EE247 Lecture 24

Pipelined ADCs (continued)

- Effect gain stage, sub-DAC non-idealities on overall ADC performance
 - Digital calibration (continued)
 - Correction for inter-stage gain nonlinearity
- Implementation
 - Practical circuits
 - Stage scaling
 - · Combining the bits
 - Stage implementation
 - -Circuits
 - -Noise budgeting
 - How many bits per stage?

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 1

Summary Last Lecture

ADC Converters

- Techniques to reduce flash ADC complexity (continued)
 - Interleaved ADCs
 - Multi-Step ADCs
 - · Two-Step flash
 - Pipelined ADCs
 - Effect of sub-ADC non-idealities on overall ADC performance
 - Error correction by adding redundancy (additional decision levels)

EECS 247 Lecture 24

Pipeline ADCs

Summary So Far Pipelined A/D Converters

- Cascade of low resolution stages
 - Stages operate concurrently- trades latency resolution
 - Throughput limited by speed of one stage \rightarrow Fast
- · Errors and correction
 - Built-in redundancy compensate for sub-ADC inaccuracies (interstage gain: G=2 $^{\rm Bneff}$, B $_{\rm neff}$ < B $_{\rm n}$)

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 3

Gain Stage Gain Inaccuracy

- Gain error can be compensated in digital domain – "Digital Calibration"
- Problem: Need to measure/calibrate digital correction coefficient
- Example: Calibrate 1-bit first stage
- · Objective: Measure G in digital domain

EECS 247 Lecture 24

Pipeline ADCs

Gain Stage Inacurracy Calibration – Evaluate

• To minimize the effect of backend ADC noise → perform measurement several times and take the average

EECS 247 Lecture 24

Pipeline ADCs

Accuracy Bootstrapping

$$D_{out} = V_{in,ADC} + \varepsilon_{q1} \left(1 - \frac{G_1}{G_{d1}} \right) + \underbrace{\varepsilon_{q2}}_{G_{d1}} \left(1 - \frac{G_2}{G_{d2}} \right) + \dots + \underbrace{\varepsilon_{q(n-1)}}_{j=1} G_{dj} \left(1 - \frac{G_{(n-1)}}{G_{d(n-1)}} \right) + \underbrace{\varepsilon_{qn}}_{j=1} G_{dj} \left(1 - \frac{G_{(n-1)}}{G_{d(n-1)}} \right) + \underbrace{\varepsilon_{qn}}_{j=$$

· Highest sensitivity to gain errors in front-end stages

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 9

"Accuracy Bootstrapping"

Ref

A. N. Karanicolas et al. "A 15-b 1-Msample/s digitally self-calibrated pipeline ADC," $\it IEEE J. Of Solid-State Circuits, pp. 1207-15, Dec. 1993$

E. G. Soenen et al., "An architecture and an algorithm for fully digital correction of monolithic pipelined ADCs," TCAS II, pp. 143-153, March 1995

L. Singer et al., "A 12 b 65 MSample/s CMOS ADC with 82 dB SFDR at 120 MHz," /SSCC 2000, Digest of Tech. Papers., pp. 38-9 (calibration in opposite direction!)

EECS 247 Lecture 24

Pipeline ADCs

Pipeline ADC Errors

- Non-idealities associated with sub-ADCs, sub-DACs and gain stages → error in overall pipeline ADC performance
- · Need to find means to tolerate/correct errors
- Important sources of error
 - Sub-ADC errors- comparator offset
 - Gain stage offset
 - Gain stage error
- Sub-DAC error

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 11

DAC Errors

- · Can be corrected digitally as well
- · Same calibration concept as gain errors
 - → Vary DAC codes & measure errors via backend ADC

EECS 247 Lecture 24

Pipeline ADCs

DAC Calibration - Step 1

• $\epsilon_{DAC}(0)$ equivalent to offset - ignore

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 13

DAC Calibration – Step 2...2^{B1}

- Stepping through DAC codes 1...2^{B1}-1 yields all incremental correction values
- Measurements repeated and averages to account for variance associated with noise

EECS 247 Lecture 24

Pipeline ADCs

Pipeline ADC Example: Calibration Hardware

 Above block diagram may seem extensive nowever, in current fine-line CMOS technologies digital portion of a pipeline ADCs consume insignificant power and area compared to the analog sections

Ref: E. G. Soenen et al., "An architecture and an algorithm for fully digital correction of monolithic pipelined ADCs," TCAS II, pp. 143-153, March 1995

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 15

Pipelined ADC Error Correction/Calibration Summary

Error	Correction/Calibration		
ϵ_{ADC} , V_{os}	Redundancy either same stage or next stage		
ϵ_{gain}	Digital adjustment		
ϵ_{DAC}	Either sufficient component matching or digital calibration		
Inter-stage amplifier non-linearity	?		

