PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-071117

(43) Date of publication of application: 21.03.2001

(51)Int.CI.

B22D 19/00

B22D 17/00

B22D 19/08

F02F 1/00

(21)Application number: 11-245280

(71)Applicant: MAZDA MOTOR CORP

(22)Date of filing:

31.08.1999

(72)Inventor: HASEGAWA YASUAKI

ODA NOBUYUKI

SUGIMOTO YUKIHIRO

(54) CYLINDER BLOCK CASTING METHOD AND ITS CAST PRODUCT

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent the partial deformation of a preform in a cavity caused by the pouring pressure of molten metal without separately using a large-scaled suction apparatus or the like. SOLUTION: The cylindrical preform having a prescribed vol. ratio is fitted onto the outer periphery of a bore pin by being entagled with wear resistant metallic fibers. The molten metal is supplied into the cavity from molten metal supplying passages set in the forming positions of journal parts 3a-3e to constitute the inner peripheral surface portions of a cylinder bores with the preforms. In this way, the state the partial diameter-expansion deformation near the journal parts 3a-3e is caused in the preforms is prevented with a rigid member 21 fitted to the bore pin. The molten metal is allowed to be easily infiltrated by reducing the vol. ratio (enlarging porosity) only at the portion nearer to the molten metal supplying portion in the preform, thus the above mentioned deformation can be prevented. The preform is pressurized in the compressing direction with the molten mold pressure by slitting the molten metal supplying position so as to be positioned at the outer periphery of the preform, thus the above mentioned deformation can be prevented.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

			,
4			

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

	*		
•			

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2001-71117A)

(43)公開日 平成13年3月21日(2001.3.21)

(51)Int. Cl.'	識別記号	FΙ			テーマコード(参考)
B 2 2 D	19/00	B 2 2 D	19/00	F	3G024
	17/00		17/00	В	
	19/08		19/08	E	
F 0 2 F	1/00	F 0 2 F	1/00	C	
	審査請求 未請求 請求項の数13	OL		(A)	9頁)
	田丘明小 小明小 明小久の数10	1		(±	7 只 /
(21)出願番号	特願平11-245280	(71)出願人	000003137		
			マツダ株式	会社	
(22)出願日	平成11年8月31日(1999.8.31)		広島県安芸	郡府中町	新地3番1号
		(72)発明者	長谷川 泰	明	
			広島県安芸	郡府中町	新地3番1号 マツダ株
			式会社内		
	•	(72)発明者	小田 信行	÷	
			広島県安芸	郡府中町線	新地3番1号 マツダ株
	•		式会社内		
		(74)代理人	100080768		
			弁理士 村	田実	
			最終頁に続く		最終頁に続く

(54) 【発明の名称】シリンダブロックの鋳造方法およびその鋳造品

(57)【要約】

【課題】吸引装置等の大がかりな装置を別途用いること なく、溶湯の注入圧力によってプリフォームがキャビテ ィ内で部分的に変形してしまうのを防止する。

【解決手段】 ボアピン13の外周に、耐摩耗性金属繊維 を絡めて所定の体積率を有する円筒状のプリフォーム 4 が嵌合される。ジャーナル部3a~3eの形成位置に設 定された溶湯給路路14a、14bからキャピティ15 内に溶湯が供給されて、シリンダボア内周面部分がプリ フォーム4によって構成される。ボアピン13に嵌合さ れた剛性部材1.6,21あるいは31によって、プリフ オーム4のうちジャーナル部3a~3e付近が部分的に 拡径変形されてしまる事態が防止される。プリフォーム 4のうち、溶湯供給部分に近い部分のみ体積率を小さく (空隙率を大きく) することにより溶湯の浸透が容易に 行われるようにして、上記拡径変形を防止することもで きる。溶湯供給位置を、14×のように、プリフォーム 4の外周囲に位置するように設定して、溶湯圧力でもっ てプリフォーム4を圧縮する方向に押圧することで、上 記拡径変形を防止することもできる。

【特許請求の範囲】

【請求項1】所定の体積率を有する円筒状のプリフォームを型内のキャビティにセットし、該キャビティ内に溶場を注入して、該プリフォームが鋳ぐるまれたシリンダブロックを鋳造するシリンダブロックの鋳造方法において、

