PRE-CALCULUS

Or Year 1 Sem 1 Calculus

Before we start...

- 1. This slide does not cover all topics.
- 2. This slide might contain misinformation.
- 3. Most formulars are given in exam.
- 4. Does anyone have no knowledge about Calculus?
- 5. Does everyone have something to write on?

What is limits

An approximation* of value at some point where the limit is trying to approach.

Limits symbol

Limits sign -->
$$\lim_{x \to 1} f(x)$$
 <-- Function Points that we're approaching --> $x \to 1$

One-sided limits

Limits that approach from either left or right side of that point.

$$\lim_{x \to \pi/2^{+}} f(x)$$
 Limits from the right

$$\lim_{x \to \pi/2^{-}} f(x)$$
 Limits from the left

When the 2 sides limits are different, the general limits DNE (does not exist).

Example $f(x) = \sin(x)$

$$\lim_{x \to \pi/2^{+}} f(x) \approx 1$$
 and $\lim_{x \to \pi/2^{-}} f(x) \approx 1$

•
$$\lim_{x \to \pi/2} f(x) = 1$$
 #

How to find limits

Other methods include:

- 1. Direct substitution methods
- 2. Factoring methods
- 3. Rationalizing methods
- 4. L'Hôpital's rules (not learn)

<u>Table methods</u> is the simplest methods of all. But also time consuming

How to use a table methods

(1,4)

$$f(x) = x^2 + 2x + 1$$
 find

1) Find right side limits 2) Find left side limits

Х	f(x)
0.5	2.25
0.9	3.61
0.99	3.9601
0.999	3.996
0.9999	3.9996

So
$$\lim_{x\to 1^+} f(x) \approx 4$$

Х	f(x)
1.5	6.25
1.1	4.41
1.01	4.0401
1.001	4.004
1.0001	4.0004

So
$$\lim_{x\to 1} f(x) \approx 2$$

3) ••
$$\lim_{x\to 1} f(x) = \lim_{x\to 1} f(x)$$

•
$$\lim_{x \to 1} f(x) = 4$$

Infinite limits & Limits Does Not Exist

A limits of a graphs that point upwards to some asymptote. When both of one-sided is not equal, that point have no limits, even if they have values; thats why it just an approximation, not exact value

Example

$$f(x) = \frac{x+2}{x^2-4}$$

$$\lim_{x\to 2^{-}} f(x) \approx -\infty \qquad \lim_{x\to 2^{+}} f(x) \approx \infty$$

•
$$\lim_{x\to 2} f(x) = DNE$$

Because the left side limit is not equal to right side limit

Exercise 1

1)
$$\lim_{x \to 4^{+}} (x^2 + 3)$$

2)
$$\lim_{x \to -1^{-}} \frac{2}{x+1}$$

3)
$$\lim_{x \to \pi/2} \tan(x)$$

Limits at infinity

When the values we're trying to approach are ±∞

Ex.
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$
 find $\lim_{x \to \pm \infty} f(x)$

O -1	
1 0	
2 0.6	
5 0.923	
10 0.9801	(
50 0.9992	(
100 0.9998	(
1000 0.9999	

So
$$\lim_{x\to\infty} f(x) = 1$$

X	f(x)
0	-1
-1	0
-2	0.6
-5	0.923
-10	0.9801
-50	0.9992
-100	0.9998
-1000	0.9999

So
$$\lim_{x\to -\infty} f(x) = 1$$

Exercise 2

$$\lim_{x\to-\infty}\sqrt{4-x}$$

Limits with different graphs

Normal-looking graph

- Have limits

Jump discontinuity

- Have one sided limits
- DNE general limits

$$x \le 0 : x + 1$$
$$x > 0 : x - 1$$

Removable discontinuity

- Value not on graph
- Have limits

$$\frac{x^2 - 8x + 15}{x - 5}$$

Essential discontinuity

- One sided limits DNE in real number

$$f(x) = egin{cases} \sinrac{5}{x-1} & ext{for } x < 1 \ 0 & ext{for } x = 1 \ rac{1}{x-1} & ext{for } x > 1 \end{cases}$$

Topic 2:

Derivatives

Tangent line

Line that touch the curve / have only 1 intersection point with the graph. (Or slope of a certain point in the graph)

Example

$$f(x) = x^2 + 2x + 1$$

At x=0, the graph has a slope of 2

What is derivatives

 $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$ f'(x) is the derivative of f(x) and is defined by:

Confuse? Derivatives are slope equation of a certain point in graph.

