Introdução ao Machine Learning

Dataprep e Classificação

May de 2022

Dataprep Parte I

Conteúdo

- Preditores categóricos
- Transformações 1:1
- Transformações 1:n
- Regressão Logística
- Matriz de Confusão
- Métricas de Classificação
- Curva ROC
- Múltiplas Notas de Corte

Preditor com apenas 2 categorias

Saldo médio no cartão de crédito é diferente entre homens e mulheres?

$$y_i = eta_0 + eta_1 x_i \quad ext{ em que } \quad x_i = egin{cases} 1 & ext{se o i-\'esimo carro for manual} \ 0 & ext{se o i-\'esimo carro for autom\'atico} \end{cases}$$

Ver ISL página 84 (Predictors with Only Two Levels).

Preditor com 3 ou mais categorias

Exemplo: Modelo linear

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}$$

Em que

$$x_{1i} = egin{cases} 1 & ext{se for Multi_Family} \ 0 & ext{caso contrário} \end{cases}$$

$$x_{2i} = egin{cases} 1 & ext{se for Residential} \ 0 & ext{caso contrário} \end{cases}$$

Preditor com 3 ou mais categorias

"One hot enconding" ou "Dummies" ou "Indicadores".

type	(Intercept)	typeMulti_Family	typeResidential
Residential	1	Ο	1
Multi_Family	1	1	0
Condo	1	0	Ο
Residential	1	0	1
Condo	1	Ο	Ο
Multi_Family	1	1	0

steps: step_dummy()

Preditor com 3 ou mais categorias

As previsões para cada categoria ficaria assim:

$$y_i = egin{cases} eta_0 & ext{se for Condo} \ eta_0 + eta_1 & ext{se for Multi_Family} \ eta_0 + eta_2 & ext{se for Residential} \end{cases}$$

Exemplo: log

Exemplo: log

Relação real entre x e y:

$$y = 10 + 0.5log(x)$$

Modelos propostos:

1)
$$y \sim x$$

2)
$$y \sim log(x)$$

Outras transformações comuns: raíz quadrada, Box-Cox.

steps: step_log(), step_BoxCox(), step_sqrt()

Exemplo: Regressão Polinomial

Relação real:
$$y=500+0.4(x-10)^3$$

Modelo proposto:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

Exemplo: Regressão Polinomial

У	idade	idade2	idade3
456.5	5.3	28.2	149.7
492.5	7.4	55.4	412.2
548.4	11.5	131.3	1503.9
758.7	18.2	329.9	5993.0
444.7	4.0	16.3	65.6
748.3	18.0	322.8	5800.8
820.5	18.9	357.0	6744.3
517.0	13.2	174.7	2308.3

Outras expansões comuns: b-splines, natural splines.

steps: step_poly(), step_bs(),
step_ns

Interação entre duas variáveis explicativas: species e bill_length_mm

Modelo proposto (Matemático): Seja $y = flipper_length_mm e x = bill_length_mm$,

$$y = \beta_0 + \beta_1 x$$

Modelo proposto (em R): Sepal.Width ~ Sepal.Length

Modelo proposto (Matemático): Seja y = Sepal.Width e x = Sepal.Length,

$$y = eta_0 + eta_1 x + eta_2 I_{versicolor} + eta_3 I_{virginica}$$

Modelo proposto (em R): Sepal.Width ~ Sepal.Length + Species

Modelo proposto (Matemático): Seja y = Sepal.Width e x = Sepal.Length,

$$y = eta_0 + eta_1 x + eta_2 I_{versicolor} + eta_3 I_{virginica} + eta_4 x I_{versicolor} + eta_5 x I_{virginica}$$

Modelo proposto (em R): step_interact(~flipper_length_mm:starts_with("species_")).

Exemplo 04

Outras referências

- Transformações recomendadas p/ cada modelo: https://www.tmwr.org/pre-proctable.html
- Lista de transformações do recipes: https://recipes.tidymodels.org/reference/index.html
- Embbed: p/ quando o preditor tem muitas categorias: https://embed.tidymodels.org/
- Textos: quando colunas tem textos https://github.com/tidymodels/textrecipes
- Séries temporais: https://businessscience.github.io/timetk/reference/index.html#section-feature-engineeringoperations-recipe-steps-

Classificação

Regressão Logística

Para $Y \in \{0,1\}$ (binário)

$$log\left(rac{p}{1-p}
ight)=eta_0+eta_1x$$

Ou...

$$p=rac{1}{1+e^{-(eta_0+eta_1x)}}$$

No R:
logistic_reg() %>%
fit(spam ~ exclamacoes, data = dt_

Y = 1: E-mail é Spam

Ver ISL página 131 (Logistic Regression).

