walmart

January 23, 2022

1 Name: Sunil Pradhan

- 1.1 Project: 4
- 1.2 Project Name: Retail Analysis with Walmart Data

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

```
[2]: #importing and displaying the dataset
wal=pd.read_csv("Walmart_Store_sales.csv")
wal.head()
```

```
Store
                                          Holiday_Flag
[2]:
                     Date Weekly_Sales
                                                        Temperature Fuel_Price
                             1643690.90
                                                                           2.572
            1
              05-02-2010
                                                               42.31
                                                                           2.548
     1
            1
              12-02-2010
                             1641957.44
                                                     1
                                                               38.51
     2
            1 19-02-2010
                             1611968.17
                                                     0
                                                               39.93
                                                                           2.514
               26-02-2010
                                                                           2.561
     3
            1
                             1409727.59
                                                     0
                                                               46.63
            1 05-03-2010
                             1554806.68
                                                     0
                                                               46.50
                                                                           2.625
```

```
CPI Unemployment
0 211.096358 8.106
1 211.242170 8.106
2 211.289143 8.106
3 211.319643 8.106
4 211.350143 8.106
```

[3]: #checing info details wal.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6435 entries, 0 to 6434
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Store	6435 non-null	int64

```
1
         Date
                       6435 non-null
                                       object
     2
         Weekly_Sales 6435 non-null
                                       float64
     3
         Holiday_Flag
                      6435 non-null
                                       int64
     4
         Temperature
                       6435 non-null
                                       float64
         Fuel Price
     5
                       6435 non-null
                                       float64
                       6435 non-null
     6
         CPI
                                       float64
     7
         Unemployment 6435 non-null
                                       float64
    dtypes: float64(5), int64(2), object(1)
    memory usage: 402.3+ KB
[4]: #converting the data type of date column
    wal.Date=pd.to_datetime(wal['Date'])
[5]: wal.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 6435 entries, 0 to 6434
    Data columns (total 8 columns):
         Column
                      Non-Null Count Dtype
                       _____
     0
         Store
                       6435 non-null
                                       int64
     1
         Date
                       6435 non-null
                                       datetime64[ns]
     2
         Weekly_Sales 6435 non-null
                                       float64
         Holiday_Flag 6435 non-null int64
     3
                                       float64
     4
         Temperature
                       6435 non-null
     5
         Fuel_Price
                       6435 non-null
                                       float64
     6
         CPI
                       6435 non-null
                                       float64
         Unemployment 6435 non-null
                                       float64
    dtypes: datetime64[ns](1), float64(5), int64(2)
    memory usage: 402.3 KB
[6]: #checking the shape of the dataset
    wal.shape
[6]: (6435, 8)
[7]: #checking for mising values
    wal.isnull().sum()
[7]: Store
                    0
    Date
    Weekly_Sales
    Holiday_Flag
                    0
    Temperature
                    0
    Fuel_Price
                    0
    CPI
                    0
    Unemployment
```

dtype: int64

```
[8]: #finding the store has maximum sale

total_sales=pd.DataFrame(wal.groupby('Store')['Weekly_Sales'].sum().

→sort_values())

total_sales
```

```
[8]:
            Weekly_Sales
     Store
     33
            3.716022e+07
            4.329309e+07
     44
     5
            4.547569e+07
     36
            5.341221e+07
     38
            5.515963e+07
            5.758674e+07
     30
            6.271689e+07
     37
            7.420274e+07
            7.425243e+07
     16
     29
            7.714155e+07
     9
            7.778922e+07
     42
            7.956575e+07
     7
            8.159828e+07
     15
            8.913368e+07
     43
            9.056544e+07
     25
            1.010612e+08
     21
            1.081179e+08
     45
            1.123953e+08
     17
            1.277821e+08
            1.299512e+08
     35
            1.315207e+08
     40
            1.378703e+08
     34
            1.382498e+08
     26
            1.434164e+08
     12
            1.442872e+08
     22
            1.470756e+08
     18
            1.551147e+08
     32
            1.668192e+08
     41
            1.813419e+08
            1.892637e+08
            1.939628e+08
     11
     24
            1.940160e+08
     23
            1.987506e+08
     31
            1.996139e+08
     19
            2.066349e+08
            2.074455e+08
     1
            2.224028e+08
```

```
6
             2.237561e+08
      27
             2.538559e+08
      10
             2.716177e+08
             2.753824e+08
             2.865177e+08
      14
             2.889999e+08
      4
             2.995440e+08
      20
             3.013978e+08
 [9]: print("Store",total_sales.head(1).index[0], "has minimum sales value of: {0:..
       →2f}",float(total sales.head(1)['Weekly Sales']))
     Store 33 has minimum sales value of: {0:.2f} 37160221.96
[10]: print("Store", total_sales.tail(1).index[0], "has maximum sales values of: ", __

→float(total sales.tail(1)['Weekly Sales']))
     Store 20 has maximum sales values of: 301397792.46
[11]: #plot series sales
      ax=total_sales.plot(kind='bar',
                         figsize=(20,10))
      plt.xticks(rotation=0)
      plt.ticklabel_format(useOffset=False, style='plain', axis='y')
      plt.title("Sales Analysis By Store")
      plt.xlabel('Store')
      plt.ylabel('Sales')
      #label store with minimum sales
      minimum=ax.patches[0]
      minimum.set_color('r')
      ax.annotate("Minimum Sales = {0:.2f}".format((minimum.get_height())),
                 xy=(minimum.get_x(), minimum.get_height()),
                 xytext=(0.15,0.5), textcoords='axes fraction',
                 arrowprops=dict(arrowstyle="<-", connectionstyle="arc3"),</pre>
                 horizontalalignment='center')
      #label with maximum sales
      maximum=ax.patches[len(ax.patches)-1]
      maximum.set_color('y')
      ax.annotate("Maximum Sales= {0:.2f}".format((maximum.get_height())),
                 xy=(maximum.get_x(), maximum.get_height()),
                 xytext=(0.75,0.92), textcoords='axes fraction',
                 arrowprops=dict(arrowstyle="<-", connectionstyle="arc3"),</pre>
                 horizontalalignment='center')
```

