Introduction

Philip Schulz and Wilker Aziz

VI Tutorial @ Host Site Probabilistic Models

Supervised Models Powered by NNs

Latent Variable Models Powered by NNs

What is a probabilistic model?

A probabilistic model predicts possible outcomes of an experiment.

Most modern machine learning models are probabilistic.

Two Machine Learning Paradigms

Supervised problems: learn a distribution over observed data

• sentences in natural language, images, videos, ...

Unsupervised problems: learn a distribution over observed and unobserved data

sentences in natural language + parse trees, images
 bounding boxes, . . .

What are the benefits of probabilistic models?

Probabilistic models allows to incorporate assumptions through

- the choice of distribution
- the way that distributions uses side information
- stipulate unobserved data and their properties

They return a distribution over outcomes

Other benefits

- They can generate data
- They allow to model unobserved data
- They can be more compact
- They can provide explanation and can suggest improvements
- They can inform decision makers

Deep Generative Models

Naturally, one would like to combine the advantages of probabilistic models and neural networks. So why not have a neural net with latent variables?

Deep Generative Models

Naturally, one would like to combine the advantages of probabilistic models and neural networks. So why not have a neural net with latent variables?

Short answer: backpropagation breaks!

Why are we here today?

Because we want to combine the advantages of probabilistic models and neural networks to potentially

- overcome lack of supervision
- learn from partial supervision
- learn from less data
- shape the way models reason about data

and much more!

What are you getting out of this today?

As we progress we will

- develop a shared vocabulary to talk about generative models powered by NNs
- derive crucial results step by step
- connect concepts and implementation

What are you getting out of this today?

As we progress we will

- develop a shared vocabulary to talk about generative models powered by NNs
- derive crucial results step by step
- connect concepts and implementation

Goal

- you should be able to navigate through fresh literature
- and start combining probabilistic models and NNs

Probabilistic Models

Supervised Models Powered by NNs

3 Latent Variable Models Powered by NNs

Supervised problems

We have data $x^{(1)}, \ldots, x^{(N)}$ e.g. sentences, images generated by some **unknown** procedure which we assume can be captured by a probabilistic model

• with **known** probability (mass/density) function e.g.

$$X \sim \mathsf{Cat}(\theta_1, \dots, \theta_K)$$
 or $X \sim \mathcal{N}(\theta_u, \theta_\sigma^2)$

Supervised problems

We have data $x^{(1)}, \ldots, x^{(N)}$ e.g. sentences, images generated by some **unknown** procedure which we assume can be captured by a probabilistic model

• with **known** probability (mass/density) function e.g.

$$X \sim \mathsf{Cat}(\theta_1, \dots, \theta_K)$$
 or $X \sim \mathcal{N}(\theta_\mu, \theta_\sigma^2)$

and estimate parameters θ that assign maximum likelihood $p(x^{(1)}, \dots, x^{(N)} | \theta)$ to observations

Supervised NN models

Let y be all side information available e.g. deterministic *inputs/features/predictors*

Have neural networks predict parameters of our probabilistic model

$$X|y \sim \mathsf{Cat}(\pi_{m{ heta}}(y))$$
 or $X|y \sim \mathcal{N}(\mu_{m{ heta}}(y), \sigma_{m{ heta}}(y)^2)$

and proceed to estimate parameters θ of the NNs

Graphical model

Random variables

• observed data $x^{(1)}, \dots, x^{(N)}$

Deterministic variables

- inputs or predictors $y^{(1)}, \dots, y^{(N)}$
- ullet model parameters heta

Multiple problems, same language

<i>y</i> — <i>x</i>	θ (Conditional)	Density estimation
Parsing	Side information (y) a sentence	Observation (x) its syntactic/semantic parse tree/graph
Translation	a sentence	its translation
Captioning	an image	caption in English
Entailment	a text and hypothesis	entailment relation

Task-driven feature extraction

Often our side information is itself some high dimensional data

- y is a sentence and x a tree
- y is the source sentence and x is the target
- y is an image and x is a caption

and part of the job of the NNs that parametrise our models is to also deterministically encode that input in a low-dimensional space

NN as efficient parametrisation

From a statistical point of view, NNs do not generate data

- they parametrise distributions that by assumption govern data
- compact and efficient way to map from complex side information to parameter space

NN as efficient parametrisation

From a statistical point of view, NNs do not generate data

- they parametrise distributions that by assumption govern data
- compact and efficient way to map from complex side information to parameter space

Prediction is done by a decision rule outside the statistical model

• e.g. argmax, beam search

Let $p(x|\theta)$ be the probability of an observation x and θ refer to all of its parameters

