

numériques

I. L'ensemble R

semble des majorants, l'ensemble des minorants, le plus grand et le Ex. 8.1 Pour les ensembles suivants, donner lorsqu'ils existent, l'enplus petit élément, la borne inférieure et la borne supérieure. $A = \left\{\frac{1}{n}, n \in \mathbb{N}^*\right\}$ $B = \left\{\frac{1}{n} + (-1)^n, n \in \mathbb{N}^*\right\}$

$$\mathbf{L} = \left\{ \frac{1}{n}, n \in \mathbb{N}^* \right\} \quad B = \left\{ \frac{1}{n} + (-1)^n, n \in \mathbb{N}^* \right\}$$

$$\mathbf{L} = \left\{ \frac{x^2 - 3x + 6}{x - 2}, x \in [3; 7] \right\} \quad D = \mathbb{Q} \cap [0; \pi]$$

$$= \left\{ \frac{n}{x}, n \in \mathbb{Z} \right\}$$

$$= \left\{ \frac{x^2 - 3x + 6}{x - 2}, x \in [3; 7] \right\}$$

$$D = \mathbb{Q} \cap [$$

$$C = \left\{ \frac{x^2 - 3x + 6}{x - 2}, x \in [3; 7] \right\} \quad D = \mathbb{Q} \cap [0; \pi]$$

$$(a, b) \in \mathbb{R}_+^* 2 :$$

$$E = \left\{ a + \frac{b}{n}, n \in \mathbb{N}^* \right\}$$

$$G = \left\{ a + \frac{(-1)^n b}{n}, n \in \mathbb{N}^* \right\}$$

Ex. 8.2 (Cor.) Soit A une partie non vide de R et $\alpha \in \mathbb{R}$ tels que

 $\forall x \in A, x \leq \alpha.$

Montrer que $\sup A \leq \alpha$.

Que peut-on dire si $\forall x \in A, x < \alpha$?

 \mathbb{N}^* , on pose E_n Ex. 8.3 (Cor.) Pour tout entier $n \in \{k + \frac{n}{k}, k \in \mathbb{N}^*\}$.

 \bullet Montrer que E_n admet une borne inférieure et que

$$\inf E_n = \min_{1 \le k \le n} \left(k + \frac{n}{k} \right).$$

• Montrer que $\forall n \in \mathbb{N}^*$, inf $E_n \geq \sqrt{4n}$. Cas d'égalité : inf $E_n = \sqrt{4n}$?

Ex. 8.4 On note
$$\mathcal{A} = \{p + q\sqrt{2}, (p, q) \in \mathbb{Z}^2\} \subset \mathbb{R}$$
, et $\mathcal{A}_+^* = \{x \in \mathcal{A}, x > 0\}$.

a. Montrer que \mathcal{A}_+^* possède une borne inférieure

b. Calculer inf \mathcal{A}_{+}^{*} .

c. Montrer que \mathcal{A} est dense dans \mathbb{R} .

Indication: on pourra tenter d'adapter les deux premières questions à l'ensemble $\mathcal{A}_a = \{x \in \mathcal{A}, x > a\}$ où a est un réel quelconque.

Ex. 8.5 Montrer que pour tout $n \in \mathbb{N}^*$, on a : $\sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}} < \sqrt{n} - \sqrt{n-1}$.

$$\sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}} < \sqrt{n} - \sqrt{n-1}$$
.

En déduire la valeur de $\left\lfloor \frac{1}{2} \sum_{n=1}^{100} \frac{1}{\sqrt{n}} \right\rfloor$.

II. Introduction aux suites

 $x_n = \frac{1}{\sqrt{n^2 + 1 + (-1)^n}}$ Ex. 8.6 Étudier la monotonie des suites définies par : $w_n = \frac{n^3}{5^n}$ $v_n = \frac{n!}{2^n}$

Ex. 8.7

a. Montrer que pour tous réels x et y, on a :

$$[x] + [y] \le [x+y] \le [x] + [y] + 1.$$

b. Montrer que pour tout réel x on $\mathbf{a}: \left\lfloor \frac{x}{2} \right\rfloor + \left\lfloor \frac{x+1}{2} \right\rfloor = \lfloor x \rfloor$.

c. Soit *u* la suite définie par
$$\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, u_{n+1} = n - u_n \end{cases}$$

Calculer u_n en fonction de n (on demande une formule expli-

Ex. 8.8 Soit u la suite définie par $u_{n+1} = \sqrt{2 + u_n}$, $u_0 \in \mathbb{R}$.

