ENSEMBLE METHODS

- Ensemble of same classifiers
 - Bagging and random forest
 - Boosting and gradient boosted tree
- Ensemble of different classifiers

REVIEW: BAGGING

Original dataset

	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-06-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	1000000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-06-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-06-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatelor	105000000	1,54940419	Bay Luberrano	PG-13	142

REVIEW: RANDOM FORESTS

- Bagged classifier using decision trees
 - Each split only considers a random group of features
 - Tree is grown to maximum size without pruning
 - Final predictions obtained by aggregating over the B trees

$$\hat{f}_{\rm rf}^B(\mathbf{x}) = \frac{1}{B} \sum_b T(\mathbf{x}; \theta_b)$$

• Reduce variance (at the cost of slight increase in bias compared to bagged trees)

RANDOM FOREST: ADVANTAGES

- State of the art method, one of the most accurate general-purpose learners available
- Handles a large number of input variables without overfitting (variance reduction)
- Robust to errors and outliers
- Can model non-linear boundaries
- Gives variable importance and out of bag error rates
- Easy to train and tune, easily parallelized by training

RANDOM FOREST: DISADVANTAGES

- Loss of interpretability (no decision rules)
- Difficult to analyze as an algorithm and mathematical properties still largely unknown
- Large number of trees is memory-intensive
- Bias towards categorical variables with larger number of levels

RANDOM FOREST

PREVIEW: HOMEWORK #5

- Almost Random Forest
- Instead of choosing a random subset of features for each split, choose a random subset of features that the tree will be created on (the same subset is used as candidates from all splits)

SKLEARN: RANDOM FOREST

- sklearn.ensemble.RandomForestClassifier
 - n_estimators, default=100
 - max_features: {"sqrt", "log2", None}, default="sqrt"

ENSEMBLE

- Ensemble of same classifiers
 - Bagging and random forest
 - Boosting and gradient boosted tree
- Ensemble of different classifiers

BOOSTING AND GRADIENT BOOSTED TREE

CS 334: Machine Learning

GROUP ACTIVITY

STUDY FOR AN EXAM

Exam

How would you study for an exam using a practice exam (given solution keys)?

STUDY FOR AN EXAM

BAGGING

- Combine output of many classifiers (full sized trees)
- The learners are combined with equal weights
- Independently train each learner on a bootstrap

BOOSTING

- Combine output of many weak learners (stumps)
- The weak learners are combined with weights
- Sequentially train weak learners by compensating the shortcomings of previous learner

BOOSTING

- AdaBoost (1997): shortcomings are identified by high weight (misclassified) data points
- Gradient Boosting (1999): shortcomings are identified by residuals or gradients of the loss function (generalize AdaBoost)

- Maintain a weight distribution over data points (importance of having the data point correctly classified)
- The weights are initialized as uniform and updated after each classifier is trained to guide next classifier (correctly classified examples have weight decreased and incorrect examples increased)
- Final classifier is weighted vote of individual classifiers, based on weighted error of each classifier

Algorithm 32 AdaBoost(W, D, K)

```
1: d^{(0)} \leftarrow \langle \frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N} \rangle
                                                          // Initialize uniform importance to each example
_{2:} for k = 1 ... K do
                                                                                                                                            .Weighted entropy/gini
      f^{(k)} \leftarrow \mathcal{W}(\mathcal{D}, d^{(k-1)})
                                                                        // Train kth classifier on weighted data ←
                                                                                                                                            or weighted sampling
    \hat{y}_n \leftarrow f^{(k)}(x_n), \forall n
                                                                             // Make predictions on training data
    \hat{\epsilon}^{(k)} \leftarrow \sum_n d_n^{(k-1)} [y_n \neq \hat{y}_n]
                                                                              // Compute weighted training error
                                                                                                                                             Assuming error < 0.5
6: \alpha^{(k)} \leftarrow \frac{1}{2} \log \left( \frac{1 - \hat{\epsilon}^{(k)}}{\hat{\epsilon}^{(k)}} \right)
                                                                                 // Compute "adaptive" parameter -
                                                                                                                                             Smaller error, great alpha
     d_n^{(k)} \leftarrow \frac{1}{7} d_n^{(k-1)} \exp[-\alpha^{(k)} y_n \hat{y}_n], \forall n
                                                                          // Re-weight examples and normalize

←——
                                                                                                                                             Decrease weight for
                                                                                                                                             correct samples, increase
8: end for
                                                                                                                                             weight for incorrect
9: return f(\hat{x}) = \operatorname{sgn}\left[\sum_{k} \alpha^{(k)} f^{(k)}(\hat{x})\right]
                                                                             // Return (weighted) voted classifier
                                                                                                                                             samples
```

Smaller error -> more significant re-weighting, why?

Figure: AdaBoost. Source: Figure 1.1 of [Schapire and Freund, 2012]

BOOSTING

- AdaBoost: shortcomings are identified by high weight (misclassified) data points
- Gradient Boosting: shortcomings are identified by residuals or gradients of the loss function (generalize AdaBoost)

GRADIENT BOOSTING

- Gradient descent + boosting
- Powerful algorithm that can be used for regression, classification, ranking
- Data mining competition winner most likely uses this algorithm

GROUP ACTIVITY

ADDITIVE MODEL

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

- We have training data, (x_1, y_1) , ..., (x_n, y_n) , and task to fit model f(x) for y to minimize square loss
- A friend gives you a model f, with some mistakes
- You are not allowed to remove anything from f or change any parameter in f
- You are allowed to add additional models h to f, so new prediction is f(x) + h(x)

What would you do?

