UNIVERSITY COLLEGE LONDON DEPARTMENT OF SPACE AND CLIMATE PHYSICS

Candidate Code: HYXC3

Programme Title: MSc Scientific Computing

Module Code: SPCE0038

Module Title: Machine Learning with Big Data

End Assessment

In submitting this coursework, I assert that the work presented is entirely my own except where properly marked and cited.

Date of dd/mm/yy Submission:

1(a)

TODO

1(b)

TODO

1(c)

TODO

1(d)

TODO

1(e)

TODO

1(f)

TODO

1(g)

2(a)

TODO

2(b)

TODO

2(c)

TODO

2(d)

TODO

2(e)

TODO

2(f)

TODO

2(g)

TODO

2(h)

3(a)

TODO

3(b)

TODO

3(c)

TODO

3(d)

TODO

3(e)

TODO

3(f)

4(a)

TODO

4(b)

TODO

4(c)

TODO

4(d)

TODO

4(e)

TODO

4(f)

```
# Fetch batch function:
   def fetch_batch(epoch, batch_index, batch_size):
       return X_batch, y_batch
   # Set up computational graph:
   import tensorflow as tf
   reset_graph ()
10
11
   n_{epochs} = 1000
   learning_rate = 0.01
13
14
   X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
15
   y = tf.constant(housing_data_target, dtype=tf.float32, name="y")
17
   theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0), name="theta")
   y_pred = tf .matmul(X, theta , name="predictions")
   error = y_pred - y
   mse = tf.reduce_mean(tf.square(error), name="mse")
   optimizer = tf.train.GradientDescentOptimizer(learning_rate)
   training_op = optimizer.minimize(mse)
24
   # Execute:
26
27
   init = tf.global_variables_initializer()
29
   with
30
   tf.Session() as sess:
31
       sess.run(init)
       for epoch in range(n_epochs):
33
            if epoch % 100 == 0:
34
                print("Epoch", epoch, "MSE=", mse.eval()) sess.run(training_op)
       best_theta = theta.eval()
```

Listing 1: Question 4f

5(a)

TODO

5(b)

TODO

5(c)

TODO

5(d)

TODO

5(e)

TODO

5(f)