

Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke

MIKROELEKTRONIKA, VIEEAB01

Térvezérelt tranzisztorok III.

MOS kapacitás, MOS-FET tranzisztor

Dr. Bognár György, Dr. Poppe András

- Felületi jelenségek a MOS kapacitás esetében
 - Térerősségmentes esetben energiasáv diagram
 - Fermi szintek eltérő E szinten, biztos, hogy valami sávelhajlás bekövetkezik... De itt nincs PN/fém-félvezető átmenet... Hogy lehetséges ez?

- Felületi jelenségek a MOS kapacitás esetében
 - Térerősségmentes esetben
 - N+ poly-Si E_C=E_F

- Felületi jelenségek a MOS kapacitás esetében
 - ún. Flat-Band állapot Gate-n felülettől elmutató térerősség

$$\frac{dE}{dx} = \frac{\rho(x)}{\epsilon}$$

- Térerősség hatására dielektromos megosztás
- Q=A·ε·Ε
- Többségi töltések felhalmozódása a felület közelében
- p típusú félvezető esetén lyukak halmozódnak fel
- Energiaviszonyokban változás lép fel
- Sávelhajlás történik qU_F energia értékkel flat-band állapothoz képest
- U_F Felületi potenciál

$$p = const T^{3/2} \exp\left(-\frac{W_F - W_v}{kT}\right) \qquad p = n_i \cdot \exp\left(\frac{W_i - W_F}{kT}\right)$$

- Ellentétes térerősség hatására a térerősség erővonalának negatív töltéseken kell végződnie
- A felületen kiürülés áll elő
- p hordozó esetén lyukak eltávolodnak a felszíntől, helyhez kötött negatív töltésű ionok maradnak ott
- Térerősség fokozatos növelésével a kiürített réteg szélessége (a töltések száma) növekszik
- $Q_{SC} = -q \cdot N_a$

$$p = n_i \cdot \exp\left(\frac{W_i - W_F}{kT}\right)$$

- Térerőt tovább növelve sávközép a Fermi szint alá görbül.
- A Fermi szint közelebb kerül a vezetési sávhoz, mint a vegyértéksávhoz!
- Inverziós (kisebbségi) töltésfelhalmozás történik
- p típusú félvezető esetén az anyagból kisebbségi elektronok áramolnak a felület közelébe
- Elektron sűrűség exponenciálisan függ a W_F és W_i távolságtól

$$n = n_i \cdot \exp\left(\frac{W_F - W_i}{kT}\right)$$

- Φ_F Fermi potenciál
- Inverzió határa amikor W_i és W_F találkozik, azaz $U_F = \Phi_F$
- Ebben a pontban az e- és lyukak sűrűsége rendkívül kicsi, erős inverzióra van szükség

$$p = n_i \cdot \exp\left(\frac{W_i - W_F}{kT}\right)$$

$$\Phi_F = \frac{W_i - W_F}{q} = \frac{kT}{q} \ln \frac{p}{n_i} \cong U_T \ln \frac{N_a}{n_i}$$

Felületi jelenségek a MOS kapacitás esetében

Erős inverzió: $U_F = 2 \Phi_F$

- Erős inverzió esetén annyi az e- sűrűsége, mint alapesetben a lyukak sűrűsége a p adalékolású félvezetőben
- FIGYELEM! Gyenge inverzió esetén is van mozgásképes töltéshordozó az inverziós rétegben!

$$n = n_i \cdot \exp\left(\frac{W_F - W_i}{kT}\right)$$

CCD képérzékelő szenzor

 A MOS kapacitást önmagában is használják, pl. a CCD eszközökben (charge coupled devices)

Forrás: Nikon Microscopy

- Polysilicon gate elektróda (400nm – 1100nm közötti spektrumon átlátszó)
- Elektron-lyuk pár generáció a gate alatt, a potenciál zsebben (kiürített réteg)

CCD képérzékelő szenzor

A MOS kapacitást önmagában is használják, pl. a CCD eszközökben

CCD képérzékelő szenzor

Töltés generáció csak fotonelnyeléssel?

CCD kiolvasó áramkör

- A sor végén dióda, záróirányban előfeszítve (Reset után)
- A kiléptetett töltések számának megfelelően a tértöltési kapacitás kezd kisülni, változik a diódán a záróirányú feszültség
- Ezt a dU feszültségváltozást egy sourcekövető alapkapcsolással tudjuk követni
- Nagyimpedanciás bemenete van, így a töltésviszonyokba "nem terhel bele".
- C₀ parazita kapacitás, ami töltésmegosztást eredményez.

Rochester Institute of Technology – Center for Detectors

CCD kiolvasó áramkör

CMOS képérzékelő szenzor

Olympus Microscopy

CMOS képérzékelő szenzor

CCD vagy CMOS?

