Université de Rennes 1 Licence de mathématiques Module Anneaux et Arithmétique

Contrôle continu n°3

Mercredi 6 mai 2020, 13h - 18h

On veillera à la qualité de la rédaction et de l'argumentation, de même qu'au soin apporté à la présentation. Sauf mention expresse du contraire, une justification est attendue pour toutes les réponses.

Les questions marquées du symbole (*) sont considérées comme plus difficiles. Traiter correctement une proportion raisonnable des *autres* questions assure déjà une bonne note.

Le symbole C désigne le corps des nombres complexes et i un élément de C tel que $i^2 = 1$. Les symbole Z et N désignent respectivement l'ensemble des entiers relatifs et naturels.

Exercice

- 1 On rappelle qu'on note \mathbf{F}_3 le corps $\mathbf{Z}/3\mathbf{Z}$. Déterminer, en expliquant soigneusement votre démarche, un élément P de $\mathbf{F}_3[X]$ de degré 3 et irréductible. On pose désormais $\mathbf{K} := \mathbf{F}_3[X]/\langle P \rangle$ et on note α l'image de X dans \mathbf{K} .
- 2 Donner sans justification la caractéristique et le cardinal de K.
- 3 Choisir un triplet (a_0, a_1, a_2) d'éléments de $\mathbf{F}_3 \setminus \{0\}$; soit $x = a_0 + a_1 \cdot \alpha + a_2 \cdot \alpha^2$. Calculer les décompositions dans la \mathbf{F}_3 -base $(1, \alpha, \alpha^2)$ de x^3 et de l'inverse de x. Le détail des calculs doit apparaître sur la copie.
- **4** (*) Soit $\varphi \colon \mathbf{F}_3[X] \to \mathbf{K}$ l'unique morphisme de \mathbf{F}_3 -algèbres qui envoie X sur x. Déterminer l'image de φ .

Problème

Soit A le sous-ensemble de C défini par $A := \{a + i b \sqrt{2}, (a, b) \in \mathbb{Z}^2\}.$

- 1 Montrer que A est un sous-anneau de ${\bf C}$ contenant ${\bf Z}$. En déduire que A est un anneau intègre.
- 2 (la réponse à cette question n'est pas utilisée dans la suite) (*) Décrire le corps des fractions de A; déterminer en particulier s'il est ou non égal à C.
- 3 Pour tout élément z de \mathbb{C} , on note \overline{z} le conjugué de z et on pose $\mathcal{N}(z) := z \overline{z}$.
 - 1. Montrer que pour tous $z_1, z_2 \in \mathbf{C}$, on a $\mathcal{N}(z_1 z_2) = \mathcal{N}(z_1) \mathcal{N}(z_2)$.
 - 2. Montrer qu'on a $\mathcal{N}(A) \subset \mathbf{N}$.
 - 3. Déterminer, si c'est possible, un élément de z de A tel que $\mathcal{N}(z)=3$, puis un élément z de A tel que $\mathcal{N}(z)=5$.
- **4** Soit B un sous-anneau de \mathbf{C} stable par conjugaison (c'est à dire que pour tout $z \in B$, on a $\overline{z} \in B$) et tel que $\mathcal{N}(B) \subset \mathbf{N}$.
 - 1. Donner deux exemples d'un tel sous-anneau B.
 - 2. Montrer que l'ensemble B^{\times} des éléments inversibles de B est égal à $\{z \in B, \mathcal{N}(z) = 1\}$.
 - 3. Rappelons une caractérisation des éléments irréductibles d'un anneau intègre : un élément a d'un anneau intègre R est irréductible s'il est non nul, non inversible et pour tout couple (b,c) d'éléments de R tel que a=bc, b ou c est inversible.
 - Soit $z \in B$ tel que $\mathcal{N}(z) > 1$. On suppose que pour tout diviseur positif d de $\mathcal{N}(z)$ distinct de 1 et de $\mathcal{N}(z)$ on a : $d \notin \mathcal{N}(B)$. Montrer qu'alors z est un élément irréductible de B.
- 5 Déduire de la question 4.2 une description de l'ensemble A^{\times} des éléments inversibles de A. Déterminer un élément $d \in \mathbf{N}$ tel que le groupe A^{\times} est isomorphe au groupe $\mathbf{Z}/d\mathbf{Z}$.
- **6** Soit n un entier naturel. On considère la propriété (\mathcal{P}) suivante : il existe $a,b \in \mathbf{Z}$ tel que $n=a^2+2\,b^2$.

