

FCC PART 15C TEST REPORT FOR CERTIFICATION On Behalf of

NVIDIA Corporation

Complex Set-Top Box

Model No.: P2571

FCC ID: VOB-P2571

Prepared for: NVIDIA Corporation

2701 San Tomas Expressway, Santa Clara, CA, 95050, USA

Prepared By: Audix Technology (Shenzhen) Co., Ltd.

No. 6, Ke Feng Rd., 52 Block, Shenzhen Science & Industrial Park, Nantou, Shenzhen, Guangdong, China

Tel: (0755) 26639496

Report Number : ACS-F15003

Date of Test : Dec.11, 2014~Jan.02, 2015

Date of Report : Feb.09, 2015

TABLE OF CONTENTS

<u>De</u>	scription	<u>Page</u>
1.	SUMMARY OF STANDARDS AND RESULTS	1-1
	1.1. Description of Standards and Results	1-1
2.	GENERAL INFORMATION	2-1
	2.1. Description of Device (EUT)	2-1
	2.2. Tested Supporting System Details	
	2.3. Block Diagram of connection between EUT and simulators	
	2.4. Test information	
	2.5. Test Facility	
	2.6. Measurement Uncertainty (95% confidence levels, k=2)	
3.	POWER LINE CONDUCTED EMISSION MEASUREMENT	
	3.1. Test Equipment	
	3.2. Block Diagram of Test Setup	
	3.4. Configuration of EUT on Test	
	3.5. Operating Condition of EUT	
	3.6. Test Procedure	3-2
	3.7. Conducted Emission at Mains Terminals Test Results	3-2
4.	RADIATED EMISSION MEASUREMENT	4-1
	4.1. Test Equipment	4-1
	4.2. Block Diagram of Test Setup	
	4.3. Radiated Emission Limit Standard:	
	4.4. EUT Configuration on Test	
	4.5. Operating Condition of EUT4.6. Test Procedure	
	4.7. Radiated Emission Test Results	
5.	CONDUCTED SPURIOUS EMISSIONS	
٥.	5.1. Test Equipment	
	5.2. Limit	
	5.3. Test Procedure	
	5.4. Test result	5-1
6.	20 DB BANDWIDTH TEST	6-1
	6.1. Test Equipment	6-1
	6.2. Limit	
	6.3. Test Results	
7.	CARRIER FREQUENCY SEPARATION TEST	
	7.1. Test Equipment	
	7.2. Limit	
_	7.3. Test Results.	
8.	NUMBER OF HOPPING FREQUENCY TEST	
	8.1. Test Equipment	
	8.2. Limit	
0		
9.	DWELL TIME	
	9.1. Test Equipment	9-1

	9.2. Limit	9-1
	9.3. Test Results	9-1
10.	MAXIMUM PEAK OUTPUT POWER TEST	10-1
	10.1. Test Equipment	10-1
	10.2. Limit	10-1
	10.3. Test Procedure	10-1
	10.4. Test Results	10-1
11.	BAND EDGE COMPLIANCE TEST	11-1
	11.1. Test Equipment	11-1
	11.2. Limit	11-1
	11.3. Test Produce	
	11.4. Test Results	
12.	ANTENNA REQUIREMENT	12-1
	12.1. STANDARD APPLICABLE	12-1
	12.2. ANTENNA CONNECTED CONSTRUCTION	12-1
13.	DEVIATION TO TEST SPECIFICATIONS	13-1
14.	HOTOGRAPH OF TEST	14-1
	14.1. Photos of Power Line Conducted Emission Test	14-1
	14.2. Photos of Radiated Emission Test	14-2
15.	PHOTOGRAPH OF EUT	15-1

TEST REPORT CERTIFICATION

Applicant

NVIDIA Corporation

Manufacturer

NVIDIA Corporation

EUT Description

Complex Set-Top Box

FCC ID

VOB-P2571

(A) MODEL NO.

: P2571

(B) SERIAL NO.

: N/A

(C) TEST VOLTAGE: DC 19V From Adapter Input AC 120V/60Hz

Tested for comply with:

FCC Rules and Regulations Part 15 Subpart C: 2014

Test procedure used:

ANSI C63.10: 2009

The device described above is tested by AUDIX TECHNOLOGY (SHENZHEN) CO., LTD. to confirm comply with all the FCC Part 15 Subpart C requirements. The test results are contained in this test report and AUDIX TECHNOLOGY (SHENZHEN) CO., LTD. is assumed full responsibility for the accuracy and completeness of these tests. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC and IC requirements. This report contains data that are not covered by the NVLAP accreditation.

This Report is made under FCC Part 2.1075. No modifications were required during testing to bring this product into compliance.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Date of Test: Dec.11, 2014~Jan.02, 2015 Report of date:

Feb.09, 2015

Prepared by: Kayli He / Assistant

Reviewed by:

信奉科技(深圳)有限公司 Lu/ Assistant Manager

Audix Technology (Shenzhen) Co., Ltd.

EMC部門報告専用章

Stamp only for EMC Dept. Report

Signature:

David Jin / Manager

Approved & Authorized Signer:

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION						
Description of Test Item	Standard	Results				
Power Line Conducted Emission Test	FCC Part 15 : 15.207 ANSI C63.10 :2009	PASS				
Radiated Emission Test	FCC Part 15 : 15.209 FCC Part 15 : 15.247(d) ANSI C63.10 :2009	PASS				
Conducted Spurious Emissions	FCC Part 15: 15.247(a)(1) ANSI C63.10 :2009	PASS				
Carrier Frequency Separation Test	FCC Part 15: 15.247(a)(1) ANSI C63.10 :2009	PASS				
20dB & 99% Bandwidth Test	FCC Part 15: 15.215 ANSI C63.10 :2009	PASS				
Number Of Hopping Frequency Test	FCC Part 15: 15.247(a)(1)(iii) ANSI C63.10 :2009	PASS				
Dwell Time Test	FCC Part 15: 15.247(a)(1)(iii) ANSI C63.10 :2009	PASS				
Maximum Peak Output Power Test	FCC Part 15 : 15.247(b)(1)\ ANSI C63.10 :2009	PASS				
Band Edge Compliance Test	FCC Part 15 : 15.247(d) ANSI C63.10 :2009	PASS				

