AICTE-MARGDARSHAN sponsored workshop on Computational Intelligence for Multimedia

T. T. Mirnalinee

T. T. Mirnalinee

Prof/CSE

SSN College of Engineering mirnalineett@ssn.edu.in

### Supervised Learning

**Data**: (x, y) x is data, y is label

**Goal**: Learn a *function* to map x -> y

**Examples**: Classification, regression, object detection, semantic segmentation, image captioning, etc.



Classification

### **Unsupervised Learning**

**Data**: x
Just data, no labels!

**Goal**: Learn some underlying hidden *structure* of the data

**Examples**: Clustering, dimensionality reduction, feature learning, density estimation, etc.



Problems involving an **agent** interacting with an **environment**, which provides numeric **reward** signals

**Goal**: Learn how to take actions in order to maximize reward



#### At each step t the agent:

Executes action A<sub>t</sub>
Receives observation O<sub>t</sub>

Receives scalar reward R<sub>t</sub>

#### The environment:

Receives action A<sub>t</sub>

Emits observation Ot+1

Emits scalar reward R<sub>t+1</sub>

- Learning from interaction with an environment to achieve some long-term goal that is related to the state of the environment
- The goal is defined by reward signal, which must be maximised
- Agent must be able to partially/fully sense the environment state and take actions to influence the environment state
- The state is typically described with a feature-vector

# **Terminologies**

- A reward R<sub>+</sub> is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximise cumulative reward
- Policy: agent's behaviour function
- Value function: how good is each state and/or action
- Model: agent's representation of the environment

# Policy

- A policy is the agent's behaviour
- It is a map from state to action
  - Deterministic policy
  - Stochastic policy

## Value function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to select between actions

## Model

- A model predicts what the environment will do next
- P predicts the next state
- R- predicts the next (immediate) reward

## Agent

- Value based
- Policy based
- Exploration finds more information about the environment
- Exploitation exploits known information to maximise reward
- It is usually important to explore as well as exploit

# Agents algorithm

## Repeat:

- ◆ s ← sensed state
- If s is terminal then exit
- $\bullet$  a  $\leftarrow \Pi(s)$
- Perform a

# Types of Reinforcement learning

- Search-based: evolution directly on a policy
  - E.g. optimization algorithm –GA, PSO

- Model-based: build a model of the environment
  - Then you can use dynamic programming
  - Memory-intensive learning method

Model-free: learn a policy without any model
 Tomporal difference methods (TD)

Agent

**Environment** 









#### Cart-Pole Problem



**Objective**: Balance a pole on top of a movable cart

**State:** angle, angular speed, position, horizontal velocity

**Action:** horizontal force applied on the cart

**Reward:** 1 at each time step if the pole is upright

#### Robot Locomotion



**Objective**: Make the robot move forward

**State:** Angle and position of the joints

**Action:** Torques applied on joints

Reward: 1 at each time step upright +

forward movement

#### Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the world

#### Defined by: $(\mathcal{S},\mathcal{A},\mathcal{R},\mathbb{P},\gamma)$

 $\mathcal{S}$ : set of possible states

A : set of possible actions

 $\mathcal{R}$ : distribution of reward given (state, action) pair

p: transition probability i.e. distribution over next state given (state, action) pair

 $\gamma$ : discount factor

#### Markov Decision Process

- At time step t=0, environment samples initial state so ~ p(so)
- Then, for t=0 until done:
  - Agent selects action at
  - Environment samples reward rt ~ R( . | st, at)
  - Environment samples next state st+1 ~ P( . | st, at)
  - Agent receives reward rt and next state st+1

- A policy is a function from S to A that specifies what action to take in each state
- **Objective**: find policy \* that maximizes cumulative discounted reward:

### A simple MDP: Grid World





Set a negative "reward" for each transition (e.g. r = -1)

**Objective:** reach one of terminal states (greyed out) in least number of actions

### A simple MDP: Grid World



Random Policy



**Optimal Policy** 

#### The optimal policy \*

We want to find optimal policy \* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

#### The optimal policy \*

We want to find optimal policy \* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)? Maximize the **expected sum of rewards!** 

Formally: 
$$\pi^* = \arg\max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | \pi\right]$$
 with  $s_0 \sim p(s_0), a_t \sim \pi(\cdot|s_t), s_{t+1} \sim p(\cdot|s_t, a_t)$ 

#### Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) so, ao, ro, s1, a1, r1, ...

#### Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) so, ao, ro, s1, a1, r1, ...

#### How good is a state?

The **value function** at state s, is the expected cumulative reward from following the policy from state s:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi
ight]$$

#### Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) so, ao, ro, s1, a1, r1, ...

#### How good is a state?

The **value function** at state s, is the expected cumulative reward from following the policy from state s:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi
ight]$$

#### How good is a state-action pair?

The **Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

#### Bellman equation

The optimal Q-value function Q\* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s,a) = \max_{\pi} \mathbb{E} \left[ \sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi 
ight]$$

#### Bellman equation

The optimal Q-value function Q\* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

Q\* satisfies the following **Bellman equation**:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[ r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

if the optimal state-action values for the next time-step Q\*(s',a') are known, then the optimal strategy is to take the action that maximizes the expected value of  $r + \gamma Q^*(s',a')$ 

#### Bellman equation

The optimal Q-value function Q\* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

Q\* satisfies the following **Bellman equation**:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[ r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

if the optimal state-action values for the next time-step Q\*(s',a') are known, then the optimal strategy is to take the action that maximizes the expected value of  $r + \gamma Q^*(s',a')$ 

The optimal policy \* corresponds to taking the best action in any state as specified by Q\*

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s, a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s', a') | s, a\right]$$

Qi will converge to Q\* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s, a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s', a') | s, a\right]$$

Qi will converge to Q\* as i -> infinity

What's the problem with this?

