COMPTECH TAB meeting 2016-1

Jin Zhang
COMPTECH Officer @ APS, ANL

Brief introduction

- X-ray Thermal Diffuse Scattering (TDS)
 - X-ray thermal diffuse scattering (TDS) can be used to measure: single-crystal elastic properties of any crystalline materials (include opaque materials) using regular diffraction setups. Incorporation of DAC in TDS experiment is possible.
 - New anisotropic elasticity measurement method for high-pressure mineral physics field.
- Universal Membrane cap for most DACs
 - convert screw-driven DAC into membrane-driven DAC remote pressure control
 - Universal cap that could <u>fit different DACs</u> <u>without losing DAC opening</u>
- Standard "cheap" resistive heater for DAC
 - Cheap, reusable, standard heaters (\sim \$10/pc comparing with >\$200/pc)
- Website Modification
 - TAB meeting ppts, Notes
 - Tools: including instructions for downloads
 - Techniques and Facilities: into to all COMPRES facilities at APS; Updates to technical development
- Facilities
 - PX² commissioning, membrane tubing system in 13BMC
 - Sector 34, add-in viewing and optical system for high-pressure experiments
- Data base
 - IEDA-kickoff workshop

Time Line:

2014.11	join COMPTECH
2014.12	13BMC PX2 commissioning Ambient TDS measurement: sample suitable for DAC, Si (15um thick)
2015.1	design of the first version universal membrane cap 1st test on W-AJ2O3 heaters Website major revision: Tools
2015.2	received the 1st set of modified W-Al2O3 heaters Website rearrange Preparation for TDS beam time
2015.3	1st TDS measurement with flight-path setup at 13BMC 1st high pressure (HP) TDS measurement on Si at 13BMC
2015.4	1st python code for getting Si single-crystal elasticity tensor from TDS: based on BVK model TDS sensitivity test
2015.5	1st python code for getting single-crystal elasticity tensor from TDS: crystals (any symmetry) Website revision: Facilities
2015.6	Received the 1st version of membrane cap Website revision: Techniques COMPRES annual meeting present TDS results
2015.7	1st HP TDS on foresterite at 34ID 1st HP TDS on foresterite at 13IDC Membrane tubing installed in 13BMC
2015.8	HP TDS measurement on foresterite up to 40GPa at 13BMC 1st W-AJ2O3 healer test in DAC
2015.9	Testing new inversion algorism for TDS data analysis
2015.10	MS&T meeting in OH (1 week); advertise PX2
2015.11	TDS at BMC beam time UNM visit (3days) 1st use of membrane control system at 13BMC during beam time
2015.12	AGU meeting present TDS results Membrane cap finished and tested with DAC for the 1st time TDS at IDC beam time
2016.1	Portable optical and sample viewing System Design Testing new TDS data extraction code for both 34IDE data and IDC BMC

X-ray thermal diffuse scattering (TDS)

X-ray thermal diffuse scattering (TDS) is caused by <u>lattice thermal vibrations</u> (phonons).

Shape of the TDS signal tells how anisotropic the sound velocities are:

Example of single crystal Si ambient condition

Pro	ect
time	eline

	2014.11 2014.12 Shutdown		2015.3	2015.4	2015.5			
join COMPTECH		commissioning, first TDS test on		first high pressure TDS measurement on Si, test flight-path setup for TDS measurement @ 13BMC	first python inversion code for getting Si single-crystal elasticity tensor	First universal python inversion code for getting single-crystal elasticity tensor with any crystalline material with any symmetry		
	Shutdown	Shutdown time first beam time at 34ID, first high-pressure TDS on foresterite using energy scan, Mar CCD setup		2015.7	2015.8	2015.9	Shutdown	
	time			first beam time at 13IDC high-pressure TDS on foresterite	high-pressure TDS measurement on foresterite up to 40GPa @13BMC	Testing new inversion algorism for TDS data analysis	time	

Major effect during 2015.10-2016.1:

New Data extraction code: 34IDE (python code) and 13IDC, BMC (IDL program within ATREX)

New inversion algorism: intensity scaling factor fitting within each individual image

X-ray thermal diffuse scattering (TDS)

- Current Status:
 - Sample testing:
 - Ambient condition: Si (100) (111) and forsterite (111)
 - High-pressure: <u>Si (100) (~ 6GPa)</u>; forsterite (111) (~40GPa)

34ID

13IDC and BMC

- Experimental Setup:
 - Angular scan approach + Pilatus 100K:13BMC 13IDC (beam size 30µm)
 - Energy scan to find Brag peaks, then monochromatic beam for TDS measurement (MarCCD) 34ID
- Software development:
 - TDS calculation: micro BV model for Si and Macro-single crystal elasticity model for all crystals
 - Data inversion: new optimized inversion code with better efficiency for lower symmetry materials
 - Data extraction: graphical output from ATREX for Angular scan data (with Przemek)

data output from IgorLaueGo + python for energy scan data (with Ruqing)

