MAT1110 Oblig2

Erik Øystein Gåserud

April 23, 2015

Oppgave 1

a)

Av oppgaven har vi fått opplyst at:

$$A = \begin{pmatrix} 4 & 6 \\ 6 & -1 \end{pmatrix} \qquad \mathbf{v}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \qquad \mathbf{v}_2 = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

Vi ganger ut $A\mathbf{v}_1$ og $A\mathbf{v}_2$:

$$A\mathbf{v}_1 = \begin{pmatrix} 24\\16 \end{pmatrix} = A\lambda_1$$
 $A\mathbf{v}_2 = \begin{pmatrix} -10\\15 \end{pmatrix} = A\lambda_2$

som gir ligningene for egenverdiene λ_1 og λ_2 :

$$3\lambda_1 = 24 \wedge 2\lambda_1 = 16$$

$$3\lambda_2 = -10 \wedge 2\lambda_2 = 15$$

$$\downarrow \qquad \qquad \downarrow$$

$$\lambda_1 = 8 \qquad \qquad \lambda_2 = -5$$

b)

Dersom ${\bf v}$ er en egenvektor for en $n\times n$ matrise A med en egenverdi λ , så er også enhver parallell vektor, $c{\bf v}$ der $c\neq 0$, en egenvektor med egenverdi λ siden :

$$A(c\mathbf{v}) = c(A\mathbf{v}) = c(\lambda\mathbf{v}) = \lambda(c\mathbf{v})$$

c)

```
| diary oppg1c.out
| A=[4 6;6 -1]
| [U,V]=eig(A)
| diary off
```

```
A = \begin{bmatrix} 4 & 6 \\ 6 & -1 \end{bmatrix}
U = \begin{bmatrix} 0.5547 & -0.8321 \\ -0.8321 & -0.5547 \end{bmatrix}
V = \begin{bmatrix} -5 & 0 \\ 0 & 8 \end{bmatrix}
```

Ikke overraskende gir matlab oss sammme λ verdier som vi kom frem til for hånd i oppgave 1a. Egenvektorene er derimot forskjellige, men de er parallelle med de vi fant for hånd, og de gjør da samme nytten.

d)

```
diary oppg1d.out
A=[2 -1 3; -1 -2 1; 3 1 -1];
[U,V]=eig(A)
Aradredusert=rref(A)
diary off
```

Siden A kan radreduseres til I_3 vet vi at søylevektorene i U utgjør en basis for \mathbb{R}^3 .

e)

```
diary oppg1e.out
A=[4 0 1;2 3 2;-1 0 2];
[U,V]=eig(A)
Aradredusert=rref(A)
diary oppg1e
```

```
|U| =
                0.6708
                          -0.4802
          0
    1.0000
               -0.3162
                          -0.7340
               -0.6708
                           0.4802
V =
     3
            0
                   0
     0
            3
                   0
     0
            0
                   3
Aradredusert =
      1
            0
                   0
     0
                   0
            1
     0
            0
                   1
```

Siden A kan radreduseres til I_3 vet vi at søylevektorene i U utgjør en basis for \mathbb{R}^3 .

f)

```
diary oppg1f.out
A=[3 1 0 0; -1 1 0 0; 0 0 1 4; 0 0 1 4];
[U,V]=eig(sym(A))
Aradredusert=rref(A)
diary off
```

```
U =
V =
 [0, 0, 0, 0]
[0, 5, 0, 0]
[ 0, 0, 2, 0 ]
[0, 0, 0, 2]
Aradredusert =
      1
            0
                   0
                          0
     0
                   0
                          0
            1
     0
            0
                   1
                          4
                   0
     0
            0
                          0
```

Siden A ikke kan radreduseres til I_4 vet vi at søylevektorene i U ikke utgjør en basis for \mathbb{R}^4 .

 \mathbf{g}

```
diary oppg1g.out
A=[3 1 0 0; -1 1 0 0; 0 0 1 4; 0 0 1 4];
[U,V]=eig(A)
Aradredusert=rref(A)
diary off
```

Siden A ikke kan radreduseres til I_4 vet vi at søylevektorene i U ikke utgjør en basis for \mathbb{R}^4 . Heldigvis gir matlab oss samme konklusjon når utgangspunktet, A, er likt.