Lista 2

Zadeklarowane zadania:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
✓	✓	✓	✓	✓	✓		✓	✓	✓				✓	√

Zadanie 1

Wykazać $\lfloor an
floor + \lfloor (1-a)n
floor = n-1$, gdzie $a \in \mathbb{IQ}$ oraz $n \in \mathbb{N}$.

$$\lfloor an
floor + \lfloor n - an
floor = \lfloor an
floor + \lfloor n + (-an)
floor \stackrel{1}{=} \lfloor an
floor + n + \lfloor -an
floor =$$
 $\lfloor an
floor + n - \lceil an
ceil \stackrel{2}{=} n - 1$

1.
$$n \in \mathbb{N}$$
, stąd $\lfloor n + (-an)
floor = n + \lfloor -an
floor$

2.
$$an \in \mathbb{IQ}$$
, zatem $\lfloor an
floor - \lceil an
ceil = -1$

Analogiczna równość dla powały:

$$\lceil an
ceil + \lceil (1-a)n
ceil = n+1$$

Dowód:

$$\lceil an
ceil + \lceil (1-a)n
ceil = \lceil an
ceil + n + \lceil -an
ceil = \lceil an
ceil + n - \lfloor an
ceil = n+1$$

Zadanie 2

Obliczyć:

$$\left\lfloor \frac{x}{m} \right\rfloor + \left\lfloor \frac{x+1}{m} \right\rfloor + \left\lfloor \frac{x+2}{m} \right\rfloor + \ldots + \left\lfloor \frac{x+m-1}{m} \right\rfloor$$

gdzie $x \in \mathbb{R}$ oraz $m \in \mathbb{N}$.

Niech x=dm+r, gdzie $d\in\mathbb{N}, r\in[0,m)$.

Mamy wtedy:

$$\sum_{i=0}^{m-1}a_i=\sum_{i=0}^{m-1}\Bigl\lfloorrac{x+i}{m}\Bigr
floor=\sum_{i=0}^{m-1}\Bigl\lfloorrac{dm+r+i}{m}\Bigr
floor=\sum_{i=0}^{m-1}d+\Bigl\lfloorrac{r+i}{m}\Bigr
floor$$

Wiemy, że $r+i \in [0,2m-1)$, zatem $\lfloor rac{r+i}{m}
floor \in \{0,1\}$

$$a_i = egin{cases} d, & r+i < m \ d+1, & r+i \geq m \end{cases} \ \sum_{i=0}^{m-1} a_i = dm + \sum_{\lceil m-r
ceil}^{m-1} 1 = dm + \sum_{m-\lceil r
ceil}^{m-1} 1 = dm + \lfloor r
floor = \lfloor x
floor$$

Zadanie 3

a)
$$a_n=na_{n-2}$$

Chcąc policzyć $a_0\ i\ a_1$ z zależności rekurencyjnej musielibyśmy odwoływać się do nieistniejących wyrazów ciągu. Dla policzenia a_2 wystarczy a_0 , a dla a_3 potrzeba a_1 .

Potrzebne są zatem tylko 2 warunki początkowe.

b)
$$a_n = a_{n-1} + a_{n-3}$$

Chcąc policzyć $a_0,\ a_1,\ a_2$ z zależności rekurencyjnej musielibyśmy odwoływać się do nieistniejących wyrazów ciągu. Dla a_3 wystarczą nam $a_0,\ a_2$, a dla a_4 – a_2,a_3 . Stąd potrzebujemy **3** warunki początkowe.

c)
$$a_n = 2a_{\lfloor rac{a}{2}
floor} + n$$

Chcąc policzyć a_0 mamy $a_0 = 2a_0 + 0$, czyli $a_0 = 0$.

Potrzebujemy zatem **0** warunków początkowych.

