

10/019823
USPTO Rec'd PCT/PTO 21 DEC 2001

SYN-128.ST25

SEQUENCE LISTING

<110> Zeneca Limited

<120> Insecticidal Proteins from Paecilomyces and Synergistic Combinations Thereof

<130> SYN-128

<140> PCT/GB00/02457

<141> 2000-06-23

<150> GB 9915215.9

<151> 1999-06-29

<150> GB 9930536.9

<151> 1999-12-23

<160> 65

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 33

<212> PRT

<213> Paecilomyces sp.

<220>

<221> VARIANT

<222> 1, 2

<223> Xaa = Any Amino Acid

<221> VARIANT

<222> 1, 2

<223> Xaa = Any Amino Acid

<400> 1

Xaa Xaa Ile Cys Thr Pro Ala Gly Val Lys Cys Pro Ala Ala Leu Pro

1 5 10 15

Cys Cys Pro Gly Leu Arg Cys Ile Gly Gly Val Asn Asn Lys Val Cys

20 25 30

Arg

<210> 2

<211> 33

<212> PRT

<213> Paecilomyces sp.

<400> 2

Gly Lys Ile Cys Thr Pro Ala Gly Val Lys Cys Pro Ala Ala Leu Pro

1 5 10 15

Cys Cys Pro Gly Leu Arg Cys Ile Gly Gly Val Asn Asn Lys Val Cys

20 25 30

Arg

<210> 3
<211> 35
<212> PRT
<213> Paecilomyces sp.

<220>
<221> VARIANT
<222> 1, 2
<223> Xaa = Any Amino Acid

<221> VARIANT
<222> 1, 2
<223> Xaa = Any Amino Acid

<400> 3
Xaa Xaa Gly Lys Ile Cys Thr Pro Ala Gly Val Lys Cys Pro Ala Ala
1 5 10 15
Leu Pro Cys Cys Pro Gly Leu Arg Cys Ile Gly Gly Val Asn Asn Lys
20 25 30
Val Cys Arg
35

<210> 4
<211> 332
<212> DNA
<213> Paecilomyces sp.

<400> 4
ggcaagatct gcactcctgc tggagttgta cgtatttca tccatttcct ycaccactcc 60
tctaacatga agcaacttgc tcttctctct agaaatgtcc cgccgctctt ctttgctgcc 120
ccggacttcg ctgcatacgcc ggcgtcaacg taagtccacca tggatctggc aagcggagacc 180
ataaacatgac gcagtatact aaccctggcc gttatagaac aagggtgtga gtcgacatgt 240
tktacaacctt ctacaaacgc ggcactaat gacaacggtt gtgcggtaa ttcttagtgc 300
gcaacttttg agcgtggat aagtatgctt cg 332

<210> 5
<211> 320
<212> DNA
<213> Paecilomyces sp.

<400> 5
ggaaaaattt gtacgccggc ggggggttgta cgtattctca tccatttcct ccaccactcc 60
tctaacatga agcaacttgc tcttctctct agaaatgtcc cgccgctctt ctttgctgcc 120
ccggacttcg ctgcatacgcc ggcgtcaacg taagtccacca tcctgacacgc acgtgaaggc 180
aatgtactga ccctggccgt tatagaacaa gggttgtgat cgacatgtt tacaacctct 240
acaaaacgcgc gcactaatga caacggtagt gccgtaatt ctatgtcgc aacttttgag 300
cgtggataaa gtatgcttcg 320

<210> 6
<211> 320
<212> DNA
<213> Paecilomyces sp.

