

www.unitru.edu.pe

Departamento Académico de Matemáticas

ANÁLISIS MATEMÁTICO

Sesión 2

- LA RECTA
- LA CIRCUNFERENCIA
- EJERCICIOS

Prof. Yuvi Marcelo Campos Andrade

1. PENDIENTE DE UNA RECTA (m)

Una **recta es el lugar geométrico de los puntos del plano** tal que, si se seleccionan dos puntos cualesquiera, $(x_1; y_1)$ y $(x_2; y_2)$, la razón entre la diferencia de sus ordenadas y la diferencia de sus abscisas es un valor constante.

Es decir:

$$A(x_1; y_1); B(x_2; y_2)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

2. La Pendiente

La pendiente *m* de una recta es la tangente del ángulo de inclinación, es decir:

La recta crece de izquierda a derecha

La recta es horizontal

La recta decrece de izquierda a derecha

La recta es vertical

2.1 EJEMPLO

Calcule la pendiente de la recta que pasa por los puntos:

$$(4, 2) y (6, 10)$$
 $\uparrow \qquad \uparrow \qquad \uparrow$
 $X_1 y_1 \qquad X_2 y_2$

SOLUCIÓN:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{10 - 2}{6 - 4} \qquad m = \frac{8}{2}$$

$$m=\frac{4}{1}$$

INTERPRETACIÓN: Por cada incremento de 1 unidad en el eje x la recta <u>crece</u> 4 unidades en el eje y.

1) Ecuación punto - pendiente: Si la recta pasa por P (x_0, y_0) y cuya pendiente es "m" entonces la ecuación de la recta se puede hallar con:

$$y - y_0 = m(x - x_0)$$

Ejemplo 1: Encuentre la ecuación de la recta que pasa por el punto (3 ; - 4) con pendiente 2/5.

Solución:

Datos: m = 2/5 v (3; -4)

Usando la ecuación: x_0 y_0

$$y - y_0 = m(x - x_0)$$

$$y - (-4) = \frac{2}{5} (x - 3)$$

$$5(y+4) = 2(x-3)$$

$$5y + 20 = 2x - 6$$

$$0 = 2x - 6 - 5y - 20$$

Respuesta:

$$2x - 5y - 26 = 0$$

Encuentre la ecuación de la recta que pasa por el punto (2 ; -7) con pendiente 3/4.

$$y - y_0 = m(x - x_0)$$

Ejemplo 2. Hallar la ecuación de la recta L que pasa por los puntos P_1 (2; 1) y P_2 (5; 3)

SOLUCIÓN:

Hallando la pendiente:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$P_1 (2; 1) y P_2 (5; 3)$$
 $\uparrow \uparrow \uparrow \uparrow \downarrow \chi_1 y_1 \chi_2 y_2$

$$m = \frac{3 - 1}{5 - 2} = \frac{2}{3}$$

P(2; 1)

$$x_0 y_0$$

 $y - y_0 = m(x - x_0)$
 $y - 1 = \frac{2}{3}(x - 2)$
 $3(y - 1) = 2(x - 2)$
 $3y - 3 = 2x - 4$
 $0 = 2x - 4 - 3y + 3$
L: $2x - 3y - 1 = 0$

Ejemplo 3.

Determine si el punto (2; 5) pasa por las recta: 3y - 4x = 7

Solución:

Reemplazando el punto (2 ; 5) en la recta:

$$3y - 4x = 7$$
 $3(5) - 4(2) = 7$
 $15 - 8 = 7$
 $7 = 7$

Respuesta: Si al evaluar el punto (2 ; 5) en la ecuación obtenemos una igualdad entonces el punto pasa por la recta.

2) Ecuación General:

$$Ax + By + C = 0$$
 ... (1)

Donde:

$$m = -\frac{A}{B}$$

Ejemplo:

Hallar la pendiente de la recta L.

a)
$$2x - 3y - 8 = 0$$

$$A = 2$$
 $B = -3$

$$m=-\frac{2}{3}$$

b)
$$5y - 4x + 1 = 0$$

$$A = -4$$
 $B = 5$

$$m = -\frac{-4}{5}$$

$$m=\frac{4}{5}$$

3) Ecuación ordinaria: Una Recta con Pendiente " m " y que corta al eje y; en el punto (0, b); su ecuación es:

Donde:

b: Intercepto (Punto corte en el eje y)

Ejemplo: Determine la ecuación general de la recta que tiene pendiente 3 e intercepta al eje y en 2.

