Navegação e determinação de atitude utilizando sensores inerciais, magnetômetro e GPS

Igor Afonso Acampora Prado

December 2, 2016

Abstract

Este trabalho preocupa-se com o problema de navegação e determinação de atitude de uma plataforma composta por uma tríade de acelerômetros, girômetros, receptor de GPS e magnetômetro. A atitude em três eixos da plataforma é determinada a partir de medidas vetorias obtidas do acelerômetro e magnetômetro. Além disso, o sinal de GPS é utilizado para corrigir a estimativa de posição obtida a partir da integração de medidas de acelerômetro, mantendo o erro de navegação limitado. Este problema é solucionado através de alguma formulação aproximada do Filtro de Kalman para sistemas não lineares.

1 Definição do Problema

1.1 Definições Preliminares e Notações

Os Sistemas de Coordenadas Cartesianas (SCC) serão denotados pela letra \mathcal{S}_A , onde o subíndice informa qual SCC está sendo tratado. Os vetores geométricos serão denotados por letras minúsculas em negrito, e.g., \mathbf{r} . Agora, considere dois SCC: \mathcal{S}_A e \mathcal{S}_B . A notação $\mathbf{r}^{B/A}$ significa que \mathbf{r} é o vetor geométrico que fornece informações de \mathcal{S}_B com respeito a \mathcal{S}_A , e.g, $\mathbf{v}^{B/A}$ é o vetor geométrido da velocidade linear de \mathcal{S}_B com respeito a \mathcal{S}_A . A notação $\mathbf{r}_C^{B/A}$ define em qual SCC o vetor geométrico $\mathbf{r}^{B/A}$ está sendo representado, e.g, $\mathbf{a}_C^{B/A}$ é a aceleração de \mathcal{S}_B com respeito a \mathcal{S}_A representada em \mathcal{S}_C . A letra \mathbf{D} será utilizada para denotar matrizes de rotação. A notação $\mathbf{D}^{A/B}$ define a matriz de rotação que transforma uma represetação de um vetor geométrico em \mathcal{S}_B para. \mathcal{S}_A

1.2 Modelos de Cinemática

Defina o SCC S_G fixo no ponto O localizado na superfície da Terra e como sendo o sistema inercial, conforme ilustrado na Figura 1. Defina também o SCC S_P fixo no centro de massa da plataforma e que rotaciona junto com a mesma. Utilizando a notação definida na Seção 1.1, denote $\mathbf{r}^{P/G}$ e $\mathbf{v}^{P/G}$ como sendo os vetores geométricos que indicam, respectivamente, a posição e velocidade linear da plataforma em relação ao sistema S_G , \mathbf{m} o vetor geométrico que representa a direção do campo magnético e $\mathbf{a}^{P/G}$ o vetor geométrico da aceleração da plataforma em relação ao sistema S_G . Considerando a representação desses vetores no sistema S_G , a cinemática de translação é modelada por

$$\dot{\mathbf{r}}_{\mathrm{G}}^{\mathrm{P/G}} = \mathbf{v}_{\mathrm{G}}^{\mathrm{P/G}}.\tag{1}$$

Figure 1: Sistemas de Coordenadas S_G e S_P .

Considere que a plataforma possua uma tríade de acelerômetros e assuma que seus eixos estejam alinhados com os eixos de coordenadas do sistema \mathcal{S}_{P} . Desta forma, as medidas do acelerômetro podem ser modeladas por

$$\check{\mathbf{a}}_{p} = \mathbf{D}^{P/G} (\dot{\mathbf{v}}_{G}^{P/G} - \mathbf{g}_{G}) + \mathbf{w}^{a}$$
(2)

onde $\dot{\mathbf{v}}_G^{P/G}$ é a representação em \mathcal{S}_G da aceleração da plataforma com relação ao solo, $\mathbf{w}^a \in \mathbb{R}^3$ é o ruído de medida do acelerômetro modelado como Gaussiano, com média nula e covariância $\mathbf{Q}_a \in \mathbb{R}^{3\times3}$, $\mathbf{g}_G \triangleq [0\ 0\ -g]^T$ é a aceleração da gravidade representada no sistema \mathcal{S}_G e $\mathbf{D}^{P/G}$ é a matriz de atitude de \mathcal{S}_P com respeito a \mathcal{S}_G . Neste trabalho não estamos considerando o bias existente a medida do sensor. Isolando $\dot{\mathbf{v}}_G^{P/G}$ na Eq. (2) obtém-se

