$\underline{\text{Lin. Op. auf } BR} \qquad \qquad \# \ 1 \qquad \underline{2 \text{ - Normierte } R\"{a}ume}$	Lin. Op. auf BR # 22 - Normierte Räume
Norm	Halbnorm
$\underline{Lin. \ Op. \ auf \ BR} \qquad \qquad \# \ 3 \qquad \underline{2 - Normierte \ R\"{a}ume}$	$\underline{\text{Lin. Op. auf } BR} \qquad \qquad \underline{\# \ 4} \qquad \underline{2 \text{ - Normierte } R\"{a}ume}$
Einheitskugel	Definition: im nVR konvergente Folge
Lin. Op. auf BR $\#$ 5 2 - Normierte Räume	Lin. Op. auf BR $\#$ 6 2 - Normierte Räume
umgekehrte Dreiecksungleichung	äquivalente Normen
$\underline{Lin. Op. auf BR}$ $\# 7$ $\underline{2 - Normierte R\"{a}ume}$	Lin. Op. auf BR $\#$ 82 - Normierte Räume
äquivalente Normen + endlich dimensionalen Vektorraum	äquivalente Normen + endlich dimensionalen Vektorraum

Falls $\|\cdot\|$ all die Eigenschaften einer Norm erfüllt außer $\|x\|=0 \Rightarrow x=0$, dann heißt $\|\cdot\|$ Halbnorm.

Antwort

Sei X ein Vektorraum über $\mathbb{K}\in\{\mathbb{R},\mathbb{C}\}$. Eine Abbildung $\|\cdot\|\colon X\to\mathbb{R}_+$ heißt **Norm**, falls

$$(N1) ||x|| \ge 0, ||x|| = 0 \iff x = 0$$

$$(N2) \quad \|\lambda x\| = |\lambda\|x\|$$

$$(N3) \|x+y\| \le \|x\| + \|y\|$$

1

Antwort

:

1

Antwort

Eine Folge (x_n) des normierten Raums X konvergiert gegen ein $x \in X$, falls

$$||x_n - x|| \xrightarrow[n \to \infty]{} 0.$$

Die Menge $U_X = \{x \in X : ||x|| \le 1\}$ heißt **Einheitskugel**.

6

Antwort

5

Antwort

Zwei Normen $\|\cdot\|_1, \|\cdot\|_2$ heißen **äquivalent** auf X, falls es $0 < m, M < \infty$ gibt, so dass für alle $x \in X$ gilt:

$$m||x||_2 \le ||x||_1 \le M||x||_2$$

Für zwei Elemente $x,y\in (X,\|\cdot\|)$ in normierten Räumen gilt auch die **umgekehrte Dreiecksungleichung** $(|\|x\|-\|y\||\leq \|x-y\|)$

8

Antwort

7

Antwort

Auf einem endlich dimensionalen Vektorraum sind alle Normen äquivalent.

Auf einem endlich dimensionalen Vektorraum sind alle Normen äquivalent.

$\underline{\text{Lin. Op. auf } BR} \qquad \qquad \# \ 9 \qquad \underline{2 - Normierte \ R\"{a}ume}$	Lin. Op. auf BR $\# 10$ 2 - Normierte Räume
Äquivalenzen zu äquivalente Norm	Folgenraum
Lin. Op. auf BR $\# 11$ 2 - Normierte Räume	Lin. Op. auf BR # 12 2 - Normierte Räume
Minkowski-Ungleichung	Hölder-Ungleichung
Lin. Op. auf BR # 13 2 - Normierte Räume	<u>Lin. Op. auf BR</u> # 14 2 - Normierte Räume
äquivalente Normen + unendlich dimensionale Räume	Raum der beschränkten, m-fach stetig differenzierbaren Funktionen
Lin. Op. auf BR $\#$ 15 2 - Normierte Räume	Lin. Op. auf BR # 16 3 - Beschr. und lin. Op.
Quotientenraum	Beschränkte Menge

 $\mathbb{F} = \{(x_n) \in \mathbb{K}^{\mathbb{N}} : x_i = 0 \text{ bis auf endlich viele } n \in \mathbb{N} \}$ ist der **Folgenraum** und $e_j = (0, \dots, 0, 1, 0, \dots, 0)$ der j-te Einheitsvektor in \mathbb{F} , wobei die 1 an j-ter Stelle steht.

