Teoria de Grupos: notas de estudo

Guilherme Philippi

6 de fevereiro de 2021

# Sumário

| 1  | Gru                        | pos                                               | 2  |
|----|----------------------------|---------------------------------------------------|----|
|    | 1.1                        | Relações entre conjuntos                          | 2  |
|    | 1.2                        | Lei de composição                                 |    |
|    | 1.3                        | Grupos                                            | 4  |
|    | 1.4                        | Subgrupos                                         | 4  |
|    | 1.5                        | Homomorfismos                                     | 5  |
|    | 1.6                        | Isomorfismos                                      | 6  |
|    | 1.7                        | Grupos de Permutação                              | 7  |
|    | 1.8                        | Relações de Equivalência e Partições              | 8  |
|    | 1.9                        | Orbitas, ciclos e grupos alternados               | 9  |
|    | 1.10                       | Classe lateral                                    | 11 |
|    | 1.11                       | Restrição de um homomorfismo para um subgrupo     | 12 |
|    | 1.12                       | Produto de Grupos                                 | 13 |
|    | 1.13                       | Aritmética Modular                                | 14 |
|    | 1.14                       | Estrutura de grupos abelianos finitamente gerados | 14 |
|    | 1.15                       | Grupos de Quociente                               | 15 |
| Re | Referências Bibliográficas |                                                   |    |

# Capítulo 1

# Grupos

#### 1.1 Relações entre conjuntos

**Definição 1.1.1** (Produto cartesiano). Sejam A e B conjuntos. O conjunto

$$A \times B = \{(a,b) \mid a \in A \in b \in B\}$$

é o produto cartesiano de A e B.

**Exemplo 1.1.1.** Se  $A = \{1, 2, 3\}$  e B = 3, 4, então

$$A \times B = \{(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)\}.$$

**Definição 1.1.2** (Relação). Uma relação entre dois conjuntos A e B é um subconjunto  $\mathcal{R} \subset A \times B$ . Lê-se  $(a,b) \in \mathcal{R}$  como "a está relacionado com b" e escreve-se  $a\mathcal{R}b$ .

**Exemplo 1.1.2** (Relação de igualdade). A realação =, chamada *relação de igualdade*, é definida sobre um conjunto S por

= é o subconjunto 
$$\{(x,x) \mid x \in S\} \subset S \times S$$
.

Observação 1.1.1. Sempre que uma relação for definida entre um conjunto S e ele mesmo, como no exemplo 1.1.2, diremos que esta é uma relação sobre S.

**Definição 1.1.3** (Função). Uma função  $\varphi$  que mapeia X em Y é uma relação entre X e Y com a propriedade de que cada  $x \in X$  só irá aparecer uma única vez, e exatamente uma, em um par ordenado  $(x,y) \in \varphi$ . Também chamamos  $\varphi$  de mapa ou mapeamento de X em Y. Escrevemos  $\varphi: X \longrightarrow Y$  e expressaremos  $(x,y) \in \varphi$  por  $\varphi(x) = y$ . O domínio de  $\varphi$  é o conjunto X e o conjunto Y é dito contradomínio de  $\varphi$ . Chama-se de alcance de  $\varphi$  o conjunto  $\varphi[X] = {\varphi(x) \mid x \in X}$ .

**Definição 1.1.4** (Função injetiva e sobrejetiva). Uma função  $\varphi: X \longrightarrow Y$  é injetiva se  $\varphi(x_1) = \varphi(x_2) \iff x_1 = x_2$ . Também,  $\varphi$  é dita sobrejetiva se o alcance de  $\varphi$  é Y. Se uma função é injetiva e sobrejetiva, então dizemos que a função é bijetiva.

#### 1.2 Lei de composição

**Definição 1.2.1** (Lei de composição). Uma lei de composição sobre um conjunto S é uma função (ou, uma operação binária)  $*: S \times S \longrightarrow S$ .

**Observação 1.2.1** (Notação de operação). Usaremos a notação \*(a,b) = a\*b, para simplificar a escrita de propriedades. Também, quando não houver ambiguidade, suprimiremos o simbolo da lei, fazendo a\*b = ab.

**Definição 1.2.2.** Para  $a, b, c \in S$ , uma lei de composição \* é dita

- Associativa, se (a \* b) \* c = a \* (b \* c);
- Comutativa, se a \* b = b \* a.

**Proposição 1.2.1.** Seja uma lei associativa dada sobre o conjunto S. Há uma única forma de definir, para todo inteiro n, um produto de n elementos  $a_1, \ldots, a_n \in S$  (diremos  $[a_1 \cdots a_n]$ ) com as seguintes propriedades:

- 1. o produto [a<sub>1</sub>] de um elemento é o próprio elemento;
- 2. o produto  $[a_1a_2]$  de dois elementos é dado pela lei de composição;
- 3. para todo inteiro  $1 \le i \le n$ ,  $[a_1 \cdots a_n] = [a_1 \cdots a_i][a_{i+1} \cdots a_n]$ .

Demonstração. A demonstração dessa proposição é feita por indução em n.

**Definição 1.2.3.** Dizemos que  $e \in S$  é *identidade* para uma lei de composição se ea = ae = a para todo  $a \in S$ .

Proposição 1.2.2. O elemento identidade é único.

Demonstração. Se e, e' são identidades, já que e é identidade, então ee' = e' e, como e' é uma identidade, ee' = e. Logo e = e', isto é, a identidade é única.

Observação 1.2.2. Usaremos  $\vec{1}$  para representar a identidade multiplicativa e  $\vec{0}$  para denotar a aditiva.

