Algebra liniowa 1R, Lista 1

- 1. Oblicz i zaznacz w układzie współrzędnych $A,\,B,\,A+B$ i -2A+3B.
 - (a) $A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, B = \begin{pmatrix} -1 \\ 2 \end{pmatrix},$ (b) $A = \begin{pmatrix} -3 \\ 1 \end{pmatrix}, B = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$
- 2. Napisz równania parametryczne prostej przechodzącej przez punkt A w kierunku wektora U. Naszkicuj w układzie współrzędnych.

(a)
$$A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $U = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$, (b) $A = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$, $U = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

- 3. Napisz równanie prostej przechodzącej przez punkt $A = \binom{1}{2}$ i prostopadłej do wektora $U = \binom{-1}{1}$.
- 4. Znajdź cztery wektory U, takie że $\langle U, \binom{1}{1} \rangle = 0$.
- 5. Znajdź $P_U(V)$ i $P_V(U)$ gdy (a) $U=\binom{1}{1},\,V=\binom{-2}{2},$ (b) $U=\binom{0}{1},\,V=\binom{3}{1}.$

6. Znajdź punkt przecięcia prostych (a)
$$X = \binom{1}{-1} + t \binom{1}{1}$$
 i $2x + y = 3$, (b) $X = \binom{2}{0} + t \binom{-1}{2}$ i $X = \binom{1}{0} + t \binom{1}{1}$.

- 7. Napisz parametryczne równania prostej przechodzącej przez punkty A i B, w postaci wektorowej i we współrzędnych. (a) $A = \binom{1}{3}$, $B = \binom{2}{2}$, (b) $A = \binom{-3}{1}$, $B = \binom{-1}{2}$.
- 8. Napisz nieparametryczne równania prostych z poprzedniego ćwiczenia.
- 9. Czy punkt a) $\binom{10}{-10}$; b) $\binom{0}{1}$; leży na prostej $\binom{2}{-3} + t\binom{-1}{2}$?
- 10. Napisz we współrzędnych parametryczne równanie prostej (a) y = 2x - 1, (b) y = 7, (c) x = -1, (d) 2x + 3y = 5.
- 11. Znajdź współrzędne czwartego wierzchołka równolegloboku, ktorego trzema wierzchołkami są $\binom{1}{2}$, $\binom{0}{0}$, $\binom{-2}{-1}$. Uwaga: jest kilka możliwości; znajdź wszystkie.
- 12. Uzasadnij, że proste y = ax + b i y = cx + d sa prostopadłe wtedy i tylko wtedy gdy ac = -1.
- 13. Znajdź kat między środkowymi trójkata ABC poprowadzonymi z wierzchołków A i C wiedząc że A= $\binom{1}{-2}$, $B = \binom{2}{4}$, $C = \binom{0}{3}$.
- 14. Dane sa współrzedne punktów P, Q, R bedacych środkami boków trójkata ABC. Znajdź współrzedne punktów A, B, C. Rachunki warto przeprowadzić na wektorach wodzacych.
- 15. Niech ℓ będzie prostą, zaś p tym punktem na prostej ℓ który leży najbliżej początku układu współrzędnych. Uzasadnij, że wektor wodzący punktu p jest prostopadły do ℓ .
- 16. Używając poprzedniego zadania znajdź odległość punktu $\binom{0}{0}$ od prostej -2x + 5y = 7.
- 17. Wyprowadź wzór na odległość punktu $A = \binom{x_0}{y_0}$ od prostej (a) ax + by = 0, (b) ax + by = c, (c) X = B + tU, gdzie $B = \binom{b_1}{b_2}$, $U = \binom{u_1}{u_2}$.
- 18. Niech U i V będą wektorami wodzącymi końców pewnego odcinka. Zapisz, w terminach wektorów U i V, wektor wodzący punktu dzielącego dany odcinek w stosunku 2:1. Uogólnij.
- 19. Znajdź współrzędne punktu, w którym promień światła biegnący od punktu $A = {\binom{-3}{2}}$ musi odbić się od osi OX (zgodnie z zasadą: kat padania jest równy katowi odbicia) aby dotrzeć do punktu (a) $\binom{3}{4}$, (b) $\binom{7}{3}$, (c) $\binom{-11}{3}$.
- 20. W trójkącie ABC dane są wierzchołki $A={-4 \choose 3},\ B={4 \choose -1},\ C={0 \choose 5}.$ Znajdź punkt opuszczenia (spodek) wysokości z wierzchołka C na bok AB
- 21. Udowodnij, że przekatne dowolnego rombu są prostopadłe.
- 22. Udowodnij, że kat wpisany oparty na średnicy okręgu jest prosty.
- 23. Udowodnij (najlepiej na kilka sposobów), że dla dowolnych U, V zachodzi nierówność: $|\langle U, V \rangle| \leq$ ||U|||V||. Kiedy w tej nierówności zachodzi równość? Wywnioskuj, że dla dowolnych U, V zachodzi nierówność: $||U + V|| \le ||U|| + ||V||$.

