Giochi di Banach-Mazur

Davide Peccioli

Università degli Studi di Torino

4 giugno 2025

Gioco Logico

Definizione 1.1

Un gioco logico è una quadrupla $\mathcal{G}\coloneqq (\Omega,f,W_{\mathsf{I}},W_{\mathsf{II}})$ dove:

- ullet Ω è un insieme, chiamato il dominio del gioco;
- $f: \Omega^{<\omega} \to \{\mathsf{I},\mathsf{II}\}$ è una funzione, chiamata <u>funzione di turno</u> o funzione del giocatore;
- $\overline{W_{\rm I},W_{\rm II}}\subseteq\Omega^{<\omega}\cup\Omega^{\omega}$ sono tali che

 - **2** per ogni $a \in W_{\bullet}$ e per ogni $b \in \Omega^{<\omega} \cup \Omega^{\omega}$:

$$a \subseteq b \implies b \in W_{\bullet}$$

Gli elementi di $\Omega^{<\omega}$ sono chiamati <u>posizioni del gioco</u> $\mathcal G$, mentre un elemento di Ω^ω è detto giocata di $\mathcal G$.

l giocatori l e Il giocano scegliendo a turno elementi di Ω . La funzione di turno f associa a ciascuna posizione uno dei due giocatori: se

$$f(a_0, a_1, \dots, a_n) = \mathsf{I}$$

allora l'elemento a_{n+1} sarà scelto dal giocatore I.

Si dirà che il giocatore I vince la giocata \underline{a} se $\underline{a} \in W_{\text{I}}$; si dirà che il giocatore II vince la giocata \underline{b} se $\underline{b} \in W_{\text{II}}$.

Definizione 1.2

Un gioco è detto totale se $\Omega^{\omega} \subseteq W_{\mathsf{I}} \cup W_{\mathsf{II}}$.

Strategia per un gioco logico

Una strategia per un giocatore è un insieme di regole che descrivono esattamente come un giocatore debba giocare, in base a tutte le mosse precedenti.

Una strategia è detta <u>vincente</u> per un giocatore se questo vince ogni giocata in cui ne fa uso, a prescindere dalle mosse dell'altro giocatore.

Definizione 1.4

Un gioco si dice determinato se esiste una strategia vincente per I o per II.

Giochi di Gale-Stewart

Definizione 1.6

Sia A un insieme non vuoto, e sia $C\subseteq A^\omega$. Si definisce il gioco di Gale-Stewart associato ad C come il gioco logico seguente:

$$G(A,C) = G(A) := (A, \psi, C, A^{\omega} \setminus C)$$

dove la funzione $\psi:A^{<\omega} \to \{\mathsf{I},\mathsf{II}\}$ è così definita

$$\psi(s) \coloneqq \begin{cases} \mathsf{I} & \mathrm{lh}(s) \ \mathsf{\`e} \ \mathsf{pari} \\ \mathsf{II} & \mathrm{lh}(s) \ \mathsf{\`e} \ \mathsf{dispari} \end{cases}$$

Pertanto il gioco può essere codificato come segue:

e il giocatore I vince se e solo se $(a_n)_{n\in\omega}\in C$.

Strategia per un gioco di Gale-Stewart

Si specializza la definizione di strategia per un gioco logico al caso particolare di un gioco di Gale-Stewart.

Una strategia per un gioco G(A,C) è un albero $\sigma\subseteq A^{<\omega}$ tale che:

- \bullet σ sia potato e non vuoto;
- $oldsymbol{0}$ se $\langle a_0,\ldots,a_{2j}
 angle \in \sigma$ allora per ogni $a_{2j+1}\in A$: $\langle a_0,\ldots,a_{2j+1}
 angle \in \sigma$;
- \bullet se $\langle a_0,\ldots,a_{2j-1}\rangle\in\sigma$ allora esiste un unico $a_{2j}\in A$ tale che $\langle a_0,\ldots,a_{2j}\rangle\in\sigma$.

Una strategia è detta vincente se il suo corpo $[\sigma] \in A$.

