6-12Exam-Analytic-geometry

1. Graph and label the two equations. Mark their intersection as an ordered pair.

$$y = \frac{3}{4}x - 5$$

$$y = -x + 2$$

Write down the slopes of the two lines.

$$m_1 =$$

$$m_2 =$$

Are the lines parallel, perpendicular, or neither? Justify your answer using the slopes.

2. Graph and label the two equations. Mark their intersection as an ordered pair.

$$y = -\frac{1}{3}x + 4$$

$$3x - y = 6$$

Are the lines parallel, perpendicular, or neither? Justify your answer using the slopes.

- 3. The line l has the equation $y = -\frac{3}{5}x + 3$.
 - (a) What is the slope of the line k, given $k \parallel l$?
 - (b) What is the slope of the line j, given $j \perp l$?

4. Apply a dilation mapping $\triangle ABC \rightarrow \triangle A'B'C'$ with a factor of k=3 centered at the origin. Draw and label the image on the grid and make a table of the coordinates.

5. Find the image of P(-2,7) after the translation $(x,y) \to (x+5,y-2)$.

6. What transformation maps $\triangle ABC$ onto $\triangle DEF$, shown below? Fully specify the transformation.

7. Translate $\triangle ABC$ to the right six units and down two units. Make a table of the coordinates and plot and label the image on the axes.

- 8. A translation maps $P(-5,3) \to P'(6,1)$. What is the image of Q(1,9) under the same translation?
- 9. A dilation maps triangle KLM onto triangle PQR, with $KM=5,\,LM=4,\,PR=10.$

Complete each mapping or equivalence.

- (a) $L \rightarrow \underline{\hspace{1cm}}$
- (b) $\angle K \cong \underline{\hspace{1cm}}$
- (c) QR =_____
- 10. Given $\triangle ABC \sim \triangle DEF$. $m \angle A = 33^{\circ}$ and $m \angle B = 66^{\circ}$. Find the measure of $\angle D$.

11. A dilation centered at A maps $\triangle ABC \rightarrow \triangle ADE$. Given the sides of the preimage, AC = 6, BC = 4, AB = 8, and of DE = 10 find the scale factor k and the lengths AD and AE. Then find CE and BD.

(b)
$$AD =$$

(c)
$$AE =$$

(d)
$$CE =$$

(e)
$$BD =$$

12. Triangle ABC is dilated with a scale factor of k centered at A, yielding $\triangle ADE$, as shown. Given AB = 12, BC = 16, AC = 20, and BD = 3.

Find the scale factor k and the segment lengths DE and CE.

(the diagram is not to scale)

13. As shown, \overline{AB} has endpoints with coordinates A(2,1) and B(8,7). Show the calculation for the coordinates of the midpoint M of \overline{AB} . Mark and label it on the graph.

- 14. A(-2,5) is one endpoint of \overline{AB} . The segment's midpoint is M(3,3), as shown below.
 - (a) What translation maps $A(-2,5) \to M(3,3)$?

- (b) Find the other endpoint, B.
- 15. In the diagram below, \overline{AD} has endpoints with coordinates A(-3,0) and D(6,3). What points B and C trisect \overline{AD} into three congruent segments? Mark and label them on the graph. State their coordinates.

16. Given $\triangle ABC$, find the lengths of its sides. A(1,2), B(9,8), C(9,2).

(c) Use the formula for distance:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

17. Given two parallel lines and a transversal, as shown below. Given $m\angle 1 = 117$.

- (a) Find the measure $m\angle 2$.
- (b) Find the measure $m \angle 4$.
- (c) Find the measure $m \angle 5$.
- (d) Given $m \angle 8 = (5x 8)^{\circ}$. Find x.

18. Given isosceles $\triangle ABC$ with $\overline{AB} \cong \overline{BC}$, $m \angle A = x$, $m \angle B = 63$, and $m \angle C = y$. Mark and label the diagram, and then find x and y. (the diagram is not to scale)

19. Given isosceles $\triangle RSU$ with $\overline{RS} \cong \overline{US}$. If $m \angle UST = 140$ find $m \angle R$. (mark and label the diagram) (the diagram is not to scale)

20. Given parallel lines $\overleftrightarrow{AB} \parallel \overleftarrow{CDE}$ with $\overline{AC} \cong \overline{CD}$. If $m \angle BAD = 55$ find $m \angle ACD$. (completely mark and label the diagram)

21. Two parallel lines intersect a second set of parallel lines. Given $m \angle 1 = x$ and $m \angle 2 = 2x - 24$, find the measure of $\angle 4$.

22. Reflect $\triangle ABC$ over the x-axis, then translate it by $(x,y) \to (x+9,y+3)$. Make a table of the coordinates showing $\triangle ABC \to \triangle A'B'C' \to \triangle A''B''C''$ and plot and label the image on the axes.

23. In the diagram below, $\triangle ABC$ with sides of 10, 13, and 16, is mapped onto $\triangle DEF$ after a clockwise rotation of 90° about point P.

If DE = 3x + 1, what is the value of x?

24. Given $\triangle ABP \sim \triangle JKP$ as shown below. $AB=9.6,\ AP=12.0,\ BP=6.3,$ and JP=27.0. Find JK.

Spicy Regents problems: Using slope to prove a parallelogram

25. In this problem use the following theorem (copy it at the bottom of the page after your calculations):

A quadrilateral is a parallelogram if and only if it's opposite sides are parallel.

Shown below is quadrilateral ABCD, A(2,-1), B(5,1), C(1,6), and D(-2,4).

Prove it is a parallelogram by

- (a) finding the slope of each of the four sides,
- (b) stating which sides are parallel,
- (c) copying the theorem as your conclusion.

Using the distance formula to prove a parallelogram

26. In this problem use the following theorem (copy it at the bottom of the page after your calculations):

A quadrilateral is a parallelogram if and only if it's opposite sides are congruent.

Shown below is quadrilateral ABCD, A(2,-1), B(5,1), C(1,6), and D(-2,4).

Prove it is a parallelogram by

- (a) finding the length of each of the four sides,
- (b) stating which sides are congruent,
- (c) copying the theorem as your conclusion.

27. Given \overrightarrow{AB} as shown on the number line, with A = -3 and B = 5. Mark and label the midpoint M between A and B?

28. Given two parallel lines and a transversal, as shown below.

- (a) State the angle corresponding with $\angle 7$.
- (b) What theorem would justify $m \angle 4 + m \angle 6 = 180^{\circ}$?
- (c) What theorem would justify $\angle 3 \cong \angle 6$?
- (d) What theorem would justify $\angle 5 \cong \angle 8$?