Exercise 1. Prove that $\forall x, y \in \mathbb{R}$,

(1)

$$||x| - |y|| \le |x - y| \le |x| + |y|$$

(2) For p > 0,

$$|x+y|^p \le 2^p \max\{|a|^p, |b|^p\}$$

Exercise 2. By using the definitions of sin and cos, prove that $\forall x, y \in \mathbb{R}$,

- (1) $\cos(-x) = \cos(x)$, $\sin(-x) = -\sin(x)$;
- (2) $\cos^2 x + \sin^2 x = 1$;
- (3) $\cos(x y) = \cos x \cos y + \sin x \sin y$

Then try to deduce

- $(4)\sin(x+y) = \sin x \cos y + \cos x \sin y;$
- (5) $|\sin(nx)| \le n|\sin x|$ for $n \in \mathbb{N}$.

Exercise 3 (Hard). Prove that $\forall n \in \mathbb{N}$,

$$\left(1 + \frac{1}{n}\right)^n < 3$$