Proyecto No.1

(Método Regula Falsi)

Introducción:

El método *Regula Falsi* es un método cerrado para encontrar las raíces de una función. Este método toma como punto medio el cruce con el eje x al trazar una línea secante definida por los puntos de la función en los extremos del intervalo. Al evaluar el punto medio encontrado y los intervalos, se debe escoger las funciones que den signos diferentes y descartar el otro extremo que tenga el mismo signo. Con estos nuevos intervalos se traza una nueva línea. Este proceso se realiza sucesivamente hasta llegar a la línea tangente de la función dada; por lo tanto, el punto de tangencia es la raíz.

Procedimiento:

Para la realización de este proyecto se utilizaron 3 funciones como ejemplo que son las siguientes:

$$f(x) = e^{-x} + \cos(x)$$

(Función No.1)

$$f(x) = x^3 - 3x$$

(Función No.2)

$$f(x) = x^3 + 4 x^2 - 10$$

(Función No.3)

Resultados:

• Función No.1:

<u>Newton</u>

Método de Newton: Después de 5 iteraciones La raíz aproximada de f(x) es 1.746139530408.

Bisección

Método de Bisección: Después de 35 iteraciones
Una raíz de f(x) se encuentra encerrada entre [1.74614 , 1.74614] .

La raíz aproximada de f(x) es 1.7461395 .

<u>Secante</u>

Método de la Secante: Después de 7 iteraciones La raíz aproximada de f(x) es 1.746139530408 .

Regula Falsi

†	а	 c	b	f(a)	+ f(c)	f(b)	margen de error
	1	+=======- 1.76382	+======= 2 :	-======- 0.908182	+=======- 	+======== -0.280812	-=====================================
į	1	1.74701	1.76382	0.908182	-0.00100766 	-0.0204431	0.236176
İ	1	1.74618	1.74701	0.908182	-4.81453e-05	-0.00100766	0.0168151
!	1	1.74614	1.74618	0.908182	-2.29679e-06	-4.81453e-05	0.000827914
İ	1	1.74614	1.74614	0.908182	-1.09562e-07	-2.29679e-06	3.95551e-05
İ	1	1.74614	1.74614	0.908182	-5.22628e-09	-1.09562e-07	1.88699e-06
İ	1	1.74614	1.74614	0.908182	 -2.49303e-10	-5.22628e-09	9.0013e-08
İ	1	1.74614	1.74614	0.908182		-2.49303e-10	4.29378e-09
!	1	1.74614	1.74614	0.908182	 -5.67379e-13	-1.18921e-11	2.04821e-10
Rai	Número de iteraciones: 9 Raiz: 1.746139530408502 Error: 9.770184661306303e-12						

Tabla No.1						
formulas	pasos	resultados				
Newton Raphson	4	1.74614				
Bisección	34	1.74614				
Secante	6	1.74614				
Regula Falsi	9	1.74614				

• Función No.2:

Newton

Método de Newton: Después de 8 iteraciones
La raíz aproximada de f(x) es 1.732050807569 .

<u>Bisección</u>

Método de Bisección: Después de 36 iteraciones Una raíz de f(x) se encuentra encerrada entre [1.73205 , 1.73205] . La raíz aproximada de f(x) es 1.7320508 .

<u>Secante</u>

Método de la Secante: Después de 11 iteraciones La raíz aproximada de f(x) es 1.732050807569 .

