# Chapitre 12

Structure usuelle

# TABLE DES MATIÈRES

| Ι            | Groupes            | 2  |
|--------------|--------------------|----|
| II           | Anneaux            | 15 |
| III          | Corps              | 23 |
| IV           | Actions de groupes | 27 |
| $\mathbf{V}$ | Bilan              | 29 |

Première partie

Groupes

# <u>Principe de symétrie</u> (Pierre Curie)

La symétrie des causes se retrouvent dans les effets.

On fait tomber un caillou dans un plan d'eau ce qui crée une onde qui se propage.



## Symétries des "causes" $\overline{\text{(conserver } O \text{ en place)}}$

- $\begin{array}{ll} -- & \text{translation de vecteur } \overrightarrow{0} \\ -- & \text{rotations de centre } O \text{ d'angle quelconque} \end{array}$
- symétries d'axe passant par O



## Symétries des "effets" (conserver les ondes en place)

- symétries d'axe passant par O





- translation de vecteur  $\overrightarrow{0}$
- 4 rotations de centre O d'angle  $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$
- 4 symétries axiales

## — <u>Causes</u>

- rotations d'axe D



— <u>Effet</u>



**Définition:** Soit G un ensemble, muni d'une loi de composition <u>interne</u>  $\diamond$ .

On dit que  $(G, \diamond)$  est un groupe si :

- $\diamond$  est associative
- $\forall x \in G, \exists y \in G, x \diamond y = y \diamond x = e$

Exemple ((À connaître)): 1. E un ensemble S(E) l'ensemble des bijections de E dans E.

- $(S(E), \circ)$  est un groupe appelé groupe symétrique de E.
- Si, E = [1, n], alors noté S(E) est noté  $S_n$  (ou parfois  $\mathfrak{S}_n$ )
- 2.  $(\mathbb{Z},+)$  est un groupe mais  $(\mathbb{N},+)$  n'est pas un groupe.
- 3.  $(\mathbb{Q}, +)$ ,  $(\mathbb{R}, +)$ ,  $(\mathbb{C}, +)$  sont des groupes
- 4.  $(\mathbb{R},\times)$ n'est pas un groupe car 0 n'a pas d'inverse.
  - $(\mathbb{Q}_*, \times), (\mathbb{R}_*, \times), (\mathbb{C}_*, \times)$  sont des groupes.

 $(\mathbb{Z}_*, \times)$  n'est pas un groupe.

5.  $(\mathcal{M}_n(\mathbb{C}), +)$  est un groupe  $(\mathcal{M}_n(\mathbb{C}), \times)$  n'est pas un groupe

**Définition:** On dit que  $(G, \diamond)$  est un groupe <u>commutatif</u> ou <u>abélien</u> si c'est un groupe et  $\diamond$  est une loi commutative.

Définition: Soit  $(G,\cdot)$  un groupe (d'élément neutre e) et  $H\subset G.$  On dit que H est un sous groupe de G si

- 1.  $\forall (x,y) \in H^2, x \cdot y \in H$
- $2. \ e \in H$
- 3.  $\forall x \in H, x^{-1} \in H$

**Proposition:** Soit H un sous groupe de  $(G,\cdot)$ . Alors,  $(H,\cdot)$  est un groupe.

**Proposition:** Soit  $(G, \cdot)$  un groupe et  $H \subset G$ .

H est un sous groupe de  $G\iff \begin{cases} \forall (x,y)\in H, x\cdot y^{-1}\in H\\ H\neq\varnothing \end{cases}$ 

 $\begin{aligned} \textit{Preuve:} \quad & " \implies " \ e \in H \ \text{donc} \ H \neq \varnothing. \\ & \text{Soit} \ (x,y) \in H^2. \\ & y \in H \ \text{donc} \ y^{-1} \in H. \\ & x \in H \ \text{donc} \ x \cdot y^{-1} \in H. \end{aligned}$   $\quad & " \Longleftarrow " \ H \neq \varnothing. \\ & \text{Soit} \ a \in H, \ (a,a) \in H^2 \ \text{donc} \ a \cdot a^{-1} \in H \ \text{donc} \ e \in H. \\ & \text{Soit} \ x \in H, \ (e,x) \in H^2 \ \text{donc} \ e \cdot e^{-1} \in H \ \text{donc} \ x^{-1} \in H. \\ & \text{Soit} \ (x,y) \in H^2. \ \text{Comme} \ y \in H, \ y \in y^{-1} \in H \ \text{donc} \ (x,y^{-1}) \in H^2. \\ & \text{Donc,} \ x \cdot \left(y^{-1}\right)^{-1} \in H. \\ & \text{Donc,} \ x \cdot y \in H. \end{aligned}$ 

Exemple:

 $2\mathbb{Z}$  est un sous groupe de  $(\mathbb{Z}, +)$ .

En effet,

 $-2 \in 2\mathbb{Z} \text{ donc } 2\mathbb{Z} \neq \emptyset$ 

- Soit  $(x, y) \in (2\mathbb{Z})^2$ ,  $\begin{cases} x \equiv 0 \ [2] \\ y \equiv 0 \ [2] \end{cases}$ 

donc  $x - y \equiv 0$  [2] donc  $x - y \in 2\mathbb{Z}$ 

**Proposition:** Soit  $(G, \cdot)$  un groupe et  $(H_i)_{i \in I}$  une famille non vide de sous groupes de G. Alors,  $\bigcap_{i \in I} H_i$  est un sous groupe de G.

Ι

On sait que  $\forall i \in I, e \in H_i$  et  $I \neq \emptyset$ Donc,  $e \in \bigcap_{i \in I} H_i$  donc  $\bigcap_{i \in I} H_i \neq \emptyset$ 

Soit 
$$(x,y) \in \left(\bigcap_{i \in I} H_i\right)^2$$
.

$$\forall i \in I, \begin{cases} x \in H_i \\ y \in H_i \end{cases}$$

donc,

donc

$$x \cdot y^{-1} \in \bigcap_{i \in I} H_i$$

 $\begin{array}{ll} \textbf{Proposition:} & \text{Soit } (G,\cdot) \text{ un groupe.} \\ \{e\} \text{ et } G \text{ sont des sous groupes de } G \end{array}$ 

Une réunion de sous groupes n'est pas nécessairement un sous groupe.

$$(G,\cdot) = (\mathbb{Z},+)$$

 $2\mathbb{Z} \cup 3\mathbb{Z} = A$ 

 $2 \in A$  et  $3 \in A$  mais  $2 + 3 = 5 \not\in A$ .

Donc, An'est pas un sous groupe de  $\mathbb Z$ 

**Proposition – Définition:** Soit  $(G, \cdot)$  un groupe et  $A \subset G$ . Alors,

$$\bigcap_{H \text{ sous groupe de } G} H$$

est le plus petit (au sens de l'inclusion) sous groupe de G qui contient A. On dit que c'est le sous groupe engendré par A et on le note  $\langle A \rangle$ 

Preuve:

On pose  $\mathscr{G} = \{ H \in \mathscr{P}(G) \mid H \text{ sous groupe contenant } A \}.$ 

 $G \in \mathcal{G}$  donc  $\mathcal{G} \neq \emptyset$  donc  $\bigcap_{H \in \mathcal{G}} H$  est un sous groupe de G.

Soit  $a \in A$ . Alors

$$\forall H \in \mathscr{G}, a \in A \subset H$$

et donc  $a \in \bigcap_{H \in \mathscr{G}} H$ .

Donc,  $A \subset \bigcap_{H \in \mathscr{G}} H$ .

Soit H un sous groupe de G qui contient A.

Alors,  $H \in \mathscr{G}$  alors  $H \supset \bigcap_{H \in \mathscr{G}} H$ 

Exemple:

 $(G,\cdot) = (\mathbb{Z},+)$ 

 $A = 2\mathbb{Z} \cup 3\mathbb{Z}$ 

 $\langle A \rangle = \mathbb{Z}$  (d'après le théorème de Bézout).

On généralise  $\langle a\mathbb{Z} \cup b\mathbb{Z} \rangle = (a \wedge b)\mathbb{Z}$ 

**Définition:** Soit  $(G, \cdot)$  un groupe et  $A \subset G$ .

On dit que A est une partie génératrice de G ou que A engendre G si  $G=\langle A\rangle$ 

Exemple (Rubik's cube):

Exemple:

Soit  $(G, \cdot)$  un groupe.

$$--\langle\varnothing\rangle = \{e$$

 $\langle a \rangle = \langle \{a\} \rangle = \{a^n \mid n \in \mathbb{Z}\}$ — Soit  $a \neq b$  deux éléments de  $G \setminus \{e\}$ 

$$\langle \{a,b\} \rangle = \{x \in G \mid \exists n \in \mathbb{N}, \exists (a_1, a_2, \dots, a_n) \in \{a,b\}^n, \\ \exists (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) \in \{-1,1\}^n, x = a_1^{\varepsilon_1} \times a_2^{\varepsilon_2} \times \dots \times a_n^{\varepsilon_n} \}$$

Remarque (Notation):

Soit  $(G, \cdot)$  un groupe et  $a \in G$ .

Pour  $n \in \mathbb{N}_*$ , on pose  $a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n \text{ fois}}$ . On pose  $a^0 = e$  et pour  $n \in Z_-^-$ ,

$$a^n = (a^{-1})^{-n}$$

Remarque:

Si le groupe est noté additivement. On note na  $(n \in \mathbb{Z}, a \in G)$  à la place de  $a^n$ 

**Définition:** On dit qu'un groupe  $(G,\cdot)$  est  $\underline{\text{monogène}}$  s'il existe  $a\in G$  tel que

$$G = \langle a \rangle$$

On dit alors que a est un générateur de  ${\cal G}$ 

Exemple:

 $(\mathbb{Z}, +)$  est engendré par 1.

 $(2\mathbb{Z},+)$ est engendré par 2

Définition: Un groupe monogène fini est cyclique.

**Proposition:** Soit  $(G,\cdot)$  un groupe monogène fini. Soit a un générateur de G. Il existe

 $k \in \mathbb{N}$ tel que

$$G = \{e, a, a^2, \dots a^{k-1}\}$$

G est fini donc il existe p < q tels que  $a^p = a^q$ . On a alors  $e = a^{q-p}$ . On pose alors,  $k = \min\{n \in \mathbb{N}_* \mid a^n = e\}$ .

Soit  $x \in G = \langle a \rangle$ . Il existe  $n \in \mathbb{Z}$  tel que  $x = a^n$ . On fait la division de n par k

$$\begin{cases} n = kq + r \\ q \in \mathbb{Z}, 0 \leqslant r < k \end{cases}$$

$$x = a^n = a^{kq+r} = \left(a^k\right)^q \times a^r = a^r$$

On a prouvé

$$G \subset \left\{e, a, \dots, e^{k-1}\right\}$$

On sait déjà que  $\left\{e,a,\ldots,a^{k-1}\right\}\subset G.$ 

Exemple:

 $(\mathbb{Z}/n\mathbb{Z},+)$  est un groupe cyclique :

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$$

**Définition:** Soit  $(G, \cdot)$  un groupe et  $a \in G$ .

Si  $\langle a \rangle$  est fini, le cardinal de  $\langle a \rangle$  est appelé <u>ordre</u> de a : c'est le plus petit entier strictement positif n tel que  $a^n = e$ 

Exemple:

 $(S(\mathbb{C}_*), \circ)$  est un groupe

 $z \mapsto \overline{z}$  est d'ordre de 2

 $z\mapsto -z$ est d'ordre de 2  $z\mapsto \frac{1}{z} \text{ est d'ordre de 2}$ 

Exemple:  $G_1 = (\mathbb{U}_4, \times)$  où

$$\mathbb{U}_4 = \{ z \in \mathbb{C} \mid z^4 = 1 \}$$
$$= \{ 1, i, -1, -i \}$$

| y $x$ | 1  | i  | -1 | -i |
|-------|----|----|----|----|
| 1     | 1  | i  | -1 | -i |
| i     | i  | -1 | -i | 1  |
| -1    | -1 | -i | 1  | i  |
| -i    | -i | 1  | i  | -1 |

•0

—  $G_2$  l'ensemble des rotations planes qui laissent globalement invariant un carré.

