Capítulo 4

A CAMADA DE REDE - ENDEREÇAMENT

Objetivos – Aula de Hoje

Visão geral sobre o endereçamento IPv4 e IPv6

Administração do espaço de endereçamento

Obtenção de endereços

Atribuição de endereços (manual ou automática)

Endereços públicos e privados

Introdução

A camada de rede

O Protocolo da Internet (IP): repasse e endereçamento na Internet

Contemplando o interior da camada de rede da Internet

Fragmentação do datagrama IP

Fragmentação e reconstrução IP

Formato do datagrama IPv4

32 bits Comprimento Versão Tipo de serviço Comprimento do datagrama (bytes) do cabeçalho Deslocamento de Identificador de 16 bits Flags fragmentação (13 bits) Protocolo da Tempo de vida Soma de verificação do cabeçalho camada superior Endereço IP da origem Endereço IP do destino Opções (se houver) **Dados**

Vídeo - NICBr

Fragmentação de pacotes no IPV+ e IPV6

Fragmentação de pacotes IPv6 e IPv4, explicada pelo NIC.br

https://www.youtube.com/watch?v=5OtebbSnwoM

Fragmentação do datagrama IP

Fragmentação e reconstrução IP

Fragmentação do datagrama IP

Fragmentos IP

Fragmento	Bytes	ID	Deslocamento	Flag
1º fragmento	1.480 bytes no campo de dados do datagrama IP	identificação = 777	0 (o que significa que os dados devem ser inseridos a partir do byte 0)	1 (o que significa que há mais)
2º fragmento	1.480 bytes de dados	identificação = 777	185 (o que significa que os dados devem ser inseridos a partir do byte 1.480. Note que 185 x 8 = 1.480)	1 (o que significa que há mais)
3º fragmento	1.020 bytes de dados (= 3.980 -1.480 -1.480)	identificação = 777	370 (o que significa que os dados devem ser inseridos a partir do byte 2.960. Note que 370 x 8 = 2.960)	0 (o que significa que esse é o último fragmento)

Porque precisamos de endereçamento?

- Identificação unívoca dos sistemas na rede
- > Identificação das interfaces de rede
- Base das funções de encaminhamento

0

Endereçamento IPv4

- > Um endereço IP está tecnicamente associado com uma interface
- Cada endereço IP tem comprimento de 32 bits (equivalente a 4 bytes)

127.0.0.1 172.16.0.9 192.0.0.7

Esses endereços são escritos em notação decimal separada por pontos.

Desafio Simples

Quantos endereços IPv4 podem existir? Isso é suficiente?

4.294.967.296

Dotted-decimal notation

- ➤ Quatro números decimais de 0 a 255, separados por pontos
- Cada número corresponde à representação decimal de um dos 4 bytes do endereço IP.

11000000 10101001 00100011 00000111

192.169.35.7

Classes de endereços IP

- ► Inicialmente, o espaço de endereçamento estava dividido em classes.
- > Hoje usa-se um endereçamento não baseado em classes para IPV4
- ➤ Designação /n (indica nº de bits)
 - Classe A / 8
 - Classe B / 16
 - Classe C / 24

Classes de endereços IPv4

Gamas de endereços para as diversas classes

Classe	Gama
A(/8)	0.0.0.0 a 127.255.255.255
B (/ 16)	128.0.0.0 a 191.255.255.255
C (/24)	192.0.0.0 a 223.255.255.255
D	224.0.0.0 a 239.255.255.255
E	240.0.0.0 a 247.255.255.255

Endereços IP especiais

Sub-endereçamento

- > Dentro de uma dada rede, a parte reservada para a identificação dos hosts poderá ser dividida
- > Reservam-se alguns desses bits para a identificação de sub-redes da rede em causa.
- > Sub-endereçamento: introdução de um novo nível hierárquico de endereçamento

Sub-endereçamento (cont.)

Sub-endereçamento (cont.)

A utilização de sub-endereçamento conduz a uma utilização mais eficiente do espaço de endereçamento.

O encaminhamento também é simplificado

Todas as sub-redes são vistas do exterior como uma única rede

Máscara de sub-rede

Número binário de 32 bits que, após produto lógico com um qualquer endereço IP de um host da sub-rede, permite determinar o endereço da sub-rede em causa.

```
Endereço de host:
    11000001 10001000 11101111 10001001

Máscara de sub-rede:
    11111111 1111111 1111111 11000000

Endereço de sub-rede:
    11000001 10001000 11101111 10000000
```

Máscaras de sub-rede: exemplos

Nº bits rede	Nº end. IP	Máscara de sub-rede
/ 24	256	255.255.255.0
/ 25	128	255.255.255.128
/ 26	64	255.255.255.192
1 27	32	255.255.254
/28	16	255.255.255.240

Máscara de sub-rede (cont.)

Tal como nas redes, nas sub-redes o 1º endereço IP (todos os bits do host a zero) é reservado para indentificar a sub-rede.

Tal como nas redes, nas sub-redes o último endereço IP (todos os bits do host a um) é reservado para endereço de broadcast da sub-rede.

Endereços de interfaces e sub-redes

Endereços de interfaces e sub-redes

Três roteadores interconectando seis sub-redes 223.1.1.1 223.1.1.4

Obtenção de um bloco de endereços

Para obter um bloco de endereços IP para utilizar dentro da sub-rede de uma organização, um administrador de rede poderia:

contatar seu ISP, que forneceria endereços a partir de um bloco maior de endereços que já estão alocados ao ISP.

