

Title Page

Contents

Page 34 of 41

Go Back

Full Screen

Close

Quit

- $L(\mathbf{w}, b, \text{L'mults}) \stackrel{\triangle}{=} \text{basic fn lin combo constrs } (\geq 0)$
 - 1. $a_i \geq 0$ (Lagrange)
 - 2. $t_i y_i \ge 1 \xi_i \Longrightarrow t_i y_i 1 + \xi_i \ge 0$ (Golden constr)
 - 3. $a_i[t_iy_i 1 + \xi_i] = 0$ (imp) [KKT]
- More? $\xi_i \in [0,1]$: margin, $\xi_i \geq 1$: butlier
 - 1. $\xi_i \geq 0$ Interpret as a constraint
 - 2. Have a Lagrange multiplier μ_i : $\mu_i \ge 0$
 - 3. $\xi_i \mu_i = 0$ (imp) [KKT]
- $L(\mathbf{w}, b, \mathbf{a}, \boldsymbol{\xi}, \boldsymbol{\mu}) \stackrel{\triangle}{=} \frac{1}{2} ||\mathbf{w}||^2$ • $\sum_{i=1}^{N} a_i \{ t_i \left[\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) + b \right] - 1 + \xi_i \} + C \sum_{1=1}^{N} \xi_i - \sum_{i=1}^{N} \mu_i \xi_i$
- Two terms with sum of ξ_i s: how?
- 1st: bound on # miscl, other: Lagrange mults
- Constraints? ► hard margin, + excursions

Title Page

Contents

Page 35 of 41

Go Back

Full Screen

Close

Quit

- $L(\mathbf{w}, b, \mathbf{a}, \boldsymbol{\xi}, \boldsymbol{\mu}) \stackrel{\triangle}{=} \frac{1}{2} ||\mathbf{w}||^2$ • $\sum_{i=1}^{N} a_i \{ t_i \left[\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) + b \right] - 1 + \xi_i \} + C \sum_{1=1}^{N} \xi_i - \sum_{i=1}^{N} \mu_i \xi_i$
- $\{a_i\}$, $\{\xi_i\}$: Lagrange mults. Partial diff wrt w, b, ξ_i
- $\frac{\partial L}{\partial \mathbf{w}^T} = \mathbf{0}$, $\frac{\partial L}{\partial b} = 0$, $\frac{\partial L}{\partial \xi_i} = 0$ Ist 2: same as before!
- $\frac{\partial L}{\partial \mathbf{w}^T} = \frac{1}{2} 2\mathbf{w} \sum_{i=1}^N a_i \ t_i \ \phi(\mathbf{x}_i) = 0$: $\mathbf{w} = \sum_{i=1}^N a_i \ t_i \ \phi(\mathbf{x}_i)$
- $\frac{\partial L}{\partial b} = 0$: $\sum_{i=1}^{N} a_i \ t_i = 0$
- $\frac{\partial L}{\partial \xi_i} = 0$: $\mathbb{C} a_i \mu_i = 0$: $\mathbb{I}_i = C \mu_i$: "Box Constraints"
- $a_i = C \mu_i$, Lagrange: $a_i \ge 0$, $\mu_i \ge 0$
- $a_i \ge 0 \implies \mathbb{C} \mu_i \ge 0 \implies \mu_i \le C \text{ Add } \mu_i \ge 0$
- $\mu_i \ge 0 \implies \mathbb{C} a_i \ge 0 \implies a_i \le C \text{ Add } a_i \ge 0$
- $0 \le \mu_i \le C$ $0 \le a_i \le C$ μ_i , $\mu_i \sim \text{dims of a 2-D 'box'}$

Title Page

Contents

Page 36 of 41

Go Back

Full Screen

Close

Quit

Kernels: Hard Nuts to Crack

http://www.kangarooblue.com/images/fragranceoils/coconut.jpg

- Kernels used in Classification/Regression
- [1964: Aizerman et al.], Soviet Control theorists
- [1992: Boser, Guyon, Vapnik]: Hard-M SVM
 ■
- Top-down Genesis: (from the SVM Theory):
- * Many linear models: recast into 'dual' form
- * Predictors (classification/regression): In combo' of a kernel fn evaluated at (some) training pts
- * Of interest: models, non-lin feature space mapping, $\mathbf{k} \to \phi(\mathbf{x})$. **e**.g., $\tilde{\mathbf{x}}_{3\times 1} = \phi(\mathbf{x}_{2\times 1})$, $\phi(\cdot)$: vector

NODE OF THE CHAPTER O

Home Page

Title Page

Contents

Page 37 of 41

Go Back

Full Screen

Close

Quit

Kernels: Hard Nuts to Crack

- Basic Idea: Use Φ to map the original patterns in $\mathscr X$ into a higher dimensional feature space $\mathscr H$
- Draw a separating hyperplane with max margin
- This corresponds to a non-linear decision boundary in the original pattern space
- Kernel trick: using $k(\cdot,\cdot)$, get separating hyperplane without explicitly using Φ to get \mathcal{H}

Title Page

Contents

Page 38 of 41

Go Back

Full Screen

Close

Quit

•
$$k(\mathbf{x}_i, \mathbf{x}_j) \stackrel{\triangle}{=} \boldsymbol{\phi}^T(\mathbf{x}_i) \boldsymbol{\phi}(\mathbf{x}_j) = \boldsymbol{\phi}^T(\mathbf{x}_j) \boldsymbol{\phi}(\mathbf{x}_i)$$

- \mathbf{x}_i , \mathbf{x}_j : vecs in original space, $\boldsymbol{\phi}(\cdot)$: x'fm'd space
- $k(\mathbf{x}_i, \mathbf{x}_j)$: scalar, symmetric, 1st term: fn of \mathbf{x}_i , 2nd term: same fn of \mathbf{x}_i