

Cátedra: Ingeniería de Software

Curso: 4k1

TRABAJO PRÁCTICO Nº8

"SCRUM – Release and Sprint Planning – Planificación de Release y de Sprint"

GRUPO 9

Integrantes:

Battig Chavez, Joaquin Antonio - 76056 Cosci, Franco - 78644 Folli, Nicolás – 78531 Pages Juan Ignacio, 78314 Reartes Alvaro Pablo, 75481 Slavik, Lucas - 78341

Docentes:

Meles, Judith Boiero, Gerardo Crespo, Mickaela

Fecha de entrega:

23/09/2021

ÍNDICE	
ENUNCIADO	3
DESARROLLO	4
BIBLIOGRAFÍA	10

ENUNCIADO

Objetivo:

Que el estudiante sea capaz de simular una de las ceremonias de SCRUM, Sprint Planning, cuyo propósito es la definición del Sprint Backlog.

Que comprenda la importancia de la planificación en el contexto de la gestión ágil de proyectos.

Consigna:

Tomando como base la definición de producto realizada para Taxi Mobile: Sistema web mobile para seguimiento de taxis y teniendo en cuenta el MVP definido, realizará con su equipo SCRUM la primera reunión de planificación de Sprint (Sprint Planning).

Instrucciones:

- En grupos trabajarán la consigna.
- Tomarán el MVP definido para el producto de Taxi Mobile: Sistema web mobile para seguimiento de taxis, ya estimado.
- Definirán las condiciones de contexto necesarias para la planificación del release.
- Definirán el Plan de Release indicando cuantos sprints serán necesarios y que user stories entregarán en cada uso y por consiguiente la duración del Plan de Release para la entrega de la versión del producto.
- Definirá la minuta para el Sprint 1 y el Sprint Backlog.

DESARROLLO

Planificación del Release Planning

Contexto para la planificación del release:

- Un Scrum Master
- Un Administrador de Base de Datos
- Dos Desarrolladores
- Dos Testers

La velocidad aproximada será de 8SP por Sprint.

Definición del Release - consideraciones del contexto

En el primer release se desarrollará el MVP. hemos decidido realizar 2 Sprints que tendrán una duración de 10 días hábiles cada uno con el objetivo de entregar valor al cliente en cada iteración al finalizar el sprint y para luego poder obtener una retroalimentación y poder aprender y validar que lo que venimos haciendo, es lo que el cliente espera; y si algo no es lo esperado, nos servirá para poder adaptarnos a esos cambios que pudieran surgir lo más rápido posible y evitar pérdidas de tiempo y dinero.

Al finalizar el sprint 1 ya tendríamos desarrollado el producto de software con lo mínimo necesario para poder validar la idea de negocio del mercado.

Luego, vendrá el segundo release el cual irá agregando nuevas funcionalidades que no fueron consideradas en el MVP (salvo Notificar a taxista solicitud de taxi y Buscar taxi cercano, las cuales todavía no fueron implementadas y forman parte del MVP).

La duración total del plan de release será de 20 días hábiles.

A continuación especificamos el Release Backlog:

Universidad Tecnológica Nacional - Facultad Regional De Córdoba Departamento de Ingeniería en Sistema

CÁTEDRA: INGENIERÍA DE SOFTWARE - 4º año Ingeniería en Sistemas

ID	Historia de Usuario	Rol	Story Points	Prioridad	Riesgo	Sprint	
1	Pedir taxi	Pasajero	5	1	Bajo	Sprint 1	
2	Loguear taxista	Taxista	2	1	Alto	Sprint 1	
3	Notificar a taxista solicitud de taxi	Pasajero	3	3	Medio	Sprint 2	_
4	Liberar taxi	Taxista	2	2	Bajo	Sprint 1	M N
5	Ocupar taxi	Pasajero	2	1	Bajo	Sprint 1	
6	Buscar taxi cercano	Pasajero	3	3	Alto	Sprint 2	
7	Ver ubicacion pasajero	Taxista	5	1	Alto	Sprint 1	
8	Loguear pasajero	Pasajero	2	3	Medio	Sprint 2	
9	Registrar central de taxi	Administrador de la central	1	3	Bajo	Sprint 2	
10	Marcar taxi como fuera de servicio	Administrador de la central	2	3	Bajo	Sprint 2	
11	Ver mapa de taxis	Administrador de la central	5	2	Medio	Sprint 2	

