Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Following a consistent programming style often helps readability. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Ideally, the programming language best suited for the task at hand will be selected. However, readability is more than just programming style. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). However, readability is more than just programming style. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages.