CSE574 Introduction to Machine Learning Adversarial Attack: An Overview

Jue Guo

university at Buffalo

March 31, 2024

Outline

What are adversarial attacks?

The surprising findings by Szegedy (2013) and Goodfellow (2014)

Example of attacks

Physical Attacks

Basic Terminologies

Multi-class Problem

Why?

- · Robustness = easiness to fail when input is perturbed. Perturbation can be in any kind. Robustness machine learning is a very rich topic.
- · We will look at something very narrow, called adversarial robusness, also known as robustness against attacks.
- · Adversairal attack is a very hot topic, as of today. We should not over-emphasize its importance. There are many other important problems.

Adversarial Attack Example: FGSM

- · It is not difficult to fool a classifier
- · The perturbation could be perceptually not noticeable

Figure: Goodfellow et al. "Explaining and Harnessing Adversarial Examples", https://arxiv.org/pdf/1412.6572.pdf

Adversarial Attack Example: Szegedy's 2013 Paper

· This paper actually appears one year before Goodfellow's 2014 paper.

Figure: Szegedy et al. Intriguing properties of neural networks https://arxiv.org/abs/1312.6199

Adversarial Attack: Targeted Attack

· Targeted Attack

Figure: Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics, https://arxiv.org/abs/1612.07767

· One-pixel Attack

Figure: One pixel attack for fooling deep neural networks https://arxiv.org/abs/1710.08864

Adversarial Attack Example: Patch

· Adding a patch

Figure: LaVAN: Localized and Visible Adversarial Noise, https://arxiv.org/abs/1801.02608

Adversarial Attack Example: Stop Sign

· The Michigan / Berkely Stop Sign

Figure: Robust Physical-World Attacks on Deep Learning Models https://arxiv.org/abs/1707.08945

Adversarial Attack Example: Turtle

· The MIT 3D Turtle

Figure: Synthesizing Robust Adversarial Examples https://arxiv.org/pdf/1707.07397.pdf
https://www.youtube.com/watch?v=YXY60X1iNoA

Adversarial Attack Example: Glass

· CMU Glass

Input

Recognized Person

Sharif, M., Bhagavatula, S., Bauer, L., & Reiter, M. K. (2016, October).
Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp. 1528-1540). ACM.

Figure: Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition https://www.cs.cmu.edu/~sbhagava/papers/face-rec-cos16.pdf https://www.archive.ece.cmu.edu/~lbauer/proj/advml.php

Definition: Additive Adversarial Attack

Additive Adversarial Attack

Let $x_0 \in \mathbb{R}^d$ be a data point belong to class \mathscr{C}_i . Define a target class \mathscr{C}_t An additive adversarial attack is an addition of a perturbation $r \in \mathbb{R}^d$ such that the perturbed data

$$x = x_0 + r$$

is misclassified as \mathscr{C}_t .

Definition: General Adversarial Attack

General Adversarial Attack

Let $x_0 \in \mathbb{R}^d$ be a data point belong to class \mathcal{C}_i . Define a target class \mathcal{C}_t An adversarial attack is a mapping $\mathscr{A}: \mathbb{R}^d \to \mathbb{R}^d$ such that the perturbed data

$$x = \mathcal{A}(x_0)$$

is misclassified as \mathscr{C}_t .

Multi-class Problem

Approach 1: One-on-One

- · Class i vs. Class i
- · Give me a point, check which class has more votes
- · There is an undetermined region

The Multi-Class Problem

Approach 2: One-on-All

- · Class i not Class i
- · Give me a point, check which class has no conflict
- · There are undetermined regions

The Multi-Class Problem

Approach 3: Linear Machine

- · Every point in the space gets assigned a class.
- You give me x, I compute $g_1(x), g_2(x), \dots, g_K(x)$
- If $g_i(x) \ge g_j(x)$ for all $j \ne i$, then x belongs to class i