

Label Leakage and Protection in Two-party Split Learning

Oscar Li, Jiankai Sun, Weihao Gao, Hongyi Zhang, Xin Yang, Junyuan Xie, Chong Wang

- Our finding: Data leakage is a real problem not only in horizontal FL but also in vertical FL. Simple method exists to uncover the label information through communicated gradients in two-party split learning.
- Our solution: A theoretically justified random gradient perturbation method to protect against a large class of label-uncovering methods.

A simple label-uncovering method through gradient norm

Observation 1: less confidence about positive examples (y = 1)

Observation 2: same norm magnitude for both classes $\|\nabla_a h(a)\|_{a=f(X)}\|_2$

Quantitative measure of the label leak through $||g||_2$ Leak AUC: AUC using $||g||_2$ to predict y

Two party vertical FL example

Protection through randomness

•
$$\widetilde{g}^{(1)} = g^{(1)} + n^{(1)}$$
 $(\widetilde{P}^{(1)});$ $\mathbb{E}[n^{(1)}] = \mathbf{0}$
• $\widetilde{g}^{(0)} = g^{(0)} + n^{(0)}$ $(\widetilde{P}^{(0)});$ $\mathbb{E}[n^{(0)}] = \mathbf{0}$

Formulating protection objective

- General class of label recovering function: $\{1_A, A \subseteq \mathbb{R}^d\}$
- A labelling function 1_A 's detection error:

$$\frac{1}{2}(\text{FNR} + \text{FPR}) = \frac{1}{2} [\mathbb{P}(1_A(\widetilde{g}^{(1)}) = 0) + \mathbb{P}(1_A(\widetilde{g}^{(0)}) = 1)]$$
$$= \frac{1}{2} (\widetilde{P}^{(1)}(A^C) + \widetilde{P}^{(0)}(A))$$

• Maximize worst-case adversarial passive party's detection error: $\max_{\widetilde{P}^{(1)},\widetilde{P}^{(0)}} \min_{A} \frac{1}{2} (\widetilde{P}^{(1)}(A^C) + \widetilde{P}^{(0)}(A)) = \max_{\widetilde{P}^{(1)},\widetilde{P}^{(0)}} \frac{1}{2} (1 - \text{TV}(\widetilde{P}^{(1)},\widetilde{P}^{(0)}))$

Pinsker + Jensen inequality: $TV(P, Q) \le \frac{1}{2} \sqrt{KL(P||Q) + KL(Q||P)}$

$$\min_{\widetilde{P}^{(1)},\widetilde{P}^{(0)}} \mathrm{KL}(\widetilde{P}^{(1)} \parallel \widetilde{P}^{(0)}) + \mathrm{KL}(\widetilde{P}^{(0)} \parallel \widetilde{P}^{(1)})$$
s.t. $p \cdot \mathrm{tr}(\mathrm{Cov}[n^{(1)}]) + (1-p) \cdot \mathrm{tr}(\mathrm{Cov}[n^{(0)}]) \leq P$

Optimizing the objective with assumptions

$$\begin{split} g^{(0)} &\sim \mathcal{N}(\bar{g}^{(0)}, vI_{d\times d}) \quad g^{(1)} \sim \mathcal{N}(\bar{g}^{(1)}, vI_{d\times d}) \\ n^{(0)} &\sim \mathcal{N}(0, \Sigma_0) \qquad n^{(1)} \sim \mathcal{N}(0, \Sigma_1) \\ &\qquad \qquad \Sigma_0 \Sigma_1 = \Sigma_1 \Sigma_0 \end{split}$$

Analytical Solution

NEURAL INFORMATION PROCESSING SYSTEMS

with $\lambda_1^{(0)*}$, $\lambda_2^{(0)*}$, $\lambda_1^{(1)*}$, $\lambda_2^{(1)*}$ the optimal solution to a 4-variable optimization problem (see paper).

Experiments (Criteo)

Model: Wide & Deep		no noise	iso	sumKL
(embedding layer + 4 128-unit layer MLP)	train loss test AUC	0.4067 0.8062	0.4700 0.7921	0.4672 0.7949
Isotropic baseline:		max leak AUC		
$\mathcal{N}(0, \frac{25 \cdot \max_{i=1}^{B} \ g_i\ _2^2}{d} I_{d \times d})$	layer1	1.0000	0.5536	0.5554
	d) layer2	1.0000	0.5652	0.5583
\boldsymbol{a}	layer3	1.0000	0.6089	0.5710
	layer4	1.0000	0.5129	0.5188