La compression et la filtration du son

PAR MOHAMAD, QINYAN YANG, DAVID MAN

COUR: TRAITEMENT DU SIGNAL

Introduction

Applications:

les télécommunications, la production musicale, la santé, etc.

Traitement du son vise à:

- Améliorer
- Manipuler
- Analyser

La compression

- Réduire le volume de données nécessaires pour stocker
- Transmettre ces médias sans altérer leur qualité perçue

La filtration

- Supprimer des bruits indésirables
- Améliorer la clarté de la parole
- Ajuster la couleur sonore d'un enregistrement.

Fundamentaux

Représentation des Signaux Audio

SIGNAUX ANALOGIQUES

SIGNAUX NUMÉRIQUES

Conversion Analogue - Numerique

Shannon - Whittaker

$$\sup_{f(t) = \sum_{n \in \mathbb{Z}} f(nT) h_T(t - nT)} h_T(t) = \frac{\sin\left(\frac{\pi t}{T}\right)}{\frac{\pi t}{T}}$$

L'échantillonage La Quantification Le Codage

Principes de Base

TRANSFORMÉE DE FOURIER

$$\hat{f}(\omega) := \int_{-\infty}^{+\infty} f(t)e^{-it\omega}dt$$

FILTRES NUMÉRIQUES ET ANALOGIQUES

Techniques et Algorithmes Clés

FFT ET MDCT

Compression de signal

Principes

- **Redondance** : éliminer les répétitions ou les prévisibilités dans les données
- Irrélevance: supprimer les informations qui ne sont pas détectables ou moins importantes

Types de compression

Compréssion sans perte (lossless) :

Réduir la taille sans perte

- ex: ZIP, PNG
- •Compression avec perte (lossy) : Réduir en éliminant les informations inutiles
 - ex: MP3, JPEG

Compression d'image

Compression sonore

Production musicale et audio

Radiodiffusion et Podcasting

Télécommunications

Filtration sonore

Vocabulaire:

- Volume: l'amplitude du signal
- Audio: la fréquence du signal
- Timbre: du point de vue du signal, le timbre correspond a la forme d'onde du signal

Domaines d'application

Production musicale

Communication vocale

Suppression du bruit

Les filtres pincipaux

Filtre gaussien

Filtre limiteur

Filtre médian

Filtre de moyennisation

Filtre de moyennisation limité

Filtre de moyennisation récursif pondéré

Filtre anti-rebond

Filtre anti-rebond limité

Filtre(dans le domaine temporel):

$$y(t) = \int_{-\infty}^{+\infty} h(t - \tau) s(\tau) d\tau$$

Filtre(dans le domaine fréquentiel):

$$\hat{y}(\omega) = \hat{h}(\omega)\hat{s}(\omega)$$

Dans le domaine temporel:

La moyenne du signal de de sortie s'écrit comme:

$$y(t) = \frac{1}{T} \int_{|t-\tau| \le T} s(\tau) d\tau$$

La réponse impulsionnelle:

$$h(t-\tau) = \frac{1}{T} 1_{|t-\tau| \le T}$$

Dans le domaine fréquentiel:

Et donc la fonction de transfert:

$$\frac{1}{T}\widehat{1_{|t-\tau|\leq T}}(\omega) = \frac{\sin(\omega T)}{\omega T}$$

L'algorithme de filtrage par moyenne:

Soit le signal d'entrée $s=(s_1, ..., s_N)^T$

La moyenne:

$$x_i = \frac{s_{i-1} + s_i + s_{i+1}}{3}$$
, $\forall i \in \{2, ..., N-1\}$

pour les points d'indices extrêmes:

$$s_1 = \frac{s_1 + s_2}{2}$$
 et $s_N = \frac{s_{N-1} + s_N}{2}$

L'algorithme de filtrage par moyenne:

Sous forme matricielle:

$$x = As$$

Avantages et inconvénients:

- Conclusion-

- Concepts Clés: Échantillonnage, Quantification, Transformée de Fourier (FFT, MDCT).
- Techniques Principales : Compression (Sans Perte et Avec Perte), Filtration (Filtre Moyen.).
- Applications et Impact :
 - *Amélioration de la qualité audio dans la production musicale et les télécommunications.
 - Compression pour le stockage efficace et la distribution de contenu numérique.
 - Filtration pour la clarté sonore et la réduction du bruit.
- Importance de la Théorie :
 - Fondamental pour l'innovation et l'optimisation des technologies audio.
 - SEssentiel pour le développement d'applications performantes et efficientes.

Merci Beaucoup