

The Z-score formula is a powerful tool used in <u>statistics</u> to standardise and compare data. It allows us to understand how a particular data point relates to the average and spread of a dataset. By calculating the Z-score, we can determine how many standard deviations a value is away from the mean. This helps in identifying outliers, making comparisons, and conducting hypothesis testing.

In this <u>maths formula</u> article, we will delve into the intricacies of the Z-Score, providing a step-by-step guide to its calculation and exploring its significance in data analysis, hypothesis testing, and real-world applications.

Z Score Definition

A Z-score serves as a statistical measure indicating the deviation of a raw score from the <u>mean</u> of a distribution. It finds application in hypothesis testing through Z-tests and aids in determining the likelihood of a random variable falling within a specified range when constructing prediction intervals.

The Z-score is a statistical metric that quantifies how many standard deviations a score deviates from the mean of a distribution. Essentially, it measures the <u>distance</u> between a score and the mean. A positive Z-score indicates that the score is above the mean, while a negative Z-score signifies that the score is below the mean. Conversely, a Z-score of 0 indicates that the data point is equivalent to the mean.

UGC NET/SET Course Online by SuperTeachers: Complete Study Material, Live Classes & More

Get UGC NET/SET SuperCoaching @ just

₹26999 **₹8749**

Explore SuperCoaching

Want to know more about this Super Coaching?

Download Brochure

Z Score Formula

In order to calculate a z-score, one must have information about the mean and standard deviation.

The z-score formula is utilised when both the <u>population</u> mean and population standard deviation are known, and it can be expressed in the following manner:

$$z=rac{x-\mu}{\sigma}$$

Where:

- $\mu =$ population mean,
- $\sigma =$ population standard deviation, and
- x = raw score.

When the population parameters are unknown, the z-score can be approximated using the sample mean and standard <u>deviation</u>. In such cases, the z-score formula undergoes modification, resulting in the following adaptation:

$$z=rac{x-ar{x}}{S}$$

Where:

- $\bar{x}=$ sample mean,
- $S= ext{sample}$ standard deviation, and
- x = raw score.

How to Calculate Z Score?

To calculate the Z-Score, follow these steps:

- **Determine the data point of interest:** Identify the value you want to standardise or compare to a distribution.
- Calculate the mean (μ) and standard deviation (σ) of the dataset: Find the average value and the measure of variability for the dataset that the data point belongs to.
- **Subtract the mean from the data point:** Subtract the mean (μ) from the value of <u>interest</u>.
- Divide the result by the standard deviation: Divide the difference obtained in step 3 by the standard deviation (σ) .
- Obtain the Z-Score: The result of the <u>division</u> in step 4 represents the Z-Score for the data point.

Z-Score Confidence Intervals

A confidence interval is a statistical tool utilised to indicate the likelihood of a specific parameter falling within a particular range. In normally distributed data, approximately 68% of the values will lie between one standard deviation above and below the mean, 25% between two standard deviations, and 99% between three standard deviations. The process of obtaining the Z-score through confidence intervals involves the following steps:

- Transform the confidence interval into decimals.
- Determine the alpha level using the confidence interval, $\alpha = 1$ confidence interval.
- Divide the alpha level by 2 to obtain the actual alpha level.
- Subtract the alpha level from 1 to derive the required area.
- Utilise the z-score table to find the corresponding z-value based on the area obtained in the previous step.

Z-Score for 99 Confidence Interval

For a 99% confidence interval, the Z-score indicates that approximately 99% of the observations fall within the range of 3 standard deviations above and 3 standard deviations below the mean. This can be expressed as follows:

- 99% confidence level in decimals is 0.99.
- Alpha level: $lpha = rac{(1-0.99)}{2} = 0.005$. Area: 1-0.005 = 0.995.
- Z-score for 99% confidence interval = 2.57.

Z-Score for 95 Confidence Interval

By employing identical steps, one can compute the Z-score for a 95% confidence interval, which will fall within the range of 2 and -2 on the normal distribution curve.

- 95% confidence level in decimals is 0.95.
- Alpha level: $lpha=rac{(1-0.95)}{2}=0.025$. Area: 1-0.025=0.975.
- Z-score for 95% confidence interval = 1.96.

