Analisando Dados com Python

Como nasceu esse workshop?

- GEDS Grupo de Estudos em Data Science, integrantes do Pyladies São Paulo
- <u>Trilha e materiais</u>
- A missão foi estudar Ciência de Dados, disponibilizar o material para a comunidade e incentivar outras mulheres a formarem grupos de estudos de temas de interesse
- Material adaptado <u>dessa</u> 1a versão do Workshop feito pelas integrantes do GEDS

Agenda

- → Contexto
- → Tipos de Dados
- → Introdução ao pacote Pandas
- → Estatística Descritiva
- → Variabilidade dos dados
- → Introdução à Visualização

Contexto

Elementos importantes em uma análise de dados:

- Definição de Objetivos
- Limpeza e Preparação dos Dados qualidade
- Exploração de Dados
- Análise Estatística
- Visualização de Dados
- Interpretação de Resultados
- Comunicação dos Insights apoio para Tomada de Decisão
- Ética e Privacidade
- Atualização e Monitoramento

Contexto

A análise de dados não é apenas sobre a **coleta e manipulação de números**; é sobre **como usar esses dados para comunicar** informações de maneira significativa e para tomada de decisões.

Google Colaboratory

O Colab segue o mesmo padrão do Jupyter Notebook. Nele é possível adicionar células de código, texto, importar arquivos etc. Para ter acesso ao Google Colab, basta logar na sua conta Google e acessar o link https://colab.research.google.com;

Tipos de Dados

Tipos de dados

Quantitativos - Quantifica ou mede

Discretos:

Assumem valores em um conjunto especificado de números.

Continuos:

Assumem valores em um intervalo contínuo de números.

Qualitativos - Característica ou qualidade

Nominal:

Característica que não possui ordem.

Ordinal:

Característica que possui uma ordem de grandeza.

Tipos de Dados

Quantitativos

2018

- Quantidade de pessoas na sala?
- Quantidade de dias no mês?

Discretos:

Continuos:

- Qual sua altura?
- Qual a distância daqui até sua casa?

Nominal:

- Qual seu Estado? (SP, MG, RJ, Outros)
- Qual gênero você se identifica?

Ordinal:

- Avaliação curso (Ruim a Ótimo).
- Qual seu nível de escolaridade?

Tipos de Dados - Exemplo PyLadies

ID	Estado Origem	Idade	Escolaridade	Trabalha como Programadora	Renda Mensal
1	SP	36	4	S	3737,52
2	SP	25	2	N	400,00
3	MG	34	3	S	2366,14
4	RJ	23	3	S	2841,29
5	SP	31	4	N	800
6	SP	34	5	S	3433,02
7	SP	39	5	S	2752,74
8	PE	24	3	S	3682,33
9	RJ	29	3	S	2359,28
10	SP	27	3	S	2119,15
11	SP	30	3	S	3326,79
12	SP	25	4	S	2684,05
13	SP	23	2	S	3507,84
14	SP	16	1	N	0
15	SP	36	4	N	800

Legenda Escolaridade

Ensino Medio Completo
 Graduanda
 Graduação Completa
 Pós graduanda
 Pós graduação completa

Dados meramente ilustrativos.

Tipos de Dados - Dados Qualitativos

ID	Estado Origem	Idade	Escolaridade	Trabalha como Programadora	Renda Mensal
1	SP	36	4	S	3737,52
2	SP	25	2	N	400,00
3	MG	3/1	ર	ς	2366,14
4	RJ	Dados	s Qualita	tivos	2841,29
5	SP	51	4	IV	800
6	SP	34	5	S	3433,02
7	SP	39	5	S	2752,74
8	PE	24	3	S	3682,33
9	RJ	29	3	S	2359,28
10	SP	27	3	S	2119,15
11	SP	30	3	S	3326,79
12	SP	25	4	S	2684,05
13	SP	23	2	S	3507,84
14	SP	16	1	N	0
15	SP	36	4	N	800

