

Scanned by CamScanner

Pigeon hole principle:

6

G

6

C

Theorem: If there are not pigeons and only n holes than one pigeon hole contains 2 pigeons.

Theorems: N= total num of pigeons

k = total num of holes

then one hole contains atteast [N] pigeons.

Inclusion and Exclusion:

) - n(AUB) = n(A) + n(B) - n(AnB)

> - n(AUBUC) = n(A) + n(B)+n(C) - n(ANB) - n(ANC) - n(BNC) + n(ANBNC)

Derangements:

Num of amangements such that no Element is at right position

$$D_n = D! \left[\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + + \frac{1}{6!} \right]$$

_	1	1	
N	ote: D	1=0	Dy = 9
	D	2 = 1	D5 = 44
d	Þ	3 = 2	Db = 265

Recurence relation:

It is an Expr that is happening sepetively and the next term is based on previous

Note

vote:		sol (Chai san)
Type i	$a_n = 2a_{n-1}$	an = 2 an
Type 2	arb are roots	$a_n = c_1 a^n + c_2 b^n$
Type 3	are mots	$a_n = c_1 a^n + c_2 n a^n$
Type 4	aibic ax roots	an = C1an + C2bn + C3cn
Type 5	araib are motes	$a_n = c_1 a^n + c_2 n a^n + c_3 b^n$
Type 6	arara are roots	an= c1an+ c2man+ c3n2an

x __ The End __ x