Issue XXI: Super Type System

M.Е. Сохацький 1

¹ Національний технічний університет України ім. Ігоря Сікорського 26 листопада 2025

Анотація

Here is presented Groupoid Infinity language for TED-K.

Зміст

1	Intr	oduction to Urs	1		
2	Super Type System				
	2.1	Bosonic Modality	1		
	2.2	Bose	1		
	2.3	Braid	2		
	2.4	Graded Universes	5		
	2.5	KU	7		

1 Introduction to Urs

2 Super Type System

2.1 Bosonic Modality

The \bigcirc modality in cohesive type theory projects a type to bosonic parity (g=0). For a type $A: \mathbf{U}_{i,g}, \bigcirc A$ forces the type to be bosonic, aligning with supergeometry and quantum physics.

In Urs, \bigcirc operates on types in graded universes from **Graded**, with applications in bosonic quantum fields **qubit** and supergeometry **SmthSet**.

2.2 Bose

Definition 1 (Bosonic Modality Formation). The \bigcirc modality is a type operator on graded universes, mapping to bosonic parity:

$$\bigcirc: \prod_{i:\mathbb{N}} \prod_{g:\mathbf{Grade}} \mathbf{U}_{i,g}
ightarrow \mathbf{U}_{i,0}.$$

```
def bosonic (i : Nat) (g : Grade) (A : U i g) : U i 0
```

Definition 2 (Bosonic Modality Introduction). Applying \bigcirc to a type A produces $\bigcirc A$ with bosonic parity:

$$\Gamma \vdash A : \mathbf{U}_{i,g} \rightarrow \Gamma \vdash \bigcirc A : \mathbf{U}_{i,0}.$$

Definition 3 (Bosonic Modality Elimination). The eliminator for $\bigcirc A$ maps bosonic types to properties in \mathbf{U}_0 :

$$\mathbf{Ind}_{\bigcirc}: \prod_{i:\mathbb{N}} \prod_{g: \mathbf{Grade}} \prod_{A: \mathbf{U}_{i,g}} \prod_{\phi: (\bigcirc A) \to \mathbf{U_0}} \left(\prod_{a: \bigcirc A} \phi \ a\right) \to \prod_{a: \bigcirc A} \phi \ a.$$

```
def bosonic_ind (i : Nat) (g : Grade) (A : U i g) (phi : (bosonic i g A) \rightarrow U_0) (h : \Pi (a : bosonic i g A), phi a) : \Pi (a : bosonic i g A), phi a
```

Theorem 1 (Idempotence of Bosonic). The \bigcirc modality is idempotent, as it always projects to bosonic parity:

$$\bigcirc\text{-idem}: \prod_{i:\mathbb{N}} \prod_{g:\mathbf{Grade}} \prod_{A:\mathbf{U}_{i,g}} (\bigcirc(\bigcirc A)) = (\bigcirc A).$$

```
def bosonic_idem (i : Nat) (g : Grade) (A : U i g)
    : (bosonic i 0 (bosonic i g A)) = (bosonic i g A)
```

Theorem 2 (Bosonic Qubits). For $C, H : \mathbf{U_0}$, the type $\bigcirc \mathbf{Qubit}(C, H)$ models bosonic quantum states:

$$\bigcirc\text{-qubit}: \prod_{i:\mathbb{N}} \prod_{g:\mathbf{Grade}} \prod_{C,H:\mathbf{U_0}} (\bigcirc \mathbf{Qubit}(C,H)): \mathbf{U}_{i,0}.$$

2.3 Braid

The $\mathbf{Braid}_n(X)$ type models the braid group $B_n(X)$ on n strands over a smooth set $X : \mathbf{SmthSet}$, the fundamental group of the configuration space $\mathbf{Conf}^n(X)$, used in knot theory, quantum computing, and smooth geometry.

In Urs, $\mathbf{Braid}_n(X)$ is a type in $\mathbf{U_0}$, parameterized by $n:\mathbf{Nat}$ and $X:\mathbf{SmthSet}$, supporting braid generators σ_i and relations, with applications to anyonic quantum gates and knot invariants.