Legenda Escolaridade

Ensino Medio Completo
 Graduanda
 Graduação Completa
 Pós graduação completa

Tipos de Dados - Categóricos

ID	Estado Origem	Idade	Escolaridade	Trabalha como Programadora	Renda Mensal
1	SP	36	4	S	3737,52
2	SP	25	2	N	400,00
3	MG	34	2		2366,14
4	Nominal	23	Ordinal	Nominal	2841,29
5	SP	31	4	N	800
6	SP	34	5	S	3433,02
7	SP	39	5	S	2752,74
8	PE	24	3	S	3682,33
9	RJ	29	3	S	2359,28
10	SP	27	3	S	2119,15
11	SP	30	3	S	3326,79
12	SP	25	4	S	2684,05
13	SP	23	2	S	3507,84
14	SP	16	1	N	0
15	SP	36	4	N	800

Legenda Escolaridade

Ensino Medio Completo
Graduanda
Graduação Completa
Pós graduanda
Pós graduação completa

Tipos de Dados - Dados Quantitativos

ID	Estado Origem	Idade	Escolaridade	Trabalha como Programadora	Renda Mensal
1	SP	36	4	S	3737,52
2	SP	25	2	N	400,00
3	MG	34	3	S	2366,14
4	RJ	23	Dados O	uantitativ	1,29
5	SP	31	Dados C	<u>t</u> uantitativ	03
6	SP	34	5	S	3433,02
7	SP	39	5	S	2752,74
8	PE	24	3	S	3682,33
9	RJ	29	3	S	2359,28
10	SP	27	3	S	2119,15
11	SP	30	3	S	3326,79
12	SP	25	4	S	2684,05
13	SP	23	2	S	3507,84
14	SP	16	1	N	0
15	SP	36	4	N	800

Legenda Escolaridade

Ensino Medio Completo
 Graduanda
 Graduação Completa
 Pós graduação completa

Tipos de Dados - Numéricos

ID	Estado Origem	Idade	Escolaridade	Trabalha como Programadora	Renda Mensal
1	SP	36	4	S	3737,52
2	SP	25	2	N	400,00
3	MG	34	3	S	2366,14
4	RJ	Discreto	3	S	Contínuo
5	SP	31	4	N	800
6	SP	34	5	S	3433,02
7	SP	39	5	S	2752,74
8	PE	24	3	S	3682,33
9	RJ	29	3	S	2359,28
10	SP	27	3	S	2119,15
11	SP	30	3	S	3326,79
12	SP	25	4	S	2684,05
13	SP	23	2	S	3507,84
14	SP	16	1	N	0
15	SP	36	4	N	800

Legenda Escolaridade

1	Ensino Medio Completo
2	Graduanda
3	Graduação Completa
4	Pós graduanda
5	Pós graduação completa

Trabalhando com Pandas

O acrônimo Pandas vem da combinação de Panel Data e Python Data Analysis*.

Dados de Painel - Python para Análise de Dados

Trabalhando com Pandas

Pandas é uma biblioteca de código aberto que fornece estruturas de dados de alto desempenho e fáceis de usar e ferramentas de análise de dados para a linguagem de programação Python.

https://pandas.pydata.org/

Primeiro Passo:

- 1. Abrir as bibliotecas que você utilizará
- 2. Subir o arquivo que possui seus dados

```
[ ] #abrindo as bibliotecas que serão utilizadas
import pandas as pd
import matplotlib.pyplot as plt
from google.colab import files
uploaded = files.upload()
```

Browse... dados.txt
dados.txt(text/plain) - 379 bytes, last modified: n/a - 100% done
Saving dados.txt to dados.txt

Abrindo o arquivo:

Importando um CSV para o Colab:

CSV - Comma-Separated Values vírgula separando valor

```
pd.read_csv('nome_arquivo', sep = ';', decimal = ',')
```

```
# Transformando o arquivo importando em um dataframe
dados_pyladies = pd.read_csv('dados.txt', sep=';', decimal = ',')
```

Argumentos separador decimal

Visualizando o arquivo:

nome_dataframe.head()

