Section 2 Project

[Movies on streaming platform]

AI 부트캠프 06기

강지호

Movies on Streaming Platform : Rotten Tomatoes 사이트의 영화 정보 데이터를 활용하여 target 예측

시나리오1

- 영화 제작사에서 만든 영화가 해당 사이트에서 어떤 평점을 받을지 예측해보고자 한다. Rotten Tomatoes에 등록되어 있는 영화의 정보(방영년도, 평점 등)와 target값인 Rotten Tomatoes(평점) 데이터가 있다.
- target: Rotten Tomatoes
- 평가지표: r2
- 회귀 모델

시나리오2

- OTT플랫폼인 회사에서 어떤 작품과 계약을 맺어야할지 알아보고자 한다. Rotten Tomatoes에 등록되어 있는 데이터는 영화의 정보(방영년도, 평점) 뿐만 아니라 Netflix와 같은 경쟁사가 해당 작품과 계약했는지의 여부까지 확인할 수 있다. 이를 활용하여 target값인 Recommend를 만들 수 있다.
- target: 새로운 Recommend feature 생성, IMDb와 Rotten Tomatoes가 특정 기준 이상일 경우 1로 코딩
- 평가지표: roc auc score
- 분류 모델

• 데이터 설명 및 전처리

1) Age : 결측치 43%, <mark>특성 제거</mark>

2) IMDb : 문자 제거 후 <mark>숫자형</mark> 데이터로 변환 (7.8)

3) Rotten Tomatoes : target 이므로 <mark>결측치 행 삭제</mark>, 문자 제거 후 <mark>숫자형</mark> 데이터로 변환 (98)

4) **Type**: 0만 있으므로 <mark>특성 제거</mark>

5	Title	Year	Age	IMDb	Rotten Tomatoes	Netflix	Hulu	Prime Video	Disney+	Туре
0	The Irishman	2019	18+	7.8/10	98/100	1	0	0	0	0
1	Dangal	2016	7+	8.4/10	97/100	1	0	0	0	0
2	David Attenborough: A Life on Our Planet	2020	7+	9.0/10	95/100	1	0	0	0	0
3	Lagaan: Once Upon a Time in India	2001	7+	8.1/10	94/100	1	0	0	0	0

• 데이터 설명 및 전처리

1) Age : 결측치 43%, <mark>특성 제거</mark>

2) IMDb : 문자 제거 후 <mark>숫자형</mark> 데이터로 변환 (7.8)

3) Rotten Tomatoes : target 이므로 <mark>결측치 행 삭제</mark>, 문자 제거 후 <mark>숫자형</mark> 데이터로 변환 (98)

4) **Type**: 0만 있으므로 <mark>특성 제거</mark>

5) Directors(7214), Genres(27), Country(130), Language(153) : <mark>IMDb 기준 Top 10 or 5</mark> 가 포함되어 있으면 1 else 0 <mark>빈도수 기준 Top 10 or 5</mark>가 포함되어 있으면 1 else 0

Runtine	Language	Country	Genres	Directors
209.0	English, Italian, Latin, Spanish, German	United States	Biography, Crime, Drama	Martin Scorsese
161.0	Hindi, English	India, United States, United Kingdom, Australia, K	Action, Biography, Drama, Sport	Nitesh Tiwari
83.0	English	United Kingdom	Documentary, Biography	Alastair fothergill, Jonathan Hughes, Keith Scholey
224.0	Hindi, English	India,United Kingdom	Drama, Musical, Sport	Ashutosh Gowariker

• 데이터 설명 및 전처리

1) Age : 결측치 43%, <mark>특성 제거</mark>

2) IMDb : 문자 제거 후 <mark>숫자형</mark> 데이터로 변환 (7.8)

3) Rotten Tomatoes : target 이므로 <mark>결측치 행 삭제</mark>, 문자 제거 후 <mark>숫자형</mark> 데이터로 변환 (98)

4) **Type**: 0만 있으므로 <mark>특성 제거</mark>

5) Directors(7214), Genres(27), Country(130), Language(153) : <mark>IMDb 기준 Top 10 or 5</mark> 가 포함되어 있으면 1 else 0 <u>빈도수 기준 Top 10 or 5</u>가 포함되어 있으면 1 else 0

genre_imdb_top5	genre_count_top5	director_imdb_top10	director_count_top10	country_imdb_top5	count ry_count_t op5	language_imdb_top5
0	0	0	0	0		0
0	1	0	0	0	1	0
1	0	0	0	0	1	0