Gioco di Gale-Stewart con posizioni ammissibili

Spesso è comodo considerare giochi in cui I e II non possano giocare ogni elemento di A, ma debbano seguire delle <u>regole</u>. Quindi, è necessario dare un alberto potato non vuoto $T\subseteq A^{<\omega}$, che determina le <u>posizioni</u> ammissibili.

In questa situazione I e II si alternano giocando $(a_i)_{i\in\omega}$ in maniera tale che, ad ogni passo $n\in\omega$

$$\langle a_0, \dots, a_n \rangle \in T$$

Si scriverà, in questo caso, G(T,C).

Teorema di Gale-Stewart

Sia A uno spazio topologico discreto e sia A^{ω} dotato della topologia prodotto.

Teorema di Gale-Stewart 1.7

Sia T un albero potato non vuoto su A. Se $C \subseteq [T]$ è aperto o chiuso in [T], allora il gioco G(T,C) è determinato.

9/26

Gioco di Choquet

Definizione 2.1

Sia (X,τ) uno spazio topologico non vuoto. Il gioco di Choquet G_X è un gioco di Gale-Stewart totale codificato come segue: i giocatori I e II si alternano scegliendo sottoinsiemi aperti non vuoti di X:

tali che $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \dots$ Il giocatore II vince se

$$\bigcap V_n = \bigcap U_n \neq \emptyset.$$

Teorema 2.2

Uno spazio topologico X è uno spazio topologico di Baire se e solo se il giocatore I non ha una strategia vincente nel gioco di Choquet G_X .

Definizione 2.3

Uno spazio topologico X è detto <u>spazio di Choquet</u> se il giocatore II ha una strategia vincente in G_X .

In particolare, ogni spazio Polacco è uno spazio di Choquet.

Gioco di Banach-Mazur

Sia X uno spazio topologico non vuoto, e sia $A \subseteq X$.

Definizione 2.5

Il gioco di Banach-Mazur (o anche **-gioco) di A, denotato con $G^{**}(A)$ oppure con $G^{**}(A,X)$ è un gioco di Gale-Stewart codificato come segue: i giocatori I e II si alternano scegliendo sottoinsiemi aperti non vuoti di X

tali che $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \dots$ Il giocatore II vince se

$$\bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n \subseteq A.$$

Teorema 2.6

Sia X uno spazio topologico non vuoto, e sia $A\subseteq X$ un sottoinsieme qualsiasi. Allora A è comagro se e solo se il giocatore II ha una strategia vincente nel gioco di Banach-Mazur $G^{**}(A)$.

Teorema 2.7

Se X è uno spazio topologico di Choquet non vuoto ed esiste una distanza d su X le cui palle aperte sono aperti di X, allora:

A è magro in un aperto non vuoto se e solo se il giocatore I ha una strategia vincente nel gioco di Banach-Mazur $G^{**}(A)$.

Dimostrazione Teorema 2.7 (⇒)

Se A è magro in $Y\subseteq X$, sia per ogni $n\in\omega\colon W_n\subseteq Y$ aperto denso di Y, con

$$\bigcap_{n\in\omega}W_n\subseteq Y\setminus A.$$

Poiché Y è uno spazio di Choquet, allora nel gioco:

con gli aperti non vuoti $Y\supseteq V_0\supseteq U_1\supseteq V_1\supseteq \ldots$ in cui I vince sse $\bigcap_{n\in\omega}B_n\neq\emptyset$, I ha una strategia vincente. Questo infatti è un gioco di Choquet a giocatori invertiti.

Sia quindi σ la strategia vincente di I in questo gioco di Choquet. (cont.)

Dimostrazione Teorema 2.7 (\Rightarrow) (cont.)

Nel gioco $G^{**}(A)$, il giocatore I pone $U_0 \coloneqq Y$. Si costruisce per induzione la strategia vincente per I.

