# **Lecture 7 Activity Results for Test Student**

| Score for this attempt: <b>1</b> out of 1 |
|-------------------------------------------|
| Submitted Jan 30 at 3:33pm                |

This attempt took 2 minutes.

| <b>^</b> |     | 4: - |   | 4 |
|----------|-----|------|---|---|
| QΙ       | ues | τιο  | n | 1 |

/ 1 pts

Consider the two differential equations below.

(DE1): 
$$x^2u_{xx} + xu_x + u = 0$$
;

(DE2): 
$$x^2u_{xx} + xu_x + x^2u = 0$$
.

Which statement below is true?

- Both (DE1) and (DE2) are Cauchy-Euler Eqs.
- Both (DE1) and (DE2) are Bessel Eqs.

Correct!

- (DE1) is Cauchy-Euler; (DE2) is Bessel.
- O (DE1) is Bessel; (DE2) is Cauchy-Euler.
- O (DE1) is Cauchy-Euler; (DE2) is neither Cauchy-Euler nor Bessel.

Additional Comments:

0

Which of the following is a Bessel equation? Select all that apply.

$$\square \ x^2u_{xx}+xu_x+4x^2u=0$$

Correct!

$$\ \, \square \,\, x^2 u_{xx} + x u_x + (4-x^2) u = 0$$

Correct!

Additional Comments:

# **Question 3**

0 / 0 pts

For  $\alpha \ge 0$ , consider

 $J_{\alpha}(x)$ : the Bessel function of the first kind of order  $\alpha$ ;

 $Y_{lpha}(x)$ : the Bessel function of the second kind of order lpha.

Which statement below is true?



# Question 4 0 /0 pts Consider $J_0(x)$ , the Bessel function of the first kind of order 0. Which statement below is true? $J_0(x)$ has no zero for $x \in (0, +\infty)$ . $J_0(x)$ has exactly one zero for $x \in (0, +\infty)$ .

- $\bigcirc \ J_0(x)$  has zeros for  $x\in (0,\pi^2)$  but no zero for  $x\in (\pi^2,+\infty)$ .



0 / 0 pts

For  $\alpha \ge 0$ , consider

 $J_{lpha}(x)$ : the Bessel function of the first kind of order lpha;

 $Y_{lpha}(x)$ : the Bessel function of the second kind of order lpha.

Let u(x) be a general solution of  $x^2u_{xx}+xu_x+(x^2-lpha^2)u=0.$  What can we say about u(x)?

$$\bigcirc \ u(x) = c_1 J_{\alpha}(x)$$

$$\bigcirc \ u(x) = c_2 Y_{lpha}(x)$$

Correct!

$$\quad \ \ \, \bullet \quad u(x) = c_1 J_{\alpha}(x) + c_2 Y_{\alpha}(x)$$

igcup There is not enough information to write out a general solution u(x).

$$\bigcirc \ u(x) = c_1 J_lpha(x) + c_2 x J_lpha(x)$$



0

/ 0 pts

Consider the two differential equations below

(DE1): 
$$x^2u_{xx} + xu_x + \lambda x^2u = 0$$
 for  $\lambda > 0$ ;

(DE2): 
$$x^2u_{xx} + xu_x + x^2u = 0$$
.

(DE2) is the Bessel Eq of order 0.

Which statement below is true?

It is impossible to transform (DE1) to (DE2).

### Correct!

• We can transform (DE1) to (DE2) via a linear scaling  $z = \beta x$ .

We can transform (DE1) to (DE2) only via a non-linear scaling  $z=(\beta x)^\eta$ .

O We can transform (DE1) to (DE2) via a shifting  $z = x - x_0$ .

We can transform (DE1) to (DE2) only via a non-linear scaling  $z=e^{\beta x}$ .



0

/ 0 pts

Consider the two differential equations below

(DE1): 
$$x^2u_{xx}+xu_x+\lambda xu=0$$
 for  $\lambda>0$ ;

(DE2): 
$$x^2 u_{xx} + x u_x + x^2 u = 0$$
.

(DE2) is the Bessel Eq of order 0.

Which statement below is true?

- It is impossible to transform (DE1) to (DE2).
- O We can transform (DE1) to (DE2) via a linear scaling  $z = \beta x$ .

### Correct!



We can transform (DE1) to (DE2) only via a non-linear scaling  $z=(\beta x)^{\eta}$ .

O We can transform (DE1) to (DE2) via a shifting  $z=x-x_0$ .

We can transform (DE1) to (DE2) only via a non-linear scaling  $z=e^{\beta x}$ .



0 / 0 pts

Two pictures below show, respectively, the plots of  $\{J_0(x),J_1(x),J_2(x)\}$ , and the plots of  $\{Y_0(x),Y_1(x),Y_2(x)\}$ .





Which one is which?

|          | $igcup$ Picture 1 shows the plots of $\{J_0(x),J_1(x),J_2(x)\}.$      |
|----------|-----------------------------------------------------------------------|
| Correct! | $lacksquare$ Picture 2 shows the plots of $\{J_0(x),J_1(x),J_2(x)\}.$ |
|          | Additional Comments:                                                  |

You can manually adjust the score by adding positive or negative points to this box.

Final Score: 1 out of 1

Update Scores