CSE 547 - Assignment 1

Philip Pham

May 16, 2018

Problem 0

List of collaborators: I have not collaborated with anyone.

List of acknowledgements: None.

Certify that you have read the instructions: I have read and understood these policies.

Problem 1: Gaussian Random Projections and Inner Products

Let $\phi(x) = \frac{1}{\sqrt{m}}Ax$ represent our random projection of $x \in \mathbb{R}^d$, with A an $m \times d$ projection matrix with each entry sampled i.i.d from N(0,1). Note that each row of A is a random projection vector, $v^{(i)}$.

The norm preservation theorem states that for all $x \in \mathbb{R}^d$, the norm of the random projection $\phi(x)$ approximately maintains the norm of the original x with high probability:

$$\mathbb{P}\left((1 - \epsilon)\|x\|^{2} \le \|\phi(x)\|^{2} \le (1 + \epsilon)\|x\|^{2}\right) \ge 1 - 2\exp\left(-\left(\epsilon^{2} - \epsilon^{3}\right)m/4\right),\tag{1}$$

where $\epsilon \in (0, 1/2)$.

Using the norm preservation theorem, prove that for any $u, v \in \mathbb{R}^d$ such that $||u|| \leq 1$ and $||v|| \leq 1$,

$$\mathbb{P}\left(\left|u \cdot v - \phi\left(u\right) \cdot \phi\left(v\right)\right| \ge \epsilon\right) \le 4\exp\left(-\left(\epsilon^2 - \epsilon^3\right)m/4\right) \tag{2}$$

Solution

Proof. First note that

$$(1 - \epsilon) \|u + v\|^2 \le \|\phi(u + v)\|^2 \le (1 + \epsilon) \|u + v\|^2$$

implies that

$$||u+v||^2 - 2\epsilon \le ||\phi(u+v)||^2 \le ||u+v||^2 + 2\epsilon \tag{3}$$

by triangle inequality and the assumption of the norms of u and v.

Thus, the probability of the event in Equation 3 than that of Equation 1.

Using this and taking the additive inverse, we have that

$$\mathbb{P}\left(\|\phi(u+v)\|^2 \not\in \left[\|u+v\|^2 - 2\epsilon, \|u+v\|^2 + 2\epsilon\right]\right) \le 2\exp\left(-\left(\epsilon^2 - \epsilon^3\right)m/4\right) \tag{4}$$

$$\mathbb{P}\left(\|\phi(u-v)\|^2 \not\in \left[\|u-v\|^2 - 2\epsilon, \|u-v\|^2 + 2\epsilon\right]\right) \le 2\exp\left(-\left(\epsilon^2 - \epsilon^3\right)m/4\right). \tag{5}$$

By the countable sub-additivity property of probability distributions, we have that the probability of both these events occurring is at most $4 \exp\left(-\left(\epsilon^2 - \epsilon^3\right) m/4\right)$. Thus, we are done if we can show $\{|u \cdot v - \phi(u) \cdot \phi(v)| \ge \epsilon\}$ subsets these two conditions.

If we have the pair

$$\|\phi(u+v)\|^2 \le \|u+v\|^2 - 2\epsilon \Rightarrow \|u+v\|^2 - \|\phi(u+v)\|^2 \ge 2\epsilon \tag{6}$$

$$\|\phi(u-v)\|^2 \ge \|u-v\|^2 + 2\epsilon \Rightarrow \|u-v\|^2 - \|\phi(u-v)\|^2 \ge 2\epsilon,\tag{7}$$

we can use the linearity of ϕ and the expansion $||u \pm v||^2 = ||u||^2 + ||v||^2 \pm 2u \cdot v$, we can add the two inequalities to obtain

$$4\left(u \cdot v - \phi\left(u\right) \cdot \phi\left(v\right)\right) \ge 4\epsilon.$$

Thus, we have that the conditions in Equations 4 and 5 imply $u \cdot v - \phi(u) \cdot \phi(v) \ge \epsilon$. Similarly, we show that the pair

$$\|\phi(u+v)\|^2 \ge \|u+v\|^2 + 2\epsilon \tag{8}$$

$$\|\phi(u-v)\|^2 \le \|u-v\|^2 - 2\epsilon \tag{9}$$

implies
$$u \cdot v - \phi(u) \cdot \phi(v) \le -\epsilon$$
, which gives us $|u \cdot v - \phi(u) \cdot \phi(v)| \ge \epsilon$.

