

Physics 2: Electricity, Optics and Quanta

Week 4 - Capacitor

2023.9

QQ group: 776916994

cyjing@swjtu.edu.cn

Outline

Basic properties of capacitor

Connection in circuit

Charging or discharging a capacitor

Capacitors

$$E \rightarrow \sigma \rightarrow Q \rightarrow V \Rightarrow C - \varepsilon_r$$

Capacitors

$$Q = \frac{A\varepsilon_0}{D} \Delta V$$

the charge on the plate(s) is **proportional** to the voltage

The coefficient is called the "capacitance"

$$C = \frac{Q}{\Lambda V}$$

For parallel-plates $C = \frac{A\varepsilon_0}{D}$

Different shapes of capacitors

C depends on?

$$C = \frac{Q}{V}$$

Units – farad (F)
$$1 F = \frac{1 \text{ Coulomb}}{1 \text{ Volt}}$$

Different shapes of capacitors

$$C = \frac{Q}{V}$$

$$C = \frac{A\varepsilon_0}{D}$$

C depends on

Capacitors

Electrolytic capacitors

non-solid (wet)

Ceramic capacitors

solid

Connecting capacitors "in series"

What is the "equivalent" capacitance?

Connecting capacitors "in series"

$$C = \frac{A \varepsilon_0}{D}$$

$$D \rightarrow 2D$$

$$C \longrightarrow C/2$$

$$\frac{1}{C_{eq}} = \frac{1}{C} + \frac{1}{C}$$

Capacitance change

How will the capacitance change after the insertion of a piece of metal?

 \boldsymbol{A}

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{d_1 + d_2}{A\varepsilon_0}$$

$$C_{eq} = \frac{A\varepsilon_0}{d_1 + d_2} > C = \frac{A\varepsilon_0}{D}$$

Connecting capacitors "in parallel"

What is the "equivalent" capacitance?

Connecting capacitors "in parallel"

$$C = \frac{A \varepsilon_0}{D}$$

$$A \rightarrow 2A$$

$$C \rightarrow 2C$$

$$C_{eq} = C + C$$

An energy is needed!

What is the energy stored in the Capacitor?

Energy is required to bring a charge from one plate to the other, due to the electric force doing (negative) work

The energy stored is the sum of the energy required to move all of the charges.

An energy of eV_{tot} is needed!

Capacitor with charge Q = ne

e = elementary charge

$$V_{tot} = \frac{Q}{C} = \frac{ne}{C}$$

- ➤ More energy is required when voltage is higher
- As you add charges, you need more and more energy to move a charge

charge nu	mber	voltage across plates	energy required
	1	V = 0	eV = 0
	2	$V_1 = \frac{e}{C} = \frac{Q}{nC} = \frac{V_{tot}}{n}$	$eV_{\scriptscriptstyle 1} = rac{eV_{\scriptscriptstyle tot}}{n}$
	3	$V_2 = \frac{2V_{tot}}{n}$	$eV_{\scriptscriptstyle 2} = rac{2eV_{\scriptscriptstyle tot}}{n}$
		•	• • • • • •
	n	$V_n = \frac{(n-1)V_{tot}}{n} pprox V_{tot}$	$eV_n = \frac{(n-1)eV_{tot}}{n}$
			$pprox eV_{tot}$

charge

nui	mber	voltage across plates	energy required
	1	V = 0	eV = 0
	2	$V_1 = \frac{e}{C} = \frac{Q}{nC} = \frac{V_{tot}}{n}$	$eV_{\scriptscriptstyle 1} = rac{eV_{\scriptscriptstyle tot}}{n}$
	3	$V_{\scriptscriptstyle 2} = rac{2V_{\scriptscriptstyle tot}}{n}$	$eV_{\scriptscriptstyle 2} = rac{2eV_{\scriptscriptstyle tot}}{n}$
		• • • • •	• • • • •
		$V_n = \frac{(n-1) V_{tot}}{n} \approx V_{tot}$	$eV_n = \frac{(n-1)eV_{tot}}{n}$
			$pprox eV_{tot}$

Energy added

Total energy added

The energy needed to add a charge dq is:

$$dW = V dq = \frac{q}{C} dq$$

The total energy added is:

$$\int dW = \frac{1}{C} \int_{0}^{Q} q \, dq = \frac{Q^{2}}{2C}$$

Total energy stored in a capacitor:

$$E_{cap} = \frac{QV}{2} = \frac{CV^2}{2} = \frac{Q^2}{2C}$$

It is also the electric energy of a capacitor

Energy with dielectric

How will the energy stored in the capacitor change after the dielectric being removed?

$$E = \frac{1}{2}CV^2 \qquad C = \frac{A\varepsilon}{D}$$

$$E = \frac{A\varepsilon}{2D}V^2 \qquad \varepsilon \downarrow \Rightarrow E \downarrow$$

Energy with dielectric

How will the energy stored in the capacitor change after the dielectric being removed?

$$E = \frac{Q^2}{2C} \qquad C = \frac{A\varepsilon}{D}$$

$$E = \frac{DQ^2}{2A\varepsilon}$$

$$\varepsilon \downarrow \Rightarrow E \uparrow$$

Energy with dielectric

$$\varepsilon \downarrow \Rightarrow E \uparrow$$

The RC circuit & charging/discharging a capacitor

What happens when we close the switch?

What happens when we close the switch?

The current decreases from the beginning!

Charge a capacitor

voltage of battery voltage of capacitor (constant) (a function of time) $I = \frac{V_B - V_C}{R} = \frac{\Delta Q}{\Delta t}$ increase of the charge on the capacitor

$$V_C = \frac{Q}{C}$$
 a function of time

$$\frac{\Delta Q}{\Delta t} = \frac{V_B - (Q/C)}{R} = \frac{-Q}{RC} + \frac{V_B}{R}$$

$$\tau = RC \longrightarrow \frac{Time\ constant\ of}{RC\ circuit}$$

$$\Rightarrow \frac{dQ}{dt} = \frac{-Q}{\tau} + \frac{V_B}{R}$$
 differential equation!

solution:
$$Q = \frac{\tau V_B}{R} - \frac{\tau V_B}{R} e^{-t/\tau}$$

$$V_C = V_B (1 - e^{-t/RC})$$

Base for the natural logarithm

Charge a capacitor

$$V_C = V_B (1 - e^{-t/RC})$$

$$\tau = RC$$

Time constant of RC circuit

For small *t*:

$$e^{-t/RC} \approx 1 - (t/RC) \implies V_C \approx V_B \frac{t}{RC}$$

Current when charging

What is the current in R?

$$I(t) = \frac{V_B - V_C(t)}{R}$$

$$V_C = V_B (1 - e^{-t/RC})$$

$$I(t) = \frac{V_B}{R} e^{-t/RC}$$

Current when charging

$$I(t) = \frac{V_{\scriptscriptstyle B}}{R} e^{-t/RC}$$

Exponential decay

At the $t = time\ constant$, the function decays to 1/e = 37% of its original value

Discharging a capacitor

$$I = \frac{\Delta Q}{\Delta t} = \frac{-V_C}{R} = \frac{-Q}{RC}$$

negative sign because the current goes in the opposite direction (removing charges on the capacitor)

$$\Longrightarrow \frac{dQ}{dt} = \frac{-Q}{\tau}$$

solution:
$$Q(t) = Q_0 e^{-t/RC}$$

$$Q_0 = Q(0) = C V_C$$

$$V(t) = rac{Q(t)}{C} = V_C e^{-t/RC}$$

Discharging a capacitor

RC = 2

Exponential decay

Discharging a capacitor

Exponential decay

Capacitors' application

