scGPS introduction

Quan Nguyen 2018-04-20

Contents

Given a mixed population with known subpopulations, estimate transition scores between these subpopulation	Installation instruction	1
A complete workflow of the scGPS: Given an unknown mixed population, find clusters and estimate relationship between clusters Let's plot just the optimal clustering result (with colored dendrogram)	A simple workflow of the scGPS:	2
A complete workflow of the scGPS: Given an unknown mixed population, find clusters and estimate relationship between clusters Let's plot just the optimal clustering result (with colored dendrogram)	Given a mixed population with known subpopulations, estimate transition scores between these	
Given an unknown mixed population, find clusters and estimate relationship between clusters Let's plot just the optimal clustering result (with colored dendrogram)	subpopulation	2
Let's plot just the optimal clustering result (with colored dendrogram)	A complete workflow of the scGPS:	9
Let's compare clustering results with other dimensional reduction methods (e.g., CIDR)	Given an unknown mixed population, find clusters and estimate relationship between clusters	9
Find gene markers and annotate clusters	Let's plot just the optimal clustering result (with colored dendrogram)	12
Start the scGPS prediction to find relationship between clusters	Let's compare clustering results with other dimensional reduction methods (e.g., CIDR)	12
Start the scGPS prediction to find relationship between clusters	Find gene markers and annotate clusters	14
Relationship between clusters within one sample or between two samples 21		
	Relationship between clusters within one sample or between two samples	21

Installation instruction

```
# Prior to installing scGPS you need to install the SummarizedExperiment
# bioconductor package as the following
# source('https://bioconductor.org/biocLite.R') biocLite('SummarizedExperiment')
# R/3.4.1 or above is required
# To install scGPS from github (Depending on the configuration of the local
# computer or HPC, possible custom C++ compilation may be required - see
# installation trouble-shootings below)
devtools::install_github("IMB-Computational-Genomics-Lab/scGPS")
# for C++ compilation trouble-shooting, manual download and installation can be
# done from github
{\it \# git clone https://github.com/IMB-Computational-Genomics-Lab/scGPS}
# then check in scGPS/src if any of the precompiled (e.g. those with *.so and
# *.o) files exist and delete them before recompiling
# create a Makevars file in the scGPS/src with one line: PKG_LIBS =
# $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)
\# then with the scGPS as the R working directory, manually recompile scGPS in R
# using devtools to load and install functions
devtools::document()
```

```
# update the NAMESPACE using the update_NAMESPACE.sh
sh update_NAMESPACE.sh
#for window system, to update the NAMESPACE: copy and paste the content of the file NAMESPACE_toAdd_cpp
```

A simple workflow of the scGPS:

Given a mixed population with known subpopulations, estimate transition scores between these subpopulation

```
devtools::load all()
# load mixed population 1 (loaded from sample1 dataset, named it as day2)
day2 <- sample1
mixedpop1 <- NewscGPS_SME(ExpressionMatrix = day2$dat2_counts, GeneMetadata = day2$dat2geneInfo,
    CellMetadata = day2$dat2 clusters)
# load mixed population 2 (loaded from sample2 dataset, named it as day5)
day5 <- sample2
mixedpop2 <- NewscGPS_SME(ExpressionMatrix = day5$dat5_counts, GeneMetadata = day5$dat5geneInfo,
    CellMetadata = day5$dat5 clusters)
# load gene list (this can be any lists of user selected genes)
genes <- GeneList
genes <- genes$Merged_unique</pre>
# select a subpopulation
c_selectID <- 1</pre>
# run the test bootstrap
sink("temp")
LSOLDA_dat <- bootstrap_scGPS(nboots = 2, mixedpop1 = mixedpop1,
    mixedpop2 = mixedpop2, genes = genes, c_selectID, listData = list())
#>
#> Call: glmnet(x = t(predictor_S1), y = y_cat, family = "binomial")
#>
#>
         Df
                   %Dev
                          Lambda
#>
     [1,] 0 -2.563e-15 2.692e-01
#>
     [2,] 1 3.572e-02 2.453e-01
     [3,] 2 7.492e-02 2.235e-01
#>
#>
     [4,] 2 1.105e-01 2.036e-01
    [5,] 2 1.415e-01 1.855e-01
#>
#>
    [6,] 3 1.733e-01 1.690e-01
     [7,] 3 2.025e-01 1.540e-01
#>
    [8,] 3 2.286e-01 1.403e-01
#>
#>
    [9,] 3 2.520e-01 1.279e-01
#> [10,] 4 2.743e-01 1.165e-01
#> [11,] 6 2.966e-01 1.062e-01
#> [12,] 6 3.186e-01 9.674e-02
#> [13,] 7 3.386e-01 8.814e-02
#> [14,] 8 3.574e-01 8.031e-02
```

```
[15,] 8 3.746e-01 7.318e-02
   [16,] 8 3.900e-01 6.668e-02
    [17,] 9 4.043e-01 6.075e-02
    [18,] 11 4.203e-01 5.536e-02
#>
    [19,] 14 4.374e-01 5.044e-02
#>
    [20,] 17 4.556e-01 4.596e-02
#>
    [21,] 19 4.735e-01 4.187e-02
   [22,] 22 4.906e-01 3.815e-02
   [23,] 27 5.080e-01 3.476e-02
#>
    [24,] 27 5.257e-01 3.168e-02
    [25,] 30 5.428e-01 2.886e-02
#>
   [26,] 34 5.601e-01 2.630e-02
    [27,] 37 5.776e-01 2.396e-02
#>
#>
    [28,] 36 5.953e-01 2.183e-02
#>
    [29,] 37 6.107e-01 1.989e-02
#>
   [30,] 39 6.253e-01 1.813e-02
    [31,] 40 6.398e-01 1.652e-02
    [32,] 44 6.544e-01 1.505e-02
#>
   [33,] 46 6.684e-01 1.371e-02
   [34,] 47 6.817e-01 1.249e-02
#>
#>
    [35,] 51 6.952e-01 1.138e-02
#>
    [36,] 52 7.086e-01 1.037e-02
    [37,] 53 7.212e-01 9.451e-03
   [38,] 54 7.329e-01 8.612e-03
#>
    [39,] 56 7.441e-01 7.846e-03
#>
#>
   [40,] 58 7.554e-01 7.149e-03
#>
   [41,] 58 7.661e-01 6.514e-03
    [42,] 60 7.766e-01 5.936e-03
#>
#>
    [43,] 63 7.871e-01 5.408e-03
    [44,] 65 7.975e-01 4.928e-03
   [45,] 64 8.075e-01 4.490e-03
    [46,] 67 8.169e-01 4.091e-03
    [47,] 67 8.258e-01 3.728e-03
   [48,] 65 8.342e-01 3.397e-03
   [49,] 66 8.419e-01 3.095e-03
#>
    [50,] 67 8.493e-01 2.820e-03
#>
    [51,] 66 8.565e-01 2.569e-03
    [52,] 67 8.635e-01 2.341e-03
#>
    [53,] 68 8.704e-01 2.133e-03
    [54,] 67 8.772e-01 1.944e-03
#>
   [55,] 67 8.838e-01 1.771e-03
   [56,] 69 8.908e-01 1.614e-03
   [57,] 69 8.976e-01 1.470e-03
#>
    [58,] 69 9.043e-01 1.340e-03
#>
#>
    [59,] 68 9.108e-01 1.221e-03
#>
   [60,] 67 9.171e-01 1.112e-03
    [61,] 66 9.232e-01 1.013e-03
    [62,] 66 9.291e-01 9.234e-04
   [63,] 67 9.349e-01 8.414e-04
#> [64,] 68 9.405e-01 7.666e-04
#>
    [65,] 68 9.458e-01 6.985e-04
#> [66,] 69 9.507e-01 6.365e-04
#> [67,] 69 9.551e-01 5.799e-04
```

```
#> [68,] 69 9.593e-01 5.284e-04
   [69,] 69 9.630e-01 4.815e-04
    [70,] 69 9.664e-01 4.387e-04
   [71,] 69 9.695e-01 3.997e-04
#>
    [72,] 69 9.723e-01 3.642e-04
    [73,] 69 9.748e-01 3.318e-04
#>
   [74,] 69 9.771e-01 3.024e-04
   [75,] 69 9.792e-01 2.755e-04
   [76,] 69 9.811e-01 2.510e-04
#>
   [77,] 68 9.828e-01 2.287e-04
   [78,] 68 9.843e-01 2.084e-04
#> [79,] 68 9.858e-01 1.899e-04
   [80,] 68 9.870e-01 1.730e-04
#>
   [81,] 68 9.882e-01 1.577e-04
#>
#>
   [82,] 68 9.893e-01 1.436e-04
   [83,] 68 9.902e-01 1.309e-04
    [84,] 68 9.911e-01 1.193e-04
   [85,] 68 9.919e-01 1.087e-04
#> [86,] 68 9.926e-01 9.901e-05
#> [87,] 69 9.933e-01 9.022e-05
    [88,] 69 9.939e-01 8.220e-05
#> [89,] 69 9.944e-01 7.490e-05
#> [90,] 69 9.949e-01 6.824e-05
#> [91,] 69 9.954e-01 6.218e-05
   [92,] 69 9.958e-01 5.666e-05
#> [93,] 69 9.961e-01 5.162e-05
#> [94,] 68 9.965e-01 4.704e-05
#> [95,] 69 9.968e-01 4.286e-05
#> [96,] 69 9.971e-01 3.905e-05
#> [97,] 69 9.973e-01 3.558e-05
#> [98,] 69 9.976e-01 3.242e-05
#> [99,] 69 9.978e-01 2.954e-05
#> [100,] 69 9.980e-01 2.692e-05
#> [1] "done bootstrap 1"
#>
\# Call: qlmnet(x = t(predictor_S1), y = y_cat, family = "binomial")
#>
#>
                  %Deυ
                         Lambda
         Df
#>
     [1,] 0 -2.563e-15 2.735e-01
     [2,] 2 4.502e-02 2.492e-01
#>
#>
    [3,] 2 8.746e-02 2.270e-01
#>
    [4,] 2 1.242e-01 2.069e-01
#>
    [5,] 2 1.566e-01 1.885e-01
     [6,] 2 1.853e-01 1.718e-01
#>
#>
     [7,] 2 2.110e-01 1.565e-01
#>
     [8,] 2 2.341e-01 1.426e-01
     [9,] 2 2.550e-01 1.299e-01
#>
#>
    [10,] 4 2.765e-01 1.184e-01
   [11,] 7 2.987e-01 1.079e-01
#>
   [12,] 8 3.254e-01 9.828e-02
#>
   [13,] 9 3.505e-01 8.955e-02
#>
#> [14,] 9 3.740e-01 8.160e-02
#> [15,] 9 3.950e-01 7.435e-02
```

```
[16,] 10 4.147e-01 6.774e-02
   [17,] 11 4.328e-01 6.172e-02
   [18,] 12 4.497e-01 5.624e-02
   [19,] 15 4.668e-01 5.124e-02
#>
    [20,] 15 4.839e-01 4.669e-02
#>
    [21,] 16 5.001e-01 4.254e-02
#>
    [22,] 19 5.196e-01 3.876e-02
   [23,] 20 5.392e-01 3.532e-02
   [24,] 22 5.582e-01 3.218e-02
#>
    [25,] 25 5.766e-01 2.932e-02
    [26,] 25 5.939e-01 2.672e-02
#>
   [27,] 26 6.105e-01 2.435e-02
    [28,] 27 6.262e-01 2.218e-02
#>
#>
    [29,] 34 6.421e-01 2.021e-02
#>
    [30,] 35 6.582e-01 1.842e-02
   [31,] 35 6.733e-01 1.678e-02
    [32,] 37 6.874e-01 1.529e-02
    [33,] 42 7.023e-01 1.393e-02
   [34,] 43 7.170e-01 1.269e-02
   [35,] 43 7.309e-01 1.157e-02
#>
#>
    [36,] 44 7.436e-01 1.054e-02
#>
    [37,] 46 7.555e-01 9.602e-03
   [38,] 47 7.666e-01 8.749e-03
   [39,] 46 7.772e-01 7.972e-03
#>
   [40,] 47 7.873e-01 7.264e-03
#>
   [41,] 49 7.977e-01 6.618e-03
   [42,] 51 8.076e-01 6.031e-03
#>