Solución:

Reemplazando los datos en la ecuación: m = 3 b = 2

4) Ecuación Simétrica: Si una Recta corta a los ejes coordenados en (a, 0) y (0, b); su ecuación es:

$$\frac{x}{a} + \frac{y}{b} = 1$$

Ejemplo: Determine la ecuación simétrica de la recta que intercepta al eje x en 5 y al eje y en 4.

$$a = 5$$
 $b = 4$

$$\frac{x}{5} + \frac{y}{4} = 1$$

4. POSICIÓN RELATIVA ENTRE 2 RECTAS

EJEMPLOS COTIDIANOS DE RECTAS PARALELAS:

En estos rieles podemos apreciar rectas paralelas.

Estas gradas están equidistantes entre sí, por lo tanto representan rectas paralelas.

EJEMPLOS COTIDIANOS DE RECTAS PERPENDICULARES:

En este arco de futbol puedes apreciar rectas perpendiculares.

En esta cruceta puedes apreciar rectas perpendiculares.

4. POSICIÓN RELATIVA ENTRE 2 RECTAS

Sean las rectas :
$$L_1$$
: $A_1x + B_1y + C_1 = 0$

$$L_2$$
: $A_2x + B_2y + C_2 = 0$

Rectas paralelas

* Si $L_1 // L_2 \implies m_1 = m_2$

$$m_1 = m_2$$

Rectas perpendiculares

* Si
$$L_1 \perp L_2$$

* Si
$$L_1 \perp L_2 \implies m_1 \cdot m_2 = -1$$

$$m_1 = -rac{\mathsf{A}}{\mathsf{B}}$$

$$m_2 = \frac{B}{A}$$

RECTAS PARALELAS Y PERPENDICULARES

Ejemplo:

Sea la recta L_1 : 2x + 5y = 3 que es paralela a la recta L_2 , determina la pendiente de la recta L_2 .

Solución:

Hallando la pendiente de la recta L₁

$$m_1 = -\frac{\mathbf{A}}{\mathbf{B}}$$
 \longrightarrow $m_1 = -\frac{\mathbf{2}}{5}$

Como
$$L_1 // L_2 \longrightarrow m_1 = m_2$$

$$m_2 = -\frac{2}{5}$$

Ejemplo:

Sea la recta L_1 : 3x + 6y = 3 que es paralela a la recta L_2 , determina la pendiente de la recta L_2 .

Solución:

Hallando la pendiente de la recta L₁

RECTAS PARALELAS Y PERPENDICULARES

Ejemplo:

Sea la recta L_1 : 3x + 4y = 6 que es perpendicular a la recta L_2 , determina la pendiente de la recta L_2

Solución:

Hallando la pendiente de la recta L₁

$$m_1 = -\frac{A}{B}$$
 $m_1 = -\frac{3}{4}$

Como
$$L_1 \perp L_2$$
 $m_1 \cdot m_2 = -1$

$$m_2 = \frac{4}{3}$$

Ejemplo:

Sea la recta L_1 : 2x - 7y = 6 que es perpendicular a la recta L_2 , determina la pendiente de la recta L_2

Solución:

Hallando la pendiente de la recta L₁

EJERCICIOS DE APLICACIÓN

Calcular la ecuación general de una recta L_2 que pasa por el punto (-1; 4) y es paralela a la recta L_1 : 3x - 2y = 10

SOLUCIÓN:

$$L_1: 3x - 2y = 10$$

$$m_1 = -\frac{A}{B}$$

$$m_1 = -\frac{3}{-2}$$
 $m_1 = \frac{3}{2}$

Como L_1 y L_2 son rectas paralelas:

$$m_2 = \frac{3}{2}$$
 Punto $(-1; 4)$

Usando la ecuación punto – pendiente:

$$y - y_0 = m(x - x_0)$$

Luego, L₂:

$$y-4=\frac{3}{2}(x-(-1))$$

$$2(y-4) = 3(x+1)$$

$$2y - 8 = 3x + 3$$

Ecuación general de L₂

$$L_2$$
: $3x - 2y + 11 = 0$

EJERCICIOS DE APLICACIÓN

Calcular la ecuación general de una recta L_2 que pasa por el punto (2; – 1) y es perpendicular a la recta L_1 : 5x + 3y = 6

SOLUCIÓN:

$$L_1: 5x + 3y = 6$$

$$m_1 = -rac{\mathbf{A}}{\mathrm{B}}$$

$$m_1 = -\frac{5}{3}$$

Como son rectas perpendiculares:

$$m_1.m_2 = -1$$

$$m_2 = \frac{3}{5}$$
 Punto $(2; -1)$

Usando la ecuación punto – pendiente:

$$y - y_0 = m(x - x_0)$$

Luego, L₂:

$$y - (-1) = \frac{3}{5} (x - 2)$$

$$5(y+1) = 3(x-2)$$

$$5y + 5 = 3x - 6$$

Ecuación general de L₂

$$L_2$$
: $3x - 5y - 11 = 0$

Lugar Geométrico

Es una serie o conjunto de puntos en un plano en el que todos ellos gozan de la misma propiedad.

