

xmarak02 Update README.md

Aয় 1 contributor



# 03-vivado

## 1. Pinout table

SW0-15 připojeny pomocí 10K rezistorů

| SW  | pin |
|-----|-----|
| SW0 | J15 |
| SW1 | L16 |
| SW2 | M13 |
| SW3 | R15 |
| SW4 | R17 |
| SW5 | T18 |
| SW6 | U18 |
| SW7 | R13 |
| SW8 | Т8  |
| SW9 | U8  |

| SW   | pin |
|------|-----|
| SW10 | R16 |
| SW11 | T13 |
| SW12 | Н6  |
| SW13 | U12 |
| SW14 | U11 |
| SW15 | V10 |

LED0-15 připojeny pomocí 330R rezistorů

| LED   | :   |
|-------|-----|
| LED   | pin |
| LED0  | H17 |
| LED1  | K15 |
| LED2  | J13 |
| LED3  | N14 |
| LED4  | R18 |
| LED5  | V17 |
| LED6  | U17 |
| LED7  | U16 |
| LED8  | V16 |
| LED9  | T16 |
| LED10 | U14 |
| LED11 | T16 |
| LED12 | V15 |
| LED13 | V14 |
| LED14 | V12 |
| LED15 | V11 |

# 2. 2Bit 4to1 multiplexer

```
--tb mux 2bit 4to1.vhd
p stimulus : process
   begin
       -- Report a note at the begining of stimulus process
       report "Stimulus process started" severity note;
       -- First test values
       s_d <= "00"; s_c <= "00"; s_b <= "00"; s_a <= "00";
        s sel <= "00"; wait for 100 ns;
       s_d <= "10"; s_c <= "01"; s_b <= "01"; s_a <= "01";
        s sel <= "00"; wait for 100 ns;
       s_d <= "10"; s_c <= "01"; s_b <= "01"; s_a <= "11";
       s_sel <= "01"; wait for 100 ns;</pre>
       s_d <= "10"; s_c <= "01"; s_b <= "01"; s_a <= "01";
        s_sel <= "01"; wait for 100 ns;</pre>
       s_d <= "11"; s_c <= "10"; s_b <= "01"; s_a <= "00";
        s_sel <= "10"; wait for 100 ns;</pre>
       s_d <= "11"; s_c <= "10"; s_b <= "01"; s_a <= "00";
        s_sel <= "10"; wait for 100 ns;</pre>
       s_d <= "11"; s_c <= "10"; s_b <= "01"; s_a <= "00";
        s_sel <= "11"; wait for 100 ns;</pre>
       s d <= "11"; s c <= "10"; s b <= "01"; s a <= "00";
        s_sel <= "11"; wait for 100 ns;</pre>
       -- Report a note at the end of stimulus process
        report "Stimulus process finished" severity note;
   end process p_stimulus;
```

simulation



### 3. Tutorial

#### Založení projektu:





### Pomocí wizardu projdeme založení projektu



ve wizardu se pohybujeme šipkami next

Pojmenování projektu a jeho umístění:



#### Vybereme RTL project



Následně přidáme zdrojové soubory vybráním create file a vybereme typ souboru VHDL



#### Můžeme přidat constraints files



Vybereme desku Nexys A7-50T



#### A nakonec tlačítkem Finish projekt vytvoříme



#### Přidání souboru

Pokud chceme přidat soubor, např testbench, tak pomocí File>Add source (nebo Alt+A) vyvoláme okno kde vyberem nejprve typ souboru:



#### Opět vybereme typ souboru a zadáme název



Simulace se spistí ze záložky Flow>Run Simulation>Run Behavioral Simulation nebo z bočního navigátoru v sekci Simulation