

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Álgebra II

Los Del DGIIM, losdeldgiim.github.io José Juan Urrutia Milán

Índice general

1.	Grupos: definición, generalidades y ejemplos	5
2.	Relaciones de Ejercicios	ç
	2.1. Grupos: generalidades y ejemplos	10

Álgebra II Índice general

1. Grupos: definición, generalidades y ejemplos

Definición 1.1 (Operación binaria). Sea G un conjunto, una operación binaria en G es una aplicación

$$\begin{array}{ccc} *: & G \times G & \longrightarrow & G \\ & (a,b) & \longmapsto & a*b \end{array}$$

Ejemplo. Ejemplos de operaciones binarias sobre conjuntos son:

- 1. La suma y el producto de números en \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , ...
- 2. Dado un conjunto X, consideramos las operaciones \bigcup , \bigcap sobre $\mathcal{P}(X)$.

Definición 1.2 (Monoide). Un monoide es un conjunto G no vacío junto con una operación binaria * que verifica:

- i) Asociatividad: $(x * y) * z = x * (y * z) \forall x, y, z \in G$.
- ii) Existencia de elemento neutro: $\exists e \in G \mid e * x = x \ \forall x \in G$

Observación. En un monoide, el elemento neutro es único.

$$Demostración$$
.

Notación. Si X es un monoide con una operación binaria * y un elemento neutro $e \in X$, será común hacer referencia al monoide por la tripleta:

$$(X, *, e)$$

Ejemplo. Ejemplos de monoides son (notando):

- 1. $(\mathbb{N}, +, 0), (\mathbb{N}, \cdot, 1)$
- 2. $(\mathcal{P}(X), \cap, X), (\mathcal{P}(X), \cup, \emptyset)$

Definición 1.3 (grupo). Un grupo es un conjunto G no vacío junto con una operación binaria * que verifica:

- i) Asociatividad: $(x * y) * z = x * (y * z) \forall x, y, z \in G$.
- ii) Existencia de elemento neutro: $\exists e \in G \mid e * x = x \ \forall x \in G$.
- iii) Existencia de elemento simétrico¹: $\forall x \in G \ \exists x' \in G \ | \ x' * x = e$.

¹Al que luego llamaremos inverso en algunos casos.

Si además se cumple que:

iv) La propiedad conmutativa de *: $x * y = y * x \ \forall x, y \in G$.

Entonces, diremos que (G, *, e) es un grupo conmutativo o abeliano.

Notación. Nos permitimos los siguientes abusos del lenguaje:

- 1. Por abuso de lenguaje, admitimos escribir G en lugar de (G, *, e), en los casos en los que * y e estén claros por el contexto.
- 2. Usaremos una notación multiplicativa usualmente, es decir, sustituiremos * por · o por la yuxtaposición:

$$x * y = x \cdot y = xy$$

Con esta notación, notaremos e = 1 y al elemento simétrico de x lo notaremos por x^{-1} .

3. En los casos con notación aditiva, escribiremos como operación * el símbolo $+, \forall x \in G$.

En estos casos, notaremos e = 0 y al elemento simétrico de x lo notaremos por -x, $\forall x \in G$.

Ejemplo. Consideramos los siguientes ejemplos:

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ con su respectiva suma son grupos abelianos.
- 2. \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^* con su respectivo producto son grupos abelianos.
- 3. $\{1,-1,i,-i\}\subseteq\mathbb{C}$ con el producto heredado de \mathbb{C} también es un grupo abeliano.
- 4. $(\mathcal{M}_2(\mathbb{R}), +)$ es un grupo abeliano.
- 5. $GL_2(\mathbb{R})$, el grupo lineal² de orden 2 (con coeficientes en \mathbb{R}) con el producto de matrices es un grupo que no es abeliano.
- 6. \mathbb{Z}_n con la suma es un grupo abeliano, $\forall n \in \mathbb{N}$.
- 7. $U(\mathbb{Z}_n) = \{[a] \in \mathbb{Z}_n \mid mcd(a, n) = 1\}$ con el producto es un grupo abeliano, $\forall n \in \mathbb{N}$.
- 8. Dado $n \ge 1$, $\mu_n = \{\text{raíces complejas de } x^n 1\} = \{\xi_n = \cos \frac{2k\pi}{2} + i \operatorname{sen} \frac{2k\pi}{2} \mid k \in \mathbb{N}\}\$ es un grupo abeliano con el proudcto.

