Ex 3.1

Binary Operations Ex 3.1 Q1(i)

We have,

$$a*b=a^b$$
 for all $a,b\in N$

Let $a \in N$ and $b \in N$

$$\Rightarrow \qquad a^b \in N$$

The operation * defines a binary operation on N

Binary Operations Ex 3.1 Q1(ii)

We have,

$$a \circ b = a^b$$
 for all $a, b \in Z$

Let $a \in Z$ and $b \in Z$

$$\Rightarrow a^b \notin Z \Rightarrow a \circ b \notin Z$$

For example, if
$$a = 2$$
, $b = -2$

$$\Rightarrow \qquad a^b = 2^{-2} = \frac{1}{4} \notin Z$$

 \therefore The operation 'o' does not define a binary operation on Z.

Binary Operations Ex 3.1 Q1(iii)

$$a*b=a+b-2$$
 for all $a,b\in N$

Let $a \in N$ and $b \in N$

Then, $a+b-2 \notin N$ for all $a,b \in N$

⇒ a*b∉N

For example a=1, b=1

- \Rightarrow $a+b-2=0 \notin N$
- ... The operation * does not define a binary operation on N

Binary Operations Ex 3.1 Q1(iv)

We have,

$$S = \{1, 2, 3, 4, 5\}$$

and, $a \times_6 b = Remainder when ab is divided by 6$

Let $a \in S$ and $b \in S$

$$\Rightarrow$$
 $a \times_6 b \notin S$ for all $a, b \in S$

For example, a = 2, b = 3

- \Rightarrow 2 x₆ 3 = Remainder when 6 is divided by 6 = 0 \notin S
- x_6 does not define a binary oparation on S

Binary Operations Ex 3.1 Q1(v)

We have,

$$S = \{0, 1, 2, 3, 4, 5\}$$

and,
$$a+_{6}b = \begin{cases} a+b; & \text{if } a+b<6\\ a+b-6; & \text{if } a+b\geq6 \end{cases}$$

Let $a \in S$ and $b \in S$ such that a + b < 6

Then
$$a+_6b=a+b\in S$$
 $[\because a+b<6=0,1,2,3,4,5]$

Let $a \in S$ and $b \in S$ such that a + b > 6

Then
$$a+_6b=a+b-6 \in S$$
 [v if $a+b \ge 6$ then $a+b-6 \ge 0 = 0,1,2,3,4,5$]

- $\therefore a +_6 b \in S \text{ for } a, b \in S$
- \therefore +6 defines a binary oparation on S

Binary Operations Ex 3.1 Q1(vi)

We have,

$$a \circ b = a^b + b^a$$
 for all $a, b \in N$

Let $a \in N$ and $b \in N$

$$\Rightarrow$$
 $a^b \in N$ and $b^a \in N$

$$\Rightarrow a^b + b^a \in N$$

Thus, the operation ' \circ ' defines a binary relation on N

Binary Operations Ex 3.1 Q1(vii)

$$a*b = \frac{a-1}{b+1}$$
 for all $a,b \in Q$

Let $a \in Q$ and $b \in Q$

Then
$$\frac{a-1}{b+1} \notin Q$$
 for $b=-1$
 $\Rightarrow a*b \notin Q$ for all $a,b \in Q$

Thus, the operation * does not define a binary operation on Q

Binary Operations Ex 3.1 Q2

(i) On \mathbf{Z}^+ , * is defined by a*b=a-b. It is not a binary operation as the image of (1, 2) under * is $1*2=1-2=-1\notin\mathbf{Z}^+$.

(ii) On \mathbf{Z}^+ , * is defined by a * b = ab.

It is seen that for each $a,b\in \mathbf{Z}^+$, there is a unique element ab in \mathbf{Z}^+ . This means that * carries each pair (a,b) to a unique element a*b=ab in \mathbf{Z}^+ . Therefore, * is a binary operation.

(iii) On \mathbf{R} , * is defined by $a * b = ab^2$.

It is seen that for each $a,b\in \mathbf{R}$, there is a unique element ab^2 in \mathbf{R} . This means that * carries each pair (a,b) to a unique element $a*b=ab^2$ in \mathbf{R} . Therefore, * is a binary operation.

(iv) On \mathbf{Z}^+ , * is defined by a * b = |a - b|.

It is seen that for each $a,b\in \mathbf{Z}^+$, there is a unique element |a-b| in \mathbf{Z}^+ . This means that * carries each pair (a,b) to a unique element a*b=|a-b| in \mathbf{Z}^+ .

Therefore, * is a binary operation.

(v) On \mathbf{Z}^+ , * is defined by a*b=a. * carries each pair (a,b) to a unique element a*b=a in \mathbf{Z}^+ . Therefore, * is a binary operation.

(vi) on R, * is defined by a * b = a + $4b^2$ it is seen that for each element a, b \in R, there is unique element a + $4b^2$ in R This means that * carries each pair (a, b) to a unique element a * b = $a + 4b^2$ in R.

Therefore, \ast is a binary operation.

Binary Operations Ex 3.1 Q3

It is given that,
$$a*b = 2a + b - 3$$

Now
 $3*4 = 2 \times 3 + 4 - 3$
 $= 10 - 3$

Binary Operations Ex 3.1 Q4

The operation * on the set A = $\{1, 2, 3, 4, 5\}$ is defined as a * b = L.C.M. of a and b. 2*3 = L.C.M of 2 and 3 = 6. But 6 does not belong to the given set. Hence, the given operation * is not a binary operation.

