Laboratory of Data Science Project

Presentato da: Giuseppe Mirko Milazzo Francesco Santucciu

Road-map of contents

- 1. Datasets presentation
- 2. Data wrangling and data cleaning
- 3. Loading into Database

4. SSIS

5. Data Cube Creation

- 6. Queries MDX
- 7. Data visualization

Datasets 1. presentation

Dataset	Dimension	Description
Tennis.csv	186073 rows 49 columns	Datasets containing the description of each match
countries.csv	124 rows 3 columns	Dataset containing the IOC code of the country, the name and the continent
country_list.csv	233 rows 6 columns	Dataset containing the name of the country and the speaking language
male_players.csv	55208 rows 2 columns	List containing first name and last name of all male players
female_players.csv	46172 rows 2 columns	List containing first name and last name of all female players

2. Data wrangling and data cleaning

Data wrangling

Table	Primary keys
Tournament	Tourney_ID

Table	Primary keys
Date	Tourney_date

Table	Primary keys
Match	{ tourney_ID, match_number }

Table	Primary keys
Geography	{ winner_IOC, loser_IOC }

Data wrangling

Transform functions	Features created/trasformed
Transform_player	{ "byear", "sex" }
Transform_geography	{ "continent", "language" }
Transform_match	{ "match_id" }
Transform_date	{ "year", "month", "day", "quarter" }

Missing Values

Attributes	Percentage	Cleaning method
"Hand"	0.33%	Imputation with the mode
"Winner"/"loser_rank_points"	Winner → 7,65% Loser → 15,80%	Simulation of a normal distribution of "winner"/"loser_rank_points" of the player for each tourney
"Winner"/"loser_rank"	Winner 7,64% Loser 15,79%	Random forest regression as input the "winner"/"loser_rank_points"
"Byear"	20.93%	"Dropping" rows with value '?'
"Surface"	1.28%	Imputation with the mode
"Score"	0.09%	Imputazione con la moda
(20 Attributi con missing values >= 50%)		Dropping of the attribute

ISO COUNTRY CODE	ISO LANGUAGE
"SGP" (Singapore)	"cmn" (Mandarino)
"DEU"Germania	"de" (Tedesco)
"GRC" (Grecia)	"el" (Hellenic)
"UNK"(Kosovo)	"al" (Albanese)
"MNE" (Montenegro)	"mo" (montenegrino)
"NLD"(olanda)	"nl" (olandese)
"NGA"(nigeria)	"en" (inglese)
"PHL" (filippine)	"tl" (tagalog)
"TRI" (Trinidad del Tobago)	"en" (inglese)
"POC" (Pacific Ocean Countries)	"unknown"

The missing and/or incorrect data were compared withe the dataset at the following link:

https://github.com/datasets/country-codes/blob/master/data/country-codes.csv
On the left are the codes of the languages absent in the link and manually added

country by country

3. Loading into Database

The function "load_csv" takes as parameters:

- The csv file
- The connection and the name of the table in the DB By doing so, it is possible to generalize the SQL command for insertion.

When it is in the header:

Through the "get_header" function, we become aware of which attributes to insert into the table and through "get_sql_params" we determine how many values need to be inserted. This allows us to create a parametrized SQL command.

When it is not in the header:

it takes the row, splits the values, and inserts them into the database table.

4. SSIS

For every country, the players ordered by number of matches won.

Processo 1 Connection to the table "match" 2 Grouping by "winner_id" with counting 3 Performing a join with the "player" table to obtain the country and the name of the player 4 Sorting by country and by count 5 Output as flat file

Assignment 1

For each year, list the player that participated in the most age mismatches.

1 Connection to the table "match" 2 Join with the table "player" to obtain the "byear" 3 Derivation of the column related to the age difference and selection of matches with a difference grater than or equal to 6 4 Transformation of the pair "winner_id" and "loser_id" in one unique column"player_id" 5 Join with tourney and date to obtain the year 6 Grouping by year, player and count 7 Sorting by year and by counting

Assignment 2

Calculate for each player the total number of spectators that he performed in front of

1 Connection to the table "match" 2 Transformation of the pair "winner_id" and "loser_id" in one column "player_id" 3 Performing a "join" with the table "tournament" to obtain the number of spectators 4 Grouping by player using as a measure the sum of the spectators count

5. Data Cube Creation

Dimensione	Gerarchia	Composizione gerarchia
Player	Geography	Continent -> Country_IOC -> Player_ID
Tourney	DayMonthQuarterYear	Year -> The quarter -> The month -> Date_ID
Tourney	YearTournament	Tourney_name -> Tourney_ID

6. Queries MDX

The formula "wrt_previous_year" was obtained through the following proportion:

 $loser_rank_points_{t-1}: 100 = loser_rank_points_t: x$

Because it was necessary the previous year, we exploited the hierarchy "DayMonthQuarterYear" to obtain it through the "LAG" function

```
-- Q2 For each tournament show the total winner rank points in percentage with respect
-- to the total winner rank points of the corresponding year of the tournament.

WITH MEMBER grand_total_tourney AS

([Tourney].[YearTournament].PARENT, [Measures].[Winner Rank Points])

MEMBER perc AS

([Measures].[Winner Rank Points] / grand_total_tourney), FORMAT_STRING = "percent"

SELECT {[Measures].[Winner Rank Points], grand_total_tourney, perc} ON COLUMNS,
 ([Tourney].[Year].[Year], [Tourney].[YearTournament].[Tourney Id]) ON ROWS

FROM [Group 30_tennis];
```

Through the hierarchy
"YearTournment" we were able to
distinguish different yearly editions of
that tourney and viceversa

In this way we were able to compute the total "winner_rank_points" of all the edition of that tourney and finally to obtain the percentage of that editions of the tourney with respect to all of its editions

Inserting "player_id" into the hierarchy "geography" we were able to scale it to obtain the continent of origin of that player

By summing all the "winner_rank_points" of matches from the players's continent of origin across all years, and dividing it by the number of matches played, we computed the average "rank_points"

7. Data visualization

Assignment 4

Winner Rank Points per Country loc

Loser Rank Points per Country loc

Winner Rank Points per Continent

Loser Rank Points per Continent

Assignment 5

Match Count per Year

Grazie dell attenzione!