● 가설

- 1) 여러가지 회귀모델 중, 랜덤포레스트와 XGB가 성능이 가장 좋을 것이다.
- 랜덤포레스트: 원본 데이터셋에서 랜덤하게 복원추출된 여러 데이터셋을 만들고 각각 독립적인 트리를 만든다. 각 트리의 예측 결과를 평균내어 예측하는 방법.
- XGB: 랜덤포레스트처럼 여러 데이터셋과 트리를 만드는데, 이전에 만들어진 트리가 다음 트리에 영향을 준다.

- 2) Target Encoder가 Ordinal Encoder보다 성능이 좋을 것이다.
 - Target Encoder: target값을 사용해서 인코딩
 - Ordinal Encoder: 범주형 자료를 1부터 숫자로 변환하여 인코딩

3) XGB가 Randomforest보다 성능이 좋을 것이다.

가설 1) 여러 모델 중 RandomForest와 XGB가 성능이 가장 좋을 것이다.

- RandomForest와 XGB의 성능이 가장 좋은 것으로 나타남.
- 다만, RandomForest의 경우 train set에서 과적합이 일어나므로, 하이퍼파라미터 조정이 필요해보임.

가설 1) 여러 모델 중 RandomForest와 XGB가 성능이 가장 좋을 것이다. ✔

● <mark>CV</mark>를 통해 <mark>일반화</mark>될 가능성 확인: k가 증가할수록 r2 또한 증가.

가설 2) Target Encoder가 Ordinal Encoder보다 성능이 좋을 것이다. ✔

● 하이퍼파라마미터 default 값으로 비교한 결과, Target Encoder가 성능이 더 좋음.

R2	RandomForestRegressor	XGBRegressor
Target Encoder	0.58	0.57
Ordinal Encoder	0.51	0.49

가설 3) XGB가 RandomForest보다 성능이 좋을 것이다.

• RandomForest 모델 성능 개선

1. Randomized Search CV | n_iter=100, cv=20 val: 0.577 test: 0.601

- Target Encoder
 smoothing: [2.,4., 6., 8., 10., 20.,50.,60.,100.] -> 20
 min samples leaf: randint(1, 50) -> 37
- Random Forest Regressor
 n_estimators: randint(100, 1000) -> 478
 min_samples_leaf: randint(1, 100) -> 1
 max_depth: randint(5, 25) -> 13
 max features: uniform(0, 1) -> 0.4930108

가설 3) XGB가 RandomForest보다 성능이 좋을 것이다.

• XGB 모델 성능 개선

1. Randomized Search CV | n_iter=100, cv=20 val: 0.597, test: 0.622

- Target Encoder smoothing: [2.,4., 6., 8., 10., 20.,50.,60.,100.] -> 50 min samples leaf: randint(1, 50) -> 2
- XGBRegressor
 max_depth: randint(5, 20) -> 6
 learning_rate: list(np.arange(0, 1, 0.001)) -> 0.115
 gamma: list(np.arange(0,5,0.5)) -> 1
 reg_alpha:: list(np.arange(0,1,0.001)) -> 0.114
 reg_lambda: list(np.arange(0,1,0.001)) -> 0.947

가설 3) XGB가 RandomForest보다 성능이 좋을 것이다.

- XGB 모델 성능 개선
 - 2. Randomized Search CV로 찾은 최적의 파라미터 + early stopping으로 n estimator 조절 val: 0.595, test: 0.624
 - 3. Randomized Search CV로 찾은 최적의 파라미터 중 Encoder만 사용
 - + Randomized Search CV + early stopping

val: 0.578, test: 0.607

가설 3) XGB가 RandomForest보다 성능이 좋을 것이다.

RandomForest vs XGB

가설 3) XGB가 RandomForest보다 성능이 좋을 것이다. ✔

RandomForest vs XGB 다만, test data에 대한 모델의 성능이 0.62정도로 좋지 않은 편이다.

