Exercice 1. Etudier la convergence simple, normale, et uniforme des séries de fonctions $(\sum_{n\geq 0} u_n)$ de terme général défini par :

1.
$$u_n(x) = e^{-nx}, x \in \mathbb{R}_+.$$

2.
$$u_n(x) = x^n, x \in [0, 1].$$

3.
$$u_n(x) = \frac{1}{2^n} \sin(3^n x), x \in \mathbb{R}.$$

4.
$$u_n(x) = \frac{1}{1 + (n-x)^2}, x \in \mathbb{R}.$$

En analyse, la **convergence normale** est l'un des modes de convergence d'une série de fonctions. Si (f_n) est une suite de fonctions à valeurs réelles ou complexes définies sur un même ensemble X, la série de terme général f_n converge normalement sur X s'il existe une suite de réels u_n tels que :

- 1. pour tout n, $|f_n|$ est majorée par u_n sur X;
- 2. la série de terme général u_n converge.

$$S_1 \propto a>0$$
 $|U_n| \leq e^{-na}$ et $\sum e^{-na} = \frac{1}{1-e^{-a}} \Rightarrow CVN$

$$S_1 \circ S_1 \leqslant a \leqslant 1 \mid |U_n| \leqslant a^n et \sum a^n = \frac{1}{1-a} \Rightarrow CVN$$

$$||v_n(x)|| = ||v_n(x)|| \le |v_n(x)| \le |v_n(x)| \le |v_n(x)| \le |v_n(x)| = |v_n($$

4/
$$\|U_n\| = \sup_{\infty} |U_n(\infty)| \ge U_n(n) = \frac{1}{1-0} = 1 \Rightarrow \sum \|U_n\| DV$$
 gross

$$SI \quad n \geqslant N > x$$
, $(n-x)^2 \geqslant (n-N)^2 \Rightarrow |U_{n+N}| \leqslant \frac{1}{1+n^2} \leqslant \frac{1}{n^2} et \sum_{i=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

Exercice 2. Mêmes questions pour les séries de terme général défini par :

- 1. $u_n(x) = n^x, x \in \mathbb{R}$.
- 2. $u_n(x) = (-1)^n n^x, x \in \mathbb{R}$.
- 3. $u_n(x) = e^{-n(x^2+1)}, x \in \mathbb{R}.$
- 4. $u_n(x) = \frac{1}{n} \arctan(\frac{x}{n}), x \in \mathbb{R}$.

 $I/U_n(x) = n^x$ sene de Rieman si x > 0 DV gross $s_1 o_2 x > -1$ DV

Si x < 0, U_n at $> n^{2x} = \exp x \log n$, $V_n' = \log n U_n(x_0) > 0 \Rightarrow crossome$ olone $x < a < -1 \Rightarrow U_n(x_0) \le n^a$ et $\sum n^a < \omega$ sene de Riemann $\Rightarrow CVN$ sur $J - \omega, aJ$ a < -1

 $2/|U_n(oc)| = n^{oc}$ donc CVN sur J-10, aJ, a<-1 comme awarnt Si = 1, $U_n(i) = (-i)^n /n$ qui verifie les hypothèses d'Hum des sènes alternées

⇒ \(\mu_{\mu(1)} \) CV \(\Rightarrow \) domaine CVS = J-00,-1]

On pent utiliser ce than pour ma on a CVU sur J-00,-17

3/
$$U_n = e^{-h(a^2+1)} \leq e^{-h}$$
 cor $x^2+1 \geq 1 \Rightarrow CVN$ sur \mathbb{R}

4/ $||U_n|| = \sup_{x} \frac{1}{n} |\arctan \frac{\alpha}{n}| = \frac{1}{n} \sup_{y} |\arctan y| = \frac{\pi}{2n}$

 S^{N} (3c) = $\sum_{N} \Omega^{N}$ (3c)

 $|arctamy| \leq |y| \Rightarrow |\Sigma |u_n(x)| \leq \sum |u_n(x)|$ inegalité

$$\leq \sum_{i=1}^{N} \frac{N}{|x_i|} = |x| \sum_{i=1}^{N_2}$$

⇒ S_N(sc) → S(oc) une fonction à de terminer

 $|R_{OL}\rangle| = |\sum_{N+1}^{\infty} (-1)^{N} n^{2C}\rangle \le (N+1)^{2C}$ than serie alternée $\le (N+1)^{-1}$ or $+> (N+1)^{2C}$ croissante $\rightarrow 0 \implies (VU \text{ sur } J-\omega, -1]$