Using an SGFEM Surrogate to Accelerate Bayesian Inverse Uncertainty Quantification

James Rynn

with Simon Cotter, Catherine Powell (University of Manchester) & Louise Wright (National Physical Laboratory)

SIAM UQ 2018, Los Angeles james.rynn@manchester.ac.uk

16/04/18

Overview

Bayesian Inverse Problems

Industrial Example

Standard FEM Approach

Stochastic Galerkin FEM Approach

- V. Hoang, C. Schwab, and A. Stuart, *Complexity Analysis of Accelerated MCMC Methods for Bayesian Inversion*, Inverse Problems, 29 (2013), p. 085010.
- Y. MARZOUK AND H. NAJM, Dimensionality Reduction and Polynomial Chaos Acceleration of Bayesian Inference in Inverse Problems, Journal of Computational Physics, 228 (2009), pp. 1862–1902.
- Y. Marzouk, H. Najm, and L. Rahn, Stochastic Spectral Methods for Efficient Bayesian Solution of Inverse Problems, Journal of Computational Physics, 224 (2007), pp. 560–586.
- F. Nobile and R. Tempone, Analysis and Implementation Issues for the Numerical Approximation of Parabolic Equations with Random Coefficients, International Journal for Numerical Methods in Engineering, 80 (2009), pp. 979–1006.

Bayesian Inverse Problems

Find the unknown θ given n_z observations z, satisfying

$$z = \mathcal{G}(\theta) + \eta, \quad \eta \sim \mathcal{N}(0, \Sigma),$$

where

- ▶ $z \in \mathbb{R}^{n_z}$ is a given vector of **observations**,
- ▶ \mathcal{G} : $\Theta \to \mathbb{R}^{n_z}$ is the **observation operator**,
- ▶ $\theta \in \Theta$ is the unknown.
- ▶ $\eta \in \mathbb{R}^{n_z}$ is a vector of **observational noise**.

Goal: Efficiently estimate the posterior density $\pi(\theta|z)$ for the unknowns θ given the data z.

Bayes' Theorem

In the finite-dimensional case, from Bayes' Theorem we have

$$\begin{split} \pi(\theta|z) &\propto \textit{L}(z|\theta) \ \pi_0(\theta) \\ &\propto \exp\left(-\frac{1}{2}\|z-\mathcal{G}(\theta)\|_{\Sigma}^2\right) \ \pi_0(\theta). \end{split}$$

Markov Chain Monte Carlo (MCMC) Methods

- We know $\pi(\theta|z)$ up to a constant of proportionality.
- ▶ Use MCMC algorithm to generates samples $\theta_1, \theta_2, \dots, \theta_M$ from the posterior distribution.
- Use these samples to construct Monte Carlo estimates of quantities of interest (means, variances and/or probabilities),
- ▶ e.g.

$$\mathbb{E}_{\pi}[\phi] = \int_{\Theta} \phi(\theta) \pi(\theta|z) d\theta \approx \frac{1}{M} \sum_{i=1}^{M} \phi(\theta_i).$$

Industrial Example

Industrial Example

Industrial Example

Possible unknowns:

- λ thermal conductivity,
- ► I laser intensity,
- $ightharpoonup \kappa$ boundary condition parameter,
- $\triangleright \sigma$ standard deviation of measurement noise.

PDE Forward Problem

$$\begin{split} \rho c_{\mathsf{p}} \partial_t u(\boldsymbol{x},t) - \nabla \cdot (\boldsymbol{\lambda} \nabla u(\boldsymbol{x},t)) &= Q(\boldsymbol{x},t), \quad (\boldsymbol{x},t) \in D \times [0,T], \\ \text{where } Q(\boldsymbol{x},t) &= \boldsymbol{I} \cdot 1_{\{D_Q \times [0,t_{\mathsf{f}}]\}}(\boldsymbol{x},t), \\ u(\boldsymbol{x},0) &= T_{\mathsf{a}}, & \boldsymbol{x} \in \overline{D}, \\ \boldsymbol{\lambda} \frac{\partial u}{\partial n}(\boldsymbol{x},t) &= 0, & (\boldsymbol{x},t) \in \partial D_1 \times [0,T], \\ \boldsymbol{\lambda} \frac{\partial u}{\partial n}(\boldsymbol{x},t) &= \kappa \left(T_{\mathsf{a}} - u(\boldsymbol{x},t)\right), & (\boldsymbol{x},t) \in \partial D_2 \times [0,T]. \end{split}$$

Goal: Find posterior density $\pi(\theta|z)$ for the unknowns $\theta := (\lambda, I)$, given observations z of the average (top) surface temperature \bar{u} at the measurement times $t_1, t_2, \ldots, t_{n_z}$.

