(1) Reg / DFA / NFA

	REG	REG	CFL	Turing DECID.	Turing RECOG.	Р	NP	NPC	
$L_1 \cup L_2$	no	✓	✓	✓	✓	✓	✓	no	
$L_1\cap L_2$	no	✓	no	✓	✓	✓	✓	no	
\overline{L}	✓	✓	no	✓	no	✓	?	?	
$L_1 \cdot L_2$	no	✓	✓	✓	✓	✓	✓	no	
L^*	no	✓	✓	✓	✓	✓	✓	no	
$_L\mathcal{R}$		✓	✓	✓	✓	✓			•
$L\cap R$		✓	✓	✓	✓	✓			
$L1 \setminus L2$		✓	no	✓	no	✓	?		

- (DFA) $M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q imes\Sigma o Q$
- (NFA) $M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q\times\Sigma_{\varepsilon}\to\mathcal{P}(Q)$

- $\begin{aligned} & (\mathsf{GNFA}) \ (Q, \Sigma, \delta, q_0, q_\mathrm{a}), \\ & \delta : (Q \setminus \{q_\mathrm{a}\}) \times (Q \setminus \{q_\mathrm{start}\} \longrightarrow \mathcal{R} \ (\mathsf{where} \\ & \mathcal{R} = \{ \mathrm{all} \ \mathrm{regex} \ \mathrm{over} \ \Sigma \}) \end{aligned}$
- GNFA accepts $w\in \Sigma^*$ if $w=w_1\cdots w_k$, where $w_i\in \Sigma^*$ and there exists a sequence of states q_0,q_1,\ldots,q_k s.t. $q_0=q_{\mathrm{start}},\,q_k=q_{\mathrm{a}}$ and for each i, we have $w_i\in L(R_i)$, where $R_i=\delta(q_{i-1},q_i)$.
- $\begin{array}{ll} \bullet & (\mathsf{DFA} \leadsto \mathsf{GNFA}) \ G = (Q', \Sigma, \delta', s, a), \\ Q' = Q \cup \{s, a\}, \quad \delta'(s, \varepsilon) = q_0, \quad \text{For each } q \in F, \\ \delta'(q, \varepsilon) = a, \quad ((\mathsf{TODO}...)) \end{array}$
 - (**P.L.**) If A is a regular lang., then $\exists p$ s.t. every string $s \in A$, $|s| \geq p$, can be written as s = xyz, satisfying: (i) $\forall i \geq 0, xy^iz \in A$, (ii) |y| > 0 and (iii) $|xy| \leq p$.
- Every NFA can be converted to an equivalent one that has a single accept state.

- (NFA → DFA)

- $N = (Q, \Sigma, \delta, q_0, F)$
- $\bullet \quad D = (Q' = \mathcal{P}(Q), \Sigma, \delta', q_0' = E(\{q_0\}), F')$
- $\bullet \quad F' = \{q \in Q' \mid \exists p \in F : p \in q\}$
- $E(\{q\}) := \{q\} \cup \{ ext{states reachable from } q ext{ via } arepsilon ext{-arrows} \}$

$$ullet \ orall R \subseteq Q, orall a \in \Sigma, \delta'(R,a) = E\left(igcup_{r \in R} \delta(r,a)
ight)$$

 $\bullet \quad L(\varepsilon \cup \mathtt{0}\Sigma^*\mathtt{0} \cup \mathtt{1}\Sigma^*\mathtt{1}) = \{w \mid \#_w(\mathtt{01}) = \#_w(\mathtt{10})\},$

(2) CFL / CFG / PDA

- (CFG) $G=(\underset{\text{n.t. ter.}}{V},\underset{\text{ter.}}{\Sigma},R,S).$ Rules: $A\to w.$ (where $A\in V$ and $w\in (V\cup \Sigma)^*$).
- A derivation of w is a leftmost derivation if at every step the leftmost remaining variable is the one replaced.
- w is derived ambiguously in G if it has at least two different l.m. derivations. G is ambiguous if it generates at least one string ambiguously. A CFG is ambiguous iff it generates some string with two different parse trees. A CFL is inherently ambiguous if all CFGs that generate it are ambiguous.
- **(P.L.)** If L is a CFL, then $\exists p$ s.t. any string $s \in L$ with $|s| \geq p$ can be written as s = uvxyz, satisfying: (i) $\forall i \geq 0, uv^ixy^iz \in L$, (ii) $|vxy| \leq p$, and (iii) |vy| > 0.
- (CNF) $A \to BC$, $A \to a$, or $S \to \varepsilon$, (where $A, B, C \in V$, $a \in \Sigma$, and $B, C \ne S$).
- (CFG \leadsto CNF) (1.) Add a new start variable S_0 and a rule $S_0 \to S$. (2.) Remove ε -rules of the form $A \to \varepsilon$ (except for $S_0 \to \varepsilon$). and remove A's occurrences on the RH of a rule (e.g.: $R \to uAvAw$ becomes

