Vorlesungsskript

LinA II* SoSe 24

LinA II* SoSe 24 Konrad Rösler

Inhaltsverzeichnis

1.	Eigenwerte und Eigenvektoren	3
	1.1. Definition und grundlegende Eigenschaften	3
	1.2. Das charakteristische Polynom	7

Definitionen

1.

1.1:	Eigenwert und Eigenvektor
1.2:	Eigenwert und Eigenvektor
1.7:	Eigenraum
1.10:	Geometrische Vielfachheit
1.12:	Charakteristisches Polynom

Wiederholung:

K sei ein beliebiger Körper, V ein n-dimensionaler K-Vektorraum,

$$L(V,V) = \{f: V \to V \mid f \text{ lin. Abbildung}\}$$

 $f\in L(V,V)$ heißt Endomorphismus. Ist $f\in L(V,V)$, so läßt sich f bezüglich einer Basis $B=\{v_1,...,v_n\}$ von V eindeutig durch eine Matrix

$$A_f^{B,B} = \left(a_{ij}\right)_{1 < i,j < n} \in K^{n,n}$$

Es gilt

$$f(v_j) = \sum_{i=1}^n a_{ij} v_i \qquad 1 \le j \le n$$

Abbildung

$$F:L(V,V)\to K^{n,n}$$

ist ein Isomorphismus.

Basiswechsel? Basen B, C von V

(siehe Lem. 5.27, LinA I*)

Eine zentrale Frage: Sei $f\in L(V,V)$, existiert eine Basis $B=\{v_1,...,v_n\}$ von V, so dass $A_f^{B,B}$ eine möglichst einfache Form besitzt?

z.B. Diagonalmatrix:

$$A_f^{B,B} = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$$

Wir werden:

• Endomorphismen charakterisieren, die sich durch eine Diagonalmatrix beschreiben lassen.

Wenn ja: Dann gilt $f(v_j) = \lambda_j v_j$

 $\Longrightarrow f$ ist eine Streckung von v_i um den Faktor λ_i .

• Die Jordan-Normalform herleiten.

LINA II* SOSE 24 Konrad Rösler

1. Eigenwerte und Eigenvektoren

Eigenwerte charakterisieren zentrale Eigenschaften linearer Abbildungen. Z.B.

- Lösbarkeit von linearen Gleichungssystemen
- Eigenschaften von physikalischen Systemen
 - \rightarrow gewöhnliche Differentialgleichungen
 - → Eigenschwingungen / Resonanzkatastrophe

Zerstörung einer Brücke über dem Fluß Maine / Milleanium-Bridge London

1.1. Definition und grundlegende Eigenschaften

Definition 1.1: Eigenwert und Eigenvektor (Endomorphismus)

Sei V ein K-Vektorraum. Ein Vektor $v \in V, v \neq 0_V$, heißt **Eigenvektor** von $f \in L(V,V)$, falls $\lambda \in K$ mit

$$f(v) = \lambda v$$

existiert. Der Skalar $\lambda \in K$ heißt der **Eigenwert** zum Eigenvektor $v \in V$.

Definition 1.2: Eigenwert und Eigenvektor (Matrix)

Sei K ein Körper und $n\in\mathbb{N}$. Ein Vektor $v\in K^n$, $v\neq 0_{K^n}$, heißt Eigenvektor von $A\in K^{n,n}$, falls $\lambda\in K$ mit

$$Av = \lambda v$$

existiert. Der Skalar $\lambda \in K$ heißt der Eigenwert zum Eigenvektor $v \in V$.

Bemerkungen:

- In Def 1.1 kann $\dim(V)=\infty$ sein. Dies ist für viele Definitionen/Aussagen in denen wir Endomorphismen betrachten, der Fall.
- Für $\dim(V) < \infty$ kann man jedes $f \in L(V, V)$ eindeutig mit einer Matrix A identifizieren. Dann: Def 1.2 ist Spezialfall von Def 1.1.

• Achtung: $0 \in K$ kann ein Eigenwert sein:

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Der Nullvektor $0 \in V$ ist **nie** ein Eigenvektor.

Für $\dim(V) = 0$ besitzt f keinen Eigenvektor für $f \in L(V, V)$.

• Ist v Eigenvektor zum Eigenwert λ , so ist auch αv für jedes $\alpha \in K \setminus \{0\}$ ein Eigenvektor

$$f(\alpha v) = \alpha f(v) = \alpha \lambda v = \lambda(\alpha v)$$

Zentrale Frage dieses Kapitels:

Existens von Eigenwerten? Wenn sie existieren: Weitere Eigenschaften?

