ENVOY COMMANDER

Group 32

Andrew Cuevas
Computer Engineering

Anthony Soffian Electrical Engineering

Yash Gharat Computer Engineering

Team Members

Dr. Chinwendu Enyioha Project Advisor

Problem Statement

There are very few collaborative model-free learning algorithms readily accessible for study

- Distributed ML (Machine Learning) implementations are expensive
- Communication model
 - Real World tasks are cooperative
 - Data is noisy
- Simulated Controlled environment
 - "Secret Simon Says"

Motivations

Goals

Manifest Centralized Learning

Practicality of Model-Free Learning

Potential Application in Research

Principles

Affordability

Scalability

Expansibility

Proposed Solution

- Project Summary
 - 3 Main Components
 - Commander
 - Dummies
 - Environment
 - Assumptions
 - Uniform sensor noise
 - Single observations
 - Discreteness
 - Unlimited resources
- "Secret Simon Says"

Sample Visualization

Requirement Specifications

#	Requirement	Specification
1	Episode length should scale linearly	30 sec. per room
2	Sufficiently small project dimensions	3.5 x 3.5ft.
3	Efficient environmental materials usage	< 3ft² per room
4	Dummy Agents should function for sufficient time to conduct learning process	2 Hrs.
5	Environment runtime should exceed dummy agent runtime	> 2 Hrs.
6	Affordable project budget scaled to room number	< \$500
7	Project should have enough rooms to demonstrate collaborative learning	> 2 rooms
8	Project should display significant learning	50 Episodes

Purpose

- Central Learning Agent
 - Model-free Q-learning
- Receives inputs from dummy agent
 - Processes observations
 - Communicates optimized decisions to the dummy agent
- Receives inputs from environment
 - Process rewards for later optimization
 - Learns from environment

Hardware Decisions

MCU	RPi 4+B	RPi 3	Jetson Nano
Price	\$75	\$30	\$99
Packaged Wireless Communication Protocols	BT5 + Wi-Fi	BT4.2 + Wi-Fi	None
RAM	8 GB DDR4	1 GB DDR2	4 GB DDR 4
Prior Experience	Good	Good	None

Software Decisions

- Python
 - Library availability
 - NumPy
 - Math
 - Familiarity

- Bluetooth vs. Wi-Fi
 - Short communication range
 - Cost tradeoff
 - Network Ability

Purpose

- Physical interface to simulate environment
- Reward Assignment
 - Omnipotent
- Presents Slipperiness
 - Things can happen even if they aren't supposed to
 - Affects learning rate
- Modular relative to dummy agents

Environment Physical Design

- Key Design Features
 - Anti-interference positioning
 - Button positioning for servo efficiency

Environment Hardware Components

Components List

MCU: ATMEGA168A-PU

Bluetooth Module: HC05

VR(s): Buck/Boost and Linear

Power Supply: 3AA/4AA

Interface: 12 Adafruit LED Buttons

MCU: ATMEGA168A-PU

Purpose: Integrated with

Environment's components, which includes the LED buttons and bluetooth.

Specifications

Operating Voltage	1.8V/5.5 V	Flash Memory	16KB
I/O Pins (D/A)	23 (14/6)	RAM	1KB
Clock Speed	20MHz	Price	\$2.88

Goal: Scalability Considerations

LED SN74HC595 Shift Register:

- Daisy-Changed Design utilized less pins used for multitude of controlled LED outputs
- Capable of 16 buttons (4 rooms) in current iteration.

Parallel Button Detection Design:

- Rooms run in sequence to know which button is being pressed
- Possible since only focused on one room at a time.

ENVIRONMENT LED/BUTTON SYSTEM (x3)

3 Sets of these 4 Buttons/LEDS

Environment LED Buttons System Focus

Goal: Used to communicate fixed reward that is known by Environment PCB based on room position in game.