- $R o uAvAw \mid uAvw \mid uvAw \mid uvw$. where $u,v,w \in (V \cup \Sigma)^*$). (3.) Remove unit rules $A \to B$ then whenever $B \to u$ appears, add $A \to u$, unless this was a unit rule previously removed. $(u \in (V \cup \Sigma)^*)$. (4.) Replace each rule $A \to u_1u_2 \cdots u_k$ where $k \geq 3$ and $u_i \in (V \cup \Sigma)$, with the rules $A \to u_1A_1$, $A_1 \to u_2A_2$, ..., $A_{k-2} \to u_{k-1}u_k$, where A_i are new variables. Replace terminals u_i with $U_i \to u_i$.
- If $G \in \mathsf{CNF}$, and $w \in L(G)$, then $|w| \leq 2^{|h|} 1$, where h is the height of the parse tree for w.

$$L \in \mathbf{CFL} \Leftrightarrow \exists \mathop{G}_{\mathsf{CFG}} : L = L(G) \Leftrightarrow \exists \mathop{M}_{\mathsf{PDA}} : L = L(M)$$

- $orall L \in \mathsf{CFL}, \exists G \in \mathsf{CNF} : L = L(G).$
- REG ⊆ CFL.
- $$\begin{split} \{w \in \{a,b\}^* \mid w = w^{\mathcal{R}}\}, \{ww^{\mathcal{R}} \mid w \in \{a,b\}^*\}, \\ \{a^nb^n \mid n \in \mathbb{N}\}, \{w \in \{\mathtt{a},\mathtt{b}\}^* \mid \#_\mathtt{a}(w) = \#_\mathtt{b}(w)\} \in \mathsf{CFL} \\ \mathsf{but} \not\in \mathsf{REG}. \end{split}$$
- $$\begin{split} & \{a^{i}b^{j}c^{k} \mid 0 \leq i \leq j \leq k\}, \, \{a^{n}b^{n}c^{n} \mid n \in \mathbb{N}\}, \\ & \{ww \mid w \in \{a,b\}^{*}\}, \, \{\mathbf{a}^{j^{2}} \mid j \geq 0\}, \\ & \{w \in \{\mathtt{a},\mathtt{b},\mathtt{c}\}^{*} \mid \#_{\mathtt{a}}(w) = \#_{\mathtt{b}}(w) = \#_{\mathtt{c}}(w)\} \not \in \mathsf{CFL} \\ & (\mathsf{derivation}) \, S \Rightarrow u_{1} \Rightarrow u_{2} \Rightarrow \cdots \Rightarrow u_{n} = w, \, \mathsf{where} \end{split}$$

each u_i is in $(V \cup \Sigma)^*$. (in this case, G generates w (or

- S derives w), $S \stackrel{*}{\Rightarrow} w$)
- $\begin{array}{l} \text{(PDA) } M = (Q, \underset{\mathsf{input}}{\Sigma}, \underset{\mathsf{stack}}{\Gamma}, \delta, q_0 \in Q, \underset{\mathsf{accepts}}{F} \subseteq Q). \text{ (where} \\ Q, \Sigma, \Gamma, F \text{ finite)}. \ \delta : Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon}). \end{array}$
- M accepts $w\in \Sigma^*$ if there is a seq. $r_0,r_1,\ldots,r_m\in Q$ and $s_0,,s_1,\ldots,s_m\in \Gamma^*$ s.t.:
- $r_0 = q_0$ and $s_0 = arepsilon$
- For $i=0,1,\ldots,m-1$, we have $(r_i,b)\in\delta(r_i,w_{i+1},a)$, where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_{\varepsilon}$ and $t\in\Gamma^*.$
- $r_m \in F$
- A PDA can be represented by a state diagram, where each transition is labeled by the notation " $a,b \to c$ " to denote that the PDA: **Reads** a from the input (or read nothing if $a=\varepsilon$). **Pops** b from the stack (or pops nothing if $b=\varepsilon$). **Pushes** c onto the stack (or pushes nothing if $c=\varepsilon$)
- (CSG) $G=(V,\Sigma,R,S)$. Rules: $S \to \varepsilon$ or $\alpha A\beta \to \alpha \gamma\beta$ where: $\alpha,\beta \in (V \cup \Sigma \setminus \{S\})^*$; $\gamma \in (V \cup \Sigma \setminus \{S\})^+$; $A \in V$.

