UNIVERSIDADE FEDERAL DO AMAZONAS

DISCIPLINA: LABORATÓRIO DE SISTEMA DE CONTROLE

Alunos: Bruno Carvalho de Farias – 20410273 Carlos Bruno O. Lopes– 20510297 Delcio Canuto Junior – 20410290 Thiago de Souza Fernandes – 20510289

Thiago da Silva Moraes - 20210484

UNIVERSIDADE FEDERAL DO AMAZONAS

DISCIPLINA: LABORATÓRIO DE SISTEMA DE CONTROLE ENSAIO 08: ESTABILIDADE OBJETIVOS:

- 1. Entender os conceitos de estabilidade e determinar limites de estabilidade
- 2. Conhecer as ferramentas rlocus e rltool
- 3. Observar os efeitos de pólos e zeros no lugar das raízes.
- 4. Caracterizar o comportamento dinâmico de sistemas de 2<u>a</u> ordem
- 5. Determinar o overshoot, tempo de acomodação, tempo de atraso e tempo de subida.

Formulação do Problema:

Investigar o comportamento transitório de um filtro ativo passa-baixa de $2\underline{a}$ ordem Butterworth .

Os modelos de estados e função de transferência são dados abaixo.

Potenciômetro P1 = $50 \text{ K}\Omega$

Potenciômetro P2 = $10 \text{ K}\Omega$

$$C_1 = C_2 = 250 \text{ nF}$$

 $R_2 = 60 \text{ K}\Omega$

$$\dot{x}(t) = \begin{bmatrix}
-\frac{1}{R_1 C_1} - \frac{1}{R_2 C_1} & \left(1 + \frac{R_4}{R_3}\right) \frac{1}{R_1 C_1} + \frac{R_4}{R_3} \frac{1}{R_2 C_1} \\
-\frac{1}{R_2 C_2} & \frac{R_4}{R_3} \frac{1}{R_2 C_2}
\end{bmatrix} x(t) + \begin{bmatrix}
-\frac{1}{R_1 C_1} \\
0
\end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 0 & 1 + \frac{R_4}{R_3} \end{bmatrix}$$

$$\frac{1}{R_1 C_1 R_2 C_2}$$

$$s^2 + \left(\frac{1}{R_1 C_1} + \frac{1}{R_2 C_1} - \frac{R_4}{R_3} \cdot \frac{1}{R_2 C_2}\right) s + \frac{1}{R_1 C_1 R_2 C_2}$$

- 1) Considere que no filtro acima $K = \frac{R_4}{R_3}$ e ajuste P1 de modo que $R_1 = 40 \text{ K}\Omega R_2 = 60 \text{ K}\Omega$.
 - a) Simule para uma entrada degrau unitário para os valores de K dados da tabela e determine os demais valores da tabela.

K	Overshoot	Tempo de subida	Tempo de acomodação	Taxa de amortecimento	Freqüência amortecida	Wn	Ganho DC
0							
0.5							
1,0							
2,5							

b) Ajuste P2 de modo que $R_3 = R_4 = 5 \text{ K}\Omega$.

R_1 $K\Omega$	Overshoot	Tempo de subida	Tempo de acomodação	Taxa de amortecimento	Freqüência amortecida	Wn	Ganho DC
0							
5							
15							
40							

Qual a influência de K no comportamento do sistema?

b) Para que valores de K o sistema tem pólos complexos? Use o rlocus para determinar o lugar das raízes do polinômio característico.

c) Para que valores de K o sistema é estável? Simule para o K limite. Qual o tipo de comportamento.

Qual a influência de R₁ no comportamento do sistema?