- a. Pour quelles valeurs de u_0 la suite est-elle définie?
 - b. Étudier alors sa monotonie.
- c. Pour quelles valeurs de u_0 la suite est-elle bornée?

||Ex. 8.9 (Cor.) Soient $a \in \mathbb{R}$ et u la suite définie par u_{n+1} $\ln\left(e^{u_n}+a\right), u_0 \in \mathbb{R}.$

a. Pour quelles valeurs de u_0 la suite est-elle définie?

b. Pour quelles valeurs de u_0 la suite est-elle bornée?

Ex. 8.10 Soit
$$u$$
 la suite définie par
$$\begin{cases} u_0 = 1 \\ u_1 = 2 \\ u_{n+2} = \sqrt{u_{n+1}u_n} \end{cases}$$
.

Étudier la suite u, préciser notamment sa limite si elle existe.

 $u_{n+2}+u_{n+1}+u_n=0$ et v une suite réelle vérifiant $v_{n+2}+av_{n+1}+bv_n=0$. **Ex.** 8.11 Soient a, b deux constantes réelles, u une suite réelle vérifiant

- a. Montrer sans calculer son terme général que u est périodique de
- b. Calculer le terme général u_n en fonction de n et retrouver le résultat précédent
- Montrer qu'il existe un nombre complexe $Z = \rho e^{i\theta}$ vérifiant à la fois l'équation caractéristique $(E_c): Z^2 + aZ + b = 0$ et l'équac. On suppose que la suite v est non nulle et périodique de pétion $Z^p - 1 = 0$.

Indication : on envisagera plusieurs cas possibles suivant la nature des solutions de (E_c) d. Exhiber une suite récurrente linéaire d'ordre 2 qui soit périodique de plus petite période 5.

Indication : en posant $\phi = \frac{1+\sqrt{5}}{2}$ le nombre d'or, on pourra

 $X^4 + X^3 + X^2 + X + 1 = (X^2 + \phi X + 1)(X^2 - \frac{X}{\phi} + 1).$

Ex. 8.12 Calculer pour $n \in \mathbb{N}^*$, $S_n = 1 + 11 + 111 + ... + 1...$

III. Limite d'une suite réelle | Ex. 8.18

Étudier les limites suivantes : Ex. 8.13

$$\lim_{n \to +\infty} n + 2\sin(n^2) \qquad \lim_{n \to +\infty} 2n + (-1)^n n \qquad \lim_{n \to +\infty} \frac{\sin n}{n}$$

$$\lim_{n \to +\infty} \sqrt{n+1} - \sqrt{n} \qquad \lim_{n \to +\infty} \frac{2n - 3^n}{2n + 3^n} \qquad \lim_{n \to +\infty} \left(\frac{1 - a^2}{1 + a^2}\right)^n, a \in \mathbb{R}$$

$$\lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^{2n} \qquad \lim_{n \to +\infty} \left(1 + \frac{1}{n^2}\right)^n \qquad \lim_{n \to +\infty} \frac{\sin n}{\left(1 - \frac{1}{n^2}\right)^n}$$

- a. Simplifier pour tout $n \in \mathbb{N}^*$ l'expression $\frac{1}{n} \frac{1}{n+1}$.
- b. Calculer $\lim_{n \to +\infty} \sum_{p=1}^{"} \frac{1}{p(p+1)}$.
- c. Montrer que $\lim_{n\to+\infty}\sum_{p=1}^n\frac{1}{p^2}$ est finie et en donner un encadrement d'amplitude 1.

