

Figure 1

Streptococcus mutans ***ComCDE* Operon**

Figure 2

A.

[ATGAAAAAAACACTATCATTAAAAATGACTTAAAGAAATTAAGACTGATGAATTAG
AGATTATCATTGGCGGA (AGCGGAAGCCTATCAACATTTCCGGCTGTTAACAGAAG
TTTACACAAGCTTGGGAAAA)] TAA

B.

AGCGGAAGCCTATCAACATTTCCGGCTGTTAACAGAAGTTTACACAAGCTTGGG
AAAA

C.

[ATGAATGAAGCCTTAATGATACTTTCAAATGGTTATTAACCTATCTAACCGTTCTAT
TTCTCTGTTCTATTTCTAAGGTAAAGTAATGTCACTTATCGAAAAAGGAATTAAC
CTTTTTCTGATAAGCAATTTCGATAATGATTGCTGTTACGATGGTAAACGTAACCT
GTTTTATCCTGCAGAGCCTTTATTTATAGCTTATCAATTATCTTAATAGACAGA
ATAGTCTTCTCTAAATATTTATGGTCTGCTGCCAGTTCTGACTTGT
AGGCAGGCAATCATATTCTTATCTGGATGGAACCTAAGGAATTGTAATGGCAGTAG
CATTATAACCACCTATATGATCGAGTTGCAGGAATAGCGCTAACGTTACCTCTCA
GTGTGTTCAATGTTGATATTGGTCACTTAAAGATAGTTGACCAAGATGAAGGTCAA
AAACGCTGATTCCAATGAATATTACTATGCTTCTATACTACCTTTAATACAGGTATT
GTATGTTATAGAGAGTTATAATGTGATACCGACTTAAAATTGCTAAATTGTCGTTA
TTGTCTATCTTATTTATTGGTATTCTGATCTCATTAAAGCCAATATACCAAACAA
AAGGTTCAAATGAGATAATGGCACAAAGGAAGCTCAGATTGAAATATCACCCAGTA
TAGTCAGCAAATAGAATCTTTACAAGGATATTGCAAGGTTCCGCCATGATTATCTGA
ATATTAACTAGCCTCAGATTAGGCATTGAAAATAAGATTAGCTAGTATTGAAAAG
ATTTACCATCAAATCTTAGAAAAACAGGACATCAATTGCAAGGATACCGTTATAATAT
CGGCCATCTAGCTAATATTCAAACGATGTCAGGGTATCTGTCAGCAAAATCT
TAGAAGCTCAGAATAAAAGATTGCTGTCATGTAGAAGTCTCAAGTAAAATACAACGT
CCTGAGATGGAGTTGCTGATTCTGATTACCATCTTCTATCTGTCAGCAATGCCAT
TGAGGCTGCTTCAATCATTAAATCCTGAAATTGCTTAGCCTTTTAAGAAAAATG
GCAGTATAGTCTTATCATTGAGAAATTCCACCAAGAAAAACAAATAGATGTGAGTAA
ATTTTAAAGAAAATTCACCAAAGGCTCCAATCGCGTATTGGTTAGCAAAGGT
GAATCATATTCTGAACATTATCCCACCAAGTTACAAACAAGCAATCATCATT
TATTCAAGCAACTCCTAATAATAAA] TAG

D.

[ATGATTCTATTTGTATTGGAAGATGATTTTACAACAAGGACGTCTGAAACCA
CCATTGCAGCTATCATGAAAGAAAAATTGGTCTATAAAGAATTGACTATTTGGA
AAACCACAACAACTTATTGACGCTATCCCTGAAAAGGGCAATCACCAGATTTCTTTT
GGATATTGAAATCAAAAAGAGGAAAAGAAAGGACTGGAAGTAGCCAATCAGATTAGAC
AGCATAATCCTAGTGCAGTTATTGTCAGGACACATTCTGAGTTATGCCCTC
ACTTTCACTGATCAGGTATCTGCTTGGATTATTGATAAACTTGAATCCTGAGGA
GTTCTCCCACCGCATTGAATCAGCGCTGTATTGCTATGGAAAACAGCCAGAAGAATG
GTCAATCAGAGGAACCTTTATTTCCATTCTGAAACTCAGTTCAAGGTCCTTATACTTA
GCTGAGATTCTGATTTGAAACATCTTCAACAGCCATAAGCTCTGCCTTATACTTA
TGATGAACGGATTGAATTCTACGGCAGTATGACTGACATTGTTAAAGAGAC

Atty's Docket No. 1889-00401
Applicants: Dennis CVITKOVITCH, et al.
Title: Signal Peptides, Nucleic Acid Molecules and Methods for
Treatment of Caries 09/833,017
Sheet 3 of 19

Figure 2 (cont'd)

TTTTTCAGTGCCATCGCTTTTATTGTCAATCCTGCCAATATTACCCGTATTGATCGG
AAAAAAACGCTTGGCCTATTTCGAAATAATAAGTCTTGTCTTATTCACGAACTAAGTT
AACAAAACGTGAGAGCTGTGATTGCTGATCAAAGGAGAGCAAAA] TGA

Figure 3

A.

