- 7.1 TRUE: a, d, e, f. FALSE: de rest.
- Nota bij (e): $3^n = 2^{O(n)}$ omdat $3 = 2^c$ waarbij $c = \log 3$, en dus $3^n = (2^c)^n = 2^{cn} = 2^{O(n)}$.
- **7.6** Te bewijzen: als A en B in P zitten, dan ook $A \cup B$, $A \cdot B$, en $\Sigma^* A$. $A \cup B$: op input x, test of $x \in A$ of $x \in B$. Beide testen kunnen in polynomiale tijd, het geheel is dus een som van twee polynomen, wat terug polynomiaal is.
- $A \cdot B$: op input $x = x_1 \dots x_n$, test voor elke $i \in \{0, 1, \dots, n\}$ of $x_1 \dots x_i \in A$ en $x_{i+1} \dots x_n \in B$. Dit zijn O(n) testen, elke test is polynomiaal, het geheel is dus $O(n) \times$ polynomiaal, dit is polynomiaal.
- $\Sigma^* A$: op input x, test of $x \in A$, indien ja, reject, indien nee, aanvaard. Aangezien $x \in A$ polynomiaal is, is dit polynomiaal.
- **7.13** Volgend algoritme is een polynomiaal algoritme voor A^* . Op input $y = y_1 \dots y_n$, bouwen we een booleaanse tabel T[i,j] op voor $1 \le i \le j \le n$, zodat $T[i,j] = "y_i \dots y_j \in A^*$ ". Na afloop kan het antwoord dan afgelezen worden in T[1,n]. De opbouw verloopt als volgt:
 - 1. Voor elke i, T[i, i] := true als de 1-letter string $y_i \in A$, anders T[i, i] := false. Inderdaad, een 1-letter string kan enkel in A^* zitten als hij in A zit.
 - 2. We weten nu voor elke substring van lengte 1 of hij in A^* zit. Nu gaan we dit bepalen voor elke substring van lengte 2: we gaan dus T[i,j] invullen voor alle (i,j) zodat j=i+1. Daarna doen we het dan voor elke van lengte 3 (dus j=i+2), en zo voort, tot we aan T[1,n] zitten.
 - 3. De algemene regel om T[i,j] in te vullen is als volgt. Zoals zopas uitgelegd zorgen we ervoor dat T[k+1,j] reeds is ingevuld voor elke $k \in \{i,\ldots,j-1\}$. Merk nu op dat $y_i\ldots y_j \in A^*$ als en slechts als $y_i\ldots y_j \in A$, of er een $k \in \{i,\ldots,j-1\}$ bestaat zodat $y_i\ldots y_k \in A$ en $y_{k+1}\ldots y_j \in A^*$. Dit laatste kunnen we simpelweg zien in T[k+1,j]. Er zijn O(n) mogelijkheden voor k, en de testen in A zijn polynomiaal. Elke invulling is dus polynomiaal.
 - 4. We vullen $O(n^2)$ cellen van de tabel in, en $O(n^2) \times$ polynomiaal is opnieuw polynomiaal.