Оглавление

Занятие 1. Выборочные характеристики	1
Контрольные вопросы и задания	 3
Аудиторные задачи	
Домашнее задание	11
Занятие 2. Свойства оценок	25
Контрольные вопросы и задания	 27
Аудиторные задачи	 28
Домашнее задание	35
Занятие 3. Метод моментов построения оценок	40
Контрольные вопросы и задания	 41
Аудиторные задачи	
Домашнее задание	 42

Занятие 1. Выборочные характеристики

Контрольные вопросы и задания

Приведите определение выборки, вариационого ряда, статистики, порядковой статистики, эмпирической функции распределения.

 x_1, \ldots, x_n — наблюдаемые значения — независимые одинаково распределённые случайные величины с неизвестной функцией распределения F(x).

Такой набор случайных величин называется выборкой из распределения ${\cal F}.$

Вариационный ряд — последовательность $x_{(1)}, \ldots, x_{(n)}$, полученная в результате расположения в порядке неубывания исходной последовательности независимых одинаково распределённых случайных величин x_1, \ldots, x_n .

Статистикой называют функцию S от выборки $X=(x_1,x_2,\ldots,x_n)$ такую, что $S(X)=S(x_1,x_2,\ldots,x_n)$.

Вариационный ряд и его члены являются порядковыми статистиками.

Эмпирической (выборочной) функцией распределения, построенной по выборке x_1,\dots,x_n называется функция

$$F_n(x) = \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{x_k \le x}, x \in \mathbb{R}.$$

Какими свойствами обладает эмпирическая функция распределения?

Есть множество полной вероятности, на котором эмпирическая функция распределения аппроксимирует функцию распределения, то есть почти наверное $F_n \Rightarrow F, \ n \to \infty.$

Запишите выражения для выборочного среднего, выборочной диспресии, выборочных моментов.

$$\frac{1}{n} \sum_{k=1}^{n} x_k$$

— выборочное среднее.

Выборочная дисперсия

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})^2.$$

Выборочные моменты в математической статистике — это оценка теоретических моментов распределения на основе выборки.

Выборочный момент порядка k — это случайная величина

$$a_n(k) = \frac{1}{n} \sum_{i=1}^n x_i^k.$$

Аудиторные задачи

1.4

 $3 a \partial a n u e$. Пусть X_1, \ldots, X_n — выборка из равномерного распределения на отрезке $[0, \theta]$ с неизвестным параметром θ . Какие из приведённых ниже функций являются статистиками?

- a) \overline{X} ;
- b) $5X_{(n)}$;
- c) $\theta/2$;
- d) X_1/θ ;
- e) $X_{(1)} + X_1 + X_n$.

Решение.

- а) Да;
- b) да;
- с) нет, так как не функция от выборки;
- d) функция не только от выборки (зависит от неизвестного параметра).
 Отсюда следует, что это не статистика;
- е) да.

1.5

3aдание. Пусть X_1, \ldots, X_n — выборка из распределения Пуассона с параметром λ . Вычислите математическое ожидание и дисперсию статистики

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Выясните, имеет ли статистика \overline{X} распределение Пуассона.

Peшение. Все X_i одинаково распределены. Отсюда следует, что все математические ожидания одинаковы

$$M\overline{X} = \frac{1}{n} \sum_{i=1}^{n} MX_i = \frac{1}{n} \cdot nMX_1 = MX_1 = \lambda.$$

Для всякой выборки справедливо $M\overline{X}=MX_1.$ Из независимости X_i получаем

$$D\overline{X} = \frac{1}{n^2} \sum_{i=1}^n DX_i.$$

Так как X_i одинаково распределены, то все дисперсии одинаковы

$$D\overline{X} = \frac{DX_1}{n} = \frac{\lambda}{n}.$$

Математическое ожидание и дисперсия для распределения Пуассона совпадают. Отсюда следует, что эта случайная величина не имеет распределения Пуассона.

 \overline{X} не обязательно буде принимать целые значения.

1.6

Задание. Вычислите математическое ожидание статистик:

a)
$$S^2 = \overline{X^2} - (\overline{X})^2$$
;

b)
$$S_0^2 = 1/(n-1) \cdot \sum_{i=1}^n (X_i - \overline{X})^2$$
.

Решение.

а) Распишем каждую из величин

$$S^{2} = \overline{X^{2}} - (\overline{X})^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}.$$

Распишем квадрат

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} X_i\right)^2 \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \frac{1}{n^2} \left(\sum_{i=1}^{n} X_i^2 + 2 \sum_{i,j=1,i < j}^{n} X_i X_j\right).$$

Берём слева и справа математическое ожидание. Из того, что случайные величины в выборке одинаково распределены

$$MS^{2} = MX_{1}^{2} - \frac{1}{n^{2}} \left[nMX_{1} + 2C_{n}^{2} (MX_{1})^{2} \right].$$

Подставляем C_n^2 и группируем

$$MX_{1}^{2} - \frac{1}{n^{2}} \left[nMX_{1} + 2C_{n}^{2} \left(MX_{1} \right)^{2} \right] = \frac{n-1}{n} \cdot MX_{1}^{2} - \frac{n-1}{n} \left(MX_{1} \right)^{2}.$$

Вынесем общий множитель за скобки

$$\frac{n-1}{n} \cdot MX_1^2 - \frac{n-1}{n} \left(MX_1 \right)^2 = \frac{n-1}{n} \left[MX_1^2 - \left(MX_1 \right)^2 \right] = \frac{n-1}{n} \cdot SX_1.$$

Эта оценка смещена ассимптотически;

b) выразим S_0 через S. Раскроем квадрат

$$S_0^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i^2 - 2X_i \overline{X} + \overline{X}^2).$$

Имеем сумму n одинаковых слагаемых

$$S_0^2 = \frac{1}{n-1} \left(n \overline{X^2} - 2 \left(\overline{X} \right)^2 n + n \overline{X}^2 \right) = \frac{n}{n-1} \left[\overline{X^2} - \left(\overline{X} \right)^2 \right] = \frac{n-1}{n} \cdot S^2.$$

Отсюда следует, что

$$MS_0^2 = \frac{n}{n-1} \cdot \frac{n-1}{n} \cdot DX_1 = DX_1.$$

1.7

 $\it 3adahue.$ Найдите в терминах функции распределения $\it F$ выборки $\it X_1,\ldots,\it X_n$:

- а) распределение k-ой порядковой статистики $X_{(k)};$
- b) вероятность $P(X_{(k)} < y, X_{(k+1)} \ge y)$.

Решение.

а) Сделали упорядочивание случайных величин

$$X_{(1)} \le X_{(2)} \le \ldots \le X_{(k)} \le \ldots \le X_{(n)}$$
.

По определению $F_{X_{(k)}}(y) = P\left(X_{(k)} \leq y\right) = P\{$ хотя бы k элементов выборки не превышает $y\} =$

$$=\sum_{i=k}^{n}P(A_{i}),$$

где $A_i = \{$ ровно i элементов выборки не превышают $y\}$.

Есть n испытаний, успех — $X_i \leq y$.

Вероятность успеха — это $F\left(y\right)$, вероятность неудачи — это $[1-F\left(y\right)]$. Это биномиальное распределение

$$F_{X_{(k)}} = \sum_{i=k}^{n} C_n^i F^i(y) [1 - F(y)]^{n-i};$$

b) согласно с предыдущим пунктом $P\left(X_{(k)} < y, X_{(k+1)} \ge y\right) = P\{$ ровно i элементов выборки не превышает $y\} = C_n^k F^k\left(y\right) \left[1 - F\left(y\right)\right]^{n-k}.$

1.8

3адание. Пусть (-0.8; 2.9; 4.5; -5.7; 1.1; -3.2) — наблюдаемые значения выборки. Составьте вариационный ряд, постройте эмпирическую функцию распределения $F_6(x)$ и её график. Вычислите выборочное среднее и выборочную дисперсию.

Решение. Вариационный ряд: (-5.7; -3.2; -0.8; 1.1; 2.9; 4.3). Эмпирическая функция распределения (рис. 1).

$$F_{6}(y) = \frac{1}{6} \sum_{i=1}^{6} \mathbb{1} \left\{ x_{i} \leq y \right\} = \begin{cases} 0, & x < -5.7; \\ \frac{1}{6}, & -5.7 \leq x < -3.2, \\ \frac{2}{6}, & -3.2 \leq x < -0.8, \\ \frac{3}{6}, & -0.8 \leq x < 1.1, \\ \frac{4}{6}, & 1.1 \leq x < 2.9, \\ \frac{5}{6}, & 2.9 \leq x < 4.3, \\ 1, & x \geq 4.3. \end{cases}$$

Выборочное среднее

$$\overline{X} = \frac{1}{6}(-5.7 - 3.2 - 0.8 + 1.1 + 2.9 + 4.3) = \frac{1}{6}(-9.7 + 8.3) = -\frac{1}{6}\cdot 1.4 = -0.23.$$

Выборочная дисперсия

$$\hat{\sigma}^2 = \frac{1}{5} \sum_{i=1}^{6} (X_i + 0.23)^2.$$

Она является несмещённой.

Рис. 1: Эмпирическая функция распределения

1.9

3aдание. Вычислите вероятность $P\left(F_n\left(y\right) < F_n\left(z\right)\right)$. Решение.

- а) $y \ge z$. Событие невозможное, потому что $F_n(y) \ge F_n(z)$;
- b) рассмотрим случай, когда y < z.

Тогда искомая вероятность равна $P\left(F_{n}\left(y\right) < F_{n}\left(z\right)\right) = P$ {в $\left(y,z\right)$ попал хотя бы 1 элемент выборки $\} = 1 - P\{ \mathsf{B}\ (y,z) \ \mathsf{H}\mathsf{H}\ \mathsf{O}\mathsf{Q}\mathsf{H}\mathsf{H} \ \mathsf{O}\mathsf{D}\mathsf{H}\mathsf{H} \}$ выборки не попал}. Случайные величины одинаково распределены, поэтому $1 - P\{B(y, z)$ ни один элемент выборки не попал $\} =$ $= [1 - P\{x_i \notin (y, z)\}]^n = 1 - [1 - P\{x_1 \in (y, z)\}]^n = 1 - [1 - P(x_1 < z) + P(x_1 < y)]^n = 1 - [1 - F(z) + F(y)]^n.$

$$= 1 - [1 - I \{x_1 \notin (y, z)\}] - 1 - [1 - I \{x_1 \in (y, z)\}] -$$

$$= 1 - [1 - P(x_1 < z) + P(x_1 < y)]^n = 1 - [1 - F(z) + F(y)]^n.$$

1.10

 $\it 3adanue.$ Пусть $\it X1,\ldots,\it X_n$ — выборка из распределения $\it F$ с плотностью f. Найдите совместную плотность распределения всех порядковых статистик, то есть плотность распределения случайного вектора $(X_{(1)}, \ldots, X_{(n)})$.

