On the Expressivity of Markov Reward

By Abel et.al.

Presenter: Yibin Xiong

Reward Engineering as a 2-phase Problem

- Reward hypothesis: "All goals and purposes can be well thought of as maximization of the expected total reward."
- ▶ Is it true? How do we figure out the appropriate reward function?
- ► TaskQ: How do we define/specify a task? (natural language, an optimal policy, etc.)
- ExpressionQ: Given the task definition, can we design a (Markov) reward function that fully expresses the task?

Figure 1: Alice, Bob, and the artifacts of task definition (blue) and task expression (purple).

TaskQ: Definitions of Tasks

- ightharpoonup Task-as- π^*
 - The most "coarse" specification of tasks; Cannot differentiate all other sub-optimal policies
- SOAP (Set of Acceptable Policies)
 - $_{\circ}$ Partitioned the policy space into 2 equivalent classes: good policies Π_{g} and bad policies Π_{b}
- PO (Partial Ordering on Policies)
 - Partitioned the policy space into several equivalent classes

Realizability and Task Constraints

A reward function *realizes* the given task \mathcal{T} in an environment $E = \{S, A, T, \gamma, s_0\}$ if it satisfies the constraints induced by \mathcal{T} .

Name	Notation	Generalizes	Constraints Induced by T
SOAP	Π_G	task-as- π^*	equal: $V^{\pi_g}(s_0) = V^{\pi_{g'}}(s_0) > V^{\pi_b}(s_0), \forall_{\pi_g, \pi_{g'} \in \Pi_G, \pi_b \in \Pi_B}$ range: $V^{\pi_g}(s_0) > V^{\pi_b}(s_0), \forall_{\pi_g \in \Pi_G, \pi_b \in \Pi_B}$
PO	L_Π	SOAP	$(\pi_1 \oplus \pi_2) \in L_{\Pi} \implies V^{\pi_1}(s_0) \oplus V^{\pi_2}(s_0)$
TO	$L_{ au,N}$	task-as-goal	$(\tau_1 \oplus \tau_2) \in L_{\tau,N} \implies G(\tau_1; s_0) \oplus G(\tau_2; s_0)$

Table 1: A summary of the three proposed task types. We further list the constraints that determine whether a reward function *realizes* each task type in an MDP, where we take \oplus to be one of '<', '>', or '=', and G is the discounted return of the trajectory.

ExpressionQ: Are SOAP, PO, TO realizable?

- Theorem 4.1 says No!
- We can find simple counter-examples:

SOAP/PO with
$$\Pi_{\rm g} = \{\pi_{12}, \pi_{21}\}, \Pi_b = \{\pi_{11}, \pi_{22}\}$$

Proposition 4.2 generalizes this to any transition dynamics T and any discount factor γ

Application – An Algorithm

- Determine whether a task is realizable
- ▶ If so, find a reward function that realizes the task
- ► **Theorem 4.3**: The REWARDDESIGN problem can be solved in *polynomial* time, for any *finite* E, and any SOAP, PO, or TO, so long as a reward-function family with infinitely many outputs is used.
- This is because we can formulate the constraints into a linear programming (LP) problem

For example, we consider a *SOAP* task defined by $\Pi_g = \{\pi_{g_1}, \dots, \pi_{g_m}\}$ and $\Pi_b = \{\pi_{b_1}, \dots, \pi_{b_n}\}$.

The LP problem can be

$$egin{aligned} & \min & 0 \ _{r_1,...,r_{|S||A|}} \ & ext{s.t.} \ & V^{\pi_{g_1}}(s_0) = V^{\pi_{g_2}}(s_0) \ & V^{\pi_{g_2}}(s_0) = V^{\pi_{g_3}}(s_0) \ & & dots \ & V^{\pi_{g_m-1}}(s_0) = V^{\pi_{g_m}}(s_0) \ & V^{\pi_{g_m}}(s_0) > V^{\pi_{b_1}}(s_0) \ & dots \ & & dots \ & V^{\pi_{g_1}}(s_0) > V^{\pi_{b_n}}(s_0) \end{aligned}$$

Algorithm

- Trick 1: only "fringe constraints" (for SOAP)
 - Fringe policies deviates from the optimal policies by only 1 action
 - By "policy improvement theorem," policies outside the fringe have lower start-state values
- Trick 2: estimate start-state values
 - Define the discounted expected state-action visitation distribution

$$\rho_i(s, a) := \sum_{t=0}^{\infty} \gamma^t \Pr(s_t = s, a_t = a \mid s_0, \pi_i).$$

