

Sampling for

qdigest — varopt — varopt — sNN-sum — sNN-sum — sNN-prod — varopt — varopt

0.01 0.001 0.0001

1e-05

100

Big Data

Graham Cormode, University of Warwick

G.Cormode@warwick.ac.uk

Nick Duffield, Texas A&M University

Nick.Duffield@gmail.com

Big Data

- "Big" data arises in many forms:
 - Physical Measurements: from science (physics, astronomy)
 - Medical data: genetic sequences, detailed time series
 - Activity data: GPS location, social network activity
 - Business data: customer behavior tracking at fine detail

♦ Common themes:

- Data is large, and growing
- There are important patterns and trends in the data
- We don't fully know where to look or how to find them

Why Reduce?

- Although "big" data is about more than just the volume... ...most big data is big!
- It is not always possible to store the data in full
 - Many applications (telecoms, ISPs, search engines) can't keep everything
- It is inconvenient to work with data in full
 - Just because we can, doesn't mean we should
- ♦ It is faster to work with a compact summary
 - Better to explore data on a laptop than a cluster

Why Sample?

- Sampling has an intuitive semantics
 - We obtain a smaller data set with the same structure
- Estimating on a sample is often straightforward
 - Run the analysis on the sample that you would on the full data
 - Some rescaling/reweighting may be necessary
- Sampling is general and agnostic to the analysis to be done
 - Other summary methods only work for certain computations
 - Though sampling can be tuned to optimize some criteria
- Sampling is (usually) easy to understand
 - So prevalent that we have an intuition about sampling

Alternatives to Sampling

- Sampling is not the only game in town
 - Many other data reduction techniques by many names
- Dimensionality reduction methods
 - PCA, SVD, eigenvalue/eigenvector decompositions
 - Costly and slow to perform on big data
- "Sketching" techniques for streams of data
 - Hash based summaries via random projections
 - Complex to understand and limited in function
- Other transform/dictionary based summarization methods
 - Wavelets, Fourier Transform, DCT, Histograms
 - Not incrementally updatable, high overhead
- ♦ All worthy of study in other tutorials

Health Warning: contains probabilities

- Will avoid detailed probability calculations, aim to give high level descriptions and intuition
- But some probability basics are assumed
 - Concepts of probability, expectation, variance of random variables
 - Allude to concentration of measure (Exponential/Chernoff bounds)
- Feel free to ask questions about technical details along the way

$$\operatorname{var}\left(\frac{k}{n}\right) = \operatorname{E}\left[\operatorname{var}\left(\frac{k}{n}\middle|\theta\right)\right] + \operatorname{var}\left[\operatorname{E}\left(\frac{k}{n}\middle|\theta\right)\right]$$

$$= \operatorname{E}\left[\left(\frac{1}{n}\right)\theta(1-\theta)\middle|\mu,M\right] + \operatorname{var}\left(\theta|\mu,M\right)$$

$$= \frac{1}{n}\left(\mu(1-\mu)\right) + \frac{n-1}{n}\frac{(\mu(1-\mu))}{M+1}$$

$$= \frac{\mu(1-\mu)}{n}\left(1 + \frac{n-1}{M+1}\right).$$

Outline

- Motivating application: sampling in large ISP networks
- Basics of sampling: concepts and estimation
- Stream sampling: uniform and weighted case
 - Variations: Concise sampling, sample and hold, sketch guided

BREAK

- Advanced stream sampling: sampling as cost optimization
 - VarOpt, priority, structure aware, and stable sampling
- Hashing and coordination
 - Bottom-k, consistent sampling and sketch-based sampling
- Graph sampling
 - Node, edge and subgraph sampling
- Conclusion and future directions

Sampling as a Mediator of Constraints

Data Characteristics (Heavy Tails, Correlations)

Motivating Application: ISP Data

- Will motivate many results with application to ISPs
- Many reasons to use such examples:
 - Expertise: tutors from telecoms world
 - Demand: many sampling methods developed in response to ISP needs
 - Practice: sampling widely used in ISP monitoring, built into routers
 - Prescience: ISPs were first to hit many "big data" problems
 - Variety: many different places where sampling is needed
- First, a crash-course on ISP networks...

