SYMMETRIC MATRICES AND QUADRATIC FORMS

If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

PROOF Let \mathbf{v}_1 and \mathbf{v}_2 be eigenvectors that correspond to distinct eigenvalues, say, λ_1 and λ_2 . To show that $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$, compute

$$\lambda_1 \mathbf{v}_1 \cdot \mathbf{v}_2 = (\lambda_1 \mathbf{v}_1)^T \mathbf{v}_2 = (A \mathbf{v}_1)^T \mathbf{v}_2 = (\mathbf{v}_1^T A^T) \mathbf{v}_2 = \mathbf{v}_1^T (A \mathbf{v}_2) = \mathbf{v}_1^T (\lambda_2 \mathbf{v}_2)$$
$$= \lambda_2 \mathbf{v}_1^T \mathbf{v}_2 = \lambda_2 \mathbf{v}_1 \cdot \mathbf{v}_2$$

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$$

An n* n matrix A is said to be **orthogonally diagonalizable if there** are an orthogonal matrix P and a diagonal matrix D such that

$$A = PDP^{T} = PDP^{-1}$$

An n* n matrix A is said to be **orthogonally diagonalizable if there** are an orthogonal matrix P and a diagonal matrix D such that

$$A = PDP^{T} = PDP^{-1}$$

Such a diagonalization requires n linearly independent and orthonormal eigenvectors. When is this possible?

An n* n matrix A is said to be **orthogonally diagonalizable if there** are an orthogonal matrix P and a diagonal matrix D such that

$$A = PDP^{T} = PDP^{-1}$$

Such a diagonalization requires n linearly independent and orthonormal eigenvectors. When is this possible?

$$A^{T} = (PDP^{T})^{T} = P^{TT}D^{T}P^{T} = PDP^{T} = A$$

An n* n matrix A is said to be **orthogonally diagonalizable if there** are an orthogonal matrix P and a diagonal matrix D such that

$$A = PDP^{T} = PDP^{-1}$$

Such a diagonalization requires n linearly independent and orthonormal eigenvectors. When is this possible?

$$A^T = (PDP^T)^T = P^{TT}D^TP^T = PDP^T = A$$

An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

EXAMPLE 2 If possible, diagonalize the matrix $A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$.

EXAMPLE 2 If possible, diagonalize the matrix $A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$.

$$0 = -\lambda^3 + 17\lambda^2 - 90\lambda + 144 = -(\lambda - 8)(\lambda - 6)(\lambda - 3)$$

$$\lambda = 8$$
: $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$; $\lambda = 6$: $\mathbf{v}_2 = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$; $\lambda = 3$: $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

EXAMPLE 2 If possible, diagonalize the matrix $A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$.

$$0 = -\lambda^3 + 17\lambda^2 - 90\lambda + 144 = -(\lambda - 8)(\lambda - 6)(\lambda - 3)$$

$$\lambda = 8$$
: $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$; $\lambda = 6$: $\mathbf{v}_2 = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$; $\lambda = 3$: $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

$$\mathbf{u}_{1} = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, \quad \mathbf{u}_{2} = \begin{bmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{bmatrix}, \quad \mathbf{u}_{3} = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$$

$$P = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}, \quad D = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

EXAMPLE 3 Orthogonally diagonalize the matrix $A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$, whose

characteristic equation is

$$0 = -\lambda^3 + 12\lambda^2 - 21\lambda - 98 = -(\lambda - 7)^2(\lambda + 2)$$

EXAMPLE 3 Orthogonally diagonalize the matrix $A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$, whose

characteristic equation is

$$0 = -\lambda^3 + 12\lambda^2 - 21\lambda - 98 = -(\lambda - 7)^2(\lambda + 2)$$

$$\lambda = 7$$
: $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1/2 \\ 1 \\ 0 \end{bmatrix}$; $\lambda = -2$: $\mathbf{v}_3 = \begin{bmatrix} -1 \\ -1/2 \\ 1 \end{bmatrix}$

EXAMPLE 3 Orthogonally diagonalize the matrix $A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$, whose characteristic equation is

$$0 = -\lambda^3 + 12\lambda^2 - 21\lambda - 98 = -(\lambda - 7)^2(\lambda + 2)$$

$$\lambda = 7$$
: $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1/2 \\ 1 \\ 0 \end{bmatrix}$; $\lambda = -2$: $\mathbf{v}_3 = \begin{bmatrix} -1 \\ -1/2 \\ 1 \end{bmatrix}$

$$\mathbf{u}_{1} = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}, \quad \mathbf{u}_{2} = \begin{bmatrix} -1/\sqrt{18} \\ 4/\sqrt{18} \\ 1/\sqrt{18} \end{bmatrix} \qquad \mathbf{u}_{3} = \frac{1}{\|2\mathbf{v}_{3}\|} 2\mathbf{v}_{3} = \frac{1}{3} \begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix}$$

$$P = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{18} & -2/3 \\ 0 & 4/\sqrt{18} & -1/3 \\ 1/\sqrt{2} & 1/\sqrt{18} & 2/3 \end{bmatrix}, \quad D = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

The set of eigenvalues of a matrix A is sometimes called the *spectrum* of A

The Spectral Theorem for Symmetric Matrices

An $n \times n$ symmetric matrix A has the following properties:

- a. A has n real eigenvalues, counting multiplicities.
- b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
- c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
- d. A is orthogonally diagonalizable.

