STA 1013 : Statistics through Examples

Lecture 22: Expectation and Variance of Probability distributions

Hwiyoung Lee

October 30, 2019

Department of Statistics, Florida State University

Discrete distributions

1. X: Number of Head (When tossing a fair coin twice)

x	0	1	2
P(X=x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

2. X: Number (When rolling a die)

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Continuous distributions

Exmaple: Normal distributoin

Expectation

The expected value, or expectation of a random variable X is written as E(X)

 \bullet X: discrete random variable

$$E(X) = \sum_{x} x \cdot P(X = x)$$

• X : continuous random variable

$$E(X) = \int_{\mathcal{X}} x \cdot f_X(x) dx$$

4

Expectation

- ullet Sometimes written as μ_X
- \bullet If we observe n random values of X, then the mean of the n values will be approximately equal to E(X) for large n

1. X: Number of Head (When tossing a fair coin twice)

x	0	1	2
P(X=x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

2. X: Number (When rolling a die)

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

1. X: Number of Head (When tossing a fair coin twice)

x	0	1	2
P(X=x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

$$E(X) = 0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4} = 1$$

2. X: Number (When rolling a die)

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$$E(X) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6}$$

= 3.5

Properties

1.
$$E(aX + b) = aE(X) + b$$

2. Let X and Y be ANY random variables, Then

$$E(X+Y) = E(X) + E(Y)$$

3. Let X and Y be **independent** random variables, Then

$$E(XY) = E(X)E(Y)$$

The U.S. Powerball Expected Value at \$384 Million Jackpot

	U.S. Powerball E	xpected Value at \$38	34 Million Jackpot	
Matches	Prize	Prize-cost	Probability	Prize-cost x probability
5 White and Powerball	\$384,000,000.00	\$383,999,998.00	0.00000000342	\$1.31
5 White	\$1,000,000.00	\$999,998.00	0.00000008556	\$0.09
4 White and the Powerball	\$50,000.00	\$49,998.00	0.00000109514	\$0.05
4 White	\$100.00	\$98.00	0.00002737838	\$0.00
3 White and the Powerball	\$100.00	\$98.00	0.00006899352	\$0.01
3 White	\$7.00	\$5.00	0.00172483810	\$0.01
2 White and the Powerball	\$7.00	\$5.00	0.00142586616	\$0.01
1 White and the Powerball	\$4.00	\$2.00	0.01087222948	\$0.02
The red Powerball	\$4.00	\$2.00	0.02609335074	\$0.05
Nothing	0	-\$2.00	0.95978615950	-\$1.92
		'	Expected Value	-\$0.37

• Ticket price : 2\$

E(Prize - Ticket price) = E(Prize) - Ticket price
(From the first formula : a=1, b= -Ticket price)

- We roll two dice (X, Y are 1st and 2nd roll, respectively)
- Let Z = X + Y
- Possible outcomes and probabilities

Z = X + Y							Prob
2	(1,1)						1/36
3	(1,2)	(2,1)					2/36
4	(1,3)	(2,2)	(3,1)				3/36
5	(1,4)	(2,3)	(3,2)	(4,1)			4/36
6	(1,5)	(2,4)	(3,3)	(4,2)	(5,1)		5/36
7	(1,6)	(2,5)	(3,4)	(4,3)	(5,2)	(6,1)	6/36
8	(2,6)	(3,5)	(4,4)	(5,3)	(6,2)		5/36
9	(3,6)	(4,5)	(5,4)	(6,3)			4/36
10	(4,6)	(5,5)	(6,4)				3/36
11	(5,6)	(6,5)					2/36
12	(6,6)						1/36

• Direct calculation of E(Z)

$$E(Z) = 2\frac{1}{36} + 3\frac{2}{36} + 4\frac{3}{36} + 5\frac{4}{36} + 6\frac{5}{36} + 7\frac{6}{36} + 8\frac{5}{36} + 9\frac{4}{36} + 10\frac{3}{36} + 11\frac{2}{36} + 12\frac{1}{36} = 7$$

• Use formula : E(X + Y) = E(X) + E(Y)

$$E(Z) = E(X + Y) = E(X) + E(Y) = 3.5 + 3.5 = 7$$

- ullet X: Number of Head (When tossing a fair coin twice)
- Y : Number (When rolling a die)
- $E(XY) = E(X)E(Y) = 1 \times 3.5 = 3.5$

Variance

- The variance measures how far the values of X are from their Expectation (Mean).
- Formula:

$$Var(X) = E((X - E(X))^{2}) = \mathbf{E}(\mathbf{X}^{2}) - \{\mathbf{E}(\mathbf{X})\}^{2}$$

- where $E(X^2) = \sum_x x^2 P(X = x)$
- Thus,

$$Var(X) = \sum_{x} x^{2} \cdot P(X = x) - \left\{ \sum_{x} x \cdot P(X = x) \right\}^{2}$$

• X: Number of Head (When tossing a fair coin twice)

x	0	1	2
P(X=x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

•

$$E(X^2) = 0^2 \times \frac{1}{4} + 1^2 \times \frac{1}{2} + 2^2 \times \frac{1}{4} = 1.5$$

- ${E(X)}^2 = 1^2$
- $Var(X) = E(X^2) \{E(X)\}^2 = 0.5$

• X : Number (When rolling a die)

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

•

$$E(X^2) = 1^2 \times \frac{1}{6} + 2^2 \times \frac{1}{6} + 3^2 \times \frac{1}{6} + 4^2 \times \frac{1}{6} + 5^2 \times \frac{1}{6} + 6^2 \times \frac{1}{6}$$
$$= \frac{91}{6} = 15.167$$

- ${E(X)}^2 = 3.5^2 = 12.25$
- $Var(X) = E(X^2) \{E(X)\}^2 = 2.917$

Properties

- $Var(aX + b) = a^2 Var(X)$
- Let X and Y be independent random variables. Then

$$Var(X + Y) = Var(X) + Var(Y)$$

ullet (General version) : Let X and Y be independent random variables. Then

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y)$$

Let X, Y be independent

- Var(X) = 2
- Var(Y) = 4

Find the variance

- 1. Var(-X)
- 2. Var(-2X)
- 3. Var(X+Y)
- 4. Var(X-Y)
- 5. Var(2X 3Y)

Notice

3rd Quiz:

- November 8 (Fri)
- You can use your calculator
- Bring one piece of hand written cheat sheet (both side allowed)