Problem 2: Locality-Sensitive Hashing (LSH) for Angle Similarity

Suppose our set of n points $D = \{p_1, \ldots, p_n\}$ are vectors in d dimensions. Our problem is: given a query point q find a point $p \in D$, which has a small angle with q. Recall that the angle between two vectors a and b is $\cos^{-1}\left(\frac{a \cdot b}{\|a\| \|b\|}\right)$.

As doing this exactly may be computationally expensive, let us try to do this approximately with a fast algorithm. The approximate objective is as follows: suppose there exists a point $p \in D$ which has angle less than θ with p, then our goal is return a point with angle less than $c\theta$, where c > 1.

Let us try to do this with LSH. Let us consider the a family of hash functions, where $h(p) = \text{sign}(u \cdot p)$ where we will sample u uniformly at random from a Gaussian (or from a unit sphere).

1. Provide an exact expression for $\mathbb{P}(h(p) = h(p'))$ based on some geometric relation between p and p'.

Solution

Define

$$\operatorname{angle}(u, v) = \cos^{-1}\left(\frac{u \cdot v}{\|u\| \|v\|}\right),\tag{10}$$

which is the angle between two vectors.

Then,

$$\mathbb{P}\left(h\left(p\right) = h\left(p'\right)\right) = 1 - \frac{\operatorname{angle}\left(p, p'\right)}{\pi}.$$
(11)

- 2. Provide an expression for P_1 and P_2 in terms of θ and $c\theta$. Note that since we want a small angle, we should use:
 - (a) If angle $(p, p') < \theta$, then $\mathbb{P}(h(p) = h(p')) \ge P_1$.
 - (b) If angle $(p, p') > c\theta$, then $\mathbb{P}(h(p) = h(p')) \leq P_2$.

Solution

If angle $(p, p') < \theta$, then

$$\mathbb{P}\left(h\left(p\right) = h\left(p'\right)\right) = 1 - \frac{\operatorname{angle}\left(p, p'\right)}{\pi} \ge 1 - \frac{\theta}{\pi},$$

so
$$P_1 = 1 - \frac{\theta}{\pi}$$
.

If angle $(p, p') > c\theta$, then

$$\mathbb{P}\left(h\left(p\right) = h\left(p'\right)\right) = 1 - \frac{\operatorname{angle}\left(p, p'\right)}{\pi} \le 1 - \frac{c\theta}{\pi},$$

so
$$P_2 = 1 - \frac{c\theta}{\pi}$$
.

3. Provide expressions for query time for point q, the space to store the hash tables, and the construction time of our datastructure.

Solution

Suppose we have L hash functions. If we use the algorithm discussed in class, to query a point, we need to compute L hashes. Then, up to 3 times, we iterate through the buckets: for each bucket, we choose a point and check how close it is to q; if it is $c\theta$ close, we stop. The worst case is that we decide there exists no point that is θ close to q. In this case, we iterate through the L buckets 3 times, so the time complexity is O(L).

For the space needed to store the hash tables, we need to store L bits for each point, so the space needed is O(nL)

For construction, we need to compute L hashes for each point, so the computational complexity is O(nL) as well.

Problem 3: Dual Coordinate Ascent

Consider the problem

$$\min_{w} L(x), \text{ where } L(x) = \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda \|w\|^2.$$
 (12)

1. Show that the solution for Equation 12 is obtained for weights

$$w^* = (X^{\mathsf{T}}X + \lambda I)^{-1} X^{\mathsf{T}}Y \tag{13}$$

$$= \frac{1}{\lambda} X^{\mathsf{T}} \alpha^*, \tag{14}$$

where $\alpha^* = (I + XX^{\dagger}/\lambda)^{-1}$.