(3) TM, (4) Decidability

- \circ (TM) $M=(Q,\sum\limits_{\mathsf{input}}\subseteq\Gamma,\sum\limits_{\mathsf{tape}},\delta,q_0,q_{\mathrm{accept}},q_{\mathrm{reject}}),$ where
 - $\sqcup \in \Gamma$ (**blank**), $\sqcup \not \in \Sigma$, $q_{\mathrm{reject}} \neq q_{\mathrm{accept}}$, and $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{\mathrm{L},\mathrm{R}\}$
- (unrecognizable) $\overline{A_{TM}}$, $\overline{EQ_{\mathsf{TM}}}$, EQ_{CFG} , $\overline{HALT_{\mathsf{TM}}}$, REGULAR_{TM} = $\{M \text{ is a TM and } L(M) \text{ is regular}\}$, E_{TM} , $EQ_{\mathsf{TM}} = \{M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$
- (recognizable) accepts if $w \in L$, rejects/loops if $w \notin L$.
- L is recognizable $\iff L \leq_{\mathrm{m}} A_{\mathsf{TM}}$.

 $f:\Sigma^* o \Sigma^*$ is computable if

every $w \in \Sigma^*$, M halts on w and

there exists a TM M s.t. for

outputs f(w) on its tape.

- · Some languages are unrecognizable.
- A is **co-recognizable** if \overline{A} is recognizable.

- Every inf. rec. lang. has an inf. dec. subset.
- (rec. but undec.) A_{TM} , $HALT_{\mathsf{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM halts on } w\}, \\ D = \{p \mid p \text{ is an int. poly. with an int. root}\}, \overline{EQ_{\mathsf{CFG}}}, \\ \overline{E_{\mathsf{TM}}}$

(decidable) accepts if $w \in L$, rejects if $w \notin L$.

- $L \in \overset{\mathsf{Turing}}{\mathsf{DEC.}} \Leftrightarrow \left(L \in \overset{\mathsf{Turing}}{\mathsf{REC.}} \land L \in \overset{\mathsf{Turing}}{\mathsf{co-REC.}}\right) \Leftrightarrow \exists \, \underset{\mathsf{TM}}{M} \, \mathsf{decides} \, L.$
- Turing Turing
 DECIDABLE C RECOGNIZABLE.
- $L \in \overset{\mathsf{Turing}}{\mathsf{DECIDABLE}} \iff L \leq_{\mathsf{m}} \mathsf{O}^* \mathsf{1}^*.$
- $A_{\rm DFA},\,A_{\rm NFA},\,A_{\rm REX},\,E_{\rm DFA},\,E_{Q}_{\rm DFA},\,A_{\rm CFG},\,E_{\rm CFG},$ every CFL, every finite lang., $A_{\rm LBA},$

- $$\begin{split} ALL_{\mathsf{DFA}} &= \{ \langle M \rangle \mid M \text{ is a DFA}, L(A) = \Sigma^* \}, \\ A\varepsilon_{\mathsf{CFG}} &= \{ \langle G \rangle \mid G \text{ is a CFG that generates } \varepsilon \}, \end{split}$$
- (decider) TM that halts on all inputs.
- (Rice) Let P be a lang. of TM descriptions, s.t. (i) P is nontrivial (not empty and not all TM desc.) and (ii) for each two TM M_1 and M_2 , we have
- $L(M_1) = L(M_2) \implies \big(\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P\big).$ Then P is undecidable.
- $\{ {
 m all \ TMs} \}$ is countable; Σ^* is countable (for every finite Σ); $\{ {
 m all \ languages} \}$ is uncountable; $\{ {
 m all \ infinite \ binary \ sequences} \}$ is uncountable.

