Chapitre 12:

ESPACES VECTORIELS DE DIMENSIONS FINIES

1. Exemples introductifs - Rappels

Exemple 1.

1. On sait que \mathbb{R}^2 est un \mathbb{R} -espace vectoriel et que pour tout vecteur $u = (x, y) \in \mathbb{R}^2$ s'écrit de manière unique comme $u = xe_1 + ye_2$ où $e_1 = (1,0)$ et $e_2 = (0,1)$.

$\mathbb{R}^2 = \text{Vect}(e_1, e_2) : \mathbb{R}^2$ admet une famille génératrice finie.

2. On sait de même que \mathbb{R}^3 est un \mathbb{R} -espace vectoriel et que pour tout vecteur $\mathbf{u} = (x, y, z) \in \mathbb{R}^3$ s'écrit de manière unique comme $\mathbf{u} = \mathbf{x}\mathbf{e}_1 + \mathbf{y}\mathbf{e}_2 + \mathbf{z}\mathbf{e}_3$ où $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$ et $\mathbf{e}_3 = (0,0,1)$.

 $\mathbb{R}^2 = \text{Vect}(e_1, e_2, e_3) : \mathbb{R}^3$ admet une famille génératrice finie.

- 3. Soient $n \in \mathbb{N}$ et $P \in \mathbb{R}_n[X]$. On sait qu'il existe un unique n+1-uplet $(a_0, a_1, ..., a_n) \in \mathbb{R}^{n+1}$ tel que $P = \sum_{k=0}^n a_k X^k \text{ d'où } \mathbb{R}_n[X] = \text{Vect}(1, X, X^2, ..., X^n) : \mathbb{R}_n[X] \text{ admet \'egalement une famille g\'en\'eratrice finie.}$
- 4. De même le \mathbb{R} -espace vectoriel $\mathcal{M}_2(\mathbb{R}) = \text{Vect}(E_{11}, E_{12}, E_{21}, E_{22})$ où $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. $\mathcal{M}_2(\mathbb{R})$ admet également une famille génératrice finie.
- 5. Par contre le $\mathbb R$ -espace vectoriel $\mathcal F(\mathbb R,\mathbb R)$, des fonctions de $\mathbb R$ dans $\mathbb R$, n'admet pas de famille génératrice.
- 6. Et le \mathbb{K} -espace vectoriel $\mathbb{K}[X]$ n'admet pas de famille génératrice finie.

Définition 1. Famille libre (rappels)

Soient E un \mathbb{K} -espace vectoriel et $x_1, x_2, ..., x_n, n \in \mathbb{N}^*$, n vecteurs de E. On dit que les vecteurs $x_1, x_2, ..., x_n$ sont linéairement indépendants ou que la famille $(x_1, x_2, ..., x_n)$ est libre si le vecteur nul de E s'écrite de manière unique comme combinaison linéaire des vecteurs $x_1, x_2, ...$ et x_n .

Remarque 1.

1. Lorsque les vecteurs x_1 , x_2 ,..., x_n ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants ou que la famille $(x_1, x_2,..., x_n)$ est liée.

2. Interprétation de la définition : on sait déjà que le vecteur 0_E peut s'écrire : $0_E = 0x_1 + 0x_2 + ... + 0x_n$, d'où :

$$\left(\ x_1 \ , \ x_2 \ , \ldots, \ x_n \ \right) \ famille \ libre \ de \ \ E \ \Leftrightarrow \ \forall (\lambda_1,\lambda_2,...,\lambda_n) \in \mathbb{K}^n \ , \ \left(\sum_{i=1}^n \lambda_i x_i = 0_E \Rightarrow \lambda_1 = \lambda_2 = = \lambda_n = 0 \right)$$

Définition 2. Famille génératrice (rappels)

Soient E un \mathbb{K} -espace vectoriel et e_1, e_2, \ldots, e_n , $n \in \mathbb{N}^*$, n vecteurs de E. On appelle combinaison linéaire de e_1, e_2, \ldots, e_n , tout vecteur x de E tel qu'il existe n scalaires $\alpha_1, \alpha_2, \ldots, \alpha_n$ de \mathbb{K} et $x = \sum_{i=1}^n \alpha_i e_i$.

Remarque 2.

- 1. Soit $e_1, e_2, ..., e_n, n \in \mathbb{N}^*$, n vecteurs de E.
 - On note $Vect(\{e_1, e_2, ..., e_n\})$ ou simplement $Vect(e_1, e_2, ..., e_n)$ l'ensemble des combinaisons linéaires des vecteurs $e_1, e_2, ..., e_n$.
 - Vect $(e_1, e_2, ..., e_n)$ également appelé: sous-espace vectoriel de E engender par les vecteurs $e_1, e_2, ..., e_n$ et e_n .
- 2. Soit $x \in E$. $x \in Vect(e_1, e_2, ..., e_n) \Leftrightarrow \exists (\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{K}^n / x = \sum_{i=1}^n \alpha_i e_i$ ou encore

$$3. \quad \text{Vect}(e_1, e_2, ..., e_n) = \left\{ x \in E \, / \, \exists (\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{K}^n, x = \sum_{i=1}^n \alpha_i e_i \right\} = \left\{ \sum_{i=1}^n \alpha_i e_i, \, (\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{K}^n \right\}$$

4. Si E_1 est un sous-espace vectoriel de E et a_1 , a_2 ,... et a_n sont n vecteurs de E_1 alors $Vect(a_1, a_2, ..., a_n) \subset E_1$.

