COS210 - Theoretical Computer Science Context-Free Languages (Part 3)

Converting a DFA to a Context-Free Grammar

Recall from the previous lecture that we can construct the grammar $G = (V, \Sigma, R, S)$ from given DFA $M = (Q, \Sigma, \delta, q, F)$ as follows:

- V = Q, the variables of grammar G are the states of M
- \bullet Σ , the set of **terminals** of G is the **alphabet** of M
- S = q the **start variable** of G is the **initial state** of M
- There are two types of rules in *G*:
 - ▶ non-terminal rules derived from transitions $A \rightarrow aB$, for all $A, B \in Q$, $a \in \Sigma$, and $\delta(A, a) = B$
 - ▶ **terminal rules** derived from accepting states $A \rightarrow \epsilon$, for all $A \in F$

The language of the constructed G is the same as the language of M

Converting a DFA to a Context-Free Grammar

Consider the following DFA over $\Sigma = \{0,1\}$ that accepts the language

 $L = \{w : 101 \text{ is a substring of } w\}$

Converting a DFA to a Context-Free Grammar

Consider the following DFA over $\Sigma=\{0,1\}$ that accepts the language

$$L = \{w : 101 \text{ is a substring of } w\}$$

We can construct the corresponding grammar as follows:

$$G = (V, \Sigma, R, S)$$

•
$$V = \{S, A, B, C\}$$

•
$$\Sigma = \{0, 1\}$$

$$\bullet$$
 $S=S$

• Rules of *R*:

►
$$S \rightarrow 0S|1A$$

▶
$$B \rightarrow 0S|1C$$

$$ightharpoonup C
ightharpoonup 0C |1C|\epsilon$$

Chomsky Normal Form

From our definition of grammars $G = (V, \Sigma, R, S)$, the rules are of the form $A \to w$ where A is a variable and w is an **arbitrary** string over $V \cup \Sigma$

We now show that every grammar G can be converted to a G', such that L(G) = L(G') and the rules of G' are **restricted** by the following definition

Definition (Chomsky Normal Form (CNF))

A context-free grammar $G = (V, \Sigma, R, S)$ is in **Chomsky normal form**, if every rule in R has one of the following forms:

- **1** $A \rightarrow BC$, where $A \in V$, and $B, C \in V \setminus \{S\}$
- 2 $A \rightarrow a$, where $A \in V$ and $a \in \Sigma$
- \odot $S \rightarrow \epsilon$, where S is the start variable

Chomsky Normal Form: Advantages

- For context-free grammars of arbitrary form there is no general limit on the number of steps it may take to derive a string w
- For CNF grammars there exists an algorithm that decides worst case runtime $O(|w|^3 \cdot |G|)$ whether w is derivable or not
- CNF makes proofs easier: We will show that we can construct a pushdown automaton with the same language as a given CNF grammar

Chomsky Normal Form: Theorem

Theorem

Let Σ be an alphabet and let $L \subseteq \Sigma^*$ be a context-free language. There exists a context-free grammar in **Chomsky normal form** whose language is L

Proof:

- We prove this by showing that we can transform an arbitrary context-free grammar G into a grammar G_5 in Chomsky normal form such that $L(G) = L(G_5)$
- The transformation consists of five steps, which must be performed in order
- We will build the intermediate grammars G_1 to G_5 with

$$L(G) = L(G_1) = L(G_2) = L(G_3) = L(G_4) = L(G_5)$$

Chomsky Normal Form: Step 1

Eliminate the start variable from the right-hand side of all rules

- Given $G = (V, \Sigma, R, A)$
- Define $G_1 = (V_1, \Sigma, R_1, S)$ where
 - S is the new start variable
 - ▶ $V_1 = V \cup \{S\}$ adding S to set of variables
 - ▶ $R_1 = R \cup \{S \rightarrow A\}$ adding rule that links new to old start variable
- G_1 has the following properties:
 - S does not occur on the right-hand side of any rule
 - $L(G_1) = L(G)$

Chomsky Normal Form: Step 1 – Example

Consider the $G = (V, \Sigma, R, A)$, where $V = \{A, B\}$, $\Sigma = \{0, 1\}$, A is the start variable and R consists of the rules:

$$A \rightarrow BAB|B|\epsilon$$
 $B \rightarrow 00|\epsilon$

Eliminate the start variable from the right-hand side of all rules

• Introduce a new start variable S and add the rule $S \rightarrow A$:

$$S \rightarrow A$$
 $A \rightarrow BAB|B|\epsilon$
 $B \rightarrow 00|\epsilon$

Chomsky Normal Form: Step 2

Given $G_1 = (V_1, \Sigma, R_1, S)$, eliminate all rules $A \to \epsilon$ where $A \neq S$ For each such $A \to \epsilon$ in R_1 :

