#### FIT 3080: Intelligent Systems

# Mathematical Principles of Machine Learning A Case Study: Decision Trees

Gholamreza Haffari – Monash University

Some slides are adapted from Dieter Fox or Ingrid Zukerman

#### Announcements

- Readings:
  - Sections 18.1-3



#### Outline

- Mathematical Principles of Learning
  - Inductive Learning
  - Hypothesis Space
  - Hypothesis complexity
  - Overfitting & Generalization
- Decision Trees
  - Model
  - Entropy and Information Gain
  - DT Learning Algorithm
  - Preventing Overfitting

## Why Learning?

- Learning is essential for unknown environments
  - e.g., when designer lacks omniscience
- Learning is necessary in dynamic environments
  - Agent can adapt to changes in environment not foreseen at design time
- Learning is useful as a system construction method
  - Expose the agent to reality rather than trying to approximate it through equations etc.
- Learning modifies the agent's decision mechanisms to improve performance

#### Types of learning

- Supervised learning: correct answers for each input is provided
  - E.g., decision trees, Perceptron, Naïve Bayes, K-NN
- Unsupervised learning: correct answers not given, must discover patterns in input data
  - E.g., K-Means
- Reinforcement learning: occasional rewards (or punishments) given
  - E.g., Q learning, MDPs

## Inductive learning

A form of Supervised Learning:
 Learn a function from examples



#### Inductive learning

- Setup:
  - f is the unknown target function
  - Given some examples pairs from it (x, f(x))
- Problem: learn a function ("hypothesis") h
  - Based on the training set of examples
  - Such that h ≈ f (h approximates f as best as possible)
  - Meaning h must generalize well on unseen examples

## Picking the best hypothesis h

- Big Idea 1: Pick h from the space H which agrees with f on training set
  - h is consistent if it agrees with f on all training examples
- Example: curve fitting (regression):



h = Straight line?



What about a quadratic function?



Finally, a function that satisfies all



But so does this one...



#### **Training Data**

$$(x_1, y_1)$$

$$(x_2, y_2)$$

$$(x_n, y_n)$$

## Ockham's razor principle

- Big Idea 2: Prefer the simpler hypothesis vs complex ones
  - Smooth blue function preferable over wiggly yellow one
  - The wiggly one is perfect on training data but most probably will be very bad on unseen data: Overfitting



#### **Training Data**

$$(x_1, y_1)$$

$$(x_2, y_2)$$

$$(x_n, y_n)$$

## Mathematical Principles of Learning

Idea 2: To improve generalizability and prevent overfitting



Choose the **simplest** hypothesis **from H** which is **consistent** with the training data

Idea 1: To be similar to the unknown true underlying function

## Mathematical Principles of Learning



Learning is indeed Search/Optimization

#### Outline

- Mathematical Principles of Learning
  - Inductive Learning
  - Hypothesis Space
  - Hypothesis complexity
  - Overfitting & Generalization

#### Decision Trees

- Model
- Entropy and Information Gain
- DT Learning Algorithm
- Preventing Overfitting

## Decision Trees (DTs)

 Input: Description of an object or a situation through a set of attributes.

 Output: a decision, that is the predicted output value for the input.

## DT Example: Training Dataset



| Day       | Outlook | Temperature | Humidity | Wind | Play ball |
|-----------|---------|-------------|----------|------|-----------|
| <b>D1</b> | Sunny   | Hot         | High     | Weak | No        |

Input x (vector of attribute values)

