

Instituto Federal de Educação, Ciência e Tecnologia da Bahia

Sistema IOT de irrigação inteligente multirregional

Luis Guilherme Passos Ramos, Náthaly de Jesus Brito

Agosto, 2025

Projeto	3
Dispositivos simulados	3
Segurança	3
Monitoramento	4
Principais Componentes do sistema	4
Interoperabilidade	5
Diferença entre os protocolos e segurança utilizada	6
Arquitetura	7
Diagrama	8

Projeto -

Infraestrutura IoT segura e interoperável para irrigação inteligente com sensores em zona remota (com uso de LoRaWAN para envio de dados de sensores) e zona urbana (com uso de MQTT local). Os dados vão para um servidor central que autentica dispositivos, criptografa transmissões com TLS/DTLS e garante privacidade.

Dispositivos simulados

- Sensor de zona remota via LoRaWAN envia dados simulados de umidade e temperatura; Usa um client UDP para simular pacote LoRaWAN;
- Sensor de zona urbna via MQTT publica dados em tópico MQTT;

Servidor central

- Recebe dados via HTTP REST e armazena;
- Usa JWT para autenticação;
- Encriptação via TLS com certificado local;
- Log dos eventos;

Segurança

- TLS/DTLS entre dispositivos e sevidor- o TLS protege o MQTT e HTTP;
- JWT para controle de acesso garante autenticação forte para o envio de dados;
- Logs permite rastreabilidade e auditoria;

Monitoramento

Geração de logs de comunicação e autenticação;

Principais Componentes do sistema -

API REST (api_rest/app.py)

- O framework é Flask com JWT para autenticação;
- A função é receber dados dos sensores via gateway UDP, exigindo uma autenticação JWT, registrando logs de autenticação e comunicação;
- Para segurança temos HTTPS (TLS) com certificados próprios (certs/);
- Temos dois endpoints, /login para autenticar sensores retornando um token JWT, e /sensores que recebe dados dos sensores exigindo JWT e registrando logs;

Gateway UDP (udp_gateway/gateway_udp.py)

- A função é atuar como bridge entre os sensores remotos UDP e a API REST (HTTP);
- O fluxo acontece assim:
 - Recebe pacotes UDP de sensores remotos.
 - Registra cada papcote recebido em logs (logs/comms.log).
 - Encapsula os dados em uma requisição HTTP POST para a API REST, usando JWT para autenticação.
- A segurança se dá através do HTTPS e JWT.

Sensor remoto UDP (udp_gateway/sensor-udp.py)

 Ele simula um sensor remoto, enviando, periodicamente, dados via UDP para o gateway;

Sensor Urbano MQTT (mqtt/sensor_mqtt.py)

• Ele simula um sensor urbano, publicando dados, periodicamente em um tópico MQTT seguro (TLS) garantindo segurança.

Logs e monitoramento (logs/)

- Auth.log: registra autenticações e tentativas de login;
- Comms.log: registra comunicações dos sensores;
- Packets.pcap: pode capturar pacotes de rede para análise;

Certificados (certs/)

Garantem criptografia de ponta a ponta;

Em resumo, o fluxo se dá pelo sensor remoto udp gerar dados e enviá-los via UDP para o gateway UDP. Já esse gateway os recebe e registra em log repassando os dados via HTTP POST com JWT para a API REST que valida o JWT, anonimiza o ID do sensor, registra logs e responde. O sensor Urbano MQTT publica os dados em um tópico MQTT seguro (TLS) simulando sensores urbanos.

Interoperabilidade

A interoperabilidade se dá através da comunicação e integração de dados pelo uso de protocolos distintos por sensores distintos de forma segura e transparente em uma única infraestrutura.

Sensores Urbanos usam MQTT (protocolo leve, bem comum em IoT, que é baseado em publicação e assinatura). Já os Sensores Remotos utilizam UDP (simulando LoRaWAN, que é comum em áreas remotas por possuir baixo consumo e eficiência).

O gateway UDP funciona como tradutor, ele recebe dados dos sensores remotos via UDP convertendo-os para o formato esperado pela API REST(HTTP e JSON) e autentica com JWT.

Assim, a interoperabilidade do nosso sistema é garantida através do uso do gateway que faz a ponte entre os diferentes protocolos que usamos, pela padronização dos dados e pela centralização do processamento na API REST.

Diferença entre os protocolos e segurança utilizada

1. Protocolo

Protocolo	Uso	Característica
MQTT	Sensores urbanos	 Protocolo de mensagens publish/subscribe; Transporte TCP com TLS; Baixa latência, permite comunicação bidirecional; O broker centraliza o recebimento e distribuição das mensagens;
UDP	Sensores Remotos	 Protocolo de transporte sem conexão; Transporte UDP (que não garante a entrega, ordem oou integridade); Leve, possui baixo consumo de energia; Precisa do uso do gateway para traduzir o UDP para HTTP;
HTTP/REST	Comunicação entre gateway e API central	 Protocolo de aplicação baseado em requisições e respostas; Transporte TCP com TLS; É padronizado, suporta autenticação robusta;

2. Segurança

Protocolo	Criptografia	Autenticação
MQTT	TLS	TLS
UDP	Não possui nativamente	Não possui nativamente
HTTP/REST	HTTPS (TLS)	JWT

Arquitetura

A arquitetura é modular, distribuída e segura já que é projetada para integrar sensores IoT de tecnologias diferentes em um sistema centralizado o que garante a interoperabilidade e segurança dos dados;

Os componentes dessa arquitetura são:

- Os sensores que são urbanos (MQTT) e remotos (UDP);
- Gateway UDP que atua como ponte entre os sensores remotos e o sistema central.
- Broker MQTT que centraliza a comunicação dos sensores urbanos;
- API/REST segura que recebe os dados de sensores diretamente ou via gateway;

O fluxo da arquitetura:

Sensores (MQTT/UDP) -> Broker MQTT/Gateway UDP

Gateway UDP -> (HTTP com JWT) -> API REST

Diagrama