Решение. $F_{\left(X_{(1)},X_{(2)}\right)}\left(y_{1},y_{2}\right)=P\left(X_{(1)}\leq y_{1},X_{(2)}\leq y_{2}\right)$. Воспользуемся формулой $P(A \cap B) = P(B) - P(\overline{A} \cap B)$. Получим

$$P\left(X_{(1)} \leq y_1, \, X_{(2)} \leq y_2\right) = P\left(X_{(1)} \leq y_2\right) - P\left(X_{(1)} > y_1, \, X_{(2)} \leq y_2\right).$$

Среди $X_{(1)}$ и $X_{(2)}$ случайная величина $X_{(2)}$ является максимальной.

$$P(X_{(1)} \le y_2) - P(X_{(1)} > y_1, X_{(2)} \le y_2) =$$

$$= P(X_1 \le y_2, X_2 \le y_2) - P(X_1 \in (y_1, y_2], X_2 \in (y_1, y_2]).$$

Случайные величины X_1, X_2 — независимые и одинаково распределённые

$$P(X_{1} \leq y_{2}, X_{2} \leq y_{2}) - P(X_{1} \in (y_{1}, y_{2}], X_{2} \in (y_{1}, y_{2}]) =$$

$$= \begin{cases} [F(y_{2})]^{2}, & y_{1} \geq y_{2}, \\ [F(y_{2})]^{2} - [F(y_{2}) - F(y_{1})]^{2}, & y_{1} < y_{2}. \end{cases}$$

Продифференцируем

$$f_{\left(X_{(1)},X_{(2)}\right)}\left(y_{1},y_{2}\right) = \begin{cases} 0, & y_{1} \geq y_{2}, \\ 2f\left(y_{1}\right)f\left(y_{2}\right), & y_{1} < y_{2}. \end{cases}$$

Рассматриваем множество всех векторов, которые имеют упорядоченные координаты $\Delta = \{\vec{x} \in \mathbb{R}^n : z_1 < z_2 < \ldots < z_n\}$, $\Gamma \subseteq \Delta$ — произвольное подмножество.

$$(X_{(1)},\ldots,X_{(n)})\in\Delta.$$

Чтобы найти вероятность того, что данный вектор принадлежит Γ , должны проинтегрировать плотность этого вектора по этому множеству

$$P\left\{\left(X_{(1)},\ldots,X_{(n)}\right)\in\Gamma\right\}=\int\limits_{\Gamma}f_{\left(X_{(1)},\ldots,X_{(n)}\right)}\left(z_{1},\ldots,z_{n}\right)dz_{1}\ldots dz_{n}.$$

С другой стороны,

$$P\left\{\left(X_{(1)},\ldots,X_{(n)}\right)\in\Gamma\right\} = \sum_{\sigma\in S_n} P\left\{\left(X_{\sigma(1)},\ldots,X_{\sigma(n)}\right)\in\Gamma\right\}.$$

Учтём все перестановки

$$\sum_{\sigma \in S_{-}} P\left\{ \left(X_{\sigma(1)}, \dots, X_{\sigma(n)} \right) \in \Gamma \right\} = n! P\left\{ \left(X_{1}, \dots, X_{n} \right) \in \Gamma \right\}.$$

Подставим найденное выражение для вероятности

$$n!P\{(X_1,\ldots,X_n)\in\Gamma\}\,n!\cdot\int_{\Gamma}f(z_1)\cdot\ldots\cdot f(z_n)\,dz_1\ldots dz_n.$$

Сравниваем полученные выражения

$$f_{\left(X_{(1)}, \dots, X_{(n)}\right)}\left(z_{1}, \dots, z_{n}\right) = n! f\left(z_{1}\right) \cdot \dots \cdot f\left(z_{n}\right) \cdot \mathbb{1}\left\{z_{1} < z_{2} < \dots < z_{n}\right\}$$

— плотность вектора упорядоченных статистик.

1.11

3aдание. Пусть задана выборка X_1,\ldots,X_n из показательного распределения с параметром $\alpha.$

- а) Докажите, что случайные величины $X_{(1)}, X_{(2)} X_{(1)}, \dots, X_{(n)} X_{(n-1)}$ являются независимыми;
- b) найдите распределение разности $X_{(k+1)} X_{(k)}$ соседних порядковых статистик.

 $Pewenue.\ \vec{\xi}=(\xi_1,\dots,\xi_n)$ — случайный вектор с плотностью распределения $f_{\vec{\xi}}(\vec{x}).$

Линейное преобразование этого вектора $\vec{\eta} = A\vec{\xi}$, где A — некоторая n-мерная матрица.

$$f_{A\vec{\xi}}(\vec{y}) = \frac{1}{|det A|} \cdot f_{\vec{\xi}} \left(A^{-1} \vec{y} \right).$$

Составим вектор из величин $X_{(1)}, X_{(2)} - X_{(1)}, \dots, X_{(n)} - X_{(n-1)}$. Его плотность должна распасться на произведение плотностей компонент.

Из задачи 1.10

$$f_{\left(X_{(1)},\ldots,X_{(n)}\right)}\left(y_{1},\ldots,y_{n}\right) = n!f\left(y_{1}\right)\cdot\ldots\cdot f\left(y_{n}\right)\cdot\mathbb{1}\left\{y_{1} < y_{2} < \ldots < y_{n}\right\}.$$

Подставим плотность показательного распределения

$$n! f(y_1) \cdot \ldots \cdot f(y_n) \cdot 1 \{ y_1 < y_2 < \ldots < y_n \} =$$

$$= n! \alpha e^{-\alpha y_1} \cdot 1 \{ y_1 > 0 \} \cdot \ldots \cdot \alpha e^{-\alpha y_n} \cdot 1 \{ y_n > 0 \} \cdot 1 \{ y_1 < y_2 < \ldots < y_n \}.$$

Перемножим

$$n!\alpha e^{-\alpha y_1} \cdot \mathbb{1} \{y_1 > 0\} \cdot \ldots \cdot \alpha e^{-\alpha y_n} \cdot \mathbb{1} \{y_n > 0\} \cdot \mathbb{1} \{y_1 < y_2 < \ldots < y_n\} =$$
$$= n!\alpha^n e^{-\alpha (y_1 + \ldots + y_n)} \cdot \mathbb{1} \{0 < y_1 < y_2 < \ldots < y_n\}.$$

Нужно найти линейное преобразование

$$\begin{bmatrix} X_{(1)} \\ X_{(2)} - X_{(1)} \\ X_{(3)} - X_{(2)} \\ \dots \\ X_{(n)} - X_{(n-1)} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 9 & \dots & 0 & 0 & 0 \\ -1 & 1 & 0 & 9 & \dots & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & \dots & 0 & 0 & 0 \\ \dots & & & & & & \\ 0 & 0 & 0 & 0 & \dots & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} X_{(1))} \\ X_{(2)} \\ X_{(3)} \\ \dots \\ X_{(n)} \end{bmatrix},$$

где

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & \dots & 0 & 0 & 0 \\ \dots & & & & & & & \\ 0 & 0 & 0 & 0 & \dots & 0 & -1 & 1 \end{bmatrix} = A.$$

Определитель det A = 1.

Ищем обратную матрицу

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & \dots & 0 \\ \dots & & & & & \\ 1 & 1 & 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} X_{(1)} \\ X_{(2)} - X_{(1)} \\ X_{(3)} - X_{(2)} \\ \dots \\ X_{(n)} - X_{(n-1)} \end{bmatrix} = \begin{bmatrix} X_{(1))} \\ X_{(2)} \\ X_{(3)} \\ \dots \\ X_{(n)} \end{bmatrix}.$$

Тогда имеем выражение

$$A^{-1}\vec{y} = \begin{bmatrix} y_1 \\ y_1 + y_2 \\ \dots \\ \sum_{i=1}^n y_i \end{bmatrix}.$$

Определим искомый вектор через

$$\vec{\eta} = (X_{(1)}, X_{(2)} - X_{(1)}, \dots, X_{(n)} - X_{(n-1)}).$$

Тогда

$$f_{\vec{\eta}}(y_1, \dots, y_n) = n! \alpha^n e^{-\alpha(ny_1 + (n-1)y_2 + \dots + y_n)} \cdot \mathbb{1} \{ 0 < y_1 < y_1 + y_2 < \dots < y_1 + y_2 + \dots + y_n \}.$$

Разобъём на n множителей

$$n!\alpha^{n}e^{-\alpha(ny_{1}+(n-1)y_{2}+...+y_{n})} \cdot \mathbb{1}\left\{0 < y_{1} < y_{1} + y_{2} < ... < y_{1} + y_{2} + ... + y_{n}\right\} =$$

$$= \left[n\alpha e^{-\alpha ny_{1}} \cdot \mathbb{1}\left\{0 < y_{1}\right\}\right] \cdot \left[(n-1)\alpha e^{-\alpha(n-1)y_{2}} \cdot \mathbb{1}\left\{y_{2} > 0\right\}\right] \cdot ... \times$$

$$\times \left[\alpha e^{-\alpha y_{n}} \cdot \mathbb{1}\left\{y_{n} > 0\right\}\right].$$

Имеем произведение плотностей компонент, значит, элементы вектора независимы и показательно распределены с параметром α (n-k), то есть $X_{(k+1)}-X_{(k)}\sim\Pi\left(\alpha\left(n-k\right)\right)$. Считаем, что $X_{(0)}=0$.

Домашнее задание

1.15

3aдание. Пусть X_1, \dots, X_n — выборка из равномерного на отрезке [a,b] распределения. Вычислите математическое ожидание и дисперсию статистики

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Выясните, имеет ли статистика \overline{X} равномерное распределение; нормальное распределение.

Peшение. Все X_i одинаково распределены. Отсюда следует, что все математические ожидания одинаковы

$$M\overline{X} = \frac{1}{n} \sum_{i=1}^{n} MX_i = \frac{1}{n} \cdot nMX_1 = MX_1 = \frac{a+b}{2}.$$

Из независимости X_i получаем

$$D\overline{X} = \frac{1}{n^2} \sum_{i=1}^n DX_i.$$

Так как X_i одинаково распределены, то все дисперсии одинаковы

$$D\overline{X} = \frac{DX_1}{n} = \frac{(b-a)^2}{12n}.$$

Чтобы выяснить, распределена ли статистика \overline{X} по нормальному или равномерному распределению, найдём её характеристическую функцию $\varphi_{\overline{X}}(t)$. Учитывая независимость элементов выборки и то, что

$$\varphi_{X_1}(t) = \ldots = \varphi_{X_n}(t) = \frac{e^{itb} - e^{ita}}{it(b-a)},$$

находим

$$\varphi_{\overline{X}}(t) = \varphi_{X_1}\left(\frac{t}{n}\right) \cdot \ldots \cdot \varphi_{X_n}\left(\frac{t}{n}\right) = \left\lceil \frac{\left(e^{itb} - e^{ita}\right)n}{it\left(b - a\right)} \right\rceil^n.$$

Отсюда следует, что \overline{X} не имеет указанных распределений.

1.16

3адание. Пусть X_1,\ldots,X_n — выборка из некоторого распределения вероятностей, функция распределения которого F является непрерывной и строго возрастающей. Найдите распределение выборки Y_1,\ldots,Y_n , где

$$Y_i = F\left(X_i\right).$$

Решение. По определению

$$F_{\eta_1,\ldots,\eta_n}(X_1,\ldots,X_n) = P(\eta_1 \le X_1,\ldots,\eta_n \le X_n).$$

Воспользуемся независимостью

$$P(\eta_1 \leq X_1, \dots, \eta_n \leq X_n) = P(\eta_1 \leq X_1) \cdot \dots \cdot P(\eta_n \leq X_n).$$

Функция распределения і-й компоненты вектора равна

$$F_{\eta_i}(x) = P(F_{\xi_i}(X_i) \le x) = \begin{cases} 0, & x \le 0, \\ 1, & x > 1. \end{cases}$$

Рассмотрим [0,1].

Поскольку F — непрерывная и строго возрастающая, то существует $F^{-1}(x)$. Обозначим через z точку $F^{-1}(x)$ такую, что F(z)=x. Событие $\{\eta=F(\xi)< x\}$ происходит тогда и только тогда, когда происходит событие $\{\xi< z\}$.

Получаем на отрезке [0, 1] равномерное распределение

$$F_{\eta}(x) = F_{\xi}(z) = F_{\xi}\left(F_{\xi}^{-1}(x)\right) = \begin{cases} 0, & x \leq 0, \\ x, & x \in (0, 1], \\ 1, & x > 1. \end{cases}$$

1.17

 $\it 3adahue.$ Пусть X_1,\ldots,X_n — выборка из дискретного распределения с вероятностями $\it P(X_1=m)=p_m,$ где

$$\sum_{m=0}^{N} p_m = 1.$$

Найдите распределение k-й порядковой статистики $X_{(k)}$.

