Multi-modal Analysis

Ramaseshan Ramachandran

Multimodal learning combines different types of data or sensory channels

INTRODUCTION

- ► We use five senses to perceive
- Mimic human learning processes
- Combine text, video/images, audio to better understand

MULTI-MODAL PERCEPTION

- A thought on good coffee
- Visualize the scene
- Sequence of related words and context
- Describe them using speech
- Exhibit emotions nostalgic
- ▶ Some draw the south Indian coffee on a traditional vessels
- **>** ...

NLP

Word Embedding

- Form dense vectors for every word to capture its semantic nature
- Allows similar words to be close in a feature space
- ► Algorithms HALS, COALS, Word2Vec, GloVe, FastText

WORD2VEC MODEL

SIMILAR WORDS FOR VIRUS

Vocab size	Words in the corpus
637722	222502540

Word	Similarity
virus,	0.889620
viral	0.785719
(herpesvirus)	0.764385
avirus	0.759567
fluav)	0.757418
polio-virus	0.724740
:	:
(vsv;	0.723436
(denv-2)	0.722825
(cowpox)	0.717185
:	:

UNDERSTANDING LONG CONTEXT

- Encoder-Decoder Architectures
 - Solve the challenge of mapping long input sequences of different lengths
- Attention Mechanism: Enables models to focus on relevant information
- Transformer Architecture Advantages
 - Self attention mechanism
 - Perform parallel operations
 - Pretrained and fine-tuning capabilities for a specific content
 - Deep Network Capabilities

CHALLENGES

- Deep learning models operate on numeric data
- ▶ Challenges in converting unstructured inputs to numeric formats
- ► How to combine multi-modal information
- Identifying relationship across the senses both contextual (in text) and spatial (in images)
 - Connecting thoughts, words and images
- ▶ Thought of a dog \rightarrow description in text \rightarrow understand the text \rightarrow translate the meaning into visual representation

EXAMPLES OF MULTI-MODAL LEARNING TASKS

Text-to-Image Generation

- ► Input Chippiparai
- of sighthound from the State of Tamil Nadu in southern India.
 The Chippiparai has typical streamlined sighthound features with long legs and a lean and lithe frame built for speed. The breed is usually white in color, although other colors can be found.

VIDEO BASED TEXT ANALYSIS

Input - A lecture video (video and audio)

Output

- classification of the topic
- Summary of the lecture, a chapter/section of the topic
- Translation to another language,
- Create transcription in another language
- Identification of words for lip synchronization
- **.** . .

ADVANCES IN ARCHITECTURE

- Transformers CLIP, DALL-E for combining modalities
- Idenify embeddings across modalities
- Fusing modalities
- Combining contextual and spatial relationships -Develop embeddings that capture deeper relationships
- Scalable Systems Transformers reached its full potential -What next? Develop embeddings that capture deeper relationships.

COMMON PATTERNS

- Classification
- Regression
- Clustering
- Dimensionality reduction
- Contextual Association

STATE OF THE ART - NLP

content...

CNN: CONVOLUTIONAL NEURAL NETWORK

- ► CNN: A class of deep learning models designed for image and spatial data
- ▶ ResNet: Introduces residual connections to improve training of very deep networks

CNN

Good at extracting the spatial features from data

- Convolutional Layers: Extract features.
- Pooling Layers: Reduce spatial dimensions.
- Fully Connected Layers: Map features to output.

RESNET

STATE OF THE ART - COMPUTER VISION

advances in CV