Let $p(x|\theta)$ be the probability of an observation x and θ refer to all of its parameters

Given a dataset $x^{(1)}, \ldots, x^{(N)}$ of i.i.d. observations,

Let $p(x|\theta)$ be the probability of an observation x and θ refer to all of its parameters

Given a dataset $x^{(1)}, \ldots, x^{(N)}$ of i.i.d. observations, the log-likelihood function gives us a criterion for parameter estimation

$$\mathcal{L}(\theta|x^{(1:N)}) =$$

Let $p(x|\theta)$ be the probability of an observation x and θ refer to all of its parameters

Given a dataset $x^{(1)}, \ldots, x^{(N)}$ of i.i.d. observations, the log-likelihood function gives us a criterion for parameter estimation

$$\mathcal{L}(\theta|x^{(1:N)}) = \log \prod_{s=1}^{N} p(x^{(s)}|\theta) =$$

Let $p(x|\theta)$ be the probability of an observation x and θ refer to all of its parameters

Given a dataset $x^{(1)}, \ldots, x^{(N)}$ of i.i.d. observations, the log-likelihood function gives us a criterion for parameter estimation

$$\mathcal{L}(\theta|x^{(1:N)}) = \log \prod_{s=1}^{N} p(x^{(s)}|\theta) = \sum_{s=1}^{N} \log p(x^{(s)}|\theta)$$

If the log-likelihood is **differentiable** and **tractable** then backpropagation gives us the gradient

$$\nabla_{\theta} \mathcal{L}(\theta|x^{(1:N)}) =$$

If the log-likelihood is **differentiable** and **tractable** then backpropagation gives us the gradient

$$\nabla_{\theta} \mathcal{L}(\theta|x^{(1:N)}) = \nabla_{\theta} \sum_{s=1}^{N} \log p(x^{(s)}|\theta) =$$

If the log-likelihood is **differentiable** and **tractable** then backpropagation gives us the gradient

$$\mathbf{\nabla}_{ heta} \mathcal{L}(heta|x^{(1:N)}) = \mathbf{\nabla}_{ heta} \sum_{s=1}^{N} \log p(x^{(s)}| heta) = \sum_{s=1}^{N} \mathbf{\nabla}_{ heta} \log p(x^{(s)}| heta)$$

If the log-likelihood is **differentiable** and **tractable** then backpropagation gives us the gradient

$$\mathbf{\nabla}_{ heta} \mathcal{L}(heta | x^{(1:N)}) = \mathbf{\nabla}_{ heta} \sum_{s=1}^{N} \log p(x^{(s)} | heta) = \sum_{s=1}^{N} \mathbf{\nabla}_{ heta} \log p(x^{(s)} | heta)$$

and we can update θ in the direction

$$\gamma \nabla_{\theta} \mathcal{L}(\theta|x^{(1:N)})$$

to attain a local maximum of the likelihood function

For large N, computing the gradient is inconvenient

$$abla_{ heta} \mathcal{L}(heta|x^{(1:N)}) = \underbrace{\sum_{s=1}^{N}
abla_{ heta} \log p(x^{(s)}| heta)}_{ ext{too many terms}}$$

For large N, computing the gradient is inconvenient

$$egin{aligned} oldsymbol{
abla}_{ heta} \mathcal{L}(heta|x^{(1:N)}) &= \sum_{s=1}^{N} oldsymbol{
abla}_{ heta} \log p(x^{(s)}| heta) \ &= \sum_{s=1}^{N} rac{1}{N} N oldsymbol{
abla}_{ heta} \log p(x^{(s)}| heta) \end{aligned}$$

For large N, computing the gradient is inconvenient

$$egin{aligned} oldsymbol{
abla}_{ heta} \mathcal{L}(heta|x^{(1:N)}) &= \sum_{s=1}^{N} oldsymbol{
abla}_{ heta} \log p(x^{(s)}| heta) \ &= \sum_{s=1}^{N} rac{1}{N} N oldsymbol{
abla}_{ heta} \log p(x^{(s)}| heta) \ &= \sum_{s=1}^{N} \mathcal{U}(s|^{1}/N) N oldsymbol{
abla}_{ heta} \log p(x^{(s)}| heta) \end{aligned}$$

