Spring 2024 Math 451: Practice Problems

(1) Prove that for all sets A and B, we have $A \subseteq B$ if and only if $A \cup B = B$.

Sample Solution: Let A and B be sets, and for the forward direction suppose $A \subseteq B$. Note that we always have $A \cup B \supseteq B$, so in order to show $A \cup B = B$ we need only show $A \cup B \subseteq B$. Thus let $x \in A \cup B$. Since $A \subseteq B$, regardless of whether $x \in A$ or $x \in B$ we will have $x \in B$, so we conclude that $A \cup B \subseteq B$ as desired. For the backward direction, suppose $A \cup B = B$, and let $x \in A$ be arbitrary. Then $x \in A \cup B = B$, so $x \in B$, which shows $A \subseteq B$ as desired. We conclude that $A \subseteq B$ if and only if $A \cup B = B$.

(2) DeMorgan's Laws state that for all sets A, B, and C, we have $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$ and $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$. Choose one of these equations and prove it.

Sample Solution: Let A, B, and C be sets. We show that $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$ by proving that each set is a subset of the other. For the forward inclusion, let $x \in A \setminus (B \cup C)$ be arbitrary. Then $x \in A$ but $x \notin B \cup C$, so $x \notin B$ and $x \notin C$, which implies $x \in A \setminus B$ and $x \in A \setminus C$, and therefore $x \in (A \setminus B) \cap (A \setminus C)$. For the reverse inclusion, let $x \in (A \setminus B) \cap (A \setminus C)$ be arbitrary. Then $x \in A \setminus B$ and $x \in A \setminus C$, so we have $x \in A$ and $x \notin B$ and $x \notin C$. This implies $x \in A$ and $x \notin A \cup B$, so $x \in A \setminus (B \cup C)$ as desired. This completes the proof that $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

(3) DeMorgan's Laws also hold for indexed families of sets, even if the indexing family is infinite. For instance, let A be a set and suppose that B_n is a set for every $n \in \mathbb{N}$. Then we have

$$A \setminus \left(\bigcup_{n \in \mathbb{N}} B_n\right) = \bigcap_{n \in \mathbb{N}} (A \setminus B_n)$$
 and $A \setminus \left(\bigcap_{n \in \mathbb{N}} B_n\right) = \bigcup_{n \in \mathbb{N}} (A \setminus B_n)$.

Prove whichever version you did not choose in (2).

Sample Solution: Let A be a set, and suppose B_n is a set for each $n \in \mathbb{N}$. We show that

$$A \setminus \left(\bigcup_{n \in \mathbb{N}} B_n\right) = \bigcap_{n \in \mathbb{N}} (A \setminus B_n)$$

by showing that each side is contained in the other. For the forward inclusion, let $x \in A \setminus (\bigcup_{n \in \mathbb{N}} B_n)$, so that $x \in A$ but $x \notin \bigcup_{n \in \mathbb{N}} B_n$ and thus $x \notin B_n$ for any $n \in \mathbb{N}$. This implies that $x \in A \setminus B_n$ for all $n \in \mathbb{N}$, which means $x \in \bigcap_{n \in \mathbb{N}} (A \setminus B_n)$. Conversely, let $x \in \bigcap_{n \in \mathbb{N}} (A \setminus B_n)$, so that $x \in A \setminus B_n$ for all $n \in \mathbb{N}$. Then $x \in A$, and also for every $n \in \mathbb{N}$ we have that $x \notin B_n$, which implies $x \notin \bigcup_{n \in \mathbb{N}} B_n$. Thus $x \in A \setminus (\bigcup_{n \in \mathbb{N}} B_n)$, as desired.

(4) Let X and Y be sets, and let $f: X \to Y$ be a function. Prove that for all $A, B \subseteq X$ and $C, D \subseteq Y$, the following are true:

1

- (a) $f[f^{-1}[C]] \subseteq C$
- (b) $f^{-1}[f[A]] \supseteq A$
- (c) $f[A \cup B] = f[A] \cup f[B]$
- (d) $f[A \cap B] \subseteq f[A] \cap f[B]$

- (e) $f[A \setminus B] \supseteq f[A] \setminus f[B]$
- (f) $f^{-1}[C \cup D] = f^{-1}[C] \cup f^{-1}[D]$
- (g) $f^{-1}[C \cap D] = f^{-1}[C] \cap f^{-1}[D]$
- (h) $f^{-1}[C \setminus D] = f^{-1}[C] \setminus f^{-1}[D]$

- (a) Let $y \in f[f^{-1}[C]]$, say y = f(x) where $x \in f^{-1}[C]$. Since $x \in f^{-1}[C]$, we have $y = f(x) \in C$, as desired.
- (b) For every $x \in A$, we have $f(x) \in f[A]$, so $x \in f^{-1}[f[A]]$ by definition of preimage.
- (c) Let $y \in Y$, and first suppose $y \in f[A \cup B]$, say y = f(x) where $x \in A \cup B$. If $x \in A$ then $f(x) \in f[A]$, and if $x \in B$ then $f(x) \in f[B]$, so either way we see $y = f(x) \in f[A] \cup f[B]$. This shows $f[A \cup B] \subseteq f[A] \cup f[B]$, For the reverse inclusion, suppose $y \in f[A] \cup f[B]$. If y = f(x) where $x \in A \subseteq A \cup B$, then $y = f(x) \in f[A \cup B]$, and if y = f(x) where $x \in B \subseteq A \cup B$, then $y = f(x) \in f[A \cup B]$. Either way we see that $y = f(x) \in f[A \cup B]$. This completes the proof.
- (d) Let $y \in f[A \cap B]$, say y = f(x) where $x \in A \cap B$. Then $x \in A$, so $f(x) \in f[A]$, and $x \in B$, so $f(x) \in f[B]$. Therefore $y = f(x) \in f[A] \cap f[B]$, as desired.
- (e) Let $y \in f[A] \setminus f[B]$, say y = f(x) where $x \in A$, and note that $x \notin B$. Then $x \in A \setminus B$, so $y = f(x) \in f[A \setminus B]$.
- (f) For all $x \in X$, we have

$$x \in f^{-1}[C \cup D] \iff f(x) \in C \cup D \iff f(x) \in C \text{ or } f(x) \in D$$

$$\iff x \in f^{-1}[C] \text{ or } x \in f^{-1}[D] \iff x \in f^{-1}[C] \cup f^{-1}[D].$$

(g) For all $x \in X$, we have

$$x \in f^{-1}[C \cap D] \iff f(x) \in C \cap D \iff f(x) \in C \text{ and } f(x) \in D$$

$$\iff x \in f^{-1}[C] \text{ and } x \in f^{-1}[D] \iff x \in f^{-1}[C] \cap f^{-1}[D].$$

(h) For all $x \in X$, we have

$$x \in f^{-1}[C \setminus D] \iff f(x) \in C \setminus D \iff f(x) \in C \text{ and } f(x) \notin D$$

$$\iff x \in f^{-1}[C] \text{ and } x \notin f^{-1}[D] \iff x \in f^{-1}[C] \setminus f^{-1}[D].$$

(5) Give conditions (on f) under which the containments in (a), (b), (d), and (e) from (4) above are in fact equalities.

- (a) For any $C \subseteq Y$, we will have $f[f^{-1}[C]] = C$ iff $C \subseteq \operatorname{ran}(f)$. So $f[f^{-1}[C]] = C$ for all $C \subseteq Y$ iff f is surjective.
- (b) For any $A \subseteq X$, we will have $f^{-1}[f[A]] = A$ iff for all $y \in f[A]$ we have $x \in A$ whenever f(x) = y. So $f^{-1}[f[A]] = A$ for all $A \subseteq X$ iff f is injective.
- (d) $f[A \cap B] = f[A] \cap f[B]$ for all $A, B \subseteq X$ iff f is injective.
- (e) $f[A \setminus B] = f[A] \setminus f[B]$ for all $A, B \subseteq X$ iff f is injective.

- (6) Let X and Y be nonempty sets and let $f: X \to Y$ be a function. Prove the following:
 - (a) f is injective if and only if there is a function $g: Y \to X$ such that $g \circ f = \mathrm{id}_X$.
 - (b) f is surjective if and only if there is a function $g: Y \to X$ such that $f \circ g = \mathrm{id}_Y$.
 - (c) f is bijective if and only if f is invertible.

- (a) For the forward direction, suppose f is injective. Fix $x_0 \in X$, and define the function $g: Y \to X$ by letting g(y) be the unique $x \in X$ such that f(x) = y if $y \in \text{ran}(f)$, and $g(y) = x_0$ otherwise. Then $g \circ f = \text{id}_X$. Conversely, suppose $g: Y \to X$ is a function such that $g \circ f = \text{id}_X$. Let $x_1, x_2 \in X$ and suppose $x_1 \neq x_2$. Then $f(x_1) \neq f(x_0)$, since otherwise we would have $x_1 = g(f(x_1)) = g(f(x_2)) = x_2$. This shows that f is injective.
- (b) For the forward direction, suppose f is surjective. For each $y \in Y$ there is $x \in X$ such that f(x) = y, so for each $y \in Y$ we choose a particular element $g(y) \in X$ such that f(g(y)) = y. This defines a function $g: Y \to X$ such that $f \circ g = \mathrm{id}_Y$. Conversely, suppose $g: Y \to X$ is a function such that $f \circ g = \mathrm{id}_Y$. Then given arbitrary $y \in Y$, we have f(g(y)) = y, so there is indeed $x \in X$ (namely x = g(y)) such that f(x) = y. This shows f is surjective, and completes the proof.
- (c) If f is invertible, then it follows immediately from (a) and (b) that f is injective and surjective, hence bijective. Conversely, if f is bijective then for every $y \in Y$ we can let g(y) be the unique $x \in X$ for which f(x) = y. Then g is the inverse of f, so f is invertible.
- (7) Let X, Y, and Z be sets, and let $f: X \to Y$ and $g: Y \to Z$ be functions. Prove the following:
 - (a) If f and g are injective, then so is $g \circ f$.
 - (b) If f and g are surjective, then so is $g \circ f$.
 - (c) If f and g are bijective, then so is $g \circ f$.
 - (d) If $g \circ f$ is injective, then so is f.
 - (e) If $g \circ f$ is surjective, then so is g.

- (a) Suppose f and g are injective, let $x_1, x_2 \in X$, and suppose $x_1 \neq x_2$. Then since f is injective, we have $f(x_1) \neq f(x_2)$, and therefore since g is injective we have $g(f(x_1)) \neq g(f(x_2))$. This shows that $g \circ f$ is injective.
- (b) Suppose f and g are surjective, and let $z \in Z$. Using the fact that g is surjective, we can fix $y \in Y$ such that g(y) = z, and then using the fact that f is surjective, we can fix $x \in X$ such that f(x) = y and therefore g(f(x)) = z. This shows that $g \circ f$ is surjective.
- (c) This follows immediately from (a) and (b) and the definition of bijective.
- (d) We prove the contrapositive. Suppose f is not injective, so we can fix $x_1, x_2 \in X$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$. But then $g(f(x_1)) = g(f(x_2))$, which shows that $g \circ f$ is not injective.
- (e) Again we prove the contrapositive. Suppose g is not surjective, so we can fix $z \in Z$ such that $z \notin \operatorname{ran}(g)$. But $\operatorname{ran}(g \circ f) \subseteq \operatorname{ran}(g)$, so z does not belong to $\operatorname{ran}(g \circ f)$ either and thus $g \circ f$ is also not surjective.

(8) Recall¹ Kuratowski's set-theoretic definition of ordered pair: $(a,b) := \{\{a\}, \{a,b\}\}\}$. Using this definition, prove that for all a, b, c, d we have (a, b) = (c, d) iff a = c and b = d.

Sample Solution: If a=c and b=d then clearly (a,b)=(c,d), so we only need to show the converse. Suppose (a,b)=(c,d). We consider two cases: first, suppose a=b. Then $(a,b)=\{\{a\},\{a,b\}\}=\{\{a\},\{a\}\}\}=\{\{a\}\}\}$, so the set $\{a,b\}$ has one element in it. This means the set $(c,d)=\{\{c\},\{c,d\}\}\}$ must have one element in it too, so $\{c\}=\{c,d\}$. Hence c=d, so $(c,d)=\{\{c\}\}$, and we see that in fact a=b=c=d, as desired. For the second case, we suppose $a\neq b$, so $(a,b)=\{\{a\},\{a,b\}\}$ has two elements. Thus $(c,d)=\{\{c\},\{c,d\}\}$ also has two elements, so $c\neq d$. Furthermore, since $\{a\}$ and $\{c\}$ both have one element but $\{a,b\}$ and $\{c,d\}$ have two elements, we must have a=c, and therefore b=d, completing the proof.

- (9) Use induction to prove the following formulas:
 - (a) $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.
 - (b) $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$

Sample Solution:

(a) For the base case n=1, both sides are equal to 1. For the inductive step, let $n \in \mathbb{N}$ and suppose for inductive hypothesis that $\sum_{n=1}^{n} k = \frac{n(n+1)}{2}$. Then

$$\sum_{k=1}^{n+1} k = n+1 + \frac{n(n+1)}{2} = \frac{2n+2+n^2+n}{2} = \frac{(n+1)(n+2)}{2},$$

completing the induction.

(b) For the base case n=1, both sides are equal to 1. For the inductive step, let $n \in \mathbb{N}$ and suppose for inductive hypothesis that $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$. Then

$$\sum_{k=1}^{n+1} k^2 = (n+1)^2 + \frac{n(n+1)(2n+1)}{6} = n^2 + 2n + 1 + \frac{2n^3 + 3n^2 + n}{6}$$

$$= \frac{(6n^2 + 12n + 6) + (2n^3 + 3n^2 + n)}{6} = \frac{2n^3 + 9n^2 + 13n + 6}{6} = \frac{(n+1)(n+2)(2(n+1) + 1)}{6},$$
completing the induction.