Data extraction: graphical output from ATREX for Angular scan data (with Przemek)

- 1. Crystal orientation: 2 peaks (partially solved by using >8 peaks) but SPEC has limitation: no symmetry constrain
- 2. Detector X-Y to HKL conversion: originally assuming polynormial fit H(x,y) K(x,y), L(x,y)

- 1. Utilizing the obtained 11 peaks and angles to get Lattice parameters with constrained symmetry (SPEC does not do that it treats everything as triclinic)
- 2. UB matrix can be read into the ATREX software for hkl calculation of each pixel.
- 3. Detector calibration can be made according to the mesh scan result.

Data extraction: data output from IgorLaueGo + python code for energy scan data

·SetAxis/A

for file 'root:wb_sample_pos2_1' total length = 2048 x 2048 = 4194304 points number type is 'unsigned 16-bit integer' Created a 2-d wave 'root:wb_sample_pos2_1'

result stored in the wave 'root:FullPeakList'

•ModifyImage wb_sample_pos2_1 ctab= {20.98134883,500,Terrain256,1}

found and fitted 15 peaks (using a threshold of 1858.8), this all took 1.60793 sec

FitPeaksWithExternal(wb_sample_pos2_1, 1.13, 18, 0.5, nan, peakShape="Lorentzian", maxNum=-1)

Make movie: Energy scan for individual peak in ROI

Plot intensity VS image number:

Data extraction: data output from IgorLaueGo + python code for energy scan data

```
In [1]: import numpy as np
        import sys
        import os
        # Input working directory: change folder accordingly
        workdir=r'C:\Users\jzhang\Dropbox (UH Mineral Physics)\HIGP Mineral Physics Team\TDS\F0009GPa34\1DataOriginal'
        os.chdir(workdir)
        # make sure xmlutils.pv is located in current working directory
        import xmdutils as xu
        print os.getcwd()
       C:\Users\jzhang\Dropbox (UH Mineral Physics)\HIGP Mineral Physics Team\TDS\F0009GPa34\1DataOriginal
In [2]: ## Define detector info and geometry, for one run, the numbers does not change. ##
        ## Use Igor to read the saved geometry file.##
                                                                                                    Detector calibration file
        mar165 = xu.Detector(2048, 2048, 162.361/2048, 162.361/2048)
        mar165 geo = xu.DetectorGeometry([-1.238, -15.689, 153.471],
                                     [0.00752321,-0.01143958,3,140971741)
In [3]: ## Define crystal orientation (a*,b*,c*) from Igor indexing result ##
        astar = np.array((-8.787488, +0.469981, -9.857230)) * 1.0e9
        bstar = np.array((+2.723327, +5.083838, -2.185390)) * 1.0e9
        cstar = np.array((+6.338666, -5.946492, -5.934293)) * 1.0e9
                                                                                                   Crystal orientation
        aas = np.linalg.norm(astar)
        bbs = np.linalg.norm(bstar)
        ccs = np.linalg.norm(cstar)
        samp rot mat = np.vstack((astar/aas,bstar/bbs,cstar/ccs)).T
In [5]: ## get q vec of the defined HKL peak ##
        filefolder = r'C:\Users\jzhang\Dropbox (UH Mineral Physics)\HIGP Mineral Physics Team\TDS\TDSdata\2015-2\34IDE\BX
        filename = r'Escan 54.h5' # use highest image intensity to identify which image the Brag peak is exactly located
        h5img = xu.XmdH5Data(os.path.join(filefolder,filename))
        ## Calculate the Brag peak absolute pixel X and Y
        # Input fitted Brag peak positions from Igor, Igor only read relative position
       peakX = h5img.roi startX + 19.4544
                                                                                          Calculate hkl based on
       peakY = h5img.roi startY + 20.0588
       print "Brag peak position:", "(",peakX, peakY,")"
                                                                                          X-ray energy
        hklname = '(-131)' #Input ideak HKL name
       HKLxeng = 23.5985 # Input X-ray energy (keV)
        pk hkl = np.array([-1.0,3.0,1.0]) #Input integer ideal HKL
                                                                                          And pixel position
        pk cen xyz = xu.pixels to xyzs([peakY],[peakY],mar165,mar165 geo)
        pk cen q = xu.pxyzs to qs(pk cen xyz, HKLxeng)
        pk qc = np.linalg.norm(pk cen q)
        print 'current hkl:',pk hkl
        # test computing hkl of the Bragg peak, obtained numbers should be similar to theoretical HKL
        testhkl = xu.qs to ortho hkls(pk cen q[0],np.array((aas,bbs,ccs)),samp rot mat)
        print 'Real hkl is', testhkl
                                                                                                                    Double check:
        Brag peak position: ( 662.4544 1060.0588 )
                                                                                                                    ideal hkl
        current hkl: [-1. 3. 1.]
       Real hkl is [-1.00149768 3.00925398 0.9993432 ]
                                                                                                                    calculated hkl
```

