Lineární zobrazení

Odpřednesenou látku naleznete v kapitolách 2.1, 2.2 a 4 skript Abstraktní a konkrétní lineární algebra.

Minulé přednášky

 Báze lineárního prostoru a souřadnice vektoru vzhledem ke konečné uspořádané bázi.

Dnešní přednáška

- Lineární zobrazení $\mathbf{f}: L_1 \longrightarrow L_2$ zobecňuje zobrazení $\vec{x} \mapsto \mathbf{coord}_B(\vec{x})$, dané konečnou uspořádanou bází B.
- 2 Zavedeme pojem matice lineárního zobrazení z \mathbb{F}^s do \mathbb{F}^r (vzhledem ke kanonickým bázím).

Velmi důležité připomenutí

Vektory z prostoru \mathbb{F}^n píšeme jako sloupce.

Definice (lineární zobrazení)

Ať L_1 , L_2 jsou lineární prostory nad \mathbb{F} . Zobrazení $\mathbf{f}: L_1 \longrightarrow L_2$, pro které platí $\mathbf{f}(\vec{x}+\vec{x}') = \mathbf{f}(\vec{x}) + \mathbf{f}(\vec{x}')$ a $\mathbf{f}(a \cdot \vec{x}) = a \cdot \mathbf{f}(\vec{x})$ pro vš. $a \in \mathbb{F}$, pro vš. $a \in \mathbb{F}$

Příklady

- Ať L má uspořádanou bázi B o n prvcích. Zobrazení coord_B: L → Fⁿ je lineární (minulá přednáška).
- Řada dalších...

Poznámka (princip superposice)

 $\mathbf{f}: L_1 \longrightarrow L_2$ je lineární právě tehdy, když platí rovnost

$$\mathbf{f}(\sum_{i=1}^n a_i \cdot \vec{x}_i) = \sum_{i=1}^n a_i \cdot \mathbf{f}(\vec{x}_i)$$

pro vš. a_i z \mathbb{F} a vš. $\vec{x_i}$ z L_1 .

Tvrzení (základní algebraické vlastnosti lineárních zobrazení)

- Složení lineárních zobrazení je lineární. Identita je lineární zobrazení.
- ② Jsou-li $\mathbf{f}: L_1 \longrightarrow L_2$ a $\mathbf{g}: L_1 \longrightarrow L_2$ lineární zobrazení, pak i zobrazení
 - **1** $\mathbf{f} + \mathbf{g}$ je lineární, kde $(\mathbf{f} + \mathbf{g})(\vec{x}) = \mathbf{f}(\vec{x}) + \mathbf{g}(\vec{x})$.
 - 2 $a \cdot \mathbf{f}$ je lineární (a je skalár z \mathbb{F}), kde $(a \cdot \mathbf{f})(\vec{x}) = a \cdot \mathbf{f}(\vec{x})$.

Důkaz.

Přednáška.

Důsledek (lineární prostor lineárních zobrazení)

Pro pevné lineární prostory L_1 a L_2 nad \mathbb{F} je množina všech lineárních zobrazení z L_1 do L_2 lineární prostor nad \mathbb{F} . Tento prostor značíme Lin (L_1, L_2) .

Věta (lineární zobrazení je určeno hodnotami na bázi)

Ať B je báze^a lineárního prostoru L_1 , ať L_2 je libovolný lineární prostor. Pak zadat

1 libovolné zobrazení $h: B \longrightarrow L_2$,

je totéž jako zadat

2 lineární zobrazení $\mathbf{f}: L_1 \longrightarrow L_2$.

Důkaz.

Pro prostory konečné dimense: princip superposice.

Pro obecné prostory: mírně složitější.

^aPřipomenutí (téma 3A): každý lineární prostor má bázi.

