SAT Encodings

SAT Encodings

- Encoding in SAT can be challenging.
- Need to be careful with the encoding size.
 - Otherwise, SAT solving efficiency may significantly degrade.

- $\sum_{1 \le i \le n} x_i \bowtie k \text{ where } k \in \{<, \le, =, \ne, >, \ge\}$
 - A special case is $\sum_{1 \le i \le n} x_i = 1$ $(\sum_{1 \le i \le n} x_i \le 1 \land \sum_{1 \le i \le n} x_i \ge 1)$
 - Let
 - AtmostOne($[x_1, x_2, ..., x_n]$) refer to $\sum_{1 \le i \le n} x_i \le 1$
 - AtleastOne($[x_1, x_2, ..., x_n]$) refer to $\sum_{1 \le i \le n} x_i \ge 1$
 - ExactlyOne($[x_1, x_2, ..., x_n]$) refer to AtmostOne($[x_1, x_2, ..., x_n]$) \land AtleastOne($[x_1, x_2, ..., x_n]$)

- Frequently occur in SAT models. E.g.:
 - N-queens
 - Exactly one queen on each row and column.
 - At most one queen on each diagonal.
 - Sudoku
 - Exactly one presence of each number in each row, column and 3x3 grid.
 - Exactly one number in each cell.

- How do we encode such constraints?
- AtleastOne($[x_1, x_2, ..., x_n]$)

$$- x_1 \lor x_2 \lor \dots \lor x_n$$

- AtmostOne([$x_1, x_2, ..., x_n$])
 - There exist many possibilities.

AtmostOne: Pairwise Encoding

 Any combination of 2 variables cannot be true at the same time.

$$\bigwedge_{1 \le i < j \le n} \neg (x_i \land x_j)$$

- Simple, no additional variables.
- $O(n^2)$ clauses.

• Introduce n new variables s_i to indicate that the sum has reached 1 by i.

• Introduce n new variables s_i to indicate that the sum has reached 1 by i.

$$(\overline{x_1} \vee s_1) \wedge \\ \bigwedge_{1 < i < n} [(\overline{x_i} \vee s_i) \wedge (\overline{s_{i-1}} \vee s_i) \wedge (\overline{s_{i-1}} \vee \overline{x_i})] \\ \wedge (\overline{s_{n-1}} \vee \overline{x_n})$$

- O(n) clauses and O(n) new variables.

AtmostOne: Bitwise Encoding

- Introduce m new variables r_i where $m = \log_2 n$.
- For $1 \le i \le n$, let $b_{i,1}, ..., b_{i,m}$ be the binary encoding of i-1.

$$\bigwedge_{1 \le i \le n} x_i \to (r_1 = b_{i,1} \land r_2 = b_{i,2} \land \dots \land r_m = b_{i,m})$$

• Example: $x_1 + x_2 + x_3 \le 1$ m = 2 $x_1 \to (r_1 = 0 \land r_2 = 0) \land x_2 \to (r_1 = 0 \land r_2 = 1) \land x_3 \to (r_1 = 1 \land r_2 = 0)$

AtmostOne: Bitwise Encoding

- Introduce m new variables r_i where $m = \log_2 n$.
- For $1 \le i \le n$, let $b_{i,1}, ..., b_{i,m}$ be the binary encoding of i-1.

$$\bigwedge_{1 \le i \le n} x_i \to (r_1 = b_{i,1} \land r_2 = b_{i,2} \land \dots \land r_m = b_{i,m})$$

• Example: $x_1 + x_2 + x_3 \le 1$ m = 2 $(\overline{x_1} \lor \overline{r_1}) \land (\overline{x_1} \lor \overline{r_2}) \land (\overline{x_2} \lor \overline{r_1}) \land (\overline{x_2} \lor \overline{r_2}) \land (\overline{x_3} \lor \overline{r_1}) \land (\overline{x_3} \lor \overline{r_2})$

AtmostOne: Bitwise Encoding

- Introduce m new variables r_i where $m = \log_2 n$.
- For $1 \le i \le n$, let $b_{i,1}, ..., b_{i,m}$ be the binary encoding of i-1.

$$\bigwedge_{1 \le i \le n} \bigwedge_{1 \le j \le m} \overline{x_i} \vee r_j \left[\vee \overline{r_j} \right]$$

if bit j of the binary encoding of i - 1 is 1 [or 0].

- $O(n \log_2 n)$ clauses and $O(\log_2 n)$ new variables.

