

Short presentation on M3TM implementation

Theodor Griepe Freie Universität Berlin

Meeting with Martin Weinelt, Dominic Lawrence, Unai

Outline

Microscopic Three temperature Model

experiment and simulation

Results

UFD in Nickel, Iron, Cobalt Gadolinium

Outlook

s-d-model Multilayer-implementation

Dynamics of electronic, lattice and spin subsystems¹²

$$C_{e} \frac{dT_{e}}{dt} = g_{e-p}(T_{p} - T_{e}) + S(z, t) + \frac{dQ_{se}}{dt}$$

$$C_{p} \frac{dT_{p}}{dt} = -g_{e-p}(T_{p} - T_{e})$$

$$\frac{dm}{dt} = R \frac{T_{p}}{T_{C}} \left(1 - \frac{m}{B_{1/2} \left(\frac{Jm}{k_{B}T_{e}} \right)} \right)$$

$$R = \frac{a_{sf}8g_{ep}k_BT_C^2V_{at}/(\mu_{at}E_D^2)}{\frac{dQ_{se}}{dt}} = Jm\frac{dm}{dt}$$

*Ab initio parameters

¹Koopmans et al., nature materials, 2009

²Zahn et al., arXiv:2008.04611, 2020

material	S _{eff} ³
Nickel	$\frac{1}{2}$
Iron	2
Cobalt	3 7

Arbitrary Spin Rate Equations 4

$$\frac{dm}{dt} = -\frac{1}{S} \sum_{ms=-S}^{ms=+S} m_s \frac{df_{m_s}}{dt}$$

$$\frac{df_{m_s}}{dt} = -(W_{m_s}^+ + W_{m_s}^-)f_{m_s} + W_{m_{s-1}}^+ f_{m_{s-1}} + W_{m_{s+1}}^- f_{m_{s+1}}$$

$$W_{m_s}^{\pm} = R \frac{Jm}{4Sk_BT_c} \frac{T_p}{T_c} \frac{e^{\mp \frac{Jm}{2Sk_BT_e}}}{\sinh(\frac{Jm}{2Sk_BT_e})} (S(S+1) - m_s(m_s \pm 1))$$

³Köbler et al., Condensed matter, 2003

⁴Beens et al., Phys. Rev. B, 2019
FU Berlin, group discussion, 30.04.2021

- spin flip probability found by Koopmans very high
- ► Carva et al. 5 computed Elliott-Yafet $P_s^{b^2}$ and P_s , confirm discrepancy

Sample	$P_s^{b^2}$	Ps	Koopmans	simulated
Nickel	0.07 - 0.12	0.04 - 0.09	0.17 - 0.2	0.05 - 0.067
Cobalt	0.06 - 0.11	0.01 - 0.022	0.135 - 0.165	0.04 - 0.05
Iron	0.07 - 0.14	0.04 - 0.07		0.03 - 0.05

⁵Carva et al., Phys. Rev. B, 2013

Experimental setup

Borchert et al., arXiv:2008.12612, 2020

- ▶ Ni, Fe, Co thin films (*d* = 15 nm)
- magnetron sputtered on glass wafers, capped with 2 nm Ta
- MOKE technique with pump and probe pulse of FWHM= 39 fs
- magnetization measured under same conditions for several pump fluences

simulation details

- ► sample treated single unit cell with uniform magnetization
- only nearest neighbor interaction
- exchange splitting $J = 3k_BT_C\frac{S}{S+1}$
- ightharpoonup time resolution dt = 0.1 fs
- ▶ initial temperature $T_0 = 293K$
- ▶ free parameters P_0 , a_{sf}

Zahn et al., arXiv:2008.04611, 2020

Sample	Ps ^{b²}	Ps	Koopmans	simulated
Nickel	0.07 - 0.12	0.04 - 0.09	0.17 - 0.2	0.05 - 0.06
Cobalt	0.06 - 0.11	0.01 - 0.022	0.135 - 0.165	0.04 - 0.05
Iron	0.07 - 0.14	0.04 - 0.07		0.03 - 0.035

	Sample	Ps ^{b2}	Ps	Koopmans	simulated
	Nickel	0.07 - 0.12	0.04 - 0.09	0.17 - 0.2	0.05 - 0.06
	Iron	0.07 - 0.14	0.04 - 0.07		0.03 - 0.035
ĺ	Cobalt	0.06 - 0.11	0.01 - 0.022	0.135 - 0.165	0.04 - 0.05

Sample	P _s b ²	Ps	Koopmans	simulated
Nickel	0.07 - 0.12	0.04 - 0.09	0.17 - 0.2	0.05 - 0.06
Iron	0.07 - 0.14	0.04 - 0.07		0.03 - 0.035
Cobalt	0.06 - 0.11	0.01 - 0.022	0.135 - 0.165	0.04 - 0.05

fluence $\left[\frac{mJ}{cm^2}\right]$	$P_0 [10^{21} \frac{W}{m^3}]$ Nickel 1.68	$P_0 [10^{21} \frac{W}{m^3}]$ Iron	$P_0 [10^{21} \frac{W}{m^3}]$ Cobalt
0.5	1.68	1.33	1.33
3	10.08	8	8
5	16.8	13.3	13.3
6	20.3	16	16
7	23.7	18.6	18.6
9	30.5	23.9	23.9
11	38.5	29	29
13		34.2	34.2
15		39.4	39.4

C_p	1.51e6 $[\frac{J}{m^3K}]$
γ_e	225 $\left[\frac{1}{m^3 K^2}\right]$
g _{ep}	$2.5e17 \left[\frac{W}{m^3 K} \right]$
T_C	293 [K]
T_0	50 K
R	0.184e12 [s ⁻¹]
Seff	3.5
μ _{at}	7.5 [μ_B]

 P_0 is given in units of $\frac{W}{m^3K}$, solid lines represent regular M3TM

Interaction of localised and itenerant electron-spin

Magnetic rate equations ⁶

$$\begin{split} \frac{dm_d}{dt} &= \frac{1}{\tau_{sd}} \bigg(m_d - \frac{\mu_s}{2k_B T_C} \bigg) \bigg[1 - m_d \coth \bigg(\frac{2m_d k_B T_C - \mu_s}{2k_B T_e} \bigg) \bigg] \\ &\frac{d\mu_s}{dt} = -\frac{\mu_s}{\tau_s} + \bigg(\frac{D_\uparrow + D_\downarrow}{2D_\uparrow D_\downarrow} - \frac{J_{sd}}{2} \bigg) \frac{dm_d}{dt} \end{split}$$

⁶Beens et al., arXiv:2005.03905, 2020

itenerant electrons or exchange interaction