ТЕМА 2. ОБРАТНЫЕ ОПЕРАТОРЫ. РЕШЕНИЕ ОПЕРАТОРНЫХ УРАВНЕНИЙ

Непрерывно обратимые операторы. Пусть $A: X \to Y$ – линейный оператор с областью определения $\mathcal{D}(A) \subseteq X$ и областью значений $\mathcal{R}(A) \subseteq Y$. Если оператор A осуществляет взаимно однозначное соответствие между $\mathcal{D}(A)$ и $\mathcal{R}(A)$, то к оператору A существует обратный оператор A^{-1} , и решение уравнения Ax = y может быть записано в явном виде $x = A^{-1}y$.

Теорема 1. Линейный оператор A переводит $\mathcal{D}(A)$ в $\mathcal{R}(A)$ взаимно однозначно тогда и только тогда, когда

$$KerA = \{x \in \mathcal{D}(A) : Ax = 0\} = \{0\}.$$
 (1)

Теорема 2. Если $A: X \to Y$ линеен, то и $A^{-1}: Y \to X$ линеен.

Теорема 3. Оператор A^{-1} существует и одновременно ограничен на $\mathcal{R}(A)$ тогда и только тогда, когда для некоторой постоянной m>0 и любого $x\in\mathcal{D}(A)$ выполняется энергетическое неравенство

$$||Ax||_Y \geqslant m||x||_X. \tag{2}$$

Будем говорить, что линейный оператор $A: X \to Y$ непрерывно обратим, если $\mathcal{R}(A) = Y$, оператор A обратим и A^{-1} ограничен.

Теорема 4 (Банаха об обратном операторе). Пусть X и Y – банаховы пространства, $A: X \to Y$ – линейный ограниченный оператор, отображающий X в Y взаимно однозначно. Тогда обратный оператор $A^{-1}: Y \to X$ ограничен.

Следствие 1. Пусть на нормированном пространстве X заданы две нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ и пространство X полно относительно каждой из норм. Если $\|x\|_1 \leqslant c\|x\|_2$ для всех $x \in X$, то эти нормы эквивалентны.

Левый и правый обратные операторы. Пусть X,Y – нормированные векторные пространства и $A:X\to Y$.

Оператор $A_r^{-1}: Y \to X$ называется правым обратным оператором к A, если $AA_r^{-1} = I_y$. Оператор $A_l^{-1}: Y \to X$ называется левым обратным оператором к A, если $A_l^{-1}A = I_x$.

Теорема 5. Для линейного оператора $A: X \to Y$ следующие утверждения эквивалентны:

- 1) решение уравнения Ax = y единственно для любого $y \in \mathcal{R}(A)$;
- 2) $KerA = \{0\}$, m. e. onepamop A инъективен;
- 3) для оператора A существует левый обратный оператор A_l^{-1} .

Теорема 6. Для линейного оператора $A: X \to Y$ следующие утверждения эквивалентны:

- 1) решение уравнения Ax = y существует для любого $y \in Y$;
- 2) $\mathscr{R}(A) = Y$, т. е. оператор A сюръективен;
- 3) для оператора A существует правый обратный оператор A_r^{-1} .

Решение операторных уравнений второго рода. Рассмотрим операторные уравнения второго рода

$$x - Ax = y. (3)$$

$$x - \lambda Ax = y,\tag{4}$$

где X – банахово пространство, $A: X \to X, A \in \mathscr{B}(X)$.

Теорема 7. Пусть X – банахово пространство, $A \in \mathcal{B}(X)$ и $\|A\| < 1$. Тогда оператор I - A непрерывно обратим и при этом справедливы оценки

$$\|(I-A)^{-1}\| \le \frac{1}{1-\|A\|}, \quad \|I-(I-A)^{-1}\| \le \frac{\|A\|}{1-\|A\|}.$$
 (5)

Теорема 8. Пусть X – банахово пространство, $A \in \mathcal{B}(X)$ и $|\lambda| < \frac{1}{\|A\|}$. Тогда оператор $I - \lambda A$ непрерывно обратим, причем

$$(I - \lambda A)^{-1} = I + \lambda A + \lambda^2 A^2 + \ldots + \lambda^n A^n + \ldots$$

Теорема 9 (о четырех шарах). Если $A, A^{-1} \in \mathcal{B}(X)$, то множество G элементов $\mathcal{B}(X)$, имеющих в $\mathcal{B}(X)$ обратные, содержит вместе с операторами A и A^{-1} два шара

$$B_{1} = \left\{ B \in \mathcal{B}(X) : \|A - B\| < \frac{1}{A^{-1}} \right\},$$

$$B_{2} = \left\{ B \in \mathcal{B}(X) : \|A^{-1} - B\| < \frac{1}{A} \right\}.$$
(6)

