

ELT 061 – Dispositivos e Circuitos Eletrônicos Básicos

Amplificadores Operacionais

Símbolo do Amplificador Operacional

1965 – primeiro circuito integrado – amplificador operacional μA 709

Figure 2.1 Circuit symbol for the op amp.

Encapsulamentos

Fontes de Alimentação

Figure 2.2 The op amp shown connected to dc power supplies.

Circuito Equivalente do A.O. ideal

Figure 2.3 Equivalent circuit of the ideal op amp.

Características Ideais:

- Ganho diferencial infinito.
- Resistência de entrada infinita.
- Resistência de saída nula.
- Faixa de passagem infinita.

Exemplo: LM 741

$$A = 200.000$$

$$R_i = 2 M\Omega$$

$$R_0 = 75 \Omega$$

Porquê um amplificador com estas características?

$$\beta = \frac{R_1}{R_1 + R_2}$$

$$A_f = \frac{A}{1 + \beta A} = \frac{V_o}{V_s}$$

$$\beta A >> 1 \rightarrow A_f \approx \frac{1}{\beta}$$

Amplificador inversor

Figure 2.5 The inverting closed-loop configuration.

Análise do Amplificador inversor

Figure 2.6 Analysis of the inverting configuration. The circled numbers indicate the order of the analysis steps.

Exemplo 2.2

Determine o ganho v_O/v_I .

Projete o circuito para ganho igual a 100 e resistência de entrada igual a $1M\Omega$.

Figure 2.8 Circuit for Example 2.2. The circled numbers indicate the sequence of the steps in the analysis.

Exemplo 2.6

Determine o ganho v_o/v_i . Determine o ganho de corrente i_L/i_i .

Determine o ganho de potência P_o/P_i .

Figure E2.6

O circuito somador

Figure 2.10 A weighted summer.

Outro somador

Figure 2.11 A weighted summer capable of implementing summing coefficients of both signs.

O amplificador não inversor

Figure 2.12 The noninverting configuration.

Análise do Amplificador não inversor

Determine o ganho deste amplificador considerando o ganho *A* finito.

Figure 2.13 Analysis of the noninverting circuit. The sequence of the steps in the analysis is indicated by the circled numbers.

O seguidor de tensão

Figure 2.14 (a) The unity-gain buffer or follower amplifier. (b) Its equivalent circuit model.

Exercício 2.9

Use o teorema da superposição para determinar v_o .

Figure E2.9

Exercício 2.13

- 1. Determine as correntes e tensões indicadas no circuito.
- 2. Determine os ganhos de tensão, corrente e potência.

Figure E2.13

Ponte com Strain Gage

Sinais de modo diferencial e de modo comum

Figure 2.4 Representation of the signal sources v_1 and v_2 in terms of their differential and common-mode components.

Amplificadores de Diferenças

Figure 2.15 Representing the input signals to a differential amplifier in terms of their differential and common-mode components.

Amplificador de diferenças

Figure 2.16 A difference amplifier.

Teorema da Superposição

$$v_{o1} = -\frac{R_2}{R_1} v_{I1}$$

$$v_{o2} = \frac{R_4}{R_3 + R_4} \left(\frac{R_1 + R_2}{R_1} \right) v_{I2}$$

$$v_o = \frac{R_4}{R_3 + R_4} \left(\frac{R_1 + R_2}{R_1}\right) v_{I2} - \frac{R_2}{R_1} v_{I1}$$

(b)

Figure 2.17 Application of superposition to the analysis of the circuit of Fig. 2.16.

Amplificador de diferenças

$$v_o = \frac{R_4}{R_3 + R_4} \left(\frac{R_1 + R_2}{R_1}\right) v_{I2} - \frac{R_2}{R_1} v_{I1}$$

Se:
$$\frac{R_4}{R_3} = \frac{R_2}{R_1}$$

$$v_o = \frac{R_2}{R_1} (v_{I2} - v_{I1})$$

Figure 2.16 A difference amplifier.

Amplificador de instrumentação

Figure 2.20 A popular circuit for an instrumentation amplifier: **(a)** Initial approach to the circuit; **(b)** The circuit in **(a)** with the connection between node X and ground removed and the two resistors R_1 and R_1 lumped together. This simple wiring change dramatically improves performance; **(c)** Analysis of the circuit in **(b)** assuming ideal op amps.

Amplificador de Instrumentação

Amplificador de Instrumentação

Projete o amplificador de instrumentação para que o ganho possa ser variado entre 2 e 1000 utilizando um potênciometro de 100 $K\Omega$.

