10/718480 STN Search Summary

=> d his

(FILE 'HOME' ENTERED AT 15:22:48 ON 06 OCT 2004)

FILE 'REGISTRY' ENTERED AT 15:22:57 ON 06 OCT 2004

L1 0 S LYSE/CN

L2 92 S LYSE

L3 7 S L2 AND LYSINE

FILE 'CAPLUS' ENTERED AT 15:24:09 ON 06 OCT 2004

L4 10 S L3

L5 1 S L4 AND (METHYLBACILL? OR METHYLOPHIL? OR FLAGELLAT? OR GLYCOG

L6 1 S L4 AND (METHANOL? OR METHYL?)

L3 ANSWER 1 OF 7 REGISTRY COPYRIGHT 2004 ACS on STN

RN 615223-10-4 REGISTRY

CN Lysine exporter protein (Corynebacterium diphtheriae strain NCTC13129 gene lysE) (9CI) (CA INDEX NAME)

OTHER NAMES:

CN GenBank CAE49614

CN GenBank CAE49614 (Translated from: GenBank BX248357)

L3 ANSWER 2 OF 7 REGISTRY COPYRIGHT 2004 ACS on STN

RN 571234-77-0 REGISTRY

CN Lysine exporter protein (Corynebacterium efficiens strain YS-314 gene lysE) (9CI) (CA INDEX NAME)

OTHER NAMES:

CN GenBank BAC18167

CN GenBank BAC18167 (Translated from: GenBank AP005218)

L3 ANSWER 3 OF 7 REGISTRY COPYRIGHT 2004 ACS on STN

RN 478431-27-5 REGISTRY

CN 1-125-Protein (Corynebacterium lactofermentum gene lysE) (9CI) (CA INDEX NAME)

OTHER NAMES:

CN 9: PN: EP1266966 SEQID: 10 claimed protein

CN Protein (Corynebacterium lactofermentum gene lysE24 lysine-exporting)

CN Transport protein (Corynebacterium lactofermentum gene lysE24 lysine-exporting)

L3 ANSWER 4 OF 7 REGISTRY COPYRIGHT 2004 ACS on STN

RN 338802-47-4 REGISTRY

CN Lysine-transporting protein (Corynebacterium thermoaminogenes strain AJ12310 gene lysE) (9CI) (CA INDEX NAME)

OTHER NAMES:

CN 16: PN: JP2001120270 SEQID: 14 claimed protein

- L3 ANSWER 5 OF 7 REGISTRY COPYRIGHT 2004 ACS on STN
- RN 314317-10-7 REGISTRY
- CN Protein MP (metabolic pathway) (Corynebacterium glutamicum strain ATCC_13032 clone RXC01796) (9CI) (CA INDEX NAME)

OTHER NAMES:

- CN 10: PN: WO0100843 SEQID: 10 claimed protein
- CN 16: PN: WO0166573 SEQID: 16 claimed protein
- CN Lysine-transporting protein (Corynebacterium glutamicum strain ATCC10032 clone RXC01796 gene lysE)
- L3 ANSWER 6 OF 7 REGISTRY COPYRIGHT 2004 ACS on STN
- RN 314317-08-3 REGISTRY
- CN Protein MP (metabolic pathway) (Corynebacterium glutamicum strain ATCC_13032 clone RXC02390) (9CI) (CA INDEX NAME)

OTHER NAMES:

- CN 14: PN: WO0166573 SEQID: 14 claimed protein
- CN 8: PN: WO0100843 SEQID: 8 claimed protein
- CN Lysine-transporting protein (Corynebacterium glutamicum strain ATCC13032 clone RXC02390 gene lysE)
- L3 ANSWER 7 OF 7 REGISTRY COPYRIGHT 2004 ACS on STN
- RN 184922-77-8 REGISTRY
- CN Lysine-transporter (Corynebacterium glutamicum strain R127 gene lysE) (9CI) (CA INDEX NAME)

OTHER NAMES:

- CN 3454: PN: EP1108790 SEQID: 6955 claimed protein
- CN Lysine exporter protein (Corynebacterium glutamicum strain R127 lysE gene)
- CN Lysine-transporting protein (Corynebacterium glutamicum strain R127 lysE gene)
- CN Protein (Corynebacterium glutamicum strain R127 gene lysE)
- L4 ANSWER 1 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
- AN 2003:904048 CAPLUS
- TI The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129
- AU Cerdeno-Tarraga, A. M.; Efstratiou, A.; Dover, L. G.; Holden, M. T. G.; Pallen, M.; Bentley, S. D.; Besra, G. S.; Churcher, C.; James, K. D.; De Zoysa, A.; Chillingworth, T.; Cronin, A.; Dowd, L.; Feltwell, T.; Hamlin, N.; Holroyd, S.; Jagels, K.; Moule, S.; Quail, M. A.; Rabbinowitsch, E.; Rutherford, K. M.; Thomson, N. R.; Unwin, L.; Whitehead, S.; Barrell, B. G.; Parkhill, J.
- SO Nucleic Acids Research (2003), 31(22), 6516-6523
- L4 ANSWER 2 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
- AN 2003:566882 CAPLUS
- TI Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens
- AU Nishio, Yousuke; Nakamura, Yoji; Kawarabayasi, Yutaka; Usuda, Yoshihiro; Kimura, Eiichiro; Sugimoto, Shinichi; Matsui, Kazuhiko; Yamagishi, Akihiko; Kikuchi, Hisashi; Ikeo, Kazuho; Gojobori, Takashi
- SO Genome Research (2003), 13(7), 1572-1579

· Vinites

L4 ANSWER 3 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN

AN 2002:963758 CAPLUS

TI L-lysine or L-arginine fermentation using a methanol assimilating bacterium which secretes amino acids

IN	Gunji, Yos	shiya; Ya	ısueda, H	Hisashi			
	PATENT NO.		KIND	DATE	APP	PLICATION NO.	DATE
PI	EP 1266966	;	A2	20021218	ΕP	2002-12539	20020605
	EP 1266966	;	A3	20040114			
	JP 2003061	.687	A2	2003.0304	JP	2002-151981	20020527
	US 2003124	687	A1	20030703	US	2002-166142	20020611
PRAI	JP 2001-17	7075	A	20010612			

L4 ANSWER 4 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN

AN 2001:676795 CAPLUS

TI Corynebacterium glutamicum genes encoding metabolic pathway proteins

Pompejus, Markus; Kroeger, Burkhard; Schroeder, Hartwig; Zelder, Oskar; IN Haberhauer, Gregor; Kim, Jun-Won; Lee, Heung-Shick; Hwang, Byung-Joon KIND DATE PATENT NO. APPLICATION NO. DATE ----------------_ - - -WO 2001066573 20010913 WO 2000-IB2035 PΤ **A**2 20001222 WO 2001066573 A3 20020510 EP 1261718 A2 20021204 EP 2000-987602 20001222 20030311 BR 2000-17148 BR 2000017148 Α 20001222 T2 20030902 JP 2001-565737 A 20031110 ZA 2002-8060 JP 2003525623 20030902 JP 2001-565737 20001222 ZA 2002008060 20021008

PRAI US 2000-187970P P 20000309
US 2000-606740 A 20000623
WO 2000-IB2035 W 20001222

L4 ANSWER 5 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN

AN 2001:574896 CAPLUS

Correction of: 2001:450980

DN 135:283981

Correction of: 135:29919

TI Complete genome sequence of Corynebacterium glutamicum ATCC 13032 and its genes and encoded proteins

IN Nakagawa, Satochi; Mizoguchi, Hiroshi; Ando, Seiko; Hayashi, Mikiro; Ochiai, Keiko; Yokoi, Haruhiko; Tateishi, Naoko; Senoh, Akihiro; Ikeda, Masato; Ozaki, Akio