   [43,] 53 8.170e-01 5.495e-03
#>
#>
   [44,] 54 8.261e-01 5.007e-03
    [45,] 59 8.350e-01 4.562e-03
   [46,] 61 8.438e-01 4.157e-03
    [47,] 61 8.522e-01 3.787e-03
   [48,] 60 8.602e-01 3.451e-03
   [49,] 62 8.680e-01 3.144e-03
   [50,] 64 8.758e-01 2.865e-03
#>
    [51,] 63 8.835e-01 2.610e-03
#>
#>
    [52,] 63 8.909e-01 2.379e-03
    [53,] 63 8.982e-01 2.167e-03
   [54,] 64 9.050e-01 1.975e-03
#>
    [55,] 62 9.115e-01 1.799e-03
   [56,] 62 9.175e-01 1.639e-03
  [57,] 63 9.232e-01 1.494e-03
   [58,] 65 9.288e-01 1.361e-03
#>
    [59,] 67 9.342e-01 1.240e-03
#>
#>
    [60,] 67 9.394e-01 1.130e-03
   [61,] 68 9.444e-01 1.030e-03
    [62,] 67 9.490e-01 9.382e-04
    [63,] 69 9.533e-01 8.548e-04
   [64,] 69 9.573e-01 7.789e-04
#> [65,] 68 9.611e-01 7.097e-04
#>
   [66,] 68 9.645e-01 6.466e-04
#> [67,] 67 9.677e-01 5.892e-04
#> [68,] 69 9.706e-01 5.368e-04
```

```
#> [69,] 70 9.733e-01 4.892e-04
#> [70,] 70 9.757e-01 4.457e-04
#> [71,] 70 9.780e-01 4.061e-04
#> [72,] 70 9.800e-01 3.700e-04
#> [73,] 70 9.818e-01 3.372e-04
#> [74,] 69 9.834e-01 3.072e-04
#> [75,] 68 9.849e-01 2.799e-04
#> [76,] 68 9.863e-01 2.550e-04
#> [77,] 68 9.875e-01 2.324e-04
#> [78,] 68 9.886e-01 2.117e-04
#> [79,] 68 9.897e-01 1.929e-04
#> [80,] 68 9.906e-01 1.758e-04
#> [81,] 68 9.914e-01 1.602e-04
#> [82,] 68 9.922e-01 1.459e-04
#> [83,] 69 9.929e-01 1.330e-04
#> [84,] 69 9.935e-01 1.212e-04
#> [85,] 69 9.941e-01 1.104e-04
#> [86,] 69 9.946e-01 1.006e-04
#> [87,] 69 9.951e-01 9.166e-05
#> [88,] 69 9.955e-01 8.352e-05
#> [89,] 69 9.959e-01 7.610e-05
#> [90,] 69 9.963e-01 6.934e-05
#> [91,] 69 9.966e-01 6.318e-05
#> [92,] 69 9.969e-01 5.756e-05
#> [93,] 69 9.972e-01 5.245e-05
#> [94,] 69 9.974e-01 4.779e-05
#> [95,] 69 9.977e-01 4.355e-05
#> [96,] 69 9.979e-01 3.968e-05
#> [97,] 69 9.980e-01 3.615e-05
#> [98,] 69 9.982e-01 3.294e-05
#> [99,] 68 9.984e-01 3.001e-05
#> [100,] 68 9.985e-01 2.735e-05
#> [1] "done bootstrap 2"
sink()
# display the list of result information in the LASOLDA_dat object
names(LSOLDA_dat)
#> [1] "Accuracy"
                    "LassoGenes" "Deviance"
                                                 "LassoFit"
#> [5] "LDAFit"
                   "predictor_S1" "LassoPredict" "LDAPredict"
LSOLDA dat$LassoPredict
#> [[1]]
#> [[1]][[1]]
#> [1] "LASSO for subpop1 in target mixedpop2"
#> [[1]][[2]]
#> [1] 98.93048
#> [[1]][[3]]
#> [1] "LASSO for subpop2 in target mixedpop2"
#>
#> [[1]][[4]]
#> [1] 100
```

```
#> [[1]][[5]]
#> [1] "LASSO for subpop3 in target mixedpop2"
#>
#> [[1]][[6]]
#> [1] 98.49624
#> [[1]][[7]]
#> [1] "LASSO for subpop4 in target mixedpop2"
#> [[1]][[8]]
#> [1] 100
#>
#>
#> [[2]]
#> [[2]][[1]]
#> [1] "LASSO for subpop1 in target mixedpop2"
#> [[2]][[2]]
#> [1] 100
#>
#> [[2]][[3]]
#> [1] "LASSO for subpop2 in target mixedpop2"
#> [[2]][[4]]
#> [1] 99.28571
#>
#> [[2]][[5]]
#> [1] "LASSO for subpop3 in target mixedpop2"
#>
#> [[2]][[6]]
#> [1] 97.74436
#> [[2]][[7]]
#> [1] "LASSO for subpop4 in target mixedpop2"
#>
#> [[2]][[8]]
#> [1] 100
LSOLDA_dat$LDAPredict
#> [[1]]
#> [[1]][[1]]
#> [1] "LDA for subpop 1 in target mixedpop2"
#>
#> [[1]][[2]]
#> [1] 83.42246
#>
#> [[1]][[3]]
#> [1] "LDA for subpop 2 in target mixedpop2"
#> [[1]][[4]]
#> [1] 70
#>
#> [[1]][[5]]
#> [1] "LDA for subpop 3 in target mixedpop2"
```

```
#> [[1]][[6]]
#> [1] 54.88722
#>
#> [[1]][[7]]
#> [1] "LDA for subpop 4 in target mixedpop2"
#> [[1]][[8]]
#> [1] 65
#>
#>
#> [[2]]
#> [[2]][[1]]
#> [1] "LDA for subpop 1 in target mixedpop2"
#> [[2]][[2]]
#> [1] 33.15508
#> [[2]][[3]]
#> [1] "LDA for subpop 2 in target mixedpop2"
#>
#> [[2]][[4]]
#> [1] 54.28571
#>
#> [[2]][[5]]
#> [1] "LDA for subpop 3 in target mixedpop2"
#> [[2]][[6]]
#> [1] 30.82707
#>
#> [[2]][[7]]
#> [1] "LDA for subpop 4 in target mixedpop2"
#> [[2]][[8]]
#> [1] 45
# summary results LDA
summary_prediction_lda(LSOLDA_dat = LSOLDA_dat, nPredSubpop = 4)
                  V1
#> 1 83.4224598930481 33.1550802139037 LDA for subpop 1 in target mixedpop2
                   70 54.2857142857143 LDA for subpop 2 in target mixedpop2
#> 3 54.8872180451128 30.8270676691729 LDA for subpop 3 in target mixedpop2
#> 4
                                    45 LDA for subpop 4 in target mixedpop2
# summary results Lasso
summary_prediction_lasso(LSOLDA_dat = LSOLDA_dat, nPredSubpop = 4)
                                    V2
                   V1
#> 1 98.9304812834225
                                   100 LASSO for subpop1 in target mixedpop2
                100 99.2857142857143 LASSO for subpop2 in target mixedpop2
#> 3 98.4962406015038 97.7443609022556 LASSO for subpop3 in target mixedpop2
                 100
                                  100 LASSO for subpop4 in target mixedpop2
#> 4
# summary deviance
```

```
summary_deviance(object = LSOLDA_dat)
#> $allDeviance
#> [1] "0.1733" "0.374"
#>
#> $DeviMax
          Dfd Deviance
                               DEgenes
          0 -2.563e-15 genes_cluster1
#> 1
          2
                 0.255 genes_cluster1
#> 3
           4
                  0.2765 genes_cluster1
#> 4
           7
                0.2987 genes_cluster1
          8 0.3254 genes_cluster1
#> 5
#> 6 9
                 0.374 genes_cluster1
#> 7 remaining
                      1
                               DEgenes
#>
#> $LassoGenesMax
#>
                                 1
                                                    name
#> (Intercept)
                       0.05419448
                                             (Intercept)
#> CXCR4_ENSG00000121966 -0.02224918 CXCR4_ENSG00000121966
#> FN1_ENSG00000115414 -0.01035844 FN1_ENSG00000115414
#> FOXC1_ENSG00000054598 0.10397767 FOXC1_ENSG00000054598
#> GJA1_ENSG00000152661 -0.04297188 GJA1_ENSG00000152661
#> T_ENSG00000164458
                       0.06802307
                                       T_ENSG00000164458
#> SOX17_ENSG00000164736 -0.03171682 SOX17_ENSG00000164736
#> TPM1_ENSG00000140416 -0.05214643 TPM1_ENSG00000140416
#> MESP1_ENSG00000166823 0.07837061 MESP1_ENSG00000166823
#> FOXA2_ENSG00000125798 -0.01473921 FOXA2_ENSG00000125798
```

