

小组成员: 刘欣豪 2020112921

刘依民 2020115254

蔡江杉 2020112849

马忠龙 2020112920

王晨 2020112936

鲜轩 2020112929

蒲嘉海 2020112930

指导老师: 霍娅敏

2022年3月30日

目录

`	高峰小时交通量调查	3
1	调查目的和意义	3
2	调查方法	3
3	.数据记录结果及整理分析	3
二、	地点车速的观测与分析	4
1	调查目的	4
2	调查方法	4
3	.数据记录结果及整理分析	4
三、	区间车速调查	7
1	细木口的	7
	调查目的	/
2	调查百时	
		7
3	调查方法	7 8
3 四、	. 调查方法 3. 数据记录结果及整理分析	7 8 9
3 四、 1	. 调查方法	7 8 9

一、高峰小时交通量调查

1、调查目的和意义

掌握使用人工观测法调查交通量,并且进行数据处理分析。

2、调查方法

对于高峰小时交通量调查,我们采用人工观测法,在西南交通大学犀浦校区的校园路北段,选取下午 3:35 到 4:35 时间段,每隔十五分钟的对小型货车、中型货车、大型货车、小型客车、大型客车、载货拖挂车、小型拖拉机、大中型拖拉机的数量分别记录。

3、数据记录结果及整理分析

	交通量观测记录表									
	日期: 2022 年 3 月 24日星期四 天气: 阴 地址: 西南交通大学西门校园路北段 时间: 15: 30-16: 35									
观测时间 小型货车 中型货车 大型货车 小型客车 大型客车 载货拖挂车 小型拖拉机 大中型拖拉机 合计								合计		
15:35	1	4	0	63	3	0	0	0	74	
15:50	0	3	0	81	2	0	0	0	86	
16:05	1	5	0	65	3	0	0	0	74	
16:20	1	3	0	67	4	0	0	0	75	

由此统计得到高峰小时交通量直方图为:

其中不同车型占比为:

二、地点车速的观测和分析

1、调查目的

了解该路段上车速变化的规律性,探求各种车辆运行的趋势,调查车速受 外因条件的影响关系,以便采取有效的交通管理措施。

2、调查方法

选在两个交叉口之间的平坦路段上,在该段上无缓行、停放车辆、人行横 道等交通障碍的影响。采用人工量测的方法,选用一段较短距离l用秒表记录车 辆经过该距离的时间t,地点车速即为:

$$v = l/t$$

观测路段的长度与车速有关,为便于观测读数,车辆经过t段的时间不应少于 1.5s,最好在 2s 左右。

3、数据记录结果及整理分析

车种	行驶时间	(c)	行驶速度	(m/s)	行驶速度	(km/h)
1 小型客车		3.83	门纵处汉	9.92	门纵处汉	35.72
2 小型客车		3.34		11.38		40.96
3 中型货车		3.72		10.22		36.77
4 小型客车		3.34		11.38		40.96
5 小型客车		3.98		9.55		34.37
6 小型客车		2.61		14.56		52.41
7 小型客车		3.94		9.64		34.72
8 小型客车		2.72		13.97		50.29
9 小型客车		6.04		6.29		22.65
10 小型客车		3.37		11.28		40.59
11 小型客车		2.28		16.67		60.00
12 小型客车		1.83		20.77		74.75
13 小型客车		2.65		14.34		51.62
14 小型客车		3.08		12.34		44.42
15 中型货车		3.1		12.26		44.13
16 小型客车		3.46		10.98		39.54
17 小型客车		2.59		14.67		52.82
18 小型客车		2.98		12.75		45.91
19 小型客车		2.91		13.06		47.01
20 小型客车		2.42		15.70		56.53
21 小型客车		3.79		10.03		36.09
22 小型客车		4.77		7.97		28.68
23 大型客车		3.08		12.34		44.42
24 小型客车		2.74		13.87		49.93
25 小型客车		2.55		14.90		53.65
26 小型客车		3.74		10.16		36.58
27 小型客车		3.22		11.80		42.48
28 小型客车		2.95		12.88		46.37
29 小型客车		2.71		14.02		50.48
30 小型客车		3.67		10.35		37.28
31 小型客车		4.61		8.24		29.67
32 小型客车		2.63		14.45		52.02

