2

Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

10/9 9:44 am Read & Write Down Qs. (2h)

- **2.1** Sets
- 2.2 Set Operations
- 2.3 Functions
- 2.4 Sequences and Summations
- 2.5 Cardinality of Sets
- 2.6 Matrices

uch of discrete mathematics is devoted to the study of discrete structures, used to represent discrete objects. Many important discrete structures are built using sets, which are collections of objects. Among the discrete structures built from sets are combinations, unordered collections of objects used extensively in counting; relations, sets of ordered pairs that represent relationships between objects; graphs, sets of vertices and edges that connect vertices; and finite state machines, used to model computing machines. These are some of the topics we will study in later chapters.

The concept of a function is extremely important in discrete mathematics. A function assigns to each element of a first set exactly one element of a second set, where the two sets are not necessarily distinct. Functions play important roles throughout discrete mathematics. They are used to represent the computational complexity of algorithms, to study the size of sets, to count objects, and in a myriad of other ways. Useful structures such as sequences and strings are special types of functions. In this chapter, we will introduce the notion of a sequence, which represents ordered lists of elements. Furthermore, we will introduce some important types of sequences and we will show how to define the terms of a sequence using earlier terms. We will also address the problem of identifying a sequence from its first few terms.

In our study of discrete mathematics, we will often add consecutive terms of a sequence of numbers. Because adding terms from a sequence, as well as other indexed sets of numbers, is such a common occurrence, a special notation has been developed for adding such terms. In this chapter, we will introduce the notation used to express summations. We will develop formulae for certain types of summations that appear throughout the study of discrete mathematics. For instance, we will encounter such summations in the analysis of the number of steps used by an algorithm to sort a list of numbers so that its terms are in increasing order.

The relative sizes of infinite sets can be studied by introducing the notion of the size, or cardinality, of a set. We say that a set is countable when it is finite or has the same size as the set of positive integers. In this chapter we will establish the surprising result that the set of rational numbers is countable, while the set of real numbers is not. We will also show how the concepts we discuss can be used to show that there are functions that cannot be computed using a computer program in any programming language.

Matrices are used in discrete mathematics to represent a variety of discrete structures. We will review the basic material about matrices and matrix arithmetic needed to represent relations and graphs. The matrix arithmetic we study will be used to solve a variety of problems involving these structures.

2.1

Sets

Introduction

In this section, we study the fundamental discrete structure on which all other discrete structures are built, namely, the set. Sets are used to group objects together. Often, but not always, the objects in a set have similar properties. For instance, all the students who are currently enrolled in your school make up a set. Likewise, all the students currently taking a course in discrete mathematics at any school make up a set. In addition, those students enrolled in your school who are taking a course in discrete mathematics form a set that can be obtained by taking the elements common to the first two collections. The language of sets is a means to study such

collections in an organized fashion. We now provide a definition of a set. This definition is an intuitive definition, which is not part of a formal theory of sets.

DEFINITION 1

A set is an unordered collection of objects, called *elements* or *members* of the set. A set is said to *contain* its elements. We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.

It is common for sets to be denoted using uppercase letters. Lowercase letters are usually used to denote elements of sets.

There are several ways to describe a set. One way is to list all the members of a set, when this is possible. We use a notation where all members of the set are listed between braces. For example, the notation $\{a, b, c, d\}$ represents the set with the four elements a, b, c, and d. This way of describing a set is known as the roster method. \triangle

- **EXAMPLE 1** The set V of all vowels in the English alphabet can be written as $V = \{a, e, i, o, u\}$.
- **EXAMPLE 2** The set O of odd positive integers less than 10 can be expressed by $O = \{1, 3, 5, 7, 9\}$.
- **EXAMPLE 3** Although sets are usually used to group together elements with common properties, there is nothing that prevents a set from having seemingly unrelated elements. For instance, $\{a, 2, Fred, a, 2, Fred, a,$ New Jersey} is the set containing the four elements a, 2, Fred, and New Jersey.

Sometimes the roster method is used to describe a set without listing all its members. Some members of the set are listed, and then *ellipses* (...) are used when the general pattern of the elements is obvious.

The set of positive integers less than 100 can be denoted by $\{1, 2, 3, \dots, 99\}$. **EXAMPLE 4**

Another way to describe a set is to use set builder notation. We characterize all those elements in the set by stating the property or properties they must have to be members. For instance, the set O of all odd positive integers less than 10 can be written as

 $O = \{x \mid x \text{ is an odd positive integer less than } 10\},\$

or, specifying the universe as the set of positive integers, as

 $O = \{x \in \mathbf{Z}^+ \mid x \text{ is odd and } x < 10\}.$

We often use this type of notation to describe sets when it is impossible to list all the elements of the set. For instance, the set Q^+ of all positive rational numbers can be written as

 $\mathbf{Q}^+ = \{x \in \mathbf{R} \mid x = \frac{p}{a}, \text{ for some positive integers } p \text{ and } q\}.$

These sets, each denoted using a boldface letter, play an important role in discrete mathematics:

Beware that mathematicians disagree whether 0 is a natural number. We consider it quite natural.

 $N = \{0, 1, 2, 3, \ldots\}$, the set of natural numbers

 $Z = \{..., -2, -1, 0, 1, 2, ...\}$, the set of integers

 $Z^+ = \{1, 2, 3, \ldots\}$, the set of positive integers

 $Q = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, \text{ and } q \neq 0\}$, the set of rational numbers

R, the set of real numbers

R⁺, the set of positive real numbers

C, the set of complex numbers.

(Note that some people do not consider 0 a natural number, so be careful to check how the term *natural numbers* is used when you read other books.)

Recall the notation for intervals of real numbers. When a and b are real numbers with a < b, we write

$$[a,b] = \{x \mid a \le x \le b\}$$

$$[a, b) = \{x \mid a \le x < b\}$$

$$(a, b] = \{x \mid a < x < b\}$$

$$(a, b) = \{x \mid a < x < b\}$$

Note that [a, b] is called the closed interval from a to b and (a, b) is called the open interval from a to b.

Sets can have other sets as members, as Example 5 illustrates.

EXAMPLE 5

The set $\{N, Z, Q, R\}$ is a set containing four elements, each of which is a set. The four elements of this set are N, the set of natural numbers; Z, the set of integers; Q, the set of rational numbers; and R, the set of real numbers.

Remark: Note that the concept of a datatype, or type, in computer science is built upon the concept of a set. In particular, a datatype or type is the name of a set, together with a set of operations that can be performed on objects from that set. For example, boolean is the name of the set {0, 1} together with operators on one or more elements of this set, such as AND, OR, and NOT.

Because many mathematical statements assert that two differently specified collections of objects are really the same set, we need to understand what it means for two sets to be equal.

DEFINITION 2

Two sets are *equal* if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$. We write A = B if A and B are equal sets.

EXAMPLE 6

The sets $\{1, 3, 5\}$ and $\{3, 5, 1\}$ are equal, because they have the same elements. Note that the order in which the elements of a set are listed does not matter. Note also that it does not matter if an element of a set is listed more than once, so $\{1, 3, 3, 3, 5, 5, 5, 5\}$ is the same as the set $\{1, 3, 5\}$ because they have the same elements.

GEORG CANTOR (1845–1918) Georg Cantor was born in St. Petersburg, Russia, where his father was a successful merchant. Cantor developed his interest in mathematics in his teens. He began his university studies in Zurich in 1862, but when his father died he left Zurich. He continued his university studies at the University of Berlin in 1863, where he studied under the eminent mathematicians Weierstrass, Kummer, and Kronecker. He received his doctor's degree in 1867, after having written a dissertation on number theory. Cantor assumed a position at the University of Halle in 1869, where he continued working until his death.

Cantor is considered the founder of set theory. His contributions in this area include the discovery that the set of real numbers is uncountable. He is also noted for his many important contributions to analysis. Cantor also was interested in philosophy and wrote papers relating his theory of sets with metaphysics.

Cantor married in 1874 and had five children. His melancholy temperament was balanced by his wife's happy disposition. Although he received a large inheritance from his father, he was poorly paid as a professor. To mitigate this, he tried to obtain a better-paying position at the University of Berlin. His appointment there was blocked by Kronecker, who did not agree with Cantor's views on set theory. Cantor suffered from mental illness throughout the later years of his life. He died in 1918 from a heart attack.

 $\{\emptyset\}$ has one more

element than Ø.

THE EMPTY SET There is a special set that has no elements. This set is called the empty set, or null set, and is denoted by \emptyset . The empty set can also be denoted by $\{\ \}$ (that is, we represent the empty set with a pair of braces that encloses all the elements in this set). Often, a set of elements with certain properties turns out to be the null set. For instance, the set of all positive integers that are greater than their squares is the null set.

