THỰC HÀNH MẠCH ĐIỆN TỬ & KỸ THUẬT SỐ Báo cáo thực hành – Tuần số 1 Phan Thanh Tùng

1613240 – 16VLTH

BÀI 1: KHUẾCH ĐẠI THUẬT TOÁN

- Khuếch đại vi sai dùng transistor rời.
- Khuếch đại hiệu số (vi sai).
- Khuếch đại thuật toán.

<u>Bài làm</u>

1. Khuếch đại vi sai dùng transistor rời:

Mạch khuếch đại vi sai cơ bản

THỰC HÀNH MẠCH ĐIỆN TỬ & KỸ THUẬT SỐ Báo cáo thực hành – Tuần số 1 Phan

Phan Thanh Tùng 1613240 – 16VLTH

1) Chưa cấp điện 5V. Đo điện thế ở hai cực nền của Q_1 và Q_2 (điện thế do dòng rỉ của transistor, thường không đáng kể) và cũng là điện thế vào $(V_1$ và V_2). Nhận xét.

Khi chưa cấp điện thế 5V, hiệu điện thế ở hai cực nền của Q_1 và Q_2 là -1.96(mV)

<u>Giải thích:</u> Điện thế ở hai cực nền rất nhỏ, không đáng kể. Vì lúc này, ta chỉ có sự chênh lệch điện thế giữa V_{CC} và V_{EE} , tại 2 cực nền Q_1 và Q_2 thì không cấp điện thế, nên 2 transistor Q_1 và Q_2 lúc này cho dòng điện dẫn qua và đi xuống phía dưới vùng có mức chênh lệch điện thế cao hơn (12V \rightarrow - 12V). Sở dĩ tại Q_1 và Q_2 có điện thế nhỏ là do có dòng rỉ của transistor.

2) Đo điện thế ngang qua R_E rồi suy ra dòng I_E và so sánh với giá trị tính toán:

• Tinh:
$$I_E = \frac{V1 - VBE1 + VEE}{2RE} = \frac{-1.96.10^{-3} - 0.6 + 12}{2.22.10^3} \approx 0.259 \text{ (mA)}$$

THỰC HÀNH MẠCH ĐIỆN TỬ & KỸ THUẬT SỐ

Báo cáo thực hành – Tuần số 1

Phan Thanh Tùng 1613240 – 16VLTH

• Đo:
$$I_E = \frac{V_{RE}}{2R_F} = \frac{(-0.62) - (-12)}{2.22.10^3} \approx 0.2586 \text{ (mA)}$$

Kết quả khi tính toán và kết quả tính sau khi đo V_{RE} gần giống như nhau!

3) Đo chính xác điện thế vi sai ở ngõ ra. Điện thế V_{od} có bằng không không ? Giải thích.

Cũng theo kết quả đo được từ hình trên, ta nhận thấy rằng hiệu điện thế ở hai cực thu $V_{C1} = V_{C2} = 9.43$ (V). Như vậy là có điện thế vi sai :

$$V_{od} = V_{C1} - V_{C2} = 0$$

<u>Giải thích</u>: Lý do hiệu điện thế vi sai trong trường hợp này bằng không vì cấu tạo mạch khuếch đại vi sai đối xứng, 2 bên là 2 transistor Q_1 và Q_2 đều không được cấp nguồn và mạch vi sai hoạt động dựa trên chung nguồn cấp là V_{CC} và V_{EE} nên điện thế ngõ ra của 2 cực thu transistor sẽ luôn bằng nhau \rightarrow hiệu điện thế vi sai bằng không.

THỰC HÀNH MẠCH ĐIỆN TỬ & KỸ THUẬT SỐ Báo cáo thực hành – Tuần số 1

Phan Thanh Tùng 1613240 – 16VLTH

4) Cấp điện 5V cho mạch. Chỉnh biến trở P_1 để $V_1=0$ V, chỉnh biến trở P_2 để V_2 lần lượt là 0V, 0.1V, 0.2V, 0.3V, mỗi lần đo điện thế vi sai ngỗ ra V_{od} và tính độ lợi vi sai $G_{vd}=\frac{Vod}{(V_1-V_2)}=\frac{(V_{C1}-V_{C2})}{(V_1-V_2)}$, rồi ghi kết quả vào bảng :

$V_1 - V_2(V)$	0	- 0.1	- 0.2	- 0.3
$\mathbf{V_{od}} = \mathbf{V_{C1}} - \mathbf{V_{C2}}$	9.43 - 9.43	11.9 - 6.94	12 - 6.79	12 - 6.74
	= 0 (V)	= 4.96 (V)	= 5.21 (V)	= 5.26 (V)
G_{vd}	0	- 49.6	- 26.05	- 17.53

Bảng kết quả đo của mạch khuếch đại dùng transistor rời.