- a. Montrer que $\forall p \in \mathbb{N}^*$, $\frac{1}{p+1} \leq \ln(p+1) \ln(p) \leq \frac{1}{p}$.
- b. Calculer $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n$.
- c. Montrer que $\lim_{n \to +\infty} \sum_{p=1}^{\infty} \frac{1}{p} = +\infty$.

Ex. 8.16 Montrer que la suite u définie par $u_{n+1} = u_n^2 + \frac{1}{4}, u_0 \in \mathbb{R}$ est croissante quelle que soit la valeur de $u_0 \in \mathbb{R}$. Pour quelle(s) valeur(s) de u_0 la suite est-elle majorée?

Montrer l'existence de $\lim_{n\to+\infty} u_n$ puis donner sa valeur.

- Soit $x \in \mathbb{R}$. Déterminer $\lim_{n \to +\infty} \frac{\lfloor x \rfloor + \lfloor 2x \rfloor + \ldots + \lfloor nx \rfloor}{n^2}$ **Ex.** 8.17
- Montrer en utilisant des suites extraites que $\left(\sin\left(\frac{\pi n}{2}\right)\right)_{n\in\mathbb{N}}$
 - Faire de même pour $\left(\cos\left(n\pi + \frac{1}{n}\right)\right)_{n \in \mathbb{N}}$ puis pour $\left(\sqrt{n} \lfloor \sqrt{n} \rfloor\right)_{n \in \mathbb{N}}$.

Ex. 8.19 On considère les suites définies par $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $\frac{\mathbf{Ex.} 8.24}{k!}$

$$v_n = u_n + \frac{1}{m \cdot n!}.$$

Montrer que u et v convergent vers une même limite.

Ex. 8.20 Soit *u* définie par
$$u_1 = 1$$
 et $u_{n+1} = \frac{1}{n}e^{-u_n}$.

- a. Montrer que $\forall n \in \mathbb{N}^*, u_n > 0$.
- b. Montrer que u est convergente et déterminer sa limite.

Ex. 8.21 Soit $z_0 \in \mathbb{C}$ et $(z_n)_{n \in \mathbb{N}}$ la suite définie par $z_{n+1} = \frac{z_n + |z_n|}{2}$

- a. Donner une construction géométrique de z_{n+1} à partir de z_n .
- b. Étudier cette suite dans les cas où $z_0 = 0$, $z_0 \in \mathbb{R}_+^*$ et $z_0 \in \mathbb{R}_-^*$.
- c. Montrer que $z_0 \notin \mathbb{R} \Rightarrow \forall n \in \mathbb{N}, z_n \notin \mathbb{R}$.
- d. On suppose que $z_0 \notin \mathbb{R}$. Étudier la convergence de (z_n) . [Indication : écrire les termes de la suite sous forme exponentielle.]

IV. Révisions

Ex. 8.22 Donner une formule explicite pour $y: \mathbb{R} \to \mathbb{K}$ ou $u: \mathbb{N} \to \mathbb{K}$ en envisageant successivement les deux cas $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$:

a.
$$y' = y - 1$$
 et $u_{n+1} = u_n - 1$

b.
$$y'' = -y' + y$$
 et $u_{n+2} = -u_{n+1} + u_n$.

Ex. 8.23 Soit $n \in \mathbb{N}$.

Calculer
$$S_n = \sum_{0 \le i \le j \le n} {j \choose i}$$
 et $T_n = \sum_{0 \le i \le j \le n} (-1)^i {j \choose i}$.
En déquire la valeur de $\sum_{i \in j \in n} {j \choose i}$ et $\sum_{i \in j \in n} {j \choose i}$.

En déduire la valeur de $\sum_{0 \le i \le j \le n} \binom{j}{i} \text{ et } \sum_{0 \le i \le j \le n} \binom{j}{i}.$

Ex. 8.24 En remarquant que $\forall x \in [0;1], x^2 \leqslant x$, montrer que

$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n |\cos(k)| \geqslant \frac{n}{4}$$

Corrections

Cor. 8.2 : Par définition, α est un majorant de A. Donc A, non vide et majoré, possède une borne supérieure qui est le plus petit de ces majorants, en particulier inférieure ou égale à α . Si $\forall x \in A, x < \alpha$, on a encore $\sup A \leq \alpha$. Le même raisonnement que précédemment reste valable.

