95-6

Let T be the linear operator on \mathbb{R}^2 defined by $T(x_1,x_2)=(-x_2,x_1)$.

- (a) What is the matrix of T in the standard ordered basis for \mathbb{R}^2 ?
- (b) What is the matrix of T in the ordered basis $\mathcal{B}=\{\alpha_1,\alpha_2\}$ where $\alpha_1=(1,2)$ and $\alpha_2=(1,-1)$?
- (c) Prove that for every real number c the operator T-cI is invertible.
- (d) Prove that if ${\mathcal B}$ is any ordered basis for ${\mathbb R}^2$ and $[T]_{\mathcal B}=A$, then $A_{12}A_{21}
 eq 0$.

Solution: (a)
$$T=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.
 (b) $T\alpha_1=(-2,1)=-\frac{1}{3}(1,2)-\frac{5}{3}(1,-1)$ and $T\alpha_2=(1,1)=\frac{2}{3}(1,2)+\frac{1}{3}(1,-1)$ so $[T]_{\mathcal{B}}=\begin{pmatrix} -1/3 & -5/3 \\ 2/3 & 1/3 \end{pmatrix}$.

- (c) If T has an eigenvalue c and a corresponding eigenvector v=(x,y), then Tv=(-y,x)=c(x,y) so $y=-cx, x=cy=-c^2x$ leading to contradiction.
- (d) Otherwise suppose $A_{12}=0$, then $T-A_{22}I$ is invertible since its matrix under ${\cal B}$ has a zero column, leading to contradiction.

95-7

Let $T \in \mathcal{L}(\mathbb{R}^3)$ defined by $T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3)$.

- (a) What is the matrix of T in the standard ordered basis for \mathbb{R}^3 ?
- (b) What is the matrix of T in the ordered basis $\{\alpha_1,\alpha_2,\alpha_3\}$ where $\alpha_1=(1,0,1)$, $\alpha_2=(-1,2,1)$ and $\alpha_3=(2,1,1)$?
- (c) Prove that T is invertible and give a rule for T^{-1} like the one which defines T.

Solution: (a)
$$T = \begin{pmatrix} 3 & 0 & 1 \\ -2 & 1 & 0 \\ -1 & 2 & 4 \end{pmatrix}$$
.

(b)
$$T\alpha_1=(4,-2,3)=\frac{17}{4}\alpha_1-\frac{3}{4}\alpha_2-\frac{1}{2}\alpha_3$$
, $T\alpha_2=(-2,4,9)=\frac{35}{4}\alpha_1+\frac{15}{4}\alpha_2-\frac{7}{2}\alpha_3$, $T\alpha_3=(7,-3,4)=\frac{11}{2}\alpha_1-\frac{3}{2}\alpha_2$, so the matrix of T is

$$\begin{pmatrix} \frac{17}{4} & -\frac{3}{4} & -\frac{1}{2} \\ \frac{35}{4} & \frac{15}{4} & -\frac{7}{2} \\ \frac{11}{2} & -\frac{3}{2} & 0 \end{pmatrix}$$

(c)
$$T^{-1} = \begin{pmatrix} 4/9 & 2/9 & -1/9 \\ 8/9 & 13/9 & -2/9 \\ -1/3 & 2/3 & -1/3 \end{pmatrix}$$
 so

$$T^{-1}(x_1,x_2,x_3) = igg(rac{4}{9}x_1 + rac{2}{9}x_2 - rac{1}{9}x_3, rac{8}{9}x_1 + rac{13}{9}x_2 - rac{2}{9}x_3, -rac{1}{3}x_1 + rac{2}{3}x_2 - rac{1}{3}x_3igg).$$

96-8

Let $\theta \in \mathbb{R}$, prove that the following are similar over \mathbb{C} :

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$$

Proof: Consider $T\in\mathcal{L}(\mathbb{C}^2):(z,w)\mapsto(z\cos\theta-w\sin\theta,z\sin\theta+w\cos\theta)$, then for $\alpha_1=(1,-i)$ and $\alpha_2=(1,i)$, $T\alpha_1=e^{i\theta}\alpha_1$ and $T\alpha_2=e^{-i\theta}\alpha_2$, and α_1,α_2 form a base of \mathbb{C}^2 , so they are similar matrices.

96-9

Let V be a finite dimensional vector space over the field F and let $S,T\in\mathcal{L}(V)$. We ask: When do there exist ordered bases \mathcal{B},\mathcal{B}' for V such that $[S]_{\mathcal{B}}=[T]_{\mathcal{B}'}$? Prove that such bases exist iff there is an invertible linear operator $U\in\mathcal{L}(V)$ such that $T=USU^{-1}$.

