15CSE201: Data Structures and Algorithms

Lecture 2 : Complexity Analysis
Ritwik M

Based on the reference materials by Prof. Goodrich, OCW METU, Dr. Jeyakesavan Veerasamy and Dr. Vidhya Balasubramanian

Analysis of Data Structures

- Data structures have many functions
 - Each function is a set of simple instructions
- Analysis
 - Determine resources, time and space the algorithms requires
- Goal
 - Estimate time required to execute the functionalities
 - Reduce the running time of the program
 - Understand the space occupied by the data structure

Issues in Analysis

- Running time grows with input size
 - Varies with different inputs
 - Actual running time can be calculated in seconds or milliseconds
- Issues
 - The system setup must be same for all inputs
 - Same hardware and software must be used
 - Actual time maybe affected by other programs running on the same machine
- A theoretical analysis is sometimes preferable

Average Case and Worst Case

- The running time and memory usage of a program is not constant
 - Depends on input
 - Can run fast for certain inputs and slow for others
 - o e.g linear search
- Average Case Cost
 - Cost of the algorithm (time and space) on average
 - Difficult to calculate
- Worst Case
 - Gives an upper limit for the running time and memory usage
 - Easier to analyze the worst case

Method for analyzing complexity

- Model of Computation
 - Mathematical Framework
- Asymptotic Notation
 - What to Analyze
- Running Time Calculations
- Checking the analysis

Counting Primitives to analyze time complexity

- Primitive operations are identified and counted to analyze cost
- Primitive Operations
 - Assigning a value to a variable
 - Performing an arithmetic operation
 - Calling a method
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - Returning from a method

What about an IF -Then -Else Statement?

Example

```
Algorithm FindMax(S, n)
Input: An array S storing n numbers, n>=1
Output: Max Element in S
curMax <-- S[0] (2 operations)
i \leftarrow 0 (1 operations)
while i< n-1 do (n comparison operations)
 if curMax <A[i] then (2(n-1) operations)
     curMax <-- A[i] (2(n-1) operations)
 i \leftarrow i+1; (2 (n-1) operations)
return curmax (1 operations)
Complexity between 5n and 7n-2
```

Some Details

Loops

- cost is linear in terms of number of iterations
- Nested loops product of iteration of the loops
 - If outer loop has n iterations, and inner m, cost is mn
- Multiple loops not nested
 - Complexity proportional to the longest running loop
- If Else
 - Cost of if part of else part whichever is higher

Exercises

```
1) sum = 0;
                              4) for (i = 20; i \le 30; i++)
   for( i=0; i<n; i++ )
                                     for (j=1; j<=n; j++)
                                        x = x + 1;
       sum++;
2) sum = 0;
   for( i=0; i<n; i++ )
       for(j=0; j< n; j++)
          sum=sum+1;
3) sum = 0;
   for( i=0; i<n; i++ )
       for( j=0; j<n*n; j++ )
          sum+=1;
```

Growth Rates and Complexity

- Important factor to be considered when estimating complexity
- When experimental setup (hardware/software) changes
 - Running time/memory is affected by a constant factor
 - 2n or 3n or 100n is still linear
 - Growth rate of the running time/memory is not affected
- Growth rates of functions
 - Linear
 - Quadratic
 - Exponential

Comparing Growth Rates

Comparing Growth Rates Contd...

n	O(1)
10^{2}	$1 \mu \text{sec}$
10^{3}	$1 \mu \text{sec}$
10^{4}	$1 \mu \text{sec}$
10^{5}	$1 \mu \text{sec}$
10^{6}	$1 \mu \text{sec}$
10^{7}	$1 \mu \text{sec}$
10^{8}	$1 \mu \text{sec}$

n	$O(n^2)$	$O(2^n)$
100	$1\mu\mathrm{sec}$	$1\mu\mathrm{sec}$
110	$1.2~\mu\mathrm{sec}$	1 msec
120	$1.4~\mu\mathrm{sec}$	1 sec
130	$1.7~\mu\mathrm{sec}$	18 min
140	$2.0~\mu { m sec}$	13 d
150	$2.3~\mu\mathrm{sec}$	37 yr
160	$2.6~\mu\mathrm{sec}$	37,000 yr

$O(n^2)$
$1~\mu { m sec}$
$100~\mu{ m sec}$
10 msec
1 sec
1.7 min
2.8 hr
11.7 d

Ideal Logic / From the Growth Rates

- Data structure operations to run in times proportional to the constant or logarithm function
- Algorithms to run in linear or n-log-n time

More Exercises

- Consider the following three algorithms for determining whether anyone in the room has the same birthday as you.
 - Algorithm 1: You say your birthday, and ask whether anyone in the room has the same birthday. If anyone does have the same birthday, they answer yes.
 - Algorithm 2: You tell the first person your birthday, and ask if they have the same birthday; if they say no, you tell the second person your birthday and ask whether they have the same birthday; etc, for each person in the room.
 - Algorithm 3: You only ask questions of person 1, who only asks questions of person 2, who only asks questions of person 3, etc. You tell person 1 your birthday, and ask if they have the same birthday; if they say no, you ask them to find out about person 2. Person 1 asks person 2 and tells you the answer. If it is no, you ask person 1 to find out about person 3. Person 1 asks person 2 to find out about person 3, etc.

 Amerita Vishwa Vidhyapeetham

Amrita School of Engineering

More Exercises

Questions:

- 1. For each algorithm, what is the factor that can affect the number of questions asked (the "problem size")?
- 2. In the worst case, how many questions will be asked for each of the three algorithms?
- 3. For each algorithm, say whether it is constant, linear, or quadratic in the problem size in the worst case.