Binary Operations Ex 3.1 Q5

We have,

$$S = \{a, b, c\}$$

We know that the total number of binary operation on a set S with n element is n^{p^2}

 \Rightarrow Total number of binary operation on $S = \{a, b, c\} = 3^3 = 3^9$

Binary Operations Ex 3.1 Q6

We have,

$$S = \{a, b\}$$

The total number of binary operation on $S = \{a, b\}$ in $2^{2^2} = 2^4 = 16$

$$M = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : a, b \in R - \{0\} \right\} \text{ and}$$
$$A * B = AB \text{ for all } A, B \in M$$

Let
$$A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in M$$
 and $B = \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} \in M$

Now,
$$AB = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} = \begin{bmatrix} ac & 0 \\ 0 & bd \end{bmatrix}$$

$$\Rightarrow$$
 $ac \in R$ and $bd \in R$

$$\Rightarrow \begin{bmatrix} ac & 0 \\ 0 & bd \end{bmatrix} \in M$$

Thus, the operator * difines a binary operation on M

Binary Operations Ex 3.1 Q8

S= set of rational numbers of the form $\frac{m}{n}$ where $m\in Z$ and n=1,2,3

Also,
$$a*b=ab$$

Let
$$a \in S$$
 and $b \in S$

For example
$$a = \frac{7}{3}$$
 and $b = \frac{5}{2}$

$$\Rightarrow \qquad ab = \frac{35}{6} \notin S$$

Hence, the operator * does not define a binary operation on S

Binary Operations Ex 3.1 Q9

It is given that,
$$a*b = 2a + b$$

$$(2*3) = 2 \times 2 + 3$$

= 4 + 3

It is given that,
$$a*b = LCM (a, b)$$

Ex 3.2

Binary Operations Ex 3.2 Q1

We have,

$$a*b=l.c.m.(a,b)$$
 for all $a,b \in N$

(1)

Now,

$$2*4 = l.c.m$$
 (2,4) = 4
 $3*5 = l.c.m$ (3,5) = 15
 $1*6 = l.c.m$ (1,6) = 6

(ii)

Commutativity:

Let $a, b \in N$ then,

$$a*b = l.c.m(a,b)$$
$$= l.c.m(b,a)$$
$$= b*a$$

$$\Rightarrow a*b=b*a$$

* is commutative on N.

Associativity:

Let $a, b, c \in N$ then,

$$(a*b)*c = l.c.m(a,b)*c$$

= $l.c.m(a,b,c)$ ---(

and,
$$a*(b*c) = a*l.c.m(b,c)$$

= $l.c.m(a,b,c)$ ---(ii)

From (i) and (ii)
$$(a*b)*c = a*(b*c)$$

.. * is associative on N.

Binary Operations Ex 3.2 Q2

(i) Clearly, by definition a*b=1=b*a , $\forall a,b \in \mathbb{N}$

Also,
$$(a * b) * c = (1 * c) = 1$$

and
$$a * (b * c) = (a * 1) = 1$$
 $\forall a, b, c \in N$

Hence, N is both associative and commutative.

(ii)
$$a*b = \frac{a+b}{2} = \frac{b+a}{2} = b*a$$
,

which shows *is commutative.

Further,
$$(a*b)*c = (\frac{a+b}{2})*c = \frac{(\frac{a+b}{2})+c}{2} = \frac{a+b+2c}{4}$$

$$a*(b*c) = a*(\frac{b+c}{2}) = \frac{a+(\frac{b+c}{2})}{2} = \frac{2a+b+c}{2} \neq \frac{a+b+2c}{4}$$

Hence, * is not associative.

We have, binary operator * defined on A and is given by a*b=b for all $a,b\in A$ Commutativity: Let $a, b \in A$, then $a*b=b\neq a=b*a$ a*b≠b*a '*' is not commutative on A. Associativity: Let $a, b, c \in A$, then (a*b)*c=b*c=c---(i) and, a*(b*c) = a*c = c---(ii) From (i) and (ii) (a*b)*c = a*(b*c)'*' is associative on A. Binary Operations Ex 3.2 Q4(i) '*' is a binary operator on Z defined by a*b=a+b+ab for all $a,b\in Z$. Commutativity of '*': Let $a, b \in \mathbb{Z}$, then a*b = a+b+ab = b+a+ba = b*aa * b = b * aAssociative of '*': Let $a,b \in \mathbb{Z}$, then (a*b)*c = (a+b+ab)*c = a+b+ab+c+ac+bc+abc---(i) = a + b + c + ab + bc + ac + abcAgain, a*(b*c) = a*(b+c+bc)= a+b+c+bc+ab+ac+abc---(ii) From (i) & (ii), we get (a*b)*c = a*(b*c)

Binary Operations Ex 3.2 Q4(ii)

* is commutative and associative on Z

Commutative:

Let $a, b \in N$, then

$$a * b = 2^{ab} = 2^{ba} = b * a$$

 $\therefore a*b=b*a$

∴ ∗ is commutative on N

Associative:

Let $a, b, c \in N$, then

$$(a*b)*c = 2^{ab}*c = 2^{2^{ab},c}$$

and,
$$a*(b*c) = a*2^{bc} = 2^{a\cdot2^{bc}}$$

From (i) & (ii), we get

$$(a*b)*c \neq a*(b*c)$$

* is not associative on N

Binary Operations Ex 3.2 Q4(iii)

Commutativity:

Let $a,b \in Q$, then

$$a * b = a - b \neq b - a = b * a$$

Associative:

Let $a, b, c \in Q$, then

$$(a*b)*c = (a-b)*c = a-b-c$$

and,
$$a*(b*c) = a*(b-c) = a-b+c$$

From (i) & (ii), we get

$$(a*b)*c \neq a*(b*c)$$

: * is not associative on Q

Binary Operations Ex 3.2 Q4(iv)

Commutative:

Let
$$a,b\in \mathbb{Q}$$
, then

$$a e b = a^2 + b^2 = b^2 + a^2 = b e a$$

e is commutative on Q.

