Semantic Networks Analysis

Abhilasha Kumar January 16, 2018

Reading the Data

```
library(dplyr)
sem = read.csv("NetworksE1_FINAL.csv", header = TRUE, sep = ",")
sem$mean_len = as.double(as.character(sem$mean_len))
sem$mean_logf = as.double(as.character(sem$mean_logf))
sem$mean_ldtz = as.double(as.character(sem$mean_ldtz))
sem$mean_nmgz = as.double(as.character(sem$mean_nmgz))
sem$undirected = as.double(as.character(sem$undirected))
sem$directed = as.double(as.character(sem$directed))
sem$logp = as.double(as.character(sem$logp))
sem$mean_len = round(sem$mean_len, 2)
sem$mean logf = round(sem$mean logf, 2)
sem$mean_ldtz = round(sem$mean_ldtz, 2)
sem$mean_nmgz = round(sem$mean_nmgz, 2)
itemlist = read.csv("KenettCompleteItemList.csv", header = TRUE, sep = ",")
colnames(itemlist) = c("prime_word", "target_word", "ItemNo", "List", "proc")
itemlist$prime_word = paste(itemlist$prime_word, "")
itemlist$target_word = paste(itemlist$target_word, "")
sem$prime_word = as.character(sem$prime_word)
sem$target_word = as.character(sem$target_word)
sem$proc = as.character(sem$proc)
itemlist$proc = as.character(itemlist$proc)
## Problem in ITEM NAIVE-INTEREST due to coding issues
## So we replae this item by simple text
sem$prime_word = ifelse(sem$prime_word == "NAÃ\u008fVE ", "NA\xecVE ",
                        sem$prime word)
sem$target_word = ifelse(sem$target_word == "NAA\u008fVE ", "NA\xecVE ",
                        sem$target word)
sem = inner_join(sem, itemlist, by = c("prime_word",
                                          "target_word", "proc"))
sem = sem[order(sem$subject),]
kenettproc= group_by(sem, ItemNo) %>%
  summarise(items = n())
kenettitems = group_by(sem, ItemNo, pathlength) %>%
  summarise(n = n())
kenettitems_n = group_by(kenettitems, pathlength) %>%
  summarise(n = n())
```

```
sem_directed = sem #%>% filter(directed >5)
directeditems = group_by(sem_directed, ItemNo, directed) %>%
   summarise(n = n())
directeditems_n = group_by(directeditems, directed) %>%
   summarise(n = n())

subject_count = group_by(sem, subject) %>%
   summarise(n = n())
```

PL Distribution

```
item_dist = group_by(sem, proc, ItemNo) %>%
  summarise_at(vars(pathlength, undirected, directed), mean)
## count distribution of items
library(dplyr)
undirected_items = group_by(item_dist, proc, pathlength, undirected) %>%
  summarize(undirecteditems = n())
undirected_items$undirectedpercent = undirected_items$undirecteditems/40
undirected_rmisc = Rmisc::summarySE(undirected_items,
                                    measurevar = "undirectedpercent",
                                    groupvars = c("pathlength", "undirected"))
undirected_rmisc$pathlengthfac = ordered(as.factor(as.character(undirected_rmisc$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
undirected_rmisc$UndirectedPaths = ordered(as.factor(as.character(undirected_rmisc$undirected)),
                            levels = c("1", "2", "3", "4"))
## undirected plot
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.4.4
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 3.4.4
u_plot = undirected_rmisc %>%
  ggplot(aes(x = pathlengthfac, y = undirectedpercent,
                fill = UndirectedPaths, group = UndirectedPaths))+
 geom_bar(stat = "identity", position = "dodge", width = 0.7, color= "black")+
 geom_errorbar(aes(ymin=undirectedpercent - ci, ymax=undirectedpercent + ci),
             width=.2, color = "gray26",
             position = position_dodge(0.7))+
 theme_few()+
 scale_fill_colorblind()+
   xlab("") + ylab("Proportion of Items") +
  ggtitle("Items at Different Undirected SDN Path Lengths") +
   theme(axis.text = element text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

```
directed_items = group_by(item_dist, proc, pathlength, directed) %>%
  summarize(directeditems = n())
directed_items$directedpercent = directed_items$directeditems/40
directed items$directedcollapsed = ifelse(( directed items$directed == "6" |
                                       directed_items$directed == "7" |
                                       directed_items$directed == "8" ), "Higher PLs",
                            ifelse(directed_items$directed == "Inf", "No Path",
                              directed items$directed))
directed_rmisc = Rmisc::summarySE(directed_items,
                                    measurevar = "directedpercent",
                                    groupvars = c("pathlength", "directedcollapsed"))
directed_rmisc$pathlengthfac = ordered(as.factor(as.character(directed_rmisc$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
directed_rmisc$DirectedPaths = ordered(as.factor(as.character(directed_rmisc$directedcollapsed)),
                            levels = c("1", "2", "3", "4", "5", "Higher PLs",
                                       "No Path"))
d plot = directed rmisc %>%
  ggplot(aes(x = pathlengthfac, y = directedpercent,
              fill = DirectedPaths, group = DirectedPaths))+
 geom_bar(stat = "identity", position = "dodge", width = 0.7, color= "black")+
 geom_errorbar(aes(ymin=directedpercent - ci, ymax=directedpercent + ci),
             width=.2, color = "gray26",
            position = position_dodge(0.7))+
 theme_few()+
 scale_fill_colorblind()+
   xlab("ACN Path Length") + ylab("Proportion of Items") +
  ggtitle("Items at Different Directed SDN Path Lengths") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
library(grid)
gridExtra::grid.arrange(u_plot, d_plot, nrow = 2, ncol = 1,
        top=textGrob("",
                                      gp=gpar(fontsize=16)))
```


Related-Unrelated Decisions

```
library(dplyr)
sem_decision = group_by(sem, Population, subject, pathlength, Type) %>%
  summarize(Trials = n())
sem_subjectrows = group_by(sem_decision, Population, subject) %>%
  summarise(numrows = n())
rows = which(sem_subjectrows$numrows < 12)</pre>
subjects = sem_subjectrows[rows,]
# With N = 80, there are 12 rowas missing!
sem_decision[949,] = c("Mturk", "42406", 15, "Related", 0)
sem_decision[950,] = c("Mturk","61558", 15, "Related", 0)
sem_decision[951,] = c("Mturk","27113", 15, "Related", 0)
sem_decision[952,] = c("Mturk","34686", 6, "Related", 0)
sem_decision[953,] = c("Mturk", "81385", 6, "Related", 0)
sem_decision[954,] = c("Mturk", "35312", 3, "Related", 0)
sem_decision[955,] = c("Mturk", "65089", 1, "Unrelated", 0)
sem_decision[956,] = c("Mturk","65448", 4, "Related", 0)
sem_decision[957,] = c("Mturk","65448", 15, "Related", 0)
sem_decision[958,] = c("Mturk", "84694", 6, "Related", 0)
```

```
sem_decision[959,] = c("WU","7416", 15, "Related", 0)
sem_decision[960,] = c("WU","79426", 15, "Related", 0)

sem_decision$Trials = as.numeric(as.character(sem_decision$Trials))

sem_decision_agg = group_by(sem_decision, pathlength, Type ) %>%
    summarise_at(vars(Trials), mean)
```

Plotting Proportions

```
sem_decision$Trials = as.numeric(as.character(sem_decision$Trials))
sem_decision_agg$Trials = as.numeric(as.character(sem_decision_agg$Trials))
sem_decision$proportion = sem_decision$Trials/40
sem_decision_agg$proportion = sem_decision_agg$Trials/(40)
sem_decision$pathlengthfac = ordered(as.factor(as.character(sem_decision$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
sem_decision_agg$pathlengthfac = ordered(as.factor(as.character(sem_decision_agg$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
library(ggplot2)
library(ggthemes)
sem_decision_agg = sem_decision_agg[order(sem_decision_agg$pathlength,
                                          sem_decision_agg$Type),]
proportion_sem = Rmisc::summarySE(sem_decision,
                                  measurevar = "proportion",
                                  groupvars = c("pathlengthfac", "Type",
                                                "Population"))
proportion_sem %>% mutate(WordPair = factor(Type,
                                        levels = unique(Type),
                    labels = c("Related", "Unrelated")))%>%
  ggplot(aes(x = pathlengthfac, y = proportion,
                              fill = Type, group = Type))+
 geom_bar(stat = "identity", position = "dodge", width = 0.7, color= "black")+
 geom_errorbar(aes(ymin=proportion - ci, ymax=proportion + ci),
             width=.2, color = "gray26",
             position = position_dodge(0.7))+
 theme_few()+
 scale_fill_wsj()+
 facet_wrap(~Population)+
   xlab("Network Path Length") + ylab("Proportion of Trials") +
  ggtitle("Kenett Network Relatedness Judgments") +
  theme(axis.text = element_text(size = rel(1)),
```

```
axis.title = element_text(face = "bold", size = rel(1)),
legend.title = element_text(face = "bold", size = rel(1)),
plot.title = element_text(hjust = .5),
strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Kenett Network Relatedness Judgments

${\bf Subject\text{-}Wise}$

```
scale_fill_solarized()+
facet_wrap(~subject)+
    xlab("Path Length") + ylab("Proportion of Trials") +
ggtitle("Relatedness Judgments") +
theme(axis.text = element_text(size = rel(1)),
    axis.title = element_text(face = "bold", size = rel(1)),
    legend.title = element_text(face = "bold", size = rel(1)),
    plot.title = element_text(hjust = .5),
    strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Relatedness Judgments

```
1360C 1711 17349 17821 1889C 20197 20544 2066 21119
  0.26 --
      24963 25763 26964 27113 28202 28427 28855 33173 33179
      33729 34173 3468€ 35312 3857 39432 40308 41711 4240€
      44787 45142 45371 45659 47215 47936 5146 54068 57881
                                                           WordPair
ð
      5941 31558 6171 31897 32378 33044 34184 35089 35448
                                                           Related
      3574C 36544 37346 38593 38728 70286 7269 7416 74452
                                                            Unrelated
      74546 75783 78130 79192 79426 31385 31443 32061 34607
      34694 36853 8747 37620 8785 38485 30434 31140 9175
      92043 92793 9283 92917 93208 93936 97827 99266
  0.06 -----
      12346 5 12346 5 12346 5 12346 5 12346 5 12346 5 12346 5
                          Path Length
```

Line Plot Subject-Wise

Relatedness Judgments

Proc Plot

```
sem_proc %>% mutate(WordPair = factor(Type,
                                        levels = unique(Type),
                    labels = c("Related", "Unrelated")))%>%
  ggplot(aes(x = pathlengthfac, y = prop,
             color = proc, group=interaction(WordPair, proc))) +
  geom_point()+
 geom_line() +
 theme few()+
 scale_fill_solarized()+
 # facet_wrap(~subject)+
    xlab("Path Length") + ylab("Proportion of Trials") +
  ggtitle("Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Relatedness Judgments

ANOVA

```
##
## Error: subject
             Df
                   Sum Sq Mean Sq F value Pr(>F)
## Population 1 2.000e-32 1.630e-32
                                       0.01 0.922
## Residuals 78 1.307e-28 1.676e-30
##
## Error: subject:pathlengthfac
##
                                  Sum Sq
                                          Mean Sq F value Pr(>F)
## pathlengthfac
                             5 4.600e-29 9.147e-30
                                                      0.76 0.579
## Population:pathlengthfac
                             5 1.600e-29 3.126e-30
                                                      0.26 0.935
## Residuals
                           390 4.694e-27 1.204e-29
## Error: subject:Type
##
                  Df Sum Sq Mean Sq F value Pr(>F)
                   1 26.617 26.617 178.491 <2e-16 ***
## Type
## Population:Type 1 0.268
                              0.268
                                      1.799 0.184
## Residuals
                  78 11.631
                              0.149
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Error: subject:pathlengthfac:Type
                                 Df Sum Sq Mean Sq F value Pr(>F)
                                  5 32.74
                                             6.547 414.124 <2e-16 ***
## pathlengthfac:Type
## Population:pathlengthfac:Type
                                             0.022
                                                    1.367 0.236
                                  5
                                      0.11
                                             0.016
## Residuals
                                 390
                                      6.17
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c('contr.sum', 'contr.poly'))
library(lsmeans)
## Warning: package 'lsmeans' was built under R version 3.4.4
## The 'lsmeans' package is being deprecated.
## Users are encouraged to switch to 'emmeans'.
## See help('transition') for more information, including how
## to convert 'lsmeans' objects and scripts to work with 'emmeans'.
library(multcomp)
## Loading required package: mvtnorm
## Warning: package 'mvtnorm' was built under R version 3.4.4
## Loading required package: survival
## Warning: package 'survival' was built under R version 3.4.4
## Loading required package: TH.data
## Warning: package 'TH.data' was built under R version 3.4.4
## Loading required package: MASS
## Warning: package 'MASS' was built under R version 3.4.4
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
```

```
##
##
       select
##
## Attaching package: 'TH.data'
## The following object is masked from 'package:MASS':
##
##
       geyser
sem_lsm = lsmeans::lsmeans(relunrel_aov, c("pathlengthfac", "Type"))
## Warning in lsm.basis.aovlist(object, trms, xlev, grid, ...): Some predictors are correlated with the
## May help to re-fit with different contrasts, e.g. 'contr.sum'
## NOTE: Results may be misleading due to involvement in interactions
prime_effect = cld(sem_lsm, alpha = 0.05,
                 adjust = "tukey", details = TRUE, by = "pathlengthfac")
library(knitr)
kable(subset(prime_effect$comparisons,prime_effect$comparisons$p.value < 0.05))</pre>
```

	contrast	pathlengthfac	estimate	SE	df	t.ratio	p.value
1	Related - Unrelated	1	0.328750	0.0308335	172.8965	10.66210	0
3	Related - Unrelated	3	0.406875	0.0308335	172.8965	13.19586	0
4	Related - Unrelated	4	0.467500	0.0308335	172.8965	15.16207	0
5	Related - Unrelated	6	0.675000	0.0308335	172.8965	21.89176	0
6	Related - Unrelated	15	0.730625	0.0308335	172.8965	23.69580	0

Kenett proportions

```
proportion_sem_compare = Rmisc::summarySE(sem_decision,
                                  measurevar = "proportion",
                                   groupvars = c("pathlengthfac", "Type"))
proportion_sem_compare = proportion_sem_compare[,-c(3,6,7)]
kenett_prop = matrix(NA, nrow = 12, ncol =4)
kenett_prop = as.data.frame(kenett_prop)
colnames(kenett_prop) = c("pathlengthfac", "Type",
                           "proportion", "sd")
kenett_prop_{a} pathlength fac = c(1,1,2, 2,3,3, 4, 4, 6, 6, 15, 15)
kenett_prop$Type = c("Related", "Unrelated",
                     "Related", "Unrelated",
                     "Related", "Unrelated",
                     "Related", "Unrelated",
                     "Related", "Unrelated",
                     "Related", "Unrelated")
kenett_prop$proportion = c(0.91, 0.09,
                           0.69, 0.31,
                           0.64,0.36,
                           0.14, 0.86,
                           0.05, 0.95,
                           0.03, 0.97)
```

```
kenett_prop$sd = c(0.08, 0.08,
                   0.14, 0.14,
                   0.14, 0.14,
                   0.10, 0.10,
                   0.06, 0.06,
                   0.05, 0.05)
kenett_prop$Network = "Kenett et al., 2017"
proportion sem compare$Network = "Experiment 1"
proportion_sem_combined = rbind(proportion_sem_compare, kenett_prop)
proportion_sem_combined$percentage = proportion_sem_combined$proportion*100
proportion_sem_combined$sd100 = proportion_sem_combined$sd*100
proportion_sem_combined$Decision = ifelse(proportion_sem_combined$Type == "Related",
                                  "Related Responses", "Unrelated Responses")
proportion_sem_combined %>% mutate(WordPair = factor(Decision,
                                        levels = unique(Decision),
                    labels = c("Related", "Unrelated")))%>%
  ggplot(aes(x = pathlengthfac, y = percentage,
                              fill = Decision, group = Decision))+
 geom_bar(stat = "identity", position = "dodge", width = 0.7, color= "black")+
 geom_errorbar(aes(ymin=percentage - sd100, ymax=percentage + sd100),
             width=.2, color = "gray26",
             position = position_dodge(0.7))+
 theme few()+
  scale_fill_wsj()+
  facet_wrap(~Network)+
    xlab("Network Path Length") + ylab("Percentage of Responses") +
  ggtitle("") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```


Raw Reaction Time

ANOVA

```
## Residuals 78 23462774 300805
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Error: subject:pathlengthfac
                           Df Sum Sq Mean Sq F value Pr(>F)
##
## pathlengthfac
                            5 190645
                                       38129
                                              6.173 1.6e-05 ***
## Population:pathlengthfac
                                        6638
                                              1.075
                                                      0.374
                          5
                              33192
## Residuals
                          390 2408860
                                        6177
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Plotting RTs

```
sem_agg_rmisc$pathlengthfac = ordered(as.factor(as.character(sem_agg_rmisc$pathlength)),
library(ggplot2)
library(ggthemes)
sem_agg_rmisc %>%
  ggplot(aes(x = pathlengthfac, y = rt, group = 1))+
  geom_point()+
  geom_line(color = "red")+
  geom_errorbar(aes(ymin=rt - ci, ymax=rt + ci),
             width=.2, color = "gray26",
             position = position_dodge(0.7))+
 theme_few()+
 facet wrap(~Population) +
 \# scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
    xlab("Path Length") + ylab("Reaction Time") +
  ggtitle("RT for Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

RT for Relatedness Judgments

Subject-Wise

```
library(ggplot2)
library(ggthemes)
sem rt %>%
  ggplot(aes(x = pathlengthfac, y = rt,
             group = subject, color = subject))+
  geom_point()+
  geom_line()+
   #geom_errorbar(aes(ymin=Trials - ci, ymax=Trials + ci),
              width=.2, color = "gray26",
   #
              position = position_dodge(0.7))+
 theme_few()+
  guides(color = FALSE)+
 \# scale_x\_continuous(breaks = c(1,2,3,4,6,15)) +
    xlab("Path Length") + ylab("Reaction Time") +
  ggtitle("RT for Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_blank(),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

RT for Relatedness Judgments

z-scored Reaction Time

Histogram of RT

```
library(ggplot2)
library(ggthemes)
ggplot(sem, aes(x = rt))+
geom_histogram(binwidth = 200, color = "gray4", fill = "goldenrod1")+
    theme_few()+
    #facet_wrap(~subject)+
    xlab("Raw RT") + ylab("Count") +
    ggtitle("Raw RT Histogram for All Trials")
```

Raw RT Histogram for All Trials

First Trim

Raw RT Histogram for Trials Above 250 ms and below 2000 ms

Raw RT aggregates After Trimming

```
sem_rt_firsttrim = group_by(sem_firsttrim, subject, pathlength ) %>%
  summarise_at(vars(rt), mean)
sem_rt_agg_firsttrim = group_by(sem_firsttrim, pathlength ) %>%
  summarise_at(vars(rt), mean)
sem_rt_agg_firsttrim$pathlengthfac = ordered(as.factor(as.character(sem_rt_agg_firsttrim$pathlength)),
library(ggplot2)
library(ggthemes)
sem_rt_agg_firsttrim %>%
  ggplot(aes(x = pathlengthfac, y = rt, group = 1))+
  geom_point()+
  geom_line(color = "red")+
   #geom_errorbar(aes(ymin=Trials - ci, ymax=Trials + ci),
              width=.2, color = "gray26",
              position = position\_dodge(0.7)) +
 theme_few()+
  \#scale\_x\_continuous(breaks = c(1,2,3,4,6,15)) +
   xlab("Path Length") + ylab("Reaction Time") +
  ggtitle("RT for Relatedness Judgments") +
  theme(axis.text = element_text(size = rel(1)),
```

```
axis.title = element_text(face = "bold", size = rel(1)),
legend.title = element_text(face = "bold", size = rel(1)),
plot.title = element_text(hjust = .5),
strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

RT for Relatedness Judgments

Subject Raw RT again

```
library(ggplot2)
library(ggthemes)
sem_rt_firsttrim$pathlengthfac = ordered(as.factor(as.character(sem_rt_firsttrim$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
sem_rt_firsttrim$subject = as.factor(sem_rt_firsttrim$subject)
sem_rt_firsttrim %>%
  ggplot(aes(x = pathlengthfac, y = rt,
             group = subject, color = subject))+
  geom_point()+
  geom_line()+
   #geom_errorbar(aes(ymin=Trials - ci, ymax=Trials + ci),
              width=.2, color = "gray26",
              position = position_dodge(0.7))+
theme_few()+
  guides(color = FALSE)+
  scale_x_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Path Length") + ylab("Reaction Time") +
```

RT for Relatedness Judgments

Making the z-scores

```
## aggregate per subject all IVs and DVs
meanRT = group_by(sem_firsttrim, subject) %>%
    summarise_at(vars(rt), mean)
colnames(meanRT) = c("subject", "MeanRT")

sdRT = group_by(sem_firsttrim, subject) %>%
    summarise_at(vars(rt), sd)
colnames(sdRT) = c("subject", "sdRT")

RT_agg = merge(meanRT, sdRT, by = "subject")

## merge aggregate info with long data
sem_z = merge(sem_firsttrim, RT_agg, by = "subject", all.x = T)

## person and grand-mean centered scores using original and aggregate
```

```
library(dplyr)
sem_z = sem_z %>% mutate(zRT = (rt - MeanRT)/sdRT)

## checking: subject level means should be zero

sub_pic = group_by(sem_z, subject) %>%
    summarise_at(vars(zRT), mean)
```

z-RT Distribution

```
ggplot(sem_z, aes(x = zRT))+
geom_histogram(binwidth = 0.5, color = "gray4", fill = "goldenrod1")+
    theme_few()+
    xlab("z RT") + ylab("Count") +
    ggtitle("z-RT Histogram for above 250 ms & <2s Trials")</pre>
```

z–RT Histogram for above 250 ms & <2s Trials

Trimming z-RT

```
sem_z_trimmed = subset(sem_z, sem_z$zRT < 3 & sem_z$zRT > -3)

ggplot(sem_z_trimmed, aes(x = zRT))+
geom_histogram(binwidth = 0.25, color = "gray4", fill = "goldenrod1")+
    theme_few()+
```

```
xlab("Raw RT") + ylab("Count") +
ggtitle("Trimmed (3 SD) z-RT Histogram for above 250 ms & <2s Trials")</pre>
```

Trimmed (3 SD) z-RT Histogram for above 250 ms & <2s Trials

Repeating z-scoring

```
library(dplyr)

## aggregate per subject all IVs and DVs
meanRT_trim = group_by(sem_z_trimmed, subject) %>%
    summarise_at(vars(rt), mean)

colnames(meanRT_trim) = c("subject", "MeanRT_trim")

sdRT_trim = group_by(sem_z_trimmed, subject) %>%
    summarise_at(vars(rt), sd)

colnames(sdRT_trim) = c("subject", "sdRT_trim")

RT_agg_trim = merge(meanRT_trim, sdRT_trim, by = "subject")

## merge aggregate info with long data
    new_sem_z = merge(sem_z_trimmed, RT_agg_trim, by = "subject", all.x = T)

## person and grand-mean centered scores using original and aggregate
library(dplyr)
    new_sem_z = new_sem_z %>% mutate(zRT_trim = (rt - MeanRT_trim)/sdRT_trim)
```

```
## checking: subject level means should be zero
sub_pic = group_by(new_sem_z, subject) %>%
    summarise_at(vars(zRT_trim), mean)

# % trials remvoved
(nrow(sem) - nrow(sem_z_trimmed))/nrow(sem)

## [1] 0.05364583

#write.csv(new_pic_z, file="final_pic_z.csv")
```

Aggregating zRT

```
z_sem_rt = group_by(new_sem_z, subject, pathlength ) %>%
  summarise at(vars(zRT trim, rt), mean)
z_sem_rt_rel = group_by(new_sem_z, subject, pathlength, Type ) %>%
  summarise_at(vars(zRT_trim, rt), mean)
z_sem_rt_rel_trials = group_by(z_sem_rt_rel, subject) %>%
  summarise(numtrials = n())
x = which(z_sem_rt_rel_trials$numtrials != 12)
missingtrial_subjects = z_sem_rt_rel_trials[x,][,1]
z_sem_rt_agg = group_by(new_sem_z, pathlength ) %>%
  summarise_at(vars(zRT_trim), mean)
z_rmisc = Rmisc::summarySE(new_sem_z,
                        measurevar = "zRT_trim",
                        groupvars = c("pathlength"))
z_sem_rt_rel_agg = group_by(new_sem_z, pathlength, Type ) %>%
  summarise_at(vars(zRT_trim), mean)
z_sem_rt_rel_agg_rmisc = Rmisc::summarySE(new_sem_z,
                        measurevar = "zRT trim",
                        groupvars = c("pathlength", "Type"))
```

1- way collapsed ANOVA (collapsed)

```
##
## Error: subject
            Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 79 0.00641 8.114e-05
## Error: subject:pathlengthfac
                 Df Sum Sq Mean Sq F value Pr(>F)
## pathlengthfac 5 2.638 0.5276 13.45 3.99e-12 ***
## Residuals
                395 15.494 0.0392
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c('contr.sum', 'contr.poly'))
library(lsmeans)
library(multcomp)
sem_lsm = lsmeans::lsmeans(z_rt_aov, c("pathlengthfac"))
prime_effect = cld(sem_lsm, alpha = 0.05,
                adjust = "tukey", details = TRUE)
library(knitr)
kable(subset(prime_effect$comparisons,prime_effect$comparisons$p.value < 0.1 ))</pre>
```

	contrast	estimate	SE	df	t.ratio	p.value
2	6 - 15	0.0894452	0.0313149	395	2.856311	0.0510422
4	4 - 15	0.1430209	0.0313149	395	4.567179	0.0000963
5	4 - 1	0.0850114	0.0313149	395	2.714725	0.0745850
7	3 - 15	0.1814771	0.0313149	395	5.795227	0.0000002
8	3 - 1	0.1234677	0.0313149	395	3.942774	0.0013288
9	3 - 6	0.0920319	0.0313149	395	2.938916	0.0404645
11	2 - 15	0.2181746	0.0313149	395	6.967114	0.0000000
12	2 - 1	0.1601652	0.0313149	395	5.114661	0.0000073
13	2 - 6	0.1287295	0.0313149	395	4.110803	0.0006793

1-way successful ANOVA

subject


```
z_sem_success$subject = as.factor(z_sem_success$subject)
```

summary(success_aov)

```
##
## Error: subject
            Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 79 3.483 0.04409
##
## Error: subject:pathlengthfac
                 Df Sum Sq Mean Sq F value Pr(>F)
                 5 2.701 0.5402
                                     7.42 1.15e-06 ***
## pathlengthfac
## Residuals
                395 28.758 0.0728
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c('contr.sum', 'contr.poly'))
library(lsmeans)
library(multcomp)
sem_lsm = lsmeans::lsmeans(success_aov, c("pathlengthfac"))
prime_effect = cld(sem_lsm, alpha = 0.05,
                adjust = "tukey", details = TRUE)
```

library(knitr) kable(subset(prime_effect\$comparisons,prime_effect\$comparisons\$p.value < 0.1))</pre>

	contrast	estimate	SE	$\mathrm{d}\mathrm{f}$	t.ratio	p.value
4	4 - 15	0.1395206	0.0426631	395	3.270285	0.0147443
7	3 - 15	0.1487363	0.0426631	395	3.486297	0.0071584
11	2 - 15	0.2457212	0.0426631	395	5.759570	0.0000003
12	2 - 6	0.1675878	0.0426631	395	3.928166	0.0014069
13	2 - 1	0.1507180	0.0426631	395	3.532746	0.0060893