<400> 6
ggaaaaatct gtacgccggc ggggggttgta cgtatttca tccatttcct ccaccactcc 60

tctaacatga agcaactctc tcttctctct araaatgtcc cgccgctctt ccttgctgcc 120
ccggacttcg ctgcacatcgcc ggcgtcaacg taagtaccca tcctgacacg acgtgaaggc 180
aatgtactga ccctggccgt tatagaacaa gtttgtagt cgacatgttt tacaacctct 240
acaaacgcgc gcactaatga caacggtagt gccggtaatt ctatgtcgc aacttttag 300
cgtggataa gtatgcttcg 320

<210> 7
<211> 174
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide codon optimised

<400> 7
atgggtggca gcggcagggc tgctctgctg ctggccctgg tggccgtgag cctggccgtg 60
gagatccagg ccggcaagat ctgcaccccg gccggcgtga agtgcggcgc cgcctcccg 120
tgctgcccgg gcctccgctg catcggcggc gtgaacaaca aggtgtggc ctga 174

<210> 8
<211> 174
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide codon optimised

<400> 8
atgggtggca gcggcagggc tgctctgctg ctggccctgg tggccgtgag cctggccgtg 60
gagatccagg ccggtaaaat ttgtaccccg gccggcgtga agtgcggcgc cgcctcccg 120
tgttgtccgg gcctcaggtg tattgggtgt gtgaataata aagtgtgtcg ctga 174

<210> 9
<211> 363
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic sequence containing intron sequence

<400> 9
atgggtggca gcggcagggc tgctctgctg ctggccctgg tggccgtgag cctggccgtg 60
gagatccagg ccggcaagat ctgcactct gctggagtt tttgtttctg cttctacctt 120
tgatatatataataatata tcattaatata gtagtaataat aatatttcaa atatttttt 180
caaaaataaaaa gaatgttagta tatagcaatt gctttctgt agtttataag tgtgtatatt 240
ttaatttctaa actttctaa tatatgacca aaacatggtg atgttttagaa atgtcccgcg 300
gctcttcctt gctgccccgg acttcgctgc atcggcggcg tcaacaacaa ggttgcccgg 360
taa 363

<210> 10
<211> 369
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic sequence

<400> 10
atgggtggca gcggcagggc tgctctgctg ctggccctgg tggccgtgag cctggccgtg 60
gagatccagg cctcctacgg caagatctgc actcctgctg gagttgttg ttctgcttc 120
tacctttat atatatataa taattatcat taattatgtaa taatataata tttcaaataat 180
tttttcaaa ataaaagaat gtatgtatata gcaattgctt ttctgttagtt tataagtgtg 240
tatattttaa ttataactt ttctaatata tgacccaaac atggtgatgt tttagaaatgt 300
cccgccgctc ttccctgctg ccccgactt cgctgcatcg gcggcgtcaa caacaagggtt 360
tgccggtaa 369

<210> 11
<211> 363
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic sequence

<400> 11
atgggtggca gcggcagggc tgctctgctg ctggccctgg tggccgtgag cctggccgtg 60
gagatccagg cctcctacat ctgcactcct gctggagttg ttgtttctg cttctacctt 120
tgatataatat ataataatta tcattaatta gtatgtatataat aatatttcaa atatttttt 180
caaaataaaaaa gaatgttagta tatagcaatt gctttctgt agtttataag tgtgtatatt 240
ttaatttata acttttctaa tatatgacca aaacatggtg atgttttagaa atgtcccgcg 300
gctttccctt gctgccccgg acttcgctgc atcggcggcg tcaacaacaa ggtttgccgg 360
taa 363

<210> 12
<211> 363
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic sequence containing intron and codon optimised

<400> 12
atgggtggca gcggcagggc tgctctgctg ctggccctgg tggccgtgag cctggccgtg 60
gagatccagg cccgcaagat ctgcaccccg gccggcgtgg ttgtttctg cttctacctt 120
tgatataatat ataataatta tcattaatta gtatgtatataat aatatttcaa atatttttt 180
caaaataaaaaa gaatgttagta tatagcaatt gctttctgt agtttataag tgtgtatatt 240
ttaatttata acttttctaa tatatgacca aaacatggtg atgttttagaa gtgccccggcc 300
gccctccctt gctgccccggg cctccgctgc atcggcggcg tgaacaacaa ggtgtgccgc 360
tga 363

<210> 13
<211> 439
<212> DNA
<213> Paecilomyces sp.

