Оглавление

1	Ma'	тематическая логика	2
	1.1	Пропозициональные формулы	2
		1.1.1 Основные равносильности	2
		1.1.2 Дизъюнктивная и конъюнктивная формы	2
	1.2	Исчисления высказываний	4
		1.2.1 Секвенциальное исчисление высказываний	4
		1.2.2 Метод резолюций для исчисления высказываний	7
	1.3	Исчисления предикатов	8
2	Фор	рмальные теории	12
3	Teo	рия алгоритмов	18
	3.1	Рекурсивные функции	18
	3.2	Машины Тьюринга	19
		3.2.1 Многоленточные МТ	21
	3.3	Нормальные алгоритмы Маркова	23
	3.4	Код алгоритма. Применимость алгоритма к данным	23
	3.5	Массовые проблемы. Алгоритмическая разрешимость и неразрешимость	24
	3.6	Теория сложности алгоритмов	27
		3.6.1 Полиномиальная сводимость и полиномиальная эквивалентность	27
		3.6.2 NP-полные задачи	28
		3.6.3 Задача Выполнимость	28

Глава 1

Математическая логика

1.1. Пропозициональные формулы

Определение 1. *Высказыванием* называется утверждение, относительно которого однозначно можно сказать, истинно оно или ложно.

Определение 2. Пропозициональной переменной называется переменная для высказываний.

Определение 3.

- 1. логические константы являются пропозициональными формулами;
- 2. пропозициональные переменные являются пропозициональными формулами;
- 3. если A пропозициональная формула, то $\neg A$ является пропозициональной формулой;
- 4. Если A и B пропозициональные формулы, * бинарная логическая связка, то (A*B) является пропозициональной формулой;
- 5. никакие другие выражения не являются пропозициональными формулами.

Определение 4. Пропозициональная формула называется *тавтологией*, если она истинна при всех наборах значений своих переменных.

Определение 5. Пропозициональная формула называется *противоречием*, если она ложна при всех наборах значений своих переменных.

Определение 6. Пропозициональная формула называется *выполнимой*, если она истинна хоть на одном наборе своих переменных.

Определение 7. Пропозициональные формулы называются *равносильными*, если их значения совпадают при всех наборах значений их переменных.

1.1.1. Основные равносильности

Пусть T — тавтология, F — противоречие.

1.1.2. Дизъюнктивная и конъюнктивная формы

Определение 8. Элементарной конъюнкцией называется многократная конъюнкция переменных и их отрицаний.

Определение 9. Дизъюнктивной нормальной формой называется пропозициональная формула, являющаяся многократной дизъюнкцией элементарных конъюнкций.

```
Идемпотентность
                                           A \& A \iff
                                                              A
                                            A \lor A \iff A
                                           A \& B \iff B \& A
Коммутативность
                                            A \vee B \iff
                                                              B \vee A
                                                       \iff A \& (B \& C)
                                   (A \& B) \& C
Ассоциативность
                                                               A \& B \& C
                                    (A \lor B) \lor C
                                                       \iff A \lor (B \lor C)
                                                              A \vee B \vee C
Дистрибутивность
                                    A \& (B \lor C)
                                                       \iff
                                                              A \& B \lor A \& C
Дистрибутивность
                                      A \lor B \& C
                                                              (A \vee B) \& (A \vee C)
                                                       \iff
Поглощение
                                    A \& (A \lor B)
                                                               A
                                      A \vee A \& B
                                                              A
Правило де Моргана
                                       \neg (A \& B)
                                                      \iff
                                                              \neg A \lor \neg B
                                        \neg (A \lor B)
                                                       \iff \neg A \& \neg B
                               A \& B \lor \neg A \& C
                                                       \iff
                                                              A \& B \lor \neg A \& C \lor B \& C
Склеивание
                            (A \vee B) \& (\neg A \vee C)
                                                      \iff
                                                              (A \vee B) \& (\neg A \vee C) \& (B \vee C)
Двойное отрицание
                                             \neg \neg A
                                                              A
                                           A \to B \iff
                                                              \neg A \lor B
                                          A \leftrightarrow B
                                                              (A \rightarrow B) \& (B \rightarrow A)
                                                               (\neg A \lor B) \& (\neg B \lor A)
                                                               (A \& B) \lor (\neg A \& \neg B)
                                           A \oplus B
                                                              \neg (A \leftrightarrow B)
                                                               (\neg A \& B) \lor (A \& \neg B)
                                                               (A \lor B) \& (\neg B \lor \neg A)
                                            A \mid B
                                                              \neg (A \& B)
                                                      \iff
                                            A \downarrow B
                                                               \neg (A \lor B)
                                           A \& T
                                                               A
                                            A \vee T
                                                               T
                                                              F
                                           A \& F
                                                      \iff
                                           A \vee F
                                                      \iff A
                                           A \to T
                                                       \iff T
                                           A \to F
                                                      \iff \neg A
                                           T \to A
                                                      \iff A
                                           F \to A
                                                              F
                                           A \leftrightarrow T
                                                      \iff
                                                               A
                                           A \leftrightarrow F
                                                               \neg A
```

Теорема 1 (о ДН Φ). По всякой пропозициональной формуле, не являющейся противоречием, можно построить равносильную ей в ДН Φ .

Идея доказательства. В таблице истинности для формулы есть хоть одна строка, в столбце значений которой стоит И. Для каждой такой строки, соответствующей набору значений $(\alpha_1^i,\dots,\alpha_n^i)$, выписываем элементарную конъюнкцию $K_i=x_1^{\alpha_1^i}\ \&\dots\& x_n^{\alpha_n^i}$, значение которой равно И на наборе $(\alpha_1^i,\dots,\alpha_n^i)$ и только на нём. Формула в ДНФ $K_1\vee\dots\vee K_m$ принимает значение И на выбранных строках и только на них.

Так построенная формула называется совершенной ДНФ.

Определение 10. Элементарной дизъюнкцией называется многократная дизъюнкция переменных и их отрицаний.

Определение 11. *Конъюнктивной нормальной формой* называется пропозициональная формула, являющаяся многократной конъюнкцией элементарных дизъюнкций.

Теорема 2 (о $KH\Phi$). По всякой формуле, не являющейся тавтологией, можно построить равносильную ей в $KH\Phi$.

Идея доказательства. Отрицание формулы не является противоречием, следовательно можно построить формулу в ДНФ. Отрицание формулы в ДНФ, после применения правил де Моргана, является

1.2. Исчисления высказываний

Для того, чтобы задать исчисление, достаточно задать

- 1. $An \phi a sum$ конечное множество символов $A = \{a_1, \dots, a_n\}$.
- 2. Множество формул—слов в алфавите, для которых существует эффективная процедура проверки, является ли слово формулой.
- 3. Множество $a\kappa cuom$ эффективно проверяемое подмножество множества формул.
- 4. Правила вывода конечное множество отношений над формулами, для каждого из которых все аргументы, кроме последнего, называются посылками правила, а последний аргумент заключением правила.

Определение 12. Формула B непосредственно выводима из формул A_1, \ldots, A_n , если имеется n+1-местное отношение R, задающее одно из правил вывода, такое, что $R(A_1, \ldots, A_n, B)$.

Определение 13. *Выводом* в исчислении называется последовательность формул, каждая из которых либо является аксиомой, либо непосредственно выводима из некоторых предыдущих.

Определение 14. Последняя формула любого вывода в заданном исчислении называется *выводимой* в нём (*теоремой* этого исчисления).

Обозначение. $\models_C P - P$ выводима в исчислении C

Определение 15. Формула B выводима из множества формул Σ , если найдётся последовательность формул, заканчивающихся формулой B, каждая из которых либо является аксиомой, либо входит в множество Σ , либо непосредственно выводима из некоторых предыдущих.

Обозначение. $\Sigma \models_C P - P$ выводима из Σ в исчислении C

Определение 16. Исчисление называется *полным*, если всякая истинная формула этого исчисления выводима в нём.

Определение 17. Исчисление называется *непротиворечивым*, если не существует такой формулы этого исчисления, что выводима она сама и её отрицание.

1.2.1. Секвенциальное исчисление высказываний

Определение 18. Секвенцией называется выражение вида $\Gamma \vdash \Delta$, где Γ, Δ — списки (возможно, пустые) формул, \vdash — знак секвенции.

 Γ называется *антецедентом* секвенции, Δ — сукцедентом (консеквентом) секвенции.

Каждой секвенции можно поставить в соответствие формулу, которая называется ϕ ормульным образом секвенции:

$$\Phi(A_1 \dots A_n \vdash B_1 \dots B_m) = A_1 \& \dots \& A_n \to (B_1 \lor \dots \lor B_m)$$

Формальное описание:

- 1. Алфавит: множество символов для записи имён пропозициональных переменных, объединённое с множеством логических связок { &, ¬ }, символа секвенции и скобок.
- 2. Формулы исчисления: секвенции, содержащие пропозициональные формулы в выбранном алфавите.
- 3. Аксиомы исчисления: единственная схема аксиом

$$\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ A \ \Delta_2$$

4. Правила вывода

$$(\vdash \neg) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ \Delta_2}{\Gamma_1 \ \Gamma_2 \vdash \Delta_1 \ \neg A \ \Delta_2} \qquad (\neg \vdash) \frac{\Gamma_1 \ \Gamma_2 \vdash \Delta_1 \ A \ \Delta_2}{\Gamma_1 \ \neg A \ \Gamma_2 \vdash \Delta_1 \ \Delta_2}$$

$$(\vdash \&) \frac{\Gamma \vdash \Delta_1 \ A \ \Delta_2 \qquad \Gamma \vdash \Delta_1 \ B \ \Delta_2}{\Gamma \vdash \Delta_1 \ (A \& B) \ \Delta_2} \qquad (\&\vdash) \frac{\Gamma_1 \ A \ B \ \Gamma_2 \vdash \Delta}{\Gamma_1 \ (A \& B) \ \Gamma_2 \vdash \Delta}$$

$$(\vdash \lor) \frac{\Gamma \vdash \Delta_1 \ A \ B \ \Delta_2}{\Gamma \vdash \Delta_1 \ (A \lor B) \ \Delta_2} \qquad (\lor\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta}{\Gamma_1 \ (A \lor B) \ \Gamma_2 \vdash \Delta}$$

$$(\vdash \to) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ \Gamma_2 \vdash \Delta_1 \ (A \to B) \ \Delta_2} \qquad (\to\vdash) \frac{\Gamma_1 \ \Gamma_2 \vdash \Delta_1 \ A \ \Delta_2}{\Gamma_1 \ (A \to B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2}$$

$$(\vdash \leftrightarrow) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ \Gamma_2 \vdash \Delta_1 \ (A \leftrightarrow B) \ \Delta_2} \qquad (\leftrightarrow\vdash) \frac{\Gamma_1 \ \Gamma_2 \vdash \Delta_1 \ A \ B \ \Delta_2}{\Gamma_1 \ (A \leftrightarrow B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2}$$

$$(\vdash \leftrightarrow) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ A \ B \ \Delta_2}{\Gamma_1 \ \Gamma_2 \vdash \Delta_1 \ (A \leftrightarrow B) \ \Delta_2} \qquad (\leftrightarrow\vdash) \frac{\Gamma_1 \ \Gamma_2 \vdash \Delta_1 \ A \ B \ \Delta_2}{\Gamma_1 \ (A \leftrightarrow B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ A \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ A \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ A \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ B \ \Delta_2}{\Gamma_1 \ (A \oplus B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2} \qquad (\oplus\vdash) \frac{\Gamma_1 \ A \ \Gamma_2 \vdash \Delta_1 \ A \ \Delta_2}{\Gamma_1 \ (A \oplus$$

Теорема 3. Формульный образ аксиомы является тавтологией.

Доказательство. Пусть аксиома имеет вид $P_1 \dots P_k \ A \ Q_1 \dots Q_l \vdash R_1 \dots R_m \ A \ T_1 \dots T_n$. Её формульным образом является формула

$$P_1 \& \ldots \& P_k \& A \& Q_1 \& \ldots \& Q_l \vdash R_1 \lor \cdots \lor R_m \lor A \lor T_1 \lor \cdots \lor T_n$$

которая равносильна элементарной дизъюнкции

$$\neg P_1 \lor \cdots \lor \neg P_k \lor \neg A \lor \neg Q_1 \lor \cdots \lor \neg Q_l \lor R_1 \lor \cdots \lor R_m \lor A \lor T_1 \lor \cdots \lor T_n,$$

содержащей контрарную пару $\neg A \lor A$ и, следовательно, являющейся тавтологией.

Теорема 4. Для каждого правила вывода формульный образ его заключения равносилен конъюнкции формульных образов посылок этого правила.

Доказательство. Доказательство проведём для правила (⊢&). Формульные образы посылок:

$$P_1 \dots P - k \vdash R_1 \dots R_m \ A \ T_1 \dots T_n, \qquad P_1 \dots P_k \vdash R_1 \dots R_m \ B \ T - 1 \dots T_n$$

равносильны соответственно

$$\neg P_1 \lor \dots \lor \neg P - k \lor R_1 \lor \dots \lor R_m \lor A \lor T_1 \dots \lor T_n$$

$$\neg P_1 \lor \dots \lor \neg P_k \lor R_1 \lor \dots \lor R_m \lor B \lor T_1 \lor \dots \lor T_n$$

Воспользуемся коммутативностью дизъюнкции:

$$\neg P_1 \lor \dots \neg P - k \lor R_1 \lor \dots \lor R_m \lor T_1 \lor \dots \lor T_n \lor A$$

$$\neg P_1 \lor \dots \lor \neg P_k \lor R_1 \lor \dots \lor R_m \lor T_1 \lor \dots \lor T_n \lor B$$

С учётом дистрибутивности дизъюнкции имеем

$$\neg P_1 \lor \cdots \lor \neg P_k \lor R_1 \lor \cdots \lor R_m \lor T_1 \lor \cdots \lor T_n \lor A \& B,$$

что является формульным образом секвенции

$$P_1 \dots P_k \vdash R_1 \dots R_m \ A \& B \ T_1 \dots T_n$$

Теорема 5. Секвенция выводима в секвенциальном исчислении тогда и только тогда, когда её формульный образ является тавтологией.

Доказательство.

- Необходимость: ($\models S$) \implies $\Phi(S)$ является тавтологией Доказательство по **индукции** по длине вывода секвенции S:
 - База. Длина вывода =1. Секвенция является аксиомой, и по теор. 3 её формульный образ тавтология.
 - **Переход**. Пусть формульный образ любой секвенции, длина вывода которой меньше n является тавтологией. Докажем, что формульный образ секвенции, длина вывода которой равна n, является тавтологией.

Рассмотрим последнее применение правила вывода, по которому была получена секвенция n. Пусть она была получена из S_1 (или из S_1 и S_2). Длина вывода S_1 (и S_2) меньше n, т. к. они находятся раньше S в последовательности, определяющей вывод. По **индукционному предположению** формульный образ S_1 (и S_2) — тавтология. По теор. 4 $\Phi(S) \iff \Phi(S_1)$ (или $\Phi(S) \iff \Phi(S_1)$). Следовательно, $\Phi(S)$ является тавтологией.

- Достаточность: $\Phi(S)$ является тавтологией \implies ($\models S$) Доказательство по **индукции** по количеству логических связок в секвенции S:
 - База. Секвенция не содержит логических связок. В этом случае S имеет вид $p_1 \dots p_k \models q_1 \dots q_m$, где $p_1, \dots, p_k, q_1, \dots, q_m$ пропозициональные переменные. Формульный образ этой секвенции равносилен $\neg p_1 \lor \dots \lor \neg p_k \lor q_1 \lor \dots \lor q_m$ и является тавтологией. Если каждая переменная p_1, \dots, p_k отлична от любой переменной q_1, \dots, q_m , то на наборе значений $(\mathsf{U}, \dots, \mathsf{U}, \mathsf{J}, \dots, \mathsf{J})$ этот формульный образ имеет значение J , что противоречит тому что он тавтология. Значит, среди переменных p_1, \dots, p_k имеется переменная, входящая в q_1, \dots, q_m, S является аксиомой и, следовательно, выводима.
 - **Переход**. Пусть для всякой секвенции, содержащей n логических связок, и чей формульный образ является тавтологией, она выводима. Докажем, что всякая секвенция S, содержащая n+1 логическую связку, и чей формульный образ является тавтологией, выводима. Рассмотрим произвольную внешнюю связку * секвенции S. Секвенция S может быть получена по правилу ($\vdash *$) или ($* \vdash$) из одной S_1 или двух S_1 и S_2 секвенций, содержащих n логических связок. При этом по теор. 4 $\Phi(S)$ \iff $\Phi(S_1)$ & $\Phi(S_2)$ и, следовательно, $\Phi(S_1)$ & $\Phi(S_2)$ тавтология. Отсюда $\Phi(S_1)$ тавтология и $\Phi(S_2)$ тавтология. По **индукционному предположению** они выводимы.

Определение 19. Пропозициональная формула P называется *выводимой* в секвенциальном исчислении высказываний, если в нём выводима секвенция $\vdash P$.

Следствие. Секвенциальное исчисление высказываний полно и непротиворечиво.

Доказательство.

- Полнота секвенциального исчисления высказываний следует из достаточности: Пусть P тавтология. Так как $P\iff \Phi(\vdash P)$, то $\Phi(\vdash P)$ тоже тавтология и, следовательно, $\vdash P$ выводима.
- **Непротиворечивость** секвенциального исчисления высказываний следует из необходимости: Пусть в секвенциальном исчислении высказываний выводимы секвенции $\vdash P$ и $\vdash \neg P$. Тогда их формульные образы P и $\neg P$ являются тавтологиями, что невозможно.

Кроме того, по аналогии с теоремой можно доказать следующее утверждение.

Утверждение 1. Формульный образ секвенции равносилен конъюнкции формульных образов секвенций, из которых она выводима.

Определение 20. Правило вывода называется допустимым в исчислении, если по всякому выводу,

содержащему применение этого правила, можно построить вывод с той же конечной формулой, не содержащий применения этого правила.

Утверждение 2. Если в языке секвенциального исчисления высказываний имеется только две логические связки \neg и & и основными правилами вывода в нём являются ($\vdash \neg$), (\neg , \vdash), (\lor), (& \vdash), то остальные правила вывода являются допустимыми в нём.

Доказательство. Покажем допустимость остальных правил вывода на примере правила $(\rightarrow \vdash)$.

Так как в языке нет логической связки \to , формула $A \to B$ будет записана в виде $\neg (A \& \neg B)$. Поэтому правило $(\to \vdash)$ примет вид

$$\frac{\Gamma_1 \ \Gamma_2 \vdash \Delta_1 \ A \ \Delta_2 \qquad \Gamma_1 \ B \ \Gamma_2 \vdash \Delta_1 \ \Delta_2}{\Gamma_1 \ \neg (A \ \& \ \neg B) \ \Gamma_2 \vdash \Delta_1 \ \Delta_2}$$

Пусть имеется вывод с применением правила (\rightarrow \vdash). Количество применений этого правила конечно, т. к. сам вывод конечен. Для каждого применения правила (\rightarrow \vdash) обозначим 3 секвенции в правиле S_1, S_2 и S_3 соответственною То есть в выводе имеется конечная последовательность секвенций вида $S_1, \ldots, S_2, \ldots, S_3$.

Но S_3 может быть получена по правилу $(\neg \vdash)$ из

$$S'$$
 вида Γ_1 $\Gamma_2 \vdash \Delta_1$ $(A \& \neg B) \Delta_2$

S' может быть получена по правилу (\vdash &) из S_1 и

$$S''$$
 вида Γ_1 $\Gamma_2 \vdash \Delta_1 \neg B \Delta_2$

S'' может быть получена по правилу ($\vdash \neg$) из S_2 .