Решение. Сделали упорядочивание случайных величин

$$X_{(1)} \le X_{(2)} \le \ldots \le X_{(k)} \le \ldots \le X_{(n)}$$
.

По определению $F_{X_{(k)}}\left(y\right)=P\left(X_{(k)}\leq y\right)=P\{$ хотя бы k элементов выборки не превышает $y\}=$

$$=\sum_{i=k}^{n}P(A_{i}),$$

где $A_i = \{$ ровно i элементов выборки не превышают $y\}.$

Есть n испытаний, успех — $X_i \leq y$.

Вероятность успеха — это F(y), вероятность неудачи — это [1-F(y)]. Это биномиальное распределение

$$F_{X_{(k)}} = \sum_{i=k}^{n} C_n^i F^i(y) [1 - F(y)]^{n-i}.$$

Представим $F_{X_{i}}\left(y\right)=F\left(y\right)$ через m. Запишем по определению

$$F_{X_1}(y) = P(X_1 \le y) = \sum_{m=1}^{n} P(X_1 = m) = \sum_{m=1}^{n} p_m.$$

Подставим полученное выражение в функцию распределения

$$F_{X_{(k)}} = \sum_{i=k}^{n} C_n^i \sum_{m=1}^{n} p_m \left(1 - \sum_{m=1}^{n} \right)^{n-i}.$$

1.18

3адание. Пусть (3,0,4,3,6,0,3,1) — наблюдаемые значения выборки. Составьте вариационный ряд, постройте эмпирическую функцию распределения $F_8(x)$ и её график. Вычислите выборочное среднее и выборочную дисперсию.

Peшение. Вариационный ряд: (0,0,1,3,3,3,4,6).

Эмпирическая функция распределение (рис. 2)

$$F_8(y) = \frac{1}{8} \sum_{i=1}^8 \mathbb{1} \left\{ x_i \le y \right\} = \begin{cases} 0, & x < 0, \\ \frac{2}{8} = \frac{1}{4}, & 0 \le x < 1, \\ \frac{3}{8}, & 1 \le x < 3, \\ \frac{6}{8} = \frac{3}{4}, & 3 \le x < 4, \\ \frac{7}{8}, & 4 \le x < 6, \\ 1, & x \ge 6. \end{cases}$$

Рис. 2: Эмпирическая функция распределения

Выборочное среднее

$$\overline{X} = \frac{1}{8}(0+0+1+3+3+4+6) = \frac{1}{8} \cdot 20 = \frac{10}{4} = 2.5.$$

Выборочная дисперсия

$$\hat{\sigma^2} = \frac{1}{7} \sum_{i=1}^{8} (X_i - 2.5)^2 =$$

$$= \frac{1}{7} \left[2(0 - 2.5)^2 + (1 - 2.5)^2 + 3(3 - 2.5)^2 + (4 - 2.5)^2 + (6 - 2.5)^2 \right] =$$

$$= \frac{1}{7} (12.5 + 2.25 + 0.75 + 2.25 + 12.25) = \frac{30}{7} \approx 4.29.$$

1.19

 $\it 3adanue.$ По выборке объёма $\it n$ из распределения Бернулли с параметром $\it p$ постройте эмпирическую функцию распределения $\it F_n\left(y\right).$

Peшение. Случайная величина имеет распределение Бернулли, если она принимает всего два значения: 1 и 0 с вероятностями p и (1-p) соответственно. Таким образом: $P\left(x=1\right)=p,\ P\left(x=0\right)=1-p.$

Эмпирической функцией распределения, построенной по выборке

$$x_1, \ldots, x_n,$$

называется функция

$$F_n(y) = \frac{1}{n} \sum_{k=1}^n \mathbb{1}(x_k \le y).$$

Пускай есть набор из n чисел (нулей и единиц) — выборка из распределения Бернулли.

Для удобства выстроим числа в порядке их возрастания:

$$0, 0, \ldots, 0, 1, 1, \ldots, 1.$$

Видим, что слева от нуля эмпирическая функция распределения будет равна нулю.

В точке 0 произойдёт скачок на

$$\frac{n-k}{n}$$
,

где k — количество единиц, а (n-k) — количество нулей в выборке.

В точке 1 будет скачок на

$$1 - \frac{n-k}{n} = \frac{n-n+k}{n} = \frac{k}{n},$$

а значение самой функции будет равно единице.

$$F_n(y) = \begin{cases} 0, & x < 0, \\ \frac{n-k}{n}, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

Эмпирическая функция распределения будет выглядеть так, как показано на рис. 3.

Рис. 3: Эмпирическая функция распределения

1.20

3адание. Пусть X_1,\dots,X_n — выборка из распределения F. Докажите, что для произвольных $y\in\mathbb{R}$ и $k\in\{0,1,\dots,n\}$ справедливо равенство

$$P\left(F_{n}(y) = \frac{k}{n}\right) = C_{n}^{k} F^{k}(y) (1 - F(y))^{n-k}.$$

Peшение. Эмпирической функцией распределения, построенной по выборке $X_1,\dots,X_n,$ называется функция

$$F_n(y) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(X_i \le y).$$

Посмотрим, что значит событие в указанной вероятности

$$F_n(y) = \frac{k}{n} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(X_i \le y).$$

Сократим константы в знаменателях

$$k = \sum_{i=1}^{n} \mathbb{1}(X_i \le y).$$

Это означает, что есть ровно k элементов выборки, не превышающих y. Следовательно, это биномиальное распределение с параметром $F\left(y\right)$, то есть

$$P\left(F_{n}(y) = \frac{k}{n}\right) = C_{n}^{k} F^{k}(y) (1 - F(y))^{n-k}.$$

1.21

 $\it 3adanue.$ Для выборки $\it X_1,\ldots,\it X_n$ из равномерного распределения на отрезке $[0,\theta]$ найдите плотность, математическое ожидание и дисперсию:

- а) максимального члена вариационного ряда $X_{(n)}$;
- b) минимального члена вариационного ряда $X_{(1)}$;
- с) совместную плотность распределения и ковариацию $X_{(n)}$ и $X_{(1)}$

Решение.

а) Найдём функцию распределения n-й порядковой статистики $F_{X_{(n)}}(y)=$ $=P\left(X_{(n)}\leq y\right)=P\ (n\ \text{элементов выборки не превышают }y)=$ $=C_n^n\left[F_{X_1}\left(y\right)\right]^n\cdot\left[1-F_{X_1}\left(y\right)\right]^{n-n}=\left[F_{X_1}\left(y\right)\right]^n=\left[P\left(X_1\leq y\right)\right]^n=\left(\frac{y}{\theta}\right)^n,$ при этом $y\in[0,\theta].$

Продифференцируем

$$f_{X_{(n)}}\left(y\right) = \frac{\partial F_{X_{(n)}}\left(y\right)}{\partial y} = \frac{\partial}{\partial y} \left(\frac{y}{\theta}\right)^n = \frac{1}{\theta^n} \cdot \frac{dy^n}{dy} = \frac{ny^{n-1}}{\theta^n} \cdot \mathbb{1}\left\{y \in [0, \theta]\right\}.$$

По определению математического ожидания

$$MX_{(n)} = \int_{0}^{\theta} y dF^{n}(y) = \int_{0}^{\theta} y d\left(\frac{y}{\theta}\right)^{n} = \frac{1}{\theta^{n}} \int_{0}^{\theta} y dy^{n} = \frac{n}{\theta^{n}} \int_{0}^{\theta} y y^{n-1} dy.$$

Сложим степени сомножителей

$$\frac{n}{\theta^n} \int_0^\theta y y^{n-1} dy = \frac{n}{\theta^n} \int_0^\theta y^n dy = \frac{n}{\theta^n} \cdot \frac{y^{n+1}}{n+1} \Big|_0^\theta = \frac{\theta^{n+1} n}{\theta^n (n+1)} = \frac{\theta n}{n+1}.$$

Найдём второй момент

$$MX_{(n)}^{2} = \int_{0}^{\theta} y^{2} dF^{n}(y) = \frac{n}{\theta^{n}} \int_{0}^{\theta} y^{2} y^{n-1} dy = \frac{n}{\theta^{n}} \int_{0}^{\theta} y^{n+1} dy.$$

Возьмём интеграл

$$\frac{n}{\theta^{n}} \int_{0}^{\theta} y^{n+1} dy = \left. \frac{ny^{n+2}}{\theta^{n} (n+2)} \right|_{0}^{\theta} = \frac{n\theta^{n+2}}{\theta^{n} (n+2)} = \frac{n\theta^{2}}{n+2}.$$

По свойствам дисперсии

$$DX_{(n)} = MX_{(n)}^2 - (MX_{(n)})^2 = \frac{n\theta^2}{n+2} - \frac{n^2\theta^2}{(n+1)^2}.$$

Приведём к общему знаменателю

$$\begin{split} &\frac{n\theta^{2}}{n+2}-\frac{n^{2}\theta^{2}}{\left(n+1\right)^{2}}=\frac{n\theta^{2}\left(n^{2}+2n+1\right)-n^{2}\theta^{2}\left(n+2\right)}{\left(n+2\right)\left(n+1\right)^{2}}=\\ &=\frac{n^{3}\theta^{2}+2n^{2}\theta^{2}+n\theta^{2}-n^{3}\theta^{2}-2n^{2}\theta^{2}}{\left(n+2\right)\left(n+1\right)^{2}}=\frac{n\theta^{2}}{\left(n+2\right)\left(n+1\right)^{2}}; \end{split}$$

b) найдём функцию распределения первой порядковой статистики

$$F_{X_{(1)}}(y) = P(X_{(1)} \le y) = P(\min(X_1, X_2, \dots, X_n) \le y) =$$

= P(хотя бы 1 элемент выборки не превышает y) =

 $\sum_{k=1}^{n} P\left(exactly \, k \, elements \, of \, the \, sample \, does \, not \, exceed \, y\right) =$

$$= \sum_{k=1}^{n} C_{n}^{k} F^{k} (y) [1 - F (y)]^{n-k} =$$

$$= \sum_{k=0}^{n} C_{n}^{k} F^{k} (y) [1 - F(y)]^{n-k} - C_{n}^{0} F^{0} (y) [1 - F(y)]^{n-0}.$$

Применяем формулу для бинома Ньютона

$$\sum_{k=0}^{n} C_{n}^{k} F^{k}(y) \left[1 - F(y)\right]^{n-k} - C_{n}^{0} F^{0}(y) \left[1 - F(y)\right]^{n-0} =$$

$$= \left[F(y) + 1 - F(y)\right]^{n} - \left[1 - F(y)\right]^{n} = 1 - \left(1 - \frac{y}{\theta}\right)^{n}.$$

Продифференцируем

$$f_{X_{(1)}}\left(y\right) = \frac{\partial F_{X_{(1)}}\left(y\right)}{\partial y} = \frac{\partial}{\partial y}\left(1 - \frac{\left(\theta - y\right)^n}{\theta^n}\right) = -\frac{1}{\theta^n} \cdot \frac{\partial}{\partial y}\left(\theta - y\right)^n.$$

Берём производную сложной функции

$$-\frac{1}{\theta^n} \cdot \frac{\partial}{\partial y} (\theta - y)^n - \frac{1}{\theta^n} \cdot n (\theta - y)^{n-1} (-1) = \frac{n (\theta - y)^{n-1}}{\theta^n}, y \in [0, \theta].$$

Найдём математическое ожидание по определению

$$MX_{(1)} = \int_{0}^{\theta} y dF^{n}(y) = \int_{0}^{\theta} y d\left(1 - \frac{y}{\theta}\right)^{n}.$$

