GRAPH CLUSTERING ALGORITHMS

CST 302 Algorithm Analysis and Design

TEAM MEMBERS

- Angel Sebastian (11), IDK22CS011
- Ansu Kurian(14), IDK22CS014
- Devika Saji(24) , IDK22CS024
- Sunisha KS(75), IDK22CS075

Faculty: Prof.Anish Abraham

PROBLEM DEFINITION

Problem: Graph Clustering

Given a graph, partition the vertices into clusters such that vertices within the same cluster are densely connected, while vertices in different clusters are sparsely connected.

Goal: Identify communities or groups in the graph.

Applications:

Social network analysis (community detection)

Recommendation systems

ALGORITHM-1: K - Means Clustering

A centroid-based clustering algorithm that partitions data into k clusters by minimizing the variance within each cluster.

Adapted for graph clustering by using graph embeddings or node features.

Best for: Graphs with node features or embeddings.

PSEUDOCODE:

KMeansClustering(G, k):

Initialize k centroids randomly

while not converged:

Assign each node to the nearest centroid

Update centroids as the mean of the nodes in each cluster

return the final clusters

Time Complexity

 $O(n \cdot k \cdot d \cdot I)$

n: Number of nodes in the graph. k: Number of clusters.

d: Dimensionality of the node features or embeddings. I: Number of iterations until convergence.

- In each iteration, the algorithm computes the distance between each node and each \cdot centroid (O(n \cdot k \cdot d)).
- This process is repeated for I iterations until convergence.
- The complexity is linear in terms of the number of nodes (n) but scales with the number of clusters (k) and dimensions (d).

Space Complexity:

- O(n.d)

- The algorithm stores the node features or embeddings, which require O(n \cdot d) space.
- Additional space for centroids and distances is negligible compared to the node data.

ALGORITHM-2: Louvain Method

A greedy optimization method that maximizes modularity, a measure of the quality of a graph partition.

Iteratively moves nodes between communities to improve modularity.

Best for: Large-scale graphs with hierarchical community structures.

PSEUDOCODE

Louvain Method(G):

Initialize each node as its own community

while modularity improves:

for each node:

Move node to the community that maximizes modularity

Aggregate communities into super-nodes

return the final partition

Time Complexity

- O(V log V) (on average)
 - V: Number of vertices (nodes) in the graph.

- The Louvain method iteratively optimizes modularity by moving nodes between communities.
- Each node is processed in O(log V) time on average due to the greedy optimization and hierarchical aggregation.
- The algorithm is efficient for large-scale graphs because it avoids expensive matrix operations.

Space Complexity:

- -O(V+E)
 - V: Number of vertices.
 - E: Number of edges.

- The graph is stored using an adjacency list, which requires O(V + E) space.
- Additional space is needed for storing community assignments and modularity gains, but this is typically linear in terms of V.

ALGORITHM-3 Spectral Clustering

Uses the eigenvalues and eigenvectors of the graph Laplacian matrix to perform dimensionality reduction before clustering.

Converts the graph into a lower-dimensional space where clustering is easier.

Best for: Graphs with clear community structures.

PSEUDOCODE:

Spectral Clustering(G, k):

Compute the Laplacian matrix L of the graph G

Compute the first k eigenvectors of L

Use k-means clustering on the eigenvectors to partition the graph into k clusters

Time Complexity

 $O(V^3)$

V Number of vertices.

- The most expensive step is computing the eigenvalues and eigenvectors of the Laplacian matrix, which takes $O(V^3)$ time for a dense matrix
- If the graph is sparse, specialized algorithms (e.g., Lanczos method) can reduce this to $O(k \cdot E)$, where k is the number of eigenvectors computed.
- The subsequent k-means step adds O(V \cdot k \cdot I) time, but this is dominated by the eigenvalue decomposition.

Space Complexity

 $O(V^2)$

- The Laplacian matrix requires $O(V^2)$ space for a dense graph.
- For sparse graphs, this can be reduced to O(V + E) using sparse matrix representations.
 - The eigenvectors also require $O(V \cdot k)$ space.

ALGORITHM-4: Affinity Propagation

A message-passing algorithm that identifies exemplars (cluster centers) based on the similarity between nodes.

Does not require the number of clusters to be specified in advance.

Best for: Graphs with small to moderate size and no prior knowledge of cluster count.

PSEUDOCODE

AffinityPropagation(G):

Initialize similarity matrix S

Initialize responsibility and availability matrices

while not converged:

Update responsibility matrix

Update availability matrix

Extract exemplars and assign nodes to clusters

Time Complexity:

- $-O(V^2 \cdot I)$
 - V: Number of vertices.
 - I: Number of iterations until convergence.

- The algorithm computes and updates two matrices: responsibility (R) and availability (A), each of size $V \times V$.
 - In each iteration, all pairs of nodes are processed, leading to $O(V^2)$ time per iteration.
 - The total time depends on the number of iterations (I) required for convergence.

Space Complexity:

 $- O(V^2)$

- The similarity matrix, responsibility matrix, and availability matrix each require $O(V^2)$ space.
 - This makes the algorithm memory-intensive for large graphs.

COMPARISON OF GRAPH CLUSTERING ALGORITHMS

ALGORITHM	TIME COMPLEXITY	SPACE COMPLEXITY	BEST FOR	APPROACH
K-Means Clustering	O(n.k.d.l)	O(n.d)	Graphs with node features/embedding	Centroid-based clustering
Lovain Method	O(V log V)	O(V+E)	Large-scale hierarchical graph	Greedy modularity optimization
Spectral Clustering	O(V³)	O(V ²)	Graphs with clear community structures	Eigenvalue decomposition +k-means
Affinity Propagation	O(V ² .I)	O(V ²)	Small to moderate graphs	Message passing

References

- 1) MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability.*
- 2) Blondel, V. D., et al. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.
- **3) Von Luxburg, U. (2007)**. A tutorial on spectral clustering. *Statistics and Computing*, 17(4), 395–416.
- **4) Frey, B. J., & Dueck, D. (2007)**. Clustering by passing messages between data points. *Science, 315(5814), 972–976*.

THE END