Output y

## DT Example: Training Dataset

| Input x (vector of attributes) |          |             |          |        | Output y  |  |
|--------------------------------|----------|-------------|----------|--------|-----------|--|
|                                |          |             |          |        |           |  |
| Day                            | Outlook  | Temperature | Humidity | Wind   | Play ball |  |
| <b>D1</b>                      | Sunny    | Hot         | High     | Weak   | No        |  |
| D2                             | Sunny    | Hot         | High     | Strong | No        |  |
| D3                             | Overcast | Hot         | High     | Weak   | Yes       |  |
| D4                             | Rain     | Mild        | High     | Weak   | Yes       |  |
| D5                             | Rain     | Cool        | Normal   | Weak   | Yes       |  |
| D6                             | Rain     | Cool        | Normal   | Strong | No        |  |
| <b>D7</b>                      | Overcast | Cool        | Normal   | Strong | Yes       |  |
| D8                             | Sunny    | Mild        | High     | Weak   | No        |  |
| D9                             | Sunny    | Cool        | Normal   | Weak   | Yes       |  |
| D10                            | Rain     | Mild        | Normal   | Weak   | Yes       |  |
| D11                            | Sunny    | Mild        | Normal   | Strong | Yes       |  |
| D12                            | Overcast | Mild        | High     | Strong | Yes       |  |
| D13                            | Overcast | Hot         | Normal   | Weak   | Yes       |  |
| D14                            | Rain     | Mild        | High     | Strong | No        |  |

#### DT Example: Learned Hypothesis h



Decision tree is equivalent to logic in disjunctive normal form G-Day ⇔ (Sunny ∧ Normal) ∨ Overcast ∨ (Rain ∧ Weak)

#### Classification by Decision Tree Induction

- Training Data: Records of items that have:
  - Input x: Represented by a vector of attribute values
  - Output y: The corresponding target value
- Learning/Constructing the tree:
  - Based on a "greedy" algorithm
  - Builds a decision tree in a top-down, recursive, divide-and-conquer manner

## Decision Tree Learning Algorithm

- 1. Start with all training examples at the root
- 2. Partition examples recursively based on selected attributes
  - attributes are categorical
    - if continuous-valued, they are broken up into ranges
  - attributes are selected using heuristics or a statistical measure
    - e.g., *information gain*
- 3. Stop partitioning when
  - there is no further gain in partitioning

Employ majority voting for classifying the leafs

#### What is the "simplest" Tree?

- Always predict "yes"
  - A tree with one node
- How good it is?
  - Correct on 10 examples
  - Incorrect on 4 examples
  - Notation: [10+,4-]

| Day       | Outlook  | Temperature | Humidity | Wind   | Play ball |
|-----------|----------|-------------|----------|--------|-----------|
| D1        | Sunny    | Hot         | High     | Weak   | No        |
| D2        | Sunny    | Hot         | High     | Strong | No        |
| D3        | Overcast | Hot         | High     | Weak   | Yes       |
| D4        | Rain     | Mild        | High     | Weak   | Yes       |
| D5        | Rain     | Cool        | Normal   | Weak   | Yes       |
| D6        | Rain     | Cool        | Normal   | Strong | No        |
| <b>D7</b> | Overcast | Cool        | Normal   | Strong | Yes       |
| D8        | Sunny    | Mild        | High     | Weak   | No        |
| D9        | Sunny    | Cool        | Normal   | Weak   | Yes       |
| D10       | Rain     | Mild        | Normal   | Weak   | Yes       |
| D11       | Sunny    | Mild        | Normal   | Strong | Yes       |
| D12       | Overcast | Mild        | High     | Strong | Yes       |
| D13       | Overcast | Hot         | Normal   | Weak   | Yes       |
| D14       | Rain     | Mild        | High     | Strong | No        |

#### Successors



Which attribute should we use to split?