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

Product Name : Complex Set-Top Box

Model Number : P2571

FCC ID : VOB-P2571

Radio : IEEE802.11 a/b/g/n/ac; Bluetooth V3.0+EDR; Bluetooth V4.1(LE)

: IEEE 802.11a: 5180MHz—5240MHz

5745MHz—5825MHz

IEEE 802.11ac VHT20: 5180MHz—5240MHz,

5745MHz—5825MHz

IEEE 802.11ac VHT40: 5190MHz—5230MHz,

5755MHz—5795MHz

IEEE 802.11ac VHT80: 5210MHz, 5775MHz

Operation Frequency IEEE 802.11tic V11780. 3210WHz, 377 IEEE 802.11b: 2412MHz—2462MHz

IEEE 802.11g: 2412MHz—2462MHz

IEEE802.11nHT20: 2412MHz—2462MHz;5180MHz—5240MHz,

5745MHz—5825MHz

IEEE802.11nHT40: 2422MHz—2452MHz5190MHz—5230MHz,

5755MHz—5795MHz Bluetooth : 2402-2480MHz

IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)

IEEE 802.11a/g: OFDM(64QAM, 16QAM, QPSK, BPSK)

IEEE 802.11ac VHT20, VHT40, VHT80: OFDM(16QAM, 64QAM,

Modulation

Gain

: 256QAM, QPSK, BPSK)

IEEE 802.11n HT20, HT40: OFDM (64QAM, 16QAM,QPSK,BPSK)

Bluetooth V3.0+EDR: GFSK, π/4DQPSK,8-DPSK

Bluetooth V4.1(LE):GFSK

: Antenna Type: Dipole

Bluetooth: 3.34dBi

Antenna Assembly

WIFI 2.4GHz:ANT 1: 4.13dBi; ANT 2: 3.34dBi

U-NII 5180-5240MHz Band:ANT 1: 6.09dBi; ANT 2: 6.93dBi

U-NII 5745-5825MHz Band:ANT 1: 6.15dBi; ANT 2: 6.99dBi

page 2-2

Applicant : NVIDIA Corporation

2701 San Tomas Expressway, Santa Clara, CA,95050,USA

Manufacturer : NVIDIA Corporation

2701 San Tomas Expressway, Santa Clara, CA,95050,USA

: Manufacture :FSP GROUP INC.

Power Adapter Model Name: SPA040A19W2

Data Cable: Unshieled, Undetachable, 1.9m

USB Cable : Shielded, Detachable, 1.0m

HDMI Cable : Shieled, Detachable, 1.8m

Date of Test : Dec.11, 2014~Jan.02, 2015

Date of Receipt : Dec.10, 2014

2.2. Tested Supporting System Details

No.	Description	ACS No.	Manufacturer	Model	Serial Number	Approved type		
		N/A	ACER	ZOW	I NI/A	☑FCC DoC ☑BSMI ID:R41108		
1. Notebook Power Cord: Unshielded, Detachable, 1.8m Power Adapter: Manufacturer: Lite-On, M/N: PA-1900-32 Data Cable: Shielded, Undetectable, 4.0m(Bond one ferrite core)								
2.	Monitor	ACS-EMC- LM10R	DELL	U3011t	CN-OPH5NY-7 4445-097-505L	☑FCC DoC ☑BSMI ID:R43004		
		Power Cord: Unshielded, Detachable, 1.8m						
3.	USB Disk*2	Kingston,4G mini Memory						
4.	SD Card	Kingston,1G Memory						
5.	LAN Cable	Shielded, Detachable, 2.0m						

2.3. Block Diagram of connection between EUT and simulators

(EUT: Complex Set-Top Box)

2.4. Test information

A special software was used to control EUT work in Continuous TX mode, and select test channel.

Tested mode, channel, and data rate information						
Mode	data rate (Mbps)	data rate (Mbps) Channel				
Tx Mode	1	Low:CH 0	2402			
GFSK	1	Middle: CH39	2441			
modulation	1	High: CH78	2480			
Tx Mode	3	Low:CH 0	2402			
8-DPSK	3	Middle: CH39	2441			
modulation	3	High: CH78	2480			

Note: $\pi/4DQPSK$ modulation is same type modulation with 8-DPSK, and according exploratory test, 8-DPSK will have worse emissions, so the final test were only performed with GFSK and 8-DPSK modulation.

page 2-4

2.5. Test Facility
Site Description

EMC Lab.

Audix Technology (Shenzhen) Co., Ltd.

Name of Firm

No. 6, Ke Feng Rd., 52 Block, Shenzhen

Science & Industrial Park, Nantou, Shenzhen,

Guangdong, China

Certificated by FCC, USA

3m Anechoic Chamber : Registration Number: 90454

Valid Date: Dec.30, 2017

Certificated by FCC, USA

3m & 10m Anechoic Chamber : Registration Number: 794232

Valid Date: Oct.31, 2015

Certificated by Industry Canada Registration Number: IC 5183A-1

Valid Date: May.14, 2017

Certificated by DAkkS, Germany

: Registration No: D-PL-12151-01-00

Valid Date: Dec.15, 2016

Accredited by NVLAP, USA NVLAP Code: 200372-0

Valid Date: Mar.31, 2015

2.6. Measurement Uncertainty (95% confidence levels, k=2)

Test Item	Uncertainty		
Uncertainty for Conduction emission test in No. 1 Conduction	3.10dB (150KHz to 30MHz)		
	3.22 dB(30~200MHz, Polarize: H)		
Uncertainty for Radiation Emission test	3.23 dB(30~200MHz, Polarize: V)		
in 3m chamber	3.49 dB(200M~1GHz, Polarize: H)		
	3.39 dB(200M~1GHz, Polarize: V)		
Uncertainty for Radiation Emission test in	4.97 dB (1~6GHz, Distance: 3m)		
3m chamber (1GHz-18GHz)	4.99 dB (6~18GHz, Distance: 3m)		
Uncertainty for Radiated Spurious Emission test in RF chamber	3.57 dB		
Uncertainty for Conduction Spurious emission test	2.00 dB		
Uncertainty for Output power test	0.73 dB		
Uncertainty for Bandwidth test	83 kHz		
Uncertainty for DC power test	0.038 %		
Uncertainty for test site temperature and	0.6℃		
humidity	3%		

