MINIMALIST GRAMMAR TRANSITION-BASED PARSING

Miloš Stanojević m.stanojevic@uva.nl

Institute for Logic, Language and Computation University of Amsterdam

Logical Aspects of Computational Linguistics 2016

MOTIVATION

Types of parsers

- Chart-based : full search space
- Transition-based : partial search space, no guarantees

MOTIVATION

Types of parsers

- Chart-based : full search space
- Transition-based : partial search space, no guarantees

Why use Transition-Based parser instead of Chart-Based one?

- Speed: $O(n^{4m+4})$ vs $O(n^2)$
- Accuracy: local vs non-local conditioning

ACCURACY – LOCALLY VS NON-LOCALLY CONDITIONED MODELS

ACCURACY – LOCALLY VS NON-LOCALLY CONDITIONED MODELS

ACCURACY – LOCALLY VS NON-LOCALLY CONDITIONED MODELS

MINIMALIST GRAMMARS

Composition Functions

- merge
- move

FEATURES

- features for merge:
 - selectees: v, n, c, d, a
 - selectors: =v, =n, =c, =d, =a
- features for move:
 - licensees: −wh, −case
 - licensors: +wh, +case

MINIMALIST GRAMMARS

LEXICON

- likes :: =d = d v
- Chomsky :: d
- what :: d wh
- $\varepsilon ::= v c$
- $\varepsilon := v + wh c$

CHAINS AND EXPRESSIONS

- likes Chomsky : =d v
- likes : =d v, what : -wh

MERGE FOR COMPLEMENTS

merge1
$$\frac{s :: = f \gamma}{st : \gamma, \alpha_1, \dots, \alpha_k}$$

MERGE FOR COMPLEMENTS

merge1
$$s := f\gamma$$
 $t \cdot f, \alpha_1, \dots, \alpha_k$ $st : \gamma, \alpha_1, \dots, \alpha_k$

MERGE FOR SPECIFIERS

merge2
$$\frac{s := f \gamma, \alpha_1, \dots, \alpha_k}{ts : \gamma, \alpha_1, \dots, \alpha_k, \iota_1, \dots, \iota_l}$$

MERGE FOR SPECIFIERS

merge2
$$\frac{s: = f_{\gamma}, \alpha_1, \dots, \alpha_k}{ts: \gamma, \alpha_1, \dots, \alpha_k, \iota_1, \dots, \iota_l}$$

Merge for Moving Constituents

merge3
$$\frac{s \cdot = f \gamma, \alpha_1, \dots, \alpha_k}{s : \gamma, \alpha_1, \dots, \alpha_k, t : \delta, \iota_1, \dots, \iota_l}$$

MERGE FOR MOVING CONSTITUENTS

merge3
$$\frac{s \cdot = f_{\gamma, \alpha_1, \dots, \alpha_k}}{s : \gamma, \alpha_1, \dots, \alpha_k, t : \delta, \iota_1, \dots, \iota_l}$$

Move for the Landing Constituents

$$move1 \quad \frac{s: +f \; \gamma, \alpha_1, \ldots, \alpha_{i-1}, t: -f, \alpha_{i+1}, \ldots, \alpha_k}{ts: \gamma, \alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_k}$$

Move for the Landing Constituents

move1
$$\frac{s: +f_{\gamma}, \alpha_{1}, \dots, \alpha_{i-1}, t: -f_{\gamma}, \alpha_{i+1}, \dots, \alpha_{k}}{ts: \gamma, \alpha_{1}, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_{k}}$$

Move for the Moving Constituents

move2
$$\frac{s: +f \gamma, \alpha_1, \dots, \alpha_{i-1}, t: -f \delta, \alpha_{i+1}, \dots, \alpha_k}{s: \gamma, \alpha_1, \dots, \alpha_{i-1}, t: \delta, \alpha_{i+1}, \dots, \alpha_k}$$

Move for the Moving Constituents

move2
$$\frac{s : +f_{\gamma}, \alpha_{1}, \dots, \alpha_{i-1}, t : -f_{\delta}, \alpha_{i+1}, \dots, \alpha_{k}}{s : \gamma, \alpha_{1}, \dots, \alpha_{i-1}, t : \delta, \alpha_{i+1}, \dots, \alpha_{k}}$$

