

CMSC5743

L03: CNN Accurate Speedup II

Bei Yu

(Latest update: September 29, 2020)

Fall 2020

Overview

MNN Architecture

MNN Backend and Runtime

Overview

MNN Architecture

MNN Backend and Runtime

Architecture¹

Frontends

- Caffe Deep Learning Framework
- ► TensorFlow Deep Learning Framework
- Pytorch Deep Learning Framework

PyTorch

- PyTorch is a python package that provides two high-level features:
 - ► Tensor computation (like numpy) with strong GPU acceleration
 - Deep Neural Networks built on a tape-based autograd system
- Model Deployment:
 - For high-performance inference deployment for trained models, export to ONNX format and optimize and deploy with NVIDIA TensorRT or MNN inference accelerator

PyTorch Code Sample


```
torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
   def init (self):
        super(Net, self). init ()
        self.conv1 = nn.Conv2d(1, 6, 3)
        self.conv2 = nn.Conv2d(6, 16, 3)
       self.fc1 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension
       self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
   def forward(self, x):
       x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
       x = F.max pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num flat features(x))
       x = F.relu(self.fc1(x))
       x = F.relu(self.fc2(x))
       x = self.fc3(x)
       return x
   def num flat features(self, x):
        size = x.size()[1:] # all dimensions except the batch dimension
        num features = 1
        for s in size:
            num features *= s
       return num features
                                                                            이 시크가 시크가
```

TensorFlow

- TensorFlow is an open source software library for numerical computation using data flow graphs
- Model Deployment
 - For high-performance inference deployment for trained models, using TensorFlow-MNN integration to optimize models within TensorFlow and deploy with MNN inference accelerator

Tensorflow Code Sample


```
import tensorflow as tf
     from tensorflow.keras import Model, layers
     import numpy as np
 6 ▼ class NeuralNet(Model):
         def init (self):
             super(NeuralNet, self). init ()
             self.fc1 = layers.Dense(n hidden 1, activation=tf.nn.relu)
             self.fc2 = layers.Dense(n hidden 2, activation=tf.nn.relu)
             self.out = layers.Dense(num_classes)
18 ▼
         def call(self, x, is_training=False):
             x = self.fc1(x)
             x = self.fc2(x)
             x = self.out(x)
22 ▼
             if not is_training:
                x = tf.nn.softmax(x)
             return x
```

Caffe

Caffe

- Caffe is a deep learning framework made with expression, speed, and modularity in mind:
 - Expressive architecture encourages application and innovation
 - Extensible code fosters active development.
 - Speed makes Caffe perfect for research experiments and industry deployment
- Model Deployment:
 - For high-performance inference deployment for trained models, using Caffe-MNN integration to optimize models within Caffe and MNN inference accelerator

Caffe Code Sample


```
caffe root = '../'
     sys.path.insert(0, caffe_root + 'python')
     import os
     os.chdir(caffe root)
     !data/mnist/get mnist.sh
     !examples/mnist/create mnist.sh
     os.chdir('examples')
     from caffe import layers as L, params as P
17 ∨ def lenet(lmdb, batch size):
         n = caffe.NetSpec()
         n.data, n.label = L.Data(batch size=batch size, backend=P.Data.LMDB, source=lmdb,
                                  transform param=dict(scale=1./255), ntop=2)
         n.conv1 = L.Convolution(n.data, kernel size=5, num output=20, weight filler=dict(type='xavier'))
         n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
         n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))
         n.pool2 = L.Pooling(n.conv2, kernel size=2, stride=2, pool=P.Pooling.MAX)
         n.fc1 = L.InnerProduct(n.pool2, num_output=500, weight filler=dict(type='xavier'))
         n.relu1 = L.ReLU(n.fc1, in place=True)
         n.score = L.InnerProduct(n.relu1, num output=10, weight filler=dict(type='xavier'))
         n.loss = L.SoftmaxWithLoss(n.score, n.label)
         return n.to proto()
     with open('mnist/lenet auto train.prototxt', 'w') as f:
         f.write(str(lenet('mnist/mnist train lmdb', 64)))
     with open('mnist/lenet_auto_test.prototxt', 'w') as f:
         f.write(str(lenet('mnist/mnist test lmdb', 100)))
```

Data Layout Formats²

- N is the batch size
- C is the number of feature maps
- ► H is the image height
- ▶ W is the image width

EXAMPLE
N = 1
C = 64
H = 5
W = 4

c =	0				c = 1				c = 2			
(0	1	2	3	20	21	22	23	40	41	42	43
4	4	5	6	7	24	25	26	27	44	45	46	47
8	В	9	10	11	28	29	30	31	48	49	50	51
1	2	13	14	15	32	33	34	35	52	53	54	55
1	6	17	18	19	36	37	38	39	56	57	58	59

c = 30					c = 3	1		c = 32					
	600	601	602	603	620	621	622	623		640	641	642	643
	604	605	606	607	624	625	626	627		644	645	646	647
	608	609	610	611	628	629	630	631		648	649	650	651
	612	613	614	615	632	633	634	635		652	653	654	655
	616	617	618	619	636	637	638	639		656	657	658	659

c = 6	52			•	= 6				
1240	1241	1242	1243		1260	1261	1262	1263	
1244	1245	1246	1247		1264	1265	1266	1267	
 1248	1249	1250	1251		1268	1269	1270	1271	
1252	1253	1254	1255		1272	1273	1274	1275	
1256	1257	1258	1259		1276	1277	1278	1279	