Propriété 1. (Sous-espace vectoriel engendré par une famille de vecteurs) : Rappel

Soient E un \mathbb{K} -espace vectoriel et a_1, a_2, \ldots et a_n sont n vecteurs de E. Alors $Vect(a_1, a_2, \ldots, a_n)$ est un sous-espace vectoriel de E, appelé sous-espace vectoriel de E engendré par les vecteurs a_1, a_2, \ldots et a_n .

Remarque 3. (Rappels)

1. Soit a un vecteur non nul de E. Vect(a) est la droite vectorielle engendré par le vecteur a.

 $Vect \big(a\big) = \text{ ensemble des vecteurs colinéaires au vecteur } a = \big\{x \in E \ / \ \exists \lambda \in \mathbb{K}, x = \lambda a\big\} = \big\{\lambda a, \ \lambda \in \mathbb{K}\big\}$

2. Soient a et b deux vecteurs non colinéaires de E. Vect(a,b) est le plan vectoriel engendré par les vecteurs a et b: $\text{Vect}(a,b) = \left\{x \in E/\exists (\lambda,\mu) \in \mathbb{K}^2, x = \lambda a + \mu b\right\} = \left\{\lambda a + \mu b, (\lambda,\mu) \in \mathbb{K}^2\right\}$

2. Définitions - Propriétés

Définition 3. Espace vectoriel de dimension finie

Soit E un K − espace vectoriel.

On dit que E est de dimension finie si E admet famille génératrice finie, c'est à dire s'il existe une famille finie $e_1, e_2, ..., e_n$, de vecteurs de E qui engendre E.

Autement dit: s'il existe une famille finie $(e_1, e_2, ..., e_n)$, de vecteurs de E tel que tout vecteur x de E est combinaison linéaire des vecteurs $e_1, e_2, e_3,, e_n$,

 $\textbf{Soit encore}\colon\ \forall x\in E\ ,\ \exists \big(\alpha_{_1},\alpha_{_2},\alpha_{_3},.....,\alpha_{_n}\,\big)\in \mathbb{K}^{^n}/\,x=\alpha_{_1}e_{_1}+\alpha_{_2}e_{_2}+...+\alpha_{_n}e_{_n}=\sum_{k=1}^n\alpha_{_k}e_{_k}\ .$

Remarque 4. Rappel

Si, de plus, la famille $(e) = (e_1, e_2, e_3, \dots, e_n)$ est libre, on dit que (e) est une base de E.

Dans ce cas, les coefficients $\alpha_1, \alpha_2, ..., \alpha_n$ sont appelés les coordonnées du vecteur x dans la base (e).

Exemple 2.

- 1. On sait que \mathbb{C} est un \mathbb{R} -espace vectoriel de dimension finie car $\mathbb{C} = \text{Vect}(1,i)$.
- 2. $\mathbb{K}_{n}[X]$ est un \mathbb{K} -espace vectoriel de dimension finie.
- 3. \mathbb{R}^n est un \mathbb{R} -espace vectoriel de dimension finie.
- 4. Tout \mathbb{K} -espace vectoriel E réduit au vecteur nul, c'est-à-dire que $E = \{0_E\}$ est de dimension finie (en effet $E = \text{Vect}(\emptyset)$).
- 5. De même le \mathbb{R} -espace vectoriel $\mathcal{M}_2(\mathbb{R})$ est de dimension finie.
- 6. Par contre le \mathbb{R} -espace vectoriel $\mathcal{F}(\mathbb{R},\mathbb{R})$, des fonctions de \mathbb{R} dans \mathbb{R} , n'admet pas de famille génératrice.
- 7. Et le \mathbb{K} -espace vectoriel $\mathbb{K}[X]$ n'est pas de dimension finie.

Lemme 1. Soit E un K-espace vectoriel.

Si E possède une famille génératrice de n vecteurs, $n \in \mathbb{N}$, alors toute famille de plus de n vecteurs est liée.

Démonstration: Exercice

Lemme 2. Soit E un K-espace vectoriel.

Si E possède une famille libre de n vecteurs, $n \in \mathbb{N}$, alors aucune famille de moins de n vecteurs ne peut être génératrice de E.

Démonstration: Exercice

Propriété 2. Théorème de la dimension

Soit E un \mathbb{K} – espace vectoriel de dimension finie et $n \in \mathbb{N}$.

Si E possède une base de n vecteurs alors toutes les bases de E possèdent exactement n vecteurs.

Démonstration: Exercice

Définition 4. Dimension

Soit E un K−espace vectoriel de dimension finie.