Méret, felbontás, fill factor, zaj és fogyasztás szempontok...

- Számos technológiai újdonság:
 - Backlit / Back Side Illuminated (BSI)

- Számos technológiai újdonság:
 - Exmor R 2008

- Számos technológiai újdonság:
 - Exmor RS 2013

- Számos technológiai újdonság:
 - ISOCELL 2014

- **2019**
 - Bayer filter leváltása
 - Single Shot HDR

Dual Bayer & White HDR Coding array

- **2020**
- Pixel binning technique

- **2020**
- Pixel binning technique

A MOS FET tranzisztor

MOS kapacitás a két végén egy-egy elektródával kiegészítve

- n-csatornás eszköz: elektronok vezetnek
- p-csatornás eszköz: lyukak vezetnek

A MOS tranzisztor kvalitatív működése

- Ha VGS > VT, kialakul az inverziós réteg
 - az n+ régió a source-nál elektronokat tud injektálni a csatornába
 - a drain alkalmas (pozitív) potenciálja beindítja az elektronok áramlását a csatornában,
 - a drain pozitív potenciálja záró irányban előfeszíti az n+ régió által formált pn átmenetet
 - a csatornában a drain-hez sodródott elektronok itt elnyelődnek és az n+ régióba kerülnek, zárul az áramkör

A MOS tranzisztor kvalitatív működése

- a csatornában lévő töltéshordozó-sűrűség a V_{GS} feszültségtől függ
- a csatornában feszültségesés jön létre, ezért az inverziós réteg vastagsága a csatorna mentén egyre csökken
- egy adott V_{DSsat} ún. szaturációs feszültségnél a csatorna a drain-nél elzáródik, ez az ún. pinch-off

$$V_{DSsat} = V_{GS} - V_{T}$$

Az elzáródás bekövetkezte után a MOS tranzisztor ún. telítéses üzemmódban dolgozik, a drain feszültség tovább nem befolyásolja a csatorna áramát.

A MOS tranzisztor kvalitatív működése

A pinch-off régióban a töltéstranszport drift áram révén valósul meg.

Drain-Bulk PN átmenet záróirányban előfeszítve, kisebbségi töltéshordozókra nézve nyelőként viselkedik, nagy térerősség alakul ki (potenciálgát növekszik)

Feszültség-áram karakterisztikák

- Kimeneti karakterisztika: I_D=f(U_{DS}), parameter: U_{GS}
- Transzfer karakterisztika: I_D=f(U_{GS}), paraméter: U_{DS}

Kimeneti karakterisztika:

Szaturációban (telítésben):

$$I_D = \frac{W}{L} \frac{\mu_n}{2} \frac{\varepsilon_{ox}}{t_{ox}} (V_{GS} - V_T)^2$$

$$K = \frac{\mu_n \mathcal{E}_{ox}}{t_{ox}}$$
 áramállandó

Az áramkörtervező meghatározhatja a tranzisztor geometriáját: **W**-t és **L**-et befolyásolhatja

PÉLDA

Számoljuk ki egy MOS tranzisztor telítési áramát U_{GS}=5V esetében, ha

$$K = \frac{\mu_n \mathcal{E}_{ox}}{t_{...}} = 110 \mu A/V^2$$

 $K = \frac{\mu_n \mathcal{E}_{ox}}{10 \mu A/V^2}$ V_T =1V, és a geometriai méretek

a) W=
$$5\mu$$
m, L= 0.4μ m,

b)
$$W = 0.8 \mu m$$
, L=5 μm !

a)
$$I_D = \frac{W}{L} \frac{K}{2} (U_{GS} - V_T)^2 = \frac{5}{0.4} \frac{110}{2} 10^{-6} (5 - 1)^2 = 11 \cdot 10^{-3} A = \underline{11mA}$$

b)
$$I_D = \frac{W}{L} \frac{K}{2} (U_{GS} - V_T)^2 = \frac{0.8}{5} \frac{110}{2} 10^{-6} (5 - 1)^2 = 141 \cdot 10^{-6} A = \underline{141 \mu A}$$