Příklad (popis libovolného lineárního zobrazení f : $\mathbb{F}^s \longrightarrow \mathbb{F}^r$)

Připomenutí: $K_s=(\mathbf{e}_1,\ldots,\mathbf{e}_s)$ je kanonická báze prostoru \mathbb{F}^s . Zadat lineární zobrazení $\mathbf{f}:\mathbb{F}^s\longrightarrow\mathbb{F}^r$ znamená zadat seznam s (ne nutně různých) hodnot

$$\mathbf{f}(\mathbf{e}_1) = \mathbf{a}_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{r1} \end{pmatrix}, \mathbf{f}(\mathbf{e}_2) = \mathbf{a}_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \\ \vdots \\ a_{r2} \end{pmatrix}, \dots, \mathbf{f}(\mathbf{e}_s) = \mathbf{a}_s = \begin{pmatrix} a_{1s} \\ a_{2s} \\ a_{3s} \\ \vdots \\ a_{rs} \end{pmatrix}$$

v lineárním prostoru \mathbb{F}^r .

Tomuto seznamu říkáme matice (o r řádcích a s sloupcích).

Definice (matice)

Matice **A** nad \mathbb{F} o r řádcích a s sloupcích je tabulka^a

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1s} \\ a_{21} & a_{22} & \dots & a_{2s} \\ \vdots & & & & \\ a_{r1} & a_{r2} & \dots & a_{rs} \end{pmatrix}$$

Nebudeme používat: matice typu $r \times s$, rozměrů $r \times s$, atd., případně ještě horší značení $n \times m$. (Nebo $m \times n$?)

Poznámka

Matici $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_s)$ o r řádcích a s sloupcích budeme ztotožňovat s lineárním zobrazením

$$\mathbf{A}: \mathbf{e}_j \mapsto \mathbf{a}_j, \quad j=1,\ldots,s$$

z prostoru \mathbb{F}^s do prostoru \mathbb{F}^r , a budeme psát $\mathbf{A}: \mathbb{F}^s \longrightarrow \mathbb{F}^r$.

7/14

^aBudeme také používat položkový zápis $\mathbf{A} = (a_{ij})_{i=1,\dots,r,j=1,\dots,s}$ nebo sloupcový zápis $\mathbf{A} = (\mathbf{a}_1,\dots,\mathbf{a}_s)$.

Příklad (matice základních lineárních transformací v \mathbb{R}^2)

Kanonická báze $K_2 = (\mathbf{e}_1, \mathbf{e}_2)$ v \mathbb{R}^2 . Matice některých lineárních zobrazení z \mathbb{R}^2 do \mathbb{R}^2 (vzhledem ke K_2) jsou:

1 Projekce na osu x je ztotožněna s maticí $\mathbf{P}_x = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Analogicky: projekce na osu y je ztotožněna s maticí

$$\mathbf{P}_y = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Příklad (matice základních lineárních transformací v \mathbb{R}^2 , pokrač.)

2 Rotace (o úhel α) je ztotožněna s maticí

$$\mathbf{R}_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.$$

3 Změna měřítka $(a \neq 0 \text{ a } b \neq 0)$ je ztotožněna s maticí $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$. Pro a = 1, b = -1 dostaneme reflexi: $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Příklad (matice základních lineárních transformací v \mathbb{R}^2 , pokrač.)

Zkosení^a (také: shear) je ztotožněno s maticí

$$\mathbf{S}_{a,b} = \begin{pmatrix} 1 & b \\ a & 1 \end{pmatrix}$$

kde $a, b \in \mathbb{R}$.

^aSpeciální typy zkosení (nad obecným tělesem) budou hrát důležitou roli při řešení soustav rovnic.

Co už nyní víme?

Například diagram

$$\mathbb{R}^2 \xrightarrow{\mathbf{R}_\alpha} \mathbb{R}^2 \xrightarrow{\mathbf{P}_x} \mathbb{R}^2$$

znamená následující: nejprve otočte o úhel α , potom proveď te projekci na osu x.

Značit se to musí $\mathbf{P}_x \cdot \mathbf{R}_\alpha$ (jde o skládání lineárních zobrazení). Co ale "násobení tabulek" znamená? Odpověď: jde o novou matici.