Structure of Large ISP Networks

Measuring the ISP Network: Data Sources

Why Summarize (ISP) Big Data?

- When transmission bandwidth for measurements is limited
 - Not such a big issue in ISPs with in-band collection
- Typically raw accumulation is not feasible (even for nation states)
 - High rate streaming data
 - Maintain historical summaries for baselining, time series analysis
- ♦ To facilitate fast queries
 - When infeasible to run exploratory queries over full data
- As part of hierarchical query infrastructure:
 - Maintain full data over limited duration window
- Drill down into full data through one or more layers of summarization
 Sampling has been proved to be a flexible method to accomplish this

Data Scale: Summarization and Sampling

Traffic Measurement in the ISP Network

Massive Dataset: Flow Records

- IP Flow: set of packets with common key observed close in time
- Flow Key: IP src/dst address, TCP/UDP ports, ToS,... [64 to 104+ bits]
- Flow Records:
 - Protocol level summaries of flows, compiled and exported by routers
 - Flow key, packet and byte counts, first/last packet time, some router state
 - Realizations: Cisco Netflow, IETF Standards
- Scale: 100's TeraBytes of flow records daily are generated in a large ISP
- Used to manage network over range of timescales:
 - Capacity planning (months),...., detecting network attacks (seconds)
- Analysis tasks
 - Easy: timeseries of predetermined aggregates (e.g. address prefixes)
 - Hard: fast queries over exploratory selectors, history, communications subgraphs

Flows, Flow Records and Sampling

- Two types of sampling used in practice for internet traffic:
 - 1. Sampling packet stream in router prior to forming flow records
 - Limits the rate of lookups of packet key in flow cache
 - Realized as Packet Sampled NetFlow (more later...)
 - 2. Downstream sampling of flow records in collection infrastructure
 - Limits transmission bandwidth, storage requirements
 - □ Realized in ISP measurement collection infrastructure (more later...)
- Two cases illustrative of general property
 - Different underlying distributions require different sample designs
 - Statistical optimality sometimes limited by implementation constraints
 - Availability of router storage, processing cycles

Abstraction: Keyed Data Streams

- Data Model: objects are keyed weights
 - Objects (x,k): Weight x; key k
 - \square Example 1: objects = packets, x = bytes, k = key (source/destination)
 - □ Example 2: objects = flows, x = packets or bytes, k = key
 - \square Example 3: objects = account updates, x = credit/debit, k = account ID
- ♦ Stream of keyed weights, {(x_i, k_i): i = 1,2,...,n}
- Generic query: subset sums
 - $X(S) = \Sigma_{i \in S} x_i$ for $S \subset \{1,2,...,n\}$ i.e. total weight of index subset S
 - Typically $S = S(K) = \{i: k_i \in K\}$: objects with keys in K
 - \square Example 1, 2: X(S(K)) = total bytes to given IP dest address / UDP port
 - \square Example 3: X(S(K)) = total balance change over set of accounts
- Aim: Compute fixed size summary of stream that can be used to
 estimate arbitrary subset sums with known error bounds

Inclusion Sampling and Estimation

Horvitz-Thompson Estimation:

- Object of size x_i sampled with probability p_i
- Unbiased estimate $x'_i = x_i / p_i$ (if sampled), 0 if not sampled: $E[x'_i] = x_i$

♦ Linearity:

- Estimate of subset sum = sum of matching estimates
- Subset sum $X(S) = \sum_{i \in S} x_i$ is estimated by $X'(S) = \sum_{i \in S} x'_i$

♦ Accuracy:

