

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación

Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Matemáticas para Ciencias Aplicadas III

Clave:	Semestre:	Eje tem	Eje temático:					
1318	3	Fundan	Fundamentos Matemáticos					
Carácter: Obligatoria			Horas		Horas por semana	Total de Horas		
Tipo: Teórica			Teoría:	Práctica:				
Tipo. Te	Orica		6	0	6	96		
Modalidad: Curso			Duración del programa: Semestral					

Asignatura con seriación obligatoria antecedente: Ninguna

Asignatura con seriación obligatoria subsecuente: Ninguna

Asignatura con seriación indicativa antecedente: Matemáticas para Ciencias Aplicadas II

Asignatura con seriación indicativa subsecuente: Matemáticas para Ciencias Aplicadas IV

Objetivos generales:

Comprender los conceptos de integración de funciones de varias variables, sobre regiones, curvas y superficies.

Conocer y aplicar la modelación matemática de fenómenos que involucren campos vectoriales. Conocer y explicar el significado matemático, geométrico y físico de conceptos y resultados del análisis vectorial (campos gradientes, potencial, divergencia, rotacional, teoremas de Gauss, Green y Stokes), y aplicar estos al planteamiento y resolución de problemas.

Índice te	mático			
l loi de d	Toward	Horas		
Unidad	Temas	Teóricas	Prácticas	
	Integral de Riemann	24	0	
II	Funciones con valores vectoriales	24	0	
Ш	Integral sobre trayectorias y superficies	24	0	
IV	Teoremas de Green y Stokes	24	0	
	Total de horas:	96	0	
	Suma total de horas:	9	96	

Contenido temático							
Unidad	Tema						
I Integral	de Riemann						
I.1	Integral sobre rectángulos. Propiedades de la integral.						
1.2	La integral sobre regiones más generales.						
1.3	Integral iterada y el teorema de Fubini.						
1.4	Geometría de las funciones de \mathbb{R}^2 en \mathbb{R}^2 .						
1.5	Teorema del cambio de variable.						
1.6	Aplicaciones.						
II Funcion	es con valores vectoriales						
II.1	Campos vectoriales. Campos gradientes.						
II.2	Divergencia y rotacional. Interpretación física.						
II.3	Diferenciación.						
III Integral	sobre trayectorias y superficies						
III.1	Curvas. Orientación.						
III.2	La integral de trayectoria.						
III.3	Integrales de línea (trabajo, circulación).						
III.4	Parametrización de superficies. Orientación.						
III.5	Área de una superficie.						
III.6	Integral de funciones reales sobre superficies (masa y carga total de una superficie).						
III.7	Integral de superficie (flujo a través de una superficie).						
III.8	Aplicaciones.						
IV Teoren	nas de Green y Stokes						
IV.1	Teorema de Green.						
IV.2	Teorema de Stokes.						
IV.3	Campos conservativos.						
IV.4	Teorema de Gauss.						
IV.5	Aplicaciones.						

Bibliografía básica:

- 1. Stewart J., *Multivariable Calculus, Concepts and Contexts*. Brooks/Cole Publishing, Boston, 1998.
- 2. Swokowski E. W., *Calculus with Analytic Geometry*. Prindle, Weber and Schmidt Incorporated, Boston, 1975.
- 3. Thomas, G. B., Finney, M. D., Cálculo de varias variables. Pearson Educación, México, 1999.

Bibliografía complementaria:

- 1. Davis, H., Zinder, A. D., Análisis vectorial. McGraw Hill, México, 1992.
- 2. Lovric, M., Vector Calculus. Addison Wesley PL, Ontario, 1997.
- 3. Marsden, J., Tromba A. J., *Cálculo vectorial*. Addison-Wesley Iberoamericana, Argentina, 1991.

4. Schey, H. M., DIV, GRAD, CURL and All That. Norton Company, New York, 1973.

Sugerencias didácticas:		Métodos de evaluación:		
Exposición oral	(X)	Exámenes parciales	(X)	
Exposición audiovisual	(X)	Examen final escrito	(X)	
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)	
Ejercicios fuera del aula	(X)	Exposición de seminarios por los alumnos	()	
Seminarios	()	Participación en clase	(X)	
Lecturas obligatorias	(X)	Asistencia	(X)	
Trabajo de investigación	()	Seminario	()	
Prácticas de taller o laboratorio	()			
Prácticas de campo	()	Otras:		
Otras:				

Perfil profesiográfico:

Matemático, físico actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos. Con experiencia docente.