[11]: Text(0.75, 0.92, 'Maximum Sales= 301397792.46')

[12]: #finding the store has maximum standard deviation std_sales=pd.DataFrame(wal.groupby('Store')['Weekly_Sales'].std().sort_values()) std_sales

[12]:		Weekly_Sales
	Store	
	37	21837.461190
	30	22809.665590
	33	24132.927322
	44	24762.832015
	5	37737.965745
	43	40598.413260
	38	42768.169450
	3	46319.631557
	42	50262.925530
	36	60725.173579
	9	69028.666585
	16	85769.680133
	29	99120.136596
	34	104630.164676
	8	106280.829881
	26	110431.288141
	17	112162.936087
	7	112585.469220
	25	112976.788600
	40	119002.112858

```
15
             120538.652043
      31
             125855.942933
      21
             128752.812853
      45
             130168.526635
             138017.252087
      12
             139166.871880
      1
             155980.767761
      22
             161251.350631
      11
             165833.887863
      24
             167745.677567
             176641.510839
      18
      28
             181758.967539
      41
             187907.162766
      19
             191722.638730
      35
             211243.457791
      6
             212525.855862
      39
             217466.454833
             237683.694682
      27
             239930.135688
      23
             249788.038068
             265506.995776
      13
      4
             266201.442297
      20
             275900.562742
             302262.062504
      10
      14
             317569.949476
[13]: print("Store", std_sales.head(1).index[0], "has minimum standard deviation_
       →value of: ", float(std_sales.head(1)['Weekly_Sales']))
     Store 37 has minimum standard deviation value of: 21837.46119004889
```

```
[14]: print("Store", std_sales.tail(1).index[0], "has maximum standard deviation

→value of: ", float(std_sales.tail(1)['Weekly_Sales']))
```

Store 14 has maximum standard deviation value of: 317569.9494755081

```
#labeling store with minimum variation in sales
minimum=ax.patches[0]
minimum.set_color('r')
ax.annotate("Minimum Sales Variation= {0:.2f}".format((maximum.get_height())),
           xy=(minimum.get_x(), minimum.get_height()),
           xytext=(0.15,0.5), textcoords='axes fraction',
           arrowprops=dict(arrowstyle="<-", connectionstyle="arc3"),</pre>
           horizontalalignment='center')
#labeling store with maximum variation in sales
maximum=ax.patches[len(ax.patches)-1]
maximum.set color('v')
ax.annotate("Maximum Sales= {0:.2f}".format((maximum.get_height())),
           xy=(maximum.get_x(), maximum.get_height()),
           xytext=(0.75,0.92), textcoords='axes fraction',
           arrowprops=dict(arrowstyle="<-", connectionstyle="arc3"),</pre>
           horizontalalignment='center')
```

[15]: Text(0.75, 0.92, 'Maximum Sales= 317569.95')


```
[16]: #finding the coefficient of mean to standard deviation
mean_sales=pd.DataFrame(wal.groupby('Store')['Weekly_Sales'].std()/wal.

→groupby('Store')['Weekly_Sales'].mean()).rename(columns={'Weekly_Sales':

→'Coef_Mean'}).sort_values('Coef_Mean')
mean_sales
```

