M6: Machine Learning Miniproject

Léo Besançon & Larissa Geiser

2024-05-16

1. Data loading and description

```
data <- read.csv('ObesityDataSet raw and data sinthetic.csv')</pre>
dim(data)
## [1] 2111
              17
sum(is.na(data)) #no missing value
## [1] 0
head(data)
     Gender Age Height Weight family history with overweight FAVC FCVC NCP
##
## 1 Female
                   1.62
                          64.0
                                                                         2
             21
                                                                             3
                                                            yes
                                                                  no
## 2 Female
             21
                   1.52
                          56.0
                                                                         3
                                                                             3
                                                            yes
                                                                  no
## 3
       Male
             23
                   1.80
                          77.0
                                                                         2
                                                                             3
                                                            yes
                                                                  no
                                                                             3
## 4
       Male
             27
                   1.80
                          87.0
                                                                  no
                                                                         3
                                                             no
       Male
                                                                         2
                                                                             1
## 5
             22
                   1.78
                          89.8
                                                             no
                                                                  no
## 6
       Male
                                                                         2
             29
                   1.62
                          53.0
                                                             no
                                                                 yes
##
          CAEC SMOKE CH20 SCC FAF TUE
                                              CALC
                                                                   MTRANS
## 1 Sometimes
                                                 no Public Transportation
                   no
                         2
                            no
                                 0
                                      1
## 2 Sometimes
                                 3
                                      O Sometimes Public Transportation
                 yes
                         3 yes
                                      1 Frequently Public Transportation
## 3 Sometimes
                         2
                                 2
                            no
                   no
## 4 Sometimes
                   no
                         2
                            no
                                 2
                                      0 Frequently
                                                                  Walking
## 5 Sometimes
                         2
                                 0
                                      0 Sometimes Public Transportation
                   no
                            no
## 6 Sometimes
                         2
                                         Sometimes
                                                               Automobile
                   no
                            no
                                 0
##
              NObeyesdad
## 1
           Normal_Weight
## 2
           Normal Weight
## 3
           Normal Weight
      Overweight Level I
## 5 Overweight Level II
           Normal Weight
```

The data comes from more than 2'000 individuals. It consists of an evaluation of 16 physical and behavioral attributes. The last column indicates the weight class of the individual.

