Turbulence, shmurbulence how fat is it?

Predrag Cvitanović Xiong Ding, H. Chate, E. Siminos and K. A. Takeuchi

> PDE Seminar, School of Mathematics Georgia Institute of Technology

> > March 16, 2016

part 1

- dynamical theory of turbulence
- state space
- symmetry reduction
- dimension of the inertial manifold

a life in extreme dimensions

since 1822 have Navier-Stokes equations

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \frac{1}{B} \nabla^2 \mathbf{v} - \nabla p + \mathbf{f}, \qquad \nabla \cdot \mathbf{v} = 0,$$

velocity field $\mathbf{v} \in \mathbb{R}^3$; pressure field p; driving force \mathbf{f}

since 1883 Osborne Reynolds experiments

an outstanding problem of classical physics :

describe turbulence

plane Couette experiment

B. Hof lab

pipe experiment

B. Hof lab

pipe experiment data point

a state of turbulent pipe flow at instant in time

Stereoscopic Particle Image Velocimetry \rightarrow 3-d velocity field over the entire pipe¹

¹Casimir W.H. van Doorne (PhD thesis, Delft 2004)

numerical challenges

computation of turbulent solutions

requires 3-dimensional volume discretization

 \rightarrow integration of $10^4\text{-}10^6$ coupled ordinary differential equations

challenging, but today possible

J.F. Gibson ChannelFlow.org

A. P. Willis OpenPipeFlow.org

numerical challenges

computation of turbulent solutions

requires 3-dimensional volume discretization

→ integration of 10⁴-10⁶ coupled ordinary differential equations

challenging, but today possible

J.F. Gibson ChannelFlow.org

A. P. Willis OpenPipeFlow.org

typical simulation

each instant of the flow > Megabytes a video of the flow > Gigabytes

example: pipe flow

amazing data! amazing numerics!

- here each instant of the flow $\approx 2.5\,\text{MB}$
- ullet videos of the flow pprox GBs

plane Couette velocity visualization

computational cell, velocity visualization

next - the same solution, different visualization

plane Couette isovorticity visualization

FIG. 3 (color). (a), (b), (c) The x-y, x-z, and y-z projections of the new state (upper branch) at Re = 200 in PCF. Yellow curves are vortex lines across the channel midplane (visualized over B_1 , but not over B_2), underneath which there are low-speed structures visualized as isosurfaces of $u_x = -0.1$ and -0.4, colored by cyan $[z \approx \frac{1}{2}$ for the peaks of $(B_1, B_2)]$ and blue $[z \approx -\frac{1}{2}$ for $(S_1, S_2)]$, respectively. (d), (e), (f) Correspond to the same projections but for the upper branch of the NBW state. The vortex lines are integrated from the equivalent points located at [z] = 0.8 for both HVS and NBW.

part 2

- dynamical theory of turbulence
- state space
- symmetry reduction
- dimension of the inertial manifold

new: look at it in

state space!

E. Hopf 1948

dynamical description of turbulence

state space

a manifold $\mathcal{M} \in \mathbb{R}^d$: d numbers determine the state of the system

representative point

 $x(t) \in \mathcal{M}$ a state of physical system at instant in time

deterministic dynamics

trajectory $x(t) = f^t(x_0)$ = representative point time t later

today's experiments

example of a representative point

 $x(t) \in \mathcal{M}, \, d = \infty$ a state of turbulent pipe flow at instant in time

Stereoscopic Particle Image Velocimetry \rightarrow 3-d velocity field over the entire pipe²

²Casimir W.H. van Doorne (PhD thesis, Delft 2004)

charting the state space of a turbulent flow

John F Gibson (U New Hampshire) Jonathan Halcrow (Google)

can visualize 61,506 dimensional state space of turbulent flow

equilibria of turbulent plane Couette flow, their unstable manifolds, and myriad of turbulent videos mapped out as one happy family

plane Couette state space, an equilibrium unstable manifold

plane Couette state space $10^5 \rightarrow 3D$

part 3

- dynamical theory of turbulence
- state space
- symmetry reduction
- dimension of the inertial manifold

nature loves symmetry

or does she?

