

E-COMMERCE CHURN ANALYSIS & PREDICTION

Q Hermes (Data Scientist)

Final Presentation Kelompok 5 - Batch 17

MEET OUR TEAM

DwiSusanto

Mhd **Fahmi** Aziz **∩** ✓

Nur Ayu Asyifa **○**

R.R **Intan** Dwi Nuraini

Business
Understanding

Data Cleaning
& Preparation

Business Insight & Recommendation

Data Overview,
EDA, & Insight

Model & Evaluation

BUSINESS UNDERSTANDING

Who Are We?

Hermes adalah tim data scientist yang siap memberikan rekomendasi aksi untuk menyelesaikan masalah yang dihadapi perusahaan e-commerce

Who & What Case?

Amajoko adalah e-commerce apps yang berada di Indonesia dan sudah 5 tahun lebih berdiri. Platform ini menjual produk fashion, handphone, laptop & aksesoris, groceries dan lain-lain.

Sayangnya, mereka memiliki masalah dengan banyaknya customer yang <u>churn</u>

Let's Check The Data

Amajoko E-commerce Churn Rate

- Di tahun 2020, Amajoko memiliki total pelanggan sebanyak 5630.
- 🗅 🛮 Namun, <mark>16.8%</mark> dari total pelanggannya *churn*.

What is churn?

- Churn customer adalah kondisi dimana customer tidak lagi berlangganan ataupun berbelanja di suatu platform/e-commerce.
- Churn customer bisa disebabkan beberapa hal diantaranya:
 - 1. Avoidable Churn^[1]: **Pindah** ke platform/e-commerce lain
 - Unavoidable Churn^[1]: Memang sudah tidak belanja lagi dimanapun (meninggal, tidak punya pendapatan, dll)
 - 3. Penyebab churn terbesar adalah karena **poor service**, sebesar 70%^[2]

Problem Statement

Customer Churn

948

Customer

16.8%

Churn rate

Potential Loss

\$4.63M

GMV* generated by churn customer last month

*asumsi:

Cashback = 10% dari GMV

GMV = Average cashback x #Order bulan lalu x 10

Jika tren churn rate masih **16.8% setiap bulan**, maka di bulan **ke-6** semua customer saat ini akan churn. Churn rate harus **dikurangi** agar bisnis bisa **sustain**.

Goals, Objective, Business Metrics

GOALS

- Menurunkan tingkat churn rate <5%^[1]
- Meminimalisasi potential loss akibat churn

OBJECTIVE

- Membuat Machine Learning Model untuk memprediksi customer churn
- Memberikan insight dan rekomendasi aksi yang dapat membantu tim bisnis dan product untuk mengurangi churn rate

BUSINESS METRICS

Churn Rate

customer churn # total customer

Potential Loss

#customer churn x potential GMV

DATA OVERVIEW, EDA & INSIGHT

Data Overview

No(#)	Variable	Description
#1	CustomerID	Unique customer ID
#2	Churn	Churn Flag
#3	Tenure	Tenure of customer in organization
#4	PreferredLoginDevice	Preferred login device of customer
#5	CityTier	City tier
#6	WarehouseToHome	Distance in between warehouse to home of customer
#7	PreferredPaymentMode	Preferred payment method of customer
#8	Gender	Gender of customer
#9	HourSpendOnApp	Number of hours spend on mobile application or website
#10	NumberOfDeviceRegistered	Total number of deceives is registered on particular customer
#11	PreferedOrderCat	Preferred order category of customer in last month
#12	SatisfactionScore	Satisfactory score of customer on service
#13	MaritalStatus	Marital status of customer
#14	NumberOfAddress	Total number of added added on particular customer
#15	Complain	Any complaint has been raised in last month
#16	OrderAmountHikeFromlastYear	Percentage increases in order from last year
#17	CouponUsed	Total number of coupon has been used in last month
#18	OrderCount	Total number of orders has been places in last month
#19	DaySinceLastOrder	Day Since last order by customer
#20	CashbackAmount	Average cashback in last month

Load Data

- Target Label: Churn
- 18 feature Categorical feature:
 - o #3 Tenure
 - o #5 CityTier
 - #6 WarehouseToHome
 - o #8 Gender
 - #9 HourSpendOnApp
 - o #11 PreferedOrderCat
 - #13 MaritalStatus

Exploratory Data Analysis (EDA)

Observation & Insight:

Customer dengan **Tenure rendah (2 bulan pertama)** memiliki potensi churn jauh lebih tinggi daripada tenure menengah keatas.

