IONIC EQUILIBRIUM

An ionic Equilibrium exists between the unionised electroyte molecules and the ions that result from ionisation

$$A + B \Longrightarrow A^+ + B^-$$

Strong electrolyte

$$A^{+}B^{-} \longrightarrow A^{+} + B^{-}$$

$$a \qquad 0 \quad 0$$

$$0 \qquad a \quad a$$

- 100% disssociation ($\alpha = 1$)
- no equilibrium

☆

it is irreversible

Weak electrolyte

 α < 1

equilibrium

it is reversible process.

Self ionization of water

Concentration of
$$H_2O([H_2O]) = \frac{1000/18}{1} = 55.5 \text{ M}$$

Water is very weak electrolyte

$$H_2O \Longrightarrow H^+ + OH^-$$

55.5
55.5 - 10^{-7} 10^{-7} 10^{-7} (at 25°C)

 $k_{--} = \frac{[H^+][OH^-]}{}$

Constant

$$K_w = k_{eq} [H_2O] = [H^+] [OH^-]$$

$$K_{w} = [H^{+}] [OH^{-}], \text{ at } 25^{\circ}\text{C}, \qquad [H^{+}] = [OH^{-}] = 10^{-7}$$
 $K_{w} (25^{\circ}\text{C}) = 10^{-14}$

Self ionization constant of water

let, K_{w_1} at temperature $T_{_1}$, K_{w_2} at temperature $T_{_2}$

$$\log \frac{K_{w_2}}{K_{w_1}} = \frac{\Delta H}{2.303 \, R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right], \quad T \uparrow \Rightarrow K_w \uparrow$$

Page # 4 IONIC EQUILIBRIUM

For calculation of α

$$\alpha = \frac{\sqrt{k_w}}{2}$$

(F)

$$c = 55.56 M$$

$$\alpha = 1.8 \times 10^{-2} \sqrt{\text{K}_{\text{w}}}$$

$$pH = -\log [H^+]$$

$$pOH = -\log [OH^-]$$

$$pK_w = -\log K_w$$
at any temperature :
$$[H^+] = [OH^-]$$

$$[H^+] [OH^-] = K_w$$

at 25°C

$$\neg \log [H^+] - \log [OH^-] = - \log [K_w]$$

$$\mathfrak{F}$$
 pH + pOH = p K_w

at
$$25^{\circ}$$
C at 80° C $K_{w} = 10^{-14}$ $K_{w} = 10^{-12}$ $pH + pOH = 14$ $pH + pOH = 12$ 25° C $pH + pOH = 14$ $pH + pOH = 12$

Some concept regarding pH calculation

Concept 1:

$$\begin{array}{c|c}
5 L \\
pH = 3
\end{array}$$

$$\Rightarrow N \downarrow PH = ? g potent$$

Concept 3:

$$\begin{bmatrix} 2L \\ pH = 3 \end{bmatrix} + \begin{bmatrix} 8L \\ H_2O \end{bmatrix} = \begin{bmatrix} 10L \\ pH = ? \end{bmatrix} + \begin{bmatrix} 2L \\ pH = 13 \end{bmatrix} + \begin{bmatrix} 8L \\ water \end{bmatrix} = \begin{bmatrix} 10L \\ pH = ? \end{bmatrix}$$

IONIC EQUILIBRIUM Page # 5

Concept 5:

$$\begin{bmatrix}
pH = 3 \\
2
\end{bmatrix} + \begin{bmatrix}
pH = 4
\end{bmatrix} = \begin{bmatrix}
pH = ?
\end{bmatrix}$$

Note: The final pH of solution after mixing two solution is in between the previous solution pH.

Concept 6:

$$\begin{bmatrix} V \\ pH=3 \end{bmatrix} + \begin{bmatrix} V \\ pH=11 \end{bmatrix} \Rightarrow \begin{bmatrix} 2V \\ pH=? \end{bmatrix}$$

10⁻⁸ M HCl pH= ?

Concept 7:

Mote:

When [H⁺] >
$$10^{-5}$$
 ⇒ [H⁺]_{water} neglected
When [H⁺] < 10^{-5} ⇒ [H⁺]_{water} considered
H₂O → H⁺ + OH⁻
55.56 10⁻⁸
55.56 - x 10⁻⁸ + x x

$$x (10^{-8} + x) = 10^{-14}$$
 \Rightarrow $x = .94 \times 10^{-7}$

$$[H^+] = 10^{-8} + .94 \times 10^{-7}$$
 = 1.04 × 10⁻⁷

$$PH = 7 - \log(1.04)$$

Concept 8:

★ <u>Dissociation of weak acid</u>:

 $\alpha = \sqrt{\frac{K_a}{c}}$

$$[H^+] = c\alpha = \sqrt{c \, K_a} \,, \quad pH = -\log \sqrt{c \, K_a} \,, \quad \text{for bases} \quad [H^+] = \frac{K_w}{\sqrt{c \, \times K_b}}$$

Mote:

*

(8)

*

Page # 6 IONIC EQUILIBRIUM

So HA₂ is stronger acid than HA₁

(b) HA_1 C_1 K_a

 ${\sf HA}_2$ ${\sf C}_2$ ${\sf K}_{\sf a_2}$ $\frac{[{\sf H}^+]_1}{[{\sf H}^+]_2} = \frac{\sqrt{{\sf c}_1\,{\sf ka}_1}}{\sqrt{{\sf c}_2\,{\sf Ka}_2}}$

The acidic strength of two weak acid can be compared by K_a value only in the case when their concentration are same. Otherwise the procedure of case (b) should be followed.

pH of mixture of two acids

Case (I) (Strong acid + weak acid)

Question: $HCI(0.1 M) + CH_3COOH(0.2 M)$

$$\begin{array}{c} \downarrow \\ K_a = 10^{-5} \\ \text{CH}_3\text{COOH} & \rightleftharpoons \text{CH}_3\text{COO}^- + \text{H}^+ \\ t = 0 & 0.2 & 0 & 0.1 \\ t = t_{eq} & 0.2 - x & x & 0.1 + x & \text{(x is very small)} \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 0.2 & x & 0.1 \\ \end{array}$$

$$\Rightarrow \qquad \mathsf{pH} = -\log \, (0.1) = 1 \qquad \qquad \Rightarrow \qquad [\mathsf{CH_3COO^-}] = ? \qquad \qquad \Rightarrow \qquad 10^{-5} = \frac{\mathsf{x} \times 0.1}{0.2} \\ \Rightarrow [\mathsf{CH_3COO^-}] = 2 \times 10^{-5}$$

 \star Case (II-A) (weak acid + weak acid) (k_{as} are incomparable)

Question: HA₁ (0.1 M, $K_{a_1} = 10^{-5}$) $HA_2 (0.2 M, \overline{K_{a_2}} = 10^{-9}) g potential through education$

x and y are also very less

$$10^{-5} = \frac{x \cdot x}{10^{-1}}$$
 $[H^+] = x = 10^{-3}, \Rightarrow pH = 3$ $[A_1^-] = [A_2^-] =$

 \star Case (II-B) (weak acid + weak acid) (k_{as} are comparable)

Downloaded from jeemain.guru

IONIC EQUILIBRIUM

Page # 7

$$K_{a_1} = 10^{-5}$$

$$HA_{2}(0.2)$$

$$K_{a_2} = 10^{-6}$$

$$\Rightarrow$$
 now $K_{a_1} = \frac{x(x+y)}{0.1}$

$$\Rightarrow \qquad \mathsf{K}_{\mathsf{a}_1} = \frac{\mathsf{x} (\mathsf{x} + \mathsf{y})}{\mathsf{c}_1}$$

$$K_{a_2} = \frac{(x+y)y}{c_2}$$

$$\Rightarrow$$

$$\Rightarrow$$
 [H⁺] = x + y = $\sqrt{c_1 K_{a_1} + c_2 K_{a_2}}$

weak polyprotic acids or bases (H₂S, H₃PO₄, NH₂ - NH₂, H₂CO₃)

(a)
$$H_2S \rightleftharpoons H^+ + HS^ K_{a_1}$$

$$K_{a}$$

(b)
$$NH_2 - NH_2 + H^+ \rightleftharpoons NH_2 - NH_3^+ K_{b_1}$$

$$\mathrm{NH_2}$$
 - $\mathrm{NH_3}^+$ + H^+ \Longrightarrow $\overset{\scriptscriptstyle +}{\mathrm{NH_3}}$ - $\overset{\scriptscriptstyle +}{\mathrm{NH_3}}$ $\overset{\scriptscriptstyle +}{\mathrm{K}_{\mathrm{b}_2}}$

Cases

Case I

Case II

Case III

Dibasic weak acids

Dibasic W. A. + S. A.

Tribasic W. A.

Case I: H₂S (0.1 M $K_{a_1} = 10^{-4}$, $K_{a_2} = 10^{-9}$)

$$K_{a_1} > > K_{a_2}$$

Nurturing potential through education
$$10^{-4} = \frac{x^2}{0.1} \Rightarrow x = \sqrt{10^{-5}} \qquad \frac{x \times y}{x} = 10^{-9}$$

$$[H^+] = x =$$

 \Rightarrow

$$[HS^{-}] = x =$$

$$[S^{2-}] = y =$$

$$\bigstar$$
 Case II: HCI \Longrightarrow H⁺ + CI⁻ 0.2 0 0 0 0.2 0.2

Page # 8 IONIC EQUILIBRIUM

Mote: Strong acid controls the pH.

Now,
$$[H^+] = 0.2$$

$$\star$$
 Case III: H_3PO_4 (0.1 M) $K_{a_1} = 10^{-5}$, $K_{a_2} = 10^{-8}$, $K_{a_3} = 10^{-11}$

★ Buffer

Any solution which resist the change in pH is called Buffer solution.

★ Requirement of Buffer

(1) Must have acidic and basic components so that it can consume H⁺, OH⁻ added to the buffer.

(2) Acidic and basic components should not react with each other.

do not react with each other.

(3) Buffers can be prepared by following two ways

Acidic buffer

of CH₂COOH is supressed.

$$\begin{array}{c|cccc} & \underline{\textbf{Basic buffer}} \\ & \text{NH}_{4}\text{OH} / \text{NH}_{4}\text{CI} \\ & \text{K}_{b} & \text{C}_{1} & \text{C}_{2} \\ & \text{NH}_{4}\text{OH} & \Longrightarrow & \text{NH}_{4}^{+} & + & \text{OH}^{-} \\ & \text{C}_{1} & \text{C}_{2} & \text{0} \\ & \text{C}_{1} - \text{X} & \text{C}_{2} + \text{X} & \text{X} \\ & \downarrow & \downarrow & \downarrow \\ & \text{C}_{1} & \text{C}_{2} & \text{X} \end{array}$$

$$K_b = \frac{C_2 \cdot X}{C_1}$$

So x is very small

$$K_a = \frac{c_2 x}{c_1}$$

$$\Rightarrow x = \frac{K_a c_1}{c_2}$$

$$\Rightarrow x = \frac{K_a c_1}{c_2} \qquad pH = pK_a + log \frac{c_2}{c_1}$$

$$x = K_b \frac{c_1}{c_2}$$

$$pOH = pK_b + log \frac{[salt]}{[base]}$$

$$pH = pK_a + log \frac{[salt]}{[acid]}$$

 \star

Buffer action

Acidic

$$CH_{3}COOH / CH_{3}COONa$$

$$C_{1} \qquad C_{2}$$

$$PH = pK_{a} + log \frac{C_{2}}{C_{1}}$$

(8) NaOH is added (x M) (a)

$$CH_{3}COOH + OH^{-} \Longrightarrow CH_{3}COO^{-} + H_{2}O$$

$$\begin{array}{ccc} c_{1} & x & c_{2} \\ c_{1} - x & 0 & c_{2} + x \end{array}$$

$$pH = pK_{a} + log \frac{c_{2} + x}{c_{1} - x}$$

(3)

HCl is added (x M) CH₃COOH ⇌ CH₃COO- + HCI $pH = pK_a + log \frac{c_2 - x}{c_1 + x}$

