Deep Learning Model for Base Calling of MinION Nanopore Reads

Marko Ratković Associate Profesor Mile Šikić, PhD

University of Zagreb Faculty of Electrical Engineering and Computing

Figure 1: The MinION sequencing device

1

Technology

Figure 2: DNA strain being pulled through a nanopore

Basecalling

Basecalling

Basecalling

Basecalling options

Metrichor

- only basecaller for ONT data
- proprietary software
- available as a cloud service

Basecalling options

Metrichor

- only basecaller for ONT data
- proprietary software
- available as a cloud service

Goals

- local basecalling
- open-source
- speed, accuracy

- Third-party: DeepNano, NanoCall
- Official: MinKNOW, Nanonet, Albacore, Scrappie

• Third-party: DeepNano, NanoCall

• Official: MinKNOW, Nanonet, Albacore, Scrappie

Idea?

Signal segmentation – event detection

Figure 3: Signal segmentation

• Third-party: DeepNano, NanoCall

• Official: MinKNOW, Nanonet, Albacore, Scrappie

Idea?

• Signal segmentation – event detection

Figure 3: Signal segmentation

- Third-party: DeepNano, NanoCall
- Official: MinKNOW, Nanonet, Albacore, Scrappie

Idea?

- Signal segmentation event detection
- RNN, HMM (older version of Metrichor and NanoCall)

Figure 3: Signal segmentation

Proposed solution

end2end

Models

Figure 4: RNN

Models

Models

Figure 6: Receptive field

Idea: decode sequence from fixed-width output (softmax over alphabet)

Idea: decode sequence from fixed-width output (softmax over alphabet)

Figure 7: Output

Idea: decode sequence from fixed-width output (softmax over alphabet)

Figure 8: Path "AAC-T"

$$P(\pi|X) = \prod_{t=1}^{m} s_t(\pi_t) \tag{1}$$

Idea: decode sequence from fixed-width output

Idea: decode sequence from fixed-width output

$$ACT = \begin{cases} decode(A, A, A, C, T) \\ decode(A, A, C, -, T) \\ decode(-, A, C, T, T) \\ decode(-, -, A, C, T) \\ decode(A, C, C, C, T) \\ \vdots \\ decode(A, C, T, -, -) \end{cases}$$

$$(2)$$

Idea: decode sequence from fixed-width output

$$ACT = \begin{cases} decode(A, A, A, C, T) \\ decode(A, A, C, -, T) \\ decode(-, A, C, T, T) \\ decode(-, -, A, C, T) \\ decode(A, C, C, C, T) \\ \vdots \\ decode(A, C, T, -, -) \end{cases}$$

$$(2)$$

$$P(Y|X) = \sum_{\pi \in decode^{-1}(Y)} P(\pi|X)$$
(3)

Given the dataset $D = \{(X_i, Y_i)\}$, training objective is the maximization of the likelihood of each training sample which is the same as the minimization of negative log likelihood:

$$L(D) = -\sum_{(X,Y)\in D} InP(Y|X) \tag{4}$$

Figure 9: Dataset preparation

Figure 9: Dataset preparation

Figure 9: Dataset preparation

Figure 9: Dataset preparation

Figure 9: Dataset preparation

Status

- Loss
- Dataset
- Model? CNN?

Model

• Residual CNN

Model

- Residual CNN
- 72 blocks, 2M parameters

Figure 10: Residual block

Model

- Residual CNN
- 72 blocks, 2M parameters
- Maxpool every 24 blocks, reduction of dimensionality by factor 8

Figure 10: Residual block

Figure 11: KDE plot of alimnment operations for E. Coli

Table 1: Alignment specifications of E. Coli R9 basecalled reads

	Match % (median)	Mismatch % (median)	Insertion % (median)	Deletion % (median)
DeepNano	90.254762	6.452852	3.274420	11.829965
Metrichor	90.560455	5.688105	3.660381	8.328271
Nanonet	90.607674	5.608912	3.652791	8.299046
resdeep	91.408591	5.019141	3.477739	7.471608

Table 2: Ecoli R9 basecalled read lengths in base pairs

	median	mean	std
DeepNano	5526.5	8126.694000	7406.554786
Metrichor	5809.5	8933.275000	9189.709720
Nanonet	3286.5	4874.406582	4803.182344
resdeep	5784.0	8990.988989	9297.972688

Consensus from pileup

```
...CCAGAAACTGGCTCAGTTTGCCTTCCTCCGTGTCCTCCATGCTGACT...}

AGAAACTGGCT

GGCTCAGTT

CAGTATGCCTTGCTC

AGTATGCCTTTCCTC

AGTATGCCTTCCTC

AGTATGCCTTCCTC

AGAAACTGGCTCAGT

AGAAACTGCTTCCTCCGTGTCCTC

AGAAACTGCTTCCTCCATGCTGA

AGAAACTGCTCAGTATGCCTTCCTCCATGCTGA

Consensus
```

Figure 12: Consensus from pileup

Consensus from pileup

Table 3: Consensus specification of E. Coli R9 basecalled reads

	Match %	Snp %	Insertion %	Deletion %
DeepNano	98.8742	1.0044	0.1214	0.9041
Metrichor	99.1223	0.7464	0.1313	0.6300
Nanonet	97.9691	1.5700	0.4609	1.5158
resdeep	99.2361	0.6474	0.1165	0.5510

Consensus from de novo assembly obtained using assembler ra^1 and compared to the reference using *dnadiff* present in the Mumer²

¹https://github.com/rvaser/ra

²https://github.com/garviz/MUMmer

Consensus from de novo assembly obtained using assembler ra^1 and compared to the reference using *dnadiff* present in the Mumer²

Table 4: Assembly and consensus results for E. Coli

	Metrichor	resdeep	Nanonet
Aln. bases ref. (bp)	4639641(100.00%)	4639612(100.00%)	4639031(99.99%)
Aln. bases query (bp)	4604787(100.00%)	4614351(100.00%)	4599745(99.99%)
Avg. Identity	98.76	99.06	98.47
Edit distance	60418	46686	74341

¹https://github.com/rvaser/ra

²https://github.com/garviz/MUMmer

Results - basecalling speed

Table 5: Base calling speeds measured in base pairs per second³

	resdeep	Nanonet	DeepNano
Speed CPU(bp/s)	1363.34	897.49	692.37
Speed GPU(bp/s)	6571.76	3828.39	-

 $^{^3} Tested$ on server with two 8-core Intel(R) Xeon(R) E5-2640 v2 CPUs, NVIDIA Titan Black GPU, 6GB

Conclusion

- end2end basecaller, open-source, fast and accurate
- Note: R9 data only, R9.4 in progress

• Scaled Exponential Linear Units (SELU), Jun 2017

• Scaled Exponential Linear Units (SELU), Jun 2017

```
def selu(x):
    alpha = 1.6732632423543772848170429916717
    scale = 1.0507009873554804934193349852946
    return scale * tf.where(x > 0.0, x, alpha * tf.exp(x) - alpha)
```

Figure 12: SELU implementation

- Scaled Exponential Linear Units (SELU), Jun 2017
- Facebook Al Research (FAIR) team: Convolutional Sequence to Sequence Learning, May 2017

- Scaled Exponential Linear Units (SELU), Jun 2017
- Facebook Al Research (FAIR) team: Convolutional Sequence to Sequence Learning, May 2017

• ..

