Session 1

Revision and practical info

Matt Denwood

2024-01-31

```
source("../rsc/setup.R")
## -- Attaching core tidyverse packages ------
→ tidyverse 2.0.0 --
## v dplyr 1.1.3 v readr 2.1.4
## v forcats 1.0.0 v stringr 1.5.0
## v ggplot2 3.4.3 v tibble 3.2.1
## v lubridate 1.9.2 v tidyr 1.3.0
## v purrr 1.0.2
## -- Conflicts ----

    tidyverse conflicts() --

## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to
force all conflicts to become errors
##
## Attaching package: 'ggdag'
##
```

Revision

Bayes Rule

Bayes' theorem is at the heart of Bayesian statistics:

$$P(\theta|Y) = rac{P(\theta) imes P(Y|\theta)}{P(Y)}$$

3

Bayes Rule

Bayes' theorem is at the heart of Bayesian statistics:

$$P(\theta|Y) = \frac{P(\theta) \times P(Y|\theta)}{P(Y)}$$

Where: θ is our parameter value(s);

Y is the data that we have observed;

 $P(\theta|Y)$ is the posterior probability of the parameter value(s);

 $P(\theta)$ is the prior probability of the parameters;

 $P(Y|\theta)$ is the likelihood of the data given the parameters value(s);

P(Y) is the probability of the data, integrated over parameter space.

• In practice we usually work with the following:

$$P(\theta|Y) \propto P(\theta) \times P(Y|\theta)$$

• In practice we usually work with the following:

$$P(\theta|Y) \propto P(\theta) \times P(Y|\theta)$$

- Our Bayesian posterior is therefore always a combination of the likelihood of the data, and the parameter priors
- But for more complex models the distinction between what is 'data' and 'parameters' can get blurred!

MCMC

- A way of obtaining a numerical approximation of the posterior
- Highly flexible, and easy(ish) using JAGS (or OpenBUGS, or Stan)
- Not inherently Bayesian but most widely used in this context
- Assessing convergence is essential, otherwise we may not be summarising the true posterior
- Our chains are correlated so we need to consider the effective sample size

Hui-Walter models

- A specific class of model for paired diagnostic test data
- Usually (but not necessarily) fit using MCMC
- Requirements are 2 or more tests in 2 or more populations (or 3 tests in 1 population)
- Sensitivity and specificity must be consistent between populations
- Tests must be conditionally independent, although correlation terms can be added
- Easiest to generate using runjags::template_huiwalter

Everyone up to speed?

Any questions so far?

Anything unclear?

Everyone up to speed?

Any questions so far?

Anything unclear?

All OK with GitHub?

Learning outcomes

By the end of the course you should be able to:

- Understand how and why to use simulated data in the context of Hui-Walter models (session 2)
- Use simulation to do sample size calculations for Hui-Walter models (session 3)

Learning outcomes

By the end of the course you should be able to:

- Understand how and why to use simulated data in the context of Hui-Walter models (session 2)
- Use simulation to do sample size calculations for Hui-Walter models (session 3)
- [Bonus material]: a self-directed "sneak preview" of upcoming features of template_huiwalter including post-hoc estimates of se/sp stratified by population (session 4)

Learning outcomes

By the end of the course you should be able to:

- Understand how and why to use simulated data in the context of Hui-Walter models (session 2)
- Use simulation to do sample size calculations for Hui-Walter models (session 3)
- [Bonus material]: a self-directed "sneak preview" of upcoming features of template_huiwalter including post-hoc estimates of se/sp stratified by population (session 4)

Also feel free to ask any other (related or unrelated) questions either during the exercise time or final 20 minute discussion.