I - Étude globale

1 - Définitions

Définition 1 : (Suite numérique)

Une suite numérique est une fonction de dans \mathbb{N} dans \mathbb{R} .

Exemple 1:

La fonction définie pour tout entier naturel n par u(n) = 2n + 1 est une suite.

Notation:

- On peut désigner la suite u avec la notation (u_n) (entre parenthèses);
- L'écriture u_n (sans parenthèses) désigne le terme de rang n de la suite u, c'est à dire u(n);

Remarque 1:

Une suite u peut être définie à partir d'un certain rang u_0 , on notera alors $(u_n)_{n\geq n_0}$ pour désigner la suite u.

Définition 2 : (Modes de génération)

Il existe trois façon de définir une suite :

1. Définition explicite :

La suite (u_n) est définie directement par son terme général :

$$u_n = f(n)$$

Avec f une fonction dépendant de n définie sur \mathbb{N} ;

2. Définition par récurrence :

Soit f une fonction définie sur \mathbb{R} et $a \in \mathbb{R}$, une suite u_n peut être définie par récurrence par :

$$\begin{cases} u_0 = a \\ u_{n+1} = f(u_n) \end{cases}$$

3. Définition implicite :

La suite est définie par une propriété géométrique, économique ... au sein d'un problème.

Remarque 2:

Quel que soit le mode de définition d'une suite, il se peut que celle-ci ne soit définie qu'à partir d'un certain rang $n_0 > 0$.

Remarque 3:

On peut faire les analogies suivantes entre les suites et les fonctions :

Fonctions		Suites	
f	\leftrightarrow	u	
X	\leftrightarrow	n	
antécédent	\leftrightarrow	rang terme u	
image	\leftrightarrow		
f	\leftrightarrow		

2 - Sens de variation

Remarque 4:

Dans la suite, on considère (u_n) une suite définie sur \mathbb{N} pour tout $n \ge n_0$, avec $n_0 \ge 0$.

Définition 3 : (Suite croissante)

$$(u_n)$$
 croissante $\iff u_{n+1} \ge u_n, \ \forall n \ge n_0$

Exemple 2:

Considérons (u_n) définie par :

$$\begin{cases} u_0 = 12 \\ u_{n+1} = (u_n)^2 + u_n, \forall n \in \mathbb{N} \end{cases}$$

Définition 4 : (Suite décroissante)

$$(u_n)$$
 décroissante $\iff u_{n+1} \le u_n, \ \forall n \ge n_0$

Définition 5 : (Suite monotone)

La suite (u_n) est monotone si et seulement si elle uniquement est croissante ou décroissante (sans changer de sens de variation).

Définition 6 : (Suite constante)

$$(u_n)$$
 constante $\iff u_{n+1} = u_n, \forall n \ge n_0$

3 - Représentation graphique

Définition 7:

Dans un repère orthonormé direct du plan, la représentation graphique d'une suite u est l'ensemble des points ayant pour coordonnées $(n; u_n)$ avec $n \in \mathbb{N}, n \le n_0$

Exemple 3:

On considère la suite $(u_n)_{n\in\mathbb{N}}$ par : $u_n=n^2-1$ Les premiers termes de la suite sont donnés dans le tableau suivant :

n	0	1	2	3	4	5
u_n	-1	0	3	8	15	24

On obtient la représentation graphique des premiers points de la suite :

4 - Suites arithmétiques

Définition 8:

Une suite (u_n) est une suite arithmétique s'il existe un nombre r tel que :

$$u_{n+1} = u_n + r$$

Le nombre r est appelé raison de la suite.

Exemple 4:

Considérons (u_n) définie par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = u_n - 2, \forall n \in \mathbb{N} \end{cases}$$

 (u_n) est une suite arithmétique de raison r = -2

Propriété 1:

Soit (u_n) une suite arithmétique de raison r;

- Si r > 0 la suite est strictement croissante ;
- Si r < 0 la suite est strictement décroissante ;
- Si r = 0 la suite est constante.

Théorème 4 : (Terme général d'une suite arithmétique)

Soit une suite arithmétique de raison r définie à partir d'un certain rang n_0 .

