Long Questions [2 questions, 50 points]

- You are given an object whose center is located at (5, 5, 5), and its vertex list is given by (v₁, v₂, v₃ ... v_N). Answer the following questions:
 - a. Rotate the first vertex $v_1 = [x_1, y_1, z_1]$ along the x-axis by 70 degrees using only matrix multiplications as transforms. Write in terms of "sin" and "cos".
 - b. Given the sequence of matrix multiplications from (a), write down a single matrix multiplication that operates on all vertices together, and outputs all transformed vertices. Write it symbolically (no need to calculate), assuming suitable variables and combined transformation matrices.

[25 points]

2. The rendering equation reads:

$$L_{\sigma}(\omega_{\sigma}) = \int_{\Omega} f(\omega_{\sigma}, \omega_{i}) L_{i}(\omega_{i}) \cos \theta \ d\omega_{i}$$

The integration domain Ω is pictured below, and is defined as a rectangular region on the sphere with spherical co-ordinates: $(\theta_1 = 30^\circ, \phi_1 = 30^\circ)$, $(\theta_2 = 30^\circ, \phi_2 = 60^\circ)$, $(\theta_3 = 60^\circ, \phi_3 = 30^\circ)$ & $(\theta_4 = 60^\circ, \phi_4 = 60^\circ)$.

Assume a diffuse BRDF ($f(\omega_o, \omega_i) = \frac{c}{\pi \cdot \cos \theta}$) and a constant incoming radiance ($L_i(\omega_i) = A$). Note that c & A both are constants. Your task is to derive and expression for $L_o(\omega_o)$.

Hints: Recall the following, which may be useful for the derivation:

- a. $d\omega = \sin\theta \ d\theta \ d\phi$
- b. $\int \sin \theta \ d\theta = -\cos \theta$
- c. $\int \cos \theta \ d\theta = \sin \theta$

[25 points]

Short Questions [4 questions, 12.5 points]

3. For a camera placed at (0, 0, 0), looking at (1, 1, 1) with the up vector defined as (0, 1, 0), what is the camera matrix? Assume camera looks at -Z axis. [12.5 points]

a.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
b.
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$
c.
$$\begin{bmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 \\ -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
d.
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{bmatrix}$$

- 4. The sensor width of the camera is 8mm and sensor height is 6mm. The focal length is 5mm. [12.5 points]
 - a. What is the vertical field of view?

b. What is the horizonal field of view?

5. Given the following set of points

142 5		
[12.5	po	ints

x	у	z
-2	10	3
15	-4	5
10	30	15
20	10	5
-15	-10	-20

We need to build a BVH on this scene, with the following build rules:

- At each level, the bounding box should be split along the longest axis.
- Once the longest axis is determined, the splitting plane is placed at it's center.

The equation of the first splitting plane for the first level is:

a.
$$x + 2.5 = 0$$

b.
$$x - 2.5 = 0$$

$$y - 10 = 0$$

d.
$$z + 2.5 = 0$$

6. A scene contains a sphere centered at the origin with radius 1 and a single point light at position (3, 0, 4) emitting radiance (1, 1, 1). Assume the surface has a diffuse BRDF with c = (0.5, 0.5, 0.5). What is the solution to the rendering equation at point (0, 0, 1) which lies on the sphere? Assume the viewing direction to be (0,0,-1). [12.5 points]

a.
$$(\frac{2}{5 \cdot \pi}, \frac{2}{5 \cdot \pi}, \frac{2}{5 \cdot \pi})$$

b.
$$\frac{4}{125 \cdot \pi}, \frac{4}{125 \cdot \pi}, \frac{4}{125 \cdot \pi}$$

c.
$$\left(\frac{2}{125 \cdot \pi}, \frac{2}{125 \cdot \pi}, \frac{2}{125 \cdot \pi}\right)$$

$$d. \left(\frac{1}{50 \cdot \pi}, \frac{1}{50 \cdot \pi}, \frac{1}{50 \cdot \pi}\right)$$