MKKTLSLKNDFKEIKTDELEIIIIGGSGSLSTFFRLFNRSFTQALGK

B.

MNEALMILSNGLLTYLTVLFLFLFSKVSNVTLSKKELTLSI SNFLIMIAVTMVNVNL
FYPAEPLYFIALSIYLNQRQNSLSLNI FYGLLPVASSDLFRRAI IFFILDGTQGIVMGSS
I ITTYMIEFAGIALSYLFSLSVNVDIGRLKDSLTKMKVKKR LI PMNITMLLYYLLIQVL
YVIESYNVIPTLKFRKFVVIVYLFLILISFLSQYTQKVQNEIMAQKEAQIRNITQY
SQQIESLYKD I RSRHDYLNILTSLRLGIENKDLASIEKIYHQILEKTGHQLQDTRYNI
GHLANIQNDAVKGILSAKILEAQNKIAVNVEVSSKIQQLPEMELLD FITILSILCDNAI
EAAFESLNPEIQLAFFKKNGSIVFI IQNSTKEKQIDVSKIFKENYSTKGSNRGIGLAKV
NHILEHYPKTSLOTSNHHHLFKQLLIIK

C.

MISIFVLEDDFLQQGRLETTIAAIMKEKNWSYKELTI FGKPQQLIDAI PEKGNHQIFFL
DIEIKKEEKKGLEVANQIRQHNPSAIVFVTTHSEFMPLTFQYQVSALDFIDKSLNPEE
FSHRIESALYYAMENSQKNGQSEELFIFHSSETQFQVPFAEILYFETSSTAHKLCLYTY
DERIEFYGSMTDIVKMDKRLFQCHRSFIVNPANITRIDRKKRLAYFRNNKSCLISRTKL
TKLRAVIADQRRAK

Atty's Docket No. 1889-00401
Applicants: Dennis CVITKOVITCH, et al.
Title: Signal Peptides, Nucleic Acid Molecules and Methods for
Treatment of Caries 09/833,017
Sheet 5 of 19

Figure 4

A.

BM71 CSP	1 MKKTPSLKNDFKEIKTDELEIIIIGGSGSLSTFFRLFNRSFTQALGK	46
GB14 CSP	1 MKKTLSLKNDFKEIKTDELEIIIIGGSGSLSTFFRLFNRSFTQALGK	46
H7 CSP	1 MKKTLSLKNDFKEIKTDELEIIIIGGSGSLSTFFRLFNRSFTQALGK	46
JH1005 CSP	1 MKKTLSLKNDFKEIKTDELEIIIIGGSGTLSTFFRLFNRSFTQA	43
LT11 CSP	1 MKKTLSLKNDFKEIKTDELEIIIIGGSGSLSTFFRLFNRSFTQALGK	46
NG8 CSP	1 MKKTLSLKNDFKEIKTDELEIIIIGGSGSLSTFFRLFNRSFTQALGK	46
UAB159 CSP	1 MKKTLSLKNDFKEIKTDELEIIIIGGSGSLSTFFRLFNRSFTQALGK	46

***** *****

B.

consensus: 1 MKKTLSLKNDFKEIKTDELEIIIIGG SGSLSTFFRLFNRSFTQALGK 46
predicted cleavage site:

Figure 5

SGSLSTFFRLFNRSFTQALGK

Figure 6

Figure 7

Strain	Peptide added Number of Transformants/Recipients	No peptide Number of Transformants/Recipients
UAB15	4.65×10^{-1}	1.78×10^{-6}
JH1005 ²	6.98×10^{-2}	0

¹The final concentration of SCSP used was 500 ng/ml.

The strain contains a nonsense mutation in the *comC* gene encoding the CSP.

Figure 8

ComC region

ComC Primer Pair: F5-B5

[F5] 23406-23424 5'- AGTTTTTGTCTGGCTGCG -3'

19 nt forward primer

pct G+C: 47.4 Tm: 50.5

[B5] 24056-24037 5'- TCCACTAAAGGCTCCAATCG -3'

20 nt backward primer

pct G+C: 50.0 Tm: 51.9

651 nt product for F5-B5 pair (23406-24056)

Optimal annealing temp: 50.3

pct G+C: 30.9 Tm: 71.5

ComD region

ComD Primer Pair: F1-B1

[F1] 392-415 5'- CGCTAAGTTACCTCTTCTCAGTG -3'

24 nt forward primer

pct G+C: 45.8 Tm: 51.6

[B1] 683-663 5'- GCTTCCTTTGTGCCATTATC -3'

21 nt backward primer

pct G+C: 42.9 Tm: 50.8

292 nt product for F1-B1 pair (392-683)

Optimal annealing temp: 49.5

pct G+C: 30.8 Tm: 70.2

ComE region

ComE Primer Pair: F1-B1

[F1] 145-165 5'- CCTGAAAAGGGCAATCACCAAG -3'

