Ohyb staticky neurčitých prutů a rámů

K čemu je to dobré? Značná část součástí reálných součástí je uložena staticky neurčitě.

Např. vřetena obráběcích strojů mají často několik ložisek za sebou z důvodů zvýšení tuhosti. Rámy (např u kola, automobilů, obráběcích strojů, apod.) jsou pruty s uzavřenou střednicí namáhané na ohyb a jsou také **vnitřně staticky neurčité.** K pevnostní kontrole takových součástí je nutné zvládnout formulovat deformační podmínky a částečné uvolnění. Také si lze ušetřit práci při využití symetrie.

KONSTRUKTÉR/DESIGNER/ZÁKAZNÍK

Obr 1 konstrukce houpačky. Typicky staticky neurčitě uložený nosník. credit www.honzikuvhrad.cz

1) Určete bezpečnost vůči meznímu stavu pružnosti a natočení prutu v místě podpory.

Dáno: $\sigma_k=1200 MPa, F=100N, c=500mm, průřez 20x20, v=0,5mm.$

2) Určete maximální dovolené zatížení prutu tak, aby byla dodržena bezpečnost vůči meznímu stavu pružnosti $k_k=2$ a zároveň natočení na konci prutu bylo menší než $M_A<10^{-3}$. Dáno: S 230, $\phi d=30mm$, R=3mm, a=400mm,

3) Určete bezpečnost vůči meznímu stavu pružnosti a vypočtěte maximální tlakové napětí v prutu. Dáno , l=800mm, materiál~S350, b=80mm, h=160mm, t=20, $q=\frac{200N}{mm}$, $k=10^4N/mm$..

4) Určete bezpečnost znázorněného prutu vůči MSP a maximální natočení. Dáno: $a=400mm, \delta=0,5mm, S$ 235, $\emptyset d=30mm$.

5) Určete maximální dovolené zatížení prutu tak, aby byla dodržena bezpečnost vůči meznímu stavu pružnosti $k_k=2$. Dáno: materiál 11 520., $\varphi_B=10^{-3}$, a=800mm, b=30mm, h=60mm

6) Určete vliv uložení daného lomeného prutu na bezpečnost vůči MSP. Rozměry: $\emptyset d=20mm, c=500mm, materiál S270, q=2N/mm$. Rádius rohů je r=2mm.

7) Určete bezpečnost vůči meznímu stavu pružnosti $k_k=$?. Rozměry: $\emptyset D=$ 40mm,?, $\emptyset d=36mm,$ a=600mm, F=300N materiál 11 600 . Rádius rohů je r=4mm.

8) Určete potřebný průměr prutů v rámu tak, aby byla dodržena bezpečnost vůči meznímu stavu pružnosti $k_k=1$,8. Rozměry: Ød=?, a=600mm, F=500N materiál 11 370 . rádius rohů je r=8mm.

9) Určete, jaký vnitřní průměr trubek d2 je nutné použit pro zajištění bezpečnosti $k_k =$ 1,5 znázorněné konstrukce, pokud je vyrobena a) jako samostatné nosníky spojené čepy, nebo b) jako svařená konstrukce s rádiusy svarů r=6mm.

Rozměry: Ød2 =?, d1 = 40mm, a = 600mm, q = 20N/mm materiál S 350

Lomený prut namáhaný ohybem

Lomený prut

Obrázek 1 souč, koncentrace napětí pro lomený prut. Převzato z Horníková J a spol. Pružnost a Pevnost (interaktivní opora) CERM, Brno 2003. Dostupné z: : http://beta.fme.vutbr.cz/cpp/texty/p19.pdf

Tyč se zápichem, ohyb 3,0 D/d = 2D/d = 1,5D/d = 1,3D/d = 1,22,5 D/d = 1,1D/d = 1,05ರ 2,0 1,5 0,10 0,15 0,00 0,05 0,20 0,25 0,30 r/d

Obrázek 2 Souč. koncentrace napětí pro prut se zápichem. Převzato z Horníková J a spol. Pružnost a Pevnost (interaktivní opora) CERM, Brno 2003. Dostupné z: http://beta.fme.vutbr.cz/cpp/texty/p19.pdf