Si E possède une base de n vecteurs alors on appelle dimension de E, on note $\dim_{\mathbb{K}}(E)$ ou tout simplement lorsqu'il n'y pas d'ambiguité $\dim(E)$, le nombre entier n.

Exemple 3.

- 1. (1,i) est une base du \mathbb{R} -espace vectoriel \mathbb{C} , donc $\dim_{\mathbb{R}}(\mathbb{C}) = 2$.
- 2. $(e) = (e_1, e_2, ..., e_n)$ où $e_1 = (1, 0, 0, ..., 0)$, $e_2 = (0, 1, 0, ..., 0)$, $e_3 = (0, 0, 1, ..., 0)$, ... et $e_n = (0, 0, 0, ..., 1)$, est une base de \mathbb{K}^n , d'où dim $(\mathbb{K}^n) = n$
- $3. \quad \left(1,X,X^2,...,X^n\right) \text{ est une base } \text{ du } \mathbb{K} \text{ -espace vectoriel } \mathbb{K}_n\left[X\right], \text{ donc } \dim_{\mathbb{K}}\left(\mathbb{K}_n\left[X\right]\right) = n+1 \,.$
- 4. Si $E = \{0_E\}$ alors $\dim(E) = 0$ (en effet $E = Vect(\emptyset)$).
- 5. $\left(E_{11},E_{12},E_{21},E_{22}\right)$ est une base du \mathbb{R} -espace vectoriel $\mathcal{M}_{2}\left(\mathbb{R}\right)$, donc $dim\left(\mathcal{M}_{2}\left(\mathbb{R}\right)\right)=4$

TD 1.

- 1. Soit $F = \{(x, y, z, t) \in \mathbb{R}^4 / x + y + z + t = 0\}$. Montrer est de dimension et que $\dim(F) = 3$
- 2. On considère le sous-espace vectoriel :

 $E = \left\{ \left(x, y, z, s, t \right) \in \mathbb{R}^5 \ / \ x + 2y + 2z - s + 3t = 0 \ , \ x + 2y + 3z + s + t = 0 \ et \ 3x + 6y + 8z + s + 5t = 0 \right\}. \ Trouver \ une base et la dimension de E .$

TD 2. Vérifier que l'ensemble $E = \{f : x \mapsto a \cos(x + \phi) / (a, \phi) \in \mathbb{R}^2 \}$ est un \mathbb{R} - espace vectoriel.

1. Montrer que E = Vect(cos, sin)

- 2. Quelle est sa dimension?
- **TD 3.** Dans $C^{\infty}(\mathbb{R},\mathbb{R})$, des fonctions de \mathbb{R} dans \mathbb{R} indéfiniment dérivable sur \mathbb{R} , soient le quatre vecteurs $f_1: x \mapsto \sin x$, $f_2: x \mapsto \cos x$, $f_3: x \mapsto x \sin x$, $f_4: x \mapsto x \cos x$ et on pose $F = \text{Vect}(f_1, f_2, f_3, f_4)$.
- 1. Montrer que $\dim F = 4$.
- $2. \quad Soient \quad F_1 = Vect \left(f_1, f_2\right) \ et \ F_2 = Vect \left(f_3, f_4\right) \ . \ Donner \ dim \ F_1 \ et \ dim \ F_2 \ . \ V\'erifier \ que \ F = F_1 \oplus F_2 \ .$
- 3. Résoudre dans \mathbb{R} l'équation différentielle y''(x) + y(x) = 0. Montrer que l'ensemble \mathscr{S} des solutions est F_1 .

TD 4. On pose
$$F = \left\{ M = \begin{pmatrix} a-b & a+b+2c \\ 2a+2c & b+c \end{pmatrix} / (a,b) \in \mathbb{R}^2 \right\}$$

- 1. Montrer que F est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$; déterminer sa dimension.
- 2. On considère les vecteurs $A = \begin{pmatrix} 0 & 4 \\ 4 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$ et $C = \begin{pmatrix} -1 & 3 \\ 2 & 2 \end{pmatrix}$
 - a. Vérifier que $(A, B, C) \in F^3$.
 - b. (A,B,C) est-elle une base de F?
 - c. Justifier que la famille (A) est libre et la compléter pour obtenir une base de F. Compléter la famille obtenue pour avoir une base de $\mathcal{M}_2(\mathbb{R})$.

Propriété 3. (Caractérisation de la dimension infinie)

Soit E un K-espace vectoriel. Les propositions suivantes sont équivalentes:

- i. E est de dimension infinide
- ii. Il existe une famille infinie $(e_n)_{n\in\mathbb{N}}$ de vecteurs de E libre
- iii. Pour tout $n \in \mathbb{N}^*$, il existe une famille libre de n vecteurs de E.

Démonstration: Exercice

Propriété 4. (Caractérisation des bases en dimension finie)

Soient E un \mathbb{K} -espace vectoriel de dimension finie n et (e) une famille de vecteurs de E. Les propositions suivantes sont équivalentes:

- i. (e) est une base de E
- ii. (e) est une famille libre et possède n vecteurs
- iii. (e) est une famille génératrice de E et possède n vecteurs.