A complete workflow of the scGPS:

Given an unknown mixed population, find clusters and estimate relationship between clusters

```
#Let's find clustering information using CORE (skip this if clusters are known)
day5 <- sample2
cellnames <- colnames(day5$dat5_counts)</pre>
cluster <-day5$dat5_clusters</pre>
cellnames <-data.frame("Cluster"=cluster, "cellBarcodes" = cellnames)</pre>
mixedpop2 <-NewscGPS_SME(ExpressionMatrix = day5$dat5_counts, GeneMetadata = day5$dat5geneInfo, CellMet
#let's find the CORE clusters
CORE_cluster <- CORE_scGPS(mixedpop2, remove_outlier = c(0), PCA=FALSE)</pre>
#> [1] "Identifying top variable genes"
#> [1] "Calculating distance matrix"
#> [1] "Performing hierarchical clustering"
#> [1] "Finding clustering information"
#> [1] "No more outliers detected after 1 filtering round"
#> [1] "writing clustering result for run 1"
#> [1] "writing clustering result for run 2"
#> [1] "writing clustering result for run 3"
#> [1] "writing clustering result for run 4"
#> [1] "writing clustering result for run 5"
```

```
#> [1] "writing clustering result for run 6"
#> [1] "writing clustering result for run 7"
#> [1] "writing clustering result for run 8"
#> [1] "writing clustering result for run 9"
#> [1] "writing clustering result for run 10"
#> [1] "writing clustering result for run 11"
#> [1] "writing clustering result for run 12"
#> [1] "writing clustering result for run 13"
#> [1] "writing clustering result for run 14"
#> [1] "writing clustering result for run 15"
#> [1] "writing clustering result for run 16"
#> [1] "writing clustering result for run 17"
#> [1] "writing clustering result for run 18"
#> [1] "writing clustering result for run 19"
#> [1] "writing clustering result for run 20"
#> [1] "writing clustering result for run 21"
#> [1] "writing clustering result for run 22"
#> [1] "writing clustering result for run 23"
#> [1] "writing clustering result for run 24"
#> [1] "writing clustering result for run 25"
#> [1] "writing clustering result for run 26"
#> [1] "writing clustering result for run 27"
#> [1] "writing clustering result for run 28"
#> [1] "writing clustering result for run 29"
#> [1] "writing clustering result for run 30"
#> [1] "writing clustering result for run 31"
#> [1] "writing clustering result for run 32"
#> [1] "writing clustering result for run 33"
#> [1] "writing clustering result for run 34"
#> [1] "writing clustering result for run 35"
#> [1] "writing clustering result for run 36"
#> [1] "writing clustering result for run 37"
#> [1] "writing clustering result for run 38"
#> [1] "writing clustering result for run 39"
#> [1] "writing clustering result for run 40"
#> [1] "Done clustering, moving to stability calculation..."
#> [1] "Done calculating stability..."
#> [1] "Start finding optimal clustering..."
#> [1] "Done finding optimal clustering..."
#let's plot all clusters
plot_CORE(CORE_cluster$tree, CORE_cluster$Cluster)
```