Basic

$$\begin{array}{ccc} NH_{4}\overline{OH\ /\ NH_{4}CI} \\ c_{_{1}} & c_{_{2}} \end{array}$$

$$pOH = pK_b + log \frac{[c_2]}{[c_1]}$$

(a) HCl is added (x M)

$$NH_4OH + H^+ \Longrightarrow NH_4^+ + H_2O$$

$$C_1 \qquad \qquad X \qquad C_2$$

$$C_1 - X \qquad 0 \qquad C_2 + X$$

$$POH = PK + log \frac{C_2 + X}{C_2}$$

$$pOH = pK_b + log \frac{c_2 + x}{c_1 - x}$$

(b) NaOH is added (x M)

$$\begin{array}{ccc} NH_4OH & \Longrightarrow NH_4^+ & + OH^- \\ c_1 & c_2 & x \\ c_1 + x & c_2 - x & 0 \end{array}$$

$$pOH = pK_b + log \frac{c_2 - x}{c_1 + x}$$

 \Rightarrow

P

How to prepare buffer

Acidic buffer

(a) CH₃COOH / CH₃COONa

pH=pK_a + log c₂ curturing potential

Basic buffer

NH₄OH / NH₄Cl C, CBSC SATINTSE

 $pOH = pK_b + log \frac{c_2}{c_4}$

(8)

(b) CH₃COOH + NaOH ← CH₃COONa + H₂O

 $pH = pK_a + log \frac{x}{a - x}$

(c) $CH_3COONa + HCI \rightleftharpoons CH_3COOH + NaCI$

 $pH = pK_a + log \frac{a - x}{x}$

(b) $NH_4OH + HCI \rightleftharpoons NH_4CI + H_2O$

 $pOH = pK_b + log \frac{x}{a - x}$

(b) NH₄Cl + NaOH ← NH₄OH + NaCl

 $pOH = pK_b + log \frac{a - x}{x}$

Page # 10 IONIC EQUILIBRIUM

*

Parameters of buffer

Buffer range

The range of pH a buffer can work nicely is called buffer range

$$pH = pK_a + log \frac{salt}{acid}$$

after buffer action

$$pH = pK_a + log \frac{c_2 - x}{c_4 + x}$$

min. ratio
$$\left(\frac{[\text{salt}]}{[\text{acid }]}\right) = 0.1$$

$$pH = pK_a - 1$$

Requirement of good buffer

(1) pH = pKa resist both OH⁻ and H⁺ in equal amount

(2)
$$pH = pK_a + log \frac{c_2}{c_1}$$

max. ratio
$$\left(\frac{[\text{salt}]}{[\text{acid}]}\right) = 10$$

$$\Rightarrow$$
 pH = pK_a + 1

both will be approximately same when

 c_1 and c_2 are very large c_1 , $c_2 > > x$

$$\Rightarrow$$
 pH = pK_a + log $\frac{c_2}{c_4}$

 \Rightarrow

Buffer capacity

BufferCapacity =
$$\frac{\text{number of mol of H}^+ \text{ added/L of solution}}{\text{Change in pH of buffer}}$$

*

Buffer of polyprotic acid

$$pH = pK_{a_1} + log \frac{c_2}{c_1}$$

$$pH = pK_{a_2} + log \frac{y}{c_2}$$

 \Rightarrow

Salt Hydrolysis

Acid + Base
$$\longrightarrow$$
 Salt + H_2O neutralization

Salt $+ H_2O \longrightarrow Acid + Base \longrightarrow reverse$ of neutralization \Rightarrow Salt hydrolysis since salt hydrolysis is an endothermic reaction hence on increasing the temperature, the extent of hydrolysis increases.

 \Rightarrow

Types of salt

Grase : (I) Hydrolysis of WA + SB :

Note: (1) Only weaker part of salt undergoes hydrolysis (2) T

Note: (1) Only weaker part of salt undergoes hydrolysis. **(2)** This solution becomes basic.

