Звіт

про виконання завдання з самостійної роботи з курсу «Теорія ймовірностей та математична статистика» тема «Основні поняття теорії ймовірностей» студентом Шаблієм Віктором Миколайовичем (група КС-22) в 2023-2024 навчальному році

за індивідуальним варіантом даних № 37

Завдання 1

Підкидають два гральні кубики. Визначити ймовірність того, що:

- а) сума очок не перевищує N;
- б) добуток очок не перевищує N;
- в) добуток очок ділиться на N без залишку.

Для виконання цього і подальших завдань я використаю дані варіанта № 7(37 - 30 = 7), оскільки номер мого варіанта перевищує 30.

Варіант	1	2	3	4	5	6	7	8	9	10
N	3	4	5	6	7	8	9	10	3	4
Варіант	11	12	13	14	15	16	17	18	19	20
N	5	6	7	8	9	10	11	12	13	14
Варіант	21	22	23	24	25	26	27	28	29	30
N	15	16	17	18	19	20	3	4	5	6

N = 9.

а) Загальна кількість можливих комбінацій n = 6*6 = 36. Кількість сприятливих умові комбінацій m = 30.

Оскільки сума очок не повинна перевищувати 9, то підходять тільки такі комбінації:

Сума 2: (1, 1)

Сума 3: (1, 2), (2, 1)

Сума 4: (1, 3), (2, 2), (3, 1)

Сума 5: (1, 4), (2, 3), (3, 2), (4, 1)

Сума 6: (1, 5), (2, 4), (3, 3), (4, 2), (5, 1)

Сума 7: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)

```
Сума 8: (2, 6), (3, 5), (4, 4), (5, 3), (6, 2)
```

$$Cyma 9: (3, 6), (4, 5), (5, 4), (6, 3)$$

Отже, ймовірність того, що сума очок не перевищує 9 рівна $P(A) = 30/36 \approx 0.8(3)$.

б) n = 36. Кількість сприятливих умові комбінацій m = 16.

Оскільки добуток очок не повинен перевищувати 9, то підходять тільки такі комбінації:

Добуток 1: (1, 1)

Добуток 2: (1, 2), (2, 1)

Добуток 3: (1, 3), (3, 1)

Добуток 4: (1, 4), (2, 2), (4, 1)

Добуток 5: (1, 5), (5, 1)

Добуток 6: (2, 3), (3, 2), (6, 1)

Добуток 8: (2, 4), (4, 2)

Добуток 9: (3, 3)

Отже, ймовірність того, що добуток очок не перевищує 9 рівна $P(A) = 16/36 \approx 0$,(4).

в) n = 36. Кількість сприятливих умові комбінацій m = 11.

Оскільки добуток очок повинен ділитись на 9 без залишку, то підходять тільки такі комбінації:

Добуток 9: (1, 9), (3, 3)

Добуток 18: (2, 9), (9, 2), (3, 6), (6, 3)

Добуток 27: (3, 9), (9, 3)

Добуток 36: (4, 9), (9, 4), (6, 6)

Отже, ймовірність того, що добуток очок ділиться на 9 без залишку рівна $P(A) = 11/36 \approx 0.305$.

Завдання 2

Серед n лотерейних білетів k виграшних. Навмання взяли m білетів. Визначити ймовірність того, що серед них l виграшних.

Варіант	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n	10	10	10	10	10	10	10	12	12	12	9	9	9	8	8
l	2	2	3	3	2	3	3	3	2	2	2	3	2	2	2
m	4	3	5	5	5	4	5	8	8	5	4	5	3	4	5
k	6	6	7	6	7	8	7	5	3	4	6	6	7	5	4
Варіант	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
n	8	10	10	10	12	8	8	8	8	8	9	9	9	9	9
l	3	4	5	4	4	2	2	2	3	1	2	3	2	4	3
m	4	6	7	6	8	3	3	4	5	4	3	4	6	5	5
k	5	5	7	7	6	4	5	3	4	2	5	4	3	5	4

$$n = 10$$

$$1 = 3$$

$$m = 5$$

$$k = 7$$

Оскільки серед 10 білетів 7 виграшних, а за умовою треба визначити ймовірність того, що серед 5 взятих навмання білетів будуть 3 виграшні, можна розв'язати цю задачу таким чином:

$$P(A) = \frac{C_7^3 \times C_3^2}{C_{10}^5} = \frac{\frac{7!}{3! \times 4!} \times \frac{3!}{2! \times 1!}}{\frac{10!}{5! \times 5!}} = \frac{105}{252} \approx 0,4167.$$

Де C_7^3 – кількість способів вибору 3 виграшних білетів із 7 можливих;

 C_3^2 – кількість способів вибору 2 невиграшних білетів із 3 можливих;

 C_{10}^{5} – кількість можливих способів вибору 5 білетів із 10 можливих.

