February 11, 2020

Abstract

1

2 Introduction

This report presents the development of a C++ Bayesian Non parametric library containing Marcov Chain sampling methods for density estimation and clustering. In a Bayesian Non-parametric setting we focused on the Dirichlet process (DP) and its extensions, one of the most widely used priors due to its flexibility and computational ease.

3 Dirichlet Process

Formal definition: Let M > 0 and G_0 be a probability measure defined on S. A DP with parameters (M, G_0) is a random probability measure G defined on S which assigns probability G(B) to every (measurable) set B such that for each (measurable) finite partition $B_1, ..., B_k$ of S, the joint distribution of the vector $(G(B_1), ..., G(B_k))$ is the Dirichlet distribution with parameters

$$(MG_0(B_1), ..., MG_0(B_k)).$$
 (1)

The parameter M is called the precision or total mass parameter, G_0 is the centering measure, and the product MG_0 is referred to as the base measure of the DP.

The basic DP model has the form:

$$y_i|G \stackrel{\text{iid}}{\sim} G, \quad i = 1, \dots, n$$

 $G \sim DP(MG_0)$

A key property is that the DP is conjugate with respect to i.i.d sampling so that the posterior base distribution is a weighted average of the prior base distribution G_0 and the empirical distribution of the data, with the weighting controlled by M:

$$G|\mathbf{y} \sim DP(MG_0 + \sum_{i=1}^n \delta_{y_i}).$$
 (2)

And the marginal distribution will be the result of the product of the conditionals:

$$p(y_i|y_1, ..., y_{i-1}) = \frac{1}{M+i-1} \sum_{h=1}^{n-1} \delta_{y_h}(y_i) + \frac{M}{M+i-1} G_0(y_i).$$
 (3)

An important property of the DP is the discrete nature of G. As a discrete random probability measure we can always write G as a weighted sum of point masses. A useful property based on the discrete nature of the process is his stick-breaking representation, i.e. G can be written as:

$$G(\cdot) = \sum_{k=1}^{+\infty} w_k \delta_{m_k}(\cdot) \tag{4}$$

with $m_k \stackrel{\text{iid}}{\sim} G_0$ and the random weights constructed as $w_k = v_k \prod_{l < k} (1 - v_l)$ where v_k are independent Be(1,M)random variables.

In many applications in which we are interested in a continuous density estimation this discreteness can represents a limit. It's common choice to use a Dirichlet Process Mixture (DPM) model where the DP random measure is the mixing measure for the parameters of a parametric continuous kernel function.

4 Dirichlet Process Mixture Model

Extending the DP by convolving G with a kernel F, the model will have the form:

$$y_i|G \sim F_G(y) = \int F(y, \vartheta) G(d\vartheta), \quad i = 1, \dots, n$$

 $G \sim DP(MG_0)$

An equivalent hierarchical model is:

$$y_i | \vartheta_i \stackrel{\text{ii}}{\sim} F(\cdot, \vartheta_i), \quad i = 1, \dots, n$$

 $\vartheta_i | G \stackrel{\text{iid}}{\sim} G, \quad i = 1, \dots, n$
 $G \sim DP(MG_0)$

where the latent variables ϑ_i are introduced, one per unit. Since G is discrete, we know that two independent draws ϑ_i and ϑ_j from G can be equal with positive probability. In this way the DPM model induces a probability model on clusters and an object of interest starting from this model is the partitioning induced by the clustering as well as the density estimation.

Considering n data units, each ϑ_i will have one of the k unique values ϕ_j . An estimation of the number of the unique values is $M \log(n) \ll n$. Calling c_i the allocation parameters to the clusters such that $c_i = j$ if $\vartheta_i = \phi_j$ the model can be thought as the limit as K goes to infinity of finite mixture model with K components:

$$(Y_i|\phi, c_i) \sim F(\cdot, \phi_{c_i})$$

$$(c_i|\mathbf{p}) \sim \sum_{k=1}^K p_k \delta_k(\cdot)$$

$$\phi_c \sim G_0$$

$$\mathbf{p} \sim \text{Dir}(M/K, \dots, M/K)$$

where $(p_1, ..., p_K)$ represent the mixing proportions for the classes and each theta is defined by the latent class c and the corresponding parameters ϕ_c .

4.1 Normal Normal-InverseGamma Model

A very common choice is the Gaussian Mixture Model, opting for a Normal kernel and as base measure G_0 the conjugate Normal-InverseGamma:

$$k(y|\vartheta) = N(y,\mu,\sigma^2)$$

$$G_0(\vartheta|\mu_0,\lambda_0,\alpha_0,\beta_0) = N\left(\mu|\mu_0,\frac{\sigma^2}{\lambda_0}\right) \text{Inv-Gamma}(\sigma^2|\alpha_0,\beta_0)$$

