Introducción a la Criptografía

Historia

Conceptos básicos

Aproximacione

Sistemas simétricos

Seguridad

Dunkanalan

Firma digital

Voto electrónico

Introducción a la Criptografía

DSIC-UPV

Contenido

Introducción a la Criptografía

- Historia
- básicos
- Aproximacione
- Sistemas simétricos Sistemas asimétricos

Seguridad

Protocolos Cifrado

Firma digital

- Historia
- 2 Conceptos básicos
- Principales aproximaciones
- Seguridad
- 6 Protocolos

Bibliografía

Introducción a la Criptografía

Historia

Concepto: básicos

Aproximacion

Sistemas simétricos Sistemas asimétricos

Seguridad

Cifrado

Firma digital

Firma digital

■ Handbook of applied crytography. A. J. Menezes, P. C. van Oorshot and S. A. Vanstone. CRC Press. 1996.

Introducción a la Criptografía

Introducción a la Criptografía

Historia

Concepto básicos

Aprovimacione

Sistemas simétricos

Seguridad

Duntanalas

C:6--4-

Firma digital

Voto electrónico

Historia

Introducción a la Criptografía

Historia

Conceptos básicos

Aproximacione
Sistemas simétricos
Sistemas asimétricos

Segurida

Cifrado Firma digital

■ Nacimiento criptografía moderna

- Segunda Guerra mundial. Proyecto ULTRA (Blentchley Park, A. Turing) con objeto de romper el sistema ENIGMA
- Coincide con lo que podría considerarse el primer computador.
- Años 60 y 70 del s.XX
 - La expansión de la computadora y las redes de comunicación proporciona un gran impulso a la criptografía
 - Investigaciones (en su mayoría) a cargo de la NSA de los EEUU
 - Sólo recientemente se desarrolla una investigación univesitaria en criptografía, con resultados publicados en revistas y congresos.
 - En este contexto nace la criptografía de clave pública (Diffie Hellman '76 y RSA '78)

Introducción a la Criptografía

Historia

basicos Aproximacione

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurid

Cifrado Firma digital En paralelo con el desarrollo de la criptografía, los gobiernos (especialmente EEUU) intentan controlar los avances en criptografía

- Debilitación deliberada (?) del algoritmo de los teléfonos GSM
- Denuncias de la existencia de una *puerta trasera* en el codigo criptgráfico de S.S.O.O. (Windows 1999)
- Las versiones que se exportan de los navegadores más extendidos incorporan seguridad débil (las conexiones seguras no lo son, no siendo consciente de ello el usuario)
- El software criptográfico en EEUU está sujeto a las mismas leyes que el armamento nuclear (misma tendencia en la UE)

Introducción a la Criptografía

Historia

- Intención gubernamental de almacenar las claves individuales de los ciudadanos, considerando ilegales las no registradas
- Echelon: red gestionada por la NSA (USA) junto con Gran Bretaña, Canadá, Australia y Nueva Zelanda para monitorizar las comunicaciones. Existencia hecha pública en 1976. Pretexto: guerra fría.

Introducción a la Criptografía

Historia

básicos

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurid

Cifrado
Firma digital

 Intención gubernamental de almacenar las claves individuales de los ciudadanos, considerando ilegales las no registradas

- Echelon: red gestionada por la NSA (USA) junto con Gran Bretaña, Canadá, Australia y Nueva Zelanda para monitorizar las comunicaciones. Existencia hecha pública en 1976. Pretexto: guerra fría.
- Enfopol: versión europea de Echelon (Existencia conocida desde 1997). Se inicia con la *Resolución sobre Interceptación Legal de las Comunicaciones (1995)*.

 Pretexto: Jucha antiterrorista

Introducción a la Criptografía

Historia

básicos

Aproximacione
Sistemas simétricos
Sistemas asimétricos

Segurida

Cifrado Firma digital

Recientemente:

- Control de la web por parte del gobierno de China (p.e. Weibo, versión twitter)
- Caso Snowden.
 - PRISM (2007). Programa de la NSA (parte de Echelon).
 Tiene como objetivo capturar los datos de compañías líderes en tecnológias de la información (Google, Apple, Microsoft o Facebook)
 - Escuchas por parte de USA de gobiernos de paises europeos
- OSEMINTI: proyecto de España, Francia e Italia. Se apoya en la ley de retención de datos europea, que regula la guarda de datos de las comunicaciones telefónicas y por Internet durante el plazo de dos años.