1

前記プリフォームのうち、溶湯が注入される側に対応する特定部分が他の部分に比して剛性が大きくされている、ことを特徴とするシリンダブロックの鋳造方法。

【請求項2】請求項1において、

前記特定部分の剛性が、該プリフォームとは別部材により構成されると共に該プリフォームと共に鋳ぐるまれる剛性部材によって確保される、ことを特徴とするシリンダブロックの鋳造方法。

【請求項3】請求項2において、

前記プリフォームが、シリンダボア形成用中子となるボアビンの外周に嵌合された状態で前記キャビティ内に配設され、

前記剛性部材が、前記ボアピンとプリフォームとの接触 部分を覆うようにして前記キャピティ内に配置される、 ことを特徴とするシリンダブロックの鋳造方法。

【請求項4】所定の体積率を有する円筒状のプリフォームを型内のキャビティにセットし、該キャビティ内に溶湯を注入して、該プリフォームが鋳ぐるまれたシリンダブロックを鋳造するシリンダブロックの鋳造方法において、

前記プリフォームが、シリンダボア形成用中子となるボ アピンの外周に嵌合された状態で前記キャピティ内に配 設され、

前記プリフォームの外周に、溶湯が通過可能とされた円 30 筒状の剛性部材が嵌合されて、該剛性部材によって該プリフォームが前記ボアビンの径方向外方側へ拡がるのが規制され、

前記プリフォームの外周に前記剛性部材が嵌合された状態で前記キャビティ内に溶湯が注入されて、該プリフォームと共に該剛性部材が鋳ぐるまれる、ことを特徴とするシリンダブロックの鋳造方法。

【請求項5】所定の体積率を有する円筒状のプリフォームを型内のキャビティにセットし、該キャビティ内に溶場を注入して、該プリフォームが鋳ぐるまれたシリンダ 40 ブロックを鋳造するシリンダブロックの鋳造方法において、

前記プリフォームのうち、溶湯が注入される側に対応する特定部分の体積率が他の部分の体積率に比して小さくされている、ことを特徴とするシリンダブロックの鋳造方法。

【請求項6】請求項5において、

前記特定部分の厚さが、前記他の部分の厚さよりも大きくされている、ことを特徴とするシリンダブロックの鋳造方法。

【請求項7】請求項1ないし請求項6のいずれか1項において、

前記溶湯の注入が、前記キャビティのうち少なくともジャーナル部を形成する部位側から行われる、ことを特徴とするシリンダブロックの鋳造方法。

【請求項8】所定の体積率を有する円筒状のブリフォームを型内のキャビティにセットし、該キャビティ内に溶湯を注入して、該ブリフォームが鋳ぐるまれたシリンダブロックを鋳造するシリンダブロックの鋳造方法において、

前記プリフォームをその径方向内方側へ圧縮する方向から溶湯を注入する、ことを特徴とするシリンダブロックの鋳造方法。

【請求項9】シリンダボア内周面部分に所定の体積率を 有する円筒状のプリフォームが鋳ぐるまれたシリンダブ ロックにおいて、

前記プリフォームのうち、ビストン下死点側となる特定 部分の剛性が他の部分の剛性よりも大きくされている、 ことを特徴とするシリンダブロック。

20 【請求項10】請求項9において、

前記特定部分の剛性が、前記プリフォームとは別部材により構成されて該プリフォームと共に鋳ぐるまれた剛性部材によって確保されている、ことを特徴とするシリンダブロック。

【請求項11】シリンダボア内周面部分に所定の体積率を有する円筒状のプリフォームが鋳ぐるまれたシリンダブロックにおいて、

円筒状の剛性部材が、前記プリフォームの外周に嵌合された状態で該プリフォームと共に鋳ぐるまれている、ことを特徴とするシリンダブロック。

【請求項12】シリンダボア内周面部分に所定の体積率を有する円筒状のプリフォームが鋳ぐるまれたシリンダブロックにおいて、

前記プリフォームのうち、ピストン下死点側となる特定 部分の体積率が他の部分の体積率よりも小さくされてい る、ことを特徴とするシリンダブロック。

【請求項13】シリンダボア内周面部分に所定の体積率 を有する円筒状のプリフォームが鋳ぐるまれたシリンダ ブロックにおいて、

0 溶湯の注入位置が、前記プリフォームをその径方向内方側に圧縮する方向となるように設定されている、ことを 特徴とするシリンダブロック。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はシリンダブロックの 鋳造方法およびその鋳造品に関するものである。

