LDO DESIGN

PASS TRANSISTOR DESIGN

• I put the pass transistor in a feedback loop with the ideal amplifier and sweep W until it operates in saturation when Vin = 2v

Vref=1.2v

ILoad = 50mA

L=Lmin=0.5um

Vout = 1.8v

• I got W = 1400*20 um

vdsat	0.187436
vth	1,05642
id	0.050012
ibd	-2.8019e-10
ibs	-7.2801e-16
gbd	1,40002e-09
gbs	1,40548e-09
isub	8,63181e-16
igidl	0
igisl	0
igs	0
igd	0
igb	0
iges	0
iged	0
vbs	-5.17979e-07
vgs	1,26451
vďs	0.199998

ERROR AMPLIFIER DESIGN

• I assume the requirement as follows:

Av > 50 dB

GBW > 30 MHz

ICMR [0.8v - 1.6v]

SR = 20v/usec

Cl=1pf

Vdd = 2v

Power dissipation < 1mW

ERROR AMPLIFIER DESIGN

- 1- I1=I2=I3/2=Ibias/2, I4=I5=1.5*I3 and I6-9=I4-I1
- 2- From SR I got Ibias
- 3- From GBW I got W/L)1,2
- 4- From ICMR- I got W/L)3
- 5- From ICMR+ I got W/L)4,5
- 6- I got W/L)6-9 that handle worst-case currents of I5
- 7- I got W/L)10-14 using current ratios

ERROR AMPLIFIER DESIGN

Open loop results

@Vcm=1.2v

Adm = 55 dB

GBW= 47 MHz

Acm = -32 dB

- I put the error amplifier in the loop to check stability
- I first checked at 50mA load and 2v supply (worst case)
- The optimum values of Co was 4uF and RESR=1ohm
- Av= 57.7dB, GBW = 177
 KHz and PM = 80 deg

@ 50mA load and 2v supply

avd

gbw

5.775411e+01

1.767798e+05

7,995047e+01

@ no load and 2v supply

= 6.376034e+01

= 1.762841e+03

= 6.990220e+01

avd

gbw

@ 50mA load and 3.6v supply

avd

gbw

ΡM

8,150401e+01

2,584139e+05

8,242524e+01

@ no load and 3.6v supply

= 6,223042e+01

DROPOUT VOLTAGE

@max load 50mA I started from Vsup = 2v and decreased it with little step until pass transistor was in triode region then got Vdo = 0.2V

@no load I made the same method but this time Vdo = 50mV

• Note: I made this simulation manually as there is no region parameter for the mosfet in ngspice.

LINE REGULATION

- I swept the input voltage from 2v to 3.6v and plotted the output for different load conditions 0,100uA,1mA,10mA and 50mA.
- I measured line regulation for the five previous cases: -
- Using the equation (Vmax-Vmin)/(1.8*1.6)

```
vmin = 1.801394e+00
vmax = 1.807411e+00
Line_Regulation @ 0 = 0.00208924
```

```
vmin = 1.800822e+00
vmax = 1.806982e+00
Line_Regulation @ 100u = 0.00213889
```

```
vmin = 1.800216e+00
vmax = 1.806555e+00
Line_Regulation @ 1m = 0.00220104
```

```
vmin = 1.799453e+00
vmax = 1.806069e+00
Line_Regulation @ 10m = 0.00229722
```

LINE REGULATION

LOAD REGULATION

- I swept the load from 0 to 50mA and plotted the output for different input conditions 2v, 2.5v, 3v and 3.6v.
- I measured load regulation for the four previous cases: -
- Using the equation (Vmax-Vmin)/(1.8*50m)

Load_Regulation @ 3.6 = 0.0201222

LOAD REGULATION

LINETRANSIENT

- I applied an input voltage pulse from 2v to 3.6v with 1msec width and 1nsec rise and fall time and simulated the circuit under the previous five load cases.
- The showed curve is under 50mA load.
- All the cases are plotted in next slide.

LINETRANSIENT

LOAD TRANSIENT

- I applied a load current pulse from 0 to 50mA with 1msec width and 1nsec rise and fall time and simulated the circuit under the previous five load cases.
- The showed curve is with 3.6v input.
- All the cases are plotted in the next slide.

LOAD TRANSIENT

POWER SUPPLY REJECTION

QUIESCENT CURRENT

• I swept the load from 0 to 50mA and measured the current at no load for different input voltages and It was approximately 100uA in all cases.

TEMPERATURE VARIATIONS

• I swept temperature from -45 deg to 125 deg at no load.

TEMPERATURE VARIATIONS

• I swept temperature from –45 deg to 125 deg at 50mA load.

