Approximation Algorithms Week 10

COMP 1201 (Algorithmics)

ECS, University of Southampton

15 May 2020

Previously...

Linear Programming

- Optimisation of linear functions subject to linear inequality constraints.
- Incredibly powerful tool in applied mathematics. Many practical problems can be cast as Linear Programs.
- Efficient algorithms exist for solving very large Linear Programs.
- The Simplex Algorithm runs in *exponential time* in the worst case, but is polynomial time in practice.
- Alternative interior point algorithms have been developed that have polynomial time complexity.

A Little Complexity Theory

NP-Completeness in short.

- **NP** is a class of <u>decision problems</u> (i.e. **yes/no** problems) that we can <u>check</u> in polynomial time.
- A problem *A* is **NP-Complete** if
 - \blacksquare A is in **NP**, and
 - 2 Every B in **NP** has a polynomial time reduction to A. [This second part is the definition of **NP-Hard**.]
- Thus, if we could solve A quickly, we could solve every problem in NP quickly.
- NP-Complete problems are the 'hardest' in NP.
- Most computer scientists believe that you cannot solve them in polynomial time ($P \neq NP$).

Next Fit runs in O(n) time, but how good is it? (n is the number of items.)

Let **fill(***i***)** be the <u>sum of item sizes in Bin *i*</u>
and **s** be the <u>number of non-empty bins</u> (using Next Fit).

Next Fit runs in O(n) time, but how good is it? (n is the number of items.)

Let fill(i) be the sum of item sizes in Bin i

and \underline{s} be the <u>number of non-empty bins</u> (using Next Fit).

Observe that fill(2i-1) + fill(2i) > 1 (for $1 \le 2i \le s$).

Next Fit runs in O(n) time, but how good is it? (n is the number of items.)

Let fill(i) be the sum of item sizes in Bin i

and s be the number of non-empty bins (using Next Fit).

$$\left\lfloor \frac{s}{2} \right\rfloor < \sum_{1 \leq 2i \leq s} \mathtt{fill}(2i-1)$$
 + $\mathtt{fill}(2i)$

Let fill(i) be the sum of item sizes in Bin i and s be the number of non-empty bins (using Next Fit).

Observe that
$$fill(2i-1) + fill(2i) > 1$$
 (for $1 \le 2i \le s$).

So
$$\left\lfloor \frac{s}{2} \right\rfloor < \sum_{1 \leq 2i \leq s}$$
 fill(2 $i-1$) + fill(2 i) $\leq I \leq Opt$

Here I is the sum of the item weights and Opt is the optimal solution.

Next Fit

Let fill(i) be the sum of item sizes in Bin i and s be the number of non-empty bins (using Next Fit).

Observe that
$$fill(2i-1) + fill(2i) > 1$$
 (for $1 \le 2i \le s$).

So
$$\left\lfloor \frac{s}{2} \right\rfloor < \sum_{1 \leq 2i \leq s} \texttt{fill}(2i-1) + \texttt{fill}(2i) \leq I \leq Opt$$

Here I is the sum of the item weights and Opt is the optimal solution.

Therefore $s \leq 2 \cdot Opt$, i.e. the output of Next Fit is never worse that twice of what is optimal.

Approximation Algorithms

An algorithm A is an α -approximation algorithm for problem P if:

- *A* runs in polynomial time.
- Always outputs a solution with value s within an α factor of Opt. [Here P is an optimisation problem with optimal solution value Opt.]

If P is a maximisation problem $\frac{Opt}{\alpha} \leq s \leq Opt$.

If P is a minimisation problem $Opt \leq s \leq \alpha Opt$.

We have now seen Next Fit, which is a 2-approximation algorithm for Bin Packing, which runs in $\mathcal{O}(n)$ time.

In our examples α will be a constant, but in general it can depend on n (i.e. problem input size).

■ Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 1: bin j contains an item of size $> \frac{1}{2}$.

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 1: bin j contains an item of size $> \frac{1}{2}$.

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 1: bin j contains an item of size $> \frac{1}{2}$.

Every bin $j' \leq j$ contains an item of size $> \frac{1}{2}$.

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 1: bin j contains an item of size $> \frac{1}{2}$.

Every bin $j' \leq j$ contains an item of size $> \frac{1}{2}$. [Because FFD packed big items first and each item was packed into the lowest numbered bin.]

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 1: bin j contains an item of size $> \frac{1}{2}$.

Every bin $j' \leq j$ contains an item of size $> \frac{1}{2}$. [Because FFD packed big items first and each item was packed into the lowest numbered bin.]

Each of these items has to be in a different bin even in Opt.

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 1: bin j contains an item of size $> \frac{1}{2}$.

Every bin $j' \leq j$ contains an item of size $> \frac{1}{2}$. [Because FFD packed big items first and each item was packed into the lowest numbered bin.]

Each of these items has to be in a different bin even in Opt.

So Opt uses at least $\frac{2s}{3}$ bins.

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 1: bin j contains an item of size $> \frac{1}{2}$.

Every bin $j' \leq j$ contains an item of size $> \frac{1}{2}$. [Because FFD packed big items first and each item was packed into the lowest numbered bin.]

Each of these items has to be in a different bin even in Opt.

