Combinatorial auctions

Shoe for Sale

Nude High Cut Shoe

- 10cm Natural Leather Stacked Heel.
- Multiple Strap Detail With Gold Western Buckles & Functional Zip.
- Leather Lining & Sock
- Unique

The original price of a pair was \$500. Now the last piece for \$5 only.

Combinatorial auctions

- A combinatorial auction sells multiple objects semitanuously.
- Bidders can place bids on combinations of items in bundles.
- Bidder's valuation on a bundle may be different from the sum of the valuations of all the items in the bundle.
 - Complementary: the value of a combination of items is worth more than the sum of the values of the separate items.
 - Substitutable: the value of a combination of items is less than the sum of the values of the separate items.

The model of combinatorial auctions

$$E = (N \cup \{0\}, X, \{v_i\}_{i \in N})$$
 is a combinatorial auction if

- $N = \{1, 2, \dots, n\}$ is the set of buyers
- 0 represents the seller
- X is the set of items
- $v_i: 2^X \to \mathbb{Z}^+$ the buyer i's value function

Example:

$$N = \{1, 2\}, X = \{a, b\}.$$

 $v_1(\emptyset) = 0, v_1(\{a\}) = v_1(\{b\}) = v_1(\{a, b\}) = 1.$
 $v_2(\emptyset) = 0, v_2(\{a\}) = v_2(\{b\}) = 1, v_2(\{a, b\}) = 3.$

Question: How to allocate the items to the buyers so that each item goes to the buyer who gives it the highest value?

Efficient allocations

- Allocation: $\pi: N \cup \{0\} \rightarrow 2^X$ such that
 - $\pi(i) \cap \pi(j) = \emptyset$ for any $i \neq j$.
 - $\bullet \bigcup_{i \in \mathbb{N} \cup \{0\}} \pi(i) = X.$

which allocate all the items to the buyers, each buyer can have a bundle but one item can only be allocated to at most one buyer.

• Efficient allocation π^* : $\pi^*(0) = \emptyset$ and for every allocation π of X,

$$\sum_{i \in N} v_i(\pi^*(i)) \ge \sum_{i \in N} v_i(\pi(i))$$

Question: How to find an efficient allocation?

Walrasian equilibria

- Price vector \mathbf{p} : assign a non-negative real number to each item in X.
- Demand correspondence:

$$D_i(\mathbf{p}) = \arg\max_{A \subseteq X} (V_i(A) - \sum_{\mathbf{a} \in A} p_{\mathbf{a}})$$

representing all the bundles that give i the highest utility based on the current market price. For instance, if $\mathbf{p} = (0.5, 0.5)$,

$$D_1(\mathbf{p}) = \{\{a\}, \{b\}\}. \ D_2(\mathbf{p}) = \{\{a, b\}\}\$$

- Walrasian equilibrium (\mathbf{p}, π) : \mathbf{p} is a price vector and π is an allocation of X such that $\pi(0) = \emptyset$ and $\pi(i) \in D_i(\mathbf{p})$ for all $i \in N$.
- Any Walrasian equilibrium determines an efficient allocation.

Question: How to find a Walrasian equilibrium?

