Série 3

Exercice 1. Un parallélogramme ABCD est défini par les sommets A(3,2) et B(2,-5), ainsi que son centre M(1,8) dans un repère fixé du plan. Quelles sont les coordonnées des sommets C et D dans ce repère?

Exercice 2. Dans un repère fixé du plan, on considère les points A(-4,2), B(1,3) et $G(-\frac{1}{3},\frac{10}{3})$. Déterminer les coordonnées du point C sachant que G est le centre de gravité du triangle ABC.

Exercice 3. On fixe un repère du plan dont on note O l'origine, ainsi qu'un réel α . On considère les points suivants :

$$P(6,0), Q(1,4), S(\alpha-2,-9) \text{ et } T(5,\alpha).$$

a. Calculer dans ce repère les composantes des vecteurs

$$\vec{a} = \overrightarrow{OP} + \overrightarrow{OQ}, \quad \vec{b} = \overrightarrow{OP} - \overrightarrow{OQ}, \quad \vec{c} = 2\overrightarrow{OQ} - \overrightarrow{OP}, \quad \vec{d} = 3(\overrightarrow{OQ} - \overrightarrow{OP}) + \frac{1}{2}\overrightarrow{QP}.$$

b. Calculer dans ce repère les coordonnées du point R, sachant que

$$\overrightarrow{OP} - 2\overrightarrow{OQ} + 2\overrightarrow{QR} = \vec{0}.$$

- c. Déterminer α pour que les points P, S et T soient alignés.
- d. Déterminer α pour que les droites (PQ) et (TS) soient parallèles.

Exercice 4. Dans un repère (O, \vec{u}, \vec{v}) du plan, les points A, B et C ont pour coordonnées :

$$A(-1,-1)$$
, $B(1,-1)$ et $C(0,1)$.

- a. Exprimer les vecteurs \vec{u} et \vec{v} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- b. Les points A, B et C sont donnés sur la figure suivante :

Ç

 \dot{B}

 \dot{A}

En expliquant votre démarche, construire sur la feuille, à la règle et au compas l'origine O ainsi que les vecteurs \vec{u} et \vec{v} . Indication : on pourra faire intervenir le milieu du segment AB.

Exercice 5. On donne quatre points non alignés A, B, C, D dans le plan. On sait que D a pour coordonnées (2,-1) dans le repère $(A,\overrightarrow{AB},\overrightarrow{AC})$. Donner les coordonnées de B dans les repères suivants :

$$(A, \overrightarrow{AC}, \overrightarrow{AD}), (C, \overrightarrow{AD}, \overrightarrow{AC}), (D, \overrightarrow{DA}, \overrightarrow{DC}).$$

Exercice 6. a. Après avoir placé deux points A et B sur une feuille blanche, construire à la règle et au compas le point :

$$D = \text{Bar}\{(A, 1), (B, -3)\}.$$

b. Placer ensuite un point C non aligné avec A et B, puis construire à la règle et au compas le point :

$$E = \text{Bar}\{(A,1), (B, -3), (C, 1)\}.$$

 $Indication: faire\ apparaître\ E\ comme\ un\ barycentre\ de\ C\ et\ D.$

c. Montrer que la droite (BE) passe par le milieu du segment AC.

Exercice 7. Dans un repère du plan, on donne les points A(1,1), B(4,5), C(7,6) et D(5,8). Déterminer les réels α et β sachant que :

$$B = \text{Bar}\{(A, 8), (B, 1), (C, \alpha), (D, \beta)\}$$

Éléments de réponse :

Ex. 1 : C(-1, 14), D(0, 21).

Ex. 2:C(2,5).

Ex. 3: a. $\vec{a}\begin{pmatrix} 7 \\ 4 \end{pmatrix}$, $\vec{b}\begin{pmatrix} 5 \\ -4 \end{pmatrix}$, $\vec{c}\begin{pmatrix} -4 \\ 8 \end{pmatrix}$, $\vec{d}\begin{pmatrix} -25/2 \\ 10 \end{pmatrix}$, b.R(-1,8), c. $\alpha = -1$ ou 9, d. $\alpha = -73$.

Ex. 4: a. $\vec{u} = \frac{1}{2}\overrightarrow{AB}$, $\vec{v} = -\frac{1}{4}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$.

Ex. 5: $(\frac{1}{2}, \frac{1}{2})$, $(\frac{1}{2}, -\frac{1}{2})$, $(0, \frac{1}{2})$.

Ex. 7 : $\alpha = 5$, $\beta = 9$.