**Definição 1.2.4** (Elemento inverso). Seja uma lei de composição que possua uma identidade. Um elemento  $a \in S$  é chamado *invertível* se há um outro elemento  $b \in S$  tal que ab = ba = 1. Desde que b exista, ela é única e a denotaremos por  $a^{-1}$  e a chamaremos *inversa de a*.

**Proposição 1.2.3.** Se  $a, b \in S$  possuem inversa, então a composição  $(ab)^{-1} = b^{-1}a^{-1}$ .

Observação 1.2.3 (Potências). Usaremos as seguintes notações:

- $a^n = a^{n-1}a$  é a composição de  $a \cdots a$  n vezes;
- $a^{-n}$  é a inversa de  $a^n$ ;
- $a^0 = \vec{1}$ .

Com isso, tem-se que  $a^{r+s} = a^r a^s$  e  $(a^r)^s = a^{rs}$ . (Isso não induz uma notação de fração  $\frac{b}{a}$  a menos que seja uma lei comutativa, visto que  $ba^{-1}$  pode ser diferente de  $a^{-1}b$ ). Para falar de uma lei de composição aditiva, usaremos -a no lugar de  $a^{-1}$  e na no lugar de  $a^n$ .

#### 1.3 Grupos

**Definição 1.3.1** (Grupo). Um grupo (G, \*) é um conjunto G onde uma lei de composição \* é dada sobre G tal que os seguintes axiomas são satisfeitos:

1. (Associatividade). Para todo  $a, b, c \in G$ , tem-se

$$(a*b)*c = a*(b*c);$$

2. (Existência da identidade). Existe um elemento  $\vec{1} \in G$  tal que, para todo  $a \in G$ ,

$$\vec{1} * a = a * \vec{1} = a;$$

3. (Existência do inverso). Para todo  $a \in G$  existe um elemento  $a' \in G$  tal que

$$a * a' = a' * a = \vec{1}$$
.

**Observação 1.3.1.** É comum abusar da notação e chamar um grupo (G, \*) e o conjunto de seus elementos G pelo mesmo simbolo, omitindo a lei de composição na falta de ambiguidade.

**Definição 1.3.2** (Grupo abeliano). Um *grupo abeliano* é um grupo com uma lei de composição comutativa. Costuma-se usar a notação aditiva para grupos abelianos.

**Proposição 1.3.1** (Lei do cancelamento). Seja a, b, c elementos de um grupo G. Se ab = ac, então b = c.

### 1.4 Subgrupos

**Definição 1.4.1** (Subgrupo). Um subconjunto H de um grupo G é chamado de subgrupo de G (e escreve-se  $H \leq G$ ) se possuir as seguintes propriedades:

- 1. (Fechado). Se  $a, b \in H$ , então  $ab \in H$ ;
- 2. (Identidade).  $1 \in H$ ;
- 3. (Inversível). Se  $a \in H$ , então  $a^{-1} \in H$ .

Observação 1.4.1 (Lei de composição induzida). Veja que a propriedade 1 necessita de uma lei de composição. Usamos a lei de composição de G para definir uma lei de composição de H, chamada lei de composição induzida. Essas propriedades garantem que H é um grupo com respeito a sua lei induzida.

**Definição 1.4.2** (Subgrupo apropriado). Todo grupo G possui dois subgrupos triviais: O subgrupo formado por todos os elementos de G e o subgrupo  $\{\vec{1}\}$ , formado pela identidade de G. Diz-se que um subgrupo é um *subgrupo apropriado* se for diferente desses dois.

**Definição 1.4.3** (Centro de um grupo). O centro Z(G) de um grupo G é o conjunto de elementos que comutam com todo elemento de G:

$$Z(G) = \{z \in G \mid zx = xz \text{ para todo } x \in G\}.$$

**Exemplo 1.4.1.** Utilizando da notação multiplicativa, define-se o *subgrupo cíclico* H gerados por um elemento arbitrário x de um grupo G como o conjunto de todas as potências de x:  $H = \{\dots, x^{-2}, x^{-1}, \vec{1}, x, x^2, \dots\}$ .

**Definição 1.4.4.** Chama-se *ordem* de um grupo G o número |G| de elementos de G.

Também pode-se definir um subgrupo de um grupo G gerado por um subconjunto  $U \subset G$ . Esse é o menor subgrupo de G que contém U e consiste de todos os elementos de G que podem ser espressos como um produto de uma cadeia de elementos de U e seus inversos.

**Exemplo 1.4.2.** O grupo de quaternions H é o menor subgrupo do conjunto de matrizes  $2 \times 2$  complexas invertíveis que não é cíclico. Isso consiste nas oito matrizes

$$H = \{\pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\},\$$

onde

$$1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \mathbf{i} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \ \mathbf{j} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \ \mathbf{k} = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}.$$

Os dois elementos  $\mathbf{i}, \mathbf{j}$  geram H, e o calculo leva as formulas

$$\mathbf{i}^4 = 1$$
,  $\mathbf{i}^2 = \mathbf{j}^2$ ,  $\mathbf{j}\mathbf{i} = \mathbf{i}^3\mathbf{j}$ .

#### 1.5 Homomorfismos

**Definição 1.5.1** (Homomorfismo de grupo). Sejam (G, \*) e  $(G', \cdot)$  dois grupos. Um homomorfismo  $\varphi : G \longrightarrow G'$  é um mapeamento tal que

$$\varphi(a * b) = \varphi(a) \cdot \varphi(b), \ \forall \ a, b \in G.$$
 (propriedade de homomorfismo)

**Exemplo 1.5.1** (Inclusão). Seja H o subgrupo de um grupo G. O homomorfismo  $i: H \longrightarrow G$  é dito inclusão de H em G, definido por i(x) = x.

