- 1. 冯诺依曼模型: 以运算器为核心, 必须顺序执行每一条指令, 指令执行分为 取出指令, 分析指令, 执行指令(指令地址存储于 PC)。
- 2. 机器数编码:

原码	$-(2^{(n-1)-1}) \sim 2^{(n-1)}$				
		000	000 011		
	111	100			
反码	-(2^(n-1)-1)	2^(n-1)-1) ~ 2^(n-1)			
		000 011		1	
	100	111			
补码	-2^(n-1) ~ 2^(n-1)				
	10…0	111	000		01…1
	-2^(n-1)	-1	0		2^(n-1)
移码	-2^(n-1) ~ 2^(n-1)				
	000	01…1	100		111
	-2^(n-1)	-1	0		2^(n-1)

- 3. 8421 码: 以四位二进制数代表一位十进制数,并在末尾用 1100, 1101 表示+和-。
- 4. 原码乘法:乘数的每位与被乘数相乘并移位相加。
- 5. 浮点数加减:调整至阶数相同,将尾数相加减,规格化后进行舍入(原码:0 舍 1 入,补码:正数(0 舍 1 入),负数(舍(-1,-0.5],入(-0.5,0))。 浮点数表示:

十进制->二进制->左/右规格至 0.1 --> 用浮点数表示

阶符	阶值	尾数符	尾数值
左/右规格	规格次数	与原数相同	规格后数值

- 6. 用 ALU 比较数的大小: 将两数进行加减运算, 并观察借进位, 0 标志。
- 7. 存储器:

顺序存取:SAM(磁带)	只读存取:ROM(光盘)
随机存取:RAM(内存)	直接存取:DAM(磁盘)

- 8. CPU->主存(Cache 地址转化->Cache)-> 辅存 程序访问局部性原理
- 9. 64K * 16b -> 字扩展(串联)8 * 8K * 16b -> 8 * (位扩展(并联)4 * (8K * 4b))。
- 10. CPU 引脚: 地址(log64K)引脚,数据 (log16b) 引脚,状态/控制引脚 CS(RD,WR,IO,MEM)
- 11. Cache:

管理区		数据区	
有效位	标记位	状态位	缓存块

12. Cache 地址映射: 直接映射, 全相连, 组相连

组相连:

Cache:

群号	群内块号	块内地址
----	------	------

主存:

群块号=组号,块映射到组后组内查全表,块内地址相等,tag=群号

13. Cache 替换算法: RAND, 先进先出, LRU (最近最少使用)
LRU: 设置计数器, 初始为 1, 每次更新时若未被访问则+1, 否则置 0, 选取计数器值最大的行进行替换。

14. Cache 写策略

全写法:写入主存同时写入 Cache。T 命中=Tmem, T 缺失=0;

写回法: 修改时写在 Cache 中并记录脏位, Cache 被替换时脏位为 1 的行写入主存。 Cache 行管理信息=有效位+标记+记数器位(ALU)+脏位 T 命中=Tcache, T 缺失>=Tmem