Curs 2 Analiză Matematică

Radu MICULESCU

Transilvania University of Brașov

octomber 2023

Limita unui șir de numere reale

Definiție. Un element $I \in \overline{\mathbb{R}}$ se numește o limită a șirului $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ dacă în afara oricărei vecinătăți V a lui I se află un număr finit de termeni ai șirului (deci, în interiorul lui V se găsesc toți termenii șirului de la un rang încolo), i.e pentru orice $V \in \mathcal{V}_I$ există $n_V \in \mathbb{N}$ astfel încât

$$x_n \in V$$
,

pentru orice $n \in \mathbb{N}$, $n \ge n_V$.

Remarcă. Pentru un șir $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ există cel mult un element $l\in\overline{\mathbb{R}}$ care satisface cerințele definiției de mai sus. În cazul existenței acestuia, el se va nota cu $\lim_{n\to\infty} x_n$.

Şiruri convergente / divergente

Definiție. Un șir $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ se numește:

- convergent dacă există $l \in \mathbb{R}$ astfel încât $\lim_{n \to \infty} x_n = l$;
- divergent dacă nu este convergent (i.e. fie nu există există $l \in \mathbb{R}$ astfel încât $\lim_{n \to \infty} x_n = l$, fie $\lim_{n \to \infty} x_n = -\infty$, fie $\lim_{n \to \infty} x_n = \infty$).

Caracterizarea cu ε a limitei unui șir I

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ și $l\in\mathbb{R}$. Următoarele afirmații sunt echivalente:

$$\lim_{n\to\infty} x_n = I$$

ii) pentru orice $\varepsilon>0$ există $n_{\varepsilon}\in\mathbb{N}$ astfel încât

$$|x_n-I|<\varepsilon$$
,

pentru orice $n \in \mathbb{N}$, $n \ge n_{\varepsilon}$.

Caracterizarea cu ε a limitei unui șir II

Propoziție. Pentru $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$, următoarele afirmații sunt echivalente:

$$\lim_{n\to\infty} x_n = \infty$$

ii) pentru orice $\varepsilon>0$ există $n_{\varepsilon}\in\mathbb{N}$ astfel încât

$$x_n > \varepsilon$$
,

pentru orice $n \in \mathbb{N}$, $n \geq n_{\varepsilon}$.

Caracterizarea cu ε a limitei unui șir III

Propoziție. Pentru $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$, următoarele afirmații sunt echivalente:

$$\lim_{n\to\infty} x_n = -\infty$$

ii) pentru orice $\varepsilon>0$ există $n_{\varepsilon}\in\mathbb{N}$ astfel încât

$$x_n < -\varepsilon$$
,

pentru orice $n \in \mathbb{N}$, $n \geq n_{\varepsilon}$.

Exemplu

Folosind definiția, vom arăta că

$$\lim_{n\to\infty}\frac{n}{n-1}=1.$$

Trebuie să arătăm că pentru orice $\varepsilon>0$ există $n_{\varepsilon}\in\mathbb{N}$ cu proprietatea că pentru orice $n\in\mathbb{N},\ n\geq n_{\varepsilon}$ avem

$$\left|\frac{n}{n-1}-1\right|<\varepsilon.$$

Inegalitatea $\left|\frac{n}{n-1}-1\right|<\varepsilon$ este echivalentă cu

$$\frac{1}{n-1} < \varepsilon$$
,

i.e. cu

$$n>1+\frac{1}{\varepsilon}$$
.

Prin urmare, putem alege $n_{\varepsilon} = [1 + \frac{1}{\varepsilon}] + 1$.

Subșiruri

Definiție. Dacă $(x_n)_{n\in\mathbb{N}}$ este un șir de elemente din M, iar $n_1 < n_2 < ... < n_k < ...$ este un șir strict crescător de numere naturale, atunci șirul, din M, dat de $(x_{n_k})_{k\in\mathbb{N}}$, se numește un subșir al său.

Exemple.

