ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration dormakaba International Holding GmbH

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-DOR-20210193-CBA1-EN

Issue date 07/10/2021

Access manager 92 00 dormakaba

www.ibu-epd.com | https://epd-online.com

General Information

dormakaba

Programme holder

IBU – Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

Declaration number

EPD-DOR-20210193-CBA1-EN

This declaration is based on the product category rules:

Electronic and physical Access Control Systems, 07.2019 (PCR checked and approved by the SVR)

Man leten

Issue date

07/10/2021

Valid to

06/10/2026

Dipl. Ing. Hans Peters (chairman of Institut Bauen und Umwelt e.V.)

Dr. Alexander Röder

(Managing Director Institut Bauen und Umwelt e.V.))

Access manager 92 00

Owner of the declaration

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany

Declared product / declared unit

1 piece of the product: Access manager 92 00

Scope:

This EPD refers to a specific product manufactured by dormakaba. The production site is located in Villingen-Schwenningen (Germany).

The data represents the year 2020.

The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

The EPD was created according to the specifications of *EN 15804+A2*. In the following, the standard will be simplified as *EN 15804*.

Verification

The standard *EN 15804* serves as the core PCR Independent verification of the declaration and data according to *ISO 14025:2010*

internally

externally

Dr.-Ing. Wolfram Trinius (Independent verifier)

Product

Product description/Product definition

The dormakaba access manager 92 00 fulfils all the requirements of modern security systems. With its intelligent decision logic and ability to be freely parametrised, it can control simple types of access points as well as more complex entrances to highly sensitive areas. Based on the latest operating system and transport layer security (TLS) encryption between the controller and host system, the IT security is stateof-the-art. With integrated mobile access, the access system allows access via smartphone. The control electronics integrate everything that is required to enable a connection to cloud services via IoT. With its flexible and extendable design, it offers a wide range of installation options. It can be installed locally as an individual device near an access point, in switch cabinets or centrally with extended input/output modules. Up to two registration units can be connected directly and further access readers via the RS-485 sub-bus.

For the placing on the market in the European Union/European Free Trade Association (EU/EFTA) (with the exception of Switzerland) the following legal provisions apply:

- Restriction of Hazardous Substances (RoHS)
- Radio Equipment Directive (RED)

The CE-marking takes into account the proof of conformity with the respective harmonized standards based on the legal provisions above. For the application and use the respective national provisions apply.

Application

Flexible access control

An access manager is installed in a protected environment and uses local or online decision logic to check whether an access request via connected card readers is granted or rejected.

Door management

- Personnel interlock control
- Door activation
- Monitoring of door opening
- · Monitoring of door opening time
- Access monitoring

Alarm Management

The access manager reports irregularities in access control or door management to the host computer. Tampering and burglary attempts are reliably identified.

Technical Data

The access manager 92 00 has the following technical properties:

Name	Value	Unit
Operating Temperature	0 - 50	°C
Operating Humidity	5 - 85	%
Width Dimension	125	mm
Height Dimension	99	mm
Depth Dimension	45	mm
Weight (without packaging)	0,18	kg
Weight (with packaging)	0,25	kg
Power consumption "idle mode"	5	W
Power consumption "on mode"	12	W

Host Interface

• Ethernet 10/100 Mbit/s

Peripherals Interface

- 1x RS-485
- 2x RS-232
- 2x coaxial for registration units (LEGIC / MIFARE)
- 3x potential-free relays, 30 V AC/DC; max. 2 A
- · 4x digital inputs, 5V power supply integrated
- · 1x bus for extension modules
- · 1x tamper contact

Power supply

• 10-34V DC

Installation

Top hat rails as per EN 60715: TH35/(7.5/15)

Class of protection as per EN 60529: IP20

The product is not harmonised in accordance with the Construction Product Regulations (CPR) but in accordance with other provisions for harmonisation of the EU. Compliance with the European Union Directive and technical specifications:

- EN 300330 V2.1.1
- EN 301489-1 V2.2.0
- EN 301489-3 V2.1.1

- EN 50364:2010
- EN 62368-1:2014

The product is subject to CE marking according to the relevant harmonization legislation.

In addition, the product also conforms to the following standards:

- UL 294:2013
- UL 62368-1:2014
- CAN/CSA-22.2 No. 62368-1:2014
- FCC ID NVI-DKAM9200-K7

Base materials/Ancillary materials

The major material compositions of the product are listed below:

Name	Value	Unit
Electronics	45	%
Paper	29	%
Plastics	26	%
Steel	<0,5	%

The product includes partial articles which contain substances listed in the Candidate List of REACH Regulation 1907/2006/EC (date: 08.07.2021) exceeding 0.1 percentage by mass in the alloy: yes

 Lead (Pb): 7439-92-1 (CAS No.) is included in some of the alloys used. The concentration of lead in each individual alloy does not exceed 4.0% (by mass).