- Remove $A \rightarrow \epsilon$
- For each rule in R_1 of the form
 - (a) $B \to A$: Add $B \to \epsilon$ (unless this rule has been already removed) replaces $B \Longrightarrow A \Longrightarrow \epsilon$ by $B \Longrightarrow \epsilon$
 - (b) $B \rightarrow uAv$ (where u, v non-empty strings): **Add** $B \rightarrow uv$ replaces $B \implies uAv \implies uv$ by $B \implies uv$
 - (c) $B \to uAvAw$ (where u, v arbitrary strings): Add $B \to uvw$ (unless $u = v = w = \epsilon$ and $B \to \epsilon$ already removed) $B \to uAvw$ $B \to uvAw$
 - (d) treat rules in which A occurs more than twice on the right-hand side similar as in (c)

Chomsky Normal Form: Step 2 Continued

- Given $G_1 = (V_1, \Sigma, R_1, S)$
- Define $G_2 = (V_2, \Sigma, R_2, S)$ where
 - $V_2 = V_1$
 - ▶ R_2 corresponds to R_1 after eliminating all rules $A \to \epsilon$ according to the procedure on the previous slide
- G_2 has the following properties:
 - S does not occur on the right-hand side of any rule
 - ▶ R_2 does not contain any rule $A \rightarrow \epsilon$ where $A \neq S$
 - ► $L(G_2) = L(G_1) = L(G)$

Chomsky Normal Form: Step 2 – Example

Consider $G_1 = (V_1, \Sigma, R_1, S)$ with set of rules R_1 :

$$S \rightarrow A$$
 $A \rightarrow BAB|B|\epsilon$
 $B \rightarrow 00|\epsilon$

Eliminate all rules of the form $A \rightarrow \epsilon$ where $A \neq S$

Remove $A \rightarrow \epsilon$, then consider all rules with A on the right-hand side:

- $S \rightarrow A$ is a rule, add $S \rightarrow \epsilon$ (a)
- $A \rightarrow BAB$ is a rule, add $A \rightarrow BB$ (b)

$$S \rightarrow A | \epsilon$$
 $A \rightarrow BAB | B | BB$
 $B \rightarrow 00 | \epsilon$

Chomsky Normal Form: Step 2 – Example Continued

$$S \rightarrow A|\epsilon$$
 $A \rightarrow BAB|B|BB$
 $B \rightarrow 00|\epsilon$

Remove $B \to \epsilon$, then consider all rules with B on the right-hand side:

- $A \rightarrow BAB$ is a rule, add $A \rightarrow A$, $A \rightarrow AB$, $A \rightarrow BA$ (c)
- $A \rightarrow B$ is a rule, do not add $A \rightarrow \epsilon$ since rule already removed (a)
- $A \rightarrow BB$ is a rule, add $A \rightarrow B$ but not $A \rightarrow \epsilon$ (c)

$$S \rightarrow A | \epsilon$$

 $A \rightarrow A | AB | BA | BAB | B | BB$
 $B \rightarrow 00$

Chomsky Normal Form: Step 3

Given
$$G_2 = (V_2, \Sigma, R_2, S)$$
, eliminate all unit rules $A \to B$ where $A, B \in V_2$

For each such $A \rightarrow B$ in R_2 :

- Remove $A \rightarrow B$
- For each rule in R_2 of the form $B \to u$ where $u \in (V_2 \cup \Sigma)^*$:
 - ▶ Add $A \rightarrow u$ (unless this rule has been already removed) replaces $A \Longrightarrow B \Longrightarrow u$ by $A \Longrightarrow u$

Chomsky Normal Form: Step 3 Continued

- Given $G_2 = (V_2, \Sigma, R_2, S)$
- Define $G_3 = (V_3, \Sigma, R_3, S)$ where
 - $V_3 = V_2$
 - ▶ R_3 corresponds to R_2 after eliminating all unit rules $A \rightarrow B$ according to the procedure on the previous slide
- G_3 has the following properties:
 - ► S does not occur on the right-hand side of any rule
 - ▶ R_3 does not contain any rule $A \rightarrow \epsilon$ where $A \neq S$
 - R₃ does not contain any unit rule
 - ► $L(G_3) = L(G_2) = L(G_1) = L(G)$

Chomsky Normal Form: Step 3 – Example

Consider
$$G_2=(V_2,\Sigma,R_2,S)$$
 with set of rules R_2 :
$$S\to A|\epsilon$$

$$A\to A|AB|BA|BAB|B|BB$$

$$B\to 00$$

Eliminate all unit rules $A \rightarrow B$ where $A, B \in V_2$

Remove $A \rightarrow A$, then consider all rules with A on the left-hand side:

• $A \rightarrow AB|BA|BAB|B|BB$ are such rules, add $A \rightarrow AB|BA|BAB|B|BB$ (already contained)

$$S \rightarrow A | \epsilon$$

 $A \rightarrow AB | BA | BAB | B | BB$
 $B \rightarrow 00$

Chomsky Normal Form: Step 3 – Example Continued

$$S \rightarrow A | \epsilon$$

 $A \rightarrow AB | BA | BAB | B | BB$
 $B \rightarrow 00$

Remove $S \rightarrow A$, then consider all rules with A on the left-hand side:

• $A \rightarrow AB|BA|BAB|B|BB$ are such rules, add $S \rightarrow AB|BA|BAB|B|BB$

$$S \rightarrow \epsilon |AB|BA|BAB|B|BB$$

 $A \rightarrow AB|BA|BAB|B|BB$
 $B \rightarrow 00$

Chomsky Normal Form: Step 3 – Example Continued

$$S \rightarrow \epsilon |AB|BA|BAB|B|BB$$

 $A \rightarrow AB|BA|BAB|B|BB$
 $B \rightarrow 00$

Remove $S \rightarrow B$, then consider all rules with B on the left-hand side:

• $B \rightarrow 00$ is such a rule, add $S \rightarrow 00$

$$S \rightarrow \epsilon |AB|BA|BAB|BB|00$$

 $A \rightarrow AB|BA|BAB|B|BB$
 $B \rightarrow 00$

Chomsky Normal Form: Step 3 – Example Continued

$$S \rightarrow \epsilon |AB|BA|BAB|BB|00$$

 $A \rightarrow AB|BA|BAB|B|BB$
 $B \rightarrow 00$

Remove $A \rightarrow B$, then consider all rules with B on the left-hand side:

• $B \rightarrow 00$ is such a rule, add $A \rightarrow 00$

$$S \rightarrow \epsilon |AB|BA|BAB|BB|00$$

 $A \rightarrow AB|BA|BAB|BB|00$
 $B \rightarrow 00$

All unit rules have been eliminated

Chomsky Normal Form: Step 4

Given $G_3 = (V_3, \Sigma, R_3, S)$, eliminate all rules that have more than

two symbols on the right-hand side

For each $A \rightarrow u_1 \dots u_k$ where $k \geq 3$ and each $u_i \in V_3 \cup \Sigma$:

- Remove $A \rightarrow u_1 \dots u_k$
- Add the rules

$$A \rightarrow u_1 A_1$$

$$A_1 \rightarrow u_2 A_2$$

$$A_2 \rightarrow u_3 A_3$$

•

$$A_{k-3} \rightarrow u_{k-2}A_{k-2}$$

$$A_{k-2} \rightarrow u_{k-1}u_k$$

where A_1, \ldots, A_{k-2} are new variables that are added to V_3 (replaces a 1-step derivation by a (k-1)-step derivation)

Examples of rules to be eliminated:

$$A \rightarrow abcd$$

$$A \rightarrow ABA$$

$$A \rightarrow AcdA$$

 $A \rightarrow abcd$ gets replaced by

$$A \rightarrow aA_1$$

$$A_1 \rightarrow bA_2$$

$$A_2 \rightarrow cd$$

Chomsky Normal Form: Step 4 Continued

- Given $G_3 = (V_3, \Sigma, R_3, S)$
- Define $G_4 = (V_4, \Sigma, R_4, S)$ where
 - \triangleright V_4 corresponds to V_3 after adding new variables according to the procedure on the previous slide
 - $ightharpoonup R_4$ corresponds to R_3 after eliminating all rules that have more than two symbols on the right-hand side, according to the procedure on the previous slide
- *G*₄ has the following properties:
 - ▶ S does not occur on the right-hand side of any rule
 - ▶ R_4 does not contain any rule $A \rightarrow \epsilon$ where $A \neq S$
 - $ightharpoonup R_4$ does not contain any unit rule
 - \triangleright R_4 does not contain any rule with more than two symbols on the right
 - $L(G_4) = L(G_3) = L(G_2) = L(G_1) = L(G)$

Chomsky Normal Form: Step 4 – Example

Consider
$$G_3=(V_3,\Sigma,R_3,S)$$
 with set of rules R_3 :
$$S \to \epsilon |AB|BA|BAB|BB|00$$

$$A \to AB|BA|BAB|BB|00$$

$$B \to 00$$

Eliminate all rules with more than two symbols on the right

- Remove $S \to BAB$ and add $S \to BA_1$ and $A_1 \to AB$
- Remove $A \rightarrow BAB$ and add $A \rightarrow BA_2$ and $A_2 \rightarrow AB$

$$S
ightarrow \epsilon |AB|BA|BB|00|BA_1$$
 $A
ightarrow AB|BA|BB|00|BA_2$
 $B
ightarrow 00$
 $A_1
ightarrow AB$
 $A_2
ightarrow AB$