Démonstration: Exercice

3. Utilisation des matrices pour caractériser les bases

Définition 5. (Matrice de coordonnées dans une base : rappel)

Soient E un \mathbb{K} – espace vectoriel de dimension finie n, (e) = $(e_1, e_2, ..., e_n)$ une base de E et

$$x = \sum_{i=1}^n x_i^{} e_i^{} \quad \text{où } \left(x_i^{}\right)_{1 \leq i \leq n} \in \mathbb{K}^n^{}.$$

On appelle matrice de coordonnées du vecteur x dans la base (e) , la matrice colonne, notée

Mat
$$(x,(e))$$
, définie par: Mat $(x,(e)) = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$

Définition 6. (Matrice d'une famille de vecteurs une base : rappel)

Soient E un \mathbb{K} – espace vectoriel de dimension finie n, $(e) = (e_1, e_2, ..., e_n)$ une base de E et

$$\left(\epsilon\right) = \left(\epsilon_1, \epsilon_2, ..., \epsilon_p\right) \text{ une famille de vecteurs de } E \text{ telles que } \forall j \in \llbracket 1, p \rrbracket, \ \epsilon_j = \sum_{i=1}^n x_{ij} e_i \quad \text{où } \left(x_{ij}\right)_{1 \leq i \leq n} \in \mathbb{K}^n.$$

On appelle matrice de la famille (ϵ) dans la base (e), la matrice $n \times p$, notée $Mat((\epsilon),(e))$, définie

$$par: Mat((\epsilon),(e)) = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1j} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2j} & \dots & x_{2p} \\ \dots & \dots & \dots & \dots & \dots \\ x_{i1} & x_{i2} & \dots & x_{ij} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n1} & x_{n2} & \dots & x_{nj} & \dots & x_{np} \end{pmatrix}$$

TD 5.

- 1. Dans l'espace vectoriel \mathbb{R}^3 déterminer les coordonnées de u=(1,4,7) dans la base $B=(\epsilon_1,\epsilon_2,\epsilon_3)=\big((1,2,0),(0,2,1),(1,1,1)\big)$.
- 2. Dans l'espace vectoriel $\mathbb{R}_2[X]$ déterminer les coordonnées de $P = 3X^2 5X + 1$ dans la base $B = (A_1, A_2, A_3) = (X^2 1, X + 1, X^2 X)$

TD 6. \mathbb{R}^2 est muni de la base canonique $B = (e_1, e_2)$. On note $u = 2e_1 - e_2$ et $v = -e_1 + e_2$

- 1. Démontrer que B'=(u, v) est une base de \mathbb{R}^2 .
- 2. Soit $\omega = e_1 + 3e_2$. Déterminer P = Mat(B', B), $W = Mat(\omega, B)$ et $W' = Mat(\omega, B')$

TD 7. Dans
$$\mathbb{R}^3$$
 on considère $B = (e_1, e_2, e_3) = ((1,2,1), (2,3,3), (3,7,1))$ et $B' = (\epsilon_1, \epsilon_2, \epsilon_3) = ((3,1,4), (5,3,2), (1,-1,7))$.

- 1. Montrer que B et B' sont deux bases de \mathbb{R}^3 .
- 2. Soit u un vecteur de \mathbb{R}^3 tel que $\operatorname{Mat}(u, B) = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Donner la matrice de coordonnées de u

relativement à B'.

TD 8. Dans \mathbb{R}^4 on considère les vecteurs u = (1,0,2,-1), v = (2,-1,3,-1), w = (0,2,2,-2) et le sous-espace vectoriel F = Vect(u,v,w).

- 1. Calculer t = v 2u.
- 2. Les familles suivantes sont-elles libres ou liées ?
 - a. (u)

- b. (u, v)
- c. (u, v, w)
- d. $\left(u, v, 0_{\mathbb{R}^4}\right)$

- 3. Montrer que F = Vect(u, v). Donner une base de F.
- 4. F est-il une droite de \mathbb{R}^4 ? un plan de \mathbb{R}^4 ?
- 5. Soient $u_1 = (0,0,1,1)$ et $v_1 = (0,0,0,1)$. On note $bc = (e_1,e_2,e_3,e_4)$ la base canonique de \mathbb{R}^4 .
 - a. Montrer que $B = (u_1, v_1, u, v)$ est une base de \mathbb{R}^4 et donner les coordonnées de s = (a, b, c, d) relativement à B.
 - b. Déterminer X = Mat(w, bc), Y = Mat(w, B) et P = Mat(B, bc). Comparer X et PY.
- 6. Soit $G = Vect(u_1, v_1)$
 - a. Déterminer F∩G
 - b. Montrer que $\mathbb{R}^4 = F \oplus G$
- 7. Soient p_G la projection sur G parallèlement à s_F et s la symétrie par rapport à F parallèlement à G.
 - a. Calculer $Mat(p_G(u_1 + v_1), B)$ et $Mat(p_G(u_1 + v_1), bc)$
 - b. On pose $\omega = (1,1,1,1)$. Calculer $\mathrm{Mat}(s_{_F}(\omega),B)$ et $\mathrm{Mat}(s_{_F}(\omega),bc)$.