21 nt forward primer

pct G+C: 52.4 Tm: 55.9

[B1] 606-585 5'- GCGATGGCACTGAAAAAGTCTC -3'

22 nt backward primer

pct G+C: 50.0 Tm: 55.4

462 nt product for F1-B1 pair (145-606)

Optimal annealing temp: 53.6

pct G+C: 38.3 Tm: 74.1

Figure 9

Sequence Range: 1 to 2557

10 20 30 40 50
ACATTATGTGCTTAAGAAAATATTACTTTCAAGAAAATCCATGATT
TGTAAACACAGGATTCTTTATAATGAAAAGTCTTTAGGTACTAA
< K K L F I W S K >
< _____ >

60 70 80 90 100
TTTCATAAAAAATAGTACTAATTATAATCAAAAAAGGAGATATAAA
AAAAGTATTTTATCATATGATTAATTAGTTCTCTATATT
< K M F F L I S I I L F L L Y L >
< _____ >

110 120 130 140 150
ATGAAAAAAACACTATCATTAAAAAATGACTTTAAAGAAATTAAGACTGA
TACTTTTTGTGATAGTAATTACTGAAATTCTTAATTCTGACT
M K K T L S L K N D F K E I K T D >
< I F F V S D N F F S K L S I L V S >
< _____ >

160 170 180 190 200
TGAATTAGAGATTATCATTGGCGGAAGCGGAAGCCTATCAACATTTTCC
ACTTAATCTCTAACAGGCCTTCGCGCTTCGGATAGTTGTAAAAAGG
E L E I I I G G S G S L S T F F >
< S N S I I M >
< _____ >

210 220 230 240 250
GGCTGTTAACAGAAGTTTACACAAGCTTGGAAAATAAGATAGGCTA
CCGACAAATTGTCTTCAAAATGTGTCGAAACCCTTTATTCTATCCGAT
R L F N R S F T Q A L G K >
< _____ >

260 270 280 290 300
ACATTGGAATAAAACAAGGCTGGATTATTATTCCAGCCTTTAAATGT
TGTAACCTTATTTGTTCCGACCTAAATAAGGTCGGAAAATTACAA
< _____ >

310 320 330 340 350
AAAATAAAAACAGGGTAAATAATCAAGTGTGCTGTCGGATGAGAA
TTTATTTATGTCCCAATTATTAGTTCACACGACAGCACCTACTCTT
< _____ >

360 370 380 390 400
GATAAAACTATCTCTTAGAGAATAGGCCTCCTCTATTATTATTAGGAG
CTATTTGATAGAGAATCTCTTATCCGGAGGAGATAAAATAATCCTC
< K I I L L >
< _____ ORF RF [] >

410 420 430 440 450
TTGCTTGAATAATGATGATGATTGCTTGTAAACTGGTTGGGAT
AACGAACCTATTTACTACTAACGAACAAACATTGACCAAAACCTA
< Q K F L H H H N S T Q L S T K P Y >

Figure 9 (cont'd - 1)

< _____ ORF RF [4] C _____

460 470 480 490 500
AATGTTCAAGAATATGATTCACCTTGCTAAACCAATACCGCGATTGGAG
TTACAAGTCTTATACTAAGTGGAACGATTTGGTATGGCGCTAACCTC
< H E L I H N V K A L G I G R N S
< _____ ORF RF [4] C _____

510 520 530 540 550
CCTTAGTGGAAATAGTTCTTTAAAAATTTCACATCTATTGTT
GGAAATCACCTTATCAAAGAAATTCTAAAATGAGTGTAGATAAACAAA
< G K T S Y N E K F I K S V D I Q K
< _____ ORF RF [4] C _____

560 570 580 590 600
TTCTTGTTGAATTCTGAATGATAAAGACTATACTGCCATTCTAA
AAGAAACCACCTTAAGACTTACTATTCTGATATGACGGTAAAAAGAATT
< E K T S N Q I I F V I S G N K K F
< _____ ORF RF [4] C _____

610 620 630 640 650
AAAAGGCTAACTGAATTTCAGGATTAATGATTGAAAGCAGCCTCAATG
TTTCCGATTGACTTAAAGTCCTAAATTACTAAGCTTCGTCGGAGTTAC
M>
< F A L Q I E P N L S E E F A A D E I
< _____ ORF RF [4] C _____

660 670 680 690 700
GCATTATCACACAAGATAGAAAGTATGGTAATGAAATCAAGCAACTCCAT
CGTAATAGTGTGTTCTATCTTCATACCATTAACCTTGTGAGGTA
A L S H K I E S M V M K S S N S I>
ORF RF [3]>
< A N D C L I S L I T I F D L L E M
< _____ ORF RF [4] C _____

710 720 730 740 750
CTCAGGCAGTTGTATTTACTTGAGACTTCTACATTGACAGCAATCTTT
GAGTCGTCAACATAAAATGAACCTGAAAGATGTAACGTGTTAGAAAAA
S G S C I L L E T S T L T A I F>
ORF RF [3]>
< E P L Q I K S S V E V N V A I K K
< _____ ORF RF [4] C _____