3. POWER LINE CONDUCTED EMISSION MEASUREMENT

3.1. Test Equipment

	1 1	1		.		.
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	1# Shielding AUDIX		N/A	N/A	Apr.17,14	1 Year
1.	Room	AUDIA	1 V /A	IN/A	Apr.17,14	1 1 cai
2.	Test Receiver	Rohde & Schwarz	ESHS10	838693/001	Oct.29, 14	1 Year
3.	L.I.S.N.#1	Rohde & Schwarz	ESH2-Z5	100429	Jan.22, 14	1 Year
4.	L.I.S.N.#3	Kyoritsu	KNW-242C	8-1920-1	Apr. 28,14	1 Year
5.	Terminator	Hubersuhner	50Ω	No. 1	Apr. 28,14	1 Year
6.	Terminator	Hubersuhner	50Ω	No. 2	Apr. 28,14	1 Year
7.	RF Cable	Hubersuhner	RG58	0100.6954.20#	Jan.22, 14	1Year
8.	Coaxial Switch	Anritsu	MP59B	6200298346	Apr. 28,14	1 Year
9.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	101838	Jan.22, 14	1 Year

3.2. Block Diagram of Test Setup

3.3. Power Line Conducted Emission Test Limits

	Maximum RF Line Voltage				
Frequency	Quasi-Peak Level	Average Level			
	dB(µV)	dB(µV)			
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*			
500kHz ~ 5MHz	56	46			
5MHz ~ 30MHz	60	50			

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.4. Configuration of EUT on Test

The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4.1. Complex Set-Top Box (EUT)

Model Number : P2571 Serial Number : N/A

3.5. Operating Condition of EUT

- 3.5.1. Setup the EUT and simulator as shown as Section 3.2.
- 3.5.2. Turn on the power of all equipment.
- 3.5.3. Let the EUT work in test mode (TX Mode) and measure it.

3.6. Test Procedure

The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10-2009 on conducted Emission test.

The bandwidth of test receiver (R & S ESHS10) is set at 9kHz and the QP detection was used.

The frequency range from 150kHz to 30MHz is checked. The test result are reported on Section 3.7.

3.7. Conducted Emission at Mains Terminals Test Results

PASS. (All emissions not reported below are too low against the prescribed limits.)

No	Freq (MHz)	LISN Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1	0.15000	0.14	9.89	37.63	47.66	66.00	18.34	QP
2	0.20970	0.13	9.90	31.00	41.03	63.22	22.19	QP
3	0.26940	0.13	9.90	23.03	33.06	61.14	28.08	QP
4	0.32910	0.14	9.90	21.10	31.14	59.47	28.33	QP
5	0.44850	0.50	9.90	24.10	34.50	56.90	22.40	QP
6	26.418	0.62	10.18	22.38	33.18	60.00	26.82	QP

Remarks: 1.Emission Level=LISN Factor+Cable Loss(Include 10dB pulse limit)

Emission Lever=Lion Factor-ware according.
 If the average limit is met when useing a quasi-peak detector, the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

Site no
Dis./Ant.
Limit
Env./Ins.
EUT :1#conduction

Engineer : Kobe-Huang

		LISN	Cable		Emission	ı		
No	Freq (MHz)	Factor (dB)	Loss (dB)	Reading (dBuV)	Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1	0.15000	0.13	9.89	38.60	48.62	66.00	17.38	QP
2	0.20970	0.13	9.90	30.54	40.57	63.22	22.65	QP
3	0.26940	0.14	9.90	22.93	32.97	61.14	28.17	QP
4	0.32910	0.15	9.90	22.01	32.06	59.47	27.41	QP
5	0.44850	0.16	9.90	23.73	33.79	56.90	23.11	QP
6	26.448	0.77	10.18	23.34	34.29	60.00	25.71	QP

Remarks: 1.Emission Level=LISN Factor+Cable Loss(Include 10dB pulse limit)

⁺Reading.

2.If the average limit is met when useing a quasi-peak detector.
the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

4. RADIATED EMISSION MEASUREMENT

4.1.Test Equipment Frequency rang: 30~1000MHz

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	3#Chamber	AUDIX	N/A	N/A	Nov.23, 14	1 Year
2.	EMI Spectrum	Agilent	E4407B	MY41440292	Apr. 28,14	1 Year
3.	Test Receiver	Rohde & Schwarz	ESVS10	834468/011	Apr. 28,14	1 Year
4.	Amplifier	HP	8447D	2648A04738	Apr. 28,14	1 Year
5.	Bilog Antenna	TESEQ	CBL6112D	35375	Jun. 18, 14	1 Year
6.	RF Cable	MIYAZAKI	CFD400-NL	3# Chamber No.1	Apr. 28,14	1 Year
7.	Coaxial Switch	Anritsu	MP59B	6200313662	Apr. 28,14	1 Year