[0002]

【従来の技術】エンジン、例えば自動車用エンジンでは、軽量化のためにシリンダブロックがアルミニウム合 金等の軽金属で形成されることが多くなっている。この

Z

一方、シリンダブロックの特定部位に要求される機能、例えばシリンダボア内面の耐摩耗性を十分確保する等のことがシリンダブロックを構成する金属では十分満足できないことがある。このため、シリンダボアに別途シリンダライナを嵌合することが一般に行われているが、その他、ブリフォームと呼ばれる多孔性金属をシリンダブロック鋳造時に鋳ぐるむことも行われている(特開平9-14045号公報参照)。例えば、シリンダボア内面の耐摩耗性確保のために、シリンダボア形成用中子となるボアピンの外周に、所定の体積率を有する円筒状のブ10リフォームを嵌合させて、このブリフォームを鋳ぐるむことが行われている。

【0003】上記プリフォームは、通常、金属繊維を絡めることによって多孔性を有するように形成されているため、その空隙内に溶湯が十分に浸透して、強固にシリンダブロックと一体化されるという点では好ましい反面、全体的に剛性が小さいので、溶湯注入時の大きな圧力を部分的に受けると、部分的に変形(位置ずれ)を生じやすいものとなる。特開平6-106329号公報には、プリフォームの型内つまりキャビティ内での変形防20止のために、吸引しつつ注湯することが提案されている。

[0004]

【発明が解決しようとする課題】注湯時におけるプリフ オームの変形について具体的に説明すると、例えばプリ フォームによってシリンダボア内面の耐摩耗性を確保す る場合、円筒状とされたプリフォームがポアピンの外周 に嵌合された状態で、通常、シリンダブロックのジャー ナル部を形成する部分側からつまりピストン下死点側と なる方向から、ピストン上死点側となる方向へ向けて溶 30 湯が注入されることになる。この場合、プリフォームに 対しては、溶湯はピストン下死点側の方向から溶湯の圧 力が作用することになるが、ジャール部形成の関係上、 溶湯の圧力は、円筒状のプリフォームのうち周方向のあ る一部分からのみ作用することになる。この結果、プリ フォームは、上記ある一部分からボアビンより離間され て、つまり部分的に径方向外方側へ向けて拡径変形され ることになる。このような拡径変形を防止するために、 例えばキャピティを画成する型の一部に、上記ある一部 分に溶湯が作用するのを防止する棚(溶湯の流れを規制 40 する蓋機能を有する突起)、あるいはプリフォームの拡 径を規制する棚 (突起)を形成しておくことも考えれる が、この場合は、上記棚が邪魔となって型抜きができな くなってしまい、採用不可能である。

【0005】また、一方、前述した特開平6-106329号公報に提案されているように、プリフォームが注場時に変形するのを防止するために別途吸引を行うことは、大がかりな吸引装置が必要になってしまい、好ましくない。

【0006】したがって本発明の目的は、吸引装置のよ 50

うな大がかりな装置を別途用いることなく、注湯時にキャビティ内にセットされたプリフォームが変形してしまうのを防止することのできるようにしたシリンダブロックの鋳造方法およびその鋳造品を提供することにある。

[0007]

【課題を解決するための手段】前記目的を達成するため、本発明におけるシリンダブロックの鋳造方法は、その第1の解決手法として次のようにしてある。すなわち、特許請求の範囲における請求項1に記載のように、所定の体積率を有する円筒状のプリフォームを型内のキャビティにセットし、該キャビティ内に溶湯を注入して、該プリフォームが鋳ぐるまれたシリンダブロックを鋳造するシリンダブロックの鋳造方法において、前記プリフォームのうち、溶湯が注入される側に対応する特定部分が他の部分に比して剛性が大きくされている、ようにしてある。上記解決手法を前提とした好ましい態様は、特許請求の範囲における請求項2、請求項3、請求項7に記載のとおりである。

