# Machine Learning

# How do you solve data analytics problems?

• • • Lets start our journey with predictive analytics problems first

# Titanic: Passenger survival prediction



#### Traditional Approach: Human discovery



#### Issues:

- Human has to manually go through the train data to discover pattern or logic that can be applicable for test data.
- Hard-coded logic and needs to rediscover and update the logic whenever train data gets changed.
- Is it practical to discover the logic/pattern if train data is big?

#### New Approach: Machine discovery



- If machine could discover logic/pattern, its great!!
  - No hardcoded logic
  - Machine can rediscover logic if train data gets changed
  - Machines can process big data sets(with more peers) as well.
- But How does machine discovers logic/pattern?

#### New Approach: Machine discovery



- Any thing in machine happens via software. So, we have to write programs that discovers logic automatically. We call it as Machine learning programming.
- Different Machine learning approaches discover logic/pattern in different ways. We have to find what approach is best for discovering logic in given train data.

### Data Analytics Lifecycle



# Supervised ML Approaches

| ML Approach                             | Form of Logic/Model                                  | Predictive Category                         |
|-----------------------------------------|------------------------------------------------------|---------------------------------------------|
| Tree Approach                           | Decision Trees                                       | Classification, Regression                  |
| Probabilistic<br>Approach               | Probabilities                                        | Classification                              |
| Linear, Polynomial<br>Equation Approach | Weights of each variable                             | Regression                                  |
| Neural Network<br>Approach              | Weights of each neuron input                         | Classification, Regression                  |
| Ensemble Approach                       | Importance of each model and learning for each model | Classification, Regression                  |
| Support Vector<br>Machine Approach      | Support Vectors                                      | Classification, Regression                  |
| Nearest Neighbor<br>Approach            | Remember input data                                  | Classification, Regression,<br>Recommenders |
| Matrix Factorization Approach           | Matrices with latent factors                         | Recommenders                                |

# **Un-supervised ML Approaches**

| ML Approach                | Form of Logic/Model   | Predictive Category     |
|----------------------------|-----------------------|-------------------------|
| Iterative Approach         | Groups of data points | Clustering              |
| Agglomerative<br>Approach  | Trees                 | Clustering              |
| Variance based<br>Approach | New basis             | Feature Reduction       |
| LOF Approach               | Outlier Scores        | Outlier Detection       |
| Apriori Approach           | Association Rules     | Frequent Pattern Mining |