§4.2 相似矩阵与矩阵对角化

数学系 梁卓滨

2016 - 2017 学年 I 暑修班

定义 设 A, B 是 n 阶方阵。若存在 n 阶可逆矩阵 P, 满足 $P^{-1}AP = B.$

则称 $A 与 B相似, 记为 <math>A \sim B$ 。

定义 设 A, B 是 n 阶方阵。若存在 n 阶可逆矩阵 P, 满足 $P^{-1}AP = B.$

则称 $A 与 B相似, 记为 <math>A \sim B$ 。

注

1. $A \sim B$ ⇔ ∃可逆Q, 使 $QAQ^{-1} = B$

定义 设 A, B 是 n 阶方阵。若存在 n 阶可逆矩阵 P, 满足 $P^{-1}AP = B.$

则称 A 与 B相似,记为 $A \sim B$ 。

注

1.
$$A \sim B \iff \exists \ \text{可逆}Q, \ \text{使}QAQ^{-1} = B$$
 (令 $P := Q^{-1}, \ \text{则 } P^{-1}AP = B$)

定义 设
$$A$$
, B 是 n 阶方阵。若存在 n 阶可逆矩阵 P , 满足
$$P^{-1}AP = B.$$

则称 $A 与 B相似, 记为 <math>A \sim B$ 。

注

2. $A \sim B \iff B \sim A$

$$\underbrace{\begin{pmatrix} 19 & 45 \\ -7 & -17 \end{pmatrix}}_{A} \qquad \underbrace{\begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}}_{B}$$

$$\left(\begin{array}{cc}1&2\\2&5\end{array}\right)^{-1}\underbrace{\left(\begin{array}{cc}19&45\\-7&-17\end{array}\right)}\left(\begin{array}{cc}1&2\\2&5\end{array}\right)\quad\underbrace{\left(\begin{array}{cc}3&1\\5&-1\end{array}\right)}_{R}$$

$$\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}^{-1} \underbrace{\begin{pmatrix} 19 & 45 \\ -7 & -17 \end{pmatrix}}_{A} \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} = \underbrace{\begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}}_{B}$$

$$\underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)^{-1}}_{P^{-1}} \underbrace{\left(\begin{array}{ccc} 19 & 45 \\ -7 & -17 \end{array}\right)}_{A} \underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)}_{P} = \underbrace{\left(\begin{array}{ccc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

$$\underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)^{-1}}_{P^{-1}} \underbrace{\left(\begin{array}{ccc} 19 & 45 \\ -7 & -17 \end{array}\right)}_{A} \underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)}_{P} = \underbrace{\left(\begin{array}{ccc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

所以 $A \sim B$

$$\underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)^{-1}}_{P^{-1}} \underbrace{\left(\begin{array}{ccc} 19 & 45 \\ -7 & -17 \end{array}\right)}_{A} \underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)}_{P} = \underbrace{\left(\begin{array}{ccc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

所以 $A \sim B$

$$\underbrace{\begin{pmatrix} 19 & 45 \\ -7 & -17 \end{pmatrix}}_{A}$$

$$\underbrace{\left(\begin{array}{cc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

所以 $A \sim B$

$$\underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)^{-1}}_{P^{-1}} \underbrace{\left(\begin{array}{ccc} 19 & 45 \\ -7 & -17 \end{array}\right)}_{A} \underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)}_{P} = \underbrace{\left(\begin{array}{ccc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

所以 $A \sim B$

$$\underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)^{-1}}_{P^{-1}} \underbrace{\left(\begin{array}{ccc} 19 & 45 \\ -7 & -17 \end{array}\right)}_{A} \underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)}_{P} = \underbrace{\left(\begin{array}{ccc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

所以 $A \sim B$

- "λ 矩阵"的方法,但并不简单的。。。
- 2. 下面只给出两个矩阵相似的必要条件

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地, A 与 B 同时可逆或不可逆

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|, 特别地, A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

证明 存在可逆矩阵 P,满足

$$P^{-1}AP = B$$

1. $|\lambda I - B| =$

$$|\lambda I - A|$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

1.
$$|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| =$$

 $|\lambda I - A|$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|, 特别地, A = B 同时可逆或不可逆

$$P^{-1}AP = B$$

1.
$$|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| = |P^{-1}(\lambda I - A)P| = |\lambda I - A|$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地, A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

