МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Кафедра "Системи автоматизованого проектування"

Звіт

до лабораторної роботи №3 з курсу: «Методи нечіткої логіки та еволюційні алгоритми при автоматизованому проектуванні»

на тему:

«Комбінаторна оптимізація за допомогою еволюційних методів» Варіант -1

Виконав: студент гр. КНСП-11 Вовчок М.А.

Перевірив: асист. Кривий Р.3.

Мета: ознайомитися з основними теоретичними відомостями, вивчити еволюційні оператори схрещування та мутації, що використовуються при розв'язуванні задач комбінаторної оптимізації.

Теоретичні відомості

При використанні методів еволюційного пошуку для розв'язку задач комбінаторної оптимізації, як правило, застосовуються негомологічні числові хромосоми, тобто такі хромосоми, гени яких можуть приймати значення в заданому інтервалі. При цьому інтервал однаковий для всіх генів, але в хромосомі не може бути двох генів з однаковим значенням.

Комбінаторні задачі оперують із дискретними структурами або розміщенням об'єктів, незначні зміни яких часто викликають стрибкоподібну зміну показників якості (фітнесс- функції). Традиційні оператори еволюційні оператори, що генерують нових нащадків, не можуть бути застосовані при використанні негомологічних хромосом, оскільки внаслідок виконання таких операторів генеруються нащадки, що містять однакові гени і тому не можуть бути інтерпретовані при розв'язку комбінаторної задачі. Тому для розв'язку задач комбінаторної оптимізації були розроблені спеціальні генетичні оператори, що не створюють неприпустимих рішень.

Завдання

Розробити за допомогою пакету Matlab програмне забезпечення для вирішення задачі комівояжера. Параметри еволюційного методу обрати з таблиці 1 відповідно до варіанту.

№	Еволюційні оператори			
	Схрещування	Мутація		
1	одноточечне впорядковуюче	класична мутація обміну		

Хід роботи

Для виконання завдання була використана функція да пакету Matlab, і реалізовано власні функції мутації та схрещування, згідно з варіантом для розвязу задачі комівояжера з чотирьма, п'ятьма і шістьма містами (рис. 1,3,5 відповідно).

Відповідно до виконання програми відтворено оптимальні маршрути. (рис 2, 4, 6 відповідно).

Рис. 1. Постановка задачі з чотирьма містами

Результат виконпння функції пошуку маршруту:

The best hromosome:

2 3 4 1

The number of generations was : 64 The best function value found was : 7

Last generation:

2	3	4	1	=>	7
2	3	4	1	=>	7
2	3	4	1	=>	7
2	4	3	1	=>	14

Рис. 2. Розв'язок задачі з чотирьма містами

Рис. 3. Постановка задачі з п'ятьма містами

Результат виконпння функції пошуку маршруту:

The best hromosome: 2 1 3 5 4

The number of generations was : 69 The best function value found was : 18

Last generation:

2	1	3	5	4	=>	18
1	3	5	4	2	=>	23
2	1	3	5	4	=>	18
2	1	3	5	4	=>	18
2	3	1	5	4	=>	23

Рис. 4. Розв'язок задачі з п'ятьма містами

Рис. 5. Постановка задачі з шістьма містами

Результат виконпння функції пошуку маршруту:

The best hromosome:

2 4 1 3 6 5

The number of generations was : 52

The best function value found was : 24

Last generation:

,							
2	4	1	3	6	5	=>	23
2	4	5	6	3	1	=>	24
2	1	5	3	6	4	=>	30
2	4	5	6	3	1	=>	24
2	4	5	6	3	1	=>	24
3	4	5	6	2	1	=>	36

Рис. 5. Розв'зок задачі з шістьма містами

Висновок

На відміну від класичних методів розв'язання задачі комівояжера, використовуючи генетичні алгоритми, ми зразу отримуємо декілька оптимальних варіантів. Але такий підхід не гарантує, що результат є найоптимальніший.