Frequency rang: above 1000MHz

	110(0010) 10118. 000 10 10 10 1111111111111111111								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval			
1.	3#Chamber	AUDIX	N/A	N/A	Nov.02, 14	1 Year			
2.	Spectrum Analyzer	Agilent	E4407B	MY41440292	Apr. 28,14	1 Year			
3.	Horn Antenna	ETS	3115	9607-4877	Sep.20, 14	1 Year			
4.	Amplifier	Agilent	8449B	3008A00863	Apr. 28,14	1 Year			
5.	RF Cable	Hubersuhner	SUCOFLEX106	77977/6	Apr. 28,14	1 Year			
6.	RF Cable	Hubersuhner	SUCOFLEX106	28616/2	Apr. 28,14	1 Year			
7.	Horn Antenna	ETS	3116	00060089	Sep.20, 14	1 Year			

4.3. Radiated Emission Limit Standard:

FREQUENCY	DISTANCE	FIELD STREN	NGTHS LIMIT
MHz	Meters	μV/m	dB(μV)/m
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000MHz	3	74.0 dB(μV	/)/m (Peak)
		54.0 dB(μV	/)/m (Average)

Remark: (1) Emission level $dB\mu V = 20 \log Emission level \mu V/m$

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
- (4) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

4.4.EUT Configuration on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.4.1. Complex Set-Top Box (EUT)

Model Number : P2571 Serial Number : N/A

4.5. Operating Condition of EUT

- 4.5.1. Setup the EUT and simulator as shown as Section 4.2.
- 4.5.2. Turned on the power of all equipment.
- 4.5.3. Let EUT work in Tx mode.

4.6. Test Procedure

The EUT and its simulators are placed on a turn table, which is 0.8 meter high above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on Test. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.10-2009 on radiated emission Test.

This test was performed with EUT in X, Y, Z position, and the worse case was found when EUT in X position as the test photo indicated.

The bandwidth of the EMI test receiver (R&S ESVS10) is set at 120kHz for frequency range from 30MHz to 1000 MHz.

The bandwidth of the Spectrum's RBW is set at 1MHz and VBW is set at 3MHz for peak emissions measurement above 1GHz

This device is pulse Modulated, a duty cycle factor was used to calculated average level based measured peak level.

The frequency range from 30MHz to 10th harmonic (25GHz) are checked. and no any emissions were found from 18GHz to 25 GHz, So the radiated emissions from 18GHz to 25GHz were not record.

4.7. Radiated Emission Test Results **PASS.**

All the emissions from 30MHz to 25GHz were comply with the 15.209 Limit.

Note: The duty cycle factor for calculate average level is -30.472 dB, and average limit is 20dB below peak limit, so if peak measured level comply with average limit, the average level was deemed to comply with average limit.

Mode	Emission Level * (dBuv/m)	Limit (dBuv/m)	Conclusion
GFSK	56.14(Peak)	74	Pass
Ursk	25.668(Average)	54	Pass
8-DPSK	58.24(Peak)	74	Pass
6-DPSK	27.768(Average)	54	Pass
*The worse	case result for each mode.		

Frequency: 30MHz~1GHz

Site no. Dis. / Ant. Limit Data no. : 1 Ant. pol. : HORIZONTAL Engineer : Kobe-Huang

Mo.	Freq. (MHz)	Ant. Factor (dB/a)	Cable Loss (db)	Reading (@UF)	Emission Level (dbuV/m)	Limits (dBuV/m)	Hargin (dB)	Penack
1	31.940	10.02	0.62	10.82	30.26	40.00	9.74	QP
2	117.300	12.66	1.28	15.25	29.19	43.50	14.31	QP
3	240.250	12.02	2.07	15.73	30.62	46.00	15.30	QP
4	277.350	13.57	2.19	19.88	35.64	46.00	10.36	QP
5	500.450	18.30	3.22	13.95	35-47	46.00	10.53	QP .
6	720.400	20.30	4.23	3.03	20.36	46.00	17.64	QP

Remarks: 1. Emission Level- Antenna Factor + Cable Loss + Reading.
2. The emission levels that are 2008 below the official limit are not reported.

File: E:2014 Report Data/NINVDEA/ACS14Q19SILEM6 (20) Data: 2 Date: 2015-01-02 FCC PART 15 C (3)

Data no. : 2 Ant. pol. : VERTICAL Engineer : Kobe-Huang Power rating : DC 19V From Adapter Input AC 120V/60Mz Test Mode : Tx Hode N/N : P2571

No.	Freq. (Mix)	Ant. Factor (dB/m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	limits (dbuV/m)	Margin (dB)	Remark
1	37,760	15.07	0.68	17.95	33.70	40.00	6.30	QP
2	54.250	7.47	0.81	22.47	30.75	40.00	9.25	QP .
3	117.300	12.66	1.20	10.93	32.07	43.50	10.63	9.7
4	167,740	10.23	1.66	17,69	29,58	43,50	13.92	0.7
5	262.800	14.06	2.13	9.00	25.19	46.00	20.61	0.9
6	500.450	10.30	3.22	5.70	27.22	46.00	10.70	QP

Pemarks: 1. Emission Level- Antenna Factor + Cable Loss + Feading.
2. The emission levels that are 2048 below the official limit are not reported.

Frequency:1GHz~18GHz **GFSK**

No.	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	AMP factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2	2402.000	28.18	5.80	35.70	106.94	105.22	74.00	-31.22	Peak
	3838.000	32.21	7.55	35.70	37.16	41.22	74.00	32.78	Peak

Remarks: 1. Emission Level- Antenna Factor + Cable Loss + Reading -Amp Factor 2. The emission levels that are 20dB below the official limit are not reported.

File: F:\2014 Report\N\NAVIDA\ACS14Q1958 -FCC ID BT3.0.EM6 (44) 120 Level (dBuV/m) Date: 2014-12-18 FCC PART 15C PEAK 2800 Frequency (MHz)

Site no. : 3m Chamber Data
Dis. / Ant. : 3m 2014 3115 (4580) Ant. pol.
Limit : FCC PART 15C PEAK
Env. / Ins. : 23*C/54*
Engineer : Kobe-Huang
EUT : Complex Set-Top Box
Power rating : DC 19V From Adpter Input AC 120V/60Hz
Test Mode : GFSK 2402HHz Tx Mode
M/N : P2571

		Anc.	Capie	AHP		rmission.			
No.	Freq.	Factor (dB/m)	Loss (dB)	factor (dB)	Reading (dBuV)	Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	2402.000	28.18	5.80	35.70	97.84	96.12	74.00	-22.12	Peak
2	3877.000	32.30	7.59	35.70	37.83	42.02	74.00	31.98	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading
-Amp Factor
2. The emission levels that are 20dB below the official
limit are not reported.

