Ab (category of abelian groups), xiv, 25ff,	antipode. See Hopf algebra.
39ff, ch.3, 152ff, 160ff, 189ff, 196,	Aristotle, 418
Appendix A.	Artin-Rees theorem, 115
Ab -category, 5, 411, 424–425	ascending chain of ideals, 103, 118. See also
Abelian category, 6ff, 18, 25ff, ch.2, 79, 80,	noetherian ring.
82, 86, 116, ch.5, 211, 220, ch.8, ch.9,	aspherical (augmented) simplicial object,
ch.10, 424ff	274-5, 282-286, 293, 296, 299
Abelian subcategory, 7, 12, 26	associated graded algebra, 226, 358
AB3 axiom, 426. See also cocomplete abelian	associated prime ideals, 106
category.	augmentation ideal of a group ring, 162-178,
AB3* axiom, 426. See also complete abelian	225
category.	of a Lie algebra, 222, 225, 228ff, 245
AB4 axiom, 125, 426	Auslander-Buchsbaum equality, 109
AB4* axiom, 80ff, 86, 125, 153, 426	automorphism stabilizing G or g, 176–7, 231
AB5 axiom, 57–58, 153, 387, 390, 427	Avramov, L., 323
AB5* axiom, 427	
Acyclic Assembly Lemma, 9, 59ff, 145, 277	B. See Connes' double complex.
acyclic chain complex (exact complex), 3, 9,	B(C). See boundaries.
15–16, 59ff, 113, 148, 150, 266–7, 277,	Baer, R., 38, 78
364, 403	Baer's criterion, 39, 70, 94
C_*^a (in Hochschild homology), 333ff, 344	Baer sum, 78ff
acyclic object. See F-acyclic object.	balanced functor, 64, 67, 99, 143, 149, 289,
Adams, J. F., 408	395, 400
additive category, 5ff, 25, ch.10, 425	bar resolution (normalized and unnormalized)
additive functor, 5, 26ff, 115, ch.2, 147, 281,	for an algebra or module $(B(R, M))$ and
377, 383, 390ff, 424–5	$\beta(R, M)$, 283, 291ff, 299, 300ff, 319ff,
adjoint functors, 27, 41ff, 51–58, 70, 75, 116,	328
160ff, 195ff, 218, 221, 223–4, 232ff,	of a group $(B_*(G))$ and $B_*^u(G)$, 177ff, 211,
259, 261, 273, 280ff, 297, 400–410, 428,	245, 278ff, 290–292
429ff	Barr, M., 286–287, 297, 298, 324
right adjoints preserving injectives. See	Barr's Lemma, 324ff, 353
injective objects.	Barr's Theorem, 298, 324
adjoint representation of g, 220, 243, 248	base change for Tor and Ext, 144, 145, 152,
Adjoints and Limits Theorem, 55	171, 293, 404, 406
Affine Lie algebra, 250ff	— for smooth algebras, 314–318, 322
Alexander-Whitney map, 277–278	derived functors for — See Lf*.
algebraic K-theory. See K-theory.	based loops. See loop spaces.
alternating groups A_n , 199, 202	based section, 185, 187
amplitude of a chain complex, 3	base space. See Serre fibration.
analytic neighborhood of a point, 105	base terms of a spectral sequence, 124
André, M., 295	Beck, J., 286–287
André-Quillen homology $D_*(R/k)$ and	BG (classifying space), 204, 257, 260ff, 264,
cohomology $D^*(R/k)$, 285, 294ff,	270, 331, 338ff
324ff, 353	bialgebra, 194, 319
, 000	

bicomplex. See double complex. augmented chain complex, 34, 99, 114, 145, bidegree of a map, 154ff 149, 238, 260, 274, 278ff, 290, 299 bimodule, 52ff, 145, 174, ch.9 bounded, bounded below, bounded above, binary icosahedral group, 199 3, 16, 31-2, 143, 147ff, 166-7, 370, 385, bisimplicial objects, 275ff, 284, 319, 328ff 387ff, 409 Bloch, S., 368 cellular --, 19, 390 Boardman, M., 138 Ch (category of chain complexes), 3ff, 18, 26, 34, 40, 80, 147, ch.10, 415 Boardman's criterion, 138ff Bockstein spectral sequence, 158ff Ch^{b} , Ch^{-} , Ch^{+} , 3, 370 Chevalley-Eilenberg - See Chevalleyboundaries, 2, 60ff, 83, 87, 127, 145 bounded above. See chain complex. Eilenberg complex. bounded below. See spectral sequence, chain filtered. See filtration. complex. of flat modules, 87, 143, 148, 167, 395ff bounded complex. See chain complex. Hochschild - .. See Hochschild chain bounded convergence. See convergence. complex. bounded filtration. See filtration. Moore —, 265. See also normalized —. bounded operators on a Hilbert space, 97 non-negative (Ch>0), 3, 31, 264, 271ff, 277 bounded spectral sequence. See spectral normalized, 265ff, 270ff, 283, 346, 350, sequence. 352, 356ff Bourbaki, N., 3, 17, 62, 92, 125, 145 of projectives. See resolution by projectives. Brauer, R., 96 simplicial --, 4, 260 Brauer group Br(K), 176, 187, 214ff singular ---, 5, 88, 132, 204ff, 260ff, 254 Browder, W., 158 split —. See split complex. brutal loop space ΛA . See loop space. standard —. See Hochschild chain complex. brutal truncation σC . See truncation. unnormalized, 259, 265-278, 282ff, 301, Buchsbaum, D., 109 302 Burghelea, D., 343 chain contraction, 17, 36, 180, 267, 344, 346, €* (complex units), 27, 164, 199, 205 chain homotopy of maps of complexes, 15, 17, calculus of fractions, 369, 379ff 21, 44, 147, 269, 273, 319, 370, 387 cancellation. See multiplicative system. chain homotopy equivalence. See homotopy Cantor set is profinite, 208 equivalence. Cartan, E., 247 of maps of double complexes, 146ff Cartan-Eilenberg resolution, 145ff, 149, 151, chain map. See morphism. 380, 388, 394 Change of Rings Theorems, 99ff Cartan's criterion for semisimplicity, 243, 244 First -, 100ff, 108 Casimir, H., 247 General --., 99 Casimir operator c_M , 244ff Hochschild homology -, 295, 305, 307, Cat (category of small categories), 421 category, 417 Injective ---, 104, 107 Cauchy sequence, 82 Second -, 101ff CC**, 333. See also Tsygan's double complex. Third —, 102ff, 109ff cellular chain complex, 19, 21, 84, 260, 390 Chevalley, C., 238, 248 cellular complex. See CW complex. Chevalley-Eilenberg complex $V_*(\mathfrak{g})$, 238ff, cellular inclusion, 409, 412, 415 250, 254, 260, 362ff central extensions. See extensions. circuits of a graph, 4 centralizer subgroup $C_G(x)$, 340ff Classical Convergence Theorem, 135 C_G (category of discrete G-modules), 210 Classification Theorems for Extensions, 77, chain complex, 1ff, 29 183, 188, 235, 238, 312ff associated to a simplicial object. See classifying map for extensions, 235 unnormalized ---. classifying space BG for G. See BG.

