

Kaunas University of Technology

Faculty of Informatics

Numerical Methods and Algorithms

Engeneering Project 1

Student name, surname, academical group

Student Zahi El Helou, IFU-1

Position

Instructor KRIŠČIŪNAS Andrius

Part 1:

1. The functions f(x) and g(x):

Polynomial
$$f(x) = -0.63x^4 + 3.92x^3 - 7.95x^2 + 5.50x - 0.53$$

Transcendantal $g(x) = \sin(x) (x 2 - 1)(x + 3) - 0.9; -10 \le x \le 10$

Methods:

Number	Method
1	Bisection
2	Chords
3	Newton
4	Quasi-Newton

Solving the nonlinear equations:

a) polynomial f(x) = 0; b) Transcendental function g(x) = 0.

The calculations to get range for roots of function f(x):

We should multiply by -1 and our function would be:

$$f(x) = 0.63x^4 - 3.92x^3 + 7.95x^2 - 5.50x + 0.53$$

In order to start, we have to find the region of interest as well as the rough estimation:

Region of interest:

$$1 + 7.95 / 0.63 = 13.62$$

Rough estimation

Precise estimation Rpos and Rneg

$$Rpos = 1 + \sqrt[k]{\frac{B}{a^n}} = 1 + \sqrt[3]{\frac{5.5}{0.63}} = 3.05$$

$$Rneg = 1 + \sqrt[k]{\frac{B}{a^n}} = 1 + \sqrt[4]{\frac{0}{0.63}} = 1 + 0 = 1$$

So, in that case we have:

```
min(-13.6; -1) \le X \le max(3.05; 13.6)
```

In conclusion, the interval where the roots might be represent more precisely:

```
-1 \le x \le 3.05
```

2. Plotting and visualizing the functions f(x) and g(x)

F(x)

```
import numpy as np
import matplotlib.pyplot as plt
import math
```

Defining fx as function

```
def fx(x):
return -0.63*x**4 + 3.92*x**3 - 7.95*x**2 + 5.50*x - 0.53
```

Getting y values

```
dx= 0.1 #discretization step
x=np.arange(-1, 3.05+dx, dx)
y = fx(x)
```

Grafical results reperesentation

```
pit.title('-0.63x^4 + 3.92x^3 - 7.95x^2 + 5.50x - 0.53')
pit.xlabel("x");pit.ylabel("y")
pit.plot(x, y, 'b')
#pit.xlim({-10, 10})
#pit.ylim({-100, 20})
pit.grid()
```



```
import numpy as np
import matplotlib.pyplot as plt
import math
```

Defining fx as function

```
def fx(x):
  return np.sin(x) * (x**2 - 1) * (x + 3) - 0.9
```

Getting y values

```
dx = 0.1 # discretization step
x = np.arange(-10, 10 + dx, dx)
y = fx(x)
```

Grafical results reperesentation

```
plt.title(' sin(x) (x^2 - 1)(x + 3) - 0,9')
plt.xlabel("x");plt.ylabel("y")
plt.plot(x, y, 'b')
splt.xlim([-10, 10])
splt.ylim([-100, 10])
plt.grid()
```


3. Root Isolation Intervals:

Intervals:

Root: [-0.000; 0.200] Root: [1.200; 1.400] Root: [2.000; 2.200] Root: [2.600; 2.800]

Intervals:

Root : [1.100 ; 1.400] Root : [2.900 ; 3.200]

4. The root values with acceptable tolerance (choose arbitrarily) using methods provided in Tables 1, 2

Bisection	Initial guess	defined root	Iterations count	Validation	Value of the function in calculated root
f(x)	[-0.100; 0.200]	0.114160853624 34387	24	0.114161	-9.4314551724039 57e-09
	[1.100; 1.400]	1.296882617473 6026	23	1.2968	-2.3856754349793 62e-09
	[2.000; 2.300]	2.082095605134 964	23	2.0820	-6.4301164393043 56e-10
	[2.600; 2.900]	2.729083150625 229	20	2.7290	-8.0439181981972 75e-09
g(f)	[1.100; 1.400]	1.115146881341 9343	24	1.11514	-4.8443288269695 02e-09
	[2.900; 3.200]	3.124826246500 0156	24	3.12482	7.5536449317681 33e-09

