图像美学评估课题

计算机5组 视觉机器人与智能技术实验室 2022年07月 河帅

提纲

- 美学评估课题简介
- 课题组成果展示
- 夏令营内容安排

图像评估的应用前景与价值

让每一个人拥有一位摄影专家

摄制助手: 帮你拍

- •寻找镜头最美瞬间
- •优化拍照策略,辅助打光,构图等

美化判别器:帮你看

- ·智能美颜美图
- ·提升图像编辑技术带 来的美感

- •高美感图片推荐
- •个性化图片推荐

仅供内部使用 美学-何帅

课题组成果展示

已有工作汇总

探索的应用

摄影实时指导 智能美颜 | 图像推荐 | 图像去噪 | 曝光纠正 | 伪像去除 | 摄影机器人

自研模型专利:

1多因素评估桌面系统

系统2个专利6个 论文2篇

2色彩评估 3噪声评估 4曝光评估

数据集专利: 5数据标注方法 6标注系统设计

论文: 7M+MNet通用美学评分 6TANet通用\个性\主题美学评分

自研算法 10+

评估 1整体美学 | 2整体客观质量

1构图评估

算法: 6光影&7曝光 | 8伪像 3色彩 4构图 5噪声 9清晰度 | 10对焦

衍生算法: 11曝光纠正 | 12构图分类 | 13伪像去除 | 14自动构图

通用方法: 1Backbone模型 | 2主体&显著区域检测算法 | 3多任务学习 | 4自监督方法

自建数据集 20W+

评估数据集:

1整体美学 | 2曝光 | 3噪声 | 4构图 |

5伪像 | 6构图 | 7对焦 | 8色彩

图像美学本地自动化评测系统

	概要
功能	1. 支持 大批量图像美学多因素本地评测 ,已包括总体美学、整体质量,构图,色彩,噪声压制,曝光舒适,清晰度评测 2. 支持按任意因素进行 美感排序 3. 支持一键导出所有因素评测结果csv文件
特色	1. 业界首个支持7+的无参考图像美学评估系统 2. 全AT算法支撑. 泛化性和准确性科研界\业界领先
三曼技术	沙度学习,PYQ15, Quarl Style
投入成本	10+研发人员,跟进时间 <mark>超过1年以上</mark> ,服务器4+
沙源地址	美学课见\各类系多\BIR美学本地评估系统V3
资源介绍	一套能 直接部署 在CPU\GPU环境中的完整系统,包含依赖环境、算法、权重等资源
后续开发	将添加伪像、对焦评测功能

图像美学线上评测系统

	概要
	1. 支持 <mark>图像美学多因素线上评测</mark> ,已包括总体美学、整体质
	量,构图,色彩,噪声压制,曝光舒适,清晰度评测
功能	2. 不同因素对应的语义描述
	3. 色环、曝光热力图等增强评分可解释性的图表信息
	4. 支持导出PDF文档功能
冶二 人。	1. 包含7+因素评分的线上评测系统,支持图像随时随地评测
埃克在1	2. 包含有多种可角胖性图表内容,系统功能可靠性得以保证
三要技术	React前端框架、Flask后端框架、ZeroTier内网穿透工具
行入成本	10+研发 (员, 跟进时 回 <mark>超过1年以上</mark> , 服务器4+
	美学课题\各类系统\图像美学线上评估系统
资源介绍	系统前端与后端模块,编程语言为JavaScript以及Python
后续开发	界面优化,功能补充

模型1:整体美学评估模型(IJCAI2022)

完整版模型整体架构

Lite版模型实时推演效果

	TANet概要
功能	支持多主题、通用和个性化美学评分
特色	1. 首个 在多主题、通用和个性化美学评分数据集 全 SOTA模型 2. 自适应感知 图像主题、色彩变化
主要技术	1. 自研attention、权重自适应 结构, 2. Mob ⁱ leNetV2,ResNet18,Pytorch
训练教捷	TAD 36H (月建), AVA (开源), FLICKR-AES (开源)
投入成本	2+ 研发人员, 1年多 研发周期, 2+ 服务器
资源地址	1 美学课题\各类模型\图像整体美学评分\完整版 2. 美学课题\各类模型\图像整体美学评分\Lite版
资源介绍	包含模型结构和权重文件
后续开发	实现 在线学习 美学评分