[16]:	_	Coef_Mean
	Store	
	37	0.042084
	30	0.052008
	43	0.064104
	44	0.081793
	31	0.090161
	42	0.090335
	33	0.092868
	1	0.100292
	34	0.108225
	26	0.110111
	38	0.110875
	3	0.115021
	8	0.116953
	32	0.118310
	5	0.118668
	11	0.122262
	2	0.123424
	40	0.123430
	24	0.123637
	17	0.125521
	9	0.126895
	4	0.127083
	20	0.130903
	13	0.132514
	19	0.132680
	27	0.135155
	6	0.135823
	28	0.137330
	12	0.137925
	41	0.148177
	39	0.149177
	22	0.156783
	14	0.150763
	10	0.157137
	25	0.159133
	36	0.162579
	18	0.162845
	16	0.165181
	45	0.165613
	21	0.170292
	23	0.179721
	29	0.183742
	15	0.193384
	7	0.197305
	35	0.229681

Store 37 has the minimum coefficient of mean w.r.t standard devaition of: 0.04208411895180789

```
[18]: print("Store", mean_sales.tail(1).index[0], "has the maximum coefficient of uhigh mean w.r.t standard devaition of: ", float(mean_sales.tail(1)['Coef_Mean']))
```

Store 35 has the maximum coefficient of mean w.r.t standard devaition of: 0.2296811138997643

```
[19]: #plot variation in std sales
      ax=mean_sales.plot(kind='bar',
                       figsize=(20,10))
      plt.xticks(rotation=0)
      plt.ticklabel_format(useOffset=False, style='plain', axis='y')
      plt.title('Coefficient of mean w.r.t standard deviation of a store')
      plt.xlabel('Store')
      plt.ylabel('Coefficient of mean w.r.t standard deviation')
      #labeling store with minimum variation in sales
      minimum=ax.patches[0]
      minimum.set color('r')
      ax.annotate("Minimum Coefficient= {0:.2f}".format((maximum.get_height())),
                 xy=(minimum.get_x(), minimum.get_height()),
                 xytext=(0.15,0.5), textcoords='axes fraction',
                 arrowprops=dict(arrowstyle="<-", connectionstyle="arc3"),</pre>
                 horizontalalignment='center')
      #labeling store with maximum variation in sales
      maximum=ax.patches[len(ax.patches)-1]
      maximum.set_color('y')
      ax.annotate("Maximum Coefficient= {0:.2f}".format((maximum.get_height())),
                 xy=(maximum.get_x(), maximum.get_height()),
                 xytext=(0.75,0.92), textcoords='axes fraction',
                 arrowprops=dict(arrowstyle="<-", connectionstyle="arc3"),</pre>
                 horizontalalignment='center')
```

[19]: Text(0.75, 0.92, 'Maximum Coefficient= 0.23')


```
[20]: #breaking the dataset to a new dataset of data having date of 2012 year fy12=wal[wal['Date'].dt.year==2012] fy12.head()
```

```
[20]:
                       Date Weekly_Sales Holiday_Flag
                                                         Temperature Fuel Price \
           Store
                               1550369.92
      100
               1 2012-06-01
                                                      0
                                                               49.01
                                                                            3.157
      101
                                                      0
                                                               48.53
                                                                            3.261
               1 2012-01-13
                               1459601.17
      102
               1 2012-01-20
                               1394393.84
                                                      0
                                                               54.11
                                                                            3.268
      103
               1 2012-01-27
                               1319325.59
                                                      0
                                                               54.26
                                                                            3.290
      104
               1 2012-03-02
                               1636339.65
                                                               56.55
                                                                            3.360
                  CPI
                       Unemployment
      100 219.714258
                              7.348
      101 219.892526
                              7.348
      102 219.985689
                              7.348
      103 220.078852
                              7.348
      104 220.172015
                              7.348
```

[21]:		q2	q3	growth
	Store			
	16	6626133.44	6441311.11	-2.869328
	7	7613593.92	7322393.92	-3.976841
	35	10753570.97	10252122.68	-4.891166
	26	13218289.66	12417575.35	-6.448234
	39	20191585.63	18899955.17	-6.834040
	23	18283424.90	17103654.36	-6.897769
	41	17560035.88	16373588.44	-7.246105
	44	4322555.33	4020486.01	-7.513254
	32	15415236.21	14142164.84	-9.001955
	37	6859777.96	6250524.08	-9.747245
	8	11934275.61	10873860.34	-9.751967
	21	9226279.62	8403507.99	-9.790812
	19	18315278.56	16644341.31	-10.039071
	24	17768191.98	16125999.86	-10.183506
	13	26803225.55	24319994.35	-10.210657
	40	12849747.45	11647661.37	-10.320407
	33	3512138.05	3177072.43	-10.546364
	18	13834706.08	12507521.72	-10.611090
	4	28384185.16	25652119.35	-10.650449
	31	18249155.35	16454328.46	-10.907932
	11	17879095.77	16094363.07	-11.089179
	25	9247467.19	8309440.44	-11.288687
	42	7608247.31	6830839.86	-11.380847
	10	23598433.93	21169356.45	-11.474498
	30	5786335.45	5181974.44	-11.662756
	20	27550180.62	24665938.11	-11.693220
	43	8239792.67	7376726.03	-11.699860
	38	5732362.70	5129297.64	-11.757264
	27	22593640.73	20191238.11	-11.898243
	2	25085123.61	22396867.61	-12.002821
	3	5562668.16	4966495.93	-12.003880
	17	12918892.02	11533998.38	-12.007056
	12	13193365.04	11777508.50	-12.021698
	34	12858027.98	11476258.98	-12.040239
	22	13329065.39	11818544.33	-12.780940
	28	16985999.95	15055659.67	-12.821360
	1	21036965.58	18633209.98	-12.900384
	6	20728970.16	18341221.11	-13.018485
	9	7431320.13	6528239.56	-13.833447

```
6909374.37 -13.873584
15
        7867952.23
5
        4427262.21
                     3880621.88 -14.086411
36
        4090378.90
                     3578123.58 -14.316312
29
        7034493.19
                     6127862.07 -14.795227
45
       10278900.05
                     8851242.32 -16.129462
14
       24427769.06
                    20140430.40 -21.287225
```

