Análisis complejo

Taller 1

Funciones holomorfas.

Fecha de entrega: 15 de agosto de 2024

- 1. Sea $U \subseteq \mathbb{C}$ abierto. Demuestre que U es conexo si y solo si es camino-conexo.
- 2. (a) Sean $z, w \in \mathbb{C}$ con $\overline{z}w \neq 1$ y $|z| \leq 1$ y $|w| \leq 1$. Demuestre que

$$\left| \frac{w - z}{1 - \overline{w}z} \right| \le 1$$

con igualdad si y solo si |z| = 1 o |w| = 1.

(b) Sea $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ el disco unitario en $\mathbb{C}.$ Para $w\in\mathbb{D}$ fijo defina

$$F(z) = \frac{w-z}{1-\overline{w}z}$$
 para $z \in \mathbb{C}$ con $\overline{w}z \neq 1$.

Demuestre:

- (i) F es holomorfa en \mathbb{D} y $F(\mathbb{D}) \subseteq \mathbb{D}$.
- (ii) F(0) = w y F(w) = 0.
- (iii) |F(z)| = 1 para |z| = 1.
- (iv) $F: \mathbb{D} \to \mathbb{D}$ es biyectiva.
- 3. Sea $U:=\{z\in\mathbb{C}: \mathrm{Im}(z)>0\}$. Demuestre que $\Phi:\mathbb{D}\to U, \quad \Phi(z)=\mathrm{i}\,\frac{1-z}{1+z}$ es una biyección y calcule su inversa.
- 4. Sea $U:=\{z\in\mathbb{C}: \mathrm{Im}(z)>0\}$ y sea $\Psi(z)=\dfrac{\alpha z+\beta}{\gamma z+\delta}$ para $\alpha,\beta,\gamma,\delta\in\mathbb{C}$ fijos.
 - (a) Suponga que $\alpha,\beta,\gamma,\delta\in\mathbb{R}$ con $\alpha\delta-\beta\gamma>0.$ Demuestre que $\Psi:U\to U$ es una biyección.
 - (b) Suponga que $\Psi:U\to U$ es una biyección. Demuestre que los números $\alpha,\beta,\gamma,\delta$ se pueden escoger en $\mathbb R.$
- 5. Voluntario. Demuestre que $\frac{\overline{\partial f}}{\partial z} = \frac{\partial \overline{f}}{\partial \overline{z}}$. Formule y pruebe la regla de cadena para las derivadas de Wirtinger.