Réponse de la question 6.a

Soit $U \in \mathbb{R}^4$

$$U \in F \cap G \iff \begin{cases} U \in F \\ U \in G \end{cases} \iff \exists \left(a,b,c,d\right) \in \mathbb{R}^4 \ / \ \begin{cases} U = au + bv \\ U = cu_1 + dv_1 \end{cases} \iff \exists \left(a,b,c,d\right) \in \mathbb{R}^4 \ / \ au + bv - cu_1 - dv = 0_{\mathbb{R}^4} \end{cases}$$

Or d'près la question 5.a, $\left(u,v,u_1,v_1\right)$ est une base de \mathbb{R}^4 , donc c'est une famille libre.

 $D\text{'où}:\ au+bv-cu_1-dv=0_{\mathbb{R}^4} \ \Rightarrow \ a=b=c=d=0 \ \ \Rightarrow \ U=0_{\mathbb{R}^4}$

En conclusion : $F \cap G = \{0_{\mathbb{R}^4}\}$

Propriété 5. Rappel

Soient E un \mathbb{K} – espace vectoriel de dimension finie n, $(e) = (e_1, e_2, ..., e_n)$ une base de E et $(\epsilon) = (\epsilon_1, \epsilon_2, ..., \epsilon_n)$ une famille de n vecteurs de E.

La famille (ε) est une base de E si et seulement si la matrice $Mat((\varepsilon),(e))$ est inversible.

Démonstration: Exercice

Exemple 4.

- 1. On considère la famille $(\epsilon) = (\epsilon_1, \epsilon_2, e_3)$ de \mathbb{R}^3 telle que où $\epsilon_1 = (-1, 0, 1)$, $\epsilon_2 = (1, -1, 0)$ et $\epsilon_3 = (1, 1, -1)$. (ϵ) est-elle une base de \mathbb{R}^3 ?
- 2. On considère la famille $B = \left(1, 1 + X, \left(1 + X\right)^2, \left(1 + X\right)^3\right)$ de $\mathbb{R}_3[X]$. B est-elle une base de $\mathbb{R}_3[X]$?

4. Etude des sous-espaces vectoriels en dimension finie

Propriété 6.

Soient E un \mathbb{K} – espace vectoriel de dimension finie et E_1 un sous-espace vectoriel de E . Alors on a:

- 1. $\dim(E_1) \le \dim(E)$
- 2. $\dim(E_1) = \dim(E) \Rightarrow E_1 = E$.

Démonstration: Exercice

Remarque 5. Quelques terminologies

Soient E un K−espace vectoriel de dimension

- 1. **Droite vectorielle** : on appelle droite vectorielle de E tout sous-espace vectoriel de dimension 1 de E.
- 2. **Plan vectoriel** : on appelle plan vectoriel de E tout sous-espace vectoriel de dimension 2 de E.
- 3. Si E est de dimension finie n, on appelle hyperplan de E tout sous-espace vectoriel de dimension n-1 de E.

TD 9.

- 1. Quels sont les hyperplans de \mathbb{R}^3 ?
- 2. On pose $E_1 = \{(x, y, z) \in \mathbb{R}^3 / x 2y + 3z = 0\}$ et $E_2 = \{(x, y, z) \in \mathbb{R}^3 / x y 2z = 0 \text{ et } 2x + y z = 0\}$. Montrer que E_1 est un plan vectoriel de \mathbb{R}^3 et E_2 est une droite vectorielle de \mathbb{R}^3
- 3. Donner un exemple de droite et d'hyperplan de \mathbb{R}^5
- 4. Donner un exemple de plan et d'hyperplan de $\mathbb{R}_3[X]$
- 5. Un espace vectoriel de dimension infinie peut-il avoir des droites ? des plans ? des hyperplans ?
- 6. Donner des exemples de droites, de plans de $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, puis de $E = \mathbb{R}[X]$.

Propriété 7. Théorème de la base incomplète

Soit E un \mathbb{K} – espace vectoriel de dimension finie n . Alors toute famille libre, finie, $\left(e_1,e_2,...,e_p\right)$, $p \leq n$, peut être complétée en une base de E .

Démonstration: Exercice

Exemple 5. Construire une base de \mathbb{R}^3 contenant le vecteur $\varepsilon_1 = (1, -1, 1)$.

TD 10.

- 1. Construire une base de \mathbb{R}^2 contenant le vecteur $\varepsilon_1 = (1, -1)$.
- 2. Construire une base de \mathbb{R}^3 contenant les vecteurs $\varepsilon_1 = (1, -1, 1)$ et $\varepsilon_2 = (2, 0, 1)$.
- 3. Construire une base de $\mathbb{R}_2[X]$ contenant les vecteurs $P_0 = 1 + X$ et $P_1 = X + X^2$.
- 4. Construire une base de $M_2(\mathbb{R})$ contenant les vecteurs $A_1 = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$ et $A_2 = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$.

