Visual Relation Detection

Deep Relation Network

ECCV2016(Oral) Lu C, Krishna R, Bernstein M, et al. Visual relationship detection with language priors[J]. arXiv preprint arXiv:1608.00187, 2016.

CVPR2017(Oral) Dai B, Zhang Y, Lin D. Detecting Visual Relationships with Deep Relational Networks[J]. arXiv preprint arXiv:1704.03114, 2017.

spatial, comparative, asymmetrical, verb, prepositional

spatial, comparative, asymmetrical, verb, prepositional

- Prediction recognition
 - Input: img + (lables, BBox) of Subject & Object
 - Output: Triplet (s; r; o), e.g. (girl, on, horse)
 - Metric: Recall@50
- Union box detection:
 - Input: img
 - Output: Triplet (s; r; o)
 - Metric: Recall@50 when IoU thresh=0.5
 - Subject BBox + Object BBox → Union BBox

• Two boxes detection:

Similar to 2, except treating Subject & Object individually

Observation #1: Number of Relations

	Images	Rel. Types	Rel. Instances	# Predicates per Obj. Category
Visual Phrases 6	2,769	13	2,040	120
Scene Graph 8	5,000	23,190	109,535	2.3
VGD	5,000	6,672	37,993	24.25

Observation #2: Unbalanced Data

	Images	Rel. Types	Rel. Instances	# Predicates per Obj. Category
Visual Phrases 6	2,769	13	2,040	120
Scene Graph 8	5,000	23,190	109,535	2.3
VGD	5,000	6,672	37,993	24.25

10

Observation #3: Zero Shot Detection

	Images	Rel. Types	Rel. Instances	# Predicates per Obj. Category
Visual Phrases 6	2,769	13	2,040	120
Scene Graph 8	5,000	23,190	109,535	2.3
VGD	5,000	6,672	37,993	24.25

person ride horse 578 training examples

person wear hat 1023 training examples

horse wear hat 0 training examples

Observation #3: Zero Shot Detection

	Images	Rel. Types	Rel. Instances	# Predicates per Obj. Category
Visual Phrases 6	2,769	13	2,040	120
Scene Graph 8	5,000	23,190	109,535	2.3
VGD	5,000	6,672	37,993	24.25

Zero shot detection

person sit chair 948 training examples

12

hydrant on ground 29 training examples

person sit hydrant0 training examples

Related Work

Combine Language Model

ECCV2016(Oral) Lu C, Krishna R, Bernstein M, et al. Visual relationship detection with language priors[J]. arXiv preprint arXiv:1608.00187, 2016.

Related Work

Combine Language Model

Weakness:

person ride bicycle (3)

DRNet -- Pipeline

Pipeline:

- Appearance Model
 - Object detection: share feature to relation model
- Relation Model
 - Input: Three features (observed feature/raw prediction)
 - From Union Img; (Appearance)
 - From Spatial Mask: (Spatial Config)
 - From Faster-RCNN; (Appearance)
 - Output: three prediction vector(Class number fixed)

CVPR2017(Oral) Dai B, Zhang Y, Lin D. Detecting Visual Relationships with Deep Relational Networks[J]. arXiv preprint arXiv:1704.03114, 2017.

Pipeline

Pipeline:

CVPR2017(Oral) Dai B, Zhang Y, Lin D. Detecting Visual Relationships with Deep Relational Networks[J]. arXiv preprint arXiv:1704.03114, 2017.

