Quiz 4

Figure 1: NFA N for problems 1 and 2

- 1. Consider the NFA N shown in Figure 1. Which of the following strings is *not* accepted by N?
 - (A) 001
 - (B) 001100
 - (C) 10011001
 - (D) 1001

Correct answer is (A)

- 2. The language recognized by NFA N (Figure 1) is
 - (A) $\{w \in \{0,1\}^* \mid w \text{ has } 001 \text{ as a substring}\}\$
 - (B) $\{w \in \{0,1\}^* \mid w \text{ has } 100 \text{ as a substring}\}$
 - (C) $\{w \in \{0,1\}^* \mid w \text{ has } 1 \text{ in the third position from the end}\}\$
 - (D) $\{w \in \{0,1\}^* \mid |w| \text{ is at least } 3\}$

Correct answer is (B)

- 3. Let $N=(Q,\Sigma,\delta,q_0,F)$ be an NFA. Recall that $\hat{\delta}_N:Q\times\Sigma^*\to 2^Q$ is a function that given a state q and string w returns the set of all states the N could be in after reading w from state q. Formally, $\hat{\delta}_N(q,w)=\{q'\mid q\xrightarrow{w}_N q'\}$. We can say that N accepts a string w iff
 - (A) $\hat{\delta}_N(q_0, w) \in F$
 - (B) $\hat{\delta}_N(q_0, w) = F$
 - (C) $\hat{\delta}_N(q_0, w) \cap F \neq \emptyset$
 - (D) $\hat{\delta}_N(q_0, w) \subseteq F$

Correct answer is (C)

- 4. Let M be an NFA that accepts ϵ . Which of the following statements is necessarily true?
 - (A) The initial state of M is an accepting state.
 - (B) The initial state of M is not an accepting state.
 - (C) There is an NFA M' that recognizes the same language as M and has exactly one accepting state.
 - (D) None of the above

Correct answer is (C)

- 5. Let L be recognized by a DFA M and an NFA N. Which of the following statements is necessarily true?
 - (A) M and N are the exact same machines.
 - (B) M and N have the same number of states.
 - (C) N has transitions on ϵ .
 - (D) There is an NFA N' that recognizes L which has the same number of states as M.

Correct answer is (D)