$$\mu_n = \left\{ 1, \xi, \xi^2, \dots, \xi^{n-1} \mid \xi = \cos \frac{2\pi}{n} + i \operatorname{sen} \frac{2\pi}{n} \right\} i$$

9. El grupo lineal especial de orden 2 sobre el cuerpo \mathbb{K} :

$$SL_2(\mathbb{K}) = \{\text{matrices con determinante 1}\}\$$

siendo K un cuerpo con el producto de matrices es un grupo no abeliano.

²Es decir, el conjunto formado por todas las matrices regulares.

10. Sean G y H dos grupos, $G \times H$ es un grupo, considerando la operación binaria $*: (G \times H) \times (G \times H) \to G \times H$.

$$(x,y)*(x',y') = (xx',yy')$$

A $G \times H$ lo llamaremos grupo directo de $G \times H$.

11. Si X es un conjunto no vacío y consideramos

$$S(X) = \{f : X \to X \mid f \text{ biyectiva}\} = Perm(X)$$

será un grupo (no abeliano³) con la operación de composición o.

En el caso en el que X sea finito y tenga n elementos: $X = \{x_1, x_2, \dots, x_n\}$, notamos:

$$S_n = S(X)$$

12. Sea G un grupo y X un conjunto, consideramos el conjunto:

$$Apl(X,G) = G^X = \{f : X \to G \mid f \text{ aplicación}\}\$$

junto con la operación binaria de multiplicación de aplicaciones:

$$(f * g)(x) = f(x)g(x) \quad \forall x \in X$$

De forma que la aplicación simétrica la calculamos de la forma⁴:

$$f'(x) = (f(x))'$$

Es un grupo. Casos a destacar son:

- a) Si $X = \emptyset$, entonces $G^X = {\emptyset}$.
- b) SI $X = \{1, 2\}$, entonces G^X se identifica con $G \times G$.
- 13. El conjunto {1} con cualquier operación binaria es un grupo conmutativo, al que llamaremos grupo trivial.

Propiedades

Proposición 1.1. En un grupo G, el neutro y el simétrico de cada elemento son únicos.

$$Demostraci\'on.$$

Proposición 1.2. Sea G un grupo, entonces:

- $i) xx^{-1} = e \ \forall x \in G$
- $ii) xe = x \forall x \in G$

Demostración. Veamos cada una de las propiedades:

 $^{^3}$ Compruébese

⁴En cada punto, la aplicación simétrica es el simétrico del elemento f(x).

i) Usando la unicidad del neutro $e \in G$:

$$x^{-1}(xx^{-1}) = (x^{-1}x)x^{-1} = ex^{-1} = x^{-1} \Longrightarrow xx^{-1} = e$$

ii)

$$xe = x(x^{-1}x) = (xx^{-1})x = ex = x$$

Proposición 1.3. En un grupo G se verifica la propiedad cancelativa (tanto a la izquierda como a la derecha):

$$\forall x, y, z \in G: \begin{cases} xy = xz \Longrightarrow y = z \\ xy = zy \Longrightarrow x = z \end{cases}$$

Demostración. Para la primera, supongamos que xy = xz:

$$y = ey = (x^{-1}x)y = x^{-1}(xy) = x^{-1}(xz) = (x^{-1}x)z = ez = z$$

Proposición 1.4. Sea G un grupo, entones:

- 1. $e^{-1} = e$.
- 2. $(x^{-1})^{-1} = x, \forall x \in G$.
- 3. $(xy)^{-1} = y^{-1}x^{-1}, \forall x, y \in G.$

Demostración. Cada caso se demuestra observando sencillamente:

- 1. ee = e.
- 2. $xx^{-1} = e$.
- 3. $(y^{-1}x^{-1})(xy) = y^{-1}x^{-1}xy = y^{-1}ey = e$.

Proposición 1.5. Sea G un conjunto no vacío con una operación binaria * asociativa, son equivalentes:

- i) G es un grupo.
- ii) Para cada par de elementos $a, b \in G$, las ecuaciones:

$$aX = b$$
 $Xa = b$

Tienen solución en G ($\exists c, d \in G \mid ac = b \land da = b$).