BIG PICTURE

HARKEMA/STABLER MG CHART PARSER

- Items \sim MG expressions
- ullet Inference rules \sim MG composition functions
- ullet axioms \sim supertags
- goal $(0, n) \cdot c$
- Computational Complexity $O(n^{4m+4})$

merge1 DEFINITION

$$s ::= f \gamma$$
 $t \cdot f, \alpha_1, \dots, \alpha_k$

$$st: \gamma, \alpha_1, \ldots, \alpha_k$$

merge1 inference rule

$$\frac{(a,b) ::= f \gamma}{(a,c) : \gamma, \alpha_1, \dots, \alpha_k}$$

merge2 Definition

$$\frac{s_{|} := f \gamma, \alpha_1, \dots, \alpha_k}{ts : \gamma, \alpha_1, \dots, \alpha_k, \iota_1, \dots, \iota_l}$$

merge2 inference rule

$$\frac{(b,c) := f \gamma, \alpha_1, \dots, \alpha_k}{(a,c) : \gamma, \alpha_1, \dots, \alpha_k, \iota_1, \dots, \iota_l}$$

merge3 DEFINITION

$$\frac{s \cdot = f \gamma, \alpha_1, \dots, \alpha_k}{s : \gamma, \alpha_1, \dots, \alpha_k, t : \delta, \iota_1, \dots, \iota_l}$$

merge3 inference rule

$$\frac{(a,b)\cdot=f\gamma,\alpha_1,\ldots,\alpha_k}{(a,b):\gamma,\alpha_1,\ldots,\alpha_k,(c,d):\delta,\iota_1,\ldots,\iota_l}$$

move1 DEFINITION

$$s: +f \gamma, \alpha_1, \dots, \alpha_{i-1}, t: -f, \alpha_{i+1}, \dots, \alpha_k$$

$$ts: \gamma, \alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_k$$

move1 inference rule

$$\frac{(b,c):+f\gamma,\alpha_1,\ldots,\alpha_{i-1},(a,b):-f,\alpha_{i+1},\ldots,\alpha_k}{(a,c):\gamma,\alpha_1,\ldots,\alpha_{i-1},\alpha_{i+1},\ldots,\alpha_k}$$

move2 DEFINITION

$$s: +f \gamma, \alpha_1, \dots, \alpha_{i-1}, t: -f \delta, \alpha_{i+1}, \dots, \alpha_k$$

$$s: \gamma, \alpha_1, \dots, \alpha_{i-1}, t: \delta, \alpha_{i+1}, \dots, \alpha_k$$

move2 inference rule

$$(a,b): +f \gamma, \alpha_1, \ldots, \alpha_{i-1}, (c,d): -f \delta, \alpha_{i+1}, \ldots, \alpha_k$$

$$(a,b): \gamma, \alpha_1, \ldots, \alpha_{i-1}, (c,d): \delta, \alpha_{i+1}, \ldots, \alpha_k$$

BIG PICTURE

Transition-Based CFG Parsing

Components

- Configurations
 - buffer β words remaining to process
 - stack σ constituents built so far
- Transitions
 - Shift
 - Reduce

DEDUCTION SYSTEM

$$\begin{array}{ll} \textit{axiom} & \left< [], [w_1, \ldots, w_n] \right> \\ \textit{goal} & \left< [S], [] \right> \\ \\ \textit{shift}\{X\} & \frac{\left< \sigma, w \middle| \beta \right>}{\left< \sigma \middle| X, \beta \right>} & X {\rightarrow} w \in G \\ \\ \textit{reduce}\{Z\} & \frac{\left< \sigma \middle| X \middle| Y, \beta \right>}{\left< \sigma \middle| Z, \beta \right>} & Z {\rightarrow} XY \in G \end{array}$$

CFG Transition-Based Parsing Example

	σ	β	transition
1		Colorless , green , ideas , sleep ,furiously	$shift\{A\}$
_			
_			

	σ	β	transition
1		Colorless , green , ideas , sleep ,furiously	$shift\{A\}$
	A 		
2	Colorless	green , ideas , sleep ,furiously	$shift\{A\}$