Attention cependant, il est possible que sup $A=\alpha$. L'inégalité stricte n'est donc pas vérifiée pour la borne supérieure. Par exemple, si $A=\left\{1-\frac{1}{n},n\in\mathbb{N}\right\}$, on a

$$\forall x \in A, x < 1$$
, mais $\sup A = 1$ car $\lim_{n \to +\infty} \left(1 - \frac{1}{n}\right) = 1$.

Cor. 8.3:

- E_n est minoré par 0 et admet donc une borne inférieure. De plus, si $k \ge n+1$, alors $k+\frac{n}{k} > k \ge n+1$. Or pour k=n, on a $k+\frac{n}{k}=n+1$. Donc la borne inférieure est atteinte pour $k \le n$, c'est-à-dire : inf $E_n = \inf_{1 \le k \le n} \left(k+\frac{n}{k}\right)$.
- Étudions la fonction $f(x) = x + \frac{n}{x}$. Elle est définie et dérivable sur \mathbb{R}_+^* et $f'(x) = 1 \frac{n^2}{x^2}$. $f'(x) > 0 \Leftrightarrow 1 > \frac{n^2}{x^2} \Leftrightarrow x > \sqrt{n}$ sur \mathbb{R}_+^* .

 Donc f passe par un minimum en $x = \sqrt{n}$, valeur pour laquelle f(x) = 1

 $f(\sqrt{n}) = 2\sqrt{n}$. Donc $\forall n \in \mathbb{N}^*$, inf $E_n \ge \sqrt{4n}$.

Pour qu'il y ait égalité, dans la mesure où inf $E_n = \inf_{1 \le k \le n} \left(k + \frac{n}{k}\right)$ est la borne inférieure d'un ensemble fini et qu'elle est donc atteinte, il faut que le minimum de la fonction f soit atteint c'est-à-dire que n soit un carré.

Cor 80.

- a. On distingue deux cas:
- Si $a \ge 0$, alors $\forall x \in \mathbb{R}, e^x + a > 0$, donc la suite u est définie pour toute valeur de $u_0 \in \mathbb{R}$.
 - Sinon, a < 0 donc -a > 0. Soit $f: \ln(-a); +\infty[\mapsto \ln(e^x + a).$ f est bien définie car

$$\forall x > \ln(-a), e^x > e^{\ln(-a)} = -a \Rightarrow \forall x > \ln(-a), e^x + a > 0.$$

Étudions f : c'est une fonction dérivable sur son ensemble de définition comme composée de fonctions dérivables et

$$\forall x \in] \ln(-a); +\infty[, f'(x) = \frac{e^x}{e^x + a} > 0. \text{ Donc } f \text{ est strictement croissante, continue (car dérivable) donc bijective de } \ln(-a); +\infty[\text{ sur } \mathbb{R} (\text{car } f(x) \xrightarrow[x \to \ln(-a) + \infty] + \infty[\text{ sur } \mathbb{R})$$

Notamment, il existe des valeurs de $u_0 \in]\ln(-a); +\infty[$ pour lesquelles u n'est pas définie puisque $\forall u_1 < \ln(-a), \exists u_0 \in]\ln(-a); +\infty[, u_1 =$ $f(u_0)$, le terme u_2 n'étant alors pas défini.

L'étude de l'existence de la suite u apparaît donc compliquée au pre-

On s'en remet à la méthode du cours et on étudie le signe de $g: x \in]\ln(-a); +\infty[\mapsto \ln(e^x + a) - x = \ln\left(\frac{e^x + a}{e^x}\right)$

Comme a < 0, $\forall x \in]\ln(-a); +\infty[, e^x + a < e^x \text{ donc } g < 0$. La suite u, si elle est définie, est donc strictement décroissante.

Montrons par l'absurde que que le que soit la valeur de u_0 , u n'est

Supposons que u soit définie et soit $U = \{u_n, n \in \mathbb{N}\}$. La suite étant supposée définie, on a $U \subset \ln(-a); +\infty[$, en particulier U est minorée, non vide, donc possède une borne inférieur $\mu = \inf U$. dans ce cas pas définie.

