תכנון אלגוריתמים תרגיל 3 – דף תשובות

318550746	ת.ז:	מאור יעקב אסייג	:שם
204654891	ת.ז:	רפאל חי שטרית	:שם

אנא הגישו רק חלק זה. אל תחרגו מהמקום המוקצה לתשובה!

Submission Systemb שימו לב! ההגשה היא

שאלה 1

'סעיף א

8	טע׳ן-
בחנה:	ו. א
בור $k>0$ לכל פתרון ב $Sol(k)$ קיים אחרונה כפתרון לכל פתרון אור פתרון בפתרון בפתרון אור פתרון ב	2. ע
k-ל ל $k-i$ מנקודה	3. ה
	.4
ענה:	ช .5
בורס הצפרדע קופצת מהנקודה $i \in \{1,,k\}, k>0$ בור בורס $i \in \{1,,k\}, k>0$ בור	.6 ע
עבור $S_o \cup \{i\}$ ישירות לנקודה k הינה בדיוק קבוצת כל הפתרונות מהצורה ו $k-1$	i .7
$S_o \in Sol(k-i)$	8. (
	.9
הוכחת הטענה שלעיל:	.10
: נוכיח שוויון בין 2 הקבוצות הבאות	.11
$A = \{I: I = S_0 \cup \{i\} S_0 = (S_1,, S_m), i + \sum_{j=1}^m S_j = k, S_0 \in Sol(k-i)\}$.12
$B = \{I: I \subseteq Sol(k)\}$.13
	.14
$S_0 \in Sol(k-i)$. $I = S_0 \cup \{i\}$ אזי $I \in A$: $A \subseteq B <=$.15
$I = (S_1,, S_m, i) i + \sum_{j=1}^m S_j = k$ כלומר $S_0 \subseteq \{1, 2,, k-i\}$ ולכן	.16
$A\subseteq B$ ומכאן I $\in Sol(k)$ ולכן	.17

$J\subseteq\{1,2,\ldots,k\}$ ולכן ולכן $I\in Sol(k)$ אזי $I\in B\subseteq A$.19
לפי האבחנה לכל I א כך ש ו כך ש i כך מהווה את לפי לפי האבחנה לכל ו לפי ו כך ש	.20
k-i ל $k-i$ האחרונה מ	.21
$B \subseteq A$, ומכאן, $I \in A$ אזי I גם מקיים, $I \in A$.22
	.23
$\blacksquare B \subseteq A, A \subseteq B \rightarrow A = B <=$.24
	.25
	.26
הוכחת נכונות הנוסחא על סמך הטענה:	.27
$\mathrm{Sol}(0)=\{\emptyset\}$ במקרה זה $\mathbf{k}=0$.28
: כיוון שלפי ההגדרה $\mathbf{S}_i \geq 1$, מחיר הפתרון הריק הוא ס, ולכן	.29
$OPT(k = 0) = \min_{I \in Sol(k)} (w(I)) = \min(0) = 0$.30
	.31
	.32
$\mathrm{OPT}(k) = \min_{I \in Sol(k)} (w(I))$ לפי ההגדרה : $k > 0$.33
: ולכן S $ol(k) = igl\{Sol(k-i) \cup \{i\}igr\}_{1 \leq i \leq n}$ ולכן	.34
$\min_{I \in Sol(k)} (w(I)) = \min_{I \in \{Sol(k-i) \cup \{i\}\}_{1 \le i \le n}} (w(I)) =$.35
$\min_{I' \in \{Sol(k-i)\}_{1 \le i \le n}} (w(i) + w(I')) = \min_{I' \in \{Sol(k-i)\}_{1 \le i \le n}} (i^3 + h_k^2 + w(I')) =$.36
: אבחנה : ערכי הארגומנט תמיד חיוביים, ולכן ניתן לפרקם לביטוי הבא	.37
$\min_{I' \in \{Sol(k-i)\}_{1 \le i \le n}} (i^3 + h_k^2 + w(I')) = OPT$.38
$\min_{1 \le i \le n} (i^3 + h_k^2 + OPT(k - i)) \blacksquare$.39
	.40
	.41
	.42
	.43
	.44
	.45

.46
.47
.48
.49
.50
.51
.52
.53
.54
.55
.56
.57
.58
.59
.60

'סעיף ב

```
: אלגוריתם איטרטבי
      M[n] = OPT(n) מערך מערך הריצה הכיום, כאשר איברים, ח+1 מערך בגודל מערך מערך מערך איברים, היברים
                                                                                    .3
                                     M[0] = 0, M[i] = infinity, i אתחול: לכל
,(javascript p5.js כמו infinity הערה: ישנן שפות תכנות המכילות משתנה גלובלי בשם
זה נובע מהגדרת האופרטור סדר גודל (בהשוואה גודל infinity תמיד יהיה יותר גדול).
                                                                                    .6
                                                                                    .7
                                        (j=1 \pm 1, \dots, n \pm 1) = 1, \dots, n בעד: לכל 8.
                                     (t=1 = 1, \dots, n] בצע: t=1, \dots, n
                                                                                    .9
                       M[j] = \min(M[j], t^3 + h_j^2 + M[j - t])
                                                                                   .10
                                                                                   .11
     M[n] , ערך את את באיבר באיבר נמצא באיפרון הפתרון הפתרון מערך. M
                                                                                  .12
                                                                                  .13
```

