EJERCICIO: Utilización del programa CEA para el cálculo de las actuaciones de un motor cohete

a) Resolución analítica

$$AH_2 + BO_2 \rightarrow CH_2 + DO_2 + EH_2O$$

Reacción química equilibrada: $\frac{1}{2}O_2 + H_2 \rightarrow H_2O \Rightarrow \frac{1}{2}x16x2 + 2x1 = 18 \Rightarrow$ Relación en peso oxidante /reductor en reacción equilibrada = 16/2=8 > 3.4 => Exceso de combustible $(H_2) => D=0$

H:
$$2A = 2C + 2E$$

O:
$$2B = E$$

$$\Rightarrow E = 2B$$
; $C = A - 2B$

$$\Rightarrow \frac{32xB}{2xA} = 3.4 = \frac{17}{5} = 80B = 17A$$
; => A = 80; B = 17; E = 34; C = 46

Reacción del problema (no equilibrada): $170_2 + 80H_2 \rightarrow 34H_2O + 46H_2$

$$\begin{split} \overline{\mathcal{M}} &= \frac{c \mathcal{M}_{H_2} + D \mathcal{M}_{O_2} + E \mathcal{M}_{H_{20}}}{c + D + E} = \frac{46 \cdot 2 + 34 \cdot 18}{46 + 34} = 8.8 \\ R &= \frac{R_U}{\overline{\mathcal{M}}} = \frac{8341}{8.8} = 944.77 \frac{J}{kgK} \end{split}$$

$$\gamma = 1.28 \Rightarrow \Gamma(\gamma) = \sqrt{\gamma} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}} = 0.6636$$

$$P_c = 1000 \ psia = 6894760 \ Pa$$

$$\begin{split} P_c &= 1000 \ psia = 6894760 \ Pa \\ \varepsilon &= \frac{A_s}{A_g} = \frac{\Gamma(\gamma)}{\left(\frac{P_s}{P_c}\right)^{1/\gamma} \sqrt{\frac{2\gamma}{\gamma-1}} \left[1 - \left(\frac{P_s}{P_c}\right)^{\frac{\gamma-1}{\gamma}}\right]}} = 7 \implies \text{Iteración} \implies \frac{P_s}{P_c} = 0.0166 \end{split}$$

$$P_s = 114697.5 Pa$$

$$C_{Eadap} = \Gamma(\gamma) \sqrt{\frac{2\gamma}{\gamma - 1} \left[1 - \left(\frac{P_s}{P_c}\right)^{\frac{\gamma - 1}{\gamma}} \right]} = 1.5436$$

$$C_{Evac} = \Gamma(\gamma) \sqrt{\frac{\frac{2\gamma}{\gamma - 1} \left[1 - \left(\frac{P_S}{P_C} \right)^{\frac{\gamma - 1}{\gamma}} \right]}{1 + \varepsilon \frac{P_S}{P_C}}} + \varepsilon \frac{P_S}{P_C} = 1.66$$

$$c^* = \frac{\sqrt{RT_c}}{\Gamma(v)} = 2519.93 \ m/s$$

$$I_{SPadap} = C_{Eadap} \cdot c^* = 3889.96 \ m/s$$

$$I_{SPvac} = C_{Evac} \cdot c^* = 4183.40 \ m/s$$

$$I_{SPadap}(s) = \frac{I_{SPadap}\left(\frac{m}{s}\right)}{9.81} = 396.53 s$$

$$I_{SPvac}(s) = \frac{I_{SPvac}(\frac{m}{s})}{9.81} = 426.44 s$$

Productos: Fracción molar del H₂O: x_{H_2O} (%) = $\frac{34}{34+46}$ = 0.425

Fracción molar del H₂:
$$x_{H_2}(\%) = \frac{46}{34+46} = 0.575$$

b) Resolución CEA

	CHAMBER	THROAT	EXIT
Pinf/P	1.0000	1.7762	55.940
P, BAR	68.947	38.818	1.2325
T, K	2960.00	2700.19	1375.72
RHO, KG/CU M	2.4650 0	1.5272 0	9.5576-2
H, KJ/KG	438.60	-1094.31	-7549.24
U, KJ/KG	-2358.48	-3636.05	-8838.83
G, KJ/KG	-69720.7	-65095.6	-40157.3
S, KJ/(KG)(K)	23.7025	23.7025	23.7025
M, (1/n)	8.799	8.833	8.870
(dLV/dLP)t	-1.00403	-1.00209	-1.00000
(dLV/dLT)p	1.0791	1.0446	1.0000
<pre>Cp, KJ/(KG)(K)</pre>	6.6043	5.9363	4.2668
GAMMAs	1.1942	1.2062	1.2816
SON VEL,M/SEC	1827.6	1750.9	1285.6
MACH NUMBER	0.000	1.000	3.109

1.0000	7.0000
2578.4	2578.4
0.6791	1.5502
3202.6	4319.6
1750.9	3997.0
	2578.4 0.6791 3202.6

MOLE FRACTI	CONS		
*H	0.01261	0.00688	0.00000
*H2	0.56244	0.56652	0.57161
H20	0.42159	0.42514	0.42839
*0	0.00004	0.00001	0.00000
*OH	0.00330	0.00145	0.00000
*02	0.00001	0.00000	0.00000

c) Comparativa

	Analítico	CEA
Pc/Ps	60.11	55.94
Ps (Pa)	114698	123250
γ	1.28	1.2816
c* (m/s)	2519.9	2578.4
C_{Eadap}	1.5437	1.5502
I _{SPvac} (m/s)	4183.4	4319.6
I _{SPadap} (m/s)	3890.0	3997.0
x_{H_2O}	0.425	0.42839
x_{H_2}	0.575	0.57161