Eсли оператор B лежит в шаре B_1 , то его обратный представим в виде

$$B^{-1} = A^{-1} \sum_{n=0}^{\infty} [(A - B)A^{-1}]^n$$
 (7)

 $u \mathcal{A} u$

$$B^{-1} = \sum_{n=0}^{\infty} [A^{-1}(A-B)]^n A^{-1}, \tag{8}$$

причем справедливо неравенство

$$||B^{-1} - A^{-1}|| \le \frac{||A^{-1}||^2 ||A - B||}{1 - ||A - B|| ||A^{-1}||};$$
(9)

если $B_{\varepsilon} \in G$ и $||B_{\varepsilon} - A|| \to 0$ при $\varepsilon \to 0$, то и $||B_{\varepsilon}^{-1} - A^{-1}|| \to 0$ при $\varepsilon \to 0$.

Eсли оператор B лежит в шаре B_2 , то его обратный

$$B^{-1} = A \sum_{n=0}^{\infty} [(A^{-1} - B)A]^n$$
 (10)

u n u

$$B^{-1} = \sum_{n=0}^{\infty} [A(A^{-1} - B)]^n A, \tag{11}$$

причем справедливо неравенство

$$||B^{-1} - A|| \le \frac{||A||^2 ||A^{-1} - B||}{1 - ||A^{-1} - B|| ||A||};$$

если $B_{\varepsilon} \in G$ и $||B_{\varepsilon} - A^{-1}|| \to 0$ при $\varepsilon \to 0$, то и $||B_{\varepsilon}^{-1} - A^{-1}|| \to 0$ при $\varepsilon \to 0$.

Теорема 9 используется при обосновании вычислительных методов, а именно: требуется оценить норму относительно ошибки, если оператору задачи и правой части придать некоторое возмущение; оценить по невязке норму относительной ошибки.

Следствие 2. Множество обратимых операторов в пространстве $\mathscr{B}(X)$ открыто.

Следствие 3. Пусть $A \in \mathcal{B}(X)$ – непрерывно обратимы и пусть последовательность $(A_n)_{n=1}^{\infty} \subset \mathcal{B}(X)$ равномерно сходится к . Тогда, начиная с некоторого номера $n_0 \in \mathbb{N}$, все операторы A_n непрерывно обратимы и $A_n^{-1} \rightrightarrows A^{-1}$ при $n \to \infty$.

Решение интегральных уравнений Фредгольма и Вольтерра методом резольвент. Рассмотрим интегральное уравнение Фредгольма второго рода с параметром λ , записанное в виде

$$x(t) - \lambda \int_{a}^{b} \mathcal{K}(t,s)x(s) \, \mathrm{d}s = y(t). \tag{12}$$

Теорема 10. Пусть K(t,s) непрерывная функция по переменным t и s и $|\lambda|M(b-a) < 1$, $M = \max_{a \leqslant t,s \leqslant b} |K(t,s)|$. Тогда для любой непрерывной функции y(t) в пространстве C[a,b] существует единственное решение уравнения (12), которое можно представить в виде

$$x(t) = y(t) + \lambda \int_{a}^{b} R(t, s; \lambda) y(s) ds, \qquad (13)$$

где резольвента $R(t,s;\lambda)$ ядра $\mathcal{K}(t,s)$ или разрешающее ядро имеет вид

$$R(t,s;\lambda) = \sum_{i=1}^{\infty} \lambda^{i-1} \mathcal{K}_i(t,s), \tag{14}$$

а итерированные ядра вычисляются по формуле

$$\mathcal{K}_{1}(t,s) = \mathcal{K}(t,s),$$

$$\mathcal{K}_{i}(t,s) = \int_{a}^{b} \mathcal{K}(t,\tau) \,\mathcal{K}_{i-1}(\tau,s) \,\mathrm{d}\tau, \ i = 2, 3, \dots$$
(15)

Рассмотрим интегральное уравнение Вольтерра второго рода

$$x(t) = \lambda \int_{a}^{t} \mathcal{K}(t, s) x(s) ds + y(t).$$
 (16)

Теорема 11. Пусть K(t,s) непрерывная функция по переменным t и s. Тогда для любой непрерывной функции y(t) при любом значении параметра λ в пространстве C[a,b] существует единственное решение уравнения (12), которое можно представить в виде

$$x(t) = y(t) + \lambda \int_{a}^{t} R(t, s; \lambda) y(s) ds,$$
(17)

e

$$R(t,s;\lambda) = \sum_{i=1}^{\infty} \lambda^{i-1} \mathcal{K}_i(t,s), \qquad (18)$$

$$\mathcal{K}_1(t,s) = \mathcal{K}(t,s),$$

$$\mathcal{K}_i(t,s) = \int_{s}^{t} \mathcal{K}(t,\tau) \mathcal{K}_{i-1}(\tau,s) \, d\tau, \ i = 2, 3, \dots$$
 (19)

