

Array 1

Array 1 Dimensi

Tujuan:

Di akhir pertemuan, mahasiswa diharapkan mampu:

- Memahami konsep array 1 dimensi
- Memberikan contoh penggunaan array 1 dimensi
- Menyelesaikan studi kasus searching dan sorting sederhana

- Outline
- Pengantar
- Deklarasi dan Instansiasi
- Mengakses dan mengisi data array
- Panjang Elemen Array
- Searching
- Sorting
- Latihan

Pengantar

- Bagaimana kita menyimpan data berjumlah besar yang memiliki tipe data dan nilai yang sejenis?
- Contoh: Menyimpan data nilai semua mahasiswa Polinema
 - Kita perlu mendeklarasikan ribuan variable
 - Setiap nama variable harus unik
 - Operasi yang dilakukan tiap variable nilai sama. Contoh:
 - Operasi mencetak nilai
 - Konversi nilai angka menjadi nilai huruf

Pengantar

- Dalam matematika, terutama terkait dengan matriks yang memiliki elemen matriks. Elemen matrik dituliskan dengan menggunakan variabel berindeks.
- Misalkan sebuah matriks A[5,5] berdimensi 5x5 akan mempunyai elemen matriks berupa: a_{00} s.d a_{44} .
- Dalam pemrograman komputer, implementasi dari variabel berindeks menggunakan array. Sehingga array dapat berdimensi satu atau lebih dari satu.

Definisi

- Array merupakan variabel kompleks dengan tipe data yang sama, menggunakan nama yang sama, dan memiliki suatu index tertentu.
- Atau merupakan sekumpulan nilai (elemen) dengan tipe data yang sama. Dimana masing-masing elemen Array bisa diakses dengan menggunakan indeks yang unik

Sifat Array

- Homogen
 - Seluruh elemen di dalam struktur array mempunyai tipe data yang sama.
- Random Access
 - Setiap elemen di dalam struktur array dapat dicapai secara individual, langsung ke lokasi elemen yang diinginkan, tidak harus melalui elemen pertama.
- Merupakan variabel referensi.

VISUALISASI ARRAY

• Misalkan sebuah array bernama a dengan jumlah elemen sebanyak 10 elemen, maka elemen-elemen array tersebut dapat digambarkan sbb.:

- Kotak kosong menunjukkan elemen dari Array
- Masing- masing elemen memiliki penomoran 0-9 (indeks)
- Indeks array dimulai dari 0 dan diakhiri dengan jumlah Elemen-1

VISUALISASI ARRAY

Deklarasi Array Satu Dimensi

Deklarasi

```
tipeData namaArrray[];
     atau

tipeData[] namaArrray;
Contoh: int a[]; int[] a;
```

- tipeData adalah tipe data dari array yang akan dibuat.
- namaArray adalah nama dari array yang akan dibuat.

Instansiasi Array Satu Dimensi

- Instansiasi objek array:
 - Ketika sebuah array dideklarasikan, hanya referensi dari array yang dibuat. untuk alokasi memori dilakukan dengan menggunakan kunci kata new
 - Cara Instansiasi variabel array:

```
namaArray = new tipeData[jumlahElemen];
contoh: a = new int[10];
```


Array Satu Dimensi

 Deklarasi dan instansiasi objek array dapat digabungkan dalam sebuah instruksi sbb.:

Mengakses Elemen Array

• Merujuk ke nomor indeks.

namaArray[indeks]

- Contoh:
 - Mengakses sebuah variabel array a dengan indeks i, dapat dituliskan:
 a[i]
 - Indeks i hanya dapat bernilai 0 atau positif dengan nilai maksimumnya adalah: (jumlah_elemen - 1).

Mengakses Elemen Array

• CONTOH:

```
String[] cars = {"Volvo", "BMW", "Ford"};
System.out.println(cars[0]); //menampilkan Volvo
System.out.println(cars[2]); //menampilkan Ford
```


Mengisi Data pada Array

- Mengisi data ke elemen array dilakukan dengan menggunakan assignment operator.
- Contoh: a[6] = 15; a[3] = 27;

• statement a[2] = a[3] - a[6]; menghasilkan:

Inisialisasi Array

- Array dapat diinisialisasi secara eksplisit pada saat didefinisikan dan bisa tidak diberikan nilai dimensinya.
- Contoh: int b[]={1, 2, -4, 8};
- Pada contoh diatas Array memiliki 4 element