1.1. Data harmonization

To be able to use this dataset with the different algorithms, we need to modify the variables encoded with characters into numbers.

```
################### DATA HARMONIZATION
# gender : 0 = female, 1 = male
data$Gender[data$Gender == 'Female'] <- 0</pre>
data$Gender[data$Gender == 'Male'] <- 1</pre>
data$Gender <- as.numeric(data$Gender)</pre>
# family history with overweight
data$family_history_with_overweight[data$family_history_with_overweight ==
'no'] <- 0
data$family history with overweight[data$family history with overweight ==
'yes'] <- 1
data$family history with overweight <-
as.numeric(data$family history with overweight)
# FAVC (frequency of highly caloric food)
data$FAVC[data$FAVC == 'no'] <- 0</pre>
data$FAVC[data$FAVC == 'yes'] <- 1</pre>
data$FAVC <- as.numeric(data$FAVC)</pre>
# CAEC (snacking between meals)
data$CAEC[data$CAEC == 'no'] <- 0</pre>
data$CAEC[data$CAEC == 'Sometimes'] <- 1</pre>
data$CAEC[data$CAEC == 'Frequently'] <- 2</pre>
data$CAEC[data$CAEC == 'Always'] <- 3</pre>
data$CAEC <- as.numeric(data$CAEC)</pre>
# smoke
data$SMOKE[data$SMOKE == 'no'] <- 0</pre>
data$SMOKE[data$SMOKE == 'yes'] <- 1</pre>
data$SMOKE <- as.numeric(data$SMOKE)</pre>
# SCC (calories monitoring)
data$SCC[data$SCC == 'no'] <- 0</pre>
data$SCC[data$SCC == 'yes'] <- 1</pre>
data$SCC <- as.numeric(data$SMOKE)</pre>
# CALC (alcohol consumption)
data$CALC[data$CALC == 'no'] <- 0</pre>
data$CALC[data$CALC == 'Sometimes'] <- 1</pre>
data$CALC[data$CALC == 'Frequently'] <- 2</pre>
data$CALC[data$CALC == 'Always'] <- 3</pre>
data$CALC <- as.numeric(data$CALC)</pre>
```

```
# MTRANS (mode of transportation)
data$MTRANS <- as.factor(data$MTRANS) # better to encode with numbers ? i</pre>
don't think so
# NObeyesdad (obesity)
data$NObeyesdad <- as.factor(data$NObeyesdad)</pre>
colnames(data)[colnames(data) == 'NObeyesdad'] <- 'Obesity'</pre>
# results
head(data)
     Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP
CAEC
## 1
          0
             21
                  1.62
                          64.0
                                                                        2
                                                                            3
1
## 2
             21
                  1.52
                          56.0
                                                              1
                                                                   0
                                                                        3
                                                                            3
1
## 3
             23
                  1.80
                         77.0
                                                              1
                                                                   0
                                                                        2
                                                                            3
          1
1
## 4
             27
                  1.80
                          87.0
                                                                   0
                                                                        3
                                                                            3
          1
1
## 5
             22
                  1.78
                          89.8
                                                                   0
                                                                        2
                                                                            1
1
                                                                        2
## 6
          1 29
                  1.62
                                                              0
                                                                   1
                                                                            3
                          53.0
1
     SMOKE CH20 SCC FAF TUE CALC
##
                                                  MTRANS
                                                                      Obesity
## 1
         0
              2
                  0
                       0
                           1
                                0 Public_Transportation
                                                                Normal_Weight
                                1 Public Transportation
                                                                Normal Weight
## 2
         1
              3
                  1
                       3
                           0
## 3
         0
              2
                  0
                       2
                           1
                                2 Public_Transportation
                                                                Normal Weight
         0
              2
                                                 Walking Overweight Level I
## 4
              2
## 5
         0
                  0
                       0
                           0
                                1 Public Transportation Overweight Level II
              2
                           0
                                              Automobile
                                                               Normal Weight
## 6
```

2. 1st technique: k-means clustering

We think that K-means clustering is a good technique for this dataset. We already know that we have 7 categories for obesity, so it is interesting to see if the technique is able to separate the data into the right clusters.

2.1. Data visualisation

We use the 'psych' package to visualize the data

The best

segregating variables seem to be 'weight' and 'height'

2.2. K-means algorithm

We use the k-means algorithm from the 'stats' package.

The clusters aren't in the right order. We modify the cluster "names" to then measure accuracy:

The clusers are now in the right order. We measure the accuracy of the technique with a confusion matrix :

```
############### K-MEANS CONFUSION MATRIX
cm <- table(label=data$Obesity, cluster=ordered_labels)</pre>
cm ; cat( sum(diag(cm)) / sum(cm) )
##
                         cluster
## label
                                 2
                                     3
                                         4
                                                  6
     Insufficient Weight 208
                                     0
                                                      0
##
                                64
                                         0
                                              0
                                                  0
##
     Normal Weight
                           57 141
                                    73
                                        16
                                                      0
     Obesity_Type_I
##
                            0
                                 0
                                    28 156 146
                                                 21
##
     Obesity_Type_II
                            0
                                 0
                                     0
                                         1
                                             61 215
                                                     20
##
     Obesity_Type_III
                            0
                                0
                                     0
                                         0
                                             81 110 133
     Overweight_Level_I
                            2
##
                                53 144
                                        91
                                              0
     Overweight_Level_II
##
                                22
                                    59 183
                                             26
                                                      0
## 0.2174325
```

The technique is not very accurate, only 21% of the clustering is right.

3. 2nd technique: Decision tree

3.1. Separate train and test sets

The tree is too big, we need to truncate it. We adjusted the cp value until we had 7 categories.

DECISION TREE PRUNING

plotcp(h)


```
h_pruned <- prune(h, cp=0.03)

fancyRpartPlot(h_pruned, caption=NULL, type=2)</pre>
```


The second tree looks better, and we have indeed our 7 categories. We can now measure its accuracy:

For such a dataset and mini-project, an error of '{r} error*100'% is not that bad.