CÔNG TÁC THÍ NGHIỆM SỐC BẦM VẬT LIỆM

Nội dung chính

- Mục đích, ý nghĩa của công tác thí nghiệm.
- > Thiết bị thí nghiệm .
- Các bài thí nghiệm.

I. Mục đích, ý nghĩa của công tác thí nghiệm

- Xác định các thông số, các đặc trng cơ lý của vật liệu.
- Kiểm tra tính đúng đắn của các lý thuyết cũng như các kết quả tính toán.
- Có thể là một giải pháp nghiên cứu một vấn đề mới.

II. Các thiết bị thí nghiệm.

- Thiết bị đo chuyển vị.
- > Thiết bị đo biến dạng.

II.1. Thiết bị đo chuyển vị.

- Thiết bị đo chuyển vị là đồng hồ đo chuyển vị (chuyển vị kế).

II.1. Thiết bị đo chuyển vị.

T H IÊ N

II.1. Thiết bị đo chuyển vị.

Một số loại chuyển vị kế khác

II.2. Thiết bị đo biến dạng.

Thiệt bị đo biến dạng sử dụng nguyên lý cơ học.

- 1 Giá ten xơ mét
- 2 Mũi cố định
- 3 Mũi di động
- 4 Bảng mặt số có gắn gơng
- 5 Khoá ten xơ mét
- 6 Núm điều chỉnh kim
- 7 Kim chỉ thị

Ten xơ mét đòn

II.2. Một số thiết bị đo biến dạng.

Thiết bị đo biến dạng sử dụng nguyên lý điện trở.

Ten xơ mét điện trở (Đát trích)

1 □ Tấm điện trở

2 □ Dây dẫn

3 - Đầu nối

III. Các bài thí nghiệm.

- > Thí nghiệm kéo thép mềm
- Thí nghiệm đo Mô-đuyn đàn hồi E
- > Thí nghiệm đo ứng suất dầm uốn thuần tuý
- Thí nghiệm đo độ võng góc quay dầm chịu uốn ngang phẳng
- Thí nghiệm xác định mô-đuyn đàn hồi trượt G

Bài 1: THÍ NGHIỆM KÉO THÉP MỀM

1. Mục đích thí nghiệm:

- Xác định các đặc trng cơ lý của vât liệu thép mềm.
- Xác định độ dai, độ co thắt của vật liệu.

2. Bố trí và tiến hành thí nghiệm:

- > Đo các kích thớc của mẫu thử trớc khi kéo:
 - + Chiều dài mẫu ban đầu: Io (mm)
 - + Đờng kính mẫu ban đầu: do (mm)

Th□nghi□m k□o th□p m□m

- 2. Bố trí và tiến hành thí nghiệm:
- ➤ Lắp mẫu và kéo mẫu bằng máy HFM 500kN:

Th□nghi□m k□o th□p m□m

> Đo các kích thớc của mẫu thử sau khi kéo:

- > Xuất kết quả từ máy tính
 - + Xuất kết quả bằng file Excel.
 - + Xuất kết quả bằng biều đồ:

3. Xử lsý số liệu:

Tính một số đặc trng cơ học:

- Giới hạn tỉ lệ:

$$\sigma_{tl} = \frac{P_{tl}}{F_{o}}$$

- Giới hạn bền:

$$\sigma_b = \frac{P_b}{F_o}$$

- Độ dai tỷ đối:

$$\delta = \frac{l_1 - l_o}{1_o}.100 \%$$

- Giới hạn chảy:

$$\sigma_{ch} = \frac{P_{ch}}{F_{ch}}$$

- Giới hạn phá hoại:

$$\sigma_{_{ph}}=rac{\mathrm{P}_{_{ph}}}{F_{_{Ph}}}$$

- Độ co thắt tỷ đối:

$$\psi = \frac{F_o - F_1}{F_o}.100 \%$$

Bài 2:

XÁC ĐỊNH MÔ ĐUN ĐÀN HỒI E CỦA VẬT LIỆU

Th⊡nghi⊡m x⊡c ⊡nh m□ □un □àn h□i E

- 1. Mục đích thí nghiệm:
 - -Xác định môđun đàn hồi E của vật liệu thép.
- 2. Bố trí thí nghiệm: Dùng máy kéo thép 5T

Tăng tải trọng theo từng cấp và ghi số liệu tương ứng vào bảng sau:

		Số đọc trên bách phân kế				
Lần đặt tải thứ	P (kG)	ΔP (kG)	Nhánh	bên trái	Nhánh l	oên phải
		,	V^{tr}	ΔV^{tr}	V^{ph}	ΔV^{-ph}
	0					
1	300					
2	600					
3	900	300				
4	600					
5	300					
	0					

 $\bigvee \acute{\text{oi:}} \quad \Delta V^{tr} = \left| V_{i+1} - V_i \right|$

4.X□I□s□Ii□u:

$$\Delta V_{tb}^{t} = \frac{\sum \Delta V^{t}}{n}$$

$$\Delta V_{tb}^{p} = \frac{\sum \Delta V^{p}}{n}$$

Bi ☐n d ☐ng

□ng suổt

$$\Delta \, \sigma \, = \frac{\Delta P}{F}$$

□L Hooke M□ □un □àn h□

$$\sigma = E.\varepsilon$$

 $E = \frac{\Delta \sigma}{\varepsilon_{tb}}$

- n: S□ cổp t□
- k: H□s□chuyợn □i

Bài 3:

T H □
D □ M

1. Mục đích thí nghiệm

- Đo ứng suất trên dầm chịu uốn thuần tuý.

