S-CALCF

Scholarship 2008 Mathematics with Calculus

2.00 pm Monday 17 November 2008

FORMULAE AND TABLES BOOKLET

Refer to this booklet to answer the questions in Question Booklet 93202Q.

Check that this booklet has pages 2–4 in the correct order and that none of these pages is blank.

YOU MAY KEEP THIS BOOKLET AT THE END OF THE EXAMINATION.

CALCULUS – USEFUL FORMULAE

ALGEBRA

Quadratics

$$e = \frac{c}{a}$$

Logarithms

$$y = \log_b x \Leftrightarrow x = b^y$$

$$\log_b(xy) = \log_b x + \log_b y$$

$$\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$\log_b(x^n) = n\log_b x$$

$$\log_b x = \frac{\log_a x}{\log_a b}$$

Some values of $\binom{n}{r}$ are given in the table below.

0 1 1 1 1 2 1 2 1 3 1 3 3 1 4 1 4 6 4 1 5 1 5 10 10 5 1 6 1 6 15 20 15 6 1												
1 1 1 2 1 2 1 3 1 3 3 1 4 1 4 6 4 1 5 1 5 10 10 5 1 6 1 6 15 20 15 6 1		0	1	2	3	4	5	6	7	8	9	10
2	0	1										
3 1 3 3 1 4 1 4 6 4 1 5 1 5 10 10 5 1 6 1 6 15 20 15 6 1	1	1	1									
4 1 4 6 4 1 5 1 5 10 10 5 1 6 1 6 15 20 15 6 1	2	1	2	1								
5 1 5 10 10 5 1 6 1 6 15 20 15 6 1	3	1	3	3	1							
6 1 6 15 20 15 6 1	4	1	4	6	4	1						
	5	1	5	10	10	5	1					
7 1 7 21 35 35 21 7 1	6	1	6	15	20	15	6	1				
	7	1	7	21	35	35	21	7	1			
8 1 8 28 56 70 56 28 8 1	8	1	8	28	56	70	56	28	8	1		
9 1 9 36 84 126 126 84 36 9 1	9	1	9	36	84	126	126	84	36	9	1	
10 1 10 45 120 210 252 210 120 45 10 1	10	1	10	45	120	210	252	210	120	45	10	1
11 1 11 55 165 330 462 462 330 165 55 11	11	1	11	55	165	330	462	462	330	165	55	11
12 1 12 66 220 495 792 924 792 495 220 66	12	1	12	66	220	495	792	924	792	495	220	66

Binomial Theorem

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + \binom{n}{n}b^{n}$$

$$\binom{n}{r} = {^nC_r} = \frac{n!}{(n-r)!r!}$$

Complex Numbers

$$z = x + iy$$

$$= r \operatorname{cis} \theta$$

$$= r(\cos \theta + i \sin \theta)$$

$$\overline{z} = x - iy$$

$$= r \operatorname{cis} (-\theta)$$

$$= r(\cos \theta - i \sin \theta)$$

$$r = |z| = \sqrt{z\overline{z}} = \sqrt{(x^2 + y^2)}$$

$$\theta = \arg z$$

where
$$\cos \theta = \frac{x}{r}$$

and
$$\sin \theta = \frac{y}{r}$$

De Moivre's Theorem

If *n* is any integer then $(r \operatorname{cis} \theta)^n = r^n \operatorname{cis} (n \theta)$

COORDINATE GEOMETRY

Straight Line

Equation
$$y - y_1 = m(x - x_1)$$

Circle

$$(x-a)^2 + (y-b)^2 = r^2$$

has a centre (a,b) and radius r

Parabola

$$y^2 = 4ax$$
 or $(at^2, 2at)$

Focus (a,0) Directrix x = -a

Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ or } (a\cos\theta, b\sin\theta)$$

Foci (c,0) (-c,0) where $b^2 = a^2 - c^2$

Eccentricity: $e = \frac{c}{a}$

Hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ or } (a \sec \theta, b \tan \theta)$$

asymptotes
$$y = \pm \frac{b}{a}x$$

Foci (c,0) (-c,0) where $b^2 = c^2 - a^2$

Eccentricity: $e = \frac{c}{a}$

CALCULUS

Differentiation

y = f(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f\left(x\right)$
$\ln x$	$\frac{1}{x}$
e ^{ax}	ae^{ax}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
tan x	$\sec^2 x$
sec x	$\sec x \tan x$
cosec x	$-\csc x \cot x$
$\cot x$	$-\csc^2 x$

Integration

f(x)	$\int f(x) \mathrm{d}x$
x^n	$\frac{x^{n+1}}{n+1} + c$
$\frac{1}{x}$	$\ln x + c$
$\frac{f(x)}{f(x)}$	$\left \ln \left f(x) \right + c \right $

First Principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Product Rule

$$(f.g) = f.g + g.f$$
 or if $y = uv$ then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

Quotient Rule

$$\left(\frac{f}{g}\right)' = \frac{g \cdot f' - f \cdot g'}{g^2}$$
 or if $y = \frac{u}{v}$ then $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

Composite Function or Chain Rule

$$(f(g)) = f(g).g$$

or if $y = f(u)$ and $u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

Parametric Function

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$

$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx}$$

Volume of Revolution

y = f(x) between x = a and x = brotated about the x-axis Volume = $\int_{a}^{b} \pi y^{2} dx$

NUMERICAL METHODS

Trapezium Rule

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} h \left[y_0 + y_n + 2(y_1 + y_2 + \dots + y_{n-1}) \right]$$

where
$$h = \frac{b-a}{n}$$
 and $y_r = f(x_r)$

Simpson's Rule

$$\int_{a}^{b} f(x) dx \approx \frac{1}{3} h \left[y_0 + y_n + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) \right]$$

where $h = \frac{b-a}{n}$, $y_r = f(x_r)$ and n is even.

TRIGONOMETRY

$$\csc \theta = \frac{1}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Sine Rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule

$$c^2 = a^2 + b^2 - 2ab \cos C$$

Identities

$$\cos^2\theta + \sin^2\theta = 1$$

$$\tan^2 \theta + 1 = \sec^2 \theta$$

$$\cot^2 \theta + 1 = \csc^2 \theta$$

General Solutions

If
$$\sin \theta = \sin \alpha$$
 then $\theta = n \neq +(-1)^n \alpha$

If
$$\cos \theta = \cos \alpha$$
 then $\theta = 2n \neq \pm \alpha$

If
$$\tan \theta = \tan \alpha$$
 then $\theta = n \neq +\alpha$

where n is any integer

Compound Angles

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \pm \tan A \tan B}$$

Double Angles

$$\sin 2A = 2\sin A\cos A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$

$=1-2\sin^2 A$

Products

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

Sums

$$\sin C + \sin D = 2\sin\frac{C+D}{2}\cos\frac{C-D}{2}$$

$$\sin C - \sin D = 2\cos\frac{C+D}{2}\sin\frac{C-D}{2}$$

$$\cos C + \cos D = 2\cos\frac{C+D}{2}\cos\frac{C-D}{2}$$

$$\cos C - \cos D = -2\sin\frac{C+D}{2}\sin\frac{C-D}{2}$$

S-CALCF

MEASUREMENT

Triangle

Area =
$$\frac{1}{2}ab\sin C$$

Trapezium

Area =
$$\frac{1}{2}(a+b)h$$

Sector

Area =
$$\frac{1}{2}r^2\theta$$

Arc length = $r\theta$

Cylinder

Volume = $\pi r^2 h$

Curved surface area = $2\pi rh$

Cone

$$Volume = \frac{1}{3}\pi r^2 h$$

Curved surface area = πrl where l = slant height

Sphere

Volume =
$$\frac{4}{3}\pi r^3$$

Surface area = $4\pi r^2$