Frequency (MHz)	Polarization	Peak level (dBuv/m)	Duty cycle factor (dB)	AV level (dBuv/m)	Limit (dBuv/m)	Conclusion
9608	VERTICAL	55.50	-30.472	25.028	54	Pass
4804	HODIZONTAL	54.30	-30.472	23.828	54	Pass
9608	HORIZONTAL	54.64	-30.472	24.168	54	Pass

Audix	Technology	(Shenzhen)	Co.,	Ltd.	Report	No.	ACS-F15003

Site no.
Dis. / Ant.
Limit
Env. / Ins.
Engineer
EUT

Site no. : 3m Chamber Data
Dis. / Ant. : 3m 2014 3115 (4580) Ant. pol.
Limit : FCC PART 15C PEAK
Env. / Ins. : 23*C/54*
Engineer : Kobe-Huang
EUT : Complex Set-Top Box
Power rating : DC 15V From Adpter Input &C 120V/60Hz
Test Mode : 8-DPSK 2402NHz Tx Mode
: P2571 Data no. : 24 Ant. pol. : VERTICAL

AMP

		Ant.	Cable	AMP		Emission			
No.	Freq.	Factor	Loss	factor	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	4960.000	33.13	8.72	35.70	43.79	49.94	74.00	24.06	Peak
2	7440.000	36.47	11.09	35.41	41.85	54.00	74.00	20.00	Peak
3	9920.000	37.95	12.39	35.49	40.56	55.41	74.00	18.59	Peak

Emission
Level Limits Margin Remark
(dBuV/m) (dBuV/m) (dB) Ant. Cable Factor Loss (dB/m) (dB) factor (dB) 20.31 Peak 21.16 Peak 4960.000 36.47 11.09 7440.000 40.69 52.84 74.00 3 9960.000 37.98 12.41 35.50 40.13 55.02 74.00 18.98 Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading
-Amp Factor
2. The emission levels that are 20dB below the official
limit are not reported.

Timic are not	p			re not reported.		
Frequency (MHz)	Polarization	Peak level (dBuv/m)	Duty cycle factor (dB)	AV level (dBuv/m)	Limit (dBuv/m)	Conclusion
9920	HORIZONTAL	55.41	-30.472	24.938	54	Pass
9960	VERTICAL	55.02	-30.472	24.548	54	Pass

File: F:\2014 Report\N\NAVIDA\AC\$1401958 .FCC ID RT3.0 FM6 (44)

Site no. : 3m Chamber Data no. : 3m 2014 3115 (4580) : FCC PART 15C PEAK Ant. pol. : HORIZONTAL Dis. / Ant. Limit / Ins.

Limit : FCC PART 15C PEAK
Env. / Ins. : 23*C/54*
Engineer : Kobe-Huang
EUT : Complex Set-Top Box
Power rating : DC 19V From Adpter Input AC 120V/60Hz
Test Mode : 8-DPSK 2441MHz Tx Mode
M/N : P2571

No.	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	AMP factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits	Margin (dB)	Remark
_	2441.000 3655.000	28.27 31.77		35.70 35.70	101.38 41.29	99.81 44.72	74.00 74.00		Peak Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading

-Amp Factor

The emission levels that are 20dB below the official limit are not reported.

Site no. Dis. / Ant. Limit Env. / Ins. 23*C/54% Engineer Kobe-Huang EUT : Complex Set-Top Box
Power rating : DC 19V From Adpter Input AC 120V/60Hz
Test Mode : 8-DPSK 2441MHz Tx Mode
M/N : P2571

3m Chamber 3m 2014 3115 (4580) FCC PART 15C PEAK

No.	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	AMP factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)		Remark
	0441 000	28.27	5.86	25 70	93.52	91.95	74.00	17.05	Peak
1	2441.000	28.27	5.86	35.70	93.52	91.95	74.00	-17.95	reak
2	3667.000	31.80	7.37	35.70	41.45	44.92	74.00	29.08	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading

-Amp Factor

2. The emission levels that are 20dB below the official limit are not reported.

Data no. : 32 Ant. pol. : VERTICAL

page 4-14

Data no. : 42 Ant. pol. : HORIZONTAL

Ant. Cable AMP
Factor Loss factor (dB/m) (dB) (dB) (dB) (dB) (dB)

33.13 8.72 35.70 43.58
36.47 11.09 35.41 41.56
17.41 35.50 40.36 Emission
Level Limits Margin Remark
(dBuV/m) (dBuV/m) (dB)

49.73 74.00 24.27 Peak
53.71 74.00 20.29 Peak
55.25 74.00 18.75 Peak Freq. 4960.000 7440.000 9960.000

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading
-Amp Factor
2. The emission levels that are 20dB below the official
limit are not reported.

Data: 44 File: F:\2014 Report\N\NAVIDA\ACS14Q1958 -FCC ID BT3.0.EM6 (44) Level (dBuV/m) Date: 2014-12-18 FCC PART 15C AV 9600. 12400. Frequency (MHz)

int Coble NED

		Anc.	CODIC	AIII		LINESSIO			
No.	Freq.	Factor (dB/m)	Loss (dB)	factor (dB)	Reading (dBuV)	Level (dBuV/m	Limits (dBuV/m)	Margin (dB)	Remark
1	4960.000	33.13	8.72	35.70	43.47	49.62	74.00	24.38	Peak
2	7440.000	36.47	11.09	35.41	41.69	53.84	74.00	20.16	Peak
3	9960.000	37.98	12.41	35.50	40.15	55.04	74.00	18.96	Peak
	Remarks:	1. Emissi	on Level	= Antenn	a Factor +	- Cable L	oss + Rea	ding	

-Amp Factor

The emission levels that are 20dB below the official limit are not reported.

