Galois Theory

Andrew Tran

1 Polynomial Rings

1.1 Adjuctions and their Properties

Definition 1. Let \mathscr{C} and \mathscr{D} be categories. Then an adjunction from \mathscr{C} to \mathscr{D} is a 4-tuple $(\eta, \epsilon) : F \vdash G$, where $F : \mathscr{C} \to \mathscr{D}$ and $G : \mathscr{D} \to \mathscr{C}$ are functors, $\eta : 1_{\mathscr{C}} \Rightarrow GF$ and $\epsilon : FG \Rightarrow 1_{\mathscr{D}}$ are natural transformations and the following conditions hold:

- 1. For every $X \in Ob\mathscr{C}$, $\epsilon_{FX} \circ F\eta_X = 1_{FX}$
- 2. For every $Y \in Ob\mathcal{D}$, $G\epsilon_Y \circ \eta_{GY} = 1_{GY}$

1.2 Polynomial Ring Adjoints

Definition 2. Let CRing be the category of commutative rings and ring homomorphisms and CRing* be the category of pointed commutative rings and pointed ring homomorphisms. Then the functor

$$U: CRing^* \to CRing: [\phi: (R, a) \to (S, b)] \mapsto [\phi: R \to S]$$

is called the forgetful functor.

Definition 3. A polynomial ring adjoint is a triple (Π, η, ϵ) such that

$$(\eta,\epsilon):\Pi\vdash U$$

is an adjunction from CRing to $CRing^*$.

For the remainder of these notes, let (Π, η, ϵ) be a fixed polynomial ring adjoint. We define $\pi = U\Pi$.

Definition 4. Let R be a commutative ring and let X be the distinguished point of the pointed ring ΠR . Then ΠR is referred to as the polynomial ring over R with indeterminate element X. The elements $p \in \Pi R$ are referred to as (formal, univariate) polynomials over R.

Definition 5. Let (R, a) be a pointed commutative ring. Then we define $eval_{(R,a)} = U\epsilon_{(R,a)} : \pi R \to R$ and refer to $eval_{(R,a)}$ as the evaluation homomorphism on R at a.

Definition 6. Let R be a commutative ring. Then we refer to $\eta_R : R \to \pi R$ as the R embedding homomorphism.

Theorem 1. For any pointed commutative ring (R, a), $\eta_R : R \to \pi R$ is injective and $eval_{(R,a)} : \pi R \to R$ is surjective.

Proof. Let (R, a) be a pointed commutative ring. By definition of adjunctions,

$$eval_{(R,a)} \circ \eta_R = U\epsilon_{(R,a)} \circ \eta_{U(R,a)} = 1_{U(R,a)}$$

In other words, $eval_{(R,a)}$ is a right invertible function and η_R is a left invertible function. This implies that they are surjective and injective, respectively. \Box

Definition 7. Let R be a commutative ring. We define the subring of constant polynomials over R, $\overline{R} \subseteq \pi R$, to be the subring of πR given by the image of R under the embedding homomorphism η_R .

Lemma 1. For any commutative ring R, $R \cong \overline{R}$.

Proof. It has already been proven that $\eta_R : R \to \overline{R}$ is injective and is, by construction, surjective on \overline{R} .

Theorem 2. Let R be a commutative ring. Suppose $X \in \pi R$ is the indeterminate element. Then the following are equivalent:

- 1. $X \in \overline{R}$
- 2. X is a unit in πR
- 3. R is a zero ring
- 4. πR is a zero ring

Proof. Let R be a commutative ring and $X \in \pi R$ be the indeterminate element.

1. Suppose that $X \in \overline{R}$. Let $x = \eta_R^{-1}(X) \in R$. By properties of adjunctions, the pair $(\eta_R, (\pi R, X))$ is an initial morphism from R to U. Additionally,

$$\eta_R: R \to U(\pi R, 1_{\pi R})$$

So, from the definition of initial morphisms, there is a unique pointed ring homomorphism $\phi: (\pi R, X) \to (\pi R, 1_{\pi R})$ such that

$$U\phi\circ\eta_R=\eta_R$$

Therefore,

$$X = \eta_R(x) = U\phi \circ \eta_R(x) = \phi(X) = 1_{\pi R}$$

So, X is a unit in πR .

2. Suppose that X is a unit in πR . Let $Y \in \pi R$ such that $XY = 1_{\pi R}$. Then

$$eval_{(R,0_R)}(XY) = eval_{(R,0_R)}(1_{\pi R})$$

$$eval_{(R,0_R)}(X) \cdot eval_{(R,0_R)}(Y) = 1_R$$

$$0_R \cdot eval_{(R,0_R)}(Y) = 1_R$$

$$0_R = 1_R$$

So, R is a zero ring.

3. Suppose that R is a zero ring. Then $1_R = 0_R$. Therefore,

$$\eta_R(1_R) = \eta_R(0_R)$$

Since η_R is a ring homomorphism,

$$1_{\pi R} = \eta_R(1_R) = \eta_R(0_R) = 0_{\pi R}$$

Thus, πR is a zero ring.

4. Suppose πR is a zero ring. Then $X = 0_{\pi R} = \eta_R(0_R) \in \overline{R}$.

Therefore, these conditions are all equivalent.

Theorem 3. Let R be a commutative ring. Then the indeterminate element $X \in \pi R$ is not a zero divisor in πR .