- **1**. Pentru $n_k = 2k$ obținem subșirul $(x_{2k})_{k \in \mathbb{N}}$.
- **2**. Pentru $n_k = 2k + 1$ obținem subșirul $(x_{2k+1})_{k \in \mathbb{N}}$.
- **3**. Pentru $n_k=k+m-1$, unde $m\in\mathbb{N}$, obținem subșirul $(x_{k+m-1})_{k\in\mathbb{N}}$, i.e. șirul $(x_k)_{k>m}$.

Despre subșirurile unui șir care are limită

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ și $l\in\overline{\mathbb{R}}$. Dacă $\lim_{n\to\infty}x_n=l$ și $(x_{n_k})_{k\in\mathbb{N}}$ este un subșir al lui $(x_n)_{n\in\mathbb{N}}$, atunci

$$\lim_{k\to\infty} x_{n_k} = I.$$

O condiție suficientă ca un șir să nu aibă limită

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$. Dacă există

$$I_1, I_2 \in \overline{\mathbb{R}}, I_1 \neq I_2$$

și subșirurile $(x_{n_k})_{k\in\mathbb{N}}$ și $(x_{n_l})_{l\in\mathbb{N}}$ ale lui $(x_n)_{n\in\mathbb{N}}$ astfel încât

$$\lim_{k\to\infty} x_{n_k} = I_1 \, \, \text{si} \, \lim_{l\to\infty} x_{n_l} = I_2,$$

atunci $(x_n)_{n\in\mathbb{N}}$ nu are limită.

Exemplu

Şirul $(x_n)_{n\in\mathbb{N}}$ dat de

$$x_n=(-1)^n,$$

pentru orice $n \in \mathbb{N}$, nu are limită deoarece:

- subșirul $(x_{2n})_{n\in\mathbb{N}}$ are limita 1 fiind constant egal cu 1
- subșirul $(x_{2n+1})_{n\in\mathbb{N}}$ are limita -1 fiind constant egal cu -1.

Exemple fundamentale de șiruri care au limită I

 ${f 1}$. Fie ${f a}\in \mathbb{R}$ și

$$x_n = a^n$$
,

pentru orice $n \in \mathbb{N}$.

- α) Dacă a ≤ -1 , atunci $(x_n)_{n\in\mathbb{N}}$ nu are limită.
- β) Dacă -1 < a < 1, atunci

$$\lim_{n\to\infty} x_n = 0.$$

 $\gamma)$ Dacă a =1, atunci

$$\lim_{n\to\infty} x_n = 1.$$

 δ) Dacă a > 1, atunci

$$\lim_{n\to\infty} x_n = \infty.$$

Exemple fundamentale de șiruri care au limită II

2. Fie $a \in \mathbb{R}$ și

$$x_n = n^a$$
,

pentru orice $n \in \mathbb{N}$.

 α) Dacă a < 0, atunci

$$\lim_{n\to\infty}x_n=0.$$

$$\beta$$
) Dacă $a=0$, atunci

$$\lim_{n\to\infty} x_n = 1.$$

$$\gamma$$
) Dacă a > 0 , atunci

$$\lim_{n\to\infty} x_n = \infty.$$

Operații cu șiruri care au limită I

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ și $l_1, l_2\in\mathbb{R}$ astfel încât

$$\lim_{n\to\infty} x_n = l_1 \, \sin\lim_{n\to\infty} y_n = l_2.$$

Atunci:

 α)

$$\lim_{n\to\infty}(x_n+y_n)=l_1+l_2=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n;$$

 β)

$$\lim_{n\to\infty}(x_ny_n)=I_1I_2=(\lim_{n\to\infty}x_n)(\lim_{n\to\infty}y_n).$$

În particular, avem

$$\lim_{n\to\infty}(\alpha x_n)=\alpha I_1=\alpha(\lim_{n\to\infty}x_n),$$

pentru orice $\alpha \in \mathbb{R}$ și

$$\lim_{n\to\infty}(x_n-y_n)=l_1-l_2=\lim_{n\to\infty}x_n-\lim_{n\to\infty}y_n.$$

Operații cu șiruri care au limită II

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ și $l_1, l_2\in\mathbb{R}$ astfel încât

$$\lim_{n\to\infty} x_n = \mathit{l}_1, \lim_{n\to\infty} y_n = \mathit{l}_2, \mathit{l}_2 \neq 0 \text{ \it{si} $\it{y}_n \neq 0$ pentru orice $\it{n} \in \mathbb{N}$}.$$