# Disorder is bad Homogeneity is good



#### Using information theory to quantify uncertainty

Entropy measures the amount of uncertainty in a probability distribution

 Entropy (or Information Content) of an answer to a question with possible answers v<sub>1</sub>, ..., v<sub>n</sub>:

$$I(P(v_1), \ldots, P(v_n)) = \Sigma_i - P(v_i) \log_2 P(v_i)$$

# Entropy



#### Entropy (disorder) is bad Homogeneity is good

- Let S be a set of examples
  - Labeled positive or negative
- Entropy(S) =  $-P \log_2(P) N \log_2(N)$ 
  - P is proportion of pos example
  - N is proportion of neg examples
  - and 0 log 0 == 0
- Example: S has 10 pos and 4 neg
  - Entropy([10+, 4-])= -(10/14) log2(10/14) (4/14)log2(4/14)= 0.863

#### Information Gain

Measure of expected reduction in entropy

Gain(S,A) = Entropy(S) - 
$$\sum$$
 (|Sv| / |S|) Entropy(Sv)  
v \in Values(A)

- Resulting from splitting along an attribute
- Entropy(S) = -P  $log_2(P)$  N  $log_2(N)$

## Gain of Splitting on Wind

```
Values(wind)=weak, strong
S = [10+, 4-]
S_{\text{weak}} = [6+, 2-]
S_{\text{s}} = [3+, 3-]
Gain(S, wind)
 = Entropy(S) - \sum (|S_v| / |S|) Entropy(S<sub>v</sub>)
              v \in \{weak, s\}
 = Entropy(S) - 8/14 Entropy(S<sub>weak</sub>)
                  - 6/14 Entropy(S_s)
 = 0.863 - (8/14) 0.811 - (6/14) 1.00
 = -0.029
```

|   | Day | Wind | Tennis? |
|---|-----|------|---------|
|   | d1  | weak | n       |
|   | d2  | S    | n       |
|   | d3  | weak | yes     |
|   | d4  | weak | yes     |
|   | d5  | weak | yes     |
|   | d6  | S    | yes     |
| ) | d7  | S    | yes     |
|   | d8  | weak | n       |
|   | d9  | weak | yes     |
|   | d10 | weak | yes     |
|   | d11 | S    | yes     |
|   | d12 | S    | yes     |
|   | d13 | weak | yes     |
| , | d14 | S    | n       |

## **Evaluating Attributes**



Value is actually different than this, but ignore this detail

#### Resulting Tree ....



#### Recurse!



| Day | Temp | Humid | Wind | Tennis? |
|-----|------|-------|------|---------|
| d1  | h    | h     | weak | n       |
| d2  | h    | h     | S    | n       |
| d8  | m    | h     | weak | n       |
| d9  | С    | n     | weak | yes     |
| d11 | m    | n     | S    | yes     |

## One Step Later...



## Decision Tree Algorithm

#### **BuildTree**(TrainingData)

Split(TrainingData)

#### Split(D)

- If (all points in D are of the same class)
   Then Return
- For each attribute A
   Evaluate splits on attribute A
- Use best split to partition D into D1, D2
- Split (D1)
- Split (D2)

## Overfitting



Number of Nodes in Decision tree

## Overfitting



#### Overfitting

- DT is overfitting when there exists another DT ' and:
  - DT has smaller error on training examples, but
  - DT has bigger error on test examples

- Causes of overfitting
  - Noisy data, or
  - Training set is too small

## **Avoiding Overfitting**

- How to prevent overfitting:
  - Stop growing the tree when data split is not statistically significant
  - Grow full tree, then post prune
- How to select best tree?
  - Measure performance on training data
  - Measure performance on a separate validation set
  - Add complexity penalty to the performance measure
  - Complexity: Number of nodes in the tree

## Effect of Post Pruning



#### Other Features of Decision Tree

- Can handle continuous data
  - Input: Use threshold to split
  - Output: Estimate linear function at each leaf

- Can handle missing values
  - Use expectation taken from other samples

#### Other Classification Methods

- In the next lecture, we cover the following classifiers
  - Naïve Bayes Classifiers
  - Perceptrons
  - K-nearest neighbor

#### WEKA

- www.cs.waikato.ac.nz/ml/weka
- Tool with several classifiers
  - weka.classifiers.
  - bayes.NaiveBayes Naïve Bayes
  - trees.DecisionStump decision trees with one split only