	σ	β	transition
1		Colorless , green , ideas , sleep ,furiously	$shift\{A\}$
2	A Colorless	green , ideas , sleep ,furiously	$shift\{A\}$
3	A A Colorless green	ideas, sleep ,furiously	shift{N}

	σ	β	transition
1		Colorless , green , ideas , sleep ,furiously	$shift\{A\}$
2	A Colorless	green , ideas , sleep ,furiously	shift{A}
3	A A Colorless green	ideas, sleep ,furiously	shift{N}
4	A A N Colorless green ideas	sleep ,furiously	reduce{NP}

	σ	β	transition
1		Colorless , green , ideas , sleep ,furiously	$shift\{A\}$
	A Colorless		
_2	Coloriess	green , ideas , sleep ,furiously	shift{A}
3	A A Colorless green	ideas, sleep ,furiously	shift{N}
4	A A N Colorless green ideas	sleep ,furiously	reduce{NP}
5	A A N Colorless green ideas	sleep ,furiously	reduce{NP}

σ		β	transition
A A Colorle	NP NP A N ss green ideas	sleep ,furiously	$shift\{V\}$

	σ	β	transition
	NP A NP A N Colorless green ideas		120(10)
6		sleep ,furiously	shift{V}
	A NP A N V I I I I		
7	Colorless green ideas sleep	furiously	$shift{Adv}$

CFG TRANSITION-BASED PARSING EXAMPLE

_ σ	transition
A NP A N V Adv Colorless green ideas sleep furiously	reduce{VP}

CFG TRANSITION-BASED PARSING EXAMPLE

	σ	β	transition
	NP		
8	Colorless green ideas sleep furiously		reduce{VP}
	NP		
9	Colorless green ideas sleep furiously		reduce{S}

CFG TRANSITION-BASED PARSING EXAMPLE

BIG PICTURE

CONVERT CFG PARSER TO MG PARSER

keep shift-reduce structure

CONVERT CFG PARSER TO MG PARSER

- keep shift-reduce structure
- mini-items instead of constituents on the stack

CONVERT CFG PARSER TO MG PARSER

- keep shift-reduce structure
- mini-items instead of constituents on the stack
- add a stack to the configuration

CONVERT CFG PARSER TO MG PARSER

- keep shift-reduce structure
- mini-items instead of constituents on the stack
- add a stack to the configuration
- add new transitions

CONVERT CFG PARSER TO MG PARSER

- keep shift-reduce structure
- mini-items instead of constituents on the stack
- add a stack to the configuration
- add new transitions

CONFIGURATION STRUCTURE

$$\langle \sigma_1, \sigma_2, \beta, k \rangle$$

- σ_1 Main stack contains *mini-items* same as chart *items*
- σ_2 Auxiliary stack
 - β Buffer
 - k Number of inserted empty strings

CFG REUSE

axiom

axiom
$$\langle [], [], [0, \ldots, n-1], 0 \rangle$$

CFG REUSE

- axiom
- goal

axiom
$$\langle [], [], [0, \dots, n-1], 0 \rangle$$

goal $\langle [\{(0, n) \cdot c\}], [], [], k \rangle$

CFG REUSE

- axiom
- goal
- shift

$$\begin{array}{c} \textit{axiom} \; \left\langle \; \left[\; \right], \quad \left[\; \right], \quad \left[\; \right], \quad \left(\; \right) \; \right\rangle \\ \textit{goal} \; \left\langle \; \left[\left\{\left(0, n\right) \cdot c\right\}\right], \quad \left[\; \right], \quad \left[\; \right], \quad k \; \right\rangle \\ \textit{select}\left\{\gamma\right\} \; \frac{\left\langle \; \sigma_{1}, \quad \sigma_{2}, \quad i \mid \beta, \quad k \; \right\rangle}{\left\langle \; \sigma_{1} \middle| \left\{\left(i, i + 1\right) :: \gamma\right\}, \quad \sigma_{2}, \quad \beta, \quad k \; \right\rangle} \; w_{i} :: \gamma \in \textit{Lex} \end{array}$$