A **W/L arány** változtatásával a drain áram nagyságrendekkel változtatható

Feszültség-áram karakterisztika

nMOS tranzisztor, 0.25um, $L_d = 10um$, W/L = 1.5, $V_{DD} = 2.5V$, $V_T = 0.4V$

A működés fizikai áttekintése

Töltés és potenciálviszonyok a felületen

A küszöbfeszültség

A karakterisztika levezetése

A MOS struktúra potenciálviszonyai

$$U_{GB} = U_{ox} + U_F + \Phi_{MS}$$

$$Q_G = Q_{SC} - Q_{SS} + Q_i$$

$$C_0 = \frac{\varepsilon_{ox}}{d_{ox}} \left[Q_G = C_0 U_{ox} \right]$$

$$Q_{SC} = qN_aS$$

A MOS struktúra potenciálviszonyai

$$U_{GB} = U_{ox} + U_F + \Phi_{MS}$$

$$Q_G = Q_{SC} - Q_{SS} + Q_i$$

$$Q_G = C_0 U_{ox}$$

$$Q_{SC} = qN_aS$$

$$Q_{i} = Q_{G} - Q_{SC} + Q_{SS} =$$

$$= C_{0}U_{ox} - \sqrt{2\varepsilon_{s}qN_{a}}\sqrt{U_{F}} + Q_{SS}$$

$$Q_i = C_0 (U_{GB} - U_F - \Phi_{MS}) - \sqrt{2\varepsilon_s q N_a} \sqrt{U_F} + Q_{SS}$$

$$Q_{SC} = qN_a \sqrt{\frac{2\varepsilon_s}{qN_a}} \sqrt{U_F} = \sqrt{2\varepsilon_s qN_a} \sqrt{U_F}$$

Minden felületegységre nézve! A = 1 μm²

A MOS tranzisztor küszöbfeszültsége

$$U_F = 2\Phi_F$$

$$U_F = 2\Phi_F + U_{SB}$$

A MOS tranzisztor küszöbfeszültsége

$$Q_i = C_0 \cdot (\boldsymbol{U_{GB}} - (2\Phi_F + \boldsymbol{U_{SB}}) - \Phi_{MS}) - \sqrt{2\epsilon_S q N_a} \sqrt{2\Phi_F + U_{SB}} + Q_{SS}$$

$$Q_i = C_0 \cdot (U_{GS} - 2\Phi_F - \Phi_{MS}) - \sqrt{2\epsilon_S q N_a} \sqrt{2\Phi_F + U_{SB}} + Q_{SS}$$

$$\boldsymbol{Q_i} = \boldsymbol{C_0} \cdot \left(\boldsymbol{U_{GS}} - 2\boldsymbol{\Phi}_F - \boldsymbol{\Phi}_{MS} - \frac{\sqrt{2\epsilon_S q N_a} \sqrt{2\boldsymbol{\Phi}_F + U_{SB}}}{C_0} + \frac{Q_{SS}}{C_0} \right)$$

$$|V_T = U_{GS}|_{Q_i = 0} \qquad \qquad U_{GS} = V_T \qquad \qquad \boxed{Q_i \cong C_0(U_{GS} - V_T)}$$

$$V_T = 2\Phi_F + \Phi_{MS} - \frac{Q_{SS}}{C_0} + \frac{\sqrt{2\varepsilon_s q N_a}}{C_0} \sqrt{2\Phi_F + U_{SB}}$$

A MOS tranzisztor küszöbfeszültsége

$$V_{T} = 2\Phi_{F} + \Phi_{MS} - \frac{Q_{SS}}{C_{0}} + \frac{\sqrt{2\varepsilon_{s}qN_{a}}}{C_{0}} \sqrt{2\Phi_{F} + U_{SB}}$$

- Küszöbfeszültséget kis értéken kell tartani
- Pontos beállítása gyártás során
- Függése (minél kisebb érték elérése):
 - N_a bulk adaléksűrűség (minél kisebb lenne jó)
 - C₀ minél nagyobb (ε megválasztása, d_{ox} minél kisebb)
 - Fém anyagának megválasztása (több befolyásoló tényező)
 - Q_{SS} értékének állításával (ionimplatáció ±0,1V)
 - U_{SB} egyedüli elektromos paraméter!

A MOS tranzisztor küszöbfeszültsége

$$V_{T} = 2\Phi_{F} + \Phi_{MS} - \frac{Q_{SS}}{C_{0}} + \frac{\sqrt{2\varepsilon_{s}qN_{a}}}{C_{0}} \sqrt{2\Phi_{F} + U_{SB}}$$

$-2\Phi_{\mathsf{E}}$

$$V_T = 2\Phi_F + \Phi_{FB} + \gamma \sqrt{2\Phi_F + U_{SB}}$$

Flat-band potenciál:

$$\Phi_{FB} = \Phi_{MS} - \frac{Q_{SS}}{C_0}$$

Bulk állandó:

$$\gamma = \frac{\sqrt{2\varepsilon_s q N_a}}{C_0}$$

PÉLDA Egy MOS struktúra adatai: $N_a = 4.10^{15} \text{ /cm}^3$, a Si relatív dielektromos állandója 11,8, az oxidé 3,9, az oxid vastagsága $d_{ox} = 0.03 \mu m$, $\Phi_{MS} = 0.2 \text{ V}$, Q_{SS} -t elhanyagoljuk.

