Name:Gadham Setty Pranay Kumar

Task-1 - STOCK PREDICTION

Importing the libraries

```
In [4]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import tensorflow as tf
    from sklearn.preprocessing import MinMaxScaler
```

Reading the Dataset

In [6]: file_path = r"C:\Users\PRANAY\Downloads\GOOG.csv"
tg = pd.read_csv(file_path)

In [7]: tg.head()

Out[7]: low open volume adjClose adjHigh adjLow adjOpen adjVolume divCash splitFactor symbol date close high **0** GOOG 2016-06-14 00:00:00+00:00 718.27 722.47 713.1200 716.48 1306065 718.27 722.47 713.1200 716.48 1306065 0.0 1.0 **1** GOOG 2016-06-15 00:00:00+00:00 718.92 722.98 717.3100 719.00 1214517 718.92 722.98 717.3100 719.00 1214517 0.0 1.0 **2** GOOG 2016-06-16 00:00:00+00:00 710.36 716.65 703.2600 714.91 1982471 710.36 716.65 703.2600 714.91 1982471 0.0 1.0 **3** GOOG 2016-06-17 00:00:00+00:00 691.72 708.82 688.4515 708.65 3402357 691.72 708.82 688.4515 708.65 3402357 0.0 1.0 **4** GOOG 2016-06-20 00:00:00+00:00 693.71 702.48 693.4100 698.77 2082538 693.71 702.48 693.4100 698.77 2082538 0.0 1.0

In [8]: tg.tail()

Out[8]:		symbol	date	close	high	low	open	volume	adjClose	adjHigh	adjLow	adjOpen	adjVolume	divCash	splitFactor
	1253	GOOG	2021-06-07 00:00:00+00:00	2466.09	2468.000	2441.0725	2451.32	1192453	2466.09	2468.000	2441.0725	2451.32	1192453	0.0	1.0
	1254	GOOG	2021-06-08 00:00:00+00:00	2482.85	2494.495	2468.2400	2479.90	1253253	2482.85	2494.495	2468.2400	2479.90	1253253	0.0	1.0
	1255	GOOG	2021-06-09 00:00:00+00:00	2491.40	2505.000	2487.3300	2499.50	1006337	2491.40	2505.000	2487.3300	2499.50	1006337	0.0	1.0
	1256	GOOG	2021-06-10 00:00:00+00:00	2521.60	2523.260	2494.0000	2494.01	1561733	2521.60	2523.260	2494.0000	2494.01	1561733	0.0	1.0
	1257	GOOG	2021-06-11 00:00:00+00:00	2513.93	2526.990	2498.2900	2524.92	1262309	2513.93	2526.990	2498.2900	2524.92	1262309	0.0	1.0

In [9]: tg.describe()

Out[9]:	close		high	low	open	volume	adjClose	adjHigh	adjLow	adjOpen	adjVolume	divCash	splitFactor
	count	1258.000000	1258.000000	1258.000000	1258.000000	1.258000e+03	1258.000000	1258.000000	1258.000000	1258.000000	1.258000e+03	1258.0	1258.0
	mean	1216.317067	1227.430934	1204.176430	1215.260779	1.601590e+06	1216.317067	1227.430936	1204.176436	1215.260779	1.601590e+06	0.0	1.0
	std	383.333358	387.570872	378.777094	382.446995	6.960172e+05	383.333358	387.570873	378.777099	382.446995	6.960172e+05	0.0	0.0
	min	668.260000	672.300000	663.284000	671.000000	3.467530e+05	668.260000	672.300000	663.284000	671.000000	3.467530e+05	0.0	1.0
	25%	960.802500	968.757500	952.182500	959.005000	1.173522e+06	960.802500	968.757500	952.182500	959.005000	1.173522e+06	0.0	1.0
	50%	1132.460000	1143.935000	1117.915000	1131.150000	1.412588e+06	1132.460000	1143.935000	1117.915000	1131.150000	1.412588e+06	0.0	1.0
	75%	1360.595000	1374.345000	1348.557500	1361.075000	1.812156e+06	1360.595000	1374.345000	1348.557500	1361.075000	1.812156e+06	0.0	1.0
	max	2521.600000	2526.990000	2498.290000	2524.920000	6.207027e+06	2521.600000	2526.990000	2498.290000	2524.920000	6.207027e+06	0.0	1.0

Sorting The Data Checking for null values

```
In [11]: NAN = [(c, tg[c].isnull().mean()*100)for c in tg]
NAN = pd.DataFrame(NAN, columns=['column_name', 'percentage'])
NAN
```

Out[11]:		column_name	percentage
	0	symbol	0.0
	1	date	0.0
	2	close	0.0
	3	high	0.0
	4	low	0.0
	5	open	0.0
	6	volume	0.0
	7	adjClose	0.0
	8	adjHigh	0.0
	9	adjLow	0.0
	10	adjOpen	0.0
	11	adjVolume	0.0
	12	divCash	0.0
	13	splitFactor	0.0

```
In [12]: srt=tg.sort_values(by='symbol')
    srt.head()
```

Out[12]:	sym	nbol	date	close	high	low	open	volume	adjClose	adjHigh	adjLow	adjOpen	adjVolume	divCash	splitFactor
	0 GC	OOG 2016	6-06-14 00:00:00+00:00	718.27	722.47	713.12	716.48	1306065	718.27	722.47	713.12	716.48	1306065	0.0	1.0
	841 GC	OOG 2019	9-10-16 00:00:00+00:00	1243.64	1254.74	1238.45	1241.17	1168174	1243.64	1254.74	1238.45	1241.17	1168174	0.0	1.0
	840 GC	OOG 2019	9-10-15 00:00:00+00:00	1243.01	1247.33	1220.40	1220.40	1395259	1243.01	1247.33	1220.40	1220.40	1395259	0.0	1.0
	839 GC	OOG 2019	9-10-14 00:00:00+00:00	1217.14	1226.33	1211.76	1212.34	882039	1217.14	1226.33	1211.76	1212.34	882039	0.0	1.0
	838 GC	OOG 2019	9-10-11 00:00:00+00:00	1215.45	1228.39	1213.74	1222.21	1277144	1215.45	1228.39	1213.74	1222.21	1277144	0.0	1.0
	840 GC 839 GC	OOG 2019	9-10-15 00:00:00+00:00 9-10-14 00:00:00+00:00	1243.01 1217.14	1247.33 1226.33	1220.40 1211.76	1220.40 1212.34	1395259 882039	1243.01 1217.14	1247.33 1226.33	1220.40 1211.76	1220.40	1395259	0.0	

In [13]: srt.reset_index(inplace=True)

In [14]: srt.head()

Out[14]: index symbol open volume adjClose adjHigh adjLow adjOpen adjVolume divCash splitFactor date close high low 0 GOOG 2016-06-14 00:00:00+00:00 718.27 1306065 0.0 1.0 722.47 713.12 716.48 1306065 718.27 722.47 713.12 716.48 841 GOOG 2019-10-16 00:00:00+00:00 1243.64 1254.74 1238.45 1241.17 1168174 1241.17 1168174 0.0 1243.64 1254.74 1238.45 1.0 GOOG 2019-10-15 00:00:00+00:00 1243.01 1247.33 1220.40 1220.40 1395259 1220.40 1395259 0.0 1243.01 1247.33 1220.40 1.0 882039 839 GOOG 2019-10-14 00:00:00+00:00 1217.14 1226.33 1211.76 1212.34 882039 1217.14 1226.33 1211.76 1212.34 0.0 1.0 GOOG 2019-10-11 00:00:00+00:00 1215.45 1228.39 1213.74 1222.21 1277144 1215.45 1228.39 1213.74 1222.21 1277144 0.0 1.0

Data Visualization Plotting the graph for the date and close

In [16]: plt.figure(figsize=(10,7))
plt.plot(srt['date'],srt['close'])

Out[16]: [<matplotlib.lines.Line2D at 0x17707357c20>]