Solution

Proof. We can take the derivative of L in Equation 12 directly. Note that $D(x \mapsto Ax)(x) = A$ and $D(x \mapsto x^{\mathsf{T}}x)(x) = 2x^{\mathsf{T}}$. Therefore by the chain rule,

$$D(x \mapsto (Ax)^{\mathsf{T}}(Ax))(x) = 2x^{\mathsf{T}}A^{\mathsf{T}}A. \tag{15}$$

We can reformulate Equation 12 as a function of w

$$l_{X,y}(w) = (Aw - y)^{\mathsf{T}} (Aw - y) + \lambda w^{\mathsf{T}} w$$

= $(Aw)^{\mathsf{T}} (Aw) - 2y^{\mathsf{T}} Aw + y^{\mathsf{T}} y + \lambda w^{\mathsf{T}} w.$ (16)

Taking the derivative, we have that

$$D(l_{X,y})(w) = 2w^{\mathsf{T}}X^{\mathsf{T}}X - 2y^{\mathsf{T}}X + 2\lambda w^{\mathsf{T}}.$$
(17)

Setting Equation 17 to 0 and solving for w, we have

$$0 = 2w^{\mathsf{T}}X^{\mathsf{T}}X - 2y^{\mathsf{T}}X + 2w^{\mathsf{T}}$$

$$w^{\mathsf{T}}(X^{\mathsf{T}}X + \lambda I) = y^{\mathsf{T}}X$$

$$(X^{\mathsf{T}}X + \lambda I) w = X^{\mathsf{T}}y$$

$$w = (X^{\mathsf{T}}X + \lambda I)^{-1}X^{\mathsf{T}}y.$$

Since Equation 16 is a quadractic form, the problem is convex, and

$$w^* = (X^{\mathsf{T}}X + \lambda I)^{-1} X^{\mathsf{T}}Y$$

minimizes Equation 12.

Now, note that

$$(X^{\mathsf{T}}X + \lambda I)X^{\mathsf{T}} = X^{\mathsf{T}}XX^{\mathsf{T}} + \lambda X^{\mathsf{T}} = X^{\mathsf{T}}(XX^{\mathsf{T}} + \lambda I).$$

Multiplying on the left by $(X^{\dagger}X + \lambda I)^{-1}$ and on the right by $(XX^{\dagger} + \lambda I)^{-1}$, we have that

$$X^\intercal \left(X X^\intercal + \lambda I \right)^{-1} = \left(X^\intercal X + \lambda I \right)^{-1} X^\intercal.$$

Substituting this into Equation 13, we obtain

$$\begin{split} w^* &= X^\intercal \left(X X^\intercal + \lambda I \right)^{-1} y \\ &= X^\intercal \left(\lambda \left(I + \frac{X X^\intercal}{\lambda} \right) \right)^{-1} y \\ &= \frac{1}{\lambda} X^\intercal \left(I + \frac{X X^\intercal}{\lambda} \right)^{-1} y, \end{split}$$

which gives us the desired result.

If $\lambda = 0$, in general, this is not true since $XX^{\dagger} + \lambda I$ may not be invertable when n > d. However, if $d \ge n$, and rank $(X) \ge n$, Equation 14 may still be well-defined.

2. Define

$$G(\alpha_1, \alpha_2, \dots, \alpha_n) = \frac{1}{2} \alpha^{\mathsf{T}} \left(I + X X^{\mathsf{T}} / \lambda \right) \alpha - Y^{\mathsf{T}} \alpha. \tag{18}$$

Start with $\alpha = 0$. Choose coordinate i randomly, and update

$$\alpha_i = \arg\min_{z} G(\alpha_1, \dots, \alpha_{i-1}, z, \alpha_{i+1}, \dots, \alpha_n).$$
(19)

Show that the solution to the inner optimization problem for α_i is:

$$\alpha_i = \frac{y_i - \frac{1}{\lambda} \left(\sum_{j \neq i} \alpha_j x_j \right) \cdot x_i}{1 + \|x_i\|^2 / \lambda}.$$
 (20)

Solution

Proof. We can take the partial derivative of Equation 18 directly to obtain

$$\frac{\partial G}{\partial \alpha_i} = \alpha_i + \frac{1}{\lambda} \left(\alpha^{\mathsf{T}} X X^{\mathsf{T}} \right)_i - y_i
= \alpha_i + \frac{1}{\lambda} \left(\alpha_i \|x_i\|^2 + \sum_{j \neq i} \alpha_j \left(x_j \cdot x_i \right) \right) - y_i.$$
(21)

Setting Equation 21 to 0, solving for α_i , and taking advantage of convexity, we find

$$\alpha_i = \frac{y_i - \left(\sum_{j \neq i} \alpha_j x_j\right) \cdot x_i}{1 + \|x_i\|^2 / \lambda} \tag{22}$$

minimizes Equation 18 as a function of α_i , and solves the inner optimization problem.

