A. Informacje o zespole realizującym ćwiczenie

Nazwa przedmiotu:	Automatyka pojazdowa
Nazwa ćwiczenia:	Systemy informacji i rozrywki
Data ćwiczenia:	2019-05-22
Czas ćwiczenia:	08:00 – 09:30
Zespół realizujący ćwiczenie:	Katarzyna WątorskaBartłomiej Mróz

B. Sformułowanie problemu

Celem ćwiczenia było opracowanie aplikacji sterującej tablicą wskaźników poporzez wysyłanie odpowiednich wiadomości na sieć CAN. Sterowanie zestawem wskaźników na desce rozdzielczej odbywa się za pomocą komputera PC z oprogramowaniem MATLAB lub CANoe. Aplikację zrealizowaliśmy w Simulinki z pakietem Vehicle Network Toolbox.

Aby poprawnie stworzyć model, potrzebowaliśmy czterech rodzajów bloczków: CAN Configuration, CAN Pack, CAN Transmit oraz bloki z wartościami stałymi. Dynamiczne zmiany na wyświetlaczu zaobserwowaliśmy dzięki bloczkowi Waveform, w którym zaimplementowaliśmy funkcję o wartościach zmiennych w czasie.

Wykorzystaliśmy gotową bazę danych w formacie .db, zawierającą wiadomości i sygnały przesyłane w ramce CAN.

C. Sposób rozwiązania problemu

Wykorzystując pakiet SIMULIK zamodelowano aplikację do sterowania tablicą wskaźników:

D. Wyniki

Przykładowe działanie wskaźników na desce rozdzielczej:

Podając odpowiednie wartości logiczne na wejścia niektórych bloków, udało nam się doprowadzić np. do migania strzałek oznaczających kierunkowskazy lub wartości prędkości na wyświetlaczu.

E. Wnioski

Wykonanie ćwiczenia umożliwiło nam poznanie podstaw sterowania wskaźnikami na desce rozdzielczej w samochodzie. Wykorzystanie do tego pakietu Simulink z Vehicle Network Toolbox sprawiło, że zadanie było łatwiejsze niż zrealizowanie tej samej funkcjonalności w programie Vector z wykorzystaniem język CAPL.

Podobnie jak w ćwiczeniu z sieciami wymiany danych, tutaj też należało ustawić cykliczne wysyłanie ramek na magistralę CAN. Służy to zabezpieczeniu przed brakiem informacji o ewentualnej awarii jakiegoś elementu i niepoprawnym działaniu wskaźnika w takim wypadku.