Pipeline - Object Detection

Object detection

Output: BBox + Appearance feature

Pair filtering

- low-cost neural network
- Filter out meaningless pair

Pipeline – Object Detection

Relation Model

- Input: Three features (observed feature/raw prediction)
 - From Union Img; (Appearance)
 - From Spatial Mask: (Spatial Config)
 - From Faster-RCNN; (Appearance)
- Output: three prediction vector(Class number fixed)

18

Spatial Mask

Hyper Param

- balance between fidelity and cost

Statistical Relation -- Implement

Inference Unit

$$\mathbf{q}_{s}' = \sigma \left(\mathbf{W}_{a} \mathbf{x}_{s} + \mathbf{W}_{sr} \mathbf{q}_{r} + \mathbf{W}_{so} \mathbf{q}_{o} \right),$$

$$\mathbf{q}_{r}^{\prime}=\boldsymbol{\sigma}\left(\mathbf{W}_{r}\mathbf{x}_{r}+\mathbf{W}_{rs}\mathbf{q}_{s}+\mathbf{W}_{ro}\mathbf{q}_{o}\right),\label{eq:qr}$$

$$\mathbf{q}_{o}^{\prime} = \sigma \left(\mathbf{W}_{a} \mathbf{x}_{o} + \mathbf{W}_{os} \mathbf{q}_{s} + \mathbf{W}_{or} \mathbf{q}_{r} \right).$$

20

Statistical Relation -- Implement

Statistical Relation -- RNN

Statistical Relation -- CRF

- Some Equivalent between Generative model and Discriminative model
- Inference can be unrolled into a forward Neural Network
- Inference Unit is a Computing layer

$$\mathbf{q}_{s}' = \boldsymbol{\sigma} \left(\mathbf{W}_{a} \mathbf{x}_{s} + \mathbf{W}_{sr} \mathbf{q}_{r} + \mathbf{W}_{so} \mathbf{q}_{o} \right),$$

$$\mathbf{q}_{r}' = \boldsymbol{\sigma} \left(\mathbf{W}_{r} \mathbf{x}_{r} + \mathbf{W}_{rs} \mathbf{q}_{s} + \mathbf{W}_{ro} \mathbf{q}_{o} \right),$$

$$\mathbf{q}_{o}' = \boldsymbol{\sigma} \left(\mathbf{W}_{a} \mathbf{x}_{o} + \mathbf{W}_{os} \mathbf{q}_{s} + \mathbf{W}_{or} \mathbf{q}_{r} \right).$$

Toy Example

- Assume
 - Bayesian Net
 - C is label, x is raw feature/observation
 - C is binary, C1, C2
 - $x|C_1 \sim \mathcal{N}(\mu_1, \sigma)$ $x|C_2 \sim \mathcal{N}(\mu_2, \sigma)$
- Prove $p(C_1|x) = \sigma(w^Tx + w_0)$

$$p(C_1|x) = \frac{p(x|C_1)p(C_1)}{p(x|C_1)p(C_1) + p(x|C_2)p(C_2)}$$

$$= \frac{1}{1 + \frac{exp[(x-\mu_2)^2/2\sigma^2]p(C_2)}{exp[(x-\mu_1)^2/2\sigma^2]p(C_1)}}$$

$$= \frac{1}{1 + \frac{p_2}{p_1}exp\left[\frac{\mu_1-\mu_2}{2\sigma^2}x + \frac{\mu_2^2-\mu_1^2}{2\sigma^2}\right]}$$

$$= \frac{1}{1 + exp(w^Tx + w_0)}$$

Statistical Relation -- CRF

Representation

Inference

$$p(r, s, o|\mathbf{x}_r, \mathbf{x}_s, \mathbf{x}_o) = \frac{1}{Z} \exp (\Phi(r, s, o|\mathbf{x}_r, \mathbf{x}_s, \mathbf{x}_o; \mathbf{W})).$$

$$\Phi = \psi_a(s|\mathbf{x}_s; \mathbf{W}_a) + \psi_a(o|\mathbf{x}_o; \mathbf{W}_a) + \psi_r(r|\mathbf{x}_r; \mathbf{W}_r) + \varphi_{rs}(r, s|\mathbf{W}_{rs}) + \varphi_{ro}(r, o|\mathbf{W}_{ro}) + \varphi_{so}(s, o|\mathbf{W}_{so}).$$

$$p(r|s, o, \mathbf{x}_r; \mathbf{W}) \propto \exp (\psi_r(r|\mathbf{x}_r; \mathbf{W}_r) + \varphi_{rs}(r, s|\mathbf{W}_{rs}) + \varphi_{ro}(r, o|\mathbf{W}_{ro})).$$

