

PALESTRA 3

19 de outubro de 2011

Jonathan D. Mahnken, Ph.D., PStat®

Parte I - Esboço

- Comparando dois grupos
 - Inferência para comparar médias
 - Inferência para comparar medianas
 - Inferência para comparar proporções
 - Estimativa de tamanho de amostra

Inferência sobre Dois Grupos

- Métodos que usamos para tirar conclusões sobre duas populações de amostras
 - Intervalos de confiança
 - Teste de hipótese
- □ Suposições
 - Amostra aleatória
 - Amostra Representativa
 - Amostras são independentes
 - "...sabendo que as observações para um grupo não fornecem nenhuma informação sobre as observações no segundo grupo." (p 133)
 - Diferente de um grupo observado duas vezes

Inferência sobre Dois Grupos

- □ Dados numéricos
 - Teste-T
 - Teste-T de duas amostras
 - Teste da soma dos postos de Wilcoxon
- Dados categóricos
 - Métodos de distribuição-z
 - Teste de qui-quadrado
 - Teste exato de Fisher

Intervalos de confiança

- $CI = ESTATÍSTICO \pm (z_{\alpha/2})(SE_{ESTATÍSTICO})$
- Estima a diferença entre as médias do grupo

$$\overline{X}_1 - \overline{X}_2$$

- Suposições
 - Cada amostra ~ N(μ_i,σ²)
 - Homogeneidade de variância
 - Não é necessária quando os tamanhos da amostra são iguais
 - Grupos independentes

Department of Biostatistics

Intervalos de confiança

Desvio Padrão combinado

$$DP_p = \sqrt{\frac{(n_1 - 1)DP_1^2 + (n_2 - 1)DP_2^2}{n_1 + n_2 - 2}}$$

Erro padrão da diferença

$$SE_{\bar{X}_1 - \bar{X}_2} = DP_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

- □ Teste do "Olho" (Eyeball Test)
 - Lote
 - Média de cada grupo
 - (1-α)% CI
 - Barras/margens de erro
 - É sempre bom olhar para seus dados!

Teste do "Olho" (Eyeball Test)

Department of Biostatistics

□ Teste-T de duas amostras

- H_0 : $\mu_1 = \mu_2$ versus H_1 : $\mu_1 \neq \mu_2$
- Teste no qual as médias do grupo são as mesmas (sem diferença)

$$\overline{X}_1 - \overline{X}_2 = 0$$

- Suposições
 - Cada amostra ~ N(μ_i,σ²)
 - Homogeneidade de variância
 - Não é necessária quando os tamanhos da amostra são iguais
 - Grupos independentes

□ Teste-T de duas amostras

$$t_{(n_1+n_2-2)} = \frac{\bar{X}_1 - \bar{X}_2}{SE_{\bar{X}_1 - \bar{X}_2}}$$

onde

$$SE_{\bar{X}_1 - \bar{X}_2} = DP_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

e

$$DP_p = \sqrt{\frac{(n_1 - 1)DP_1^2 + (n_2 - 1)DP_2^2}{n_1 + n_2 - 2}}$$

THE UNIVERSITY OF KANSAS Medical Center Department of Biostatistics

Inferência sobre as Médias

- Suposição de Homogeneidade de variâncias
 - Não necessária para grupos de mesmo (ou quase mesmo) tamanho
 - Testes para Homogeneidade de variâncias
 - Test-F
 - Teste de Levene
 - Se há heterogeneidade presente
 - Correção de Satterthwaite
 - Faz com o que teste-T fique mais conservativo
 - Método não paramétrico
 - Transformação

THE UNIVERSITY OF KANSAS Medical Center Department of Biostatistics

Inferência sobre as Medianas

- □ Teste da soma dos postos de Wilcoxon
 - a.k.a. Mann-Whitney Teste-U
 - Procedimento n\u00e3o param\u00e9trico
 - H₀: mediana₁ = mediana₂ versus H₁: mediana₁ ≠ mediana₂
 - Valores observados substituídos por postos
 - Probabilidades exatas
 - Computacionalmente cara
 - Probabilidades aproximadas
 - Teste-T nos postos