Таким образом для каждого применения правила ($\rightarrow \vdash$) последовательность секвенций $S_1, \ldots, S_2, \ldots, S_3$ будет заменена на $S_1, \ldots, S_2, S'', \ldots, S', S_3$.

Утверждение 3. Следующие правила являются допустимыми в секвенциальном исчислении высказываний:

• Правила перестановки.

$$\frac{\Gamma_1 \ P \ \Gamma_2 \ Q \ \Gamma_3 \vdash \Delta}{\Gamma_1 \ Q \ \Gamma_2 \ P \ \Gamma_3 \vdash \Delta} \qquad \frac{\Gamma \vdash \Delta_1 \ P \ \Delta_2 \ Q \ \Delta_3}{\Gamma \vdash \Delta_1 \ Q \ \Delta_2 \ P \ \Delta_3}$$

• Правила добавления.

$$\frac{\Gamma_1 \ \Gamma_2 \vdash \Delta}{\Gamma_1 \ P \ \Gamma_2 \vdash \Delta} \qquad \frac{\Gamma \vdash \Delta_1 \ \Delta_2}{\Gamma \vdash \Delta_1 \ P \ \Delta_2}$$

• Правила сокращения повторений.

$$\frac{\Gamma_1 \ P \ \Gamma_2 \ P \ \Gamma_3 \vdash \Delta}{\Gamma_1 \ P \ \Gamma_2 \ \Gamma_3 \vdash \Delta} \qquad \frac{\Gamma \vdash \Delta_1 \ P \ \Delta_2 \ P \ \Delta_3}{\Gamma \vdash \Delta_1 \ P \ \Delta_2 \ \Delta_3}$$

• Правила исключения логических связок, например, для &:

$$(\vdash \&_1^-) \; \frac{\Gamma \vdash \Delta_1 \; (A \;\& \; B) \; \Delta_2}{\Gamma \vdash \Delta_1 \; A \; \Delta_2} \qquad (\vdash \&_2^-) \; \frac{\Gamma \vdash \Delta_1 \; (A \;\& \; B) \; \Delta_2}{\Gamma \vdash \Delta_1 \; B \; \Delta_2} \qquad (\&^-\vdash) \; \frac{\Gamma_1 \; (A \;\& \; B) \; \Gamma_2 \vdash \Delta_1}{\Gamma_1 \; A \; B \; \Gamma_2 \vdash \Delta_1}$$

1.2.2. Метод резолюций для исчисления высказываний

Предложением в методе резолюций для исчисления высказываний называется элементарная дизъюнктия.

Формальное описание метода резолюций:

- 1. Алфавит: множество символов для записи имён пропозициональных переменных, объединённое с множеством из двух логических связок \vee и \neg .
- 2. Формулы: предложения.
- 3. Аксиомы: отсутствуют.

- 4. Правила вывода:
 - правило сокращения повторений:

$$\frac{D_1 \vee x \vee D_2 \vee x \vee D_3}{D_1 \vee x \vee D_2 \vee D_3}$$

• правило резолюции

$$\frac{D_1 \vee x \vee D_2 \qquad D_3 \vee \neg x \vee D_4}{D_1 \vee D_2 \vee D_3 \vee D_4}$$

Определение 21. Множество предложений называется ney doeneme opumы m, если из него выводимо пустое предложение nill.

Следующая теорема может быть доказана **индукцией** по количеству применения правила резолюции (необходимость) и по количеству предложений (достаточность).

Теорема 6. Для того, чтобы множество предложений было неудовлетворимо необходимо и достаточно, чтобы их конъюнкция являлась противоречием.

1.3. Исчисления предикатов

Определение 22. Имя предмета называется предметной константой.

Определение 23. *Предметной переменной* называется переменная, которая в качестве своих значений может принимать предметные константы.

Определение 24.

- 1. Предметная константа является термом.
- 2. Предметная переменная является термом.
- 3. Если t_1, \ldots, t_n термы, f-n-местный функциональный символ, то выражение $f(t_1, \ldots, t_n)$ является mepmom.
- 4. Никакие другие выражения не являются термами.

Определение 25.

- 1. Если t_1, \ldots, t_n термы, P-n-местный предикатный символ, то $P(t_1, \ldots, t_n)$ является атомарной формулой.
- 2. Никакие другие выражения не являются атомарными формулами.

Определение 26.

- 1. Атомарная формула является предикатной формулой.
- 2. Если A атомарная формула, то $\neg A$ является npedukamhoй формулой.
- 3. Если A, B предикатные формулы, * бинарная логическая связка, то (A*B) является npedu- катной формулой.
- 4. Если A предикатная формула, x предметная переменная, то $\forall xA$ и $\exists xA$ являются npedukam- ными формулами.
- 5. Никакие другие выражения не являются предикатными формулами.

Определение 27. *Кванторным комплексом* называется выражения вида $\forall x$ или $\exists x$, где x — имя предметной переменной.

Определение 28. *Областью действия* квантора называется формула, стоящая непосредственно за кванторным комплексом, содержащем вхождение этого квантора.

Определение 29. Вхождение предметной переменной в формулу называется *связанным*, если оно находится в кванторном комплексе или в области действия квантора по этой переменной.

Вхождения переменных, не являющихся связанными, называется свободным.

Определение 30. Формула без свободных переменных называется замкнутой.

Определение 31. Для того, чтобы задать интерпретацию формулы достаточно

- \bullet задать область интерпретации D множество констант;
- каждому n-местному функциональному символу f поставить в соответствие конкретную функцию из D^n в D;
- ullet каждому n-местному предикату P поставить в соответствие конкретное отношение над D^n .

Определение 32. Формула называется *истинной* (*ложной*) в заданной интерпретации, если она истинна (ложна) на всех наборах значений из области интерпретации, подставляемых вместо свободных вхождений предметных переменных этой формулы.

Определение 33. Формула называется *выполнимой* в заданной интерпретации, если она истинна хоть на одном наборе значений из области интерпретации, подставляемых вместо свободных вхождений предметных переменных этой формулы.

Определение 34. Формула называется *общезначимой* (*противоречием*), если она истинна (ложна) в любой интерпретации.

Определение 35. Формула называется выполнимой, если она выполнима хоть в одной интерпретации.

Определение 36. Формула B логически следует из формул A_1, \ldots, A_n , если в любой интерпретации на любом наборе значений свободных переменных, для которых все формулы A_1, \ldots, A_n истинны, формула B тоже истинна.

Обозначение. $A_1, \ldots, A_n \implies B$

Определение 37. Формулы A и B называются pashocunbhumu, если в любой интерпретации на любом наборе значений свободных переменных их значения совпадают.

Обозначение. $A \iff B$

Все равносильности, справедливые для пропозициональных формул, справедливы и для предикатных формул. Кроме того, имеют место равносильности для работы с кванторами. Пусть x не входит свободно в B, а y не входит в C.

$$\neg \forall xA \iff \exists x \neg A$$

$$\neg \exists xA \iff \forall x \neg A$$

$$\forall xB \iff B$$

$$\exists xB \iff B$$

$$\forall xC \iff \forall y[C]_y^x$$

$$\exists xC \iff \exists y[C]_y^x$$

$$\forall xA \& B \iff \forall x(A \& B)$$

$$\exists xA \& B \iff \forall x(A \& B)$$

$$\forall xA \lor B \iff \forall x(A \lor B)$$

$$\exists xA \lor B \iff \exists x(A \lor B)$$

$$B \to \forall xA \iff \exists x(A \lor B)$$

$$B \to \exists xA \iff \exists x(A \lor B)$$

$$B \to \exists xA \iff \exists x(A \to B)$$

$$\exists xA \to B \iff \exists x(A \to B)$$

$$\exists xA \to B \iff \forall x(A \to B)$$

$$\exists xA \to B \iff \forall x(A \to B)$$

Определение 38. Терм t называется csobodhum dns nodcmanosku в формулу A вместо свободных вхождений предметной переменной x, если он не содержит предметных переменных, в области действия кванторов по которым имеются свободные вхождения предметной переменной x.

Следствия из определения.

- 1. Любой постоянный терм свободен для подстановки в любую формулу вместо свободных вхождений любой переменной.
- 2. Переменная x свободна для подстановки в любую формулу вместо своих свободных вхождений.
- 3. Если предметная переменная x не имеет свободных вхождений формулу A, то любой терм свободен для подстановки в формулу A вместо свободных вхождений переменной x.
- 4. Если терм не содержит предметных переменных, входящих в формулу A, то он свободен для подстановки в формулу A вместо свободных вхождений любой переменной.

Определение 39. Формула находится в *предварённой нормальной форме*, если она представляет собой последовательность кванторных комплексов, все переменные которых различны, и формулы, не содержащей кванторов.

Теорема 7. По всякой предикатной формуле P можно построить такую формулу Q в предварённой нормальной форме такую, что $P \iff Q$.

Секвенциальное исчисление предикатов

Формальное описание секвенциального исчисления предикатов:

- 1. Алфавит: множество символов для записи имён предметных переменных и констант, функциональных и предикатных символов, объединённое с множеством логических связок, кванторов, запятой, символа секвенции и скобок.
- 2. Формулы исчисления: секвенции, содержащие предикатные формулы в выбранном алфавите.
- 3. Аксиомы исчисления: единственная схема аксиом:

$$\Gamma_1 A \Gamma_2 \vdash \Delta_1 A \Delta_2$$

4. Правила вывода для логических связок такие же, как в секвенциальном исчислении высказываний, но добавлены ещё четыре правила для кванторов и правила сокращения повторений.

$$(\vdash \exists) \ \frac{\Gamma \vdash \Delta_1 \ [A]_T^x \Delta_2}{\Gamma \vdash \Delta_1 \ \exists xA \ \Delta_2} \qquad (\forall \vdash) \ \frac{\Gamma_1 \ [A]_T^x \ \Gamma_2 \vdash \Delta}{\Gamma_1 \ \forall xA \ \Gamma_2 \vdash \Delta},$$

где терм T свободен для подстановки в формулу A вместо свободных вхождений предметной переменной x.

$$(\exists \vdash) \ \frac{\Gamma_1 \ [A]_y^x \ \Gamma_2 \vdash \Delta}{\Gamma_1 \ \exists xA \ \Gamma_2 \vdash \Delta} \qquad (\vdash \forall) \ \frac{\Gamma \vdash \Delta_1 \ [A]_y^x \ \Delta_2}{\Gamma \vdash \Delta_1 \ \forall xA \ \Delta_2},$$

где переменная y не входит свободно в заключение правила и свободна для подстановки в формулу A вместо свободных вхождений предметной x.

$$\frac{\Gamma_1 \ P \ \Gamma_2 \ P \ \Gamma_3 \vdash \Delta}{\Gamma_1 \ P \ \Gamma_2 \ \Gamma_3 \ \vdash \Delta} \qquad \frac{\Gamma \vdash \Delta_1 \ P \ \Delta_2 \ P \ \Delta_3}{\Gamma \vdash \Delta_1 \ P \ \Delta_2 \ \Delta_3}$$

Определение 40. Секвенция называется *чистой*, если ни одна переменная не имеет одновременно свободных и связанных вхождений.

Теорема 8. Чистая секвенция выводима в секвенциальном исчислении тогда и только тогда, когда её формульный образ общезначим.

Теорема 9. Секвенциальное исчисление полно и непротиворечиво.

Метод резолюций для исчисления предикатов

Определение 41. Общим унификатором формул Q и R называется такая подстановка $\lambda = \begin{vmatrix} x_1...x_n \\ t_1...t_n \end{vmatrix}$ термов $t_1...t_n$ вместо свободных вхождений предметных переменных $x_1...x_n$, что результаты этой подстановки в формулы Q и R графически совпадают.

Формальное описание метода резолюций для исчисления предикатов:

- 1. Алфавит: множество символов для записи имён предметных переменных и констант, имён предикатных переменных и функциональных символов, объединённое с множеством из двух логических связок ∨ и ¬, скобок, а также запятой.
- 2. Формулы: предложения.
- 3. Аксиомы: отсутствуют.
- 4. Правила вывода:
 - правило резолюции:

$$\frac{D_1 \vee R_1 \vee D_2 \qquad D_3 \vee \neg R_2 \vee D_4}{[D_1 \vee D_2 \vee D_3 \vee D_4]\lambda},$$

где λ — общий унификатор формул R_1 и R_2 .

• правило сокращения повторений:

$$\frac{D_1 \vee R \vee D_2 \vee R \vee D_3}{D_1 \vee R \vee D_2 \vee D_3}$$

Определение 42. Множество предложений называется ney doen em eopumы m, если из него выводимо пустое предложение nill.

Теорема 10. Для того, чтобы множество предложений было неудовлетворимо необходимо и достаточно, чтобы их конъюнкция являлась противоречием.

Определение 43. *Сколемовской константой (функцией)* называется константа (функция), существование которой утверждается в формуле, но её значение (определение) может быть неизвестно.

Глава 2

Формальные теории

Для того, чтобы задать формальную теорию необходимо задать

- множество констант D;
- множество функциональных символов F;
- множество предикатных символов P;
- множество аксиом, определяющих "смысл" констант, функциональных и предикатных символов.

При этом говорят, что задана формальная теория в сигнатуре (D, F, P).

Кроме того, для определения ΦT требуется выбрать исчисление, в котором будут доказываться формулы ΦT . Следовательно, в определение ΦT входят аксиомы соответствующего исчисления.

Формальные теории с равенством

Определение 44. Φ Т называется Φ Т с равенством, если множество предикатных символов содержит выделенных двухместный предикат = и для любой формулы A(x) выводимы следующие формулы

- $\bullet \ \forall x(x=x)$
- $\forall x \ y (x = y \to (A(x) \leftrightarrow A(y)))$

Это равносильно тому, что ФТ с равенством содержит следующие аксиомы для равенства:

ER (рефлексивность равенства). $\forall x(x=x)$;

ES (симметричность равенства). $\forall x \ y(x = y \rightarrow y = x);$

ET (транзитивность равенства). $\forall x \ y \ z(x=y \ \& \ y=z \to x=z).$

и аксиомы согласования с равенством для любого функционального символа из сигнатуры:

$$\forall x \ y \Big(x = y \to \big(f(\overline{u}, x, \overline{v}) = f(\overline{u}, y, \overline{v}) \big) \Big)$$

Теории множеств

Парадокс Рассела в наивной теории множеств

Рассмотрим множество

$$A = \{ x : \neg (x \in x) \}$$

Доказано, что ни $A \in A$, ни $A \notin A$. При этом,

$$\forall x (x \in A \leftrightarrow \neg (x \in x))$$

В частности, при x = A получаем

$$A \in A \leftrightarrow \neg (A \in A)$$

Эта формула заведомо ложна. Следовательно, в наивной теории множеств доказуема ложная формула. Таким образом, наивная теория множеств противоречива.

Теория типов Рассела

Рассматриваются множества различных типов:

- 1. Индивиды, т. е. множества, не имеющие элементов, обозначаются x_1, y_1, \dots
- 2. Классы индивидов, т. е. множества, элементами которых являются индивиды, обозначаются x_2, y_2, \dots

. . .

i+1. Классы объектов типа i, обозначаются x_{i+1},y_{i+1},\dots

. . .

При таких ограничениях парадокс Рассела невозможен, т. к. нельзя написать $x \in x$, а только $x_i \in x_{i+1}$.

Определение 45. Упорядоченная пара двух множеств *i*-го типа — это множество i+2-го типа: $(x_i, y_i) = \{\{x_i\}, \{x_i, y_i\}\}.$

Определение 46. *Бинарное отношение*— это множество упорядоченных пар, т. е. *бинарное отношение* между множествами i-го типа— это множество i+3-го типа.

Формальное определение теории типов. Теория типов—это формальная теория в сигнатуре $\langle ;; \in, = \rangle$. Так как в сигнатуре имеется предикат равенства, в **T** присутствуют аксиомы для равенства и аксиомы согласования с равенством для предиката \in .

Собственные аксиомы теории типов:

1. Аксиома объёмности.

Два множества равны, если они равны поэлементно.

$$\forall y_{i+} z_{i+1} \Big(\forall x_i \big(x_i \in y_{i+1} \leftrightarrow x_i \in z_{i+1} \big) \to y_{i+1} = z_{i+1} \Big)$$

2. Схема аксиом выделения.

Для всякой формулы в терминах ${\bf T}$ со свободное переменной i-го типа существует множество i+1-го типа, все элементы которого и только они удовлетворяют этой формуле.

Если $F(x_i)$ — формула в терминах **T** со свободной переменной x_i , то

$$\exists y_{i+1} \forall x_i (x_i \in y_{i+1} \leftrightarrow F(x_i))$$

3. Аксиома бесконечности.

В \mathbf{T} имеется бесконечное множество индивидов.

$$\forall w_4 \Big(\forall x_1 \ \neg w_4(x_1, x_1) \quad \& \quad \forall x_1 \ \exists y_1 \ w_4(x_1, y_1) \quad \& \\ \forall x_1 \ \forall y_1 \ \forall z_1 \Big(w_4(x_1, y_1) \ \& \ w_4(y_1, z_1) \to w_4(x_1, z_1) \Big) \Big)$$

Аксиоматическая теория множеств Цермело-Френкеля

Формальное определение аксиоматической теории множеств *Аксиоматическая теория множеств Цермело*—*Френкеля* **ZF**—это формальная теория в сигнатуре $\langle ;; \in, = \rangle$. В **ZF** присутствуют аксиомы для равенства и аксиомы согласования с равенством для \in .

Собственные аксиомы \mathbf{ZF} :

1. Аксиома объёмности.

Два множества равны, если они равны поэлементно.

$$\forall xy \big(\forall u (u \in x \leftrightarrow u \in y) \to x = y \big)$$

2. Аксиома пары.

Двухэлементное множество является множеством.

$$\forall xy \exists w \forall z \big(z \in w \leftrightarrow (z = x \land z = y) \big)$$

$$w = \{x, y\}$$

3. Аксиома суммы (объединения).

Для всякого множества множеств объединение всех входящих в него множеств является множеством.

$$\forall x \exists w \forall y \big(y \in w \leftrightarrow \exists z (z \in x \& y \in z) \big)$$

$$w = \bigcup_{z \in x}$$

4. Аксиома булеана.

$$\forall x \exists w \forall y \big(y \in w \leftrightarrow \forall z (z \in y \to z \in x) \big)$$
$$w = P(x) = 2^x$$

5. Схема аксиом выделения.

Для всякой формулы φ с одной свободной переменной v

$$\forall x \exists w \forall y (y \in w \leftrightarrow y \in x \& [\varphi]_y^v)$$

$$w = \{ v \in x : \varphi(v) \}$$

6. Аксиома бесконечности.

Существуют бесконечные множества.

$$\exists y (\emptyset \in y \& \forall x (x \in y \to \{x\} \in y))$$

7. Аксиома ограничения (фундирования).

У непустого множества имеется элемент, не пересекающийся с ним.

$$\forall y \big(\neg (y = \emptyset) \to \exists x (x \in y \& x \cap y = \emptyset) \big)$$

8. Аксиома подстановки.

Образ множества является множеством (даже если функция F не является множеством).

$$\forall x \exists y \forall z \Big(\exists u \big(u \in x \& (u, z) \in F \big) \leftrightarrow z \in y \Big)$$

9. Аксиома выбора.

Для любого множества S непустых множеств существует функция f, определённая на всех элементах множества S, что

$$\forall S \exists f \forall x (x \in S \to f(x) \in x)$$

Определение 47. *Ординалом* называется множество, вполне упорядоченное отношением включения ⊂, каждый элемент которого является его подмножеством.

Конечные ординалы

- Пустое множество ∅ является нулевым ординалом.
- Первый ординал {∅}.
- Второй ординал { ∅, { ∅ } }.

• Пусть $\{X\}$ — n-й ординал. Тогда n+1-й ординал $\{X,\{X\}\}$.

Бесконечные ординалы

По аксиоме бесконечности

$$w = \left\{ \underbrace{\emptyset}_{0}, \underbrace{\{\emptyset\}}_{1}, \underbrace{\{\emptyset, \{\emptyset\}\}}_{2}, \dots, \underbrace{\{X\}}_{n}, \underbrace{\{X, \{X\}\}}_{n+1}, \dots \right\}$$

является множеством. Это первый бесконечный ординал.

Далее последовательность бесконечных ординалов строится следующим образом.

$$2w = \left\{ \underbrace{w}_{w}, \underbrace{w \cup \{w\}, w \cup \{w, \{w\}\}, \dots, w \cup \{X\}, w \cup \{X, \{X\}\}, \dots}_{w+n} \right\}$$

$$3w = \left\{ \underbrace{2w, 2w \cup \{w\}, 2w \cup \{w, \{w\}\}, \dots, 2w \cup \{X\}, 2w \cup \{X, \{X\}\}, \dots}_{2w+n} \right\}$$

$$\dots$$

$$(k+1)w = \left\{ \underbrace{kw, kw \cup \{w\}, kw \cup \{w, \{w\}\}, \dots, kw \cup \{X\}, kw \cup \{X, \{X\}\}, \dots}_{kw+n} \right\}$$

$$\dots$$

$$w^{2} = \bigcup_{k=1}^{w} kw$$

Аналогичным образом строятся $w^2 + 1, w^2 + 2, \dots, w^3, \dots, w^w = \varepsilon_0.$

Ординал ε_0 — первый несчётный ординал. К нему таким же образом можно прибавлять по единице.

Формальная арифметика

Формальная арифметика — это ΦT в сигнатуре $(0; S, +, \cdot, \hat{}; =)$.

Так как в сигнатуре присутствует знак =, то для каждого функционального символа требуются аксиомы согласования с равенством. Например, для S она имеет вид

$$\forall x \ y \Big(x = y \to \big(S(x) = S(y) \big) \Big)$$

Для двухместного функционального символа можно написать две аксиомы

$$\forall x \ y \ z(x=y \to (x+z=y+z))$$
 $\forall x \ y \ z(x=y \to (z+x=z+y))$

или одну аксиому

$$\forall x \ y \ u \ v(x=y \ \& \ u=v \to (x+u=y+v))$$

Собственные аксиомы FA.

- 1. $\forall x \neg (S(x) = 0)$
- 2. $\forall xy (S(x) = S(y) \to x = y)$
- 3. $\forall x(x+0=x)$ $\forall xy(x+S(y)=S(x+y))$
- 4. $\forall x(x \cdot 0 = 0)$ $\forall xy(x \cdot S(y) = x \cdot y + x)$ 5. $\forall x(x^0 = S(0))$ $\forall xy(x^{S(y)} = x^y \cdot x)$
- 6. Аксиома индукции. Для любой формулы A(x)

$$A(0)$$
 & $\forall x \Big(A(x) \to A \big(S(x) \big) \Big) \to \forall x A(x)$

Полнота и непротиворечивость

Определение 48. *Номером буквы a_i* называется цифра i (p+1)-чной системы счисления.

Обозначение. $\#a_i = i$

Определение 49. *Номером слова* $a_{i_1} \dots a_{i_n}$ называется число $(\overline{i_1 \dots i_n})_{p+1}$.

Поскольку вывод — это последовательность формул, то вывод — это тоже слово в том же алфавите и имеет номер.

Гёдель ввёл в рассмотрение предикат $\models (X, \#\varphi)$ — "число X является номером вывода формулы φ ", для которого явно выписал формулу на языке **FA** и доказал, что выводимость такой формулы равносильна её истинности.

Кроме того, Гёдель рассмотрел формулу

$$G(\#\varphi) \iff \forall X \Big(\models (X, \#\varphi) \to \exists Y \big(Y < X \& \models (Y, \#\neg\varphi) \big) \Big)$$

Для этой формулы справедливо следующее утверждение.

Утверждение 4. Если формальная арифметика непротиворечива, то φ выводима тогда и только тогда, когда $G(\#\varphi)$ ложна.

Обозначим номер $G(\#\varphi)$ как #G.

Теоремы Гёделя о неполноте

Теорема 11 (первая Гёделя).

- 1. Если FA непротиворечива, то она не полна.
- 2. Если FA непротиворечива, то в ней существует замкнутая формула, для которой не выводима ни она сама, ни её отрицание.
- 3. Если FA непротиворечива, то в ней не выводимы ни формула G(#G), ни её отрицание $\neg G(\#G)$.

Лемма 1. FA противоречива тогда и только тогда, когда в ней выводима формула S(0) = 0.

Доказательство.

• ===

Это можно доказать, например, в секвенциальном исчислении предикатов с использованием правил добавления и сечения.

П

• <==

В FA имеется аксиома $\forall x \neg (S(x) = 0)$ и, следовательно, $\neg (S(0) = 0)$ выводима.

Теорема 12 (вторая Гёделя).

- 1. Если средствами FA можно доказать, что она непротиворечива, то она противоречива.
- 2. Если в FA выводима формула

$$\forall x \neg \models (x, \#(S(0) = 0)),$$

то в ней выводима формула S(0) = 0.

Консервативное расширение FA

Построим нестандартное расширение *FA, в котором присутствуют бесконечно большие натуральные числа. Для этого заменим аксиому 6 на *6 и введём схему аксиом *7, декларирующую, что w больше любого натурального числа.

*6. Для всякой формулы A(x) с одной свободной переменной x

$$A(0) \& \forall x \Big(\forall y \big(y < x \& A(y) \big) \to A(x) \Big) \to \forall x A(x)$$

*7.

$$w > S(0)$$
 \dots
 $w > \underbrace{S(\dots S(0)\dots)}_{n}$

Для нестандартного расширения *FA можно доказать аналог принципа переноса Лейбница, который означает консервативность такого расширения.

Теорема 13. Всякая замкнутая формула аксиоматической теории чисел одновременно выводима в FA и *FA.

Доказательство.

- Пусть замкнутая формула выводима в FA. Это означает, что в построенном выводе нет константы w, не используется аксиома *7, и может использоваться аксиома 6, которая следует из *6. Следовательно, имеется вывод и в *FA.
- Пусть замкнутая формула выводима в *FA. В выводе может присутствовать константа w. Найдём самое большое натуральное число n, присутствующее в выводе. Все вхождения w в выводе заменим на константу n+1.

Если в выводе присутствует аксиома *7 вида k < w, она заменится на выводимую формулу k < n+1. Использование трансфинитной индукции *6 заменим на использование аксиомы индукции 6.

Глава 3

Теория алгоритмов

Один из способов задания конструктивных объектов — формулы Бэкуса.

```
Определение 50. Формулы Бэкуса имеют вид <понятие> := <понятие_1 > | <понятие_2 > | <понятие_i > <понятие_i > | ...
```

3.1. Рекурсивные функции

Определение 51. *Простейшими* называются функции натурального аргумента, определяемые равенствами

$$S(x) = x + 1,$$
 $O(x) = 0,$ $I_n^m(x_1, ..., x_n) = x_m$

Определение 52. Функция f от n+1 переменных получена их функции g от n переменных и функции h от n+2 переменных с помощью *оператора примитивной рекурсии*, если

$$\begin{cases} f(x_1, \dots, x_n, 0) = g(x_1, \dots, x_n) \\ f(x_1, \dots, x_n, y + 1) = h(x_1, \dots, x_n, y, f(x_1, \dots, x_n, y)) \end{cases}$$

Определение 53. Оператор неограниченной минимизации μ определяется как

$$g(x_1,...,x_n) = \mu y \{ f(x_1,...,x_n,y) = 0 \}$$

(наименьшее y, для которого $f(x_1, ..., x_n, y) = 0$)

Определение 54. Оператор ограниченной минимизации $\mu_{< z}$ определяется как

$$g(x_1, \ldots, x_n, z) = \mu \ y_{\leq z} \{ f(x_1, \ldots, x_n, y) = 0 \}$$

(наименьшее y, не превосходящее z и для которого $f(x_1,\ldots,x_n,y)=0$, иначе 0)

Определение 55. Функция называется *частично рекурсивной*, если она может быть получена из простейших с помощью применения операторов подстановки, примитивной рекурсии и ограниченной минимизации.

Определение 56. Обобщённый оператор минимизации определяется как

$$\mu^*\ y\ \{\ f(\overline{x},y)=0\ \} = \begin{cases} \mu\ y\ \{\ f(\overline{x},y)=0\ \}\ , &\text{если такой } y \text{ существует},\\ 0 &\text{иначе} \end{cases}$$

Определение 57. Функция называется *общерекурсивной*, если она может быть получена из простейших с помощью применения операторов подстановки, примитивной рекурсии и обобщённой минимизации.

3.2. Машины Тьюринга

Определение 58. *Машина Тьюринга* задаётся тройкой (A, Q, P), где

- $A = \{a_1, \dots, a_n\}$ внешний алфавит (содержащий пустой символ, который будем обозначать *);
- $Q = \{q_0, q_1, \dots, q_k\}$ внутренний алфавит, в котором выделена начальное и заключительное состояния q_1 и q_0 ;
- Р программа

Определение 59. Команда машины Тьюринга имеет вид

$$q_r a_i \to q_t S a_i$$
,

где
$$i, j = 1, \dots, n, \quad r = 1, \dots, k, \quad t = 0, 1, \dots, k, \quad S \in L, R, _.$$

Определение 60. Команды называются *согласованными*, если они имеют различные левые части, или полностью совпадают.

Определение 61. *Программой машины Тьюринга* называется конечное непустое множество согласованных команд.

Определение 62. Конфигурацией машины Тьюринга называется слово вида

$$b_1 \dots b_p - 1 \boldsymbol{q_r} b_p \dots b_l,$$

где

- b_1, \ldots, b_l слово в алфавите A, записанное на ленте;
- слева и справа от этого слова на ленте находятся только пустые символы;
- машина находится в состоянии q_r и обозревает p-й символ этого слова;
- на концах конфигурации находится не более чем по одному пустому символу;

Определение 63. *Протоколом работы машины Тьюринга* называется последовательность конфигураций, первая из которых является начальной, а каждая следующая получена из предыдущей одной из команд.

Машина Тьюринга заканчивает работу над данными X, если она пришла в состояние q_0 , или ни одна из команд не может быть применена к текущей конфигурации.

Тезис Тьюринга—Чёрча. Всякая интуитивно вычислимая функция может быть вычислена на машине Тьюринга.

Лемма 2. По всякой машине Тьюринга M, которая по данным X в алфавите A вычисляет значение функции f(X), можно построить машину Тьюринга M_1 , которая по данным X вычисляет значение функции f(X) и заканчивает работу в конфигурации q_0 f(X).

Доказательство.

1. Пометим начало слова символом, не входящим в алфавит A (например, символом #) и вернёмся в начало исходных данных.

$$q_1 a_i \rightarrow q_1 L a_i$$

$$q_1* \rightarrow q_2 R \#$$

- 2. В программе машины M каждое вхождение состояния q_i заменяем на q_{i+1} .
- 3. Возможны два случая завершения работы программы:
 - Машина Тьюринга завершила работу в конфигурации $\#Y'q_0Y''$, где Y'Y'' совпадает с f(X). Заменяем в тексте программы состояние q_0 на q_{k+2} и добавляем команды

$$q_{k+2}a_i \to q_{k+2}La_i, \qquad a_i \in A$$

$$q_{k+2}\# \to q_0R*$$

• Машина Тьюринга завершила работу в конфигурации $\#Y'q_ta_iY'''$, где $Y'a_iY'''$ совпадает с f(X) и в программе отсутствует команда с левой частью q_ta_i .

Для каждого состояния q_t и каждого символа a_i из алфавита, для которых в программе отсутствует команда с левой частью $q_t a_i$, добавляем команду

$$q_t a_i \to q_{k+2} L a_i$$

и команды, указанные в предыдущем пункте.

Теорема 14. Пусть машина Тьюринга M_1 по данным X в алфавите A_1 вычисляет значение функции g(X) в алфавите A_2 , машина Тьюринга M_2 по данным Y в алфавите A_2 вычисляет значение функции f(Y).

Тогда существует машина Тьюринга M_3 , которая по данным X вычисляет значение функции f(g(X)).

Доказательство. Пусть M_i (i=1,2) имеет программу P_i и использует состояния $\{q_0,q_1,\ldots,q_{k_i}\}$. В соответствии с леммой можно считать, что M_1 заканчивает работу в конфигурации $q_0g(X)$.

В программе P_1 состояние q_0 заменяем на q_{k_1+1} , получаем программу P'_1 .

В программе P_2 состояния q_i $(i=1,\ldots,k_2)$ заменяем на q_{k_1+i} , получаем программу P_2' .

Машина с программой $P_1' \cup P_2'$ вычисляет f(g(X)).

Аналогичную теорему можно доказать и для функций нескольких аргументов. Однако при её доказательстве требуется лемма, которая будет приведена здесь без доказательства.

Определение 64. Машина Тьюринга называется машиной Тьюринга с односторонне-ограниченной лентой, если она не использует ячейки, расположенные левее ячейки с первым символов исходных данных (левосторонне-ограниченная), или расположенные правее ячейки с последним символом исходных данных (правосторонне-ограниченная).

Лемма 3. По всякой машине Тьюринга можно построить машину Тьюринга с односторонне-ограниченной лентой, у которой на любых исходных данных результат её работу совпадает с результатом работы M.

Теорема 15. Пусть машина Тьюринга M_1 по данным $X_1, \ldots, X_i, \ldots, X_n$ в алфавите A_1 вычисляет значение функции $f(X_1, \ldots, X_i, \ldots, X_n)$ в алфавите A_2 , машина Тьюринга M_2 по данным Y_1, \ldots, Y_m в алфавите A_2 вычисляет значение функции $g(Y_1, \ldots, Y_m)$.

Тогда существует машина Тьюринга M_3 , которая по данным $X_1,\ldots,X_{i-1},X_{i+1},\ldots,X_n,Y_1,\ldots,Y_m$ вычисляет значение функции $f(X_1,\ldots,X_{i-1},g(Y_1,\ldots,Y_m),X_{i+1},\ldots,X_n)$.

Доказательство.

- 1. По машине M_2 строим левосторонне-ограниченную машину M_3 с программой P_3 .
- 2. Машина с программой P_0 с состояниями $q_0, q_1, \ldots, q_{k_0}$ отмечает место между X_{i-1} и X_{i+1} и подводит головку к первому символу данных Y_1, \ldots, Y_m . Заменив q_0 на q_{k_0+1} получаем программу P_0' .
- 3. В программе P_3 заменяем q_i на q_{k_0+i} при $i\neq 0$, а q_0 на $q_{k_0+k_3+1}$ и получаем программу P_3' .
- 4. Машина с программой P_4 с состояниями q_0, q_1, \dots, q_{k_4} вставляет результат работы программы

 P_3' между X_{i-1} и X_{i+1} и подводит головку к первому символу, записанному на ленте. Заменив q_i на $q_{k_0+k_3+i}$ при $i \neq 0$, а q_0 на $q_{k_0+k_3k_4+1}$ получаем программу P_4' .

5. В программе P_1 для машины M_1 заменяем q_i при $i \neq 0$ на $q_{k_0+k_3+k_4+i}$ и получаем программу P_1' . Машина с программой $P-0' \cup P_3' \cup P_4' \cup P_1'$ вычисляет $f\left(X_1,\ldots,X_{i-1},g(Y_1,\ldots,Y_m),X_{i+1},\ldots,X_n\right)$

3.2.1. Многоленточные МТ

Определение 65. Команда *k*-ленточной машины Тьюринга имеет вид

$$q_r \begin{pmatrix} a_{i_1} \\ \vdots \\ a_{i_k} \end{pmatrix} \to q_t \begin{pmatrix} S_1 \\ \vdots \\ S_k \end{pmatrix} \begin{pmatrix} a_{j_1} \\ \vdots \\ a_{j_k} \end{pmatrix},$$

где
$$S_1, \ldots, S_k \in \{L, R, _\}.$$

Обычно предполагается, что 1-я лента—это входная лента для записи исходных данных, k-я лента—это выходная лента для записи результата, остальные ленты—это рабочие ленты.

Теорема 16. По всякой k-ленточной машине Тьюринга МТk, заканчивающей работу с исходными данными X за t шагов, можно построить одноленточную машину Тьюринга MT1, результат работы которой с исходными данными X совпадает с результатом работы и число шагов которой составляет $O(t^2)$.

Доказательство. Пусть длина записи исходных данных равна n, причём $n \leq t$. Будем считать, что первая лента входная, а последняя—выходная.

На i-м шаге (i = 1, ..., t) длина записи на j-ой ленте MTk (j = 2, ..., k) может увеличиться не более чем на единицу (стать равной i), причём запись нового символа может происходить как в середине слова, так и на одном его концов. При этом содержимое лент имеет вид

$$\begin{pmatrix} X \\ X_i^2 \\ \vdots \\ X_i^k \end{pmatrix}$$

Конфигурация моделирующей машины МТ1 в этот момент имеет вид

$$X*q_lX_i^2*\cdots*X_i^k$$

при некотором l.

Для моделирования i-го шага MTk машина MT1 должна для каждого $(j=2,\ldots,k)$

- сдвинуть головку на символ, обозреваемый МТк на j-ой ленте (не более, чем $\|X_i^{j-1}\| + \|X_i^j\|$ шагов);
- произвести действие, которое MTk производит со словом X_i^j (1 mar);
- в случае необходимости переместить всё содержимое ленты правее положения головки на одну ячейку вправо (не более, чем $4\sum_{j'=j}^k \|X_i^{j'}\|$);
- \bullet вернуться в исходное положение (не более, чем $\sum_{j'=j}^k \|X_i^{j'}\|$ шагов);
- вернуться в исходное положение (не более, чем $\sum j' = j^k \|X_i^{j'}\|$ шагов).

Всего при моделировании действия MTk с одним символом на i-ом шаге MT1 совершает не более

$$\sum_{j=2}^{k} \left(\|X_i^{j-1}\| + \|X_i^j\| + 1 + 4\sum_{j'=j}^{k} \|X_i^{j'}\| + \sum_{j'=j}^{k} \|X_i^{j'}\| \right) \le \sum_{j=2}^{k} \left(i + i + 1 + 5\sum_{j'=j}^{k} i \right) = \sum_{j=2}^{k} \left(5(k-j)i + 2i + 1 \right) = \frac{1}{2} \cdot 5i(k-1)(k-2) + 2i(k-1) + 2(k-1) = \frac{3}{i}(k-1)(3k-4) + 2(k-1)$$

Просуммировав полученное выражение по i = 1, ..., t имеем

$$\frac{3}{2} \sum_{k=1}^{t} i((k-1)(3k-4) + 2(k-1)) = \frac{3}{2}(k-1)(3k-4) \frac{t(t-1)}{2} + 2(k-1) = O(k^2t^2)$$

Так как k является константой, то получили $O(t^2)$.

Многоголовчатые МТ

Определение 66. Команда т-головчатой машины Тьюринга имеет вид

$$q_r(a_{i_1}, \ldots, a_{i_m}) \to q_t(A_1, \ldots, S_m)(a_{j_1}, \ldots, a_{j_m}),$$

где $S_1, \ldots, S_m \in \{L, R, _\}$.

Недетерминированные МТ

Лемма 4. Если недетерминированная машина Тьюринга, проверяющая предикат $\exists Y \ P(X,Y)$ заканчивает работу с исходными данными X за t шагов, то длина "претендента" Y не превосходит t.

Доказательство. Утверждение леммы следует из того, что длина записи слова не может быть больше, чем число шагов, затраченных на его выписывание.

Лемма 5. Если недетерминированная машина Тьюринга, проверяющая предикат $\exists Y \ P(X,Y)$ заканчивает работу с исходными данными X за t шагов, то количество "претендентов" Y не превосходит $2^{O(t)}$.

Доказательство. Пусть $A = \{a_1, \dots, a_k\}$ — внешний алфавит недетерминированной машины Тьюринга. Количество "претендентов" m не превосходит количества слов в этом алфавите, длина которых не превосходит t, т. е.

$$m \le \sum_{i=0}^{t} k^i = \frac{k^{t+1} - 1}{k - 1} \le k^{t+1} = 2^{(t+1)\log k} = 2^{O(t)}$$

Теорема 17. По всякой недетерминированной машине Тьюринга, проверяющей предикат $\exists Y \ P(X,Y)$ и заканчивающей работу с исходными данными X за t шагов, можно построить одноленточную машину Тьюринга, результат работы которой с исходными данными X совпадает с результатом работы исходной и число шагов которой составляет $2^{O(t)}$.

Доказательство. Работу детерминированной машины Тьюринга организуем следующим образом:

- 1. порождаем Y_1 , проверяем $P(X, Y_1) \le t$ шагов;
- 2. порождаем Y_m , проверяем $P(X, Y_m) \le t$ шагов.

Общее число шагов не превосходит $m \cdot t \le t \cdot 2^{O(t)} = 2^{O(t + \log t)} = 2^{O(t)}$.

Следствие (из доказательства). Если недетерминированная машина Тьюринга, проверяющая предикат $\exists Y\ P(X,Y)$ заканчивает работу с исходными данными X за t шагов, то можно построить одноленточную машину Тьюринга, результат работы которой с исходными данными X совпадает с результатом работы исходной и число используемых ячеек которой не превосходит t.

Доказательство. Для доказательства этого следствия достаточно в доказательстве теоремы после каждой проверки $P(X, Y_m)$ возвращать головку машины Тьюринга в исхожное положение. При этом число шагов может увеличиться вдвое.

3.3. Нормальные алгоритмы Маркова

Определение 67. Марковской подстановкой называется операция над словами $P \to Q$, состоящая в следующем. В обрабатываемом слове R находят первое вхождение слова P (если таковое имеется) и, не изменяя остальных частей слова R, это вхождение заменяют в нём словом Q. Полученное слово называется результатом применения марковской подстановки к слову R. Если же вхождения P в слово R нет, то считается, что марковская подстановка $P \to Q$ не применима к слову R.

Марковская подстановка вида $P \to Q$ называется заключительной.

Определение 68. Упорядоченный конечный список подстановок

$$\begin{cases} P_1 \to [\cdot]Q_1, \\ \dots \\ P_r \to [\cdot]Q_r, \end{cases}$$

в алфавите A называется записью нормального алгоритма в A.

Принцип нормализации Маркова Всякая интуитивно вычислимая функция может быть вычислена с помощью нормального алгоритма.

Теорема 18. Следующие классы функции, заданных на натуральных числах и принимающих натуральные значения, совпадают:

- 1. класс всех функций, вычислимых по Тьюрингу;
- 2. класс всех частично рекурсивных функций;
- 3. класс всех нормально вычислимых функций.

3.4. Код алгоритма. Применимость алгоритма к данным

Определение 69. Алгоритм A называется $npuменимым \kappa$ данным P, если он заканчивает работу над данными P за конечное число шагов.

Обозначение. !А(Р)

Определение 70. Алгоритм A называется *самоприменимым*, если он применим к собственному коду.

Обозначение. !А(#А)

Определение 71. Алгоритм A называется *самоаннулируемым*, если результат его применения к собственному коду равен пустому слову (нулю).

Обозначение. $A(\#A) = \Lambda$

Определение 72. Алгоритм U называется *универсальным*, если для любого алгоритма A и исходных данных P, к которым он применим, U применим к #A и P и результаты их работы совпадают.

$$\forall A \ P\Big(!A(P) \to !U(\#A, P) \& U(\#A, P) = A(P)\Big)$$

Определение 73. Алгоритм B называется *продолжением алгоритма* A ($A \subset B$), если для любых исходных данных P, к которым применим алгоритм A, алгоритм B тоже применим к ним и результаты их работы совпадают.

$$\forall P(!A(P) \to !B(P) \& A(P) = B(P))$$

Теорема 19. Не существует такого алгоритма B, который применим к кодам тех и только тех алгоритмов, которые не являются самоприменимыми.

$$\neg \exists B \ \forall A (!B(\#A) \leftrightarrow \neg !A(\#A))$$

Доказательство. Предположим, что такой алгоритм B_0 существует

$$\forall A (!B_0(\#A) \leftrightarrow \neg !A(\#A))$$

Тогда при $A=B_0$ верно

$$!B_0(\#B_0) \leftrightarrow \neg !B_0(\#B_0),$$

что невозможно.

Теорема 20. Не существует такого алгоритма B, который равен нулю на кодах тех и только тех алгоритмов, которые не являются самоаннулируемыми.

$$\neg B \ \forall A \big(B(\#A) = \Lambda \leftrightarrow A(\#A) \neq \Lambda \big)$$

Доказательство. Предположим, что такой алгоритм B_0 существует

$$\forall A (B_0(\#A) = \Lambda \leftrightarrow A(\#A) \neq \Lambda)$$

Тогда при $A=B_0$ верно

$$B_0(\#B_0) = \Lambda \leftrightarrow B_0(\#B_0) \neq \Lambda,$$

что невозможно.

Теорема 21. Не существует всюду применимого продолжения универсального алгоритма.

Доказательство. Предположим, что такой алгоритм B_0 существует.

Построим алгоритм C, определяемый равенством $\forall x (C(x) = B_0(x, x) || a_1)$, т. е. к результату его работы приписан символ a_1 . Этот алгоритм всюду применим и следовательно, применим к собственному коду и $C(\#C) = B_0(\#C, \#C) || a_1$.

Так как B_0 — продолжение универсального алгоритма, то верно, что $\forall A \ P\Big(!A(P) \to !B_0(\#A,P) \ \&$

$$B_0(\#A,P) = A(P)$$
), в частности, при $A = C, P = \#C$

$$B_0(\#C, \#C) = C(\#C),$$

что противоречит полученному ранее значению для C(#C).

3.5. Массовые проблемы. Алгоритмическая разрешимость и неразрешимость

Определение 74. Массовой проблемой называется задача вида

$$(?x) \varphi(x),$$

где $\varphi(x)$ — формула какого-либо формализованного языка со свободной переменной x.

Определение 75. Массовая проблема (?x) $\varphi(x)$ называется *алгоритмически разрешимой*, если существует всюду применимый алгоритм B, равный пустому слову Λ на тех и только тех значениях

параметра x, для которых верна формула $\varphi(x)$

$$\exists B \ \forall x \big(B(x) = \Lambda \leftrightarrow \varphi(x) \big)$$

Теорема 22. Массовая проблема самоприменимости алгоритма

$$(?A) !A(\#A)$$

алгоритмически неразрешима.

Доказательство. Предположим, что (?A) !A(#A) алгоритмически разрешима, т. е. имеется всюду применимый алгоритм B_0 такой, что

$$\forall A(B_0(\#A) = \Lambda \leftrightarrow !A(\#A))$$

Построим алгоритм C, который применим к данным x тогда и только тогда, когда $B_0(x) \neq \Lambda$. Доказательство проведём для машины Тьюринга.

Пусть M_1 — программа машины Тьюринга, вычисляющей B_0 и имеющей состояния q_0, q_1, \dots, q_{k_1} . Заменим в программе M_1 состояние q_0 на q_{k_1+1} и добавим команды

$$q_{k_1+1}a \to q_0a, \qquad a \in A, \quad a \neq *$$

$$q_{k_1+1}* \to q_{k_1+2}*$$

Эта машина Тьюринга остановится, если $B_0(P) \neq \Lambda$ (т. е. $\neg !A(\#A)$), и головка будет бесконечно стоять на ячейке, в которой записан пустой символ, если $B_0(P) = \Lambda$ (т. е. !A(#A)). Но по теор. 19 такой машины не существует.

Теорема 23. Массовая проблема самоаннулируемости алгоритма

$$(?A) !A(\#A)$$

алгоритмически неразрешима.

Доказательство. Предположим, что (?A) A(#A)=0 алгоритмически разрешима, т. е. имеется алгоритм B_0 так, что

$$\forall A(B_0(\#A) = \Lambda \leftrightarrow A(\#A) = 0)$$

Построим алгоритм C, который равен нулю на тех и только тех данных x, для которых $B_0(x) \neq 0$. Доказательство проведём для машины Тьюринга.

Пусть M_1 — программа машины Тьюринга, вычисляющей B_0 и имеющей состояния q_0, q_1, \ldots, q_k и обрабатывающей слова в алфавите $\{a_1, \ldots, a_n, *\}$.

Заменим в программе M_1 состояние q_0 на q_{k_1+1} и добавим команды

$$q_{k+1}* \rightarrow q_0 a_1$$

$$q_{k+1}a_i \rightarrow q_{k+2}R*, \qquad i \in \{1,\ldots,n\}$$

$$q_{k+2}a_i \to q_{k+2}R^*, \quad i \in \{1, \dots, n\}$$

$$q_{k+2}* \rightarrow q_0*$$

Эта машина Тьюринга даёт в ответе Λ , если $B_0(P) \neq \Lambda$ (т. е. $A(\#A) = \Lambda$) и непустое значение, если $B_0(P) = \Lambda$ (т. е. $A(\#A) \neq 0$). Но по теор. 20 такой машины Тьюринга не существует.

Теорема 24. Массовая проблема применимости алгоритма к данным алгоритмически неразрешима ни в одной из следующих формулировок

- 1. $(?A \ P) \ !A(P);$
- 2. (?A) !A(P);
- 3. (?P) !A(P).

Замечание. Во второй и третьей формулировках имеются свободные переменные P и A соответственно. По ним предполагается квантор существования.

Из алгоритмической неразрешимости проблемы в третьей формулировке следует алгоритмическая неразрешимость проблемы в первой формулировке.

Кроме того, если доказана алгоритмическая неразрешимость проблемы в третьей формулировке для конкретного алгоритма, и в качестве данных P взяты те данные, для которых невозможно определить применимость к ним этого алгоритма, то тем самым будет доказана алгоритмическая неразрешимость проблемы во второй формулировке.

Поэтому докажем алгоритмическую неразрешимость проблемы в третьей формулировке для универсального алгоритма.

Лемма 6. Массовая проблема применимости универсального алгоритма к данным (?P) ! U(P) алгоритмически неразрешима.

Доказательство. Предположим, что (?P) !U(P) алгоритмически разрешима, т. е. имеется алгоритм B_0 такой, что

$$\forall P \big(B_0(P) = \Lambda \leftrightarrow !U(P) \big)$$

Построим алгоритм C, который для кода любого алгоритма A и исходных данных P в качестве ответа выдаёт A(P), если $B_0(\#A,P)=\Lambda$, и останавливается иначе. Доказательство проведём для машины Тьюринга.

Пусть M_1 — программа машины Тьюринга, вычисляющей B_0 и имеющей состояния $q_0, q_1, \dots q_{k_1}$. Без потери общности можно считать, что при работе этой машины головка не сдвигается левее своего начального положения.

Пусть M_2 — программа машины Тьюринга вычисляющей U и имеющей состояния $q_0, q_1, \ldots, q_{k_2}$.

Можно построить машину Тьюринга, которая дублирует входное слово и останавливается в начале его второго экземпляра. Пусть эта машина имеет программу M_0 и имеет состояния $q_0, q_1, \ldots, q_{k_0}$.

Заменим в программе M_0 состояние q_0 на q_{k_0+1} , в программе M_1 состояния q_i на q_{k_0+i} и q_0 на $q_{k_0+k_1+1}$ и добавим команды

$$\begin{aligned} q_{k_0+k_1+1}\Lambda &\to q_{k_0+k_1+2}L* \\ q_{k_0+k_1+1}a &\to q_0a, \quad a \in A, \quad a \neq * \\ q_{k_0+k_1+2}a &\to q_{k_0+k_1+2}LA, \quad a \in A, \quad a \neq * \\ q_{k_0+k_1+2}* &\to q_{k_0+k_1+3}R \end{aligned}$$

Добавим также программу M_2 , в которой заменим состояния $q_i \ (i \neq 0)$ на $q_{k_0+k_1+2+i}$.

Эта машина Тьюринга является всюду применимым продолжением универсальной машины Тьюринга. Но по теор. 21 такой машины Тьюринга не существует.

Теорема 25. Массовая проблема проверки общезначимости предикатной формулы алгоритмически неразрешима.

Примечание. Обычно говорят, что исчисление предикатов алгоритмически неразрешимо.

Доказательство. Построим по программе M универсального алгоритма и исходным данным P предикатную формулу, которая истинна тогда и только тогда, когда универсальный алгоритм применим к данным P.

Для этого достаточно рассмотреть исходные предикаты

$$O(i,k)\iff$$
 "на i -м шаге машина M находится в состоянии q_k "
$$H(i,k)\iff$$
 "на i -м шаге машина M обозревает j -ю ячейку"
$$S(i,j,h)\iff$$
 "на i -м шаге в j -й ячейке записан символ a_h "

С помощью этих предикатов можно описать весь процесс работы универсального алгоритма над исходными данными. Тот факт, что !U(P) запишется формулой, в посылке импликации которой стоит описание работы U над P, а в заключении — формула $\exists i\ O(i,0)$.

Если исчисление предикатов алгоритмически разрешимо, то существует алгоритм, который по каждой такой формуле проверяет, общезначима ли она. Тем самым построен алгоритм, проверяющий применимость универсального алгоритма к данным.

3.6. Теория сложности алгоритмов

Определение 76. Под *вычислительной сложностью* алгоритма понимают функцию, зависящую от длины записи исходных данных и характеризующую

- число шагов работы алгоритма над исходными данными временная сложность;
- объём памяти, необходимой для работы алгоритма над исходными данными (*ёмкостная* или *зональная сложность*).

Определение 77. Сложностью $S_A(P)$ алгоритма A при работе над данными P называется число шагов или объём памяти, затраченные в процессе работы алгоритма A над данными P.

Определение 78. Верхней (нижней) оценкой сложности алгоритма A при работе над данными длины n называется

$$S_A^U(n) = \max_{P:||P||=n} \{ S_A(P) \}$$

$$S_A^L(n) = \min_{P: ||P|| = n} \{ S_A(P) \}$$

Определение 79. *Точной верхней оценкой сложности* задачи Z с исходными данными длины n называется

$$S_Z^U(n) = \min_{A:A \text{ pemaer } Z} \left\{ S_A^U(n) \right\}$$

В качестве следствия теор. 17 можно доказать следующую теорему.

Теорема 26. Если задача вида $\exists Y \ P(X,Y)$ принадлежит классу **NP**, то существует решающая её одноленточная машина Тьюринга, число шагов которой составляет $2^{p(n)}$, где p(n) — полином от длины записи исходных данных n = ||X||.

3.6.1. Полиномиальная сводимость и полиномиальная эквивалентность

Определение 80. Задача Z_1 вида $\exists Y \ P_1(X,Y)$ при $X \in D_1$ полиномиально сводится к задаче Z_2 вида $\exists Y \ P_2(X,Y)$ при $X \in D_2$, если существует функция f, отображающая D_1 в D_2 , такая, что

- 1. существует машина Тьюринга, вычисляющая функцию f не более чем за полиномиальное от длины записи исходных данных число шагов $(f \in \mathbf{FP})$;
- 2. задача Z_1 имеет решение с исходными данными X тогда и только тогда, когда задача Z_2 имеет решение с исходными данными f(X)

$$\forall X_{\in D_1} \Big(\exists Y \ P_1(X,Y) \leftrightarrow \exists Y \ P_2 \big(f(X), Y \big) \Big)$$

Обозначение. $Z_1 \propto Z_2$

Далее под задачей Z_i будем подразумевать задачу вида $\exists Y \ P_1(X,Y)$ при $X \in D_i$.

Лемма 7. Отношение полиномиальной сводимости рефлексивно и транзитивно.

Лемма 8. Если $Z_1 \propto Z_2$ и $Z_2 \in \mathbf{P}$, то $Z_1 \in \mathbf{P}$.

Пример полиномиальной сводимости

Задача 1 (Гамильтонов цикл). Дано: граф G = (V, E).

Вопрос: существует ли в G гамильтонов цикл?

$$\exists (v_{i_1}, \dots, v_{i_n}) \ \Big(\{ v_{i_1}, \dots, v_{i_n} \} = V \ \& \ \{ v_{i_1}, v_{i_2} \} \in E \ \& \dots \& \ \{ v_{i_n}, v_{i_1} \} \in E \Big)$$

Задача 2 (Коммивояжёр). Дано: $C = \{c_1, \dots, c_n\}$ — множество городов, $d_{ij} \in \mathbb{Z}_+$ — расстояния между c_i и c_j , $B \in \mathbb{Z}_+$.

Вопрос: существует ли маршрут, проходящий через все города, длина которого меньше В?

$$\exists (c_{i_1}, \dots, c_{i_m}) \left(\{ c_{i_1}, \dots, c_{i_m} \} = C \& \sum_{j=1}^{m-1} d_{i_j i_{j+1}} + d_{i_m i_1} \le B \right)$$

Покажем, что $\Gamma \mathbf{U} \propto \mathbf{K}$ оммивояжёр. Для этого предъявим полиномиальный по времени алгоритм который по графу G = (V, E) строит исходные данные C, d_{ij} и B с требуемыми свойствами.

В графе есть гамильтонов цикл тогда и только тогда, когда маршрут проходит теми городами, расстояния между которыми равно 1.

Определение 81. Задача Z_1 полиномиально эквивалентна задаче Z_2 , если $Z_1 \propto Z_2$ и $Z_2 \propto Z_1$.

Обозначение. $Z_1 \sim_p Z_2$

Теорема 27. Отношение полиномиальной эквивалентности является отношением эквивалентности.

Отношение \sim_p разбивает класс \mathbf{NP} на классы эквивалентности. Один из них — класс \mathbf{P} .

3.6.2. NP-полные задачи

Определение 82. Задача Z называется NP-полной, если она сама принадлежит классу \mathbf{NP} , и любая другая из класса \mathbf{NP} полиномиально сводится к ней.

Теорема 28. Класс NP-полных задач образует класс эквивалентности в классе NP.

Если в определении NP-полной задачи убрать требование её принадлежности классу \mathbf{NP} , то получим определение NP- $mpy\partial noù$ задачи.

3.6.3. Задача Выполнимость

Первым примером NP-полной задачи является следующая задача.

Задача 3 (Выполнимость). Дано: $U = \{u_1, \dots, u_n\}$ — множество пропозициональных переменных, $C = \{c_1, \dots, c_m\}$ — множество предложений над U.

Вопрос: выполнимо ли множество C, т. е. существует ли набор значений переменных из U, для которого истинны все предложения из C?

$$\exists u_1,\ldots,u_n\ (c_1\ \&\ \ldots\ \&\ c_m)$$

M