Advanced Numerical Algorithms (MU4IN920)

Lecture 2: Iterative methods for solving linear systems

Stef Graillat

Sorbonne Université

Summary of the previous lecture

Monte Carlo Method:

- Basic statistics: random number and generation
- Monte Carlo method and calculation of integrals
- Monte Carlo method and optimization
- Monte Carlo method and counting
- Introduction to Derivatives in Finance
- Calculating the price of an option

Objectives

- Solving linear systems by iterative methods (Jacobi, Gauss-Seidel, SOR)
- Conjugate gradient method
- Strylov subspace methods

References

- An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, J. Shewchuk, 1994
- Scientific Computing, An Introductory Survey, Michael .T. Heath, McGraw-Hill, 2002
- Scientific Computing with Case Studies, Dianne P. O'Leary, SIAM, 2009
- Iterative methods for sparse linear systems, Y. Saad, SIAM, 2007
- Linear and Nonlinear Programming, Luenberger, Ye, 3e édition, Springer, 2010
- Algèbre linéaire numérique : Cours et exercices, Allaire, Kaber Sidi, Ellipses, 2002

Why use iterative methods

We want to solve an equation of the form:

$$Ax = b$$

The direct methods provide the solution x^* in a finite number of operations.

But

- the complexity is in $\mathcal{O}(n^3)$
- do not take into account the sparsity of the matrix (many coefficients are zero).

Iterative methods

- We construct a sequence of vectors (x_k) , k = 0, 1, ... which tends to x^* .
- The starting point is an approximation x_0 of x^*
- To construct this sequence, we use linearity to decompose the matrix A into an easily invertible part and a remainder part.

General principle

We decompose the matrix A into A = M - N, so that M is easily invertible. Then,

$$Ax = b \iff Mx = Nx + b$$

We compute the sequence of vectors (x_i) from a vector x_0 chosen arbitrarily and the relation:

$$M x_{k+1} = N x_k + b \iff x_{k+1} = M^{-1} N x_k + M^{-1} b$$

That is to say

$$\begin{cases} x_0 & \text{given} \\ x_{k+1} &= M^{-1}N x_k + M^{-1}b \end{cases}$$

Let's define the problem

Let $C = M^{-1}N$, and $d = M^{-1}b$. We must therefore study the recurrent sequence

$$\begin{cases} x^0 & \text{given} \\ x_{k+1} &= Cx_k + d \end{cases}$$

With:

• x^* is a fixed point of the linear function

$$x \mapsto Cx + d$$

Question:

Under what conditions will the sequence converge?

Matrix norms

A matrix norm is a norm defined on $\mathcal{M}_n(\mathbb{C})$ which is compatible with the matrix multiplication, i.e.:

$$\|\cdot\|$$
 : $\mathcal{M}_n(\mathbb{C}) \rightarrow \mathbb{R}^+$
 $A \mapsto \|A\|$

such that $\forall A, B \in \mathcal{M}_n(\mathbb{C})$ and $\forall \lambda \in \mathbb{C}$:

- Point-separating: $||A|| = 0 \Leftrightarrow A = 0$,
- Homogeneity: $\|\lambda A\| = |\lambda| \cdot \|A\|$,
- Triangular inequality: $||A + B|| \le ||A|| + ||B||$,
- $||A \cdot B|| \le ||A|| \cdot ||B||$.

Example of norms

Frobenius norm: $\forall A \in \mathcal{M}_n(\mathbb{C})$

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\text{Tr}(A^T A)}$$

Subordinate matrix norms:

Let $\|\cdot\|_{\nu}$ be a vector norm defined on \mathbb{C}^n the function which $\forall A \in \mathcal{M}_n(\mathbb{C})$ associates

$$||A|| = \max_{x \in \mathbb{C}^n, x \neq 0} \frac{||Ax||_{\nu}}{||x||_{\nu}}$$

is a matrix norm called a subordinate matrix norm

Example of subordinate matrix norms

Let the vector norm $\|\cdot\|_{\infty}$: $\forall x \in \mathbb{C}^n$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

