Statistics Project 2

David Rodden, Michael McIntosh, Khang Tran, Jeffrey Lazatin April 23, 2017

```
sheet = read_excel("GDP.xlsx")
attach(sheet)
#Country, GDP, LEB, NLLEB, NLGDP
```

Introduction

We are investigating the relationship between Life Expectancy of a country based upon its GDP. The data we are using was collected in 2003 from the CIA Factbook; the data is across 180 countries. The investigation is looking to see if there is a positive correlation between life expectancy (LEB) and a country's GDP (NLGDP); using GDP as a predictor. In order to normalize the data, we use the natural log of the GDP. The data considers a country's life expectancy at birth and the GDP per capita (PPP). The data was collected from official reports that each nation compiles. We found the data from *Index Mundi*, who pulled from the CIA Factbook. The data is a sample of the world's countries, and is an observational study.

```
H_0: \rho = 0 \text{ vs } H_a: \rho \neq 0
```

Summary & Visualization

```
favs = favstats(LEB ~ NLGDP)
anova.b = anova(lm(LEB ~ NLGDP))
xyplot(LEB ~ NLGDP, type = c("p", "r"), pch=16, col="black")
```


The scatter plot shows that there are a few outliers which will influence the overall model. The outliers will impact the regression which we use to model and predict, based upon the data. There is a slight departure from linearity, a subtle curve in the data, but still increasing overall. The data does possesses changing variability, a fanning trend, wide to narrow from left to right. There appears to be a positive linear association between the two quantitative variables, LEB \sim NLGDP.

```
#five number summary
sum.sheet = summary(sheet); sum.sheet
```

```
##
      Country
                              GDP
                                               LEB
                                                               NLGDP
##
    Length: 180
                                : 500
                                                 :31.30
                                                                  : 6.215
                        Min.
                                         Min.
                                                           Min.
    Class : character
                        1st Qu.: 1800
                                          1st Qu.:57.87
                                                           1st Qu.: 7.496
##
##
    Mode :character
                        Median: 5650
                                          Median :70.47
                                                           Median: 8.639
##
                        Mean
                                :10051
                                          Mean
                                                 :65.95
                                                           Mean
                                                                  : 8.571
##
                        3rd Qu.:15700
                                          3rd Qu.:75.86
                                                           3rd Qu.: 9.661
##
                        Max.
                                :55100
                                          Max.
                                                 :83.49
                                                           Max.
                                                                  :10.917
```

```
#standard deviation
gdp.sd = sd(sheet$GDP); gdp.sd
```

```
## [1] 10757.43
```

```
leb.sd = sd(sheet$LEB); leb.sd
```

```
## [1] 12.75888
```

```
nlgdp.sd = sd(sheet$NLGDP); nlgdp.sd
```

```
## [1] 1.223437
```

The sample size is 180 countries. The means for GDP, Life expectancy at birth, and Natural log of GDP are Mean: 10051, Mean: 65.95, Mean: 8.571, respectively.

The standard deviation for GDP, Life expectancy, at birth and Natural log of GDP are 1.0757429×10^4 , 12.7588816, 1.2234365 respectively.

Correlation Test

```
H_0: \rho = 0 \text{ vs } H_a: \rho \neq 0
\text{cor = cor.test(NLGDP, LEB)}
\text{cor.p.value = cor$p.value}
```

The p-value $\approx 1.1930935 \times 10^{-36}$. As the p-value is very small, we reject the null hypothesis in favor of the alternative hypothesis that there is a non-zero correlation between Life expectancy at birth and the natural log of GDP.