Замкнутые операторы. Пусть X и Y – банаховы пространства, $A: X \to Y$ линейный оператор с областью определения $\mathcal{D}(A) \subset X$. Множество $\{(x,Ax): x \in \mathcal{D}(A), Ax \in \mathcal{R}(A)\}$ называется $\mathit{cpa}\mathit{фиком}$ one-pamopa A и обозначается Gr_A . Поскольку A – линейный оператор, то Gr_A представляет собой линейное многообразие в пространстве $X \times Y$, однозначно определяемое оператором A. Если оператор A непрерывен, то линейное многообразие Gr_A замкнуто, т. е. является подпространством в $X \times Y$.

Определение 1. Линейный оператор $A: X \to Y$ называется замкнутым, если его график Gr_A является замкнутым множеством в $X \times Y$.

Лемма 1. Пусть $A:X\to Y$, $A\in \mathscr{B}(X,Y)$, причем $\mathscr{D}(A)=X$. Тогда A замкнут.

Лемма 2. Если A замкнут и обратный оператор A^{-1} существует, то A^{-1} также замкнут.

Лемма 3. Если $A \in \mathscr{B}(X,Y)$ и A^{-1} существует, то A^{-1} замкнут.

Теорема 12 (о замкнутом графике). Если линейный оператор A, отображающий банахово пространство X в банахово пространство Y, имеет замкнутый график, то этот оператор ограничен.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 $\Pi p u \, Mep 1$. В гильбертовом пространстве ℓ_2 с ортонормированным базисом $\{e_k\}_{k=1}^{\infty}$ зададим линейный оператор A следующим образом:

$$A e_1 = 0, A e_k = e_{k-1}, k = 2, 3, \dots$$

Какие из операторов $A_l^{-1}, A_r^{-1}, A^{-1}$ существуют, найти их?

Решение. Покажем, что ядро оператора KerA представляет собой одномерное подпространство, натянутое на вектор e_1 , а множество значений $\mathscr{R}(A)$ оператора совпадает с пространством l_2 . Если $\mathscr{R}(A) = \ell_2$, то это означает, что к оператору A существует правый обратный. Зададим правый обратный оператор A_r^{-1} формулами

$$A_r^{-1} e_k = e_{k+1} + \gamma_k e_1, \quad k = 1, 2, \dots,$$

где $\gamma_1, \gamma_2, \ldots$ – некоторые постоянные такие, что $\sum_{k=1}^{\infty} |\gamma_k|^2 < \infty$.

Пусть
$$y \in \ell_2$$
, т. е. $y = \sum_{k=1}^{\infty} y_k e_k$ и $\sum_{k=1}^{\infty} |y_k|^2 < \infty$, тогда

$$A_r^{-1}y = \sum_{k=1}^{\infty} y_k A_r^{-1} e_k = \sum_{k=1}^{\infty} y_k e_{k+1} + e_1 \sum_{k=1}^{\infty} \gamma_k y_k.$$

По неравенству Коши-Буняковского ряд $\sum\limits_{k=1}^{\infty}\gamma_k y_k$ сходится, поэтому $A_r^{-1}\,y\in l_2.$ Заметим, что

$$AA_r^{-1} = I$$
, $AA_r^{-1}e_k = A(e_{k+1} + \gamma_k e_1) = Ae_{k+1} + \gamma_k Ae_1 = e_k$.

Следовательно, оператор A имеет семейство правых обратных операторов.

Если бы к оператору A существовал левый обратный оператор, то $Ker\ A=\{0\}$ или уравнение Ax=0 имело бы только нулевое решение.

Рассмотрим это уравнение. Пусть $x = \sum_{k=1}^{\infty} x_k e_k$, тогда

$$A x = x_1 A e_1 + \sum_{k=2}^{\infty} x_k A e_k = x_1 \cdot 0 + \sum_{k=2}^{\infty} x_k e_{k-1} = 0.$$

Тогда $x = e_1$ является решением этого уравнения.

Следовательно, $Ker\ A = \mathcal{L}\{(e_1)\}$. Это означает, что к оператору не существует левого обратного, а значит и обратного оператора.

 $\Pi \, p \, u \, M \, e \, p \, 2$. Рассмотрим оператор $A:\ell_2 \to \ell_2$, действующий по формуле

$$Ax = (x_1 + 2x_2, x_1 - x_2, x_3, x_4, \ldots).$$

Проверить, существует ли непрерывный обратный к оператору A Найти A^{-1} .