²https://docs.nvidia.com/deeplearning/cudnn/developer-quide/index:Ntml() + 3 + 3 + 3 + 9 + 9

NCHW Memory Layout

- ▶ Begin with first channel (c=0), elements arranged contiguously in row-major order
- Continue with second and subsequent channels until all channels are laid out

NHWC Memory Layout

- ▶ Begin with the first element of channel 0, then proceed to the first element of channel 1, and so on, until the first elements of all the C channels are laid out
- Next, select the second element of channel 0, then proceed to the second element of channel 1, and so on, until the second element of all the channels are laid out
- Follow the row-major order of channel 0 and complete all the elements
- Proceed to the next batch (if N is > 1)

NHWC Memory Layout

Overview

MNN Architecture

MNN Backend and Runtime

Overview of the proposed Mobile Neural Network

On-device inference

What is Convolution?

The calculation process of convolutional layer

- No padding
- Unit strides
- ightharpoonup 3 imes 3 kernel size
- ▶ 4 × 4 input feature map

What is Deconvolution (transposed convolution)?³

The calculation process of deconvolutional layer

- \triangleright 2 × 2 padding with border of zeros
- Unit strides
- \triangleright 3 \times 3 kernel size
- 4×4 input feature map

³Vincent Dumoulin and Francesco Visin (2016). "A guide to convolution arithmetic for deep learning". In: arXiv preprint arXiv:1603 07285 ▲□▶ ▲御▶ ▲団▶ ▲団▶ □ め@@

Strassen Algorithm⁴

⁴Jason Cong and Bingjun Xiao (2014). "Minimizing computation in convolutional neural networks". In: Proc. ICANN, pp. 281-290. ◆□▶◆□▶◆□▶◆□▶ ■ 夕久◎

Strassen Algorithm

Matrix size	w/o Strassen	w/ Strassen
(256, 256, 256)	23	23
(512, 512, 512)	191	176 (↓ 7.9%)
(512, 512, 1024)	388	359 (↓ 7.5%)
(1024, 1024, 1024)	1501	1299 (↓ 13.5%)

```
class XPUBackend final: public Backend {
     XPUBackend(MNNForwardType type, MemoryMode mode);
     virtual ~XPUBackend():
     virtual Execution* onCreate(const vector<Tensor*>& inputs,
                         const vector<Tensor*>& outputs, const MNN::Op* op);
     virtual void onExecuteBegin() const;
     virtual void onExecuteEnd() const;
     virtual bool onAcquireBuffer(const Tensor* tensor, StorageType storageType);
     virtual bool onReleaseBuffer(const Tensor* tensor, StorageType storageType);
     virtual bool onClearBuffer();
     virtual void onCopyBuffer(const Tensor* srcTensor, const Tensor* dstTensor) const;
```


4. Fast Algorithms

It has been known since at least 1980 that the minimal filtering algorithm for computing m outputs with an r-tap FIR filter, which we call F(m, r), requires

$$\mu(F(m,r)) = m + r - 1 \tag{3}$$

multiplications [16, p. 39]. Also, we can nest minimal 1D algorithms F(m,r) and F(n,s) to form minimal 2D algorithms for computing $m \times n$ outputs with an $r \times s$ filter, which we call $F(m \times n, r \times s)$. These require

$$\mu(F(m \times n, r \times s)) = \mu(F(m, r))\mu(F(n, s)) = (m + r - 1)(n + s - 1)$$
(4)

⁵Andrew Lavin and Scott Gray (2016). "Fast Algorithms for Convolutional Neural Networks". In: *Proc. CVPR*, pp. 4013–4021.

4.1. F(2x2,3x3)

The standard algorithm for F(2,3) uses $2 \times 3 = 6$ multiplications. Winograd [16, p. 43] documented the following minimal algorithm:

$$F(2,3) = \begin{bmatrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{bmatrix} \begin{vmatrix} g_0 \\ g_1 \\ g_2 \end{vmatrix} = \begin{bmatrix} m_1 + m_2 + m_3 \\ m_2 - m_3 - m_4 \end{bmatrix}$$

⁵Andrew Lavin and Scott Gray (2016). "Fast Algorithms for Convolutional Neural Networks". In: *Proc. CVPR*, pp. 4013–4021.

Fast filtering algorithms can be written in matrix form as:

$$Y = A^{T} [(Gg) \odot (B^{T}d)]$$
 (6)

where \odot indicates element-wise multiplication. For F(2,3), the matrices are:

$$B^{T} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

$$g = \begin{bmatrix} g_{0} & g_{1} & g_{2} \end{bmatrix}^{T}$$

$$d = \begin{bmatrix} d_{0} & d_{1} & d_{2} & d_{2} \end{bmatrix}^{T}$$

$$d = \begin{bmatrix} d_{0} & d_{1} & d_{2} & d_{2} \end{bmatrix}^{T}$$

⁵Andrew Lavin and Scott Gray (2016). "Fast Algorithms for Convolutional Neural Networks". In: *Proc. CVPR*, pp. 4013–4021.

