Proprietăți

Propoziția 1.28

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$.

- (i) Dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \rightarrow \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \vDash \psi$ ddacă $\Gamma \vDash \varphi \rightarrow \psi$.
- (iii) $\Gamma \vDash \varphi \land \psi$ ddacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \psi$.

Dem.: Exercițiu.

Propoziția 1.29

Fie Γ o mulțime de formule. Următoarele afirmații sunt echivalente:

- (i) Γ este nesatisfiabilă.
- (ii) $\Gamma \vDash \varphi$ pentru orice formulă φ .
- (iii) $\Gamma \vDash \varphi$ pentru orice formulă nesatisfiabilă φ .
- (iv) $\Gamma \models \bot$.

Dem.: Exercițiu ușor.

Proprietăți

Propoziția 1.30

Fie Γ o mulțime de formule.

- (i) $\Gamma \vDash \varphi$ ddacă $\Gamma \cup \{\neg \varphi\}$ este nesatisfiabilă.
- (ii) $\Gamma \vDash \neg \varphi$ ddacă $\Gamma \cup \{\varphi\}$ este nesatisfiabilă.
- (iii) Dacă Γ este satisfiabilă, atunci cel puțin una dintre $\Gamma \cup \{\varphi\}$ și $\Gamma \cup \{\neg \varphi\}$ este satisfiabilă.

Dem.:

- (i) Avem că $\Gamma \not\models \varphi \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma$ și $e^+(\varphi) = 0 \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma$ și $e^+(\neg \varphi) = 1 \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma \cup \{\neg \varphi\} \iff \Gamma \cup \{\neg \varphi\} \text{ este satisfiabilă.}$
- (ii) Similar.
- (iii) Fie e un model al lui Γ . Dacă $e^+(\varphi) = 1$, atunci e este model al lui $\Gamma \cup \{\varphi\}$. Dacă $e^+(\varphi) = 0$, deci $e^+(\neg \varphi) = 1$, atunci e este model al lui $\Gamma \cup \{\neg \varphi\}$.

Propoziția 1.31

Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulțime finită de formule.

- (i) $\Gamma \sim \{\varphi_1 \wedge \ldots \wedge \varphi_n\}.$
- (ii) $\Gamma \vDash \psi$ $ddac \breve{a} \vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$.
- (iii) Γ este nesatisfiabilă ddacă $\neg \varphi_1 \lor \neg \varphi_2 \lor \ldots \lor \neg \varphi_n$ este tautologie.
- (iv) Dacă $\Delta = \{\psi_1, \dots, \psi_k\}$ este o altă mulțime finită de formule, atunci următoarele afirmații sunt echivalente:
 - (a) $\Gamma \sim \Delta$.
 - (b) $\varphi_1 \wedge \ldots \wedge \varphi_n \sim \psi_1 \wedge \ldots \wedge \psi_k$.

Dem.: Exercițiu.

Teorema de compacitate - versiunea 1

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Teorema de compacitate - versiunea 2

Pentru orice mulțime Γ de formule, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.

Teorema de compacitate - versiunea 3

Pentru orice mulțime Γ de formule și pentru orice formulă φ , $\Gamma \vDash \varphi$ ddacă există o submulțime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

Propoziția 1.32

Cele trei versiuni sunt echivalente.

Dem.: Exercițiu.

Lema 1.33

Fie Γ finit satisfiabilă. Atunci există un șir (ε_n) în $\{0,1\}$ care satisface, pentru orice $n \in \mathbb{N}$:

 P_n Orice submulțime finită Δ a lui Γ are un model $e: V \to \{0,1\}$ care satisface $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0,1,\ldots n\}$.

Dem.: Definim şirul (ε_n) prin inducţie după $n \in \mathbb{N}$.

n = 0. Avem următoarele cazuri:

- (1₀) Pentru orice submulțime finită Δ a lui Γ , există un model e al lui Δ a.î. $e(v_0)=0$. Definim $\varepsilon_0:=0$.
- (2₀) Există o submulțime finită Δ_0 a lui Γ a.î. pentru orice model e al lui Δ_0 , avem $e(v_0) = 1$. Definim $\varepsilon_0 := 1$.