En la figura tienes 50 puntos muy grandes y redondos de color amarillo. Todos estos puntos amarillos gozan de la propiedad de estar a la misma distancia del centro, representado por un gran punto circular de color rojo. La distancia de cada punto al centro viene representada por una línea azul y es la misma para todos los puntos amarillos.

El lugar geométrico de los puntos amarillos representa a una circunferencia.

CIRCUNFERENCIA

Una circunferencia es el lugar geométrico de los puntos de un plano que equidistan de otro punto fijo y coplanario llamado **centro** en una cantidad constante llamada **radio**.

ELEMENTOS

Centro

El punto interior equidistante de todos los puntos de la circunferencia.

Radio

Es el segmento que une el centro de la circunferencia con un punto cualquiera de la misma. El radio mide la mitad del diámetro

$$r = \frac{L}{2\pi}$$

Diámetro

El diámetro de una circunferencia es el segmento que une dos puntos de la circunferencia y pasa por el centro. El diámetro mide el doble del radio.

$$D = \frac{L}{\pi}$$

Arco

El arco de la circunferencia es cada una de las partes en que una cuerda divide a la circunferencia. Un arco de circunferencia se denota con el símbolo sobre las letras de los puntos extremos del arco.

ECUACIÓN ORDINARIA DE LA CIRCUNFERENCIA

Vamos a proceder al estudio de la ecuación de la circunferencia de centro C(h;k) y radio r.

Como d(C,P)=r, tenemos

$$\sqrt{(x-h)^2 + (y-k)^2} = r$$

y despejando la raíz queda:

$$(x-h)^2 + (y-k)^2 = r^2$$
 Ecuación ordinaria

ECUACIÓN CANÓNICA DE LA CIRCUNFERENCIA

Si consideramos el centro C(0;0) y radio r.

Tenemos:

Si consideramos el centro C(0;0) y radio r.

Tenemos:

$$(x-0)^2 + (y-0)^2 = r^2$$

$$x^2 + y^2 = r^2$$

$$(x-0)^2 + (y-0)^2 = r^2$$

$$x^2 + y^2 = r^2$$

Ecuación canónica

ECUACIÓN GENERAL DE LA CIRCUNFERENCIA

Partimos de

$$(x-h)^2 + (y-k)^2 = r^2$$

Desarrollando:

$$x^2 - 2xh + h^2 + y^2 - 2yk + k^2 - r^2 = 0$$

Observamos que la ecuación de la circunferencia es una ecuación de segundo grado en x e y de la forma:

$$x^2 + y^2 + Cx + Dy + E = 0$$

Ecuación general

FORMA GENERAL. Toda circunferencia se puede expresar por medio de la ecuación:

$$x^2 + y^2 + Dx + Ey + F = 0$$

que completando a un trinomio cuadrado perfecto da:

$$\left(x + \frac{D}{2}\right)^2 + \left(y + \frac{E}{2}\right)^2 = \frac{D^2 + E^2 - 4F}{4}$$

así el centro es $C\left(-\frac{D}{2}, -\frac{E}{2}\right)$ y el radio $r = \frac{1}{2}\sqrt{D^2 + E^2 - 4F}$.

Si $D^2 + E^2 - 4F > 0$, la circunferencia es real.

Si $D^2 + E^2 - 4F < 0$, la circunferencia es imaginaria.

Si $D^2 + E^2 - 4F = 0$, la ecuación representa al punto $\left(-\frac{D}{2}, -\frac{E}{2}\right)$.

AHORA PRACTIQUEMOS

- Halle el valor de "k" para que la ecuación $x^2 + y^2 8x + 10y + k = 0$, represente una circunferencia de radio 6 unidades de longitud.
- Determine la ecuación general de la circunferencia que pasa por los puntos: A (6, 1), B (4, -3) y C (1, 6).
- Determine la ecuación de la circunferencia cuyo centro es el punto A(-4,-1) y es tangente a la recta L: 3x + 2y 12 = 0.
- Determine la ecuación de la recta que contiene al diámetro de la circunferencia \mathcal{C} : $x^2 + y^2 + 4x 6y 17 = 0$, y que es perpendicular a la recta \mathcal{L} : 5x + 2y 13 = 0.