(5) Mapping Reduction $\leq_{ m m}$

- A is \mathbf{m} . \mathbf{r} comp. fu $w \in A \Leftrightarrow \mathbf{r}$
- A is **m. reducible** B (denoted by $A \leq_{\mathrm{m}} B$), if there is a comp. func. $f: \Sigma^* \to \Sigma^*$ s.t. for every w, we have $w \in A \iff f(w) \in B$. (Such f is called the **m. reduction** from A to B.)
 - If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is dec.
 - If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undec.
- If $A \leq_{\mathrm{m}} B$ and B is recognizable, then A is rec.
- If $A \leq_{\mathbf{m}} B$ and A is unrecognizable, then B is unrec.
- $\bullet \quad \text{(transitivity) If } A \leq_{\mathrm{m}} B \text{ and } B \leq_{\mathrm{m}} C \text{, then } A \leq_{\mathrm{m}} C.$
- If A is recognizable and $A \leq_{\mathrm{m}} \overline{A}$, then A is decidable.
- $A \leq_{\mathrm{m}} B \iff \overline{A} \leq_{\mathrm{m}} \overline{B}$

(7) Complexity, Polytime Reduction \leq_P

- ((**Running time**) decider M is a f(n)-time **TM**.) $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the max. num. of steps that DTM (or NTM) M takes on any n-length input (and any branch of any n-length input. resp.).
- $\mathsf{TIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ DTM}\}.$
- $\mathsf{NTIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ NTM}\}.$
- $\mathbf{P} = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k)$
- (verifier for L) TM V s.t.
- $L = \{ w \mid \exists c : V(\langle w, c \rangle) = \mathsf{accept} \}.$
- $\bullet \quad \text{(certificate for } w \in L \text{) str. } c \text{ s.t. } V(\langle w, c \rangle) = \text{accept.}$

- $\mathbf{NP} = \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k)$
- $\mathbf{NP} = \{L \mid L \text{ is decidable by a PT verifier}\}.$
- $P \subseteq NP$.
- $f: \Sigma^* \to \Sigma^*$ is **PT computable** if there exists a PT TM M s.t. for every $w \in \Sigma^*$, M halts with f(w) on its tape.
- A is **PT (mapping) reducible** to B, denoted $A \leq_P B$, if there exists a PT computable func. $f: \Sigma^* \to \Sigma^*$ s.t. for every $w \in \Sigma^*$, $w \in A \iff f(w) \in B$. (in such case f is called the **PT reduction** of A to B).
 - If $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
 - If $A \leq_{\mathbf{P}} B$ and $B \leq_{\mathbf{P}} A$, then A and B are **PT** equivalent, denoted $A \equiv_{P} B$. \equiv_{P} is an

- equivalence relation on NP. $P \setminus \{\emptyset, \Sigma^*\}$ is an equivalence class of \equiv_P .
- NP-complete = $\{B \mid B \in NP, \forall A \in NP, A \leq_P B\}.$
- CLIQUE, SUBSET-SUM, SAT, 3SAT, VERTEX-COVER, HAMPATH, UHAMATH, $3COLOR \in NP$ -complete.
- $\emptyset, \Sigma^* \notin NP$ -complete.
- If $B \in NP$ -complete and $B \in P$, then P = NP.
- If $B\in {
 m NP\text{-}complete}$ and $C\in {
 m NP}$ s.t. $B\leq_{
 m P} C$, then $C\in {
 m NP\text{-}complete}.$
- If $\mathrm{P}=\mathrm{NP}$, then $orall A\in\mathrm{P}\setminus\{\emptyset,\Sigma^*\},\ A\in\mathrm{NP ext{-}complete}.$

Examples: $A \leq_{\mathrm{P}} B$ and $f: A \to B$ s.t. $w \in A \iff f(w) \in B$ and f is polytime comp.

- SAT ≤_P DOUBLE-SAT
- $f(\phi) = \phi \wedge (x \vee \neg x)$
- SUBSET-SUM ≤_P SET-PARTITION
- $f(\langle x_1,\ldots,x_m,t\rangle)=\langle x_1,\ldots,x_m,S-2t\rangle$, where S sum of x_1,\ldots,x_m , and t is the target subset-sum.
- $3COLOR \leq_{P} 3COLOR_{almost}$
- $f(\langle G
 angle) = \langle G'
 angle$, where $G' = G \cup K_4$

- $VERTEX\text{-}COVER \leq_P WVC$
- $f(\langle G,k \rangle) = (G,w,k), \, orall v \in V, w(v) = 1.$
- SimplePATH $\leq_{\mathbf{P}}$ UHAMATH $\underset{\text{length } > k}{\text{simplePATH}}$