Department of Biostatistics

- □ Intervalos de confiança
 - $CI = ESTATÍSTICO \pm (z_{\alpha/2})(SE_{ESTATÍSTICO})$
 - Estima a diferença entre as médias do grupo
 - $\pi_1 \pi_2$
 - Observações Binomiais
 - Aproximação normal à binomial
 - np > 5
 - Suposições
 - $n_i p_i > 5 \text{ para } i = \{1,2\}$
 - Grupos independentes

Department of Biostatistics

- □ Intervalos de confiança
 - "A estimativa combinada de p fornece uma estimativa melhor para se usar no erro padrão..."
 (p 145)
 n₁ p₁ + n₂ p₂

$$145) p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$$

Erro padrão para a diferença em proporções

$$SE_{p_1-p_2} = \sqrt{p(1-p)(\frac{1}{n_1} + \frac{1}{n_2})}$$

Department of Biostatistics

□ Teste de hipótese

- H_0 : $\pi_1 = \pi_2$ versus H_1 : $\pi_1 \neq \pi_2$
 - Testa que as proporções dos grupos são a mesma (sem diferença)
- Observações binomiais
- Aproximação normal à binomial
 - np > 5
- Suposições
 - $n_i p_i > 5$ para $i = \{1,2\}$
 - Grupos Independentes

Department of Biostatistics

- □ Teste de hipótese
 - Teste-Z

$$z = \frac{p_1 - p_2}{SE_{p_1 - p_2}}$$

onde

$$SE_{p_1-p_2} = \sqrt{p(1-p)(\frac{1}{n_1} + \frac{1}{n_2})}$$

Department of Biostatistics

- \Box Teste do qui-quadrado (χ^2)
 - Qui-quadrado de Pearson
 - Mesma conclusão como o CI anterior e teste de hipótese usando distribuição-Z
 - Teste aproximado
 - As perguntas do teste qui-quadrado respondem:
 - Há uma diferença nas proporções?
 - Há uma associação entre as variáveis?
 - As variáveis são independentes?
 - Mesmo resultado, independentemente da questão
 Questão

Department of Biostatistics

- □ Teste qui-quadrado
 - Compara o observado versus esperado
 - H₀: A,B independentes (sem associação) vs. H₁: A,B não independentes (associadas)
 - Abaixo H₀: P{A ∩ B} = P{A} x P{B}
 - Regra de multiplicação
 - Frequências esperadas geradas baseado no produto de frequências marginais
 - Se a variação entre as frequências observadas e esperadas forem maiores que a esperada por acaso, rejeite H₀

Department of Biostatistic

Variável A	Variável B		
	Sim	Não	Total
Sim	n ₁₁	n ₁₂	n ₁₊
Não	n ₂₁	n ₂₂	n ₂₊
Total	n ₊₁	n ₊₂	n

Abaixo H_0 : $P\{n_{jk}\} = P\{n_{+k}\} \times P\{n_{j+}\}$ por regra de multiplicação!

Department of Biostatistics

□ Teste qui-quadrado

A forma depende dos graus de liberdade (gl)

Chi-Square Distributions

Department of Biostatistic

- □ Teste qui-quadrado
 - Graus de liberdade (gl)
 - Dados os totais marginais, quantas células podem variar

$$\chi^2_{(df)} = \sum \frac{(O-E)^2}{E}$$

Valores mais extremos que x² são evidência contra a hipótese nula de independência!

Department of Biostatistic

Inferência sobre as Proporções

□ Teste exato de Fisher

- Não paramétrico
- Contagem de células pequenas esperadas
- Muito entediante e computacionalmente caro
 - Rapidamente se transforma difícil demais para computadores calcularem

Estimativa de tamanho de amostra

- □ Compara as médias de dois grupos
 - Qual é α?
 - Qual é β?
 - Potência = $1-\beta$
 - O que é uma diferença clinicamente importante?
 - μ_1 $\mu_2 = \Delta$
 - Quais são boas estimativas de σ_1 e σ_2 ?
 - Considere $\sigma_1 = \sigma_2$
- \square n = $2(z_{\alpha}-z_{\beta})^2(\sigma/\Delta)^2$ (n = tamanho de <u>cada</u> grupo)
 - Sempre arredonde para o maior número inteiro!