```
## plot
success_rmisc = Rmisc::summarySE(z_sem_success,
                                 measurevar = "zRT_trim",
                                 groupvars = "pathlengthfac")
success_rmisc %>%
  ggplot(aes(x = pathlengthfac, y = zRT_trim))+
  geom_point()+
 geom_line(group = 1)+
 geom_errorbar(aes(ymin=zRT_trim - se, ymax=zRT_trim + se),
            width=.2, color = "gray26",
           position = position_dodge(0.7))+
theme_few()+
 guides(color = FALSE)+
\# scale_x_continuous(breaks = c(1,2,3,4,5,6,10,15,20))+
   xlab("Path Length") + ylab("Reaction Time") +
 ggtitle("RT for Relatedness Judgments") +
 # facet_wrap(~subject)+
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
         legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

RT for Relatedness Judgments

item

```
z_sem_rt_rel_item = group_by(new_sem_z, ItemNo, pathlength, Type ) %>%
  summarise_at(vars(zRT_trim, rt), mean)
z_sem_success_item = z_sem_rt_rel_item %>%
  filter((pathlength == "1" & Type == "Related") |
        (pathlength == "2" & Type == "Unrelated") |
(pathlength == "3" & Type == "Unrelated") |
(pathlength == "4" & Type == "Unrelated") |
(pathlength == "6" & Type == "Unrelated") |
(pathlength == "15" & Type == "Unrelated") )
z_sem_success_item$pathlengthfac = ordered(as.factor(as.character(z_sem_success_item$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
z_sem_success_item$ItemNo = as.factor(z_sem_success_item$ItemNo)
success_aov_item = aov(data = z_sem_success_item,
                  zRT_trim ~ pathlengthfac)
summary(success_aov_item)
##
                   Df Sum Sq Mean Sq F value
                                               Pr(>F)
## pathlengthfac
                    5
                        5.69 1.1389
                                       7.399 7.62e-07 ***
                 1189 183.01 0.1539
## Residuals
```

	contrast	estimate	SE	df	t.ratio	p.value
2	1 - 15	0.1217910	0.0392819	1189	3.100434	0.0241854
4	4 - 15	0.1362988	0.0392819	1189	3.469760	0.0071242
7	3 - 15	0.1626394	0.0392327	1189	4.145510	0.0005184
11	2 - 15	0.2259796	0.0393817	1189	5.738181	0.0000002
12	2 - 6	0.1369199	0.0393817	1189	3.476736	0.0069513
13	2 - 1	0.1041886	0.0394308	1189	2.642314	0.0881132

2-way ANOVA

```
# need to exclude missing trial subjects from z_sem_rt_rel
z_sem_rt_rel_final = z_sem_rt_rel %>%
 filter(!subject %in% missingtrial_subjects$subject)
z_sem_rt_rel_final$subject = as.factor(z_sem_rt_rel_final$subject)
z_sem_rt_rel_final$pathlength = as.factor(z_sem_rt_rel_final$pathlength)
z_rt_rel_aov = aov(data = z_sem_rt_rel_final, zRT_trim ~ pathlength*Type +
                    Error(subject/(pathlength*Type)))
summary(z_rt_rel_aov)
##
## Error: subject
            Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 67 8.745 0.1305
## Error: subject:pathlength
              Df Sum Sq Mean Sq F value
## pathlength 5 4.17 0.8338
                                  6.322 1.26e-05 ***
## Residuals 335 44.18 0.1319
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Error: subject:Type
##
            Df Sum Sq Mean Sq F value
                                        Pr(>F)
                        6.741
                                13.99 0.000384 ***
## Type
             1
                 6.74
## Residuals 67 32.29
                        0.482
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Error: subject:pathlength:Type
                  Df Sum Sq Mean Sq F value Pr(>F)
## pathlength:Type 5 6.23 1.2465
                                      9.33 2.46e-08 ***
                 335 44.76 0.1336
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c('contr.sum', 'contr.poly'))
library(lsmeans)
library(multcomp)
sem_lsm = lsmeans::lsmeans(z_rt_rel_aov, c("pathlength", "Type"))
prime_effect = cld(sem_lsm, alpha = 0.05,
                adjust = "tukey", details = TRUE)
library(knitr)
kable(subset(prime_effect$comparisons,prime_effect$comparisons$p.value < 0.8 ))</pre>
```

	contrast	estimate	SE	df	t.ratio	p.value
4	3,Unrelated - 15,Unrelated	0.1296819	0.0624830	669.9720	2.075476	0.6405786
7	1,Unrelated - 15,Unrelated	0.1316442	0.0624830	669.9720	2.106881	0.6180271
11	4,Unrelated - 15,Unrelated	0.1485018	0.0624830	669.9720	2.376676	0.4234530
16	2,Unrelated - 15,Unrelated	0.2315651	0.0624830	669.9720	3.706053	0.0121472
17	2,Unrelated - 1,Related	0.2060603	0.0749106	316.0235	2.750750	0.2068934
18	2,Unrelated - 6,Unrelated	0.1453127	0.0624830	669.9720	2.325637	0.4592713
22	2,Related - 15,Unrelated	0.2639082	0.0749106	316.0235	3.522976	0.0242743
23	2,Related - 1,Related	0.2384033	0.0624830	669.9720	3.815493	0.0081454
24	2,Related - 6,Unrelated	0.1776558	0.0749106	316.0235	2.371571	0.4285795
29	4, Related - 15 , Unrelated	0.3115565	0.0749106	316.0235	4.159046	0.0023949
30	4,Related - 1,Related	0.2860517	0.0624830	669.9720	4.578075	0.0003469
31	4,Related - 6,Unrelated	0.2253041	0.0749106	316.0235	3.007641	0.1111871
32	4,Related - 3,Unrelated	0.1818747	0.0749106	316.0235	2.427890	0.3904181
33	4,Related - 1,Unrelated	0.1799124	0.0749106	316.0235	2.401695	0.4079954
34	4,Related - 4,Unrelated	0.1630548	0.0750789	275.5725	2.171778	0.5715306
37	15, Related - 15 , Unrelated	0.3240048	0.0750789	275.5725	4.315523	0.0013183
38	15, Related - 1 , Related	0.2984999	0.0624830	669.9720	4.777302	0.0001377
39	15, Related - 6 , Unrelated	0.2377524	0.0749106	316.0235	3.173816	0.0707316
40	15, Related - 3 , Unrelated	0.1943229	0.0749106	316.0235	2.594066	0.2875465
41	15, Related - 1, Unrelated	0.1923607	0.0749106	316.0235	2.567871	0.3026559
42	15, Related - 4 , Unrelated	0.1755030	0.0749106	316.0235	2.342834	0.4485436
46	3, Related - 15 , Unrelated	0.4041316	0.0749106	316.0235	5.394854	0.0000087
47	3,Related - 1,Related	0.3786267	0.0624830	669.9720	6.059679	0.0000001
48	3,Related - 6,Unrelated	0.3178791	0.0749106	316.0235	4.243448	0.0017055
49	3, Related - 3 , Unrelated	0.2744497	0.0750789	275.5725	3.655482	0.0158384
50	3,Related - 1,Unrelated	0.2724874	0.0749106	316.0235	3.637503	0.0165404
51	3,Related - 4,Unrelated	0.2556298	0.0749106	316.0235	3.412466	0.0346259
52	3,Related - 2,Unrelated	0.1725664	0.0749106	316.0235	2.303633	0.4762125
53	3,Related - 2,Related	0.1402234	0.0624830	669.9720	2.244186	0.5179498
56	6, Related - 15 , Unrelated	0.4892099	0.0749106	316.0235	6.530586	0.0000000
57	6,Related - 1,Related	0.4637050	0.0624830	669.9720	7.421304	0.0000000
58	6, Related - 6 , Unrelated	0.4029575	0.0750789	275.5725	5.367119	0.0000109
59	6, Related - 3 , Unrelated	0.3595280	0.0749106	316.0235	4.799430	0.0001540
60	6, Related - 1 , Unrelated	0.3575658	0.0749106	316.0235	4.773235	0.0001735
61	6,Related - 4,Unrelated	0.3407081	0.0749106	316.0235	4.548198	0.0004728
62	6, Related - 2 , Unrelated	0.2576448	0.0749106	316.0235	3.439365	0.0318021

	contrast	estimate	SE	df	t.ratio	p.value
63	6,Related - 2,Related	0.2253017	0.0624830	669.9720	3.605811	0.0172958
64	6, Related - 4 , Related	0.1776534	0.0624830	669.9720	2.843229	0.1645287
65	6, Related - 15 , Related	0.1652051	0.0624830	669.9720	2.644003	0.2573966

Specific t-tests

```
z_1 = z_sem_rt %>% filter(pathlength == "1")
colnames(z_1) = c("subject", "pathlength1", "zRT_1", "RawRT_1", "pathlengthfac1")
z_2 = z_sem_rt %>% filter(pathlength == "2")
colnames(z_2) = c("subject", "pathlength2", "zRT_2", "RawRT_2", "pathlengthfac2")
z_3 = z_sem_rt %>% filter(pathlength == "3")
colnames(z_3) = c("subject", "pathlength3", "zRT_3", "RawRT_3", "pathlengthfac3")
z_4 = z_sem_rt %>% filter(pathlength == "4")
colnames(z_4) = c("subject", "pathlength4", "zRT_4", "RawRT_4", "pathlengthfac4")
z_6 = z_sem_rt %>% filter(pathlength == "6")
colnames(z_6) = c("subject", "pathlength6", "zRT_6", "RawRT_6", "pathlengthfac6")
z 15 = z sem rt %>% filter(pathlength == "15")
colnames(z_15) = c("subject", "pathlength15", "zRT_15", "RawRT_15", "pathlengthfac15")
z_all = Reduce(function(x, y) merge(x, y, all=TRUE, by = "subject"),
               list(z<sub>1</sub>, z<sub>2</sub>, z<sub>3</sub>, z<sub>4</sub>,z<sub>6</sub>,z<sub>15</sub>))
z_{all} = z_{all}[,-c(2,5,6,9,10,13,14,17,18,21,22,25)]
t.test(z_all$zRT_1, z_all$zRT_2, paired = TRUE)
##
## Paired t-test
##
## data: z all$zRT 1 and z all$zRT 2
## t = -5.8642, df = 79, p-value = 9.999e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2145288 -0.1058016
## sample estimates:
## mean of the differences
                -0.1601652
t.test(z_all$zRT_2, z_all$zRT_3, paired = TRUE)
##
## Paired t-test
##
## data: z_all$zRT_2 and z_all$zRT_3
## t = 1.3017, df = 79, p-value = 0.1968
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01941843 0.09281353
## sample estimates:
## mean of the differences
                0.03669755
##
```

```
t.test(z_all$zRT_3, z_all$zRT_4, paired = TRUE)
##
## Paired t-test
##
## data: z_all$zRT_3 and z_all$zRT_4
## t = 1.465, df = 79, p-value = 0.1469
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01379417 0.09070664
## sample estimates:
## mean of the differences
##
                0.03845624
t.test(z_all$zRT_4, z_all$zRT_6, paired = TRUE)
##
## Paired t-test
##
## data: z_all$zRT_4 and z_all$zRT_6
## t = 2.2224, df = 79, p-value = 0.02912
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.005591437 0.101559973
## sample estimates:
## mean of the differences
##
                 0.0535757
t.test(z_all$zRT_6, z_all$zRT_15, paired = TRUE)
##
## Paired t-test
##
## data: z_all$zRT_6 and z_all$zRT_15
## t = 3.4899, df = 79, p-value = 0.0007933
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.03843111 0.14045921
## sample estimates:
## mean of the differences
##
                0.08944516
Plotting RTs: collapsed
```

```
z_rmisc$pathlengthfac = ordered(as.factor(as.character(z_rmisc$pathlength)),
z_rmisc$zRT_trim = as.numeric(z_rmisc$zRT_trim)

library(ggplot2)
library(ggthemes)

z_rmisc %>%
    ggplot(aes(x = pathlengthfac, y = zRT_trim, group = 1))+
    geom_point()+
```

z-RT for Relatedness Judgments


```
z_rmisc_kenett = z_rmisc
z_rmisc_kenett$Network = "Association Correlation"
```

Plotting RTs: Rel-Unrel

```
z_sem_rt_rel_agg_rmisc$pathlengthfac = ordered(as.factor(as.character(z_sem_rt_rel_agg_rmisc$pathlength
z_sem_rt_rel_agg_rmisc$zRT_trim = as.numeric(z_sem_rt_rel_agg_rmisc$zRT_trim)
library(ggplot2)
```

```
library(ggthemes)
z_sem_rt_rel_agg_rmisc %>%
  mutate(Decision = factor(Type,
   levels = unique(Type),
                    labels = c("Related", "Unrelated"))) %>%
  ggplot(aes(x = pathlengthfac, y = zRT_trim, group = Decision, color = Decision))+
 geom point()+
# geom_smooth(method = "loess")+
geom_line()+
  geom_errorbar(aes(ymin=zRT_trim - ci, ymax=zRT_trim + ci),
             width=.2, color = "gray30",
             position = position_dodge(0.05))+
   ylim(-0.35, 0.35)+
 theme_few()+
  scale\_color\_wsj() + #scale\_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
    xlab("ACN Path Length") + ylab("z-RT") +
  ggtitle("Association Correlation Network: All Lists") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Association Correlation Network: All Lists

Plotting RTs: Subject Wise Rel-Unrel

```
z_sem_rt_rel$pathlengthfac = ordered(as.factor(as.character(z_sem_rt_rel$pathlength)),
z_sem_rt_rel$zRT_trim = as.numeric(z_sem_rt_rel$zRT_trim)
library(ggplot2)
library(ggthemes)
z_sem_rt_rel %>%
  ggplot(aes(x = pathlengthfac, y = zRT_trim, color = Type, group=interaction(Type, subject))) +
  geom_point()+
# geom_smooth(method = "loess")+
geom_line()+
theme few()+
 facet_wrap(~subject)+
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Path Length") + ylab("z-RT") +
  ggtitle("z-RT for Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

z–RT for Relatedness Judgments

Quadratic Trend

```
z_sem_rt %>%
  ggplot(aes(x = pathlength, y = zRT_trim))+
  geom_point(color = "black", size = 1)+
  geom_smooth(method = "loess", color = "red")+
   #qeom_errorbar(aes(ymin=Trials - ci, ymax=Trials + ci),
              width=.2, color = "gray26",
              position = position_dodge(0.7))+
 theme_few()+
 \# scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Path Length") + ylab("z-RT") +
  ggtitle("z-RT for Relatedness Judgments") +
 # facet_wrap(~subject)+
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

z-RT for Relatedness Judgments

List 1 only

```
groupvars = c("pathlength", "Type"))
list1_z$pathlengthfac = ordered(as.factor(as.character(list1_z$pathlength)),
list1_z$zRT_trim = as.numeric(list1_z$zRT_trim)
library(ggplot2)
library(ggthemes)
list1_z %>%
  mutate(Decision = factor(Type,
    levels = unique(Type),
                    labels = c("Related", "Unrelated"))) %>%
  ggplot(aes(x = pathlengthfac, y = zRT_trim, group = Decision, color = Decision))+
  geom_point()+
# geom_smooth(method = "loess")+
geom_line()+
  geom_errorbar(aes(ymin=zRT_trim - ci, ymax=zRT_trim + ci),
             width=.2, color = "gray30",
             position = position_dodge(0.05))+
 theme_few()+
  scale\_color\_wsj() + #scale\_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
    xlab("ACN Path Length") + ylab("z-RT") +
  ggtitle("Association Correlation Network for List 1") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Association Correlation Network for List 1

Subject-Wise

```
library(ggplot2)
library(ggthemes)
z_sem_rt %>%
  ggplot(aes(x = pathlengthfac, y = zRT_trim,
             color = subject, group = subject))+
  geom_point(color = "black", size = 1)+
  geom_line()+
   #geom_errorbar(aes(ymin=Trials - ci, ymax=Trials + ci),
  #
              width=.2, color = "gray26",
   #
              position = position_dodge(0.7))+
 theme few()+
  guides(color = FALSE)+
 \# scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
    xlab("Path Length") + ylab("z-RT") +
  ggtitle("z-RT for Relatedness Judgments") +
 # facet_wrap(~subject)+
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
```


Regressions

```
library(lme4)
## Warning: package 'lme4' was built under R version 3.4.4
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 3.4.4
sem$pathlengthfac = ordered(as.factor(as.character(sem$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
new_sem_z$pathlengthfac = ordered(as.factor(as.character(new_sem_z$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
m0 = lmer(data = new_sem_z, rt ~ 1 + (1|subject) + (1|trial_index) +
            (1|ItemNo))
summary(m0)
## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ 1 + (1 | subject) + (1 | trial_index) + (1 | ItemNo)
##
      Data: new_sem_z
##
```

```
## REML criterion at convergence: 249131.9
##
## Scaled residuals:
##
      Min 1Q Median
                               ЗQ
                                      Max
## -3.2009 -0.6212 -0.1612 0.4479 5.3272
##
## Random effects:
## Groups
               Name
                           Variance Std.Dev.
## ItemNo
                (Intercept) 1522.3
                                     39.02
## trial_index (Intercept)
                             208.9
                                     14.45
## subject
               (Intercept) 23823.6 154.35
## Residual
                           50252.2 224.17
## Number of obs: 18170, groups: ItemNo, 1200; trial_index, 240; subject, 80
##
## Fixed effects:
##
               Estimate Std. Error t value
                             17.4
## (Intercept)
                 734.2
                                    42.19
reghelper::ICC(m0)
## [1] 0.3371028
contrasts(sem$pathlengthfac) = contr.treatment(6, base = 1)
contrasts(new_sem_z$pathlengthfac) = contr.treatment(6, base = 2)
m1_fixed = lmer(data = new_sem_z, zRT_trim ~ pathlengthfac +
           (1|subject) + (1|ItemNo) + (1|trial_index))
summary(m1 fixed)
## Linear mixed model fit by REML ['lmerMod']
## Formula: zRT_trim ~ pathlengthfac + (1 | subject) + (1 | ItemNo) + (1 |
      trial_index)
##
##
     Data: new_sem_z
##
## REML criterion at convergence: 51296.7
##
## Scaled residuals:
              1Q Median
                               ЗQ
## -2.5782 -0.7127 -0.1964 0.5389 3.9565
##
## Random effects:
## Groups
               Name
                           Variance Std.Dev.
## ItemNo
                (Intercept) 0.033695 0.18356
## trial_index (Intercept) 0.004246 0.06516
## subject
                (Intercept) 0.000000 0.00000
                           0.952788 0.97611
## Residual
## Number of obs: 18170, groups: ItemNo, 1200; trial_index, 240; subject, 80
## Fixed effects:
                 Estimate Std. Error t value
## (Intercept)
                  0.09995 0.02245
                                       4.451
## pathlengthfac1 -0.16082
                             0.03115 -5.162
## pathlengthfac3 -0.03054
                             0.03115 -0.980
```

```
## pathlengthfac4 -0.07032
                             0.03117 -2.256
## pathlengthfac5 -0.12080 0.03116 -3.876
                             0.03115 -6.827
## pathlengthfac6 -0.21266
##
## Correlation of Fixed Effects:
              (Intr) pthln1 pthln3 pthln4 pthln5
##
## pthlngthfc1 -0.696
## pthlngthfc3 -0.696 0.502
## pthlngthfc4 -0.695 0.501 0.501
## pthlngthfc5 -0.695 0.501 0.501 0.501
## pthlngthfc6 -0.696 0.501 0.502 0.501 0.501
# m1_random = lmer(data = sem, rt ~ pathlengthfac +
             (pathlengthfac|subject) + (pathlengthfac|ItemNo) +
#
               (pathlengthfac/trial_index))
# summary(m1_random)
```

ELP Model

```
## Adding ELP covariates
# elp_model = lmer(data = new_sem_z, rt ~ mean_len + mean_logf +
                     mean\_ldtz +
             (1|subject) + (1|trial\ index) + (1|ItemNo))
#
# fit_from_elp = broom::augment(elp_model,new_sem_z)
# contrasts(fit_from_elp$pathlengthfac) = contr.treatment(6, base = 2)
#
\# m1_fixed_elp = lmer(data = fit_from_elp, .resid ~ pathlengthfac +
             (1|subject) + (1|trial\_index) + (1|ItemNo))
  summary(m1_fixed_elp)
#
new_sem_z$proc = as.factor(new_sem_z$proc)
m1_all_elp = lmer(data = new_sem_z, rt ~ pathlengthfac*proc +
                     mean_len + mean_logf + mean_ldtz +
           (1|subject) + (1|trial_index) + (1|ItemNo))
summary(m1_all_elp)
## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ pathlengthfac * proc + mean_len + mean_logf + mean_ldtz +
##
       (1 | subject) + (1 | trial_index) + (1 | ItemNo)
##
      Data: new sem z
##
## REML criterion at convergence: 248410
##
## Scaled residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -3.1592 -0.6203 -0.1572 0.4477 5.4469
##
## Random effects:
## Groups Name
                            Variance Std.Dev.
## ItemNo
              (Intercept) 1198.1
```

```
trial_index (Intercept)
                               207.6
                                       14.41
##
    subject
                 (Intercept) 23254.9
                                      152.50
    Residual
                             50203.8
                                      224.06
## Number of obs: 18162, groups: ItemNo, 1200; trial_index, 240; subject, 80
## Fixed effects:
                         Estimate Std. Error t value
                         706.7591
## (Intercept)
                                     24.4483
                                              28.908
  pathlengthfac1
                         -32.6908
                                      6.7431
                                              -4.848
## pathlengthfac3
                          -5.1147
                                      6.7445
                                              -0.758
## pathlengthfac4
                         -13.7654
                                      6.7499
                                              -2.039
                                      6.7469
                                              -3.363
## pathlengthfac5
                         -22.6871
                                              -6.003
## pathlengthfac6
                         -40.5047
                                      6.7476
## proc1
                         -44.7690
                                     52.8619
                                              -0.847
## proc2
                                     52.7815
                         -45.5878
                                              -0.864
## proc3
                         -25.8878
                                     52.7858
                                              -0.490
## proc4
                          50.5891
                                     52.7971
                                                0.958
## proc5
                          65.2477
                                     52.8180
                                                1.235
                                     52.8153
## proc6
                          23.4277
                                               0.444
                                              -1.484
## proc7
                         -78.3525
                                     52.7989
## proc8
                         -18.8166
                                     52.9990
                                              -0.355
                         -51.4922
                                     52.8665
                                              -0.974
## proc9
## mean len
                           4.8116
                                      1.5162
                                               3.173
                                      1.7587
## mean logf
                           3.0312
                                                1.724
## mean ldtz
                          18.7877
                                     14.4139
                                                1.303
## pathlengthfac1:proc1
                         16.4357
                                     18.8101
                                               0.874
## pathlengthfac3:proc1 -33.8760
                                              -1.804
                                     18.7755
                                              -0.479
## pathlengthfac4:proc1
                         -9.0144
                                     18.8321
## pathlengthfac5:proc1
                                     18.7515
                         -8.2269
                                              -0.439
## pathlengthfac6:proc1
                           0.4162
                                     18.8472
                                               0.022
## pathlengthfac1:proc2
                         37.9366
                                     18.4842
                                                2.052
## pathlengthfac3:proc2 -16.7295
                                     18.4297
                                              -0.908
## pathlengthfac4:proc2 -17.8836
                                     18.4988
                                              -0.967
## pathlengthfac5:proc2 -3.4032
                                     18.4235
                                              -0.185
## pathlengthfac6:proc2 -26.2259
                                     18.4266
                                              -1.423
## pathlengthfac1:proc3 -18.9460
                                     18.4217
                                              -1.028
## pathlengthfac3:proc3
                         14.7091
                                     18.4644
                                               0.797
## pathlengthfac4:proc3
                         44.8086
                                     18.5167
                                                2.420
## pathlengthfac5:proc3
                                     18.4986
                                                1.357
                          25.1015
## pathlengthfac6:proc3
                         36.1060
                                     18.5473
                                                1.947
## pathlengthfac1:proc4 -14.1014
                                     18.6395
                                              -0.757
## pathlengthfac3:proc4 -27.0719
                                     18.5273
                                              -1.461
## pathlengthfac4:proc4
                           0.6228
                                     18.5887
                                               0.034
## pathlengthfac5:proc4
                           2.9664
                                     18.5766
                                               0.160
## pathlengthfac6:proc4 -12.1401
                                     18.5512
                                              -0.654
## pathlengthfac1:proc5 -36.8314
                                              -1.983
                                     18.5696
## pathlengthfac3:proc5
                          22.3383
                                     18.5475
                                                1.204
## pathlengthfac4:proc5
                          20.9809
                                     18.5669
                                                1.130
                          5.3939
## pathlengthfac5:proc5
                                     18.5302
                                               0.291
## pathlengthfac6:proc5
                          -9.5056
                                     18.5100
                                              -0.514
## pathlengthfac1:proc6
                          11.9360
                                     18.5403
                                               0.644
## pathlengthfac3:proc6
                          29.7448
                                     18.5304
                                                1.605
## pathlengthfac4:proc6
                         31.2214
                                     18.5176
                                                1.686
## pathlengthfac5:proc6
                         34.1753
                                     18.5337
                                                1.844
```

```
## pathlengthfac6:proc6
                        33.0137
                                   18.4793
                                             1.787
## pathlengthfac1:proc7
                        16.1100
                                   18.4799
                                             0.872
                                   18.4744 -0.260
## pathlengthfac3:proc7 -4.8085
## pathlengthfac4:proc7
                         8.3258
                                   18.4829
                                             0.450
## pathlengthfac5:proc7 -6.4620
                                   18.5241 -0.349
## pathlengthfac6:proc7 -2.3131
                                   18.4833 -0.125
## pathlengthfac1:proc8 11.9844
                                   19.4028
                                            0.618
## pathlengthfac3:proc8 -3.2440
                                   19.2991 -0.168
## pathlengthfac4:proc8 -31.6267
                                   19.4064 -1.630
## pathlengthfac5:proc8 -8.6523
                                   19.3317 -0.448
## pathlengthfac6:proc8
                        6.1347
                                   19.3991
                                            0.316
## pathlengthfac1:proc9 -8.3706
                                   18.7963 -0.445
## pathlengthfac3:proc9
                        33.4509
                                   18.8900
                                             1.771
## pathlengthfac4:proc9
                         0.2983
                                   18.7473
                                             0.016
## pathlengthfac5:proc9 -6.3321
                                   18.9255 -0.335
## pathlengthfac6:proc9
                         8.6125
                                   18.7925
                                             0.458
##
## Correlation matrix not shown by default, as p = 63 > 12.
## Use print(x, correlation=TRUE) or
      vcov(x)
                     if you need it
car::Anova(m1_all_elp)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: rt
##
                       Chisq Df Pr(>Chisq)
## pathlengthfac
                     55.3429 5
                                  1.11e-10 ***
                     10.9748 9
## proc
                                  0.277440
                                  0.001506 **
## mean len
                     10.0707 1
## mean_logf
                      2.9706 1
                                  0.084790 .
## mean_ldtz
                      1.6990 1
                                  0.192423
## pathlengthfac:proc 78.7641 45
                                  0.001373 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Plot from ELP Model