Associative:

Let $a,b,c\in \mathbb{Q}$, then

$$(a \circ b) \circ c = (a^2 + b^2) \circ c = (a^2 + b^2)^2 + c^2$$
 ---(

and,
$$a \in (b \in c) = a \in (a^2 + b^2) = a^2 + (b^2 + c^2)^2$$
 $---(ii)$

From (i) & (ii),

.. e is not associative on Q.

Binary Operations Ex 3.2 Q4(v)

Binary operation 'o' defined on Q, given by $aob = \frac{ab}{2}$ for all $a,b \in Q$

Commutative:

Let $a, b \in Q$, then

$$a \circ b = \frac{ab}{2} = \frac{ba}{2} = b \circ a$$

∴ ∘ is commutative on Q.

Associativity:

Let $a, b, c \in Q$, then

$$(a \circ b) \circ c = \left(\frac{ab}{2}\right) \circ c = \frac{abc}{4} \qquad ---(i)$$

$$a \circ (b \circ c) = a \circ \left(\frac{bc}{2}\right) = \frac{abc}{4} \qquad ---(ii)$$

From (i) & (ii) we get
$$(a \circ b) \circ c = a \circ (b \circ c)$$

.: 'o' is associative on Q.

Binary Operations Ex 3.2 Q4(vi)

Commutative:

Let
$$a, b \in Q$$
, then
$$a*b = ab^2 \neq ba^2 = b*a$$

∴ ∗ is not commutative on Q

Associativity:

Let $a, b, c \in Q$, then

$$(a*b)*c = ab^2*c = ab^2c^2$$
 --- (i)

&
$$a*(b*c) = a*bc^2 = a(bc^2)^2$$
 --- (ii)

From (i) and (ii)
$$(a*b)*c \neq a*(b*c)$$

.. * is not associative on Q

Binary Operations Ex 3.2 Q4(vii)

Let
$$a, b \in Q$$
, then
$$a * b = a + ab$$

$$b*a = b+ab$$

Associativity:

Let
$$a, b, c \in Q$$
, then

$$(a*b)*c = (a+ab)*c = a+ab+ac+abc$$
 ---(i)
 $a*(b*c) = a*(b+bc)$

$$(a*b)*c \neq a*(b*c)$$

⇒ * is not associative on Q

Binary Operations Ex 3.2 Q4(viii)

Commutativity: Let $a, b \in R$, then

$$a*b = a+b-7$$
$$= b+a-7$$
$$= b*a$$

$$\Rightarrow a*b=b*a$$

⇒ ∗ is commutative on R

Associativity: Let $a, b, c \in Q$, then

$$(a*b)*c = (a+b-7)*c$$

= $a+b-7+c-7$
= $a+b+c-17$

and,
$$a*(b*c) = a*(b+c-7)$$

= $a+b+c-7-7$
= $a+b+c-17$

---(ii)

From (i) & (ii)

$$(a*b)*c = a*(b*c)$$

⇒ ∗ is associative on R

Binary Operations Ex 3.2 Q4(ix)

Let $a, b \in R - \{-1\}$, then

$$a*b=\frac{a}{b+1}\neq\frac{b}{a+1}=b*a$$

 \Rightarrow * is not commutative on R - $\{-1\}$

Associativity:

Let $a, b, c \in R - \{-1\}$, then

$$(a*b)*c = \left(\frac{a}{b+1}\right)*c$$

$$= \frac{\frac{a}{b+1}}{c+1} = \frac{a}{(b+1)(c+1)}$$
---(i)

&
$$a*(b*c) = a*\left(\frac{b}{c+1}\right)$$
$$= \frac{a}{\frac{b}{c+1}+1} = \frac{a(c+1)}{b+c+1} \qquad \qquad ---(ii)$$

From (i) and (ii)
$$(a*b)*c \neq a*(b*c)$$

 \Rightarrow * is not associative on R - $\{-1\}$

Binary Operations Ex 3.2 Q4(x)

Commutativity:

Let $a,b\in Q$, then

$$a * b = ab + 1 = ba + 1 = b * a$$

⇒ * is commutative on Q

Associativity:

Let $a, b, c \in Q$, then

$$(a*b)*c = (ab+1)*c$$

= $abc+c+1$ ---(i)

$$a*(b*c) = a*(bc+1)$$

= $abc+a+1$ --- (ii)

From (i) and (ii)
$$(a*b)*c \neq a*(b*c)$$

 \Rightarrow * is not associative on Q.

Binary Operations Ex 3.2 Q4(xi)

Let $a, b \in N$, then

$$a*b=a^b\neq b^a=b*a$$

⇒ '*' is not commutative on N

Associativity:

Let $a, b, c \in N$, then

$$(a*b)*c = a^b*c = (a^b)^c = a^{bc}$$
 --- (i)

$$a * (b * c) = a * b^c = (a)^{b^c}$$
 --- (ii)

$$a^{bc} \neq (a)^{b^c}$$

$$\Rightarrow$$
 $(a*b)*c \neq a*(b*c)$

 \Rightarrow '*' is not associative on N.

Binary Operations Ex 3.2 Q4(xii)

Commutativity:

Let $a, b \in N$, then

$$a*b=a^b\neq b^a=b*a$$

⇒ '*' is not commutative on N

Associativity:

Let $a, b, c \in N$, then

$$(a*b)*c = a^b*c = (a^b)^c = a^{bc}$$
 ---(

$$a * (b * c) = a * b^c = (a)^{b^c}$$
 --- (ii)

From (i) and (ii)

$$a^{bc} \neq (a)^{b^c}$$

$$\Rightarrow$$
 $(a*b)*c \neq a*(b*c)$

 \Rightarrow '*' is not associative on N.

Binary Operations Ex 3.2 Q4(xiii)

Let $a, b \in \mathbb{Z}$ then,

$$a * b = a - b \neq b - a = b * a$$

* is not commutative on Z

Associativity:

Let $a,b,c\in Z$, then

$$(a*b)*c = (a-b)*c = (a-b-c)$$

&
$$a*(b*c) = a*(b-c) = (a-b+c)$$
 $---(ii)$

From (i) & (ii)

$$(a*b)*c \neq a*(b*c)$$

 $^{\prime *}{}^{\prime}$ is not associative on Z.