In [17]: close_srt = srt['close']

```
close_srt
Out[17]: 0
                  718.27
                 1243.64
         2
                 1243.01
         3
                 1217.14
                 1215.45
          1253
                 1001.52
         1254
                 1048.58
         1255
                 1080.60
         1256
                 1089.52
         1257
                 2513.93
          Name: close, Length: 1258, dtype: float64
         Feature Scaling(MinMax Scaler)
In [19]: scaler = MinMaxScaler(feature_range=(0,1))
         close_srt = scaler.fit_transform(np.array(close_srt).reshape(-1,1))
         close_srt
```

```
Out[19]: array([[0.02698372],
                [0.31045572],
                [0.31011579],
                [0.22248481],
                [0.22729774],
                [0.99586153]])
         Splitting the dataset
In [21]: train_size = int(len(close_srt)*0.7)
         test_size = len(close_srt) - train_size
         train_data,test_data = close_srt[0:train_size,:],close_srt[train_size:len(close_srt),:1]
In [22]: train_data.shape
Out[22]: (880, 1)
In [23]: test_data.shape
Out[23]: (378, 1)
         Convert an array of values into a dataset matrix
In [25]: def create_dataset(dataset, time_steps=1):
             dataX, dataY = [],[]
             for i in range(len(dataset)-time_step-1):
                 a = dataset[i:(i+time_step),0]
                 dataX.append(a)
                 dataY.append(dataset[i + time_step, 0])
                 return np.array(dataX), np.array(dataY)
         Reshaping of dataset
In [27]: time_step = 100
         X_train, y_train = create_dataset(train_data, time_step)
         X_test, y_test = create_dataset(test_data, time_step)
In [28]: print(X_train.shape), print(y_train.shape)
        (1, 100)
        (1,)
Out[28]: (None, None)
In [29]: print(X_test.shape), print(y_test.shape)
        (1, 100)
        (1,)
Out[29]: (None, None)
In [30]: X_train =X_train.reshape(X_train.shape[0],X_train.shape[1] , 1)
In [31]: X_train
```

```
Out[31]: array([[[0.02698372],
                   [0.31045572],
                  [0.31011579],
                  [0.29615721],
                   [0.29524534],
                   [0.29158708],
                   [0.28815544],
                   [0.28104395],
                   [0.29105291],
                  [0.29176514],
                   [0.28034252],
                   [0.27429937],
                   [0.28966083],
                   [0.2971608],
                   [0.30044676],
                   [0.30924169],
                   [0.31554383],
                   [0.31145392],
                   [0.31181003],
                   [0.31000248],
                  [0.33978655],
                   [0.3402182],
                   [0.34042863],
                   [0.34700055],
                   [0.34564624],
                   [0.33644124],
                  [0.33656534],
                   [0.31200967],
                   [0.33620922],
                   [0.31934238],
                   [0.31997906],
                  [0.32069669],
                   [0.33547002],
                   [0.322051],
                   [0.31981719],
                  [0.3188136],
                   [0.32669667],
                   [0.34704911],
                   [0.29703131],
                   [0.30305826],
                   [0.28218783],
                   [0.27756915],
                   [0.28607271],
                   [0.27482275],
                   [0.26924364],
                   [0.26764112],
                   [0.28543602],
                   [0.27326341],
                   [0.28043964],
                   [0.28949896],
                   [0.27287492],
                   [0.27069507],
                   [0.26118251],
                  [0.28366625],
                   [0.29177053],
                   [0.28125978],
                   [0.26062676],
                   [0.27012313],
                   [0.26955658],
                   [0.30779566],
```

```
[0.30439639],
                  [0.3026374],
                  [0.30379747],
                  [0.30825429],
                  [0.30538919],
                  [0.29779209],
                  [0.30527048],
                  [0.29014644],
                  [0.2895691],
                  [0.29304931],
                  [0.2768785],
                  [0.26985335],
                  [0.2804882],
                  [0.28305114],
                  [0.27127241],
                  [0.28928853],
                  [0.35968036],
                  [0.3520347],
                  [0.34920738],
                  [0.4534624],
                  [0.43757217],
                  [0.43595347],
                  [0.42084561],
                  [0.42021971],
                  [0.44119266],
                  [0.41329168],
                  [0.42495171],
                  [0.4264571],
                  [0.42318193],
                  [0.41311362],
                  [0.4308168],
                  [0.44157575],
                  [0.44119805],
                  [0.44036173],
                  [0.45352175],
                  [0.45863684],
                  [0.456689],
                  [0.45996957],
                  [0.33028478],
                 [0.29530469]]])
In [32]: X_test =X_test.reshape(X_test.shape[0],X_test.shape[1] , 1)
In [33]: X_test
```

```
Out[33]: array([[[0.04437394],
                   [0.06563825],
                   [0.06652314],
                   [0.06301596],
                   [0.06179654],
                   [0.08396193],
                   [0.08150151],
                   [0.0737911],
                   [0.07225604],
                  [0.07435765],
                   [0.07356988],
                   [0.07533426],
                   [0.04298186],
                   [0.07451412],
                   [0.073667],
                   [0.07467059],
                   [0.07440081],
                   [0.06785587],
                   [0.06401416],
                   [0.06360409],
                  [0.0558775],
                   [0.07535045],
                   [0.04844227],
                   [0.05534872],
                   [0.05394585],
                   [0.06857349],
                  [0.07058068],
                   [0.07522095],
                   [0.07815619],
                   [0.07074255],
                   [0.06944759],
                   [0.0719242],
                   [0.06858429],
                   [0.06852493],
                   [0.05949799],
                  [0.05931453],
                   [0.06360409],
                   [0.06194762],
                  [0.06349617],
                   [0.05763648],
                   [0.05859691],
                   [0.06026957],
                  [0.0583649],
                   [0.06274078],
                   [0.05419405],
                   [0.05040629],
                  [0.05003399],
                   [0.05396204],
                   [0.05446383],
                   [0.04979119],
                   [0.05555915],
                   [0.05191708],
                   [0.06223898],
                  [0.04868508],
                   [0.04627321],
                   [0.05088111],
                   [0.06315625],
                   [0.06596199],
                   [0.06165086],
                   [0.05058975],
```

```
[0.0506491],
[0.03659339],
[1.
[0.14072971],
[0.1439725],
[0.28468603],
[0.28626156],
[0.27820044],
[0.28087669],
[0.2779954],
[0.26203503],
[0.26146309],
[0.26211596],
[0.25462678],
[0.24604768],
[0.23451175],
[0.24776889],
[0.24139661],
[0.24062503],
[0.23509987],
[0.27987309],
[0.27876698],
[0.28987666],
[0.31285139],
[0.294668],
[0.30962479],
[0.30579926],
[0.30720213],
[0.31340175],
[0.31151866],
[0.30968953],
[0.2429128],
[0.3002741],
[0.3010187],
[0.29770576],
[0.29622196],
[0.29756008],
[0.30768235],
[0.32377761],
[0.32127942]]])
```

Creating the stacked LSTM Model

```
In [35]: from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.layers import LSTM from keras.models import Sequential from keras.models import Sequential from keras.layers import LSTM, Dense, Input

In [36]: model = Sequential() model.add(Input(shape=(100, 1))) model.add(LSTM(50, return_sequences=True)) model.add(LSTM(50, return_sequences=True)) model.add(LSTM(50)) model.add(Dense(1))

In [37]: model.summary()
```

Layer (type)	Output Shape	Param #
1stm (LSTM)	(None, 100, 50)	10,400
lstm_1 (LSTM)	(None, 100, 50)	20,200
lstm_2 (LSTM)	(None, 50)	20,200
dense (Dense)	(None, 1)	51

Total params: 50,851 (198.64 KB)

Trainable params: 50,851 (198.64 KB)

Non-trainable params: 0 (0.00 B)

Prediction and Checking Performance

```
In [39]: model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=70, batch_size=64, verbose=1)
```

Epoch 1/70					
	139	s 13s/step -	1	.oss: (0.1322 - val_loss: 0.0708
Epoch 2/70 1/1 ———————————————————————————————————	۵۶	220ms/sten	_	1000	0.0897 - val_loss: 0.0473
Epoch 3/70	03	223113/3CEP		1033.	0.0057 - Val_1033. 0.0475
•	0s	214ms/step	_	loss:	0.0566 - val_loss: 0.0268
Epoch 4/70					
	0s	225ms/step	-	loss:	0.0288 - val_loss: 0.0097
Epoch 5/70	0 -	222 / 1		,	0.0077 1.1 2.4000 04
1/1 ———————————————————————————————————	05	228ms/step	-	1055:	0.0077 - val_loss: 3.4880e-04
-	. 0s	209ms/step	_	loss:	1.8241e-04 - val_loss: 0.0037
Epoch 7/70					_
	0s	219ms/step	-	loss:	0.0129 - val_loss: 0.0065
Epoch 8/70	_	/ /			
1/1 Epoch 9/70	0s	221ms/step	-	loss:	0.0189 - val_loss: 0.0036
	05	227ms/sten	_	loss:	0.0120 - val loss: 5.1314e-04
Epoch 10/70		,o, o cep			
1/1	0s	229ms/step	-	loss:	0.0039 - val_loss: 2.2944e-04
Epoch 11/70					
	· 0s	239ms/step	-	loss:	2.1383e-04 - val_loss: 0.0022
Epoch 12/70 1/1	95	233ms/sten	_	loss:	6.3329e-04 - val_loss: 0.0049
Epoch 13/70	05	2333, 3 сер		1055.	0.55256 0.
1/1	0s	228ms/step	-	loss:	0.0029 - val_loss: 0.0070
Epoch 14/70		_		_	
	0s	211ms/step	-	loss:	0.0052 - val_loss: 0.0081
Epoch 15/70 1/1	95	200ms/sten	_	loss:	0.0064 - val_loss: 0.0080
Epoch 16/70	05	2003, 3 сер		1055.	141_10331 010000
1/1	0s	215ms/step	-	loss:	0.0064 - val_loss: 0.0070
Epoch 17/70		_		_	
	· 0s	230ms/step	-	loss:	0.0054 - val_loss: 0.0054
Epoch 18/70	۵ς	216ms/sten	_	lnss.	0.0038 - val_loss: 0.0037
Epoch 19/70	U.S	2101137 3 6 6 7		1033.	vai_1033. 0.0037
1/1	0s	232ms/step	-	loss:	0.0021 - val_loss: 0.0021
Epoch 20/70		_			
	0s	222ms/step	-	loss:	7.5074e-04 - val_loss: 8.5318e-04
Epoch 21/70 1/1	05	218ms/sten	_	loss:	6.5866e-05 - val loss: 1.8740e-04
Epoch 22/70		, эсер			12_200. 1.0/.00 04
1/1	0s	204ms/step	-	loss:	1.0986e-04 - val_loss: 8.0192e-08
Epoch 23/70	_	/ /			
1/1 ———————————————————————————————————	0s	226ms/step	-	loss:	7.0274e-04 - val_loss: 9.1176e-05
	. 0s	199ms/step	_	loss:	0.0015 - val_loss: 2.1881e-04
Epoch 25/70		7, 5 5 5 6			
	0s	223ms/step	-	loss:	0.0020 - val_loss: 2.3069e-04
Epoch 26/70	_	222 / /		,	
1/1 ———————————————————————————————————	· 0s	223ms/step	-	loss:	0.0020 - val_loss: 1.2728e-04
•	05	215ms/sten	_	loss:	0.0016 - val_loss: 1.7635e-05
Epoch 28/70		, эсер			
1/1	0s	227ms/step	-	loss:	9.4590e-04 - val_loss: 2.2074e-05
Epoch 29/70	_	040 / :			2 222
1/1	0s	218ms/step	-	Toss:	3.9056e-04 - val_loss: 1.9925e-04
	05	234ms/sten	_	loss:	6.6594e-05 - val_loss: 5.2895e-04
-, -		_55, 5 ccp		1000.	0.055 to 05 Var_1055. 5.2055e-04