```
# fixed.frame <-
    data.frame(expand.grid( pathlengthfac = c("1", "2", "3",
#
                                                "4", "6", "15"))) %>%
#
    mutate(pred = predict(m1_all_elp, newdata = ., re.form = NA))
#
#
# fixed.frame %>%
   mutate(Pathlength = factor(pathlengthfac,
#
      levels = unique(pathlengthfac),
                      labels = c("1", "2", "3",
#
                                  "4", "6", "15")))%>%
#
\# ggplot(aes(x = Pathlength, y = pred, group = 1)) +
   geom_point()+
# geom_line(color = "green")+
# theme_few()+
```

```
# xlab("Path Length") + ylab("RT residuals ") +
# ggtitle("z-RT for Relatedness Judgments") +
# theme(axis.text = element_text(size = rel(1)),
# axis.title = element_text(face = "bold", size = rel(1)),
# legend.title = element_text(face = "bold", size = rel(1)),
# plot.title = element_text(hjust = .5),
# strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Concreteness Norms

```
elpnorms = read.csv("ELP_norms 2.csv", header = TRUE, sep = ",")
elpnorms = elpnorms[,c(1,2)]
colnames(elpnorms) = c("prime_word", "prime_concreteness")
elpnorms$prime word = toupper(elpnorms$prime word)
elpnorms$prime_word = paste(elpnorms$prime_word, "")
elpnorms$prime_word = as.character(elpnorms$prime_word)
sem$prime_word = as.character(sem$prime_word)
merged_sem_prime= inner_join(sem, elpnorms, by = "prime_word")
merged_sem_prime = merged_sem_prime[,c(4,7,16,44)]
colnames(elpnorms) = c("target_word", "target_concreteness")
sem$target_word = as.character(sem$target_word)
merged_sem_target= inner_join(sem, elpnorms, by = "target_word")
merged_sem_target = merged_sem_target[,c(4,7, 17,44)]
merged_concretness = full_join(merged_sem_prime, merged_sem_target,
                           by = c("trial_index", "subject"))
merged_concretness$mean_conc = (merged_concretness$prime_concreteness +
                                merged concretness$target concreteness) / 2
### NOW WE HAVE CONCRETENESS NORMS FOR ALL ITEMS IN THE DATASET
### NEED TO COMBINE THIS WITH ACTUAL SEM DATA
new sem z$prime word = as.character(new sem z$prime word)
new_sem_z$target_word = as.character(new_sem_z$target_word)
final_sem = inner_join(new_sem_z, merged_concretness,
                      by = c("trial_index", "subject",
                             "prime_word", "target_word") )
count_n = group_by(final_sem, subject, prime_word, target_word) %>%
  summarize(n = n())
x = which(count_n$n!= 1)
#View(count_n[x,])
```

Conreteness Model

```
final_sem$pathlengthfac = ordered(as.factor(as.character(final_sem$pathlength)),
                           levels = c("1", "2", "3", "4", "6", "15"))
# elp_model = lmer(data = final_sem, zRT_trim ~ mean_len + mean_logf +
                    mean ldtz + mean conc +
            (1|subject) + (1|trial_index) + (1|ItemNo))
# fit_from_elp = broom::augment(elp_model, final_sem)
# contrasts(fit_from_elp$pathlengthfac) = contr.treatment(6, base = 2)
#
# m1_fixed_elp = lmer(data = fit_from_elp, .resid ~ pathlengthfac +
             (1|subject) + (1|trial\_index) + (1|ItemNo))
# summary(m1_fixed_elp)
m1_all_elp = lme4::lmer(data = final_sem, zRT_trim ~ pathlengthfac +
                    mean len + mean logf + mean ldtz + mean conc +
           (1|subject) + (1|trial_index) + (1|ItemNo))
summary(m1_all_elp)
## Linear mixed model fit by REML ['lmerMod']
## Formula: zRT_trim ~ pathlengthfac + mean_len + mean_logf + mean_ldtz +
      mean_conc + (1 | subject) + (1 | trial_index) + (1 | ItemNo)
##
      Data: final_sem
##
## REML criterion at convergence: 46175.9
##
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -2.5474 -0.7096 -0.1953 0.5381 4.0062
## Random effects:
## Groups
               Name
                           Variance Std.Dev.
## ItemNo
                (Intercept) 0.028862 0.16989
## trial index (Intercept) 0.003494 0.05911
## subject
               (Intercept) 0.000000 0.00000
## Residual
                           0.949326 0.97433
## Number of obs: 16390, groups: ItemNo, 1083; trial_index, 240; subject, 80
## Fixed effects:
##
                   Estimate Std. Error t value
## (Intercept)
                   0.228025 0.108655
                                        2.099
## pathlengthfac.L -0.084375
                             0.022548 - 3.742
## pathlengthfac.Q -0.147674
                              0.022486 -6.568
## pathlengthfac.C 0.059418
                              0.022650
                                        2.623
## pathlengthfac^4 -0.050604
                              0.022699 -2.229
## pathlengthfac^5 0.012222
                              0.022585 0.541
## mean len
                              0.007386 2.101
                   0.015521
                              0.008818 -1.066
## mean logf
                  -0.009404
## mean ldtz
                  0.004286
                              0.069186
                                        0.062
## mean_conc
                  -0.065622
                              0.011872 -5.528
##
```

```
## Correlation of Fixed Effects:
##
               (Intr) pthl.L pthl.Q pthl.C pthl^4 pthl^5 men_ln mn_lgf mn_ldt
## pthlngthf.L -0.050
## pthlngthf.Q 0.048 -0.003
## pthlngthf.C 0.008 -0.016 -0.006
## pthlngthf<sup>4</sup> -0.014 -0.003 0.001 0.004
## pthlngthf<sup>5</sup> -0.001 -0.009 0.005 0.009 -0.005
## mean len
               -0.603   0.061   -0.023   -0.004   -0.002   -0.016
## mean_logf -0.665 0.028 -0.011 -0.025 0.016 -0.001 -0.009
## mean_ldtz 0.010 -0.006 0.020 -0.029 -0.006 0.020 -0.361 0.550
## mean_conc -0.685 0.009 -0.064 0.006 0.001 0.035 0.240 0.311 0.110
 # m1_all_elp_random = lme4::lmer(data = final_sem, zRT_trim ~ pathlengthfac +
                       mean len + mean logf + mean ldtz + mean conc +
 #
             (pathlengthfac/subject) +
 #
                + (1/trial_index) + (pathlengthfac/ItemNo),
 #
      control=lmerControl(optimizer="bobyqa",
              optCtrl=list(maxfun=1000000)))
 # summary(m1_all_elp_random)
 ## centering so that contrasts are easier
final_sem$mean_len_c = scale(final_sem$mean_len,
                             center = TRUE, scale = FALSE)
final_sem$mean_logf_c = scale(final_sem$mean_logf,
                              center = TRUE, scale = FALSE)
final sem$mean ldtz c = scale(final sem$mean ldtz,
                              center = TRUE, scale = FALSE)
final_sem$mean_conc_c = scale(final_sem$mean_conc,
                              center = TRUE, scale = FALSE)
final_sem$mean_len_c = as.numeric(final_sem$mean_len_c)
final_sem$mean_logf_c = as.numeric(final_sem$mean_logf_c)
final_sem$mean_ldtz_c = as.numeric(final_sem$mean_ldtz_c)
final_sem$mean_conc_c = as.numeric(final_sem$mean_conc_c)
 contrasts(final_sem$pathlengthfac) = contr.treatment(6, base = 2)
 m1_all_elp_type = lme4::lmer(data = final_sem,
                              zRT_trim ~ pathlengthfac*Type +
                     mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c +
           (1|subject) + (1|trial_index) +
              + (1|target_word))
 summary(m1_all_elp_type)
## Linear mixed model fit by REML ['lmerMod']
## Formula: zRT_trim ~ pathlengthfac * Type + mean_len_c + mean_logf_c +
       mean_ldtz_c + mean_conc_c + (1 | subject) + (1 | trial_index) +
##
       +(1 | target_word)
##
      Data: final_sem
## REML criterion at convergence: 46174.3
## Scaled residuals:
       Min
                1Q Median
                                3Q
                                       Max
## -2.5546 -0.7093 -0.1896 0.5454 4.1265
```

```
##
## Random effects:
                            Variance Std.Dev.
## Groups
## target_word (Intercept) 0.022157 0.14885
## trial_index (Intercept) 0.003409 0.05839
                (Intercept) 0.000000 0.00000
## subject
## Residual
                            0.951645 0.97552
## Number of obs: 16390, groups:
## target_word, 1741; trial_index, 240; subject, 80
##
## Fixed effects:
##
                         Estimate Std. Error t value
## (Intercept)
                         0.106342
                                    0.020915
                                               5.084
## pathlengthfac1
                                    0.029663 -5.257
                        -0.155943
## pathlengthfac3
                                    0.030117
                        -0.001245
                                              -0.041
## pathlengthfac4
                        -0.054133
                                    0.030385
                                              -1.782
## pathlengthfac5
                        -0.040004
                                    0.034418 -1.162
## pathlengthfac6
                        -0.161663
                                    0.036015 -4.489
## Type1
                                    0.019402
                                              0.373
                         0.007245
## mean len c
                         0.013069
                                    0.006831
                                               1.913
## mean_logf_c
                        -0.010149
                                    0.008144
                                             -1.246
## mean ldtz c
                         0.018507
                                    0.063637
                                              0.291
## mean_conc_c
                                    0.010913 -6.033
                        -0.065844
## pathlengthfac1:Type1 -0.053266
                                    0.028118 -1.894
## pathlengthfac3:Type1 0.097122
                                    0.028618
                                               3.394
## pathlengthfac4:Type1
                         0.062309
                                    0.028883
                                               2.157
## pathlengthfac5:Type1
                                               3.597
                         0.119272
                                    0.033162
## pathlengthfac6:Type1
                         0.083182
                                    0.034701
                                               2.397
## Correlation matrix not shown by default, as p = 16 > 12.
## Use print(x, correlation=TRUE)
       vcov(x)
                      if you need it
 m1_all_elp_type_withoutinteraction = lme4::lmer(data = final_sem,
                              zRT_trim ~ pathlengthfac + Type +
                     mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c +
           (1|subject) + (1|trial_index) +
              + (1|target_word))
 summary(m1_all_elp_type_withoutinteraction)
## Linear mixed model fit by REML ['lmerMod']
## Formula: zRT_trim ~ pathlengthfac + Type + mean_len_c + mean_logf_c +
      mean_ldtz_c + mean_conc_c + (1 | subject) + (1 | trial_index) +
##
       +(1 | target word)
     Data: final sem
##
##
## REML criterion at convergence: 46191.6
##
## Scaled residuals:
##
      Min
                10 Median
                                3Q
                                       Max
## -2.5618 -0.7090 -0.1932 0.5447 4.1057
## Random effects:
## Groups
                            Variance Std.Dev.
                Name
```

```
## target_word (Intercept) 0.025209 0.15877
## trial_index (Intercept) 0.003479 0.05898
## subject
               (Intercept) 0.000000 0.00000
## Residual
                           0.951457 0.97543
## Number of obs: 16390, groups:
## target_word, 1741; trial_index, 240; subject, 80
## Fixed effects:
##
                  Estimate Std. Error t value
## (Intercept)
                  0.107360
                             0.021119
                                        5.083
## pathlengthfac1 -0.190650
                             0.029233 -6.522
## pathlengthfac3 -0.025557
                             0.029323 -0.872
## pathlengthfac4 -0.065592
                             0.029221
                                      -2.245
## pathlengthfac5 -0.094950
                             0.029806
                                      -3.186
## pathlengthfac6 -0.195359
                             0.029682 -6.582
## Type1
                  0.047946
                             0.009162
                                        5.233
## mean_len_c
                  0.013158
                             0.006893
                                       1.909
## mean_logf_c
                 -0.009735
                             0.008226 -1.183
## mean_ldtz_c
                  0.017601
                             0.064275
                                       0.274
## mean_conc_c
                 -0.064744
                             0.011032 -5.869
##
## Correlation of Fixed Effects:
               (Intr) pthln1 pthln3 pthln4 pthln5 pthln6 Type1 mn_ln_ mn_lg_
##
## pthlngthfc1 -0.694
## pthlngthfc3 -0.688 0.484
## pthlngthfc4 -0.689 0.484
                            0.517
## pthlngthfc5 -0.675 0.464
                            0.512 0.517
## pthlngthfc6 -0.680 0.466 0.517 0.525 0.529
               0.014 -0.122 0.116 0.138 0.201
                                                  0.220
## mean_len_c -0.023 -0.008 0.019 0.018 0.027 0.021 -0.054
## mean_logf_c -0.035  0.016  0.022  0.038  0.031  0.024 -0.011 -0.005
## mean_ldtz_c -0.011 0.015 -0.011 0.017 0.017 0.009 0.038 -0.364 0.547
## mean_conc_c 0.015 -0.048 -0.002 0.032 -0.008 -0.016 0.040 0.239
##
              mn_ld_
## pthlngthfc1
## pthlngthfc3
## pthlngthfc4
## pthlngthfc5
## pthlngthfc6
## Type1
## mean len c
## mean logf c
## mean ldtz c
## mean_conc_c 0.111
anova(m1_all_elp_type_withoutinteraction, m1_all_elp_type)
## refitting model(s) with ML (instead of REML)
## Data: final_sem
## Models:
## m1_all_elp_type_withoutinteraction: zRT_trim ~ pathlengthfac + Type + mean_len_c + mean_logf_c +
## m1_all_elp_type_withoutinteraction:
                                          mean_ldtz_c + mean_conc_c + (1 | subject) + (1 | trial_index
## m1_all_elp_type_withoutinteraction:
                                          +(1 | target_word)
## m1_all_elp_type: zRT_trim ~ pathlengthfac * Type + mean_len_c + mean_logf_c +
```

```
mean_ldtz_c + mean_conc_c + (1 | subject) + (1 | trial_index) +
## m1_all_elp_type:
## m1_all_elp_type:
                       +(1 | target_word)
##
                                     Df
                                         AIC BIC logLik deviance Chisq
## m1_all_elp_type_withoutinteraction 15 46151 46267 -23061
                                                              46121
                                     20 46117 46271 -23038
                                                              46077 44.325
## m1_all_elp_type
##
                                     Chi Df Pr(>Chisq)
## m1_all_elp_type_withoutinteraction
                                              1.99e-08 ***
## m1_all_elp_type
                                          5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Contrast Codes with Covariates

```
##
      Group Type pathlength Type1 pathlength1 pathlength3 pathlength4
## 1
                U
                             1
                                    0
           1
## 2
                R.
                                                               0
                                                                             0
           2
                             1
                                    1
                                                 1
## 3
                             2
                                                                             0
           3
                U
                                    0
                                                 0
                                                               0
## 4
           4
                R
                             2
                                                 0
                                                               0
                                                                             0
                                    1
## 5
           5
                             3
                U
                                    0
                                                 0
                                                               1
                                                                             0
## 6
           6
                R
                             3
                                                 0
                                                                             0
                                    1
                                                               1
## 7
           7
                U
                             4
                                    0
                                                 0
                                                               0
                                                                             1
## 8
           8
                R
                             4
                                    1
                                                 0
                                                               0
                                                                             1
## 9
           9
                U
                             6
                                    0
                                                 0
                                                               0
                                                                             0
## 10
          10
                R
                             6
                                                 0
                                                               0
                                                                            0
                                    1
## 11
          11
                U
                            15
                                    0
                                                 0
                                                               0
                                                                            0
                                                 0
                                                                             0
## 12
          12
                R
                            15
                                                               0
                                    1
##
      pathlength5 pathlength6
## 1
                  0
## 2
                  0
                               0
## 3
                  0
                               0
## 4
                  0
                               0
## 5
                  0
                               0
## 6
                  0
                               0
## 7
                  0
                               0
## 8
                  0
                               0
## 9
                               0
                  1
## 10
                               0
                  1
## 11
                  0
                               1
## 12
                  0
```

```
dummy_codes <- as.matrix(groups[,4:9])
dummy_codes</pre>
```

```
Type1 pathlength1 pathlength3 pathlength4 pathlength5 pathlength6
##
## [1,]
             0
                         1
                                      0
                                                   0
                                                               0
                                                                            0
## [2,]
                         1
                                      0
                                                   0
                                                               0
                                                                            0
             1
                                                                            0
## [3,]
             0
                         0
                                      0
                                                   0
                                                               0
##
   [4,]
             1
                         0
                                      0
                                                   0
                                                               0
                                                                            0
## [5,]
                         0
                                      1
                                                   0
                                                               0
                                                                            0
             0
## [6,]
                          0
                                                   0
                                                               0
                                                                            0
```

```
[7,]
##
              0
                            0
                                                       1
                                                                    0
                                                                                 0
##
    [8,]
              1
                            0
                                         0
                                                       1
                                                                    0
                                                                                 0
    [9,]
                            0
                                         0
                                                                                 0
##
              0
                                                       0
                                                                    1
## [10,]
                            0
                                         0
                                                       0
                                                                    1
                                                                                 0
              1
## [11,]
              0
                            0
                                         0
                                                       0
                                                                    0
                                                                                 1
## [12,]
                            0
                                         0
                                                       0
                                                                    0
                                                                                 1
              1
fixed_effects <- matrix(fixef(m1_all_elp_type))</pre>
fixed effects
##
                   [,1]
##
    [1,] 0.106342132
##
   [2,] -0.155942649
## [3,] -0.001244544
## [4,] -0.054133074
## [5,] -0.040004039
   [6,] -0.161663447
##
##
   [7,] 0.007245169
## [8,] 0.013069359
## [9,] -0.010149494
## [10,] 0.018507043
## [11,] -0.065844017
## [12,] -0.053265599
## [13,] 0.097121931
## [14,] 0.062309309
## [15,] 0.119271651
## [16,] 0.083181774
means_matrix <- matrix(rep(0,192),ncol=16,nrow=12)</pre>
means_matrix[,1] <- 1</pre>
means_matrix[,2:6] <- dummy_codes[,2:6]</pre>
means_matrix[,7] <- dummy_codes[,1]</pre>
means_matrix[,8:11] <- 0
means_matrix[,12:16] <- dummy_codes[,1]*dummy_codes[,2:6]</pre>
means_matrix
          [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
##
##
    [1,]
             1
                   1
                        0
                              0
                                   0
                                         0
                                              0
                                                    0
                                                          0
                                                                 0
                                                                       0
                                                                                     0
   [2,]
                   1
                        0
                                         0
                                                    0
                                                                       0
                                                                              1
                                                                                     0
##
             1
                              0
                                   0
                                               1
                                                          0
                                                                 0
##
   [3,]
             1
                   0
                        0
                              0
                                   0
                                         0
                                               0
                                                    0
                                                          0
                                                                 0
                                                                       0
                                                                              0
                                                                                     0
##
    [4,]
             1
                   0
                        0
                              0
                                   0
                                         0
                                               1
                                                    0
                                                          0
                                                                 0
                                                                       0
                                                                              0
                                                                                     0
   [5,]
                                         0
                                                                 0
                                                                       0
                                                                              0
                                                                                     0
##
             1
                   0
                        1
                              0
                                   0
                                               0
                                                    0
                                                          0
##
   [6,]
             1
                   0
                        1
                              0
                                   0
                                         0
                                               1
                                                    0
                                                          0
                                                                 0
                                                                       0
                                                                              0
                                                                                     1
##
    [7,]
                        0
                                   0
                                         0
                                               0
                                                    0
                                                                 0
                                                                       0
                                                                              0
                                                                                     0
             1
                   0
                                                          0
                              1
##
    [8,]
             1
                   0
                        0
                              1
                                   0
                                         0
                                               1
                                                    0
                                                          0
                                                                 0
                                                                       0
                                                                              0
                                                                                     0
                                         0
                                                                       0
                                                                              0
                                                                                     0
##
   [9,]
             1
                   0
                        0
                              0
                                   1
                                               0
                                                    0
                                                          0
                                                                 0
## [10,]
                   0
                        0
                              0
                                         0
                                                    0
                                                          0
                                                                 0
                                                                       0
                                                                              0
                                                                                     0
             1
                                   1
                                              1
## [11,]
             1
                   0
                        0
                              0
                                   0
                                         1
                                              0
                                                    0
                                                          0
                                                                0
                                                                       0
                                                                              0
                                                                                     0
                                         1
                                                          0
                                                                 0
                                                                       0
                                                                              0
                                                                                     0
## [12,]
             1
                   0
                                               1
##
          [,14] [,15] [,16]
##
    [1,]
              0
                     0
    [2,]
                            0
##
              0
                     0
    [3,]
                            0
##
              0
                     0
##
   [4,]
                            0
              0
                     0
## [5,]
              0
                     0
                            0
```

```
[6,]
##
             0
##
   [7,]
             0
  [8,]
##
                         0
## [9,]
                         0
             0
                   0
## [10,]
             0
                         0
## [11,]
                   0
                         Ω
             0
## [12,]
                   0
means <- means matrix %*% fixed effects
print(cbind(means,groups[,2:3]))
##
            means Type pathlength
## 1 -0.04960052
                     U
## 2
     -0.09562095
                     R
                                1
                                2
## 3
      0.10634213
                     U
## 4
                                2
      0.11358730
                     R
## 5
      0.10509759
                     U
                                3
## 6
      0.20946469
                     R
                                3
## 7
      0.05220906
                                4
                     U
## 8
                                4
      0.12176354
                     R
## 9
      0.06633809
                                6
                     IJ
## 10 0.19285491
                                6
                     R
## 11 -0.05532132
                     IJ
                               15
## 12 0.03510563
                     R
                               15
contrast matrix <- matrix(c(</pre>
 0,0,1,0,0,0,-1,0,0,0,0,0,0,
  0,0,0,0,0,0,1,0,-1,0,0,0,
  0,0,0,0,0,0,0,0,1,0,-1,0), nrow=5,ncol=12,byrow=TRUE)
row.names(contrast_matrix) <- c("path 1, related vs. path 2, unrelated",</pre>
                                "path 2, unrelated vs. path 3, unrelated",
                                "path 2, unrelated vs. path 4, unrelated",
                                "path 4, unrelated vs. path 6, unrelated",
                                "path 6, unrelated vs. path 15, unrelated")
matrix_for_glht <-contrast_matrix %*% means_matrix</pre>
matrix_for_glht
##
                                             [,1] [,2] [,3] [,4] [,5] [,6]
## path 1, related vs. path 2, unrelated
                                                0
                                                     1
                                                          0
                                                                    0
## path 2, unrelated vs. path 3, unrelated
                                                0
                                                     0
                                                                    0
                                                                          0
                                                          -1
                                                               0
## path 2, unrelated vs. path 4, unrelated
                                                     0
                                                               -1
                                                                    0
                                                                          0
## path 4, unrelated vs. path 6, unrelated
                                                0
                                                     0
                                                          0
                                                               1
                                                                    -1
                                                                         0
## path 6, unrelated vs. path 15, unrelated
                                                          0
                                             [,7] [,8] [,9] [,10] [,11] [,12]
## path 1, related vs. path 2, unrelated
                                                          0
                                                0
                                                     0
                                                                       0
                                                                             0
## path 2, unrelated vs. path 3, unrelated
                                                          0
                                                                0
## path 2, unrelated vs. path 4, unrelated
                                                     0
                                                          0
                                                                0
                                                                             0
## path 4, unrelated vs. path 6, unrelated
                                                                             0
                                                0
                                                     0
                                                          0
                                                                0
                                                                       0
## path 6, unrelated vs. path 15, unrelated
                                                0
                                                     0
                                                          0
                                                                0
##
                                             [,13] [,14] [,15] [,16]
## path 1, related vs. path 2, unrelated
                                                 0
                                                       0
                                                             0
## path 2, unrelated vs. path 3, unrelated
                                                       0
                                                             0
                                                                   0
                                                 0
```

```
## path 2, unrelated vs. path 4, unrelated
## path 4, unrelated vs. path 6, unrelated
                                                        0
                                                              0
                                                                    0
                                                  0
## path 6, unrelated vs. path 15, unrelated
matrix for glht <-contrast matrix ** means matrix
matrix_for_glht
##
                                              [,1] [,2] [,3] [,4] [,5] [,6]
## path 1, related vs. path 2, unrelated
                                                           0
## path 2, unrelated vs. path 3, unrelated
                                                 0
                                                      0
                                                                0
                                                                     0
                                                                          0
                                                          -1
## path 2, unrelated vs. path 4, unrelated
                                                 0
                                                      0
                                                           0
                                                               -1
                                                                     0
                                                                          0
## path 4, unrelated vs. path 6, unrelated
                                                 0
                                                      \cap
                                                           0
                                                                1
                                                                    -1
                                                                          0
## path 6, unrelated vs. path 15, unrelated
                                                 0
                                                      0
                                                           0
                                                                     1
                                                                         -1
                                              [,7] [,8] [,9] [,10] [,11] [,12]
##
## path 1, related vs. path 2, unrelated
                                                 1
                                                      0
                                                           0
                                                                 0
                                                                       0
                                                                       0
## path 2, unrelated vs. path 3, unrelated
                                                 0
                                                      0
                                                           0
                                                                 0
                                                                             0
## path 2, unrelated vs. path 4, unrelated
                                                                 0
                                                                             0
## path 4, unrelated vs. path 6, unrelated
                                                 0
                                                      0
                                                           0
                                                                 0
                                                                       \cap
                                                                             0
## path 6, unrelated vs. path 15, unrelated
                                                                             0
                                                 0
                                                      0
                                                           0
                                                                [,16]
##
                                              [,13] [,14] [,15]
## path 1, related vs. path 2, unrelated
## path 2, unrelated vs. path 3, unrelated
                                                              0
                                                  0
                                                        0
                                                                    0
## path 2, unrelated vs. path 4, unrelated
                                                  0
                                                        0
                                                              0
                                                                    0
## path 4, unrelated vs. path 6, unrelated
                                                        0
                                                              0
                                                                    0
                                                  0
## path 6, unrelated vs. path 15, unrelated
                                                                    0
glht_sem <- multcomp::glht(m1_all_elp_type,</pre>
                           linfct = matrix_for_glht,
               alternative = "two.sided", rhs = 0)
summary(glht sem)
##
##
     Simultaneous Tests for General Linear Hypotheses
##
## Fit: lme4::lmer(formula = zRT_trim ~ pathlengthfac * Type + mean_len_c +
       mean_logf_c + mean_ldtz_c + mean_conc_c + (1 | subject) +
##
       (1 | trial_index) + +(1 | target_word), data = final_sem)
##
##
## Linear Hypotheses:
                                                    Estimate Std. Error
## path 1, related vs. path 2, unrelated == 0
                                                   -0.201963
                                                               0.031584
## path 2, unrelated vs. path 3, unrelated == 0
                                                    0.001245
                                                               0.030117
## path 2, unrelated vs. path 4, unrelated == 0
                                                    0.054133
                                                               0.030385
## path 4, unrelated vs. path 6, unrelated == 0 -0.014129
                                                               0.035682
## path 6, unrelated vs. path 15, unrelated == 0 0.121659
                                                               0.040525
                                                   z value Pr(>|z|)
## path 1, related vs. path 2, unrelated == 0
                                                             <0.001 ***
                                                    -6.395
## path 2, unrelated vs. path 3, unrelated == 0
                                                     0.041
                                                             1.0000
## path 2, unrelated vs. path 4, unrelated == 0
                                                     1.782
                                                             0.2870
## path 4, unrelated vs. path 6, unrelated == 0
                                                    -0.396
                                                             0.9949
## path 6, unrelated vs. path 15, unrelated == 0
                                                     3.002
                                                             0.0128 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
```

Plot

```
mean_length = mean(final_sem$mean_len_c, na.rm = TRUE)
mean_logfreq = mean(final_sem$mean_logf_c, na.rm = TRUE)
mean_lexdec = mean(final_sem$mean_ldtz_c, na.rm = TRUE)
mean_concreteness = mean(final_sem$mean_conc_c, na.rm = TRUE)
fixed.frame <-
  data.frame(expand.grid( pathlengthfac = c("1","2", "3",
                                            "4", "6", "15"),
                          Type= c("Related", "Unrelated"),
                        mean_len_c = mean_length,
                          mean_logf_c = mean_logfreq,
                          mean_ldtz_c = mean_lexdec,
                          mean_conc_c = mean_concreteness)) %>%
  mutate(pred = predict(m1_all_elp_type, newdata = ., re.form = NA))
fixed.frame %>%
  mutate(Pathlength = factor(pathlengthfac,
   levels = unique(pathlengthfac),
                    labels = c("1","2", "3",
                               "4", "6", "15")))%>%
ggplot(aes(x = Pathlength, y = pred, group = Type, color = Type))+
  geom_point()+
 geom_line()+
# geom_smooth(method = "loess")+
#geom_line(color = "green")+
theme_few()+
 xlab("Path Length") + ylab("z-scored RT") +
  ggtitle("z-scored RT for Relatedness Judgments") +
  theme(axis.text = element_text(size = rel(1)),
          axis.title = element text(face = "bold", size = rel(1)),
         legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

z-scored RT for Relatedness Judgments

SjPlot Model

Warning: Removed 7 rows containing missing values (geom_errorbar).

