CRG 17/18 Meeting 9 Confounding and Efficiency in Clustered Data (Vansteelandt, 2007)

Discussant: Oisín Ryan

April 12, 2018

Background: GEE

- ► Typical multi-level (linear mixed effects) modeling scenario
 - ► (Nested) data modelled with a gaussian distribution
 - Derive a likelihood for the data and maximise
 - ► Score function=0
 - Fixed effects population average parameter
 - Fixed effects also referred to as the Marginal part
 - Random part individual-specific difference from the marginal parameter
 - Estimate the variance of the random part

Background:GEE

- Problem: not straightforward for non-gaussian distributions
 - ▶ GLM without identity link, e.g. Bernoulli, Poisson etc.
 - Joint likelihood difficult to specify
 - Problem arises from complex variance function due to the random part

- ► Solution: **Generalized Estimating Equations** (GEE)
 - Only care about estimating the Marginal Part (mean response)
 - Treat the random effects part as a nuisance parameter
 - ► Semi-parametric: Don't have to specify the full likelihood, only first moment
 - ► Get a similar looking score function
 - Upshot: marginal parameters only dependent on the first moment, so we can mis-specify the variance/covariance structure and still get good estimates! (black magic)
 - Misspecified variance/covariance = Working correlation structure
 - Downshot: No nice estimates of random part, SEs need to be corrected later

Conditional Mean Model for Longitudinal Data

$$E(Y_t|\bar{X}_t) = h_t(\bar{X}_t; \omega*) \tag{1}$$

- $ar{X}_t$ is potentially all values of the predictor variable at all points in time up to and including t
- ightharpoonup ω are the parameters relating \bar{X}_t to Y_t

$$E(Y_t|\bar{X}_t) = \omega_0 + \omega_1 X_{t-1}$$

$$= \omega_0 + \omega_1 X_t + \omega_2 X_{t-1}$$

$$= \omega_0 + \omega_1 t + \omega_2 X_t + \omega_3 X_{t-1}$$

The solution to the usual GEEs

$$\sum_{i=1}^{n} \Gamma_i \Sigma_i^{-1} \epsilon_i(\omega) = 0 \tag{2}$$

This is just the **score function** where

- $ightharpoonup \epsilon_i(\omega)$ is the error
- \triangleright Σ_i is the variance covariance matrix of the errors
- ightharpoonup Γ_i are the derivatives of the predictor equation with respect to the parameters

Compare to the score function of a gaussian GLM

$$S(\boldsymbol{\beta}) = \sum_{i} \frac{\partial \mu_{i}}{\partial \boldsymbol{\beta}} v_{i}^{-1} (y_{i} - \mu_{i}) = 0$$

Unbiasedness conditions

GEE Estimates only guaranteed to be unbiased when

$$E(Y_t|\bar{X}_t) = E(Y_t|\bar{X}_T) \tag{3}$$

Current values of Y are independent of future values of X given current values of X