Binary Operations Ex 3.2 Q4(xiv)

Commutativity:

Let $a,b \in Q$ then,

$$a*b = \frac{ab}{4} = \frac{ba}{4} = b*a$$

* is commutative on Q

Associativity:

Let $a, b, c \in Q$ then,

$$(a*b)*c = \frac{ab}{4}*c = \frac{abc}{16}$$

and,
$$a*(b*c) = a*\frac{bc}{4} = \frac{abc}{16}$$

From (i) and (ii)

$$(a*b)*c = a*(b*c)$$

'*' is associative on Q.

Binary Operations Ex 3.2 Q4(xv)

Commutativity:

Let $a,b \in Q$ then,

$$a * b = (a - b)^{2} = (b - a)^{2} = b * a$$

$$\Rightarrow$$
 $a*b=b*a$

'*' is commutative on Q.

Associativity:

Let $a, b, c \in Q$ then,

$$(a*b)*c = (a-b)^2*c = [(a-b)^2-c]^2$$
 ---(i)

and,
$$a*(b*c) = a*(b-c)^2 = [a-(b-c)^2]^2$$
 ---(ii)

From (i) and (ii)

$$(a*b)*c \neq a*(b*c)$$

* is not associative on Q.

The binary operator o defined on $Q - \{-1\}$ is given by

$$a \circ b = a + b - ab$$
 for all $a, b \in Q - \{-1\}$

Commutativity:

Let $a, b \in Q - \{-1\}$, then

$$a \circ b = a + b - ab = b + a - ba = b \circ a$$

- ⇒ a∘b=b∘a
- \Rightarrow b' is commutative on Q $\{-1\}$.

Binary Operations Ex 3.2 Q6

The binary operator * defined on Z and is given by a*b=3a+7b

Commutativity: Let $a, b \in \mathbb{Z}$, then

$$a*b = 1a + 7b$$
 and $b*a = 3b + 7a$

Hence, '*' is not commutative on Z.

Binary Operations Ex 3.2 Q7

We have, * is a binary operator defined on Z is given by a*b=ab+1 for all $a,b\in Z$

Associativity: Let $a, b, c \in \mathbb{Z}$, then

$$(a*b)*c = (ab+1)*c$$

= $abc+c+1$ ---

and,
$$a*(b*c) = a*(bc+1)$$

= $abc+a+1$ --- f

From (i) & (ii)

$$\therefore \qquad (a*b)*c \neq a*(b*c)$$

Hence, '*' is not associative on Z.

Binary Operations Ex 3.2 Q8

We have, set of real numbers except -1 and * is an operator given by

$$a*b = a+b+ab$$
 for all $a,b \in S = R - \{-1\}$

Now, ∀a,b∈S

$$a*b=a+b+ab \in S$$

$$\sqrt{a+b+ab} = -1$$

$$\Rightarrow \qquad a+b\left(1+a\right)+1=0$$

$$\Rightarrow (a+1)(b+1)=0$$

$$\Rightarrow$$
 $a = -1$ or $b = -1$

but $a \neq -1$ and $b \neq -1$ (given)

$$\therefore \qquad a+b+ab\neq -1$$

$$\Rightarrow$$
 $a*b \in S$ for $ab \in S$

 \Rightarrow '*' is a binary operator on S

Commutativity: Let $a, b \in S$

⇒ a*b = b*a

and,
$$a*(b*c) = a*(b+c+bc)$$

= $a+b+c+bc+ab+ac+abc$ ---(ii)

From (i) and (ii)
$$(a*b)*c = a*(b*c)$$

∴ '*' is associative on S.

Now,
$$(2*x)*3=7$$

 $\Rightarrow (2+x+2x)*3=7$
 $\Rightarrow 2+x+2x+3+6+3x+6x=7$
 $\Rightarrow 11+12x=7$
 $\Rightarrow 12x=-4$
 $\Rightarrow x=\frac{-4}{12} \Rightarrow x=\frac{-1}{3}$

Binary Operations Ex 3.2 Q9

The binary operator $\,*\,$ defined as

$$a*b = \frac{a-b}{2}$$
 for all $a,b \in Q$.

Now,

Associativity: Let $a, b, c \in Q$, then

$$(a*b)*c = \frac{a-b}{2}*c = \frac{\frac{a-b}{2}-c}{\frac{2}{2}}$$

= $\frac{a-b-2c}{4}$ --- (i)

and,
$$a*(b*c) = a*\frac{b-c}{2} = \frac{a-\frac{b-c}{2}}{2}$$

= $\frac{2a-b+c}{4} = ---(ii)$

From (i) & (ii)
$$(a*b)*c \neq a*(b*c)$$

Hence, '*' is not associative on Q.

Binary Operations Ex 3.2 Q10

The binary operator * defined as a*b=a+3b-4 for all $a,b\in Z$

Now,

Commutativity: Let $a, b \in \mathbb{Z}$, then

$$a*b = a+3b-4 \neq b+3a-4 = b*a$$

 \Rightarrow '*' is not commutative on Z.

Associativity: Let $a, b, c \in \mathbb{Z}$, then

$$(a*b)*c = (a+3b-4)*c = a+3b-4+3c-4$$

= $a+3b+3c-8$ ---(i)

and,
$$a*(b*c) = a*(b+3c-4) = a+3(b+3c-4)-4$$

= $a+3b+9c-16$ ---(ii)

From (i) & (ii)
$$(a*b)*c \neq a*(b*c)$$

Hence, '*' is not associative on Z.