**Proposição 1.5.1.** Um homomorfismo  $\varphi: G \longrightarrow G'$  mapeia a identidade de G à identidade de G' e transforma as inversas de G nas respectivas inversas em G'. Isto  $\acute{e}, \varphi(\vec{1}) = \vec{1} \ e \ \varphi(a^{-1}) = \varphi(a)^{-1}$ .

Observação 1.5.1. Por conta da Proposição 1.5.1, dizemos que o mapeamento  $\varphi$  preserva a estrutura algébrica de grupo.

**Definição 1.5.2** (Imagem). A imagem de um homomorfismo  $\varphi: G \longrightarrow G'$  é o subconjunto de G'

im 
$$\varphi = \{x \in G' \mid x = \varphi(a), \text{ para algum } a \in G\} = \varphi(G).$$

**Proposição 1.5.2.** A imagem de um homomorfismo  $\varphi: G \longrightarrow G'$  é um subgrupo de G'.

**Definição 1.5.3** (Núcleo). O *núcleo* do homomorfismo  $\varphi: G \longrightarrow G'$  é o subconjunto de G formado pelos elementos que são mapeados pela identidade em G':

nu 
$$\varphi = \{ a \in G \mid \varphi(a) = \vec{1} \} = \varphi^{-1}(\vec{1}).$$

**Proposição 1.5.3.** O núcleo de um homomorfismo  $\varphi: G \longrightarrow G'$  é um subgrupo de G.

#### 1.6 Isomorfismos

**Definição 1.6.1** (Isomorfismo de grupos). Dois grupos (G, \*) e  $(G', \cdot)$  são ditos *isomorfos* se possuírem um homomorfismo bijetivo entre si, isto é, há um mapeamento bijetivo  $\varphi: G \longrightarrow G'$  (chamado relação de isomorfismo) que respeita a propriedade de homomorfismo:

$$\varphi(a * b) = \varphi(a) \cdot \varphi(b)$$
, para todo  $a, b \in G$ .

**Observação 1.6.1.** Usa-se a notação  $G \approx G'$  para dizer que G é isomorfo a G'.

**Definição 1.6.2** (Classe de isomorfismo). Diz-se que o conjunto de grupos isomórfos a um dado grupo G é a classe de isomorfismo de G.

Proposição 1.6.1. Qualquer dois grupos em uma mesma classe de isomorfismo também são isomorfos entre si.

**Definição 1.6.3** (Automorfismo). Quando uma relação de isomorfismo  $\varphi: G \longrightarrow G$  é definida de um grupo G para ele mesmo, chamamos esse tipo de isomorfismo de automorfismo de G.

**Exemplo 1.6.1** (Conjugação). Seja  $b \in G$  um elemento fixo. Então, a conjugação de G por b é o mapeamento  $\varphi$  de G para ele mesmo definido por

$$\varphi_b(x) = bxb^{-1}$$
.

Esse é um automorfismo porque:

• é compatível com a propriedade de homomorfismo:

$$\varphi_b(xy) = bxyb^{-1} = bx\vec{1}yb^{-1} = bxb^{-1}byb^{-1} = \varphi_b(x)\varphi_b(y);$$

• é um mapa bijetivo visto que existe a função inversa  $\varphi_b^{-1}(x) = b^{-1}xb = \varphi_{b^{-1}}(x)$  (isto é, a conjugação por  $b^{-1}$ ) que, de forma análoga, também é compatível com a propriedade de homomorfismo.

**Observação 1.6.2** (Abelianos). Se o grupo é abeliano possui a conjugação trivial:  $bab^{-1} = abb^{-1} = a$  (mapa identidade). Porém, qualquer grupo não comutativo tem alguma conjugação não trivial, isto é, existe ao menos um b que não está no centro do grupo, portanto, ao menos o automorfismo não trivial dado pela conjugação do grupo por b existe.

**Definição 1.6.4** (Conjugado). O elemento  $bab^{-1}$  é chamado conjugado de a por b. Dois elementos  $a, a' \in G$  são ditos conjugados se existe  $b \in G$  tal que  $a' = bab^{-1}$ .

**Observação 1.6.3.** O conjugado tem uma interpretação muito útil: Se escrevermos  $bab^{-1}$  como a', então

$$ba = a'b$$
.

Ou seja, pode-se pensar na conjugação como a mudança em a que resulta de mover b de um lado para o outro na equação.

**Proposição 1.6.2.** Seja  $\varphi: G \longrightarrow G'$  um homomorfismo. Se  $a \in \text{nu } \varphi$  e b é qualquer elemento do grupo G, então o conjugado  $bab^{-1} \in \text{nu } \varphi$ .

**Definição 1.6.5** (Subgrupo normal). Um subgrupo N de um grupo G é chamado subgrupo normal (escreve-se  $N \subseteq G$ ) se para cada  $a \in N$  e  $b \in G$ , o conjugado  $bab^{-1} \in N$ .

Observação 1.6.4. Fica claro que o núcleo de um homomorfismo é um subgrupo normal. Além disso, todo subgrupo de um grupo abeliano também é um subgrupo normal, porém, isso não é necessariamente verdade em subgrupos de grupos não abelianos (veja Observação 1.6.2).

Proposição 1.6.3. O centro de todo grupo é um subgrupo normal do grupo.

## 1.7 Grupos de Permutação

**Definição 1.7.1** (Permutação de um conjunto). Uma permutação de um conjunto A é uma função bijetiva  $\varphi: A \longrightarrow A$  do conjunto para ele mesmo.