A set with one element is called a singleton set. A common error is to confuse the empty set \emptyset with the set $\{\emptyset\}$, which is a singleton set. The single element of the set $\{\emptyset\}$ is the empty set itself! A useful analogy for remembering this difference is to think of folders in a computer file system. The empty set can be thought of as an empty folder and the set consisting of just the empty set can be thought of as a folder with exactly one folder inside, namely, the empty folder.

meaning that any condition will have L sets that fit it.

NAIVE SET THEORY Note that the term *object* has been used in the definition of a set, Definition 1, without specifying what an object is. This description of a set as a collection of objects, based on the intuitive notion of an object, was first stated in 1895 by the German mathematician Georg Cantor. The theory that results from this intuitive definition of a set, and the use of the intuitive notion that for any property whatever, there is a set consisting of exactly the objects with this property, leads to paradoxes, or logical inconsistencies. This was shown by the English philosopher Bertrand Russell in 1902 (see Exercise 46 for a description of one of these paradoxes). These logical inconsistencies can be avoided by building set theory beginning with axioms. However, we will use Cantor's original version of set theory, known as naive set theory, in this book because all sets considered in this book can be treated consistently using Cantor's original theory. Students will find familiarity with naive set theory helpful if they go on to learn about axiomatic set theory. They will also find the development of axiomatic set theory much more abstract than the material in this text. We refer the interested reader to [Su72] to learn more about axiomatic set theory.

Venn Diagrams

Sets can be represented graphically using Venn diagrams, named after the English mathematician John Venn, who introduced their use in 1881. In Venn diagrams the universal set U, which contains all the objects under consideration, is represented by a rectangle. (Note that the universal set varies depending on which objects are of interest.) Inside this rectangle, circles or other geometrical figures are used to represent sets. Sometimes points are used to represent the particular elements of the set. Venn diagrams are often used to indicate the relationships between sets. We show how a Venn diagram can be used in Example 7.

EXAMPLE 7

Draw a Venn diagram that represents V, the set of vowels in the English alphabet.

Solution: We draw a rectangle to indicate the universal set U, which is the set of the 26 letters of the English alphabet. Inside this rectangle we draw a circle to represent V. Inside this circle we indicate the elements of V with points (see Figure 1).

FIGURE 1 Venn Diagram for the Set of Vowels.

Subsets

It is common to encounter situations where the elements of one set are also the elements of a second set. We now introduce some terminology and notation to express such relationships between sets.

DEFINITION 3

The set A is a *subset* of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

We see that $A \subseteq B$ if and only if the quantification

$$\forall x (x \in A \rightarrow x \in B)$$

is true. Note that to show that A is not a subset of B we need only find one element $x \in A$ with $x \notin B$. Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.

We have these useful rules for determining whether one set is a subset of another:

Showing that A is a Subset of B To show that $A \subseteq B$, show that if x belongs to A then x also belongs to B.

Showing that A is Not a Subset of B To show that $A \nsubseteq B$, find a single $x \in A$ such that $x \notin B$.

EXAMPLE 8

{ 1, 2, 5, 7, 9}
The set of all odd positive integers less than 10 is a subset of the set of all positive integers less than 10, the set of rational numbers is a subset of the set of real numbers, the set of all computer science majors at your school is a subset of the set of all students at your school, and the set of all people in China is a subset of the set of all people in China (that is, it is a subset of itself). Each of these facts follows immediately by noting that an element that belongs to the first set in each pair of sets also belongs to the second set in that pair.

- a ~ 9

Z' 70.

EXAMPLE 9

The set of integers with squares less than 100 is not a subset of the set of nonnegative integers because -1 is in the former set [as $(-1)^2 < 100$], but not the later set. The set of people who have taken discrete mathematics at your school is not a subset of the set of all computer science majors at your school if there is at least one student who has taken discrete mathematics who is not a computer science major.

BERTRAND RUSSELL (1872–1970) Bertrand Russell was born into a prominent English family active in the progressive movement and having a strong commitment to liberty. He became an orphan at an early age and was placed in the care of his father's parents, who had him educated at home. He entered Trinity College, Cambridge, in 1890, where he excelled in mathematics and in moral science. He won a fellowship on the basis of his work on the foundations of geometry. In 1910 Trinity College appointed him to a lectureship in logic and the philosophy of mathematics.

Russell fought for progressive causes throughout his life. He held strong pacifist views, and his protests against World War I led to dismissal from his position at Trinity College. He was imprisoned for 6 months in 1918 because of an article he wrote that was branded as seditious. Russell fought for women's suffrage in Great

Britain. In 1961, at the age of 89, he was imprisoned for the second time for his protests advocating nuclear disarmament.

Russell's greatest work was in his development of principles that could be used as a foundation for all of mathematical disarrangements.

Russell's greatest work was in his development of principles that could be used as a foundation for all of mathematics. His most famous work is *Principia Mathematica*, written with Alfred North Whitehead, which attempts to deduce all of mathematics using a set of primitive axioms. He wrote many books on philosophy, physics, and his political ideas. Russell won the Nobel Prize for literature in 1950.

FIGURE 2 Venn Diagram Showing that A Is a Subset of B.

Theorem 1 shows that every nonempty set S is guaranteed to have at least two subsets, the empty set and the set S itself, that is, $\emptyset \subseteq S$ and $S \subseteq S$.

THEOREM 1

For every set S, $(i) \emptyset \subseteq S$ and $(ii) S \subseteq S$.

is false (always)

Proof: We will prove (i) and leave the proof of (ii) as an exercise.

Let S be a set. To show that $\emptyset \subseteq S$, we must show that $\forall x (x \in \emptyset \to x \in S)$ is true. Because the empty set contains no elements, it follows that $x \in \emptyset$ is always false. It follows that the conditional statement $x \in \emptyset \to x \in S$ is always true, because its hypothesis is always false and a conditional statement with a false hypothesis is true. Therefore, $\forall x (x \in \emptyset \to x \in S)$ is true. This completes the proof of (i). Note that this is an example of a vacuous proof.

When we wish to emphasize that a set A is a subset of a set B but that $A \neq B$, we write $A \subset B$ and say that A is a proper subset of B. For $A \subset B$ to be true, it must be the case that $A \subseteq B$ and there must exist an element x of B that is not an element of A. That is, A is a proper subset of B if and only if

$$\forall x(x\in A\rightarrow x\in B) \land \exists x(x\in B\land x\not\in A)$$

is true. Venn diagrams can be used to illustrate that a set A is a subset of a set B. We draw the universal set U as a rectangle. Within this rectangle we draw a circle for B. Because A is a subset of B, we draw the circle for A within the circle for B. This relationship is shown in Figure 2.

A useful way to show that two sets have the same elements is to show that each set is a subset of the other. In other words, we can show that if A and B are sets with $A \subseteq B$ and $B \subseteq A$, then A = B. That is, A = B if and only if $\forall x (x \in A \to x \in B)$ and $\forall x (x \in B \to x \in A)$ or equivalently if and only if $\forall x (x \in A \leftrightarrow x \in B)$, which is what it means for the A and B to be equal. Because this method of showing two sets are equal is so useful, we highlight it here.

JOHN VENN (1834–1923) John Venn was born into a London suburban family noted for its philanthropy. He attended London schools and got his mathematics degree from Caius College, Cambridge, in 1857. He was elected a fellow of this college and held his fellowship there until his death. He took holy orders in 1859 and, after a brief stint of religious work, returned to Cambridge, where he developed programs in the moral sciences. Besides his mathematical work, Venn had an interest in history and wrote extensively about his college and family.

Venn's book Symbolic Logic clarifies ideas originally presented by Boole. In this book, Venn presents a systematic development of a method that uses geometric figures, known now as Venn diagrams. Today these diagrams are primarily used to analyze logical arguments and to illustrate relationships between sets. In addition

to his work on symbolic logic, Venn made contributions to probability theory described in his widely used textbook on that subject.

$$A = B$$

Showing Two Sets are Equal To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.

Sets may have other sets as members. For instance, we have the sets

$$A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\} \qquad \text{and} \qquad B = \{x \mid x \text{ is a subset of the set } \{a, b\}\}.$$

Note that these two sets are equal, that is, A = B. Also note that $\{a\} \in A$, but $a \notin A$.

The Size of a Set

Sets are used extensively in counting problems, and for such applications we need to discuss the sizes of sets.

DEFINITION 4

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a *finite set* and that n is the *cardinality* of S. The cardinality of S is denoted by |S|.

Remark: The term cardinality comes from the common usage of the term cardinal number as the size of a finite set.

EXAMPLE 10 Let A be the set of odd positive integers less than 10. Then |A| = 5.

A = {1,3,5,7,9}

EXAMPLE 11 Let S be the set of letters in the English alphabet. Then |S| = 26.

a NZ

EXAMPLE 12 Because the null set has no elements, it follows that $|\emptyset| = 0$.

We will also be interested in sets that are not finite.