【0008】前記目的を達成するため、本発明における シリンダブロックの鋳造方法は、その第2の解決手法と して次のようにしてある。すなわち、特許請求の範囲に おける請求項4に記載のように、所定の体積率を有する 円筒状のプリフォームを型内のキャビティにセットし、 該キャピティ内に溶湯を注入して、該プリフォームが鋳 ぐるまれたシリンダブロックを鋳造するシリンダブロッ クの鋳造方法において、前記プリフォームが、シリンダ ボア形成用中子となるボアピンの外周に嵌合された状態 で前記キャビティ内に配設され、前記プリフォームの外 周に、溶湯が通過可能とされた円筒状の剛性部材が嵌合 されて、該剛性部材によって該プリフォームが前記ボア ピンの径方向外方側へ拡がるのが規制され、前記プリフ オームの外周に前記剛性部材が嵌合された状態で前記キ ャビティ内に溶湯が注入されて、該プリフォームと共に 該剛性部材が鋳ぐるまれる、ようにしてある。上記解決 手法を前提とした好ましい態様は、特許請求の範囲にお ける請求項7に記載のとおりである。ことを特徴とする シリンダブロックの鋳造方法。

【0009】前記目的を達成するため、本発明におけるシリンダブロックの鋳造方法は、その第3の解決手法として次のようにしてある。すなわち、特許請求の範囲における請求項5に記載のように、所定の体積率を有する円筒状のプリフォームを型内のキャビティにセットし、該キャビティ内に溶湯を注入して、該プリフォームが鋳ぐるまれたシリンダブロックを鋳造するシリンダブロックの鋳造方法において、前記プリフォームのうち、溶湯が注入される側に対応する特定部分の体積率が他の部分の体積率に比して小さくされている、ようにしてある。上記解決手法を前提とした好ましい態様は、特許請求の範囲における請求項6、請求項7に記載のとおりである。ことを特徴とするシリンダブロックの鋳造方法。

【0010】前記目的を違成するため、本発明における シリンダブロックの鋳造方法は、その第4の解決手法と して次のようにしてある。すなわち、特許請求の範囲に おける請求項8に記載のように、所定の体積率を有する 円筒状のプリフォームを型内のキャビティにセットし、 該キャビティ内に溶湯を注入して、該プリフォームが鋳 ぐるまれたシリンダブロックを鋳造するシリンダブロッ クの鋳造方法において、前記プリフォームをその径方向 内方側へ圧縮する方向から溶湯を注入する、ようにして ある。

【0011】本発明におけるシリンダブロックつまり鋳 造品のうち第1のものは、次のようにされている。すな わち、特許請求の範囲における請求項9に記載のよう に、シリンダボア内周面部分に所定の体積率を有する円 筒状のプリフォームが鋳ぐるまれたシリンダブロックに おいて、前記プリフォームのうち、ピストン下死点側と なる特定部分の剛性が他の部分の剛性よりも大きくされ ている、ようになっている。上記解決手法を前提とした 好ましい態様は、特許請求の範囲における請求項10に 記載のとおりである。

【0012】本発明におけるシリンダブロックつまり鋳 造品のうち第2のものは、次のようにされている。すな わち、特許請求の範囲における請求項11に記載のよう に、シリンダボア内周面部分に所定の体積率を有する円 筒状のプリフォームが鋳ぐるまれたシリンダブロックに おいて、円筒状の剛性部材が、前記プリフォームの外周 に嵌合された状態で該プリフォームと共に鋳ぐるまれて いる、ようになっている。

【0013】本発明におけるシリンダブロックつまり鋳 造品のうち第3のものは、次のようにされている。すな 30 シリンダブロックが提供される。請求項13によれば、 わち、特許請求の範囲における請求項12に記載のよう に、シリンダボア内周面部分に所定の体積率を有する円 筒状のプリフォームが鋳ぐるまれたシリンダブロックに おいて、前記プリフォームのうち、ピストン下死点側と なる特定部分の体積率が他の部分の体積率よりも小さく されている、ようになっている。