TOSTS AND THE POST OF THE POST

自建整体美学评估数据集TAD66K

数据集样例及标注展示

模型2: 色彩美感评估模型(李嘉龙)

完整版模型整体架构

实际: 5.29 预测: 5.71

实际: 6.81 预测: 6.32

实际: 7.38 预测: 7.05

实际: 4.38 预测: 4.82

实际: 4.91 预测: 4.17

实际: 3.10 预测: 3.49

模型预测结果图像

	色彩评估模型概要
功能	支持对图像的色彩美感进行评分
特色	1. 可学习颜色直方图模块,增强模型对于图像色彩的感知能力 2. 多任务学习 模块,建立图像色彩与整体质量之间的关联
王要技术	1. MohileNetV2,Fytorch 2. Graducim多任分优化方法
训练数据	SPAQ (开源), 自建色彩图像数据集
孙人成本	2: 奸
资源地址	美学课匙\各类模型\图像色彩美感评分V2
资源介绍	包含模型结构和权重文件
后续开发	使用优质自建数据集增强模型性能

TO TO THE TOTAL PARTY OF THE TOT

自建图像色彩评估数据集

〈 〉 单色		₩ ≔ □	〈 〉 搭配色)		88	
			红&橙	红&黄	红&绿	红&蓝	红&紫
í s	深橙 橙	深黄	红女相	шад	ET ØSK	11 A M	HOW.
浅桃紅	白 灰	黒绿	橙&黄	橙&绿	橙&蓝	橙&紫	黄&绿
深绿 岩	浅蓝 蓝	紫粉	黄&蓝	黄&紫	绿&蓝	绿&紫	蓝&紫
		图像色彩	影评估	数据身	長概要		
功能	支持色彩	美感评估模	型训练	Ŕ			
	1 天包含	L.(w图修L,	30 钟色	心彩类	型		
娄[活介:召	2. 依据标识	住十二色,	筛: 先图	像,	包含单	色、	搭配
	类型等色彩	彩类型,色	彩覆盖	面广	泛		
数岩标注	方注:分数1	l-1057, 15	分最低,	,10分	最高		
投入成本	5一人员参-	与数据整理	」, 半年	制作	周期		
数据地址	美学课题\	各类数据组	集\图像	色彩	评估数	始据集	
资源介绍	包含数据纸	集原图和标	注文件	=			

京都电子型

模型3: 图像曝光评估模型(张志宇)

	曝光评估模型V2概要
功能	支持评估图像细节区域的曝光程度
特色	1. 首个 对图像曝光进行 像素级评估 的深度学习模型 2. 自适应下采样深度 ,在精度和速度便于权衡
主要技术	1. 自研编码器-解码器、下采样深度自适应结构, 2. Deep Supervise(深度监督), Pytorch
训练数据	Alche Five K (盲 達 图像训练标签)
技入成本.	2研发人员,1年研友周期,1服务器
资源地址	美学课题\各类模型\图像曝光评估V2\完整版
分源介绍	在15万莫型! 註本1月11权重文件
后续开发	针对难分样本进行优化

自建曝光评估数据集

a0001-jma a0001-jma a0001-jma a0001-jma a0001-jma a0001-jma a0001-jma a0001-jma a0002-dg a0002-dg a0002-dg a0002-dg a0002-dg c_DSC145 c_DSC145 c_DSC145 c_DSC145 c_DSC145 c_DSC145 c_DSC145 c_DSC145 c_DSC145 w_005_N1 w_005_N2. w_005_N3. w_005_N4. w_005_P1. 9_N1.npy 9_N2.npy 9_N3.npy 9_N4.npy 9_P0.npy 9_P1.npy 9_P2.npy 9_P3.npy 9_P4.npy a0002-dg a0002-dg a0002-dg a0003-NK a0003-NK a0003-NK a0003-NK a0003-NK a0003-NK a0003-NK a0003-NK a0004-jma w 005 P2 w 005 P3. w 005 P4. IM MG 81 78_N1.npy 78_N2.npy 78_N3.npy 78_N4.npy 78_P0.npy 78_P1.npy 78_P2.npy 78_P4.npy a0004-jma a0004-jma a0005-jn a0005-jn 2007 05 1 2007_05_1 2007_05_1

数据集概要 功能 支持图像曝光程度感知模型训练 娄[排介:召 2. 共44k 图像, 包含3至曝光问题 1. 以场景为单位提供一张最佳曝光参考图像 数据标注 2. 指出最佳屬於参考图像中存在的曝光问题 5-人员参与数据整理, 半年制作周期 投入成本 数据地址 美学课题\各类数据集\IEA_Dataset 包含数据集原图和标注文件 资源介绍