So Opt uses at least $\frac{2s}{3}$ bins. That is, $s \leq \frac{3Opt}{2}$.

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

When FFD packed the first item into bin j:

f I All bins $j,(j+1),\ldots,(s-2),(s-1)$ were empty.

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

When FFD packed the first item into bin j:

- lacksquare All bins $j, (j+1), \ldots, (s-2), (s-1)$ were empty.
- 2 All unpacked items had size $\leq \frac{1}{2}$. [Because FFD packed the items in non-increasing order.]

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

When FFD packed the first item into bin j:

- **1** All bins $j, (j + 1), \dots, (s 2), (s 1)$ were empty.
- 2 All unpacked items had size $\leq \frac{1}{2}$. [Because FFD packed the items in non-increasing order.]

So bins $j, (j+1), \ldots, (s-2), (s-1)$ each contain **at least two items**. [We only use a new bin when the item won't fit in any previous bin.]

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

So bins $j, (j+1), \ldots, (s-2), (s-1)$ each contain **at least two items**. [We only use a new bin when the item won't fit in any previous bin.]

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

So bins $j, (j+1), \ldots, (s-2), (s-1)$ each contain **at least two items**. [We only use a new bin when the item won't fit in any previous bin.]

Bin s contains at least one item.

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

So bins $j,(j+1),\ldots,(s-2),(s-1)$ each contain **at least two items**. [We only use a new bin when the item won't fit in any previous bin.]

Bin s contains at least one item. This gives a total of 2(s-j)+1 items, none of which fit into bins $1,2,3,\ldots,(j-1)$.

[Otherwise FFD would have packed them there.]

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

So bins $j,(j+1),\ldots,(s-2),(s-1)$ each contain at least two items. [We only use a new bin when the item won't fit in any previous bin.]

Bin s contains at least one item. This gives a total of 2(s-j)+1 items, none of which fit into bins $1,2,3,\ldots,(j-1)$.

[Otherwise FFD would have packed them there.]

So $I > \min(j-1, 2(s-j)+1)$ [where I is the total weight of all items].

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

So bins $j,(j+1),\ldots,(s-2),(s-1)$ each contain at least two items. [We only use a new bin when the item won't fit in any previous bin.]

Bin s contains at least one item. This gives a total of 2(s-j)+1 items, none of which fit into bins $1,2,3,\ldots,(j-1)$.

[Otherwise FFD would have packed them there.]

So
$$I > \min(j-1,2(s-j)+1) \ge \left\lceil \frac{2s}{3} \right\rceil - 1$$
 [Plugging in $j = \left\lceil \frac{2s}{3} \right\rceil$.]

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

So, since
$$\left\lceil \frac{2s}{3} \right\rceil - 1 < I$$
, and $I \leq Opt$, we have $\left\lceil \frac{2s}{3} \right\rceil - 1 < Opt$.

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

So, since $\left\lceil \frac{2s}{3} \right\rceil - 1 < I$, and $I \leq Opt$, we have $\left\lceil \frac{2s}{3} \right\rceil - 1 < Opt$.

But both sides are **integers**, so $\left\lceil \frac{2s}{3} \right\rceil \leq Opt$.

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

So, since $\left\lceil \frac{2s}{3} \right\rceil - 1 < I$, and $I \leq Opt$, we have $\left\lceil \frac{2s}{3} \right\rceil - 1 < Opt$.

But both sides are **integers**, so $\left\lceil \frac{2s}{3} \right\rceil \leq Opt$.

Finally, $\frac{2s}{3} \leq \left\lceil \frac{2s}{3} \right\rceil \leq Opt$, so $s \leq \frac{3}{2}Opt$.

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 1: bin j contains an item of size $> \frac{1}{2}$.
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

In **both cases** we have, $s \leq \frac{3}{2}Opt$.

- Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins used by FFD)
 - Case 1: bin j contains an item of size $> \frac{1}{2}$.
 - Case 2: bin j contains only items of size $\leq \frac{1}{2}$.

In **both cases** we have, $s \leq \frac{3}{2}Opt$.

So FFD is a $\frac{3}{2}$ -approximation algorithm of Bin Packing.

Approximation Algorithms: Summary

An algorithm A is an α -approximation algorithm for problem P if:

- *A* runs in polynomial time.
- Always outputs a solution with value s within an α factor of Opt. [Here P is an optimisation problem with optimal solution value Opt.]

If P is a maximisation problem $\frac{Opt}{\alpha} \leq s \leq Opt$.

If P is a minimisation problem $Opt \leq s \leq \alpha Opt$.

We have seen Next Fit, which is a 2-approximation algorithm for Bin Packing, which runs in $\mathcal{O}(n)$ time.

We have seen First Fit Decreasing, which is a $\frac{3}{2}$ -approximation algorithm for Bin Packing, which runs in $O(n^2)$ time.

Bin Packing is known to be **NP-Hard** so solving this $\underline{\text{exactly}}$ in polynomial time would prove that **P=NP**.

Further Reading:

Optional:

David P. Williamson, David D. Shmoys "The Design of Approximation Algorithms"

https://www.designofapproxalgs.com/

Acknowledgements: Partly based on earlier COMP 1201 slides by Dr Benjamin Sach and Dr Baharak Rastegari.