강원대학교 AI 소프트웨어학과

머신러닝1

- Exploratory Data Analysis -

기술통계-탐색적 데이터 분석(EDA)

- ・ EDA는 Exploratory Data Analysis의 약자로, 탐색적 데이터 분석을 의미함
- 데이터 분석을 시작하기 전에 데이터를 다양한 각도에서 관찰하고 이해하는 과정
- · 데이터의 기본적인 특성, 구조, 패턴, 이상치, 변수 간의 관계 등을 파악함으로써 분석가가 보다 유익한 인사이트를 얻음
- 데이터에 대한 이해를 바탕으로 더 효율적인 분석 계획을 세울 수 있도록 하는 과정

R에서 데이터를 그래프로 표현하는 방법

ggplot2

```
ggplot(데이터 프레임, aes(x = 변수, y = 변수, fill = 그래프의 색상을 나타내는 변수))+
        geom_*(stat = "identity", width = 막대의 넓이, ) +
        scale_fill_manual(values = 막대 그래프를 지정된 색으로 수정) +
        labs(title = 그래프의 타이틀 제목) +
       xlab(x축 제목) +
       ylab(y축 제목) +
        theme void() +
        theme(
               text = element_text(color = "blue"),
               title = element_text(size = 16, face = "bold"),
               axis.text = element_text(size = 12)
```

R에서 데이터를 그래프로 표현하는 방법

• 그래프 컬러 모음

colors()		
[1] "white"	"aliceblue"	"antiquewhite"
<pre>[4] "antiquewhite1"</pre>	"antiquewhite2"	"antiquewhite3"
[7] "antiquewhite4"	"aquamarine"	"aquamarine1"
[10] "aquamarine2"	"aquamarine3"	"aquamarine4"
[13] "azure"	"azure1"	"azure2"
[16] "azure3"	"azure4"	"beige"
[19] "bisque"	"bisque1"	"bisque2"
[22] "bisque3"	"bisque4"	"black"
[25] "blanchedalmond"	"blue"	"blue1"
[628] "thistle3"	"thistle4"	"tomato"
[631] "tomato1"	"tomato2"	"tomato3"
[634] "tomato4"	"turquoise"	"turquoise1"
[637] "turquoise2"	"turquoise3"	"turquoise4"
[640] "violet"	"violetred"	"violetred1"
[643] "violetred2"	"violetred3"	"violetred4"
[646] "wheat"	"wheat1"	"wheat2"
[649] "wheat3"	"wheat4"	"whitesmoke"
[652] "yellow"	"yellow1"	"yellow2"
[655] "yellow3"	"yellow4"	"yellowgreen"

white	aliceblue	antiquewhite	antiquewhite1	antiquewhite2
antiquewhite3	antiquewhite4	aquamarine	aquamarine1	aquamarine2
aquamarine3	aquamarine4	azure	azure1	azure2
azure3	azure4	beige	bisque	bisque1
bisque2	bisque3	bisque4		blanchedalmond
blue	blue1	blue2	blue3	blue4
blueviolet	brown	brown1	brown2	brown3
brown4	burlywood	burlywood1	burlywood2	burlywood3
burlywood4	cadetblue	cadetblue1	cadetblue2	cadetblue3
cadetblue4	chartreuse	chartreuse1	chartreuse2	chartreuse3
chartreuse4	chocolate	chocolate1	chocolate2	chocolate3
chocolato4	coral	coral1	coral2	coral3
corai4	comflowerblue	cornsilk	cornsilk1	cornsilk2
cornsilk3	cornsilk4	cyan	cyan1	cyan2
cyan3	cyan4	darkblue	darkcyan	darkgoldenrod
darkgoldenrod1	darkgoldenrod2	darkgoldenrod3	darkgoldenrod4	darkgray
darkgreen	darkgrey	darkkhaki	darkmagenta	darkolvegreen
darkolivegreen1	darkolivegreen2	darkolivegreen3	darkolivegreen4	darkorange
darkorange1	darkorange2	darkorange3	darkorange4	darkorchid
darkorchid1	darkorchid2	darkorchid3	darkerchid4	darkred
darksalmon	darkseagreen	darkseagreen1	darkseagreen2	darkseagreen3
darkseagreen4	darkslateblue	darkslategray	darkslategray1	darkslategray2
darkslategray3	darkslategray4	darkslategrey	darkturquoise	darkviolet
deeppink	deeppink1	deeppink2	deeppink3	deeppinlet
deepskyblue	deepskyblue1	deepskyblue2	deepskyblue3	deepskyblue4

탐색적 데이터 분석(EDA) - Continuous

· 라인그래프(Line Chart) : 시간의 흐름에 따른 데이터의 변화 추이를 시각화하는 데 사용함

탐색적 데이터 분석(EDA) - Continuous

· 라인그래프(Line Chart) : 시간의 흐름에 따른 데이터의 변화 추이를 시각화하는 데 사용함

```
time <- seq(1, 24) # 24시간
temperature <- c(22, 21, 20, 19, 18, 18, 19, 20, 22, 24, 26, 28, 29, 28, 27, 25, 24, 23, 22, 21, 21, 20, 19)
data <- data.frame(time=time, temp=temperature)

ggplot(data, aes(x=time, y=temp)) +
    geom_line() + # 선 그래프 추가
    labs(title="시간에 따른 온도 변화") +
    xlab("시간") +
    ylab("온도")
```