<400> 13
tctacttctt catctcacgc catatatctt cccaaaatca cacctcttcc ttaccatgc 60
aaatctccgc cgtcattgtc gcactcttcg ccagcgcgc catggccggc aagatctgca 120
ctccctgctgg agttgtacgt attttcatcc attttctyca ccactccctt aacatgaagc 180
aactttctct tctctctaga aatgtcccgcc ggctcttccct tgctgccccgg gacttcgctg 240
catcggcggc gtcaacgtaa gtcaccatgg atctggcaag cgagaccata acatgacgc 300
gtataactaac cctggccgtt atagaacaag gttgtgagtc gacatgtkt acaacctcta 360
caaacgcgcg cactaatgac aacggtagtg ccggtaattc tagtgtcgca acttttgagc 420

gtgggataag tatgcttcg	439
<210> 14	
<211> 102	
<212> DNA	
<213> Paecilomyces sp.	
<400> 14	
ggcaagatct gcactcctgc tggagttaaa tgtcccgcg ctcttccttg ctgccccgga 60	
cttcgctgca tcggcggcgt caacaacaag gtttgcggtaaa 102	
<210> 15	
<211> 84	
<212> DNA	
<213> Dahlia sp.	
<400> 15	
atggtaataa gatctgttc ttttctgct tttgttctta ttcttttgt tttggctatt 60	
ttagatattt cttctgtttc agga 84	
<210> 16	
<211> 87	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Radish signal sequence	
<400> 16	
atggctaagt ttgcttctat tattgctctt ttgtttgctg cacttgtttt gtttgctgca 60	
tttgaagctc caactatggc tgaagct 87	
<210> 17	
<211> 72	
<212> DNA	
<213> Zea mays	
<400> 17	
atgggtggca gcggcagggc tgctctgctg ctggccctgg tggccgtgag cctggccgtg 60	
gagatccagg cc 72	
<210> 18	
<211> 90	
<212> DNA	
<213> Nicotiana sp.	
<400> 18	
atgggatttg ttctctttc acaattgcct tcatttcttc ttgtctctac acttctctta 60	
ttccttagtaa tatcccactc ttgccgtgcc 90	
<210> 19	
<211> 51	
<212> DNA	
<213> Paecilomyces sp.	
<400> 19	
atgcaaatct ccgcgcgtcat tgtcgactc ttcgccagcg ccgccatggc c 51	

<210> 20
<211> 28
<212> PRT
<213> Dahlia sp.

<400> 20
Met Val Asn Arg Ser Val Ala Phe Ser Ala Phe Val Leu Ile Leu Phe
1 5 10 15
Val Leu Ala Ile Ser Asp Ile Ala Ser Val Ser Gly
20 25

<210> 21
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Radish protein target sequence

<400> 21
Met Ala Lys Phe Ala Ser Ile Ile Ala Leu Leu Phe Ala Ala Leu Val
1 5 10 15
Leu Phe Ala Ala Phe Glu Ala Pro Thr Met Val Glu Ala
20 25

<210> 22
<211> 24
<212> PRT
<213> Zea Mays

<400> 22
Met Gly Gly Ser Gly Arg Ala Ala Leu Leu Leu Ala Leu Val Ala Val
1 5 10 15
Ser Leu Ala Val Glu Ile Gln Ala
20

<210> 23
<211> 30
<212> PRT
<213> Nicotiana sp.

<400> 23
Met Gly Phe Val Leu Phe Ser Gln Leu Pro Ser Phe Leu Leu Val Ser
1 5 10 15
Thr Leu Leu Leu Phe Leu Val Ile Ser His Ser Cys Arg Ala
20 25 30

<210> 24
<211> 17
<212> PRT
<213> Paecilomyces sp.