Cluster Dendrogram

#you can customise the cluster color bars (provide color_branch values)
plot_CORE(CORE_cluster\$tree, CORE_cluster\$Cluster, color_branch = c("#208eb7", "#6ce9d3", "#1c5e39", "#

Cluster Dendrogram

Let's plot just the optimal clustering result (with colored dendrogram)

```
#extract optimal index identified by CORE_scGPS
optimal_index = which(CORE_cluster$optimalClust$KeyStats$Height == CORE_cluster$optimalClust$OptimalRes

plot_optimal_CORE(original_tree= CORE_cluster$tree, optimal_cluster = unlist(CORE_cluster$Cluster[optim#> [1] "Ordering and assigning labels..."
#> [1] 2
#> [1] 128 270 NA
#> [1] 128 270 393
#> [1] "Plotting the colored dendrogram now...."
```


#> [1] "Plotting the bar underneath now...."

Let's compare clustering results with other dimensional reduction methods (e.g., CIDR)

```
library(cidr)
t <- CIDR_scGPS(expression.matrix=assay(mixedpop2))
#> [1] "building cidr object..."
#> [1] "determine dropout candidates..."
#> [1] "determine the imputation weighting threshold..."
#> [1] "computes the _CIDR_ dissimilarity matrix..."
#> [1] "PCA plot with proportion of variance explained..."
```

Proportion of Variation

p2

```
#> [1] "find the number of PC..."
#> [1] "perform clustering..."
p2 <-plotReduced_scGPS(t, color_fac = factor(colData(mixedpop2)[,1]),palletes =1:length(unique(colData(mixedpop2)[,1]))
#> Attaching package: 'cowplot'
#> The following object is masked from 'package:ggplot2':
#> ggsave
```


Find gene markers and annotate clusters

```
#load gene list (this can be any lists of user-selected genes)
genes <-GeneList</pre>
genes <-genes$Merged_unique</pre>
#the gene list can also be objectively identified by differential expression analysis
#cluster information is requied for findMarkers_scGPS. Here, we use CORE results.
Optimal_index <- which( CORE_cluster soptimal Clust KeyStats Height == CORE_cluster optimal Clust Optimal R
colData(mixedpop2)[,1] <- unlist(CORE_cluster$Cluster[[Optimal_index]])</pre>
suppressMessages(library(locfit))
suppressMessages(library(DESeq))
DEgenes <- findMarkers_scGPS(expression_matrix=assay(mixedpop2), cluster = colData(mixedpop2)[,1],
                             selected_cluster=unique(colData(mixedpop2)[,1]))
#> [1] "Start estimate dispersions for cluster 1..."
#> [1] "Done estimate dispersions. Start nbinom test for cluster 1..."
#> [1] "Done nbinom test for cluster 1 ..."
#> [1] "Adjust foldchange by subtracting basemean to 1..."
#> [1] "Start estimate dispersions for cluster 2..."
#> [1] "Done estimate dispersions. Start nbinom test for cluster 2..."
#> [1] "Done nbinom test for cluster 2 ..."
#> [1] "Adjust foldchange by subtracting basemean to 1..."
```

```
#> [1] "Start estimate dispersions for cluster 3..."
#> [1] "Done estimate dispersions. Start nbinom test for cluster 3..."
#> [1] "Done nbinom test for cluster 3 ..."
#> [1] "Adjust foldchange by subtracting basemean to 1..."
#the output contains dataframes for each cluster.
#the data frame contains all genes, sorted by p-values
names(DEgenes)
#> [1] "DE_Subpop1vsRemaining" "DE_Subpop2vsRemaining" "DE_Subpop3vsRemaining"
#you can annotate the identified clusters
DEgeneList_3vsOthers <- DEgenes$DE_Subpop3vsRemaining$id</pre>
#users need to check the format of the gene input to make sure they are consistent to
#the gene names in the expression matrix
DEgeneList_3vsOthers <-gsub("_.*", "", DEgeneList_3vsOthers )</pre>
#the following command saves the file "PathwayEnrichment.xlsx" to the working dir
#use 500 top DE genes
suppressMessages(library(DOSE))
suppressMessages(library(ReactomePA))
suppressMessages(library(clusterProfiler))
enrichment_test <- annotate_scGPS(DEgeneList_3vsOthers[1:500], pvalueCutoff=0.05, gene_symbol=TRUE,outp
#> [1] "Original gene number in geneList"
#> [1] 500
#> [1] "Number of genes successfully converted"
#> [1] 490
#the enrichment outputs can be displayed by running
dotplot(enrichment_test, showCategory=15)
```