Definition 4 (Braid Formation). The type $\mathbf{Braid}_n(X)$ is formed for each $n : \mathbf{Nat}$ and $X : \mathbf{SmthSet}$:

$$\mathbf{Braid}: \prod_{n: \mathbf{Nat}} \prod_{X: \mathbf{SmthSet}} \mathbf{U_0}.$$

Definition 5 (Braid Introduction). Terms of type $\mathbf{Braid}_n(X)$ are introduced via the **braid** constructor, representing generators σ_i for $i : \mathbf{Fin} (n-1)$:

$$\mathbf{braid}: \prod_{n:\mathbf{Nat}} \prod_{X:\mathbf{SmthSet}} \prod_{i:\mathbf{Fin}} \mathbf{Braid}_n(X).$$

def braid (n : Nat) (X : SmthSet) (i : Fin
$$(n-1)$$
) : Braid n X (* Braid generator sigma i *)

Definition 6 (Braid Elimination). The eliminator for $\mathbf{Braid}_n(X)$ maps braid elements to properties in $\mathbf{U_0}$:

$$\mathbf{BraidInd}: \prod_{n: \mathbf{Nat}} \prod_{X: \mathbf{SmthSet}} \prod_{\beta: \mathbf{Braid}_n(X) \to \mathbf{U_0}} \left(\prod_{b: \mathbf{Braid}_n(X)} \beta \ b \right) \to \prod_{b: \mathbf{Braid}_n(X)} \beta \ b.$$

Theorem 3 (Braid Relations). For $n : \mathbf{Nat}, X : \mathbf{SmthSet}, \mathbf{Braid}_n(X)$ satisfies the braid group relations (Commutation and Yang-Baxter):

$$\prod_{n: \mathbf{Nat}} \prod_{X: \mathbf{SmthSet}} \prod_{i,j: \mathbf{Fin}} \sigma_i \cdot \sigma_j = \sigma_j \cdot \sigma_i,$$

$$\prod_{n: \mathbf{Nat}} \prod_{X: \mathbf{SmthSet}} \prod_{i: \mathbf{Fin}} \sigma_i \cdot \sigma_{i+1} \cdot \sigma_i = \sigma_{i+1} \cdot \sigma_i \cdot \sigma_{i+1}.$$

Theorem 4 (Configuration Space Link). For $n : \mathbf{Nat}, X : \mathbf{SmthSet}, \mathbf{Braid}_n(X)$ is the fundamental groupoid of $\mathbf{Conf}^n(X)$:

$$\prod_{n:\mathbf{Nat}}\prod_{X:\mathbf{SmthSet}}\mathbf{Braid}_n(X)\cong \pi_1(\mathbf{Conf}^n(X)).$$

Theorem 5 (Quantum Braiding). For $C, H : \mathbf{U_0}$, $\mathbf{Braid}_n(X)$ acts on $\mathbf{Qubit}(C, H)^{\otimes n}$ as braiding operators:

$$\mathbf{braid_qubit}: \prod_{n:\mathbf{Nat}} \prod_{C,H:\mathbf{U_0}} \prod_{X:\mathbf{SmthSet}} \mathbf{Braid}_n(X) \to \left(\mathbf{Qubit}(C,H)^{\otimes n} \to \mathbf{Qubit}(C,H)^{\otimes n}\right).$$

$$\begin{array}{lll} def & braid_qubit & (n : Nat) & (C \ H : U_0) & (X : SmthSet) \\ : & Braid & n \ X \longrightarrow (Qubit \ C \ H)^n \longrightarrow (Qubit \ C \ H)^n \end{array}$$

Theorem 6 (Braid Group Delooping). For $n : \mathbf{Nat}$, the delooping \mathbf{BB}_n of the braid group B_n is a 1-groupoid:

$$\mathbf{BB}_n : \mathbf{Grpd} \ 1 \equiv \Im(\mathbf{Conf}^n(\mathbb{R}^2)).$$

$$def \ BB_n \ (n : Nat) : Grpd \ 1 := \Im \ (Conf \ n \ \mathbb{R}^2)$$

2.4 Graded Universes

Graded Universes. The \mathbf{U}_{α} type represents a graded universe indexed by a monoid $\mathcal{G} = \mathbb{N} \times \mathbb{Z}/2\mathbb{Z}$, where $\alpha \in \mathcal{G}$ encodes a level (\mathbb{N}) and parity ($\mathbb{Z}/2\mathbb{Z}$: 0 = bosonic, 1 = fermionic). Graded universes support type hierarchies with cumulativity, graded tensor products, and coherence rules, used in supergeometry (e.g., bosonic/fermionic types), quantum systems (e.g., graded qubits), and cohesive type theory.

In Urs, \mathbf{U}_{α} is a type indexed by $\alpha : \mathcal{G}$, with operations like lifting, product formation, and graded tensor products, extending standard universe hierarchies to include parity, building on **Tensor**.