<400> 24

Met Gln Ile Ser Ala Val Ile Val Ala Leu Phe Ala Ser Ala Ala Met
 1 5 10 15
 Ala

<210> 25
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<400> 25
tcgggctcgc atgaattcgc ggccgcattt tttttttttt tttt 44

<210> 26
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<400> 26
tcgggctcgc atgaattcgc 19

<210> 27
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<400> 27
atgaattcgc ggccgcattt 18

<210> 28
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<400> 28
tcgggctcgc atgaattcgc g 21

<210> 29
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<400> 29 ctcgcatgaa ttcgcggccg c	21
<210> 30 <211> 17 <212> RNA <213> Artificial Sequence	
<220> <223> Primers	
<221> misc_feature <222> 9, 1 $\bar{2}$, 15 <223> n = A,T,C or G	
<221> misc_feature <222> 9, 1 $\bar{2}$, 15 <223> n = A,T,C or G	
<400> 30 athtgyacnc cngcngg	17
<210> 31 <211> 20 <212> RNA <213> Artificial Sequence	
<220> <223> Primers	
<221> misc_feature <222> 9, 1 $\bar{2}$, 15, 18 <223> n = A,T,C or G	
<221> misc_feature <222> 9, 1 $\bar{2}$, 15, 18 <223> n = A,T,C or G	
<400> 31 athtgyacnc cngcnggngt	20
<210> 32 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primers	
<221> misc_feature <222> 3, 6 $\bar{1}$, 9, 12, 15 <223> n = A,T,C or G	
<221> misc_feature <222> 3, 6 $\bar{1}$, 9, 12, 15 <223> n = A,T,C or G	

<400> 32 acnccngcng gngtnaa	17
<210> 33 <211> 17 <212> RNA <213> Artificial Sequence	
<220> <223> Primers	
<221> misc_feature <222> 3, 1 ² , 15 <223> n = A,T,C or G	
<221> misc_feature <222> 3, 1 ² , 15 <223> n = A,T,C or G	
<400> 33 ccntgytgyc cnggnyt	17
<210> 34 <211> 16 <212> RNA <213> Artificial Sequence	
<220> <223> Primers	
<221> misc_feature <222> 2, 1 ⁴ <223> n = A,T,C or G	
<221> misc_feature <222> 2, 1 ⁴ <223> n = A,T,C or G	
<400> 34 tnaartgyat hggngg	16
<210> 35 <211> 20 <212> RNA <213> Artificial Sequence	
<220> <223> Primers	
<221> misc_feature <222> 3, 6 ⁻ , 18 <223> n = A,T,C or G	
<221> misc_feature <222> 3, 6 ⁻ , 18 <223> n = A,T,C or G	

<400> 35 ggngtnaaya ayaargtntg	20
<210> 36 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primers	
<221> misc_feature <222> 12, 15, 18, 21, 24 <223> n = inosine	
<400> 36 aarathtgta cnccngcngg ngttnaa	26
<210> 37 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primers	
<221> misc_feature <222> 3, 6, 9, 12, 21, 24 <223> n = inosine	
<400> 37 ccngcnggng tnaartgycc ngcngc	26
<210> 38 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primers	
<221> misc_feature <222> 6, 9, 12, 15, 18 <223> n = inosine	
<400> 38 tgcgcngcng cnytnccntg ytgycc	26
<210> 39 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primers	
<221> misc_feature	

```

<222> 9, 12, 15
<223> n = inosine

<400> 39
tgyathggng gngtnaayaa yaargt 26

<210> 40
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<400> 40
taaatgtccc gcggctcttc c 21

<210> 41
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<400> 41
cggtctttcc ttgctgcccc g 21

<210> 42
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<400> 42
tgctgccccg gacttcgctg c 21

<210> 43
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<221> misc_feature
<222> 23, 24, 25, 26, 27
<223> n = A,T,C or G

<221> misc_feature
<222> 23, 24, 25, 26, 27
<223> n = A,T,C or G

<400> 43
ggtttaatta cccaagttt agnnnnn 27

```

```

<210> 44
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<400> 44
ctcaaacttg ggtaattaaa cc                                22

<210> 45
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<400> 45
ggttaattt cccaaagg                                         18

<210> 46
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<400> 46
taattaccctt agtttagg                                         18

<210> 47
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<400> 47
ggttaattt cccaaaggttt ag                                22

<210> 48
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primers

<221> misc_feature
<222> 3, 15, 18, 21
<223> n = inosine

<400> 48

