0.1 Theoretical Analysis of Proposed Approach

In this section, we present preliminaries of Markov chain and the maximum likehood estimator of the transition probabilities, and we describe the theoretical properties of our proposed synchronization operator and its relation with the maximum likelihood estimator.

Preliminaries

In this section, we first present some definitions related to Markov chain theory, where the theoretical definitions presented are based on the work described in [4, 5, 3, 6].

Definition 1. Let $\{s_0, s_1, \ldots s_n\}$ be a sequence of random variables as **Markov** chain, where s_i belongs to a finite state space $\mathbf{S} = \{1, \ldots \mathbf{m}\}$ and represents the observed state of the chain at time i. Let the transition probabilities of the Markov chain $p_{ij}(t+1)$ such that $i, j \in S$ and $t = 0, \ldots, n$, where $p_{ij}(t+1)$ is the probability of the state j at time t+1, given state i at time t, where the sequence $\{s_0, s_1, \ldots s_n\}$ satisfies the **Markov property**

$$P(s_{t+1} = j | s_t = i, s_{t-1} = i_{t-1}, \dots, s_0 = i_0) = P(s_{t+1} = j | s_t = i)$$

$$\forall i, j, i_{t-1}, i_0 \in S$$

$$(0.1)$$

Thus, the probability of moving to a future state only depends on the current state (first-order Markov chain). While for higher order m Markov chains the conditional probabilities can be modeled to be dependent on the last m states.

When the conditional probabilities $P(s_{t+1} = j | s_t = i)$ are independent of the time t, the Markov chain is called **homogeneous** such that $p_{ij} := P(s_{t+1} = j | s_t = i)$.

The transition probabilities of the Markov chain are represented by a $m \times m$ matrix that called **transition probability matrix** Π with p_{ij} elements

$$\Pi = \begin{pmatrix}
p_{1,1} & p_{1,2} & \dots & p_{1,m} \\
p_{2,1} & \dots & \dots & \dots \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
p_{m,1} & p_{m,1} & \dots & p_{m,m}
\end{pmatrix}$$
(0.2)

where $0 \le p_{i,j} \le 1$ and the rows sum up to one

$$\sum_{j=1}^{m} p_{i,j} = 1 \qquad i = 1, 2 \dots m$$
 (0.3)

Learning the Transition Probability Matrix. In practice the underlying transition probability matrix is unknown, and desirable to estimate or learn it form

the observed sequence $\{s_0, s_1, \dots s_n\}$. The maximum likelihood estimator (MLE) is a common method to estimate the transition probability matrix [3].

Definition 2. Let Π is the transition probability matrix of a Markov chain with a set of states S, $\pi_{i,j}$ the transition probability from state i to state j, $n_{i,j}$ the number of observed transitions from state i to state j, then the maximum likelihood estimator finds $\hat{\Pi}$ as an estimate for Π , where its elements $\hat{p}_{i,j}$ are

$$\hat{p}_{i,j} = \frac{n_{i,j}}{\sum_{l \in S} n_{i,l}} = \frac{n_{i,j}}{n_i} \tag{0.4}$$

The maximum likelihood estimates of transition probabilities are obtained based on the observed transitions between the states of the chain. That is, the maximum likelihood estimates are basically the count of transitions from i to j divided by the total count of the chain being in state i.

Anderson and Goodman [3] have shown that

$$\sqrt{n} (\hat{p}_{i,j} - p_{i,j}) \xrightarrow{d} \mathcal{N}(\mu, \sigma_{mle_n}^2)$$

$$as n \to \infty$$
(0.5)

Thus, the random variable \sqrt{n} $(\hat{p}_{i,j} - p_{i,j})$ has asymptotically normal distribution with mean $\mu = 0$. Therefore, the MLE is an asymptotically normal. While the variance $\sigma_{mle_n}^2$ is given by

$$\sigma_{mle_n}^2 = \text{Var}(\sqrt{n} \ (\hat{p}_{i,j} - p_{i,j})) \approx \frac{\sum_{l=1}^m \sum_{t=1}^n n_l \ p_{l,j}^{t-1} \ p_{i,j} \ (1 - p_{i,j})}{n}$$
(0.6)

Where $p_{l,j}^{t-1}$ is the probability of state j at time t-1 given that the state l at time 0 [3].It is clearly seen that increasing the sample size n reduces the variances. In next, we will show that our proposed approach of synchronizing the maximum likelihood estimators over k chains is preserving a similar asymptotic behavior.

