leptospirosis-detection-rf

June 23, 2024

1 Leptospirosis Detection

1.1 Load train dataset

```
[1]: import pandas as pd
    import numpy as np

    train_csv = pd.read_csv('train.csv').drop('ID', axis = 1)
    train_data = pd.DataFrame(train_csv)

C:\Users\Lasani\AppData\Local\Temp\ipykernel_16700\2849540320.py:4:
    DtypeWarning: Columns (494,597,599,600,601,603,604) have mixed types. Specify dtype option on import or set low_memory=False.
    train_csv = pd.read_csv('train.csv').drop('ID', axis = 1)

[2]: '''#Adjusting display options in the console
    pd.set_option('display.max_columns', None)
    pd.set_option('display.max_rows', None)'''
```

[2]: "#Adjusting display options in the console\npd.set_option('display.max_columns', None)\npd.set_option('display.max_rows', None)"

1.2 Explore train data

```
[3]: #Get number of rows and columns train_data.shape
```

[3]: (1387, 805)

```
[4]: #Explore the first few rows of the dataset train_data.head()
```

```
[4]:
                                                    Sex
        Year
              Month
                     Hospital
                                Sample
                                         ICU
                                              OPD
                                                         Age
                                                              Ethnicity
                                                                          Income ... \
     0 2018
                  11
                             7
                                      1
                                           2
                                                 2
                                                      2
                                                          53
                                                                       1
                                                                           35000
                             7
     1 2018
                   1
                                      1
                                           2
                                                 2
                                                      1
                                                          17
                                                                       1
                                                                              99 ...
     2 2018
                   5
                                           2
                                                 2
                             7
                                      1
                                                          47
                                                                           40000 ...
                                                      1
                                                                       1
     3 2018
                   1
                             7
                                      1
                                           2
                                                 2
                                                      1
                                                          21
                                                                       1
                                                                           30000
     4 2016
                             7
                                           2
                                                          99
                                                 1
                                                                               99
```

```
{\tt FU\_L.interrogansserovarMankarsostr.Mankarso}
0
                                                NaN
                                                NaN
1
2
                                                NaN
3
                                                NaN
4
                                                NaN
   FU_L.santarosaiserovarGeorgiastr.LT117
0
1
                                          NaN
2
                                          NaN
3
                                          NaN
                                          {\tt NaN}
4
   FU_L.santarosaiserovarPyrogenesstr.Salinem
0
                                              NaN
1
                                              NaN
2
                                              NaN
3
                                              NaN
                                              NaN
   {\tt FU\_L.interrogansserovarBataviaestr.VanTienan}
0
                                                 NaN
1
                                                 NaN
2
                                                 NaN
3
                                                 NaN
4
                                                 NaN
   FU_L.interrogansserovarAlexistr.616
0
                                       NaN
                                       NaN
1
2
                                       NaN
3
                                       NaN
                                       NaN
   {\tt FU\_L.interrogansserovarAustralisstr.Ballico}
0
                                                NaN
1
                                                NaN
2
                                                NaN
3
                                                NaN
4
                                                NaN
   FU_L.interrogansserovarwolfiistr.3705
                                              FU_L.interrogansserovarWeerasinghe \
0
                                         NaN
                                                                                 NaN
                                         NaN
                                                                                 NaN
1
2
                                         NaN
                                                                                 NaN
```

```
3
                                            NaN
                                                                                       NaN
4
                                            {\tt NaN}
                                                                                       NaN
   FU_Patoc Final
0
         {\tt NaN}
                    2
1
         NaN
                    1
2
         NaN
                    2
3
         NaN
                    2
                    2
         NaN
[5 rows x 805 columns]
train_data.dtypes
```

```
[5]: #Get data types of columns
```

L	[5]: Year	int64	
	Month	int64	
	Hospital	int64	
	Sample	int64	
	ICU	int64	
		•••	
	${\tt FU_L.interrogansserovarAustralisstr.Bal}$	llico float64	
	FU_L.interrogansserovarwolfiistr.3705	float64	
	${\tt FU_L.interrogansserovarWeerasinghe}$	float64	
	FU_Patoc	float64	
	Final	int64	
	Length: 805, dtype: object		

1.3 Handle duplicates

```
[6]: #Check for duplicates
     duplicates = train_data.duplicated().sum()
     print("Number of duplicate rows: ", duplicates)
```

