A Mathematical Introduction to Data Science

November 25, 2014

Homework 5. Perron-Frobenius and Fiedler Theory

Instructor: Yuan Yao Due: Tuesday November 18, 2014

The problem below marked by * is optional with bonus credits.

1. PageRank: The following dataset contains Chinese (mainland) University Weblink during 12/2001-1/2002,

http://www.math.pku.edu.cn/teachers/yaoy/Fall2011/univ_cn.mat

where $rank_cn$ is the research ranking of universities in that year, $univ_cn$ contains the webpages of universities, and W_cn is the link matrix from university i to j.

- (a) Compute PageRank with Google's hyperparameter $\alpha = 0.85$;
- (b) Compute HITS authority and hub ranking using SVD of the link matrix;
- (c) Compare these rankings against the research ranking (you may consider Kendall's τ distance as the number of pairwise mismatches between two orders to compare different rankings);
- (d) Compute extended PageRank with various hyperparameters $\alpha \in (0,1)$, investigate its effect on ranking stability.

For your reference, an implementation of PageRank and HITs can be found at http://www.math.pku.edu.cn/teachers/yaoy/Fall2011/pagerank.m

2. Perron Theorem: Assume that A > 0. Consider the following optimization problem:

$$\max \delta
s.t. \quad Ax \ge \delta x
x \ge 0
x \ne 0.$$

Let λ^* be optimal value with $\nu^* \geq 0$, $1^T \nu^* = 1$, and $A \nu^* \geq \lambda^* \nu^*$. Show that

- (a) $A\nu^* = \lambda^*\nu^*$, i.e. (λ^*, ν^*) is an eigenvalue-eigenvector pair of A;
- (b) $\nu^* > 0$:
- *(c) λ * is unique and ν * is unique;

- *(d) For other eigenvalue λ ($\lambda z = Az$ when $z \neq 0$), $|\lambda| < \lambda^*$.
- 3. Absorbing Markov Chain:

Let P be a row Markov matrix on n+1 states with non-absorbing state $\{1,\ldots,n\}$ and absorbing state n+1. Then P can be partitioned into

$$P = \left[\begin{array}{cc} Q & R \\ 0 & 1 \end{array} \right]$$

Assume that Q is primitive. Let N(i,j) be the expected number of jumps starting from nonabsorbent state i and hitting state j, before reaching the absorbing state n+1. Show that

- (a) $N(i,i) = 1 + \sum_{k} N(i,k)Q(k,i)$, for i = 1, ..., n;
- (b) $N(i,j) = \sum_{k} N(i,k)Q(k,j)$, for $i \neq j$;
- (c) These identities together imply that $N = (I Q)^{-1}$, called the fundamental matrix;
- (d) Show that the probability of absorption from state i, B(i) (i = 1..., n), is given by B = NR.