Beispiel 1.3: Sei $I\subset\mathbb{R}$ ein offenes Intervall und V der unendlichdimensionale Vektorraum der auf I beliebig oft differenzierbaren Funktionen. Ein Endomorphismus $f\in L(V,V)$ ist gegeben durch

$$f(\varphi) = \varphi' \qquad \forall \varphi \in V$$

Die Abbildung f hat jedes $\lambda \in \mathbb{R}$ als Eigenwert, da für $c \in \mathbb{R} \setminus \{0\}$ und die Funktion

$$\varphi(x) \coloneqq c \cdot e^{\lambda x} \ \neq \ 0_V \qquad \forall x \in I$$

gilt

$$f(\varphi(x)) = f(c \cdot e^{\lambda x}) = \lambda(ce^{\lambda x}) = \lambda\varphi(x)$$

Hier: $\varphi'(x) = f(\varphi)$ ist eine gewöhnliche Differentialgleichung.

Beispiel 1.4: Wir betrachten die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2$, welche durch

$$f\binom{x_1}{x_2} = \binom{x_2}{-x_1} = \binom{0}{-1} \binom{x_1}{x_2}$$

definiert ist. Sei x ein Eigenvektor, dann gilt

$$f\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x_2 \\ -x_1 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\iff x_2 = \lambda x_1 \text{ und } -x_1 = \lambda x_2$$

O.B.d.A: $x_2 \neq 0$

D.h. f besitzt keinen Eigenwert/-vektor. Für $f:\mathbb{C}^2\to\mathbb{C}^2$ ändert sich dies! \Longrightarrow Die Wahl von K entscheidet!

Beispiel 1.5: Wieder $f: \mathbb{R}^2 \to \mathbb{R}^2$, diesmal

$$f\bigg(\binom{x_1}{x_2}\bigg) = \binom{2x_2}{2x_1} = \underbrace{\binom{0}{2} \binom{2}{2}}_{-:A} \binom{x_1}{x_2}$$

 $\begin{aligned} & \text{Dann gilt f\"{u}r} \ v_1 = \binom{1}{0}, v_2 = \binom{1}{1}, v_3 = (-1,1) \ \text{dass} \ f(v_1) = \binom{0}{2}, f(v_2) = \binom{2}{2} = 2 \cdot v_2 \ \text{und} \\ & f(v_3) = \binom{2}{-2} = (-2) \cdot v_3. \end{aligned}$

Beobachtung: $\dim(V) = 2$

zwei Eigenwerte: 2, -2, es existieren keine Weiteren,

zwei Eigenvektoren: $v_2 = \binom{1}{1}, v_3 = \binom{-1}{1}$, sind linear unabhängig

Lemma 1.6: Es sei $f \in L(V, V)$ ein Endomorphismus. Eigenvektoren zu paarweise verschiedenen Eigenwerten von f sind linear unabhängig.

Beweis: Es seien $v_1,...,v_m$ Eigenvektoren zu den paarweise verschiedenen Eigenwerten $\lambda_1,...,\lambda_m$ von f. Beweis durch Induktion:

Induktionsanfang: m=1, $\lambda_1,v_1\neq 0\Longrightarrow v_1$ lin. unabh.

Induktionsschritt: $m-1 \to m$

Induktionsvorraussetzung: Beh. gelte für m-1

Betrachte

$$\begin{split} &\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_m v_m = 0 \ (*) \quad \alpha_m \in K \\ &\overset{\mathrm{EV, \, f}()}{\Longrightarrow} \ \alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m = 0 \\ &\overset{(*) \cdot \lambda_m}{\Longrightarrow} \ \lambda_m \alpha_a v_1 + \lambda_m \alpha_2 v_2 + \ldots + \lambda_m \alpha_m v_m = 0 \end{split}$$

Wir bilden die Differenz aus Zeile 1 und 2

$$\underbrace{(\lambda_1-\lambda_m)}_{\neq 0}\alpha_1v_1+\underbrace{(\lambda_2-\lambda_m)}_{\neq 0}\alpha_2v_2+\ldots+\underbrace{(\lambda_{m-1}-\lambda_m)}_{\neq 0}\alpha_{m-1}v_{m-1}=0$$

 $v_1,...,v_{m-1}$ lin. unabh. $\Longrightarrow \alpha_1=\alpha_2=...=\alpha_{m-1}=0$ Einsetzen in (*) liefert

$$\alpha_m \underbrace{v_m}_{\neq 0} = 0 \Longrightarrow \alpha_m = 0$$

 $\Longrightarrow v_1,...,v_m$ lin unabh.

