P - 111 - 2021

공정안전성 분석(K-PSR)기법에 관한 기술지침

2021. 12.

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자 : 유철진
- 개정자
- 이근원
- 안전보건공단 정용재
- 제·개정 경과
- 2006년 4월 화학안전분야 기준제정위원회 심의
- 2006년 5월 총괄기준제정위원회 심의
- 2009년 4월 화학안전분야 기준제정위원회 개정안 심의
- 2009년 5월 총괄기준제정위원회 심의
- 2012년 7월 총괄 제정위원회 심의(개정, 법규개정조항 반영)
- 2021년 11월 화학안전분야 기준제정위원회 심의(개정)
- 관련규격 및 자료
- PHR기법(영국 ICI사)
- ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2021년 12월

제 정 자 : 한국산업안전보건공단 이사장

공정안전성 분석(K-PSR)기법에 관한 기술지침

1. 목적

이 지침은 공정위험성평가서를 작성하기 위한 공정안전성 분석(K-PSR)에 필요한 사항을 제시하는데 그 목적이 있다.

2. 적용범위

이 지침은 화학공장의 연속식 공정과 회분식 공정의 안전성을 평가하는 데에 적용한다. 특히 설치·가동중인 기존의 화학공장에서 위험과 운전분석 (HAZOP) 기법 등으로 위험성평가를 실시한 후, 다시 공정상의 안전성을 재검 토 또는 분석하는데 활용한다.

3. 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "공정안전성 분석 기법(K-PSR, KOSHA Process safety review)"이라 함은 설치·가동중인 기존 화학공장의 공정안전성(Process safety)을 재검 토하여 사고위험성을 분석(Review)하는 기법이다
 - (나) "가이드워드(Guide words)"라 함은 공정상의 잠재위험을 찾아내는데 도움을 주는 용어를 말하며, 위험형태와 원인으로 표현된다. 회분식 공정 및 연속식 공정의 가이드워드는 <별표 1> 및 <별표 2> 와 같다.
 - (다) "위험형태"라 함은 사업장에서 발생한 사고로 인하여 직·간접적으로 인적, 물적, 환경적 피해를 입히는 원인이 될 수 있는 잠재적인 위험의 종류를 말하며 본 지침에서는 누출, 화재·폭발, 공정 트러블 및 상해 등 4가

지로 표현된다.

- (라) "원인·결과"라 함은 위험형태가 발생될 수 있는 사고 원인 및 이로 인하여 발생 가능한 사고결과를 말한다.
- (마) "관련 문제사항"이라 함은 해당 위험 및 원인·결과 사항에 대한 주요 관심 사항 및 팀원 또는 경영진에서 생각하는 주요 쟁점사항 등을 말한다.
- (바) "현재안전조치"라 함은 잠재 위험 및 원인·결과 사항에 대한 안전장치의 역할을 하고 있는 이미 설치된 장치나 현재의 관리상황 등을 말한다.
- (사) "개선권고사항"이라 함은 위험 및 원인·결과 사항에 대한 현재안전조치가 부족하다고 판단될 때 추가적인 안전성을 확보하기 위해 도출된 장치 또는 활동 등을 말한다.
- (2) 그 밖의 용어의 정의는 이 지침에서 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정하는 바에 의한다.

4. 공정안전성 평가절차

4.1 평가절차

평가절차는 다음과 같다.

<그림 1> 평가 절차

4.2 검토항목 선정 시 고려사항

- (1) 검토항목은 공정의 복잡성(공정배관계장도의 수량 등) 및 팀의 경험에 따라 그 크기를 정해야 한다.
- (2) 검토항목은 기능상의 구분과 시스템의 복잡성에 따라 구분할 수 있다
- (3) 기능상으로 검토항목을 설정할 때 고려할 사항은 다음과 같다.
- (가) 가능한 한 공정을 따른다.
- (나) 공정배관계장도(P&ID) 전반을 고려한다.
- (다) 아래와 같은 경우에는 검토항목을 변경한다.
 - ① 설계목적이 변경될 때
 - ② 공정 조건에 중요한 변경이 있을 때
 - ③ 이전 검토항목 다음에 주요 기기가 있을 때
- (4) 검토항목을 정하고 관련 정보를 작성한다.
- (5) 검토항목별로 가이드워드에 따라 원인 · 결과 및 관련 문제사항을 도출한다.
- 4.3 평가팀 구성 및 리더의 역할
 - (1) 평가팀 구성

평가팀은 다음 인원으로 구성하되, 경험이 풍부한 생산 및 정비담당자를 반드시 포함하여야 한다.