Regula Falsi

<u> </u>					·	
a +=====+	c -======	-====+	-======	f(c) -=======	·======+:	margen de error +
1 +	1.2 	3 	-2 	-1.872 	18 	2 +
1.2 +	1.36957	3 +	-1.872 	-1.53979 	18 +	0.2 +
1.36957 +	1.49805	3 	-1.53979 	-1.1323 	18 	0.169565 +
1.49805 +	1.58694	3	-1.1323 	-0.764315 	18 	0.128483 +
1.58694 +	1.6445	3	-0.764315 	-0.486172 	18 	0.0888897 +
1.6445 +	1.68014	3	-0.486172 	-0.297582 	18	0.0575574 +
1.68014 +	1.70161	3 	-0.297582 	-0.177863 	18 	0.0356487 +
1.70161	1.71431	3	-0.177863	-0.104795 	18	0.0214654 +
1.71431	1.72176	3	-0.104795	-0.0612234 	18 	0.0127042 +
1.72176	1.72609	3	-0.0612234	-0.0355908	18	0.00744189
1.72609	1.7286	3	-0.0355908	-0.0206302	18	0.00433296
1.7286	1.73006	3	-0.0206302	-0.0119383	18	0.0025139
1.73006	1.7309	3	-0.0119383	-0.00690174	18	0.00145551
1.7309	1.73139	3	-0.00690174	-0.00398778	18	0.000841716
1.73139	1.73167	3	-0.00398778	-0.00230337	18	0.000486425
1.73167	1.73183	3	-0.00230337	-0.00133019	18	0.000280991
1.73183	1.73192	3	-0.00133019	-0.000768099	18	0.000162281
1.73192	1.73198	3	-0.000768099	-0.0004435	18	9.37102e-05
1.73198	1.73201	3	-0.0004435	-0.000256068	18	5.41093e-05
1.73201	1.73203	3	-0.000256068	-0.000147845	18	3.12419e-05
1.73203	1.73204	3	-0.000147845	-8.53597e-05	18	1.80382e-05
1.73204	1.73204	3	-8.53597e-05	-4.92829e-05	18	1.04146e-05
1.73204	1.73205	3	-4.92829e-05	-2.84537e-05	18	6.01291e-06
1.73205	1.73205	3	-2.84537e-05	-1.64278e-05	18	3.47158e-06
1.73205	1.73205	3	-1.64278e-05	-9.4846e-06	18	2.00433e-06
1.73205	1.73205	3	-9.4846e-06	-5.47594e-06	18	1.1572e-06
1.73205	1.73205	3	-5.47594e-06	-3.16154e-06	18	6.68111e-07
1.73205	1.73205	3	-3.16154e-06	-1.82532e-06	18	3.85734e-07
1.73205	1.73205	3	-1.82532e-06	-1.05385e-06	18	2.22704e-07
1.73205	1.73205	3	-1.05385e-06	-6.08439e-07	18	1.28578e-07
1.73205	1.73205	3	-6.08439e-07	-3.51282e-07	18	7.42347e-08
1.73205	1.73205	3	-3.51282e-07	-2.02813e-07	18	4.28594e-08
1.73205	1.73205	3	-2.02813e-07	-1.17094e-07	18	2.47449e-08
1.73205	1.73205	3	-1.17094e-07	-6.76043e-08	18	1.42865e-08
1.73205	1.73205	3	-6.76043e-08	-3.90314e-08	18	8.2483e-09
 1.73205	1.73205	3	-3.90314e-08	-2.25348e-08	18	4.76216e-09
1.73205	1.73205	3	-2.25348e-08	-1.30105e-08	18	2.74943e-09
+ 1.73205	1.73205	3	-1.30105e-08	-7.51159e-09	18	1.58739e-09
 1.73205	1.73205	3	-7.51159e-09	-4.33682e-09	18	9.16478e-10
+ 1.73205	1.73205	3	-4.33682e-09	 -2.50386e-09	18	5.29129e-10
+ 1.73205	1.73205	3	-2.50386e-09	 -1.44561e-09	18	3.05493e-10
+ 1.73205	1.73205	3	-1.44561e-09	-8.34622e-10	 18	1.76376e-10
 1.73205	1.73205	3	-8.34622e-10		18	1.01831e-10
+		·i			·i	

Número de iteraciones: 43 Raiz: 1.7320508074885657 Error: 5.879208231363009e-11

Tabla No.2						
formulas	pasos	resultados				
Newton Raphson	7	1.73205				
Bisección	35	1.73205				
Secante	10	1.73205				
Regula Falsi	43	1.73205				

Función No.3:

Newton

Método de Newton: Después de 7 iteraciones La raíz aproximada de f(x) es 1.365230013414 .