```

canacyttrt trttnacncc ncc	23
<210> 49	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primers	
<400> 49	
atgcagcga g t c c g g g g c a g	21
<210> 50	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primers	
<400> 50	
g g g g c a g c a a g g a a g a g c c g c	21
<210> 51	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primers	
<400> 51	
a a g a g c c g c g g a c a t t a a c	21
<210> 52	
<211> 49	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primers	
<400> 52	
a g t t a a t g t c c c g c g g c t c t t g c t g c c c g g a c t t c g c t g c a t c	49
<210> 53	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primers	
<400> 53	
g a t g c a g c g a a g t c c g g g	18

<210> 54
<211> 718
<212> PRT
<213> Artificial Sequence

<220>
<223> PROTEIN cry1Ial Embl. Accession No. X62821

<221> VARIANT
<222> 602
<223> Xaa = Any Amino Acid

<221> VARIANT
<222> 602
<223> Xaa = Any Amino Acid

<400> 54

Met	Lys	Leu	Lys	Asn	Gln	Asp	Lys	His	Gln	Ser	Phe	Ser	Ser	Asn	Ala
1				5				10						15	
Lys	Val	Asp	Lys	Ile	Ser	Thr	Asp	Ser	Leu	Lys	Asn	Glu	Thr	Asp	Ile
	20							25					30		
Glu	Leu	Gln	Asn	Ile	Asn	His	Glu	Asp	Cys	Leu	Lys	Met	Ser	Glu	Tyr
	35						40					45			
Glu	Asn	Val	Glu	Pro	Phe	Val	Ser	Ala	Ser	Thr	Ile	Gln	Thr	Gly	Ile
	50					55					60				
Gly	Ile	Ala	Gly	Lys	Ile	Leu	Gly	Thr	Leu	Gly	Val	Pro	Phe	Ala	Gly
	65					70			75			80			
Gln	Val	Ala	Ser	Leu	Tyr	Ser	Phe	Ile	Leu	Gly	Glu	Leu	Trp	Pro	Lys
	85						90					95			
Gly	Lys	Asn	Gln	Trp	Glu	Ile	Phe	Met	Glu	His	Val	Glu	Glu	Ile	Ile
	100						105					110			
Asn	Gln	Ile	Ser	Thr	Tyr	Ala	Arg	Asn	Lys	Ala	Leu	Thr	Asp	Leu	
	115					120					125				
Lys	Gly	Leu	Gly	Asp	Ala	Leu	Ala	Val	Tyr	His	Asp	Ser	Leu	Glu	Ser
	130					135					140				
Trp	Val	Gly	Asn	Arg	Asn	Asn	Thr	Arg	Ala	Arg	Ser	Val	Val	Lys	Ser
	145					150			155			160			
Gln	Tyr	Ile	Ala	Leu	Glu	Leu	Met	Phe	Val	Gln	Lys	Leu	Pro	Ser	Phe
		165					170			175					
Ala	Val	Ser	Gly	Glu	Glu	Val	Pro	Leu	Leu	Pro	Ile	Tyr	Ala	Gln	Ala
		180					185				190				
Ala	Asn	Leu	His	Leu	Leu	Leu	Leu	Arg	Asp	Ala	Ser	Ile	Phe	Gly	Lys
		195					200					205			
Glu	Trp	Gly	Leu	Ser	Ser	Ser	Glu	Ile	Ser	Thr	Phe	Tyr	Asn	Arg	Gln
	210					215				220					
Val	Glu	Arg	Ala	Gly	Asp	Tyr	Ser	Tyr	His	Cys	Val	Lys	Trp	Tyr	Ser
	225					230			235			240			
Thr	Gly	Leu	Asn	Asn	Leu	Arg	Gly	Thr	Asn	Ala	Glu	Ser	Trp	Val	Arg
		245					250					255			
Tyr	Asn	Gln	Phe	Arg	Arg	Asp	Met	Thr	Leu	Met	Val	Leu	Asp	Leu	Val
		260					265					270			
Ala	Leu	Phe	Pro	Ser	Tyr	Asp	Thr	Gln	Met	Tyr	Pro	Ile	Lys	Thr	Thr
		275					280					285			
Ala	Gln	Leu	Thr	Arg	Glu	Val	Tyr	Thr	Asp	Ala	Ile	Gly	Thr	Val	His
		290				295					300				
Pro	His	Pro	Ser	Phe	Thr	Ser	Thr	Thr	Trp	Tyr	Asn	Asn	Ala	Pro	
	305					310				315			320		