Proposição 1.7.1 (Multiplicação de permutações). Seja A um conjunto onde duas permutações  $\tau, \sigma$  são dadas. A composição de funções  $\tau \circ \sigma$  (chamada multiplicação de permutações) é uma lei de composição sobre A.

**Proposição 1.7.2.** Sejam A um conjunto não vazio,  $S_A$  o conjunto de todas as permutações de A e  $\circ$  uma multiplicação de permutações sobre A. Então,  $(S_A, \circ)$  é um grupo.

**Definição 1.7.2** (Grupo simétrico sobre n símbolos). Seja A o conjunto finito  $\{1, 2, ..., n\}$ . O grupo de todas as permutações de A é um grupo simétrico sobre os n símbolos 1, 2, ..., n e é representado por  $S_n$ .

**Observação 1.7.1.** É importante perceber que  $S_n$  possui n! elementos, isso é, a quantidade de toda combinação de n elementos.

**Exemplo 1.7.1** (Grupos diedrais). O grupo  $S_3$  de 3! = 6 elementos forma um grupo de simetrias de um triangulo equilátero com vértices 1, 2 e 3. As 6 permutações que formam esse grupo são as 3 rotações e os 3 espelhamentos possíveis sobre os vértices do triangulo. Também chamamos  $S_3$  de  $D_3$ , pois  $D_3$  forma o terceiro grupo diedral. O n-ésimo grupo diedral  $D_n$  é o grupo de simetrias de um polígono regular de n vértices.

**Definição 1.7.3** (Restrição da imagem de uma função). Sejam  $f:A \to B$  uma função e H um subconjunto de A. A imagem de H por  $f \in \{f(h) \mid h \in H\}$  e é representada por  $f|_H$ .

**Lema 1.7.1.** Sejam G e G' grupos e  $\varphi : G \longrightarrow G'$  um homomorfismo injetivo. Então,  $\varphi|_G$  é um subgrupo de G' e  $\varphi$  provê um isomorfismo de G com  $\varphi|_G$ .

**Teorema 1.7.1** (Teorema de Cayley). Todo grupo é isomorfo a um grupo de permutações.

### 1.8 Relações de Equivalência e Partições

**Definição 1.8.1** (Partições). Seja S um conjunto. Uma particão P de S é uma subdivisão de S em subconjuntos não vazios e não sobrepostos, isto é, uma união de conjuntos disjuntos.

**Exemplo 1.8.1.** Pode-se particionar o conjunto dos números inteiros  $\mathbb{Z}$  na união de disjuntos  $P \cup I$ , onde  $P = \{z \in \mathbb{Z} \mid z \text{ é par}\} \in I = \{z \in \mathbb{Z} \mid z \text{ é impar}\}.$ 

**Definição 1.8.2** (Relações de equivalência). Uma relação de equivalência sobre um conjunto S é uma relação que se mantém sobre um subconjunto de elementos de S. Escreve-se  $a \sim b$  para representar a equivalência de  $a, b \in S$ , que precisa respeitar os seguintes axiomas:

- 1. (Transitiva). Se  $a \sim b$  e  $b \sim c$ , então  $a \sim c$ ;
- 2. (Simétrica). Se  $a \sim b$ , então  $b \sim a$ ;
- 3. (Reflexiva).  $a \sim a$ .

**Observação 1.8.1.** A noção de partição em S e a relação de equivalência em S são lógicamente equivalentes: Dada uma partição P sobre S, pode-se definir uma relação de equivalência R tal que, se a e b estão no mesmo subconjunto partição, então  $a \sim b$  e, dada uma relação de equivalência R, podemos definir uma partição P tal que o subconjunto que contêm a é o conjunto de todos os elementos b onde  $a \sim b$ . Esse subconjunto é chamado de classe de equivalência de a

$$C_a = \{b \in S \mid a \sim b\}$$

e S é particionado em classes de equivalência.

**Proposição 1.8.1.** Sejam  $C_a$  e  $C_b$  duas classes de equivalência do conjunto S. Se existe d tal que  $d \in C_a$  e  $d \in C_b$ , então  $C_a = C_b$ .

Observação 1.8.2 (Representante). Seja um conjunto S. Suponha que exista uma relação de equivalência ou uma partição sobre S. Então, pode-se construir um novo conjunto  $\bar{S}$  formado pelas classes de equivalência ou os subconjuntos partições de S. Essa construção induz uma notação muito útil: para  $a \in S$ , a classe de equivalência de a ou o subconjunto partição que contém a serão denotados como o elemento  $\bar{a} \in \bar{S}$ . Desta forma, a notação  $\bar{a} = \bar{b}$  significa que  $a \sim b$  e chamamos  $a, b \in S$  de representantes das respectivas classes de equivalência  $\bar{a}, \bar{b} \in \bar{S}$ .

**Definição 1.8.3.** Seja um mapeamento  $\varphi: S \longrightarrow T$ . Chama-se de relação de equivalência determinada por  $\varphi$  a relação dada por  $\varphi(a) = \varphi(b) \Rightarrow a \sim b$ . Além disso, para um elemento  $t \in T$ , o subconjunto de  $\varphi^{-1}(t) = \{s \in S \mid \varphi(s) = t\}$  é dito imagem inversa de t por  $\varphi$ .

**Proposição 1.8.2.** Seja um mapeamento  $\varphi: S \longrightarrow T$  e  $t \in T$  um elemento qualquer de T. Se a imagem inversa  $\varphi^{-1}(t)$  é não vazia, então  $t \in \text{im } \varphi$  e  $\varphi^{-1}(t)$  forma uma classe de equivalência  $\bar{\varphi} \in \bar{S}$  através da relação determinada por  $\varphi$ .