Zadanie 4

Policzyć zależności rekurencyjne:

• a)
$$fn=fn-1+3^n$$
 dla $n>1$ i $f_1=3$
$$f_n=f_{n-1}+3^n=f_{n-2}+3^{n-1}+3^n=f_{n-2}+3^{n-2}+3^{n-1}+3^n=$$
 $3+3^2+...+3^{n-2}+3^{n-1}+3^n=\sum_{i=1}^n 3^i$

• b)
$$h_n=h_{n-1}+(-1)^{n+1}n$$
 dla $n>1$ i $h_1=1$
$$h_n=h_{n-1}+(-1)^{n+1}n=h_{n-2}+(-1)^n(n-1)+(-1)^{n+1}n=$$

$$h_{n-3}+(-1)^{n-1}(n-2)+(-1)^n(n-1)+(-1)^{n+1}n=$$
 $(-1)^21+(-1)^32+...+(-1)^{n-1}(n-2)+(-1)^n(n-1)+(-1)^{n+1}n=$

$$\sum_{i=1}^{n} (-1)^{i+1}i$$

• c)
$$l_n=l_{n-1}l_{n-2}$$
 dla $n>2$ i $l_1=l_2=2$
$$l_n=l_{n-1}l_{n-2}=l_{n-2}l_{n-3}l_{n-2}=(l_{n-2})^2l_{n-3}=(l_{n-3}l_{n-4})^2l_{n-3}=(l_{n-3})^3(l_{n-4})^2=(l_{n-4})^5(l_{n-5})^3=(l_{n-5})^8(l_{n-6})^5=...=(l_{n-(n-1)})^{F_{n-2}}(l_{n-(n-2)})^{F_{n-1}}=2^{F_{n-2}}2^{F_{n-1}}=2^{F_n}$$

Zadanie 8

Rozwiązać zależność rekurencyjną:

$$\left\{egin{aligned} a_n &= rac{1+a_{n-1}}{a_{n-2}}\ a_0 &= lpha \ a_1 &= eta \end{aligned}
ight.$$

Policzmy kilka początkowych wyrazów ciągu:

$$\begin{cases} a_0 = \alpha \\ a_1 = \beta \\ a_2 = \frac{1+\beta}{\alpha} \\ a_3 = \frac{1+\frac{1+\beta}{\alpha}}{\beta} = \frac{\alpha+1+\beta}{\alpha\beta} \\ a_4 = \frac{1+\frac{\alpha+1+\beta}{\alpha\beta}}{\frac{1+\beta}{\beta}} = \frac{\alpha\beta+\alpha+\beta+1}{(1+\beta)\beta} = \frac{\alpha(\beta+1)+(\beta+1)}{(1+\beta)\beta} = \frac{\alpha+1}{\beta} \\ a_5 = \frac{1+\frac{\alpha+1}{\beta}}{\frac{\alpha+1+\beta}{\alpha\beta}} = \frac{\alpha+\beta+1}{\frac{\alpha+\beta+1}{\alpha}} = \alpha \\ a_6 = \frac{1+\alpha}{\frac{\alpha+1}{\beta}} = \beta \end{cases}$$
 Zauważmy, że wartości odpowiednich wyrazów ciągu będą

Zauważmy, że wartości odpowiednich wyrazów ciągu będą się powtarzać. Zależność rekurencyjna wymaga 2 ostatnich elementów ciągu, ponieważ a_0, a_1 odpowiadają a_5, a_6 , stąd a_7 wyliczymy do tej samej wartości co a_2 i dalej analogicznie.

Otrzymujemy zatem wzór:

(Niech % oznacza działanie modulo).

$$a_n = egin{cases} lpha, & n\%5 = 0 \ eta & n\%5 = 1 \ rac{1+eta}{lpha}, & n\%5 = 2 \ rac{lpha+1+eta}{lphaeta}, & n\%5 = 3 \ rac{lpha+1}{eta}, & n\%5 = 4 \end{cases}$$

Aby ciąg a_n był określony dla wszystkich n, żaden jego wyraz nie może być równy 0, zatem:

•
$$\alpha \neq 0$$

•
$$\beta \neq 0$$

•
$$\frac{1+\beta}{\alpha} \neq 0 \implies \beta \neq -1$$

•
$$\frac{\alpha+1}{\beta} \neq 0 \implies \alpha \neq -1$$

$$\bullet \frac{1+\beta}{\alpha} \neq 0 \implies \beta \neq -1$$

$$\bullet \frac{\alpha+1}{\beta} \neq 0 \implies \alpha \neq -1$$

$$\bullet \frac{\alpha+1+\beta}{\alpha\beta} \neq 0 \implies \alpha + \beta \neq -1$$

Zadanie 9

Rozwiązać zależności rekurencyjne:

a)
$$egin{cases} f(1)=1 \ f(n)=f(\lfloorrac{n}{2}
floor)+f(\lceilrac{n}{2}
ceil)+1 \end{cases}$$

Teza:
$$f(n)=2n-1$$
 dla $n\in\mathbb{N}, n\geq 1$

Dowód indukcyjny:

1°

•
$$n = 1$$

$$f(1) = 1 = 2 \cdot 1 - 1 \checkmark$$

•
$$n = 2$$

$$f(2) \stackrel{zal.rek.}{=} f(\lfloor rac{2}{2}
floor) + f(\lceil rac{2}{2}
ceil) + 1 = 1 + 1 + 1 = 2 \cdot 2 - 1$$
 \checkmark

Załóżmy, że dla każdego $k < n, k \in \mathbb{N}$ zachodzi f(k) = 2k-1. Pokażmy, że zachodzi f(n) =2n - 1.