Number of duplicate rows: 82

```
[7]: #Remove duplicates
     train_data = train_data.drop_duplicates()
    print('Records after removing duplicates: ', train_data.shape[0])
```

Records after removing duplicates: 1305

1.4	Drop unnecessary	(repeated)) columns

[8]:

```
train_data.drop(columns = columns_to_drop, inplace = True)
train_data.shape
```

[8]: (1305, 219)

1.5 Replace vague values of numerical columns

```
[9]: #Replace values starting with 'fiel' or 'occ' with 99
train_data = train_data.map(lambda x: 99 if isinstance(x, str) and (x.lower().

startswith('fiel') or x.lower().startswith('occ')) else x)
print(train_data)
```

	Hospital	Sample	ICU	OPD	Sex	Age	Prophylacti	cs Past	treatm	ents \	
0	7	1	2	2	2	53		3		1	
1	7	1	2	2	1	17		2		1	
2	7	1	2	2	1	47		2		1	
3	7	1	2	2	1	21		2		1	
4	7	1	2	1	1	99		2		1	
••	•••			•		•••	•••				
1382	4	2	2	2	1	62		99		99	
1383	7	1	2	2	2	59		2		1	
1384	5	1	2	1	1	56		2		1	
1385	4	2	2	2	1	61		99		99	
1386	8	1	2	2	1	36		2		1	
	Pastantib	oiotics	Chron	icill	ness	5	S.amylase10	S.phosph	nate10	ALP10	\
0		1			2	•••	99		99	99.0	
1		1			2	•••	99		99	99.0	
2		2			2	•••	99		99	99.0	
3		1			2	•••	99		99	99.0	
4		3			99	•••	99		99	99.0	
 1382		 99		•••	 99	•••	 99	•••	99	99.0	
1383		1			2		99		99	99.0	
1384		3			1	•••	99		99	99.0	
1385		99			99	•••	99		99	99.0	
1386		3			2	•••	99		99	99.0	
	WPqPCRDia	gnosis	Urine	qPCRD	iagno	sis	CultureqPCRD	ia Seru	ımqPCRD	iagnosi	s
0		3				99		99		9	9
1		1				3		3		9	9
2		3				3		3		9	9
3		3				3		3		9	9
4		3				3		99			3
••		•••			•••		•••				
1382		3				99		99		9	
1383		3				99		99		9	9

1384		3		99	99	99
1385		3		99	99	99
1386		3		2	99	99
	UFqPCRDiag	Isolate	Final			

	UFqPCRDiag	Isolate	Final
0	99	2	2
1	99	2	1
2	99	2	2
3	99	2	2
4	99	98	2
•••	•••		
1382	99	98	2
1383	99	98	2
1384	99	98	2
1385	99	2	2
1386	3	2	1

[1305 rows x 219 columns]

1.6 Drop missing values of more than 80%

```
[10]: #Convert values called '99' to missing values as in the description
    train_data.replace(99, pd.NA, inplace = True)
    train_data.replace('99', pd.NA, inplace = True)
    print(train_data.head())
```

	Hospital	Sample	ICU	OPD	Sex	Age	Prophylactics	Pasttreatments	\
0	7	1	2	2	2	53	3	1	
1	7	1	2	2	1	17	2	1	
2	7	1	2	2	1	47	2	1	
3	7	1	2	2	1	21	2	1	
4	7	1	2	1	1	<na></na>	2	1	

	Pastantibiotics	Chronicillness	•••	S.amylase10	S.phosphate10	ALP10	\
0	1	2		<na></na>	<na></na>	<na></na>	
1	1	2		<na></na>	<na></na>	<na></na>	
2	2	2		<na></na>	<na></na>	<na></na>	
3	1	2		<na></na>	<na></na>	<na></na>	
4	3	<na></na>		<na></na>	<na></na>	<na></na>	