Data inversion: optimized inversion with better efficiency for lower symmetry materials

In 2015-2
TAB meeting

Only consider 1st order approximation — single-phonon scattering

Method 1: single crystal elasticity model

Method 2: Born-Von-Karman model

1 model for all, only based on Cijs and hkls.

Change Cijs for different materials.

Micro force constant model for each pair of neighboring atoms — 1 material 1 model

Initial elasticity model Cijkl

$$I_{\text{TDS}}(\mathbf{Q} + \mathbf{p}) = \frac{k_{\text{B}}T}{V_{\text{c}}} |F(\mathbf{Q})|^{2} e^{-2W(\mathbf{Q})}$$

$$\times (\mathbf{Q} + \mathbf{p})^{\text{T}} \mathbf{A}^{-1}(\mathbf{p})(\mathbf{Q} + \mathbf{p})$$

$$A_{ik}(\mathbf{p}) = p_{j} C_{ijkl} p_{l}$$

Si (5): 3 parameters Cij, 2 intensity scaling factors for 2 images

Compute
theoretical
intensity I_{theo}
based on method
1 or 2 for list of
hkls

Leastsq fit to minimize (I_{data} – I_{theo}) In 2015-3
TAB meeting

HKLs

Local variables

Intensity scaling factor

Forsterite (28):

Leastsq fit to find individual Intensity scaling factor for each image

8 parameters for Cij +18 intensity scaling factors for 18 TDS images

New code gives exactly the same answer to Si when treating the intensity scaling factors as local variables VS global variables.

Si result: line profiles

Vertical cut

I residual~10²
I measure ~10⁴
Fitting uncertainty
~a few percent

horizontal cut

beam time in 2016-1:34IDE

Future work:

1. Figure out what was the problem with forsterite data:

Collaborate with Dr. B. Winkler (Germany):

First principle calculation – predict TDS + Cijs

Treat his theoretically generated TDS as real data and invert the Cijs.

See if this inverted Cijs = Cijs from first principle calculation.

2. Start writing up the first paper describing the method and the our results on single-crystal Si up to ~6 GPa.

Data base — IEDA kickoff workshop

- Importance of having a mineral physics data base:
 - EOS, elasticity, rheology
 - Phase diagram, element partitioning

Contribute Data

IEDA welcomes and encourages investigators to contribute their data to the IED reused by a diverse community now and in the future.

Sample-based Data

- Analytical geochemistry datasets (rocks, sediments, minerals, fluids)
- Geochemical or petrological syntheses
- Geochronological datasets
- Sample metadata (IGSN registration service)
- Technical reports (analytical methods, data reduction, etc.)

Sensor-based Data

- Derived Geophysical Data (e.g. grids, maps, mosaics)
- Photos and images
- Shipboard, airborne, and terrestrial data collected in the Southern Ocean
- Seismic Reflection Field Data from the academic research community
- Processed Seismic Data
- Technical reports (data reduction, etc.)

Other Data Types

- Experimental datasets
- Software tools (e.g., macros, code, etc.)
- Highlight images & videos, maps, photos, diagrams & schematics