Or g < 0 et f bijective, strictement croissante de $]\ln(-a); +\infty[$ sur $\mathbb R$

- * d'une part, $f(\mu) < \mu$ et $\forall y \in]f(\mu); \mu[, \exists x > \mu, y = f(x);$ * d'autre part, d'après le lemme fondamental 8.12, il existe $u_n \in U$

On en déduit que $u_{n+1} = f(u_n) < f(x) < \mu$ ce qui est absurde puisque μ est la borne inférieure de U donc minore la suite u. En résumé, la suite u est définie si et seulement si $a \ge 0$, et ceci quelle que soit la valeur de $u_0 \in \mathbb{R}$.

b. On suppose donc $a \ge 0$, $u_0 \in \mathbb{R}$. On distingue à nouveau deux cas :

- si a = 0, $\forall n \in \mathbb{N}, u_{n+1} = \ln(e^{u_n}) = u_n$. La suite est donc constante (donc bornée) quelle que soit $u_0 \in \mathbb{R}$.
 - ullet si a>0, une étude similaire à celle de la question précédente montre
- \star g est strictement positive sur R;
- $\star~u$ est par conséquent strictement croissante donc minorée par son
 - que l'hypothèse de l'existence d'un majorant pour u conduit à une

En résumé, la suite u est bornée si et seulement si a=0, auquel cas la suite est constante et égale à u_0 quel que soit $u_0 \in \mathbb{R}$.

Cor. 8.15:

a. Lemme: $\forall x \in]-1; +\infty[, \ln(1+x) \leqslant x.$

En effet, en définissant la fonction $f: x \in]-1; +\infty[\mapsto \ln(1+x) - x$ qui est dérivable et continue sur son intervalle de définition, on a :

$$\in]-1;+\infty[,f'(x)]=\frac{1}{1+x}-1=\frac{-x}{1+x}$$
 qui est du signe de $-x$.

 $\forall x \in]-1;+\infty[,f'(x)=\frac{1}{1+x}-1=\frac{-x}{1+x}$ qui est du signe de -x. Donc f est croissante sur]-1;0] et décroissante sur \mathbb{R}_+ , elle passe donc par un maximum en 0 qui vaut $f(0)=\ln(1)=0$ ce qui achève la démonstration du lemme.

Or $\forall p \in \mathbb{N}^*, \ln(p+1) - \ln(p) = \ln\left(\frac{p+1}{p}\right) = \ln\left(1 + \frac{1}{p}\right) \leqslant \frac{1}{p}$ (qui appartient bien à $]-1;+\infty[).$

bien a $\rfloor - 1; +\infty \lfloor j$. De même $\forall p \in \mathbb{N}^*, \ln(p+1) - \ln(p) = -\ln\left(\frac{p}{p+1}\right) = -\ln\left(\frac{p+1-1}{p+1}\right)$: $-\ln\left(1+\frac{-1}{p+1}\right).$

Donc $\forall p \in \mathbb{N}^*$, $\ln(p+1) - \ln(p) \geqslant -\frac{-1}{p+1}$ (car $\frac{-1}{p+1} \in]-1; +\infty[$). b. $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to +\infty} e^{\ln(1 + \frac{1}{n})}$.

Or d'après la question précédente, $\forall n \in \mathbb{N}^*$, $\frac{1}{n+1} \leqslant \ln\left(1 + \frac{1}{n}\right) \le \frac{1}{n}$.

En utilisant le théorème des gendarmes on obtient donc $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n =$

c. D'après la première question, $\sum_{p=1}^n \frac{1}{p} \geqslant \sum_{p=1}^n \ln(p+1) - \ln(p) = \ln(n+1)$

(télescopage). Or $\lim_{n\to +\infty} \ln(n+1) = +\infty$ donc d'après le théorème des gendarmes $\lim_{n\to +\infty} \sum_{p=1}^n \frac{1}{p} = +\infty.$