 $G_2 = \left\{ id, \rho_{\frac{\pi}{2}}, \rho_{\pi}, \rho_{\frac{3\pi}{2}} \right\}$ 

| $\begin{array}{c} x \\ y \end{array}$ | id                      | $\rho_{\frac{\pi}{2}}$  | $ ho_{\pi}$             | $\rho_{\frac{3\pi}{2}}$ |
|---------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| id                                    | id                      | $ ho_{rac{\pi}{2}}$    | $ ho_{\pi}$             | $\rho_{\frac{3\pi}{2}}$ |
| $\rho_{\frac{\pi}{2}}$                | $ ho_{\frac{\pi}{2}}$   | $ ho_{\pi}$             | $\rho_{\frac{3\pi}{2}}$ | id                      |
| $ ho_{\pi}$                           | $ ho_{\pi}$             | $\rho_{\frac{3\pi}{2}}$ | id                      | $\rho_{\frac{\pi}{2}}$  |
| $\rho_{\frac{3\pi}{2}}$               | $\rho_{\frac{3\pi}{2}}$ | id                      | $ ho_{rac{\pi}{2}}$    | $ ho_{\pi}$             |

 $G_3 = (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ 

|   | $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$ |                                |                               |                               |                               |  |  |  |  |  |
|---|----------------------------------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|--|--|--|--|--|
|   |                                                    | $(\overline{0}, \overline{0})$ | $(\overline{0},\overline{1})$ | $(\overline{1},\overline{0})$ | $(\overline{1},\overline{1})$ |  |  |  |  |  |
| ( | $\overline{0}, \overline{0})$                      | $(\overline{0},\overline{0})$  | $(\overline{0},\overline{1})$ | $(\overline{1},\overline{0})$ | $(\overline{1},\overline{1})$ |  |  |  |  |  |
|   | $\overline{0}, \overline{1})$                      | $(\overline{0},\overline{1})$  | $(\overline{0},\overline{0})$ | $(\overline{1},\overline{1})$ | $(\overline{1},\overline{0})$ |  |  |  |  |  |
|   | $\overline{1}, \overline{0}$                       | $(\overline{1},\overline{0})$  | $(\overline{1},\overline{1})$ | $(\overline{0},\overline{0})$ | $(\overline{0},\overline{1})$ |  |  |  |  |  |
| ( | $\overline{1},\overline{1}$                        | $(\overline{1},\overline{1})$  | $(\overline{1},\overline{0})$ | $(\overline{0},\overline{1})$ | $(\overline{0},\overline{0})$ |  |  |  |  |  |

**Définition:** Soient  $(G_1, \cdot)$  et  $(G_2, *)$  deux groupes et  $f: G_1 \to G_2$ . On dit que f est un <u>(homo)morphisme de groupes</u> si

$$\forall (x,y) \in G_1, f(x \cdot y) = f(x) * f(y)$$

 $\exp:(\mathbb{R},+)\to(\mathbb{R}^+_*,\times)$  est un morphisme de groupes

- $\begin{array}{lll} \textbf{Proposition:} & \text{Avec les notations précédentes,} \\ & \text{l'image directe d'un sous groupe de } G_1 \text{ est un sous groupe de } G_2 \\ & \text{l'image réciproque d'un sous groupe de } G_2 \text{ est un sous groupe de } G_1 \end{array}$

 $\begin{array}{ll} \textit{Preuve:} & -\text{ Soit } H_1 \text{ un sous groupe de } G_1. \\ e_1 \in H_1 \text{ donc } f(e_1) \in f(H_1) \text{ donc } H_1 \neq \varnothing \text{ Soient } x \in f(H_1) \text{ et } y \in f(H_2). \\ \text{On pose } \begin{cases} x = f(u) \text{ avec } u \in H_1 \\ y = f(v) \text{ avec } v \in H_1 \end{cases} \end{array}$ 

Groupes

$$x * y^{-1} = f(u) * f(v)^{-1}$$
  
=  $f(u) * f(v^{-1})$   
=  $f(u \cdot v^{-1})$ 

$$\begin{cases} u \in H_1 \\ v \in H_1 \end{cases} \text{ donc } u \cdot v^{-1} \in H_1 \text{ donc } x *^{-1} \in f(H_1)$$
— Soit  $H_2$  un sous groupe de  $G_2$ .

$$(x,y) \in f^{-1} \left( H_2 \right)^2$$

$$x \cdot y^{-1} \in f^{-1}(H_2) \iff f\left(x \cdot y^{-1}\right) \in H_2$$
$$\iff f(x) * f\left(y^{-1}\right) \in H_2$$
$$\iff f(x) * f(y)^{-1} \in H_2$$

Or, 
$$\begin{cases} f(x) \in H_2 \\ f(y) \in H_2 \end{cases}$$

Comme  $H_2$  est un sous groupe de  $G_2$ ,

$$f(x) * f(y)^{-1} \in H_2$$

et donc,

$$x \cdot y^{-1} \in f^{-1} \left( H_2 \right)$$

Lemme:

$$\begin{cases} f(e_1) = e_2 \\ \forall u \in G_1, f(u^{-1}) = (f(u))^{-1} \end{cases}$$

Preuve:

$$f(e_1) = f(e_1 \cdot e_1) = f(e_1) * f(e_1)$$

On multiplie par  $f(e_1)^{-1}$  (possible car  $G_2$  est un groupe) et on trouve  $f(e_1)=e_2$ . Soit  $u\in G_1$ .

$$f(u) * f(u^{-1}) = f(u \cdot u^{-1}) = f(e_1) = e_2 f(u^{-1}) * f(u) = f(u^{-1} \cdot u) = f(e_1) = e_2$$
  
Donc,  $f(u^{-1}) = (f(u))^{-1}$ 

Corollaire: Soit  $f:(G_1,\cdot)\to (G_2,*)$  un morphisme de groupes. Alors,  ${\rm Im}(f)$  est un sous groupe de  $G_2$ .

$$Ker(f) = \{x \in G_1 \mid f(x) = e_2\} = f^{-1}(\{e_2\})$$

est un sous groupe de  $G_1$ .