Exploratory Data Analysis (EDA)

	Complain				
	Yes	No			
Churn	32.93%	11.85%			
Not Churn	67.07%	88.15%			

Observation & Insight:

Persentase **churn akibat customer complain** (32.9%) **hampir 3 kali lebih besar** dari persentase churn dari total customer yang tidak complain (11.85%).

Exploratory Data Analysis (EDA)

	Order Category						
	Phone	Laptop&Acc	Grocery	Fashion			
Churn	27.20%	9.70%	3.65%	15.02%			
Not Churn	72.80%	90.30%	96.35%	84.98%			

Observation & Insight:

Customer yang mengorder kategori **phone cenderung untuk churn** dibandingkan dengan customer yang mengorder kategori barang lainnya.

DATA CLEANING & PREPARATION

Data Cleaning

Why is it important?

"Sparse quality data can not only harm the growth of an organization but can also signal many false data insights, leading to poor decision-making" [1]

How about our dataset?

Handling Null Values & Imputing \rightarrow 7 nums feature imputed with median

Check & Remove Duplicates \rightarrow 0 duplicate

Handling Outliers (IQR method)

Data
before and after
cleaning (rows):
5630 → 4040

Reference:

[1]www.simplilearn.com/data-cleaning-why-and-how-to-get-started-article

Data Preprocessing

MODEL & EVALUATION

Confusion Matrix

Primary matrix: Recall

Secondary matrix: Precision

karena tidak memperbolehkan nilai false negative yang besar (customer yang sebenarnya churn namun dianggap tidak churn).

Model After Hyperparameter Tuning

					<u> </u>					
Model	Accu	curacy Precision		Recall		F1-score		AUC		
	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
LOGISTIC REGRESSION	0.89	0.86	0.81	0.82	0.7	0.28	0.75	0.42	0.82	0.63
DECISION TREE	1	0.86	1	0.6	1	0.68	1	0.64	1	0.79
KNN	1	0.86	1	0.6	1	0.68	1	0.64	1	0.79
RANDOM FOREST	1	0.94	1	0.9	0.98	0.74	0.99	0.82	0.99	0.88
XGBOOST	0.95	0.86	0.94	0.58	0.86	0.86	0.9	0.69	0.92	0.86

XGBOOST menjadi model yang dipilih karena:

- Model XGBoost adalah yang paling fit.
 Dapat dilihat dari train dan test
 Recall-nya memiliki nilai delta terkecil.
- Nilai Precision test score di atas 0.5

Untuk mendapatkan model XGBOOST yang best fit, beberapa trial yang dilakukan:

- Class imbalance
- Cross validation
- Hyperparameter tuning (max_depth, min_child_weight, gamma, eta, tree_method, colsample_bytree, num_round)

Feature Importance

BEFORE Machine Learning Model

GMV* generated by churn customer last month

*asumsi: Cashback = 10% dari GMV GMV = Average cashback x #Order bulan lalu x 10

AFTER Machine Learning Model

BUSINESS INSIGHT & RECOMMENDATION

The Decrease of Potential Loss

Before using Model	After using Model (Recall: 0.86)					
	Remaining customer: 4682 (sisa customer yang tidak churn)					
Total customer: 5630 (948 churn)	Total customer based on prediction: Prediction x remaining customer = 86% x 4682 = 4026 (656 customer churn)					
	Setelah customer treatment oleh tim bisnis, asumsi customer churn berkurang menjadi: 80% x 656 = 131 customer yang churn					
(initial) Churn rate: 16,8%	Jika diasumsikan 131 customer churn di bulan berikutnya, maka Churn rate: 131/4682 = 2,79% (turun 14%)					
Potential loss akibat churn: \$ 4.884 x 948 = \$ 4.630.000	Predicted potential loss akibat churn: \$ 4.884 x 131 = \$ 639.804 Potential loss yang terselamatkan: \$ 4.884 x 525 = \$ 2.564.100					

Recommendation for Product Team

Meminta feedback user, seperti survey singkat mengenai apa yang perlu diubah untuk mendapatkan pengalaman yang lebih baik saat melakukan transaksi.

Reference:

www.mattsenkumar.com/ e-commerce-customer-churn-b est-practice

Recommendation for Business Team

Untuk 2 bulan pertama, dimana kondisi customer dengan tenure rendah cenderung untuk churn, perlu diberikan treatment **khusus** seperti memberikan promo berupa free delivery dan cashback yang cukup tinggi.

Penyumbang churn terbesar adalah dari category product phone (60%), perlu adanya **cross selling untuk pembeli product phone** agar bisa menarik lagi customer yang sudah churn.

Melakukan **approach lebih awal** ke customer yang diprediksi akan churn untuk mendapatkan pain point mereka.

"Data telling the truth, people tell stories and hopes"