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{l_1}{l_2}=\frac{\lim_{n\to\infty}x_n}{\lim_{n\to\infty}y_n}.$$

Operații cu șiruri care au limită III

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ și $l_1, l_2\in\mathbb{R}$ astfel încât

$$\lim_{n\to\infty} x_n = \mathit{l}_1, \lim_{n\to\infty} y_n = \mathit{l}_2, \mathit{l}_1 > 0 \text{ \it{si} $x_n > 0$ pentru orice $n \in \mathbb{N}$}.$$

$$\lim_{n\to\infty} x_n^{y_n} = I_1^{I_2} = (\lim_{n\to\infty} x_n)^{\lim_{n\to\infty} y_n}.$$

Operații cu șiruri care au limită IV

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ și $l_1, l_2\in\mathbb{R}$ astfel încât

$$\lim_{n \to \infty} x_n = \mathit{l}_1$$
, $\lim_{n \to \infty} y_n = \mathit{l}_2$, l_1 , $\mathit{l}_2 > 0 \& \mathit{l}_1 \neq 1$

și

$$x_n, y_n > 0 \& x_n \neq 1$$
 pentru orice $n \in \mathbb{N}$.

$$\lim_{n\to\infty}\log_{x_n}(y_n)=\log_{l_1}(l_2)=\log_{\lim_{n\to\infty}x_n}(\lim_{n\to\infty}y_n).$$

Remarcă

Propozițiile anterioare se extind în cazul în care $l_1, l_2 \in \overline{\mathbb{R}}$, ținând cont de următoarele relații:

-

$$\infty + a = a + \infty = \infty$$
,

pentru orice $a \in (-\infty, \infty]$

-

$$(-\infty) + a = a + (-\infty) = -\infty$$
,

pentru orice $a \in [-\infty, \infty)$

$$\infty \cdot a = a \cdot \infty = \infty$$
,

pentru orice $a \in (0, \infty]$

$$\infty \cdot a = a \cdot \infty = -\infty$$
 pentru orice $a \in [-\infty, 0)$

-

$$(-\infty) \cdot a = a \cdot (-\infty) = -\infty,$$

pentru orice $a \in (0, \infty]$

$$(-\infty) \cdot a = a \cdot (-\infty) = \infty$$
,

pentru orice $a \in [-\infty, 0)$

-

$$\frac{a}{\infty} = \frac{a}{-\infty} = 0$$
,

pentru orice $a \in \mathbb{R}$

-

$$a^{\infty}=0$$
,

pentru orice $a \in (-1, 1)$

_

$$a^{\infty}=\infty$$
,

pentru orice $a \in (1, \infty]$

$$a^{-\infty}=0$$
,

pentru orice $a \in (1, \infty]$

-

$$\infty^a = \infty$$
,

pentru orice $a \in (0, \infty]$

$$\infty^a = 0$$
.

pentru orice $a \in [-\infty, 0)$

NU SUNT DEFINITE următoarele operații:

$$0\cdot \infty$$

$$\frac{\infty}{\infty}$$

$$\infty^0$$

Exemplu

Să se calculeze $\lim_{n\to\infty} (\sqrt{n^2+2n}-n)$.

Avem

$$\sqrt{n^2 + 2n} - n = \frac{(\sqrt{n^2 + 2n} - n)(\sqrt{n^2 + 2n} + n)}{(\sqrt{n^2 + 2n} + n)} = \frac{2n}{\sqrt{n^2 + 2n} + n} = \frac{2}{\sqrt{1 + \frac{2}{n}} + 1},$$

de unde

$$\lim_{n \to \infty} (\sqrt{n^2 + 2n} - n) = \lim_{n \to \infty} \frac{2}{\sqrt{1 + \frac{2}{n} + 1}} = 1$$

Mărginirea șirurilor convergente

Propoziție. Orice șir convergent de numere reale este mărginit.

Limita șirurilor monotone nemărginite

Propoziție.

- lpha) Orice șir de numere reale care este crescător și nemărginit are limita ∞ .
- β) Orice șir de numere reale care este descrescător și nemărginit are limita $-\infty$.