	${\tt WPqPCRDiagnosis}$	${\tt UrineqPCRDiagnosis}$	${\tt CultureqPCRDia}$	${\tt SerumqPCRDiagnosis}$	\
0	3	<na></na>	<na></na>	<na></na>	
1	1	3	3	<na></na>	
2	3	3	3	<na></na>	
3	3	3	3	<na></na>	
4	3	3	<na></na>	3	

```
UFqPCRDiag Isolate Final
     0
              <NA>
                         2
                         2
                               1
     1
              <NA>
     2
              <NA>
                         2
                               2
                               2
                         2
     3
              <NA>
     4
              <NA>
                        98
                               2
     [5 rows x 219 columns]
[11]: #Identify missing value counts
      missing_counts = train_data.isnull().sum()
      print(missing_counts)
                               0
     Hospital
     Sample
                               0
     ICU
                              20
     OPD
                              20
     Sex
                              67
     CultureqPCRDia
                            1040
     SerumqPCRDiagnosis
                            1023
     UFqPCRDiag
                            1147
     Isolate
                               0
     Final
                               0
     Length: 219, dtype: int64
[12]: #Drop columns with too many missing values
      missing_percentages = missing_counts / len(train_data)
      threshold = 0.85
      columns_to_drop = missing_percentages[missing_percentages > threshold].index
      train_data.drop(columns = columns_to_drop, inplace = True)
      #Verification
```

[12]: (1305, 176)

train_data.shape

1.7 Divide variables into categorical and numerical

```
[13]: #Group variables into categorical and numerical by defining a threshold value_

of or number of unique values in each column

categorical_vars = []

numerical_vars = []

unique_threshold = 12

for column in train_data.columns:

unique_count = train_data[column].nunique()
```

```
categorical_vars.append(column)
          else:
              numerical_vars.append(column)
[14]: #Adjust after manually going through variable data types
      categorical vars.remove('Puscells')
      numerical_vars.append('Puscells')
      print("After manual adjustment:")
      print("Categorical variables:", categorical_vars, "\n")
      print("Numerical variables:", numerical_vars)
     After manual adjustment:
     Categorical variables: ['Hospital', 'Sample', 'ICU', 'OPD', 'Sex',
     'Prophylactics', 'Pasttreatments', 'Pastantibiotics', 'Chronicillness',
     'Possibleexposure', 'Usualdrinkingwatersource', 'Usualbathingwatersource',
     'Sourceofwaterforhousehold', 'Accumilationofrefusal',
     'Availabilityofpublicgarbagecollectionprocedure',
     'HomeStreamrivercanaloranyotherrunningwatersource',
     'WorkplaceStreamrivercanaloranyotherrunningwatersource',
     'Homepondlaketankoranyotherstagnantwatersource',
     'WorkPlacepondlaketankoranyotherstagnantwatersource', 'Homemarshywetland',
     'Workplacemarshywet', 'HomeBushes', 'Workplacebushes', 'Homeforest',
     'Workplaceforest', 'Homeworkingpaddyfield', 'WorkPlaceworkingpaddyfield',
     'Homeabondantpaddyfield', 'Workplaceabondantpaddyfield',
     'Homeotheragricultural', 'workplaceotheragricultural', 'Homeanimalfarm',
     'Workplaceanimalfarm', 'Homegarbageaccumilation', 'Homeblockeddrainage',
     'Homesewer', 'Rathome', 'RatWorkplace', 'RatNeighbourhood', 'Cattlehome',
     'CattleWorkplace', 'Urumeeyahome', 'Urumeeyaworkplace', 'UrimeeyaNeighbourhood',
     'OtherrhodentsHome', 'Marshlandexposure', 'Wetsoilexposure', 'Floodexposure',
     'Forestexposure', 'BushesExposure', 'Otheragriexposure',
     'Naturalrunningwaterexposure', 'Stagnantwaterexposure',
     'Manmaderunningwaterexposure', 'Drainsexposure', 'Paddyfieldexposure',
     'Walkingbarefootoutdoor', 'CattleHandle', 'BuffaloHandle', 'Goathandle',
     'Pighandle', 'Cathandle', 'Doghandle', 'Feveronset', 'Headacheonset',
     'Musclepainonset', 'Cnsuffusiononset', 'Jaundiceonset', 'Skinrashonset',
     'Oliguriaonset', 'Anuriaonset', 'SOBonset', 'Coughonset', 'Haemoptasisonset',
     'Chestpainonset', 'Nauseaonset', 'Vomitingonset', 'Diarrhoeaonset',
     'Bleedingonset', 'Mucosalrashonset', 'Prostrationonset', 'Rigorsonset',
     'Photophobiaonset', 'Chillsonset', 'Muscletendernessonset',
     'Psychoticsymptomsonset', 'Confusiononset', 'Feverad', 'Headachead', 'Chillsad',
     'Rigorsad', 'Musclepainad', 'Muscletendernessad', 'Nauseaad',
     'Vomitingadmission', 'Cnsuffusionad', 'Skinrashad', 'Mucosalrashad',
     'Prostrationad', 'Diarrhoeaad', 'OliguriaAd', 'Anuriaad', 'Jaundicead',
     'Hepatictendernessad', 'Hepatomegalyad', 'Spleenimegalyad', 'Lympadenopathyad',
     'Photophobiaad', 'Neckstiffnessad', 'Psychoticsymptomsad', 'Confusionad',
```

if unique_count <= unique_threshold:</pre>

```
'Coughad', 'Haemoptasisad', 'SOBadd', 'Chestpainad', 'Bleedingad', 'Headache10',
     'Fever10', 'Chills10', 'Rigors10', 'Musclepain10', 'Mustender10', 'Nausea10',
     'Vomiting10', 'Consuf10', 'Skinrash10', 'Mucorash10', 'Prostration10',
     'diarrhea10', 'Oliguria10', 'Anuria10', 'Jaundice10', 'hepatictender10',
     'hepatomegaly10', 'Spleenomegaly10', 'Lymphadenopathy10', 'Photophobia10',
     'Neckstiffness10', 'Confusion10', 'Cough10', 'Haemoptysis10', 'SOB10',
     'Chestpain10', 'Bleeding10', 'Albumin', 'WPqPCRDiagnosis', 'UrineqPCRDiagnosis',
     'CultureqPCRDia', 'SerumqPCRDiagnosis', 'Isolate', 'Final']
     Numerical variables: ['Age', 'PRad', 'SBPadd', 'DBPadd', 'WBCcount', 'Ncount',
     'N', 'Lcount', 'L', 'Plateletcount', 'PCV', 'RBC', 'CRP', 'ESR', 'Redcells',
     'Na', 'K', 'AST', 'ALT', 'T.Bilirubin', 'D.Bilirubin', 'S.creatinine', 'B.urea',
     'ALP', 'Puscells']
[15]: #Adjust data types in numerical columns
      train_data[numerical_vars] = train_data[numerical_vars].apply(pd.to_numeric,_
       ⇔errors = 'coerce')
      #Verify data types
      train_data.dtypes
[15]: Hospital
                             int64
      Sample
                             int64
      ICU
                            object
      OPD
                            object
      Sex
                            object
      UrineqPCRDiagnosis
                            object
      CultureqPCRDia
                            object
                            object
      SerumqPCRDiagnosis
      Isolate
                             int64
      Final
                             int64
     Length: 176, dtype: object
```

1.8 Drop highly correlated numerical columns

```
[16]: #Identify highly correlated numerical columns
    corr_matrix = train_data[numerical_vars].corr()
    #Apply a threshold to get the most correlated ones
    threshold = 0.8
    highly_correlated = corr_matrix.abs() > threshold
    highly_correlated_columns = highly_correlated.any(axis = 0)

#Determine highly correlated pairs
    correlated_pairs = []
    for i in range(len(corr_matrix.columns)):
        for j in range(i + 1, len(corr_matrix.columns)):
```

```
Highly correlated column pairs:
[('SBPadd', 'DBPadd'), ('AST', 'ALT'), ('T.Bilirubin', 'D.Bilirubin')]
```

```
[17]: #Drop one of highly correlated variables from pairs to avoid multicolinearity
    train_data = train_data.drop(columns = ['DBPadd', 'ALT', 'D.Bilirubin'])
    numerical_vars.remove('DBPadd')
    numerical_vars.remove('ALT')
    numerical_vars.remove('D.Bilirubin')

    train_data.shape
```

[17]: (1305, 173)

1.9 Check for outliers through boxplots in numerical data

```
import matplotlib.pyplot as plt
import seaborn as sns

for col in numerical_vars:
    plt.figure(figsize = (4, 1))
    sns.boxplot(x = train_data[col])
    plt.title(f'Box plot of {col}')
    plt.xlabel(col)
    plt.show()

#Detecting heavy outliers in most of the columns
```


Box plot of SBPadd

75 100 125 150 175 200 225

SBPadd

Box plot of T.Bilirubin

Box plot of S.creatinine

Box plot of B.urea

Box plot of ALP

1.10 Impute numerical variables

```
[19]: #With median
for col in numerical_vars:
    if train_data[col].isnull().sum() > 0:
        median_val = train_data[col].median()
        train_data[col].fillna(median_val, inplace = True)
```

1.11 Perform robust scaling on numerical data

```
[20]: from sklearn.preprocessing import RobustScaler

scaler = RobustScaler()
train_data[numerical_vars] = scaler.fit_transform(train_data[numerical_vars])
train_data[numerical_vars] = pd.DataFrame(train_data[numerical_vars], columns = unumerical_vars)
train_data[numerical_vars]
```

```
[20]:
                     PRad
                           SBPadd WBCcount
                                                Ncount
                                                               N
                                                                    Lcount
                 Age
            0.476190
                       8.0
                              10.0
                                    1.670487
                                              4.675926
                                                        1.201724
                                                                  3.878505
      0
           -1.238095
                     -2.0
                               0.0 -1.289398
      1
                                              0.000000
                                                        0.000000
                                                                  0.00000
      2
            0.190476
                      10.0
                             -10.0 0.226361
                                              0.712963
                                                        0.453955
                                                                  0.000000
      3
           -1.047619
                       0.0
                               0.0 -0.744986 -2.925926 -5.645010
                                                                  4.018692
            0.000000
                       0.0
                               0.0 0.000000
                                              0.000000
                                                        0.000000
                                                                  0.000000
      1382 0.904762
                       0.0
                               0.0 0.000000
                                              0.000000
                                                        0.000000 0.000000
      1383 0.761905
                     22.0
                              -6.0 -0.309456
                                              0.000000
                                                        0.000000 0.000000
      1384 0.619048
                       0.0
                               0.0 0.000000
                                              0.000000
                                                        0.000000
                                                                  0.000000
                               0.0 0.000000
      1385
           0.857143
                       0.0
                                              0.000000
                                                        0.000000
                                                                  0.000000
      1386 -0.333333
                       0.0
                              10.0 -0.243553
                                              0.000000
                                                        1.960496 -2.196262
                     Plateletcount
                                      PCV
                                              ESR
                                                  Redcells
                                                              Na
                                                                    K
                                                                       AST
      0
           -0.286085
                          -0.964286 -8.60
                                              0.0
                                                        0.0 -1.0 -0.8
                                                                       5.0
      1
            0.000000
                           0.000000 0.00
                                              0.0
                                                       -1.0 0.0 0.0
                                                                       0.0
```

2	-0.469785	-1.250000 -	-1.70	0.0	0.0 -5.0	0.0	0.0
3	5.834799	-0.821429 -	-1.30	0.0	0.0 0.0	0.0	0.0
4	0.000000	0.000000	0.00	0.0	0.0 0.0	0.0	0.0
	•••		•••		•••		
1382	0.000000	0.000000	0.00	0.0	0.0 0.0	0.0	0.0
1383	0.000000	0.000000	0.00	0.0	0.0 0.0	0.0	0.0
1384	0.00000	0.000000	0.00	0.0	0.0 0.0	0.0	0.0
1385	0.000000	0.000000	0.00	0.0	0.0 0.0	0.0	0.0
1386	-1.271963	-0.964286 -	-0.85 	0.0	0.0 0.0	0.0	0.0
	T.Bilirubin	S.creatinine	e B.urea	ALP	Puscells		
0	25.3	197.0	0 4.2	114.0	0.0		
1	0.0	0.0	0.0	0.0	0.0		
2	0.0	0.0	0.0	0.0	0.0		
3	0.0	0.0	0.0	0.0	0.0		
4	0.0	0.0	0.0	0.0	0.0		
•••	•••						
1382	0.0	0.0	0.0	0.0	0.0		
1383	0.0	0.0	0.0	0.0	0.0		
1384	0.0	0.0	0.0	0.0	0.0		
1385	0.0	0.0	0.0	0.0	0.0		
1386	0.0	0.0	0.0	0.0	0.0		

[1305 rows x 22 columns]

1.12 EDA on numerical data

```
[21]: for column in train_data[numerical_vars]:
    plt.figure(figsize = (4, 1))
    sns.histplot(train_data[column], kde = True)
    plt.title(f'Distribution of {column}')
    plt.show()
```


1.13 Impute categorical variables

0

```
[22]: #With mode
for col in categorical_vars:
    train_data[col].fillna(train_data[col].mode()[0], inplace = True)
```

```
[23]: #Verification
print(train_data.isnull().sum())
```

```
Sample
                        0
ICU
                        0
OPD
                        0
Sex
                        0
UrineqPCRDiagnosis
                        0
{\tt CultureqPCRDia}
                        0
SerumqPCRDiagnosis
                        0
Isolate
                        0
Final
                        0
Length: 173, dtype: int64
```

