

2023.04.15 머니투데이 "26초만에 건너라니"…횡단보도에 갇혔다

2022.11.09 전북도민일보 시간 촉박한 횡단보도··· 노약자 보행위험

2021.02.25 연합뉴스 노인을 위한 횡단보도는 없다?…절반인데

평균수명 증가와 고령화로 인해 더욱 심각해질 것으로 예상

보행자 교통사고에 대한 대책, 스마트 횡단보도

스마트 횡단보도

집중조명시설이나 바닥신호등과 같은 다양한 보행안전 시설물을 통해 보행사고를 방지하는 횡단보도 서울시 스마트 횡단보도 208개소 중 단 5개소만 다양한 시설물이 구축됨

※ 208개소 중 203개소는 바닥신호등만 설치되는 등 한정적인 시설물만 구축됨

서울시 3구에 설치된 스마트 횡단보도 99개소 중 90개소가 초등학교 앞에 설치

※ 아직까지 노인의 보행안전을 위한 스마트 횡단보도는 미비한 실정

어르신들이 안심하고 건널 수 있는

안심(安心) 스마트 횡단보도

고령 보행자 교통사고 예방을 위한 표준화된 스마트 횡단보도

효율적 운용과 사고 예방 극대화를 위한

스마트 횡단보도 입지선정

공공데이터를 기반으로 서울시 내 우선 도입 지역 선정

안심(安心) 스마트 횡단보도 제안

01 보행자 검지기

횡단보도에 미리 나가있는 등 보행자의 위험행동을 감지하여 신호를 전달

주의력 감퇴 특성

느린 반응속도 특성

04 로고라이트/집중조명

해가 없는 시간대에 보행자의 경각심을 상기하고 시야를 확보

주의력 감퇴 특성

시야 축소 특성

02 녹색신호연장

횡단보도 위 잔여 보행자 감지 시 자동으로 녹색신호를 연장

느린 보행속도 특성

03 바닥신호등(발광형 점자블럭)

신호등의 신호를 바닥에 표시

◆ 시야 축소 특성

05 활주로 신호등/정지선라이트

횡단보도의 경계를 명확히 하고 운 전자의 정지선 정차를 유도

효율적 운용과 사고 예방 극대화를 위한

스마트 횡단보도 입지선정

공공데이터를 기반으로 서울시 내 우선 도입 지역 선정

고령 보행자 교통사고에 영향을 미치는 변수 선택

✔ 관련 선행 연구를 참고하여 데이터 확보

01 02 03 **※** 고령인구이용시설 도로시설물요인 200 인구요인 노인복지시설 교차로 노령화지수 지하철역 횡단보도 14세 이하 인구 100명에 대 주차장 한 65세 이상 인구의 비 버스정류소 전통시장

서울시 스마트 횡단보도 입지 선정 - 예측 모형 설계

머신러닝 기반 고령 보행자 교통사고 예측모형 설계

✓ 서울시 법정동 단위로 고령 보행자 교통사고 예측

해당 모형의 변수 중요도를 이용해 최적입지 지수산출식 개발

✔ '서울시 녹지 입지 선정 연구'의 방법론을 차용

〈최적입지 지수산출식〉

$$w_i = |w_i^*/max(w^*)| * sign(\gamma_{x_i,y})$$
 $score_n = \sum_i^I g_{ni}w_i$

서울시 스마트 횡단보도 입지 선정 - 서울시 그리드 분할

스마트 횡단보도의 최적입지 범위를 줄이기 위해 서울시를 그리드 단위로 분할

✓ 그리드 안에 들어가는 변수를 고려하여 그리드의 크기를 250제곱미터로 설정

서울시 스마트 횡단보도 입지 선정 - 그리드별 입지지수 계산

그리드 단위로 데이터셋 구축

그리드별 입지지수 계산

✔ 최적입지 지수산출식을 각 그리드에 적용하여 그리드별 입지지수 계산

최종 선정된 스마트 횡단보도 최적입지

✔ 고령 보행사고 개선의 시급성을 고려하여 입지지수가 상위 100위에 해당하는 그리드를 추출

서울시 스마트 횡단보도 입지 선정 - 선정된 입지 분석

고령 보행자 교통사고 예방을 위한 스마트 횡단보도 표준화(안심 스마트 횡단보도) & 공공 데이터를 활용하여 머신러닝 기반 서울시 스마트 횡단보도 최적입지 선정

- 01 최적입지 선정을 통해 **행정 예산의 효율적 운영**에 기여
- 02 스마트 횡단보도 최적 입지 순위를 통해 교통사고 예방 효과를 극대화

03 본 연구모델을 다양한 지역 및 다양한 계층에 확대적용 가능

기존 연구와의 독창성

- 01 고령인구이용시설 및 요인 간 가중치를 고려하여 기존의 한계점 보완
- 02 행정구역 단위가 아닌 그리드 단위로 입지 범위를 좁힘
- 03 고령 보행자 통행 특성을 고려한 **스마트 횡단보도 표준화**

미래 연구

- 01 교통사고 발생지점에 대한 좌표 데이터 확보 시 세밀한 모형 설계
- 02 법정동별 유동인구 데이터 확보 시 횡단보도 이용률 변수 반영