- Exponential Bounds: $Pr[|X'(S) X(S)| > \delta X(S)] \le exp[-g(\delta)X(S)]$
- Confidence intervals: $X(S) \in [X^{-}(\epsilon), X^{+}(\epsilon)]$ with probability 1ϵ

♦ Futureproof:

- Don't need to know queries at time of sampling
 - □ "Where/where did that suspicious UDP port first become so active?"
 - □ "Which is the most active IP address within than anomalous subnet?"
- Retrospective estimate: subset sum over relevant keyset

Independent Stream Sampling

- Bernoulli Sampling
 - IID sampling of objects with some probability p
 - Sampled weight x has HT estimate x/p
- Poisson Sampling
 - Weight x_i sampled with probability p_i ; HT estimate x_i / p_i
- When to use Poisson vs. Bernoulli sampling?
 - Elephants and mice: Poisson allows probability to depend on weight...
- \diamond What is best choice of probabilities for given stream $\{x_i\}$?

Bernoulli Sampling

- The easiest possible case of sampling: all weights are 1
 - N objects, and want to sample k from them uniformly
 - Each possible subset of k should be equally likely
- Uniformly sample an index from N (without replacement) k times
 - Some subtleties: truly random numbers from [1...N] on a computer?
 - Assume that random number generators are good enough
- ♦ Common trick in DB: assign a random number to each item and sort
 - Costly if N is very big, but so is random access
- Interesting problem: take a single linear scan of data to draw sample
 - Streaming model of computation: see each element once
 - Application: IP flow sampling, too many (for us) to store
 - (For a while) common tech interview question

Reservoir Sampling

"Reservoir sampling" described by [Knuth 69, 81]; enhancements [Vitter 85]

- ♦ Fixed size k uniform sample from arbitrary size N stream in one pass
 - No need to know stream size in advance
 - Include first k items w.p. 1
 - Include item n > k with probability p(n) = k/n, n > k
 - □ Pick j uniformly from {1,2,...,n}
 - \Box If $j \le k$, swap item n into location j in reservoir, discard replaced item
- Neat proof shows the uniformity of the sampling method:
 - Let S_n = sample set after n arrivals

New item: selection probability

$$Prob[n \in S_n] = p_n := k/n$$

Previously sampled item: induction

$$m \in S_{n-1} \text{ w.p. } p_{n-1} \Rightarrow m \in S_n \text{ w.p. } p_{n-1} * (1 - p_n / k) = p_n$$

Reservoir Sampling: Skip Counting

- Simple approach: check each item in turn
 - O(1) per item:
 - Fine if computation time < interarrival time
 - Otherwise build up computation backlog O(N)
- Better: "skip counting"
 - Find random index m(n) of next selection > n
 - Distribution: Prob[m(n) \leq m] = 1 $(1-p_{n+1})*(1-p_{n+2})*...*(1-p_m)$
- Expected number of selections from stream is

$$k + \sum_{k < m \le N} p_m = k + \sum_{k < m \le N} k/m = O(k (1 + ln (N/k)))$$

Vitter'85 provided algorithm with this average running time

Reservoir Sampling via Order Sampling

- Order sampling a.k.a. bottom-k sample, min-hashing
- Uniform sampling of stream into reservoir of size k
- ♦ Each arrival n: generate one-time random value r_n ∈ U[0,1]
 - r_n also known as hash, rank, tag...
- Store k items with the smallest random tags

- Each item has same chance of least tag, so uniform
- Fast to implement via priority queue
- Can run on multiple input streams separately, then merge

Handling Weights

- So far: uniform sampling from a stream using a reservoir
- Extend to non-uniform sampling from weighted streams
 - Easy case: k=1
 - Sampling probability $p(n) = x_n/W_n$ where $W_n = \sum_{i=1}^n x_i$
- ♦ k>1 is harder
 - Can have elements with large weight: would be sampled with prob 1?
- Number of different weighted order-sampling schemes proposed to realize desired distributional objectives
 - Rank $r_n = f(u_n, x_n)$ for some function f and $u_n \in U[0,1]$
 - k-mins sketches [Cohen 1997], Bottom-k sketches [Cohen Kaplan 2007]
 - [Rosen 1972], Weighted random sampling [Efraimidis Spirakis 2006]
 - Order PPS Sampling [Ohlsson 1990, Rosen 1997]
 - Priority Sampling [Duffield Lund Thorup 2004], [Alon+DLT 2005]