HC-05 Module:

Used for reliability and familiarity, as well as cheap and effectiveness

- Serial Communications
- 2.45Hz frequency band

Environment: Power Supply

Goal: 5V of Output at 250mA

3AA Power Supply: Regulated with buck/boost converter to 5.5V → LVR to 5V at 250mA

- Pre-signal processes include the HC-05(5V-30mA)
- Post signal processes include the LED buttons (5V-40mA), and MCU(5V-50mA)

Switch included for battery supply

MC34063ABN:

- Raise to 5.5 Volts
- Buck/Boost

MCP1700-5002E:

- Drops Vo to 5V
- LVR

Voltage regulation from LVR frequency regulation produces a clean signal and with a reduced noise due to PSRR matching

Prevents over-voltage

Difficulties:

- New to PCB design
- Difficult to test voltage regulator designs

Specifications for MC34063ABN

Min/Max Input/Output	3V/40V 1.25V/38V
Max Current Output	1.5A
Frequency Switching	100Hz - 100kHz
Quiescent Current	2.5mA
Price	\$0.97

Specifications for MCP1700-5002E/TO

Min/Max Input/Output	2.3V/6V 1.2V/5V
Max Current Output	250mA
Quiescent Current	4uA
PSRR	44 dB for ~100kHz
Price	\$0.46

Environment Voltage Regulators

Environment PCB Schematic

ENVIRONMENT LED/BUTTON SYSTEM (x3)

3 Sets of these 4 Buttons/LEDS

EnvironmentSoftware Components

- "Secret Simon"
 - $1 \rightarrow 2 \rightarrow 3$
 - Cascading game design
- Benefits
 - Simple and Discrete
 - Linear and Scalable
- Scalable using code and bitshift led control

Dummy Agents Purpose

Receive and Execute Commands

Transmit Observations

Scalability and Standardized

DA Physical Design

- Linear actuators (rack and pinion)
 - Travel distance of 3 inches from center
- 216 in³ constraint (6 inch cube)
- Wood construction to cut costs

DA Hardware Components

- Dual servos
 - Continuous vs non-continuous
 - Saves power and space
- Photoresistors
 - vs. photodiodes
 - Noise and sensitivity
 - Thresholding
- HC-05
- Power supply

MCU: ATMEGA168PA-AU
Purpose: Same MCU as
Environment, but with added
features of Servos and

Photoresistors.

Specifications

Operating Voltage	1.8V/5.5V	Flash Memory	16KB
I/O Pins (D/A)	20 (14/6)	RAM	1KB
Clock Speed	20MHz	Price	\$2.05

DA: Power Supply Changes

Specifications for MCP1827-5002E/AT

Min/Max Input/Output	2.3V/6V 0.8V/5V
Max Current Output	1.5A
Quiescent Current	220uA
PSRR	60 dB for ~80kHz
Price	\$1.47

Similar Voltage Supply

Using 1.5A LVR

MCP1827-5002E/AT: Used due to issue with servo power draw

- Needed separate power when testing with development Arduino Nano
- Absence causes strange HC-05 behavior

DA PCB Schematic

- Simple functionality to maintain scalability
 - Transmit Observations
 - Receive Command, Execute
- Interrupt when detecting a light

Description	Price
Raspberry Pi Model 4	\$75.00
MCU (10)	\$40.00
FS90R servos (6)	\$23.00
HC05 Modules (4)	\$18.00
Arduino Nano Development Boards (6)	\$36.00
Project Wood	\$16.00
GL55xx Photoresistor Set	\$12.00
74LSxxx/74HCxxx MUX Set	\$20.00
Miscellaneous PCB Components (Resistors, Material, etc.)	\$65.00
PCB Order(s)	\$100.00
Adafruit Button Set	\$27.00
Current Total	\$432.00
Estimated Total	~\$500.00

Previous Design Difficulties

- Building the maze
 - How do we track progress in the maze?
 - Toll booth idea
 - Different colors along the way
 - Camera tracking
 - Continuous rewards
 - How large should it be?
- Field Agent movement
 - Can't precisely control movement in maze
 - Communication ranges
 - Sensor noise
 - Power issues
- Too many sub projects, low budget, low time

Current Design Difficulties

- Open Socket Bluetooth server
 - Scalability purposes
 - Python Bluetooth libraries on RPi 4 are buggy, won't accept connection
 - Possible need of threading
- Communication network is still not concrete enough.
 - Asynchronous or Synchronous?

Remaining Steps

Finish Commander Code

Construct Environment

Construct Dummy Agent