

National University

Of Computer & Emerging Sciences Karachi

Course Outlines of BSCS Degree Program

Course Instructor	Semester	Spring	
Batch/Section(s)	Year	2018	
Course Title	Credit Hours	3	
Prerequisite(s)	Course TA		
Text Book(s)			
	ical Analysis , 9 th Edition and Faires		
Reference Bool	k(s)		
1) Numerical Meth	ods using MATLAB, 3rd Edition		
John H.Mathews	3		
2) Applied Numerical	Methods with Matlab for Engineers and Scientist, 3 rd Edition		
Steven C,Chapra			

Course Objective:

- To introduce the students to the mostly used computing methods in the different fields of engineering and sciences.
- The emphasis will be on understanding the algorithem of the various methods for computing and on applying these to obtain the approximate solutions for various mathematical problems.
- MATLAB & Maple will be used as tool for implementation and application of these computing methods.

Course Description:

The Numerical computing includes: Error concept and analysis, Roots of nonlinear algebraic equations of one variable, Direct and iterative method for system of linear equations, Linear interpolation with 2nd and $3^{\rm rd}$ dimensional, Interpolating polynomials, Differences, Operators and their relation, Numerical differentiation and integration, Numerical solution of differential equation. Iteration for non linear system of equation

Week	Contents / Topics	Exercise	Questions	Exam		
1	Error analysis: Introduction of Numerical Computing Methods: Floating-point representation Chopping.Roundoff and truncation error, Absulute ,relative and percentage error Significant figures in approximation, loss of significance	1.2	1,4,5-8	A1		
2	Solution(Root) of equations in one variable: The Bisection or Binary-search method. Fixed Point iteration. $(x=g(x))$	2.1	1-6,12,13 1-6,9-11,14			
3	Newton's Raphson and Secant Method.	2.2	1-0,9-11,14	† Q1		
4	Method of False position (Regula falsi).	2.3	1-10			
5	Interpolation and Polynomial approximation: Lagrange interpolation polynomial of degree one,two and three	3.1	1,2,5,6			
6	Mid 1 Exam					
7	Divided difference table and interpolating polynomial. Newton Forward and Backward difference formula	3.3	1-6,9			
8	Newton centered difference (stirling) formula.			A2		
9	Numerical differentiation: Differentiation using Forward and Backward differences 3-point Endpoint and Midpoint formula 5-point Endpoint and Midpoint formula	4.1	1,2,5,6,18, 25,26			
10	Numerical Integration: Trapezoidal and Simpson's rule Closed and open Newton-Cotes formulas.	4.3	1,2,5-10,22	Q2		
	Composite Numerical Integration: Trapezoidal , Simpson's and Midpoint formula	4.4	1-4,7,8,11			
11	Mid 2 Exam					
12	Differential Equations:	5.2	1,2,5			
	Euler's method , 2-RK method , Mid Point formula Modify Euler and Huen's method , 4-RK method	5.4	1-4 5-8, 9-12 13-16	A3		
13	Direct Method for solving linear system: LU decomposition (Dolittle and Crout) Symmetric ,Singular ,Diagonally dominant	6.5	1,2,3-6			
	and positive definite matrices LDL ^t Factorization , cholesky method	6.6	1-3,5,11,12			
14	Iterative Techniques: Iterative methods for solving linear system Gauss-Siedel and Jacobi's methods.	7.3	1,2,3,4	Q3		
15	Difference Operator analysis:Handout w $\Delta, \nabla, \delta, \mu$, D and E operators and their relations.provide					
16	Algorithem / Matlab Prog. / Presentation (optional)	-				

Course coordinator : Jamilusmani

Grading Criteria:

Marks Distribution:

Particulars	% Marks			
1. Class participation/Attendance	00			
2. Quizzes/ Assignments	10			
3. Project /Programme	10			
4. First Mid Exam	15			
5. Second Mid Exam	15			
6. Final Exam	50			
Total:-	100			

Important Instructions to be followed for this Course

- Be in classroom on time. Any student who arrives more than 5 minutes late in the class would be marked LATE. Anybody coming to classmore than 15 minutes late will be marked ABSENT.
- Turn off your cell phones or any other electronic devices before entering the class.
- Maintain the decorum of the class room all the time.
- Avoid a conversation with your classmates while lecture is in progress.
- Submit your assignments on time, no assignment will be accepted after the deadline.

Instructions / Suggestions for satisfactory progress in this course:

- On average, most students find at least three hours outside of class for each class hour necessary for satisfactory learning.
- Chapters should be read and homework should be attempted before class.
- Do not get behind. You are encouraged to work with other students. Plus, I am always available during office hours to help you.
- The homework assigned is a minimum. You may always work extra hours on your own.
- Use the few minutes you usually have before the start of each class to review the prior meetings' notes and homework. This will save us valuable in-class time to work on new material.
- Develop a learning habit rather than memorizing work in groups, whenever appropriate.
- Apply the learned principles and gained knowledge.
- Be creative in thinking, but stick to the topic assigned for discussions, assignments and presentations.
- Always bring your **Work Book** and **Calculator** with you in the class.

TAT 4	C 1 1	1	11 .1		CC .	. 1 1	C .1	TD 1
Notes	Studente s	are welcome	all the	fime i	n ottice to	a get helt	a trom the	Leacher
11010	, Diudenio (are werediffe	an unc	unic i	n omice u	J EUL HUH	o mom un	. i caciici.

Jamilusmani	20-01-2020
Signature:	Date: