238° а Исследовать на абсолютную и условную сходилость.

$$\int_{0}^{+\infty} x^{p} \sin(x^{q}) dx \qquad (q \neq 0).$$

• Equal 6 unmerpare zameny $t=x^q$, nonymn $\frac{1gn(q)}{q}\int\limits_0^{+\infty}t^{\frac{p-q+1}{q}}\sin t\,dt$.

Hau hymno uccuegobams unimerpai
$$\int_{0}^{+\infty} t^{d} \sin t \, dt = \int_{0}^{+\infty} t^{d} \sin t \, dt + \int_{0}^{+\infty} t^{d} \sin t \, dt$$

При $t \rightarrow +0$ имен $0 < t^{d}$ sint $\sim t^{d+1}$, поэтому по призначу сравнения интеграх I_1 сходится (аксимым) тогда и тольно тогда, когда $-(d+1) < 1 \Leftrightarrow d > -2$.

Интеграл I_L по признаку Абеля- Дирияле сходитая при d<0, поскольку s int имеет ограниченную первообразную на $(0;+\infty)$, а функция $t^d\to 0$ при $t\to +\infty$, моно тонно убпвая.

Takun oppagan, unimerpal $\int_{0}^{\infty} t^{\alpha} \sinh dt$ exogumes $\Leftrightarrow \alpha \in (-2,0)$.

Paccuompus unmerpas I_{z} , b cusy observed $|t^{\alpha}\sin t| \leq t^{\alpha}$ npu $t \in [1,+\infty)$ $\exists mom$ unmerpas no npushany chabrenus exoguises abconomic npu $\alpha < 1$. By $G_{z} \in [-1,0)$, paccuompus

$$\int_{1}^{+\infty} t^{d} \sin^{2}t \, dt = \int_{1}^{+\infty} \int_{1}^{+\infty} t^{d} (1 - \cos 2t) \, dt = \int_{1}^{+\infty} \int_{1}^{+\infty} t^{d} \, dt - \int_{1}^{+\infty} \int_{1}^{+\infty} t^{d} \cos 2t \, dt$$

nepboui univerpal packogural nou d = 1, a brooper exequial no noushaw $\int_{1}^{+\infty} t^d \sin^2 t \, dt$ no noushaw $\int_{1}^{+\infty} t^d \sin^2 t \, dt$ packogurae nou $d \in [-1; 0)$. Torga us noushake chabkeness cuegyer, and univerpal $\int_{1}^{+\infty} t^d \sin t \, dt$ packogural nous $d \in [-1; 0)$

Tаким образом, интеграм I_{2} еходитая абсолютью при « \in (-2,-1) и условно при « \in (-1,0)

blogs be enjour buecme, nonjeur, emo ucxograni univerpar cxoqumas abconomno nyu $-2 < d = p \frac{p-q+1}{q} < -1 \iff -1 < \frac{p+1}{q} < 0,$

u exergumes yerobur pou $-1 \leq \alpha = \frac{p-q+1}{q} < 0 \qquad \Leftrightarrow \qquad 0 \leq \frac{p+1}{q} < 1.$