Numerical Optimization, 2023 Fall Homework 2

Name: Zhou Shouchen Student ID: 2021533042

Due 23:59 (CST), Nov. 2, 2023

1 Standard Form

Convert the following problem to a linear program in standard form. [20pts]

$$\max_{\mathbf{r} \in \mathbb{R}^4} \qquad 2x_1 - x_3 + x_4$$
s.t.
$$x_1 + x_2 \ge 5$$

$$x_1 - x_3 \le 2$$

$$4x_2 + 3x_3 - x_4 \le 10$$

$$x_1 \ge 0$$
(1)

Let s_1, s_2, s_3 be the slack variables for the first, second and third constraints, respectively. And $s_1, s_2, s_3 \ge 0$.

So the inequality constraints can be written as:

$$x_1 + x_2 = 5 + s_1$$

 $x_1 - x_3 = 2 - s_2$ (2)
 $4x_2 + 3x_3 - x_4 = 10 - s_3$

Also, the standard form should have the objective function as a minimization problem. So the objective function can be written as:

$$\min_{\boldsymbol{x} \in \mathbb{R}^4} -(2x_1 - x_3 + x_4)$$

$$i.e. \min_{\boldsymbol{x} \in \mathbb{R}^4} -2x_1 + x_3 - x_4$$
(3)

Since there are no constraints on the boundary of x_2 , x_3 and x_4 separately.

So let $x_2 = u_2 - v_2$, $x_3 = u_3 - v_3$, $x_4 = u_4 - v_4$, where $u_2, u_3, u_4, v_2, v_3, v_4 \ge 0$.

And put them into the origin problem, we can get the standard form of the origin problem:

So the standard form of the origin problem is:

$$\max_{x_1, u_2, u_3, u_4, v_2, v_3, v_4, s_1, s_2, s_3} 2x_1 - u_3 + v_3 + u_4 - v_4$$
s.t.
$$x_1 + u_2 - v_2 - s_1 = 5$$

$$x_1 - u_3 + v_3 + s_2 = 2$$

$$4u_2 - 4v_2 + 3u_3 - 3v_3 - u_4 + v_4 + s_3 = 10$$

$$x_1, u_2, u_3, u_4, v_2, v_3, v_4, s_1, s_2, s_3 \ge 0$$

$$(4)$$

2 Two-Phase Simplex

Use the two-phase simplex procedure to solve the following problem. [40pts]

$$\min_{\mathbf{x} \in \mathbb{R}^4} -3x_1 + x_2 + 3x_3 - x_4$$
s.t.
$$x_1 + 2x_2 - x_3 + x_4 = 0$$

$$2x_1 - 2x_2 + 3x_3 + 3x_4 = 9$$

$$x_1 - x_2 + 2x_3 - x_4 = 6$$

$$x_1, x_2, x_3, x_4 \ge 0$$
(5)

Since the origin problem is already the standard form, we can directly use the two-phase simplex procedure to solve it.

1. Phase one:

The supporting problem is:

$$\min \mathbf{x} \in \mathbb{R}^{7} \qquad x_{5} + x_{6} + x_{7}$$
s.t.
$$x_{1} + 2x_{2} - x_{3} + x_{4} + x_{5} = 0$$

$$2x_{1} - 2x_{2} + 3x_{3} + 3x_{4} + x_{6} = 9$$

$$x_{1} - x_{2} + 2x_{3} - x_{4} + x_{7} = 6$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \ge 0$$

$$(6)$$

And the supporting problem's simplex tableau is:

The basic is $B = (x_5, x_6, x_7)$, and $\mathbf{x} = (0, 0, 0, 0, 0, 9, 6)^T$.

3 Extreme Point

3.1 Q1

Prove that the extreme points of the following two sets are in one-to-one correspondence. [20pts]

$$S_1 = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{A}\boldsymbol{x} \le \boldsymbol{b}, \boldsymbol{x} \ge 0 \}$$

$$S_2 = \{ (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^n \times \mathbb{R}^m : \boldsymbol{A}\boldsymbol{x} + \boldsymbol{y} = \boldsymbol{b}, \boldsymbol{x} \ge 0, \boldsymbol{y} \ge 0 \}$$
(8)

, where $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \ \boldsymbol{b} \in \mathbb{R}^m.$

3.2 Q2

Does the set $P = \{x \in \mathbb{R}^2 : 0 \le x_1 \le 1\}$ have extreme points? What is its standard form? Does it have extreme points in its standard form? If so, give a extreme point and explain why it is a extreme point. [20pts]