

BUR9-1999-0300US1
Amendment dated 06/16/2005

09/691,353

01240162aa
Reply to office action mailed 03/18/2005

The following is a complete listing of all claims in the application, with an indication of the status of each:

Listing of claims:

- 1 1. (previously presented) A method of forming a field effect transistor (FET),
2 comprising:
 - 3 providing a substrate;
 - 4 forming a layer on the substrate, the layer having exposed vertical side
5 surfaces on opposite sides of the layer, the layer being able to support epitaxial
6 growth on said side surfaces;
 - 7 forming an epitaxial channel on each of the exposed vertical side
8 surfaces of the layer, the channel having an exposed first vertical sidewall
9 opposite the vertical side surface of the layer;
 - 10 removing a channel on a first vertical side surface of the layer and then
11 removing the layer, thereby exposing a second vertical sidewall of the channel
12 formed on the second vertical side of the layer;
 - 13 forming a second channel in place of said removed channel; and
 - 14 forming a gate adjacent to at least one of the sidewalls of the channel
15 and the second channel, there being a gate dielectric between each channel and
16 the gate.
- 1 2-13. (canceled)
- 1 14. (previously presented) A method for forming a double gated field effect
2 transistor (FET), comprising the steps of:
 - 3 forming on a substrate a first and a second epitaxially grown channels,
4 said channels having vertical side surfaces extending up from the substrate,

BUR9-1999-0300US1
Amendment dated 06/16/2005

09/691,353

01240162aa
Reply to office action mailed 03/18/2005

5 wherein said second channel is grown following removal of a semiconductor
6 region centered between said channels upon one of whose opposite vertical
7 sides said first channel was grown;

8 etching areas within a silicon layer to form a source and a drain,
9 wherein a side surface of the source and the drain contact opposing end
10 surfaces of the first and second epitaxially grown channels; and

11 forming a gate that contacts a top surface and two side surfaces of the
12 first and second epitaxially grown channels and a top surface of the substrate.

1 15. (previously presented) The method as recited in claim 14, wherein the
2 forming step comprises the steps of:

3 forming first and second semiconductor lines, each end of the silicon
4 lines contacting an end of the source and the drain;

5 forming an etch stop layer on an exposed side surface of each of the
6 first and second semiconductor lines;

7 epitaxially growing first and second semiconductor layers on each etch
8 stop layer;

9 etching away the first and second semiconductor lines and the etch
10 stop layers;

11 filling areas surrounding the first and second epitaxially grown
12 semiconductor layers and between the source and the drain with an oxide fill;
13 and

14 etching a portion of the oxide fill to form an area that defines a gate,
15 wherein the area that defines the gate is substantially centered between and
16 substantially parallel to the source and the drain.

1 16. (original) The method as recited in claim 15, further comprising the steps
2 of:

BUR9-1999-0300US1
Amendment dated 06/16/2005

09/691,353

01240162aa

Reply to office action mailed 03/18/2005

3 etching the oxide fill between the gate the source to expose the first
4 and second epitaxially grown silicon layers; and
5 etching the oxide fill between the gate and the drain to expose the first
6 and second epitaxially grown silicon layers.

1 17. (original) The method as recited in claim 16, further comprising the step
2 of forming an oxide on the first and second epitaxially grown silicon layers.

1 18. (original) The method as recited in claim 17, wherein the oxide is silicon
2 dioxide.

1 19. (previously presented) The method as recited in claim 14, further
2 comprising the steps of:

3 implanting a portion of the epitaxially grown silicon layers between
4 the gate and the source; and

5 implanting a portion of the epitaxially grown silicon layers between
6 the gate and the drain.

1 20. (previously presented) The method as recited in claim 19, wherein the
2 implanting step is in the range of 10 to 45 degrees relative to a vector
3 perpendicular to a top surface of the epitaxially grown silicon layers.

1 21. (previously presented) The method as recited in claim 20, wherein the
2 implants are done in a series at approximately 90 degrees relative to each
3 other.

1 22. (original) The method as recited in claim 14, further comprising the step
2 of forming a contact on each of the gate, the source and the drain.

BUR9-1999-0300US1
Amendment dated 06/16/2005

09/691,353

01240162aa
Reply to office action mailed 03/18/2005

1 23. (original) The method as recited in claim 14, wherein the gate material is
2 polysilicon.

1 24. (previously presented) A method of forming an FET, comprising:
2 forming on a substrate a first semiconductor layer having first and
3 second ends and a central region that is thinner than said first and second ends,
4 said central region having first and second side surfaces extending upward
5 from said substrate, said semiconductor layer being able to support epitaxial
6 growth on said first and second side surfaces;
7 epitaxially growing a semiconductor channel region on at least one of
8 said first and second side surfaces of said central region of said first
9 semiconductor layer, a first side of said channel being exposed;
10 removing said central region of said first semiconductor layer, thereby
11 exposing a second side of said channel;
12 forming a dielectric layer on exposed surfaces of said semiconductor
13 channel region; and
14 forming a gate electrode on said dielectric layer.

1 25. (previously presented) The method of claim 24, wherein said
2 semiconductor channel region is formed of a combination of Group IV
3 elements.

1 26. (previously presented) The method of claim 24, wherein said
2 semiconductor channel region is formed of an alloy of silicon and a Group IV
3 element.

BUR9-1999-0300US1

Amendment dated 06/16/2005

09/691,353

01240162aa

Reply to office action mailed 03/18/2005

1 27. (previously presented) The method of claim 24, wherein said
2 semiconductor channel region is formed of a material selected from the group
3 consisting of silicon, silicon-germanium, and silicon-germanium-carbon.

1 28. (previously presented) The method of claim 27, wherein said step of
2 removing said first semiconductor layer does not appreciably remove said
3 semiconductor channel region.

1 29. (previously presented) The method of claim 28, wherein an etch stop is
2 epitaxially grown between said first semiconductor layer and said
3 semiconductor channel region.

1 30 (previously presented) The method of claim 24, wherein said gate
2 electrode is formed of a material selected from the group consisting of
3 polysilicon, silicon-germanium, refractory metals, Ir, Al, Ru, Pt, and titanium
4 nitride.