Weighted random sampling

- Weighted random sampling [Efraimidis Spirakis 06] generalizes min-wise
 - For each item draw r_n uniformly at random in range [0,1]
 - Compute the 'tag' of an item as $r_n^{(1/x_n)}$
 - Keep the items with the k smallest tags
 - Can prove the correctness of the exponential sampling distribution
- Can also make efficient via skip counting ideas

Priority Sampling

- ♦ Each item x_i given priority $z_i = x_i / r_i$ with r_n uniform random in (0,1)
- \diamond Maintain reservoir of k+1 items (x_i, z_i) of highest priority
- Estimation
 - Let $z^* = (k+1)^{st}$ highest priority
 - Top-k priority items: weight estimate $x'_1 = max\{x_i, z^*\}$
 - All other items: weight estimate zero
- Statistics and bounds
 - x'_1 unbiased; zero covariance: Cov[x'_{i} , x'_{i}] = 0 for i≠j
 - Relative variance for any subset sum $\leq 1/(k-1)$ [Szegedy, 2006]

Priority Sampling in Databases

- One Time Sample Preparation
 - Compute priorities of all items, sort in decreasing priority order
 - □ No discard
- Sample and Estimate
 - Estimate any subset sum X(S) = $\sum_{i \in S} x_i$ by X'(S) = $\sum_{i \in S} x'_i$ for some S' \subset S
 - Method: select items in decreasing priority order
- Two variants: bounded variance or complexity
 - 1. S' = first k items from S: relative variance bounded $\leq 1/(k-1)$
 - $x'_1 = \max\{x_i, z^*\}$ where $z^* = (k+1)^{st}$ highest priority in S
 - 2. S' = items from S in first k: execution time O(k)
 - $= x'_1 = \max\{x_i, z^*\}$ where $z^* = (k+1)^{st}$ highest priority

[Alon et. al., 2005]

Making Stream Samples Smarter

- Observation: we **see** the whole stream, even if we can't store it
 - Can keep more information about sampled items if repeated
 - Simple information: if item sampled, count all repeats
- ♦ Counting Samples [Gibbons & Mattias 98]
 - Sample new items with fixed probability p, count repeats as c_i
 - Unbiased estimate of total count: $1/p + (c_i 1)$
- ♦ Sample and Hold [Estan & Varghese 02]: generalize to weighted keys
 - New key with weight b sampled with probability 1 (1-p)^b
- Lower variance compared with independent sampling
 - But sample size will grow as pn
- Adaptive sample and hold: reduce p when needed
 - "Sticky sampling": geometric decreases in p [Manku, Motwani 02]
 - Much subsequent work tuning decrease in p to maintain sample size

Sketch Guided Sampling

- Of Go further: avoid sampling the heavy keys as much
 - Uniform sampling will pick from the heavy keys again and again
- ♦ Idea: use an oracle to tell when a key is heavy [Kumar Xu 06]
 - Adjust sampling probability accordingly
- ♦ Can use a "sketch" data structure to play the role of oracle
 - Like a hash table with collisions, tracks approximate frequencies
 - E.g. (Counting) Bloom Filters, Count-Min Sketch
- Track probability with which key is sampled, use HT estimators
 - Set probability of sampling key with (estimated) weight w as $1/(1 + \epsilon w)$ for parameter ϵ : decreases as w increases
 - Decreasing ε improves accuracy, increases sample size