$$\dot{\mathbf{v}}_{G}^{P/G} = (\mathbf{D}^{P/G})^{T} (\check{\mathbf{a}}_{D} - \mathbf{w}^{a}) + \mathbf{g}_{G}. \tag{3}$$

Agora, considere que a plataforma possua uma tríade de girômetros e assuma que os girômetros estão alinhados com os eixos de coordenadas da plataforma, suas medidas podem ser modeladas como

$$\check{\boldsymbol{\omega}}_{\mathrm{p}} = \boldsymbol{\omega}_{\mathrm{P}}^{\mathrm{P/G}} + \mathbf{w}^{\mathrm{g}} \tag{4}$$

onde $\boldsymbol{\omega}_{P}^{P/G}$ é a velocidade angular verdadeira da plataforma com respeito a \mathcal{S}_{G} representada em \mathcal{S}_{G} , $\mathbf{w}^{g} \in \mathbb{R}^{3}$ é o ruído de medida do girômetro modelado como Gaussiano, com média nula e covariância $\mathbf{Q}_{\omega} \in \mathbb{R}^{3\times 3}$. Neste trabalho, não considera-se o bias existente na medida do girômetro. Considerando-se a parametrização de atitude como ângulos de Euler na sequência 1-2-3 e definindo $\boldsymbol{\alpha} = [\phi \ \theta \ \psi]^{T}$, o modelo verdadeiro de cinemática de atitude é dado por

$$\dot{\alpha} = \mathcal{A}(\alpha)\omega_{\mathrm{P}}^{\mathrm{P/G}} \tag{5}$$

onde

$$\mathcal{A} = \begin{bmatrix} \cos \psi / \cos \theta & -\sin \psi / \cos \theta & 0 \\ \sin \psi & \cos \psi & 0 \\ -\cos \psi \sin \theta / \cos \theta & \sin \psi \sin \theta / \cos \theta & 1 \end{bmatrix}. \tag{6}$$

com ϕ , θ e ψ sendo, respectivamente, os ângulos de rolagem, arfagem e guinada. Isolando $\omega_{\rm P}^{\rm P/G}$ em (4) e substituindo o resultado em (5) tem-se

$$\dot{\alpha} = \mathcal{A}(\alpha)(\check{\boldsymbol{\omega}}_{p} - \mathbf{w}^{g}). \tag{7}$$

Logo, Eq. (1), (3) e (7) podem ser reescritas na forma de equações de estado

$$\dot{\mathbf{x}} \triangleq \mathbf{f}(\mathbf{x}, \mathbf{u}) + \mathbf{G}(\mathbf{x})\mathbf{w} \tag{8}$$

com

$$\mathbf{x} = [(\mathbf{r}_{G}^{P/G})^{T} \ (\mathbf{v}_{G}^{P/G})^{T} \ (\boldsymbol{\alpha})^{T}]^{T} \in \mathbb{R}^{9}$$
(9)

$$\mathbf{u} \triangleq [\check{\mathbf{a}}_{p}^{T} \ \check{\boldsymbol{\omega}}_{p}^{T}]^{T} \in \mathbb{R}^{6} \tag{10}$$

$$\mathbf{w} \triangleq [(\mathbf{w}^a)^{\mathrm{T}} (\mathbf{w}^g)^{\mathrm{T}}]^{\mathrm{T}} \in \mathbb{R}^6$$
(11)

$$\mathbf{f}(\mathbf{x}, \mathbf{u}) = \begin{bmatrix} \mathbf{v}_{G}^{P/G} \\ (\mathbf{D}^{P/G}(\boldsymbol{\alpha}))^{T} (\check{\mathbf{a}}_{p}) + \mathbf{g}_{G} \\ \mathcal{A}(\boldsymbol{\alpha}) \check{\boldsymbol{\omega}}_{p} \end{bmatrix} \in \mathbb{R}^{9}$$
(12)