[22]: <matplotlib.legend.Legend at 0x181ff438550>

from the above table and visualization, we can clearly see that the sales are falling in 3rd quarter w.r.t 2nd quarter. Store 16 has good performance than others

```
[23]: #sales during holiday events

from datetime import datetime
sales_total=wal.groupby('Date')['Weekly_Sales'].sum().reset_index()
```

```
[23]:
               Date Weekly_Sales
                      42239875.87
         2010-01-10
         2010-02-04 50423831.26
      1
         2010-02-07 48917484.50
      2
      3
         2010-02-19 48276993.78
         2010-02-26
                      43968571.13
      138 2012-10-08 47403451.04
      139 2012-10-19 45122410.57
      140 2012-10-26 45544116.29
                     46925878.99
      141 2012-11-05
      142 2012-12-10 46128514.25
      [143 rows x 2 columns]
[24]: super_bowl=['12-02-2010', '11-02-2011', '10-02-2012']
      labour_day=['10-09-2010', '09-09-2011', '07-09-2012']
      thanks_giving=['26-11-2010', '25-11-2011', '28-12-2012']
      christmas=['31-12-2010', '30-12-2011', '28-12-2012']
[25]: fig,ax=plt.subplots(figsize=(20,10))
      ax.plot(sales_total['Date'], sales_total['Weekly_Sales'])
      for day in super bowl:
         day=datetime.strptime(day, '%d-%m-%Y')
         plt.axvline(x=day, linestyle='-.', c='b')
      for day in labour day:
         day=datetime.strptime(day, '%d-%m-%Y')
         plt.axvline(x=day, linestyle='-.', c='black')
      for day in thanks_giving:
         day=datetime.strptime(day, '%d-%m-%Y')
         plt.axvline(x=day, linestyle='-.', c='g')
      for day in christmas:
         day=datetime.strptime(day, '%d-%m-%Y')
         plt.axvline(x=day, linestyle='-.', c='r')
      plt.title("Sales Analysis for Holidays")
      plt.ticklabel format(useOffset=False, style='plain', axis='y')
      plt.show()
```

sales_total


```
[26]: #holiday sales
      holiday_sales=pd.DataFrame()
      holiday_sales['super_bowl']=wal[wal['Date'].isin(super_bowl)].

¬groupby(wal['Date'].dt.year)['Weekly_Sales'].sum()
      holiday_sales['labour_day']=wal[wal['Date'].isin(labour_day)].

¬groupby(wal['Date'].dt.year)['Weekly_Sales'].sum()
      holiday sales['thanks giving']=wal[wal['Date'].isin(thanks giving)].

¬groupby(wal['Date'].dt.year)['Weekly_Sales'].sum()
      holiday_sales['christmas']=wal[wal['Date'].isin(christmas)].groupby(wal['Date'].

dt.year)['Weekly_Sales'].sum()
      holiday_sales.fillna(0, inplace=True)
      holiday_sales
[26]:
                                      thanks_giving
             super_bowl
                          labour_day
                                                       christmas
     Date
```

```
40432519.00
      2010
           48336677.63
                         45634397.84
                                        65821003.24
      2011
                         46763227.53
                                        66593605.26
                                                      46042461.04
            47336192.79
      2012 50009407.92
                         48330059.31
                                                0.00
                                                             0.00
[27]: #visualizing the sales in holidays
      holiday_sales.plot(kind='bar',
                        figsize=(15,7),
                        xlabel='Year',
                        ylabel='Sales',
```

title='Sales by holidays per year')

From the above graphs, we can say sales incraese in thanks_giving holidays.