Q be the set of rational numbers and $\ \ast\$ be a binary operation defined as

$$a*b = \frac{ab}{5}$$
 for all $a, b \in Q$

Now,

Associativity: Let $a,b,c\in Q$, then

$$(a*b)*c = \frac{ab}{5}*c = \frac{abc}{25}$$
 --- (i

and,
$$a*(b*c) = a*\frac{bc}{5} = \frac{abc}{25}$$
 ---(ii)

From (i) & (ii)

$$(a*b)*c = a*(b*c)$$

⇒ * is associative on Q.

Binary Operations Ex 3.2 Q12

The binary operator * is defined as

$$a*b = \frac{ab}{7}$$
 for all $a,b \in Q$

Now,

Associativity: Let $a, b, c \in Q$, then

$$(a*b)*c = \frac{ab}{7}*c = \frac{abc}{49}$$
 ---(i)

and,
$$a*(b*c) = a*\frac{bc}{7} = \frac{abc}{49}$$
 --- (ii

From (i) & (ii)
$$(a*b)*c = a*(b*c)$$

 \Rightarrow '*' is associative on Q.

Binary Operations Ex 3.2 Q13

The binary operator \ast defined as

$$a*b = \frac{a+b}{2}$$
 for all $a,b \in Q$.

Now,

Associativity: Let $a, b, c \in Q$, then

$$(a*b)*c = \frac{a+b}{2}*c = \frac{\frac{a+b}{2}+c}{2}$$

= $\frac{a+b+2c}{4}$ ---(1)

and,
$$a*(b*c) = a*\frac{b+c}{2}$$

= $\frac{a+\frac{b+c}{2}}{2}$
= $\frac{2a+b+c}{2}$ = ---(ii)

From (i) & (ii)
$$(a*b)*c \neq a*(b*c)$$

Hence, '*' is not associative on Q.

Ex 3.3

Binary Operations Ex 3.3 Q1

```
The binary operator * is defined on I^+ and is given by, a*b=a+b \text{ for all } a,b\in I^+ Let a\in I^+ and e\in I^+ be the identity element with respect to *. by identity property, we have, a*e=e*a=a \Rightarrow a+e=a \Rightarrow e=0
```

Thus the required identity element is 0.

Binary Operations Ex 3.3 Q2

Let
$$R - \{-1\}$$
 be the set and $*$ be a binary operator, given by $a*b = a+b+ab$ for all $a,b \in R - \{-1\}$

Now,

Let $a \in R - \{-1\}$ and $e \in R - \{-1\}$ be the identity element with respect to *. by identity property, we have,

$$a*e=e*a=a$$

$$\Rightarrow \qquad a+e+ae=a$$

$$\Rightarrow \qquad e(1+a)=0$$

$$\Rightarrow \qquad e=0 \qquad \qquad [\because 1+a\neq 0 \text{ as } a\neq -1]$$

:. The required identity element is 0.

We are given the binary operator * defined on Z as a*b=a+b-5 for all $a,b\in Q$.

Let e be the identity element with respect to *

Then,
$$a*e=e*a=a$$
 [By identity property]

$$\Rightarrow a+e-5=a$$

$$\Rightarrow$$
 $e = 5$

Hence, the required identity element with respect to \ast is 5.

Binary Operations Ex 3.3 Q4

The binary operator * is defined on Z, and is given by a*b=a+b+2 for all $a,b\in Z$.

Let $a \in Z$ and $e \in Z$ be the identity element with respect to *, then

$$\Rightarrow$$
 $a+e+2=a$

Hence, the identity element with respect to \ast is -2.

Binary Operations Ex 3.4 Q1

Given,

$$a*b=a+b-4$$
 for all $a,b\in Z$

(i)

Commutative: Let $a,b \in Z$, then

$$\Rightarrow \qquad a*b=a+b-4=b+a-4=b*a$$

$$\Rightarrow a*b=b*a$$

So, '*' is commutative on Z.

Associativity: Let $a, b, c \in \mathbb{Z}$, then

$$(a*b)*c = (a+b-4)*c = a+b-4+c-4$$

= $a+b+c-8$ ---(i)

and,
$$a*(b*c) = a*(b+c-4) = a+b+c-8$$
 $---(ii)$

$$(a*b)*c = a*(b*c)$$

So, '*' is associative on Z.

(ii)

Let $e \in Z$ be the identity element with respect to *.

By identity property, we have

$$a*e=e*a=a$$
 for all $a \in Z$

$$\Rightarrow a+e-4=a$$

$$\Rightarrow$$
 $e = 4$

So, e = 4 will be the identity element with respect to *

(iii)

Let $b \in Z$ be the inverse element of $a \in Z$

Then, a*b=b*a=e

$$\Rightarrow a+b-4=e$$

$$\Rightarrow a+b-4=4$$

 $[\because e = 4]$

 \Rightarrow b = 8 - a

Thus, b = 8 - a will be the inverse element of $a \in Z$.

$$a*b = \frac{3ab}{5}$$
 for all $a,b \in Q_0$

(i)

Commutative: Let $a,b \in Q_0$, then

$$a * b = \frac{3ab}{5} = \frac{3ba}{5} = b * a$$

$$\Rightarrow$$
 $a*b=b*a$

So, '*' is commutative on Q_0

Associativity: Let $a, b, c \in Q_0$, then

$$(a*b)*c = \frac{3ab}{5}*c$$
$$= \frac{9abc}{25} \qquad ---(i)$$

and,
$$a*(b*c) = a*\frac{3bc}{5}$$

= $\frac{9abc}{25}$ ---(ii)

From (i) & (ii)
$$(a*b)*c = a*(b*c)$$

So, '*' is associative on Q_0

(ii)

Let $e \in Q_0$ be the identity element with respect to *, then a*e=e*a=a for all $a \in Q_0$

$$\Rightarrow \frac{3ae}{5} = 6$$

$$\Rightarrow e = \frac{5}{3}$$

will be the identity element with respect to $*\ *$.

