D	L- NII		0	A I!I	D		A I I				
Code		Name		•	Category			2	1	0	3
Course	21CSE322T	Course	Multivariate	Techniques for Data Analytics	Course	Е	Professional Elective	L	Т	Р	С

Pre-requisite	Nil	Co-requisite	Nil		Progressive	Nil
Courses		Courses			Courses	
Course Offering	Department	Data Science and Business Sys	stems	Data Book / Codes/Standards	Nil	

Course Lea	arning Rationale (CLR):	The purpose of learning this course is to:				
CLR-1:	Utilize data characteristics in the form	n of distribution of the data structures				
CLR-2:	Learn the statistical data reduction to	n techniques				
CLR-3:	Understand the usage of multivariate	e techniques for the problem under the consideration.				
CLR-4:	: Draw valid inferences and to plan for future investigations					
CLR-5:	Optimize the different solutions that I	maximize returns and minimize cost				

Course L	earning Outcomes (CO):	At the end of this course, learners will be able to:
CO-1 :	Understand the characteristics of data	a and its properties
CO-2:	Effectively select and use the data re-	duction techniques
CO-3:	Deploy the multivariate techniques to	solve the real-world problems
CO-4 :	Acquire information and inferences from	om data to predict future output
CO-5 :	Achieve optimal solutions that maxim	ize returns

				Prog	ram	Learnin	y Outc	omes (i	70)					
1	2	3	4	5	6	7	8	9	1	11	1 2		PSO	
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO-3
-	-	-	-	•	1	-	-	-	-	-	-	1	-	-
-	-	•	-				-		ı	-	-		1	2
-	-	-	-	-	-	-	-	-	-	-	-	-	2	-
-	-	-	-	-	-	-	-	-	-	-	-	2	-	-
-	-	1	-	•	•	1	-	1	•	-	•	•	•	1

Drogram Learning Outcomes (DO)

Unit-1:INTRODUCTION TO MULTIVARIATE ANALYSIS

Meaning of Multivariate Analysis - Measurements Scales - Metric measurement scales and non-metric measurement scales - Classification of multivariate techniques - Dependence

Techniques - Inter-dependence Techniques - Applications of multivariate techniques - Demo and Examples.

- T1: Exploration of data sets and characteristics in PYTHON
- T2: Implementation of dependent and interdependence techniques in PYTHON
- T3: Explore scope of multivariate analytics in different applications using PYTHON

Unit-2: FACTOR ANALYSIS9 hours

Factor Analysis Introduction - Meanings, Objectives - Assumptions - Designing a factor analysis - Designing a factor analysis - Example - Designing a factor analysis - Demo -

Deriving factors and assessing overall factors - Interpreting the factors and validation of factor analysis - Interpreting the factors and validation of factor analysis - Demo and Examples.

- T4: Implementation of factor analysis in PYTHON
- T5: Interpreting and Validating factor analysis in PYTHON

Unit-3: CLUSTER ANALYSIS

9 hours

9 hours

Cluster Analysis Introduction - Objectives and Assumptions - Research design in cluster analysis - Deriving clusters - Assessing overall fit - Deriving clusters - Demo and examples

- Hierarchical methods Non-Hierarchical Methods Combinations.
- T7: Implement Django framework using python creating basic Django App

- T6: Implementation of cluster analysis in PYTHON
- T7: Interpretation and Validation of cluster analysis in PYTHON and R

Unit-4: DISCRIMINANT ANALYSIS

hours

Discriminant Analysis Introduction and Purpose with Examples - Discriminant Analysis concept, objective - Discriminant Analysis applications - Procedure for conducting discriminant analysis - Procedure for conducting discriminant analysis - Examples - Stepwise discriminate analysis - Mahalanobis procedure - Logit model

- T8: Implementation of discriminant analysis in PYTHON
- T9: Interpretation and Validation of discriminant analysis in PYTHON and R

Unit-5: VISUALIZATION

9 hours

Linear Programming problem Introduction - Linear Programming problem Applications - Formulation of LPP - Graphical method - Simplex method - Graphical and simplex methods - Problems, examples and demo - Graphical and Simplex - Integer Programming - Transportation problem - Assignment problem

- T10: Formulating a LPP in PYTHON from a data set
- T11: Solving LPP in PYTHON Graphical and Simplex
- T12: Implementation of transportation of assignment problem in PYTHON.

Learning Resources	1. 2. 3.	Joseph F Hair, William C Black etal , "Multivariate Data Analysis" (2016). , "Multivariate Data Analysis". Pearson Education, 7th edition, Anderson, T.W., 2003. "An introduction to statistical multivariate analysis", 3rd Edition", Wiley. Dillon, W.R. and Goldstein, M., 1984. Multivariate analysis: Methods and applications. New York (NY): Wiley.	 Malhotra, N.K. and Dash, S., 2011. Marketing Research: An Applied Orientation (; Pearson, Ed.). Hamdy A Taha, (2012) "Operations Research", Pearson, 8th Edition. S. R. Yadav, A. K. Malik (2014) "Operations Research", Oxford University Press. https://python-for-multivariate-analysis.readthedocs.io/ "A Little Book of Python for Multivariate Analysis"
-----------------------	----------------	--	---

		Continuous Learning a - By the Cour	By The CoE	
	Bloom's Level of Thinking	Formative CLA-I Average of unit test (50%)	Life Long* Learning CLA-II- Practice (10%)	Summative Final Examination (40% weightage)
		Theory	Theory	Theory
Level 1	Remember	40%	20%	40%
Level 2	Understand	40%	20%	40%
Level 3	Apply	10%	20%	10%
Level 4	Analyze	10%	20%	10%
Level 5	Evaluate	-	10%	-
Level 6	Create	-	10%	-
	Total	100 %	100 %	100 %

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
1.Mrs.Sivasankari.S , Freelance Software consultancy on Big data, analytics	1 Dr.JeyaShree, Professor, Rajalakshmi Institute of Technology	1. Dr.A.Shobanadevi, Asst. Professor, DSBS, SRMIST							