Complexity Analysis

Instructor: Dr. Sunho Lim (Ph.D., Assistant Professor)

Lecture 02

sunho.lim@ttu.edu

Adapted partially from Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition, Cengage Learning; and Algorithms and Data Structures, Douglas Wilhelm Harder, Mmath

CS2413: Data Structures, Fall 2021

1

Algorithm vs. Data Structure

- Suppose we have two algorithms, how can we tell which one is better?
 - could implement both algorithms, run them both
 - expensive and error prone...
 - preferably, analyze them mathematically
 - Algorithm analysis
- Algorithms ←→ Data Structures
 - data structures are implemented using algorithms
 - some algorithms are more efficient than others
 - how to measure efficiency?

Ŧ

Computational and Asymptotic Complexity

- Algorithm's complexity
 - the efficiency of the algorithm in terms of the amount of data the algorithm must process
 - need metrics to compare
- Main complexity measures of efficiency:
 - Time complexity, the amount of time an algorithm takes in terms of the amount of input
 - Space complexity, the amount of memory (space) an algorithm takes in terms of the amount of input
- Algorithm's asymptotic complexity
 - when n (number of input items) goes to infinity, what happens to the algorithm's performance?

CS2413: Data Structures, Fall 2021

3

Computational and Asymptotic Complexity (cont.)

- e.g., $f(n) = n^2 + 100n + \log_{10}n + 1000$
- As the value of n increases, only the n^2 term is significant

n	f(n) n ²			1	00n	log ₁₀ n		1,000	
	Value	Value	%	Value	%	Value	%	Value_	%
1	1,101	1	0.1	100	9.1	0	0.0	1,000	90.83
10	2,101	100	4.76	1,000	47.6	1	0.05	1,000	47.60
100	21,002	10,000	47.6	10,000	47.6	2	0.001	1,000	4.76
1,000	1,101,003	1,000,000	90.8	100,000	9.1	3	0.0003	1,000	0.09
10,000	101,001,004	100,000,000	99.0	1,000,000	0.99	4	0.0	1,000	0.001
100,000	10,010,001,003	10,000,000,000	99.9	10,000,000	0.099	5	0.0	1,000	0.00

Asymptotic Analysis

- Given an algorithm:
 - need to be able to describe these values mathematically
 - need a systematic means of using the description of the algorithm together with the properties of an associated data structure
 - need to do this in a machine-independent way
 - Supercomputer vs. PC?
- Need to run the algorithm to measure running time (execution time)? But...
 - want to estimate running time without running the algorithm
 - asymptotic notation

CS2413: Data Structures, Fall 2021

5

Big-O Notation

- The most commonly used notation for asymptotic complexity
 - estimate the rate of function growth
 - e.g., $n^2 + 100n + \log_{10}n + 1000 = O(n^2)$
- **Definition**: Let f(n) and g(n) be functions, where n is a positive integer. We write f(n) = O(g(n)) if and only if there exists a real number c and positive integer N satisfying $0 \le f(n) \le cg(n)$ for all $n \ge N$.
- Examples:
 - f(n) = 3n + 2
 - $f(n) = 6 \times 2^n + n^2$

T,

Quadratic Growth

- Consider the two functions
 - $f(n) = n^2$ and $g(n) = n^2 3n + 2$
 - Around n = 0, they look very different

7

Quadratic Growth (cont.)

• Yet on the range n = [0, 1000], they are (relatively) indistinguishable:

Big-O Notation (cont.)

- While c and N exist,
 - how to calculate them? or what to do?, if multiple candidates exist
- e.g., the function *f*:

$$f(n) = 2n^2 + 3n + 1$$

and g:

$$g(n) = n^2$$

• Clearly f(n) is $O(n^2)$; possible candidates for c and N

с	≥ 6	$\geq 3\frac{3}{4}$	$\geq 3\frac{1}{9}$	$\geq 2\frac{13}{16}$	$\geq 2\frac{16}{25}$	 \rightarrow	2
N	1	2	3	4	5	 \rightarrow	00

CS2413: Data Structures, Fall 2021

11

Big-O Notation (cont.)