Hospital

1.14 EDA on categorical data

```
[24]: for column in categorical_vars:
    plt.figure(figsize = (4, 1))
    sns.countplot(x = train_data[column])
    plt.title(f'Distribution of {column}')
    plt.show()
```


Distribution of Availabilityofpublicgarbagecollectionprocedure

 $Distribution\ of\ Home Stream river can alor any other running water source$

HomeStreamrivercanaloranyotherrunningwatersource

Distribution of WorkplaceStreamrivercanaloranyotherrunningwatersource

Work place Stream river can alor any other running water source

Distribution of Homepondlaketankoranyotherstagnantwatersource

Homepondlaketankoranyotherstagnantwatersource

Distribution of WorkPlacepondlaketankoranyotherstagnantwatersource

Work Place pondlaket ankorany other stagnant water source

1.15 Perform SMOTE on 'Final' variable

```
from imblearn.over_sampling import SMOTE
from collections import Counter

#Split train data into X and y
X_train = train_data.drop('Final', axis = 1)
y_train = train_data['Final']

smote = SMOTE(random_state = 42)
X_train, y_train = smote.fit_resample(X_train, y_train)
```

```
print("SMOTE class distribution:", Counter(y_train))
```

SMOTE class distribution: Counter({2: 861, 1: 861})

1.16 Train Random Forest Classifier model

```
[26]: from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(random_state = 42)
    rf.fit(X_train, y_train)
```

[26]: RandomForestClassifier(random_state=42)

1.17 Perform hyperparameter tuning with cross-validation

```
[27]: from sklearn.model_selection import GridSearchCV
      #Define hyperparameters
      param_grid = {
          'n_estimators': [173, 174, 175],
          'max_depth': [22, 23, 24],
          'min_samples_split': [3, 4, 5],
          'min_samples_leaf': [1, 2]
      }
      #Perform GridSearchCV
      grid_search = GridSearchCV(rf, param_grid, cv = 10, n_jobs = -1, scoring = -1
      grid_search.fit(X_train, y_train)
      best_score = grid_search.best_score_
      best_params = grid_search.best_params_
      best_model = grid_search.best_estimator_
      print("Best Score:", best_score)
      print("Best Parameters:", best_params)
```

Best Score: 0.9251713940045704
Best Parameters: {'max_depth': 23, 'min_samples_leaf': 1, 'min_samples_split':
4, 'n_estimators': 174}

1.18 Predict model on train data

```
[28]: y_pred_train = best_model.predict(X_train)
```

1.19 Check accuracy for train data predictions

Accuracy: 0.9814169570267132

Confusion Matrix:

[[829 32] [0 861]]

Classification Report:

	precision	recall	f1-score	support		
1	1.00	0.96	0.98	861		
2	0.96	1.00	0.98	861		
accuracy			0.98	1722		
macro avg	0.98	0.98	0.98	1722		
weighted avg	0.98	0.98	0.98	1722		

1.20 Load test dataset

```
[30]: test_data_whole = pd.read_csv('test.csv').drop('ID', axis = 1)

#Get train dataset categorical columns without 'Final' variable
categorical_vars_filtered = [col for col in categorical_vars if col != 'Final']

#Get columns for test data that are included in train data after preprocessing
test_data = test_data_whole[categorical_vars_filtered + numerical_vars]
print(test_data.shape)
```

(347, 172)

1.21 Preprocess test data into train data format

```
[31]: #Handle duplicates test_data = test_data.drop_duplicates()
```

[32]: #Replace values starting with 'fiel' or 'occ' with 99

test_data = test_data.map(lambda x: 99 if isinstance(x, str) and (x.lower().

startswith('fiel') or x.lower().startswith('occ')) else x)

print(test_data)