Model Fit for z-RT ~ PathLength * Type

Quadratic Model

```
## TESTING QUADRATIC TREND
m3_linear = lmer(data = final_sem, zRT_trim~ pathlength +
                     mean_len + mean_logf + mean_ldtz + mean_conc +
           (1|subject) + (1|trial_index) +
              + (1|target_word))
summary(m3_linear)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## zRT_trim ~ pathlength + mean_len + mean_logf + mean_ldtz + mean_conc +
##
       (1 | subject) + (1 | trial_index) + +(1 | target_word)
##
     Data: final_sem
##
## REML criterion at convergence: 46240.3
##
## Scaled residuals:
##
                1Q Median
                                3Q
                                       Max
  -2.6177 -0.7124 -0.1957 0.5445 4.0803
##
##
## Random effects:
   Groups
                            Variance Std.Dev.
##
                Name
  target_word (Intercept) 0.027446 0.16567
## trial_index (Intercept) 0.003608 0.06007
```

```
## subject
                (Intercept) 0.000000 0.00000
                            0.953658 0.97655
## Residual
## Number of obs: 16390, groups:
## target_word, 1741; trial_index, 240; subject, 80
## Fixed effects:
               Estimate Std. Error t value
## (Intercept) 0.315882
                           0.102808
                                     3.073
## pathlength -0.011034
                           0.001790 -6.164
                                    2.001
## mean_len
               0.013863
                           0.006928
## mean_logf
              -0.008944
                           0.008288
                                    -1.079
## mean_ldtz
               0.017111
                           0.064709
                                     0.264
## mean_conc
              -0.071214
                           0.011092 -6.420
##
## Correlation of Fixed Effects:
##
              (Intr) pthlng men_ln mn_lgf mn_ldt
## pathlength -0.116
## mean len
             -0.603 0.042
## mean_logf -0.665 0.016 -0.007
## mean ldtz
             0.010 -0.006 -0.362 0.548
## mean_conc -0.678 -0.012 0.240 0.314 0.111
m3_quad = lmer(data = final_sem, zRT_trim ~ pathlength + I((pathlength)^2) +
                     mean_len + mean_logf + mean_ldtz + mean_conc +
           (1|subject) + (1|trial_index) +
              + (1 target word))
summary(m3_quad)
## Linear mixed model fit by REML ['lmerMod']
## zRT_trim ~ pathlength + I((pathlength)^2) + mean_len + mean_logf +
##
       mean_ldtz + mean_conc + (1 | subject) + (1 | trial_index) +
##
       +(1 | target_word)
##
      Data: final_sem
##
## REML criterion at convergence: 46247.5
##
## Scaled residuals:
      Min
               1Q Median
                                3Q
                                       Max
## -2.5911 -0.7117 -0.1948 0.5460
                                   4.0659
##
## Random effects:
## Groups
               Name
                            Variance Std.Dev.
## target_word (Intercept) 2.736e-02 1.654e-01
## trial index (Intercept) 3.656e-03 6.047e-02
## subject
                (Intercept) 6.770e-49 8.228e-25
## Residual
                            9.534e-01 9.764e-01
## Number of obs: 16390, groups:
## target_word, 1741; trial_index, 240; subject, 80
##
## Fixed effects:
##
                       Estimate Std. Error t value
## (Intercept)
                      0.2524722 0.1059372
                                             2.383
## pathlength
                      0.0103305 0.0088504
                                             1.167
## I((pathlength)^2) -0.0012753 0.0005174
```

```
## mean len
                    0.0146950 0.0069336
                                         2.119
                   -0.0083107 0.0082892 -1.003
## mean_logf
## mean ldtz
                    0.0164802 0.0646858 0.255
## mean_conc
                    -0.0700390 0.0110980 -6.311
## Correlation of Fixed Effects:
              (Intr) pthlng I(()^2 men_ln mn_lgf mn_ldt
## pathlength -0.260
## I((pthl)^2) 0.243 -0.979
## mean_len
             -0.596 0.056 -0.049
## mean_logf -0.652 0.034 -0.031 -0.005
             0.011 -0.005 0.004 -0.362 0.548
## mean_ldtz
## mean_conc -0.668 0.040 -0.043 0.242 0.315 0.111
anova(m3_linear, m3_quad)
## refitting model(s) with ML (instead of REML)
## Data: final_sem
## Models:
## m3_linear: zRT_trim ~ pathlength + mean_len + mean_logf + mean_ldtz + mean_conc +
               (1 | subject) + (1 | trial_index) + +(1 | target_word)
## m3_linear:
## m3_quad: zRT_trim ~ pathlength + I((pathlength)^2) + mean_len + mean_logf +
## m3_quad:
           mean_ldtz + mean_conc + (1 | subject) + (1 | trial_index) +
## m3_quad:
               +(1 | target word)
               AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
##
            Df
## m3 linear 10 46215 46292 -23097
                                    46195
                                    46189 6.0783
## m3 quad 11 46211 46295 -23094
                                                          0.01368 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Other Networks

Kenett Path Length

```
items_kenett = group_by(final_sem, pathlength) %>%
   summarise(items = n())

items_kenett$pathlength = as.factor(items_kenett$pathlength)
ggplot(items_kenett, aes(x = pathlength, y = items))+
geom_bar(stat = "identity", position = "dodge", width = 0.7, color= "black")+
theme_few()+
   xlab("Kenett Path Length") + ylab("Number of Items") +
   ggtitle("Kenett Network Item Distribution") +
   theme(axis.text = element_text(size = rel(1)),
        axis.title = element_text(face = "bold", size = rel(1)),
        plot.title = element_text(hjust = .5),
        strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Kenett Network Item Distribution

Undirected

```
items_undirected = group_by(final_sem, undirected) %>%
  summarise(items = n())
items_undirected_subject = group_by(final_sem, subject, undirected) %>%
  summarise(items = n())
undirected_rmisc = Rmisc::summarySE(items_undirected_subject,
                        measurevar = "items",
                        groupvars = c("undirected"))
final_sem$undirectedfac = ordered(as.factor(as.character(final_sem$undirected)),
                            levels = c("1", "2", "3", "4"))
contrasts(final sem$undirectedfac) = contr.treatment(4, base = 2)
m_undirected = lmer(data = final_sem, zRT_trim~ undirectedfac +
                     mean_len + mean_logf + mean_ldtz + mean_conc +
           (1|subject) + (1|trial_index) +
              + (1|target_word))
summary(m_undirected)
## Linear mixed model fit by REML ['lmerMod']
## Formula: zRT_trim ~ undirectedfac + mean_len + mean_logf + mean_ldtz +
```

```
##
       mean_conc + (1 | subject) + (1 | trial_index) + +(1 | target_word)
##
     Data: final sem
##
## REML criterion at convergence: 46172.5
##
## Scaled residuals:
               10 Median
      Min
                                30
                                       Max
## -2.6393 -0.7123 -0.1985 0.5466 4.1166
##
## Random effects:
## Groups
               Name
                            Variance Std.Dev.
## target_word (Intercept) 0.023163 0.1522
## trial_index (Intercept) 0.003434 0.0586
                (Intercept) 0.000000 0.0000
## subject
## Residual
                            0.952962 0.9762
## Number of obs: 16390, groups:
## target_word, 1741; trial_index, 240; subject, 80
##
## Fixed effects:
##
                   Estimate Std. Error t value
                                        3.314
## (Intercept)
                  0.336313 0.101489
## undirectedfac1 -0.278769
                             0.030999 -8.993
## undirectedfac3 -0.094131
                             0.017983 -5.234
## undirectedfac4 -0.240761
                             0.035407
                                       -6.800
## mean len
                  0.015078
                             0.006830
                                       2.208
## mean logf
                 -0.003982
                             0.008179
                                      -0.487
                  0.047707
                              0.064167
                                        0.743
## mean_ldtz
                 -0.080127
## mean_conc
                              0.010950 -7.317
##
## Correlation of Fixed Effects:
##
               (Intr) undrc1 undrc3 undrc4 men_ln mn_lgf mn_ldt
## undirctdfc1 -0.050
## undirctdfc3 -0.122 0.302
## undirctdfc4 -0.076 0.150
                             0.266
## mean len
              -0.600 0.003 0.014 0.016
              -0.660 -0.049 0.008 -0.023 -0.008
## mean logf
## mean ldtz
               0.017 0.009 -0.016 -0.106 -0.363 0.546
## mean_conc
              -0.682 0.080 0.037 0.018 0.241 0.310 0.110
m_undirected_type = lmer(data = final_sem, zRT_trim~ undirectedfac*Type +
                     mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c +
           (1|subject) + (1|trial_index) +
              + (1|target_word))
summary(m_undirected_type)
## Linear mixed model fit by REML ['lmerMod']
## Formula: zRT_trim ~ undirectedfac * Type + mean_len_c + mean_logf_c +
##
       mean_ldtz_c + mean_conc_c + (1 | subject) + (1 | trial_index) +
##
       +(1 | target_word)
##
      Data: final_sem
## REML criterion at convergence: 46109
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                       Max
```

```
## -2.6960 -0.7115 -0.1921 0.5381 4.1838
##
## Random effects:
                           Variance Std.Dev.
## Groups
               Name
## target_word (Intercept) 0.020883 0.14451
## trial_index (Intercept) 0.003296 0.05741
## subject
               (Intercept) 0.000000 0.00000
## Residual
                           0.950074 0.97472
## Number of obs: 16390, groups:
## target_word, 1741; trial_index, 240; subject, 80
## Fixed effects:
                        Estimate Std. Error t value
## (Intercept)
                                   0.013553
                                              5.962
                        0.080808
## undirectedfac1
                       -0.206014
                                   0.035371
                                             -5.824
## undirectedfac3
                       -0.023988
                                   0.020786
                                             -1.154
## undirectedfac4
                                   0.059740
                                            -2.888
                       -0.172530
## Type1
                        0.050177
                                   0.012291
                                             4.082
## mean_len_c
                        0.011838
                                   0.006793
                                              1.743
## mean logf c
                       -0.005793
                                   0.008106 -0.715
## mean_ldtz_c
                        0.051060
                                   0.063614
                                             0.803
## mean_conc_c
                       -0.077908
                                   0.010848
                                            -7.182
## undirectedfac1:Type1 -0.184880
                                   0.033675
                                             -5.490
## undirectedfac3:Type1 0.061184
                                   0.020029
                                              3.055
## undirectedfac4:Type1 0.035122
                                   0.058381
                                              0.602
## Correlation of Fixed Effects:
               (Intr) undrc1 undrc3 undrc4 Type1 mn_ln_ mn_lg_ mn_ld_ mn_cn_
## undirctdfc1 -0.351
## undirctdfc3 -0.588 0.230
## undirctdfc4 -0.207 0.078 0.136
## Type1
               0.076 -0.028 -0.049 -0.016
## mean_len_c -0.012 0.010 -0.004 0.011 -0.068
## mean_logf_c 0.005 -0.051 -0.003 -0.012 -0.006 -0.007
## mean_ldtz_c 0.017 -0.003 -0.006 -0.063 0.007 -0.364
                                                         0.545
## mean_conc_c -0.042 0.066 0.048 0.025 -0.003 0.240 0.309
                                                               0.110
## undrctd1:T1 -0.028 -0.450 0.018 0.005 -0.365 0.014 0.019 0.017 0.009
## undrctd3:T1 -0.047 0.022 0.435 0.011 -0.610 0.011 -0.012 0.008 0.026
## undrctd4:T1 -0.017 0.007 0.012 0.794 -0.210 0.014 0.003 -0.002 0.018
##
              un1:T1 un3:T1
## undirctdfc1
## undirctdfc3
## undirctdfc4
## Type1
## mean_len_c
## mean_logf_c
## mean_ldtz_c
## mean_conc_c
## undrctd1:T1
## undrctd3:T1
              0.223
## undrctd4:T1 0.077 0.130
car::Anova(m_undirected_type)
```

Analysis of Deviance Table (Type II Wald chisquare tests)

```
##
## Response: zRT_trim
                        Chisq Df Pr(>Chisq)
## undirectedfac
                    120.5610 3 < 2.2e-16 ***
## Type
                      36.6745 1
                                  1.396e-09 ***
## mean len c
                       3.0367 1
                                     0.0814 .
                                     0.4748
## mean logf c
                       0.5107 1
## mean ldtz c
                       0.6442 1
                                     0.4222
## mean conc c
                      51.5786 1 6.879e-13 ***
## undirectedfac:Type 49.6846 3 9.325e-11 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
final_sem_success = final_sem %>%
filter((undirectedfac == "1" & Type == "Related") |
        (undirectedfac == "2" & Type == "Unrelated") |
(undirectedfac == "3" & Type == "Unrelated") │
(undirectedfac == "4" & Type == "Unrelated"))
m_undirected_success = lmer(data = final_sem_success,
                        zRT_trim~ undirectedfac +
                    mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c +
           (1|subject) + (1|trial_index) +
             + (1|target_word))
summary(m_undirected_type)
## Linear mixed model fit by REML ['lmerMod']
## Formula: zRT trim ~ undirectedfac * Type + mean len c + mean logf c +
##
      mean_ldtz_c + mean_conc_c + (1 | subject) + (1 | trial_index) +
##
       +(1 | target_word)
##
      Data: final_sem
## REML criterion at convergence: 46109
## Scaled residuals:
              1Q Median
      Min
                               3Q
                                      Max
## -2.6960 -0.7115 -0.1921 0.5381 4.1838
##
## Random effects:
                           Variance Std.Dev.
## Groups
              Name
## target_word (Intercept) 0.020883 0.14451
## trial_index (Intercept) 0.003296 0.05741
## subject
                (Intercept) 0.000000 0.00000
## Residual
                           0.950074 0.97472
## Number of obs: 16390, groups:
## target_word, 1741; trial_index, 240; subject, 80
##
## Fixed effects:
                        Estimate Std. Error t value
## (Intercept)
                        0.080808 0.013553
                                             5.962
## undirectedfac1
                       -0.206014
                                   0.035371 -5.824
## undirectedfac3
                                   0.020786 -1.154
                       -0.023988
## undirectedfac4
                                   0.059740 -2.888
                       -0.172530
## Type1
                        0.050177
                                   0.012291
                                             4.082
## mean_len_c
                        0.011838
                                   0.006793
                                             1.743
```

```
## mean_logf_c
                       -0.005793
                                   0.008106 -0.715
                                   0.063614
## mean_ldtz_c
                        0.051060
                                              0.803
## mean conc c
                       -0.077908
                                   0.010848 - 7.182
## undirectedfac1:Type1 -0.184880
                                            -5.490
                                   0.033675
## undirectedfac3:Type1 0.061184
                                   0.020029
                                              3.055
## undirectedfac4:Type1 0.035122
                                             0.602
                                   0.058381
## Correlation of Fixed Effects:
##
              (Intr) undrc1 undrc3 undrc4 Type1 mn_ln_ mn_lg_ mn_ld_ mn_cn_
## undirctdfc1 -0.351
## undirctdfc3 -0.588 0.230
## undirctdfc4 -0.207 0.078 0.136
## Type1
              0.076 -0.028 -0.049 -0.016
## mean_len_c -0.012 0.010 -0.004 0.011 -0.068
## mean_logf_c 0.005 -0.051 -0.003 -0.012 -0.006 -0.007
## mean_ldtz_c 0.017 -0.003 -0.006 -0.063 0.007 -0.364 0.545
## mean_conc_c -0.042  0.066  0.048  0.025 -0.003  0.240  0.309  0.110
## undrctd1:T1 -0.028 -0.450 0.018 0.005 -0.365 0.014 0.019 0.017 0.009
## undrctd3:T1 -0.047 0.022 0.435 0.011 -0.610 0.011 -0.012 0.008 0.026
## undrctd4:T1 -0.017 0.007 0.012 0.794 -0.210 0.014 0.003 -0.002 0.018
##
              un1:T1 un3:T1
## undirctdfc1
## undirctdfc3
## undirctdfc4
## Type1
## mean_len_c
## mean_logf_c
## mean_ldtz_c
## mean_conc_c
## undrctd1:T1
## undrctd3:T1 0.223
## undrctd4:T1 0.077 0.130
car::Anova(m_undirected_type)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: zRT_trim
##
                        Chisq Df Pr(>Chisq)
## undirectedfac
                     120.5610 3 < 2.2e-16 ***
                      36.6745 1 1.396e-09 ***
## Type
## mean_len_c
                       3.0367 1
                                     0.0814 .
## mean_logf_c
                       0.5107 1
                                     0.4748
## mean ldtz c
                       0.6442 1
                                     0.4222
## mean conc c
                      51.5786 1 6.879e-13 ***
## undirectedfac:Type 49.6846 3 9.325e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
m_undirected_linear = lmer(data = final_sem, zRT_trim~ undirected +
                    mean_len + mean_logf + mean_ldtz + mean_conc +
           (1|subject) + (1|trial_index) +
             + (1|target_word))
final_sem$quadundirected = I(final_sem$undirected ^2)
```

```
m_undirected_quad = lmer(data = final_sem, zRT_trim~ undirected +
                          quadundirected +
                    mean_len + mean_logf + mean_ldtz + mean_conc +
           (1|subject) + (1|trial_index) +
             + (1|target_word))
summary(m_undirected_quad)
## Linear mixed model fit by REML ['lmerMod']
## Formula: zRT_trim ~ undirected + quadundirected + mean_len + mean_logf +
       mean_ldtz + mean_conc + (1 | subject) + (1 | trial_index) +
##
      +(1 | target_word)
##
     Data: final_sem
##
## REML criterion at convergence: 46191.7
##
## Scaled residuals:
##
              1Q Median
      Min
                               3Q
                                      Max
## -2.6081 -0.7142 -0.1969 0.5455 4.0848
##
## Random effects:
## Groups
               Name
                           Variance Std.Dev.
## target_word (Intercept) 0.024454 0.15638
## trial_index (Intercept) 0.003362 0.05798
## subject
               (Intercept) 0.000000 0.00000
## Residual
                           0.953191 0.97632
## Number of obs: 16390, groups:
## target_word, 1741; trial_index, 240; subject, 80
##
## Fixed effects:
                  Estimate Std. Error t value
##
## (Intercept)
                 -0.304249 0.122987 -2.474
                                       8.980
## undirected
                  0.523366
                             0.058284
## quadundirected -0.110522
                            0.011716 -9.433
## mean_len
                  0.015122
                             0.006858
                                       2.205
## mean_logf
                 -0.004177
                             0.008216 -0.508
## mean_ldtz
                             0.064381
                                       0.947
                  0.060984
## mean_conc
                 -0.077405
                             0.010987 -7.045
##
## Correlation of Fixed Effects:
##
              (Intr) undrct qdndrc men_ln mn_lgf mn_ldt
## undirected -0.548
## quadundrctd 0.508 -0.981
## mean len
              -0.495 -0.005 0.009
## mean logf
             -0.581 0.057 -0.053 -0.008
## mean_ldtz -0.005 0.049 -0.065 -0.363 0.546
## mean conc -0.528 -0.059 0.057 0.241 0.310 0.108
anova(m_undirected_linear, m_undirected_quad)
## refitting model(s) with ML (instead of REML)
## Data: final_sem
## Models:
## m_undirected_linear: zRT_trim ~ undirected + mean_len + mean_logf + mean_ldtz + mean_conc +
## m_undirected_linear: (1 | subject) + (1 | trial_index) + +(1 | target_word)
```

```
## m_undirected_quad: zRT_trim ~ undirected + quadundirected + mean_len + mean_logf +
## m_undirected_quad:
                         mean_ldtz + mean_conc + (1 | subject) + (1 | trial_index) +
## m undirected quad:
                         +(1 | target word)
                           AIC BIC logLik deviance Chisq Chi Df
##
## m_undirected_linear 10 46251 46328 -23115
                                               46231
## m undirected quad
                      11 46165 46249 -23071
                                               46143 87.975
                      Pr(>Chisq)
## m_undirected_linear
## m_undirected_quad
                       < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
sjPlot::plot_model(m_undirected_quad, type = "pred", terms = "quadundirected")
```

Predicted values for z RT trim

Plot Item Distribution

```
ggplot(undirected_rmisc, aes(x = undirected, y = items))+
geom_bar(stat = "identity", position = "dodge", width = 0.7, color= "black")+
theme_few()+
    xlab("Non-directed Path Length") + ylab("Number of Items") +
    ggtitle("Non-Directed Network Item Distribution") +
    theme(axis.text = element_text(size = rel(1)),
        axis.title = element_text(face = "bold", size = rel(1)),
        legend.title = element_text(face = "bold", size = rel(1)),
        plot.title = element_text(hjust = .5),
        strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Non-Directed Network Item Distribution

Plot Undirected

```
z_undirected_rmisc = Rmisc::summarySE(final_sem,
                        measurevar = "zRT_trim",
                        groupvars = c("undirectedfac", "Type"))
z_undirected_rmisc$undirectedfac = ordered(as.factor(as.character(z_undirected_rmisc$undirectedfac)),
z_undirected_rmisc$zRT_trim = as.numeric(z_undirected_rmisc$zRT_trim)
library(ggplot2)
library(ggthemes)
z_undirected_rmisc %>%
  mutate(Decision = factor(Type,
    levels = unique(Type),
                    labels = c("Related", "Unrelated"))) %>%
  ggplot(aes(x = undirectedfac, y = zRT_trim, group = Decision, color = Decision))+
  geom_point()+
# geom_smooth(method = "loess")+
geom_line()+
  geom_errorbar(aes(ymin=zRT_trim - ci, ymax=zRT_trim + ci),
             width=.2, color = "gray30",
             position = position_dodge(0.05))+
 theme_few()+
```

```
ylim(-0.35, 0.35)+
scale_color_wsj()+
#scale_x_continuous(breaks = c(1,2,3,4,5,6,10,15,20))+
    xlab("Undirected SDN Path Length") + ylab("") +
ggtitle("Undirected Step Distance Network") +
    theme(axis.text = element_text(size = rel(1)),
        axis.title = element_text(face = "bold", size = rel(1)),
        legend.title = element_text(face = "bold", size = rel(1)),
        plot.title = element_text(hjust = .5),
        strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Undirected Step Distance Network

Directed

```
items_directed_subject = group_by(final_sem, subject, newdirected) %>%
  summarise(items = n())
directed_rmisc = Rmisc::summarySE(items_directed_subject,
                        measurevar = "items",
                        groupvars = c("newdirected"))
final_sem$directedfac =
  ordered(as.factor(as.character(final_sem$newdirected)),
                            levels = c("1", "2", "3", "4", "5",
                                       "6", "7", "8"))
contrasts(final_sem$directedfac) = contr.treatment(8, base = 2)
final_sem$collapsedfac =
  ordered(as.factor(as.character(final_sem$directedcollapsed)),
                            levels = c("1", "2", "3", "4", "5", "H"))
contrasts(final_sem$collapsedfac) = contr.treatment(6, base = 2)
m_directed = lme4::lmer(data = final_sem, zRT_trim ~ collapsedfac +
                    mean_len + mean_logf + mean_ldtz + mean_conc +
           (1|subject) + (1|trial_index) +
              + (1|target_word))
summary(m_directed)
## Linear mixed model fit by REML ['lmerMod']
## Formula: zRT trim ~ collapsedfac + mean len + mean logf + mean ldtz +
      mean_conc + (1 | subject) + (1 | trial_index) + +(1 | target_word)
##
##
      Data: final_sem
##
## REML criterion at convergence: 44514.3
##
## Scaled residuals:
##
      Min
              1Q Median
                               3Q
                                      Max
## -2.5912 -0.7163 -0.1977 0.5463 4.0248
##
## Random effects:
## Groups
               Name
                           Variance Std.Dev.
## target_word (Intercept) 0.026530 0.16288
## trial_index (Intercept) 0.003269 0.05717
## subject
               (Intercept) 0.000000 0.00000
## Residual
                            0.953879 0.97667
## Number of obs: 15778, groups:
## target_word, 1673; trial_index, 240; subject, 80
##
## Fixed effects:
                 Estimate Std. Error t value
##
## (Intercept)
                 0.311816 0.108500
                                       2.874
## collapsedfac1 -0.214657  0.040746 -5.268
## collapsedfac3 0.048473 0.028336
                                      1.711
## collapsedfac4 -0.025313  0.026417 -0.958
## collapsedfac5 -0.091190 0.029539 -3.087
## collapsedfac6 -0.011259 0.041298 -0.273
## mean_len
                 0.013623 0.007061
                                      1.929
```

```
## mean logf
                -0.006138
                            0.008484 -0.724
## mean_ldtz
                0.045511
                            0.066514 0.684
## mean conc
                -0.079788
                            0.011362 - 7.022
##
## Correlation of Fixed Effects:
##
              (Intr) cllps1 cllps3 cllps4 cllps5 cllps6 men_ln mn_lgf mn_ldt
## collapsdfc1 -0.115
## collapsdfc3 -0.146 0.402
## collapsdfc4 -0.199 0.432 0.620
## collapsdfc5 -0.197  0.386  0.555  0.607
## collapsdfc6 -0.193  0.280  0.397  0.433  0.403
              -0.594 0.011 -0.009 0.007 -0.004
## mean_len
                                                 0.018
## mean_logf
             -0.660 -0.033 -0.002 0.021 0.034 0.042 0.005
## mean_ldtz
             0.031 -0.001 -0.006 -0.019 -0.047 -0.065 -0.366 0.534
## mean_conc -0.678 0.073 -0.004 0.034 0.035 0.084 0.249 0.322 0.102
m_directed_type = lme4::lmer(data = final_sem, zRT_trim ~ directedfac*Type
                    mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c +
           (1|subject) + (1|trial_index) +
             + (1|target_word))
summary(m_directed_type)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## zRT_trim ~ directedfac * Type + mean_len_c + mean_logf_c + mean_ldtz_c +
      mean_conc_c + (1 | subject) + (1 | trial_index) + +(1 | target_word)
##
     Data: final sem
##
## REML criterion at convergence: 44442.4
## Scaled residuals:
               1Q Median
## -2.5844 -0.7121 -0.1874 0.5423 4.0774
## Random effects:
## Groups
               Name
                           Variance Std.Dev.
## target_word (Intercept) 0.022793 0.15097
## trial_index (Intercept) 0.003194 0.05651
## subject
               (Intercept) 0.000000 0.00000
                           0.950535 0.97495
## Residual
## Number of obs: 15778, groups:
## target_word, 1673; trial_index, 240; subject, 80
##
## Fixed effects:
##
                      Estimate Std. Error t value
                      0.028435 0.022047
## (Intercept)
                                            1.290
## directedfac1
                     -0.119271
                                 0.046273 -2.578
## directedfac3
                      0.062237
                                 0.028858
                                          2.157
## directedfac4
                      0.021560
                                0.027911
                                            0.772
## directedfac5
                      0.012038
                                0.032574
                                           0.370
## directedfac6
                      0.027516
                                 0.048385
                                           0.569
## directedfac7
                     -0.082577
                                 0.113457 - 0.728
## directedfac8
                      0.316385
                                 0.217767
                                            1.453
## Type1
                     -0.012283
                                 0.020416
                                          -0.602
## mean_len_c
                     0.009983
                                 0.006997
                                           1.427
```

```
-0.007765
## mean_logf_c
                              0.008368 -0.928
## mean_ldtz_c
                    0.050858 0.065661 0.775
## mean conc c
                    -0.076973 0.011223 -6.858
## directedfac1:Type1 -0.152221
                              0.044035 -3.457
## directedfac3:Type1 0.058693
                               0.027394
                                         2.143
## directedfac4:Type1 0.101464
                              0.026540 3.823
## directedfac5:Type1 0.183593
                               0.030845
                                        5.952
## directedfac6:Type1 0.067104
                               0.046052 1.457
## directedfac7:Type1 0.137482
                               0.108368 1.269
## directedfac8:Type1 0.114581
                               0.204589 0.560
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE) or
      vcov(x)
                    if you need it
```