Bisección

Método de Bisección: Después de 35 iteraciones
Una raíz de f(x) se encuentra encerrada entre [1.36523 , 1.36523] .

La raíz aproximada de f(x) es 1.3652300 .

<u>Secante</u>

Método de la Secante: Después de 8 iteraciones La raíz aproximada de f(x) es 1.365230013414 .

Regula Falsi

+						
a	c	b	f(a) 	f(c)	f(b)	margen de error
1	1.26316	2	-5	-1.60227	14	1
1.26316	1.33883	2	-1.60227	-0.430365	14	0.263158
1.33883	1.35855	2	-0.430365	-0.110009	14	0.0756699
1.35855	1.36355	2	-0.110009	-0.0277621	14	0.0197185
1.36355	1.36481	2	-0.0277621	-0.00698342	14	0.0050011
1.36481	1.36512	2	-0.00698342	-0.00175521	14	0.00125959
1.36512	1.3652	2	-0.00175521	-0.000441063	14	0.000316686
1.3652	1.36522	2	-0.000441063	-0.000110828	14	7.95858e-05
1.36522	1.36523	2	-0.000110828	-2.7848e-05	14	1.99983e-05
1.36523	1.36523	2	-2.7848e-05	-6.99739e-06	14	5.02504e-06
1.36523	1.36523	2	-6.99739e-06	-1.75824e-06	14	1.26265e-06
1.36523	1.36523	2	-1.75824e-06	-4.41794e-07	14	3.17267e-07
1.36523	1.36523	2	-4.41794e-07	-1.1101e-07	14	7.97198e-08
1.36523	1.36523	2	-1.1101e-07	-2.78935e-08	14	2.00313e-08
1.36523	1.36523	2	-2.78935e-08	-7.00883e-09	14	5.03327e-09
1.36523	1.36523	2	-7.00883e-09	-1.76111e-09	14	1.26471e-09
1.36523	1.36523	2	-1.76111e-09	-4.42519e-10	14	3.17785e-10
vimero de iteraciones: 17						

Número de iteraciones: 17 Raiz: 1.3652300133872992 Error: 7.984990446630036e-11

Tabla No.3						
pasos	resultados					
6	1.36523					
34	1.36523					
7	1.36523					
17	1.36523					
	6 34 7					

Discusión de resultados:

En las tablas de resultados se puede observar que el método de Newton-Raphson siempre tiene las iteraciones/pasos más bajos a comparación de los otros métodos, esto puede ser porque el método de Newton es un método abierto y que su eficiencia es mejor en ecuaciones no lineales como las usadas en el proyecto. Por otro lado, el método Regula Falsi muestra una menor eficiencia porque, como se puede observar en las tablas 1, 2 y 3, es uno de los métodos con más iteraciones/paso hasta llegar a la tolerancia de error esperado al igual que el método de Bisección. Esto se puede deber a que es un método cerrado, es decir que depende de un intervalo a y b como el método de Bisección. También que el método Regula False bajo ciertas condiciones este tiene orden de convergencia lineal, por lo que suele converger más lentamente a la solución de la ecuación. Aunque como se puede observar en la tabla 1 y 3 el método de Regula Falsi realizó menos iteraciones/pasos que el método de Bisección y esto puede ser que se ingresó un intervalo más pequeño y que la ecuación dada para este ejemplo es más favorable para este método en específico.

Conclusiones:

- 1. El método de Newton-Raphson es el más preciso y eficiente a comparación de los métodos de Secante, Bisección y Regula Falsi.
- 2. Los métodos abiertos son más eficientes.
- El método de Regula Falsi y Bisección son los más lentos, si las condiciones son favorables el método de Regula Falsi puede superar en eficiencia al método de Bisección.

Anexos:

Link del repositorio con el código: https://github.com/AbrilPal/Proyecto1-metodos