

Universidade Eduardo Mondlane Departamento de Física

ELECTRÔNICA BÁSICA

Programa da Cadeira

Regente:

Dr. Alberto Macamo

Assistentes:

Bartolomeu J.Ubisse

 $(\it email: bartolomeujoaquim.ubisse@gmail.com)$

Hélder Marrenjo

(email: marrenjohelder@yahoo.com.br)

Programa da disciplina de Electrônica Analógica - 2017

Curso	Licenciatura em Física
DISCIPLINA	Electrônica Analógica
TIPO DE DISCIPLINA	Nuclear
Créditos	3
Ano de estudos	2^o ano
Horas semanais	4
Horas de contacto directo	64
Horas de estudo independente	26

Introdução

A disciplina de electrônica analógica é a base para a compreensão da composição e funcionamento de vários dispositivos e/ou aparelhos electrônicos que fazem parte do nosso dia a dia, como é o caso de uma fonte de alimentação (AC ou DC),TV e muito mais . Assim, pretendese com esta disciplina, desenvolver nos estudantes capacidade de analisar e projetar circuítos electrônicos para uma aplicação específica.

Para uma boa percepção dos circuitos electrônicos, o estudante é recomendado a revisitar todas a técnicas de análise de circuitos eléctricos abordados na disciplina de electricidade e magnétismo (ELMAG), como é o caso das leis de Kirchhof, lei de Ohm, teoremas de Thévenin, Norton, divisor de corrente/tensão e Superposição. O conhecimento de funções elementares, a diferenciação e integração, números complexos e expansão em série de potências também será necessário.

Conteúdos temáticos

Table 1: Temas e carga horária

#	Tema	AT	AP	AL	Σ
1	Elementos Activos	6	6	4	16
2	Transistores Bipolares de junção	6	6	2	14
3	Transistores de efeito do campo	6	4	0	10
4	Tirístores	4	4	2	10
5	Amplificadores	4	4	0	8
6	Osciladores	4	2	0	6
#	Σ	30	26	8	64

Conteúdos analíticos

Table 2: Programa analítico

N^o	Semana	Conteúdo temático	Horas de CD
1	1	Revisão das técnicas de análise de circuítos	2
1	1	- lei de Ohm, Leis de Kirchhof	2
		- Divisor de Tensão e de Corrente	
		- Teoremas de Thévenin, Norton e Superposição	
2	2 e 3	Concepção básica de Semicondutores	4
-	200	- Bandas energéticas	1
		- S/cond. intrínseo e extrínseco	
		- Junção PN e díodo s/condutor	
		- Barreira de potencial da Junção PN	
		- Polarização do díodo	
		- Curva característica do díodo de junção e Modelos de aproximação	
3	4 e 5	Circuítos retificadores	4
		- Retificador meia onda	
		- Retificador onda completa (tap center & ponte)	
		- Filtragem (filtro capacitivo)	
		- Regulador Zener	
4	7 e 8	Transistores Bipolar de Junção (TBJ)	4
		- constituição e modos de operação	
		- Curvas características e recta de carga	
		- Arranjo emissor comum, base comum e colector comum de um TBJ	
		- Ganho de tensão, corrente e potência	
		- Aplicação de TBJ's como amplificadores e chaves	
5	9	Tirístores	2
		- Constituição, funcionamento e características	
		- Triacs: funcionamento e características	
6	10 e 11	Transistor de efeito de campo(FET)	4
		- Composição e Modo de funcionamento	
		- Transistores JFET e MOSFET - Composição e Modo de funcionamento	
		- Características de transferências de JFET - eq. de Shockley	
		- Curvas características de um JFET	
		- JFET de canal- p e canal-n	
		- Técnicas de polarização	
		- MOSFET do tipo- enriquecimento e tipo - deplecção	
7	13 e 14	Amplificadores de corriente e tensão	4
		- ideais e reais; características fundamentais	
		- Amplificadores operacionais, características típicas - Aplicações lineares	
		- Amplificadores Operacionais	
8	15	Osciladores	2
		- Osciladores RC de onda senoidal (de deslocamento de fase e de Wien-Robinson)	
		- Oscilador LC (Hartley e Colpitts)	
		- Oscilador controlado por cristal de quartz	

CD - Contacto directo

Metodologia

O domínio dos conteúdos plasmados nesta disciplina de electrônica e o desenvolvimeto de habilidades para a plicação dos mesmos, requer de nós uma inteira entrega, pelo que, o estudante é actor principal no estudo desta disciplina. As sessões expositivas servirão para a introdução de novos tópicos que constituirão base fundamental para a realização de aulas práticas e laboratoriais.

O docente vai entregar e/ou enviar no email da turma as fichas de exercícios para aulas práticas e os guiões de aulas laboratoriais, cabendo deste modo ao estudante preparar antepadamente essas aulas.

Avaliações e aprovação à cadeia

Para efeitos de avaliação, serão realizados dois (2) testes escritos, oito (8) trabalhos laboratoriais e oito (8) mini-testes e a nota de frequência será a média ponderada destas avaliações cujas percentagens estão na tabela 3.

Table 3: Peso das avaliações

Avaliação	Teste 1	Teste 2	Laboratório	Mini-teste
PERCENTAGEM	30	30	25	15

AT - Aula teórica.

AP - Aula prática.

AL - Aula laboratorial.

Assim, a nota de frequência é dada por:

$$NF = 0.3 \times Teste1 + 0.3 \times Teste2 + 0.25 \times Laboratorios + 0.15 \times Miniteste$$
 (1)

NB:

- O estudante não deve exceder 25% de faltas às sessões de aulas teóricas e práticas e, não deve faltar nenhuma aula laboratorial.
- A falta da realização de um trabalho laboratorial no tempo previsto implica uma reprovação mesmo que a sua nota de frequência (com auxílio da eq.1) seja positiva.

Bibliografia

- 1. Robert Boylestad & Louis Nashelsky. *Electronic Devices and Circuit Theory*. Seventh Edition.
- 2. R.F. Pierret, G.W. Neudeck. Modular Series on Solid State Devices, Advanced Semicond-cutor Fundamentals. 2^{nd} Edition.
- 3. Sedra A. S & Smith K.C (2000) Microelectrônica. 4ª Edição. São Paulo, Brasil.
- 4. Simon M. Sze (2001). Semiconductor Devices, Physics and Technology. John Wiley & Sons, 2^{nd} Edition.
- 5. Millman, J. & Halkias, C. Integrated Electronics: Analog and Digital Circuits and Systems. International Student Edition