- **18.** In $\triangle ABC$, AB = AC = 13 and BC = 10.
 - a. Find the length of the altitude from A.
 - **b.** Find the measures of the three angles of $\triangle ABC$.
 - c. Find the length of the altitude from C.
- 19. In $\triangle ABC$, $m \angle B = m \angle C = 72$ and BC = 10.
 - a. Find AB and AC.
 - **b.** Find the length of the bisector of $\angle A$ to \overline{BC} .
- **20.** In $\triangle PAL$, $m \angle A = 90$, $m \angle L = 24$ and median \overline{AM} is 6 cm long. Find PA.
- 21. The diagonals of rectangle ABCD are 18 cm long and intersect in a 34° angle. Find the length and width of the rectangle.
- 22. Points A, B, and C are three consecutive vertices of a regular decagon whose sides are 16 cm long. How long is diagonal \overline{AC} ?
- 23. Points A, B, C, and \overrightarrow{D} are consecutive vertices of a regular decagon with sides 20 cm long. \overrightarrow{AB} and \overrightarrow{DC} are drawn and intersect at X. Find BX.

For Exercises 24-26 write proofs in paragraph form.

C 24. Prove that in any triangle with acute angles A and B, $\frac{a}{\sin A} = \frac{b}{\sin B}.$ (*Hint*: Draw a perpendicular from the third vertex to \overline{AB} . Label it p.)

- 25. Prove: If R is any acute angle, $(\sin R)^2 + (\cos R)^2 = 1$. (Hint: From any point on one side of $\angle R$, draw a perpendicular to the other side.)
- 26. A rectangular card is 10 cm wide. The card is folded so that the vertex D falls at point D' on \overline{AB} as shown. Crease \overline{CE} with length k makes an n° angle with \overline{CD} . Prove: $k = \frac{10}{\sin{(2n)^{\circ}}\cos{n^{\circ}}}$

Challenge

The two blocks of wood have the same size and shape. It is possible to cut a hole in one block in such a way that you can pass the other block completely through the hole. How?