For assistance, please contact info@iedadata.org

Data System	Description	Find Data	Geophysical Data	Oceanographic Data	Geochemical Data	Images	Sample Info	What	do the	ey ha	ve?	
Antarctic and Southern Ocean Data Portal (ASODS)	Data collected in the Southern Ocean	Search	х	×	Links to	x	х	\ \ /hor	a da v	, fit	+02	ш
Academic Seismic Portal (ASP) at LDEO	Seismic Reflection Field Data from the academic research community	Search	x					vvilei	here do we fit to?			
Academic Seismic Portal (ASP) at UTIG	Processed Seismic Data	Contr	ibute Your Data to E	Ea × +								
Deep Lithosphere Dataset	Petrology of mantle xenoliths	(() (0) w	www.earthchem.org/data/contribute								^	⋑ ₽
EarthChem Portal	Access to geochemical data in federated databases		EarthChem EarthChem									
EarthChem Library	Geochemical datasets and data syntheses	номе	ABOUT	CONTRIBUTE DATA	RESOURCES	ACCESS [DATA HI	ELP CONTACT US				7
Geochron	Geochronological and thermochronological data							.,				
GeoPRISMS Data Portal	Data from interdisciplinary research along continental margins		chem library tion & preservation of	f data single-point ac geochemical da	cess to	PetDB, NA	rnthesis VDAT, SedDB, al data collect	_	t plans & data	submit an	oute data d publish you m data syste	ur data in
Global Multi- Resolution Topography (GMRT)	Global compilation of seafloor bathymetry and land topography		Links	Cantributa V	Data ta l	Fdb-Ol	h					
MARGINS Data Portal	Data from interdisciplinary research along continental margins	Earth	Chem Portal Chem Library	Contribute You EarthChem encou be discovered and	rages investiga	tors to co	ntribute th	eir data to the EarthCl	nem data sysi	tems so th	at these (data can
MediaBank	High-quality images and videos for education and outreach	NavDat SedDB Geochron										
PetDB	Petrological database of the ocean floor	Data Templates SESAR Contribute data to the EarthChem Library.							Į			
Ridge 2000 Data Portal	Data from interdisciplinary research at mid-ocean ridges, from mantle to microbe	Library of Experimental Phase Relations What Types of Data Can Be Contributed?										
SedDB	Geochemical data of marine sediments			EarthChem provide compositional	es repository sei geochemistry (e			ng data types:				
System for Earth Sample Registration (SESAR)	Sample Catalog & Registry for the International Geo Sample Number		_	geochemical s	(modal compositi synthesis datase	ets		tions)				
VentDB	Hydrothermal spring geochemistry data system			sample metac		unetics da	ita)					
USAP-DCC	Metadata and data from NSF-funded Antarctic research programs	 technical reports software tools (e.g., MATLAB® code, EXCEL® macros, etc.) images (photos, schematics, maps, etc.) 										

Universal Membrane cap for most DACs

- Advantage of Membrane cap convert screw-driven DAC into membrane-driven DAC
- Remote precise pressure control
- Currently available membrane caps
 - Too many DACs in different sizes one cap for each type
 - Limitations to the DAC opening IXS, Brillouin, single x-stal XRD
- Our target:
 - One cap for most DACs in different sizes: different spacers
 - No lose in DAC opening: ideal for single crystal studies
- Project timeline:
 - Designed the first edition of membrane cap 01/2015
 - Received all **body** parts of membrane cap 06/2015
 - Stainless steel tubing ordered and installed in 13BMC 07-08/2015
 - Gas membranes sent back to machine shop for revision 09/2015
 - GE digital pressure controller ordered 08/2015 received 10/2015
 - \bullet GE pressure controller and tubing installed and user used the system in 11/2015
 - Received the modified membrane in 11/2015, tested the membrane caps offline in 12/2015

Welcome COMPRES users to use the membrane cap + control system from 2016-1!

Membrane system setup at PX^2

Membrane tubing (ss, swagelok) Controller (GE pace5000) Regulator (3000psi) Installed in 13BMC (with help of Mike Proskey)

Users used membrane control and tubing in BMC in 2015-3 run with their own Membrane Caps

Universal Membrane cap for most DACs

4-pin Cell within Membrane Cap

Standard "cheap" resistive heater for DAC

- Commercial W-Al₂O₃ metal ceramics heater can reach 1000 K within 30 s, very stable and cheap (<\$10/pc).
- Ready for use, reproducible specifications, reusable, and not expensive
- Calibration and modification of the W-Al₂O₃ heater: (procedures online updated)

- 1st test with DAC: with single heater sample chamber reached highest T 450K
- 1st supply to COMPRES users: (Dan Shim and Kurt Leinenweber)
- 2nd supply to COMPRES users: (Zhenxian Liu)
- Other testers: (Bin Chen, Xiaojing Lai, Yi Hu, Jay Bass)

Preferred access to existing beamlines

Sector 34 ID Ideal for high P **experiments** Perkin-Elmer Achromatic focus Successful high **Area Detectors** Energy range: 7 - 30 keV **PTDS** Resolutions: experiments during 2015-2 beam size: < 500 nm and 2015-3 run • Angular: 0.01° (Optional) Strain: 10⁻⁴ CCD Small-offset detector monochromator Differential **K-B Mirrors** (removable) Aperture White or Mono X-ray Sample Fluorescence DAC Viewing and ~20K Budget detector ruby system

Beamline Contact: Wenjun Liu <wjliu@anl.gov>; Ruqing Xu <ruqingxu@anl.gov>; Jon Tischler <tischler@anl.gov>

Portable viewing and ruby system

All light path Integrated into the tube

- Difficult to "misalign"
- Compact
- for sector 34IDE And other non-high pressure beamlines

http://comptech.compres.us/

Thanks! Questions?