For large N, computing the gradient is inconvenient

$$egin{aligned} oldsymbol{
abla}_{ heta} \mathcal{L}(heta|x^{(1:N)}) &= \sum_{s=1}^{N} oldsymbol{
abla}_{ heta} \log p(x^{(s)}| heta) \ &= \sum_{s=1}^{N} rac{1}{N} N oldsymbol{
abla}_{ heta} \log p(x^{(s)}| heta) \ &= \sum_{s=1}^{N} \mathcal{U}(s|^{1}/N) N oldsymbol{
abla}_{ heta} \log p(x^{(s)}| heta) \ &= \mathbb{E}_{S \sim \mathcal{U}(1/N)} \left[N oldsymbol{
abla}_{ heta} \log p(x^{(S)}| heta)
ight] \end{aligned}$$

S selects data points uniformly at random

Stochastic optimisation

For large N, we can use a gradient estimate

$$\nabla_{\theta} \mathcal{L}(\theta|x^{(1:N)}) = \underbrace{\mathbb{E}_{S \sim \mathcal{U}(1/N)} \left[N \nabla_{\theta} \log p(x^{(S)}|\theta) \right]}_{\text{expected gradient :)}}$$

Stochastic optimisation

For large N, we can use a gradient estimate

$$\begin{split} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta} | \boldsymbol{x}^{(1:N)}) &= \underbrace{\mathbb{E}_{S \sim \mathcal{U}(1/N)} \left[N \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log p(\boldsymbol{x}^{(S)} | \boldsymbol{\theta}) \right]}_{\text{expected gradient :)}} \\ & \overset{\mathsf{MC}}{\approx} \frac{1}{M} \sum_{m=1}^{M} N \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log p(\boldsymbol{x}^{(s_m)} | \boldsymbol{\theta}) \\ S_m &\sim \mathcal{U}(1/N) \end{split}$$

Stochastic optimisation

For large N, we can use a gradient estimate

$$\begin{split} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta} | \boldsymbol{x}^{(1:N)}) &= \underbrace{\mathbb{E}_{S \sim \mathcal{U}(1/N)} \left[N \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log p(\boldsymbol{x}^{(S)} | \boldsymbol{\theta}) \right]}_{\text{expected gradient :)}} \\ & \overset{\mathsf{MC}}{\approx} \frac{1}{M} \sum_{m=1}^{M} N \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log p(\boldsymbol{x}^{(s_m)} | \boldsymbol{\theta}) \\ S_m &\sim \mathcal{U}(1/N) \end{split}$$

and take a step in the direction

$$\gamma \frac{N}{M} \underbrace{\nabla_{\theta} \mathcal{L}(\theta | x^{(s_1:s_M)})}_{\text{stochastic gradient}}$$

where $x^{(s_1:s_M)}$ is a random mini-batch of size M

DL in NLP recipe

Maximum likelihood estimation

 tells you which loss to optimise (i.e. negative log-likelihood)

Automatic differentiation (backprop)

 "give me a tractable forward pass and I will give you gradients"

Stochastic optimisation powered by backprop

general purpose gradient-based optimisers

Constraints

Differentiability

- intermediate representations must be continuous
- activations must be differentiable

Tractability

 the likelihood function must be evaluated exactly, thus it's required to be tractable Probabilistic Models

Supervised Models Powered by NNs

Latent Variable Models Powered by NNs

When do we have intractable likelihood?

Latent variable models contain unobserved random variables

$$p(x, z|\theta)$$

thus assessing the marginal likelihood requires marginalisation of latent variables

$$p(x|\theta) = \int p(x,z|\theta) dz$$

Latent variable model

Latent random variables

- unobserved
- or unobservable

Latent variable model

Latent random variables

- unobserved
- or unobservable

A joint distribution over data and unknowns

$$p(x, z|\theta) = p(z)p(x|z, \theta)$$

Examples of latent variable models

Discrete latent variable, continuous observation

$$p(x|\theta) = \underbrace{\sum_{c=1}^{K} \mathsf{Cat}(c|\pi_1, \dots, \pi_K) \underbrace{\mathcal{N}(x|\mu_{\theta}(c), \sigma_{\theta}(c)^2)}_{\mathsf{forward pass}}}_{\mathsf{forward pass}}$$

too many forward passes

Examples of latent variable models

Discrete latent variable, continuous observation

$$p(x|\theta) = \underbrace{\sum_{c=1}^{K} \mathsf{Cat}(c|\pi_1, \dots, \pi_K) \underbrace{\mathcal{N}(x|\mu_{\theta}(c), \sigma_{\theta}(c)^2)}_{\mathsf{forward pass}}}_{\mathsf{forward pass}}$$

too many forward passes

Continuous latent variable, discrete observation

$$p(x|\theta) = \int \mathcal{N}(z|0, I) \underbrace{\operatorname{Cat}(x|\pi_{\theta}(z))}_{\text{forward passes}} dz$$
infinitely many forward passes

