FPGASID. The better SID.

Andreas Beermann (andi6510)
September 2018

Die Anfänge

Ab Dezember 2012: Diskussion im Forum 64 Kann man den SID nachbauen?

Erst 2014 wurde ich darauf aufmerksam.

Zu dieser Zeit suchte ich Ideen für ein FPGA-Hobbyprojekt!

So kam eins zum anderen... ©

Das Eval Board

Altera MAX10 FPGA

- Integriertes Flash
- Integrierter ADC
- Leistungsstark

FPGA: Logikbaustein, der sehr viele Logikelemente enthält, die aber erst durch die Programmierung miteinander verbunden werden. Man kann auf diese Weise komplexe digitale Schaltungen nachbilden.

2015: Der erste Prototyp

Stuttgarter Sommertreffen 2015

Zum ersten mal in der Öffentlichkeit:

Nach der CC2015 in Thionville

Anfrage von Elektor Labs...

Endlich eine Lösung für die Filter

- Aufgabe meiner eigenen Filterimplementierung
- Verwendung des Models aus der ReSID library (Vice)
 - Gleiche Mathematik aber komplette Neuimplementierung
- → und siehe da: Positives Feedback!

Audiotest

- Audiotest mit "ausgewählten" Testern
 - Verteilung von Aufnahmen über zentralen Server
 - Feedback von den Testern per mail
 - Trotz Automatisierung der Aufnahmen war der Prozess war sehr aufwändig!

2016: Entwicklung der Hardware

- Thomas ("Freak") steigt mit ein
 - Übernimmt das Platinen-Layout
 - Vorgabe: So klein wie möglich
 - Aus Kostengründen fällt die Entscheidung für Stereo
 - Zusammen mit Thomas entsteht der zweite Prototyp.

- 25 Exemplare werden gebaut und an Alphatester verteilt.
 - Interaktives Debugging
 - Mechanische Tests
 - Audiotests
 - Festlegen und verbessern der Usability

2016: Hackaday berichtet...

... und ich beantworte mehrere Stunden täglich meine Emails!

2017: Die Reifungsphase

Noch mehr Prototypen...

Das Konfigurationsprogramm

Nach mehr als 20 Jahren C64 Programmier-Abstinenz:

- 16 kByte Assembler Code
- Geschrieben mit dem C64 Studio von Georg Rottensteiner

2017-2018: Langer Weg zum Produkt

- Kryoflux übernimmt Herstellung und Vertrieb (http://www.kryoflux.com)
- Ein erster Lohnfertiger wurde bereits im November 2017 kontaktiert.
- Vorreservierungen sind seit Oktober 2017 möglich.
- Doch: Bei der Hardwareevaluierung treten noch einige Bugs zu Tage!

Es wird ernst!

- 24. Juni 2018: Hardware und Firmware sind final
 - Ab nun gibt es keine Änderungen mehr
 - Am nächsten Tag gehen die Produktionsdaten an den Lohnfertiger
- 31. Juli 2018: erste Platinen aus der Vorproduktion treffen ein
 - Ein simpler Bestückungsfehler sorgt dafür, dass die Platinen nicht funktional sind... ☺
- 6. August 2018: Der Testaufbau geht an den Lohnfertiger
 - Endkontrolle wird nun vom Lohnfertiger übernommen
- 24. August 2018: Platinen aus der Vorproduktion repariert
 - − Diesmal laufen sie einwandfrei ☺
- 27. August: Die Produktion läuft!

Professionelle Fertigung in Europa

Das Ergebnis

 Präzise Replikation der originalen Soundchips MOS6581 und MOS8580

Zwei integrierte SIDs für Stereo Sound

- Hohe Kompatibilität
- Einfache Konfiguration mit dem Softwaretool ConfiGuru
- Exzellente Audioqualität
- Viele weitere Zusatzfunktionen
- Verfügbar ab Herbst 2018!
- Preis: 69,95€

Demo

Ausblick

- Mögliche zukünftige Funktionen:
 - Filter Offset auch für den 8580 mode
 - Digital Audio per SPDIF (2 Kanal Stereo)
 und ADAT (8 Kanal) → Jede Stimme einzeln abgreifbar
 - Bus Noise simulieren?
 - 2 MHz Modus für CBM-II Rechner
 - Configuru: Beispielsounds einbauen
- Allerdings: Das FPGA ist voll!
 - Bevor weitere Funktionen eingebaut werden können, muss erst Platz durch Optimierungen geschaffen werden.