RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number:	10/581,569
Source:	IFWP.
Date Processed by STIC:	6/14/06

ENTERED

IFWP

RAW SEQUENCE LISTING DATE: 06/14/2006
PATENT APPLICATION: US/10/581,569 TIME: 10:39:06

Input Set : E:\seq listing.app
Output Set: N:\CRF4\06142006\J581569.raw

```
3 <110> APPLICANT: Lu and Godin-Heymann
     5 <120> TITLE OF INVENTION: Screening Assay and Treatment
     7 <130> FILE REFERENCE: 68214-02
C--> 9 <140> CURRENT APPLICATION NUMBER: US/10/581,569
C--> 9 <141> CURRENT FILING DATE: 2006-06-02
     9 <150> PRIOR APPLICATION NUMBER: PCT/GB04/003899
    10 <151> PRIOR FILING DATE: 2004-09-13
    12 <150> PRIOR APPLICATION NUMBER: 0328106.0
    13 <151> PRIOR FILING DATE: 2003-12-04
     15 <150> PRIOR APPLICATION NUMBER: 0404242.0
    16 <151> PRIOR FILING DATE: 2004-02-26
    18 <150> PRIOR APPLICATION NUMBER: 60/554,852
    19 <151> PRIOR FILING DATE: 2004-03-19
     21 <160> NUMBER OF SEQ ID NOS: 23
     23 <170> SOFTWARE: PatentIn version 3.1
    25 <210> SEQ ID NO: 1
    26 <211> LENGTH: 4834
     27 <212> TYPE: DNA
     28 <213> ORGANISM: Homo sapiens
    30 <400> SEQUENCE: 1
     31 gageceegea teeegeegea getgeegeet egeegeggee gggeeggaga geaeggegge
                                                                               60
    33 gggagcgcgg ccttaggagg cggccggagc ggtgggcaca gctcggcgcg gagcgtcctg
    35 traggeggeg geogagggeg tegeggatte teecegegat gatgeegatg atattaactg
                                                                              180
    37 ttttcttgag caacaatgaa cagattttaa cagaagttcc tataacaccg gaaacaacct
                                                                              240
    39 gtcgagatgt tgtagaattt tgcaaggaac ctggagaagg cagctgccat ttagctgaag
                                                                              300
    41 tgtggagggg aaatgaacgt cccataccct ttgatcatat gatgtacgaa catcttcaga
                                                                              360
    43 tatggggtcc acggagggaa gaagtgaaat ttttccttcg acacgaggac tccccaactg
                                                                              420
                                                                              480
    45 agaacagtga acaaggtggc cgtcagaccc aagagcaacg aactcagaga aatgtaataa
     47 atgtacctgg agataaacgt actgaatatg gggttgggaa tccacgtgtt gaacttaccc
                                                                              540
    49 teteagaget ecaagatatg geagetagge aacageagea gattgaaaat eageageaga
                                                                              600
    51 tgttggttgc caaggaacag cgtttacatt ttctaaagca acaggagcgc cgtcagcagc
                                                                              660
                                                                              720
    53 agtotattto tgaaaatgaa aagottoaga aattgaaaga acgagttgaa goocaggaga
     55 acaagctgaa gaaaattegt gcaatgagag gacaagtega etacagcaaa atcatgaaeg
                                                                              780
    57 gcaatctgtc tgctgaaata gaaaggttca gtgccatgtt ccaggaaaag aagcaggaag
                                                                              840
    59 tacagactgc aattttaagg gttgatcagc ttagtcagca attggaagat ttaaagaaag
                                                                              900
                                                                              960
     61 gaaaactgaa tgggttccag tcttacaatg gcaaattgac gggaccagcg gcggtggagt
     63 taaaaagact gtaccaagaa ctacagattc gtaaccaact taaccaggaa caaaattcaa
                                                                             1020
     65 aacttcagca gcagaaggaa ctcttaaata agcgcaacat ggaggtggcc atgatggaca
                                                                             1080
    67 agcgaatcag tgaactgcgt gaacgtctct atgggaaaaa aattcagctg aaccgtgtga
                                                                             1140
     69 atggcacgtc atcaccacag teceetetga geacateggg cagggteget getgtgggge
                                                                             1200
    71 cttatatcca ggttcccagt gccggaagct ttcctgtgct gggggaccct ataaagcccc
                                                                             1260
    73 agteteteag tattgeetea aatgetgete atggaagate caaateeget aatgatggaa
                                                                             1320
```