Al passo n+1-esimo, sia (U_0,V_0,\ldots,U_n,V_n) la sequenza di insiemi giocati. Si pone, per ogni $i\leq n\colon V_i'\coloneqq V_i\cap W_i$, e si sceglie U_{n+1} come l'unico sottoinsieme aperto non vuoto di V_n tale che

$$(V_0', U_1, V_1', U_2, \dots, V_n', U_{n+1}) \in \sigma.$$

Allora $\bigcap_{n\in\omega}U_n\neq\emptyset$ e inoltre

$$\bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n' \subseteq \bigcap_{n \in \omega} W_n \subseteq Y \setminus A$$

e dunque $\bigcap_{n\in\omega}U_n\not\subseteq A$.

Dimostrazione Teorema 2.7 (⇐)

Sia σ una strategia vincente per l in $G^{**}(A)$, e sia U_0 l'elemento di partenza per σ .

Esiste allora una strategia σ' per I, vincente, e tale che l'insieme giocato al passo n-esimo U_n abbia diametro (in una metrica fissata):

$$diam(U_n) < 2^{-n}.$$

Allora
$$\bigcap_{n\in\omega}U_n=\{x\}$$
, con $x\in U_0\setminus A$. (cont.)

Dimostrazione Teorema 2.7 (\Leftarrow) (cont.)

Sia quindi

$$W := \left\{ x \in U_0 \mid \exists (U_i, V_i)_{i \in \omega} \in [\sigma'] \ x \in \bigcap_{n \in \omega} U_i \right\}$$

• W è denso in U_0 , poiché per ogni $B\subseteq U_0$ esiste $p=(U_i,V_i)_{i\in\omega}\in[\sigma']$ tale che $V_0=B$, e, siccome $p\in[\sigma']$ allora

$$\bigcap_{n \in \omega} U_i = \{x\} \subseteq U_1 \subseteq V_0 = B$$

e dunque $W \cap B \neq \emptyset$.

• Inoltre $W \subseteq U_0 \setminus A$, per costruzione di σ' .

Pertanto A è magro in U_0 .

Pavide Peccioli Giochi di Banach-Mazur 4 giugno 2025

17/26

Lemma 2.8

Sia X uno spazio topologico di Choquet non vuoto tale che esista una distanza d su X le cui palle aperte sono aperti di X. Sia $A\subseteq X$. Se per ogni aperto $U\subseteq X$ il gioco $G^{**}\left((X\setminus A)\cup U\right)$ è determinato allora $A\subseteq X$ ha BP.

Definizione 2.9

Una base debole per uno spazio topologico (X,τ) è una collezione di aperti $\{A_{\alpha}\}_{\alpha\in\Omega}\subseteq \tau$ tali che, per ogni aperto non vuoto di X, $\emptyset\neq U\subseteq X$ esista $\alpha_0\in\Omega$ tale che

$$A_{\alpha_0} \subseteq U$$
.

Gioco di Banach-Mazur unfolded

Sia X uno spazio polacco non vuoto con una metrica fissata e sia $\mathcal W$ una base debole numerabile di X.

Definizione 2.10

Dato $F\subseteq X\times\omega^\omega$, il gioco di Banach-Mazur unfolded $G^{**}_{\rm u}(F)$ è il gioco di Gale-Stewart codificato come segue:

tali che:

- per ogni $i \in \omega$: $U_i, V_i \in \mathcal{W}$, $y_n \in \omega$;
- diam (U_n) , diam $(V_n) < 2^{-n}$;
- $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \dots$

(cont.)

Definizione 2.10 (cont.)

Posto

$$\{x\} := \bigcap_{i \in \omega} \operatorname{Cl}_X(U_n) = \bigcap_{i \in \omega} \operatorname{Cl}_X(V_n)$$

e $y := (y_i)_{i \in \omega} \in \omega^{\omega}$, il giocatore II vince sse

$$(x,y) \in F \subseteq X \times \omega^{\omega}$$
.

Lemma 2.11

Se F è aperto o chiuso di $X \times \omega^{\omega}$, allora $G_{\mu}^{**}(F)$ è determinato.

