Predicting Market Capitalization

Market Capitalization

- 1) [Market Cap] = [# outstanding shares] x [price per share]
- 2) Core metric: values firm equity by public market
- 3) Project Goal: predict market cap of US-listed, publicly-traded companies using data from company financial statements

Market Capitalization Data

Target (Response) Variable

- Market Capitalization (USD; public, US-listed companies)
- Equals [# outstanding shares] x [USD price per share]
- Source: https://www.alphavantage.co/documentation
- >\$1b to \$2.35t (APPL) Market Cap
- Long-tailed distribution

Market Capitalization Data

Feature (Predictor) Variables

- Metrics: quarterly financial statements
- Source: https://www.alphavantage.co/documentation
- 23 different features considered
- Revenue, Gross Profit, Net Income, Operating Cash Flow, Share Issuance/Repurchase, Dividend Payout

Machine Learning Goal

Prediction Scenario

- Financial metrics measured with respect to fiscal reporting periods (Q1, Q2, etc)
- Predict next-quarter market cap given financial metrics known in the current (and prior) fiscal quarter(s)

Machine Learning Goal: predict market capitalization just prior to the next fiscal reporting date using feature measurements from the current fiscal reporting date

Exploratory Analysis: In-Scope Sample

Defining In-Scope Records

- Firms reporting in USD currency
- Records with missing (NaN) values for core metrics excluded
- Median quarterly revenue of \$5m or more, others excluded
- Inconsistent, nonlogical, extreme values excluded

Final Result Set

- 2,122 distinct stock tickers
- 9,723 observations (~5 fiscal quarters per stock ticker)
- 1,692 stock tickers (80%) have 5 observations (5 fiscal quarters)
- Market Cap ranges from \$1.006b to \$2.358t as of Sep 2021
- Fiscal reporting dates range from 2020-01-31 to 2021-06-04
- Multiple API calls to AlphaVantage with up to 30,000 records per batch (Balance Sheet, Income Statement, Cash Flow Statement)

Exploratory Analysis: 1st Order Effects

- All Feature Pairs Linear Regressions (RobustScaler)
- Partial Residual Plots Top 1st-Order Effects
 - Operating Cash Flow, Share Repurchase, Gross Profit, Revenue, Net Income
 - Top 5 1st-Order effects explain 33% to 44% of variation

Exploratory Analysis: 2nd Order Effects

- Pairwise Linear Regressions (RobustScaler)
- Partial Residual Plots Top 2nd-Order Effects
 - Net Inc x Net Inc, Rev x Op Cash Flow, Rev x Net Inc Mgn, Sh Iss x Div
 - Top 18 2nd-order effects explain 5% to 16% of variation

Regression Models: 1st Iteration

Alternative Models

- 1) Linear Lasso Regression (sci-kit learn)
 - a) RobustScaler
 - b) Cross validation, 4-fold, MAE
 - i) k-best features, alpha L1 regularization
- 2) Boosted Decision Tree (xgboost)
 - a) RobustScaler
 - b) Cross validation, 4-fold, MAE
 - i) max_depth, learning_rate, reg_alpha
- 3) Support Vector Regression (sci-kit learn)
 - a) QuantileScaler
 - b) Cross validation, 4-fold, MAE
 - i) max_depth, learning_rate, reg_alpha

Evaluation

- 1) Feature Importance
- 2) Absolute Percent Error (APE) on test data (80/20)

Regression 1: Feature Importance

Top Features

- Operating Cash Flow
- Share Repurchase
- Net Income
- Gross Profit
- Dividend

Regression 1: Test Metrics

Model	r-squared	APE-mean	APE-median
Linear Regression	70%	235%	60%
Boosted Tree	83%	218%	62%
Support Vector Regression	64%	129%	41%

- High r-squared
- High APE: mean vs median
- Best: Support Vector Regression

Regression Models: 2nd Iteration

Feature Engineering: 1st Iteration

- 1) Long-tailed distributions
- 2) Scale units: USD amount vs percent (%)
- 3) RobustScaler vs QuantileScaler
- 4) Mean vs median APE

Feature Engineering: 2nd Iteration

Goal: Better handle distributional properties

- 1) Add 4 indicator features (gp, div, sh rep, sh iss)
- 2) SQRT transform all USD amounts
- 3) Regress all USD amounts on Revenue, use residuals
- 4) Scale all variables to 0 mean, 1 std dev

Regression Models: 2nd Iteration

Alternative Models

- 1) Linear Lasso Regression (sci-kit learn)
- 2) Boosted Decision Tree (xgboost)
- 3) Support Vector Regression (sci-kit learn)
- 4) Neural Network (keras, tensorflow)
 - a) Linear + Nonlinear layers, vary L1 regularization

Evaluation

- 1) Feature Importance
- 2) Absolute Percent Error (APE) on test data (80/20)

Regression 2: Feature Engineering

- SQRT transform
- Regression on revenue

- 0 mean, 1 std dev
- Transformed variables

Regression 2: Feature Importance

Feature Importance

- More evenness
- Revenue still top feature
- Top features
 - Revenue
 - Dividend
 - Net Income
 - Share Repurchase
 - Gross Profit

Regression 2: Test Metrics

Model	r-squared	APE-mean	APE-median
Linear Regression	67%	176%	47%
Boosted Decision Tree	89%	151%	40%
Support Vector Regression	36%	150%	43%
Neural Network 1	12%	237%	46%
Neural Network 2	83%	193%	47%

- High r-squared
- High APE: mean vs median
- NN models no improvement vs linear model
- Best: Boosted Decision Tree

Recommendations & Next Steps

Recommendations

- Boosted decision tree for one-quarter-ahead forecast
- Top features
 - revenue
 - dividend amount
 - share repurchase amount
 - net income
- Segment the data (e.g., sector, firm size)

Next Steps

- Exploratory model, residual analysis: feature effects
- Mixture models based on data segmentation
- Enhance neural network model