微纳光电子材料与器件工艺原理

Film Deposition Part V: Solution Process

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Film Deposition

CVD: Chemical Vapor Deposition

→ 'dry' process

Solution based Deposition

'wet' process

Aluminum

- conductive
- reliable and stable
- easy deposition
- easy etching
- low diffusivity in Si and SiO₂
- good adhesion with Si and SiO₂
- low cost

• ...

Aluminum

- conductive
- reliable and stable
- easy deposition
- easy etching
- low diffusivity in Si and SiO₂
- good adhesion with Si and SiO₂
- low cost

• ...

Copper

more conductive

VS.

Copper wins!

Reduces RC circuit delay, reduce power consumption

$t \sim RC$
$P \sim I^2 R$

below 130 nm

above 130 nm

Materials	Conductivity (10 ⁶ S/m)
Graphene (C)	100
Silver (Ag)	63
Copper (Cu)	60
Gold (Au)	43
Aluminum (AI)	38

- Al is cheap and easy to deposit
- Ag and Au are expensive
- Cu is cheap and conductive
- Carbon (graphene) is the best what is next, Ag or Carbon?

Step Coverage

CVD is preferred for via filling

AI, W can be deposited by CVD

but CVD Cu is very difficult ...

Copper Electroplating

Printed Circuit Board

Video

Copper Electroplating

Damascene Process for Cu

ancient art work

Damascene Process for Cu

Electroplating + CMP
dirtiest process for the most advanced IC

Electroless Plating

乙醛的银镜反应

silver mirror reaction

LPE - Liquid Phase Epitaxy

- Liquid Phase Epitaxy (LPE)
 - □ 2Ga (I) + 2AsCl₃ (I) = 2GaAs (s) + $3Cl_2$ (g)

Spin-on Glass (SOG)

Porous SiO₂ for Low κ Dielectric

prepared by spin-on methods

Organic Solar Cells

Ag (70 nm)

MoO₃ (30 nm)

Dye (30 nm)

PCBM (45 nm)

ZnO (30 nm)

ITO/Glass

PCMB

Doctor Blade Spin coating

CSD: Spin coating ZnAc/ZnCOOH 400°C

Malinkiewicz et al. RSC Adv. 2 (2012) 3335 (UVEG)

OLEDs

Quantum Dots based Devices

A colloidal quantum dot spectrometer

Jie Bao1,2,3 & Moungi G. Bawendi2

Fully Solution Processed Devices

ELECTRONICS

Exploiting the colloidal nanocrystal library to construct electronic devices

Ji-Hyuk Choi, 1,2,3 Han Wang, Soong Ju Oh, 1,5 Taejong Paik, Pil Sung Jo, 1,2 Jinwoo Sung, 6 Xingchen Ye, Tianshuo Zhao, Benjamin T. Diroll, Christopher B. Murray, 1,7 Cherie R. Kagan 1,4,7*

Thank you for your attention