The e/m ratio: Lab Notebook

Lab Date: March 10, 2022

David van Herpt, 20227378. Group 1

Experimental Apparatus

Figure 1: Power supplies and multimeters used during the experiment.

Figure 2: Setup used to perform the experiment

Procedure

- The Leybold power supply was turned on and allowed to heat up.
- The illuminated scale was positioned parallel to the glass plate.
- Once the filament was warm, the vacuum tube was rotated until the plane of the beam was parallel with the illuminated scale.
- The DC power supply shown in Figure 1 was increased from 150 V to 250 V in increments of 20 V. At each voltage, the current was increased using a secondary power supply to create a circular beam with a diameter of 8.00 ± 0.05 cm. The current and voltage were recorded using the digital multimeters shown in Figure 1. The measurements were recorded in Table 1.
- The uncertainty of the diameter was taken to be half of the smallest division of the scale. For both digital multimeters, the uncertainty was taken to be \pm 1 digit, as was recommended in the lab manual.

Table 1: Clockwise electron beam data collected for $D = (8.00 \pm 0.05)$ cm.

Voltage ±0.1 [V]	Current ±0.001 [A]
149.6	1.277
170.4	1.359
190.1	1.449

209.4	1.534
230.0	1.614
250.2	1.688

Next, the vacuum tube was rotated 180 degrees and the polarity of the current was reversed. The previous process was followed again to collect the data shown in Table 2.

Table 2: Counter-clockwise electron beam data collected for $D = (8.00 \pm 0.05)$ cm.

Voltage ±0.1 [V]	Current ±0.001 [A]
150.3	1.124
170.0	1.226
189.6	1.320
209.9	1.400
229.4	1.472
249.9	1.556

- This process was repeated again, this time adjusting the current to get a diameter of 10.00 ± 0.05 cm.

Table 3: Clockwise electron beam data collected for $D = (10.00 \pm 0.05)$ cm.

Voltage ±0.1 [V]	Current ±0.001 [A]
149.9	1.004
170.0	1.09
189.8	1.166
210.0	1.235
230.0	1.289
249.7	1.350

Table 4: Counter-clockwise electron beam data collected for $D = (10.00 \pm 0.05)$ cm.

Voltage ±0.1 [V]	Current ±0.001 [A]
149.8	0.888
170.3	0.961
189.9	1.032
209.9	1.102
229.8	1.163
250.3	1.224

- The magnetic field in Kingston was found to have a magnitude of 53337.5 nT [1].

Preliminary Calculations

Using the data for the D = 8 cm beam, the magnetic field of the Earth B_E and the charge to mass ratio e/m were estimated.

Table 5: Values used in preliminary calculations.

Variable	Value
r	4.00 cm
r/R	0.2

$$B/B_0$$
 0.99928 K 7.73x10⁻⁴ T/A

$$B_T = \frac{K_r}{2}(I_l + I_s) \tag{1}$$

$$B_E = \frac{K_r}{2}(I_l - I_s) \tag{2}$$

$$K_r = \frac{B}{B_0} K \tag{3}$$

$$\frac{e}{m} = \frac{2V}{B_T^2 r^2} \tag{4}$$

Using equation (3) with $B/B_0 = 0.99928$, and $K = 7.73 \times 10^{-4} \text{ T/A}$:

$$K_r = \frac{B}{B_0}K = (0.99928)(7.73 \times 10^{-4} \text{ T/A})$$

$$K_r = 7.7244 \times 10^{-4} \text{ T/A}$$

Using this value in equation (1) with $I_l=1.6880~\mathrm{A}$, and $I_s=1.5560~\mathrm{A}$:

$$B_T = \frac{K_r}{2} (I_l + I_s) = \frac{(7.7244 \times 10^{-4} \text{ T/A})}{2} (1.6880 \text{ A} + 1.5560 \text{ A})$$

$$B_T = 0.00125 \text{ T}$$

Equation (4) can than be used to estimate the charge to mass ratio by taking V = 250 V:

$$\frac{e}{m} = \frac{2V}{B_T^2 r^2} = \frac{2(250 \text{ V})}{(0.00125 \text{ T})^2 (0.04 \text{ m})^2}$$
$$\frac{e}{m} = 1.99 \times 10^{11} \text{ C/kg}$$

Based on the accepted charge to mass ratio of 1.75882×10^{11} C/kg, the experimental value is within 14%.

The magnetic field in Kingston was calculated using equation (2):

$$B_E = \frac{K_r}{2} (I_l - I_s) = \frac{(7.7244 \times 10^{-4} \text{ T/A})}{2} (1.6880 \text{ A} - 1.5560 \text{ A})$$

$$B_E = 5.0981 \times 10^{-5} \text{ T}$$

Thus, the estimated magnetic field is within 5% of the actual value on the day.

References

[1] https://www.magnetic-declination.com/Canada/Kingston/335755.html#:~:text=Answer%3A%20%2D12.13%C2%B0%20 (%2D12%C2%B07')]