- d) Para que valores de R₁ o sistema tem pólos complexos? Use o rlocus para determinar o lugar das raízes do polinômio característico.
- 2) Um sistema de controle é mostrado abaixo . A função de transferência e o controlador são dados por: $G(s) = \frac{1}{s^2}$ e $C(s) = K \frac{s+a}{s+6}$ Os pontos de possíveis bifurcações do root locus são dados por $2s^2 + (3a+6)s + 12a = 0$
 - a) Simule o sistema usando a ferramenta rltool. Defina a planta e o controlador com a =
 12 como funções de transferências no matlab. No rltool importe a planta para G e o controlador para C. Desloque o zero do controlador em direção a origem.
 - b) Que tipos de mudanças qualitativas ocorrem no root locus?. Quais os valores que ocasionam as mudanças qualitativas? Mostre os gráficos obtidos.
 - c) Quais os valores de K e a de modo que o sistema em malha fechada tem um pólo triplo.
 - d) Posicione o zero do controlador em torno de -10. Acrescente mais um zero em torno de -2. Qual o efeito causado. Retire o zero e acrescente um pólo em torno de -2 qual o efeito causado.
 - e) Faça conclusões sobre os efeitos da adição de pólos e zeros.
- 3) Um sistema de controle é mostrado abaixo.

As funções de transferências da planta e do controlador são dadas por:

$$G(s) = \frac{1}{(s+3)(s+6)(s^2+6s+13)}$$
 e $C(s) = K$

- a) Trace o root locus no matlab
- b) Para que valores de K o sistema é estável?
- c) Qual o K para $\zeta = 0.707$? Qual o erro ao degrau para este valor de K?
- d) Qual o erro ao degrau e a para K=5 e K=150

RESULTADOS

1° Questão

a)

K	Overshoot	Tempo de subida	Tempo acomodacao	Tx de amort zeta	Freq amort	Wn	Ganho DC
0	10%	0.05	0.19	1,0206	81,1377	81,6497	-0,5
0.5	aprox 10%	Aprox 0.05s	aprox 0.3s	0.8165	47,1405	81,6497	0,6001
1	aprox 20%	Aprox 0.05s	aprox 0.11	0,6124	64,5497	81,6497	0,6668
2.5	senóide	senóide	senóide	0	81,6497	81,6497	0.3227

R1	Oversh	Tempo de	Tempo	Tx de amort			Ganho
ΚΩ	oot	subida	acomodacao	zeta	Freq amort	Wn	DC
0	-	-	-	0	-	inf	-
					+3.2660e+	230,94	
5	0	aprox 0	aprox 0	1,7321	002i	01	0,6666
	aprox					1.333.3	
15	10%	0	0.05	1	0	33	0,6667
	aprox					81,649	
40	20%	0	0,1	0.6124	64,5497	7	0,6665

b) K está mexendo nos pólos e no ganho do sistema. Quando aumento o valor de K, a minha saída em resposta a um degrau unitário vai ficando com o Ovs maior de modo que quando o valor de K=2,5, a saída do sistema fica uma senoidal.

Simulando com o valor de k=0, o sistema terá raízes complexas para o ganho maior que 0.0417.

Simulando com o valor de k=0.5, o sistema terá raízes complexas.

Simulando com o valor de k=1, o sistema terá raízes complexas.

c) Para K=2.5, o sistema terá sempre raízes reais imaginárias puras, ou seja o sistema estará em oscilação constante.

Para K>2.5 o sistema será instável conforme podemos ver no RL a seguir:

d) O valor de R1 está alterando o lugar dos pólos confomr podemos constatar nos RL's a seguir.

Para R1 = 0 não existe TF.

Para R1 = 5k, os pólos com com o ganho 0, são reais e estáveis, verificando no rl, vemos que quando o ganho = 1, temos raízes reais iguais, indicando que o sistema tem amortecimento crítico.

Para R1=15k, com ganho =0, temos pólos reais e iguais conforme podemos constatar a seguir:

Para R1=40k, temos pólos complexos conforme podemos ver a seguir.