The Candidate List can be found on the ECHA website address: https://echa.europa.eu/de/home.

Reference service life

The reference service life of the dormakaba access manager 92 00 is estimated to be 15 years. This number is based on the support and service life and is not an estimated lifetime.

LCA: Calculation rules

Declared Unit

The declared unit is 1 piece of the product: Access manager 92 00.

Declared unit

Decialed unit		
Name	Value	Unit
Declared unit	1	pce.
Conversion factor to 1 kg (kg per declared unit)	4	-
Product weight including packaging	0,25	kg

System boundary

The type of EPD is: cradle to gate with options, modules C1–C4, and module D (A1–A3 + C + D and additional modules: A4 + A5 + B6)

Production - Module A1-A3

The product stage includes:

- A1, raw material extraction, processing and mechanical treatments, processing of secondary material input (e.g. recycling processes),
- A2, transport to the manufacturer,
- A3, manufacturing and assembly including provision of all materials, products and energy, as well as waste processing up to the end-of

waste state.

Construction stage - Modules A4-A5

The construction process stage includes:

- A4, transport to the building site;
- A5, installation into the building;

including provision of all materials, products and energy, as well as waste processing up to the end-of-waste state or disposal of final residues during the construction process stage.

Use stage - Module B6

The use stage related to the operation of the building includes:

- B6, operational energy use

End-of-life stage- Modules C1-C4 and D

The end-of-life stage includes:

- C1, de-construction, demolition:
- C2, transport to waste processing;

- C3, waste processing for reuse, recovery and/or recycling;
- C4, disposal;

including provision and all transport, provision of all materials, products and related energy and water use. Module D (Benefits and loads beyond the system boundary) includes:

 D, recycling potentials, expressed as net impacts and benefits.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account.

Background database: GaBi, SP40.

LCA: Scenarios and additional technical information

Characteristic product properties Information on biogenic Carbon

Information on describing the biogenic Carbon Content at factory gate

Name	Value	Unit
Biogenic Carbon Content in product	0	kg C
Biogenic Carbon Content in accompanying packaging	0.03	kg C

The following technical scenario information is required for the declared modules.

Transport to the building site (A4)

Name	Value	Unit
Litres of fuel per 1 kg (truck)	0.00276	l/100km
Transport distance (truck)	750	km
Capacity utilisation (including empty runs)	51	%
Transort distance (ship)	1000	km

Installation into the building (A5)

Name	Value	Unit
Waste Packaging (paper)	0.0716	kg

Reference service life

Name	Value	Unit
Life Span according to the	15	а
manufacturer	13	а

Operational energy use (B6) and Operational water use (B7)

The use stage is declared for 15 years.

Name	Value	Unit
Energy consumption for 1 year	54.02	kWh
on mode per day	4	h
idle mode	20	h
on mode power	12	W
idle mode	5	W
Days per year in use	365	days

End of life (C1-C4)

C1: The product dismantling from the building is done manually without environmental burden.

Name	Value	Unit
Energy recovery (Plastic)	0.06	kg
Recycling (Steel)	0,01	kg
Recycling and landfilling (Electronics)	0,11	kg
Transportation to Waste Processing Site	50	km

Region for end of life: Global

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Collection rate is 100%.

LCA: Results

Disclaimer:

EP-freshwater: This indicator has been calculated as "kg P eq" as required in the characterization model (EUTREND model, Struijs et al., 2009b, as implemented in ReCiPe; http://eplca.jrc.ec.europa.eu/LCDN/developerEF.xhtml).

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; ND = MODULE OR INDICATOR NOT DECLARED: MNR = MODULE NOT RELEVANT)

DECL	ANE	J, IVIIN		ODUL		NELL	AMIAI)								
PRODUCT STAGE		CONST ON PRO	OCESS		USE STAGE					EN	D OF LI	FE STA		BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES		
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A 1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Х	Х	Х	Х	Х	ND	ND	MNR	MNR	MNR	Х	ND	ND	Х	Х	Х	Х

