Hvordan lage svart te?

Teknisk rapportmal NTNU Studenter Trondheim, vår 2024

Kandidater (etternavn, fornavn): Helle Augland Grasmo					
DATO: 2024-02-21	Fagkode: IELET2112	Gruppe (navn/nr) Not applicable / 0	Sider / Bilag: 13 / 0	BIBL. NR: N/A	

FAGLÆRER(E):

Dominik Osinksi

TITTLEL:

Hvordan lage svart te?

SAMMENDRAG:

En veldig god oppsummering

I dette prosjektet skal det lages en sensor som brukes til å måle temperaturen for å lage en perfekt kopp med te.

Innhold

1 Introduksjon	4
2 Teori	5
2.1 Spenningsdeling	5
2.2 Framgangsmåte ish. pr nå	6
2.3 Steinhart-Hart formelen	6
3 Maskinvare	
4 Programvare	8
5 Eksperimenter og resultater	<u>C</u>
6 Konklusjon	
7 Tilbakemeldinger	
7.1 Hva har vi lært?	
7.2 Forslag til prosjektendringer	
Bibliografi	
9 Vedlegg	13

1 Introduksjon

hensikten med Prosjektet

Prosjekt går ut på å hvordan man lager best sensorer. liten tanktegang om hvordan man måler, hva slags feilkilder og litt lingnenge. Laere å lese datablad

For å lage den beste koppen med te er det ulike faktorer som spiller inn. Temperaturen er en av de. Ved å lage en sensor som kan måle temperaturen, kan man finne ut når man skal legge i teposen eller ikke. Målet er å laere hva man må tenke på når man lager ulike typer målingsystemer. For eksempel, hvilken sensor, hvor skal sensoren skal vaere, hva feilkilder kan oppstå og lingnenge. I dette prosjektet har jeg laget et målesystem ved bruk av en MyDAQ, thermistor og en 10k motstand. Med dette systemet skal jeg måle temperaturen i en kopp med te for å finne ut når den er ferdig.

2 Teori

Forklaring av de fysiske prinsippene av metoden. teori

Bruker steinhart-hart formel. spenningsdeling

Stein

For å måle motstanden til thermistoren, så brukte vi matte for å regne den ut. Det vi vet er at strømmen igennom den ene motstanden er den samme som igjennom thermistoren. Det gjør at vi kan bruke sammenhengen

$$I_1 = I_2 = I_{\text{tot}} \tag{1}$$

$$\frac{U_1}{R_1} = \frac{U_2}{R_2} = I_{\rm tot} \tag{2}$$

Ved å regne ut med hensyn på r_1 så vil vi få formelen

$$R_1 = \frac{U_1}{U_2} \cdot R_2 \tag{3}$$

Ved å måle spenningen over begge motstandene så vil vi få en mer presis måling fordi vi vet ikke om mydaq en sender en spenning på 5v eller om 4.8v etc. Så får å få en mer nøyaktig måling måles det over begge. Med hjelp av mydaq så får man mulighet til å måle motstanden i R_2 det gjør det mer presist og man kan få en mer presis målign og beregning av R_1

2.1 Spenningsdeling

For å regne ut temperaturen, trenger man å finne resistansen til thermistoren, $R_{\rm thermistor}$. Det er mange ulike måter å regne ut dette på. Når man velger formel må man tenke på de ulike feilkildene som kan oppstå. Man vet ikke om MyDAQ-en gir ut en fast spenning på 5V, den kan gi ut en spenning på 4.8V. Siden MyDAQ-en har mulighet til å måle flere spenningskilder enn bare en, så så kan man sette thermistoren $R_{\rm thermistor}$ og motstanden R_1 i serie. Dette gjør at man kan måle presist spenningen over begge, og bruke det til å regne ut en nøyaktig $R_{\rm thermistor}$.

 R_1 er ikke nødvendig vis presist den oppgitte motstandsverdien, det er ofte noen prosentvise forskeller. For å gjøre utregningene så presise som mulig, bruker man et multimeter til å måle resistansen i motstanden.

Ved at de er i sereie, gjør at strømmen som går igjennom motstandene er den samme. Det gir formel 4

$$I_{\text{tot}} = I_{\text{thermistor}} = I_1 \tag{4}$$

Ved bruk av Ohms lov, formel 5

Teori Spenningsdeling

$$U = R \cdot I \tag{5}$$

Kan man regne formel 4 med hensyn på motstand og spenning.

$$\frac{U_{\text{thermistor}}}{R_{\text{thermistor}}} = \frac{U_1}{R_1} \tag{6}$$

Så skal vi regne omformulere formelen med hensyn på motstanden i thermistoren.

$$R_{\rm thermistor} = \frac{U_{\rm thermistor}}{U_2} \cdot R_2 \tag{7}$$

2.2 Framgangsmåte ish. pr nå.

Kan bruke sammenhengen $u_1/r_1 = u_2/r_2 = I_{tot}$ pg vi måler spenningne over begge u. Hvis vi ikke hadde gjort det så hadde det bare vært basert på u_tot som ikke er helt presis pg

Bruker Steinhart-Hart equation https://en.wikipedia.org/wiki/Steinhart%E2%80%93 Hart_equation For å regne ut temperaturen. Fant de ulike delene ved å lete i databladet til thermistoren. Dette ble så bygget opp i labview.

Steinarthartsformula: T_0 = 25+273 R = den vi måler B = 3950 R-0 = 10k som alle målinger er i 25 grader

2.3 STEINHART-HART FORMELEN

Steinhart–Hart formelen er en formel som modellerer den elektriske motstanden i en semikondoktur i dens varierende temperatur. Ved bruk av denne formelen 8 kan vi regne hva temperaturen er rundt en thermistor ved å måle spenningen over den.

$$\frac{1}{T} = \frac{1}{T_0} + \frac{1}{B} \cdot \left(\ln \frac{R}{R_0} \right) \tag{8}$$

Der T er temperaturen rund thermistoren. T_0 er temperaturen alle målingene er tatt i, som ifølge datablad er 25° (((((KAksje at man fant ting i formelarket i))))) Dette gjør at man kan lese av databladet til at B er 3950.

 R_0 er motstanden i temperaturen 25° som er oppgitt i databladet som $10 \mathrm{k}\Omega$

R er den faktiske motstanden som blir målt. Ved bruk av formelen 7 kan vi få ut motstanden målt.

3 Maskinvare

Oppsettet jeg hade. Hovrdan ejg byggde sustemet. legg ved bilde. schematics. bulletpoints?

Hardware består av en MyDAQ, et breadboard, en 10k thermistor og en motstand på 10k.

Thermistoren er satt i serie med motstanden på breadboardet. Breadboardet er koblet til porter på MyDAQ-en. Ved hjelp av små ledninger, blir det koblet opp muligheten til å måle spenningen over komponentene.

Thermistoren blir på senere tidspunkt koblet på lange lednigner sånn at det skal bli enklere å legge den i en kopp.

MyDAQ-en blir koblet til en pc med instalerte LabVIEW programmer.

4 Programvare

short description of my program and its feautures.

I programmet er det brukt mange ulike ((((blokker???))))

5 Eksperimenter og resultater

 ${\it descriptions},\,{\it resutater},$

6 Konklusjon

Konklusjon

7 TILBAKEMELDINGER

- 7.1 Hva har vi lært?
- 7.2 Forslag til prosjektendringer

8 Bibliografi

9 Vedlegg