기술통계-탐색적 데이터 분석(EDA)

탐색적 데이터 분석(EDA) - Continuous

기술통계-탐색적 데이터 분석(EDA)

탐색적 데이터 분석(EDA) - Continuous

```
df <- \ data.frame(\ x = c(1,\ 2,\ 3,\ 4,\ 5),\ \ y = c(6,\ 8,\ 5,\ 9,\ 7))
ggplot(df,\ aes(x = x,\ y = y)) + \\ geom\_point(color = "blue",\ size = 3) + \\ labs(title = "Scatter Plot") + \\ xlab("X") + \\ ylab("Y")
```


탐색적 데이터 분석(EDA) - Continuous

기술통계-탐색적 데이터 분석(EDA)

탐색적 데이터 분석(EDA) - Continuous

```
df <- \ data.frame(\ x = c(1,\ 2,\ 3,\ 4,\ 5),\ \ y = c(6,\ 8,\ 5,\ 9,\ 7))
ggplot(df,\ aes(x = x,\ y = y)) + \\ geom\_point(color = "blue",\ size = 3) + \\ geom\_line(aes(color = "Connected Points"),\ size = 0.5) + \\ labs(title = "Scatter Plot") + \\ xlab("X") + \\ ylab("Y")
```


탐색적 데이터 분석(EDA) - Continuous

ylab("Y")

기술통계-탐색적 데이터 분석(EDA)

탐색적 데이터 분석(EDA) - Continuous

탐색적 데이터 분석(EDA) - Continuous

기술통계-탐색적 데이터 분석(EDA)

탐색적 데이터 분석(EDA) - Continuous

```
df <- \ data.frame(\ x=c(1,\ 2,\ 3,\ 4,\ 5),\ \ y=c(6,\ 8,\ 5,\ 9,\ 7))
ggplot(df,\ aes(x=x,\ y=y))\ +
geom\_point(color="blue",\ size=3)\ +
geom\_smooth(method="lm",\ se=FALSE,\ aes(color="Trendline"))\ +
labs(title="Scatter Plot")\ +
xlab("X")\ +
ylab("Y")
```

탐색적 데이터 분석(EDA) - Continuous & Categorical

・ 상자수염그림(Boxplot) : box-and-whisker plot이라고도 하는 box plot은 데이터 집합의 분포를 요약하는 그래프 표현

탐색적 데이터 분석(EDA) - Continuous & Categorical

· 상자수염그림(Boxplot) : box-and-whisker plot이라고도 하는 box plot은 데이터 집합의 분포를 요약하는 그래프 표현

```
df <- data.frame(values = c(5, 7, 10, 12, 14, 18, 20, 22, 25, 27, 30))
ggplot(df, aes(x = values)) +
  geom_histogram(binwidth = 5, fill = "steelblue", color = "white") +
  labs(title = "Histogram of Values") +
  xlab("Values") +
  ylab("Frequency")</pre>
```


탐색적 데이터 분석(EDA) - Continuous & Categorical

· 상자수염그림(Boxplot): box-and-whisker plot이라고도 하는 box plot은 데이터 집합의 분포를 요약하는 그래프 표현

탐색적 데이터 분석(EDA) - Continuous & Categorical

・ 상자수염그림(Boxplot) : box-and-whisker plot이라고도 하는 box plot은 데이터 집합의 분포를 요약하는 그래프 표현

```
df <- data.frame(
  group = c(rep("Group 1", 60), rep("Group 2", 60)),
  values = c(rnorm(60, mean = 0, sd = 1), rnorm(60, mean = 2, sd = 1)))

ggplot(df, aes(x = group, y = values)) +
  geom_boxplot(fill = c("lightblue","lightgreen"), outlier.color = "red") +
  labs(title = "Boxplot Example") +
  xlab("Group") +
  ylab("Values")</pre>
```


탐색적 데이터 분석(EDA) – Categorical

기술통계-탐색적 데이터 분석(EDA)

탐색적 데이터 분석(EDA) - Categorical

```
city <- c("Seoul", "Busan", "Daegu", "Seoul", "Busan", "Daegu", "Ulsan")
pm25 <- c(18, 21, 21, 17, 8, 11, 25)

df <- data.frame(city = city, pm25 = pm25)

ggplot(df, aes(x = city, y = pm25, fill = city)) +
    geom_bar(stat = "identity") +
    labs(title = "지역별 초미세먼지 농도") +
    xlab("City") +
    ylab("농도")
```


탐색적 데이터 분석(EDA) - Categorical

기술통계-탐색적 데이터 분석(EDA)

