Definition: A type A is contractible, if there is a:A, called the center of contraction, such that for all x:A, a=x.

Definition: A map $f:A\to B$ is an equivalence, if for all y:B, its fiber, $\{x:A\mid fx=y\}$, is contractible. We write $A\simeq B$, if there is an equivalence $A\to B$

Lemma: For each type A, the identity map, $1_A := \lambda_{x:A} x : A \to A$, is an equivalence.

Proof: For each y:A, let $\{y\}_A:=\{x:A\mid x=y\}$ be its fiber with respect to 1_A and let $\bar{y}:=(y,r_Ay):\{y\}_A$. As for all y:A, $(y,r_Ay)=y$, we may apply Id-induction on y, x:A and z:(x=y) to get that

$$(x,z) = y$$

. Hence, for y:A, we may apply Σ -elimination on $u:\{y\}_A$ to get that u=y, so that $\{y\}_A$ is contractible. Thus, $1_A:A\to A$ is an equivalence. \square

Corollary: If U is a type universe, then, for X,Y:U,

$$(*)X = Y \rightarrow X \simeq Y$$

Proof: We may apply the lemma to get that for $X:U, X\simeq X$. Hence, we may apply Id-induction on X,Y:U to get that (*). \square

Definition: A type universe U is univalent, if for X,Y:U, the map $E_{X,Y}:X=Y\to X\simeq Y$ in (*) is an equivalence.