Importing the Dependencies

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
```

Data Collection & Analysis

loading the data from csv file to a Pandas DataFrame
insurance_dataset = pd.read_csv('/content/insurance.csv')

first 5 rows of the dataframe insurance_dataset.head()

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

number of rows and columns
insurance_dataset.shape

```
(1338, 7)
```

 $\mbox{\tt\#}$ getting some informations about the dataset insurance_dataset.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
# Column Non-Null Count Dtype
0 age
              1338 non-null int64
              1338 non-null object
1338 non-null float64
1
    sex
2
    bmi
3
    children 1338 non-null int64
    smoker
              1338 non-null
                              object
    region
              1338 non-null
              1338 non-null
    charges
                              float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

Categorical Features:

- Sex
- Smoker
- Region

```
# checking for missing values
insurance_dataset.isnull().sum()
```

```
age 0 sex 0 bmi 0 children 0 smoker 0 region 0 charges 0 dtype: int64
```

Data Analysis

statistical Measures of the dataset
insurance_dataset.describe()

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

```
# distribution of age value
sns.set()
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['age'])
plt.title('Age Distribution')
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: warnings.warn(msg, FutureWarning)

insurance_dataset['sex'].value_counts()

male 676 female 662

Name: sex, dtype: int64

```
# bmi distribution
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['bmi'])
plt.title('BMI Distribution')
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: warnings.warn(msg, FutureWarning)

Normal BMI Range --> 18.5 to 24.9

```
# children column
plt.figure(figsize=(6,6))
sns.countplot(x='children', data=insurance_dataset)
plt.title('Children')
plt.show()
```


insurance_dataset['children'].value_counts()

```
0 574
1 324
2 240
3 157
4 25
5 18
Name: children, dtype: int64
```

```
# smoker column
plt.figure(figsize=(6,6))
sns.countplot(x='smoker', data=insurance_dataset)
plt.title('smoker')
plt.show()
```


insurance_dataset['smoker'].value_counts()

no 1064 yes 274

Name: smoker, dtype: int64

```
# region column
plt.figure(figsize=(6,6))
sns.countplot(x='region', data=insurance_dataset)
plt.title('region')
plt.show()
```


insurance_dataset['region'].value_counts()

southeast 364 northwest 325 southwest 325 northeast 324

Name: region, dtype: int64

distribution of charges value
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['charges'])
plt.title('Charges Distribution')
plt.show()

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: warnings.warn(msg, FutureWarning)

Data Pre-Processing

Encoding the categorical features

```
# encoding sex column
insurance_dataset.replace({'sex':{'male':0,'female':1}}, inplace=True)
3 # encoding 'smoker' column
insurance_dataset.replace({'smoker':{'yes':0,'no':1}}, inplace=True)
# encoding 'region' column
insurance\_dataset.replace(\{'region':\{'southeast':0,'southwest':1,'northeast':2,'northwest':3\}\}, inplace=True)
Splitting the Features and Target
X = insurance_dataset.drop(columns='charges', axis=1)
Y = insurance_dataset['charges']
print(X)
              sex
                       bmi
                           children
                                      smoker
                                              region
                1 27.900
     0
           19
                                   0
     1
           18
                 0
                    33.770
                                                   0
     2
           28
                0 33.000
     3
            33
                    22.705
     4
           32
                0 28.880
                                   0
                                                   3
                                           1
               0 30.970
    1333
          50
                                   3
                                          1
                                                   3
     1334
                 1 31.920
                                   0
           18
                                           1
                                                   2
                1 36.850
     1335
           18
                                   0
                                           1
                                                   0
     1336
           21
                 1 25.800
                                   0
                                           1
                                                   1
    1337
          61
                1 29.070
                                   0
                                           0
     [1338 rows x \ 6 \ columns]
print(Y)
     0
            16884.92400
             1725.55230
     1
     2
             4449,46200
     3
            21984.47061
     4
             3866.85520
            10600.54830
     1333
     1334
             2205.98080
     1335
              1629.83350
     1336
              2007.94500
```

Splitting the data into Training data & Testing Data

Name: charges, Length: 1338, dtype: float64

29141.36030

1337

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
     (1338, 6) (1070, 6) (268, 6)
Model Training
Linear Regression
# loading the Linear Regression model
regressor = LinearRegression()
regressor.fit(X_train, Y_train)
     LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
Model Evaluation
# prediction on training data
training_data_prediction =regressor.predict(X_train)
# R squared value
r2_train = metrics.r2_score(Y_train, training_data_prediction)
print('R squared vale : ', r2_train)
     R squared vale : 0.751505643411174
# prediction on test data
test_data_prediction =regressor.predict(X_test)
# R squared value
r2_test = metrics.r2_score(Y_test, test_data_prediction)
print('R squared vale : ', r2_test)
     R squared vale : 0.7447273869684077
Building a Predictive System
input_data = (31,1,25.74,0,1,0)
# changing input_data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)
# reshape the array
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
prediction = regressor.predict(input_data_reshaped)
print(prediction)
print('The insurance cost is USD ', prediction[0])
     [3760.0805765]
     The insurance cost is USD 3760.0805764960587
```