6 Testes de Hipóteses Paramétricos

Vamos considerar outro aspeto do processo de inferência estatística: os **testes de hipóteses**. O objetivo é decidir se uma conjetura sobre determinada característica da(s) população(ões) em estudo é ou não apoiada pela evidência obtida de dados amostrais. Por exemplo, será que a média populacional μ difere de um valor pré-especificado μ_0 ?

As hipóteses serão formuladas sobre o(s) valor(es) do(s) parâmetro(s) desconhecidos da população, θ . Nos testes paramétricos admitem-se certos pressupostos, uma lei de probabilidade para a população em estudo por exemplo, ao contrário do que acontece nos testes não paramétricos e que não serão abordados na disciplina.

NOTAÇÃO E METODOLOGIA

O primeiro passo na condução de um teste de hipóteses é especificar as duas hipóteses do teste. Em geral, começa-se por formular a **hipótese alternativa** (\mathbf{H}_1), que é a hipótese que se pretende verificar (hipótese proposta pelo investigador). H_1 contém, regra geral, uma desigualdade (<, > ou \neq). Definida H_1 , formula-se a hipótese complementar de H_1 , que se designa por **hipótese nula** (\mathbf{H}_0). H_0 contém, regra geral, uma igualdade (=). Dizemos que se pretende testar H_0 contra H_1 , ou H_0 versus H_1 , e frequentemente se escreve H_0 vs H_1 .

Consideramos três tipos de testes:

1. Teste bilateral

$$H_0: \theta = \theta_0 \qquad vs \qquad H_1: \theta \neq \theta_0$$

2. Teste unilateral à direita

$$H_0: \theta = \theta_0 \ (ou \ \theta \leqslant \theta_0)$$
 vs $H_1: \theta > \theta_0$

3. Teste unilateral à esquerda

$$H_0: \theta = \theta_0 \ (ou \ \theta \geqslant \theta_0)$$
 vs $H_1: \theta < \theta_0$

Ao efetuar um teste, assumimos sempre que a hipótese H_0 é verdadeira, e não havendo evidência para provar o contrário decide-se não rejeitar H_0 .

o réu é inocente
$$(H_0)$$
 vs o réu é culpado (H_1)

Há duas possibilidades de se tomar uma decisão errada. Os dois **tipos de erros** que podem ser cometidos são:

erro tipo I: rejeitar H_0 sendo H_0 verdadeira; erro tipo II: não rejeitar H_0 sendo H_0 falsa.

$$\alpha = P(\text{erro tipo I}) = P(\text{rejeitar } H_0 / H_0 \text{ verdadeira})$$

 α é designado o **nível de significância do teste**. A escolha de α depende do que se pretende estudar, pois quanto maior for α mais provável será rejeitar H_0 sendo esta verdadeira!!!

Uma vez recolhida a amostra, observamos o valor de alguma estatística (função da amostra aleatória) cuja distribuição de probabilidade é conhecida sob o pressuposto de H_0 ser verdadeira. Tal estatística é chamada estatística de teste.

O nível de significância do teste, α , e a distribuição de probabilidade da estatística de teste vão ser utilizados para definir a chamada **região crítica** ou **região de rejeição**. Se o valor observado da estatística de teste "cair" na região crítica decidimos rejeitar H_0 (e aceitar H_1); caso contrário decidimos não rejeitar H_0 .

Em resumo:

- 1. Formular as hipóteses do teste: H_0 e H_1 ;
- 2. Especificar um nível de significância α ;
- 3. Escolher a estatística a usar e definir a sua distribuição de probabilidade sob o pressuposto de H_0 ser verdadeira;
- 4. Determinar a região crítica;
- 5. Calcular o valor observado da estatística do teste;
- 6. Tomada de decisão: rejeitar H_0 (e aceitar H_1) ou não rejeitar H_0 .

Um exemplo

A resistência dos cabos fabricados por uma determinada empresa é uma v.a. de valor médio $816\ Kg$ e desvio padrão $45\ Kg$. Adotando-se uma nova técnica de fabrico espera aumentar-se essa resistência. Para testar tal hipótese, a empresa testou uma amostra de $50\ \text{cabos}$ fabricados segundo o novo processo, tendo obtido uma resistência média de $839\ Kg$.

Pode aceitar-se a hipótese de o novo processo de fabrico aumentar a resistência dos cabos, ao nível de significância de 0.001?

$$H_0: \mu = (\leq) 816$$
 vs $H_1: \mu > 816$

Sob H_0 , a estatística de teste e a sua lei são:

$$Z = \frac{\overline{X} - 816}{\sigma / \sqrt{n}} \,\dot{\sim} \, N(0, 1)$$

Para $\alpha = 0.001$, a região crítica é $R.C. = [3.09, +\infty[$.

Valor observado da estatística de teste:
$$Z_{obs} = \frac{839 - 816}{45/\sqrt{50}} = 3.614$$

Como $Z_{obs} \in R.C.$, com <u>um nível de significância de 0.001</u>, rejeita-se H_0 e aceita-se H_1 (há evidências para afirmar que o novo processo de fabrico aumenta a resistência (média) dos cabos).