EECS 247 Lecture 24

Pipeline ADCs

Inter-stage Gain Nonlinearity

- · Invert gain stage non-linear polynomial
- Express error as function of V_{RES1}
- · Push error into digital domain through backend

Ref: B. Murmann and B. E. Boser, "A 12-b, 75MS/s Pipelined ADC using Open-Loop Residue Amplification," ISSCC Dig. Techn. Papers, pp. 328-329, 2003

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 17

Inter-stage Gain Nonlinearity

- Pre-computed table look-up
- p₂ continuously estimated & updated (account for temp. & other variations)

Ref: B. Murmann and B. E. Boser, "A 12-b, 75MS/s Pipelined ADC using Open-Loop Residue Amplification," ISSCC Dig. Techn. Papers, pp. 328-329, 2003

EECS 247 Lecture 24

Pipeline ADCs

Inter-stage Gain Nonlinearity Compensation Proof of Concept Evaluation Prototype

- Re-used 14-bit ADC in 0.35µm from Analog Devices [Kelly, ISSCC 2001]
- Modified only 1st stage with 3-b_{eff} → open-loop amplifier built with simple diff-pair + resistive load instead of the conventional feedback around high-gain amp
- Conventional 9-b_{eff} backend, 2-bit redundancy in 1st stage
- Real-time post-processor off-chip (FPGA)

Ref: B. Murmann and B. E. Boser, "A 12-b, 75MS/s Pipelined ADC using Open-Loop Residue Amplification," ISSCC Dig. Techn. Papers, pp. 328-329, 2003

EECS 247 Lecture 24

Pipeline ADCs

Combining the Bits

· Example: Three 2-bit stages, no redundancy

$$\begin{split} D_{out} &= D_1 + \frac{1}{2^{Bleff}}D_2 + \frac{1}{2^{Bleff} \cdot 2^{B2eff}}D_3 \\ D_{out} &= D_1 + \frac{1}{4}D_2 + \frac{1}{16}D_3 \end{split}$$

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 21

Combining the Bits

- $\begin{array}{ccc} \mathbf{D_1} & & \mathbf{XX} \\ \mathbf{D_2} & & \mathbf{XX} \\ \mathbf{D_3} & & \mathbf{XX} \end{array}$
- D_{out} DDDDDD
- Only bit shifts
- No arithmetic circuits needed

EECS 247 Lecture 24

Pipeline ADCs

Combining the Bits Including Redundancy

• Example: Three 2-bit stages, incorporating 1- bit redundancy in stages 1 and 2

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 23

Combining the Bits

$$\begin{split} D_{out} &= D_{1} + \frac{1}{2^{B1eff}}D_{2} + \frac{1}{2^{B1eff} \cdot 2^{B2eff}}D_{3} \\ D_{out} &= D_{1} + \frac{1}{4}D_{2} + \frac{1}{16}D_{3} \end{split}$$

- Bits overlap
- Need adders

EECS 247 Lecture 24

Pipeline ADCs

Stage Implementation acquire convert convert acquire Stage n Stage 1 Stage 2 ADC DAC Each stage needs T/H hold function Track phase: Acquire input/residue from previous stage Hold phase: sub-ADC decision, compute residue EECS 247 Lecture 24 Pipeline ADCs © 2007 H.K. Page 26

Stage Implementation

- Usually no dedicated T/H amplifier in each stage (Except first stage in some cases – why?)
- · T/H implicitely contained in stage building blocks

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 27

Stage Implementation

- DAC-subtract-gain function can be lumped into a single switched capacitor circuit
- "MDAC"

EECS 247 Lecture 24

Pipeline ADCs

1.5-Bit Stage Implementation Example

Ref: A. Abo, "Design for Reliability of Low- voltage, Switched-capacitor Circuits," UCB PhD Thesis, 1999

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 29

1.5-Bit Stage Implementation Acquisition Cycle

Ref: A. Abo, "Design for Reliability of Low- voltage, Switched-capacitor Circuits," UCB PhD Thesis, 1999

EECS 247 Lecture 24

Pipeline ADCs

1.5-Bit Stage Implementation Conversion Cycle

Ref: A. Abo, "Design for Reliability of Low- voltage, Switched-capacitor Circuits," UCB PhD Thesis, 1999

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 31

1.5 Bit Stage Implementation Example

$$V_o = \begin{cases} \left(1 + \frac{C_s}{C_f}\right) V_i - \frac{C_s}{C_f} V_{ref} & \text{if } V_i > V_{ref}/4\\ \left(1 + \frac{C_s}{C_f}\right) V_i & \text{if } -V_{ref}/4 \le V_i \le +V_{ref}/4\\ \left(1 + \frac{C_s}{C_f}\right) V_i + \frac{C_s}{C_f} V_{ref} & \text{if } V_i < -V_{ref}/4 \end{cases}$$