Estimaciones

- Estimación de horas por personas: 4hs
- Estimación de horas disponibles por iteración :
 240 horas -> 4 hs * 6 integrantes * 10 días por iteración
- Historias de Usuario a entrar en la primer iteración:
 - Loguear Taxista (25hs)
 - Codificar Interfaz de usuario loguearse taxi: 4hs
 - Desarrollar Frontend Javascript: 3hs
 - o Desarrollar Backend para loqueo taxista: 5hs
 - o Realizar pruebas de logueo: 2hs
 - o Refactorizar código: 2hs
 - o Realizar pruebas de usuario: 3hs
 - o Realizar pruebas de regresión: 2hs
 - o Realizar "push" de código de repositorio: 2hs
 - o Generar documentación de la US: 2hs
 - Pedir taxi (54hs)
 - o Acordar el estilo de interfaz con el PO: 5hs
 - o Desarrollar módulo de comunicación de backend con sistema de geoposicionamiento: 8 hs
 - o Solicitar credenciales y desarrollar el módulo que hará la integración con Google maps: 4hs
 - Diseñar interfaz:5hs
 - Desarrollar código frontend: 4hs
 - Desarrollar código backend: 4hs

Universidad Tecnológica Nacional - Facultad Regional De Córdoba Departamento de Ingeniería en Sistema

CÁTEDRA: INGENIERÍA DE SOFTWARE - 4º año Ingeniería en Sistemas

- o Realizar pruebas de regresión: 4hs
- Realizar pruebas unitarias: 2hs
- Refactorizar código: 5hs
- o Realizar pruebas de usuario: 3hs
- o Diseñar y ejecutar casos de prueba: 5hs
- o Realizar push de código al repositorio: 2hs
- o Generar la documentación de la US: 3hs
- Liberar taxi (22hs)
 - o Diseñar interfaz gráfica: 3hs
 - o Desarrollar código para capa cliente: 4hs
 - Desarrollar código de lógica para cambio de estado de taxi:
 4hs
 - o Revision de codigo: 3 hs
 - o Realizar pruebas unitarias: 2hs
 - o Realizar pruebas de usuario: 2hs
 - o Realizar push de código en repositorio: 1hs
 - Generar documentación: 3hs
- Ver ubicación del pasajero (38 hs)
 - o Diseñar interfaz gráfica: 6 hs
 - o Desarrollar código para capa lado cliente: 5hs
 - Desarrollar backend de comunicación y sincronización de ubicación: 5hs
 - o Refactorizar código: 3hs
 - o Realizar pruebas unitarias: 2hs
 - o Realizar pruebas de regresión: 3hs
 - o Realizar pruebas de usuario: 4hs
 - Generar documentación: 4hs
 - Revision de codigo: 5hs
 - o Realizar push de código al repositorio: 1hs
- Ocupar taxi (23hs)
 - o Diseñar interfaz gráfica:3hs
 - o Desarrollar código para capa lado cliente: 4hs
 - Desarrollar código de lógica para cambio de estado de taxi:
 4hs

Universidad Tecnológica Nacional - Facultad Regional De Córdoba Departamento de Ingeniería en Sistema

CÁTEDRA: INGENIERÍA DE SOFTWARE - 4º año Ingeniería en Sistemas

- o Revision de codigo: 3 hs
- Realizar pruebas unitarias: 3hs
- o Realizar pruebas de usuario: 2hs
- o Realizar push de código en repositorio: 1hs
- Generar documentación: 3hs
- Horas totales: 162 hs

Definición de Hecho (DoD)

