Formal Languages & Finite Automata

Reference

Collection of interconnected topics.

- IA Discrete Math
 - Regular Languages and finite automata
 - Pumping Lemma for Regular Languages
- IB Compiler Construction
 - o CFG, PDA
- IB Formal Model of Language
 - Pumping Lemma for CFG
 - Chomsky hierarchy
- IB Computation Theory
 - o TM
- II Quantum Computing
 - Quantum Automata

Notation

Kleene star ★

- the set of all strings that can be written as the concatenation of zero or more strings from A.
- finite set

Optional bracket

• or write it in case split

Definition

String $\omega \in T^\star$, over alphabet Σ

- ullet of length $n\in\mathbb{N}$
- Empty string ϵ , the unique string of length 0

Language $L = \{\omega | \omega \in T^\star\}$

Grammar $G = \langle N, T, P, S \rangle$

- N is a finite set of Non-terminal/variables. (Q in Automata)
- T is a finite set of terminals/symbols. (Σ in Automata)
- Require that N and T disjoint, i.e. $N\cap T=\emptyset$
- ullet P is Production rule, a relation defined

- $\circ \;\; \mathsf{Regular} \; P \in N imes T[N]$
- \circ CFG $P \in N imes (T \cup N)^\star$
- $\circ \ \operatorname{CSG} P \in (N \cup T)^{\star} N (N \cup T)^{\star} \times (N \cup T)^{\star} (T \cup N)^{\star} (N \cup T)^{\star}$
- \circ Recursive enumerable $P \in (N \cup T)^\star imes (N \cup T)^\star$
- ullet $S\in N$ is the Start symbol

Relationship of Grammar and Language

Grammar	Language
Finite (Kleene star)	∞
Structured	Flat lists of w
many grammars	map to the same language

Finite Automata

Automata $M=(Q,\Sigma,\delta,s,F)$

- ullet Q is a finite set of states (N in Grammar)
 - ullet Σ is the finite set alphabet (T in Grammar)
 - ullet Require that Q and Σ disjoints, i.e. $\Sigma\cap Q=\emptyset$
 - ullet δ is the transition relation
 - o corresponds to Production rule (Grammar)
 - ullet $s\in Q$ is the start state, also known as q_0
 - ullet $F\subset Q$ is the set of accepting states
 - L(M): the language accepted by the automata

[Non]Deterministic Finite Automata

NFA
$$M=(Q,\Sigma,\delta,s,F)$$

 $\begin{array}{ccc} \bullet & \delta \subset Q \times (\Sigma \cup \{\epsilon\}) \to Q \text{ transition relation} \\ & \circ & (q,a,q') \text{ means } q \stackrel{a}{\longrightarrow} q' \end{array}$

DFA
$$M=(Q,\Sigma,\delta,s,F)$$

- ullet $\delta\subset Q imes \Sigma o Q$ transition relation (q,a,q') means $q\stackrel{a}{\longrightarrow} q'$
- $ullet \ L(M) = \{\omega \in \Sigma^* \mid \exists q \in Q, s \stackrel{\omega}{\Longrightarrow} q \}$

PushDown Automata

PDA
$$M=(Q,\Sigma,\Gamma,\delta,s,Z,F)$$

- $\begin{array}{ll} \bullet & \delta \subset Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to Q \times \Gamma^{\star} \text{ transition relation} \\ & \circ & \delta(q,a,X) = (q',\beta) \\ & \bullet & q \stackrel{a}{\longrightarrow} q' \text{ and replace top of stack } X \text{ with } \beta \end{array}$
- ullet Γ is a finite set which is called the **stack** alphabet
- ullet $Z\in\Gamma$ is the initial stack symbol
- $\bullet \ \ L(M) = \{\omega \in \Sigma^* \mid \exists q \in Q, ID = \langle s, \omega, Z \rangle \to^+ ID' = \langle q, \epsilon, \epsilon \rangle \}$
 - $\circ~$ The initial content ω is said to be accepted by M if it eventually halts in a state from F
 - with Instantaneous Description (ID) above.