• Dla n parzystego mamy:

$$f(n) \stackrel{zal.rek.}{=} f(\lfloor \frac{n}{2} \rfloor) + f(\lceil \frac{n}{2} \rceil) + 1 \stackrel{n\ parzyste}{=} f(\frac{n}{2}) + f(\frac{n}{2}) + 1 \stackrel{zal.ind.}{=} n - 1 + n - 1 + 1 = 2n - 1$$

• Dla n nieparzystego mamy:

$$f(n) \stackrel{zal.rek.}{=} f(\lfloor \frac{n}{2} \rfloor) + f(\lceil \frac{n}{2} \rceil) + 1 \stackrel{n \, nieparzyste}{=} f(rac{n-1}{2}) + f(rac{n+1}{2}) + 1 \stackrel{zal.ind.}{=} (n-1-1) + (n+1-1) + 1 = 2n-1$$

Co należało pokazać.

b)
$$egin{cases} g(0) = 0 \ g(n) = g(\lfloor rac{n}{2}
floor) + \lfloor log_2 n
floor \end{cases}$$

Teza:
$$g(n) = \sum_{k=0}^{\lfloor log_2 n \rfloor} k = rac{(1+\lfloor log_2 n
floor) \lfloor log_2 n
floor}{2}$$

Dowód indukcyjny:

1°

• n = 1

$$g(1) \stackrel{zal.rek.}{=} g(0) + \lfloor log_2 1
floor = rac{\left(1 + \lfloor log_2 1
floor
ight) \lfloor log_2 1
floor}{2} \, \, \checkmark$$

 2°

Załóżmy, że dla każdego $k < n, k \in \mathbb{N} \backslash \{0\}$ zachodzi $\frac{(1+\lfloor log_2k \rfloor) \lfloor log_2k \rfloor}{2}$. Pokażmy, że zachodzi $g(n) = \frac{(1+\lfloor log_2n \rfloor) \lfloor log_2n \rfloor}{2}$.

• Dla n parzystego mamy:

• Dla n nieparzystego mamy:

$$egin{align} g(n) \stackrel{zal.rek.}{=} g(\lfloor rac{n}{2}
floor) + \lfloor log_2 n
floor &= g(rac{n-1}{2}) + \lfloor log_2 n
floor \stackrel{zal.ind.}{=} \ & rac{(1 + \lfloor log_2 rac{n-1}{2}
floor) \lfloor log_2 rac{n-1}{2}
floor}{2} + \lfloor log_2 n
floor &= \ & rac{(\lfloor log_2 (n-1)
floor)^2 - \lfloor log_2 (n-1)
floor + 2 \lfloor log_2 n
floor}{2} = & & \end{aligned}$$

Zauważmy, że dla nieparzystych n zachodzi:

$$|log_2(n-1)| = |log_2n|$$

Uzasadnienie:

Niech $\lfloor log_2 n
floor = l, l, n \in \mathbb{N} \backslash \{0,1\}$ i n nieparzyste.

Wiemy, że $log_2n
eq l$ (n jest nieparzyste, więc $n
eq 2^l$).

Ponieważ $\lfloor log_2 n
floor = l$ i $n
eq 2^l$ to $2^l < n < 2^{l+1}.$

Czyli
$$2^l - 1 < n - 1 < 2^{l+1} - 1 \iff 2^l \le n - 1 < 2^{l+1}.$$

Po nałożeniu logarytmu otrzymujemy $l \leq log_2(n-1) < l+1.$

Z definicji podłogi: $\lfloor log_2(n-1) \rfloor = l = \lfloor log_2n \rfloor$.

Zatem

$$g(n) = rac{ig(1 + \lfloor log_2 n ig)ig)ig log_2 nig ig)}{2}$$

Co należało pokazać.