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s, a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s', a') | s, a\right]$$

Qi will converge to Q\* as i -> infinity

#### What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state pixels, computationally infeasible to compute for entire state space!

**Value iteration** algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s, a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s', a') | s, a\right]$$

Qi will converge to Q\* as i -> infinity

#### What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

## Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

$$Q(s, a; \theta) \approx Q^*(s, a)$$

Q-learning: Use a function approximator to estimate the action-value function

$$Q(s, a; \theta) \approx Q^*(s, a)$$

If the function approximator is a deep neural network => **deep q-learning**!

Q-learning: Use a function approximator to estimate the action-value function

$$Q(s,a;\theta) pprox Q^*(s,a)$$
 function parameters (weights)

If the function approximator is a deep neural network => **deep q-learning**!

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[ r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Remember: want to find a Q-function that satisfies the Bellman Equation:  $Q^*(s,a) = \mathbb{E}_{s'\sim\mathcal{E}} \left| r + \gamma \max_{a'} Q^*(s',a') \right| s,a$ 

#### **Forward Pass**

where 
$$y_i = \mathbb{E}_{s' \sim \mathcal{E}}\left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a\right]$$

Remember: want to find a Q-function that satisfies the Bellman Equation:  $Q^*(s,a) = \mathbb{E}_{s'\sim\mathcal{E}} \left| r + \gamma \max_{a'} Q^*(s',a') \right| s,a$ 

#### **Forward Pass**

where 
$$y_i = \mathbb{E}_{s' \sim \mathcal{E}}\left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a\right]$$

#### **Backward Pass**

Gradient update (with respect to Q-function parameters  $\theta$ ):

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}_{s, a \sim \rho(\cdot); s' \sim \mathcal{E}} \left[ r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i) \right]$$

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[ r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

#### **Forward Pass**

where 
$$y_i = \mathbb{E}_{s' \sim \mathcal{E}}\left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a\right]$$

Iteratively try to make the Q-value close to the target value (y<sub>i</sub>) it should have, if Q-function corresponds to optimal Q\* (and optimal policy \*)

#### **Backward Pass**

Gradient update (with respect to Q-function parameters  $\theta$ ):

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}_{s, a \sim \rho(\cdot); s' \sim \mathcal{E}} \left[ r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i) \right]$$

- Current state: s
- Current action: a

- Transition function:  $\delta(s, a) = s'$
- Reward function:  $r(s, a) \in R$
- Policy  $\pi(s) = a$

# The Q-function

- Q(s, a) estimates the discounted cumulative reward
  - Starting in state s
  - Taking action a
  - Following the current policy thereafter
- Suppose we have the optimal Q-function
  - What's the optimal policy in state s?
  - The action argmax<sub>b</sub> Q(s, b)
- But we don't have the optimal Q-function at first
  - Let's act as if we do

# Q-Learning: The Procedure



 $\delta(s_2, a_2) = s_2$ 

 $\delta(s_1, a_1) = s_2$ 

# Q-Learning: Updates

The basic update equation

$$Q(s,a) \longleftarrow r(s,a) + \max_{b} Q(s',b)$$

With a discount factor to give later rewards less impact

$$Q(s,a) \longleftarrow r(s,a) + \gamma \max_b Q(s',b)$$

With a learning rate for non-deterministic worlds

$$Q(s,a) \longleftarrow [1-\alpha]Q(s,a) + \alpha[r(s,a) + \gamma \max_b Q(s',b)]$$

# **Q-Learning**

```
    foreach state s
        foreach action a
        Q(s,a)=0
        s=currentstate
        do forever
        a = select an action
        do action a
        r = reward from doing a
        t = resulting state from doing a
        Q(s,a) = (1 - α) Q(s,a) + α (r + γ Q(t))
        s = t
```

- The *learning coefficient*,  $\alpha$ , determines how quickly our estimates are updated
- Normally,  $\alpha$  is set to a small positive constant less than 1

## What about very large state-spaces?

- Value-Based: Learning a model and utility function
  - Can be difficult to learn good models for large complex environments (e.g. learning a DBN representation)
  - But if we can learn a model then learning utility function is simpler than learning Q(s,a)
  - Also can reuse the model for "related problems"
- Q-learning: Learning Q-function
  - Simpler to implement since we don't need to worry about representing and learning a model
  - But Q-functions can be substantially more complex than utility functions (must somehow make up for not having the model)

# **Exploration versus Exploitation**

- We want a reinforcement learning agent to earn lots of reward
- The agent must prefer past actions that have been found to be effective at producing reward
- The agent must exploit what it already knows to obtain reward
- The agent must select untested actions to discover reward-producing actions
- The agent must explore actions to make better action selections in the future

Exploitation: Maximize its reward

Exploration: Maximize long-term

well being.

# Summary

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters
- Agent's actions act the subsequent data it receives

- Goal is to learn utility values of states and
- an optimal mapping from states to actions.
- Direct Utility Estimation ignores
- dependencies among states → we must
  follow Bellman Equations.
- Temporal difference updates values to
- match those of successor states.
- Active reinforcement learning learns the
- optimal mapping from states to actions