Exercice 1.— Soit $n \geq 2$ un entier.

1. En utilisant la formule des résidus, déterminer la valeur de

$$\int_{\mathbb{R}^+} \frac{1}{1+x^n} \, dx \, .$$

 $Indic.\ Pour\ 0<\varepsilon< R,\ on\ pourra\ considérer\ le\ domaine\ \{re^{i\theta}\ |\ r\in [\varepsilon,R], \theta\in [0,\tfrac{2\pi}{n}]\}.$

On suppose maintenant que n>2 et on s'intéresse, pour $\alpha\in\mathbb{R}$, à la fonction

$$f_{\alpha}: x \in \mathbb{R}^{+*} \longmapsto \frac{x^{\alpha}}{1+x^n} \in \mathbb{R}.$$

- 2. Pour quelles valeurs de α a-t-on $f_{\alpha} \in L^{1}(\mathbb{R}^{+})$?
- 3. En procédant comme à la question 1, déterminer la valeur de $\int_{\mathbb{R}^+} f_{\alpha}(x) dx$ pour un tel α .

Exercice 2.— Soient P et Q deux polynômes non nuls premiers entre eux. On suppose que

$$\deg Q \ge \deg P + 2 \ \text{ et que } \ Q \ne 0 \ \text{sur } \mathbb{R}.$$

Soient a_1, \ldots, a_k les racines complexes de Q de partie imaginaire strictement positive.

1. Montrer que $\frac{P}{Q} \in L^1(\mathbb{R})$ puis que

$$\int_{\mathbb{R}} \frac{P(x)}{Q(x)} dx = 2\pi i \sum_{j=1}^{k} \operatorname{Res}_{a_j} \frac{P}{Q}.$$

2. En déduire la valeur de

$$\int_{\mathbb{R}} \frac{x(1+x)}{(1+x^2)^2} dx.$$

Exercice 3.— La fonction Gamma d'Euler est défini sur $\mathbb{C}_{>0} := \{z \in \mathbb{C} \mid \text{Re}z > 0\}$ par :

$$\forall z \in \mathbb{C}_{>0}, \quad \Gamma(z) := \int_0^{+\infty} t^{z-1} e^{-t} dt.$$

- 1. Montrer que la fonction $\Gamma: \mathbb{C}_{>0} \to \mathbb{C}$ est bien définie et qu'elle est holomorphe.
- 2. Montrer que:

$$\forall z \in \mathbb{C}_{>0} \,, \quad \Gamma(z) \; = \; \sum_{n \in \mathbb{N}} \frac{(-1)^n}{n! \, (z+n)} \; + \; \int_1^{+\infty} t^{z-1} e^{-t} \, dt \,.$$

- 3. Montrer que $z \mapsto \int_1^{+\infty} t^{z-1} e^{-t} dt$ est holomorphe sur \mathbb{C} .
- 4. Que peut-on en déduire sur Γ ?

Exercice 4.— Soit a un réel strictement positif. Justifier l'existence, puis déterminer l'expression de la transformée de Fourier de la fonction $x \in \mathbb{R} \longmapsto e^{-a|x|} \in \mathbb{R}$.

Exercice 5.— Soient a > 0 et $f_a : x \in \mathbb{R} \mapsto e^{-ax^2} \in \mathbb{R}$. On rappelle que $\int_{\mathbb{R}} f_a(x) dx = \sqrt{\frac{\pi}{a}}$.

- 1. Montrer que $\widehat{f}_a \in \mathcal{C}^1(\mathbb{R})$ et vérifie $(\widehat{f}_a)'(\xi) = -\frac{\xi}{2a}\widehat{f}_a(\xi)$ pour tout $\xi \in \mathbb{R}$.
- 2. En déduire que $\widehat{f}(\xi) = \sqrt{\frac{\pi}{a}} e^{-\frac{\xi^2}{4a}}$ pour tout $\xi \in \mathbb{R}$.
- 3. Soit $z \in \mathbb{C}_{>0}$. Montrer que $x \in \mathbb{R} \mapsto e^{-zx^2} \in \mathbb{C}$ appartient à $L^1(\mathbb{R})$ et établir la relation

$$\forall \xi \in \mathbb{R}, \quad \mathcal{F}(e^{-zx^2})(\xi) = \frac{\sqrt{\pi}}{\sqrt{z}} e^{-\frac{\xi^2}{4z}}.$$

Exercice 6.— Soit $u \in \mathcal{C}^1(\mathbb{R})$ telle que u et u' appartiennent à $L^1(\mathbb{R})$.

- 1. Montrer que $u(x) \xrightarrow[|x| \to +\infty]{} 0$.
- 2. Trouver un exemple de fonction $v \in \mathcal{C}^1(\mathbb{R}) \cap L^1(\mathbb{R})$ ne vérifiant pas cette relation.
- 3. Montrer que, $\widehat{u}'(\xi) = i\xi \,\widehat{u}(\xi)$ pour tout $\xi \in \mathbb{R}$.

Exercice 7.— Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique définie positive. On veut montrer que :

$$\forall \xi \in \mathbb{R}^n \,, \quad \int_{\mathbb{R}^n} e^{-ix \cdot \xi} \, e^{-Ax \cdot x} \, dx = \sqrt{\frac{\pi^n}{\det A}} e^{-\frac{A^{-1}\xi \cdot \xi}{4}} \,.$$

On rappelle qu'il existe une matrice $P \in \mathcal{M}_n(\mathbb{R})$ telle que ${}^tPP = I_n$ et telle que ${}^tPAP = D$, où $D \in \mathcal{M}_n(\mathbb{R})$ est une matrice diagonale de valeurs propres strictement positives.

- 1. Montrer le résultat lorsque A est une matrice diagonale.
- 2. En déduire le résultat dans le cas général.

Exercice 8.— Soient f et g deux fonctions dans $L^1(\mathbb{R}^n)$.

1. Montrer que $f \star g(x) = \int_{\mathbb{R}^n} f(x-y)g(y)dy$ est définie pour presque tout $x \in \mathbb{R}^n$ et vaut $g \star f(x)$ pour ces x, puis que $f \star g$ appartient à $L^1(\mathbb{R}^n)$ et vérifie

$$||f \star g||_1 \leq ||f||_1 ||g||_1$$
.

- 2. Montrer que $\widehat{f \star g} = \widehat{f} \ \widehat{g}$.
- 3. On suppose maintenant que $f \in L^1(\mathbb{R}^n)$ et que $g \in L^p(\mathbb{R}^n)$, où $1 \le p \le +\infty$. Montrer que $f \star g$ est définie p.p., appartient à $L^p(\mathbb{R}^n)$ et vérifie $||f \star g||_p \le ||f||_1 ||g||_p$.