Numeral Systems, Metric Prefix and Logarithm

Numeral Systems

Binary (base 2): represented by strings of [0, 1]

e.g. "0110111₂"

Decimal (base 10): represented by strings of [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

e.g. "9836₁₀"

Hexadecimal (base 16): represented by strings of [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F]

e.g. "A38F29₁₆" or "BEEF₁₆" or "CAFE₁₆"

Metric Prefix Note: $2^{10} = 1024 \approx 10^3$

pico	(p)	10 ⁻¹²				tera	(T)	10 ¹²
nano	(n)	10 ⁻⁹	\leftarrow	$10^0 = 1$	\rightarrow	giga	(G)	10 ⁹
micro	(μ)	10 ⁻⁶				mega	(M)	10 ⁶

milli (m) 10⁻³ kilo (k)

Logarithm

Logarithm reverses the operation of exponentials. In general, $b^y=x$ and $y=log_bx$.

e.g.,
$$2^5 = 32$$
 and $log_2 32 = 5$

Logarithmic Identities:

Product: $log_b xy = log_b x + log_b y$

e.g.
$$log_{10} 100 = log_{10} 10 + log_{10} 10 = 1 + 1 = 2$$

Quotient: $log_b \frac{x}{y} = log_b x - log_b y$

e.g.
$$log_{10}1000 = log_{10}10000 - log_{10}10 = 4 - 1 = 3$$

Power: $log_b(x^y) = y log_b x$

e.g.
$$log_{10} (100^2) = 2 log_{10} 100 = 2 \cdot 2 = 4$$

Change of base: $log_b a = \frac{log_{10} a}{log_{10} b}$ (May use any base, base 10 is arbitrarily chosen here)

e.g.
$$log_2 8 = \frac{log_{10} 8}{log_{10} 2} = \frac{0.903}{0.301} = 3$$

10³