 - $\begin{array}{ll} \bullet & f(\langle G=(V,E),k\rangle)=\langle G'=(V',E')\rangle, \text{ if } k=\frac{|V|}{2},\\ E=E',V'=V. \text{ if } k>\frac{|V|}{2}, \end{array}$
- $V'=V\cup\{j=2k-|V|\ ext{new nodes}\}.$ if $k<rac{|V|}{2},$ $V'=V\cup\{j=|V|-2k\ ext{new nodes}\}$ and
- SET-COVER <_P VERTEX-COVER
- $3SAT \leq_P SET-SPLITTING$
- INDEPENDENT-SET < P VERTEX-COVER
- VERTEX-COVER \leq_p CLIQUE

Counterexamples

- $A \leq_{\mathrm{m}} B ext{ and } B \in \mathsf{REG}, ext{ but, } A
 otin \mathsf{REG}:$ $A = \{0^n 1^n \mid n \geq 0\}, B = \{1\}, f : A o B,$
- $f(w) = \begin{cases} 1 & \text{if } w \in A \\ 0 & \text{if } w \notin A \end{cases}$
- $\begin{array}{ll} \bullet & L \in \mathsf{CFL} \; \mathsf{but} \; \overline{L} \not \in \mathsf{CFL} \text{:} & L = \{x \; | \; \forall w \in \Sigma^*, x \neq ww\}, \\ \overline{L} = \{ww \; | \; w \in \Sigma^*\}. \end{array}$
- $\begin{array}{ll} \bullet & L_1,L_2 \in \mathsf{CFL} \; \mathsf{but} \; L_1 \cap L_2 \not\in \mathsf{CFL} \colon & L_1 = \{a^nb^nc^m\}, \\ L_2 = \{a^mb^nc^n\}, \, L_1 \cap L_2 = \{a^nb^nc^n\}. \end{array}$
- $L_1\in \mathsf{CFL},\, L_2$ is infinite, but $L_1\setminus L_2\not\in \mathsf{REG}: \quad L_1=\Sigma^*,$ $L_2=\{a^nb^n\mid n\geq 0\},\, L_1\setminus L_2=\{a^mb^n\mid m\neq n\}.$
- $L_2=\{a^nb^n\mid n\geq 0\},\, L_1\setminus L_2=\{a^mb^n\mid m
 eq$ $L_1,L_2\in\mathsf{REG},\, L_1
 ot\subset L_2,\, L_2
 ot\subset L_1,\,\mathsf{but},$
- $(L_1 \cup L_2)^* = L_1^* \cup L_2^*: \quad L_1 = \{\mathtt{a}, \mathtt{b}, \mathtt{ab}\}, \, L_2 = \{\mathtt{a}, \mathtt{b}, \mathtt{ba}\}$ \circ
- . $L_1\in\mathsf{REG},\,L_2\not\in\mathsf{REG},\,\mathsf{but},\,L_1\cap L_2\in\mathsf{REG},\,\mathsf{and}$ $L_1\cup L_2\in\mathsf{REG}:\quad L_1=L(\mathtt{a}^*\mathtt{b}^*),\,L_2=\{\mathtt{a}^n\mathtt{b}^n\mid n\geq 0\}.$
- $L_1, L_2, L_3, \dots \in \mathsf{REG}$, but, $\bigcup_{i=1}^\infty L_i
 otin \mathsf{REG}$:

- $L_i = \{\mathtt{a}^i\mathtt{b}^i\}, \, igcup_{i=1}^\infty L_i = \{\mathtt{a}^n\mathtt{b}^n \mid n \geq 0\}.$
- $L_1\cdot L_2\in \mathsf{REG}, \ \mathsf{but} \ L_1\not\in \mathsf{REG}: \quad L_1=\{\mathtt{a}^n\mathtt{b}^n\mid n\geq 0\},$ $L_2=\Sigma^*.$
- $L_2\in\mathsf{CFL}, ext{ and } L_1\subseteq L_2, ext{ but } L_1
 otin \mathsf{CFL}: \quad \Sigma=\{a,b,c\}, \ L_1=\{a^nb^nc^n\mid n\geq 0\}, L_2=\Sigma^*.$
- $L_1, L_2 \in \mathsf{DECIDABLE}$, and $L_1 \subseteq L \subseteq L_2$, but $L \in \mathsf{UNDECIDABLE}$: $L_1 = \emptyset$, $L_2 = \Sigma^*$, L is some undecidable language over Σ .