(iii)

Let $b \in Q_0$ be the inverse element of $a \in Q_0$, then

$$a*b=b*a=e$$

$$\Rightarrow \frac{3}{5}ab = e$$

$$\Rightarrow \frac{3}{5}ab = \frac{5}{3}$$

$$\Rightarrow b = \frac{25}{9a}$$

 $b = \frac{25}{9a} \text{ is the inverse of } a \in Q_0.$

We have, a * b = a + b + ab for all $a, b \in Q - \{-1\}$ (i) Commutativity: Let $a, b \in Q - \{-1\}$ a * b = a + b + ab = b + a + ba = b * a'*' is commutative on $Q - \{-1\}$ Associativity: Let $a,b,c\in \mathbb{Q}-\left\{ -1\right\} ,\ \ \text{then}$ (a*b)*c = (a+b+ab)*c= a + b + ab + c + ac + bc + abc and, a*(b*c) = a*(b+c+bc)= a+b+c+bc+ab+ac+abc---(ii) From (i) & (ii) (a*b)*c = a*(b*c)* is associative on $Q - \{-1\}$ (ii) Let e be identity element with respect to *. By identity property, $a * e = a = e * a \text{ for all } a \in Q - \{-1\}$ a+e+ae=a $\left[\because 1 + a \neq 0 \text{ as } a \neq -1 \right]$ $e(1+a)=0 \Rightarrow e=0$ e = 0 is the identity element with respect to * (iii) Let b be the inverse of $a \in Q - \{-1\}$ Then, a*b=b*a=e[e is the identity element]

Then,
$$a*b=b*a=e$$
 [e is the identity element]

$$\Rightarrow a+b+ab=e$$

$$\Rightarrow a+b+ab=0$$

$$\Rightarrow b(1+a)=-a$$

$$\Rightarrow b=\frac{-a}{1+a}$$
 [$\frac{-a}{1+a}\neq -1$, because if $\frac{-a}{1+a}=-1$]
$$\Rightarrow a=1+a\Rightarrow 1=0 \text{ Not possible}$$

 $b = \frac{-a}{1+a}$ is the inverse of a with respect to *

$$(a,b) \odot (c,d) = (ac,bc+d)$$
 for all $(a,b),(c,d) \in R_0 \times R$

(i)

Commutativity: Let (a,b), $(c,d) \in R_0 \times R$, then

$$\Rightarrow (a,b) \odot (c,d) = (ac,bc+d) \qquad ---(i)$$

and,
$$(c,d) \odot (a,b) = (ca, da+b)$$
 --- (ii)

From (i) & (ii) $(a,b) \odot (c,d) \neq (c,d) \odot (a,b)$

 \Rightarrow ' \circ ' is not commutative on $R_0 \times R$.

Associativity: Let (a,b), (c,d), $(e,f) \in R_0 \times R$, then

$$\Rightarrow \qquad ((a,b) \odot (c,d)) \odot (e,f) = (ac,bc+d) \odot (e,f)$$
$$= (ace,bce,de+f) \qquad \qquad ---(i)$$

and,
$$(a,b) \odot (c,d \odot (e,f)) = (a,b) \odot (ce,de+f)$$

= $(ace,bce+de+f)$ ---(ii)

$$\Rightarrow \qquad \big(\big((a,b) \odot \big((c,d) \big) \odot \big((e,f) = \big((a,b) \odot \big((c,d) \odot \big((e,f) \big) \big)$$

 \Rightarrow ' \odot ' is associative on $R_0 \times R$.

(ii)

Let $(x,y) \in R_0 \times R$ be the identity element with respect to \odot , then

$$(a,b)\odot(x,y)=(x,y)\odot(a,b)=(a,b)$$
 for all $(a,b)\in R_0\times R$

$$\Rightarrow$$
 $(ax,bx+y)=(a,b)$

$$\Rightarrow$$
 ax = a and bx + y = b

$$\Rightarrow$$
 $x = 1$, and $y = 0$

∴ (1,0) will be the identity element with respect to ⊙.

(iii)

Let $(c,d) \in R_0 \times R$ be the inverse of $(a,b) \in R_0 \times R$, then $(a,b) \odot (c,d) = (c,d) \odot (a,b) = e$

$$\Rightarrow (ac, bc + d) = (1, 0) \qquad [\because e = (1, 0)]$$

$$\Rightarrow$$
 ac = 1 and bc + d = 0

$$\Rightarrow c = \frac{1}{a} \text{ and } d = -\frac{b}{a}$$

 $\therefore \qquad \left(\frac{1}{a}, -\frac{b}{a}\right) \text{ will be the inverse of } (a,b).$

$$a*b = \frac{ab}{2}$$
 for all $a, b \in Q_0$

(i)

Commutativity: Let $a,b\in Q_0$, then

$$\Rightarrow a*b = \frac{ab}{2} = \frac{ba}{2} = b*a$$

Hence, '*' is commutative on Q_0 .

Associativity: Let $a,b,c\in Q_0$, then

$$\Rightarrow \qquad \left(a*b\right)*c = \frac{ab}{2}*c = \frac{abc}{4} \qquad \qquad ---\left(i\right)$$

and,
$$a*(b*c) = a*\frac{bc}{2} = \frac{abc}{4}$$
 --- (ii)

From (i) & (ii)
$$(a*b)*c = a*(b*c)$$

* is associative on Q_0 .

Let $e \in Q_0$ be the identity element with respect to *.

By identity property, we have,

$$a*e=e*a=a$$
 for all $a \in Q_0$

$$\Rightarrow \frac{ae}{2} = a \Rightarrow e = 2$$

Thus, the required identity element is 2.

