Mood Detect

Chih Wei Tung, Shanshan Zhao, Weixuan Jiang, Zhonghao Guo Team #2

Github Link: https://github.com/tungchihwei/EC601-Mood-Detect

Trello Link: https://trello.com/b/QZmTZ7UV/ec-601-final-project

System Diagram

Trello Diagram

- Theoretical Background
- ✓ Pitch, Mel Frequency Cepstral Coefficients (MFCCs) and Formants are extracted from human speech as features influence the recognition of emotions. [1][2][3]
- Pitch is extracted from the speech waveform using RAPT algorithm implemented in the VOICEBOX toolbox.^[4]
- MFCC parameters are calculated by STFT and DCT algorithm.
- Using Linear Predictive Coding(LPC) to model formants.
- ✓ K-Means Clustering and Support Vector Machines (SVM) ^[7] are adopted to classify opposing emotions.

		1				
All Speakers						
Experiment	Features	Distance Measure	Centroid	Iterations	Recognition Accuracy	Variance
despair-elation	MFCC	L1 norm	UDC	100	75.76%	1.74%
happy-sadness	MFCC	L1 norm	UDC	1	77.91%	14.34%
interest-boredom	Pitch	L1 norm	UDC	100	71.21%	2.48%
shame-pride	MFCC	L1 norm	UDC	1	73.15%	3.23%
hot anger-elation	MFCC	L1 norm	UDC	1	69.70%	10.75%
cold anger-sadness	MFCC	L1 norm	UDC	1	75.66%	3.35%
Male Speakers						
Experiment	Features	Distance Measure	Centroid	Iterations	Recognition Accuracy	Variance
despair-elation	MFCC & Pitch	Correlation	UDC	1	87.80%	0.14%
happy-sadness	MFCC	L1 norm	UDC	1	88.80%	3.66%
interest-boredom	MFCC & Pitch	Cosine	Random	100	81.20%	6.36%
shame-pride	MFCC & Pitch	Correlation	UDC	1	74.24%	15.53%
hot anger-elation	MFCC	L1 norm	UDC	1	65.89%	14.95%
cold anger-sadness	MFCC	L1 norm	UDC	1	88.43%	9.78%
Female Speakers						
Experiment	Features	Distance Measure	Centroid	Iterations	Recognition Accuracy	Variance
despair-elation	MFCC	L1 norm	UDC	1	80.42%	9.66%
happy-sadness	MFCC	L1 norm	UDC	1	72.80%	15.24%
interest-boredom	MFCC	L1 norm	UDC	1	70.62%	18.06%
shame-pride	MFCC	L1 norm	UDC	1	81.18%	19.79%
hot anger-elation	MFCC	L1 norm	UDC	1	77.16%	4.37%
cold anger-sadness	MFCC	Correlation	UDC	1	72.04%	15.00%
-	Table 2: H	ghest Recognition Ac	curacies usin	g K-means C	usterino	

- De-noise Recorder
- ✓ Build an demo to achieve voice recording
- Noise elimination

Pitch Extraction


```
% Copyright 2017 Zhonghao Guo gzh1994@bu.edu
   % Pitch Extraction by Voicebox in MATLAB
   clear all
   clc
 6 filename1 = 'd:/calm.wav';
7 filename2 = 'd:/happy.wav';
8 [Data1,Fs1]=wavread(filename1);
9 [Data2,Fs2]=wavread(filename2);
10 x1=[1:151423,1];
11 x2=[1:143807,1];
12 plot(x1,Data1,'g',x2,Data2,'r');
13 [fx1,tt1] = fxrapt(Data1,Fs1,'u',50);
14 [fx2,tt2] = fxrapt(Data2,Fs2,'u',50);
15 x3=[1:684,1];
16 x4=[1:649,1];
17 figure(2)
18 plot(x3,fx1,'g',x4,fx2,'r');
20 fx1 adjust = fx1(~isnan(fx1));
21 fx2 adjust = fx2(~isnan(fx2));
22 fx1 mean = mean(fx1 adjust);
23 fx2 mean = mean(fx2 adjust);
24 fx1 max = max(fx1 adjust);
25 fx2 max = max(fx2 adjust);
26 fx1 min = min(fx1 adjust);
27 fx2 min = min(fx2 adjust);
28 fx1 variance = fx1 max-fx1 min;
29 fx2 variance = fx2 max-fx2 min;
30 fx1_midian = median(fx1_adjust);
   fx2_midian = median(fx2_adjust);
33 fx1_derivative = diff(fx1_adjust);
34 fx2 derivative = diff(fx2 adjust);
36 fx1_energy_avg = mean(Data1);
   fx2_energy_avg = mean(Data2);
   speaking_rate1 = length(fx1)/length(fx1_adjust);
```

- For the pitch vector and its derivative:
- Mean
- Median
- Maximum
- Minimum
- Variance
- Average energy of speech
- Speaking rate
- Inverse of the average length of the voiced part of the utterance

Hence, the pitch feature vector is 12-dimensional

8

Emotional Prosody Speech and Transcripts^[8]

URL:https://catalog.ldc.upenn.edu/LDC2002S28

- The recordings consist of professional actors reading a series of semantically neutral utterances (dates and numbers) spanning fourteen distinct emotional categories.
- The content and emotion of each word and phrase is recorded in the matching transcript.

DEMO

Department of Electrical & Computer Engineering

DEMO

Normal Recorder

Denoise Recorder

Challenges

- User story——What if customers "cheat" the app when recording voice or even refuse to use it when feeling down?
- Privacy Issue——If monitoring constantly, will the app offense user's privacy?
- Feedback Fraud——How to make sure the feedback from patients and psychiatrists are real? We may not get an objective training data set from subjective feedback.
- Technical Challenges——How to transplant the RAPT toolbox from MATLAB to JAVA?

Next Sprint Plan

- Extract signatures from original sound samples
- Create multi-dimensional feature vectors from signatures acquired
- Set up a dataspace to storage statistics
- Upload all feature files to dataspace for Machine Learning

Reference

- ➤ [1] Shah Hewlett, Emotion Detection From Speech, CS229, 2007.
- [2] Garima Vyas, Malay Kishore Dutta, Automatic Mood Detection of Indian music Using MFCCs and K-means Algorithm, 2014.
- [3] Sharifa Alghowinem, Roland Goecke, Michael Wagner, Julien Epps, Michael Breakspear, gordon Parker, From Joyous to Clinically Depressed: Mood Detection Using Spontaneous Speech, 2012.
- [4] http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
- [5] http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/
- [6] L.R.Rabiner and B.H.Juang. "Fundamentals of Speech Recognition", Upper Saddle River; NJ: Prentice-Hall, 1993
- > [7] http://ida.first.fraunhofer.de/~anton/software.html
- [8] https://catalog.ldc.upenn.edu/LDC2002S28

THANK YOU