(10) Prove that $\sqrt{3}$ is irrational without using the Rational Roots Theorem. Then show how the irrationality of $\sqrt{3}$ follows from the Rational Roots Theorem.

Sample Solution: Suppose for contradiction that there is $r \in \mathbb{Q}$ such that $r^2 = 3$, and fix $m, n \in \mathbb{N}$ with no common factors (greater than 1) such that $(m/n)^2 = 3$, so that $m^2 = 3n^2$. Then m^2 is divisible

¹From the More Joy of Sets handout.

by 3, which means m itself must be dvisible by 3, say m = 3k where $k \in \mathbb{N}$. Then

$$3n^2 = m^2 = (3k)^2 = 9k^2,$$

so $n^2 = 3k^2$ and thus n^2 is divisible by 3. But this implies n is divisible by 3 as well, contradicting our assumption that m and n have no common factors. We conclude that no such $r \in \mathbb{Q}$ exists.

Towards applying the Rational Roots Theorem, consider the polynomial $p(x) = x^2 - 3$. By the Theorem, if $r \in \mathbb{Q}$ is a root of p then $r \in \{\pm 1, \pm 3\}$. Since none of these four numbers is a root of p (by inspection), we conclude that p has no rational root, so there is no rational number x such that $x^2 - 3 = 0$. In other words, $\sqrt{3}$ is irrational.

(11) Suppose < is a linear order on the set X. Using nothing but the linear order axioms, prove that for all $a, b \in X$, if $a \le b$ and $b \le a$, then a = b.

Sample Solution: Let $a, b \in X$, suppose $a \le b$ and $b \le a$, and assume for contradiction that $a \ne b$. Then a < b and b < a, which by transitivity implies a < a, contradicting irreflexivity. Thus a = b as desired.

(12) Let $A \subseteq \mathbb{R}$ and $b \in \mathbb{R}$, and suppose that $b = \max A$ is the greatest element of A. Prove that $b = \sup A$.

Sample Solution: Let $A \subseteq \mathbb{R}$, let $b \in \mathbb{R}$, and suppose $b = \max A$. By definition of greatest element, we have $a \leq b$ for all $a \in A$, so b is an upper bound of A. Now let a be any other upper bound of a. Since a (again by definition of greatest element), we have a is not just an upper bound of a, but is in fact the *least* upper bound of a; that is, a is a desired.

(13) Let A be a nonempty subset of \mathbb{R} that is bounded below, and let L be the set of all lower bounds of A in \mathbb{R} . Prove that $\sup L = \inf A$.

Sample Solution: Every $a \in A$ is an upper bound of L, so $\sup L \leq a$ for all $a \in A$, and thus $\sup L$ is a lower bound of A. But also $\sup L \geq \ell$ for every lower bound ℓ of A, so $\sup L$ is the *greatest* lower bound of A, as desired.

(14) Let A be a nonempty subset of \mathbb{R} that is bounded below, and let $-A = \{-a : a \in A\}$. Prove that inf $A = -\sup(-A)$.

Sample Solution: Let $a \in A$ be arbitrary. Then $-a \in -A$, so $-a \leq \sup(-A)$, which implies $a \geq -\sup(-A)$. This shows that $-\sup(-A)$ is a lower bound of A. To show that it is the *greatest* lower bound of A, let ℓ be an arbitrary lower bound of A. Then for all $a \in A$ we have $\ell \leq a$ and therefore $-\ell \geq -a$. Thus $-\ell \geq \sup(-A)$, so $\ell \leq -\sup(-A)$ as desired.

(15) *Show² that if we were to drop the Distributive Law (Axiom 9) from the field axioms, we would no longer be able to prove that $0 \cdot x = 0$ for all x.

²All these practice problems are optional, but ones with *'s are even more optional! (ie, don't worry if you don't know how to do them.)

Sample Solution: For instance, consider the two-element set $\mathbb{F} = \{0, 1\}$ with addition and multiplication operations given by

Then $(\mathbb{F}, +, \times)$ satisfies Axioms 1–8 but not Axiom 9, so \mathbb{F} is not a field. (This illustrates the importance of the Distributive Axiom. No one wants $0 \times 0 = 1$ to be true!)

(16) Prove that for all $x, y \in \mathbb{R}$, we have $||x| - |y|| \le |x - y|$.

Sample Solution: Let $x, y \in \mathbb{R}$. Write a = x - y and b = y. Then by the triangle inequality we have

$$|x| = |a+b| \le |a| + |b| = |x-y| + |y|,$$

so $|x| - |y| \le |x - y|$. Swapping x and y gives $|y| - |x| \le |y - x| = |x - y|$, and then combining these results gives us $||x| - |y|| \le |x - y|$, as desired.

(17) Let $a \in \mathbb{R}$ and let $\epsilon > 0$. Prove that for all $x, y \in V_{\epsilon}(a)$, we have $|x - y| < 2\epsilon$.

Sample Solution: Let $a \in \mathbb{R}$ and $\epsilon > 0$, and let $x, y \in V_{\epsilon}(a)$. Then, using the triangle inequality, we have

$$|x-y| = |x-a+a-y| \le |x-a| + |y-a| < \epsilon + \epsilon = 2\epsilon.$$

(18) A function $f: \mathbb{R} \to \mathbb{R}$ is strictly increasing [decreasing] if for all $x, y \in \mathbb{R}$, x < y implies f(x) < f(y) [f(x) > f(y)], and strictly monotone if f is either strictly increasing or strictly decreasing.

- (a) Prove that every strictly increasing function $f: \mathbb{R} \to \mathbb{R}$ is injective.
- (b) Show by example that a strictly increasing function $f: \mathbb{R} \to \mathbb{R}$ need not be bijective.
- (c) Show by example that a bijective function $f: \mathbb{R} \to \mathbb{R}$ need not be strictly monotone.

Sample Solution:

- (a) Let $f : \mathbb{R} \to \mathbb{R}$ be a strictly increasing function. Let $x, y \in \mathbb{R}$ and suppose $x \neq y$, say without loss of generality that x < y. Then f(x) < f(y), so in particular $f(x) \neq f(y)$. This shows f is injective.
- (b) For instance, the function $f(x) = e^x$ is strictly increasing but not surjective.
- (c) For instance, the function $f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 1 \end{cases}$ is bijective but not strictly monotone.

(19) Determine whether the given function is injective, surjective, both, or neither:

- (a) The function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = x + |x|.
- (b) The function $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = x|x|.
- (c) The function $h: \mathbb{R} \to (0, \infty)$ defined by $h(x) = e^x$.
- (d) The function $p: \mathbb{R}^2 \to \mathbb{R}$ defined by p(x,y) = x + y.
- (e) The function $m: \mathbb{R} \setminus \{-2\} \to \mathbb{R} \setminus \{3\}$ defined by $m(x) = \frac{3x+5}{x+2}$.

(f) The function $s: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ defined by $s(n) = \{k \in \mathbb{N} : k \leq n\}$, where the set $\mathcal{P}(\mathbb{N})$ is called the powerset of \mathbb{N} and is defined by $\mathcal{P}(\mathbb{N}) = \{A : A \subseteq \mathbb{N}\}$.

Sample Solution:

- (a) The function f is neither injective nor surjective. To see that f is not injective, note that f is constant on the set of negative numbers, since for all x < 0 we have f(x) = x + |x| = x x = 0. To see that f is not surjective, note that there are no negative numbers in $\operatorname{ran}(f)$, since f(x) = 0 if x < 0 and $f(x) = 2x \ge 0$ if $x \ge 0$.
- (b) The function g is both injective and surjective (i.e., bijective). To see this, note that $g(x) = -x^2$ for all x < 0 and $g(x) = x^2$ for all $x \ge 0$, so g is strictly increasing on \mathbb{R} , and therefore is bijective.
- (c) The function h is both injective and surjective (i.e., it is bijective). It is injective because h is strictly increasing (i.e., x < y implies h(x) < h(y)), and it is surjective because for every $y \in (0, \infty)$ there is $x \in \mathbb{R}$, namely $x = \ln y$, such that h(x) = y.
- (d) The function p is surjective but not injective. To see that p is surjective, note that for all $y \in \mathbb{R}$, we have p(0,y) = y. To see that f is not injective, note that p(0,2) = p(1,1) = 2.
- (e) The function m is bijective since it is invertible. Indeed, we can find a formula for the inverse of m by starting with the equation $y = \frac{3x+5}{x+2}$ and solving for x in terms of y. This produces the formula $m^{-1}(y) = \frac{5-2y}{y-3}$.
- (f) The function s is injective but not surjective. To see that s is injective, note that if k < n then $n \in s(n)$ but $n \notin s(k)$, so $s(n) \neq s(k)$. However, s is not surjective since for instance $\mathbb{N} \in \mathcal{P}(\mathbb{N})$ but $\mathbb{N} \notin \text{ran}(s)$.
- (20) For any sets X and Y and subset $R \subseteq X \times Y$, define $R^{-1} := \{(y, x) \in Y \times X : (x, y) \in R\}$. Prove that for any function $f: X \to Y$, the set f^{-1} is a function if and only if f is injective. Assuming f is injective, what is $\text{dom}(f^{-1})$?

Sample Solution: Let $f: X \to Y$ be a function, and view $f^{-1} = \{(y, x) : x \in X \text{ and } f(x) = y\}$ as a subset of $Y \times X$. If f is injective, then for every $y \in \text{ran}(f)$ there is unique $x \in X$ such that $(y, x) \in f^{-1}$, which shows that f^{-1} is a function from ran(f) to X. Conversely, if f is not injective then there exist $x_1 \neq x_2$ in X such that $y = f(x_1) = f(x_2)$, so both (y, x_1) and (y, x_2) belong to f^{-1} , which means f^{-1} is not a function. Assuming f is injective, $\text{dom}(f^{-1}) = \text{ran}(f)$.

(21) For any sets X and Y, we define $X^Y = \{f : f \text{ is a function from } Y \text{ to } X\}$. Recalling that, as a set, $2 = \{0, 1\}$, show that for every set X we have $\mathcal{P}(X) \approx 2^X$.

Sample Solution: We define a function $f: \mathcal{P}(X) \to 2^X$ as follows: for every $A \subseteq X$ and $x \in X$, let $f(A)(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$ Conversely, define $g: 2^X \to \mathcal{P}(X)$ as follows: given $\alpha \in 2^X$ and $x \in X$, let $x \in g(\alpha)$ iff $\alpha(x) = 1$. Then $g \circ f = \mathrm{id}_{\mathcal{P}(X)}$ and $f \circ g = \mathrm{id}_{2^X}$, so f and g are inverses of each other, which shows f and g are bijective. We conclude that $\mathcal{P}(X) \approx 2^X$.

- (22) Define the function $f: 2^{\mathbb{N}} \to \mathbb{R}$ by $f(\alpha) = \sum_{k=1}^{\infty} \frac{2\alpha(k)}{3^k}$.
 - (a) What does ran(f) look like? Try³ to draw a picture.
 - (b) Show that f is injective.
 - (c) Show that $\mathcal{P}(\mathbb{N}) \leq \mathbb{R}$.

- (a) The range of f is the subset of [0,1] consisting of all real numbers in [0,1] whose base 3 expansion only contains 0s and 2s, but never contains a 1. This is a famous set called the *Cantor set*; it has lots of interesting properties, and there are plenty of good attempts at drawing it to be found on the internet.
- (b) Let $\alpha, \beta \in 2^X$, and suppose $\alpha \neq \beta$. Let n be least such that $\alpha(n) \neq \beta(n)$; wlog say $\alpha(n) = 0 < 1 = \beta(n)$. Then

$$f(\beta) - f(\alpha) = \frac{2}{3^n} + \sum_{k=n+1}^{\infty} \frac{\beta(k) - \alpha(k)}{3^k} \ge \frac{2}{3^n} - \sum_{k=n+1}^{\infty} \frac{2}{3^k} = \frac{2}{3^n} - \frac{1}{3^n} = \frac{1}{3^n},$$

so $f(\alpha) \neq f(\beta)$

- (c) By (21) we know there is a bijection $h: \mathcal{P}(\mathbb{N}) \to 2^{\mathbb{N}}$, and by part (b) we know $f: 2^{\mathbb{N}} \to \mathbb{R}$ is injective, so the composite function $f \circ h: \mathcal{P}(\mathbb{N}) \to \mathbb{R}$ is injective, which shows $\mathcal{P}(\mathbb{N}) \preceq \mathbb{R}$.
- (23) (a) Show that $\mathcal{P}(\mathbb{N}) \approx \mathcal{P}(\mathbb{Q})$.
 - (b) Show that $\mathbb{R} \leq \mathcal{P}(\mathbb{Q})$.
 - (c) Show that $\mathcal{P}(\mathbb{N}) \approx \mathbb{R}$.

Sample Solution:

- (a) We already know $\mathbb{N} \approx \mathbb{Q}$, so let $g : \mathbb{N} \to \mathbb{Q}$ be a bijection. Now define $f : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{Q})$ by $f(A) = \{g(n) : n \in A\}$. Then f is bijective since g is bijective.
- (b) Define the function $f: \mathbb{R} \to \mathcal{P}(\mathbb{Q})$ by $f(x) = \{q \in \mathbb{Q} : q \leq x\}$. Then f is injective by density of \mathbb{Q} , so $\mathbb{R} \leq \mathcal{P}(\mathbb{Q})$.
- (c) From parts (a) and (b) we get $\mathbb{R} \leq \mathcal{P}(\mathbb{N})$, and from 22(c) we know $\mathcal{P}(\mathbb{N}) \leq \mathbb{R}$, so it follows from the Cantor-Schroder-Bernstein Theorem that $\mathcal{P}(\mathbb{N}) \approx \mathbb{R}$.
- (24) (a) Show that $2^{\mathbb{N}} \leq \mathbb{N}^{\mathbb{N}}$.
 - (b) Show that $\mathbb{N}^{\mathbb{N}} \prec 2^{\mathbb{N}}$.
 - (c) Show that $2^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}}$.

- (a) The function $f: 2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ defined by $f(\alpha)(n) = \alpha(n)$ is injective, so $2^{\mathbb{N}} \leq \mathbb{N}^{\mathbb{N}}$.
- (b) Define the function $f: \mathbb{N}^{\mathbb{N}} \to 2^{\mathbb{N}}$ as follows: given $\alpha = (\alpha(1), \alpha(2), \ldots) \in \mathbb{N}^{\mathbb{N}}$, let

$$f(\alpha) = 1^{\alpha(1)}01^{\alpha(2)}01^{\alpha(3)}0\cdots \in 2^{\mathbb{N}}, \quad \text{where } 1^k = \overbrace{1\cdots 1}^{k-\text{times}} \text{ for each } k.$$

³Hint: spend a few minutes reading about the *Cantor set* on Wikipedia!

Then f is injective, so $\mathbb{N}^{\mathbb{N}} \prec 2^{\mathbb{N}}$.

- (c) This follows immediately from parts (a) and (b) and the Cantor-Schroder-Bernstein Theorem.
- (25) A sequence $f: \mathbb{N} \to X$ is eventually constant if there is $x \in X$ and $N \in \mathbb{N}$ such that f(n) = x for all $n \geq N$.
 - (a) Prove that there are only countably many eventually constant sequences in $2^{\mathbb{N}}$.
 - (b) How many eventually constant sequences are there in $\mathbb{N}^{\mathbb{N}}$?

Sample Solution:

- (a) For each $n \in \mathbb{N}$, let $A_n = \{\alpha \in 2^{\mathbb{N}} : \alpha(i) = \alpha(j) \text{ for all } i, j \geq n\}$. Then each A_n is finite (in fact, $|A_n| = 2^n$), and the set Q of all eventually constant sequences in $2^{\mathbb{N}}$ is just $\bigcup_{n \in \mathbb{N}} A_n$. Thus Q is a countable union of countable (in fact finite) sets, so Q is countable.
- (b) Also countable! Following the proof of (a), if we let $B_n = \{\alpha \in \mathbb{N}^{\mathbb{N}} : \alpha(i) = \alpha(j) \text{ for all } i, j \geq n\}$, then each B_n is countable (why?), so the set of all eventually constant sequences in $\mathbb{N}^{\mathbb{N}}$ is a countable union of countable sets, and is therefore countable.
- (26) Evaluate the limits $\lim_{n\to\infty} \frac{n^2}{2^n}$ and $\lim_{n\to\infty} \frac{2^n}{n^2}$. (Don't bother proving your claims, but take a moment to consider how you would proceed.)

Sample Solution: $\lim_{n\to\infty}\frac{n^2}{2^n}=0$ and $\lim_{n\to\infty}\frac{2^n}{n^2}=\infty$. To show this, we could prove by induction that $2^n>n^3$ for all $n\geq 10$, which implies $\frac{n^2}{2^n}\leq \frac{1}{n}$ and $\frac{2^n}{n^2}\geq n$ for all $n\geq 10$.

(27) Let (a_n) be a sequence in \mathbb{R} . Prove that if $\lim a_n = L \in \mathbb{R}$, then $\lim |a_n| = |L|$.

Sample Solution: Suppose $\lim a_n = L \in \mathbb{R}$. Let $\epsilon > 0$, and fix $N \in \mathbb{N}$ such that $|a_n - L| < \epsilon$ whenever $n \ge N$. Then for all $n \ge N$, we have $||a_n| - |L|| \le |a_n - L| < \epsilon$. This shows $\lim |a_n| = |L|$.

(28) Can a sequence of positive real numbers converge to a negative number? Can a sequence of positive real numbers converge to a number that is not positive? Justify your claims.

Sample Solution: No, a sequence of positive real numbers cannot converge to a negative number. To see this, let (a_n) be an arbitrary sequence of real numbers, and suppose (a_n) converges to the negative real number L. Fix $\epsilon = |L|$, along with $N \in \mathbb{N}$ such that $n \geq N$ implies $|a_n - L| < \epsilon$. Then $a_n < 0$ for all $n \geq N$, establishing our claim. On the other hand, a sequence of positive real numbers can converge to a number that is not positive: for instance, the sequence $(\frac{1}{n})$ converges to zero.

(29) Prove that if $\lim a_n = \infty$ and $\lim b_n = -\infty$, then $\lim a_n b_n = -\infty$.

Sample Solution: Suppose $\lim a_n = \infty$ and $\lim b_n = -\infty$. Let M > 0 be arbitrary. Using $\lim a_n = \infty$, fix $N_1 \in \mathbb{N}$ such that $a_n > 1$ whenever $n \geq N_1$, and using $\lim b_n = -\infty$, fix $N_2 \in \mathbb{N}$ such that $b_n < -M$ whenever $n \geq N_2$. Let $N = \max(N_1, N_2)$, and suppose $n \geq N$. Then $a_n > 1$ and $b_n < -M$, so $a_n b_n < -M$. Since M > 0 was arbitrary, this shows $\lim a_n b_n = -\infty$.

(30) Prove that if $\lim a_n = L \in \mathbb{R}$ and $\lim b_n = \infty$, then $\lim (a_n - b_n) = -\infty$.

Sample Solution: Suppose $\lim a_n = L \in \mathbb{R}$ and $\lim b_n = \infty$. Let $M \in \mathbb{R}$ be arbitrary. Using $\lim b_n = \infty$, fix $N_1 \in \mathbb{N}$ such that $b_n > L + 1 - M$ whenever $n \ge N_1$. Using $\lim a_n = L$, fix $N_2 \in \mathbb{N}$ such that $|a_n - L| < 1$ whenever $n \ge N_2$. Let $N = \max(N_1, N_2)$, and suppose $n \ge N$. Then $a_n < L + 1$ and $b_n > L + 1 - M$, so $a_n - b_n < L + 1 - (L + 1 - M) = M$. Since $M \in \mathbb{R}$ was arbitrary, this shows $\lim (a_n - b_n) = -\infty$.

(31) Let (a_n) be a sequence in \mathbb{R} . Prove in detail that (a_n) converges iff some tail of (a_n) converges iff every tail of (a_n) converges. [Hint: there is a "logically efficient" way of proving these implications; can you find it?]

Sample Solution: Let (a_n) be a sequence in \mathbb{R} . Since (a_n) is a tail of itself, the implications "every tail of (a_n) converges \implies (a_n) converges \implies some tail of (a_n) converges, then every tail of (a_n) converges. So assume some tail of (a_n) converges, fix N such that the sequence (b_n) defined by $b_n = a_{N+n}$ converges (say, to $L \in \mathbb{R}$), and let $(c_n) = (a_{M+n})$ be an arbitrary tail of (a_n) . Let $\epsilon > 0$, and fix $K \in \mathbb{N}$ such that for all $n \geq K$, $|b_n - L| < \epsilon$. Then for all $n \geq K + N$, we have $|c_n - L| = |a_{M+n} - L| = |b_{M+n-N} - L| < \epsilon$, since $M + n - N \geq n - N \geq K$. This shows that $\lim c_n = L$, as desired.

(32) *Let (a_n) and (b_n) be two sequences such that for all $n \in \mathbb{N}$, we have $a_n < b_n$ if n is even and $a_n > b_n$ if n is odd. Prove that if (a_n) and (b_n) both converge, then $\lim a_n = \lim b_n$.

Sample Solution: Suppose $\lim a_n = L$ and $\lim b_n = M$. Then $\lim a_{2n} = \lim(a_{2n-1}) = L$ and $\lim b_{2n} = \lim(b_{2n-1}) = M$. Since $a_{2n} < b_{2n}$ for all n we have $L \leq M$, and since $a_{2n-1} > b_{2n-1}$ for all n, we have $L \geq M$. Thus L = M. [Note: this proof uses subsequences, which we will meet soon; a direct proof without using subsequences is possible, but harder!]

(33) Prove that if $a_n \leq b_n$ for all n and $\lim a_n = \infty$, then also $\lim b_n = \infty$.

Sample Solution: Suppose $a_n \leq b_n$ for all n and that $\lim a_n = \infty$. Let M > 0 be arbitrary, and using $\lim a_n = \infty$ fix N such that for all $n \geq N$ we have $a_n > M$. then $b_n \geq a_n > M$ for all $n \geq N$, which shows $\lim b_n = \infty$.

(34) In lecture we showed that if (a_n) and (b_n) are convergent sequences of real numbers for which $a_n \leq b_n$ for all n, then $\lim a_n \leq \lim b_n$. Can these nonstrict inequalities be replaced by strict ones? That is, if (a_n) and (b_n) are convergent sequences of real numbers for which $a_n < b_n$ for all n, does it necessarily follow that $\lim a_n < \lim b_n$?

Sample Solution: No, if (a_n) and (b_n) converge and $a_n < b_n$ for all n, it does not necessarily follow that $\lim a_n < \lim b_n$. For instance, consider the sequences $a_n = \frac{1}{n^2}$ and $b_n = \frac{1}{n}$ for $n \ge 2$.

(35) Prove the Squeeze Theorem directly using the definition of limit, but without using \liminf and \limsup . (The Squeeze Theorem says: if $a_n \leq s_n \leq b_n$ for all n and $\lim a_n = \lim b_n = L \in \mathbb{R}$, then $\lim s_n = L$.)

Sample Solution: Suppose $a_n \leq s_n \leq b_n$ for all n, and suppose $\lim a_n = \lim b_n = L \in \mathbb{R}$. We will show $\lim s_n = L$. Let $\epsilon > 0$, and fix $N_1, N_2 \in \mathbb{N}$ such that $|a_n - L| < \frac{\epsilon}{2}$ whenever $n \geq N_1$ and $|b_n - L| < \frac{\epsilon}{2}$ whenever $n \geq N_2$. Let $N = \max(N_1, N_2)$ and suppose $n \geq N$. Then

$$L - \frac{\epsilon}{2} < a_n \le s_n \le b_n < L + \frac{\epsilon}{2},$$

so $|s_n - L| < \epsilon$. This shows $\lim s_n = L$.

- (36) Find the \liminf and \limsup of the sequences whose nth terms are given as follows:
 - (a) $2^{n(-1)^n}$
 - (b) $1 + (-1)^n (1 \frac{1}{n})$
 - (c) $\sin\left(\frac{\pi n}{3}\right)\cos\left(\frac{\pi n}{4}\right)$

Sample Solution:

- (a) $\liminf = 0$ and $\limsup = +\infty$.
- (b) $\liminf = 0$ and $\limsup = 2$.
- (c) $\liminf = -\frac{\sqrt{3}}{2}$, $\limsup = \frac{\sqrt{3}}{2}$ (the other subsequential limits are 0 and $\pm \frac{\sqrt{6}}{4}$)
- (37) Prove that for every sequence (a_n) in \mathbb{R} , if $\lim a_n = \infty$ then $\lim \inf a_n = \infty$ and $\lim \sup a_n = \infty$.

Sample Solution: Let (a_n) be a sequence in \mathbb{R} , and suppose $\lim a_n = \infty$. Then by definition we have $\liminf a_n = \infty$. Furthermore, if $\lim a_n = \infty$ then (a_n) is unbounded above, so by definition $\limsup (a_n) = \infty$.

(38) Prove that for all $L \in \mathbb{R}$ and for every bounded sequence (a_n) in \mathbb{R} , $\limsup(a_n) = L$ if and only if for every $\epsilon > 0$ the set $\{n \in \mathbb{N} : a_n > L - \epsilon\}$ is infinite and $\{n \in \mathbb{N} : a_n > L + \epsilon\}$ is finite.

Sample Solution: Let (a_n) be a bounded sequence in \mathbb{R} and let $L \in \mathbb{R}$. Suppose first that $\limsup (a_n) = L$, and let $\epsilon > 0$. Then by definition of $\limsup y \in \mathbb{R}$ such that for all $n \geq N$,

$$L - \epsilon < \sup\{a_k : k > n\} < L + \epsilon$$
.

Then in particular we have $a_n < L + \epsilon$ for all $n \ge N$, so the set $\{n \in \mathbb{N} : a_n > L + \epsilon\}$ is indeed finite. On the other hand, if the set $\{n \in \mathbb{N} : a_n > L - \epsilon\}$ were finite, then we could fix $N' \ge N$ large enough so that $\sup\{a_k : k \ge N'\} \le L - \epsilon$, a contradiction.

Now for the converse, suppose that for every $\epsilon>0$ the set $\{n\in\mathbb{N}: a_n>L-\epsilon\}$ is infinite and $\{n\in\mathbb{N}: a_n>L+\epsilon\}$ is finite. Let $\epsilon>0$, and, using the fact that $\{n\in\mathbb{N}: a_n>L+\frac{\epsilon}{2}\}$ is finite, fix $N\in\mathbb{N}$ large enough so that $a_n\leq L+\frac{\epsilon}{2}< L+\epsilon$ for all $n\geq N$. Let $n\geq N$, so we have $\sup\{a_k: k\geq N\}< L+\epsilon$. But since $\{m\in\mathbb{N}: a_m>L-\epsilon\}$ is infinite, there must be $n'\geq n$ such that $a_{n'}>L-\epsilon$, so $\sup\{a_k: k\geq n\}>L-\epsilon$. We have now show that for all $n\geq N$,

$$L - \epsilon < \sup\{a_k : k \ge n\} < L + \epsilon$$
.

We conclude that $\limsup (a_n) = L$, as desired.