DEFINITION 5

A set is said to be *infinite* if it is not finite.

EXAMPLE 13 The set of positive integers is infinite.

We will extend the notion of cardinality to infinite sets in Section 2.5, a challenging topic full of surprising results.

Power Sets

Many problems involve testing all combinations of elements of a set to see if they satisfy some property. To consider all such combinations of elements of a set *S*, we build a new set that has as its members all the subsets of *S*.

DEFINITION 6

Given a set S, the *power set* of S is the set of all subsets of the set S. The power set of S is denoted by $\mathcal{P}(S)$.

What is the power set of the set $\{0, 1, 2\}$? $\{0\}$, $\{1\}$, $\{2\}$, $\{0, 1\}$, $\{0, 2\}$, $\{1, 2\}$ **EXAMPLE 14**

Solution: The power set $\mathcal{P}(\{0, 1, 2\})$ is the set of all subsets of $\{0, 1, 2\}$. Hence,

$$\mathcal{P}(\{0, 1, 2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}.$$

Note that the empty set and the set itself are members of this set of subsets.

What is the power set of the empty set? What is the power set of the set $\{\emptyset\}$? **EXAMPLE 15**

Solution: The empty set has exactly one subset, namely, itself. Consequently,

$$\mathcal{P}(\emptyset) = \{\emptyset\}.$$

The set $\{\emptyset\}$ has exactly two subsets, namely, \emptyset and the set $\{\emptyset\}$ itself. Therefore,

$$\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}.$$

If a set has n elements, then its power set has 2^n elements. We will demonstrate this fact in several ways in subsequent sections of the text.

Cartesian Products

The order of elements in a collection is often important. Because sets are unordered, a different structure is needed to represent ordered collections. This is provided by **ordered** *n***-tuples**.

DEFINITION 7

The <u>ordered n-tuple</u> (a_1, a_2, \ldots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its *n*th element.

We say that two ordered n-tuples are equal if and only if each corresponding pair of their elements is equal. In other words, $(a_1, a_2, \ldots, a_n) = (b_1, b_2, \ldots, b_n)$ if and only if $a_i = b_i$, for i = 1, 2, ..., n. In particular, ordered 2-tuples are called ordered pairs. The ordered pairs (a,b) and (c,d) are equal if and only if a=c and b=d. Note that (a,b) and (b,a) are not equal unless a = b.

RENÉ DESCARTES (1596–1650) René Descartes was born into a noble family near Tours, France, about 200 miles southwest of Paris. He was the third child of his father's first wife; she died several days after his birth. Because of René's poor health, his father, a provincial judge, let his son's formal lessons slide until, at the age of 8, René entered the Jesuit college at La Flèche. The rector of the school took a liking to him and permitted him to stay in bed until late in the morning because of his frail health. From then on, Descartes spent his mornings in bed; he considered these times his most productive hours for thinking.

Descartes left school in 1612, moving to Paris, where he spent 2 years studying mathematics. He earned a law degree in 1616 from the University of Poitiers. At 18 Descartes became disgusted with studying and decided to see the world. He moved to Paris and became a successful gambler. However, he grew tired

of bawdy living and moved to the suburb of Saint-Germain, where he devoted himself to mathematical study. When his gambling friends found him, he decided to leave France and undertake a military career. However, he never did any fighting. One day, while escaping the cold in an overheated room at a military encampment, he had several feverish dreams, which revealed his future career as a mathematician and philosopher.

After ending his military career, he traveled throughout Europe. He then spent several years in Paris, where he studied mathematics and philosophy and constructed optical instruments. Descartes decided to move to Holland, where he spent 20 years wandering around the country, accomplishing his most important work. During this time he wrote several books, including the *Discours*, which contains his contributions to analytic geometry, for which he is best known. He also made fundamental contributions to philosophy.

In 1649 Descartes was invited by Queen Christina to visit her court in Sweden to tutor her in philosophy. Although he was reluctant to live in what he called "the land of bears amongst rocks and ice," he finally accepted the invitation and moved to Sweden. Unfortunately, the winter of 1649–1650 was extremely bitter. Descartes caught pneumonia and died in mid-February.

Many of the discrete structures we will study in later chapters are based on the notion of the *Cartesian product* of sets (named after René Descartes). We first define the Cartesian product of two sets.

DEFINITION 8

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence,

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

EXAMPLE 16

Let A represent the set of all students at a university, and let B represent the set of all courses offered at the university. What is the Cartesian product $A \times B$ and how can it be used?

Solution: The Cartesian product $A \times B$ consists of all the ordered pairs of the form (a, b), where a is a student at the university and b is a course offered at the university. One way to use the set $A \times B$ is to represent all possible enrollments of students in courses at the university.

EXAMPLE 17

What is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$?

Solution: The Cartesian product $A \times B$ is

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$$

Note that the Cartesian products $A \times B$ and $B \times A$ are not equal, unless $A = \emptyset$ or $B = \emptyset$ (so that $A \times B = \emptyset$) or A = B (see Exercises 31 and 38). This is illustrated in Example 18.

EXAMPLE 18

Show that the Cartesian product $B \times A$ is not equal to the Cartesian product $A \times B$, where A and B are as in Example 17.

Solution: The Cartesian product $B \times A$ is

$$B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}.$$

This is not equal to $A \times B$, which was found in Example 17.

The Cartesian product of more than two sets can also be defined.

DEFINITION 9

The Cartesian product of the sets A_1, A_2, \ldots, A_n , denoted by $A_1 \times A_2 \times \cdots \times A_n$, is the set of ordered *n*-tuples (a_1, a_2, \ldots, a_n) , where a_i belongs to A_i for $i = 1, 2, \ldots, n$. In other words,

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots, n\}.$$

EXAMPLE 19 What is the Cartesian product $A \times B \times C$, where $A = \{0, 1\}, B = \{1, 2\}, \text{ and } C = \{0, 1, 2\}$?

Solution: The Cartesian product $A \times B \times C$ consists of all ordered triples (a, b, c), where $a \in A$, $b \in B$, and $c \in C$. Hence,

$$A \times B \times C = \{(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)\}.$$

Remark: Note that when A, B, and C are sets, $(A \times B) \times C$ is not the same as $A \times B \times C$ (see Exercise 39).

We use the notation A^2 to denote $A \times A$, the Cartesian product of the set A with itself. Similarly, $A^3 = A \times A \times A$, $A^4 = A \times A \times A \times A$, and so on. More generally,

$$A^n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A \text{ for } i = 1, 2, \dots, n\}.$$

EXAMPLE 20

Suppose that $A = \{1, 2\}$. It follows that $A^2 = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$ and $A^3 = \{(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)\}$.

A subset R of the Cartesian product $A \times B$ is called a relation from the set A to the set B. The elements of R are ordered pairs, where the first element belongs to A and the second to B. For example, $R = \{(a, 0), (a, 1), (a, 3), (b, 1), (b, 2), (c, 0), (c, 3)\}$ is a relation from the set $\{a, b, c\}$ to the set $\{0, 1, 2, 3\}$. A relation from a set A to itself is called a relation on A.

EXAMPLE 21

Solution: The ordered pair (a, b) belongs to R if and only if both a and b belong to $\{0, 1, 2, 3\}$ and $a \le b$. Consequently, the ordered pairs in R are (0,0), (0,1), (0,2), (0,3), (1,1), (1,2), (1,3), (2,2), (2,3), and (3,3).

We will study relations and their properties at length in Chapter 9.

Using Set Notation with Quantifiers

Sometimes we restrict the domain of a quantified statement explicitly by making use of a particular notation. For example, $\forall x \in S(P(x))$ denotes the universal quantification of P(x) over all elements in the set S. In other words, $\forall x \in S(P(x))$ is shorthand for $\forall x (x \in S \to P(x))$. Similarly, $\exists x \in S(P(x))$ denotes the existential quantification of P(x) over all elements in S. That is, $\exists x \in S(P(x))$ is shorthand for $\exists x (x \in S \land P(x))$.

EXAMPLE 22

What do the statements $\forall x \in \mathbb{R} \ (x^2 \ge 0)$ and $\exists x \in \mathbb{Z} \ (x^2 = 1)$ mean? $\forall x \in \mathbb{R} \ \text{not asking this kind of } \ \forall x \in \mathbb{Z} \ \text{(} x^2 = 1)$

Solution: The statement $\forall x \in \mathbf{R}(x^2 \ge 0)$ states that for every real number $x, x^2 \ge 0$. This statement can be expressed as "The square of every real number is nonnegative." This is a true statement.

The statement $\exists x \in \mathbf{Z}(x^2 = 1)$ states that there exists an integer x such that $x^2 = 1$. This statement can be expressed as "There is an integer whose square is 1." This is also a true statement because x = 1 is such an integer (as is -1).