Pешение. Очевидно, что оператор A является линейным. Покажем, что оператор A является ограниченным. Действительно,

$$||Ax||^2 = |x_1 + 2x_2|^2 + |x_1 - x_2|^2 + |x_3|^2 + |x_4|^2 + \dots \le$$

$$\leq 2(|x_1|^2 + 4|x_2|^2) + 2(|x_1|^2 + |x_2|^2) + |x_3|^2 + \dots \leq 10\sum_{k=1}^{\infty} |x_k|^2 = 10||x||^2.$$

Рассмотрим решение уравнения Ax=y при любой правой части $y\in\ell_2$. Имеем

$$x_1 + 2x_2 = y_1, x_1 + x_2 = y_2, x_3 = y_3, x_4 = y_4, \dots$$

Откуда

$$x_1 = \frac{y_1 + 2y_2}{3}, \ x_2 = \frac{y_1 - y_2}{3}, \ x_i = y_i, \ i = 3, 4, \dots$$

Следовательно, к оператору A существует обратный оператор, который имеет вид

$$x = A^{-1}y = \left(\frac{y_1 + 2y_2}{3}, \frac{y_1 - y_2}{3}, y_3, y_4, \ldots\right).$$

 $\Pi \, p \, u \, m \, e \, p \, \beta.$ Рассмотрим оператор $A:C\left[0,1\right] o C\left[0,1\right]$, действующий по формуле

$$Ax(t) = x(t) + \int_{0}^{1} e^{s+t} x(s) ds.$$

Показать, что оператор A непрерывно обратим. Найти A^{-1} .

Решение. Линейный оператор называется непрерывно обратимым, если $\mathscr{R}(A) = Y$ и существует обратный ограниченный оператор.

Рассмотрим уравнение вида Ax = y и покажем, что для любой правой части $y(t) \in C[0,1]$ существует единственное решение уравнения. Это будет означать, что для оператора A существует A^{-1} . Для нахождения решения используем вырожденность ядра $\mathcal{K}(t,s)$. Итак,

$$x(t) + \int_0^1 e^{t+s} x(s) ds = y(t).$$

Тогда

$$x(t) = y(t) - e^{t} \int_{0}^{1} e^{s} x(s) ds,$$

или

$$x(t) = y(t) - ce^t.$$

Таким образом, если мы определим значение постоянной, то тем самым сможем найти решение исходного интегрального уравнения. Умножим обе части полученного равенства на e^t и проинтегрируем его по отрезку [0,1].

$$\int_{0}^{1} e^{t} x(t) dt = \int_{0}^{1} e^{t} y(t) dt - c \int_{0}^{1} e^{2t} dt.$$

Откуда

$$c = \int_0^1 e^t y(t) dt - c(e^2 - 1) \frac{1}{2}.$$

Полученное уравнение эквивалентно интегральному уравнению. Если данное уравнение имеет единственное решение, то исходное интегральное уравнение также будет однозначно разрешимым. Вычислим постоянную \boldsymbol{c}

$$c = \frac{2}{e^2 + 1} \int_0^1 e^t y(t) dt,$$

тогда

$$x(t) = y(t) - \frac{2}{e^2 + 1} \int_0^1 e^{t+s} y(s) ds.$$

Это означает разрешимость уравнения при любой правой части $y\left(t\right)\in C\left[0,1\right]$. Следовательно,

$$A^{-1}y(t) = y(t) - \frac{2}{e^2 + 1} \int_0^1 e^{t+s}y(s) ds.$$

Заметим, что это интегральный оператор с непрерывным ядром, который является ограниченным. Таким образом, к оператору A существует ограниченный обратный и $\mathscr{R}(A) = C[0,1]$, поэтому оператор A непрерывно обратим.

 $\Pi p u M e p 4$. Рассмотрим оператор $A: C[0,1] \to C[0,1]$,

$$Ax(t) = x'(t) + x(t)$$

с областью определения $\mathscr{D}(A) = \{x(t) \in C^1[0,1] : x(0) = 0\}$. Доказать, что A – неограниченный линейный оператор. Доказать, что A непрерывно обратим, найти A^{-1} .

Решение. Оператор A неограничен, так как последовательность $x_n = \sin nt \in \mathcal{D}(A)$ с $||x_n|| = 1$ под действием оператора перейдет в последовательность $Ax_n = n\cos nt + \sin nt$ и $||Ax_n|| \to \infty$ при $n \to \infty$.