Regressão Logística

Y = 1: E-mail é Spam

Regressão Logística

Árvore de Decisão

Regressão Logística - Custo

A **Métrica** que a regressão logística usa de **Função de Custo** chama-se *log-loss* (ou *Binary Cross-Entropy*):

$$D = rac{-1}{N} \sum [y_i \log \hat{y_i} + (1-y_i) \log (1-\hat{y_i})]$$

Para cada linha da base de dados seria assim...

$$D_i = egin{cases} -\log(\hat{y}_i) & ext{ quando } y_i = 1 \ \ -\log(1-\hat{y}_i) & ext{ quando } y_i = 0 \end{cases}$$

Regressão Logística - Regularização

A **Métrica** que a regressão logística usa de **Função de Custo** chama-se *log-loss* (ou *Binary Cross-Entropy*):

$$D = rac{-1}{N} \sum [y_i \log \hat{y_i} + (1-y_i) \log (1-\hat{y_i})]$$

Regularizar é analogo a Regressão Linear.

$$D_{regularizado} = D + rac{oldsymbol{\lambda}}{oldsymbol{\lambda}} \sum_{j=1}^p |eta_j|$$

PS1: Se
$$\log\Bigl(rac{\hat{p_i}}{1-\hat{p_i}}\Bigr)=eta_0+eta_1x$$
 então $\hat{p_i}=rac{1}{1+e^{-(eta_0+eta_1x)}}.$

Regressão Logística - Predições

O "produto final" será um vetor de probabilidades estimadas.

pts excl	classe observada	prob	classe predita
167	Spam	0.79	Spam
129	Spam	0.45	Não Spam
299	Spam	1.00	Spam
270	Spam	1.00	Spam
187	Spam	0.89	Spam
85	Não Spam	0.12	Não Spam

Matriz de Confusão

	Observado		
Predito	Neg	Pos	
Neg	TN	FN	
Pos	FP	TP	

p > 50%	Observado			
Predito	Não Spam Spam			
Não Spam	410	73		
Spam	52	465		

accuracy
$$= \frac{TP+TN}{TP+TN+FP+FN}$$

precision =
$$\frac{TP}{TP+FP}$$

$$ext{recall/TPR} = rac{TP}{TP+FN}$$

F1 score
$$= \frac{2}{1/\text{precision}+1/\text{recall}}$$

$$ext{FPR} = rac{FP}{FP+TN}$$

Nota de Corte (Threshold)

p > 10%	Observado			
Predito	Não Spam Spam			
Não Spam	267	8		
Spam	195	530		
p > 25%	Observado			
Predito	Não Spam Spam			
Não Spam	332	28		
Spam	130	510		
p > 50%	Observado			
Predito	Não Spam Spam			
Não Spam	410 73			
Spam	52 465			

p > 7 5%	Observado Não Spam Spam		
Predito			
Não Spam	443 112		
Spam	19 43		
p > 90%	Observado		
Predito	Não Spam Span		
Não Spam	456	171	
Spam	6 367		

Curva ROC

	Observado				
Predito	Neg Pos				
Neg	TN	FN			
Pos	FP TP				

$$TPR = \frac{TP}{TP+FN}$$

$$FPR = \frac{FP}{FP+TN}$$

Curva ROC - Métrica AUC

	Observado Neg Pos			
Predito				
Neg	TN	FN		
Pos	FP	TP		

 $AUC = Area\ Under\ The\ ROC\ Curve$

Curva ROC - Playground

Múltiplas Notas de Corte

Risco por Segmentação

	Observ			
Predito	Neg	Pos	N	Risco
A (até 0,19)	90	11	101	11%
B (até 0,44)	60	40	100	40%
C (até 0,62)	39	60	99	60%
D (0,62 ou +)	20	80	100	80%

Usamos o **score** como preferirmos

```
dados %>%
  mutate(
    segmento = case_when(
        score < 0.19 ~ "A",
        score < 0.44 ~ "B",
        score < 0.62 ~ "C",
        score >= 0.62 ~ "D"))
```

Exemplo 05

Exercício 02