Question:

Let $E = \{a^i b^j \mid i \neq j \text{ and } 2^i \neq j\}$. Show that E is a context-free language.

Answer:

----SETP1----

Given language E is defined as follows:

$$E = \{a^i b^j \mid i \neq j \text{ and } 2i \neq j\}$$

In order to show that the language E as a context free language.

Consider the language E as the language of the following three languages:

$$\begin{split} E_1 &= \left\{ a^i b^j \,\middle|\, j < i \right\} \\ E_2 &= \left\{ a^i b^j \,\middle|\, i < j < 2i \right\} \\ E_3 &= \left\{ a^i b^j \,\middle|\, j > 2i \right\} \end{split}$$

Since context free languages are closed under the union operation. So for proving that the language E is context free user has to show that the all three languages which are written above are closed under union operation.

----SETP2----

For the language $E_{\rm l}$ build the grammar as follows:

$$S \to aAB$$
$$A \to aA | \in$$
$$B \to aBb | \in$$

The non-terminal symbol B generates a^ib^j for $j\geq 0$ and the non-terminal symbol A generates a^i for $i\geq 0$. The starting non terminal symbol S always includes an a so that user can conclude that any string which is generated by using above grammar has more a^is than b^is .

Conversely, if the string w belongs to language E_1 , then w can be written as $w = aa^{i-j-1}a^jb^j$ and assume that A generates a^{i-j-1} and B generates a^jb^j .

----SETP3----

For the language E_3 build the grammar as follows:

$$S \to ABb$$

$$A \to aAbb \mid \in$$

$$B \to Bb \mid \in$$

Now the non-terminal symbol A generates a^ib^{2i} for $i \ge 0$ and the symbol B generates b^j for $j \ge 0$. Assume that this grammar derives the string w. Now suppose s is used for storing the total number of time user

replaces A with aAbb and t is used for storing the total number of times user replaces B with Bb. Then $w = a^s b^{2s+t+1}$ as $s, t \ge 0$, 2s+t+1 > 2s (using j > 2i assume i = s and 2s+t+1=j) and w belongs to E_3 .

Conversely, if the string w belongs to language E_3 , then w can be written as $w = a^i b^{2i} b^{j-2i-1} b$ and assume that A derives $a^i b^{2i}$ and the non-terminal symbol B generate b^{j-2i-1} .

----SETP4----

For the language E_2 build the grammar as follows:

 $S \to aAb$ $A \to aAb \mid aAbb \mid abb$

Assume this grammar generates the string w and assume that s is used for storing the total number of times the rule $A \to aAb$ is used and is used for storing the total number of times the rule $A \to aAbb$. But $S \to aAb$ and $A \to abb$ are used exactly once in the derivation of the string w. Then $w = a^{s+t+2}b^{s+2t+3}$ by assuming i = s+t+2, j = s+2t+3, here $s,t \ge 0$ and user has i = s+t+2 < s+2t+3 = j and 2i = 2s+2t+4 > s+2t+3 = j. Hence the string s belongs to s.

Conversely, if the string w belongs to language E_2 then w can be written as $w = a^i b^j$. Assume that s = j - i - 1 and t = 2i - j - 1. As i < j < 2i and $s, t \ge 0$ this grammar generates the string w by using the rule $S \to aAb$ s times and $A \to aAbb$ t times.

Since E_1 , E_2 and E_3 languages are closed under union operation.

Therefore, the language E is context free language.