Сделаем замену

$$1 - \frac{y}{\theta} = z,$$

откуда $y = \theta (1 - z)$, при этом интегрирование происходит в пределах от одного до нуля

$$\int_{0}^{\theta} y d\left(1 - \frac{y}{\theta}\right)^{n} = \int_{1}^{0} \theta (1 - z) dz^{n} = \theta n \int_{1}^{0} (z - 1) z^{n-1} dz.$$

Разбиваем на 2 интеграла

$$\theta n \int_{1}^{0} \left(z-1\right) z^{n-1} dz = -\theta n \int_{0}^{1} z^{n} dz + \theta n \int_{0}^{1} z^{n-1} dz = -\theta n \cdot \frac{z^{n+1}}{n+1} \bigg|_{0}^{1} + \theta n \cdot \frac{z^{n}}{n} \bigg|_{0}^{1}.$$

Подставляем пределы интегрирования

$$-\theta n \cdot \left. \frac{z^{n+1}}{n+1} \right|_0^1 + \theta n \cdot \left. \frac{z^n}{n} \right|_0^1 = -\theta n \cdot \frac{1}{n+1} + \theta n \cdot \frac{1}{n} = -\theta n \left(\frac{1}{n+1} - \frac{1}{n} \right).$$

Приводим к общему знаменателю

$$-\theta n\left(\frac{1}{n+1} - \frac{1}{n}\right) = -\theta n \cdot \frac{n-n-1}{n(n+1)} = \frac{\theta n}{n(n+1)} = \frac{\theta}{(n+1)}$$

Найдём второй момент

$$MX_{(1)}^2 = \int\limits_0^\theta y^2 d\left(1 - \frac{y}{\theta}\right)^n.$$

Применяем такую же замену, как при поиске первого момента

$$\int_{0}^{\theta} y^{2} d\left(1 - \frac{y}{\theta}\right)^{n} = \int_{1}^{0} \theta^{2} (1 - z)^{2} dz^{n} = \int_{0}^{1} \theta^{2} n (1 - z)^{2} z^{n-1} dz.$$

Выносим константу за знак интеграла и возводим скобку в квадрат

$$\int_{0}^{1} \theta^{2} n (1-z)^{2} z^{n-1} dz = \theta^{2} n \int_{0}^{1} (1-2z+z^{2}) z^{n-1} dz =$$

$$= \theta^{2} n \int_{0}^{1} z^{n-1} dz - 2\theta^{2} n \int_{0}^{1} z^{n} dz + \theta^{2} n \int_{0}^{1} z^{n+1} dz =$$

$$= \theta^{2} n \cdot \frac{z^{n}}{n} \Big|_{0}^{1} - 2\theta^{2} n \cdot \frac{z^{n+1}}{n+1} \Big|_{0}^{1} + \theta^{2} n \cdot \frac{z^{n+2}}{n+2} \Big|_{0}^{1} = \theta^{2} - \frac{2\theta^{2} n}{n+1} + \frac{\theta^{2} n}{n+2} =$$

$$= \theta^{2} \left(1 - \frac{2n}{n+1} + \frac{n}{n+2} \right) =$$

$$= \theta^{2} \cdot \frac{(n+1)(n+2) - 2n(n+2) + n(n+1)}{(n+1)(n+2)} =$$

$$= \frac{\theta^{2} (n^{2} + 3n + 2 - 2n^{2} - 4n + n^{2} + n)}{(n+1)(n+2)} = \frac{2\theta^{2}}{(n+1)(n+2)}.$$

По свойствам дисперсии

$$DX_{(1)} = MX_{(1)}^2 - \left[MX_{(1)}\right]^2 = \frac{2\theta^2}{(n+1)(n+2)} - \frac{\theta^2}{(n+1)^2}.$$

Приводим к общему знаменателю

$$\begin{split} \frac{2\theta^{2}}{\left(n+1\right)\left(n+2\right)} - \frac{\theta^{2}}{\left(n+1\right)^{2}} &= \frac{2\theta^{2}\left(n+1\right) - \theta^{2}\left(n+2\right)}{\left(n+1\right)^{2}\left(n+2\right)} = \\ &= \frac{2\theta^{2}n + 2\theta^{2} - \theta^{2}n - 2\theta^{2}}{\left(n+1\right)^{2}\left(n+2\right)} = \frac{\theta^{2}n}{\left(n+1\right)^{2}\left(n+2\right)}; \end{split}$$

с) найдём функцию распределения вектора по определению

$$F_{(X_{(1)},X_{(n)})}(y_1,y_n) = P(X_{(1)} \le y_1, X_{(n)} \le y_n).$$

Воспользовавшись формулой $P\left(A\cap B\right)=P\left(B\right)-P\left(\overline{A}\cap B\right)$, получим

$$P(X_{(1)} \le y_1, X_{(n)} \le y_n) = P(X_{(n)} \le y_n) - P(X_{(1)} > y_1, X_{(n)} \le y_n).$$

Если максимум меньше какого-то значения, то все элементы меньше него

$$P(X_{(1)} > y_1, X_{(n)} \le y_n) =$$

$$= P(X_1 \le y_n, \dots, X_n \le y_n) -$$

$$= P(X_1 \in (y_1, y_n], X_2 \in (y_1, y_n], \dots, X_n \in (y_1, y_n]) =$$

$$= [F(y_n)]^n - [F(y_n) - F(y_1)]^n$$

при $y_1 < y_n$.

Продифференцируем

$$f_{\left(X_{(1)},X_{(n)}\right)}\left(y_{1},y_{n}\right) = \begin{cases} 0, & y_{1} \geq y_{n}, \\ n\left(n-1\right) \cdot \left[F\left(y_{n}\right) - F\left(y_{1}\right)\right]^{n-2} \times \\ \times p_{X_{1}}\left(y_{1}\right) p_{X_{n}}\left(y_{n}\right) = \\ = n\left(n-1\right) \cdot \left[\frac{y_{n}}{\theta} - \frac{y_{1}}{\theta}\right]^{n-2} \cdot \frac{1}{\theta^{2}} = \\ = n\left(n-1\right) \cdot \frac{\left(y_{n} - y_{1}\right)^{n}}{\theta^{n-2}} \cdot \frac{1}{\theta^{2}} = \frac{n(n-1)\left(y_{n} - y_{1}\right)^{n-1}}{\theta^{n}}. \end{cases}$$

Найдём математическое ожидание вектора

$$M\left(X_{(1)}, X_{(n)}\right) = \frac{n(n-1)}{\theta^n} \cdot \int_{0}^{\theta} \int_{y_1}^{\theta} y_1 y_n (y_n - y_1)^{n-2} dy_1 dy_n.$$

Заменим разность величин величиной x. Якобиан преобразования равен

$$\frac{\partial\left(x,y_{n}\right)}{\partial\left(x,y_{1}\right)} = \left| \begin{bmatrix} \frac{\partial x}{\partial y_{1}} & \frac{\partial y_{n}}{\partial y_{1}} \\ \frac{\partial x}{\partial y_{n}} & \frac{\partial y_{1}}{\partial y_{1}} \end{bmatrix} \right| = \left| \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \right| = 1.$$

Получаем

$$\frac{n(n-1)}{\theta^n} \cdot \int_0^\theta \int_{y_n}^\theta y_1 y_n (y_n - y_1)^{n-2} dy_1 dy_n = \frac{n(n-1)}{\theta^n} \cdot \int_0^\theta \int_{y_n}^{\theta - y_n} (x + y_n) y_n x^{n-2} dx dy_n = \frac{n(n-1)}{\theta^n} \cdot \int_0^\theta y_n dy_n \cdot \int_0^{\theta - y_n} (x^{n-1} + y_n x^{n-2}) dx = \frac{n(n-1)}{\theta^n} \cdot \int_0^\theta y_n dy_n \cdot \left(\frac{x^n}{n} + y_n \cdot \frac{x^{n-1}}{n-1}\right) \Big|_0^{\theta - y_n} = \frac{1}{\theta^n} \cdot \int_0^\theta \left[(n-1)(\theta - y_n) + y_n n(\theta - y_n)^{n-1} \right] \cdot y_n dy_n = \frac{1}{\theta^n} \cdot \int_0^\theta (\theta - y_n)^{n-1} \cdot \left[(n-1)(\theta - y_n) + y_n n \right] \cdot y_n dy_n = \frac{1}{\theta^n} \cdot \int_0^\theta (\theta - y_n)^{n-1} \cdot \left[(n-1)(\theta - y_n) + y_n n \right] \cdot y_n dy_n.$$

Заменяем первую скобку в интеграле на t. Получаем

$$\frac{1}{\theta^n} \cdot \int_0^\theta (\theta - y_n)^{n-1} \left[n\theta - (\theta - y_n) \right] y_n dy_n = \frac{1}{\theta^n} \cdot \int_0^\theta t^{n-1} \left(n\theta - t \right) (\theta - t) dt.$$

Перемножаем скобки

$$\frac{1}{\theta^{n}} \cdot \int_{0}^{\theta} t^{n-1} (n\theta - t) (\theta - t) dt = \frac{1}{\theta^{n}} \cdot \int_{0}^{\theta} t^{n-1} (n\theta^{2} - (n+1)\theta t + t^{2}) dt =$$

$$= \frac{1}{\theta^{n}} \cdot \int_{0}^{\theta} (n\theta^{2} t^{n-1} - (n+1)\theta t^{n} + t^{n+1}) dt =$$

$$= \frac{1}{\theta^{n}} \cdot \left[\theta^{2} t^{n} - \theta t^{n+1} + \frac{t^{n+2}}{n+2} \right] \Big|_{0}^{\theta} = \frac{1}{\theta^{n}} \cdot \left[\theta^{n+2} - \theta^{n+2} + \frac{\theta^{n+2}}{n+2} \right] = \frac{\theta^{2}}{n+2}.$$

По определению ковариации

$$cov\left(X_{(1)},X_{(n)}\right) = M\left(X_{(1)}X_{(n)}\right) - MX_{(1)}MX_{(n)} = \frac{\theta^2}{n+2} - \frac{\theta}{n+1} \cdot \frac{\theta n}{n+1}.$$

Выносим общий множитель за скобки

$$\frac{\theta^2}{n+2} - \frac{\theta}{n+1} \cdot \frac{\theta n}{n+1} = \theta^2 \left(\frac{1}{n+2} - \frac{n}{(n+1)^2} \right).$$

Приводим к общему знаменателю дроби в скобках

$$\theta^{2} \left(\frac{1}{n+2} - \frac{n}{(n+1)^{2}} \right) = \theta^{2} \cdot \frac{n^{2} + 2n + 1 - n^{2} - 2n}{(n+2)(n+1)^{2}} = \frac{\theta^{2}}{(n+2)(n+1)^{2}}.$$

1.22

 $\it 3adanue.$ Пусть задана выборка $\it X_1, \ldots, \it X_n$ из показательного распределения с параметром $\it \alpha.$ Докажите, что

$$MX_{(k)} = \frac{1}{\alpha} \left(\frac{1}{n-k+1} + \ldots + \frac{1}{n} \right),$$

не находя распределения порядковой статистики $X_{(k)}$.

Решение. Преобразуем левую часть того, что нужно доказать

$$MX_{(k)} = MX_{(1)} + \sum_{i=1}^{k-1} M(X_{(i+1)} - X_{(i)}).$$

Элементы выборки имеют плотность распределения

$$p(y) = \alpha e^{-\alpha y} \cdot \mathbb{1} \{ y \ge 0 \}.$$

Интегрируя плотность, получим функцию распределения

$$F\left(y\right) = \int_{0}^{y} p\left(x\right) dx = \int_{0}^{y} \alpha e^{-\alpha x} \cdot \mathbb{1}\left\{x \ge 0\right\} dx = \int_{0}^{y} \alpha e^{-\alpha x} dx = -e^{-\alpha x}\Big|_{0}^{y}.$$

Подставляем пределы интегрирования

$$-e^{-\alpha x}\big|_0^y = 1 - e^{-\alpha y}, \ y \ge 0.$$

Находим функцию распределения минимальной порядковой статистики

$$F_{X_{(1)}}(y) = P(X_{(1)} \le y) = 1 - P(X_{(1)} > y).$$

Если минимальный элемент выборки больше какого-то значения, то все элементы выборки больше него

$$1 - P(X_{(1)} > y) = 1 - P(X_1 > y, X_2 > y, \dots, X_n > y).$$

Из независимости случайных величин следует, что

$$1-P(X_1 > y, X_2 > y, \dots, X_n > y) = 1-P(X_1 > y) \cdot P(X_2 > y) \cdot \dots \cdot P(X_n > y)$$
.