Teorema convergenței monotone (Weierstrass)

 (α) Fie $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ un șir crescător și mărginit. Atunci

$$\lim_{n\to\infty}x_n=\sup\{x_n\mid n\in\mathbb{N}\}\in\mathbb{R}.$$

 β) Fie $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ un șir descrescător și mărginit. Atunci

$$\lim_{n\to\infty} x_n = \inf\{x_n \mid n \in \mathbb{N}\} \in \mathbb{R}.$$

Trecerea la limită în inegalități

Propoziție

 α) Fie $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ convergente astfel încât

$$x_n \leq y_n$$

pentru orice $n \in \mathbb{N}$. Atunci

$$\lim_{n\to\infty} x_n \leq \lim_{n\to\infty} y_n.$$

 β) Fie $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ astfel încât

$$x_n \leq y_n$$
,

pentru orice $n \in \mathbb{N}$. Avem:

$$\beta 1)$$
 dacă $\lim_{n \to \infty} x_n = \infty$, atunci $\lim_{n \to \infty} y_n = \infty$;

$$\beta 2) daca \lim_{n\to\infty} y_n = -\infty$$
, atunci $\lim_{n\to\infty} x_n = -\infty$.

Lema cleștelui

Fie
$$(x_n)_{n\in\mathbb{N}}$$
, $(y_n)_{n\in\mathbb{N}}$, $(z_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ astfel încât

$$x_n \leq y_n \leq z_n$$
,

pentru orice $n \in \mathbb{N}$ și

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n \stackrel{not}{=} I \in \overline{\mathbb{R}}.$$

$$\lim_{n\to\infty}y_n=I.$$

Exemplu

Să se calculeze

$$\lim_{n\to\infty}\frac{[n\pi]}{n}.$$

Conform inegalității părții întregi avem

$$n\pi - 1 < [n\pi] \le n\pi$$
,

de unde

$$\pi - \frac{1}{n} < \frac{[n\pi]}{n} \le \pi,\tag{*}$$

pentru orice $n \in \mathbb{N}$.

Deoarece

$$\lim_{n\to\infty}(\pi-\frac{1}{n})=\pi,$$

conform lemei cleștelui, având în vedere (*), concluzionăm că

$$\lim_{n\to\infty}\frac{[n\pi]}{n}=\pi.$$

Numărul e

Propoziție. Şirul $((1+\frac{1}{n})^n)_{n\in\mathbb{N}}$ este crescător și mărginit, iar limita sa se notează cu e.

Aşadar

$$\lim_{n\to\infty} (1+\frac{1}{n})^n = e.$$

Observație. Pentru orice șir $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}\setminus\{0\}$ astfel încât $\lim_{n\to\infty}x_n=0$, avem:

$$\lim_{n\to\infty}(1+x_n)^{\frac{1}{x_n}}=e;$$

$$\lim_{n\to\infty}\frac{\ln(1+x_n)}{x_n}=1;$$

$$\lim_{n\to\infty}\frac{a^{x_n}-1}{x_n}=\ln a,$$

pentru orice a > 0;

iv)

$$\lim_{n\to\infty}\frac{(1+x_n)^{\alpha}-1}{x_n}=\alpha,$$

pentru orice $\alpha \in \mathbb{R}$.

Exemple

1. Să se calculeze

$$\lim_{n\to\infty} (1+\sqrt{n+1}-\sqrt{n})^{-\sqrt{n}}.$$

Avem

$$(1+\sqrt{n+1}-\sqrt{n})^{-\sqrt{n}} = [(1+\sqrt{n+1}-\sqrt{n})^{\frac{1}{\sqrt{n+1}-\sqrt{n}}}]^{-\sqrt{n}(\sqrt{n+1}-\sqrt{n})} =$$

$$= [(1+\sqrt{n+1}-\sqrt{n})^{\frac{1}{\sqrt{n+1}-\sqrt{n}}}]^{-\frac{1}{1+\sqrt{1+\frac{1}{n}}}},$$

pentru orice $n \in \mathbb{N}$.