Frequency (MHz)	Polarization	Peak level (dBuv/m)	Duty cycle factor (dB)	AV level (dBuv/m)	Limit (dBuv/m)	Conclusion
9960	HORIZONTAL	55.25	-30.472	24.778	54	Pass
9960	VERTICAL	55.04	-30.472	24.568	54	Pass

5. CONDUCTED SPURIOUS EMISSIONS

5.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum	Agilent	N9030A	MY51380221	Oct.29, 14	1Year
2.	Attenuator (20dB)	Agilent	8491B	MY39262165	Apr. 28,14	1 Year
3.	RF Cable	Hubersuhner	SUCOFLEX102	28620/2	Apr. 28,14	1 Year

5.2.Limit

In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

5.3.Test Procedure

The transmitter output was connected to a spectrum analyzer, The resolution bandwidth is set to 100 kHz, The video bandwidth is set to 300 kHz and measure all the emissions With peak detector.

5.4. Test result

PASS (The testing data was attached in the next pages.)

6. 20 DB BANDWIDTH TEST

6.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum	Agilent	N9030A	MY51380221	Oct.29, 14	1Year
2.	Attenuator (20dB)	Agilent	8491B	MY39262165	Apr. 28,14	1 Year
3.	RF Cable	Hubersuhner	SUCOFLEX102	28620/2	Apr. 28,14	1 Year

6.2.Limit

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

6.3. Test Results

EUT: Complex Set-Top Box						
M/N: P2571						
Test date: 2014-12-11	Pressure: 101.5±1.0 kpa	Humidity: 53.6±3.0%				
Tested by: Kobe_huang	Test site: RF Site	Temperature : 22.2±0.6°C				

Test Mode	Frequency (MHz)	20dB bandwidth (KHz)	Limit (KHz)			
	2402	1054	N/A			
GFSK	2441	1055	N/A			
	2480	1055	N/A			
	2402	1325	N/A			
8-DPSK	2441	1322	N/A			
	2480	1326	N/A			
Conclusion: PASS						

page 6-2

7. CARRIER FREQUENCY SEPARATION TEST

7.1.Test Equipment

Iter	n Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Spectrum Analyzer	Agilent	N9030A	MY51380221	Oct.29, 14	1Year

7.2.Limit

Frequency hopping systems shall have hopping channel carrier frequency separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

7.3.Test Results.

EUT: Complex Set-Top Box		
M/N: P2571		
Test date: 2014-12-11	Pressure: 101.5±1.0 kpa	Humidity: 53.6±3.0%
Tested by: Kobe_huang	Test site: RF Site	Temperature: 22.2±0.6°C

Test Mode	Channel separation	Limit(KHz)	Conclusion
8-DPSK	1.0MHz	884	PASS
GFSK	1.0MHz	703.333	PASS

8. NUMBER OF HOPPING FREQUENCY TEST

8.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Spectrum Analyzer	Agilent	N9030A	MY51380221	Oct.29, 14	1Year

8.2.Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels

8.3. Test Results

EUT: Complex Set-Top Box		
M/N: P2571		
Test date: 2014-12-11	Pressure: 101.5±1.0 kpa	Humidity: 53.6±3.0%
Tested by: Kobe_huang	Test site: RF Site	Temperature : 22.2±0.6°C

Test Mode	Number of channel	Limit	Conclusion
8-DPSK	79	>=15	PASS
GFSK	79	>=15	PASS

9. DWELL TIME

9.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Spectrum Analyzer	Agilent	N9030A	MY51380221	Oct.29, 14	1Year

9.2.Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

9.3.Test Results

EUT: Complex Set-Top Box		
M/N: P2571		
Test date: 2014-12-11	Pressure: 101.5±1.0 kpa	Humidity: 53.6±3.0%
Tested by: Kobe_huang	Test site: RF Site	Temperature : 22.2±0.6°C

Mod	le	dwell time	Limit	Conclusion
	DH1	52hops/5s*0.4*79chanels*0.447ms =146.90ms	<400ms	PASS
GFSK	DH3	27hops/5s*0.4*79chanels*1.710ms =291.79ms	<400ms	PASS
	DH5	16hops/5s*0.4*79chanels*2.975ms =300.83ms	<400ms	PASS
8-DPSK	DH1	49hops/5s*0.4*79chanels*0.446ms =138.12ms	<400ms	PASS
	DH3	26hops/5s*0.4*79chanels*1.128ms =185.35ms	<400ms	PASS
	DH5	17hops/5s*0.4*79chanels*2.995ms =321.78ms	<400ms	PASS

Note: All the lower levels were signaled from receiver and should not be considered in here.

page 9-2

page 9-3

10.MAXIMUM PEAK OUTPUT POWER TEST

10.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum	Agilent	N9030A	MY51380221	Oct.29, 14	1Year
2.	Power meter	Anritsu	ML2487A	6K00002472	Apr. 28,14	1Year
3.	Power sensor	Anritsu	MA2491A	0033005	Apr. 28,14	1Year
4.	Attenuator (20dB)	Agilent	8491B	MY39262165	Apr. 28,14	1Year
5.	RF Cable	Hubersuhner	SUCOFLEX102	28610/2	Apr. 28,14	1Year

10.2.Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.

10.3.Test Procedure

Connected the EUT's antenna port to Power Sensor, and use power meter to test peak output power directly.

