- Caraduação

Apresentação:

Nome: Diogo Alves

Cargo: Professor

Área: BD – Modelagem, SQL, NoSQL

Afins: Big Data, BI, DW, Programação...

E-mail: profdiogo.alves@fiap.com.br

Analista de Sistemas Sênior – Atlantic Solutions

Assuntos – 1º Semestre

- Introdução e conceitos gerais de Banco de Dados
- Conceito e propriedades de Banco de Dados
- Sistema de Gerenciamento de Banco de Dados Relacional (DBMS)
- Modelagem Conceitual de dados
- Modelagem Lógica de dados
- Modelagem Física de dados
- Modelo Entidade Relacionamento (MER)

Banco de dados

Uma coleção de dados bem **projetados**, **organizados** e cuidadosamente **gerenciados**. Um banco de dados é geralmente controlado por um sistema de gerenciamento de banco de dados (DBMS).

Projeto de Banco de dados:

Projetar um banco de dados significa utilizar um conjunto de técnicas, processos e notações que capturem os requisitos de dados, os requisitos estruturais para armazenamento dos dados e os requisitos físicos. Em essência, projetar um banco de dados envolve a criação de **modelos de dados**

Elementos de sistemas de bancos de dados

• Hardware

Elementos de sistemas de bancos de dados

- Hardware
- Software

Elementos de sistemas de bancos de dados

- Hardware
- Software
- Peopleware

SGBD

Quais os principais componentes do banco de dados?

Linha do tempo

Prog. 00 BD OO

BD Graph

Empresas BI ER 1980 1990 1960 1970 2000

Ted Codd -**IBM**

Honeywell Information Systems Inc SQL

Oracle 2 IBM DB2

DBase III Paradox **SQL** Server MySQL

NoSQL

2010

Abstração de dados

Nível de visão do usuário:

são as partes do banco de dados que o usuário tem acesso de acordo com a necessidade individual de cada usuário ou grupo de usuários.

Nível conceitual:

define quais os dados que estão armazenados e qual o relacionamento entre eles.

Nível físico:

é o nível mais baixo de abstração, em que define efetivamente de que maneira os dados estão armazenados.

Abstração de dados

Nível visão do usuário

Armazenamento

SGBD

Por Que Usar Um Sistema de Gerenciamento de Banco de Dados Relacional (DBMS)

- Reduzir Redundância
- Evitar Inconsistência
- Compartilhamento de Dados
- Padronização
- Restrições de Segurança
- Manter a Integridade IR e IT
- Independência dos dados

- A- Atomicidade
- C- Consistência
- I Isolamento
- D Durabilidade

Atualmente as aplicações suportam vários usuários e sendo assim o banco de dados tem que garantir a confiabilidade nas transações, haja vista que muitas podem ocorrer de forma concorrente.

ACID é um conceito que se refere às quatro propriedades de transação de um sistema de banco de dados: **A**tomicidade, **C**onsistência, **I**solamento e **D**urabilidade

A- Atomicidade

Em uma transação envolvendo duas ou mais partes de informações discretas, ou a transação será executada totalmente ou não será executada, Ou seja, após o término de uma transação (commit ou rollback), a base de dados não deve refletir resultados parciais da transação.

C- Consistência

A transação cria um novo estado válido dos dados ou em caso de falha retorna todos os dados ao seu estado anterior que a transação foi iniciada. uma transação deve respeitar as regras de integridade dos dados (como unicidade de chaves, restrições de integridade lógica, etc.)

I - Isolamento

Uma transação em andamento mas ainda não validada deve permanecer isolada de qualquer outra operação, ou seja, garantimos que a transação não será interferida por nenhuma outra transação concorrente. Por exemplo, no mesmo instante é possível que um usuário tente alterar um registro e outro usuário esteja tentando ler este mesmo registro.

D - Durabilidade

Dados validados são registados pelo sistema de tal forma que mesmo no caso de uma falha e/ou reinício do sistema, os dados estão disponíveis em seu estado correto. Para se defender contra a perda de energia, as transações (ou seus efeitos) devem ser registradas em uma memória não volátil.

Modelo de Entidade-Relacionamento (MER)

Um modelo E-R é uma maneira sistemática de descrever e definir um processo de negócio. O processo é modelado como componentes (entidades) que são ligadas umas as outras por relacionamentos que expressam as dependências e exigências entre elas, Entidades podem ter várias propriedades (atributos) que os caracterizam.

Modelo de Entidade-Relacionamento (MER)

Dr. Peter Chen, em 1976, propôs o modelo Entidade-Relacionamento (ER) para projetos de banco de dados. Isso deu uma nova e importante percepção dos conceitos de modelos de dados. O modelo ER proposto pelo Dr. Peter possibilitava ao projetista concentrar-se apenas na utilização dos dados sem se preocupar com estrutura lógica de tabelas.

Levantamento e Análise de Requisitos **Projeto Conceitual Projeto Lógico Projeto Físico**

Levantamento e Análise de Requisitos

É um processo que serve para capturar as necessidades do cliente antes de projetar o banco de dados.

Projeto Conceitual

Esquema de dados abstratos que descreve a estrutura de um banco de dados de forma independente de um SGBD.

Projeto Lógico

Esquema de dados que representa a estrutura de dados de um banco de dados em acordo com o modelo de dados de um SGBD.

Projeto Físico

É a parte final do projeto de banco de dado, nesta etapa define-se detalhes técnicos da implementação do banco de dados.

Referências e leituras recomendadas

DATE, Christopher J. **Introdução a sistemas de banco de dados.** Rio de Janeiro: Campus, 2000.

HEUSER, C. A. **Projeto de banco de dados.** 6. ed. São Paulo: Editora Bookman, 2009.

KORTH, Henry F.; SUDARSHAN, S.; SILBERSCHATZ, Abraham. **Sistema de banco de dados.** São Paulo: Makron Books, 1999.

https://pt.wikipedia.org/wiki/ACID Acessado em 10/03/2023

Obrigado!

profdiogo.alves@fiap.com.br