2. Bố trí thí nghiệm

2. Tiến hành thí nghiệm

- Đặt tải trọng theo từng cấp và ghi số liệu theo bảng sau:

- 1	
н	-
-	

STT	Tải trọng P(kG)	Số liệu đọc ở thiết bị đo			
		Mặt trên của dầm	Mặt đưới của đầm		
0	0				
1	2				
2	4				
3	6				
4	4				
5	2				
6	0				

- 3. Xử lý kết quả thí nghiệm.
 - Theo Lý thuyết:

$$\Delta \sigma_{\text{max}} = \left| \Delta \sigma_{\text{min}} \right| = \frac{\Delta P.l}{W_x}$$

Theo thí nghiệm:

$$\Delta \sigma = E \cdot \Delta \varepsilon_{tb}$$

$$\Delta \varepsilon_{ib}^{t} = \frac{\sum \Delta v_{i}^{t}}{k.a.n}$$

$$\Delta \varepsilon_{ib}^{d} = \frac{\sum \Delta v_{i}^{d}}{k.a.n}$$

$$\left| \Delta \sigma_{\min} \right| = E \cdot \Delta \varepsilon_{_{tb}}^{^{t}}$$

a □ chuẩn đo , a = 20 mm

k □ độ khuếch đại, k = 1000

n □ số cấp tải

 $\Delta v_i^t \square s \circ vach kim dich \circ d$ ten xơ mét đòn trên

 $\Delta v_i^A \square$ số vạch kim dịch ở ten xơ mét đòn dứới

Nhận xét :

- So sánh sai số giữa kết quả lý thuyết và thực nghiệm ???
- Những nguyên nhân nào dẫn đến sai số trong kết quả đo???

Bài 4:

ĐO □□ V□NG G□C QUAY D□M
CH□U U□N NGANG PH□NG

1. Mục đích thí nghiệm

- Đo độ võng và góc xoay của dầm đơn giản chịu lực tập trung ở giữa dầm

3. Tiến hành thí nghiệm.

- Tăng tải trọng theo từng cấp và ghi số liệu theo bảng sau

STT	Tải trọng P(kG)	Số liệu đọc ở thiết bị đo			
		Vị trí đo độ võng B	Vị trí đo góc quay D		
0	0				
1	2				
2	4				
3	6				
4	4				
5	2				
6	0				

3. Xử lý kết quả thí nghiệm.

Theo lý thuyết :

$$\Delta y_{\mathbf{B}} = \frac{\Delta P.l^3}{48EJ_x}$$

$$\Delta \theta_A = \frac{\Delta P.l^2}{16EJ_x}$$

Theo thí nghiệm:

$$\Delta y_{\mathbf{B}} = \frac{\sum \Delta v_{i}^{B}}{n.k}$$

$$\Delta \theta_A = \frac{\sum \Delta v_i^A}{n.a.k}$$

a □ chuẩn đo, a = 20 mm

k □ độ khuếch đại , k = 100

n □ số cấp tải

 $\Delta v_i^B \square$ số vạch kim dịch ở đồng hồ tại B

 $\Delta v_i^A \square$ số vạch kim dịch ở đồng hồ tại A

Nhận xét :

- So sánh sai số giữa kết quả lý thuyết và thực nghiệm ???
- Những nguyên nhân nào dẫn đến sai số trong kết quả đo???

Bài 5:

XCCMHMÂ-CUYN CÀN HOI TROT G

1. Mục đích thí nghiệm

- Xác định mô đun đàn hồi về trợt (G) từ một thanh mặt cắt hình vành khăn chịu xoắn thuần tuý.

2. Bố trí thí nghiệm

Bách phân kế

3. Tiến hành thí nghiệm.

- Đo kích thớc mẫu thí nghiệm:

□□ l□ng	D	T.	I _M	I _N	a
Gi□tr□					

- Đặt tải trọng và ghi số liệu theo bảng sau

STT Tåi 1	Tải trọng	Số liệu đọc ở thiết bị đo			
	P(kG)	Vị trí M	Vị trí N		
0	0				
1	2				
2	4				
3	6				
4	4				
5	2				
6	0				

- 3. Xử lý kết quả thí nghiệm.
 - Theo lý thuyết:
 - Sau khi xác định đợc Ε, μ ta sẽ tính đợc G theo biểu thức:

$$G = \frac{E}{2.(1 + \mu)}$$
 μ - Hệ số poisson

- Môt thanh tròn chiu xoắn thuần tuý có:

$$\Delta M_{i} = \Delta P.2a = \Delta M$$

$$\Delta \varphi_{i} = \frac{\Delta M_{i}.l}{G.J_{o}}$$

$$J_{o} \square \text{ Momen quán tính}$$

$$\text{cực của mặt cắt}$$

$$J_{o} = \frac{\pi.D^{4}}{32} (1 - \alpha^{4})$$

$$J_o = \frac{\pi \cdot D^4}{32} (1 - \alpha^4)$$

- 3. Xử lý kết quả thí nghiệm.
 - * Theo thí nghiệm:
 - Nếu mỗi lần tăng tải ta đo đợc các chuyển vị tại M và N

$$\Delta \varphi_{tb} = \frac{\sum \Delta y_i^N}{n.b_N} - \frac{\sum \Delta y_i^M}{n.b_M}$$

$$= \frac{\sum \Delta v_i^N}{n.k.b_N} - \frac{\sum \Delta v_i^M}{n.k.b_M}$$

$$G = \frac{\Delta M . l}{\Delta \varphi_{tb} . J_o}$$

$$\Delta v_i^M \square$$
 số vạch kim dịch ở đồng hồ tại M

$$\Delta v_i^N \square$$
 số vạch kim dịch ở đồng hồ tại N

Nhận xét :

- So sánh sai số giữa kết quả lý thuyết và thực nghiệm ???
- Những nguyên nhân nào dẫn đến sai số trong kết quả đo???