→ spectator ion

 $\operatorname{Case}: (II) \quad S.A. + W.B. (NH₄CI):$

 $NH_4^+ + H_2O \implies NH_4OH + H^+$, This solution becomes acidic

© Case: (III) W.A. + W.B.
$$\rightleftharpoons$$
 (CH₃COONH₄):

Can be acidic, basic or neutral

$$\Rightarrow$$
 $K_a > K_b \Rightarrow acidic$

$$K_a = K_b \Rightarrow neutral$$
 $K_a < K_b \Rightarrow basic$

⑤ Case : (IV) S. A + S. B (NaCl) :

⇒ No hydrolysis

⇒ Solution will be neutral

 \star Relationship between K_a , K_b , and K_h

[©] Case (I): W. A. + S.B. (CH₃COONa)

$$CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$$

$$\Rightarrow \qquad \mathsf{K}_{eq} = \frac{[\mathsf{CH}_3\mathsf{COOH}] \ [\mathsf{OH}^-]}{[\mathsf{H}_2\mathsf{O}] [\mathsf{CH}_3\mathsf{COO}^-]} \\ \Rightarrow \qquad \mathsf{K}_{h} = \mathsf{K}_{eq} \ [\mathsf{H}_2\mathsf{O}] = \frac{[\mathsf{CH}_3\mathsf{COOH}] [\mathsf{OH}^-] \times [\mathsf{H}^+]}{[\mathsf{CH}_3\mathsf{COO}^-] \times [\mathsf{H}^+]} \\ | \mathsf{A} = \mathsf{K}_{h} = \mathsf$$

S. A. + W. B. (NH₄OH)

$$NH_4^+ + H_2O \rightleftharpoons NH_4OH + H^+$$
ential through education

$$\Rightarrow \qquad K_h \ = \frac{[NH_4OH][H^+]}{[NH_4^+]} \qquad \qquad \Rightarrow \ K_h \ = \frac{[NH_4OH][H^+] \times [OH^-]}{[NH_4^+] \times [OH^-]} \qquad \qquad \Rightarrow \ K_h \ = \ \frac{\textbf{K}_{\textbf{w}}}{\textbf{K}_{\textbf{b}}}$$

Case (III) W. A. + W. B.
$$(CH_3COO NH_4)$$

 $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$
 $NH_4^+ + H_2O \rightleftharpoons NH_4OH + H^+$

$$CH_3COO^- + NH_4^+ + 2H_3O \Longrightarrow NH_4OH + CH_3COOH + JH^+ + OJH^-$$

$$\Rightarrow \qquad \mathsf{K}_{h} \ = \frac{[\mathsf{NH}_{4}\mathsf{OH}][\mathsf{CH}_{3}\mathsf{COO}^{-}]}{[\mathsf{CH}_{3}\mathsf{COO}^{-}][\mathsf{NH}_{4}^{+}]} \qquad \Rightarrow \quad \mathsf{K}_{h} \ = \frac{[\mathsf{NH}_{4}\mathsf{OH}]}{[\mathsf{NH}_{4}^{+}][\mathsf{OH}^{-}]} \frac{[\mathsf{CH}_{3}\mathsf{COO}^{+}][\mathsf{H}^{+}]}{[\mathsf{CH}_{3}\mathsf{COO}^{-}][\mathsf{H}^{+}]} \qquad \Rightarrow \quad \mathsf{K}_{h} \ = \frac{\mathsf{K}_{w}}{\mathsf{K}_{a} \cdot \mathsf{K}_{b}}$$

MOTION CASE (ALBERT AND AUTOMATICAL CONTROL AUTOMATICAL CONTROL AND AUTOMATICAL CONTROL AND AUTOMATICAL CONTROL AUTOMATICAL CONTROL AND AUTOMATICAL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CO

Page # 12 **IONIC EQUILIBRIUM**

*

pH calculation

© Case (I): W. A. + S. B. (CH₃COONa \Rightarrow c, K₂) , h \rightarrow degree of hydrolysis.

