DEMOSTRACIÓN SENCILLA DEL ÚLTIMO TEOREMA DE FERMAT

POR VA® JOSÉ WILLIAM PORRAS FERREIRA

Cartagena (B) Colombia, marzo 3 de 2011

DEMOSTRACCIÓN SENCILLA DEL TEOREMA DE FERMAT

POR: JOSÉ WILLIAM PORRAS FERREIRA

Soy Vicealmirante retirado de la Marina Colombiana, efectué estudios de pregrado en la Escuela Naval de Cadetes de Colombia, obteniendo el título de Ingeniero Naval especialidad Electrónica y de postgrado en la Universidad de la Marina de los Estados Unidos (Naval Postgraduate School), en Monterey California, obteniendo los títulos de Master en Ingeniería Electrónica y Electrical Engineer (EE). He escrito dos libros: "Colombia Marinera hacia una cultura y mentalidad marítima" y "El tiempo y el Universo: ¿abierto o cerrado?", traducido también al inglés "Time and the Universe ¿Open or Closed?".

Mi pasión por las matemáticas me llevaron a tratar de hallar una forma sencilla de demostrar el teorema de Fermat, la cual creo haber encontrado después de múltiples intentos e investigaciones.

En esta demostración primero comenzaré con el enunciado del teorema de Fermat, una breve reseña histórica, la definición de lo que es un número natural, el conjunto de los números, como se calculan las ternas pitagóricas y finalmente la demostración, para que el lector le quede mucho más fácil su entendimiento y comprensión.

Realmente no se requieren grandes conocimientos matemáticos para entender esta demostración, lo máximo sería poseer algunas bases algebraicas relacionadas con el Teorema de Pitágoras, expresión de ecuaciones y un análisis de su comportamiento, cuando comparamos con *n*=2 y *n*>2.

1. ULTIMO TEOREMA DE FERMAT

INTRODUCCIÓN

En **teoría de números**, el **último teorema de Fermat**, o **teorema de Fermat-Wiles**, es uno de los teoremas más famosos en la historia de la **matemática**. Utilizando la notación moderna, se puede enunciar de la siguiente manera:

Si **n** es un **número entero** mayor que 2, entonces no existen números naturales **a**, **b** y **c**, tales que se cumpla la igualdad (**a**,**b**>0):

 $a^n + b^n = c^n$

Pierre de Fermat¹

El teorema fue conjeturado por **Pierre de Fermat** en 1637, pero no fue demostrado hasta **1993** por **Andrew Wiles** ayudado por **Richard Taylor**. La búsqueda de una demostración estimuló el desarrollo de la **teoría algebraica de números** en el siglo XIX y la demostración del **teorema de la modularidad** en el siglo XX.

¹ http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Fermat.html

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.

Es imposible descomponer un cubo en dos cubos, un bicuadrado en dos bicuadrados, y en general, una potencia cualquiera, aparte del cuadrado, en dos potencias del mismo exponente. He encontrado una demostración realmente admirable, pero el margen del libro es muy pequeño para ponerla.

Pierre de Fermat²

Sir **Andrew John Wiles KBE FRS** (n. Cambridge, Inglaterra, 11 de abril de 1953) es un matemático británico. Alcanzó fama mundial en 1993 por la demostración del último teorema de Fermat³.

Wiles pudo demostrar el último teorema de Fermat a partir de la conexión, esbozada por Frey, y demostrada por Ken Ribet en 1985, de que una demostración de la llamada Conjetura de Taniyama-Shimura conduciría directamente a una demostración del último teorema de Fermat. En resumen, la conjetura de Taniyama-Shimura establece que cada curva elíptica puede asociarse unívocamente con un objeto matemático denominado forma modular. Si el último teorema de Fermat fuese falso, entonces existiría una curva elíptica tal que no puede asociarse con ninguna forma modular, y por lo tanto la conjetura de Taniyama-Shimura sería falsa. Por lo tanto, Taniyama-Shimura demuestra el último teorema de Fermat.

La demostración de la conjetura de Taniyama-Shimura suponía ya de por sí un reto de suma importancia, ya que constituía uno de los puntos del llamado Programa Langlands, cuyo objetivo consiste en unificar áreas de las matemáticas que aparentemente no tienen relación entre sí. Wiles pasó los 8 años siguientes a la demostración de Ribet en completo aislamiento trabajando en el problema, lo cual es un modo de trabajo inusual en matemáticas, donde es habitual que matemáticos de todo el mundo compartan sus ideas a menudo. Para no levantar sospechas, Wiles fue publicando artículos periódicamente, como haría cualquier matemático de cualquier universidad del mundo.

En 1993, Wiles creyó que su demostración estaba cerrada:

"Uno entra en la primera habitación de una mansión y está en la oscuridad. En una oscuridad completa. Vas tropezando y golpeando los muebles, pero poco a poco aprendes dónde está cada elemento del mobiliario. Al fin, tras seis meses más o menos, encuentras el interruptor de la luz y de repente todo está iluminado. Puedes ver exactamente dónde estás. Entonces vas a la siguiente

² **Durán Guardeño, Antonio José**. «I. Matemáticas y matemáticos en el mundo griego». *El legado de las matemáticas. De Euclides a Newton: los genios a traves de sus libros*. Sevilla. pp. 65-67. ISBN 9788492381821. http://books.google.es/books?id=oH07PIAJJJOC&pg=PA65.

³ **Andrew Wiles** (May 1995). «Modular elliptic curves and Fermat's Last Theorem» (PDF). *Annals of Mathematics* **141** (3): pp. 443–551. doi:10.2307/211855

habitación y te pasas otros seis meses en las tinieblas. Así, cada uno de estos progresos, aunque a veces son muy rápidos y se realizan en un solo día o dos, son la culminación de meses precedentes de tropezones en la oscuridad, sin los que el avance sería imposible".

El siguiente gráfico muestra una representación de la ecuación de Fermat:

Representación gráfica de la ecuación de Fermat

Dado que Wiles utilizó más de 100 páginas y modernas técnicas matemáticas, es en la práctica imposible que esta demostración sea la misma que insinuó Fermat. (Fermat poseía un ejemplar de la *Arithmetica* de *Diofanto* en cuyos márgenes anotaba las reflexiones que le iban surgiendo. En uno de estos márgenes enunció el teorema y escribió: "*Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet*", cuya traducción es: "*Poseo una demostración en verdad maravillosa para este hecho, pero este margen es demasiado estrecho para*

contenerla". Fermat llegó a demostrar el caso n = 4 mediante el método de descenso infinito; es probable que se haya engañado al creer que tenía una prueba para el caso general. Puede ser incluso que se haya percatado de su error ulteriormente: sus notas marginales eran de uso personal, y por lo tanto Fermat no hubiera tenido que desdecirse con sus correspondientes.

