Very large set axioms over Constructive set theories

Hanul Jeon

Cornell University

2022-04-29

Cornell Logic Seminar

This work is joint work with Richard Matthews (Leeds)

Table of Contents

- 1 Review: Large cardinals
- 2 Constructive set theories
- 3 Main results

Hanul Jeon

Measurable cardinals

- Defined in terms of ultrafilters
- Scott (1961) associated measurable cardinals with <u>elementary</u> embeddings:

Definition

Review: Large cardinals

•0000000000000000

Let $M \subseteq V$ be a transitive class.

 j: V → M is an elementary embedding if j respects all first-order formulas, that is,

$$V \models \phi(\vec{a}) \iff M \models \phi(j(\vec{a})).$$

■ The <u>critical point</u> crit j of an elementary embedding $j: V \to M$ is the least ordinal moved by j.

Theorem (Scott 1961)

A cardinal κ is measurable if and only if it is a critical point of some elementary embedding $j: V \rightarrow M$.

Theorem (Scott 1961)

Measurable cardinals do not exist in L.

Climbing to the large cardinal hierarchy

Generalizations of measurable cardinals were extensively studied by various people. (For example, Solovay-Reinhardt-Kanamori 1978).

One of these examples include:

Definition

A cardinal κ is extendible if for each α we can find an elementary embedding $j: V_{\kappa+\alpha} \to V_{\zeta}$ for some ζ with crit $j = \kappa$.

Definition (Rank-into-rank embeddings)

A cardinal κ is

- **11** I_3 if κ is a critical point of $j: V_{\lambda} \to V_{\lambda}$,
- **2** I_2 if κ is a critical point of $j: V \to M$ such that $V_{\lambda} \subseteq M$,
- **3** I_1 if κ is a critical point of $j: V_{\lambda+1} \to V_{\lambda+1}$,
- **4** I_0 if κ is a critical point of $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$,

where $\lambda = \sup_{n < \omega} j^n(\kappa)$ is the first ordinal above κ fixed by j.

Reinhardt's dream

The attempt to find a stronger notion of large cardinal bore the notion now known as a Reinhardt cardinal.

Definition

A Reinhardt cardinal is a critical point of an elementary embedding $i: V \to V$.

Flying too close to the sun – Kunen Inconsistency

Kunen (1971) proved that Reinhardt's notion cannot be realized over ZFC:

Theorem (Kunen Inconsistency theorem, 1971)

Work over ZFC, there is no Reinhardt cardinals. In fact, there is no elementary embedding $j\colon V_{\lambda+2}\to V_{\lambda+2}$

It is still open whether a Reinhardt cardinal is compatible with ZF, that is, in the choiceless context.

Night Flying: Choiceless large cardinals

Some difficulties in working without the axiom of choice:

- Not all cardinal correspond to an ordinal.
- Not all successor cardinal are regular.
- Constructions and proofs become harder.
- Needs to consider more before applying the known results.

Super Reinhardtness

Definition

A cardinal κ is

- Super Reinhardt if for each ordinal α we can find an elementary embedding $j \colon V \to V$ such that $\operatorname{crit} j = \kappa$ and $j(\kappa) > \alpha$.
- A-super Reinhardt for a class A if for each ordinal α we can find an elementary embedding for A-formulas $j \colon V \to V$ such that $\text{crit } j = \kappa$ and $j(\kappa) > \alpha$.

Super Reinhardtness was defined by Woodin in 1983, and extensively studied in the mid-2010s in the context of Woodin's HOD-dichotomy.

Total Reinhardtness

Definition

- We call $\underline{\operatorname{Ord}}$ is total Reinhardt if for every class A we can find a cardinal κ which is A-super Reinhardt.
- κ is total Reinhardt if $(V_{\kappa}, V_{\kappa+1}) \models \text{Ord}$ is total Reinhardt.

Review: Large cardinals

000000000000000000

The following two theories are equiconsistent over ZF + DC:

- 1 For some ordinal λ , there is an elementary embedding $V_{\lambda+2} \rightarrow V_{\lambda+2}$
- $2 \text{ ZFC} + I_0$.

Theorem (Goldberg)

Work over ZF + DC, if there is an elementary embedding $j: V_{\lambda+3} \to V_{\lambda+3}$, then we have the consistency of ZFC + I_0 .

