

目录

01 课题概述

03 研究目标

05 研究结果

02 研究背景

04 研究内容

06 总结与展望

01 课题概述

课题概述

本论文首先总结了时间序列分析方法,讨论了自回归集成移动平均模型和前馈神 经网络预测模型的理论知识及建模方法。然后分别采用自回归集成移动平均模型 和基于前馈神经网络的预测模型分别预测某机场未来3小时每10分钟WiFi AP的设 备连接数。并比较了两种模型预测结果及预测结果的均方误差。最后,总结了研 究结果,并讨论了存在的不足以及进一步工作。

02 研究背景

研究背景

准确预测机场客流量是机场经营管理中的一个重要课题,是机场资源有效配置的重要依据。

安防、安检、突发事件应急、值机、行李追踪等机场服务都希望能够预测未来的旅客吞吐量,并据此提前调配人力物力,更好的为旅客服务。

03 研究目标

研究目标

预测某机场未来3小时每10分钟WiFi AP的设备连接数。

04 研究内容

04 研究内容

ARMA模型的形式

自相关系数	偏相关系数	模型定阶	
拖尾	P阶截尾	AR(p)模型	
Q阶截尾	拖尾	MA (q)模型	
拖尾	拖尾	ARMA(P,Q)模型	

04

研究内容-ARIMA模型建模

步骤2:白噪声检验

时间序列为非白噪声序列,预测才有意义。使用Ljung-Box方法检验。

步骤4:模型检验

检验参数是否显著非零及对模型残差作白噪声检验,观察其前12阶的值是否在检验水平内。

观察序列的时序图、自相关图、 或进行ADF检验,检验时间序 列的平稳性。对非平稳性时间 序列作差分操作,直至其平稳。

观察自相关图和偏相关图,以及差分次数,确定模型的参数。

04

研究内容-前馈神经网络建模

步骤2:构建网络

确定神经网络输入层、隐藏层、 输出层层数、各层节点数、训 练算法、步长、学习率。

采用坐标延迟法构建输入和输 出训练集 步骤3:训练网络

使用输入和输出训练集训练构 建的网络

前馈神经网络结构

输入层 隐藏层 隐藏层 输出层 x₁ → x₂ → x₃ → x₄ → x₄

单隐层前馈神经网络结构

构造训练数据集

$$A = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_t \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_m \\ a_2 & a_3 & \cdots & a_{m+1} \\ \vdots & \vdots & \cdots & \vdots \\ a_t & a_{t+1} & \cdots & a_{N-1} \end{bmatrix}$$

$$T = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_t \end{bmatrix} = \begin{bmatrix} a_{m+1} \\ a_{m+2} \\ \vdots \\ a_N \end{bmatrix}$$

05 研究结果

Time	true_dat a	arima_forecast_resul t	arima_forecast_erro r	ffnn_forecast_resul t	ffnn_forecast_erro r
2016/9/25 11:50	1.9	2. 35813749	0. 45813749	3. 892636422	1. 992636422
2016/9/25 12:00	2.5	3. 677226117	1. 177226117	4. 673713365	2. 173713365
2016/9/25 12:10	5. 7	5. 537395399	-0. 162604601	5. 403639333	-0. 296360667
2016/9/25 12:20	7. 1	5. 685498099	-1.414501901	6. 134386631	-0. 965613369
2016/9/25 12:30	8.4	8. 411439742	0. 011439742	6. 717478975	-1.682521025
2016/9/25 12:40	8.4	9. 949545703	1. 549545703	7. 366108701	-1. 033891299
2016/9/25 12:50	11.3	10. 52383224	-0.776167758	8. 001855697	-3. 298144303
2016/9/25 13:00	13.8	11. 91127679	-1.888723209	8. 673363057	-5. 126636943
2016/9/25 13:10	17.8	12. 41341581	-5. 386584193	9. 362919592	-8. 437080408
2016/9/25 13:20	18.6	13. 09202273	-5. 507977272	10.06128866	-8. 538711336
2016/9/25 13:30	19. 6	14. 56305267	-5. 036947333	10. 76632768	-8. 833672322
2016/9/25 13:40	14. 2	13. 72078805	-0.479211947	11. 47080735	-2.729192651
2016/9/25 13:50	7. 1	14. 27561013	7. 175610135	12. 17246709	5. 072467091
2016/9/25 14:00	7.8	15. 00397429	7. 20397429	12. 86652474	5. 066524741
2016/9/25 14:10	10	14. 75446318	4. 754463178	13. 54831049	3. 548310486
2016/9/25 14:20	11. 1	15. 12104639	4. 021046394	14. 21259025	3. 112590249
2016/9/25 14:30	8	14. 96037678	6. 960376785	14. 85392	6.853920003
2016/9/25 14:40	10.9	14. 50333565	3. 603335655	15. 46718285	4. 567182849
2016/9/25 14:50	10. 2	15. 59538384	5. 395383841	16. 04767127	5.847671271

ARIMA模型的预测结果与实际值

前馈神经网络模型的预测结果与实际值

06 总结与展望

总结并实现了ARIMA模型 和前馈神经网络预测模型 的建模方法。

结论2

通过两种预测模型完成机 场WiFi AP设备连接数的预 测,预测结果表明前期两 种拟合模型提供了精准、 可靠的预测结果,预测误 差相对较小,后期预测结 果,相对实际值,预测误 差较大。

结论3

ARIMA模型和FFNN模型 预测结果的均方误差分别 为17.255207和 33.731985 , 表明ARIMA 模型预测结果相对较好。 对于长期预测,这两种模 型可能会有较大的预测误 差。

结论4

两种模型的预测结果均表 明,某机场WiFi AP自 2016年9月25日11:50时 起未来3小时每10分钟的连 接数会保持一定的增长趋 势,后期会有下降趋势。 此预测结果突出显示了, 某机场未来3小时不会出现 人流高峰。

05 总结与展望-进一步工作