For all the holidays in a particular year, the sales are the much higher than the average non-holiday sales.

```
[28]: #copying original dataset to wall and creating a column having name quarter quarter=lambda x: 1 if x.month in [1,2,3] else 2 if x.month in [4,5,6] else 3

→if x.month in [7,8,9] else 4

wall=wal
wall['Quarter']=wall.Date.apply(quarter)
```

[29]: wal1

[29]:	Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price \
0	1	2010-05-02	1643690.90	0	42.31	2.572
1	1	2010-12-02	1641957.44	1	38.51	2.548
2	1	2010-02-19	1611968.17	0	39.93	2.514
3	1	2010-02-26	1409727.59	0	46.63	2.561
4	1	2010-05-03	1554806.68	0	46.50	2.625
•••	•••	•••	•••		•••	
6430	45	2012-09-28	713173.95	0	64.88	3.997
6431	45	2012-05-10	733455.07	0	64.89	3.985
6432	45	2012-12-10	734464.36	0	54.47	4.000
6433	45	2012-10-19	718125.53	0	56.47	3.969
6434	45	2012-10-26	760281.43	0	58.85	3.882

```
8.106
                                             4
      1
            211.242170
      2
                                8.106
                                             1
            211.289143
      3
            211.319643
                                8.106
                                             1
                                             2
            211.350143
                                8.106
                                             3
      6430 192.013558
                                8.684
                                             2
      6431 192.170412
                                8.667
      6432 192.327265
                                8.667
                                             4
      6433 192.330854
                                8.667
                                             4
      6434 192.308899
                                8.667
                                             4
      [6435 rows x 9 columns]
[30]: #breaking wall to 3 dataset having year 2010, 2011 & 2012
      fy_2010=wal1[wal1['Date'].dt.year==2010]
      fy_2011=wal1[wal1['Date'].dt.year==2011]
      fy_2012=wal1[wal1['Date'].dt.year==2012]
[31]: fy_2010.head()
[31]:
         Store
                     Date
                           Weekly_Sales
                                          Holiday_Flag
                                                        Temperature Fuel_Price \
             1 2010-05-02
                              1643690.90
                                                               42.31
                                                                           2.572
             1 2010-12-02
      1
                              1641957.44
                                                      1
                                                               38.51
                                                                           2.548
                                                               39.93
      2
             1 2010-02-19
                              1611968.17
                                                      0
                                                                           2.514
             1 2010-02-26
                              1409727.59
                                                               46.63
                                                      0
                                                                           2.561
             1 2010-05-03
                              1554806.68
                                                      0
                                                               46.50
                                                                           2.625
                     Unemployment Quarter
                             8.106
        211.096358
      0
                                          2
      1 211.242170
                            8.106
                                          4
                            8.106
                                          1
      2 211.289143
      3 211.319643
                             8.106
                                          1
      4 211.350143
                                          2
                             8.106
[32]: fy_2011.head()
                            Weekly_Sales Holiday_Flag Temperature Fuel_Price \
[32]:
          Store
                      Date
      48
              1 2011-07-01
                               1444732.28
                                                      0
                                                                48.27
                                                                            2.976
      49
              1 2011-01-14
                                                      0
                                                                35.40
                                                                            2.983
                               1391013.96
                                                       0
                                                                44.04
      50
              1 2011-01-21
                               1327405.42
                                                                            3.016
              1 2011-01-28
                                                       0
                                                                43.83
                                                                            3.010
      51
                               1316899.31
              1 2011-04-02
                               1606629.58
                                                       0
                                                                42.27
                                                                            2.989
                 CPI
                      Unemployment
                                     Quarter
          211.404742
                              7.742
                                           3
      48
```

