programa de pós-graduação em ENGENHARIA DE DEFESA

Álgebra Linear Computacional

Parte II

Cap Hebert AZEVEDO Sá, Ph.D.

Notação Matemática

```
\mathbb{N} = \{1, 2, 3, 4, ...\} - Conjunto dos Números Naturais
```

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$
 - Conjunto dos Números Inteiros

$$\mathbb{Q}=\{\frac{m}{q}\,|\,\textit{m,}\,q\in\mathbb{Z}, q\neq 0, \mathrm{sem\ fatores\ comuns}\}$$
 - Conjunto dos Números Racionais

 ${\mathbb R}$ - Conjunto dos Números Reais

$$\mathbb{C}=\{lpha+jeta\,|\,lpha,eta\in\mathbb{R},j^2=-1\}$$
 - Conjunto dos Números Complexos

 \forall - para todo, para cada

 \exists - existe (ao menos um)

 \sim - negação

⇒ - implicação

←⇒ - "se e somente se"

 \wedge / \vee - "e" / "ou"

□ - como quer-se demonstrar (C.Q.D.); "quod erat demonstrandum" (Q.E.D.)

Notação Matemática

Exemplos

"Todo número real diferente de zero possui um inverso multiplicativo."

$$\forall x \in \mathbb{R}, x \neq 0, \exists y \in \mathbb{R} \ t.q. \ xy = 1$$

"Todo número real pode ser arbitrariamente aproximado por um número racional."

$$\forall x \in \mathbb{R} \ \land \ \forall n \in \mathbb{N}, \exists y \in \mathbb{Q} \ t.q. \ |x - y| < \frac{1}{n}$$

2

Demonstração Direta

Novos resultados são construídos por aplicação de raciocínio lógico aplicado a axiomas, definições e teoremas conhecidos.

Exemplo

Def.: Seja $n \in \mathbb{Z}$. n é dito par se n = 2k para algum $k \in \mathbb{Z}$. Caso contrário, é dito *impar*.

Prop.: A soma de dois inteiros ímpares é par.

Prova: Sejam a e b dois inteiros ímpares. Então $\exists k_1, k_2$ t.q. $a = 2k_1 + 1$ e $b = 2k_2 + 1$.

Logo, $a + b = 2k_1 + 2k_2 + 2 = 2(k_1 + k_2 + 1)$. Como $(k_1 + k_2 + 1) \in \mathbb{Z}$, a + b é par. □

Prova da contrapositiva

Para provar que $p \implies q$, provamos que $\sim q \implies \sim p$, o que é logicamente equivalente.

Exemplo

Prop.: Seja $n \in \mathbb{Z}$. Se n^2 é par, então n é par.

Prova:

p: n^2 é par; \sim p: n^2 é ímpar;

q: n é par; \sim q: n é ímpar.

Mostraremos que: n ímpar $\implies n^2$ ímpar.

Prova da contrapositiva (Cont.)

Com efeito, *n* impar $\implies n = 2k + 1$.

Logo,

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2m + 1,$$

onde $m = 2k^2 + 2k \in \mathbb{Z}$.

Portanto, n^2 é impar. \square

Prova por Exaustão

É necessário reduzir a prova a um número finito de casos e provar cada um deles.

Prova por Indução Matemática

Seja uma proposição P(n) tal que:

- P(1) é verdadeira; (caso básico)
- Para $k \geq 1$, P(k) verdadeira $\implies P(k+1)$ verdadeira. (passo de indução)

Então, P(n) será verdadeira $\forall n \geq 1$.

Prova por Indução Matemática

Exemplo

Prop.:
$$\forall n \geq 1$$
, temos $1 + 3 + 5 + ... + (2n - 1) = n^2$.

$$P(n): 1+3+5+...+(2n-1)=n^2$$

Caso básico:
$$P(1) = 2 \times 1 - 1 = 1 = 1^2$$
. (Verdadeiro)

Passo de indução: assumindo que P(k) é verdadeiro, precisamos tentar provar que P(k+1) é verdadeiro também. Daí,

$$P(k): 1+3+5+...+(2k-1)=k^2$$
. Somando $(2k+1)$ aos dois lados \implies $1+3+5+...+(2k-1)+(2k+1)=k^2+2k+1=(k+1)^2$. \square

Prova por Contradição ou por Absurdo

Deve-se: (i) supor o contrário daquilo que se quer provar e (ii) chegar a uma contradição.

Uma contradição é uma proposição lógica que se apresenta verdadeira e falsa simultâneamente.

Exemplo

Prova de Euclides de que $\sqrt{2}$ é irracional.

(Consiste em supor que $\sqrt{2}$ é racional e chegar a uma contradição.)

Prova por Contradição ou por Absurdo (Cont.)

Exemplo

Prova de Euclides de que $\sqrt{2}$ é irracional.

Prova: Suponha que $\sqrt{2}$ é *racional*. Daí, $\exists m, n \in \mathbb{N}$ t.q. $\sqrt{2} = \frac{m}{n}$, sendo a fração irredutível (i.e., m e n não tem fator comum).

Portanto,

$$2 = \frac{m^2}{n^2} \implies 2n^2 = m^2 \implies m^2$$
 par. $\implies m$ par. $\implies \exists k \in \mathbb{Z}$ t.q. $m = 2k$. $\implies 2n^2 = (2k)^2 \implies n^2 = 2k^2 \implies n^2$ par. $\implies n$ par. $\implies m, n$ têm fator comum, i.e., 2.

 $\implies \frac{m}{n}$ não irredutível (*contradição!*). Portanto, $\sqrt{2}$ é irracional. \square

Exercícios

- 1. Prove, por indução matemática, que 11^n-6 é divisivel por 5 para todo inteiro positivo n.
- 2. Prove, por contradição, que para todo inteiro n, se $n^3 + 5$ é ímpar, então n é par.