Epoch 31/70								
-	0s	227ms/step	_	loss:	7.6977e-06	_	val loss:	9.3620e-04
Epoch 32/70		·					_	
1/1	0s	238ms/step	-	loss:	1.4725e-04	-	<pre>val_loss:</pre>	0.0013
Epoch 33/70 1/1 ——————	0-	22222/2422		1	2 7472 04			0.0016
Epoch 34/70	05	233ms/step	-	1055:	3./4/3e-04	-	vai_ioss:	0.0016
-	0s	229ms/step	_	loss:	5.8407e-04	-	val loss:	0.0018
Epoch 35/70		·					_	
	0s	237ms/step	-	loss:	7.0236e-04	-	val_loss:	0.0018
Epoch 36/70 1/1 ——————	Q.c	261ms/step		1000	7 00260 04		val loss:	0 0016
Epoch 37/70	62	2011113/3Cep	-	1055.	7.00206-04	-	va1_1055.	0.0010
-	0s	243ms/step	-	loss:	5.8930e-04	-	val_loss:	0.0013
Epoch 38/70				_				
	0s	245ms/step	-	loss:	4.1100e-04	-	val_loss:	0.0010
Epoch 39/70 1/1	0s	234ms/step	_	loss:	2.2147e-04	_	val loss:	7.2218e-04
Epoch 40/70		,					_	
1/1	0s	231ms/step	-	loss:	7.4220e-05	-	<pre>val_loss:</pre>	4.5643e-04
Epoch 41/70 1/1	00	222ms /s+on		10001	4 21020 00		val lacci	2 (005 04
Epoch 42/70	05	223ms/step	-	1055;	4.21926-00	-	va1_1055;	2.6005e-04
-	0s	228ms/step	-	loss:	1.7509e-05	-	val_loss:	1.3579e-04
Epoch 43/70								
	0s	231ms/step	-	loss:	9.0342e-05	-	val_loss:	6.9894e-05
Epoch 44/70 1/1	95	208ms/sten	_	loss.	1 7972e-04	_	val loss:	4 2550e-05
Epoch 45/70	O.J	2001137 3 6 6 7		1033.	1.73720 04		vu1_1033.	4.23300 03
	0s	206ms/step	-	loss:	2.4199e-04	-	<pre>val_loss:</pre>	3.8828e-05
Epoch 46/70	0-	222		1	2 5112- 04			F 44F4- 0F
1/1 ———————————————————————————————————	05	223ms/step	-	1055:	2.5113e-04	-	vai_ioss:	5.4454e-05
-	0s	214ms/step	-	loss:	2.0755e-04	-	val_loss:	9.3989e-05
Epoch 48/70								
	0s	232ms/step	-	loss:	1.3370e-04	-	val_loss:	1.6369e-04
Epoch 49/70 1/1 ————————	95	231ms/sten	_	loss.	6 0500e-05	_	val loss:	2.6412e-04
Epoch 50/70	05	23211137 3 6 6 5		1055.	0.03000 03		·u1_1033.	2.0.122
	0s	274ms/step	-	loss:	1.2722e-05	-	<pre>val_loss:</pre>	3.8643e-04
Epoch 51/70	0-	224ma/atan		1	2 25172 07			F 1272 04
1/1 ———————————————————————————————————	05	224ms/step	-	1055:	3.351/e-0/	-	vai_ioss:	5.13/3e-04
1/1	0s	220ms/step	-	loss:	1.7983e-05	-	val_loss:	6.2571e-04
Epoch 53/70								
	0s	220ms/step	-	loss:	5.0482e-05	-	val_loss:	7.0433e-04
Epoch 54/70 1/1 ———————————————————————————————————	0s	222ms/step	_	loss:	8.0538e-05	_	val loss:	7.3829e-04
Epoch 55/70								
	0s	222ms/step	-	loss:	9.5370e-05	-	<pre>val_loss:</pre>	7.2517e-04
Epoch 56/70 1/1 ———————————————————————————————————	00	227ms /s+on		1000	0 02010 05		val locci	6 71200 04
Epoch 57/70	62	22/111S/Step	-	1055.	9.02016-03	-	Va1_1055.	6.7120e-04
-	0s	224ms/step	-	loss:	6.8847e-05	-	val_loss:	5.8890e-04
Epoch 58/70				_				
	0s	222ms/step	-	loss:	4.0275e-05	-	val_loss:	4.9362e-04
Epoch 59/70 1/1 ———————	0s	236ms/step	_	loss:	1.5216e-05	_	val loss:	3.9996e-04
Epoch 60/70		-,P						
1/1	0s	235ms/step	-	loss:	1.5632e-06	-	<pre>val_loss:</pre>	3.1896e-04

```
Epoch 61/70
        1/1 ·
                                Os 236ms/step - loss: 1.7073e-06 - val_loss: 2.5691e-04
        Epoch 62/70
        1/1 -
                                 0s 203ms/step - loss: 1.2205e-05 - val_loss: 2.1580e-04
        Epoch 63/70
                                 0s 217ms/step - loss: 2.5894e-05 - val_loss: 1.9490e-04
        1/1 -
        Epoch 64/70
        1/1 -
                                 0s 232ms/step - loss: 3.5421e-05 - val_loss: 1.9254e-04
        Epoch 65/70
        1/1 -
                                0s 223ms/step - loss: 3.6482e-05 - val_loss: 2.0702e-04
        Epoch 66/70
                                 0s 224ms/step - loss: 2.9273e-05 - val_loss: 2.3658e-04
        1/1 -
        Epoch 67/70
                                Os 206ms/step - loss: 1.7668e-05 - val_loss: 2.7853e-04
        1/1 -
        Epoch 68/70
        1/1 -
                                 0s 209ms/step - loss: 6.8528e-06 - val_loss: 3.2854e-04
        Epoch 69/70
        1/1 -
                                 0s 239ms/step - loss: 7.7268e-07 - val_loss: 3.8054e-04
        Epoch 70/70
        1/1 -
                                Os 228ms/step - loss: 6.2905e-07 - val_loss: 4.2754e-04
Out[39]: <keras.src.callbacks.history.History at 0x17709fb10a0>
In [40]: train_predict = model.predict(X_train)
         test_predict = model.predict(X_test)
        1/1 -
                               - 1s 1s/step
        1/1 -
                               - 0s 63ms/step
In [41]: train_predict = scaler.inverse_transform(train_predict)
         test_predict = scaler.inverse_transform(test_predict)
         Calculating the performance
In [43]: import math
         from sklearn.metrics import mean_squared_error
In [44]: math.sqrt(mean_squared_error(y_train,train_predict))
```

Plotting the graph with predicted train date, test data with actual data

In [45]: math.sqrt(mean_squared_error(y_test,test_predict))

Out[44]: 1293.9755439880562

Out[45]: 1185.0888476453426

```
In [47]: look_back=100
    trainPredictPlot = np.empty_like(close_srt)
    trainPredictPlot[:, :] = np.nan
    trainPredictPlot[look_back:len(train_predict)+look_back, :] = train_predict

testPredictPlot = np.empty_like(close_srt)
    testPredictPlot[:, :] = np.nan
    testPredictPlot[len(train_predict)+(look_back*2)+1:len(close_srt)-1, :] = test_predict

plt.figure(figsize=(10,7))
    plt.plot(scaler.inverse_transform(close_srt))
    plt.plot(trainPredictPlot)
```


