Section C: Algorithms Analysis

1) (10 pts) ANL (Algorithm Analysis)

Consider the task of sorting \mathbf{n}^2 integers. Using an insertion sort, this task would take $O(\mathbf{n}^4)$ time. Using a single heap sort, this task would take $O(\mathbf{n}^2 \mathbf{lg} \mathbf{n})$. Consider this hybrid approach and, with proof, determine its worst case run time, in terms of \mathbf{n} . Assume efficient implementations of each of the heap and linked list operations described. Leave your answer in Big-Oh notation.

- 1. Separate the n^2 integers into **n** groups of **n** integers each.
- 2. Create heaps out of each of the **n** groups of integers.
- 3. Call delete min on each of the \mathbf{n} heaps, storing these \mathbf{n} deleted values in a linked list, also storing which heap each value came from.
- 4. Repeat the following n^2 times:
 - a. Loop through the linked list, locating the minimum integer in it, noting which heap it was from. Name the integer \mathbf{x} and the heap \mathbf{H} .
 - b. Place **x** next in the sorted list and delete it from the linked list.
 - c. If **H** isn't empty, delete the minimum item from **H** and add it to the end of the linked list, also storing that the value came from heap **H**.