- Todos los criterios de aceptación implementados y probados
- Tareas de desarrollo completas
 - Código inspeccionado (code review)
 - Maguetado que cumple con lineamientos
 - Funcionalidad validada
 - o Integración con servicio correcto
 - Desarrollo en repositorio
 - Código desplegado en ambiente
- Tareas de testing completas:
 - Casos de prueba diseñados y revisados
 - Ciclos de prueba ejecutados y superados completos
 - Defectos validados
 - Casos de prueba automatizados
- Etapas de testing superadas:
 - Prueba de Integración realizada y superada
 - Prueba de Regresión realizada y superada
 - Sanity test pasado
- Bugs gestionados:
 - Documentados y priorizados correctamente
 - Resueltos y validados por el equipo
- Documentación actualizada:
 - Análisis funcional completo y validado por el PO
 - Historias de usuario completas y validadas por el PO
- Aprobación por parte del PO.

Minuta del sprint Planning

Sprint Nro. 1

Duración del Sprint en dias: de 1 a 14 dias (10 dias habiles)

Objetivo del Sprint

Realizar la implementación para el Product Owner de las funcionalidades de la aplicación relacionadas con la solicitud de un taxi a través de un mapa interactivo, permitirle al taxista ver la ubicación de su pasajero y establecer el estado actual de su vehículo en OCUPADO o LIBRE.

Equipo Scrum:

- Battig Chavez, Joaquin Antonio
- Cosci, Franco
- Folli, Nicolás
- Pages Juan Ignacio
- Reartes Alvaro Pablo
- Slavik, Lucas

Capacidad del Equipo en Horas Ideales:

6 integ * 10 días hábiles * 4 horas = 240 horas

Contexto

Particularmente en este sprint, un integrante del equipo solicitó vacaciones, por lo que la capacidad se ve reducida. A continuación, un detalle de la misma:

Nombre	Perfil	Horas diarias	Días disponibles	Horas en eventos scrum	Horas en Sprint	Horas efectivas
Alvaro Reartes	Scrum Master	4	9	10	36	26
Lucas Slavik	Desarrollador	4	10	10	40	30
Joaquin Battig	Administrador BD	3	9	10	27	17
Juan Pages	Tester	5	9	10	45	35
Nicolás Folli	Tester	4	9	10	36	26
Franco Cosci	Desarrollador	4	8	10	32	22

Alcance del Sprint

Historia de Usuario	Tarea	Tipo	Estimación horas	Responsable
Loguear taxista	Maquetado	DEV	1	Lucas Slavik
Loguear taxista	Implementación de Funcionalidad	DEV	2	Lucas Slavik
Loguear taxista	Integración con Servicios	DEV	1	Franco Cosci
Loguear taxista	Desarrollo SP	DBA	4	Joaquin Battig
Loguear taxista	Diseño de Caso de Prueba	QA	2	Juan Pages
Loguear taxista	Revisión de Caso de Prueba	QA	1	Nicolás Folli
Loguear taxista	Revisión estructurada	DEV	1	Franco Cosci
Loguear taxista	Ejecución de Caso de Prueba	QA	2	Nicolás Folli
Loguear taxista	Corrección de Defectos	DEV	1	Franco Cosci
Loguear taxista	Validación de Defectos	QA	1	Nicolás Folli
Loguear taxista	Automatización de Casos de Prueba	QA	1	Juan Pages

Historia de Usuario	Tarea	Tipo	Estimación horas	Responsable
Pedir taxi	Maquetado	DEV	4	Lucas Slavik
Pedir taxi	Implementación de Funcionalidad	DEV	6	Lucas Slavik
Pedir taxi	Integración con Servicios	DEV	6	Franco Cosci
Pedir taxi	Diseño de Caso de Prueba	QA	3	Juan Pages
Pedir taxi	Revisión de Caso de Prueba	QA	2	Nicolás Folli
Pedir taxi	Revisión estructurada	DEV	1	Franco Cosci
Pedir taxi	Ejecución de Caso de Prueba	QA	5	Nicolás Folli
Pedir taxi	Corrección de Defectos	DEV	2	Franco Cosci
Pedir taxi	Validación de Defectos	QA	2	Nicolás Folli
Pedir taxi	Automatización de Casos de Prueba	QA	8	Juan Pages

BIBLIOGRAFÍA

• Apunte de cátedra.