Théorème: Avec les notations précédentes,

$$f$$
 injective  $\iff$  Ker $(f) = \{e_1\}$ 

Preuve: " $\Longrightarrow$ " On suppose f injective.

$$f(e_1) = e_2 \text{ donc } e_1 \in \text{Ker}(f)$$
  
 $\text{donc } \{e_1\} \subset \text{Ker}(f)$ 

Soit 
$$x \in \text{Ker}(f)$$
. On a alors  $f(x) = e_2 = f(e_1)$   
Comme  $f$  injective,  $x = e_1$ .

"  $\Leftarrow$  " On suppose  $\text{Ker}(f) = \{e_1\}$ 

Soient  $\begin{cases} x \in G_1 \\ y \in G_1 \end{cases}$ . On suppose  $f(x) = f(y)$ 

$$f(x) = f(y) \implies f(x) * f(y)^{-1} = e_2$$

$$\implies f(x) * f\left(y^{-1}\right) = e_2$$

$$\implies f\left(x \cdot y^{-1}\right) \implies x \cdot y^{-1} \in \text{Ker}(f) = \{e_1\}$$

$$\implies x = y$$

Donc, f est injective

Exemple ((équation diophantienne)):

$$\begin{cases} 2x + 5y = 1\\ (x, y) \in \mathbb{Z}^2 \end{cases}$$

On trouve une solution particulière (Bézout) :  $(-1,1) = (x_0, y_0)$ 

$$2x + 5y = 1 \iff 2x + 5y = 2x_0 + 5y_0$$

$$\iff 2(x - x_0) + 5(y - y_0) = 0$$

$$\iff 2(x - x_0) = 5(y_0 - y)$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$(Gauss)$$

$$f: \mathbb{Z}^2 \longrightarrow \mathbb{Z}$$
  
 $(x,y) \longmapsto 2x + 5y$ 

 $(\mathbb{Z}^2,+)$  est un groupe avec + qui est l'addition composante par composante. f est un morphisme de groupes.

$$f(x,y) = 1 = f(x_0, y_0) \iff f(x,y) - f(x_0, y_0) = 0$$
$$\iff f(x - x_0, y - y_0) = 0$$
$$\iff (x - x_0, y - y_0) \in \text{Ker}(f)$$

**Théorème:** Soit  $f:(G_1,\cdot)\to (G_2,*)$  un morphisme de groupes,  $y\in G_2$  et  $(\mathscr{E})$  l'équation

$$f(x) = y$$

d'inconnue  $x \in G_1$ .

Si  $y \notin \text{Im}(f)$ , alors  $(\mathscr{E})$  n'a pas de solution.

Sinon, soit  $x_0 \in G_1$  tel que  $f(x_0) = y$  ( $x_0$  est une solution particulière de  $(\mathscr{E})$ )

$$f(x) = y \iff \exists h \in \text{Ker}(f), x = x_0 \cdot h$$

Preuve:

$$f(x) = y \iff f(x) = f(x_0)$$

$$\iff f(x_0)^{-1} * f(x) = e_2$$

$$\iff f\left(x_0^{-1}\right) * f(x) = e_2$$

$$\iff f\left(x_0^{-1} \cdot x\right) = e_2$$

$$\iff x_0^{-1} \cdot x \in \operatorname{Ker}(f)$$

$$\iff \exists h \in \operatorname{Ker}(f), x_0^{-1} \cdot x = h$$

$$\iff \exists h \in \operatorname{Ker}(f), x = x_0 \cdot h$$

**Proposition:** Soient  $f:G_1\to G_2$  et  $g:G_2\to G_3$  deux morphisme de groupes. Alors,  $g\circ f$  est un morphisme de groupes.

Preuve:

Soient  $x \in G_1$  et  $y \in G_2$ .

$$g \circ f(x \cdot y) = g(f(x) * f(y)) = g(f(x)) \times g(f(y))$$
$$= g \circ f(x) \times g \circ f(y)$$

**Définition:** Soit G un groupe.

- Un endomorphisme de G est un morphisme de groupes de G dans G.
- Un <u>isomorphisme</u> de G dans H un morphisme de groupes  $f:G\to H$  bijectif.
- Un <u>automorphisme</u> de G est un endomorphisme de G bijectif.

**Proposition:** Soit  $f:G\to H$  un isomorphisme de groupes. Alors,  $f^{-1}:H\to G$  est aussi un isomorphisme.

Groupes

Ι

Soit 
$$(x, y) \in H^2$$
. On pose 
$$\begin{cases} f(u) = x, u \in G \\ f(v) = y, v \in G \end{cases}$$

$$f(f^{-1}(x \cdot y^{-1})) = x \cdot y^{-1}$$
$$= f(u) \cdot f(v)^{-1}$$
$$= f(u \cdot v^{-1})$$

Comme f injective,

$$f^{-1}(x \cdot y^{-1}) = u \cdot v^{-1} = f^{-1}(x)(f^{-1}(y))^{-1}$$

Corollaire: On note Aut(G) l'ensemble des automorphismes de G.  $\operatorname{Aut}(G)$  est un sous groupe de  $(S(G), \circ)$ .

**Définition:** Soit  $(G,\cdot)$  un groupe et  $g\in G$ . L'application

$$c_g: G \longrightarrow G$$

$$x \longmapsto gxg^{-1}$$

est appelée conjugaison par g. On dit aussi que c'est un automorphisme intérieur.

Proposition: Avec les notations précédentes,

$$c_g \in \operatorname{Aut}(G)$$

Preuve:

Soient  $x \in G$  et  $y \in G$ .

$$c_g(xy) = g \cdot xy \cdot g^{-1}$$
  
$$c_g(x) \cdot c_g(y) = gxg^{-1}gyg^{-1} = gxyg^{-1} = c_g(xy)$$

Donc,  $c_g$  est un morphisme de groupes.

