Data Representing Atmospheric Conditions on Mars

Pradyumnan R

JNCASR

May 24, 2024

- 1 General Conditions
- 2 Descent Characteristics
- 3 Sample Analysis at Mars (SAM)
- 4 References

- **1** General Conditions
- 2 Descent Characteristics
- Sample Analysis at Mars (SAM)
- 4 References

Features of Earth's Atmosphere

Earth Atmosphere layers structure

Fig. 1: Layers of Earth's Atmosphere

• The mean pressure is about 101,000 Pa.

Features of Earth's Atmosphere

Earth Atmosphere layers structure

Fig. 1: Layers of Earth's Atmosphere

- The mean pressure is about 101,000 Pa.
- The mean surface temperature is about $15^{\circ}C$.

Features of Earth's Atmosphere

Earth Atmosphere layers structure

Fig. 1: Layers of Earth's Atmosphere

- The mean pressure is about 101,000 Pa.
- The mean surface temperature is about $15^{\circ}C$.
- The atmospheric density at sea level is about 1.293kg/m³.

Surface temperatures generally range between 166 K and 256 K.

- Surface temperatures generally range between 166 K and 256 K.
- Mean atmospheric pressure is about 600 Pa.

- Surface temperatures generally range between 166 K and 256 K.
- Mean atmospheric pressure is about 600 Pa.
- Very low thermal inertia, temperature swings of 100 K.

- Surface temperatures generally range between 166 K and 256 K.
- Mean atmospheric pressure is about 600 Pa.
- Very low thermal inertia, temperature swings of 100 K.
- Presence of katabatic¹ winds

¹A katabatic wind carries high-density air from a higher elevation down a slope under the force of gravity

- \bullet Surface temperatures generally range between 166 K and 256 K.
- Mean atmospheric pressure is about 600 Pa.
- Very low thermal inertia, temperature swings of 100 K.
- Presence of katabatic¹ winds
- Atmospheric electricity

¹A katabatic wind carries high-density air from a higher elevation down a slope under the force of gravity

- General Conditions
- 2 Descent Characteristics
- **3** Sample Analysis at Mars (SAM)

•0000

00000

Description

 The descent characteristics are obtained from the data collected by NASA's Curiosity rover from the Planetary Data System [1].

00000

Description

- The descent characteristics are obtained from the data collected by NASA's Curiosity rover from the Planetary Data System [1].
- The descent trajectory is between $-3.91^{\circ}N$ to $-4.59^{\circ}N$ and $126.56^{\circ}E$ to $137.32^{\circ}E$.

- The descent characteristics are obtained from the data collected by NASA's Curiosity rover from the Planetary Data System [1].
- The descent trajectory is between $-3.91^{\circ}N$ to $-4.59^{\circ}N$ and $126.56^{\circ}E$ to $137.32^{\circ}E$.
- The variations of temperature, pressure and density during descent are highlighted in the next few slides.

00000

290 Temperature

270 Temperature

Fig. 3: Temperature on Earth

Fig. 2: Temperature During Descent

Pressure

Fig. 4: Pressure During Descent

Fig. 5: Pressure on Earth

Density

00000

Fig. 6: Density During Descent

Fig. 7: Density on Earth

- 1 General Conditions
- 2 Descent Characteristics
- 3 Sample Analysis at Mars (SAM)
- 4 References

 All the data is collected by NASA's Curiosity rover and stored in the Mars Science Laboratory's Reduced Data Records repository [2].

 All the data is collected by NASA's Curiosity rover and stored in the Mars Science Laboratory's Reduced Data Records repository [2].

000000

 The final data presented are the volume mixing ratios of various compounds in the Martian atmosphere obtained using the Quadrupole Mass Spectrometer (QMS) present on the rover.

- All the data is collected by NASA's Curiosity rover and stored in the Mars Science Laboratory's Reduced Data Records repository [2].
- The final data presented are the volume mixing ratios of various compounds in the Martian atmosphere obtained using the Quadrupole Mass Spectrometer (QMS) present on the rover.
- The next few slides give few representative plots of the volume mixing ratios of various compounds collected across 29 QMS experiments.

Pradvumnan R INCASR

000000

Volume Mixing Ratios

Volume Mixing Ratios

000000

- 1 General Conditions
- 2 Descent Characteristics
- Sample Analysis at Mars (SAM)
- 4 References

- C Holstein-Rathlou, A Maue, and P Withers.
 Atmospheric studies from the mars science laboratory entry, descent and landing atmospheric structure reconstruction. Planetary and Space Science, 120:15–23, 2016.
- [2] SAM Reduced Data Record RDR. Mars science laboratory (msl) software interface specification. 2013.