10.4.Test Results

EUT: Comp	lex Set-Top Box		
M/N: P2571			
Test date: 20	014-12-11	Pressure: 102.1±1.0 kpa	Humidity: 51.9±1.0%
Tested by: K	Lobe_Huang	Test site: RF site	Temperature:21.3±1.0 °C
Test	Frequency	Max. Conducted Output Power	Limit
Mode	(MHz)	(dBm)	(dBm)
	2402	11.77	30
GFSK	2441	12.825	30
	2480	12.537	30
	2402	9.240	30
8-DPSK	2441	9.777	30
	2480	9.284	30
Conclusion:	PASS		

11.BAND EDGE COMPLIANCE TEST

11.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Amp	HP	8449B	3008A02495	Apr. 28,14	1 Year
2.	Horn Antenna	ETS	3115	9510-4580	Jun. 06, 14	1 Year
3.	HF Cable	Hubersuhner	Sucoflex104	274094/4	Apr. 28,14	1 Year
4.	RF Cable	Hubersuhner	Sucoflex102	28610/2	Apr. 28,14	1 Year

11.2.Limit

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

11.3.Test Produce

For upper band emissions that are up to two bandwidths(2MHz) away (2483.5MHz to 2485.5MHz) from the band-edge use below produce:

- 1. Choose a spectrum analyzer span that encompasses both the peak of the fundamental emission and the band-edge emission under investigation. Set the analyzer RBW to 100KHz and with a video bandwidth 300KHz. Record the peak levels of the fundamental emission and the relevant band-edge emission, Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not a field strength measurement, it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.
- 2. Subtract the delta measured in step (1) from the maximum field strengths measured in clause 4. The resultant field strengths are then used to determine band-edge compliance as required by Section 15.205

For emissions above two bandwidths away from the band-edge use below produce:

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upperband-edges of the emission:
 - (a) PEAK: RBW=1MHz; VBW=3MHz, PK detector, Sweep=AUTO
 - (b) This is pulse Modulation device a duty cycle factor was used to calculate average level based measured peak level.

11.4.Test Results

Pass (The testing data was attached in the next pages.)

Note: If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

Pata no. : 3 Ant. pol. : HORIZOWTAL

No.	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	AMP factor (dB)	Reading (dBuV)	Level (dBuV/m)	Limits		Remark
1	2357.120	28.09	5.73	35.70	50.53	48.65	74.00	25.35	Peak
2	2390.000	20.16	5.78	35.70	10.11	16.35	71.00	27.65	Peak
3	2400.000	20.10	5.60	35.70	66,14	64.42	74.00	9.58	Feak
4	2401.960	28.18	5.00	35.70	107.22	105.50	74.00	-31.50	Peak

Remarks: 1. Emission Level* intemns Factor * Cable Loss * Beading - Amp Factor
2. The emission levels that are 20dB below the official limit are not reported.

Data no. : 4 Ant. pol. : VERTICAL

Ant. Cable AMP

No.	Freq.	Factor (dB/m)	(dB)	factor (dB)	Reading (dBuV)	Level (dBuV/m)	Limits (dBuV/m)		Remark
1	2358.640	28.09	5.74	35.70	49.62	47.75	74.00	26.25	Peak
2	2390.000	28.16	5.78	35.70	10.12	16.36	71.00	27.61	Poak
3	2400.000	20.10	5.80	35.70	60.47	50.75	74.00	15.25	Feak
4	2401.960	20.10	5.80	35.70	97.21	95.49	74.00	-21.49	Peak

Semarks: 1. Emission Level* Intenna Factor * Cable Loss * Seading -Amp Factor 2. The emission levels that are 20dB below the official limit are not reported.

		Ant.	Cable	AMP		Emission			
No.	Freq.	Factor	Loss	factor	Reading	Leve 1	Limits	Margin	Remark
	(BHs)	(dB/m)	(dB)	(48)	(d84V)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.003	28.36	5.91	35.70	104.40	102.97	74.00	-28.97	Peak
2	2403.500	20.36	5.92	35.70	52.61	51.39	74.00	22.61	Peak
3	2500.000	28.40	5.94	35.70	47.42	46.06	74.00	27.94	Feak
4	2506.667	20.43	5.95	35.70	49.09	47.77	74.00	26.23	Peak

Remarks: 1. Emission Level* latenne Factor * Cable Loss * Beading - Amp Factor
2. The emission levels that are 20dB below the official limit are not reported.

- 1				2490.2		196.8	2503.4	
ŀ					-			
ŀ				_				
~		_	-			-	-	- 64
0		1					FCC PA	BIT THE A
ľ		1					-	8-0
	/	1					FCC PART	ISC PEA
	_4							
ŀ	-		-	-		-	-	
100	vel (dibuV)						-	2014-12-

Site no. : 3m Chamber Pata
Did. / Ast. : 3m 2014 3115 (4500) Ant. pol.
Limit From Pata 15c PEAK
Env. / Ins. : 23°C/54%
Engineer : Kohe-Huang
EUT : Complex Set-Top Box
Power rating : DC 19V From Adpter Input AC 120V/60Hz
Test Hode : GFSK 2400MHz Tx Hode
: P2571

No.	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	AMP factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits		Remark
1	2480.000	28.36	5.91	35.70	94.85	93.42	74.00	-19.42	Peak
2	2463.500	20.36	5.92	35.70	50.26	40.04	74.00	25.16	Peak
3	2500.000	28.40	5.94	35.70	40.50	47.22	74.00	26.78	Feak
4	2509.307	20.44	5.96	35.70	49.12	47.02	74.00	26.10	Peak

Semarks: 1. Emission Level: intenna Factor + Cable Loss + Feating
-Amp Factor
2. The emission levels that are 20d8 below the official
limit are not reported.