Számítsuk ki a Fermi potenciált, az oxid kapacitást, a bulk állandót és a küszöb-feszültséget $U_{SR} = 0 \text{ V}$ mellett!

$$\Phi_F = U_T \ln \frac{N_a}{n_i} = 0.026 \cdot \ln \frac{4 \cdot 10^{15}}{10^{10}} = 0.335 V$$

$$C_0 = \frac{\varepsilon_{ox}}{d_{ox}} = \frac{8,86 \cdot 10^{-12} \cdot 3,9}{3 \cdot 10^{-8}} = 1,1 \cdot 10^{-3} \ F/m^2 = 1100 \ pF/mm^2$$

$$\gamma = \frac{\sqrt{2\varepsilon_s q N_a}}{C_0}$$

$$\gamma = \frac{\sqrt{2\varepsilon_s q N_a}}{C_0} \qquad \gamma = \frac{\sqrt{2 \cdot 8,86 \cdot 10^{-12} \cdot 11,7 \cdot 1,6 \cdot 10^{-19} \cdot 4 \cdot 10^{21}}}{1,1 \cdot 10^{-3}} = 0,331 \ V^{1/2}$$

$$V_T = 2\Phi_F + \Phi_{MS} - \frac{Q_{SS}}{C_0} + \frac{\sqrt{2\varepsilon_s q N_a}}{C_0} \sqrt{2\Phi_F + U_{SB}}$$

$$V_T = 2 \cdot 0.335 + 0.2 + 0.331 \sqrt{2 \cdot 0.335} = 1.14 V$$

A növekményes MOS tranzisztor karakterisztikája

A következőkben kiszámoljuk!

A karakterisztika egyenlet levezetése

$$U(0) = U_{GS}, U(L) = U_{GD}$$
$$Q_i(U) = Q_i[U(x)]$$

$$I_D = Q_i W v$$

$$v = -\mu E = -\mu \frac{dU}{dx}$$

$$I_{D} = -Q_{i}(U)W\mu \frac{dU}{dx} \longrightarrow \int_{0}^{L} I_{D}dx = -W\mu \int_{0}^{L} Q_{i} \frac{dU}{dx} dx$$

A karakterisztika egyenlet levezetése

$$\int_{0}^{L} I_{D} dx = -W \mu \int_{0}^{L} Q_{i} \frac{dU}{dx} dx$$

$$I_D L = -W \mu \int_{U_{GS}}^{U_{GD}} Q_i(U) dU$$

$$Q_i = C_0 (U(x) - V_T)$$

$$I_{D} = -\frac{W}{L} \mu \int_{U_{GS}}^{U_{GD}} C_{0} (U - V_{T}) dU = \frac{W}{L} \frac{\mu C_{0}}{2} (U - V_{T})^{2} \Big|_{U_{GD}}^{U_{GS}}$$

$$I_D = \frac{W}{L} \frac{\mu C_0}{2} \left[(U_{GS} - V_T)^2 - (U_{GD} - V_T)^2 \right]$$

A karakterisztika egyenlet levezetése

$$I_D = \frac{W}{L} \frac{\mu C_0}{2} \left[(U_{GS} - V_T)^2 - (U_{GD} - V_T)^2 \right]$$

$$I_{D} = \frac{W}{L} \frac{\mu C_{0}}{2} [F(U_{GS}) - F(U_{GD})]$$

$$F(U) = \begin{cases} (U - V_T)^2 & ha \quad U > V_T \\ 0 & ha \quad U \le V_T \end{cases}$$

Minden működési tartományra!

Lineáris szakasz:

$$I_D = \frac{W}{L} \frac{\mu C_0}{2} (U_{GS} - V_T) U_{DS}$$

a) N-channel MOSFET

Cut Off	$V_{GS} \leq V_T$	$I_{DS} = 0$
Linear	$V_{GS} > V_T, \ V_{DS} \le V_{GS} - V_T$	$I_{DS} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right] (1 + \lambda V_{DS})$
Saturation	$V_{GS} > V_T, \ V_{DS} > V_{GS} - V_T$	$I_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$

A telítéses működés

$$I_{D} = \frac{W}{L} \frac{\mu C_{0}}{2} [F(U_{GS}) - F(U_{GD})]$$

$$F(U) = \begin{cases} (U - V_T)^2 & ha \quad U > V_T \\ 0 & ha \quad U \le V_T \end{cases}$$

Minden működési tartományra!

$$I_D = \frac{W}{L} \frac{\mu C_0}{2} (U_{GS} - V_T)^2$$

Telítés: U_{GD} < V_T

MOSFET típusok áttekintése

Kiürítéses MOS tranzisztor

Eltolt küszöbfeszültségű növekményes

Kiürítéses MOS tranzisztor

