Semantic Image Synthesis with Spatially-Adaptive Normalization

Taesung Park 1,2 , Ming-Yu Liu 2 , Ting-Chun Wang 2 , Jun-Yan Zhu 2,3 1 UC Berkeley, 2 NVIDIA , 3 MIT CSAIL

Alexander Koenig, Li Nguyen

Workshop in Machine Learning Applications for Computer Graphics Blavatnik School of Computer Science, Tel Aviv University

April 1, 2020

Outline

- Introduction
- Related Work
- Semantic Image Synthesis
- 4 Experiments
- Conclusion
- 6 References

Outline

- Introduction
- Related Work
- 3 Semantic Image Synthesis
- 4 Experiments
- Conclusion
- References

Conditional Image Synthesis

- Conditional Image Synthesis: method to generate photorealistic images based on certain input (e.g. labels, text, ...)
- Semantic Image Synthesis: method to generate photorealistic images based on semantic segmentation mask

Figure: Euler diagram of image synthesis methods

What is a Semantic Segmentation Mask?

Figure: Ground truth [4]

Figure: Segmentation mask [4]

- Semantic segmentation: clustering image pixels together which belong to the same object class [6]
- Goal: turn segmentation mask into a photorealistic image
- Application of Semantic Image Synthesis: content generation and image editing

Outline

- Introduction
- Related Work
- Semantic Image Synthesis
- 4 Experiments
- Conclusion
- References

Related Work

Figure: Visual Comparison of Park et al. to Related Works

Related Work: Cascaded Refinement Network (CRN)

- The architecture consists of a cascade of refinement modules which operate at different resolutions each
- Each layer is followed by convolutions, normalization and a non-linearity [1]

Figure: Network Architecture of CRN

Related Work: SIMS

- SIMS = Semi-parametric IMage Synthesis
- Image synthesis is performed by "stitching" parts of images together. The parts of the images stem from a memory bank of image segments which is created from a training set of images beforehand [5]

Figure: Canvas Generator for SIMS

Related Work: pix2pixHD

- Focus images with high resolution and photorealism
- Approach: using a coarse-to-fine generator and multi-scale discriminator architectures
- Decompose the generator into two **sub-networks** *G1* and *G2* to combine the **global** and **local** information [7]

Figure: Network Architecture of pix2pixHD's Course-to-fine Generator

Related Work: pix2pixHD

Multi-scale Discriminator

- Problem: Discriminator needs large receptive field to differentiate between high resolution images. However, constructing a deeper network could lead to overfitting and a larger memory footprint
- **Solution:** Multi-scale discriminators: decompose into 3 identical discriminators (*D1*, *D2*, *D3*) with **different image scales**

Figure: Architecture of the pix2pixHD's Multi-Scale Discriminator

Issues with Related Works

 Current Approach: Semantic information is direct input to neural network and processed through stacks of convolution, normalization, and non-linearity layers

Issues with Related Works

- Current Approach: Semantic information is direct input to neural network and processed through stacks of convolution, normalization, and non-linearity layers
- **Problem**: Semantic information is not well preserved (normalization layers tend to "wash away" semantic information)

Issues with Related Works

- Current Approach: Semantic information is direct input to neural network and processed through stacks of convolution, normalization, and non-linearity layers
- **Problem**: Semantic information is not well preserved (normalization layers tend to "wash away" semantic information)
- **Solution**: A novel conditional normalization method (SPADE) that modulates the activations using semantic layouts

Outline

- Introduction
- 2 Related Work
- Semantic Image Synthesis
- 4 Experiments
- Conclusion
- 6 References

Spatially-Adaptive Denormalization (SPADE) Layer

Figure: The novel SPADE Layer

- Unconditional normalization of activations of previous layer with BatchNorm
- ② Denormalization with modulation parameters (scale γ and bias β)

Spatially-Adaptive Denormalization (SPADE) Layer

Figure: The novel SPADE Layer

- Unconditional normalization of activations of previous layer with BatchNorm
- ② Denormalization with modulation parameters (scale γ and bias β)

Novelty

- ullet γ and β are learned and depend on location in segmentation mask!
- Modulation parameters encode semantic layout

Figure: ResBlk Figure: SPADE Generator

• ResBlk: residual block with skip connection

Figure: ResBlk Figure: SPADE Generator

- ResBlk: residual block with skip connection
- Resized seg. masks influence generation through SPADE ResBlks

Figure: ResBlk Figure: SPADE Generator

- ResBlk: residual block with skip connection
- Resized seg. masks influence generation through SPADE ResBlks
- Nearest neighbor upsampling

Figure: ResBlk Figure: SPADE Generator

- ResBlk: residual block with skip connection
- Resized seg. masks influence generation through SPADE ResBlks
- Nearest neighbor upsampling
- Random noise fed to first layer instead of segmentation mask

Multi-Modal Synthesis

• Different random inputs with the same segmentation mask lead to different appearances but same semantic layout