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 piece Access manager 92 00

Core Indicator	Unit	A1-A3	A4	A5	В6	C2	C3	C4	D
GWP-total	[kg CO ₂ -Eq.]	5.92E+0	1.72E-2	1.02E-1	4.13E+2	7.82E-4	2.20E-1	6.87E-5	-3.59E-1
GWP-fossil	[kg CO ₂ -Eq.]	5.93E+0	1.65E-2	2.54E-3	4.11E+2	7.47E-4	2.20E-1	6.83E-5	-3.59E-1
GWP-biogenic	[kg CO ₂ -Eq.]	-1.66E-2	7.26E-4	9.90E-2	8.16E-1	3.45E-5	5.13E-6	2.33E-7	3.05E-4
GWP-luluc	[kg CO ₂ -Eq.]	8.99E-3	3.90E-7	1.67E-6	5.78E-1	1.78E-8	1.25E-5	1.96E-7	-4.83E-4
ODP	[kg CFC11-Eq.]	7.77E-10	1.73E-18	1.83E-17	6.20E-12	7.89E-20	1.11E-16	2.53E-19	-2.10E-15
AP	[mol H+-Eq.]	3.33E-2	4.58E-5	2.84E-5	1.83E+0	7.48E-7	3.92E-5	4.90E-7	-4.34E-3
EP-freshwater	[kg P-Eq.]	4.30E-5	3.54E-9	3.58E-9	7.83E-4	1.60E-10	1.77E-8	1.17E-10	-3.21E-7
EP-marine	[kg N-Eq.]	5.84E-3	1.29E-5	1.03E-5	3.00E-1	2.38E-7	8.85E-6	1.26E-7	-3.39E-4
EP-terrestrial	[mol N-Eq.]	6.22E-2	1.43E-4	1.28E-4	3.23E+0	2.64E-6	1.79E-4	1.38E-6	-3.65E-3
POCP	[kg NMVOC-Eq.]	1.71E-2	3.63E-5	2.72E-5	8.67E-1	6.73E-7	2.45E-5	3.82E-7	-1.13E-3
ADPE	[kg Sb-Eq.]	1.14E-2	2.32E-1	3.20E-2	6.19E+3	1.06E-2	1.02E-1	8.96E-4	-4.93E+0
ADPF	[MJ]	7.27E+1	4.91E-10	2.89E-10	8.48E-5	2.24E-11	1.52E-9	6.13E-12	-1.95E-4
WDP	[m³ world-Eq deprived]	1.42E+0	3.22E-5	1.26E-2	8.74E+1	1.46E-6	2.25E-2	7.16E-6	-1.26E-1

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 piece Access manager 92 00

Indicator	Unit	A1-A3	A4	A5	В6	C2	C3	C4	D
PERE	[MJ]	1.73E+1	7.33E-4	8.65E-1	2.32E+3	3.34E-5	4.46E-2	1.17E-4	-7.80E-1
PERM	[MJ]	8.77E-1	0.00E+0	-8.59E-1	0.00E+0	0.00E+0	-1.80E-2	0.00E+0	0.00E+0
PERT	[MJ]	1.82E+1	7.33E-4	5.82E-3	2.32E+3	3.34E-5	2.66E-2	1.17E-4	-7.80E-1
PENRE	[MJ]	6.90E+1	2.32E-1	3.21E-2	6.20E+3	1.06E-2	3.86E+0	8.96E-4	-4.93E+0
PENRM	[MJ]	3.76E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	-3.76E+0	0.00E+0	0.00E+0
PENRT	[MJ]	7.27E+1	2.32E-1	3.21E-2	6.20E+3	1.06E-2	1.02E-1	8.96E-4	-4.93E+0
SM	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
RSF	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
NRSF	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
FW	[m³]	3.66E-2	1.32E-6	2.96E-4	3.16E+0	5.99E-8	5.39E-4	2.26E-7	-2.49E-3

Caption

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 piece Access manager 92 00

Indicator	Unit	A1-A3	A4	A 5	В6	C2	СЗ	C4	D
HWD	[kg]	6.15E-6	2.26E-11	4.72E-11	2.87E-6	1.03E-12	3.89E-10	1.37E-11	-1.32E-8
NHWD	[kg]	2.07E-1	2.38E-5	3.18E-3	3.87E+0	1.08E-6	2.29E-2	4.50E-3	-5.39E-2
RWD	[kg]	1.67E-3	2.50E-7	1.68E-6	7.18E-1	1.14E-8	3.79E-6	1.02E-8	-1.67E-4
CRU	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
MFR	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	8.76E-2	0.00E+0	0.00E+0
MER	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
EEE	[MJ]	1.07E-1	0.00E+0	1.54E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
EET	[MJ]	1.95E-1	0.00E+0	2.79E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0

Caption HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components

for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EEE = Exported thermal energy

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional: 1 piece Access manager 92 00

Indicator	Unit	A1-A3	A4	A5	В6	C2	C3	C4	D
PM	[Disease Incidence]	3.35E-7	5.97E-10	1.57E-10	2.56E-5	3.93E-12	5.01E-10	6.06E-12	-3.51E-8
IRP	[kBq U235- Eq.]	1.61E-1	3.57E-5	2.61E-4	1.16E+2	1.63E-6	3.42E-4	1.05E-6	-2.61E-2
ETP-fw	[CTUe]	3.91E+1	1.65E-1	1.52E-2	2.28E+3	7.51E-3	3.83E-2	5.12E-4	-2.27E+0
HTP-c	[CTUh]	1.94E-9	3.10E-12	8.04E-13	8.34E-8	1.41E-13	3.32E-12	7.58E-14	-1.53E-10
HTP-nc	[CTUh]	1.09E-7	1.33E-10	3.49E-11	3.32E-6	6.04E-12	3.36E-10	8.36E-12	-1.22E-8
SQP	[-]	2.40E+1	5.98E-4	8.50E-3	1.71E+3	2.72E-5	3.06E-2	1.87E-4	-2.10E+0