AtmostOne: Heule Encoding

- Split the constraint using additional variables.
- When $n \le 4$, apply pairwise encoding, using at most 6 clauses.

$$\bigwedge_{1 \le i < j \le n} \neg (x_i \land x_j)$$

- When n > 4:
 - introduce a new Boolean variable y.
 - AtmostOne([x_1 , x_2 , x_3 , y]) \land AtmostOne([\bar{y} , x_4 , ..., x_n])
 - Encode the second one recursively.
 - O(n) clauses and O(n) new variables.

AtmostOne: Encoding Size Differences

- $\sum_{1 \le i \le n} x_i \bowtie k$ where $k \in \{<, \le, =, \ne, >, \ge\}$
 - $-\sum_{1\leq i\leq n} x_i = k \text{ iff } (\sum_{1\leq i\leq n} x_i \leq k) \wedge (\sum_{1\leq i\leq n} x_i \geq k)$
 - $\sum_{1 \le i \le n} x_i \ne k \text{ iff } (\sum_{1 \le i \le n} x_i > k) \lor (\sum_{1 \le i \le n} x_i < k)$
 - $-\sum_{1 \le i \le n} x_i \ge k \text{ iff } \sum_{1 \le i \le n} \overline{x_i} \le n k$
 - $\sum_{1 \le i \le n} x_i > k$ iff $\sum_{1 \le i \le n} \overline{x_i} \le n k 1$
 - $\sum_{1 \le i \le n} x_i < k \text{ iff } \sum_{1 \le i \le n} x_i \le k 1$

- $\sum_{1 \le i \le n} x_i \bowtie k$ where $k \in \{<, \le, =, \ne, >, \ge\}$
 - Another special case is $\sum_{1 \le i \le n} x_i = k \ (\sum_{1 \le i \le n} x_i \le k \ \land \ \sum_{1 \le i \le n} x_i \ge k)$
 - Let
 - AtmostK([$x_1, x_2, ..., x_n$]) refer to $\sum_{1 \le i \le n} x_i \le k$
 - AtleastK($[x_1, x_2, ..., x_n]$) refer to $\sum_{1 \le i \le n} x_i \ge k$
 - ExactlyK($[x_1, x_2, ..., x_n]$) iff AtmostK($[x_1, x_2, ..., x_n]$) \land AtleastK($[x_1, x_2, ..., x_n]$)
 - Frequently occur in SAT models, e.g., nurse scheduling.
 - For fairness, across all days, each nurse is assigned to a number of shifts between a minimum and a maximum value.

- $\sum_{1 \le i \le n} x_i \bowtie k$ where $k \in \{<, \le, =, \ne, >, \ge\}$
 - $-\sum_{1\leq i\leq n} x_i = k \text{ iff } (\sum_{1\leq i\leq n} x_i \leq k) \wedge (\sum_{1\leq i\leq n} x_i \geq k)$
 - $\sum_{1 \le i \le n} x_i \ne k \text{ iff } (\sum_{1 \le i \le n} x_i > k) \lor (\sum_{1 \le i \le n} x_i < k)$
 - $-\sum_{1 \le i \le n} x_i \ge k \text{ iff } \sum_{1 \le i \le n} \overline{x_i} \le n k$
 - $\sum_{1 \le i \le n} x_i > k$ iff $\sum_{1 \le i \le n} \overline{x_i} \le n k 1$
 - $\sum_{1 \le i \le n} x_i < k \text{ iff } \sum_{1 \le i \le n} x_i \le k 1$

- $\sum_{1 \le i \le n} x_i \bowtie k$ where $k \in \{<, \le, =, \ne, >, \ge\}$
 - $-\sum_{1 \le i \le n} x_i = k \text{ iff } (\sum_{1 \le i \le n} x_i \le k) \land (\sum_{1 \le i \le n} x_i \ge k)$
 - $\sum_{1 \le i \le n} x_i \ne k \text{ iff } (\sum_{1 \le i \le n} x_i > k) \lor (\sum_{1 \le i \le n} x_i < k)$
 - $\sum_{1 \le i \le n} x_i \ge k$ iff $\sum_{1 \le i \le n} \overline{x_i} \le n k$
 - $\sum_{1 \le i \le n} x_i > k$ iff $\sum_{1 \le i \le n} \overline{x_i} \le n k 1$
 - $\sum_{1 \le i \le n} x_i < k \text{ iff } \sum_{1 \le i \le n} x_i \le k 1$

AtmostK: Generalized Pairwise Encoding

 AtmostOne: any combination of 2 variables cannot be true at the same time.

$$\bigwedge_{1 \le i < j \le n} \neg (x_i \land x_j) \equiv \bigwedge_{1 \le i < j \le n} \overline{x_i} \lor \overline{x_j}$$

- $O(n^2)$ clauses
- AtmostK: any combination of k + 1 variables cannot be true at the same time.

$$\bigwedge_{\substack{M \subseteq \{1..n\} \\ |M|=k+1}} \overline{x_i}$$

- $O(n^{k+1})$ clauses

AtmostK: Generalized Pairwise Encoding Size

- AtmostOne: introduce n new variables s_i to indicate that the sum has reached 1 by i.
 - O(n) clauses and O(n) new variables.
- AtmostK: introduce n * k
 new variables s_{ij} to indicate
 that the sum has reached
 j by i.
 - O(kn) clauses and O(kn) new variables.

• AtmostK: introduce n * k new variables $s_{i,j}$ to indicate that the sum has reached to j by i.

$$(x_{1} \to s_{1,1}) \land \bigwedge_{2 \leq j \leq k} \overline{s_{1,j}}$$

$$\bigwedge_{1 < i < n} \left[((x_{i} \lor s_{i-1,1}) \to s_{i,1}) \land \bigwedge_{2 \leq j \leq k} (((x_{i} \land s_{i-1,j-1}) \lor s_{i-1,j}) \to s_{i,j}) \right.$$

$$\land \left(s_{i-1,k} \to \overline{x_{i}} \right) \left. \right]$$

$$\land \left(s_{n-1,k} \to \overline{x_{n}} \right)$$

• AtmostOne: introduce n * 1 new variables s_i to indicate that the sum has reached to 1 by i.

$$\bigwedge_{1 < i < n} \left[((x_i \lor s_{i-1}) \to s_i) \land \bigwedge_{2 \le j \le k} \right]$$

$$\land (s_{i-1} \to \overline{x_i}) \right]$$

$$\land (s_{n-1} \to \overline{x_n})$$

• AtmostK: introduce n * k new variables $s_{i,j}$ to indicate that the sum has reached to j by i.

$$\begin{array}{ll}
(\neg x_1 \lor s_{1,1}) \\
(\neg s_{1,j}) & \text{for } 1 < j \le k \\
(\neg x_i \lor s_{i,1}) \\
(\neg s_{i-1,1} \lor s_{i,1}) \\
(\neg x_i \lor \neg s_{i-1,j-1} \lor s_{i,j}) \\
(\neg s_{i-1,j} \lor s_{i,j}) \\
(\neg x_i \lor \neg s_{i-1,k}) \\
(\neg x_n \lor \neg s_{n-1,k})
\end{array}\right\} \quad \text{for } 1 < j \le k$$

- O(nk) clauses and O(nk) new variables.

SAT Encodings

- What properties should SAT encodings have?
 - Number of variables.
 - Number of clauses.
 - Other?

- Let us consider an encoding *E* of a constraint *C* such that there is a correspondence between the assignments of the variables in *C* with Boolean assignments of the variables in *E*.
- E is arc-consistent if:
 - whenever a partial assignment is inconsistent wrt C (i.e., cannot be extended to a solution of C), unit propagation in E causes conflict;
 - Otherwise, unit propagation in E discards arc-inconsistent values (values that cannot be assigned).

- E.g., AtmostOne([$x_1, x_2, ..., x_n$])
 - If there are two variables x_i and x_j assigned to T then unit propagation should give a conflict.
 - If there is one x_i assigned to T then all other x_j should be assigned to F by unit propagation.

- Are the AtmostOne encodings we have seen so far ac-consistent encodings?
 - Let's revisit them.

- Are the AtmostOne encodings we have seen so far ac-consistent encodings?
- Let's consider another AtmostOne encoding which is not arc-consistent.

Addition in Propositional Logic

- Decision problem
 - Given a and b (represented in binary), find d (represented in binary) satisfying a + b = d.
- Variables
 - $-a_{n-1}...a_0, b_{n-1}...b_0, d_{n-1}...d_0$
 - Carries $c_n c_{n-1} \dots c_0$
- Constraints
 - Compute d_i from right to left starting from $c_0 = 0$.

