Topological Algebraic Structures

Ikhan Choi

December 13, 2023

Contents

I		2
1	Topological groups	3
2	Topological vector spaces 2.1 Locally convex spaces 2.2 Direct limit	4 4 4
3	Topological algebras	5
II 4	Continuous fields	6 7
II	I Fréchet and Banach spaces	8
5	5.3 Approximation property	9 10 10 10
IV	Fréchet and Banach algebras	11
6	Fréchet algebras	12
7	Banach algebras	13

Part I

Topological groups

Topological vector spaces

2.1 Locally convex spaces

categorical aspects, bornology, tensor products, completeness,

2.2 Direct limit

distribution theory LF,LB spaces

2.3 Differentiable spaces

Topological algebras

Part II

Continuous fields

Part III Fréchet and Banach spaces

5.1 Universal properties

Notation

L(X,Y) the set of bounded linear operators from X to Y

B(X,Y) the set of bounded bilinear forms on $X \times Y$

F(X,Y) the set of continuous finite-rank linear operators from X to Y

 B_X closed unit ball of a normed space X

 S_X unit sphere of a normed space X

 $X \otimes Y$ algebraic tensor product of X and Y

 X^* continuous dual space

 $X^{\#}$ algebraic dual space

5.1 (Algebraic tensor product of vector spaces). Let X and Y be vector spaces. The *algebraic tensor* product is a vector space $X \otimes Y$ with a bilinear map $\otimes : X \times Y \to X \otimes Y$ such that the following universal property: for any vector space Z and any bilinear map $\sigma : X \times Y \to Z$, there exists a unique linear map $\widetilde{\sigma} : X \otimes Y \to Z$ such that the diagram

$$\begin{array}{ccc} X\times Y & \stackrel{\otimes}{\longrightarrow} X\otimes Y \\ & \downarrow^{\widetilde{\sigma}} \\ Z & \end{array}$$

is commutative.

- (a) The tensor product $X \otimes Y$ always exists.
- (b) We have linear maps $L(X,Z) \otimes L(Y,W) \to L(X \otimes Y,Z \otimes W)$ and $B(L(X,Z),L(Y,Z)) \to L(X \otimes Y,Z)$.
- (c) Every element $t \in X \otimes Y$ is represented as $t = \sum_{i=1}^{n} x_i \otimes y_i$ such that $\{x_i\}$ is linearly independent. In this case, if t = 0 then $y_i = 0$ for all i.

Proof. (a) Let T be the set of formal linear combinations of $X \times Y$, that is, an element of T has the form $\sum_{i=1}^{n} a_i \cdot (x_i, y_i)$ for $x_i \in X$, $y_i \in Y$, and scalars a_i . Define $T_0 \subset T$ to be a linear space spanned by the elements of the following four types:

$$(x+x',y)-(x,y)-(x',y), (x,y+y')-(x,y)-(x,y'),$$

 $(ax,y)-a(x,y), (x,ay)-a(x,y).$

Then, the quotient space T/T_0 satisfies the universal property with the bilinear map $X \times Y \to T/T_0$: $(x,y) \mapsto (x,y) + T_0$.

5.2 (Algebraic tensor product of involutive algebras).

5.2 Banach spaces

5.3 (Subcross norms).

5.4 (Injective tensor products). Let X and Y be Banach spaces. Define the *injective norm* ε on $X \otimes Y$ such that

$$\varepsilon \left(\sum_{i=1}^{n} x_i \otimes y_i \right) := \sup_{\substack{x^* \in B_{X^*} \\ y^* \in B_{Y^*}}} \left| \sum_{i=1}^{n} \langle x_i, x^* \rangle \langle y_i, y^* \rangle \right|.$$

We denote by $X \otimes_{\varepsilon} Y$ the algebraic tensor product with the injective norm, and by $X \widehat{\otimes}_{\varepsilon} Y$ its completion.

(a) $X \otimes_{\varepsilon} Y$ is naturally isometrically isomorphic to $F((X^*, w^*), (Y, w))$.

(b) $X^* \otimes_{\varepsilon} Y$ is naturally isometrically isomorphic to F(X,Y).

5.5 (Projective tensor products). Let *X* and *Y* be Banach spaces. Define the *projective norm* π on $X \otimes Y$ such that

$$\pi(t) := \inf \left\{ \sum_{i=1}^{n} ||x_i|| ||y_i|| : t = \sum_{i=1}^{n} x_i \otimes y_i \right\}.$$

We denote by $X \otimes_{\pi} Y$ the algebraic tensor product with the projective norm, and by $X \otimes_{\pi} Y$ its completion.

(a) There are natural isometric isomorphisms $(X \otimes_{\pi} Y)^* \cong B(X,Y) \cong L(X,Y^*)$.

(b)

5.6 (Hilbert space tensor product). Let $\varphi: H \otimes K \to L(H^*, K)$. Then, $\lambda(\xi) = \|\varphi(\xi)\|$, $\gamma(\xi) = \operatorname{tr}(|\varphi(\xi)|)$, so $H \widehat{\otimes}_{\lambda} K \cong K(H^*, K)$ and $H \widehat{\otimes}_{\gamma} K \cong L^1(H^*, K)$.

5.7 (Nuclear operators).

$$X^* \otimes_{\pi} Y \to X^* \otimes_{\varepsilon} Y \xrightarrow{\sim} F(X,Y) \xrightarrow{1} K(X,Y)$$

defines

$$J: X^* \widehat{\otimes}_{\pi} Y \to K(X,Y).$$

Define $N(X, Y) := \operatorname{im} J$.

5.8 (Grothendieck theorem). Let Y^* be an RNP space. Then, there is an isometric isomorphism $(X \hat{\otimes}_{\varepsilon} Y)^* \cong N(X, Y^*)$.

5.3 Approximation property

5.9 (Approximation property of locally convex spaces).

5.10 (Approximation property of Banach spaces).

5.11 (Approximation property of dual Banach spaces).

5.12 (Mazur's goose). (a) If *X* has a Schauder basis, then it has the approximation property.

5.4 Nuclear spaces

Part IV Fréchet and Banach algebras

Fréchet algebras

Banach algebras