F	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-					
PI E	EP 1108790	A2	20010620	EP 2000-127688	20001218
Ü	JP 2002191370	A2	20020709	JP 2000-405096	20001215
U	JS 2002197605	A1	20021226	US 2000-738626	20001218
PRAI J	JP 1999-377484	Α	19991216		
Ü	JP 2000-159162	A	20000407		
ũ	JP 2000-280988	A	20000803		

L4 ANSWER 6 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN

AN 2001:324284 CAPLUS

TI Corynebacterium thermoaminogenes thermostable L-lysine biosynthesis genes

IN Itaya, Hiroshi; Kimura, Eiichiro; Kawahara, Yoshio; Sugimoto, Shinichi

LA Japanese

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE	
ΡI	JP 2001120270	A2	20010508	JP 1999-311148	19991101	
PRAI	JP 1999-311148		19991101			

L4 ANSWER 7 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN

AN 2001:12637 CAPLUS

DE 1999-19932230

DE 1999-19932922

TI Corynebacterium glutamicum genes encoding proteins involved in metabolic pathways

IN Pompejus, Markus; Kroger, Burkhard; Schroder, Hartwig; Zelder, Oskar;

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
ΡI	WO 2001000843	A2	20010104	WO 2000-IB923	20000623
	BR 2000011806	A	20020514	BR 2000-11806	20000623
	TR 200103707	T2	20020923	TR 2001-200103707	20000623
	EP 1257649	A2	20021120	EP 2000-938999	20000623
	US 2004030116	A1	20040212	US 2003-627476	20030725
	US 2004180408	A1	20040916	US 2004-781014	20040217
PRAI	US 1999-141031P	P	19990625		
	DE 1999-19930476	Α	19990701		
	US 1999-142101P	P	19990702		
	DE 1999-19931415	Α	19990708		
	DE 1999-19931418	A	19990708		
	DE 1999-19931419	Α	19990708		
	DE 1999-19931420	Α	19990708		
	DE 1999-19931424	A	19990708		
	DE 1999-19931428	Α	19990708		
	DE 1999-19931434	Α	19990708		
	DE 1999-19931435	A	19990708		
	DE 1999-19931443	A	19990708		
	DE 1999-19931453	A	19990708		
	DE 1999-19931457	Α	19990708		
	DE 1999-19931465	Α	19990708		
	DE 1999-19931478	A	19990708		
	DE 1999-19931510	A	19990708		
	DE 1999-19931541	A	19990708		
	DE 1999-19931573	Α	19990708		
	DE 1999-19931592	Α	19990708		
	DE 1999-19931632	A	19990708		
	DE 1999-19931634	A	19990708		
	DE 1999-19931636	A	19990708		
	DE 1999-19932125	Α	19990709		
	DE 1999-19932126	A	19990709		
	DE 1999-19932130	A	19990709		
	DE 1999-19932186	Α	19990709		
	DE 1999-19932206	Α	19990709		
	DE 1999-19932227	A	19990709		
	DE 1999-19932228	A	19990709		
	DE 1999-19932229	A	19990709		
		_			

19990709

19990714

Α

Α

DE	1999-19932926	A	19990714
DE	1999-19932928	А	19990714
DE	1999-19933004	A	19990714
DE	1999-19933005	A	19990714
DE	1999-19933006	A	19990714
US	1999-148613P	P	19990812
DE	1999-19940764	A	19990827
DE	1999-19931412	A	19990708
DE	1999-19931413	A	19990708
DE	1999-19931431	A	19990708
DE	1999-19931433	A	19990708
DE	1999-19931454	A	19990708
DE	1999-19931562	A	19990708
DE	1999-19931563	A	19990708
DE	1999-19932122	A	19990709
DE	1999-19932124	A	19990709
DE	1999-19932128	A	19990709
DE	1999-19932180	A	19990709
DE	1999-19932182	A	19990709
DE	1999-19932190	A	19990709
DE	1999-19932191	A	19990709
DE	1999-19932209	A	19990709
DE	1999-19932212	A	19990709
US	1999-143208P	P	19990709
DE	1999-19932924	A	19990714
DE	1999-19932927	A	19990714
DE	1999-19932927	A	19990714
DE	1999-19940765	A	19990827
DE	1999-19940766		
DE	1999-19940830	A A	19990827 19990827
DE	1999-19940831	A	19990827
DE	1999-19940832	A	19990827
DE	1999-19940833	A	19990827
DE	1999-19941378	A	
DE	1999-19941379		19990831
DE		A	19990831
US	1999-19941395 1999-151572P	A	19990831
	1999-1915/22	P	19990831
DE		A	19990903
DE DE	1999-19942077	A	19990903
	1999-19942078	A	19990903
DE	1999-19942079	A	19990903
DE	1999-19942086	A	19990903
DE	1999-19942087	A	19990903
DE	1999-19942088	A	19990903
DE	1999-19942095	A	19990903
DE	1999-19942123	A	19990903
DE	1999-19942125	A	19990903
US	2000-602740	A1	20000623
US	2000-602787	A1	20000623
WO	2000-IB923	W	20000623

ANSWER 8 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN

1997:500174 CAPLUS

ΤI Microorganism amino acid exporter or gene for use in amino acid production by fermentation

IN Vrlijc, Marina; Eggeling, Lothar; Sahm, Hermann

LΑ German

DA GCIMAN					
	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
ΡI	DE 19548222	Al	19970626	DE 1995-19548222	19951222
	CA 2241111	AA	19970703	CA 1996-2241111	19961218
	WO 9723597	A2	19970703	WO 1996-DE2485	19961218
	WO 9723597	A 3	19971023		
	AU 9719218	A1	19970717	AU 1997-19218	19961218
	AU 724536	B2	20000921		
	EP 868527	A2	19981007	EP 1996-946220	19961218
	CN 1209169	A	19990224	CN 1996-180096	19961218
	BR 9612666	Α	19991005	BR 1996-12666	19961218
	JP 2000507086	T2	20000613	JP 1997-523222	19961218
	RU 2225883	C2	20040320	RU 1998-113861	19961218
	ZA 9610768	Α	19980731	ZA 1996-10768	19961220
PRAI	DE 1995-19548222	A	19951222		
	WO 1996-DE2485	W	19961218		

ANSWER 9 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN

1997:475788 CAPLUS

TIL-Lysine export from Corynebacterium glutamicum. Physiological and molecular-biological characterization of the carrier-mediated export of a primary metabolite

ΑU Vrljic, Maria-Marina

Berichte des Forschungszentrums Juelich (1997), Juel-3349, 1-115 pp. SO

LAGerman

14ΑN

ANSWER 10 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN 1996:757064 CAPLUS

TIA new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum

AU Vrljic, Marina; Sham, Hermann; Eggeling, Lothar

SO Molecular Microbiology (1996), 22(5), 815-826

10/716480 STN Search Summary 2

=> d his

FILE 'CAPLUS' ENTERED AT 17:35:10 ON 06 OCT 200	FILE	'CAPLUS'	ENTERED	AT	17:35:	10 (ON	06	OCT	2004
---	------	----------	---------	----	--------	------	----	----	-----	------