	Н	lospi	ital	Sampl	е	ICU	OPD	Sex	Prophylact	ics	Pa	stt	reatme	nts	\	
0			1		1	2	2	1		2				2		
1			1		1	2	2	1		2				1		
2			1		1	2	2	1		1				1		
3			1		1	2	2	2		2				1		
4			1		1	2	1	1		99				99		
			•••			•••			•••							
34	2		8		1	2	2	1		2				1		
34	3		8		1	2	2	1		2				2		
34	4		8		1	2	2	1		2				2		
34	5		8		1	2	2	1		2				2		
34	:6		8		1	1	2	2		2				2		
	P	Pastantibiotics Chronici				icill	ness	Possibleex	posu	re		ESR	Red	cells	\	
0				99				2		_	1		99.0		99	
1				3				2			2		99.0		99	
2				1				2			1		99.0		99	
3				1				2			1		99.0		99	
4				99				99			99		99.0		99	
				•••			•••		•••				•••			
34	2			1				2			1		99.0		99	
34	3			2				2			1		99.0		99	
34	4			2				2			1		99.0		99	
34	5			2				2			1		99.0		12	
34	-6			2				2			1		99.0		99	
		Na	I	K A	ST	T.B	iliru	bin	S.creatinin	e B	.ur	ea	ALP	Pus	cells	
0		99	99.00	99	.0		9	9.0	99.	0	99	.0	99		99	
1		99	99.00	177	.0		9	9.0	88.	4	8	.0	99		99	
2		99	99.00	99	.0		9	9.0	99.	0	99	.0	99		99	
3		99	99.00	99	.0		9	9.0	99.	0	99	.0	99		99	
4		99	99.00	99	.0		9	9.0	99.	0	99	.0	99		99	
	•••		•••	•••		•••				•••						
34	2 1	43	3.40	23	.7			8.2	65.	0	12	.0	99		99	
34		.35	4.0					0.0	161.	0	90		1111		99	
34		.37	3.90					1.0	89.		12		99		99	
34		99	99.00					9.0	99.		99		99		1	
34		41	4.60					4.3	71.			.6	99		99	