- (가) 리더: 운전경험, 위험성평가 교육훈련 등이 충분한 자
- (나) 팀원: 정비 및 생산 관리자, 기술(공정) 및 안전기술자

- (2) 팀 리더의 역할
 - (가) 평가팀의 리더는 <그림 1>의 평가절차에 따라 먼저 공정 자료와 도면 목록을 준비한다.
 - (나) 평가팀의 리더는 평가의 개요와 목적을 팀 구성원에게 충분히 설명하여야 하다.
 - (다) 도면에 표기된 모든 장치 및 설비에 대한 목적과 특성을 설명하고 토의 하다.
 - (라) 평가항목에 따라 설계목적과 특성을 상세히 설명한 후 가이드워드와 원 인·결과를 도출한다.
 - (마) 과거에 유사 설비에서 발생했던 사고 사례에 대하여도 평가한다.

4.4 자료 수집

- (1) 팀 리더는 평가의 목적과 범위를 정한 후 평가에 필요한 자료를 수집한다.
- (2) 평가에 사용되는 설계도서는 최신의 것이어야 한다.
- (3) 기존 공장의 평가에 사용되는 설계도서들은 현장과 일치되는 것이라야 한다.
- (4) 평가에 필요한 자료목록은 다음과 같다.
- (가) 기존의 위험성 평가서 (HAZOP 등)
- (나) 공정관련 자료
 - ① 공정흐름도(PFD), 공정배관계장도(P&ID), 제어계통 설명서
 - ② 방출 및 블로우다운 보고서, 경보 및 자동운전정지 설정치 목록
 - ③ 운전 및 수정/변경사항 이력
 - ④ 사고 보고서(아차사고 포함)
- (다) 비상조치계획

4.5 평가 회의 일정

본 분석 기법을 통한 잠재 위험 분석의 효율을 높이기 위하여 장시간의 회의는 바람직하지 않으며 통상적으로 일주일에 2~3 회, 하루에 3 시간 내에서 회의를 진행하는 것이 좋다.

4.6 평가시 협의사항

평가 수행 전에 평가팀이 협의하여야 할 사항은 다음과 같다

- (1) 평가목표, 목적, 방법 및 관리에 대한 팀 브리핑
- (2) 운전이력, 최초의 설계의도, 기계설비 변경사항, 생산능력
- (3) 운전 중 취급하는 화학물질과 화학물질의 위험성, 사람의 노출, 환경에 대한 영향, 그리고 가능한 반응을 검토
- (4) 설계 및 운전상의 특별 고려사항
- (5) 운전, 화학물질, 공정의 중대한 잠재위험
- (6) 평가 범위
- (7) 공정의 지역별, 단계별로 평가항목 선별 방법

5. 평가수행

- 5.1 위험성 평가 진행방법
 - (1) 4.2항에 따라 첫 번째 검토항목을 선정한다.
 - (2) 잠재적인 위험물질 누출 가능성을 확인한다.

- (3) 그 사고의 원인·결과를 평가한다.
- (4) 잠재된 사고가 심각한 위험형태인지를 결정한다.
- (5) 심각하지 않으면, 다음의 가이드 워드로 계속 진행한다.
- (6) 위험형태별 원인 · 결과 및 현재 안전조치를 <별지서식1>에 기록한다.
- (7) 이러한 평가사항들이 다음 4가지 범주에 부합하는지 여부를 평가한다.
- (가) 위험물질 누출의 가능성
- (나) 현재의 설계 및 운전기준에 불일치
- (다) 중요 안전 절차의 필요성 또는 사용 유무
- (라) 정량적 위험성평가 등 추가 검토의 필요성
- (8) 현재안전조치가 충분하지 않을 경우 개선권고사항을 준비한다.
- 5.2 평가 진행의 기록
 - (1) 평가팀장은 평가에 의해 도출된 개선권고사항은 조치가 가능하도록 우선순 위를 정하여 최종보고서에 포함시켜 경영진에게 보고한다.
 - (2) 후속조치의 이행 팀이 이해할 수 있도록 다음과 같은 자료들을 개선권고사항 에 포함시켜 전달한다.
 - (가) 평가 팀이 검토하였던 시나리오
 - (나) 평가 팀에 의해 파악된 가능한 결과
 - (다) 평가 팀이 제안한 변경의 요지
 - (라) 변경대상 또는 권고되는 검토사항
 - (3) 모든 개선권고사항은 다음과 같은 사항을 고려하여 작성한다.
 - (가) 무슨 조치가 필요한가?

- (나) 어디에 이 조치가 필요한가?
- (다) 왜 이 조치가 시행되어야 하나?

