Es. 7
Sia data la seguente sequenza di indirizzi in lettura (l) o scrittura (s) emessi dalla CPU:

#	indirizzo	l/s	byte scritto
	(binario)		(esadecimale)
1	000100001000	l	
2	000100001100	l	
3	000100001111	S	1F
4	000100011101	S	AD
5	000100101000	S	09
6	000100011000	1	
7	000100000011	l	
8	000100100101	l	

a) Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 32B, dimensione di blocco 4B, inizialmente vuota, e ad associazione a 2 vie (politica di rimpiazzo FIFO, politica di scrittura write-through e gestione dei miss in scrittura con la politica write allocate). Si assuma che la memoria abbia il contenuto esadecimale mostrato di seguito:

ind	byte	ind	byte	ind	byte	ind	byte
100	80	101	00	102	07	103	02
104	00	105	00	106	00	107	00
108	ΑE	109	13	10A	A1	10B	23
10C	A1	10D	42	10E	90	10F	75
110	B9	111	16	112	00	113	00
114	OA	115	07	116	03	117	71
118	3E	119	13	11A	71	11B	23
11C	A1	11D	82	11E	90	11F	15
120	F9	121	86	122	AO	123	00
124	E9	125	16	126	05	127	00

Si mostri come sia il contenuto della cache che il contenuto della memoria cambia.

Soluzione a)

cache 32B, blocco di 4B, 2-way, write-through, FIFO campo parola 2 bit, campo set 2 bit, tag 8 bit

Sequenza ind.	h/m	Cache
[tag set word]		
000100001000		[AF 12 A1 22] in set 10 lines 0 are tare 00010000
000100001000	miss	[AE 13 A1 23] in set 10, linea 0 con tag: 00010000
00010000 <mark>11</mark> 00	miss	[A1 42 90 75] in set 11, linea 0 con tag: 00010000
00010000 <mark>11</mark> 11	hit	[A1 42 90 1F] aggiorna Mem
00010001 <mark>11</mark> 01	miss	[A1 82 90 15] in set 11, linea 1 con tag: 00010001
		[A1 AD 90 15] aggiorna Mem
000100101000	miss	[00 00 00 00] in set 10, linea 1 con tag: 00010010
		[09 00 00 00] aggiorna Mem
00010001 <mark>10</mark> 00	miss	[3E 13 71 23] in set 10, linea 0 rimpiazzata con tag: 00010001
000100000011	miss	[08 00 07 02] in set 00, linea 0 con tag: 00010001
00010010 <mark>01</mark> 01	Miss	[E9 16 05 00] in set 01, linea 0 con tag: 00010010

b) Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 16B, dimensione di blocco 4B, inizialmente vuota, e ad associazione a 2 vie (politica di rimpiazzo FIFO, politica di scrittura write-back e gestione dei miss in scrittura con la politica write allocate).

Soluzione b)

cache 16B, blocco di 4B, 2-way, write-back, FIFO campo parola 2 bit, campo set 1 bit, tag 9 bit

Sequenza ind.	h/m	cache
<pre>[tag set word]</pre>		
000100001 <mark>0</mark> 00	miss	[AE 13 A1 23] in set 0, linea 0 con tag: 000100001
000100001 <mark>1</mark> 00	miss	[A1 42 90 75] in set 1, linea 0 con tag: 000100001
000100001 <mark>1</mark> 11	hit	[A1 42 90 1F] linea sporca
000100011 <mark>1</mark> 01	miss	[A1 82 90 15] in set 1, linea 1 con tag: 000100011, wr. all.
		[A1 AD 90 15] linea sporca
000100101000	miss	[00 00 00 00] in set 0, linea 1 con tag: 000100101, wr. all.
		[09 00 00 00] linea sporca
000100011000	miss	[3E 13 71 23] in set 0, linea 0 rimpiaz. con tag: 000100011
0001000000011	miss	[08 00 07 02] in set 0, linea 1 rimpiaz. con tag: 000100011, M
000100100 <mark>1</mark> 01	miss	[E9 16 05 00] in set 1, linea 0 rimpiaz. con tag: 000100100, M

M: aggiorna memoria (scrittura intero blocco)

c) Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 16B, dimensione di blocco 2B, inizialmente vuota, e ad associazione a 2 vie (politica di rimpiazzo FIFO, politica di scrittura write-back e gestione dei miss in scrittura con la politica write allocate).

Soluzione c)

cache 16B, blocco di 2B, 2-way, write-back, FIFO campo parola 1 bit, campo set 2 bit, tag 9 bit

Sequenza ind.	h/m	cache
<pre>[tag set word]</pre>		
000100001000	miss	[AE 13] in set 00, linea 0 con tag: 000100001
000100001 <mark>10</mark> 0	miss	[A1 42] in set 10, linea 0 con tag: 000100001
000100001 <mark>11</mark> 1	miss	[90 75] in set 11, linea 0 con tag: 000100001, wr.all.
		[90 1F] in set 11, linea sporca
000100011 <mark>10</mark> 1	miss	[A1 82] in set 10, linea 1 con tag: 000100011, wr.all.
		[A1 AD] in set 10, linea sporca
000100101 <mark>00</mark> 0	miss	[00 00] in set 00, linea 1 con tag: 000100101, wr.all.
		[09 00] in set 00, linea sporca
000100011 <mark>00</mark> 0	miss	[3E 13] in set 00, linea 0 con tag: 000100011, [AE 13] _{out} , M
000100000 <mark>01</mark> 1	miss	[07 02] in set 01, linea 0 con tag: 000100000
000100100 <mark>10</mark> 1	miss	[E9 16] in set 10, linea 0 con tag: 000100101, [A1 42] _{out} , M

M: aggiorna memoria (scrittura intero blocco)

d) Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 32B, dimensione di blocco 8B, inizialmente vuota, e ad associazione diretta (politica di scrittura write-back e gestione dei miss in scrittura con la politica write allocate).

Soluzione d)

cache 32B, blocco di 8B, diretta, write-back campo parola 3 bit, campo set 2 bit, tag 7 bit

```
Sequenza ind.
                    h/m cache
[tag|linea|word]
 0001000<mark>01</mark>000
                     miss [AE 13 A1 23 A1 42 90 75] in linea 01
 0001000<mark>01</mark>100
                     hit
                     hit [AE 13 A1 23 A1 42 90 1F] linea sporca
 0001000<mark>01</mark>111
                     miss [3E 13 71 23 A1 82 90 15] in linea 11, wr.all.
 000100011101
                     [3E 13 71 23 A1 AD 90 15] linea sporca
miss [00 00 00 00 00 00 00 00] in linea 01, wr.all., M
 0001001<mark>01</mark>000
                            [09 00 00 00 00 00 00] linea sporca
 000100011000
                      hit
 000100000011
                     miss [08 00 07 02 00 00 00 00] in linea 00
 000100100101
                     miss [F9 86 A0 00 E9 16 05 00] in linea 00
```

M: aggiorna memoria (scrittura intero blocco)