Introducción a la Criptografía

nistoria

Conceptos básicos

A -----

Sistemas simétricos

. . . .

Seguridad

Protocolo

CIIrado

Conceptos básicos

Conceptos básicos: Sistema criptográfico Procesos

Introducción a la Criptografía

Historia

Conceptos básicos

Λ.....

Sistemas simétricos

Seguridad

ocgundad

.

Firma digita

Conceptos básicos: Sistema criptográfico Procesos

Introducción a la Criptografía

Historia

Conceptos básicos

Aproximacione
Sistemas simétricos

Sagurida

Protocolo Cifrado

Firma digital

Conceptos básicos: Sistema criptográfico Participantes

Introducción a la Criptografía

Historia

Conceptos básicos

Aproximaciones Sistemas simétricos

Saguridae

Protocolos Cifrado

Firma digital

■ Consideraremos únicamente ataques lógicos

Criptografía Objetivos

Introducción a la Criptografía

Historia

Conceptos básicos

Aproximacione: Sistemas simétricos Sistemas asimétricos

Segurid

Protocolos Cifrado Confidencialidad : ocultar el contenido de la información salvo para aquellos autorizados. Fundamentalmente, aprovechando resultados de la teoría de números

Accesibilidad : asegurar quien, y en qué momento, puede acceder a una información

Autenticidad : el receptor de un mensaje debe poseer la certeza de su origen

Integridad : seguridad, para el receptor, de que el mensaje no ha sido modificado, así como posibilidad de detectar su posible manipulación

No repudio : Imposibilidad por parte del emisor de negar la autoría de un mensaje

Criptosistema Características deseables

Introducción a la Criptografía

Historia

Conceptos básicos

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurid

Protocolos Cifrado Firma digital Cifrado y descifrado eficiente independientemente de la clave escogida:

Dado un mensaje x y la función de cifrado e_k , la obtención de $y = e_k(x)$ ha de ser fácil

Dado un criptograma y y la función de descifrado d_k , la obtención de $x = d_k(y)$ ha de ser fácil

- 2 El sistema ha de ser fácilmente utilizable
- 3 La seguridad del sistema debe depender únicamente del secreto de las claves utilizadas y no del secreto de los algoritmos de cifrado y descifrado.

Debe asumirse que estos son conocidos por cualquier criptoanalista

Introducción a la Criptografía

Historia

Conceptos básicos

Aproximaciones

Sistemas simétricos Sistemas asimétricos

Seguridad

Cifrado

Firma digital

Solo texto cifrado : Se dispone de varios criptogramas cifrados con el mismo algoritmo. El objetivo es determinar los mensajes que generaron dichos criptogramas, o mejor, las claves utilizadas en el cifrado

Introducción a la Criptografía

Conceptos

hásicos

Solo texto cifrado : Se dispone de varios criptogramas cifrados con el mismo algoritmo. El objetivo es determinar los mensajes que generaron dichos criptogramas, o mejor, las claves utilizadas en el cifrado

Mensaje conocido : Además de disponer de varios criptogramas, se dispone de los mensajes que los originaron. Se busca obtener las claves de cifrado

Introducción a la Criptografía

Historia

Conceptos básicos

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurid

Protocolos Cifrado Firma digital Solo texto cifrado : Se dispone de varios criptogramas cifrados con el mismo algoritmo. El objetivo es determinar los mensajes que generaron dichos criptogramas, o mejor, las claves utilizadas en el cifrado

Mensaje conocido : Además de disponer de varios criptogramas, se dispone de los mensajes que los originaron. Se busca obtener las claves de cifrado

Mensaje escogido : Se dispone, para un conjunto de mensajes escogidos, de un conjunto de criptogramas. Se busca obtener las claves de cifrado

