CR410 AA13/14 (Crittografia a chi	R410 AA13/14 (Crittografia a chiave pubblica)				Е	SAM	E DI	FINE	E SEN	Roma, 26 Maggio, 2014	
Cognome		N	om.e							Matrice	ola
Risolvere il massimo numero di eserci SI ACCETTANO RISPOSTE SCRI durante le prima ora e durante gli u	cizi fo <i>TTTE</i>	E SU	do spi ALTI	iegazi R <i>I FC</i>	ioni cl	hiare	e sint	etiche	e. Ins	serire le ri	isposte negli spazi predisposti. NON
	1	2	3	4	5	6	7	8	9	TOT.]
1. Rispondere alle seguenti doman	de co	on un	a giu	stifica	azione	di 1	riga:				•
a. E' possibile calcolare i simb	ooli d	li Jac	obi se	enza i	fattor	izzare	e?				
b. I simboli di Jacobi hanno a	applio	cazior	ni in c	critto	grafia	?					
c. E' possibile implementare l	RSA	con ı	ın esp	onen	te di	cifrat	ura p	ari?	perch	è?	

 $2. \,$ Spiegare il funzionamento del crittosistema RSA.

d. Dare un esempio di curva ellittica E/\mathbf{F}_p in cui $\#E(\mathbf{F}_p)$ è dispari.

3. Definire la nozione di pseudo primo di Miller Rabin e dimostrare che 91 è pseudo primo di Miller Rabin in base 10 e in base 22.	

4. Calcolare il simbolo di Jacobi $\left(\frac{m}{n}\right)$ sapendo che $n\equiv 7 \bmod 4m$ e che $m\equiv 3 \bmod 28.$

5. Dopo aver definito la nozione di numero di Carmichael, si enunci e dimostri il criterio di Korselt.									
6. Sia $E: y^2 = x^3 + Ax + B$ una curva ellittica su un campo \mathbf{F}_p di caratteristica maggiore di 3.	Dimostrare che se								
6. Sia $E: y^2 = x^3 + Ax + B$ una curva ellittica su un campo \mathbf{F}_p di caratteristica maggiore di 3. Dimostrare che se $P = (\alpha, \beta) \in E(\mathbf{F}_p)$ è un punto di ordine tre, allora α è una radice del polinomio:									
$\Psi_3(X) = 3X^4 + 6AX^2 + 12BX - A^2$									