	Estado	Origem	Idade	Escolaridade	Trabalha_como_Programadora	Renda_Mensal
0		SP	36	4	s	3737.52
1		SP	25	2	N	400.00
2		MG	34	3	S	2366.14
3		RJ	23	3	S	2841.29
4		SP	31	4	N	800.00

Visualizando o arquivo:

nome_dataframe.tail()

[22] # para ver as cinco últimas linhas dados_pyladies.tail()

₽		Estado Orige	m Idao	le E	Escolaridade	Trabalha_como_Programadora	Renda_Mensal
	10	S	P 3	30	3	S	3326.79
	11	S	P 2	25	4	S	2684.05
	12	S	P 2	23	2	S	3507.84
	13	S	P 1	16	1	N	0.00
	14	S	P 3	36	4	N	800.00

As Estruturas dos Dados:

O que é um dataframe??

DataFrame é uma estrutura de dados bidimensional - parecida com uma tabela de excel ou um banco de dados.

As Estruturas dos Dados:

Estrutura de dados bidimensional (colunas e linhas) cujo índice começa no **zero.**

O dataframe contém colunas que armazenam diferentes tipos de informações (string, float, integer e etc)

Ele é uma classe de objeto da biblioteca Pandas.

dataframe

As Estruturas dos Dados:

E o series ??

DataSerie é estrutura unidimensional - como uma coluna do excel

As Estrutura dos Dados

Series

INDEX

А 3

В

- 5

C

Um array unidimensional e rotulado capaz de armazenar qualquer tipo de dado.

```
s = pd.Series([3,-5,7,4], index = ['a','b','c','d'])
print(s)

a     3
b     -5
c     7
d     4
dtype: int64
```


As Estrutura dos Dados:

Linhas e Colunas

nome_dataframe.shape

```
dados_pyladies.shape

C→ (15, 5)
```

Variáveis (colunas)

nome_dataframe.columns

Conhecendo os Dados:

Informações Gerais

nome_dataframe.info()

dados pyladies.info()

Selecionando uma Variável (coluna):

nome_dataframe['coluna']

```
dados pyladies['Estado Origem ']
      SP
      SP
      MG
      RJ
      SP
      SP
      SP
      PE
      RJ
      SP
10
      SP
11
      SP
12
      SP
13
      SP
14
      SP
Name: Estado Origem , dtype: object
```


Lembrando que uma coluna de dataframe é uma series.

Selecionando duas ou mais variáveis (coluna):

nome_dataframe[['coluna', 'coluna2', 'colunaX']]

[19] dados pyladies[['Estado Origem ', 'Escolaridade', 'Idade']]

₽		Estado Origem	Escolaridade	Idade
	0	SP	4	36
	1	SP	2	25
	2	MG	3	34
	3	RJ	3	23
	4	SP	4	31
	5	SP	5	34
	6	SP	5	39
	7	PE	3	24
	8	RJ	3	29
	9	SP	3	27
	10	SP	3	30
	11	SP	4	25
	12	SP	2	23
	13	SP	1	16
	14	SP	4	36

Filtrando um dataframe:

nome_dataframe[nome_dataframe['coluna'] == condição]

	ID	Estado Origem	Idade	Escolaridade	Trabalha_como_Programadora	Renda_Mensa
0	1	SP	36	4	S	3737,5
2	3	MG	34	3	S	2366,1
3	4	RJ	23	3	S	2841,2
5	6	SP	34	5	s	3433,0
6	7	SP	39	5	S	2752,7
7	8	PE	24	3	s	3682,3
8	9	RJ	29	3	s	2359,2
9	10	SP	27	3	s	2119,1
10	11	SP	30	3	S	3326,7
11	12	SP	25	4	S	2684,0
12	13	SP	23	2	S	3507,8

Aqui você insere a condição para o filtro que você quer. Se a condição for um texto, não se esqueça das aspas!

Aqui você coloca o operador lógico que atende o filtro que você precisa.

Estatística

População e amostra

População é um conjunto de objetos, pessoas, itens sobre os quais deseja-se fazer inferências.

