PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-109147

(43)Date of publication of application: 25.04.1995

(51)Int.CI.

CO3C 4/08

860J 1/00

CO3C 3/095

(21)Application number: 05-258126

(71)Applicant: NIPPON SHEET GLASS CO LTD

(22)Date of filing:

15.10.1993

(72)Inventor: NAKAGUCHI KUNIO

UCHINO TAKASHI

TOSHIKIYO GIICHI

(54) UV LIGHT-ABSORBING GRAY GLASS

(57)Abstract:

PURPOSE: To obtain an UV light-absorbing gray borosilicate glass having low thermal expansion coefficient by incorporating with SiO2, B2O3, Al2O3, CeO2 and CoO. CONSTITUTION: The objective glass is composed of (A) 71-83wt.% of SiO2, (B) 10-20wt.% of B2O3, (C) 1-4wt.% of Al2O3, (D) 0-0.6wt.% of MgO, (E) 0-0.6wt.% of CaO, (F) 0-2wt.% of BaO, (G) 0-1wt.% of ZnO, (H) 0-2wt.% of Li2O, (I) 0-6wt.% of Na2O, (J) 0-5wt.% of K2O. (K) 0.1-1.0wt.% of Ce2O, (L) 0-0.4wt.% of Fe2O3, (M) 0-0.2wt.% of TiO2, (N) 0-1.0wt.% of Er2O3, (O) 0.001-0.02wt.% of CoO and (P) 0-0.01wt.% of NiO. This UV light-absorbing gray glass, which is low in thermal expansion coefficient, excellent in chemical durability and great in UV light absorption, is esp. suitable as a plate glass as the glazing for skyscrapers.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's

decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

DERWENT-ACC-NO:

1995-209413

DERWENT-WEEK:

199528

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

UV absorbing grey glass for

fire-resistant windows -

comprises silica, boria, alumina,

baria, alkali metal

oxide, cerium di:oxide and erbium

tri:oxide

PATENT-ASSIGNEE: NIPPON SHEET GLASS CO LTD[NIPG]

PRIORITY-DATA: 1993JP-0258126 (October 15, 1993)

PATENT-FAMILY:

PUB-NO

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

JP 07109147 A

April 25, 1995

N/A

007

C03C 004/08

APPLICATION-DATA:

וחמג

APPL-DESCRIPTOR

APPL-NO

APPL-DATE

JP 07109147A

N/A

1993JP-0258126

October 15, 1993

INT-CL (IPC): B60J001/00, C03C003/095, C03C004/08

ABSTRACTED-PUB-NO: JP 07109147A

BASIC-ABSTRACT:

The grey glass comprises (by wt.) 73.29% SiO2, 17.82% B2O3, 2.39% Al2O3, 0.31%

BaO, 1.51% Li2O, 2.75% Na2O, 0.50% K2O, 0.50% CeO2, and 0.006% Er2O3, having

principal wave length of 595.1 nm as measured using C-light source, excitation

purity 1.37%, and solar UV transmittance of 16.6%.

USE - For fire resistant window glass.

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS: ULTRAVIOLET ABSORB GREY GLASS FIRE RESISTANCE

WINDOW COMPRISE

SILICA BORIA ALUMINA BARIA ALKALI METAL OXIDE

CERIUM DI OXIDE

ERBIUM TRI OXIDE

DERWENT-CLASS: L01 Q12

CPI-CODES: L01-A01B; L01-A03A; L01-A06D; L01-L01;

UNLINKED-DERWENT-REGISTRY-NUMBERS: 1498U; 1499U; 1506U;

1517U ; 1544U ; 1694U

; 1941U

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1995-096759
Non-CPI Secondary Accession Numbers: N1995-164086

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-109147

(43)公開日 平成7年(1995)4月25日

(51) Int.Cl.*	4/08	線別記号	庁 内整理番号	ΡI	技術表示箇所		
B60J C03C	1/00	z	7447 – 3D				
				審査請求	未請求 請求項の数3 OL (全 7 頁)		
(21)出顧器号		特顧平5-258126		(71) 出頭人			
(22)出顧日		平成5年(1993)10月	115#	•	日本板硝子株式会社 大阪府大阪市中央区道修町3丁目5番11号		
(ea) Mari		1,000,107		(72)発明者			
				(72) 発明者	内野 獨司 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内		
				(72)発明者	年清 義一 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内		
				(74)代理人	弁理士 大野 埼市		