CPI

211.096358

0

Unemployment Quarter

2

8.106

```
49
         211.457411
                             7.742
                                          1
                                          1
      50
         211.827234
                             7.742
      51
          212.197058
                             7.742
                                          1
                                          2
      52 212.566881
                             7.742
[33]: fy_2012.head()
[33]:
                                           Holiday_Flag
                                                         Temperature
                                                                      Fuel_Price \
           Store
                       Date
                             Weekly_Sales
      100
               1 2012-06-01
                               1550369.92
                                                               49.01
                                                                            3.157
      101
               1 2012-01-13
                               1459601.17
                                                      0
                                                               48.53
                                                                            3.261
                                                      0
                                                               54.11
      102
               1 2012-01-20
                               1394393.84
                                                                            3.268
      103
               1 2012-01-27
                               1319325.59
                                                      0
                                                               54.26
                                                                            3.290
                                                      0
      104
               1 2012-03-02
                               1636339.65
                                                                56.55
                                                                            3.360
                       Unemployment Quarter
                  CPI
      100 219.714258
                              7.348
                                           2
                                           1
      101 219.892526
                              7.348
      102 219.985689
                              7.348
                                           1
      103 220.078852
                              7.348
                                           1
      104 220.172015
                              7.348
[34]: #monthly view of sales
      monthly_sales=pd.DataFrame()
      monthly_sales['2010']=fy_2010.groupby(fy_2010.Date.dt.month)['Weekly_Sales'].
      ⇒sum()
      monthly_sales['2011']=fy_2011.groupby(fy_2011.Date.dt.month)['Weekly_Sales'].
      monthly_sales['2012']=fy_2012.groupby(fy_2012.Date.dt.month)['Weekly_Sales'].
       ⇒sum()
      monthly_sales
[34]:
                    2010
                                  2011
                                                2012
     Date
      1
            4.223988e+07
                          2.119657e+08 1.722207e+08
      2
            1.915869e+08 1.876092e+08 1.428296e+08
      3
            1.862262e+08 1.365205e+08 2.307397e+08
      4
            1.838118e+08 2.789693e+08 1.825428e+08
      5
            2.806119e+08 1.828017e+08 1.422830e+08
      6
            1.424361e+08 1.401936e+08 2.923883e+08
      7
            1.842664e+08 2.244611e+08 1.845865e+08
      8
            1.845381e+08 1.880810e+08 1.916126e+08
      9
            1.797041e+08 2.310323e+08 1.797959e+08
      10
            2.311201e+08 1.837193e+08 1.880794e+08
      11
            1.587731e+08 2.534703e+08 4.692588e+07
      12
            3.235716e+08 2.293760e+08 4.612851e+07
```



```
[36]: #yearly view of sales
yearly_sales=pd.DataFrame(wal.groupby(wal['Date'].dt.year)['Weekly_Sales'].

→sum()).reset_index().rename(columns={'Date':'Year'})
```

[37]: yearly_sales

```
[37]: Year Weekly_Sales
0 2010 2.288886e+09
1 2011 2.448200e+09
2 2012 2.000133e+09
```

[38]: <AxesSubplot:title={'center':'Yearly View Of Sales'}, xlabel='Year', ylabel='Sales'>


```
[39]: #comparing sales during holidays and non-holidays
hol_sales=pd.DataFrame()
hol_sales['holiday_sales']=wal[wal['Holiday_Flag']==1].

→groupby('Store')['Weekly_Sales'].sum()
hol_sales['non_holiday_sales']=wal[wal['Holiday_Flag']==0].

→groupby('Store')['Weekly_Sales'].sum()
hol_sales
```

```
[39]:
             holiday_sales non_holiday_sales
      Store
      1
               16657476.56
                                  2.057453e+08
      2
               20792669.00
                                  2.545898e+08
      3
                4378110.50
                                  5.320862e+07
      4
               22431026.24
                                  2.771129e+08
      5
                3595016.07
                                  4.188067e+07
      6
               16809079.27
                                  2.069471e+08
                                  7.487427e+07
                6724002.65
```

```
10
               21137559.49
                                  2.504802e+08
      11
               14483944.85
                                   1.794788e+08
      12
                                   1.329058e+08
               11381404.20
      13
               21130438.06
                                  2.653873e+08
      14
               21205829.98
                                  2.677941e+08
      15
                7064060.18
                                  8.206962e+07
      16
                5667336.46
                                  6.858509e+07
      17
                9797969.71
                                   1.179842e+08
      18
               11694221.61
                                   1.434205e+08
      19
               15770467.34
                                  1.908644e+08
      20
               22490350.81
                                  2.789074e+08
      21
                8264913.09
                                  9.985297e+07
      22
               10848746.56
                                   1.362269e+08
      23
               14625422.94
                                   1.841252e+08
      24
               14750982.51
                                   1.792650e+08
      25
                7396768.42
                                  9.366441e+07
      26
               10720468.49
                                  1.326959e+08
      27
                                  2.349329e+08
               18922992.78
      28
               14782446.05
                                   1.744812e+08
                                  7.107198e+07
      29
                6069578.89
      30
                4368593.07
                                  5.834829e+07
      31
               15000260.30
                                   1.846136e+08
      32
               12037840.83
                                   1.547814e+08
      33
                2625945.19
                                   3.453428e+07
      34
               10419780.89
                                  1.278300e+08
      35
                                   1.207772e+08
               10743484.57
      36
                3676406.30
                                  4.973581e+07
      37
                5075250.50
                                  6.912749e+07
      38
                3815098.78
                                  5.134453e+07
      39
               15511274.80
                                   1.919343e+08
      40
               10080340.75
                                   1.277900e+08
      41
               13349478.56
                                   1.679925e+08
      42
                                  7.388881e+07
                5676941.58
      43
                6359462.78
                                  8.420597e+07
      44
                2960356.01
                                  4.033273e+07
      45
                8362937.13
                                  1.040324e+08
[40]: #visualizing the above comparison
      hol_sales.plot(kind='bar',
                     figsize=(20,10),
                     xlabel='Store',
                     ylabel='Sales',
                     title='Comparison Of Sales Between Holiday And Non-Holiday')
```