Estos antecedentes me hicieron pensar que si existe una demostración sencilla, que inexplicablemente ha pasado desapercibida ante la comunidad científica, la cual procederé a demostrarlo.

2. DEFINICIONES

Un **número natural** es cualquiera de los números que se usan para <u>contar</u> los elementos de un <u>conjunto</u>. Reciben ese nombre porque fueron los primeros que utilizó el ser humano para contar objetos.

- La Real Academia Española los define como "Cada uno de los elementos de la sucesión 0, 1, 2, 3..."
- Es el conjunto de los **números enteros** no negativos.
- Un *número natural* es un símbolo que indica una cantidad.

El conjunto de los números naturales se representa por $\mathbb N$ y corresponde al siguiente conjunto numérico: 5

$$\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \dots\}$$
 (no está incluido el cero)

Fijese que la Real Académia Española si incluye el cero dentro de los números naturales.

Los números naturales x,y,z, son un conjunto cerrado para las operaciones de la adición (z=x+y) y la multiplicación (z=xy), ya que al operar con cualquiera de sus elementos, resulta siempre un número perteneciente a \mathbb{N} . Para la resta (z=y-x), y debe ser mayor que x. Para la división (z=y/x) y debe ser un múltiplo entero de x y para:

$$z=(xy)^{1/n}$$

xy, debe ser un número que se le pueda extraer en forma exacta su raíz n o si no z será un número fraccionario con una mantisa de números infinita. La mantisa es la parte decimal del número fraccionario.

⁴ Definición de la Real Academia Española

⁵ Hurtado, F. (2 de 1997) (en español). *Atlas de matemáticas* (1 edición). Idea Books, S.A.. pp. 12. ISBN 978-84-8236-049-2

El siguiente diagrama muestra la ubicación de los números naturales dentro del conjunto de los números en general:

3. TERNAS PITAGÓRICAS

La manera fácil de encontrar las ternas pitagóricas **x,y,z** es de la siguiente manera:

El teorema de Pitágoras dice que en la siguiente ecuación:

$$x^2 + y^2 = z^2 \tag{1}$$

Se pueden encontrar números naturales *x,y,z>0* que cumplan dicha ecuación.

En la ecuación 1, una de las dos variables x,y deben ser mayor que la otra y no pueden ser iguales, porque cuando son iguales daría $z^2=2x^2=2y^2$ y z no sería un número natural, (la raíz cuadrada de dos es un número fraccionario con una mantisa infinita, que al multiplicarse por un número natural, sigue siendo fraccionario.

Asumiendo que x es la menor de las variables x,y, z debe ser mayor que y (z>y) para que la ecuación 1 tenga solución, es decir z>y>x y por lo tanto podemos escribir que:

$$z = y + m \tag{2}$$

para **x>m>0**. Si **m** igual o mayor que **x**, la ecuación 1 no tendría solución al dar **z<y**, veamos:

$$x^2 + y^2 = (y + m)^2 = y^2 + 2ym + m^2$$

$$x^2 = 2ym + m^2$$

Luego m debe ser menor que x, para que haya solución (x>m>0) de la ecuación 1.

La importancia de la ecuación 2 radica en que cuando **m** sea un número natural siendo **m**>0, podemos encontrar las ternas pitagóricas, porque **z** estaría entre los números naturales, el resto de valores de **m** (es decir número fraccionario), **z** sería también un número fraccionario.

Reemplazando la ecuación 2 en la ecuación 1 nos queda:

$$x^{2} + y^{2} = (y + m)^{2} = y^{2} + 2ym + m^{2}$$

 $(x^{2} - m^{2})/(2m) = y$ (3)

Las bases menores de x,y,z como ternas pitagór

icas y **x** impar, se encuentran reemplazando a **m**=1 en las ecuaciones 2 y 3, quedando:

$$z = y + 1 \tag{4}$$

$$(x^2 - 1)/2 = V (5)$$

Las bases menores de x,y,z como ternas pitagóricas y x par, se encuentran reemplazando a m=2 en las ecuaciones 2 y 3:

$$z=y+2 \tag{6}$$

$$(x^2 - 4)/4 = y \tag{7}$$

Las ecuaciones 4,5,6 y 7 nos permite encontrar todas las ternas pitagóricas de bases menores a,b,c, donde los valores de a,b,c corresponden a los valores encontrados para x, y, z respectivamente con dichas ecuaciones.

Las bases mayores de x,y,z como ternas pitagóricas se calculan mediante la ecuación 8, para k>1, siendo k un número entero y a,b,c las ternas pitagóricas de bases menores. Cuando a es impar m=k y cuando a es par m=2k:

$$(ak)^2 + (bk)^2 = (ck)^2 = z^2$$
 (8)

Las siguientes tablas No. 1 y 2 y figuras Nos. 1,2 y 3 nos da ejemplos de lo anterior:

Tabla No.1 Cálculo de Ternas pitagóricas de bases mayores con **x=a** impar

	TE	RNAS P	ITAGÓRIC	AS DE BAS	ES MENOF	RES x impa	r k =1 (m =:	1 ecuacion	nes 4 y 5)	
X	a=3	a=5	a=7	a=9	a=11	a=13	a=15	a=17	a=19	
у	b=4	b=12	b=24	b=40	b=60	b=84	b=112	b=144	b=180	
Z	c=5	c=13	c=25	c=41	c=61	c=85	c=113	c=145	c=181	

TE	RNAS F	PITAGÓ	RICAS DE I	BASES MA	YORES: EC	uación 8	3 k =2 (m =2	2 ecuacion	es 6 y 7)	
х	6	10	14	18	22	26	30	34	38	••••
у	8	24	48	80	120	168	224	288	360	••••
Z	10	26	50	82	122	170	226	290	362	

	TERNAS PITAGÓRICAS DE BASES MAYORES: ECUACIÓN 8 k=3 (m=3 ecuaciones 2 y 3)												
X	9	15	21	27	33	39	45	51	57	••••			
у	12	36	72	120	180	252	336	432	540				
Z	15	39	75	123	183	255	339	435	543				

TE	TERNAS PITAGÓRICAS DE BASES MAYORES: ECUACIÓN 8 k =4 (m =4 ecuaciones 2 y 3)											
X	12	20	28	36	44	52	60	68	76	••••		
у	16	48	96	160	240	336	448	576	720	••••		
Z	20	52	100	164	244	340	452	580	724			