Turing Machine

TM
$$M=(Q,\Sigma,\delta,s,F)$$

- $\Sigma = \{\sqcup, \triangleright\} \cup \Sigma'$ is the finite set of **tape** alphabet symbols
 - □ the blank symbol
 - the only symbol allowed to occur on the tape infinitely often at any step during the computation
 - ▷ left endmarker
 - the left end marker > is never overwritten and M always move Right.
 - $\circ \Sigma' = \Sigma \{\sqcup, \triangleright\}$ the finite set of input symbols, to be checked
 - allow to appear in the initial tape contents.
- ullet $\delta\subset Q imes \Sigma o Q imes \Sigma imes \{L,R,S\}$ transition relation
 - $\circ \ \delta(q,a) = (q',b,u)$
 - $q \xrightarrow{a} q'$ and overwrite the current symbol from a to b, update the next head movement.
 - \circ $\delta(q,\triangleright)=(q',\triangleright,R)$
 - the left endmarker > is never overwritten and header always moves Right.
- $\bullet \ \ L(M) = \{\omega \in \Sigma' \mid \exists q \in \{acc, rej\}, c_0 = \langle s, \triangleright, u \rangle \to^+ c' = \langle q, \omega, u' \rangle \}$
 - \circ The initial content ω is said to be accepted by M if it eventually halts in a state from F
 - with configuration above.

C5G
$$\iff$$
 Twing M.
 $\Sigma = \{D, a, b, c, \Box, x, y, z\}$
 $D = \{a, b, b\} C C \Box \Box$
 $C = \{S, D, \Box\} \qquad W = a^nb^nc^n$
 $D = \{A, b, C\} \qquad W = a^nb^nc^n$
 $D = \{A, b, C\} \qquad A = \{A, C\} \qquad A =$

Pumping Lemma

For Regular Language L,

 $\exists k \in \mathbb{Z}^+$, $orall \omega \in L$ with $|\omega| \geq k$, can be written as a concatenation of three strings $\omega = u_1 \mathbf{v} u_2$, satisfying

- $|v| \ge 1 \ (v \ne \epsilon)$
- $\bullet \mid u_1v \mid \leq k$

 $\forall n \in \mathbb{N}, u_1\mathbf{v}^\mathbf{n}u_2 \in L\square.$

Disproof L is not regular: i.e negation of the above

 $\forall k \geq 1$, $\exists \omega \in L$ with $|\omega| \geq k$, such that no matter how ω is split into three strings $\omega = u_1 \mathbf{v} u_2$, satisfying

- $|v| \ge 1 \ (v \ne \epsilon)$
- $ullet \mid u_1v\mid \leq k$

 $\exists n \in \mathbb{N}, u_1\mathbf{v}^\mathbf{n}u_2 \notin L\square.$

Context Free

For Language L of CFG,

 $\exists k \in \mathbb{Z}^+$, $orall \omega \in L$ with $\mid \omega \mid \geq k$ can be written as a concatenation of three strings $\omega = u_1 \mathbf{v_1} u_2 \mathbf{v_2} u_3$, satisfying

- $ullet \mid v_1v_2\mid \geq 1$ ($v_1
 eq \epsilon$ and $v_2
 eq \epsilon$)
- $ullet \mid v_1u_2v_2\mid \leq k$
- ullet $\forall n \in \mathbb{N}$, $u_1 \mathbf{v_1^n} u_2 \mathbf{v_2^n} u_3 \in L$.

Disproof L is not CFG: i.e negation of the above

 $\forall k \in \mathbb{Z}^+$, $\exists \omega \in L$ with $|\omega| \geq k$ such that no matter how ω is split into strings $\omega = u_1 \mathbf{v_1} u_2 \mathbf{v_2} u_3$, satisfying

- $ullet \mid v_1v_2\mid \geq 1$ ($v_1
 eq \epsilon$ and $v_2
 eq \epsilon$)
- $ullet \mid v_1u_2v_2\mid \leq k$
- $\exists n \in \mathbb{N}$, $u_1\mathbf{v_1^n}u_2\mathbf{v_2^n}u_3 \notin L\square$.

Chomsky hierarchy

	Gramma $\langle N,T,P,S angle$	Automata (Q,Σ,δ,s,F)	Production rules ${\cal P}$	Language e.g.	Usage
T-3	Regular	DFA	$egin{aligned} A ightarrow a \ A ightarrow a B \ ext{(right)} \end{aligned}$	$L = \{a^n \mid n > 0\}$	Lexer
T-2	Context-free	∞ -stack PDA (Γ,Z)	A o lpha	$L=\{a^nb^n\mid n>0\}$	General Parser
T-1	Context-sensitive	Linear-bounded Turing Machine	$lpha Aeta ightarrow lpha \gamma eta$	$L = \{a^nb^nc^n \mid n>0\}$	Specific Parser
T-0	Recursively enumerable	Turning Machine	$\gamma ightarrow lpha$	$L=\{\omega\}$ that TM Halt	

The lower Automata/Grammar is strictly stronger than all the upper.

Notation:

- ullet $A\in N$, denotes single Non-terminal
- ullet $a\in T$, denotes single terminal
- $lpha,eta,\gamma\in(N\cup T)^{\star}$, denotes string of finite terminals and/or Non-terminals

(Adapted from wiki)