## 1447. Сфера Дайсона (ІАО-2016)

## Выполнил: Иванов Александр

Существует фантастическая гипотеза, что Бетельгейзе — это не красный сверхгигант, а искусственная конструкция, сфера Дайсона, сооруженная вокруг своей звезды сверхвысокотемпературной цивилизацией. Естественнно, радиус построенной сферы стал таким, каким ранее был радиус орбиты их прежней планеты. Оцените орбитальный период их прежней планеты.

## Решение:

Что мы знаем про Бетельгейзе? Это красный сверхгигант (из условий), спектральный класс — M2I (I — класс светимости сверхгигантов).

Из этих данных можно узнать, что температура Бетельгейзе  $T_B \approx 3600~{\rm K}$  (в решении будет обозначение B в переменных). Эти данные можно получить из диаграммы Герцшпрунга-Рассела:



По условию задачи следует, что радиус Бетельгейзе равен радиусу их прежней планеты. Для начала, найдем абсолютную звездную величину  $M_B$  у Бетельгейзе:

$$M_B - m_B = 5 - 5\lg r_B$$

Из справочных данных из IAO (см. отдельный файл) найдем расстояние до звезды через параллакс p=0.005'':

$$r_B = rac{1}{p''} = rac{1}{0.005''}$$
 пк = 200 пк

Так же воспользуемся видимой звездной величиной  $m_B = 0.5^m$ :

$$M_B = m_B + 5 - 5 \lg r_B = 0.5^m + 5 - 5 \lg 200 \approx -6.0^m$$

Найдем светимость Бетельгейзе  $L_B$ , сравняв ее с Солнцем по формуле Погсона:

$$\frac{L_B}{L_\odot} = 10^{-0.4(M_B - M_\odot)} \; ,$$

Из справочных данных есть только солнечная постоянная, равная  $A=1367~{\rm Bt/m}^2$  и видимая звездная величина  $m_\odot=-26.74^m$ . Найдем  $L_\odot$  и  $M_\odot$ :

$$L_{\odot} = 4\pi a_{\oplus}^2 \cdot A \approx 3.87 \cdot 10^{26} \text{ Bt}$$
 
$$M_{\odot} = m_{\odot} + 5 - 5 \lg a_{\oplus} = -26.74^m + 5 - 5 \lg (1/206265) \approx 4.83^m$$

Зная уже  $L_{\odot}$  и  $M_{\odot}$ , ищем  $L_{B}$ :

$$L_B = L_{\odot} \cdot 10^{-0.4(M_B - M_{\odot})} = 3.87 \cdot 10^{26} \cdot 10^{-0.4(-6.0^m - 4.83^m)} \approx 8.31 \cdot 10^{30} \text{ Bt.}$$

Найдем радиус Бетельгейзе  $R_B$  по формуле Стефана-Больцмана:

$$L_B = 4\pi R_B^2 \sigma T_B^4$$
 
$$R_B = \sqrt{\frac{L_B}{4\pi\sigma T_B^4}} = \sqrt{\frac{8.31\cdot 10^{30}}{4\cdot\pi\cdot 5.67\cdot 10^{-8}\cdot 3600^4}} \approx 2.64\cdot 10^{11} \text{ м}$$
 
$$R_B \approx 1.76 \text{ a.e.}$$

Опять обращаемся к справочным данным — масса звезды:  $\mathfrak{M}_B=11.6~\mathfrak{M}_\odot$ . По третьему закону Кеплера найдем орбитальный период T прежней планеты, сравнивая с Солнцем и Землей:

$$\left(\frac{T}{T_{\oplus}}\right)^{2} \cdot \frac{\mathfrak{M}_{B}}{\mathfrak{M}_{\odot}} = \left(\frac{R_{B}}{a_{\oplus}}\right)^{3}$$

$$T = T_{\oplus} \sqrt{\frac{\mathfrak{M}_{\odot}}{\mathfrak{M}_{B}} \cdot \left(\frac{R_{B}}{a_{\oplus}}\right)^{3}} = 1 \cdot \sqrt{\frac{\mathfrak{M}_{\odot}}{11.6 \ \mathfrak{M}_{\odot}} \cdot \left(\frac{1.76}{1}\right)^{3}} \text{ year } \approx 0.686 \text{ year}$$

Ответ: T=0.686 year