Регулярные грамматики и выражения. Теорема Клини

Теория формальных языков $2022 \ z$.

Грамматики

Определение

Грамматика — это четвёрка $G = \langle N, \Sigma, P, S \rangle$, где:

- N алфавит нетерминалов;
- Σ алфавит терминалов;
- Р множество правил переписывания $\alpha \to \beta$ типа $\langle (\mathsf{N} \cup \Sigma)^+ \times (\mathsf{N} \cup \Sigma)^* \rangle;$
- $S \in N$ начальный символ.

 $\alpha \Rightarrow \beta$, если $\alpha = \gamma_1 \alpha' \gamma_2$, $\beta = \gamma_1 \beta' \gamma_2$, и $\alpha' \to \beta' \in P$. \Rightarrow^* — рефлексивное транзитивное замыкание \Rightarrow .

Язык L(G), порождаемый G — множество $\{u \mid u \in \Sigma^* \& S \Rightarrow^* u\}$. Сентенциальная форма — элемент множества $\{u \mid u \in (N \cup \Sigma)^* \& S \Rightarrow^* u\}$.

Регулярные грамматики и НКА

Регулярная грамматика имеет правила вида $S \to \epsilon$ (причём S не встречается в правых частях никаких правил), $T_i \to \alpha_i$, $T_i \to \alpha_i$ T_j .

НКА (неформально) определяется списком правил перехода и финальными состояниями.

- $T_i \to a_i T_j$ соответствует переходу $\langle T_i, a_i, T_j \rangle$;
- $T_i \to \alpha_i$ соответствует переходу $\langle T_i, \alpha_i, F \rangle$, где F уникальное финальное состояние;
- $S \to \epsilon$ соответствует объявлению S финальным.

Лемма о накачке

Рассмотрим слово $w \in L(G)$, $|w| \geqslant n+1$. Оно получается применением не меньше, чем n+1 правил \Rightarrow после применения хотя бы двух из них в сентенциальной форме справа будет стоять один и тот же нетерминал A.

4/21

Лемма о накачке

Рассмотрим слово $w \in L(G)$, $|w| \geqslant n+1$. Оно получается применением не меньше, чем n+1 правил \Rightarrow после применения хотя бы двух из них в сентенциальной форме справа будет стоять один и тот же нетерминал A.

Известно, что $|\Phi| + |\Psi| \leqslant n$.

$$S \longrightarrow \cdots \longrightarrow \Phi$$
 $A \longrightarrow \cdots \longrightarrow \Phi$ $Y \longrightarrow A \longrightarrow \cdots \longrightarrow \Phi$ $Y \longrightarrow$

Все выводы вида $\rho_1\left(\rho_2\right)^*\rho_3$ допустимы в $G\Rightarrow \forall k(\Phi\ \Psi^k\ \Theta\in L(G)).$

Лемма о накачке

Утверждение

Если G — регулярная, то существует такое $n \in \mathbb{N}$, что $\forall w(w \in L(G) \& |w| > n \Rightarrow \exists w_1, w_2, w_3(|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k(k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in L(G)))).$

Известно, что $|\Phi| + |\Psi| \leqslant n$.

$$S \longrightarrow \cdots \longrightarrow \Phi$$
 $A \longrightarrow \cdots \longrightarrow \Phi$ $A \longrightarrow \bullet$

Все выводы вида $\rho_1\left(\rho_2\right)^*\rho_3$ допустимы в $G\Rightarrow \forall k(\Phi\ \Psi^k\ \Theta\in L(G)).$

Примеры применения леммы о накачке

Обозначим обращение (reversal) слова w как w^R . Рассмотрим язык $L = \{w \, w^R \, | \, w \in \Sigma^+\}$.

Пусть длина накачки — n. Рассмотрим слово $b^{n+1}a$ а $b^{n+1}\in L$. Поскольку $|\Phi|+|\Psi|\leqslant n$, то $\Psi=b^k$, $k\geqslant 1$. Но b^ma а $b^n\notin L$, если $m\neq n$. Поэтому L — не регулярный.

Примеры применения леммы о накачке

Обозначим обращение (reversal) слова w как w^R . Рассмотрим язык $L = \{w \, w^R \, | \, w \in \Sigma^+\}$.

Пусть длина накачки — п. Рассмотрим слово $b^{n+1}a$ а $b^{n+1}\in L$. Поскольку $|\Phi|+|\Psi|\leqslant n$, то $\Psi=b^k$, $k\geqslant 1$. Но b^ma а $b^n\notin L$, если $m\neq n$. Поэтому L — не регулярный.

Рассмотрим язык $L' = \{a^n b^m | n \neq m\}.$

Пусть длина накачки — п. Рассмотрим множество слов $\mathfrak{a}^n b^{n+n!} \in \mathsf{L}'$. Поскольку $|\Phi| + |\Psi| \leqslant n$, то $\Psi = \mathfrak{a}^k$, $k \geqslant 1$. Но для всех $k \leqslant n \; \exists \nu (n+k*\nu=n+n!)$. Поэтому слово вида $\mathfrak{a}^{n+n!} b^{n+n!} \in \mathsf{L}'$, что абсурдно. Следовательно, L' не является регулярным.

Нерегулярные языки

Пусть $L = \{w \, | \, |w|_{\mathfrak{a}} = |w|_{\mathfrak{b}} \}$. Все слова вида $\mathfrak{a}^k \mathfrak{b}^k$ принадлежат L. Пусть длина накачки равна n. Рассмотрим слово $\mathfrak{a}^n \mathfrak{b}^n$. Поскольку $|\Phi| + |\Psi| \leqslant n$, то $\Psi = \mathfrak{a}^k$, k > 0. Но слова $\mathfrak{a}^{n+k*i}\mathfrak{b}^n$ не принадлежат L.

Совпадает ли L с языком правильных скобочных последовательностей P (язык Дика)? Если да, доказать. Если нет, исследовать язык L \setminus P. Регулярен ли он?

Анализ на достаточность

Гипотеза

G — регулярная $\stackrel{???}{\Longleftrightarrow}$ существует такое $n \in \mathbb{N}$, что $\forall w (w \in L(G) \& |w| > n \Rightarrow \exists w_1, w_2, w_3 (|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k (k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in L(G)))).$

Анализ на достаточность

Гипотеза

G — регулярная $\stackrel{???}{\Longleftrightarrow}$ существует такое $n \in \mathbb{N}$, что $\forall w(w \in L(G) \& |w| > n \Rightarrow \exists w_1, w_2, w_3(|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k(k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in L(G)))).$

Рассмотрим язык L = $\{w \, w^R \, z | w \in \Sigma^+ \ \& \ z \in \Sigma^+ \}$ и n = 4.

- Если |w|=1, тогда можно разбить слово $w\,w^R\,z$ так: $\Phi=w\,w^R,\,\Psi=z[1],\,\Theta=z[2..|z|].$ Тогда для всех $\Phi\,\Psi^k\,\Theta\in\mathsf{L}.$
- Если $|w| \geqslant 2$, тогда разбиваем так: $\Phi = \varepsilon$, $\Psi = w[1]$, $\Theta = w[2..|w|] \, w^R \, z$. Слова $w[2..|w|] \, w^R \, z$ и $w[1]^k \, w[2..|w|] \, w^R \, z$ при $k \geqslant 2$ также принадлежат L.

Смысл леммы о накачке

Структура доказательства указывает, что длина накачки п регулярного языка L не больше (возможно, меньше) числа нетерминалов в минимальной грамматике для L.

Рассмотрим $L = a|b|(a\{a|b\}^*a)|(b\{a|b\}^*b)$. Если выбрать n = 2, то в качестве Ψ можно взять вторую букву слова из L. Пусть G имеет два нетерминала S, T и распознаёт L. Если G содержит правила $S \to aT$ и $S \to bT$ (или $S \to aS$, $S \to bS$), то для некоторого непустого z слова вида az и bzбудут либо оба принадлежать L, либо нет, чего не может быть. Значит, G содержит либо пару $S \to aT$, $S \to bS$, либо пару $S \to bT$, $S \to aS$. Рассмотрим первый случай. Тогда для некоторого непустого z имеем $az \in L \Leftrightarrow b^+az \in L$, что абсурдно.

Академические регулярные выражения $\Re \mathcal{E}$

Допустимые операции

- A* замыкание Клини ноль или больше итераций A;
- A⁺ одна или больше итерация А;
- A? 0 или 1 вхождение A;
- А|В альтернатива (вхождение либо А, либо В).

Академические регулярные выражения $\Re \mathcal{E}$

Допустимые операции

- A* замыкание Клини ноль или больше итераций A;
- A⁺ одна или больше итерация A;
- A? 0 или 1 вхождение A;
- А|В альтернатива (вхождение либо А, либо В).

Следствия

Если $r_1, r_2 — \mathcal{RE}$, тогда

- $\mathbf{r}_1 | \mathbf{r}_2 \mathcal{R}\mathcal{E}$;
- $r_1r_2 \Re \mathcal{E}$;
- $r_1^*, r_2^+ \Re \mathcal{E}$.

Операции в регулярных грамматиках

Объединение

Дано: G_1 и G_2 — праволинейные. Построить $G: L(G) = L(G_1) \cup L(G_2)$.

- Переименовать нетерминалы из N_1 и N_2 , чтобы стало $N_1 \cap N_2 = \emptyset$ (сделать α -преобразование). Применить переименовку к правилам G_1 и G_2 .
- Объявить стартовым символом свежий нетерминал S и для всех правил G_1 вида $S_1 \to \alpha$ и правил G_2 вида $S_2 \to \beta$, добавить правила $S \to \alpha$, $S \to \beta$ в правила G.
- **3** Добавить в правила G остальные правила из G_1 и G_2 .

10/21

Операции в регулярных грамматиках

Конкатенация

Дано: G_1 и G_2 — праволинейные. Построить $G: L(G) = L(G_1)L(G_2)$.

- Переименовать нетерминалы из N_1 и N_2 , чтобы стало $N_1 \cap N_2 = \emptyset$ (сделать α-преобразование).
- **2** Построить из G_1 её вариант без ϵ -правил (см. ниже).
- **3** По всякому правилу из G_1 вида $A \to a$ строим правило G вида $A \to aS_2$, где S_2 стартовый нетерминал G_2 .
- Добавить в правила G остальные правила из G_1 и G_2 . Объявить S_1 стартовым.
- **§** Если $\varepsilon \in L(G_1)$ (до шага 2), то по всем $S_2 \to \beta$ добавить правило $S_1 \to \beta$.

Операции в регулярных грамматиках

Положительная итерация Клини

Дано: G_1 — праволинейная. Построить $G: L(G) = L(G_1)^+$.

- \bullet Построить из G_1 её вариант без ϵ -правил.
- По всякому правилу из G_1 вида $A \to \mathfrak{a}$ строим правило G вида $A \to \mathfrak{a} S_1$, где S_1 стартовый нетерминал G_1 .
- **3** Добавить в правила G все (включая вида $A \to a$) правила из G_1 . Объявить S_1 стартовым.
- $oldsymbol{\epsilon}$ Если $oldsymbol{\epsilon} \in L(G_1)$ (до шага 2), добавить правило $S_1 \to oldsymbol{\epsilon}$ и вывести S_1 из рекурсии.

12/21

Построение грамматики без ε-правил

Дано: G — праволинейная. Построить G' без правил вида $A \to \varepsilon$ такую, что L(G') = L(G) или $L(G') \cup \{\varepsilon\} = L(G)$.

- $lackbox{0}$ Перенести в G' все правила G, не имеющие вид $A \to \varepsilon$.
- **2** Если существует правило $A \to \varepsilon$, то по всем правилам вида $B \to \alpha A$ дополнительно строим правила $B \to \alpha$.

Пересечение регулярных грамматик

Дано: G_1, G_2 — праволинейные. Построить G' такую, что $L(G') = L(G_1) \cap L(G_2)$.

- **①** Построить стартовый символ G' пару $\langle S_1, S_2 \rangle$, где S_i стартовый символ грамматики G_i .
- **②** Поместить $\langle S_1, S_2 \rangle$ в множество U неразобранных нетерминалов. Множество T разобранных нетерминалов объявить пустым.
- **③** Для каждого очередного нетерминала $\langle A_1, A_2 \rangle \in U$:
 - $oldsymbol{\odot}$ если $A_1 o a \in G_1$, $A_2 o a \in G_2$, тогда добавить в G' правило $\langle A_1, A_2 \rangle o a$;
 - ullet если $A_1 o \alpha A_3 \in G_1, A_2 o \alpha A_4 \in G_2$, тогда добавить в G' правило $\langle A_1, A_2 \rangle o \alpha \langle A_3, A_4 \rangle$, а в U нетерминал $\langle A_3, A_4 \rangle$, если его ещё нет в множестве T:
 - **③** если все пары правил, указанные выше, были обработаны, тогда переместить $\langle A_1, A_2 \rangle$ из U в T.
- Повторять шаг 3, пока множество U не пусто.
- § Если $\epsilon \in L(G_1)$ & $\epsilon \in L(G_2)$, тогда добавить в G' правило $\langle S_1, S_2 \rangle \to \epsilon$.

От ЯЕ к НКА: конструкция Глушкова

Теорема

Если $E \in \mathcal{RE}$, то существует праволинейная регулярная грамматика G такая, что L(G) = L(E).

Будем строить сразу же НКА, распознающий то же слово, что и Е. Для этого определим следующие множества:

- First(E) множество символов, с которых может начинаться слово, распознаваемое E.
- Last(E) множество символов, которыми может заканчиваться слово, распознаваемое E.
- Next(E) множество пар символов, которые могут идти в словах, распознаваемых E, друг за другом.

От ЯЕ к НКА: конструкция Глушкова

Теорема

Если $E \in \mathcal{RE}$, то существует праволинейная регулярная грамматика G такая, что L(G) = L(E).

В Е пронумеруем все символы из Σ разными номерами. Для полученного E' построим First(E'), Last(E'), Next(E').

- Введём состояния, соответствующие буквам Е' (нумерованным), а также входное состояние І.
- Если $\tau \in First(E')$, тогда порождаем переход из I в τ (по символу τ).
- Если $\tau_1 \tau_2 \in Next(E')$, тогда порождаем переход из τ_1 в τ_2 по символу τ_2 .
- Если $\tau \in Last(E')$, тогда объявляем τ финальным.
- Стираем номера у символов на переходах. НКА, распознающий Е, построен.

Построим НКА, распознающий $(a|(ab))*b^+$.

- Линеаризуем: $E' = (a_1|(a_2b_3))^*b_4^+$.
- Порождаем множества First, Last, Next:

First(E') = {
$$a_1$$
, a_2 , b_4 }
Last(E') = { b_4 }

Next(E') = { a_1a_1 , a_1a_2 , a_2b_3 , b_3a_1 , b_3a_2 , a_1b_4 , b_3b_4 , b_4b_4 }

• Строим конечный автомат:

Производные ЯЕ

Множество $\alpha^{-1}U=\{w\,|\,\alpha w\in U\}$ называется производным Бзрозовски множества U относительно $\alpha.$ Если $\varepsilon\in\alpha^{-1}U,$ тогда α распознаётся выражением U.

 Λ_E положим равным $\{\epsilon\},$ если $\epsilon\in E,$ и пустым множеством иначе.

- $a^{-1}\varepsilon = \varnothing$, $a^{-1}\varnothing = \varnothing$;
- $a^{-1}a = \{\epsilon\}, a^{-1}b = \emptyset;$
- $a^{-1}(\Phi | \Psi) = a^{-1}(\Phi) \cup a^{-1}(\Psi);$
- $a^{-1}(\Phi \Psi) = a^{-1}(\Phi)\Psi \cup \Lambda_{\Phi} a^{-1}(\Psi);$
- $a^{-1}(\Phi^*) = a^{-1}(\Phi)\Phi^*$.

