Práctica 4 Eficiencia de paneles solares fotovoltaicos

Nicolas Gustavo Gaitan Gomez

Learning Objectives

Determinar la eficiencia de diferentes paneles solares fotovoltaicos, para así compararlas entre si.

✔ Prueba de eficiencia de paneles fotovoltaicos

Los videos a continuación muestran pruebas de paneles fotovoltaicos. Puede medir la irradiancia y la cantidad de energía eléctrica que producen los paneles.

1. En esta práctica se quiere comprender cómo medir y comparar la eficiencia de los paneles solares *fotovoltaicos*. Se utiliza el término fotovoltaico, que significa conversión de luz a electricidad, para diferenciar entre otros tipos de paneles solares.

Un panel solar puede operar en un amplio rango de voltajes e intensidades de corriente, esto se puede lograr al conectar una resistencia de carga al panel e irla variando. De esta manera se puede determinar el punto de potencia máxima teórica, es decir, la carga para la cual el panel solar puede entregar la máxima potencia eléctrica P_m para un determinado nivel de radiación.

Con el valor de la potencia máxima se puede determinar la eficiencia η del panel haciendo uso de la siguiente ecuación

$$\eta=rac{P_m}{P_S} imes 100,$$

donde P_S es la potencia incidente del Sol sobre el panel, esta se puede obtener de la siguiente ecuación

$$I=rac{P_S}{A},$$

donde I es la irradiancia que se mide en W/m^2 , y A es el área de la superficie del panel solar en la cual incide la luz del Sol.

La irradiancia será medida usando un **pirómetro**, un sensor especializado que mide la intensidad de la energía solar en vatios por metro cuadrado, y el área del panel se puede medir usando las herramientas disponibles en los videos.

Para determinar la potencia máxima de los paneles deberá registrar medidas de voltaje y corriente entregados por los paneles, con dichos valores podrá calcular la potencia (P=VI) y la resistencia de carga (R=V/I), para luego realizar un gráfico de P vs R, el punto máximo de este gráfico será P_m .

Debe seleccionar sólo 3 videos para hallar la eficiencia de los paneles.

Video instance not printed.

?

(/player_help)

Video instance not printed.

?

(/player_help)

2. Toma de datos 1:

Seleccione uno de los videos anteriores y registre en la tabla los siguientes datos

- Corriente (en amperios).
- Voltaje.

Debe registrar datos hasta que vea que valor del voltaje no varía más a pesar de que se esté modificando la resistencia de carga.

Con dichos datos calcule y registre en las columnas destinadas para ello la potencia entregada por el panel P y la resistencia de carga R, luego, realice un gráfico de P vs R y determine la potencia máxima entregada por el panel P_m .

	•	Voltaje •••		Corriente		Potencia •••		Resistenci
	*	Voltios	v	А	I	w	Р	Ω
1	•••	14		0.25		3.5		56
2	•••	15		0.24		3.599999999999996		62.5
3		16		0.23		3.68		69.565217
4		17		0.22		3.74		77.272727
5	•••	18		0.16		2.88		112.5
6	•••	19		0.11		2.09		172.72727

3. Toma de datos 2:

Seleccione otro de los videos y registre en la tabla los siguientes datos

- Corriente (en amperios).
- Voltaje.

Debe registrar datos hasta que vea que valor del voltaje no varía más a pesar de que se esté modificando la resistencia de carga.

Con dichos datos calcule y registre en las columnas destinadas para ello la potencia entregada por el panel P y la resistencia de carga R, luego, realice un gráfico de P vs R y determine la potencia máxima entregada por el panel P_m .

٥	Voltaje •••		Corriente		Potencia		Resistencia
	Voltios	v	Α	I	w	Р	Ω

	•	Voltaje •••		Corriente		Potencia		Resistenci
	*	Voltios	V	Α	I	w	Р	Ω
1		2.3		0.19		0.43699999999999994		12.105260
2		2.5		0.17		0.425000000000000004		14.705882
3		2.8		0.16		0.4479999999999999		17.5
4		4		0.11		0.44		36.363636
5	•••	4.1		0.07		0.287		58.571428

4. Toma de datos 3:

Seleccione otro de los videos y registre en la tabla los siguientes datos

- Corriente (en amperios).
- Voltaje.

Debe registrar datos hasta que vea que valor del voltaje no varía más a pesar de que se esté modificando la resistencia de carga.

Con dichos datos calcule y registre en las columnas destinadas para ello la potencia entregada por el panel P y la resistencia de carga R, luego, realice un gráfico de P vs R y determine la potencia máxima entregada por el panel P_m .

	•	Voltaje	•••	Corriente	•••	Potencia	•••	Resistencia
*		Voltios	v	А	I	w	Р	Ω
1	•••	14		0.25		3.5		56
2	•••	15		0.24		3.599999999999996		62.5
3	•••	16		0.23		3.68		69.565217
4	•••	17		0.21		3.57		80.95238(
5	•••	18		0.19		3.42		94.736842

5. Describa los gráficos de potencia vs resistencia que obtuvo.

Por medio de la medición iterativa de los voltajes y corrientes eléctricas, de un circuito conectado a un panel solar, se pudo obtener tanto las medidas de potencia y resistencia eléctrica (P = V*I, R=V/I, respectivamente). En todas las gráficas se observa una tendencia en forma de campana, donde, al principio, a medida que aumenta la resistencia también lo hace la potencia hasta alcanzar un punto máximo. Posteriormente, la potencia empieza a descender según aumenta la resistencia.

6. ¿Cuáles son las potencias máximas entregadas por los paneles para cada video seleccionado?

Video 1: Pm = 3.74 W

Video 3: Pm = 0.448 W

Video 5: Pm = 3.68 W

7. ¿Cuál es la potencia entregada por el Sol a los paneles de cada video que seleccionó?

Mida la altura y el ancho de los paneles y utilícelos para determinar el área. Use la irradiancia mostrada en cada video seleccionado.

Video 1: Ps = 37.8 W = 900 * 0.042

Video 3: Ps = 8.05 W = 813 * 0.0099

Video 5: Ps = 32.5 W = 909.8*0.0357

8. Con los datos anteriores determine la eficiencia para los paneles de los videos seleccionados.

Video 1: η = 3.74 / 37.8 * 100 = 9.89 % Video 2: η = 0.448 / 8.05 * 100 = 5.57% Video 3: η = 3.68 / 32.5 * 100 = 11.3 %

9. Discuta los resultados obtenidos.

∨ Conclusiones

1. De conclusiones sobre lo observado en el experimento.

Save

Save & Close