

Table of contents

- Overview
- Types of data
 - Structured data
 - Unstructured data
 - Semi Structure data
- Difference b/n each data's
- SQL Commands
- Data types:
- Constraints
- Install and Server connect

Overview

SQL stands for **Structured Query Language** which is a computer language for storing, manipulating and retrieving data stored in a relational database. SQL was developed in the 1970s by IBM, it is a language to operate databases. It includes Database Creation, Database Deletion, Fetching Data Rows, Modifying & Deleting Data rows, etc.

RDBMS stands for Relational Database Management System. RDBMS is the basis for SQL, and for all modern database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access.

the most popular RDBMS are listed below -

- MySQL
- MS SQL Server
- ORACLE
- PostgreSQL
- SQLite

SQL Applications

SQL is one of the most widely used Query Language over the databases.

SQL provides following functionality to the database programmers –

- ☐ Executes different database queries against a database.
- ☐ Defines the data in a database and manipulates that data.
- ☐ Creates data in a relational database management system.
- ☐ Accesses data from the relational database management system.
- □ Creates and drops databases and tables.
- ☐ Creates and maintains database users.
- ☐ Creates views, stored procedures, functions in a database.
- ☐ Sets permissions on tables, procedures and views.

Types of Data

	Structured data	Semi-Structured data	Unstructured data
Characteri stics	Defined is well organized, Organized means – relational database,	Data is organized to some extent Partially organized, e.g by XML/RDF	Data is fully non organized Based on character and binary data
	Matured transaction, multiple concurrency techniques	Transaction is adapted from DBMS, but data concurrency can pose problems	Difficult but achievable transaction management and data concurrency
	Tuples, rows and tables Schema dependent and less	Tuples or graphs are possible Data is more flexible than	Versioning usually on whole data or chunks
	Query performance is the highest, structed query can be performed allowing complex joins	Queries over anonymous nodes are possible	The most flexible Schema on-read so query performance is the lowest
Examples	Transactional information, Names, Dates and Addresses •Survey •Questionnaires •Tests •Claim Forms	XML/JSON Data, HTML, Emails, Web pages •Invoices •Purchase Orders •Bills of Lading •Explanation of Benefits	Documents - PDFs, Text files •ViContracts •Letters •Articles •Memos deos, Audio, Images files,

Structure

- Structured data is organized and easily searchable with a predefined format, like data in a table.
- Definition: Data that conforms to a predefined data model, typically organized in rows and columns, like in a relational database.
- Examples: Dates, numbers, product SKUs, customer information stored in a CRM system.
- Characteristics:
 - Well-defined schema and format.
 - Easily searchable using SQL (Structured Query Language).
 - Data integrity is enforced through validation rules. Typically stored in data warehouses.
- Use Cases: Customer relationship management (CRM), inventory management, financial transactions. •Limited to specific uses
- Benefits: Easy to analyze, manage, and retrieve information.
- Drawbacks: Can be inflexible and may require significant effort to adapt to new requirements.

Most popular tools for the management of structured data

MySQL: Embedding data in mass-deployed software.

- •OLAP (Online Analytical Processing): Data analysis.
- •SQLite: Relational database.
- •Oracle database: Advanced database management system.

Pros of using structured data

- •Easy for the average user to utilize and understand
- •Easy for machine learning algorithms to utilize
- •A greater number of analytics tools can use the data
- •Requires less storage space

Cons of using structured data

- More limited storage options
- Difficult and expensive to make changes

Examples of structured data

Use cases for utilizing structured data

- •Ecommerce: Product IDs, pricing data and customer account data
- •Healthcare: Patient forms, medical insurance data and medical billing data
- •Banking: Customer account data and financial transactions
- •Customer relationship management (CRM) software: Names, phone numbers and addresses
- •Travel industry: Reservation data, ticket pricing information and dates