Guided Image Synthesis

- Control semantics with segmentation mask and appearance with style image (style and semantics disentanglement)
- Interactive web application <u>GauGAN</u>

• Image encoder captures style of a real image in a latent representation. Outputs a mean vector μ and a variance vector σ^2

- Image encoder captures style of a real image in a latent representation. Outputs a mean vector μ and a variance vector σ^2
- Generator combines encoded style and seg. mask to reconstruct original image (Encoder + Generator = VAE)

- Image encoder captures style of a real image in a latent representation. Outputs a mean vector μ and a variance vector σ^2
- Generator combines encoded style and seg. mask to reconstruct original image (Encoder + Generator = VAE)
- Concat concatenates segmentation mask and generated image for comparison

- Image encoder captures style of a real image in a latent representation. Outputs a mean vector μ and a variance vector σ^2
- Generator combines encoded style and seg. mask to reconstruct original image (Encoder + Generator = VAE)
- Concat concatenates segmentation mask and generated image for comparison
- Discriminator same architecture and learning objective as pix2pixHD, but replace LS-GAN loss with Hinge loss.

Outline

- Introduction
- 2 Related Work
- Semantic Image Synthesis
- 4 Experiments
- Conclusion
- 6 References

Main Datasets

Figure: COCO-Stuff

Figure: ADE20K

Figure: Cityscapes

Name	Train	Val	Classes	Description
COCO-Stuff	118k	5k	182	Challenging due to diversity
ADE20K	≈20k	2k	150	Similar to COCO, very diverse
Cityscapes	3k	0.5k	30	Street scene images

Comparison of Qualitative Results

Figure: Top: COCO-Stuff, Middle: ADE20K, Bottom: Cityscapes

Comparison of Quantitative Results

	COCO-Stuff		ADE20K			ADE20K-outdoor			Cityscapes			
Method	mIoU	accu	FID	mIoU	accu	FID	mIoU	accu	FID	mIoU	accu	FID
CRN [6]	23.7	40.4	70.4	22.4	68.8	73.3	16.5	68.6	99.0	52.4	77.1	104.7
SIMS [43]	N/A	N/A	N/A	N/A	N/A	N/A	13.1	74.7	67.7	47.2	75.5	49.7
pix2pixHD [48]	14.6	45.8	111.5	20.3	69.2	81.8	17.4	71.6	97.8	58.3	81.4	95.0
Ours	37.4	67.9	22.6	38.5	79.9	33.9	30.8	82.9	63.3	62.3	81.9	71.8

- Synthesized images are segmented with well-trained models and evaluated with performance metrics
- Mean Intersection over Union: What is the percentage overlap between predicted and ground truth mask?
- Pixel accuracy: What is the percentage of correctly classified pixels?
- Fréchet Inception Distance: What is the distance between distributions of feature vectors?

Why does the SPADE work better?

Figure: Semantic information loss after normalization layer

 Unconditional normalization layers (e.g. InstanceNorm) loose semantic info of uniform masks as normalized activations are zero

Why does the SPADE work better?

Figure: Semantic information loss after normalization layer

- Unconditional normalization layers (e.g. InstanceNorm) loose semantic info of uniform masks as normalized activations are zero
- SPADE better preserves semantic information because segmentation mask is not normalized but only modulated

Why does the SPADE work better?

Figure: Semantic information loss after normalization layer

- Unconditional normalization layers (e.g. InstanceNorm) loose semantic info of uniform masks as normalized activations are zero
- SPADE better preserves semantic information because segmentation mask is not normalized but only modulated
- SPADE also improves performance of traditional architectures!

Outline

- Introduction
- 2 Related Work
- Semantic Image Synthesis
- 4 Experiments
- Conclusion
- References

Conclusion

Figure: SPADE ranking as of March 2020 [3]

- Introduced spatially-adaptive normalization (SPADE) layer
- SPADE network outperforms the 2019 state-of-the-art methods by a large margin and is still top-performing (#1 is [2])

Outline

- Introduction
- 2 Related Work
- Semantic Image Synthesis
- 4 Experiments
- Conclusion
- 6 References

References I

[1] Q. Chen and V. Koltun.

Photographic image synthesis with cascaded refinement networks. In *Proceedings of the IEEE international conference on computer vision*, pages 1511–1520, 2017.

- [2] X. Liu, G. Yin, J. Shao, X. Wang, and H. Li. Learning to predict layout-to-image conditional convolutions for semantic image synthesis, 2019.
- [3] Papers With Code.Evaluation Results SPADE.

https://paperswithcode.com/paper/semantic-image-synthesis-with-spatially, 2020.

References II

- [4] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu. Semantic image synthesis with spatially-adaptive normalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2337–2346, 2019.
- [5] X. Qi, Q. Chen, J. Jia, and V. Koltun.
 Semi-parametric image synthesis.
 In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8808–8816, 2018.
- [6] M. Thoma.A survey of semantic segmentation, 2016.

References III

[7] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro.

High-resolution image synthesis and semantic manipulation with conditional gans.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8798–8807, 2018.