Estimativa de tamanho de amostra

- □ Compara as proporções de dois grupos
 - Qual é α?
 - Qual é β?
 - Potência = 1-β
 - O que é uma diferença clinicamente importante?
 - π_1 $\pi_2 = \Delta$
 - σ é função de π
 - determinando π também determina σ
- $n = \{z_{\alpha}[2\pi_{1}(1-\pi_{1})]^{1/2} z_{\beta}[\pi_{1}(1-\pi_{1})+\pi_{2}(1-\pi_{2})]^{1/2}\}^{2}(1/\Delta)^{2}$ (n = tamanho de <u>cada</u> grupo)
 - Sempre arredonde para o maior número inteiro!

Parte II - Esboço

□ Relações entre variáveis/medidas

- Comparando variáveis contínuas
 - Correlação
 - Abordgem paramétrica
 - Abordgem não paramétrica
 - Regressão linear
 - Regressão múltipla
- Comparando variáveis dicotômicas
 - Razão das chances
 - Razão do risco

Inferência sobre Relações Entre Variáveis

- □ Resultado Numérico e preditor
 - Correlação
 - Coeficiente de correlação de Pearson
 - Coeficiente de correlação de Spearman
 - Regressão Linear
 - Regressão simples
 - Regressão dos mínimos quadrados ordinários (OLS)
- □ Resultado Categórico e preditor
 - Razão de Risco
 - Razão das chances

Coeficiente de correlação de

Pearson

- □ Parâmetro de população = ρ
- □ Estatística da amostra= r
 - Medida da relação <u>linear</u>
 - Sem unidade, [-1,1]
- □ Pode deixar passar uma relação nãolinear forte, portanto SEMPRE PLOT SEUS DADOS!

Coeficiente de correlação de

Pearson

- □ Suposições
 - $(X,Y) \sim BVN(\mu,\Sigma)$
 - X ~ $N(\mu_X, \sigma_X^2)$ e Y ~ $N(\mu_Y, \sigma_Y^2)$ **NEM** sempre implicam que (X,Y) ~ $BVN(\mu, \Sigma)$
 - (X_i, Y_i) são independentes
- Quando as suposições não são satisfeitas, os dados podem ser transformados ou métodos não paramétricos podem ser utilizados

Coeficiente de correlação de Pearson

□ Teste de hipótese

- H_0 : $\rho = 0$
 - Distribuição simétrica
 - Distribuição-T
- H_0 : $\rho = \rho_0 \ (\neq 0)$
 - Distribuição assimétrica pois ponto de corte além [-1,1]
 - Transformação-Z de Fisher
- □ r significante ⇒ regressão linear significante
- □ Intervalos de confiança (o mesmo que acima)

Department of Biostatistics

Coeficiente de Determinação

□ Coeficiente de Determinação= r²

- **•** [0,1]
- [Coeficiente de Determinação]% da variação em uma medida pode ser explicada por se conhecer o valor da outra medida

Coeficiente de Correlação Ordinal de Spearman

- Parâmetro de população= ρ_S
- □ Estatística da amostra= r_S
- Útil quando as observações são assimétricas ou contém valores atípicos (outliers)
- Observações de posto
- Coeficiente de correlação de Pearson quando nenhum dos postos estiverem empatados
- Medida de relação <u>linear</u> de <u>postos</u>

Coeficiente de Correlação Ordinal de Spearman

- □ Teste de hipótese e intervalos de confiança
 - Ordena os dados
 - Utiliza métodos para o coeficiente de correlação de Pearson
- Mais complexo onde há empates

THE UNIVERSITY OF KANSAS Medical Center Department of Biostatistics

Regressão Linear

- "...o objetivo é predizer o valor de uma característica a partir do conhecimento de outra..." (p 194)
- □ Relação Linear
- □ Regressão simples
 - Um preditor
- □ Regressão Múltipla
 - Mais de um preditor

THE UNIVERSITY OF KANSAS Medical Center Department of Biostatistics

Regressão Linear

- □ Equação de regressão da população
 - $Y = \beta_0 + \beta_1 X + \varepsilon$
- □ Equação de regressão da amostra
 - Y' = a + bX
 - Y' é o valor previsto de Y
 - Frequentemente chamado de Y-hat
 - a é uma estimativa de β_0 (y-intercepção)
 - Valor previsto de Y quando X = 0
 - b é uma estimativa de β₁ (declive)
 - Mudança prevista em Y para cada mudança de 1-unidade em X
 - e = Y Y'
 - residual

