С. Метеоритный дождь

ограничение по времени на тест: 1 s. ограничение по памяти на тест: 256 MB

ввод: standard input вывод: standard output

Эдуарду снова пора идти на пары в Миэм. Но утром он узнал, что произошёл метеоритный дождь и теперь, возможно, он не сможет добраться до университета. Эдуард живёт в прямоугольном городе. Для удобства город поделён на одинаковые по размеру кварталы. Всего $n \times m$ кварталов (то есть город представляет из себя прямоугольное поле $n \times m$). Обозначим (r,c) как квартал в r-й строке сверху и c-м столбце слева. Две квартала называются coceдними, если они имеют общую сторону. Путь — это последовательность кварталов, незатронутых метеоритным дождём, в которой любые два подряд идущих района являются coceдними.

Каждый район изначально **не затронут** метеоритным дождём. Эдуард живёт в квартале (x_1,y_1) , а Миэм находится в квартале (x_2,y_2) . Вы можете выбрать любое количество районов (кроме (x_1,y_1) и (x_2,y_2)) и решать, что туда упал метеорит (делая этот район непроходимым для Эдуарда). Эдуарду интересно, какое минимальное количество метеоритов должно упасть, чтобы он не смог добраться до универа. Найдите это число.

Входные данные

Первая строка содержит одно целое число t ($1 \le t \le 500$) — количество наборов входных данных.

Первая строка каждого набора входных данных содержит два целых числа n,m ($4 \le n,m \le 10^9$) — размер города.

Вторая строка каждого набора входных данных содержит четыре целых числа x_1,y_1,x_2,y_2 $(1 \le x_1,x_2 \le n, 1 \le y_1,y_2 \le m)$ — координаты квартала, в котором живёт Эдуард, и квартала, в котором находится Миэм, соответственно.

Гарантируется, что $|x_1-x_2|+|y_1-y_2|\geq 2$.

Выходные данные

Для каждого набора входных данных выведите минимальное количество метеоритов, необходимое для того, чтобы не существовало η из (x_1, y_1) в (x_2, y_2) .

Пример

```
ВХОДНЫЕ ДАННЫЕ

Скопировать

Скопировать

Скопировать

Скопировать

Выходные данные

Скопировать
```

Примечание

В первом наборе входных данных можно поставить препятствия на (1,3),(2,3),(3,2),(4,2). Тогда путь из (2,2) в (3,3) не будет существовать.

(1,1)	(1,2)	(1,3)	(1,4)
(2,1)	(2,2)	(2,3)	(2,4)
(3,1)	(3,2)	(3,3)	(3,4)
(4,1)	(4,2)	(4,3)	(4,4)