С помощью последовательного взятия производных можно свести задачу $w \in L(R)$ к задаче $\varepsilon \in w^{-1}R$. На этом построен ещё один способ преобразования $\Re \mathcal{E}$ к автомату.

Пример преобразования

Рассмотрим всё то же выражение $(a|(ab))^*b^+$. Построим по нему автомат с помощью производных Брзозовски.

- $a^{-1}(a|(ab))^*b^+ = (a^{-1}(a|(ab))^*)b^+ \cup (a^{-1}b^+)$, но второе очевидно пусто, поэтому $a^{-1}(a|(ab))^*b^+ = (\varepsilon|b)(a|(ab))^*b^+;$
- $b^{-1}(a|(ab))^*b^+ = (b^{-1}(a|(ab))^*)b^+ \cup (b^{-1}b^+)$, и здесь как раз пусто первое, поэтому производная равна b^* .
- $a^{-1}b^* = \emptyset$; $b^{-1}b^* = b^*$.
- $a^{-1}((\epsilon|b)(a|(ab))^*b^+)$ вынуждает первую альтернативу в $(\epsilon|b)$ и порождает само себя.
- $b^{-1}((\varepsilon|b)(a|(ab))^*b^+)$ порождает $(a|(ab))^*b^+|b^*$.
- $a^{-1}((a|(ab))^*b^+|b^*)$ порождает $(\varepsilon|b)(a|(ab))^*b^+$, $b^{-1}((a|(ab))^*b^+|b^*)$ порождает b^* .
- Переходы замкнулись. Осталось собрать производные в состояния автомата.

Пример преобразования

Рассмотрим всё то же выражение $(a|(ab))^*b^+$. Построим по нему автомат с помощью производных Брзозовски.

Неподвижная точка $\mathcal{R}\mathcal{E}$

Неподвижная точка функции f(x) — такое x, что f(x) = x.

Лемма Ардена

Пусть X = (AX) | B, где X — неизвестное \mathcal{RE} , а A, B — известные, причём $\varepsilon \notin L(A)$. Тогда $X = (A)^*B$.

Рассмотрим систему уравнений:

$$X_1 = (A_{11}X_1) | (A_{12}X_2) | \dots | B_1$$

 $X_2 = (A_{21}X_1) | (A_{22}X_2) | \dots | B_2$

$$X_n = (A_{n1}X_1) | (A_{n2}X_2) | \dots | B_n$$

Положим $\varepsilon \notin A_{ij}$. Будем последовательно выражать X_1 через X_2, \ldots, X_n , X_2 через $X_3, \ldots X_n$ и т.д. Получим регулярное выражение для X_n .

От грамматики и НКА к ЯЕ

Теорема Клини

По каждому НКА можно построить $\Re \mathcal{E}$, распознающую тот же язык. Верно и обратное.

Здесь считаем, что в НКА нет ε-переходов.

- Объявляем каждый нетерминал (или состояние НКА) переменной и строим для него уравнение:
 - По правилу $A \to \alpha B$ (или для стрелки из A в B) добавляем альтернативу αB ;
 - По правилу $A \to b$ (или для стрелки в финальное состояние) добавляем альтернативу без переменных.
 - Правило $S \to \varepsilon$ обрабатываем отдельно, не внося в уравнение: добавляем в язык альтернативу ($\Re \mathcal{E} \mid \varepsilon$).
- Решаем систему относительно S.

От грамматики к ЯЕ

Пример

Построим $\Re \mathcal{E}$ по грамматике:

$$S \to \alpha T \quad S \to \alpha b S$$

$$T \rightarrow aT \quad T \rightarrow bT \quad T \rightarrow b$$

Строим по правилам грамматики систему: S = (abS) | (aT)

$$T = ((a \mid b)T) \mid b$$

Решаем второе уравнение:

$$T = (a \mid b)^*b$$

Подставляем в первое:

$$S = (abS) | (a(a|b)*b)$$

Получаем ответ:

$$S = (ab)^* a(a|b)^* b$$