O ISP, por sua vez, dividiria seu bloco de endereços em oito blocos de endereços contíguos, do mesmo tamanho, e daria um deles a cada uma de um conjunto de oito organizações suportadas por ele (veja figura a seguir):

Obtenção de um bloco de endereços

Bloco do ISP	200.23.16.0/20 _	11001000	00010111	00010000	00000000
Organização 0	200.23.16.0/23 _	11001000	00010111	00010000	00000000
Organização 1	200.23.18.0/23 _	11001000	00010111	00010010	00000000
Organização 2	200.23.20.0/23 _	11001000	00010111	00010100	00000000
Organização 7	200.23.30.0/23 _	11001000	00010111	<u>000</u> 11110	00000000

Súper-endereçamento e CIDR

Endereçamento hierárquico (1990):

– Esgotamento do espaço de endereçamento

IPv6

- Escassez de endereços de classe B
- Elevado crescimento das tabelas de routing

Classless Inter-Domain Routing

Endereços IPv6

O IPv6 é especificado no RFC 2460

- ∘ Espaço de endereçamento alargado
 - • 296 vezes o espaço de endereçamento do IPv4
 - Cerca de 1018 endereços
 - Mais de 1500 endereços por m2 da superfície terrestre
 - • Arquitectura de endereçamento: RFC 2373

Endereços IPv6

- Simplificação do cabeçalho dos pacotes
- Suporte de cabeçalhos de extensão
- Capacidade de identificação de fluxos
- Suporte de mecanismos de segurança

Pacotes IPv6

Vídeo Endereços IP - Divididos em duas partes

Os endereços IP não são todos iguais - parte 1

) 3:31 / 5:57

https://www.youtube.com/watch?v=jnuHODaLcO8

Obtenção de endereços IP

Até 1998 a atribuição de endereços IP oficiais era feita sob coordenação da IANA (http://www.iana.org/)

Em 1998, foi formada a ICANN (Internet Corporation for Assigned Names and Numbers, http://www.icann.org/)

- Gestão de endereços (IPv4, IPv6)
- ∘ Gestão de nomes (espaço de nomeação, DNS)
- Gestão de números (de protocolos)

Obtenção de endereços IP (cont.)

- > A gestão de endereços é feita pela ASO
 - Address Supporting Organization, http://www.aso.icann.org/)
- ➤ Por sua vez, a ASO delega nos Regional Internet Registries, RIR)
 - Ásia-Pacífico: APNIC (http://www.apnic.net/)
 - América: ARIN (http://www.arin.net/)
 - Europa: RIPE-NCC (http://www.ripe.net/)

Obtenção de endereços IP (cont.)

Os objectivos dos RIR são:

- Utilização eficiente do espaço de endereçamento
- Agregação de rotas por recurso a CIDR
- Fornecimento de serviços de registo de endereços

Os RIR são, basicamente, associações de ISPs que agem como entidades de registo local (Local Internet Registries, LIR)

Atribuição de endereços LAN

- Configuração manual
- Simples
- Não necessidade de servidores de atribuição de endereços
- Obriga a configuração manual de clientes e servidores
- Não exequível em redes grandes ou redes com razoável dinâmica de utilizadores
- ∘ − Na prática, impede a mobilidade de utilizadores

Atribuição de endereços LAN

- Configuração automática
- DHCP (Dynamic Host Configuration Protocol)
- Definido no RFC 2131
- Obtenção de informação de configuração de clientes através da rede
 - Endereço IP
 - Servidor de DNS
 - Gateway (router)
 - Outra informação
- Baseado no BOOTP (Boot Protocol), usado para atribuição de endereços IP a clientes diskless

Funcionamento básico do DHCP

DHCP

- O DHCP permite que um hospedeiro obtenha (seja alocado a) um endereço IP de maneira automática.
- O DHCP é em geral denominado um protocolo plug and play.
- O protocolo DHCP é um processo de quatro etapas:
- 1. Descoberta do servidor DHCP.
- 2. Oferta(s) dos servidores DHCP.
- 3. Solicitação DHCP.
- 4. DHCP ACK.

Cenário cliente-servidor DHCP

Cenário cliente-servidor DHCP

NAT

Tradução de endereços de rede (network address translation - NAT)

O roteador que usa NAT não parece um roteador para o mundo externo, pois se comporta como um equipamento único com um único endereço IP

O roteador que usa NAT está ocultando do mundo exterior os detalhes da rede residencial

Onde os computadores de redes residenciais obtêm seus endereços e onde o roteador obtém seu endereço IP exclusivo?

DHCP

FIGURA 4.22 TRADUÇÃO DE ENDEREÇOS DE REDE (S = ORIGEM, D = DESTINO)

Tabela de tradução NAT		
Lado da WAN	Lado da LAN	
138.76.29.7, 5001	10.0.0.1, 3345	

ICMP

ICMP - Internet Control Message Protocol

Protocolo de mensagens de controle da internet

Usado por hospedeiros e roteadores para comunicar informações de camada de rede entre si

A utilização mais comum do ICMP é para comunicação de erros

Mensagens ICMP têm um campo de tipo e um campo de código

PING

- Envia uma mensagem ICMP do tipo 8 código 0 para o hospedeiro especificado
- O hospedeiro de destino, ao ver a solicitação de eco, devolve uma resposta de eco ICMP do tipo 0 código 0

FIGURA 4.23 TIPOS DE MENSAGENS ICMP

Tipo ICMP	Código	Descrição
0	0	resposta de eco (para <i>ping</i>)
3	0	rede de destino inalcançável
3	1	hospedeiro de destino inalcançável
3	2	protocolo de destino inalcançável
3	3	porta de destino inalcançável
3	6	rede de destino desconhecida
3	7	hospedeiro de destino desconhecido
4	0	repressão da origem (controle de congestionamento)
8	0	solicitação de eco
9	0	anúncio do roteador
10	0	descoberta do roteador
11	0	TTL expirado
12	0	cabeçalho IP inválido