Start the scGPS prediction to find relationship between clusters

```
#select a subpopulation, and input gene list
c_selectID <- 1</pre>
genes = DEgenes$DE_Subpop1vsRemaining$id[1:500]
#format gene names
genes <- gsub("_.*", "", genes)</pre>
#run the test bootstrap with nboots = 2 runs
sink("temp")
LSOLDA_dat <- bootstrap_scGPS(nboots = 2,mixedpop1 = mixedpop2, mixedpop2 = mixedpop2, genes=genes, c_s
#> Call: qlmnet(x = t(predictor_S1), y = y_cat, family = "binomial")
#>
#>
         Df
                   %Dev Lambda
     [1,] 0 -1.922e-15 0.358100
#>
     [2,] 1 3.293e-02 0.341800
#>
#>
     [3,] 1 6.331e-02 0.326300
#>
     [4,] 1 9.161e-02 0.311400
#>
     [5,] 1 1.182e-01 0.297300
#>
     [6,] 1 1.434e-01 0.283800
     [7,] 1 1.675e-01 0.270900
#>
#>
     [8,] 1 1.905e-01 0.258600
     [9,] 1 2.126e-01 0.246800
#>
    [10,] 1 2.340e-01 0.235600
#> [11,] 1 2.547e-01 0.224900
```

```
[12,] 1 2.747e-01 0.214700
    [13,] 1 2.942e-01 0.204900
    [14,] 1 3.131e-01 0.195600
    [15,] 1 3.315e-01 0.186700
#>
    [16,] 1 3.493e-01 0.178200
    [17,] 1 3.667e-01 0.170100
#>
    [18,] 1 3.835e-01 0.162400
    [19,] 1 3.999e-01 0.155000
    [20,] 1 4.158e-01 0.148000
    [21,] 1 4.313e-01 0.141200
    [22,] 1 4.462e-01 0.134800
#>
    [23,] 1 4.607e-01 0.128700
    [24,] 1 4.748e-01 0.122800
#>
#>
    [25,] 2 4.888e-01 0.117300
#>
    [26,] 2 5.029e-01 0.111900
    [27,] 2 5.165e-01 0.106800
    [28,] 2 5.295e-01 0.102000
    [29,] 2 5.421e-01 0.097350
    [30,] 2 5.542e-01 0.092920
    [31,] 2 5.659e-01 0.088700
#>
#>
    [32,] 2 5.771e-01 0.084670
#>
    [33,] 3 5.880e-01 0.080820
    [34,] 3 5.988e-01 0.077150
    [35,] 3 6.092e-01 0.073640
#>
    [36,] 4 6.193e-01 0.070290
#>
    [37,] 4 6.297e-01 0.067100
    [38,] 4 6.397e-01 0.064050
#>
#>
    [39,] 4 6.494e-01 0.061140
    [40,] 5 6.588e-01 0.058360
#>
    [41,] 5 6.682e-01 0.055710
#>
    [42,] 6 6.772e-01 0.053170
    [43,] 8 6.864e-01 0.050760
    [44,] 9 6.956e-01 0.048450
    [45,] 10 7.049e-01 0.046250
    [46,] 10 7.138e-01 0.044150
    [47,] 11
             7.226e-01 0.042140
#>
    [48,] 11 7.311e-01 0.040220
    [49,] 11 7.393e-01 0.038400
    [50,] 12 7.474e-01 0.036650
#>
    [51,] 12 7.554e-01 0.034980
    [52,] 13 7.632e-01 0.033390
#>
    [53,] 13 7.707e-01 0.031880
    [54,] 14 7.779e-01 0.030430
#>
    [55,] 15 7.849e-01 0.029040
#>
#>
    [56,] 15 7.918e-01 0.027720
#>
    [57,] 15 7.985e-01 0.026460
    [58,] 16 8.049e-01 0.025260
    [59,] 16 8.111e-01 0.024110
    [60,] 19 8.173e-01 0.023020
#>
#>
   [61,] 20 8.237e-01 0.021970
    [62,] 20 8.298e-01 0.020970
#>
    [63,] 21 8.358e-01 0.020020
#> [64,] 21 8.416e-01 0.019110
```

```
[65,] 23 8.473e-01 0.018240
    [66,] 25 8.530e-01 0.017410
    [67,] 25 8.586e-01 0.016620
    [68,] 25 8.639e-01 0.015870
#>
    [69,] 26 8.691e-01 0.015140
    [70,] 27 8.741e-01 0.014460
#>
    [71,] 27 8.789e-01 0.013800
    [72,] 28 8.836e-01 0.013170
    [73,] 30 8.881e-01 0.012570
#>
    [74,] 32 8.925e-01 0.012000
    [75,] 36 8.970e-01 0.011460
#>
#>
   [76,] 36 9.014e-01 0.010940
    [77,] 36 9.056e-01 0.010440
#>
    [78,] 37 9.097e-01 0.009964
#>
#>
    [79,] 37 9.135e-01 0.009511
   [80,] 37 9.173e-01 0.009079
    [81,] 36 9.208e-01 0.008666
    [82,] 36 9.242e-01 0.008272
   [83,] 36 9.274e-01 0.007896
    [84,] 36 9.305e-01 0.007537
#>
    [85,] 36 9.335e-01 0.007195
#>
    [86,] 38 9.364e-01 0.006868
    [87,] 39 9.391e-01 0.006555
   [88,] 39 9.417e-01 0.006258
    [89,] 41 9.443e-01 0.005973
#>
   [90,] 40 9.467e-01 0.005702
   [91,] 41 9.490e-01 0.005442
#>
#>
   [92,] 41 9.512e-01 0.005195
#>
   [93,] 42 9.533e-01 0.004959
   [94,] 42 9.554e-01 0.004734
   [95,] 43 9.573e-01 0.004518
   [96,] 45 9.592e-01 0.004313
   [97,] 47 9.611e-01 0.004117
#> [98,] 49 9.628e-01 0.003930
#> [99,] 49 9.645e-01 0.003751
#> [100,] 49 9.661e-01 0.003581
#> [1] "done bootstrap 1"
#> Call: glmnet(x = t(predictor_S1), y = y_cat, family = "binomial")
#>
                  %Dev
                         Lambda
         Df
     [1,] 0 -1.922e-15 0.336200
#>
     [2,] 1 2.909e-02 0.320900
     [3,] 1 5.618e-02 0.306400
#>
#>
     [4,] 1 8.186e-02 0.292400
#>
     [5,] 1 1.065e-01 0.279100
#>
     [6,] 1 1.304e-01 0.266500
#>
     [7,] 1 1.536e-01 0.254300
     [8,] 1 1.762e-01 0.242800
#>
#>
    [9,] 1 1.982e-01 0.231700
#>
    [10,] 1 2.197e-01 0.221200
    [11,] 1 2.407e-01 0.211200
    [12,] 1 2.611e-01 0.201600
```

```
[13,] 1 2.811e-01 0.192400
    [14,] 2 3.011e-01 0.183700
    [15,] 2 3.222e-01 0.175300
    [16,] 2 3.425e-01 0.167300
#>
    [17,] 3 3.622e-01 0.159700
    [18,] 4 3.815e-01 0.152500
#>
    [19,] 4 4.000e-01 0.145500
    [20,] 4 4.178e-01 0.138900
#>
    [21,] 4 4.348e-01 0.132600
    [22,] 4 4.512e-01 0.126600
    [23,] 4 4.669e-01 0.120800
#>
    [24,] 4 4.820e-01 0.115300
    [25,] 4 4.965e-01 0.110100
#>
    [26,] 4 5.104e-01 0.105100
#>
#>
    [27,] 4 5.238e-01 0.100300
    [28,] 4 5.366e-01 0.095760
    [29,] 4 5.489e-01 0.091410
    [30,] 4 5.607e-01 0.087250
    [31,] 5 5.735e-01 0.083290
    [32,] 5 5.857e-01 0.079500
#>
#>
    [33,] 7 5.977e-01 0.075890
#>
    [34,] 8 6.096e-01 0.072440
    [35,] 7 6.211e-01 0.069150
    [36,] 7 6.321e-01 0.066000
    [37,] 9 6.428e-01 0.063000
    [38,] 10 6.532e-01 0.060140
    [39,] 10 6.636e-01 0.057410
#>
    [40,] 11 6.739e-01 0.054800
    [41,] 11 6.837e-01 0.052310
#>
    [42,] 12 6.933e-01 0.049930
    [43,] 13 7.026e-01 0.047660
    [44,] 12 7.115e-01 0.045490
    [45,] 12 7.200e-01 0.043430
    [46,] 11 7.282e-01 0.041450
    [47,] 11 7.360e-01 0.039570
#>
    [48,] 12 7.436e-01 0.037770
    [49,] 13 7.510e-01 0.036050
    [50,] 14
             7.583e-01 0.034410
    [51,] 15 7.654e-01 0.032850
#>
    [52,] 15 7.724e-01 0.031360
    [53,] 16 7.792e-01 0.029930
    [54,] 16 7.858e-01 0.028570
    [55,] 18 7.923e-01 0.027270
#>
    [56,] 18 7.985e-01 0.026030
    [57,] 20 8.046e-01 0.024850
#>
    [58,] 20 8.107e-01 0.023720
    [59,] 20 8.166e-01 0.022640
    [60,] 21 8.223e-01 0.021610
    [61,] 24 8.279e-01 0.020630
   [62,] 25 8.334e-01 0.019690
#>
    [63,] 28 8.390e-01 0.018800
#>
    [64,] 28 8.446e-01 0.017940
#> [65,] 29 8.501e-01 0.017130
```

```
[66,] 30 8.555e-01 0.016350
   [67,] 34 8.609e-01 0.015610
   [68,] 36 8.665e-01 0.014900
#>
  [69,] 37 8.718e-01 0.014220
#>
   [70,] 36 8.770e-01 0.013570
#>
    [71,] 36 8.819e-01 0.012960
#>
   [72,] 37 8.867e-01 0.012370
  [73,] 39 8.914e-01 0.011810
   [74,] 40 8.960e-01 0.011270
#>
#>
   [75,] 41 9.005e-01 0.010760
#> [76,] 42 9.048e-01 0.010270
#> [77,] 43 9.089e-01 0.009801
   [78,] 43 9.128e-01 0.009356
#>
#>
   [79,] 44 9.166e-01 0.008930
#> [80,] 45 9.202e-01 0.008525
#> [81,] 46 9.237e-01 0.008137
   [82,] 47 9.270e-01 0.007767
#>
#> [83,] 46 9.302e-01 0.007414
#> [84,] 45 9.333e-01 0.007077
#> [85,] 45 9.362e-01 0.006756
#>
   [86,] 44 9.390e-01 0.006449
#> [87,] 44 9.416e-01 0.006155
#> [88,] 44 9.442e-01 0.005876
#> [89,] 44 9.466e-01 0.005609
#> [90,] 43 9.490e-01 0.005354
#> [91,] 43 9.512e-01 0.005110
#> [92,] 44 9.533e-01 0.004878
#> [93,] 45 9.553e-01 0.004656
#> [94,] 46 9.573e-01 0.004445
#> [95,] 48 9.592e-01 0.004243
#> [96,] 48 9.610e-01 0.004050
#> [97,] 48 9.627e-01 0.003866
#> [98,] 49 9.643e-01 0.003690
#> [99,] 49 9.659e-01 0.003522
#> [100,] 49 9.674e-01 0.003362
#> [1] "done bootstrap 2"
sink()
```