Переходим к противоположным событиям и учитываем то, что случайные величины одинаково распределены

$$1 - P(X_1 > y) \cdot P(X_2 > y) \cdot \ldots \cdot P(X_n > y) = 1 - [1 - F(y)]^n$$
.

Находим плотность минимальной порядковой статистики

$$f_{X_{\left(1\right)}}\left(y\right)=\frac{\partial F_{X_{\left(1\right)}}\left(y\right)}{\partial y}=\frac{\partial \left\{ 1-\left[1-F\left(y\right)\right]^{n}\right\} }{\partial y}=-n\left[1-F\left(y\right)\right]^{n-1}\cdot\left(-1\right)f\left(y\right).$$

Упрощаем и учитываем, что $f\left(y\right)$ — это плотность распределения элементов выборки

$$-n[1 - F(y)]^{n-1} \cdot (-1) f(y) = n[1 - F(y)]^{n-1} p(y).$$

Подставляем функцию и плотность распределения

$$n\left[1 - F\left(y\right)\right]^{n-1}p\left(y\right) = n\left[1 - \left(1 - e^{-\alpha y}\right)\right]^{n}\alpha e^{-\alpha y} \cdot \mathbb{1}\left\{y \ge 0\right\}.$$

Упрощаем выражение в скобках

$$n\left[1-\left(1-e^{-\alpha y}\right)\right]^n\alpha e^{-\alpha y}\cdot\mathbbm{1}\left\{y\geq 0\right\}=n\alpha e^{-\alpha(n-1)y}e^{-\alpha y}\cdot\mathbbm{1}\left\{y\geq 0\right\}.$$

Суммируем показатели экспонент

$$n\alpha e^{-\alpha(n-1)y}e^{-\alpha y} \cdot \mathbb{1}\left\{y \ge 0\right\} = n\alpha e^{-\alpha ny} \cdot \mathbb{1}\left\{y \ge 0\right\}.$$

Отсюда следует, что $X_{(1)} \sim Exp\left(n\alpha\right)$.

Из задачи 1.11 б) $X_{(i+1)} - X_{(i)} \sim Exp(\alpha(n-i)).$

Тогда такая разность имеет математическое ожидание

$$M\left(X_{(i+1)} - X_{(i)}\right) = \frac{1}{\alpha(n-i)}.$$

Подставялем в полученное в начале выражение

$$MX_{(1)} + \sum_{i=1}^{k-1} M(X_{(i+1)} - X_{(i)}) = \frac{1}{n\alpha} + \sum_{i=1}^{k-1} \frac{1}{\alpha(n-i)}.$$

Записываем сумму в явном виде

$$\frac{1}{n\alpha} + \sum_{i=1}^{k-1} \frac{1}{\alpha(n-i)} = \frac{1}{\alpha} \cdot \left(\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \dots + \frac{1}{n-k+1}\right).$$

1.23

 $\it 3adahue$. Для выборки X_1,\ldots,X_n из равномерного распрделения на отрзке $[0,\theta]$ найдите:

а) ковариацию $X_{(n)}$ и $X_{(1)}$;

- b) совместную плотность распределения $X_{(k)}$ и $X_{(j)}, 1 \le k \le j \le n$. *Решение.*
- а) Данный пункт решён в задаче 1.21 с);
- b) по определению функции распределения

$$F_{(X_{(k)},X_{(j)})}(y,z) = P(X_{(k)} \le y, X_{(j)} \le z).$$

Воспользовавшись формулой $P\left(A\cap B\right)=P\left(B\right)-P\left(\overline{A}\cap B\right)$, получим $P\left(X_{(k)}\leq y,X_{(j)}\leq z\right)=P\left(X_{(j)}\leq z\right)-P\left(X_{(k)}>y,X_{(j)}\leq z\right)$. Аналогично задаче 1.10 разбиваем на 2 решения согласно коэффициентам

$$P\left(X_{(j)} \le z\right) - P\left(X_{(k)} > y, X_{(j)} \le z\right) =$$

$$= \begin{cases} P\left(X_{(j)} \le z\right), & y \ge z, \\ P\left(X_{(j)} \le z\right) - P\left(X_{(k)} > y, X_{(j)} \le z\right), & y < z. \end{cases}$$

Найдём первую вероятность $P\left(X_{(j)} \leq z\right) = P(\text{хотя бы } j$ элементов выборки не превышает z) =

$$=\sum_{i=j}^{n}C_{n}^{i}F^{i}\left(z\right)\left[1-F\left(z\right)\right]^{n-i}=\sum_{i=j}^{n}C_{n}^{i}\left(\frac{z}{\theta}\right)^{i}\left(1-\frac{z}{\theta}\right)^{n-i}.$$

Приводим к общему знаменателю

$$\sum_{i=j}^{n} C_n^i \left(\frac{z}{\theta}\right)^i \left(1 - \frac{z}{\theta}\right)^{n-i} = \sum_{i=j}^{n} C_n^i \frac{z^i}{\theta^i} \cdot \frac{(\theta - z)^{n-i}}{\theta^{n-i}} = \sum_{i=j}^{n} C_n^i \frac{z^i (\theta - z)^{n-i}}{\theta^n}.$$

Найдём вторую вероятность $P\left(X_{(j)} \leq z, X_{(k)} > y\right) = P($ хотя бы (j-k+1)

элементов выборки находится в интервале (y, z]) =

$$\begin{split} & = \sum_{i=j-k+1}^{n} C_{n}^{i} \left[F\left(z\right) - F\left(y\right) \right]^{i} \cdot \left\{ 1 - \left[F\left(z\right) - F\left(y\right) \right] \right\}^{n-i} = \\ & = \sum_{i=j-k+1}^{n} C_{n}^{i} \cdot \left(\frac{z}{\theta} - \frac{y}{\theta} \right)^{i} \cdot \left[1 - \left(\frac{z}{\theta} - \frac{y}{\theta} \right) \right]^{n-i} = \\ & = \sum_{i=j-k+1}^{n} C_{n}^{k} \cdot \frac{(z-y)^{i}}{\theta^{i}} \cdot \left(1 - \frac{z-y}{\theta} \right)^{n-i} = \\ & = \sum_{i=j-k+1}^{n} C_{n}^{i} \cdot \frac{(z-y)^{i}}{\theta^{i}} \cdot \frac{(\theta-z+y)^{n-i}}{\theta^{n-i}} = \\ & = \sum_{i=j-k+1}^{n} \frac{C_{n}^{i}}{\theta^{n}} \left(z - y \right)^{i} \left(\theta - z + y \right)^{n-i}. \end{split}$$

Продифференцируем. В первом случае будет 0. Найдём производную второй вероятности

$$\begin{split} -\frac{\partial^{2}F}{\partial y\partial z} &= \\ &= \frac{\partial}{\partial y} \big\{ \sum_{i=j-k+1}^{n} \frac{C_{n}^{i}}{\theta^{n}} \times \\ &\times \Big[i \left(z - y \right)^{i-1} \left(\theta - z + y \right)^{n-i} - \left(z - y \right) \left(n - i \right) \left(\theta - z + y \right)^{n-i-1} \Big] \big\} = \\ &= \sum_{i=j-k+1}^{n} \frac{C_{n}^{i}}{\theta^{n}} \times \\ &\times \big[-i \left(i - 1 \right) \left(z - y \right)^{i-2} \left(\theta - z + y \right)^{n-i} + \\ &+ 2i \left(z - y \right)^{i-1} \left(n - i \right) \cdot \left(\theta - z + y \right)^{n-i-1} - \\ &- \left(z - y \right)^{i} \left(n - i \right) \left(n - i - 1 \right) \cdot \left(\theta - z + y \right)^{n-i-2} \Big] = \\ &= \sum_{i=j-k+1}^{n} \frac{C_{n}^{i} \left(z - y \right)^{i-2} \cdot \left(\theta - z + y \right)^{n-i-2}}{\theta^{n}} \times \\ &\times \big[2i \left(z - y \right) \left(n - i \right) \left(\theta - z + y \right) - i \left(i - 1 \right) \left(\theta - z + y \right) - \\ &- \left(n - i \right) \left(n - i - 1 \right) \left(z - y \right)^{2} \big]. \end{split}$$

Тогда во втором случае плотность равна полученному выражению.

Занятие 2. Свойства оценок

Контрольные вопросы и задания

Что называют оценкой неизвестного параметра?

Статистику, значение которой заменяет неизвестный параметр, называют оценкой этого параметра.

Приведите определение оценки: несмещённой, ассимптотически несмещённой, состоятельной, сильно состоятельной, оптимальной.

Оценка $\hat{\theta}$ несмещённая, если $\forall \theta \in \Theta : M_{\theta} \hat{\theta} = \theta$.

Асимптотически несмещенная оценка — такая оценка, математическое ожидание которой совпадает с оцениваемым параметром при $n \to \infty$.

Оценка $\hat{\theta}$ называется состоятельной, если стремится к истинному значению θ по вероятности $\hat{\theta} \stackrel{P}{\to} \theta, n \to \infty$.

Оценка $\hat{\theta}$ называется сильно состоятельной, если стремится к истинному значению θ почти наверное $\hat{\theta} \stackrel{a.s.}{\longrightarrow} \theta, \ n \to \infty.$

Несмещённая оценка $\hat{\theta} \in K$ называется оптимальной в классе квадратично интегрируемых оценок K, если для всякой другой несмещённой оценки $\tilde{\theta} \in \Theta \, \forall \theta \in \Theta : \, D_{\theta} \hat{\theta} \leq D_{\theta} \tilde{\theta}$ или же $\forall \theta \in \Theta, \, M_{\theta} \left(\hat{\theta} - \theta \right)^{\leq} M_{\theta} \left(\tilde{\theta} - \theta \right)^{2}$.

Что называется среднеквадратическим отклонением оценки?

$$M_{ heta}\left(\hat{ heta}- heta
ight)$$
 — среднеквадратическое оклонение.

Сформулируйте утверждение про поведение выборочных моментов

ыборочный начальный момент M_k k-го порядка стремится к начальному моменту ν_k случайной величины X, то есть

$$\lim_{n \to \infty} P\left(|M_k - \nu_k| \ge \varepsilon\right) = 0,$$

для любого сколь угодно малого $\varepsilon > 0$, если моменты ν_{2k} и ν_k случайной величины X существуют и конечны.

Какая оценка является несмещённой и состоятельной для математического ожидания распределения выборки?

В качестве оценки для математического ожидания естественно предложить среднееарифметическое наблюденных значений

$$\tilde{m} = \frac{\sum_{i=1}^{n} X_i}{n}.$$

Какая статистика является несмещённой оценкой для дисперсии распределения выборки?

$$\frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})^2$$

— несмещённая оценка для $\sigma^2 = Dx_1$.