Note: Interstage gain set by C ratios

→ Accuracy better than 0.1%

→ Up to 10bit level no need for gain calibration

Ref: A. Abo, "Design for Reliability of Low- voltage, Switched-capacitor Circuits," UCB PhD Thesis, 1999

EECS 247 Lecture 24

Pipeline ADCs

1.5-Bit Stage Implementation Timing of Stages

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 33

Pipelined ADC Stage Power Dissipation & Noise

- Typically pipeline ADC noise dominated by inter- stage gain blocks
- Sub-ADC comparator noise translates into comparator threshold uncertainty and is compensated for by redundancy

EECS 247 Lecture 24

Pipeline ADCs

Pipelined ADC Stage Scaling

• Example: Pipeline using 1-bit_{eff} stages

• Total input referred noise power:

$$\begin{split} N_{tot} & \propto kT \left[\frac{1}{C_{I}} + \frac{1}{GI^{2}C_{2}} + \frac{1}{GI^{2}G2^{2}C_{3}} + \dots \right] \\ N_{tot} & \propto kT \left[\frac{1}{C_{I}} + \frac{1}{4C_{2}} + \frac{1}{16C_{3}} + \dots \right] \end{split}$$

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 35

Pipelined ADC Stage Scaling

- If all caps made the same size, backend stages contribute very little noise
- Wasteful power-wise, because:
 - ☐ Power ~ Gm
 - ☐ Speed ~ Gm/C
 - → Power ~ C

EECS 247 Lecture 24

Pipeline ADCs

Pipelined ADC Stage Scaling

- How about scaling caps down by G²=2²=4x per stage?
 - Same amount of noise from every stage
 - All stages contribute significant noise
 - Noise from first few stages must be reduced
 - Power ~ Gm ~ C goes up!

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 37

Stage Scaling Example: 2-bit_{eff}/stage

Extreme 1: All Stages the Same Size

 Optimum capacitior scaling lies approximately midway between these two extremes

Ref: D. W. Cline, P.R Gray "A power optimized 13-b 5 MSamples/s pipelined analog-to-digital converter in 1.2um CMOS," JSSC 3/1996

EECS 247 Lecture 24

Pipeline ADCs

Pipeline ADC Stage Scaling

- · Power minimum is "shallow"
- Near optimum solution in practice: Scale capacitors by stage gain
- E.g. for effective stage resolution of 1bit (Gain=2):

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 39

Stage Scaling Example

Note: Resolution per stage: →2bits →A=4

C_S pF

Ref: D. W. Cline, P.R Gray "A power optimized 13-b 5 MSamples/s pipelined analog-to-digital converter in 1.2um CMOS," JSSC 3/1996

EECS 247 Lecture 24

Pipeline ADCs

How Many Bits Per Stage?

- Many possible architectures
- Complex optimization problem, fortunately optimum tends to be shallow...
- Qualitative answer:
 - Maximum speed for given technology
 - Use small resolution-per-stage (large feedback factor)
 - Maximum power efficiency for fixed, "low" speed
 - · Try higher resolution stages
 - Can help alleviate matching requirements in front-end Ref: Singer VLSI 96, Yang, JSSC 12/01

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 41

14 & 12-Bit State-of-the-Art Implementations

Reference	Yang	Loloee		
	(JSSC 12/2001)	(ESSIRC 2002)		
	0.35μ/3V	0.18μ/3V		
Bits	14	12		
Architecture	3-1-1-1-1-1-1-3	1-1-1-1-1-1-1-2		
SNR/SFDR	~73dB/88dB	~66dB/75dB		
Speed	75MS/s	80MS/s		
Power	340mW	260mW		

EECS 247 Lecture 24

Pipeline ADCs

10 & 8-Bit State-of-the-Art Implementations

Reference	Yoshioko et al	Kim et al		
	(ISSCC 2005)	(ISSCC 2005)		
	0.18μ/1.8V	0.18μ/1.8V		
Bits	10	8		
Architecture	1.5bit/stage	2.8 -2.8 - 4		
SNR/SFDR	~55dB/66dB	~48dB/56dB		
Speed	125MS/s	200MS/s		
Power	40mW	V 30mW		

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 43

Algorithmic ADC

- Essentially same as pipeline, but a single stage is reused for all partial conversions
- For overall B_{overall} bits \rightarrow need $B_{\text{overall}}/B_{\text{stage}}$ clock cycles per conversion \rightarrow Small area, slow

EECS 247 Lecture 24

Pipeline ADCs

Least Mean Square Adaptive Digital Background Calibration of Pipelined Analog-to-Digital Converters