Site no. : 3m Chamber Data
Dis. / Ant. : 3m 2014 3115 (4580) Ant. pol.
Limit : FCC PART 15C PEAK
Env. / Ins. : 23*C/54*
Engineer : Kobe-Wanng
EUT : Complex Set-Top Box
Power rating : BC 19V From Adpter Input AC 120V/60Hz
Test Hode : 8-199K 2402EMI TX Hode
: P2571 Ant. pol. : HORIZONTAL

No.	Freq.	Factor (dB/m)	Loss (dB)	factor (dB)	Reading (dBuV)		Limits		Remack
1	2330.995	20.03	5.70	35.70	49.85	47.00	74.00	26.12	Peak
2	2390.000	28.16	5.78	35.70	48.10	46.34	74.00	27.66	Peak
3	2399.965	20.10	5.00	35.70	60.60	66.00	74.00	7.12	Peak
4	2402.245	28.18	5.80	35.70	105.44	103.72	74.00	-29.72	Peak

Remarks: 1. Emission Level* intenns Factor + Cable Loss + Reading - Amp Factor
2. The emission levels that are 20dB below the official limit are not reported.

			Date	2014-12-1
			- Cur	2014-12-
				4
				<u> </u>
			LCC BARR	
			ICC PARI	THE PER
				17
			FCCP	
	Lunanton		Address of the latest of the l	-
				н н
				н н
				н н
2724	2240	2947	2206	2
2325			2,000.	
	2329.	2329. 2348.		

EUT : Complex Set-Top Box Power reting : BC 19V From Adpter Input AC 120V/40Hz Test Mode : 8-D9SK 2402EME Tx Mode : P2571

	Anc.	cepte	(dB)		EMISSION			Towns or be
(EEt)	(dB/m)	(dB)		(dBuV)				Nemat K
2317.410	28.00	5.60	35.70	50.70	40.60	74.00	25.32	Peak
2390.000	20.16	5.78	35.70	47.62	45.86	74.00	28.14	Peak
2400.000	20.10	5.00	35.70	50.43	56.71	74.00	17.29	Peak
2402.055	28.18	5.80	35.70	96.02	94.30	74.00	-20.30	Peak
	2317.410 2390.000 2400.000	Freq. Factor (48/m) 2317.410 28.00 2390.000 28.16 2400.000 28.18	Freq. Factor Loss (REz) (dB/m) (dB) 2317.410 28.00 5.68 2320.000 28.16 5.78 2400.000 28.18 5.00	Freq. Factor Loss factor (MRz) (dB/s) (dB) (dB) (dB) 2317.410 20.00 5.68 35.70 2390.000 20.16 5.70 35.70	Freq. (MEs) Factor (dB/m) Loss (dB) Factor (dB/m) Factor (dB/m) Factor (dB/m) Factor (dB/m) Factor (dB/m) Factor (dB/m) 2317.410 28.00 5.68 35.70 50.70 2390.000 20.16 5.70 35.70 47.62 2400.000 28.10 5.00 35.70 50.43	Freq. (REs) Factor (dB/m) Loss (dB) factor (dB/m) Reading (dB/m) Level (dB/m) 2317.410 20.00 5.60 35.70 50.70 40.60 2390.000 20.16 5.70 35.70 47.62 45.86 2400.000 20.10 5.00 35.70 50.43 56.71	Freq. (REs) Factor (dB/m) Loss (dB) factor (dB/m) Reading (dB/m) Level Limits (dB/m) (dB/m) (dB/m) (dB/m) 2317.410 28.00 5.60 35.70 50.70 48.60 74.00 2390.000 20.16 5.70 35.70 47.62 45.66 74.00 2400.000 20.10 5.00 35.70 59.43 56.71 74.00	Freq. (REs) Factor (dB/m) Loss (dB) factor (dB/m) Reading (dB/m) Level Limits (dB/m) (dB/m) Macgin (dB/m) 2317.410 20.00 5.60 35.70 50.70 40.60 74.00 25.32 2390.000 20.16 5.70 35.70 47.62 45.66 74.00 20.14 2400.000 20.10 5.00 35.70 56.43 56.71 74.00 17.29

Pemarks: 1. Emission Level* Antenna Factor + Cable Loss + Feading -Amp Factor 2. The emission levels that are 20dB below the official limit are not reported.

Site no. : 3m Chamber Data
Dis. / Ant. : 3m 2014 3115 (4580) Ant. pol.
Limit : FCC PART 15C PEAK
Env. / Ins. : 23*C/54*
Engineer : Köde-Phang
EUT : Complex Set-Top Box
Power rating : BC 19V From Adpter Input AC 120V/60Hz
Test Hode : 8-195K 2480ENL TK Mode
: P2571 Ant. pol. : BORIZONTAL

ing. Cable 180

No.	Freq.			factor (dB)	Reading (dBuV)				Remark
1	2400.010	20.36	5.91	35.70	105.40	103.97	74.00	-29.97	Peak
2	2483.500	28.36	5.92	35.70	49.65	48.23	74.00	25.77	Peak
3	2500.000	20.40	5.94	35.70	47.32	45.96	74.00	20.04	Peak
4	2506.667	28.43	5.95	35.70	48.79	47.47	74.00	26.53	Peak

Pamarks: 1. Emission Level* Antenna Factor + Cable Loss + Peading -Amp Factor 2. The emission levels that are 20dB below the official limit are not reported.

Mo.	Freq.	Ant. Factor (d8/m)	Cable Loss (dB)	AMP factor (68)	Reading (d8vV)	Emission Level (dBuV/m)	Limits	Margin (dB)	Remark
2	2480.000 2483.500 2484.161	28.36 28.36 28.37	5.91 5.92 5.92	35.70 35.70 35.70	94.85 49.25 50.17	93.42 47.83 48.76	74.00 74.00 74.00	26.17	Peak Peak Peak
4	2500.000	28.40	5.94	35.70	48.39	47.03	74.00	26.97	Peak

Pemarks: 1. Emission Level- Antenna Factor + Cable Loss + Feeding
-Amp Factor
2. The emission levels that are 20dB below the official
limit are not reported.

12. ANTENNA REQUIREMENT

12.1. STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

12.2. ANTENNA CONNECTED CONSTRUCTION

The antennas used for this product are Dipole antenna that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is 3.34dBi.