Аудиторные задачи

2.4

 $\it 3adanue.$ Для выборки равномерного распределения на отрезке [heta,1] проверьте состоятельность и несмещённость оценки $\it X_{(1)}$ параметра $\it heta.$

Peшение. θ — минимальное наблюдение. Проверяем, выполняется ли $X_{(1)} \overset{P}{\to} \theta, \, n \to \infty.$

По определению сходимости по вероятности

$$\forall \varepsilon > 0 P(|X_{(1)} - \theta| > \varepsilon) \to 0, n \to \infty.$$

Раскроем модуль

$$P\left\{X_{(1)} > \varepsilon + \theta\right\} = P\left(X_1 > \varepsilon + \theta, \dots, X_n > \varepsilon + \theta\right) = \left[P\left(X_1 > \varepsilon + \theta\right)\right]^n.$$

Подставим значение вероятности из геометрического эксперимента

$$\left[P\left(X_{1}>\varepsilon+\theta\right)\right]^{n}=\left(\frac{1-\theta-\varepsilon}{1-\theta}\right)^{n}=\left(1-\frac{\varepsilon}{1-\theta}\right)^{n}\to0,\,n\to\infty.$$

Число в скобках строго меньше единицы, так как $0 \le \theta \le 1$.

Отсюда следует, что оценка состоятельная.

Проверяем несмещённость оценки. Проверяем, выполняется ли

$$MX_{(1)} = \theta$$
.

Нужно найти плотность

$$MX_{(1)} = \int_{\mathbb{R}} f_{X_{(1)}}(y) y dy.$$

Начинаем с функции распределения $F_{X_{(1)}}\left(y\right)=P\left(X_{(1)}\leq y\right)$. Переходим к противоположному событию

$$P(X_{(1)} \le y) = 1 - P(X_{(1)} > y) = 1 - [P(X_1 > y)]^n.$$

Переходим к противоположному событию $1-[P\left(X_1>y\right)]^n=1-[1-F\left(y\right)]^n$. Продифференцируем

$$\frac{dF_{X_{(1)}}(y)}{dy} = n [1 - F(y)]^{n-1} f(y).$$

На отрезке $[\theta,1]$ имеет равномерное распределение

$$n [1 - F(y)]^{n-1} f(y) = n \left[1 - \frac{y - \theta}{1 - \theta}\right]^{n-1} \cdot \mathbb{1} \{y \in [\theta, 1]\} \cdot \frac{1}{1 - \theta}.$$

Приведём к общему знаменателю

$$n\left[1-\frac{y-\theta}{1-\theta}\right]^{n-1}\cdot\mathbb{1}\left\{y\in[\theta,1]\right\}\cdot\frac{1}{1-\theta}=\frac{n}{\left(1-\theta\right)^{2}}\cdot\left(1-y\right)^{n-1}\cdot\mathbb{1}\left\{y\in[\theta,1]\right\}.$$

Нашли плотность $X_{(1)}$ и теперь можем вычислить интеграл

$$MX_{(1)} = \int_{0}^{1} y \cdot \frac{n}{(1-\theta)^{2}} \cdot (1-y)^{n-1} dy.$$

Замена:

$$1-y=z, dy=-dz, y=1-z, y=1 \Rightarrow \Longrightarrow z=0, y=\theta \implies z=1-\theta.$$

Подставляя замену, получаем

$$\int_{a}^{1} y \cdot \frac{n}{(1-\theta)^{2}} \cdot (1-y)^{n-1} dy = n \cdot \frac{1}{(1-\theta)^{n}} \int_{0}^{1-\theta} (1-z) z^{n-1} dz.$$

Вычислим интеграл

$$n \cdot \frac{1}{(1-\theta)^n} \int_0^{1-\theta} (1-z) z^{n-1} dz \frac{n}{(1-\theta)^n} \left[\frac{(1-\theta)^n}{n} - \frac{(1-\theta)^{n+1}}{n+1} \right] =$$
$$= n \left(\frac{1}{n} - \frac{1-\theta}{n+1} \right) = 1 - \frac{n}{n+1} (1-\theta).$$

Раскроем скобки

$$1 - \frac{n}{n+1}(1-\theta) = 1 - \frac{n}{n+1} - \theta \cdot \frac{n}{n+1} \neq \theta.$$

Отсюда следует, что оценка смещённая, но ассимптотически несмещённая, потому что

$$1 - \frac{n}{n+1} \to 0, n \to \infty$$
$$\frac{n}{n+1} \to 1, n \to \infty.$$

И

2.5

 $\it 3adanue.$ Пусть $\it X_1, \ldots, \it X_n$ — выборка из распределения Пуассона с параметром $\it \lambda > 0.$ Выясните, является ли статистика

$$\frac{1}{n}\sum_{i=1}^{n}X_i^2:$$

- а) несмещённой оценкой для λ^2 ;
- b) состоятельной оценкой для λ^2 .

Решение.

а) Нужно проверить, выполняется ли

$$M\frac{1}{n}\sum_{i=1}^{n}X_i^2 = \lambda^2.$$

Преобразуем левую часть

$$M\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}=MX_{1}^{2}=DX_{1}+(MX_{1})^{2}=\lambda+\lambda^{2}\neq\lambda^{2}.$$

Значит, оценка смещённая;

b) проверяем, имеет ли место

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \stackrel{P}{\to} \lambda^2, \, n \to \infty.$$

По закону больших чисел

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\rightarrow MX_{1}^{2}=\lambda^{2}+\lambda\neq\lambda^{2},$$

значит, оценка не состоятельная.

2.6

3aдание. Пусть X_1,\dots,X_n — выборка из показательного распределения с параметром $\alpha>0$. Докажите, что статистика $1/\overline{X}$ является состоятельной оценкой для α .

Решение. Нужно показать, что

$$\frac{1}{\overline{X}} \stackrel{P}{\to} \alpha, n \to \infty.$$

Выборочное среднее

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

По закону больших чисел

$$\overline{X} \stackrel{P}{\to} MX_1 = \frac{1}{\alpha}.$$

Отсюда следует, что

$$\frac{1}{\overline{X}} \stackrel{P}{\to} \frac{1}{MX_1} = \alpha.$$

2.7

 $\it 3adahue.$ Пусть $\it X_1, \ldots, \it X_n$ — выборка из нормального распределения $\it N(a,\sigma^2)$. Докажите, что статистика

$$S_n = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$$

является несмещённой и состоятельной оценкой для σ^1 .

Peшение. Нужно проверить условие $MS_n = \sigma^2$.

Разность двух соседних элементов выборки имеет распределение

$$X_{i+1} - X_i \sim N\left(0, 2\sigma^2\right)$$
.

Найдём математическое ожидание статистики

$$MS_n = M \frac{1}{2(n-1)} \cdot \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2 = \frac{1}{2(n-1)} \sum_{i=1}^n M (X_{i+1} - X_i)^2.$$

Случайные величины одинаково распределены

$$\frac{1}{2(n-1)} \sum_{i=1}^{n} M(X_{i+1} - X_i)^2 = \frac{n}{2(n-1)} \cdot M(X_2 - X_1)^2.$$

В данном случае второй момент равен дисперсии

$$\frac{n}{2(n-1)} \cdot M(X_2 - X_1)^2 = \frac{1}{2} \cdot 2\sigma^2 = \sigma^2.$$

Отсюда следует, что оценка несмещённая.

Проверим состоятельность, то есть $S_n \stackrel{P}{\to} \sigma^2, n \to \infty$.

Разобъём S_n на две суммы

$$S_n = \frac{1}{2(n-1)} \cdot \left[\sum_{even \ i} (X_{i+1} - X_i)^2 + \sum_{odd \ i} (X_{i+1} - X_i)^2 \right].$$

В каждой из сумм слагаемые независимы

$$\frac{1}{2(n-1)} \cdot \left[\sum_{even i} (X_{i+1} - X_i)^2 + \sum_{odd i} (X_{i+1} - X_i)^2 \right] =$$

$$= \frac{1}{2(n-1)} \cdot \left[\frac{m}{m} \sum_{even i} (X_{i+1} - X_i)^2 + \frac{n-1-m}{n-1-m} \sum_{odd i} (X_{i+1} - X_i)^2 \right].$$

По закону больших чисел

$$\frac{1}{2(n-1)} \cdot \left[\frac{m}{m} \sum_{even \, i} (X_{i+1} - X_i)^2 + \frac{n-1-m}{n-1-m} \sum_{odd \, i} (X_{i+1} - X_i)^2 \right] \xrightarrow{P} \frac{1}{2} \cdot M \left(X_2 - X_1 \right)^2 = \frac{1}{2} \cdot D \left(X_2 - X_1 \right) = \sigma^2, \, n \to \infty.$$

Отсюда следует, что оценка состоятельная.

2.8

 $\it 3adanue.$ Пусть $\it X_1,\ldots,\it X_n$ — выборка из показательного распредения с параметром $\it \alpha>1.$ Для какого параметра $\it \theta=\theta\left(\alpha\right)$ статистика

$$\hat{\theta_n} = e^{\overline{X}}$$

является состоятельной оценкой? Является ли $\hat{\theta_n}$ сильно состоятельной оценкой того же параметра? Является ли $\hat{\theta_n}$ несмещённой оценкой того же параметра? Ассимптотически немещённой?

Решение.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

По закону больших чисел

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{P}{\to}MX_{1},\ n\to\infty.$$

Случайные величины в выборке имеют показательное распределение

$$MX_1 = \frac{1}{\alpha},$$

значит,

$$\overline{X} \stackrel{P}{\to} \frac{1}{\alpha}, n \to \infty.$$

Применяем непрерывную функцию e^x . Получаем $e^{\overline{X}} \stackrel{P}{\to} e^{\frac{1}{\alpha}}, \ n \to \infty$.

Проверяем, является ли оценка $e^{\overline{X}}$ несмещённой к параметру $e^{\frac{1}{\alpha}}$, то есть выполняется ли $Me^{\overline{X}}=e^{\frac{1}{\alpha}}$.

Вычисляем $Me^{\overline{X}}=Me^{\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}}$. Случайные величины независимы и одинаково распределены, поэтому $Me^{\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}}=\left(Me^{\frac{X_{1}}{n}}\right)^{n}$. По определению характеристической функции $\varphi_{X_{1}}=Me^{itX_{1}}$ получаем

$$\left(Me^{\frac{X_1}{n}}\right)^n = \left[\varphi_{X_1}\left(\frac{1}{in}\right)\right]^n.$$

Характеристическая функция показательного распределения

$$\varphi_{X_1}(t) = Me^{itX_1} = \frac{\alpha}{\alpha - it}.$$

Подставляем

$$\left[\varphi_{X_1}\left(\frac{1}{in}\right)\right]^n = \left(\frac{\alpha}{\alpha - \frac{1}{n}}\right)^n.$$

Прибавим и отнимем в числителе 1/n и поделим числитель на знаменатель

$$\left(\frac{\alpha}{\alpha - \frac{1}{n}}\right)^n = \left(\frac{\alpha + \frac{1}{n} - \frac{1}{n}}{\alpha - \frac{1}{n}}\right)^n = \left[1 + \frac{1}{n\left(\alpha - \frac{1}{n}\right)}\right]^n = e^{\frac{1}{\alpha}}.$$

Значит, оценка смещённая, но несмещённая ассимптотически.

2.9

3aдание. Пусть X_1, \dots, X_n — выборка из геометрического распределения с параметром p. Найдите состоятельные оценки для параметров

$$p, p^2, lnp, p\sin(1-p), pe^{\frac{q^2}{2}}.$$

Peшение. Всё это — непрерывные функции от p. Применение непрерывной функции не нарушает сходимости по вероятности.

Если параметр каким-то образом связан со средним, но нужно пробовать выборочные моменты.

Сформируем выборочное среднее и применим закон больших чисел

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{P}{\to} MX_1.$$

Для геометрического распределения

$$MX_1 = \frac{1-p}{p}.$$

Прибавим единицу слева и справа

$$1 + \overline{X} \xrightarrow{P} 1 + \frac{1-p}{p} = 1 + \frac{1}{p} - 1 = \frac{1}{p}.$$

Функция

$$f\left(x\right) = \frac{1}{r}$$

— это непрерывная функция, значит, можем применить эту функцию слева и справа, и сходимость сохранится

$$\frac{1}{1+\overline{X}} \stackrel{P}{\to} p.$$

Состоятельной оценкой для параметра p будет

$$\hat{p} = \frac{1}{1 + \overline{X}}.$$

Состоятельной оценкой лдя p^2 будет $\hat{p^2} = \hat{p}^2 \xrightarrow{P} p^2$, потому что $f(x) = x^2$ — это непрерывная функция.

