Aula 2

Microcontroladores

com ESP32 e MicroPython

Sensores e Atuadores

Os sensores e atuadores são componentes eletrônicos e a forma do nosso sistema interagir com o ambiente e suas variáveis.

Sensores

são componentes que medem variáveis do ambiente e convertem essa informação em sinais elétricos, utilizando um transdutor interno, para usar como entrada no controlador.

 \times \times \times

Atuadores

Manipulam as variáveis do ambiente, agindo como uma saída pro controlador. Ou seja, eles transformam os sinais elétricos em outros tipos de energia para criar alguma ação no ambiente.

$\times \times \times \times$

 \times \times \times

Exemplo de sistema

Sinal digital x analógico

Os sinais de entrada e saída podem ser definidos como digitais ou analógicos.

Sinal digital

O sinal digital pode assumir apenas dois valores no seu sinal, que podem ser interpretados como zero ou um.

Exemplo: um sensor de luminosidade que devolve um 1 caso esteja claro e 0 caso não esteja

Sinal digital - Implementação

```
import machine
# Criando um pin de saída no pino #0
saida = machine.Pin(0, machine.Pin.OUT)
# Mudando o valor
saida.value(0) # Você também pode usar p0.on()
saida.value(1) # Você também pode usar p0.off()
# Criando um pin de entrada no pino #2
entrada = machine.Pin(2, machine.Pin.IN)
# Ler e printar o valor do pino de entrada
print(entrada.value())
```

Sinal analógico

O sinal analógico pode assumir qualquer valor no seu sinal dentro de uma faixa de operação.

Exemplo: um sensor de luminosidade que devolve um valor para a luminosidade do local

Há algumas implementações gerais sinais analógicos no ESP32 com Micropython:

- ADC (para sensores)
- DAC (para atuadores)
- PWM (para atuadores)

ADC (Analog to Digital Converter)

Nossa microcontroladora é um "computadorzinho" que só entende 0 e 1. Quando temos um sensor que pega um valor analógico (que pode assumar qualquer valor numa faixa específica), é necessário converter esse valor analógico em 0 e 1 para que a placa entenda

Sensores

Sinal analógico -> Digital

Pinos: 0, 2, 4, 12, 13, 14, 15, 25, 26, 27, 32, 33, 34, 35, 36, 39

ADC (Analog to Digital Converter)

```
import machine

# Criando um pin de entrada ADC no pino #12
entrada = machine.ADC(machine.Pin(12))

# Ler e printar o valor analógico do pino de entrada
print(entrada.read())
```

DAC (Digital to Analog Converter)

Este é o contrário: nosso atuador precisa agir no ambiente com um valor analógico. Para que a controladora, que só se expressa em 0 e 1, envie o sinal analógico que o atuador precisa, é necessário converter!

Atuadores Sinal digital -> Analógico Pinos: 25 e 26

 $\times \times \times \times$

DAC

(Digital to Analog Converter)

```
import machine

# Criando um pin de saida DAC no pino #25
saida = machine.DAC(machine.Pin(25))

# Mudar o valor de sinal do pino (entre 0 e 255)
saida.write(150)
```

PMW (Pulse Width Modulation)

Para criar uma saída analógica para um atuador em um pino digital, podemos usar o PMW. Consiste em oscilar o sinal digital muito rápido, dando a impressão de um sinal analógico. É possível utilizá-lo em atuadores digitais, como os LEDS.

Time Duty Cycle: 05

Atuadores
Sinal digital que SIMULA analógico
Pinos: Qualquer saída analógica

PMW

(Pulse Width Modulation)

- Frequência: Pode ser um valor entre 0 e 78125. A frequência de 5000 Hz geralmente é a mais comum e pode ser usada para controlar o brilho de um LED.
- Ciclo de trabalho (valor): É um valor entre 0 e 1023, no qual 1023 corresponde a 100% do ciclo de trabalho (1 ligado) e 0 corresponde a 0% do ciclo de trabalho (0 desligado)

```
import machine

# Criando um pin de entrada PWM no pino #0

# O primeiro parâmetro é o Pin, o segundo é a frequência e o terceiro é o ciclo de trabalho saida = machine.PWM(machine.Pin(0), freq=5000, duty_u16=32768)

# Mudar o valor do ciclo de trabalho saida.duty(valor)
```

Em qual pino conecto?

Alguns pinos podem apresentar comportamento inesperado!

Os pinos verdes são seguros para uso. Os amarelos podem apresentar comportamento imprevisível e é recomendado evitar os vermelhos

Como usar novos atuadores e sensores?

Como escolher e comprar um sensor/atuador?

- 1. Vá em um site de compra de componentes eletrônicos
- 2. Procure pela ação que você precisa (por exemplo: sensor de iluminação ou LED azul)
- 3. Existem diferentes componentes com a mesma função, leia a descrição para encontrar o melhor para seu projeto!

Sugestões de lojas:

- Baú da Eletrônica
- Curto circuito

Módulo ou sem módulo

Alguns componentes podem ter uma versão original, que é apenas o sensor, ou versão com módulo, no qual há um pequeno circuito para facilitar ações como definir valores para funcionamento e conexão no seu circuito.

Como saber as informações desse sensor/atuador? (Oque ele faz, como montar o circuito, especificações...)

Datasheet

O datasheet é um documento que reune dados do componentes, tais como:

- Nome e descrição da funcionalidade do componente
- Circuitos padrões ou exemplos de aplicações
- · Valores máximos e mínimos de trabalho
- Outras informações técnicas que podem ser úteis sobre o uso do componente

Encontre-o:

- Pesquisando no google o nome do componente + datasheet
- Aproveite para ver sites com outros exemplos mais entendíveis
- Veja no site em que comprou o componente (resumo)

Como programar esse sensor/atuador com Sensor/atuador com MicroPython no ESP32?

Sozinho...

Agora que você sabe qual componente tem em mão, como programálo? Usando a documentação!

Caso tenha dúvidas sobre funções, módulos, protocolos e drivers do ESP32 com MicroPython, veja a <u>documentação do MicroPython para ESP32</u>

Caso não resolva seu problema, procure por guias onlines utilizando o mesmo sensor, vendo seu funcionamento e se é necessário módulos e protocolos diferentes também. <u>RandomNerdTutorials</u> possuem guias de passo-a-passo de vários componentes no ESP32 com Micropython, mas fique à vontade para explorar outros:)

Mãos na massa!

Bora definir quais componentes você vai usar.

Veja circuitos e códigos de diversos sensores e atuadores no nosso Github, na pasta da aula 2!

Caso não encontre o que quer lá, não tenha vergonha de pesquisar :)