• Contoh; int $b[]=\{1, 2, -4, 8, 0, 0, 0, 0\};$

1	2	-4	8	0	0	0	0
b[0]	b[1]	b[2]	b[3]	b[4]	b[5]	b[6]	b[7]

Inisialisasi Array (contoh)

```
• boolean results[] = { true, false, true, false };
• String[] cars = {"Volvo", "BMW", "Ford"};
• int[] myNum = {10, 20, 30, 40};
• double []grades = {100, 90, 80, 75};
• String days[] = { "Senin", "Selasa", "Rabu", "Kamis", "Jumat", "Sabtu", "Minggu"};
```


Mengganti Elemen Array

```
• String[] cars = {"Volvo", "BMW", "Ford"};
• cars[0] = "Opel";
```


Mendapatkan Panjang Array

 Anda bisa mendapatkan panjang array dengan menggunakan namaArray.length

- Contoh penggunaan Panjang array:
 - Berapa indeks dari elemen terakhir dari sebuah array?
 - Berapa indeks dari elemen tengah dari sebuah array?

Array \(\sqrt{100p} \)

- Kita dapat menggunakan panjang array, bersama dengan indeksnya, untuk melakukan beberapa operasi menggunakan loop.
- Misalnya, kita dapat menginisialisasi array secara efisien.

Array \bigcirc loop(contoh)

Menjumlahkan semua elemen array

```
// assume that the user has created int[]
numbers
int sum = 0;
for (int i = 0; i < numbers.length;
i++) {
    sum += numbers[i];
}
println(sum);</pre>
```


For each loop

- Bentuk lain dari loop for yang digunakan untuk menelusuri array
- for-each loop mengurangi kode secara signifikan dan tidak ada penggunaan indeks atau lebih tepatnya penghitung dalam loop.
- Sintaks:

```
for(tipeDataArray tempVar : namaArray) {
          //statement
}
```


Array V loop (Contoh)

 Mengakses Semua elemen array dengen menggunakan perulangan "for-each"

```
public static void main(String[] args) {
    int array[] = \{33,4,5,23,1,5,6\};
    //inisisaliasai array = menentukan jumlah elemennya
    //serta menentukan nilai dari setiap elemen
                                                                   33
    for (int i : array) {
        System.out.println(i);
                                                                   23
    } // menampilkan setiap elemen array
```

BUILD SUCCESSFUL

Perbedaan deklarasi dan inisialisasi dengan atau tanpa ARRAY

Penggunaan Array

- 1. Deklarasikan variabel referensi array
- 2. Instansiasi elemen array
- 3. Inisialisasi array (*Jika diperlukan*)
- 4. Memanipulasi elemen array

Contoh Inisialisasi Array yang salah

- Contoh: int $b[4] = \{ 1, 2, -4, 8, 9 \};$
 - ERROR karena nilai dimensi lebih kecil dari jumlah element.

Contoh inisialisasi array setelah didefinisikan yang salah :

```
int b[5];
b[5]={0,0,0,0,0};
```



```
public class sampleArray2 {
    public static void main(String[] args) {
        int array[]; //deklarasi Array
        array = new int[10]; //intansiasi Array
        System.out.printf("%s%5s\n", "Index ", "Value");
        //menambah setiap elemen array dan ditampilkan
        for (int i=0; i<array.length;i++) {
            System.out.printf("%2d%5d\n",i,array[i]);
            run-single:
            Index Value
                 0
            BUILD SUCCESSFUL
```



```
public static void main(String[] args) {
    int array[] = {33,4,5,23,1,5,6};
    //inisisaliasai array = menentukan jumlah elemennya
    //serta menentukan nilai dari setiap elemen
    System.out.printf("%s%5s\n", "Index ", "Value");
    for (int i=0; i<array.length;i++)</pre>
        System.out.printf("%2d%5d\n",i,array[i]);
    } // menampilkan setiap elemen array
                                            run-single:
                                            Index Value
                                                33
                                                23
```

BUILD SUCCESSFUL

 Contoh, program yang meminta input sebanyak 5 bilangan kemudian menampilkan kembali 5 bilangan tersebut.

```
run-single:
public static void main(String[] args) {
                                                           masukkan angka :
    Scanner input = new Scanner(System.in);
    int array[];
                   //deklarasi Array
                                                           masukkan angka :
    array = new int[5]; //intansiasi Array
                                                           masukkan angka :
                                                           masukkan angka :
    for (int i=0; i<array.length;i++)
                                                           masukkan angka :
        System.out.println("masukkan angka: ");
                                                                0 dengan elemen
        array[i]=input.nextInt();
                                                                 1 dengan elemen
                                                                 2 dengan elemen
                                                                  dengan elemen
                                                                 4 dengan elemen
    for (int i=0; i<array.length;i++)
                                                           BUILD SUCCESSFUL (total time: 8 seconds)
        System.out.printf("array %2d dengan elemen %5d\n",i,array[i]);
    } // menampilkan setiap elemen array
```