Truth Sets and Quantifiers

We will now tie together concepts from set theory and from predicate logic. Given a predicate P, and a domain D, we define the truth set of P to be the set of elements x in D for which P(x) is true. The truth set of P(x) is denoted by $\{x \in D \mid P(x)\}$.

EXAMPLE 23

What are the truth sets of the predicates P(x), Q(x), and R(x), where the domain is the set of integers and P(x) is "|x| = 1," Q(x) is " $x^2 = 2$," and R(x) is "|x| = x." true X ≥ 0 N X= ±1 {-1,1} false X= ± 12 & not knowing what it true Solution: The truth set of P, $\{x \in \mathbb{Z} \mid |x| = 1\}$, is the set of integers for which |x| = 1. Because |x| = 1 when x = 1 or x = -1, and for no other integers x, we see that the truth set of P is the set $\{-1, 1\}$.

The truth set of Q, $\{x \in \mathbb{Z} \mid x^2 = 2\}$, is the set of integers for which $x^2 = 2$. This is the empty set because there are no integers x for which $x^2 = 2$.

The truth set of R, $\{x \in \mathbb{Z} \mid |x| = x\}$, is the set of integers for which |x| = x. Because |x| = x if and only if $x \ge 0$, it follows that the truth set of R is N, the set of nonnegative integers.

Note that $\forall x P(x)$ is true over the domain U if and only if the truth set of P is the set U. Likewise, $\exists x P(x)$ is true over the domain U if and only if the truth set of P is nonempty.

unchecked

10/10

19/9 11:46 am Exercises

- 8:45 am 1. List the members of these sets.
 - a) $\{x \mid x \text{ is a real number such that } x^2 = 1\}$
 - b) $\{x \mid x \text{ is a positive integer less than } 12\} \{1, 2, \dots, 11\}$

 - 2. Use set builder notation to give a description of each of
 - a) $\{0, 3, 6, 9, 12\} = \{ X \in \mathbb{N} \mid X \text{ is the product of } 3, X \leq 12 \}$ $\{x \in \mathbb{R} \mid x \text{ is an integer greater than } 1\}$
 - b) $\{-3, -2, -1, 0, 1, 2, 3\} = \{x \in \mathbb{Z} \mid x > -4, x < 4\}$
 - $(M, n, o, p) = \{ x \mid x \text{ is a letter in the alphabet from } u \text{ to } p \}$
 - 3. For each of these pairs of sets, determine whether the first is a subset of the second, the second is a subset of the first, or neither is a subset of the other.
 - a) the set of airline flights from New York to New Delhi, the set of nonstop airline flights from New York to New Delhi 2nd 4 (st.
 - b) the set of people who speak English, the set of people who speak Chinese neither.
 - c) the set of flying squirrels, the set of living creatures 15+ 5 2nd. L
 - 4. For each of these pairs of sets, determine whether the first is a subset of the second, the second is a subset of the first, or neither is a subset of the other.
 - a) the set of people who speak English, the set of people who speak English with an Australian accent 2 ≤ | \
 - b) the set of fruits, the set of citrus fruits 2CI V
 - c) the set of students studying discrete mathematics, the set of students studying data structures neither
 - 5. Determine whether each of these pairs of sets are equal.

- a) {1, 3, 3, 3, 5, 5, 5, 5, 5}, {5, 3, 1}
- b) $\{\{1\}\}, \{1, \{1\}\}\}$ no \lor c) $\emptyset, \{\emptyset\}$ no \lor
- **6.** Suppose that $A = \{2, 4, 6\}, B = \{2, 6\}, C = \{4, 6\}, \text{ and } A = \{2, 4, 6\}, B = \{2, 6\}, C = \{4, 6\}, A = \{4,$

c) $\{x \mid x \text{ is the square of an integer and } x < 100\}$ $\{4, 9, 16, 25, 36\}$ $D = \{4, 6, 8\}$. Determine which of these sets are subsets of which other of these sets. $B \subseteq A$, $C \subseteq D$

d) $\{x \mid x \text{ is an integer such that } x^2 = 2\}$ $\{x \mid x \text{ is an integer such that } x^2 = 2\}$ $\{x \mid x \text{ is an integer such that } x^2 = 2\}$

- b) $\{x \in \mathbb{R} \mid x \text{ is the square of an integer}\}$ c) {2,{2}} \\\(\forall e \forall \) d) $\{\{2\},\{\{2\}\}\}\$ no. \bigvee
- e) $\{\{2\},\{2,\{2\}\}\}\}$ no. \checkmark f) {{{2}}} no.
- 8. For each of the sets in Exercise 7, determine whether {2} is an element of that set. a. no. b. no. c. yes. d. yes
- 9. Determine whether each of these statements is true or f. no. false.
 - a) $0 \in \emptyset$
- **b**) $\emptyset \in \{0\}$
- c) $\{0\} \subset \emptyset$
- d) $\emptyset \subset \{0\}$
- e) $\{0\} \in \{0\}$

- f) $\{0\} \subset \{0\}$
- g) $\{\emptyset\} \subset \{\emptyset\}$
- 10. Determine whether these statements are true or false.
 - a) $\emptyset \in \{\emptyset\}$
- **b)** $\emptyset \in \{\emptyset, \{\emptyset\}\}$
- c) $\{\emptyset\} \in \{\emptyset\}$
- $\mathbf{d)} \ \{\emptyset\} \in \{\{\emptyset\}\}\$
- e) $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}$
- f) $\{\{\emptyset\}\}\subset\{\emptyset,\{\emptyset\}\}$
- **g)** $\{\{\emptyset\}\}\subset\{\{\emptyset\},\{\emptyset\}\}\}$
- 11. Determine whether each of these statements is true or false.
 - a) $x \in \{x\}$
- **b)** $\{x\} \subseteq \{x\}$
- c) $\{x\} \in \{x\}$

- d) $\{x\} \in \{\{x\}\}$
- e) $\emptyset \subseteq \{x\}$
- f) $\emptyset \in \{x\}$

12. Use a Venn diagram to illustrate the subset of odd integers in the set of all positive integers not exceeding 10.

A⊆A, B⊆B,

- 13. Use a Venn diagram to illustrate the set of all months of the year whose names do not contain the letter R in the set of all months of the year.
- **14.** Use a Venn diagram to illustrate the relationship $A \subseteq B$
- 15. Use a Venn diagram to illustrate the relationships $A \subset B$ and $B \subset C$.
- **16.** Use a Venn diagram to illustrate the relationships $A \subset B$ and $A \subset C$.
- No. Suppose that A, B, and C are sets such that $A \subseteq B$ and $B \subseteq C$. Show that $A \subseteq C$. \therefore A is a subset of B, and B is
- 19. What is the cardinality of each of these sets? A is also a subset $A \times B \times C$ and $A \times B \times C$ are not the
- c) $\{a, \{a\}\}\$ 2
- **b)** {{*a*}} | ****
- d) $\{a, \{a\}, \{a, \{a\}\}\}\$
- 9:30 am 20. What is the cardinality of each of these sets?
 - a) Ø

- c) $\{\emptyset, \{\emptyset\}\}$
- d) $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$
- 21. Find the power set of each of these sets, where a and b are distinct elements.
- **b)** $\{a, b\}$
- c) $\{\emptyset, \{\emptyset\}\}\$
- 22. Can you conclude that A = B if A and B are two sets with the same power set?
- 23. How many elements does each of these sets have where a and b are distinct elements?
 - a) $\mathcal{P}(\{a, b, \{a, b\}\})$
 - **b)** $\mathcal{P}(\{\emptyset, a, \{a\}, \{\{a\}\}\})$
 - c) $\mathcal{P}(\mathcal{P}(\emptyset))$
- 24. Determine whether each of these sets is the power set of a set, where a and b are distinct elements.
 - a) Ø

- **b)** $\{\emptyset, \{a\}\}$
- c) $\{\emptyset, \{a\}, \{\emptyset, a\}\}\$
- **d)** $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
- 25. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ if and only if $A \subseteq B$.
- 26. Show that if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$
- 27. Let $A = \{a, b, c, d\}$ and $B = \{y, z\}$. Find
 - a) $A \times B$.
- b) $B \times A$.
- 28. What is the Cartesian product $A \times B$, where A is the set of courses offered by the mathematics department at a university and B is the set of mathematics professors at this university? Give an example of how this Cartesian product can be used.
- 29. What is the Cartesian product $A \times B \times C$, where A is the set of all airlines and B and C are both the set of all cities in the United States? Give an example of how this Cartesian product can be used.
- 30. Suppose that $A \times B = \emptyset$, where A and B are sets. What can you conclude?
- **31.** Let *A* be a set. Show that $\emptyset \times A = A \times \emptyset = \emptyset$.
- 32. Let $A = \{a, b, c\}$, $B = \{x, y\}$, and $C = \{0, 1\}$. Find
 - a) $A \times B \times C$.
- b) $C \times B \times A$.
- c) $C \times A \times B$.
- d) $B \times B \times B$.