Demostración. $i) \Rightarrow ii$) Tomando $c = a^{-1}b$ y $d = ba^{-1}$ se tiene.

$$i) \Rightarrow ii$$

2. Relaciones de Ejercicios

2.1. Grupos: generalidades y ejemplos

Ejercicio 2.1.1. Describir explícitamente la tabla de multiplicar de los grupos \mathbb{Z}_n^{\times} para n=4, n=6 y n=8, donde por \mathbb{Z}_n^{\times} denotamos al grupo de las unidades del anillo \mathbb{Z}_n .

Ejercicio 2.1.2. Describir explícitamente la tabla de multiplicar de los grupos \mathbb{Z}_p^{\times} para p=2, p=3, p=5 y p=7.

Ejercicio 2.1.3. Calcular el inverso de 7 en los grupos \mathbb{Z}_{11}^{\times} y \mathbb{Z}_{37}^{\times} .

Ejercicio 2.1.4. Describir explícitamente los grupos μ_n (de raíces *n*-ésimas de la unidad) para n = 3, n = 4 y n = 8, dando su tabla de multiplicar.

Ejercicio 2.1.5. En el conjunto $\mathbb{Q}^{\times} := \{q \in \mathbb{Q} \mid q \neq 0\}$ de los números racionales no nulos, se considera la operación de división, dada por $(x,y) \mapsto x/y = xy^{-1}$. ¿Nos da esta operación una estructura de grupo en \mathbb{Q}^{\times} ?

Ejercicio 2.1.6. Sea G un grupo en el que $x^2 = 1$ para todo $x \in G$. Demostrar que el grupo G es abeliano.

Ejercicio 2.1.7. Sea G un grupo. Demostrar que son equivalentes:

- 1. G es abeliano.
- 2. $\forall x, y \in G$ se verifica que $(xy)^2 = x^2y^2$.
- 3. $\forall x, y \in G$ se verifica que $(xy)^{-1} = x^{-1}y^{-1}$.

Ejercicio 2.1.8. Demostrar que si en un grupo G, $x, y \in G$ verifican que xy = yx entonces, para todo $n \ge 1$, se tiene que $(xy)^n = x^ny^n$.

Ejercicio 2.1.9. Si $a, b \in \mathbb{R}$, $a \neq 0$, demostrar que el conjunto de las aplicaciones $f : \mathbb{R} \to \mathbb{R}$, tales que f(x) = ax + b, es un grupo con la composición como ley de composición.

Ejercicio 2.1.10.

- 1. Demostrar que $|\operatorname{GL}_2(\mathbb{Z}_2)| = 6$, describiendo explícitamente todos los elementos que forman este grupo.
- 2. Sea $\alpha = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ y $\beta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Demostrar que $GL_2(\mathbb{Z}_2) = \{1, \alpha, \alpha^2, \beta, \alpha\beta, \alpha^2\beta\}.$
- 3. Escribir, utilizando la representación anterior, la tabla de multiplicar de $GL_2(\mathbb{Z}_2)$.

Ejercicio 2.1.11. Dar las tablas de grupo para los grupos D_3 , D_4 , D_5 y D_6 .

Ejercicio 2.1.12. Demostrar que el conjunto de rotaciones respecto al origen del plano euclídeo junto con el conjunto de simetrías respecto a las rectas que pasan por el origen, es un grupo.

Ejercicio 2.1.13. Sea G un grupo y sean $a, b \in G$ tales que $ba = ab^k$, $a^n = 1 = b^m$ con n, m > 0.

- 1. Demostrar que para todo i = 0, ..., m-1 se verifica $b^i a = ab^{ik}$.
- 2. Demostrar que para todo j = 0, ..., n-1 se verifica $ba^j = a^j b^{k^j}$.
- 3. Demostrar que para todo $i=0,\ldots,m-1$ y todo $j=0,\ldots,n-1$ se verifica $b^ia^j=a^jb^{ikj}$.
- 4. Demostrar que todo elemento de $\langle a, b \rangle$ puede escribirse como $a^r b^s$ con $0 \leqslant r < n, 0 \leqslant s < m$.