_(54) [発明の名称] _紫外線吸収灰色ガラス_ _ _ _ _ _ _

(57)【要約】

【目的】 熱動張率の小さい、紫外線吸収灰色ホウケイ酸ガラスを提供する。

【構成】 重量%で表示して、73.29%のSi O2、17.82%のBiO3、2.39%のAliO3、0.31%のBaO、0.92%のLiiO、1.51%のNaiO、2.75%のKiO、0.50%のCeO2、0.50%のEriOi、0.006%のCoOから成り、C光源を用いて測定した主波長が、595.1nm、刺激純度が1.87%、太陽紫外線透過率が16.3%である紫外線吸収灰色ガラス。

【効果】 熱遊張率が小さく、化学的耐久性に優れた業 外線吸収灰色ガラスであるので、防火用窓ガラスに用い る板ガラスとして好適である。

【特許請求の範囲】

【請求項1】 重量%で表示して、フェーミラ%のSi O: 10~205のB: O: 1~45のA1 : O: . 0~0. 6%のMgO、0~0. ヮ%のCa O、0~25のBaO、0~1%のZaO、0~2%の Lic O、0~6%のNac O、0~5%のKc O、 0.1~1.0%のCeO: 、0~0.4%のFe: 0 a 、0~0、2%のTiO; 、0~1、0%のEr; O a , 0.001~0.02%のCoO,0~0.01% のNi〇から成ることを特徴とする紫外線吸収灰色ガラ 10 【0007】

【請求項2】 5mm厚みに換算したガラスの、C光源 による主波長がラブロ~61ラmm又は補色主波長が4 80~560mmであることを特徴とする請求項1に記 載された紫外線吸収灰色ガラス、

【請求項3】 5mm厚みに換算したガラスの、C光源 による刺激純度が3%以下であることを特徴とする請求 項1に記載された紫外線吸収灰色ガラス。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は建築用、車両用ガラスに 関する、詳しくは紫外線吸収に優れた灰色の建築用、車 両用ガラスに関する。

[0002]

【従来の技術】従来から用いられてきた建築用、車両用 ガラスは、ほとんどが所謂ソーダ石灰シリカガラスであ り、本発明に係わるようなホウケイ酸ガラスは用いられ ていない。しかし近時、従来の網入りガラスに替わる建 **- 菜用防火ガラスとして、熱脳張率の小さい透明なホウケー** ット社の考案になるpyran、本発明者らが提案した 低膨張ガラス (特開平1-93437号公報) 等があ

【0003】建築物、あるいは車両の設計デザイン面か らは着色ガラスが望まれるが、本発明者らは特開平4ート 28034号公報、特開平4-285026号公報にお いて、熱膨張率の小さな着色ボウケイ酸ガラスを提案し た。

【0004】他に着色ホウケイ酸ガラスは、米国特許第一 4116704号に開示されているが、そこに記載され 40 ているガラスは、透明な明るい灰褐色のガラスであり、 本発明のガラスとは異なる色調を有するものである。さ らに米国特許第4379851号に開示されている着色 ホウケイ酸ガラスも、透明な明るい灰褐色のガラスであ り、本帝明のガラスとは異なる色調を有するものであ å,

【0005】

【発明が解決しようとする課題】さらに設近は、家具調 度品や展示品あるいは車両の内装品等を目焼けによる変 色、退色から守る、音色した紫外線吸収ガラスが望まれ、60、成分はガラスの熱路展係数を大きくするので、その上限

ている。しかし、前述の着色ガラス(特開平に一280 34号公銀、特開平4~285026号公報)は紫外線 吸収成分としてはFet Oble含有するのみであり、紫 外線吸収能力は大きくはなかった。鉄分を増やして無理 に柴外線吸収を大きくすると、可視光線透過率が低下 し、刺激純度が上昇するという不都合があった。

【0006】本発明は、上記従来の問題点を解決し、従 来存在したかった熱膨張率の小さい業外線吸収灰色ボウ ケイ酸ガラスを提供することを目的とする。

【課題を解決するための手段】請求項1の紫外線吸収灰 色ガラスは、重量的で表示して、71~83%のSIO 2 (10~20%OB; O) (1~4%OA); O) (0~0.6%nMgO.0~0.6%nCaO.0~2 %のBaO、0~1%のZhO、0~2%のLibO、 0~6%のNa; 0, 0~5%のK; 0, 0, 1~1. 0%のCeO:、り~0.4%のFe: O: .0~0. 2%のTiO: 、0~1%のEri Oi、0、001~ O. 02%のCoO、0~0.01%のNIOから成る 20 ことを特徴とする。

【0008】ただし、ここでFee Os はガラスに含有 される全ての酸化鉄をFeg Og に換算して示す。ま た、CeO:はガラスに含有される全ての酸化セリウム をCe〇: に換算して示してある。

【0009】該紫外線吸収灰色ガラスは好ましくは、5 mm厚みに換算したガラスのC光源による主波長が、ラ 70~613mm又は捕鱼主波長が480~360mm である。