Challenges for Smart Stream Sampling

- Current router constraints
 - Flow tables maintained in fast expensive SRAM
 - □ To support per packet key lookup at line rate
- Implementation requirements
 - Sample and Hold: still need per packet lookup
 - Sampled NetFlow: (uniform) sampling reduces lookup rate
 - ☐ Easier to implement despite inferior statistical properties
- Long development times to realize new sampling algorithms
- Similar concerns affect sampling in other applications
 - Processing large amounts of data needs awareness of hardware
 - Uniform sampling means no coordination needed in distributed setting

Future for Smarter Stream Sampling

- Software Defined Networking
 - Current: proprietary software running on special vendor equipment
 - Future: open software and protocols on commodity hardware
- Potentially offers flexibility in traffic measurement
 - Allocate system resources to measurement tasks as needed
 - Dynamic reconfiguration, fine grained tuning of sampling
 - Stateful packet inspection and sampling for network security
- ♦ Technical challenges:
 - High rate packet processing in software
 - Transparent support from commodity hardware
 - OpenSketch: [Yu, Jose, Miao, 2013]
- Same issues in other applications: use of commodity programmable HW

Stream Sampling: Sampling as Cost Optimization

Matching Data to Sampling Analysis

- ♦ Generic problem 1: Counting objects: weight x_i = 1
 Bernoulli (uniform) sampling with probability p works fine
 - Estimated subset count X'(S) = #{samples in S} / p
 - Relative Variance (X'(S)) = (1/p -1)/X(S)
 - □ given p, get any desired accuracy for large enough S

- ♦ Generic problem 2: x_i in Pareto distribution, a.k.a. 80-20 law
 - Small proportion of objects possess a large proportion of total weight
 - □ How to best to sample objects to accurately estimate weight?
 - Uniform sampling?
 - \Box likely to omit heavy objects \Rightarrow big hit on accuracy
 - □ making selection set S large doesn't help
 - Select m largest objects ?
 - □ biased & smaller objects systematically ignored

Heavy Tails in the Internet and Beyond

- Files sizes in storage
- Bytes and packets per network flow
- Degree distributions in web graph, social networks

Non-Uniform Sampling

- Extensive literature: see book by [Tille, "Sampling Algorithms", 2006]
- Predates "Big Data"
 - Focus on statistical properties, not so much computational
- IPPS: Inclusion Probability Proportional to Size
 - Variance Optimal for HT Estimation
 - Sampling probabilities for multivariate version: [Chao 1982, Tille 1996]
 - Efficient stream sampling algorithm: [Cohen et. al. 2009]

Costs of Non-Uniform Sampling

- ♦ Independent sampling from n objects with weights $\{x_1, ..., x_n\}$
- ♦ Goal: find the "best" sampling probabilities {p₁, ..., p_n}
- ♦ Horvitz-Thompson: unbiased estimation of each x_i by

$$x'_{i} = \begin{cases} x_{i}/p_{i} & \text{if weight i selected} \\ 0 & \text{otherwise} \end{cases}$$

- Two costs to balance:
 - 1. Estimation Variance: $Var(x'_i) = x^2_i (1/p_i 1)$
 - 2. Expected Sample Size: $\sum_{i} p_{i}$
- ♦ Minimize Linear Combination Cost: $\sum_i (x_i^2(1/p_i-1) + z^2 p_i)$
 - z expresses relative importance of small sample vs. small variance

Minimal Cost Sampling: IPPS

IPPS: Inclusion Probability Proportional to Size

- ♦ Minimize Cost Σ_i (x_i^2 ($1/p_i 1$) + z^2 p_i) subject to $1 \ge p_i \ge 0$
- ♦ Solution: $p_i = p_z(x_i) = min\{1, x_i/z\}$
 - small objects $(x_i < z)$ selected with probability proportional to size
 - large objects $(x_i \ge z)$ selected with probability 1
 - Call z the "sampling threshold"
 - Unbiased estimator $x_i/p_i = max\{x_i, z\}$
- Perhaps reminiscent of importance sampling, but not the same:
 - make no assumptions concerning distribution of the x