The subordinate matrix norm $\|\cdot\|_{\infty}$ on $\mathcal{M}_n(\mathbb{C})$: $\forall A \in \mathcal{M}_n(\mathbb{C})$

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Matrix norms and vector norms

Definition 1

A matrix norm $\|\cdot\|$ is compatible with a vector norm $\|\cdot\|_v$ if $\forall x$

$$||Ax||_{v} \le ||A|| ||x||_{v}$$

Properties:

- For any matrix norm $\|\cdot\|$, there exists a vector norm with which it is compatible.
- Any subordinate matrix norms is compatible with its vector norm.

Spectral radius

Definition 2

Let $A \in \mathcal{M}_n(\mathbb{C})$, the spectral radius of A is defined by

$$\rho(A) = \max_{1 \le i \le n} |\lambda_i|$$

where λ_i are the eigenvalues of A

Remark: $\rho(\cdot)$ is not a norm.

Properties:

• For any matrix norm $\|\cdot\|$ and for any matrix A:

$$\rho(A) \leq ||A||$$

• $\forall A \in \mathcal{M}_n(\mathbb{C}), \forall \varepsilon \in \mathbb{R}^+$, there exists a subordinate matrix norm $\|\cdot\|_*$ such that:

$$\rho(A) \leq \|A\|_* \leq \rho(A) + \varepsilon$$

Convergence

Let's go back to the convergence of the sequence:

$$\begin{cases} x_0 & \text{given} \\ x_{k+1} & = Cx_k + d \end{cases}$$

Theorem 1

 $\forall C \in \mathcal{M}_n(\mathbb{C})$, if there exists a subordinate matrix norm $\|\cdot\|$ such that

then

- The equation x = Cx + d has a unique solution x^* .
- 2 The sequence $x_k \to x^*$ whatever x_0 is.

Proof

Existence of a solution:

$$\rho(C) \leq ||C|| < 1$$

So the eigenvalues λ of C are such that $|\lambda| < 1$.

It means that the matrix I - C is invertible

So there exits a unique solution for the equation

$$x = Cx + d$$

We call this solution x^*

Proof (cont'd)

Convergence:

Let $e_k = x_k - x^*$ We can deduce a relation between e_k and e_{k-1} . Indeed

$$Ce_{k-1} = C(x_{k-1} - x^*)$$

= $C(x_{k-1}) - C(x^*)$
= $C(x_{k-1}) + d - x^*$

As a consequence $e_k = C e_{k-1}$ for k = 1, 2, ...

So we have

$$e_k = C^k e_0$$

Let the subordinate matrix norm $\|\cdot\|$ and its vector norm $\|\cdot\|_{\nu}$ such that $\|C\| < 1$:

$$\|e_k\|_{v} \leq \|C\|^k \|e_0\|_{v}$$

So $e_k \to 0$ and $x_k \to x^*$

Other conditions

Given *C*, how to know if the sequence will converge?

General case:

Theorem 2

There is equivalence between the following propositions:

- C is a convergent matrix (i.e.) C^k goes to 0)
- $\rho(C) < 1$
- There exists a subordinate matrix norm such that ||C|| < 1.

Jacobi method

The Jacobi method corresponds to the splitting

$$A = D - U - L$$

with

$$D = \begin{pmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

$$-L = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ a_{21} & 0 & 0 & \cdots & 0 \\ a_{31} & a_{32} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & 0 \end{pmatrix} \qquad -U = \begin{pmatrix} 0 & a_{12} & a_{13} & \cdots & a_{n1} \\ 0 & 0 & a_{23} & \cdots & a_{2n} \\ 0 & 0 & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

Jacobi method (cont'd)