Example $f(x) = x^2 + 2x + 1$

$$f(x) = x^2 + 2x + 1$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{[(x+h)^2 + 2(x+h) + 1] - [x^2 + 2x + 1]}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + 2x + 2h + 1 - x^2 - 2x - 1}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2 + 2h}{h} = \lim_{h \to 0} 2x + h + 2 = 2x + 2 \#$$

Differentiation, but easy mode

When differentiate (act of finding derivatives), think as removing 1 unit of 'x' from the equation.

Everything does contain 'x' When x^n , we'll make it nx^{n-1} .

Example
$$f(x) = x^2 + 2x + 1 \rightarrow x^2 + 2x^1 + 1x^0 \rightarrow 2x^1 + 2x^0 + 1x^0$$

When x^0 , we'll remove that unit completely.

•
$$f(x) = x^2 + 2x + 1$$

• $f'(x) = 2x + 2$ $f'(x) = 2x + 2$

Indifferentiable point

Corner

Jump discontinuity

 $x \le 0 : x + 1$

$$x > 0 : x - 1$$

Vertical tangent / slope

$$\sqrt[3]{x}$$

Differentiation rules (Given in exam, but not all)

$$1. \ \frac{d}{dx}[cu] = cu'$$

$$4. \ \frac{d}{dx} \left[\frac{u}{v} \right] = \frac{vu' - uv'}{v^2}$$

7.
$$\frac{d}{dx}[x] = 1$$

$$\mathbf{10.} \ \frac{d}{dx}[e^u] = e^{u dv}$$

$$\mathbf{13.} \ \frac{d}{dx}[\sin u] = (\cos u)u'$$

$$\mathbf{16.} \ \frac{d}{dx}[\cot u] = -(\csc^2 u)u'$$

$$\mathbf{19.} \ \frac{d}{dx} [\arcsin u] = \frac{u'}{\sqrt{1 - u^2}}$$

$$22. \frac{d}{dx}[\operatorname{arccot} u] = \frac{-u'}{1+u^2}$$

$$25. \frac{d}{dx} [\sinh u] = (\cosh u)u'$$

$$28. \frac{d}{dx} \left[\coth u \right] = -(\operatorname{csch}^2 u) u'$$

31.
$$\frac{d}{dx}[\sinh^{-1} u] = \frac{u'}{\sqrt{u^2 + 1}}$$

34.
$$\frac{d}{dx} [\coth^{-1} u] = \frac{u'}{1 - u^2}$$

$$2. \frac{d}{dx}[u \pm v] = u' \pm v'$$

$$5. \frac{d}{dx}[c] = 0$$

8.
$$\frac{d}{dx}[|u|] = \frac{u}{|u|}(u'), \quad u \neq 0$$

$$\mathbf{11.} \ \frac{d}{dx}[\log_a u] = \frac{u'}{(\ln a)u}$$

$$14. \ \frac{d}{dx}[\cos u] = -(\sin u)u'$$

17.
$$\frac{d}{dx}[\sec u] = (\sec u \tan u)u'$$

$$20. \ \frac{d}{dx} [\arccos u] = \frac{-u'}{\sqrt{1-u^2}}$$

23.
$$\frac{d}{dx}[\operatorname{arcsec} u] = \frac{u'}{|u|\sqrt{u^2 - 1}}$$

26.
$$\frac{d}{dx}[\cosh u] = (\sinh u)u'$$

29.
$$\frac{d}{dx}[\operatorname{sech} u] = -(\operatorname{sech} u \tanh u)u'$$

32.
$$\frac{d}{dx}[\cosh^{-1} u] = \frac{u'}{\sqrt{u^2 - 1}}$$

35.
$$\frac{d}{dx}[\operatorname{sech}^{-1} u] = \frac{-u'}{u\sqrt{1-u^2}}$$

$$3. \frac{d}{dx}[uv] = uv' + vu'$$

$$6. \frac{d}{dx}[u^n] = nu^{n-1}u'$$

$$9. \frac{d}{dx}[\ln u] = \frac{u'}{u}$$

12.
$$\frac{d}{dx}[a^u] = (\ln a)a^u u'$$

$$\mathbf{15.} \ \frac{d}{dx}[\tan u] = (\sec^2 u)u'$$

18.
$$\frac{d}{dx}[\csc u] = -(\csc u \cot u)u'$$

$$21. \ \frac{d}{dx} [\arctan u] = \frac{u'}{1 + u^2}$$

24.
$$\frac{d}{dx}[\operatorname{arccsc} u] = \frac{-u'}{|u|\sqrt{u^2 - 1}}$$

27.
$$\frac{d}{dx}[\tanh u] = (\operatorname{sech}^2 u)u'$$

30.
$$\frac{d}{dx} [\operatorname{csch} u] = -(\operatorname{csch} u \operatorname{coth} u)u'$$

