Major EEL 201 Digital Electronic Circuits

Time: 2 Hour 1/12/06 Max. Marks: 55

Name:	Entry #	Group#
-------	---------	--------

N.B.: Attempt all questions. Answer at the appropriate locations as indicated. For all calculations and rough work use the reverse side / extra sheets provided.

Q1a. The 'resistor logic' circuit has binary inputs (A, B, C), of '0' V and '4' V (for 'low' and 'high' levels).

For $R = 2 K\Omega$, compute and fill the truth-table showing <u>actual</u> <u>voltages</u> for 'f' by filling in the given table on the right.

	A	В	C	f
٠				volt
	0	0	0	
	0	0	1	
	0	1	0	
	0	1	1	
	1	0	0	
	1	0	1	
	1	1	0	
	1	1	1	

Q1b. In the given NMOS transistors based logic circuit, T1 and T2 are placed in parallel. Supply voltages V_{DD} and V_{GG} are positive (set to Logic HIGH or 1). Write the truth-table for V_0 as a function of V_1 and V_2 .

(4 + 4 = 8 marks)

V_2	V_0
	V ₂

Q2a. In the given PMOS transistor based logic circuit, output V_0 is a function of three inputs A, B and C.

A (OR, AND) logic gate circuit is also shown, but without proper inputs marked.

For the two circuits to be <u>equivalent</u>, write the <u>three</u> <u>inputs</u> in the appropriate form, on the gate circuit.

(3 marks)

Q2b. For the given CMOS circuit, write the output (OUT) as a function of the inputs (A, B, C, D) in SOP form.

(5 marks)

Answer:

OUT =

Q3:- Using diagram given below compute 'Y' as a function of input signals. Using Boolean Difference method fid out which of the faults at 'h' can not be tested? (Answer within 20 words to justify your logic/proof after derivations) Then compute all tests for the fault 'f's-a-0 by means of Boolean Difference method. (8)

Calculations: Y =

Answer: The fault/faults which can not be tested at 'h' is/are = \dots The reason is...

The tests for 'f's-a-0 are as given below:

a ↓

b

c 1 **d** ↓

1st -----

2nd -----

3rd -----

4th -----

Q4 (a):- Minimize the finite state machine given below using implication chart method.

	A	В	C	D	E
F					
E					
D					
С					
В					

Answer: The equivalent states are as ---

The minimized finite state machine is as:

(b):- Convert the given Mealy machine into Moore machine.

ANSWER: - Draw equivalent machine below:

(6 + 3)

Q 5 (a):- Initial value of CY flag is 0. Write the value of CY flag and accumulator after the execution of instructions labled as 1, 2, 3, 4, 5 and 6. Assume the value of mn H = 59 H

MVI A, mn H RAL

- (1) ADI E1 H MVI B, 04 H ANI FF H
- (2) ADC B XRI mn H MVI C, 01 H
- (3) RRC MVI B, 10 H
- (4) ORA B
 LXI H, 1234 H
 LXI B, 5678 H
 LXI D, 2468 H
 ADD C
- (5) DAA
- (6) DAD B

CY	A	$=\mathbf{B}_{7}$	\mathbf{B}_{6}	\mathbf{B}_{5}				$\mathbf{B_1}$	
1 st ↓		Ţ		Ţ	Ţ	↓.	Ţ	Ţ	\downarrow
2 nd									
3 rd									
4 ^{ւհ}									
5 th									
6 ^{ւհ}									
					-	386 H 533 H			
			(1) (2)		D, 9, A, 5 C	533 H			
Answer:	$A = B_7$	Вс	(2)	LXI MVI ADD DAA CMF SUB STC	D, 9. A, 5 C P E D	533 H 7 H	B,	Во	
Answer:	$\mathbf{A} = \mathbf{B_7}$	$\begin{array}{c} \mathbf{B_6} \\ \downarrow \end{array}$	(2)	LXI MVI ADD DAA CMF SUB STC	D, 9. A, 5 C P E D	533 H 7 H	B ₁ ↓	$\begin{matrix} \mathbf{B_0} \\ \downarrow \end{matrix}$	
Answer:	$\mathbf{A} = \mathbf{B_7}$	$\begin{array}{c} \mathbf{B_6} \\ \downarrow \end{array}$	(2)	LXI MVI ADD DAA CMF SUB STC	D, 9. A, 5 C P E D	533 H 7 H	$f B_i \downarrow$	$\begin{matrix} \mathbf{B_0} \\ \downarrow \end{matrix}$	

Q6:- For the circuit given in figure (3) below answer the questios as indicated.

Here 3M3 implies 3.3 M. Ohm and similarly others.

- (a) What is the d.c. gain of the input stages (excluding the rightmost opamp)? Answer:
- (b) If $C_1 = 1$ microfard what is the lower cutoff frequency?

Answer:

(c) - If $C_2 = 0.0033$ microfard what is the upper cutoff frequency?

Answer:

(d) - What is the overall gain of the circuit at the mid-band frequency?

Answer:

Q7:- Data appearing on a line synchronized with a clock should never have three or more consecutive 0's or four or more consecutive 1's.

Design a sequential circuit that will detect such sequences and generate an output of 1 whenever they occur. Construct appropriate timing diagrams for different combination of inputs. (7)

Answer:-