The Wholeness axiom

Before defining the Wholeness axiom, let us analyze the definition of a Reinhardt cardinal:

Definition

ZFC with a Reinhardt cardinal is a theory comprising:

- Language: \in and a unary function symbol j,
- Axioms: Usual axioms of ZFC, with the elementarity of j, and Separation and Replacement for j-formulas.

Definition (Corazza 2000)

The Wholeness Axiom WA is obtained by restricting Replacement to formulas with no j.

We can further weaken WA as follows:

Definition

The theory Basic Theory of Elementary Embedding (BTEE) is claim that $j \colon V \to V$ is a elementary embedding. BTEE does not subsume Separation and Replacement for j-formulas.

That is, we obtain BTEE by dropping Separation for j-formulas from WA.

We can strengthen BTEE by adding TI_j , the transfinite induction for j-formulas.

Theorem (Corazza)

Work over ZFC,

Review: Large cardinals

000000000000000000

- I $I_3 \implies Con(ZFC + WA)$ and $WA \implies$ a proper class of extendibles.
- 2 $0^{\sharp} \implies L \models \mathsf{BTEE}$ and $\mathsf{BTEE} \implies \mathsf{n}$ -ineffable cardinal for each (meta-)natural n .

(A cardinal κ is *n*-effable if for every $f: [\kappa]^n \to 2$ there is a stationary S subset of κ such that $f \upharpoonright [S]^n$ is constant.)

Weakening set theory: the theory ZFC⁻

Definition

ZFC⁻ is obtained by dropping Powerset and replacing Replacement to Collection from ZFC.

Collection is the following statement:

$$\forall a [\forall x \in a \exists y \phi(x, y) \rightarrow \exists b \forall x \in a \exists y \in b \phi(x, y)].$$

- Collection is stronger than Replacement, and they are equivalent if we assume Powerset.
- ZFC-, a mere ZFC without Powerset, is ill-behaved.
 (Gitman-Hamkins-Johnstone 2016)

Hanul Jeon

Reinhardt embeddings over ZFC⁻

Work over ZFC_j^- , the theory obtained by adding j and allowing j to the axiom schemes of ZFC^- . The following result shows a Reinhardt embedding is compatible with ZFC^- :

Theorem (Matthews)

ZFC proves the followings are equivalent:

- There is an elementary embedding $j: H_{\lambda^+} \to H_{\lambda^+}$, and
- There is an elementary embedding $k: V_{\lambda+1} \to V_{\lambda+1}$.

Especially, if λ is I_1 , then (H_{λ^+}, j) is a model of ZFC_j^- with a non-trivial elementary embedding $j: V \to V$ and $V_{crit\,j}$ exists.

Review: Large cardinals

However, a Reinhardt embedding cannot be cofinal:

Definition

An elementary embedding $j: V \to V$ is cofinal if for each x we can find y such that $x \in i(y)$.

Theorem (Matthews)

Work in ZFC_i^- , if $j \colon V \to V$ is a non-trivial Σ_0 -elementary embedding and V_{crit} exists, then j cannot be cofinal.

IZF and CZF: A brief history

- (H. Friedman, 1973) Intuitionistic ZF (IZF) with the double-negation translation between IZF and ZF.
- Various attempts to formalize the foundation for Bishop-styled constructive mathematics.
- Myhill's constructive set theory CST.
- (Aczel, 1978) Constructive ZF and its type-theoretic interpretation.

Axioms of ZF

Definition

1 Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$.

Constructive set theories

00000000000

- **2** Pairing: $\{a, b\}$ exists.
- **3** Union: $\bigcup a$ exists.
- 4 Separation: $\{x \in a \mid \phi(x)\}$ exists,
- **5** Replacement: $\{F(x) \mid x \in a\}$ exists if F is a class function.
- 6 Power set: $\mathcal{P}(a) = \{x \mid x \subseteq a\}$ exists.
- **7** Regularity: Every set has a ∈-minimal element.
- 8 Infinity: \mathbb{N} exists.

Axioms of IZF

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$.
- **2** Pairing: $\{a, b\}$ exists.
- 3 Union: $\bigcup a$ exists.
- 4 Separation: $\{x \in a \mid \phi(x)\}$ exists.
- **5** Collection: if $\forall x \in a \exists y \phi(x, y)$, then there is b such that $\forall x \in a \exists y \in b \phi(x, y)$
- 6 Power set: $\mathcal{P}(a) = \{x \mid x \subseteq a\}$ exists.
- Set Induction: $\forall a[[\forall x \in a\phi(x)] \rightarrow \phi(a)] \rightarrow \forall a\phi(a)$
- 8 Infinity: N exists.