3. What is the computational complexity of this update, as it is stated?

Solution

The complexity of updating α_i with Equation 20 is O(nd) since we need to iterate over the n rows of X, and take the d-dimensional dot product of each row with x_i .

4. What is the computational complexity of one stochastic gradient descent update?

Solution

The complexity of one stochastic gradient descent update is O(d). We computed the derivative in Equation 17 for the full matrix X. In stochastic gradient descent we'd replace X by a vector by randomly sampling a row from X. Then, to compute the gradient we have to do some dot products along with scalar operations.

- 5. Now consider the procedure.
 - Start with $\alpha = 0$, $w = \frac{1}{\lambda} X^{\mathsf{T}} \alpha = 0$.
 - Choose coordinate *i* randomly and perform the following update:
 - Compute the differences:

$$\Delta \alpha_i = \frac{(y_i - w \cdot x_i) - \alpha_i}{1 + \|x_i\|^2 / \lambda} \tag{23}$$

- Update the parameters as follows:

$$\alpha_i \leftarrow \alpha_i + \Delta \alpha_i w \leftarrow w + \frac{\Delta \alpha_i}{\lambda} x_i.$$
 (24)

Prove that the update rule in Equation 24 is valid.

Solution

Proof. Let α' and w' be the result of updating coordinate i of α . Assume that $w = \frac{1}{\lambda} X^{\mathsf{T}} \alpha$. This is true when $\alpha = 0$. We will show that this invariant holds as α is updated.

To see that, the update rule for w is valid, we can rewrite

$$w = \frac{\alpha_1}{\lambda} x_1 + \dots + \frac{\alpha_i}{\lambda} x_i + \dots + \frac{\alpha_n}{\lambda} x_n, \tag{25}$$

so

$$w' = w + \frac{\Delta \alpha_i}{\lambda} x_i$$

$$= \frac{\alpha_1}{\lambda} x_1 + \dots + \frac{\alpha_i + \Delta \alpha_i}{\lambda} x_i + \dots + \frac{\alpha_n}{\lambda} x_n$$

$$= \frac{\alpha_1}{\lambda} x_1 + \dots + \frac{\alpha'_i}{\lambda} x_i + \dots + \frac{\alpha_n}{\lambda} x_n$$

$$= \frac{1}{\lambda} X^{\mathsf{T}} \alpha'.$$

Thus, the w update is valid.

To see that the α update is valid, we show that Equations 20 and 24 are equivalent. Both algorithms initiate $\alpha = 0$, so they are equivalent at the initial step.

By using the definition $w = \frac{1}{\lambda} X^{\mathsf{T}} \alpha$,

$$\begin{aligned} \alpha_{i}' &= \alpha_{i} + \Delta \alpha_{i} \\ &= \frac{(y_{i} - w \cdot x_{i}) - \alpha_{i}}{1 + \|x_{i}\|^{2} / \lambda} + \frac{\alpha_{i} + \alpha_{i} \|x_{i}\|^{2} / \lambda}{1 + \|x_{i}\|^{2} / \lambda} \\ &= \frac{1}{1 + \|x_{i}\|^{2} / \lambda} \left(y_{i} - \frac{1}{\lambda} \left(\sum_{j \neq i} \alpha_{j} x_{j} \right) \cdot x_{i} - \frac{1}{\lambda} \alpha_{i} \|x_{i}\|^{2} + \frac{1}{\lambda} \alpha_{i} \|x_{i}\|^{2} \right) \\ &= \frac{y_{i} - \frac{1}{\lambda} \left(\sum_{j \neq i} \alpha_{j} x_{j} \right) \cdot x_{i}}{1 + \|x_{i}\|^{2} / \lambda}, \end{aligned}$$

so both update rules are equivalent.

6. What is the computation complexity of the update defined by Equations 23 and 24?

Solution

The computation complexity is O(d). Computing the dot product when computing $\Delta \alpha_i$ and updating w are both O(d) operations. Everywhere else, we do scalar operations. This is much faster than the O(nd) update for Equation 20.

Problem 4: Project Milestone

Build a simple object dection model. Our object detector will comprise of a binary classifier per category: given features of an image patch corresponding to a bounding box, does this patch contain an object of the category of interest?

Solution