- 33. Find A^2 if
 - a) $A = \{0, 1, 3\}.$

Because X & A implies that X & C, it follows

- **b)** $A = \{1, 2, a, b\}.$
- **34.** Find A^3 if
 - a) $A = \{a\}.$
- **b)** $A = \{0, a\}.$
- 35. How many different elements does $A \times B$ have if A has m elements and B has n elements?
- **36.** How many different elements does $A \times B \times C$ have if A has m elements, B has n elements, and C has p elements?
- 37. How many different elements does A^n have when A has m elements and n is a positive integer?
- 18. Find two sets A and B such that $A \in B$ and $A \subseteq B$. A subset of C unless $A \in B$.

 - **40.** Explain why $(A \times B) \times (C \times D)$ and $A \times (B \times C) \times (C \times D)$ D are not the same.
 - 41. Translate each of these quantifications into English and determine its truth value.
- **b)** $\exists x \in \mathbb{Z} (x^2 = 2)$
- a) $\forall x \in \mathbb{R} \ (x^2 \neq -1)$ c) $\forall x \in \mathbb{Z} \ (x^2 > 0)$
- d) $\exists x \in \mathbf{R} \ (x^2 = x)$
- 42. Translate each of these quantifications into English and determine its truth value.
 - a) $\exists x \in \mathbf{R} \ (x^3 = -1)$
- **b)** $\exists x \in \mathbb{Z} (x + 1 > x)$
- c) $\forall x \in \mathbb{Z} (x 1 \in \mathbb{Z})$
- d) $\forall x \in \mathbb{Z} (x^2 \in \mathbb{Z})$
- 43. Find the truth set of each of these predicates where the domain is the set of integers.
 - a) $P(x): x^2 < 3$
- **b)** $Q(x): x^2 > x$
- c) R(x): 2x + 1 = 0
- 44. Find the truth set of each of these predicates where the domain is the set of integers.
 - a) $P(x): x^3 \ge 1$ c) $R(x): x < x^2$
- **b)** Q(x): $x^2 = 2$
- *45. The defining property of an ordered pair is that two ordered pairs are equal if and only if their first elements are equal and their second elements are equal. Surprisingly, instead of taking the ordered pair as a primitive concept, we can construct ordered pairs using basic notions from set theory. Show that if we define the ordered pair (a, b) to be $\{\{a\}, \{a, b\}\}\$, then (a, b) = (c, d) if and only if a = c and b = d. [Hint: First show that $\{\{a\}, \{a, b\}\} =$ $\{\{c\}, \{c, d\}\}\$ if and only if a = c and b = d.
- *46. This exercise presents Russell's paradox. Let S be the set that contains a set x if the set x does not belong to itself, so that $S = \{x \mid x \notin x\}.$
- - a) Show the assumption that S is a member of S leads to a contradiction.
 - b) Show the assumption that S is not a member of S leads to a contradiction.
 - By parts (a) and (b) it follows that the set S cannot be defined as it was. This paradox can be avoided by restricting the types of elements that sets can have.
- *47. Describe a procedure for listing all the subsets of a finite set.

2.2

Set Operations

Introduction

Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of computer science majors at your school, we can form the set of students who are mathematics majors or computer science majors, the set of students who are joint majors in mathematics and computer science, the set of all students not majoring in mathematics, and so on.

DEFINITION 1

Let A and B be sets. The *union* of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.

An element *x* belongs to the union of the sets *A* and *B* if and only if *x* belongs to *A* or *x* belongs to *B*. This tells us that

$$A \cup B = \{x \mid x \in A \lor x \in B\}.$$

The Venn diagram shown in Figure 1 represents the union of two sets A and B. The area that represents $A \cup B$ is the shaded area within either the circle representing A or the circle representing B.

We will give some examples of the union of sets.

EXAMPLE 1

The union of the sets $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{1, 2, 3, 5\}$; that is, $\{1, 3, 5\} \cup \{1, 2, 3\} = \{1, 2, 3, 5\}$.

EXAMPLE 2

The union of the set of all computer science majors at your school and the set of all mathematics majors at your school is the set of students at your school who are majoring either in mathematics or in computer science (or in both).

DEFINITION 2

Let A and B be sets. The *intersection* of the sets A and B, denoted by $A \cap B$, is the set containing those elements in both A and B.

An element *x* belongs to the intersection of the sets *A* and *B* if and only if *x* belongs to *A* and *x* belongs to *B*. This tells us that

$$A \cap B = \{x \mid x \in A \land x \in B\}.$$

 $A \cup B$ is shaded.

FIGURE 1 Venn Diagram of the Union of A and B.

 $A \cap B$ is shaded.

FIGURE 2 Venn Diagram of the Intersection of *A* and *B*.

The Venn diagram shown in Figure 2 represents the intersection of two sets A and B. The shaded area that is within both the circles representing the sets A and B is the area that represents the intersection of A and B.

We give some examples of the intersection of sets.

EXAMPLE 3 The intersection of the sets $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{1, 3\}$; that is, $\{1, 3, 5\} \cap \{1, 2, 3\} = \{1, 3\}$.

EXAMPLE 4 The intersection of the set of all computer science majors at your school and the set of all mathematics majors is the set of all students who are joint majors in mathematics and computer science.

DEFINITION 3

Two sets are called *disjoint* if their intersection is the empty set.

EXAMPLE 5 Let
$$A = \{1, 3, 5, 7, 9\}$$
 and $B = \{2, 4, 6, 8, 10\}$. Because $A \cap B = \emptyset$, A and B are disjoint.

Be careful not to overcount!

We are often interested in finding the cardinality of a union of two finite sets A and B. Note that |A| + |B| counts each element that is in A but not in B or in B but not in A exactly once, and each element that is in both A and B exactly twice. Thus, if the number of elements that are in both A and B is subtracted from |A| + |B|, elements in $A \cap B$ will be counted only once. Hence.

$$|A \cup B| = |A| + |B| - |A \cap B|$$
.

The generalization of this result to unions of an arbitrary number of sets is called **the principle of inclusion–exclusion**. The principle of inclusion–exclusion is an important technique used in enumeration. We will discuss this principle and other counting techniques in detail in Chapters 6 and 8.

There are other important ways to combine sets.

DEFINITION 4

Let A and B be sets. The difference of A and B, denoted by A - B, is the set containing those elements that are in A but not in B. The difference of A and B is also called the *complement of B with respect to A*.

Remark: The difference of sets A and B is sometimes denoted by $A \setminus B$.

An element x belongs to the difference of A and B if and only if $x \in A$ and $x \notin B$. This tells us that

$$A - B = \{x \mid x \in A \land x \notin B\}.$$

The Venn diagram shown in Figure 3 represents the difference of the sets A and B. The shaded area inside the circle that represents A and outside the circle that represents B is the area that represents A - B.

We give some examples of differences of sets.

EXAMPLE 6 The difference of $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{5\}$; that is, $\{1, 3, 5\} - \{1, 2, 3\} = \{5\}$. This is different from the difference of $\{1, 2, 3\}$ and $\{1, 3, 5\}$, which is the set $\{2\}$.

EXAMPLE 7 The difference of the set of computer science majors at your school and the set of mathematics majors at your school is the set of all computer science majors at your school who are not also mathematics majors.

FIGURE 3 Venn Diagram for the Difference of A and B.

FIGURE 4 Venn Diagram for the Complement of the Set A.

Once the universal set U has been specified, the **complement** of a set can be defined.

DEFINITION 5

Let U be the universal set. The *complement* of the set A, denoted by \overline{A} , is the complement of A with respect to U. Therefore, the complement of the set A is U-A.

An element belongs to \overline{A} if and only if $x \notin A$. This tells us that

$$\overline{A} = \{x \in U \mid x \notin A\}.$$

In Figure 4 the shaded area outside the circle representing A is the area representing \overline{A} . We give some examples of the complement of a set.

EXAMPLE 8

Let $A = \{a, e, i, o, u\}$ (where the universal set is the set of letters of the English alphabet). Then $\overline{A} = \{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z\}.$

EXAMPLE 9

Let A be the set of positive integers greater than 10 (with universal set the set of all positive integers). Then $\overline{A} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$

It is left to the reader (Exercise 19) to show that we can express the difference of A and B as the intersection of A and the complement of B. That is,

$$A - B = A \cap \overline{B}$$
.

Set Identities

Table 1 lists the most important set identities. We will prove several of these identities here, using three different methods. These methods are presented to illustrate that there are often many different approaches to the solution of a problem. The proofs of the remaining identities will be left as exercises. The reader should note the similarity between these set identities and the logical equivalences discussed in Section 1.3. (Compare Table 6 of Section 1.6 and Table 1.) In fact, the set identities given can be proved directly from the corresponding logical equivalences. Furthermore, both are special cases of identities that hold for Boolean algebra (discussed in

One way to show that two sets are equal is to show that each is a subset of the other. Recall that to show that one set is a subset of a second set, we can show that if an element belongs to the first set, then it must also belong to the second set. We generally use a direct proof to do this. We illustrate this type of proof by establishing the first of De Morgan's laws.

