Global Normalization for Fermat's Equation: From $o^n = 2 \cdot n$ to FLT, with Coq Verification

Grigoriy Dedenko

Abstract. We present a reading of G.L. Dedenko's manuscript in which a single, unified normalizing factor $o \in \mathbb{N}$, o > 1, independent of the exponent n, is introduced. It is postulated that for any hypothetical natural solution of Fermat's equation $x^n + y^n = z^n$ with n > 2 one has the equality $o^n = 2 \cdot n$ (equivalently, after the standard parametrization, $\frac{p^nq}{l} = o$). From this equality alone it follows elementarily that o = 2 and $n \in \{1, 2\}$; hence no solutions exist for n > 2. The entire argument is stated as the conditional implication "global normalization \Rightarrow FLT" and is fully formalized in Coq. The proof of the implication relies only on an elementary growth comparison; parity constraints from the parametrization are established separately (for completeness) and do not enter the final step. The discussion of the function $f(n) = (2n)^{1/n}$ serves to motivate the form of the normalization and is not used inside the proof proper.

Keywords: Fermat's Last Theorem · Dedenko · normalization · Ansatz · Coq · formal verification

1 Introduction

We consider Fermat's equation

$$x^{n} + y^{n} = z^{n}, \qquad x, y, z \in \mathbb{N}, \ n \in \mathbb{N}.$$
 (1)

In the reading advocated here, following Dedenko's manuscript, one introduces a *single global* normalizing factor $o \in \mathbb{N}$, o > 1, independent of n, and postulates that for any putative solution of (1) with n > 2 one has

$$o^n = 2 \cdot n. \tag{2}$$

This normalization collapses the analysis of all exponents at once. A simple growth comparison then yields that (2) forces (o, n) = (2, 1) or (2, 2) only; thus no solution exists for n > 2.

We formalize the above conditional implication in Coq. The algebraic parametrization is recorded over \mathbb{R} for convenience, while parity constraints are proved over \mathbb{Z} . The global normalization assumption is represented by a single parameter o together with a universal condition (2) attached to any hypothetical counterexample.

2 Algebraic setup and parity

Following the standard trick, set $z := m^n + p^n$ and $x := m^n - p^n$ (initially over \mathbb{R} so that ring equalities are straightforward). Then

$$y^n = z^n - x^n = (m^n + p^n)^n - (m^n - p^n)^n$$

is the odd-binomial sum. Passing to \mathbb{Z} , the specialization implies that $z \pm x$ are even; in Coq this is captured by a lemma ($parity_condition_Z$). These parity facts are logically independent from the final growth step and are included for completeness.

3 Global normalization (Ansatz)

We fix one $o \in \mathbb{N}$, o > 1, and assume:

Definition 1 (Global normalization principle). For every $n, x, y, z \in \mathbb{N}$ with n > 2, if $x^n + y^n = z^n$ holds, then

$$o^n = 2 \cdot n. \tag{3}$$

Equivalently, after the standard parametrization and notations of the manuscript, (3) reads $\left(\frac{p^nq}{l}\right)^n=2\cdot n$ or $\frac{p^nq}{l}=o$. The analysis of $f(n)=(2n)^{1/n}$ explains why choosing the normalizer in the *n-th power form* is natural, but those analytic properties are not used in the final implication.

4 Coq formalization: growth and the main theorem

The Coq development proves the elementary growth comparisons $2^n > 2n$ for $n \ge 3$ and $3^n > 2n$ for $n \ge 1$, and packages them into:

Lemma 1. If o > 1 and $o^n = 2 \cdot n$ with $n \ge 1$, then (o, n) = (2, 1) or (2, 2).

In the Coq file, this is integer_solution_o. With the global normalization principle as hypothesis, we obtain:

Theorem 1 (FLT from global normalization). Assume Definition 1. Then for every n > 2 there are no solutions to (1) in \mathbb{N} . In Coq: fermat_last_theorem_from_normalization.

Proof (Idea). Given n > 2 and a putative solution, (3) yields $o^n = 2 \cdot n$; by Lemma 1, this forces $n \in \{1, 2\}$, a contradiction.

For completeness, the development also includes a corollary where one *chooses* o=2 ("full-coverage normalization"), obtaining $2^n=2\cdot n$ and the same contradiction; see fermat_last_theorem_with_o_two.

5 What is *not* assumed

The reading here does not rely on any unconditional congruence like $(m^n + p^n)^n - (m^n - p^n)^n \equiv 0 \pmod{2n}$ (which is false in general). Instead, the only extra assumption is the single global normalizer o > 1 satisfying (2) for any hypothetical counterexample.

6 Article-Coq correspondence

Article (item)	Coq formalization (lemma/theorem)
Algebraic parametrization over \mathbb{R} ; integer parity facts	<pre>sum_diff_from_parameters_R, sum_diff_from_parameters_Z, parity_condition_Z.</pre>
Global normalization principle (fixed $o > 1$, independent of n)	Section Normalization_Parameter: Variable o, normalization_gt1, normalization_equation.
Growth vs. linear comparison	pow2_gt_linear, pow3_gt_linear.
Only $(o, n) = (2, 1), (2, 2)$ solve $o^n = 2n$	integer_solution_o.
FLT from the normalization principle	fermat_last_theorem_from_normalization.
Optional " $o = 2$ " corollary	fermat_last_theorem_with_o_two.

Table 1. Mapping between the paper's steps and the Coq development.

7 Conclusion

Under the single global normalization assumption $o^n = 2 \cdot n$ attached to any hypothetical counterexample, the Coq file derives FLT for all n > 2 using only elementary growth lemmas. Parity constraints from the parametrization are checked separately. The analytic discussion of $f(n) = (2n)^{1/n}$ motivates the *n*-th power *shape* of the normalizer but is not used in the final implication.

Appendix: selected Coq declarations (names)

 $\label{linear_sum_diff_from_parameters_Z} sum_diff_from_parameters_Z, parity_condition_Z, pow2_gt_linear, pow3_gt_linear, integer_solution_o, Normalization_Parameter (section), fermat_last_theorem_from_normalization, fermat_last_theorem_with_o_two.$

References

- 1. A. Wiles. Modular elliptic curves and Fermat's Last Theorem. Annals of Mathematics 141 (1995), 443-551.
- 2. G. L. Dedenko. The "Difficulties" in Fermat's Original Discourse on the Indecomposability of Powers Greater Than a Square: A Retrospect. Preprint, 2025. DOI: 10.13140/RG.2.2.24342.32321.
- 3. The Coq Development Team. The Coq Proof Assistant. https://coq.inria.fr.