SHIMMER ReadMe, 6th May 2016

1. Hardware and Software Requirement

SHIMMER is written and can be executed in the free open source computing environment and programming language R, which is available for download on the web (http://www.r-project.org/). SHIMMER uses the adaptive time-step solver "Isoda" from the deSolve package (Soetaert et al., 2010) which must also be installed. On a standard desktop computer running R, the model usually takes less than 1 min to simulate 10 years of succession.

2. Download SHIMMER

A package named "SHIMMER", containing the source code of SHIMMER as well as example input and testing data is available at http://jamesbradleyweb.weebly.com/research.html under the sub-heading "SHIMMER" (click "Download SHIMMER .zip package").

The package contains one folder named "demo", containing 2 sub-folders:

- 1) demo_MAC (if you are running RStudio on a Mac)
- 2) demo_WIN (if you are running R on Windows)

The differences in the code are minor – mostly to do with plotting.

Within these two folders are further sub-folders:

- "SHIMMER": containing the model source code for a single run of SHIMMER.
- "input data Svalbard": containing the following time-series of forcings:
 - o par.csv solar radiation (already accounting for inhibition by snow)
 - o temp.csv soil temperature
 - o snow.csv snow depth
 - ICS1.csv input (deposition) of C substrate (labile)
 - ICS2.csv input (deposition) of (refractory)
 - o IPON1.csv input (deposition) of organic N (labile)
 - IPON2.csv input (deposition) organic N (refractory)
 - o IPOP1.csv input (deposition) organic P (labile)
 - o IPOP2.csv input (deposition) organic P (refractory)
 - o IDIN.csv input (deposition) DIN
 - o IDIP.csv input (deposition) DIP
- "observations": field data.
 - o "C_aut.dat": total autotrophic microbial biomass
 - o "C_het.dat": total heterotrophic microbial biomass
 - o "CS.dat": total organic carbon

The entire "demo" folder should be copied to a local computer such that the directory is: "C:/RFolder/model/demo/" (Windows) **or**

"/Users/jamesbradley/Documents/RFolder/model/demo/" (Macintosh) **or** the folder paths contained in SHIMMER.R script should be modified (*path*, *path_root*, *pathdr* and *pathte*) according to where the "demo" folder is copied to.

3. Source Code Files Description

This section provides a brief description of all source code files present in the sub-folder "SHIMMER". This should be read alongside the SHIMMER (1.0) *Geoscientific Model Development* publication (Bradley et al., 2015) for clarity on variables, parameters, balance equations etc.

SHIMMER.R

- Specify length of model run here (nyears) (note: must be a positive integer).
- Execute this code (copy and paste into R Console window) to run the model.

Library > SHIMMER set parameter values.R

- Specify parameter values here.
- The default settings of the model correspond to the Midtre Lovénbreen forefield, Svalbard (Bradley et al., 2016).
- See Bradley et al. (2015) for a description of parameters.

Library > SHIMMER_NEW_load_and_make_drivers.R

- Load the forcing data and replicate for duration of model run (nyears).
- Note: forcing data must be specified as daily values (as per examples).

Library > SHIMMER_set_start_values.R

• Specify initial conditions here (starting value for each state-variable).

Library > SHIMMER_NEW_model_definition.R

Contains the equations which formulate the model.

Library > SHIMMER_compute_totals.R

• Derive rates from time-series of output variables.

Library > SHIMMER_construct_array.R

Construct 3-D array from output variables.

Library > SHIMMER_basic_plots.R

Examples of basic plots of model output.

4. Model Operation

In R, specify working directory to: "C:/RFolder/model/demo/demo_WIN/SHIMMER/" (if using Windows. For Mac, change path as appropriate).

Open SHIMMER.R script and execute in console (note: package "deSolve" (Soetaert et al., 2010) must be installed).

To run the model, copy and paste the SHIMMER.R script into the R Console window.

5. Output

Model output is created as variables within R (out, out2 and out_array). By default, they are not saved locally, however this can be done by using a command such as:

write.table(out,file=paste("out","model_run.csv",sep="_"),sep=",",row.names=FALSE)

The dataframe "out" is a 2-D time-series of output data comprised of columns for each output (variables, totals and rates), and rows for each day simulated. All units are in μg g⁻¹ dry soil or equivalent.

