Review of LEAD/LAG Compensator Design

K.S. Tsakalis 9/12/01

1. LEAD (Nyquist/Bode)

• Required phase lead

$$\phi = PM_{desired} - PM_{actual} + \phi_{safety}$$

PM: Phase margin, $\phi_{safety} \sim 5^{\circ} - 15^{\circ}$. If $\phi > 75^{\circ}$, then more than one lead elements are required.

- Ratio z/p $\frac{z_0}{p_0} = \frac{1-\sin\phi}{1+\sin\phi}$
- New crossover: Place gain crossover at $\sqrt{z_0 p_0}$.

Case 1: Leave low frequencies unaffected

- 1. Find w_m such that $|G(jw_m)| = \sqrt{\frac{z_0}{p_0}}$, where G(s) is the t.f. of the uncompensated system.
- 2. With w_{GC} the old gain crossover, check $-\angle G(jw_m) + \angle G(jw_{GC}) \cong \phi_{safety}$ If greater, or much smaller, adjust ϕ_{safety} in the required lead expression (top) and iterate.

3. Pole-zero calculations

$$z_0 = w_m \sqrt{\frac{1 - \sin \phi}{1 + \sin \phi}}$$
, $p_0 = w_m \sqrt{\frac{1 + \sin \phi}{1 - \sin \phi}}$

4. Implementation $C(s) = \frac{p_0(s+z_0)}{z_0(s+p_0)}$

Case 2: Leave high frequencies unaffected

- 1. Find w_m such that $|G(jw_m)| = \sqrt{\frac{p_0}{z_0}}$, where G(s) is the t.f. of the uncompensated system.
- 2. With w_{GC} the old gain crossover, check $-\angle G(jw_m) + \angle G(jw_{GC}) \cong \phi_{safety}$ If greater, or much smaller, adjust ϕ_{safety} in the required lead expression (top) and iterate.

- 3. **Pole-zero calculations**: same as Case 1.
- 4. Implementation $C(s) = \frac{(s+z_0)}{(s+p_0)}$

2. LAG (Nyquist/Bode)

1. Gain for Stability:

Find K_0 such that $K_0G(s)$ has the desired phase margin with 5° safety. (Must be possible, otherwise lead compensation is required.) That is, find K_0 , W_{GC} , s.t.:

$$|K_0G(jw_{GC})|=1$$

 $\angle K_0G(jw_{GC})+180=PM_{desired}+\phi_{safety}$

NOTE: In a lead-lag design,

$$K_0 = 1$$
, $W_{GC} = W_m$, $G(s) \leftarrow \frac{s+z}{s+p}G(s)$.

2. Gain for Performance:

Find K_1 such that $K_1G(s)$ meets the low-frequency performance specifications (steady-state error, disturbance attenuation, etc.)

NOTE: In a lead-lag/loop shaping design the original G(s) is usually selected to satisfy the low frequency specifications, so

$$K_1 = p_{Lead} / z_{Lead}$$

3. Pole-zero calculations: Find z_1 , p_1 such that

$$\frac{z_1}{p_1} = \frac{K_1}{K_0}$$
, $z_1 < \frac{w_{GC}}{10}$, $p_1 > w_d$

 w_d : the largest frequency for the performance specs.

4. Implementation:
$$C(s) = K_0 \frac{(s+z_1)}{(s+p_1)}$$

3. LEAD (Root-Locus)

- **1. Desired Poles:** Select the location of the Dominant closed-loop pole-pair, s_I , s_I^* . (Usually from overshoot, settling, rise-time specs.)
- **2. Angle Contributions:** Find the angle contributions of the open-loop t.f. at s_i .

$$\sum \theta_z - \sum \theta_p$$

3. Required Lead: Use the argument criterion:

$$\theta_{z0} - \theta_{p0} + \sum \theta_z - \sum \theta_p = -180 \quad (K > 0)$$

- **4. Pole-zero calculations:** Choose p_0 such that $\theta_{p0} > 5^o$, or more. Calculate z_0 from the required lead (3).
- 5. Gain calculations: Compute

$$K_0 = \frac{|s_1 + p_0|}{|s_1 + z_0| |G(s_1)|} \quad (K > 0)$$

Check compensated root-locus for stability.

(More than one lead may be required; also, z_0 should not be too close to the dominant pair due to overshoot amplification; if so, adjust s_1 and iterate.)