Axioms of CZF

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$.
- 2 Pairing: $\{a, b\}$ exists.
- 3 Union: $\bigcup a$ exists.
- **4** Bounded Separation: $\{x \in a \mid \phi(x)\}$ exists if ϕ is bounded.
- 5 Strong Collection: if $\forall x \in a \exists y \phi(x, y)$, then there is b such that $\forall x \in a \exists y \in b \phi(x, y)$ and $\forall y \in b \exists x \in a \phi(x, y)$.
- **6** Subset Collection: There is a full subset of mv(a, b).
- Set Induction: $\forall a[[\forall x \in a\phi(x)] \rightarrow \phi(a)] \rightarrow \forall a\phi(a)$
- 8 Infinity: \mathbb{N} exists.

Hanul Jeon

Differences between IZF and CZF

I7F

- Full separation
- 2 Powerset
- 3 Impredicative
- 4 Equiconsistent with ZF

and more...

CZF

- Bounded separation
- Subset collection
- 3 Allows type-theoretic interpretation
- 4 Far more weaker than ZF

Large set axioms

- Ordinals over constructive set theories are not well-behaved. (e.g., every ordinal is well-ordered \Longrightarrow Excluded Middle for Δ_0 -formulas, $\alpha \subseteq \beta$ does not imply $\alpha \in \beta$ or $\alpha = \beta$.)
- We define large cardinal properties over constructive set theories by mimicking the structural properties of H_{κ} and V_{κ} .

Multi-valued functions

The notion of <u>multi-valued function</u> provides a syntactic sugar for Collection.

Definition

Let A and B be classes. We call a relation R of domain A and codomain B a multi-valued function from A to B. (Notation:

 $R: A \Rightarrow B$)

If $R: A \Rightarrow B$ and $R^{-1}: A \Rightarrow B$, we write $R: A \Leftrightarrow B$, and we call B a subimage of R.

Multi-valued functions replace functions in CZF-context.

Definition (Collection, restatement)

If $R: a \rightrightarrows V$ is a first-order definable class multi-valued function with parameters, then we can find a set codomain b of R. (That is, $R: a \rightrightarrows b$.)

Definition (Strong Collection, restatement)

If $R: a \rightrightarrows V$ is a first-order definable class multi-valued function with parameters, then we can find a set subimage b of R. (That is, $R: a \rightleftarrows b$.)

Definition (Subset Collection, equivalent formulation)

For given sets a, b, we can find a set c such that if $r: a \Rightarrow b$, then c contains a subimage of r. (i.e., there is $d \in c$ such that $r: a \Leftrightarrow d$.)

Hanul Jeon

Defining large sets

With some pain, we can prove

Lemma (ZFC)

A cardinal κ is regular if and only if for $a \in H_{\kappa}$ and $f : a \to H_{\kappa}$, we have $\text{Im } f \in H_{\kappa}$.

By mimicking the above result, we have

Definition

A transitive set K is regular if $a \in K$ and $r: a \Longrightarrow K$, then we can find some subimage $b \in K$ of r (that is, $r: a \leftrightarrows b$.)

Similarly, we can see

Lemma (ZFC)

A cardinal κ is inaccessible if and only if κ is regular and H_{κ} satisfies:

- **11** $\omega \in H_{\kappa}$, H_{κ} is closed under union and intersection, and
- 2 if $a, b \in H_{\kappa}$, then $c := \{ \operatorname{Im} f \mid f : a \to b \} \in H_{\kappa}$.

Definition

A set K is inaccessible if K is regular and

- **11** $\omega \in K$, K is closed under union and intersection, and
- 2 if $a, b \in K$, then we can find $c \in K$ such that we can always find a subimage of $r: a \Rightarrow b, r \in K$ from c.

Hanul Jeon

Consistency hierarchy

Large sets and elementary embeddings

Let us consider elementary embeddings over CZF:

Definition

Let $j \colon V \to M$ be an elementary embedding. A set K is a <u>critical point</u> of j if K is the 'least' set lifted by j in the sense that j(x) = x for all $x \in K$ and $K \in j(K)$.

Definition

A set K is <u>critical</u> if K is inaccessible and a critical point of an elementary embedding $j: V \to M$.