Deoarece

$$\lim_{n\to\infty}\sqrt{n+1}-\sqrt{n}=\lim_{n\to\infty}\frac{1}{\sqrt{n+1}+\sqrt{n}}=0,$$

găsim că

$$\lim_{n\to\infty} \left[\left(1 + \sqrt{n+1} - \sqrt{n}\right)^{\frac{1}{\sqrt{n+1}-\sqrt{n}}} \right] = e.$$

Cum

$$\lim_{n\to\infty}-\frac{1}{1+\sqrt{1+\frac{1}{n}}}=-\frac{1}{2},$$

conchidem că

$$\lim_{n \to \infty} (1 + \sqrt{n+1} - \sqrt{n})^{-\sqrt{n}} = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}.$$

2. Să se calculeze

$$\lim_{n\to\infty} n(\sqrt[n]{2}-1).$$

Deoarece

$$n(\sqrt[n]{2}-1)=\frac{2^{\frac{1}{n}}-1}{\frac{1}{n}},$$

pentru orice $n \in \mathbb{N}$ și $\lim_{n \to \infty} \frac{1}{n} = 0$, concluzionăm că

$$\lim_{n\to\infty} n(\sqrt[n]{2}-1) = \ln 2.$$

Metode complementare de aflare a limitei unui șir

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}\subseteq (0,\infty)$ astfel încât există $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=I\in\overline{\mathbb{R}}.$

- lpha) Dacă l < 1, atunci $\lim_{n \to \infty} x_n = 0$.
- β) Dacă l > 1, atunci $\lim_{n \to \infty} x_n = \infty$.

Exemplu. Să se arate că $\lim_{n\to\infty}\frac{n^{\alpha}}{a^n}=0$, unde $\alpha>0$ și a>1.

Deoarece $\lim_{n\to\infty}\frac{\frac{(n+1)^{\alpha}}{a^{n+1}}}{\frac{n^{\alpha}}{a^{n}}}=\frac{1}{a}<1$, conform propoziției de mai sus, deducem că $\lim_{n\to\infty}\frac{n^{\alpha}}{a^{n}}=0$.

Lema lui Stolz-Cesàro. Fie $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ astfel încât:

- i) $(y_n)_{n\in\mathbb{N}}$ este strict crescător;
- $ii) \lim_{n\to\infty} y_n = \infty;$
- iii) există $\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}\in\overline{\mathbb{R}}.$

- α) există $\lim_{n\to\infty}\frac{x_n}{y_n}$;
- β)

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}.$$

Corolar. Fie $(x_n)_{n\in\mathbb{N}}\subseteq (0,\infty)$ astfel încât există $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=I\in\overline{\mathbb{R}}.$

Atunci:

$$\alpha$$
) există $\lim_{n\to\infty} \sqrt[n]{x_n}$;

β)

$$\lim_{n\to\infty} \sqrt[n]{x_n} = \lim_{n\to\infty} \frac{x_{n+1}}{x_n}.$$

Exemple

1. Să calculeze $\lim_{n\to\infty} \frac{\sqrt{1}+\sqrt{2}+...+\sqrt{n}}{n\sqrt{n}}$.

Deoarece

$$\lim_{n \to \infty} \frac{(\sqrt{1} + \sqrt{2} + \dots + \sqrt{n} + \sqrt{n+1}) - (\sqrt{1} + \sqrt{2} + \dots + \sqrt{n})}{(n+1)\sqrt{n+1} - n\sqrt{n}} =$$

$$= \lim_{n \to \infty} \frac{\sqrt{n+1}((n+1)\sqrt{n+1} + n\sqrt{n})}{3n^2 + 3n + 1} = \frac{2}{3},$$

conform lemei lui Stolz-Cesàro, deducem că

$$\lim_{n\to\infty}\frac{\sqrt{1}+\sqrt{2}+...+\sqrt{n}}{n\sqrt{n}}=\frac{2}{3}.$$

2. Să calculeze $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}}$.

Deoarece

$$\lim_{n \to \infty} \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} = \lim_{n \to \infty} (1 + \frac{1}{n})^n = e,$$

conform corolarului lemei lui Stolz-Cesàro, deducem că

$$\lim_{n\to\infty} \sqrt[n]{\frac{n^n}{n!}} = \lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} = e.$$