- L1 2182702 (METHYLBACILL? OR METHYLOPHIL? OR FLAGELLAT? OR GLYCOGENE? OR METHANOL? OR METHYL?)
- L2 96 L1 AND LYSE
- L3 6 L2 AND LYSINE
- L4 1 L1 AND LYSINE (2W) EXPORT
- L5 58 L1 AND LYSINE(2W)TRANSPORT
- L6 5 L1 AND LYSINE(2W) RESISTANCE
- L7 1 L5 AND LYSINE(2W)ANALOG?
- L4 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2004 ACS on STN
- AN 2002:301460 CAPLUS
- TI Lipid synthesis in Corynebacterium glutamicum: Genetical and biochemical investigations of acyl-CoA carboxylases
- AU Tilg, Yvonne
- CS Institut fur Biotechnologie, Germany
- SO Berichte des Forschungszentrums Juelich (2002), Juel-3946, i-ix, 1-133 CODEN: FJBEE5; ISSN: 0366-0885
- LA German
- L6 ANSWER 1 OF 5 CAPLUS COPYRIGHT 2004 ACS on STN
- AN 1995:722218 CAPLUS
- TI Selection and characterization of aspartokinase feedback-insensitive mutants of Azotobacter vinelandii
- AU Ekechukwu, Chioma R.; Burns, Thomas A.; Melton, Thoyd
- CS Dep. Microbiology, North Carolina State Univ., Raleigh, NC, 27695, USA
- SO Applied and Environmental Microbiology (1995), 61(8), 3189-91 CODEN: AEMIDF; ISSN: 0099-2240
- L6 ANSWER 2 OF 5 CAPLUS COPYRIGHT 2004 ACS on STN
- AN 1993:144831 CAPLUS
- TI Endothelium-dependent relaxation of hypertensive resistance arteries is not impaired under all conditions
- AU Li, Junyi; Bukoski, Richard D.
- CS Med. Branch, Univ. Texas, Galveston, TX, 77550, USA
- SO Circulation Research (1993), 72(2), 290-6 CODEN: CIRUAL; ISSN: 0009-7330
- L6 ANSWER 3 OF 5 CAPLUS COPYRIGHT 2004 ACS on STN
- AN 1991:629291 CAPLUS
- TI Isolation of variants of Chinese hamster ovary cells with abnormally low levels of GSH: decreased ability to cleave endocytosed disulfide bonds
- AU Mandel, Richard; Ryser, Hugues J. P.; Niaki, Bijan; Ghani, Farooq; Shen, Wei Chiang
- CS Sch. Med., Boston Univ., Boston, MA, 02118, USA
- SO Journal of Cellular Physiology (1991), 149(1), 60-5 CODEN: JCLLAX; ISSN: 0021-9541

L6 ANSWER 4 OF 5 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1991:120274 CAPLUS

TI Fermentative manufacture of L-lysine with Brevibacterium or Corynebacterium species

IN Yoshihara, Yasuhiko; Kawahara, Yoshio; Ishii, Toshimasa

PA Ajinomoto Co., Inc., Japan

SO Jpn. Kokai Tokkyo Koho, 4 pp. CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
ΡI	JP 02234686	A2	19900917	JP 1989-54192	19890307
	JP 2817172	B2	19981027		
	CN 1045419	A	19900919	CN 1990-101212	19900307
	CN 1030616	В	19960103		
PRAI	JP 1989-54192	А	19890307		

- L6 ANSWER 5 OF 5 CAPLUS COPYRIGHT 2004 ACS on STN
- AN 1988:526016 CAPLUS
- TI Selection of regenerable maize callus cultures resistant to 5methyl-DL-tryptophan, S-2-aminoethyl-L-cysteine and high levels of L-lysine plus L-threonine
- AU Miao, Shuhua; Duncan, David R.; Widholm, Jack
- CS Dep. Agron., Univ. Illinois, Urbana, IL, 61801, USA
- SO Plant Cell, Tissue and Organ Culture (1988), 14(1), 3-14 CODEN: PTCEDJ; ISSN: 0167-6857
- L7 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2004 ACS on STN
- AN 1977:167623 CAPLUS
- TI Characterization of a lysine-specific active transport system in Rickettsia prowazeki
- AU Smith, Deborah K.; Winkler, Herbert H.
- CS Sch. Med., Univ. Virginia, Charlottesville, VA, USA
- SO Journal of Bacteriology (1977), 129(3), 1349-55 CODEN: JOBAAY; ISSN: 0021-9193
- => d 17 abs
- L7 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2004 ACS on STN
- AB R. prowazeki possesses an active transport system for lysine with a Kt of influx of 1 .mu.M. This intracellular lysine pool can be exchanged with external unlabeled substrates for a least 10 min. The lysine analogs L-aminoethyl cysteine, N-methyl lysine, hydroxylysine, and D-lysine competitively inhibited uptake of L-lysine, but cadaverine, diaminopimelate, arginine, ornithine, and .epsilon.-aminocaproate did not. Accumulation of lysine was inhibited by the energy poisons KCN, triphenylmethyl phosphonium Br, and 2,4-dinitrophenol. The effect of KCN, but not 2,4-dinitrophenol or triphenylmethyl phosphonium Br, was overcome by ATP. Both energy-dependent influx and efflux were inhibited by the sulfhydryl reagents N-ethyl maleimide and p-chloromercuriphenyl sulfonic acid.

SEQ SEARCH SUMMARY Conscion 5.1.6 10/7/6480

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: October 7, 2004, 11:16:40; Search time 2934 Seconds

(without alignments)

10503.373 Million cell updates/sec

Title: US-10-716-480A-1

Perfect score: 711

Sequence: 1 atggtgatcatggaaatctt.....aactgatgttgatgggttag 711

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 3470272 seqs, 21671516995 residues

Total number of hits satisfying chosen parameters: 6940544

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : GenEmbl:*

1: gb_ba:*

2: gb_htg:*

3: gb_in:*

4: gb_om:*

5: gb_ov:*

6: gb pat:*

7: gb_ph:*

8: gb_pl:*

9: gb_pr:* 10: gb ro:*

11: gb_sts:* 12: gb sy:*

13: gb un:*

14: gb_vi:*

15: em ba:*

16: em_fun:* 17: em hum:*

18: em in:*

19: em mu:*

20: em_om:*

21: em_or:*

em ov:* 22: 23: em_pat:*

24: em_ph:*

25: em_pl:*

26: em_ro:*

27: em_sts:*

```
28: em_un:*
29: em_vi:*
30: em_htg_hum:*
31: em_htg_inv:*
32: em_htg_other:*
33: em_htg_mus:*
34: em_htg_pln:*
35: em_htg_rod:*
36: em_htg_rod:*
37: em_htg_vrt:*
38: em_sy:*
39: em_htgo_hum:*
40: em_htgo_mus:*
41: em_htgo_other:*
```

용

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result			Query				
No.		Score	Match	Length	DB	ID	Description
	1	711	100.0	711	 6	AX643028 Pr	AX643028 Sequence
	2	711	100.0	822	6	AX063771 🗸	AX063771 Sequence
	3	711	100.0	822	6	AX244059 🗸	AX244059 Sequence
	4	711	100.0	2374	1	CGLYSEG V	X96471 C.glutamicu
	5	711	100.0	2374	6	A93933 V	A93933 Sequence 2
C	6	711	100.0	333150	1	AP005277	AP005277 Corynebac
С	7	711	100.0	349980	6	AX127147 🗡	AX127147 Sequence
	8	708	99.6	708	6	AX123539 A	AX123539 Sequence
	9	708	99.6	708	6	BD165656	BD165656 Novel pol
	10	696.8	98.0	712	6	AX643030 V	AX643030 Sequence
	11	317.6	44.7	1568	6	E54483	E54483 Heat-resist
	12	317.6	44.7	1771	1	AB083133 🏏	AB083133 Corynebac
C	13	317.6	44.7	308650	1	AP005218	AP005218 Corynebac
С	14	136.6	19.2	349535	1	BX248357	BX248357 Corynebac
	15	84.2	11.8	190050	1	AL646059	AL646059 Ralstonia
С	16	65.8	9.3	300861	1	AE016777	AE016777 Pseudomon
	17	65.6	9.2	303550	1	SCO939131	AL939131 Streptomy
	18	63.4	8.9	10542	1	AE004852	AE004852 Pseudomon
C	19	63.2	8.9	10024	1	AE015725	AE015725 Shewanell
С	20	62.8	8.8	24336	1	AE008841	AE008841 Salmonell
С	21	62.8	8.8	298300	1	AP005025	AP005025 Streptomy
	22	62.2	8.7	311600	1	AE016871	AE016871 Pseudomon
С	23	62	8.7	10313	1	AE015304	AE015304 Shigella
С	24	62	8.7	10701	1	AE005522	AE005522 Escherich
C	25	62	8.7	266658	1	AP002563	AP002563 Escherich
С	26	62	8.7	292906	1	AE016988	AE016988 Shigella
	27	61.6	8.7	4033	1	ASU65741	U65741 Aeromonas s
C	28	61.2	8.6	230050	1	AL627277	AL627277 Salmonell
C	29	61.2	8.6	301574	1	AE016844	AE016844 Salmonell
	30	60.4	8.5	636	6	E49392	E49392 Process for
	31	60.4	8.5	636	6	AX030085	AX030085 Sequence
	32	60.4	8.5	8029	1	ECFDAPGK	X14436 Escherichia
С	33	60.4	8.5	10362	1	AE000375	AE000375 Escherich