Логарифм — это непрерывная функция

$$l\hat{n}p = ln\hat{p} = ln\frac{1}{1 + \overline{X}} \xrightarrow{P} lnp,$$

поскольку

$$\frac{1}{1+\overline{X}} \stackrel{P}{\to} p.$$

2.12

 $3 a \partial a н u e$. Пусть X_1, \dots, X_n — выборка из распределния Пуассона с параметром $\lambda > 0$. Докажите, что не существует несмещённой оценки для параметра $1/\lambda$.

Решение. Будем действовать от противного.

Допустим, что такая оценка существует, то есть существует $\hat{\theta}$ такое, что

$$M\hat{\theta} = \frac{1}{\lambda}.$$

Это условие несмещённости.

 $\hat{\theta}$ — функция от выборки, то есть $\hat{\theta} = f(X_1, \dots, X_n)$.

Распределение Пуассона дискретное

$$M\hat{\theta} = Mf(X_1, \dots, X_n) =$$

$$= \sum_{k_1=0}^{\infty} \dots \sum_{k_n=0}^{\infty} f(X_1, \dots, X_n) P(X_1 = k_1, X_2 = k_2, \dots, X_n = k_n).$$

Воспользуемся независимостью

$$\sum_{k_1=0}^{\infty} \dots \sum_{k_n=0}^{\infty} f(X_1, \dots, X_n) \cdot P(X_1 = k_1, X_2 = k_2, \dots, X_n = k_n) =$$

$$= \sum_{k_1=0}^{\infty} \dots \sum_{k_n=0}^{\infty} f(X_1, \dots, X_n) \cdot P(X_1 = k_1) \cdot \dots \cdot P(X_n = k_n).$$

Подставим в явном виде вероятности

$$\sum_{k_1=0}^{\infty} \dots \sum_{k_n=0}^{\infty} f(X_1, \dots, X_n) \cdot P(X_1 = k_1) \cdot \dots \cdot P(X_n = k_n) =$$

$$= \sum_{k_1=0}^{\infty} \dots \sum_{k_n=0}^{\infty} f(X_1, \dots, X_n) \cdot \frac{\lambda_{i=1}^{n} k_i}{\prod_{i=1}^{n} k_i!} \cdot e^{-\lambda n}.$$

Обозначим

$$\sum k_i = k$$

и получим

$$e^{-\lambda n} \cdot \sum_{k=0}^{\infty} \lambda^k \cdot \sum_{k_i: k_1 + k_2 + \dots + k_n = k} \frac{f(k_1, \dots, k_n)}{k_1! \dots k_n!} = e^{-\lambda n} \sum_{k=0}^{\infty} \lambda^k c_k,$$

где c_k — число.

Допустим, что эта величина равна $1/\lambda$.

Посмотрим, возможно ли это

$$e^{-\lambda n} \sum_{k=0}^{\infty} \lambda^k c_k = \frac{1}{\lambda}.$$

Запишем так, чтобы с одной стороны было $e^{\lambda n}$, а всё остальное перенесём

$$e^{\lambda n} = \sum_{k=0}^{\infty} \lambda^{k+1} c_k.$$

Для экспоненты существует одно развитие в ряд. Из этого следует, что последнее равенство невозможно (развитие в ряд начинается со степени λ , равной единице).

Домашнее задание

2.17

Задание. Пусть X_1, \ldots, X_n — выборка из равномерного распределения на отрезке $[0, \theta]$. Проверьте несмещённость, состоятельность и найдите среднеквадратическое отклонение следующих оценок параметра θ :

- a) $X_{(1)} + X_{(n)}$;
- b) $(n+1)X_{(1)}$.

 $Peшение. \ \theta$ — максимальное наблюдение.

а) Проверим, выполняется ли $X_{(1)}+X_{(n)}\stackrel{P}{\to}\theta,\,n\to\infty.$

По определению сходимости по вероятности $\forall \varepsilon > 0 \ P\left(X_{(1)} > \varepsilon\right) = P\left(X_1 > \varepsilon, X_2 > \varepsilon, \dots, X_n > \varepsilon\right) = \left[P\left(X_1 > \varepsilon\right)\right]^n$. Подставим значение вероятности из геометрического эксперимента

$$[P(X_1 > \varepsilon)]^n = \left(\frac{\theta - \varepsilon}{\theta}\right)^n \to 0, n \to \infty.$$

Значит, $X_{(1)} \stackrel{P}{\to} 0, n \to \infty$.

Остаётся проверить, выполняется ли $X_{(n)} \stackrel{P}{\to} \theta, n \to \infty.$

По определению сходимости по вероятности

$$P\{|X_{(n)} - \theta| > \varepsilon\} \to 0, n \to \infty.$$

Раскроем модуль

$$P\left\{\theta - X_{(n)} > \varepsilon\right\} = P\left\{X_{(n)} - \theta < -\varepsilon\right\} = P\left\{X_{(n)} < \theta - \varepsilon\right\} =$$
$$= P\left(X_1 < \theta - \varepsilon, X_2 < \theta - \varepsilon, \dots, X_n < \theta - \varepsilon\right) = \left[P\left(X_1 < \theta - \varepsilon\right)\right]^n.$$

Подставим значение вероятности из геометрического эксперимента

$$[P(X_1 < \theta - \varepsilon)]^n = \left(\frac{\theta - \varepsilon}{\theta}\right)^n = \left(1 - \frac{\varepsilon}{\theta}\right)^n \to 0, n \to \infty.$$

Число в скобках строго меньше единицы, так как $0 \le \theta \le 1$, $\varepsilon > 0$. Отсюда следует, что оценка состоятельная.

Проверим несмещённость оценки. Проверим, выполняется ли

$$M\left(X_{(1)} + X_{(n)}\right) = \theta.$$

Из задачи 1.21

$$MX_{(n)} = \frac{\theta n}{n+1}$$

И

$$MX_{(1)} = \frac{\theta}{n+1}.$$

Из свойства линейности математического ожидания

$$M\left(X_{(1)} + X_{(n)}\right) = MX_{(1)} + MX_{(n)} = \frac{\theta n}{n+1} + \frac{\theta}{n+1} = \frac{\theta (n+1)}{n+1} = \theta.$$

Отсюда следует, что оценка несмещённая.

Формула среднеквадратического отклонения имеет вид $\sigma = \sqrt{D\xi}$.

Найдём дисперсию оценки

$$\begin{split} D\left(X_{(1)} + X_{(n)}\right) &= M\left(X_{(1)} + X_{(n)}\right)^2 - \left[M\left(X_{(1)} + X_{(n)}\right)\right]^2 = \\ &= M\left(X_{(1)}^2 + X_{(n)}^2 + 2X_{(1)}X_{(n)}\right) - \left(MX_{(1)} + MX_{(n)}\right)^2 = \\ &= MX_{(1)}^2 + MX_{(n)}^2 + 2M\left(X_{(1)}X_{(n)}\right) - \left(MX_{(1)}\right)^2 - 2MX_{(1)}MX_{(n)} - \\ &- \left(MX_{(n)}\right)^2 = DX_{(1)} + DX_{(n)} + 2cov\left(X_{(1)}, X_{(n)}\right). \end{split}$$

Возьмём необходимые значения из задачи 1.21, а именно

$$DX_{(1)} = \frac{\theta^2 n}{(n+1)^2 (n+2)} = DX_{(n)}, cov (X_{(1)}, X_{(n)}) = \frac{\theta^2}{(n+1)^2 (n+2)}.$$

Подставляя в найденной выражение, получаем

$$DX_{(1)} + DX_{(n)} + 2cov\left(X_{(1)}, X_{(n)}\right) =$$

$$= \frac{\theta^{2}n}{(n+1)^{2}(n+2)} + \frac{\theta^{2}n}{(n+1)^{2}(n+2)} + \frac{2\theta^{2}}{(n+1)^{2}(n+2)} =$$

$$= \frac{2\theta^{2}n + 2\theta}{(n+1)^{2}(n+2)} = \frac{2\theta^{2}(n+1)}{(n+1)^{2}(n+2)} = \frac{2\theta^{2}}{(n+1)(n+2)}.$$

Извлекая корень, получаем

$$\sigma = \sqrt{\frac{2\theta^2}{(n+1)(n+2)}} = \theta \sqrt{\frac{2}{(n+1)(n+2)}};$$

b) проверим, выполняется ли $(n+1) X_{(1)} \stackrel{P}{\to} \theta, n \to \infty$.

По определению сходимости по вероятности

$$\forall \varepsilon > 0 P(|(n+1)X_{(1)} - \theta| > \varepsilon) \to 0, n \to \infty.$$

Перейдём к противоположному событию

$$P(|(n+1)X_{(1)} - \theta| > \varepsilon) = 1 - P\{|(n+1)X_{(1)} - \theta| \le \varepsilon\}.$$

Раскроем модуль

$$1 - P\left\{\left|\left(n+1\right)X_{(1)} - \theta\right| \le \varepsilon\right\} =$$

$$= 1 - P\left\{-\varepsilon \le (n+1)X_{(1)} - \theta \le \varepsilon\right\} =$$

$$= 1 - P\left\{\frac{-\varepsilon + \theta}{n+1} \le X_{(1)} \le \frac{\varepsilon + \theta}{n+1}\right\} =$$

$$= 1 + P\left\{X_{(1)} \le \frac{\theta - \varepsilon}{n+1}\right\} - P\left\{X_{(1)} < \frac{\varepsilon + \theta}{n+1}\right\} =$$

$$= 1 + 1 - P\left(X_1 > \frac{\theta - \varepsilon}{n+1}, \dots, X_n > \frac{\theta - \varepsilon}{n+1}\right) - 1 + P\left(X_{(1)} > \frac{\varepsilon + \theta}{n+1}\right) =$$

$$= 1 - \left[P\left(X_1 > \frac{\theta - \varepsilon}{n+1}\right)\right]^n + \left[P\left(X_1 > \frac{\theta + \varepsilon}{n+1}\right)\right]^n.$$

Подставим значения вероятностей из геометрического эксперимента

$$1 - \left[P\left(X_1 > \frac{\theta - \varepsilon}{n+1}\right)\right]^n + \left[P\left(X_1 > \frac{\theta + \varepsilon}{n+1}\right)\right]^n =$$

$$= 1 - \left(\frac{\theta - \frac{\theta - \varepsilon}{n+1}}{\theta}\right)^2 + \left(\frac{\theta - \frac{\varepsilon + \theta}{n+1}}{\theta}\right)^n =$$

$$= 1 - \left(1 - \frac{\theta - \varepsilon}{(n+1)\theta}\right)^n + \left(1 - \frac{\varepsilon + \theta}{(n+1)\theta}\right)^n \not\to 0, n \to \infty.$$

Отсюда следует, что оценка несостоятельная.

Проверим несмещённость оценки. Проверим, выполняется ли

$$M(n+1)X_{(1)} = \theta.$$

Выносим константу из-под знака математического ожидания

$$(n+1) MX_{(1)} = (n+1) \cdot \frac{\theta}{n+1} = \theta.$$

Отсюда следует, что оценка несмещённая.

Найдём дисперсию оценки

$$D(n+1)X_{(1)} = (n+1)^2 DX_{(1)} = (n+1)^2 \cdot \frac{\theta^2 n}{(n+1)^2 (n+2)} = \frac{\theta^2 n}{n+2},$$

откуда среднеквадратическое отклонение равно

$$\sigma = \sqrt{D\left(n+1\right)X_{(1)}} = \sqrt{\frac{\theta^2 n}{n+2}} = \theta\sqrt{\frac{n}{n+2}}.$$

2.18

3aдание. Пусть X_1,\dots,X_n — выборка из показательного распределения с параметром $1/\sqrt{\alpha}$. Выясните, является ли статистика $\hat{\alpha_n} = \left(\overline{X}\right)^2$ несмещённой оценкой параметра α . Является ли эта оценка состоятельной?

