3.4. Оптимизация числа процессоров при выполнении конкурирующих процессов

Задача оптимизации числа процессоров при выполнении конкурирующих процессов представляет большой интерес, поскольку ее решение позволяет более рационально использовать основные вычислительные ресурсы МС и ВК – процессоры.

Указанную задачу будем рассматривать в следующей n, $n \ge 2$ – число постановке. Пусть однородных сосредоточенных конкурирующих процессов, $\theta_s = (t_1, t_2, ..., t_s)$ – линейное структурирование программного ресурса на $s, s \ge 2$, блоков, где $t_i, j = \overline{1,s}$ время выполнения ј-го блока каждым из конкурирующих процессов. Эксперименты показывают, что минимальное общее время $T_c(p, n, \theta_s)$ при фиксированных n, θ_s зависит от количества используемых процессоров. Поэтому задача состоит в том, чтобы при заданных n, θ_s найти минимальное число процессоров p^* при котором величина $T_c(p,n,\theta_s)$ достигает минимума, т.е. такое p^* , при котором справедливы неравенства:

$$T_c(p^*, n, \theta_s) \le T_c(p, n, \theta_s)$$
 при $p > p^*$, (3.7)

$$T_c(p^*, n, \theta_s) < T_c(p, n, \theta_s)$$
 при $p < p^*$.

Рассмотрим асинхронный режим взаимодействия конкурирующих процессов, который определяется условиями 1-5 (см. раздел 2.1). В этом случае, как показано в разделе 2.5 (следствие 2.1), общее время выполнения n, $n \ge 2$, однородных сосредоточенных конкурирующих процессов $T_{co}^{ac}(p,n,\theta_s)$ составляет величину:

$$T_{co}^{ac}(p, n, \theta_s) = \begin{cases} T_c^s + (n-1)t_{\text{max}}^s & npu \ p \le n, \ \text{ho} \ T_c^s \le pt_{\text{max}}^s, \\ (k+1)T_c^s + (r-1)t_{\text{max}}^s & npu \ n > p \ u \ T_c^s > pt_{\text{max}}^s. \end{cases}$$

$$(3.8)$$

Здесь
$$T_c^s = \sum_{j=1}^s t_j$$
, $t_{\max}^s = \max_{1 \le j \le s} t_j$, $n = kp + r$, $1 \le r \le p$, t_j —

время выполнения j—го блока каждым из однородных процессов, $j=\overline{1,s}$.

Тогда решение задачи (3.7) дает следующая теорема.

Теорема 3.7. Минимальное число процессоров p^* , необходимое для выполнения n, $n \ge 2$, конкурирующих процессов, использующих программный ресурс c заданным линейным структурированием $\theta_s = (t_1, t_2, ..., t_s)$, за

минимальное время $T_{\min} = T_c^s + (n-1)t_{\max}^s$ определяется по формуле:

$$p^* = \min \left\{ n, \left[\frac{T_c^s}{t_{\max}^s} \right] \right\},\,$$

zде [x] — наименьшее целое, превосходящее или равное x.

Доказательство. Пусть $p < p^*$. Тогда из неравенств

$$p < p^* < \left\lceil rac{T_c^s}{t_{ ext{max}}^s}
ight
ceil$$
 следует, что $p < rac{T_c^s}{t_{ ext{max}}^s}$ или $pt_{ ext{max}}^s < T_c^s$.

B силу (3.8) $T_{co}^{ac}(p,n,\theta_s)=(k+1)T_c^s+(r-1)t_{\max}^s$ при n=kp+r, $1\leq r\leq p$. Заметим, что $k\neq 0$, так как $p< p^*\leq n$. Рассмотрим разность:

$$T_{co}^{ac}(p, n, \theta_s) - T_{co}^{ac}(p^*, n, \theta_s) = (k+1)T_c^s + (r-1)t_{\text{max}}^s - T_c^s - (n-1)t_{\text{max}}^s = kT_c^s - (n-r)t_{\text{max}}^s = kT_c^s - kpt_{\text{max}}^s = k(T_c^s - pt_{\text{max}}^s) > 0.$$

При $p > p^*$ непосредственной проверкой убеждаемся в равенстве $T_c(p,n,\theta_s) = T_c(p^*,n,\theta_s)$. Отсюда с учетом (3.7) следует справедливость (3.9).