OM nucleic - nucleic search, using sw model

Run on: October 7, 2004, 09:28:59; Search time 355 Seconds

(without alignments)

8508.363 Million cell updates/sec

Title: US-10-716-480A-1

Perfect score: 711

Sequence: 1 atggtgatcatggaaatctt.....aactgatgttgatgggttag 711

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 3373863 seqs, 2124099041 residues

Total number of hits satisfying chosen parameters: 6747726

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : N Geneseq 29Jan04:*

1: geneseqn1980s:*

2: geneseqn1990s:*

3: geneseqn2000s:*

4: geneseqn2001as:*

5: geneseqn2001bs:*

6: geneseqn2002s:*

7: geneseqn2003as:*

8: geneseqn2003bs:*

9: geneseqn2003cs:*

10: geneseqn2004s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

			ક					
Res	ult		Query					
	No.	Score	Match	Length	DB	ID	Descrip	tion
	1	711	100.0	711	- -	ACC80941/AFF	Acc8094	l LysE prot
	2	711	100.0	822	4	AAF71779 /		9 Corynebac
	3	711	100.0	822	4	AAS96098	' Aas9609	B C. glutam
	4	711	100.0	2374	2	AAT96816	Aat9681	5 DNA encod
	5	711	100.0	2374	9	ADB66196	Adb6619	5 DNA fragm
C	6	711	100.0	349980	5	AAH68528	Aah6852	3 C glutami
	7	708	99.6	708	5	AAH68420 NAK	Aah6842	C glutami
	8	696.8	98.0	712	8	ACC80942 💆	Acc8094:	2 LysE24 pr
	9	317.6	44.7	1568	4	AAH45375 /	Aah4537!	c. thermo
	10	60.4	8.5	636	3	AAA52691 V	Aaa52693	l Escherich

OM nucleic - nucleic search, using sw model

Run on:

October 7, 2004, 12:21:55; Search time 83 Seconds

(without alignments)

4753.856 Million cell updates/sec

Title:

US-10-716-480A-1

Perfect score: 711

Sequence:

1 atggtgatcatggaaatctt.....aactgatgttgatgggttag 711

Scoring table:

IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched:

682709 seqs, 277475446 residues

Total number of hits satisfying chosen parameters:

1365418

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database :

Issued Patents NA:*

1: /cgn2 6/ptodata/2/ina/5A COMB.seq:*

2: /cgn2 6/ptodata/2/ina/5B COMB.seq:*

3: /cgn2 6/ptodata/2/ina/6A COMB.seq:* 4: /cgn2_6/ptodata/2/ina/6B_COMB.seq:*

5: /cgn2_6/ptodata/2/ina/PCTUS_COMB.seq:*

6: /cgn2_6/ptodata/2/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.		Score	Query Match	Length I	DB	ID	Description
	1	61.8	8.7	699	4	US-09-252-991A-7908	Sequence 7908, Ap
С	2	61.8	8.7	834	4	US-09-252-991A-7643	Sequence 7643, Ap
	3	61.8	8.7	894	4	US-09-252-991A-7841	Sequence 7841, Ap
	4	57	8.0	597	4	US-09-894-844-11	Sequence 11, Appl
С	5	57	8.0	15239	1	US-08-390-878-17	Sequence 17, Appl
	6	57	8.0	4403765	3	US-09-103-840A-2	Sequence 2, Appli
	7	57	8.0	4411529	3	US-09-103-840A-1	Sequence 1, Appli
	8	56.6	8.0	642	4	US-09-489-039A-4674	Sequence 4674, Ap
С	9	53.8	7.6	1176	4	US-09-252-991A-7571	Sequence 7571, Ap
	10	43	6.0	645	4	US-09-543-681A-800	Sequence 800, App
	11	39.4	5.5	505	4	US-09-621-976-15639	Sequence 15639, A
С	12	37.6	5.3	4403765	3	US-09-103-840A-2	Sequence 2, Appli

OM nucleic - nucleic search, using sw model

Run on: October 7, 2004, 12:38:35; Search time 428 Seconds

(without alignments)

8421.640 Million cell updates/sec

Title: US-10-716-480A-1

Perfect score: 711

Sequence: 1 atggtgatcatggaaatctt.....aactgatgttgatgggttag 711

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 3340653 seqs, 2534783454 residues

Total number of hits satisfying chosen parameters: 6681306

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Published_Applications_NA:*

1: /cgn2_6/ptodata/1/pubpna/US07_PUBCOMB.seq:*

2: /cgn2 6/ptodata/1/pubpna/PCT NEW PUB.seq:*

3: /cgn2_6/ptodata/1/pubpna/US06 NEW PUB.seq:*

4: /cgn2_6/ptodata/1/pubpna/US06 PUBCOMB.seq:*

5: /cgn2 6/ptodata/1/pubpna/US07 NEW PUB.seq:*

(/ cgn2_6/ptodata/1/pubpna/DCMIC_DIDCOMP_can

6: /cgn2_6/ptodata/1/pubpna/PCTUS_PUBCOMB.seq:*

7: /cgn2_6/ptodata/1/pubpna/US08_NEW_PUB.seq:*
8: /cgn2_6/ptodata/1/pubpna/US08_PUBCOMB.seq:*

. /cgn2_0/ptodata/1/pubpna/0000_10Dcomb.bcq.

9: /cgn2_6/ptodata/1/pubpna/US09A_PUBCOMB.seq:*

10: /cgn2_6/ptodata/1/pubpna/US09B_PUBCOMB.seq:*
11: /cgn2_6/ptodata/1/pubpna/US09C_PUBCOMB.seq:*

12: /cgn2 6/ptodata/1/pubpna/US09 NEW PUB.seq:*

13: /cgn2 6/ptodata/1/pubpna/US09 NEW PUB.seq2:*

14: /cgn2 6/ptodata/1/pubpna/US10A PUBCOMB.seq:*

15: /cgn2 6/ptodata/1/pubpna/US10B PUBCOMB.seq:*

16: /cgn2 6/ptodata/1/pubpna/US10C PUBCOMB.seq:*

17: /cgn2 6/ptodata/1/pubpna/US10 NEW PUB.seq:*

18: /cgn2 6/ptodata/1/pubpna/US60 NEW PUB.seq:*

19: /cgn2_6/ptodata/1/pubpna/US60_PUBCOMB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