2° Questão

a)

Código no matlab:

% zero da funcao de transferencia do controlador

a = 12;

% Controlador C(s)

N1 = [1 a];

D1 = [1 6];

C1 = tf(N1,D1);

% Planta G(s)

N = [1];

 $D = [1\ 0\ 0];$

G = tf(N,D);

rltool(G,C1);

Grafico 1 – root lócus com a = 12 (zero da função C(s))

Grafico 2-root lócus com a (zero da função C(s)) próximo da origem

b) Pelo gráfico 1 podemos observa que sistema é instável com a=12 (zero função) para qualquer valor de K, pois o curva que corta o pólo dominante esta a direita do eixo x no ponto zero e corta ζ .

O gráfico 2 mostra que ao aproximarmos o zero – 'a' – do controlador em direção a origem a curva muda de eixo em direção a margem esquerda de origem e torna-se estável para algum valores de K – ganho.

Grafico 2 – root lócus com a (zero da função C(s)) próximo da origem

c) Os valores de K e a para que o sistema em malha fechada tenha pólos triplos são:

$$0.588 \le a \le 0.655$$

$$0.0324 \le K \le 1.3$$

Grafico 3 – root lócus com pólos triplos

 $Grafico\ 4-root\ l\'ocus\ com\ p\'olos\ triplos$

d) Com o acréscimo de um zero a mais. A curva do pólos muda vindo para uma região mais estável do sistema, ou seja, com o acréscimo do zero em -2 os valores para K estável são ampliados.

Com o acréscimo de um pólo a mais e retirando o zero posto no anteriormente. A curva do pólos muda vindo acrescentando regiões de estabilidade e instabilidade sendo que os pólos dominantes de encontram em regiões de instabilidade do sistema.

e) A adição de pólos e zeros ao sistema tem efeito de acrescentar e retirar regiões estáveis e instáveis do sistema. Eles mudam o comportamento da curva – logo do sistema como um todo.

3° Questão

a) Trace o root lócus no Matlab

```
>> N=[1];
>> D=[1 10 40 70 39];
>> G=tf(N,D);
>> rlocus(G)
```


b) Para que valores de K o sistema é estável?

Utilizando o Matlab

 $Através \ do \ root \ locus \ que \ o \ limite \ de \ estabilidade \ se \ d\'a \ quando \ o \ ganho \ (gain) \ K=190. \ Logo \ o \ sistema \ \'e \ estável \ para \ 0< K<190.$

c) Qual o K para $\zeta = 0.707$? Qual o erro ao degrau para este valor de K?

Aplicando no Matlab

>> N=[1];

>> D=[1 10 40 70 39];

```
>> G=tf(N,D);
```

- >> rlocus(G)
- >>sgrid(0.707,0)

Erro ao degrau para K=19,5:

$$e_{ss} = \frac{1}{1 + K_p}$$

$$K_p = \lim \frac{K}{(s+1)(s+3)(s^2 + 6s + 13)}; K = 19,5$$

$$K_p = \frac{19,5}{1+3+13} : K = 1,147$$

$$e_{ss} = \frac{1}{1+1,147} : e_{ss} = 0,465$$

O valor de K para $\zeta = 0,707$, de acordo com o gráfico do root lócus acima é de 19,5. O erro ao degrau para este valor então é 0,465.

d) Qual o erro ao degrau e a para K=5 e K=150

$$e_{ss} = \frac{1}{1 + K_p}$$

$$K_p = \lim \frac{K}{(s+1)(s+3)(s^2 + 6s + 13)}; K = 5$$

$$K_p = \frac{5}{1 + 3 + 13} :: K = 0,2941$$

$$e_{ss} = \frac{1}{1 + 0.2941} :: e_{ss} = 0,7727$$

O erro para K=5 é de 0,7727.

$$e_{ss} = \frac{1}{1 + K_p}$$

$$K_p = \frac{K}{(s+1)(s+3)(s^2 + 6s + 13)}; K = 150$$

$$K_p = \frac{150}{1 + 3 + 13} : K = 8,8235$$

$$e_{ss} = \frac{1}{1 + 0,2941} : e_{ss} = 0,1017$$

O erro fazendo K=150 é 0,1017.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.