Apéndice A

Álgebra lineal y vectores aleatorios

A.1. Vectores aleatorios

A.1.1. Definiciones

Sean $X \in \mathbb{R}^p$ $Y \in \mathbb{R}^q$ vectores aleatorios, es decir X un vector columna cuyos componentes son variables aleatorias, se define valor esperado del vector X al vector columna: $E(X) = [E(x_1), \dots, E(x_p)]^T$ y matriz de covarianza entre X y Y:

$$Cov(X,Y) = \begin{bmatrix} cov(x_1, y_1) & \dots & cov(x_1, y_q) \\ \dots & \dots & \dots \\ cov(x_p, y_1) & \dots & cov(x_p, y_q) \end{bmatrix} = E[(X - \mu x)(Y - \mu y)^T]$$

o su equivalente: $Cov(X,Y) = E[XY^T] - \mu x \mu y$ Nótese que $Cov(X,Y) = Cov(Y,X)^T$ Si Y = X entonces se notará Cov(X) = Cov(X,X).

A.1.2. Estimación

Si se dispone de una muestra de tamaño n de los vectores aleatorios X e Y donde la muestra de X está dada por la matriz $n \times p$, Xobs, y la muestra de Y dada por la matriz $n \times q$, Yobs, las medias muestrales mx y my se obtienen promediando las columnas de las matrices:

$$mx = \frac{1}{n}L_n^TXobs \qquad my = \frac{1}{n}L_n^TYobs$$

donde se nota al vector de n unos así: $L_n^T = [\ 1 \ \ 1 \ \ . \ \ . \ \ 1 \].$

En cuanto a la covarianza muestral está dada por:

$$Cov(X,Y) = \frac{1}{n} Xobs^T Yobs - mx my^T$$

A.1.3. Propiedades

Si Ay Bson matrices constantes: $Cov(AX,BY) = ACov(X,Y)B^T$ si además X = Y

- \bullet $Cov(AX, BX) = ACov(X)B^T$
- \bullet $Cov(AX) = ACov(X)A^T$

Si $a \in \mathbb{R}^p$ y $b \in \mathbb{R}^q$ son vectores columnas constantes entonces:

- $V(a^TX) = a^T Cov(X)a \ge 0$
- $\mathbf{v} cov(a^TX, b^TY) = a^TCov(X, Y)b$
- Si X = Y entonces $cov(a^TX, b^TX) = a^TCov(X)b$

Si A, B son matrices $m \times p$ y $m \times q$ constantes entonces:

$$Cov(AX+BY) = ACov(X)A^{T} + BCov(Y)B^{T} + ACov(X,Y)B^{T} + BCov(Y,X)A^{T}$$

Un caso particular es el siguiente: si $a \in R^p$ y $b \in R^q$ son vectores columnas constantes entonces:

$$Cov(a^{T}X + b^{T}Y) = a^{T}Cov(X)a + b^{T}Cov(Y)b + 2a^{T}Cov(X, Y)b$$

Si u es una variable aleatoria y $c \in \mathbb{R}^n$, entonces:

$$Cov(u c) = Var(u)c c^T$$

Esta expresión se aplica a las proyecciones de un vector aleatorio $X \in \mathbb{R}^p$ sobre la dirección de un vector c, fijo. Si se supone c unitario ||c|| = 1 la proyección está dada por $Px = (c^T X)c$ entonces:

$$Cov(Px) = c c^T Var(c^T X) = c c^T (c^T Cov(X)c)$$

nótese que el último paréntesis es un número real.

Si c es vector propio de Cov(X) de valor propio λ , entonces: $Cov(Px) = c c^T \lambda c^T c$.

Y como ||c|| = 1 entonces $Cov(Px) = c c^T \lambda$.

A.2. Algunas fórmulas de derivación

A.2.1. Definición de gradiente

Si $x \in \mathbb{R}^n$ $z \in \mathbb{R}^q$ se define como gradiente del vector z(x), ∇z la matriz $n \times q$ donde la columna k está formada por el vector gradiente $\nabla z_k(x)$ del k componente de z.

Regla de la cadena Si $y \in \mathbb{R}^p$ es función de z, es decir y(z) entonces el gradiente de la función compuesta y(z(x)), respecto de x, está dado por:

$$\nabla_x y = \nabla_x z \times \nabla_z y$$

nótese que el producto es conforme: $n \times p = (n \times q)(q \times p)$.

Ejemplo: Si la matriz $A \pmod m \times q$ es constante entonces $\nabla Ax = A^T$; luego, si $y(x) \in R^q$ es función de x, por la regla de la cadena: $\nabla Ay(x) = \nabla_x y(x) \, A^T$.

A.2.2. propiedades:

Si
$$y(x) \in \mathbb{R}^q$$
 entonces $\nabla(z^T y) = \nabla z \ y + \nabla y \ z$

A.2.2.1. Corolarios

- si z = y entonces $\nabla(\|y\|^2) = 2\nabla y y$
- $\nabla (\left\|x\right\|^2) = 2x$
- si z = constante entonces $\nabla(z^T y) = \nabla y z$
- $\quad \blacksquare \ \nabla(z^Tx) = \ z$

- $\blacksquare \ Hessiano({\|Ax\|}^2) = 2A^TA$
- \blacksquare $Hessiano\left(x^{T}Ax\right)=A^{T}+A,$ si Aes simétrica: $Hessiano\left(x^{T}Ax\right)=2A$

A.3. Solución de un sistema frecuente en Kriging

Sea el sistema cuadrado ya particionado de n+m ecuaciones, n>m, de solución $\left(\begin{array}{c} \alpha \\ \lambda \end{array}\right)$:

$$\begin{array}{cccc}
C & F & = & e \\
F^T & 0 & = & g
\end{array}$$

con C (n * n) definida positiva, F n * m de rango m.

Este sistema tiene solución única, la matríz es invertible; si no lo fuera existiría una solución del sistema homogéneo:

$$C\alpha + F\lambda = 0$$
$$F^T\alpha = 0$$

con al menos uno de los dos, $\alpha \neq 0$ o $\lambda \neq 0$. Entonces por la primera ecuación si $\alpha = 0 \Rightarrow F\lambda = 0$ pero como F es de rango m, $\lambda = 0$.

Por otra parte si $\alpha \neq 0$, multiplicando la primera por α^T queda $\alpha^T C \alpha + \alpha^T F \lambda = 0$, pero por la segunda $\alpha^T F \lambda = 0$; luego, $\alpha^T C \alpha = 0$ que no puede ser ya que C es definida positiva.

Habiéndose probado la existencia, resolvamos el sistema. Multiplicando la primera por C^{-1} queda:

$$\begin{array}{cccc} I & C^{-1}F & = & C^{-1}e \\ F^T & 0 & = & g \end{array}$$

Multiplicando la primera por $-F^T$ y sumando a la segunda queda:

Luego, la solución del sistema está dada por

$$\lambda = inv(F^T C^{-1}F) (F^T C^{-1}e - g)$$

у

$$\alpha = C^{-1}e - C^{-1}F \lambda$$

$$\left\{ \begin{array}{rcl} \alpha & = & q \\ q & = & q \\ q & = & q \end{array} \right\}$$

Si F=L entonces $\lambda=\frac{L^TC^{-1}e-g}{L^TC^{-1}L}$ es un escalar. En cuanto a $\alpha=C^{-1}e-C^{-1}\lambda L$.