HW₂

STA-360/602, Spring 2018

Frank

1/16/2019

- 1. Lab component
- (a) Task 3. Write a function that takes as its inputs that data you simulated (or any data of the same type) and a sequence of θ values of length 1000 and produces Likelihood values based on the Binomial Likelihood. Plot your sequence and its corresponding Likelihood function.

```
# Generating simulated data
set.seed(123)
obs.data <- rbinom(n = 100, size = 1, prob = 0.01)
head(obs.data)</pre>
```

```
## [1] 0 0 0 0 0 0
```

```
# Create and plot likelihood function
n = length(obs.data)
x = sum(obs.data)
th = seq(0, 1, length = 1000)

like = dbeta(th, x+1, n-x+1)
ggplot()+geom_line(aes(x = th, y = like))+labs(x = expression(theta), y = "Density")+ theme_bw()
```


(b) Task 4. Write a function that takes as its inputs prior parameters a and b for the Beta-Bernoulli model and the observed data, and produces the posterior parameters you need for the model. Generate the posterior parameters for a non-informative prior i.e. (a,b)=(1,1) and for an informative case

```
(a, b) = (3, 1)
```

```
a1 = 1
b1 = 1
a2 = 3
b2 = 1

prior1 = dbeta(th, a1, b1)
post1 = dbeta(th, a1+x, b1+n-x)

prior2 = dbeta(th, a2, b2)
post2 = dbeta(th, a2+x, b2+n-x)
```

(c) Task 5. Create two plots, one for the informative and one for the non-informative case to show the posterior distribution and superimpose the prior distributions on each along with the likelihood. What do you see? Remember to turn the y-axis ticks off since superimposing may make the scale non-sense.

```
# Plot for non-informative case
ggplot() +
    geom_line(aes(x = th, y = post1, linetype = 'posterior'))+
    geom_line(aes(x = th, y = prior1, linetype = 'prior'))+
    geom_line(aes(x = th, y = like, linetype = 'likelihood'))+
    labs(x = expression(theta), y = "Density", title = "Prior, likelihood and posterior when given a non-infor
mative prior") + theme_bw()
```

Prior, likelihood and posterior when given a non-informative prior


```
# Plot for informative case
ggplot() +
  geom_line(aes(x = th, y = post2, linetype = 'posterior'))+
  geom_line(aes(x = th, y = prior2, linetype = 'prior'))+
  geom_line(aes(x = th, y = like, linetype = 'likelihood'))+
  labs(x = expression(theta), y = "Density", title = "Prior, likelihood and posterior when given an informat
ive prior") + theme_bw()
```

Prior, likelihood and posterior when given an informative prior

2. The *Exponential-Gamma Model* We write $X \sim Exp(\theta)$ to indicate that X has the Exponential distribution, that is, its p.d.f. is

$$p(x|\theta) = Exp(x|\theta) = \theta \exp(-\theta x)1(x > 0).$$

The Exponential distribution has some special properties that make it a good model for certain applications. It has been used to model the time between events (such as neuron spikes, website hits, neutrinos captured in a detector), extreme values such as maximum daily rainfall over a period of one year, or the amount of time until a product fails (lightbulbs are a standard example).

Suppose you have data x_1, \ldots, x_n which you are modeling as i.i.d. observations from an Exponential distribution, and suppose that your prior is $\theta \sim Gamma(a, b)$, that is,

$$p(\theta) = Gamma(\theta|a, b) = \frac{b^a}{\Gamma(a)} \theta^{a-1} \exp(-b\theta) 1(\theta > 0).$$

(a) Derive the formula for the posterior density, $p(\theta|x_{1:n})$. Give the form of the posterior in terms of one of the most common distributions (Bernoulli, Beta, Exponential, or Gamma).

$$p(\theta|x_{1:n}) \propto p(x_{1:n}|\theta)p(\theta)$$

$$\propto \prod_{n} [\theta \exp(-\theta x)] \frac{b^{a}}{\Gamma(a)} \theta^{a-1} \exp(-b\theta)$$

$$\propto \theta^{n} \exp(-n\bar{x}\theta)\theta^{a-1} \exp(-b\theta)$$

$$\propto \theta^{n+a-1} \exp[-(n\bar{x}+b)\theta]$$

$$\propto Gamma(\theta|n+a, n\bar{x}+b)$$

(b) Why is the posterior distribution a proper density or probability distribution function?

