

Discrete Mathematics 2024

Student: Jeferson Morales Mariciano < jmorale@ethz.ch>

Assignment 2 Due date: Thursday, 3 October 2024, 23:59

1. Exercise 2.3, Simplifying a Formula (\star)

(8 Points)

Consider the propositional formula

$$F = ((B \lor C) \to ((A \lor \neg B) \land C)) \lor (A \land \neg C)$$

Give a formula G that is equivalent to F, but in which each atomic formula A, B, and C appears at most once. Prove that $F \equiv G$ by providing a sequence of equivalence transformations with at most 12 steps.

Expectation. Your proof should be in the form of a sequence of steps, where each step consists of applying the definition of \to (that is $F \to G \equiv \neg F \lor G$), one of the rules given in Lemma 2.1 of the lecture notes 1 , or one of the following rules: $F \land \neg F \equiv \bot$, $F \land \bot \equiv \bot$, $F \lor \bot \equiv F$, $F \lor \neg F \equiv \top$, $F \land \top \equiv F$, and $F \lor \top \equiv \top$. For this exercise, associativity is to be applied as in Lemma 2.1.3. Each step of your proof should apply a *single* rule *once* and state *which* rule was applied.

The following 12 steps show the equivalence between F and G, where $G := \neg B \lor A$.

$$F = ((B \lor C) \to ((A \lor \neg B) \land C)) \lor (A \land \neg C)$$

$$F = \left(\neg (B \lor C) \lor ((A \lor \neg B) \land C) \right) \lor (A \land \neg C) \qquad \text{def of } \to$$

$$F = \left((\neg B \land \neg C) \lor ((A \lor \neg B) \land C) \right) \lor (A \land \neg C) \qquad \text{def De Morgan}$$

$$F = [(\neg B \land \neg C) \lor (C \land (A \lor \neg B))] \lor (A \land \neg C)$$

$$F = [(\neg B \land \neg C) \lor (C \land A) \lor (C \land \neg B)] \lor (A \land \neg C)$$

$$F = (\neg B \land \neg C) \lor (C \land A) \lor (C \land \neg B) \lor (A \land \neg C)$$

$$F = [\neg B \land (\neg C \lor C)] \lor [A \land (C \lor \neg C)]$$

$$F = (\neg B \land T) \lor (A \land (C \lor \neg C))$$

$$F = (\neg B \land T) \lor (A \land T)$$

$$F = \neg B \lor A$$

$$G := \neg B \lor A \quad \text{Q.E.D.}$$

¹Lemma 2.1 states rules involving propositional symbols, but you may apply those rules at the level of formulas (see Section 2.3.5 of the lecture notes).