経済分析入門第3回ゲーム理論入門

4月21日(月)

河崎 亮

(社会理工学研究科 社会工学専攻)

今日の授業の流れ

1. ゲーム理論とは?

2. 囚人のジレンマ

3. スタグハントゲーム

4. まとめ

「ゲーム」から連想(注意)

ゲーム理論とは

• <u>ゲーム的状況</u>における<u>意思決定</u>を数理的に分析する理論.

- 意思決定:
 - 選択肢から一つ選ぶ.

- ゲーム的状況:
 - 複数の意思決定主体
 - 一人の行動が他の人へ影響 互いに影響し合う状況

ゲームは身近にある

ここまでの流れ

- •「ゲーム的状況」: イメージが沸かない.
- あまり身近に感じない.

<u>今日のポイント</u>:

- ゲーム的状況は身近にもある.
- 今日これまで、必ずゲーム的状況に直面しているはず.

道を歩いているとき...

先の例においては

Aが右に避けようとし、Bも右に避けるため、ぶつからない。

先の例においては

先の例においては

Aの行動固定しても、Bがどちらかを選ぶかによって、結果が変わる.

面接もゲーム的状況

面接官

- 候補者の能力、人となりなど情報を引き出したい。
- うまく情報を引き出す質問をする必要がある.
- どのような質問をする?
- 志望者がどう答えるかを想定しなければならない。

応募者

- 企業側に自分の強みを伝えたい。
- 質問に対しうまく回答する必要がある.
- どのように答えたらよいか?
- どのような質問がされるか想定しなければならない

面接官と応募者で互いに行動を読み合う状況

今日の授業の流れ

1. ゲーム理論とは?

2. 囚人のジレンマ

3. スタグハントゲーム

4. まとめ

「囚人のジレンマ」

- ◆ AとBは窃盗の容疑で逮捕されている → A, B:囚人
- AとB両者それぞれに以下のルール:
 - 選択肢:「自白」か「黙秘」
 - 自白した場合, 相手が黙秘 →釈放.
 相手も自白 →懲役3年
 - <u>黙秘</u>した場合, 相手も黙秘→懲役1年 相手が自白 → 懲役5年

- AとB別々の部屋で選択する: 相手がどのように選択したかは事前にはわからない
- Q: AとBそれぞれ「自白」or「黙秘」どちらを選ぶか?

利得表の見方:戦略

Aの戦略

利得表の見方: 利得

AとB「黙秘」を選択したときのBの利得

В		
A	黙秘	自白
黙秘	(-1), (-1)	-5 , 0
自白	0 , -5	-3 , -3

AとB「黙秘」を選択したときのAの利得

Aの利得にだけ着目

A	黙秘	自白
黙秘	-1 , -1	-5 , 0
自白	0 , -5	-3 , -3

Bの選択に関係なく、Aが「自白」した方が高い利得を得られる.

A	黙秘	自白
黙秘	-1 , -1	-5 , 0
自白	<u>0</u> , -5	_3

このとき、Aの戦略「自白」は「黙秘」を<u>支配</u>しているという。

Bの利得にだけ着目

A	黙秘	自白
黙秘	-1 , (-1	< -5 , 0
自白	0 , (-5	< -3 , <u>-3</u>

同様に、Bにとっても「自白」は「黙秘」を支配している.

支配する戦略を選んだ結果

A	 默秘	自白
黙秘	-1 , -1	-5 , 0
自白	0 , -5	-3 , -3

「ジレンマ」

A	黙秘	自白
黙秘	-1 , -1	-5 , 0
自白	0 , -5	-3 , -3

<u>両者にとって</u>, (お互い黙秘の利得) > (お互い自白の利得) → ジレンマの由縁

囚人のジレンマの例:森林伐採

伐採の主な理由:

- 土地の利用
- 木材を供給

伐採による悪影響:

- 環境への影響: 気候変動
- 生態系への影響

ゲーム理論的モデル

- プレイヤー: 地主Aと地主B
- A, B: 森林所有者
- 戦略:「伐採」or「保存」
- ただし、どちらか一方が伐採を すれば他方の土地にも影響が 出る。

ここのモデルはRodrigues et al. (2009, Journal of Theoretical Biology Vol. 258, pp.127-134)をベースにしている.