【0014】本発明におけるシリンダブロックつまり鋳 造品のうち第4のものは、次のようにされている。すな わち、特許請求の範囲における請求項13に記載のよう に、シリンダボア内周面部分に所定の体積率を有する円 40 筒状のプリフォームが鋳ぐるまれたシリンダブロックに おいて、シリンダブロックを鋳造するための溶湯の注入 位置として、前記プリフォームをその径方向内方側に圧 縮する方向となる位置が含まれている、ようになってい る。

[0015]

【発明の効果】請求項1によれば、プリフォームのうち 注湯される側の特定部分の剛性を高めてあるので、注湯 時のプリフォームの変形を防止あるいは低減することが

ちんと鋳ぐるむ上で好ましいものとなる。なお、全体的 にプリフォームの剛性を大きくすることは、全体的に所 定の体積率とは大きく相違する体積率となって好ましく ないものとなる。請求項2によれば、プリフォームとは 別部材である剛性部材を利用して、特定部分の剛性を容 易かつ確実に大きくすることができる。請求項3によれ ば、ボアピンの端部付近おいて、ボアピンとブリフォー ムとの間から侵入する溶湯によってプリフォームが拡径 方向に変形しやすくなるが、このような拡径変形を生じ させるような溶湯の流れを規制することができる。

【0016】請求項4によれば、円筒状の剛性部材を利 用して、プリフォームの拡径変形を確実に防止すること ができる。請求項5によれば、プリフォームのうち注湯 位置に近い特定部分に溶湯が容易に浸入することができ るようにして、つまりプリフォームを拡径しようとする 溶湯の圧力を逃がして、プリフォームの変形を防止する ことができる。請求項6によれば、プリフォームの厚さ を相違させるという手法によって体積率の相違を得るこ とができる。請求項7によれば、溶湯のキャビティへの 20 注入位置を一般的なジャーナル部を形成する部分側から とすることができる。請求項8によれば、溶湯の注入方 向を工夫するのみで、プリフォームの拡径変形を防止す ることができる。請求項9によれば、請求項1に対応し た鋳造方法によって得られたシリンダブロックが提供さ れる。請求項10によば、請求項2に対応した鋳造方法 によって得られたシリンダブロックが提供される。請求 項11によれば、請求項4に対応した鋳造方法によって 得られたシリンダブロックが提供される。請求項12に よれば、請求項5に対応した鋳造方法によって得られた 請求項8に対応した鋳造方法によって得られたシリンダ ブロックが提供される。

[0017]

【発明の実施の形態】図1、図2において、1は自動車 用エンジンにおけるシリンダブロックであり、アルミニ ウム合金により鋳造されている。このシリンダブロック 1は、V型6気筒用とされており、2a~2fはピスト ンが摺動自在に嵌合されるシリンダボアであり、3a~ 3 e はクランク軸の軸受部分となるジャーナル部であ る。上記各シリンダボア2a~2fの内面部分に、プリ フォーム 4 がシリンダブロック鋳造時に鋳ぐるまれてい て、シリンダボア2a~2f内面部分の十分な耐摩耗性 がプリフォーム4によって確保されている。

【0018】プリフォーム4は、耐摩耗性を有する金属 の繊維を絡めることにより、連通気泡のように互いに内 部空隙が連通された多孔性として構成されている。この プリフォーム4は、シリンダボア内面の耐摩耗性確保の 観点から、所定の体積率(プリフォーム4の全体積に占 める金属繊維の割合で、体積率が大きいほど金属繊維の でき、プリフォームをシリンダブロックの所定位置にき 50 割合が大きい)を有しており(例えば30%)、あらか

20

じめ円筒状に形成された状態でシリンダブロック1の鋳 造時に鋳ぐるまれる。なお、所定の体積率を有するプリ フォームはシート状として市販されており、このシート 状のものを円筒状に形成して、シリンダブロック1への 鋳ぐるみ用として用いられる。

