

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video John Gideon* Simon Stent*

TL;DR You can train a neural network to estimate heart rate from videos without any ground truth data

Introduction

What?

Remote PhotoPlethysmoGraphy ("rPPG") write down

Why?

Health monitoring applications

HR: 64 bpm Output PPG signal and

What's new?

Show how one can train a deep neural network to detect this signal without ground truth training data

Strong task performance with zero annotation cost

Our assumptions

We assume that the signal of interest:

lies within a certain frequency range (40-250 bpm)

- does not vary rapidly over short time intervals (10s)
- is the dominant visual signal within the target freq. band

Saliency sampler output sequence Estimator Subsample and Saliency KEY: $oldsymbol{x_n^s}$ Resampled sequence via video interpolation

'steps to understand our method

- 10 second input video $\rightarrow x_2$
- Video optionally passed through saliency sampler (S), which learns a task-salient mask while resampling input according to that mask $\rightarrow x_a^s$

- Video resampled in time using a factor $R_f \rightarrow$ negative sample x_n^s
- Both x_n^s and x_n^s are fed to a PPG estimator (3D CNN) $\rightarrow y_n$ and y_n
- resampled to original rate via $R_f^{-1} \rightarrow \text{positive sample } y_p$
- 6. PPGs y_a , y_n , y_p are randomly subsampled to 5s views and FFTed $\rightarrow f_a$, f_n , f_n
- 7. Tripet loss encourages dist (f_a, f_n) to be large and dist (f_a, f_n) to be small

Results

- Compares favorably to supervised approaches
- Saliency sampler improves interpretability

We will present our winning entry, based on this contrastive approach, to the Vision 4 Vitals workshop challenge on Saturday. Join us to find out more!

Conclusions

- A self-supervised neural network to estimate heart rate from video
- Our approach performs well on existing datasets and is interpretable
- Future extensions: stabilize for input motion and estimate uncertainty

Further results, paper links, and code:

https://github.com/ ToyotaResearchInstitute/ RemotePPG