Ejercicio 2.1.14. Sean $s_1, s_2 \in S_7$ las permutaciones dadas por

$$s_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 6 & 2 & 1 & 4 & 3 \end{pmatrix}, \qquad s_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 5 & 1 & 7 & 6 \end{pmatrix}.$$

Calcular los productos s_1s_2 , s_2s_1 y s_2^2 , y su representación como producto de ciclos disjuntos.

Ejercicio 2.1.15. Dadas las permutaciones

$$p_1 = (1\ 3\ 2\ 8\ 5\ 9)(2\ 6\ 3),$$
 $p_2 = (1\ 3\ 6)(2\ 5\ 3)(1\ 9\ 2\ 8\ 5),$

hallar la descomposición de la permutación producto p_1p_2 como producto de ciclos disjuntos.

Ejercicio 2.1.16. Sean s_1, s_2, p_1 y p_2 las permutaciones dadas en los ejercicios anteriores.

- 1. Descomponer la permutación $s_1s_2s_1s_2$ como producto de ciclos disjuntos.
- 2. Expresar matricialmente la permutación $p_3 = p_2 p_1 p_2$ y obtener su descomposición como ciclos disjuntos.
- 3. Descomponer la permutación s_2p_2 como producto de ciclos disjuntos y expresarla matricialmente.

Observación. Aquí tratamos a S_7 como un subgrupo de S_9 , donde consideramos cada permutación del conjunto $\{1, 2, 3, 4, 5, 6, 7\}$ como una permutación del conjunto $\{1, \ldots, 9\}$ que deja fijos a los elementos 8 y 9.

Ejercicio 2.1.17. Sean s_1, s_2, p_1 y p_2 las permutaciones dadas en los ejercicios anteriores.

- 1. Calcular el orden de la permutación producto s_1s_2 . ¿Coincide dicho orden con el producto de los órdenes de s_1 y s_2 ?
- 2. Calcular el orden de $s_1(s_2)^{-1}(s_1)^{-1}$.
- 3. Calcular la permutación $(s_1)^{-1}$, y expresarla como producto de ciclos disjuntos.
- 4. Calcular la permutación $(p_1)^{-1}$ y expresarla matricialmente.

5. Calcular la permutación $p_2(s_2)^2(p_1)^{-1}$. ¿Cuál es su orden?

Ejercicio 2.1.18. Sean s_1, s_2, p_1 y p_2 las permutaciones dadas anteriormente. Sean también $s_3 = (2\ 4\ 6)$ y $s_4 = (1\ 2\ 7)(2\ 4\ 6\ 1)(5\ 3)$. ¿Cuál es la paridad de las permutaciones $s_1, s_4p_1p_2$ y p_2s_3 ?

Ejercicio 2.1.19. En el grupo S_3 , se consideran las permutaciones $\sigma = (1\ 2\ 3)$ y $\tau = (1\ 2)$.

1. Demostrar que

$$S_3 = \{1, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}.$$

- 2. Reescribir la tabla de multiplicar de S_3 empleando la anterior expresión de los elementos de S_3 .
- 3. Probar que

$$\sigma^3 = 1$$
, $\tau^2 = 1$, $\tau \sigma = \sigma^2 \tau$.

4. Observar que es posible escribir toda la tabla de multiplicar de S_3 usando simplemente la descripción anterior y las relaciones anteriores.

Ejercicio 2.1.20. Describir los diferentes ciclos del grupo S_4 . Expresar todos los elementos de S_4 como producto de ciclos disjuntos.

Ejercicio 2.1.21. Demostrar que el conjunto de transposiciones

$$\{(1,2),(2,3),\ldots,(n-1,n)\}$$

genera al grupo simétrico S_n .

Ejercicio 2.1.22. Demostrar que el conjunto $\{(1, 2, ..., n), (1, 2)\}$ genera al grupo simétrico S_n .

Ejercicio 2.1.23. Demostrar que para cualquier permutación $\alpha \in S_n$ se verifica que $s(\alpha) = s(\alpha^{-1})$, donde s denota la signatura, o paridad, de una permutación.

Ejercicio 2.1.24. Demostrar que si $(x_1x_2\cdots x_r)\in S_n$ es un ciclo de longitud r, entonces

$$s(x_1x_2\cdots x_r) = (-1)^{r-1}.$$

Ejercicio 2.1.25. Encontrar un isomorfismo $\mu_2 \cong \mathbb{Z}_3^{\times}$.