Folgerung: Es gibt höchstens $n = \dim(V)$ verschiedene Eigenwerte für $n = \dim(V) < \infty$.

Definition 1.7: Eigenraum

Ist $f \in L(V, V)$ und $\lambda \in K$, so heißt

$$\operatorname{Eig}(f, \lambda) = \{ v \in V \mid f(v) = \lambda v \}$$

der **Eigenraum** von f bezüglich λ .

Es gilt:

- $\operatorname{Eig}(f,\lambda) \subseteq V$ ist ein Untervektorraum
- λ ist Eigenwert von $f \iff \text{Eig}(f, \lambda) \neq \{0\}$
- Eig $(f, \lambda) \setminus \{0\}$ ist die Menge der zu λ gehörenden Eigenvektoren von f.
- $\operatorname{Eig}(f, \lambda) = \ker(f \lambda \operatorname{Id})$
- $\dim(\operatorname{Eig}(f,\lambda)) = \dim(V) \operatorname{rg}(f-\lambda \operatorname{Id})$
- Sind $\lambda_1,\lambda_2\in K$ verschiedene Eigenwerte, so ist $\mathrm{Eig}(f,\lambda_1)\cap\mathrm{Eig}(f,\lambda_2)=\{0\}$

Die letzte Aussage kann verallgemeinert werden zu:

Lemma 1.8: Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$ und $f\in L(V,V)$. Sind $\lambda_1,...,\lambda_m,m\leq n$, paarweise verschiedene Eigenwerte von f, so gilt

$$\operatorname{Eig}(f,\lambda_i) \cap \sum_{\substack{j=1\\j\neq i}}^m \operatorname{Eig}\big(f,\lambda_j\big) = \{0\} \qquad \forall i=1,...,m$$

Beweis: Summe von Vektorräumen, vgl. Def 3.32 LinA I.

Sei $i \in \{1, ..., m\}$ fest gewählt.

$$v \in \mathrm{Eig}(f,\lambda_i) \cap \sum_{\substack{j=1 \\ i \neq j}}^m \mathrm{Eig}\big(f,\lambda_j\big)$$

Also ist

$$v = \sum_{\substack{j=1\\j \neq i}}^m v_j \quad \text{für } v_j \in \mathrm{Eig}\big(f, \lambda_j\big) \quad \text{für } j \neq i$$

 $\Longrightarrow -v + \sum_{\substack{j=1 \\ j \neq i}}^m v_j = 0$ Aus Lemma 1.6 folgt damit v = 0.

Über die Identifikation von Endomorphismen und Matrizen für $\dim(V) < \infty$ erhält man:

6

Korollar 1.9: Für ein $n \in \mathbb{N}$ und einem Körper K sei $A \in K^{n,n}$. Dann gilt für jedes $\lambda \in K$, dass

$$\dim(\operatorname{Eig}(A,\lambda)) = n - \operatorname{rg}(A - \lambda I_n)$$

Insbesondere ist $\lambda \in K$ ein Eigenwert von A, wenn $\operatorname{rg}(A - \lambda I_n) < n$ ist.

Definition 1.10: Geometrische Vielfachheit

Ist $f \in L(V, V)$ und $\lambda \in K$ ein Eigenwert von f, so heißt

$$g(f,\lambda)\coloneqq \dim(\mathrm{Eig}(f,\lambda)) \qquad (>0)$$

die geometrische Vielfachheit des Eigenwerts λ .

1.2. Das charakteristische Polynom

Wir bestimmt man Eigenwerte?

Lemma 1.11: Seien $A \in K^{n,n}$ und $\lambda \in K$. Dann ist

$$\det(A - \lambda I_n)$$

ein Polynom n-ten Grades in λ .