Definition 7 (Grading Monoid). The grading monoid \mathcal{G} is defined as $\mathbb{N} \times \mathbb{Z}/2\mathbb{Z}$, with operation \oplus and neutral element $\mathbf{0}$, encoding level and parity.

```
\begin{split} \mathcal{G}: \mathbf{Type} &\equiv \mathbb{N} \times \mathbb{Z}/2\mathbb{Z}, \\ &\oplus : \mathcal{G} \to \mathcal{G} \to \mathcal{G}, \\ &(\alpha,\beta) \mapsto (\mathrm{fst} \ \alpha + \mathrm{fst} \ \beta, \ (\mathrm{snd} \ \alpha + \mathrm{snd} \ \beta) \mod 2), \\ &\mathbf{0}: \mathcal{G} \equiv (0,0). \end{split} def \mathcal{G}: \mathrm{Type} := \mathbb{N} \times \mathbb{Z}/2\mathbb{Z} def \oplus \ (\alpha \ \beta : \mathcal{G}): \mathcal{G}:= (\mathrm{fst} \ \alpha + \mathrm{fst} \ \beta, \ (\mathrm{snd} \ \alpha + \mathrm{snd} \ \beta) \mod 2) def \mathcal{V}: \mathcal{G}:= (0, 0)
```

Definition 8 (Graded Universe Formation). The universe \mathbf{U}_{α} is a type indexed by $\alpha : \mathcal{G}$, containing types of grade α . A shorthand notation $\mathbf{U}_{i,g}$ is used for $\mathbf{U}(i,g)$.

```
\begin{aligned} \mathbf{U}: \mathcal{G} \to \mathbf{Type}, \\ \mathbf{Grade}: \mathbf{Set} &\equiv \{0,1\}, \\ \mathbf{U}_{i,g}: \mathbf{Type} &\equiv \mathbf{U}(i,g): \mathbf{U}_{i+1}. \end{aligned} def U ($\alpha$ : $\mathbb{G}$ : Type := Universe $\alpha$ def Grade : Set := $\{0, 1\}$ def U (i : Nat) (g : Grade) : Type := U (i, g) def U_0 (g : Grade) : U (1, g) := U (0, g) def U_{00} : Type := U (0, 0) def U_{10} : Type := U (1, 0) def U_{01} : Type := U (0, 1) \end{aligned}
```

Definition 9 (Graded Universe Coherence Rules). Graded universes support coherence rules for lifting, product formation, and substitution, ensuring type-

theoretic consistency.

$$\begin{aligned} & \text{lift}: \prod_{\alpha,\beta:\mathcal{G}} \prod_{\delta:\mathcal{G}} \mathbf{U} \ \alpha \to (\beta = \alpha \oplus \delta) \to \mathbf{U} \ \beta, \\ & \text{univ}: \prod_{\alpha:\mathcal{G}} \mathbf{U} \ (\alpha \oplus (1,0)), \\ & \text{cumul}: \prod_{\alpha,\beta:\mathcal{G}} \prod_{A:\mathbf{U}} \prod_{\alpha \delta:\mathcal{G}} (\beta = \alpha \oplus \delta) \to \mathbf{U} \ \beta, \\ & \text{prod}: \prod_{\alpha,\beta:\mathcal{G}} \prod_{A:\mathbf{U}} \prod_{\alpha \delta:\mathcal{G}} \mathbf{U} \ (\alpha \oplus \beta), \\ & \text{subst}: \prod_{\alpha,\beta:\mathcal{G}} \prod_{A:\mathbf{U}} \prod_{\alpha B:A\to\mathbf{U}} \prod_{\beta t:A} \mathbf{U} \ \beta, \\ & \text{shift}: \prod_{\alpha,\delta:\mathcal{G}} \prod_{A:\mathbf{U}} \mathbf{U} \ (\alpha \oplus \delta). \\ \end{aligned} \\ & \text{def lift} \ (\alpha \ \beta : \ \mathcal{G}) \ (\delta : \ \mathcal{G}) \ (e : \mathbf{U} \ \alpha) : \beta = \alpha \oplus \delta \to \mathbf{U} \ \beta := \lambda \ eq : \beta = \alpha \oplus \delta, \ \text{transport} \ (\lambda \ x : \ \mathcal{G}, \mathbf{U} \ x) \ eq \ e \end{aligned} \\ & \text{def univ-type} \ (\alpha : \ \mathcal{G}) : \mathbf{U} \ (\alpha \oplus (1, \ 0)) := \\ & \text{lift} \ \alpha \ (\alpha \oplus (1, \ 0)) \ (1, \ 0) \ (\mathbf{U} \ \alpha) \ \text{refl} \end{aligned} \\ & \text{def cumul} \ (\alpha \ \beta : \ \mathcal{G}) \ (A : \mathbf{U} \ \alpha) \ (\delta : \ \mathcal{G}) : \beta = \alpha \oplus \delta \to \mathbf{U} \ \beta := \\ & \text{Ilft} \ \alpha \ \beta \ \delta \ A \end{aligned}$$