Display summary results for the prediction

```
#> 1
         98.828125
                       99.609375 LASSO for subpop1 in target mixedpop2
#> 2 7.44186046511628 5.58139534883721 LASSO for subpop2 in target mixedpop2
                           NA LASSO for subpop3 in target mixedpop2
#summary deviance
summary_deviance(LSOLDA_dat)
#> $allDeviance
#> [1] "0.5988" "0.4"
#> $DeviMax
     Dfd Deviance
         0 -1.922e-15 genes_cluster1
         1
             0.4748 genes_cluster1
#> 3
         2
             0.5771 genes_cluster1
#> 4
               0.5988 genes_cluster1
#> 5 remaining
                  1
                         DEgenes
#> $LassoGenesMax
#> (Intercept)
                    -3.020620419
                                        (Intercept)
#> MALAT1_ENSG00000251562 0.009911637 MALAT1_ENSG00000251562
```

Relationship between clusters within one sample or between two samples

```
#run prediction for 3 clusters
c_selectID <- 1</pre>
genes = DEgenes$DE_Subpop1vsRemaining$id[1:200] #top 200 gene markers distinguishing cluster 1
genes <- gsub("_.*", "", genes)</pre>
sink("temp")
LSOLDA_dat1 <- bootstrap_scGPS(nboots = 1,mixedpop1 = mixedpop2, mixedpop2 = mixedpop2, genes=genes, c_
\# Call: glmnet(x = t(predictor_S1), y = y_cat, family = "binomial")
#>
#>
        Df
                 %Dev
                         Lambda
#> [1,] 0 -1.922e-15 3.537e-01
#> [2,] 1 6.185e-02 3.223e-01
#> [3,] 1 1.159e-01 2.936e-01
#> [4,] 1 1.649e-01 2.676e-01
#> [5,] 1 2.103e-01 2.438e-01
#> [6,] 1 2.530e-01 2.221e-01
#> [7,] 1 2.932e-01 2.024e-01
#> [8,] 1 3.309e-01 1.844e-01
#> [9,] 1 3.663e-01 1.680e-01
#> [10,] 1 3.993e-01 1.531e-01
#> [11,] 1 4.300e-01 1.395e-01
```

```
#> [12,] 1 4.585e-01 1.271e-01
#> [13,] 1 4.848e-01 1.158e-01
#> [14,] 2 5.105e-01 1.055e-01
#> [15,] 2 5.349e-01 9.615e-02
#> [16,] 3 5.581e-01 8.761e-02
#> [17,] 4 5.813e-01 7.983e-02
#> [18,] 5 6.028e-01 7.274e-02
#> [19,] 6 6.232e-01 6.628e-02
#> [20,] 7 6.424e-01 6.039e-02
#> [21,] 7 6.600e-01 5.502e-02
#> [22,] 8 6.766e-01 5.013e-02
#> [23,] 9 6.920e-01 4.568e-02
#> [24,] 10 7.066e-01 4.162e-02
#> [25,] 12 7.210e-01 3.793e-02
#> [26,] 12 7.345e-01 3.456e-02
#> [27,] 14 7.476e-01 3.149e-02
#> [28,] 15 7.599e-01 2.869e-02
#> [29,] 16 7.714e-01 2.614e-02
#> [30,] 16 7.822e-01 2.382e-02
#> [31,] 17 7.928e-01 2.170e-02
#> [32,] 22 8.031e-01 1.977e-02
#> [33,] 21 8.140e-01 1.802e-02
#> [34,] 22 8.242e-01 1.642e-02
#> [35,] 23 8.341e-01 1.496e-02
#> [36,] 26 8.433e-01 1.363e-02
#> [37,] 28 8.534e-01 1.242e-02
#> [38,] 28 8.634e-01 1.132e-02
#> [39,] 28 8.727e-01 1.031e-02
#> [40,] 29 8.815e-01 9.394e-03
#> [41,] 30 8.899e-01 8.560e-03
#> [42,] 31 8.980e-01 7.799e-03
#> [43,] 29 9.055e-01 7.106e-03
#> [44,] 32 9.128e-01 6.475e-03
#> [45,] 34 9.197e-01 5.900e-03
#> [46,] 39 9.262e-01 5.376e-03
#> [47,] 39 9.324e-01 4.898e-03
#> [48,] 39 9.381e-01 4.463e-03
#> [49,] 41 9.434e-01 4.067e-03
#> [50,] 42 9.483e-01 3.705e-03
#> [51,] 42 9.528e-01 3.376e-03
#> [52,] 43 9.569e-01 3.076e-03
#> [53,] 44 9.606e-01 2.803e-03
#> [54,] 46 9.641e-01 2.554e-03
#> [55,] 48 9.672e-01 2.327e-03
#> [56,] 48 9.701e-01 2.120e-03
#> [57,] 49 9.727e-01 1.932e-03
#> [58,] 50 9.751e-01 1.760e-03
#> [59,] 50 9.773e-01 1.604e-03
#> [60,] 52 9.793e-01 1.461e-03
#> [61,] 53 9.812e-01 1.332e-03
#> [62,] 53 9.828e-01 1.213e-03
#> [63,] 54 9.844e-01 1.106e-03
#> [64,] 54 9.857e-01 1.007e-03
```

```
#> [65,] 54 9.870e-01 9.178e-04
#> [66,] 54 9.881e-01 8.363e-04
#> [67,] 54 9.892e-01 7.620e-04
#> [68,] 55 9.902e-01 6.943e-04
#> [69,] 55 9.910e-01 6.326e-04
#> [70,] 55 9.918e-01 5.764e-04
#> [71,] 55 9.925e-01 5.252e-04
#> [72,] 56 9.932e-01 4.786e-04
#> [73,] 56 9.938e-01 4.360e-04
#> [74,] 56 9.944e-01 3.973e-04
#> [75,] 56 9.949e-01 3.620e-04
#> [76,] 57 9.953e-01 3.299e-04
#> [77,] 58 9.957e-01 3.006e-04
#> [78,] 58 9.961e-01 2.739e-04
#> [79,] 58 9.965e-01 2.495e-04
#> [80,] 58 9.968e-01 2.274e-04
#> [81,] 58 9.971e-01 2.072e-04
#> [82,] 58 9.973e-01 1.888e-04
#> [83,] 59 9.976e-01 1.720e-04
#> [84,] 59 9.978e-01 1.567e-04
#> [85,] 59 9.980e-01 1.428e-04
#> [86,] 59 9.981e-01 1.301e-04
#> [87,] 59 9.983e-01 1.185e-04
#> [88,] 59 9.985e-01 1.080e-04
#> [89,] 60 9.986e-01 9.842e-05
#> [90,] 60 9.987e-01 8.967e-05
#> [91,] 60 9.988e-01 8.171e-05
#> [92,] 60 9.989e-01 7.445e-05
#> [93,] 60 9.990e-01 6.783e-05
#> [1] "done bootstrap 1"
sink()
c_selectID <- 2</pre>
genes = DEgenes$DE_Subpop2vsRemaining$id[1:200]
genes <- gsub("_.*", "", genes)</pre>
sink("temp")
LSOLDA_dat2 <- bootstrap_scGPS(nboots = 1,mixedpop1 = mixedpop2, mixedpop2 = mixedpop2, genes=genes, c_
#> Call: glmnet(x = t(predictor_S1), y = y_cat, family = "binomial")
#>
#>
        Df
                 %Dev
                         Lambda
#> [1,] 0 -2.403e-15 2.140e-01
#> [2,] 3 2.846e-02 1.950e-01
#> [3,] 5 6.381e-02 1.777e-01
#> [4,] 6 9.598e-02 1.619e-01
#> [5,] 6 1.256e-01 1.475e-01
#> [6,] 6 1.510e-01 1.344e-01
#> [7,] 10 1.745e-01 1.225e-01
#> [8,] 13 1.986e-01 1.116e-01
#> [9,] 16 2.242e-01 1.017e-01
#> [10,] 16 2.492e-01 9.263e-02
#> [11,] 19 2.732e-01 8.440e-02
#> [12,] 21 2.959e-01 7.690e-02
```

```
#> [13,] 24 3.181e-01 7.007e-02
#> [14,] 24 3.391e-01 6.385e-02
#> [15,] 29 3.601e-01 5.817e-02
#> [16,] 30 3.797e-01 5.301e-02
#> [17,] 34 3.980e-01 4.830e-02
#> [18,] 35 4.155e-01 4.401e-02
#> [19,] 35 4.310e-01 4.010e-02
#> [20,] 36 4.450e-01 3.653e-02
#> [21,] 37 4.609e-01 3.329e-02
#> [22,] 39 4.771e-01 3.033e-02
#> [23,] 38 4.935e-01 2.764e-02
#> [24,] 45 5.144e-01 2.518e-02
#> [25,] 49 5.383e-01 2.294e-02
#> [26,] 52 5.626e-01 2.091e-02
#> [27,] 57 5.881e-01 1.905e-02
#> [28,] 63 6.146e-01 1.736e-02
#> [29,] 63 6.410e-01 1.582e-02
#> [30,] 65 6.659e-01 1.441e-02
#> [31,] 67 6.911e-01 1.313e-02
#> [32,] 69 7.144e-01 1.196e-02
#> [33,] 69 7.359e-01 1.090e-02
#> [34,] 70 7.558e-01 9.932e-03
#> [35,] 75
           7.750e-01 9.050e-03
#> [36,] 80 7.932e-01 8.246e-03
#> [37,] 83 8.103e-01 7.513e-03
#> [38,] 83 8.263e-01 6.846e-03
#> [39,] 84 8.410e-01 6.238e-03
#> [40,] 84 8.544e-01 5.684e-03
#> [41,] 85 8.667e-01 5.179e-03
#> [42,] 88 8.781e-01 4.719e-03
#> [43,] 87 8.885e-01 4.299e-03
#> [44,] 87 8.979e-01 3.918e-03
#> [45,] 89 9.067e-01 3.569e-03
#> [46,] 88 9.148e-01 3.252e-03
#> [47,] 88 9.222e-01 2.963e-03
#> [48,] 88 9.289e-01 2.700e-03
#> [49,] 88 9.351e-01 2.460e-03
#> [50,] 88 9.409e-01 2.242e-03
#> [51,] 91 9.460e-01 2.043e-03
#> [52,] 91 9.509e-01 1.861e-03
#> [53,] 92 9.553e-01 1.696e-03
#> [54,] 93 9.591e-01 1.545e-03
#> [55,] 92 9.628e-01 1.408e-03
#> [56,] 92 9.661e-01 1.283e-03
#> [57,] 95 9.691e-01 1.169e-03
#> [58,] 96 9.718e-01 1.065e-03
#> [59,] 96 9.743e-01 9.704e-04
#> [60,] 96 9.766e-01 8.842e-04
#> [61,] 96 9.787e-01 8.056e-04
#> [62,] 96 9.806e-01 7.341e-04
#> [63,] 94 9.823e-01 6.689e-04
#> [64,] 95 9.839e-01 6.094e-04
#> [65,] 95 9.853e-01 5.553e-04
```

```
#> [66,] 95 9.866e-01 5.060e-04
#> [67,] 95 9.878e-01 4.610e-04
#> [68,] 96 9.889e-01 4.201e-04
#> [69,] 96 9.899e-01 3.827e-04
#> [70,] 97 9.907e-01 3.487e-04
