Assume circuit is rectifiable, i.e. U exists and $U = U(..., x_k,...)$, with $x_k < x_k$ Observations (1) hi is a polyn in variables <xi (2) hi is a polyn in variables exi (3) Combining (8), (10), (13) from page 10 >> hi(u-hi)= \(\tau \) \(\tau \ (4) For all pe {9,1) } J! p's.th p'] = P and fix(p') = -- = fo(p) = for p's. the p' = p and fix(p) = .. = fxp')

we have hi(p') +0 , then h'(p') = ()(p').

Pf Use (3): $h_{i}(p^{i}) \cdot (U(p^{i}) - h_{i}(p^{i})) = 0$ since $f_{i}(p^{i}) = 0$, $\forall j = (\pm 1, ..., s)$ and $\chi_{i}^{2} = \chi_{i}^{2}$ $\forall \chi_{i} \in \chi_{p_{i}}^{2}$ Since $h_{i}(p^{i}) \neq 0$ = 1 $U(p^{i}) = h_{i}(p^{i})$.

Cor if U exists and $\forall f \in \{s_i\}^{\gamma}$ then $h_i(p^i) \neq 0$, $\forall p^i s$, the $p^i|_{\mathcal{F}_p} = P$)

then $h_i(p^i) \neq 0$, $\forall p^i s$, the $p^i|_{\mathcal{F}_p} = P$)

then $h_i(p^i) \neq 0$, $\forall p^i s$, the $p^i|_{\mathcal{F}_p} = P$)

then $h_i(p^i) \neq 0$, $\forall p^i s$, the $p^i|_{\mathcal{F}_p} = P$)

then $h_i(p^i) \neq 0$, $\forall p^i s$, then $h_i(p^i) \neq 0$.

So $U(p^i) = h_i(p^i)$, $\forall p^i s$.

So $U(p^i) = h_i(p^i)$, $\forall p^i s$.

Note observations (1),(2) hold by construction.

(1) is by GB division

(2) is it correct that extended

GB gives this as well?

Example in Sect 5 confirms it