Spectral Decomposition

spectral decomposition of A

$$A = PDP^{T} = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & 0 & \mathbf{u}_1^T \\ & \ddots & & \vdots \\ 0 & & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^T \\ \vdots \\ \mathbf{u}_n^T \end{bmatrix}$$

Spectral Decomposition

spectral decomposition of A

Final decomposition of A
$$A = PDP^{T} = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^T \\ \vdots \\ \mathbf{u}_n^T \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 \mathbf{u}_1 & \cdots & \lambda_n \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^T \\ \vdots \\ \mathbf{u}_n^T \end{bmatrix}$$

Spectral Decomposition

spectral decomposition of A

$$A = PDP^{T} = \begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_{1}\mathbf{u}_{1} & \cdots & \lambda_{n}\mathbf{u}_{n} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{bmatrix}$$

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$$

an $n \times n$ matrix of rank 1

QUADRATIC FORM

Quadratic form

A quadratic form on \mathbb{R}^n is a function Q defined on \mathbb{R}^n whose value at a vector \mathbf{x} in \mathbb{R}^n can be computed by an expression of the form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, where A is an $n \times n$ symmetric matrix.

$$Q(\mathbf{x}) = \mathbf{x}^T I \mathbf{x} = \|\mathbf{x}\|^2$$

Change of Variable in a Quadratic Form

$$\mathbf{x} = P\mathbf{y}, \quad \mathbf{y} = P^{-1}\mathbf{x}$$

$$\mathbf{x}^T A \mathbf{x} = (P \mathbf{y})^T A (P \mathbf{y}) = \mathbf{y}^T P^T A P \mathbf{y} = \mathbf{y}^T (P^T A P) \mathbf{y}$$

there is an orthogonal matrix P such that $P^{T}AP$ is a diagonal matrix D

EXAMPLE 1 Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Compute $\mathbf{x}^T A \mathbf{x}$ for the following matrices:

a.
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$

a.
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$
 b. $A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$

EXAMPLE 1 Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Compute $\mathbf{x}^T A \mathbf{x}$ for the following matrices:

a.
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$
 b. $A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$

a.
$$\mathbf{x}^T A \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4x_1 \\ 3x_2 \end{bmatrix} = 4x_1^2 + 3x_2^2.$$

b. There are two -2 entries in A. Watch how they enter the calculations. The (1, 2)-entry in A is in boldface type.

$$\mathbf{x}^{T} A \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3x_1 - 2x_2 \\ -2x_1 + 7x_2 \end{bmatrix}$$

$$= x_1 (3x_1 - 2x_2) + x_2 (-2x_1 + 7x_2)$$

$$= 3x_1^2 - 2x_1x_2 - 2x_2x_1 + 7x_2^2$$

$$= 3x_1^2 - 4x_1x_2 + 7x_2^2$$

EXAMPLE 4 Make a change of variable that transforms the quadratic form in Example 3 into a quadratic form with no cross-product term.

SOLUTION The matrix of the quadratic form in Example 3 is

$$A = \begin{bmatrix} 1 & -4 \\ -4 & -5 \end{bmatrix}$$

EXAMPLE 4 Make a change of variable that transforms the quadratic form in Example 3 into a quadratic form with no cross-product term.

SOLUTION The matrix of the quadratic form in Example 3 is

$$A = \begin{bmatrix} 1 & -4 \\ -4 & -5 \end{bmatrix}$$

The first step is to orthogonally diagonalize A. Its eigenvalues turn out to be $\lambda = 3$ and $\lambda = -7$. Associated unit eigenvectors are

$$\lambda = 3$$
: $\begin{bmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{bmatrix}$; $\lambda = -7$: $\begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$

$$P = \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}, \qquad D = \begin{bmatrix} 3 & 0 \\ 0 & -7 \end{bmatrix}$$

EXAMPLE 4 Make a change of variable that transforms the quadratic form in Example 3 into a quadratic form with no cross-product term.

SOLUTION The matrix of the quadratic form in Example 3 is

$$A = \begin{bmatrix} 1 & -4 \\ -4 & -5 \end{bmatrix}$$

The first step is to orthogonally diagonalize A. Its eigenvalues turn out to be $\lambda = 3$ and $\lambda = -7$. Associated unit eigenvectors are

$$\lambda = 3: \begin{bmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{bmatrix}; \qquad \lambda = -7: \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$$

$$P = \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}, \qquad D = \begin{bmatrix} 3 & 0 \\ 0 & -7 \end{bmatrix} \qquad x_1^2 - 8x_1x_2 - 5x_2^2 = \mathbf{x}^T A \mathbf{x} = (P\mathbf{y})^T A (P\mathbf{y}) \\ = \mathbf{y}^T P^T A P \mathbf{y} = \mathbf{y}^T D \mathbf{y} \\ = 3y_1^2 - 7y_2^2$$

Quadratic form

The Principal Axes Theorem

Let A be an $n \times n$ symmetric matrix. Then there is an orthogonal change of variable, $\mathbf{x} = P\mathbf{y}$, that transforms the quadratic form $\mathbf{x}^T A \mathbf{x}$ into a quadratic form $\mathbf{y}^T D \mathbf{y}$ with no cross-product term.

Quadratic form

The Principal Axes Theorem

Let A be an $n \times n$ symmetric matrix. Then there is an orthogonal change of variable, $\mathbf{x} = P\mathbf{y}$, that transforms the quadratic form $\mathbf{x}^T A \mathbf{x}$ into a quadratic form $\mathbf{y}^T D \mathbf{y}$ with no cross-product term.

The columns of P in the theorem are called the **principal axes** of the quadratic form $\mathbf{x}_{\tau}A\mathbf{x}$.

Classifying quadratic forms

FIGURE 4 Graphs of quadratic forms.

$$(x_1, x_2, z)$$
 where $z = Q(\mathbf{x})$

Classifying Quadratic Forms

A quadratic form Q is:

- a. **positive definite** if $Q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$,
- b. **negative definite** if $Q(\mathbf{x}) < 0$ for all $\mathbf{x} \neq \mathbf{0}$,
- c. **indefinite** if $Q(\mathbf{x})$ assumes both positive and negative values.