Pewenue. Нужно проверить, выполняется ли $M\left(\overline{X}\right)^2 = \alpha$. Запишем, что означает выборочное среднее

$$M\left(\overline{X}\right)^2 = M\left(\frac{1}{n}\sum_{i=1}^n X_i\right)^2 = M\left(\frac{1}{n^2}\left(\sum_{i=1}^n X_i\right)^2\right) = \frac{1}{n^2}\cdot M\left(\sum_{i=1}^n X_i\right)^2.$$

Квадрат суммы запишем в виде двух сумм. Получим

$$\frac{1}{n^2} \cdot M\left(\sum_{i=1}^n X_i^2 + 2\sum_{k < i}^n X_k X_i\right) = \frac{1}{n^2} \cdot M\sum_{i=1}^n X_i + \frac{2}{n^2} M\sum_{k < i}^n X_k X_i.$$

Случайные величины независимы и одинаково распределены, поэтому

$$\frac{1}{n^2} \cdot M \sum_{i=1}^n X_i + \frac{2}{n^2} M \sum_{k < i}^n X_k X_i = \frac{1}{n^2} \sum_{i=1}^n M X_i^2 + \frac{2}{n^2} \sum_{k < i}^n M X_k M X_i.$$

Для показательного распределения

$$MX_i = \frac{1}{\lambda} = \frac{1}{\frac{1}{\sqrt{\alpha}}} = \sqrt{\alpha}, MX_i^2 = \frac{2}{\lambda^2} = \frac{2}{\frac{1}{\alpha}} = 2\alpha.$$

Подставляем

$$\frac{1}{n^{2}} \sum_{i=1}^{n} MX_{i}^{2} + \frac{2}{n^{2}} \sum_{k < i}^{n} MX_{k}MX_{i} = \frac{1}{n^{2}} \cdot n \cdot 2\alpha + \frac{1}{n^{2}} \cdot (n-1) n (MX_{1})^{2} =$$

$$= \frac{2\alpha}{n} + \frac{n-1}{n} \cdot \alpha = \frac{2\alpha}{n} + \alpha - \frac{\alpha}{n} = \frac{\alpha}{n} + \alpha \to \alpha, n \to \infty,$$

значит, оценка смещённая, но несмещённая ассимптотически.

Проверим, имеет ли место $(\overline{X})^2 \stackrel{P}{\to} \alpha, n \to \infty.$

По закону больших чисел

$$\left(\overline{X}\right)^2 = \left(\frac{1}{n}\sum_{i=1}^n X_i\right)^2 \to \left(MX_1\right)^2 = \left(\sqrt{\alpha}\right)^2 = \alpha,$$

значит, оценка состоятельная.

2.21

Задание. Пусть X_1,\dots,X_n — выборка из биномиального распределения с параметрами 2 и p. Для какого параметра $\theta=\theta\left(p\right)$ статистика $\hat{\theta_n}=e^{\overline{X}}$ будет состоятельной? Является ли $\hat{\theta_n}$ сильно состоятельной оценкой того же параметра? Является ли $\hat{\theta_n}$ несмещённой оценкой того же параметра? Найдите среднеквадратическое отклонение этой оценки.

Решение.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

По закону больших чисел

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{P}{\to}MX_{1},\,n\to\infty.$$

Случайные величины в выборке имеют биномиальное распределение с математическим ожиданием $MX_1=np=2p$, значит, $\overline{X} \stackrel{P}{\to} 2p, \ n \to \infty$.

Применим непрерывную функцию e^x . Получим $e^{\overline{X}} \stackrel{P}{\to} e^{2p}, n \to \infty$.

Проверим, является ли оценка несмещённой к параметру e^{2p} , то есть выполняется ли $Me^{\overline{X}}=e^{2p}$.

Вычисляем $Me^{\overline{X}}=Me^{\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}}$. Случайные величины независимы и одинаково распределены, поэтому $Me^{\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}}=\left(Me^{\frac{X_{1}}{n}}\right)^{n}$. По определению характеристической функции $\varphi_{X_{1}}\left(t\right)=Me^{itX_{1}}$, получим

$$\left(Me^{\frac{X_1}{n}}\right)^n = \left[\varphi_{X_1}\left(\frac{1}{in}\right)\right]^n.$$

Характеристическая функция биномиального распределения

$$\varphi_{X_1}(t) = Me^{itX_1} = \left[\left(e^{it} - 1 \right) p + 1 \right]^n.$$

Подставим и получим

$$\left[\varphi_{X_1}\left(\frac{1}{in}\right)\right]^n = \left[\left(e^{\frac{i}{in}}-1\right)p+1\right]^n = \left[\left(e^{\frac{1}{n}}-1\right)p+1\right]^n \neq e^{2p}.$$

Значит, оценка смещённая.

Проверим сильную состоятельность. По усиленному закону больших чисел

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \overset{a.s.}{\to} MX_1 = 2p, \ n \to \infty.$$

Отсюда следует, что $e^{\overline{X}} \stackrel{a.s.}{\to} e^{2p}, n \to \infty$. Значит, оценка сильно состоятельная.

Найдём дисперсию оценки $De^{\overline{X}}=Me^{2\overline{X}}-\left(Me^{\overline{X}}\right)^2$.

Нашли, что
$$Me^{\overline{X}} = \left[\left(e^{\frac{1}{n}} - 1\right)p + 1\right]^n$$
.

Вычисляем $Me^{2\overline{X}}=Me^{\frac{2}{n}\sum\limits_{i=1}^{n}X_{i}}$. Из независимости и одинаковой распределенности случайных величин следует, что $Me^{\frac{2}{n}\sum\limits_{i=1}^{n}X_{i}}=\left(Me^{\frac{2X_{1}}{n}}\right)^{n}$. По определению характеристической функции $\varphi_{X_{1}}\left(t\right)=Me^{itX_{1}}$, получаем

$$\left(Me^{\frac{2X_1}{n}}\right)^n = \left[\varphi_{X_1}\left(\frac{2}{in}\right)\right]^n.$$

Подставляем характеристическую фунцию биномиального распределения

$$\left[\varphi_{X_1}\left(\frac{2}{in}\right)\right]^n = \left[\left(e^{\frac{2i}{in}}-1\right)p+1\right]^n = \left[\left(e^{\frac{2}{n}}-1\right)p+1\right]^n.$$

Отсюда находим дисперсию оценки

$$De^{\overline{X}} = \left[\left(e^{\frac{2}{n}} - 1 \right) p + 1 \right]^n - \left[\left(e^{\frac{1}{n}} - 1 \right) p + 1 \right]^{2n}.$$

Извлекая корень, получим $\sigma = \sqrt{\left[\left(e^{\frac{2}{n}}-1\right)p+1\right]^n-\left[\left(e^{\frac{1}{n}}-1\right)p+1\right]^{2n}}.$

Занятие 3. Метод моментов построения оценок

Контрольные вопросы и задания

Преведиты определение оценки: несмещённой, ассимптотически несмещённой, состоятельной, сильно состоятельной, оптимальной.

Оценка $\hat{\theta}$ несмещённая, если $\forall \theta \in \Theta : M_{\theta} \hat{\theta} = \theta$.

Асимптотически несмещенная оценка — такая оценка, математическое ожидание которой совпадает с оцениваемым параметром при $n \to \infty$.

Оценка $\hat{\theta}$ называется состоятельной, если стремится к истинному значению θ по вероятности $\hat{\theta} \stackrel{P}{\to} \theta$, $n \to \infty$.

Оценка $\hat{\theta}$ называется сильно состоятельной, если стремится к истинному значению θ почти наверное $\hat{\theta} \stackrel{a.s.}{\longrightarrow} \theta, \ n \to \infty.$

Несмещённая оценка $\hat{\theta} \in K$ называется оптимальной в классе квадратично интегрируемых оценок K, если для всякой другой несмещённой оценки $\tilde{\theta} \in \Theta \, \forall \theta \in \Theta : \, D_{\theta} \hat{\theta} \leq D_{\theta} \tilde{\theta}$ или же $\forall \theta \in \Theta, \, M_{\theta} \left(\hat{\theta} - \theta \right)^{\leq} M_{\theta} \left(\tilde{\theta} - \theta \right)^{2}$.

Что называется среднеквадратическим отклонением оценки?

$$M_{ heta}\left(\hat{ heta}- heta
ight)$$
 — среднеквадратическое оклонение.

Сформулируйте утверждение про поведение выборочных моментов.

Выборочный начальный момент M_k k-го порядка стремится к начальному моменту ν_k случайной величины X, то есть

$$\lim_{n \to \infty} P\left(|M_k - \nu_k| \ge \varepsilon\right) = 0,$$

для любого сколь угодно малого $\varepsilon > 0$, если моменты ν_{2k} и ν_k случайной величины X существуют и конечны.

Сформулируйте основную идею метода моментов построения оценки неизвестного параметра.

 x_1,\ldots,x_n — выборка из распределения F_{θ} и $\theta:M_{\theta}f(x_1)=g(\theta).$

Вычисляем математическое ожидание, считая, что x_1 имеет распределение с параметром θ , иными словами,

$$M_{\theta}f\left(x\right) = \int_{\mathbb{R}} x dF_{\theta}\left(x\right), f, g \in C\left(\mathbb{R}\right), g$$

— строго монотонная. Тогда в силу усиленного закона больших чисел

$$\theta \approx g^{-1} \left(\frac{1}{n} \sum_{k=1}^{n} f(x_k) \right)^{a.s.} \theta, n \to \infty.$$

Если существуют непрерывные f и g, g — обратима и $g(\theta) = M_{\theta} f(x)$, то в качестве оценки можно выбрать

$$\hat{\theta} = g^{-1} \left(\int_{\mathbb{R}} f dF_n \right).$$

Аудиторные задачи

3.3

 $\it 3adanue.$ Пользуясь методом моментов, оцените параметр θ равномерного распределения на отрезке:

- a) $[0, \theta]$;
- b) $[\theta 1, \theta + 1];$
- c) $[0, 2\theta]$;
- d) $[-\theta, \theta]$.

Решение.

а) $X_i \sim U\left([0,\theta]\right)$. Записываем теоретический момент. Для равномерного распределения — это средина отрезка

$$MX_1 = \frac{\theta}{2}.$$

Должны приравнять

$$\frac{\theta^*}{2} = \overline{X},$$

откуда $\theta^* = 2\overline{X}$;

- b) случайные величины имеют распределение $X_i \sim U\left([\theta-1,\theta+1]\right)$. Вычисляем теоретический момент $MX_1=\theta$. Должны записать, что $\theta^*=\overline{X}$:
- с) случайные величины имеют распределение $X_i \sim U([0,2\theta]).$ Вычисляем теоретический момент $MX_1 = \theta,$ откуда $\theta^* = \overline{X};$
- d) случайные величины имеют распределение $X_i \sim U\left([-\theta,\theta]\right)$. Вычисляем теоретический момент $MX_1=0$ не подходит, потому что не является функцией от θ . Можем вычислить второй момент, который в данном случае совпадает с дисперсией $MX_1^2=DX_1$. Для равномерного распределения

$$DX_1 = \frac{4\theta^2}{12} = \frac{\theta}{3}.$$

Должны записать уравнение

$$\frac{\left(\theta^2\right)^*}{3} = \overline{X^2},$$

откуда $\left(\theta^2\right)^*=3\overline{X^2}.$ Извлекая корень, получаем $\theta^*=\sqrt{3\overline{X^2}}.$

Домашнее задание