Clayburgh, J., 11	colimits, 54ff, 428-430. See also limits.
coalgebra, 193, 227, 363, 365ff	filtered colimit (direct limit), 55ff, 66ff, 74,
coboundaries, 3, 149, 179, 185, 187, 240, 312	115ff, 212ff, 314, 316, 387, 410, 427,
cochains, 179ff, 212ff, 240, 250	429. See also (AB5) axiom.
cochain complex, 3, 150, 212, 271, 285, 349, ch.10	Commalg (commutative algebras), 285, 297ff
de Rham —. See de Rham complex. of injectives, 149ff, 387ff	commutator subalgebra [g, g], 217, 228, 236, 242, 244, 248ff
cocomplete category, 428	commutator subgroup $[G, G]$, 163ff, 199ff,
— abelian category (AB3), 9, 43, 54ff, 147,	431
426ff	Comparison Theorem for resolutions, 35–36,
cocycles, 3, 179, 184–187, 211ff, 235, 241–242, 250ff, 312	40, 44ff, 65, 79, 290, 291 for spectral sequences, 126ff, 346, 395
codegeneracy operators, 256	compatible map of spectral sequences, 126
coefficient functor, 286	complete category, 428
coeffaceable functor. See functor.	— abelian category (AB3*), 9, 43, 55ff, 80,
coface operators, 256	426ff
cofibrant topological space, 412	Complete Convergence Theorem, 139ff
cofibration sequence, 412ff	complete filtration. See filtration.
Cohen-Macaulay ring, 105ff, 111, 117, 119	complete topological group, 82
cohomological dimension. See dimension.	completely reducible module, 246, 248
cohomological functor, 377ff, 386, 397	complex. See chain complex, simplicial
cohomological δ -functor, 30ff, 49, 81, 86, 113,	complex.
189, 195, 212, 423	complex algebraic variety, 105, 119, 131, 354
cohomology:	Composition Theorem, 402ff
of a cochain complex, 3, 31, 32, 49, 271	concrete category, 418, 422, 425
cotriple —. See cotriple (co)homology.	cone(f):
de Rham —. See de Rham cohomology.	mapping cone, 10, 18ff, 34, 49, 59, 63, 149,
generalized cohomology theory, 85	270, 371ff, 387–391, 415
of groups, ch.6	mapping cone spectrum, 410, 413ff
H^{1} and derivations, 175, 213, 230	topological cone, 19-20, 24, 413ff
H^2 and extensions. See extensions.	congruence subgroup $\Gamma(N)$, 205
Hochschild —. See Hochschild homology.	conjugacy classes $< G >$, 340ff, 366
of Lie algebras, ch.7	conjugation, 183, 190-191, 247, 340, 365
local cohomology, 115ff	connecting homomorphism ∂ , 10ff, 19, 24, 46,
of profinite groups, 211ff	65, 77, 265, 287ff, 320
ring structure (cup product), 192, 227	Connes, A., 332, 344, 348
sheaf —, 26, 51, 53, 115, 150, 152, 285, 370	Connes' double complex \mathcal{B} , 345ff
of a topological space, 5, 89, 379	Connes' operator B, 344–349, 352
triple —. See triple cohomology.	Connes' sequence, 336
cohomotopy $\pi^*(X)$, 271, 287, 295ff, 301	Connes' spectral sequence, 346. See also
coinduced G-module, 171ff	spectral sequence.
coinflation (coinf), 190, 196, 344	constant sheaf. See sheaves.
coinvariants of a G-module, 160ff, 283, 286,	Construction Theorem for spectral sequences,
304	132ff
-of a g-module, 221ff, 363-367.	Continuum Hypothesis, 92, 98
cokernel, 1, 6ff, 15, 26, 29, 54ff, 81, 220, 410,	contour integral, 27
419, 425ff	contractible simplicial object, 20, 275ff, 282ff,
collapsing spectral sequence. See spectral	293–294, 298
sequence.	contractible space, 20, 129, 204ff, 415

convergence of spectral sequences, 123, 126,	of an ideal, 347, 358-359
135ff, 395	of a mixed complex, 345ff
approaches (abuts to), 126, 141	periodic — <i>HP</i> , 337–338, 340, 343, 351,
bounded convergence, 123–125, 132, 135,	354, 355
143	of a smooth algebra, 337, 351, 354
Classical Convergence Theorem, 132, 135,	cyclic objects, 330ff, 354
137, 139, 142, 157	— G-sets, 339, 343
Complete Convergence Theorem, 139–142,	— modules, 331, 336, 338ff
157	— sets, 331, 338ff
convergent above, 125	ZG, 331, 340ff
weakly converges, 126, 135ff, 140–2, 150,	ZR, 330–333, 346, 354–360
156	cylinder $cyl(f)$:
coproduct in a category, 5, 29, 55, 170, 259,	mapping cylinder, 20ff, 370ff
420–428	topological cylinder, 21, 411, 414
— in a coalgebra. See coalgebra.	cylinder spectrum, 410–414
— of spectra. <i>See</i> wedge. corestriction (cor), 189ff, 196, 199	A. See simplicial category
Cortinas, G., 342	Δ . See simplicial category. ΔC . See cyclic category.
cosimplicial objects, 86, 254, 256, 257, 260,	<i>θ</i> -functor, 391. See also triangulated
271, 281, 285, 287, 301	categories.
cotangent complex $\mathbb{L}_{R/k}$, 295, 297	δ -functor. See cohomological —, homological
cotriple \perp , 279–299	—, universal —.
cotriple (co)homology, 286ff, 295, 297–298	$D_*(R/k)$, $D^*(R/k)$. See André-Quillen
counit ε of an adjunction, 430. See also adjoint	homology and cohomology.
functors.	$\mathbf{D}(A)$, 63, 369, 379. See also derived category.
— in a coalgebra. See coalgebra.	$\mathbf{D^b}(A), \mathbf{D^-}(A), \mathbf{D^+}(A), 384, 388ff,$
covering space, 203ff	392–407
crossed homomorphisms, 174ff, 306	D(R) , 400ff
crossed modules, 187ff	$\mathbf{D}(\mathcal{S})$. See stable homotopy category.
crossed product algebras, 187ff	D (X), 397ff, 402, 407
cross product. See products.	Dedekind domain, 90, 98
c.s.s. (complete semisimplicial set), 259	degeneracy maps η_i in Δ , 255, 332
cup product. See products.	degeneracy operators σ_i , 256, ch.8, 330, 354
CW complex, 19, 21, 24, 84, 204, 257–261,	degenerate subcomplex $D(A)$, 266, 272, 346
409, 412, 415	delooping of a spectrum, 408
CW prespectrum, 409, 412. See also	Dennis, R. K., 328
prespectrum.	denominator set, 380
CW spectrum, 410. See also spectrum.	de Rham cohomology, 337, 349ff, 355, 359
cycles, 2, 14, 17, 23, 36, 60ff, 83, 127, 133ff,	— complex, 349
156	derivation, 174ff, 213, 218, 229ff, 237, 245,
cyclic category ΔC , 331ff	
	294ff, 306ff, 314–315, 358
cyclic groups C_n , 140, 162, 167ff, 173, 176–	294ff, 306ff, 314–315, 358 Der(<i>G</i>), Der(g), 174ff, 179, 229–233, 294ff,
7, 189–193, 197, 205, 304, 330–334,	294ff, 306ff, 314–315, 358 Der(<i>G</i>), Der(g), 174ff, 179, 229–233, 294ff, 306ff
7, 189–193, 197, 205, 304, 330–334, 341–343, 347, 350, 355, 366	294ff, 306ff, 314–315, 358 Der(G), Der(g), 174ff, 179, 229–233, 294ff, 306ff derived category D , ch.10, 385
7, 189–193, 197, 205, 304, 330–334, 341–343, 347, 350, 355, 366 homology and cohomology of —, 168	294ff, 306ff, 314–315, 358 Der(G), Der(g), 174ff, 179, 229–233, 294ff, 306ff derived category D , ch.10, 385 bounded, bounded above/below, 384, 386
7, 189–193, 197, 205, 304, 330–334, 341–343, 347, 350, 355, 366 homology and cohomology of —, 168 cyclic homology <i>HC</i> , ch.9.	294ff, 306ff, 314–315, 358 Der(G), Der(g), 174ff, 179, 229–233, 294ff, 306ff derived category D , ch.10, 385 bounded, bounded above/below, 384, 386 exists, 386–388
7, 189–193, 197, 205, 304, 330–334, 341–343, 347, 350, 355, 366 homology and cohomology of —, 168 cyclic homology <i>HC</i> , ch.9. negative — <i>HN</i> , 338	294ff, 306ff, 314–315, 358 Der(G), Der(g), 174ff, 179, 229–233, 294ff, 306ff derived category D , ch.10, 385 bounded, bounded above/below, 384, 386 exists, 386–388 topological derived category, 407ff
7, 189–193, 197, 205, 304, 330–334, 341–343, 347, 350, 355, 366 homology and cohomology of —, 168 cyclic homology <i>HC</i> , ch.9. negative — <i>HN</i> , 338 of an algebra <i>HC</i> _* (<i>R</i>), 334ff	294ff, 306ff, 314–315, 358 Der(G), Der(g), 174ff, 179, 229–233, 294ff, 306ff derived category D , ch.10, 385 bounded, bounded above/below, 384, 386 exists, 386–388 topological derived category, 407ff is triangulated, 385
7, 189–193, 197, 205, 304, 330–334, 341–343, 347, 350, 355, 366 homology and cohomology of —, 168 cyclic homology <i>HC</i> , ch.9. negative — <i>HN</i> , 338 of an algebra <i>HC</i> _* (<i>R</i>), 334ff of a cyclic object, 334ff	294ff, 306ff, 314–315, 358 Der(G), Der(g), 174ff, 179, 229–233, 294ff, 306ff derived category D , ch.10, 385 bounded, bounded above/below, 384, 386 exists, 386–388 topological derived category, 407ff is triangulated, 385 derived couple, 154ff, 348
7, 189–193, 197, 205, 304, 330–334, 341–343, 347, 350, 355, 366 homology and cohomology of —, 168 cyclic homology <i>HC</i> , ch.9. negative — <i>HN</i> , 338 of an algebra <i>HC</i> _* (<i>R</i>), 334ff	294ff, 306ff, 314–315, 358 Der(G), Der(g), 174ff, 179, 229–233, 294ff, 306ff derived category D , ch.10, 385 bounded, bounded above/below, 384, 386 exists, 386–388 topological derived category, 407ff is triangulated, 385

