THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH4406

Introduction to Partial Differential Equations Homework 7

Due 3:30pm¹, November 15th (Friday), in-class.

Aim of this Homework: In this assignment you will compute and study solutions to different Cauchy/initial-value problems for various PDE in the whole real line by applying explicit solution formulae or appropriate ansatz. In addition, you will also derive a solution formula for Laplace's equation in the upper half-plane.

Reading Assignment: Read the following material(s):

(i) Section 3.3-3.4 of the textbook.

Instruction: Answer Problem 1-4 below and show all your work. In order to obtain full credit, you are NOT required to complete any optional problem(s) or answer the "Food for Thought", but I highly recommend you to think about them. Moreover, if you hand in the optional problem(s), then our TA will also read your solution(s). A correct answer without supporting work receives <u>little</u> or <u>NO</u> credit! You should always give precise and adequate explanations to support your conclusions. Clarity of presentation of your argument counts, so think carefully before you write.

Problem 1. Consider the heat equation on the whole line

$$\partial_t u - \frac{1}{6} \partial_{xx} u = 0 \quad \text{ for } -\infty < x < \infty \text{ and } t > 0$$

¹You are expected to submit your homework before the beginning of Friday lecture in-class.

subject to the initial data

$$u(x,0) = \phi(x)$$
 for $-\infty < x < \infty$,

where ϕ will be given differently in different parts below.

(i) Solve the initial value problem provided that

$$\phi(x) := e^{-4x}$$
 for $-\infty < x < \infty$.

Express your final answer without using any integrals.

(ii) Solve the initial value problem provided that

$$\phi(x) := \sin \frac{8x}{3}$$
 for $-\infty < x < \infty$.

Express your final answer without using any integrals.

(iii) Solve the initial value problem provided that

$$\phi(x) \coloneqq \begin{cases} e^{7x} & \text{if } x \ge 5\\ 0 & \text{if } x < 5. \end{cases}$$

Express your final answer in terms of the Gauss error function

$$\operatorname{erf}(z) := \frac{2}{\sqrt{\pi}} \int_0^z e^{-p^2} dp.$$

(iv) Solve the initial-value problem provided that

$$\phi(x) \coloneqq \begin{cases} 9 & \text{if } |x| < 2\\ -1 & \text{if } |x| \ge 2. \end{cases}$$

Express your final answer in terms of the Gauss error function erf as well.

Problem 2. Consider the following initial-value problem:

$$\begin{cases} \partial_t u - k \partial_{xx} u + \alpha \partial_x u + \beta u = 0, & \text{for } -\infty < x < \infty \text{ and } t > 0, \\ u|_{t=0}(x) = \phi(x), & \text{for } -\infty < x < \infty, \end{cases}$$
 (1)

where k is a given positive constant, α and β are given constants, and ϕ is a given initial data. To find an explicit solution formula for the initial-value problem (1), complete the following parts.

(i) Let

$$\begin{cases} y \coloneqq x - \alpha t \\ \tau \coloneqq t. \end{cases}$$

Rewrite (1) in terms of y and τ , and show that

$$\begin{cases} \partial_{\tau} u - k \partial_{yy} u + \beta u = 0 \\ u|_{\tau=0}(y) = \phi(y). \end{cases}$$

(ii) Define

$$v(y,\tau) \coloneqq e^{\beta \tau} u(y,\tau).$$

Prove that v satisfies

$$\begin{cases} \partial_{\tau} v - k \partial_{yy} v = 0 \\ v|_{\tau=0}(y) = \phi(y). \end{cases}$$

(iii) Solve the initial-value problem (1). Express the solution u in terms of x and t only.

Problem 3 (Polynomial Solutions to the Heat Equation). In this problem we aim at solving the following initial-value problem for the heat equation:

$$\begin{cases}
\partial_t u - k \partial_{xx} u = 0, & \text{for } -\infty < x < \infty \text{ and } t > 0, \\
u(x,0) = \phi(x) := \sum_{n=0}^N a_n x^n, & \text{for } -\infty < x < \infty,
\end{cases} \tag{2}$$

where k is a given positive constant, a_n 's are some given constants, and $a_N \neq 0$. Since the initial data ϕ is a degree N polynomial, one may guess that the solution u has the ansatz²

$$u(t,x) = \sum_{n=0}^{N} A_n(t)x^n,$$
 (3)

where the coefficient function $A_n:[0,\infty)\to\mathbb{R}$ will be determined below.