: ניתוח זמן ריצה	.14
.0(n) אתחול המערך , מעבר על כל האיברים	.15
: צעד : מספר הצעדים הינו כמספר הלולאות המתקיימות, במקרה הגרוע	.16
$n-1+n-2++1=$ סדרה השבונית $=\frac{n(2+(n-1))}{2}=\frac{n(n+1)}{2}=0$.17
עלות כל צעד הינה בדיקת min וחישוב מספרי	.18
. $\mathrm{O}(n^2)$ בסה"כ	.19
	.20
	.21
	.22
	.23
	.24

'סעיף ג

```
0 \le i \le n לכל M[i] = OPT(i) בתום ריצתו של אלגוריתם סעיף ב' מתקיים .1
                                                          : תיאור האלגוריתם
3. Reconstruct (i)
     if (i = 0)
                 return Ø;
4.
5.
     else
6.
           minindex = 0;
           for (j=0:I)
7.
                 if ((minindex)^3 + M[i - minindex] > j^3 + M[i - j]
8.
                       minindex = j;
9.
           return {minindex } \cup Reconstruct(i - j);
10.
                                                                               .11
                                                          : הוכחת האלגוריתם
                                                                              .12
    .i מתקיימת \mathbf{M}[i] = OPT[i] (*) מתקיימת נניח מיד מיד מיד הוכחת הנכונות הנכונות לכל
                                                                              .13
        משפט: תחת ההנהחה האלגוריתם הרקורסיבי משחזר פתרון אופטימלי לבעיה.
                                                                              .14
         טענת עזר: תחת ההנחה (*), לכל i הקריאה (*), מחזירה פתרון
                                                                              .15
                                         M[i] במחיר במחיר I \in Sol(i)
                                                                              .16
```

מחזירה Reconstruct(i) הקריאה $i=n$ אבור יעבור בענת מענת של אל ממך מענת העזר המשפט אור המשפט אור המשפט אור המשפט אור המשפט אור העזר העזר אור המשפט אור המשפט אור העזר העזר העזר אור העזר העזר העזר העזר העזר העזר העזר העז	.17
פתרון $M[n]$ במחיר $M[n]$ פתרון חוקי, ותחת ההנחה במחיר $I \in Sol(n)$ פתרון	.18
$lacktriangle$ $\mathbf{M}[n] = \mathit{OPT}(n)$ אופטימלי	.19
	.20
.i הוכחת טענת העזר באינדוקציה על	.21
בסיס: $i=0$, הפתרון היחיד ב $Sol(0)$ הינו הפתרון הריק, והאלגוריתם מחזיר את	.22
הקבוצה הריקה.	.23
	.24
$Reconstruct(j-1)$ הנחת האינדוקציה : לכל $j \in \{1,,n-1\}$ הקריאה	.25
$M[i-1]$ במחיר במחיר $I \in Sol(j-1)$.26
	.27
: Reconstruct(n) צעד: נתבונן בקבוצה המוחזרת מהקריאה	.28
. כאשר $j \in \{1,, n-1\}$ כאשר $I = \{j\} \cup Reconstruct(n-j)$.29
: ונקבל $Reconstruct(n-j)$ נשים לב שהנחת האינדוקציה עובדת על	.30
$. I = \{j\} \cup I' \mid I' \in Sol(n-j)$.31
לפי טענת העזר מסעיף א' קבוצת הפתרונות $Sol(n)$ הינה בדיוק קבוצת כל	.32
$\underline{I \in Sol(n)}$, כלומר כאומר $\{j\} \cup Sol(n-j)\}_{(1 \leq j \leq n)}$ הפתרונות ב	.33
	.34
האלגוריתם הרקורסיבי בודק את מינימום המחיר בכדי למצוא את גודל הקפיצה	.35
האחרונה שנלקחה בהתאם לנוסחת המבנה	.36
$P(I) = OPT(n) = \min_{1 \le i \le n} (i^3 + h_n^2 + OPT(n - i))$.37
\blacksquare כנדרש (*) נקבל כי $M[n]=OPT(n)$ נקבל בסה"כ (*) נקבל כי	.38
	.39
: ניתוח זמן ריצה	.40
עלת כל קריאה ($O(n)$ מספר הקריאות הרקורסיביות מספר Reconstrct(n) בקריאה ל	.41
(ללא עלות הקריאה הרקורסיבית במהלכה) הינה (O(i) ולכן בסה"כ	.42
. Sum $(i) = n - 1 + n - 2 + + 1 = סדרה חשבונית = \frac{n(n+1)}{2} = O(n^2)$.43
	.44
	.45