760 770 780 790 800
TATTCTGAGCTTCTAACAGATTTGCTGACAAGATAACCTTGACAGCATCG
ATAAGACTCGAACGATTCTAAACGACTGTTCTATGGAACTGTCGTAGC
L F>
< N Q A E L I K A S L I G K V A D
< _____ ORF RF [4] C _____

810 820 830 840 850
TTTGAAATATTAGCTAGATGGCCGATATTATAACGGGTATCCTGCAATTG
AAAACCTATAATCGATCTACCGGCTATAATATGCCCATAGGACGTTAAC
< N Q I N A L H G I N Y R T D Q L Q
< _____ ORF RF [4] C _____

Figure 9 (cont'd - 2)

860 870 880 890 900

ATGTCCTGTTTCTAAGATTTGATGGTAAATCTTTCAATACTAGCTA
TACAGGACAAAAAAGATTCTAAACTACCATTAGAAAAGTTATGATCGAT
<H G T K E L I Q H Y I K E I S A L
ORF RF [4] C

910 920 930 940 950

AATCTTTATTTCAATGCCTAATCTGAGGCTAGTTAAAATATTGAGATAA
TTAGAAATAAAAGTTACGGATTAGACTCCGATCAATTATAAGTCTATT
<D K N E I G L R L S T L I N L Y
ORF RF [4] C

960 970 980 990 1000

TCATGGCGGAAACTTCGAATATCCTGTGAAAGAGATTCTATTGCTGACT
AGTACCGCCTTGAAGCTTATAGAACATTCTCTAAGATAAACGACTGA
M A E T S N I L V K R F Y L L T>
<D H R F S R I D K Y L S E I Q Q S
ORF RF [4] C

1010 1020 1030 1040 1050

ATACTGGGTGATATTCGAATCTGAGCTTCCTTTGTGCCATTATCTCAT
TATGACCCACTATAAGCTTAGACTCGAAGGAAACACGTAATAGAGTA
I L G D I S N L S F L L C H Y L I>
<Y Q T I N R I Q A E K Q A M I E N
ORF RF [4] C

1060 1070 1080 1090 1100

TTTGAACCTTTGTTGGTATATTGGCTTAAAGATGAGATCAGAACAAA
AAACTGGAAAACAAACCATATAACCGAATTCTACTCTAGCTTAGTT
L N L L F G I L A>
<Q V K Q K T Y Q S L F S I L I L
ORF RF [4] C

1110 1120 1130 1140 1150

AATAAAATAAGATAGACAATAACGACAAATTACGAAATTAAAGTCGG
TTATTTATCTATCTGTATTGCTGTTAAATGCTTAAATTCAGCC
<F L I L Y V I V V F K R F K L T P
ORF RF [4] C

1160 1170 1180 1190 1200

TATCACATTAACTCTCTATAACATACAATACCTGTATTAAAGGTAGT
ATAGTGTAAATTGAGAGATATTGTATGTTAGGACATAATTCCATCA
<I V N Y S E I V Y L V Q W L L Y Y
ORF RF [4] C

1210 1220 1230 1240 1250

ATAGAACATAGTAATATTCAATTGGAATCAAGCGTTTGACCTTCATC
TATCTTCGTATCATTATAAGTAACCTAGTCGAAAAACTGGAAGTAG
<L L M T I N M P I L R K K V K M
ORF RF [4] C

1260 1270 1280 1290 1300

TTGGTCAAACATCTTAAGTCGACCAATATCAACATTGAACACACTGAG

Figure 9 (cont'd - 3)

AACCAGTTGATAGAAATTCAAGCTGGTTATAGTTGTAACCTGTGTGACTC
< K T L S D K L R G I D V N F V S L
< ORF RF[4] C

1310 1320 1330 1340 1350
AAAGAGGTAACCTAGCGCTATTCCCTGCAAACCTCGATCATATAGGTGGTTA
TTTCTCATTGAATCGCGATAAGGACGTTGAGCTAGTATATCCACCAAT
< F L Y S L A I G A F E I M Y T T I
< ORF RF[4] C

1360 1370 1380 1390 1400
TAATGCTACTGCCATTACAATTCCCTGAGTTCCATCCAAGATAAAGAAT
ATTACGATGACGGGTAATGTTAAGGAACCTCAAGGTAGGTTCTATTCCTA
< I S S G M V I G Q T G D L I F F
< ORF RF[4] C

1410 1420 1430 1440 1450
ATGATTGCCGCCCTAACAAAGTCAGAACTGGCAACAGGCAGCAGACCATA
TACTAACGGGCGGATTGTTCAAGTCTTGACCGTTGTCGTCTGGTAT
< I A R R F L D S S A V P L L G Y
< ORF RF[4] C

1460 1470 1480 1490 1500
AAATATATTTAGAGAAAGACTATTCTGTCTATTAAGATAAATTGATAAAG
TTTATATAAATCTCTTCTGATAAGACAGATAATTCTATTAACTATTTC
< F I N L S L S N Q R N L Y I S L A
< ORF RF[4] C