Unstructure

- Unstructured data lacks this predefined structure and can include various forms like text, images, and audio, making it harder to search and analyze directly. Most of the world's data is unstructured, highlighting the need for specialized tools and techniques to manage and extract insights from it.
- Definition: Data that doesn't conform to a predefined structure and has no easily searchable format.
- Examples: Social media posts, images, videos, audio files, emails, text documents.
- Characteristics:
 - Lacks a predefined format or schema.
 - More difficult to search and analyze directly.
 - Often requires specialized tools and techniques for processing.
 - Can be stored in data lakes.
- Use Cases: Sentiment analysis, image recognition, fraud detection, personalized recommendations.
- Benefits: Provides rich, contextual information and can reveal hidden patterns.
- Drawbacks: Requires significant effort to process and extract meaningful insights.
- •Ecommerce: Identify spending patterns and customer behavior
- •Healthcare: Determine treatment recommendations and forecast changes in a patient
- •Finance: Track markets and perform risk analysis

Pros of using unstructured data

- •Easier to store due to being in native format
- •Collecting and storing are faster
- •Cheaper to store unstructured data using data lakes
- •Provides more granular information

Cons of using unstructured data

- More complicated to work with
- Requires highly specialized tools for organizing
- Expertise needed

Most popular tools for working with

unstructured data include:

- •NoSQL (not only Structured Query Language) Database Management System (non-tabular database)
- MongoDB
- Apache Hadoop
- Microsoft Azure
- Amazon DynamoDB

- •Video (WMV, MP4 and MOV)
- •Images (JPG, PNG and GIF)
- Aaudio (MP3, WAV and MPEG)

Semistructure

Difference between each structure

Analysis methods	Classif icationRegressionData clustering	Data stackingData mining
Tools and technologies		 NoSQL DBMS Al-driven tools Data storage architectures Data visua lization tools
Specialists to handle data	Business analysts Software engineers Marketing analysts	Data scientists, engineers, and ana lysts with deep expertise
Uses	Machine learning	Natural language processing and test mining
Examples	SQL	JPEG, DOC, PDF's, MOV, etc
	ID codes for databases	Vidéos, Images, text messages, HTML

SQL Commands

Truncate

Rename

Transaction Control Language(TCL) commands		
	All subsequent DML (Data Manipulation Language)	
START TRANSACTION / BEGIN:	statements	
	committed, the changes are irreversible and visible to other	
COMMIT:	transactions.	
	changes made within the current transaction that have not	
ROLLBACK	yet been committed	
	This allows for partial rollbacks, where you can undo changes	
SAVEPOINT	only up to a specific	
	This command rolls back the transaction to the specified	
ROLLBACK TO SAVEPOINT	savepoint	

Data Definition Language (DDL)		
CREATE	Creates a new table, a view of a table, or other object in the database.	
ALTER	Modifies an existing database object, such as a table.	
DROP	Deletes an entire table, a view of a table or other objects in the database.	
TRUNCATE	Truncates the entire table in a go.	
Data Manipulation Language (DML)		
SELECT	Retrieves certain records from one or more tables.	
INSERT	Creates a record.	
UPDATE	Modifies records.	
DELETE	Deletes records.	
Data Control Language (DCL)		
GRANT	Gives a privilege to user	
REVOKE	Takes back privileges granted from user.	

Contd...

	Command	Description	
SELECT		Retrieves data from one or more tables.	
	INSERT	Adds new rows (records) to a table.	
	UPDATE	Modifies existing data in a table.	
	DELETE	Removes specific rows from a table.	
	CREATE TABLE	Creates a new table in the database.	
ALTER TABLE Modifies the structure of an existing table (e.g., add or re		Modifies the structure of an existing table (e.g., add or remove columns).	
	DROP TABLE	Permanently deletes a table and its data.	
	TRUNCATE	Removes all rows from a table but keeps its structure intact.	
	WHERE	Filters records based on a condition.	
	ORDER BY	Sorts the result set in ascending or descending order.	
	GROUP BY	Groups rows that have the same values in specified columns.	
	HAVING	Filters grouped data (used with GROUP BY).	
	JOIN	Combines rows from two or more tables based on a related column.	
	DISTINCT	Removes duplicate values from the result set.	
	IN/BETWEEN/	Used for advanced filtering conditions.	
	LIKE		
	UNION	Combines the result of two or more SELECT queries.	
	GRANT	Gives user privileges or permissions.	
REVOKE Removes user privileges. COMMIT Saves all changes made in the current transaction. ROLLBACK Undoes changes if something goes wrong in a transaction.		Removes user privileges.	
		Saves all changes made in the current transaction.	
		Undoes changes if something goes wrong in a transaction.	
	SAVEPOINT	Sets a point in a transaction to roll back to if needed.	