33.
$$\frac{d}{dx}[\tanh^{-1} u] = \frac{u'}{1 - u^2}$$

36.
$$\frac{d}{dx}[\operatorname{csch}^{-1} u] = \frac{-u'}{|u|\sqrt{1+u^2}}$$

Exercise 3

1)
$$g(x) = 5x^3$$
 find g'(x)

2) If
$$y = (x+2)(x+3)(x+4)$$
, find y'

Higher order differentiation

Fancy words for saying "Differentiate the equation more than 1 time"

Example $f(x) = x^4 + 3x^3 + 5x^2 + 7x + 9$

$$f'(x) = 4x^3 + 9x^2 + 10x + 7$$
—Differentiate 1 time.

$$f''(x) = 12x^2 + 18x + 10$$
—Differentiate 2 times.

$$f'''(x) = 24x + 18$$
—Differentiate 3 times.

$$f_{\bullet}^{4}(x) = 24$$
—Differentiate 4 times.

When diff 4 or more time, we write as power 4 instead.

Exercise 4

1)
$$f(x) = 6x^3 - 12x^2 + 4$$
 find $f''(x)$

2)
$$f(x) = 6x^{10} + 10x^6$$
 find $f^5(x)$

Implicit differentiation

When any side of the equations contain more than 1 variables.

Example $x^3 + y^3 = 6xy$

$$x^3 + y^3 = 6xy$$

$$3x^2 + 3y^2y' = 6y + 6xy'$$

$$3y^2y' - 6xy' = 6y - 3x^2$$

$$y'(3y^2 - 6x) = 6y - 3x^2$$

$$y' = \frac{6y - 3x^2}{3y^2 - 6x} \#$$

When dif respect to x, dif x normally, and change variable y to be y' (y prime).

y' is equivalent to f'(x) but easier to use in equation.

Higher order implicit differentiation

Just do the implecit dif more than 1 times, and substitute the y' into the newly dif equation to get the y"

Example
$$x^{2} + 4y^{2} = 4$$

 $2x + 8yy' = 0$
 $8yy' = -2x$
 $y' = \frac{-2x}{9x^{2}}$

$$y'' = \frac{-16y + 16xy'}{64y^2}$$
again ar substitution continuity calculation is substituted as a substitution of the continuity calculation is substituted as a substitution calculation is substituted as a substitute continuity as a substituted as a substitute as a substituted as a substi

When differentiate again and found y', substitute and continue the calculation.

$$= \frac{-x^2 - 4y^2}{16y^3}$$

Topic 3:

Extrema

What is extrema

The values highest / lowest point in the graph compare to its surrounding.

Or: The valeus that are highest / lowest in that concave area.

Types of extrema

Relative extrema: Max/min point between concave in expanding graphs.

Absolute extrema: Max/min point between concave in closed-interval graphs.

Critical value

A value that shows either maximum or minimum extrema in the graphs.

Critical value can be found by setting the derived equation equals to zero.

Example

$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

 $f'(x) = 12x^3 - 12x^2 - 24x$
 $0 = 12x^3 - 12x^2 - 24x$ Set the derived equation equals to zero
 $x = -1, 0, 2$ Find x to get critical value

Concavity

When the slope value increase or decrease

Slope value increase

Slope value decrease

Infection point

A point that connects between 2 different concaves

Example

Concave down | Concave up

Infection point: in-between 2 concaves

How to find infection point

Find the second order derivative and set the equation equals to zero.

Example

$$f(x) = x^4 - 4x^3$$

 $f'(x) = 4x^3 - 12x^2$
 $0 = 4x^3 - 12x^2$ $x = 0, 3$ —Critical value
 $f''(x) = 12x^2 - 24x$
 $0 = 12x^2 - 24x$ $x = 0, 2$ —Infection point

Finding relative extrema

Steps to find relative extrema

- 1. Find a critical value.
- 2. Find the slope in the section between each critical value.
 - a. If the critical value is between same slope direction, not extrema.
 - b. If not, then do next step.
- 3. Substitute the critical value into the original equations to get y values.
- 4. Compare y values to see which one is maximum/minimum

Example

$$y = 2x^3 - 9x^2 + 12x$$

 $y' = 6x^2 - 18x + 12$
 $0 = 6x^2 - 18x + 12$
 $0 = 6(x - 1)(x - 2)$
 $x = 1, 2$

Important, always make it into this form

Combining sign

$$y(1) = 5 \qquad \text{Relative max at } (1, 5)$$

y(2) = 4 Relative min at (2, 4)

Exercise 5

Find relative extrema of $f(x) = x^4 - 4x^3$, answer in (x, y)

Finding absolute extrema in closed interval graph

Similar to relative extrema, but the edge of the interval also count as max/min.