Рассмотрим на $\mathcal{D}(A)$ уравнение вида

$$x'(t) + x(t) = y(t)$$

и решим его методом Эйлера с учетом начальных условий

$$x(t) = e^{-t} \int_0^t e^{\tau} y(\tau) d\tau.$$

Значит,

$$A^{-1}: C[0,1] \to \mathcal{D}(A), \quad A^{-1}y(t) = e^{-t} \int_0^t e^{\tau}y(\tau) d\tau.$$

 A^{-1} ограничен, т. е. $\exists \beta>0,$ что $\left|\left|A^{-1}y\right|\right|_{C[0,1]}\leqslant\beta\left|\left|y\right|\right|_{C[0,1]}.$ Действительно,

$$\left|\left|A^{-1}y\right|\right|_{C[0,1]} = \max_{0 \leqslant t \leqslant 1} \left|e^{-t} \int_{0}^{t} e^{\tau} y\left(\tau\right) d\tau\right| \leqslant \max_{0 \leqslant t \leqslant 1} e^{-t} \int_{0}^{1} e^{\tau} \left|y\left(\tau\right)\right| d\tau \leqslant$$

$$\leq \int_{0}^{1} e^{\tau} |y(\tau)| d\tau \leq (e-1) \max_{0 \leq \tau \leq 1} |y(\tau)| = \beta ||y||_{C[0,1]}.$$

Следовательно, A – неограниченный непрерывно обратимый оператор.

 $\Pi \, p \, u \, {\it M} \, e \, p \, 5$. Рассмотрим оператор $A:C\left[0,1\right] o C\left[0,1\right]$, действующий по формуле

$$Ax(t) = x(t) - \lambda \int_0^t x(s) ds.$$

Доказать, что A непрерывно обратим, найти A^{-1} .

Pешение. Оператор A является интегральным оператором Вольтерра с непрерывным ядром, поэтому A ограничен. Рассмотрим уравнение

$$Ax(t) = y(t)$$

или

$$x(t) - \lambda \int_0^t x(s) ds = y(t).$$

Откуда

$$x(t) = \lambda C(t) + y(t),$$

где $C(t) = \int_0^t x(s) \, \mathrm{d}s$, причем C'(t) = x(t) и C(0) = 0. Следовательно, решение интегрального уравнения Вольтерра равносильно решению следующей задачи Коши для обыкновенного дифференциального уравнения

$$\begin{cases} C'(t) - \lambda C(t) = y(t), \\ C(0) = 0. \end{cases}$$

Решение задачи Коши согласно метода Лагранжа ищем в виде

$$C(t) = f(t) e^{\lambda t}.$$

Продифференцируем полученное равенство по переменной t

$$f'(t) e^{\lambda t} = y(t) \Rightarrow f(t) - f(0) = \int_0^t e^{-\lambda s} y(s) \, ds \Rightarrow$$
$$\Rightarrow C(t) = e^{\lambda t} \left(f(0) + \int_0^t e^{-\lambda s} y(s) \, ds \right) \Rightarrow$$

$$C(t) = \int_0^t e^{\lambda(t-s)} y(s) ds \Rightarrow x(t) = \lambda \int_0^t e^{\lambda(t-s)} y(s) ds + y(t).$$

Значит,

$$A^{-1}y(t) = \lambda \int_0^t e^{\lambda(t-s)}y(s) ds + y(t).$$

Это оператор Вольтерра 2-го рода и поэтому он ограничен.

 $\Pi p u \, M e \, p \, 6$. В гильбертовом пространстве ℓ_2 с ортогональным базисом $\{e_k\}_{k=1}^{\infty}$ рассмотрим оператор A, задаваемый формулами $Ae_k = \alpha_k e_k$, где $\{\alpha_k\}_{k=1}^{\infty}$ – последовательность вещественных чисел. При каком условии на последовательность $\{\alpha_k\}_{k=1}^{\infty}$ оператор A замкнут?

Решение. Рассмотрим два случая:

- 1) Последовательность $\{|\alpha_n|\}$ ограничена. Пусть $C_A = \sup_k |\alpha_k|$, тогда $||Ax||^2 \leqslant C_A \cdot ||x||^2$. Следовательно оператор A ограничен, а значит, и замкнут.
- 2) Последовательность $\{|\alpha_n|\}$ неограничена. Как показано в теме 1 в этом случае оператор A неограничен. Если $\inf_k |\alpha_k| = \beta_A > 0$ (т. е. α_k отделены от нуля положительным числом), то существует A^{-1} , определяемый на элементах $y = \sum_{k=1}^{\infty} y_k e_k \left(\sum_{k=1}^{\infty} |y_k|^2 < \infty\right)$ формулой

$$A^{-1}y = \sum_{k=1}^{\infty} \alpha_k^{-1} y_k e_k.$$

Поскольку $\sup_k \left|\alpha_k^{-1}\right| = \beta_A^{-1} < \infty$, то A^{-1} ограничен $\left(\mathscr{D}\left(A^{-1}\right) = l_2\right)$. Таким образом, условие $\inf_k \left|\alpha_k\right| > 0$ обеспечивает замкнутость оператора A.