Prediction for next 30 days

```
In [49]: len(test_data)

Out[49]: 378

In [50]: pred_input=test_data[278:].reshape(1,-1)
    pred_input.shape

Out[50]: (1, 100)

In [51]: temp_input=list(pred_input)
    temp_input=temp_input[0].tolist()

In [52]: temp_input
```

```
Out[52]: [0.21406757529649179,
          0.1665857317060011,
          0.17319542016035916,
          0.19279786763356965,
          0.19275470232121472,
          0.18797414397789936,
          0.18822774018798494,
          0.18939320362156975,
          0.16419005687029897,
          0.16460552300171583,
          0.16421163952647655,
          0.16310013273333546,
          0.17262887543569994,
          0.17060550141905972,
          0.17511627656015627,
          0.1747763497253607,
          0.17467922777256195,
          0.17342743371426717,
          0.17242923586605807,
          0.16197243894806135,
          0.14234301315462894,
          0.2234991960460574,
          0.23415563253369598,
          0.1817475476706919,
          0.20770608738817486,
          0.19063420635177575,
          0.20547767813784845,
          0.22803155384333162,
          0.23171679238563891,
          0.2328552774990018,
          0.25223110708234864,
          0.25970410178380654,
          0.25965554080740716,
          0.25354764910917593,
          0.26775443253801245,
          0.26534796637422164,
          0.2469811259671728,
          0.23815381959057713,
          0.1814561818122956,
          0.19614857500512584,
          0.18248675364477107,
          0.18623134449156653,
          0.1904237754540451,
          0.18977629576872024,
          0.21538951298736342,
          0.21836252387581345,
          0.2263157326772206,
          0.21788770543990843,
          0.2190100035611383,
          0.23028694141387984,
          0.19948849104859334,
          0.19653706281632077,
          0.1897709001046759,
          0.1960676400444603,
          0.18733205995661895,
          0.18279430649530037,
          0.19400110071546506,
          0.1925604584156173,
          0.1947888676659436,
          0.22805853216355343,
```

```
0.22157833964626028,
          0.21650641544454874,
          0.26731738375041825,
          0.2737328282991788,
          0.27387311556433247,
          0.2709216873320599,
          0.26761414527285876,
          0.270705860770285,
          0.2630656004834515,
          0.2706896737781519,
          0.25319153528224725,
          0.2502077330657084,
          0.24469336441235823,
          0.24496314761457694,
          0.23593080600429495,
          0.23436066776738207,
          0.23633008514357867,
          0.23669699029859614,
          0.2490260826399905,
          0.22561429635145203,
          0.26948104503221215,
          0.20910356437566768,
          0.23550454854478942,
          0.2428210689889605,
          0.25655842964593656,
          0.24740738342667834,
          0.23652972471322053,
          0.2390710824781206,
          0.23427973280671655,
          0.23937323966460555,
          0.23014665414872604,
           0.2166035373973475,
          0.20710716867924928,
          0.2070208380545394,
          0.1993805777677059,
          0.179815899942806,
          0.20520789493562974,
          0.22248481120571506,
           0.22729774353329668,
          0.9958615256779652]
In [53]: lst_output=[]
         n steps=100
         i=0
         while(i<30):</pre>
             if(len(temp_input)>100):
                 pred_input=np.array(temp_input[1:])
                 print("{} day input {}".format(i,pred_input))
                 pred_input=pred_input.reshape((1,n_steps, 1))
                 yhat = model.predict(pred_input, verbose=0)
                 print("{} day output {}".format(i,yhat))
                 temp_input.extend(yhat[0].tolist())
                 temp_input=temp_input[1:]
                 lst_output.extend(yhat.tolist())
                 i=i+1
             else:
                 pred_input = pred_input.reshape((1, n_steps,1))
                 yhat = model.predict(pred_input, verbose=0)
                 print(yhat[0])
```

```
temp_input.extend(yhat[0].tolist())
    print(len(temp_input))
    lst_output.extend(yhat.tolist())
    i=i+1

print(lst_output)
```

```
[0.24960786]
101
1 day input [0.16658573 0.17319542 0.19279787 0.1927547 0.18797414 0.18822774
0.16197244 0.14234301 0.2234992 0.23415563 0.18174755 0.20770609
0.19063421 0.20547768 0.22803155 0.23171679 0.23285528 0.25223111
0.2597041 0.25965554 0.25354765 0.26775443 0.26534797 0.24698113
0.23815382 0.18145618 0.19614858 0.18248675 0.18623134 0.19042378
0.23028694 0.19948849 0.19653706 0.1897709 0.19606764 0.18733206
0.18279431 0.1940011 0.19256046 0.19478887 0.22805853 0.22157834
0.21650642 0.26731738 0.27373283 0.27387312 0.27092169 0.26761415
0.27070586 0.2630656 0.27068967 0.25319154 0.25020773 0.24469336
0.24496315 0.23593081 0.23436067 0.23633009 0.23669699 0.24902608
0.24740738 0.23652972 0.23907108 0.23427973 0.23937324 0.23014665
0.21660354 0.20710717 0.20702084 0.19938058 0.1798159 0.20520789
0.22248481 0.22729774 0.99586153 0.24960786]
1 day output [[0.25352642]]
2 day input [0.17319542 0.19279787 0.1927547 0.18797414 0.18822774 0.1893932
0.16419006 0.16460552 0.16421164 0.16310013 0.17262888 0.1706055
0.17511628 0.17477635 0.17467923 0.17342743 0.17242924 0.16197244
0.14234301 0.2234992 0.23415563 0.18174755 0.20770609 0.19063421
0.20547768 0.22803155 0.23171679 0.23285528 0.25223111 0.2597041
0.25965554 0.25354765 0.26775443 0.26534797 0.24698113 0.23815382
0.18145618 0.19614858 0.18248675 0.18623134 0.19042378 0.1897763
0.21538951 0.21836252 0.22631573 0.21788771 0.21901 0.23028694
0.19948849 0.19653706 0.1897709 0.19606764 0.18733206 0.18279431
0.1940011 0.19256046 0.19478887 0.22805853 0.22157834 0.21650642
0.26731738 0.27373283 0.27387312 0.27092169 0.26761415 0.27070586
0.23593081 0.23436067 0.23633009 0.23669699 0.24902608 0.2256143
0.26948105 0.20910356 0.23550455 0.24282107 0.25655843 0.24740738
0.23652972 0.23907108 0.23427973 0.23937324 0.23014665 0.21660354
0.20710717 0.20702084 0.19938058 0.1798159 0.20520789 0.22248481
0.22729774 0.99586153 0.24960786 0.25352642]
2 day output [[0.25818714]]
3 day input [0.19279787 0.1927547 0.18797414 0.18822774 0.1893932 0.16419006
0.16460552 0.16421164 0.16310013 0.17262888 0.1706055 0.17511628
0.17477635 0.17467923 0.17342743 0.17242924 0.16197244 0.14234301
0.2234992   0.23415563   0.18174755   0.20770609   0.19063421   0.20547768
0.22803155 0.23171679 0.23285528 0.25223111 0.2597041 0.25965554
0.25354765 0.26775443 0.26534797 0.24698113 0.23815382 0.18145618
0.19614858 0.18248675 0.18623134 0.19042378 0.1897763 0.21538951
0.21836252 0.22631573 0.21788771 0.21901 0.23028694 0.19948849
0.19653706 0.1897709 0.19606764 0.18733206 0.18279431 0.1940011
0.19256046 0.19478887 0.22805853 0.22157834 0.21650642 0.26731738
0.27373283 0.27387312 0.27092169 0.26761415 0.27070586 0.2630656
0.27068967 0.25319154 0.25020773 0.24469336 0.24496315 0.23593081
0.23436067 0.23633009 0.23669699 0.24902608 0.2256143 0.26948105
0.20910356 0.23550455 0.24282107 0.25655843 0.24740738 0.23652972
0.23907108 0.23427973 0.23937324 0.23014665 0.21660354 0.20710717
0.20702084 0.19938058 0.1798159 0.20520789 0.22248481 0.22729774
0.99586153 0.24960786 0.25352642 0.25818714]
3 day output [[0.2628071]]