The Jacobi method corresponds to the splitting

$$A = D - U - L$$

with

$$M = D$$
 et $N = L + U$

The iteration $Mx^{(k+1)} = Nx^{(k)} + b$ can be written as

$$Dx^{(k+1)} = (L+U)x^{(k)} + b$$

that is to say

$$a_{ii}x_i^{(k+1)} = (b_i - \sum_{j=1, j\neq i}^n a_{ij}x_j^{(k)})$$

Jacobi method (cont'd)

From a vector $x^{(0)}$, we construct the sequence $(x^{(k)})_{k\geq 0}$ in the following way

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right)$$

This method is only defined if all a_{ii} are nonzero

```
function x=Jacobi(A,y,xo,itmax)
n = length(y);
x = xo;
xold = x;
for it=1:itmax
    for i=1:n
        x(i) = (y(i)-A(i,[1:i-1,i+1:n])*xold([1:i-1,i+1:n]))/A(i,i);
    end
    xold=x;
end
```

Jacobi method (cont'd)

Carl Gustav Jakob Jacobi German mathematician 10 December 1804 – 18 February 1851

Gauss-Seidel method

The Gauss-Seidel method corresponds to the splitting

$$A = D - U - L$$

with

$$D = \begin{pmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

$$-L = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ a_{21} & 0 & 0 & \cdots & 0 \\ a_{31} & a_{32} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & 0 \end{pmatrix} \qquad -U = \begin{pmatrix} 0 & a_{12} & a_{13} & \cdots & a_{n1} \\ 0 & 0 & a_{23} & \cdots & a_{2n} \\ 0 & 0 & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

Gauss-Seidel method (cont'd)

The Gauss-Seidel method corresponds to the splitting

$$A = D - U - L$$

with

$$M = D - L$$
 et $N = U$

The iteration $Mx^{(k+1)} = Nx^{(k)} + b$ can be written as

$$Dx^{(k+1)} = Lx^{(k+1)} + Ux^{(k)} + b$$

that is to say

$$a_{ii}x_i^{(k+1)} = (b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k)})$$

Gauss-Seidel method (cont'd)

From a vector $x^{(0)}$, we construct the sequence $(x^{(k)})_{k\geq 0}$ in the following way

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right)$$

This method is only defined if all a_{ii} are nonzero

```
function x=GS(A,y,xo,itmax)
n = length(y);
x = xo;
for it=1:itmax
    for i=1:n
        x(i)=(y(i)-A(i,1:i-1)*x(1:i-1)-A(i,i+1:n)*x(i+1:n))/A(i,i);
    end
end
```

Gauss-Seidel method (cont'd)

Johann Carl Friedrich Gauss German mathematician 30 April 1777 - 23 February 1855

Philipp Ludwig von Seidel German mathematician 24 October 1821 - 13 August 1896

Comparison between Jacobi and Gauss-Seidel methods

Jacobi: only the elements of $x^{(k)}$ are used to calculate the elements of $x^{(k+1)}$.

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right)$$

Gauss-Seidel: we use the new components of $x^{(k+1)}$ as soon as possible

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right)$$

Method of successive over-relaxation (SOR)

Given $\omega \in]0, 2[$, the SOR method corresponds to the splitting

$$A = D - U - L$$

avec

$$M = \frac{D}{\omega} - L$$
 et $N = \frac{1 - \omega}{\omega}D + U$

From a vector $x^{(0)}$, we construct the sequence $(x^{(k)})_{k\geq 0}$ in the following way

$$x_i^{(k+1)} = \omega \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right) + (1 - \omega) x_i^{(k)}$$

Gradient descent (also often called steepest descent) method

We assume that the matrix A is symmetric positive definite ($A = A^T$ and for all $x \neq 0, x^T Ax > 0$)

• We can show that a critical point of the function

$$f(x) = \frac{1}{2}x^T A x - b^T x$$

is a solution of the equation Ax = b. Indeed $\nabla f(x) = Ax - b$

• We can solve the linear system Ax = b by solving the following minimization problem

$$\min_{x} f(x)$$

In the sequel, we denote by r(x) = b - Ax the residual. We can notice that $r(x) = -\nabla f(x)$