שאלה 2

'סעיף א

1. $sol(k) = \{I = (a_1, a_2, \dots, a_k) a_i \in (L_i, H_i, N) \cap a_k \neq H \cap (a_i, H_i, N) \cap a_i \neq H \cap (a_i, H_i, N) \cap (a_i$	$a_i = H_i \to a_{i+1} = N)$
$2. OPT(k) = \max_{I \in sol(k)} U(I)$	
	.3
: בדיוק אחד מהשניים	מקיינ $I \in Sol(j)$ מקיינ
$0 \le j < n a_j \in nul$	l או $a_j \in H \ v \ L$.5
j = n	$a_j \in null, L$.6
	.7

'סעיף ב

1.	0	k=0
2.		
3. OPT(k) =	L_1	k=1
4.		
5.	$\max(H_{k-1} + N + OPT(k-2), L_k + OPT(k-1))$	k > 1

```
k=0 א. עבור .1
       OPT(0) = \max_{I \in sol(0)} U(I), \ sol(0) = \emptyset \implies \max(U(\emptyset)) = 0.
2.
                                                                                 k=1 ב. עבור.
                                                     מהגדרת (a_k \neq H :sol(k) מהגדרת
5. Sol(k = 1) = \{I = a_1 | a_1 \in (L_1, N)\} \implies OPT(k = 1) = \max U(I) =
6. \max(\{L_1\} \vee \{N\})
                                             .OPT(1) = L_1 \Longleftrightarrow |L_1| \ge |N| ומכיוון ש
                                                                                    k > 1 .8
 מהצורה הינם a_{k-1}=H_{k-1} את המכילים המכילים בSol(k) הינם החוקיים ב הפתרונות שזר:
                                                                                                .9
                                אחרת הם מהצורה I \in sol(k-2) \cup \{H_{k-1}\} \cup \{N\}
                                                                                              .10
                                              I \in sol(k-1) \cup \{a_k\} | a_k \in (L_k, N)
                                                                                              .11
                                                                                              .12
                                                     הוכחת הנוסחה בעזרת טענת העזר:
13.0PT(k) = \max_{I \in sol(k)} U(I) = \max(\max_{I \in sol(k), a_{k-1} = H_{k-1}} U(I), \max_{I \in sol(k), a_{k-1} \neq H_{k-1}} u(I))
14.= מהטענה =\max(\max(sol(k-2)\cup\{H_{k-1}\}\cup\{N\}) , \max(sol(k-1)\cup\{a_k\}))
15. = \max(H_{k-1} + OPT(k-2), OPT(k-1) + L_k), (|N| = 0)
                                                                                              .16
                                                                     : הוכחת טענת העזר
                : אפשרויות בתרון חוקי I מהגדרת פתרון חוקי, מתקיימת אחת מ
                                                                                              .17
                                                         .a_{k-1} 
eq H_{k-1} או \underline{a_{k-1}} = H_{k-1}
                                                                                              .18
a_k=N , a_{k-2} 
otin אוקי, מתקיים הואן שזהו שמכיוון שזהו לב שמכיוון שזהו מבור מתקיים: <math>a_{k-1}=H_{k-1}
                                                                                              .19
                                                                                              .20
                                ובנוסף k-2 האיברים הראשונים בk-2 ובנוסף
         וקי מהגדרת פתרון מהגדרת I' \in Sol(k-2) כאשר כאשר וולכן I = I' \cup a_{k-1} \cup Null
                                                                                              .21
                                              I \in Sol(k-2) \cup a_{k-1} \cup Null \le
                                                                                              .22
             עבור איברים ווקי לב שמכיוון שזהו לב k-1 נשים לב נשים נשים: a_{k-1} \neq H_{k-1}
                                                                                              .23
                                   a_{k-1} \neq H_{k-1} ראשונים ב חווים רצף חוקי כאשר I הראשונים ב
                                                                                              .24
       וקי I פתרון מהנחת מהנחת וו' - I' \in Sol(k-1) כאשר ולכן וולכן וולכן וו' ב
                                                                                              .25
                                                          \blacksquare I \in Sol(k-1) \cup a_k \leq
                                                                                              .26
```

```
כאשר j בתחום m[j] = \mathrm{OPT}(j) א בעד j שבו בכל סיום בעד m בגודל m בגודל m
                      \mathbf{m}[1] = L_1 כלומר באיבר ל באיבר ואת האיבר באיברי 2. א. אתחול המערך באיברי 0.
                                                                j=2 to n ב. עבור.
     m[j] = \max\{H_{i-1} + N + m[j-2], L_i + m[j-1]\}
4.
                                יהיה מקסימלי m[n] יהיה מקסימלי .5
                                                         : הוכחת נכונות האלוגריתם 6
                                m[j] = \mathit{OPT}(j) ש מתקיים 1 \leq j \leq n טענה: לכל
              m[n] = OPT(n) נקבל עם n נקרא לאלגוריתם אם נקרא אם נקרא אוריתם .8
                                                    נוכיח את הטענה באינדוקציה על j
     m[0]{=}OPT(0)=0 אז j{=}0 בסים לכן מאותחל מאותחל כיוון והמערך מון m[0]{=}0 אז אז j{=}0
                                                                                  .10
        \mathbf{m}[1] = \mathrm{OPT}(1) כלומר כלומר ומנוסחת המבנה m[j] = L_1 שונוסחת ומנוסחת ומנוסחת המבנה ומבנה m[j] = L_1
                                                                                  .11
   m[j-1] = \mathit{OPT}(j-1) מתקיים 1 \leq j-1 \leq n הנחת האינדוקציה: נניח כי עבור
                                                                                  .12
                                                                                  .13
                                                 צעד: ננתח את שתי האפשרויות:
      m[j] = L_j + m[j-1] = לפי הנחת אינדוקציה – לפי לפי הנחת L_j + OPT(j-1) . 1
                                                                                  .14
m[j] = H_{j-1} + N + m[j-2] = H_{j-1} + N + OPT(j-2).2
                                                                                  .15
                                                                                  .16
                                                                   מ1 ו2 נובע ש
     m[j] = \max(H_{j-1} + N + OPT(j-2), L_j + OPT(j-1))
17.
                                     ullet m[j] = OPT(j) ולפי נכונות נוסחת המבנה
                                                                                  .18
                                                                                  .19
                                                                                  .20
                                                               ניתוח זמן ריצה:
                                                         O(n)אתחול המערך ב.1
                                                                                  .21
                                     O(n) צעדים כאלה אזי n-2 O(1) צעד ב.2
                                                                                  .22
                                                            O(n) לכן סה"כ <=
                                                                                  .23
                                                                                  .24
                                                                                  .25
                                                                                  .26
                                                                                  .27
```