Proof: $\exists \mathcal{B}, \mathcal{B}'$ such that $[S]_{\mathcal{B}} = [T]_{\mathcal{B}'} \iff \exists \mathcal{B}$ such that $[S]_{\mathcal{B}} = [T]_{E}$ where $E = \{e_1, \cdots, e_n\} \iff \exists P \in GL(n, F)$ such that $P[S]_{E}P^{-1} = [T]_{E} \iff \exists U = L_P \in \mathcal{L}(V)$ such that $T = USU^{-1}$.

96-10

We have seen that $T\in\mathcal{L}(\mathbb{R}^2)$ defined by $T(x_1,x_2)=(x_1,0)$ is represented in the standard ordered basis by the matrix

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

This operator satisfies $T^2=T$. Prove that if S is a linear operator on \mathbb{R}^2 such that $S^2=S$, then S=0 or S=I or there is an ordered basis \mathcal{B} such that $[S]_{\mathcal{B}}=A$.

Proof: If the minimal polynomial P(x)=x then S=0, if P(x)=x-1 then S=I. Otherwise $P(x)=x^2-x$. Then there exists $v\neq 0$ such that (S-I)v=0, and $u\neq 0$ such that Su=0. So Sv=v and Su=0. Clearly u,v are linearly independent, so $[S]_{\mathcal{B}}=A$ under the base $\mathcal{B}=\{u,v\}$.

96-12

Let V be a n-dimensional vector space over the field F, and let $\mathcal{B}=\{\alpha_1,\cdots,\alpha_n\}$ be an ordered basis for V

- (a) According to Theorem1, there is a unique $T \in \mathcal{L}(V)$ such that $T\alpha_j = \alpha_{j+1}$, $j=1,\cdots,n-1$, $T\alpha_n = 0$. What is the matrix of T in the ordered basis \mathcal{B} ?
- (b) Prove that $T^n = 0$ but $T^{n-1} \neq 0$.
- (c) Let S be any linear operator on V such that $S^n=0$ but $S^{n-1}\neq 0$. Prove that there is an ordered basis \mathcal{B}' for V such that the matrix of S in the ordered basis \mathcal{B}' is the matrix A of part (a).
- (d) Prove that if $M,N\in F^{n imes n}$ such that $M^n=N^n=0$ but $M^{n-1},N^{n-1}
 eq 0$, then $M\sim N$.
- Proof: (a) $[T]_{\mathcal{B}}=(\delta_{i+1,j})_{1\leqslant i,j\leqslant n}$. (b) Note that for k< n, $T^k(x_1,\cdots,x_n)=(0,\cdots,0,x_1,\cdots,x_{n-k})$ under the base \mathcal{B} , so $T^n=0$ but $T^{n-1}(1,0,\cdots,0)=(0,\cdots,0,1)\neq 0$.
- (c) Since $S^n=0$ but $S^{n-1}\neq 0$, the minimal polynomial of S is $P(x)=x^n$, so take v such that $S^{n-1}v\neq 0$, then $v,Sv,\cdots,S^{n-1}v$ are linearly independent, forming a base of V (if $c_0v+c_1Sv+\cdots+c_{n-1}S^{n-1}v=0$ then $c_0S^{n-1}v=0$ so $c_0=0$ etc). Under this basis, the matrix of S is A.
- (d) Such M, N are the matrices of T under different bases, so they are similar.

97-13

Let V,W be finite dimensional vector spaces over the field F and let $T\in\mathcal{L}(V,W)$. If $\mathcal{B}=\{\alpha_1,\cdots,\alpha_n\}$ and $\mathcal{B}'=\{\beta_1,\cdots,\beta_m\}$ are ordered bases for V,W, define the linear transformations $E^{p,q}$ as in the proof of Theorem5: $E^{p,q}(\alpha_i)=\delta_{iq}\beta_p$. Then $E^{p,q}$ form a basis for $\mathcal{L}(V,W)$, and so

$$T=\sum_{p=1}^m\sum_{q=1}^n A_{pq}E^{p,q}$$

for certain scalars A_{pq} . Show that the matrix A with entries $A(p,q)=A_{pq}$ is precisely the matrix $[T]_{\mathcal{B},\mathcal{B}'}$. Solution: For any $v=\sum_{i=1}^n c_i\alpha_i$,

$$T(v) = \sum_{p=1}^m \sum_{q=1}^n A_{pq} E^{p,q} \left(\sum_{i=1}^n c_i lpha_i
ight) = \sum_{p=1}^m \sum_{q=1}^n A_{pq} c_q eta_p = \sum_{p=1}^m \left(\sum_{q=1}^n A_{pq} c_q
ight) eta_p$$

Hence A(p,q) is the matrix $[T]_{\mathcal{B},\mathcal{B}'}$.