Amostra é um subconjunto de objetos, pessoas ou itens que representam a população.

Com uma amostra representativa, é possível inferir sobre essa população.

Média

A **média** é a soma de todos os elementos dividido pelo número de elementos.

Média

Qual a renda média das meninas no dataframe dados_pyladies?

Para responder essa pergunta precisamos:

1º) Somar a renda mensal de todas as meninas;

```
valor = (3737.52 + 400.00 + 2366.14 + 2841.29 + 800.00 + 3433.02 + 2752.74 + 3682.33 + 2359.28 + 2119.15 + 3326.79 + 2684.05 + 3507.84 + 0.00 + 800.00)
```

2º) Dividir o valor obtido pelo total de meninas.

Ou seja, em média a Renda Mensal é de R\$2.320,68.

Média

Codando fica:

nome_dataframe['coluna'].mean()

Média Renda Mensal:

```
dados_pyladies['Renda_Mensal'].mean()

2320.6766666666667
```

Média Idade:

```
dados_pyladies['Idade'].mean_()

28.8
```


Moda

A **Moda** é aquele elemento que mais se repete na distribuição dos dados.

Estado Origem	Frequência
SP	11

Qual será a UF que mais se repete?

nome_dataframe['coluna'].mode()

```
[48] dados_pyladies['Estado Origem '].mode()

O SP
dtype: object
```


Mediana

Mediana é o valor do meio de um conjunto de dados ordenados.

- Para um conjunto com número ímpar de observações: é o valor que divide exatamente na metade esse conjunto.
- Para um conjunto com número par de observações: é a média dos adois valores do meio.

n é o número de observações

Mediana

Qual a Mediana quando observamos a idade das meninas?

Para responder essa pergunta precisamos:

- 1º) Ordenar os dados do menor para o maior valor;
- 2º) Selecionar o valor mediano dos dados.

Observamos que a Mediana não é influenciada pelo valor baixo de idade.

Mediana

Codando fica:

nome_dataframe['coluna'].median()

Idade Mediana:

```
[50] dados_pyladies['Idade'].median()
```

[→ 29.0

Salário Mediano:

- dados_pyladies['Renda_Mensal'].median()
- € 2684.05

Mas média e mediana são as mesmas coisas???

Como Média, Moda e Mediana se relacionam?

Falando brevemente sobre distribuições, há vários tipos de comportamento natural das medidas que observamos, um deles é a distribuição Normal.

Como Média, Moda e Mediana se relacionam?

Em amostras normalmente distribuídas a Média, a Mediana e a Moda possuem valores próximos!

Distribuição Simétrica

Média = Mediana = Moda

Se observarmos a renda mensal das meninas que trabalham com programação temos que a média e a mediana são muito próximas mesmo.

Média	R\$ 2982,74
Mediana	R\$ 2841,29

Se observarmos a idade das meninas, também obtemos valores de média e mediana próximos!

Média	Aprox. 29 anos
Mediana	29 anos

Quartis

Quartis são valores que dividem uma amostra de dados ordenados em quatro partes iguais.

Com eles você pode rapidamente avaliar a dispersão e a tendência central de um conjunto de dados, que são etapas importantes na compreensão dos seus dados.

Quartis

Importante: para encontrar os quartis, os dados devem estar ordenados!

- 1º Quartil (Q1) é onde estão 25% dos valores do conjunto de dados.
- 2º Quartil (Q2) é onde estão até 50% dos valores, ou seja, a mediana!
- 3º Quartil (Q3) é onde estão até 75% dos valores.

Isso quer dizer que:

✓ 25% dos valores do conjunto de dados são menores ou iguais ao Q1 e 75% dos valores são superiores ao Q1.

- ✓ 25% dos valores são superiores ou iguais ao Q3 e 75% dos valores são menores que Q3.
- √ 50% dos valores estão entre o 1º e o 3º Quartil.