Figure 2.21 To make the gain of the circuit in Fig. 2.20(b) variable, $2R_1$ is implemented as the series combination of a fixed resistor R_{1f} and a variable resistor R_{1v} . Resistor R_{1f} ensures that the maximum available gain is limited.

1/26/2010

Amplificador de Instrumentação – INA114

http://www.ti.com/lit/ds/sbos014/sbos014.pdf

Largura de faixa

Figure 2.22 Open-loop gain of a typical general-purpose internally compensated op amp.

Considerando o ganho A finito

$$(1+R_2/R_1) << A$$

$$\frac{v_o}{v_i} = \frac{-R_2/R_1}{1 + (1 + R_2/R_1)/A}$$

Saturação da tensão de saída

Figure 2.25 (a) A noninverting amplifier with a nominal gain of 10 V/V designed using an op amp that saturates at ±13-V output voltage and has ±20-mA output current limits. **(b)** When the input sine wave has a peak of 1.5 V, the output is clipped off at ±13 V.

Slew rate

É a máxima taxa de variação da tensão de saída de um A.O.

Full Power Bandwith

É a máxima frequência de uma senoide com amplitude máxima que pode ser amplificada sem distorção por um A.O. utilizado como buffer.

Figure 2.27 Effect of slew-rate limiting on output sinusoidal waveforms.

Imperfeições C.C. dos A.O's

1 – Tensão de Offset de entrada

Figure 2.28 Circuit model for an op amp with input offset voltage V_{OS} .

Erro devido à tensão de offset de entrada

Figure 2.29 Evaluating the output dc offset voltage due to $V_{\rm OS}$ in a closed-loop amplifier.

Ajuste da tensão de Offset de entrada

Figure 2.30 The output dc offset voltage of an op amp can be trimmed to zero by connecting a potentiometer to the two offset-nulling terminals. The wiper of the potentiometer is connected to the negative supply of the op amp.

Amplificador com acoplamento capacitivo

Figure 2.31 (a) A capacitively coupled inverting amplifier, and **(b)** the equivalent circuit for determining its dc output offset voltage V_O .

Corrente de polarização e corrente de offset

Figure 2.32 The op-amp input bias currents represented by two current sources I_{B1} and I_{B2} .

Erro devido à corrente de polarização

Figure 2.33 Analysis of the closed-loop amplifier, taking into account the input bias currents.

Características elétricas de Amp. Op

TL071, TL071A, TL071B, TL072 TL072A, TL072B, TL074, TL074A, TL074B LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

SLOS080J - SEPTEMBER 1978 - REVISED MARCH 2005

electrical characteristics, V_{CC±} = ±15 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†		T _A ‡	TL071M TL072M			TL074M			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
v	least offert college	v 0	$R_S = 50 \Omega$	25°C		3	6		3	9	mV
V _{IO}	Input offset voltage	$V_{O}=0$,		Full range			9			15	
$\alpha_{V_{1O}}$	Temperature coefficient of input offset voltage	V _O = 0,	$R_S = 50 \Omega$	Full range		18			18		μV/°C
I _{IO}	land effect correct	V _O = 0		25°C		5	100		5	100	pΑ
	Input offset current			Full range			20			20	nA
I _{IB}	Input bias current [‡]	V _O = 0		25°C		65	200		65	200	pΑ
	input bias current						50			50	nA
V _{ICR}	Common-mode input voltage range			25°C	±11	-12 to 15		±11	-12 to 15		v
Vом		$R_L = 10 \text{ k}\Omega$		25°C	±12	±13.5		±12	±13.5		v
	Makimum peak output voltage swing	$R_L \ge 10 k\Omega$		Full seems	±12			±12			
	vollage swing	$R_L \ge 2 \ k\Omega$		Full range	±10			±10			
A _{VD}	Large-signal differential	$V_0 = \pm 10 V$,	$R_L \ge 2 \; k\Omega$	25°C	35	200		35	200		V/mV
	voltage amplification				15			15			
B ₁	Unity-gain bandwidth	$T_A = 25^{\circ}C$				3			3		MHz
rį	Input resistance	$T_A = 25^{\circ}C$				10 ¹²			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}mi$ $V_O = 0$,	in, R _S = 50 Ω	25°C	80	86		80	86		dB
ksvr	Supply-voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$V_{CC} = \pm 9 \text{ V t}$ $V_{O} = 0$,		25°C	80	86		80	86		dB
loc	Supply current (each amplifier)	V _O = 0,	No load	25°C		1.4	2.5		1.4	2.5	mA
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100		25°C		120			120		dB

[†] Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 4. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

[‡] All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified. Full range is T_Δ = -55°C to 125°C.