【0019】図3は、本発明の第1の実施形態を示すも ので、シリンダブロックを鋳造する鋳型の一例を示す。 この図3において、11は上型、12は下型、13はシ リンダボア形成用の中子となるボアピンであり、ボアピ ン13は上型11に着脱自在に固定される。ボアピン1 10 3の外周に、所定の体積率を有する円筒状のプリフォー ム4ががたつきなく嵌合される。図3において、ボアビ ン13の下部がピストン下死点側となり、ポアピン13 の上部がピストン上死点側となる。溶湯は、ピストン下 死点側から、つまりジャーナル部3a~3fを形成する 側から供給される。すなわち、図示を略す1本の共通の 溶湯供給路から、複数の分岐供給路14a、14b・・ ・に分岐されて、図1に示すシリンダブロック1のう ち、前壁部1a、各ジャーナル部3a~3e、およびシ リンダブロック1の後壁部1b部分を形成する部分か ら、溶湯が上方へ向けて供給されるようになっている (図3では分岐供給路14a、14bのみが示され る)。型内のキャピティ15のうち、15aは第1ジャ ーナル部3aの形成用、15bは前壁部1aの形成用、 15cは第2ジャーナル部の形成用、15dは隣り合う シリンダボア間の隔壁形成用である。

【0020】ボアピン13の下部には、剛性に優れた部 材、例えばシリンダブロック1を構成するために溶湯さ れる金属と同一の金属 (例えばアルミニウム合金) から なる剛性部材16が取付けられている。この剛性部材1 6は、全体的にリング状つまり短い円筒状とされて、ボ アピン13の下部にがたつきなく嵌合されると共に下型 12に着座される本体部16aと、本体部16aの外周 縁部から上方に短く立ち上がる係止凸部 16 bとを有す る。本体部16aに、プリフォーム4の下端面が着座、 支持されている。係止凸部16bが、プリフォーム4の 下端部外周にがたつきなく嵌合されている。これによ り、プリフォーム4の下端部は、係止凸部16bによっ て、拡径方向へ変形することが規制されて、ボアピン1 3に密着された状態が確実に維持されるようになってい 40 る。また、ボアピン13に嵌合されたプリフォーム4 は、その周方向一部が、剛性部材16が存在しない場合 は分岐供給路14bに臨む (露出する) ことになるが、 剛性部材16の本体部16aによって、この分岐供給1 4 bに臨む部分が施蓋されることになる。つまり、プリ フォーム4とボアピン13との接触位置(ボアピン13 外周面とプリフォーム4内周面との間)が、本体部16 aによって下方から施蓋された格好となり、この接触位 置に下方から溶湯が浸入することが規制されるようにな っている。

【0021】図3のセット完了状態において、分岐供給 路14a、14b等から溶湯がキャピティ15内に供給 される。供給された溶湯によって、シリンダブロック1 が鋳造されるが、このとき、プリフォーム4および剛性 部材16がそれぞれ鋳ぐるまれることになる。溶湯が凝 固した後、型が開かれて図1,図2に示すようなシリン ダブロック1が得られる。

【0022】キャビティ15内に溶湯が供給されると き、従来であれば、剛性部材16が存在していないた め、分岐供給路14bからの溶湯がポアピン13の下端 部とプリフォーム4の下端部との間に浸入して当該プリ フォーム 4 を部分的に径方向外方側へと拡径変形させよ うとするが、このような溶湯の浸入が剛性部材16の本 体部16 aによって規制され、また剛性部材16の係止 凸部16bによってプリフォーム4の径方向外方側へ向 けての変形が規制されることになる。この結果、プリフ オーム 4 は、所望位置でもってきちんと位置決めされた 状態で、シリンダブロック1に鋳ぐるまれることにな

【0023】図4は、本発明の第2の実施形態を示すも のである。本実施形態では、図3の剛性部材16に代え て、別の形式の剛性部材21を用いてある。この剛性部 材21は、全体的にほぼ平板状のリング状とされてい て、係止凸部16bを有しない点において図3の剛性部 材16と相違する。また、ボアピン13の下端部が部分 的に小径部13aとされて、この小径部13aに対して 剛性部材21ががたつきなく嵌合されている。この剛性 部材21も、プリフォーム4と共に鋳ぐるまれる。この ような剛性部材21は、ボアピン13とプリフォーム4 との接触位置に対して、下方から溶湯が浸入するのを規 制する作用を行う。つまり、剛性部材21は、図3の剛 性部材16の本体部16aの機能を果たすものとなって いる。これに加えて、剛性部材21は、小径部13aを 形成したことに伴って形成される大径部との間の係止段 部13bによって、ボアピン13に対して上方へ変位す るのが規制される(下方からの溶湯の圧力を受けても、 **剛性部材21は上方へ変位されることなく図4の所定セ** ット位置に確実に位置決めされて、プリフォーム4に対 して上方への押圧力が作用するのを規制する)。