De plus,

$$\forall x \in G, c_{q^{-1}} \circ c_g(x) = g^{-1} (gxg^{-1}g) = x$$

Donc,  $c_{g^{-1}} \circ c_g = id_G$ . De même,  $c_g \circ c_{g^{-1}} = id_G$ 

Donc,  $c_g$  bijective et  $(c_g)^{-1} = c_{g^{-1}}$ 

Corollaire:

$$\forall x \in G, \forall n \in \mathbb{Z}, c_q(x^n) = (c_q(x))^n$$

Proposition: L'application

$$G \longrightarrow \operatorname{Aut}(G)$$
  
 $g \longmapsto c_g$ 

est un morphisme de groupes.

Preuve:

Soient  $(g,h) \in G^2$ .

$$\forall x \in G, c_g \circ c_h(x) = g \left( hxh^{-1} \right) g^{-1}$$
$$= (gh)x(gh)^{-1}$$
$$= c_{gh}(x)$$

Donc,  $c_g \circ c_h = c_{gh}$ 

Proposition (Rappel):

$$\forall g, h \in G, (gh)^{-1} = h^{-1}g^{-1}$$

Preuve:

$$(gh) (h^{-1}g^{-1}) = e$$
  
 $(h^{-1}g^{-1}) (gh) = e$ 

**Proposition – Définition:** Soient  $(G_1,*)$  et  $(G_2,*)$  deux groupes. On définit une loi sur  $G_1\times G_2$  en posant

$$(x_1, x_2) \cdot (y_1, y_2) = (x_1y_1, x_2y_2)$$

Alors,  $G_1 \times G_2$  est un groupe pour cette loi appelée groupe produit.

Preuve: — Soient  $(x_1, y_1) \in {G_1}^2$  et  $(x_2, y_2) \in {G_2}^2$ . On sait que  $x_1 * y_1 \in G_1$  et que  $x_2 * y_2 \in G_2$ . Donc,  $(x_1, x_2) \cdot (y_1, y_2) = (x_1 x_2, y_1 y_2) \in G_1 \times G_2$ 

Deuxième partie

Anneaux

**Définition:** Un <u>anneau</u>  $(A, +, \times)$  est un ensemble A muni de deux lois de compositions <u>internes</u> notées + et  $\times$  vérifiant

- 1. (A, +) est un groupe commutatif (son neutre est noté  $0_A$ )
- 2.  $(A, \times)$  est un monoïde
  - (a) × est associative
  - (b)  $\times$  a un neutre  $1_A \in A$
- 3. distributivité à gauche et à droite :

$$\forall (a,b,c) \in A^3, \begin{cases} a \times (b+c) = (a \times b) + (a \times c) \\ (b+c) \times a = (b \times a) + (c \times a) \end{cases}$$

Remarque (Convention):

Soit  $(A, +, \times)$  un anneau.

On convient que la multiplication est prioritaire sur l'addition.

$$(a \times b) + (a \times c) = a \times b + a \times c$$

et l'exponentiation est prioritaire sur la multiplication  $(n \in \mathbb{N})$ 

$$a \times b^n = a \times (\underbrace{b \times b \times \cdots \times b}_{n \text{ fois}})$$

$$\neq (a \times b)^n$$

**Proposition:** Soit  $(A, +, \times)$  un anneau. Alors,  $0_A$  est absorbant

$$\forall a \in A, a \times 0_A = 0_A \times a = 0_A$$

Preuve:

Soit  $a \in A$ . On pose  $b = a \times 0_A \in A$ .

$$b = a \times 0_A = a \times (0_A + 0_A) = a \times 0_A + a \times 0_A$$
 
$$= b + b \ (= 2b)$$

Donc,

$$-b + b = -b + b + b$$

donc  $0_A = b$ 

De même,  $0_A \times a = 0_A$ .

Remarque:

On peut imaginer  $\begin{cases} a \times b = 0_A \\ a \neq 0_A \\ b \neq 0_A \end{cases}$ 

Exemple: —  $(\mathbb{Z}/4\mathbb{Z}, +, \times)$  est un anneau

$$\begin{cases} \overline{2} \times \overline{2} = \overline{0} & \text{car } 4 \equiv 0 \text{ [4]} \\ \overline{2} \neq \overline{0} & \text{car } 2 \not\equiv 0 \text{ [4]} \end{cases}$$

—  $(\mathcal{M}_2(\mathbb{C}), +, \times)$  est un anneau (non commutatif)

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0_A$$
$$A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

**Définition:** On dit qu'un anneau  $(A,+,\times)$  est  $\underline{\text{intègre}}$  si

$$\forall (a,b) \in A^2, (a \times b = 0_A \implies a = 0_A \text{ ou } b = 0_A)$$

Exemple: —  $(\mathbb{Z}, +, \times)$  est intègre

—  $\forall p$  premier,  $(\mathbb{Z}/p\mathbb{Z},+,\times)$  est intègre (car tout élément non nul de  $\mathbb{Z}/p\mathbb{Z}$  est inversible donc simplifiable)

Exemple:

Soit  $(A, +, \times)$  un anneau et  $(a, b) \in A^2$ .

$$(a + b)^2 = (a + b) \times (a + b)$$
  
=  $(a + b) \times a + (a + b) \times b$   
=  $a^2 + b \times a + a \times b + b^2$ 

Si a et b commutent, alors,  $a \times b = b \times a$  et donc  $(a+b)^2 = a^2 + b^2 + 2ab$ 

$$(a+b)^3 = (a+b) \times (a+b) \times (a+b)$$
$$= a^3 + a^2 \times b + a \times b \times a + b \times a^2$$
$$+ b^2 \times a + b \times a \times b + a \times b^2 + b^3$$

Si a et b commutent,

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

**Proposition:** Soient  $(A, +, \times)$  un anneau,  $(a, b) \in A^2$ ,  $n \in \mathbb{Z}$ . Alors,

$$n(a \times b) = (na) \times b = a \times (nb)$$

Preuve: — Évident si n = 0

— On suppose n > 0.

$$(n(a \times b) = \underbrace{a \times b + \dots + a \times b}_{n \text{ fois}}$$

$$= \sum_{k=1}^{n} (a \times b)$$

$$= a \times \sum_{k=1}^{n} = a \times (nb)$$

$$= \left(\sum_{k=1}^{n} a\right) \times b = (na) \times b$$

— On suppose n < 0. On pose n = -p avec  $p = \mathbb{N}_*$ .