 $\Pi p \, u \, m \, e \, p \, 7$. Используя метод резольвент, решить интегральное уравнение Вольтерра вида

$$x(t) - \int_{0}^{t} e^{t-s}x(s) \, \mathrm{d}s = y(t).$$

Решение. В нашем случае $\mathcal{K}(t,s)=e^{t-s}$ и к решению уравнения Вольтерра при любом λ можно применить метод резольвент. Вычислим

итерированные ядра

Резольвента $R(t, s; \lambda)$ представляет собой сумму ряда

$$R(t,s;1) = e^{t-s} + e^{t-s} \frac{(t-s)}{1!} + e^{t-s} \frac{(t-s)^2}{2!} + \dots + e^{t-s} \frac{(t-s)^{i-1}}{(i-1)!} + \dots = e^{2(t-s)}.$$

Тогда решение запишется по формуле в виде

$$x(t) = y(t) + \int_{0}^{t} e^{2(t-s)} y(s) ds.$$

Задание 1. Пусть $A:L\to C[0,1]$ Выяснить, при каких λ к оператору A существует обратный и построить его.

1.1.
$$L = \{x(t) \in C^1[0,1] : x(0) = 0\}, \quad Ax(t) = x'(t) + \lambda x(t);$$

1.2.
$$L = \{x(t) \in C^1[0,1] : x(0) = 0\}, \quad Ax(t) = x'(t) + \lambda t x(t);$$

1.3.
$$L = \{x(t) \in C^1[0,1] : x(0) = 0\}, Ax(t) = x'(t) - \lambda t x(t)$$
:

1.4.
$$L = \{x(t) \in C^1[0,1] : x(0) = 0\}, \quad Ax(t) = x'(t) + \lambda t^2 x(t);$$

1.5.
$$L = \{x(t) \in C^2[0,1] : x(0) = x(1) = 0\}, Ax(t) = x''(t) + \lambda x(t);$$

1.6.
$$L = \{x(t) \in C^2[0,1] : x'(0) = x(1) = 0\}, Ax(t) = x''(t) + \lambda x(t);$$

1.7.
$$L = \{x(t) \in C^2[0,1] : x(0) = x'(1) = 0\}, Ax(t) = x''(t) + \lambda x(t);$$

1.8.
$$L = \{x(t) \in C^2[0,1] : x'(0) = x'(1) = 0\}, Ax(t) = x''(t) + \lambda x(t);$$

1.9.
$$L = \{x(t) \in C^2[0,1] : x(0) = x(1) = 0\}, Ax(t) = x''(t) - \lambda x(t);$$

1.10.
$$L = \{x(t) \in C^2[0,1] : x(0) = x(1) = 0\}, Ax(t) = x''(t) - \lambda x(t);$$

1.11. $L = \{x(t) \in C^3[0,1] : x'(0) = x''(1) = 0\}, Ax(t) = x'''(t) + \lambda x(t).$

1.12.
$$L = \{x(t) \in C^3[0,1] : x(0) = x''(1) = 0\}, Ax(t) = x'''(t) - \lambda x(t).$$

Задание 2. Пусть $A:C[0,1]\to C[0,1]$. Используя теорему Банаха об обратном операторе, показать, что оператор A непрерывно обратим, найти A^{-1} .

2.1.
$$Ax(t) = x(t) + \int_{0}^{1} e^{t-s}x(s) ds;$$

2.2.
$$Ax(t) = x(t) + \int_{0}^{1} (t+s)x(s) ds;$$

2.3.
$$Ax(t) = x(t) + e^t \int_0^1 e^{-s} x(s) ds;$$

2.4.
$$Ax(t) = x(t) + t \int_{0}^{t} sx(s) ds;$$

2.5.
$$Ax(t) = x(t) - 2 \int_{0}^{1} t^{2} sx(s) ds;$$

2.6.
$$Ax(t) = x(t) + \int_{0}^{1} (1+t+s)x(s) ds;$$

2.7.
$$Ax(t) = x(t) + \int_{0}^{1} tsx(s) ds;$$

2.8.
$$Ax(t) = x(t) + 2 \int_{0}^{1} e^{t+s} x(s) ds;$$

2.9.
$$Ax(t) = x(t) + \int_{0}^{1} (s\cos \pi t - 1)x(s) ds;$$

2.10.
$$Ax(t) = x(t) - \int_{0}^{1} tsx(s) \,ds;$$

2.11. $Ax(t) = x(t) + \int_{0}^{1} (1 - ts)x(s) \,ds;$
2.12. $Ax(t) = x(t) + t \int_{0}^{t} s^{2}x(s) \,ds;$
2.13. $Ax(t) = x(t) + \int_{0}^{1} \frac{t}{1+s}x(s) \,ds;$
2.14. $Ax(t) = x(t) + \int_{0}^{1} \cos \pi(t - s)x(s) \,ds;$
2.15. $Ax(t) = x(t) + \int_{0}^{1} (t^{2} - 1)sx(s) \,ds.$

Задание 3. Проверить, существует ли непрерывный обратный к оператору $A: \ell_2 \to \ell_2$. В случае положительного ответа указать его.