.28
.29

.סעיף ה' - orenrot אישר עד 50 שורות בפורום

1. Reconstruct(j){		
2. $I f(j == 0) \ return \ \emptyset$		
3. $I f(j == 1) return L_1$		
4. $I f(m[j] == H_{j-1} + m[j-2])$		
5. Return reconstruct $(j-2) \cup \{H_{j-1}\} \cup \{N\}$		
6. R eturn $Reconstruct(j-1) \cup \{L_j\}$		
$\mathrm{m}[\mathrm{j}] = \mathrm{OPT}(\mathrm{j})$ כי $0 \leq j \leq n$ בו מתקיים לכל M בו מערך	ก .7	
וכחת האלגוריתם :	8. ה	
שפט :_תחת ההנחה האלגוריתם מחזיר פתרון אופטימלי	9. מ	
במחיר $I \in sol(j)$ מענה עזר במקום ה j במחיר לפונקציה לפונקציה במקום ה	.10	
m[j]	.11	
$ ext{m[j]} = ext{OPT(n)}$ במחיר בעזרת טענת העזר $ ext{j=n}$ מחזיר בעזרת טענת בעזרת טענת העזר	.12	
J הוכחת טענת העזר:_ נוכיח באינדוקציה על	.13	
$m[0]{=}0$ ו או $sol(0)=\emptyset$, במקרה הזה j $=$ 0 , j $=$ 0 בסיס:	.14	
$L_1 \geq N$ ו ומכיוון ו $sol(1) = \{I = (a_1) a_1 \in (L_1, N) ext{ , J=1} $		
(מהאלגוריתם האיטרטיבי) $m[1]=L_1$ בדיוק מה שהאלגוריתם מחזיר ו $I=L_1$		
במחיר $I \in sol(j-1)$ מחזירה (Reconstruct(j-1) במחיר האינדוקציה:_הקריאה	.17	
M[j-1]	.18	
: צעד	.19	
: אחת מ 2 האפשרויות הרקורסיבי מחזיר בשלב ה j אחת מ		
Reconstruct(j-2) $\cup \{H_{j-1}\} \cup \{N\}$ או Reconstruct(j-1) $\cup \{L_j\}$		
נשים לב שמתקיים מהנחת האינדוקציה: Reconstruct(j-1) \cup $\{L_j\}$ עבור		
$a_{j-1} otin H$ האיברים הראשונים שלו מהווים רצף חוקי כאשר		
$I=I'\cup L_j$ ולכן ולכן חינו פתרון חוקי עבור	.24	