9 Antwort

Für zwei Normen $\|\cdot\|_1, \|\cdot\|_2$ auf X sind folgende Aussagen äquivalent:

- a) $\|\cdot\|_1, \|\cdot\|_2$ sind äquivalent
- b) Für alle $(x_n)_n \subset X$, $x \in X$ gilt $||x_n x||_1 \to 0 \iff ||x_n x||_2 \to 0$
- c) Für alle $(x_n)_n \subset X$ gilt $||x_n||_1 \to 0 \iff ||x_n||_2 \to 0$
- d) Es gibt Konstanten $0 < m, M < \infty$, so dass $mU_{(X,\|\cdot\|_1)}$ $U_{(X,\|\cdot\|_2)} \subseteq MU_{(X,\|\cdot\|_1)}$

12

Antwort

Hölder-Ungleichung mit $\frac{1}{p} + \frac{1}{p'} = 1$ gilt;

$$\sum_{i=1}^{\infty} |x_i| |y_i| \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{\infty} |y_i|^{p'}\right)^{\frac{1}{p'}}$$

11

Antwort

Minkowski-Ungleichung:

$$\left(\sum_{i=1}^{\infty} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{\infty} |y_i|^p\right)^{\frac{1}{p}}$$

14

Antwort

 $C_b^m(\Omega) := \{ f : \Omega \to \mathbb{R} : D^{\alpha} f \text{ sind für alle } \alpha \in \mathbb{N}^n \text{ stetig}$ und beschränkt auf $\Omega, |\alpha| \leq m \}.$

und versehen ihn mit der Norm

$$||f||_{C_b^m} := \sum_{|\alpha| \le m} ||D^{\alpha}f||_{\infty}$$

Äquivalent dazu ist die Norm

$$||f||_0 = \sum_{i=0}^{m-1} |f^{(i)}(0)| + ||f^{(m)}||_{\infty}$$

16

Antwort

Eine Teilmenge V eines normieren Raums $(X, \|\cdot\|)$ heißt beschränkt, falls

 $c\coloneqq \sup_{x\in V}\|x\|<\infty, \text{ und damit auch } V\subset cU_{(X,\|\cdot\|)}.$

13

Antwort

Im une ndlich dimensionalen Fall sind die Normen $\|\cdot\|_p$ auf $\mathbb F$ nicht äquivalent.

Bsp.: sei o.B.d.A. p > q und setze $x_n := \sum_{j=2^{n+1}}^{2^{n+1}} j^{-\frac{1}{p}} e_j$, $e_j = (\delta_{ij})_{i \in \mathbb{N}}$.

15

Antwort

Sei $(X, \|\cdot\|)$ ein normierter Raum und $M \subset X$ sei abgeschlossener (d.h. für alle $(x_n) \in M, \|x_n - x\| \to 0 \Rightarrow x \in M$), linearer Unterraum. Definiere $\hat{X} := X/M$, dann ist $\hat{x} \in X/M$:

$$\hat{x} = \{ y \in X : y - x \in M \} = x + M$$

Dabei gilt unter anderem $\hat{x}_1 + \hat{x}_2 = \widehat{x_1 + x_2}$ und $\lambda \hat{x}_1 = \widehat{\lambda x_1}$; \hat{X} bildet somit einen Vektorraum.

Definieren wir eine Norm für die Äquivalenzklassen mittels

$$n\|\hat{x}\|_{\hat{X}} := \inf\{\|x - y\|_X : y \in M\} =: d(x, Y)$$

 $(\hat{X},\|\cdot\|_{\hat{X}})$ ein normierter Raum.