$$\begin{array}{ccc} \mathrm{CH_{3}COO^{-} + H_{2}O} & \Longrightarrow & \mathrm{CH_{3}COOH + OH^{-}} \\ \mathrm{C} & & 0 & 0} \\ \mathrm{C} & (1 - \mathrm{h}) & & \mathrm{ch} & \mathrm{ch} \end{array}$$

$$\Rightarrow \qquad \mathsf{K}_{\mathsf{h}} \ = \frac{(\mathsf{ch})^2}{\mathsf{c} \ (1-\mathsf{h})} = \frac{\mathsf{ch}^{\,2}}{1-\mathsf{h}} \qquad \mathsf{h} < < 1 \qquad \Rightarrow \qquad \mathsf{K}_{\mathsf{h}} = \mathsf{ch}^2 \qquad \Rightarrow \qquad \mathsf{h} = \sqrt{\frac{\mathsf{K}_{\mathsf{h}}}{\mathsf{c}}}$$

$$\Rightarrow [OH^-] = c \times h = \sqrt{c. \frac{K_w}{K_a}} \Rightarrow pOH = \frac{1}{2} [pK_w - pK_a - \log c] \Rightarrow pH = \frac{1}{2} [pK_w + pK_a + \log c]$$

Case (II): S. A. + W. B.
$$(NH_4Cl \Rightarrow c, K_h)$$

$$\begin{array}{ccc} \mathrm{NH_4}^+ + \mathrm{H_2O} & \Longrightarrow & \mathrm{NH_4OH} + \mathrm{H^+} \\ \mathrm{c} & & \mathrm{0} & \mathrm{0} \\ \mathrm{c} & (\mathrm{1-h}) & \mathrm{ch} & \mathrm{ch} \end{array}$$

$$\Rightarrow \qquad K_h = \frac{ch^2}{1-h} \qquad \qquad h < < 1 \qquad \qquad \Rightarrow K_h = ch^2 \qquad \qquad \Rightarrow \qquad \textbf{h} = \sqrt{\frac{\textbf{K}_h}{\textbf{c}}}$$

$$\Rightarrow \qquad [\mathbf{H}^{+}] = \mathbf{c.h} = \sqrt{\mathbf{c} \times \mathbf{K_{h}}} = \sqrt{\mathbf{c} \times \frac{\mathbf{K_{w}}}{\mathbf{K_{b}}}} \qquad \Rightarrow \quad \mathbf{pH} = \frac{1}{2} \left[\mathbf{pK_{w}} - \mathbf{pK_{b}} - \log \mathbf{c} \right] \qquad \Rightarrow \quad \mathbf{p}^{OH} = \frac{1}{2} \left[\mathbf{p^{K_{w}}} + \mathbf{p^{K_{b}}} + \log \mathbf{c} \right]$$

© Case (III) W. A. + W. B.
$$(CH_3COONH_4 \rightarrow K_a, K_b, c)$$

$$CH_3 COO^- + NH_4^+ + H_2O \Longrightarrow NH_4OH + CH_3COOH_4OH$$

$$\begin{array}{cccc} \mathrm{CH_3\,COO^-} + \mathrm{NH_4^+} + \mathrm{H_2O} & \Longrightarrow & \mathrm{NH_4OH} + \mathrm{CH_3COOH} \\ \mathrm{C} & \mathrm{C} \\ \mathrm{C} & \mathrm{C} & \mathrm{1-h}) & \mathrm{ch} & \mathrm{ch} \end{array}$$

$$\Rightarrow \qquad \qquad K_h \ = \frac{c^2h^2}{c^2\ (1-h)^2} = \frac{h^2}{(1-h)^2} \qquad \Rightarrow \ K_h = h^2 \qquad 1-h \approx 1 \qquad \qquad \Rightarrow \ h = \sqrt{K_h}$$

$$\Rightarrow \qquad h = \sqrt{\frac{K_w}{K_a K_b}} \qquad \qquad ---- \qquad (1)$$

$$\Rightarrow \qquad \text{CH}_3\text{COOH} \iff \text{CH}_3\text{COO}^- + \text{H}^+ \qquad \Rightarrow \qquad \text{K}_a = \frac{[\text{H}^+] \ [\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]} \qquad \qquad \Rightarrow \qquad \text{[H^+] = K_a} \quad \frac{[\text{CH}_3\text{COOH}]}{[\text{CH}_3\text{COO}^-]}$$

$$\Rightarrow = K_a \times \frac{ch}{c (1-h)} \qquad (h < < 1) \qquad \Rightarrow [H^+] = K_a \cdot h \qquad \xrightarrow{\text{LIT}} [H^+] = K_a \cdot \sqrt{\frac{K_w}{K_a \cdot K_b}} \qquad (from 1)$$

$$\Rightarrow [H^{+}] = \sqrt{\frac{K_{w}}{K_{w}}} \frac{K_{a}}{K_{w}}$$

$$\Rightarrow pH = \frac{1}{2} [pK_{w} + pK_{a} - pK_{b}]$$

$$\Rightarrow$$
 If , $K_a > K_b \Rightarrow pK_a < pK_b \Rightarrow acidic, K_a = K_b \Rightarrow neutral, K_a < K_b \Rightarrow basic
Summary of hydrolysis$

