Department Liceronies & Cerrandic Engineering

UNIVERSITY INSTITUTE OF ENGINEERING AND TECHNOLOGY, CSJM UNIVERSITY, KANPUR

Discrete Mathematics(MTH-S301)

Semester:2023-2024(Even Semester)

Year:Second Year

Mid Semester Examination-1

Time:1.5hrs

Maximum Marks:30

All questions are compulsory.

Section A

. 9 marks (Each question is of 1 mark)

1. (a) Write all max terms formed from 3 variables. (PVQVR), (---

- (b) "All integers greater than or equal to 10 are divisible by 5." Write its negation in symbolic form. (PVQ) AR.
- (c) Write tautologically equivalent expression of $P \lor (P \to Q)$
- (d) Find the PCNF of $(P \longrightarrow Q) \lor (P \land \sim Q)$
- (e) "If the ozone layer collapses, then global community will suffer". Write in symbolic form.
- (f) Write contrapositive of $(\sim A \vee B)$.
- (g) Simplify $(\sim P \lor \sim Q) \land (P \lor \sim Q)$.
- (h) Write converse of "If I study seriously, I will graduate with flying colors." in symbolic form.
- (i) What is the unique property of minterm.

Section B

9 marks (Each question is of 3 marks)

- 2. Find principal conjunctive normal form of $(\sim P \vee R) \wedge P$.
- 3. Prove that $(P \wedge R) \vee [(P \vee Q) \wedge R] \equiv (P \vee Q) \wedge R$.

4. Given $A \equiv \prod_{(1,2,4,5,6)}$ find its principal disjunctive normal form.

Section C

12 marks (Each question is of 6 marks)

- 5. Show that $(P \lor \sim R) \to (P \land Q \land R) \iff (P \to Q) \land R$ without using truth table.
- 6. (Do Not Use Truth Table) Does the conclusion follow from the given premises: $(P \to Q) \to R, \ R \to S, \ \sim S$ conclusion: $Q \to P$. Show the complete derivation.

Department of Coupuser Science & Engineering

UNIVERSITY DETLICES OF CHORSEGUE AND TROUBOLOGY ONLY DESIGNATION

Discrete Mathematica (MTH-S301)

Semester:2033-3024(Even Semester)

Mid Schoster Examination-2

Times L. Slave

Masimum Marketon

Section A.

9 marks (Each question is of 1 merk)

- (a) Find domain and range of relation $R = \{(x,y): x,y \in \mathbb{N}, x+y=8\}$
- (b) Write its negation of (x)P(x)
- (c) Write m symbolic form "Every teacher of college is learned."
- (d) If R & S are symmetric relations Is RUS symmetric?
 - (e) Find a partition of set A={a,b,c,d}.
- (f) If P(x): x<5 and Q(x): $x\geq 2$ where universe is $\{2,3,4,5,6\}$, find true value of $(x)(P(x) \rightarrow Q(x))$
- (g) Give an example of relation on set A={a,b,c} which is neither symmet or transitive.
- (h) Let R be an equivalence relation defined on ZxZ by (a,b)R(c,d),find a+d=b+c. Find [(4,7)].
- (i) Find R o S where $R = \{(1,1),(2,2),(1,3)\}$ and $S = \{(1,3),(3,1)\}.$

Section B

9 marks (Each question is of 3 marks)

- 2. Prove that R⁻¹ is an equivalence relation if R is an equivalence relation.
- 3. Prove that $A \times (B C) = (A \times B) (A \times C)$

Hasse diagram of (i)₃₀, /) where D_{30} is set of divisions of 36.

Section C

12 marks (Each question is of 6 marks)

- Prove that $x \equiv y \pmod{5}$ is an equivalence relation on set of integers.
- 6. Check whether $(x)(P(x) \to Q(x)), \ \sim [(\exists x) \ Q(x)], \ (\exists x) \ (R(x) \to P(x)) \Rightarrow (\exists x)(Q(x) \to R(x))$

DEPARTMENT COMPUTER SCIENCE ENGINEERING

UNIVERSITY INSTITUTE OF ENGINEERING AND TECHNOLOGY, CSJM UNIVERSITY, KANPUR

Discrete Mathematics (MTHS301)

Semester: 2023-2024 (Even Semester)

Year:2nd Year

(2K22)

End Semester Examination

Time:3hrs

Maximum Marks:50

All questions are compulsory.

Section A

10 marks (Each question is of 1 mark)

- 1. (a) What is vertex of a degree zero called?
 - (b) Let G by a cyclic group of order 9. Find all generator of G.
 - (c) If G(p,6) is self-complimentary graph then find p.
 - (d) If a.b'=0 prove that a'+b=1
 - (e) Let $A = \{1, 2, 3, 4, 5, 6\}$. Defined R on A by $R = \{(x+y): x+y \text{ is a divisor of } 20 \}$. Find reflexive closure of R.
 - (f) Simplify $(a \lor b) \land \sim a \land \sim b$.
 - (g) Kruskals method is for finding
 - (h) If (G,*) is an abelian group then $(ab)^2 = \dots$
 - What is the relation between number of vertices and number edges in a tree.
 - (j) Define a POSET.

Section B

20 marks (Each question is of 4 marks)

- 2. Find principal conjunctive normal form of $\sim [\sim (x \lor y) \lor (x \land y)]$ in three variables x, y, z.
- 3. Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

- Find the shortest path from a to g in graph(see fig 1) using Dijkstras algorithm.
- Simplify the circuit in (fig 2) and replace it by a simpler one. Show complete working.
- 6. Using Warshall's algorithm find transitive closure of $R = \{(1,2),(2,3),(3,4),(2,1)\}$, where R is relation on set $A = \{1,2,3,4\}$.

Section C

20 marks (Each question is of 10 marks)

.7. (i)Draw Hasse diagram of (D₂₄, /). Find its greatest and least element. (ii)Is (G,X) a group? Prove or disprove, where

$$G = \{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a, b \in \mathbb{R}, \text{ not both a \& b zero simultaneously.} \}$$

- and X denotes matrix multiplication.
- 8. Given 4 X 4 Adjacency matrix, given by

$$a_{ij} = \begin{cases} 1 & i+j \text{ is a multiple of 2 or 3, } i \neq j \\ 0 & \text{otherwise } \& i=j \end{cases}$$

- (i) Draw graph of G.
- (ii) Find complimentary graph of G. Is G self-complimentary? Justify.