

ALGEBRA y ALGEBRA LINEAL 520142

Primer Semestre

FUNCIONES (1)

DEPARTAMENTO DE INGENIERIA MATEMATICA

Facultad de Ciencias Físicas y Matemáticas
Universidad de Concepción

Relaciones Binarias

RELACION

Dados dos subconjuntos arbitrarios A y B no vacíos, una relación binaria \mathcal{R} es una correspondencia entre los elementos de A y B, la cual se representa por un subconjunto de *pares ordenados* $R \subseteq A \times B$.

Si $(a,b) \in R$ diremos que a está relacionado con b y escribiremos aRb:

$$a\mathcal{R}b \iff (a,b) \in R$$

El conjunto $\{(a,b):(a,b)\in R\}$ forma la representación gráfica de \mathcal{R} .

- **Dominio de** \mathcal{R} : $Dom(\mathcal{R}) = \{a \in A : \exists b \in B \land (a,b) \in R\}$
- **Proof** Recorrido de \mathcal{R} : $Rec(\mathcal{R}) = \{b \in B : \exists a \in A \land (a,b) \in R\}$

La representación $R^{-1}=\{(b,a)\in B\times A:(a,b)\in R\}$ define la relación inversa de \mathcal{R} , y se denota \mathcal{R}^{-1} .

Relaciones Binarias

EJEMPLOS

Sea \mathcal{R} la relación cuya representación está dada por:

$$R = \{(2,1), (2,2), (2,3)\}.$$

Se tiene que

$$Dom(\mathcal{R}) = \{2\}, \qquad Rec(\mathcal{R}) = \{1, 2, 3\}.$$

Para $A = \{1, 2, 3\}$ y $B = \{1, 4\}$, sea \mathcal{R} la relación definida por

$$a\mathcal{R}b \iff a+b \leq 5, \quad a \in A, b \in B.$$

Así
$$R = \{(1,1), (1,4), (2,1), (3,1)\}, \quad Dom(\mathcal{R}) = A, \quad Rec(\mathcal{R}) = B.$$

 \mathcal{R} definida por:

$$a\mathcal{R}b \iff a^2 + b^2 \le 1$$

$$R = \{(a,b) \in \mathbb{R} \times \mathbb{R} : a^2 + b^2 \le 1\}, \ Dom(\mathcal{R}) = [-1,1], \ Rec(\mathcal{R}) = [-1,1].$$

FUNCION

Diremos que la relación \mathcal{R} representada por $R \subseteq A \times B$, es una función f de A en B, si y sólo si:

$$\forall x \in A, \exists ! y \in B : (x, y) \in R$$

Notación: $x\mathcal{R}y$ se escribirá y=f(x).

La relación f se describe por $\left\{ \begin{array}{ccc} f: & A & \longrightarrow & B \\ & x & \longmapsto & y=f(x) \end{array} \right.$

- y (variable dependiente) es la IMAGEN de x a través de f
- x (variable independiente) es una PRE-IMAGEN de y por f
- A DOMINIO de f A = Dom(f)
- B CODOMINIO de f B = Cod(f)
- R GRAFICO de f $Gr(f) = \{(x,y) \in A \times B : y = f(x)\}.$

Igualdad de Funciones

Decimos que las funciones

son iguales, si tienen igual dominio, igual codominio y son iguales punto a punto en la imagen. Esto es:

$$f = g \iff [(A = C) \land (B = D)] \land (\forall x \in A : f(x) = g(x))$$

Conjunto Imagen

Sea $f: A \longrightarrow B$ una función y $X \subseteq A$.

La *imagen de* X *por* f se define por:

$$f(X) = \{ y \in B : \exists x \in X, y = f(x) \}$$

= $\{ f(x) : x \in X \}$

Notación: Rec(f) = f(A)

Imagen Recíproca o Pre-Imagen

Sea $f:A\longrightarrow B$ una función y $Y\subseteq B$.