Teorema 2.12

Sia X uno spazio polacco con una metrica fissata e sia $\mathcal W$ una base debole di $\mathsf X.$

Dato $F \subseteq X \times \omega^{\omega}$ si consideri il **-gioco: $G_{\mathsf{u}}^{**}(F)$. Indicato con $A \coloneqq \pi_X(F)$:

- se I ha una strategia vincente in $G^{**}_{\mathsf{u}}(F)$, allora A è magro in un aperto non vuoto di X;
- ② se II ha una strategia vincente in $G_{\mathsf{u}}^{**}(F)$ allora A è comagro.

Dimostrazione Teorema 2.12(1)

Sia σ una strategia vincente per I, e sia U_0 la prima mossa. Si mostra che A è magro in U_0 .

Per ogni $a \in \omega$ e per ogni $p \in \sigma$ della forma:

$$p = \langle U_0, (y_0, V_0), \dots, U_{n-1}, (y_{n-1}, V_{n-1}), U_n \rangle$$

si definisce $F_{p,a} \subseteq U_0$:

$$F_{p,a} = \{z \in U_n \mid \text{per ogni mossa legale } (a,V_n)$$
 se U_{n+1} è l'unico elemento di $\mathcal W$ tale che
$$p^\frown \langle (a,V_n), U_{n+1} \rangle \in \sigma \text{ allora } z \notin U_{n+1} \}$$

L'insieme $F_{p,a}$ è mai denso, poiché chiuso e con interno vuoto. (cont.)

23 / 26

Dimostrazione 2.12(1) (cont.)

Sia ora $x\in A\cap U_0$. Allora esiste $y\in\omega^\omega$, $y=(y_i)_{i\in\omega}$ tale che $(x,y)\in F$. Una posizione $p\in\sigma$:

$$p = \langle U_0, (y_0, V_0), \dots, U_{n-1}, (y_{n-1}, V_{n-1}), U_n \rangle$$

è <u>buona</u> per (x,y) se $x\in U_n$. Siccome σ è una strategia vincente per il giocatore I, allora esiste una posizione $p_{(x,y)}\in\sigma$ buona per (x,y) e massimale, ovvero ogni estensione di $p_{(x,y)}$ <u>non è buona</u>. Ma allora, se

$$p_{(x,y)} = \langle U_0, (y_0, V_0), \dots, U_n \rangle$$

si ha che $x \in F_{p_{(x,y)},y_n}$.

Pertanto $A \cap U_0 \subseteq \bigcup_{p \in \sigma', a \in \omega} F_{p,a}$ è magro.

Teorema di Lusin-Sierpiński

Teorema di Lusin-Sierpiński 2.13

Sia X uno spazio polacco. Allora ogni insieme analitico di X ha la Baire Property.

Dimostrazione.

Siccome $\mathrm{BP}(X)$ è una σ -algebra allora è chiusa per complementi, e pertanto se ogni insieme coanalitico ha BP allora si è dimostrata la tesi. Sia dunque C un insieme coanalitico e sia $U\subseteq X$ un aperto. Posto $A:=(X\setminus C)\cup U$, questo è un insieme analitico, e pertanto esiste un chiuso $F\subseteq X\times \omega^\omega$ tale che $A=\pi_X(F)$.

Per il Teorema di Gale-Stewart 1.7 (e per il Lemma 2.11), allora, il **-gioco $G_{\rm u}^{**}(F)$ è determinato, ed in particolare vale una tra le condizioni 1. e 2. del Teorema 2.12.

Per i Teoremi 2.26 e 2.27, allora, il gioco $G^{**}(A) = G^{**}\left((X \setminus C) \cup U\right)$ è determinato: per il Lemma 2.8, quindi C ha la BP.

25/26

Bibliografia minimale

- Alexander S. Kechris. *Classical Descriptive Set Theory*. Graduate Texts in Mathematics 156. New York, NY: Springer New York, 1995.
 - «Logic and Games». In: The Stanford Encyclopedia of Philosophy. Winter 2024. URL: https: //plato.stanford.edu/archives/win2024/entries/logic-
- games/.

 Luca Motto Ros. Notes on Descriptive Set Theory. Apr. 2024.
- Pedro Sánchez Terraf. Banach-Mazur game and the Baire property.

 Mathematics Stack Exchange. URL:

https://math.stackexchange.com/q/3681151.