

Fast Text Generation with Text-Editing Models

KDD 2023

Eric Malmi, Yue Dong, Jonathan Mallinson, Aleksandr Chuklin, Jakub Adamek, Daniil Mirylenka, Felix Stahlberg, Sebastian Krause, Shankar Kumar, Aliaksei Severyn

Slides

https://textedit.page.link/slides

Organizers

Affiliations

Google Zürich

McGill University & Mila

Google Berlin / NYC

Eric Malmi

Yue Dong

Jonathan Mallinson

Aleksandr Chuklin

Jakub Adamek

Daniil Mirylenka

Felix Stahlberg

Sebastian Krause

Shankar Kumar

Aliaksei Severyn

Presenting today

Goals

- 1. Present an overview of the research on Text-Editing models
 - a. Focus on general themes rather than individual models
- 2. Provide practical guidelines for *when* and *how* to apply Text-Editing models

Outline

1. What are text-editing models?

[15 min; Eric]

2. Model design

[35 min; Eric, Jonathan]

- Main components of editing models; obtaining target edits
- 3. Applications

[35 min; Eric, Yue]

GEC, Style Transfer, Utterance
 Rewriting, Simplification

4. Controllable generation

[25 min; Yue]

- Hallucinations, dataset generation, etc.
- Multilingual text editing
 [15 min; Yue]
- Faster (Large) Language Models
 [40min; Jonathan]
- 7. Recommendations and future directions [5 min; Eric]

What Are Text-Editing Models?

Text-editing models generate natural language by applying edit operations to the input text to produce the target text

Motivation

- Most NLP tasks besides MT are monolingual
- Sources and targets often overlap
 - Generating the target from scratch is wasteful
 - Target can be reconstructed from the source via basic ops like KEEP, DELETE, INSERT

Turing	was	born	in	1912		Turing	died	in	1954	
KEEP	KEEP	KEEP	KEEP	KEEP	DEL INS	PRON	KEEP	KEEP	KEEP	KEEP
Turing	was	born	in	1912	and	he	died	in	1954	

Poll:

How many of you have used a text-editing model?

Application	Example Source (S) and target (T) text	Use Text Editing?
Machine translation	S: Turing studied at King's College, where he was awarded first-class honours in mathematics. T: Turing studierte am King's College, wo er erstklassige Auszeichnungen in Mathematik erhielt.	×

Application	Example Source (S) and target (T) text	Use Text Editing?
Machine translation	S: Turing studied at King's College, where he was awarded first-class honours in mathematics. T: Turing studierte am King's College, wo er erstklassige Auszeichnungen in Mathematik erhielt.	X
Summarization	S: Court members Deborah Poritz and Peter Verniero didn't participate in the Nelson case. T: Two court members didn't participate in the case.	?

Application	Example Source (S) and target (T) text	Use Text Editing?
Machine translation	S: Turing studied at King's College, where he was awarded first-class honours in mathematics. T: Turing studierte am King's College, wo er erstklassige Auszeichnungen in Mathematik erhielt.	×
Summarization	S: Court members Deborah Poritz and Peter Verniero didn't participate in the Nelson case. T: Two court members didn't participate in the case.	?
Sentence fusion	S: Turing was born in 1912. Turing died in 1954. T: Turing was born in 1912 <mark>and he</mark> died in 1954.	

Application	Example Source (S) and target (T) text	Use Text Editing?
Machine translation	S: Turing studied at King's College, where he was awarded first-class honours in mathematics. T: Turing studierte am King's College, wo er erstklassige Auszeichnungen in Mathematik erhielt.	×
Summarization	S: Court members Deborah Poritz and Peter Verniero didn't participate in the Nelson case. T: Two court members didn't participate in the case.	?
Sentence fusion	S: Turing was born in 1912. Turing died in 1954. T: Turing was born in 1912 <mark>and he</mark> died in 1954.	
Grammar correction	S: New Zealand have a cool weather. T: New Zealand <mark>has</mark> cool weather.	

Applications often studied in the Text-Editing literature

- Grammatical Error Correction (GEC)
- Text Simplification
- Sentence fusion
- Style transfer
- Sentence splitting & rephrasing & fusion
- Text normalization
- Text summarization
- Automatic post-editing for machine translation

Text-editing models: key characteristics

Key assumption

High overlap between the input and the output

Generation

• Delegates part of the generation to the encoder

Key benefits

Faster inference and on-par quality with seq2seq

NLP tasks map

Classification

Task

- Single label
- binary, multi-class

Model

Encoder

Sequence labeling

Task

- Per token label
- Small softmax

Model

Encoder

Task

- New sequence
- Large softmax

Model

• Encoder + decoder

Trend #1: Generation is all you need

 seq2seq can also generate classification labels and do sequence labeling

LLMs like T5 also excel across various NLP tasks

Where does Text Editing fit?

 Single label (binary, multi-class)

Model

• Encoder + softmax

Latency

• Fast (feed-forward)

Task

- Per token label
- Small softmax

Model

• Encoder + softmax

Latency

• Fast (feed-forward)

Task

- Tagging + Insertion
- small/large softmax

Model

• Encoder + decoder

Latency

Fast

Task

- New sequence
- Large softmax

Model

• Encoder + decoder

Latency

• Slow (autoregressive)

Trend #2: Scale is all you need

- Larger pretraining data
- More model params
- Slow & expensive inference

How to productionize?

- Trade-off between model size, accuracy and latency
- Student networks are often autoregressive

Text-Editing models leverage inductive bias (high overlap) to:

- 1. Make **inference** faster without compromising the quality
- 2. Simplify the task (smaller output space) to make models more **data efficient**

Text Editing Advantages

Data efficient

Text Editing models need less training data.

Latency

Can be >10x faster inference.

Faithfulness

Constraining decoders in seq2seq is an active area of research

Control

We can control the word a model can add / remove. Can incorporate external knowledge (e.g., pronoun).

Questions?