Also, Q is said to be **positive semidefinite** if $Q(\mathbf{x}) \ge 0$ for all \mathbf{x} , and to be **negative semidefinite** if $Q(\mathbf{x}) \le 0$ for all \mathbf{x} .

Classifying Quadratic Forms

Quadratic Forms and Eigenvalues

Let A be an $n \times n$ symmetric matrix. Then a quadratic form $\mathbf{x}^T A \mathbf{x}$ is:

- a. positive definite if and only if the eigenvalues of A are all positive,
- b. negative definite if and only if the eigenvalues of A are all negative, or
- c. indefinite if and only if A has both positive and negative eigenvalues.

Proof

PROOF By the Principal Axes Theorem, there exists an orthogonal change of variable $\mathbf{x} = P\mathbf{y}$ such that

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = \mathbf{y}^T D \mathbf{y} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

positive definite matrix A is a *symmetric* matrix for which the quadratic form **x**_⊤A**x** is positive definite

CONSTRAINED OPTIMIZATION

CONSTRAINED OPTIMIZATION

Engineers, economists, scientists, and mathematicians often need to find the maximum or minimum value of a quadratic form Q(x) for x in some specified set.

$$\|\mathbf{x}\| = 1, \quad \|\mathbf{x}\|^2 = 1, \quad \mathbf{x}^T \mathbf{x} = 1$$

$$x_1^2 + x_2^2 + \dots + x_n^2 = 1$$

CONSTRAINED OPTIMIZATION

Engineers, economists, scientists, and mathematicians often need to find the maximum or minimum value of a quadratic form Q(x) for x in some specified set.

$$\|\mathbf{x}\| = 1, \quad \|\mathbf{x}\|^2 = 1, \quad \mathbf{x}^T \mathbf{x} = 1$$

$$x_1^2 + x_2^2 + \dots + x_n^2 = 1$$

When a quadratic form Q has no cross-product terms, it is easy to find the maximum and minimum of $Q(\mathbf{x})$ for $\mathbf{x}^T\mathbf{x} = 1$.

example

EXAMPLE 1 Find the maximum and minimum values of $Q(\mathbf{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$ subject to the constraint $\mathbf{x}^T\mathbf{x} = 1$.

$$Q(\mathbf{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$$

$$\leq 9x_1^2 + 9x_2^2 + 9x_3^2$$

$$= 9(x_1^2 + x_2^2 + x_3^2)$$

$$= 9$$

example

EXAMPLE 1 Find the maximum and minimum values of $Q(\mathbf{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$ subject to the constraint $\mathbf{x}^T\mathbf{x} = 1$.

$$Q(\mathbf{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$$

$$\leq 9x_1^2 + 9x_2^2 + 9x_3^2$$

$$= 9(x_1^2 + x_2^2 + x_3^2)$$

$$= 9$$

EXAMPLE 1 Find the maximum and minimum values of $Q(\mathbf{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$ subject to the constraint $\mathbf{x}^T\mathbf{x} = 1$.

$$Q(\mathbf{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$$

$$\leq 9x_1^2 + 9x_2^2 + 9x_3^2$$

$$= 9(x_1^2 + x_2^2 + x_3^2)$$

$$= 9$$

$$Q(\mathbf{x}) \ge 3x_1^2 + 3x_2^2 + 3x_3^2 = 3(x_1^2 + x_2^2 + x_3^2) = 3$$

$$m = \min \{ \mathbf{x}^T A \mathbf{x} : ||\mathbf{x}|| = 1 \}, \quad M = \max \{ \mathbf{x}^T A \mathbf{x} : ||\mathbf{x}|| = 1 \}$$

$$m = \min \{ \mathbf{x}^T A \mathbf{x} : ||\mathbf{x}|| = 1 \}, \quad M = \max \{ \mathbf{x}^T A \mathbf{x} : ||\mathbf{x}|| = 1 \}$$

Let A be a symmetric matrix, and define m and M as in (2). Then M is the greatest eigenvalue λ_1 of A and m is the least eigenvalue of A. The value of $\mathbf{x}^T A \mathbf{x}$ is M when \mathbf{x} is a unit eigenvector \mathbf{u}_1 corresponding to M. The value of $\mathbf{x}^T A \mathbf{x}$ is m when \mathbf{x} is a unit eigenvector corresponding to m.

$$m = \min \{ \mathbf{x}^T A \mathbf{x} : ||\mathbf{x}|| = 1 \}, \quad M = \max \{ \mathbf{x}^T A \mathbf{x} : ||\mathbf{x}|| = 1 \}$$

Let A be a symmetric matrix, and define m and M as in (2). Then M is the greatest eigenvalue λ_1 of A and m is the least eigenvalue of A. The value of $\mathbf{x}^T A \mathbf{x}$ is M when \mathbf{x} is a unit eigenvector \mathbf{u}_1 corresponding to M. The value of $\mathbf{x}^T A \mathbf{x}$ is m when \mathbf{x} is a unit eigenvector corresponding to m.

PROOF Orthogonally diagonalize A as PDP^{-1} . We know that $\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T D \mathbf{y}$ when $\mathbf{x} = P \mathbf{y}$ $\|\mathbf{x}\| = \|P \mathbf{y}\| = \|\mathbf{y}\|$ for all \mathbf{y}

To simplify notation, suppose that A is a 3×3 matrix with eigenvalues $a \ge b \ge c$.

$$D = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \qquad \mathbf{y}^T D \mathbf{y} = ay_1^2 + by_2^2 + cy_3^2 \le ay_1^2 + ay_2^2 + ay_3^2$$
$$= a(y_1^2 + y_2^2 + y_3^2)$$
$$= a \|\mathbf{y}\|^2 = a$$

To simplify notation, suppose that A is a 3×3 matrix with eigenvalues $a \ge b \ge c$.