1.201979e+08

7.189971e+07

8

9

9753308.60

5889508.21

[40]: <AxesSubplot:title={'center':'Comparison Of Sales Between Holiday And Non-Holiday'}, xlabel='Store', ylabel='Sales'>

From the above chart we can clearly see that the store 20 has highest non-holiday sales

```
[41]: #For Store 1 - Building prediction models to forecast demand

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import mean_squared_error
```

```
[42]: #getting store-1 data
store1=wal[wal['Store']==1]
store1
```

[42]:	Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price \
0	1	2010-05-02	1643690.90	0	42.31	2.572
1	1	2010-12-02	1641957.44	1	38.51	2.548
2	1	2010-02-19	1611968.17	0	39.93	2.514
3	1	2010-02-26	1409727.59	0	46.63	2.561
4	1	2010-05-03	1554806.68	0	46.50	2.625
		•••	•••	•••		
1	38 1	2012-09-28	1437059.26	0	76.08	3.666
1	39 1	2012-05-10	1670785.97	0	68.55	3.617
1	40 1	2012-12-10	1573072.81	0	62.99	3.601
1	41 1	2012-10-19	1508068.77	0	67.97	3.594
1	42 1	2012-10-26	1493659.74	0	69.16	3.506

	CPI	Unemployment	Quarter
0	211.096358	8.106	2
1	211.242170	8.106	4
2	211.289143	8.106	1
3	211.319643	8.106	1
4	211.350143	8.106	2
	•••	•••	•••
138	222.981658	6.908	3
139	223.181477	6.573	2
140	223.381296	6.573	4
141	223.425723	6.573	4
142	223.444251	6.573	4

[143 rows x 9 columns]

```
[43]: #finding outliers
fig,axs=plt.subplots(4,figsize=(10,20))
a=store1[['Temperature','Fuel_Price','CPI','Unemployment']]
for i,column in enumerate(a):
    sns.boxplot(store1[column],ax=axs[i])
```

C:\Users\sssun\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

C:\Users\sssun\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

C:\Users\sssun\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

C:\Users\sssun\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
[44]: #dropping outliers
      store1_new=store1[(store1['Unemployment']<10) & (store1['Unemployment']>6.8)]
[45]: store1_new
[45]:
           Store
                             Weekly_Sales
                                            Holiday_Flag
                                                          Temperature Fuel_Price \
                       Date
      0
               1 2010-05-02
                                1643690.90
                                                        0
                                                                 42.31
                                                                             2.572
      1
               1 2010-12-02
                                                                 38.51
                                                                             2.548
                                1641957.44
                                                        1
      2
               1 2010-02-19
                                1611968.17
                                                       0
                                                                 39.93
                                                                             2.514
      3
                                                       0
               1 2010-02-26
                                1409727.59
                                                                 46.63
                                                                             2.561
      4
               1 2010-05-03
                                                        0
                                                                 46.50
                                                                             2.625
                                1554806.68
               1 2012-08-31
                                1582083.40
                                                                 80.49
                                                                             3.638
      134
                                                       0
      135
               1 2012-07-09
                                1661767.33
                                                                 83.96
                                                                             3.730
                                                        1
      136
               1 2012-09-14
                                                       0
                                                                 74.97
                                1517428.87
                                                                             3.717
      137
                                                       0
               1 2012-09-21
                                1506126.06
                                                                 69.87
                                                                             3.721
      138
               1 2012-09-28
                                                        0
                                                                 76.08
                                                                             3.666
                                1437059.26
                       Unemployment
                                      Quarter
      0
           211.096358
                              8.106
           211.242170
                               8.106
      1
                                            4
      2
           211.289143
                               8.106
                                            1
           211.319643
      3
                               8.106
                                            1
      4
           211.350143
                               8.106
                                            2
      . .
      134 222.305480
                                            3
                               6.908
      135 222.439015
                               6.908
                                            3
      136 222.582019
                                            3
                               6.908
      137 222.781839
                               6.908
                                            3
      138 222.981658
                               6.908
                                            3
      [139 rows x 9 columns]
[46]: fig,axs=plt.subplots(4,figsize=(10,20))
      a=store1_new[['Temperature','Fuel_Price','CPI','Unemployment']]
      for i,column in enumerate(a):
          sns.boxplot(store1_new[column],ax=axs[i])
     C:\Users\sssun\anaconda3\lib\site-packages\seaborn\_decorators.py:36:
     FutureWarning: Pass the following variable as a keyword arg: x. From version
     0.12, the only valid positional argument will be `data`, and passing other
     arguments without an explicit keyword will result in an error or
     misinterpretation.
       warnings.warn(
```

C:\Users\sssun\anaconda3\lib\site-packages\seaborn_decorators.py:36:

FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

C:\Users\sssun\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

C:\Users\sssun\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
[47]: #dropping the column store and quarter as they are not required
      store1_new.drop(columns=['Store','Quarter'], inplace=True, axis=1)
     C:\Users\sssun\anaconda3\lib\site-packages\pandas\core\frame.py:4906:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       return super().drop(
[48]: store1_new
[48]:
                Date Weekly_Sales Holiday_Flag
                                                  Temperature Fuel_Price \
      0
          2010-05-02
                        1643690.90
                                                0
                                                         42.31
                                                                      2.572
          2010-12-02
                                                         38.51
                                                                      2.548
      1
                        1641957.44
                                                1
      2
          2010-02-19
                                                0
                                                         39.93
                                                                      2.514
                        1611968.17
      3
          2010-02-26
                        1409727.59
                                                0
                                                         46.63
                                                                      2.561
          2010-05-03
                        1554806.68
                                                         46.50
                                                                      2.625
      4
                                                0
      134 2012-08-31
                        1582083.40
                                                0
                                                         80.49
                                                                      3.638
      135 2012-07-09
                        1661767.33
                                                1
                                                         83.96
                                                                      3.730
      136 2012-09-14
                                                0
                        1517428.87
                                                         74.97
                                                                      3.717
      137 2012-09-21
                        1506126.06
                                                0
                                                         69.87
                                                                      3.721
      138 2012-09-28
                        1437059.26
                                                0
                                                         76.08
                                                                      3.666
                       Unemployment
      0
           211.096358
                              8.106
      1
           211.242170
                              8.106
      2
           211.289143
                              8.106
      3
           211.319643
                              8.106
      4
           211.350143
                              8.106
      . .
      134 222.305480
                              6.908
      135 222.439015
                              6.908
      136 222.582019
                              6.908
      137 222.781839
                              6.908
      138 222.981658
                              6.908
      [139 rows x 7 columns]
[49]: #plotting the correlation
      corr=store1_new.corr()
      plt.figure(figsize=(15,7))
```