Let's now explore a few examples to help us better understand the formula to find the z-score.

Z Score Formula Solved Examples

Example 1. The heights of a group of students are normally distributed with a mean of 165 cm and a standard deviation of 8 cm. What is the Z-Score for a student with a height of 180 cm?

Solution.

Given:

$$X=180~\mathrm{cm}$$

$$\mu=165$$
 cm

$$\sigma=8~\mathrm{cm}$$

Calculate the Z-Score using the formula:

$$Z=rac{(X-\mu)}{\sigma}$$

$$\Rightarrow Z = rac{(180-165)}{8}$$

$$\Rightarrow Z = \frac{15}{8}$$

$$\Rightarrow Z = 1.875$$

Answer: The Z-Score for a student with a height of 180 cm is 1.875.

Example 2. The average weight of a sample of 50 apples is 120 grams with a standard deviation of 10 grams. What is the Z-Score for an apple weighing 135 grams?

Solution.

Given:

$$X=135$$
 grams

$$\mu=120$$
 grams

$$\sigma=10$$
 grams

Calculate the Z-Score using the formula:

$$Z=rac{(X-\mu)}{\sigma}$$

$$\Rightarrow Z = rac{(135-120)}{10}$$

$$\Rightarrow Z = \frac{15}{10}$$

$$\Rightarrow Z = 1.5$$

Answer: The Z-Score for an apple weighing 135 grams is 1.5.

Example 3. The test scores of a class are normally distributed with a mean of **75** and a standard deviation of **5**. What percentage of students scored above **85**?

Solution.

Given:

$$X = 85$$

$$\mu=75~\mathrm{cm}$$

$$\sigma=5~\mathrm{cm}$$

Calculate the Z-Score using the formula:

$$Z=rac{(X-\mu)}{\sigma}$$

$$\Rightarrow$$
 $Z=rac{(85-75)}{5}$

$$\Rightarrow Z=rac{10}{5}$$

$$\Rightarrow Z=2$$

Use a Z-Score table or calculator to find the percentage corresponding to a Z-Score of 2.

From the table, it is approximately 0.9772.

Answer: Approximately 97.72% of students scored above 85.

Example 4. The mean score on a standardised test is 500 with a standard deviation of 100. What score corresponds to the 90th percentile?

Solution.

Given:

$$\mu = 500$$

$$\sigma=100$$

Find the Z-Score corresponding to the 90th percentile using a Z-Score table or calculator.

The Z-Score is approximately 1.28.

Calculate the score using the formula:

$$Z=rac{(X-\mu)}{\sigma}$$

$$\Rightarrow$$
 1.28 $=$ $\frac{(X-500)}{100}$

$$\Rightarrow 128 = X - 500$$

Answer: The score corresponding to the 90th percentile is 628.

Example 5. The temperatures in a city are normally distributed with a mean of $25^{\circ}C$ and a standard deviation of $3^{\circ}C$. What percentage of days have temperatures below $20^{\circ}C$?

Solution.

Given:

$$X=20^{\circ}C$$

$$\mu=25^{\circ}C$$

$$\sigma=3^{\circ}C$$

Calculate the Z-Score using the formula:

$$Z=rac{(X-\mu)}{\sigma}$$

$$\Rightarrow Z = rac{(20-25)}{3}$$

$$\Rightarrow Z = -\frac{5}{3}$$

$$\Rightarrow Z = -1.67$$

Use a Z-Score table or calculator to find the percentage corresponding to a Z-Score of -1.67.

From the table, it is approximately 0.0475.

Answer: Approximately 4.75% of days have temperatures below $20^{\circ}C$.

We hope that the above article is helpful for your understanding and exam preparations. Stay tuned to the <u>Testbook</u> <u>App</u> for more updates on related topics from Mathematics and various such subjects. Also, reach out to the test series available to examine your knowledge regarding several exams.

More Articles for Maths Formulas

- Vieta's Formula
- Commutative Property Formula
- Trapezoid Formula
- Interpolation Formula
- Interest Formula
- Area Under the Curve Formula
- Arithmetic Mean Formula

- Arithmetic Sequence Formula
- Surface Area Formulas
- Surface Area of a Cone Formula

Report An Error