$$D = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \qquad \mathbf{y}^T D \mathbf{y} = ay_1^2 + by_2^2 + cy_3^2 \le ay_1^2 + ay_2^2 + ay_3^2$$
$$= a(y_1^2 + y_2^2 + y_3^2)$$
$$= a||\mathbf{y}||^2 = a$$

Thus $M \le a$, by definition of M. However, $\mathbf{y}^T D \mathbf{y} = a$ when $\mathbf{y} = \mathbf{e}_1 = (1, 0, 0)$ M = a

To simplify notation, suppose that A is a 3×3 matrix with eigenvalues $a \ge b \ge c$.

$$D = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \qquad \mathbf{y}^T D \mathbf{y} = ay_1^2 + by_2^2 + cy_3^2 \le ay_1^2 + ay_2^2 + ay_3^2$$
$$= a(y_1^2 + y_2^2 + y_3^2)$$
$$= a \|\mathbf{y}\|^2 = a$$

Thus $M \le a$, by definition of M. However, $\mathbf{y}^T D \mathbf{y} = a$ when $\mathbf{y} = \mathbf{e}_1 = (1, 0, 0)$ M = a:

$$\mathbf{x} = P\mathbf{e}_1 = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \mathbf{u}_1$$

EXAMPLE 3 Let $A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$. Find the maximum value of the quadratic

 $\begin{bmatrix} 1 & 1 & 4 \end{bmatrix}$ form $\mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$, and find a unit vector at which this maximum value is attained.

EXAMPLE 3 Let
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$
. Find the maximum value of the quadratic

form $\mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$, and find a unit vector at which this maximum value is attained.

$$0 = -\lambda^3 + 10\lambda^2 - 27\lambda + 18 = -(\lambda - 6)(\lambda - 3)(\lambda - 1)$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}. \text{ Set } \mathbf{u}_1 = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}.$$

Let A, λ_1 , and \mathbf{u}_1 be as in Theorem 6. Then the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to the constraints

$$\mathbf{x}^T \mathbf{x} = 1, \quad \mathbf{x}^T \mathbf{u}_1 = 0$$

is the second greatest eigenvalue, λ_2 , and this maximum is attained when **x** is an eigenvector \mathbf{u}_2 corresponding to λ_2 .

Let A, λ_1 , and \mathbf{u}_1 be as in Theorem 6. Then the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to the constraints

$$\mathbf{x}^T\mathbf{x} = 1, \quad \mathbf{x}^T\mathbf{u}_1 = 0$$

is the second greatest eigenvalue, λ_2 , and this maximum is attained when **x** is an eigenvector \mathbf{u}_2 corresponding to λ_2 .

Let A be a symmetric $n \times n$ matrix with an orthogonal diagonalization $A = PDP^{-1}$, where the entries on the diagonal of D are arranged so that $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ and where the columns of P are corresponding unit eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$. Then for $k = 2, \ldots, n$, the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to the constraints

$$\mathbf{x}^T\mathbf{x} = 1, \quad \mathbf{x}^T\mathbf{u}_1 = 0, \quad \dots, \quad \mathbf{x}^T\mathbf{u}_{k-1} = 0$$

is the eigenvalue λ_k , and this maximum is attained at $\mathbf{x} = \mathbf{u}_k$.

SINGULAR VALUE DECOMPOSITION

Introduction

The absolute values of the eigenvalues of a symmetric matrix A measure the amounts that A stretches or shrinks certain vectors (the eigenvectors)

$$||A\mathbf{x}|| = ||\lambda\mathbf{x}|| = |\lambda| \, ||\mathbf{x}|| = |\lambda|$$

Introduction

The absolute values of the eigenvalues of a symmetric matrix A measure the amounts that A stretches or shrinks certain vectors (the eigenvectors)

$$||A\mathbf{x}|| = ||\lambda\mathbf{x}|| = |\lambda| ||\mathbf{x}|| = |\lambda|$$

Example

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}, \qquad \mathbf{X} \mapsto A\mathbf{X}$$

 \mathbf{x} at which the length $||A\mathbf{x}||$ is maximized, and compute this maximum length $||\mathbf{x}|| = 1$

Introduction

The absolute values of the eigenvalues of a symmetric matrix A measure the amounts that A stretches or shrinks certain vectors (the eigenvectors)

$$||A\mathbf{x}|| = ||\lambda\mathbf{x}|| = |\lambda| ||\mathbf{x}|| = |\lambda|$$

Example

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}, \qquad \mathbf{X} \mapsto A\mathbf{X}$$

 \mathbf{x} at which the length $||A\mathbf{x}||$ is maximized, and compute this maximum length $||\mathbf{x}|| = 1$

$$||A\mathbf{x}||^2 = (A\mathbf{x})^T (A\mathbf{x}) = \mathbf{x}^T A^T A \mathbf{x} = \mathbf{x}^T (A^T A) \mathbf{x}$$

the greatest eigenvalue λ_1 of A^TA

$$A^{T}A = \begin{bmatrix} 4 & 8 \\ 11 & 7 \\ 14 & -2 \end{bmatrix} \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} = \begin{bmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{bmatrix} \qquad \lambda_{1} = 360, \lambda_{2} = 90, \text{ and } \lambda_{3} = 0$$

$$\mathbf{v}_1 = \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 2/3 \\ -2/3 \\ 1/3 \end{bmatrix}$$

For $\|\mathbf{x}\| = 1$, the maximum value of $\|A\mathbf{x}\|$ is $\|A\mathbf{v}_1\| = \sqrt{360} = 6\sqrt{10}$.

