Infra-Estrutura de Software

Entrada / Saída

Diversidade de dispositivos

Hardware de E/S

Device	Data rate	
Keyboard	10 bytes/sec	
Mouse	100 bytes/sec	
56K modem	7 KB/sec	
Scanner at 300 dpi	1 MB/sec	
Digital camcorder	3.5 MB/sec	
4x Blu-ray disc	18 MB/sec	
802.11n Wireless	37.5 MB/sec	
USB 2.0	60 MB/sec	
FireWire 800	100 MB/sec	
Gigabit Ethernet	125 MB/sec	
SATA 3 disk drive	600 MB/sec	
USB 3.0	625 MB/sec	
SCSI Ultra 5 bus	640 MB/sec	
Single-lane PCle 3.0 bus	985 MB/sec	
Thunderbolt 2 bus	2.5 GB/sec	
SONET OC-768 network	5 GB/sec	

E/S: Como a CPU acessa a informação?

- Espaço de endereçamento: conjunto de endereços de memória que o processador consegue acessar diretamente
- A forma de acessar os

 registradores (das
 interfaces) dos periféricos
 é definida no projeto do
 processador:
 - Espaço único
 - Dois espaços, um deles dedicado à E/S (isolada)

- E/S isolada
 - Através de instruções especiais de E/S
 - Especifica a leitura/escrita de dados numa porta de E/S
- E/S mapeada em memória
 - Através de instruções de leitura/escrita na memória
- Híbrido (ex. IBM-PC):
 - E/S mapeada em memória: memória de vídeo
 - E/S isolada: dispositivos em geral

Espaços de Memória e E/S

- a) Espaços de memória e E/S separados E/S isolada
- b) E/S mapeada na memória
- c) Híbrido

E/S mapeada na memória

- (a) Arquitetura com barramento único
- (b) Arquitetura com barramento duplo (dual)

Como o processador "enxerga" a memória e os demais dispositivos ou como o processador se comunica com o seu exterior

- · O processador realiza operações como:
 - Ler um dado da memória
 - Escrever um dado na memória
 - Receber (ler) um dado de dispositivos de E/S
 - Enviar (escrever) dados para dispositivos de E/S
- Nas operações de acesso à memória, o processador escreve e lê dados, praticamente sem intermediários
- · Nos acessos a dispositivos de E/S, existem circuitos intermediários, que são as *interfaces*

Acesso Direto à Memória (DMA)

Operação de uma transferência com DMA

Revisitando 'interrupções'

Como a CPU sabe que o dispositivo já executou o comando?

- E/S Programada
 - CPU lê constantemente o status do controlador e verifica se já acabou (Polling ou Busy-waiting)
 - Desvantagem: Espera até o fim da operação
- E/S por Interrupção
 - CPU é interrompida pelo módulo de E/S e ocorre transferência de dados
 - CPU continua a executar outras operações
 - Desvantagem: toda palavra lida do (ou escrita no) periférico passa pela CPU
- E/S por DMA Acesso Direto à Memória
 - Quando necessário, o controlador de E/S solicita ao controlador de DMA a transferência de dados de/para a memória
 - Nesta fase de transferência não há envolvimento da CPU
 - Ao fim da transferência, a CPU é interrompida e informada da transação [figura anterior]

Comunicação S.O.(CPU) – Controlador Exemplo de comunicação com dispositivo

Entrada/Saída

- ✓ Princípios do hardware de E/S
- Princípios do software de E/S
- •Camadas do software de E/S
- Gerenciamento de energia

Objetivos da gerência de E/S

- · Eficiência
- Uniformidade (desejável, diante da alta diversidade, associada a heterogeneidade):
 - Todos dispositivos enxergados da forma mais uniforme possível
- Esconder os detalhes (estes são tratados pelas camadas de mais baixo nível)
- Fornecer abstrações genéricas: read, write, open, close etc.

