Questions to answer

Part 1: Product Performance Analysis

- 1. Which sub category products have the highest profit?
- 2. Which product categories are performing best?
- 3. What are the average sales per product per month?

Part 2: Inventory and Production Efficiency

- 1. Which products are at risk of stockouts?
- 2. How have the costs changed over time for each category?
- 3. How long does it take to complete a work order on average for each Category?
- 4. What is the scrap rate for each product Sub category?

Part 3: Market Demand and Trends

- 1. Which geographical locations have the highest product storage?
- 2. What is the percentage of discontinued products in each category?
- 3. How do costs compare against revenue for sub categories with high cost?

Tables needed

All these tables are taken from production scheme

- 1. Product
- 2. Product Category
- 3. Product Subcategory
- 4. Transaction History
- 5. Bill Of materials
- 6. Product location
- 7. Product Inventory
- 8. Product Cost History
- 9. List Price History
- 10. Work Order

Along with these Tables I needed to construct some views, to be able to answer some hard questions, or make the analysis easier.

Views

1. Below Needed Products

To answer the question what are the product, which run out of stock or about to.

I Made a view containing each category and its average price

```
dereate view CategoryPriceChange as
 SELECT
     FORMAT(pc.StartDate, 'yyyy-MM') AS date,
     c.name,
     c.ProductCategoryID,
     AVG(pc.StandardCost) AS AverageCost
 FROM
     Production.ProductCostHistory pc
 join Production. Product p
 on p.ProductID = pc.ProductID
 join Production.ProductSubcategory ps
 on ps.ProductSubcategoryID = p.ProductSubcategoryID
 join Production.ProductCategory c
 on c.ProductCategoryID = ps.ProductCategoryID
 GROUP BY
     FORMAT(pc.StartDate, 'yyyy-MM'), c.Name, c.ProductCategoryID;
```

	date	name	ProductCategoryID	AverageCost
1	2011-05	Accessories	4	12.0278
2	2012-05	Accessories	4	16.0826
3	2013-05	Accessories	4	12.0219
4	2011-05	Bikes	1	1182.6254
5	2012-05	Bikes	1	831.2355
6	2013-05	Bikes	1	813.0205
7	2011-05	Clothing	3	19.9136
8	2012-05	Clothing	3	23.8501
9	2013-05	Clothing	3	25.5579
10	2011-05	Components	2	443.1582
11	2012-05	Components	2	270.1572
12	2013-05	Components	2	275.679

Data Cleaning and Exploration

Python code used to check which columns have nulls

```
# taking conncetion information
connection string = (
    "DRIVER={ODBC Driver 17 for SQL Server};"
    "SERVER=DESKTOP-P5UVUF4;"
    "DATABASE=AdventureWorks2022;"
    ":البوزر بناعك=UID"
    ";الباسورد بناعك=PWD"
def finding null(table name, primary key):
    try:
    # Establish the connection
        connection = pyodbc.connect(connection_string)
        # Create a cursor from the connection
        cursor = connection.cursor()
    except Exception as e:
        return f"An error occurred: {e}"
    # extract columns of the table
    columns = cursor.execute(f"select column_name from INFORMATION_SCHEMA.COLUMNS where TABLE_NAME = '{table_name}';")
    # the output will be a list containing sum of tuples each tuble contains a column name we need to put all the column names
    # into one list
    table columns = []
    for i in columns:
        for j in i:
            table columns.append(j)
    # now we have a list containing all the column names
    for column in table_columns:
        # counting the null included in each column
        nulls number = cursor.execute(
                f"select count({primary key}) from Production.{table name} where {column} is null")
        nulls_number = nulls_number.fetchall()
        # printing each column and its null counts
        print(f"column {column} has {nulls number[0][0]} null values ")
        print("\n")
        print("="*50)
```

- Changed column Names to be easier to grasp while making Analysis.
- Dropped some unneeded columns.
- Changed values included in some columns to be easier to make analysis on

Data Modeling

Answering Questions

1. Which sub category products have the highest profit?

- Obviously touring, mountain and road bikes has the best effect.
- We don't get that much from selling bikes components.

2. Which product categories are performing best?

- This question supports the result of the first.
- We cannot say that there is a problem with components and accessories as they are used to manufacture Bikes.
- But we need to increase these products sales.

3. What are the average sales per product per month?

 Sales numbers are not consistent so we need to focus on the reasons for this inconsistency

- There is a serious continuous problem with component sales.
- 4. Which products are at risk of stockouts?

• We need to supply these components as fast as we can.

5. How have the costs changed over time for each category?

• We have done a great job decreasing the production cost of our product by starting producing the main components.

6. How long does it take to complete a work order on average for each Category?

Potential for improvement: The last three categories (Mountain Fre..., Road Frames, Touring Frames) have significantly lower work order periods. This discrepancy might indicate:

- More efficient processes for these items, which could be studied and potentially applied to other categories.
- Or, these categories might be underserved and could potentially benefit from more attention or resources.

7. What is the scrap rate for each product Sub category?

- Scrapping rate is productively applicable.
- 8. How do costs compare against revenue for sub categories with high cost?

• Compared to revenue the costs are really good.

9. Which geographical locations have the highest product storage?

- Wide range: There's a significant range in inventory levels across locations, from 110.00 (Paint Storage) to 95477.00 (Subassembly).
- Top storage areas: The three locations with the highest inventory levels are:

Subassembly (95477.00)

Miscellaneous Storage (83173.00)

Tool Crib (72899.00)

10. What is the percentage of discontinued products in each category?

• The rates are very high, before we decide to produce new products we need to study the market very well.

Dashboards **Product Performance Inventory and Production** Product Performance Analysis **Market Demand And Trends Analysis Efficiency** \$7.42M (\$6.26M) \$541.71K (\$1.38M) Total Revenue **Total Profit** Min Profit Max Profit **Total Profit By Subcategory** 76... **Total Profit By Category** \$19.01M \$17.90M \$17.62M \$54.53M \$2.92M \$2.09M \$1.50M \$0.27M \$0.11M \$0.10M \$0.07M \$1.61M Road Bikes Mountain Fra... (\$1.97M) (\$6.26M) Bikes Clothing Accessories Components **Total Profit Trend By Category Product Category** \$1.6M ■ Select all Accessories \$0.5M \$0.3M Bikes (\$0.2M) (\$0.3M) Clothing \$0.6M) (\$0.6M) (\$0.7M) (\$0.7M) Components (\$1.5M) (\$1.1M) (\$1.4M) (\$1.6M) Sep 2013 Nov 2013 Jan 2014 May 2014 Inventory and Production **Product Performance** Inventory and Production Efficiency Market Demand And Trends Éfficiency **Analysis** 778 4.51M 10.65K 0.236% **Average Stock Number Total Quantity Ordered** Total srapped **Scrapping Rate Products At Risk Of Stockout** 7 K ... Average Work Order by Subcategory ● Total Quantity ● Reorder Point 15.63 15.56 15.53 15.49 15.47 11.74 10.25 Touring Frames Mountain Fra... Handlebars Cranksets Road Frames Derailleurs Lower Head Race **HL Mountain** Touring-1000 Women's Tights, Seat/Saddle Yellow, 54 Cost Change over Time for Different Categories Scrapping Rate By Subcategory Category \$414.4313 0.26% 0.25% ΑII 0.19% 0.19% 0.18% 0.17% 0.16% 0.15% 0.15% 0.14% 0.11% **Sub Category** ΑII \$285.3314 \$281 5698 2012-05 2013-05 2011-05

