Lecture 22

niceguy

March 8, 2023

1 Comparison between Distributions

1.1 Central Limit Theorem

- Sample X_1, \ldots, X_n
- IID, finite σ^2
- $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- As $n \to \infty$, distribution of \overline{X} tends to a normal distribution
- if X_i is normal, then \overline{X} is normal $\forall n$

1.2 t distibution

- Sample X_1, \ldots, X_n
- IID, normal
- We do not need to know σ^2 , but it is defined as

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

 \bullet T as defined below has normal distribution

$$T = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

• If $n \geq 30, S \approx \sigma$, use Central Limit Theorem

1.3 χ^2 distribution

 \bullet Same as t distribution, where we assume normal distribution for X_i

•

$$\chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2$$

2 Quantiles

Given sample data x_1, \ldots, x_n , we have q(f) where f is the fraction of data $\leq q(f)$. One can then plot q(f) vs f.

Example 2.1 (Quantile Plot). Given the data -2, 0, 0, 1, 3, 3, 3, 4, 6, q(0.5) = 3.

In general, q(0.5) is called the sample median, q(0.25) the lower quartile and q(0.75) the upper quartile.

This is the inverse of the Cumulative Distribution Function F(x)!

$$q(f) \approx \mu + \sigma \left(4.91 \left(f^{0.14} - (1-f)^{0.14}\right)\right)$$

q(f) can be approximated for a normal distribution.