derived functors of F (cont.) Dold-Kan correspondence, 264, 270-276, 286, 346, 415 hyper-derived $\mathbb{L}_i F$, $\mathbb{R}^i F$. See hyper-derived domain (integral domain), 68, 106, 116 double chain complex, 7ff, 15, 58ff, 85, 99, left — $(L_i F)$, 43ff, 50, 53, 63, 68, 143, 147, 141-150, 276, 335, 352ff, 359ff, 426 157, 161, 221, 271, 391 first quadrant —, 8, 60, 63, 120ff, 143ff, of lim, 81, 86, 139. See also lim¹. 275ff, 298, 328, 337, 359 right — $(R^i F)$, 49ff, 53, 64, 115, 161, 211, fourth quadrant —, 62, 142, 143, 360 221, 228, 271, 391 half plane ---, 60ff, 143, 145ff, 337 ⊥-left —, 287, 293 Hom -, 62. See also Hom. total left - LF, 391ff second quadrant -, 62, 86, 142, 143, 338 total right - RF, 391ff tensor product -, 58. See also tensor are universal δ -functors, 47, 50, 225, product. total complex of —. See total complex. derived series of a Lie group, 219, 242, 247 Tsygan's — CC_{**} , 333ff, 339, 343–348 descending chain condition, 82 duality. See also Pontrjagin duality. DG-algebra, 112, 134, 181ff, 292, 321, 325, dual category. See opposite category. 349, 359-361, 367 dual module B*. See Pontriagin dual. DG-coalgebra, 366, 368 front-to-back dual simplicial object $A(\check{})$, diagonal simplicial object, 275ff, 284 263, 266, 275, 289 differential graded algebra. See DG-algebra. differentials of a chain complex, 2, ch.1, 58, E^{∞} terms, 125. See also spectral sequence. 61, 83, 86, 122, 177, 333, 345, 360 edge map. See spectral sequence. $Diff(P_*), 298$ effaceable functor. See functor. in a spectral sequence, 120-127, 130, 133, EG. See BG, path space. 140, 240, 346, 348 Eilenberg, S., 80, 205, 238, 248, 259, 277, 418 Kähler - See Kähler differentials. Eilenberg-MacLane space $K(\pi, n)$, 257, 264, dihedral groups, 177, 183, 191, 197, 202 268, 274 dimensions, ch.4 Eilenberg-Moore filtration sequence, 136, 140, cohomological —, 226, 241, 394, 398, 403 142, 338 embedding — (emb. dim), 105, 110, 111 Eilenberg-Moore spectral sequence, 361 flat — (fd), 91ff, 108, 144, 396, 397 Eilenberg-Zilber Theorem, 88, 275ff, 284 global — (gl. dim), 91ff, 100, 108-111, elementary matrices E_n , 203, 229, 294 114, 226, 241, 310 Elmendorf, A., 415 homological -, 92, 394, 396 embedding: injective — (id), 91ff, 104, 107, 114, 400 embedding dimension. See dimension. Krull — (dim), 97, 98, 105ff, 114, 317ff, Freyd-Mitchell Embedding Theorem, 12, 323, 398, 402, 407 14, 25ff, 79, 266, 276 projective — (pd), 91-111, 161, 169, 241 Yoneda embedding, 28, 422, 424. See also Tor —, 92ff, 397, 405 Yoneda Lemma. weak --, 92 enough injectives. See injectives. dimension shifting, 44, 47, 71, 80, 93, 147ff, enough projectives. See projectives. enveloping algebra Re, 302ff. See also direct image sheaf $(f_*\mathcal{F})$, 42, 51–54, 152, universal enveloping algebra. 396ff, 402, 406ff epi morphism, 6ff, 13, 220, 255, 419, 425ff direct limit. See colimit. equivalence of categories, 270, 423 discrete category, 25, 80, 418, 428 equivariant homology, 361 discrete G-module, 210ff espace totale. See Serre fibration. discrete valuation ring, 98, 105 essentially of finite type, 322, 323, 326, 351 divisible abelian group, 39, 73, 74, 158, 214. Eulerian idempotents $e_n^{(i)}$. See idempotents. See also injective module. exact couples, 153ff, 348 Dold, A., 21, 270

exact functor, 25, 27, ch.2, ch.3, 115, 116, 144, face operators θ_i , 256, ch.8, 277, 330, 354, 152, 160ff, 211ff, 221, 276, 391, 429. 356 preserves derived functors, 45, 53 factor set, 184ff, 213, 311, 312 exact sequence, 1, 3, 7, 16, 79, 285, 425ff. See F-acyclic object, 44, 47, 50, 51, 148, 150ff, 162, 282ff, 392ff, 403ff. See also flat, also short exact, long exact sequence. - of low degree terms. See low degree projective modules. Faith, C., 96 exact triangle, 15, ch.10. See also triangle. fd(A). See dimension. Exalcomm(R, M), 295, 297fd lemma, 93, 94, 310 Feigin, B., 362 exhaustive filtration. See filtration. Existence Theorem for total derived functors, fiber. See Serre fibration. 393-396, 403 fiber bundles for G, 257 exponential map, 27, 205 fiber terms (of a spectral sequence), 124 extensions: fibrant simplicial set (Kan complex), 262, algebra ---, 311ff 263ff, 267, 275, 285, 293 central -, 198ff, 236, 248ff fibration: G-. See G-fibration. commutative algebra —. See Exalcomm. cyclic galois -, 173, 176 Kan fibration (of simplicial sets), 262, 263, group — (and $H^2(G)$), 182ff, 198ff, 234, 265, 270, 415 Serre —. See Serre fibration. 235 Hochschild — (and $H^2(R)$), 311ff, 317 filtered category, 56ff, 69, 86, 207, 429 filtered colimit. See colimit. Lie algebra — (and $H^2(\mathfrak{g})$), 231, 234ff, filtration of a chain complex, 84, 131-143, 241, 246, 248ff 155, 239, 324, 346, 358 module — (Ext¹ and H^1), 76ff, 232, 241, bounded ---, 132ff, 135ff 246, 351 bounded above -, 125, 132, 140 of profinite groups, 213 bounded below --, 132-140, 157, 239 of restricted Lie algebras, 238 canonical bounded —, 132-135, 142ff, 266 split -, 76ff, 182ff, 234, 311ff complete, 132, 135-141 universal - See universal central exhaustive, 125, 131, 135ff, 156, 239 extensions. Hausdorff, 132, 135ff exterior algebra complex Λ^*M , 112, 229, — of a double complex, 141ff, 335, 348, 238ff, 292, 304, 365 360 exterior algebra Ω*. See Kähler regular -, 124 differentials. finitely generated algebra, 296, 352 external products. See products. finitely generated module, 25, 70, 73-76, ch.4, Ext functor $\text{Ext}_{R}^{*}(A, B)$, 50–51, 63, ch.3, 91ff, 158, 166, 180, 296, 422 106ff, 114-119, 145, 161ff, 172, 221, finitely presented module, 70ff, 75, 93, 98, 401 225-229, 241, 246, 287, 289, 295, 422, first fundamental exact sequence for $\Omega_{R/k}$, 297, 308, 314, 360, 368 $Ext(\mathfrak{g}, M)$. See extensions of Lie algebras. first quadrant double complex. See double Ext¹ and module extensions, 76ff complex. external product for Ext, 291 5-lemma, 13, 23, 71, 75, 123, 273, 361, 375 hyperext $Ext^n(A^*, B^*)$, 399ff flasque sheaf, 407 relative Ext, 288ff, 302ff, 311 flat base change for Tor, 72, 163, 293, 296, Yoneda Ext, 79ff, 188 305, 323 for André-Quillen homology, 297 f_* of a sheaf. See direct image sheaf. flat dimension. See dimension. f_* of an S-module, 396-405 flat modules, 68-74, 87-88, 91ff, 101, 111, f^* of an R-module (= $\otimes_R S$), 396–7, 400–406 112, 143ff, 163, 167, 193, 291-293, face maps ε_i in Δ , 255, 332