Because the prior $p(\theta) = Gamma(\theta|a,b)$ is a conjugate prior for the given likelihood function. That means the posterior is in the same probability distribution family as the prior probability distribution $p(\theta)$ is.

(c) Now, suppose you are measuring the number of seconds between lightning strikes during a storm, your prior is Gamma(0.1, 1.0), and your data is

$$(x_1, \dots, x_8) = (20.9, 69.7, 3.6, 21.8, 21.4, 0.4, 6.7, 10.0).$$

Plot the prior and posterior p.d.f.s. (Be sure to make your plots on a scale that allows you to clearly see the important features.)

```
X = c(20.9, 69.7, 3.6, 21.8, 21.4, 0.4, 6.7, 10.0)
th = seq(0,1,length = 1000)
x <- sum(X)
n <- length(X)
a = 0.1
b = 1.0

# Generate the prior and post function according to conclusions above
prior <- dgamma(th, a, b)
post <- dgamma(th, a + n, b + x)

# Plotting
ggplot()+geom_line(aes(x = th, y = prior, linetype = 'prior'))+
    geom_line(aes(x = th, y = post, linetype = 'post'))+
    labs(x = expression(theta), y = 'density', title = 'Posterior and Prior based on given data') + theme_bw()</pre>
```

Posterior and Prior based on given data

(d) Give a specific example of an application where an Exponential model would be reasonable. Give an example where an Exponential model would NOT be appropriate, and explain why.

Reasonable: The time that some radioactive matter decays.

Unreasonable: The amount of flying bugs in different hours of day. Because most bugs are only active during night time, which is not constant throughout the day.

3. Priors, Posteriors, Predictive Distributions (Hoff, 3.9).

An unknown quantity Y has a Galenshore (a, θ) distribution if its density is given by

$$p(y) = \frac{2}{\Gamma(a)} \theta^{2a} y^{2a-1} e^{-\theta^2 y^2}$$

for $y > 0, \theta > 0, a > 0$. Assume for now that a is known. For this density,

$$E[Y] = \frac{\Gamma(a+1/2)}{\theta\Gamma(a)}$$

$$E[Y^2] = \frac{a}{\theta^2}.$$

(a) Identify a class of conjugate prior densities for θ . Plot a few members of this class of densities.

```
# Define dgalen function
dgalen <- function(th,a,b){
   return(2/gamma(a)*b^(2*a)*th^(2*a-1)*exp(-b^2*th^2))
}
# Creating a set of (a, b) and theta for plotting
a1 = 1
b1 = 1
a2 = 3
b2 = 1
a3 = 1
b3 = 3
th = seq(0, 5, length = 1000)
# Plotting
ggplot()+geom_line(aes(x=th, y=dgalen(th,a1,b1),linetype='1'))+
   geom_line(aes(x=th, y=dgalen(th,a2,b2),linetype='2'))+
   geom_line(aes(x=th, y=dgalen(th,a3,b3),linetype='3'))+
   theme_bw()</pre>
```


(b) Let $Y_1, \ldots, Y_n \overset{iid}{\sim}$ Galenshore(a, θ). Find the posterior distribution of $\theta \mid y_{1:n}$ using a prior from your conjugate class.

Suppose the prior, θ , is $\theta \sim$ Galenshore(k, b),

Given that Y has a Galenshore(a, θ) distribution for y1,...,yn,

then the posterior is:

$$p(\theta|y_{1:n}) \propto p(\theta)p(y_{1:n}|\theta)$$

$$\propto \theta^{2k-1} \exp(-b^2\theta^2) \prod_n [\theta^{2a}yi^{2a-1} \exp(-\theta^2yi^2)]$$

$$\propto \theta^{2k-1} \exp(-b^2\theta^2)\theta^{2an} \exp(-\theta^2 \sum_n yi^2)$$

$$\propto \theta^{2k+2an-1} \exp[-\theta^2(b^2 + \sum_n yi^2)]$$

$$\propto Galenshore(\alpha = k + an, \beta = \sqrt{b^2 + \sum_n yi^2})$$

(c) Write down

$$\frac{p(\theta_a \mid y_{1:n})}{p(\theta_b \mid y_{1:n})}$$

and simplify. Identify a sufficient statistic.