[328 rows x 172 columns]

```
[33]: #Convert values called '99' to missing values
      test_data.replace(99, pd.NA, inplace = True)
      test_data.replace('99', pd.NA, inplace = True)
      test_data.isnull().sum()
[33]: Hospital
      Sample
                        0
      ICU
                        7
      OPD
                       7
      Sex
                       17
      T.Bilirubin
                      245
      S.creatinine
                      205
     B.urea
                      214
     ALP
                      265
     Puscells
                      266
     Length: 172, dtype: int64
[34]: #Adjust data types in test data
      test_data[numerical_vars] = test_data[numerical_vars].apply(pd.to_numeric,__
       ⇔errors = 'coerce')
[35]: #Impute numerical variables with median
      for col in numerical_vars:
          if test_data[col].isnull().sum() > 0:
             median val = test data[col].median()
              test_data[col].fillna(median_val, inplace = True)
[36]: #Perform robust scaling on numerical data
      from sklearn.preprocessing import RobustScaler
      scaler = RobustScaler()
      test_data[numerical_vars] = scaler.fit_transform(test_data[numerical_vars])
      test_data[numerical_vars] = pd.DataFrame(test_data[numerical_vars], columns = ___
       →numerical vars)
      test_data[numerical_vars]
[36]:
                Age PRad SBPadd WBCcount
                                                Ncount
                                                                      Lcount \
                                                                N
      0
          0.166667
                     0.0
                              0.0 2.889064 17.862857
                                                         2.879831
                                                                   11.000000
      1
           0.055556
                     0.0
                              0.0 -1.973249 -8.556190 -6.815778 -15.333333
      2
                     0.0
           0.277778
                              0.0 0.000000
                                              0.000000
                                                         0.000000
                                                                    0.000000
      3
          -0.500000
                      0.0
                              0.0 1.117231
                                              8.986667
                                                         3.381831
                                                                   -0.333333
                              0.0 0.000000
                                                         0.000000
      4
           0.000000
                      0.0
                                              0.000000
                                                                    0.000000
      342 -1.055556
                      6.0
                             0.0 2.077105 -7.769524 -18.755004
                                                                   25.666667
      343 1.722222
                            -30.0 0.084972
                                                                   -5.666667
                      2.0
                                              3.196190
                                                         2.878263
      344 -0.500000 -18.0
                              0.0 0.361920
                                              3.900952
                                                         1.665318
                                                                   -6.000000
```

```
0.000000
      345 -0.777778
                     -8.0
                             -10.0 -0.242329
                                                0.000000
                                                                       0.000000
      346 0.44444
                             -40.0 -0.484658
                                                0.262857
                                                           2.985140 -10.666667
                     32.0
                                      PCV
                                               ESR
                     Plateletcount
                                                    Redcells
                                                               Na
                                                                            AST
      0
          -2.442451
                          -5.534884
                                     -0.8
                                               0.0
                                                         0.0
                                                              0.0
                                                                    0.00
                                                                            0.0
                                           ...
           8.526969
                          26.930233
                                     -0.8
                                              0.0
                                                         0.0 0.0 0.00
      1
                                                                          127.0
      2
           0.000000
                           0.000000
                                      0.0
                                              0.0
                                                         0.0 0.0 0.00
                                                                            0.0
                                      2.2
                                              0.0
                                                         0.0 0.0 0.00
      3
          -2.095642
                           5.441860
                                                                            0.0
      4
           0.000000
                           0.000000
                                      0.0
                                              0.0
                                                         0.0 0.0 0.00
                                                                            0.0
                                     ... ...
                                      3.2
                                               0.0
                                                         0.0 8.0 -0.60
      342 -0.726531
                                                                          -26.3
                         -10.186047
      343 -1.487197
                          -9.720930
                                     -4.8
                                               0.0
                                                         0.0 0.0 0.01
                                                                            0.0
                                                                          -20.0
      344 -1.922303
                          -0.790698
                                      2.7
                                              0.0
                                                         0.0 2.0 -0.10
                                              0.0
      345 0.000000
                           0.000000
                                      0.0
                                                        10.0 0.0 0.00
                                                                            3.0
      346 -1.256950
                          -6.558140 -14.0
                                              0.0
                                                         0.0 6.0 0.60
                                                                           33.6
           T.Bilirubin S.creatinine B.urea
                                                        Puscells
                                                   ALP
      0
                   0.0
                                  0.0
                                          0.0
                                                   0.0
                                                             0.0
      1
                   0.0
                                -13.6
                                         -4.0
                                                   0.0
                                                             0.0
                   0.0
      2
                                  0.0
                                           0.0
                                                   0.0
                                                             0.0
      3
                   0.0
                                  0.0
                                           0.0
                                                   0.0
                                                             0.0
      4
                   0.0
                                  0.0
                                          0.0
                                                   0.0
                                                             0.0
                   •••
                                                             0.0
      342
                  -7.0
                                -37.0
                                          0.0
                                                   0.0
      343
                  44.8
                                 59.0
                                         78.0
                                                1030.0
                                                             0.0
      344
                   5.8
                                -13.0
                                          0.0
                                                   0.0
                                                             0.0
                   0.0
                                                             -1.0
      345
                                  0.0
                                          0.0
                                                   0.0
      346
                  19.1
                                -30.5
                                         -6.4
                                                   0.0
                                                             0.0
      [328 rows x 22 columns]
[37]: #Impute categorical variables with mode
      for col in categorical_vars_filtered:
          test_data[col].fillna(test_data[col].mode()[0], inplace = True)
[38]: #Verification
      test_data.isnull().sum()
[38]: Hospital
                       0
      Sample
                       0
      ICU
                       0
      OPD
                       0
      Sex
                       0
      T.Bilirubin
                       0
      S.creatinine
                       0
      B.urea
                       0
```

```
ALP
               0
    Puscells
               0
    Length: 172, dtype: int64
[39]: #Create a new csv after test data preprocessing if needed
    test_data.to_csv('Preprocessed_test_RF.csv', index = False)
    test_data.shape
[39]: (328, 172)
   1.22 Handle column discrepency between train and test data
[40]: #Check if both train and test data have the same columns
    train_Final_dropped = train_data.columns.drop('Final')
    missing_cols_test = set(train_Final_dropped) - set(test_data.columns)
    print("Columns in train but not in test:", missing_cols_test)
   Columns in train but not in test: set()
[41]: #Ensure the column order is the same as in the train data
    test_data = test_data[train_Final_dropped]
   1.23 Predict test data
[42]: | y_pred = best_model.predict(test_data)
    print(y_pred.astype(int))
    2 2 2 2 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 1 1 1 1 1 2 2 1 1 1 2
    2\ 2\ 2\ 2\ 2\ 2\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 2\ 1\ 2\ 2\ 1\ 2\ 2\ 2\ 2\ 2\ 1\ 2\ 1\ 2\ 1
[43]: #Preparing submission file - Logistic Regression
    submission = pd.DataFrame({'ID': range(1, len(y_pred) + 1), 'Final': y_pred})
    submission.to_csv('Predictions_RF.csv', index = False)
```