કુ

Result Ouery No. Score Match Length DB ID Description _____ 711 100.0 711 15 US-10-166-142-7 Sequence 7, Appli 1 711 17 US-10-716-473-7 🗸 2 711 100.0 Sequence 7, Appli 822 10 US-09-746-660A-51 Sequence 51, Appl 3 711 100.0 100.0 2374 15 US-10-196-232-24 Sequence 24, Appl 711 711 100.0 3309400 9 US-09-738-626-1 Sequence 1, Appli С 708 9 US-09-738-626-3455 708 Sequence 3455, Ap 6 99.6 712 15 US-10-166-142-9 Sequence 9, Appli 7 696.8 98.0 US-10-716-473-9 Sequence 9, Appli 696.8 98.0 712 17 8 9 62.8 8.8 609 15 US-10-156-761-1109 Sequence 1109, Ap 8.8 9025608 15 US-10-156-761-1 Sequence 1, Appli 62.8 С 10 11 57 8.0 597 9 US-09-894-844-11 Sequence 11, Appl 12 57 8.0 597 13 US-10-647-089-11 Sequence 11, Appl 13 57 8.0 597 16 US-10-388-902-11 Sequence 11, Appl Sequence 648, App 7.9 86114 15 14 56.2 US-10-080-170-648 7.9 86114 15 56.2 17 US-10-080-170-648 Sequence 648, App 5.9 1780 17 US-10-437-963-18491 Sequence 18491, A 42.2 16 5.9 3000 15 US-10-156-761-5949 Sequence 5949, Ap 17 42.2 18 42.2 5.9 9025608 15 US-10-156-761-1 Sequence 1, Appli 2301 17 US-10-437-963-6293 Sequence 6293, Ap 19 42 5.9 2016 Sequence 86805, A 5.8 17 US-10-437-963-86805 20 41.2 Sequence 31368, A 40.4 5.7 1392 16 US-10-369-493-31368 21 22 40.4 5.7 1443 16 US-10-369-493-28610 Sequence 28610, A 40.4 Sequence 6292, Ap 23 5.7 2429 17 US-10-437-963-6292 24 40 5.6 3483 17 US-10-437-963-44614 Sequence 44614, A c 25 39.4 5.5 594 16 US-10-369-493-33277 Sequence 33277, A 39.2 Sequence 23986, A С 26 5.5 752 17 US-10-437-963-23986 Sequence 5999, Ap C 27 39.2 5.5 1257 15 US-10-156-761-5999 28 39 5.5 993 10 US-09-746-660A-47 Sequence 47, Appl 2823 13 US-10-282-122A-26243 29 39 5.5 Sequence 26243, A 30 39 5.5 2826 13 US-10-282-122A-28428 Sequence 28428, A 31 38.6 5.4 1245 13 US-10-282-122A-14346 Sequence 14346, A 32 38.4 5.4 1236 17 US-10-437-963-95996 Sequence 95996, A US-10-437-963-14494 Sequence 14494, A С 33 38.2 5.4 1365 17 38 1018 13 US-10-425-114-960 Sequence 960, App 34 5.3 38 5.3 1458 15 US-10-156-761-1306 Sequence 1306, Ap 35 38 5.3 Sequence 28221, A 36 2218 13 US-10-425-114-28221 С 37 38 5.3 2457 13 US-10-425-114-30614 Sequence 30614, A Sequence 34340, A 38 37.8 5.3 270 17 US-10-437-963-34340 5.3 Sequence 119, App 39 37.8 536 17 US-10-338-110-119 Sequence 11, Appl 37.8 40 5.3 2038 15 US-10-094-113-11 37.6 17 US-10-338-110-119 Sequence 119, App 41 5.3 536 2079 15 US-10-156-761-1755 Sequence 1755, Ap c 42 37.6 5.3 c 43 37.6 5.3 3073 13 US-10-424-599-33204 Sequence 33204, A 44 37.6 5.3 3090 13 US-10-425-114-11304 Sequence 11304, A 37.4 5.3 624 15 US-10-156-761-2439 Sequence 2439, Ap 45

ALIGNMENTS

Db	64559	TGCAAATGTGCCTGGTGGTGACCTTTCTCAACCCACACGTCTATCTGGACACTGTGGTGT 64618
Qy	497	TTATCGGCGGCGTCGGCGCAATACGGCGACACCGGACGGTGGATTTTCGCCGCTGGCG 556
Db	64619	TGATCGGTGCCCTCGCCAATGAGGAATCAGATCTGCGGTGGTTTTTCGGAGCCGGTG 64675
Qу	557	CGTTCGCGGCAAGCCTGATCTGGTTCCCGCTGGTGGGTTTCGGCGCAGCAGCATTGTCAC 616
Db	64676	CCTGGGCCGCCAGCGTCGTATGGTTCGCCGTGTTGGGATTTAGCGCGGGCCGGCTACAGC 64735
Qу	617	GCCCGCTGTCCAGCCCCAAGGTGTGGCGCTGGATCAACGTCGTCGTGGCAGTTGTGATGA 676
Db	64736	CATTCTTCGCAACTCCAGCTGCTTGGCGCATTCTTGATGCGCTGGTTGCCGTGACGATGA 64795
Qу	677	CCGCATTGGCCATCAAACTGATGTTGATG 705
Db	64796	TTGGGGTCGCCGTCGTCACG 64824

Search completed: October 7, 2004, 14:24:03

Job time : 448 secs

OM nucleic - nucleic search, using sw model

October 7, 2004, 12:24:20; Search time 2516 Seconds Run on:

(without alignments)

8438.796 Million cell updates/sec

Title:

US-10-716-480A-1

Perfect score: 711

Sequence:

1 atggtgatcatggaaatctt.....aactgatgttgatgggttag 711

Scoring table:

IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched:

27513289 segs, 14931090276 residues

Total number of hits satisfying chosen parameters: 55026578

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database :

EST:*

1: em estba:*

2: em esthum:*

3: em estin:*

4: em_estmu:*

5: em_estov:*

6: em estpl:*

7: em estro:*

8: em htc:*

9: gb_est1:*

10: gb_est2:*

11: gb_htc:*

12: gb_est3:*

13: gb est4:*

14: gb est5:*

15: em estfun:*

16: em_estom:*

17: em gss hum:*

18: em_gss_inv:*

19: em_gss_pln:*

20: em_gss_vrt:*

21: em_gss_fun:*

22: em_gss_mam:*

23: em_gss_mus:*

24: em gss pro:*

25: em_gss_rod:*

26: em_gss_phg:*

27: em_gss_vrl:*

28: gb_gss1:*

OM protein - nucleic search, using frame_plus_p2n model

Run on: October 7, 2004, 15:19:08; Search time 2849 Seconds

(without alignments)

3590.367 Million cell updates/sec

Title: US-10-716-480A-2

Perfect score: 1191

Sequence: 1 MVIMEIFITGLLLGASLLLS.....INVVVAVVMTALAIKLMLMG 236

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5
Ygapop 10.0 , Ygapext 0.5
Fgapop 6.0 , Fgapext 7.0
Delop 6.0 , Delext 7.0

Searched: 3470272 seqs, 21671516995 residues

Total number of hits satisfying chosen parameters: 6940544

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+ p2n.model -DEV=xlp

Q=/cgn2_1/USPTO_spool_p/US10716480/runat_06102004_102309_20226/app_query.fasta_1
.391

-DB=GenEmbl -QFMT=fastap -SUFFIX=p2n.rge -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0