sns.heatmap(corr, annot=True)

[49]: <AxesSubplot:>


```
[50]: #select feature and target
      x=store1 new[['Fuel Price','CPI','Unemployment']]
      y=store1_new['Weekly_Sales']
[51]: #splitting the dataset to train and set in 70:30
      x_train, x_test, y_train, y_test= train_test_split(x,y,test_size=0.
       \rightarrow 2, random_state=7)
[52]: #applying linear regression model
      print("Linear Regression\n\n")
      reg=LinearRegression()
      reg.fit(x_train,y_train)
      y_pred=reg.predict(x_test)
      print('Accuracy:',reg.score(x_train, y_train)*100)
      print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
      print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
      print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test,__
       →y_pred)))
```

Linear Regression

Accuracy: 8.039548342683144

Mean Absolute Error: 124239.64040070007

Mean Squared Error: 22799142240.032238 Root Mean Squared Error: 150993.84835162072

Random Forest Regressor:

Accuracy: 41.10073490551326

Mean Absolute Error: 99724.18998582901 Mean Squared Error: 15011272634.127914 Root Mean Squared Error: 122520.49883235015

```
[54]: #Change dates into days by creating new variable
wal['Day']=pd.to_datetime(wal['Date']).dt.day_name()
wal
```

[54]:		Store		Date	Weekly	_Sales	Но	liday_Flag	Temperature	Fuel_Price	\
	0	1	2010-	05-02	1643	690.90		0	42.31	2.572	
	1	1	2010-	12-02	1641	957.44		1	38.51	2.548	
	2	1	2010-	02-19	1611	968.17		0	39.93	2.514	
	3	1	2010-	02-26	1409	727.59		0	46.63	2.561	
	4	1	2010-	05-03	1554	806.68		0	46.50	2.625	
	•••	•••	•••		•••		•••	•••	•••		
	6430	45	2012-	09-28	713	173.95		0	64.88	3.997	
	6431	45	2012-	05-10	733	455.07		0	64.89	3.985	
	6432	45	2012-	12-10	734	464.36		0	54.47	4.000	
	6433	45	2012-	10-19	718	125.53		0	56.47	3.969	
	6434	45	2012-	10-26	760	281.43		0	58.85	3.882	
			CPI	Unemp	loyment	Quart	er	Day			
	0	211.09	96358		8.106		2	Sunday			
	1	211.24	42170		8.106		4	Thursday			
	2	211.28	39143		8.106		1	Friday			
	3	211.3	19643		8.106		1	Friday			
	4	211.3	50143		8.106		2	Monday			
	•••				•••	••	•••				

Friday	3	8.684	192.013558	6430
Thursday	2	8.667	192.170412	6431
Monday	4	8.667	192.327265	6432
Friday	4	8.667	192.330854	6433
Friday	4	8.667	192.308899	6434

[6435 rows x 10 columns]