Multiway cut, linear programming and randomized rounding

Linear programming and randomized rounding give a 3/2 - 1/k approximation for multicut

Can we do better?

k=3: 12/11 by using LP to find the rounding!

APX-hard: cannot get $1+\epsilon$

The story behind the story

Applications:

- "minimization of communication costs in parallel computing systems...
- assigning program modules to processors ...
- partitioning files among the nodes of a network...
- assigning users to base computers in a multicomputer environment...
- partitioning the elements of a circuit into the subcircuits that will go on different chips"

Elias Dalhaus

David Johnson

Mihalis Yannakakis

Paul Seymour Christos Papadimitriou

APX hardness approx with min cuts

Gruia Calinescu

Howard Karloff

Yuval Rabani

David Karger

Cliff Stein

Philip Klein

Neal Young

Mikkel Thorup

12/11 rounding by linear programming

Techniques rounding input linear programming relaxation randomized rounding probabilistic analysis techniques geometric interpretation

Problems

- Vertex cover
 Knapsack
 Bin packing
 Set cover
 Multiway cut
- Approximation algorithms, Part II
 LP duality
 primal dual algorithms
 semi-definite programming

Multiway cut, linear programming and randomized rounding