75 actggccaac attaaaacag aattctagct cttccgtgaa accagtgcag gtggccggtg

1380

RAW SEQUENCE LISTING DATE: 06/14/2006 PATENT APPLICATION: US/10/581,569 TIME: 10:39:06

Input Set : E:\seq listing.app

77	cagactggaa	ggatccgagc	gtggaggggt	ctgtcaagca	gggcactgtc	tccagccagc	1440
79	ctgtgccctt	ctcagcactg	ggacccacgg	agaagccggg	catcgagatt	ggtaaagtgc	1500
81	cacctcccat	cccgggtgta	ggcaagcagc	tgcctccaag	ctatgggaca	tacccaagtc	1560
83	ctacacctct	gggtcctggg	tcgacaagct	ccctggaaag	gaggaaggaa	ggcagcttgc	1620
85	ccaggcccag	tgcaggcctg	ccaagtcgac	agaggcccac	cctgctgccc	gccacaggca	1680
87	gcacccccca	gccaggctcc	tcacaacaga	ttcagcagag	gatttccgta	ccgccaagtc	1740
89	ccacgtaccc	gccagcggga	ccacctgcat	ttccagctgg;	ggacagcaag	cctgaactcc	1800
. 91	cactgacagt	ggccattagg	cctttcctgg	ctgataaagg	gtcaaggcca	cagtctccca	1860
93	ggaaaggacc	ccagacagtg	aattcaagtt	ccatatactc	catgtacctc	cagcaagcca	1920
95	caccacctaa	gaattaccag	ccggcagcac	acagcgcctt	aaataagtca	gttaaagcag	1980
97	tgtatggtaa	gcccgtttta	ccttcgggtt	caacctctcc	atcgccgctg	ccgtttcttc	2040
99	acgggtcact	gtccacgggc	acaccacagc	ctcagccacc	ttcagaaagt	actgagaaag	2100
101	. agcctgagca	ggatggcccc	gccgcccccg	cagatggcag	, caccgtggag	agcctgccac	2160
103	ggccactcag	ccccaccaag	ctcacgccca	tcgtgcattc	gccactgcgc	taccagagtg	2220
105	atgcagacct	ggaggccctc	cgcaggaagc	tggccaacgc	geeeeggeee	ctgaaaaagc	2280
107	gcagctccat	cacagagccc	gagggccccg	gcgggcccaa	ı catccagaag	ctgctgtacc	2340
109	agcgcttcaa	caccctggcc	ggtggcatgg	agggcacccc	tttctaccag	cccagcccct	2400
111	. cccaggactt	catgggcacc	ttggccgatg	tggacaatgg	, aaacaccaat	gccaatggaa	2460
113	. acctggaaga	.⊲geteeccet	gcccagccca	cagececaet	cccccctgag	cctgccccgt	2520-
115	catcagatgo	caatgataat	gagttacctt	ccccgaacc	agaggagctc	atctgtcccc	2580
117	aaaccaccca	ccaaactgcc	gagccggcag	aggacaataa	caacaacgtg	gccacggtcc	2640
119	ccaccacgga	gcagatcccg	agtcctgtgg	ctgaggcccc	: atctccaggg	gaagagcagg	2700
121	. tccctccago	acctcttccc	cctgccagcc	accetectge	cacctccacg	aacaagcgga	2760
123	ccaacttgaa	gaagcccaac	tcggagcgga	cggggcacgg	gctgagagtc	cggtttaacc	2820
125	ccctggcact	gctcctagac	gcgtctctgg	aaggagagtt	cgatctggtg	cagaggatca	2880
127	tctatgaggt t	ggaagatccc	agcaagccca	acgatgaagg	gatcacccca	ctgcacaacg	2940
129	ccgtctgcgc	cggccaccat	cacatcgtga	agttcctgct	ggattttggt:	gtcaacgtga	3000
131	. atgctgctga	ı tagtgatgga	tggacgccgc	tgcactgcgc	: tgcctcttgt	aacagcgttc	3060
133	acctctgcaa	acagctggtg	gagagtggtg	ccgccatttt	tgcctcaacc	ataagcgaca	3120
135	ttgaaactgo	tgcagacaag	tgtgaggaga	tggaggaagg	, ctacatccag	tgctcccagt	3180
137	'ttctatatgg	, ggtgcaggaa	aagctgggtg	tgatgaacaa	ı aggtgtggcg	tatgctctgt	3240
139	gggactacga	ggcccagaac	agtgacgagc	tgtccttcca	cgaaggggac	gccctcacca	3300
						ggagaccggg	3360
143	agggctatgt	gcccaaaaac	ctgctggggc	tgtatccacg	gatcaaaccc	cgacagcgaa	3420
		, aacttccttt					3480
						taatggtgct	3540
		gacagcgtcc					3600
						ttgccaatta	3660
153	ctataaatco	: aaataaatac	ccactttcaa	aacacccacc	: cctcttgcca	ttaagaagtc	3720
		: cggttggttg					3780
						cctgcgaccg	3840
159	ccctgccccc	: cgtcaccgaa	tcggacactc	atcctttctc	acacttccca	cacatgatcc	3900
						tgctgcccag	3960
						ttcctgttcc	4020
						gcgccacggg	4080
		_				tcttctcctc	4140
						tcaaattcag	4200
						gggttggggc	4260
173	tgggggtgga	ı ctggtgtgag	ggcagaccag	ggccaggtag	, acggggctgt	ttggtgcctg	4320

