МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №8

по дисциплине «Организация ЭВМ и систем»

Тема: Обработка вещественных чисел. Программирование математического сопроцессора

Вариант 3

Студент гр. 1303	Беззубов Д.В.	
Преподаватель		Ефремов М.А.

Санкт-Петербург 2022 Цель работы.

Составить программу для вычисления значения гиперболического синуса на языке ассемблера с использованием математического сопроцессора.

Задание.

Разработать подпрограмму на языке Ассемблера, обеспечивающую вычисление заданной математической функции использованием математического сопроцессора. Подпрограмма должна вызываться из головной программы, разработанной на языке С. При этом должны быть обеспечены заданный способ вызова и обмен параметрами. Альтернативный вариант реализации: разработать на языке Ассемблера фрагмент программы, обеспечивающий заданной вычисление математической функции использованием математического сопроцессора, который включается по принципу in-line в программу, разработанную на языке С.

Вариант 3:

* function

Name sinh - hyperbolic sine function

Usage double sinh(double x);

Prototype in math.h

Description sinh computes the hyperbolic sine of the input value.

$$sinh(x) = (exp(x) - exp(-x)) / 2$$

Выполнение работы.

Выполнение программы начинается с ввода x, данное значение будет в качестве аргумента гиперболического синуса. В начале ассемблерной вставки сравниваем x с 0, в случае, если он отрицательный, получаем абсолютное значение переменной, в переменную flag записываем -1. Абсолютное значение будет расположено в регистре st(0) стека сопроцессора.

Для того, чтобы вычислить экспоненту, воспользуемся следующим преобразованием:

$$e^x = 2^{x * \log_2 e}$$

Для этого последовательно вызываем команды FYL2X и F2XM1. Вычисляем требуемое значение, используя команды fdiv и fadd, записываем результат с вершины стека с помощью команды FSTP.

Вычисляем значение функции по формуле:

$$\sinh(x) = \left(e^x - \frac{1}{e^x}\right)/2$$

В конце умножаем полученное значение на значение переменной flag и выводим его на экран. Так же выводим разницу между вычисленным значением со значением, полученным с помощью стандартной функции sinh(x).

Исходный код программы см. в приложении А.

Тестирование.

Результаты тестирования представлены в табл. 1.

<u>Таблица 1 – Р</u>езультаты тестирования

	Входные данные	Выходные данные	Комментарии
1.	0.1	Введите значение х: 0.1 Вычисленное значение sinh(x): 0.100167 Абсолютная погрешность вычисления: 0.00000000000000006939	
2.	-0.5	Введите значение х: -0.5 Вычисленное значение sinh(x): -0.521095 Абсолютная погрешность вычисления: 0.00000000000000000000	
3.	0.5	Введите значение х: 0.5 Вычисленное значение sinh(x): 0.521095 Абсолютная погрешность вычисления: 0.00000000000000000000	

Таблица фиксации изменения стека и регистров при x = 0.1

Команда	До выполнения:	После выполнения:
fld qword ptr[x] $ST0 = +0.000000000000000000000000000000000$		ST0 = +1.00000000000000000e-0001
fldZ	ST0 = +1.0000000000000000e-0001	ST0 = +0.000000000000000000000000000000000
	ST1 = +0.0000000000000000e+0000	ST1 = +1.0000000000000000e-0001
FCOMP	ST0 = +0.00000000000000000e+0000	ST0 = +1.0000000000000000e-0001
	ST1 = +1.00000000000000000e-0001	ST1 = +0.00000000000000000e+0000
jge cont		
fld qword ptr[e]	ST0 = +1.0000000000000000e-0001	ST0 = +2.7182818284590450e+0000
	ST1 = +0.0000000000000000e+0000	ST1 = +1.0000000000000000e-0001
FYL2X	ST0 = +2.7182818284590450e+0000	ST0 = +1.4426950408889634e-0001
	ST1 = +1.0000000000000000e-0001	ST1 = +0.0000000000000000e+0000
F2XM1	ST0 = +1.4426950408889634e-0001	ST0 = +1.0517091807564762e-0001
fld1	ST0 = +1.0517091807564762e-0001	ST0 = +1.00000000000000000e+0000
	ST1 = +0.0000000000000000000000000000000000	ST1 = +1.0517091807564762e-0001
fadd st, st(1)	ST0 = +1.0000000000000000e+0000	ST0 = +1.1051709180756477e+0000
fld st	ST0 = +1.1051709180756477e+0000	ST0 = +1.1051709180756477e+0000
	ST1 = +1.0517091807564762e-0001	ST1 = +1.1051709180756477e+0000
	ST2 = +0.0000000000000000e+0000	ST2 = +1.0517091807564762e-0001
fld1	ST0 = +1.1051709180756477e+0000	ST0 = +1.00000000000000000e+0000
	ST1 = +1.1051709180756477e+0000	ST1 = +1.1051709180756477e+0000
	ST2 = +1.0517091807564762e-0001	ST2 = +1.1051709180756477e+0000
	ST3 = +0.0000000000000000e+0000	ST3 = +1.0517091807564762e-0001
fdivrp st(1), st	ST0 = +1.0000000000000000e+0000	ST0 = +9.0483741803595951e-0001
	ST1 = +1.1051709180756477e+0000	ST1 = +1.1051709180756477e+0000
	ST2 = +1.1051709180756477e+0000	ST2 = +1.0517091807564762e-0001
	ST3 = +1.0517091807564762e-0001	ST3 = +0.0000000000000000e+0000

	Ī	
fsubp st(1), st	ST0 = +9.0483741803595951e-0001	ST0 = +2.0033350003968819e-0001
	ST1 = +1.1051709180756477e+0000	ST1 = +1.0517091807564762e-0001
	ST2 = +1.0517091807564762e-0001	ST2 = +0.00000000000000000e+0000
fdiv qword	ST0 = +2.0033350003968819e-0001	ST0 = +1.0016675001984409e-0001
ptr[two]		
fmul qword		
ptr[flag]		
FSTP qword	ST0 = +1.0016675001984409e-0001	ST0 = +1.0517091807564762e-0001
ptr[res]	ST1 = +1.0517091807564762e-0001	ST1 = +0.00000000000000000e+0000

Выводы.

В ходе выполнения лабораторной работы были получены навыки программирования математического сопроцессора. Разработана программа позволяющая получить значение гиперболического синуса от введенного числа.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: source.asm

```
#include <math.h>
#include <iostream>
long double x;
long double e = exp(1);
long double const two = 2;
long double neg = -1;
long double flag = 1;
long double res;
int main() {
    system("chcp 1251 > nul");
    setlocale(LC CTYPE, "rus");
    std::cout << "Введите значение х: \n";
    std::cin >> x;
    asm {
        fld qword ptr[x]
        fldZ
        FCOMP
        jge cont
        fabs
        fld qword ptr[neg]
        fstp qword ptr[flag]
        cont:
        fld qword ptr[e]
        FYL2X
        F2XM1
        fld1
        fadd st, st(1)
        fld st
        fld1
        fdivrp st(1), st
        fsubp st(1), st
        fdiv qword ptr[two]
        fmul qword ptr[flag]
        FSTP gword ptr[res]
    printf("Вычисленное значение sinh(x): %lf\n", res);
    printf("Абсолютная погрешность вычисления: %.20lf\n", abs(res -
sinh(x));
     return 0;
          }
```