7 9 5 13 11 8 19 Delete 100 8 11/ S Compane each heap. Splay force Splaying segune of sotations of mode to Not tightly balanced. few data more frequetly used. Storing at most or near most.

Zig Rotation 6 rotation Inscort. 15,10,17,7,13,16,14 create a splay tree. 15 10 UT Insert 7 10 2ng zag zigzag 17 10 13 Insent 16 13 10

8/2/23 Splay , 90,53, 4,64, 90 ray rig

2 9 90 2 90 2 90 2 90 2 90 A 90

All BST will be splay tree.

He Deletion:
12) [4316, 20,17

Top-down splaying -> no need to mandering right subtree of largest element in L. R: pleft subferee of smallest element in R.

L M R 80 90 100 100 100 100

.

and the second s

Find Min

M

R

Reassemble:

Delete Min

- () Find Mim.
- Dremone min cloud right subtree as the

Frnd mar 60 60

. .

Top Down	splaying
Insertion:	
9, 2, 40, 53, 4, 64, 95	,59
	/
(used: 1	
procedure:	
search for re.	(a)
after notations	
compane 2	with woot.
compane.	1.)
moot < x. (ne	w node)
	7)
A R	, ⁷ \
XII	
root	
4.	
moot > new node	
	3
(R) #	
newnode	
noot	
(4)	
B	

9240. do rotation do reassembling compare root

(asten seems en bling) 410 lusert 4 40 Reasemble; 2 < 4

Insent 64:

į

4 9

Reassemble:

2 4 9 64

often Insertion: 53

2 40

R

Ø

C3 64

•

Insent 95. 53 Reassemble: 64 Insent 95 53 Rearsemble. 9.12, 90,53, 4, 64, 95, 59

1 order h 113 Rey: 3 3 Full nocles Sabtra: 4 J ZA, D, E, G3 (1) key: 3 Keys- asunding ender. Multinuay Search tree

B-Tree: Conditions.

Multiway Sewith Tree.

-> all elevents non deveasing

(1)

(ii)

	Max	Hin
ney	n -1	1
Subtaec	n.	2
key	n-1	(n +1)/2
Subtree	'n	n+1)/2
	Subtree	key n-1

n - (n-1) tree max nomber. -> + subtree min nomber -> key (n-1) - n tores.

leans - Same herel.

Insention:

(ili)

B-Tree n-sorder.

no of keys -> m-1

left = root x right.

1:

Insent: 382 518 508 387 385

ment: 382.

880 382 395 406 :423.

1/2 - luft 1/2 - right middle - panud.

Iward 71 ..

8 17 - 1,2 13.

engahekgm fwiltzdpræ · Order: 2: Insent g Insect a a . c (9 funcit k hkmng ace [wout f m (acet ace

Insent what, x nys. W acet (acef) ch K (119 m (ace acef wZ aces ng Ew ace. wź aclet Insuit p. wz (her) (np

Delete: h, t, r, e

(ii) deletêt:

(iii) deleter. Redistribution delete parant cheek left, right child. delete theaf theck left, right sibling. to bring down parant.

delete moot:
seplace with inorder predemos/sucusos.
- mungung

Block: 512 bytes.

offset:

				If just sorted.
128 pd fer	0 11	in the		19 Met South
• W	Rolpo)
4 rearrain	2	24.170	-	10.0
Harry	4			
block.	20			71. P. J.
		6.7		
		e.		- 1
•	100			
7.4	100			

No. of succords per block = 4.

@ 100 record .= 25 blocks.

Indexing table

Only 3 blocks needed

Col 65 Reptr 100 CP2 110 Reptr ...

& Self adjusting Binary tree.

Brosee. Jused in
Brosee. J DBMS.
B* tree.

20/2/23

-

*

node - souful for seauching.

Min and Max no- of keys. is same as Bitree.

NULL

1 16 20 25 5

0 .1 C. 61 . F.

Number of columns =
$$\lfloor \log_2 N \rfloor + 1$$

 $N = 6$
 $Coll = \lfloor \log_2 (6) \rfloor + 1$
 $= 2 + 1$ $= 1 \cdot 2 \cdot 3 \cdot 4$

$$i=0$$
 2 $2^{i}=1$ $2^{i}=1$ $2^{i}=2^{i}=1$ $2^{i}=2^{i}=1$ $2^{i}=2^{i}=1$ $2^{i}=2^{i}=1$ $2^{i}=2^{i}=1$ $2^{i}=2^{i}=1$

min (3,5)

No. of elements
$$\Rightarrow 3$$

 $\hat{s} = 2$
 $\hat{s} = 2$
 $\hat{s} = 3$
 $\hat{s} = 3$
 $\hat{s} = 4$
 $\hat{s} = 4$

[313] [4,4]

Complete Overdapping Overlapping based on type of query partial min (2,4) nd n-l NY ovenlay yeng. Complete Partial -1.0 MX pantial

Sum (2,4)

€ (, , ,

19 20 18 19 15 20 18 19 15 11

A/W: a) Mour Segment tree 20

10 13 15 20

do Rollowing operations

. Update.

1) [0,3] by 3

2) [013] by 1

[0,0] by 2

max [3,5] =>?

Knap sack	Dynamie	Tuog	rancing
problem	Goedy		
	- Branch		
Marinisotrus Mina	iruization,	:	
	deigles),	4.	
Greedy Approach:			
objects:-			, . ,
1 2 3 4	5	6	. 7
profit:	2	9	4
Weight:	, i	2	
1 3 5 4		3	2
W = 15			
n = 7			
To get the profit	proises.	assolit	1
_		200	
(2) To get max profit	100 219	weig	
(3) To get man perofit	essing (printe	() exaction
	4		

Solution 1: profits:

(i) objects	proofet	weight	remaining	weight
3	15	18 5	15-5 =	
2	10	3	7-3=	
6	q	3	21-1 =	
5 4	7	·3/4	We I GI	
	21/4	: = 3	3-3=0)
	5.25		4	7 ~

Total =
$$54/25$$
 47.25 25 29.25 29.25 29.25 29.25 29.25 29.25 29.25 29.25 29.25

Solution 2: Select the least weight object.

objects	pew fit	weight	remains weight
	E 5	1	15-1=14
7	8 4	2	$\frac{13}{44} - 2 = \frac{14}{41}$
2	10 grets	3 3 m/s	8-3 = 05
43	15:33	4 8 3 x/3 1	5.11 = 1

Solution 8: profit weight

	1	/		
al soft !	1	2 3	4 5	6 7
objects:	-	10 15	7 8	9 4
profit:		0 5	4 1	3 2
weight:		5		
P/	5	3.33 3	1:75 '8	3 ,
/ W .		7. 11		

object	profit	weight	sem-weight	
5	8	ā	15-1 = 14	
	5	1-	14-1 = 13	
	10	3	18-3=10	
d			10-5=5	1
., 8	15	3	5-3=2	,
b.,	1	•	2-2=0	
7	4			1
	51	81.1		13
				13
	3.4			51
*			1	5
			2	

* .:

49

1

Harry Control

. . .