1.
$$|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| = |P^{-1}(\lambda I - A)P| = |P^{-1}| \cdot |\lambda I - A| \cdot |P| \quad |\lambda I - A|$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|, 特别地, A = B 同时可逆或不可逆

$$P^{-1}AP = B$$

1.
$$|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| = |P^{-1}(\lambda I - A)P| = |P^{-1}| \cdot |\lambda I - A| \cdot |P| = |\lambda I - A|$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|, 特别地, A = B 同时可逆或不可逆

$$P^{-1}AP = B$$

- 1. $|\lambda I B| = |\lambda P^{-1}IP P^{-1}AP| = |P^{-1}(\lambda I A)P| = |P^{-1}| \cdot |\lambda I A| \cdot |P| = |\lambda I A|$
- 2. $r(B) = r(P^{-1}AP) = r(A)$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|, 特别地, A = B 同时可逆或不可逆

$$P^{-1}AP = B$$

- 1. $|\lambda I B| = |\lambda P^{-1}IP P^{-1}AP| = |P^{-1}(\lambda I A)P| = |P^{-1}| \cdot |\lambda I A| \cdot |P| = |\lambda I A|$
- 2. $r(B) = r(P^{-1}AP) = r(A)$

3.
$$|B| =$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|, 特别地, A = B 同时可逆或不可逆

$$P^{-1}AP = B$$

- 1. $|\lambda I B| = |\lambda P^{-1}IP P^{-1}AP| = |P^{-1}(\lambda I A)P| = |P^{-1}| \cdot |\lambda I A| \cdot |P| = |\lambda I A|$
- 2. $r(B) = r(P^{-1}AP) = r(A)$

3.
$$|B| = |P^{-1}AP| =$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地, A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

- 1. $|\lambda I B| = |\lambda P^{-1}IP P^{-1}AP| = |P^{-1}(\lambda I A)P| = |P^{-1}| \cdot |\lambda I A| \cdot |P| = |\lambda I A|$
- 2. $r(B) = r(P^{-1}AP) = r(A)$
- 3. $|B| = |P^{-1}AP| = |P^{-1}| \cdot |A| \cdot |P|$ |A|

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地, A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

- 1. $|\lambda I B| = |\lambda P^{-1}IP P^{-1}AP| = |P^{-1}(\lambda I A)P| = |P^{-1}| \cdot |\lambda I A| \cdot |P| = |\lambda I A|$
- 2. $r(B) = r(P^{-1}AP) = r(A)$
- 3. $|B| = |P^{-1}AP| = |P^{-1}| \cdot |A| \cdot |P| = |A|$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

 $P^{-1}AP = \Lambda$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{A}$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (, , , \ldots,) = (, , \ldots,)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, \ldots, \ldots, \ldots) = (\ldots, \ldots, \ldots, \ldots)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots,) = (, , \dots,)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (, , , \dots,)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \dots, \dots, \dots)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \lambda_2 \alpha_2, \dots, \alpha_n)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \ldots, A\alpha_n) = (\lambda_1\alpha_1, \lambda_2\alpha_2, \ldots, \lambda_n\alpha_n)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1\alpha_1, \lambda_2\alpha_2, \dots, \lambda_n\alpha_n)$$

$$\Leftrightarrow A\alpha_i = \lambda_i \alpha_i$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}}_{h}$$

$$\Leftrightarrow (A\alpha_1,\,A\alpha_2,\,\ldots,\,A\alpha_n)=(\lambda_1\alpha_1,\,\lambda_2\alpha_2,\,\ldots,\,\lambda_n\alpha_n)$$

$$\Leftrightarrow A\alpha_i = \lambda_i\alpha_i$$
 (λ_i 是特征值, α_i 是特征向量)

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \lambda_2 \alpha_2, \dots, \lambda_n \alpha_n)$$

$$\Leftrightarrow A\alpha_i = \lambda_i \alpha_i$$
 (λ_i 是特征值, α_i 是特征向量)

定理 A 可对角化 ⇔ A 有 n 个线性无关的特征向量

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

 $\Leftrightarrow A\alpha_i = \lambda_i\alpha_i$ (λ_i 是特征值, α_i 是特征向量)

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \lambda_2 \alpha_2, \dots, \lambda_n \alpha_n)$$