Example

$$c \rightarrow 0 \quad 0 \quad 1 \quad 1 \quad 0$$
 $a = 7 \rightarrow 0 \quad 0 \quad 1 \quad 1 \quad 1$
 $b = 21 \rightarrow 1 \quad 0 \quad 1 \quad 0 \quad 1$
 $d = 28 \rightarrow 1 \quad 1 \quad 0 \quad 0$

5-bit Binary Adder using Full Adder

7+21 with Full Adders

$$c \rightarrow 0 0 1 1 1 0$$
 $a = 7 \rightarrow 0 0 1 1 1 1$
 $b = 21 \rightarrow 1 0 1 0 1$
 $d = 28 \rightarrow 1 1 1 0 0$

Full Adder Encoding

- $d_{i} = a_{i} + b_{i} + c_{i} \mod 2$, i = 0, ..., n 1- $a_{i} \leftrightarrow b_{i} \leftrightarrow c_{i} \leftrightarrow d_{i}$ - $d_{i} \leftrightarrow c_{i} \leftrightarrow c_{i} \leftrightarrow c_{i}$ $(a_{i} \wedge \overline{b_{i}} \wedge \overline{c_{i}}) \vee (\overline{a_{i}} \wedge b_{i} \wedge \overline{c_{i}}) \vee (\overline{a_{i}} \wedge \overline{b_{i}} \wedge c_{i}) \vee (a_{i} \wedge b_{i} \wedge c_{i})$
- $c_{i+1} = 1 \leftrightarrow a_i + b_i + c_i > 1$, i = 0, ..., n-1- $c_{i+1} \leftrightarrow (a_i \land b_i) \lor (a_i \land c_i) \lor (b_i \land c_i)$
- $c_n = 0$ (to fit in n bits) and $c_0 = 0$ (initial carry)
 $\overline{c_o} \wedge \overline{c_n}$

AtmostOne via Full Adder Encoding

- AtmostOne($[x_1, x_2]$) using one FA
 - a_i, b_i take the values of x_1, x_2
 - $\overline{c_i} \wedge \overline{c_{i+1}}$
- AtmostOne([x_1, x_2, x_3]) using one FA
 - a_i , b_i , c_i take the values of x_1 , x_2 , x_3
 - $\overline{c_{i+1}}$
- AtmostOne([x_1, x_2, x_3, x_4]) using two FAs
 - a_i , b_i , a_{i+1} , b_{i+1} take the values of x_1 , x_2 , x_3 , x_4
 - $\overline{c_i} \wedge \overline{c_{i+1}} \wedge \overline{c_{i+2}} \wedge (\overline{d_{i+1}} \vee \overline{d_i})$
- AtmostOne([x_1, x_2, x_3, x_4, x_5]) using two FAs
 - a_i , b_i , a_{i+1} , b_{i+1} , c_i take the values of x_1 , x_2 , x_3 , x_4 , x_5
 - $\overline{c_{i+1}} \wedge \overline{c_{i+2}} \wedge (\overline{d_{i+1}} \vee \overline{d_i})$

AtmostK via Full Adder Encoding

- AtmostK([x_1, x_2, x_3, x_4], 2) using two FAs
 - a_i , b_i , a_{i+1} , b_{i+1} take the values of x_1 , x_2 , x_3 , x_4
 - $\overline{c_i} \wedge (c_{i+2} \to (\overline{d_{i+1}} \wedge \overline{d_i} \wedge \overline{c_{i+1}}))$

AtmostK via Full Adder Encoding

- Consider $x_1 + x_1 + x_3 \le 0$.
 - Unit propagation should set $\overline{x_1}$, $\overline{x_2}$, and $\overline{x_3}$.
- Adder encoding using one FA:
 - a_i, b_i, c_i take the values of x_1, x_2, x_3
 - $\overline{d}_i \wedge \overline{c_{i+1}}$
 - $d_i \leftrightarrow (x_1 \wedge \overline{x_2} \wedge \overline{x_3}) \vee (\overline{x_1} \wedge x_2 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3)$
 - $c_{i+1} \leftrightarrow (x_1 \land x_2) \lor (x_1 \land x_3) \lor (x_2 \land x_3)$
- Note that:
 - $\overline{d_i} \rightarrow (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee x_2 \vee \overline{x_3}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3})$
 - $\overline{c_{i+1}} \to (\overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (\overline{x_2} \vee \overline{x_3})$
 - Unit propagation cannot propagate anything!
- Adder encoding is not an arc-consistent encoding!

