CSE 291D HW3 report

- 1. Solution
 - (1) Use Ubiquity Robotics Raspberry Pi Image to install ROS on Pi
 - (2) Use ROS package to build a map
 - a. Joy

http://wiki.ros.org/joy

b. teleop_twist_joy

http://wiki.ros.org/teleop_twist_joy

c. PiCar ROS

https://github.com/korzen/PiCar_ROS

- d. rosbag
- e. usb cam

http://wiki.ros.org/usb_cam

f. camera calibration (for camera matrix calculation)

http://wiki.ros.org/camera calibration

g. tuw_aruco

http://wiki.ros.org/tuw_aruco

h. tuw_marker_slam

http://wiki.ros.org/tuw marker slam

2. Environment (Share with other classmates) Using 12 different aruco

3. Result

In above figure, we can see the distance between #1 and #2 is about 2 meters. In reality, the distance is only 1 meter. Thus, we can know the error is about 1 meter. Besides, the shape of the markers position is like an ellipse in this map instead of an square.

In above figure, the distance between #1 and #2 reduces to 1.5 meters. In addition, we can see there are three markers in each edge, so the shape is like a square. Therefore,I think the error decreases after mutiple circles driving.

4. Code

<HW3.launch>

<single_marker_live.launch>

<slam.launch>