Orthogonality

Orthogonality

Normal Equation Revisited

Alternate perspective on the "normal equation":

$$A^{\mathrm{T}}(\mathbf{b} - A\mathbf{x}) = \mathbf{0} \quad \Longleftrightarrow \quad \mathbf{z}^{\mathrm{T}}(\underbrace{\mathbf{b} - A\mathbf{x}}_{\mathrm{residual} = \mathbf{r}}) = 0 \quad \text{for all } \mathbf{z} \in \mathcal{R}(A) \,,$$

i.e., ${\bf x}$ solves the normal equation if and only if the residual is orthogonal to the range of A.

Orthogonal Vectors

Recall that the angle θ between two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ satisfies

$$\vec{\mathcal{N}} \cdot \vec{\mathcal{V}} = \|\vec{\mathcal{M}}\| \|\vec{\mathcal{V}}\| \cos \theta$$

$$\lim_{n \to \infty} \cos(\theta) = \frac{\mathbf{u}^{\mathrm{T}} \mathbf{v}}{\|\mathbf{u}\|_{2} \|\mathbf{v}\|_{2}}.$$

Definition 1

71 TJ

- Two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are **orthogonal** if $\mathbf{u}^T \mathbf{v} = 0$.
- Vectors $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k \in \mathbb{R}^n$ are orthogonal if $\mathbf{q}_i^{\mathrm{T}} \mathbf{q}_j = 0$ for all $i \neq j$.

• Vectors
$$\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k \in \mathbb{R}^n$$
 are orthonormal if $\mathbf{q}_i^T \mathbf{q}_j = \delta_{i,j} = \emptyset$, $\hat{\iota} \neq \hat{\jmath}$

$$\delta_{i,j} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \qquad \overrightarrow{\bigcap_{i}} \quad \overrightarrow{$$

Matrices with Orthogonal Columns

$$\frac{N_{\text{ate}}}{\sqrt{N_{\text{o}}}}$$
: (i,j) -entry = \vec{q}_i \vec{q}_i

Let
$$Q = \left[\begin{array}{c|c} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_k \end{array} \right] \in \mathbb{R}^{n \times k}$$
 . Note that

$$Q^{\mathrm{T}}Q = \begin{bmatrix} \mathbf{q}_1^{\mathrm{T}} \\ \mathbf{q}_2^{\mathrm{T}} \\ \vdots \\ \mathbf{q}_k^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_k^{\mathrm{T}} \mathbf{q}_k \\ \mathbf{q}_2 & \cdots & \mathbf{q}_2^{\mathrm{T}} \mathbf{q}_k \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1^{\mathrm{T}} \mathbf{q}_1 & \mathbf{q}_1^{\mathrm{T}} \mathbf{q}_2 & \cdots & \mathbf{q}_2^{\mathrm{T}} \mathbf{q}_k \\ \mathbf{q}_2^{\mathrm{T}} \mathbf{q}_1 & \mathbf{q}_2^{\mathrm{T}} \mathbf{q}_2 & \cdots & \mathbf{q}_2^{\mathrm{T}} \mathbf{q}_k \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{q}_k^{\mathrm{T}} \mathbf{q}_1 & \mathbf{q}_k^{\mathrm{T}} \mathbf{q}_2 & \cdots & \mathbf{q}_k^{\mathrm{T}} \mathbf{q}_k \end{bmatrix}.$$

$$\overrightarrow{q_i} \overrightarrow{q_j} = 0 \iff \text{all off-diagonal}$$
 Therefore,
$$\overrightarrow{q_1, \dots, q_k} \text{ are orthogonal.} \iff Q^TQ \text{ is a } k \times k \text{ diagonal matrix.}$$

- $\mathbf{q}_1, \dots, \mathbf{q}_k$ are orthonormal. \iff Q^TQ is the $k \times k$ identity matrix.

Matrices with Orthonormal Columns

$$\vec{q}_i \vec{T} \vec{q}_j = \delta_{i,j} = \int_{-\infty}^{\infty} 0 \quad \text{if } i \neq j$$

Theorem 2

Let $Q = [\mathbf{q}_1 \mid \mathbf{q}_2 \mid \cdots \mid \mathbf{q}_k] \in \mathbb{R}^{n \times k}$ and suppose that $\mathbf{q}_1, \ldots, \mathbf{q}_k$ are orthonormal. Then

- 2 $\|Q\mathbf{x}\|_2 = \|\mathbf{x}\|_2$ for all $\mathbf{x} \in \mathbb{R}^k$; (2-norm preservation)
- 3 $\|Q\|_2 = 1$. (exercise; recall the defining matrix p-norm & use 2)

Proof of
$$Q$$

$$||Q\overrightarrow{x}||_{2}^{2} = (Q\overrightarrow{x})^{T}(Q\overrightarrow{x}) = \overrightarrow{x}^{T}Q^{T}Q\overrightarrow{x} = \overrightarrow{x}^{T}\overrightarrow{x} = ||\overrightarrow{x}||_{2}^{2}$$

$$||Q\overrightarrow{x}||_{2}^{2} = (Q\overrightarrow{x})^{T}(Q\overrightarrow{x}) = \overrightarrow{x}^{T}Q^{T}Q\overrightarrow{x} = \overrightarrow{x}^{T}\overrightarrow{x} = ||\overrightarrow{x}||_{2}^{2}$$

Orthogonal Matrices

Definition 3

We say that $Q \in \mathbb{R}^{n \times n}$ is an **orthogonal matrix** if $Q^{T}Q = I \in \mathbb{R}^{n \times n}$.