Tabla No. 2 Cálculo de ternas pitagóricas de bases mayores con *x=a* par

	7	ΓERNAS	PITAGÓR	ICAS DE B	ASES MEN	IORES x pa	ar k =1 (m =	=2 ecuacio	nes 6 y 7)	
х	a=6	a=8	a=10	a=12	a=14	a=16	a=18	a=20	a=22	a= 24
у	b=8	b=15	b=24	b=35	b=48	b=63	b=80	b=99	b=120	b= 143
Z	c=10	c=17	c=26	c=37	c=50	c=65	c=82	c=101	c=122	c=145

	TERNAS PITAGÓRICAS DE BASES MAYORES: ECUACIÓN 8 k=2 (m=4 ecuaciones 2 y 3)											
x 12 16 20 24 28 32 36 40 44 4							48					
у	16	30	48	70	96	126	160	198	240	286		
Z	20	34	52	74	100	130	164	202	244	290		

	TERNAS PITAGÓRICAS DE BASES MAYORES: ECUACIÓN 8 k =3 (m =6 ecuaciones 2 y 3)											
х	18	24	30	36	42	48	54	60	66	72		
у	24	45	72	105	144	189	240	297	360	429		

z 30 51 78 111 150 195 246	303 366 435
--	-------------

	TERNAS PITAGÓRICAS DE BASES MAYORES: ECUACIÓN 8 k =4 (m =8 ecuaciones 2 y 3)												
X	24	32	40	48	56	64	72	80	88	96			
у	32	60	96	140	192	252	320	396	480	572			
Z	40	68	104	148	200	260	328	404	488	580			

Figura No.1. Representación gráfica de la ecuación 2.

Figura No. 2 Representación gráfica de las ternas pitagóricas de bases menores **a,b,c** y bases mayores **ak,bk,ck** para **x** impar (**x**=**a**=**3**, **y**=**b**=**4**, **z**=**c**=**5**, **m**=**1**)

Figura No. 3 Representación gráfica de las ternas pitagóricas de bases menores *a,b,c* y bases mayores *ak,bk,ck* para *x* par (*x=a=8, y=b=15, z=c=17, m=2*)

Este método es sencillo pero tan valioso, que por ejemplo con x=24, solo hay cuatro soluciones de y>x entre los números naturales para que z sea un número natural y son y=,143,70,45,32 y z=145,74,51,40 respectivamente, valores todos obtenidos con las formulas 4,5,6,7 y 8, (ver números resaltados en rojo en la tabla No. 2), soluciones con m=2,4,6,8 todos divisores de 24. Los valores y<x y z número natural son equivalentes y dan el mismo z, simplemente es como si hubiese puesto $z^2=y^2+x^2$ siendo x>y. (por ejemplo x=24, y=18, z=30 es equivalente a y=24, x=18, z=30 por lo que no se tienen en cuenta soluciones con x>y ya que se ha considerado siempre x<y), por eso aunque m=12 es divisor de 24 y da solución x=24, y=18, z=30 no se tiene en cuenta al ser x>y, además correspondería a una terna pitagórica similar de x=18, y=24 y z=30.

Existen otras bases menores que pueden también ser obtenidas con m>2 o con las siguientes ecuaciones⁶:

$$\begin{array}{c}
x^{2}+y^{2}=z^{2} \\
x=2uv \\
y=u^{2}-v^{2} \\
z=u^{2}+v^{2}
\end{array}$$
(9)

Donde \boldsymbol{u} y \boldsymbol{v} son números primos entre sí, uno de ellos es par y el otro impar.

Ejemplo con *m*=8 obtenemos de la ecuación 3: *x*=20, *y*=21

A este método se le llama la sucesión de los números primos $(2,3,5,7,11,13,17,19,23,29,31,37,....)^7$. Los valores x,y>0 y números naturales por debajo de la base menor dan a z fraccionario con m fraccionario o x,y>0 fraccionarios con m entero. Ver figura No. 4a. La tabla No. 3 muestra cálculos de ternas pitagóricas de bases menores con este método.

⁶ Rademacher, H. y Toeplitz, O., "Números y Figuras", Alianza Editorial, Madrid, 1970.

⁷ Carmichael, R. D., "The Theory of numbers and Diophantine Analysis", Dover, N.Y., 1959.

Todos los números x,y, que no estén dentro de la terna pitagórica (bases menores y/o , bases mayores), z es fraccionario con mantisa infinita, su cálculo proviene de una raíz de 2, ($z=\sqrt[2]{x^2+y^2}$), es decir m de la ecuación 2 es fraccionario con una mantisa infinita siendo x,y>0 números naturales:

z (fraccionario con mantisa infinita)= y (número natural) + m (cuya mantisa debe ser también infinita). Ver figura 4.b para los casos x impar (m=1) y x par (m=2)

Figura 4a. Casos de bases menores con el método de sucesión de números primos.

Figura No. 4b Gráfico que muestra a z para n=2 cuando es número natural y cuando es número fraccionario, siendo x impar (m=1) o x par (m=2).

Tabla No. 3. Ternas Pitagóricas menores y mayores obtenidas con el método de sucesión de números primos.

	Ternas pitagóricas de base menor calculadas con sucesión de números primos												
m=8	m=8 v=2, u=3 v=2, u=5 v=2, u=7 v=2, u=11 v=2, u=13 v=2, u=17 v=2, u=19 v=2, u=23 v=2, u=29												
х	5	20	28	44	52	68	76	92	126				
у	12	21	45	117	165	285	357	525	837				
Z	13	29	53	225	173	293	365	533	845				

	Ternas pitagóricas de base mayor calculadas con sucesión de números primos k =2 (m=16)												
х	x 10 40 56 88 104 136 152 184 252												
у	24	42	90	234	330	530	714	1050	1674				
Z	26	58	106	450	346	546	730	1066	1690				

Otro importante análisis es que ξ y β (gráfico de la ecuación de Fermat), permanecen constantes tanto para la terna pitagórica de bases menores, como su proyección en las ternas pitagóricas de bases mayores mayores:

$$\xi = x/z = (xk)/(zk) = ak/ck = a/c$$

$$\beta = y/z = (yk)/(zk) = bk/ck = b/c$$

La importancia de las ecuaciones 4,5,6,7,8 y 9, radica en que podemos encontrar cualquier terna pitagórica en forma sencilla. Esto es importante, porque nos facilitará demostrar que el teorema de Fermat es cierto, también en forma sencilla.

4. DEMOSTRACIÓN SENCILLA DEL ÚLTIMO TEOREMA DE FERMAT:

Decía Fermat:

"Es imposible descomponer un cubo en dos cubos, un bicuadrado en dos bicuadrados, y en general, una potencia cualquiera, aparte del cuadrado, en dos potencias del mismo exponente. He encontrado una demostración realmente admirable, pero el margen del libro es muy pequeño para ponerla".