Given the result from (b), $p(\theta|y_{1:n}) \propto Galenshore(\alpha = k + an, \beta = \sqrt{b^2 + \sum_n yi^2})$:

$$\frac{p(\theta_a \mid y_{1:n})}{p(\theta_b \mid y_{1:n})} = \frac{\theta_a^{2\alpha-1} exp(-\beta^2 \theta_a^2)}{\theta_b^{2\alpha-1} exp(-\beta^2 \theta_b^2)} = \left(\frac{\theta_a}{\theta_b}\right)^{2\alpha-1} exp[-\beta^2 (\theta_a^2 - \theta_b^2)]$$

Sufficient statistic: $\sum_{n} yi^{2}$

(d) Determine $E[\theta \mid y_{1:n}]$.

Since this is a conjugate family, and since given $Y \sim Galenshore(a, \theta)$,

$$E[Y] = \frac{\Gamma(a+1/2)}{\theta\Gamma(a)}$$

$$E[\theta \mid y_{1:n}] = \frac{\Gamma(\alpha+1/2)}{\beta\Gamma(\alpha)}$$

$$given : \alpha = k + an, \beta = \sqrt{b^2 + \sum_{n} yi^2},$$

$$where : \theta \sim Galenshore(k,b)$$

(e) Determine the form of the posterior predictive density $p(y_{n+1} \mid y_{1:n})$

$$\begin{split} p(y_{n+1} \mid y_{1:n}) &= \int p(y_{n+1} \mid \theta) p(\theta \mid y_{1:n}) d\theta \\ &= \int \frac{2}{\Gamma(a)} \; \theta^{2a} y_{n+1}^{2a-1} e^{-\theta^2 y_{n+1}^2} \frac{2}{\Gamma(\alpha)} \; \beta^{2a} \theta^{2\alpha-1} e^{-\beta^2 \theta^2} d\theta \\ &= \frac{4}{\Gamma(a) \Gamma(\alpha)} y_{n+1}^{2a-1} \beta^{2\alpha} \int \theta^{2(a+\alpha)-1} e^{-\theta^2 (y_{n+1}^2 + \beta^2)} d\theta \\ &= \frac{4}{\Gamma(a) \Gamma(a)} y_{n+1}^{2a-1} \beta^{2\alpha} \int \frac{\Gamma(a+\alpha-\frac{1}{2})}{2} (y_{n+1}^2 + \beta^2)^{-(a+\alpha-\frac{1}{2})} \frac{2}{\Gamma(a+\alpha-\frac{1}{2})} (y_{n+1}^2 + \beta^2)^{a+\alpha-\frac{1}{2}} \theta^{2(a+\alpha-\frac{1}{2})-1} e^{-\theta^2 (y_{n+1}^2 + \beta^2)} \theta d\theta \\ &= \frac{2\Gamma(a+\alpha-\frac{1}{2})}{\Gamma(a)\Gamma(\alpha)} y_{n+1}^{2a-1} \beta^{2\alpha} (y_{n+1}^2 + \beta^2)^{-(a+\alpha-\frac{1}{2})} \int Galenshore(\theta \mid a+\alpha-\frac{1}{2}, \sqrt{y_{n+1}^2 + \beta^2}) \theta d\theta \\ &\propto y_{n+1}^{2a-1} (y_{n+1}^2 + \beta^2)^{-(a+\alpha-\frac{1}{2})} \frac{\Gamma(a+\alpha)}{\sqrt{y_{n+1}^2 + \beta^2} \Gamma(a+\alpha-\frac{1}{2})} \\ &\propto y_{n+1}^{2a-1} (y_{n+1}^2 + \beta^2)^{-(a+\alpha)} \end{split}$$

This is the simpliest form I can get, but I cannot recognize the family of the distribution.