1. **W.A.** + **S.B.**
$$K_h = \frac{K_w}{K_a}$$
 $pH = \frac{1}{2}[pK_w + pK_a + log c]$

2. **W.B.** + S. A.
$$K_h = \frac{K_w}{K_b}$$
 $pH = \frac{1}{2}[pK_w - pK_b - \log c]$

3. W.A. + W.B.
$$K_h = \frac{K_w}{K_a \cdot K_b}$$
 $pH = \frac{1}{2} [pK_w + pK_a - pK_b]$

IONIC EQUILIBRIUM Page # 13

Hydrolysis of salt of polyprotic acid / base (Na, CO₃) *

$$\Rightarrow CO_3^{2-} + H_2O \iff HCO_3^- + OH^- \quad K_{h_1} (CO_3^{--}) = \frac{K_w}{K_{a_2}}$$

$$a \quad x - y \quad x + y$$

$$K_{a_1}>>K_{a_2}\qquad \Rightarrow \qquad K_{h_1}>>K_{h_2}\qquad \Rightarrow \qquad \text{Mainly hydrolysis is governed by }CO_3^{2-}\,.$$

$$\Rightarrow \quad [OH^-] = \sqrt{c \times K_{h_1}} = \sqrt{c \times \frac{K_w}{K_{a_2}}} \; , \; \Rightarrow \quad [HCO_3^-] = [OH^-] = \sqrt{c \times \frac{K_w}{K_{a_1}}} \; , \quad \Rightarrow \quad \frac{K_w}{K_{a_1}} = \frac{x \times y}{x} \quad \Rightarrow \quad [H_2CO_3] = \frac{K_w}{K_{a_1}} = \frac{K_w}{K_{a_2}} = \frac{K_w}{$$

Solubility of sparingly soluble salt

*

 \star (8)

$$AgCl(s) \xrightarrow{Solubility} AgCl(aq.) \iff Ag^{+}(aq) + Cl^{-}(aq)$$

- In ionic equilibrium all the components of equilibrium should be in same phase.
- In case of solubility equilibrium of sparingly soluble salt equilibrium is a heterogeneous equilibrium.

Example (1): Solubility of AgCl

$$AgCl(s) \Longrightarrow Ag^{+}(aq) + Cl^{-}(aq)$$

$$K_{eq} \ = \ \frac{[Ag^+][Cl^-]}{[AgCl]}$$

$$\Rightarrow$$
 $K_{sp} = K_{eq} \cdot [AgCI] = [Ag^+] [CI^-]$

It is a endothermic reaction on increasing temperature T \uparrow \Rightarrow solubility \uparrow

$$\Rightarrow \log \frac{K_{sp_2}}{K_{sp_1}} = \frac{\Delta H}{2.303 R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

Example (2): Solubility of Ag₂ CO₃ Ag₂ CO₃(s) \Longrightarrow 2 Ag⁺ + CO₃²

$$\Rightarrow$$
 $\mathbf{K_{sp}} = [\mathbf{Ag^+}]^2 \ [\mathbf{CO_3^{2-}}], \Rightarrow \text{In general , if salt is } \mathbf{M_x} \ \mathbf{N_y} \ \text{type, } \mathbf{M_x} \ \mathbf{N_y} \iff \mathbf{X} \ \mathbf{M^{y+}} \ + \mathbf{y} \ \mathbf{N^{x-}}$

$$\Rightarrow \qquad \qquad \mathbf{K}_{sn} = [\mathbf{M}^{y+}]^{x} \quad [\mathbf{N}^{x-}]^{y}$$

let ,
$$Q = [M^{y+}]^x [N^{x-}]^y$$
 $Q = ionic product$

If ,
$$Q = K_{sp} \Rightarrow$$
 Equilibrium (Saturated solution) $Q > K_{sp} \Rightarrow$ PPt (Super saturated) $Q < K_{sp} \Rightarrow$ Unsaturated solution.