4 day input [0.1927547 0.18797414 0.18822774 0.1893932 0.16419006 0.16460552
0.16421164 0.16310013 0.17262888 0.1706055 0.17511628 0.17477635
0.17467923 0.17342743 0.17242924 0.16197244 0.14234301 0.2234992
0.23415563 0.18174755 0.20770609 0.19063421 0.20547768 0.22803155
```

```
0.23171679 0.23285528 0.25223111 0.2597041 0.25965554 0.25354765
0.26775443 0.26534797 0.24698113 0.23815382 0.18145618 0.19614858
0.18248675 0.18623134 0.19042378 0.1897763 0.21538951 0.21836252
0.22631573 0.21788771 0.21901 0.23028694 0.19948849 0.19653706
0.1897709 0.19606764 0.18733206 0.18279431 0.1940011 0.19256046
0.19478887 0.22805853 0.22157834 0.21650642 0.26731738 0.27373283
0.27387312 0.27092169 0.26761415 0.27070586 0.2630656 0.27068967
0.25319154 0.25020773 0.24469336 0.24496315 0.23593081 0.23436067
0.23633009 0.23669699 0.24902608 0.2256143 0.26948105 0.20910356
0.23550455 0.24282107 0.25655843 0.24740738 0.23652972 0.23907108
0.23427973 0.23937324 0.23014665 0.21660354 0.20710717 0.20702084
0.19938058 0.1798159 0.20520789 0.22248481 0.22729774 0.99586153
0.24960786 0.25352642 0.25818714 0.2628071 ]
4 day output [[0.26691386]]
5 day input [0.18797414 0.18822774 0.1893932 0.16419006 0.16460552 0.16421164
0.16310013 0.17262888 0.1706055 0.17511628 0.17477635 0.17467923
0.17342743 0.17242924 0.16197244 0.14234301 0.2234992 0.23415563
0.18174755 0.20770609 0.19063421 0.20547768 0.22803155 0.23171679
0.23285528 0.25223111 0.2597041 0.25965554 0.25354765 0.26775443
0.26534797 0.24698113 0.23815382 0.18145618 0.19614858 0.18248675
0.18623134 0.19042378 0.1897763 0.21538951 0.21836252 0.22631573
0.21788771 0.21901 0.23028694 0.19948849 0.19653706 0.1897709
0.19606764 0.18733206 0.18279431 0.1940011 0.19256046 0.19478887
0.22805853 0.22157834 0.21650642 0.26731738 0.27373283 0.27387312
0.27092169 0.26761415 0.27070586 0.2630656 0.27068967 0.25319154
0.25020773 0.24469336 0.24496315 0.23593081 0.23436067 0.23633009
0.23669699 0.24902608 0.2256143 0.26948105 0.20910356 0.23550455
0.24282107 0.25655843 0.24740738 0.23652972 0.23907108 0.23427973
0.23937324 0.23014665 0.21660354 0.20710717 0.20702084 0.19938058
0.1798159 0.20520789 0.22248481 0.22729774 0.99586153 0.24960786
0.25352642 0.25818714 0.2628071 0.26691386]
5 day output [[0.27027887]]
6 day input [0.18822774 0.1893932 0.16419006 0.16460552 0.16421164 0.16310013
0.17262888 0.1706055 0.17511628 0.17477635 0.17467923 0.17342743
0.17242924 0.16197244 0.14234301 0.2234992 0.23415563 0.18174755
0.20770609 0.19063421 0.20547768 0.22803155 0.23171679 0.23285528
0.25223111 0.2597041 0.25965554 0.25354765 0.26775443 0.26534797
0.24698113 0.23815382 0.18145618 0.19614858 0.18248675 0.18623134
0.19042378 0.1897763 0.21538951 0.21836252 0.22631573 0.21788771
0.18733206 0.18279431 0.1940011 0.19256046 0.19478887 0.22805853
0.22157834 0.21650642 0.26731738 0.27373283 0.27387312 0.27092169
0.26761415 0.27070586 0.2630656 0.27068967 0.25319154 0.25020773
0.24469336 0.24496315 0.23593081 0.23436067 0.23633009 0.23669699
0.24902608 0.2256143 0.26948105 0.20910356 0.23550455 0.24282107
0.25655843 0.24740738 0.23652972 0.23907108 0.23427973 0.23937324
0.23014665 0.21660354 0.20710717 0.20702084 0.19938058 0.1798159
0.20520789 0.22248481 0.22729774 0.99586153 0.24960786 0.25352642
0.25818714 0.2628071 0.26691386 0.27027887]
6 day output [[0.27284312]]
0.16197244 0.14234301 0.2234992 0.23415563 0.18174755 0.20770609
0.19063421 0.20547768 0.22803155 0.23171679 0.23285528 0.25223111
0.2597041   0.25965554   0.25354765   0.26775443   0.26534797   0.24698113
0.23815382 0.18145618 0.19614858 0.18248675 0.18623134 0.19042378
0.23028694 0.19948849 0.19653706 0.1897709 0.19606764 0.18733206
0.18279431 0.1940011 0.19256046 0.19478887 0.22805853 0.22157834
0.21650642 0.26731738 0.27373283 0.27387312 0.27092169 0.26761415
```

```
0.27070586 0.2630656 0.27068967 0.25319154 0.25020773 0.24469336
0.24496315 0.23593081 0.23436067 0.23633009 0.23669699 0.24902608
0.24740738 0.23652972 0.23907108 0.23427973 0.23937324 0.23014665
0.21660354 0.20710717 0.20702084 0.19938058 0.1798159 0.20520789
0.22248481 0.22729774 0.99586153 0.24960786 0.25352642 0.25818714
0.2628071 0.26691386 0.27027887 0.27284312]
7 day output [[0.27465346]]
8 day input [0.16419006 0.16460552 0.16421164 0.16310013 0.17262888 0.1706055
0.17511628 0.17477635 0.17467923 0.17342743 0.17242924 0.16197244
0.14234301 0.2234992 0.23415563 0.18174755 0.20770609 0.19063421
0.20547768 0.22803155 0.23171679 0.23285528 0.25223111 0.2597041
0.25965554 0.25354765 0.26775443 0.26534797 0.24698113 0.23815382
0.18145618 0.19614858 0.18248675 0.18623134 0.19042378 0.1897763
0.21538951 0.21836252 0.22631573 0.21788771 0.21901 0.23028694
0.19948849 0.19653706 0.1897709 0.19606764 0.18733206 0.18279431
0.1940011 0.19256046 0.19478887 0.22805853 0.22157834 0.21650642
0.26731738 0.27373283 0.27387312 0.27092169 0.26761415 0.27070586
0.2630656   0.27068967   0.25319154   0.25020773   0.24469336   0.24496315
0.23593081 0.23436067 0.23633009 0.23669699 0.24902608 0.2256143
0.26948105 0.20910356 0.23550455 0.24282107 0.25655843 0.24740738
0.23652972 0.23907108 0.23427973 0.23937324 0.23014665 0.21660354
0.20710717 0.20702084 0.19938058 0.1798159 0.20520789 0.22248481
0.22729774 0.99586153 0.24960786 0.25352642 0.25818714 0.2628071
0.26691386 0.27027887 0.27284312 0.27465346]
8 day output [[0.27581242]]
9 day input [0.16460552 0.16421164 0.16310013 0.17262888 0.1706055 0.17511628
0.17477635 0.17467923 0.17342743 0.17242924 0.16197244 0.14234301
0.22803155 0.23171679 0.23285528 0.25223111 0.2597041 0.25965554
0.25354765 0.26775443 0.26534797 0.24698113 0.23815382 0.18145618
0.19614858 0.18248675 0.18623134 0.19042378 0.1897763 0.21538951
0.21836252 0.22631573 0.21788771 0.21901 0.23028694 0.19948849
0.19653706 0.1897709 0.19606764 0.18733206 0.18279431 0.1940011
0.19256046 0.19478887 0.22805853 0.22157834 0.21650642 0.26731738
0.27373283 0.27387312 0.27092169 0.26761415 0.27070586 0.2630656
0.27068967 0.25319154 0.25020773 0.24469336 0.24496315 0.23593081
0.23436067 0.23633009 0.23669699 0.24902608 0.2256143 0.26948105
0.20910356 0.23550455 0.24282107 0.25655843 0.24740738 0.23652972
0.23907108 0.23427973 0.23937324 0.23014665 0.21660354 0.20710717
0.20702084 0.19938058 0.1798159 0.20520789 0.22248481 0.22729774
0.99586153 0.24960786 0.25352642 0.25818714 0.2628071 0.26691386
0.27027887 0.27284312 0.27465346 0.27581242]
9 day output [[0.27644396]]
10 day input [0.16421164 0.16310013 0.17262888 0.1706055 0.17511628 0.17477635
0.17467923 0.17342743 0.17242924 0.16197244 0.14234301 0.2234992
0.23415563 0.18174755 0.20770609 0.19063421 0.20547768 0.22803155
0.23171679 0.23285528 0.25223111 0.2597041 0.25965554 0.25354765
0.26775443 0.26534797 0.24698113 0.23815382 0.18145618 0.19614858
0.18248675 0.18623134 0.19042378 0.1897763 0.21538951 0.21836252
0.22631573 0.21788771 0.21901 0.23028694 0.19948849 0.19653706
0.19478887 0.22805853 0.22157834 0.21650642 0.26731738 0.27373283
0.27387312 0.27092169 0.26761415 0.27070586 0.2630656 0.27068967
0.25319154 0.25020773 0.24469336 0.24496315 0.23593081 0.23436067
0.23633009 0.23669699 0.24902608 0.2256143 0.26948105 0.20910356
0.23550455 0.24282107 0.25655843 0.24740738 0.23652972 0.23907108
0.23427973 0.23937324 0.23014665 0.21660354 0.20710717 0.20702084
0.19938058 0.1798159 0.20520789 0.22248481 0.22729774 0.99586153
0.24960786 0.25352642 0.25818714 0.2628071 0.26691386 0.27027887
```