Princípios básicos do software de E/S

- Subsistema de E/S é complexo, dada a diversidade de periféricos
- Padronizar ao máximo para reduzir número de rotinas
 - Novos dispositivos não alteram a visão do usuário em relação ao SO
- Organizado em camadas

Visão Geral do software de E/S

- Tratador de interrupção
 - É acionado ao final da operação de transferência
 - Aciona driver
- Driver de dispositivo
 - Recebe requisições
 - Configura (aciona) o controlador

- E/S independente de dispositivo
 - Nomes e proteção
 - bufferização
- E/S em nível de usuário
 - Chamadas de E/S (System Calls)

Camadas do Software de E/S

Camadas do Software de E/S

Tratador(es) de Interrupção

 As interrupções devem ser escondidas (transparentes) o máximo possível

Para tanto:

- bloqueia o driver que iniciou uma operação de E/S
- rotina de tratamento de interrupção cumpre sua tarefa
- notifica que a E/S foi completada
- e então desbloqueia o driver que a chamou

Software de E/S no nível do usuário

Software do sistema operacional independente do dispositivo

Drivers do dispositivo

Tratadores de interrupções

Hardware

Drivers dos Dispositivos

Software de E/S Independente de Dispositivo

Funções do software de E/S independente de dipositivo

Interface uniforme para os drivers dos dispositivos

Armazenamento em buffer

Relatório de erros

Alocação e liberação de dispositivos dedicados

Fornecimento de tamanho de bloco independente de dispositivo

Software de E/S no nível do usuário

Software do sistema operacional independente do dispositivo

Drivers do dispositivo

Tratadores de interrupções

Software de E/S do Espaço do Usuário

Camadas do sistema de E/S e as principais funções de cada camada

Entrada/Saída

(Curiosidades)

- E/S em disco
- Gerenciamento de energia

Algoritmos de Escalonamento de Braço de Disco (1)

- Tempo necessário para ler ou escrever um bloco de disco é determinado por 3 fatores
 - 1. tempo de posicionamento
 - 2. atraso de rotação
 - 3. tempo de transferência do dado
- Tempo de posicionamento domina
- Checagem de erro é feita por controladores

Algoritmos de Escalonamento de Braço de Disco (2)

Algoritmo de escalonamento de disco *Posicionamento Mais Curto Primeiro* (SSF)

Algoritmos de Escalonamento de Braço de Disco (3)

O algoritmo do elevador para o escalonamento das requisições do disco

Entrada/Saída

(Curiosidades)

- √ E/S em disco
- Gerenciamento de energia

Gerenciamento de Energia (1)

Dispositivo	Li <i>et al.</i> (1994)	Lorch e Smith (1998)
Monitor de vídeo	68% Tecnologi	a mais avançada → 39%
CPU	12% Aumento	do desempenho 18%
Disco rígido	20%	12%
Modem		6%
Som		2%
Memória	0,5%	1%
Outros		22%

Consumo de energia de várias partes de um laptop

Gerenciamento de Energia (2): O uso de zonas para iluminação do monitor de vídeo

(b)

- (a) Janela 2 selecionada e não se move.
- (b) Janela 1 selecionada e se move para reduzir o número de zonas iluminadas.

Gerenciamento de Energia (3)

- a. Execução em velocidade máxima do relógio
- b. Cortando a voltagem pela metade
 - corta a velocidade do relógio também pela metade,
 - consumo de energia cai para 4 vezes menos

Gerenciamento de Energia (4): Impactos na Entrada/Saída

- Dizer aos programas para usar menos energia
 - pode significar experiências mais pobres para o usuário

Exemplos

- muda de saída colorida para preto e branco
- reconhecimento de fala com vocabulário reduzido
- menos resolução ou detalhe em uma imagem

Conclusões: princípios básicos do software de E/S

- Subsistema de E/S é complexo dada a diversidade de periféricos
- Padronizar ao máximo para reduzir número de rotinas
 - Novos dispositivos não alteram a visão do usuário em relação ao SO
- Organizado em camadas