-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45

-DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL

-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000

-USER=US10716480 @CGN 1 1 5600 @runat 06102004 102309 20226 -NCPU=6 -ICPU=3

-NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG

-DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6

-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : GenEmbl:*

1: gb ba:*

2: gb htg:*

3: gb_in:*

4: gb om:*

5: gb ov:*

6: gb_pat:*

7: gb ph:*

8: qb pl:*

9: gb pr:*

10: gb_ro:*

```
11: gb_sts:*
12: gb_sy:*
13: gb un:*
14:
    gb vi:*
    em ba:*
15:
     em fun:*
16:
17:
     em hum: *
18:
     em_in:*
19:
     em_mu:*
     em_om:*
20:
21:
     em or:*
     em ov:*
22:
     em_pat:*
23:
24:
     em_ph:*
25:
     em_pl:*
26:
     em_ro:*
27:
     em sts:*
28:
     em un:*
29:
     em vi:*
     em_htg_hum:*
30:
31:
     em htg inv: *
32:
     em_htg_other:*
33:
     em_htg_mus:*
34:
     em htg pln:*
35:
     em htg rod: *
36:
     em_htg_mam: *
37:
     em_htg_vrt:*
38:
     em sy:*
39:
     em_htgo_hum: *
40:
     em htgo_mus:*
41:
     em_htgo_other:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Resi	ult No.	Score	Query Match	Length	DB	ID		Description
	 1	1191	100.0	708	6	AX123539	Nacagan	AX123539 Sequence
	2	1191	100.0	708	6	BD165656	//	6.02 T BD165656 Novel pol
	3	1191	100.0	711	6	AX643028	Applian	AX643028 Sequence
	4	1191	100.0	822	6	AX063771	Pomelus	1.01 WO AX063771 Sequence
	5	1191	100.0	822	6	AX244059	' 11 3	, ₩ ^O AX244059 Sequence
	6	1191	100.0	2374	1	CGLYSEG	Vrijic	120 X96471 C.glutamicu
	7	1191	100.0	2374	6	A93933	11 ° .	A93933 Sequence 2
С	8	1191	100.0	333150	1	AP005277	No. 629	かららる AP005277 Corynebac
С	9	1191	100.0	349980	6	AX127147	1) 78 200	%/o €₽ AX127147 Sequence
	10	1169	98.2	712	6	AX643030	Applicant	AX643030 Sequence
	11	864.5	72.6	1568	6	E54483	Irana	E54483 Heat-resist
	12	864.5	72.6	1771	1	AB083133	Topo	AB083133 Corynebac
С	13	864.5	72.6	308650	1	AP005218	12, .	AP005218 Corynebac
С	14	562	47.2	349535	1	BX248357	NINO	BX248357 Corynebac
	15	352	29.6	636	6	E49392		E49392 Process for
	16	352	29.6	636	6	AX030085		AX030085 Sequence

OM protein - nucleic search, using frame_plus_p2n model

Run on:

October 7, 2004, 14:30:02; Search time 340 Seconds

(without alignments)

2948.749 Million cell updates/sec

Title:

Sequence:

US-10-716-480A-2

Perfect score: 1191

1 MVIMEIFITGLLLGASLLLS......INVVVAVVMTALAIKLMLMG 236

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 6.0 , Delext 7.0 Delop

Searched:

3373863 seqs, 2124099041 residues

Total number of hits satisfying chosen parameters:

6747726

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+ p2n.model -DEV=xlp

Q=/cgn2_1/USPTO_spool_p/US10716480/runat_06102004_102309_20217/app query.fasta 1

-DB=N Geneseq 29Jan04 -QFMT=fastap -SUFFIX=p2n.rng -MINMATCH=0.1 -LOOPCL=0

-LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi

-LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15

-MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000

-USER=US10716480_@CGN_1_1_708_@runat_06102004_102309_20217 -NCPU=6 -ICPU=3

-NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG

-DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6

-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

N Geneseq 29Jan04:* Database :

1: geneseqn1980s:*

2: geneseqn1990s:*

3: geneseqn2000s:*

4: genesegn2001as:*

5: geneseqn2001bs:*

6: geneseqn2002s:*

7: geneseqn2003as:*

8: geneseqn2003bs:* 9: geneseqn2003cs:*

10: geneseqn2004s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Resi	11t		% Query				
	No.	Score		Length	DB	ID	Description
	 1	1191	100.0	708	5	AAH68420 ()aka	Aah68420 C glutami
	2	1191	100.0	711	8	ACC809417	Acc80941 LysE prot
	3	1191	100.0	822	4	AAF/1//97/2002	Aaf71779 Corynebac
	4	1191	100.0	822	4	AAS96098V/702 77	Aas96098 C. glutam
	5	1191	100.0	2374	2	ΔΔΨ96816V / Y	Aat96816 DNA encod
	6	1191	100.0	2374	9	ADB66196 Yangaria (P 190	Adb66196 DNA fragm
С	7	1191	100.0	349980	5	AAH68528 1/28 4 016 EP.	Aah68528 C glutami
	8	1169	98.2	712	8	ACC80942 App	Acc80942 LysE24 pr
	9	864.5	72.6	1568	4	AAH45375 A-DIV 7 5/8/9/ JE	Aah45375 C. thermo
4	10	352	29.6	636	3	AAA52691 Live 5 7/5/00 E7	Aaa52691 Escherich
	11	327.5	27.5	86114	6	ABX09143	Abx09143 Mycobacte
	12	327.5	27.5	110000	4	AAI99682_05	Continuation (6 of
	13	327.5	27.5	110000	4	AAI99683_05	Continuation (6 of
С	14	318	26.7	15239	2	AAT33536	Aat33536 BCG delet
	15	318	26.7	110000	4	AAI99682_22	Continuation (23 o
	16	318	26.7	110000	4	AAI99683_22	Continuation (23 o
	17	298	25.0	624	7	ACF71727	Acf71727 Photorhab
	18	298	25.0	636	8	ADA30324	Ada30324 DNA encod
	19	298	25.0	110000	7	ACF67367_49	Continuation (50 o
	20	298	25.0	110000	7	ACF65387_0	Acf65387 Photorhab
	21	170.5	14.3	630	2	AAT67601	Aat67601 H. pylori
	22	170.5	14.3	645	2	AAT68221	Aat68221 H. pylori
	23	165	13.9	7521	5	AAS71378	Aas71378 DNA encod
	24	165	13.9	7521	5	AAS94251	Aas94251 DNA encod
	25	164	13.8	615	7	ACF73766	Acf73766 Staphyloc
	26	154.5	13.0	3520	4	AAH54185	Aah54185 S. epider
	27	135.5	11.4		7	ACF67367_28	Continuation (29 o
С	28	135.5	11.4	110000	7	ACF65386_0	Acf65386 Photorhab
	29	132.5	11.1	615	7	ACF69801	Acf69801 Photorhab
	30	132.5	11.1	678	5	AAH65130	Aah65130 C glutami
	31	132.5	11.1	678	7	ACA01893	Aca01893 C. glutam
	32	132.5		349980	5	AAH64966	Aah64966 C glutami
	33	121.5	10.2	708	8	ADA32836	Ada32836 DNA encod
	34	121	10.2	405	2	AAV75577	Aav75577 Staphyloc
	35	119.5	10.0	522	6	ABN91726	Abn91726 Staphyloc
	36	119.5	10.0	669	8	ADA31058	Ada31058 DNA encod
	37	119	10.0	1863	7	ACA53564	Aca53564 Prokaryot
C	38	116		110000	7	ACF65385_1	Continuation (2 of
C	39	116	9.7		7	ACF67367_30	Continuation (31 o
C	40	114.5	9.6		3	AAA61501	Aaa61501 A. vitis
	41	114.5	9.6		3	AAA61502	Aaa61502 A. vitis
	42	112	9.4	609	7	ACF70009	Acf70009 Photorhab