En la demostración siempre asumiremos que x<y por lo tanto z>y

Haremos por partes la demostración:

Primera parte: "Es imposible descomponer un cubo en dos cubos".

$$x^3 + y^3 = z^3 (10)$$

Por Pitágoras sabemos que existen soluciones para **x**,**y**,**z>0** como números naturales en:

$$x^2 + y^2 = z^2 (11)$$

Y z de la ecuación 10 la podemos descomponer en:

$$x^3 + y^3 = z^2 z (12)$$

Reemplazando z^2 de la ecuación 11 en la ecuación 12:

$$x^{3} + y^{3} = (x^{2} + y^{2})z$$

$$x^{2}x + y^{2}y = x^{2}z + y^{2}z$$
(13)

Para que esta ecuación sea cierta, el valor de z estaría solo entre x y y, es decir x < z < y, lo cual nos conduce a un imposible de la ecuación 10 donde z > y, luego no puedo descomponer un cubo en dos cubos. Desde el punto de vista geométrico, la base de un cubo es un cuadrado y en la figura No. 5 vemos que z^3 no lo puedo descomponer en dos cubos, porque cuando lo hago conduce a una desigualdad de la ecuación 9 y el cubo real $x^3 + y^3$ es una fracción del cubo z^3 .

Figura No. 5. Descomposición de z³ en dos cubos

Segunda parte: "Es imposible descomponer un bicuadrado en dos bicuadrados"

$$x^4 + y^4 = z^4 \tag{14}$$

Y **z** la podemos descomponer en:

$$x^4 + y^4 = z^2 z^2$$

Por Pitágoras sabemos que:

$$x^2 + v^2 = z^2$$

$$x^4 + v^4 = (x^2 + v^2)(x^2 + v^2)$$

$$x^4 + v^4 = x^4 + 2x^2v^2 + v^4$$

$$2x^2y^2 = 0$$

Lo cual es falso para x,y>0, luego z^4 no se puede descomponer en dos bicuadrados que era lo que decía Fermat.

Tercera parte: "no se puede descomponer en general, una potencia cualquiera, aparte del cuadrado, en dos potencias del mismo exponente".

$$x^n + y^n = z^n \tag{15}$$

En esta demostración incluiremos que la solución de z para $x^n + y^n = z^n$, x,y>0, z no es un número natural.

Si la ecuación 15, es cierta para x,y>0, n>2 y z sea un número natural, la podemos escribir como:

$$\mathbf{x}^n + \mathbf{y}^n = \mathbf{z}^2 \mathbf{z}^{n-2} \tag{16}$$

Reemplazando z^2 de la ecuación 11 en la ecuación 15 tenemos:

$$x^n + y^n = (x^2 + y^2)z^{n-2}$$

$$x^n + y^n = x^2 z^{n-2} + y^2 z^{n-2}$$

 $x^2x^{n-2} + y^2y^{n-2} = x^2z^{n-2} + y^2z^{n-2}$, para que esta ecuación sea cierta:

$$x^{n-2} < z^{n-2} < y^{n-2}$$
 (17)

Es decir *x<z<y*

Lo cual nos conduce a una imposibilidad de la ecuación 15, porque z>y, luego z^n no se puede descomponer en dos números $x^n + y^n$ que era lo que decía Fermat.

Es posible que Fermat haya llegado a la ecuación 17 y sacado la conclusión generalizada de su teorema, por lo que escribió entusiasmado en el ejemplar de la <u>Arithmetica</u> de <u>Diofanto</u>, en cuyos márgenes anotaba las reflexiones que le iban surgiendo:

"Poseo una demostración en verdad maravillosa para este hecho, pero este margen es demasiado estrecho para contenerla".

DEMOSTRACIÓN QUE Z NO PUEDE SER UN NÚMERO NATURAL:

a. Demostración que (z para n=2)>(z para n>2)>(z para n+1)

Reemplacemos la ecuación 8 en la ecuación 15 y llevémosla a la forma general para *n*>2 con las ternas pitagórica y nos queda:

$$(3\mathbf{k})^{n}+(4\mathbf{k})^{n}=(5\mathbf{k})^{n} \circ (8\mathbf{k})^{n}+(15\mathbf{k})^{n}=(17\mathbf{k})^{n},.....$$

$$3^{n}k^{n} + 4^{n}k^{n} = 5^{n}k^{n} \circ 8^{n}k^{n} + 15^{n}k^{n} = 17^{n}k^{n}, \dots$$

$$(3^n + 4^n)k^n = 5^nk^n \circ (8^n + 15^n)k^n = 17^nk^n, \dots$$

$$3^{n}+4^{n}=5^{n} \circ 8^{n}+15^{n}=17^{n}$$
.....

Para **n**>2, no existe solución (solo para **n**=2), ya que siempre:

$$3^{n}+4^{n}<5^{n}$$
 o $8^{n}+15^{n}<17^{n}$ para $n>2$

Y por lo tanto:

$$(3k)^n + (4k)^n < (5k)^n$$
, o $(8k)^n + (15k)^n < (17k)^n$ para $n > 2$.

Y en general:

$$x^n + y^n < z^n \text{ para } n > 2 \tag{18}$$

Siendo x,y,z solución de ternas pitagóricas para n=2.

Es decir si no se cumple para la base menores del teorema de Pitágoras para n>2, tampoco se cumple para las bases mayores x=3k, y=4k y z=5k o x=8k, y=15k, y z=17k, etc

Aquí es importante resaltar entonces la siguiente conclusión:

Para cualquier valor de **x,y>0**, de la ecuación 15:

$$(z \text{ para } n=2)>(z \text{ para } n>2)>(z \text{ para } n+1)$$
 (19)

La siguiente tabla muestra lo anterior:

Tabla No.4 Comprobación de que $z^2>z^3>z^4>z^5>z^6>...$ Siendo $z^n=x^n+y^n$

Tal	ola	que muestra:	(z para n=2)>(z para n=3)>(z	z para n=4)>(z	z para n=5>()
X	у	z para <i>n</i>=2	z para n =3	z para n =4	z para n =5	
3	4	5	4.4979	4.2846	4.1740	
8	15	17	15.7231	15.2946	15.1273	
12	18	21.6333	19.6264	18.8297	18.4509	