$$\nabla_{\theta} \log p(x|\theta)$$

$$\nabla_{\theta} \log p(x|\theta) = \nabla_{\theta} \log \underbrace{\int p(x,z|\theta) dz}_{\text{marginal}}$$

$$\nabla_{\theta} \log p(x|\theta) = \nabla_{\theta} \log \underbrace{\int p(x, z|\theta) dz}_{\text{marginal}}$$

$$= \underbrace{\frac{1}{\int p(x, z|\theta) dz} \int \nabla_{\theta} p(x, z|\theta) dz}_{\text{chain rule}}$$

$$\nabla_{\theta} \log p(x|\theta) = \nabla_{\theta} \log \underbrace{\int p(x,z|\theta) \, \mathrm{d}z}_{\text{marginal}}$$

$$= \underbrace{\frac{1}{\int p(x,z|\theta) \, \mathrm{d}z} \int \nabla_{\theta} p(x,z|\theta) \, \mathrm{d}z}_{\text{chain rule}}$$

$$= \underbrace{\frac{1}{p(x|\theta)} \int \underbrace{p(x,z|\theta) \nabla_{\theta} \log p(x,z|\theta)}_{\text{log-identity for derivatives}} \, \mathrm{d}z}_{\text{log-identity for derivatives}}$$

$$\begin{split} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log p(\boldsymbol{x}|\boldsymbol{\theta}) &= \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \underbrace{\int p(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{z}}_{\text{marginal}} \\ &= \underbrace{\frac{1}{\int p(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{z}} \int \boldsymbol{\nabla}_{\boldsymbol{\theta}} p(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{z}}_{\text{chain rule}} \\ &= \underbrace{\frac{1}{p(\boldsymbol{x}|\boldsymbol{\theta})} \int \underbrace{p(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log p(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta})}_{\text{log-identity for derivatives}} \, \mathrm{d}\boldsymbol{z}}_{\text{log-identity for derivatives}} \\ &= \underbrace{\int \underbrace{p(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\theta})}_{\text{posterior}} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log p(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{z}}_{\text{posterior}} \end{split}$$

$$\nabla_{\theta} \log p(x|\theta) = \int p(z|x,\theta) \nabla_{\theta} \log p(x,z|\theta) dz$$

$$oldsymbol{
abla}_{ heta} \log p(x| heta) = \int p(z|x, heta) oldsymbol{
abla}_{ heta} \log p(x,z| heta) \, \mathrm{d}z$$

$$= \mathbb{E}_{p(z|x, heta)} \left[oldsymbol{
abla}_{ heta} \log p(x,z| heta) \right]$$

$$\begin{aligned} & \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log p(\boldsymbol{x}|\boldsymbol{\theta}) = \int \boldsymbol{p}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\theta}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \boldsymbol{p}(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{z} \\ & = \mathbb{E}_{\boldsymbol{p}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\theta})} \left[\boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \boldsymbol{p}(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta}) \right] \\ & \stackrel{\mathsf{MC}}{\approx} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \boldsymbol{p}(\boldsymbol{x},\boldsymbol{z}_{k}|\boldsymbol{\theta}) \quad \text{where } \boldsymbol{z}_{k} \sim \boldsymbol{p}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\theta}) \end{aligned}$$

$$egin{aligned} oldsymbol{
abla}_{ heta} \log p(x| heta) &= \int p(z|x, heta) oldsymbol{
abla}_{ heta} \log p(x,z| heta) \, \mathrm{d}z \ &= \mathbb{E}_{p(z|x, heta)} \left[oldsymbol{
abla}_{ heta} \log p(x,z| heta)
ight] \ &\stackrel{\mathsf{MC}}{pprox} rac{1}{K} \sum_{k=1}^{K} oldsymbol{
abla}_{ heta} \log p(x,z_k| heta) \quad \text{where } z_k \sim p(z|x, heta) \end{aligned}$$

But the posterior is not available!

$$p(z|x,\theta) =$$

$$egin{aligned} oldsymbol{
abla}_{ heta} \log p(x| heta) &= \int p(z|x, heta) oldsymbol{
abla}_{ heta} \log p(x,z| heta) \, \mathrm{d}z \ &= \mathbb{E}_{p(z|x, heta)} \left[oldsymbol{
abla}_{ heta} \log p(x,z| heta)
ight] \ &\stackrel{\mathsf{MC}}{pprox} rac{1}{K} \sum_{k=1}^{K} oldsymbol{
abla}_{ heta} \log p(x,z_k| heta) \quad \text{where } z_k \sim p(z|x, heta) \end{aligned}$$