Error Estimates and Bounds

- ♦ Variance Based:
 - HT sampling variance for single object of weight x_i
 - \Box Var(x'_i) = x²_i (1/p_i 1) = x²_i (1/min{1,x_i/z} 1) ≤ z x_i
 - Subset sum X(S)= $\sum_{i \in S} x_i$ is estimated by X'(S) = $\sum_{i \in S} x'_i$
 - \Box Var(X'(S)) \leq z X(S)
- Exponential Bounds
 - E.g. Prob[X'(S) = 0] $\leq \exp(-X(S)/z)$
- Bounds are simple and powerful
 - depend only on subset sum X(S), not individual constituents

Sampled IP Traffic Measurements

- ♦ Packet Sampled NetFlow
 - Sample packet stream in router to limit rate of key lookup: uniform 1/N
 - Aggregate sampled packets into flow records by key
- ♦ Model: packet stream of (key, bytesize) pairs { (b_i, k_i) }
- \diamond Packet sampled flow record (b,k) where b = Σ {b_i: i sampled \land k_i = k}
 - HT estimate b/N of total bytes in flow
- Downstream sampling of flow records in measurement infrastructure
 - IPPS sampling, probability min{1, b/(Nz)}
- ♦ Chained variance bound for any subset sum X of flows
 - $Var(X') \le (z + Nb_{max}) X$ where $b_{max} = maximum packet byte size$
 - Regardless of how packets are distributed amongst flows
 [Duffield, Lund, Thorup, IEEE ToIT, 2004]

Estimation Accuracy in Practice

- Estimate any subset sum comprising at least some fraction f of weight
- ♦ Suppose: sample size m
- \diamond Analysis: typical estimation error ϵ (relative standard deviation) obeys

Estimate fraction f = 0.1% with typical relative error 12%:

- ♦ 2*16 = same storage needed for aggregates over 16 bit address prefixes
 - But sampling gives more flexibility to estimate traffic within aggregates

Heavy Hitters: Exact vs. Aggregate vs. Sampled

- Sampling does not tell you where the interesting features are
 - But does speed up the ability to find them with existing tools
- Example: Heavy Hitter Detection
 - Setting: Flow records reporting 10GB/s traffic stream
 - Aim: find Heavy Hitters = IP prefixes comprising ≥ 0.1% of traffic
 - Response time needed: 5 minute

Compare:

- Exact: 10GB/s x 5 minutes yields upwards of 300M flow records
- 64k aggregates over 16 bit prefixes: no deeper drill-down possible
- Sampled: 64k flow records: any aggregate ≥ 0.1% accurate to 10%

Cost Optimization for Sampling

Several different approaches optimize for different objectives:

- 1. Fixed Sample Size IPPS Sample
 - Variance Optimal sampling: minimal variance unbiased estimation
- 2. Structure Aware Sampling
 - Improve estimation accuracy for subnet queries using topological cost
- 3. Fair Sampling
 - Adaptively balance sampling budget over subpopulations of flows
 - Uniform estimation accuracy regardless of subpopulation size
- 4. Stable Sampling
 - Increase stability of sample set by imposing cost on changes

IPPS Stream Reservoir Sampling

- Each arriving item:
 - Provisionally include item in reservoir
 - If m+1 items, discard 1 item randomly
 - \Box Calculate threshold z to sample m items on average: z solves $\Sigma_i p_z(x_i) = m$
 - \Box Discard item i with probability $q_i = 1 p_z(x_i)$
 - \Box Adjust m surviving x_i with Horvitz-Thompson $x'_i = x_i / p_i = \max\{x_i, z\}$
- Efficient Implementation:
 - Computational cost O(log m) per item, amortized cost O(log log m)

Structure (Un)Aware Sampling

- Sampling is oblivious to structure in keys (IP address hierarchy)
 - Estimation disperses the weight of discarded items to surviving samples