```
0.27284312 0.27465346 0.27581242 0.27644396]
10 day output [[0.27667132]]
11 day input [0.16310013 0.17262888 0.1706055 0.17511628 0.17477635 0.17467923
0.17342743 0.17242924 0.16197244 0.14234301 0.2234992 0.23415563
0.18174755 0.20770609 0.19063421 0.20547768 0.22803155 0.23171679
0.23285528 0.25223111 0.2597041 0.25965554 0.25354765 0.26775443
0.26534797 0.24698113 0.23815382 0.18145618 0.19614858 0.18248675
0.18623134 0.19042378 0.1897763 0.21538951 0.21836252 0.22631573
0.21788771 0.21901 0.23028694 0.19948849 0.19653706 0.1897709
0.19606764 0.18733206 0.18279431 0.1940011 0.19256046 0.19478887
0.22805853 0.22157834 0.21650642 0.26731738 0.27373283 0.27387312
0.27092169 0.26761415 0.27070586 0.2630656 0.27068967 0.25319154
0.25020773 0.24469336 0.24496315 0.23593081 0.23436067 0.23633009
0.23669699 0.24902608 0.2256143 0.26948105 0.20910356 0.23550455
0.24282107 0.25655843 0.24740738 0.23652972 0.23907108 0.23427973
0.23937324 0.23014665 0.21660354 0.20710717 0.20702084 0.19938058
0.25352642 0.25818714 0.2628071 0.26691386 0.27027887 0.27284312
0.27465346 0.27581242 0.27644396 0.27667132]
11 day output [[0.27660492]]
12 day input [0.17262888 0.1706055 0.17511628 0.17477635 0.17467923 0.17342743
0.17242924 0.16197244 0.14234301 0.2234992 0.23415563 0.18174755
0.20770609 0.19063421 0.20547768 0.22803155 0.23171679 0.23285528
0.25223111 0.2597041 0.25965554 0.25354765 0.26775443 0.26534797
0.24698113 0.23815382 0.18145618 0.19614858 0.18248675 0.18623134
0.19042378 0.1897763 0.21538951 0.21836252 0.22631573 0.21788771
0.18733206 0.18279431 0.1940011 0.19256046 0.19478887 0.22805853
0.22157834 0.21650642 0.26731738 0.27373283 0.27387312 0.27092169
0.26761415 0.27070586 0.2630656 0.27068967 0.25319154 0.25020773
0.24469336 0.24496315 0.23593081 0.23436067 0.23633009 0.23669699
0.24902608 0.2256143 0.26948105 0.20910356 0.23550455 0.24282107
0.25655843 0.24740738 0.23652972 0.23907108 0.23427973 0.23937324
0.23014665 0.21660354 0.20710717 0.20702084 0.19938058 0.1798159
0.20520789 0.22248481 0.22729774 0.99586153 0.24960786 0.25352642
0.25818714 0.2628071 0.26691386 0.27027887 0.27284312 0.27465346
0.27581242 0.27644396 0.27667132 0.27660492]
12 day output [[0.27633703]]
13 day input [0.1706055 0.17511628 0.17477635 0.17467923 0.17342743 0.17242924
0.16197244 0.14234301 0.2234992 0.23415563 0.18174755 0.20770609
0.19063421 0.20547768 0.22803155 0.23171679 0.23285528 0.25223111
0.2597041 0.25965554 0.25354765 0.26775443 0.26534797 0.24698113
0.23815382 0.18145618 0.19614858 0.18248675 0.18623134 0.19042378
0.23028694 0.19948849 0.19653706 0.1897709 0.19606764 0.18733206
0.18279431 0.1940011 0.19256046 0.19478887 0.22805853 0.22157834
0.21650642 0.26731738 0.27373283 0.27387312 0.27092169 0.26761415
0.27070586 0.2630656 0.27068967 0.25319154 0.25020773 0.24469336
0.24496315 0.23593081 0.23436067 0.23633009 0.23669699 0.24902608
0.24740738 0.23652972 0.23907108 0.23427973 0.23937324 0.23014665
0.21660354 0.20710717 0.20702084 0.19938058 0.1798159 0.20520789
0.22248481 0.22729774 0.99586153 0.24960786 0.25352642 0.25818714
0.27644396 0.27667132 0.27660492 0.27633703]
13 day output [[0.27594018]]
14 day input [0.17511628 0.17477635 0.17467923 0.17342743 0.17242924 0.16197244
0.14234301 0.2234992 0.23415563 0.18174755 0.20770609 0.19063421
0.20547768 0.22803155 0.23171679 0.23285528 0.25223111 0.2597041
0.25965554 0.25354765 0.26775443 0.26534797 0.24698113 0.23815382
```

```
0.18145618 0.19614858 0.18248675 0.18623134 0.19042378 0.1897763
0.21538951 0.21836252 0.22631573 0.21788771 0.21901 0.23028694
0.19948849 0.19653706 0.1897709 0.19606764 0.18733206 0.18279431
0.1940011 0.19256046 0.19478887 0.22805853 0.22157834 0.21650642
0.26731738 0.27373283 0.27387312 0.27092169 0.26761415 0.27070586
0.2630656   0.27068967   0.25319154   0.25020773   0.24469336   0.24496315
0.23593081 0.23436067 0.23633009 0.23669699 0.24902608 0.2256143
0.26948105 0.20910356 0.23550455 0.24282107 0.25655843 0.24740738
0.23652972 0.23907108 0.23427973 0.23937324 0.23014665 0.21660354
0.20710717 0.20702084 0.19938058 0.1798159 0.20520789 0.22248481
0.22729774 0.99586153 0.24960786 0.25352642 0.25818714 0.2628071
0.26691386 0.27027887 0.27284312 0.27465346 0.27581242 0.27644396
0.27667132 0.27660492 0.27633703 0.27594018]
14 day output [[0.27546906]]
15 day input [0.17477635 0.17467923 0.17342743 0.17242924 0.16197244 0.14234301
0.22803155 0.23171679 0.23285528 0.25223111 0.2597041 0.25965554
0.25354765 0.26775443 0.26534797 0.24698113 0.23815382 0.18145618
0.19614858 0.18248675 0.18623134 0.19042378 0.1897763 0.21538951
0.21836252 0.22631573 0.21788771 0.21901 0.23028694 0.19948849
0.19653706 0.1897709 0.19606764 0.18733206 0.18279431 0.1940011
0.19256046\ 0.19478887\ 0.22805853\ 0.22157834\ 0.21650642\ 0.26731738
0.27373283 0.27387312 0.27092169 0.26761415 0.27070586 0.2630656
0.27068967 0.25319154 0.25020773 0.24469336 0.24496315 0.23593081
0.23436067 0.23633009 0.23669699 0.24902608 0.2256143 0.26948105
0.20910356 0.23550455 0.24282107 0.25655843 0.24740738 0.23652972
0.23907108 0.23427973 0.23937324 0.23014665 0.21660354 0.20710717
0.20702084 0.19938058 0.1798159 0.20520789 0.22248481 0.22729774
0.99586153 0.24960786 0.25352642 0.25818714 0.2628071 0.26691386
0.27027887 0.27284312 0.27465346 0.27581242 0.27644396 0.27667132
0.27660492 0.27633703 0.27594018 0.27546906]
15 day output [[0.27496287]]
16 day input [0.17467923 0.17342743 0.17242924 0.16197244 0.14234301 0.2234992
0.23415563 0.18174755 0.20770609 0.19063421 0.20547768 0.22803155
0.23171679 0.23285528 0.25223111 0.2597041 0.25965554 0.25354765
0.26775443 0.26534797 0.24698113 0.23815382 0.18145618 0.19614858
0.18248675 0.18623134 0.19042378 0.1897763 0.21538951 0.21836252
0.22631573 0.21788771 0.21901 0.23028694 0.19948849 0.19653706
0.19478887 0.22805853 0.22157834 0.21650642 0.26731738 0.27373283
0.27387312 0.27092169 0.26761415 0.27070586 0.2630656 0.27068967
0.25319154 0.25020773 0.24469336 0.24496315 0.23593081 0.23436067
0.23633009 0.23669699 0.24902608 0.2256143 0.26948105 0.20910356
0.23550455 0.24282107 0.25655843 0.24740738 0.23652972 0.23907108
0.23427973 0.23937324 0.23014665 0.21660354 0.20710717 0.20702084
0.19938058 0.1798159 0.20520789 0.22248481 0.22729774 0.99586153
0.24960786 0.25352642 0.25818714 0.2628071 0.26691386 0.27027887
0.27284312 0.27465346 0.27581242 0.27644396 0.27667132 0.27660492
0.27633703 0.27594018 0.27546906 0.27496287]
16 day output [[0.27444857]]
17 day input [0.17342743 0.17242924 0.16197244 0.14234301 0.2234992 0.23415563
0.18174755 0.20770609 0.19063421 0.20547768 0.22803155 0.23171679
0.23285528 0.25223111 0.2597041 0.25965554 0.25354765 0.26775443
0.26534797 0.24698113 0.23815382 0.18145618 0.19614858 0.18248675
0.18623134 0.19042378 0.1897763 0.21538951 0.21836252 0.22631573
0.21788771 0.21901 0.23028694 0.19948849 0.19653706 0.1897709
0.19606764 0.18733206 0.18279431 0.1940011 0.19256046 0.19478887
0.22805853 0.22157834 0.21650642 0.26731738 0.27373283 0.27387312
0.27092169 0.26761415 0.27070586 0.2630656 0.27068967 0.25319154
0.25020773 0.24469336 0.24496315 0.23593081 0.23436067 0.23633009
```

```
0.23669699 0.24902608 0.2256143 0.26948105 0.20910356 0.23550455
0.24282107 0.25655843 0.24740738 0.23652972 0.23907108 0.23427973
0.23937324 0.23014665 0.21660354 0.20710717 0.20702084 0.19938058
0.25352642 0.25818714 0.2628071 0.26691386 0.27027887 0.27284312