Set identities and propositional equivalences are just special cases of identities for Boolean algebra.

TABLE 1 Set Identities.						
Identity	Name					
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws					
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws					
$A \cup A = A$ $A \cap A = A$	Idempotent laws					
$\overline{(\overline{A})} = A$	Complementation law					
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws					
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws					
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws					
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws					
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws					
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws					

EXAMPLE 10

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

This identity says that the complement of the intersection of two sets is the union of their complements.

Solution: We will prove that the two sets $\overline{A \cap B}$ and $\overline{A} \cup \overline{B}$ are equal by showing that each set is a subset of the other.

First, we will show that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$. We do this by showing that if x is in $\overline{A \cap B}$, then it must also be in $\overline{A} \cup \overline{B}$. Now suppose that $x \in \overline{A \cap B}$. By the definition of complement, $x \notin A \cap B$ B. Using the definition of intersection, we see that the proposition $\neg((x \in A) \land (x \in B))$ is true.

By applying De Morgan's law for propositions, we see that $\neg(x \in A)$ or $\neg(x \in B)$. Using the definition of negation of propositions, we have $x \notin A$ or $x \notin B$. Using the definition of the complement of a set, we see that this implies that $x \in \overline{A}$ or $x \in \overline{B}$. Consequently, by the definition of union, we see that $x \in \overline{A} \cup \overline{B}$. We have now shown that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$.

Next, we will show that $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$. We do this by showing that if x is in $\overline{A} \cup \overline{B}$, then it must also be in $\overline{A \cap B}$. Now suppose that $x \in \overline{A} \cup \overline{B}$. By the definition of union, we know that $x \in A$ or $x \in B$. Using the definition of complement, we see that $x \notin A$ or $x \notin B$. Consequently, the proposition $\neg(x \in A) \lor \neg(x \in B)$ is true.

By De Morgan's law for propositions, we conclude that $\neg((x \in A) \land (x \in B))$ is true. By the definition of intersection, it follows that $\neg(x \in A \cap B)$. We now use the definition of complement to conclude that $x \in \overline{A \cap B}$. This shows that $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$.

Because we have shown that each set is a subset of the other, the two sets are equal, and the identity is proved.

in a brief and clearly expressed manner

We can more succinctly express the reasoning used in Example 10 using set builder notation, as Example 11 illustrates.

Use set builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} =$ $\overline{A} \cup \overline{B}$.

Solution: We can prove this identity with the following steps.

$$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$$
 by definition of complement
$$= \{x \mid \neg(x \in (A \cap B))\}$$
 by definition of does not belong symbol
$$= \{x \mid \neg(x \in A \land x \in B)\}$$
 by definition of intersection
$$= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$$
 by the first De Morgan law for logical equivalences
$$= \{x \mid x \notin A \lor x \notin B\}$$
 by definition of does not belong symbol by definition of complement
$$= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$$
 by definition of complement
$$= \{x \mid x \in \overline{A} \lor \overline{B}\}$$
 by definition of union by meaning of set builder notation

Note that besides the definitions of complement, union, set membership, and set builder notation, this proof uses the second De Morgan law for logical equivalences.

Proving a set identity involving more than two sets by showing each side of the identity is a subset of the other often requires that we keep track of different cases, as illustrated by the proof in Example 12 of one of the distributive laws for sets.

EXAMPLE 12 Prove the second distributive law from Table 1, which states that $A \cap (B \cup C) = (A \cap B) \cup A$ $(A \cap C)$ for all sets A, B, and C.

Solution: We will prove this identity by showing that each side is a subset of the other side.

Suppose that $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$. By the definition of union, it follows that $x \in A$, and $x \in B$ or $x \in C$ (or both). In other words, we know that the compound proposition $(x \in A) \land ((x \in B) \lor (x \in C))$ is true. By the distributive law for conjunction over disjunction, it follows that $((x \in A) \land (x \in B)) \lor ((x \in A) \land (x \in C))$. We conclude that either $x \in A$ and $x \in B$, or $x \in A$ and $x \in C$. By the definition of intersection, it follows that $x \in A \cap B$ or $x \in A \cap C$. Using the definition of union, we conclude that $x \in (A \cap B) \cup (A \cap C)$. We conclude that $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

Now suppose that $x \in (A \cap B) \cup (A \cap C)$. Then, by the definition of union, $x \in A \cap B$ or $x \in A \cap C$. By the definition of intersection, it follows that $x \in A$ and $x \in B$ or that $x \in A$ and $x \in C$. From this we see that $x \in A$, and $x \in B$ or $x \in C$. Consequently, by the definition of union we see that $x \in A$ and $x \in B \cup C$. Furthermore, by the definition of intersection, it follows that $x \in A \cap (B \cup C)$. We conclude that $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. This completes the proof of the identity.

Set identities can also be proved using membership tables. We consider each combination of sets that an element can belong to and verify that elements in the same combinations of sets belong to both the sets in the identity. To indicate that an element is in a set, a 1 is used; to indicate that an element is not in a set, a 0 is used. (The reader should note the similarity between membership tables and truth tables.) What's the differen then ??

EXAMPLE 13 Use a membership table to show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Solution: The membership table for these combinations of sets is shown in Table 2. This table has eight rows. Because the columns for $A \cap (B \cup C)$ and $(A \cap B) \cup (A \cap C)$ are the same, the identity is valid.

Additional set identities can be established using those that we have already proved. Consider Example 14.

TABLE 2 A Membership Table for the Distributive Property.								
A	В	С	$B \cup C$	$A\cap (B\cup C)$	$A \cap B$	$A\cap C$	$(A \cap B) \cup (A \cap C)$	
1	1	1	1	1	1	1	1	
1	1	0	1	1	1	0	1	
1	0	1	1	1	0	1	1	
1	0	0	0	0	0	0	0	
0	1	1	1	0	0	0	0	
0	1	0	1	0	0	0	0	
0	0	1	1	0	0	0	0	
0	0	0	0	0	0	0	0	

EXAMPLE 14 Let A, B, and C be sets. Show that

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}.$$

Solution: We have

$$\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B \cap C}) \quad \text{by the first De Morgan law}$$

$$= \overline{A} \cap (\overline{B} \cup \overline{C}) \quad \text{by the second De Morgan law}$$

$$= (\overline{B} \cup \overline{C}) \cap \overline{A} \quad \text{by the commutative law for intersections}$$

$$= (\overline{C} \cup \overline{B}) \cap \overline{A} \quad \text{by the commutative law for unions.}$$

Generalized Unions and Intersections

Because unions and intersections of sets satisfy associative laws, the sets $A \cup B \cup C$ and $A \cap B \cap C$ are well defined; that is, the meaning of this notation is unambiguous when A, B, and C are sets. That is, we do not have to use parentheses to indicate which operation comes first because $A \cup (B \cup C) = (A \cup B) \cup C$ and $A \cap (B \cap C) = (A \cap B) \cap C$. Note that $A \cup B \cup C$ contains those elements that are in at least one of the sets A, B, and C, and that $A \cap B \cap C$ contains those elements that are in all of A, B, and C. These combinations of the three sets, A, B, and C, are shown in Figure 5.

(a) $A \cup B \cup C$ is shaded.

(b) $A \cap B \cap C$ is shaded.

FIGURE 5 The Union and Intersection of A, B, and C.

EXAMPLE 15 Let $A = \{\emptyset, 2, 4, 6, 8\}$, $B = \{\emptyset, 1, 2, 3, 4\}$, and $C = \{\emptyset, 3, 6, 9\}$. What are $A \cup B \cup C$ and $A \cap B \cap C$?

Solution: The set $A \cup B \cup C$ contains those elements in at least one of A, B, and C. Hence,

$$A \cup B \cup C = \{0, 1, 2, 3, 4, 6, 8, 9\}.$$

The set $A \cap B \cap C$ contains those elements in all three of A, B, and C. Thus,

$$A \cap B \cap C = \{0\}.$$

We can also consider unions and intersections of an arbitrary number of sets. We introduce these definitions.

DEFINITION 6 The *union* of a collection of sets is the set that contains those elements that are members of at least one set in the collection.

We use the notation

$$A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$$

to denote the union of the sets A_1, A_2, \ldots, A_n .

DEFINITION 7 The *intersection* of a collection of sets is the set that contains those elements that are members of all the sets in the collection.

We use the notation

$$A_1 \cap A_2 \cap \dots \cap A_n = \bigcap_{i=1}^n A_i$$

to denote the intersection of the sets A_1, A_2, \ldots, A_n . We illustrate generalized unions and intersections with Example 16.