Data types:

CHAR(size): Stores fixed-length strings. If the string is shorter than size, it's padded with spaces.

VARCHAR(size) / NVARCHAR(size): Stores variable-length strings up to size. NVARCHAR is for Unicode characters.

TEXT / NTEXT: Stores very large strings. NTEXT is for Unicode.

CAST() or CONVERT() - You can convert numeric or date/time data to strings using functions like

CONCAT() function (widely supported): This function handles NULL values by treating them as empty strings, which can be advantageous over operators.

```
|| operator (ANSI SQL standard, used in PostgreSQL, Oracle, SQLite): + operator (SQL Server).
```

INTEGER (INT, SMALLINT, BIGINT, TINYINT):

Used for storing whole numbers (integers) without fractional parts. Different variations (SMALLINT, BIGINT, TINYINT) offer varying ranges and storage sizes to optimize space based on the expected magnitude of the numbers.

ProductName VARCHAR(255),

ProductCode CHAR(10),

Description TEXT

DECIMAL (DEC, NUMERIC):

- Used for storing exact fixed-point numbers with a specified precision (total number of digits) and scale (number of digits after the decimal point). This is crucial for maintaining accuracy in calculations involving decimal values.
- Approximate Numeric Data Types: These types store numbers with approximate values, often used for scientific or engineering calculations where a slight loss of precision is acceptable in exchange for a wider range or more efficient storage.
- FLOAT (REAL, DOUBLE PRECISION): Used for storing floating-point numbers, which are represented in scientific notation. These types offer a wider range of values but may introduce minor inaccuracies due to the nature of floating-point representation. REAL typically refers to single-precision floating-point numbers, while DOUBLE PRECISION (or DOUBLE) refers to double-precision.

Constraints

Constraints		
NOT NULL	Ensures that a column cannot have a NULL value.	
DEFAULT	Provides a default value for a column when none is specified.	
UNIQUE Key	Ensures that all the values in a column are different.	
PRIMARY Key	Uniquely identifies each row/record in a database table.	
FOREIGN Key	Uniquely identifies a row/record in any other database table.	
CHECK	Ensures that all values in a column satisfy certain conditions.	
INDEX	Used to create and retrieve data from the database very quickly.	

Data Integrity

The following categories of data integrity exist with each RDBMS –

- ② Entity Integrity This ensures that there are no duplicate rows in a table.
- ② Domain Integrity Enforces valid entries for a given column by restricting the type, the format, or the range of values.
- Referential integrity Rows cannot be deleted, which are used by other records.
- ② User-Defined Integrity Enforces some specific business rules that do not fall into entity, domain or referential integrity.

Database Normalization

Database normalization is the process of efficiently organizing data in a database. There are two reasons of this normalization process –

- Eliminating redundant data, for example, storing the same data in more than one table.
- Ensuring data dependencies make sense.

Third Normal Form is more than enough for a normal Database Application.

- Pirst Normal Form (1NF)
- Second Normal Form (2NF)
- Third Normal Form (3NF)

Install and Server connect

Raw Connection to Database

```
import mysql.connector
connection = mysql.connector.connect(
   user='root',
    password='college',
   host='localhost',
   database='employees',
    ssl disabled=True
cursor = connection.cursor()
connection.close()
cursor.close()
```


Ref

Properties	Structured data	Unstructured data
Format examples	• CSV • Excel	 audio files (WAV, MP3, OGG) PDF documents images (JPEG, PNG, etc.)
Sources examples	 online forms point-of-sale (POS) systems online transaction processing (OLTP) systems 	emailssocial media postsmultimedia filesIoT outputs
Nature of data	Quantitative	Qualitative
Databases	Relational (SQL)	Non-relational (NoSQL)
Storage for analytics use	Warehouses and data lakehouses	Data lakes and data lakehouses
Specialists to handle data	Business analysts, software engineers, data analysts	Data scientists, data engineers, data analysts
Main benefits	Easy to search and analyze, doesn't require much space	Easy to collect and store
Main challenges	All data must fit predefined schema	Difficult to search and analyze