• Solving the inequality from the definition of big-O:

$$f(n) \leq cg(n)$$

• Substituting for f(n) and g(n),

$$2n^2 + 3n + 1 \le cn^2 \text{ or } 2 + 3/n + 1 / n^2 \le c$$

■ Since $n \ge N$, and N is a positive integer, start with N = 1 and substitute in either expression to obtain c

Big-O Notation (cont.)

$$f(n) = 2n^2 + 3n + 1$$

•Generally, choose an N that allows **one term of f** to **dominate** the expression

- only two terms to consider: $2n^2$ and 3n, since the last term is a constant
- as long as n is greater than 1.5, $2n^2$ dominates the expression
- N must be 2 or more, and c is greater than 3.75
- ■The choice of c depends on the choice of N and vice-versa

CS2413: Data Structures, Fall 2021

13

Examples of Complexities

- Classes of algorithms and their execution times
 - Use a computer executing I million operations per second

Class	Complexity Number of Operations and Execution Time (1 instr/µsec)								
n		10			10 ²	10	3		
constant	O(1)	1	1 μsec	1	1 μsec	1	1 μsec		
logarithmic	$O(\lg n)$	3.32	3 µsec	6.64	7 μsec	9.97	10 μsec		
linear	O(n)	10	10 μsec	10 ²	100 μsec	10 ³	1 msec		
$O(n \lg n)$	$O(n \lg n)$	33.2	33 µsec	664	664 μsec	9970	10 msec		
quadratic	$O(n^2)$	10 ²	100 μsec	104	10 msec	106	1 sec		
cubic	$O(n^3)$	10 ³	1 msec	106	1 sec	10 ⁹	16.7 min		
exponential	$O(2^{n})$	1024	10 msec	1030	3.17 * 10 ¹⁷ yrs	10301			

15

Examples of Complexities (cont.)

- The class of an algorithm based on big-O notation
 - a convenient way to describe its behavior
- e.g., a linear function is O(n);
 - its time increases in direct proportion to the amount of data processed

n		10 ⁴		105	i	10 ⁶	
constant	O(1)	1	1 µsec	1	1 μsec	1	1 μsec
logarithmic	$O(\lg n)$	13.3	13 μsec	16.6	7 μsec	19.93	20 μsec
linear	O(n)	104	10 msec	105	0.1 sec	106	1 sec
$O(n \lg n)$	$O(n \lg n)$	133 × 10 ³	133 msec	166 * 10 ⁴	1.6 sec	199.3 * 10 ⁵	20 sec
quadratic	$O(n^2)$	108	1.7 min	1010	16.7 min	1012	11.6 days
cubic	$O(n^3)$	1012	11.6 days	1015	31.7 yr	1018	31,709 yr
exponential	$O(2^n)$	103010		1030103		10301030	

Examples of Complexities (cont.)

Relationships expressed graphically:

- With today's supercomputers..
- cubic order algorithms or higher are impractical for large numbers of elements CS2413: Data Structures, Fall 2021

17

Finding Asymptotic Complexity

- Asymptotic bounds
 - used to determine the time and space efficiency of algorithms
 - generally, we are interested in time complexity!!
- Consider a simple loop:

- In initialization, execute two assignments once
 - <u>sum = 0</u> and <u>i = sum</u>
- In the loop, n times
 - update sum (sum = sum + a[i]) and increment i (e.g., i++)
- 2 + 2n assignments → O(n) /* asymptotic complexity */

Finding Asymptotic Complexity (cont.)

- A nested loop case,
 - the complexity grows by a factor of n, although this isn't always the case
- Consider,

CS2413: Data Structures, Fall 2021

19

Finding Asymptotic Complexity (cont.)


```
for (i = 0; i < n; i++) {
for (j = 1, sum = a[0]; j <= i; j++)
    sum += a[j];
cout << "sum for subarray 0 through " << i
    << " is " << sum << endl;</pre>
```

- In the outer loop, initialize i and execute n times
 - Increment i, and execute the inner loop and cout statement
- In the inner loop, initialize j and sum each time,
 - the number of assignments so far, I + 3n
 - execute i times, where i ranges from I to n I
 - each time the inner loop executes, increment j and update sum
 - the inner loop executes $\sum_{i=1}^{n-1} 2i = 2(1+2+...+n-1) = n(n-1)$ assignments
- The total number of assignments, $I + 3n + n(n I) \rightarrow O(n^2)$

