CUDA — Laboratorium 03

Sprawozdanie

Mateusz Łopaciński

23 czerwca 2025

1 Cel

Porównać wydajność dwóch implementacji mnożenia macierzy na GPU Tesla T4:

- 1. Simplest naiwny kernel bez pamięci współdzielonej.
- 2. CUDA Samples kernel z tilingiem i shared memory.

Pomiar wykonano dla N = 256, 512, 1024, 2048.

2 Środowisko

Google Colab, CUDA 12.5, GPU Tesla T4 (sm 75), nvcc -std=c++17 -03.

3 Wyniki

N	Simplest		Samples	
	czas [s]	GFLOPS	czas [s]	GFLOPS
256	0.185	0.18	0.156	0.22
512	0.433	0.62	0.243	1.10
1024	0.942	2.28	0.103	20.8
2048	17.35	0.99	0.110	156

4 Komentarz

 $\mathbf{Simplest}$: wydajność spada dla dużych N z powodu nadmiaru dostępów do pamięci globalnej.

Samples: dzięki tilingowi czas praktycznie nie rośnie od N=1024, a GFLOPS sięga 150 (ok. 2% peak T4).

5 Wnioski

- Shared memory poprawia wydajność do $150 \times$ przy N = 2048.
- Naiwny kernel służy głównie celom dydaktycznym.