Quartis

Codando fica:

nome_dataframe['coluna'].quantile()

25%

dados pyladies.quantile(.25)

☐→ Idade 24.500 Escolaridade 3.000 Renda_Mensal 1459.575 Name: 0.25, dtype: float64

25% do conjunto de dados tem:

- idade até 24,5 anos;
- até a escolaridade 3;
- a renda mensal até R\$ 1459, 58

75%

[21] dados pyladies.quantile(.75)

Escolaridade 4.000
Renda_Mensal 3379.905
Name: 0.75, dtype: float64

75% do conjunto de dados tem:

- idade até 34 anos;
- até a escolaridade 4;
- a renda mensal até R\$ 3379,91

Tabela de Frequência

Mas será que a renda mensal média varia com relação às demais características?

Para respondermos isso podemos criar uma tabela de frequência que nos mostrará a variação dos dados um pelo outro

Trabalha como Programadora	Soma Renda Mensal	Quantidade Meninas	Renda Mensal Média
S	32810,15	11	2982,74
N	2000	4	500,00

Característica: Trabalhar ou não com programação!

Tabela de Frequência - Usando o Groupby

O Pandas possui a função groupby que nos permite agrupar dados, como o exemplo anterior.

Ele nos permite visualizar rapidamente uma tabela de frequência.

nome_dataframe.groupby('coluna').método()

0	dados_pyladies.groupby('Tra	balha_como_Pr	ogramado	ra').count()		
₽		Estado Orige	m Idade	Escolaridade	Renda_Mensal	
	Trabalha_como_Programadora					
	N		4 4	4	4	
	s		11 11	11	11	

alguns métodos não funcionam com o groupby, para saber mais consulte a documentação da <u>biblioteca</u> Pandas

Tabela de Frequência - Groupby

Há vários métodos que podem ser utilizados com o groupby.

Para contar os valores

nome_dataframe.groupby('coluna')['coluna'].value_counts()

Para somar valores

nome_dataframe.groupby('coluna')['coluna'].sum()

qual outro?

nome_dataframe.groupby('coluna')['coluna'].método()

Tabela de Frequência - Groupby + Agg

Podemos utilizar um Groupby com uma função Para isso utilizamos a função aggregation.

nome_dataframe.groupby('coluna')['coluna'].agg(['método', 'método'])

dados_pyladies.groupby	('Trabalha_c	omo_Programa	dora')['R	enda_Mensal'].agg(['count	','mean','me
>	count	mean	median		
Trabalha_como_Programa	idora				
Trabalha_como_Programa	adora 4	500.000000	600.00		

Dispersão dos Dados

Dispersão dos Dados

Quando comparamos a média com o restante dos valores de uma váriavel, nós queremos entender o quanto aquele valor está distante da média.

ID	Estado Origem	Idade	Escolaridade	Trabalha como Programadora	Renda Mensal
1	SP	36	4	S	3737,52
2	SP	25	2	N	400,00

A média da Renda Mensal é de: R\$ 2320,68

Se compararmos os valores da tabela acima percebemos o quanto eles variam em relação a média

Uma medida muito interessante para avaliarmos a dispersão dos dados é a variância!

Vimos que a média nos informa sobre a tendência central, mas a variância que indica como esses dados variam dentro de uma distribuição.

Será que as meninas que trabalham como programadora tem rendas parecidas? E as meninas que não trabalham como programadoras?

Para responder essa pergunta precisamos:

- 1º) Selecionar separadamente as meninas que trabalham ou não, como programadoras;
- 2º) Avaliar a soma dos desvios ao quadrado;
- 3º) Dividir essa soma pelo total de meninas considerado.

Renda Mensal
(x)
3737,52
400
2366,14
2841,29
800
3433,02
2752,74
3682,33
2359,28
2119,15
3326,79
2684,05
3507,84
0
800
2684,05

$$s = (x1 - média)^{2} + (x2 - média)^{2} + (x3 - média)^{2}$$

$$(n-1)$$

$$s = (3737,52 - 26805)^{2} + (400 - 2684,05)^{2} + \dots$$

$$(15-1)$$

$$s = 1560989.622$$

Codando fica:

nome_dataframe['coluna'].var()

Variância Renda:

- dados_pyladies['Renda_Mensal'].var()
- 1560989.6225666667

Variância Idade:

- dados_pyladies['Idade'].var()
 - 39.60000000000000

Desvio Padrão

O desvio padrão é uma medida que expressa o grau de dispersão de um conjunto de dados

Ele é a raiz quadrada da variância e a vantagem de utilizarmos esta medida é que o desvio padrão é expresso na mesma unidade dos dados, o que facilita a comparação.