0.27465346 0.27581242 0.27644396 0.27667132 0.27660492 0.27633703
0.27594018 0.27546906 0.27496287 0.27444857]
17 day output [[0.2739433]]
18 day input [0.17242924 0.16197244 0.14234301 0.2234992 0.23415563 0.18174755
0.20770609 0.19063421 0.20547768 0.22803155 0.23171679 0.23285528
0.25223111 0.2597041 0.25965554 0.25354765 0.26775443 0.26534797
0.24698113 0.23815382 0.18145618 0.19614858 0.18248675 0.18623134
0.19042378 0.1897763 0.21538951 0.21836252 0.22631573 0.21788771
0.18733206 0.18279431 0.1940011 0.19256046 0.19478887 0.22805853
0.22157834 0.21650642 0.26731738 0.27373283 0.27387312 0.27092169
0.26761415 0.27070586 0.2630656 0.27068967 0.25319154 0.25020773
0.24469336 0.24496315 0.23593081 0.23436067 0.23633009 0.23669699
0.24902608 0.2256143 0.26948105 0.20910356 0.23550455 0.24282107
0.25655843 0.24740738 0.23652972 0.23907108 0.23427973 0.23937324
0.23014665 0.21660354 0.20710717 0.20702084 0.19938058 0.1798159
0.20520789 0.22248481 0.22729774 0.99586153 0.24960786 0.25352642
0.25818714 0.2628071 0.26691386 0.27027887 0.27284312 0.27465346
0.27581242 0.27644396 0.27667132 0.27660492 0.27633703 0.27594018
0.27546906 0.27496287 0.27444857 0.27394331]
18 day output [[0.27345768]]
19 day input [0.16197244 0.14234301 0.2234992 0.23415563 0.18174755 0.20770609
0.19063421 0.20547768 0.22803155 0.23171679 0.23285528 0.25223111
0.2597041 0.25965554 0.25354765 0.26775443 0.26534797 0.24698113
0.23815382 0.18145618 0.19614858 0.18248675 0.18623134 0.19042378
0.23028694 0.19948849 0.19653706 0.1897709 0.19606764 0.18733206
0.18279431 0.1940011 0.19256046 0.19478887 0.22805853 0.22157834
0.21650642 0.26731738 0.27373283 0.27387312 0.27092169 0.26761415
0.27070586 0.2630656 0.27068967 0.25319154 0.25020773 0.24469336
0.24496315 0.23593081 0.23436067 0.23633009 0.23669699 0.24902608
0.24740738 0.23652972 0.23907108 0.23427973 0.23937324 0.23014665
0.21660354 0.20710717 0.20702084 0.19938058 0.1798159 0.20520789
0.22248481 0.22729774 0.99586153 0.24960786 0.25352642 0.25818714
0.27644396 \ 0.27667132 \ 0.27660492 \ 0.27633703 \ 0.27594018 \ 0.27546906
0.27496287 0.27444857 0.27394331 0.27345768]
19 day output [[0.27299714]]
20 day input [0.14234301 0.2234992 0.23415563 0.18174755 0.20770609 0.19063421
0.20547768 0.22803155 0.23171679 0.23285528 0.25223111 0.2597041
0.25965554 0.25354765 0.26775443 0.26534797 0.24698113 0.23815382
0.18145618 0.19614858 0.18248675 0.18623134 0.19042378 0.1897763
0.21538951 0.21836252 0.22631573 0.21788771 0.21901 0.23028694
0.19948849 0.19653706 0.1897709 0.19606764 0.18733206 0.18279431
0.1940011 0.19256046 0.19478887 0.22805853 0.22157834 0.21650642
0.26731738 0.27373283 0.27387312 0.27092169 0.26761415 0.27070586
0.23593081 0.23436067 0.23633009 0.23669699 0.24902608 0.2256143
0.26948105 0.20910356 0.23550455 0.24282107 0.25655843 0.24740738
0.23652972 0.23907108 0.23427973 0.23937324 0.23014665 0.21660354
0.20710717 0.20702084 0.19938058 0.1798159 0.20520789 0.22248481
0.22729774 0.99586153 0.24960786 0.25352642 0.25818714 0.2628071
0.26691386 0.27027887 0.27284312 0.27465346 0.27581242 0.27644396
0.27667132 0.27660492 0.27633703 0.27594018 0.27546906 0.27496287
```

```
0.27444857 0.27394331 0.27345768 0.27299714]
20 day output [[0.27256402]]
21 day input [0.2234992 0.23415563 0.18174755 0.20770609 0.19063421 0.20547768
0.22803155 0.23171679 0.23285528 0.25223111 0.2597041 0.25965554
0.25354765 0.26775443 0.26534797 0.24698113 0.23815382 0.18145618
0.19614858 0.18248675 0.18623134 0.19042378 0.1897763 0.21538951
0.21836252 0.22631573 0.21788771 0.21901 0.23028694 0.19948849
0.19653706 0.1897709 0.19606764 0.18733206 0.18279431 0.1940011
0.19256046 0.19478887 0.22805853 0.22157834 0.21650642 0.26731738
0.27373283 0.27387312 0.27092169 0.26761415 0.27070586 0.2630656
0.27068967 0.25319154 0.25020773 0.24469336 0.24496315 0.23593081
0.23436067 0.23633009 0.23669699 0.24902608 0.2256143 0.26948105
0.20910356 0.23550455 0.24282107 0.25655843 0.24740738 0.23652972
0.23907108 0.23427973 0.23937324 0.23014665 0.21660354 0.20710717
0.20702084 0.19938058 0.1798159 0.20520789 0.22248481 0.22729774
0.99586153 0.24960786 0.25352642 0.25818714 0.2628071 0.26691386
0.27027887 0.27284312 0.27465346 0.27581242 0.27644396 0.27667132
0.27660492 0.27633703 0.27594018 0.27546906 0.27496287 0.27444857
0.27394331 0.27345768 0.27299714 0.27256402]
21 day output [[0.27215853]]
22 day input [0.23415563 0.18174755 0.20770609 0.19063421 0.20547768 0.22803155
0.23171679 0.23285528 0.25223111 0.2597041 0.25965554 0.25354765
0.26775443 0.26534797 0.24698113 0.23815382 0.18145618 0.19614858
0.18248675 0.18623134 0.19042378 0.1897763 0.21538951 0.21836252
0.22631573 0.21788771 0.21901 0.23028694 0.19948849 0.19653706
0.19478887 0.22805853 0.22157834 0.21650642 0.26731738 0.27373283
0.27387312 0.27092169 0.26761415 0.27070586 0.2630656 0.27068967
0.25319154 0.25020773 0.24469336 0.24496315 0.23593081 0.23436067
0.23633009 0.23669699 0.24902608 0.2256143 0.26948105 0.20910356
0.23550455 0.24282107 0.25655843 0.24740738 0.23652972 0.23907108
0.23427973 0.23937324 0.23014665 0.21660354 0.20710717 0.20702084
0.19938058 0.1798159 0.20520789 0.22248481 0.22729774 0.99586153
0.24960786 0.25352642 0.25818714 0.2628071 0.26691386 0.27027887
0.27284312 0.27465346 0.27581242 0.27644396 0.27667132 0.27660492
0.27633703 0.27594018 0.27546906 0.27496287 0.27444857 0.27394331
0.27345768 0.27299714 0.27256402 0.27215853]
22 day output [[0.2717798]]
23 day input [0.18174755 0.20770609 0.19063421 0.20547768 0.22803155 0.23171679
0.23285528 0.25223111 0.2597041 0.25965554 0.25354765 0.26775443
0.26534797 0.24698113 0.23815382 0.18145618 0.19614858 0.18248675
0.18623134 0.19042378 0.1897763 0.21538951 0.21836252 0.22631573
0.21788771 0.21901 0.23028694 0.19948849 0.19653706 0.1897709
0.19606764 0.18733206 0.18279431 0.1940011 0.19256046 0.19478887
0.22805853 0.22157834 0.21650642 0.26731738 0.27373283 0.27387312
0.27092169 0.26761415 0.27070586 0.2630656 0.27068967 0.25319154
0.25020773 0.24469336 0.24496315 0.23593081 0.23436067 0.23633009
0.23669699 0.24902608 0.2256143 0.26948105 0.20910356 0.23550455
0.24282107 0.25655843 0.24740738 0.23652972 0.23907108 0.23427973
0.23937324 0.23014665 0.21660354 0.20710717 0.20702084 0.19938058
0.25352642 0.25818714 0.2628071 0.26691386 0.27027887 0.27284312
0.27465346 0.27581242 0.27644396 0.27667132 0.27660492 0.27633703
0.27594018 0.27546906 0.27496287 0.27444857 0.27394331 0.27345768
0.27299714 0.27256402 0.27215853 0.27177981]
23 day output [[0.2714262]]
24 day input [0.20770609 0.19063421 0.20547768 0.22803155 0.23171679 0.23285528
0.25223111 0.2597041 0.25965554 0.25354765 0.26775443 0.26534797
0.24698113 0.23815382 0.18145618 0.19614858 0.18248675 0.18623134
0.19042378 0.1897763 0.21538951 0.21836252 0.22631573 0.21788771
```

```
0.21901 0.23028694 0.19948849 0.19653706 0.1897709 0.19606764
0.18733206 0.18279431 0.1940011 0.19256046 0.19478887 0.22805853
0.22157834 0.21650642 0.26731738 0.27373283 0.27387312 0.27092169
0.26761415 0.27070586 0.2630656 0.27068967 0.25319154 0.25020773
0.24469336 0.24496315 0.23593081 0.23436067 0.23633009 0.23669699
0.24902608 0.2256143 0.26948105 0.20910356 0.23550455 0.24282107
0.25655843 0.24740738 0.23652972 0.23907108 0.23427973 0.23937324
0.23014665 0.21660354 0.20710717 0.20702084 0.19938058 0.1798159
0.20520789 0.22248481 0.22729774 0.99586153 0.24960786 0.25352642