RAW SEQUENCE LISTING DATE: 06/14/2006 PATENT APPLICATION: US/10/581,569 TIME: 10:39:06

Input Set : E:\seq listing.app

175	aaggatggca	gacgcctggt	gtcaggaggg	gccgccacca	aggagcagca	gctggggcag	4380
177	aggagctggg	gtcaggggcc	acccctctct	gccgatctcc	ctgcctgggc	tggctgtgag	4440
		tcccaggccc					4500
		gctttttata					4560
		ggaaattttt					4620
		tcgtgtgtaa					4680
						gtgaacgggc:	
		gcccgaccac			cccagacgct	gctgacgctg	′4800 ≦
		cacaataaac	ccgtctcacc	ccgg			4834
	<210> SEQ 1						
	<211> LENG						
	<212> TYPE						
		NISM: Homo s	sapiens				
	<400> SEQUI		22266666	a	~~~~~~~	~~~~~~	60
		tcgaagagac					120
		gtgccccagc					180
		cctcgcaaca cggggcacct					240
		cggggcacct					300
						ggatctgtgc	360
		gcgagagtga					420
		atgagcgaat					480
		tccttcgtca					540
		caagtttaaa					600
		ttaatagtcc					660
		agcaacagat					720
		tgaaacaaca					780
		taaaagaaat					840
		acgtggaaca					900
		atttgttcca					960
		ccaggcagct					1020
		cagtggctga					1080
		agcagaatgc					1140
238	tcagaagtgg	cagtcatgga	taagcgtgtt	aatgagctga	gggaccggct	gtggaagaag	1200
240	aaggcagctc	tacagcaaaa	agaaaatcta	ccagtttcat	ctgatggaaa	tcttccccag	1260
242	caagccgcgt	cagccccaag	ccgtgtggct	gcagtaggtc	cctatatcca	gtcgtctact	1320
244	atgcctcgga	tgccctcaag	gcctgaattg	ctggtgaagc	cagccctgcc	ggatggttcc	1380
		aggcttcaga					1440
		cacaaactaa					1500
250	tcaaatgcag	atcttttccc	aagccaaggc	tctgcttctg	tacctcaaag	cactgggaat	1560
		aagttgatga					1620
		tgtttgatgc					1680
		agagcagtga					1740
		cacctcctgt		_	_		1800
		agccaccttc					1860
		ccatgggaac					1920
		taccttcggt					1980
		ctgctgccgt					2040
∠68	ccacccttca	gaaaacccca	gaccgtggca	gcaagttcaa	tatattccat	gcacacgcaa	2100