(39) Evaluate the following limits:

(a)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{2n}$$

(b) $\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$

(b)
$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$$

(c) (s_n) , where $s_1 = 2$ and $s_{n+1} = \frac{1}{2} \left(s_n + \frac{3}{s_n} \right)$ for each $n \in \mathbb{N}$.

Sample Solution:

(a)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{2n} = \lim_{n \to \infty} \left[\left(1 + \frac{1}{n} \right)^n \right]^2 = \left[\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \right]^2 = e^2.$$

- (b) Note that $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^n = \lim_{n \to \infty} \left(\frac{n}{n-1}\right)^n$. Since $1 \frac{1}{n} = \frac{n-1}{n}$, this implies $\lim \left(1 - \frac{1}{n}\right)^n = \lim \left[\frac{1}{\left(\frac{n}{n-1}\right)}\right]^n = \lim \frac{1}{\left(\frac{n}{n-1}\right)^n} = \frac{1}{\lim \left(\frac{n}{n-1}\right)^n} = \frac{1}{e}$.

$$L = \lim_{n \to \infty} (s_n) = \lim_{n \to \infty} (s_{n+1}) = \lim_{n \to \infty} \frac{1}{2} \left(s_n + \frac{3}{s_n} \right) = \frac{1}{2} \cdot \left(\lim(s_n) + \frac{3}{\lim s_n} \right) = \frac{1}{2} \left(L + \frac{3}{L} \right).$$

Thus $2L = L + \frac{3}{L}$, so $2L^2 = L^2 + 3$, and therefore $L = \pm \sqrt{3}$. Since (s_n) is bounded below by 0, this implies $L = \sqrt{3}$ if (s_n) converges. But it can be shown by induction* that (s_n) is decreasing, and therefore it converges since it is bounded.

*This is actually more difficult than I had realized. Here is one argument: first show by induction that $s_n > \sqrt{3}$ for all n, where for the inductive step $s_n > \sqrt{3}$ implies $0 < (s_n - \sqrt{3})^2 = s_n^2 - 2\sqrt{3}s_n + 3$, so $2\sqrt{3}s_n < s_n^2 + 3$, which implies $\sqrt{3} < \frac{s_n^2 + 3}{2s_n} = s_{n+1}$. Then for all n we have

$$\frac{s_{n+1}}{s_n} \ = \ \frac{\frac{1}{2}(s_n + \frac{3}{s_n})}{s_n} \ = \ \frac{1}{2}\left(1 + \frac{3}{s_n^2}\right) \ < \ 1,$$

so $s_{n+1} < s_n$.

(40) Go back and prove (32), now that you know about subsequences.

Sample Solution: Suppose $\lim a_n = L$ and $\lim b_n = M$. Then $\lim a_{2n} = \lim (a_{2n-1}) = L$ and $\lim b_{2n} = \lim (b_{2n-1}) = M$. Since $a_{2n} < b_{2n}$ for all n we have $L \leq M$, and since $a_{2n-1} > b_{2n-1}$ for all n, we have $L \geq M$. Thus L = M.

(41) Suppose (a_n) is a bounded sequence in \mathbb{R} . Prove that (a_n) diverges if and only if (a_n) has two subsequences that converge to different limits.

Sample Solution: We know from lecture that if (a_n) converges, say to L, then every subsequence of (a_n) also converges to L; this is the contrapositive of the backward implication. For the forward implication, suppose (a_n) diverges. Since (a_n) is bounded, both $\liminf (a_n)$ and $\limsup (a_n)$ are real numbers. If $\liminf(a_n) = \limsup(a_n)$, then we know from lecture that (a_n) converges to their common value, so we must have $\liminf(a_n) < \limsup(a_n)$. But we also know that (a_n) has a subsequence converging to $\liminf(a_n)$ and a subsequence converging to $\limsup(a_n)$, completing the proof.

(42) Prove that if $\lim_{n\to\infty} a_n = L$, then for every bijection $\pi: \mathbb{N} \to \mathbb{N}$, $\lim_{n\to\infty} a_{\pi(n)} = L$. (Is this still true if we replace the word bijection with injection? How about surjection?

Sample Solution: Suppose $\lim a_n = L$, and let $\pi : \mathbb{N} \to \mathbb{N}$ be a bijection. Let $\epsilon > 0$, and fix $N \in \mathbb{N}$ such that $|a_n - L| < \epsilon$ whenever $n \ge N$. The set $\{\pi^{-1}(n) : n < N\}$ is finite, so fix $N' \in \mathbb{N}$ such that $N' > \pi^{-1}(n)$ for all n < N. Let $n \ge N'$. Then $\pi(n) \ge N$, so $|a_{\pi(n)} - L| < \epsilon$. This shows $\lim_{n \to \infty} a_{\pi(n)} = L$.

(43) Let (a_n) be a sequence of real numbers. Prove that if every subsequence of (a_n) diverges, then for all M > 0 there is $N \in \mathbb{N}$ such that $n \geq N$ implies $a_n \notin [-M, M]$.

Sample Solution: We prove the contrapositive. Suppose there is M > 0 such that $a_n \in [-M, M]$ for infinitely many $n \in \mathbb{N}$. If we let (a_{n_k}) be the subsequence of (a_n) consisting of all the terms in [-M, M], then (a_{n_k}) is a bounded sequence and thus it has a convergent subsequence $(a_{n_{k_\ell}})$ by Bolzano-Weierstrass. But then $(a_{n_{k_\ell}})$ is a convergent subsequence of (a_n) , completing the proof.

- (44) (a) Prove that if U and V are open subsets of \mathbb{R} , then $U \cap V$ is also open.
 - (b) Prove that if U are V are open subsets of \mathbb{R} , then $U \cup V$ is also open.

Sample Solution: Let U and V be open subsets of \mathbb{R} .

- (a) Let $x \in U \cap V$. Fix $\epsilon_U > 0$ and $\epsilon_V > 0$ such that $(x \epsilon_U, x + \epsilon_U) \subseteq U$ and $(x \epsilon_V, x + \epsilon_V) \subseteq V$. Let $\epsilon = \min(\epsilon_U, \epsilon_V)$. Then $(x - \epsilon, x + \epsilon) \subseteq U \cap V$. This shows that $U \cap V$ is open.
- (b) Let $x \in U \cup V$, and wlog say $x \in U$. Fix $\epsilon > 0$ such that $(x \epsilon, x + \epsilon) \subseteq U$. Then $(x \epsilon, x + \epsilon) \subseteq U \cup V$. This shows that $U \cup V$ is open.
- (45) Is the previous problem still true if you replace "open" with "closed"?

Sample Solution: Yes! This follows from DeMorgan's Laws: for instance, if A and B are closed subsets of \mathbb{R} , so that $\mathbb{R} \setminus A$ and $\mathbb{R} \setminus B$ are open, then $\mathbb{R} \setminus (A \cap B) = (\mathbb{R} \setminus A) \cup (\mathbb{R} \setminus B)$ is open by (b), so $A \cap B$ is closed.

(46) Prove that if the subset $C \subseteq \mathbb{R}$ is closed and bounded, then every sequence (a_n) in C has a subsequence that converges to a limit in C.

Sample Solution: Suppose $C \subseteq \mathbb{R}$ is closed and bounded, and let (a_n) be a sequence in C. By Bolzano-Weierstrass, (a_n) has a convergent subsequence, say (a_{n_k}) with limit L. But C is closed, so $L \in C$ by the theorem from lecture.

(47) Let $\sum_{k=1}^{\infty} a_k$ be a conditionally convergent series. Prove that $a_k > 0$ for infinitely many k and $a_k < 0$ for infinitely many k.

Sample Solution: Suppose $\sum a_k$ is conditionally convergent. If $a_k < 0$ for at most finitely many k, then $\sum a_k$ and $\sum |a_k|$ have a tail in common, so they both either converge or diverge, contradicting our assumption that $\sum a_k$ converges conditionally; thus $a_k < 0$ for infinitely many k. By symmetry, it follows that $a_k > 0$ for infinitely many k as well.

(48) Suppose $a_k \geq 0$ for all k, and let $f: \mathbb{N} \to \mathbb{N}$ be any bijection. For each $n \in \mathbb{N}$, let $s_n = \sum_{k=1}^n a_k$ and $t_n = \sum_{k=1}^n a_{f(k)}$. Prove that $\sup\{s_n : n \in \mathbb{N}\} = \sup\{t_n : n \in \mathbb{N}\}$.

Sample Solution: Since f^{-1} is also a bijection, by symmetry it will suffice to show that $\sup\{s_n: n \in \mathbb{N}\} \ge \sup\{t_n: n \in \mathbb{N}\}$. Let $n \in \mathbb{N}$ and consider $t_n = \sum_{k=1}^n a_{f(k)}$. Fix $m \ge n$ such that $m \ge f(k)$ for all $1 \le k \le n$. Then $\{f(k): k \le n\} \subseteq \{k \in \mathbb{N}: 1 \le k \le m\}$, so

$$t_n = \sum_{k=1}^n a_{f(k)} \le \sum_{k=1}^m a_k = s_m \le \sup\{s_n : n \in \mathbb{N}\}$$

since each $a_k \geq 0$. Thus $t_n \leq \sup\{s_n : n \in \mathbb{N}\}$ for every $n \in \mathbb{N}$, which shows $\sup\{t_n : n \in \mathbb{N}\} \leq \sup\{s_n : n \in \mathbb{N}\}$ as desired.

- (49) Let $\sum_{k=1}^{\infty} a_k$ be an infinite series of real numbers, and let (t_k) be a strictly increasing sequence of natural numbers such that $t_1 = 1$. For each $n \in \mathbb{N}$ let $b_n = \sum_{k=t_n}^{t_{n+1}-1} a_k$. (Write out a simple example to understand what is going on here, and how $\sum a_k$ and $\sum b_n$ are related to each other.)
 - (a) Supposing that $\sum a_k$ converges, show that $\sum b_n$ also converges and that $\sum a_k = \sum b_n$.
 - (b) Show by example that $\sum b_n$ could converge even if $\sum a_k$ does not converge.

Sample Solution:

(a) Suppose $\sum a_k$ converges, say $\sum a_k = L \in \mathbb{R}$. Let $s_n = \sum_{k=1}^n a_k$, and let $u_n = \sum_{k=1}^n b_k$. We must show $\lim u_n = L$. Let $\epsilon > 0$, and fix $N \in \mathbb{N}$ such that $|s_n - L| < \epsilon$ whenever $n \geq N$. Suppose $n \geq N$. Note that $n \leq t_n \leq t_{n+1} - 1$ since (t_k) is strictly increasing. Thus

$$|u_n - L| = \left| \sum_{k=1}^n b_k - L \right| = \left| \sum_{k=1}^{t_{n+1}-1} a_k - L \right| = |s_{t_{n+1}-1} - L| < \epsilon,$$

which shows $\lim u_n = L$ as desired.

- (b) For instance, let $a_k = (-1)^k$ and $t_k = 2k 1$ for each $k \in \mathbb{N}$. Then $\sum a_k$ diverges but $b_n = 0$ for each n, so $\sum b_n$ converges.
- (50) Determine whether the following infinite series converge or diverge, with justification.

(a)
$$\sum_{n=1}^{\infty} \frac{n^2 + \sin(n)}{n^3 + 3}$$
 (d) $\sum_{n=1}^{\infty} \sin(n)$ (g) $\sum_{n=1}^{\infty} \cos(n\pi) \ln\left(1 + \frac{1}{n}\right)$ (b) $\sum_{n=0}^{\infty} \frac{n!}{e^n}$ (e) $\sum_{n=0}^{\infty} \frac{(-1)^n}{6^n}$ (h) $\sum_{n=1}^{\infty} \sin(1/n)$ (c) $\sum_{n=4}^{\infty} \frac{1}{n \ln(n)^2}$ (f) $\sum_{n=1}^{\infty} \frac{1}{n^3 + 7}$ (i) $\sum_{n=0}^{\infty} \left(\frac{3n^5 - 2n^2 + 1}{4n^5 + 9n^4 + \sqrt{n}}\right)^n$

(j)
$$\sum_{n=1}^{\infty} \frac{e^{n^2}}{n!}$$

(k)
$$\sum_{n=4}^{\infty} \frac{1}{\ln(n)^{\ln(n)}}$$

(l)
$$\sum_{n=1}^{\infty} \sin(e^{-n})$$

- (a) Diverges, by the Limit Comparison Test.
- (b) Diverges, by the Ratio Test (or nth Term Test).
- (c) Converges, by the Integral Test.
- (d) Diverges, by the nth Term Test.
- (e) Convergent geometric series.
- (f) Converges, by Comparison with a convergent p-series.
- (g) Converges, by the Alternating Series Test.
- (h) Diverges, by the Limit Comparison Test.
- (i) Converges, by the Root Test.
- (j) Diverges, by the Ratio Test.
- (k) Converges, by the Integral Test (twice), or by Comparison Test (eg, with $\frac{1}{n \ln(n)^2}$)
- (1) Converges, by Comparison with a convergent geometric series.
- (51) Of the series from the previous problem that converge, which ones (if any) converge conditionally?

Sample Solution: Only (g) converges conditionally. To see that $\sum \ln(1+\frac{1}{n})$ diverges, note that the partial sums are

$$s_M = \sum_{n=1}^M \ln\left(1 + \frac{1}{n}\right) = \sum_{n=1}^M \ln\left(\frac{n+1}{n}\right) = \sum_{n=1}^M \left(\ln(n+1) - \ln(n)\right) = \ln(M+1) - \ln(1) = \ln(M+1).$$

- (52) Find the limit points of the following subsets of \mathbb{R} :
 - (a) $\{0,1\}$
 - (b) (0,1)
 - (c) [0,1]
 - (d) $\{m \pm \frac{1}{n} : m, n \in \mathbb{N}\}$

- (e) $\bigcup_{n\in\mathbb{N}} \left(\frac{1}{n+1}, \frac{1}{n}\right)$ (f) $\left\{\frac{m}{n} : m \in \mathbb{Z} \text{ and } n = 2^k \text{ for some } k \in \mathbb{N}\right\}$
- (g) the set of transcendental real numbers
- (h) the set of partial sums of the harmonic series

Sample Solution:

(a) Ø

(e) [0,1]

(b) [0,1]

(f) R

(c) [0,1]

(g) R

(d) N

- (h) Ø
- (53) Let $A \subseteq \mathbb{R}$ and $c \in \mathbb{R}$. We call c a closure point of A if $c \in cl(A) = A \cup A'$, where A' is the set of all limit points of A.
 - (a) Show that c is a limit point of A iff there is a sequence (a_n) in $A \setminus \{c\}$ converging to c.
 - (b) Show that c is a closure point of A iff there is a sequence (a_n) in A converging to c.

