TOPOLOGÍA Hoja 5

Compacidad.

- 1. Estudia si los siguientes conjuntos son compactos en los espacios que se indican.
- $\{(-1)^n + \frac{1}{n} : n \in \mathbb{N} \setminus \{0\}\} \subset \mathbb{R}$.
- $\mathbb{Q} \subset \mathbb{R}$.
- $[0,1] \subset \mathbb{R}$ con la topología del límite inferior $\mathcal{T}_{\lceil \cdot \rceil}$.
- $[0,1] \times \{3\} \subset \mathbb{R}^2$ con la topología del orden lexicográfico.

2.

- Demostrar que \mathbb{R}^2 y S^2 no son homeomorfos.
- Sean $X_1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$, $X_2 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$. Demostrar que X_1 es homeomorfo a \mathbb{R}^2 y que X_1 y X_2 no son homeomorfos.
- Sea $X = \{(x,y) \in \mathbb{R}^2 : x^2 = y^2, x,y \in [-1,1]\}$, con la topología usual. ¿Existe alguna función continua y sobreyectiva de X en \mathbb{R} ?.
- 3. ¿Son $[0,1] \times [0,1]$ y $[0,1) \times [0,1]$ espacios compactos con la topología del orden lexicográfico?, ¿son subconjuntos compactos de \mathbb{R}^2 con la topología del orden lexicográfico?
- 4. Decir cuáles son los subconjuntos compactos en \mathbb{R} con la topología cofinita, con la topología de los complementos numerables y, finalmente, con la topología discreta.

Demostrar que los conjuntos compactos en la recta de Sorgenfrey $(\mathbb{R}, \mathcal{T}_{[\)})$ son necesariamente numerables $^1.$

- **5.** Prueba que si X es un espacio compacto y $A \subset X$ entonces \overline{A} es compacto. Demuestra también que $\mathcal{B} = \{\{0, n\} : n \in \mathbb{Z}\}$ es base para una topología sobre \mathbb{Z} en la que $A = \{0\}$ es compacto pero \overline{A} no lo es. ¿Contradice esto lo anterior?.
- **6.** Demostrar que si $f: X \to Y$ es continua, Y es Hausdorff y X es compacto, entonces f es cerrada. Deducir que si f es además una biyección, entonces es un homeomorfismo.

7.

- 1. Demostrar que si Y es compacto entonces $p_1: X \times Y \to X$ es cerrada². Dar un ejemplo de un conjunto no compacto en \mathbb{R}^2 cuyas proyecciones sean compactas.
- 2. Sea X un espacio topológico e Y un espacio de Hausdorff compacto. Probar que $f: X \to Y$ es continua si y sólo si la gráfica de f, Γ_f , es cerrada en $X \times Y$. Si X es también un espacio de Hausdorff compacto, entonces f es continua si y sólo si Γ_f es compacta 3 .

¹ Sugerencia: Usar el hecho de que en un conjunto no numerable hay siempre una sucesión estrictamente creciente.

²Indicación: Si A es cerrado y $x \notin p_1(A)$, hallamos un "tubo" $T = U_x \times Y$ tal que $T \cap A = \emptyset$.

³Indicación: La clave de la demostración está en probar que $f^{-1}(C) = p_1((X \times C) \cap \Gamma_f)$ para todo C cerrado de Y y luego basta usar el ejercicio anterior.

- 8. Sea (X, d) un espacio métrico.
- 1. Si X es compacto, prueba que la función distancia está acotada.
- 2. Sea $K \subset X$ un conjunto compacto. Demostrar que la función $d(x, K) = \inf \{d(x, y) : y \in K\}$ es continua, y que para cada $x \in X$ existe $y \in K$ tal que d(x, K) = d(x, y).
- 3. Demostrar que si B_n es una sucesión de bolas cerradas encajadas en \mathbb{R}^n , entonces

$$\cap_{n\in\mathbb{N}}B_n\neq\emptyset$$
.

- **9.** Sea X un espacio compacto.
- Sea \mathcal{F} una familia de funciones continuas de X en [0,1] tales que si $f,g\in\mathcal{F}$ entonces $fg\in\mathcal{F}$, y para cada $x\in X$ existe $f\in\mathcal{F}$ y un entorno U(x) con f(U(x))=0. Demuestra que \mathcal{F} contiene a la función nula.
- Sea \mathcal{F} una familia de funciones continuas de X en \mathbb{R}^+ tales que si $f, g \in \mathcal{F}$ entonces existe $h \in \mathcal{F}$ con $h \leq \min(f, g)$, y para todo $x \in X$, $\inf\{f(x) : f \in \mathcal{F}\} = 0$. Demuestra que para todo $\varepsilon > 0$, existe $f \in \mathcal{F}$ tal que $f(x) < \varepsilon$ para todo $x \in X$.
- 10. Indica razonadamente si las siguientes afirmaciones son verdaderas o falsas.
- 1. La unión finita de subconjuntos compactos de un espacio es un subconjunto compacto.
- 2. La unión de una familia cualquiera de compactos de un espacio es un subconjunto compacto.
- 3. La intersección de una familia cualquiera de compactos es un subconjunto compacto⁴
- 4. La intersección de una familia de compactos de un espacio de Hausdorff es un subconjunto compacto.
- 5. Existe un recubrimiento de [0, 1] por intervalos cerrados que no admite ningún subrecubrimiento finito.
- Si un espacio es compacto con cierta topología, entonces lo es necesariamente con una menos fina.
- 7. Si un espacio es compacto con cierta topología, entonces lo es necesariamente con una más fina.

⁴Indicación: considera en [0,1] la topología cuya base es $\mathcal{B} = \{(a,b): 0 < a < b < 1\} \cup \{(0,1]\} \cup \{[0,1)\}.$