Exercise 1 (10 marks). (1) Since $\{a_n\}$ is bounded, from Bolzano-Weiestrass Theorem we know there exists a subsequence $\{a_{n_i}\}$ being convergent. [1 mark] Since $\{b_n\}$ is bounded, its subsequence $\{b_{n_i}\}$ is also bounded. [1 mark] Hence from Bolzano-Weiestrass Theorem there exists a subsequence $\{b_{n_k}\}$ of $\{b_{n_i}\}$ being convergent. [1 mark] On the other hand, $\{a_{n_k}\}$, as a subsequence of $\{a_{n_i}\}$, is also convergent, as desired. [1 mark]

(The following proof is incoreect: from Bolzano-Weiestrass Theorem we know there exists $\{n_i\}$ and $\{n_j\}$ such that $\{a_{n_i}\}$ and $\{b_{n_j}\}$ are convergent. Setting $\{n_k\} = \{n_i\} \cap \{n_j\}$ as desired.)

 $(2) \Rightarrow$: Since f(x) is uniformaly continuous on I, then

$$\forall \epsilon > 0, \exists \delta > 0, \forall x_1, x_2 \in I \text{ satisfying } |x_1 - x_2| < \delta, |f(x_1) - f(x_2)| < \epsilon$$

Since $\{a_n\}$ is Cauchy, for the previous $\delta > 0$, $\exists N \in \mathbb{N}$, $\forall m, n > N$,

$$|a_n - a_m| < \delta$$

Thus

$$|f(x_n) - f(x_m)| < \epsilon$$

that is, $\{f(x_n)\}\$ is Cauchy. [2 marks]

 \Leftarrow : We argue this by contradiction. Assume that f(x) is not uniformly continuous on I, then

$$\exists \epsilon > 0, \forall \delta > 0, \exists x, y \in I \text{ satisfying } |x - y| < \delta, |f(x) - f(y)| \ge \epsilon$$

Letting
$$\delta = \frac{1}{n}$$
, then $\exists \{x_n\}, \{y_n\} \subset I$ such that $|x_n - y_n| < \frac{1}{n}$ and

$$|f(x_n) - f(y_n)| \ge \epsilon$$

Since I is bounded, we know both $\{x_n\}$ and $\{y_n\}$ are bounded. By (1) we know there exist subsequences $\{x_{n_k}\}$ and $\{y_{n_k}\}$ such that they are both convergent to a pair of real numbers, say x_0 and y_0 , respectively. By $|x_{n_k} - y_{n_k}| < \frac{1}{n_k}$ and squeeze theorem, we know $x_0 = y_0$. Now let us construct a new sequence

$$z_n = \begin{cases} x_{\frac{n+1}{2}}, & n \text{ is odd} \\ y_{\frac{n}{2}}, & n \text{ is even} \end{cases}$$

then $\{z_n\}$ is convergent because both its odd subsequence and even subsequence are convergent to the same limit. But we know

$$|f(z_{n+1}) - f(z_n)| \ge \epsilon$$

so $\{f_{z_n}\}$ is not Cauchy, a contradiction. [4 marks]

Exercise 2. The answer is True. We have the example:

$$f(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

[1 mark]

On the one hand, f(x) is continuous at $x_0 = 0$. In fact, we know that f(0) = 0. Also, $\forall \epsilon > 0$, setting $\delta = \epsilon$, $\forall x : |x| < \delta$,

if $x \in \mathbb{Q}$, then

$$|f(x) - f(0)| = |x - 0| < \delta = \epsilon$$

if $x \in \mathbb{R} \backslash \mathbb{Q}$, then

$$|f(x) - f(0)| = |0 - 0| < \epsilon$$

thus

$$\lim_{x \to 0} f(x) = 0 = f(0)$$

[2 marks]

On the other hand, f(x) is not continuous anywhere else. Let $x_0 \in \mathbb{R} \setminus \{0\}$, and w.l.o.g we assume that $x_0 > 0$.

If $x_0 \in \mathbb{Q}$: letting $\epsilon = \frac{x_0}{2}$, $\forall \delta \in (0, \epsilon)$, select $x \in (x_0 - \delta, x_0 + \delta) \cap \mathbb{R} \setminus \mathbb{Q}$, then

$$|f(x) - f(x_0)| = |x - 0| = x > x_0 - \frac{x_0}{2} = \epsilon$$

If $x_0 \in \mathbb{R} \setminus \mathbb{Q}$: letting $\epsilon = \frac{x_0}{2}$, $\forall \delta \in (0, \epsilon)$, select $x \in (x_0 - \delta, x_0 + \delta) \cap \mathbb{Q}$, then

$$|f(x) - f(x_0)| = |x - 0| = x > x_0 - \frac{x_0}{2} = \epsilon$$

In both cases, we know the function is not continuous at x_0 . [2 marks]

Exercise 3. Firstly we claim that $\{b_n\}$ is bounded with $0 < b_n < \frac{1}{A}$. We prove this by induction. We know $0 < b_0 < \frac{1}{A}$. Assume that $0 < b_n < \frac{1}{A}$. Since the function f(x) = x(2 - Ax) is increasing on $[0, \frac{1}{A}]$, we know

$$0 < b_{n+1} < \frac{1}{A}(2 - A\frac{1}{A}) = \frac{1}{A}$$

[2 marks]

Then we claim that $\{b_n\}$ is increasing. In fact we have

$$\frac{b_{n+1}}{b_n} = 2 - Ab_n > 2 - A\frac{1}{A} = 1$$

[1 mark]

By monotonic convergence theorem, we know the sequence $\{b_n\}$ is convergent. We denote the limit by b^* . Then we know

$$b^* = b^*(2 - Ab^*)$$

We claim that $b^* \neq 0$, because $b^* \geq b_0 > 0$ and the order-preserving property. So $b^* = \frac{1}{A}$. [2 marks]