CFG REUSE

- axiom
- goal
- shift
- reduce

THE EXTENSIONS NEEDED

- Empty strings
- Discontinuous structures

THE EXTENSIONS NEEDED

- Empty strings
- Discontinuous structures

EMPTY STRINGS SOLUTION

$$selectEpsilon\{\gamma\} \quad \frac{\left\langle \begin{array}{ccc} \sigma_1, & \sigma_2, & \beta, & k \end{array} \right\rangle}{\left\langle \begin{array}{ccc} \sigma_1 | \{(*,*) :: \gamma\}, & \sigma_2, & \beta, & k+1 \end{array} \right\rangle} \quad k < e \land \varepsilon :: \gamma \in Lex$$

e is any linear function of sentence length n

DISCONTINUITY SOLUTION: SWAP TRANSITION

- Reorders elements on the stack (stupid sort)
- Derives any permutation of words/phrases
- Minimum 0
- Maximally $O(n^2)$

Transitions

	σ_1	σ_2	β	k	transition
-			0 , 1 , 2 , 3 , 4	0	select{d}
			rifolig likes what Noki draws		
_					

	σ_1	σ_2	β	k	transition
1			0 , 1 , 2 , 3 , 4	0	select{d}
2	$\{(0,1)::d\}$		1 , 2 , 3 , 4	0	$select\{=c = d v\}$
	Phong		 likes what Roki draws		

	σ_1	σ_2	β	k	transition
1			0 , 1 , 2 , 3 , 4	0	select{d}
			 Phong likes what Roki draws		
2	$\{(0,1)::d\}$		1 , 2 , 3 , 4	0	$select\{=c = d v\}$
	Phong		likes what Roki draws		
3	$\{(0,1)::d\}, \{(1,2)::=c=dv\}$		2 , 3 , 4	0	select{d -wh}
	l l Phong likes		what Roki draws		

	σ_1	σ_2	β	k	transition
1			0 , 1 , 2 , 3 , 4	0	select{d}
			 Phong likes what Roki draws		
2	$\{(0,1)::d\}$		1 , 2 , 3 , 4	0	$select\{=c = d v\}$
	Phong		 likes what Roki draws		
3	$\{(0,1)::d\}, \{(1,2)::=c=dv\}$		2 , 3 , 4	0	select{d -wh}
			 what Roki draws		
4	$\{(0,1)::d\}$, $\{(1,2)::=c=dv\}$, $\{(2,3)::d-wh\}$		3 , 4	0	select{d}
			 Roki draws		

	σ_1	σ_2	β	k	transition
5	$\{(0,1)::d\}$, $\{(1,2)::=c=dv\}$, $\{(2,3)::d-wh\}$, $\{(3,4)::d\}$		4	0	swap
			draws		

	σ_1	σ_2	β	k	transition
5	$\{(0,1)::d\}$, $\{(1,2)::=c=dv\}$, $\{(2,3)::d-wh\}$, $\{(3,4)::d-wh\}$	1}	4	0	swap
	Phong likes what Roki	,	draws		
6	$\{(0,1)::d\}$, $\{(1,2)::=c=dv\}$, $\{(3,4)::d\}$	$\{(2,3) :: d -wh\}$	4	0	takeBack
		what	draws		

	σ_1	σ_2	β	k	transition
5	$\{(0,1)::d\}$, $\{(1,2)::=c=dv\}$, $\{(2,3)::d-wh\}$, $\{(3,4)::d\}$		4	0	swap
	Phong likes what Roki		draws		
6	$\{(0,1)::d\}$, $\{(1,2)::=c=dv\}$, $\{(3,4)::d\}$	$\{(2,3):: d -wh\}$	4	0	takeBack
	Phong likes Roki	 what	draws		
7	$\{(0,1)::d\}$, $\{(1,2)::=c=dv\}$, $\{(3,4)::d\}$, $\{(2,3)::d-wh\}$		4	0	$select\{=d = d v\}$
	Phong likes Roki what		draws		

