Inference with logistic regression

Last time: comparing deviances

Full model:
$$\log \left(\frac{\pi_i}{1-\pi_i} \right) = \beta_0 + \beta_1 \mathrm{GRE}_i$$

Reduced model:
$$\log \left(\frac{\pi_i}{1 - \pi_i} \right) = \beta_0$$

$$H_0: eta_1 = 0 \quad \ H_A: eta_1
eq 0$$

 $\operatorname{drop-in-deviance}: G = \operatorname{deviance}$ for reduced model - deviance for full model = 13.92

If H_0 is true, how unusual is G=13.92?

χ^2 distribution

Under $H_0, G \sim \chi^2_{df_{ ext{reduced}} - df_{ ext{full}}}$

 χ^2_k distribution: parameterized by degrees of freedom k

Computing a p-value

$$\log \left(rac{\pi_i}{1-\pi_i}
ight) = eta_0 + eta_1 \mathrm{GRE}_i$$

$$H_0: \beta_1 = 0 \quad H_A: \beta_1 \neq 0$$

G= deviance for reduced model - deviance for full model = 13.92 $\sim \chi_1^2$

```
pchisq(13.92, df = 1, lower.tail=FALSE)
```

[1] 0.0001907579

Concept check

Our p-value is 0.0002. What is the most appropriate conclusion? Go to https://pollev.com/ciaranevans637 to respond.

- (A) We reject the null hypothesis, since p < 0.05.
- (B) We fail to reject the null hypothesis, since p < 0.05.
- (C) The data provide strong evidence of a relationship between GRE score and the probability of admission to graduate school.
- (D) The data do not provide strong evidence of a relationship between GRE score and the probability of admission to graduate school.

Likelihood ratio test for nested models

Likelihood ratio test: strengths and weaknesses

Alternative: Wald tests for single parameters

$$\log \left(rac{\pi_i}{1-\pi_i}
ight) = eta_0 + eta_1 \mathrm{GRE}_i$$

Hypotheses:

Test statistic:

$$z =$$

Example

z =

Wald tests vs. likelihood ratio tests

Wald test

- like t-tests
- test a single parameter
- some example hypotheses:

$$egin{array}{ll} oldsymbol{+} & H_0: eta_1 = 0 \, ext{vs.} \ & H_A: eta_1
eq 0 \end{array}$$

$$m{+} \ H_0: eta_1 = 1 \, ext{vs.} \ H_A: eta_1 > 1$$

Likelihood ratio test

- like nested F-tests
- test one or more parameters
- some example hypotheses:

$$oldsymbol{+} H_0:eta_1=0\, ext{vs.} \ H_A:eta_1
eq0$$

p-values are different, because test statistics and distributions are different

https://sta214-f22.github.io/class_activities/ca_lecture_8.html

 $Y_i =$ dengue status (0 = no, 1 = yes)

$$Y_i \sim Bernoulli(\pi_i) \quad \logigg(rac{\pi_i}{1-\pi_i}igg) = eta_0 + eta_1 WBC_i.$$

Researchers want to test whether there is any relationship between WBC and dengue status. What are H_0 and H_A ?

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.73743 0.08499 20.44 <2e-16 ***
## WBC -0.36085 0.01243 -29.03 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6955.8 on 5719 degrees of freedom
## Residual deviance: 5529.8 on 5718 degrees of freedom
...
```

Wald test:

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.73743 0.08499 20.44 <2e-16 ***
## WBC -0.36085 0.01243 -29.03 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6955.8 on 5719 degrees of freedom
## Residual deviance: 5529.8 on 5718 degrees of freedom
```

Likelihood ratio test:

 $Y_i =$ dengue status (0 = no, 1 = yes)

$$Y_i \sim Bernoulli(\pi_i) \quad \logigg(rac{\pi_i}{1-\pi_i}igg) = eta_0 + eta_1 WBC_i$$

Researchers want to test whether patients with lower WBC are more likely to have dengue. What are ${\cal H}_0$ and ${\cal H}_A$?

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.73743 0.08499 20.44 <2e-16 ***
## WBC -0.36085 0.01243 -29.03 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6955.8 on 5719 degrees of freedom
## Residual deviance: 5529.8 on 5718 degrees of freedom
...
```

Test: