VV186 RC1

Zhu Jing

UM-SJTU Joint Institute

2018

Some words

This recitation class mainly focuses on the slides and assignments. If you have any question with regard to the assignment or slides, feel free to ask.

Notation

Define A as B

$$A := B$$

Define B as A

$$A =: B$$

Don't use := or =: in tautologies, *i.e.* compound statements that are always correct.

Don't use ∵ or ∴ in homework, projects or exams.

Basic concept

Statement: anything that we can either regard as true or false

- 1.1.2. Examples.
 - ► A: 4 is an even number.
 - ► *B*: 2 > 3.
 - ► A(n): 1+2+3+...+ n = n(n+1)/2.

Quantifier

- b the universal quantifier, denoted by the symbol ∀, read as "for all" and
- ▶ the *existential quantifier*, denoted by ∃, read as "there exists."
- 1.1.12. Definition. Let M be a set and A(x) be a predicate. Then we define the quantifier \forall by

$$\underset{x \in M}{\forall} A(x) \quad \Leftrightarrow \quad A(x) \text{ is true for all } x \in M$$

We define the quantifier \exists by

$$\underset{x \in M}{\exists} A(x) \quad \Leftrightarrow \quad A(x) \text{ is true for at least one } x \in M$$

We may also write $\forall x \in M \colon A(x)$ instead of $\bigvee_{x \in M} A(x)$ and similarly for \exists .

Note: Hanging Quantifier

Basic concept

Unary Operation: Negation

Binary Operation: Conjunction

Binary Operation: Disjunction

Binary Operation: Implication

Binary Operation: Equivalence

Binary Operation: Contraposition

Operation on sets

If $A = \{x : P_1(x)\}$, $B = \{x : P_2(x)\}$ we define the *union*, *intersection* and *difference* of A and B by

$$A \cup B := \{x \colon P_1(x) \lor P_2(x)\}, \qquad A \cap B := \{x \colon P_1(x) \land P_2(x)\},$$

 $A \setminus B := \{x \colon P_1(x) \land (\neg P_2(x))\}.$

Let $A \subset M$. We then define the *complement* of A by

$$A^{c} := M \setminus A$$
.

If $A \cap B = \emptyset$, we say that the sets A and B are **disjoint**.

Operation on sets: Proof

Proof for $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$

$x \in A$	$x \in B$	$x \in C$	$x \in (A \cup B) \cap C$	$x \in (A \setminus C) \cup (B \setminus C)$
Т	Т	Т	F	F
Т	T	F	T	T
Т	F	Т	T	Т
Т	F	F	Т	Т
F	T	T	F	F
F	Т	F	T	Т
F	F	T	F	F
F	F	F	F	F

Natural number

1.
$$a+(b+c)=(a+b)+c$$
 (Associativity)
2. $a+0=0+a=a$ (Existence of a neutral element)
3. $a+b=b+a$ (Commutativity)

1.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 (Associativity)
2. $a \cdot 1 = 1 \cdot a = a$ (Existence of a neutral element)
3. $a \cdot b = b \cdot a$ (Commutativity)

$$a \cdot (b+c) = a \cdot b + a \cdot c.$$
 (Distributivity)

Notation

For any numbers a_1, a_2, \dots, a_n we define the notation

$$a_1 + a_2 + \cdots + a_n =: \sum_{j=1}^n a_j =: \sum_{1 \le j \le n} a_j$$

and

$$a_1 \cdot a_2 \cdots a_n =: \prod_{j=1}^n a_j =: \prod_{1 \leq j \leq n} a_j.$$

Mathematical Induction

First mathematical induction:

- 1. prove that the statement A(n) is true for n = 0.
- 2. suppose A(n) is true for n = k prove that A(n) is true for n = k + 1.
- 3. conclude A(n) is true for all natural numbers.

Second mathematical induction:

- 1. prove that the statement A(n) is true for n = 0.
- 2. suppose A(n) is true for $n \le k$ prove that A(n) is true for n = k + 1.
- 3. conclude A(n) is true for all natural numbers.

You can use second mathematical induction to prove for Fibonacci sequence.

Mathematical Induction: Example

Binomial formula

Exercise

1. Suppose that

$$a_1 = 3$$

 $a_2 = 8$
 $4(a_{n-2} + a_{n-1}) = 3a_n + 5n^2 - 24n + 20 \ (n \ge 3)$

Prove that $a_n = 2^n + n^2$ $(n \ge 3)$.

Mathematical Induction: Solution

$$a(3) = \frac{4 \cdot (3+8) - (5 \cdot 3^2 - 24 \cdot 3 + 20)}{3} = 17 = 3^2 + 2^3.$$
 Suppose $a_n = n^2 + 2^n$, $\forall n \le k$, $n \ge 3$, then
$$a_{k+1} = \frac{4 \cdot (a_k + a_{k-1}) - (5 \cdot (k+1)^2 - 24 \cdot (k+1) + 20)}{3}$$
$$= \frac{4 \cdot (k^2 + 2^k + (k-1)^2 + 2^{k-1})}{3}$$
$$- \frac{(5 \cdot (k+1)^2 - 24 \cdot (k+1) + 20)}{3}$$
$$= (k+1)^2 + 2^{k+1}$$

Hence $a(n) = n^2 + 2^n$, $\forall n \geq 3$.

Rational Numbers

Properties of Addition

P1.
$$a + (b + c) = (a + b) + c$$

$$P2. \quad a+0=0+a=a$$

P3.
$$(-a) + a = a + (-a) = 0$$

P4.
$$a + b = b + a$$

(Associativity)

(Existence of a neutral element)

(Existence of an inverse element)

(Commutativity)

Properties of Multiplication

P5.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$P6. \quad a \cdot 1 = 1 \cdot a = a$$

P7.
$$a \cdot a^{-1} = a^{-1} \cdot a = 1$$

P8.
$$a \cdot b = b \cdot a$$

Rational Numbers

$$P9. \quad a \cdot (b+c) = a \cdot b + a \cdot c. \tag{Distributivity}$$

$$\begin{cases} a = 0 \\ a \in P \\ -a \in P \end{cases} \tag{Trichotomy law}$$

$$P11. \quad a \in P, b \in P \quad \Rightarrow a+b \in P$$

$$P12. \quad a \in P, b \in P \quad \Rightarrow a \cdot b \in P$$

Triangle Inequality

$$||a-b|| \leqslant |a+b| \leqslant |a|+|b|$$

Reference

 $1. \ \ VV186 \ Slide \ and \ previous \ RC \ Slide$