Let A be an $m \times n$ matrix. Then A^TA is symmetric and can be orthogonally diagonalized. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A^TA , and let $\lambda_1, \ldots, \lambda_n$ be the associated eigenvalues of A^TA . Then, for $1 \le i \le n$,

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$$

Let A be an $m \times n$ matrix. Then A^TA is symmetric and can be orthogonally diagonalized. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A^TA , and let $\lambda_1, \ldots, \lambda_n$ be the associated eigenvalues of A^TA . Then, for $1 \le i \le n$,

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$$

eigenvalues of $A^{T}A$ are all nonnegative

The **singular values** of A are the square roots of the eigenvalues of A^TA , denoted by $\sigma_1, \ldots, \sigma_n$, and they are arranged in decreasing order. That is, $\sigma_i = \sqrt{\lambda_i}$ for $1 \le i \le n$.

Let A be an $m \times n$ matrix. Then A^TA is symmetric and can be orthogonally diagonalized. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A^TA , and let $\lambda_1, \ldots, \lambda_n$ be the associated eigenvalues of A^TA . Then, for $1 \le i \le n$,

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$$

$$\|A\mathbf{v}_i\|^2 = (A\mathbf{v}_i)^T A \mathbf{v}_i = \mathbf{v}_i^T A^T A \mathbf{v}_i$$

$$= \mathbf{v}_i^T (\lambda_i \mathbf{v}_i) \qquad \text{Since } \mathbf{v}_i \text{ is an eigenvector of } A^T A$$

$$= \lambda_i \qquad \text{Since } \mathbf{v}_i \text{ is a unit vector}$$

eigenvalues of $A^{T}A$ are all nonnegative

The **singular values** of A are the square roots of the eigenvalues of A^TA , denoted by $\sigma_1, \ldots, \sigma_n$, and they are arranged in decreasing order. That is, $\sigma_i = \sqrt{\lambda_i}$ for $1 \le i \le n$.

Let A be an $m \times n$ matrix. Then A^TA is symmetric and can be orthogonally diagonalized. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A^TA , and let $\lambda_1, \ldots, \lambda_n$ be the associated eigenvalues of A^TA . Then, for $1 \le i \le n$,

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$$

$$\|A\mathbf{v}_i\|^2 = (A\mathbf{v}_i)^T A \mathbf{v}_i = \mathbf{v}_i^T A^T A \mathbf{v}_i$$

$$= \mathbf{v}_i^T (\lambda_i \mathbf{v}_i) \qquad \text{Since } \mathbf{v}_i \text{ is an eigenvector of } A^T A$$

$$= \lambda_i \qquad \text{Since } \mathbf{v}_i \text{ is a unit vector}$$

eigenvalues of $A^{T}A$ are all nonnegative

The **singular values** of A are the square roots of the eigenvalues of A^TA , denoted by $\sigma_1, \ldots, \sigma_n$, and they are arranged in decreasing order. That is, $\sigma_i = \sqrt{\lambda_i}$ for $1 \le i \le n$.

the singular values of A are the lengths of the vectors $A\mathbf{v}_1,\ldots,A\mathbf{v}_n$

Theorem

THEOREM 9

Suppose $\{\mathbf v_1,\ldots,\mathbf v_n\}$ is an orthonormal basis of $\mathbb R^n$ consisting of eigenvectors of $A^T\!A$, arranged so that the corresponding eigenvalues of $A^T\!A$ satisfy $\lambda_1 \geq \cdots \geq \lambda_n$, and suppose A has r nonzero singular values. Then $\{A\mathbf v_1,\ldots,A\mathbf v_r\}$ is an orthogonal basis for Col A, and rank A=r.

Theorem

THEOREM 9

Suppose $\{\mathbf v_1, \dots, \mathbf v_n\}$ is an orthonormal basis of $\mathbb R^n$ consisting of eigenvectors of $A^T\!A$, arranged so that the corresponding eigenvalues of $A^T\!A$ satisfy $\lambda_1 \ge \dots \ge \lambda_n$, and suppose A has r nonzero singular values. Then $\{A\mathbf v_1, \dots, A\mathbf v_r\}$ is an orthogonal basis for Col A, and rank A = r.

$$(A\mathbf{v}_i)^T(A\mathbf{v}_j) = \mathbf{v}_i^T A^T A \mathbf{v}_j = \mathbf{v}_i^T (\lambda_j \mathbf{v}_j) = 0$$

Theorem

THEOREM 9

Suppose $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A^TA , arranged so that the corresponding eigenvalues of A^TA satisfy $\lambda_1 \geq \dots \geq \lambda_n$, and suppose A has r nonzero singular values. Then $\{A\mathbf{v}_1, \dots, A\mathbf{v}_r\}$ is an orthogonal basis for Col A, and rank A = r.

$$(A\mathbf{v}_i)^T(A\mathbf{v}_j) = \mathbf{v}_i^T A^T A \mathbf{v}_j = \mathbf{v}_i^T (\lambda_j \mathbf{v}_j) = 0$$

$$\mathbf{y} = A\mathbf{x}$$
 $\mathbf{x} = c_1\mathbf{v}_1 + \dots + c_n\mathbf{v}_n$

$$\mathbf{y} = A\mathbf{x} = c_1 A\mathbf{v}_1 + \dots + c_r A\mathbf{v}_r + c_{r+1} A\mathbf{v}_{r+1} + \dots + c_n A\mathbf{v}_n$$
$$= c_1 A\mathbf{v}_1 + \dots + c_r A\mathbf{v}_r + 0 + \dots + 0$$

