I have two very long, parallel wires each carrying a current I_1 and I_2 , respectively. In which direction is the force on the wire with the current I_2 ?

I

- A. Up
- B. Down
- C. Right
- D. Left
- E. Into or out of the page

ANNOUNCEMENTS

- Exam 2 Graded
 - Average: 88.8%

HISTOGRAM

POTTER HOUSES

Consider the B-field a distance z from a current sheet (flowing in the +x-direction) in the z = 0 plane. The B-field has:

A. y-component only

B. z-component only

C. y and z-components

D. x, y, and z-components

E. Other

What is $\oint \mathbf{B} \cdot d\mathbf{l}$ around this purple (dashed) Amperian loop?

A.
$$\mu_0(|I_2| + |I_1|)$$

B.
$$\mu_0(|I_2| - |I_1|)$$

C.
$$\mu_0(|I_2| + |I_1| \sin \theta)$$

D.
$$\mu_0(|I_2| - |I_1| \sin \theta)$$

E.
$$\mu_0(|I_2| + |I_1| \cos \theta)$$

Stoke's Theorem says that for a surface S bounded by a perimeter L, any vector field $\mathbf B$ obeys:

$$\int_{S} (\nabla \times \mathbf{B}) \cdot dA = \oint_{L} \mathbf{B} \cdot d\mathbf{l}$$

Does Stoke's Theorem apply for any surface S bounded by a perimeter L, even this balloon-shaped surface S?

- A. Yes
- B. No
- C. Sometimes

Rank order $\int \mathbf{J} \cdot d\mathbf{A}$ (over blue surfaces) where \mathbf{J} is uniform, going left to right:

- A. iii > iv > ii > i
- B. iii > i > ii > iv
- C. i > ii > iii > iv
- D. Something else!!
- E. Not enough info given!!

Much like Gauss's Law, Ampere's Law is always true (for magnetostatics), but only useful when there's sufficient symmetry to "pull B out" of the integral.

So we need to build an argument for what **B** looks like and what it can depend on.

For the case of an infinitely long wire, can $\bf B$ point radially (i.e., in the \hat{s} direction)?

A. Yes

B. No

C. ???

Continuing to build an argument for what **B** looks like and what it can depend on.

For the case of an infinitely long wire, can ${\bf B}$ depend on z or ϕ ?

A. Yes

B. No

C. ???

Finalizing the argument for what ${f B}$ looks like and what it can depend on.

For the case of an infinitely long wire, can ${\bf B}$ have a \hat{z} component?

A. Yes

B. No

C. ???

For the infinite wire, we argued that $\mathbf{B}(\mathbf{r}) = B(s)\hat{\phi}$. For the case of an infinitely long **thick** wire of radius a, is this functional form still correct? Inside and outside the wire?

- A. Yes
- B. Only inside the wire (s < a)
- C. Only outside the wire (s > a)
- D. No

What is $\oint \mathbf{B} \cdot d\mathbf{l}$ around this purple (dashed) Amperian loop?

A.
$$\mu_0(|I_2| + |I_1|)$$

B.
$$\mu_0(|I_2| - |I_1|)$$

C.
$$\mu_0(|I_2| + |I_1| \sin \theta)$$

D.
$$\mu_0(|I_2| - |I_1| \sin \theta)$$

E.
$$\mu_0(|I_2| + |I_1| \cos \theta)$$

An infinite solenoid with surface current density K is oriented along the z-axis. To use Ampere's Law, we need to argue what we think $\mathbf{B}(\mathbf{r})$ depends on and which way it points.

For this solenoid, $\mathbf{B}(\mathbf{r}) =$

- A. $B(z) \hat{z}$
- B. $B(z) \hat{\phi}$
- $C. B(s) \hat{z}$
- D. $B(s) \hat{\phi}$
- E. Something else?

An infinite solenoid with surface current density K is oriented along the z-axis. Apply Ampere's Law to the rectangular imaginary loop in the yz plane shown. What does this tell you about B_z , the z-component of the B-field outside the solenoid?

- A. B_z is constant outside
- B. B_z is zero outside
- C. B_z is not constant outside
- D. It tells you nothing about B_z

An infinite solenoid with surface current density K is oriented along the z-axis. Apply Ampere's Law to the rectangular imaginary loop in the yz plane shown. We can safely assume that $B(s \to \infty) = 0$. What does this tell you about the B-field outside the solenoid?

- B. $|\mathbf{B}|$ is zero outside
- C. $|\mathbf{B}|$ is not constant outside
- D. We still don't know anything about $|\mathbf{B}|$

What do we expect $\mathbf{B}(\mathbf{r})$ to look like for the infinite sheet of current shown below?

A. $B(x)\hat{x}$

B. $B(z)\hat{x}$

C. $B(x)\hat{z}$

D. $B(z)\hat{z}$

E. Something else

Which Amperian loop are useful to learn about B(x, y, z) somewhere?

E. More than 1

Gauss' Law for magnetism, $\nabla \cdot \mathbf{B} = 0$ suggests we can generate a potential for \mathbf{B} . What form should the definition of this potential take (Φ and \mathbf{A} are placeholder scalar and vector functions, respectively)?

$$\mathbf{A}.\mathbf{B} = \nabla \Phi$$

$$B. B = \nabla \times \Phi$$

$$C.B = \nabla \cdot A$$

$$D. B = \nabla \times A$$

E. Something else?!