Thursday 10/22/15 MATH 421 HWS solutions

=) length(C) =
$$\int_0^{2\pi} |z'(t)| dt$$

$$= \int_0^{2\pi i} \sqrt{\left(\left(-R \sin t \right)^2 + \left(R \cos t \right)^2 \right)} dt$$

=
$$\int_{0}^{2\pi} R \cdot \sqrt{(5:a+1)^{2} + (ust)^{2}} dt$$

$$= \int_0^{2\pi} R df = 2\pi R /$$

$$z: [1,4] \longrightarrow \mathbb{C}$$

$$z(t) = t + i t^{3/2}$$

=> length(C) =
$$\int_{1}^{4} |z''(t)| dt = \int_{1}^{4} |1+i\frac{3}{2}t''^{2}| dt$$

$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}t} dt = \int_{13}^{10} \sqrt{u \cdot \frac{4}{9}} du$$

$$u = 1 + \frac{9}{4} +, \quad du = \frac{9}{4} dt$$

$$4 / g du = dt$$

$$= 4 / g \left[\frac{2}{3} u^{3/2} \right]^{10}$$

$$= 8 \left(10^{\frac{3}{2}} - \left(13\frac{1}{4} \right)^{\frac{3}{2}} \right)$$

$$\langle - \rangle$$
 $|z-w| > |z|-|w|$ and $|z-w| > |w|-|z|$
 $\langle - \rangle$ $|z-w| + |w| > |z|$ and $|z-w| + |z| > |w|$

```
Both inequalities are instances of the triangle inequality.
```

For example $|z| = |(z-w) + w| \leq |z-w| + |w|$. is the first inequality, 4 the second is similar.

3. $a f(z) = z^2 + 4$ 74+3iz

 $C = circle center the arigin 4 radius R in <math>C = IR^2$ = {z ∈ C | |z|=R}.

Now $|w|z \in C$, $|z|^2 + 4| \leq |z|^2 + 4 = |z|^2 + 4 = |z|^2 + 4 = |z|^2 + 4$ T.E.

and $|z^4 + 3iz| > |z^4| - |3iz| = |z|^4 - |3i| \cdot |z|$

So $|f(z)| = \left| \frac{z^2 + 4}{z^4 + 3iz} \right| = \frac{|z^2 + 4|}{|z^4 + 3iz|} \le \frac{R^2 + 4}{|R^4 - 3R|}$

Finally, $R^4-3R > 0$ for R sufficiently large, so $1R^4-3R = R^4-3R$ and $1f(z) 1 \le R^2+4$ 04 = R

b. $\left| \int_{C} f(z) dz \right| \leq M \cdot lagk(c)$ where $|f(z)| \leq M$ for all $z \in C$

Using $M = R^2 + 4$ from (a), and length (c) = 271R $R^4 - 3R$ (circumference of challe of radius R)

we find $\left| \begin{cases} 1/2 | dz | \leq \left(\frac{R^2 + 4}{R^4 - 3R}\right) & 271R = 271 \cdot \left(\frac{R^3 + 4R}{R^4 - 3R}\right) \\ \end{cases} \right|$

C. $\lim_{R\to\infty} 2\pi \cdot \left(\frac{R^3 + 4R}{R^4 - 3R}\right) = \lim_{R\to\infty} 2\pi \cdot \left(\frac{1}{R^3} + \frac{7}{R^3}\right) = 2\pi \cdot \left(\frac{0}{1}\right) = 0$

divide rumerativ 4 denominator by R4

So, since
$$0 \le \left| \int_C f(z) dz \right| \le 2\pi \cdot \left(\frac{R^3 + 4R}{R^4 - 3R} \right)$$

we have
$$\left| \int_{C} dz \right| \rightarrow 0$$
 as $R \rightarrow \infty$

or equivalently
$$\int_C f(z) dz \longrightarrow 0$$
 as $R \to \infty$.

(Note: By definition,
$$z(f) \rightarrow \times$$
 as $t \rightarrow \alpha$).
 $(z=) |z(f)-x| \rightarrow 0$ as $t \rightarrow \alpha$.

4. a)
$$\left(\frac{1}{2}\right)^{2}$$
 $\left(\frac{1}{2}\right)^{2}$ $\left(\frac{1}{2}\right)^{2}$ $\left(\frac{1}{2}\right)^{2}$ $\left(\frac{1}{2}\right)^{2}$ $\left(\frac{1}{2}\right)^{2}$ $\left(\frac{1}{2}\right)^{2}$ $\left(\frac{1}{2}\right)^{2}$ $\left(\frac{1}{2}\right)^{2}$

$$\begin{array}{ccc}
& & & & & & \\
& & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

$$= \int_{R} (2x - 2x) dxdy = \int_{R} 0 dxdy = 0.$$

c)
$$\begin{cases} e^{x} \sin y dx + e^{x} \cos y dy = \begin{cases} \frac{\partial}{\partial x} (e^{x} \cos y) - \frac{\partial}{\partial y} (e^{x} \sin y) dx dy \end{cases}$$

= $\begin{cases} (e^{x} \cos y - e^{x} \cos y) dx dy = \begin{cases} 0 \cdot dx dy = 0. \end{cases}$

5.
$$f(z) = e^{(z^2)} \cos(2z) \sin(3z)$$
 is complex differentiable on C , $f: C \rightarrow C$.
(because $z^2, e^2, \cos z, \sin z$ or complex differentiable and we have the product pale 4 chain rule).

```
Now by Cauchy's theorem & d(z) dz = 0.
6. f(z) = 3z
                z2+4z+13
    a) The domain U of f is I I zeroes of denominators.
       The domain u of t

Compute: z^2 + 4z + 13 = 0

= 1 z = -4 \pm \sqrt{4^2 - 4.13}

= -4 \pm \sqrt{-36} = -4 \pm 6; = -2 \pm 3;

z
        .: N= ( \ 4-2-3:, -2-3:).
          The points -2\pm 3; are outside

the circle C.

(because |-2\pm 3; |=\sqrt{2^2+3^2}=\sqrt{13}>3.)
       So ( f(z) dz = 0 by (auchy's theorem
       (because f is complex differentiable on U, and the region banded
          by C is contained in (1.)
7. a. f(z) = \frac{1}{z^2 - iz} = \frac{A}{z(z - i)} = \frac{A}{z} + \frac{B}{z - i}
                                                        A, B ∈ C (to be determined)
     Clearing denominatas:
                                    1= A(z-i) + Bz = A.(-i) + (A+B)-z
             \langle - \rangle / 1 = A \cdot (-i)^{1} \langle - \rangle A = i, B = -i
0 = A + B
```

So
$$f(z) = \frac{i}{z} - \frac{i}{z-i}$$

b.
$$\int_{C} \frac{1}{z^{2}} dz = \int_{C} \frac{1}{z^{2}} \frac{-i}{z^{2}} dz$$
$$= i \cdot \left(\int_{C} \frac{1}{z^{2}} dz \right) - i \cdot \left(\int_{C} \frac{1}{z^{2}} dz \right)$$

Suppose of has an autidesiative $F: C1605 \longrightarrow C$.

Then for any closed curve $C \subset C \setminus LO'$, we have $\int_C f(z) dz = F(x) - F(x) = 0$.

BUT we know that
$$\int_{C} \{(z) dz = 2\pi;$$

This is a contradiction.

So f does NOT have an antideivative $F: (1/10) \rightarrow (...)$