Theoretical Computer Science

Tutorial - week 4

February 11, 2021

nvoboriz

Agenda

- ► Recap
- State Transition Table
- Operations on FSA
 - Intersection
 - Union
 - Difference
 - Complement
- Examples

► What is syntax?

- ► What is syntax?
- ► What is semantics?

- ► What is syntax?
- ► What is semantics?
- ► What is closure?

- ► What is syntax?
- What is semantics?
- ▶ What is closure? Examples

FSA: formally

Example of a complete FSA

```
\begin{array}{ll} \textit{M} = \langle \\ \{q_0,q_1\}, & \text{set of states} \\ \{0,1\}, & \text{input alphabet} \\ \{((q_0,0),q_0),((q_0,1),q_1), \\ & ((q_1,0),q_0),((q_1,1),q_1)\}, & \text{total transition function} \\ q_0, & \text{initial state} \\ \{q_1\} & \text{set of final states} \\ \rangle \end{array}
```

Another representation of a complete FSA

Graphical Representation — State Transition Diagram

Another representation of a complete FSA

Graphical Representation — State Transition Diagram

Graphical Representation — State Transition Table

$$egin{array}{c|cccc} & \delta(\mathsf{q},0) & \delta(\mathsf{q},1) \ \hline
ightarrow q_0 & q_0 & q_1 \ ^*q_1 & q_0 & q_1 \ \hline \end{array}$$

Another representation of a complete FSA

Graphical Representation — State Transition Diagram

Graphical Representation — State Transition Table

$$\begin{array}{c|cccc}
 & 0 & 1 \\
\hline
 \rightarrow q_0 & q_0 & q_1 \\
 & q_1 & q_0 & q_1
\end{array}$$

State Transition Table: Example

Given an FSA as a State Transition Diagram, build a State Transition Table

State Transition Table: Example

Given an FSA as a State Transition Diagram, build a State Transition Table

State Transition Table

$$egin{array}{c|c} &\delta(q,a) &\delta(q,b) \\hline q_0 & \qq_1 & \qq_2 & \end{array}$$

State Transition Table: Example cont.

Given a complete FSA ...

Operations

Suppose L_1 and L_2 are both languages over the alphabet A. If $x \in A^*$, then knowing whether $x \in L_1$ and whether $x \in L_2$ is enough to determine whether $x \in L_1 \cup L_2$.

Operations

Suppose L_1 and L_2 are both languages over the alphabet A. If $x \in A^*$, then knowing whether $x \in L_1$ and whether $x \in L_2$ is enough to determine whether $x \in L_1 \cup L_2$.

If we have one algorithm to accept L_1 and another to accept L_2 , how can we formulate an algorithm to accept $L_1 \cup L_2$? (similarly for $L_1 \cap L_2$ and $L_1 \setminus L_2$).

Intersection (Formally)

Suppose $M^1=(Q^1,A,\delta^1,q_0^1,F^1)$ and $M^2=(Q^2,A,\delta^2,q_0^2,F^2)$ are finite automata accepting L_1 and L_2 , respectively. Let M be the complete FSA $M=(Q,A,\delta,q_0,F)$, where

$$Q = Q^1 \times Q^2$$

 $q_0 = (q_0^1, q_0^2)$

the transition function δ is defined by the formula

$$\delta((q,p),a) = (\delta^1(q,a),\delta^2(p,a))$$

for every $q \in Q^1$, every $p \in Q^2$, and every $a \in A$. And the set of final states is defined as

$$F = \{(q, p) \mid q \in F^1 \land p \in F^2\}$$

M accepts the language $L_1 \cap L_2$.