Plot directed

```
z_directed_rmisc = Rmisc::summarySE(final_sem,
                        measurevar = "zRT_trim",
                        groupvars = c("directedfac", "Type"))
z_directed_rmisc$collapsedfac2 = ordered(as.factor(as.character(z_directed_rmisc$directedfac)),
z_directed_rmisc = z_directed_rmisc %>% filter(collapsedfac2 != "NA")
z_directed_rmisc$zRT_trim = as.numeric(z_directed_rmisc$zRT_trim)
z_directed_rmisc = z_directed_rmisc %>% filter(! collapsedfac2 >5)
library(ggplot2)
library(ggthemes)
z_directed_rmisc %>%
  mutate(Decision = factor(Type,
   levels = unique(Type),
                    labels = c("Related", "Unrelated"))) %>%
  ggplot(aes(x = collapsedfac2, y = zRT_trim, group = Decision, color = Decision))+
  geom_point()+
# geom_smooth(method = "loess")+
geom_line()+
  geom_errorbar(aes(ymin=zRT_trim - ci, ymax=zRT_trim + ci),
             width=.2, color = "gray30",
             position = position_dodge(0.05))+
 theme few()+
 ylim(-0.35, 0.35)+
  scale_color_wsj()+
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Directed SDN Path Length") + ylab("z-RT") +
  ggtitle("Directed Step Distance Network") +
  theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
```

```
legend.title = element_text(face = "bold", size = rel(1)),
plot.title = element_text(hjust = .5),
strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Directed Step Distance Network

Plot collapsed directed

z-RT for Relatedness Judgments

Plot Item Distribution

```
items_directed$newdirected = as.factor(items_directed$newdirected)
ggplot(directed_rmisc, aes(x = newdirected, y = items))+
geom_bar(stat = "identity", position = "dodge", width = 0.7, color= "black")+
theme_few()+
    xlab("Directed Path Length") + ylab("Number of Items") +
    ggtitle("Directed Network Item Distribution") +
    theme(axis.text = element_text(size = rel(1)),
        axis.title = element_text(face = "bold", size = rel(1)),
        legend.title = element_text(face = "bold", size = rel(1)),
        plot.title = element_text(hjust = .5),
```

```
strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Warning: Removed 1 rows containing missing values (geom_bar).

Directed Network Item Distribution

LSA-Word2vec Simple Models

word2veccosine

1.000000 0.596135

z-scoring measures

Item Level

Cat-Cont Model

unconditional

```
##
      mean_conc_c, data = x)
##
## Residuals:
##
                1Q Median
       Min
                                 3Q
                                        Max
## -1.03713 -0.29805 -0.02506 0.26839 1.44977
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.001349 0.008962 0.150
                                         0.8804
## mean_len_c 0.019673 0.007766 2.533
                                          0.0114 *
## mean_logf_c -0.007934  0.008735  -0.908
                                          0.3638
## mean_ldtz_c 0.021674
                        0.069529
                                 0.312
                                          0.7553
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4084 on 2073 degrees of freedom
## Multiple R-squared: 0.03052,
                              Adjusted R-squared: 0.02864
## F-statistic: 16.31 on 4 and 2073 DF, p-value: 3.658e-13
car::Anova(final_item_unconditional)
## Anova Table (Type II tests)
##
## Response: zRT_trim
             Sum Sq
                     Df F value
                                  Pr(>F)
## mean_len_c
              1.07
                      1 6.4163
                                 0.01138 *
## mean_logf_c 0.14
                    1 0.8250
                                 0.36381
## mean ldtz c 0.02
                      1 0.0972
                                 0.75528
## mean_conc_c 6.20
                      1 37.1759 1.284e-09 ***
## Residuals 345.83 2073
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## r2 = 0.03052
word2vec
final item word2vec = lm(data = x,
                           zRT_trim ~ 1 + zword2vec +
                        mean_len_c+ mean_logf_c +
                             mean_ldtz_c + mean_conc_c)
summary(final_item_word2vec)
##
## Call:
## lm(formula = zRT_trim ~ 1 + zword2vec + mean_len_c + mean_logf_c +
```

3Q

##

##

##

Residuals:

Coefficients:

mean_ldtz_c + mean_conc_c, data = x)

1Q Median

-1.05831 -0.29857 -0.02343 0.26834 1.43200

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.001685 0.008957 0.188 0.8508
## zword2vec -0.018108 0.008814 -2.055 0.0401 *
## mean_len_c
             0.019990 0.007762
                                 2.575 0.0101 *
## mean_logf_c -0.008855 0.008739 -1.013
                                          0.3111
## mean_ldtz_c 0.019483 0.069483 0.280
                                          0.7792
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4081 on 2072 degrees of freedom
## Multiple R-squared: 0.03249,
                               Adjusted R-squared: 0.03015
## F-statistic: 13.91 on 5 and 2072 DF, p-value: 2.123e-13
anova(final_item_word2vec)
## Analysis of Variance Table
## Response: zRT_trim
               Df Sum Sq Mean Sq F value
##
                                          Pr(>F)
## zword2vec
                1 0.84 0.8355 5.0160
                                         0.02522 *
                1 4.52 4.5184 27.1264 2.094e-07 ***
## mean_len_c
                  0.06 0.0605 0.3633
## mean_logf_c
                1
                                         0.54675
## mean_ldtz_c
                1 0.12 0.1213 0.7282
                                         0.39356
## mean_conc_c
                    6.05 6.0528 36.3380 1.959e-09 ***
                1
             2072 345.13 0.1666
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
\#r2 = 0.03249
# un ique = 14.71\%
undirected
final_item_undirected = lm(data = x,
                           zRT_trim ~ undirectedfac +
                        mean_len_c+ mean_logf_c +
                             mean_ldtz_c + mean_conc_c)
summary(final_item_undirected)
##
## Call:
## lm(formula = zRT_trim ~ undirectedfac + mean_len_c + mean_logf_c +
##
      mean_ldtz_c + mean_conc_c, data = x)
##
## Residuals:
```

9.767 < 2e-16 ***

Max

Min

Coefficients:

(Intercept)

##

##

1Q

undirectedfac2 0.154474 0.015815

Median

-1.11909 -0.29240 -0.02195 0.25660 1.44034

ЗQ

Estimate Std. Error t value Pr(>|t|)

-0.069956 0.012424 -5.631 2.04e-08 ***

```
## undirectedfac3 0.056701
                            0.015538 3.649 0.00027 ***
                                     2.469 0.01364 *
## mean_len_c
                0.018731
                            0.007587
## mean logf c
                            0.008544 -0.508 0.61126
                -0.004344
                                      0.819 0.41309
## mean_ldtz_c
                 0.055904
                            0.068289
## mean conc c
                -0.079552
                            0.011358 -7.004 3.35e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.399 on 2070 degrees of freedom
                                  Adjusted R-squared: 0.07321
## Multiple R-squared: 0.07633,
## F-statistic: 24.44 on 7 and 2070 DF, p-value: < 2.2e-16
 anova(final_item_unconditional,
       final_item_word2vec, final_item_undirected) ## donot differ
## Analysis of Variance Table
##
## Model 1: zRT_trim ~ 1 + mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c
## Model 2: zRT_trim ~ 1 + zword2vec + mean_len_c + mean_logf_c + mean_ldtz_c +
      mean_conc_c
## Model 3: zRT_trim ~ undirectedfac + mean_len_c + mean_logf_c + mean_ldtz_c +
##
      mean_conc_c
    Res.Df
              RSS Df Sum of Sq
                                    F Pr(>F)
## 1
      2073 345.83
      2072 345.13 1
                       0.7031 4.4171 0.0357 *
      2070 329.49 2 15.6404 49.1300 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## r2 = 0.07633
# unique - 12.75%
```

LSA

Quintile Figure

- ## Warning: Removed 2 rows containing missing values (geom_point).
- ## Warning: Removed 2 rows containing missing values (geom_path).
- ## Warning: Removed 2 rows containing missing values (geom_errorbar).

LSA Model

word2vec

Quintile Figure

```
final_word2vec = final_word2vec %>%
  mutate(word2vecquintile = ntile(zword2vec, 5))
```

```
word2vec_quintile_means = Rmisc::summarySE(final_word2vec,
                                  measurevar = "zRT_trim",
                                  groupvars = c("word2vecquintile", "Type"))
word2vec_quintile_means$reversecosine = 6 - word2vec_quintile_means$word2vecquintile
word2vec_quintile_means %>%mutate(Decision = factor(Type,
   levels = unique(Type),
                    labels = c("Related", "Unrelated"))) %>%
ggplot(aes(x = reversecosine, y = zRT_trim,
           group = Type, color = Type))+
geom_point()+
geom_line()+
 ylim(-0.35,0.35)+
   geom_errorbar(aes(ymin=zRT_trim - se, ymax=zRT_trim + se),
              width=.2, color = "gray30",
              position = position_dodge(0.05))+
  theme_few()+
  scale_color_wsj()+
   xlab("word2vec Cosine Quintile") + ylab("z-RT") +
  ggtitle("word2vec Model") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

word2vec Model

Model Comparison Approach

Cat Cont

Cat cont R2

```
final_unconditional_model = lm(data = x,
              zRT_trim ~ mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c)
summary(final_unconditional_model)
##
## Call:
## lm(formula = zRT trim ~ mean len c + mean logf c + mean ldtz c +
      mean_conc_c, data = x)
##
## Residuals:
       Min
                1Q
                    Median
                                3Q
                                       Max
## -1.03601 -0.29837 -0.02489 0.26983 1.45360
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                                  0.082
## (Intercept) 0.0007387 0.0090013
                                         0.9346
## mean_len_c
             0.0195338 0.0078109
                                   2.501
                                          0.0125 *
## mean_logf_c -0.0080274 0.0088013 -0.912
                                          0.3618
## mean_ldtz_c 0.0169568 0.0699064
                                  0.243
                                          0.8084
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 0.4086 on 2058 degrees of freedom
## Multiple R-squared: 0.02924, Adjusted R-squared: 0.02735
## F-statistic: 15.5 on 4 and 2058 DF, p-value: 1.704e-12
## R squared = 2.9%
final_model_lsa = lm(data = x,
                            zRT_trim ~ LSA2 + LSA +
                      mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c)
summary(final model lsa)
##
## Call:
## lm(formula = zRT_trim ~ LSA2 + LSA + mean_len_c + mean_logf_c +
      mean_ldtz_c + mean_conc_c, data = x)
##
## Residuals:
##
       Min
                 1Q
                    Median
                                  ЗQ
                                          Max
## -1.05153 -0.29489 -0.02019 0.26307 1.47201
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.015492  0.015085 -1.027  0.30455
## LSA2
             -1.187568 0.261121 -4.548 5.73e-06 ***
## LSA
              ## mean_len_c
             0.020440
                        0.007771
                                   2.630 0.00859 **
## mean_logf_c -0.007452  0.008784  -0.848  0.39633
## mean ldtz c 0.020814
                         0.069715
                                  0.299 0.76531
                         0.011674 -5.359 9.31e-08 ***
## mean_conc_c -0.062558
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4061 on 2056 degrees of freedom
## Multiple R-squared: 0.04194,
                                 Adjusted R-squared: 0.03915
## F-statistic:
                 15 on 6 and 2056 DF, p-value: < 2.2e-16
## 0.85%
final_model_word2vec = lm(data = x,
                            zRT_trim ~ word2vec2 + word2veccosine+
                           mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c)
summary(final_model_word2vec)
##
## Call:
## lm(formula = zRT_trim ~ word2vec2 + word2veccosine + mean_len_c +
##
      mean_logf_c + mean_ldtz_c + mean_conc_c, data = x)
##
## Residuals:
                 1Q
                    Median
## -1.01400 -0.29738 -0.02651 0.26745 1.48076
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                            0.016282 -2.621 0.00883 **
## (Intercept)
                 -0.042677
```

```
## word2vec2
             -1.859935
                          0.286316 -6.496 1.03e-10 ***
## word2veccosine 0.821874 0.158820 5.175 2.50e-07 ***
## mean len c 0.021869 0.007735 2.827 0.00474 **
             -0.007486 0.008721 -0.858 0.39079
## mean_logf_c
## mean_ldtz_c
               0.009681
                          0.069173
                                   0.140 0.88870
## mean_conc_c -0.070664
                          0.011506 -6.142 9.77e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4043 on 2056 degrees of freedom
## Multiple R-squared: 0.05076,
                               Adjusted R-squared: 0.04799
## F-statistic: 18.32 on 6 and 2056 DF, p-value: < 2.2e-16
## 0.9 %
final_model_undirected = lm(data = x,
                          zRT_trim ~ undirectedfac +
                           mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c)
summary(final_model_undirected)
##
## Call:
## lm(formula = zRT_trim ~ undirectedfac + mean_len_c + mean_logf_c +
      mean_ldtz_c + mean_conc_c, data = x)
##
## Residuals:
      Min
                  Median
               1Q
                               3Q
                                       Max
## -1.11752 -0.29209 -0.02237 0.25873 1.44097
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               ## undirectedfac2 0.152965
                         0.015823 9.667 < 2e-16 ***
## undirectedfac3 0.056965 0.015548 3.664 0.000255 ***
## mean_len_c
               -0.004453
                          0.008611 -0.517 0.605089
## mean_logf_c
                                   0.771 0.441021
## mean_ldtz_c
               0.052929
                          0.068683
## mean_conc_c -0.078270
                          0.011393 -6.870 8.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3992 on 2055 degrees of freedom
## Multiple R-squared: 0.07462,
                               Adjusted R-squared: 0.07147
## F-statistic: 23.67 on 7 and 2055 DF, p-value: < 2.2e-16
## 7.46%
final model directed = lm(data = x,
                          zRT_trim ~ directedcollapsed +
                         mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c)
summary(final_model_directed)
```

Call:

```
## lm(formula = zRT_trim ~ directedcollapsed + mean_len_c + mean_logf_c +
##
      mean_ldtz_c + mean_conc_c, data = x)
##
## Residuals:
                 1Q
                      Median
                                   3Q
## -1.11153 -0.29532 -0.03285 0.26133 1.50279
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     -0.018950
                                 0.010706 -1.770
                                                   0.0769 .
## directedcollapsed1 -0.161105
                                 0.031268 -5.152 2.82e-07 ***
                                 0.021379
                                           2.108
## directedcollapsed2 0.045061
                                                   0.0352 *
## directedcollapsed3
                     0.097279
                                 0.019031
                                            5.112 3.49e-07 ***
                                 0.016777
                                                   0.2042
## directedcollapsed4 0.021310
                                            1.270
## directedcollapsed5 -0.038993
                                 0.019924 -1.957
                                                    0.0505 .
## mean_len_c
                      0.018586
                                 0.007728
                                            2.405
                                                    0.0163 *
## mean_logf_c
                     -0.007167
                                 0.008725 -0.821
                                                    0.4115
## mean ldtz c
                      0.030760
                                 0.069406
                                           0.443
                                                    0.6577
                                 0.011572 -6.546 7.43e-11 ***
## mean_conc_c
                     -0.075750
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4041 on 2053 degrees of freedom
## Multiple R-squared: 0.0529, Adjusted R-squared: 0.04874
## F-statistic: 12.74 on 9 and 2053 DF, p-value: < 2.2e-16
## 5.29%
final_model_kenett = lm(data = x,
                             zRT_trim ~ kenettfac +
                          mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c)
summary(final_model_kenett)
##
## Call:
## lm(formula = zRT_trim ~ kenettfac + mean_len_c + mean_logf_c +
##
      mean_ldtz_c + mean_conc_c, data = x)
##
## Residuals:
       Min
                 10 Median
                                   30
## -1.15111 -0.30004 -0.02397 0.26276 1.38991
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.001381
                          0.008855
                                   0.156 0.876120
                          0.019662 -3.318 0.000922 ***
## kenettfac1 -0.065241
## kenettfac2
              0.107337
                          0.019960 5.378 8.41e-08 ***
## kenettfac3
              0.068960
                          0.019892
                                   3.467 0.000538 ***
## kenettfac4
              0.023482
                          0.019583
                                    1.199 0.230623
## kenettfac5 -0.016479
                          0.020040 -0.822 0.410988
## mean len c
              0.018781
                          0.007701
                                    2.439 0.014816 *
## mean_logf_c -0.009344
                          0.008665 -1.078 0.280994
## mean_ldtz_c 0.005937
                          0.068815
                                    0.086 0.931252
## mean_conc_c -0.064532
                          0.011451 -5.635 1.99e-08 ***
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4019 on 2053 degrees of freedom
## Multiple R-squared: 0.0633, Adjusted R-squared: 0.0592
## F-statistic: 15.42 on 9 and 2053 DF, p-value: < 2.2e-16
## 6.33%
final model combined = lm(data = x,
                             zRT_trim ~ kenettfac +
                             directedcollapsed + undirectedfac +
                            mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c )
summary(final_model_combined)
##
## Call:
## lm(formula = zRT_trim ~ kenettfac + directedcollapsed + undirectedfac +
##
      mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c, data = x)
##
## Residuals:
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -1.18162 -0.28288 -0.02718 0.25645
                                      1.45782
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                               0.013177 -4.532 6.17e-06 ***
## (Intercept)
                     -0.059719
                     -0.024471
                                0.024523 -0.998 0.318450
## kenettfac1
## kenettfac2
                     0.092542
                                0.021161
                                          4.373 1.29e-05 ***
## kenettfac3
                                0.019799 2.282 0.022570 *
                      0.045189
## kenettfac4
                      0.009806
                                 0.019702 0.498 0.618727
                                0.021308 -0.846 0.397912
## kenettfac5
                     -0.018016
## directedcollapsed1 0.047850
                                0.052267
                                           0.916 0.360036
## directedcollapsed2 -0.033038
                                0.024012 -1.376 0.168996
## directedcollapsed3 0.032358
                                0.020848
                                           1.552 0.120794
## directedcollapsed4 -0.009192
                                0.019418 -0.473 0.636016
## directedcollapsed5 -0.050516
                                 0.022504 -2.245 0.024893 *
## undirectedfac1
                     -0.172237
                                 0.042453 -4.057 5.15e-05 ***
## undirectedfac2
                      0.130731
                                 0.020092
                                           6.507 9.64e-11 ***
## undirectedfac3
                                 0.021023
                                           3.487 0.000499 ***
                      0.073301
## mean len c
                      0.017590
                                0.007578
                                          2.321 0.020378 *
## mean_logf_c
                     -0.006357
                                 0.008530 -0.745 0.456205
## mean_ldtz_c
                     0.038972
                                 0.068128
                                          0.572 0.567361
## mean_conc_c
                     -0.074881
                                 0.011360 -6.592 5.52e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3945 on 2045 degrees of freedom
## Multiple R-squared: 0.1007, Adjusted R-squared: 0.09327
## F-statistic: 13.48 on 17 and 2045 DF, p-value: < 2.2e-16
car::Anova(final_model_combined)
## Anova Table (Type II tests)
## Response: zRT_trim
```

```
##
                     Sum Sq
                             Df F value
                                           Pr(>F)
                              5 8.5671 4.834e-08 ***
## kenettfac
                       6.67
## directedcollapsed 1.77
                             5 2.2790 0.04449 *
## undirectedfac
                      7.10
                             3 15.2141 8.592e-10 ***
## mean_len_c
                       0.84
                              1 5.3876
                                         0.02038 *
## mean logf c
                      0.09 1 0.5554
                                           0.45620
## mean ldtz c
                      0.05
                              1 0.3272
                                           0.56736
## mean_conc_c
                       6.76
                              1 43.4481 5.523e-11 ***
## Residuals
                     318.31 2045
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## cannot use anova because models are non nested
## thus using AIC and BIC with covariates
# > AIC(final_model_undirected)
# [1] 2076.054
# > AIC(final_model_kenett)
# [1] 2105.138
\# > AIC(final\_model\_directed)
# [1] 2127.933
# > AIC(final_model_lsa)
# [1] 2153.458
# > AIC(final_model_word2vec)
# [1] 2151.271
# > stats4::BIC(final_model_kenett)
# [1] 2167.089
# > stats4::BIC(final_model_undirected)
# [1] 2126.741
# > stats4::BIC(final_model_directed)
# [1] 2189.884
\# > stats4::BIC(final\_model\_lsa)
# [1] 2192.881
# > stats4::BIC(final_model_word2vec)
# [1] 2190.694
## without covariates
# > AIC(final_model_undirected)
# [1] 2147.08
# > AIC(final_model_kenett)
# [1] 2152.223
# > AIC(final_model_directed)
# [1] 2190.518
\# > AIC(final\_model\_lsa)
# [1] 2206.424
# > AIC(final_model_word2vec)
# [1] 2205.103
# > stats4::BIC(final_model_undirected)
# [1] 2175.24
# > stats4::BIC(final_model_kenett)
# [1] 2191.646
# > stats4::BIC(final_model_directed)
```

```
# [1] 2229.941

# > stats4::BIC(final_model_lsa)

# [1] 2223.32

# > stats4::BIC(final_model_word2vec)

# [1] 2221.999
```

Combined zRT plot

```
final_word2vec$undirectedfacfinal = as.factor(final_word2vec$zUndirected)
final_word2vec$directedfacfinal = as.factor(final_word2vec$zDirected)
final_word2vec$kenettfacfinal = as.factor(final_word2vec$zKenett)
final_word2vec$LSAfacfinal = as.factor(round(final_word2vec$LSAquintile))
final_word2vec$word2vecfacfinal = as.factor(round(final_word2vec$word2vecquintile))
z sem rt rel agg rmisc = Rmisc::summarySE(final word2vec,
                        measurevar = "zRT_trim",
                        groupvars = c("pathlength", "Type"))
colnames(z_sem_rt_rel_agg_rmisc) = c("measure", "Type", "N",
                                     "zRT trim", "sd", "se", "ci")
z sem rt rel agg rmisc$Representation = "ACN"
z_sem_rt_rel_agg_rmisc = z_sem_rt_rel_agg_rmisc %>%
  filter((Type == "Related" & measure == 1) |
           (Type == "Unrelated" & measure != 1))
z_undirected_rmisc = Rmisc::summarySE(final_word2vec,
                        measurevar = "zRT_trim",
                        groupvars = c("undirectedfac", "Type"))
colnames(z_undirected_rmisc) = c("measure", "Type", "N",
                                     "zRT_trim", "sd", "se", "ci")
z undirected rmisc$Representation = "Undirected SDN"
z_undirected_rmisc = z_undirected_rmisc %>%
  filter((Type == "Related" & measure == 1) |
           (Type == "Unrelated" & measure != 1))
z_directed_rmisc = Rmisc::summarySE(final_word2vec,
                        measurevar = "zRT_trim",
                        groupvars = c("directedfac", "Type"))
colnames(z_directed_rmisc) = c("measure", "Type", "N",
                                     "zRT_trim", "sd", "se", "ci")
z_directed_rmisc$Representation = "Directed SDN"
z_directed_rmisc = z_directed_rmisc %>% filter(measure <= 5)</pre>
z_directed_rmisc = z_directed_rmisc %>%
  filter((Type == "Related" & measure == 1) |
           (Type == "Unrelated" & measure != 1))
word2vec_cosine_agg = Rmisc::summarySE(final_word2vec,
```

```
measurevar = "zRT_trim",
                                        groupvars = c("word2vecfacfinal", "Type"))
colnames(word2vec_cosine_agg) = c("measure", "Type", "N",
                                     "zRT_trim", "sd", "se", "ci")
word2vec_cosine_agg$Representation = "word2vec"
word2vec_cosine_agg = word2vec_cosine_agg %>%
  filter((Type == "Related" & measure == 5) |
           (Type == "Unrelated" & measure != 5))
word2vec_cosine_agg = word2vec_cosine_agg[,-c(1)]
x = as.data.frame(matrix(NA, nrow = 5, ncol = 1))
colnames(x) = "measure"
x$measure = c(5,4,3,2,1)
word2vec_cosine_agg = cbind(x, word2vec_cosine_agg)
LSA_cosine_agg = Rmisc::summarySE(final_word2vec,
                                        measurevar = "zRT trim",
                                        groupvars = c("LSAfacfinal", "Type"))
colnames(LSA_cosine_agg) = c("measure", "Type", "N",
                                     "zRT_trim", "sd", "se", "ci")
LSA_cosine_agg$Representation = "LSA"
LSA_cosine_agg = LSA_cosine_agg %>%
  filter((Type == "Related" & measure == 5) |
           (Type == "Unrelated" & measure != 5))
LSA_cosine_agg = LSA_cosine_agg[,-c(1)]
x = as.data.frame(matrix(NA, nrow = 5, ncol = 1))
colnames(x) = "measure"
x$measure = c(5,4,3,2,1)
LSA_cosine_agg = cbind(x, LSA_cosine_agg)
combined_zrt_plot = rbind(z_sem_rt_rel_agg_rmisc,
                           z_undirected_rmisc,
                          z_directed_rmisc,
                          word2vec_cosine_agg,
                          LSA_cosine_agg)
combined_zrt_plot$measurefac = ordered(as.factor(as.character(combined_zrt_plot$measure)),
                            levels = c("1", "2", "3", "4", "5", "6",
combined_zrt_plot$Representation =ordered(as.factor(as.character(combined_zrt_plot$Representation)),
    levels = c("ACN", "Undirected SDN", "Directed SDN", "LSA", "word2vec"))
combined_zrt_plot1 =combined_zrt_plot %>%
```

```
filter(!Representation %in% c("word2vec", "LSA"))
combined_zrt_plot1 %>%
  ggplot(aes(x = measurefac, y = zRT_trim,
             group = Representation, color = Representation))+
  geom_point()+
geom_line(size = 1)+
   geom_errorbar(aes(ymin=zRT_trim - se, ymax=zRT_trim + se),
              width=.2,
              position = position_dodge(0))+
 theme_few()+
  scale_color_gdocs()+
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
    xlab("Network Path Length") + ylab("Standardized RT") +
  ggtitle("Experiment 1: Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Experiment 1: Relatedness Judgments

z-scores for Path Lengths