定理 A 可对角化 ⇔ A 有 n 个线性无关的特征向量

推论 若方阵 $A_{n \times n}$ 有 n 不同特征值,则 A 可对角化。

步骤

1. 求出 A 的所有特征值,及相应特征向量

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 α_1 , α_2 , ..., α_n , 记对应特征值 为 λ_1 , λ_2 , ..., λ_n (即: $A\alpha_i = \lambda_i \alpha_i$)则

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 α_1 , α_2 , ..., α_n , 记对应特征值 为 λ_1 , λ_2 , ..., λ_n (即: $A\alpha_i = \lambda_i \alpha_i$)则

$$A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}}_{\Lambda}$$

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 $\alpha_1, \alpha_2, \ldots, \alpha_n$,记对应特征值 为 $\lambda_1, \lambda_2, \ldots, \lambda_n$ (即: $A\alpha_i = \lambda_i \alpha_i$)则

$$A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Rightarrow AP = P\Lambda$$

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 $\alpha_1, \alpha_2, \ldots, \alpha_n$,记对应特征值 为 $\lambda_1, \lambda_2, \ldots, \lambda_n$ (即: $A\alpha_i = \lambda_i \alpha_i$)则

$$A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{h}$$

$$\Rightarrow AP = P\Lambda \Rightarrow P^{-1}AP = \Lambda$$

例
$$A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

• 特征方程: $0 = |\lambda I - A| = (\lambda + 2)(\lambda - 4)$

例
$$A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 λ₁ = 4,
- 特征值 $\lambda_2 = -2$,

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

所以 A 可以对角化,且

$$\begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix}^{-1} A \begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$$

例
$$A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: 0 = |λI − A| = (λ + 2)(λ − 4)
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

所以 A 可以对角化,且

$$\begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix}^{-1} A \begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$$

这是因为:

$$(A\alpha_1, A\alpha_2) = (4\alpha_1, -2\alpha_2)$$

例
$$A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

所以 A 可以对角化,且

$$\begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix}^{-1} A \begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$$

这是因为:

$$(A\alpha_1, A\alpha_2) = (4\alpha_1, -2\alpha_2) \quad \Rightarrow \quad A(\alpha_1, \alpha_2) = (\alpha_1, \alpha_2) \begin{pmatrix} 4 \\ -2 \end{pmatrix}$$

这是因为:

例 $A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$

• 特征方程: $0 = |\lambda I - A| = (\lambda + 2)(\lambda - 4)$

• 特征值
$$\lambda_1 = 4$$
,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

• 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ 所以 A 可以对角化,且

 $(A\alpha_1, A\alpha_2) = (4\alpha_1, -2\alpha_2) \quad \Rightarrow \quad A(\alpha_1, \alpha_2) = (\alpha_1, \alpha_2) \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ 所以

$$A\begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix} \begin{pmatrix} 4 \\ -2 \end{pmatrix}$$
阿格特斯科化

 $\begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix}^{-1} A \begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$

例 判断 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

例 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

特征方程: 0 = |λI − A|

例 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能, 写出 P 和 Λ

• 特征方程: $0 = |\lambda I - A| = (\lambda - 2)^2 (\lambda - 6)$

例 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能, 写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 λ₁ = 2 (二重)
- 特征值 λ₂ = 6

例 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 $\lambda_1 = 2$ (二重) ,特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- 特征值 λ₂ = 6

例 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 $\lambda_1 = 2$ (二重) ,特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = 6$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

例 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 $\lambda_1 = 2$ (二重) ,特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = 6$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

所以
$$\begin{array}{cccc} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_1 & \alpha_2 & \alpha_3 \\ A \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 6 \end{pmatrix}$$

例 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

• 特征方程:
$$0 = |\lambda I - A| = (\lambda - 2)^2 (\lambda - 6)$$

• 特征值
$$\lambda_1 = 2$$
 (二重) ,特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

• 特征值
$$\lambda_2 = 6$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

$$A\underbrace{\begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}}_{p} = \underbrace{\begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}}_{p} \begin{pmatrix} 2 & 2 & 4 \end{pmatrix}$$

例 判断 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 $\lambda_1 = 2$ (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = 6$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

所以
$$A\left(\begin{array}{cccc} \alpha_1 & \alpha_2 & \alpha_3 \\ -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{array}\right) = \underbrace{\begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{array}\right)}_{P} \begin{pmatrix} 2 & 2 & 6 \end{pmatrix}$$