Introducción a la Criptografía

Conceptos hásicos

Solo texto cifrado : Se dispone de varios criptogramas cifrados con el mismo algoritmo. El objetivo es determinar los mensajes que generaron dichos criptogramas, o mejor, las claves utilizadas en el cifrado

Mensaje conocido : Además de disponer de varios criptogramas, se dispone de los mensajes que los originaron. Se busca obtener las claves de cifrado

Mensaje escogido : Se dispone, para un conjunto de mensajes escogidos, de un conjunto de criptogramas. Se busca obtener las claves de cifrado

Criptograma escogido : A partir de varios criptogramas escogidos, se obtienen los mensajes que los generan. Esta información se utiliza para obtener la clave de cifrado. Útil para criptoanálisis de clave pública

Introducción a la Criptografía

Historia

Concepto básicos

Aproximaciones

Sistemas simétricos

Seguridad

TOLOCOR

Cione dinie

Voto electrónico

Principales aproximaciones

Criptografía de clave simétrica Esquema

Introducción a la Criptografía

Historia

Concepto

Aproximacione

Sistemas simétricos

Seguridad

rotoc

Ciamo dinient

Voto electrónico

Criptografía de clave simétrica Esquema

Introducción a la Criptografía

Sistemas simétricos

Criptografía de clave simétrica Esquema

Introducción a la Criptografía

Historia

Concept básicos

Aproximacione

Sistemas simétricos

Sagurida

Drotocolo

Cifrado

Firma digital

Criptografía de clave pública Aproximaciones

Introducción a la Criptografía

Historia

básicos Aproximacione

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurida

Protocolos

Cifrado

Firma digital

Firma digital Voto electrónic

- Uso de códigos
- Sistemas monoalfabéticos
- Sistemas polialfabéticos
- Sistemas poligráficos
- Cifrado por permutación
- Transformaciones variables en el tiempo
- Cifrado por bloques

Introducción a la Criptografía

Historia

Concepto

Aproximacione

Sistemas asimétricos

Seguridad

_ .

.

Firma digital

Voto electrónio

Introducción a la Criptografía

Sistemas asimétricos

 $Extremo_A$ (K_{pb}^A, K_{pr}^A)

Extremo_B $\left(K_{pb}^B,K_{pr}^B\right)$

Introducción a la Criptografía

Historia

básicos

Aproximacione

Sistemas simétricos

Sistemas asimétricos

Seguridad

Seguridad

.

Eirma digita

Voto electrónico

 $Extremo_A$ (K_{pb}^A, K_{pr}^A)

$$K_{pb}^B$$

 $Extremo_B$ (K_{pb}^B, K_{pr}^B)

Introducción a la Criptografía

Historia

Concept básicos

Aproximacione
Sistemas simétricos
Sistemas asimétricos

Segurida

Protocolos

Firma digital

Introducción a la Criptografía

Historia

Concept básicos

Aproximacione: Sistemas simétricos Sistemas asimétricos

Segurid:

Protocolos

Firma digital

Criptografía de clave pública

Función unidireccional

Introducción a la Criptografía

Historia

básicos Aproximacion

Aproximacione: Sistemas simétricos Sistemas asimétricos

Segurid

Protocolos Cifrado

Firma digital

■ Funciones unidireccionales: $f: X \to Y$ es unidireccional si y solo s para todo $x \in X$, f(x) es fácil de computar, pero para muchos elementos $y \in Y$ es computacionalmente intratable encontrar $f^{-1}(y)$, por ejemplo, el Logaritmo Discreto

p.e:
$$X = \{0, 1, \dots, 16\}, f(x) = 3^x \mod 17$$

Criptografía de clave pública

Función unidireccional

Introducción a la Criptografía

Histori

básicos

Aproximaciones Sistemas simétricos Sistemas asimétricos

Segurid

Cifrado Firma digital ■ Funciones unidireccionales: $f: X \to Y$ es unidireccional si y solo s para todo $x \in X$, f(x) es fácil de computar, pero para muchos elementos $y \in Y$ es computacionalmente intratable encontrar $f^{-1}(y)$, por ejemplo, el Logaritmo Discreto