Reconstruct(j-1) $\cup \{L_j\} = I \in Sol(j) \le$.25
עבור (אינדוקציה: Reconstruct(j-2) $\{H_{j-1}\} \cup \{N\}$ מהנחת האינדוקציה	.26
	.27
j-2 מכיוון ש' I' פתרון אפרסוstruct(j-2) אוקי פתרון מיוון ש' ו פתרון אוקי	.28
$a_{j-2} eq H_{j-2}$ האיברים הראשונים שלו מהווים רצף חוקי כאשר	.29
ולכן j איברים הינו פתרון הינו $I=I'\cup\left\{H_{j-1}\right\}\cup\left\{N\right\}$.30
Reconstruct(j-2) \cup $\{H_{j-1}\}\cup\{N\}=I\in Sol(j)<=$.31
$I \in Sol(j)$ בסה"כ האלגוריתם הרקורסיבי מחזיר בשלב ה	.32
ב. עבור $\{N\} \cup \{H_{j-1}\}$: I = Reconstruct(j-2) עבור אחלגוריתם יחזיר זאת : I = Reconstruct(j-2) ב	.33
אם מתקיים $m[j] == H_{j-1} + m[j-2]$ לפי הנחת האינדוקציה	.34
I מחזירה מחזירה מחזירה (הבסה"כ Reconstruct(j-2) מחזירה מחזירה פתרון מחזירה מחזירה מחזירה מחזירה פתרון מחזירה מחזירה מחזירה מחזירה פתרון מחזירה	.35
$m[j]$, בדיוק אברוק $H_{j-1}+m[j-2]$ בדיוק	.36
עבור ($I= ext{Reconstruct}(ext{j-1})$ לפי הנחת האינדוקציה: $I= ext{Reconstruct}(ext{j-1})$.37
$.m[j-1]$ במחיר Reconstruct $(j-1) = I' \in sol(j-1)$.38
: לפי האלגוריתם האיטרטיבי, מתקיים	.39
$m[j] = \max\{H_{j-1} + N + m[j-2], L_j + m[j-1]\}$.40
אך מכיוון שאנו באופציה השנייה של האלגוריתם הרקורסיבי אזי בפתרון	.41
$m[j] = L_j + m[j-1]$ האיטרטיבי התקיים	.42
$m[j]$ מהגדרתו, בדיוק מהגדרתו $L_j+\mathrm{m}[\mathrm{j-}1]$ המחיר של I הינו	.43
m[j] במחיר בשלב ה j פתרון במה"כ במה"כ במה"כ במחיר במחיר במחיר בשלב החזיר בשלב היכ במה"כ במה"כ	.44

```
 1. \ Sol(r,k) = \{I: I \subseteq V \mid \quad (|I \cap V_{blue}| = k \ ) \land \\ 2. \qquad \forall (u,v) \in E \to u \lor v \lor u,v \in I \} \\ 3. \\ 4. \ OPT(r,k,V') = \min_{I \in Sol(r,k)} |I| \\ 5. \\ : מקיים בדיוק אחד מהשניים : <math>I \in Sol(j) או I \in Sol(j) או I \in I . I
```

סעיף ב' – אושר בפורום 15 שורות.

1.	OPT(r, k, V') =	
2.	$\min(1 + \min_{0 \le j \le k_1}($	$OPT(r.right, k_1 - j, V_1) + OPT(r.left, j, V_1),$
3.	$2 + \min_{0 \le j \le k_2}$	$(OPT(r.right, k_2 - j, V_2) + OPT(r.left, j, V_2))$
4.		$V_1 = V' \cup \{r\}, V_2 = V' \cup \{r.right, r.left\}$
.5		$r \notin V'$
.6		$k_1 = k - isBlue(r), k_2 = k - isBlue(r.right, r.left)$
.7		
.8	$\min_{0 \le j \le k} (OPT(r. n$	right, k - j, V') + OPT(r. left, j, V')
.9		
.10	0	$(r = null \mid r \in V', r.right \& r.left = null) \land k = 0$
.11		
.12	, ∞	$[k = 0 \land r \notin V' \land (isBlue(r, r.right) = 2 \lor$
.13		isBlue(r,r.left) = 2)
.14	•	$\forall [r.right \& r.left = null \land k > isBlue(r)]$
.15		

