Mesh registration via geometric feature homogenization and offset cross-attention: application to 3D photogrammetry

Inés A. Cruz-Guerrero¹, Connor Elkhill¹, Jiawei Liu¹, Phuong Nguyen², Brooke French², and Antonio R. Porras^{1, 2, 3, 4}

Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus
Department of Pediatric Plastic and Reconstructive Surgery, Children's Hospital Colorado
Department of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora, CO
Departments of Pediatrics, Surgery and Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO

colorado school of public health

Introduction

3D photogrammetry

Cost efficient

Fast

Non-invasive

Radiation Free

Challenges of automated analysis of 3D photograms

Unstructured data representations

Variable spatial resolutions

Variable patient pose

Lack anatomical correspondences

State-of-the-art

- ➤ Point cloud-based methods: DCP¹, PointnetLK², DeepGMR³, and PCRnet⁴
- > Difficulties to process large numbers of nodes and require resampling to perform registration
- Do not consider local structure information (nodes connectivity)
- Inter-patient registration is often limited to selecting nodes with similar characteristics

Goal

To build an efficient and automated method for 3D photogram registration

Feature homogenization module

Based on Chebyshev polynomials³

$$x_{i+1}(K; \theta^i) = \sum_{k=0}^{K-1} \theta_k^i T_k(\tilde{L}) x_i$$

 x_i : input feature vector

K: Polynomials order [4,8]

 θ^i : trainable coefficients

 $ilde{m{L}}$: normalized graph Laplacian

Dimensionality reduction by:

$$U(B, \mathbf{\Theta}) = B^T H(\mathbf{\Theta})$$

 $U(B,\Theta)$: uniform output features

 $H(\Theta)$: learned feature transformation

O: trainable coefficients

B: variable dimensionality input data

Offset cross-attention (OCA) module

Offset Cross-Attention layers⁴

$$OCA(\mathbf{Z}_1, \mathbf{Z}_2) = LBL(\mathbf{Z}_1 - softmax(\mathbf{Q}\mathbf{K}^{\mathsf{T}})\mathbf{V}) + \mathbf{Z}_1$$

Four offset cross-attention layers

$$\boldsymbol{X}_{src,1} = OCA(\boldsymbol{U}_{src}, \boldsymbol{U}_{trg})$$

$$X_{trg,1} = OCA(U_{trg}, U_{src})$$

$$X_{src,2} = OCA(X_{src,1}, U_{src})$$

$$X_{trg,2} = OCA(X_{trg,1}, U_{trg})$$

Three specialized final layers: rotation matrix, translation vector and scaler factor.

Optimization

$$L = \left\| R(\alpha, \beta, \gamma)^T R(\hat{\alpha}, \hat{\beta}, \hat{\gamma}) - I \right\|_F + \|t - \hat{t}\|^2 + \|s - \hat{s}\|^2$$

 $\{\alpha, \beta, \gamma\}$: rotation angle in $\{X, Y, Z\}$, t: translation vector, and s: scaler factor

Experiment 1

OCA Evaluation

ModelNet40 Dataset	Applied Transformations				
Training set: 9,846	Rotation range: ±45°				
Test set: 2,468	Translation range: ± 0.5				

⁵Wu et al., 2015, Proceedings of the IEEE CVPR.

Experiment 2

Intra-subject registration of 3D photograms

3D Photogram Dataset	Applied Transformations			
Training set: 1,396 Test set: 174	Rotation range: ±45°			
Validation set: 174	Translation range: ± 0.5			

Mothod	MSE		MA	E	MSE	Chamfer
Method	$\{\alpha, \beta, \gamma\}$	t	$\{\alpha, \beta, \gamma\}$ t		(src,trg)	(src,trg)
DCP	60.09	0.01	5.01	0.06	0.03	4.81
PointNetLK	278.43	0.10	5.87	0.25	0.13	0.30
DeepGMR	31.53	0.01	3.14	0.06	0.02	0.189
PCRnet	494.64	0.01	15.12	0.25	0.08	0.19
Proposed method	27.761	1E-3	3.66	0.03	0.01	0.02

Experiment 3

Intra/Inter-subject registration of 3D photograms

3D Photogram Dataset	Applied Transformations			
Training set: 13,952	Rotation range: ±45°			
Test set: 1,744	Translation range: ± 0.5			
	Scaler range: ±50%			

	Metric MSE			MAE			MSE	Chamfer	
E :	xperiment	$\{\alpha,\beta,\gamma\}$	t	S	$\{\alpha,\beta,\gamma\}$	$\mid t \mid$	S	(src,trg)	(src,trg)
3.A	Same subject	11.55	1E-3	! ! ! -	2.03	0.02	-	0.01	0.02
3.B	Inter-subject	23.72	1E-3	. –	3.51	0.02	-	0.01	0.02
3.C	Same subject	13.34	1E-3	4E-3	2.23	0.03	0.05	0.01	0.02
3.D	Inter-subject	30.42	1E-3	4E-3	3.94	0.03	0.05	0.01	0.02

Conclusions

- > 3D surface registration method independent from the number of nodes and spatial resolution
- Feature homogenization module allows creating uniform representations independent from original data dimensionality
- Offset cross-attention module improves registration performance by learning common spatial patterns between meshes
- State-of-the-art accuracy without data pre-processing or spatial sampling

Thanks!

colorado school of public health

alejandro.cruzguerrero@cuanschutz.edu