

Figure 1: Examples of Nucleic Acid Stable Ribozyme Motifs

Figure 2: 2'-O-Me substituted Amberzyme Enzymatic Nucleic Acid Motif

Figure 3: Stabilized Zinzyme Ribozyme Motif

Figure 4: DNAzyme Motif

Legend

Y = U or C
R = A or G

Figure 5: Synthesis of Folate Linked phosphoramidite

Figure 6: Fludarabine-Folate conjugates

Figure 7: Solid Phase Post-synthetic conjugation of pteroic acid

Figure 8: Chemo-enzymatic synthesis of pteroic acid synthon

Figure 9

Atty Dkt No. 02-312-G; 600.041
Title: Conjugates and Compositions...
Serial No.: not yet known; Vargeese et al.
Sheet 9 of 51

Figure 10

NA = Nucleic Acid, such as siNA, antisense, or enzymatic nucleic acid
p = phosphorous moiety

Figure 11

NA = Nucleic Acid, such as siNA, antisense, or enzymatic nucleic acid
p = phosphorous moiety

Figure 12: Solid Phase Post-synthetic conjugation of pteroic acid

Figure 13: Synthesis of *N*-acetyl-D-galactosamine-2'-aminouridine conjugate

Reagents and Conditions: (i) diethylamine, DMF, (ii) **8**, diisopropylethylamine, DMF, (iii) 2-cyanoethyl *N,N*-diisopropylchlorophosphoramidite, 1-methylimidazole, DIPEA, CH₂Cl₂, (iv) Ac₂O, TEA, CH₃CN, (v) HCl, Ac₂O, (vi) Hg(CN)₂, MS 4A, CH₃NO₂-toluene 1:1, (vii) H₂, 5% Pd-C, ethanol, (viii) N-hydroxysuccinimide, DCC, THF.

Figure 14: Synthesis of N-acetyl-D-galactosamine-D-threoninol conjugate

Reagents and Conditions: (i) 7, DCC, *N*-hydroxysuccinimide, (ii) MMTr-Cl, pyridine, (iii) 2-cyanoethyl *N,N*-diisopropylchlorophosphoramidite, 1-methylimidazole, DIPEA, CH₂Cl₂.

Figure 15: Conjugation of targeting ligands to the 5'-end of a Ribozyme or siNA molecule

N-acetyl-D-galactosamine conjugate

Figure 16: Synthesis of dodecanoic acid linker

Figure 17: Oxime linked Nucleic Acid/Peptide Conjugate

Figure 18: Nucleic Acid/Phospholipid Conjugates

PEG=polyethylene glycol

CL=cleavable linker (e.g. A-dT, C-dT)

NA=Nucleic Acid Molecule such as siNA, antisense, or enzymatic nucleic acid

Figure 19: siNA Phospholipid Conjugate

Figure 20: Peptide PEG Conjugate

Figure 21: 40-KDa PEG-Angiozyme vs Angiozyme

Figure 22: Phospholipid-Angiozyme vs Angiozyme

Figure 23: Oligonucleotide-NAcGalactosamine post-synthetic coupling

FOR EXAMPLE: OLIGO-LINKER =

Where n is an integer from 1 to 20

Figure 24a: Protein with cleavable linker

Figure 24b: Protein cleavable linker PEG Conjugate

Figure 25: Protein PEG conjugate with cleavable linker

Figure 26a: PEG with cleavable linker

Figure 26b: Protein PEG conjugate with cleavable linker

Figure 27: Peptide or Protein/Phospholipid Conjugates

PEG=polyethylene glycol
 W=cleavable linker (e.g. A-dT, C-dT)
 P=Peptide/Protein

Figure 28: Conjugation of targeting ligands to a peptide or protein

N-acetyl-D-galactosamine conjugate

W = cleavable linker (eg. A-dT, C-dT dimer)

Figure 29: Protein/PEG conjugate with cleavable linker

Figure 30: siNA Cholesterol Conjugate

Figure 31: siNA 3'-PEG Conjugate

CL = CLEAVABLE LINKER, E.G. ADENOSINE-THYMIDINE DIMER
THAT IS OPTIONALLY PRESENT

Figure 32: siNA 3'-Cholesterol Conjugate

Figure 33: Nucleic Acid Cholesterol Conjugates

PEG=polyethylene glycol

CL=cleavable linker (e.g. A-dT, C-dT)

NA=Nucleic Acid Molecule such as siNA, antisense, or enzymatic nucleic acid

CHOL=cholesterol or an analog or metabolite thereof

W=linker molecule (see for example Formulae 109 or 112)

Figure 34: siNA Cholesterol Conjugates

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present
 CHOL=cholesterol or an analog or metabolite thereof
 WW=linker molecule (see for example Formulae 107, 108, 109 or 115
 n = integer, e.g. 1, 2, or 3

Figure 35: siNA Cholesterol Conjugates

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present
CHOL=cholesterol or an analog or metabolite thereof
W=linker molecule (see for example Formulae 107, 108, 109 or 115)
n = integer, e.g. 1, 2, or 3

Figure 36: siNA Cholesterol Conjugates

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present
CHOL=cholesterol or an analog or metabolite thereof
W=linker molecule (see for example Formulae 107, 108, 109 or 112)
n = integer, e.g. 1, 2, 3, or 3
N=integer, e.g. 1, 2, 3, or 4

Figure 37: siNA Lipid Conjugates

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present
Lipid=Straight chain or branched alkyl or fatty acid, e.g. C₁₈H₃₇
W=linker molecule (see for example Formulae 48, 49, 64, or 65)
n=integer, e.g. 1, 2, or 3

Figure 38: siNA Lipid Conjugates

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present
Lipid=Straight chain or branched alkyl or fatty acid, e.g. C₁₈H₃₇
W=linker molecule (see for example Formulae 48, 49, 64, or 65)

n = integer, e.g. 1, 2, 3, or 4
N=integer, e.g. 1, 2, 3, or 4

Figure 39: siNA Galactosamine Conjugates

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present

GAL=GALACTOSAMINE; e.g. compounds having Formulae 51-56, 86, 92, 99, 100, 103, 105, 106

W= linker molecule (see for example Formulae 102 or 103)

n = integer, e.g. 1, 2, or 3

Figure 40: siNA Galactosamine Conjugates

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present
GAL=GALACTOSAMINE; e.g. compounds having Formulae 51-56, 86, 92, 99, 100, 103, 105, 106
W=linker molecule (see for example Formulae 102 or 103)

n = integer, e.g. 1, 2, or 3
N=integer, e.g. 1, 2, 3, or 4

Figure 41: Generalized siNA Conjugate Design

CONJ=any biologically active molecule or conjugate as described herein
CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present
W=linker molecule
n=integer, e.g. 1, 2, or 3

Figure 42: Generalized siNA Conjugate design

CONJ=any biologically active molecule or conjugate as described herein

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present

W=linker molecule

n = integer, e.g. 1, 2, or 3

N=integer, e.g. 1, 2, 3, or 4

Figure 43: Distribution of Intact siNA in Liver After SC Administration of Conjugated or Unconjugated Chemistries

Figure 44: Lipid Free Delivery of HBV siNA Conjugates in Cell Culture

Figure 45: Scale-up of "mono" Galactosamine phosphoramidite

Figure 46: Synthesis of "tri" Galactosamine phosphoramidite

Figure 47: Synthesis of another Tri-Galactosamine Conjugate

Figure 48: Alternate Synthesis of Tri-Galactosamine Conjugate

Figure 49: Synthesis of NHS Cholesterol Conjugate