	43	108.5	9.1		7	ACF68771	Acf68771 Photorhab
	44	108.5	9.1	717	8	ADA31709	Ada31709 DNA encod
	45	108.5	9.1	110000	7	ACF67367_15	Continuation (16 o

OM protein - nucleic search, using frame_plus_p2n model

Run on: October 7, 2004, 16:03:58; Search time 81 Seconds

(without alignments)

1616.894 Million cell updates/sec

Title: US-10-716-480A-2

Perfect score: 1191

Sequence: 1 MVIMEIFITGLLLGASLLLS.....INVVVAVVMTALAIKLMLMG 236

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 , Delext 7.0

Searched: 682709 seqs, 277475446 residues

Total number of hits satisfying chosen parameters: 1365418

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+ p2n.model -DEV=xlp

Q=/cgn2_1/USPTO_spool_p/US10716480/runat_06102004_102310_20256/app_query.fasta_1
.391

-DB=Issued_Patents_NA -QFMT=fastap -SUFFIX=p2n.rni -MINMATCH=0.1 -LOOPCL=0

-LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi

-LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15

-MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=200000000

-USER=US10716480 @CGN 1 1 105 @runat 06102004 102310 20256 -NCPU=6 -ICPU=3

-NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG

-DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6

-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database: Issued Patents NA:*

1: /cgn2_6/ptodata/2/ina/5A_COMB.seq:*

2: /cgn2 6/ptodata/2/ina/5B COMB.seq:*

3: /cgn2_6/ptodata/2/ina/6A_COMB.seq:*

4: /cgn2_6/ptodata/2/ina/6B_COMB.seq:*

5: /cgn2_6/ptodata/2/ina/PCTUS_COMB.seq:*

6: /cgn2 6/ptodata/2/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

			96				
Res	ult		Query				
	No.	Score	Match	Length I	DΒ	ID	Description
	1	341	28.6	642	4	US-09-489-039A-4674	Sequence 4674, Ap
	2	332	27.9	699	4	US-09-252-991A-7908	Sequence 7908, Ap
С	3	332	27.9	834	4	US-09-252-991A-7500	Sequence 7643, Ap
C	3 4	332	27.9	894	4	US-09-252-991A-7045	Sequence 7841, Ap
	5	327.5		4403765	3	US-09-232-991A 7041 US-09-103-840A-2	Sequence 2, Appli
	6	327.5		4411529	3	US-09-103-840A-2	Sequence 1, Appli
	7	327.3	26.7	597	4	US-09-894-844-11	Sequence 11, Appl
_	8	318	26.7	15239	1	US-08-390-878-17	Sequence 17, Appl
С	9	310	26.7	645	4	US-09-543-681A-800	Sequence 800, App
		298	25.0	636	4	US-09-328-352-1611	Sequence 1611, Ap
_	10		13.2	1176	4	US-09-252-991A-7571	Sequence 7571, Ap
С	11	157		639	4	US-09-232-991A-7371 US-09-543-681A-595	Sequence 595, App
	12	138.5	11.6	783	4	US-09-252-991A-9421	
	13	135.5	11.4		4	US-09-252-991A-9478	Sequence 9421, Ap Sequence 9478, Ap
	14	135.5	11.4	1596	_		
С	15	135.5	11.4	1650	4	US-09-252-991A-9352	Sequence 9352, Ap
	16	121.5	10.2	708	4	US-09-328-352-4123	Sequence 4123, Ap
	17	121	10.2	405	4	US-08-956-171E-1266	Sequence 1266, Ap
	18	119.5	10.0	522	4	US-09-134-001C-1189	Sequence 1189, Ap
	19	119.5	10.0	669	4	US-09-328-352-2345	Sequence 2345, Ap
	20	118.5	9.9	753	4	US-09-543-681A-315	Sequence 315, App
С	21	118.5	9.9	1713	4	US-09-252-991A-9760	Sequence 9760, Ap
	22	118.5	9.9	2805	4	US-09-252-991A-10208	Sequence 10208, A
	23	117.5	9.9	621	4	US-09-252-991A-2175	Sequence 2175, Ap
C	24	117.5	9.9	813	4	US-09-252-991A-1792	Sequence 1792, Ap
	25	115.5	9.7	660	4	US-09-489-039A-560	Sequence 560, App
	26	113.5	9.5	687	4	US-09-543-681A-682	Sequence 682, App
	27	111	9.3	669	4	US-09-252-991A-10073	Sequence 10073, A
	28	108.5	9.1	717	4	US-09-328-352-2996	Sequence 2996, Ap
	29	108	9.1	654	4	US-09-489-039A-905	Sequence 905, App
	30	104.5	8.8	636	4	US-09-543-681A-2536	Sequence 2536, Ap
	31	104	8.7	750	4	US-09-252-991A-9146	Sequence 9146, Ap
C	32	103	8.6	1650	4	US-09-489-039A-1643	Sequence 1643, Ap
	33	103	8.6	3324	4	US-09-489-039A-1719	Sequence 1719, Ap
	34	101.5	8.5	663	4	US-09-328-352-777	Sequence 777, App
	35	99	8.3	627	4	US-09-328-352-985	Sequence 985, App
	36	97.5	8.2	636	4	US-09-489-039A-2437	Sequence 2437, Ap
C	37	96	8.1	3402	4	US-09-252-991A-1374	Sequence 1374, Ap
	38	96	8.1	3687	4	US-09-252-991A-1193	Sequence 1193, Ap
	39	96	8.1	4266	4	US-09-252-991A-1234	Sequence 1234, Ap
	40	94.5	7.9	723	4	US-09-328-352-3411	Sequence 3411, Ap
	41	94	7.9	1659	4	US-09-489-039A-248	Sequence 248, App
	42	93	7.8	687	4	US-09-252-991A-7266	Sequence 7266, Ap
С	43	93	7.8	1521	4	US-09-252-991A-7437	Sequence 7437, Ap
	44	93	7.8	2397	4	US-09-252-991A-7203	Sequence 7203, Ap
C	45	91.5	7.7	7754	4	US-09-634-238-3	Sequence 3, Appli

ALIGNMENTS

RESULT 1 US-09-489-039A-4674

OM protein - nucleic search, using frame plus p2n model Run on: October 7, 2004, 16:11:23; Search time 407 Seconds (without alignments) 2939.601 Million cell updates/sec Title: US-10-716-480A-2 Perfect score: 1191 Sequence: 1 MVIMEIFITGLLLGASLLLS......INVVVAVVMTALAIKLMLMG 236 Scoring table: BLOSUM62 Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0, Fgapext 7.0 Delop 6.0 , Delext 7.0 3340653 seqs, 2534783454 residues Searched: Total number of hits satisfying chosen parameters: 6681306 Minimum DB seq length: 0 Maximum DB seq length: 200000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Command line parameters: -MODEL=frame+ p2n.model -DEV=xlp Q=/cgn2 1/USPTO spool p/US10716480/runat 06102004 102310 20286/app query.fasta 1 .391 -DB=Published Applications NA -QFMT=fastap -SUFFIX=p2n.rnpb -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -USER=US10716480 @CGN 1 1 783 @runat 06102004 102310 20286 -NCPU=6 -ICPU=3 -NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 Database : Published Applications NA:* 1: /cgn2 6/ptodata/1/pubpna/US07 PUBCOMB.seq:* 2: /cgn2_6/ptodata/1/pubpna/PCT NEW PUB.seq:* 3: /cgn2 6/ptodata/1/pubpna/US06 NEW PUB.seg:* /cgn2_6/ptodata/1/pubpna/US06_PUBCOMB.seq:* 4: /cgn2_6/ptodata/1/pubpna/US07 NEW PUB.seq:* 6: /cgn2_6/ptodata/1/pubpna/PCTUS PUBCOMB.seq:* 7: /cgn2 6/ptodata/1/pubpna/US08 NEW PUB.seg:* 8: /cgn2 6/ptodata/1/pubpna/US08 PUBCOMB.seg:*

9: /cgn2_6/ptodata/1/pubpna/US09A_PUBCOMB.seq:*
10: /cgn2_6/ptodata/1/pubpna/US09B PUBCOMB.seq:*