Let M^1 be a complete FSA defined as

$$egin{aligned} M^1 &= \langle \{q_0,q_1\},\{a\},\ &\{((q_0,a),q_1),((q_1,a),q_0)\},\ &q_0,\{q_1\}
angle \end{aligned}$$

... and M^2 be a complete FSA defined as

$$M^2 = \langle \{p_0\}, \{a\}, \{((p_0, a), p_0)\}, p_0, \{p_0\} \rangle$$

Let M^1 be a complete FSA defined as

$$egin{aligned} \mathcal{M}^1 &= \langle \{q_0,q_1\},\{a\},\ &\{((q_0,a),q_1),((q_1,a),q_0)\},\ &q_0,\{q_1\}
angle \end{aligned}$$

and M^2 be a complete FSA defined as

$$M^2 = \langle \{p_0\}, \{a\}, \ \{((p_0, a), p_0)\}, \ p_0, \{p_0\} \rangle$$

then

$$(M^{1} \cap M^{2}) = \langle \{(q_{0}, p_{0}), (q_{1}, p_{0})\}, \{a\},$$

$$\Big\{ \Big(((q_{0}, p_{0}), a), (q_{1}, p_{0}) \Big), \Big(((q_{1}, p_{0}), a), (q_{0}, p_{0}) \Big) \Big\},$$

$$(q_{0}, p_{0}), \{(q_{1}, p_{0})\} \rangle$$

Intersection: What if alphabets differ?

Union (Formally)

Suppose $M^1 = (Q^1, A, \delta^1, q_0^1, F^1)$ and $M^2 = (Q^2, A, \delta^2, q_0^2, F^2)$ are finite automata accepting L_1 and L_2 , respectively. Let M be the complete FSA $M = (Q, A, \delta, q_0, F)$, where

$$Q = Q^1 \times Q^2 \ q_0 = (q_0^1, q_0^2)$$

the transition function δ is defined by the formula

$$\delta((q,p),a) = (\delta^1(q,a),\delta^2(p,a))$$

for every $q \in Q^1$, every $p \in Q^2$, and every $a \in A$. And the set of final states is defined as

$$F = \{(q, p) \mid q \in F_1 \lor p \in F_2\}$$

M accepts the language $L_1 \cup L_2$.

Union: Example 1

Union: Example 2

Union: Example 2

Difference (Formally)

Suppose $M^1=(Q^1,A,\delta^1,q_0^1,F^1)$ and $M^2=(Q^2,A,\delta^2,q_0^2,F^2)$ are finite automata accepting L_1 and L_2 , respectively. Let M be the FSA $M=(Q,A,\delta,q_0,F)$, where

$$Q = Q^1 \times Q^2$$

 $q_0 = (q_0^1, q_0^2)$

the transition function δ is defined by the formula

$$\delta((q,p),a) = (\delta^1(q,a),\delta^2(p,a))$$

for every $q \in Q^1$, every $p \in Q^2$, and every $a \in A$. And the set of final states is defined as

$$F = \{(q, p) \mid q \in F_1 \land p \not\in F_2\}$$

M accepts the language $L_1 \setminus L_2$.

Difference (Example 1 $L_1 \setminus L_2$)

Difference (Example 1 $L_2 \setminus L_1$)

Difference (Example 2)

Difference (Example 2)

Complement

Suppose $M = (Q, A, \delta, q_0, F)$ is a **complete** finite automaton accepting L. A complement M^c is a complete FSA $M^c = (Q, A, \delta, q_0, F^c)$, where the set of final states is defined as

$$F^c = Q \setminus F$$

 M^c accepts the language L^c .

Complement: Example

Let M be an FSA represented graphically as follows:

What would be the complement M^c ?

Complement: Example (M)

Table representation of M

	$\delta(q,a)$	$\delta(q,b)$
$ ightarrow q_0$	q 0	q_1
$q_1 st q_2$	q_2	q_0
$^{*}q_{2}$	<i>q</i> ₃	q_1
q_3	q_3	q 3

Complement: Example (M^c)

Table representation of M^c

	$\delta(q,a)$	$\delta(q,b)$
$ ightarrow^* q_0$	q 0	q_1
$\stackrel{ o^*}{ ightarrow} q_0 \ ^*q_1$	q_2	q_0
q ₂	q ₃	q_1
* q 3	q 3	q 3

Hands-on example: M_1 and M_2

All possible transitions are depicted

Let us remove all the unreachable states...