地点速度分布表

速度分组(km/h)	组中值 u_i	观测频数 f_i	累计频数 ƒ	观测频率 (%)	累计频率(%)
20~25	22.5	1	1	3.13%	3.13%
25~30	27.5	2	3	6.25%	9.38%
30~35	32.5	2	5	6.25%	15.63%
35~40	37.5	6	11	18.75%	34.38%
40~45	42.5	7	18	21.88%	56.25%
45~50	47.5	4	22	12.50%	68.75%
50~55	52.5	7	29	21.88%	90.63%
55~60	57.5	1	30	3.13%	93.75%
60~65	62.5	1	31	3.13%	96.88%
65~70	67.5	0	31	0.00%	96.88%
70~75	72.5	1	32	3.13%	100.00%

4.1 计算平均速度

地点车速的观测结果,多用平均速度表示。平均速度由下式计算:

$$\bar{v} = \frac{\sum f_i v_i}{n}$$

式中: v_i ——各分组速度的组中值 (km/h);

 f_i ——各分组速度的频数;

n——观测车次总数。

根据记录的数据可得, 平均车速为:

 \bar{v}

$$=\frac{22.5\times1+27.5\times2+32.5\times2+37.5\times6+42.5\times7+47.5\times4+52.5\times7+57.5\times1+62.5\times1+72.5\times1}{32}$$

$$=\frac{1415}{32}\approx 44.2(km/h)$$

此平均车速即为时间平均车速。

4.2 计算标准偏差S

只有平均速度值还不能反应速度分布的分散程度。要了解所测各速度值分布在平均值两侧的分散程序,可以计算标准偏差作为分析的尺度,标准偏差越大,说明观测的各速度值偏离平均速度值的分散性越大。标准差的计算公式为:

$$S = \sqrt{\frac{1}{n-1}} \left[\sum (v_i^2 f_i) - \frac{1}{n} \left(\sum v_i f_i \right)^2 \right]$$

根据记录的数据计算可得,标准偏差S:

$$S \approx 10.5 km/h$$

标准偏差大,说明道路上车辆可任意选择速度行驶,比较自由,沿途不受阻碍。当交通量增加,车辆自由行驶受到限制,地点车速下降,标准偏差也逐渐减小。

4.3 确定平均速度的波动范围

根据已计算出的平均车速和标准偏差,即可确定平均车速的波动范围。根据 两次计算结果,得出本次调查路段平均车速的波动范围为:

$$\bar{v} \pm S = 44.2 \pm 10.5 = 33.7 \sim 54.7 (km/h)$$

三、区间车速调查

1、调查目的

掌握使用牌照法测量区间车速。

2、调查方法

在调查路段的始终点各配备 5 人组成一观测组,再分上、下两组进行观测。其中 1 人报汽车牌照末 3 位的读数, 1 人报车辆通过观测点的时刻, 1 人记

录。计时采用手机上的秒表。观测完毕后,将两端记录的车辆牌照号码进行对照,计算出每辆车的运行时间。

3、数据记录结果及整理分析

3.1 数据的整理

表 3-1 为利用车牌号码登记法观测的数据。下面是其观测数据的整理和分析。

平均行程速度计算表

3-1

观测号数	行程时间 <i>t_i</i> (s)	行程速度 <i>v_i</i> (km/h)	v_i - v_s	$(v_{\bar{i}} \ \overline{v_s})^2$	t_i - $ar{T}$	$(t_i - \bar{T})^2$
1	2	3	4	5	6	7
1	6.80	52.94	1.81	3.29	-0.24	0.06
2	7.04	51.14	0.01	0.00	0.00	0.00
3	4.90	73.47	22.34	499.17	-2.14	4.58
4	6.00	60.00	8.87	78.73	-1.04	1.08
5	6.84	52.63	1.50	2.26	-0.20	0.04
6	8.34	43.17	-7.96	63.39	1.30	1.69
7	9.80	36.73	-14.39	207.15	2.76	7.61
8	6.61	54.46	3.34	11.13	-0.43	0.19
Σ	56.33			865.11		15.25