- (a) For the forward implication, suppose c is a limit point of A. For each $n \in \mathbb{N}$, choose $a_n \in (A \cap V_{\frac{1}{n}}(c)) \setminus \{c\}$. Then (a_n) is a sequence in $A \setminus \{c\}$ that converges to c. For the reverse implication, let (a_n) be a sequence in $A \setminus \{c\}$ that converges to c, and let $\epsilon > 0$. Since $a_n \to c$, we can fix n such that $a_n \in V_{\epsilon}(c)$. Since (a_n) is a sequence in $A \setminus \{c\}$, we know $a_n \neq c$. This completes the proof.
- (b) For the forward implication, suppose $c \in A \cup A'$ is a closure point of A. If $c \in A$, then of course there is a sequence in A converging to c, namely the constant sequence with value c, and if $c \in A'$ then there is a sequence in A converging to c by part (a). Conversely, suppose (a_n) is a sequence in A converging to c. If $c \in A$ then $c \in cl(A)$ by definition, and if $c \notin A$ then (a_n) is a sequence in $A \setminus \{c\}$ converging to c, so $c \in A' \subseteq cl(A)$ by part (a).
- (54) Let (a_n) be a sequence in \mathbb{R} and let $A = \{a_n : n \in \mathbb{N}\}.$
 - (a) Show that every limit point of A is a subsequential limit of (a_n) .
 - (b) Show by example that not every subsequential limit of (a_n) need be a limit point of A.

Sample Solution:

- (a) Let L be a limit point of A. Then for every $\epsilon > 0$ there is $n \in \mathbb{N}$ such that $0 < |a_n L| < \epsilon$. So we can define inductively a subsequence (a_{n_k}) of (a_n) by setting $n_1 = 1$ and then given n_k choosing $n_{k+1} > n_k$ such that $0 < |a_{n_{k+1}} L| < \frac{1}{k+1}$. Then (a_{n_k}) is a subsequence of (a_n) that converges to L, so L is a subsequential limit of (a_n) .
- (b) If we let (a_n) be the constant sequence $a_n = L$ for all n, then L is a subsequential limit of (a_n) but the set $A = \{L\}$ has no limit points.
- (55) Let $f,g:\mathbb{R}\to\mathbb{R}$ be functions, let $c\in\mathbb{R}$, and suppose $\lim_{x\to c}f(x)=L$ and $\lim_{x\to c}f(x)=M$. Prove directly, without using sequences, that $\lim_{x\to c}\left(f(x)+g(x)\right)=L+M$.

Sample Solution: Let $\epsilon > 0$. Using $\lim_{x \to c} f(x) = L$, fix $\delta_1 > 0$ such that $|f(x) - L| < \frac{\epsilon}{2}$ whenever $0 < |x - c| < \delta_1$, and using $\lim_{x \to c} f(x) = M$, fix $\delta_2 > 0$ such that $|f(x) - M| < \frac{\epsilon}{2}$ whenever $0 < |x - c| < \delta_2$. Let $\delta = \min(\delta_1, \delta_2)$, and suppose $0 < |x - c| < \delta$. Then

$$|f(x) + g(x) - (L+M)| = |(f(x) - L) + (g(x) - M)| \le |f(x) - L| + |g(x) - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

- (56) State the precise ϵ/δ -style definitions of the following:
 - (a) $\lim_{x \to \infty} f(x) = +\infty$
 - (b) $\lim_{x \to \infty} f(x) = -\infty$

- (a) For every $M \in \mathbb{R}$ there exists $\delta > 0$ such that f(x) > M whenever $x \in \text{dom}(f)$ and $0 < c x < \delta$.
- (b) For every $M \in \mathbb{R}$ there exists $N \in \mathbb{R}$ such that f(x) < M whenever $x \in \text{dom}(f)$ and x > N.

(57) Find the following limits⁴:

(a)
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}$$

(e)
$$\lim_{x \to -\infty} e^x$$

$$(j) \lim_{x \to 0} \frac{\sin x}{x}$$

(b)
$$\lim_{x \to 3} \frac{x^2 + x - 6}{x - 3}$$

(f)
$$\lim_{x \to \infty} e^x$$

(k)
$$\lim_{x \to 0} \frac{\sin x}{|x|}$$

(c)
$$\lim_{x \to 3^{-}} \frac{x^2 + x - 6}{x - 3}$$

(d) $\lim_{x \to 3} \frac{x^2 + x - 6}{(x - 3)^2}$

(g)
$$\lim_{x \to 0^+} \ln x$$
(h)
$$\lim_{x \to 1} \ln x$$

$$(1) \lim_{x \to 0^-} \frac{\sin x}{|x|}$$

(d)
$$\lim_{x \to 3} \frac{x^2 + x - 6}{(x - 3)^2}$$

(i)
$$\lim_{x \to \infty} \ln x$$

$$(m) \lim_{x \to 0^+} \frac{\sin x}{|x|}$$

Sample Solution:

(a)
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3} = 5$$

(e)
$$\lim_{x \to -\infty} e^x = 0$$

$$(j) \lim_{x \to 0} \frac{\sin x}{x} = 1$$

(a)
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3} = 5$$
 (e) $\lim_{x \to -\infty} e^x = 0$ (b) $\lim_{x \to 3} \frac{x^2 + x - 6}{x - 3}$ DNE (f) $\lim_{x \to \infty} e^x = \infty$ (g) $\lim_{x \to 0^+} \ln x = -\infty$ (d) $\lim_{x \to 3} \frac{x^2 + x - 6}{(x - 3)^2} = +\infty$ (i) $\lim_{x \to \infty} \ln x = \infty$

(f)
$$\lim_{x \to \infty} e^x = \infty$$

(k)
$$\lim_{x \to 0} \frac{\sin x}{|x|}$$
 DNE

(c)
$$\lim_{x \to 3^{-}} \frac{x^2 + x - 6}{x - 3} = -\infty$$

$$x \rightarrow 0^+$$
(h) $\lim_{x \to 0} \ln x = 0$

(1)
$$\lim_{x \to 0^{-}} \frac{\sin x}{|x|} = -1$$

(d)
$$\lim_{x \to 3} \frac{x^2 + x - 6}{(x - 3)^2} = +\infty$$

(i)
$$\lim_{x \to \infty} \ln x = \infty$$

(m)
$$\lim_{x \to 0^+} \frac{\sin x}{|x|} = 1$$

(58) Define the function $f: \mathbb{R} \to \mathbb{R}$ by the rule $f(x) = \begin{cases} x^3 - 2x^2 & \text{if } x \in \mathbb{Q}; \\ x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Find all points $c \in \mathbb{R}$ for which $\lim_{x \to \infty} f(x)$ exists, and for each such point c, find $\lim_{x \to \infty} f(x)$.

Sample Solution: $\lim f(x)$ exists if and only if $c^3 - 2c^2 = c$, i.e., if and only if $c \in \{0, 1 \pm \sqrt{2}\}$. In each of these three cases, the limit of f at c is c.

(59) Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ be a function, let $c \in \mathbb{R}$ be a limit point of A, and let $L \in \mathbb{R}$. Show that $\lim_{x\to c} f(x) = L$ if and only if $\lim_{h\to 0} f(c+h) = L$.

Sample Solution: Assume the hypotheses, and for the forward direction assume $\lim_{x\to c} f(x) = L$. Let $\epsilon > 0$. Fix $\delta > 0$ such that for all $x \in A$, if $0 < |x - c| < \delta$ then $|f(x) - L| < \epsilon$. Let h be such that $c+h \in A$ and $0 < |h| < \delta$. Then $0 < |(c+h)-c| < \delta$, so $|f(c+h)-L| < \epsilon$.

For the converse, assume $\lim_{h\to 0} f(c+h) = L$ and let $\epsilon > 0$. Fix $\delta > 0$ such that for all h satisfying $c+h \in A$ and $0 < |h| < \delta$, we have $|f(c+h) - L| < \epsilon$. Let $x \in A$ and suppose $0 < |x-c| < \delta$. Then

⁴This means find the limit, if it exists, or else state that the limit is equal to $+\infty$ or $-\infty$, if that is the case, or else state that the limit does not exist. Note that since $\pm \infty$ are not real numbers, cases where the limit is equal to $\pm \infty$ are cases where the limit "does not exist;" however, in these cases, the limit fails to exist in a particular way and it is better to say that the limit is $+\infty$ or $-\infty$ rather than just saying that it does not exist, since doing so provides more information. Note that, as always in this class, " ∞ " means the same thing as " $+\infty$."

x-c satisfies $c+(x-c) \in A$ and $0 < |x-c| < \delta$, so we must have $|f(x)-L| = |f(c+(x-c))-L| < \epsilon$, completing the proof.

(60) *Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be functions, and let $a, b, L \in \mathbb{R}$. Assuming that $\lim_{x \to a} f(x) = b$ and $\lim_{x \to b} g(x) = L$, does it necessarily follow that $\lim_{x \to a} g(f(x)) = L$?

Sample Solution: No, it does not! Finding a counterexample is a problem on HW 4.

(61) Let (X, d) be a metric space and let $F \subseteq X$. Prove directly from the definitions that F is closed if and only if every limit point of F in X belongs to F.

Sample Solution: For the forward direction, suppose $F' \not\subseteq F$, and fix $c \in F' \setminus F$. Since $c \in F'$, we have $V_{\epsilon}(c) \cap F \neq \emptyset$ for every $\epsilon > 0$, which shows that $X \setminus F$ is not open, so F is not closed. Conversely, suppose $F' \subseteq F$. Let $x \in X \setminus F$. Then $x \notin F'$, so we can fix $\epsilon > 0$ such that $V_{\epsilon}(x) \subseteq X \setminus F$. This shows $X \setminus F$ is open, so F is closed.

(62) Let $A \subseteq \mathbb{R}$, let $a \in A$, and let $f : A \to \mathbb{R}$ be a function. Show that f is continuous at a if and only if for every open neighborhood V of f(a) there is an open neighborhood U of a such that $f[U \cap A] \subseteq V$.

Sample Solution: For the forward direction, suppose f is continuous at a, and let V be an open neighborhood of f(a). Fix $\epsilon > 0$ such that $V_{\epsilon}(f(a)) \subseteq V$. Using continuity, fix $\delta > 0$ such that $|f(x) - f(a)| < \epsilon$ whenever $x \in A$ and $|x - a| < \delta$. Then $f[V_{\delta}(a) \cap A] \subseteq V_{\epsilon}(f(a)) \subseteq V$, so we can let $U = V_{\delta}(a)$.

For the backward direction, assume that for every open neighborhood V of f(a) there is an open neighborhood U of a such that $f[U \cap A] \subseteq V$, and let $\epsilon > 0$. Using our assumption, obtain an open neighborhood U of a such that $f[U \cap A] \subseteq V_{\epsilon}(f(a))$, and fix $\delta > 0$ such that $V_{\delta}(a) \subseteq U$. Let $x \in A$ and suppose $|x-a| < \delta$. Then $x \in V_{\delta}(a) \subseteq U$, so $f(x) \in V_{\epsilon}(f(a))$, which means $|f(x) - f(a)| < \epsilon$, as desired.

(63) Prove directly (using the ϵ/δ definition and without using sequences) that if $f, g : \mathbb{R} \to \mathbb{R}$ are continuous at $a \in \mathbb{R}$, then also fg is continuous at a.

Sample Solution: Let $f,g:\mathbb{R}\to\mathbb{R}$ be functions that are continuous at $a\in\mathbb{R}$. Let $\epsilon>0$. Fix $\delta_1>0$ such that |g(x)-g(a)|<1 whenever $|x-a|<\delta_1$. Then fix $\delta_2>0$ and $\delta_3>0$ such that $|g(x)-g(a)|<\frac{\epsilon}{2(|f(a)|+1)}$ whenever $|x-a|<\delta_2$ and $|f(x)-f(a)|<\frac{\epsilon}{2(|g(a)|+1)}$ whenever $|x-a|<\delta_3$. Let $\delta=\min(\delta_1,\delta_2,\delta_3)$, and suppose $|x-a|<\delta$. Then

$$|f(x)g(x) - f(a)g(a)| = |(f(x) - f(a))g(x) + f(a)(g(x) - g(a))|$$

$$\leq |g(x)||f(x) - f(a)| + |f(a)||g(x) - g(a)|$$

$$< (|g(a)| + 1) \cdot \frac{\epsilon}{2(|g(a)| + 1)} + |f(a)| \cdot \frac{\epsilon}{2(|f(a)| + 1)}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

This shows that fg is continuous at a, as desired.

(64) Note that the square root function $f(x) = \sqrt{x}$ is continuous at x = 9. Given $0 < \epsilon < 1$, find the largest $\delta > 0$ such that $|\sqrt{x} - 3| < \epsilon$ whenever $|x - 9| < \delta$.

Sample Solution: $\delta = 9 - (3 - \epsilon)^2$.

