Semaine n° 23 : du 17 mars au 21 mars

Lundi 17 mars

- Cours à préparer : Chapitre XXII Intégration
 - Partie 7 : Sommes de Riemann; méthode des trapèzes.
 - Partie 8 : Comparaison série-intégrale.
- Exercices à rendre en fin de TD (liste non exhaustive)
 - Feuille d'exercices n° 21 : tous les exercices.
 - Feuille d'exercices n° 22 : exercices 13, 14.

Mardi 18 mars

- Cours à préparer : Chapitre XXIII Dénombrement
 - Partie 1 : Cardinal d'un ensemble fini.
 - Partie 2 : Cardinal d'une réunion, d'un complémentaire, d'un produit cartésien.

Jeudi 20 mars

- Cours à préparer : Chapitre XXIII Dénombrement
 - Partie 2: Cardinal de l'ensemble des applications d'un ensemble fini dans un ensemble fini. p-arrangements d'un ensemble fini, cardinal de l'ensemble des p-arrangements d'un ensemble fini; cardinal du groupe des permutations d'un ensemble fini; p-combinaisons d'un ensemble fini, cardinal de l'ensemble des p-combinaison d'un ensemble fini.
- Exercices à corriger en classe
 - Feuille d'exercices n° 22 : exercices 1, 2, 5, 6, 10, 12.

Vendredi 21 mars

- Cours à préparer : Chapitre XXIV Applications linéaires
 - Partie 1.1: Applications linéaires, endomorphisme, isomorphisme, forme linéaire. Détermination d'une application linéaire par ses restrictions à deux sous-espaces supplémentaires.
 - Partie 1.2 : Opérations sur les applications linéaires.
 - Partie 1.3 : Image directe d'un sous-espace vectoriel par une application linéaire; image réciproque d'un sous-espace vectoriel par une application linéaire; noyau, image d'une application linéaire; caractérisation de l'injectivité par le noyau, de la surjectivité par l'image d'une famille génératrice.

Échauffements

Mardi 18 mars

• On considère dans \mathbb{R}^n une famille de 4 vecteurs linéairement indépendants : (e_1, e_2, e_3, e_4) . Les familles suivantes sont-elles libres?

1)
$$(e_1, 2e_2, e_3)$$
 2) (e_1, e_3) 3) $(e_1, 2e_1 + e_4, e_4)$ 4) $(3e_1 + e_3, e_3, e_2 + e_3)$.

- Cocher toutes les assertions vraies : Soient f et g deux fonctions continues sur [a, b].
 - \square Alors f et g sont bornées sur [a,b].

 - \square Si f(a) = g(a) et f(b) = g(b), alors f = g. \square Si $\int_a^b f(t)g(t) dt = 0$ alors $\forall t \in [a, b], f(t)g(t) = 0$.
 - \square $f \circ g$ est une fonction continue sur [a, b]

Jeudi 20 mars

- Calculer une primitive de $x \mapsto (1+2x)e^{-x}\sin x$.

• Cocher toutes les assertions vraies : Soit
$$f$$
 une fonction de classe \mathscr{C}^{∞} sur \mathbb{R} . $\Box f(2) = f(1) + f'(1) + \frac{1}{2}f''(1) + \int_{1}^{2} \frac{(2-t)^{3}}{3!}f^{(3)}(t) dt$.

- \square Alors pour tout réel x et pour tout entier n, $f(x) = \sum_{k=0}^{n} \frac{x^k}{k!} f^{(k)}(0) + o(x^n)$.
- \square Alors pour tout réel x et pour tout entier n, $\left| f(x-1) f(x) \sum_{k=1}^{n} \frac{1}{k!} f^{(k)}(x) \right| \leqslant \frac{1}{(n+1)!} \sup_{t \in [x-1,x]} \left| f^{(n+1)}(t) \right|$.

Vendredi 21 mars

- Calculer $\int_0^{\pi/2} \cos^5 t \sin^4 t \, dt$.
- Cocher toutes les assertions vraies : $\square \text{ Pour tout entier } n \text{ non nul}, \int_0^1 \frac{x^n}{(1+x)^2} \mathrm{d}x \leqslant \frac{1}{n+1}.$
 - $\Box \text{ Comme } \lim_{n \to +\infty} \frac{1}{n+1} = 0, \text{ donc par encadrement } \lim_{n \to +\infty} \int_0^1 \frac{x^n}{(1+x)^2} \mathrm{d}x = 0.$

2

 \square Les fonctions $x \longmapsto \frac{x^n}{n}$ et $x \longmapsto \frac{x}{(1+x)}$ sont de classe \mathscr{C}^1 sur [0,1].

Donc
$$\int_0^1 \frac{x^{n+1}}{1+x} dx = \left[\frac{x^{n+1}}{n(x+1)} \right]_0^1 - \int_0^1 \frac{x^n}{n(1+x)^2} dx.$$

- $\square \text{ Alors } \forall n \in \mathbb{N}^*, \ 0 \leqslant (-1)^{n+1} \int_0^1 \frac{x^n}{(1+x)^2} dx \leqslant \frac{(-1)^{n+1}}{n+1}.$ $\square \text{ Alors } \int_0^1 \frac{x^n}{(1+x)^2} dx \int_0^1 \frac{x^{n+1}}{(1+x)^2} dx \leqslant \frac{1}{n+1} \frac{1}{n+2}.$