EXAMPLE 16 For $i = 1, 2, ..., let A_i = \{i, i + 1, i + 2, ...\}$. Then,

$$\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \{i, i+1, i+2, \dots\} = \{1, 2, 3, \dots\},\$$

and

$$\bigcap_{i=1}^{n} A_i = \bigcap_{i=1}^{n} \{i, i+1, i+2, \dots\} = \{n, n+1, n+2, \dots\} = A_n.$$

We can extend the notation we have introduced for unions and intersections to other families of sets. In particular, we use the notation

$$A_1 \cup A_2 \cup \cdots \cup A_n \cup \cdots = \bigcup_{i=1}^{\infty} A_i$$

to denote the union of the sets $A_1, A_2, \ldots, A_n, \ldots$. Similarly, the intersection of these sets is denoted by

$$A_1 \cap A_2 \cap \cdots \cap A_n \cap \cdots = \bigcap_{i=1}^{\infty} A_i.$$

More generally, when I is a set, the notations $\bigcap_{i \in I} A_i$ and $\bigcup_{i \in I} A_i$ are used to denote the intersection and union of the sets A_i for $i \in I$, respectively. Note that we have $\bigcap_{i \in I} A_i = \{x \mid \forall i \in I \ (x \in A_i)\}$ and $\bigcup_{i \in I} A_i = \{x \mid \exists i \in I \ (x \in A_i)\}.$

EXAMPLE 17 Suppose that $A_i = \{1, 2, 3, ..., i\}$ for i = 1, 2, 3, ... Then,

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \{1, 2, 3, \dots, i\} = \{1, 2, 3, \dots\} = \mathbf{Z}^+$$

and

$$\bigcap_{i=1}^{\infty} A_i = \bigcap_{i=1}^{\infty} \{1, 2, 3, \dots, i\} = \{1\}.$$

$$OC \quad i=1 \quad ?$$

$$T = \{1\} \text{ the only ore } \dots ?$$

To see that the union of these sets is the set of positive integers, note that every positive integer n is in at least one of the sets, because it belongs to $A_n = \{1, 2, ..., n\}$, and every element of the sets in the union is a positive integer. To see that the intersection of these sets is the set $\{1\}$, note that the only element that belongs to all the sets $A_1, A_2, ...$ is 1. To see this note that $A_1 = \{1\}$ and $1 \in A_i$ for i = 1, 2, ...

Computer Representation of Sets Bit Strings

There are various ways to represent sets using a computer. One method is to store the elements of the set in an unordered fashion. However, if this is done, the operations of computing the union, intersection, or difference of two sets would be time-consuming, because each of these operations would require a large amount of searching for elements. We will present a method for storing elements using an arbitrary ordering of the elements of the universal set. This method of representing sets makes computing combinations of sets easy.

Assume that the universal set U is finite (and of reasonable size so that the number of elements of U is not larger than the memory size of the computer being used). First, specify an arbitrary ordering of the elements of U, for instance a_1, a_2, \ldots, a_n . Represent a subset A of U with the bit string of length n, where the ith bit in this string is 1 if a_i belongs to A and is 0 if a_i does not belong to A. Example 18 illustrates this technique.

EXAMPLE 18 Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and the ordering of elements of U has the elements in increasing order; that is, $a_i = i$. What bit strings represent the subset of all odd integers in U, the subset of all even integers in U, and the subset of integers not exceeding 5 in U?

Solution: The bit string that represents the set of odd integers in U, namely, {1, 3, 5, 7, 9}, has a one bit in the first, third, fifth, seventh, and ninth positions, and a zero elsewhere. It is

10 1010 1010.

(We have split this bit string of length ten into blocks of length four for easy reading.) Similarly, we represent the subset of all even integers in U, namely, $\{2, 4, 6, 8, 10\}$, by the string

01 0101 0101.

The set of all integers in U that do not exceed 5, namely, $\{1, 2, 3, 4, 5\}$, is represented by the string

11 1110 0000.

Using bit strings to represent sets, it is easy to find complements of sets and unions, intersections, and differences of sets. To find the bit string for the complement of a set from the bit string for that set, we simply change each 1 to a 0 and each 0 to 1, because $x \in A$ if and only if $x \notin \overline{A}$. Note that this operation corresponds to taking the negation of each bit when we associate a bit with a truth value—with 1 representing true and 0 representing false.

EXAMPLE 19 5, 6, 7, 8, 9, 10) is

10 1010 1010.

What is the bit string for the complement of this set?

Solution: The bit string for the complement of this set is obtained by replacing 0s with 1s and vice versa. This yields the string

01 0101 0101.

which corresponds to the set $\{2, 4, 6, 8, 10\}$.

To obtain the bit string for the union and intersection of two sets we perform bitwise Boolean operations on the bit strings representing the two sets. The bit in the ith position of the bit string of the union is 1 if either of the bits in the ith position in the two strings is 1 (or both are 1), and is 0 when both bits are 0. Hence, the bit string for the union is the bitwise OR of the bit strings for the two sets. The bit in the *i*th position of the bit string of the intersection is 1 when the bits in the corresponding position in the two strings are both 1, and is 0 when either of the two bits is 0 (or both are). Hence, the bit string for the intersection is the bitwise AND of the bit strings for the two sets.

The bit strings for the sets {1, 2, 3, 4, 5} and {1, 3, 5, 7, 9} are 11/11/10 0000 and 10 1010, **EXAMPLE 20** respectively. Use bit strings to find the union and intersection of these sets.

Solution: The bit string for the union of these sets is

Union > 1111101010 intersect > 1010100000

 $11\ 1110\ 0000 \lor 10\ 1010\ 1010 = 11\ 1110\ 1010$,

which corresponds to the set {1, 2, 3, 4, 5, 7, 9}. The bit string for the intersection of these sets is

 $11\ 1110\ 0000 \land 10\ 1010\ 1010 = 10\ 1010\ 0000$

which corresponds to the set $\{1, 3, 5\}$.

10/13 12:10 pm

- classes. Describe the students in each of these sets,
 - a) $A \cap B$ students who live within one of the property of school or walk to classes. (a) both c) A-B students who live within one with B-A students described but doesn't B-A students described but doesn't B-A students of school but walk to classes.
- 2. Suppose that A is the set of sophomores at your school and B is the set of students in discrete mathematics at your school. Express each of these sets in terms of A and B.
 - a) the set of sophomores taking discrete mathematics in your school A \ B.
 - b) the set of sophomores at your school who are not taking discrete mathematics A - B
 - c) the set of students at your school who either are sophomores or are taking discrete mathematics AUB.
 - d) the set of students at your school who either are not sophomores or are not taking discrete mathematics AAB
- 3. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$. Find
 - a) $A \cup B$. {0,1,2,3,4,5,6} b) $A \cap B$. {3}
 - c) A B. { 1, 2, 4,5} / d) B A. { 0, 6 } /
- **4.** Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$. Find
 - a) $A \cup B$, {a,b,c,d,e,f,g,h}b) $A \cap B$, {a,b,c,d,e}
 - c) A-B.
- d) B-A. $\{f,g,k\}$

In Exercises 5–10 assume that A is a subset of some underlying universal set U.

- 5. Prove the complementation law_in Table 1 by showing
- **6.** Prove the identity laws in Table 1 by showing that
 - a) $A \cup \emptyset = A$.
- b) $A \cap U = A$.
- 7. Prove the domination laws in Table 1 by showing that
 - a) $A \cup U = U$.
- b) $A \cap \emptyset = \emptyset$.
- 8. Prove the idempotent laws in Table 1 by showing that
- a) $A \cup A = A$. b) $A \cap A = A$.
- 9. Prove the complement laws in Table 1 by showing that a) $A \cup \overline{A} = U$. b) $A \cap \overline{A} = \emptyset$.
- 10. Show that
 - a) $A \emptyset = A$.
- b) $\emptyset A = \emptyset$.
- 11. Let A and B be sets. Prove the commutative laws from Table 1 by showing that
 - a) $A \cup B = B \cup A$.
 - b) $A \cap B = B \cap A$.
- 12. Prove the first absorption law from Table 1 by showing that if A and B are sets, then $A \cup (A \cap B) = A$.
- 13. Prove the second absorption law from Table 1 by showing that if A and B are sets, then $A \cap (A \cup B) = A$.
- **14.** Find the sets A and B if $A B = \{1, 5, 7, 8\}, B A =$ $\{2, 10\}, \text{ and } A \cap B = \{3, 6, 9\}.$ A = $\{1, 3, 5, 6, 7, 8, 9\}$
- 15. Prove the second De Morgan law in Table 1 by showing that if A and B are sets, then $A \cup B = A \cap B$
 - by showing each side is a subset of the other side.