Réponse :

1.
$$\dim(\mathbb{R}^2) = 2$$
.

Donc il suffit de compléter le vecteur ε_1 par un vecteur $\varepsilon_2 = (a,b)$ tel que $(\varepsilon_1,\varepsilon_2)$ soit une base de \mathbb{R}^2

Pour cela il faut que $\det(\max((\varepsilon_1, \varepsilon_2), bc)) \neq 0$

Or
$$\det\left(\max\left(\left(\epsilon_{1}, \epsilon_{2}\right), bc\right)\right) = \begin{vmatrix} 1 & a \\ -1 & b \end{vmatrix} = a + b$$

Donc par exemple $\varepsilon_2 = (1,1)$ convient.

Remarque : il y a une infinité de solutions

$$2. \quad \dim(\mathbb{R}^3) = 3.$$

Donc il suffit de compléter la famille $(\varepsilon_1, \varepsilon_2)$ par un vecteur $\varepsilon_3 = (a, b, c)$ tel que $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ soit une base de \mathbb{R}^3

Pour cela il faut que $\det\left(\max\left(\left(\epsilon_1, \epsilon_2, \epsilon_3\right), bc\right)\right) \neq 0$

Or
$$\det\left(\max\left(\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right), bc\right)\right) = \begin{vmatrix} 1 & 2 & a \\ -1 & 0 & b \\ 1 & 1 & c \end{vmatrix} = -a + b + 2c$$

Donc par exemple $\varepsilon_3 = (1, 1-1)$ convient.

Remarque : il y a une infinité de solutions

3.
$$\dim(\mathbb{R}_2[X]) = 3.$$

Donc il suffit de compléter la famille (P_0, P_1) par un vecteur $P_2 = aX^2 + bX + c$ tel que (P_0, P_1, P_2) soit une base de \mathbb{R}^3

Pour cela il faut que $\det\left(\max\left(\left(P_0, P_1, P_2\right), bc_2\right)\right) \neq 0$ où $bc_2 = \left(1, X, X^2\right)$

Or
$$\det(\max((P_0, P_1, P_2), bc_2)) = \begin{vmatrix} 1 & 0 & c \\ 1 & 1 & b \\ 0 & 1 & a \end{vmatrix} = a - b + c$$

Donc par exemple $P_2 = X^2 + 1$ convient.

Remarque : il y a une infinité de solutions

4.
$$\dim(\mathcal{M}_2(\mathbb{R})) = 4$$
.

Donc il suffit de compléter la famille (A_1, A_2) par 2 vecteurs $A_3 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $A_4 = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ tel que

$$(A_1, A_2, A_3, A_4)$$
 soit une base de $\mathcal{M}_2(\mathbb{R})$

Pour cela il faut que $\det\left(\max\left(\left(A_1,A_2,A_3,A_4\right), bc_{\mathcal{M}_2(\mathbb{R})}\right)\right) \neq 0$ où $bc_{\mathcal{M}_2(\mathbb{R})} = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)$

Or
$$\det\left(\max\left((A_{1}, A_{2}, A_{3}, A_{4}), bc_{\mathcal{M}_{2}(\mathbb{R})}\right)\right) = \begin{vmatrix} 1 & 0 & a & x \\ -1 & -1 & b & y \\ 2 & 1 & c & z \\ 1 & 2 & d & t \end{vmatrix}$$

Faisons un choix : par exemple a = x = 0

Dans ce cas:
$$\det\left(\max\left(\left(A_{1},A_{2},A_{3},A_{4}\right),bc_{\mathcal{M}_{2}(\mathbb{R})}\right)\right) = \begin{vmatrix} 1 & 0 & 0 & 0 \\ -1 & -1 & b & y \\ 2 & 1 & c & z \\ 1 & 2 & d & t \end{vmatrix} = \begin{vmatrix} -1 & b & y \\ 1 & c & z \\ 2 & d & t \end{vmatrix}$$

Si on poursuit toujours avec un choix : par exemple b = -c = -d = 1 on a :

$$\det\left(\max\left(\left(A_{1},A_{2},A_{3},A_{4}\right), bc_{\mathcal{M}_{2}(\mathbb{R})}\right)\right) = \begin{vmatrix} -1 & 1 & y \\ 1 & -1 & z \\ 2 & -1 & t \end{vmatrix} = \begin{vmatrix} 0 & 1 & y \\ 0 & -1 & z \\ 1 & -1 & t \end{vmatrix} = y + z$$

Donc il suffit de choisir (par exemple)
$$A_3 = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$
 et $A_4 = \begin{pmatrix} 0 & 3 \\ -1 & 0 \end{pmatrix}$

Remarque : il y a une infinité de solutions

5.