数据集样例及标注展示

整体质量评估模型(肖鹏翔)

模型评估效果展示

	模型概要
功能	支持多尺寸、多失真类型通用图像整体质量评分
	1. 在自然失真数据集和多失真类型合成失真数据
特色	集 全SOTA模型
	2. 模拟主观感知基于图像内容进行评估
). 	1. 自研 多尺度特征编码 与语义信息融合结构
主要技术	2. MobileNetV2, SPP, Pytorch
	Keniq-1(K (汗源), LIVE-challenge (开源),
训练数据	TID-2013 (天:源)
17. 人成才	1+7开发人员, 1 年多 研发周期, 2+服务器
资源地址	1 美学课是\各类模型\图像整体质量评分\完整版
资源介绍	包含模型结构和权重文件
后续开发	无监督训练 ,提高质量评分泛化性

模型5: 构图美感评估模型(高有江)

完整版模型整体架构

GT: 8.83 Pred: 8.68

GT: 5.22 Pred: 5.06

GT: 7.62 Pred: 7.56

GT: 4.73 Pred: 4.52

GT: 6.31 Pred: 6.55

	构图评估模型概要
功能	支持对图像的构图美感进行评分
特色	1. 基于 子任务 辅助,建立子任务 伪数据集 ,扩充整体训练数据量,提升模型 特征提取 能力 2. 显式子任务设计,提升模型 可解释性 和 准确性
主要技术	1. MobileNetV2子任务辅助训练优化方法
巡东数据	CATB (开源), 自建构图子任务数据集
设入 成本	2+研发人员,1/ F 多研发周期,2+服务器
资源地址	美学课题\各类模型\图像构图美感评分V2
%源介绍	包含模型是构材和权重文件
后续开发	探索数据集建立和扩充方案,进一步提升模型性能

自建构图评估数据集CDST

资源介绍

数据集样例及标注展示

	RoT	Center	Horiz.	Symm.	Diagonal	Curved	Vertical	Triangle	Pattern	Total
RoT	71	10	39	3	5	0	0	0	0	124
Center	10	224	6	9	7	1	4	52	0	310
Horizontal	39	6	97	0	37	21	3	12	0	210
Symmetric	3	9	0	78	6	1	3	2	0	100
Diagonal	5	7	37	6	117	18	3	1	1	188
Curve	0	1	21	1	18	45	0	7	1	91
Vertical	0	4	3	3	3	0	47	8	0	65
Triangle	0	52	12	2	1	7	8	91	0	171
Pattern	0	0	0	0	1	1	0	0	61	63

	CDST概要
功能	支持构图美学评估模型训练 (子任务感知)
W. LE A AT	1. 基于子任务目标建立的构图美学评估数据集
数据 介绍	43/17最图像,每张图像具有三个任务的标注
	标注分数1-5分,1分最低,5分最高
数据标注	显著性主体标注 (0,1二值)
Z ' –	村图分类标注, 共九类, 多分类
投入成本	2+人员参与数据整理,3个月制作周期
数据地址	美学课题\各类数据集\CDST

包含数据集原图和标注文件

模型6: 噪声评估模型(肖鹏翔)

小米 11 Lite 5G,户外噪点 6.49

小米 11 Lite 5G,裁剪图:可观察到噪点,但并不严重

完整版模型整体架构

4.19

谷歌 Pixel 4a, 裁剪图:浓重的瞬点

三星 Galaxy A52 5G,户外噪点

三星 Galaxy A52 5G,裁剪图:可观察到噪点,但 严重

	模型概要
功能	支持多尺寸、复杂图像内容的图像噪声评分
特色	1. 基于 真实噪声 图像训练 2. 模拟主观感知 对图像噪声水平进行评估
主要技术	1. 基于 全参考算法生成训练数据 并使用自研轻量级模型训练, 基于纹理筛选 评估样本 2. Mol ile Net V2., 信息熵, Pytorch
	PclyU (干源), SIDD (开源)
投入成本	1+研发人员,1 年多 研发周期,2+服务器
资源地址	1. 美学误题\各类模型\图像噪声评分\稳定版
资源介绍	包含模型结构和权重文件
后续开发	端到端自适应选择纹理区域实现整体噪声评估