- (65) A function $f: \mathbb{R} \to \mathbb{R}$ is increasing if for all $x, y \in \mathbb{R}$, $x \leq y$ implies $f(x) \leq f(y)$, decreasing if for all $x, y \in \mathbb{R}$, $x \leq y$ implies $f(x) \geq f(y)$, and monotone if it is either increasing or decreasing.
 - (a) Prove that if $f: \mathbb{R} \to \mathbb{R}$ is monotone and f is discontinuous at $a \in \mathbb{R}$, then f has a jump discontinuity at a.
 - (b) Prove that a monotone function $f: \mathbb{R} \to \mathbb{R}$ has at most countably many discontinuities.

Sample Solution:

- (a) Wlog suppose f is increasing, and assume f has a discontinuity at a. Let $L^- = \sup\{f(x) : x < a\}$ and let $L^+ = \inf\{f(x) : x > a\}$. We claim $L^- = \lim_{x \to a^-} f(x)$ (and, dually, $L^+ = \lim_{x \to a^+} f(x)$). To see this, let $\epsilon > 0$ be arbitrary, and fix c < a such that $f(c) > L^- \epsilon$. Let $\delta = a c$. Then since f is increasing, for all $x \in (a \delta, a)$ we have $L^- \epsilon > f(c) \le f(x) \le L^-$. This shows $L^- = \lim_{x \to a^-} f(x)$, as claimed, and dually we have $L^+ = \lim_{x \to a^+} f(x)$. Thus both one-sided limits of f at a exist, so f has a jump discontinuity at a.
- (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone function (wlog increasing), and let $D = \{a \in \mathbb{R} : f \text{ is discontinuous at } a\}$. By part (a), for each $a \in D$ we have that

$$L^-(a) \; := \; \sup\{f(x) \, : \, x < a\} \; = \; \lim_{x \to a^-} f(x) \; < \; \lim_{x \to a^+} f(x) \; = \; \inf\{f(x) \, : \, x > a\} \; =: \; L^+(a).$$

Using density of \mathbb{Q} , for each $a \in D$ chose $q_a \in \mathbb{Q} \cap (L^-(a), L^+(a))$. Since f is increasing, we have that $L^+(a) \leq L^-(b)$ for all a < b in D. Thus the map $a \mapsto q_a$ from D to \mathbb{Q} is injective, which shows that D is countable as desired.

- (66) *Define Thomae's function $T: \mathbb{R} \to \mathbb{R}$ by $T(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q} \in \mathbb{Q} \text{ where } p \in \mathbb{Z} \text{ and } q \in \mathbb{N} \text{ are coprime;} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$
 - (a) Prove that for every $x \in \mathbb{Q}$, T is discontinuous at x.
 - (b) Prove that for every $x \in \mathbb{R} \setminus \mathbb{Q}$, T is continuous at x.

Sample Solution:

- (a) Let $x \in \mathbb{Q}$, so T(x) > 0. Since the irrationals are dense in \mathbb{R} , we can find a sequence (x_n) of irrationals converging to x. But then $T(x_n) = 0$ for each n, so $T(x_n) \not\to T(x)$, and thus T is not continuous at x.
- (b) Let $x \in \mathbb{R} \setminus \mathbb{Q}$, and let $\epsilon > 0$. Fix $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$. Then the set

$$S = \left\{ \frac{m}{n} : n \in \mathbb{N} \text{ and } n < N \text{ and } m \in \mathbb{Z} \right\} \cap [x - 1, x + 1]$$

is finite, so we can let $\delta = \min\{|x-q| : q \in S\}$. Then $|T(y)| < \epsilon$ whenever $|x-y| < \delta$, which shows that T is continuous at x.

(67) Give an example of a bounded continuous function on (0,1) that is not uniformly continuous.

Sample Solution: For instance, $y = \sin \frac{1}{x}$.

(68) In each part, determine whether the given function is uniformly continuous on the given set. (No rigorous proofs required.)

(a) $y = x^{3/5}$ on \mathbb{R}

(e) $y = \ln x$ on (0, 1]

(b) $y = x^{5/3}$ on \mathbb{R}

(f) $y = \sin x^2$ on \mathbb{R}

(c) $y = \tan x \text{ on } \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

(g) $y = (\sin x)^2$ on \mathbb{R}

(d) $y = \ln x$ on $[1, \infty)$

(h) $y = e^{-x} \sin x^2$ on $[0, \infty)$

Sample Solution:

(a) yes

(e) no

(b) no

(f) no

(c) no

(g) yes

(d) yes

(h) yes (note that the derivative is bounded)

- (69) Let $A \subseteq \mathbb{R}$ and let $f: A \to \mathbb{R}$ be a function. Then f is called *Lipschitz continuous* if there is $K \ge 0$ such that for all $x, y \in A$ we have $|f(x) f(y)| \le K|x y|$.
 - (a) Prove that every Lipschitz continuous function is uniformly continuous.
 - (b) Show by example that not every uniformly continuous function is Lipschitz continuous.

Sample Solution:

- (a) Let $f: A \to \mathbb{R}$ and suppose $K \ge 0$ is such that $|f(x) f(y)| \le K|x y|$ for all $x, y \in A$. If K = 0 then f is constant, hence uniformly continuous, so we may assume K > 0. Let $\epsilon > 0$, and set $\delta = \frac{\epsilon}{K}$. Let $x, y \in A$, and suppose $|x y| < \delta$. Then $|f(x) f(y)| \le K|x y| < K\delta = K \cdot \frac{\epsilon}{K} = \epsilon$.
- (b) For instance, consider the square root function $f(x) = \sqrt{x}$ on [0,1]. We claim that f is not Lipschitz continuous. To see this, let K > 0 be arbitrary, and let $x = \frac{1}{K^2}$ and $y = \frac{1}{(K+1)^2}$. Then

$$K|x-y| = \frac{K}{K^2(K+1)^2} = \frac{1}{K(K+1)^2} < \frac{1}{K(K+1)} = |f(x)-f(y)|,$$
 so $|f(x)-f(y)| \not \leq K|x-y|$.

(70) Suppose the function $f:(0,1)\to\mathbb{R}$ is continuous but not uniformly continuous. Show that at least one of the limits $\lim_{x\to 0^+} f(x)$ or $\lim_{x\to 1^-} f(x)$ does not exist.

Sample Solution: We prove the contrapositive: assuming that both $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 1^-} f(x)$ exist, we will show that f is uniformly continuous. Define the function $g:[0,1]\to\mathbb{R}$ by setting $g(0)=\lim_{x\to 0^+} f(x)$, $g(1)=\lim_{x\to 1^-} f(x)$, and g(x)=f(x) for all $x\in(0,1)$. Then g is continuous on [0,1], so g is uniformly continuous on [0,1], which means that $f=g\upharpoonright(0,1)$ is uniformly continuous too, as desired.

(71) Let (a_n) be the sequence defined recursively by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2 + \sqrt{a_n}}$ for all $n \in \mathbb{N}$. Show that (a_n) converges and prove that $\lim_{n \to \infty} (a_n) < 2$.

Sample Solution: First we show by induction that (a_n) is strictly increasing. For the base, note that $a_1 = \sqrt{2} < \sqrt{2 + \sqrt[4]{2}} = a_2$. For the inductive step, let $n \in \mathbb{N}$ and assume $a_{n+1} > a_n$. Then $a_{n+2} = \sqrt{2 + \sqrt{a_{n+1}}} > \sqrt{2 + \sqrt{a_n}} = a_{n+1}$. Next we prove, again by induction, that $a_n < \sqrt{2 + \sqrt{2}}$ for all n. The base case n = 1 is clear, and assuming $a_n < \sqrt{2 + \sqrt{2}} < 2$, we have $a_{n+1} = \sqrt{2 + \sqrt{a_n}} < \sqrt{2 + \sqrt{2}}$ as desired. Thus (a_n) is bounded and increasing, so it converges, and since $a_n < \sqrt{2 + \sqrt{2}} < 2$ for all n, we have $\lim a_n < 2$.

(72) Let $f, g, h : \mathbb{R} \to \mathbb{R}$ be functions, suppose f is bounded, and suppose $\lim_{x \to -\infty} h(x) = \infty$ and $\lim_{x \to \infty} g(x) = 0$. Prove directly that $\lim_{x \to -\infty} [f(x) \cdot g(h(x))] = 0$.

Sample Solution: Let $\epsilon > 0$. Fix M > 0 such that $|f(x)| \leq M$ for all $x \in \mathbb{R}$. Fix $N_1 \in \mathbb{N}$ such that $|g(x)| < \frac{\epsilon}{M}$ whenever $x > N_1$. Fix $N_2 \in \mathbb{N}$ such that $h(x) > N_1$ whenever $x < -N_2$. Suppose $x < -N_2$. Then $h(x) > N_1$, so $g(h(x)) < \frac{\epsilon}{M}$, so

$$|f(x) \cdot g(h(x))| = |f(x)| \cdot |g(h(x))| < M \cdot \frac{\epsilon}{M} = \epsilon.$$

(73) Let $f:[0,1] \to \mathbb{R}$ be a continuous function. Prove that if $f(x) \neq 0$ for all $x \in [0,1]$, then there is $\epsilon > 0$ such that either $f(x) < -\epsilon$ for all $x \in [0,1]$ or $\epsilon < f(x)$ for all $x \in [0,1]$.

Sample Solution: Let $f:[0,1]\to\mathbb{R}$ be continuous, and suppose $f(x)\neq 0$ for all $x\in[0,1]$. By the IVT, f either takes on only positive values or only negative values; wlog, say f(x)>0 for all $x\in[0,1]$. By the EVT, we may fix $x_0\in[0,1]$ such that $0< f(x_0)\leq f(x)$ for all $x\in[0,1]$. So we set $\epsilon=\frac{f(x_0)}{2}$.

(74) Let $f, g : \mathbb{R} \to \mathbb{R}$ be functions. We say that f dominates g if g(x) < f(x) for all $x \in \mathbb{R}$. Prove that if $f, g : \mathbb{R} \to \mathbb{R}$ are continuous functions such that neither one dominates the other, then f(x) = g(x) for some $x \in \mathbb{R}$.

Sample Solution: Let $f,g:\mathbb{R}\to\mathbb{R}$ be continuous functions and suppose that neither dominates the other, so there exist $a,b\in\mathbb{R}$ such that $f(a)\leq g(a)$ and $g(b)\leq g(a)$. Wlog we have a< b, f(a)< g(a), and g(b)< g(a). Define $h:\mathbb{R}\to\mathbb{R}$ by h(x)=f(x)-g(x). Then h is continuous, h(a)<0, and h(b)>0, so by the IVT there is $c\in(a,b)$ such that h(c)=0, which implies f(c)=g(c) as desired.

(75) Let $A \subseteq \mathbb{R}$, let $a \in A \cap A'$, and let $f : A \to \mathbb{R}$ be a function. Prove that f is differentiable at a if and only if there is a function $\varphi : A \to \mathbb{R}$ that is continuous at a and has the property that for all $x \in A$,

$$\varphi(x)(x-a) = f(x) - f(a).$$

Sample Solution: Assume the hypotheses. For the forward direction, define $\varphi: A \to \mathbb{R}$ by

$$\varphi(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} & \text{if } x \in A \setminus \{a\}; \\ f'(a) & \text{if } x = a. \end{cases}$$

Then φ is continuous at a since by definition of derivative we have

$$\varphi(a) = f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \varphi(x).$$

Conversely, suppose φ is given as stated. Then by continuity of φ at a, we have

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \varphi(x) = \varphi(a),$$

so that f is indeed differentiable at a with $f'(a) = \varphi(a)$.

(76) Find the derivative of the function $f:(0,\infty)\to\mathbb{R}$ defined by

$$f(x) = \frac{e^{\sin x^2} \left(x^{2/5} - \sqrt{x^2 + 1}\right)}{\cos(\ln(x)) e^{e^x}}.$$

Sample Solution:

$$\left[\left(2x \cos(x^2) e^{\sin x^2} \left(x^{2/5} - \sqrt{x^2 + 1} \right) + e^{\sin x^2} \left(\frac{2}{5} x^{-3/5} - \frac{x}{\sqrt{x^2 + 1}} \right) \right) \cos(\ln x) e^{e^x} - e^{\sin x^2} \left(x^{2/5} - \sqrt{x^2 + 1} \right) \left(\frac{-\sin(\ln x)}{x} e^{e^x} + \cos(\ln x) e^{e^x} e^x \right) \right] / \left(\cos(\ln(x)) e^{e^x} \right)^2$$

- (77) (a) Give an example of a function $f:(-1,1)\to\mathbb{R}$ that is C^1 but not twice-differentiable.
 - (b) Give an example of a function $f:(-1,1)\to\mathbb{R}$ that is twice-differentiable but not C^2 .

Sample Solution:

- (a) eg, $f(x) = x^3 \sin \frac{1}{x}$ for $x \neq 0$, and f(0) = 0.
- (b) eg, $f(x) = x^4 \sin \frac{1}{x}$ for $x \neq 0$, and f(0) = 0.
- (78) Suppose $f:(a,b)\to\mathbb{R}$ is differentiable. In the Increasing/Decreasing Test, we stated that:
 - (i) if $f'(x) \ge 0$ for all $x \in (a, b)$, then f is increasing on (a, b);
 - (ii) if $f'(x) \leq 0$ for all $x \in (a, b)$, then f is decreasing on (a, b);
 - (iii) if f'(x) > 0 for all $x \in (a, b)$, then f is strictly increasing on (a, b);
 - (iv) if f'(x) < 0 for all $x \in (a, b)$, then f is strictly decreasing on (a, b);

For which of these statements is the converse true? Prove those that are true, and give counterexamples for those that can fail.