--[-0-0-1-0-] 該業外線吸収灰色ガラスは呼ましくは、--5-イ酸ガラスが提案されている。例えば、ドイツ国のショー30 mm厚みに接算したガラスのC 光源による刺激鈍度が 3 %以下である。

[0011]

【作用】以下に本発明の紫外線吸収灰色ガラス組成限定 理由について説明する。

【0012】S10。はB101、A1101と共にガ ラスの骨格を形成する、SIO:がTL%未満では熱膨 張係数が大きく成りすぎて、耐熱性が低下する。83% を越えるとガラスの溶解性が低下する、

【0013】3。0。はガラスの熱膨張係数を大きくす ることなく、ガラスの溶解性を向上させる。BoOsが 1.0%未満ではガラスの溶解性が低下する。B: Os が 20%を超えるとガラスの化学的耐久性が低下する、

【0014】A1:〇)はガラスの化学的耐久性を向上 させる、AliOiが1当未満ではガラスの化学的耐久 性が低下する。4%を越えるとガラスの溶解性が悪くな

【0015】Mg0、CaO、BaO、ZaCは必須成 分ではないが、溶解性の可上、化学的耐久性の向上のた めに、必要に応じて用いることができる。但しこれらの

はMgO、CaOはO、5%、BaOはCA、ZnOは 1%とする。てこれら三価金属酸化物の合計は2%を越 えないことが望ましい。

【0016】Lii Oはガラスの高温での粘度を下げて 溶解性を向上させる。しこ: 〇が2%を超えても効果の 増大はなく、原料費が増加するので2%を上限とする。

【OO17】Na。Oもガラスの溶解性を向上させる が、5%を越えるとガラスの熱懲張係数が大きくなり好 ましくない。

【0018】K: 0もガラスの溶解性を向上させるが、 同時にNa: O、Li: Oとの組み合わせによりガラス の化学的耐久性を向上させる。しかしう省を越えるとガ ラスの粘度が増大すると共に、ガラスの熱膨張係数を増 大させるので好ましくない。

【0019】CeO: はガラスに存在する全ての酸化セ リウムを、CeOぇに換算した数値として示している。 CeO: は紫外線を吸収する成分であるが、0.1%以 下では紫外線吸収の効果が低く、1.0%を越えるとガ ラスの着色が強くなりすぎて好ましくない。

鉄をFe: O3 に換算した数値を示している。Fe: ○ 3 は紫外線を吸収する成分であるが、同時にガラスを着 色する、Fec OcがO、4%を越えると着色が強くな りすぎるので、0.4%を上限とする。

【0021】TiOoは紫外線吸収成分であるが、Ce Or 及び、或いはFer Or と共存するとガラスを強く 着色するのでの、2%を上限とする。

[0022] Erro On ticeOn , Fer On tita 着色に赤味を与えるのに用いる、日下203が1%を越。 えるとガラスが赤くなりすぎるので好ましくない。 【0023】にものはガラスを置くすると共に、じゃり 1 、Fe: O) による普色の刺激純度を下げる作用があ るが、0.001円未満では効果が少なく、0.02%

を越えるとガラスの可視光線透過率が低下して好ましく たいし

【0024】NiOはガラスにオレンジ色を与える効果 があるが、0.01%を越えるとオレンジ色が強くなり すぎて好ましくない。

10 【0025】以上の成分の他に、本発明の三言を損なわ ない範囲で、清澄剤(例えばAsiOi、SbiOi、 SO3 、CI(F等)を含んでもよい。

[0026]

【実施例】以下に、本発明を表を参照して詳細に説明す

【0027】表1、表2、表3の組成となるようにガラ ス原料を調合し、容量が約250mlの90Pt-10 Rhの坩堝にバッチを投入して、電気炉中で1550℃ -20時間の溶融を行った。溶融したガラスを、子熱し 【0020】Fleis Os はガラスに存在する全ての酸化 20 たステンレス鉄板上に流り出した後、700℃に保持さ れた電気炉に30分間保持して除冷した。徐冷されたガ ラスを切断、研磨して光学特性測定用の試料とした。表 1に示す光学特性は、5mm厚みの試料をC光源を用い て測定した結果を示す。尚、太陽柴外線透過率は、エア マスが2の時の太陽放射エネルギーの分光透過率を用い て求めた。

[0028]