Equare matrix The columns of a are orthonormal.

• A square matrix with orthogonal columns is not, in general, an orthogonal matrix!

$$R_0 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Properties of Orthogonal Matrices

Theorem 4

Let $Q \in \mathbb{R}^{n \times n}$ be orthogonal. Then

- $\mathbf{0} \ Q^{-1} = Q^{\mathrm{T}};$
- Q Q is also an orthogonal matrix;
- 3 $\kappa_2(Q)=1;$ the best that we can hope for !
- **4** For any $A \in \mathbb{R}^{n \times n}$, $||AQ||_2 = ||A||_2$;
- **6** if $P \in \mathbb{R}^{n \times n}$ is another orthogonal matrix, then PQ is also orthogonal.

$$(PQ)^T(PQ) = Q^T P^T PQ = Q^T Q = I$$

Why Do We Like Orthogonal Vectors?

If u and v are orthogonal, then

$$\|\mathbf{u} \pm \mathbf{v}\|_{2}^{2} = \|\vec{\mathcal{U}}\|_{2}^{2} + \|\vec{\mathcal{V}}\|_{2}^{2} \pm 2\vec{\mathcal{U}}$$
 (Pythagorean theorem)

• Without orthogonality, it is possible that $\|\mathbf{u} - \mathbf{v}\|_2$ is much smaller than $\|\mathbf{u}\|_2$ and $\|\mathbf{v}\|_2$.

• The addition and subtraction of orthogonal vectors are guaranteed to be

well-conditioned.

17+5 5

Appendix: Projection and Reflection

(Review of Linear Afgebora)

Given
$$\vec{u}$$
, $\vec{v} \in \mathbb{R}^{n}$

Today: $||\cdot||$ for $||\cdot||_{2}$

$$P = \frac{\vec{v} \vec{v}^{T}}{\vec{v}^{T} \vec{v}^{T}}$$

$$P = ||\vec{p}|| (\text{unit vector} |\vec{v}| + \text{div.} \sqrt{r} \vec{v})$$

$$= ||\vec{p}|| \frac{\vec{v}}{||\vec{v}||}$$

$$= ||\vec{v}|| |\cos \theta||\vec{v}||_{2}$$

$$|\vec{v}| = \text{span } |\vec{v}|$$
Note that
$$|\vec{p} + \vec{q}| = |\vec{v}|$$

$$|\vec{p}| = |\vec{v}| - |\vec{p}|$$

$$|\vec{v}| = |\vec{v}| - |\vec{p}|$$

$$|\vec{v}| = |\vec{v}| - |\vec{p}|$$

$$|\vec{v}| = |\vec{v}| - |\vec{v}|$$

$$|\vec{r}| = |\vec{q}| + (-\vec{p})$$

$$= |\vec{T} - 2\vec{p}| = |\vec{T} -$$

$$\langle \vec{V} \rangle^{+} = \text{orthogonal complement}$$
of $\langle \vec{V} \rangle$.

Projection and Reflection Operators

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^m$ be nonzero vectors.

• Projection of \mathbf{u} onto $\langle \mathbf{v} \rangle = \text{span}(\mathbf{v})$:

$$\frac{\mathbf{v}^{\mathrm{T}}\mathbf{u}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}}\mathbf{v} = \underbrace{\left(\frac{\mathbf{v}\mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}}\right)}_{-\cdot P}\mathbf{u} =: P\mathbf{u}.$$

• Projection of \mathbf{u} onto $\langle \mathbf{v} \rangle^{\perp}$, the orthogonal complement of $\langle \mathbf{v} \rangle$:

$$\mathbf{u} - \frac{\mathbf{v}^{\mathrm{T}}\mathbf{u}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}}\mathbf{v} = \left(I - \frac{\mathbf{v}\mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}}\right)\mathbf{u} =: (I - P)\mathbf{u}.$$

• Reflection of \mathbf{u} across $\langle \mathbf{v} \rangle^{\perp}$:

$$\mathbf{u} - 2 \frac{\mathbf{v}^{\mathrm{T}} \mathbf{u}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}} \mathbf{v} = \left(I - 2 \frac{\mathbf{v} \mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}} \right) \mathbf{u} =: (I - 2P) \mathbf{u}.$$

Projection and Reflection Operators (cont')

Summary: for given $\mathbf{v} \in \mathbb{R}^m$, a nonzero vector, let

$$P = \frac{\mathbf{v}\mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}} \in \mathbb{R}^{m \times m}.$$

Then the following matrices carry out geometric transformations

- Projection onto $\langle \mathbf{v} \rangle$: P
- Projection onto $\langle \mathbf{v} \rangle$: I P
- Reflection across $\langle \mathbf{v} \rangle^{\perp}$: I 2P

Note. If v were a unit vector, the definition of P simplifies to $P = vv^{T}$.