Sample Solution: The converses of (i) and (ii) hold, while the converses of (iii) and (iv) can fail. To see that the converses of (iii) and (iv) can fail, consider the functions $y = \pm x^3$. To prove the converse of (i), suppose f is increasing on (a,b) and let $x \in (a,b)$. Then, using the fact that $f(x) \leq f(y)$ for all $y \in (x,b)$, we have

$$f'(x) = \lim_{y \to x^+} \frac{f(y) - f(x)}{y - x} \ge 0.$$

The proof of the converse of (ii) is similar.

(79) Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be a differentiable function. Show that if f' is bounded on I, then f is uniformly continuous. Then show by example that the converse can fail.

Sample Solution: Fix M>0 such that $|f'(x)|\leq M$ for all $x\in I$. Let $\epsilon>0$, set $\delta=\frac{\epsilon}{M}$, and let $x,y\in I$ and suppose $|x-y|<\delta$. Using the MVT, fix c between x and y such that $f'(c)=\frac{f(x)-f(y)}{x-y}$. Then $|f(x)-f(y)|=|f'(c)||x-y|< M\delta=\epsilon$. This shows that f is uniformly continuous on I. To see that the converse can fail, note that $y=\sqrt{x}$ is differentiable and uniformly continuous on (0,1) but has unbounded derivative on (0,1).

- (80) Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ be a function, let $a \in A \cap A'$, and suppose f is differentiable at a. Show the following:
 - (a) If f'(a) > 0, then there is $\delta > 0$ such that for all $x, y \in A$, if $a \delta < x < a < y < a + \delta$ then f(x) < f(a) < f(y).
 - (b) If f'(a) < 0, then there is $\delta > 0$ such that for all $x, y \in A$, if $a \delta < x < a < y < a + \delta$ then f(x) > f(a) > f(y).

Sample Solution:

- (a) Assume the hypotheses, and in particular suppose f'(a) > 0. Let $\epsilon = \frac{f'(a)}{2}$, and fix δ such that for all $x \in A$, if $0 < |x a| < \delta$ then $\left| \frac{f(x) f(a)}{x a} f'(a) \right| < \epsilon$, so in particular we have $\frac{f(x) f(a)}{x a} > 0$. Let $x, y \in A$ and suppose $a \delta < x < a < y < a + \delta$. Then since x < a and $\frac{f(x) f(a)}{x a} > 0$, we must have f(x) < f(a), and likewise since a < y and $\frac{f(y) f(a)}{y a} > 0$ we must have f(a) < f(y).
- (b) Dual to the proof of (a).
- (81) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function, let $c \in \mathbb{R}$, and suppose f'(c) > 0.
 - (a) Prove that if f is C^1 , then there is an open neighborhood of c on which f is injective.
 - (b) Show by example that the result in (a) can fail if we do not assume f is C^1 .

- (a) Using continuity of f' at c, fix $\delta > 0$ such that $|f'(x) f'(c)| < \frac{f'(c)}{2}$ whenever $|x c| < \delta$. Then $f'(x) > f'(c) \frac{f'(c)}{2} = \frac{f'(c)}{2} > 0$ for all $x \in V_{\delta}(c)$, which implies that f is strictly increasing, and therefore injective, on $V_{\delta}(c)$.
- (b) For instance, the function $f(x) = \frac{1}{2}x + \frac{1}{x^2}\sin\frac{1}{x}$ is differentiable at zero with $f'(0) = \frac{1}{2} > 0$, but there is no open neighborhood of 0 on which f is injective. To see this, let $\delta > 0$ be arbitrary, fix $n \in \mathbb{N}$ such that $\frac{1}{n} < \delta$, and consider the points $x_1 = \frac{1}{2(n+1)\pi + \frac{\pi}{2}}$, $x_2 = \frac{1}{(2n+1)\pi}$, and $x_3 = \frac{1}{2\pi n + \frac{\pi}{2}}$ in $V_{\delta}(0)$. Then $x_1 < x_2 < x_3$, but $0 = f(x_2) < f(x_1) < f(x_3)$, so the IVT implies that f is not injective on $V_{\delta}(0)$.
- (82) Let $f(x) = x 12x^{1/3}$.
 - (a) Find the largest interval I containing 5 on which f is injective.
 - (b) Find $((f \upharpoonright I)^{-1})'(11)$.
 - (c) Find all points in the range of $f \upharpoonright I$ at which $(f \upharpoonright I)^{-1}$ is not differentiable.

- (a) Note that $f'(x) = 1 4x^{-2/3}$ has zeros at $x = \pm 8$, that f'(x) < 0 for all $x \in (-8,8)$, and that f'(x) > 0 for $x \in \mathbb{R} \setminus [-8,8]$. It follows that f is injective on I = [-8,8] but is not injective on any interval strictly containing [-8,8].
- (b) Since f(-1) = 11, we have $((f \upharpoonright I)^{-1})'(11) = \frac{1}{f'(-1)} = \frac{1}{1 4(-1)^{-2/3}} = -\frac{1}{3}$.
- (c) ran(f | I) = [-16, 16], and the only points in this interval at which f^{-1} fails to be differentiable are the endpoints ± 16 .
- (83) Prove directly from the definitions that for all a < b, the identity function f(x) = x is Darboux integrable on [a, b].

Sample Solution: For each $n \in \mathbb{N}$, let \mathcal{P}_n be the regular partition of [a, b] with n subintervals. Then

$$L(f, \mathcal{P}_n) = \sum_{k=0}^{n-1} \left(a + \frac{k(b-a)}{n} \right) \left(\frac{b-a}{n} \right)$$

$$= \frac{b-a}{n} \left(na + \frac{b-a}{n} \sum_{k=0}^{n-1} k \right)$$

$$= a(b-a) + \left(\frac{b-a}{n} \right)^2 \left(\frac{(n-1)n}{2} \right)$$

$$= a(b-a) + (b-a)^2 \left(\frac{n-1}{2n} \right)$$

and

$$U(f, \mathcal{P}_n) = \sum_{k=1}^n \left(a + \frac{k(b-a)}{n} \right) \left(\frac{b-a}{n} \right)$$

$$= \frac{b-a}{n} \left(na + \frac{b-a}{n} \sum_{k=1}^n k \right)$$

$$= a(b-a) + \left(\frac{b-a}{n} \right)^2 \left(\frac{n(n+1)}{2} \right)$$

$$= a(b-a) + (b-a)^2 \left(\frac{n+1}{2n} \right),$$

 \mathbf{SO}

$$\lim_{n \to \infty} L(f, \mathcal{P}_n) = \lim_{n \to \infty} U(f, \mathcal{P}_n) = a(b-a) + \frac{(b-a)^2}{2} = \frac{1}{2}(b^2 - a^2).$$

This shows that $f(x) = x^2$ is integrable on [a, b] with $\int_a^b x^2 dx = \frac{1}{2}(b^2 - a^2)$.

(84) Does there exist a function $f:[0,1]\to\mathbb{R}$ such that |f| is integrable on [0,1] but f is not?

Sample Solution: Yes — for instance, we could let $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ -1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$

(85) Let a < b, and let $f : [a, b] \to \mathbb{R}$ be a nonnegative integrable function such that f(x) > 0 for some $x \in [a, b]$.

(a) Show by example that we could have $\int_a^b f = 0$.

(b) Prove that if f is continuous, then $\int_a^b f > 0$.

Sample Solution:

- (a) For instance, let a = 0 and b = 1, and define f by $f(x) = \begin{cases} 1 & \text{if } x = 0; \\ 0 & \text{if } x \neq 0. \end{cases}$
- (b) Assume the hypotheses, and in particular assume f is continuous. Fix $x_0 \in [a, b]$ such that $f(x_0) > b$ 0, and using continuity of f at x_0 , fix $\delta > 0$ such that $[x_0, x_0 + \delta) \subseteq [a, b]$ or $(x_0 - \delta, x_0] \subseteq [a, b]$ and also $|f(x) - f(x_0)| < \frac{f(x_0)}{2}$ whenever $|x - x_0| \le \delta$. Let $\mathcal{P} = (x_k)_{k=0}^n$ be any partition of [a, b] for which the subinterval containing x_0 has width δ . Fix k such that $x_0 \in [x_{k-1}, x_k]$. Then

$$\int_{a}^{b} f \ge L(f) \ge L(f, \mathcal{P}) = \left(\inf f[I_{k}]\right) \delta + \sum_{j \ne k} (\inf f[I_{j}]) \Delta x_{j} \ge \frac{f(x_{0})}{2} \delta + \sum_{j \ne k} \inf f[I_{j}] \delta x_{j} \ge \frac{f(x_{0})}{2} \delta > 0.$$

(86) Suppose the function $F:[a,b]\to\mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Show by example that F' need not be integrable on [a,b]. (This shows that the assumption of integrability in the statement of the FTOC cannot be removed.)

Sample Solution: For instance, let $F(x) = x^2 \sin \frac{1}{x^2}$ and F(0) = 0 for $x \in [a, b] = [-1, 1]$. Then F is differentiable on [a,b] but F' is unbounded on every open interval containing 0, so F' is not integrable on [-1, 1].

(87) Define the function $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \begin{cases} \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$ Is f integrable on [-1, 1]? Prove your claim.

Sample Solution: Yes. To show this, we will use the fact that f is integrable on [-1,1] iff for every $\epsilon > 0$ there is a partition \mathcal{P} of [-1,1] such that $U(f,\mathcal{P}) - L(f,\mathcal{P}) < \epsilon$. Let $\epsilon > 0$, and let $\delta = \frac{\epsilon}{6}$. Using the fact that f is continuous (hence integrable) on $[\delta, 1]$ and on $[-1, -\delta]$, fix a partition \mathcal{P}_1 of $[-1, -\delta]$ and a partition \mathcal{P}_2 of $[\delta, 1]$ such that $U(f, \mathcal{P}_1) - L(f, \mathcal{P}_1) < \delta$ and $U(f, \mathcal{P}_2) - L(f, \mathcal{P}_2) < \delta$. Now let $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$, so that \mathcal{P} is a partition of [-1,1]. Since $-1 \leq \sin x \leq 1$ for all $x \in I := [-\delta, \delta]$, we have

$$U(f,\mathcal{P}) - L(f,\mathcal{P}) = \left[U(f,\mathcal{P}_1) - L(f,\mathcal{P}_1) \right] + \left[\sup f[I] - \inf f[I] \right] (2\delta) + \left[U(f,\mathcal{P}_2) - L(f,\mathcal{P}_2) \right]$$

$$< \delta + 2(2\delta) + \delta = 6\delta = \epsilon.$$

This shows that f is indeed integrable on [-1, 1].

(88) Let a < b and c < d be real numbers, and suppose the functions $f: [a,b] \to [c,d]$ and $g: [c,d] \to \mathbb{R}$ are integrable. Does it follow that $g \circ f$ is integrable? Either prove this or give a counterexample.

Sample Solution: No, it does not. For instance, let a = 0 and b = 1, let f be Thomae's function, and let $g = \chi_{(0,\infty)}$ be the characteristic function of $(0,\infty)$. Then $g \circ f$ is Dirichlet's function, which is not (Riemann) integrable.

(89) *Does $\lim_{x\to 0} \left(\frac{1}{x} \int_0^x \sin(\frac{1}{t}) dt\right)$ exist? If so, evaluate it.

Sample Solution: We claim $\lim_{x\to 0} \frac{1}{x} \int_0^x \sin(1/t) dt = 0$. Toward showing this, let $0 < x < \frac{1}{\pi}$, and fix $n \in \mathbb{N}$ such that $\frac{1}{n\pi} \le x < \frac{1}{(n-1)\pi}$, so $n \ge 2$. Then

$$\left| \int_{-x}^{0} f \right| = \left| \int_{0}^{x} f \right| \le \left| \int_{0}^{\frac{1}{n\pi}} f \right| + \left| \int_{\frac{1}{n\pi}}^{x} f \right| \le \left| \int_{\frac{1}{(n+1)\pi}}^{\frac{1}{n\pi}} f \right| + \left| \int_{\frac{1}{n\pi}}^{\frac{1}{(n-1)\pi}} f \right|$$

$$\le \left(\frac{1}{n\pi} - \frac{1}{(n+1)\pi} \right) + \left(\frac{1}{(n-1)\pi} - \frac{1}{n\pi} \right) = \frac{2\pi^{-1}}{n^{2} - 1} < \frac{2}{n^{2}} < 2\pi^{2}x^{2}.$$

The desired limit follows.

- (90) For all $x \geq 0$ and $n \in \mathbb{N}$, let $f_n(x) = \frac{x}{n}$.
 - (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
 - (b) Determine whether (f_n) converges uniformly to f on [0,1].
 - (c) Determine whether (f_n) converges uniformly to f on $[0,\infty)$

Sample Solution:

- (a) For each $x \in [0, \infty)$, $f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x}{n} = 0$. (b) $f_n \to f$ uniformly on [0, 1]. To see this, let $\epsilon > 0$ and fix $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$. Then for all $x \in [0,1]$ and $n \ge N$,

$$|f_n(x) - f(x)| = \left|\frac{x}{n} - 0\right| = \frac{x}{n} \le \frac{1}{n} < \epsilon.$$

(c) (f_n) does not converge uniformly to f on $[0,\infty)$. To see this, set $\epsilon=1$, let $n\in\mathbb{N}$ be arbitrary, and let $x \geq n$. Then

$$|f_n(x)-f(x)| = \left|\frac{x}{n}-0\right| = \frac{x}{n} \ge 1 = \epsilon.$$

(91) Show that $\lim_{n \to \infty} \int_{1}^{2} e^{-nx^{2}} dx = 0.$

Sample Solution: We claim that e^{-nx^2} converges uniformly on [1, 2] to the constant 0 function. To see this, let $\epsilon > 0$, and fix $N \in \mathbb{N}$ large enough so that $-N < \log(\epsilon)$, and thus $e^{-N} < \epsilon$. Then for all $n \ge N$ and $x \in [1, 2]$, we have

$$e^{-nx^2} \le e^{-n} \le e^{-N} < \epsilon.$$

Thus $e^{-nx^2} \to 0$ uniformly on [1, 2], so by 8.2.4,

$$\lim_{n \to \infty} \int_{1}^{2} e^{-nx^{2}} dx = \int_{1}^{2} \lim_{n \to \infty} e^{-nx^{2}} dx = \int_{1}^{2} 0 dx = 0.$$

- (92) Find a sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$ such that:
 - (i) for each $n \in \mathbb{N}$, f_n is discontinuous at every point $x \in \mathbb{R}$; and
 - (ii) the sequence (f_n) converges uniformly to a continuous function $f: \mathbb{R} \to \mathbb{R}$.