모델 해석

Permutation Importances

각 특성마다 한 번씩 무작위로 노이즈를 주어 기존에 특성이 하던 역할을 하지 못하게 하여 특성의 중요도(<mark>영향력의 크기</mark>)를 평가

- IMDb 외의 특성은 영향력의 크기가 작음

Weight	Feature
of treatment of the best of	
0.0885 ± 0.0049	Runtime
0.0802 ± 0.0121	Genres
0.0617 ± 0.0085	Country
0.0547 ± 0.0138	Directors
0.0372 ± 0.0087	Prime Video
0.0302 ± 0.0080	Year
0.0258 ± 0.0074	Language
0.0157 ± 0.0067	genre_imdb_top5
0.0103 ± 0.0018	Hulu
0.0103 ± 0.0029	Netflix
0.0046 ± 0.0020	language_count_top5
0.0039 ± 0.0029	genre_count_top5
0.0032 ± 0.0029	country_count_top5
0.0032 ± 0.0021	Disney+
0.0002 ± 0.0003	director_count_top10
0 ± 0.0000	language_imdb_top5
0 ± 0.0000	director_imdb_top10
0 ± 0.0000	country_imdb_top5
0 ± 0.0000	Title

모델 해석

• PDP

특성의 <mark>영향력의 방향</mark>을 파악

- IMDb: 양(+)의 영향력

PDP for feature "IMDb"

Number of unique grid points: 10

모델 해석

SHAP

n개의 샘플이 갖는 특성들의 기여도 ex) IMDb: 6 이상일 경우 +, 6 이하일 경우 - 영향력

● 정리

[가설]

- 1) 여러가지 회귀모델 중, 랜덤포레스트와 XGB가 성능이 가장 좋을 것이다.
- 2) Target Encoder가 Ordinal Encoder보다 성능이 좋을 것이다.
- 3) XGB가 Randomforest보다 성능이 좋을 것이다.

[해석]

- 최종 모델인 XGB의 test data 성능: 0.62
- Permutation Importance로 확인한 결과, IMDb 특성 이외에는 영향력이 적기 때문에 성능이 좋지 않았음.

• 데이터 설명 및 전처리

1) Age : 결측치 43%, <mark>특성 제거</mark>

2) IMDb : 문자 제거 후 <mark>숫자형</mark> 데이터로 변환 (7.8)

3) Rotten Tomatoes : 문자 제거 후 <mark>숫자형</mark> 데이터로 변환 (98)

4) **Type**: 0만 있으므로 <mark>특성 제거</mark>

	Title	Year	Age	IMDb	Rotten Tomatoes	Netflix	Hulu	Prime Video	Disney+	Туре
0	The Irishman	2019	18+	7.8/10	98/100	1	0	0	0	0
1	Dangal	2016	7+	8.4/10	97/100	1	0	0	0	0
2	David Attenborough: A Life on Our Planet	2020	7+	9.0/10	95/100	1	0	0	0	0
3	Lagaan: Once Upon a Time in India	2001	7+	8.1/10	94/100	1	0	0	0	0

• 데이터 설명 및 전처리

1) Age : 결측치 43%, <mark>특성 제거</mark>

2) IMDb : 문자 제거 후 <mark>숫자형</mark> 데이터로 변환 (7.8)

3) Rotten Tomatoes : 문자 제거 후 <mark>숫자형</mark> 데이터로 변환 (98)

4) **Type**: 0만 있으므로 <mark>특성 제거</mark>

5) Directors, Genres, Country, Language : 결측치 'missing'으로 변환

6) **Recommend** : (중위값 사용) <mark>IMDb >= 6.2 & Rotten Tomatoes >= 42</mark> 일 경우, <mark>추천 1 else 0</mark>

Directors	Genres	Country	Language	Runtime	Recommend
Martin Scorsese	Biography, Crime, Drama	United States	English, Italian, Latin, Spanish, German	209.0	1
Nitesh Tiwari	Action, Biography, Drama, Sport	India,United States,United Kingdom,Australia,K	Hindi,English	161.0	1
Alastair Fothergill,Jonathan Hughes,Keith Scholey	Documentary, Biography	United Kingdom	English	83.0	1
Ashutosh Gowariker	Drama, Musical, Sport	India,United Kingdom	Hindi,English	224.0	1

- 가설
- 1) 분류모델 분석 방법 중, 랜덤포레스트와 XGB가 성능이 가장 좋을 것이다.
- 2) Target Encoder가 Ordinal Encoder보다 성능이 좋을 것이다.
- 3) XGB가 Randomforest보다 성능이 좋을 것이다.

가설 1) 여러 모델 중 RandomForest와 XGB가 성능이 가장 좋을 것이다.