탐색적 데이터 분석(EDA) - Categorical

```
city <- c("Seoul", "Busan", "Daegu", "Seoul", "Busan", "Daegu", "Ulsan")
vari <- c("오전", "오후","오전","오후","오전","오후","오후")
pm25 <- c(18, 21, 21, 17, 8, 11, 25)

df <- data.frame(city = city, pm25 = pm25, vari=vari)

ggplot(df, aes(x = city, y = pm25, fill = vari)) +
    geom_bar(stat = "identity") +
    labs(title = "지역별 초미세먼지 농도") +
    xlab("City") +
    ylab("농도")
```


탐색적 데이터 분석(EDA) - Continuous

· 히스토그램(Histogram) : 히스토그램의 한 줄 요약은 데이터 분포에 대한 주요 정보를 제공하는 간결한 그래프

탐색적 데이터 분석(EDA) - Continuous

· 히스토그램(Histogram) : 히스토그램의 한 줄 요약은 데이터 분포에 대한 주요 정보를 제공하는 간결한 그래프

```
df < -data.frame(values = c(5, 7, 10, 12, 14, 18, 20, 22, 25, 27, 30))
```

```
# 히스토그램
ggplot(df, aes(x = values)) +
geom_histogram(aes(y = ..density..), binwidth = 5, fill = "steelblue", color = "white") +
labs(title = "Histogram") +
xlab("Values") +
ylab("Density")
```


탐색적 데이터 분석(EDA) - Continuous

· 히스토그램(Histogram) : 히스토그램의 한 줄 요약은 데이터 분포에 대한 주요 정보를 제공하는 간결한 그래프

```
df <- data.frame(values = c(5, 7, 10, 12, 14, 18, 10, 22, 25, 27, 30))
# 히스토그램과 밀도 곡선 그리기
ggplot(df, aes(x = values)) +
geom_histogram(aes(y = ..density..), binwidth = 5, fill = "steelblue", color = "white") +
geom_density(alpha = 0.3, fill = "red") + # 밀도 곡선 추가
labs(title = "Histogram with Density Plot") +
xlab("Values") +
ylab("Density")
```

기술통계-탐색적 데이터 분석(EDA)

탐색적 데이터 분석(EDA) - Categorical

· 파이차트(pie Chart) : 원그래프는 전체에 대한 각 부분의 비율을 부채꼴 모양으로 백분율로 나타낸 그래프로 전체에서 차 지하는 비율을 나타내며, 비율을 한눈에 볼 수 있다는 장점

기술통계-탐색적 데이터 분석(EDA)

탐색적 데이터 분석(EDA) - Categorical

· 파이차트(pie Chart) : 원그래프는 전체에 대한 각 부분의 비율을 부채꼴 모양으로 백분율로 나타낸 그래프로 전체에서 차 지하는 비율을 나타내며, 비율을 한눈에 볼 수 있다는 장점

```
city <- c("Seoul", "Busan", "Daegu", "Incheon", "Gwangju", "Daejeon", "Ulsan")
pm25 <- c(18, 21, 21, 17, 8, 11, 25)
colours()
colors <- c("red", "orange", "yellow", "green", "lightblue", "blue", "violet")
df <- data.frame(city = city, pm25 = pm25, colors = colors)
ggplot(df, aes(x="", y = pm25, fill = city)) +
 geom_bar(stat = "identity", width = 1) +
 coord_polar(theta = "y") +
 labs(title = "Concentration of Ultrafine Dust by Region") +
 xlab("") +
 ylab("")
#컬러를 지정하기 위해서
scale fill manual(values=colors)
```


탐색적 데이터 분석(EDA) - Categorical

· 히트맵(Heatmap) : 데이터를 색상의 변화를 표현하고, 복잡한 데이터의 패턴, 변화량, 밀도 등을 한눈에 파악하기에 유용

library(reshape2)

기술통계-탐색적 데이터 분석(EDA)

탐색적 데이터 분석(EDA) - Categorical

· 히트맵(Heatmap) : 데이터를 색상의 변화를 표현하고, 복잡한 데이터의 패턴, 변화량, 밀도 등을 한눈에 파악하기에 유용

```
# 가상의 성적 데이터 생성
students <- paste("Student", 1:10) # 10명의 학생
subjects <- c("Math", "Science", "English") # 3개 과목
grades <- matrix(sample(50:100, 30, replace=TRUE), nrow=10, ncol=3, dimnames=list(students, subjects)) # 과목별 성적
# 데이터 프레임으로 변환
grades_melted <- melt(grades, id.vars = rownames(grades))</pre>
grades_melted
colnames(grades melted) <- c("Student", "Subject", "Grade")
# Heatmap 생성
ggplot(grades_melted, aes(x=Subject, y=Student, fill=Grade)) +
 geom_tile(color = "white") + # 타일 테두리 추가
 scale_fill_gradient(low="green", high="red") + # 성적에 따른 색상 그라데이션 지정
 #theme_minimal() + # 미니멀한 테마 적용
 labs(title="학생별 과목 성적 Heatmap")+
 xlab("과목") +
 ylab("학생")
```