Demonstrăm că P_0 este satisfăcută. În cazul (1_0) este evident. Să considerăm cazul (2_0) . Fie Δ o submulțime finită a lui Γ . Atunci $\Delta \cup \Delta_0$ este o submulțime finită a lui Γ . Deoarece Γ este finit satisfiabilă, $\Delta \cup \Delta_0$ are un model e. Rezultă că $e \models \Delta$ și, din faptul că $e \models \Delta_0$, obținem că $e(v_0) = 1 = \varepsilon_0$.

Pasul de inducție. Fie $n \in \mathbb{N}$. Presupunem că am definit $\varepsilon_0, \ldots, \varepsilon_n$ a.î. P_n este satisfăcută. Avem următoarele cazuri:

 (1_{n+1}) Pentru orice submulțime finită Δ a lui Γ , există un model e al lui Δ a.î.

 $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, ..., n\}$ și $e(v_{n+1}) = 0$. Definim $\varepsilon_{n+1} := 0$.

(2_{n+1}) Există o submulțime finită Δ_{n+1} a lui Γ a.î. pentru orice model e al lui Δ_{n+1} , avem $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \ldots, n\}$ implică $e(v_{n+1}) = 1$. Definim $\varepsilon_{n+1} := 1$.

Demonstrăm că P_{n+1} este satisfăcută. În cazul (1_{n+1}) este evident. Să considerăm cazul (2_{n+1}) . Fie Δ o submulțime finită a lui Γ . Atunci $\Delta \cup \Delta_{n+1}$ este o submulțime finită a lui Γ . Prin urmare, conform P_n , există un model e al lui $\Delta \cup \Delta_{n+1}$ a.î. $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \dots n\}$. Din (2_{n+1}) , obținem și $e(v_{n+1}) = 1 = \varepsilon_{n+1}$.

Teorema 1.34 (Teorema de compacitate)

Pentru orice mulțime \(\Gamma\) de formule, \(\Gamma\) este satisfiabilă ddacă \(\Gamma\) este finit satisfiabilă.

Dem.: " \Rightarrow " Evident.

"←" Presupunem că Γ este finit satisfiabilă. Definim

$$\overline{e}: V \to \{0,1\}, \quad \overline{e}(v_n) = \varepsilon_n,$$

unde (ε_n) este șirul construit în lema precedentă (Lema 1.33). Demonstrăm că \overline{e} este model al lui Γ . Fie $\varphi \in \Gamma$ arbitrară și fie $k \in \mathbb{N}$ a.î. $Var(\varphi) \subseteq \{v_0, v_1, \ldots, v_k\}$. Deoarece $\{\varphi\} \subseteq \Gamma$ este o submulțime finită a lui Γ , putem aplica Proprietatea P_k pentru a obține un model e al lui φ a.î. $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \ldots k\}$. Atunci $\overline{e}(v) = e(v)$ pentru orice variabilă $v \in Var(\varphi)$. Aplicând Propoziția 1.13, rezultă că $\overline{e}^+(\varphi) = e^+(\varphi) = 1$, deci $\overline{e} \models \varphi$.

Prin urmare, \overline{e} este model al lui Γ , deci Γ este satisfiabilă.

SINTAXA LP

Sistemul deductiv

Folosim un sistem deductiv de tip Hilbert pentru LP.

Axiomele logice

Mulțimea Axm a axiomelor lui LP constă din toate formulele de forma:

(A1)
$$\varphi \rightarrow (\psi \rightarrow \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$
,

unde φ , ψ și χ sunt formule.

Regula de deducție

Pentru orice formule φ, ψ ,

din φ și $\varphi \to \psi$ se inferă ψ (modus ponens sau (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$
.