- b) using a membership table.
- A B AUB AUB AUB A B A B
- a) $(A \cap B) \subseteq A$.
- b) $A \subseteq (A \cup B)$.
- c) $A B \subseteq A$.
- d) $A \cap (B A) = \emptyset$.
- e) $A \cup (B A) = A \cup B$.
- 17. Show that if A, B, and C are sets, then $\overline{A \cap B \cap C} =$ $\overline{A} \cup \overline{B} \cup \overline{C}$
 - by showing each side is a subset of the other side.
 - b) using a membership table.
- 18. Let A, B, and C be sets. Show that
 - a) $(A \cup B) \subseteq (A \cup B \cup C)$.
 - b) $(A \cap B \cap C) \subseteq (A \cap B)$.
 - c) $(A-B)-C\subseteq A-C$.
 - d) $(A C) \cap (C B) = \emptyset$.
 - e) $(B A) \cup (C A) = (B \cup C) A$.
- **19.** Show that if A and B are sets, then
 - a) $A B = A \cap \overline{B}$.
 - b) $(A \cap B) \cup (A \cap \overline{B}) = A$.
- 20. Show that if A and B are sets with $A \subseteq B$, then
 - a) $A \cup B = B$.
 - b) $A \cap B = A$.
- 21. Prove the first associative law from Table 1 by showing that if A, B, and C are sets, then $A \cup (B \cup C) =$ $(A \cup B) \cup C$.
- 22. Prove the second associative law from Table 1 by showing that if A, B, and C are sets, then $A \cap (B \cap C) =$ $(A \cap B) \cap C$.
- 23. Prove the first distributive law from Table 1 by showing that if A, B, and C are sets, then $A \cup (B \cap C) =$ $(A \cup B) \cap (A \cup C)$.
- 24. Let A, B, and C be sets. Show that (A B) C =(A-C)-(B-C).

- **25.** Let $A = \{0, 2, 4, 6, 8, 10\}, B = \{0, 1, 2, 3, 4, 5, 6\},$ and $C = \{4, 5, 6, 7, 8, 9, 10\}$. Find
 - a) $A \cap B \cap C$. $\{4, 6\}$
- b) $A \cup B \cup C$. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
- c) $(A \cup B) \cap C$. $\{4,5,6,8,9\} \circlearrowleft \mathbf{d}$ $(A \cap B) \cup C$. $\{6,2,4,5,6,7,8,9,9\} \checkmark$
- 26. Draw the Venn diagrams for each of these combinations of the sets A, B, and C.
 - a) $A \cap (B \cup C)$
- b) $\overline{A} \cap \overline{B} \cap \overline{C}$

- c) $(A-B) \cup (A-C) \cup (B-C)$
- 27. Draw the Venn diagrams for each of these combinations of the sets A, B, and C.
 - a) $A \cap (B-C)$
- **b)** $(A \cap B) \cup (A \cap C)$
- c) $(A \cap B) \cup (A \cap C)$
- 28. Draw the Venn diagrams for each of these combinations of the sets A, B, C, and D.
 - a) $(A \cap B) \cup (C \cap D)$
- b) $\overline{A} \cup \overline{B} \cup \overline{C} \cup \overline{D}$
- c) $A (B \cap C \cap D)$
- 29. What can you say about the sets A and B if we know that
 - a) $A \cup B = A$?
- b) $A \cap B = A$?
- c) A B = A?
- d) $A \cap B = B \cap A$?
- e) A B = B A?

- 30. Can you conclude that A = B if A, B, and C are sets such
 - a) $A \cup C = B \cup C$?
- b) $A \cap C = B \cap C$?
- c) $A \cup C = B \cup C$ and $A \cap C = B \cap C$?
- **31.** Let A and B be subsets of a universal set U. Show that $A \subseteq B$ if and only if $\overline{B} \subseteq \overline{A}$.

The symmetric difference of A and B, denoted by $A \oplus B$, is the set containing those elements in either A or B, but not in both A and B.

- 32. Find the symmetric difference of $\{1, 3, 5\}$ and $\{1, 2, 3\}$. $\{2,5\}$
- 33. Find the symmetric difference of the set of computer science majors at a school and the set of mathematics majors at this school.
- 34. Draw a Venn diagram for the symmetric difference of the sets A and B.

 35. Show that $A \oplus B = (A \cup B) - (A \cap B)$.
- **36.** Show that $A \oplus B = (A B) \cup (B A)$.
- 37. Show that if A is a subset of a universal set U, then
 - a) $A \oplus A = \emptyset$.
- b) $A \oplus \emptyset = A$.
- c) $A \oplus U = \overline{A}$.
- d) $A \oplus \overline{A} = U$.
- 38. Show that if A and B are sets, then
 - a) $A \oplus B = B \oplus A$.
- b) $(A \oplus B) \oplus B = A$.
- **39.** What can you say about the sets *A* and *B* if $A \oplus B = A$?
- *40. Determine whether the symmetric difference is associative; that is, if A, B, and C are sets, does it follow that $A \oplus (B \oplus C) = (A \oplus B) \oplus C$?
- *41. Suppose that A, B, and C are sets such that $A \oplus C =$ $B \oplus C$. Must it be the case that A = B?
- 42. If A, B, C, and D are sets, does it follow that $(A \oplus B) \oplus$ $(C \oplus D) = (A \oplus C) \oplus (B \oplus D)$?
- 43. If A, B, C, and D are sets, does it follow that $(A \oplus B) \oplus$ $(C \oplus D) = (A \oplus D) \oplus (B \oplus C)$?
- 44. Show that if A and B are finite sets, then $A \cup B$ is a finite
- 45. Show that if A is an infinite set, then whenever B is a set, $A \cup B$ is also an infinite set.
- *46. Show that if A, B, and C are sets, then

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B|$$

- $|A \cap C| - |B \cap C| + |A \cap B \cap C|$.

(This is a special case of the inclusion-exclusion principle, which will be studied in Chapter 8.)

- 47. Let $A_i = \{1, 2, 3, \dots, i\}$ for $i = 1, 2, 3, \dots$ Find
- a) $\bigcup_{i=1}^{n} A_{i}$. b) $\bigcap_{i=1}^{n} A_{i}$. 48. Let $A_{i} = \{\dots, -2, -1, 0, 1, \dots, i\}$. Find a) $\bigcup_{i=1}^{n} A_{i}$.

- **49.** Let A_i be the set of all nonempty bit strings (that is, bit strings of length at least one) of length not exceeding i.

 - a) $\bigcup_{i=1}^{n} A_i$. b) $\bigcap_{i=1}^{n} A_i$.
- 50. Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for every positive integer i,
 - a) $A_i = \{i, i+1, i+2, \ldots\}.$
 - **b)** $A_i = \{0, i\}.$
 - c) $A_i = (0, i)$, that is, the set of real numbers x with 0 < x < i.
 - d) $A_i = (i, \infty)$, that is, the set of real numbers x with
- 51. Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for every positive integer i,
 - a) $A_i = \{-i, -i + 1, \dots, -1, 0, 1, \dots, i 1, i\}.$
 - b) $A_i = \{-i, i\}.$
 - c) $A_i = [-i, i]$, that is, the set of real numbers x with -i < x < i.
 - d) $A_i = [i, \infty)$, that is, the set of real numbers x with x > i.
- 52. Suppose that the universal set is $U = \{1, 2, 3, 4, \dots \}$ 5, 6, 7, 8, 9, 10. Express each of these sets with bit strings where the ith bit in the string is 1 if i is in the set and 0 otherwise.
 - a) $\{3, 4, 5\}$
 - **b)** {1, 3, 6, 10}
 - c) {2, 3, 4, 7, 8, 9}
- 53. Using the same universal set as in the last problem, find the set specified by each of these bit strings.
 - a) 11 1100 1111
 - **b)** 01 0111 1000
 - c) 10 0000 0001
- 54. What subsets of a finite universal set do these bit strings represent?
 - a) the string with all zeros
 - b) the string with all ones
- 55. What is the bit string corresponding to the difference of two sets?
- 56. What is the bit string corresponding to the symmetric difference of two sets?
- 57. Show how bitwise operations on bit strings can be used to find these combinations of $A = \{a, b, c, d, e\},\$ $B = \{b, c, d, g, p, t, v\}, C = \{c, e, i, o, u, x, y, z\},$ and $D = \{d, e, h, i, n, o, t, u, x, y\}.$
 - a) $A \cup B$
- b) $A \cap B$
- c) $(A \cup D) \cap (B \cup C)$
- d) $A \cup B \cup C \cup D$
- 58. How can the union and intersection of n sets that all are subsets of the universal set U be found using bit strings?

The successor of the set *A* is the set $A \cup \{A\}$.

- **59.** Find the successors of the following sets.
 - a) {1, 2, 3}
- **b**) Ø

c) {Ø}

d) $\{\emptyset, \{\emptyset\}\}$