即,
$$P^{-1}AP = \begin{pmatrix} 2 & 2 & 6 \end{pmatrix}$$

例 判断 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$ 是否能对角化? 若能, 写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 $\lambda_1 = 2$ (二重) ,特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = 6$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

所以
$$A\left(\begin{array}{cccc} \alpha_1 & \alpha_2 & \alpha_3 \\ -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{array}\right) = \underbrace{\begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}}_{P} \begin{pmatrix} 2 & 2 & 6 \end{pmatrix}$$

即,
$$P^{-1}AP = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \end{pmatrix}$$
,或 $A = P \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

例 判断 $A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

例 判断 $A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

• 特征值
$$\lambda_1 = 1$$
,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details

• 特征值
$$\lambda_2 = 2(二重)$$
,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det

例 判断
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 1)(\lambda 2)^2$ Details
- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

所以
$$\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_1 \quad \alpha_2 \quad \alpha_3$$
 $A\begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$

例 判断
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$$
 是否能对角化? 若能, 写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 1)(\lambda 2)^2$ Details
- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det

所以
$$A\left(\begin{array}{ccc} \alpha_1 & \alpha_2 & \alpha_3 \\ 1 & 1 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{array}\right) = \underbrace{\begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}}_{} \begin{pmatrix} 1 & 2 & 2 & 2 \\ 2 & 1 & 0 & 2 & 2 \end{pmatrix}$$

例 判断 $A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 1)(\lambda 2)^2$ Details
- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Details

所以
$$A\left(\begin{array}{ccc} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_1 & \alpha_2 & \alpha_3 \\ 1 & 1 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{array}\right) = \underbrace{\begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}}_{P} \begin{pmatrix} 1 & 2 & 2 & 2 & 2 \\ 2 & 0 & 1 & 2 & 2 & 2 \end{pmatrix}$$

即,
$$P^{-1}AP = \begin{pmatrix} 1 & 2 & 2 \end{pmatrix}$$

例 判断 $A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

• 特征方程:
$$0 = |\lambda I - A| = (\lambda - 1)(\lambda - 2)^2$$
 ①Details

- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det

所以
$$A\left(\begin{array}{cccc} \alpha_1 & \alpha_2 & \alpha_3 \\ 1 & 1 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{array}\right) = \underbrace{\begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}}_{P} \begin{pmatrix} 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$$

即, $P^{-1}AP = \begin{pmatrix} 1 & 2 & \\ & 2 & \\ & & 2 \end{pmatrix}$, 或 $A = P \begin{pmatrix} 1 & 2 & \\ & & 2 & \\ & & & 2 \end{pmatrix} P^{-1}$

矩阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

矩阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

 n_1

图解如下:

 λ_1

不同 重 $(\lambda_i I - A)x = 0$ 基础解系特征值 数 /线性无关特征向量

$$\lambda_2$$
 n_2

$$\lambda_s$$
 n_s

— 共 n

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

矩阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

图解如下:

不同 重 $(\lambda_i I - A)x = 0$ 基础解系特征值 数 /线性无关特征向量

$$\lambda_1$$
 n_1 $r(\lambda_1 I - A) = n - n_1$
 λ_2 n_2
 \vdots \vdots

共 n

 n_{s}

 λ_{s}

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

矩阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

图解如下:

 λ_1

不同 重 $(\lambda_i I - A)x = 0$ 基础解系特征值 数 /线性无关特征向量

$$\lambda_2$$
 n_2 $r(\lambda_2 I - A) = n - n_2$
 \vdots \vdots
 λ_s n_s

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

 n_1 $r(\lambda_1 I - A) = n - n_1$

共力

55年在对角化

§4.2

矩阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

图解如下:

 λ_1

不同 重 $(\lambda_i I - A)x = 0$ 基础解系特征值 数 /线性无关特征向量

$$\lambda_2$$
 n_2 $r(\lambda_2 I - A) = n - n_2$
 \vdots \vdots \vdots \vdots λ_s n_s $r(\lambda_s I - A) = n - n_s$

+ n $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

 n_1 $r(\lambda_1 I - A) = n - n_1$

矩阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

图解如下:

不同 $(\lambda_i I - A)x = 0$ 基础解系 特征值 /线性无关特征向量 数 $n_1 r(\lambda_1 I - A) = n - n_1 \Rightarrow \alpha_1^{(1)}, \alpha_2^{(1)}, \dots, \alpha_n^{(1)}$ λ_1

$$\lambda_2$$
 n_2 $r(\lambda_2 I - A) = n - n_2$
 \vdots \vdots \vdots \vdots λ_s n_s $r(\lambda_s I - A) = n - n_s$

共 n

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

矩阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

图解如下:

$$\lambda_s$$
 n_s $r(\lambda_s I - A) = n - n_s$

共 n

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

矩阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

图解如下:

不同 $(\lambda_i I - A)x = 0$ 基础解系 特征值 /线性无关特征向量 数 n_1 $r(\lambda_1 I - A) = n - n_1 \Rightarrow \alpha_1^{(1)}, \alpha_2^{(1)}, \cdots, \alpha_n^{(1)}$ λ_1 $n_2 r(\lambda_2 I - A) = n - n_2 \Rightarrow \alpha_1^{(2)}, \alpha_2^{(2)}, \dots, \alpha_{n_2}^{(2)}$ λ_2

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

λς

矩阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

图解如下:

不同 特征值	重 数		(,	$egin{aligned} \lambda_i I - A) x &= 0 \$
λ_1	n_1	$r(\lambda_1 I - A) = n - n_1$	⇒	$\alpha_1^{(1)}, \alpha_2^{(1)}, \cdots, \alpha_{n_1}^{(1)}$
λ_2	n ₂	$r(\lambda_2 I - A) = n - n_2$	⇒	$\alpha_1^{(2)}, \alpha_2^{(2)}, \cdots, \alpha_{n_2}^{(2)}$
:	:	:		:

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

 n_s $r(\lambda_s I - A) = n - n_s$ \Rightarrow $\alpha_1^{(s)}, \alpha_2^{(s)}, \dots, \alpha_n^{(s)}$

 λ_s

● ^器 · 大學

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ↔

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Leftrightarrow r(I-A) = \qquad \qquad \exists \ r(2I-A) =$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Leftrightarrow r(I-A) = 3-2 = 1 \perp r(2I-A) =$$

例 下列哪个矩阵与 $\Lambda = \begin{pmatrix} 100\\ 010\\ 002 \end{pmatrix}$ 相似?

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Leftrightarrow r(I-A) = 3-2 = 1 \perp r(2I-A) = 3-1 = 2$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 \Leftrightarrow A 可对角化

A ₁	A ₂	A ₃	A ₄

I - A

r(I-A)

2I - A

r(2I-A)

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 \Leftrightarrow A 可对角化

$$\bowtie$$
 $r(I-A) = 3-2 = 1$ 且 $r(2I-A) = 3-1 = 2$

	A_1	A ₂	A ₃	A ₄
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$			
r(I-A)				
2 <i>I</i> – A				

$$r(2I-A)$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 \Leftrightarrow A 可对角化

解
$$\Leftrightarrow r(I-A) = 3-2 = 1 且 r(2I-A) = 3-1 = 2$$

	A_1	A ₂	<i>A</i> ₃	A ₄
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 - 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$		
r(I-A)				
2 <i>I</i> – <i>A</i>				

r(2I – A)

● 基本大

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ⇔ A 可对角化

$$\bowtie$$
 $r(I-A) = 3-2 = 1 且 r(2I-A) = 3-1 = 2$

	A_1	A ₂	A ₃	A_4
I – A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	
r(I-A)				

2I - A

$$r(2I-A)$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 \Leftrightarrow A 可对角化

解
$$\Leftrightarrow r(I-A) = 3-2 = 1$$
且 $r(2I-A) = 3-1 = 2$

	A_1	A ₂	A ₃	A_4
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 - 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$
r(I-A)				

2I - A

r(2I-A)

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

解
$$\Leftrightarrow r(I-A) = 3-2 = 1$$
且 $r(2I-A) = 3-1 = 2$

	A_1	A ₂	A ₃	A ₄
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} $
r(I-A)	2			

$$2I - A$$

$$r(2I-A)$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ⇔ A 可对角化

解
$$\Leftrightarrow r(I-A) = 3-2 = 1 且 r(2I-A) = 3-1 = 2$$

	A_1	A ₂	<i>A</i> ₃	A_4
I – A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$
r(I-A)	2	2		

