Data Compression

Reduce data from 2D to 1D

$$\begin{array}{ccc} x^{(1)} \in \mathbb{R}^2 & \to z^{(1)} \in \mathbb{R} \\ x^{(2)} \in \mathbb{R}^2 & \to z^{(2)} \in \mathbb{R} \end{array}$$

:

$$x^{(m)} o z^{(m)}$$

Data Compression

10000 -> 1000

Reduce data from 3D to 2D

数据可视化 降维

Data Visualization									
	i i	I		×.					
	Xi	X2	V.		Xs	Mean			
		Per capita	X 3	X4	Poverty	household			
	GDP	GDP	Human		Index	income			
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands			
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)			
Canada	1.577	39.17	0.908	80.7	32.6	67.293			
China	5.878	7.54	0.687	73	46.9	10.22			
India	1.632	3.41	0.547	64.7	36.8	0.735			
Russia	1.48	19.84	0.755	65.5	39.9	0.72			
Singapore	0.223	56.69	0.866	80	42.5	67.1			
ÜSA	14.527	46.86	0.91	78.3	40.8	84.3	•••		

Data Visualization

		í	5 (c)
Country	z_1	z_2	_
Canada	1.6	1.2	
China	1.7	0.3	
India	1.6	0.2	
Russia	1.4	0.5	
Singapore	0.5	1.7	
USA	2	1.5	

主城分分析法 Principal Componet Analysis PCA

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error. Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \dots, u^{(k)} \in \mathbb{R}^n$ onto which to project the data, so as to minimize the projection error.

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \ldots, x^{(m)} \leftarrow$

Preprocessing (feature scaling/mean normalization):

$$\int \mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

 $\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$ Replace each $x_j^{(i)}$ with $x_j - \mu_j$. If different features on different scales (e.g., $x_1 =$ size of house, $x_2 =$ number of bedrooms), scale features to have comparable range of values. $x_{i}^{(j)} \leftarrow \frac{x_{i}^{(j)} - \mu_{i}^{-j}}{\sum_{i=1}^{\infty} x_{i}^{(j)}}$

协方差矩阵 covariance matrix

顺便说一下 svd 表示奇异值分解 (singular value decomposition)

Principal Component Analysis (PCA) algorithm

Reduce data from n-dimensions to k-dimensions

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} \underbrace{(x^{(i)})(x^{(i)})^{T}}_{\text{land}}$$
 Sigma

Reduce data from
$$n$$
-dimensions to k -dimensions

Compute "covariance matrix":

$$\sum = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)})(x^{(i)})^{T} \qquad \text{Signa}$$
Compute "eigenvectors" of matrix Σ :
$$\Rightarrow \text{Singular value decomposition}$$

$$\Rightarrow [U, S, V] = \text{svd}(\text{Sigma});$$

$$\text{nxn matrix}$$

Principal Component Analysis (PCA) algorithm

From [U,S,V] = svd(Sigma), we get:

Principal Component Analysis (PCA) algorithm summary

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

减少

平均平方映射误差 (Average Squared Projection Error)

Choosing k (number of principal components) Average squared projection error: $\frac{1}{m} \stackrel{\text{def}}{\underset{\text{def}}{\rightleftharpoons}} \|\chi^{(i)} - \chi^{(i)}_{\text{def}}\|^2$ Total variation in the data: $\frac{1}{m} \stackrel{\text{def}}{\underset{\text{def}}{\rightleftharpoons}} \|\chi^{(i)}\|^2$

Typically, choose k to be smallest value so that

⇒ "99% of variance is retained" 95to 90%

Choosing k (number of principal components)

99%的差异性被保留了下来

Choosing k (number of principal components)

> [U,S,V] = svd(Sigma)

Pick smallest value of k for which

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

$$0.99$$

(99% of variance retained)

恢复减维

Reconstruction from compressed representation

Supervised learning speedup

Unlabeled dataset: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \in \mathbb{R}^{10000} \leftarrow \downarrow PCA$ $\downarrow PCA$ $z^{(1)}, z^{(2)}, \dots, z^{(m)} \in \mathbb{R}^{1000} \leftarrow \downarrow PCA$ New training set: $(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), \dots, (z^{(m)}, y^{(m)})$ Nets: Manning $z^{(i)} = z^{(i)} = z^{($

New training set:
$$(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), \dots, (z^{(m)}, y^{(m)})$$
 $h_{\Theta}(z) = \frac{1}{1 + e^{-\Theta^{T} z}}$

Note: Mapping $x^{(i)} \rightarrow z^{(i)}$ should be defined by running PCA only on the training set. This mapping can be applied as well to the examples $x_{cv}^{(i)}$ and $x_{test}^{(i)}$ in the cross validation and test sets.

Application of PCA

- Compression
 - Reduce memory/disk needed to store data

Bad use of PCA: To prevent overfitting

 \rightarrow Use $z^{(i)}$ instead of $x^{(i)}$ to reduce the number of features to k < n.— 10000

Thus, fewer features, less likely to overfit.

This might work OK, but isn't a good way to address overfitting. Use regularization instead.

$$\Rightarrow \min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \sqrt{\frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2}$$

PCA is sometimes used where it shouldn't be

Design of ML system:

- \rightarrow Get training set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$

- → How about doing the whole thing without using PCA?
- → Before implementing PCA, first try running whatever you want to do with the original/raw data $x^{(i)}$ Only if that doesn't do what you want, then implement PCA and consider using $\underline{z^{(i)}}$