```
library(dplyr)
z_pathlength1 = final_sem %>% filter(pathlength == "1")
z_pathlength2 = final_sem %>% filter(pathlength == "2")
z_pathlength3 = final_sem %>% filter(pathlength == "3")
z_pathlength4 = final_sem %>% filter(pathlength == "4")
z_pathlength6 = final_sem %>% filter(pathlength == "6")
z_pathlength15 = final_sem %>% filter(pathlength == "15")
```

Creating separate z-scores

```
sem_firsttrim1 = sem_firsttrim %>% filter(pathlength == "15")
## aggregate per subject all IVs and DVs
meanRT = group_by(sem_firsttrim1, subject) %>%
  summarise_at(vars(rt), mean)
colnames(meanRT) = c("subject", "MeanRT")
sdRT = group_by(sem_firsttrim1, subject) %>%
  summarise_at(vars(rt), sd)
colnames(sdRT) = c("subject", "sdRT")
RT_agg = merge(meanRT, sdRT, by = "subject")
## merge aggregate info with long data
sem_z_1 = merge(sem_firsttrim1, RT_agg, by = "subject", all.x = T)
## person and grand-mean centered scores using original and aggregate
library(dplyr)
sem_z_1 = sem_z_1 %>% mutate(zRT = (rt - MeanRT)/sdRT)
## checking: subject level means should be zero
sub_pic = group_by(sem_z_1, subject) %>%
 summarise_at(vars(zRT), mean)
```

Item Diagnostics

```
item_mean = group_by(new_sem_z, pathlength, proc, ItemNo, Type) %>%
   summarise_at(vars(zRT_trim), mean) %>%
   arrange(ItemNo)

sem*proc = as.factor(sem*proc)

item_rel = group_by(sem, pathlength, ItemNo, Type) %>%
   summarise(Trials = n())

item_rel_proc = group_by(sem, pathlength, proc, ItemNo, Type) %>%
```

```
summarise(Trials = n())

item_rel_rt = group_by(sem, pathlength, ItemNo, Type) %>%
    summarise_at(vars(rt), mean)

item_rt_collapsed = group_by(sem, pathlength, ItemNo) %>%
    summarise_at(vars(rt), mean)

item_rel_wide = tidyr::spread(item_rel, Type, Trials)

item_rel_rt_wide = tidyr::spread(item_rel_rt, Type, rt)

item_sub = group_by(sem, ItemNo, subject) %>%
    summarise(Subjects = n())

item_rel_wide$Related = ifelse(is.na(item_rel_wide$Related), 0, item_rel_wide$Related)

item_rel_wide$Unrelated = ifelse(is.na(item_rel_wide$Unrelated), 0, item_rel_wide$Unrelated)

item_rel_rt_wide$Related = ifelse(is.na(item_rel_rt_wide$Related), 0, item_rel_rt_wide$Related)

item_rel_rt_wide$Related = ifelse(is.na(item_rel_rt_wide$Related), 0, item_rel_rt_wide$Related)

item_rel_rt_wide$Unrelated = ifelse(is.na(item_rel_rt_wide$Unrelated), 0, item_rel_rt_wide$Unrelated)
```

Item-Wise Slopes for Path Lengths

```
p1 = item rel wide %>% filter (pathlength == 1)
p1_sample = p1[1:10,]
ggplot(p1, aes(x = Related,
                      y = Unrelated, group = ItemNo, color = ItemNo))+
  geom_point(position = "jitter")+
  #geom_line(group=1)+
  geom_text(aes(label=ItemNo),hjust=0, vjust=0) +
 theme_few()+
   guides(color = FALSE)+
  xlab("Subjects who rated item as RELATED") + ylab("Subjects who rated item as UNRELATED") +
  ggtitle("Item Judgments for Path Length 1")
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
         legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```



```
p2 = item_rel_wide %>% filter (pathlength == 1)
p2_sample = p2[1:50,]
ggplot(p2, aes(x = Related,
                      y = Unrelated, group = ItemNo, color = ItemNo))+
  geom_point(position = "jitter")+
  #geom_line(group=1)+
  geom_text(aes(label=ItemNo),hjust=0, vjust=0) +
 theme_few()+
    guides(color = FALSE)+
 theme_few()+
      guides(color = FALSE)+
  xlab("Subjects who rated item as RELATED") + ylab("Subjects who rated item as UNRELATED") +
  ggtitle("Item Judgments for Path Length 2") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```



```
p3 = item_rel_wide %>% filter (pathlength == 3)
p3_sample = p3[1:50,]
ggplot(p3, aes(x = Related,
                      y = Unrelated, group = ItemNo, color = ItemNo))+
  geom_point(position = "jitter")+
  #geom_line(group=1)+
  geom_text(aes(label=ItemNo),hjust=0, vjust=0) +
 theme_few()+
    guides(color = FALSE)+
 theme_few()+
 theme_few()+
  xlab("Subjects who rated item as RELATED") + ylab("Subjects who rated item as UNRELATED") +
  ggtitle("Item Judgments for Path Length 3") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```



```
p4 = item_rel_wide %>% filter (pathlength == 4)
p4_sample = p4[1:50,]
ggplot(p4, aes(x = Related,
                      y = Unrelated, group = ItemNo, color = ItemNo))+
  geom_point(position = "jitter")+
  #geom_line(group=1)+
  geom_text(aes(label=ItemNo),hjust=0, vjust=0) +
 theme_few()+
    guides(color = FALSE)+
 theme_few()+
    guides(color = FALSE)+
  xlab("Subjects who rated item as RELATED") + ylab("Subjects who rated item as UNRELATED") +
  ggtitle("Item Judgments for Path Length 4") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```



```
p6 = item_rel_wide %>% filter (pathlength == 6)
p6_{sample} = p6[1:50,]
ggplot(p6, aes(x = Related,
                      y = Unrelated, group = ItemNo, color = ItemNo))+
  geom_point(position = "jitter")+
  #geom_line(group=1)+
  geom_text(aes(label=ItemNo),hjust=0, vjust=0) +
 theme_few()+
    guides(color = FALSE)+
 theme_few()+
  guides(color = FALSE)+
  xlab("Subjects who rated item as RELATED") + ylab("Subjects who rated item as UNRELATED") +
  ggtitle("Item Judgments for Path Length 6") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```



```
p15 = item_rel_wide %>% filter (pathlength == 15)
p15_sample = p15[1:50,]
ggplot(p15, aes(x = Related,
                      y = Unrelated, group = ItemNo, color = ItemNo))+
  geom_point(position = "jitter")+
  #geom_line(group=1)+
  geom_text(aes(label=ItemNo),hjust=0.1, vjust=0.1) +
 theme_few()+
    guides(color = FALSE)+
 theme_few()+
  xlab("Subjects who rated item as RELATED") + ylab("Subjects who rated item as UNRELATED") +
  ggtitle("Item Judgments for Path Length 15") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```


Item Level Analyses

Proportion of Subjects

Plot

```
measurevar = "Proportion",
                        groupvars = c("pathlength", "Type"))
item agg$pathlengthfac = ordered(as.factor(as.character(item agg$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
item_agg %>%
  ggplot(aes(x = pathlengthfac, y = Proportion, group = Type, fill = Type))+
# geom_smooth(method = "loess")+
geom_bar(stat = "identity", position = "dodge", width = 0.7, color= "black")+
  geom_errorbar(aes(ymin=Proportion - ci, ymax=Proportion + ci),
             width=.05, color = "gray30",
             position = position_dodge(0.8))+
 theme_few()+
  scale_fill_solarized()+
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
    xlab("Path Length") + ylab("Number of Subjects") +
  ggtitle("Item-Level Subject Counts for Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Item-Level Subject Counts for Relatedness Judgments

ANOVA

```
## item_rel_wide has 1200 rows with 0s for items. convert that into wide.
library(tidyr)
## Warning: package 'tidyr' was built under R version 3.4.4
##
## Attaching package: 'tidyr'
## The following object is masked from 'package:Matrix':
##
##
       expand
item_prop_data = item_rel_wide %>%
  gather(Type, Trials, Related:Unrelated)
item prop data$Proportion = item prop data$Trials/16
item_prop_data = item_prop_data[order(item_prop_data$ItemNo),]
item_prop_data$pathlengthfac = ordered(as.factor(as.character(item_prop_data$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
library(lme4)
itemrelunrel_aov = aov(data = item_prop_data,
                       Proportion ~ pathlengthfac*Type +
                     Error(ItemNo/(Type)))
summary(itemrelunrel_aov)
##
## Error: ItemNo
                   Df
                         Sum Sq Mean Sq F value Pr(>F)
## pathlengthfac
                   5 2.900e-28 5.896e-29
                                           0.317 0.903
## Residuals
               1194 2.223e-25 1.862e-28
##
## Error: ItemNo:Type
                        Df Sum Sq Mean Sq F value Pr(>F)
##
                         1 66.54
                                    66.54
                                           750.4 <2e-16 ***
## Type
                         5 81.84
                                    16.37
                                            184.6 <2e-16 ***
## pathlengthfac:Type
## Residuals
                      1194 105.88
                                     0.09
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(contrasts = c('contr.sum', 'contr.poly'))
library(lsmeans)
library(multcomp)
 sem_lsm = lsmeans::lsmeans(itemrelunrel_aov, c("pathlengthfac", "Type"))
prime_effect = cld(sem_lsm, alpha = 0.05,
                 adjust = "tukey", details = TRUE, by = "pathlengthfac")
library(knitr)
kable(subset(prime_effect$comparisons,prime_effect$comparisons$p.value < 0.05))</pre>
```

	contrast	pathlengthfac	estimate	SE	df	t.ratio	p.value
1	Related - Unrelated	1	0.328750	0.0297781	1194	11.03999	

	contrast	pathlengthfac	estimate	SE	df	t.ratio	p.value
3	Related - Unrelated	3	0.406875	0.0297781	1194	13.66356	0
4	Related - Unrelated	4	0.467500	0.0297781	1194	15.69945	0
5	Related - Unrelated	6	0.675000	0.0297781	1194	22.66765	0
6	Related - Unrelated	15	0.730625	0.0297781	1194	24.53564	0

Raw RT Plot Collapsed

```
itemrt_agg_collapsed$pathlengthfac = ordered(as.factor(as.character(itemrt_agg_collapsed$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
itemrt_agg_collapsed %>%
 ggplot(aes(x = pathlengthfac, y = rt, group = 1))+
# geom_smooth(method = "loess")+
  geom_point()+
geom_line(color = "red")+
  geom_errorbar(aes(ymin=rt - ci, ymax=rt + ci),
            width=.05, color = "gray30",
             position = position_dodge(0))+
theme_few()+
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Path Length") + ylab("Raw RT") +
  ggtitle("Item-Level Raw RTs for Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Item-Level Raw RTs for Relatedness Judgments


```
\#\#\# RT ANOVA Collapsed
```

```
item_rt_collapsed$pathlengthfac = ordered(as.factor(as.character(item_rt_collapsed$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
item_rt_collapsed$ItemNo = as.factor(item_rt_collapsed$ItemNo)
item_rt_collapsed_aov = aov(data = item_rt_collapsed,
                            rt ~ pathlengthfac)
summary(item_rt_collapsed_aov)
                        Sum Sq Mean Sq F value
                                                 Pr(>F)
## pathlengthfac
                   5
                        476614
                                 95323
                                        5.411 6.27e-05 ***
## Residuals
                 1194 21033333
                                 17616
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c('contr.sum', 'contr.poly'))
library(lsmeans)
library(multcomp)
sem_lsm = lsmeans::lsmeans(item_rt_collapsed_aov, c("pathlengthfac"))
prime_effect = cld(sem_lsm, alpha = 0.05,
                 adjust = "tukey", details = TRUE)
library(knitr)
kable(subset(prime_effect$comparisons,prime_effect$comparisons$p.value < 1 ))</pre>
```

contrast	estimate	SE	df	t.ratio	p.value
1 - 15	12.170625	13.27247	1194	0.9169824	0.9422321
6 - 15	21.844062	13.27247	1194	1.6458169	0.5681637

contrast	estimate	SE	df	t.ratio	p.value
6 - 1	9.673438	13.27247	1194	0.7288345	0.9784016
3 - 15	33.605312	13.27247	1194	2.5319554	0.1156991
3 - 1	21.434687	13.27247	1194	1.6149730	0.5887403
3 - 6	11.761250	13.27247	1194	0.8861385	0.9498706
4 - 15	40.122500	13.27247	1194	3.0229857	0.0306324
4 - 1	27.951875	13.27247	1194	2.1060034	0.2847493
4 - 6	18.278437	13.27247	1194	1.3771688	0.7408261
4 - 3	6.517188	13.27247	1194	0.4910303	0.9964910
2 - 15	61.653438	13.27247	1194	4.6452106	0.0000553
2 - 1	49.482813	13.27247	1194	3.7282282	0.0027675
2 - 6	39.809375	13.27247	1194	2.9993937	0.0328732
2 - 3	28.048125	13.27247	1194	2.1132552	0.2809956
2 - 4	21.530938	13.27247	1194	1.6222249	0.5839069

Raw RT Plot Rel-Unrel

```
itemrt_agg$pathlengthfac = ordered(as.factor(as.character(itemrt_agg$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
itemrt_agg %>%
 ggplot(aes(x = pathlengthfac, y = rt, group = Type, color = Type))+
# geom_smooth(method = "loess")+
 geom_point()+
geom_line()+
  geom_errorbar(aes(ymin=rt - ci, ymax=rt + ci),
             width=.05, color = "gray30",
             position = position_dodge(0))+
 theme_few()+
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Path Length") + ylab("Raw RT") +
  ggtitle("Item-Level Raw RTs for Relatedness Judgments") +
  theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
         legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Item-Level Raw RTs for Relatedness Judgments

RT ANOVA Rel-Unrel

Error: ItemNo

```
##
                   Df
                         Sum Sq Mean Sq F value Pr(>F)
                   5
## pathlengthfac
                         759471 151894
                                          1.447 0.205
## Residuals
                 1069 112191545 104950
##
## Error: ItemNo:Type
##
                              Sum Sq Mean Sq F value
                        Df
                                                       Pr(>F)
                             1957921 1957921 19.094 1.37e-05 ***
## Type
                         1
## pathlengthfac:Type
                        5
                             1960483 392097
                                               3.824 0.00194 **
## Residuals
                      1069 109616185 102541
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
item_rt_aov = lme4::lmer(data = item_rel_main, rt ~ pathlengthfac*Type +
                          (1 | ItemNo))
summary(item_rt_aov)
## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ pathlengthfac * Type + (1 | ItemNo)
##
      Data: item_rel_main
##
## REML criterion at convergence: 32510.6
##
## Scaled residuals:
##
      Min
               1Q Median
                                3Q
                                       Max
## -2.5813 -0.4281 -0.1238 0.2605 22.1734
##
## Random effects:
## Groups
                         Variance Std.Dev.
                                   33.07
## ItemNo
             (Intercept)
                        1094
## Residual
                         97675
                                  312.53
## Number of obs: 2275, groups: ItemNo, 1200
##
## Fixed effects:
                        Estimate Std. Error t value
                                    22.335 36.148
## (Intercept)
                        807.339
## pathlengthfac1
                         -1.913
                                     31.832 -0.060
                                            -1.302
## pathlengthfac3
                         -41.021
                                     31.507
## pathlengthfac4
                        -24.484
                                     31.546 -0.776
## pathlengthfac5
                        -54.385
                                    31.507 -1.726
## pathlengthfac6
                         -68.240
                                    31.507 -2.166
## Type1
                         31.336
                                     31.534
                                             0.994
## pathlengthfac1:Type1 -78.278
                                     44.629 -1.754
## pathlengthfac3:Type1
                         52.791
                                     44.911
                                             1.175
## pathlengthfac4:Type1
                         35.504
                                     44.972
                                              0.789
## pathlengthfac5:Type1
                        124.329
                                     45.684
                                              2.722
## pathlengthfac6:Type1
                                     45.602
                         57.672
                                             1.265
##
## Correlation of Fixed Effects:
               (Intr) pthln1 pthln3 pthln4 pthln5 pthln6 Type1 pt1:T1 pt3:T1
## pthlngthfc1 -0.702
## pthlngthfc3 -0.709
                      0.497
## pthlngthfc4 -0.708 0.497
                             0.502
## pthlngthfc5 -0.709 0.497
                              0.503 0.502
## pthlngthfc6 -0.709 0.497
                              0.503
                                    0.502 0.503
## Type1
              -0.701 0.492 0.497 0.496 0.497 0.497
```

```
## pthlngt1:T1 0.495 -0.706 -0.351 -0.350 -0.351 -0.351 -0.707
## pthlngt3:T1 0.492 -0.345 -0.694 -0.348 -0.349 -0.349 -0.702 0.496
## pthlngt4:T1 0.491 -0.345 -0.348 -0.694 -0.348 -0.348 -0.701 0.495 0.492
## pthlngt5:T1 0.484 -0.339 -0.343 -0.342 -0.682 -0.343 -0.690 0.488 0.485
## pthlngt6:T1 0.484 -0.340 -0.343 -0.343 -0.343 -0.683 -0.692 0.489 0.486
##
              pt4:T1 pt5:T1
## pthlngthfc1
## pthlngthfc3
## pthlngthfc4
## pthlngthfc5
## pthlngthfc6
## Type1
## pthlngt1:T1
## pthlngt3:T1
## pthlngt4:T1
## pthlngt5:T1 0.484
## pthlngt6:T1 0.485 0.477
car::Anova(item_rt_aov)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: rt
##
                       Chisq Df Pr(>Chisq)
## pathlengthfac
                      7.5307 5 0.1840642
                      21.8948 1
                                  2.88e-06 ***
## Type
## pathlengthfac:Type 22.0476 5 0.0005128 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c('contr.sum', 'contr.poly'))
library(lsmeans)
library(multcomp)
sem_lsm = lsmeans::lsmeans(item_rt_aov, c("pathlengthfac", "Type"))
## Loading required namespace: lmerTest
prime_effect = cld(sem_lsm, alpha = 0.05,
                 adjust = "tukey", details = TRUE)
library(knitr)
kable(subset(prime_effect$comparisons,prime_effect$comparisons$p.value <1))</pre>
```

	contrast	estimate	SE	df	t.ratio	p.value
1	6,Unrelated - 15,Unrelated	13.855300	31.42754	2262.762	0.4408649	0.9999994
2	1,Related - 15,Unrelated	19.384171	31.42754	2262.762	0.6167893	0.9999788
3	1,Related - 6,Unrelated	5.528871	31.42754	2262.762	0.1759244	1.0000000
4	3,Unrelated - $15,$ Unrelated	27.218656	31.42754	2262.762	0.8660766	0.9993953
5	3,Unrelated - 6,Unrelated	13.363356	31.42754	2262.762	0.4252116	0.9999996
6	3,Unrelated - 1,Related	7.834485	31.42754	2262.762	0.2492872	1.0000000
7	4,Unrelated - 15,Unrelated	43.755983	31.46699	2262.764	1.3905359	0.9654713
8	4,Unrelated - 6,Unrelated	29.900683	31.46699	2262.764	0.9502237	0.9985646
9	4,Unrelated - 1,Related	24.371812	31.46699	2262.764	0.7745199	0.9997935
10	4,Unrelated - 3,Unrelated	16.537327	31.46699	2262.764	0.5255452	0.9999959
11	1,Unrelated - 15,Unrelated	66.326457	31.75318	2262.782	2.0888129	0.6309470
12	1,Unrelated - 6,Unrelated	52.471157	31.75318	2262.782	1.6524692	0.8891233
13	1,Unrelated - $1,$ Related	46.942285	31.58050	1176.256	1.4864328	0.9442871

	contrast	estimate	SE	df	t.ratio	p.value
14	1,Unrelated - 3,Unrelated	39.107801	31.75318	2262.782	1.2316183	0.9864578
15	1,Unrelated - 4,Unrelated	22.570474	31.79223	2262.784	0.7099368	0.9999125
16	2,Unrelated - 15,Unrelated	68.239809	31.50679	2262.767	2.1658761	0.5748196
17	2,Unrelated - 6,Unrelated	54.384509	31.50679	2262.767	1.7261201	0.8562742
18	2,Unrelated - 1,Related	48.855638	31.50679	2262.767	1.5506382	0.9260562
19	2,Unrelated - 3,Unrelated	41.021153	31.50679	2262.767	1.3019781	0.9789933
20	2,Unrelated - 4,Unrelated	24.483826	31.54615	2262.769	0.7761273	0.9997893
22	15,Related - 15,Unrelated	89.008359	32.94154	1269.883	2.7020095	0.2262817
23	15,Related - 6,Unrelated	75.153059	33.10713	2262.851	2.2699963	0.4985311
24	15,Related - 1,Related	69.624188	33.10713	2262.851	2.1029968	0.6207011
25	15,Related - 3,Unrelated	61.789704	33.10713	2262.851	1.8663564	0.7800996
26	15,Related - 4,Unrelated	45.252376	33.14458	2262.853	1.3653024	0.9698516
$\frac{1}{27}$	15,Related - 1,Unrelated	22.681903	33.41641	2262.864	0.6787654	0.9999441
28	15,Related - 2,Unrelated	20.768550	33.18237	2262.854	0.6258911	0.9999754
29	2,Related - 15,Unrelated	99.575704	31.62833	2262.774	3.1483071	0.0721858
30	2,Related - 6,Unrelated	85.720404	31.62833	2262.774	2.7102410	0.2216467
31	2,Related - 1,Related	80.191533	31.62833	2262.774	2.5354335	0.3182170
32	2,Related - 3,Unrelated	72.357048	31.62833	2262.774	2.2877288	0.4856636
33	2,Related - 4,Unrelated	55.819721	31.66753	2262.777	1.7626797	0.8380800
34	2,Related - 1,Unrelated	33.249247	31.95193	2262.794	1.0406022	0.9967463
35	2,Related - 2,Unrelated	31.335895	31.53419	1173.275	0.9937118	0.9978307
36	2,Related - 15,Related	10.567345	33.29779	2262.859	0.3173587	1.0000000
37	4,Related - 15,Unrelated	110.595912	32.19513	2262.807	3.4351757	0.0296948
38	4,Related - 6,Unrelated	96.740612	32.19513	2262.807	3.0048217	0.1076850
39	4,Related - 1,Related	91.211741	32.19513	2262.807	2.8330916	0.1667927
40	4,Related - 3,Unrelated	83.377256	32.19513	2262.807	2.5897478	0.2859653
41	4,Related - 4,Unrelated	66.839929	32.06362	1210.660	2.0846030	0.6340048
42	4, Related - 1 , Unrelated	44.269455	32.51308	2262.823	1.3615890	0.9704590
43	4, Related - 2 , Unrelated	42.356103	32.27249	2262.811	1.3124522	0.9776521
44	4, Related - 15 , Related	21.587553	33.83663	2262.880	0.6379935	0.9999701
45	4,Related - 2,Related	11.020208	32.39116	2262.817	0.3402227	1.0000000
46	3, Related - 15 , Unrelated	111.345533	32.14904	2262.805	3.4634167	0.0270425
47	3,Related - 6,Unrelated	97.490233	32.14904	2262.805	3.0324459	0.0999425
48	3,Related - 1,Related	91.961362	32.14904	2262.805	2.8604697	0.1560357
49	3, Related - 3 , Unrelated	84.126877	31.97849	1204.179	2.6307329	0.2635496
50	3,Related - 4,Unrelated	67.589550	32.18761	2262.807	2.0998623	0.6229696
51	3,Related - 1,Unrelated	45.019076	32.46745	2262.821	1.3865911	0.9661857
52	3,Related - 2,Unrelated	43.105724	32.22652	2262.809	1.3375854	0.9741644
53	3, Related - 15 , Related	22.337174	33.79279	2262.879	0.6610041	0.9999572
54	3,Related - 2,Related	11.769829	32.34536	2262.815	0.3638800	0.9999999
56	6,Related - 15,Unrelated	169.520000	33.21922	2262.856	5.1030705	0.0000233
57	6,Related - 6,Unrelated	155.664699	33.05419	1277.387	4.7093788	0.0001735
58	6,Related - 1,Related	150.135828	33.21922	2262.856	4.5195477	0.0004041
59	6,Related - 3,Unrelated	142.301344	33.21922	2262.856	4.2837057	0.0011555
60	6,Related - 4,Unrelated	125.764016	33.25654	2262.857	3.7816324	0.0087714
61	6,Related - 1,Unrelated	103.193543	33.52746	2262.868	3.0778812	0.0881797
62	6,Related - 2,Unrelated	101.280191	33.29420	2262.859	3.0419767	0.0973764
63	6,Related - 15,Related	80.511640	34.81247	2262.912	2.3127242	0.4676484
64	6,Related - 2,Related	69.944296	33.40924	2262.864	2.0935613	0.6275226
65	6,Related - 4,Related	58.924087	33.94631	2262.884	1.7358023	0.8515757
66	6,Related - 3,Related	58.174467	33.90261	2262.883	1.7159288	0.8611253

```
x = sjPlot::plot_model(item_rt_aov, type = "int")

x + geom_line()+
theme_few()+
#scale_x_continuous(breaks = c(1,2,3,4,5,6,10,15,20))+
    xlab("Path Length") + ylab("Raw RT") +
    ggtitle("Raw RT for Relatedness Judgments") +
    theme(axis.text = element_text(size = rel(1)),
        axis.title = element_text(face = "bold", size = rel(1)),
        legend.title = element_text(face = "bold", size = rel(1)),
        plot.title = element_text(hjust = .5),
        strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Warning: Removed 7 rows containing missing values (geom_errorbar).

Raw RT for Relatedness Judgments

zRT plot

```
levels = c("1", "2", "3", "4", "6", "15"))
item_rel_rt_collapsed %>%
  ggplot(aes(x = pathlengthfac, y = zRT_trim, group = Type, color = Type))+
# geom_smooth(method = "loess")+
  geom_point()+
geom_line()+
  geom_errorbar(aes(ymin=zRT_trim - ci, ymax=zRT_trim + ci),
             width=.05, color = "gray30",
             position = position_dodge(0))+
 theme_few()+
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Path Length") + ylab("z-RT") +
  ggtitle("Item-Level z-RTs for Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Item-Level z-RTs for Relatedness Judgments

zRT ANOVA Rel-Unrel

```
# item_count = group_by(item_rel_rt, ItemNo) %>%
# summarise(n = n())
#
```

```
\# x = which(item\_count\$n != 2)
#
# missingtrialsitems = item_count[x,][,1]
#
# item_rel_rt$pathlengthfac = ordered(as.factor(as.character(item_rel_rt$pathlength)),
                               levels = c("1", "2", "3", "4", "6", "15"))
#
# contrasts(item rel rt$pathlengthfac) = contr.treatment(6, base = 2)
# contrasts(item_rel_rt$Type) = contr.treatment(2, base = 2)
# item_rel_rt_final = item_rel_rt %>%
  filter(!ItemNo %in% missingtrialsitems$ItemNo)
#
#
# item_zrt_aov = aov(data = item_rel_rt_final, zRT_trim ~ pathlengthfac*Type +
                            Error(ItemNo/Type))
# summary(item_zrt_aov)
# car::Anova(item_zrt_aov)
```

