Greg Kuperberg's Lectures on

Introduction to Quantum Information Theory

Sanchayan Dutta dutta@ucdavis.edu

Contents

1	Lec	ture 8 (5th November 2021)	3
	1.1	Modelling of TPCPs	3
	1.2	Kraus Decomposition	3
	1.3	Choi-Jamiolkowski Isomorphism	3
	1.4	C* Algebra vs. VNA Approach	3
	1.5	Exercises	4

1 Lecture 8 (5th November 2021)

1.1 Modelling of TPCPs

Let's consider two finite-dimensional von Neumann algebras \mathcal{A} and \mathcal{B} . Our goal is to model $TPCP(\mathcal{A}, \mathcal{B})$. For such TPCPs E,

$$E \colon \mathcal{A}^{\#} \to \mathcal{B}^{\#} \text{ s.t. } E(\rho)(1) = \rho(1) \ \forall \rho \in \alpha^{\#}.$$

The set of quantum operators $TPCP(\mathcal{A}, \mathcal{B})$ which acts on elements in \mathcal{A} and produces elements in \mathcal{B} is a *covex body* and its codimension is dim \mathcal{A} . In particular, the codimension is not 1 in general and the set isn't the *base* of $CP(\mathcal{A}, \mathcal{B})$. (Ref: arXiv:0710.1571)

The geometry of the convex body TPCP(A, B) is complicated even in the dimension d = 2 case of a qubit. It's more common to study the much simpler cone CP(A, B). Some form of Stinespring's theorem holds here too and the TP part works out automatically.

Furthermore, $CP(\mathcal{A}, \mathcal{B})$ is the same cone, non-uniquely, as $(\mathcal{A} \overline{\otimes} \mathcal{B})^+$. This denotes the cone of positive (normalizable though not necessarily normalized) states on the completed tensor product $\mathcal{A} \overline{\otimes} \mathcal{B}$. Thus, this cone lies in the predual $(\mathcal{A} \otimes \mathcal{B})^{\#}$.

For example, let's consider an $E \in \operatorname{CP}(a\mathbb{C}, b\mathbb{C})$ (note: $\operatorname{CP} = \operatorname{P}$, classically). In the classical case, E is a $b \times a$ matrix with all positive entries and it can be identified with states in $(ab\mathbb{C})^+ \cong a\mathbb{C} \otimes b\mathbb{C}$.

1.2 Kraus Decomposition

Let \mathcal{A} be M(a) and let \mathcal{B} be M(b). Let E be CP s.t. $E: \mathcal{A}^{\#} \to \mathcal{B}^{\#}$. Then the action of the quantum operation E on the state ρ can be expressed as:

$$E(\rho) = \sum_{j} x_{j} \rho x_{j}^{*}$$

for some set of operators $\{x_j\}_j$ satisfying $\sum_j x_j^* x_j = 1$ (TP) where **1** is the identity operator. For e.g., if $\mathcal{A} = \mathcal{B} = M(d)$ then $E(\rho) = u\rho u^*$ is unitary (actually, TPCP).

$$CP(M(a)^{\#}, M(b)^{\#})) \cong (M(a) \otimes M(b))^{+}$$

The extremal ray maps in $CP(M(a)^{\#}, M(b)^{\#})$ are of the form $x\rho x^*$ and they correspond to the extremal rays ("pure states") $|\psi\rangle\langle\psi|$ in $(M(a)\otimes M(b))^+$. (Ref: Quantum Theory from First Principles)

1.3 Choi-Jamiolkowski Isomorphism

This involves converting a channel from \mathcal{A} to \mathcal{B} as a state on $\mathcal{A} \otimes \mathcal{B}$ without loss of parameters, with the following interpretation $E \colon \mathcal{A}^{\#} \to \mathcal{B}^{\#}$. $\rho_2 \in (\mathcal{A} \otimes \mathcal{A})^+$ is a copied state on \mathcal{A} with full support. Define

$$\rho_{\text{Choi}} := (E \otimes \text{Id})(\rho_2).$$

Theorem (Choi): Given ρ_2 , $E \mapsto \rho_{\text{Choi}}$ is an isomorphism of cones.

1.4 C* Algebra vs. VNA Approach

The main differences between the VNA and C* Algebra approach has been summarized below.

	Observables	States
C* Algebra	\mathcal{A} few	\mathcal{A}^* many
von Neumann Algebra	\mathcal{A} many	$\mathcal{A}^{\#}$ few

In the [0,1] case,

	Observables	States
C* Algebra	C([0,1])	$C([0,1])^*$
von Neumann Algebra	$L^{\infty}([0,1])$	$L^1([0,1])$

1.5 Exercises

Consider TPCP(M(2), M(2)). Rescale $M(2)^{\Delta}$ concentrically by $s \in \mathbb{R}$, fixing

$$\rho = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}.$$

This operation is TP for free. When is it TPCP?

- 1) TPP when $-1 \le s \le 1$.
- 2) s = -1 is our counterexample.
- 3) $s \ge 0$ is depolarization, is TPCP.
- 4) $-\frac{1}{3} \le s \le 1$ is TPCP.