Noircissez sur la feuille-réponse toutes les bonnes réponses à chacune des questions; un cochage erroné induit bien sûr des points négatifs! L'usage de la règle à calcul logarithmique est permis mais peu indiqué.

1. Dans \mathbb{R}^2 , quelle est la matrice de changement de base de $\mathcal{B} = (\mathbf{u}, \mathbf{v})$ vers $\mathcal{B}' = (\mathbf{u}', \mathbf{v}')$, où

$$\mathbf{u} = (3, -1), \quad \mathbf{v} = (1, 2), \quad \text{et} \quad \mathbf{u}' = (-1, 1), \quad \mathbf{v}' = (3, -4) ?$$

$$(1) \blacksquare \quad \frac{1}{7} \begin{bmatrix} -3 & 10 \\ 2 & -9 \end{bmatrix} \qquad (2) \square \quad \begin{bmatrix} -2 & 5 \\ 3 & -11 \end{bmatrix} \qquad (3) \square \quad \begin{bmatrix} -6 & 7 \\ 5 & -7 \end{bmatrix}$$

$$(4) \square \quad \begin{bmatrix} -2 & 3 \\ 5 & -11 \end{bmatrix} \qquad (5) \square \quad \begin{bmatrix} -13 & 2 \\ -10 & 1 \end{bmatrix}$$

- 2. Soit $V = \mathbf{F}[x]_{\leqslant 3}$ l'espace des polynômes de degré $\leqslant 3$ à coefficients dans un corps \mathbf{F} et $\varphi : V \to V$ l'endomorphisme linéaire défini par $\varphi(P) = P'$. Quelles sont les affirmations vraies?
 - (1) \square φ est inversible
 - (2) \blacksquare 0 est valeur propre de φ
 - (3) \square 1 + x est vecteur propre de φ
 - (4) \square φ est diagonalisable
 - $(5) \blacksquare \qquad \chi_{\varphi}(\lambda) = \lambda^4$
- 3. L'application $\varphi: \mathbf{C} \to \mathbf{C}$ définie par $\varphi(z) = (1+j) \cdot z \dots$
 - (1) \square est diagonalisable en tant qu'application **R**-linéaire
 - (2) est diagonalisable en tant qu'application C-linéaire
 - (3) \square possède 0 comme valeur propre
 - (4) est inversible en tant qu'application R-linéaire
 - (5) est inversible en tant qu'application C-linéaire
- 4. L'endomorphisme φ de \mathbb{Q}^3 défini par

$$\varphi(x, y, z) = (y - z, x + 6y - 5z, x + 7y - 6z)$$

admet comme représentation matricielle par rapport à une certaine base :

- 5. Un produit scalaire sur un espace vectoriel réel est une
 - (1) forme (2) bilinéaire (3) symétrique (4) définie (5) positive
- 6. Lesquelles parmi les fonctions $\langle \cdot | \cdot \rangle : V \times V \to \mathbf{R}$ suivantes sont des produits scalaires?
 - (1) \blacksquare $V = \mathbf{R}, \langle x | y \rangle = xy$
 - (2) \square $V = \mathbb{R}^2$, $\langle (x,y) | (z,w) \rangle = xz yw$
 - (3) \Box $V = \mathbf{R}^2, \ \langle (x,y) | (z,w) \rangle = xz + yw + 1$
 - (4) \blacksquare $V = \mathbf{C}, \langle z | w \rangle = \operatorname{Re}(z\overline{w})$
 - (5) \square $V = \mathbb{R}^2, \langle (x,y) | (z,w) \rangle = xz + \frac{1}{2}yz + yw$

7. Combien mesure l'angle entre les vecteurs $u=(1,0,-1,0)$ et $v=(-1,1,1,1)$ dans $(\mathbf{R}^4,\boldsymbol{\cdot})$?					
	$(1)\Box \pi/6$	$(2)\Box \pi/4$	$(3)\Box \pi/3$	$(4)\Box 2\pi/3$	(5) \blacksquare $3\pi/4$
8. Quelle est la matrice représentant le produit scalaire usuel de ${f R}^3$ par rapport à la base $u_1=(1,0,-1), u_2=(0,1,1), u_3=(2,0,0)$?					

$$(1)\square \quad \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ -1 & 1 & 0 \end{bmatrix} \qquad (2)\blacksquare \quad \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & 0 \\ 2 & 0 & 4 \end{bmatrix} \qquad (3)\square \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$(4)\square \quad \begin{bmatrix} 2 & 1 & 0 \\ 2 & 2 & 1 \\ 1 & 2 & 4 \end{bmatrix} \qquad (5)\square \quad \begin{bmatrix} 0 & 1 & 2 \\ 1 & -1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

- 9. Avec la notation de la question précédente, quel est le projeté orthogonal de v = (1, 2, 3) sur $W = \text{Vect}(u_1, u_2)$?
 - $(1) \square \quad (1,\,1,\,0) \qquad (2) \square \quad (-1,\,\tfrac{5}{2},\,\tfrac{7}{2}) \qquad (3) \square \quad (-2,\,5,\,7) \qquad (4) \square \quad (1,\,-1,\,1) \qquad (5) \blacksquare \quad (\tfrac{1}{3},\,\tfrac{8}{3},\,\tfrac{7}{3})$

Les prochaines questions portent sur l'espace vectoriel V des fonctions continues sur l'intervalle $[0,2\pi]$ muni du produit scalaire $\int_{-2\pi}^{2\pi} dx \, dx \, dx = \int_{-2\pi}^{2\pi} dx \, dx \, dx$

$$\langle f | g \rangle = \int_0^{2\pi} f(x) g(x) dx.$$

- 10. Quelle est la norme de la fonction constante $f(x) = \frac{1}{2}$?
 - $(1)\square \quad \pi/2 \qquad (2)\blacksquare \quad \sqrt{2\pi}/2 \qquad (3)\square \quad \pi \qquad (4)\square \quad \sqrt{\pi} \qquad (5)\square \quad 2\pi$
- 11. La norme de la fonction $g(x) = \sin x$?

$$(1)\square \quad \pi/2 \qquad (2)\square \quad \sqrt{2\pi}/2 \qquad (3)\square \quad \pi \qquad (4) \blacksquare \quad \sqrt{\pi} \qquad (5)\square \quad 2\pi$$

12. Quel est la mesure de l'angle θ entre f et g?

$$(1)\Box \ 0 \ (2)\Box \ \pi/6 \ (3)\Box \ \pi/4 \ (4)\Box \ \pi/3 \ (5)\blacksquare \ \pi/2$$

13. Quelle est la fonction appartenant à Vect(f,g) la plus proche de $h(x) = \cos x$?

(1)
$$\Box$$
 1 + 2 sin x (2) \Box 1 - sin x (3) \Box $\frac{1}{\sqrt{\pi}} + \frac{2}{\sqrt{\pi}} \sin x$ (4) \Box sin x (5) \blacksquare 0

- 14. La famille $(1, \sin x, \cos x)$ est :
 - (1) \square une base de V
 - (2) orthogonale
 - (3) \square orthonormée
 - $(4) \blacksquare libre$
 - (5) \square liée car $\sin^2 x + \cos^2 x = 1$