$$\begin{split} n(a\times b) &= (-p)(a\times b) = -\left(p(a\times b)\right) \\ &= -\left((pa)\times b\right) = (-p)a\times b = (na)\times b \\ &= -\left(a\times (pb)\right) = a\times (-pb) = a\times (nb) \end{split}$$

En effet,

$$\forall (a',b') \in A^2(-a') \times b' + a' \times b' = (-a'+a') \times b' = 0_A \times b' = 0_A$$
 donc  $-(a' \times b') = (-a') \times b'$ 

**Théorème** (Formule du binôme de Newton): Soient  $(A,+,\times)$  un anneau,  $(a,b)\in A^2,$   $n\in\mathbb{N}.$ 

Si a et b commutent alors

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Preuve (par récurrence sur n):

**Proposition:** Soient  $(A, +, \times)$  un anneau,  $(a, b) \in A^2$  et  $n \in \mathbb{N}_*$ . Si a et b commutent, alors

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}$$

**Proposition:** On note  $A^{\times}$  l'ensemble des éléments inversibles d'un anneau  $(A,+,\times)$ .  $(A^{\times},\times)$  est un groupe.

Exemple:  $-\mathbf{Z}^{\times} = \{-1, 1\}$ 

$$- \mathcal{M}_n(\mathbb{C})^{\times} = GL_n(\mathbb{C})$$

$$- (\mathbb{Z}/4\mathbb{Z})^{\times} = \{\overline{1}, \overline{3}\}$$

**Définition:** Soit  $(A, +, \times)$  un anneau <u>commutatif</u>.

- 1. Soient  $(a,b) \in A^2$ . On dit que a <u>divise</u> b s'il existe  $k \in A$  tel que  $b = a \times k$ . On dit aussi que a est un <u>diviseur</u> de b et que b est un <u>multiple</u> de a.
- 2. On dit que a et b sont <u>associés</u> s'il existe  $k\in A^{\times}$  tel que ak=b (dans ce cas,  $a\mid b$  et  $b\mid a)$

#### Remarque:

Le théorème des deux carrés peut se démontrer en exploitant les propriétés arithmétiques de l'anneau  $(Z[i],+,\times)$  où  $Z[i]=\{a+ib\mid a\in\mathbb{Z},b\in\mathbb{Z}\}.$   $\mathbb{Z}[i]^\times=\{1,-1,i,-i\}$ 

Théorème des deux carrés :

1. Soit p un nombre premier.

$$\exists (a,b) \in \mathbb{N}^2, p = a^2 + b^2 \iff p \equiv 1 \ [4]$$

2. Soit 
$$n \in \mathbb{N}_*$$
,  $n = \prod_{p \in \mathscr{P}} p^{\alpha(p)}$ 

$$\exists (a,b) \in \mathbb{N}^2, n = a^2 + b^2 \iff \forall p \in \mathscr{P} \text{ tel que } \alpha(p) \neq 0, p \equiv 1 \text{ [4]}$$

Définition: Soit  $(A,+,\times)$  un anneau et  $B\subset A.$  On dit que B est un  $\underline{\rm sous\ anneau}$  de A si

- 1. B est un sous groupe de (A, +)
- 2.  $\forall (a,b) \in B^2, a \times b \in B$
- 3.  $1_A \in B$

Exemple:

Z[i] est un sous anneau de  $(\mathbb{C},+,\times)$ 

**Proposition:** Soit  $(A, +, \times)$  un anneau et B un sous anneau de A. Alors,  $(B, +, \times)$  est un anneau.

Exercice (Exercice à connaître):

Soit  $(A, +, \times)$  un anneau. Le <u>centre</u> de A est

$$Z(A) = \{x \in A \mid \forall a \in A, a \times x = x \times a\}$$

Z(A) est un sous anneau de A.

 $\begin{array}{ll} \textbf{Proposition:} & \text{Soit } (A,+,\times) \text{ un anneau.} \\ \text{Si } 0_A=1_A \text{ alors } A=\{0_A\}. \text{ On dit alors que } A \text{ est l'anneau nul.} \\ \end{array}$ 

Preuve:

Soit  $a \in A$ .

$$a = a \times 1_A = a \times 0_A = 0_A$$

**Définition:** Soient  $(A, +, \times)$  et  $(B, +, \times)$  deux anneaux (les lois notés de la même façon mais ne sont pas forcément les mêmes!).

Soit  $f:A\to B$ . On dit que f est un (homo)morphisme d'anneaux si

1. 
$$\forall (a,b) \in A^2, f(a+b) = f(a) + f(b)$$

2. 
$$\forall (a,b) \in A^2, f(a \times b) = f(a) \times f(b)$$

3. 
$$f(1_A) = 1_B$$

**Proposition:** Avec les notations précédentes, si  $a \in A^{\times}$  alors  $f(a) \in B^{\times}$  et dans ce cas,

$$f(a)^{-1} = f(a^{-1})$$

Preuve:

On suppose  $a \in A^{\times}$ .

$$\begin{cases} f\left(a^{-1}\right) \times f(a) = f\left(a^{-1} \times a\right) = f(1_A) = 1_B \\ f(a) \times f\left(a^{-1}\right) = f\left(a \times a^{-1}\right) = f(1_A) = 1_B \end{cases}$$

Donc,  $f(a) \in B^{\times}$  et  $f(a)^{-1} = f(a^{-1})$ 

**Définition:** Soient  $(A,+,\times)$  et  $(B,+,\times)$  deux anneaux et  $f:A\to B$  un morphisme d'anneaux.

On dit que f est un

- <u>isomorphisme d'anneaux</u> si f est bijective
- endomorphisme d'anneaux si  $\begin{cases} A = B \\ + = + \\ \times = \times \end{cases}$
- <u>automorphisme d'anneaux</u> si f est à la fois un isomorphisme et un endomorphisme d'anneaux

Exemple: 1. Soit  $a \in \mathbb{Z}$  et

$$f: \mathbb{Z} \longrightarrow \mathbb{Z}$$

f endomorphisme d'anneaux  $\iff a = 1$ 

2.

$$f: \mathcal{M}_n(\mathbb{C}) \longrightarrow \mathcal{M}_n(\mathbb{C})$$
  
 $A \longmapsto A^2$ 

fn'est pas un morphisme d'anneaux car

$$(A+B)^2 \neq A^2 + B^2$$

3.

$$f: \mathbb{C} \longrightarrow \mathbb{C}$$

$$z \longmapsto \overline{z}$$

est un automorphisme d'anneaux

4.

$$f: \mathbb{Z} \longrightarrow \mathbb{R}$$

$$x \longmapsto x$$

f est un morphisme d'anneaux mais ce n'est pas un endomorphisme.