■ Función unidireccional *con trampa*: función unidireccional tal que, cierta información adicional, permite el rápido cálculo de la inversa

Criptografía de clave pública

Función unidireccional

Introducción a la Criptografía

Histori

básicos

Aproximacione: Sistemas simétricos Sistemas asimétricos

Segurid

Protocolos
Cifrado
Firma digital

■ Funciones unidireccionales: $f: X \to Y$ es unidireccional si y solo s para todo $x \in X$, f(x) es fácil de computar, pero para muchos elementos $y \in Y$ es computacionalmente intratable encontrar $f^{-1}(y)$, por ejemplo, el Logaritmo Discreto

- Función unidireccional *con trampa*: función unidireccional tal que, cierta información adicional, permite el rápido cálculo de la inversa
 - p.e: Cálculo de $f(x) = 3^x \mod n$ donde $n = pq \mod p$, q primos. Si se conocen p y q entonces es fácil de calcular la inversa

Introducción a la Criptografía

Historia

Concepto básicos

Aproximaciones

Sistemas simétricos

Seguridad

Duntanalas

Cifrado

Firma digita

Voto electrónico

Seguridad

Seguridad

Introducción a la Criptografía

Seguridad

Seguridad incondicional:

Seguridad computacional:

- El coste de obtener el mensaje supera el valor de este
- El tiempo necesario para obtener el mensaje supera la vida útil de la información contenida en él.

Seguridad Seguridad computacional

Introducción a la Criptografía

Se estima la vida del Universo en 14 mil millones de años...

Historia

Conceptos básicos

Aproximacione

Sistemas simétricos

Seguridad

Protocolos Cifrado

Firma digital

Seguridad

Seguridad computacional

Introducción a la Criptografía

Se estima la vida del Universo en 14 mil millones de años... (aprox. 2^{34} años).

Historia

Conceptos básicos

Aproximacione

Sistemas simétricos

Seguridad

Protocolos

Firma digital

Seguridad

Seguridad computacional

Introducción a la Criptografía

Se estima la vida del Universo en 14 mil millones de años... (aprox. 2^{34} años).

Historia

Conceptos básicos

Aproximacion

Sistemas simétricos Sistemas asimétricos

Seguridad

Cifrado

Voto electróni

número de segundos en un año: aprox. 2²⁵.

Seguridad

Seguridad computacional

Introducción a la Criptografía

Se estima la vida del Universo en 14 mil millones de años... (aprox. 2^{34} años).

Seguridad

número de segundos en un año: aprox. 2²⁵.

número de segundos que han pasado desde el BigBang: 260.

Introducción a la Criptografía

Protocolos

Protocolos

Protocolo Definición

Introducción a la Criptografía

C

Aproximacione:

Sistemas asimétri

Protocolos

Cifrado Firma digital ■ Protocolo: secuencia de pasos, que implican a dos o mas partes, encaminados a cumplir determinado objetivo

- Todo implicado en el protocolo debe conocerlo a priori, así como su papel en él
- Todos los implicados en el protocolo deben estar de acuerdo en seguirlo
- El protocolo debe ser no ambiguo. Cada paso ha de estar bien definido
- El protocolo debe ser completo. Debe especificar una acción para toda posible situación

Protocolo envío de mensajes cifrados Criptografía de clave simétrica

Introducción a la Criptografía

Historia

Concept básicos

Aproximaciones Sistemas simétricos Sistemas asimétricos

Segurida

Cifrado
Firma digital

■ EMISOR y RECEPTOR acuerdan un algoritmo de cifrado

EMISOR y RECEPTOR acuerdan una clave

3 EMISOR cifra el mensaje utilizando el algoritmo y la clave acordados

4 EMISOR envía el mensaje a RECEPTOR

SECEPTOR descifra el mensaje utilizando el mismo algoritmo y la misma clave

Protocolo envío de mensajes cifrados Criptografía de clave simétrica

Introducción a la Criptografía

Historia

Concept básicos

Aproximaciones Sistemas simétricos Sistemas asimétricos

Segurida

Cifrado
Firma digital

I EMISOR y RECEPTOR acuerdan un algoritmo de cifrado

EMISOR y RECEPTOR acuerdan una clave

3 EMISOR cifra el mensaje utilizando el algoritmo y la clave acordados

4 EMISOR envía el mensaje a RECEPTOR

SECEPTOR descifra el mensaje utilizando el mismo algoritmo y la misma clave

■ ¿Número de claves para un colectivo de *n* usuarios?