5.3 평가결과보고서 작성

- (1) 평가결과보고서에는 다음과 같은 사항이 포함되어야 한다.
- (가) 공정 및 설비 개요
- (나) 공정의 위험 특성
- (다) 검토 범위와 목적
- (라) 팀 리더 및 구성원의 인적사항
- (마) 검토 결과
- (바) 우선순위 및 일정이 포함된 조치계획
- (2) 평가 팀에 의해 사용되었던 모든 타당성 있는 자료를 모아 위험성평가 서류철을 작성한다.
- (3) 공정흐름도 및 운전절차 등 검토회의 시에 사용하였던 공정안전자료의 사본과 사용했던 주요기기가 표시된 공정배관계장도 등은 위험성평가 서류에 철하여 보관하다.
- (4) 평가회의에서 논의된 내용은 작업일자별로 서류화하여야 한다. 또한 서기는 검토과정에서 논의된 내용과 회의 결과를 기록하여야 한다.
- (5) 회의결과 사본은 검토를 위하여 팀 구성원에 배포되어져야 한다.

5.4 개선권고사항의 후속조치

- (1) 평가팀장은 평가결과 보고서가 발행된 이후 1 개월 이내에 후속조치 책임 부서를 포함한 이행조치 계획을 수립하여 승인을 받는다.
- (2) 경영자는 공정안전관리 추진팀에게 평가결과보고서의 내용들이 적절하게 추진되고 있는지를 관리하도록 한다.

<별표 1>

회분식 공정의 가이드워드

□ 누출 가이드워드

위험형태 원인(대분류)		원인(소분류)
	부식	내·외부 부식, 응력 부식, 크리프 (Creep), 열적반복 등으로 인한 사항
누출	침식	마모 등으로 발생한 사항 모두 포함
干室	누설	플랜지, 밸브, 샘플링 포인트, 펌프 등에서 누유 및 누수 되는 사항 등
	기타	위 사항 외 기타 원인

□ 화재・폭발 가이드워드

위험형태	원인(대분류)	원인(소분류)	
	물리적 과압	입구·출구측 밸브 등의 폐쇄, 압력방출장치의 고장 등에 의한 과역	
화재・폭발	취급제한 화학물질 및 분진	인화성 혼합물에 의한 화재, 폭주 반응, 촉매 이상에 의한 화재/폭발, 오염물질에 의한 조성 변화 등	
	점화원	정전기, 스파크, 용접, 마찰열, 복사열, 차량 등에 의한 착화	
	기타	위 사항 외 기타 원인	

□ 공정 트러블 가이드워드

위험형태 원인(대분류)		원인(소분류)	
	조업상 문제	온도, 압력, 농도, pH, 교반, 조업 절차, 냉각실패 등 조업상 실수 등	
공정 트러블	원료 및 촉매 등 물질	원료 및 촉매 등 이상에 의한 원인 등	
	기타	위 사항 외 기타 원인	

□ 상해 가이드워드

위험형태	원인(대분류)	원인(소분류)	
	추락	장치설비, 리프트, 플랫폼 등 구조물, 사다리, 계단 및 개구부 등에서의 추락 재료더미 및 적재물 등에서의 추락 등	
	전도	누유 빙결 등에 의해 바닥에서의 미끄러짐, 바닥의 돌출물에 걸려 넘어짐, 장치설비, 계단에서의 전도 등	
	협착	가동중인 설비, 기계장치에 협착 물체의 전도, 전복에 의한 협착, 교반기, 임펠러 등 회전체에 감김 등	
상해	충돌	중량물, 파이프랙 등 돌출부에 접촉 및 충돌 구르는 물체, 흔들리는 물체에 접촉 및 충돌 차량 등과의 접촉 및 충돌 등	
	유해 위험 물질 접촉	뜨거운 물체에 접촉하여 화상, 부식성 물질 등에 접촉하여 피부손상 등	
	질식	유해가스 발생, 산소 부족 등에 의한 질식	
	기타	전류 접촉에 의한 감전사고, 낙하, 비래, 비산, 붕괴, 도괴 사고, 중량물 취급 및 원재료 투입 시 요통 발생 압박, 진동 등 위 사항 외 기타 원인	

<별표 2>

연속식 공정의 가이드워드

□ 누출 가이드워드

위험형태	원인(대분류)	원인(소분류)
	부식	내·외부 부식, 응력 부식, 크리프(Creep), 열적반복 등으로 인한 사항 포함
	침식	마모 등으로 발생한 사항 모두 포함
	누설	플랜지, 밸브, 샘플링 포인트, 펌프 등에서 누유 및 누수 되는 사항 모두 포함
누출	파열	오염, 내부 폭굉, 물리적 과압, 팽창, 벤트 막힘, 제어실패, 과충전, 롤오버(Rollover), 수격현상, 순간증발(Flashing)
· 인	펑크	기계적 에너지 발생, 충돌, 기계 진동, 과속 등
	개방구 오조작	벤트, 드레인, 압력방출 후단, 정비실수, 계기 정비, 샘플링 포인트, 블로우 다운, 호스, 탱크입하 및 출하 작업 실수
	기타	위 사항 외 기타 원인