. OPT= 0 ועץ ריק נקבל $k=0$ ועץ ריק נקבל	1. מ
על-מנת לכסות אוי ביור השורש V' אם $r \notin V'$ אזי בחנה שלו יצטרכו להיות ב' עבור אם רשורש אוי ב	
2 או אנו מצרפים את r א $(r,r.right), (r,r.left)$ או אנו מצרפים את ריסינו את אנו את	
קשתות הללו ונמשיך לתתי הבעיות עבור בניו.	.4
	.5
קרה א': אם $r otin V'$ אזי לפי האבחנה אנו בוחרים ב 2 דרכי פעולה האפשריים, המובעים	ත .6
: פירוק הפתרון הבא	ב
7. $Sol(r, k, V') = \{Sol(r.right, k_1 - j, V_1) \cup Sol(r.left, j, V_1) \cup \{r\}\}_{0 \le j \le k_1} \cup \{r\}$	
$\left\{Sol(r.right, k_2 - j, V_2) \cup Sol(r.left, j, V_2) \cup \{r.right, r.left\}\right\}_{0 \le j \le k_2}$	
8. $k_1 = k - isBlue(r)$, $k_2 = k - isBlue(r.right, r.left)$	
9. $V_1 = V' \cup \{r\}, V_2 = V' \cup \{r.right, r.left\}$	
מהגדרת OPT הגודל המינימלי של הכיסוי, נבצע min על קבוצת הפתרונות הללו ונקבל	.10
את החלק הראשון בנוסחאת ה OPT.	.11
	.12
מקרה ב' : אם V' אזי הקשתות לבניו מכוסות. נעביר את הבעיה לתתי בעיות	.13
עבור בניו לכסות את תתי העצים + כיסויים המכילים k קודקודים כחולים	.14
15. $Sol(r, k, V') = \{Sol(r.right, k - j, V_1) \cup Sol(r.left, j, V_1)\}_{0 \le j \le k}$	
	.16
\mathbf{r} אנו צריכים לכסות את הקשתות היוצאות לבניו. במידה ו r	.17
$k{=}0$ כחול וגם אחד מבניו כחול, ואנו נדרשים לספק כיסוי המכיל	.18
∞ קודקודים כחולים $-$ מקרה זה לא פתיר ולכן נחזיר	.19
אנו צריכים לספק ($r.right, r.left = null$) אם $r, r \notin V'$ אם 2	.20
$-$ אינו כחולים כאשר r אינו כחולים אינו $k{=}1$ (כולל אותו $+$ אינו כחולים אינו כחולים מתת העץ	.21
מקרה זה לא פתיר ונחזיר ∞ .	.22
	.23
ואנו $(r.right, r.left = null)$ הינו עלה r , $r \in V'$ אם r אם r אם	.24
נדרשים לספק כיסוי המכיל 0 קודקודים כחולים אזי נחזיר 0 (הפתרון הריק).	.25

