

BMM150 Magnetometer Module Product Brief

Compact 3-axis digital magnetometer for orientation sensing and navigation applications

Version: 1.0 Modified: 2025-06-23 11:00

Introduction

The BMM150 is a compact, ultra-low-power 3-axis digital magnetometer designed for accurate orientation sensing, electronic compass applications, and inertial navigation. Its versatile I²C and SPI interfaces ensure easy integration with popular platforms such as Arduino, ESP32, and Raspberry Pi. Based on Bosch Sensortec's advanced technology, the BMM150 provides high precision and low power consumption, making it ideal for wearable devices, drones, and robotics.

Functional Description

The BMM150 measures the magnetic field in three perpendicular axes (X, Y, Z), allowing precise heading calculation in static and dynamic environments. It compensates for soft and hard iron distortions and can be used in combination with an accelerometer and gyroscope for sensor fusion applications (e.g., 9DoF IMU).

- Measurement Range: ±1300 μT (X, Y axis), ±2500 μT (Z axis)
- Output Data Rate: Up to 30 Hz (configurable)
- Communication Interface: I2C (up to 400 kHz) or SPI (up to 10 MHz)
- Supply Voltage: 1.8V to 3.6V (typically 3.3V)

Electrical Characteristics

- Operating Voltage: 1.8V to 3.6V
- Interface Logic Level: 3.3V
- Typical Current Consumption: 170 μA during normal mode
- Standby Current: Below 1 µA to minimize battery drain and enhance energy efficiency
- Communication Interfaces: I²C and SPI (hardware selectable)

Applications

- Electronic compass
- Augmented reality (AR) and virtual reality (VR)
- Robotics and drones (UAV)
- Navigation systems (GNSS enhancement)
- Wearable tracking devices

Settings

Interface Overview

Interface	Signals / Pins	Typical Use
Power	VCC, GND	Power supply
I ² C	SDA, SCL	Communication with MCU
SPI	MOSI, MISO, SCK, CSB	High-speed SPI communication

Product Brief 1 — 4

Supported Pins

Symbol	I/O	Description
VCC	Input	Power supply (3.3V)
GND	GND	Ground reference
SDA	I/O	I ² C Data / SPI MOSI
SCL	I	I ² C Clock / SPI SCK
CSB	1	SPI Chip Select (Active Low)
SDO	0	SPI MISO / I ² C address selector

Pin & Connector Layout

Pin	Name	Description
1	VCC	3.3V supply input
2	GND	Ground
3	SDA/MOSI	I ² C data / SPI MOSI
4	SCL/SCK	I ² C clock / SPI clock
5	CSB	SPI chip select (active low)
6	SDO/SA0	SPI MISO / I ² C address select

Product Brief 2 — 4

Block Diagram

BMM150 Magnetometer I2C

O JST

Description:

Dimensions

Mechanical dimensions in millimeters

Usage

- Arduino UNO / Nano
- ESP32 / ESP8266
- Raspberry Pi / RP2040 boards
- STM32, CH32V, and other I2C/SPI capable MCUs

Downloads

- Datasheet BMM150 (Bosch)
- Example Code Arduino
- Schematic PDF

Purchase

• Buy from UNIT Electronics

Product Brief 4 — 4