

$$E_g = A_{OL} \cdot V_{diff} = A_{OL} \cdot (V(+) - V(-))$$

$$A_{OL} = \infty$$

$$R_{in} = \infty$$

$$R_{out} = 0$$

$$f_T = \infty$$

$$CMRR = \infty$$

$$SR = \infty$$

$$A_{OL} \approx 100dB$$

$$R_{in} \approx 1M\Omega - 1T\Omega$$

$$R_{out} \approx 10\Omega - 1k\Omega$$

$$f_T \approx 1MHz - 500MHz$$

$$CMRR \approx 100dB$$

$$SR \approx 1 - 3000 \frac{V}{\mu s}$$

$$V = \frac{Vs}{CMRR}$$

$$I_{in(bias)}$$

$$I_{in(off)}$$

$$V_{in(off)}$$

$$U_0 \bigcirc U_{out} = 0 \qquad U_0 = 0 \bigcirc U_{out} = A_V \cdot V_{in(off)}$$

$$V_R = I_{B2}R$$

$$U_{out} = (I_{B1} - I_{B2}) RA_V = I_{bias}RA_V$$

$$V_R = I_{B1}R$$

Absolute Maximum Ratings (1)(2)

, ma a a lasta maramana a tatam g a	
Supply Voltage	±18V
Power Dissipation ⁽³⁾	(4)
Operating Temperature Range	0°C to +70°C
$T_{j(MAX)}$	150°C
Differential Input Voltage	±30V
Input Voltage Range (5)	±15V
Output Short Circuit Duration	Continuous
Storage Temperature Range	-65°C to +150°C
Lead Temp. (Soldering, 10 seconds)	260°C
ESD rating to be determined.	

DC Electrical Characteristics (1)

Symbol	Parameter	Conditions	TL082C			
			Min	Тур	Max	Units
Vos	Input Offset Voltage	$R_S = 10 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$		5	15	mV
		Over Temperature			20	mV
ΔV _{OS} /ΔΤ	Average TC of Input Offset Voltage	R _S = 10 kΩ		10		μV/°C
Ios	Input Offset Current	$T_j = 25^{\circ}C, (1)(2)$		25	200	pA
		T _i ≤ 70°C			4	nA
I _B In	Input Bias Current	$T_j = 25^{\circ}C, (1)(2)$		50	400	pA
		T _i ≤ 70°C			8	nA
R _{IN}	Input Resistance	T _j = 25°C		10 ¹²		Ω
A _{VOL}	Large Signal Voltage Gain	$V_S = \pm 15V, T_A = 25^{\circ}C,$ $V_O = \pm 10V, R_L = 2 k\Omega$	25	100		V/mV
		Over Temperature	15			V/mV
Vo	Output Voltage Swing	$V_S = \pm 15V, R_L = 10 \text{ k}\Omega$	±12	±13.5		V
V _{CM}	Input Common-Mode Voltage	V _S = ±15V	±11	+15		V
	Range			-12		V
CMRR	Common-Mode Rejection Ratio	R _S ≤ 10 kΩ	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(3)	70	100		dB
Is	Supply Current			3.6	5.6	mA

AC Electrical Characteristics

Symbol	Parameter	Conditions	TL082C			1114
			Min	Тур	Max	Units
	Amplifier to Amplifier Coupling	T _A = 25°C, f = 1Hz-20 kHz (Input Referred)		-120		dB
SR	Slew Rate	V _S = ±15V, T _A = 25°C	8	13		V/µs
GBW	Gain Bandwidth Product	V _S = ±15V, T _A = 25°C		4		MHz
e _n	Equivalent Input Noise Voltage	$T_A = 25^{\circ}C$, $R_S = 100\Omega$, $f = 1000 \text{ Hz}$		25		nV/√Hz
i _n	Equivalent Input Noise Current	T _j = 25°C, f = 1000 Hz		0.01		pA/√Hz
THD	Total Harmonic Distortion	$A_V = +10$, $R_L = 10k$, $V_O = 20 Vp - p$, BW = 20 Hz - 20 kHz		<0.02		%