En la tabla No. 4 es claro que 5>4.4979>4.2846>4.1740 donde 5 corresponde a un valor de **z** para **n**=2 y perteneciente a la terna pitagórica 3,4,5; 4.4979 corresponde al valor de **z** para **n**=3, 4.2846 corresponde al valor de **z** para **n**=4 y 4.1740 corresponde al valor de **z** para **n**=5, igualmente 17>15.7231>15.2946>15.1273 donde 17 corresponde al valor de **z** para **n**=2 y pertenecientes a las ternas pitagóricas 8,15,17; 15.7231 corresponde al valor de **z** para **n**=3, 15.2946 corresponde al valor de **z** para **n**=4 y 15.1273 corresponde al valor de **z** para **n**=5, y finalmente para ternas no pitagóricas, 21.6333 corresponde al valor de **z** para **n**=2, 19.6264 corresponde al valor de **z** para n=3, 18.8297 corresponde al valor de **z** para n=4 y 18.4509 corresponde al valor de **z** para **n**=5.

b. Valores posibles de z

Caso x=y

La ecuación 15 quedaría:

$$X^n + X^n = Z^n$$

$$2x^n = z^n$$

$$z = 2^{1/n}x$$

El coeficiente de x corresponde a un número fraccionario con una mantisa de números infinita, para cualquier valor de n y por lo tanto z también es un número fraccionario y como tal, no corresponderá a un número natural.

$$Caso z = y + q \tag{20}$$

Donde q debería ser un número natural sin incluir el 0 para que z sea también un número natural. Si q es un número fraccionario, z también lo sería y quedaría demostrado el último teorema de Fermat.

Reemplazando la ecuación 19 en la ecuación 14 nos queda:

$$x^{n}+y^{n}=y^{n}+p+q^{n}$$

$$x^{n}=p+q^{n}$$

$$(21)$$

$$p=\sum_{k=1}^{n-1}\binom{n}{k}y^{n-k}q^{k}$$

$$1 \le k \le n-1$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Donde n!, k! y (n –k)! significan que son números factoriales.

En la ecuación 21 es claro que q < x para que se cumpla la igualdad, además esta ecuación me permite calcular el valor de q para n>2.

Como ejemplo calculemos dos valores de q:

Primero cuando **x**=3, **y**=4, y **n**=3

La ecuación 21 quedaría:

$$27 = 48q + 12q^2 + q^3$$

q = 0.497941445275414.....

Segundo cuando x=8, y=15 y n=3

La ecuación 21 quedaría:

$$512 = 675\mathbf{q} + 45\mathbf{q}^2 + \mathbf{q}^3$$

q=0.7231001316563....

Ahora comparemos la ecuación 2 (de las ternas pitagóricas) con la ecuación 20 para conocer que rango de valores podría tener **q**:

$$z = y + m \quad (2) \qquad \qquad z = y + q \quad (20)$$

1. La variable m de la ecuación 2 me permite calcular z para hallar las ternas pitagóricas. (x,y>0), cuando m>0 y sea un número natural, o para el resto de ternas no pitagóricas siendo m un número fraccionario.

- 2. La variable \mathbf{q} de la ecuación 20 me permite calcular \mathbf{z} para hallar las ternas de la ecuación 15. $(\mathbf{x},\mathbf{y}>\mathbf{0})$ y \mathbf{z} sería un número natural solo si \mathbf{q} lo es.
- 3. La variable z de cualquier terna pitagóricas es siempre mayor que la variable z de la ecuación 15 (demostrado en la ecuación 19). Por lo tanto m>q. Es decir cuando m=1, todos los valores de q estan en 0<q<1, y z sería un número fraccionario, siendo x impar (tabla 5). Cuando x es par m=2 q también es menor de 1, lo cual lo comprobamos mediante la tabla 6, lo que nos indica que no hay bases menores con x,y>0 y z entre los numeros naturales para n>2, como si existe para m=1,2 y n=2.

La figura No. 6 nos muestra el comportamiento de q^1 para n>2, cuando m=1, x impar, n=2 y cuando m=2, x par n=2.

TABLA	No. 5: TE	RNAS PIT	AGÓRICA:	S DE BASE	S MENOR	ES x inpar	k=1 (m=1	ecuaciones	4 y 5)
х	3	5	7	9	11	13	15	17	19
у	4	12	24	40	60	84	112	144	180
Z	5	13	25	41	61	85	113	145	181
q para n=3	0.4979	0.2826	0.1969	0.1513	0.1230	0.1037	0.0896	0.0789	0.0705
z para n=3	4.4979	12.2826	24.1969	40.1513	60.1230	84.1037	112.0896	144.0789	180.0705
q para n =4	0.2846	0.0894	0.0433	0.0256	0.0169	0.0120	0.0090	0.0070	0.0056
<i>z</i> para <i>n=4</i>	4.2846	12.0894	24.0433	40.0256	60.0169	84.0120	112.0090	144.0070	180.0056
q para									
n =5	0.1740	0.0300	0.0101	0.0046	0.0025	0.0015	0.0010	0.0007	0.0005
<i>z</i> para <i>n=5</i>	4.1740	12.0300	24.0101	40.0046	60.0025	84.0015	112.0010	144.0007	180.0005

TABLAN	TABLA No. 6: TERNAS PITAGÓRICAS DE BASES MENORES x par k =1 (m =2 ecuaciones 6 y 7)												
							· ·	1					
Х	6	8	10	12	14	16	18	20	22	24			
у	8	15	24	35	48	63	80	99	120	143			
Z	10	17	26	37	50	65	82	101	122	145			
q para n =3	0.996	0.723	0.565	0.464	0.394	0.342	0.303	0.271	0.246	0.225			
z para n =3	8.996	15.723	24.565	35.464	48.394	63.342	80.303	99.271	120.246	143.225			
q para n =4	0.569	0.295	0.179	0.120	0.087	0.065	0.051	0.041	0.034	0.028			
z para n =4	8.569	15.295	24.179	35.120	48.087	63.065	80.051	99.041	120.034	143.028			
q para n =5	0.348	0.127	0.060	0.033	0.020	0.013	0.009	0.007	0.005	0.004			
z para n =5	8.348	15.127	24.060	35.033	48.020	63.013	80.009	99.007	120.005	143.004			

Figura No. 6 Comportamiento de q^1 para n>2 siendo m=1, x impar, n=2 y m=2, x par n=2.

Reemplazando $q^1=0 < q < 1$ en la ecuación 20:

 $z = y + q^{1}$ (z sería fraccionario al ser q^{1} siempre fraccionario) (22)

Reemplazando a x=a y y=b (a,b pertenecen a las ternas pitagóricas de bases menores), $z=\sqrt[n]{a^n+b^n}$, la ecuación 22 quedaría:

$$\sqrt[n]{a^n+b^n}=b+q^1$$

Como q^1 es fraccionario, el valor $\sqrt[n]{a^n + b^n}$ debe ser fraccionario y al provenir su cálculo de un radical, su mantisa es infinita y por lo tanto la mantisa de q^1 es infinita.

