Offensive Language Detection in English and Greek

Yi-Chien Lin, Bridget Tyree, David Yi, Levon Haroutunian

Primary task

Subtask A of OffensEval 2019

Binary classification: is an English tweet offensive (OFF) or not offensive (NOT)?

Data: OLID (Offensive Language Identification Dataset)

Total: 14,100 tweets – 9,460 NOT & 4,640 OFF tweets

Tweet	A	В	C
@USER He is so generous with his offers.	NOT	2	_
IM FREEEEE!!!! WORST EXPERIENCE OF MY FUCKING LIFE	OFF	UNT	
@USER Fuk this fat cock sucker	OFF	TIN	IND
@USER Figures! What is wrong with these idiots? Thank God for @USER	OFF	TIN	GRP

Table 1: Four tweets from the OLID dataset, with their labels for each level of the annotation model.

From Zampieri et al., 2019

Adaptation task

Subtask A of OffensEval 2019 with Greek data from OffensEval 2020

Binary classification: is an Greek tweet offensive (OFF) or not offensive (NOT)?

Data: OGTD (Offensive Greek Tweet Dataset)

Total: 10,287 tweets – 7,376 NOT & 2,911 OFF tweets

Greek Παραδέξου το, είσαι αγάμητη εδώ και καιρό...

Translation: Admit it, you've been unfucked for a while now...

From Zampieri et al., 2020

OFF

Overview of Previous Systems: D2

Overview of Previous Systems: D3

Current System (Core Approaches)

Previously: Logistic Regression + GloVe (D2) → BiLSTM + GloVe (D3)

Now:

- Language-specific pre-processing for English and Greek
- BERT-style tokenizer and encoder (mBERT, RoBERTa, XLM-RoBERTa)
- Fine-tuned final classification layer (binary)
- Hybrid training: using data from both languages to train, then evaluating separately for each language
- Ensembling to combine predictions from multiple models

Current System (Architecture)

Pre-processing (Primary Task): English

- Converting tweets into lowercase
- Splitting punctuations
- Removing apostrophes
- Removing hashtags

By the way, I don't agree with your argument. #livid

 \downarrow

by the way, i dont agree with your argument. livid

Pre-processing (Adaptation Task): Greek

- Basic Preprocessing
 - Splitting punctuations
 - Removing apostrophes
 - Removing hashtags
- Removing Diacritics
 - \circ $\dot{\alpha} \rightarrow \alpha$
- Converting unicode data into ASCII characters
 - που → pou
- Lemmatization
 - spaCy
 - Converting words to their base form
 - Example (in English): walks/walked/walking → walk

Additional methods	Validation F1 score	Test F1 Score
N/A	0.825	0.682
Remove diacritics	0.829	0.672
Convert ascii	0.720	0.671
Lemmatize	0.815	0.673
Lemmatize + Remove diacritics	0.822	0.658

Ensembling

Two relatively simple methods for ensembling

Averaging Ensemble: Average the probabilities of each individual model to get the final prediction

Stacked Classifier: Train a Logistic Regression "meta-learner" that's trained on the prediction probabilities of each individual model.

Primary Task (2019): Results

Approach	Dev Macro F1	Test Macro F1
All OFF	N/A	0.220
All NOT	N/A	0.420
D2 Model - Log Regression + GloVe	0.598	N/A
D3 Model - BiLSTM + GloVe	0.729	N/A
D4 Model - RoBERTa (en/gr)	0.790	0.787
D4 Model - XLM-R-Large (en)	0.782	0.809
D4 Averaging Ensemble	0.789	0.808
Best (BERT-base-uncased)	N/A	0.829

Sub-task A		
Team Ranks	F1 Range	
1	0.829	
2	0.815	
3	0.814	
$\sqrt{2}$ 4	0.808	
5	0.807	
6	0.806	
7	0.804	
8	0.803	
9	0.802	
CNN	0.800	

Primary Task (2020): Results

OLID 2020 English Dataset with additional semi-supervised test examples:

<u>train:</u> <u>test:</u>

NOT: 8840 (0.668) **NOT**: 2807 (0.722) **OFF**: 4400 (0.332) **OFF**: 1080 (0.278)

Approach	Validation F1 Score	Test F1 Score
Stacked Ensemble: RoBERTa (en/gr) + XLM-R (en) + XLM-R-Large (en)	N/A	0.9202
RoBERTa (en/gr)	0.790	0.9156
Majority Baseline	N/A	0.4193

#	Team	Score	
1	UHH-LT	0.9204	
2	Galileo	0.9198	
3	Rouges	0.9187	
4	GUIR	0.9166	
5	KS@LTH	0.9162	
6	kungfupanda	0.9151	
7	TysonYU	0.9146	
8	AlexU-BackTranslation-TL	0.9139	
9	SpurthiAH	0.9136	
10	amsqr	0.9135	
11	m20170548	0.9134	
12	Coffee_Latte	0.9132	
13	wac81	0.9129	
14	NLPDove	0.9129	
15	UJNLP	0.9128	
16	ARA	0.9119	
17	Ferryman	0.9115	
18	ALT	0.9114	
19	SINAI	0.9105	

Adaptation Task: Results

Offensive Language Detection In Greek

<u>train:</u> <u>test:</u>

NOT: 6257 (0.716) **NOT**: 988 (0.689) **OFF**: 2486 (0.284) **OFF**: 446 (0.311)

Approach	Validation F1 Score	Test F1 Score
NLPDove (First Place Team)	N/A	0.8522
Greek Stack Classifier: XLM-R-Large (gr) + XLM-R-Large (en/gr)	N/A	0.7015
XLM-R-Large (gr)	0.825	0.6815
Majority Baseline	N/A	0.4202

#	Team	Score	
1	NLPDove	0.8522	
2	Galileo	0.8507	
3	KS@LTH	0.8481	
4	KUISAIL	0.8432	
5	IJS	0.8329	
6	SU-NLP	0.8317	
7	LT@Helsinki	0.8258	
8	FERMI	0.8231	
9	Ferryman	0.8222	
10	INGEOTEC	0.8197	
11	will_go	0.8176	
12	ANDES	0.8153	
13	LIIR	0.8148	

Challenges and Successes

Challenges:

- Tried to do too much for D3
- None of us speak Greek
- Gap between Greek dev and test F1
- Class Imbalance

Successes:

- Scored high enough to achieve rankings of
 - o 2019 English: 4th
 - 2020 English: 2nd
 - o 2020 Greek: 34th
- It ended up being pretty easy to do hybrid training / ensembling

Related Readings

- OffensEval 2019: Zampieri et al. 2019
- Offenseval 2020: Zampieri et al. 2020
- Greek Data (OGTD): Petnis et al. 2020
- BERT: <u>Devlin et al. 2019</u>
- RoBERTa: <u>Liu et al. 2019</u>
- XLM-RoBERTa: <u>Conneau et al. 2020</u>
- Greek Preprocessing References: <u>Athanasiou et al. 2017</u>

Questions?