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential Caption comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index

Disclaimer 1 - for the indicator IRP

This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 - for the indicators ADPE, ADPF, WDP, ETP-fw, HTP-c, HTP-nc, SQP

The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

References

Standards

CAN/CSA-22.2 No. 62368-1

CAN/CSA-22.2 No. 62368-1:2014, Audio/video, information and communication technologyequipment — Part 1: Safety requirements.

EN 15804:2019+A2

EN 15804:2019+A2 (in press), Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products.

EN 301489-1 V2.2.0

ElectroMagnetic Compatibility (EMC) standard for radio equipment and services - Part 1: Common technical requirements - Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU and the essential requirements of article 6 of Directive 2014/30/EU.

EN 301489-3 V2.1.1

ElectroMagnetic Compatibility (EMC) standard for radio equipment and services - Part 3: Specific conditions for Short-Range Devices (SRD) operating on frequencies between 9 kHz and 246 GHz - Harmonised standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU.

EN 300330 V2.1.1

Short Range Devices (SRD) - Radio equipment in the frequency range 9 kHz to 25 MHz and inductive loop systems in the frequency range 9 kHz to 30 MHz - Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU.

EN 50364

EN 50364:2010, Limitation of human exposure to electromagnetic fields from devices operating in the frequency range 0 Hz to 300 GHz, used in Electronic

Article Surveillance (EAS), Radio Frequency Identification (RFID) and similar applications.

EN 60529

EN 60529:2014, Degrees of protection provided by enclosures (IP 20).

EN 60715

EN 60715:2018, Dimensions of low-voltage switchgear and controlgear - Standardized mounting on rails for mechanical support of switchgear, controlgear and accessories

EN 62368-1

EN 62368-1:2014, Audio/video, information and communication technology equipment - Part 1: Safety requirements.

ISO 14025

DIN EN ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.

Radio Equipment Directive (RED)

Directive 2014/53/EU of the European Parliament and of the Council of 16 April 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC.

Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).

Restriction of Hazardous Substances (RoHS)

Directive on the restriction of the use of certain

hazardous substances in electrical and electronic equipment (RoHS), Directive (EU) No 2011/65.

UL 294

UL 294:2013, Standard for Safety Access Control System Unit.

UL 62368-1

UL 62368:2014, Standard for Audio/video, information and communication technology equipment - Part 1: Safety requirements.

Further References

IBU 2016

Institut Bauen und Umwelt e.V.: General Instructions for the EPD programme of Institut Bauen und Umwelt e.V. Version 2.0., Berlin: Institut Bauen und Umwelt e.V., 2021. www.ibu-epd.com

GaBi ts software

Sphera Solutions GmbH Gabi Software System and Database for Life Cycle Engineering 1992-2020 Version 10.0.0.71 University of Stuttgart Leinfelden-Echterdingen

GaBi ts documentation

GaBi life cycle inventory data documentation (https://www.gabi-software.com/support/gabi/gabi-database-2020-lci-documentation/).

LCA-tool dormakaba

LCA tool, version 1.0. Developed by Sphera Solutions GmbH.

PCR Part A

PCR – Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Re-port according to EN 15804+A2:2019, Version 1.0, Institut Bauen und Umwelt e.V., www.ibu-epd.com.

PCR Part B

PCR – Part B: Requirements on the EPD for Building Hardware product, version 1.3, Institut Bauen und Umwelt e.V., www.ibu-epd.com, 2019.

Publisher

Germany

Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Tel +49 (0)30 3087748- 0 Fax +49 (0)30 3087748- 29 Mail info@ibu-epd.com Web www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany Tel +49 (0)30 - 3087748- 0 Fax +49 (0)30 - 3087748 - 29 Mail info@ibu-epd.com Web **www.ibu-epd.com**

+49 711 341817-0

Author of the Life Cycle Assessment

Sphera Solutions GmbH Hauptstraße 111- 113 70771 Leinfelden-Echterdingen Germany Fax +49 711 341817-25 Mail info@sphera.com Web www.sphera.com

Tel

Owner of the Declaration

dormakaba International Holding AG Hofwisenstr. 24 8153 Rümlang Switzerland Tel +41 44 818 90 11 Fax +41 44 818 90 18 Mail info@dormakaba.com Web www.dormakaba.com