מתאר את ערך v . $A_1[i]$ התא התא A_1 , A_2 , אומר מושלם T מערכים מושלם בינארי לכל צומת לכל בינארי לכל מרכים באודל	.1
הפתרון עבור כיסוי המכיל i קודקודים כחולים בתת העץ של של v , הכיסוי יכול להכיל את	.2
הצומת. התא v . $A_2[i]$ מתאר את ערך הפתרון עבור כיסוי המכיל i הצומת. התא	.3
העץ של v , הכיסוי לא יכול להכיל את הצומת.	.4
אלגוריתם איטרטיבי :	.5
$orall 0 \leq \mathrm{i} \leq \mathrm{k} \mathrm{A}_{1,2}[i] = \infty v \in V$ אתחול : לכל 1.	.6
. קודקודים בנים יופיעו לפני אבות, $post-order$ לפי את מיין את לפי	.7
: בצע $r \in V$ לכל 3.	.8
: בצע את האתחול ברא $r.right = r.left = null$ אם 3.1	.9
$A_1[1] = 1$, $A_1[0] = 0$, $A_2[0] = 0$: $isBlue(r) = 1$ אם $3.1.1$.10
$A_1[0]=0,A_2[0]=0$: אחרת $3.1.2$.11
break 3.1.3	.12
: r = root of T אם 3.2	.13
$14. \ return \ \min(r. right. A_1[k-i] + r. left. A_1[i] \ , \ 1 + r. right. A_1[k_1-i] + r. left. A_1[i],$	
15. $1 + r.right. A_2[k_1 - i] + r.left. A_2[i]$ $ k_1 = k - isBlue(r)$	
$: j \ from \ 0 \ to \ k$ אחרת לכל 3.2	.16
$break: j = 0 \land (isBlue(r,r.right) = 2 \mid isBlue(r,r.left) = 2)$ אם 3.2.1	.17
$k_1 = k - isBlue(r), k_2 = k - isBlue(r.right, r.left), min1 = \infty, min2 = \infty$ 3.2.2	.18
$:i\ from\ 0\ to\ j$ לכל, אם $k_1\geq 0$ אם 3.2.3	.19
$min1 = min(min1, 1 + r.right. A_1[k_1 - i] + r.left. A_1[i])$.20
: $i\ from\ 0\ to\ j$ לכל, $k_2\geq 0$ אם 3.2.4	.21
$min2 = min(min2, 2 + r.right.A_2[k_2 - i] + r.left.A_2[i])$.22
$r.A_1[j] = min1, r.A_2[j] = min2$ 3.2.5	.23
	.24
$\mathrm{O}(V)$ עולה בעץ בינארי מושלם post-order : ניתוח זמן ריצה	.25
$\log(V)$ עבור כל עלה האלגוריתם יעלה ($0(1)$, סה"כ עלים	.26
$1+2++k=^{0}$ עבור שאר הצמתים מספר הלולאות יהיה $O(k^2)$ איה יהיה מספר מספר מספר שאר שבונית	.27
O(V *k) עלות כל לולאה $(0(1)$. אתחול : כמספר תאי כל המערכים (1) אתחול יש	.28
$O(n) + O(V *k) + O(\log(V)) + O(k^2) => O(k^2 + V *k)$ סה"כ זמן ריצה	.29

```
Reconstruct (r, k, V')
                                                                  \\ we call this function with (T.root, k, \emptyset)
        if (k = 0 \&\& r = null) return \emptyset;
2.
       if (k = 0 \&\& r \notin V'\&\& ((isBlue(r, r.right) = 2 || isBlue(r, r.left) = 2 ||
3.
           r.right = r.left = null || (r.right = r.left = null \&\& k > isBlue(r))
4.
5.
                   return \{-1\}; \setminus a sign for not possible, like infinity
       if(r.right = r.left = null \& k = isBlue(r)) return \{r\} \cup V';
6.
       if (r \in V') k_1 = k, V_1 = V', min1 = \{-1\};
7.
       if (r \notin V') k_1 = k - isBlue(r), V_1 = V' \cup \{r\}, min1 = min2 = \{-1\};
8.
9.
        for (j: 0 \text{ to } k_1)
           A = OPT(r.right, k_1 - j, V_1)
10.
11.
           B = OPT(r. left, j, V_1)
           if ((A, B \neq \{-1\})\&\& (\min 1 = \{-1\} || (\min 1 \neq \{-1\}\&\& | \min 1| > |A \cup B|))) \min 1 = A \cup B;
       if (r \in V')
               if min1 = \{-1\} return min; else return V' \cup min1;
12.
       if (r \notin V') k_2 = k - isBlue(r.right, r.left), V_2 = V' \cup \{r.right, r.left\}
13.
             for (j: 0 \text{ to } k_2)
14.
                 A = OPT(r.right, k_2 - j, V_2)
15.
                 B = OPT(r. left, j, V_2)
16.
                 if ((A, B \neq \{-1\})\&\& (\min 2 = \{-1\} || (\min 2 \neq \{-1\}\&\& | \min 2 |> |A \cup B|))) \min 2 = A \cup B;
                                              return \{-1\};
17.
                 if min1, min2 = \{-1\}
18.
                 else if (min1 = \{-1\}) return min2 \cup V';
                 else if (min2 = \{-1\}) return min1 \cup V':
19.
20.
                                                  return min2 \cup V':
                 else if (|min1| > |min2|)
21.
                 else return min1 \cup V';
                                                  O(|V|*k) ניתוח זמן ריצה: מספר הקריאות מספר מספר. 22.
                   O(|V|*k^2) כ"כ בסה"כ O(k) הינה שבתוכה) הינה (ללא עלות הקריאות שלות הקריאות שבתוכה) ולכן בסה"כ (23
```

'סעיף ו

```
24. אבחנה: מבנה הנתונים מסעיף ד' מכיל מידע עבור כל קומבינציות k שתדרש מהבנים .24 : מבנה הנתונים מסעיף ד' מכיל להוסיף לאלגוריתם האיטרטיבי .1 .25 .26. min1 = \infty, mink = 0, temp; .27. for(j:0 to k) .28. temp = min1; .29. for(i:0 to j)
```

```
30.
                   j_1 = j - isBlue(r);
                   min1 = \min(min1, r.right. A_1[j-i] + r.left. A_1[i],
31.
                                     1 + r.right.A_1[j_1 - i] + r.left.A_1[i],
32.
                                     1 + r.right.A_2[j_1 - i] + r.left.A_2[i]
33.
             if min1 \neq tmep \rightarrow mink = j;
34.
                                                                                         .35
  אבחנה וכמה קודקודים כחולים min1 וכמה המינימלית אנו יודעים מהו גודל הקבוצה אבחנה : כעת אנו יודעים מהו גודל הקבוצה המינימלית
                                                                                         .36
                                                                   .mink מכילה
                                                                                         .37
                                                                                         .38
    ונקבל (T.root, mink, \emptyset) נקבל עבור הפרמטרים הרקורסיבי עבור הפרמטרים {\it (T.root, mink, \emptyset)}
                                                                                         .39
        . כיסוי בעל גודל מינימלי V' , |V'\cap V_{blue}|=mink\leq k כיסוי בעל גודל מינימלי.
                                                                                         .40
                                                                                         .41
                   O(k^2 + |V| * k) ניתוח זמן ריצה: הרצת האלגוריתם האיטרטיבי
                                                                                         .42
                  שימוש באלגוריתם O(k^2) שימוש באלגוריתם
                                                                                         .43
               O(|V|(k^2+k)) ובסה"כ O(k^2*|V|) הרקורסיבי
                                                                                         .44
                                                                                         .45
                                                                                         .46
                                                                                         .47
```

