CSE 015: Discrete Mathematics Homework #9 Solution

Arvind Kumar Lab CSE-015-07L

April 12, 2022

Chapter 4.1

- 1. Question 18: Suppose that a and b are integers, $a \equiv 11 \pmod{19}$, and $b \equiv 3 \pmod{19}$. Find the integer c with $0 \le c \le 18$ such that
 - (a) 18a: $c \equiv 13a \pmod{19}$. $c \equiv 13 \pmod{19}$, which is $c = 143 \pmod{19}$, which results in $c = 10 \pmod{19}$, because 143 is divisible by 19, and we have 10 as the result. So c is 10.
 - (b) 18f: $c \equiv a^3 + 4b^3 \pmod{19}$. $c \equiv (11)^3 + 4(3)^3 \pmod{19}$, 1331 + 108 (mod 19), 1439 (mod 19), which gives us 14 (mod 19), because we have 1439 divided by 19 gives us 75 with 14 as the remainder. So c is 14
- 2. Question 22: Let m be a positive integer. Show that a mod m = b mod m if $a \equiv b \pmod{m}$.
 - (a) 22: By congruent modulo: m divides a and b, then we have a b = mc, a = mc + b, and with modulo on both sides, we have mod $m = (b + mc) \mod m$, which can be rewritten as mod $m = b \mod m + mc$ mod m. We'll end up with mod $m = b \mod m + 0$, which is mod $m = b \mod m$. This is proven to be true.
- 3. Question 38: Find each of these values.
 - (a) 38a: (19² mod 41) mod 9, 19 squared is 361, which with mod 41 would have 33 (mod 41) since 361 / 41 would have 8 with 33 as the remainder. And 33 with mod 9 would give us 3 with the remainder of 6. Hence the solution is 6.
 - (b) 38d: $(21^2 \text{ mod } 15)^3 \text{ mod } 22$, 21 squared is 441, and that divided by 15 is 29 with 6 as the remainder. However, that part of the expression is cubed so it would be $(6)^3 \text{ mod } 22$ or 216 mod 22. 216 divided by 22 is 9, and the result of that is 18, which is the solution.

Chapter 4.2

- 1. Question 26: Use Algorithm 5 to find 11⁶⁴⁴ mod 645.
 - (a) 26: i = 0, $a_0 = 0$; with power = $11^2 \mod 645 = 121 \mod 645 = 121$, $a_1 = 0$; with power = $121^2 \mod 645 = 14641 \mod 645 = 451$, $a_2 = 1$; with power = $451^2 \mod 645 = 203401 \mod 645 = 226$, $a_3 = 0$; with power = $226^2 \mod 645 = 51076 \mod 645 = 121$, $a_4 = 0$; with power = $121^2 \mod 645 = 14641 \mod 645 = 451$, $a_5 = 0$; with power = $451^2 \mod 645 = 203401 \mod 645 = 226$, $a_6 = 0$; with power = $226^2 \mod 645 = 51076 \mod 645 = 121$, $a_7 = 1$; with power = $121^2 \mod 645 = 14641 \mod 645 = 451$, $a_8 = 0$; with power = $451^2 \mod 645 = 203401 \mod 645 = 226$, $a_9 = 1$; with power = $226^2 \mod 645 = 203401 \mod 645 = 226$. We will have 1 being returned. So $11^{644} \mod 645 = 121$, $a_1 = 0$; with power = $a_1 = 121^2 \mod 645 = 121$, $a_2 = 121^2 \mod 645 = 121$, $a_3 = 0$; with power = $a_1 = 121^2 \mod 645 = 121$, $a_2 = 121^2 \mod 645 = 121^2 \mod 645 = 121$, $a_3 = 0$; with power = $a_1 = 121^2 \mod 645 = 121$, $a_2 = 121^2 \mod 645 = 1$

Chapter 4.3

1. Question 4: Find the prime factorization of each of these integers.

- (a) 4e: 289, with prime factorization, we will have 17 x 17, which each can not be simplified further.
- (b) 4f: 899, with prime factorization, we will have 29 x 31, which each can not be simplified further.

2. Question 16: Determine whether the integers in each of these sets are pairwise relatively prime.

- (a) 16c: 25, 41, 49, 64, prime factorization of each: $25 = 5^2$, 41 = 41, $49 = 7^2$, and $64 = 2^6$. The greatest common divisor of each pair is 1, because they do not share any factors except for 1. Hence, the integers in this set are pairwise relatively prime.
- (b) 16d: 17, 18, 19, 23, prime factorization of each: 17 = 17, $18 = 2 \times 3^2$, 19 = 19, and 23 = 23. The greatest common divisor of each pair is 1, because there are no factors being shared except for 1. Hence, the integers in this set are pairwise relatively prime.