Следствие 3.1. Для равномерного структурирования программного ресурса

$$p^* = \min\{n, s\}.$$

Графическая интерпретация зависимости минимального общего времени $T_c(p,n,\theta_s)$ от числа процессоров многопроцессорной системы p приведена на рис. 3.2.

Представляет также интерес задача расчета минимального числа процессоров $p^*(d)$, обеспечивающих заданное (директивное) время d выполнения конкурирующих

процессов. Решение этой задачи можно получить с помощью следующего алгоритма:

- 1) если $d < T_{\min}$, то полагаем $p^*(d) = 0$, т.е. директивное время d выполнения конкурирующих процессов не реализуется ни для какого числа процессоров;
- 2) если $d \geq T_{\min}$, то используя свойство монотонности функции $T_c(p,n,\theta_s)$ по p, вычислим $p^*(d)$ методом деления отрезка $[2,p^*]$ пополам с целью максимального приближения $T_c(p,n,\theta_s)$ к d снизу.

Сложность вычисления $p^*(d)$ по приведенному алгоритму составляет $O(s + \log_2 n)$ элементарных операций.

Заметим, что в силу следствия 2.1 из раздела 2.5 приведенное решение задачи минимизации числа процессоров, реализующих множество конкурирующих процессов за минимальное T_{\min} и директивное d время в асинхронном режиме, полностью переносится на первый синхронный режим.

Вопросы

1. Эффективность и оптимальность организации конкурирующих процессов при достаточном числе процессоров.

- 2. Критерии эффективности и оптимальности организации конкурирующих процессов при достаточном числе процессоров.
- 3. Оптимизация числа процессоров при выполнении конкурирующих процессов.
- 4. Сформулируйте сущность задачи оптимальной компоновки параллельных программ.
- 5. Сформулируйте основные свойства оптимальных компоновок параллельных программ.
- 6. Связь задачи построения оптимальной компоновки с задачей дискретной оптимизации упаковки в контейнеры
- 7. LF –алгоритм и его место в решении задачи упаковки в контейнеры.
- 8. Основные шаги алгоритма построения оптимальной компоновки.
- 9. Сложность алгоритма построения оптимальной компоновки.

Задачи

Задача 1

Применение полученных критериев и формул в реальных расчетах

Пусть θ s=(3,5,2,5,7,6,4,8,6,5) p=n=10;

а) построить равномерное структурирование.

- б) оценить величину накладных расходов необходимых для существования эффективного структурирования.
 - в) найти оптимальное число блоков s_0 . Если $\tau = 1$.
- г) Пусть n=10, p=4. Найти оптимальное число блоков s_0 . Если τ =1.
- д) Найти оптимальное число процессоров p^* . $\theta s = (3,5,2,5,7,6,4,8,6,5)$ n = 10.

Задача 2

Пусть имеется программный ресурс, длительность выполнения которого составляет T=100 тактов.

Предполагаемое число процессоров n=21. Накладные расходы на организацию параллельного выполнения составляют величину. τ = 0,8 такта для каждого блока. Найти оптимальное число блоков s_0 и величину выигрыша по времени в тактах E(s) если

- a) n=p=21
- б) n=21. p=7.
- в) n=21. p=3.
- Γ) n= 21. p=5.

Задача 3.

Пусть θ s=(3,5,2,5,7,6,4,8,6,5) n=10.

- а) Найти минимальное число процессоров р* необходимых для выполнения заданного числа процессов за минимальное время.
- б) Найти минимальное число процессоров р* необходимых для выполнения заданного числа процессов за минимальное время если структурирование минимальное.

Задача 3

Пусть , $\gamma_{12}=(5,12,8,20,7,10,6,15,9,11,14,16)$ — последовательность времен выполнения блоков линейно структурированного программного ресурса $P_r=(Q_1,Q_2,...,Q_{12})$, n-6- число конкурирующих процессов, p=3 — число однородных процессоров, $\tau=4$ — дополнительные системные накладные расходы на каждый блок, связанные со структурированием P_r .

- а) Построить оптимальную компоновку.
- б) Провести сравнение числа блоков полученной оптимальной компоновки с теоретическим числом блоков согласно критерия оптимальности структурирования.
- в) Посчитать коэффициент эффективности оптимальной компоновки по отношению к исходному структурированию в процентах.