	σ_1		σ_2	β	k	transition
8	$\{(0,1)::d\}$, $\{(1,2)::=c=dv\}$, $\{(3,4)::d\}$, $\{(2,3):=c=dv\}$	$:: \mathbf{d} - wh \} \cdot \{(4,5) :: = \mathbf{d} = d \ v \}$			0	tmerge
	$ \begin{cases} \{(0,1) :: d\} \\ \downarrow \\ \text{Phong} \end{cases} \begin{cases} (1,2) :: = c \\ \downarrow \\ \text{likes} \end{cases} v \\ \begin{cases} (3,4) :: d\} \\ \downarrow \\ \text{Roki} \end{cases} \end{cases} $	/ vhat draws				

	σ_1	σ_2	β	k	transition
8	$\{(0,1)::d\}, \{(1,2)::=c=dv\}, \{(3,4)::d\}, \{(2,3)::d-wh\}, \{(4,5)::=d=dv\}$			0	tmerge
	$ \begin{cases} (0,1) :: d \\ \mid \\ Phong \end{cases} \begin{cases} (1,2) :: = c = d \\ v \\ \mid \\ Roki \end{cases} \begin{cases} (3,4) :: d \\ \mid \\ Noki \end{cases} \\ (2,3) :: \frac{d}{d} - wh \\ \mid \\ Noki \end{cases} \begin{cases} (4,5) :: = \frac{d}{d} = d \\ v \\ \mid \\ Noki \end{cases} $				
9	$\{(0,1)::d\}$ $\{(1,2)::=c=dv\}$ $\{(3,4)::d\}$ $\{(4,5):=dv,(2,3):-wh\}$			0	tmerge
	what draws				

	σ_1	σ_2	β	k	transition
8	$\left\{ (0,1) :: d \right\} \cdot \left\{ (1,2) :: = c = d \ v \right\} \cdot \left\{ (3,4) :: d \right\} \cdot \left\{ (2,3) :: d - wh \right\} \cdot \left\{ (4,5) :: = d = d \ v \right\}$			0	tmerge
9	$\left\{ (0,1) :: d \right\} \cdot \left\{ (1,2) :: = c = d \ v \right\} \cdot \left\{ (3,4) :: d \right\} \cdot \left\{ (4,5) : = d \ v, \ (2,3) : \neg wh \right\}$			0	tmerge
	│ │ │ │ │ │ │ │ │				
	what draws				
10	\(\langle \la			0	selectEpsilon
	$ \begin{cases} (0,1) :: d \\ \cdot \\ (1,2) :: = c \\ -d \end{cases} v \cdot \begin{cases} (3,5) :: v, (2,3) :-wh \\ \cdot \\ \cdot \\ \cdot \end{cases} $ Phone likes				$\{=v + wh c\}$
	Roki •				
	what draws				

	σ_1	σ_2	β	k	transition
8	$\left\{ (0,1) :: d \right\} \cdot \left\{ (1,2) :: = c = d \ v \right\} \cdot \left\{ (3,4) :: d \right\} \cdot \left\{ (2,3) :: d - wh \right\} \cdot \left\{ (4,5) :: = d = d \ v \right\}$			0	tmerge
9	$\{(0,1)::d\}$, $\{(1,2)::=c=dv\}$, $\{(3,4)::d\}$, $\{(4,5):=dv, (2,3):-wh\}$			0	tmerge
	what draws				
10	$\{(0,1) \cdot d\}, \{(1,2) \cdot = c = d, v\}, \{(3,5) \cdot v = (2,3) \cdot \neg wh\}$			0	selectEpsilon
	$\{(0,1): d\}$, $\{(1,2): = c = d v\}$, $\{(3,5): v, (2,3): -wh\}$ Phong likes				$\{=v + wh c\}$
	Roki •				
	what draws			-	_
11	$\left\{ (0,1) :: d \right\} \cdot \left\{ (1,2) :: = c = d \ v \right\} \cdot \left\{ (3,5) : \ \mathbf{v}, \ (2,3) : -wh \right\} \cdot \left\{ (*,*) :: = \mathbf{v} + wh \ c \right\}$			1	tmerge
	Phong likes \bullet				
	Roki				
	what draws				
-	what diaws	I	1		