4. Igual que la ecuación 8, las bases mayores para n>2 se encuentran con ak,bk,ck donde m=k para x impar y m=2k para x par, (donde a,b,c serían las bases menores para n>2). En este caso a,b son los mismos x, y tanto de la ecuación 1 como de la ecuación 15, el que varía es c (c=y+1 o c=y+2) para las ternas pitagóricas de bases menores con n=2 y c=y+q¹ para las bases menores con n>2). O sea las bases mayores de z para n>2 serían:

$$z = ck = bk + q^{1}k \tag{23}$$

Al tener q^1 una mantisa infinita, el valor de q^1k siempre será fraccionario y z será por lo tanto fraccionario para todas las bases mayores de z para n>2. Ver las tablas 7 y 8 (para x impar y x par):

Tak	ola No. 7 Cálculo de	e q, z para diferent	es valores de n y m	siendo x impar	
		m=100	m=1000	m=1.000.000	
X	3	300	3000	3000000	
y	4	400	4000	4000000	
Z	5	500	5000	5000000	
q n =3	0.497941445275	49.7941445275	497.941445275	497941.445275	
z n=3	4.497941445275	449.7941445275	4497.941445275	4497941.445275	
q n =4	0.284572294954	28.4572294954	284.572294954	284572.294954	
<i>z n</i> =4	4.284572294954	428.4572294954	4284.572294954	4284572.294954	
q n =5	0.174027662898	17.4027662898	174.027662898	174027.662898	
z n =5	4.174027662898	417.4027662898	4174.027662898	4174027.662898	
q n =6	0.110704132576	11.0704132576	110.704132576	110704.132576	
z n =6	4.110704132576	411.0704132576	4110.704132576	4110704.132576	
q n =7	0.072242319397	7.2242319397	72.242319397	72242.319397	
<i>z n</i> =7	4.072242319397	407.2242319397	4072.242319397	4072242.319397	

Ta	abla No. 8 Cálculo de	e q, z para diferent	tes valores de n y r	n siendo x par
		m=100	m=1000	m=1.000.000
X	8	300	3000	3000000
y	15	400	4000	4000000
Z	17	500	5000	5000000
q n =3	0.723100131656	72.3100131656	723.100131656	723100.131656
z n=3	15.723100131656	472.3100131656	4723.100131656	4723100.131656
q n=4	0.294613487125	29.4613487125	294.613487125	294613.487125
<i>z n</i> =4	15.294613487125	429.4613487125	4294.613487125	4294613.487125
q n =5	0.127275547330	12.7275547330	127.275547330	127275.547330
z n =5	15.127275547330	412.7275547330	4127.275547330	4127275.547330
q n =6	0.056990955996	5.6990955996	56.990955996	56990.955996
z n =6	15.056990955996	405.6990955996	4056.990955996	4056990.955996
q n =7	0.026164415901	2.6164415901	26.164415901	26164.415901
<i>z n</i> =7	15.026164415901	402.6164415901	4026.164415901	4026164.415901

5. Para el resto de los casos especiales de ternas pitagóricas de bases menores con *m*>2 (ecuación 3 y ecuación 9), que se encuentren dentro de la sucesión de los números primos (*x=a,y=b,z=c* para *n*=2) tenemos como *x<y* puedo hacer que:

a+**d**=**b** siendo **d**>0 y número natural

$$(a+d)^n=b^n$$

$$a^{n+}(a+d)^{n}=c^{n}$$

$$(a+d)^n = a^n + p + d^n \tag{24}$$

$$p = \sum_{k=1}^{n-1} \binom{n}{k} a^{n-k} d^k \qquad 1 \le k \le n-1 \qquad \binom{n}{k} = \frac{n!}{n!(n-k)!}$$

$$a^{n+}a^{n+}p+d^{n}=c^{n}$$

 $2a^{n}+p+d^{n}=c^{n} \tag{25}$

El coeficiente de a^n (2) para n>2 no permite que la ecuación 25 tenga solución de c (z) entre los números naturales para n>2, porque se rompió la simetría del binomio de Newton (la raíz n de $(2a^n+p+d^n)$) no puede dar un número natural), como si la tiene la ecuación 24 (el coeficiente de a^n es 1 y la simetría del binomio de Newton es exacta).

La siguiente tabla muestra varios ejemplos de ternas pitagóricas de base menor que se hallaron con el método de la sucesión de números primos, haciendo los cálculos con n>2 hasta obtener q<1. En todos los casos los valores de q,z para n>2 dan fraccionarios. La matiza de q,z para n>2 la hemos limitado a dos decimales por razones de espacio, pero realmente son infinitas y por lo tanto las bases mayores de ternas obtenidas con z=bk+qk, x=ak y y=bk, también tendrá a z como número fraccionario para n>2. En este caso m=8k para k>0 y número natural. Igualmente a partir de la terna pitagórica a=92, b=525 y c=533 todos los valores de q son menores de 1 para n>2 y z es fraccionario.

Tabla	No. 9 Cá	lculo de q, z	para n>2 c	on terna pi	tagórica de	base mend	r con suces	ión núme	ros primo	s para n =2
m =8	n =2	n =3	n =4	n =5	n =6	n =7	n =8	n =9	n =10	n =11
Х	a =20	q= 4.84	q =3.40	q =2.58	q =2.04	q =1.67	q =1.40	q =1.19	q =1.03	q =0.90
у	b =21	21	21	21	21	21	21	21	21	21
Z	<i>c</i> =29	25.84	24.40	23.58	23.04	22.67	22.40	22.19	22.03	21.90
m =8	n =2	n =3	n =4	n =5			m =8	n =2	n =3	n =4
Х	a =28	q =3.36	q =1.60	q =0.85			Х	a =44	q =2.04	q =0.58
у	b =45	45	45	45			у	b =117	117	117
Z	<i>c</i> =53	48.36	46.60	45.81			Z	<i>c</i> =225	119.04	117.58
					-					
m =8	n =2	n =3	n =4				m =8	n =2	n =3	n =4
Х	a =52	q =1.70	q =0.41				Х	a =68	q =1.28	q =0.23
у	b =165	165	165				у	b =285	285	285
Z	<i>c</i> =173	166.70	165.41				Z	<i>c</i> =293	286.28	285.23
				_						
m =8	n =2	n =3	n =4				m =8	n =2	n =3	n =4
Х	a =76	q =1.14	q =0.18				Х	a =92	q =0.94	q =0.12
у	b =357	357	357				у	b =525	525	525
Z	<i>c</i> =365	358.14	357.18				Z	<i>c</i> =533	525.94	525.12

6. Para el resto de casos de los triángulos rectángulos donde z para n=2, no es un número natural, sino fraccionario con una mantisa infinita (el cálculo de z proviene de $z=\sqrt[2]{x^2+y^2}$). Al ser siempre q < m tenemos que q tambien es fraccionario con una mantisa infinita por lo siguiente:

En la figura No. 7 tenemos 3 triángulos cuyos lados son paralelos:

El triángulo rectángulo x,y,z (donde z es fraccionario con mantisa infinita), el triángulo rectángulo m,r,s (donde m es fraccionario con una mantisa infinita) y el triángulo q,p,t. Considerando el primer y tercer triángulo al tener los lados paralelos, sus lados son proporcionales:

q/z=p/x (**z** para **n**=2)

q=(p/x)z

Donde p/x es fraccionario (p < x) y z es fraccionario con mantisa infinita, luego q es fraccionario con mantisa infinita y por lo tanto:

z=y+q (z para n>2), z es fraccionario con mantisa infinita, quedando probado para todos los casos que en $z^n=x^n+y^n$ para n>2, z es fraccionario y no pertene a los números naturales.