$$A_{OL} = \infty \Rightarrow V_i = 0 \Rightarrow V(+) = V(-)$$

$$R_{in} = \infty \Rightarrow I_{in} = 0$$

$$I_{in} = \frac{V_{in}}{R_1} \qquad I_{out} = \frac{V_{out}}{R_2}$$

$$I_{in} = -I_{out}$$

$$V_{out}$$

$$\frac{V_{in}}{R_1} = -\frac{V_{out}}{R_2}$$

$$A_V = \frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1}$$

$$A_{OL} = \infty \Rightarrow V_{in} = 0 \Rightarrow V(+) = V(-)$$

$$R_{in} = \infty \Rightarrow I_{in} = 0$$

$$V_{out} = \sum_{in} R_{in} = 0$$

$$V_{out} = \frac{R_1}{R_1 + R_2} V_{out} \Rightarrow A_V = \frac{V_{out}}{V_{in}} = 1 + \frac{R_2}{R_1}$$

$$A_V = \frac{V_{out}}{V_{in}} = 1 + \frac{R_2}{R_1}$$

$$R_1 = \infty \Rightarrow A_V = 1$$

$$V_{out} = V_2 \frac{R_1 + R_2}{R_3 + R_4} \frac{R_4}{R_1} - V_1 \frac{R_2}{R_1}$$

$$R_1 = R_3 \& R_2 = R_4$$

$$V_{out}$$

$$V_{out} = \frac{R_2}{R_1} (V_2 - V_1)$$

$$V_{out} = \left(1 + 2\frac{R_2}{R_1}\right) \frac{R_4}{R_3} V_{in}$$

$$V_{out} = \left(1 + \frac{R_1}{R_2} + 2\frac{R_1}{R_G}\right) V_{in}$$

$$I_{in} = \frac{V_{in}(t)}{R}$$

$$I_{out} = I_C = C \frac{dV_{out}}{dt}$$

$$V_{out} \quad I_{in} = -I_{out} \quad R_d = R$$

$$V_{out} = -\frac{1}{RC} \int V_{in(t)} dt + U_0$$

$$V_{in}$$
 R_{d}
 V_{in}

$$I_{in} = I_C = C \frac{dV_{in}(t)}{dt} \qquad I_{out} = \frac{V_{out}(t)}{R}$$

$$I_{in} = -I_{out}$$

$$V_{out} \qquad V_{out} = -RC \frac{dV_{in}(t)}{dt}$$

$$\frac{V_{out}}{V_{in}} = \frac{1 - sCR_3}{1 + sCR_3}$$

$$I_{1} = f\left(V_{in}\right) = -\frac{V_{out}}{R_{2}} \Rightarrow V_{out} = R_{2} \cdot f\left(V_{in}\right) \qquad I_{1} = -\frac{V_{in}}{R_{1}} = f\left(-V_{out}\right) \Rightarrow V_{out} = -f^{-1}\left(\frac{V_{in}}{R_{1}}\right)$$

$$V_{out} = -\varphi_T \left(1 + \frac{R_3}{R_2} \right) ln \left(\frac{R_5}{R_1} \frac{V_{in}}{V_{ref}} \right)$$

$$\varphi_T = 26mV \quad \frac{R_3}{R_2} = 15.7 \quad \frac{R_5}{V_{ref}R_1} = 1$$

$$V_{out} = -log \left(V_{in} \right)$$

ELECTRONICA 410142

$$V_{out} = \frac{R_L}{R_1} |V_{in}|$$

$$V_{out} = \begin{cases} V_{outmin} & para & V_{in} < V_{ref} \\ 0 & para & V_{in} = V_{ref} \\ V_{outmax} & para & V_{in} > V_{ref} \end{cases}$$

$$V_{inmax} = \frac{R_1}{R_1 + R_2} V_{outmax}$$

$$V_{inmin} = \frac{R_1}{R_1 + R_2} V_{outmin}$$

$$V_{inmax} = -\frac{R_1}{R_2} V_{outmax}$$

$$V_{inmin} = -\frac{R_1}{R_2} V_{outmin}$$