SVD

THEOREM 10

The Singular Value Decomposition

Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ matrix Σ as in (3) for which the diagonal entries in D are the first r singular values of A, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$, and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

$$A = U \Sigma V^T$$

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} - m - r \text{ rows}$$

$$n - r \text{ columns}$$

SVD

THEOREM 10

The Singular Value Decomposition

Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ matrix Σ as in (3) for which the diagonal entries in D are the first r singular values of A, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$, and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

$$A = U \Sigma V^T$$

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} - m - r \text{ rows}$$

$$\frac{1}{n - r} = n - r \text{ columns}$$

matrices U and V are not uniquely determined by A, but the diagonal entries of D are necessarily the singular values of A

columns of U left singular vectors of A columns of V right singular vectors of A

proof

PROOF Let λ_i and \mathbf{v}_i be as in Theorem 9, so that $\{A\mathbf{v}_1, \dots, A\mathbf{v}_r\}$ is an orthogonal basis for Col A. Normalize each $A\mathbf{v}_i$ to obtain an orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$, where

$$\mathbf{u}_i = \frac{1}{\|A\mathbf{v}_i\|} A\mathbf{v}_i = \frac{1}{\sigma_i} A\mathbf{v}_i \qquad A\mathbf{v}_i = \sigma_i \mathbf{u}_i$$

extend $\{\mathbf{u}_1,\ldots,\mathbf{u}_r\}$ to an orthonormal basis $\{\mathbf{u}_1,\ldots,\mathbf{u}_m\}$ of \mathbb{R}^m

$$U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_m]$$
 and $V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]$

$$AV = [A\mathbf{v}_1 \quad \cdots \quad A\mathbf{v}_r \quad \mathbf{0} \quad \cdots \quad \mathbf{0}] = [\sigma_1\mathbf{u}_1 \quad \cdots \quad \sigma_r\mathbf{u}_r \quad \mathbf{0} \quad \cdots \quad \mathbf{0}]$$

proof

$$AV = [A\mathbf{v}_1 \quad \cdots \quad A\mathbf{v}_r \quad \mathbf{0} \quad \cdots \quad \mathbf{0}] = [\sigma_1\mathbf{u}_1 \quad \cdots \quad \sigma_r\mathbf{u}_r \quad \mathbf{0} \quad \cdots \quad \mathbf{0}]$$

$$U\Sigma V^T = AVV^T = A.$$

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} \qquad V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{bmatrix}$$

$$\sigma_1 = 6\sqrt{10}, \quad \sigma_2 = 3\sqrt{10}, \quad \sigma_3 = 0$$

$$D = \begin{bmatrix} 6\sqrt{10} & 0 \\ 0 & 3\sqrt{10} \end{bmatrix}$$

$$D = \begin{bmatrix} 6\sqrt{10} & 0\\ 0 & 3\sqrt{10} \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} \qquad V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{bmatrix}$$

$$\sigma_1 = 6\sqrt{10}, \quad \sigma_2 = 3\sqrt{10}, \quad \sigma_3 = 0$$

$$D = \begin{bmatrix} 6\sqrt{10} & 0 \\ 0 & 3\sqrt{10} \end{bmatrix}$$

$$D = \begin{bmatrix} 6\sqrt{10} & 0\\ 0 & 3\sqrt{10} \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} D & 0 \end{bmatrix} = \begin{bmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} \qquad V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{bmatrix}$$

$$\sigma_1 = 6\sqrt{10}, \quad \sigma_2 = 3\sqrt{10}, \quad \sigma_3 = 0$$

$$D = \begin{bmatrix} 6\sqrt{10} & 0\\ 0 & 3\sqrt{10} \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} D & 0 \end{bmatrix} = \begin{bmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{bmatrix}$$

$$\mathbf{u}_{1} = \frac{1}{\sigma_{1}} A \mathbf{v}_{1} = \frac{1}{6\sqrt{10}} \begin{bmatrix} 18\\ 6 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{10}\\ 1/\sqrt{10} \end{bmatrix}$$

$$\mathbf{u}_{2} = \frac{1}{\sigma_{2}} A \mathbf{v}_{2} = \frac{1}{3\sqrt{10}} \begin{bmatrix} 3\\ -9 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{10}\\ -3/\sqrt{10} \end{bmatrix}$$

$$A = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix} \begin{bmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{bmatrix} \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -1/3 & 2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow \downarrow \downarrow \qquad \qquad \downarrow \downarrow \downarrow$$

Find a singular value decomposition of
$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$$
 $A^TA = \begin{bmatrix} 9 & -9 \\ -9 & 9 \end{bmatrix}$

$$A^T A = \begin{bmatrix} 9 & -9 \\ -9 & 9 \end{bmatrix}$$

eigenvalues of $A^{T}A$ are 18 and 0

$$\sigma_1 = \sqrt{18} = 3\sqrt{2}$$
 and $\sigma_2 = 0$

$$\mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

Find a singular value decomposition of
$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$$
 $A^TA = \begin{bmatrix} 9 & -9 \\ -9 & 9 \end{bmatrix}$

eigenvalues of $A^{T}A$ are 18 and 0

$$\sigma_1 = \sqrt{18} = 3\sqrt{2}$$
 and $\sigma_2 = 0$

$$\mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \qquad V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Find a singular value decomposition of
$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$$
 $A^TA = \begin{bmatrix} 9 & -9 \\ -9 & 9 \end{bmatrix}$

eigenvalues of $A^{T}A$ are 18 and 0

$$\sigma_1 = \sqrt{18} = 3\sqrt{2}$$
 and $\sigma_2 = 0$

$$\mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

$$\mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

$$A\mathbf{v}_{1} = \begin{bmatrix} 2/\sqrt{2} \\ -4/\sqrt{2} \\ 4/\sqrt{2} \end{bmatrix}, \quad A\mathbf{v}_{2} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{u}_{1} = \frac{1}{3\sqrt{2}}A\mathbf{v}_{1} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \qquad V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$\mathbf{u}_1 = \frac{1}{3\sqrt{2}}A\mathbf{v}_1 = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}$$

$$\mathbf{u}_1^T \mathbf{x} = 0 \qquad x_1 - 2x_2 + 2x_3 = 0$$

$$\mathbf{u}_1^T \mathbf{x} = 0 \qquad x_1 - 2x_2 + 2x_3 = 0 \\ \mathbf{w}_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{w}_2 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

example

$$\mathbf{u}_1^T \mathbf{x} = 0 \qquad x_1 - 2x_2 + 2x_3 = 0 \\ \mathbf{w}_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{w}_2 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