Отже, ймовірність того, що серед взятих 5 білетів будуть 3 виграшні рівна $P(A) \approx 0.4167$.

Завлання 3

У ліфт k-поверхового будинку сіло п пасажирів (n < k). Кожен незалежно від інших із однаковою ймовірністю може вийти на довільному (починаючи з другого) поверсі. Визначити ймовірність того, що:

а) усі вийшли на різних поверхах;

~		U	•
\mathbf{o}	принаимні	лвоє виинпи на	а одному поверсі
Ο,	, iipiiiiaiiwiiii	досс виншин не	a odnomi nopeber

Варіант	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
k	6	7	8	9	10	11	12	13	14	13	12	11	10	9	8
n	4	4	5	5	6	4	4	3	3	4	3	3	4	3	4
Варіант	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
k	7	6	7	8	9	10	11	12	13	14	12	11	10	9	8
n	3	4	4	5	5	6	4	4	3	3	3	3	4	4	3

$$k-1 = 12-1 = 11$$

$$n = 4$$

а) Щоб визначити ймовірність того, що усі пасажири вийшли на різних поверхах, потрібно розв'язати задачу таким чином:

$$P(A) = m / n = \frac{A_{11}^4}{11^4} = \frac{\frac{11!}{7!}}{11^4} = \frac{7920}{14641} \approx 0,541.$$

Де $m = A_{11}^4$ - кількість способів розмістити 4 пасажирів на різних поверхах; $n = 11^4$ — загальна кількість варіантів, що можуть виникнути при виході пасажирів.

Отже, ймовірність того, що всі пасажири вийдуть на різних поверхах рівна $P(A) \approx 0.541$.

б) Щоб визначити ймовірність того, що принаймні двоє пасажирів вийшли на одному поверсі, потрібно розв'язати задачу таким чином:

$$P(A) = m / n = \frac{11^4 - A_{11}^4}{11^4} = \frac{14641 - 7920}{14641} \approx 0,459.$$

Де $m = 11^4 - A_{11}^4 -$ різниця між загальною кількістю варіантів, що можуть виникнути при виході пасажирів і кількістю способів розмістити 4 пасажирів на різних поверхах.

Отже, ймовірність того, що принаймні двоє пасажирів вийшли на одному поверсі рівна $P(A) \approx 0,459$.

Задача 4

У крузі радіусом R навмання обирають точку. Визначити ймовірність того, що вона потрапить в одну із двох фігур, які не перетинаються і площі яких дорівнюють SI та S2.

Варіант	1	2	3	4	5	6	7	8	9	10
R	11	12	13	14	11	12	13	14	11	12
S_{I}	2,25	2,37	2,49	2,55	2,27	2,39	2,51	2,57	2,29	2,41
S_2	3,52	3,50	3,54	1,57	0,57	5,57	2,51	2,57	2,70	2,50
Варіант	11	12	13	14	15	16	17	18	19	20
R	13	14	15	16	18	12	13	14	15	16
S_{I}	2,53	2,59	2,50	2,60	3,2	2,40	2,50	2,60	2,70	3,10
S_2	2,34	5,57	4,57	3,57	2,57	1,57	0,57	1,80	7,90	9,24
Варіант	21	22	23	24	25	26	27	28	29	30
R	11	12	13	14	15	11	12	13	13	14
S_I	2,30	2,40	2,50	2,60	2,70	2,80	2,90	3,1	3,2	3,2
S_2	4,12	4,23	4,24	5,65	6,78	6,53	1,45	5,78	4,98	7,35

R = 13

 $S_1 = 2,51$

 $S_2 = 2,51$

Для визначення ймовірності того, що точка потрапить в одну із двох фігур, які не перетинаються, потрібно визначити відношення площі фігур до площі круга. Загальна площа круга дорівнює $S_{\rm круга}=\pi R^2=169\pi$.

Площа фігур дорівнює $S_{12} = S_1 + S_2 = 2,51 + 2,51 = 5,02.$

Отже, ймовірність того, що точка потрапить в одну з фігур рівна $P(A) = \frac{S_{12}}{S_{\text{круга}}} = \frac{5,02}{169\pi} \approx 0,0094.$

Використані джерела інформації:

Сеньо П.С. Теорія ймовірностей та математична статистика: Підручник. — Київ: Центр навчальної літератури, 2004. — 448 с.