□ 화재・폭발 가이드워드

위험형태	원인(대분류)	원인(소분류)	
	물리적 과압	입구· 출구측 밸브 등의 폐쇄, 압력 방출장치의 고장 등에 의한 과압	
	취급제한 화학물질 및 분진	인화성 혼합물에 의한 화재, 폭주 반응, 촉매 이상에 의한 화재·폭발, 오염물질에 의한 조성 변화 등	
	점화원	정전기, 스파크, 용접, 마찰열, 복사열, 차량 등에 의한 착화	
	누설	플랜지, 밸브, 샘플링 포인트, 펌프 등에서 누유 및 누수 되는 사항 모두 포함	
화재·폭발	파열	오염, 내부 폭굉, 물리적 과압, 팽창, 벤트 막힘, 제어실패, 과충전, 롤오버 (Rollover), 수격현상, 순간증발 (Flashing)	
	펑크	기계적 에너지발생, 충격, 충돌, 기계 진동, 과속 등	
	개방구 오조작	벤트, 드레인, 압력방출 후단, 정비실수, 계기 정비, 샘플링 포인트, 블로우 다운, 호스, 탱크입하 및 출하 작업 실수	
	기타	위 사항 외 기타 원인	

□ 공정 트러블 가이드워드

위험형태 원인(대분류)		원인(소분류)	
	조업상 문제	온도, 압력, 농도, pH, 교반, 조업 절차, 냉각실패 등 조업상 실수 등	
공정 트러블	원료 및 촉매 등 물질	원료 및 촉매 등 이상에 의한 원인 등	
	기타	위 사항 외 기타 원인	

□ 상해 가이드워드

위험형태	원인(대분류)	원인(소분류)	
	추락	장치설비, 리프트, 플랫폼 등 구조물, 사다리, 계단 및 개구부 등에서의 추락 재료더미 및 적재물 등에서의 추락 등	
	전도	누유 빙결 등에 의해 바닥에서의 미끄러짐, 바닥의 돌출물에 걸려 넘어짐, 장치설비, 계단에서의 전도 등	
	협착	가동 중인 설비, 기계장치에 협착 물체의 전도, 전복에 의한 협착, 교반기, 임펠러 등 회전체에 감김 등	
상해	충돌	중량물, 파이프랙 등 돌출부에 접촉 및 충돌 구르는 물체, 흔들리는 물체에 접촉 및 충돌 차량 등과의 접촉 및 충돌 등	
	유해 위험 물질 접촉	뜨거운 물체에 접촉하여 화상, 부식성 물질 등에 접촉하여 피부손상 등	
	질식	유해가스 발생, 산소 부족 등에 의한 질식	
	기타	전류 접촉에 의한 감전사고, 낙하, 비래, 비산, 붕괴, 도괴 사고, 중량물 취급 및 원재료 투입 시 요통 발생 압박, 진동 등 위 사항 외 기타 원인	

<별표 3>

공정안전성 분석(K-PSR)의 특징

구 분	K-PSR	기존의 위험성 평가법
화학공정의 적합성	조업단계에 적합	설계단계에 적합
검토범위	화재·폭발·누출위험은 물론 공정트러블, 상해위험요소 포 함	화재·폭발·누출 등 주로 중 대산업사고 발생 위험에 중점
평가 소요인원	각 부문별 4~5인 * 운전, 정비 분야의 인원 필수적으로 참여	각 부문별 4~5인 * 현장 생산 및 공무 경험이 없어도 평가수행 가능
평가 소요시간	기존의 평가기법에 비해 축소 가능	기법에 따라 상이
보고서 분량	기존의 평가기법에 비해 간소화 가능	69
신규인원에 대한 교육소요시간	2일 정도	v
가이드 워드	위험형태 + 원인	이탈 + 공정변수
도면상의 Node 선정	주요 공정장치(반응기, 증류탑 등)와 부속장치, 배관과 계측제 어설비를 하나의 시스템으로 묶어 검토 (P&ID 1매당 1~3개 Node)	P&ID상 인입 배관으로 시작하여 모든 배관 및 장치를 Node로 분할하여 검토(P&ID 1매당 다수의 Node)
평가결과의 적합성	현장 조업상황 및 풍부한 현장 경험을 가진 직원들의 노하우 가 충분히 반영되어 현실적인 결과가 도출	다소 설계적인 측면의 결과가 도출
개선사항의 적합성	현실적인 개선계획이 도출	다소 설계적인 측면의 개선사항 도출이 많은 편임
기 타	주요 공정설비에 국한되므로 보조설비의 평가 누락 가능성	모든 장치 및 부속장치에 대해 빠짐없이 평가 가능

<별지서식 1>

공정안전성 분석(K-PSR)기법 평가서

1. 공장 또는 공정명 : 4. 수행일자 :

2. 팀 원 : 5. 도면번호 :

3. 검토항목(공정 및 주요설비) :

위험형태	원인 •결과	관련 문제사항	현재 안전 조치	개선권고사항

<부록 1>

연속식 공정에 대한 K-PSR기법 적용 사례

1. 공장 또는 공정명 : ㅇㅇㅇ공정(연속식)

4. 수행일자 : 2021. 00. 00.