- 1. Traduire la propriété (\mathcal{P}) en termes de l'application \mathcal{N} et de l'anneau A.
- 2. Donner trois exemples de nombres premiers vérifiant (\mathcal{P}) , et trois exemples de nombres premiers ne vérifiant pas (\mathcal{P}) .
- 3. En utilisant la question 4.3, en déduire un exemple explicite d'un élément de ${\bf Z}$ qui est un élément irréductible de A.
- 4. Montrer que si le nombre premier p vérifie (\mathcal{P}) alors -2 est un carré dans \mathbf{F}_p , c'est à dire il existe $x \in \mathbf{F}_p$ tel que $x^2 = [-2]_p$.
- 7 Soit p un nombre premier impair tel que -2 est un carré dans \mathbf{F}_p . Soit $c \in \mathbf{Z}$ tel que p divise $c^2 + 2$. Soit $\varphi \colon A \to \mathbf{Z}/p\mathbf{Z}$ l'application qui à $a + ib\sqrt{2} \in A$ associe $[a cb]_p$.
 - 1. Montrer que φ est un morphisme d'anneaux.
 - 2. On admet que l'idéal $\operatorname{Ker}(\varphi)$ est engendré par un élément $\alpha \in A$. (*) En utilisant le fait que $\operatorname{Ker}(\varphi)$ contient p et $c+i\sqrt{2}$, en déduire que p vérifie la propriété (\mathcal{P}) .
- 8 Soit **K** un corps et $x \in \mathbf{K}$. On dit que x est un carré dans **K** s'il existe $y \in \mathbf{K}$ tel que $x = y^2$. Soit Q l'anneau quotient $Q := \mathbf{K}[X]/\langle X^2 x \rangle$.
 - 1. Montrer que Q est un corps si et seulement si Q est intègre si et seulement si x n'est pas un carré dans K.
 - 2. (la réponse à cette question n'est pas utilisée dans la suite) (*) Si x est un carré dans \mathbf{K} , montrer qu'on est dans l'un des deux cas suivants, suivant une condition sur x et \mathbf{K} que l'on précisera :
 - l'anneau Q est isomorphe à l'anneau produit $\mathbf{K} \times \mathbf{K}$; c'est un anneau réduit (on rappelle qu'un anneau est réduit si pour tout élément a de cet anneau et tout entier naturel n, si $a^n = 0$ alors a = 0);
 - ullet l'anneau Q est un anneau non réduit.
- 9 Soit $\theta \colon \mathbf{Z}[X] \to \mathbf{C}$ l'unique morphisme d'anneaux qui envoie X sur $i\sqrt{2}$. Montrer que $\theta(\mathbf{Z}[X]) = A$ et que le noyau de θ est l'idéal engendré par $X^2 + 2$.
- 10 (*) Soit p un nombre premier. Déduire de la question précédente que l'idéal pA est un idéal premier de A si et seulement si -2 n'est pas un carré dans \mathbf{F}_p .
- 11 On considère un rectangle du plan euclidien dont les côtés ont pour longueur 1 et $\sqrt{2}$.
 - 1. Montrer que pour tout point du rectangle (au sens large : intérieur et côtés compris) il existe un sommet du rectangle tel que ce point est à distance < 1 de ce sommet.
 - 2. En déduire que pour tous $\alpha, \beta \in A$, avec $\beta \neq 0$, il existe $(q, r) \in A^2$ tel que $\alpha = \beta \cdot q + r$ et $\mathcal{N}(r) < \mathcal{N}(\beta)$.
 - 3. (*) En utilisant le résultat de la question précédente ainsi que ceux d'autres questions antérieures, en déduire que les conditions suivantes sont équivalentes :
 - (i) p est un élément irréductible de A;
 - (ii) -2 n'est pas un carré modulo p;
 - (iii) p ne vérifie pas la propriété (\mathcal{P}) .
- 12 (*) Expliciter un algorithme permettant, connaissant c, de déterminer l'élément α de la question 7.2.
- 13 (*) Soit I_1 l'ensemble des nombres premiers qui ne vérifient pas la propriété \mathcal{P} ainsi que les opposés de ces nombres premiers et I_2 l'ensemble des $z \in A$ tel que $\mathcal{N}(z)$ est un nombre premier qui vérifie la propriété (\mathcal{P}) . Montrer que l'ensemble des éléments irréductibles de A est la réunion des ensembles I_1 et I_2 .
- 14 (*) Le polynôme $P_1 := X^3 + 5i\sqrt{2}X + 5$ est-il un élément irréductible de A[X]? Même question pour les polynômes $P_2 := X^4 + (3 + 3i\sqrt{2})X^3 + 5 + 5i\sqrt{2}$ et $P_3 := (1 + i\sqrt{2})X + 3$.