Protocolo envío de mensajes cifrados

Clave simétrica: esquema

Introducción a la Criptografía

Historia

Concepto básicos

Aproximaciones Sistemas simétricos

Segurida

Protocolos Cifrado Firma digital

Protocolo envío de mensajes cifrados Criptografía de clave asimétrica (I)

Introducción a la Criptografía

Historia

Concept básicos

Aproximaciones Sistemas simétricos Sistemas asimétricos

Segurida

Cifrado
Firma digital

I EMISOR y RECEPTOR acuerdan un algoritmo de cifrado

RECEPTOR envía a EMISOR su clave pública

3 EMISOR cifra el mensaje utilizando el algoritmo y la clave pública recibida

4 EMISOR envía el mensaje a RECEPTOR

SECEPTOR descifra el mensaje utilizando el mismo algoritmo y la clave privada

Protocolo envío de mensajes cifrados Criptografía de clave asimétrica (I)

Introducción a la Criptografía

Historia

Concept básicos

Aproximaciones Sistemas simétricos Sistemas asimétricos

Segurida

Cifrado
Firma digital

I EMISOR y RECEPTOR acuerdan un algoritmo de cifrado

RECEPTOR envía a EMISOR su clave pública

3 EMISOR cifra el mensaje utilizando el algoritmo y la clave pública recibida

4 EMISOR envía el mensaje a RECEPTOR

SECEPTOR descifra el mensaje utilizando el mismo algoritmo y la clave privada

■ ¿Número de claves para un colectivo de *n* usuarios?

Protocolo envío de mensajes cifrados Criptografía de clave asimétrica (II)

Introducción a la Criptografía

Historia

Concept básicos

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurida

Cifrado
Firma digital

- Un conjunto de usuarios acuerdan un algoritmo de cifrado y publican sus claves públicas en una base de datos accesible a todos
- EMISOR toma de la base de datos la clave pública del RECEPTOR del mensaje
- 3 EMISOR cifra el mensaje utilizando el algoritmo y la clave pública seleccionada
- 4 EMISOR envía el mensaje a RECEPTOR
- **5** RECEPTOR descifra el mensaje utilizando el mismo algoritmo y la clave privada

Protocolo envío de mensajes cifrados

Clave asimétrica: esquema

Introducción a la Criptografía

Historia

Concepto básicos

Aproximaciones Sistemas simétricos

Segurida

Protocolos Cifrado

Protocolo envío de mensajes cifrados

Clave asimétrica: esquema

Introducción a la Criptografía

Historia

Concepto básicos

Aproximaciones

Segurida

Protocolos Cifrado

Firma digital

Protocolo envío de mensajes cifrados Sistema híbrido

Introducción a la Criptografía

Histori

Aproximacione

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurid

Cifrado
Firma digital

- Los sistemas de clave privada necesitan un canal seguro para comunicar la clave
- Los sistemas de cifrado de clave pública no son tan eficientes en tiempo como los sistemas de clave privada
- Una combinación de ambos permite conseguir las ventajas de las dos aproximaciones

Protocolo envío de mensajes cifrados Sistema híbrido

Introducción a la Criptografía

Histori

Concepto básicos

Aproximacione
Sistemas simétricos
Sistemas asimétricos

Segurida

Cifrado
Firma digital

- EMISOR y RECEPTOR acuerdan dos algoritmos de cifrado: uno de clave pública y otro de clave secreta
- **2** RECEPTOR genera un par de claves (K_{pb}, K_{pr}) y comunica a EMISOR la parte pública
- 3 EMISOR genera una clave de sesión (criptografía de clave secreta)
- 4 EMISOR cifra el mensaje utilizando el algoritmo y la clave pública seleccionada
- 5 EMISOR envía el mensaje a RECEPTOR
- 6 RECEPTOR descifra el mensaje utilizando el mismo algoritmo y la clave privada