Jak novou matici najít?

$$\mathbf{e}_j \mapsto j$$
-tý sloupec matice $\mathbf{R}_\alpha \mapsto ???$

- Násobení (skládání) matic: příští přednáška (téma 4B).
- 2 Zbytek dnešní přednášky: jak obecná matice $\mathbf{A}: \mathbb{F}^s \longrightarrow \mathbb{F}^r$ "zachází" s obecným vektorem z prostoru \mathbb{F}^s ?

Tvrzení (výpočet hodnoty matice A v obecném vektoru x)

Pro matici $\mathbf{A}: \mathbb{F}^s \longrightarrow \mathbb{F}^r$ se sloupcovým zápisem $(\mathbf{a}_1, \dots, \mathbf{a}_s)$ a pro

$$\text{vektor } \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_s \end{pmatrix} \text{ plat} \mathbf{i}$$

$$\mathbf{A}: \mathbf{x} \mapsto \sum_{j=1}^{s} x_j \cdot \mathbf{a}_j$$

Důkaz.

Protože $\mathbf{A}: \mathbf{e}_j \mapsto \mathbf{a}_j$, tak $\mathbf{A}: \sum_{j=1}^s x_j \cdot \mathbf{e}_j \mapsto \sum_{j=1}^s x_j \cdot \mathbf{a}_j$.

Značení (násobení matice vektorem)

Vektor $\sum_{i=1}^{s} x_i \cdot \mathbf{a}_i$ značíme $\mathbf{A} \cdot \mathbf{x}$.

Příklad (rotace vektoru v \mathbb{R}^2)

Rotace (o úhel
$$\alpha$$
): $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. Potom součin

$$\begin{pmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{pmatrix} \cdot \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = x_1 \cdot \begin{pmatrix}
\cos \alpha \\
\sin \alpha
\end{pmatrix} + x_2 \cdot \begin{pmatrix}
-\sin \alpha \\
\cos \alpha
\end{pmatrix}$$

$$= \begin{pmatrix}
x_1 \cos \alpha - x_2 \sin \alpha \\
x_1 \sin \alpha + x_2 \cos \alpha
\end{pmatrix}$$

dává výsledek otočení vektoru $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ o úhel α .

Například pro $\alpha = \frac{\pi}{4}$:

$$\begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \frac{\sqrt{2}}{2} - x_2 \frac{\sqrt{2}}{2} \\ x_1 \frac{\sqrt{2}}{2} + x_2 \frac{\sqrt{2}}{2} \end{pmatrix} = \frac{\sqrt{2}}{2} \cdot \begin{pmatrix} x_1 - x_2 \\ x_1 + x_2 \end{pmatrix}$$

Poznámka (další význam zápisu $A \cdot x = b$)

Zápis $\mathbf{A} \cdot \mathbf{x}$ pro $\mathbf{x} \vee \mathbb{F}^s$, kóduje hodnotu lineárního zobrazení $\mathbf{A} : \mathbb{F}^s \longrightarrow \mathbb{F}^r \vee \text{bodě } \mathbf{x}.$

Zvolme pevné **b** v \mathbb{F}^r . Hledejme všechna **x** v \mathbb{F}^s taková, že $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$. Na tento problém se lze dívat dvěma způsoby:

- **1** Hledáme vzor bodu **b** při lineárním zobrazení $\mathbf{A} : \mathbb{F}^s \longrightarrow \mathbb{F}^r$.
- Řešíme soustavu lineárních rovnic. Počet sloupců matice A je počet neznámých, počet řádků matice A je počet rovnic v soustavě.

Příklad

$$\begin{pmatrix} 1 & 0 & -3 & 4 \\ 2 & 7 & 6 & 3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 24 \\ 8 \end{pmatrix} \text{ je } \begin{cases} x_1 \\ 2x_1 + 7x_2 + 6x_3 + 3x_4 = 24 \\ 8 \end{cases}$$