标注:观测路段长度为100m

3.2 数据的分析

利用表内第二栏的行程时间和路段长度1计算车辆的速度:

$$V_i = \frac{l}{t_i} \times 3.6$$

式中:1--路段长度;

 t_i ——第 i 辆车单程的行程时间。

将表中数据代入得相应得vi:

$$v_1 = \frac{100}{6.8} \times 3.6 = 52.94 \text{km/h}, \dots$$

计算区间平均车速 页:

$$\bar{v}_{s} = \frac{l \times n}{\sum_{i=1}^{n} t_{i}}$$

其中 n=8, $\sum_{i=1}^{8} t_i = 56.33$,所以 $\bar{v_s} = 51.13 km/h$

计算行程速度标准差 σ_{ν} :

$$\sigma_v = \sqrt{\frac{\sum (v_i - \bar{v}_s)^2}{n-1}}$$

故得 σ_v =11.12km/h

这说明该路段观测时间内的实际平均速度为 40.01~62.25km/h 之间 计算平均行程时间 \bar{T} :

$$\bar{T} = \frac{\sum_{i=1}^{n} t_i}{n}$$

故得 $\bar{T} = 7.04s$

计算行程时间标准差 σ_t :

$$\sigma_t = \sqrt{\frac{\sum_{i=1}^n (t_i - \bar{T})^2}{n-1}}$$

故得 $\sigma_t = 1.48s$

这说明通过测试路段得实际平均时间在 5.56~8.52s 之间

四、交通流密度调查

1、调查目的

掌握运用定点法调查交通流密度并进行数据分析。

2、调查方法:

通过在观测点量测车速与车流量数据,根据这些数据计算车流密度在拟观测的公路路段上,选取 100m 长的路段,标上记号,小组人员分别记录通过观测路段两端的车牌号与交通量,测毕分别整理记录。平均车流密度=平均交通流量/平均区间车速。

3、数据的整理与分析

如表 4-1, 4-2 根据所测数据,以区间平均车速公式计算每区间车速:

表 4-1

	序号1所测车辆行驶的行程时间(s)									
7.66	15.90	10.93	8.75	8.67	6.66	7.40	6.52			
7.86	10.17	10.84	7.81	7.01	7.22	9.38	4.96			
7.01	7.36	6.60	9.25	10.55	10.27	9.64	9.67			
9.71	10.46	7.23	9.12	7.24	12.22	9.08	6.84			
9.56	11.18	10.56	6.22	10.39	8.68	6.77	7.82			
10.38	9.07	9.97	10.39	7.28	10.89	8.94	11.33			
9.22	10.96	8.31	8.08	7.69	9.47	9.86	10.23			
9.31	9.31	11.06	6.33	12.36	9.24	8.47	9.10			

表 4-2

序号2所测车辆行驶的行程时间(s)									
9.91	10.98	10.44	8.40	6.55	7.98	7.09	8.29		
9.75	12.09	8.54	9.33	6.69	8.98	12.28	9.07		
12.28	8.43	9.74	11.74	8.45	8.22	8.48	8.20		
7.73	12.86	4.52	11.56	9.14	9.30	9.17	8.42		
12.09	7.34	9.93	8.71	9.55	8.12	7.92	9.20		
12.25	7.64	8.06	11.88	8.15	9.46	8.75	5.35		
8.40	10.35	9.90	8.46	6.90	8.71	6.96			
10.68	10.89	6.65	8.35	8.71	11.18	9.30			

标注:观测路段长度为100m

计算区间平均车速 \bar{v}_s :

$$\bar{v}_{S} = \frac{l \times n}{\sum_{i=1}^{n} t_{i}}$$

得序号 1: $\bar{v}_s = 39.83 km/h$

序号 2: $\bar{v}_s = 39.54 km/h$

根据表 4-3 计算出平均车流密度:

表 4-3

序号	分组时间 (时:分:秒)	起测时间 (时:分:秒)	终测时间 (时:分:秒)	行驶时间 (分: 秒)	区间平均车速 (km/h)	汽车数量 (辆)
1	17:10:01	17:15:00	17:25:00	10:00	39.83	64
2	17:10:01	17:15:00	17:25:00	10:00	39.54	62

计算平均交通流量 \bar{Q} :

$$\bar{Q} = n \times 6$$

故得序号 1: $\bar{Q} = 384$ 辆/h

序号 2: $\bar{Q} = 372$ 辆/h

最后根据整理得到的数据计算平均车流密度(\bar{k}),公式如下:

$$\bar{k} = \frac{\bar{Q}}{\overline{v_S}} \quad (\bar{m}/h)$$

故得序号 1 (南北方向): $\bar{k}=10$ 辆/h

序号 2 (北南方向):: $\bar{k} = 9$ 辆/h