Steepest descent method

$$x_0=$$
 intial approximation for $k=0,1,2,\ldots$ compute $p_k=-\nabla f(x_k)=r_k$ $x_{k+1}=x_k+\alpha_k p_k$ where α_k is the solution of the problem $\min_{\alpha} f(x_k+\alpha p_k)$ end for

We can find an explicit expression for α_k . Indeed

$$f(x_k + \alpha p_k) = \frac{1}{2} (x_k + \alpha p_k)^T A(x_k + \alpha p_k) - b^T (x_k + \alpha p_k)$$
$$= \frac{1}{2} \alpha^2 p_k^T A p_k + \alpha p_k^T A x_k - \alpha b^T p_k + \text{constant}$$

The minimum of f with respect to α is obtained for

$$p_k^T A x_k + \alpha p_k^T A p_k - b^T p_k = 0$$

Steepest descent method (cont'd)

We can find an explicit expression for α_k . Indeed

$$f(x_k + \alpha p_k) = \frac{1}{2} (x_k + \alpha p_k)^T A (x_k + \alpha p_k) - b^T (x_k + \alpha p_k)$$
$$= \frac{1}{2} \alpha^2 p_k^T A p_k + \alpha p_k^T A x_k - \alpha b^T p_k + \text{constant}$$

The minimum of f with respect to α is obtained for

$$p_k^T A x_k + \alpha p_k^T A p_k - b^T p_k = 0$$

that is to say

$$\alpha = -\frac{p_k^T(Ax_k - b)}{p_k^TAp_k} = \frac{p_k^Tr_k}{p_k^TAp_k}$$

Rate of convergence

Let x^* be the solution of the linear system Ax = b. We denote

$$E(x) = \frac{1}{2}(x - x^*)^T A(x - x^*)$$

This function is minimal for $x = x^*$ and is a way to measure the convergence.

We can show that the steepest descent method has a rate of convergence

$$E(x_k) \le \left(\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}\right)^{2k} E(x_0)$$

Example

After 20 iterations, the error has been reduced by a factor 10^{-5}

A-conjugate directions

- As we have seen, the steepest descent algorithm can be very low
- Here we want to modify the steepest descent algorithm so that it converges in at most *n* steps (*n* being the size of the matrix)
- The idea is to find n linearly independent vectors p_k , k = 0, ..., n-1 that are A-conjugate,

$$p_k^T A p_j = 0, \quad k \neq j$$

As they are linearly independent, they form a basis and

$$x^* - x_0 = \sum_{j=0}^{n-1} \alpha_j p_j$$

A-conjugate directions (cont'd)

We have

$$x^* - x_0 = \sum_{j=0}^{n-1} \alpha_j p_j$$

• By multiplying the left hand side by $p_k^T A$, we obtain

$$p_k^T A(x^* - x_0) = p_k^T (b - Ax_0) = p_k^T r_0$$

• By multiplying the right hand side by $p_k^T A$, we obtain

$$p_k^T A \sum_{j=0}^{n-1} \alpha_j p_j = \alpha_k p_k^T A p_k$$

As a consequence

$$\alpha_k = \frac{p_k^T r_0}{p_k^T A p_k}$$

The conjugate gradient method

We can solve the linear system $Ax^* = b$ with the following algorithm:

Pick
$$x_0$$
 and A -conjugate directions p_k , $k=0,\ldots,n-1$ for $k=0,1,\ldots,n-1$ Set $\alpha_k=\frac{p_k^Tr_0}{p_k^TAp_k}$ Let $x_{k+1}=x_k+\alpha_kp_k$ end for

At the end, $x_n = x^*$. Moreover as $p_k^T r_0 = p_k^T r_k$ (due to *A*-conjugacy), we obtain α_k with the same formula as for the classic steepest descent algorithm

It remains to find *n A*-conjugate directions

Gram-Schmidt algorithm

Given *n* linearly independent vectors v_k , k = 0, ..., n - 1, we can compute *n A*-conjugate vectors spanning the same space