1510 1520 1530 1540 1550
CTATAAAATAAAGAGGCTCTGCAGGATAAAACAGGTTACGTTACCATC
GATATTTATTCTCCGAGACGTCCTATTTGTCAAATGCAAGTGGTAG
< I F Y L P E A P Y F L N V N V M
< ORF RF[4] C

1560 1570 1580 1590 1600
GTAACAGCAATCATTATCAGAAATTGCTTATCGAAAAAGAGTTAAC
CATTGTCGTTAGTAATAGTCTTTAACGAATAGCTTTCTCAATTAAG
< T V A I M I L F N S I S F L T L E
< ORF RF[4] C

1610 1620 1630 1640 1650
CTTTTCGATAAAAGTGCACATTACTTACCTTAGAAAATAGAAACAAGAGAA
GAAAAAGCTATTCACTGTAATGAATGGAATCTTTATCTTGTCTCTT
< K K S L T V N S V K S F L F L L F
< ORF RF[4] C

1660 1670 1680 1690 1700
ATAGAACGGTTAGATAAGTTAATAAACCATTGAAAGTATCATTAAGGCT
TATCTGCCAATCTATTCAATTATTGGTAAACTTCATAGTAATTCCGA
< L V T L Y T L L G N S L I M L A
< ORF RF[4] C

1710 1720 1730 1740 1750

Figure 9 (cont'd - 4)

TCATTCACTTGCTCTCCTTGATCAGCAATCACAGCTCTCAGTTTGTT
 AGTAAGTAAAACGAGAGGAAACTAGTCGTTAGTGTGAGAGTCAAAACAA
 <E N M
 <
 <K A R R Q D A I V A R L K T
 < ORF RF [5] C
 1760 1770 1780 1790 1800
 AACTTAGTCGTGAAATAAGACAAGACTTATTATTCGAAAATAGGCCAA
 TTGAATCAAGCACTTATTCTGTTCTGAATAATAAAGCTTTATCCGGTT
 <L K T R S I L C S K N N R F Y A L
 < ORF RF [5] C
 1810 1820 1830 1840 1850
 GCGTTTTTCGATCAATACGGGTAAATTGGCAGGATTGACAATAAAAG
 CGCAAAAAAGGCTAGTTATGCCATTATAACCGTCCTAAGTGTATTTC
 <R K K R D I R E T I N A P N V I F S
 < ORF RF [5] C
 1860 1870 1880 1890 1900
 AGCGATGGCACTGAAAAGTCTCTTATCCATTAAACAATGTCAGTCATA
 TCGTACCGTGACTTTTCAGAGAATAGGTAAAATTGTTACAGTCAGTAT
 M A L K K S L I H F N N V S H>
 < R H C Q F L R K D M K V I D T M
 < ORF RF [1] >
 < ORF RF [5] C
 <V
 <
 1910 1920 1930 1940 1950
 CTGCCGTAGAATTCAATCCGTTCATCATAAGTATAAAGGCAGAGCTTATG
 GACGGCATCTTAAGTTAGGCAAGTAGTATTCATATTCCGTCTCGAACATAC
 T A V E F N P F I I S I K A E L M>
 < S G Y F E P I R E D Y T Y L C L K H
 < ORF RF [1] >
 < ORF RF [5] C
 < A T S N L G N M M L I F A S S I
 < ORF RF [6] C
 1960 1970 1980 1990 2000
 GGCTGTTGAAGATGTTCAAAATACAGAATCTCAGCAAAGGGACCTGAA
 CCGACAACCTCTACAAAGTTTATGCTTAGAGTCGTTCCCTGGACTT
 G C>
 < A T S S T E F Y L I E A F P V Q F
 < ORF RF [5] C
 < P Q Q L H K L I C F R L L L S R F
 < ORF RF [6] C
 2010 2020 2030 2040 2050
 ACTGAGTTCAAGATGAATGGAAAATAAAAAGTCCTCTGATTGACCATTG
 TGACTCAAAGTCTACTTACCTTATTTCAAGGAGACTAACTGGTAAG
 < Q T E S S H F I F L E E S Q G N
 < ORF RF [5] C
 < S L K L H I S F L F N R Q N V M R
 < ORF RF [6] C

Figure 9 (cont'd - 5)

2060 2070 2080 2090 2100
TTCTGGCTGTTTCCATAGCATAATAACAGCGCTGATTCAATGCCGTGGGA
AAGACCGACAAAAGGTATCGTATTATGTCGCACTAAGTTACGCCACCC
< K Q S N E M A Y Y L A S E I R H S
< _____ ORF RF[5] C _____
< R A T K W L M
< _____ ORF RF[6] C _____

2110 2120 2130 2140 2150
GAACCTCTCAGGATTCAAAGATTATCAATAAAATCCAAAGCAGATACCT
CTTGAGGAGTCCTAAGTTCTAAATAGTTATTAGGTTCGTCTATGGA
< F E E P N L S K D I F D L A S V Q
< _____ ORF RF[5] C _____

