Digitale data og databasetabeller

Leksjon 1

Et papirskjema

Etternavn: Hansen **Fornavn**: Hans

Ansatt dato: 23.08.2006

Stilling: Programmerer **Lønn**: 325.000

Prosjektdeltakelse siste år:

Prosjektkode	Timer
1002	44
1007	25
1012	10

Tabellen Ansatt

AnsattNr	Etternavn	Fornavn	AnsattDato	Stilling	Lønn
1	Veum	Varg	01.01.1992	Løpegutt	183 000.00
2	Stein	Trude	10.10.2000	DBA	270 700.00
3	Dudal	Inger-Lise	24.12.1988	Sekretær	299 000.00
4	Hansen	Hans	23.08.2006	Programmerer	325 000.00
5	Bjørnsen	Henrik	01.01.2000	Tekstforfatter	375 000.00
6	Gredelin	Sofie	18.05.1998	Underdirektør	625 850.00
7	Zimmermann	Robert	17.05.1995	Regnskapsfører	375 000.00
	N !!!				

1 rad = 1 ansatt

AnsattNr = 4

Etternavn = Hansen

Fornavn = Hans

AnsattDato = 23.08.2006

Stilling = Programmerer

 $Lønn = 325\ 000$

Tabellen Prosjekt

ProsjektNr	Budsjett	Leder	Start	Slutt
1001	kr 15 000.00	20	12.01.2011	12.03.2011
1002	kr 750 000.00	8	23.06.2011	23.07.2011
1007	kr 125 000.00	2	12.06.2012	
1009	kr 500 000.00	20	01.01.2012	
1012	kr 10 000.00	4	10.07.2012	
1020	kr 900 000.00	8	23.07.2011	01.09.2011

Ansatte og prosjekter

- En ansatt kan være med i 0, 1 eller mange prosjekter.
- Et prosjekt kan ha 0, 1 eller mange deltakere.
- Trenger en ny tabell for å ta vare på hvem som jobber hvor.

Tabellen ProsjektDeltakelse

Hvilke ansatte har jobbet på hvilke prosjekter – og hvor mange timer har de jobbet?

ProsjektDeltakelse er en koblingstabell.

Tabellen representerer et **forhold**.

ProsjektNr	AnsattNr	AntTimer
1001	1	12
1002	4	44
1002	8	20
1002	13	125
1002	20	2
1007	4	25
1007	11	20
1009	2	5
1009	17	10
1009	20	23
1012	4	10
1020	1	20
1020	8	35
1020	17	125

Databasetabeller

Nullmerker

- Legg merke til at det mangler noen verdier i tabellen Prosjekt. Vi kaller dette for nullmerker.
- Oppstår fordi:
 - Vi har glemt å registrere data.
 - Vi kjenner ikke til den korrekte verdien.
 - Det gir ikke mening å registrere data.

- Nullmerker er ikke verdier.
- Nullmerker kan skape problemer!

Relasjonsdatabase = «tabelldatabase»

- En databasetabell kan betraktes som en matematisk relasjon (mer om dette i leksjon 5).
- En relasjonsdatabase består logisk sett av en samling tabeller (relasjoner).
- Andre typer av databaser:
 - Hierarkiske databaser
 - Nettverksdatabaser
 - Objektorienterte databaser
 - Objektrelasjonelle databaser
 - Logiske databaser
 - NoSQL-databaser

Prinsippskisse av en datamaskin

- Fysisk er en datamaskin komplisert.
- Det er nyttig å lage seg et forenklet bilde (modell).
- En datamaskin kan lagre data og utføre programmer.

Hvordan blir data representert i minne og på disk?

Biter og byter

- Også nyttig å lage seg en forenklet tankemodell av lagringsmedier.
- Både disk og minne kan betraktes som en nummerert sekvens av byter.

- 1 byte = 8 biter som er 0 eller 1
- 1 bit kan lagre 2 alternative verdier
- 2 biter kan lagre 2² = 4 verdier
- •
- 8 biter kan lagre 2⁸ = 256 verdier

1	1	0	0	1	1	0	1	0
2	0	0	1	1	1	0	1	1
3	1 0 1 0	1	1	0	1	1	1	0
5	0	0	0	0	0	1	1	0
6	1	0	0	0	0	0	1	1

Representere tall

- 1 byte = 256 forskjellige **bitmønstre**
- 1 byte kan tolkes som heltallene [0..255]
- 2 byter kan tolkes som heltallene [0..65 535]

Hvis vi bruker første bit som fortegnsbit (forenkling!)
kan vi representere [-32 768..+32 767]

- Ethvert desimaltall kan representeres som to heltall:
 - Tallet 486.229 kan skrives som 0.486229×10³.
 - Lar seg altså representere ved heltallene 486229 og 3.
 - Samme teknikk kan brukes på alle desimaltall.

Representere tekst

- Et tegnsett tilordner et tall til hvert symbol.
 - Bokstaver, siffer, spesialtegn kan representeres som tall.
 - Med 2 byter kan vi representere 65 535 symboler.
 - En tekststreng er en sekvens av tegn.
 - ASCII og Unicode er to eksempler på tegnsett.

Tegn	Kode	Tegn	Kode
Α	65	æ	145
Z	90	Æ	146
а	97	!	33
Z	122	=	61
0	60	?	63
9	71	@	64

Fra 0 og 1 til databasetabeller

- Hver celle i en databasetabell inneholder en verdi:
 - Heltall
 - Desimaltall
 - Tekststreng
 - Sannhetsverdi (true/false)
 - Dato/klokkeslett
- Vi har sett hvordan slike verdier kan representeres som heltall, som igjen kan representeres som 0 og 1.
- En rad i en databasetabell kan lagres som en sekvens av verdier.
- Og databasetabeller kan lagres rad for rad...