Firma digital Propiedades

Introducción a la Criptografía

Historia

básicos Aproximacione

Aproximaciones Sistemas simétricos Sistemas asimétricos

Segurida

Protocolo: Cifrado

Firma digital

- La firma ha de convencer al receptor que el emisor ha firmado el documento deliberadamente
- 2 La firma es infalsificable
- 3 La firma no debe ser reutilizable, debe formar parte del documento y no poderse trasladar a ningún otro
- 4 El documento no debe poder alterarse una vez firmado
- 5 El firmante no puede repudiar su firma

Protocolo firma digital

Introducción a la Criptografía

TESTIGO comparte con A y B sendas claves secretas k_A y k_B

- 1 A cifra el mensaje con k_A y lo envia a TESTIGO
- **TESTIGO** lo descifra (utilizando k_A)
- TESTIGO añade al texto una confirmación de su recepción proveniente de A
- \blacksquare TESTIGO cifra el mensaje resultante con k_B y lo envia a B
- B descifra el mensaje. Puede leer tanto el mensaje como la certificación

Concepto básicos

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurida

Protocolos Cifrado

Firma digital

Protocolo firma digital Clave simétrica

Introducción a la Criptografía

TESTIGO comparte con A y B sendas claves secretas k_A y k_B

- 1 A cifra el mensaje con k_A y lo envia a TESTIGO
 - **2** TESTIGO lo descifra (utilizando k_A)
 - TESTIGO añade al texto una confirmación de su recepción proveniente de A
 - **4** TESTIGO cifra el mensaje resultante con k_B y lo envia a B
 - **5** B descifra el mensaje. Puede leer tanto el mensaje como la certificación
 - TESTIGO necesita mantener una gran base de datos
 - TESTIGO necesita ser infalible

- Firma digital

Introducción a la Criptografía

Histori

básicos

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurida

Protocolos Cifrado

Cifrado Firma digital Algunos sistemas de cifrado mediante clave pública pueden utilizarse como sistemas de firma

- A firma el documento a enviar cifrandolo con su clave privada
- 2 A envia el criptograma a B
- B descifra el documento con la clave pública de A verificando, al tiempo, la firma

Introducción a la Criptografía

Histori

Concept básicos

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurida

Protocolos Cifrado Firma digital Algunos sistemas de cifrado mediante clave pública pueden utilizarse como sistemas de firma

- A firma el documento a enviar cifrandolo con su clave privada
- 2 A envia el criptograma a B
- B descifra el documento con la clave pública de A verificando, al tiempo, la firma

Es innecesaria la existencia de un testigo para verificar la firma

Introducción a la Criptografía

Histori:

Concepto básicos

Aproximaciones Sistemas simétricos Sistemas asimétricos

Segurida

Protocolos Cifrado

Firma digital

Cada entidad dispone de dos pares de claves

- Claves pública/privada de firma: (F_A, V_A) , (F_B, V_B)
- Claves pública/privada de cifrado: (C_A, D_A) , (C_B, D_B)
- **1** A firma el mensaje x con su clave privada de firma: $F_A(x)$
- 2 A cifra el resultado con la clave pública de B: $C_B(F_A(x))$
- 3 A envia el resultado a B
- B descifra el criptograma utilizando su clave privada (D_B) : $D_B(C_B(F_A(x))) = F_A(x)$
- B verifica el mensaje utilizando la clave pública de firma (V_A) : $V_A(F_A(x)) = x$

Introducción a la Criptografía

Histori:

Concept básicos

Aproximaciones Sistemas simétricos Sistemas asimétricos

Segurida

Protocolo: Cifrado

Firma digital

Cada entidad dispone de dos pares de claves

- Claves pública/privada de firma: (F_A, V_A) , (F_B, V_B)
- Claves pública/privada de cifrado: (C_A, D_A) , (C_B, D_B)
- **1** A firma el mensaje x con su clave privada de firma: $F_A(x)$
- 2 A cifra el resultado con la clave pública de B: $C_B(F_A(x))$
- 3 A envia el resultado a B
- B descifra el criptograma utilizando su clave privada (D_B) : $D_B(C_B(F_A(x))) = F_A(x)$
- B verifica el mensaje utilizando la clave pública de firma (V_A) : $V_A(F_A(x)) = x$

IMPORTANTE: firmar antes de cifrar

Protocolo firma digital Clave pública v funciones resumen

Introducción a la Criptografía

Historia

básicos

Aproximaciones Sistemas simétricos Sistemas asimétricos

Segurid

Cifrado
Firma digital

 Los algoritmos de clave pública no permiten firmar eficientemente documentos largos.