6. Implementation:
$$C(s) = K_0 \frac{(s+z_0)}{(s+p_0)}$$

4. LAG (Root-Locus)

1. Desired Poles: Select the location of the Dominant closed-loop pole-pair, s_I , s_I^* . (Usually from overshoot, settling, rise-time specs. Must be achievable with pure gain, otherwise lead compensation is required)

Allow for some safety margin!

- **2. Gain for stability:** Find K_0 such that $1+K_0G(s)$ has a root at s_1 .
- **3. Gain for performance:** Find K_I such that the closed-loop of $K_IG(s)$ meets the low-frequency performance specs (steady-state error, disturbance attenuation, etc.).
- **4. Pole-zero calculations:** Find z_1 , p_1 such that

$$\frac{z_1}{p_1} = \frac{K_1}{K_0}$$

Choose z_I small with respect to $Re(s_I)$ and calculate p_I from the above equation. For a largest frequency of the low frequency specs w_d , it must be $p_I > w_d$; if not, select a new dominant pair and iterate.

5. Implementation:
$$C(s) = K_0 \frac{(s+z_1)}{(s+p_1)}$$

5. CROSSOVER-BASED LEAD-LAG (Nyquist/Bode)

1. LEAD

• **Pick** w_m : Select the crossover frequency (observing possible constraints from RHP poles/zeros).

$$\phi = PM_{desired} - PM_{actual} + \phi_{safety}$$

PM: Phase margin, actual = PM of G(s) at w_m . $\phi_{safety} \sim 5^{\circ} - 15^{\circ}$ (Needed in lead-lag designs only.) If $\phi > 75^{\circ}$, then more than one lead elements are required.

- Ratio z/p $\frac{z_0}{p_0} = \frac{1-\sin\phi}{1+\sin\phi}$
- Crossover: Place gain crossover at $\sqrt{z_0 p_0} = w_m$.
- Pole-zero calculations:

$$z_0 = w_m \sqrt{\frac{1 - \sin \phi}{1 + \sin \phi}} , \quad p_0 = w_m \sqrt{\frac{1 + \sin \phi}{1 - \sin \phi}}$$

- **Plant gain:** Compute $g = |G(jw_m)|$, where G(s) is the t.f. of the uncompensated system.
- Implementation: $C(s) = \frac{1}{g} \sqrt{\frac{p_0}{z_0}} \frac{(s+z_0)}{(s+p_0)}$

2. LAG (of Lead-Lag)

- Preserve the crossover w_m
- Implementation: $C(s) = \sqrt{\frac{w_m^2 + p_1^2}{w_m^2 + z_1^2}} \frac{(s + z_1)}{(s + p_1)}$
- Select z_1 , p_1 such that:
 - $\tan^{-1}\frac{w_m}{z_1} \tan^{-1}\frac{w_m}{p_1} = -\phi_{safety}$
 - Satisfy low frequency specs.
- Simplified design: $C(s) = K_1 \frac{(s+z_1)}{(s+p_1)}$

$$p_1 << w_m,$$
where,
$$K_1 = \sqrt{\frac{1}{1 + \frac{z_1^2}{w_m^2}}} \cong 1$$

$$\tan^{-1} \frac{w_m}{z_1} = \frac{\pi}{2} - \phi_{safety}$$

Also valid for $p_1 = 0$. Here, adjust ϕ_{safety} (and possibly PM) to meet low frequency specs.

6. PID

- 1. Choose pseudo-differentiator pole one decade faster than intended bandwidth.
- 2. Augment plant transfer function with $\frac{1}{s(\tau s+1)}$
- 3. Select the PID zeros as $K(s+z)^2$ with K and z to achieve the desired R/L or N/B objectives.
- 4. Convert controller transfer function to standard PID

form:
$$C_{PID}(s) = K_p + \frac{K_i}{s} + \frac{K_d s}{(\tau s + 1)}$$

7. PID (Ziegler-Nichols)

1. From step response data: R = effective slope (e.g., 10%-90%), L = delay (Lag, dead-time).

	P	PI	PID
Кр	1/RL	0.9/RL	1.2/RL
Ki	-	$0.27/RL^{2}$	$0.6/RL^2$
Kd	-	-	0.5/R

2. Experimentally, based on ultimate sensitivity: Ku = ultimate gain, Pu = ultimate period.

	P	PI	PID
Kp	0.5Ku	0.45Ku	0.6Ku
Ki	-	0.54Ku/Pu	1.2Ku/Pu
Kd	-	-	0.075KuPu

Note: Z-N tunings are such that the ideal PID (with $\tau=0$) has a double zero, i.e., $Kp^2=4KiKd$.