Lin. Op. auf BR # 17 3 - Beschr. und lin. Op.	Lin. Op. auf BR # 18 3 - Beschr. und lin. Op.
Beschränkte Folge	Äquivalenzen zu T stetig
Lin. Op. auf BR # 19 3 - Beschr. und lin. Op.	Lin. Op. auf BR # 20 3 - Beschr. und lin. Op.
Vektorraum der beschränkten, linearen Operatoren	Isometrie
$\underline{\text{Lin. Op. auf BR}} \qquad \qquad \underline{\# 21} \ \ \underline{3 \text{ - Beschr. und lin. Op.}}$	$\underline{Lin. Op. auf BR} \qquad \qquad \underline{\# 22} \ \underline{3 - Beschr. und lin. Op.}$
stetige Einbettung	isomorphe Einbettung
Lin. Op. auf BR $\# 23$ 3 - Beschr. und lin. Op.	Lin. Op. auf BR # 24 3 - Beschr. und lin. Op.
Isomorphismus	Dualraum

Seien X,Y normierte Räume. Für einen linearen Operator $S:X\to Y$ sind äquivalent:

- a) T stetig, d.h. $x_n \to x$ impliziert $Tx_n \to Tx$
- b) T stetig in 0
- c) $T(U_{(X,\|\cdot\|)})$ ist beschränkt in Y
- d) Es gibt ein $c < \infty$ mit $||Tx|| \le c||x||$

Eine konvergente Folge $(x_n) \in X, x_n \to x$ ist beschränkt, denn $x_m \in \{y: \|x-y\| \le 1\}$ für fast alle m.

20

Antwort

Seien X, Y normierte Vektorräume und $T: X \to Y$ linear.

T heißt **Isometrie**, falls

$$||Tx||_Y = ||x||_X, \ \forall x \in X$$

19

Antwort

Seien X, Y normierte Räume. Mit B(X, Y) bezeichnen wir den Vektorraum der beschränkten, linearen Operatoren $T: X \to Y$. Ist X = Y schreiben wir auch kurz B(X) := B(X, X).

 $(B(X,Y), \|\cdot\|)$ ist ebenfalls ein normierter Raum und für X=Y gilt für $S,T\in B(X)$:

$$S \cdot T \in B(X)$$
 und $||S \cdot T|| \le ||S|| ||T||$

22

Antwort

Seien X, Y normierte Vektorräume und $T: X \to Y$ linear.

T heißt **isomorphe Einbettung**, falls T injektiv ist und ein c > 0 existiert mit

$$\frac{1}{c} ||x||_X \le ||Tx||_Y \le c ||x||_x$$

In diesem Fall identifizieren wir oft X mit dem Bild von T in $Y,\,X\cong T(X)\subset Y$

<u># 21</u>

Antwort

Seien X,Y normierte Vektorräume und $T:X\to Y$ linear.

T heißt stetige Einbettung, falls T stetig und injektiv ist.

24

Antwort

Sei X ein normierter Vektorraum. Der Raum

$$X' = B(X, \mathbb{K})$$

heißt **Dualraum** von X oder Raum der linearen Funktionalen.

23

Antwort

Seien X, Y normierte Vektorräume und $T: X \to Y$ linear.

Theißt **Isomorphismus**, falls T bijektiv und stetig ist und $T^{-1}:Y\to X$ ebenfalls stetig ist.

d.h. falls
$$\exists c > 0 : \frac{1}{c} ||x||_X \le ||Tx||_Y \le c ||x||_X$$

(daraus folgt dann auch für $T^{-1}: Y \to X$ aus der ersten Un $\|T^{-1}y\|_X \le c\|T(T^{-1}y)\|_Y = c\|y\|_Y, \text{d.h. } T^{-1} \text{ ist stetig.})$

In diesem Fall Identifizieren wir $X\cong Y$ und sagen X und Y sind isomorph.