- Slow, but accurate ADC operates in parallel with pipelined (main) ADC
- Slow ADC samples input signal at a lower sampling rate (f/n)
- Difference between corresponding samples for two ADCs (e) used to correct fast ADC digital output via an adaptive digital filter (ADF) based on minimizing the <u>Least-Mean-Squared</u> error

Ref: Y. Chiu, et al, "Least Mean Square Adaptive Digital Background Calibration of Pipelined Analog-to-Digital Converters," IEEE TRANS. CAS, VOL. 51, NO. 1, JANUARY 2004

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 45

Example: "A 12-bit 20-MS/s pipelined analog-to-digital converter with nested digital background calibration"

- Pipelined ADC operates at 20Ms/s @ has 1.5bit/stage
- Slow ADC → Algorithmic type operating at 20Ms/32=625ks/s
- · Digital correction accounts for bit redundancy
- Digital error estimator → minimizes the mean-squared-error

Ref: X. Wang, P. J. Hurst, S. H. Lewis, " A 12-bit 20-Msample/s pipelined analog-to-digital converter with nested digital background calibration", IEEE JSSC, vol. 39, pp. 1799 - 1808, Nov. 2004

EECS 247 Lecture 24

Pipeline ADCs

Algorithmic ADC Used for Calibration of Pipelined ADC (continued from previous page)

- · Uses replica of pipelined ADC stage
- · Requires extra SHA in front to hold residue
- Undergoes a calibration cycle periodically prior to being used to calibrate pipelined ADC

Ref: X. Wang, P. J. Hurst, S. H. Lewis, "A 12-bit 20-MS/s pipelined analog-to-digital converter with nested digital background calibration", IEEE JSSC, vol. 39, pp. 1799 - 1808, Nov. 2004

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 47

12-bit 20-MS/s Pipelined ADC with Digital Background Calibration

Sampling capacitors scaled:

- Input SHA: 6pF
- Pipelined ADC: 2pF,0.9,0.4,0.2, 0.1,0.1...
- Algorithmic ADC: 0.2pF

Chip area: 13.2mm²

- Area of Algorithmic ADC <20%
- Does not include digital calibration circuitry estimated ~1.7mm²

Ref: X. Wang, P. J. Hurst, S. H. Lewis, "A 12-bit 20-MS/s pipelined analog-to-digital converter with nested digital background calibration", IEEE JSSC, vol. 39, pp. 1799 - 1808, Nov. 2004

EECS 247 Lecture 24

Pipeline ADCs

Measurement Results 12-bit 20-MS/s Pipelined ADC with Digital Background Calibration

Ref: X. Wang, P. J. Hurst, S. H. Lewis, " A 12-bit 20-MS/s pipelined analog-to-digital converter with nested digital background calibration", IEEE JSSC, vol. 39, pp. 1799 - 1808, Nov. 2004

EECS 247 Lecture 24

Pipeline ADCs

© 2007 H.K. Page 49

Measurement Results 12-bit 20-MS/s Pipelined ADC with Digital Background Calibration

(b)
Ref: X. Wang, P. J. Hurst, S. H. Lewis, "A 12-bit 20-MS/s pipelined analog-to-digital converter with nested digital background calibration", IEEE JSSC, vol. 39, pp. 1799 - 1808, Nov. 2004

EECS 247 Lecture 24

Pipeline ADCs

Measurement Results
12-bit 20-MS/s Pipelined ADC with Digital Background Calibration

PERFORMANCE SUMMARY (3.3 V, 25 °C)

Process Sampling rate Active area	0.35μm 2P4 20 Msam 7.5 m	nple/s m ²		Does not include digital calibration circuitry estimated ~1.7mm²
Full-Scale Input	1.6 V _I Without Cal.	P-P With Cal.	1	
Analog Power Diss.	190 mW	226 mW		
Total Power Diss.	217 mW	254 mW	─	
Max. INL (Pip. ADC)*	4.21 LSB	0.47 LSB		
Max. DNL (Pip. ADC)*	0.60 LSB	0.41 LSB		Alg. ADC SNDR
SNDR (Alg. ADC)*	49.6 dB	59.6 dB		dominated by noise
SNDR (Pip. ADC)*	58.2 dB	70.8 dB	-	
SFDR (Pip. ADC)*	59.4 dB	93.3 dB		
THD (Pip. ADC) *	−59.4 dB	−92.9 dB	-	
PSRR*	65.0 dB	64.8 dB]	
CMRR*	73.6 dB	73.4 dB		

 $[*]f_{in}=58 \text{ kHz}$

Ref: X. Wang, P. J. Hurst, S. H. Lewis, " A 12-bit 20-MS/s pipelined analog-to-digital converter with nested digital background calibration", IEEE JSSC, vol. 39, pp. 1799 - 1808, Nov. 2004

EECS 247 Lecture 24 Pipeline ADCs