Pour tout entier supérieur ou égal à n_0 son terme général est égal à :

$$u_n = u_{n_0} + (n - n_0)r$$

En particulier si $n_0 = 0$, on a :

$$u_n = u_0 + n \times r$$

Exemple 5:

On considère (u_n) une suite arithmétique de raison r = 2 et de premier terme $u_5 = 18$.

$$\forall n \geq 5, u_n = 18 + (n-5)2 = 2n + 8$$

Propriété 2:

Soit (u_n) une suite arithmétique. Les points de sa représentation graphique sont alignés.

5 - Suites géométriques

Définition 9:

Une suite (u_n) est une suite géométrique s'il existe un nombre q tel que :

$$u_{n+1} = u_n \times q$$

Le nombre q est appelé raison de la suite.

Exemple 6:

Considérons (u_n) définie par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = u_n \times 2, \forall n \in \mathbb{N} \end{cases}$$

 (u_n) est une suite arithmétique de raison r = 2

Propriété 3:

Soit (u_n) une suite arithmétique de raison q > 0;

- Si q > 1 la suite est strictement croissante ;
- Si 0 < q < 1 la suite est strictement décroissante ;
- Si q = 1 la suite est constante.

Théorème 6 : (Terme général d'une suite géométrique)

Soit une suite géométrique de raison q définie à partir d'un certain rang n_0 . Pour tout entier supérieur ou égal à n_0 son terme général est égal à :

$$u_n = u_{n_0} \times q^{(n-n_0)}$$

En particulier si $n_0 = 0$, on a :

$$u_n = u_0 \times q^n$$

Exemple 7:

On considère (u_n) une suite géométrique de raison q = 5 et de premier terme $u_3 = 10$.

$$\forall n \ge 5, u_n = 10 \times 5^{(n-3)} = \frac{10}{125} \times 5^n$$

Propriété 4:

Soit (u_n) une suite géométrique de raison $q \neq 1$. Les points de sa représentation graphique ne sont pas alignés.

6 - Suites arithmético-géométriques

Définition 10:

Une suite (u_n) est une suite arithmético-géométrique s'il existe deux nombres a et b tels que :

$$u_{n+1} = a \times u_n + b$$

Théorème 7 : (Terme général d'une suite arithmético-géométrique)

Soit (u_n) une suite arithmético-géométrique avec $a \neq 1$ définie à partir d'un certain rang n_0 .

En posant : $r = \frac{b}{1-a}$ Pour tout entier supérieur ou égal à n_0 son terme général est égal à :

$$u_n = a^{n-n_0}(u_{n_0} - r) + r$$

En particulier si $n_0 = 0$, on a :

$$u_n = a^n(u_0 - r) + r$$

7 - Séries

Définition 11:

Étant donné une suite de terme général u_n , étudier la série de terme général u_n c'est étudier la suite de terme général S_n définie par :

$$S_n = u_0 + u_1 + u_2 + \ldots + u_n = \sum_{k=0}^n u_k$$

Exemple 8:

Soit (u_n) la suite arithmétique de terme général $u_n = n$ (i.e. r = 1; $u_0 = 0$), on a donc :

$$S_n = 1 + 2 + 3 + \ldots + n = \sum_{k=0}^{n} k$$

Théorème 8 : (Somme des termes d'une suite arithmétique.)

Soit (u_n) une suite arithmétique :

$$S_n = u_0 + u_1 + u_2 + \ldots + u_n = \sum_{k=0}^n u_k = \frac{(n+1)(u_0 + u_n)}{2}$$

Théorème 8 : (Somme des termes d'une suites géométrique.)

Soit (u_n) une suite géométrique :

$$S_n = u_0 + u_1 + u_2 + \ldots + u_n = \sum_{k=0}^n u_k = u_0 \times \frac{1 - q^{n+1}}{1 - q}$$

Plus généralement, pour tout entier naturel k < n:

$$S_n = u_0 + u_1 + u_2 + \ldots + u_n = \sum_{k=0}^n u_k = u_k \times \frac{1 - q^{n-k+1}}{1 - q}$$