- Las funciones resumen (unidireccionales) permiten reducir el documento, ganando en eficiencia.
- La función resumen y el algoritmo de firma son acordados de antemano

Protocolo firma digital Clave pública y funciones resumen

Introducción a la Criptografía

Historia

básicos

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurida

Cifrado
Firma digital

- 1 A produce un resumen de su documento
- 2 A firma (cifra) el resumen con su clave privada
- 3 A envía el documento y el resumen firmado a B
- 4 B calcula el resumen del documento, verifica la firma (descifra el resumen con la clave pública de A) y compara ambos resumenes, verificando si son iguales

Voto electrónico Propiedades

Introducción a la Criptografía

Historia

básicos

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurida

Protocolos Cifrado

Firma digital

Voto electrónico

Democracia: Únicamente los votantes incluídos en el **censo** pueden participar en el proceso y únicamente una vez.

Privacidad: No puede relacionarse voto y elector.

Seguridad : Nadie puede suplantar a un elector que decide no participar en el proceso.

Justicia: Nadie puede conocer el resultado de la votación antes de que esta finalice.

Resistencia Coercitiva : Ningún elector puede mostrar a un tercero el sentido de su voto.

Voto electrónico Propiedades

Introducción a la Criptografía

Historia

básicos Aproximacione

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurida

Protocolos Cifrado

Firma digital

Voto electrónico

Completitud: El resultado de la votación ha de ser preciso.

Precisión: Un voto emitido no puede ser alterado.
Un voto nulo no es contabilizado de otro modo.
Cada elector tiene la certeza de que su voto ha sido considerado

Verficabilidad: (individual/universal) Los electores pueden verificar que (su/todo) voto ha sido considerado en el sentido en que se emitió.

Voto electrónico Descripción del contexto

Introducción a la Criptografía

Voto electrónico

- Se propone un sistema basado en doble autoridad: Mesa de Identificación (MI) y Mesa Electoral (ME).
- Estas se reparten la responsabilidad del registro, validación, depósito y escrutinio.
- Se asume que ambas autoridades son independientes, no teniendo relación excepto para la comunicación de claves.
- En todo momento se asumen canales de comunicación seguros. En cualquier caso puede considerarse un protocolo de clave pública para implementar dichos canales.

Voto electrónico Descripción de un protocolo

Introducción a la Criptografía

Historia

Concepto básicos

Aproximaciones
Sistemas simétricos
Sistemas asimétricos

Segurid

Protocolos
Cifrado
Firma digital
Voto electrónico

■ La MI configura una clave pública (F_{MI}, V_{MI}) para ser utilizada como certificado, comunicando a la ME la parte pública (de verificación).

- Sea v la versión binaria del voto del elector. El elector genera un valor aleatorio h de la misma longitud de v. Sea v' = v ⊕ h. El elector mantiene el valor de h secreto.
- El elector comunica a la MI el par $\langle v', id \rangle$
- La MI comprueba si el *id* del elector pertenece al censo. En este caso firma el voto del elector $RSA_{F_{MI}}(v')$ comunicando el resultado al elector.
- El elector puede comprobar en este momento la corrección del proceso, comunicando posteriormente a la urna el par $\langle RSA_{FM}(v'), h \rangle$.
- La urna verifica la firma del voto obteniendo v'. El voto se obtiene despues de computar $v = v' \oplus h$.

Introducción a la Criptografía

Historia

Concepto básicos

Anrovimaciono

Sistemas simétricos

Seguridad

Protocolo

Firma digital

Voto electrónico