RAW SEQUENCE LISTINGPATENT APPLICATION: **US/10/581,569**DATE: 06/14/2006

TIME: 10:39:06

Input Set : E:\seq listing.app

```
270 cagcaggege caggaaaaaa ettecagcag getgtgeaga gegegttgae caagaeteat
                                                                           2160
  272 accagagggc cacacttttc aagtgtatat ggtaagcctg taattgctgc tgcccagaat
                                                                           2220
  274 caacagcagc acccagagaa catttattcc aatagccagg gcaagcctgg cagtccagaa
                                                                           2280
  276 cctgaaacag agcctgtttc ttcagttcag gagaaccatg aaaacgaaag aattcctcgg
                                                                           2340
  278 ccactcagcc caactaaatt actgcctttc ttatctaatc cttaccgaaa ccagagtgat
                                                                           2400
  280 gctgacctag aagcettacg aaagaaactg tctaacgcac caaggectct aaagaaacgt
                                                                           2460
  282 agttctatta cagagocaga gggtcctaat gggccaaata ttcagaagct tttatatcag
                                                                           2520
  284 aggaccacca tagoggocat ggagaccatc totgtoccat catacccatc caagtcagct
                                                                           2580
  286 tctgtgactg ccagctcaga aagcccagta gaaatccaga atccatattt acatgtggag
                                                                           2640
                                                                           2700
  288 cccgaaaagg aggtggtctc tctggttcct gaatcattgt ccccagagga tgtggggaat
  290 gccaqtacag agaacagtga catgccagct ccttctccag gccttgatta tgagcctgag
                                                                           2760
  292 qqaqtcccaq acaacagccc aaatctccaq aataacccaq aagaaccaaa tccaqaggct
  294 ccacatgtgc ttgatgtgta cctggaggag taccctccat acccacccc accataccca
                                                                           2880
  296 tetggggage etgaagggee eggagaagae teggtgagea tgegeeegee tgaaateaee
                                                                           2940
  298 gggcaggtct ctctgcctcc tggtaaaagg acaaacttgc gtaaaactgg ctcagagcgt
                                                                           3000
  300 ategeteatg gaatgagggt gaaatteaac eccettgett tactgetaga ttegtetttg
                                                                           3060
  302 gagggagaat ttgaccttgt acagagaatt atttatgagg ttgatgaccc aagcctcccc
                                                                           3120
  304 aatgatgaag gcatcacggc tettcacaat getgtgtgtg caggecacac agaaategtt
                                                                           3180
... 306 aagttootgg tacagtttgg tgtaaatgta gatgotgotg atagtgatgg atggactcca
                                                                           3240
  308 ttacattgtg ctgcctcatg taacaacgtc caagtgtgta agtttttggt ggagtcagga
                                                                           3300
  310 geogetgtgt ttgecatgae etacagtgae atgeagaetg etgeagataa gtgegaggaa