模型评估效果展示

模型7:对焦质量评估算法(张永昌)

对焦评估算法整体流程

模型预测对焦质量

	对焦质量评估算法概要
功能	支持对浅景深图像(虚化)的对焦质量进行评估
特色	1. 景深判断模块,判断是否为浅景深图像 2. 感知主体和背景 的清晰度差异, 可解释 的对焦质 量评估机制。
主要技术	1. 自研景深判断算法 、主体背景差异感知算法 2. PMEN et. BASN et. Tytorch
使点数据	Bok sh (开源), D框 (开源), RGB-D (开源)
投入成本	2+ 研发人员, 半年多 研发周期, 2+ 服务器
资源介绍	包含模型结构和权重文件。
后续开发	自建对焦质量数据集(整理中),基于学习的对焦质量评估算法。

自建对焦评估数据集

	对焦质量质量数据集概要
功能	用于对焦评估算法训练,可作为性能比较基准
数据介绍	首个对焦质量数据集,共1W+图像(仍在增加优化)
数据标注	模拟真实成像过程,通过合成得到 <mark>精确的对焦质量</mark> 。
后续开发	数据集已有初步规模,数据集质量仍在优化中

自建对焦质量数据集

模型8:清晰度评估模型(姜东翔)

1.29

2.02

部分图片评测得分

6.49

	概要
功能	能够给出符合美学标准的清晰度评分
特色	 1. 首先判断图片是否存在主体,进而根据主体情况进行清晰度评分。 2. 分为标准型和轻量型两个模型,用于不同情况。
主要技术	1. HVS-MexPol, Cai's model
端练数据	经过席设置TLL 2013数据集
投入成本	1+研发人员,三个多月研发周期,1+服务器
后续开发	研究更符合美学标准的清晰度评估模型

则儿文们 百大于你谁用捐制及们间条至

已有工作汇总

摄影实时指导 | 智能美颜 | 图像推荐 | 图像去噪 | 曝光纠正 | 伪像去除 | 摄影机器人

1多因素评估桌面系统

2多因素评估线上系统

系统2个专利6个 论文**2篇**

自研模型专利: 1构图评估 2色彩评估 3噪声评估 4曝光评估

数据集专利: 5数据标注方法 6标注系统设计

7M+MNet通用美学评分 论文: 6TANet通用\个性\主题美学评分

自研算法 10+

1整体美学 | 2整体客观质量

评估 5噪声 | 6光影&7曝光 | 8分魚 | 9清晰度 | 10对焦 算法:

11時光刊11/4月3分集十13份第25份 衍生算法 | 14自动构图

2 主体 级 显著 区域 检测 算法 通用方法 3多任务学习 | 4自监督方法

自建数据集 20W+

评估数据集:

国际标准 1个

图像美学元数据国际标准

图像美学评估 夏令营内容法排

图像美学评估夏令营内容安排(论文阅读3选1)

- "Automated aesthetic analysis of photographic images." IEEE T VIS COMPUT GR (2014)
- "NIMA: Neural image assessment." TIP (2018)
- "Rethinking Image Aesthetics Assessment: Models, Datasets and Benchmarks." IJCAI (2022)

你需要做的:

第一步:请从三篇论文中,挑选至少一篇论文,讲述你对于该论文的理解,不少于8分钟

第二步:请将讲解过程以录像 录音或其宫方式,发送到曲角面10951021@bupt.edu.cn,命名方式

为: 夏令营_论文阅读_姓名

可能帮助到你的材料: https://github.com/woshidandan/IAA_Tutorial

图像美学评估夏令营内容安排(代码编写3选1)

- 手写字母识别数据集MNIST: 任意算法实现对该数据集的读入和推理
- 图像美学评估数据集AVA: 任意算法实现对该数据集的读入和推理
- 图像质量评估数据集TID2013: 任意算法实现对该数据集的读入和推理

你需要做的:

第一步:请挑选至少一篇数据案(网络上均有开源代码)进行相关实验。如有困难,可以单独安排其它题目

第二步:请将编写好的代码,可用于推理的模型权重,升算法推理的结果截图,<u>打包**发送到邮箱**</u> hs19951021@bupt.edu.cn</u>,命名方式力:夏令言_代码实现_姓名

可能帮助到你的材料: https://github.com/woshidandan/IAA_Tutorial

图像美学评估组期待你的到来!

美学-何帅

