גבול פונקציה – תרגילים נוספים2

תרגיל 1:

תהי f(x) פונקציה המוגדרת ע"י:

$$f(x) = \lim_{n \to \infty} \frac{x^n}{3 + x^n}$$

חשבו את הביטויים הבאים:

$$f(1), f(-1), \lim_{x\to 1^{-}} f(x), \lim_{x\to 1^{+}} f(x), \lim_{x\to -1^{-}} f(x), \lim_{x\to -1^{+}} f(x)$$

תרגיל 2:

 $.f(x)=a_n,\ \forall\, n-1< x\leq n$ ע"י: $f:(0,\infty)\longrightarrow \mathbb{R}$ תהי תהי סדרה כלשהי, ונגדיר $\lim_{n\to\infty}a_n=L$ אם ורק אם $\lim_{x\to\infty}f(x)=L$ הוכיחו כי

תרגיל 3:

 x_0 מונקציה המוגדרת בסביבת f

א. הראו כי אם לכל סדרה $\{x_n\}_{n=1}^\infty$ המתכנסת ל" x_0 קיים הגבול הראו (אבל לא ידוע שזהו אותו הראו לא ידוע הראו לי אותו הווו $\lim_{x\to x_0} f(x)$), אזי קיים הגבול עבור כל סדרה אפשרית $\{x_n\}_{n=1}^\infty$), אזי קיים הגבול עבור כל סדרה אפשרית המשרית ווויע

 $|f(x)-f(y)|<\epsilon$ אז $0<|y-x_0|<\delta$ ר" $0<|x-x_0|<\delta$ כך שאם $\delta>0$ כך שאם $\delta>0$ ר" $\delta>0$ ר" $\delta>0$ ר" $\delta>0$ אז $\delta>0$ הוכיחו ע"י סעיף (א) כי קיים הגבול ($\lim_{x\to x_0}f(x)$

תרגיל 4:

הוכיחו שהגבול הבא לא קיים

$$\lim_{x\to 0} \frac{[2\sin x]}{\sin x}$$

בשלוש דרכים שונות:

 $\epsilon = \delta$) א) על פי הגדרת קושי

ב) על הגדרת היינה (סדרות).

ג) ע"י גבולות חד־צדדיים.