3.1.
$$Ax = (x_1 + x_2 + x_3, x_1 + 2x_2 - x_3, x_1 + x_2 - x_3, x_4, \dots);$$

3.2.
$$Ax = (x_1 + x_2, 2x_2 - x_3, x_1 + x_2 - x_3, x_4, \ldots);$$

3.3.
$$Ax = (x_1 + 2x_2 + 3x_3, x_1 - 2x_2 - x_3, x_1 - x_3, x_4, \dots);$$

3.4.
$$Ax = (x_1 - 2x_2, x_1 - 2x_2 - x_3, x_1 - x_2, x_4, \dots);$$

3.5.
$$Ax = (x_1 + 2x_2, x_1 - x_3, x_1 - 2x_2 + x_3, x_4, \ldots);$$

3.6.
$$Ax = (x_1 + 2x_2 - x_3, x_1 - x_2 + 4x_3, x_1 - 2x_2 + x_3, x_4, \ldots);$$

3.7.
$$Ax = (x_1 + x_2 - 2x_3, x_1 - x_2 + 4x_3, x_1 - x_2 + x_3, x_4, \ldots);$$

3.8.
$$Ax = (2x_2 - 3x_3, -x_2 + 4x_3, -5x_3, x_4, \ldots);$$

3.9.
$$Ax = (2x_1 + 3x_2 - 2x_3, x_2, x_1 + x_2 + 2x_3, x_4, \ldots);$$

3.10.
$$Ax = (x_1 + 2x_2 + 4x_3, 2x_1 + 3x_2 + x_3, x_4, \ldots);$$

3.11.
$$Ax = (x_1 - x_2 + x_3, 2x_1 + x_3, -x_1 + 3x_2 + 2x_3, x_4, \dots);$$

3.12.
$$Ax = (2x_1 + 3x_2 + 4x_3, x_1 + 2x_2 - 2x_3, x_1 - x_2, x_4, \dots);$$

3.13.
$$Ax = (x_1 + x_2 + x_3, -x_1 + 2x_3, x_2 - x_3x_4, \ldots);$$

3.14.
$$Ax = (x_1 + 2x_2 + 3x_3, x_2 + 4x_3, x_3, x_4, \ldots);$$

3.15.
$$Ax = (x_1 - x_2 + x_3, 2x_1 + 3x_2 + 4x_3, 3x_1 + x_3, x_4, \ldots)$$
.

Задание 4. Пусть $A:X\to Y$. Какие из операторов $A_l^{-1},\ A_r^{-1},\ A^{-1}$ существуют? Если A^{-1} существует на $\mathscr{R}(A),$ будет ли A^{-1} ограничен.

4.1.
$$A: l_2 \to l_2, \quad Ax = (x_2, x_3, \ldots);$$

4.2.
$$A: l_2 \to l_2, \quad Ax = \left(x_1, \frac{1}{2}x_2, \dots, \frac{1}{k}x_k, \dots\right);$$

4.3.
$$A: l_2 \to l_2, \quad Ax = \left(\frac{1}{2}x_1, \frac{1}{2^2}x_2, \dots, \frac{1}{2^k}x_k, \dots\right);$$

4.4.
$$A: l_4 \to l_4, \quad Ax = \left(\frac{1}{2}x_1, \frac{1}{2^2}x_2, \dots, \frac{1}{2^k}x_k, \dots\right);$$

4.5.
$$A: l_1 \to l_2, \quad Ax = (x_1, 0, x_2, \dots, x_k, \dots);$$

4.6.
$$A: l_2 \to l_3$$
, $Ax = (0, 2x_1, 3x_2, \dots, kx_{k-1}, \dots)$;

4.7.
$$A: l_3 \to l_1, \quad Ax = \left(x_2, 0, x_1, \frac{1}{3^2} x_3, \frac{1}{4^2} x_4, \ldots\right);$$

4.8.
$$A: m \to m, \quad Ax = \left(x_1, \frac{1}{2}x_2, \dots, \frac{1}{k}x_k, \dots\right);$$

4.9.
$$A: m \to l_2, \quad Ax = \left(x_1, \frac{1}{2}x_2, \dots, \frac{1}{2^{k-1}}x_k, \dots\right);$$