Definition 10 (Graded Tensor Introduction). Graded tensor products combine types with matching levels, combining parities.

$$\begin{array}{c} \textbf{tensor}: \prod_{i:\mathbb{N}} \prod_{g_1,g_2: \textbf{Grade}} \textbf{U}_{i,g_1} \to \textbf{U}_{i,g_2} \to \textbf{U}_{i,(g_1+g_2 \bmod 2)}, \\ \textbf{pair-tensor}: \prod_{i:\mathbb{N}} \prod_{g_1,g_2: \textbf{Grade}} \prod_{A:\textbf{U}_{i,g_1}} \prod_{B:\textbf{U}_{i,g_2}} \prod_{a:A} \prod_{b:B} \textbf{tensor}(i,g_1,g_2,A,B). \\ \\ \textbf{def tensor (i : Nat) (g_1 g_2 : Grade)} \\ (A : \textbf{U i g_1) (B : \textbf{U i g_2}) : \textbf{U i (g_1 + g_2 \bmod 2)} \\ \vdots = \textbf{A} \otimes \textbf{B} \\ \\ \textbf{def pair-tensor (i : Nat) (g_1 g_2 : Grade) (A : \textbf{U i g_1})} \\ (B : \textbf{U i g_2) (a : A) (b : B) : tensor i g_1 g_2 A B} \\ \vdots = \textbf{a} \otimes \textbf{b} \end{array}$$

Definition 11 (Graded Tensor Eliminators). Eliminators for graded tensor products project to their components.

$$\otimes$$
-**prj**₁: $(A \otimes B) \to A$,
 \otimes -**prj**₂: $(A \otimes B) \to B$.

```
\begin{array}{l} \text{def pr}_1 \ (\text{i} : \text{Nat}) \ (g_1 \ g_2 : \text{Grade}) \\ \quad (A : U \ \text{i} \ g_1) \ (B : U \ \text{i} \ g_2) \ (p : A \otimes B) \ : A := p.1 \\ \\ \text{def pr}_2 \ (\text{i} : \text{Nat}) \ (g_1 \ g_2 : \text{Grade}) \\ \quad (A : U \ \text{i} \ g_1) \ (B : U \ \text{i} \ g_2) \ (p : A \otimes B) \ : B := p.2 \end{array}
```

Theorem 7 (Monoid Properties). The grading monoid \mathcal{G} satisfies associativity and identity laws.

```
 \begin{aligned} \mathbf{assoc} : ((\alpha \oplus \beta) \oplus \gamma) &= (\alpha \oplus (\beta \oplus \gamma)), \\ \mathbf{id\text{-left}} : (\alpha \oplus \mathbf{0}) &= \alpha, \\ \mathbf{id\text{-right}} : (\mathbf{0} \oplus \alpha) &= \alpha. \end{aligned}   \begin{aligned} \operatorname{def} \ \operatorname{assoc} \ (\alpha \ \beta \ \gamma \ : \ \mathcal{G}) \ : \ (\alpha \oplus \beta) \oplus \gamma &= \alpha \oplus (\beta \oplus \gamma) \ := \ \operatorname{refl} \\ \operatorname{def} \ \operatorname{ident-left} \ (\alpha \ : \ \mathcal{G}) \ : \ \alpha \oplus \not\vdash = \alpha \ := \ \operatorname{refl} \\ \operatorname{def} \ \operatorname{ident-right} \ (\alpha \ : \ \mathcal{G}) \ : \ \not\vdash \oplus \alpha &= \alpha \ := \ \operatorname{refl} \end{aligned}
```

2.5 KU

The **KU^G** type represents generalized K-theory, a topological invariant used to classify vector bundles or operator algebras over a space, twisted by a groupoid. It is a cornerstone of algebraic topology and mathematical physics, with applications in quantum field theory, string theory, and index theory.

In the cohesive type system, $\mathbf{K}\mathbf{U}^{\mathbf{G}}$ operates on smooth sets $\mathbf{SmthSet}$ and groupoids $\mathbf{Grpd_1}$, producing a type in the universe $\mathbf{U_{(0,0)}}$. It incorporates a twist to account for non-trivial topological structures, making it versatile for modeling complex physical systems.