シナリオ1

- 地主Aか地主Bどちらかが「伐採」をしても、環境へのダメージは小さいものとする。
- •「伐採」することにより、多少の利益はある.(木材の供給による利潤等)
- ただし、両者が伐採をしてしまった場合は、環境に甚大なダメージ、
- この状況 → シナリオ1と名づける.
- この状況を表した利得表 → 次のスライド

利得の設定

A	保存	伐採
保存	3,3	0,5
伐採	5 , 0	1 , 1

支配関係(Aの場合)

A	保存	伐採
保存	3,3	0,5
伐採	5,0	1, 1

Aの戦略「伐採」は「保存」を支配している.

支配関係(Bの場合)

A	保存	伐採
保存	3 , 3	< 0 , 5
伐採	5	< 1 , 1

同様に、Bにとっても「伐採」は「保存」を支配している.

結果

A	保存	伐採
保存	3 , 3	0,5
伐採	5 , 0	1 , 1

囚人のジレンマと同様に...

A	保存	伐採
保存	3,3	0,5
伐採	5 , 0	1 , 1

今日の授業の流れ

1. ゲーム理論とは?

2. 囚人のジレンマ

3. スタグハントゲーム

4. まとめ

シナリオ2における変更点

先の森林伐採のモデルに以下の変更を施す → シナリオ2と名づける.

<u>シナリオ1</u>:

- 一人だけ「伐採」→ダメージ小
- 両者が「伐採」→ ダメージ大

シナリオ2:

- 一人だけ「伐採」→ダメージ大
- ・両者が「伐採」→ ダメージ大

シナリオ2の利得表:変更点

A	保存	伐採
保存	3 , 3	-3 , 2
伐採	2 , -3	1 , 1
		(前のゲームの利得)-3

支配関係はない(1)

A	保存	伐採
保存	3,3	-3, 2
伐採	2 /, -3	1, 1

「保存」は「伐採」を支配していない、「伐採」は「保存」を支配していない、

支配関係はない(2)

A	保存	伐採
保存	3 , 3	> -3 , 2
伐採	2 , (-3	< 1 , 1)

「保存」は「伐採」を支配していない.「伐採」は「保存」を支配していない.

別の概念 う「ナッシュ均衡」

どのプレイヤーも(保存、保存)から一人だけ戦略を変えても、得をしない. → このとき、(保存、保存)はナッシュ均衡であるという.

もう一つのナッシュ均衡

A	保存	<u>伐採</u>
保存	3,3	-3 , 2
<u>伐採</u>	2 (-3	< <u>1</u> , <u>1</u>

どのプレイヤーも(伐採, 伐採)から一人だけ戦略を変えても、得をしない. → (伐採, 伐採)もナッシュ均衡である.

どのナッシュ均衡が達成される?

A	<u>保存</u>	伐採
<u>保存</u>	3,3	-3 , 2
伐採	2 , -3	1 , 1

両者にとって(保存、保存)による利得が(伐採、伐採)を上回る →(保存、保存)の方が達成されやすい?

実はこの均衡も重要?

A	保存	<u>伐採</u>
保存	3,3	-3 , 2
伐採	2 , -3	1 , 1

(伐採, 伐採)の方がある意味においては(保存, 保存)より安定と理論付けられる.

スタグハントゲーム

- スタグ(stag) シカ
- 二人の猟師: AとB
- 「シカ」を追うか、「うさぎ」を追うか
- シカの方がよいが、一人では捕まえることができない。
- ウサギは一人でも捕まえることができる.

Q:AとBはそれぞれ、シカとウサギどちらを追えばよいか?

シナリオ2とスタグハントゲームの対応

•「保存」 •「シカ」

• 「伐採」 • 「ウサギ」

今日の授業の流れ

1. ゲーム理論とは?

2. 囚人のジレンマ

3. スタグハントゲーム

4. まとめ

ゲーム理論とは(再掲)

• ゲーム的状況における意思決定を数理的に分析する.

- 意思決定:
 - 選択肢から一つ選ぶ、行動する.

- ゲーム的状況とは?
 - 複数の主体
 - 一人の行動が他の人へ影響 互いに影響し合う状況

ゲーム理論と関連する分野

非協力ゲーム理論と協力ゲーム理論

- 非協力ゲーム理論(今日の話はここ)
 - プレイヤー間のコミュニケーションなし
 - 例: 価格競争や競り合い、公共財の供給、スポーツ
 - •「非協力ゲーム理論」(社会工学科の授業, 3学期)
- •協力ゲーム理論
 - プレイヤー間のコミュニケーションあり
 - 例:談合, 国家間の交渉, 費用分担問題
 - 「協力ゲーム理論」(社会工学科の授業, 4学期)
- 次回:マッチング問題(協力ゲームに部類する?)