$\underline{\text{Lin. Op. auf BR}} \qquad \qquad \underline{\# \ 25} \qquad \underline{\text{4 - Metrische R\"{a}ume}}$	$\underline{Lin. Op. auf BR} \qquad \qquad \underline{\# 26} \qquad \underline{4 - Metrische R\"{a}ume}$
Metrik	Konvergente Folge im metrischen Raum
1. O 1. D	
Lin. Op. auf BR # 27 4 - Metrische Räume Durch Halbnorm induzierte Metrik	Lin. Op. auf BR # 28 4 - Metrische Räume Abgeschlossen Menge
Lin. Op. auf BR # 29 4 - Metrische Räume	Lin. Op. auf BR # 30 4 - Metrische Räume
Offene Menge	Offene bzw. abgeschlossene Kugel
<u>Lin. Op. auf BR</u> <u># 31</u> <u>4 - Metrische Räume</u>	<u>Lin. Op. auf BR</u> <u># 32</u> <u>4 - Metrische Räume</u>
Offene Menge bezüglich diskreter Metrik	Vereinigungen/Schnitte offener/abgeschlossener Mengen

Eine Folge $(x_n)_{n\geq 1}\subset M$ konvergiert gegen $x\in M$, falls

$$d(x_n, x) \to 0$$
 für $n \to \infty$

Notation: $x = \lim_{n \to \infty} x_n$ (in M)

 \mathbb{R} heißt **Metrik** auf M, falls $\forall x, y, z \in M$:

Sei M eine nichtleere Menge. Eine Abbildung $d: M \times M \rightarrow$

$$(M1)$$
 $d(x,y) \ge 0$, $d(x,y) = 0 \iff x = y$ (positive Definitheit)

$$(M2)$$
 $d(x,y) = d(y,x)$ (Symmetrie)

(M3)
$$d(x,z) \le d(x,y) + d(y,z)$$
 (Dreiecksungleichung)

28

Antwort

Sei (M,d) ein metrischer Raum. Eine Teilmenge $A \subset M$ heißt **abgeschlossen** (in M), falls für alle in M konvergenten Folgen $(x_n)_{n\geq 1} \subset A$ der Grenzwert von (x_n) in A liegt

27

Antwort

Sei X ein Vektorraum und p_j für $j \in \mathbb{N}$ Halbnormen auf X mit der Eigenschaft, dass für jedes $x \in X \setminus \{0\}$ ein $K \in \mathbb{N}$ existiert mit $p_K > 0$. Dann definiert

$$d(x,y) := \sum_{j \ge 1} 2^{-j} \frac{p_j(x-y)}{1 + p_j(x-y)}, \quad x, y \in X$$

eine Metrik auf X mit

$$d(x_n, x) \to 0 \iff p_j(x_n - x) \to 0 \ (n \to \infty) \ \forall j \in \mathbb{N}$$

30

Antwort

Wir benutzen die Bezeichnungen

- offene Kugel: $K(x,r) := \{y \in M : d(x,y) < r\}$
- abgeschlossene Kugel: $\bar{K}(x,r) \coloneqq \{y \in M : d(x,y) \le r\}$

mit $x \in M, r > 0$. Man sieht leicht, dass K(x, r) offen und $\bar{K}(x, r)$ abgeschlossen ist.

29

Antwort

Eine Teilmenge $U \subset M$ heißt **offen** (in M), falls zu jedem $x \in U$ ein $\epsilon > 0$ existiert, sodass

$$\{y \in M : d(x,y) < \epsilon\} \subset U$$

 $A\subset M$ ist offen in Mgenau dann, wenn $U=M\setminus A$ abgeschlossen ist

32

Antwort

Für eine beliebige Familie von abgeschlossenen Mengen $(A_i)_{i\in I}$ sind

$$A := \bigcap_{i \in I} A_i$$
 und $A_{i_1} \cup \ldots \cup A_{i_N} \ (i_1, \ldots, i_N \in I)$

abgeschlossen in M.