- Then $V^{\pi_i}(s_0) = R^T \rho_i$ t=0
- If the state space and/or action space are continuous, R is a vector with infinitely many entries, i.e. a continuous function
- ► Trick 3: add slack variables to convert < to ≤</p>

$$R^T \rho_i < R^T \rho_j \implies R^T \rho_i + \epsilon_k \le R^T \rho_j, \ \epsilon_k \ge 0$$

policy space

Algorithm 1 SOAP Reward Design

```
INPUT: E = (S, A, T, \gamma, s_0), \Pi_G. OUTPUT: R, or \bot.
```

```
1: \Pi_{\text{fringe}} = \text{compute\_fringe}(\Pi_G)
 2: for \pi_{g,i} \in \Pi_G do
                                                                                          ▶ Compute state-visitation distributions.
           \rho_{q,i} = \texttt{compute\_exp\_visit}(\pi_{q,i}, E)
 4: for \pi_{f,i} \in \Pi_{\text{fringe}} do

\rho_{f,i} = \texttt{compute\_exp\_visit}(\pi_{f,i}, E)

 6: C_{eq} = \{\}
                                                                                                          ▶ Make Equality Constraints.
 7: for \pi_{q,i} \in \Pi_G do
      C_{\mathrm{eq}}.\mathtt{add}(
ho_{g,0}(s_0)\cdot X=
ho_{g,i}(s_0)\cdot X)
 9: C_{\text{ineq}} = \{\}
                                                                                                        ▶ Make Inequality Constraints.
10: for \pi_{f,j} \in \Pi_{\text{fringe}} do
           C_{\text{ineq}}.\text{add}(\rho_{f,j}(s_0)\cdot X + \epsilon \leq \rho_{q,0}(s_0)\cdot X)
11:
12: R_{\text{out}}, \epsilon_{\text{out}} = \text{linear\_programming}(\text{obj.} = \max \epsilon, \text{constraints} = C_{\text{ineq}}, C_{\text{eq}})
                                                                                                                                    ⊳ Solve LP.
13: if \epsilon_{\text{out}} > 0 then
                                                                                                                     ⊳ Check if successful.
             return R_{\text{out}}
```

14: else return ⊥

Runtime: $\mathcal{O}(N^3)$, where $N \leq |A|^{|S|}$ or $N = \max\{|S|, |A|\}$

More Theoretical Results

- ▶ **Theorem 4.5**: When we require the reward function has *finitely* many outputs (i.e. the number of possible values that each entry can take is finite), the problem becomes NP-hard.
- **Proposition 4.6**: For any SOAP, PO, or TO, given a finite set of CMPs, $\mathcal{E} = \{E_1, ..., E_n\}$ with shared state—action space, there exists a *polynomial* time algorithm that outputs one reward function that realizes the task (when possible) in all CMPs in \mathcal{E} .

In other words, transition dynamics and γ do not affect the realizability much.

► **Theorem 4.7**: Task realization is not closed under sets of CMPs with shared state-action space.

That is, there exist choices of \mathcal{T} and $\mathcal{E} = \{E_1, ..., E_n\}$ such that \mathcal{T} is realizable in each $E_i \in \mathcal{E}$ independently, but there is not a single reward function that realizes \mathcal{T} in all $E_i \in \mathcal{E}$ simultaneously.

Experiments: 4 state 3 action MDP

Figure 3: The approximate fraction of SOAPs that are expressible by reward in CMPs with a handful of states and actions, with 95% confidence intervals. In each plot, we vary a different parameter of the environment or task to illustrate how this change impacts the expressivity of reward, showing both equal (color) and range (grey) realization of SOAP.

Experiments

(b) Grid World Learning

- Faster convergence
- The ϵ -greedy policy when using "regular reward function" does not converge exactly to an optimal policy,

Thoughts, Questions, Future Directions

Comparison with IRL

- o Maximize ϵ is similar to the maximize the margin in traditional IRL (feature matching); non-parametric
- LP problem formulation is simple and the algorithm is not iterative (we can have iterative versions that enables interaction between reward designing and policy optimization)
- o PO has stronger prior knowledge because of more fine-grained partition, but also more computation in fitting $\rho_i(s, a)$.

Feasibility:

- Toy-example MDPs in the experiments; continuous state/action space ⇒ deep neural nets
- o If $|\Pi_q|$ is large, we need to 1) specify all of them (SOAP equal); 2) fit $\rho(s,a)$ for each one
- For PO/TO, specify a lot of orders
- Assumed perfect task knowledge, but difficult to transfer task knowledge/finetune a reward function when tasks are defined by "policy/trajectory inequalities"
- For TO, what if the good trajectories have different length?

Thoughts, Questions, Future Directions

- Sufficient conditions for realizability?
- Other formulation of tasks
- Functional Task descriptions: SOAP, PO and TO are very general descriptions of task definitions, but task descriptions from a functional standpoint represent completion of goals or description of path constraints. While the definitions are general enough to capture all possible tasks, the set of 'practical' tasks might be a smaller subset of these, and Markov rewards might represent a larger fraction of these tasks.
- Regarding functional task descriptions; This point resonates with us as well; it is likely useful to carefully isolate the conditions on SOAP/PO/TO that ensure Markov rewards are sufficient (as suggested by another reviewer, too). These particular subsets of SOAPs/POs/TOs might be of interest on their own. We believe this is another useful direction for future work
- Convex rather than linear
 - Another interesting direction for future works may study the expressivity of the convex MDP model (see, Zhang et al., Variational policy gradient method for reinforcement learning with general utilities, 2020; Zahavy et al., Reward is enough for convex MDPs, 2021), which allows to specify the objective as any convex function of the expected state visitations rather than a linear combination.
- ► For tasks that are not realizable, what can we do?

Summary

The authors

- Proposed clear definitions of tasks
- Examined the expressivity of Markov rewards
- Explored variants of the reward design problem (finite output, shared state & action space)
- Framed the problem into LP and solved it in polynomial time

Thank you!