שאלה 4

'סעיף א

```
d(v)>d(u)+w(u,v) עבורה מתקיים (u,v) עבורה קשת (u,v) אלגוריתם גנרי בודק אם קיימת קשת (u,v) המקיימת (u,v)+w(u,v) המקיימת (u,v)+w(u,v)+w(u,v) .3 \delta(s,v)\leq \delta(s,u)+w(u,v) אזי מתקיים (u,v)\in E .4 עבחנה: תהי (u,v)\in E .5 כאשר (u,v) אזי משקל אחד המסלולים מ u ל u בהכרח הקל ביותר. .6 הביטוי הימני באי השוויון מייצג משקל אחד המסלולים מ u ל u ולא בהכרח הקל ביותר. .7
```

```
. הקל הקל הינו המסלול ביניהם ב המסלול ביניהם אור. P_{1k} \ni V_i, V_j הינו המסלול ביותר.
                                                                                                        .9
                                                                                                      .10
            כך ש V_i, V_i קיימים אך מסלול קל מסלול כיותר. נניח כי נניח כי נניח מענת מענת העזר נניח כי ו
                                                                                                      .11
 איננו המסלול אזי קיים אזי הקל המסלול המסלול איננו איננו המסלול איננו איננו המסלול איננו איננו איננו ראזי איננו המסלול איננו המסלול הקל איננו המסלול
                                                                                                      .12
                                     : מקיים P'_{1k} המקיים להרכיב להרכים המקיים
                                                                                                      .13
      קל מסלול מסלול מסלול בסתירה להנחה אP_{1k} מסלול קל בסתירה להנחה אP_{1k} ט<,... און מסלול קל
                                                                                                      .14
                                                                                                      .15
                                                                                                      .16
                            ביותר המסלול את נסמן .v'=v ביותר כל על כסתכל <=
                                                                                                      .17
                           : מקיים ביותר הקצר המסלול וP_{\mathrm{sv}} = < s, P_1, \ldots, P_n, u', v >
                                                                                                      .18
                           \delta(s,v) = \delta(s,u') + \delta(u',v) = \delta(s,u') + w(u',v)
                                                                                                      .19
                                                                                                      .20
p \in \mathcal{P}_{1k} עם צומת אים לכל קודקוד לכל מתקיים מהגדרת מסלול-קל-ביותר לכל נשים לב כי מתקיים מהגדרת מסלול
                                                                                                      .21
                                              d(p) + w(p, v) \le \delta(s, u') + w(u', v)
                                                                                                      .22
                                                                                                      .23
                                                            : בפרט עבור הקודקוד, אם כך
                    d(v) > d(u) + w(u, v) \ge \delta(s, u') + w(u', v) = \delta(s, u)
                                                                                                      .24
                                                           d(v) \neq \delta(s,u) בסה"כ נקבל
                                                                                                      .25
                                                                                                      .26
```

'סעיף ב

ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ ַ
: נניח כי האתחול של האלגוריתם הינו האתחול של האלגוריתם הגנרי :
$d[s] = 0, \forall v \neq s \in V \ d[v] = infinity \ .2$
$P_{\mathrm{sv}} = < s, \dots, u, v >$ נניח באינדוקציה כי המסלול הקצר ביותר בין s ל הקצר ביותר בין.3
$.(u,v) \in E$.4
.5
הנחת האינדוקציה: לפי המיון הטופולוגי כאשר מגיעים ל u כבר מתקיים. 6
$d[u] = \delta(s, u) .7$
.8
: ומתקיים לאחר מכן ומתבצע $relax(u,v,w)$ מתבצע u פעמגיעים לאחר מכן .9
$d(v) \le d(u) + w(u, v) \rightarrow d(v) \le \delta(s, u) + w(v, u) .10$

	11
(u,v) אגף ימין הוא תת מסלול של המסלול הקצר-ביותר אורך קשת	.11
$\delta(s,u)+w(v,u)=\delta(s,v)$ לכן בסה"כ אגף ימין שווה ל	.12
$d(v) = \delta(s,v)$ אזי מההגדרה מההגדרה מכיוון שתמיד מההגדרה מ $d(v) \geq \delta(s,v)$.13
	.14
	.15
	.16
	.17
	.18