ADDITIVE MODEL

• Simple solution:

Height (m)	Favorite Color	Gender		Residua
1.6	Blue	Male		16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female		-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

$$f(x_1) + h(x_1) = y_1$$
 $f(x_2) + h(x_2) = y_2$
 \vdots
 $f(x_n) + h(x_n) = y_n$

We can train a regression tree for residual h, then add the tree to original model f

GRADIENT BOOSTING: REGRESSION

- Initialize a constant model f(x) for data $(x_1, y_1), \ldots, (x_n, y_n)$
- Fit a regression tree h(x) to new data, $(x_1, y_1-f(x_1)), \ldots, (x_n, y_n-f(x_n))$
- y_i-f(x_i) are pseudo residuals parts that existing model f cannot do well
- Update f(x) + h(x) as prediction, if it is not satisfactory, reiterate

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

71.2

Height (m)	Favorite Color	Gender	Weight (kg)	
1.6	Blue	Male	88	
1.6	Green	Female	76	
1.5	Blue	Female	56	
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

71.

Height (m)	Favorite Color	Gender		Residual
1.6	Blue	Male		16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female		-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

Height (m)	Favorite Color	Gender		Residua
1.6	Blue	Male		16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female		-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

GRADIENT BOOSTING: REGRESSION

- Initialize a constant model f(x) for data $(x_1, y_1), \ldots, (x_n, y_n)$
- Fit a regression tree h(x) to new data, $(x_1, y_1-f(x_1)), \ldots, (x_n, y_n-f(x_n))$
- y_i-f(x_i) are pseudo residuals parts that existing model f cannot do well
- Update f(x) + h(x) as prediction, if it is not satisfactory, reiterate

How does this relate to gradient descent?

GRADIENT BOOSTING: REGRESSION

- Loss function: $L(\mathbf{y}, f(\mathbf{X})) = \sum_{i} \frac{1}{2} (y_i f(\mathbf{x}_i))^2$
- Treat f(xi) as parameters and take derivatives

$$\frac{\partial L}{\partial f(\mathbf{x_i})} = f(\mathbf{x_i}) - y_i$$

• Interpret residuals as negative gradients (learning rate = 1 here)

$$f(\mathbf{x_i}) := f(\mathbf{x_i}) + y_i - f(\mathbf{x_i})$$
$$f(\mathbf{x_i}) := f(\mathbf{x_i}) - 1 \frac{\partial L}{\partial \mathbf{x_i}}$$

_Residual estimated by next tree

...etc...etc...etc...

GRADIFNT TREE BOOSTING: ALGORITHM

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$. Constant model
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \dots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$
 Residual of i or negative gradient

(c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = rg \min_{\gamma} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}(x_i) + \gamma\right)$$
. Average of residuals in each leaf

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$. update
- 3. Output $\hat{f}(x) = f_M(x)$.

...etc...etc...etc...

SHRINKAGE

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[rac{\partial L(y_i, f(x_i))}{\partial f(x_i)}
ight]_{f=f_{m-1}}.$$

- Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, \dots, J_m.$
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

3. Output $\hat{f}(x) = f_M(x)$.

learning rate of the boosting procedure.

GRADIENT BOOSTING: ITERATIONS

What do we observe here?

GRADIENT BOOSTING: ITERATIONS

- Boosting (bias reduction) vs random forest (variance reduction)
- Boosting is additive, reduces bias, so can overfit (variance can increase)
 - (like over studying practice exam)
- Use standard mechanism to tune the parameters

SIZE OF TREES

- J_m : the size of tree for each iteration
- Simplest strategy is to use the same $J_m = J$
- Best method is to grow small trees with no pruning
- Right size will depend on level of interaction between variables
- ~4-8 leaves works well

SHRINKAGE

- Typically values are <0.1, use 0.01 or 0.001
- Can choose M for early stopping

STOCHASTIC GRADIENT BOOSTING

- Subsampling: each iteration, a fraction of training observations (without replacements) is used to grow the tree
- Can subsample on record or features
- Not only reduces computing time, can also produce more accurate model (less overfitting)

BAGGING VS BOOSTING

Bagging

- Bootstrapped samples
- Base trees created independently
- Only data points considered
- No weighting used
- Excess trees will not overfit

Boosting

- Fit entire data set (can have subsamples)
- Base trees created successively
- Use residuals from previous models
- Up-weight misclassified points (explicit weight or as residuals)
- Beware of overfitting

SKLEARN: GRADIENT BOOSTING TREE

```
>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier

>>> X, y = make_hastie_10_2(random_state=0)
>>> X_train, X_test = X[:2000], X[2000:]
>>> y_train, y_test = y[:2000], y[2000:]

>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.913...
```

GRADIENT BOOSTING LIBRARIES

XGBoost (Extreme Gradient Boosting)

https://xgboost.readthedocs.io

LightGBM (Light Gradient Boosted Machine)

https://lightgbm.readthedocs.io/

XGBOOST AND LIGHTGBM

- Implements basic idea of GBM with some tweaks
 - Regularization of base tree
 - Approximate split finding
 - Weighted quantile sketch
 - Sparsity-aware split finding
 - Cache-aware block structure for out of core computation

EXTREME GRADIENT BOOSTING

(XGBOOST)

Homesite Quote Conversion, Winners' Interview: 3rd place, Team New Model Army | CAD & QuY

Prudential Life Insurance Assessment, Winner's Interview: 2nd place, Bogdan Zhurakovskyi

Airbnb New User Bookings, Winner's Interview: 2nd place, Keiichi Kuroyanagi (@Keiku)

Telstra Network Disruption, Winner's Interview: 1st place, Mario Filho

Kaggle Team | 03.23.2016

What these various data mining competitors have in common: all used XGBoost

ENSEMBLE METHODS

- Ensemble of same classifiers
 - Bagging and random forest
 - Boosting and gradient boosted tree
- Ensemble of different classifiers