Beweis: Mit der Leibniz-Formel folgt,

$$\begin{split} \det(\underbrace{A-\lambda I_n}_{\tilde{a}_{ij}}) &= \sum_{\sigma \in S_1} \operatorname{sgn}(\sigma) \cdot \tilde{a}_{1\sigma(1)} \cdot \ldots \cdot \tilde{a}_{n\sigma(n)} \\ &= \underbrace{(a_{11}-\lambda) \cdot (a_{22}-\lambda) \cdot \ldots \cdot (a_{nn}-\lambda)}_{\sigma = \operatorname{Id}} + \underbrace{\underbrace{S}_{\sigma \neq \operatorname{Id}}_{\in \mathcal{P}_{n-2} \ \operatorname{in} \ \lambda}}_{\in \mathcal{P}_{n-2} \ \operatorname{in} \ \lambda} \end{split}$$

Weiter gilt:

$$(a_{11} - \lambda) \cdot \ldots \cdot (a_{nn} - \lambda) = (-1)^n \lambda^n + (-1)^{n-1} \lambda^{n-1} (a_{11} + \ldots + a_{nn}) + \underbrace{S_1}_{\in \mathcal{P}_{n-2} \text{ in } \lambda}$$

Insgesamt: Es existieren Koeffizienten $a_0,...,a_n \in K$ mit

$$\begin{split} \det(A-\lambda I_n) &= a_n \lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_1 \lambda + a_0 \\ a_n &= (-1)^n \\ a_{n-1} &= (-1)^{n-1} (a_{11} + \ldots + a_{nn}) \end{split}$$

man kann zeigen: $a_0 = \det(A)$

Man nennt $a_{11}+a_{22}+\ldots+a_{nn}$ auch die ${\bf Spur}$ von A.

Definition 1.12: Charakteristisches Polynom

Sei $A \in K^{n,n}$ und $\lambda \in K$. Dann heißt das Polynom n-ten Grades

$$P_A(\lambda) \coloneqq \det(A - \lambda I_n)$$

das charakteristische Polynom zu A.

Lemma 1.13: Sei $A \in K^{n,n}$ und $\lambda \in K$. Der Skalar λ ist genau dann Eigenwert von A, wenn

$$P_A(\lambda) = 0$$

gilt.

Beweis: Die Gleichung

$$Av = \lambda v \iff Av - \lambda v = 0 \iff (A - \lambda I_n)v = 0$$

hat genau eine Lösung $v \in V, v \neq 0$, wenn $\operatorname{rg}(A-\lambda I_n) < n$, vgl. Satz 6.3 aus Lin
A I. Dies ist genau dann der Fall, wenn

$$\det(A - \lambda I_n) = 0$$
, vlg. D10 aus Lin
A I

Beispiel 1.14: Eigenwerte und -vektoren von

$$A = \begin{pmatrix} 3 & 8 & 16 \\ 0 & 7 & 8 \\ 0 & -4 & -5 \end{pmatrix}$$

Regel von Sarrus liefert

$$\begin{split} P_A(\lambda) &= \begin{pmatrix} 3-\lambda & 8 & 16 \\ 0 & 7-\lambda & 8 \\ 0 & -4 & -5-\lambda \end{pmatrix} \\ &= (3-\lambda)\big(-35-7\lambda+5\lambda+\lambda^2+32\big) \\ &= (3-\lambda)[(7-\lambda)(-5-\lambda)-8(-4)]-8(0-0)+16(0-0) \\ &= (3-\lambda)(\lambda^2-2\lambda-3) = (3-\lambda)(\lambda+1)(\lambda-3) \end{split}$$

 \Longrightarrow Eigenwerte sind $\lambda = 3$ und $\lambda = -1$

Zugehörige Eigenvektoren?

 $\lambda = -1$:

$$Av = -v \Longleftrightarrow (A+I_3)v = 0$$

$$\begin{pmatrix} 4 & 8 & 26 \\ 0 & 8 & 8 \\ 0 & -4 & -4 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

LGS lösen: $\Longrightarrow v_2 = -v_3, v_1 = -2v_3$

Damit ist z.B.: $\boldsymbol{w}_1 = (2,1,-1)^\top$ Eigenvektor.

 $\lambda = 3$:

$$\begin{aligned} (A-3I_3)v &= 0 \Longleftrightarrow \\ \begin{pmatrix} 0 & 8 & 16 \\ 0 & 4 & 8 \\ 0 & -4 & -8 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 0 \in \mathbb{R}^3 \Longleftrightarrow v_2 + 2v_3 = 0 \end{aligned}$$

Damit sind z.B.: $\boldsymbol{w}_2 = (1,2,-1)^\top, \boldsymbol{w}_3 = (-1,2,-1)$ Eigenvektoren.