Derivadas Parciais e Continuidade

Luis Alberto D'Afonseca

Cálculo de Funções de Várias Variáveis - I

Conteúdo

Derivadas Parciais e Continuidade

Lista Mínima

Derivada e Continuidade em Uma Variável

No cálculo de funções de uma variável se uma função é derivável em um ponto x_0 ela é contínua nesse ponto

Derivadas Parciais e Continuidade

Se as derivadas parciais de f existem em (x_0, y_0)

não podemos dizer nada sobre a continuidade de f no ponto

Exemplo 1

Considerando a função
$$f(x,y) = \begin{cases} 0, & xy \neq 0 \\ 1, & xy = 0 \end{cases}$$

- 1. Mostre que suas derivadas parciais existem na origem
- 2. Prove que f não é contínua na origem

Exemplo 1

1 – Queremos mostrar as derivadas parciais de $f(x, y) = \begin{cases} 0, & xy \neq 0 \\ 1, & xy = 0 \end{cases}$ existem na origem (0,0)

Fazendo y = 0, temos xy = 0, portanto f(x, 0) = 1 e

$$\left. \frac{\partial f}{\partial x} \right|_{y=0} = \frac{\partial}{\partial x} \mathbf{1} = 0$$

Fazendo x=0, temos xy=0, portanto $f(x,0)=1\,$ e

$$\left. \frac{\partial f}{\partial y} \right|_{x=0} = \frac{\partial}{\partial y} \mathbf{1} = 0$$

Exemplo 1

2 – Queremos mostrar que f não é contínua na origem

Verificando a condição 2: existência do limite na origem

Considerando a reta y = 0, com $x \neq 0$

$$f(x,y)\Big|_{y=0} = f(x,0) = 1$$

Considerando a reta y = x, com $x \neq 0$

$$f(x,y)\bigg|_{y=x} = f(x,x) = 0$$

Como f tende a valores diferentes por caminhos diferentes para a origem, o limite não existe

Derivada e Continuidade

Conteúdo

Derivadas Parciais e Continuidade

Lista Mínima

Lista Mínima

Cálculo Vol. 2 do Thomas 12^a ed. – Seção 14.3

1. Estudar o texto da seção

Atenção: A prova é baseada no livro, não nas apresentações