Propriété 8. Sous-espaces supplémentaires

Soient E un \mathbb{K} – espace vectoriel de dimension finie, E_1 et E_2 deux sous-espaces vectoriels de E.

Alors E₁ et E₂ sont supplémentaires dans E si et seulement si la reunion d'une base de E₁ et d'une base de E₂ forme une base de E.

Démonstration: Exercice

TD 11.

- 1. Vect(ε_1) et Vect(ε_2), où $\varepsilon_1 = (1, -1, 2)$ et $\varepsilon_2 = (0, -1, 1)$ sont-ils supplémentaires dans \mathbb{R}^3 ?
- 2. $\operatorname{Vect}(\varepsilon_1)$ et $\operatorname{Vect}(\varepsilon_2, \varepsilon_3)$, où $\varepsilon_1 = (1, -1, 2)$, $\varepsilon_2 = (0, -1, 1)$ et $\varepsilon_3 = (1, 0, -1)$ sont-ils supplémentaires dans \mathbb{R}^3 ?
- $Vect\big(P_0\big) \ et \ Vect\big(P_1,P_2\big), \ où \ P_0=X \ , \ P_1=2X^2 \ et \ P_2=X+2X^2 \ sont-ils \ supplémentaires \ dans \ \mathbb{R}_2\big[X\big] \ ?$

Réponse :

1.
$$\dim(\mathbb{R}^3) = 3$$
 et $\operatorname{Vect}(\varepsilon_1) \oplus \operatorname{Vect}(\varepsilon_2) = \operatorname{Vect}(\varepsilon_1, \varepsilon_2)$

Les vecteurs ε_1 et ε_2 ne sont pas colinéaires donc est une base de $\mathrm{Vect}(\varepsilon_1) \oplus \mathrm{Vect}(\varepsilon_2) = \mathrm{Vect}(\varepsilon_1, \varepsilon_2)$ D'où dim $\left(\operatorname{Vect}\left(\varepsilon_{1},\varepsilon_{2}\right)\right)=2$ par conséquent $\operatorname{Vect}\left(\varepsilon_{1},\varepsilon_{2}\right)\neq\mathbb{R}^{3}$ et $\operatorname{Vect}\left(\varepsilon_{1}\right)$ et $\operatorname{Vect}\left(\varepsilon_{2}\right)$ ne sont pas supplémentaires dans \mathbb{R}^3

$$2. \quad \dim(\mathbb{R}^3) = 3$$

$$\det\left(\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right), bc\right) = \begin{vmatrix} 1 & 0 & 1 \\ -1 & -1 & 0 \\ 2 & 1 & -1 \end{vmatrix} = 2 \text{ donc est une base de } \mathbb{R}^{3}$$

D'où
$$\mathbb{R}^3 = \text{Vect}(\varepsilon_1, \varepsilon_2, \varepsilon_3) = \text{vect}(\varepsilon_1) \oplus \text{Vect}(\varepsilon_2, \varepsilon_3)$$

3.
$$\dim(\mathbb{R}_2[X]) = 3$$

$$\det((P_0, P_1, P_2), bc_2) = \begin{vmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 2 \end{vmatrix} = 0 \text{ donc n'est pas une base de } \mathbb{R}_2[X] (P_2 = P_0 + P_1)$$

$$Vect(P_0, P_1, P_2) = Vect(P_0, P_1, P_0 + P_1) = Vect(P_0, P_1)$$

 $La \ famille \ \left(P_0, P_1\right) \ est \ libre \ , \ c'est \ donc \ une \ base \ de \ Vect \left(P_0, P_1, P_2\right) \ d'où \ dim \left(Vect \left(P_0, P_1, P_2\right)\right) = 2$

Par conséquent $\operatorname{Vect}(P_0, P_1, P_2) = \operatorname{Vect}(P_0) + \operatorname{Vect}(P_1, P_2) \neq \mathbb{R}_2[X]$

Propriété 9. Supplémentaire d'un sous-espace vectoriel

Tout sous-espace vectoriel d'un espace vectoriel de dimension finie possède au moins un supplémentaire.

Démonstration: Exercice

Exemple 6. Construire un supplémentaire dans \mathbb{R}^3 Vect (ε_1) où $\varepsilon_1 = (1,-1,2)$.

TD 12.

- 1. Construire un supplémentaire dans \mathbb{R}^4 de $F = \{(x, y, z, t) \in \mathbb{R}^4 / x 2y = 0 \text{ et } 3z + t = 0\}$.
- 2. Construire un supplémentaire dans $\mathbb{R}_2[X]$ de $F = \text{Vect}(P_0, P_1)$ où $P_0 = X 2$ et $P_1 = 1 + X + X^2$.
- 3. Construire un supplémentaire dans $M_2(\mathbb{R})$ de $F = \text{Vect}(A_1, A_2)$ avec $A_1 = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$ et $A_2 = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$.

Définition 7. Rang d'une famille de vecteurs

Soient E un \mathbb{K} – espace vectoriel et $(e_1, e_2, ..., e_p)$ une famille de p vecteurs de E.