303–305, 308, 339, 360, 363, 395, 406,	right exact, 25, 27, 30ff, 43ff, 52ff, 71,
429	147–151, 157, 161, 221, 290
finitely presented flat modules are projective, 71, 96	functor category, 25ff, 43, 54ff, 80ff, 160, 288, 424–430
tensor product of —, 303, 360	fundamental sequences for $\Omega_{R/k}$, 297,
are Tor-acyclic, 44, 69	308–309, 314, 360, 361, 368
Flat Resolution Lemma, 71, 293	
forgetful functor U, 41, 44, 53, 96, 101, 189,	G(A). See grade.
195, 218, 223, 232ff, 259, 280–284, 410,	Gabber, O., 387
421, 424, 430	Gabriel, P., 29, 382
formal space, 361	Gabriel-Zisman Theorem, 382
fourth quadrant double complex. See double	Galois extension of fields, 173, 175ff, 186-7,
complex.	206ff, 214
fractions, 379ff	Fundamental Theorem of Galois Theory,
free groups, 161, 167, 169ff, 199. See also	207, 210
presentations.	Galois group. See Galois extension.
free abelian groups, 66ff, 84, 87ff, 169, 267	Garland, H., 253
free Lie algebra. See Lie algebra.	General Change of Rings Theorem, 99
free loop space. See loop space.	general linear group. See GL_n , \mathfrak{gl}_n .
free modules, 33, 90, 98–103, 109, 162, 169ff,	generating functions, 355
177, 189, 221–226, 229, 235, 238ff, 260,	geometric realization $ X $, 257–261, 264, 267,
278, 294, 297, 318, 324, 338–344.	415
free module cotriple, 281, 284, 286	adjoint to singular simplicial set, 261
free product (coproduct) of groups, 170, 269	geometrically regular algebra, 317
free ring (free algebra), 222, 223, 285,	Gersten, S., 294
293–294, 356ff	Gerstenhaber, M., 323
Freudenthal, H., 205	G-fibration, 263, 265, 270, 343
Freyd, J. P., 25 Fraud Mitchell Embadding Theorem, See	g-invariant bilinear form, 243ff, 250ff
Freyd-Mitchell Embedding Theorem. See Embedding.	gl _n Lie algebra, 217, 229, 233, 244–248, 362ff
Frobenius algebra, 96ff	$GL_n(A)$, 182, 186, 203, 294 global dimension gl . dim (R) . See dimension.
front-to-back duality. See dual.	Global Dimension Theorem, 91, 94, 114, 226,
full subcategory (full functor), 25, 422–425	241, 311
function between prespectra, 409ff	global sections functor Γ , 51, 54, 115, 150,
functor, 14, 421	152, 285, 397, 407
additive. See additive functors.	G-module, 160, ch.6, 278–282, 339, 343, 424
adjoint. See adjoint functors.	g-module, 219, ch.7
— category. See functor category.	Godement resolution. See resolution.
coeffaceable, 49	Goodwillie, T., 354, 361
∂-functor, 391	Goodwillie's Theorem, 354–359
derived. See derived functor.	Gorenstein ring, 97ff, 107-111
effaceable, 28, 49, 213	Grade 0 Lemma, 109, 110
exact functor. See exact functor.	grade $G(A)$ of a module, 105ff, 116ff
faithful, 421	graded abelian group or module, 25, 29, 127,
forgetful. See forgetful functor.	145, 158, 218
fully faithful, 12, 25, 383, 422	graded algebra, 65, 112, 135, 223, 321ff, 349,
hyper-derived. See hyper-derived functor.	354–359
left balanced, 64	associated, 226, 358
left exact, 25, 27-32, 49-53, 83, 115, 149,	differential —. See DG-algebra.
150ff, 160, 221, 290	graded-commutative —, 112, 181-2, 192ff,
right balanced, 64	227, 292, 321ff, 349, 368

graded coalgebra. See coalgebra.	homologism, 3
graph, 3–4	homology:
Grothendieck, A., 30, 80, 82, 150, 370, 379, 398, 426	of a chain complex, 1ff, 31, 32, 49, 87ff, 120ff, 266, 271
Grothendieck spectral sequence. See spectral sequence.	cotriple —. <i>See</i> cotriple (co)homology. cyclic —. <i>See</i> cyclic homology.
group ring kG, Ch.6, 223, 301, 338ff Guccione, J., 342	generalized homology theory, 21, 85 of a group, ch.6, 257, 260, 282, 338ff
Gysin sequence, 131, 197, 336, 344	Hochschild —. See Hochschild homology. of a Lie algebra, ch.7, 362ff
half plane double complex. See double	simplicial —, 4, 260, 267, 277
complex.	singular —, 4–5, 88, 158, 260, 267, 361
Hartshorne, R., 119	Universal Coefficient Theorem, 88
Hasse invariants, 215	homotopism, 17
Hausdorff topological space (or group), 97, 135, 208ff, 419	homotopy. See chain homotopy, homotopy equivalence.
Hausdorff filtration. See filtration.	homotopy category of chain complexes in
hereditary ring, 90, 98	$A.$ See $\mathbf{K}(A)$).
higher direct image sheaf functors ($R^i f_*$), 53, 397ff, 402, 406ff	homotopy category of spectra $K(S)$, 409, 411ff
Hilbert, D., 176	homotopy classes of maps $[E, F]$, 411ff
Hilbert basis theorem, 322	homotopy commutative diagram, 413
Hilbert-Samuel function $h(n)$, 317	homotopy lifting property. See Serre
— polynomial $H(n)$, 317	fibration.
Hilbert space, 97	simplicial homotopy from f to g , 268ff,
Hilbert's Syzygy Theorem, 102, 114	273–277, 339, 341
Hilbert's Theorem 90, 173, 175ff, 213ff	homotopy equivalence, 261
Hochschild, G., 195, 302, 313, 322, 351	chain —, 17–23, 35ff, 40, 63, 65, 147, 284,
Hochschild chain complex C_*^h , 299, 300, 319,	290, 296, 319, 360, ch.10
323, 328, <i>333</i> , ch.9	simplicial —, 204, 270, 273, 296–297, 339
Hochschild extension. See extension.	341
Hochschild homology (and cohomology), 299,	weak — of spectra, 409ff
300, 333, ch.9 Hochschild-Kostant-Rosenberg Theorem,	homotopy groups $\pi_*(X)$, 128, 129, 158, 188, 204, 263ff, 271, 409
322ff, 351	of a simplicial object, 265ff, 271, 276,
Hochschild-Serre. See spectral sequence.	283–286, 293
Hodge decomposition:	of a simplicial set, 263ff, 271, 276ff
in cyclic homology, 352ff	of a spectrum, 409ff
in Hochschild homology, 299, 323ff, 353	Hopf, H., 198, 205
Hom double complex, 62ff, 90, 398ff	Hopf algebra, 194, 226-7, 319, 367ff
Hom functor, 3, 5, 27, 34, 40ff, 51ff, 62ff, 115,	Hopf's Theorem, 198, 200, 234
118, 161ff, 377, 382, 421ff, 429ff. See also Ext.	Horseshoe Lemma, 36, 37, 45, 46, 99, 146 H-space, 159
as a g-module, 226, 244	Hurewicz homomorphism, 129, 267
in derived categories. See hyperext.	hyperbolic plane, 205
is left exact, 27–28, 52	hypercohomology, 150, 166, 354, 398, 404
sheaf Hom Hom. See sheaf Hom.	hyper-derived functors \mathbb{L}_*F and \mathbb{R}^*F ,
homogeneous space, 205	147-151, 166, 391-395, 402ff
homological δ -functor, 30ff, 43, 45ff, 113,	hyperext $Ext^n(A^*, B^*)$, 399ff
146, 189, 195, 265, 276, 423	hyperhomology, 145ff, 157, 166, 206, 309,
homological dimension. See dimension.	339