Question: the consistency strength of CZF with a critical cardinal.

Two scenarios

Hanul Jeon

Cornell University

A Lower bound

Theorem (J., Matthews, CZF)

Let K be a critical point of a Σ_0 -elementary embedding j: $V \to M$ such that K satisfies Δ_0 -separation. Then $K \models \mathsf{IZF}$.

(Note: the above theorem does not require Separation, Strong Collection or Set Induction for *i*-formulas.)

$\mathsf{Theorem}$

CZF with a critical set proves the consistency of ZFC + BTEE

Reinhardt embeddings

Definition

An inaccessible set K is a Reinhardt set if K is a critical point of $i: V \to V$.

$\mathsf{Theorem}$

CZF with a Reinhardt cardinal proves Con(ZF + WA).

Go beyond the Reinhardtness

Definition

- An inaccessible set K is <u>super Reinhardt</u> if for every set a we can find an elementary embedding $j: V \to V$ such that K is a critical point of j and $a \in j(K)$.
- An inaccessible set K is K-super Reinhardt if for every set a we can find an A-elementary embedding $j: V \to V$ such that K is a critical point of j and $a \in j(K)$.

Theorem

CZF with a super Reinhardt set proves the consistency of ZF with a Reinhardt cardinal.

Main results

0000000

Definition

 \underline{V} is total Reinhardt (abbr. V is TR) is the following claim: for every class A, there is an A-super Reinhardt set K.

Theorem

CZF with 'V is TR' proves all axioms of IZF. Furthermore, the following two theories are equiconsistent:

- CZF + 'V is TR,' and
- ZF + 'V is TR.'

(The exact definition for super/total Reinhardtness require the formulation of constructive second-order set theory (Appendix)

Main results 0000000

A rough sketch for the proofs

The proof divides into 2-3 main steps:

- 1 Internal analysis of the given large set axiom. Usually produces a model of IZF + X.
- 2 Double-negation translation: Friedman-styled translation, Gambino's Heyting-valued model, or their combinations. The resulting lower bound is of the form Con(ZF + X)
- If possible, derive the consistency strength in terms of ZFC with large cardinal axioms.

Open problems

- 1 Non-trivial upper bounds for the consistency strength.
- 2 Better lower bounds. (For example, can we derive Con(ZFC + WA) from Con(ZF + WA)?)
- 3 Defining other large set notions (e.g., supercompactness and extendibles) and analyzing their consistency strength.
- 4 Questions regarding machinery in the paper, e.g., second-order constructive set theory.

Hanul Jeon

Thank you!

Constructive second-order set theory

Definition (Constructive Gödel-Bernays set theory, CGB)

CGB is defined over the two-sorted languages (sets and classes) with the following axioms:

- Axioms of CZF for sets.
- Every set is a class, and every element of a class is a set.
- Class Extensionality: two classes are equal if they have the same set members.
- Elementary Comprehension: if $\phi(x, p, C)$ is a first-order formula with a class parameter C, then there is a class A such that $A = \{x \mid \phi(x, p, C)\}$.

Definition (CGB, Continued)

Class Set Induction:

$$\forall^1 A \big[[\forall^0 x (\forall^0 y \in x (y \in A) \to x \in A)] \to \forall^0 x (x \in A) \big].$$

■ Class Strong Collection: $\forall^1 R \forall^0 a [R: a \Rightarrow V \rightarrow \exists^0 b (R: a \Leftrightarrow b)].$

Definition (Intuitionistic Gödel-Bernays set theory, IGB)

IGB is obtained by adding the following axioms to CGB:

- Axioms of IZF for sets.
- Class Separation: if A is a class and a is a set, then $A \cap a$ is a set.

Note that CGB and IGB are conservative extensions of CZF and IZF respectively.

The definition of an elementary embedding $j \colon V \to M$ requires quantifying over formulas ϕ :

$$\phi(\vec{a}) \iff \phi^{M}(j(\vec{a})).$$

We resolve this problem by introducing the infinite conjunction Λ .

Definition (CGB with the infinite connectives, CGB_{∞})

 CGB_{∞} has the same axiom with CGB, but defined over the first-order intuitionistic logic with the infinite connectives \bigwedge and \bigvee .

Super Reinhardtness and 'V is TR' is defined over CGB_{∞} . Also, CGB_{∞} is a conservative extension of CGB. (Back to $\underline{\text{main}}$.)