Let
$$p_0 = v_0$$
 for $k = 0, 1, \ldots, n-2$ compute $p_{k+1} = v_{k+1} - \sum_{j=0}^k \frac{p_j^T A v_{k+1}}{p_j^T A p_j} p_j$ end for

Conjugate gradient method

The conjugate gradient algorithm is a special case of the conjugate direction algorithm. In this case, we intertwine the calculation of the new x vector and the new p vector. In fact, the set of linearly independent vectors v_k we use in the Gram-Schmidt process is just the set of residuals r_k .

Let
$$x_0$$
 an initial guess, $r_0=b-Ax_0$ and $p_0=r_0$ for $k=0,1,\ldots,n-1$ Compute $\alpha_k=\frac{p_k^Tr_k}{p_k^TAp_k}$
$$x_{k+1}=x_k+\alpha_kp_k$$

$$r_{k+1}=r_k-\alpha_kAp_k$$
 Compute the new search direction p_{k+1} by

Compute the new search direction p_{k+1} by Gram-Schmidt on r_{k+1} and the previous p vectors to make p_{k+1} A-conjugate to the previous directions.

end for

Conjugate gradient method (cont'd)

It turns out that $p_j^T A r_{k+1} = 0$ pour j < k. As a consequence Gram-Schmidt formula reduces to

$$p_{k+1} = r_{k+1} - \frac{p_k^T A r_{k+1}}{p_k^T A p_k} p_k$$

Let
$$x_0$$
 an initial guess, $r_0 = b - Ax_0$ and $p_0 = r_0$ for $k = 0, 1, \ldots, n-1$ Compute $\alpha_k = \frac{p_k^T r_k}{p_k^T A p_k}$ (equivalent to $\frac{r_k^T r_k}{p_k^T A p_k}$)
$$x_{k+1} = x_k + \alpha_k p_k$$

$$r_{k+1} = r_k - \alpha_k A p_k$$
 Compute the new search direction
$$\beta_k = -\frac{p_k^T A r_{k+1}}{p_k^T A p_k}$$
 (equivalent a $\frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$)
$$p_{k+1} = r_{k+1} + \beta_k p_k$$
 end for

Conjugate gradient method (cont'd)

- After $K, K \le n$, the algorithm terminates with $r_K = 0$ and $x_K = x^*$.
- We can show that

$$E(x_k) \le \left(\frac{1 - \sqrt{\kappa^{-1}}}{1 + \sqrt{\kappa^{-1}}}\right)^{2k} E(x_0)$$

where κ is the condition number of A, $\kappa = \lambda_{\text{max}}/\lambda_{\text{min}}$

Krylov subspaces and Krylov methods

Definition 3

Given a matrix $A \in \mathbb{R}^{n \times n}$, a vector $r \in \mathbb{R}^n$, the Krylov subspace of order k generated by A and r, denoted $K_k(A, r)$, is the linear subspace spanned by the vectors

$$r, Ar, A^2r, \ldots, A^{k-1}r.$$

Krylov methods consist in searching the iterated x_k in the space $x_0 + \mathcal{K}_k(A, r_0)$ where $r_0 = b - Ax_0$.

Krylov methods and conjugate gradient method

- It can be shown that the conjugate gradient algorithm consists in searching $x_k \in x_0 + \mathcal{K}_k(A, r_0)$ satisfying $r_k = b Ax_k \perp \mathcal{K}_k(A, r_0)$
- We can also show that the conjugate gradient algorithm consists in finding x_k that minimizes the function $f(x) = \frac{1}{2}x^TAx b^Tx$ on the subspace $x_0 + \mathcal{K}_k(A, r_0)$

Krylov methods

Alexei Nikolaevich Krylov Russian naval engineer 15 August 1863 - 26 October 1945

Conclusion

- Efficient algorithms in practice, especially for the conjugate gradient algorithm
- Algorithms mostly used for sparse matrices