- 1. Classify each of the following differential equations in terms of its linearity and specify its order:
 - (a) $y' + x^2y = xe^x$.
 - (b) $y^{(3)} + 4y'' 5y' + 3y = \sin x$.
 - (c) $x^2 dy + y^2 dx = 0$.
 - (d) $y^{(4)} + 3(y'')^5 + 5y = 0.$
 - (e) $y'' + y \sin x = 0$.
 - $(f) y'' + x \sin y = 0.$
 - (g) $\frac{d^6x}{dt^6} + \left(\frac{d^4x}{dt^4}\right)\left(\frac{d^3x}{dt^3}\right) + x = t.$
 - (h) $\left(\frac{dx}{dt}\right)^3 = \sqrt{\frac{d^2x}{dt^2} + 1}$.
- 2. (a) Show that the function $(1+x^2)^{-1}$ is a solution of the ODE $(1+x^2)y'' + 4xy' + 2y = 0$ in every open interval $I \subset \mathbb{R}$.
 - (b) Show that $x^3 + 3xy^2 = 1$ is an implicit solution of the ODE $2xyy' + x^2 + y^2 = 0$ in the interval (0,1).
- 3. (a) Show that the *one* parameter family of functions $(x^3 + c)e^{-3x}$ is a solution of the first order ODE $y' + 3y = 3x^2e^{-3x}$.
 - (b) Show that the three parameter family of functions $c_1e^{2x}+c_2xe^{2x}+c_3e^{-2x}$ is a solution of the third order ODE $y^{(3)}-2y''-4y'+8y=0$.
 - (c) Determine the values of m such that $u(x) := e^{mx}$ is a solution of the ODE $y^{(3)} 3y'' 4y' + 12y = 0$.
- 4. (a) Show that $y = (x+c)^{-1}$ is a family of solution for the nonlinear ODE $y' + y^2 = 0$.
 - (b) Find the particular solution and the interval on which the particular solution is valid corresponding to the initial conditions:
 - i. y(0) = 5.
 - ii. y(2) = -1/5.
- 5. (a) Show that the BVP

$$\begin{cases} y'' + y = 0 \\ y(0) = 0 \\ y(\pi) = 1 \end{cases}$$

has no solution of the form $y(x) := \alpha_1 \sin x + \alpha_2 \cos x$. (The fact has no solution will follow from later lectures!)

(b) Show that there exists a h > 0 such that the IVP

$$\begin{cases} y' = x^2 \sin y \\ y(1) = -2 \end{cases}$$

admits a unique solution in the interval $|x-1| \le h$.

6. Analyse the existence and uniqueness of solution for the IVP

$$\begin{cases} (x^2 - 2x)y' = 2(x - 1)y \\ y(x_0) = y_0. \end{cases}$$

- 7. Let $I \subset \mathbb{R}$ be an open interval and $Q: I \to \mathbb{R}$ be a continuous function.
 - (a) Show that $y \equiv 0$ on I is a solution of the linear homogeneous ODE y' + Q(x)y = 0.
 - (b) Show that if u is a solution of the ODE such that $u(x_0) = 0$ for some $x_0 \in I$ then $u \equiv 0$ on I.
 - (c) If u and v are two solutions of the ODE such that $u(x_0) = v(x_0)$ for some $x_0 \in I$ then u(x) = v(x) for all $x \in I$.
 - (d) Show that the set of all solutions of y' + Q(x)y = 0 in I form a vector space over \mathbb{R} . Can a similar conclusion be made for any k-th order linear homogeneous ODE?
 - (e) What is the dimension of the vector space of solutions of y' + Q(x)y = 0?

.