2160 2170 2180 2190 2200
GATACTGAAAAGTGAGGGGCATAAAACTCAGAACATGTGTCGTGACAAAGACA
CTATGACTTTCACTCCCCGTATTGAGTCCTACACAGCACTGTTCTGT
M C R D K D >
< Y Q F T L P M F E S H T T V F V
< _____ ORF RF[5] C _____

2210 2220 2230 2240 2250
ATAACTGCACTAGGATTATGCTGCTAAATCTGATTGGCTACTTCCAGTC
TATTGACGTGATCCTAATACGACAGATTAGACTAACCGATGAAGGTCAGG
N N C T R I M L S N L I G Y F Q S >
< I V A S P N H Q R I Q N A V E I G
< _____ ORF RF[5] C _____

2260 2270 2280 2290 2300
TTTCTTTCTCTTTGATTCAATATCCAAAAGAAAATCTGGTGAT
AAAGAAAAGGAGAAAAACTAAAGTTAGGTTCTTAGACCACTA
F L F L F D F N I Q K E N L V I >
< K K E E K K I E I D L F F I Q H N
< _____ ORF RF[5] C _____

2310 2320 2330 2340 2350
TGCCCTTTCAGGGATAGCGTCAATAAGTTGTTGGTTCCAAAATA
ACGGGAAAAGCCCTATCGCAGTTATTCAACACACCAAAAGGTTTTAT
A L F R D S V N K L L W F S K N >
< G K E P I A D I L Q Q P K G F I
< _____ ORF RF[5] C _____

2360 2370 2380 2390 2400
GTCAATTCTTATAAGACCAATTCTTCTTCATGATAGCTGCAATGGT
CAGTTAAGAAATATTCTGGTTAAAAAAAGAAAGTACTATCGACGTTACCA
S Q F F I R P I F F H D S C N G >
< T L E K Y S W N K E K M I A A I T
< _____ ORF RF[5] C _____

2410 2420 2430 2440 2450

Figure 9 (cont'd - 6)

GGTTCAAGACGTCTTGTAAAAAATCATCTCCAATACAAAAATAG
CCAAAGTTCTGCAGGAACACATTAGTAGAAGGTTATGTTTTATC
G F K T S L L >
V S R R P C C K K S S S N T K I >
<T E L R G Q Q L F D D E L V F I S >
< ORF RF[5] C >
2460 2470 2480 2490 2500
AAATCATTATTTCTCCTTAATCTTCTATTAGGTTAGCTGATTAACACT
TTAGTAATAAAGAGGAAATTAGAAGATAAATCCAATCGACTAATTGTGA
E I I I S P L I F Y L G >
<I M >
2510 2520 2530 2540 2550
ATACACAGAAAAGGTATAAAACGATATCACTCAATAAAATCTACTAACCT
TATGTGTCTTCCATATTTGCTATAGTGAGTTATTTAGATGATTGAA
AATAACC
TTATTGG

Figure 10

A.

ATGGAAGAAGATTGTAAATAAGGTTAACCAATTGTATGGAAATTAAG
CCGTTATTACTTATTAAAATGTGGACTCGTGAAGATTGGCAACAAGAGGGAAATGTTGA
TTTGACCAATTATTAAGGGAACATCCAGAATTAGAAGAGGATGATACAAAATTGTAT
ATCTATTAAAGACACGTTCTAATTACATTAAAGATGTTGCGTCAGCAAGAAAG
TCAGAAACGTCGTTAATAGAATGTCTTATGAAGAACGCGTGAGATTGAACACTGTT
TGTCAAGTGGCGGTATGCAATTGGATGAATATATTTCGTGATAGTTGCTTGCA
TATAAACAAAGGTCTGAGTACTGAAAAGCAAGAGCTGTTGAGCGCTGGTAGCAGGAGA
GCACTTTGGAAAGGCAAAGTATGCTGAAAGATTACGTAAAAAATTAAAGTGATTAA
AGGAAAAA

B.

MEEDFEIVFNKVKPIVWKLSRYYFIKMWTREDWQQEGMLILHQLLREHPELEEDTKLY
IYFKTRFSNYIKDVLRQQESQKRRFNRMSYEVGEIEHCLSSGGMQLDEYILFRDSLLA
YKQGLSTEKQELFERLVAGEHFLGRQSMKLDRKKLSDFKEK

C.