Figura No. 7. Gráfico de las ecuaciones z=y+m para n=2 y z=y+q para n>2, donde el triángulo rectangulo x,y,z no tiene soluciones de ternas pitagóricas.

La tabla No. 10 muestra cálculos efectuados con ternas no pitagóricas que muestran que m, z para n=2, q y z para n>2 son fraccionarios (por razones de espacio la mantisa la hemos limitado a tres números):

	TABLA No. 10 CÁLCULO DE m Y z PARA n=2, q Y z PARA n>2, CON VALORES x,y DIFERENTES A LAS TERNAS PITAGÓRICAS												
Х	у	y m z n=2 q n=3 z n=3 q n=4 z n=4 q n=5											
8	16	1.889	17.889	0.641	16.641	0.244	16.244	0.099	16.099				
13	22	3.554	25.554	1.420	23.420	0.642	22.642	0.308	22.308				
17	30	4.482	34.482	1.719	31.719	0.745	30.745	0.343	30.343				
40	60	12.111	72.111	5.421	65.421	2.766	62.766	1.503	61.503				
56	87	16.465	103.465	7.133	94.133	3.515	90.515	1.843	88.843				
71	112	20.608	132.608	8.801	120.801	4.271	116.271	2.205	114.205				

7. Formación del último triángulo de Fermat:

Gráficamente lo mostramos en la figura No. 8, donde es claro que se forma un triángulo de lados x,y y y+q, cuando unimos las rectas x, y y z=y+q y donde $60^{\circ}<\Omega<90^{\circ}$ (Ω es el ángulo opuesto al lado z=y+q). Este triángulo, que lo he denominado el último triángulo de Fermat en su honor, el lado z=y+q es un número fraccionario, siendo x,y>0 números naturales, solamente z podría ser número natural cuando $\Omega=90^{\circ}$, $\Omega=60^{\circ}$, o $\cos\Omega$ diferente a:

$$\cos \Omega = \frac{x^2 + y^2 - \left[\frac{n}{x^n + y^n} \right]^2}{2xy}$$

Condición que nunca se cumple en $z^n = x^n + y^n$

Figura No. 8. Formación del último triángulo de Fermat

8. El comportamiento del último triángulo de Fermat sería entre un triángulo equilatero y un triángulo rectángulo, tal como se muestra la figura No. 9:

Figura No. 9. Comportamiento del último triángulo de Fermat

Esto da origen a un nuevo concepto de la geometría que conocemos hoy en día como se muestra en la siguiente figura, donde se pueden clasificar cinco tipos de triángulos claramente definidos por unas características comunes para cada uno de ellos:

- 1. Triángulo Equilátero (x=y=z, $\Omega=60^{\circ}$), ya conocido.
- 2. Triángulo Rectángulo ($z^2=x^2+y^2$, $\Omega=90^\circ$), ya conocido
- 3. Triángulo Isosceles (y=z, $\Omega > 60°$), ya conocido
- 4. Triángulo Obtusángulo (x < y < z, $\Omega > 90^{\circ}$), ya conocido y forma parte de los triángulos escalenos.
- 5. Último Triángulo de Fermat (x < y < z, $60^{\circ} < \Omega < 90^{\circ}$), nuevo concepto:

$$\cos \Omega = \frac{x^2 + y^2 - \left[\sqrt[n]{x^n + y^n} \right]^2}{2xy}$$

Forma parte de los triángulos escalenos

La figura No.10 muestra lo anterior:

Figura No. 10. Nuevo concepto geométrico

Las siguientes dos tablas (tabla No. 11 y tabla No.12) muestran diferentes cálculos de Ω para ternas pitagóricas con x impar y x par respectivamente (en todos los casos $60^{\circ}<\Omega<90^{\circ}$). La figura 11 muestra geométricamente porque no cambia Ω con k>1.

Tabla No. 11. Cálculo de Ω para ternas pitagóricas con x impar y k=1,2

										I
TERN				ASES MI	ENORES				nes 2 y 3)	
X	3	5	7	9	11	13	15	17	19	
У	4	12	24	40	60	84	112	144	180	
z	5	13	25	41	61	85	113	145	181	
z para n=3		12.2826	24.1969	40.1513	60.1230	84.1037	112.0896	144.0789	180.0705	
Ω	78.54	81.31	83.25	84.51	85.38	86.02	86.50	86.88	87.19	1
z para n=4		12.0894	24.0433	40.0256	60.0169	84.0120	112.0090	144.0070	180.0056	
Ω	73.93	79.02	81.97	83.70	84.83	85.62	86.19	86.64	86.99	•
z para n=5	4.1740								180.0005	
Ω	71.60	78.33	81.70	83.57	84.75	85.57	86.16	86.62	86.98	
										1 1
			ec	uaciones	2 y 3)	I	CIÓN 8 k =	`	20	
x	6	10	ec 14	uaciones 18	2 y 3) 22	26	30	34	38	
x y	6	10 24	14 48	uaciones 18 80	2 y 3) 22 120	26 168	30 224	34	360	
x	6 8 10	10	14 48 50 48.3937	uaciones 18 80 82	2 y 3) 22 120 122	26 168 170	30	34 288 290	360 362 360.14107	
x y z z para	6 8 10	10 24 26 24.5653	14 48 50 48.3937	uaciones 18 80 82	2 y 3) 22 120 122	26 168 170	30 224 226	34 288 290	360 362 360.14107	
x y z z para	6 8 10 8.9959 78.54	10 24 26 24.5653	90 48.3937 5 83.25 48.0866	18 80 82 80.3026 84.51	2 y 3) 22 120 122 120.246 85.38	26 168 170 168.207 86.02	30 224 226 224.1792	34 288 290 288.1579 86.88	360 362 360.14107 6	
x y z z para n=3 Ω	6 8 10 8.9959 78.54	10 24 26 24.5653 81.31	90 48.3937 5 83.25 48.0866	18 80 82 80.3026 84.51	2 y 3) 22 120 122 120.246 85.38	26 168 170 168.207 86.02	30 224 226 224.1792 86.50	34 288 290 288.1579 86.88	360 362 360.14107 6 87.19 360.01117	
x y z z para n=3 Ω z para n=4 Ω	6 8 10 8.9959 78.54 8.5691 73.93	10 24 26 24.5653 81.31 24.1788 79.02	ec 14 48 50 48.3937 5 83.25 48.0866 1	80.3026 84.51 80.0512 83.70	2 y 3) 22 120 122 120.246 85.38 120.034 84.83	26 168 170 168.207 86.02 168.024 85.62	30 224 226 224.1792 86.50	34 288 290 288.1579 86.88 288.014 86.64	360 362 360.14107 6 87.19 360.01117 2 86.99 360.00094	