Solution:

- 1. The number of people in the room.
- 2. Assume there are N people in the room. In algorithm 1 you always ask $\underline{1}$ <u>question</u>. In algorithm 2, the worst case is if no one has your birthday. Here you have to ask every person to figure this out. <u>This is N questions</u>. In algorithm 3, the worst case is the same as algorithm 2. The number of questions is $1 + 2 + 3 + ... + N-1 + N = \underline{N^*(N+1)/2}$.
- 3. Constant, Linear and Quadratic

Asymptotic Analysis

- Can be defined as a method of describing limiting behavior
- Used for determining the computational complexity of algorithms
 - A way of expressing the main component of the cost of an algorithm using the most determining factor
 - e.g if the running time is 5n2+5n+3, the most dominating factor is 5n2
- Capturing this dominating factor is the purpose of asymptotic notations

Big-Oh Notation

 Given a function f(n) we say, f(n) is O(g(n)) if there are positive constants c and n₀ such that f(n)<= cg (n) when n>= n₀

Big-Oh Example

- Show 7n-2 is O(n) [Hint: prove that f(n)<=cg(n)]
 - need c > 0 and n_0 >= 1 such that 7n-2 <= cn for n >= n_0
 - this is true for c = 7 and $n_0 = 1$
- Show $3n^3 + 20n^2 + 5$ is $O(n^3)$
 - need c > 0 and n0 >= 1 such that $3n^3 + 20n^2 + 5 \le cn^3$ for n >= n0
 - this is true for c = 4 and n0 = 21
- n² is not O(n)
 - Must prove $n^2 \le cn$
 - n <= c
 - The above inequality cannot be satisfied since c must be a constant
 - Hence proof by contradiction

Big-Oh Significance

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is not more than the growth rate of g(n)
 - We are guaranteeing that f(n) grows at a rate no faster than g(n)
 - Both can grow at the same rate
 - Though 1000n is larger than n², n² grows at a faster rate
 - o n^2 will be larger function after n = 1000
 - Hence $1000n = O(n^2)$
- The big-Oh notation can be used to rank functions according to their growth rate

Big-Oh Significance

 Table of max-size of a problem that can be solved in one second, one minute and one hour for various running time measures in microseconds [Goodrich]

Running Time		Maximum Problem Size (n)	
	1sec	1 min	1 hour
400n	2500	150000	9000000
20nlogn	4096	166666	7826087
2n ²	707	5477	42426
n ⁴	31	88	244
2 ⁿ	19	25	31

- Take away from the table
 - Algorithms with quadratic or cubic running times are less practical, and algorithms with exponential running times are infeasible for all but the smallest sized inputs

Common Rules for Big-Oh

- If is f(n) a polynomial of degree d, then f(n) is O(n^d), i.e.,
 - Drop lower-order terms
 - Drop constant factors
- Use the smallest possible class of functions to represent in big Oh
 - "2n is O(n)" instead of "2n is O(n^2)"
- Use the simplest expression of the class
 - "3n+ 5 is O(n)" instead of "3n + 5 is O(3n)"

Some Good Examples

Complexity Class	Growth Function	Example
O(1)	Constant Time	One arithmetic operation (eg., +, *), a print statement
O(log n)	Logarithmic Time	Binary search in a sorted array of n elements.
O(n)	Linear Time	Traversing an array, Linear search, etc
O(n log n)	"n log n" Time	MergeSort, QuickSort, etc
O(n^2)	Quadratic Time	Worst case time complexity of Bubble sort, selection sort, etc
O(a^n) (a>1)	Exponential Time	Recursive Fibonacci implementation, towers of Hanoi

Some More Exercises

Show that 8n+5 is O(n)

24

- Show that $20n^3 + 10nlogn + 5$ is $O(n^3)$
- Show that 3logn+2 is O(logn).

Yet Another Exercise

- Consider a set of numbers from 1 to n. All the values except one value are present
 - Goal: Find the missing number
 - Give 3 solutions to find the missing number
 - What is the time and <u>space</u> complexity in terms of n?

Even More Exercises

Algorithm arrayFind(x,A);

```
//Given an element x and an n element array A, output pos if present in A for i = 0 to n-1 do
    if x = A[i] then
    return I
```

 There is an algorithm find2D to find an element x in an nxn array A. The algorithm iterates over the rows of A and calls the algorithm arrayFind on each one, until x is found or it has searched all rows of A.

What is the time and space complexity of the algorithm

The Exercises Continue

Calculate the value returned by total

```
def example4(S):
"""Return the sum of the prefix sums of sequence S."""
n = len(S)
prefix = 0
total = 0
for j in range(n):
    prefix += S[j]
    total += prefix
return total
```

And More Exercises.. They Don't Stop!!

- Given an n-element sequence S, Algorithm D calls Algorithm E on each element S[i]. Algorithm E runs in O(i) time when it is called on element S[i]. What is the worst-case running time of Algorithm D?
- A sequence S contains n-1 unique integers in the range
 [0,n-1], that is, there is one number from this range that is not
 in S. Design an O(n)-time algorithm for finding that number.
 You are only allowed to use O(1) additional space besides the
 sequence S itself.

Anything Else?

- For More exercises and problems you can refer:
 - Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
 - Data Structures and Algorithms in Python by Michael T. Goodrich

Have Fun Solving!!