Gram-Schmidt
$$\mathbf{u}_2 = \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \\ 0 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -2/\sqrt{45} \\ 4/\sqrt{45} \\ 5/\sqrt{45} \end{bmatrix}$$

APPLICATIONS

SVD for Image Compression

$$A = USV^{T} = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$$

$$A_{k} = \sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T} + \sigma_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{T} + \dots + \sigma_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T}$$

SVD for Image Compression

$$f_{ij}$$
 Where $f_{ij} \equiv f(x_i, y_j)$

Redundancy exists in Images

Size of images

Compression

$$A = USV^{T} = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$$

$$A_{k} = \sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T} + \sigma_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{T} + \dots + \sigma_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T}$$

The total storage for A_k will be

$$k(m+n+1)$$

SVD for Image Compression

$$C_R = m *n/(k (m + n + 1))$$

To measure the quality between original image A and the compressed image Ak, the measurement of Mean Square Error (MSE)

$$MSE = \frac{1}{mn} \sum_{y=1}^{m} \sum_{x=1}^{n} (f_{A}(x, y) - f_{A_{k}}(x, y))$$

C_R MSE

Comp	(Quality)
5.03	108.11
3.35	63.15
2.51	40.39
2.01	27.22
1.68	15.64
1.26	9.07
1	

Face Recognition: PCA (principle component analysis)

- •Assume each face image has $m \times n = d$ pixels
- •an $d \times 1$ column vector xi
- •A training set, D with n number of face images of known individuals forms an $d \times n$ matrix:

$$\mathbf{D} = \begin{pmatrix} & X_1 & X_2 & \cdots & X_d \\ \mathbf{x}_1^T & x_{11} & x_{12} & \cdots & x_{1d} \\ \mathbf{x}_2^T & x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_n^T & x_{n1} & x_{n2} & \cdots & x_{nd} \end{pmatrix}$$

$$\overline{\mathbf{D}} = \mathbf{D} - \mathbf{1} \cdot \boldsymbol{\mu}^T$$

PRINCIPAL COMPONENT ANALYSIS

Best Line Approximation: We will start with r=1, that is, the one-dimensional subspace or line u that best approximates D in terms of the variance of the projected points

Best Line Approximation: We will start with r=1, that is, the one-dimensional subspace or line u that best approximates D in terms of the variance of the projected points

$$\|\mathbf{u}\|^2 = \mathbf{u}^T \mathbf{u} = 1$$

The projection of the centered point $\bar{\mathbf{x}}_i \in \overline{\mathbf{D}}$ on the vector \mathbf{u}

$$\mathbf{x}_i' = \left(\frac{\mathbf{u}^T \bar{\mathbf{x}}_i}{\mathbf{u}^T \mathbf{u}}\right) \mathbf{u} = (\mathbf{u}^T \bar{\mathbf{x}}_i) \mathbf{u} = a_i \mathbf{u}$$

choose the direction u such that the variance of the projected points is maximized

Best Line Approximation: We will start with r = 1, that is, the one-dimensional subspace or line u that best approximates D in terms of the variance of the projected points

$$\|\mathbf{u}\|^2 = \mathbf{u}^T \mathbf{u} = 1$$

The projection of the centered point $\bar{\mathbf{x}}_i \in \overline{\mathbf{D}}$ on the vector \mathbf{u}

$$\mathbf{x}_i' = \left(\frac{\mathbf{u}^T \bar{\mathbf{x}}_i}{\mathbf{u}^T \mathbf{u}}\right) \mathbf{u} = (\mathbf{u}^T \bar{\mathbf{x}}_i) \mathbf{u} = a_i \mathbf{u}$$

choose the direction u such that the variance of the projected points is maximized

$$\sigma_{\mathbf{u}}^{2} = \frac{1}{n} \sum_{i=1}^{n} (a_{i} - \mu_{a})^{2} \qquad \qquad \mu_{a} = \frac{1}{n} \sum_{i=1}^{n} a_{i} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{u}^{T}(\bar{\mathbf{x}}_{i}) = \mathbf{u}^{T} \bar{\boldsymbol{\mu}} = 0$$

$$\sigma_{\mathbf{u}}^{2} = \frac{1}{n} \sum_{i=1}^{n} (a_{i} - \mu_{a})^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^{T} \bar{\mathbf{x}}_{i})^{2} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{u}^{T} (\bar{\mathbf{x}}_{i} \bar{\mathbf{x}}_{i}^{T}) \mathbf{u} = \mathbf{u}^{T} \left(\frac{1}{n} \sum_{i=1}^{n} \bar{\mathbf{x}}_{i} \bar{\mathbf{x}}_{i}^{T} \right) \mathbf{u}$$

$$\sigma_{\mathbf{u}}^2 = \mathbf{u}^T \mathbf{\Sigma} \mathbf{u}$$

$$\sigma_{\mathbf{u}}^{2} = \frac{1}{n} \sum_{i=1}^{n} (a_{i} - \mu_{a})^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^{T} \bar{\mathbf{x}}_{i})^{2} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{u}^{T} (\bar{\mathbf{x}}_{i} \bar{\mathbf{x}}_{i}^{T}) \mathbf{u} = \mathbf{u}^{T} \left(\frac{1}{n} \sum_{i=1}^{n} \bar{\mathbf{x}}_{i} \bar{\mathbf{x}}_{i}^{T} \right) \mathbf{u}$$

$$\sigma_{\mathbf{u}}^2 = \mathbf{u}^T \mathbf{\Sigma} \mathbf{u}$$

where Σ is the sample covariance matrix for the centered data $\bar{\mathbf{D}}$

$$\mathbf{max} \quad \mathbf{u}^T \mathbf{\Sigma} \mathbf{u}$$
$$\mathbf{u}^T \mathbf{u} = 1$$