Various case in solubility

Case (1):
$$Ag_2SO_4$$
 (S = 10^{-3} mol/L)

Page # 14 **IONIC EQUILIBRIUM**

$$S_{Ag_2SO_4}$$
 (gm/L) = $10^{-3} \times (108 \times 2 + 96)$

$$\subseteq$$
 Case (3): K_{sp} given , Solubility = ?

$$\Rightarrow 4 S^3 = K_{sp} \qquad \Rightarrow \qquad S = 3\sqrt{\frac{K_{sp}}{4}} \quad mol/L$$

$$Ag_{2}SO_{4} \Longrightarrow 2Ag^{+} + SO_{4}^{2^{-}}$$

 $S = 0 = 0$
 $S - 0.7S = 2 \times 0.7S = 0.7S$

$$\Rightarrow \qquad \mathsf{K}_{\mathsf{sp}} \; = \; (1.4\mathsf{S})^2 \; (0.7\mathsf{S}) \qquad \Rightarrow \qquad \frac{\mathsf{S} \; = \; 3\sqrt{\mathsf{K}_{\mathsf{sp}}}}{\sqrt{0.98}}$$

P Case (5): Solubility of Ag₂SO₄ in 0.1 M AgNO₃

$$\Rightarrow \qquad \mathsf{K}_{\mathsf{Sp}} = (0.1 + 2\mathsf{S})^2 \, (\mathsf{S}) \qquad \qquad \Rightarrow \qquad \mathsf{K}_{\mathsf{sp}} \approx (0.1)^2 \, \times \mathsf{S} \qquad \qquad \Rightarrow \qquad \mathsf{S} = \frac{\mathsf{K}_{\mathsf{sp}}}{0.01}$$

(F) Case (6): Solubility of Ag₂SO₄ in 0.1M Na₂SO₄

$$Na_2SO_4 \implies 2 Na^+ + SO_2$$

0.1 0 0
0 0.2 0.1

$$Ag_{2}SO_{4}(S) \Longrightarrow Ag_{2}SO_{4}(aq) \Longrightarrow 2 Ag^{+}(aq) + SO_{4}^{2-}(aq.)$$

$$S \qquad \qquad 0 \qquad \qquad 0.1$$

$$0 \qquad \qquad 2 S \qquad \qquad 0.1 + S$$

$$K_{Sp} = (2 S)^{2} (S + 0.1) \Longrightarrow \approx 4S^{2} \times 0.1 \Longrightarrow S = \sqrt{\frac{K_{Sp}}{0.4}}$$

$$\Rightarrow K_{Sp} = (2 S)^2 (S + 0.1) \Rightarrow *4S^2 \times 0.1 \Rightarrow S = \sqrt{\frac{K_{Sp}}{0.4}}$$

Case (7): 100 ml 0.01 M AgNO₃ + 400 ml 0.02 M Na₂SO₄,
$$K_{sp}$$
 (Ag₂SO₄) = 4 × 10⁻⁹ (a) Will any ppt or not?

$$Q = [Ag^{+}]^{2} [SO_{4}^{2-}] Q = (1/500)^{2} \left[\frac{8}{500} \right] = 6.4 \times 10^{-8} Q > K_{sp} \Rightarrow ppt$$
After ppt $[Ag^{+}] = ?$; $[SO_{4}^{2-}] = ?$

(b) After ppt
$$[Ag^+] = ?$$
; $[SO_4^{2-}] = ?$ at equilibrium

$$4S^3 = 4 \times 10^{-9}$$
 $S = 10^{-3}$

Number of moles of $(Ag_2SO_4) = 500 \times 10^{-3} = 0.5$ m mole

0.5

$$2 \text{ Ag}^+ + \text{SO}_4^{2-} \Longrightarrow \text{Ag}_2 \text{SO}_4$$

$$\left(\frac{y}{500}\right)^2 \times \left(\frac{7.5}{500}\right) = K_{sp} = 4 \times 10^{-9}$$
 $y = ?$