But the posterior is not available!

$$p(z|x,\theta) = \frac{p(x,z|\theta)}{p(x|\theta)}$$

Some reasons

• better handle on statistical assumptions e.g. breaking marginal independence

- better handle on statistical assumptions e.g. breaking marginal independence
- organise a massive collection of data e.g. LDA

- better handle on statistical assumptions e.g. breaking marginal independence
- organise a massive collection of data e.g. LDA
- learn from unlabelled data
 e.g. semi-supervised learning

- better handle on statistical assumptions e.g. breaking marginal independence
- organise a massive collection of data e.g. LDA
- learn from unlabelled data e.g. semi-supervised learning
- induce discrete representations
 e.g. parse trees, dependency graphs, alignments

- better handle on statistical assumptions e.g. breaking marginal independence
- organise a massive collection of data e.g. LDA
- learn from unlabelled data e.g. semi-supervised learning
- induce discrete representations
 e.g. parse trees, dependency graphs, alignments
- uncertainty quantification e.g. Bayesian NNs

Examples: Lexical alignment

Generate a word x_i in L1 from a word y_{a_i} in L2

Examples: Lexical alignment

Generate a word x_i in L1 from a word y_{a_i} in L2

$$p(x|y,\theta) \stackrel{\mathsf{ind}}{=} \prod_{i=1}^{|x|} \sum_{a_i=1}^{|y|} \mathcal{U}(a_i|^1/|y|) p(x_i|y_{a_i})$$

Examples: Lexical alignment

Generate a word x_i in L1 from a word y_{a_i} in L2

$$p(x|y,\theta) \stackrel{\mathsf{ind}}{=} \prod_{i=1}^{|x|} \sum_{a_i=1}^{|y|} \mathcal{U}(a_i|1/|y|) p(x_i|y_{a_i})$$

Examples: Rationale extraction

Sentiment analysis based on a subset of the input

Examples: Rationale extraction

Sentiment analysis based on a subset of the input

$$p(x|y,\theta) = \sum_{f_1=0}^{1} \cdots \sum_{f_{|y|}=0}^{1} \left(\prod_{i=1}^{|y|} \mathsf{Bernoulli}(f_i|\theta_{y_i}) \right) p(x|f,y)$$

where p(x|f, y) conditions on y_i iff $f_i = 1$.

Examples: Rationale extraction

Sentiment analysis based on a subset of the input

$$p(x|y,\theta) = \sum_{f_1=0}^1 \cdots \sum_{f_{|y|}=0}^1 \left(\prod_{i=1}^{|y|} \mathsf{Bernoulli}(f_i|\theta_{y_i}) \right) p(x|f,y)$$

where p(x|f, y) conditions on y_i iff $f_i = 1$.

A factor model whose factors are labelled by words marginalisation $O(2^{|y|})$

A (deterministic) RNNLM aways produces the same conditional $p(x_i|x_{< i}, \theta)$ for a given prefix.

A (deterministic) RNNLM aways produces the same conditional $p(x_i|x_{< i},\theta)$ for a given prefix. Isn't it reasonable to expect the conditional to depend on what we are talking about?

A (deterministic) RNNLM aways produces the same conditional $p(x_i|x_{< i},\theta)$ for a given prefix. Isn't it reasonable to expect the conditional to depend on what we are talking about? e.g. *Rio de Janeiro* . . .

- history: once was the Brazilian capital
- tourism: offers some of Brazil's most iconic landscapes
- news: recently hosted the world cup final

A (deterministic) RNNLM aways produces the same conditional $p(x_i|x_{< i},\theta)$ for a given prefix. Isn't it reasonable to expect the conditional to depend on what we are talking about? e.g. *Rio de Janeiro* . . .

- history: once was the Brazilian capital
- tourism: offers some of Brazil's most iconic landscapes
- news: recently hosted the world cup final

$$p(x|\theta) = \int \mathcal{N}(z|0,I) \prod_{i=1}^{|x|} p(x_i|z,x_{< i},\theta) dz$$

Probabilistic models parametrised by neural networks

Probabilistic models parametrised by neural networks

 explicit modelling assumptions one of the reasons why there's so much interest

Probabilistic models parametrised by neural networks

- explicit modelling assumptions one of the reasons why there's so much interest
- but requires efficient inference

Probabilistic models parametrised by neural networks

- explicit modelling assumptions one of the reasons why there's so much interest
- but requires efficient inference which is the reason why we are here today