【0024】図5は、本発明の第3の実施形態を示すも のである。本実施形態では、プリフォーム4の外周をほ ぼ全体的に、剛性に優れた長い円筒状の剛性部材31に よって覆うようにしてある。この剛性部材31は、プリ フォーム4の外周にがたつきなく嵌合されるが、周囲か ら溶湯がプリフォーム4内に浸入できるように、溶湯が 通過可能とされている。このような溶湯の通過が可能な 剛性部材31は、例えば、アルミニウム合金のパンチン グメタルによって形成することができる。本実施形態で は、剛性部材31によって、プリフォーム4の拡径変形 が確実に防止される。なお、剛性部材31の位置決めを

20

より確実に行うために、その上端あるいは下端の少なく とも一方を、上型11あるいは下型12に形成された環 状の係止溝に嵌合させておくこともできる。なお、剛性 部材31を短いものとして、プリフォーム4の下端部の みに嵌合されるようにすることもできる(図3における 係止凸部16bの機能を果たす)。

【0025】図6~図10は、本発明の第4の実施形態 を示すものであり、プリフォーム4として、拡径変形し 易いピストン下死点側の部分つまり特定部分の体積率 を、他の部分の体積率よりも小さくしたものを用いるよ 10 うにしてある。これにより、上記特定部分の金属の占め る割合が小さくて(特定部分の空隙割合が大きい)、特 定部分に溶湯が容易に浸透しやすいようにすることによ り、この特定部分の拡径変形を防止するようにしてあ る。すなわち、上記特定部分以外の部分、特にピストン ピンが摺動されるシリンダボア4の上部は、耐摩耗性の 観点から体積率を拡径変形防止ができる程度まで小さく することは困難であるが、上記特定部分は、ピストンピ ンが摺動されないので、体積率を小さくしても特に問題 とならないものである。

【0026】前述したような、体積率が部分的に相違さ れるプリフォーム4を得るための一例について説明す る。まず、図6に示すように、全体的に体積率が均一な 円筒状の内プリフォーム4Aの外周に、全体的に体積率 が均一な円筒状の外プリフォーム4Bを嵌合した状態と する。この後、外力を加えて、図7に示すように、内外 2重とされたプリフォーム4を、径方向の寸法つまり厚 さがその長手方向に徐々に変化するように成形する。実 施形態では、図7において上端の体積率が例えば30% とされ、下端の体積率が例えば6%とされ、下端から上 30 端に渡って徐々に体積率が大きくなるようにされてい る。

【0027】図7に示すようにプリフォーム4を成形す るため、例えば図10に示すような成形型が用いられ る。すなわち、図10において、41は上型、42は下 型、43はそれぞれ円弧状とされて閉じられたときに互 いに共働して円環状となる複数の分割式の側方型であ り、下型42に、徐々に先細となる突起部42aが形成 されている。図6に示すプリフォーム4を突起部42 a の外周に嵌合させるが、このとき、突起部42aの小径 40 となる先端側部分に対しては、プリフォーム4が大きな 間隙をもって嵌合される。この状態で、側方型43を閉 じることにより、図7のようなプリフォーム4が得られ る。

【0028】図7のプリフォーム4は、体積率が大きい 方をピストン上死点側(体積率の小さい側をピストン下 死点側)となるようにして、鋳型にセットされる。この 後、溶湯が供給されるが、溶湯供給側のプリフォーム4 の体積率が小さいので、溶湯はこの小さい体積率の部分 に容易に浸透する結果、この部分(ビストン下死点側部 50 された状態を示す要部断面図。

分)が径方向外方側へと変形されることが防止される。 鋳造されたシリンダブロック1が図9に示すように得ら れる。鋳型から取り出された直後のシリンダブロック1 は、そのシリンダボアの内径が、ピストン上死点側が下 死点側よりも大きいため、必要に応じて、ピストン下死 点側の内径が上死点側の内径と同一寸法となるように、 研削等の機械加工を行えばよい。

