

Outline

- 1. What is Classification?
- 2. K-Nearest-Neighbors
- 3. Decision Trees
- 4. Model Evaluation

4. Model Evaluation

Central Question:

How good is a model at classifying unseen records?

(generalization performance)

- Metrics for Model Evaluation
 - How to measure the performance of a model?
- Methods for Model Evaluation
 - How to obtain reliable estimates?

4.1 Metrics for Model Evaluation

- Focus on the predictive capability of a model
 - rather than how much time it takes to classify records or build models
- The confusion matrix counts the correct and false classifications
 - the counts are the basis for calculating different performance metrics

Confusion Matrix

	PRE	DICTED CL	ASS
		Class=Yes	Class=No
ACTUAL	Class=Yes	True Positives	False Negatives
CLASS	Class=No	False Positives	True Negatives

Accuracy and Error Rate

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN} = \frac{\text{Correct predictions}}{\text{All predictions}}$$

Error Rate = 1 - Accuracy

	PREI	PREDICTED CLASS	
		Class= Yes	Class= No
ACTUAL	Class=	TP	FN
CLASS	Yes	25	4
CLASS	Class=	FP	TN
	No	6	15

$$Acc = \frac{25+15}{25+15+6+4} = 0.80$$

The Class Imbalance Problem

- Sometimes, classes have very unequal frequency
 - Fraud detection: 98% transactions OK, 2% fraud
 - E-commerce: 99% surfers don't buy, 1% buy
 - Intruder detection: 99.99% of the users are no intruders
 - Security: >99.99% of Americans are not terrorists
- The class of interest is commonly called the positive class and the rest negative classes
- Consider a 2-class problem
 - number of negative examples = 9990
 number of positive examples = 10
 - if model predicts all examples to belong to the negative class,
 the accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any positive example

Precision and Recall

Alternative: Use performance metrics from information retrieval which are biased towards the positive class by ignoring TN

Precision *p* is the number of correctly classified <u>positive</u> examples divided by the total number of examples that are classified as <u>positive</u>

Recall *r* is the number of correctly classified <u>positive</u> examples divided by the total number of actual <u>positive</u> examples in the test set

$$p = \frac{TP}{TP + FP} \qquad r = \frac{TP}{TP + FN}$$

	Classified Positive	Classified Negative	Ignored
Actual Positive	TP	FN	— ignored majority
Actual Negative	FP	TN	шајошу

Precision and Recall - A Problematic Case

	Classified Positive	Classified Negative
Actual Positive	1	99
Actual Negative	0	1000

This confusion matrix gives us

precision
$$p = 100\%$$

recall $r = 1\%$

- because we only classified one positive example correctly and no negative examples wrongly
- Thus, we want a measure that
 - 1. combines precision and recall and
 - 2. is large if both values are large

F₁-Measure

- F₁-score combines precision and recall into one measure
- F₁-score is the harmonic mean of precision and recall
 - the harmonic mean of two numbers tends to be closer to the smaller of the two
 - thus for the F₁-score to be large, both p and r must be large

$$F_1 = \frac{2pr}{p+r}$$

$$=\frac{2TP}{2TP+FP+FN}$$

Example: Alternative Metrics on Imbalanced Data

	PRE	PREDICTED CLASS	
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
CLASS	Class=No	10	980

	PRE	PREDICTED CLASS	
		Class=Yes	Class=No
ACTUAL	Class=Yes	1	9
CLASS	Class=No	0	990

Precision (p) =
$$\frac{10}{10+10}$$
 = 0.5
Recall (r) = $\frac{10}{10+0}$ = 1
F₁ - measure (F₁) = $\frac{2*1*0.5}{1+0.5}$ = 0.62
Accuracy = $\frac{990}{1000}$ = 0.99

Precision (p) =
$$\frac{1}{1+0}$$
 = 1

Recall (r) = $\frac{1}{1+9}$ = 0.1

F₁ - measure (F₁) = $\frac{2*0.1*1}{1+0.1}$ = 0.18

Accuracy = $\frac{991}{1000}$ = 0.991

F₁-Measure Graph

Low threshold: Low precision, high recall

Restrictive threshold: High precision, low recall

4.2 Methods for Model Evaluation

- How to obtain a reliable estimate of the generalization performance?
- General approach: Split set of labeled records into a training set and a test set
- Never ever test a model on data that was used for training!
 - Because model has been fit to training data, evaluating on training data does not result in a suitable estimate of the performance on unseen data
 - We need to keep training set and test set <u>strictly</u> separate
- Which labeled records to use for training and which for testing?
- Alternative splitting approaches:
 - Holdout Method
 - 2. Random Subsampling
 - 3. Cross Validation

Holdout Method

- The holdout method reserves a certain amount of the labeled data for testing and uses the remainder for training
- Usually: 1/3 for testing, 2/3 for training (or even better 20% / 80%)

Random Subsampling

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - in each iteration, a certain proportion is randomly selected for training
 - the performance of the different iterations is averaged

- Still not optimal as the different test sets may overlap
 - 1. problem: some outliers might always end up in the test sets
 - 2. problem: important records for learning (red tree) might always be in test sets

Cross-Validation

- Cross-validation avoids overlapping test sets
 - first step: data is split into *k* subsets of equal size
 - second step: each subset in turn is used for testing and the remainder for training

- this is called k-fold x-validation
- Every record is used exactly once for testing
- The performance estimates of all runs are averaged to yield overall performance estimate
- Frequently used: k = 10 (90% training, 10% testing)
 - why ten? Experiments have shown that this is the good choice to get an accurate estimate and still use as much data as possible for training

Cross-Validation in RapidMiner

Cross-Validation Results in RapidMiner

Average accuracy over all 10 runs (test sets)

Standard deviation of accuracy values over all 10 runs (test sets)

	true Iris-setosa	true Iris-versicolor	true Iris-virginica	class precision
pred. Iris-setosa	50	0	0	100.00%
pred. Iris-versicolor	0	46	8	85.19%
pred. Iris-virginica	0	4	42	91.30%
class recall	100.00%	92.00%	84.00%	

Recall given that we define Iris-setosa as positive class

Number of correctly classified Iris-versicolar examples in all runs (test sets)

Each record is used exactly once for testing → The numbers in the confusion matrix sum up to the size of the labeled dataset

Evaluation Summary

- Performance metrics
 - Default: Use accuracy
 - If interesting class is infrequent, use precision, recall, and F1
- Estimation of metric
 - Default: Use cross-validation
 - If labeled dataset is large (>5000 examples) and
 - computation takes too much time or
 - exact replicability of results matters, e.g. for data science competitions

use the holdout method with fixed split