

• Algorithm Design

- <u>1. Representative Problems</u>
 - 1.1 Stable Matching
 - <u>1.2 Five Representaive Problems</u>
- <u>2. Algorithm Analysis</u>
 - 2.1 Computational Tractability
 - 2.2 Asymptotic Order of Growth
 - 2.3 Common Running Times
- <u>3. Graphs</u>
 - 3.1 Basic Definition
 - 3.2 Connectivity and Traversal
 - 3.3 Implementing Graph Search
 - 3.4 Bipartiteness
 - 3.5 Connectivity in Digraphs
 - 3.6 Topological Order in DAGs
- 4. Greedy Algorithms
 - Coin Changing
 - 4.1 Interval Scheduling
 - 4.2 Minimizing Lateness
 - 4.3 Optimal Caching
 - 4.4 Shortest Paths in a Graph
 - Minimum Spanning Trees
 - Prim, Kruskal, Borůvka
 - 4.7 Single-Link Clustering
 - 4.9 Min-Cost Arborescences
- 5. Divide and Conquer
 - 5.1 Mergesort
 - 5.3 Counting Inversions
 - 5.4 Closest Pair of Points
 - Randomized Quicksort
 - Median and Selection
 - Master Theorem
 - 5.5 Karatsuba's Algorithm
 - Strassen's Algorithm
 - 5.6 Convolution and FFT
- <u>6. Dynamic Programming</u>
 - 6.1 Weighted Interval Scheduling
 - <u>6.2 Segmented Least Squares</u>
 - 6.3 Knapsack Problem
 - 6.4 RNA Secondary Structure

- 6.5 Sequence Alignment
- <u>6.6 Hirschberg's Algorithm</u>
- <u>6.7 Bellman–Ford Algorithm</u>
- 6.8 Distane Vector Protocol
- 6.9 Negative Cycles

• <u>7. Network Flow</u>

- 7.1 Max-Flow and Min-Cut
- 7.2 Ford–Fulkerson Algorithm
- 7.3 Capacity-Scaling
- Shortest Augmenting Path
- Blocking Flow
- Unit Capacity Networks
- 7.4 Bipartite Matching
- 7.5 Disjoint Paths
- 7.6 Demands and Lower Bounds
- <u>7.7 Survey Design</u>
- 7.8 Airline Scheduling
- 7.9 Image Segmentation
- 7.10 Project Selection
- 7.11 Baseball Elimination
- 7.12 Assignment Problem

• <u>8. Intractability</u>

- <u>8.1 Polynomial-Time Reductions</u>
- 8.2 Vertex Cover
- <u>8.3 Independent Set</u>
- 8.4 Set Cover
- 8.5 3-Satisfiability
- 8.6 Hamiltonian Cycle
- 8.7 3-Dimensional Matching
- 8.8 Graph 3-Colorability
- 8.9 Subset Sum
- 8.10 P vs. NP
- 8.11 NP-Completeness
- 8.12 co-NP

• 9. PSPACE

- 9.1 PSPACE
- 9.2 Quantified SAT
- 9.3 Planning Problem
- 9.4 PSPACE-Complete
- 10. Limits of Tractability
 - 10.1 Small Vertex Covers
 - 10.2 NP-Hard Problems on Trees
 - 10.3 Circular Arc Coloring
 - Bipartite Vertex Cover
- 11. Approximation Algorithms
 - 11.1 Load Balancing
 - 11.2 Center Selection
 - 11.3 Vertex Cover
 - 11.4 Weighted Vertex Cover
 - 11.5 Generalized Load Balancing
 - 11.6 Knapsack Problem
- 12. Local Search
 - 12.1 Gradient Descent
 - 12.2 Metropolis Algorithm

- 12.3 Hopfield Neural Networks
- 12.4 Maximum Cut
- 11.5 Nash Equilibria
- 13. Randomized Algorithms
 - 13.1 Contention Resolution
 - 13.2 Global Min Cut
 - 13.3 Linearity of Expectation
 - <u>13.4 Max 3-SAT</u>
 - 13.5 Universal Hashing
 - 13.6 Chernoff Bounds
 - 13.7 Load Balancing
- Extra Topics
 - Data Structures
 - Amortized Analysis
 - Binomial Heaps
 - Fibonacci Heaps
 - <u>Disjoint Sets</u>
 - Linear Programming
 - Simplex Algorithm
 - Linear Programming Duality
 - Ellipsoid Algorithm

Lecture Slides for Algorithm Design

These are a revised version of the lecture slides that accompany the textbook <u>Algorithm Design</u> by Jon Kleinberg and Éva Tardos. Here are the original and official version of the <u>slides</u>, distributed by <u>Pearson</u>.