A minimal 1D algorithm F(m, r) is nested with itself to obtain a minimal 2D algorithm, $F(m \times m, r \times r)$ like so:

$$Y = A^T \bigg[[GgG^T] \odot [B^T dB] \bigg] A \tag{8}$$

where now g is an $r \times r$ filter and d is an $(m+r-1) \times (m+r-1)$ image tile. The nesting technique can be generalized for non-square filters and outputs, $F(m \times n, r \times s)$, by nesting an algorithm for F(m,r) with an algorithm for F(n,s).

 $F(2 \times 2, 3 \times 3)$ uses $4 \times 4 = 16$ multiplications, whereas the standard algorithm uses $2 \times 2 \times 3 \times 3 = 36$. This

⁵Andrew Lavin and Scott Gray (2016). "Fast Algorithms for Convolutional Neural Networks". In: *Proc. CVPR*, pp. 4013–4021.

The transforms for $F(3 \times 3, 2 \times 2)$ are given by:

$$B^{T} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}, G = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$(14)$$

With $(3+2-1)^2 = 16$ multiplies versus direct convolution's $3 \times 3 \times 2 \times 2 = 36$ multiplies, it achieves the same 36/16 = 2.25 arithmetic complexity reduction as the corresponding forward propagation algorithm.

⁵Andrew Lavin and Scott Gray (2016). "Fast Algorithms for Convolutional Neural Networks". In: *Proc. CVPR*, pp. 4013–4021.

4.3. F(4x4,3x3)

A minimal algorithm for F(4,3) has the form:

$$B^{T} = \begin{bmatrix} 4 & 0 & -5 & 0 & 1 & 0 \\ 0 & -4 & -4 & 1 & 1 & 0 \\ 0 & 4 & -4 & -1 & 1 & 0 \\ 0 & -2 & -1 & 2 & 1 & 0 \\ 0 & 2 & -1 & -2 & 1 & 0 \\ 0 & 4 & 0 & -5 & 0 & 1 \end{bmatrix}$$

$$G = \begin{bmatrix} -\frac{1}{4} & 0 & 0 \\ -\frac{1}{6} & -\frac{1}{6} & -\frac{1}{6} \\ -\frac{1}{6} & -\frac{1}{6} & -\frac{1}{6} \\ \frac{24}{24} & -\frac{17}{12} & \frac{1}{6} \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 2 & -2 & 0 \\ 0 & 1 & 1 & 4 & 4 & 0 \\ 0 & 1 & -1 & 8 & -8 & 1 \end{bmatrix}$$

$$(15)$$

The data transform uses 12 floating point instructions, the filter transform uses 8, and the inverse transform uses 10.

Applying the nesting formula yields a minimal algorithm for $F(4\times 4, 3\times 3)$ that uses $6\times 6=36$ multiplies, while the standard algorithm uses $4\times 4\times 3\times 3=144$. This is an arithmetic complexity reduction of 4.

⁵Andrew Lavin and Scott Gray (2016). "Fast Algorithms for Convolutional Neural Networks". In: *Proc. CVPR*, pp. 4013–4021.

Optimized Winograd algorithm in MNN

Memory optimization of MNN

- MNN can infer the exact required memory for the entire graph:
 - virtually walking through all operations
 - summing up all allocation and freeing

Inference in FP16

- Training in fp32 and inference in fp16 is expected to get same accuracy as in fp32 most of the time
- Add batch normalization to activation
- ▶ If it is integer RGB input (0 255), normalize it to be float (0 1)

Analysis of FP16 inference

- Advantages of FP16:
 - ► FP16 improves speed (TFLOPS) and performance
 - ► FP16 reduces memory usage of a neural network
 - FP16 data transfers are faster than FP32
- Disadvantages of FP16:
 - ► They must be converted to or from 32-bit floats before they are operated on

Neon optimization

- As a programmer, there are several ways you can use Neon technology:
 - Neon intrinsics
 - Neon-enabled libraries
 - Auto-vectorization by your compiler
 - Hand-coded Neon assembler

Why use Neon

- Support for both integer and floating point operations ensures the adaptability of a broad range of applications, from codecs to High Performance Computing to 3D graphics.
- Tight coupling to the Arm processor provides a single instruction stream and a unified view of memory, presenting a single development platform target with a simpler tool flow

Manual Search

Semi-automated Search

Automated Search

Performance on different smartphones and networks

- ▶ Generally, MNN outperforms other inference engines under almost all settings by about 20% 40%, regardless of the smartphones, backends, and networks
- For CPU, on average, 4-thread inference with MNN is about 30% faster than others on iOS platforms, and about 34% faster on Android platforms
- For Metal GPU backend on iPhones, MNN is much faster than TF-Lite, a little slower than CoreML but still comparable

Performance on different smartphones and networks

Performance on different smartphones and networks