La pre-imagen o imagen recíproca de Y por f se define por:

$$f^{-1}(Y) = \{x \in A : \exists y \in Y, y = f(x)\}$$

= $\{x \in A : f(x) \in Y\}$

Algunas Propiedades de f(X) y $f^{-1}(Y)$

Sea $f:A\longrightarrow B$ una función, $X\subseteq A$ y $Y\subseteq B$.

$$f(X \cap \tilde{X}) \subseteq f(X) \cap f(\tilde{X})$$

$$f(X \cup \tilde{X}) = f(X) \cup f(\tilde{X})$$

$$f^{-1}(Y \cap \tilde{Y}) = f^{-1}(Y) \cap f^{-1}(\tilde{Y})$$

$$f^{-1}(f(X)) \supseteq X$$

$$f(f^{-1}(Y)) \subseteq Y$$

Función Sobreyectiva

Una función $f:A\longrightarrow B$ es **sobreyectiva** si y sólo si :

$$f(A) = B \,, \quad (\text{es decir}, \, Rec(f) = B)$$

$$\updownarrow$$

$$\forall \, y \, \in B, \, \exists \, x \in A: \, f(x) = y$$

$$\updownarrow$$

En términos de resolver una ecuación :

$$\forall\,y\,\in B:\,\left\{egin{array}{l} \mbox{la ecuación }f(x)=y \ \mbox{admite solución en }A \end{array}\right.$$

Función Inyectiva

Una función $f: A \longrightarrow B$ es **inyectiva** si y sólo si :

$$\forall y \in f(A), \ \exists \,! \, x \in A : \ f(x) = y$$

$$\forall x_1, x_2 \in A: f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

$$\forall x_1, x_2 \in A: x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$$

$$\forall y \in f(A): \begin{cases} \text{la ecuación} & f(x) = y \\ \text{tiene solución} & \text{única en } A \end{cases}$$

Observación

$$f:A\to B$$
 no es inyectiva $\Longleftrightarrow \exists x_1,x_2\in A:x_1\neq x_2\land f(x_1)=f(x_2)$

Función Biyectiva

Una función $f:A\longrightarrow B$ es **biyectiva** si y sólo si es **inyectiva** y **sobreyectiva**, es decir:

$$\forall y \in B, \ \exists \,! \, x \in A : \ f(x) = y$$

$$\forall y \in B: \begin{cases} \text{la ecuación} & f(x) = y \\ \text{tiene solución} & \textbf{única} \text{ en } A \end{cases}$$

Función Inversa

Sea $f: A \longrightarrow B$ una función **biyectiva**.

La función
$$g:B\longrightarrow A$$

$$y\longmapsto g(y)=x, \ {\rm donde}$$

$$g(y)=x \ {\rm si} \ y \ {\rm sólo} \ {\rm si} \ f(x)=y$$

se llama **función inversa de** f y se escribe $g = f^{-1}$.

Observación

A funciones $f:A\subseteq\mathbb{R}\longrightarrow B\subseteq\mathbb{R}$ les llamaremos **Funciones Reales**.

Observación Dada una relación \mathcal{R} , nos interesa encontrar el mayor subconjunto A de \mathbb{R} de modo que \mathcal{R} sea una función f con Dom(f) = A, es decir,

$$f: Dom(f) = A \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

En este caso:

- $Gr(f) = \{(x, f(x)) \in \mathbb{R} \times \mathbb{R} : x \in Dom(f)\}.$

Sea
$$f:Dom(f)\subseteq\mathbb{R}\longrightarrow\mathbb{R}$$
 y $X=Dom(f)$

Restricción de Funciones

A la función:

$$g: C \subseteq X \longrightarrow \mathbb{R}$$

$$x \longmapsto g(x) = f(x)$$

se le denomina la **Restricción** de f a C y se escribe $g=f\big|_C$. Observar que $Rec(f\big|_C)=f(C)$.

Ejemplo

Las funciones

$$g: [0,+\infty[\longrightarrow \mathbb{R} \\ x \longmapsto g(x) = x^2 \qquad \qquad y \qquad \qquad h:]-\infty,0] \longrightarrow \mathbb{R} \\ x \longmapsto h(x) = x^2$$

son restricciones de la función $f: \mathbb{R} \longrightarrow \mathbb{R}$

$$x \longmapsto f(x) = x^2$$

Funciones Monótonas

La función $f:X\subseteq\mathbb{R}\to\mathbb{R}$ se dice **estrictamente** :

- **©** creciente, si y sólo si, $\forall x_1, x_2 \in X : x_1 < x_2 \implies f(x_1) < f(x_2)$
- **Descripance** decreciente, si y sólo si, $\forall x_1, x_2 \in X : x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$

Nota

- Si $\forall x_1, x_2 \in X : x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$ se dice que f es monótona creciente.
- Análogamente, si $\forall x_1, x_2 \in X : x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$ diremos que f es **monótona decreciente**.

Proposición

Toda función estrictamente creciente (decreciente) es inyectiva.