**Definição 1.8.4** (Congruência). Seja  $\varphi: G \longrightarrow G'$  um homomorfismo. A relação de equivalência definida por  $\varphi$  é usualmente denotada por  $\Xi$  ao invés de  $\sim$  e a chamamos de congruência:

$$\varphi(a) = \varphi(b) \implies a \equiv b, \text{ para } a, b \in G.$$

**Proposição 1.8.3.** Seja  $\varphi: G \longrightarrow G'$  um homomorfismo e  $a,b \in G$ . Então as seguintes afirmações são equivalentes:

- $\varphi(a) = \varphi(b)$
- b = an, para algum  $n \in nu \varphi$
- $a^{-1}b \in nu \varphi$ .

**Definição 1.8.5** (classe lateral em relação ao núcleo). Seja  $\varphi: G \longrightarrow G'$  um homomorfismo,  $a \in G$  e  $n \in \text{nu } \varphi$ . O conjunto

$$a$$
nu  $\varphi$  =  $\{g \in G \mid g = an, \, \text{para algum} \ n \in \text{nu} \ \varphi\}$ 

é dito classe lateral de nu  $\varphi$  em G.

Observação 1.8.3. Pode-se particionar o grupo G em classes de congruência, formadas pelas classes laterais a nu  $\varphi$ . Estas são imagens inversas do mapeamento  $\varphi$ .

**Proposição 1.8.4.** O homomorfismo de grupo  $\varphi: G \longrightarrow G'$  é injetivo se, e somente se, seu núcleo é o subgrupo trivial  $\{\vec{1}\}$ .

**Observação 1.8.4.** Esse resultado da uma forma de verificar se um homomorfismo  $\varphi$  é também um isomorfismo: Se nu  $\varphi = \{1\}$  e im  $\varphi = G'$ , então  $\varphi$  é, pelos respectivos motivos, injetiva e sobrejetiva. Então é um isomorfismo.

#### 1.9 Orbitas, ciclos e grupos alternados

**Definição 1.9.1** (Órbita). Seja  $\sigma$  uma permutação de um conjunto A. Chamamos de *órbitas de*  $\sigma$  a classe de equivalência em A determinada pela relação de equivalência  $\sim$ :

para 
$$a, b \in A$$
,  $a \sim b \iff b = \sigma^n(a)$ , para algum  $n \in \mathbb{Z}$ .

**Observação 1.9.1.** A relação apresentada na Definição 1.9.1 é, de fato, uma relação de equivalência. Como segue:

- é reflexiva, já que  $a = \sigma^0(a) \implies a \sim a$ ;
- é simétrica pois, se  $a \sim b \implies \exists n \in \mathbb{Z} \text{ tal que } b = \sigma^n(a), \text{ então } a = \sigma^{-n}(b).$ Como  $-n \in \mathbb{Z}$ , então  $b \sim a$ ;
- é transitiva, visto que  $a \sim b \implies b = \sigma^n(a)$  e  $b \sim c \implies c = \sigma^m(b)$ , para algum  $n, m \in \mathbb{Z}$ , então  $c = \sigma^m(\sigma^n(a)) = \sigma^{m+n}(a) \implies a \sim c$ .

**Exemplo 1.9.1** (Örbita trivial). Já que a permutação identidade i de A leva cada elemento de A para a mesma posição, as órbitas de i são os subconjuntos de apenas um elemento de A.

**Definição 1.9.2** (Ciclo). Uma permutação  $\sigma \in S_n$  é um *ciclo* se possuir no máximo uma órbita contendo mais que um elemento. O *comprimento* de um ciclo é o número de elementos de sua maior órbita.

Exemplo 1.9.2. Seja a permutação

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \downarrow & \downarrow \\ 3 & 2 & 6 & 4 & 5 & 1 & 7 & 8 \end{pmatrix}$$

Como a órbita (1,3,6) é a única que contém mais de um elemento, essa permutação sobre o conjunto  $\{1,2,3,4,5,6,7,8\}$  é um ciclo de comprimento 3.

Observação 1.9.2 (Notação de ciclos). Podemos representar um ciclo com a notação de uma única linha, da forma

$$\mu = (1, 3, 6),$$

indicando apenas os elementos da maior órbita do ciclo. Perceba que as demais órbitas não precisam ser representadas pois serão os índices fixos da permutação.

**Exemplo 1.9.3** (Produto de ciclos). Pode-se construir uma permutação como um multiplicação de ciclos (veja a definição 1.7.1). Por exemplo,

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \downarrow & \downarrow \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{pmatrix} = (1,3,6)(2,8)(4,7,5).$$

**Proposição 1.9.1.** Toda permutação  $\sigma$  de um conjunto finito é um produto de ciclos disjuntos.

**Definição 1.9.3** (Transposição). Um ciclo de comprimento 2 é uma transposição.

Corolário 1.9.1. Qualquer permutação de um conjunto finito de pelo menos dois elementos é um produto de transposições.

**Definição 1.9.4** (Permutações pares e impares). Uma permutação de um conjunto finito é *par* ou *impar* se pode ser expressa, respectivamente, por um número par ou impar de produtos de transposições.

**Proposição 1.9.2.** Uma permutação em  $S_n$  pode ser expressa como um produto de um número impar de transposições se e somente se não puder ser expressa como um número par de transposições e vice-versa.

