2017年11月9日 17:23

$$G = (V, E)$$
 … 単純無向グラフ $\left(V = \{1, \dots, n\}\right)$ $\left|E\right| = m$

Def MSE がGn 完全マッチング (perfect matching) ● Mの枝は端点を共有せず、2|M|=|V|.

完全マッチングのアルゴリズム

Edmonds 1965 O(n²m)時間 グラフ理論的・難しい・複雑 (定マッチングがあれば出かする)

今日やる PILゴリズム Lovász 1979 O(n3) 時間

乱択・線形代表的・シンプル

(ただし Edmonds と違って、完全マッチングがあるか判定するアルゴリズム)

Def (Tutte 行列) F: 体, $T: F(X_e): e \in E$) 上の $n \times n$ 行列 $\begin{cases} X_e & \text{if } e=ij \in E, i < j \\ -X_e & \text{if } i \neq j \end{cases}$ otherwise

Lovász a PILJ'12'L

Input G, USF:有股集合

1: Tutte 行列の変数に対し、ひから一様ランダムに 植色代入して $\tilde{T} \in \mathbb{F}^{n \times n}$ 色得3. 2: if $\det \tilde{T} \neq 0$: return "YES" 3: else: return "NO"

Thm |F| ≥ |U| ≥ N とする、Lovászのアルゴリスンムは Gに完全マッチングがない ⇒ "No" を記す Gに " がある → 確率 Z 以上で"YES"を返す、

Pfaffian

Def (Pfaffian)

$$pf T := \sum a(M)$$

a(M) it well-defined

$$pf T := \sum_{M: G \cap R \neq Z} a(M)$$

a(M) it well-defined

2"to 3 (LTC-L).

tete
$$M = \{i_1j_1, \dots, i_{n|2}j_{n|2}\}$$
 yeters
$$A(M) = syn\left(\begin{array}{cccc} 1 & 2 & \cdots & n-1 & n \\ i_1 & j_1 & & i_{n|2} & j_{n|2} \end{array}\right) \underbrace{T}_{ij \in M} T_{ij}$$

$$\chi(N) - sgn(i,j)$$
 $i_{N2}j_{N2}/i_{j\in M}$
(i,j) $i_{N2}j_{N2}/i_{j\in M}$
(i,j) $i_{N2}j_{N2}/i_{j\in M}$
(i) $i_{N2}j_{N$

$$\therefore$$
 pfT = $\chi_{12}\chi_{34} - \chi_{13}\chi_{24}$

$$\frac{Prop}{} \det T = (pf T)^2$$

$$\frac{\langle \chi \rangle}{\langle x_{1} \rangle} = \chi_{12}^{2} \chi_{34}^{2} + \chi_{13}^{2} \chi_{24}^{2}
- \chi_{12} \chi_{24} \chi_{13} \chi_{34} - \chi_{13} \chi_{12} \chi_{34} \chi_{24}$$

$$= (\chi_{12} \chi_{34} - \chi_{13} \chi_{24})^{2}$$

$$= (\chi_{17} \chi_{34} - \chi_{13} \chi_{24})^{2}$$

$$(pf)$$
 $\det T = \sum_{\sigma} Spn(\sigma) \prod_{i=1}^{n} T_{i\sigma(i)}$ 名置換 σ に対し、有向グラフ $D_{\sigma} := (V, A_{\sigma})$, $A_{\sigma} := \{i\sigma(i): i=1,...,n\}$ を考えると、 D_{σ} が奇数長の有向サイクルをもつものは消える。 以下では、 D_{σ} が偶数長有向サイクルのみからなる σ だけ考える、

$$(pfT)^{2} = \left(\sum_{M} a(M)\right)^{2} = \sum_{M,M'} \underline{a(M)a(M')}$$

$$\det T = \sum_{\sigma} \underline{sgn(\sigma)} \prod_{i=1}^{n} T_{i\sigma(i)}$$
字は
名項 は 1: 1対応する

• ひと見ての ordered pair (M,M') には 1:1対応がある.

• σ , (M,M'): $\pm \sigma$ 1: 1 対応 計論 $\Rightarrow sgn(\sigma) \overline{\prod} T_{i\sigma(i)} = a(M)a(M')$ $a(M)a符号 = sgn\left(\frac{1 \ 2 \ \cdots \ l-1 \ l}{v_1 \ v_2 \ \cdots \ v_{\ell-1} \ v_{\ell}}\right)$ v_{ℓ}

$$\begin{array}{ll}
\exists_{7}7 & \left(pfT\right)^{2} = \left(\sum_{M} a(M)\right)^{2} = \sum_{M,M'} a(M)a(M') \\
&= \sum_{9: b \in CC} \operatorname{sqn}(\sigma) \prod_{i=1}^{N} T_{i\sigma(i)} = \det T.
\end{array}$$

Cor Gが完てをも \Rightarrow $det T \neq 0$ Gが完てをもない \Rightarrow $det T \equiv 0$.

D Schwartz-Zippel Lemma

det Tは効率的に計算できるかる?

Idea ランダムに値も入れて推定する

(pf) mに関する泥粕法、
m=lのときは自明 (レホート問題)
m-(まで正しいとする。

(主定理の証明)

Cor. より G が完マももたないときは 以ず "No"を返す.
一方、G が完マももつときは $\deg(pfT) \leq \eta_2$ より
Schnartz-Zippel Lemma より $\Pr("No"を返す) \leq \frac{n/2}{|D|} \leq \frac{1}{2}$.

補足 Lovászのアルゴリズムは存在判定 だが、 エ夫すると 完全マッチングを求めるアルゴリズムにもできる。(レポート)