Chords	Initial guess	defined root	Iter	Validation	Value of thefunction
			atio		in
			ns		calculated root
			cou		
			nt		
f(x)	[-0.100; 0.200]	0.11416085711084732	15	0.1141	3.937045911506232e-09
	[1.100; 1.400]	1.296882621982338	9	1.29688	-9.984155502351655e-09
	[2.000; 2.300]	2.083725447512516	4	2.08372	-4.988676138850678e-12
	[2.600; 2.900	2.7290831406975147	16	2.7290	7.110832145329482e-09
g(f)	[1.100; 1.400]	1.1151468808487701	11	1.11514	-9.23415510722947e-09
	[2.900; 3.200]	3.124826246572521	8	3.12482	3.719185848183315e-09

NEWTON	Initial guess	defined root	Iterations	Validation	Value of the
			count		function in
					calculated root
f(x)	2.000	2.086206896551 7238	3	2.0862	0.0025919021223 51941
	2.500	3.885	8	3.885	-12.813324347393 765
	4.500	3.841439308367 364	8	3.84143	-11.693353413215 553
	1.400	1.278889457523 0254	4	1.27888	0.0153789149975 8648
g(f)	2.000	1.131694690872 3453	4	1.13169	0.1498671479620 8556
	2.500	7.136458753928 679	5	7.13645	380.41714294429 767
	3.000	0.932345772815 033	4	0.9323	3.1421861358869 645
	3.500	3.199599249212 919	5	3.19959	-4.2200821499457 39

Quasi- Newton	Initial guess	defined root	Iter atio ns	Validation	Value of thefunction in calculated root
			cou		
			nt		
f(x)	2.000	2.086206962817795	3	2.08620	0.002591943936335328
	2.500	3.8850240947253027	8	3.8850	-12.813963853468133
	3.000	2.7468445538457305	5	2.7468	-0.028394282384403224
	3.500	3.1365843830297298	7	3.1365	-1.505269251963919

g(f)	2.000	1.1316951765670218	4	1.13169	0.149871622031846
	2.500	7.136496281957376	5	7.13649	380.43513369510174
	3.000	3.1421862916198506	4	3.142186	-0.9323542649043278
	3.500	3.199599096135544	5	3.1995990	-4.220072964143578

Part 2

Task number	m, kg	t_1 , s	v_1 , m/s
6	90	3,5	30

$$v(t) = \frac{mg}{c} \left(1 - e^{-\left(\frac{c}{m}\right)t} \right)$$


```
import math

# given function

def fx(x):
    return 30 - (x * 90 * 9.8 / x) * (1 - np.exp(-(x / 90) * 3.5))
```

Qiasi Newton

```
def dfx(x):
  h = 1e-6
  return (fx(x) - fx(x-h)) / h
```

```
eps = 1e-8
xi = xs
while np.abs(fx(xi)) > eps:
    xi_bef = xi

    xi = xi - (1 / dfx(xi)) * fx(xi)

print("Fx = " + str(fx(xi)) + " / x = " + str(xi))

plt.xlabel("x"); plt.ylabel("y"); plt.plot(x, y, 'b'); plt.grid()
plt.plot([xi], [0], 'or')
plt.plot([xi_bef, xi], [fx(xi_bef), 0], 'r-')
plt.plot([xi, xi], [0, fx(xi)], 'g--')
plt.show()
```


Initial guess	defined root	Iterations	Validation	Value of the
		count		function in
				calculated root

1 0.865544180658 2909	3	0.865544	0.8059279401449 899
--------------------------	---	----------	------------------------