- Mínimos Quadrados Ordinários (OLS)
 - Minimiza a soma do quadrado da distância vertical entre Y e Y' (observado e previsto)

$$\min\left[\sum_{i}(Y_{i}-\hat{Y_{i}})^{2}\right]$$

 □ Relação entre OLS e o coeficiente de correlação de Pearson

□ Suposições

- Equação de regressão da população subjacente
 - $Y = \beta_0 + \beta_1 X + \varepsilon$
- a + bX é uma estimativa de β₀ + β₁X
- $\varepsilon \sim N(0, \sigma^2)$
 - Homocedasticidade
- Relação Linear
- Y_i independente de $Y_j \forall i \neq j$

THE UNIVERSITY OF KANSAS Medical Center Department of Biostatistics

Regressão Linear

"Regressão é um procedimento robusto e pode ser utilizado em muitas situações nas quais as suposições não são atendidas, desde que as medições sejam bastante confiáveis e que o modelo de regressão correto seja utilizado." (p 197)

- □ Teste de hipótese
 - Testa <u>ambos</u> β_0 e β_1 separadamente
 - Ambos irão variar
 - As Fórmulas são diferentes para cada um
 - Utilize SE da regressão
 - H_0 : $\beta_0 = 0$
 - H_0 : $\beta_1 = 0$
 - Teste-T
- Intervalos de confiança utilizam as mesmas estimativas do SE como exibido acima

Regressão Linear

- Média prevista = observação prevista
- □ CI para a média ≠ PI para a observação
 - Maior variação quando se prevê uma única observação (vs. uma média)
 - Menor variação (para ambas médias e observações previstas) quando X próximo de diagrama de X-barra

THE UNIVERSITY OF KANSAS Medical Center Department of Biostatistics

Regressão Linear

- □ Comparando-se duas linhas de regressão
 - "... a abordagem preferida é a utilização de modelos de regressão para mais de uma variável independente – um procedimento chamado de regressão múltipla – para responder a essas perguntas." (p 201)
 - "O modelo mais simples utilizando o menor número possível de variáveis explicativas para explicar os fenômenos adequadamente – é então selecionado." (p 201)

□ Residuais

- e = Y Y'
- Plot deve ser espalhado aleatoriamente ao redor de e = 0
 - r_{ex} deve igualar a 0
 - Sem padrões

Regressão Múltipla

- □ Regressão Linear com mais de uma variável preditora
 - R² é a quantidade da variação em Y descrita conhecendo X₁, X₂,...
 - Quando apenas um preditor, R² = r²
 - r é a medida da relação <u>independente</u> da escala
 - r_{YY'} = r_{YX} pois Y' = a + bX é apenas um reescalonamento de X

Razão de Chances

Exposição	Doença		
	Sim	Não	
Sim	а	b	
Não	С	d	

$$RC = \frac{ad}{bc}$$

Razão de Chances

- □ Intervalo de confiança para RC
 - Encontrar SE de In[OR]

$$\ln\left(SE[RC]\right) = \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

Então

$$CI_{(1-\alpha)\%} = \exp\left(\ln\left[RC\right] \pm z_{\alpha/2} \cdot \ln\left(SE\left[RC\right]\right)\right)$$

 Teste de hipótese feito em ln[RC] e utiliza SE de ln[RC] para teste-t

Razão de Risco

Exposição	Doença		
	Sim	Não	
Sim	а	b	
Não	С	d	

$$RR = \frac{\frac{a}{a+b}}{\frac{c}{c+d}}$$

Razão de Risco

- Intervalo de confiança para RR
 - Encontre SE de In[RR]

$$\ln\left(SE[RR]\right) = \sqrt{\frac{1 - \left[\frac{a}{(a+b)}\right]}{a} + \frac{1 - \left[\frac{c}{(c+d)}\right]}{d}}$$

Então

$$CI_{(1-\alpha)\%} = \exp\left(\ln[RR] \pm z_{\alpha/2} \cdot \ln(SE[RR])\right)$$

 Teste de hipótese feito em In[RR] e usa SE de In[RR] para teste-t

Referência

□ Dawson B and Trapp RG (2001). *Basic* & *Clinical Biostatistics*, 3rd ed., McGraw Hill: New York