Tabla No. 12. Cálculo de Ω para ternas pitagóricas con $\textbf{\textit{x}}$ par y $\textbf{\textit{k}}$ =1,2

TERNAS PITAGÓRICAS DE BASES MENORES x par k =1 (m =2 ecuaciones 2 y 3)											
х	6	8	10	12	14	16	18	20	22		
У	8	15	24	35	48	63	80	99	120		
z	10	17	26	37	50	65	82	101	122		
z para n=3	8.9959	15.7231	24.5653	35.464	48.3938	63.3421	80.3026	99.2713	120.2460		
Ω	78.54	79.97	81.31	82.39	83.25	83.94	84.51	84.98	85.38		
z para n=4 Ω		15.2946 76.73	24.1788 79.02	35.1203 80.71	48.0866 81.97	63.0654 82.94	80.0512 83.70	99.0412 84.32	120.0339 84.83		
z para n =5	8.3481	15.1273	24.0600	35.0331	48.0202	63.0133	80.0092	99.0067	120.0050		
Ω	71.60	75.48	78.33	80.29	81.70	82.75	83.57	84.22	84.75	1	
TER	NAS PIT	AGÓRIC		ASES Mauaciones		ECUAC	CIÓN 8 k =	2 (m =4	44		
y	16	30	48	70	96	126	160	198	240		
z	20	34	52	74	100	130	164	202	244		
			49.1306					198.5427			
z para n=3		79.97	81.31	82.39	83.25	83.94	84.51	84.98	85.38		
	78.54	7 0.07									
n=3			48.3577	70.2406	96.1732	126.131	160.1024	198.0824	240.0678		
n=3 Ω z para			48.3577 79.02	70.2406 80.71	96.1732 81.97	126.131 82.94	160.1024 83.70	198.0824 84.32	240.0678 84.83	-	

Figura No. 11 Geométricamente no cambia Ω con k>1

La tabla No. 13 muestra diferentes cálculos de Ω con ternas no pitagóricas y siempre $60^{\circ} < \Omega < 90^{\circ}$.

			TA	BLA No. 1	3 TERNAS	NO PITAG	ÓRICAS		
Х	9	8	7	6	5	4	3	2	1
у	10	22	31	42	56	61	69	73	81
Z	13.454	23.4094	31.7805	42.4264	56.2228	61.131	69.06519	73.0273921	81.0061726
Z									
para									
n=3	12.002	22.347	31.119	42.041	56.013	61.006	69.002	73.0005004	81.0000508
Ω	78.16	82.06	84.49	86.29	87.59	88.20	88.79	89.2294572	89.6492497
Z									
para									
n =4	11.344	22.0955	31.0201	42.0044	56.0009	61.0003	69.0001	73.0000103	81.0000005
Ω	73.11	80.22	83.68	85.95	87.45	88.13	88.76	89.2154149	89.6463657
Z									
para									
n =5	10.973	22.0279	31.0036	42.0005	56.0001	61.0000	69.0000	73.0000002	81.0000000
Ω	70.32	79.73	83.55	85.91	87.44	88.12	88.75	89.2151268	89.6463390

			TABLA No.	13 TERNAS	NO PITA	GÓRICAS			
Х	19	25	28	33	37	41	47	51	59
у	20	30	32	36	40	44	59	59	60
z	27.586	39.0512	42.52058	48.8365	54.4885	60.1415	75.43209	77.9871784	84.1486779
Z									
para									
n=6	21.924	31.4796	34.0396	38.9062	43.3775	47.8522	61.28078	62.5300539	66.7982781
Ω	68.35	69.14	68.76	68.49	68.45	68.42	69.58	68.84	68.29
Z									
para									
n =7	21.572	31.0737	33.55065	38.3042	42.6989	47.0976	60.58263	61.6533129	65.707236
Ω	67.11	68.10	67.62	67.28	67.23	67.19	68.64	67.73	67.02
Z									
para									
n =8	21.314	30.7945	33.20352	37.867	42.2044	46.5462	60.11885	61.0353697	64.9012359
Ω	66.20	67.39	66.81	66.40	66.34	66.30	68.02	66.95	66.10

9. La representación gráfica de la ecuación de Fermat: $z^n = x^n + y^n$, realmente no sería una función contínua, sino discontínua al contener z únicamente a los números fraccionarios y no contener a los numeros naturales dentro de ella, tal como se muestra en la figura No. 12:

Figura No. 11 Representación gráfica de las ecuación $x^n+y^n=z^n$

10.La clave ha sido haber demostrado con la ecuación 19 que: (z para n=2)>(z para n=3)>(z para n=4>....) y haber demostrado que q<m sin que q pueda tener valores entre los números naturales y por lo tanto z tampoco cuando n>2, haciendo imposible descomponer un cubo en dos cubos, un bicuadrado en dos bicuadrados y en general, una potencia cualquiera aparte del cuadrado, en dos potencias del mismo exponente, siendo z un número natural, y que Fermat visualizó este importante hecho, cuando escribio al margen de un ejemplar de la Arithmetica de Diofanto:

"Es imposible descomponer un cubo en dos cubos, un bicuadrado en dos bicuadrados, y en general, una potencia cualquiera, aparte del cuadrado, en dos potencias del mismo exponente. He encontrado una demostración realmente admirable, pero el margen del libro es muy pequeño para ponerla".

Por mi parte creo que se ha hecho un análisis completo de todas las posibilidades y condiciones para **z** de la ecuación 15 y todas ellas muestran que el enunciado del **último teorema de Fermat es correcto**, **demostrándolo en forma sencilla**.

VICEALMIRANTE ® JOSÉ WILLIAM PORRAS FERREIRA

Cartagena (B) Colombia 3 de marzo de 2011

Email: jwporras@balzola.org

Celular No. 315-7437915