2. 팀원 : KOSHA ㅇㅇㅇ, ㅇㅇㅇ

5. 도면번호

3. 검토항목 : ×× 반응기

위험형태	원인・결과	관련 문제사항	현재안전조치	개선권고사항
	1. 개스킷 노후화 및 조립실수에 의한 개스킷 파열로 유해물질이 방출되어 환경오염 및 인체 유해 가능성	1.1 보수작업 후 작업자 실수로 개스킷 조립 불량 및 명세에 맞지 않는 개 스킷 사용 1.2. 플랜지 및 개스킷 명세(Spec.)의 이력관리 미흡		1. 플랜지 및 개스킷 등급 관리 실시
	2. 반응저하에 의한 과압으로 압력이 상승하여 화재, 폭발 가능성	2. 없음	2.1 안전밸브 설치 2.2 압력조절장치 설치 2.3 압력경보장치 설치 2.4 고압경보스위치에 의한 연동장치 작동	2. 없음
누출	3. 원료주입 펌프 씰 누설로 벤젠이 누출되어 환경오염 및 인체유해 가능성	3. 넌 씰형(Non-seal type) 펌프는 안 전성이 우수하나, 가격이 고가임	3.1 가스검지기 설치 3.2 2시간 간격의 순찰 실시	3. 넌 씰형(Non-seal type) 펌프의 설치검토
	4. 운전시작시 열적반복에 의한 배관 및 플랜지 변형으로 유해 물질이 누출되 어 환경오염 및 인체유해 가능성	4. 없음	4. 표준운전절차 준수	4. 없음
	5. 정비작업 후 펌프 얼라이먼트 불량에 의한 진동으로 배관 및 플랜지가 파열되어 위험물질 누출 위험성	5. 없음	5. 보수 후 펌프 시험 실시	5. 없음
	6. 부식성 원료에 의한 내부 부식 가능성	6. 없음	6. 특수재질(Hastelloy-B) 사용	6. 없음

P - 111 - 2021

1. 공장 또는 공정명 : ○○○공정(연속식)

2. 팀원 : KOSHA ㅇㅇㅇ, ㅇㅇㅇ

3. 검토항목 : ×× 반응기

4. 수행일자 : 2021. 00. 00.

위험형태	원인ㆍ결과	관련 문제사항	현재안전조치	개선권고사항
	1. 원료 투입과정 중 정전기 발생 으로 반응기내부의 가연성 물질이 점화되어 화재·폭발 발생 가능성	1. 없음	1.1. 철저한 접지 실시 1.2. 주기적인 접지 상태 점검 1.3 작업자 대전방지복 및 정 전화 착용	1. 적정습도 관리 검토
화재・폭발	2. 이상반응에 의한 과압으로 반응기 폭발 가능성	2. 없음	2.1 온도조절장치 설치 2.2 고온경보스위치에 의한 연동장치 작동 2.3 안전밸브 설치 2.4 압력조절장치 설치 2.5 압력경보장치 설치 2.6 고압경보스위치에 의한 연동장치 작동	2. 없음
	3. 펌프 씰 불량으로 인한 과열로 화재·폭발 가능성	3. 없음	3.1 소화기 비치 3.2 소방설비 설치 3.3 씰 상태 주기적 점검	3. 넌 씰(Non-seal type) 펌프설치 검토
	4. 화기작업시 불티 비산에 의한 화재·폭발 가능성	4. 없음	4. 안전작업허가 절차에 의한 작업 실시	4. 안전작업허가 절차의 간 단, 명료화(Flowchart 형 식 등) 하여 효율적인 운 영 유도

P - 111 - 2021

1. 공장 또는 공정명 : ○○○공정(연속식)

2. 팀원 : KOSHA ㅇㅇㅇ, ㅇㅇㅇ

3. 검토항목 : ×× 반응기

4. 수행일자 : 2021. 00. 00.