Definition 12 (KU^G-Formation). The generalized K-theory type $\mathbf{KU^G}$ is formed over a term $X: \mathbf{U_{(0,0)}}$, a groupoid $G: \mathbf{U_{(0,0)}}$, and a twist $\tau: \prod_{x:X} \mathbf{U_{(0,0)}}$, yielding a type in the universe $\mathbf{U_{(0,0)}}$:

$$\mathbf{K}\mathbf{U}^{\mathbf{G}}:\prod_{X:\mathbf{U}_{(\mathbf{0},\mathbf{0})}}\prod_{G:\mathbf{U}_{(\mathbf{0},\mathbf{0})}}\prod_{\tau:\prod_{x:X}\mathbf{U}_{(\mathbf{0},\mathbf{0})}}\mathbf{U}_{(\mathbf{0},\mathbf{0})}.$$

```
type exp =
| KU^G of exp * exp * exp
```

Definition 13 (KU^G-Introduction). A term of type $\mathbf{KU}^{\mathbf{G}}(X, G, \tau)$ is introduced by constructing a generalized K-theory class, representing a stable equivalence class of vector bundles or operators over X, twisted by G and τ :

$$\mathbf{K}\mathbf{U}^{\mathbf{G}}:\prod_{X:\mathbf{U}_{(\mathbf{0},\mathbf{0})}}\prod_{G:\mathbf{U}_{(\mathbf{0},\mathbf{0})}}\prod_{\tau:\prod_{x:X}\mathbf{U}_{(\mathbf{0},\mathbf{0})}}\mathbf{K}\mathbf{U}^{\mathbf{G}}(X,G,\tau).$$

Definition 14 (KU^G-Elimination). The eliminator for $\mathbf{KU^G}$ allows reasoning about generalized K-theory classes by mapping them to properties or types dependent on $\mathbf{KU^G}(X, G, \tau)$, typically by analyzing the underlying bundle or operator structure over X:

$$\mathbf{K}\mathbf{U}^{\mathbf{G}}\mathbf{Ind}: \prod_{X:\mathbf{U}_{(\mathbf{0},\mathbf{0})}} \prod_{G:\mathbf{U}_{(\mathbf{0},\mathbf{0})}} \prod_{\tau:\prod_{x:X}\mathbf{U}_{(\mathbf{0},\mathbf{0})}} \prod_{\beta:\mathbf{K}\mathbf{U}^{\mathbf{G}}(X,G,\tau)\to\mathbf{U}_{(\mathbf{0},\mathbf{0})}} \left(\prod_{k:\mathbf{K}\mathbf{U}^{\mathbf{G}}(X,G,\tau)} \beta\ k\right) \to \prod_{k:\mathbf{K}\mathbf{U}^{\mathbf{G}}(X,G,\tau)} \beta\ k.$$

let
$$KU^G_-$$
 ind $(x:exp)$ $(g:exp)$ $(tau:exp)$ $(beta:exp)$ $(h:exp):exp=(*Hypothetical eliminator*)$ App $(Var "KU^G_- (x, g, tau))$

Theorem 8 (K-Theory Stability). The type $\mathbf{KU}^{\mathbf{G}}(X, G, \tau)$ is stable under suspension, meaning it is invariant under the suspension operation in the spectrum, reflecting its role in stable homotopy theory:

$$\mathbf{stability}: \prod_{X: \mathbf{U}(\mathbf{0}, \mathbf{0})} \prod_{G: \mathbf{U}(\mathbf{0}, \mathbf{0})} \prod_{\tau: \prod_{x: X} \mathbf{U}(\mathbf{0}, \mathbf{0})} \mathbf{KU^G}(X, G, \tau) =_{\mathbf{U}(\mathbf{0}, \mathbf{0})} \mathbf{KU^G}(\mathbf{Susp}\, X, G, \tau).$$

Theorem 9 (Refinement to Differential K-Theory, Theorem 3.4.5). The type $\mathbf{KU}^{\mathbf{G}}(X,G,\tau)$ can be refined to differential K-theory by incorporating a connection, as provided by $\mathbf{KU}^{\mathbf{G}}_{h}(X,G,\tau,conn)$:

$$\mathbf{refine}_{\mathbf{K}\mathbf{U}_{\flat}^{\mathbf{G}}}: \prod_{X: \mathbf{U}_{(\mathbf{0}, \mathbf{0})}} \prod_{G: \mathbf{U}_{(\mathbf{0}, \mathbf{0})}} \prod_{\tau: \prod_{x: X} \mathbf{U}_{(\mathbf{0}, \mathbf{0})}} \prod_{conn: \Omega^{1}(X)} \mathbf{K}\mathbf{U}^{\mathbf{G}}(X, G, \tau) \to \mathbf{K}\mathbf{U}_{\flat}^{\mathbf{G}}(X, G, \tau, conn).$$