Für eine beliebige Familie offenere Mengen $(U_i)_{i\in I}$ sind

$$U := \bigcup_{i \in I} U_i \quad \text{und} \quad U_{i_1} \cap \ldots \cap U_{i_N} \qquad (i_1, \ldots, i_N \in I)$$

offen in M.

31

Antwort

Bezüglich der diskreten Metrik d aus Beispiel 4.2 b) ist $\{x\}\subset M$ offen für jedes $x\in M,$ da

$$K(x,r)=\{x\}\subset \{x\} \text{ für } r\in (0,1]$$

Lin. Op. auf BR # 33 4 - Metrische Räume	$\underline{\text{Lin. Op. auf } BR} \qquad \underline{\# 34} \qquad \underline{4 - \text{Metrische R\"{a}ume}}$
Abschluss, Innere und Rand	Dicht
11000111400, 11111010 41111	2.5
Lin. Op. auf BR # 35 4 - Metrische Räume	$\underline{Lin. Op. auf BR} \qquad \qquad \underline{\# 36} \qquad \underline{4 - Metrische R\"{a}ume}$
Separabel	Stetige Abbildung
Lin. Op. auf BR $\#$ 37 $\underline{4}$ - Metrische Räume	<u>Lin. Op. auf BR</u> # 38 4 - Metrische Räume
Ist ℓ^p separabel?	Äquivalenzen zur Stetigkeit einer
	Abbildungen
Lin. Op. auf BR $\# 39$ 5 - Vollständigkeit	
<u> </u>	
λ Λ α t : 1 .	
Metrik	

wert einer Folge aus V.

Antwort Sei (M,d) ein metrischer Raum. Eine Menge $V \subset M$ heißt

dicht in M, falls $\bar{V} = M$, d.h. jeder Punkt in M ist Grenz-

33

Sei (M,d) ein metrischer Raum und $V \subset M$. Dann heißt

Antwort

 $\bar{V} := \bigcap \{A \subset M : A \text{ ist abgeschlossen mit } V \subset A\}$ der **Abschluss** von V.

 $\mathring{V} := \bigcup \{U \subset M : U \text{ ist offen mit } U \subset V\} \text{ das Innere von}$

 $\partial V := \bar{V} \setminus \mathring{V} \text{ der } \mathbf{Rand} \text{ von } V.$

36

Antwort

Seien $(M, d_M), (N, d_N)$ metrische Räume. Eine Abbildung $f: M \to N$ heißt **stetig in** $x_0 \in M$, falls für alle $(x_n) \subset M$ gilt

$$x_n \to x_0 \text{ in } M \Rightarrow f(x_n) \to f(x_0) \text{ in } N$$

$$d_M(x_n, x_0) \to 0 (n \to \infty) \Rightarrow d_N(f(x_n), f(x_0)) \to 0$$

Die Abbildung f heißt **stetig auf** M, falls f in jedem Punkt von M stetig ist.

35

Antwort

Sei (M, d) ein metrischer Raum, M heißt **separabel**, falls es eine abzählbare Teilmenge $V \subset M$ gibt, die dicht in Mliegt.

38

Antwort

Die folgenden Aussagen sind äquivalent:

- (i) f ist stetig auf M
- (ii) Ist $U \subset N$ offen, so ist auch $f^{-1}(U)$ offen in M
- (iii) Ist $A \subset N$ abgeschlossen, so ist auch $f^{-1}(A)$ abgeschlossen in M.

37

Antwort

Die Räume $\ell^p, p \in [1, \infty)$ und c_0 sind separabel, da

 $D = lin\{e_k, k \in \mathbb{K}\}$ dicht in allen Räumen liegt.

Der Raum ℓ^{∞} ist nicht separabel: Die Menge Ω der $\{0,1\}$ wertigen Folgen ist überabzählbar. Für $x, y \in \Omega$ mit $x \neq y$ gilt $||x - y||_{\infty} = 1$

39

Antwort