Cold Start Similar Artists Ranking with Gravity-Inspired Graph Autoencoders

MITON Times 12. 10. 2021 Radek Bartyzal

Similar Items Ranking as a Directed Link Prediction Task

- graph nodes = items
 - have feature vector
 - have node embedding
- edges = relation = fans of this item also like this item = weighted
- edges are directed = random reggae band -> Bob Marley but not the other way around

- cold start item = new node not connected to other ones
- clothes are bi-directional I think

Graph Auto Encoders

- train on reconstruction loss
- 2 layer:

$$\tilde{Z} = \tilde{A} \text{ReLU}(\tilde{A} X W^{(0)}) W^{(1)}.$$

- A = n x n adjancency matrix, A_tilde = outdegree normalized A
- X = n x f = content feature embeddings of n items
- $Z = n \times d = n$ embeddings of n items = latent representation
- A can be reconstructed from Z
- at each layer, each node averages the representations from its neighbors (and itself), with a ReLU activation

Graph Variational Auto Encoders

- just have 2 networks predicting μ and σ matrices =
 - \circ μ_i and σ_i for each node
- node_i is sampled from N(μ_i, σ_i)

Gravity inspired GAE

- each node has mass
- nodes accelerate faster toward more massive nodes = directed edge weights
- Z = n x (d+1)+1 = mass value
- decoding A from Z according to Newton formulas:
- G = accel. constant
- m_i = mass of node i

$$\hat{A}_{ij} = \sigma(\log a_{i \to j}) = \sigma(\log \frac{Gm_j}{\|z_i - z_j\|_2^2})$$

$$= \sigma(\log Gm_j - \log \|z_i - z_j\|_2^2).$$
denoted \tilde{m}_i

The elephant in the room = $O(dn^2)$

- optimization is O(dn²) = whole A times d dim. embeddings
- yes they approximate the whole NxN matrix for the experiments
- BUT you can approximate the losses by decoding random sub-graphs = O(n)
- = FastGAE

Cold start

m new items with content features of dim f:

- A = (n+m) x (n+m) with new rows, cols full of zeroes
- X = (n+m) x f with new rows = content features
- do a forward pass calculating latent representations of new nodes => Z
- reconstruct A from new Z = predicting new edges

 top-k most similar items of i will correspond to the k nodes j with highest estimated weights A_ij

Usage at Deezer

- 70M items
- 16M users
- tested on a dataset with 24K items
- K = 20 = each item points to top 20 other items
- embeddings recomputed weekly ...
- item content features:
 - 32 dim genre vector, 300 genres, calculated by factorizing a co-occurrence matrix based on listening usages with SVD
 - o 20 dim one-hot country vector
 - 4 dim mood vector = average and standard deviations of the valence and arousal scores
 - calculated by DNN from audio data of the song
 - actual app uses more content features extracted from audio/text for each item

Table 1: Cold start similar artists ranking: performances on test set.

= 200

 17.89 ± 0.95

 25.99 ± 0.75

 30.52 ± 0.78

 30.69 ± 0.70

 20.94 ± 0.72

 27.31 ± 0.75

 31.80 ± 3.38

 34.19 ± 0.59

 41.42 ± 0.68

 39.29 ± 0.64

Methods		Recall@K (in %	6)		MAP@K (in %		NDCG@K (in %)		
(d = 32)	K = 20	K = 100	K = 200	K = 20	K = 100	K = 200	K = 20	K = 100	
Popularity	0.02	0.44	1.38	< 0.01	0.03	0.12	0.01	0.17	
Danularity by country	276	12 20	10 00	0.80	2 50	6 14	2 14	6.41	

 35.01 ± 1.41

 43.92 ± 1.10

 49.93 ± 0.82

 50.75 ± 0.72

 40.37 ± 1.11

 49.72 ± 1.14

 56.25 ± 3.57

 59.51 ± 0.76

 67.85 ± 0.98

 65.70 ± 0.75

SVD + DNN

STAR-GCN

DropoutNet

Graph AE

Graph VAE

Sour.-Targ. Graph AE

Sour.-Targ. Graph VAE

Gravity Graph AE

Gravity Graph VAE

DEAL

 6.42 ± 0.96

 10.03 ± 0.56

 12.96 ± 0.54

 12.80 ± 0.52

 7.30 ± 0.51

 10.01 ± 0.52

 12.21 ± 1.30

 13.52 ± 0.64

 18.33 ± 0.45

 16.59 ± 0.50

 21.83 ± 1.21

 31.45 ± 1.09

 37.59 ± 0.76

 37.98 ± 0.59

 25.92 ± 0.95

 34.00 ± 1.06

 39.52 ± 3.53

 42.68 ± 0.69

 52.26 ± 0.90

 49.51 ± 0.78

(d = 32)	K = 20	K = 100	K = 200	K = 20	K = 100	K = 200	K = 20	K = 100	K =
Popularity	0.02	0.44	1.38	< 0.01	0.03	0.12	0.01	0.17	0.4
1 2 1	0.76	10.00	10.00	0.00	2 50		0.14		0.