Minimum Squared Error Approach

direction that maximizes the projected variance is also the one that minimizes the average squared error

$$MSE(\mathbf{u}) = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{\epsilon}_{i}\|^{2} = \frac{1}{n} \sum_{i=1}^{n} \|\bar{\mathbf{x}}_{i} - \mathbf{x}'_{i}\|^{2} = \frac{1}{n} \sum_{i=1}^{n} (\bar{\mathbf{x}}_{i} - \mathbf{x}'_{i})^{T} (\bar{\mathbf{x}}_{i} - \mathbf{x}'_{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} (\|\bar{\mathbf{x}}_{i}\|^{2} - 2\bar{\mathbf{x}}_{i}^{T} \mathbf{x}'_{i} + (\mathbf{x}'_{i})^{T} \mathbf{x}'_{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} (\|\bar{\mathbf{x}}_{i}\|^{2} - 2\bar{\mathbf{x}}_{i}^{T} (\mathbf{u}^{T}\bar{\mathbf{x}}_{i}) \mathbf{u} + ((\mathbf{u}^{T}\bar{\mathbf{x}}_{i}) \mathbf{u})^{T} (\mathbf{u}^{T}\bar{\mathbf{x}}_{i}) \mathbf{u}), \text{ since } \mathbf{x}'_{i} = (\mathbf{u}^{T}\bar{\mathbf{x}}_{i}) \mathbf{u}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (\|\bar{\mathbf{x}}_{i}\|^{2} - 2(\mathbf{u}^{T}\bar{\mathbf{x}}_{i})(\bar{\mathbf{x}}_{i}^{T} \mathbf{u}) + (\mathbf{u}^{T}\bar{\mathbf{x}}_{i})(\bar{\mathbf{x}}_{i}^{T} \mathbf{u}) \mathbf{u}^{T} \mathbf{u})$$

$$= \frac{1}{n} \sum_{i=1}^{n} (\|\bar{\mathbf{x}}_{i}\|^{2} - (\mathbf{u}^{T}\bar{\mathbf{x}}_{i})(\bar{\mathbf{x}}_{i}^{T} \mathbf{u}))$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|\bar{\mathbf{x}}_{i}\|^{2} - \frac{1}{n} \sum_{i=1}^{n} \mathbf{u}^{T} (\bar{\mathbf{x}}_{i}\bar{\mathbf{x}}_{i}^{T}) \mathbf{u}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|\bar{\mathbf{x}}_{i}\|^{2} - \mathbf{u}^{T} \left(\frac{1}{n} \sum_{i=1}^{n} \bar{\mathbf{x}}_{i}\bar{\mathbf{x}}_{i}^{T}\right) \mathbf{u}$$

$$MSE = \sum_{i=1}^{n} \frac{\|\bar{\mathbf{x}}_i\|^2}{n} - \mathbf{u}^T \mathbf{\Sigma} \mathbf{u}$$

$$var(\mathbf{D}) = tr(\mathbf{\Sigma}) = \sum_{i=1}^{d} \sigma_i^2$$

$$MSE(\mathbf{u}) = \text{var}(\mathbf{D}) - \mathbf{u}^T \mathbf{\Sigma} \mathbf{u} = \sum_{i=1}^d \sigma_i^2 - \mathbf{u}^T \mathbf{\Sigma} \mathbf{u}$$

- Best 2-dimensional Approximation
- We already computed the direction with the most variance, namely u1, which is the eigenvector corresponding to the largest eigenvalue λ1
- We now want to find another direction v, which also maximizes the projected variance, but is orthogonal to u1.

- Best 2-dimensional Approximation
- We already computed the direction with the most variance, namely u1, which is the eigenvector corresponding to the largest eigenvalue λ1
- We now want to find another direction v, which also maximizes the projected variance, but is orthogonal to u1.

$$\mathbf{max}. \quad \sigma_{\mathbf{v}}^2 = \mathbf{v}^T \mathbf{\Sigma} \mathbf{v}$$
$$\mathbf{v}^T \mathbf{u}_1 = 0$$
$$\mathbf{v}^T \mathbf{v} = 1$$

second largest eigenvalue of $^{\circ}$, with the second principal component being given by the corresponding eigenvector, that is, $v=u_2$.

Best r-dimensional Approximation

To find the best r-dimensional approximation to D, we compute the eigenvalues of Σ . Because Σ is positive semidefinite, its eigenvalues are non-negative

$$\lambda_1 \geq \lambda_2 \geq \cdots \lambda_r \geq \lambda_{r+1} \cdots \geq \lambda_d \geq 0$$

We select the r largest eigenvalues, and their corresponding eigenvectors to form the best r-dimensional approximation.

PCA (D, r)

```
m{\mu} = rac{1}{n} \sum_{i=1}^{n} m{x}_i // compute mean m{Z} = m{D} - 1 \cdot m{\mu}^T // center the data m{\Sigma} = rac{1}{n} \left( m{Z}^T m{Z} \right) // compute covariance matrix (\lambda_1, \lambda_2, \ldots, \lambda_d) = \text{eigenvalues}(m{\Sigma}) // compute eigenvalues m{U} = \left( m{u}_1 \quad m{u}_2 \quad \cdots \quad m{u}_d \right) = \text{eigenvectors}(m{\Sigma}) // compute eigenvectors m{U}_r = \left( m{u}_1 \quad m{u}_2 \quad \cdots \quad m{u}_r \right) // reduced basis m{A} = \left\{ m{a}_i \mid m{a}_i = m{U}_r^T m{x}_i, \text{for } i = 1, \ldots, n \right\} // reduced dimensionality data
```