Unroll into a Network

$$\mathbf{q}_r = \boldsymbol{\sigma} \left(\mathbf{W}_r \mathbf{x}_r + \mathbf{W}_{rs} \mathbf{q}_s + \mathbf{W}_{ro} \mathbf{q}_o \right).$$

$$\begin{aligned} \mathbf{q}_{s}' &= \sigma \left(\mathbf{W}_{a} \mathbf{x}_{s} + \mathbf{W}_{sr} \mathbf{q}_{r} + \mathbf{W}_{so} \mathbf{q}_{o} \right), \\ \mathbf{q}_{r}' &= \sigma \left(\mathbf{W}_{r} \mathbf{x}_{r} + \mathbf{W}_{rs} \mathbf{q}_{s} + \mathbf{W}_{ro} \mathbf{q}_{o} \right), \\ \mathbf{q}_{o}' &= \sigma \left(\mathbf{W}_{a} \mathbf{x}_{o} + \mathbf{W}_{os} \mathbf{q}_{s} + \mathbf{W}_{or} \mathbf{q}_{r} \right). \end{aligned}$$

Visualization

Pair (F)ilter

(A)ppearance Module A1: based on VGG16; A2: based on ResNet101

(S)patial Module

(C)RF

(D)R-Net

Performance

		Predicate l	Recognition	Union Bo	x Detection	Two Boxes Detection	
		Recall@50 Recall@100		Recall@50 Recall@100		Recall@50 Recall@100	
	VP [6]	0.97	1.91	0.04	0.07	-	-
0	Joint-CNN [49]	1.47	2.03	0.07	0.09	0.07	0.09
VRD	VR [1]	47.87	47.87	16.17	17.03	13.86	14.70
	DR-Net	80.78	81.90	19.02	22.85	16.94	20.20
	DR-Net + pair filter	-	-	19.93	23.45	17.73	20.88
svG	VP [6]	0.63	0.87	0.01	0.01	-	-
	Joint-CNN [49]	3.06	3.99	1.24	1.60	1.21	1.58
	VR [1]	53.49	54.05	13.80	17.39	11.79	14.84
	DR-Net	88.26	91.26	20.28	25.74	17.51	22.23
	DR-Net + pair filter	-	-	23.95	27.57	20.79	23.76

Hyper Param

		A_1	A_2	S	A_1S	A_1SC	A_1SD	A_2SD	A ₂ SDF
	Predicate Recognition	63.39	65.93	64.72	71.81	72.77	80.66	80.78	-
VRD	Union Box Detection	12.01	12.56	13.76	16.04	16.37	18.15	19.02	19.93
	Two Boxes Detection	10.71	11.22	12.16	14.38	14.66	16.12	16.94	17.73
SVG	Predicate Recognition	72.13	72.54	75.18	79.10	79.18	88.00	88.26	-
	Union Box Detection	13.24	13.84	14.01	16.04	16.08	20.21	20.28	23.95
	Two Boxes Detection	11.35	11.98	12.07	13.77	13.81	17.42	17.51	20.79

Pair (F)ilter

(A)ppearance Module A1: based on VGG16; A2: based

on ResNet101

(S)patial Module

(C)RF

(D)R-Net

Hyper Param

Future Work

On sVG Dataset

Future Work

On sVG Dataset

https://visualgenome.org/VGViz/explore?query=zebra

32

Future Work

On sVG Dataset

Relationships leg of a zebra wooden fence is zebra sniffing ground zebra is female zebra hair ON zebra shadow ON ground belly ON zebra dirt field is dirt zebra IN corral zebra casting shadow black zebra walking through dirt

zenta is tettiale

black zebra is Black

black zebra is white

dirt field is dirt

zebra is black

zebra is white

white zebra is white

white zebra is black

stripes is black

stripes is white

Sumup

- Multi Feature
 - Spatial configurations
 - Statistical dependencies
- New Fuse Method
 - Relational modeling
 - End-to-end
- Multi Task

Thank You!