(i) Prove that if the solution u is of the form (3), then A_n 's satisfy the following system of ODE:

$$\begin{cases}
A'_{n} = k(n+1)(n+2)A_{n+2}, & \text{for } n = 0, 1, \dots, N-2, \\
A'_{N-1} = 0, & (4) \\
A'_{N} = 0, & (4)
\end{cases}$$

subject to the initial data

$$A_n(0) = a_n,$$
 for $n = 0, 1, \dots, N.$ (5)

- (ii) Assuming $N \ge 5$, compute A_N , A_{N-1} , A_{N-2} , A_{N-3} , A_{N-4} , and A_{N-5} via solving (4) and (5). Express your answers in terms of a_n 's and t only. In general, one may compute all A_n 's by solving (4) and (5). We leave this for the interested students.
- (iii) Solve the initial-value problem (2) provided that

$$\phi(x) \coloneqq x^6 - 7x^5 + 8.$$

Problem 4. Do Problem 5 of Dec 2020 Final Exam.

The following problem(s) is/are optional:

²An ansatz is an educated guess; see https://en.wikipedia.org/wiki/Ansatz for more details.

Problem 5. The purpose of this problem is to construct a self-similar solution to Laplace's equation in the upper half-plane: for any $-\infty < x < \infty$ and y > 0,

$$\partial_{xx}u + \partial_{yy}u = 0. (6)$$

Complete the following parts.

- (i) Prove that if u solves Laplace's equation (6), then so does v(x,y) := u(ax, ay) for any positive constant a.
- (ii) Assume that the solution u to (6) is of the form

$$u(x,y) = g\left(\frac{x}{y}\right),$$

where the function $g: \mathbb{R} \to \mathbb{R}$ will be determined below. Derive an ODE for g.

- (iii) Find the general solution of g.
- (iv) Express the general self-similar solution u in terms of x and y only.
- (v) For any fixed x > 0, compute

$$\lim_{y\to 0^+} u(x,y).$$

(vi) For any fixed x < 0, compute

$$\lim_{y\to 0^+} u(x,y).$$

(vii) Solve the following Dirichlet problem:

$$\begin{cases} \partial_{xx} u + \partial_{yy} u = 0, & \text{for } -\infty < x < \infty \text{ and } y > 0, \\ u|_{y=0} = H(x) \coloneqq \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x < 0, \end{cases} \end{cases}$$

where the function H is the Heaviside (step) function.

- (viii) Compute $v := \partial_x u$. Is v also a solution to (6)?
 - (ix) Find the explicit solution formula for the Dirichlet problem

$$\begin{cases} \partial_{xx} u + \partial_{yy} u = 0, & \text{for } -\infty < x < \infty \text{ and } y > 0, \\ u|_{y=0} = \phi(x), & \text{for } -\infty < x < \infty, \end{cases}$$

where ϕ is an arbitrary given boundary data.

Food for Thought. Are you able to write down the solution formula to the Dirichlet problem

$$\begin{cases} \partial_{xx} u + \partial_{yy} u = 0, & \text{for } x, y > 0, \\ u|_{x=0} = 0, & \text{for } 0 < y < \infty, \\ u|_{y=0} = \phi(x), & \text{for } 0 < x < \infty, \end{cases}$$

where ϕ is an arbitrary given boundary data?

Problem 6. Solve

$$\begin{cases} \partial_t u - 4\partial_{xx} u - 9\partial_x u + 5u = 0, & \text{for } -\infty < x < \infty \text{ and } t > 0, \\ u|_{t=0}(x) = e^{6x} + x^3 - 8x^2 + 7, & \text{for } -\infty < x < \infty. \end{cases}$$

Problem 7. Consider the following initial-value problem

$$\begin{cases} \partial_t u - k \partial_{xx} u = f & \text{for } -\infty < x < \infty \text{ and } t > 0 \\ u|_{t=0} = \phi, \end{cases}$$
 (7)

where k > 0 is a given constant, f and ϕ will be given differently in different parts below. Solve the initial-value problem (7) in the following cases:

- (i) $f(t,x) := 3 \text{ and } \phi(x) := x^5;$
- (ii) $f(t,x) := \cos t$ and $\phi(x) := x^2$;

(iii)
$$f(t,x) := xe^{-2t}$$
 and $\phi(x) := \begin{cases} 6 & \text{if } |x| \le 4 \\ 0 & \text{if } |x| > 4. \end{cases}$