10

【0029】図11、図12は、本発明の第5の実施形 態を示すもので、体積率がその長手方向において相違す るプリフォーム4を得るための別の手法を示すものであ る。すなわち、まず図11に示すように、全体的に均一 な体積率を有する円筒状の内プリフォーム4Cの外周の うち、上部のみに、全体的に均一な体積率を有する外プ リフォーム4Dを嵌合させたものを形成する。この後、 図11の内外2重部分のみを圧縮成形して、図12に示 すように、全体的に内外形が均一であるが、上部のみの 体積率が大きくされたプリフォーム4が得られる。体積 率が大きい内外 2 重構造部分がピストン上死点側に位置 するように鋳型にセットして、シリンダブロックが鋳造 される。なお、内プリフォーム4Cは、溶湯が容易に浸 透するように、体積率が小さいものとされている(十分 な耐摩耗性が得られる体積率よりも小さい体積率とされ ている)。

【0030】図13は、本発明の第6の実施形態を示す もので、キャピティ15に対する溶湯供給位置を工夫す ることにより、プリフォーム4の拡径変形を防止するも のである。すなわち、分岐供給路14bを廃止して、こ の分岐供給路14 bに対応する供給路14xを、拡径変 形しやすいプリフォーム4の側方においてキャビティ1 5内に開口させるようにしてある(供給路14xは下型 12より上型11へと伸びている)。これにより、供給 路14×から供給れる溶湯(の圧力)は、プリフォーム 4 (の下端部) に対して径方向外方側から作用すること となり、プリフォーム4の径方向外方側への変形が防止 される。

【0031】以上実施形態について説明したが、プリフ オーム4は、シリンダボア内面部分の形成用として用い る場合に限らず、シリンダブロック1のうち特定機能が 特に要求される部位であれば、例えばジャーナル部の内 面部分形成用等、適宜の位置に用いることができる。本 発明の目的は、明記されたものに限らず、実質的に好ま しいあるいは利点として表現されたものを提供すること をも暗黙的に含むものである。

【図面の簡単な説明】

【図1】本発明が適用されたシリンダブロックの一例を 示すもので、ジャーナル部側から見た底面図。

【図2】本発明によって形成されたシリンダブロックの シリンダボア部分の様子を示す要部断面図。

【図3】プリフォームが剛性部材と共に鋳型内にセット

【図4】 プリフォームが別の剛性部材と共に鋳型内にセットされた状態を示す要部断面図。

【図5】プリフォームがさらに別の剛性部材と共に鋳型内にセットされた状態を示す要部断面図。

【図6】体積率が部分的に異なるプリフォームを形成する場合の準備工程を示す断面図。

【図7】図6の準備工程から加工されて体積率が部分的に相違した状態のプリフォームを示す断面図。

【図8】図7に示すプリフォームが鋳型内にセットされた状態を示す要部断面図。

【図9】図8の状態から得られたシリンダブロックの要部断面図。

【図10】図6の状態から図7の状態のプリフォームを得るために用いる成形型の一例を示す断面図。

【図11】体積率が部分的に異なるプリフォームを形成 する場合の準備工程の別の例を示す断面図。

(技b)

【図12】図11の準備工程から加工されて体積率が部分的に相違した状態のプリフォームを示す断面図。

12

【図13】キャビティ内への溶湯供給位置を特定位置として設定した場合の一例を示す要部断面図。

【符号の説明】

1:シリンダブロック

2a~2f:シリンダボア

3a~3e:ジャーナル部

4:プリフォーム

10 11:上型

12:下型

13:ボアピン

14a、14b:分岐溶湯供給路

15:キャビティ

16、21、31:剛性部材

14x:分岐溶湯供給路(特定位置)

【図1】

【図2】

【図6】

varity not

[図13]

フロントページの続き

(72)発明者 杉本 幸弘

広島県安芸郡府中町新地 3番1号 マツダ 株式会社内 Fターム(参考) 3G024 AA25 AA26 BA02 DA19 EA01 FA01 FA06 GA02 GA10 GA36

HA07 HA18

		est.		•••.	
				,	
	49			,	
	٠				
•					