**Proposição 1.9.3.** Seja o grupo simétrico  $S_n$  com  $n \ge 2$ . Então, a coleção de todas as permutações impares de  $\{1, 2, ..., n\}$  forma um subgrupo de  $S_n$  de ordem  $\frac{n!}{2}$ .

**Definição 1.9.5** (Grupo alternado). O subgrupo de  $S_n$  formado pelas permutações impares de n símbolos é chamado grupo alternado  $A_n$ .

**Observação 1.9.3.** Os grupos  $S_n$  e  $A_n$  são muito importantes. O teorema de Cayley mostra que todo grupo finito G é estruturalmente idêntico a algum subgrupo de  $S_n$ , para n = |G|. Pode-se mostrar que não há formulas envolvendo apenas radicais para solucionar uma equação polinomial de grau  $n \ge 5$ . Por mais que isso não seja óbvio, esse fato se deve, na verdade, a estrutura de  $A_n$ .

#### 1.10 Classe lateral

Definimos classe lateral somente em relação ao núcleo de um homomorfismo mas, na verdade, pode-se definir uma classe lateral para qualquer subgrupo H de um grupo G.

**Definição 1.10.1** (classe lateral a esquerda). Seja um subgrupo H de um grupo G. O subconjunto da forma

$$aH = \{ah \mid h \in H\}$$

é dito classe lateral a esquerda de H em G.

Proposição 1.10.1. A classe lateral é uma classe de equivalência para a relação de congruência

$$b = ah \Rightarrow a \equiv b$$
, para algum  $h \in H$ .

Observação 1.10.1. Daí segue que, como classes de equivalência particionam um grupo, classes laterais a esquerda de um subgrupo particionam o grupo.

**Definição 1.10.2** (Índice de um subgrupo). O número de classes laterais a esquerda de um subgrupo H em um grupo G chama-se *índice de H em G* e é denotado como [G:H].

**Observação 1.10.2.** Como há uma bijeção do subgrupo H para a classe lateral aH, a cardinalidade de aH tem de ser a mesma de H. Isto é, as classes laterais de H particionam G em partes de mesma ordem.

**Proposição 1.10.2.** Seja aH a classe lateral do subgrupo H no grupo G. Então, a ordem |G| do grupo G é dada por

$$|G| = |H|[G:H].$$

**Proposição 1.10.3** (Teorema de Lagrange). Seja G um grupo finito e H um subgrupo de G. A ordem de H divide a ordem de G.

**Definição 1.10.3** (Ordem de um elemento). Seja G um grupo. A ordem de um elemento  $a \in G$  é a ordem do grupo cíclico gerado por a.

**Proposição 1.10.4.** Seja um grupo G com p elementos tal que p é primo e  $a \in G$  diferente da identidade. Então G é o grupo cíclico  $\{1, a, \ldots, a^{p-1}\}$  gerado por a.

Observação 1.10.3. Também podemos obter uma expressão para calcular a ordem de um grupo de homomorfismo. Seja  $\varphi: G \longrightarrow G'$  um homomorfismo. Como as classes laterais a esquerda do núcleo de  $\varphi$  são as imagens inversas  $\varphi^{-1}$ , elas estão em uma correspondência biunívoca com a imagem. Daí segue que

$$[G: \text{nu } \varphi] = |\text{im } \varphi|.$$

**Proposição 1.10.5.** Seja  $\varphi: G \longrightarrow G'$  um homomorfismo onde G e G' são finitos. Então

$$|G| = |nu \varphi| \cdot |im \varphi|.$$

Definição 1.10.4 (classes laterais a direita). Os conjuntos da forma

$$Ha = \{ha \mid h \in H\}$$

chamam-se classes laterais a direita de um subgrupo H. Esses são classes de equivalência para a relação de congruência a direita

$$b = ha \Rightarrow a \equiv b$$
, para algum  $h \in H$ .

**Proposição 1.10.6.** Seja um subgrupo H de um grupo G. As seguintes afirmações são equivalentes:

- H é subgrupo normal,
- $aH = Ha \ para \ todo \ a \in G$ .

## 1.11 Restrição de um homomorfismo para um subgrupo

Observação 1.11.1. O objetivo dessa seção é apresentar ferramentas para analisar um subgrupo H do grupo G a fim de garantir propriedades do grupo G. No geral, os subgrupos são mais específicos e menos complexos de se trabalhar.

**Proposição 1.11.1.** Sejam K e H dois subgrupos do grupo G tal que a interseção  $K \cap H$  é um subgrupo de H. Se K é um subgrupo normal de G, então  $K \cap H$  é um subgrupo normal de H.

**Exemplo 1.11.1.** Com esse resultado, se G é finito pode-se utilizar o Teorema de Lagrange para obter informações sobre a interseção dos dois subgrupos: a interseção divide |H| e |K|. Se |H| e |K| não tem o mesmo fator de divisão, então  $K \cap H = \{1\}$ .

**Definição 1.11.1** (Restrição de um homomorfismo para um subgrupo). Sejam o homomorfismo  $\varphi: G \longrightarrow G'$  e H um subgrupo de G. Uma restrição de  $\varphi$  para o subgrupo H é o homomorfismo  $\varphi|_H: H \longrightarrow G'$  definido como

$$\varphi|_H(h) = \varphi(h)$$
, para todo  $h \in H$ .

**Proposição 1.11.2.** Sejam o homomorfismo  $\varphi: G \longrightarrow G'$  e H um subgrupo de G. O núcleo de uma restrição  $\varphi|_H$  é a interseção do núcleo de  $\varphi$  e H.