Membuat Salinan isi array

```
public static void main(String[] args) {
  int[] OldArray = {1, 3, 6, 7, 9};
  int[] NewArray = new int[5];

  for (int i = 0; i <OldArray.length/2; i++) {
     NewArray[i] = OldArray[i+2];
     System.out.print(NewArray[i]+" ");
  }

  run-single:
  6 7 BUILD SUCCESSFUL</pre>
```


Penjumlahan Array

```
public class sampleArray5 {
    public static void main(String[] args) {
        int array[] = {33,4,5,23,1,5,6};
        int total = 0;

        for (int i=0; i<array.length;i++)
        {
            total +=array[i];
        }//menambahkan setiap nilai dari elemen array ke total
        System.out.println(total);
    }
}
run-single:
77</pre>
```

BUILD SUCCESSFUL

MATERI PENGAYAAN

Searching dan Sorting

Searching

- Salah satu hal yang sering dilakukan pada operasi array adalah pencarian atau searching
- Pencarian dilakukan untuk menemukan nilai tertentu pada elemen didalam array
- Salah satu algoritma searching yang paling mudah adalah Linier Search

Searching

 Misalkan pada sebuah array, ingin mencari dimana posisi index dari sebuah array.

 Pada Linear Search, dibandingkan "key" atau angka yang ingin dicari, dengan tiap elemen yang ada didalam array.

- Key yang ingin dicari adalah 3
- Digunakan perulangan untuk membandingkan masing-masing dari elemen array
- angka 3 berada di index ke 5.
- Maka setelah ketemu, looping akan berhenti

Searching

```
public static void main(String[] args) {
    int array[] = \{6,4,1,9,7,3,2,8\};
    int key= 3;
    int hasil = 0;
    for (int i=0; i<array.length;i++)
       if (key==array[i])
           hasil=i;
           break;
    System.out.println("key "+key+" terdapat di index= "+hasil);
run-single:
key 3 terdapat di index= 5
BUILD SUCCESSFUL (total time: 1 second)
```

```
Start
        int array[], key, hasil
                 i=0
           i<array.length
no
                   yes
            key==array[i
                                  no
                                           i++
                   yes
               hasil=i
                break
           Print key, hasil
                Stop
                              asar Pemrograman
```


Sorting

- Sorting adalah proses mengurutkan elemen array dari yang terkecil ke besar (ascending) atau sebaliknya (descending)
- Salah satu algoritma Sorting yang paling mudah adalah BubbleSort

Sorting

- Didalam Bubble Sort, dilakukan looping dari elemen pertama sampai elemen terakhir dari array.
- Kemudian tiap elemen dibandingkan dengan elemen berikutnya.
- Jika elemen tersebut lebih besar dari elemen berikutnya, maka akan ditukar.

Bubble Sort

```
public class bubbleSort {
   public static void main(String[] args)
        int array[] = \{6,4,1,9,7,3,2,8\};
        int pjgArray = array.length;
        int temp =0;
       for (int i=0; i<pjgArray;i++)</pre>
            for (int j=1; j<pjgArray-1;j++)</pre>
                if (array[j-1]>array[j])
                    temp=array[j-1];
                    array[j-1]=array[j];
                    array[j]=temp;
        System.out.println("hasil urutan");
        for(int i=0; i<pjgArray;i++)</pre>
            System.out.print(array[i]+" ");
         run-single:
        hasil urutan
```

7 9 8 BUILD

i=0

i<pjgArra

Print array[i]

j++

Stop

yes

no

LATIHAN

- 1. Buat flowchart pengisian variable array dengan Panjang elemen 50 menggunakan looping!
- 2. Buat flowchart untuk mengisi elemen array dengan jumlah elemen 5, kemudian tampilkan isi array tersebut dengan urutan terbalik.
- 3. Buat flowchart yang meminta inputan pengguna berupa angka 1-12. Tampilkan nama bulan sesuai dengan inputan pengguna. Namanama bulan disimpan dalam array secara berurutan.