Ejercicio 2.1.26.

1. Demostrar que la aplicación

$$1 \mapsto 1, \qquad -1 \mapsto 4, \qquad i \mapsto 2, \qquad -i \mapsto 3,$$

da un isomorfismo entre el grupo μ_4 de las raíces cuárticas de la unidad y el grupo \mathbb{Z}_5^{\times} de las unidades en \mathbb{Z}_5 .

2. Encontrar otro isomorfismo entre estos dos grupos que sea distinto del anterior.

Ejercicio 2.1.27. Encontrar un isomorfismo $\mu_2 \times \mu_2 \cong \mathbb{Z}_8^{\times}$.

Ejercicio 2.1.28. Demostrar, haciendo uso de las representaciones conocidas, que $D_3 \cong S_3 \cong GL_2(\mathbb{Z}_2)$.

Ejercicio 2.1.29. Sea K un cuerpo y considérese la operación binaria

$$\otimes: \ K \times K \ \longrightarrow \ K$$

$$(a,b) \ \longmapsto \ a \otimes b = a+b-ab.$$

Demostrar que $(K - \{1\}, \otimes)$ es un grupo isomorfo al grupo multiplicativo K^* .

Ejercicio 2.1.30.

- 1. Probar que si $f: G \cong G'$ es un isomorfismo de grupos, entonces o(a) = o(f(a)), para todo elemento $a \in G$.
- 2. Listar los órdenes de los diferentes elementos del grupo Q_2 y del grupo D_4 y concluir que D_4 y Q_2 no son isomorfos.

Ejercicio 2.1.31. Calcular el orden de:

- 1. la permutación $\sigma = (1 \ 8 \ 10 \ 4 \ 5 \ 9)(2 \ 6 \ 3) \in S_{15}$.
- 2. cada elemento del grupo \mathbb{Z}_{11}^{\times} .

Ejercicio 2.1.32. Demostrar que un grupo generado por dos elementos distintos de orden dos, que conmutan entre sí, consiste del 1, de esos elementos y de su producto y es isomorfo al grupo de Klein.

Ejercicio 2.1.33. Sea G un grupo y sean $a, b \in G$.

- 1. Demostrar que $o(b) = o(aba^{-1})$ (un elemento y su conjugado tienen el mismo orden).
- 2. Demostrar que o(ba) = o(ab).

Ejercicio 2.1.34. Sea G un grupo y sean $a, b \in G$, $a \neq 1 \neq b$, tales que $a^2 = 1$ y $ab^2 = b^3a$. Demostrar que o(a) = 2 y que o(b) = 5.

Ejercicio 2.1.35. Sea $f: G \to H$ un homomorfismo de grupos.

- 1. $f(x^n) = f(x)^n \ \forall n \in \mathbb{Z}$.
- 2. Si f es un isomorfismo entonces G y H tienen el mismo número de elementos de orden n. ¿Es cierto el resultado si f es sólo un homomorfismo?
- 3. Si f es un isomorfismo entonces G es abeliano $\Leftrightarrow H$ es abeliano.

Ejercicio 2.1.36.

- 1. Demostrar que los grupos multiplicativos \mathbb{R}^* (de los reales no nulos) y \mathbb{C}^* (de los complejos no nulos) no son isomorfos.
- 2. Demostrar que los grupos aditivos \mathbb{Z} y \mathbb{Q} no son isomorfos.

Ejercicio 2.1.37. Sea G un grupo. Demostrar:

- 1. G es abeliano \iff la aplicación $f:G\to G$ dada por $f(x)=x^{-1}$ es un homomorfismo de grupos.
- 2. G es abeliano \iff la aplicación $f:G\to G$ dada por $f(x)=x^2$ es un homomorfismo de grupos.

Ejercicio 2.1.38. Si G es un grupo cíclico demostrar que cualquier homomorfismo de grupos $f: G \to H$ está determinado por la imagen del generador.

Ejercicio 2.1.39. Demostrar que no existe ningún cuerpo K tal que sus grupos aditivo (K, +) y (K^*, \cdot) sean isomorfos.