(iii)

Let $b \in Q_0$ be the inverse of $a \in Q_0$ with respect to *, then,

$$a*b=b*a=e$$
 for all $a \in Q_0$

$$\Rightarrow \frac{ab}{2} = e \Rightarrow \frac{ab}{2} = 2$$
$$\Rightarrow b = \frac{4}{a}$$

Thus, $b = \frac{4}{a}$ is the inverse of a with respect to *.

$$a * b = a + b - ab$$
 for all $a, b \in R - \{+1\}$

(i)

Commutative: Let $a, b \in R - \{+1\}$, then,

$$\Rightarrow$$
 $a*b=a+b-ab=b+a-ba=b*a$

So, '*' is commutative on $R - \{+1\}$.

Associativity: Let $a,b,c\in R-\{+1\}$, then

$$(a*b)*c = (a+b-ab)*c$$

= $a+b-ab+c-ac-bc+abc$
= $a+b+c-ab-ac-bc+abc$ ---(i)

and,
$$a*(b*c) = a*(b+c-bc)$$

= $a+b+c-bc-ab-ac+abc$ ---(ii

From (i) & (ii)
$$(a*b)*c = a*(b*c)$$

So, '*' is associative on $R - \{+1\}$.

(ii)

Let $e \in R - \{+1\}$ be the identity element with respect to *, then a*e=e*a=a for all $a \in R - \{+1\}$

$$\Rightarrow$$
 $e(1-a)=0$

$$\left[\because a \neq 1 \Rightarrow 1 - a \neq 0 \right]$$

e = 0 will be the identity element with respect to *.

(iii)

Let $b \in R - \{1\}$ be the inverse element of $a \in R - \{1\}$, then a * b = b * a = e

$$\Rightarrow \qquad a+b-ab=0$$

$$[\because e = 0]$$

$$\Rightarrow b(1-a) = -a$$

$$\Rightarrow \qquad b = \frac{-a}{1-a} \neq 1$$

$$\Rightarrow b = \frac{-a}{1-a} \neq 1$$

$$\Rightarrow -a = 1 - a \Rightarrow 1 = 0$$
Not possible

 $\label{eq:beta} \beta = \frac{-a}{1-a} \text{ is the inverse of } a \in R - \{1\} \text{ with respect to } *.$

$$(a,b)*(c,d) = (ac,bd)$$
 for all $(a,b),(c,d) \in A$

(i)

Let (a,b), $(c,d) \in A$, then (a,b)*(c,d) = (ac,bd)

$$= (ca, bb) * (c, a) = (ac, ba)$$

= (ca, db)
= $(c, d) * (a, b)$

 $[\because ac = ca \text{ and } bd = db]$

$$\Rightarrow \qquad \big(a,b\big)*\big(c,d\big)=\big(c,d\big)*\big(a,b\big)$$

So, '*' is commutative on A

Associativity: Let $(a,b),(c,d),(e,f) \in A$, then

$$\Rightarrow \qquad ((a,b)*(c,d))*(e,f) = (ac,bd)*(e,f)$$
$$= (ace,bdf) \qquad ---(i)$$

and,
$$(a,b)*((c,d)*(e,f)) = (a,b)*(ce,df)$$

= (ace,bdf) ---(ii)

From (i) & (ii)

$$\Rightarrow \qquad \big(\big(a,b\big) * \big(c,d\big) \big) * \big(e,f\big) = \big(a,b\big) * \big(\big(c,d\big) * \big(e,f\big) \big)$$

So, '*' is associative on A.

(ii)

Let $(x,y) \in A$ be the identity element with respect to *.

$$(a,b)*(x,y)=(x,y)*(a,b)=(a,b)$$
 for all $(a,b)\in A$

$$\Rightarrow$$
 $(ax,by) = (a,b)$

$$\Rightarrow$$
 ax = a and by = b

$$\Rightarrow$$
 $x = 1$, and $y = 1$

: (1,1) will be the identity element

(iii)

Let $(c,d) \in A$ be the inverse of $(a,b) \in A$, then

$$(a,b)*(c,d) = (c,d)*(a,b) = e$$

$$\Rightarrow \qquad \left(ac,bd \right) = \left(1,1 \right) \qquad \left[\because e = \left(1,1 \right) \right]$$

$$\Rightarrow$$
 ac = 1 and bd = 1

$$\Rightarrow \qquad c = \frac{1}{a} \text{ and } d = \frac{1}{b}$$

The binary operation * on N is defined as:

a * b = H.C.F. of a and b

It is known that:

H.C.F. of a and b = H.C.F. of b and a_{i} a, $b \in \mathbb{N}$.

Therefore, a * b = b * a

Thus, the operation \ast is commutative.

For $a, b, c \in \mathbb{N}$, we have:

(a*b)*c = (H.C.F. of a and b)*c = H.C.F. of a, b, and ca*(b*c)=a*(H.C.F. of b and c) = H.C.F. of a, b, and c

Therefore, (a * b) * c = a * (b * c)

Thus, the operation * is associative.

Now, an element $e \in \mathbf{N}$ will be the identity for the operation * if a * e = a = e * a, $\forall a \in \mathbf{N}$.

But this relation is not true for any $a \in \mathbf{N}$.

Thus, the operation \ast does not have any identity in ${\bf N}.$

Ex 3.5

Binary Operations Ex 3.5 Q1

 $a \times_4 b$ = the remainder when ab is divided by 4.

eg. (i)
$$2 \times 3 = 6 \Rightarrow 2 \times_4 3 = 2$$

[When 6 is divided by 4 we get 2 as remainder]

(ii)
$$2 \times 3 = 4 \Rightarrow 2 \times_4 2 = 0$$

[When 4 is divided by 4 we get 0 as remainder]

The composition table for \times_4 on set $S = \{0, 1, 2, 3\}$ is :

×4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	Э	2	1

 $a +_5 b =$ the remainder when a + b is divided by 5.

eg.
$$2+4=6\Rightarrow 2+_5 4=1$$
 \because [we get 1 as remainder when 6 is divided by 5]
$$2+4=7\Rightarrow 3+_5 4=2$$
 \because [we get 2 as remainder when 7 is divided by 5]

The composition table for $+_5$ on set $S = \{0, 1, 2, 3, 4\}$.

