

How far can we trust language phylogenies?

Emma Kopp, Robin J. Ryder CEREMADE, CNRS, UMR 7534, Université Paris-Dauphine, PSL University, 75016 Paris, France Contact: emma.kopp@dauphine.psl.eu

Motivations

- ► Framework: observation of multiple modern languages.
- ightharpoonup Hypothesis: we can represent the relationship between some languages as a phylogenic tree T.
- ▶ Methods: Bayesian algorithm to get a tree sample according to the posterior of the model.
- ▶ Problem: nodes estimation of the tree due to a lack of signal.
- Languages datasets: Sino-Tibetan (Sagart et al. [2019]), Bantu (Grollemund et al. [2015]) and Indo-European (Heggarty et al. [2023])

Phylogenetic inference

- 1. Observation of $\sigma_1, \ldots, \sigma_K$ sequences for N languages.
- 2. Modelisation on the phylogeny according to a model \mathcal{T}_{θ} .
- 3. Apply MCMC algorithm to sample posterior phylogenies $(\hat{T}_1, \dots, \hat{T}_M)$.

Question: How close to the truth is the sample $(\hat{T}_1, \dots, \hat{T}_M)$ obtained?

Answer: We can't trust a phylogeny with a root older than ~ 10 millenia.

Phylogeny Modelisation

A phylogenetic tree is written as $\mathcal{T} = (\mathcal{O}, \mathcal{D}, \sigma)$

- The Tree model (\mathcal{O}) is the topology of the tree. We put a Birth-Death (BD) prior on it.
- ► The Clock model (\mathcal{D}) estimates the ages of subgroups of T by attribuing a rate to each branch. Each site i in the sequence evolves at a rate λ_i . We put a strict clock prior on it ($\lambda_i = \lambda = 1$).
- The Substitution model (σ) describe substitution of each taxas. It is modelised by a transition matrix Q. We put a Binary Continuous Time Markov Chain (CTMC) prior on it $(\sigma_k^n \in \{0,1\})$.
- We can express the likelyhood in closed form and apply an MCMC algorithm in order to sample $(\hat{T}_1, \dots, \hat{T}_M)$.

Mathematical evidence

▶ Probability of exact topology reconstruction of T (\mathcal{O})

Consider a phylogeny T. Let μ be the prior measure on a tree T. Then for any time s>0 we can bound the probability of exact topology reconstruction $\Delta^T(s)$ by

$$\Delta^{T}(s) \leq \max_{T} \mu \left[T(s) = T \right] + k \sum_{v \in \partial T} M_{\mathcal{D}} \left(-q \left(t(v) - s \right) \right).$$

where $\begin{cases} M_{\mathcal{D}} & \text{is the moment generating function of } \mathcal{D} \\ \partial T & \text{are the leaves of } T \\ q = \sum_{j} \min_{i} Q_{i,j} \end{cases}$

- \mathfrak{D} The definition of q doesn't allow the utilization of a binary covarion substitution model which stands as the most widely adopted model.
- Elchanan Mossel. On the Impossibility of Reconstructing Ancestral Data and Phylogenies. Journal of Computational Biology, 2003.

Datasets

	Bantu	Sino-Tibetan	Indo-European
t	6.975	8.502	8.574
K	3859	3785	4990
N	422	50	161
Δ^T	513	0.765	287

Applications

We plot the upper bounds of the exact reconstruction for all fixed variables except the age of the tree.

→ For a tree older than 10 millenia, it is impossible to recover the topology.

Simulated data

We simulate synthetic data on trees between 5 and 17 millennia old and check when the signal for the deep topology vanishes.

- ▶ Topology step : Simulate $T_1 \sim (\mathcal{O}, \mathcal{D})$.
- ▶ Branch length step: for k = 2, ..., 17, set $T_k = (\mathcal{O}, k\mathcal{D})$. All phylogenies have the same topology \mathcal{O} . We rescaled \mathcal{D} to obtain older trees.
- ▶ Sequence step: for k = 1, ..., 17, $T_k \sim (\mathcal{O}, k\mathcal{D}, \sigma_k)$
- ▶ Inference: sample $(\hat{T}_k^1, \dots, \hat{T}_k^M)$ via MCMC, with σ_k as observations.

Question: How can we compare the true and the inferred trees?

ightharpoonup Compare T_k and $(\hat{T}_1, \dots, \hat{T}_M)$:

Let n_1, \ldots, n_{10} be the ten deepest nodes of the tree. Let D_{n_i} be the set of descendants of n_i in \mathcal{O} . For each $k = 1, \ldots, 17$

$$\hat{p}_{k,i} = \frac{1}{M} \sum_{l=1}^{M} \mathbb{I}_{\text{is.monophyletic } (\hat{T}_k^l, D_{n_i})}.$$

→ Trees older than 8 millenia are badly reconstructed.