$$\mathbf{G}(\mathbf{x}) = \begin{bmatrix} \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} \\ -\left(\mathbf{D}^{P/G}(\boldsymbol{\alpha})\right)^{\mathrm{T}} & \mathbf{0}_{3\times3} \\ \mathbf{0}_{3\times3} & -\mathcal{A}(\boldsymbol{\alpha}) \end{bmatrix} \in \mathbb{R}^{9\times6}$$
(13)

1.3 Modelo de Medidas

1.3.1 Atitude

Para determinar a atitude de S_P com respeito a S_G é necessário conhecer pelos menos duas representações de medidas vetoriais nestes dois SCC. Feito isso, pode-se modelar a relação entre essas medidas vetoriais como

$$\check{\mathbf{a}}_{p} = -\mathbf{D}^{P/G}(\boldsymbol{\alpha})\mathbf{g}_{G} + \mathbf{w}^{a}$$
(14)

e

$$\check{\mathbf{m}}_{\mathrm{p}} = \mathbf{D}^{\mathrm{P/G}}(\boldsymbol{\alpha})\check{\mathbf{m}}_{\mathrm{G}} + \mathbf{w}^{\mathrm{m}}$$
(15)

onde $\{\check{\mathbf{m}}_p, \check{\mathbf{m}}_G\} \in \mathbb{R}^3$ são, respectivamente, as representações em \mathcal{S}_P e \mathcal{S}_G da medida vetorial do magnetômetro e \mathbf{w}^m é o ruído de medida do magnetômetro, sendo considerado como Gaussiano, com média nula e covariância $\mathbf{R}_m \in \mathbb{R}^{3\times 3}$. Note que o modelo utilizando em (14) considera que o veículo não está acelerando, o que é perfeitamente razoável para aplicações de monitoramento e voos em ambientes *indoor*, onde normalmente realizam-se voos com velocidades constantes. Lembrando ainda que $\check{\mathbf{m}}_G$ é obtido a partir do *World Magnetic Model* (WMM).

1.3.2 Posição

A navegação pura, ou seja, quando feita realizando-se apenas a integração de medidas de acelerômetro, está sujeita ao acúmulo de erros devido a erros de modelagem, erros de integração numérica e também ao fato de os dados colidos do sensor estarem contaminados com ruídos. Para eliminar este problema, pode-se utilizar a fusão com medidas de GPS, que ajudam a manter o erro de estimação limitado.

Defina um novo sistema de coordenadas \mathcal{S}_{E} , fixo ao centro da Terra, com eixo X_{E} direcionado para o meridiano de *Greenwich* e com eixo Z_{E} apontado para o norte geográfico, conforme ilustrado na Figura 2. Considere um receptor de GPS fixo no centro de massa da plataforma,

que fornece as seguintes medidas: latitude (λ), longitude (Λ) e altitude (h) da plataforma. Defina também um sistema de coordenadas intermediário \mathcal{S}_{NED} (do inglês North-East-Down, este sistema é bastante utilizado na literatura de aeronáutica) rotacionado em relação a \mathcal{S}_{E} pela Eq. (16) e considere que o sistema \mathcal{S}_{G} tem sua origem coincidente com \mathcal{S}_{NED} e está alinhado conforme a Figura 2.