Thanks to the conjugacy the predictive distribution for a new observation \tilde{y} can be found analytically:

$$p(\widetilde{y}|\mu_0, \lambda_0, \alpha_0, \beta_0) = \int k(\widetilde{y}|\vartheta) p(\vartheta, G_0) d\vartheta = \frac{1}{\widetilde{\sigma}} \text{t-Student}\left(\frac{\widetilde{y} - \widetilde{\mu}}{\widetilde{\sigma}}, |\widetilde{v}\right)$$
(5)

where
$$\widetilde{v} = 2\alpha_0$$
, $\widetilde{\mu} = \mu_0$ and $\widetilde{\sigma} = \sqrt{\frac{\beta_0(\lambda_0 + 1)}{\alpha_0 \lambda_0}}$

The posterior distribution is again a Normal-InvGamma:

$$p(\vartheta|y, \mu_0, \lambda_0, \alpha_0, \beta_0) = N\left(\mu|\mu_n, \frac{\sigma^2}{\lambda_0 + n}\right) \text{Inv-Gamma}(\sigma^2|\alpha_n, \beta_n)$$
 (6)

with
$$\mu_n = \frac{\lambda_0 \mu_0 \bar{y} + n}{\lambda_0 + n}$$
, $\alpha_n = \alpha_0 + \frac{n}{2}$ and $\beta_n = \beta_0 + \frac{1}{2} \sum_{i=1}^n (y_i - \bar{y})^2 + \frac{\lambda_0 n(\bar{y} - \mu_0)^2}{2(\lambda_0 + n)}$

5 Methods

Starting from the hierarchical model (n) a direct approach is simply drawing values for each ϑ_i from its conditional given the data and the other ϑ_j , but as we discussed before there is an high probability for ties among them and this can result in a slow convergence.

5.1 Neal2

To solve and make it more efficient Neal proposed, starting from the discrete model (n), a Gibbs sampling method, integrating out the mixing proportion **p**. Assuming the current state of Markov chain consists of $(c_1, ..., c_n)$ and the component parameters ϕ_c for all c, the Gibbs sampler consists of drawing values for each c_i given the conditional probabilities:

$$\mathbb{P}(c_i = c | \mathbf{c}_{-i}, y_i, \boldsymbol{\phi}) \propto \frac{n_{-i,c} + M/K}{n - 1 + M} F(y_i, \phi_c)$$

and consequently a new value for each ϕ_c given the data belonging to that class. The passage to the infinite case is done taking the limit of K to infinity in the conditional distribution of c_i that becomes:

$$\mathbb{P}(c_i = c | \mathbf{c}_{-i}, y_i, \boldsymbol{\phi}) \propto \frac{n_{-i,c}}{n - 1 + M} F(y_i, \phi_c)$$

$$\mathbb{P}(c_i \neq c_j \text{ for all } j | \mathbf{c}_{-i}, y_i, \boldsymbol{\phi}) \propto \frac{M}{n - 1 + M} \int F(y_i, \phi) G_0(\mathrm{d}\phi)$$

and considering only the ϕ_c associated with some observation, keeping feasible the sampling. At this point the algorithm works iteratively sampling c and ϕ . For each observation i c_i is updated according to its conditional distribution. It can be set either to one of the other components currently associated with some observation or to a new mixture component. If the new value of c_i is different from all the other c_j a value for ϕ_{ci} is drawn from the posterior distribution H_i , based on the prior G_0 and the single observation y_i . Then for all the classes the sample for ϕ_c is done considering the posterior distribution based on the prior and all the observations belonging to the specific class.

The probability of setting c_i to a new component involves the integral $\int F(y_i, \phi) G_0(d\phi)$, which is difficult in the non-conjugate case, as well as the sample from H_i .

5.2 Neal8

To handle non-conjugate priors Neal proposed a second Markov chain sampling procedure where the state is extended by the addition of auxiliary parameters. This technique allows to update the c_i avoiding the integration with respect to G_0 .

In this case the prior for c_i are:

If
$$c = c_j$$
 for some j : $\mathbb{P}(c_i = c | \mathbf{c}_{-i}) = \frac{n_{-i,c}}{n-1+M}$
 $\mathbb{P}(c_i \neq c_j \text{ for all } j) = \frac{M}{n-1+M}$

where the probability of selecting a new component is split among the m auxiliary components. Maintaining the same structure as the $Algorithm\ 2$, the $Algorithm\ 8$ is composed of two steps, where the components of the Markov Chain state (c, ϕ) are repeatedly sampled. The first step scans all the observations and evaluates each c_i . If this is equal to another c_j then all the auxiliary variables are drawn from G_0 . If it is a singleton then it is linked to one of the auxiliary variable with the corresponding value of ϕ_c while the others are drawn as before from G_0 . Then c_i is updated according to the conditional probabilities:

$$P(c_i = c | \mathbf{c}_{-i}, y_i, \phi_1, \dots, \phi_h) \propto \begin{cases} \frac{n_{-i,c}}{n-1+M} F(y_i, \phi_c), & \text{for } 1 \le c \le k^-\\ \frac{M/m}{n-1+M} F(y_i, \phi_c), & \text{for } k^- + 1 < c \le h \end{cases}$$

Once all the ϕ_c not associated anymore with any observation are discarded, the algorithm proceeds with the sampling for ϕ_c for all the classes.

5.3 Blocked Gibbs