```
11: /cgn2_6/ptodata/1/pubpna/US09C_PUBCOMB.seq:*
12: /cgn2_6/ptodata/1/pubpna/US09_NEW_PUB.seq:*
13: /cgn2_6/ptodata/1/pubpna/US09_NEW_PUB.seq2:*
14: /cgn2_6/ptodata/1/pubpna/US10A_PUBCOMB.seq:*
15: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:*
16: /cgn2_6/ptodata/1/pubpna/US10C_PUBCOMB.seq:*
17: /cgn2_6/ptodata/1/pubpna/US10_NEW_PUB.seq:*
18: /cgn2_6/ptodata/1/pubpna/US60_NEW_PUB.seq:*
19: /cgn2_6/ptodata/1/pubpna/US60_PUBCOMB.seq:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

	7.		*				, ,
Re	sult	0	Query	T 1 1 1	- D		
_	No.	Score	Match	Length)B	,	Description
	1	1191	100.0	708	9	US-09-738-626-3455VNAK US	Sequence 3455, Ap
	2	1191	100.0	711	15	US-10-166-142-7 Arc	Sequence 7, Appli
	3	1191	100.0	711	17	US-10-716-473-7-65-0	Sequence 7, Appli
	4	1191	100.0	822	10	US-09-746-660A-51 POMP VS	Sequence 51, Appl
	5	1191	100.0	2374	15	US-10-196-232-24-YCMA	Sequence 24, Appl
С	_	1191		3309400	9	US-09-738-626-1 -NAK	Sequence 1, Appli
C	7	1169	98.2	712	15	US-10-166-142-9	Sequence 9, Appli
	8	1169	98.2	712	17	US-10-716-473-9/AJTV	Sequence 9, Appli
	9	327.5	27.5	86114	15	US-10-080-170-648	Sequence 648, App
	10	327.5	27.5	86114	17	US-10-080-170-648	Sequence 648, App
	11	318	26.7	597	9	US-09-894-844-11	Sequence 11, Appl
	12	318	26.7	597	13	US-10-647-089-11	Sequence 11, Appl
	13	318	26.7	597	16	US-10-388-902-11	Sequence 11, Appl
	14	301	25.3	609	15	US-10-156-761-1109	Sequence 11, Appr Sequence 1109, Ap
С		301	25.3		15		Sequence 1, Appli
C	16	170.5	14.3	630	13	US-10-335-977-1122	Sequence 1122, Ap
	17	170.5	14.3	633	13	US-10-335-977-1122	Sequence 1121, Ap
	18	170.5	14.3	645	13	US-10-335-977-1121	Sequence 1121, Ap
	19	133	11.2	672	15	US-10-333-977-1123 US-10-156-761-246	Sequence 246, App
	20	132.5	11.1	678	9	US-09-738-626-165	
	21	132.5		3309400	9	US-09-738-626-1	Sequence 165, App
	22	128.5	10.8	32329	13	US-10-374-903A-1	Sequence 1, Appli
	23	128.3	10.2	405	8	US-08-781-986A-1266	Sequence 1, Appli
	23 24	121		405	13		Sequence 1266, Ap
	25	119	10.2	1863	13	US-10-329-624-1266	Sequence 1266, Ap
	26	109.5	9.2	630	15	US-10-282-122A-41434 US-10-156-761-7444	Sequence 41434, A
	27	103.5	8.7	543	13		Sequence 7444, Ap
	28	99.5		888	13	US-10-282-122A-8689	Sequence 8689, Ap
	20 29	98.5	8.4	651	15	US-10-282-122A-41598	Sequence 41598, A
	30	97.5		750		US-10-156-761-3368	Sequence 3368, Ap
	31	96.5	8.2	1018	13 13	US-10-620-487-1	Sequence 1, Appli
	32	96.5 94			17	US-10-425-114-28659	Sequence 28659, A
			7.9	1630		US-10-437-963-62711	Sequence 62711, A
	33	93.5	7.9	1359	9	US-09-815-242-6086	Sequence 6086, Ap
	34	93.5	7.9	1359	13	US-10-282-122A-20388	Sequence 20388, A
	35	93	7.8	633	13	US-10-282-122A-11642	Sequence 11642, A
	36 27	93	7.8	894	15	US-10-156-761-1180	Sequence 1180, Ap
	37	93	7.8	1377	9	US-09-738-626-3498	Sequence 3498, Ap
	38	93	7.8	9025608	15	5 US-10-156-761-1	Sequence 1, Appli

OM protein - nucleic search, using frame plus p2n model

Run on: October 7, 2004, 16:02:13; Search time 2437 Seconds

(without alignments)

2891.865 Million cell updates/sec

Title: US-10-716-480A-2

Perfect score: 1191

Sequence: 1 MVIMEIFITGLLLGASLLLS.....INVVVAVVMTALAIKLMLMG 236

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 , Delext 7.0

Searched: 27513289 seqs, 14931090276 residues

Total number of hits satisfying chosen parameters: 55026578

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+_p2n.model -DEV=xlp

- 0-/ggn2 1/USDEO gnool n/US10716400/m

Q=/cgn2_1/USPTO_spool_p/US10716480/runat_06102004_102310_20237/app_query.fasta_1
.391

-DB=EST -QFMT=fastap -SUFFIX=p2n.rst -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0

-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45

-DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL

-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000

-USER=US10716480 @CGN 1 1 5180 @runat 06102004 102310 20237 -NCPU=6 -ICPU=3

-NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG

-DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6

-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : EST:*

1: em_estba:*

2: em_esthum:*

3: em estin:*

4: em_estmu:*

5: em_estov:*

6: em_estpl:*

7: em estro:*

8: em htc:*

9: gb est1:*

10: gb_est2:*

11: gb htc:* 12: gb est3:* 13: gb est4:* 14: gb_est5:* 15: em estfun:* 16: em_estom:* 17: em_gss_hum:* 18: em_gss_inv:* 19: em_gss_pln:* 20: em_gss_vrt:* 21: em_gss_fun:* 22: em_gss_mam:* 23: em gss mus:* 24: em_gss_pro:* 25: em_gss_rod:* 26: em_gss_phg: * 27: em_gss_vrl:* 28: gb_gss1:* 29: gb_gss2:*

용

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

	ult No.	Score	Query Match	Length	DB	ID	Description
С	1	317.5	26.7	830	29	CNS01MQH	AL151258 Anopheles
С	2	281	23.6	667	28	AQ991044	AQ991044 Rfc01899
	3	207.5	17.4	1034	28	BZ554294	BZ554294 pacs1-60
C	4	205.5	17.3	833	28	BZ556963	BZ556963 pacs1-60
C	5	199	16.7	804	29	CNS01HIJ	AL144476 Anopheles
C	6	160	13.4	897	28	BZ560550	BZ560550 pacs2-164
C	7	149	12.5	1620	28	BZ568946	BZ568946 pacs2-164
C	8	143	12.0	751	28	BH391509	BH391509 AG-ND-159
	9	116.5	9.8	909	28	BZ565158	BZ565158 pacs2-164
	10	98	8.2	829	28	CC113281	CC113281 NDL.24H1.
	11	94.5	7.9	1525	29	AY415555	AY415555 Pan trogl
С	12	94	7.9	840	29	CC719070	CC719070 OGWCI79TV
	13	93.5	7.9	210	14	CB020010	CB020010 pw98f01.y
	14	93.5	7.9	570	14	CF275208	CF275208 NcEST3d13
	15	93.5	7.9	741	13	BX612630	BX612630 BX612630
	16	91	7.6	632	12	BI862608	BI862608 603389677
C	17	90	7.6	798	29	CNS01QYA	AL156722 Anopheles
	18	89.5	7.5	679	13	BW283758	BW283758 BW283758
	19	89	7.5	590	14	CD482346	CD482346 atr01-4ms
	20	89	7.5	709	14	CA300534	CA300534 SCSFLV104
	21	88.5	7.4	438	28	AQ856877	AQ856877 nbeb0004K
С	22	88.5	7.4	945	13	BU554436	BU554436 AGENCOURT
С	23	88.5	7.4	1233	28	BZ579504	BZ579504 msh2_6385
С	24	87.5	7.3	628	14	CA279614	CA279614 SCCCFL800
	25	87.5	7.3	656	13	BU002594	BU002594 QGG31M20.
C	26	87.5	7.3	682	29	CC968186	CC968186 BOICV59TR
	27	87.5	7.3	684	13	BQ856142	BQ856142 QGB28L08.
	28	87.5	7.3	710	13	BQ866753	BQ866753 QGC8N13.y