#> [71,] 98 9.916e-01 3.178e-04
#> [72,] 98 9.923e-01 2.895e-04
#> [73,] 97 9.930e-01 2.638e-04
#> [74,] 97 9.936e-01 2.404e-04
#> [75,] 97 9.942e-01 2.190e-04
#> [76,] 97 9.947e-01 1.996e-04
#> [77,] 97 9.952e-01 1.818e-04
#> [78,] 97 9.956e-01 1.657e-04
#> [79,] 97 9.960e-01 1.510e-04
#> [80,] 98 9.963e-01 1.376e-04
#> [81,] 98 9.967e-01 1.253e-04
#> [82,] 98 9.970e-01 1.142e-04
#> [83,] 96 9.972e-01 1.041e-04
#> [84,] 97 9.975e-01 9.481e-05
#> [85,] 97 9.977e-01 8.639e-05
#> [86,] 97 9.979e-01 7.871e-05
#> [87,] 97 9.981e-01 7.172e-05
#> [88,] 97 9.983e-01 6.535e-05
#> [89,] 97 9.984e-01 5.954e-05
#> [90,] 97 9.985e-01 5.425e-05
#> [91,] 97 9.987e-01 4.943e-05
#> [92,] 97 9.988e-01 4.504e-05
#> [93,] 97 9.989e-01 4.104e-05
#> [94,] 98 9.990e-01 3.739e-05
#> [95,] 98 9.991e-01 3.407e-05
#> [1] "done bootstrap 1"
sink()
c_selectID <- 3</pre>
genes = DEgenes$DE_Subpop3vsRemaining$id[1:200]
genes <- gsub("_.*", "", genes)</pre>
sink("temp")
LSOLDA_dat3 <- bootstrap_scGPS(nboots = 1,mixedpop1 = mixedpop2, mixedpop2 = mixedpop2, genes=genes, c_
#> Call: glmnet(x = t(predictor_S1), y = y_cat, family = "binomial")
#>
#>
         Df
               %Dev Lambda
     [1,] 0 0.00000 0.465900
#>
#>
     [2,] 1 0.05569 0.444700
#>
     [3,] 1 0.10670 0.424500
     [4,] 1 0.15370 0.405200
#>
#>
     [5,] 1 0.19710 0.386800
    [6,] 1 0.23740 0.369200
#>
#>
    [7,] 1 0.27500 0.352400
#>
     [8,] 1 0.31000 0.336400
#>
    [9,] 1 0.34280 0.321100
#> [10,] 1 0.37370 0.306500
```

```
[11,] 1 0.40260 0.292600
    [12,] 1 0.43000 0.279300
    [13,] 1 0.45580 0.266600
    [14,] 1 0.48010 0.254500
    [15,] 1 0.50320 0.242900
    [16,] 1 0.52510 0.231900
    [17,] 1 0.54580 0.221300
    [18,] 1 0.56550 0.211300
    [19,] 1 0.58430 0.201700
    [20,] 1 0.60210 0.192500
    [21,] 1 0.61910 0.183800
    [22,] 1 0.63530 0.175400
    [23,] 1 0.65070 0.167400
    [24,] 1 0.66540 0.159800
    [25,] 1 0.67940 0.152600
    [26,] 1 0.69280 0.145600
    [27,] 1 0.70560 0.139000
    [28,] 1 0.71780 0.132700
    [29,] 1 0.72950 0.126700
    [30,] 1 0.74070 0.120900
#>
    [31,] 1 0.75140 0.115400
    [32,] 1 0.76160 0.110200
#>
    [33,] 1 0.77140 0.105200
    [34,] 1 0.78080 0.100400
    [35,] 1 0.78980 0.095810
    [36,] 1 0.79830 0.091450
    [37,] 1 0.80660 0.087300
#>
    [38,] 1 0.81440 0.083330
    [39,] 1 0.82200 0.079540
#>
    [40,] 1 0.82920 0.075930
    [41,] 1 0.83620 0.072480
    [42,] 1 0.84280 0.069180
    [43,] 1 0.84920 0.066040
    [44,] 1 0.85530 0.063040
    [45,] 2 0.86130 0.060170
    [46,] 2 0.86720 0.057440
    [47,] 2 0.87280 0.054830
    [48,] 2 0.87810 0.052330
    [49,] 2 0.88320 0.049950
    [50,] 2 0.88810 0.047680
    [51,] 2 0.89280 0.045520
    [52,] 4 0.89750 0.043450
    [53,] 4 0.90200 0.041470
#>
    [54,] 5 0.90640 0.039590
#>
    [55,] 5 0.91070 0.037790
    [56,] 5 0.91470 0.036070
    [57,] 5 0.91860 0.034430
    [58,] 5 0.92230 0.032870
    [59,] 5 0.92580 0.031370
   [60,] 5 0.92910 0.029950
    [61,] 5 0.93230 0.028590
    [62,] 5 0.93540 0.027290
#> [63,] 5 0.93830 0.026050
```

```
#> [64,] 6 0.94110 0.024860
#> [65,] 6 0.94380 0.023730
#> [66,] 6 0.94630 0.022650
#> [67,] 6 0.94870 0.021620
#> [68,] 6 0.95100 0.020640
    [69,] 7 0.95330 0.019700
#> [70,] 7 0.95540 0.018810
#> [71,] 7 0.95740 0.017950
#> [72,] 7 0.95930 0.017140
   [73,] 7 0.96120 0.016360
#> [74,] 7 0.96290 0.015610
#> [75,] 7 0.96460 0.014900
#> [76,] 7 0.96620 0.014230
#> [77,] 7 0.96780 0.013580
#> [78,] 7 0.96920 0.012960
#> [79,] 7 0.97060 0.012370
#> [80,] 7 0.97190 0.011810
#> [81,] 7 0.97320 0.011270
#> [82,] 7 0.97440 0.010760
#> [83,] 7 0.97560 0.010270
   [84,] 7 0.97670 0.009806
#> [85,] 8 0.97770 0.009361
#> [86,] 8 0.97870 0.008935
#> [87,] 8 0.97970 0.008529
#> [88,] 8 0.98060 0.008141
#> [89,] 8 0.98150 0.007771
#> [90,] 8 0.98230 0.007418
#> [91,] 8 0.98310 0.007081
#> [92,] 8 0.98390 0.006759
#> [93,] 8 0.98460 0.006452
#> [94,] 8 0.98530 0.006159
#> [95,] 8 0.98590 0.005879
#> [96,] 8 0.98660 0.005612
#> [97,] 8 0.98720 0.005357
#> [98,] 8 0.98780 0.005113
#> [99,] 8 0.98830 0.004881
#> [100,] 8 0.98880 0.004659
#> [1] "done bootstrap 1"
sink()
#prepare table input for sankey plot
reformat LASSO <-function(c selectID = NULL, s selectID = NULL, LSOLDA dat = NULL,
                         nPredSubpop = row_cluster, Nodes_group = "#7570b3"){
  LASSO_out <- summary_prediction_lasso(LSOLDA_dat=LSOLDA_dat, nPredSubpop = nPredSubpop)
 LASSO_out <-as.data.frame(LASSO_out)
  temp_name <- gsub("LASSO for subpop", "C", LASSO_out$names)</pre>
  temp_name <- gsub(" in target mixedpop", "S", temp_name)</pre>
  LASSO_out$names <-temp_name
  source <-rep(paste0("C",c_selectID,"S",s_selectID), length(temp_name))</pre>
  LASSO_out$Source <- source
  LASSO_out$Node <- source
  LASSO_out$Nodes_group <- rep(Nodes_group, length(temp_name))
```

```
colnames(LASSO_out) <-c("Value", "Target", "Source", "Node", "NodeGroup")</pre>
  LASSO_out$Value <- as.numeric(as.vector(LASSO_out$Value))
  return(LASSO_out)
}
LASSO_C1S2 <- reformat_LASSO(c_selectID=1, s_selectID =2, LSOLDA_dat=LSOLDA_dat1,
                           nPredSubpop = row_cluster, Nodes_group = "#7570b3")
LASSO C2S2 <- reformat LASSO(c selectID=2, s selectID =2, LSOLDA dat=LSOLDA dat2,
                           nPredSubpop = row cluster, Nodes group = "#1b9e77")
LASSO_C3S2 <- reformat_LASSO(c_selectID=3, s_selectID =2, LSOLDA_dat=LSOLDA_dat3,
                           nPredSubpop = row_cluster, Nodes_group = "#e7298a")
combined <- rbind(LASSO_C1S2,LASSO_C2S2,LASSO_C3S2 )</pre>
combined <- combined[is.na(combined$Value) != TRUE,]</pre>
combined_D3obj <-list(Nodes=combined[,4:5], Links=combined[,c(3,2,1)])</pre>
library(networkD3)
Node_source <- as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_target <- as.vector(sort(unique(combined_D3obj$Links$Target)))</pre>
Node_all <-unique(c(Node_source, Node_target))</pre>
#assign IDs for Source (start from 0)
Source <-combined D3obj$Links$Source
Target <- combined_D3obj$Links$Target</pre>
for(i in 1:length(Node_all)){
  Source[Source==Node_all[i]] <-i-1</pre>
  Target[Target==Node_all[i]] <-i-1</pre>
}
combined_D3obj$Links$Source <- as.numeric(Source)</pre>
combined_D3obj$Links$Target <- as.numeric(Target)</pre>
combined_D3obj$Links$LinkColor <- combined$NodeGroup</pre>
#prepare node info
node df <-data.frame(Node=Node all)</pre>
node_df$id <-as.numeric(c(0, 1:(length(Node_all)-1)))</pre>
suppressMessages(library(dplyr))
Color <- combined %>% count(Node, color=NodeGroup) %>% select(2)
node_df$color <- Color$color</pre>
suppressMessages(library(networkD3))
p1<-sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df, Value = "Value", NodeGroup = "color", L
                   fontSize = 22 )
р1
```


#saveNetwork(p1, file = pasteO(path, 'Subpopulation_Net.html'))

##R Setting Information

#sessionInfo()

 $\#rmarkdown:: render("/Users/quan.nguyen/Documents/Powell_group_MacQuan/AllCodes/scGPS/vignettes/vignettes/wignettes/powell_group_MacQuan/AllCodes/scGPS/vignettes/vi$