Tugas Aljabar I

Teosofi Hidayah Agung 5002221132

1. Misalkan $G=\{a+b\sqrt{2}i\,|\,a,b\in\mathbb{Q}\}$. Tunjukkan bahwa G adalah subgrup dari $\mathbb R$ terhadap operasi penjumlahan.

Jawab:

Dapat dilihat bahwa $a+b\sqrt{2}i\notin\mathbb{R}$ yang akibatnya $G\not\subset\mathbb{R}.$

- $\therefore G$ bukan subgrup dari \mathbb{R}
- 2. Misalkan $G=\{n+mi\mid m,n\in\mathbb{Z},\ i^2=-1\}$. Tunjukkan bahwa G adalah subgrup dari $\mathbb C$ terhadap operasi penjumlahan.

Jawab:

Perhatikan bahwa pada $m,n\in\mathbb{Z}$ pada G, Sedangkan pada \mathbb{C} didefinisikan $m,n\in\mathbb{R}$. Dari informasi yang sudah diketahui bahwa $\mathbb{Z}\subset\mathbb{R}$, Sehingga dapat disimpulkan bahwa $G\subset\mathbb{C}$.

Seperti yang sudah diketahui juga bahwa himpunan bilangan kompleks \mathbb{C} merupakan grup terhadap operasi penjumlahan. Sekarang akan dibuktikan bahwa G memenuhi definisi grup.

(1) Sifat **tertutup**.

Ambil sembarang $z=n+mi\in G$ yaitu $z_1=n_1+m_1i\in G$ dan $z_2=n_2+m_2i\in G,$ maka

$$z_1 + z_2 = (n_1 + m_1 i) + (n_2 + m_2 i)$$

= $n_1 + n_2 + m_1 i + m_2 i$
= $(n_1 + n_2) + (m_1 + m_2) i \in G$

Jadi G bersifat tertutup.

(2) Sifat asosiatif.

Asosiatif diwariskan dari $\mathbb C$ yang merupakan grup.

(3) Eksistensi identitas

Terdapat identitas $e \in G$ yaitu $\theta = 0 + 0i \in G$, sedemikian sehingga $\forall z \in G$ memenuhi $z + \theta = \theta + z = z$. Bukti

$$z + \theta = (n + mi) + (0 + 0i)$$
$$= (n + 0) + (m + 0)i$$
$$= n + mi = z \quad \text{(Identitas kanan)}$$

$$\theta + z = (0 + 0i) + (n + mi)$$

= $(0 + n) + (0 + m)i$
= $n + mi = z$ (Identitas kiri)

Jadi θ adalah elemen identitas dari G

(4) Eksistensi **invers**

Untuk setiap $z \in G$ terdapat $-z \in G$ yang saling invers. Bukti:

$$z + (-z) = (n + mi) + (-n - mi)$$

$$= (n + (-n)) + (m + (-m))i$$

$$= 0 + 0i = \theta \quad (\textbf{Invers kanan})$$

$$(-z) + z = (-n - mi) + (n + mi)$$

$$= ((-n) + n) + ((-m) + m)i$$

$$= 0 + 0i = \theta \quad (\textbf{Invers kiri})$$

Jadi $\forall z \in G$ memiliki invers yaitu $-z \in G$.

 $\therefore G$ merupakan subgrup dari $\mathbb{C},$ karen
a $G\subset \mathbb{C}$ dan Gmemenuhi definisi sebagai grup.

3. Dalam $SL(3,\mathbb{R})$, untuk sebarang $a,b\in\mathbb{R}$, misalkan

$$D(a,b,c) = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$

Tunjukkan bahwa $H=\{D(a,b,c)\mid a,b,c\in\mathbb{R}\}$ adalah subgrup dari $SL(3,\mathbb{R}).$

Jawab:

Perhatikan bahwa $M \in H$ merupakan matriks segitiga atas, yang dimana determinannya diperoleh dari mengalikan semua elemen diagonal utamanya. Sehingga untuk setiap $M \in H$ berakibat $\det(M) = 1 \cdot 1 \cdot 1 = 1$. Jadi $H \subseteq SL(3, \mathbb{R})$.

Selanjutnya ambil sembarang $A, B \in H$ dan akan dibuktikan $AB^{-1} \in H$. Cek determinan matriks AB^{-1} :

$$\begin{split} \det(AB^{-1}) &= \det(A) \cdot \det(B^{-1}) \\ &= \det(A) \cdot \frac{1}{\det(B)} \quad (\textbf{Sifat Determinan}) \\ &= 1 \cdot \frac{1}{1} = 1 \end{split}$$

Dapat disimpulkan bahwa $AB^{-1} \in H$.

 $\therefore H$ merupakan subgrup dari $SL(3,\mathbb{R})$.

4. Tunjukkan bahwa bila H dan K adalah subgrup dari G, maka $H \cap K$ adalah subgrup dari G.

Jawab:

Diketahui bahwa $H\subseteq G$ dan $K\subseteq G$. H dan K bersama-sama subgrup dari G yang berarti memiliki elemen identitas yang sama anggap saja e. Perhatikan bahwa

$$H\cap K\subseteq H\subseteq G \\ H\cap K\subseteq K\subseteq G \\ H\cap K\subseteq G$$

Selanjutnya perhatikan bahwa $H\cap K\neq\varnothing$, sebab $H\cap K$ sedikitnya memiliki satu anggota yaitu e.

Anggota $H \cap K$ lebih dari satu anggota bila dan hanya bila $\forall x, x^{-1} \in H$ dan $\forall x, x^{-1} \in K$, yang dimana berakibat $\forall x, x^{-1} \in H \cap K$.

 $\therefore H\cap K$ juga merupakan subgrup dari G.