**Proposição 1.11.3.** Sejam  $\varphi: G \longrightarrow G'$  um homomorfismo, H' um subgrupo de G' e  $\varphi^{-1}(H') = \{x \in G \mid \varphi(x) \in H'\}$  a imagem inversa de H'. Então

- $\varphi^{-1}(H')$  é um subgrupo de G.
- Se H' é um subgrupo normal de G', então  $\varphi^{-1}(H')$  é um subgrupo normal de G.
- $\varphi^{-1}(H')$  contém o núcleo de  $\varphi$
- A restrição de  $\varphi$  para  $\varphi^{-1}(H')$  define um homomorfismo  $\varphi^{-1}(H') \longrightarrow H'$ , de forma que o núcleo desse homomorfismo é o núcleo de  $\varphi$ .

#### 1.12 Produto de Grupos

**Definição 1.12.1** (Produto de grupos). Seja G, G' dois grupos. O produto  $G \times G'$  é um grupo formado pelo produto das componentes dos grupos G e G', isso é, pela regra

$$(a,a'),(b,b') \rightsquigarrow (ab,a'b'),$$

onde  $a, b \in G$  e  $a', b' \in G'$ . O par (1,1) é uma identidade e  $(a, a')^{-1} = (a^{-1}, a'^{-1})$ . A propriedade associativa é preservada em  $G \times G'$  pois também é em  $G \in G'$ .

**Proposição 1.12.1.** A ordem de  $G \times G'$  é o produto das ordens de G e G'.

**Observação 1.12.1** (Projeções). O produto de grupos é composto pelos homomorfismos:

$$i:G\longrightarrow G\times G',\quad i':G'\longrightarrow G\times G',\quad p:G\times G'\longrightarrow G,\quad p':G\times G'\longrightarrow G',$$

definidos como

$$i(x) = (x, 1), \quad i'(x') = (1, x'), \quad p(x, x') = x, \quad p'(x, x') = x'.$$

Os mapeamentos i, i' são injetivos, já os mapeamentos p, p' são sobrejetivos, onde nu  $p = 1 \times G'$  e nu  $p' = G \times 1$ . Esses mapeamentos são chamados de projeções. Desde que são núcleos,  $G \times 1$  e  $1 \times G'$  são subgrupos normais de  $G \times G'$ .

**Proposição 1.12.2** (Propriedades de Mapeamento dos Produtos). Seja H um grupo qualquer. O homomorfismo  $\Phi: H \longrightarrow G \times G'$  tem correspondência biunívoca com o par  $(\varphi, \varphi')$  de homomorfismos

$$\varphi: H \longrightarrow G, \quad \varphi': H \longrightarrow G'.$$

O núcleo de  $\Phi$  é a interseção (nu  $\phi$ )  $\cap$  ( nu  $\phi'$ ).

**Observação 1.12.2.** É extremamente desejável encontrar uma relação isomorfa entre um grupo G e um produto de outros dois grupos  $H \times H'$ . Quando isso acontece, e infelizmente não são muitas as vezes, trabalhar com os grupos H e H' costumam ser mais simples que G.

**Proposição 1.12.3.** Sejam  $r, s \in \mathbb{Z}$  não divisíveis entre si. Um grupo cíclico de ordem rs é isomorfo ao produto dos grupos cíclicos de ordem r e s.

Observação 1.12.3. Em contrapartida, um grupo cíclico de ordem par 4, por exemplo, não é isomorfo ao produto de dois grupos cíclicos de ordem 2. Também não podemos afirmar nada com base no resultado anterior sobre grupos não cíclicos.

**Definição 1.12.2** (Conjunto de produtos). Sejam dois subgrupos A, B de um grupo G. Chamamos o conjunto de produtos de de elementos de A e B por

$$AB = \{x \in G \mid x = ab \text{ para algum } a \in A \text{ e } b \in B\}.$$

Proposição 1.12.4. Sejam H e K os subgrupos de um grupo G.

- Se  $H \cap K = \{1\}$ , o mapeamento de produto  $p: H \times K \longrightarrow G$  definido por p(h,k) = hk é injetivo e sua imagem é o subconjunto HK;
- Se um dos subgrupos H ou K é um subgrupo normal de G, então os conjuntos de produtos HK e KH são iguais e HK é subgrupo de G;
- Se ambos H e K são subgrupos normais,  $H \cap K = \{1\}$  e HK = G, então G é isomorfo ao grupo de produto  $H \times K$ .

#### 1.13 Aritmética Modular

**Definição 1.13.1** (Congruente modulo n). Seja  $n \in \mathbb{N}$ . Dizemos que dois inteiros a, b são congruentes modulo n, e escrevemos

$$a \equiv b \pmod{n}$$
,

se n divide b-a, ou se b=a+nk para algum inteiro k. Chamamos as classes de equivalência definidas por essa relação de classes de equivalência módulo n, ou classes de resíduo módulo n.

**Exemplo 1.13.1.** A classe de congruência de 0 é o subgrupo  $\bar{0}$  de todos os múltiplos de n

$$\bar{0} = n\mathbb{Z} = \{\dots, -n, 0, n, 2n, \dots\}.$$

**Proposição 1.13.1.** Há n classes de congruência módulo n (denotamos esse conjunto por  $\mathbb{Z}/n\mathbb{Z}$ ), isto é, o índice  $[\mathbb{Z}:n\mathbb{Z}]$  é n. São elas

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}.$$

**Definição 1.13.2** (Soma e produto). Seja  $\bar{a}$  e  $\bar{b}$  as classes de congruência representadas pelos inteiros a e b. Define-se a soma como a classe de congruência de a + b e o produto pela classe de congruência ab, isto é,

$$\bar{a} + \bar{b} = \overline{a+b}$$
 e  $\bar{a}\bar{b} = \overline{ab}$ .

