Federated CP New Setting

Min, Xia

May 23, 2024

1 Idea1

For K agents each with $Z_k = \{(X_i^k, Y_i^k)\}_{i=1}^{n_k}$ sampled from distribution P^k , and point predictor f_1 based score S_i^k . If all $P^k = P$ and a new test point X, Y from P^1 . For any trial data y and score S follow the procedure in "Conformal prediction with local weights: randomization enables robust guarantees"[1]:

- Find some kernel function $H(\cdot,\cdot)$, sample \tilde{X} based on $H(X,\cdot)$.
- Calculate empirical function $\tilde{F} = \sum_{i,k} w_i^k \delta_{S_i^k} + w \delta_S$ with weight

$$w_i^k = \frac{H(X_i^k, \tilde{X})}{\sum\limits_{i',k'} H(X_{i'}^{k'}, \tilde{X}) + H(X, \tilde{X})}, \ w = \frac{H(X, \tilde{X})}{\sum\limits_{i',k'} H(X_{i'}^{k'}, \tilde{X}) + H(X, \tilde{X})}.$$

• Conformal set is $C_{\alpha}(X) = \{ S \leq Q(1 - \alpha, \tilde{F}) \}.$

However for all k $P^k = P$ is not practical, potential covariate shift exists

REFERENCES 2

References

[1] Rohan Hore and Rina Foygel Barber. Conformal prediction with local weights: randomization enables local guarantees. $arXiv\ preprint\ arXiv:2310.07850,\ 2023.$