Институт по математика и информатика-БАН Съюз на математиците в България Фондация Георги Чиликов

Седмица на олимпийската математика на ИМИ София, 2 – 7 януари 2024 г.

Контролно по комбинаторика, 03.01.2024

Задача 1. В компания всеки има поне двама приятели сред останалите. Известно е, че които и да е членове на компанията да изберем и както и да ги подредим около кръгла маса, ако всеки двама съседи са приятели, то не съществуват двама души около масата, които не са съседи и са приятели. Да се докаже, че в тази компания има двама души, които имат по точно двама приятели, поне единия от които е общ.

Решение: Да разгледаме графа с върхове хората от компанията и ребра - приятелствата между тях. Тогава условието ни казва, че всеки връх е от степен поне две, и че няма цикъл, който да съдържа $xop \partial a$.

Да изберем най-дълъг път в графа $P = v_1 v_2 \dots v_n$ (очевидно $n \geq 3$). Тъй като v_n има поне два съседа, от максималността на P следва, че съществува i < n-1, за което има ребро $v_i v_n$. Да забележим, че от условието за хордалността това i е единствено - тогава $\deg(v_n) = 2$. Ще докажем, че $\deg(v_{i+1}) = 2$. Наистина, ако v е съсед на v_{i+1} , различен от v_i и v_{i+2} , то:

- ако $v \notin P$, то $v_1 v_2 \dots v_i v_n v_{n-1} \dots v_{i+1} v$ е по-дълъг път от P, което е невъзможно;
- ако $v = v_j \in P$, получаваме противоречие с хордалността (разгледайте двата случая j < i и j > i).

Сега върховете v_{i+1} и v_n удовлетворяват исканото.

Оценяване: 1т. за избор на екстремален елемент, 2т. за $\deg(v_n)=2$ и единствеността на i, 3т. за $\deg(v_{i+1})=2$, 1т. за довършване.

Задача 2. Една редица $a_1, a_2, \ldots, a_{1000}$ от естествени числа ще наричаме $m \delta d p a$, ако:

- $a_i \in \{1, 2, 3, 4\}$ за всяко $i = 1, 2 \dots, 1000;$

За всяка мъдра редица на дъската е записано числото 3^X , където X е общият брой на двойките и тройките в редицата. Колко е сборът на всички записани числа?

Решение: Да забележим, че търсената сума е равна на коефициента пред x^{2024} на полинома

$$(x+3x^2+3x^3+x^4)^{1000} = x^{1000}(x+1)^{3000},$$

и следователно отговорът е $\binom{3000}{1024}$.

Задача 3. Да се намерят всички естествени числа $n \geq 3$, за които съществуват n точки в равнината, никои три от които не лежат на една права, които могат да бъдат номерирани с числата от 1 до n по два различни начина така, че да е изпълнено следното условие: за всяка тройка $\{i,j,k\}, 1 \leq i < j < k \leq n$, триъгълникът ijk в едната номерация има същата ориентация като триъгълника ijk в другата ориентация, освен за $\{i,j,k\} = \{1,2,3\}$, където ориентациите на двата триъгълника са противоположни.

Решение: Ще покажем, че само нечетните естествени числа изпълняват условието.

Нека $n \geq 3$ е естествено число и нека \mathcal{C} е множеството от всички триелементни множества $\{i,j,k\}$ за $1 \leq i < j < k \leq n$. Да фиксираме ориентация на равнината, която ще наричаме положителна, а противоположнта и – отрицателна.

Нека M е множество от n точки в равнината, никои три от които не са на една права. За всяко номериране L на точките с числата от 1 до n и всяко $C \in \mathcal{C}$ с $\triangle_{L,C}$ ще означаваме триъгълникът от M, чиито върхове след номерирането L образуват множеството C. Нека $\varepsilon_{L,C}=0$, ако $\triangle_{L,C}$ е положително ориентиран и $\varepsilon_{L,C}=1$, ако е отрицателно ориентиран. Да означим $\sigma_L:=\sum_{C\in\mathcal{C}}\varepsilon_{L,C}$.

Да отбележим, че ако L' е друго номериране на точките от M, то $\sigma_L + \sigma_{L'}$ е сравнимо по модул 2 с броя триъгълници, които както в L така и в L' са номерирани със същото множество, но имат противоположни ориентации.

Нека L_0 е фиксирано номериране на M. Всяко друго номериране на M се получава чрез краен брой транспозиции на L_0 . Да фиксираме друго номериране L_t и нека t е броят транспозиции за получаване на L_t чрез L_0 . Също така нека L_s бъде номерирането получено след първите s от тези транспозиции за $s \leq t$. Имаме

$$\sigma_{L_0} + \sigma_{L_t} \equiv \sum_{s=0}^{t-1} (\sigma_{L_s} + \sigma_{L_{s+1}}) \pmod{2}.$$

Нека, за да получим L_{s+1} от L_s сме направили транспозицията (i,j). В $\mathcal C$ има n-2 триелементни множества C, съдържащи $\{i,j\}$. За всяко такова C триъгълниците $\triangle_{L_{s+1},C}$ и $\triangle_{L_{s,C}}$ имат противоположни ориентации, т.е $\varepsilon_{L_{s+1},C}+\varepsilon_{L_{s},C}=1$.

Да забележим, че можем да разбием множествата в \mathcal{C} , съдържащи точно едно от i, j, по двойки по единствен начин т.че $C \cup \{j\} = D \cup \{i\}$. Тогава $\triangle_{L_{s+1},C} = \triangle_{L_s,D}$ и $\triangle_{L_{s+1},D} = \triangle_{L_s,C}$

и $\varepsilon_{L_{s+1},C} = \varepsilon_{L_s,D}$, както и $\varepsilon_{L_{s+1},D} = \varepsilon_{L_s,C}$. За множествата C в C, несъдържащи нито едно от i,j, имаме $\triangle_{L_{s+1},C} = \triangle_{L_s,C}$ и $\varepsilon_{L_{s+1},C} = \varepsilon_{L_s,C}$.

Така получаваме $\sigma_{L_s} + \sigma_{L_{s+1}} \equiv n - 2 \equiv n \pmod{2}$ и така $\sigma_{L_0} + \sigma_{L_t} \equiv nt \pmod{2}$. От друга страна $\sigma_{L_0} + \sigma_{L_t}$ е сравнимо с броя триъгълници в L_0 и L_t означени със същите числа, но противоположна ориентация. Според условието този брой е 1, следователно nt е нечетно, откъдето получаваме, че n е нечетно.

За нечетно $n \geq 5$ да разгледаме правилен n-1-ъгълник с точка в центъра, която не лежи на никой от диагоналите. Да означим с 2 и 3 два края на някой диаметър от многоъгълника. Номерираме едната половина от върхове на многоъгълника последователно от 4 до $\frac{n+3}{2}$, а след това последователно от $\frac{n+5}{2}$ до n тръгвайки от 3. Нека центърът на многоъгълникът е 0, а точка 1 е достатъчно близо до центъра в триъгълник 024, т.че не лежи на никой от диагоналите.

Сега преномерираме върховете чрез ротиране на номерацията на ъгъл π/n около 0. С директна проверка се установява, че двете номерации изпълняват условието.

Оценяване. 4т. за случая n четно, 3т. за случая n нечетно