Example

$$y = x^2 - 4x + 5$$
 in a closed interval [1, 4]

$$y' = 2x - 4$$

$$0 = 2x - 4$$

Edge of
$$y(1) = (1)^2 - 4(1) + 5 = 2 \rightarrow (1, 2)$$

 $y(2) = (2)^2 - 4(2) + 5 = 1 \rightarrow (2, 1)$ Absolute min interval $y(4) = (4)^2 - 4(4) + 5 = 5 \rightarrow (4, 5)$ Absolute max #

Second derivative test

Faster way to determine the extrema, but it can only tell whether the critical value is max/min. It does not compare between the critical value and the interval for absolute extrema. (It gives max/min, but not gives value)

Example
$$f(x) = 2x^3 - 3x^2 - 36x + 17$$

$$f(x) = 2x^3 - 3x^2 - 36x + 17$$
 $f''(x) = 12x - 6$ Not y value of the critical points $f'(x) = 6x^2 - 6x - 36$ $f''(-2) = -30$ (<0) Relative max $f''(3) = 30$ (>0) Relative min #

When the test result in negative, its maxima. If its positive, its minima

Exercise 6

$$f(x) = 2x^3 - 3x^2 - 36x + 17$$
 in closed interval [-5, 5], answer in (x, y)

Topic 4:

Integration

What is integration

If derivative is to find the slope equation from a graphs equation, then integrate is to find a graph equations from that slope equation.

Example

F(x) is the result of integrating f(x)

Differentiation
$$\begin{cases}
F(x) = x^3 + x^2 + x + C \\
f(x) = 3x^2 + 2x + 1 + C \\
f'(x) = 6x + 2
\end{cases}$$
Integration

When integrate, don't forget +C (constant)

Initial conditions

Use to determine the +C values. (Not count the integral interval \int_{b}

Example

$$f(x) = 3x^2 + 2x + 1$$
 where $F(1) = 5$

$$\int f(x)dx = x^3 + x^2 + x + C$$

$$F(1) = (1)^3 + (1)^2 + 1 + C$$

$$5 = 3 + C$$

$$C = 2$$

••
$$F(x) = x^3 + x^2 + x + 2$$

Integration rules

$$\mathbf{1.} \int kf(u) \ du = k \int f(u) \ du$$

$$3. \int du = u + C$$

$$5. \int \frac{du}{u} = \ln|u| + C$$

7.
$$\int a^u du = \left(\frac{1}{\ln a}\right) a^u + C$$

$$9. \int \cos u \, du = \sin u + C$$

11.
$$\int \cot u \ du = \ln |\sin u| + C$$

13.
$$\int \csc u \, du = -\ln|\csc u + \cot u| + C$$

$$15. \int \csc^2 u \, du = -\cot u + C$$

$$19. \int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C$$

2.
$$\int [f(u) \pm g(u)] du = \int f(u) du \pm \int g(u) du$$

4.
$$\int u^n \, du = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1$$

$$6. \int e^u du = \underline{e}^u + C$$

$$8. \int \sin u \, du = -\cos u + C$$

$$\mathbf{10.} \int \tan u \, du = -\ln|\cos u| + C$$

12.
$$\int \sec u \, du = \ln |\sec u + \tan u| + C$$

$$14. \int \sec^2 u \ du = \tan u + C$$

$$16. \int \sec u \tan u \, du = \sec u + C$$

18.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$$

$$20. \int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a}\operatorname{arcsec} \frac{|u|}{a} + C$$

Exercise 7

1)
$$\int 7xdx$$

2)
$$\int (x^2 + 2x) dx$$

3)
$$y' = 8x - 4$$
; $y(2) = 5$, find y

Integration by part

When 2 equations are join by multiplying each other.

$$\int u \, dv = uv - \int v \, du$$

Example

Pick x as u because

its easier

$$\int xe^{x}dx$$

$$\int u \, dv = uv - \int v \, du$$

$$u = x \qquad dv = e^{x}dx$$

$$du = dx \qquad v = e^{x}$$

$$= xe^{x} - e^{x} + C_{\#}$$

Tips: 'u' priorities

- 1. Logarithm
- 2. Inverse Trig
- 3. Algebraic
- 4. Trigonometry
- 5. Exponential

remember as LIATE

Exercise 8

1)
$$\int \ln x \, dx$$

Excluded topics

- 1. Economy applications
 - a. Marginal cost & rate pf change
 - b. Maximizing profit & minimizing cost
 - c. Elasticity of demands
 - d. Producer & consumer surplus
- 2. Sketching graphs using extrema
- 3. Integration of rational function by partial fraction
- 4. Integrate: Improper integral
- 5. Finding area between 2 graphs using integration
- 6. Sequence and series (not learn)