- Queries structure aware: subset sums over related keys (IP subnets)
 - Accuracy on LHS is decreased by discarding weight on RHS

Localizing Weight Redistribution

- ♦ Initial weight set $\{x_i : i \in S\}$ for some $S \subset \Omega$
 - E.g. Ω = possible IP addresses, S = observed IP addresses
- ♦ Attribute "range cost" $C(\{x_i : i \in R\})$ for each weight subset $R \subseteq S$
 - Possible factors for Range Cost:
 - □ Sampling variance
 - □ Topology e.g. height of lowest common ancestor
 - Heuristics: R^* = Nearest Neighbor $\{x_i, x_j\}$ of minimal $x_i x_j$
- Sample k items from S:
 - Progressively remove one item from subset with minimal range cost:
 - While(|S| > k)
 - ☐ Find R*⊆S of minimal range cost.
 - ☐ Remove a weight from R* w/ VarOpt

[Cohen, Cormode, Duffield; PVLDB 2011]

No change outside

Fair Sampling Across Subpopulations

- Analysis queries often focus on specific subpopulations
 - E.g. networking: different customers, user applications, network paths
- Wide variation in subpopulation size
 - 5 orders of magnitude variation in traffic on interfaces of access router
- If uniform sampling across subpopulations:
 - Poor estimation accuracy on subset sums within small subpopulations

Color = subpopulation

- \blacktriangle , \blacktriangle = interesting items
 - occurrence proportional to subpopulation size

Uniform Sampling across subpopulations:

Difficult to track proportion of interesting items within small subpopulations:

Fair Sampling Across Subpopulations

- Minimize relative variance by sharing budget m over subpopulations
 - Total n objects in subpopulations $n_1,...,n_d$ with $\sum_i n_i = n_i$
 - Allocate budget m_i to each subpopulation n_i with $\sum_i m_i = m_i$
- \diamond Minimize average population relative variance R = const. $\Sigma_i 1/m_i$
- Theorem:
 - R minimized when $\{m_i\}$ are Max-Min Fair share of m under demands $\{n_i\}$
- Streaming
 - Problem: don't know subpopulation sizes $\{n_i\}$ in advance
- Solution: progressive fair sharing as reservoir sample
 - Provisionally include each arrival
 - Discard 1 item as VarOpt sample from any maximal subpopulation
- Theorem [Duffield; Sigmetrics 2012]:
 - Max-Min Fair at all times; equality in distribution with VarOpt samples {m_i from n_i}

Stable Sampling

- Setting: Sampling a population over successive periods
- Sample independently at each time period?
 - Cost associated with sample churn
 - Time series analysis of set of relatively stable keys
- Find sampling probabilities through cost minimization
 - Minimize Cost = Estimation Variance + z * E[#Churn]
- Size m sample with maximal expected churn D
 - weights {x_i}, previous sampling probabilities {p_i}
 - find new sampling probabilities {q_i} to minimize cost of taking m samples
- − Minimize $\Sigma_i x_i^2$ / q_i subject to $1 \ge q_i \ge 0$, $\Sigma_i q_i = m$ and $\Sigma_i \mid p_i q_i \mid \le D$ [Cohen, Cormode, Duffield, Lund 13]

Summary of Part 1

- Sampling as a powerful, general summarization technique
- Unbiased estimation via Horvitz-Thompson estimators
- Sampling from streams of data
 - Uniform sampling: reservoir sampling
 - Weighted generalizations: sample and hold, counting samples
- Advances in stream sampling
 - The cost principle for sample design, and IPPS methods
 - Threshold, priority and VarOpt sampling
 - Extending the cost principle:
 - □ structure aware, fair sampling, stable sampling, sketch guided

Sampling for

10000

Big Data

Graham Cormode, University of Warwick

G.Cormode@warwick.ac.uk

Nick Duffield, Texas A&M University

Nick.Duffield@gmail.com

1000

0.01 0.001 0.0001

1e-05

100

sample size