                                                                           3360
  312 atggaggaag gctacactca gtgctcccaa tttctttatg gagttcagga gaagatgggc
                                                                           3420
  314 ataatgaata aaggagtcat ttatgcgctt tgggattatg aacctcagaa tgatgatgag
                                                                           3480
  316 ctgcccatga aagaaggaga ctgcatgaca atcatccaca gggaagacga agatgaaatc
                                                                           3540
  318 gaatggtggt gggcgccct taatgataag gagggatatg ttccacgtaa cttgctggga
                                                                           3600
  320 ctgtacccaa gaattaaacc aagacaaagg agcttggcct gaaacttcca cacagaattt
                                                                           3660
  322 tagtcaatga agaattaatc tctgttaaga agaagtaata cgattatttt tggcaaaaat
                                                                           3720
  324 ttcacaagac ttattttaat gacaatgtag cttgaaagcg atgaagaatg tctctagaag
                                                                           3780
  326 agaatgaagg attgaagaat tcaccattag aggacattta gcgtgatgaa ataaagcatc
                                                                           3840
 328 tacgtcagca ggccatactg tgttggggca aaggtgtccc gtgtagcact cagataagta
                                                                           3900
  330 tacagegaca atcetgtttt etacaagaat eetgtetagt aaataggate atttattggg
                                                                           3960
  332 cagttgggaa atcagctete tgteetgttg agtgttttea geagetgete etaaaceagt
                                                                           4020
                                                                           4080
  334 cetectgeca gaaaggacca gtgeegteac ategetgtet etgattgtee eeggeaccag
  336 caggeettgg ggeteactga aggetegaag geactgeaca cettgtatat tgteagtgaa
                                                                           4140
  338 gaacgttagt tggttgtcag tgaacaataa ctttattata tgagtttttg tagcatctta
                                                                           4200
  340 agaattatac atatgtttga aatattgaaa ctaagctaca gtaccagtaa ttagatgtag
                                                                           4260
  342 aatcttgttt gtaggctgaa ttttaatctg tatttattgt cttttgtatc tcagaaatta
                                                                           4320
  344 gaaacttgct acagacttac ccgtaatatt tgtcaagatc atagctgact ttaaaaacag
                                                                           4380
                                                                           4402
  346 ttgtaataaa ctttttgatg ct
  349 <210> SEQ ID NO: 3
  350 <211> LENGTH: 1090
  351 <212> TYPE: PRT
  352 <213> ORGANISM: Homo sapiens
  354 <400> SEQUENCE: 3
  356 Met Met Pro Met Ile Leu Thr Val Phe Leu Ser Asn Asn Glu Gln Ile
  357 1
                                          10
  360 Leu Thr Glu Val Pro Ile Thr Pro Glu Thr Thr Cys Arg Asp Val Val
  364 Glu Phe Cys Lys Glu Pro Gly Glu Gly Ser Cys His Leu Ala Glu Val
```