5.

$$f: \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$$
$$k \longmapsto \overline{k}$$

f est un morphisme d'anneaux surjectif.

**Proposition:** La composée de deux morphismes d'anneaux est un morphisme d'anneaux.  $\hfill\Box$ 

**Proposition:** La réciproque d'un isomorphisme d'anneaux est un isomorphisme d'anneaux.  $\hfill\Box$ 

**Proposition:** L'ensemble des automorphismes d'anneaux de A est un sous groupe de  $(S(A), \circ)$ .  $\Box$ 

 $\begin{tabular}{ll} \bf Proposition: L'image directe ou réciproque d'un sous anneau par un morphisme d'anneaux est un sous anneaux. \\ \end{tabular}$ 

**Définition:** Soi  $f:A\to B$  un morphisme d'anneaux. Le <u>noyau</u> de f est

$$Ker(f) = \{ a \in A \mid f(a) = 0_B \}$$

Proposition: Avec les notations précédents,

$$f$$
 injective  $\iff \operatorname{Ker}(f) = \{0_A\}$ 

Remarque:

 $\operatorname{Ker}(f)$ n'est pas un sous anneau en général (car  $1_A \not\in \operatorname{Ker}(f)$  sauf si  $A = \{0_A\})$ 

**Définition:** Soit  $(A,+,\times)$  un anneau et  $a\in A\setminus\{0_A\}$ . On dit que a est un <u>diviseur de zéro</u> s'il existe  $b\in A\setminus\{0_A\}$  tel que  $a\times b=b\times a=0_A$ 

Proposition: Les diviseurs de zéro ne sont pas inversibles.

EXEMPLE:  $A = \mathcal{M}_2(\mathbb{C})$ 

Troisième partie

Corps

Ш Corps

Exemple (Problème): — avec  $A = \mathbb{Z}/9\mathbb{Z}$ , résoudre  $\overline{x}^2 = \overline{0}$ 

| $\overline{x}$   | $\overline{0}$ | $\overline{1}$ | $\overline{2}$ | 3 | $\overline{4}$ | $\overline{5}$ | 6 | $\overline{7}$ | 8              | 9              |
|------------------|----------------|----------------|----------------|---|----------------|----------------|---|----------------|----------------|----------------|
| $\overline{x}^2$ | 0_             | _1_            | $\overline{4}$ | 0 | 7              | 7              | 0 | $\overline{4}$ | $\overline{1}$ | $\overline{0}$ |

On a trouvé 3 solutions :  $0, \overline{3}, \overline{6}$ .

 $-\mathbb{Z}/8\mathbb{Z}$ 

| $\overline{x}$             | $\overline{0}$ | 1 | $\overline{2}$ | 3              | $\overline{4}$ | $\overline{5}$ | 6              | 7 |
|----------------------------|----------------|---|----------------|----------------|----------------|----------------|----------------|---|
| $\frac{\overline{x^2}}{2}$ | 0,             | 1 | $\overline{4}$ | $\overline{1}$ | 0              | $\overline{1}$ | $\overline{4}$ | 1 |

$$\overline{x}^2 = 7 \text{ a 4 solutions}: \frac{|x^2|}{1,7,3} = \frac{|0|}{1,7,3} = \frac{|1|}{1,7} = \frac{|4|}{1,7} = \frac{|1|}{1,7} = \frac{|4|}{1,7} = \frac{|1|}{1,7} = \frac{|1|}$$

Dans cet anneau, -1 a 6 racines!

**Définition:** Soit  $(\mathbb{K}, +, \times)$  un ensemble muni de deux lois de composition internes. On dit que c'est un  $\underline{\mathrm{corps}}$  si

- 1.  $(\mathbb{K}, \times)$  est un groupe abélien
- 2.  $(\mathbb{K}, \times)$  est un monoïde commutatif
- 3.  $\forall x \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}, \exists y \in \mathbb{K}, xy = 1_{\mathbb{K}}$
- $4. \ 0_{\mathbb{K}} \neq 1_{\mathbb{K}}$

Exemple:  $-(\mathbb{C},+,\times)$  est un corps

- $\begin{array}{l} (\mathbb{R}, +, \times) \text{ est un corps} \\ (\mathbb{Q}, +, \times) \text{ est un corps} \end{array}$
- $(\mathbb{Z}, +, \times)$  n'est pas un corps

**Proposition:**  $(\mathbb{Z}/n\mathbb{Z}, +, \times)$  est un corps si et seulement si n est premier.

Preuve:

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \left\{ \overline{k} \mid k \wedge n = 1 \right\}$$

Proposition: Tout corps est un anneau intègre.

Preuve:

Soit  $(\mathbb{K},+,\times)$  un corps. Soient  $(a,b)\in\mathbb{K}^2$  tel que  $a\times b=0_{\mathbb{K}}$ . On suppose  $a \neq 0_{\mathbb{K}}$ . Alors, a est inversible et donc

$$b = a^{-1} \times a \times b = a^{-1} \times 0_{\mathbb{K}} = 0_{\mathbb{K}}$$

Exemple:

Soit  $(\mathbb{K}, +, \times)$  un corps.

Résoudre

$$\begin{cases} x^2 = 1_{\mathbb{K}} \\ x \in \mathbb{K} \end{cases}$$

III Corps

$$\begin{split} x^2 &= 1_{\mathbb{K}} \iff x^2 - 1_{\mathbb{K}} = 0_{\mathbb{K}} \\ &\iff (x - 1_{\mathbb{K}})(x + 1_{\mathbb{K}}) = 0_{\mathbb{K}} \\ &\iff x - 1_{\mathbb{K}} = 0_{\mathbb{K}} \text{ ou } x + 1_{\mathbb{K}} = 0_{\mathbb{K}} \\ &\iff x = 1_{\mathbb{K}} \text{ ou } x = -1_{\mathbb{K}} \end{split}$$

Il y a au plus 2 solutions.