Figure 2: Sistemas de Coordenadas S_E e S_{NED} .

$$\mathbf{D}^{\text{NED/E}} = \begin{bmatrix} -\sin\lambda\cos\Lambda & -\sin\lambda\sin\Lambda & \cos\lambda \\ -\sin\Lambda & \cos\Lambda & 0 \\ -\cos\lambda\cos\Lambda & -\cos\lambda\sin\Lambda & -\sin\lambda \end{bmatrix}$$
(16)

$$\mathbf{D}^{G/NED} = \begin{bmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{bmatrix} \tag{17}$$

A equação de medidas do GPS é dada por:

$$\mathbf{y}^{\text{GPS}} = \check{\mathbf{r}}_{G}^{\text{P/G}} + \mathbf{w}^{\text{GPS}} \tag{18}$$

onde $\mathbf{w}^{GPS} \in \mathbb{R}^3$ é o ruído de medida do GPS, por hipótese, considerado Gaussiano, com média nula e covariância $\mathbf{R}_{GPS} \in \mathbb{R}^{3 \times 3}$. Note que a medida $\check{\mathbf{r}}_G^{P/G}$ não é fornecida diretamente pelo sensor GPS, sendo necessário realizar algumas conversões. Sabe-se que

$$\check{\mathbf{r}}_{\mathrm{G}}^{\mathrm{P/G}} = \check{\mathbf{r}}_{\mathrm{G}}^{\mathrm{P/E}} - \mathbf{r}_{\mathrm{G}}^{\mathrm{G/E}}.\tag{19}$$

Por outro lado, as representações $\check{\mathbf{r}}_{G}^{P/E}$ e $\mathbf{r}_{G}^{G/E}$ não são diretamente conhecidas, mas podem ser obtidas a partir de rotações realizadas com as respectivas represetações em \mathcal{S}_{E} , como apresentado na Eq. (20).

$$\check{\mathbf{r}}_{G}^{P/G} = \mathbf{D}^{G/NED} \mathbf{D}^{NED/E} (\check{\mathbf{r}}_{E}^{P/E} - \mathbf{r}_{E}^{G/E}). \tag{20}$$

Por fim, utilizando as medidas fornecidas pelo GPS $(\check{\lambda}, \check{\Lambda}, \check{h})$ e realizando uma transformação de coordenadas geodésicas para uma representação em \mathcal{S}_{E} , considerando a terra esférica, têm-se

$$\check{\mathbf{r}}_{E}^{P/E} = \begin{bmatrix} (\check{h} + r)\cos\check{\lambda}\cos\check{\Lambda} \\ (\check{h} + r)\cos\check{\lambda}\sin\check{\Lambda} \\ (\check{h} + r)\sin\check{\lambda} \end{bmatrix}$$
(21)

е

$$\mathbf{r}_{E}^{G/E} = \begin{bmatrix} (h_O + r)\cos\lambda_O\cos\Lambda_O\\ (h_O + r)\cos\lambda_O\sin\Lambda_O\\ (h_O + r)\sin\lambda_O \end{bmatrix}$$
(22)

onde λ_O , Λ_O e h_O são, respectivamente, a latitude, longitude e altitude da origem do sistema \mathcal{S}_G e r é o raio da Terra.

Assim, as Eq. (14), (15) e (18) podem se reescritas na forma padrão de equações de medidas

$$y = h(x) + v \tag{23}$$

onde

$$\mathbf{h}(\mathbf{x}) = \begin{bmatrix} \mathbf{\check{r}}_{G}^{P/G} \\ \mathbf{0}_{3\times 1} \\ -\mathbf{D}^{P/G}(\boldsymbol{\alpha})\mathbf{g}_{G} \\ \mathbf{D}^{P/G}(\boldsymbol{\alpha})\check{\mathbf{m}}_{G} \end{bmatrix} \in \mathbb{R}^{12}$$
(24)

е

$$\mathbf{v} = \begin{bmatrix} \mathbf{w}^{GPS} \\ \mathbf{0}_{3 \times 1} \\ \mathbf{w}^{a} \\ \mathbf{w}^{m} \end{bmatrix} \in \mathbb{R}^{12}$$
 (25)

1.4 Definição do Problema

O problema de navegação e determinação de atitude utilizando sensores inerciais, magnetômetro e GPS consiste em obter, de forma recursiva, uma estimativa do estado \mathbf{x} , a partir de uma aproximação do mínimo erro quadrático médio (do inglês, *minimun mean squared error* - MMSE) utilizando medidas dos sensores, equações de estado (9) e equações de medidas (23). Considere a seguinte hipótese:

• Os ruídos de medidas são descorrelacionados.