		Column	
Column Name	Description	Name	Description
time	Day of simulation	cum_I_Sub	Cumulative C substrate input
A1	A1 biomass	cum_G_X	Cumulative C substrate from losses (G) and exudates (X)
A2	A2 biomass	years	Year of simulation
A3	A3 biomass	A_total	Total autotrophic biomass
H1	H1 biomass	H_total	Total heterotrophic biomass
H2	H2 biomass	S_total	Total C substrate
Н3	H3 biomass	Cmic_total	Total microbial biomass
S1	C substrate (labile)	PON_total	Total organic nitrogen
S2	C substrate (refractory)	POP_total	Total organic phophorus
DIN	Dissolved Inorganic Nitrogen	cum_A	Cumulative growth (production) of autotrophs
DIP	Dissolved Inorganic Phosphorus	cum_H	Cumulative growth (production) of heterotrophs
PON1	Organic Nitrogen (labile)	rate_A1	Daily A1 growth rate
PON2	Organic Nitrogen (refractory)	rate_A2	Daily A2 growth rate
POP1	Organic Phosphorus (labile)	rate_A3	Daily A3 growth rate
POP2	Organic Phosphorus (refractory)	rate_H1	Daily H1 growth rate
cum_A1	Cumulative growth (production) of A1	rate_H2	Daily H2 growth rate
cum_A2	Cumulative growth (production) of A2	rate_H3	Daily H3 growth rate
cum_A3	Cumulative growth (production) of A3	rate_DIC_A	Daily DIC from autotrophs
cum_H1	Cumulative growth (production) of H1	rate_DIC_H	Daily DIC from heterotrophs
cum_H2	Cumulative growth (production) of H2	rate_DIN	Daily DIN assimilation
cum_H3	Cumulative growth (production) of H3	rate_nf	Daily nitrogen fixation
cum_DIC_A	Cumulative DIC from autotrophs	rate_A	Daily autotrophic growth (production)
cum_DIC_H	Cumulative DIC from heterotrophs	rate_H	Daily heterotrophic growth (production
cum_DIN	Cumulative DIN assimilated into biomass	rate_I_Sub	Daily C substrate input

cum_nf	Cumulative nitrogen fixed	rate_G_X	Daily loss (G) and exudate (X) input	ĺ
		rate_G	Daily loss (G) (necromass) input	
		rate_X	Daily exudate (X) input	

The dataframe "out2" is a 2-D time-series of annual totals (or rates), comprised of columns for each output, and rows for each year simulated. All units are in µg g⁻¹ dry soil or equivalent.

Column Name	Description	Column Name	Description
year	Year of simulation	annual_DIC_A	Total annual DIC efflux from
			autotrophs
annual_A1	Total annual A1 production	annual_DIC_H	Total annual DIC efflux from
	(biomass growth)		heterotrophs
annual_A2	Total annual A2 production	annual_DIN	Total annual DIN assimilated from soil
annual_A3	Total annual A3 production	annual_nf	Total annual nitrogen fixed from air
annual_H1	Total annual H1 production	annual_A	Total annual autotrophic production
annual_H2	Total annual H2 production	annual_H	Total annual heterotrophic production
annual_H3	Total annual H3 production		

The array "out_array" is a 3-D array of data from "out". The columns (x- axis) represent each output variable, total and rate, the rows (y-axis) represent each day of the year (1-365), and the depth (z-axis) represents each year. For example, out_array[2,5,3] is the biomass of A1 (the 2nd column in out) for the 5th day of the 3rd year. All units are in µg g⁻¹ dry soil or equivalent. The purpose of the array is that it is simpler to average and sum data across specific time-intervals.

References

- BRADLEY, J. A., ANESIO, A. M., SINGARAYER, J. S., HEATH, M. R. & ARNDT, S. 2015. SHIMMER (1.0): a novel mathematical model for microbial and biogeochemical dynamics in glacier forefield ecosystems. Geosci. Model Dev., 8, 3441-3470.
- BRADLEY, J. A., ARNDT, S., ŠABACKÁ, M., BENNING, L. G., BARKER, G. L., BLACKER, J. J., YALLOP, M. L., WRIGHT, K. E., BELLAS, C. M., TELLING, J., TRANTER, M. & ANESIO, A. 2016. Microbial dynamics in a High-Arctic glacier forefield: a combined field, laboratory, and modelling approach. Biogeosciences Discuss., 2016, 1-34.
- SOETAERT, K., PETZOLDT, T. & SETZER, R. W. 2010. Solving Differential Equations in R: Package deSolve. J Stat Softw, 33, 1-25.