... and relocate the states to make the diagram more readable

Hands-on example

Table representation of M_1

	$\delta(q,a)$	$\delta(q,b)$
$ ightarrow q_0 \ q_1 \ *q_2 \ q_e$	q_1	q_e
q_1	q_2	q_e
* q 2	q_2	q_2
q_e	q_e	q_e

Table representation of M_2

	$\delta(p,a)$	$\delta(p,b)$
$ ightarrow p_0 \ p_1 \ ^*p_2$	p_1	p_0
p_1	p_2	p_0
$*p_2$	p_2	p_2

Table representation of $M_1 \cap M_2$

	$\delta((qp),a)$	$\delta((qp),b)$
$ ightarrow (q_0p_0)$	(q_1p_1)	$(q_e p_0)$
(q_1p_0)	(q_2p_1)	$(q_e p_0)$
(q_2p_0)	(q_2p_1)	(q_2p_0)
$(q_e p_0)$	$(q_e p_1)$	$(q_e p_0)$
(q_0p_1)	(q_1p_2)	$(q_e p_0)$
(q_1p_1)	(q_2p_2)	$(q_e p_0)$
(q_2p_1)	(q_2p_2)	(q_2p_0)
(q_ep_1)	$(q_e p_2)$	$(q_e p_0)$
(q_0p_2)	(q_1p_2)	$(q_e p_2)$
(q_1p_2)	(q_2p_2)	$(q_e p_2)$
$^*(q_2p_2)$	(q_2p_2)	(q_2p_2)
$(q_e p_2)$	$(q_e p_2)$	$(q_e p_2)$

Let us remove unreachable states

Table representation of $M_1 \cap M_2$

	$\delta((qp),a)$	$\delta((qp),b)$
$ ightarrow (q_0p_0)$	(q_1p_1)	$(q_e p_0)$
(q_ep_0)	$(q_e p_1)$	$(q_e p_0)$
(q_1p_1)	(q_2p_2)	$(q_e p_0)$
(q_ep_1)	$(q_e p_2)$	$(q_e p_0)$
$^{*}(q_{2}p_{2})$	(q_2p_2)	(q_2p_2)
(q_ep_2)	$(q_e p_2)$	$(q_e p_2)$

Table representation of $M_1 \cup M_2$

	$\delta((qp),a)$	$\delta((qp),b)$
$ ightarrow (q_0p_0)$	(q_1p_1)	$(q_e p_0)$
$(q_e p_0)$	$(q_e p_1)$	$(q_e p_0)$
(q_1p_1)	(q_2p_2)	$(q_e p_0)$
(q_ep_1)	$(q_e p_2)$	$(q_e p_0)$
$^{*}(q_{2}p_{2})$	(q_2p_2)	(q_2p_2)
$^*(q_ep_2)$	$(q_e p_2)$	$(q_e p_2)$

Table representation of $M_1 \setminus M_2$

	$\delta((qp),a)$	$\delta((qp),b)$
$ ightarrow (q_0p_0)$	(q_1p_1)	$(q_e p_0)$
$(q_e p_0)$	$(q_e p_1)$	$(q_e p_0)$
(q_1p_1)	(q_2p_2)	$(q_e p_0)$
(q_ep_1)	$(q_e p_2)$	$(q_e p_0)$
(q_2p_2)	(q_2p_2)	(q_2p_2)
$(q_e p_2)$	$(q_e p_2)$	$(q_e p_2)$

Table representation of $M_2 \setminus M_1$

	$\delta((qp),a)$	$\delta((qp),b)$
$ ightarrow (q_0p_0)$	(q_1p_1)	$(q_e p_0)$
$(q_e p_0)$	$(q_e p_1)$	$(q_e p_0)$
(q_1p_1)	(q_2p_2)	$(q_e p_0)$
(q_ep_1)	$(q_e p_2)$	$(q_e p_0)$
(q_2p_2)	(q_2p_2)	(q_2p_2)
$^*(q_ep_2)$	$(q_e p_2)$	$(q_e p_2)$

Wrap up

▶ What have you learnt today?

Wrap up

- ► What have you learnt today?
- ▶ What for this could be useful?