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	Э

Binary Operations Ex 3.5 Q3

 $a \times_6 b =$ the remainder when the product of ab is divided by 6.

The composition table for \times_6 on set $S = \{0, 1, 2, 3, 4, 5\}$.

× ₆	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Binary Operations Ex 3.5 Q4

 $a \times_{S} b$ = the remainder when the product of ab is divided by 5.

The composition table for \times_5 on $Z_5 = \{0, 1, 2, 3, 4\}$.

×5	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

 $a \times_{10} b =$ the remainder when the product of ab is divided by 10.

The composition table for x_{10} on set $S = \{1, 3, 7, 9\}$

×10	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

We know that an element $b \in S$ will be the inverse of $a \in S$

if
$$a \times_{10} b = 1$$

 $\left[egin{array}{c} \mathbf{1} \text{ is the identity element with} \\ \text{respect to multiplication} \end{array} \right]$

 \Rightarrow 3 \times_{10} b = 1

From the above table b = 7

.. Inverse of 3 is 7.

Binary Operations Ex 3.5 Q6

 $a \times_7 b =$ the remainder when the product of ab is divided by 7.

The composition table for \times_7 on $S = \{1, 2, 3, 4, 5, 6\}$

× ₇	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	з
5	5	3	1	6	4	2
6	6	5	4	3	2	1

We know that 1 is the identity element with respect to multiplication

Also, b will be the inverse of a

if,
$$a \times_7 b = e = 1$$

$$\Rightarrow$$
 $3 \times_7 b = 1$

From the above table $3 \times_7 5 = 1$

$$b = 3^{-1} = 5$$

Now,
$$3^{-1} \times_7 4 = 5 \times_7 4 = 6$$

The composition table for $\times_{\mathbf{11}}$ on $Z_{\mathbf{11}}$

×11	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9
3	3	6	9	1	4	7	10	3	5	8
4	4	8	1	5	9	2	6	10	3	7
5	5	10	4	9	3	8	2	7	1	6
6	6	1	7	2	8	3	9	4	10	5
7	7	3	10	6	2	9	5	1	8	4
8	8	5	3	10	7	4	1	9	6	3
9	9	7	5	3	1	10	8	6	4	2
10	10	9	8	7	6	5	4	3	2	1

From the above table

5 ×₁₁ 9 = 1

 $[v \mathbf{1}]$ is the identity element

.. Inverse of 5 is 9.

Binary Operations Ex 3.5 Q8

 $Z_5 = \{0, 1, 2, 3, 4\}$

 $a \times_5 b =$ the remainder when the product of ab is divided by 5.

The composition table for \times_5 on $Z_5 = \{0, 1, 2, 3, 4\}$

× ₅	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

From the above table we can say that

$$b*c=c*b=d$$

'+' is commutative

a,b,c∈S Again,

$$\Rightarrow (a*b)*c=b*c=d \text{ and}$$

$$a*(b*c)=a*d=d$$

$$\therefore \qquad (a*b)*c=a*(b*c)$$

* is associative

We know that e will be identity element with respect to \bullet if

$$o*e=e*o=o$$
 for all $o \in S$

 $\boldsymbol{\sigma}$ will be the identity element

Again,

 \boldsymbol{b} will be the inverse of \boldsymbol{a} if

From the above table

$$a*a=a$$
, $b*b=b$, $c*c=c$ and $d*d=d$

Inverse of a = a

b=b

From the above table, we can observe

aob= boa, boc = cob aoc = coa, bod = dob aod = doa, cod = doc

∴ 'ø' is commutative on S

Again, for $a,b,c \in S$

$$(aob)oc = aoc = a$$
 $---(i)$
 $ao(boc) = aoc = a$ $---(ii)$

From (i) & (ii)
$$(aob)oc = ao(boc)$$

So, 'o' is associative on $\mathcal S$

Now, we have,

oob= o

bob = b

cob=c

dob= d

b is the identity element with respect to 'σ'

We know that x will be inverse of y

If xxy = yxx = e

$$\Rightarrow x = y = y = b$$
 [: $e = b$]

Now, from the above table we find that

bob = b

cod = b

doc = b

$$b^{-1} = b$$
, $c^{-1} = d$, and $d^{-1} = c$

Not: a^{-1} does ont exist.

Binary Operations Ex 3.5 Q10

Let
$$X = \{0, 1, 2, 3, 4, 5\}.$$

The operation * on X is defined as:

$$a*b = \begin{cases} a+b & \text{if } a+b < 6\\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$$

An element $e \in X$ is the identity element for the operation *, if

$$a*e = a = e*a \ \forall a \in X.$$

For $a \in X$, we observed that:

$$a*0 = a+0 = a$$
 $\left[a \in X \Rightarrow a+0 < 6\right]$
 $0*a = 0+a = a$ $\left[a \in X \Rightarrow 0+a < 6\right]$

$$\therefore a * 0 = a = 0 * a \ \forall a \in X$$

Thus, 0 is the identity element for the given operation *.

An element $a \in X$ is invertible if there exists $b \in X$ such that a * b = 0 = b * a.

i.e.,
$$\begin{cases} a+b=0=b+a, & \text{if } a+b<6\\ a+b-6=0=b+a-6, & \text{if } a+b\geq 6 \end{cases}$$

i.e.,

$$a = -b \text{ or } b = 6 - a$$

But,
$$X = \{0, 1, 2, 3, 4, 5\}$$
 and $a, b \in X$. Then, $a \neq -b$.

Therefore, b = 6 - a is the inverse of $a \in X$.

Hence, the inverse of an element $a \in X$, $a \neq 0$ is 6 - a i.e., $a^{-1} = 6 - a$.