GTAAATAAAACAGCCAGTTAAGATGGACATTATGTCCTGTTCTAAAGTCCTTTG
TTTATAATAATTATTATAAAAGGAGGTATCGTAATAGATGGAAGAACGATTTGAA
ATTGTTTAATAAGGTTAACCAATTGTATGGAAATTAAGCCGTTATTACTTTATTAA
AATGTGGACTCGTGAAGATTGGCAACAAGAGGGAAATGTTGATTTCGACCAATTATTAA
GGGAACATCCAGAATTAGAAGAGGATGATAAAAATTGTATATCTATTAAAGACACGT
TTTCTAATTACATTAAAGATGTTGCGTCAGCAAGAAAGTCAGAACGTCGTTTAA
TAGAATGTCTTATGAAGAACGCGTGAGATTGAACACTGTTGTCAGTGGCGGTATGC
AATTGGATGAATATATTTCGTGATAGTTGCTGCATATAAACAAAGGTCTGAGT
ACTGAAAAGCAAGAGCTGTTGAGCGCTGGTAGCAGGAGAGCACTTTGGAAAGGCA
AAGTATGCTGAAAGATTACGTAAAAAATTAAAGTGATTAAAGGAAAATAGTTAAAAA
GGGAAAGAATGGAACATGTGATTGTACCATTCTTTGGTTGAAAATTAAAGAAAAGTTA
TTATAAATTATTGGTTAACATGCCATATTA

Figure 11

A.

ATGAAACAAGTTATTTATGTTGTTAACGTCAAGCCGTTAACATTCTCTTAGAGAT
TATCAAAAGAGTAACAAAAGGGGAGGGACAGTTCGTCATCTAACATTACAGATG
GGCAGTCTAAGTTGTTGGCGCAGACATTATAAGCTAGTACCTCAGATTGATACCAGA
GAAGTGGGCCGGCAGTGCATCTGTTGCAAAGCATTACGGATCTAATTACTCTAT
CGCTTATCTCGGGAACTCTCAAAGACTAACAGCAGGGAACAAACAGCTCTGGCATTG
TTGAAGCTGCTAAAAGTTAGGCTTGAACACGCTCATCAAGGCGGATATGACGCTT
TTGATTATAATGATTGACCTATCCTTATCGTCATGTGATTAAAGGAAAACGTCT
GCAGCATTATTATGTCGTATGGCAGCCAGAATAATCAGCTGATTATTGGAGATCCTG
ATCCTTCAGTTAAGGTGACTAGGATGAGTAAGGAACGCTTCAATCAGAGTGGACAGGC
CTTGCAATTTCTAGCTCTCAGCCTAACTATAAGCCTCATAAAGGTGAAAAAAATGG
TTTGTCTAATTTCTCCGTTGATCTTAAGCAGAAAGCTTGTGACTTATATTATCA
TAGCTAGCTTGATTGTGACGCTCATTGATATTGTCGGATCATACTATCTCCAAGGAATA
TTGGACGAGTACATTCTGATCAGCTGATTCAACTTAGGAATGATTACGATTGGTCT
GATAATAACCTATATTATCCAGCAGGTACAGCTTGTCTTACAGA
TACTCAGTTGCGTTAGTCATTGATGTTATCCTGCTTATATCAAACATATTTACG
CTTCCTATGTCTTCTTGCACAAGCGAACAGGAGAAATCACGTCCTGTTACAGA
TGCCAATCAGATTATTGATGCTGTAGCGTCAACCCTTTCAATCTTTAGATATGA
CTATGGTAATTTGGTGGGTTTGTGCGCAAAACAATAACCTTTCTTCTA
ACCTTGCTCTCCATTCCGATTATGCCATCATTATTTGCTTCTGAAACCTTTGA
GAAAATGAATCACGAAGTGATGGAAAGCAATGCTGTGGTAAGTTCTTCTATCATTGAAG
ATATCAATGGGATGGAAACCATTAAATCACTCACAAGTGAGTCCGCTCGTTATCAAAC
ATTGATAGTGAATTGTTGATTATTGGAGAAAAACTTAAAGCTACACAAGTATAGTC
CATTCAAACCGCATTAAAAGCGGTGCTAACGTTATCCTCAATGTTGTCATTCTCTGGT
ATGGCTCTCGTCTAGTTATGGATAATAAAATCTCAGTTGGTCAGCTTATCACCTTAAAT
GCTTGCTGTCTTATTCTCAAATCCAATTGAAAATATTATCAATCTGCAATCCAAACT
GCAGTCAGCTCGCGTTGCCAATACACGTCTTAATGAGGTCTATCTGTCGAATCTGAAT
TTGAAAAAGACGGCGATTATCAGAAAATAGCTTTAGATGGTATATTGTTGAA
AATCTTCTTATAAAATGGATTGGCGAGATACCTTATCAGATATTAATTATCAAT
AAAAAAGGCTCCAAGGTCAAGTCTAGTTGGAGCCAGTGGTTCTGGTAAAACAACCTTGG
CTAAACTGATTGTCATTCTACGAGCCTAACAAAGGGATTGTCGAATCAATGGCAAT
GATTAAAAGTTATTGATAAGACAGCTTGCAGCGGCATATTAGCTATTGCCGCAACA
GGCCTATGTTTAGTGGCTCTATTATGGATAATCTGTTAGGAGCTAAAGAAGGAA
CGAGTCAGGAAGACATTATCGTGCCTGTGAAATTGCTGAAATCCGCTCGGACATTGAA
CAAATGCCTCAGGGCTATCAGACAGAGTTACAGATGGTGCCTGTTGAGCTTCTGG
AAAACAGCGGATTGCTTAGCTAGGGCTTATTAACACAGGCACCGGTTTGATTCTGG
ATGAAGCCACCAGCAGTCTGATATTGACAGAAAAGAAAATTATCAGCAATCTCTTA
CAGATGACGGAGAAAACAATAATTGTTGCCCACCGCTTAAGCATTACAGCGTAC
TGACGAAGTCATTGTCATGGATCAGGGAAAAATTGTTGAACAAGGCACTCATAAGGAAC
TTTAGCTAAGCAAGGTTCTATTATAACCTGTTAAT

Figure 11 (cont'd)

B.