	σ_1	σ_2	β	k	transition
12	$\{(0,1)::d\}$, $\{(1,2)::=c=dv\}$, $\{(3,5):+whc, (2,3):-wh\}$			1	tmove
	Phong likes				
	ϵ				
	Roki				
	what draws				

	σ_1	σ_2	β	k	transition
12	$\{(0,1)::d\}$, $\{(1,2)::=c=dv\}$, $\{(3,5):+whc, (2,3):-wh\}$			1	tmove
	έ				
	Roki				
	what draws				
13	$ \begin{cases} (0,1) :: d \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $			1	tmerge
	Thong likes				
	Roki what draws				

	σ_1	σ_2	β	k	transition
12	$\{(0,1)::d\}$ $\{(1,2)::=c=dv\}$ $\{(3,5):+whc, (2,3):-wh\}$			1	tmove
	· · · · · · · · · · · · · · · · · · ·				
	Roki				
	what draws				
13	$\{(0,1)::d\}$, $\{(1,2)::=c = d v\}$, $\{(2,5):c\}$			1	tmerge
	<u> </u>				
	Roki what draws				
14	$\{(0,1):: \mathbf{d}\}$, $\{(1,5): =\mathbf{d} \ v\}$			1	tmerge
	likes o				
	Roki what draws				

	σ_1	σ_2	β	k	transition
15	{(0,5): v}			1	selectEpsilon{=v c}
	Phong				
	likes Roki what draws				

	σ_1	σ_2	β	k	transition
15	$\{(0,5): v\}$			1	selectEpsilon{=v c}
	•				
	Phong				
	likes Roki what draws				
16	$\left\{ (0,5): \mathbf{v} \right\} \qquad \qquad \cdot \left\{ (*,*):: =\mathbf{v} \ c \right\}$			2	tmerge
	Ι • ε				
	Phong				
	likes Roki what draws				

	$ \sigma_1 $	σ_2	β	k	transition
15	{(0,5): v}			1	selectEpsilon{=v c}
	Phong				
	likes Roki what draws				
16	{(0,5): v } {(*,*):: = v c}			2	tmerge
	ξ				
	Phong				
	likes Roki what draws				
17	$\left\{ (0,5): c \right\}$			2	goal
	ε				
	Phong				
	likes Roki what draws				

operation	best	worst
operation	case	case
$select\{\cdot\}$	O(n)	O(n)

operation	best	worst
operation	case	case
$select\{\cdot\}$	<i>O</i> (<i>n</i>)	O(n)
$selectEpsilon\{\cdot\}$	0	O(n)

operation	best	worst
operation	case	case
$select\{\cdot\}$	<i>O</i> (<i>n</i>)	O(n)
$selectEpsilon\{\cdot\}$	0	O(n)
tmerge	O(n)	O(n)

operation	best	worst
	case	case
$select\{\cdot\}$	O(n)	O(n)
$selectEpsilon\{\cdot\}$	0	O(n)
tmerge	O(n)	O(n)
tmove	0	O(n)

operation	best	worst
	case	case
$select\{\cdot\}$	O(n)	<i>O</i> (<i>n</i>)
$selectEpsilon\{\cdot\}$	0	O(n)
tmerge	O(n)	O(n)
tmove	0	O(n)
swap	0	$O(n^2)$

operation	best	worst
	case	case
$select\{\cdot\}$	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
$selectEpsilon\{\cdot\}$	0	O(n)
tmerge	O(n)	O(n)
tmove	0	O(n)
swap	0	$O(n^2)$
takeBack	0	$O(n^2)$

operation	best	worst
	case	case
$select\{\cdot\}$	O(n)	<i>O</i> (<i>n</i>)
$selectEpsilon\{\cdot\}$	0	<i>O</i> (<i>n</i>)
tmerge	O(n)	O(n)
tmove	0	<i>O</i> (<i>n</i>)
swap	0	$O(n^2)$
takeBack	0	$O(n^2)$
asympt. max	O(n)	$O(n^2)$

CONCLUSION

- Efficient parser: worst case $O(n^2)$ and best case O(n)
- Transition Parser+Learning Model+Treebank = Minimalism in NLP applications
- Technique applicable to other formalisms

BIBLIOGRAPHY I