

Heart Stroke Prediction Model

Created By Ritesh Rajurkar

Topic

- Problem Statement
- Data Summary
- Analysis (EDA)
- Challenges
- Conclusion

Problem Statement

The objective of this study is to construct a prediction model for predicting stroke and to assess the accuracy of the model. We will explore multiple different models to see which produces reliable and repeatable results

What is Heart Stroke?

"A Heart Stroke happens when blood stops flowing to any part of your brain, damaging brain cells. The effect of a stroke depend on the part of the brain that was damaged and the amount of damage done. Knowing how your brain works can help you understand your stroke."

Data Summary

This dataset is used to predict whether a patient is likely to get stroke based on the input parameters like gender, age, various diseases, and smoking status. Each row in the data provides relevant information about the patient.

This Dataset contain 5110 rows and 11 columns/Features such as Id, gender, age, hypertension, heart_disease, ever_married, work_type, residence_type, ave_glucose_level, bmi, smoking status, stroke.

-	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1

Overview of Data Attributes

- 1) **Id:** unique identifier
- 2) **Gender:** "Male", "Female" or "Other"
- 3) **Age:** age of the patient
- 4) **Hypertension:** 0 if the patient doesn't have hypertension, 1 if the patient has hypertension
- 5) **Heart_disease:** 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease
- 6) **Ever_married:** "No" or "Yes"
- 7) **Work_type:** "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"
- 8) **Residence_type:** "Rural" or "Urban"
- 9) **Avg_glucose_level:** average glucose level in blood
- 10) **Bmi:** body mass index
- 11) **Smoking_status:** "formerly smoked", "never smoked", "smokes" or "Unknown"*
- 12) **Stroke:** 1 if the patient had a stroke or 0 if not

Note: "Unknown" in smoking_status means that the information is unavailable for this patient

Hypertension Analysis

Hypertension Subjects that previously diagnosed with hypertension have highly risk of having stroke

Heart Disease Analysis

Heart disease: Subjects that previously diagnosed with heart disease have highly risk of having stroke.

Ever married Analysis

Ever married: Subjects that ever married have highly risk of having stroke.

Work Type Analysis

Work type: Subjects that have any work experience and in government related work have highly risk of having stroke while those with no work experience barely experienced stroke

Residence type Analysis

Residence type: No obvious relationship with likelihood of experiencing stroke.

Smoking Status Analysis

Smoking status: Being a smoker or former smoker increases risk of having a stroke.

Age wise Analysis

Age: Subjects with stroke tends to have higher mean age.

Ave glucose level Analysis

Ave glucose level: Subjects with stroke tends to have higher average glucose level.

BMI Analysis

BMI: bmi index does not give much indication on the likelihood of experiencing stroke. bmi index for super obesity is 50. Outliers in this feature should be replaced to its highest limit (50)

Stroke Status Analysis

Stroke Status: 4.9% of the population in this dataset is diagnosed with stroke

Correlation Heatmap

From the correlation matrix, we can verify the presence of multicollinearity between some of the variables. For instance, the ever_married and age column has a correlation of 0.68. Between this two attributes, age contains more information on whether one is susceptible to stroke.

Test Set Prediction

[[1464 [69	0]				
1. E 2 1505000		precision	recall	f1-score	support
	0	0.95	1.00	0.98	1464
	1	0.00	0.00	0.00	69
accur	acy			0.95	1533
macro	avg	0.48	0.50	0.49	1533
weighted	avg	0.91	0.95	0.93	1533

		Forest-	Random	2]	[[1462 [69
support	f1-score	recall	precision	~11	[03
1464	0.98	1.00	0.95	0	
69	0.00	0.00	0.00	1	
1533	0.95			racy	accur
1533	0.49	0.50	0.48	avg	macro
1533	0.93	0.95	0.91	avg	weighted

[[1412 [64	52] 51]	Suppo	rt Vector	Machine	
[04	5]]	precision	recall	f1-score	support
	0	0.96	0.96	0.96	1464
	1	0.09	0.07	0.08	69
accur	acy			0.92	1533
macro	avg	0.52	0.52	0.52	1533
weighted	avg	0.92	0.92	0.92	1533

[[1:	394	70]				
]	64	5]]				
			precision	recall	f1-score	support
		0	0.96	0.95	0.95	1464
		1	0.07	0.07	0.07	69
	accui	racy			0.91	1533
ſ	macro	avg	0.51	0.51	0.51	1533
wei	ghted	avg	0.92	0.91	0.91	1533

[[1457 [66	7] 3]]				
		precision	recall	f1-score	support
	0	0.96	1.00	0.98	1464
	1	0.30	0.04	0.08	69

Take note that recall can be thought of as a measure of a classifiers completeness. A low recall for stroke (1) indicates many False Negatives.

Sum of Accuracy Score

From the accuracy summary, Logistic Regression,
Random Forest and KNN models all gives high accuracy
score of 0.95. However, it is also important to consider the
error type and recall value of each model. Models with 0.95
accuracy score generally have high false negative as
shown in the confusion matrix. High false negative
indicates type 2 error. For our study on stroke prediction,
we want to avoid type 2 error as it means that we fail to
identify subjects that has stroke and deem them stroke free
instead. Inspecting from the classification report above,
Naive Bayes Model has fit our objective although the
accuracy is 0.87.

Summary of Accuracy Score

Decision Tree Model: 0.9126

Logreg Model: 0.955

Random Forest Model: 0.9537

Support Vector Machine Model: 0.9243

kNN Model: 0.9524

Naive Bayes Model: 0.8728

KMeans Model: 0.7834

Conclusion

- Various model was used to predict whether a person is subjected to stroke. Naive Bayes model yields a very good performance as indicated by the model accuracy which was found to be 87.28%.
- Using the mean cross-validation, we can conclude that we expect the model to be around 87.31% accurate on average.
- If we look at all the 10 scores produced by the 10-fold cross-validation, we can also conclude that there is a relatively small variance in the accuracy between folds, hence the model is independent of the particular folds used for training.
- Our original model accuracy is 87.28% and the mean cross-validation accuracy is 87.31%. Thus, the 10-fold cross-validation accuracy does result in performance improvement for this model.
- Naive Bayes model can be further improve by tuning hyperparameters to get the better result or adjusting the probablity threshold to improve its performance.