- 기본 파라미터의 경우, 세 모델 모두 val data에서 비슷한 점수를 보인다.
- 세 모델 모두 train set에서 과적합이 일어나므로, 하이퍼파라미터 조정이 필요해보임.

가설 1) 여러 모델 중 RandomForest와 XGB가 성능이 가장 좋을 것이다.✔

- ▶ CV를 통해 <mark>일반화</mark>될 가능성 확인: k가 증가할수록 r2 또한 증가.
- RandomForest와 XGB가 Logistic보다 성능이 높은 것을 알 수 있다.

가설 2) Target Encoder가 Ordinal Encoder보다 성능이 좋을 것이다. ✔

● 하이퍼파라마미터 default 값으로 비교한 결과, <mark>Target Encoder</mark>가 성능이 더 좋음.

AUC	RandomForestClassifier	XGBClassifier
Target Encoder	0.66	0.66
Ordinal Encoder	0.55	0.61

가설 3) XGB가 RandomForest보다 성능이 좋을 것이다.

• RandomForest 모델 성능 개선

1. Randomized Search CV val: 0.647 test: 0.626

- Target Encoder
 smoothing: [2.,4., 6., 8., 10., 20.,50.,60.,100.] -> 7
 min samples leaf: randint(1, 50) -> 4
- RandomForest Classifier

 n_estimators: randint(100, 1000) -> 546

 min_samples_leaf: randint(1, 100) -> 14

 min_samples_split: randint(1, 100) -> 39

 max_depth: randint(5, 25) -> 17

 max_features: uniform(0, 1) -> 0.106367

가설 3) XGB가 RandomForest보다 성능이 좋을 것이다.

• XGB 모델 성능 개선

1. Randomized Search CV val: 0.662, test: 0.672

- Target Encoder
 smoothing: [2.,4., 6., 8., 10., 20.,50.,60.,100.] -> 10
 min samples leaf: randint(1, 50) -> 17
- XGBRegressor
 max_depth: randint(5, 20) -> 10
 learning_rate: list(np.arange(0, 1, 0.001)) -> 0.211
 gamma: list(np.arange(0,5,0.5)) -> 3
 reg_alpha:: list(np.arange(0,1,0.001)) -> 0.705
 reg_lambda: list(np.arange(0,1,0.001)) -> 0.701

가설 3) XGB가 RandomForest보다 성능이 좋을 것이다.

- XGB 모델 성능 개선
 - 2. Randomized Search CV로 찾은 최적의 파라미터 + early stopping으로 n estimator 조절 val: 0.672, test: 0.671
 - 3. Randomized Search CV로 찾은 최적의 파라미터 중 Encoder만 사용
 - + Randomized Search CV + early stopping

앞선 시나리오에서 2번이 제일 높은 성능을 보였으므로 2번까지만 진행.

가설 3) XGB가 RandomForest보다 성능이 좋을 것이다.

RandomForest vs XGB

가설 3) XGB가 RandomForest보다 성능이 좋을 것이다. ✔

RandomForest vs XGB 다만, test data에 대한 모델의 성능이 0.67정도로 좋지 않은 편이다.

모델 해석

Permutation Importances

특성마다 한 번씩 무작위로 노이즈를 주어 기존에 특성이 하던 역할을 하지 못하게 하여 특성의 중요도(<mark>영향력의 크기</mark>)를 평가

- 전체적으로 영향력이 약함을 알 수 있다.
- 특성의 영향력이 크지 않기 때문에, PDP와 Shap으로 살펴볼 의미가 없음.

Weight	Feature
0.0275 ± 0.0053	Runtime
0.0157 ± 0.0085	Year
0.0154 ± 0.0021	Netflix
0.0139 ± 0.0047	Language
0.0108 ± 0.0054	Prime Video
0.0084 ± 0.0030	Hulu
0.0082 ± 0.0035	Country
0.0005 ± 0.0007	Disney+
0 ± 0.0000	Title

● 정리

[가설]

- 1) 여러가지 분석 모델 중, 랜덤포레스트와 XGB가 성능이 가장 좋을 것이다.
- 2) Target Encoder가 Ordinal Encoder보다 성능이 좋을 것이다.
- 3) XGB가 Randomforest보다 성능이 좋을 것이다.

[해석]

- 최종 모델인 XGB의 test data 성능: 0.67
- Permutation Importance로 확인한 결과, 대부분의 특성이 영향력이 적었다.