Ser Phe Ser Ala Ile Glu Ala Ala Val Val Arg Asn Pro His Leu Leu
 325 330 335
 Asp Phe Leu Glu Gln Val Thr Ile Tyr Ser Leu Leu Ser Arg Trp Ser
 340 345 350
 Asn Thr Gln Tyr Met Asn Met Trp Gly Gly His Lys Leu Glu Phe Arg
 355 360 365
 Thr Ile Gly Gly Thr Leu Asn Ile Ser Thr Gln Gly Ser Thr Asn Thr
 370 375 380
 Ser Ile Asn Pro Val Thr Leu Pro Phe Thr Ser Arg Asp Val Tyr Arg
 385 390 395 400
 Thr Glu Ser Leu Ala Gly Leu Asn Leu Phe Leu Thr Gln Pro Val Asn
 405 410 415
 Val Pro Arg Val Asp Phe His Trp Lys Phe Val Thr His Pro Ile Ala
 420 425 430
 Ser Asp Asn Phe Tyr Tyr Pro Gly Tyr Ala Gly Ile Gly Thr Gln Leu
 435 440 445
 Gln Asp Ser Glu Asn Glu Leu Pro Pro Glu Ala Thr Gly Gln Pro Asn
 450 455 460
 Tyr Glu Ser Tyr Ser His Arg Leu Ser His Ile Gly Leu Ile Ser Ala
 465 470 475 480
 Ser His Val Lys Ala Leu Val Tyr Ser Trp Thr His Arg Ser Ala Asp
 485 490 495
 Arg Thr Asn Thr Ile Glu Pro Asn Ser Ile Thr Gln Ile Pro Leu Val
 500 505 510
 Lys Ala Phe Asn Leu Ser Ser Gly Ala Ala Val Val Arg Gly Pro Gly
 515 520 525
 Phe Thr Gly Gly Asp Ile Leu Arg Arg Thr Asn Thr Gly Thr Phe Gly
 530 535 540
 Asp Ile Arg Val Asn Ile Asn Pro Pro Phe Ala Gln Arg Tyr Arg Val
 545 550 555 560
 Arg Ile Arg Tyr Ala Ser Thr Thr Asp Leu Gln Phe His Thr Ser Ile
 565 570 575
 Asn Gly Lys Ala Ile Asn Gln Gly Asn Phe Ser Ala Thr Met Asn Arg
 580 585 590
 Gly Glu Asp Leu Asp Tyr Lys Thr Phe Xaa Thr Val Gly Phe Thr Thr
 595 600 605
 Pro Phe Ser Leu Leu Asp Val Gln Ser Thr Phe Thr Ile Gly Ala Trp
 610 615 620
 Asn Phe Ser Ser Gly Asn Glu Val Tyr Ile Asp Arg Ile Glu Phe Val
 625 630 635 640
 Pro Val Glu Val Thr Tyr Glu Ala Glu Tyr Asp Phe Glu Lys Ala Gln
 645 650 655
 Glu Lys Val Thr Ala Leu Phe Thr Ser Thr Asn Pro Arg Gly Leu Lys
 660 665 670
 Thr Asp Val Lys Asp Tyr His Ile Asp Gln Val Ser Asn Leu Val Glu
 675 680 685
 Ser Leu Ser Asp Glu Phe Tyr Leu Asp Glu Lys Arg Glu Leu Phe Glu
 690 695 700
 Ile Val Lys Tyr Ala Lys Gln Leu His Ile Glu Arg Asn Met
 705 710 715