【表】】

5

表し

	:				
		実	摊	5 1	
(重量%)	1	2	3	4	5
SiO2	73.29	71.98	73.48	74.35	74.05
B 2 O 3	17.32	18.35	17.62	17.70	17.82
A 1 2 0 3	2.39	3.40	2.39	2.40	2.39
MgO	0	0.31	0	- o	0
CaO	0	0	С	0.31	0
ВаО	0.31	0	0	0	0
ZnO	0	0	0.31	0	0
Li ₂ O	0.92	0.92	0.92	0.34	0.34
N a 2 O	1.51	0.51	1.11	1.39	1.39
K 2 O	2.75	3.52	3.15	2.50	2.50
C e O 2	0.50	0.50	0.50	0.50	0.50
F e 2 O 3	0	0	0	0	0
TiOz	0	0	0	0	0
E r 2 O 3	0.50	0	0.50	0	0.50
	0.006-	0007	0909-	- 0.006 -	0-012-
NiO	0	0.005	0.010	0	0
Y (%)	80.4	80.5	75.7	82.4	73.7
λ _a (nm)	595.1	572.0	588.2	570.9	
λ _c (nm)					553.0
P. (%)	1.87	2.75	2.86	1.98	2.50
Ta (%)	84.7	84.1	81.9	85.3	82.2
Tuv (%)	18.3	17.1	15.7	17.5	16.2

[0029]

表 2

		. 実	28	<i>9</i> 1	
(重量%)	6	7	8	9	1 0
SiO ₂	73.10	79.32	73.60	73.39	78.56
B ₂ O ₃	17.82	13.00	17.32	17.32	13.00
A 1 2 0 3	2.39	2.22	2.39	2.39	2.22
M & O	0	0	0	0	0
СаО	0	0	0	0	C
ВаО	0	0	0	0	0
ZnO	0	0	0	0	0
Li ₂ O	0.92	0	0.92	0.92	0
N a 2 O	1.51	4.18	1.51	1.51	4.18
K 2 O	2.75	0.02	2.75	2.75	0.02
C e O 2	0.50	0.48	0.30	0.80	0.80
F e 2 O 3	0	0.16	0.20	0.20	0.20
TiO2	0	0.18	0	0	0
Er2 03	1.0	0.45	0	0.20	1.00
c.o.o.	-0.005	0. 011	0014	— 0 . 014 —	0-015-
NiO	0	0	0	0.005	0
Y (%)	80.1	69.7	70.2	70.0	58.2
λ _d (nm)	808.3	577.5	575.1	581.2	
λ _c (nm)					493.5
P. (%)	2.51	1.38	2.70	2.94	1.34
T a (%)	84.6	79.5	80.1	80.1	74.6
T cv (%)	15.4	18.3	14.5	14.1	12.1
	1	1	L	L	·

[0030]

* *【表3】

1.)

表3

-	実	. M	छा	土	文 54
(重量%)	1 1	12	1 3	1	2
S i O 2	79.94	73.87	79.08	73.95	79.58
B 2 O 3	13.00	13.00	13.00	17.82	13.00
AlzOs	2.22	2.22	2.22	2.39	2.22
MgO	0	0	0	- c	С
СаО	0	0	0	0	С
ВаО	0	0	0	0	C
ZnO	0	0	0	0	0
Li ₂ O	0	0	0	0.92	0
Na ₂ O	4.18	4.18	4.18	1.51	4.18
K₂ O	0.02	0.02	0.02	2.75	0.02
СеО₂	0.63	0.30	0.30	0	0.30
F e 2 O 3	0	0.10	0.10	0.25	0.20
TiO ₂	0	0	0.10	0	0
E r 2 O 3	0	a	0.50	0.38	0
- C - O	-0.009-	0.013	0.020	0- 035	0
NiO	0	0	0	O	O
Y (%)	70.0	82.7	52.7	70.7	79.3
λ _d (nm)	573.4	570.2	581.3	591.4	
λ _c (nm)					576.6
P. (%)	2.78	2.78	1.41	2.59	12.98
T a (%)	79.4	75.9	71.2	78.3	83.5
T yv (%)	15.3	12.1	7.3	28.5	13.0

- 【0031】表1、表2、表3において、Yは可視光線 ・透過率を、Aaは主波長を、Aaは補色主波長を、Pa は刺激純度を、T:は太陽放射透過率を、Tルは太陽紫 外線透過率をそれぞれ表す。

【0032】本発明による実施側のガラスは、Ge〇こ の紫外線吸収能力が高いために、いずれも紫外線透過率 が20%以下である。これに対して比較例1は、紫外線※列。【発明の効果】本発明による紫外線吸収灰色ブラスは、

*吸収成分がFec O2 であるため、紫外線透過率が28 %と大きく好ましくない。また、比較例2はCeOsが 含有されているため、紫外線透過率は13%と小さい。 が、CoOが含まれて、ないために、刺激純度が12. 98%と大きく、灰色ガラスとしては好ましくない。 [0033]

1.2

熱御張係数が小さく、化学的耐久性に優れ、紫外線吸収 が大きいので、特に高層ビルの窓ガラスに用いる板ガラ

スとして好適である。