hyper-derived functors \mathbb{L}_*F and \mathbb{R}^*F (cont.) Kan, D., 262, 270 Kan complex, 262. See also fibrant simplicial hypertor Tor, 148ff, 167, 395ff, 402 set id(A). See dimension. Kan condition, 262, 263 id lemma, 93 Kan extension, 259 ideal of a Lie algebra, 216, 232ff, 242ff Kan fibration. See fibration of simplicial idempotent element, 97-98, 163, 311 sets. Eulerian — $e_n^{(i)}$, 325ff, 352ff Kant, I., 418 Karoubi, M., 339 signature —. See signature idempotent. Karoubi's Theorem for HC(G), 339ff image of f, 1, 6, 220, 425 Kassel, C., 343, 345, 368 induced G-module, 171ff kernel, 1-2, 6ff, 15, 55ff, 81, 220, 419, 425ff infinite loop space, 408 Killing, W., 247 inflation map (inf), 189ff, 196, 211, 214, 234 Killing form, 243ff, 247, 250ff initial obect, 5, 383, 419 Kostant, D., 322, 351 injective objects, 38ff, 50, 149, 213 Koszul, J., 120, 239 abelian groups (are divisible), 39, 73 Koszul complex, 111-119, 240, 254, 260 cochain complexes of -, 40, 387ff, 392ff, Koszul resolution, 69, 114, 229, 292, 304 399ff, 405, 409 Kriz, I., 415 enough injectives, 38ff, 49-52, 79, 80ff, Krull dimension $\dim(R)$. See dimension. 116, 149, 150ff, 211, 223ff, 271, 380, Krull's Theorem in Galois Theory, 207ff 387-388, 399-403 K-theory, 85, 203, 293-4 injective dimension. See dimension. Kummer sequence, 186 injective resolution. See resolution. Künneth Formula, 87ff, 144, 277, 284 modules, 38ff, 50, 69-70, 73ff, ch.4 for complexes, 88, 164ff, 227, 319 preserved by right adjoint to exact functor, for Koszul complexes, 113, 118 41, 96, 116, 153, 196, 211, 213, 233, 406 spectral sequence, 143 inner automorphism, 177, 231 inner derivations, 229ff, 245 integral closure of an integral domain, 117 λ-decomposition, 324, 326 internal product for Tor. See products. Λ^*M . See exterior algebra. invariant subgroup of a G-module, 160ff, 304 ΛX . See loop space, brutal and free. invariant subgroup of a g-module, 221ff, 226, Lf*, 396-397, 400-401, 404-406 364 LF. See derived functors. invariant theory, 364ff Laurent polynomials, 161, 250, 337, 341 inverse image sheaf $(f^{-1}\mathcal{G})$, 53ff, 58, 410 left adjoint. See adjoint functors. inverse limit. See limits. left exact functor, 27. See exact functor. Jacobian criterion, Jacobian matrix, 318 left resolution, 34 Jacobi's identity, 216ff Leibnitz rule, 112, 127, 134, 174, 181, 218, Jacobson radical J(R), 103, 104, 314 229, 321, 359, 360 Leray, J., 120, 127 $\mathbf{K}(\mathcal{A})$ homotopy category, 15, 18, 63, ch.10 Leray-Serre spectral sequence. See spectral $\mathbf{K^b}(A), \mathbf{K^\pm}(A), 370, 384, 388-395$ sequence. K(S). See homotopy category of spectra. Levi, E. E., 247 Kac-Moody Lie algebra, 251 Levi factor, 246ff Kähler differentials $\Omega_{R/k}$, 294ff, 307ff, 314, Levi's Theorem, 246, 248 318, 336, 365 Lie, S., 216, 247 exterior algebra $\Omega_{R/k}^*$, 321ff, 349ff Lie algebra, ch.7, 362ff abelian -, 217-221, 227, 229, 234ff, 243, - are projective if R is smooth, 295, 318, 323 Affine (Kac-Moody) —, 250ff k-split. See split exact complex.

The stacker (see)	1 4 (6
Lie algebra (cont.)	low degree terms (from a spectral sequence),
free — (see presentations), 218ff, 221–224,	121, 129, 151, 196, 198, 214, 233ff lower central series of a Lie algebra, 219
233–238, 248 <i>Lie(A)</i> for associative algebras A, 217, 220,	Lyndon, R., 195
223–227, 244, 362	Lyndon, K., 193
nilpotent —, 219, 233	MacLane, S., 205, 316, 418
perfect —, 248ff	MacLane's criterion for separability, 316
product of —, 219, 248, 250	Malcey, 247
reductive —, 248	manifold, 26, 105, 131, 216, 323, 349, 418
restricted —. See restricted Lie algebra.	map of spectra, 408ff
semisimple —, 242–248, 250, 253	mapping cone of f. See cone.
simple —, 242–244, 250ff, 363	mapping cylinder $cyl(f)$. See cylinder.
simply connected —, 249ff	mapping lemma for spectral sequences, 123,
solvable —, 219, 242	125, 126
solvable radical g, 242–247	Maschke's Theorem, 95, 342
Lie bracket, 216, 220-224	Massey, W., 153
Lie group, 131, 158, 205, 216, 247	matrices, 1, 4, 70, 217, 318, 327-330, 364,
lifting property, 33, 34ff, 78, 281, 290,	424, 425
318	matrix Lie algebras, 217. See also \mathfrak{gl}_n , \mathfrak{sl}_n ,
lim ¹ functor, 74, 80ff, 136ff, 153, 338, 343,	etc.
426ff	matrix ring $M_n(A)$, 33, 95, 176, 187, 217,
limits, 55ff, 427ff, 430	245, 309ff, 327ff, 336, 362
direct limits. See colimits.	maximal ideal, 73, 76, 97, 102–111, 318, 323
inverse limits, 55, 80ff, 126, 137, 153,	May, J. P., 415
207ff, 340, 343, 427, 429	Mayer-Vietoris sequence, 115, 119
local coefficients, 128	Milnor, J., 84, 85
local cohomology, 115ff	Mitchell, B., 25, 29, 86
localization of a category, 379–386, 389, 395,	Mittag-Leffler condition, 82ff, 140
408, 415	trivial —, 82ff, 117, 139, 359
— of a ring. See multiplicatively closed set. Localization Theorems:	mixed complex, 344ff
	normalized —, 346ff, 352, 356ff trivial —, 349, 352
for Hom and Ext, 75ff, 163 for Tor, 73, 293, 305	module spectra, 415
of regular rings, 111	monad (= triple), 279
of smooth algebras, 314, 316	monic morphism, 6ff, 13, 28, 49, 57, 220, 255,
localizing subcategory, 29, 383ff, 389, 391,	418ff, 425ff
394, 402, 409, 412	monoid, 418
locally small multiplicative system, 381–386,	Moore, J., 270
409	Moore complex NA, 265. See also chain
local field, 215	complex.
local ring, 73, 76, 97ff, 102-111, 297	Morita equivalent rings, 326ff
Loday, JL., 333, 352, 362, 365, 367, 368	Morita invariance, 328ff, 336
logarithm, 27	morphism, 417
long exact sequences, 10ff, 30ff, 45ff, 81, 113,	of chain complexes, 2ff, ch.2, 72, 75, 277,
115, 128, 130, 148ff, 158, 168, 213, 265,	330, 362ff
290, 301, 334, 358	of δ -functors, 32, 48, 189, 194ff, 226, 234,
loop space ΩX , 129–130, 361, 408ff, 411	278
brutal loop space ΛA , 270, 273–274	of spectral sequences, 122-125, 134, 135,
free loop space ΛX , 361	155, 346
infinite loop space, 408	of triangulated categories, 377, 385, 390ff,
- of spectra, 408, 410	402

