

Welcome to the course!

You will be able to...

- Estimate parameters
- Compute confidence intervals
- Perform linear regressions
- Test hypotheses

We use hacker statistics

- Literally simulate probability
- Broadly applicable with a few principles

Statistical analysis of the beak of the finch

Let's start thinking statistically!

Optimal parameters

Histogram of Michelson's measurements

CDF of Michelson's measurements

Checking Normality of Michelson data

```
In [1]: import numpy as np
In [2]: import matplotlib.pyplot as plt
In [3]: mean = np.mean(michelson_speed_of_light)
In [4]: std = np.std(michelson_speed_of_light)
In [5]: samples = np.random.normal(mean, std, size=10000)
```


CDF of Michelson's measurements

CDF with bad estimate of st. dev.

CDF with bad estimate of mean

Optimal parameters

 Parameter values that bring the model in closest agreement with the data

Mass of MA large mouth bass

Packages to do statistical inference

scipy.stats

statsmodels

hacker stats with numpy

Let's practice!

Linear regression by least squares

2008 US swing state election results

2008 US swing state election results

2008 US swing state election results

Residuals

Least squares

• The process of finding the parameters for which the sum of the squares of the residuals is minimal

Least squares with np.polyfit()

Let's practice!

The importance of EDA: Anscombe's quartet

Look before you leap!

Do graphical EDA first

Let's practice!