

Hằng số cân bằng và ứng dụng

1) Hằng số cân bằng (Kc)

- Cân bằng động: Tại trạng thái cân bằng, tốc độ phản ứng thuận bằng tốc độ phản ứng nghịch.
- ♦ Ví dụ với phản ứng: $N_2 + 3H_2 \Longrightarrow 2NH_3$
- \diamondsuit Tốc độ phản ứng: Thuận: $v_t = k_t \cdot [N_2] \cdot [H_2]^3$ Nghịch: $v_n = k_n \cdot [NH_3]^2$
- \diamondsuit Tại cân bằng: $v_t = v_n \Leftrightarrow k_t \cdot [N_2] \cdot [H_2]^3 = kn \cdot [NH_3]^2$
- \diamondsuit Định nghĩa: $K_c = \frac{k_1}{k_2}$

2 Mở rộng

- ♦ Hằng số axit (K_a):
 - ★ Áp dụng cho phản ứng phân ly axit: $HA + H_2O \Longrightarrow H_3O^+ + A^-$

$$\bigstar \ K_a = \frac{[H_3O^+] \cdot [A^-]}{[HA]}$$

- ♦ Hằng số bazơ (Kb):
 - ★ Áp dụng cho phản ứng phân ly bazơ: $B + H_2O \Longrightarrow BH^+ + OH^-$

$$\bigstar \ K_b = \frac{[BH^+][OH^-]}{[B]}$$

- ♦ Tích số tan (Ksp):
 - ★ Áp dụng cho phản ứng phân ly hợp chất ít tan: $A_mB_n \Longrightarrow mA^{n+} + nB^{m-}$
 - $\bigstar K_{sb} = [A^{n+}]^m \cdot [B^{m-}]^n$

(3) Ý nghĩa:

- $\ \diamondsuit \ K_c,\!K_a,\,,\!K_{sb}$ đều là dạng của hằng số cân bằng.
- ♦ Giá trị lớn chỉ phản ứng thuận mạnh, giá trị nhỏ chỉ phản ứng nghịch mạnh.
- \diamond K_a và K_b giúp đánh giá độ mạnh của axit, K_{sb} đánh giá khả năng tan của một hợp chất.

4 Ứng dụng:

- Dự đoán chiều của phản ứng
- ♦ Tính toán nồng độ các chất tại cân bằng
- ♦ So sánh độ mạnh của axit và bazơ, tính được độ tan

🐞 Bài tập về cân bằng hóa học

$extcolored{m{ert}}$ Dạng 1. Viết biểu thức tính ${ m K_C}$

② Ví dụ 1

Biểu thức nào sau đây là biểu thức hằng số cân bằng (K_C) của phản ứng

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

 $\label{eq:KC} \begin{array}{l} \textbf{A} \ K_C = \frac{\left[NH_3\right]^2}{\left[N_2\right]\left[H_2\right]^3}. \\ \textbf{C} \ K_C = \frac{\left[NH_3\right]}{\left[H_2\right]^2}. \end{array}$

 $\begin{array}{c} \textbf{B} \ \ K_C = \frac{[NH_3]}{[N_2]\,[H_2]}. \\ \\ \textbf{D} \ \ K_C = \frac{[N_2]\,[H_2]}{[NH_3]}. \end{array}$

Ż	Bài làm:	 							

⊕ Ví dụ 2

Biểu thức nào sau đây là biểu thức hằng số cân bằng (K_C) của phản ứng $C(s)+2H_2\left(g\right)\to CH_4\left(g\right)$?

 $\mathbf{A} \ \mathrm{K_C} = \frac{[\mathrm{CH_4}]}{[\mathrm{H_2}]}.$

 $\begin{array}{c} \textbf{B} \ \ K_{C} = \frac{[CH_{4}]}{[C]\,[H_{2}]^{2}}. \\ \textbf{D} \ \ K_{C} = \frac{[CH_{4}]}{[H_{2}]^{2}}. \end{array}$

/	B	ài	i	l	à	m	<i>;</i>	 •			•		•			•	•					•		•	•	•							•	•						•				•		•				•	•				•	•	•				•		. .	
 	•			•	•	•	•	 •	•	•	•	 •	•	•	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•			•	•		•	•	•	•			•	•	•	•	•	•	•	 •	•		•	•			•	•		•

\bigcirc	Ví	-1	1
G)	VI	au	- 5

Viết biểu thức tính hằng số cân bằng của các phản ứng sau:

- $a)\ N_2(g)+3H_2(g) \rightleftharpoons 2NH_3(g)$
- $b)\ PCl_{5}(g) \mathop{\Longrightarrow} PCl_{3}(g) + Cl_{2}(g)$
- $c)\ H_2(g) + F_2(g) \Longrightarrow 2HF(g)$
- $d)\ COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$
- $e) \ CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$

C	Ĺ	B	ài	U	ir	<i>;</i> .		•	 		•			•		 	•		 	•	 •		 •	 •	 		 	•	 	•	 •	 	•	 		 	•	
									 						 •	 		 •	 	•			 •		 	•	 		 	•	 •	 	•	 	•	 		
•					• •	•	• •	•	 	• •	• •	• •	•	•	 •	 	•	 •	 	•	 •	• •	 •	 •	 	•	 	•	 	•	 •	 	•	 	•	 • •	•	 • •
_									 																				 							 		