On appelle rang de la famille $(e_1,e_2,...,e_p)$, le nombre entier note $rg(e_1,e_2,...,e_p)$ défini par

$$rg(e_1, e_2,..., e_p) = dim(Vect(e_1, e_2,..., e_p))$$

Exemple 7.

- 1. Déterminer le rang de la famille $(\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4)$ de \mathbb{R}^4 où $\epsilon_1 = (2, 3, -1, 0)$, $\epsilon_2 = (1, 0, -2, 1)$, $\epsilon_3 = (0, 3, 3, -2)$ et $\epsilon_4 = (1, 3, 1, -1)$.
- $2. \quad \text{D\'eterminer le rang de la famille } \left(P_0,P_1,P_2\right) \quad \text{de} \quad \mathbb{R}_3\left[X\right] \text{de où } P_0 = X-2 \,, \ P_1 = X+X^2 \ \text{et} \ P_1 = 1-X+2X^2 \,.$
- 3. Déterminer le rang de la famille (A_1, A_2, A_3) de $M_2(\mathbb{R})$ avec $A_1 = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$ et $A_3 = \begin{pmatrix} 2 & 1 \\ 1 & -4 \end{pmatrix}$.

Propriété 10.

Soient E un \mathbb{K} – espace vectoriel de dimension finie n et $\left(e_1,e_2,...,e_p\right)$ une famille de p vecteurs de E .

Alors $rg(e_1, e_2, ..., e_p) \le min(p, n)$

Démonstration: Exercice

TD 13. On note $E = \mathcal{C}^2(\mathbb{R},\mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} qui sont de classe \mathcal{C}^2 sur \mathbb{R} , c'est des fonctions deux fois dérivables et dont la dérivée second est continue. On considère la famille (f_1,f_2,f_3,f_4) des fonctions définies par : $\forall x \in \mathbb{R}$, $f_1(x) = \cos x$, $f_2(x) = \sin x$, $f_3(x) = 1$ et

$$f_4(x) = \cos\left(x + \frac{\pi}{4}\right)$$
. On note $F = \text{Vect}(f_1, f_2, f_3, f_4)$.

- 1. Les familles suivantes sont-elles libres ou liées ?
 - a. (f_1)

b. $(0_E, f_1, f_2)$

c. (f_1, f_2, f_3)

- 2. Montrer que (f_1, f_2, f_3, f_4) est liée.
- 3. Montrer que $B = (f_1, f_2, f_3)$ est une famille génératrice de F. En déduire que B est une base de F.
- 4. On considère les deux sous-espaces de $F: F_1 = Vect(f_1)$ et $F_2 = Vect(f_2, f_3)$. Justifier que F_1 et F_2 sont supplémentaires dans F.
- 5. Soit p la projection sur F_1 parallèlement à F_2 et s la symétrie par rapport à F_1 parallèlement à F_2 . Déterminer $p(f_4)$ et $s(f_4)$.
- 6. On considère $S = \{ f \in F / f "+ f = 0_E \}$. Montrer que S est un sous-espace vectoriel de F.
- 7. Soit D l'application de F dans $\mathcal{F}(\mathbb{R},\mathbb{R})$ définie par $\forall f \in F$, D(f) = f'' + f.
 - a. Soit $f = af_1 + bf_2 + cf_3$. Montrer que $D(f) \in F$ et préciser ses coordonnées dans la base B.
 - b. Déterminer une base de S.

TD 14. Soit (E_h) l'équation différentielle : y''(x) + y(x) = 0

1.

- a. Déterminer S_h l'ensemble des solutions de $\left(E_h\right)$ sur $\mathbb R$.
- b. En déduire que S_h est un sous-espace vectoriel de $\mathcal{C}^2(\mathbb{R},\mathbb{R})$. En donner une base que l'on notera B et préciser la dimension de S_h .
- 2. On définit sur \mathbb{R} deux fonctions f_1 et f_2 par : $f_1(x) = \operatorname{ch}(2x)$ et $f_2(x) = \operatorname{sh}(2x)$.
 - a. Montrer que B' = (f_1, f_2) est une base de S_h
 - b. Montrer que $F_1 = \text{vect}(f_1)$ et $F_2 = \text{vect}(f_2)$ sont supplémentaires dans S_h .
- 3. On définit sur \mathbb{R} une fonction f par : $f(x) = \pi \ln 2e^{2x} + 12e^{-2x}$.
 - c. Vérifier que f appartient à S_h
 - d. Déterminer les coordonnées de f dans la base B'

- e. On note p la projection sur F_1 parallèlement à F_2 , et s la symétrie par rapport à F_2 parallèlement à F_1 . Déterminer p(f) et s(f) (on donnera les coordonnées dans la base B' et dans la base B
- 4. Résoudre sur \mathbb{R} l'équation (E) : $y''(x) + y(x) = (x+1)e^{2x}$.

(on cherchera une solution particulière y_p de (E) de la forme $y_p: x \mapsto x(ax+bx)e^{2x}$ où a, b et c sont des réels à déterminer).