Physical Domain, D

Observation Operator

Here, our observation operator ${\cal G}$ is of the form

$$\mathcal{G}(\boldsymbol{\theta}) = (\bar{u}(t_1; \boldsymbol{\theta}), \bar{u}(t_2; \boldsymbol{\theta}), \dots, \bar{u}(t_{n_z}; \boldsymbol{\theta}))^{\top},$$

and approximated by $\mathcal{G}_{h\tau}$ given by

$$\mathcal{G}_{h\tau}(\boldsymbol{\theta}) = (\bar{u}_{h\tau}(t_1;\boldsymbol{\theta}), \bar{u}_{h\tau}(t_2;\boldsymbol{\theta}), \dots, \bar{u}_{h\tau}(t_{n_z};\boldsymbol{\theta}))^{\top},$$

where

$$\bar{u}(t; \theta) := \frac{1}{\pi L^2} \int_{D_t} u(\cdot, t; \theta) dA,$$

is the average temperature over surface D_L at time t.

Note: For each value of θ , to evaluate $\mathcal{G}_{h\tau}$ we are required to compute a FEM solve of a time-dependant PDE.

Random Walk Metropolis Hastings Algorithm (FEM)

Algorithm 1 RWMH Algorithm

```
set initial state X^{(0)} = \theta_0

for m = 1, 2, ..., M do

draw proposal

evaluate likelihood by computing \mathcal{G}_{h\tau} (expensive!)

compute acceptance probability \alpha

accept proposal with probability \alpha

end for

output chain X = (\theta_0, \theta_1, ..., \theta_M)
```

Here $M \gg 10^5$.

(Results)

Unfortunately we cannot compute these as producing the samples takes far too long!

```
85 seconds per (time-dependant) PDE solve \implies 5m samples takes 4.25\times10^8 seconds = 13.5 years (single CPU)
```

Parametric Forward Problem

Assume now that both λ and I may be expressed in terms of uniform random variables of mean zero and unit variance. That is,

$$\lambda = \mu_{\lambda} + w_{\lambda}\xi_1, \qquad I = \mu_I + w_I\xi_2,$$

for some given $\mu_{\lambda}, \mu_{I}, w_{\lambda}, w_{I} \in \mathbb{R}^{+}$ with

$$p(\xi_1, \xi_2 \sim \mathcal{U}(-\sqrt{3}, \sqrt{3}), \qquad p(\xi) = \frac{1}{2\sqrt{3}},$$

$$\mathbf{y} := (\xi_1(\omega), \xi_2(\omega))^{\top} \in \Gamma := (-\sqrt{3}, \sqrt{3})^2.$$

Parametric PDE

$$ho c_{\mathsf{p}} \partial_t u(\mathbf{x},t,\mathbf{y}) -
abla \cdot (\lambda(\mathbf{y})
abla u(\mathbf{x},t,\mathbf{y})) = Q(\mathbf{x},t,\mathbf{y}),$$
 for $(\mathbf{x},t,\mathbf{y}) \in D imes [0,T] imes \Gamma$, where
$$Q(\mathbf{x},t,\mathbf{y}) = I(\mathbf{y}) \cdot 1_{\{D_Q imes [0,t_{\mathsf{f}}]\}}(\mathbf{x},t),$$

with IC and BCs given by

$$\begin{split} u(\boldsymbol{x},0,\boldsymbol{y}) &= T_{\mathsf{a}}, & (\boldsymbol{x},\boldsymbol{y}) \in \overline{D} \times \boldsymbol{\Gamma}, \\ \lambda(\boldsymbol{y}) \frac{\partial u}{\partial n}(\boldsymbol{x},t,\boldsymbol{y}) &= 0, & (\boldsymbol{x},t,\boldsymbol{y}) \in \partial D_1 \times [0,T] \times \boldsymbol{\Gamma}, \\ \lambda(\boldsymbol{y}) \frac{\partial u}{\partial n}(\boldsymbol{x},t,\boldsymbol{y}) &= \kappa \left(T_{\mathsf{a}} - u(\boldsymbol{x},t,\boldsymbol{y})\right), & (\boldsymbol{x},t,\boldsymbol{y}) \in \partial D_2 \times [0,T] \times \boldsymbol{\Gamma}. \end{split}$$

SGFEM Solution

Compute a finite-dimensional approximation at time steps $\tau_1, \tau_2, \dots, \tau_{n_t}$ such that for each $n = 1, 2, \dots, n_t$,

$$u_{hk\tau}(\mathbf{x},\tau_n,\mathbf{y}) = \sum_{i=1}^{n_h} \sum_{j=1}^{n_k} u_{ij}(\tau_n)\phi_i(\mathbf{x})\Psi_j(\mathbf{y}) \in \mathcal{X}^h \otimes S^k,$$

where

$$\mathcal{X}^h := \operatorname{span} \{\phi_1, \phi_2, \dots, \phi_{n_h}\} \subseteq H^1(D), \qquad |\mathcal{X}^h| = n_h,$$
 $S^k := \operatorname{span} \{\Psi_1, \Psi_2, \dots, \Psi_{n_k}\} \subseteq L^2_p(\Gamma), \qquad |S^h| = n_k.$

Approximate observation operator $\mathcal{G}_{hk\tau}$

$$\mathcal{G}_{hk\tau}(\mathbf{y}) = (\bar{u}_{hk\tau}(t_1; \mathbf{y}), \bar{u}_{hk\tau}(t_2; \mathbf{y}), \dots, \bar{u}_{hk\tau}(t_{n_z}; \mathbf{y}))^{\top}.$$

Random Walk Metropolis Hastings Algorithm (SGFEM)

Algorithm 2 RWMH Algorithm with SGFEM Surrogate

```
compute SGFEM solution u_{hk\tau} set initial state X^{(0)} = \theta_0 for m = 1, 2, \ldots, M do draw proposal evaluate likelihood by evaluating \mathcal{G}_{hk\tau} (cheap!) compute acceptance probability \alpha accept proposal with probability \alpha end for output chain X = (\theta_0, \theta_1, \ldots, \theta_M)
```

Here $M \gg 10^5$.

Posterior Density, $\pi(\theta|z)$

Posterior Convergence in k (Polynomial Degree)

Posterior Convergence in *k* (Polynomial Degree)

Posterior Convergence in k (Polynomial Degree)

Posterior Convergence in M (Number of Samples)

Computational Time

Offline: Compute SGFEM solution with around 1.3 billion DOF $(n_h \times n_t \times n_k = 38397 \times 120 \times 28)$: 1289 seconds

Online: Generate 5 million samples using SGFEM-RWMH: 452 seconds

Total: 1741 seconds (3.48×10^{-4} seconds per sample)

Future Work

- More realistic/complex forward problem:
 - spatial varying random variables
 - multi-layered material
 - express boundary heat loss parameter as random variable
- More sophisticated MCMC algorithm
- Error analysis
- ▶ Paper (in production): "Surrogate accelerated Bayesian inversion for the determination of the thermal diffusivity of a material"

- V. Hoang, C. Schwab, and A. Stuart, *Complexity Analysis of Accelerated MCMC Methods for Bayesian Inversion*, Inverse Problems, 29 (2013), p. 085010.
- Y. MARZOUK AND H. NAJM, Dimensionality Reduction and Polynomial Chaos Acceleration of Bayesian Inference in Inverse Problems, Journal of Computational Physics, 228 (2009), pp. 1862–1902.
- Y. Marzouk, H. Najm, and L. Rahn, Stochastic Spectral Methods for Efficient Bayesian Solution of Inverse Problems, Journal of Computational Physics, 224 (2007), pp. 560–586.
- F. Nobile and R. Tempone, Analysis and Implementation Issues for the Numerical Approximation of Parabolic Equations with Random Coefficients, International Journal for Numerical Methods in Engineering, 80 (2009), pp. 979–1006.

Choice of Prior