principal ideal domain, 39, 69, 90, 98

multiplicatively closed set, 69, 75ff, 111, 293, p-adic integers. See \mathbb{Z}_p . 305, 307, 380, 384 path connected topological space, 90 multiplicative structure. See spectral sequence. path space PA, 129, 269ff, 273, 333, 339, 343 multiplicative system, 380ff, 385 pd(A). See dimension. pd lemma, 93, 310 ∇. See shuffle product. perfect group, 199ff, 248 n_m (strictly upper triangular matrices), 217, perfect Lie algebra, 248ff 219, 233, 235 periodic cyclic homology. See cyclic Nagata, M., 111 homology. Nakayama's Lemma, 102-109, 314, 317 petite complex, 387 natural transformation, 25, 31ff, 46ff, 54, 254, PGL_n (projective linear group), 182, 186 269, 279, 286, 391ff, 423ff, 428, 430 pgl_n (semisimple but not simple), 244 negative cyclic homology. See cyclic *p*-group, 25, 159 homology. p-torsion subgroup $_{p}A$ of A, 31, 66ff, 342 Nesbitt, E., 96 Poincaré, H., 1 nilpotent Lie algebra. See Lie algebra. Poincaré-Birkhoff-Witt Theorem, 225ff, 239 noetherian ring, 25, 75ff, ch.4, 296ff, 317, Poincaré lemma, 355 322ff polyhedron, 127, 258, 261 noetherian topological space, 398, 402, 407 polynomial ring, 101ff, 114, 193, 221, 223, Noether's equations, 176 226, 240, 285ff, 294-297, 304, 313, 315, Noether's Theorem, 174, 176 317, 337 nonabelian homological algebra, 265, 293 Laurent —. See Laurent polynomials. nonassociative algebra, 216 truncated --, 304, 337, 355, 358, 397, 418 nondegenerate elements of a simplicial set, Pontrjagin dual B^* of B, 39, 69ff, 73, 199, 257ff 209. nonzerodivisor, 32, 68, 100-114 Pontrjagin duality, 209, 420 Normal Basis Theorem, 173 posets (partially ordered sets), 26, 56, 80, 86, normalized chain complex. See chain complex. 139, 152, 207, 418 norm element of a finite group, 162ff, 167, directed poset, 429. See also filtered 173, 176, 180, 333, 344, 347 category. norm of a field extension, 176, 214 of open sets in X, 26, 53, 423 null homotopic, 17, 19-21, 63, 180, 267, 277, of open subgroups, 209, 212 387-389 power series ring, 100, 105 (p, q)-shuffles. See shuffle product, shuffle Ω^{∞} functor, 408ff element. Ω-spectrum, 409 presentations for groups, 198, 203, 294, 307 ΩX . See loop space, Kähler differentials. — for algebras, 223, 224, 285 objects of a category, 417 for Lie algebras, 233, 235ff, 248 obstruction to being split, 77 preserves injectives. See injective. octahedral axiom, 374ff, 414 preserves projectives. See projective. opposite category, 26ff, 40, 43, 50, 55, 57, preserving derived functors. See exact functor. 149, 152, 254, 279, 280, 287, 332, 378, presheaves, 26ff, 42, 53, 387, 402, 410, 423 382, 386, 391, 419–428 Presheaves(X), 26ff, 53, 55, 386, 431 opposite ring, 302, 327, 420 prespectrum, 409ff Øre condition, 380ff CW prespectrum, 409, 410, 415 orthogonal Lie algebra o_m , 217 prime ideal, 73, 76, 105ff, 111, 115, 317 Osofsky, B., 92 primitive elements in a coalgebra, 363ff outer automorphism, 177 principal congruence group $\Gamma(N)$, 205 principal derivations, 174ff, 179, 213, 306 $\pi_*(X)$. See homotopy groups. principal G-fibration. See G-fibration.

 $\pi^*(X)$. See cohomotopy.

products: in a category, 5, 55, 383, 420, 425–428. See also cocomplete category. cross product in cohomology, 165ff, 192, 227 cup product in cohomology, 192ff, 227, 277	pullback, 29, 78ff, 86, 182, 185, 201, 313, 343 punctured spectrum of a ring, 116 Puppe, D., 21, 407 Puppe sequence, 413ff pushout, 54, 77ff
direct product of groups, 164, 192ff, 201ff external —, 36, 64ff, 112–114, 227, 291–292, 319ff	quasi-Frobenius ring, 96ff quasi-isomorphism, 3, 15–21, 59, 63, 99, 146ff, 275, 346, 360, 363, ch.10
Hochschild —, 319ff	quaternion algebra H, 176, 215
internal —, 65, 114, 319–323	Quillen, D., 295, 333, 362, 365, 367
— of Lie algebras, 227, 243, 246, 248, 250, 253	quotient category, 18, 29, 369, 384, 411 quotient complex, 6, 20, 22, 178, 266, 335,
— of rings, 292, 302, 310, 316	362
— of simplicial objects, 261, 277	1 1 1 240 264
— of spectra, 408, 411	reductive Lie algebra, 248, 364
— of topological spaces, 89, 408	reflection functor; reflective subcategory, 29,
profinite:	422, 431
cohomology, 211ff completion, 209	regular filtration of a complex, 124 regular rings, 105ff, 317ff, 322ff
groups, 206, 208ff, 420	finite global dimension, 110
sets, 208	geometrically regular algebra, 317
topology, 207ff	smooth over a field, 317
projection formula, 404ff	von Neumann regular rings, 97ff
projective:	regular sequence (A-sequence), 105-114,
— abelian groups are free, 33, 66, 73	119, 240, 291, 304, 318, 323
chain complex of —, 34, 392ff, 401, 405	regular spectral sequence, 126
enough projectives, 33ff, 43, 47, 51-58, 79,	relations. See presentations.
145ff, 151, 211, 221–224, 274, 276, 380,	relative Ext. See Ext.
388–396	relative Tor. See Tor.
— lifting property. See lifting property.	relatively flat module, 292
— modules, 33ff, 50, 68, 71, 77, 89, 90,	representations, 164, 202, 243
ch.4, 167, 173, 189, 281, 303, 310ff, 318,	projective representation, 182, 186
323, 327ff	resolutions:
— objects, 29, 33ff, 40, 44ff, 51, 162, 224,	bar. See bar resolution.
274, 277, 288	canonical, 177, 235, 275, 282ff
— preserved (by left adjoint to exact functor), 41, 233, 276, 404ff	Cartan-Eilenberg —, 145ff. See also resolution.
— resolutions. See resolutions.	of a chain complex. See hyperhomology.
⊥ –projective, 281ff, 290ff, 296	Chevalley-Eilenberg —. See Chevalley-
projective dimension. See dimension.	Eilenberg complex. F-acyclic, 44, 47, 50, 51, 71, 148, 283, 285,
projective linear group. See PGL_n , \mathfrak{pgl}_n . projective representation. See representa-	392
tions.	flat, 71, 87, 91ff, 144, 303
projective special linear groups. See PSL_n ,	free, 67, 75, 76, 114, 164–169, 178, 193,
psl _n .	204, 222, 284, 287
projective <i>n</i> -space, 131, 205	Godement, 285
proper group action, 203ff	injective, 32, 40, 42, 50ff, 63, 73ff, 85, 91ff,
PSL_n (projective special linear group), 199,	149, 151, 394
202	k-split, 289ff, 298, 304
\mathfrak{psl}_n is a simple Lie algebra, 244	Koszul —. See Koszul resolution.