0.25818714 0.2628071 0.26691386 0.27027887 0.27284312 0.27465346
0.27581242 0.27644396 0.27667132 0.27660492 0.27633703 0.27594018
0.27546906 0.27496287 0.27444857 0.27394331 0.27345768 0.27299714
0.27256402 0.27215853 0.27177981 0.2714262
24 day output [[0.27109587]]
25 day input [0.19063421 0.20547768 0.22803155 0.23171679 0.23285528 0.25223111
0.23815382 0.18145618 0.19614858 0.18248675 0.18623134 0.19042378
0.23028694 0.19948849 0.19653706 0.1897709 0.19606764 0.18733206
0.18279431 0.1940011 0.19256046 0.19478887 0.22805853 0.22157834
0.21650642 0.26731738 0.27373283 0.27387312 0.27092169 0.26761415
0.27070586 0.2630656 0.27068967 0.25319154 0.25020773 0.24469336
0.24496315 0.23593081 0.23436067 0.23633009 0.23669699 0.24902608
0.24740738 0.23652972 0.23907108 0.23427973 0.23937324 0.23014665
0.21660354 0.20710717 0.20702084 0.19938058 0.1798159 0.20520789
0.22248481 0.22729774 0.99586153 0.24960786 0.25352642 0.25818714
0.27644396 0.27667132 0.27660492 0.27633703 0.27594018 0.27546906
0.27496287 0.27444857 0.27394331 0.27345768 0.27299714 0.27256402
0.27215853 0.27177981 0.2714262 0.27109587]
25 day output [[0.270787]]
26 day input [0.20547768 0.22803155 0.23171679 0.23285528 0.25223111 0.2597041
0.25965554 0.25354765 0.26775443 0.26534797 0.24698113 0.23815382
0.18145618 0.19614858 0.18248675 0.18623134 0.19042378 0.1897763
0.21538951 0.21836252 0.22631573 0.21788771 0.21901 0.23028694
0.19948849 0.19653706 0.1897709 0.19606764 0.18733206 0.18279431
0.1940011 0.19256046 0.19478887 0.22805853 0.22157834 0.21650642
0.26731738 0.27373283 0.27387312 0.27092169 0.26761415 0.27070586
0.23593081 0.23436067 0.23633009 0.23669699 0.24902608 0.2256143
0.26948105 0.20910356 0.23550455 0.24282107 0.25655843 0.24740738
0.23652972 0.23907108 0.23427973 0.23937324 0.23014665 0.21660354
0.20710717 0.20702084 0.19938058 0.1798159 0.20520789 0.22248481
0.22729774 0.99586153 0.24960786 0.25352642 0.25818714 0.2628071
0.26691386 0.27027887 0.27284312 0.27465346 0.27581242 0.27644396
0.27667132 0.27660492 0.27633703 0.27594018 0.27546906 0.27496287
0.27444857 0.27394331 0.27345768 0.27299714 0.27256402 0.27215853
0.27177981 0.2714262 0.27109587 0.270787 ]
26 day output [[0.27049774]]
27 day input [0.22803155 0.23171679 0.23285528 0.25223111 0.2597041 0.25965554
0.25354765 0.26775443 0.26534797 0.24698113 0.23815382 0.18145618
0.19614858 0.18248675 0.18623134 0.19042378 0.1897763 0.21538951
0.21836252 0.22631573 0.21788771 0.21901 0.23028694 0.19948849
0.19653706 0.1897709 0.19606764 0.18733206 0.18279431 0.1940011
0.19256046 0.19478887 0.22805853 0.22157834 0.21650642 0.26731738
0.27373283 0.27387312 0.27092169 0.26761415 0.27070586 0.2630656
0.27068967 0.25319154 0.25020773 0.24469336 0.24496315 0.23593081
0.23436067 0.23633009 0.23669699 0.24902608 0.2256143 0.26948105
0.20910356 0.23550455 0.24282107 0.25655843 0.24740738 0.23652972
```

```
0.23907108 0.23427973 0.23937324 0.23014665 0.21660354 0.20710717
 0.20702084 0.19938058 0.1798159 0.20520789 0.22248481 0.22729774
 0.99586153 0.24960786 0.25352642 0.25818714 0.2628071 0.26691386
 0.27027887 0.27284312 0.27465346 0.27581242 0.27644396 0.27667132
 0.27660492 0.27633703 0.27594018 0.27546906 0.27496287 0.27444857
 0.27394331 0.27345768 0.27299714 0.27256402 0.27215853 0.27177981
 0.2714262 0.27109587 0.270787 0.27049774]
27 day output [[0.2702267]]
28 day input [0.23171679 0.23285528 0.25223111 0.2597041 0.25965554 0.25354765
 0.26775443 0.26534797 0.24698113 0.23815382 0.18145618 0.19614858
 0.18248675 0.18623134 0.19042378 0.1897763 0.21538951 0.21836252
 0.22631573 0.21788771 0.21901 0.23028694 0.19948849 0.19653706
 0.19478887 0.22805853 0.22157834 0.21650642 0.26731738 0.27373283
 0.27387312 0.27092169 0.26761415 0.27070586 0.2630656 0.27068967
 0.25319154 0.25020773 0.24469336 0.24496315 0.23593081 0.23436067
 0.23633009 0.23669699 0.24902608 0.2256143 0.26948105 0.20910356
 0.23550455 0.24282107 0.25655843 0.24740738 0.23652972 0.23907108
 0.23427973 0.23937324 0.23014665 0.21660354 0.20710717 0.20702084
 0.19938058 0.1798159 0.20520789 0.22248481 0.22729774 0.99586153
 0.24960786 0.25352642 0.25818714 0.2628071 0.26691386 0.27027887
 0.27284312 0.27465346 0.27581242 0.27644396 0.27667132 0.27660492
 0.27633703 0.27594018 0.27546906 0.27496287 0.27444857 0.27394331
 0.27345768 0.27299714 0.27256402 0.27215853 0.27177981 0.2714262
 0.27109587 0.270787 0.27049774 0.27022669]
28 day output [[0.2699722]]
29 day input [0.23285528 0.25223111 0.2597041 0.25965554 0.25354765 0.26775443
 0.26534797 0.24698113 0.23815382 0.18145618 0.19614858 0.18248675
 0.18623134 0.19042378 0.1897763 0.21538951 0.21836252 0.22631573
 0.21788771 0.21901 0.23028694 0.19948849 0.19653706 0.1897709
 0.19606764 0.18733206 0.18279431 0.1940011 0.19256046 0.19478887
 0.22805853 0.22157834 0.21650642 0.26731738 0.27373283 0.27387312
 0.27092169 0.26761415 0.27070586 0.2630656 0.27068967 0.25319154
 0.25020773 0.24469336 0.24496315 0.23593081 0.23436067 0.23633009
 0.23669699 0.24902608 0.2256143 0.26948105 0.20910356 0.23550455
 0.24282107 0.25655843 0.24740738 0.23652972 0.23907108 0.23427973
 0.23937324 0.23014665 0.21660354 0.20710717 0.20702084 0.19938058
 0.25352642 0.25818714 0.2628071 0.26691386 0.27027887 0.27284312
 0.27465346 0.27581242 0.27644396 0.27667132 0.27660492 0.27633703
 0.27594018 0.27546906 0.27496287 0.27444857 0.27394331 0.27345768
 0.27299714 0.27256402 0.27215853 0.27177981 0.2714262 0.27109587
 0.270787  0.27049774  0.27022669  0.26997221]
29 day output [[0.2697332]]
 [[0.2496078610420227], [0.2535264194011688], [0.2581871449947357], [0.26280710101127625], [0.26691386103630066], [0.2702788710594177], [0.2728431224822998], [0.27465346455574036], [0.275812417], [0.27496078610420227], [0.2746534649947357], [0.27465346455574036], [0.275812417], [0.27496078610420227], [0.2746534649947357], [0.27465346455574036], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.2746534649947357], [0.274653464994739], [0.2746534649947], [0.2746534649947], [0.2746534649947], [0.2746534649947], [0.274653464994], [0.274653464994], [0.27465346949], [0.274653469], [0.274653469], [0.274653469], [0.274653469], [0.274653469], [0.274653469], [0.27
26875305], [0.2764439582824707], [0.27667132019996643], [0.27660492062568665], [0.27633702754974365], [0.2759401798248291], [0.2754690647125244], [0.2749628722667694], [0.27444857358932495],
```

5612793], [0.27049773931503296], [0.27022668719291687], [0.26997220516204834], [0.269733190536499]]

Plotting last 130 days closing price

```
In [55]: day_new = np.arange(1,101)
    day_pred = np.arange(101,131)
In [56]: len(close_srt)
```

[0.27394330501556396], [0.27345767617225647], [0.2729971408843994], [0.27256402373313904], [0.27215853333473206], [0.2717798054218292], [0.2714262008666992], [0.271095871925354], [0.2707870006]

Out[56]: 1258

```
In [57]: plt.figure(figsize=(10,7))
  plt.plot(day_new,scaler.inverse_transform(close_srt[1158:]))
  plt.plot(day_pred,scaler.inverse_transform(lst_output))
```

Out[57]: [<matplotlib.lines.Line2D at 0x17711906000>]

Appending in a list is done to make continuous graph

Out[61]: [<matplotlib.lines.Line2D at 0x1771198bda0>]

Plotting the graph with predicted 30 days output

```
In [63]: df3=scaler.inverse_transform(df3).tolist()
```

In [64]: plt.figure(figsize=(10,7))
 plt.plot(df3)

Out[64]: [<matplotlib.lines.Line2D at 0x1771192a330>]