Funciones Par e Impar

Una función $f:Dom(f)=X\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ se dice :

- Par, si y sólo si, $x \in X \implies [(-x \in X) \land (f(x) = f(-x))]$
- **Impar**, si y sólo si, $x \in X \implies [(-x \in X) \land (f(x) = -f(-x))]$

Operaciones con funciones

 $f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R},$

Sean $g: Dom(g) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$

 $X = Dom(f) \cap Dom(g) \neq \emptyset$.

Se define la **Función**

Suma
$$f+g:X\longrightarrow \mathbb{R}; x\in X\longmapsto (f+g)(x)=f(x)+g(x).$$

$$fg: X \longrightarrow \mathbb{R}; \quad x \in X \longmapsto (fg)(x) = f(x)g(x).$$

$$f/g: \{x \in X: g(x) \neq 0\} \longrightarrow \mathbb{R};$$
 $x \in X \longmapsto (f/g)(x) = f(x)/g(x).$

Producto por Escalar $(\lambda \in \mathbb{R})$

$$\lambda f: Dom(f) \longrightarrow \mathbb{R}; \quad x \in Dom(f) \longmapsto (\lambda f)(x) = \lambda f(x).$$

Función Compuesta

Sean $f:Dom(f)\subseteq\mathbb{R}\longrightarrow\mathbb{R}$, $g:Dom(g)\subseteq\mathbb{R}\longrightarrow\mathbb{R}$,

$$X = \left\{ x \in Dom(f) : f(x) \in Dom(g) \right\}.$$

Cuando $X \neq \emptyset$, se define la función g compuesta con f como:

$$g \circ f : X \longrightarrow \mathbb{R}$$

$$x \longmapsto (g \circ f)(x) = g(f(x))$$

Algunas Propiedades de la Función Inversa

- lacksquare Si una función f admite inversa entonces, ésta es única.
- Sean $g:A\to B$ y $f:B\to C$ dos funciones invertibles entonces $f\circ g:A\to C$ es **invertible** y

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}.$$

Los gráficos de f y f^{-1} son **simétricos** con respecto a la recta y=x.

Funciones INVERSAS

EJEMPLO

Considere la siguiente función:

$$f: A \subseteq \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = \sqrt{x^2 - 1}$$

- i) Encuentre Dom(f).
- ii) Encuentre Rec(f).
- iii) ¿Es f inyectiva?. Justifique.
- iv) Restrinja el Dom(f) a un conjunto B de modo que la función

$$g: B \to Rec(f)$$

$$x \mapsto g(x) = f(x) = \sqrt{x^2 - 1}$$

sea invertible. Defina la función inversa.

SOLUCION

i)

$$Dom(f) = \{x \in \mathbb{R} : \exists y \in \mathbb{R}, \quad \sqrt{x^2 - 1} = y\}$$

$$= \{x \in \mathbb{R} : \quad x^2 - 1 \ge 0\}$$

$$= \{x \in \mathbb{R} : \quad |x| \ge 1\}$$

$$=] - \infty, -1] \cup [1, +\infty[$$

ii)

$$\begin{aligned} Rec(f) &= \{ y \in \mathbb{R} : \exists \, x \in] - \infty, -1 \} \cup [1, +\infty[, \quad y = \sqrt{x^2 - 1} \} \\ &= \{ y \in \mathbb{R} : \exists \, x \in] - \infty, -1 \} \cup [1, +\infty[, \quad y^2 = x^2 - 1, \quad y \ge 0 \} \\ &= \{ y \in \mathbb{R} : \quad x^2 = y^2 + 1 \ge 1, \quad y \ge 0 \} \\ &= [0, +\infty[\end{aligned}$$

iii) Contraejemplo: Se observa que $\{2,-2\}\subseteq Dom(f)$ son tales que $2\neq -2$ y sin embargo f(-2)=f(2) . f no es inyectiva

iv) Así, (por ejemplo), la función

$$g:$$
 $[1, +\infty[\rightarrow [0, +\infty[$

$$x \mapsto y = g(x) = \sqrt{x^2 - 1}]$$

es invertible y su inversa es la función

$$g^{-1}: [0, +\infty[\to [1, +\infty[$$

 $y \mapsto x = q^{-1}(y)$

$$g^{-1}(y) = x \implies g(x) = y$$

$$\implies \sqrt{x^2 - 1} = y$$

$$\implies x^2 - 1 = y^2$$

$$\implies x = \sqrt{y^2 + 1}$$

Finalmente

$$g^{-1}: [0, +\infty[\to [1, +\infty[$$

 $y \mapsto g^{-1}(y) = \sqrt{y^2 + 1}]$