2. Khuếch đại hiệu số (vi sai):

Mắc mạch khuếch đại vi sai hiệu số, sau đó thay đổi hai biến trở $10k\Omega$ để có các giá trị khác nhau của V_{i1} và V_{i2} . Đo điện thế ra V_0 tương ứng, ghi kết quả vào bảng. So sánh kết quả đo với lý thuyết và giải thích sự khác biệt.

Mạch khuếch đại vi sai hiệu số

THỰC HÀNH MẠCH ĐIỆN TỬ & KỸ THUẬT SỐ Báo cáo thực hành – Tuần số 1

Phan Thanh Tùng 1613240 – 16VLTH

$V_{i1}(V)$	0	1	1	3
$V_{i2}(V)$	1	0	3	1
$V_{i1} - V_{i2} (V)$	- 1	1	- 2	2
$\mathbf{V}_{0}\left(\mathbf{V}\right)$	3.34	- 3.35	6.47	- 6.49
$\mathbf{V}_0 = \frac{R_2}{R_1} \ (V_{i2} - V_{i1})$	3.3	- 3.3	6.6	- 6.6

Nhận xét, giải thích: Từ kết quả tính toán, và kết quả đo, ta có thể thấy kết quả khá giống nhau (sai số rất nhỏ). Giải thích cho sự khác biệt giữa thực hành và lý thuyết là do, khi điều chỉnh đồng thời 2 biến trở để chọn dòng vào cho Op-amp, ta cũng có thể nhận thấy rằng khó có thể điều chỉnh cùng lúc chính xác 2 giá trị điện thế vào nhờ biến trở, chính vì sự chênh lệch khi chọn giá trị điện thế vào mà kết quả so với lý thuyết có chút sai số.

THỰC HÀNH MẠCH ĐIỆN TỬ & KỸ THUẬT SỐ Báo cáo thực hành – Tuần số 1 Phan Thanh Tùng 1613240 – 16VLTH

3. Khuếch đại thuật toán:

a) Dòng điện phân cực và dòng offset ngõ vào:

Mắc mạch đo dòng offset ngõ vào. Đo điện thế ra V_0 , suy ra dòng offset I_{io}

Mạch đo dòng offset ngõ vào

$$V\acute{o}i R_1 = 2,2 k\Omega, \qquad R_2 = 220 k\Omega,$$

Nguồn cấp vào cho Op-amp là 12 (V) và – 12 (V)

Đo hiệu điện thế ra V_0 nhận được giá trị $V_0 = 3,15$ (mV)

$$\begin{array}{ll} \text{T\'e} & V_0 = (1 + \frac{R_2}{R_1}).(-R_1 \, / \! / \, R_2).I_{io} \\ \\ \Rightarrow & 3,15.10^{-3} = (1 + \frac{220.10^3}{2,2.10^3}) \cdot (-\frac{2,2.10^3 \cdot 220.10^3}{2,2.10^3 + 220.10^3}).I_{io} \\ \\ \Rightarrow & I_{io} = \frac{3,15.10 - 3}{-220000} \approx -14,32 \; (nA) \\ \\ \Rightarrow & |I_{io}| \approx 14,32 \; (nA) \end{array}$$

THỰC HÀNH MẠCH ĐIỆN TỬ & KỸ THUẬT SỐ Báo cáo thực hành – Tuần số 1

Phan Thanh Tùng 1613240 – 16VLTH

b) Điện thế offset ngõ vào:

Mắc mạch điện thế offset ngõ vào, đo điện thế V_0 rồi suy ra điện thế V_{io} từ $V_0=(1+\frac{R_2}{R_1})$. V_{io}

Mạch điện thế offset ngõ vào

Đo được
$$V_0 = 0.07 \text{ (mV)}$$

$$\Rightarrow V_{io} = \frac{0.07.10^{-3}}{(1 + \frac{10.10^{3}}{10.10^{3}})} = 0.035 \text{ (mV)}$$

c) Chỉnh không offset:

Mắc mạch chỉnh không offset nội bộ, xoay biến trở P để đo khoảng biến thiên của điện thế ra V_0 , trong đó có $V_0=0$.

THỰC HÀNH MẠCH ĐIỆN TỬ & KỸ THUẬT SỐ Báo cáo thực hành – Tuần số 1 Phan Thanh Tùng 1613240 – 16VLTH

Với số liệu lấy từ bảng mạch 1.6, ta thấy, khi thay đổi biến trở P, giá trị V_0 biến thiên không đổi $V_0 = 3,46$ (mA)

(để biến thiên được V₀, có lẽ phải thay các giá trị R khác)

Mắc mạch chỉnh không offset ngoài, xoay biến trở P để đo khoảng biến thiên của điện thế ra V_0 .

Điều chỉnh biến trở P, cho ta thấy được khoảng biến thiên của V_0 trong trường hợp đo mạch chỉnh offset ngoài như hình 1.7 là:

- 66,3 mV
$$\leq$$
 V₀ \leq + 66,7 mV