**Proposition:** Soit  $(\mathbb{K},+,\times)$  un corps et P un polynôme à coefficients dans  $\mathbb{K}$  de degré n. Alors, l'équation  $P(x)=0_{\mathbb{K}}$  a au plus n solutions dans  $\mathbb{K}$ 

Corollaire ((Théorème de Wilson)): voir exercice 16 du TD 12

**Définition:** Soit  $(\mathbb{K}, +, \times)$  un corps et  $L \subset \mathbb{K}$ .

On dit que L est un sous corps de  $\mathbb K$  si

- 1. L est un anneau de  $(\mathbb{K}, +, \times)$  non nul
- 2.  $\forall x \in L \setminus \{0_{\mathbb{K}}\}, x^{-1} \in L$

en d'autres termes si

- 1.  $\forall (x,y) \in L^2, x-y \in L$
- 2.  $\forall (x,y) \in L^2, x \times y^{-1} \in L$

On dit aussi que  $\mathbb{K}$  est une <u>extension</u> de L.

Proposition: Tout sous corps est un corps.

**Définition:** Soient  $(\mathbb{K}_1, +, \times)$  et  $(\mathbb{K}_2, +, \times)$  deux corps et  $f : \mathbb{K}_1 \to \mathbb{K}_2$ . On dit que f est un <u>morphisme de corps</u> si f est un morphisme d'anneaux. i.e. si

$$\begin{cases} \forall (x,y) \in \mathbb{K}_1^2, & f(x+y) = f(x) + f(y) \\ \forall (x,y) \in \mathbb{K}_1^2, & f(x \times y) = f(x) \times f(y) \end{cases}$$

Proposition: Tout morphisme de corps est injectif.

Preune

Soit  $f: \mathbb{K}_1 \to \mathbb{K}_2$  un morphisme de corps.

- Ker(f) est un sous groupe de  $(\mathbb{K}_1, +)$
- Soit  $x \in \text{Ker}(f)$  et  $y \in \mathbb{K}_1$

$$f(x\times y)=f(x)\times f(y)=0_{\mathbb{K}_2}\times f(y)=0_{\mathbb{K}_2}$$

— Soit  $x \in \text{Ker}(f) \setminus \{0_{\mathbb{K}_1}\}$ . Alors, x est inversible. IIICorps

$$\left. \begin{array}{l} x \in \operatorname{Ker}(f) \\ x^{-1} \in \mathbb{K}_1 \end{array} \right\} \ \operatorname{donc} \ x \times x^{-1} \in \operatorname{Ker}(f) \\ \\ \operatorname{donc} \ 1_{\mathbb{K}_1} \in \operatorname{Ker}(f) \\ \\ \operatorname{donc} \ f(1_{\mathbb{K}_1}) = 0_{\mathbb{K}_2} \end{array}$$

$$\begin{array}{l} \text{Or, } f(1_{\mathbb{K}_1})=1_{\mathbb{K}_2}\neq 0_{\mathbb{K}_2}\\ \text{Donc, } \operatorname{Ker}(f)=\{0_{\mathbb{K}_1}\} \ \text{donc } f \ \text{est injective.} \end{array}$$

Quatrième partie

Actions de groupes

IV

**Définition:** Soit  $(G,\cdot)$  un groupe et X un ensemble non vide. Une action de G sur Xest une application

$$\varphi:G\times X\longrightarrow X$$
 
$$(g,x)\longmapsto \underbrace{g\cdot x}_{\text{ce n'est pas la loi de }G}$$

qui vérifie

1. 
$$\forall x \in X, \varphi(e, x) = e \cdot x = x$$

2. 
$$\forall x \in X, \forall g, h \in G, g \cdot (h \cdot x) = (g \cdot h) \cdot x$$

$$G \longrightarrow S(X)$$

Preuve:  $\forall g \in G (x \mapsto g \cdot x)^{-1} =$  Cinquième partie

Bilan

V Bilan

#### Groupe

On dit que  $(G, \diamond)$  est un groupe si

- ⋄ est associative;
- $\diamond$  a un neutre  $e \in G$ ;
- tout élément  $x \in E$  a un inverse  $y \in E$ :

$$x \diamond y = y \diamond x = e$$
.

### Sous-groupe

On dit que  $H\,\subset\, G$  est un sous-groupe de Gsi

- $-e \in H$ ;
- $\forall x, y \in H, \ x \diamond y \in H;$  $\forall x \in H, \ x^{-1} \in H.$

Si  $\diamond$  est commutative, on dit que  $(G, \diamond)$ est un groupe commutatif ou abélien.

Pour monter que H est un sous-groupe de G, on montre

- $-H \neq \varnothing;$
- $\forall x, y \in H, \ x \diamond y^{-1} \in H.$

L'intersection de sous-groupes est un sous-groupe. Attention, l'union de sousgroupes n'est pas forcément un sousgroupe.

#### Sous-groupe engendré

Le sous-groupe engendré par  $A, \langle A \rangle$ , est le plus petit sous groupe de G contenant A.

S'il existe  $a \in G$  tel que  $G = \langle a \rangle$ , on dit que G est monogène et a est un générateur de G.

Soit  $a \in G$ . L'ordre de a est  $\#\langle a \rangle$  i.e.  $a^n = e$ .

#### Morphisme de groupes

Soit  $f: G_1 \to G_2$  où  $(G_1, \cdot)$  et  $(G_2, \times)$ sont des groupes. f est un morphisme de groupes si

 $\forall x, y \in G_1, \ f(x \cdot y) = f(x) \times f(y).$ L'image directe d'un sous-groupe de  $G_1$  est un sous-groupe de  $G_2$ . L'image réciproque d'un sous-groupe de  $G_2$  est un sous-groupe de  $G_1$ .  $\forall u \in G_1; f(u^{-1}) = f(u)^{-1}.$ 

f injective  $\iff$  Ker  $f = \{e_1\}$ .