GLHT Test

```
### GLHT combination test
## testing 1, related diff from 2, unrelated
## testing 2,unrelated diff from 3,unrelated
## testing 6, unrelated diff from 15, unrelated
# groups <- read.table('groups.csv',sep=',',header=TRUE,stringsAsFactors=FALSE)
# groups
# dummy_codes <- as.matrix(groups[,4:9])</pre>
# dummy_codes
#
# fixed_effects <- matrix(fixef(item_zrt_aov))</pre>
# fixed_effects
# means_matrix <- matrix(rep(0,144),ncol=12,nrow=12)</pre>
# means matrix[,1] <- 1
# means_matrix[,2:6] <- dummy_codes[,2:6]
# means_matrix[,7] <- dummy_codes[,1]</pre>
# means_matrix[,8:12] <- dummy_codes[,1]*dummy_codes[,2:6]</pre>
# means_matrix
# means <- means_matrix %*% fixed_effects</pre>
# print(cbind(means, groups[,2:3]))
# contrast_matrix <- matrix(c(</pre>
\# 0,1,-1,0,0,0,0,0,0,0,0,0,0,
# 0,0,1,0,-1,0,0,0,0,0,0,0,0,
\# 0,0,1,0,0,0,-1,0,0,0,0,0,
# 0,0,0,0,0,0,1,0,-1,0,0,0,
  0,0,0,0,0,0,0,0,1,0,-1,0), nrow=5,ncol=12,byrow=TRUE)
\# row.names(contrast_matrix) <- c("path 1, related vs. path 2, unrelated",
```

KENETT ANOVAs

```
## for the RT analyses we need to include only related trials for path length 1, and unrelated trials f
## other path lengths
# removing trials below 250 ms
sem_kenett = sem %>% filter(rt > 250)
# removing for each participant, trials which were above or below 2.5 SD for each condition were also d
condition_means = group_by(sem, pathlength) %>%
  summarise_at(vars(rt), mean)
condition_sd = group_by(sem, pathlength) %>%
 summarise_at(vars(rt), sd)
condition_agg = merge(condition_means, condition_sd, by = "pathlength")
colnames(condition_agg) = c("pathlength", "meanrt", "sdrt")
condition_agg$MOE = 2.5*condition_agg$sdrt
condition_agg$lower = condition_agg$meanrt - condition_agg$MOE
condition_agg$upper = condition_agg$meanrt + condition_agg$MOE
sem_kenett = merge(sem_kenett, condition_agg, by = "pathlength")
sem_kenett = dplyr::arrange(sem_kenett, subject)
sem_kenett = sem_kenett %>% filter(rt > lower)
sem kenett = sem kenett %>% filter(rt < upper)</pre>
## further looking at only "successful trials", i.e., related trials for pathlength 1, and unrelated for
sem_kenett_final = sem_kenett %>% filter((pathlength == 1 & Type == "Related") |
                                            (pathlength == 2 & Type == "Unrelated") |
                                            (pathlength == 3 & Type == "Unrelated") |
                                            (pathlength == 4 & Type == "Unrelated") |
                                            (pathlength == 6 & Type == "Unrelated")
                                            (pathlength == 15 & Type == "Unrelated") )
```

Plotting Final Kenett: Overall

```
sem_kenett_agg = Rmisc::summarySE(sem_kenett_final,
                        measurevar = "rt",
                        groupvars = c("pathlength"))
## Raw RT Plot Rel-Unrel
sem_kenett_agg$pathlengthfac = ordered(as.factor(as.character(sem_kenett_agg$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
sem_kenett_agg %>%
 ggplot(aes(x = pathlengthfac, y = rt, group = 1))+
# geom_smooth(method = "loess")+
 geom_point()+
geom_line(color = "darkblue")+
 geom_errorbar(aes(ymin=rt - ci, ymax=rt + ci),
            width=.05, color = "gray30",
             position = position_dodge(0))+
 theme_few()+
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Path Length") + ylab("Raw RT") +
  ggtitle("Kenett Raw RTs for Relatedness Judgments") +
  theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
         legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Kenett Raw RTs for Relatedness Judgments

Kenett Anovas

Subject Level Anova

```
##
## Error: subject:pathlengthfac
                 Df Sum Sq Mean Sq F value
                 5 234013
                                      10.16 3.63e-09 ***
                              46803
## pathlengthfac
## Residuals
                395 1820284
                               4608
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c('contr.sum', 'contr.poly'))
library(lsmeans)
library(multcomp)
kenett_subject_lsm = lsmeans::lsmeans(kenett_subject_aov, c("pathlengthfac"))
sub_effect = cld(kenett_subject_lsm, alpha = 0.05,
                 adjust = "tukey", details = TRUE)
library(knitr)
kable(subset(sub_effect$comparisons, sub_effect$comparisons$p.value < 0.1))</pre>
```

	contrast	estimate	SE	df	t.ratio	p.value
$\overline{4}$	3 - 15	31.81818	10.73349	395	2.964383	0.0376087
7	4 - 15	40.92986	10.73349	395	3.813284	0.0021880
11	2 - 15	72.49415	10.73349	395	6.754013	0.0000000
12	2 - 6	52.27590	10.73349	395	4.870353	0.0000238
13	2 - 1	47.05147	10.73349	395	4.383612	0.0002161
14	2 - 3	40.67597	10.73349	395	3.789630	0.0023924
15	2 - 4	31.56430	10.73349	395	2.940729	0.0402553

Plotting Final Kenett: Subject

```
sem_kenett_subject_agg = Rmisc::summarySE(sem_kenett_subject,
                        measurevar = "rt",
                        groupvars = c("pathlength"))
## Raw RT Plot Rel-Unrel
sem_kenett_subject_agg$pathlengthfac = ordered(as.factor(as.character(sem_kenett_subject_agg$pathlength
                            levels = c("1", "2", "3", "4", "6", "15"))
sem_kenett_subject_agg %>%
 ggplot(aes(x = pathlengthfac, y = rt, group = 1))+
# geom_smooth(method = "loess")+
  geom point()+
geom_line(color = "darkblue")+
  geom_errorbar(aes(ymin=rt - se, ymax=rt + se),
             width=.05, color = "gray30",
             position = position_dodge(0))+
 theme_few()+
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Path Length") + ylab("Raw RT") +
  ggtitle("Subject-Level Kenett Raw RTs for Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
```

```
plot.title = element_text(hjust = .5),
strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Subject-Level Kenett Raw RTs for Relatedness Judgments


```
z_rmisc_kenett = sem_kenett_subject_agg
z_rmisc_kenett$Network = "Association Correlation"
```

Item Level Anova

```
kenett_item_aov = aov(data = sem_kenett_item, rt ~ pathlengthfac)
summary(kenett_item_aov)
                        Sum Sq Mean Sq F value
                                         5.441 5.88e-05 ***
## pathlengthfac
                    5
                        316188
                                 63238
## Residuals
                 1189 13819887
                                 11623
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c('contr.sum', 'contr.poly'))
library(lsmeans)
library(multcomp)
kenett_item_lsm = lsmeans::lsmeans(kenett_item_aov, c("pathlengthfac"))
 item_effect = cld(kenett_item_lsm, alpha = 0.05,
                 adjust = "tukey", details = TRUE)
library(knitr)
kable(subset(item_effect$comparisons,item_effect$comparisons$p.value < 0.1))</pre>
```

	contrast	estimate	SE	df	t.ratio	p.value
2	3 - 15	31.86655	10.78106	1189	2.955791	0.0373919
4	4 - 15	36.49734	10.79459	1189	3.381076	0.0096895
7	1 - 15	42.12936	10.79459	1189	3.902821	0.0014038
11	2 - 15	50.64348	10.82202	1189	4.679669	0.0000470
12	2 - 6	29.02399	10.82202	1189	2.681937	0.0796009

Plotting Final Kenett: item

```
sem_kenett_item_agg = Rmisc::summarySE(sem_kenett_item,
                        measurevar = "rt",
                        groupvars = c("pathlength"))
## Raw RT Plot Rel-Unrel
sem_kenett_item_agg$pathlengthfac = ordered(as.factor(as.character(sem_kenett_item_agg$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
sem_kenett_item_agg %>%
 ggplot(aes(x = pathlengthfac, y = rt, group = 1))+
# geom_smooth(method = "loess")+
 geom_point()+
geom_line(color = "darkblue")+
  geom_errorbar(aes(ymin=rt - ci, ymax=rt + ci),
             width=.05, color = "gray30",
             position = position_dodge(0))+
 theme_few()+
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Path Length") + ylab("Raw RT") +
  ggtitle("item-Level Kenett Raw RTs for Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
         legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

item-Level Kenett Raw RTs for Relatedness Judgments

KENETT UNDIRECTED ANOVAS

```
## for the RT analyses we need to include only related trials for path length 1, and unrelated trials f
## other path lengths
# removing trials below 250 ms
sem_kenett_undirected = sem %>% filter(rt > 250)
# removing for each participant, trials which were above or below 2.5 SD for each condition were also d
condition_means_undirected = group_by(sem, undirected) %>%
  summarise_at(vars(rt), mean)
condition_sd_undirected = group_by(sem, undirected) %>%
  summarise_at(vars(rt), sd)
condition_agg_undirected = merge(condition_means_undirected,
                                 condition_sd_undirected, by = "undirected")
colnames(condition_agg_undirected) = c("undirected", "meanrt", "sdrt")
condition_agg_undirected$MOE = 2.5*condition_agg_undirected$sdrt
condition_agg_undirected$lower = condition_agg_undirected$meanrt -
                                      condition_agg_undirected$MOE
condition_agg_undirected$upper = condition_agg_undirected$meanrt +
                                      condition_agg_undirected$MOE
```

Plotting Final Kenett Undirected: Overall

```
sem_kenett_agg_undirected = Rmisc::summarySE(sem_kenett_final_undirected,
                        measurevar = "rt",
                        groupvars = c("undirected"))
## Raw RT Plot Rel-Unrel
sem_kenett_agg_undirected$undirectedfac = ordered(as.factor(as.character(sem_kenett_agg_undirected$undi
                            levels = c("1", "2", "3", "4"))
sem_kenett_agg_undirected %>%
 ggplot(aes(x = undirectedfac, y = rt, group = 1))+
# geom_smooth(method = "loess")+
  geom_point()+
geom_line(color = "darkblue")+
  geom_errorbar(aes(ymin=rt - ci, ymax=rt + ci),
             width=.05, color = "gray30",
             position = position_dodge(0))+
 theme few()+
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Path Length") + ylab("Raw RT") +
  ggtitle("Steyvers Undirected Raw RTs for Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
         legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Steyvers Undirected Raw RTs for Relatedness Judgments

Kenett Undirected Anovas

Subject Level Anova

##

```
## Error: subject
##
            Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 79 7724197
##
## Error: subject:undirectedfac
                 Df Sum Sq Mean Sq F value
##
## undirectedfac 3 208291
                              69430
                                       9.099 1.01e-05 ***
                237 1808515
## Residuals
                               7631
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c('contr.sum', 'contr.poly'))
library(lsmeans)
library(multcomp)
kenett_subject_lsm = lsmeans::lsmeans(kenett_subject_aov_undirected,
                                       c("undirectedfac"))
 sub_effect = cld(kenett_subject_lsm, alpha = 0.05,
                 adjust = "tukey", details = TRUE)
library(knitr)
kable(subset(sub_effect$comparisons, sub_effect$comparisons$p.value < 0.1))</pre>
```

	contrast	estimate	SE	df	t.ratio	p.value
2	3 - 1	45.36665	13.81201	237	3.284580	0.0064192
3	3 - 4	42.91321	13.81201	237	3.106949	0.0113261
4	2 - 1	57.60113	13.81201	237	4.170365	0.0002483
5	2 - 4	55.14769	13.81201	237	3.992734	0.0005030

Plotting Final Kenett Undirected: Subject

```
sem_kenett_subject_agg_undirected = Rmisc::summarySE(sem_kenett_subject_undirected,
                                    measurevar = "rt",
                        groupvars = c("undirected"))
## Raw RT Plot Rel-Unrel
sem_kenett_subject_agg_undirected$undirectedfac = ordered(as.factor(as.character(sem_kenett_subject_agg
                            levels = c("1", "2", "3", "4"))
sem_kenett_subject_agg_undirected %>%
 ggplot(aes(x = undirectedfac, y = rt, group = 1))+
# geom_smooth(method = "loess")+
  geom_point()+
geom_line(color = "darkblue")+
  geom_errorbar(aes(ymin=rt - se, ymax=rt + se),
             width=.05, color = "gray30",
             position = position_dodge(0))+
 theme_few()+
  ylim(680,800) +
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Steyvers Undirected Path Length") + ylab("Raw RT") +
  ggtitle("Subject-Level Undirected Raw RTs for Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
```

```
axis.title = element_text(face = "bold", size = rel(1)),
legend.title = element_text(face = "bold", size = rel(1)),
plot.title = element_text(hjust = .5),
strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Subject-Level Undirected Raw RTs for Relatedness Judgments

sem_kenett_subject_agg_undirected\$Network = "Undirected Simple Association"

KENETT DIRECTED ANOVAS

```
## for the RT analyses we need to include only related trials for path length 1, and unrelated trials f
## other path lengths

# removing trials below 250 ms

sem_kenett_directed = sem %>% filter(rt > 250)

# removing for each participant, trials which were above or below 2.5 SD for each condition were also d

condition_means_directed = group_by(sem, directed) %>%
    summarise_at(vars(rt), mean)
condition_sd_directed = group_by(sem, directed) %>%
    summarise_at(vars(rt), sd)

condition_agg_directed = merge(condition_means_directed,
```

```
condition_sd_directed, by = "directed")
colnames(condition_agg_directed) = c("directed", "meanrt", "sdrt")
condition_agg_directed$MOE = 2.5*condition_agg_directed$sdrt
condition_agg_directed$lower = condition_agg_directed$meanrt -
                                      condition_agg_directed$MOE
condition_agg_directed$upper = condition_agg_directed$meanrt +
                                      condition_agg_directed$MOE
sem_kenett_directed = merge(sem_kenett_directed,
                              condition_agg_directed, by = "directed")
sem_kenett_directed = dplyr::arrange(sem_kenett_directed, subject)
sem_kenett_directed = sem_kenett_directed %>% filter(rt > lower)
sem_kenett_directed = sem_kenett_directed %>% filter(rt < upper)</pre>
## further looking at only "successful trials", i.e., related trials for pathlength 1, and unrelated for
sem_kenett_final_directed = sem_kenett %>%
  filter((directed == 1 & Type == "Related") |
           (pathlength == 2 & Type == "Unrelated") |
           (pathlength == 3 & Type == "Unrelated") |
           (pathlength == 4 & Type == "Unrelated") |
           (pathlength == 5 & Type == "Unrelated") |
           (pathlength == 6 & Type == "Unrelated") |
           (pathlength == 7 & Type == "Unrelated") |
           (pathlength == 8 & Type == "Unrelated") )
sem_kenett_final_directed newdirected = ifelse(sem_kenett_final_directed directed == "Inf" | sem_kenett
                              sem_kenett_final_directed$directed)
sem_kenett_final_directed$directedcollapsed = ifelse(( sem_kenett_final_directed$newdirected == "6" |
                    sem_kenett_final_directed$newdirected == "7" |
                    sem_kenett_final_directed$newdirected == "8"), "H",
                  sem_kenett_final_directed$newdirected)
```

Plotting Final Kenett Directed: Overall

```
ggplot(aes(x = CollapsedDirected, y = rt, group = 1))+
# geom_smooth(method = "loess")+
  geom_point()+
geom_line(color = "darkblue")+
  geom_errorbar(aes(ymin=rt - se, ymax=rt + se),
             width=.05, color = "gray30",
             position = position_dodge(0))+
 theme few()+
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
    xlab("Path Length") + ylab("Raw RT") +
  ggtitle("Steyvers Directed Raw RTs for Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Steyvers Directed Raw RTs for Relatedness Judgments

Kenett Directed Anovas

Subject Level Anova

```
kenett_subject_aov_directed = aov(data = sem_kenett_subject_directed,
                                   rt ~ collapsedfac +
                          Error(subject/collapsedfac))
summary(kenett_subject_aov_directed)
##
## Error: subject
                 Sum Sq Mean Sq F value Pr(>F)
## Residuals 79 12482090 158001
## Error: subject:collapsedfac
                Df Sum Sq Mean Sq F value Pr(>F)
## collapsedfac 5 297004
                             59401
                                    7.444 1.09e-06 ***
## Residuals
               395 3152075
                              7980
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c('contr.sum', 'contr.poly'))
library(lsmeans)
library(multcomp)
kenett_subject_lsm = lsmeans::lsmeans(kenett_subject_aov_directed,
                                      c("collapsedfac"))
sub_effect = cld(kenett_subject_lsm, alpha = 0.05,
                adjust = "tukey", details = TRUE)
library(knitr)
kable(subset(sub_effect$comparisons,sub_effect$comparisons$p.value < 0.1))</pre>
```

	contrast	estimate	SE	df	t.ratio	p.value
2	4 - 1	36.79477	14.12439	395	2.605051	0.0984037
4	3 - 1	55.61152	14.12439	395	3.937269	0.0013577
5	3 - 5	47.54306	14.12439	395	3.366025	0.0107694
7	2 - 1	60.21384	14.12439	395	4.263110	0.0003614
8	2 - 5	52.14537	14.12439	395	3.691867	0.0034406
11	H - 1	61.92520	14.12439	395	4.384274	0.0002155
12	H - 5	53.85673	14.12439	395	3.813030	0.0021901

Plotting Final Kenett Directed: Subject

```
sem_kenett_subject_agg_directed = Rmisc::summarySE(sem_kenett_subject_directed,
                                    measurevar = "rt",
                        groupvars = c("collapsedfac"))
## Raw RT Plot Rel-Unrel
sem_kenett_subject_agg_directed %>%
  mutate(CollapsedDirected = factor(collapsedfac,
                                    levels = unique(collapsedfac),
                    labels = c("1", "2", "3", "4", "5", "5+")))%>%
  ggplot(aes(x = CollapsedDirected, y = rt, group = 1))+
# geom_smooth(method = "loess")+
  geom_point()+
geom_line(color = "darkblue")+
  geom_errorbar(aes(ymin=rt - se, ymax=rt + se),
             width=.05, color = "gray30",
             position = position_dodge(0))+
 theme_few()+
   ylim(680,800) +
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Steyvers Directed Path Length") + ylab("Raw RT") +
  ggtitle("Subject-Level Directed Raw RTs for Relatedness Judgments") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

Subject-Level Directed Raw RTs for Relatedness Judgments


```
sem_kenett_subject_agg_directed$Network = "Directed Simple Association"
m1_word2vec = lme4::lmer(data = final_word2vec,
                              zRT_trim ~ word2veccosine*Type +
                     mean_len_c + mean_logf_c + mean_ldtz_c + mean_conc_c +
           (1|subject) + (1|trial_index) +
              + (1|target_word))
 summary(m1_word2vec)
## Linear mixed model fit by REML ['lmerMod']
## Formula: zRT_trim ~ word2veccosine * Type + mean_len_c + mean_logf_c +
       mean_ldtz_c + mean_conc_c + (1 | subject) + (1 | trial_index) +
##
##
       +(1 | target_word)
##
      Data: final_word2vec
##
## REML criterion at convergence: 46089
##
## Scaled residuals:
                1Q Median
##
       Min
                                ЗQ
                                       Max
  -2.6062 -0.7117 -0.1885 0.5385
                                    4.0954
##
##
## Random effects:
                            Variance Std.Dev.
  Groups
                Name
   target_word (Intercept) 0.022084 0.14861
  trial_index (Intercept) 0.003043 0.05517
                (Intercept) 0.000000 0.00000
##
   subject
```

0.951935 0.97567

Residual

##

```
## Number of obs: 16374, groups:
## target_word, 1740; trial_index, 240; subject, 80
## Fixed effects:
                       Estimate Std. Error t value
                                            5.954
## (Intercept)
                       0.087986 0.014777
## word2veccosine
                     -0.223374
                                   0.063170 -3.536
                                   0.013690 12.090
## Type1
                       0.165523
## mean_len_c
                       0.013915
                                   0.006824
                                            2.039
## mean_logf_c
                       -0.010788
                                   0.008152 -1.323
## mean_ldtz_c
                       0.027621
                                   0.063599
                                            0.434
                                   0.010890 -6.245
## mean_conc_c
                       -0.068006
## word2veccosine:Type1 -0.603561
                                   0.060393 -9.994
##
## Correlation of Fixed Effects:
##
              (Intr) wrd2vc Type1 mn_ln_ mn_lg_ mn_ld_ mn_cn_
## word2veccsn -0.712
## Type1
              0.453 - 0.194
## mean_len_c -0.010 0.006 -0.037
## mean_logf_c -0.057 0.070 -0.026 -0.006
## mean_ldtz_c -0.008  0.011  0.023 -0.366  0.546
## mean_conc_c 0.044 -0.055 0.027 0.239 0.309 0.110
## wrd2vccs:T1 -0.185 -0.105 -0.740 -0.015 -0.009 0.000 0.006
car::Anova(m1_word2vec)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## Response: zRT trim
##
                        Chisq Df Pr(>Chisq)
## word2veccosine
                      21.2376 1 4.057e-06 ***
## Type
                      48.7202 1 2.952e-12 ***
                                    0.04145 *
                       4.1577 1
## mean_len_c
                       1.7512 1
## mean logf c
                                    0.18573
## mean_ldtz_c
                       0.1886 1
                                    0.66407
## mean_conc_c
                      38.9951 1 4.249e-10 ***
## word2veccosine:Type 99.8767 1 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
m1_word2vec = lme4::lmer(data = final_word2vec,
                             zRT_trim ~ word2veccosine*Type +
                    mean_len + mean_logf + mean_ldtz + mean_conc +
           (1|subject) + (1|trial_index) +
             + (1|target_word))
summary(m1_word2vec)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## zRT_trim ~ word2veccosine * Type + mean_len + mean_logf + mean_ldtz +
##
      mean_conc + (1 | subject) + (1 | trial_index) + +(1 | target_word)
##
     Data: final_word2vec
##
## REML criterion at convergence: 46089
##
```

```
## Scaled residuals:
##
           1Q Median
      Min
                               30
                                      Max
## -2.6062 -0.7117 -0.1885 0.5385 4.0954
## Random effects:
## Groups
                           Variance Std.Dev.
               Name
## target word (Intercept) 0.022084 0.14861
## trial_index (Intercept) 0.003043 0.05517
## subject
               (Intercept) 0.000000 0.00000
                           0.951935 0.97567
## Residual
## Number of obs: 16374, groups:
## target_word, 1740; trial_index, 240; subject, 80
## Fixed effects:
##
                        Estimate Std. Error t value
## (Intercept)
                        0.360296
                                   0.101422
                                              3.552
                                   0.063170 -3.536
## word2veccosine
                       -0.223374
## Type1
                        0.165523
                                   0.013690 12.090
                        0.013915
                                   0.006824
## mean_len
                                             2.039
## mean logf
                       -0.010788
                                   0.008152 -1.323
## mean_ldtz
                        0.027621
                                   0.063599
                                             0.434
## mean conc
                       -0.068006
                                   0.010890
                                            -6.245
## word2veccosine:Type1 -0.603561
                                   0.060393 -9.994
## Correlation of Fixed Effects:
              (Intr) wrd2vc Type1 men_ln mn_lgf mn_ldt mn_cnc
## word2veccsn -0.130
               0.095 -0.194
## Type1
## mean_len
              -0.600 0.006 -0.037
## mean_logf -0.668 0.070 -0.026 -0.006
              0.013 0.011 0.023 -0.366 0.546
## mean_ldtz
## mean_conc
              -0.666 -0.055 0.027 0.239 0.309 0.110
## wrd2vccs:T1 -0.017 -0.105 -0.740 -0.015 -0.009 0.000 0.006
car::Anova(m1_word2vec)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: zRT_trim
                        Chisq Df Pr(>Chisq)
## word2veccosine
                      21.2376 1 4.057e-06 ***
                      48.7202 1
                                  2.952e-12 ***
## Type
## mean_len
                                    0.04145 *
                       4.1577 1
## mean_logf
                                    0.18573
                       1.7512 1
## mean ldtz
                       0.1886 1
                                    0.66407
                      38.9951 1 4.249e-10 ***
## mean conc
## word2veccosine:Type 99.8767 1 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
m1_usual = lmer(data = final_word2vec,
                             zRT_trim ~ pathlengthfac*Type +
                    mean len + mean logf + mean ldtz + mean conc +
           (1|subject) + (1|trial_index) +
             + (1|target_word))
```

```
summary(m1_usual)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## zRT_trim ~ pathlengthfac * Type + mean_len + mean_logf + mean_ldtz +
       mean_conc + (1 | subject) + (1 | trial_index) + +(1 | target_word)
##
      Data: final_word2vec
##
## REML criterion at convergence: 46130.3
##
## Scaled residuals:
             1Q Median
                               3Q
                                      Max
## -2.5550 -0.7091 -0.1898 0.5449 4.1246
##
## Random effects:
## Groups
                           Variance Std.Dev.
## target_word (Intercept) 0.022295 0.14932
## trial_index (Intercept) 0.003316 0.05758
## subject
                (Intercept) 0.000000 0.00000
## Residual
                           0.951665 0.97553
## Number of obs: 16374, groups:
## target_word, 1740; trial_index, 240; subject, 80
##
## Fixed effects:
                        Estimate Std. Error t value
##
## (Intercept)
                        0.366114 0.102895
                                             3.558
## pathlengthfac1
                       -0.155870
                                   0.029720 -5.245
## pathlengthfac3
                       -0.001137
                                   0.030169 -0.038
## pathlengthfac4
                       -0.054065
                                   0.030436 -1.776
## pathlengthfac5
                       -0.039897
                                   0.034469 -1.157
## pathlengthfac6
                       -0.161613
                                   0.036061 -4.482
## Type1
                        0.007324
                                   0.019457
                                             0.376
## mean_len
                        0.013053
                                   0.006836
                                             1.910
## mean_logf
                       -0.010157
                                   0.008148 -1.247
## mean_ldtz
                        0.018498
                                   0.063686
                                             0.290
## mean_conc
                       -0.065859
                                   0.010926 -6.028
## pathlengthfac1:Type1 -0.053286
                                   0.028157 -1.892
## pathlengthfac3:Type1 0.097057
                                   0.028657
                                             3.387
## pathlengthfac4:Type1 0.062215
                                   0.028922
                                             2.151
## pathlengthfac5:Type1
                        0.119161
                                   0.033198
                                              3.589
## pathlengthfac6:Type1 0.083108
                                   0.034733
                                              2.393
##
## Correlation matrix not shown by default, as p = 16 > 12.
## Use print(x, correlation=TRUE) or
##
       vcov(x)
                     if you need it
car::Anova(m1_usual)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## Response: zRT_trim
                       Chisq Df Pr(>Chisq)
## pathlengthfac
                     82.2848 5 2.790e-16 ***
                     27.4912 1 1.578e-07 ***
## Type
```