4.10.
$$A: l_3 \to l_2, \quad Ax = (x_2, x_3, \ldots);$$

4.11.
$$A: l_3 \to l_2$$
, $Ax = (x_1 + x_2, x_1 - x_2, x_3, x_4, \ldots)$;

4.12.
$$A: l_2 \to l_4$$
, $Ax = (0, 2x_1, 3x_2, \dots, kx_{k-1}, \dots)$;

4.13.
$$A: l_{3/2} \to l_1, \quad Ax = \left(x_3, x_2, x_1, \frac{1}{2^4} x_4, \dots, \frac{1}{2^k} x_k, \dots\right);$$

4.14.
$$A: l_2 \to l_1, \quad Ax = \left(x_2, 0, x_1, \frac{x_3}{3^2}, \dots, \frac{x_k}{k^2}, \dots\right);$$

4.15.
$$A: m \to l_1, \quad Ax = \left(x_1, \frac{1}{2^2} x_2, \dots, \frac{1}{2^k} x_k, \dots\right).$$

Задание 5. Используя метод резольвент, найти решение следующих интегральных уравнений второго рода:

5.1.
$$x(t) - \int_{0}^{t} e^{t-s} x(s) ds = e^{t};$$

5.2.
$$x(t) - 2 \int_{0}^{t} e^{t-s} x(s) ds = \sin t;$$

$$5.3. \ x(t) + \int_{0}^{t} \frac{3^{t-s}x(s) \, \mathrm{d}s = t3^{t};}{2 + \cos t} x(s) \, \mathrm{d}s = e^{t} \sin t;$$

$$5.4. \ x(t) - \int_{0}^{t} \frac{2 + \cos t}{2 + \cos s} x(s) \, \mathrm{d}s = e^{t} \sin t;$$

$$5.5. \ x(t) + \int_{0}^{t} e^{t^{2}-s^{2}}x(s) \, \mathrm{d}s = 1 - 2t;$$

$$5.6. \ x(t) - 2 \int_{0}^{t} e^{t^{2}-s^{2}}x(s) \, \mathrm{d}s = e^{t^{2}+2t};$$

$$5.7. \ x(t) - \int_{0}^{t} \frac{1 + t^{2}}{1 + s^{2}} sx(s) \, \mathrm{d}s = 1 + t^{2};$$

$$5.8. \ x(t) - \int_{0}^{t} \sin (t - s)x(s) \, \mathrm{d}s = \frac{1}{1 + t^{2}};$$

$$5.9. \ x(t) - \int_{0}^{t} e^{-(t-s)} \sin (t - s)x(s) \, \mathrm{d}s = e^{-t};$$

$$5.10. \ x(t) - \int_{0}^{t} e^{t+s}x(s) \, \mathrm{d}s = y(t);$$

$$5.11. \ x(t) - \int_{0}^{t} te^{ts}x(s) \, \mathrm{d}s = y(t);$$

$$5.12. \ x(t) - \int_{-1}^{1} te^{s}x(s) \, \mathrm{d}s = y(t);$$

$$5.13. \ x(t) - \int_{-1}^{1} t^{2}s^{2}x(s) \, \mathrm{d}s = y(t);$$

$$5.14. \ x(t) - \int_{0}^{1} tsx(s) \, \mathrm{d}s = y(t);$$

$$5.15. \ x(t) - \int_{0}^{1} (1 + (2t - 1)(2s - 1)) x(s) \, \mathrm{d}s = y(t).$$

Задание 6.

- 6.1. Доказать, что линейный ограниченный оператор $A:X \to Y$ замкнут тогда и только тогда, когда $\mathscr{D}(A)$ замкнуто в X;
- 6.2. Доказать, что множество нулей замкнутого оператора является замкнутым множеством;

- 6.3. Пусть $A,B:X\to Y$ линейные операторы, причем A замкнут, B ограничен и $\mathscr{D}(A)\subset \mathscr{D}(B)$. Доказать, что A+B замкнутый оператор.
- 6.4. Пусть $A: X \to Y$ замкнутый линейный оператор, $\mathscr{R}(A)$ замкнуто в Y и существует такая константа $m \in \mathbb{R}$ (m > 0), что для любого $x \in \mathscr{D}(A)$ выполняется неравенство $\|Ax\|_Y \geqslant m\|x\|_X$. Доказать, что A замкнутый оператор.
- 6.5. Пусть $A: X \to Y$ замкнутый линейный оператор, $\mathscr{R}(A) = Y$ и существует оператор A^{-1} . Доказать, что A^{-1} линейный ограниченный оператор.
- 6.6. Пусть $A: X \to Y$ линейный оператор. Доказать, что оператор A замкнут тогда и только тогда, когда $\mathscr{D}(A)$ в норме $\|x\|_1 = \|x\|_X + \|Ax\|_Y$ является банаховым пространством.