0.1.1 Proprietors of Proposed Approach

The proposed synchronization operator is basically aggregating the maximum likelihood estimates over k observed sequences (i.e., sequences of the DFA states based on the consumed event streams), the operator estimates the maximum likelihood of the probabilities for a set of k sequences, which are arranged in serial order as one large chain with length $N = k \times n$ where we assume that all k sequences have n observations. For simplicity, we assume that the synchronization phase happens

on batch size equals n (i.e., b = n) the, then it follows that

$$\hat{\pi}_{i,j} = \frac{\sum_{k \in K} n_{k,i,j}}{\sum_{k \in K} \sum_{l \in L} n_{k,i,l}} = \hat{p}_{i,j}(N)$$

$$where \ N = k \times n.$$

$$(0.7)$$

Thus, our proposed synchronization operation of the k transition matrices has the same proprieties as the maximum likelihood estimator over a serial sequence of all k sequences, but with skipping k-1 transitions between each two consecutive sequences, which is a small number in practice that can be neglected comparing to the total transitions count $k \times n$. Therefore, the probabilities estimates of the global model given by our proposed operation within the distributed online learning protocol have the same proprieties as maximum likelihood estimates, in particular, the the random variable \sqrt{N} $(\hat{\pi}_{i,j} - p_{i,j})$ has asymptotically normal distribution with mean $\mu = 0$ following Equation 0.5 shown by

$$\sqrt{N} (\hat{p}_{i,j} - p_{i,j}) \xrightarrow{d} \mathcal{N}(\mu, \sigma_{mle_N}^2)$$

$$as N \to \infty$$

$$where N = k \times n.$$
(0.8)

Furthermore, since $N\gg n$ the variances of our method estimates are smaller than the estimates of MLE over an isolated sequence. To summarize, our approach aggregating the MLE estimates over k sequences speeds up the convergence rate to reach the true transition probabilities as result of the smaller variances.

0.1.2 Computing the Transition Matrix From the Matrix of $PMC^m_{\mathcal{D}}$

In order to empirically study the asymptotic behavior of our proposed synchronization operator, we will introduce how to compute the transition probability matrix of the underlying Markov chain based on the transition matrix (Π) of $PMC_{\mathcal{D}}^m$.

Nuel [10] showed in **Theorem 3** the relation between the elements of Π and the conditional probabilities of the m-order Markov chain $X = \{X_1, X_2, \dots X_n\}$ described by

$$\Pi(p,q) = \begin{cases} P(X_{m+1} = b | X_1 \dots X_m = \delta^{-m}(p)) & \text{if } \delta(p,q) = b \\ 0 & \text{if } p \notin \delta(p,X) \end{cases}$$

Using this theorem, we can compute the transition probabilities of the Markov chain X.

Bibliography

- [1] Elias Alevizos, Anastasios Skarlatidis, Alexander Artikis, and Georgios Paliouras. Complex event recognition under uncertainty: A short survey. Event Processing, Forecasting and Decision-Making in the Big Data Era (EP-ForDM), pages 97–103, 2015.
- [2] Elias Alevizos, Alexander Artikis, and George Paliouras. Event forecasting with pattern markov chains. In *Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems*, pages 146–157. ACM, 2017.
- [3] Theodore W Anderson and Leo A Goodman. Statistical inference about markov chains. *The Annals of Mathematical Statistics*, pages 89–110, 1957.
- [4] Dimitri P Bertsekas and John N Tsitsiklis. *Introduction to probability*, volume 1. Athena Scientific Belmont, MA, 2002.
- [5] P Billingsley. Statistical Methods in Markov Chains. *The Annals of Mathematical Statistics*, 32(1):12-40, 1961. ISSN 00034851. doi: 10.1214/aoms/1177705148. URL http://www.jstor.org/stable/2238700.
- [6] Ronald A Howard. *Dynamic probabilistic systems: Markov models*, volume 1. Courier Corporation, 2012.
- [7] Michael Kamp, Mario Boley, Daniel Keren, Assaf Schuster, and Izchak Sharfman. Communication-efficient distributed online prediction by dynamic model synchronization. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 623–639. Springer, 2014.
- [8] Bo Liu, Erico N de Souza, Stan Matwin, and Marcin Sydow. Knowledge-based clustering of ship trajectories using density-based approach. In *Big Data (Big Data)*, 2014 IEEE International Conference on, pages 603–608. IEEE, 2014.
- [9] David Luckham. The power of events: An introduction to complex event processing in distributed enterprise systems. In *International Workshop on Rules and Rule Markup Languages for the Semantic Web*, pages 3–3. Springer, 2008.
- [10] Grégory Nuel. Pattern Markov Chains: Optimal Markov Chain Embedding through Deterministic Finite Automata. *Journal of Applied Probability*, 2008.

- [11] Giuliana Pallotta, Michele Vespe, and Karna Bryan. Vessel pattern knowledge discovery from ais data: A framework for anomaly detection and route prediction. *Entropy*, 15(6):2218–2245, 2013.
- [12] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch. Distributed complex event processing with query rewriting. In *Proceedings of the Third ACM International Conference on Distributed Event-Based Systems*, page 4. ACM, 2009.
- [13] Cheng Zhou, Boris Cule, and Bart Goethals. A pattern based predictor for event streams. *Expert Systems with Applications*, 2015.