resolutions (cont.)	section of an extension, 77, 182, 185, 187
left, 34, 44	section of a sheaf. See global section.
non-projective, 68	semidirect product:
periodic, 67, 74, 167, 178, 304, 333	of groups, 176, 182ff, 197
projective, 34, ch.2, ch.3, 91–100, 109, 111,	of Lie algebras, 231–234, 237, 247, 248
143ff, 162ff, 172, 191ff, 239, 241, 303,	semisimple rings, 95ff, 110, 309, 314, 342
397	— Lie algebra. See Lie algebra.
right, 40	semi-simplicial objects, 258ff, 273, 278
simplicial, 274ff, 283ff, 296, 333	sequence. See exact —, Koszul —, regular —.
simplicial polynomial — of a ring, 296ff	separable algebras, 309ff, 316, 336, 342
truncated, 99	separable closure K_s of a field, 207ff, 213, 214
⊥ –projective, 282, 289ff, 302	separable field extension, 207, 308–309, 316ff
restricted Lie algebra, 227, 232, 238	separably generated field extension, 315ff
— cohomology, 261, 232, 238	Serre fibration 127ff, 188, 204ff
— extensions, 232, 238	Serre, JP., 117, 128, 195
— modules, 227, 232	Serre subcategory, 384–5, 389–390, 393
universal enveloping algebra $u(\mathfrak{g})$, 227	Sets (category of sets), 260, 281–285, 293,
restriction map (res), 174, 185, 189–196, 211,	332, 417–424, 428, 430
214, 234	set-theoretic problems, 183, 379–382, 422,
\mathbf{Rf}_* , 53, 396–398, 402, 406ff. See also f_* .	423. See also universes.
RF. See derived functor.	Shapiro's Lemma, 162, 169, 171ff, 195, 206,
RHom and hyperext, 63, 398ff, 405ff	282
Riemann surface, 205	sheafification, 27, 53, 55, 410, 431
right adjoint. See adjoint functors.	sheaves on a space X, 25, 26ff, 42, 51, 53ff,
right exact functor, 27. See exact functor.	115, 152, 285, 354, 387, 396, 398,
right resolution, 40	406–410
Rinehart, G., 358	Sheaves(X) (category of sheaves on X), 26,
Rings (category of rings), 418ff	42, 51–55, 58, 80, 115, 152, 285, 380,
ring spectrum, 415	386, 390, 397ff, 426–431
R-mod, xiv, 1, 25, 418	constant sheaf, 26, 51, 54 of C^{∞} functions, 26
Rosenberg, A., 322, 351	of C^{∞} functions, 26
rotation of triangles. See triangles.	of continuous functions, 26, 27
Russell's paradox, 417	direct image —. See direct image sheaf. enough injective sheaves, 42, 80
el (-:t-) 121 205 221 261	- -
S ¹ (circle), 131, 205, 331, 361	inverse image —. See inverse image sheaf. sheaf Hom Hom, 402, 407
S ⁿ . See sphere, sphere spectrum.	skyscraper sheaf, 42, 51, 54, 285
SA (category of simplicial objects in A), 254,	stalk of a sheaf, 42, 54, 285, 387
271ff	short exact sequence, 27–31, 45, 49, 76, 130,
satellite functors, 32	212
saturated. See multiplicative system. SBI sequence, 335–338, 342–348, 352, 354,	of complexes, 7, 10ff, 19, 23ff, 45, 87, 334
361	of cyclic objects, 334
	of Lie algebras, 217ff, 232, 234
Schack, S. D., 323 Scheja, G., 114	of towers of modules, 81ff, 137ff
schemes, 354, 396, 401, 406	shuffle elements s_{pq} , 324–5
Schur, I., 182, 186, 199	shuffle product ∇ , 181, 278, 284, 291, 319ff,
Schur's Lemma on simple modules, 244	324, 350
Schur multiplier, 199, 203	signature idempotent $\varepsilon_n = e_n^{(n)}$, 324ff, 350,
Schur-Zassenhaus Theorem, 186	signature idempotent $\varepsilon_n = e_n^{-1}$, 32411, 330, 353, 364. See also idempotent.
Second fundamental sequence for $\Omega_{R/k}$, 309,	sign trick, 8, 10, 58, 62, 99, 146, 193, 275,
314, 318	
517, 510	321, 328, 333, 359, 360

simple algebras. See Brauer group, Lie collapsing at E^r , 124, 136, 143ff, 151, 197, 206, 239, 298ff, 335, 342, 351, 394 algebras. simplex (simplices), 4, 254, 256ff, 268 Connes' --, 346, 348ff simplicial category Δ , 255ff, 269, 271ff, 331ff converging —, 123ff, 126, 135ff, 239. See simplicial complex, 256-258. See also chain also convergence. complex. degenerates (= collapses at E^2) combinatorial —, 258, 261, 262 E² terms, 121, 124, 128ff, 142ff, 196 geometric ---, 4, 5, 19, 256, 258, 261 E^{∞} terms, 122–127, 135, 137, 140, 156, simplicial homology. See homology. 158 - of a cotriple, 286ff edge maps, 124, 128, 151, 196, 234, 335 simplicial homotopy. See homotopy. Eilenberg-Moore —, 361 simplicial objects, ch.8, 295, 301, 329-344, first quadrant —, 120-127, 132, 135, 144, 415 145, 151ff, 195, 232, 266, 276, 296, 308, aspherical -... See aspherical. 335, 359ff augmented ---, 274, 278ff, 286ff, 295, 298 Grothendieck —, 139, 150ff, 195ff, 233, constant -, 254, 270, 289 403ff simplicial identities, 256, 275 half plane -, 125, 143 simplicial resolution, 274. See also resolution. Hochschild-Serre — (for Lie algebras), simplicial set, 257-267, 270, 275, 293 232-236, 342, 368 fibrant —. See fibrant simplicial set. hyperhomology —, 148ff, 157, 166-7, 206, singular --, 260ff, 264, 412 402ff simply connected Lie algebra, 249ff Künneth -, 143 simply connected topological space, 128ff, Leray ---, 152, 406ff 158, 204, 247, 361 Leray-Serre — (for Serre fibrations), 127ff, singular chain complex. See chain complex. 132, 206 singular simplicial set S(X). See simplicial set. Lyndon/Hochschild-Serre — (for groups), skeletal subcategory, 422, 423, 431 190, 195ff, 211, 214, 232, 342, 406 SL_n (special linear group), 199, 202–205 multiplicative structure, 127, 134 \mathfrak{sl}_n , 217, 229, 241–248, 363ff of a double complex, 141ff, 298, 394 small category, 12, 25, 29, 43, 80, 379ff, 418, — of an exact couple, 155ff. See also 421, 422, 428 exact couples. smash products of spectra, 415 regular --, 125-126, 139ff, 157 smooth algebra, 296, 313ff, 322-326, 337, "six spectral sequences" of EGA III, 404 350ff with 2 columns, 121, 124 smooth algebraic variety, 105 with 2 rows, 124 smooth manifold. See manifold. spectrification functor, 410. See also Ω^{∞} Snake Lemma, 11ff, 31, 38, 68, 70, 81, 156 functor. SO_n , 131, 205 spectrum. See spectra. solvable radical. See Lie algebras. sphere S^n , 130–131, 205, 406 Spec(R), 115, 397sphere spectrum S^n , 408 special linear group. See SL_n . Spin group $Spin_n$, 202 special linear Lie algebra. See \mathfrak{sl}_n . split complex, 16-19, 24 spectra in topology, 408ff split exact complex (or sequence), 2, 16ff, 34, CW spectra, 390, 409, 410ff, 415 45, 87ff, 113, 114, 164ff, 178, 227, 275, spectral sequences, 8, 9, 83, 100, 122, ch.5, 289, 299, 301, 314, 318, 352 402ff k-split complex, 289ff, 298, 311 Bockstein —, 158ff split extensions. See extensions. bounded —, 123ff, 132, 135, 159 splitting field, 207, 309 bounded below -, 125ff, 132, 135 stabilization homomorphisms, 365 bounded convergence, 123, 135. See also stable homotopy category D(S), 407–415 convergence. Stallings, J., 176