```
## mean len
                      3.6464 1
                                   0.05619 .
                                   0.21255
## mean_logf
                      1.5540 1
## mean ldtz
                      0.0844 1
                                   0.77147
                     36.3362 1 1.661e-09 ***
## mean_conc
## pathlengthfac:Type 44.5379 5 1.801e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
anova(m1 usual, m1 word2vec)
## refitting model(s) with ML (instead of REML)
## Data: final_word2vec
## Models:
## m1_word2vec: zRT_trim ~ word2veccosine * Type + mean_len + mean_logf + mean_ldtz +
## m1 word2vec:
                  mean_conc + (1 | subject) + (1 | trial_index) + +(1 | target_word)
## m1_usual: zRT_trim ~ pathlengthfac * Type + mean_len + mean_logf + mean_ldtz +
               mean_conc + (1 | subject) + (1 | trial_index) + +(1 | target_word)
## m1 usual:
              Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
##
## m1_word2vec 12 46063 46155 -23019
                                       46039
## m1_usual
              20 46073 46227 -23016
                                       46033 5.8958
                                                               0.6589
m1_usual_all = lmer(data = final_word2vec,
                             zRT_trim ~ pathlengthfac*Type +
                       word2veccosine*Type +
                    mean_len + mean_logf + mean_ldtz + mean_conc +
           (1|subject) + (1|trial_index) +
              + (1|target_word))
 summary(m1_usual_all)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## zRT_trim ~ pathlengthfac * Type + word2veccosine * Type + mean_len +
      mean_logf + mean_ldtz + mean_conc + (1 | subject) + (1 |
##
       trial_index) + +(1 | target_word)
##
      Data: final_word2vec
##
## REML criterion at convergence: 46079.8
##
## Scaled residuals:
      Min
              1Q Median
                               3Q
                                      Max
## -2.5743 -0.7115 -0.1875 0.5429 4.0950
##
## Random effects:
                           Variance Std.Dev.
## Groups
               Name
## target_word (Intercept) 0.019492 0.13961
## trial_index (Intercept) 0.003117 0.05583
## subject
                (Intercept) 0.000000 0.00000
## Residual
                            0.950848 0.97511
## Number of obs: 16374, groups:
## target_word, 1740; trial_index, 240; subject, 80
## Fixed effects:
##
                        Estimate Std. Error t value
## (Intercept)
                        0.438037
                                   0.103913
                                             4.215
                       -0.117735 0.030365 -3.877
## pathlengthfac1
```

```
## pathlengthfac3
                       -0.018323
                                   0.030332 -0.604
## pathlengthfac4
                       -0.073654
                                   0.030764 - 2.394
## pathlengthfac5
                       -0.061243
                                   0.034804 - 1.760
## pathlengthfac6
                       -0.185902
                                             -5.080
                                   0.036595
## Type1
                        0.106267
                                   0.023845
                                              4.457
## word2veccosine
                       -0.235247
                                   0.072550
                                             -3.243
## mean len
                        0.013298
                                   0.006775
                                             1.963
## mean logf
                       -0.011992
                                   0.008099
                                             -1.481
## mean ldtz
                        0.018295
                                   0.063057
                                              0.290
## mean_conc
                       -0.064992
                                   0.010809
                                             -6.013
## pathlengthfac1:Type1 -0.001992
                                   0.028915
                                             -0.069
## pathlengthfac3:Type1 0.066324
                                   0.028943
                                              2.292
## pathlengthfac4:Type1
                                   0.029382
                                              0.840
                        0.024693
                                              2.402
## pathlengthfac5:Type1 0.080734
                                   0.033607
## pathlengthfac6:Type1 0.036712
                                              1.039
                                   0.035328
## Type1:word2veccosine -0.465325
                                   0.069207
                                             -6.724
##
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)
       vcov(x)
                      if you need it
car::Anova(m1_usual_all)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: zRT_trim
                        Chisq Df Pr(>Chisq)
##
## pathlengthfac
                      53.5578 5 2.584e-10 ***
                      37.0328 1 1.162e-09 ***
## Type
## word2veccosine
                       12.6378
                                   0.000378 ***
                               1
## mean_len
                       3.8530 1
                                   0.049658 *
## mean logf
                       2.1922 1
                                   0.138712
                       0.0842 1
## mean ldtz
                                   0.771718
## mean conc
                      36.1548 1 1.823e-09 ***
## pathlengthfac:Type 10.2046 5
                                   0.069641 .
## Type:word2veccosine 45.2077 1 1.772e-11 ***
## --
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
  anova(m1_word2vec, m1_usual_all)
## refitting model(s) with ML (instead of REML)
## Data: final word2vec
## Models:
## m1_word2vec: zRT_trim ~ word2veccosine * Type + mean_len + mean_logf + mean_ldtz +
                   mean_conc + (1 | subject) + (1 | trial_index) + +(1 | target_word)
## m1_word2vec:
## m1_usual_all: zRT_trim ~ pathlengthfac * Type + word2veccosine * Type + mean_len +
## m1_usual_all:
                    mean_logf + mean_ldtz + mean_conc + (1 | subject) + (1 |
## m1_usual_all:
                    trial_index) + +(1 | target_word)
##
                    AIC
                          BIC logLik deviance Chisq Chi Df Pr(>Chisq)
               Df
## m1_word2vec 12 46063 46155 -23019
                                        46039
## m1_usual_all 22 46019 46189 -22988
                                        45975 63.479
                                                          10 7.912e-10 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
anova(m1_usual, m1_usual_all)
## refitting model(s) with ML (instead of REML)
## Data: final_word2vec
## Models:
## m1_usual: zRT_trim ~ pathlengthfac * Type + mean_len + mean_logf + mean_ldtz +
             mean_conc + (1 | subject) + (1 | trial_index) + +(1 | target_word)
## m1_usual_all: zRT_trim ~ pathlengthfac * Type + word2veccosine * Type + mean_len +
## m1 usual all:
                    mean_logf + mean_ldtz + mean_conc + (1 | subject) + (1 |
## m1 usual all:
                    trial index) + +(1 | target word)
                   AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
##
               Df
## m1 usual
               20 46073 46227 -23016
                                        46033
## m1_usual_all 22 46019 46189 -22988
                                        45975 57.583
                                                          2 3.133e-13 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Directed Undirected vs word2vec
m1_usual_undirected = lmer(data = final_word2vec,
                             zRT_trim ~ undirectedfac*Type +
                      word2veccosine*Type +
                    mean_len + mean_logf + mean_ldtz + mean_conc +
           (1|subject) + (1|trial_index) +
             + (1|target_word))
anova(m1_word2vec, m1_usual_undirected)
## refitting model(s) with ML (instead of REML)
## Data: final word2vec
## Models:
## m1_word2vec: zRT_trim ~ word2veccosine * Type + mean_len + mean_logf + mean_ldtz +
## m1_word2vec: mean_conc + (1 | subject) + (1 | trial_index) + +(1 | target_word)
## m1_usual_undirected: zRT_trim ~ undirectedfac * Type + word2veccosine * Type + mean_len +
## m1_usual_undirected: mean_logf + mean_ldtz + mean_conc + (1 | subject) + (1 |
## m1_usual_undirected:
                           trial_index) + +(1 | target_word)
##
                      Df
                           AIC
                               BIC logLik deviance Chisq Chi Df
## m1_word2vec
                      12 46063 46155 -23019
                                               46039
## m1_usual_undirected 18 45990 46129 -22977
                                               45954 84.601
                                                                 6
                      Pr(>Chisq)
## m1 word2vec
## m1_usual_undirected 3.994e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
final_word2vec_na = final_word2vec %>%
  filter(!is.na(final_word2vec$directedfac))
final_word2vec_na = as.data.frame(final_word2vec_na)
m1_word2vec_na = lmer(data = final_word2vec_na,
                             zRT_trim ~ word2veccosine*Type +
                    mean_len + mean_logf + mean_ldtz + mean_conc +
           (1|subject) + (1|trial_index) +
```

```
+ (1|target_word))
m1_usual_directed = lmer(data = final_word2vec_na,
                             zRT_trim ~ directedfac*Type +
                      word2veccosine*Type +
                    mean_len + mean_logf + mean_ldtz + mean_conc +
           (1|subject) + (1|trial_index) +
              + (1|target_word))
anova(m1_word2vec_na, m1_usual_directed)
## refitting model(s) with ML (instead of REML)
## Data: final_word2vec_na
## Models:
## m1_word2vec_na: zRT_trim ~ word2veccosine * Type + mean_len + mean_logf + mean_ldtz +
                     mean_conc + (1 | subject) + (1 | trial_index) + +(1 | target_word)
## m1 word2vec na:
## m1_usual_directed: zRT_trim ~ directedfac * Type + word2veccosine * Type + mean_len +
                         mean_logf + mean_ldtz + mean_conc + (1 | subject) + (1 |
## m1_usual_directed:
                         trial_index) + +(1 | target_word)
## m1_usual_directed:
                    Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
                    12 44347 44439 -22162
## m1 word2vec na
                                             44323
## m1_usual_directed 26 44305 44504 -22126
                                             44253 70.873 14 1.341e-09
## m1_word2vec_na
## m1_usual_directed ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Kenett models data
 sem_kenett_final_word2vec = merge(sem_kenett_final, word2vec,
                      by = c( "ItemNo", "proc"))
   sem_kenett_final_word2vec$quadword2vec = sem_kenett_final_word2vec$word2veccosine^2
 word2vec_kenettaov1 = lmer(data = sem_kenett_final_word2vec,
                          rt~ word2veccosine +quadword2vec +
                    mean len + mean logf + mean ldtz +
           (1|subject) + (1|trial_index) +
              + (1 target word))
summary(word2vec_kenettaov1)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## rt ~ word2veccosine + quadword2vec + mean_len + mean_logf + mean_ldtz +
       (1 | subject) + (1 | trial_index) + +(1 | target_word)
##
      Data: sem_kenett_final_word2vec
## REML criterion at convergence: 182544.9
##
## Scaled residuals:
      Min 1Q Median
                               3Q
```

-2.6297 -0.5942 -0.1694 0.3838 7.2692

```
##
## Random effects:
                           Variance Std.Dev.
## Groups
               Name
## target_word (Intercept) 1824.9
                                   42.72
## trial_index (Intercept)
                             258.9
                                    16.09
## subject
               (Intercept) 23919.7 154.66
## Residual
                           52717.2 229.60
## Number of obs: 13259, groups:
## target_word, 1891; trial_index, 240; subject, 80
##
## Fixed effects:
##
                 Estimate Std. Error t value
## (Intercept)
                  647.355
                           26.390 24.531
                              39.552
## word2veccosine 235.752
                                       5.961
## quadword2vec
                 -473.428
                              71.088 -6.660
## mean_len
                    5.274
                              1.763
                                       2.991
                               2.038
                                       2.642
## mean_logf
                    5.384
## mean_ldtz
                   10.350
                              16.377 0.632
##
## Correlation of Fixed Effects:
##
              (Intr) wrd2vc qdwrd2 men_ln mn_lgf
## word2veccsn -0.193
## quadword2vc 0.158 -0.919
              -0.459 0.062 -0.072
## mean len
             -0.490 0.089 -0.065 -0.095
## mean logf
## mean ldtz
              0.090 0.012 -0.001 -0.408 0.535
car::Anova(word2vec_kenettaov1)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: rt
                   Chisq Df Pr(>Chisq)
## word2veccosine 35.5278 1 2.514e-09 ***
## quadword2vec 44.3521 1 2.743e-11 ***
## mean_len
                  8.9470 1
                             0.002779 **
                  6.9779 1
                              0.008252 **
## mean_logf
## mean_ldtz
                  0.3994 1
                              0.527396
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
word2vec_kenettaov2 = lmer(data = sem_kenett_final_word2vec,
                          rt~ word2veccosine +quadword2vec+ pathlengthfac +
                    mean_len + mean_logf + mean_ldtz +
           (1|subject) + (1|trial_index) +
             + (1|target_word))
summary(word2vec_kenettaov2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ word2veccosine + quadword2vec + pathlengthfac + mean_len +
##
      mean_logf + mean_ldtz + (1 | subject) + (1 | trial_index) +
##
      +(1 | target word)
##
     Data: sem_kenett_final_word2vec
## REML criterion at convergence: 182456.4
```

```
##
## Scaled residuals:
##
      Min
               1Q Median
                                     Max
## -2.6336 -0.5941 -0.1689 0.3854
                                 7.1563
##
## Random effects:
##
   Groups
               Name
                           Variance Std.Dev.
##
   target_word (Intercept)
                           1628.8
                                     40.36
   trial_index (Intercept)
                             265.3
                                    16.29
## subject
               (Intercept) 23989.5
                                  154.89
## Residual
                           52642.0 229.44
## Number of obs: 13259, groups:
## target_word, 1891; trial_index, 240; subject, 80
##
## Fixed effects:
##
                   Estimate Std. Error t value
## (Intercept)
                  651.69111
                              28.21971
                                       23.093
## word2veccosine 177.36116
                              41.52475
                                        4.271
## quadword2vec
                 -380.72292
                              71.84741
                                       -5.299
                                        4.546
## pathlengthfac2
                   42.06863
                               9.25364
## pathlengthfac3
                    8.63385
                               9.19781
                                        0.939
## pathlengthfac4
                   15.51614
                               9.26730
                                        1.674
## pathlengthfac5
                    0.01536
                               9.11645
                                        0.002
## pathlengthfac6
                 -17.70402
                               9.26477
                                       -1.911
                                        2.918
## mean len
                    5.10895
                               1.75091
## mean_logf
                    4.72228
                               2.02331
                                        2.334
## mean_ldtz
                    7.75045
                              16.23816
                                        0.477
##
## Correlation of Fixed Effects:
##
              (Intr) wrd2vc qdwrd2 pthln2 pthln3 pthln4 pthln5 pthln6 men_ln
## word2veccsn -0.269
## quadword2vc 0.124 -0.871
## pthlngthfc2 -0.234
                     0.044
                             0.169
## pthlngthfc3 -0.304
                     0.178
                             0.092
                                   0.586
## pthlngthfc4 -0.315
                     0.227
                             0.056
                                   0.589
                                          0.665
## pthlngthfc5 -0.322 0.226
                            0.063
                                  0.602 0.676
                                                0.690
## pthlngthfc6 -0.335
                     0.268 0.031
                                   0.600
                                         0.681
                                                 0.699
## mean_len
              -0.447 0.078 -0.069
                                   0.035 0.053
                                                        0.058
                                                 0.048
                                                               0.061
              -0.475
                     0.110 -0.069 0.007 0.042
                                                 0.053
                                                       0.054
                                                               0.060 -0.090
## mean_logf
               ## mean_ldtz
              mn lgf
## word2veccsn
## quadword2vc
## pthlngthfc2
## pthlngthfc3
## pthlngthfc4
## pthlngthfc5
## pthlngthfc6
## mean_len
## mean_logf
## mean_ldtz
               0.531
car::Anova(word2vec_kenettaov2)
```

Analysis of Deviance Table (Type II Wald chisquare tests)

```
##
## Response: rt
                   Chisq Df Pr(>Chisq)
##
## word2veccosine 18.2433 1 1.944e-05 ***
## quadword2vec
                 28.0799 1 1.164e-07 ***
## pathlengthfac 60.5216 5 9.483e-12 ***
## mean len
                  8.5141 1
                             0.003524 **
## mean logf
                  5.4472 1
                              0.019599 *
## mean ldtz
                  0.2278 1
                              0.633149
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
anova(word2vec_kenettaov1, word2vec_kenettaov2)
## refitting model(s) with ML (instead of REML)
## Data: sem kenett final word2vec
## Models:
## word2vec_kenettaov1: rt ~ word2veccosine + quadword2vec + mean_len + mean_logf + mean_ldtz +
                          (1 | subject) + (1 | trial_index) + +(1 | target_word)
## word2vec_kenettaov1:
## word2vec_kenettaov2: rt ~ word2veccosine + quadword2vec + pathlengthfac + mean_len +
## word2vec_kenettaov2:
                           mean_logf + mean_ldtz + (1 | subject) + (1 | trial_index) +
## word2vec_kenettaov2:
                           +(1 | target_word)
                      Df
                            AIC
                                   BIC logLik deviance Chisq Chi Df
## word2vec_kenettaov1 10 182603 182678 -91292
                                               182583
## word2vec_kenettaov2 15 182553 182665 -91262 182523 60.191
                                                                  5
                      Pr(>Chisq)
## word2vec kenettaov1
## word2vec kenettaov2
                       1.11e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

ScatterPlot

Kenett and Word2Vec

```
final_word2vec_rmisc = Rmisc::summarySE(final_word2vec,
                                        measurevar = "word2veccosine",
                                        groupvars = "pathlength")
item_word2vec = group_by(final_word2vec, ItemNo) %>%
  summarise_at(vars(pathlength,undirected, word2veccosine), mean)
item_word2vec$pathlengthfac = ordered(as.factor(as.character(item_word2vec$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
ggplot(final_word2vec_rmisc,
       aes(x = factor(pathlength), y = word2veccosine))+
geom_point()+
  geom_bar(stat = "identity", position = "dodge", width = 0.7, color= "black")+
 geom_errorbar(aes(ymin=word2veccosine - ci, ymax=word2veccosine + ci),
             width=.2, color = "gray26",
             position = position_dodge(0.7))+
 # geom_smooth(method = "lm")+
 theme few()+
   xlab("Path Length") + ylab("Cosine Similarity") +
```

Correlation between Kenett Path Length & Word2Vec Cosines

RTs and Word2Vec

Mean

```
measurevar = "zRT_trim",
                                        groupvars = c("cosinefac2", "Type"))
ggplot(word2vec_cosine_agg,
      aes(x = cosinefac2, y = zRT_trim,
           color = Type, group= Type))+
geom_point()+
geom_line()+
   geom_errorbar(aes(ymin=zRT_trim - se, ymax=zRT_trim + se),
              width=.2, color = "gray30",
              position = position_dodge(0.05))+
  theme_few()+
   xlab("Cosine Similarity") + ylab("z-RT") +
  ggtitle(" Word2Vec Cosines and RTs for Related/Unrelated Pairs") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```


Quintile zRT

```
final_word2vec = final_word2vec %>%
    mutate(quantile = ntile(word2veccosine, 5))

count_quintile = group_by(final_word2vec, quantile) %>%
    summarise(count = n())
```

```
word2vec_cosine_agg = Rmisc::summarySE(final_word2vec,
                                        measurevar = "zRT_trim",
                                        groupvars = c("quantile", "Type"))
word2vec_cosine_agg = word2vec_cosine_agg %>%
  filter((Type == "Related" & quantile == 5) |
           (Type == "Unrelated" & quantile != 5))
## high quintile means lower path length
ggplot(word2vec_cosine_agg,
      aes(x = -quantile, y = zRT_trim,
           color = Type, group= Type))+
geom_point()+
geom_line()+
   geom_errorbar(aes(ymin=zRT_trim - se, ymax=zRT_trim + se),
              width=.2, color = "gray30",
              position = position_dodge(0.05))+
  theme_few()+
   xlab("Cosine Similarity") + ylab("z-RT") +
  ggtitle(" Word2Vec Cosines and RTs for Related/Unrelated Pairs") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```


Quintile ANOVA

```
quintile_agg = group_by(final_word2vec, subject, quantile, Type) %>%
  summarise_at(vars(zRT_trim), mean)
quintile_agg = quintile_agg %>% filter((Type == "Related" & quantile == 5) |
           (Type == "Unrelated" & quantile != 5))
quintile_agg$subject = as.factor(quintile_agg$subject)
quintile_agg$quantile = as.factor(quintile_agg$quantile)
quintile_agg = quintile_agg[,-3]
quintile_aov = aov(data = quintile_agg, zRT_trim ~ quantile +
                     Error(subject/quantile))
summary(quintile aov)
##
## Error: subject
##
             Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 79 2.267 0.0287
##
## Error: subject:quantile
##
              Df Sum Sq Mean Sq F value Pr(>F)
## quantile
              4 0.398 0.09953
                                  1.393 0.236
## Residuals 316 22.576 0.07144
quintile_means = Rmisc::summarySE(quintile_agg,
                                  measurevar = "zRT_trim",
                                  groupvars = c("quantile"))
ggplot(quintile means,
      aes(x = quantile, y = zRT_trim))+
geom_point()+
geom_line()+
   geom_errorbar(aes(ymin=zRT_trim - se, ymax=zRT_trim + se),
              width=.2, color = "gray30",
              position = position_dodge(0.05))+
  theme_few()+
   xlab("Cosine Similarity") + ylab("z-RT") +
  ggtitle(" Word2Vec Cosines and RTs for Related/Unrelated Pairs") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

geom_path: Each group consists of only one observation. Do you need to
adjust the group aesthetic?

Quintile Raw RT

```
word2vec_cosine_agg = Rmisc::summarySE(final_word2vec,
                                        measurevar = "rt",
                                        groupvars = c("quantile", "Type"))
## high quintule means lower path length
ggplot(word2vec_cosine_agg,
       aes(x = -quantile, y = rt,
           color = Type, group= Type))+
geom_point()+
geom_line()+
   geom_errorbar(aes(ymin=rt - se, ymax=rt + se),
              width=.2, color = "gray30",
              position = position_dodge(0.05))+
  theme_few()+
   xlab("Cosine Similarity") + ylab("z-RT") +
  ggtitle(" Word2Vec Cosines and RTs for Related/Unrelated Pairs") +
   theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```


kenett ANOVA

```
sem_kenett_word2vec = final_word2vec %>% filter(rt > 250)
# removing for each participant, trials which were above or below 2.5 SD for each condition were also d
condition_means_word2vec = group_by(final_word2vec, quantile) %>%
  summarise_at(vars(rt), mean)
condition_sd_word2vec = group_by(final_word2vec, quantile) %>%
  summarise_at(vars(rt), sd)
condition_agg_word2vec = merge(condition_means_word2vec,
                                 condition sd word2vec, by = "quantile")
colnames(condition_agg_word2vec) = c("quantile", "meanrt", "sdrt")
condition_agg_word2vec$MOE = 2.5*condition_agg_word2vec$sdrt
condition_agg_word2vec$lower = condition_agg_word2vec$meanrt -
                                      condition_agg_word2vec$MOE
condition_agg_word2vec$upper = condition_agg_word2vec$meanrt +
                                      condition_agg_word2vec$MOE
sem_kenett_word2vec = merge(sem_kenett_word2vec,
                              condition_agg_word2vec, by = "quantile")
sem_kenett_word2vec = dplyr::arrange(sem_kenett_word2vec, subject)
```

```
sem_kenett_word2vec = sem_kenett_word2vec %>% filter(rt > lower)
sem_kenett_word2vec = sem_kenett_word2vec %>% filter(rt < upper)</pre>
sem kenett word2vec main = sem kenett word2vec %>%
  filter((Type == "Related" & quantile == 5) |
           (Type == "Unrelated" & quantile != 5))
sem_kenett_word2vec_subject = group_by(sem_kenett_word2vec_main,
                                       subject, quantile) %>%
  summarise_at(vars(rt), mean)
sem_kenett_word2vec_subject$subject = as.factor(sem_kenett_word2vec_subject$subject)
sem_kenett_word2vec_subject$quantile = as.factor(sem_kenett_word2vec_subject$quantile)
sem_kenett_aov_word2vec = aov(data = sem_kenett_word2vec_subject,
                                    rt ~ quantile +
                           Error(subject/quantile))
summary(sem_kenett_aov_word2vec)
## Error: subject
             Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 79 6815377
                          86271
##
## Error: subject:quantile
##
              Df Sum Sq Mean Sq F value Pr(>F)
                           2568
                                0.854 0.492
               4 10272
## quantile
## Residuals 316 950602
                           3008
options(contrasts = c('contr.sum', 'contr.poly'))
library(lsmeans)
library(multcomp)
kenett_subject_lsm = lsmeans::lsmeans(sem_kenett_aov_word2vec,
                                       c("quantile"))
 sub_effect = cld(kenett_subject_lsm, alpha = 0.05,
                 adjust = "tukey", details = TRUE)
library(knitr)
kable(subset(sub_effect$comparisons,sub_effect$comparisons$p.value < 0.1))</pre>
```

contrast estimate SE df t.ratio p.value — — — — — — — —

Kenett plot

Combined Plot

Collapsed RelUnrel

```
sem_kenett_subject_agg_undirected = sem_kenett_subject_agg_undirected[,-7]
z_rmisc_kenett = z_rmisc_kenett[,-7]
z_rmisc_kenett$Network = "Association Correlation"

colnames(sem_kenett_subject_agg_directed) = colnames(z_rmisc_kenett)
colnames(sem_kenett_subject_agg_undirected) = colnames(z_rmisc_kenett)
```

```
sem_kenett_subject_agg_directed = sem_kenett_subject_agg_directed %>%
  filter(!pathlength == "H")
z_rmisc_combined = rbind(z_rmisc_kenett,
                         sem_kenett_subject_agg_undirected,
                         sem_kenett_subject_agg_directed,
                         word2vec cosine agg kenett2)
z_rmisc_combined$Network = as.factor(z_rmisc_combined$Network)
z_rmisc_combined pathlengthfac = ordered(as.factor(as.character(z_rmisc_combined pathlength)),
levels = c("1", "2", "3", "4", "5", "6", "15"))
library(ggplot2)
library(ggthemes)
z_rmisc_combined %>%
 ggplot(aes(x = pathlengthfac, y = rt,
             group = Network, color = Network))+
 geom_point()+
# geom_smooth(method = "loess")+
geom_line()+
   # geom_errorbar(aes(ymin=rt - ci, ymax=rt + ci),
              width=.05, color = "azure3",
   #
              position = position_dodge(0))+
theme_few()+
 scale_color_hc()+
  \#scale_x\_continuous(breaks = c(1,2,3,4,5,6,10,15,20)) +
   xlab("Network Path Length") + ylab("RT to Make Relatedness Judgments") +
  ggtitle("Response Time for Relatedness Judgments by Path Length") +
  theme(axis.text = element_text(size = rel(1)),
          axis.title = element_text(face = "bold", size = rel(1)),
          legend.title = element_text(face = "bold", size = rel(1)),
         plot.title = element_text(hjust = .5),
         strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

sponse Time for Relatedness Judgments by Path Length

Network

- Association Correlation
- Directed Simple Association
- Undirected Simple Association
- word2vec

kenett replication

```
kenett_original = matrix(NA, nrow = 6, ncol = 2)
kenett_original = as.data.frame(kenett_original)
colnames(kenett_original) = c("pathlength", "rt")
kenett_original pathlength = c(1, 2, 3, 4, 6, 15)
kenett_original$rt = c(704, 870, 930, 844, 793, 770)
kenett_original$sd = c(169, 239, 275, 253, 241,258)
kenett_original$Network = "Kenett et al., 2017"
kenett_e1 = sem_kenett_agg[,c(1,3,4)]
kenett_e1$Network = "Experiment 1"
kenett_replicate = rbind(kenett_original, kenett_e1)
kenett_replicate$pathlengthfac = as.factor(kenett_replicate$pathlength)
kenett_replicate %>%
  ggplot(aes(x = pathlengthfac, y = rt,
             group = Network, color = Network))+
  geom_point()+
geom_line()+
    # geom_errorbar(aes(ymin=rt - sd, ymax=rt + sd),
                width=.05,
                position = position_dodge(0))+
```

```
theme_few()+
scale_color_hc()+
#scale_x_continuous(breaks = c(1,2,3,4,5,6,10,15,20))+
    xlab("Network Path Length") + ylab("RT to Make Relatedness Judgments") +
    ggtitle("") +
    theme(axis.text = element_text(size = rel(1)),
        axis.title = element_text(face = "bold", size = rel(1)),
        legend.title = element_text(face = "bold", size = rel(1)),
        plot.title = element_text(hjust = .5),
        strip.text.x = element_text(face = "bold", size = rel(1.4)))
```

