find things on the Web, those with commercial interests tried to exploit search engines to bring people to their own site – whether they wanted to be there or not

Example:

- Shirt-seller might pretend to be about "movies"
- Techniques for achieving high relevance/importance for a web page

First Spammers: Term Spam

- How do you make your page appear to be about movies?
 - (1) Add the word movie 1,000 times to your page
 - Set text color to the background color, so only search engines would see it
 - (2) Or, run the query "movie" on your target search engine
 - See what page came first in the listings
 - Copy it into your page, make it "invisible"
- These and similar techniques are term spam

Google's Solution to Term Spam

- Believe what people say about you, rather than what you say about yourself
 - Use words in the anchor text (words that appear underlined to represent the link) and its surrounding text
- PageRank as a tool to measure the "importance" of Web pages

Why It Works?

Our hypothetical shirt-seller looses

- Saying he is about movies doesn't help, because others don't say he is about movies
- His page isn't very important, so it won't be ranked high for shirts or movies

Example:

- Shirt-seller creates 1,000 pages, each links to his with "movie" in the anchor text
- These pages have no links in, so they get little PageRank
- So the shirt-seller can't beat truly important movie pages, like IMDB

Google vs. Spammers: Round 2!

- Once Google became the dominant search engine, spammers began to work out ways to fool Google
- Spam farms were developed to concentrate
 PageRank on a single page
- Link spam:
 - Creating link structures that boost PageRank of a particular page

Link Spamming

- Three kinds of web pages from a spammer's point of view
 - Inaccessible pages
 - Accessible pages
 - e.g., blog comments pages
 - spammer can post links to his pages
 - Owned pages
 - Completely controlled by spammer
 - May span multiple domain names

Link Farms

Spammer's goal:

Maximize the PageRank of target page t

Technique:

- Get as many links from accessible pages as possible to target page t
- Construct "link farm" to get PageRank multiplier effect

Link Farms

One of the most common and effective organizations for a link farm

Analysis

N...# pages on the web M...# of pages spammer owns

- x: PageRank contributed by accessible pages
- y: PageRank of target page t

Rank of each "farm" page =
$$\frac{\beta y}{M} + \frac{1-\beta}{N}$$

$$y = x + \beta M \left[\frac{\beta y}{M} + \frac{1-\beta}{N} \right] + \frac{1-\beta}{N}$$

$$= x + \beta^2 y + \frac{\beta(1-\beta)M}{N} + \frac{1-\beta}{N}$$

$$y = \frac{x}{1-\beta^2} + c\frac{M}{N} \quad \text{where } c = \frac{\beta}{1+\beta}$$

Very small; ignore Now we solve for y

Analysis

N...# pages on the web M...# of pages spammer owns

$$y = \frac{x}{1-\beta^2} + c\frac{M}{N}$$
 where $c = \frac{\beta}{1+\beta}$

- For β = 0.85, 1/(1- β ²)= 3.6
- Multiplier effect for acquired PageRank
- By making M large, we can make y as large as we want

TrustRank: Idea

- Basic principle: Approximate isolation
 - It is rare for a "good" page to point to a "bad" (spam) page
- Sample a set of seed pages from the web
- Have an oracle (human) to identify the good pages and the spam pages in the seed set
 - Expensive task, so we must make seed set as small as possible

Trust Propagation

- Call the subset of seed pages that are identified as good the trusted pages
- Perform a topic-sensitive PageRank with teleport set = trusted pages
 - Propagate trust through links:
 - Each page gets a trust value between 0 and 1
- Use a threshold value and mark all pages below the trust threshold as spam