standard complex, 239. See also Chevalley-157, 161ff, 172, 221, 225, 228, 277, 287, Eilenberg complex. 289, 295, 303, 342, 395ff, 404, 423, 429 Steinberg group St_n , 203, 294 external and internal products for Tor. See Storch, U., 114 products. hypertor Tor. See hypertor. strict triangle on a map u, 371ff strictly upper triangular matrices. See n_m . relative Tor, 288ff, 302ff, 323 Structure Theorem of semisimple Lie algebras, torsion group, 25, 31, 66ff, 73, 74, 158, 209, 243 213, 420, 423, 426 subcomplex, 6, 19ff, 83 torsionfree abelian group, 25, 67, 69, 74, 158 suspension spectrum, 409 is flat, 67, 69 suspension SX of a space X, 24, 409 torsionfree group, 205 — SE of a spectrum E, 411ff total complex (Tot), 8, 9, 15, 100, ch.5, 276ff, Swan, R., 170, 269, 294 335, 345ff 426 symmetric algebra Sym(M), 285–286, 297ff, direct sum — Tot^{\oplus} , 8, 9, 58ff, 141–149, 193, 284, 328, 359ff, 394ff product — Tot Π , 8, 9, 60ff, 85ff, 141ff, symmetric group Σ_n , 286, 324ff, 353, 364ff syzygy, 47, 93ff, 99ff, 109 149, 337-348, 352, 357, 360 total degree of a double complex, 122, 132, 154 t_m (upper triangular Lie algebra), 217, 219, total Hom. See Hom total complex, hyperext, 235 RHom. tangent space of a Lie group, 216 totally disconnected space, 208ff Tate cohomology, 168ff, 173 total space(see Serre fibration) tensor algebra T(M), 223, 228, 254, 261, 285, total tensor product \otimes^L , 395ff, 402, 415 303, 337, 347, 355ff, 412, 418, 420ff total tensor product chain complex. See tensor product, 52, 145, 300, 354, 421. See tensor product. also Tor. tower of abelian groups or modules, 80ff, adjoint to Hom, 52ff, 405, 430 117ff, 133, 136, 140, 152, 337, 429. See of chain complexes, 58ff, 65, 88ff, 111, also lim1. 143ff, 165, 277, 284 double tower, 139, 153 of simplicial modules, 277, 319 trace, 173, 217, 229, 243ff total tensor product (in derived category), trace map in homology, 328ff, 336, 362ff 394ff, 415 transcendence basis of a field, 315 terminal object, 5, 298, 383, 419 transfer maps, 174, 194ff tetrahedron, 4 transitivity of smoothness, 314, 315, 322 Thomason, R., 408 for André-Quillen homology, 297 3×3 Lemma, 11 translate C[n] of a complex, 9, 10, 59, 63, 83, Top (category of topological spaces), 418-419 99, 113, 147, 270, 273-274, 346, 348, topological derived category. See stable 352, 364, 366, ch.10 homotopy category. of a double complex, 60, 335, 337, 346, topological group, 82, 209 348, 353 topological space X, 4-5, 17, 19ff, 26ff, 42, translation. See translate, triangulated category. 51, 53, 84, 88ff, 115, 127ff, 150, 152, translation functor T, 374ff, 386, 390, 408 158, 203-208, 257ff, 260, 262, 319, triangles, 15, 374ff, 412 396-402, 406, 408ff, 423 exact triangles, 153ff, 371, 374ff, 390, 392, presheaves on —. See presheaves. 399, 412ff sheaves on - . See sheaves. in D(A), 386, 389 Tor-dimension. See dimension. in K(A), 371ff, 385 Tor-dimension Theorem, 92, 94 rotation of --, 372, 374, 413 Tor functor, 32, 36, 53, 56, 58, ch.3, 92ff, 104, triangulated category K, 15, 374, ch.10 108, 110, 114, 128, 143–144, 148–149, morphisms between —. See morphisms.

triangulated category K (cont.) triangulated subcategory, 377, 378, 389-390, 402ff triple T, 279ff triple cohomology, 286ff trivial G-module, 160ff, 278 trivial g-module, 216ff, 229 trivial mixed complex, 349ff trivial module functor, 160-161, 220-221 truncated polynomials. See polynomial ring. truncations (good truncation τC and brutal truncation σC) of a complex, 9, 99, 270, 274, 349, 415 of a double complex, 60, 85, 337 Tsen's theorem, 214 Tsygan, B., 333, 362, 367 Tsygan's double complex CC**, 333. See also double complex.

Unique Factorization Domain, 111 unit η of adjunction, 430. See also adjoint functors. universal central extension, 198ff, 248ff, 294 Universal Coefficient Theorems, 83, 87ff, 89, 128, 144, 164, 196, 296, 307 with supports, 115 universal δ -functor, 32ff, 43, 47–51, 67, 81, 86, 118, 189, 194, 212, 271, 276, 278, 288, 290, 423 universal enveloping algebra $U(\mathfrak{g})$, 223ff, 238ff of a restricted Lie algebra $u(\mathfrak{g})$, 227

van der Waerden, B. L., 247 vector fields on a Lie group, 216 vector spaces over a field, 1ff, 15, 25, 74, 83, 97, 103, 173, 227, 241, 244, 311, 318, 358, 423, 430 Verdier, J.-L., 374, 378, 407

universes, 379-380, 385, 409

upper triangular matrices. See \mathfrak{t}_m .

Vigué-Poirrier, M., 323 Villamayor, O., 311, 342 von Neumann, J., 97 von Neumann regular rings, 97ff

Walker, E., 96

Wang sequence, 130ff weak dimension. See dimension. weak homotopy equivalence. See homotopy «equivalence. weakly effaceable functor, 28ff Wedderburn's Theorem, 95, 187, 309 Wedderburn's Principal Theorem, 314 wedge of spectra $(E \vee F)$, 410ff weight, 354ff well-powered category, 385, 387 Weyl, H., 247 Weyl's Theorem, 246ff, 363, 364 Whitehead, J. H. C., 188, 247, 313 Whitehead's Lemmas, 245ff, 250, 252 Whitehead's Theorem, 390, 412 Whitney, H., 277

Yoneda embedding, 25, 28, 29, 261, 422, 424 Yoneda Ext groups, 79ff, 188 Yoneda Lemma, 28, 52, 308, 309 Yoneda, N., 79

 \mathbb{Z}_p (p-adic integers), 74, 82, 85, 207ff, 215, 343 $\mathbb{Z}_{p^{\infty}}$ (the divisible p-group), 39, 74, 85 $\mathbb{Z}(C)$ (cycles in a chain complex), 3 $\mathbb{Z}G$, $\mathbb{Z}R$. See cyclic objects. Zassenhaus, H., 186 Zelinsky, D., 311 zerodivisors, 105ff. See also nonzerodivisors. zero object, 5, 370, 383, 408, 411, 419, 425 Zilber, J., 259, 277 Zisman, M., 382 Zorn's Lemma, 39