

Corporate Financial Decision-Making for Value Creation Alternatives to DCF Techniques (What else is there?) Presenter: Sean Pinder THE UNIVERSITY OF MELBOURNE BNY MELLON

Payback Period - The technique

A project's payback period (PP) is simply the amount of time it takes to recoup the initial cost of a project from the project's after-tax net cash flows.

Consider an earlier example:

Assuming that the cash flows occur at year-end:

Payback period = 3 years.

Assuming cash flows occur evenly throughout year:

Payback period = 2.5 years.

Payback Period - The technique

There are three simple steps to the payback period approach:

- 1. Forecast expected cash flows.
 - Timing and amount.
- 2. <u>Calculate</u> how long it will take to recoup initial investment from net cash flows.
- 3. Apply the appropriate decision rule:

Independent projects:

Accept projects with PP< Maximum allowable period

Mutually exclusive projects:

Prefer project with shortest PP; provided

PP< Maximum allowable period

Payback Period - Problems

Doesn't allow for time value of money
 The following two projects have equivalent PPs:

These problems lead to a natural bias against projects with longer developmental lives.

Accounting Rate of Return - The technique

A project's accounting rate of return (ARR) is simply the average rate of earnings expected from a project per dollar of capital invested:

$$ARR = \frac{Average\ Net\ Income\ p.a.}{(Average)\ Capital\ Investment\ in\ Project}$$

where the *Capital Investment in Project* could be measured as *Historical Cost* or *Average Book Value*.

Accounting Rate of Return - The technique

There are three simple steps to the ARR approach:

- Forecast expected earnings (and book value of asset over project's life if using average investment)
- Calculate the average earnings over the life of project and express as a percentage of cost (or average book value)
- 3. Apply the appropriate decision rule

Independent projects:

Accept all projects with ARR> Benchmark rate

Mutually exclusive projects:

Prefer project with highest ARR; provided

ARR> Benchmark rate

Accounting Rate of Return - Demonstration

Consider the following project that requires \$1m initial investment, has a life of four years and will have a book value at the end of that four years of only \$200,000 (assuming straight-line depreciation):

Time	Net Income	Book Value
0		\$1,000,000
1	\$150,000	\$800,000
2	\$140,000	\$600,000
3	\$120,000	\$400,000
4	\$90,000	\$200,000
Average	$\frac{(150k + 140k + 120k + 90k)}{4}$ $= \frac{500,000}{4} = \$125,000$	$\frac{(1,000,000+200,000)}{2}$ = \$600,000

$$ARR_{Initial} = \frac{\$125,000}{\$1,000,000} = 12.5\% \qquad ARR_{Average\ Book\ Value} = \frac{\$125,000}{\$600,000} = 20.83\%$$

Accounting Rate of Return - Problems

- 1. Based on earnings not cash flows
- Earnings numbers can be highly subjective
 - o Inventory valuation methods
 - o Depreciation methods
- I can't buy a can of soda with \$1m of earnings I need \$1 of cash
- 2. ARR ignores time value of money
- Both of the following projects will have equal ARR!

Time	Project 11 Net Income	Project 12 Net Income
0		
1	\$100,000	\$0
2	\$90,000	\$0
3	\$80,000	\$0
4	\$70,000	\$340,000

Summary

Payback Period measures the time it takes to recoup the investment in a project:

- Popular because it gives feedback on the liquidity position of the firm
- Problematic in that it doesn't account (explicitly) for time value of money and ignores cash flows after investment is paid back.

Summary

Accounting Rate of Return measures the profitability of a project using Net Income and BV of Asset figures:

- Popular because of ready availability of accounting data
- Problematic as it relies on subjective earnings numbers and doesn't account for time value of money.

Source list

Slide 2:

Data sourced from Graham, J. R., & Harvey, C. R. (2001). The theory and practice of corporate finance: Evidence from the field. Journal of Financial Economics, 60(2), pp. 187-243; Coleman, L., Maheswaran, K., & Pinder, S. (2010). Narratives in managers' corporate finance decisions. Accounting & Finance, 50(3), pp. 605-633.