Desvio Padrão

Fonte: https://www.inf.ufsc.br/~andre.zibetti/probabilidade/normal.html

Desvio Padrão

Codando fica:

nome_dataframe['coluna'].std()

Desvio Padrão Renda:

- dados_pyladies['Renda_Mensal'].std()
 - 1249.3957029567

Desvio Padrão Idade:

- dados_pyladies['Idade'].std()
 - 6.29285308902091

Por fim! Describe

Para conseguirmos visualizar as medidas centrais e de dispersão de um conjunto de dados, nós podemos utilizar o método describe.

nome_dataframe.describe()

[14]	dados_pyladies.describe()							
C→		Idade	Escolaridade	Renda_Mensal				
	count	15.000000	15.000000	15.000000				
	mean	28.800000	3.266667	2320.676667				
	std	6.292853	1.099784	1249.395703				
	min	16.000000	1.000000	0.000000				
	25%	24.500000	3.000000	1459.575000				
	50%	29.000000	3.000000	2684.050000				
	75%	34.000000	4.000000	3379.905000				
	max	39.000000	5.000000	3737.520000				

Introdução à Visualização dos Dados

Histograma

O Histograma é um gráfico que representa a distribuição de frequências de uma variável numérica contínua.

nome_dataframe['coluna'].plot.hist()

Histograma

pandas.DataFrame.hist

DataFrame.hist(data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds) [source]

Make a histogram of the DataFrame's.

A histogram is a representation of the distribution of data. This function calls matplotlib.pyplot.hist(), on each series in the DataFrame, resulting in one histogram per column.

data: DataFrame

The pandas object holding the data.

column: string or sequence

If passed, will be used to limit data to a subset of columns.

A função hist possui vários argumentos possíveis. Sempre que houver dúvidas sobre quais são os argumentos possíveis, consulte a documentação da função.

BoxPlot

O boxplot nos permite avaliar a distribuição do conjunto de dados, utilizando como referência os quartis.

A "caixa principal" é formada pelo primeiro quartil, a mediana e terceiro quartil.

As hastes inferior e superior são os limites e podem ser calculadas da seguinte forma:

Limite inferior:
$$Q_1 - 1.5(Q_3 - Q_1)$$

Limite superior:
$$Q_3 + 1,5(Q_3 - Q_1)$$

plt.boxplot(nome_dataframe['coluna'])

Tipos de gráficos - Data to Viz

EXPLORE STORY ALL CAVEATS POSTER ABOUT CONTACT

From Data to Viz leads you to the most appropriate graph for your data. It links to the

Para saber mais

- Livro Guia Mangá de Estatística Shin Takahashi
- Plataforma Kaggle https://www.kaggle.com/
- Podcast Pizza de Dados https://pizzadedados.com/
- Documentação Pandas https://pandas.pydata.org/pandas-docs/stable/index.html
- Udacity https://www.udacity.com/
- Canal EstaThiFisco
 <u>https://www.youtube.com/channel/UC4jROkPjTvnXRkuo2GAwKXw</u>
- Minerando Dados http://minerandodados.com.br/
- Cientista de Dados com GIFs https://paulovasconcellos.com.br/
- Data Hackers https://datahackers.com.br/
- Estatística Básica P. A. Bussab, W. de O. Moretin -https://edisciplinas.usp.br/mod/resource/view.php?id=2425203

Obrigada!

Linkedin angelicacustodio

<u>PyLadiesSP</u>

<u>Pyladies São Paulo</u>

Mulheres que amam programar e ensinar Python