Rather than using W^{-1} to convert a vector u to a vector c of coefficients over the Haar basis, and the matrix W to reconstruct the vector u from its Haar coefficients c, we can use faster algorithms that use averaging and differencing.

If c is a vector of Haar coefficients of dimension 2^n , we compute the sequence of vectors u^0, u^1, \ldots, u^n as follows:

$$u^{0} = c$$

$$u^{j+1} = u^{j}$$

$$u^{j+1}(2i-1) = u^{j}(i) + u^{j}(2^{j} + i)$$

$$u^{j+1}(2i) = u^{j}(i) - u^{j}(2^{j} + i),$$

for $j = 0, \ldots, n-1$ and $i = 1, \ldots, 2^{j}$. The reconstructed vector (signal) is $u = u^{n}$.

If u is a vector of dimension 2^n , we compute the sequence of vectors $c^n, c^{n-1}, \ldots, c^0$ as follows:

$$c^{n} = u$$

$$c^{j} = c^{j+1}$$

$$c^{j}(i) = (c^{j+1}(2i-1) + c^{j+1}(2i))/2$$

$$c^{j}(2^{j} + i) = (c^{j+1}(2i-1) - c^{j+1}(2i))/2,$$

for $j = n - 1, \dots, 0$ and $i = 1, \dots, 2^{j}$. The vector over the Haar basis is $c = c^{0}$.

We leave it as an exercise to implement the above programs in Matlab using two variables u and c, and by building iteratively 2^{j} . Here is an example of the conversion of a vector to its Haar coefficients for n=3.

Given the sequence u = (31, 29, 23, 17, -6, -8, -2, -4), we get the sequence

$$c^{3} = (31, 29, 23, 17, -6, -8, -2, -4)$$

$$c^{2} = \left(\frac{31+29}{2}, \frac{23+17}{2}, \frac{-6-8}{2}, \frac{-2-4}{2}, \frac{31-29}{2}, \frac{23-17}{2}, \frac{-6-(-8)}{2}, \frac{-2-(-4)}{2}\right)$$

$$= (30, 20, -7, -3, 1, 3, 1, 1)$$

$$c^{1} = \left(\frac{30+20}{2}, \frac{-7-3}{2}, \frac{30-20}{2}, \frac{-7-(-3)}{2}, 1, 3, 1, 1\right)$$

$$= (25, -5, 5, -2, 1, 3, 1, 1)$$

$$c^{0} = \left(\frac{25-5}{2}, \frac{25-(-5)}{2}, 5, -2, 1, 3, 1, 1\right) = (10, 15, 5, -2, 1, 3, 1, 1)$$

so c = (10, 15, 5, -2, 1, 3, 1, 1). Conversely, given c = (10, 15, 5, -2, 1, 3, 1, 1), we get the