Γ	DADAMETED	DADAMETED		TEST CONDITIONS		TL07xM			ALL OTHERS		
	PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
5	SR Slew rate at unity ga	1	V _I = 10 V, C _L = 100 pF,	$R_L = 2 k\Omega$, See Figure 1	5	13		8	13		V/μs

O amplificador inversor com impedâncias

Figure 2.37 The inverting configuration with general impedances in the feedback and the feed-in paths.

Filtro passa baixas

$$V_i(t) = V_i sen(wt)$$

$$V_0(s) = \frac{-R_2/R_1}{1 + sC_2R_2}V_i(s)$$

$$V_0(jw) = \frac{-R_2/R_1}{1 + jwC_2R_2}V_i(jw)$$

$$w_0 = \frac{1}{C_2 R_2}$$

Figure 2.38 Circuit for Example 2.6.

O integrado inversor

Figure 2.39 (a) The Miller or inverting integrator. (b) Frequency response of the integrator.

Circuito diferenciador

Figure 2.44 (a) A differentiator. (b) Frequency response of a differentiator with a time-constant CR.

Exemplo de circuitos

$$v_o = av_s + b$$

$$v_o = \frac{R_2}{R_1 + R_2} (1 + \frac{R_F}{R_G}) v_s + \frac{R_1}{R_1 + R_2} (1 + \frac{R_F}{R_G}) v_{REF}$$

$$\begin{cases} a = \frac{R_2}{R_1 + R_2} (1 + \frac{R_F}{R_G}) \\ b = \frac{R_1}{R_1 + R_2} (1 + \frac{R_F}{R_G}) v_{REF} \end{cases}$$

Equação de projeto:
$$\frac{b}{a} = \frac{R_1}{R_2} v_{REF}$$

$$\frac{b}{a} = \frac{R_1}{R_2} v_{REF}$$

Exemplo de circuitos

$$v_o = -av_s + b$$

$$v_o = -\frac{R_F}{R_G}v_s + \frac{R_2}{R_1 + R_2}(\frac{R_F + R_G}{R_G})v_{REF}$$

$$\begin{cases} a = \frac{R_F}{R_G} \\ b = \frac{R_2}{R_1 + R_2} \left(\frac{R_F + R_G}{R_G}\right) v_{REF} \end{cases}$$

$$\frac{b}{(1-a)} = \frac{R_1}{R_1 + R_2} v_{REF}$$

Equação de projeto:

Exemplo de circuitos

$$v_o = -av_s - b$$

$$v_O = -\frac{R_F}{R_G} v_S - \frac{R_F}{R_1} v_{REF}$$

$$\begin{cases} a = \frac{R_F}{R_G} \\ b = -\frac{R_F}{R_1} v_{REF} \end{cases}$$

Equação de projeto:

$$\frac{b}{a} = \frac{R_G}{R_1} v_{REF}$$

Determine o ganho v_o/v_i e a resistência de entrada R_{in} em cada circuito.

Encontre as correntes em todos em todos os ramos e as tensões em todos os nós do circuito. Como a corrente fornecida pelo A.O. é maior que a fornecida pela fonte de sinal, de onde vêm a corrente adicional?

Figure P2.16

A tensão de saída é proporcional à corrente de entrada. Determine o ganho de transresistência e a resistência de entrada para os seguintes casos:

- 1. A é infinito.
- 2. A é finito.

Figure P2.22

Figure P2.30

Figure P2.31

Projete o circuito da figura para implementar um amplificador de corrente com ganho $i_L/i_I = 20A/A$.

Figure P2.33

Figure P2.34

Figure P2.35

Figure P2.43

O circuito de um voltímetro analógico com alta resistência de entrada é mostrado na figura abaixo. O voltímetro mede a tensão V entre a entrada não inversora e terra. A deflexão máxima do medidor de bobina móvel ocorre para uma corrente de 100 µA. Calcule R de modo que o medidor de bobina móvel dê a leitura máxima quando V = 10 V. A resistência do medidor afeta a calibração do voltímetro?

Figure P2.46

Figure P2.47

Figure P2.49

Figure P2.50

Figure P2.51

Figure P2.59

Figure P2.62

Figure P2.68

Figure P2.69

Figure P2.70

Figure P2.71

Figure P2.77

Os dois circuitos abaixo operam como conversores de tensão em corrente, ou seja, eles alimentam a impedância Z_L com uma corrente proporcional a v_I e independente do valor de Z_L . Determine as expressões i_o / v_I .

Figure P2.78

Figure P2.117

Figure P2.118

Figure P2.122