**Proposição 1.13.2.** Se  $a' \equiv b' \pmod{n}$  e  $b' \equiv b \pmod{n}$ , então  $a' + b' \equiv a + b \pmod{n}$  e  $a'b' \equiv ab \pmod{n}$ .

Observação 1.13.1. Além disso, a soma e produto também continuam respeitando as propriedades associativas, comutativas e distributivas, desde que o mesmo se mantém para soma e multiplicação de inteiros.

Exemplo 1.13.2. Seja n = 13, então

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{12}\}.$$

Com isso,

$$(\bar{7} + \bar{9})(\bar{11} + \bar{6}) = \bar{3} \cdot \bar{4} = \bar{12}.$$

# 1.14 Estrutura de grupos abelianos finitamente gerados

**Teorema 1.14.1** (Teorema fundamental dos grupos abelianos finitamente gerados). Todo grupo abeliano finitamente gerado G é isomorfo a um produto de grupos cíclicos na forma

$$\mathbb{Z}_{(p_1)^{r_1}} \times \mathbb{Z}_{(p_2)^{r_2}} \times \cdots \times \mathbb{Z}_{(p_n)^{r_n}} \times \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$$

onde os  $p_i$  são primos, não necessariamente distintos, e os  $r_i$  são inteiros positivos. O produto é único, exceto por possíveis rearranjos dos fatores; isso é, o número (chamado número Betti de G) de fatores  $\mathbb{Z}$  é único e as potências de primos  $(p_i)^{r_i}$  são únicas.

**Exemplo 1.14.1.** Queremos encontrar todos os grupos abelianos de ordem 360, a menos de isomorfismos. Dizer a menos de isomorfismo significa que qualquer grupo abeliano de ordem 360 deve ser estruturalmente idêntico — isto é, isomorfo — a um

Solução. Já qe nossos grupos são da ordem finita 360, não aparecerão  $\mathbb{Z}$  no produto. Primeiro, vamos expressar 360 como um produto de potências de primos: 360 =  $2^33^25$ . Então, pelo Teorema 1.14.1, temos as seguintes possibilidades

- 1.  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$
- 2.  $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$
- 3.  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_9 \times \mathbb{Z}_5$
- 4.  $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_5$
- 5.  $\mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$
- 6.  $\mathbb{Z}_8 \times \mathbb{Z}_9 \times \mathbb{Z}_5$

Então, esses são os seis diferentes grupos abelianos (a menos de isomorfismos) de ordem 360.  $\triangle$ 

**Definição 1.14.1** (Grupo redutível e irredutível). Um grupo é dito *redutível* se ele é isomorfo a um produto direto de dois subgrupos não triviais. Do contrário, é dito *irredutível*.

Proposição 1.14.1. Os grupos abelianos finitos irredutíveis são exatamente os grupos cíclicos que possuem a ordem de uma potência prima.

**Proposição 1.14.2.** Se m divide a ordem de um grupo abeliano finito G, então G tem um subgrupo de ordem m.

Proposição 1.14.3. Se m é um quadrado inteiro livre, isto é, m não é divisível por nenhum quadrado de primo, então todo grupo abeliano de ordem m é cíclico.

#### 1.15 Grupos de Quociente

**Proposição 1.15.1.** Seja N um subgrupo normal de um grupo G. Então, o produto de duas classes laterais aN, bN também é uma classe lateral

$$(aN)(bN) = abN.$$

**Definição 1.15.1** (Produto de coclases). Sejam as classes laterais  $C_1$ ,  $C_2$  e os elementos  $a \in C_1$  e  $b \in C_2$ , então  $C_1 = aN$  e  $C_2 = bN$ . Chamamos de produto das classes laterais  $C_1$  e  $C_2$  a classe lateral  $C_1C_2 = abN$ , isto é, a classe lateral que contém ab.

**Observação 1.15.1** (Notação para conjunto de classes laterais). É conveniente denotar o conjunto de classes laterais de um subconjunto normal N de um grupo G pela simbologia

G/N = conjunto de classes laterais de N em G.

Também pode-se usar a notação em barra  $G/N = \bar{G}$  e  $aN = \bar{a}$ , tomando o cuidado para diferenciar que  $\bar{a}$  denota a classe lateral que contém a.

**Proposição 1.15.2.** Seja o mapeamento  $\pi: G \longrightarrow \bar{G} = G/N$ , da forma  $a \leadsto \bar{a} = aN$ , isto é,  $\bar{G}$  é um grupo e o mapeamento  $\pi$  é um homomorfismo com núcleo N. Então a ordem de G/N é o índice [G:N].

**Proposição 1.15.3.** Todo subgrupo normal de um grupo G é o núcleo de um homomorfismo.

**Proposição 1.15.4.** Sejam G um grupo e S um conjunto qualquer com uma lei de composição. Seja também  $\varphi: G \longrightarrow S$  um mapeamento sobrejetivo tal que  $\varphi(a)\varphi(b) = \varphi(ab)$  para todo  $a, b \in G$ . Então S é um grupo.

Proposição (Primeiro teorema do isomorfismo): Sejam  $\varphi: G \longrightarrow G'$  um homomorfismo de grupo sobrejetivo e N o núcleo de  $\varphi$ . Então G/N é isomórfico a G' pelo mapeamento  $\bar{\varphi}$  que transporta a classe lateral  $\bar{a} = aN$  para  $\varphi(a)$ :

$$\bar{\varphi}(\bar{a}) = \varphi(a).$$

Esse é o método fundamental para identificar grupos de quocientes.

# Referências Bibliográficas