Sample Solution: For each
$$n \in \mathbb{N}$$
, let $f_n(x) = \begin{cases} \frac{1}{n} & \text{if } x \in \mathbb{Q}; \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

(93) For each $n \in \mathbb{N}$, define the function $f_n: (-1,1) \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} -x & \text{if } -1 < x < -2^{-n} \\ 2^{n-1}x^2 + 2^{-(n+1)} & \text{if } -2^{-n} \le x \le 2^{-n} \\ x & \text{if } 2^{-n} < x < 1 \end{cases}$$

Show that each f_n is differentiable on (-1,1), and that (f_n) converges uniformly to the absolute value function on (-1,1).

Sample Solution: Let $n \in \mathbb{N}$. Clearly f_n is differentiable on $(-1, -2^{-n})$, $(-2^{-n}, 2^{-n})$, and $(2^{-n}, 1)$, so we need only check differentiability at the points $x = \pm 2^{-n}$. Note first that

$$\lim_{x \to (-2^{-n})^{-}} f_n(x) = 2^{-n} = f_n(-2^{-n}) = \lim_{x \to (-2^{-n})^{+}} f_n(x)$$

and

$$\lim_{x \to (2^{-n})^+} f_n(x) = 2^{-n} = f_n(2^{-n}) = \lim_{x \to (2^{-n})^-} f_n(x),$$

so f_n is continuous at $\pm 2^{-n}$. Therefore, since

$$\lim_{x \to (-2^{-n})^{-}} f'(x) = -1 \quad \text{and} \quad \lim_{x \to (2^{-n})^{+}} f'(x) = 1,$$

it will suffice (by L'Hôpital's Rule) to show

$$\lim_{x \to (-2^{-n})^+} f'(x) = -1 \quad \text{and} \quad \lim_{x \to (2^{-n})^-} f'(x) = 1,$$

But this follows from the fact that the derivative of $2^{n-1}x^2 + 2^{-(n+1)}$ at $\pm 2^{-n}$ is ± 1 . Thus f_n is differentiable on all of (-1,1).

Now, to see that (f_n) converges uniformly to y=|x| on (-1,1), let $\epsilon>0$, fix $N\in\mathbb{N}$ such that $2^{-N}<\epsilon$, suppose $n\geq N$, and let $x\in(-1,1)$. If $x\in(-1,-2^{-n}]\cup[2^{-n},1)$, then $|f_n(x)-|x||=0<\epsilon$, so assume $x\in(-2^{-n},2^n)$. Then $0\leq |x|\leq f_n(x)\leq 2^{-n}$, so $|f_n(x)-|x||\leq 2^{-n}<\epsilon$ as needed.

(94) For each $n \in \mathbb{N}$, define the function $g_n : \mathbb{R} \to \mathbb{R}$ by $g_n(x) = \frac{\sin(nx)}{n}$. Show that (g_n) converges uniformly on \mathbb{R} to a differentiable function whose derivative is not $\lim_{n \to \infty} g'_n$.

Sample Solution: We claim that (g_n) converges uniformly on \mathbb{R} to the constant zero function. Indeed, given $\epsilon > 0$, for every $x \in \mathbb{R}$ we have $|g_n(x)| < \epsilon$ for all $n > \frac{1}{\epsilon}$, since $\left|\frac{\sin(nx)}{n}\right| \leq \frac{1}{n}$ for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$. However, we have $g'_n(x) = \cos(nx)$ for each n, so (g'_n) does not converge.

(95) Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ be a function, and let (f_n) be a sequence of continuous functions from A to \mathbb{R} that converges uniformly on A to f. Prove that for every $a \in A$ and sequence (x_n) in A that converges to a, we have $\lim_{n \to \infty} f_n(x_n) = f(a)$.

Sample Solution: Let $a \in A$ and let (x_n) be a sequence in A that converges to a. Let $\epsilon > 0$. Using the fact that uniform limits of sequences of continuous functions are continuous, fix $\delta > 0$ such that $|f(x)-f(a)|<\frac{\epsilon}{2}$ whenever $x\in A$ and $|x-a|<\delta$. Using the convergence of (x_n) to a, fix $N_1\in\mathbb{N}$ such that $|x_n - a| < \delta$ for all $n \ge N_1$, and using uniform convergence of (f_n) to f, fix $N_2 \in \mathbb{N}$ such that for all $n \geq N_2$ we have $|f_n(x) - f(x)| < \frac{\epsilon}{2}$ for all $x \in A$. Let $N = \max(N_1, N_2)$ and suppose $n \geq N$. Then

$$|f_n(x_n) - f(a)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(a)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

(96) Find the intervals of convergence of the power series:

(a)
$$\sum_{n=0}^{\infty} \left(\frac{(n!)^3}{(3n)!} \right) x^n$$

(b)
$$\sum_{n=0}^{\infty} \frac{n^n}{n!} x^n$$

(a)
$$\sum_{n=0}^{\infty} \left(\frac{(n!)^3}{(3n)!} \right) x^n$$
 (b) $\sum_{n=0}^{\infty} \frac{n^n}{n!} x^n$ (c) $\sum_{n=1}^{\infty} \left(\frac{5^{n+1}}{\sqrt{n} \cdot 3^{2n}} \right) x^n$

Can you find the interval of convergence in (c)?

Sample Solution:

- (a) We have $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left(\frac{\left((n+1)! \right)^3}{(3n+3)!} \cdot \frac{(3n)!}{(n!)^3} \right) = \lim_{n \to \infty} \frac{(n+1)^3}{(3n+1)(3n+2)(3n+3)} = \frac{1}{27}$. Thus the radius of convergence is 27 by Hadamard's Theorem.
- (b) We have $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left(\frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} \right) = \lim_{n\to\infty} \left(\frac{n+1}{n} \right)^n = e$. Thus the radius of convergence is $\frac{1}{e}$ by Hadamard's Theorem.

 (c) We have $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left(\frac{5^{n+2}}{\sqrt{n+1} \cdot 3^{2(n+1)}} \cdot \frac{\sqrt{n} \cdot 3^{2n}}{5^{n+1}} \right) = \lim_{n\to\infty} \frac{5\sqrt{n}}{9\sqrt{n+1}} = \frac{5}{9}$. Thus the radius of convergence is $\frac{9}{5}$ by Hadamard's Theorem. Testing the endpoints, we see that

$$\sum_{n=1}^{\infty} \left(\frac{5^{n+1}}{\sqrt{n} \cdot 3^{2n}} \right) \left(\frac{-9}{5} \right)^n \ = \ \sum_{n=1}^{\infty} \frac{5(-1)^n}{\sqrt{n}}$$

which converges by the Alternating Series Test, but $\sum \frac{5}{\sqrt{n}}$ diverges by comparison with the harmonic series. Thus the interval of convergence is $\left[-\frac{9}{5}, \frac{9}{5}\right]$.

- (97) (a) Using the fact that $\frac{d}{dx} \ln x = \frac{1}{x}$ for all x > 0, calculate the Taylor Series of the natural log function centered at x = 1.
 - (b) Using the fact (which you may assume without proof) that the Taylor Series you found in part (a) converges to the natural log function on (0,2], calculate the limit of the alternating harmonic series.

Sample Solution:

(a) Writing $f(x) = \ln x$, we have $f^{(n)}(x) = (-1)^{n-1}(n-1)!x^{-n}$ for all $n \in \mathbb{N}$ and x > 0. Thus the Taylor series for f centered at 1 is

$$\ln(1) + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n-1)!}{n!} (x-1)^n = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-1)^n.$$

(b) Write
$$T(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-1)^n$$
, so $T(x) = \ln x$ for all $x \in (0,2]$. Then

$$\ln(2) = T(2) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (2-1)^n = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

(98) Let $A \subseteq \mathbb{R}$. Prove that A is open if and only if A can be expressed as a disjoint union of countably many open intervals.

Sample Solution: Let $A \subseteq \mathbb{R}$. We have already shown that open intervals are open and that unions of open sets are open, so the backward direction holds. For the forward direction, suppose A is open, and let $x \in A$. Define $a_x := \sup\{y < x : y \notin A\}$ and $b_x := \inf\{y > x : y \notin A\}$. Note that a_x might be $-\infty$ and/or b_x might be $+\infty$, but since A is open we have $a_x < x < b_x$ and also $a_x, b_x \notin A$. Furthermore, we know $(a_x, b_x) \subseteq A$ by definition of a_x and b_x . Thus

$$A = \bigcup_{x \in A} (a_x, b_x).$$

Next, note that for all $x, y \in A$, we have that $(a_x, b_x) \cap (a_y, b_y) \neq \emptyset$ implies $(a_x, b_x) = (a_y, b_y)$, so any two *distinct* open intervals in the union above are actually disjoint. Finally, there can be only countably many distinct open intervals in the union, since each such interval contains a rational by density of \mathbb{Q} , and \mathbb{Q} is countable.

- (99) Let $V \subseteq \mathbb{R}$ be an open set, and write $V = \bigcup_{n \in \mathbb{N}} (a_n, b_n)$, where $(a_n, b_n) \cap (a_m, b_m) = \emptyset$ for all $m \neq n$. Define the *measure* of V to be $\mu(V) = \sum_{n=1}^{\infty} (b_n a_n)$. In the problems below, you may use without proof the (geometrically obvious) fact that for any open set $V \subseteq \mathbb{R}$ and sequence of open intervals (a_n, b_n) in \mathbb{R} , if $V \subseteq \bigcup_{n \in \mathbb{N}} (a_n, b_n)$ then $\mu(V) \leq \sum_{n=1}^{\infty} (b_n a_n)$.
 - (a) Prove that for every $\epsilon > 0$, there is an open subset of \mathbb{R} that contains \mathbb{Q} and has measure less than ϵ .
 - (b) Does there exist an open set $V \subseteq \mathbb{R}$ such that $\mathbb{Q} \subseteq V$ and $\mathbb{R} \setminus V$ is uncountable?

Sample Solution:

- (a) Let $\epsilon > 0$. Using the fact that \mathbb{Q} is countable, write $\mathbb{Q} = \{q_n : n \in \mathbb{N}\}$. For each $n \in \mathbb{N}$, let $\delta_n = \epsilon \cdot 2^{-(n+2)}$, and let $a_n = q_n \delta_n$ and $b_n = q_n + \delta_n$. Then $q_n \in (a_n, b_n)$ for each n, so $V := \bigcup_{n \in \mathbb{N}} (a_n, b_n) \supseteq \mathbb{Q}$. But $\sum_{n=1}^{\infty} (b_n a_n) = \sum_{n=1}^{\infty} \epsilon 2^{-(n+1)} = \frac{\epsilon}{2}$, so $\mu(V) \leq \frac{\epsilon}{2} < \epsilon$.
- (b) Yes! We can take $\epsilon = 1$ and apply part (a) to obtain an open set $V \supseteq \mathbb{Q}$ such that $\mu(V) < 1$. If $\mathbb{R} \setminus V$ were countable, then $\mathbb{R} \setminus V$ would have measure zero, which would make $\mu(\mathbb{R}) = \mu(V) + \mu(\mathbb{R} \setminus V) < \epsilon + 0 = \epsilon$. But $\mu(\mathbb{R}) = \infty$, so this is impossible!

Remark: it is an excellent exercise to meditate on what such a set V could possibly look like. Remember that the vast majority of real numbers are not in V!

⁵Note: we might need to take $a_n = b_n$ for infinitely many n here.

(100) *For each pair of real numbers $\alpha, \beta \in \mathbb{R}$, define the function $f_{\alpha,\beta} : [0,\infty) \to \mathbb{R}$ as follows: if $\alpha, \beta \geq 0$, then $f_{\alpha,\beta}(x) = x^{\alpha} \sin x^{\beta}$, and if $\alpha < 0$ or $\beta < 0$ then

$$f_{\alpha,\beta} = \begin{cases} x^{\alpha} \sin x^{\beta} & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}$$

(Note that for some $\alpha, \beta \in \mathbb{R}$, including all $\alpha, \beta \geq 0$, we can also define $f_{\alpha,\beta}(x)$ for x < 0, but to avoid certain complications we will just work on $[0, \infty)$ in this problem.)

- (a) Determine the set of all $(\alpha, \beta) \in \mathbb{R}^2$ for which $f_{\alpha,\beta}$ is continuous.
- (b) Determine the set of all $(\alpha, \beta) \in \mathbb{R}^2$ for which $f_{\alpha, \beta}$ is differentiable.
- (c) Determine the set of all $(\alpha, \beta) \in \mathbb{R}^2$ for which $f_{\alpha, \beta}$ is C^1 .

- (a) $f_{\alpha,\beta}$ is continuous on $[0,\infty)$ iff $[\alpha>0 \text{ or } (\alpha=0 \text{ and } \beta\geq 0)].$
- (b) $f_{\alpha,\beta}$ is differentiable on $[0,\infty)$ iff $[\alpha > 1 \text{ or } (\alpha = 1 \text{ and } \beta \ge 0)]$.
- (c) $f_{\alpha,\beta}$ is C^1 on $[0,\infty)$ iff $[\alpha > 1$ and $\alpha + \beta > 1]$ or $[\alpha = 1$ and $\beta \ge 0]$.