(u = 32)	K = 20	K = 100	K = 200	K = 20	K = 100	K = 200	K = 20	K = 100	K.
Popularity	0.02	0.44	1.38	< 0.01	0.03	0.12	0.01	0.17	0
pularity by country	2.76	12.38	18.98	0.80	3.58	6.14	2.14	6.41	8
In-degree	0.91	3.43	6.85	0.15	0.39	0.86	0.67	1.69	2

Popularity	0.02	0.44	1.38	< 0.01	0.03	0.12	0.01	0.17	0.44
Popularity by country	2.76	12.38	18.98	0.80	3.58	6.14	2.14	6.41	8.76
In-degree	0.91	3.43	6.85	0.15	0.39	0.86	0.67	1.69	2.80
In-degree by country	5.46	16.82	23.52	2.09	5.43	7.73	5.00	10.19	12.64
K-NN on x:	4 41	13 54	19.80	1 14	3 38	5 39	4 29	8 83	11.22

0.91	3.43	6.85	0.15	0.39	0.86	0.67	1.69	2.80
5.46	16.82	23.52	2.09	5.43	7.73	5.00	10.19	12.64
4.41	13.54	19.80	1.14	3.38	5.39	4.29	8.83	11.22
5.73	15.87	19.83	1.66	4.32	5.74	4.86	10.03	11.76
	5.46 4.41	5.46 16.82 4.41 13.54	5.46 16.82 23.52 4.41 13.54 19.80	5.46 16.82 23.52 2.09 4.41 13.54 19.80 1.14	5.46 16.82 23.52 2.09 5.43 4.41 13.54 19.80 1.14 3.38	5.46 16.82 23.52 2.09 5.43 7.73 4.41 13.54 19.80 1.14 3.38 5.39	5.46 16.82 23.52 2.09 5.43 7.73 5.00 4.41 13.54 19.80 1.14 3.38 5.39 4.29	5.46 16.82 23.52 2.09 5.43 7.73 5.00 10.19 4.41 13.54 19.80 1.14 3.38 5.39 4.29 8.83

 2.25 ± 0.67

 3.10 ± 0.32

 4.18 ± 0.30

 4.15 ± 0.25

 2.81 ± 0.29

 3.53 ± 0.27

 4.62 ± 0.81

 5.19 ± 0.31

 6.64 ± 0.25

 5.66 ± 0.35

K -NN on x_i	4.41	13.54	19.80	1.14	3.38	5.39	4.29	8.83	11.22
K-NN + Popularity	5.73	15.87	19.83	1.66	4.32	5.74	4.86	10.03	11.76
K-NN + In-degree	7.49	17.29	18.76	2.78	5.60	6.18	7.41	12.48	13.14

 6.36 ± 1.19

 10.64 ± 0.54

 13.61 ± 0.55

 14.01 ± 0.44

 7.97 ± 0.47

 11.68 ± 0.52

 14.67 ± 2.33

 16.07 ± 0.40

 21.19 ± 0.55

 19.07 ± 0.57

 11.52 ± 1.98

 16.62 ± 0.68

 20.12 ± 0.67

 20.92 ± 0.54

 14.24 ± 0.67

 19.46 ± 0.70

 23.60 ± 2.85

 25.48 ± 0.55

 30.67 ± 0.68

 28.66 ± 0.59

 6.05 ± 0.75

 10.07 ± 0.40

 13.12 ± 0.68

 12.78 ± 0.53

 6.32 ± 0.39

 10.09 ± 0.58

 12.42 ± 1.39

 13.60 ± 0.73

 18.64 ± 0.47

 16.74 ± 0.55

 12.91 ± 0.92

 21.17 ± 0.69

 25.61 ± 0.72

 25.70 ± 0.62

 15.54 ± 0.66

 21.37 ± 0.73

 25.45 ± 3.37

 27.81 ± 0.56

 35.77 ± 0.66

 33.34 ± 0.66

Graph Autoencoders for Directed Link Prediction

- Gravity GAE Code: https://github.com/deezer/gravity_graph_autoencoders
- Gravity GAE Paper: https://arxiv.org/abs/1905.09570

- this code: https://github.com/deezer/similar_artists_ranking
- this paper: https://dl.acm.org/doi/pdf/10.1145/3460231.3474252