TOPIC	SLIDES	READINGS	DEMOS
Stable Matching (Gale–Shapley)	<u>1up·4up</u>	Chapter 1	Gale–Shapley
Algorithm Analysis (big O notation)	<u>1up · 4up</u>	Chapter 2	<u>binary search</u>
Graphs (graph search)	<u>1up · 4up</u>	Chapter 3	_
Greedy Algorithms I (basic techniques)	<u>1up · 4up</u>	Chapter 4	interval scheduling interval partitioning
Greedy Algorithms II (shortest paths and MSTs)	<u>1up · 4up</u>	Chapter 4	<u>Dijkstra</u> <u>Prim, Kruskal, Borůvka</u> <u>Edmonds</u>
Divide and Conquer I (sorting and selection)	<u>1up · 4up</u>	Chapter 5	<u>merging</u> <u>quickselect</u>
Divide and Conquer II (integer and polynomial multiplication)	<u>1up · 4up</u>	Chapter 5	_
Dynamic Programming I	<u>1up · 4up</u>	Chapter 6	_

(basic techniques)

Dynamic Programming II (sequence alignment, Bellman– Ford)	<u>1up · 4up</u>	Chapter 6	_
Network Flow I (maximum flow theory)	<u>1up · 4up</u>	Chapter 7	Ford–Fulkerson
Network Flow II (maximum flow applications)	<u>1up · 4up</u>	Chapter 7	-
Network Flow III (assignment problem)	<u>1up · 4up</u>	Chapter 7	_
Intractability I (polynomial-time reductions)	<u>1up · 4up</u>	Chapter 8	-
Intractability II (<i>P, NP, and NP-complete</i>)	<u>1up · 4up</u>	Chapter 8	-
Intractability III (coping with intractability)	<u>1up · 4up</u>	Section 10.2, 11.8	<u>independent set</u> <u>vertex cover</u>
PSPACE (PSPACE complexity class)	<u>1up · 4up</u>	Chapter 9	-
Limits of Tractability (extending limits of tractability)	<u>1up · 4up</u>	Chapter 10	-
Approximation Algorithms (approximation algorithms)	<u>1up · 4up</u>	Chapter 11	list scheduling
Local Search (Metropolis, Hopfield nets)	<u>1up · 4up</u>	Chapter 12	_
Randomized Algorithms (randomized algorithms)	<u>1up · 4up</u>	Chapter 13	-
Data Structures I (amortized analysis)	<u>1up · 4up</u>	Chapter 17 (CLRS)	dynamic table
Data Structures II (binary and binomial heaps)	<u>1up · 4up</u>	Chapter 6 (CLRS, 2nd edition)	<u>binary heap</u> <u>heapify</u>
Data Structures III (Fibonacci heaps)	<u>1up · 4up</u>	Chapter 19 (CLRS)	-
Data Structures IV (union-find)	<u>1up · 4up</u>	<u>Section 5.1.4</u> (Dasgupta et al.)	-
Linear Programming I (simplex algorithm)	<u>1up · 4up</u>	(Chvátal)	-
Linear Programming II (linear programming duality)	<u>1up · 4up</u>	(Chvátal)	_
Linear Programming III (ellipsoid algorithm)	<u>1up · 4up</u>	<u>lecture notes</u> (Michel Goemans)	_

References.

The lectures slides are based primarily on the textbook:

• <u>Algorithm Design</u> by Jon Kleinberg and Éva Tardos. Addison-Wesley, 2005.

Some of the lecture slides are based on material from the following books:

- *Introduction to Algorithms, Third Edition* by Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. MIT Press, 2009.
- <u>Algorithms</u> by Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani. McGraw Hill, 2006.
- *The Design and Analysis of Algorithms* by Dexter Kozen. Springer, 1992.
- Algorithms 4/e by Robert Sedgewick and Kevin Wayne. Addison-Wesley Professional, 2011.
- <u>Data Structures and Network Algorithms</u> by Robert Tarjan. Society for Industrial and Applied Mathematics, 1987.
- *Linear Programming* by Vašek Chvátal. W. H. Freeman, 1983.

Instructors.

If you are an instructor using the textbook and would like the latest version of the keynote source files, please <u>email Kevin Wayne</u>.

Errata.

Here are the known <u>errata</u> in these lecture slides.

Credits.

Special thanks to Pierre Flener, for finding and reporting dozens of errors and suggesting numerous improvements in the presentation.