위험형태	원인·결과	관련 문제사항	현재안전조치	개선권고사항
	1. 촉매 투입 펌프의 고장에 의한 촉매 투입 과정 생략으로 반응 저하 가능성	1. 없음	 1.1 유량계 설치 1.2 안전밸브 설치 1.3 압력조절장치 설치 1.4 압력경보장치 설치 1.5 고압경보스위치에 의한 연동장치 작동 	1. 촉매 투입 펌프의 예방 점검 철저
공정 트러블	2. 온도조절장치 고장에 의한 반응 온도유지 실패로 반응저하 가능성	2. 없음	2.1 안전밸브 설치2.2 압력조절장치 설치2.3 압력경보장치 설치2.4 고압경보스위치에 의한 연동장치 작동	2. 없음
	3. 원료 주입 펌프에 의한 냉각 불량 으로 온도상승 가능성	3. 없음	3.1 펌프 트립 알람(Trip alarm) 설치 3.2 저압경보계에 의한 예비 펌프 자동 작동 3.3 고온경보스위치에 의한 연동장치 작동	3. 원료 주입 펌프의 예방 점검 철저
	4. 열교환기 튜브 손상에 의한 냉각 불량으로 온도상승 가능성	4. 없음	4. 고온경보스위치에 의한 연동장치 작동	4. 없음

P - 111 - 2021

1. 공장 또는 공정명 : ○○○공정(연속식)

2. 팀원 : KOSHA ㅇㅇㅇ, ㅇㅇㅇ

3. 검토항목 : ×× 반응기

4. 수행일자	:	2021.	00.	00.	
---------	---	-------	-----	-----	--

위험형태	원인ㆍ결과	관련 문제사항	현재안전조치	개선권고사항
공정 트러블	5. 에틸렌/벤젠 비율의 조절 실패로 반응저하 가능성	5.1 비율 높을시 압력 상승 으로 인한 공정트러블 발생 5.2 비율 낮을시 품질 및 수율저하	5.1 유량계 설치 5.2 안전밸브 설치 5.3 압력조절장치 설치 5.4 압력경보장치 설치 5.5 고압경보스위치에 의한 연동장치 작동 5.6 저유량 및 고유량 경보장치 설치	5. 없음
	6. 에틸렌 공급 중단으로 인한 공정 가동 중단	6. 에틸렌의 재고가 없는 상태로 업스트림(Up- stream)공장에서 배관에 의한 공급	6.1 저압경보스위치에 의한 연동장치 작동 6.2 저유량 경보장치 설치	6. 원료의 안정적 공급을 위한 장기적 전략 수립

P - 111 - 2021

1. 공장 또는 공정명 : ○○○공정(연속식)

2. 팀원 : KOSHA ㅇㅇㅇ, ㅇㅇㅇ

3. 검토항목 : ×× 반응기

4. 수행일자 : 2021. 00. 00.

위험형태	원인·결과	관련 문제사항	현재안전조치	개선권고사항
	1. 공정배수로 덮개 미설치 지역에서 실족으로 인한 골절 가능성	1. 일부구간 덮개 미설치	1. 덮개 설치(일부분 미설치)	1. 미설치 구간 덮개 설치
	2. 공정내 배관 및 돌출부에 충돌 가능성	2. 공정내 배관 위치 조정 이 불가능한 곳 존재	2. 안전모 착용, 교육 실시	2. 일상적 통로로 이용되는 곳에 경고표시 설치 검토
	3. 보수작업시 중량물 작업에 의한 요통 등 상해 가능성	3. 없음	3.1 중량물 작업시 2인 1조 작업 실시 3.2 장비를 이용한 작업 실시 3.3 허리보호대 등 안전보호장구 착용	3. 근골격계질환 예방교육 실시
상해	4. 작업을 위한 배관 퍼지 후 호스 해체시 잔압에 의한 안면 등 상해 가능성	4. 없음	4. 작업시 보안경 등 안전 보호구 착용	4. 배관벤트 설치 검토
	5. 바닥에 누유 및 겨울철 빙결로 인한 전도 가능성	5. 없음	5. 누유 및 빙결 가능 장소 즉시 청소	5. 누유 및 빙결 가능 장소에 기름걸레 등 비치
	6. 스팀트레이싱 부분에 접촉으로 화상 가능성	6. 없음	6. 긴팔 작업복 착용	6. 노출 부위 보온실시
	7. 정비작업 중 회전기기류에 협착 으로 상해가능성	7. 없음	7. 방호덮개 설치	7.1. 일상점검활동강화 7.2. 안전교육 철저

P - 111 - 2021

1. 공장 또는 공정명 : ○○○공정(연속식)

2. 팀원 : KOSHA ㅇㅇㅇ, ㅇㅇㅇ

3. 검토항목 : ×× 반응기

4. 수행일자 : 2021. 00. 00.