RAW SEQUENCE LISTING DATE: 06/14/2006
PATENT APPLICATION: US/10/581,569 TIME: 10:39:06

Input Set : E:\seq listing.app

365			35					40					45			
368	Trp	Arg	Gly	Asn	Glu	Arg	Pro	Ile	Pro	Phe	Asp	His	Met	Met	Tyr	Glu
369		50					55					60				
372	His	Leu	Gln	Ile	Trp	Gly	Pro	Arg	Arg	Glu	Glu	Val	Lys	Phe	Phe	Leu
373	65					70					75					80
376	Arg	His	Glu	Asp	Ser	Pro	Thr	Glu	Asn	Ser	Glu	Gln	Gly	Gly	Arg	Gln
377	11.	÷	٠.		85					90					95	
380	Thr	Gln	Glu	Gln	Arg	Thr	Gln	Arg	Asn	Val	Ile	Asn	Val	Pro	Gly	Asp
381				100					105					110		
384	Lys	Arg	Thr	Glu	Tyr	Gly	Val	Gly	Asn	Pro	Arg	Val	Glu	Leu	Thr	Leu
385			115					120					125			
388	Ser	Glu	Leu	Gln	Asp	Met	Ala	Ala	Arg	Gln	Gln	Gln	Gln	Ile	Glu	Asn
389		130					135					140				
392	Gln	Gln	Gln	Met	Leu	Val	Ala	Lys	Glu	Gln	Arg	Leu	His	Phe	Leu	Lys
393	145					150					155					160
396	Gln	Gln	Glu	Arg	Arg	Gln	Gln	Gln	Ser	Ile	Ser	Glu	Asn	Glu	Lys	Leu
397					165				٠,	170					175	
400	Gln	Lys	Leu	Lys	Glu	Arg	Val	Glu	Ala	Gln	Glu	Asn	Lys	Leu	Lys	Lys
401	٠, .	J. Ogla		180					185					190	Carti.	
404	Ile	Arg	Ala	Met	Arg	Gly	Gln	Val	Asp	Tyr	Ser	Lys	Ile	Met	Asn	Gly
405			195					200					205			
408	Asn	Leu	Ser	Ala	Glu	Ile	Glu	Arg	Phe	Ser	Ala	Met	Phe	Gln	Glu	Lys
409	`	210					215					220				
412	Lys	Gln	Glu	Val	Gln	Thr	Ala	Ile	Leu	Arg	Val	Asp	Gln	Leu	Ser	Gln
413	225					230					235					240
416	Gln	Leu	Glu	Asp	Leu	Lys	Lys	Gly	Lys	Leu	Asn	Gly	Phe	Gln	Ser	Tyr
417					245					250					255	
420	Asn	Gly	Lys	Leu	Thr	Gly	Pro	Ala	Ala	Val	Glu	Leu	Lys	Arg	Leu	Tyr
421				260					265					270		•
424	Gln	Glu	Leu	Gln	Ile	Arg	Asn	Gln	Leu	Asn	Gln	Glu	Gln	Asn	Ser	Lys
425			275					280					285			
428	Leu	Gln	Gln	Gln	Lys	Glu	Leu	Leu	Asn	Lys	Arg	Asn	Met	Glu	Val	Ala
429		290					295					300				
432	Met	Met	Asp	Lys	Arg	Ile	Ser	Glu	Leu	Arg	Glu	Arg	Leu	Tyr	Gly	Lys
433						310					315					320
436	Lys	Ile	Gln	Leu	Asn	Arg	Val	Asn	Gly	Thr	Ser	Ser	Pro	Gln	Ser	Pro
437					325					330					335	
	Leu	Ser	Thr	Ser	Gly	Arg	Val	Ala	Ala	Val	Gly	Pro	Tyr		Gln	Val
441				340					345					350		
444	Pro	Ser	Ala	Gly	Ser	Phe	Pro	Val	Leu	Gly	Asp	Pro	Ile	Lys	Pro	Gln
445			355					360					365			
448	Ser	Leu	Ser	Ile	Ala	Ser	Asn	Ala	Ala	His	Gly	Arg	Ser	Lys	Ser	Ala
449		370					375					380				
		Asp	Gly	Asn	\mathtt{Trp}		Thr	Leu	Lys	Gln	Asn	Ser	Ser	Ser	Ser	Val
453						390					395					400
	Lys	Pro	Val	Gln	Val	Ala	Gly	Ala	Asp	\mathtt{Trp}	Lys	Asp	Pro	Ser	Val	Glu
457					405					410					415	
	Gly	Ser	Val	Lys	Gln	Gly	Thr	Val	Ser	Ser	Gln	Pro	Val	Pro	Phe	Ser
461				420					425					430		

VERIFICATION SUMMARY

DATE: 06/14/2006

PATENT APPLICATION: US/10/581,569

TIME: 10:39:07

Input Set : E:\seq listing.app

Output Set: N:\CRF4\06142006\J581569.raw

L:9 M:270 C: Current Application Number differs, Replaced Current Application No

L:9 M:271 C: Current Filing Date differs, Replaced Current Filing Date