2I - A

r(2I-A)

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 \Leftrightarrow A 可对角化

$$\bowtie$$
 $r(I-A) = 3-2 = 1$ 且 $r(2I-A) = 3-1 = 2$

	A_1	A ₂	<i>A</i> ₃	A_4
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} $
r(I-A)	2	2	1	

2I - A

r(2I-A)

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\bowtie$$
 $r(I-A) = 3-2 = 1 且 r(2I-A) = 3-1 = 2$

	A_1	A ₂	<i>A</i> ₃	A ₄
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 - 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} $
r(I-A)	2	2	1	2

$$2I - A$$

$$r(2I-A)$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 \Leftrightarrow A 可对角化

$$\bowtie$$
 $r(I-A) = 3-2 = 1 且 r(2I-A) = 3-1 = 2$

	A_1	A ₂	A ₃	A ₄
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 - 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} $
r(I-A)	2	2	1	2
2 <i>I</i> – <i>A</i>			$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	

r(2I — A)

84.2 相似矩阵与矩阵对角化

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ⇔ A 可对角化

例 下列哪个矩阵与 $\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 相似?

$$\bowtie$$
 $r(I-A) = 3-2 = 1$ 且 $r(2I-A) = 3-1 = 2$

791				
	A_1	A ₂	A ₃	A_4
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\left(\begin{smallmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{smallmatrix}\right)$
r(I-A)	2	2	1	2
2 <i>I</i> – <i>A</i>			$\left(\begin{smallmatrix}1&0&-1\\0&1&0\\0&0&0\end{smallmatrix}\right)$	

2

r(2I-A)相似矩阵与矩阵对角化

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

解
$$\Leftrightarrow r(I-A) = 3-2 = 1$$
且 $r(2I-A) = 3-1 = 2$

	A ₁	A ₂	A ₃	A_4
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\left(\begin{smallmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{smallmatrix} \right)$	$\left(\begin{smallmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{smallmatrix} \right)$	$\left(\begin{smallmatrix}0&0&-1\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$
r(I-A)	2	2	1	2
2 <i>I</i> – <i>A</i>	$\begin{pmatrix} 1 - 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 - 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\left(\begin{smallmatrix}1&0&-1\\0&1&0\\0&0&0\end{smallmatrix}\right)$	$\left(\begin{smallmatrix}1&0&-1\\0&0&-1\\0&0&1\end{smallmatrix}\right)$
r(2I-A)			2	

解

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ⇔ A 可对角化

例 下列哪个矩阵与 $\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 相似?

 $\Leftrightarrow r(I-A) = 3-2 = 1 \perp r(2I-A) = 3-1 = 2$

	A_1	A ₂	<i>A</i> ₃	A ₄
I – A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$ \begin{array}{c cccc} \hline \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} $
r(I-A)	2	2	1	2
2 <i>I</i> – A	$\begin{pmatrix} 1 - 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$	$\left(\begin{smallmatrix}1&-1&0\\0&1&0\\0&0&0\end{smallmatrix}\right)$	$\left(\begin{smallmatrix}1&0&-1\\0&1&0\\0&0&0\end{smallmatrix}\right)$	$\left(\begin{smallmatrix}1&0&-1\\0&0&-1\\0&0&1\end{smallmatrix}\right)$
r(2I-A)	2	2	2	2

相似矩阵与矩阵对角化

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则

$$P^{-1}AP = \left(\begin{array}{cc} 2 & \\ & 2 \\ & & 6 \end{array}\right)$$

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则

$$P^{-1}AP = \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} P^{-1}$$

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则

$$P^{-1}AP = \begin{pmatrix} 2 & 2 & \\ & 2 & \\ & 6 & \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 2 & \\ & 6 & \\ \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

这相当对 A 作了一个"好的"分解。

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则
$$P^{-1}AP = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

这相当对 A 作了一个"好的"分解。应用:

$$A^n =$$

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则
$$P^{-1}AP = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

$$A^{n} = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$

$$A^{n} = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$
$$= P \wedge \cdot \wedge \cdots \wedge P^{-1}$$

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则
$$P^{-1}AP = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

$$A^{n} = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$
$$= P \wedge \cdot \wedge \cdots \wedge P^{-1}$$
$$= P \wedge^{n} P^{-1}$$

