ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

Τμήμα Πληροφορικής

Αρχές και εφαρμογές σημάτων και συστημάτων

1. Άσκηση Γ'1

1) Το σήμα που δίνεται είναι το $\mathbf{x}(\mathbf{t}) = \cos 100\pi \mathbf{t} + \cos 200\pi \mathbf{t} + \sin 500\pi \mathbf{t}$ Οι συχνότητες του σήματος είναι $\omega_1 = 100\pi$, $\omega_2 = 200\pi$, $\omega_3 = 500\pi$ rad/s. Διαιρούμε με το 2π για να τις μετατρέψουμε σε συχνότητες f: $f_1 = 100\pi/2\pi = 50$ Hz, $f_2 = 100$ Hz, $f_3 = 250$ Hz Η μέγιστη συχνότητα f_{max} από τις παραπάνω είναι $f_{max} = f_3 = 250$ Hz. Άρα σύμφωνα με το θεώρημα δειγματοληψίας η ελάχιστη συχνότητα δειγματοληψίας είναι $2*f_{max}$ αφού $f_s \ge 2*f_{max} = 2*250 = 500$ Hz. $T_s = 1/f_s = 0.002$ s

2) Σχεδιάζουμε το σήμα για t ∈ [-10,10] με βήμα Δt = 0.001

(Το σχήμα μπορεί να μετακινηθεί μέχρι τα -10 και 10)

3) Ανακατασκευάζουμε το σήμα με την συχνότητα που υπολογίσαμε στο ερώτημα $1 (f_s = 500 \text{Hz} \rightarrow T_s = 1/f_s = 0.002s)$

(αρχικό σήμα και ανακατασκευασμένο σήμα - το ανακατασκευασμένο σήμα είναι το μπλε – διακριτές τιμές)

(αρχικό σήμα και ανακατασκευασμένο σήμα - το ανακατασκευασμένο σήμα είναι το μπλε – συνεχόμενη γραμμή)

4) Επαναλαμβάνουμε το προηγούμενο ερώτημα με συχνότητα μεγαλύτερη από τη συχνότητα που υπολογίσαμε στο ερώτημα 1

 $Επιλέγουμε f_s = 1000 Hz → T_s = 1/f_s = 0.001s$

(αρχικό σήμα και ανακατασκευασμένο σήμα - το ανακατασκευασμένο σήμα είναι το μαύρο – διακριτές τιμές)

(αρχικό σήμα και ανακατασκευασμένο σήμα - το ανακατασκευασμένο σήμα είναι το μαύρο – συνεχόμενη γραμμή)

(σήμα ερωτήματος 3 και ανακατασκευασμένο σήμα - το ανακατασκευασμένο σήμα είναι το μαύρο – συνεχόμενη γραμμή)

5) Επαναλαμβάνουμε το προηγούμενο ερώτημα με συχνότητα μικρότερη από τη συχνότητα που υπολογίσαμε στο ερώτημα 1

(αρχικό σήμα και ανακατασκευασμένο σήμα - το ανακατασκευασμένο σήμα είναι το κίτρινο – διακριτές τιμές)

(αρχικό σήμα και ανακατασκευασμένο σήμα - το ανακατασκευασμένο σήμα είναι το κίτρινο – συνεχόμενη γραμμή)

(Όλα τα σήματα μαζί – συνεχόμενη γραμμή)

6) Όπως ήταν και αναμενόμενο, παρατηρούμε πως για συχνότητες μεγαλύτερες της f_s μπορεί να γίνει μια πολύ πιστή ανακατασκευή του αρχικού σήματος, ενώ για συχνότητες μικρότερες, τα δείγματα δεν αρκούν για την σωστή ανακατασκευή του αρχικού σήματος.