Real Analysis

Samuel Lindskog

February 13, 2025

Contents

1	The natural numbers	1
	1.1 Peano axioms	1
	1.2 Multiplication	1
2	Set theory	2
	2.1 Fundamentals	2

1 The natural numbers

1.1 Peano axioms

Definition 1.1 (Peano axioms). Using ++ as the successor operation, the natural numbers are defined as follows:

- (a) 0 is a natural number.
- (b) If n is a natural number, then n + + is also a natural number.
- (c) For all natural numbers $n, n + + \neq 0$.

Definition 1.2 (Addition of natural numbers). Let m be a natural number. 0 + m := m and (n + +) + m := (n + m) + +.

Proposition 1.3. m + 0 = m.

Proof: Let $n \in \mathbb{N}$. $0+0 \coloneqq 0$, so by inductive hypothesis n+0=n. $(n++)+0 \coloneqq (n+0)++$, and from the inductive hypothesis equals n++.

Lemma 1.4. For any natural numbers n and m, n + (m + +) = (n + m) + +.

Proof: Suppose $n, m \in \mathbb{N}$. 0+(m++) := m++=(0+m)++. By inductive hypothesis n+(m++)=(n+m)++. From the definition of addition (n++)+(m++)=(n+(m++))++ and from the inductive hypothesis n+(m++)=(n+m)++ so we have

$$(n++) + (m++) = (n+(m++)) + +$$
$$= ((n+m)++) + +$$
$$= ((n++)+m) + +$$

П

Proposition 1.5 (Commutativity of addition). For $n, m \in \mathbb{N}$, n + m = m + n.

Proof: Let $n, m \in \mathbb{N}$. From proposition 1.3, 0+m=m+0, so by inductive hypothesis n+m=m+n. (n++)+m=(n+m)++ and from inductive hypothesis this equals (m+n)++. From lemma 1.4, this equals m+(n++).

Proposition 1.6 (Associativity of addition). Let $a, b, c \in \mathbb{N}$. Then (a+b)+c=a+(b+c). Proof: exercise

Proposition 1.7 (Cancellation law). Let $a, b, c \in \mathbb{N}$. Iff a + b = a + c, then b = c.

Proof: If 0+b=0+c then from the definition of addition b=c. By inductive hypothesis for any $n \in \mathbb{N}$, n+b=n+c. (n++)+b=(n+b)++ and (n++)+c=(n+c)++, so from the inductive hypothesis and the axioms of natural numbers, (n++)+b=(n++)+c.

Definition 1.8 (Positive natural number). A natural number n is said to be positive iff it is not 0.

Definition 1.9 (Ordering of natural numbers). Let $n, m \in \mathbb{N}$. We write $n \geq m$ or $m \geq n$ iff n = m + a for some $a \in \mathbb{N}$.

Proposition 1.10. Let $m_0, m, m' \in \mathbb{N}$, and let P(x) be a property of arbitrary $x \in \mathbb{N}$. Suppose that for each $m \geq m_0$ the following implication holds:

$$(\forall m' \in [m_0, m), P(m')) \Rightarrow P(m).$$

Then we can conclude P(m) is true for all natural numbers $m \geq m_0$.

1.2 Multiplication

Definition 1.11 (Multiplication of natural numbers). Let m be a natural number. $0 \times m := 0$ and $(n++) \times m := (n \times m) + m$.

Lemma 1.12 (Commutivity of multiplication). Let $n, m \in \mathbb{N}$. Then $n \times m = m \times n$. *Proof:* exercise

Lemma 1.13. Let $n, m \in \mathbb{N}$. Then $n \times m = 0$ iff n or m is zero.

Proof: exercise

Proposition 1.14 (Distributive law). For any natural numbers a, b, c, we have a(b+c) = ab + ac.

Proposition 1.15 (Associativity of multiplication). If $a, b, c \in \mathbb{N}$ then $(a \times b) \times c = a \times (b \times c)$.

Proposition 1.16. If a, b are natural numbers such that a < b, and c is positive, then ac < bc.

Corollary 1.17. Let $a, b, c \in \mathbb{N}$ such that ac = bc and c is non-zero. Then a = b.

Proposition 1.18 (Euclid's division lemma). Let n be a natural number, and let q be a positive number. Then there exist natural numbers m, r such that $0 \le r < q$ and n = mq + r.

Definition 1.19 (Exponentiation for natural numbers). Let $m \in \mathbb{N}$. $m^0 := 1$, and $m^{n++} = m^n \times m$.

2 Set theory

2.1 Fundamentals

Definition 2.1 (Axioms of sets).

- (a) (Sets are objects) If A is a set, then A is also an object. In particular, given two sets A and B, it is meaningful to ask whether A is also an element of B.
- (b) (Equality of sets) Two sets A and B are equal iff every element of A is an element of B and vice versa.
- (c) (Empty set) There exists a set known as the empty set, denoted \emptyset , which contains no elements. In other words, for all objects x we have $x \notin \emptyset$.
- (d) (Singleton sets) If a is an object, then there exists a set $\{a\}$ whose only element is a, i.e. for every object y we have $y \in \{a\}$ iff y = a. $\{a\}$ is referred to as a singleton set.
- (e) (Pairwise union) Given any two sets A and B, there exists a set $A \cup B$, called the union of A and B, which consists of all the elements which belong to A or B. In other words,

$$x \in A \cup B \Leftrightarrow (x \in A \lor x \in B).$$

- (f) (Axiom of specification) Let A be a set, and for each $x \in A$ let P(x) be a property pertaining to x. Then there exists a set $\{x \in A \mid P(x)\}$ whose elements are precisely the elements x in A for which P(x) is true.
- (g) (Replacement) Let A be a set. For any object $x \in A$ and any object y, suppose we have a property P(x,y) that is true for at most one y for each $x \in A$. Then

$$z \in \{y \mid P(x, y), x \in A\} \Leftrightarrow P(x, z).$$

(h) (Infinity) There exists a set \mathbb{N} , whose elements are called natural numbers, as well as an object $0 \in \mathbb{N}$, and an object N + + assigned to every natural number $n \in \mathbb{N}$, such that the Peano axioms hold.

Lemma 2.2. Let A be a non-empty set. Then there exists an object x such that $x \in A$.

Definition 2.3 (Subset). Let A, B be sets. We say that A is a subset of B, denoted $A \subseteq B$, iff every element of A is also an element of B. We say that A is a proper subset of B, denoted $A \subseteq B$, if $A \subseteq B$ and $A \neq B$.

Definition 2.4 (Intersection). The intersection $S_1 \cap S_2$ of two sets is defined to be the set

$$S_1 \cap S_2 := \{x \in S_1 \mid x \in S_2\}.$$

Definition 2.5 (Disjoint). Two sets are disjoint if $A \cap B = \emptyset$.

Definition 2.6 (Difference set). If A and B are sets, the set $A \setminus B$ is the set A with any elements of B removed, i.e.

$$A \setminus B := \{ x \in A \mid x \notin B \}.$$

Proposition 2.7. Let A, B, C be subsets of set X.

- (a) (Minimal element) $A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset$.
- (b) (Maximal element) $A \cup X = X$ and $A \cap X = A$.
- (c) (Identity) $A \cap A = A$ and $A \cup A = A$.
- (d) (Commutativity) $A \cup B = B \cup A$ and $A \cap B = B \cap A$.
- (e) (Associativity) $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$.
- (f) (Distributivity) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- (g) (Partition) $A \cup (X \setminus A) = X$ and $A \cap (X \setminus A) = \emptyset$.
- (h) (De Morgan Laws) $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$ and $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$.