<210> 55
 <211> 719
 <212> PRT
 <213> Artificial Sequence

<220>

<223> PROTEIN cry1Ia2 Embl. Accession No. M98544

<400> 55

Met Lys Leu Lys Asn Gln Asp Lys His Gln Ser Phe Ser Ser Asn Ala
 1 5 10 15
 Lys Val Asp Lys Ile Ser Thr Asp Ser Leu Lys Asn Glu Thr Asp Ile
 20 25 30
 Glu Leu Gln Asn Ile Asn His Glu Asp Cys Leu Lys Met Ser Glu Tyr
 35 40 45
 Glu Asn Val Glu Pro Phe Val Ser Ala Ser Thr Ile Gln Thr Gly Ile
 50 55 60
 Gly Ile Ala Gly Lys Ile Leu Gly Thr Leu Gly Val Pro Phe Ala Gly
 65 70 75 80
 Gln Val Ala Ser Leu Tyr Ser Phe Ile Leu Gly Glu Leu Trp Pro Lys
 85 90 95
 Gly Lys Asn Gln Trp Glu Ile Phe Met Glu His Val Glu Glu Ile Ile
 100 105 110
 Asn Gln Lys Ile Ser Thr Tyr Ala Arg Asn Lys Ala Leu Thr Asp Leu
 115 120 125
 Lys Gly Leu Gly Asp Ala Leu Ala Val Tyr His Asp Ser Leu Glu Ser
 130 135 140
 Trp Val Gly Asn Arg Asn Asn Thr Arg Ala Arg Ser Val Val Lys Ser
 145 150 155 160
 Gln Tyr Ile Ala Leu Glu Leu Met Phe Val Gln Lys Leu Pro Ser Phe
 165 170 175
 Ala Val Ser Gly Glu Glu Val Pro Leu Leu Pro Ile Tyr Ala Gln Ala
 180 185 190
 Ala Asn Leu His Leu Leu Leu Arg Asp Ala Ser Ile Phe Gly Lys
 195 200 205
 Glu Trp Gly Leu Ser Ser Ser Glu Ile Ser Thr Phe Tyr Asn Arg Gln
 210 215 220
 Val Glu Arg Ala Gly Asp Tyr Ser Asp His Cys Val Lys Trp Tyr Ser
 225 230 235 240
 Thr Gly Leu Asn Asn Leu Arg Gly Thr Asn Ala Glu Ser Trp Val Arg
 245 250 255
 Tyr Asn Gln Phe Arg Arg Asp Met Thr Leu Met Val Leu Asp Leu Val
 260 265 270
 Ala Leu Phe Pro Ser Tyr Asp Thr Gln Met Tyr Pro Ile Lys Thr Thr
 275 280 285
 Ala Gln Leu Thr Arg Glu Val Tyr Thr Asp Ala Ile Gly Thr Val His
 290 295 300
 Pro His Pro Ser Phe Thr Ser Thr Trp Tyr Asn Asn Ala Pro
 305 310 315 320
 Ser Phe Ser Ala Ile Glu Ala Ala Val Val Arg Asn Pro His Leu Leu
 325 330 335
 Asp Phe Leu Glu Gln Val Thr Ile Tyr Ser Leu Leu Ser Arg Trp Ser
 340 345 350
 Asn Thr Gln Tyr Met Asn Met Trp Gly Gly His Lys Leu Glu Phe Arg
 355 360 365
 Thr Ile Gly Gly Thr Leu Asn Ile Ser Thr Gln Gly Ser Thr Asn Thr
 370 375 380
 Ser Ile Asn Pro Val Thr Leu Pro Phe Thr Ser Arg Asp Val Tyr Arg
 385 390 395 400
 Thr Glu Ser Leu Ala Gly Leu Asn Leu Phe Leu Thr Gln Pro Val Asn
 405 410 415
 Gly Val Pro Arg Val Asp Phe His Trp Lys Phe Val Thr His Pro Ile

SYN-128.ST25

420 425 430
Ala Ser Asp Asn Phe Tyr Tyr Pro Gly Tyr Ala Gly Ile Gly Thr Gln
435 440 445