Chomsky Normal Form: Step 5

Given $G_4 = (V_4, \Sigma, R_4, S)$, eliminate all rules of the form $A \to u_1 u_2$, where u_1 and u_2 are not both variables

For each such $A \rightarrow u_1 u_2$:

Remove $A \rightarrow u_1 u_2$

- **1 If** $u_1 \in \Sigma$ and $u_2 \in V_4$, then $\mathbf{add} \ A \to U_1 u_2$ and $U_1 \to u_1$ where U_1 is a new variable (replaces $A \implies u_1 u_2$ by $A \implies U_1 u_2 \implies u_1 u_2$)
- 2 If $u_1 \in V_4$ and $u_2 \in \Sigma$, then add $A \to u_1 U_2$ and $U_2 \to u_2$ where U_2 is a new variable (replaces $A \implies u_1 u_2$ by $A \implies u_1 U_2 \implies u_1 u_2$)

Examples of rules to be eliminated:

1)
$$A \rightarrow bC$$

2)
$$A \rightarrow Cb$$

3)
$$A \rightarrow bc$$

4)
$$A \rightarrow bb$$

 $A \rightarrow bC$

 $A \rightarrow BC$

 $B \rightarrow b$

gets replaced by

Chomsky Normal Form: Step 5 Continued

Remove $A \rightarrow u_1 u_2$

3 If
$$u_1 \in \Sigma$$
, $u_2 \in \Sigma$, and $u_1 \neq u_2$, then add $A \to U_1 U_2$, $U_1 \to u_1$, and $U_2 \to u_2$ (replaces $A \implies u_1 u_2$ by $A \implies U_1 U_2 \implies U_1 u_2 \implies u_1 u_2$)

 $A \rightarrow bb$ gets replaced by $A \rightarrow BB$

 $B \rightarrow b$

 $A \rightarrow bc$

 $A \rightarrow BC$

gets replaced by

Chomsky Normal Form: Step 5 Continued

- Given $G_4 = (V_4, \Sigma, R_4, S)$, define $G_5 = (V_5, \Sigma, R_5, S)$ where
 - \triangleright V_5 corresponds to V_4 after adding new variables according to the procedure on the previous slide
 - ▶ R_5 corresponds to R_4 after eliminating all rules of the form $A \rightarrow u_1 u_2$, where u_1 and u_2 are not both variables, according to the procedure on the previous slides
- G_5 has the following properties:
 - S does not occur on the right-hand side of any rule
 - ▶ R_5 does not contain any rule $A \rightarrow \epsilon$ where $A \neq S$
 - $ightharpoonup R_5$ does not contain any unit rule
 - $ightharpoonup R_5$ does not contain any rule with more than two symbols on the right
 - ▶ R_5 does not contain any rule of the form $A \rightarrow u_1 u_2$, where u_1 and u_2 are not both variables
 - $L(G_5) = L(G_4) = L(G_3) = L(G_2) = L(G_1) = L(G_3)$

Since the grammar G_5 is in Chomsky normal form, the proof is complete

Chomsky Normal Form: Step 5 – Example

Consider $G_4 = (V_4, \Sigma, R_4, S)$ with set of rules R_4 :

$$S
ightarrow \epsilon |AB|BA|BB|00|BA_1$$
 $A
ightarrow AB|BA|BB|00|BA_2$
 $B
ightarrow 00$
 $A_1
ightarrow AB$
 $A_2
ightarrow AB$

Eliminate all rules of the form $A \rightarrow u_1 u_2$, where u_1 and u_2 are not both variables:

- Replace the rule $S \to 00$ by the rules $S \to A_3A_3$ and $A_3 \to 0$
- Replace the rule $A \rightarrow 00$ by the rules $A \rightarrow A_4 A_4$ and $A_4 \rightarrow 0$
- Replace the rule $B \to 00$ by the rules $B \to A_5 A_5$ and $A_5 \to 0$

Chomsky Normal Form: Step 5 – Example Continued

This gives us a grammar with the following rules

$$S
ightarrow BB|AB|BA|A_3A_3|BA_1|\epsilon$$
 $A
ightarrow BB|AB|BA|A_4A_4|BA_2$
 $B
ightarrow A_5A_5$
 $A_1
ightarrow AB$
 $A_2
ightarrow AB$
 $A_3
ightarrow 0$
 $A_4
ightarrow 0$
 $A_5
ightarrow 0$

which is in Chomsky Normal form