Algebra liniowa 1, wariant R

Wykład: wtorki, 16:15-18, s. B; czwartki, 10:15-11, s. EM; Jan Dymara (dymara@math.uni.wroc.pl)

Konsultacje wykładowcy: + na zamówienie, pokój 301.

Konwersatorium: czwartki, 11:15-12, s. EM, Jan Dymara

Ćwiczenia: środy, 8:15-10, s. 606 (601?) Roman Wencel, s. 604 Adam Malinowski.

Program wykładu:

- 1. R²: wektory, iloczyn skalarny, równania prostych.
- 2. Wyznacznik i liniowa niezależność na płaszczyźnie. Układy równań liniowych.
- 3. Przekształcenia liniowe płaszczyzny: macierze, składanie, odwracanie.
- 4. Diagonalizacja przekształceń płaszczyzny.
- 5. Izometrie płaszczyzny.
- 6. Krzywe stopnia 2: formy kwadratowe, twierdzenie spektralne.
- 7. Liczby zespolone.
- 8. R³: równania prostych i płaszczyzn, iloczyn skalarny i wektorowy.
- 9. Wyznacznik 3×3 , liniowa niezależność.
- 10. Układy równań, przekształcenia liniowe i ich macierze.
- 11. Diagonalizacja przekształceń \mathbb{R}^3 .
- 12. Izometrie \mathbb{R}^3 .
- 13. Twierdzenie spektralne w \mathbb{R}^3 .
- 14. Formy kwadratowe trzech zmiennych i powierzchnie stopnia 2.
- 15. Twierdzenie Jordana dla przekształceń \mathbb{R}^2 i \mathbb{R}^3 ; jego zastosowania do równań różniczkowych.

Pomocna literatura:

T.Banchoff, J.Wermer, Linear Algebra Through Geometry.

Matematyka w szkole średniej, rozdziały: 14, 18, 21, 26, 32, 40.

A.I. Kostrikin, Wstęp do algebry.

A.I.Kostrikin, Y.I.Manin, Algebra liniowa i geometria. (dla nienasyconych)

L. Jankowski, G. Szkapiak, Algebra liniowa (skrypt, dostępny pod

 $\verb|www.math.uni.wroc.pl/~dymara/GalA18/skrypt.pdf||$

J. Rutkowski, Algebra liniowa w zadaniach.

Zbiór zadań z algebry (pod red. Kostrikina).

Zasady zaliczania.

Lista zadań. Na czwartkowym wykładzie w tygodniu n studenci będą otrzymywać listę zadań nr n (lista będzie też dostępna pod adresem www.math.uni.wroc.pl/~dymara/GalA18/mat.html). Na liście będą proste zadania (nad pierwszą kreską), poważniejsze zadania (między kreskami) oraz trudniejsze zadania (poniżej drugiej kreski). Wybrane zadania z tej listy (głównie spomiędzy kresek) będą omawiane na ćwiczeniach w tygodniu n+1-przed tymi ćwiczeniami student powinien rozwiązać wszystkie proste zadania i większość zadań poważniejszych. W razie problemów należy szukać pomocy na konsultacjach lub w tutorni.

Sprawdziany. Będą się odbywać w czwartki i zaczynać o 10:15. Trzy czwartki będą od nich wolne: 4.X, 3.I, 31.I. Półtoragodzinne kolokwia odbędą się 8.XI, 20.XII i 24.I. W pozostałe czwartki zajęcia będą się zaczynać od kartkówki trwającej kwadrans. Sprawdzian obejmuje materiał do listy omawianej w przeddzień sprawdzianu włacznie.

Zaliczenie. Do zdobycia jest 3×21 (kolokwia) $+9 \times 3$ (kartkówki) = 90 pkt. Progi na poszczególne oceny: 5 -70 pkt.; 4,5-60 pkt.; 4-50 pkt.; 3,5-40 pkt.; 3-30 pkt. Prowadzący ćwiczenia ma prawo podnieść ocenę o 0,5 na podstawie całokształtu pracy studenta (uwzględniając w szczególności aktywność na ćwiczeniach, systematyczność pracy, czynione postępy w nauce oraz odległość od progu na wyższą ocenę).

Nieobecności. W przypadku usprawiedliwionej lub planowanej nieobecności na kolokwium lub kartkówce należy niezwłocznie skontaktować się z prowadzącym ćwiczenia w celu ustalenia sposobu uzyskania zaliczenia.