MKQVIYVVLIVIAVNILLEI IKRVTKRGGTVSSSNPLPDGQSKLFWRRHYKLVPQIDTR
DCGPAVLASVAKHYGSNSIAYLRELSKTNQGTTALGIVEAAKKLGFETRSIKADMTL
FDYNDLTYPFIVHVIKGKRLQHYYVYGSQNNQLIIGDPDPSVKVTRMSKERFQSEWTG
LAIFLAPQPNYKPHGEKNGLSNFFPLIFKQKALMTYIIIASLIVTLIDIVGSYLYQGI
LDEYIPDQLISTLGMITIGLIITYIIQQVMAFAKEYLLAVSLRLVIDVILSYIKHIFT
LPMSFFATRRTGEITSRFTDANQIIDAVASTIFSIFLDMTMVLVGGVLLAQNNNLFFL
TLLSIPIYAIIFIIFAFLKPKFEKMNHESVMESNAVSSSIIEDINGMETIKSLTSESARYQN
IDSEFDVYLEKNFKLHKYSAIQTALKSGAKLILNVVILWYGSRLVMDNKISVGQLITFN
ALLSYFSNPIENIINLQSKLQSARVANTRLNEVYLVESEFEKDGDLENSFLDGDISFE
NLSYKYGFGRDTLDINLSIKKGSKVSLVGASGSGKTTLAKLIVNFYEPNKGIVRINGN
DLKVIDKTALRRHISYLPQQAYVFSGSIMDNLVLAGEGTSQEDIIRACEIAEIRSDIE
QMPQGYQTELSDGAGISGGQKQRIALARALLTQAPVLILDEATSSLDILTEKKIISNLL
QMTEKTIIFVAHRLSISQRTDEVIVMDQGKIVEQGTHKELLAQGFYYNLFN

C.

ATGGATCCTAAATTTTACAAAGTCAGAATTATAGGAGACGCTATCATAATTTGC
GACACTATTAAATTGTTCTTGGTCTGCTTGATTATCTTCTGGTCATATTCTTGT
TTGCTAAAAAAGAAATTACAGTGATTCTACTGGTGAAGTTGCACCAACAAAGGTTGTA
GATGTTATCCAATCTTACAGTGACAGTTCAATCATAAAAATAATTAGATAATAATGC
AGCTGTTGAGAAGGGAGACGTTAACATTGAATATTCAAGAAAATGCCAGTCCAAACCGTC
AGACTGAACAAAAGAAATTATAAAAGAAAGACAAAAACGAGAAGAGAAGGAAAAGAAA
AAACACCAAAAGAGCAAGAAAAGAAGAAGTCTAAGAGCAAGAAAGCTTCAAAGATAA
GAAAAAGAAATCGAAAGACAAGGAAGCAGCTCTGACGATGAAAATGAGACAAAAAAGG
TTTCGATTTTGCTTCAGAAGATGGTATTATTACATACCAATCCAAATATGATGGTGCC
AATATTATTCCGAAGCAAACCGAGATTGCTCAAATCTATCCTGATATTCAAAAACAAG
AAAAGTGTAAATCACCTATTATGCTCTTCTGATGATGTTGTTCTATGAAAAGGGC
AAACCGCTCGTCTTCTTGGAAAAAAAGGAAATGACAAGGTTGTTATTGAAGGAAAA
ATTAACAATGTCGCTTCATCAGCAACTACTAAAAAGGAAATCTCTTAAGGTTAC
TGCCAAAGTAAAGGTTCTAAGAAAATAGCAAACATCAAGTATGGTATGACAGGCA
AGACAGTCACTGTCATTGATAAAAAGACTTATTTGATTATTCAAAGATAAATTACTG
CATAAAATGGATAAT

D.

MDPKFLQSAEFYRRRYHNFATLLIVPLVCLIIFLVIFLCFAKKEITVISTGEVAPTKVV
DVIQSYSDSSIINKNLDNNAVEKGDVLIYESENASPNRQTEQKNIKERQKREEKEKK
KHQKSKKKKSKSKASKDKKKSKDKESSSDDENETKKVISIFASEDGIIHTNPKYDGA
NIIPKQTEIAQIYPDIIQKTRKVLITYYASSDDVSMKGQTARLSLEKKGNDKVIEGK
INNVASSATTTKKGNLFKVTAKVVKVSKKNSKLICKYGMTGKTVTVIDKKTYFDYFKDKLL
HKMDN

Figure 12