

ADAMAS UNIVERSITY

END-SEMESTER EXAMINATION: JANUARY 2021

(Academic Session: 2020 – 21)

PURSUE EXCELLENCE	(Academic Session: 2020 – 21)		
Name of the Program:	B.TECH	Semester:	VII
Paper Title :	CONTROL SYSTEMS	Paper Code:	EEE44101
Maximum Marks :	40	Time duration:	3 hours
Total No of questions:	08	Total No of Pages:	02
Note:	 All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. Assumptions made if any, should be stated clearly at the beginning of your answer. Submit scan copy of the answers on A4 sheet. 		

Answer all the Groups Group A

Answer all the questions of the following

 $5 \times 1 = 5$

- **1. a)** What do you mean by Transfer function of a control system?
 - **b**) State Routh-Hurwitz Criterion.
 - c) What do you mean Controllability and Observability?
 - d) Explain with suitable diagram PID controller.
 - e) How to find out the centroid from a Root Locus graph?

GROUP-B

Answer any three of the following

 $3 \times 5 = 15$

2. Construct an equivalent SFG from the given block diagram and evaluate the transfer function

- **3.** A unity negative feedback control system has an open loop transfer function, G(s). Determine the range of K for which the system is
 - a) Stable
 - b) Unstable
 - c) Marginally Stable. Also calculate the frequency of oscillation.

[1.5+1.5+2]

$$G(s) = \frac{K}{s(s^2 + s + 1)(s + 4)}$$

4. A unity negative feedback control system has an open loop transfer function

$$G(s) = \frac{K(s+2)(S+1)}{(s+0.1)(s-1)}$$

Using Routh Stability criteria determine the range of K for which closed loop system has 1 and 2 poles at RHS of s-plane.

5. Sketch the Bode plot for

$$G(s) = \frac{10}{s(s+2)}$$

GROUP -C

Answer any two of the following

$$2 \times 10 = 20$$

- **6.** Sketch the Root locos for an open loop transfer function of a unity feedback control system is given below and determine
 - a) the value of K for damping factor=0.5
 - b) the value of K for marginal stability
 - c) frequency of oscillation at marginal stability condition
 - d) the value of K at s=-6

$$G(s) = \frac{K}{s(s+1)(s+3)}$$
[2+2+3+3]

7. Consider a RC low pass filter and sketch the Polar and Bode Plot for it. Also find the corner frequency for the corresponding system from Bode plot.

$$[3+5+2]$$

8.

a) A system with an open loop transfer function
$$G(s) = \frac{(4s+1)}{s^2(s+1)(2s+1)}$$

Sketch Nyquist plot.

b) What do you mean by Gain- Crossover point and Gain Margin (GM). [7+3]