Regression

##	1	2	3	4	5
##	-4.176979138	0.323020862	-3.922009299	-5.282009299	22.917990701
##	6	7	8	9	10
##	-10.502009299	0.299325350	-0.790674650	-8.480674650	-3.823655383
##	11	12	13	14	15
##	-8.583655383	-3.823655383	5.346344617	10.176344617	-15.543655383
##	16	17	18	19	20
##	-0.730091463	-6.310091463	-4.436707387	-7.366707387	11.783292613
##	21	22	23	24	25
##	-8.892564647	19.327435353	-2.272564647	-11.642564647	-5.541737547
##	26	27	28	29	30
##	-22.751737547	12.228262453	-15.364914267	16.095085733	-12.640402898
##	31	32	33	34	35
##	3.709597102	-1.710402898	-10.410402898	-2.414789551	11.965210449
##	36	37	38	39	40
##	7.296616369	-4.753383631	0.006616369	7.149472112	-2.550527888
##	41	42	43	44	45
##	-2.470527888	-9.259819712	-1.519819712	7.570180288	-5.379819712
##	46	47	48	49	50
##	6.500180288	3.585727494	-20.784272506	0.175727494	-0.014272506
##	51	52 -9.008485063	53	54	55 -2.392292895
##	-18.734272506 56	-9.008485063 57	3.651514937 58	5.267707105 59	-2.392292895 60
##	10.400518553	5.158534205	4.810512361	10.100512361	6.385357485
##	10.400516555	5.156534205	4.010512361	10.100512361	65
##	0.335357485	2.477895384	0.567895384	15.657895384	-24.474517799
##	66	67	68	69	70
##	7.006888121	9.709624940	7.209624940	0.739743863	4.026816849
##	71	72	73	74	75
##	9.520289793	12.327275320	6.313836117	5.503836117	6.683836117
##	76	77	78	79	80
##	-0.636163883	1.305420620	13.572709275	7.697400036	4.440790304
##	81	82	83	84	85
##	9.377978927	6.878805956	5.428805956	8.618805956	-25.886878663
##	86	87	88	89	90
##	6.700784113	5.201661699	0.362369876	-9.165073148	7.834926852
##	91	92	93	94	95
##	2.168167136	-5.521832864	0.975753952	3.555753952	5.172934080
##	96	97	98	99	100
##	1.312934080	3.763704524	4.943704524	-3.896295476	8.567159872
##	101	102	103	104	105
##	6.619061041	3.929061041	6.292708140	2.397088601	1.127088601
##	106	107	108	109	110
##	-25.679276208	2.570561545	2.246270997	2.916270997	8.335183658
##	111	112	113	114	115
##	7.098292157		-37.982328212	2.057671788	1.427671788
##	116	117	118	119	120
##	6.098881720	-1.086781007		-1.938066550	
##	121	122	123	124	125
	-25.072609747	1.982479381		3.238188833	
##	126	127	128	129	130

```
-2.541811167 -3.688922053 -2.442389793 2.797431624 -0.678725412
##
         131
                       132
                            133
                                               134
                                                          135
                            4.700995543 -0.827026300
##
    1.049523481 -1.565037829
                                                    0.466474116
##
          136
                             138
                                               139
                                                           140
                       137
   -2.873525884 -9.499697013
                            2.002330192 -1.585357896
##
                                                    -0.135691652
##
         141
                       142
                             143
                                         144
                            0.537943539
##
    2.752995783
              -0.362274305
                                        0.403490745
                                                    -0.736509255
##
          146
                            148
                                               149
                            2.231327616
##
    5.456080120
                2.442086279
                                       -4.099799226
                                                    1.042913379
##
          151
                            153
                                                     155
                       152
                                               154
    1.805470355 -3.101289361 -1.050263341
                                       -3.688650301
                                                    2.397373245
##
##
          156
                      157
                              158
                                               159
                                                           160
                                                    0.033251643
##
    0.419643530
               4.479604545
                            0.959604545
                                       -1.268308686
##
           161
                       162
                                   163
                                               164
##
   -0.826748357 -1.115809580
                            1.510440266 -1.524591420
                                                    -0.792736525
##
           166
                       167
                                   168
                                               169
##
    0.341267295
                0.485658635 -1.382002044 -2.458894952
                                                   -0.033005724
##
          171
                172
                            173
                                        174
  -1.746754549 -0.354271919 -3.106113514 -0.619228474 -3.971784709
##
    176
                177
                            178
##
                                        179
## -2.683834137 -4.633834137 -3.298400633 -2.188400633 -7.141906485
```

Using the regression model, $\hat{Y} = b_0 + b_1 x$.

Teamwork