위험형태	원인ㆍ결과	관련 문제사항	현재안전조치	개선권고사항
	8. 용기내부 입조 작업시 산소 결핍 에 의한 질식사고	8. 없음	8.1. 안전작업허가에 의한 작업 실시, 2인1조 작업 실시 8.2 입조 전 산소농도 측정 실시 8.3 공기치환설비 설치/가동 8.4 관련 배관 맹판 설치 8.5 입조자 구명줄 착용	8.1 입조작업전 안전교육 철저 8.2 산소농도 측정결과 21% 미만일 경우 안전조치 여 부 재확인
상해	9. 용기내부 입조 작업 중 기계 가동 으로 인명 피해 가능성	9. 타사 사망사고사례 있음	9.1 입조전 관련 전원 장치 시건 조치 9.2 안전작업허가에 의한 작 업실시, 2인1조 작업 실시 9.3 입조자 구명줄 착용	9. 안전교육 철저
	10. 전기작업 중 감전사고에 의한 인명피해 가능성	10. 없음	10. 전기 스위치 시건 조치	10. 안전교육 철저
	11. 용접 작업 중 감전사고에 의한 인명피해 가능성	11. 없음	11. 교류아크용기에 자동전격 방지기 설치	11. 안전교육 철저

<부록 2>

회분식 공정에 대한 K-PSR기법 적용 사례

1. 공장 또는 공정명 : ○○○공정(연속식)

4. 수행일자 : 2021. 00. 00.

2. 팀원 : KOSHA OOO, OOO 5. 도면번호

3. 검토항목 : △△ 반응기

위험형태	원인・결과	관련 문제사항	현재안전조치	개선권고사항
반응 물질 누출 (Powder)	1. 원료투입 과정 중 작업자 실수에 의한 원료 (분말) 누 출에 의한 화재 및 인체 상 해 가능성	1. 원료가 분말상일 경우	1. 분말 소화기 현장 비치, 세 안·세척 시설 설치, 개인 보호 장구(불침 투성 보호 의 등)착용	수와기 수가 배지

P - 111 - 2021

1. 공장 또는 공정명 : ○○○공정(연속식)

2. 팀원 : KOSHA ㅇㅇㅇ, ㅇㅇㅇ

3. 검토항목 : △△ 반응기

4. 수행일자 : 2021. 00. 00.

위험형태	원인・결과	관련 문제사항	현재안전조치	개선권고사항
	1. 유량계 고장에 의한 원료 물질 과량 투입으로 넘침	1.1 현재 기계식 사용 1.2 전자식을 사용할 경우 고장 발생시 제어 불가능	1. 유량계 정기 검, 교정 및 주1회 수시점검	1. 온도계 알람(Alarm) 설치 검토
	2. 원료 투입 완료 후 스팀 밸브 조작 실수로 반응물질 온도 상승 에 의한 화재, 폭발 및 누출 (Overflow) 위험성	2. 반응기 내부 온도 센서 및 게이지 이상 가능성 존재	2. 온도센서 연1회 교체	2. 예비 온도 센서 비치
반응 물질	3. 원료 투입 완료 후 액체질소 투입 부족으로 냉각온도 조절 실패로 품질 및 수율 저하	3. 다량 누출에 대비한 확산 방지 및 회수 방법 검토 필요	3. 온도 센서 이중 설치	3. 다량 누출에 대비한 물질 확산방지 및 회수 방법 검토 (방류제, 드레인 등)
누출(Liquid)	4. 반응기 내부 온도 센서 및 게이지 고장으로 품질 및 수율 저하, 화재, 폭발 및 누출(Overflow) 위험성	4. 없음	4. 게이지 연2회 자체 검·교정 실시	4. 게이지 검교정주기 단축
	5. 벤트 밸브 오조작으로 잠겨서 과압에 의한 누출 위험성	5. 없음	5. 압력계 설치 (연2회 자체 검·교정실시)	5. 작업관련 교육 철저
	6. 펌프 진동에 의한 배관 연결부 약화로 인한 물질 누출 위험성	6. 없음	6. 밸런스 점검 철저 및 연결부 플렉시블/방진고무 사용	6. 없음
	7. 부식성 원료에 의한 내부 부식 가능성	7. 없음	7. 스테인레스(SUS 304)재질 사용	7. 없음

P - 111 - 2021

1. 공장 또는 공정명 : ○○○공정(연속식)

2. 팀원 : KOSHA ㅇㅇㅇ, ㅇㅇㅇ

3. 검토항목 : △△ 반응기

4. 수행일자 : 2021. 00. 00.