problem

physicists like symmetry more than Nature

Rich Kerswell

nature: turbulence in pipe flows

top : experimental / numerical data

bottom: theorist's solutions

Nature, she don't care: turbulence breaks all symmetries

in turbulence,

use of symmetries is subtle

Elie Cartan 1926:

slice it!

example : $SO(2)_Z \times O(2)_\theta$ symmetry of pipe flow

a fluid state, shifted by a stream-wise translation, azimuthal rotation g_p is a physically equivalent state

- b) stream-wise
- c) stream-wise, azimuthal
- d) azimuthal flip

state space trajectories, group orbits

(a) x tangent vectors:

v(x) along time flow x(t) $t_1(x), \dots, t_N(x)$ group tangents (b) trajectory x(t)

(c) group orbits gx(t)

(d) wurst g x(t)

relative periodic orbit, in full state space and in slice

foliation by group orbits

group orbit \mathcal{M}_x of x is the set of all group actions

$$\mathcal{M}_{x} = \{g \, x \mid g \in G\}$$

foliation by group orbits

any point on the manifold $\mathcal{M}_{x(t)}$ is equivalent to any other

foliation by group orbits

actions of a symmetry group foliates the state space \mathcal{M} into a union of group orbits \mathcal{M}_x each group orbit \mathcal{M}_x is an equivalence class

the goal

replace each group orbit by a unique point in a lower-dimensional

symmetry reduced state space \mathcal{M}/G

full state space

reduced state space

replace each group orbit by a unique point in a lower-dimensional

symmetry reduced state space \mathcal{M}/\mathcal{G}

symmetry reduction: how?

continuous symmetry reduction in high-dimensional flows with

the method of slices

Cartan's idea: moving frame

free to redefine the flow any time instant by transformation to a frame moving along symmetry directions

relativity for cyclists

method of slices

cut group orbits by a hypersurface (not a Poincaré section), each group orbit of symmetry-equivalent points represented by the single point

cut how?

geometers'choice

chose the frames so that distances are minimized

relative periodic orbit, in full state space and in slice

group orbits are NOT circles

nonlinearities couple many Fourier modes

group orbit manifolds of highly nonlinear states are smooth, but not nice

example: group orbit of a pipe flow turbulent state

 $SO(2) \times SO(2)$ symmetry \Rightarrow group orbit is topologically 2-torus, but a mess in any projection

group orbits of highly nonlinear states are topologically tori, but highly contorted tori

Ashley Willis

example: pipe flow relative periodic orbit

Ashley Willis

take home:

if you have a symmetry, reduce it!

your quandry

mhm - seems this would require extra thinking what's the payoff?

it works!

Kimberly Short Ashley Willis

it works: all pipe flow solutions in one happy family

symmetry-reduced infinite-dimensional slice : a 3D projection

grey cloud: the natural measure
32 relative periodic orbits, 6 relative equilibria
periodic orbits capture the natural measure density well
could not find without symmetry reduction:

part 4

- dynamical theory of turbulence
- state space
- symmetry reduction
- o dimension of the inertial manifold

the challenge

turbulence.zip

or 'equation assisted' data compression:

replace the ∞ of turbulent videos by the best possible

small finite set

of videos encoding all physically distinct motions of the turbulent fluid

dynamical description of turbulence

dynamical system

the pair (\mathcal{M}, f)

the problem

enumerate, classify all solutions of (\mathcal{M}, f)

tessellate the state space by recurrent flows

cover the reduced manifold with a set of flat charts

yes, we can do this with 8-dimensional brick embedded in 10^6 dimensions

tiling the inertial manifold

The N-chart atlas of the same strange attractor stays in the physical manifold.

linearized deterministic flow

$$x_{n+1} + z_{n+1} = f(x_n) + M_n z_n, \quad M_{ij} = \partial f_i / \partial x_j$$

in one time step a linearized neighborhood of x_n is

- (1) advected by the flow
- (2) transported by the Jacobian matrix M_n into a neighborhood given by the M eigenvalues and eigenvectors

relative periodic orbit with a pair of Floquet vectors

Floquet and Lyapunov exponents

entangled Floquet modes

distribution of principal angles between Floquet subspaces

ergodic trajectory shadows periodic orbits within the entangled subspace

what next? take the course!

student raves:

...106 times harder than any other online course...