=

这相当对 A 作了一个"好的"分解。应用:

$$A^{n} = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$
$$= P \wedge \cdot \wedge \cdots \wedge P^{-1}$$
$$= P \wedge^{n} P^{-1}$$

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则 $P^{-1}AP = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} P^{-1} = P \wedge P^{-1}$

这相当对 A 作了一个"好的"分解。应用:

$$A^{n} = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$
$$= P \wedge \cdot \wedge \cdots \wedge P^{-1}$$
$$= P \wedge^{n} P^{-1}$$

 $= \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} 2^n \\ 2^n \\ 6^n \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}^{-1}$

_____The End_____

$$0 = |\lambda I - A| =$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$r_3-r_2$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$
$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$
$$\frac{r_3 - r_2}{=} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix} \xrightarrow{c_2 + 2c_3}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{c_2 + 2c_3}{=} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 2 & \lambda - 2 & 2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$\frac{r_3 - r_2}{=} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{c_2 + 2c_3}{=} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 2 & \lambda - 2 & 2 \\ 0 & 1 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 \\ 2 & \lambda - 2 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$= \frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{c_2 + 2c_3}{=} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 2 & \lambda - 2 & 2 \\ 0 & 1 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 \\ 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 1)(\lambda - 2)^2$$

$$(1I - A : 0) =$$

•
$$\exists \lambda_1 = 1, \ \ x \ \ (\lambda_1 I - A) x = 0$$
:

$$(1I-A:0) = \begin{pmatrix} 0 & -1 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 2 & -2 & 1 & | & 0 \end{pmatrix}$$

$$(1I-A:0) = \begin{pmatrix} 0 & -1 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 2 & -2 & 1 & | & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 0 & -1 & 1 & | & 0 \end{pmatrix}$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 2 & -2 & 1 & | & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 0 & -1 & 1 & | & 0 \end{pmatrix}$$

$$r_2-r_1$$

$$(1I - A : 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array} \right)$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right)$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以
$$\begin{cases} x_1 & -\frac{1}{2}x_3 = 0 \end{cases}$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 2 & -2 & 1 & | & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 0 & -1 & 1 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

所以
$$\begin{cases} x_1 & -\frac{1}{2}x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 2 & -2 & 1 & | & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 0 & -1 & 1 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

所以
$$\begin{cases} x_1 & -\frac{1}{2}x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_2 = x_3 \end{cases}$$

$$(1I - A \mid 0) = \begin{pmatrix} 0 & -1 & 1 \mid 0 \\ 2 & -3 & 2 \mid 0 \\ 2 & -2 & 1 \mid 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 \mid 0 \\ 2 & -3 & 2 \mid 0 \\ 0 & -1 & 1 \mid 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以 $\begin{cases} x_1 & -\frac{1}{2}x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_2 = x_3 \end{cases}$

基础解系:
$$\alpha_3 = \begin{pmatrix} 2 \end{pmatrix}$$

$$(1I - A : 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

所以 $\begin{cases} x_1 & -\frac{1}{2}x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_2 = x_3 \end{cases}$

基础解系:
$$\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

• $\exists \lambda_2 = 2$, $\forall x \in (\lambda_2 I - A)x = 0$:

$$(2I - A : 0) =$$

• $\exists \lambda_2 = 2$, $\forall x \in (\lambda_2 I - A)x = 0$:

$$(2I - A \stackrel{!}{\cdot} 0) = \begin{pmatrix} 1 & -1 & 1 & | & 0 \\ 2 & -2 & 2 & | & 0 \\ 2 & -2 & 2 & | & 0 \end{pmatrix} \rightarrow$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 - x_2 + x_3 = 0$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 - x_2 + x_3 = 0 \Rightarrow x_1 = x_2 - x_3$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 - x_2 + x_3 = 0 \quad \Rightarrow \quad x_1 = x_2 - x_3$$

基础解系:
$$\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\alpha_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 - x_2 + x_3 = 0 \quad \Rightarrow \quad x_1 = x_2 - x_3$$

基础解系:
$$\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\alpha_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 - x_2 + x_3 = 0$$
 \Rightarrow $x_1 = x_2 - x_3$ 基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 - x_2 + x_3 = 0$$
 \Rightarrow $x_1 = x_2 - x_3$ 基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$