위험형태	원인ㆍ결과	관련 문제사항	현재안전조치	개선권고사항
	1. 원료 투입과정 중 정전기 발생으로 반응기 내부 가연 성 물질에 점화에 의한 화재 발생 가능성	1. 없음	1.1. 정전기 대전방지용 비닐 사용 1.2. 반응기 내부 질소 퍼지	1. 없음
화재·폭발	2. 반응기 내부 온도 제어 실패 및 작업자실수로 원료 투입 오류에 의한 과압으로 폭발 가능성	2. 없음	2.1 온도계 검, 교정2.2 원료 투입전 운전기록에 감독자와 작업자 이중 확인2.3 안전밸브 설치	2. 작업관련 교육 실시 철저
	3. 반응기 내부 임펠러 용접 작업 중 잔류 인화성 물질에 의한 폭발 가능성	3. 없음	3.1 안전작업허가에 의한 작업실시 3.2 소화기 비치 3.3 반응기 내부 세척 및 퍼지 실시 후	3.1. 세척 및 퍼지 작업 철저 3.2 작업 관련 교육 실시 철저

P - 111 - 2021

1. 공장 또는 공정명 : ○○○공정(연속식)

2. 팀원 : KOSHA ㅇㅇㅇ, ㅇㅇㅇ

3. 검토항목 : △△ 반응기

4.	수행일자	:	2021.	00.	00.

위험형태	원인ㆍ결과	관련 문제사항	현재안전조치	개선권고사항
	1. 진공펌프 고장으로 인한 압력조절 실패로 원료 투입 중단시 품질 저하 발생 가능성	1. 정전에 대비한 비상 운전대책 수립 필요	1. 유틸리티 유형별 등급에 의한 정기적 예방점검실시	1.비상전원 확보방안 강구
	2. 냉동기, 보일러 이상으로 반응 온도 유지 실패로 인한 품질저하 가능성	2. 없음	2. 없음	2. 냉동기 추가 설치 검토
공정 트러블	3. 교반기 이상으로 생산시간 지연에 의한 품질저하	3. 없음	3. 없음	3. 비상발전기 등 비상전원 확보수단 검토
	4. 냉각수, 스팀밸브 이물질(Scale 등) 에 의한 막힘으로 생산시간 지연 에 따른 품질 저하	4. 없음	4. 없음	4. 배관 막힘 방지 조치 검토
	5. 작업순서 미준수에 의한 이상 반응 및 품질 저하	5. 없음	5. 운전기록 상 각 단계별 확인 실시	5. 작업절차관련 교육 철저

P - 111 - 2021

1. 공장 또는 공정명 : ○○○공정(연속식)

2. 팀원 : KOSHA ㅇㅇㅇ, ㅇㅇㅇ

3. 검토항목 : △△ 반응기

4. 수행일자 : 2021. 00. 00.

위험형태	원인・결과	관련 문제사항	현재안전조치	개선권고사항
	1. 바닥에 용매 누수시 미끄러짐 으로 인한 골절 등 상해 가능성	1. 없음	1. 누수시 흡착포 등에 의한 즉시 제거 실시	1. 누출 가능 부위 점검 및 보수
	2. 보행 중 파이프랙 등 돌출부 에 충돌로 인한 타박상 등 상해 가능성	2. 공정내 배관위치 변경 불가 지역 존재	2. 파이프랙 등 돌출부에 충격 완화장치 및 경고표시 부착	2. 안전교육 철저
	3. 원료 투입시 중량물 작업에 의한 요통 등 상해 가능성	3. 없음	3. 중량물 작업시 2인 1조 작업 실시	3. 허리보호대 착용 검토
	4. 작업시 유해가스 발생에 의한 호흡기 등 질환발생 가능성	4. 없음	4. 국소배기장치 및 공조시설 설치	4. 국소배기장치 용량 검토
상해	5. 작업시 화학물질 인체접촉으로 화상 등 피부상해 가능성	5. 없음	5. 작업시 보호의 착용	5. 안전교육 철저
0 41	6. 스팀배관 보온 작업시 화상 가능성	6. 없음	6. 없음	6. 내열장갑 지급 검토
	7. 감속시, 모터 해체 작업시 중량물 취급부주의에 의한 창과상 등 상해 가능성	7. 없음	7. 체인블록 사용	7. 체인블록 지지대 보강 검토
	8. 용기내부 입조 작업시 산소 결핍에 의한 질식사고	8. 타사 사망사고사례 있음	 8.1. 안전작업허가에 의한 작업 실시, 2인1조 작업 실시 8.2 입조시 산소농도 입조 전/후 측정 실시 8.3 안전작업허가 1시간이상 부재시 재허가 실시 	8.1 작업전 안전교육 철저 8.2 산소농도 측정결과 21% 미만일 경우 안전 조치 여부 재확인

지침 개정 이력

□ 개정일 : 2021. 12.

○ 개정자 : 안전보건공단 정용재

○ 개정사유 : 최신 양식에 부합하도록 지침 보완

○ 주요 개정내용

- 1. 목적 : 기술내용 일괄 수정