NOIP 2019 模拟赛 Day 1

 ${\it diamond_duke}$

题目名称	分组	折纸	集合
可执行文件名	group	origami	set
输入文件名	标准输入	标准输入	标准输入
输出文件名	标准输出	标准输出	标准输出
时间限制	1s	1s	1s
内存限制	512MB	512MB	512MB
子任务个数	5	4	5
题目类型	传统型	传统型	传统型

请注意: 评测时开启 02 优化和 C++11 编译选项, 栈空间限制同空间限制。

1 分组

1.1 Problem Statement

小 D 正在招聘员工。

共有 n 人报名了招聘,这些人被依次编号为 $1,2,\cdots,n$ 。其中,第 i 个人的工作 经验为 w_i ,薪水为 s_i 。

小 D 想要招聘 2k 个人,并将这些人分为 k 组,每组两个人。

每组的两个人中,会有一个人为组长,而另一个人为组员。对于每个组而言,小 D 都要求组长的工作经验**不小于**组员的工作经验。

此外,每个应聘者会有一个意愿 p_i ,表示他应聘的岗位。若 $p_i=1$,则该应聘者应聘的是组长;若 $p_i=2$,则他应聘的是组员;若 $p_i=3$,则他既可以当组长又可以当组员。

小 D 想要知道,在不改变意愿的情况下,是否可以招聘满足条件的 2k 个人。如果可以,小 D 还想要知道招聘的人薪水和的最小值。

但是小 D 并不会,请你帮帮他。

1.2 Input Format

从标准输入读入数据。

第一行两个整数 n,k,表示应聘者个数以及小组个数。

接下来 n 行,每行三个整数 w_i, s_i, p_i ,依次表示每个人的工作经验,薪水,以及意愿。

1.3 Output Format

向标准输出输出答案。

如果无法做到,则输出一行一个整数-1,否则输出最小总薪水。

1.4 Sample 1

1.4.1 Input

6 2

20 6 1

6 7 2

4 8 3

3 10 2

8 5 3

4 3 1

1.4.2 Output

22

1.4.3 Explanation

选择如下两组即可:

- 组长: 1 号应聘者, 组员: 5 号应聘者;
- 组长: 6 号应聘者, 组员: 3 号应聘者。

1.5 Sample 2

见下发文件 group/group2.in 与 group/group2.ans。

1.6 Sample 3

见下发文件 group/group3.in 与 group/group3.ans。

1.7 Constraints

对于所有测试数据, $1 \le n \times k \le 10^5$, $1 \le w_i, s_i \le 10^9$, $1 \le p_i \le 3$ 。

- 子任务 1 (20 分): n,k ≤ 10;
- 子任务 2 (20 分): $n, k \le 20$;
- 子任务 3 (20 分): $n, k \leq 500$;
- 子任务 4 (20 分): $n, k \le 5000$;
- 子任务 5 (20 分): 无特殊限制。

2 折纸

2.1 Problem Statement

小D正在折纸。

小 D 现在有一张 $n \times m$ 的方格纸,每个方格有一个颜色,用小写字母表示。具体地,位于第 i 行第 j 列的方格颜色为 $c_{i,j}$ 。

小 D 想要进行折纸。具体地,他可以选择一个水平或竖直的**不穿过任何小方格内 部的**直线,并将整张纸沿这条线对折。并且在对折时,小 D 要求在下面的那部分必须 **不小于**上面的那部分。也就是说,我们把较小的那部分折到较大的那部分上面。但如果两部分一样大,那么向两个方向折都是允许的。

为了最终结果的美观, 小 D 要求每次折纸时, 对应位置的颜色必须一样。

小 D 想要知道,在若干次对折后,他最终可以折出多少种本质不同的结果。

我们认为两个结果是本质不同的,当且仅当他们的最下层**在原方格纸中对应的区域不同**。也就是说,颜色一样的两个结果可能是不同的。

但是小 D 并不会,请你帮帮他。

注: 你可以认为在一次折纸后,上下两部分会合成一张纸,即你不用考虑上面的部分在之后的折纸过程中,被折到下面那部分之间导致的不合法情况。

2.2 Input Format

从标准输入读入数据。

第一行两个整数 n, m,表示方格纸的大小。

接下来 n 行,每行一个长度为 m 的小写字母组成的字符串,表示第 i 行所有方格的颜色。

2.3 Output Format

向标准输出输出答案。

输出一行一个整数表示答案。

2.4 Sample 1

2.4.1 Input

5 7

baabbaa

cbbccbb

ababbab cabccba bccaacc

2.4.2 Output

2

2.4.3 Explanation

第一种结果是不折,第二种结果是沿第四、第五列之间对折。

2.5 Sample 2

见下发文件 origami/origami2.in 与 origami/origami2.ans。

2.6 Sample 3

见下发文件 origami/origami3.in 与 origami/origami3.ans。

2.7 Constraints

对于所有测试数据, $1 \le n \times m \le 10^6$ 。

- 子任务 1 (30 分): n, m ≤ 30;
- 子任务 2 (20 分): n = 1;
- 子任务 3 (20 分): n, m ≤ 1000;
- 子任务 4 (30 分): 无特殊限制。

3 集合

3.1 Problem Statement

小 D 正在研究集合。

小 D 想要维护一个**可重集合** S。

小 D 想要支持如下四种操作:

- 在 *S* 中插入一个元素 *x*;
- 删除 S 中某个元素 x 的一次出现,保证 $x \in S$;
- 给 S 中的所有元素加上 1; **为了避免整数溢出,小 D 在每次加法后会将所有** 数字对 2^{30} 取模。
- 给 S 中的所有元素异或上 x。

小 D 想要知道,所有操作都进行完后 S 中的所有元素。但是小 D 并不会,请你帮帮他。

3.2 Input Format

从标准输入读入数据。

第一行两个整数 n,q,表示 S 中初始的元素个数,以及小 D 的操作次数。第二行 n 个空格隔开的整数 a_1,a_2,\cdots,a_n ,表示 S 中的初始元素。接下来 q 行每行 1 或 2 个整数,表示一次操作:

- 1 x: 插入一个元素 x;
- 2 x: 删除元素 x 的一次出现;
- 3: 给所有元素 +1;
- 4 x: 给所有元素异或上 x。

3.3 Output Format

向标准输出输出答案。

输出一行若干个空格隔开的整数,表示最终 S 中的元素。你需要按照**从小到大的顺序**进行输出。

3.4 Sample 1

3.4.1 Input

2 4

5 10

- 3
- 1 6
- 4 2
- 2 4

3.4.2 Output

4 9

3.4.3 Explanation

集合 S 的变化如下:

- 初始时, S = {5,10};
- 第一次操作后, $S = \{6, 11\}$;
- 第二次操作后, $S = \{6, 6, 11\}$;
- 第三次操作后, S = {4,4,9};
- 第四次操作后, $S = \{4, 9\}$;

3.5 Sample 2

见下发文件 set/set2.in 与 set/set2.ans。

3.6 Sample 3

见下发文件 set/set3.in 与 set/set3.ans。

3.7 Constraints

对于所有测试数据, $1 \le n, q \le 3 \times 10^5$, $0 \le a_i, x < 2^{30}$ 。

- 子任务 1 (25 分): *n*, *q* ≤ 5000;
- 子任务 2 (15 分): 没有操作 3;
- 子任务 3 (15 分): 没有操作 4;
- 子任务 4 (25 分): $n, q \le 10^5$;
- 子任务 5 (20 分): 无特殊限制。