TP2 Multi - Charpin Chevillard	Pt		Α	ВС	D	Note	
Régulation de température simple boucle (10 pts)							
1 Donner le schéma électrique correspondant au cahier des charges.	1	Α				1	
2 Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	1	Α				1	
3 Régler votre maquette pour avoir une mesure de 40% pour une commande de 50%.	1	Α				1	
Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).	1	Α				1	
5 Régler la boucle de régulation utilisant la méthode par approches successives.	4	Α				4	
6 Enregistrer l'influence d'une perturbation du débit d'eau chaude sur la température, en fermant V6.	2	Α				2	
Régulation cascade (10 pts)							
1 Rappeler le fonctionnement d'une boucle de régulation cascade.	1	Α				1	
Programmer le regulateur pour obtenir le fonctionnement en regulation cascade conformement au schema 11 ci-	3	С				1,05	
Régler la boucle de régulation esclave en utilisant la méthode par approches successives. On ne changera pas le réglage de la boucle maître.	2	А				2	
4 Enregistrer l'influence d'une perturbation du débit d'eau chaude sur la température, en fermant V6.	2	В				1,5	
5 Expliquez l'intérêt d'une régulation cascade en vous aidant de vos enregistrements. Citez un autre exemple pratique.	2	Α				2	
		Note	1217	466	/20		

Note: 17,55/20

Tp Multiboucle

1)

2)

Entre TT1:

TagName	TT1		LIN Name	TT1	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mA
			LR_in	4.00	mA
HiHi	100.0	%	AI	0.00	mA
Hi	100.0	%	Res	0.000	Ohms

Régulateur PID :

TagName	Pld		LIN Name	Pld	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	%
PV	0.0	%	LAA	0.0	%
SP	0.0	%	HDA	100.0	%
OP	0.0	%	LDA	100.0	%
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	%
Track	0.0	%	TI	0.00	
			TD	0.00	
un en	400.0	or	i		

Passer en manu pour les première manip...

Sortie vanne FV2:

TagName	FV2		LIN Name	FV2	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
				-00	
Fallback	AUTO		Node	>00	
			Sitello	2	
OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	mA
			LR_out	4.00	mA
Out	0.0	%	AO	0.00	mΑ

3)

On stabilise la mesure à 40% avec une sortie de 50% (FV2)...

On voit que l'orsque la sortie du régulateur diminue la mesure diminue le sens du procédé est direct, le régulateur est donc inverse..

TimeBase	Mins	
XP	350.0	%
TI	2.00	
TD	0.50	

II. Régulation cascade

1) Une boucle en régulation cascade permet d'anticiper des variation de mesure (souvent la mesure de la grandeur perturbatrice). Il y a deux régulateur un maitre et un esclave, le régulateur maître envoie une consigne au régulateur esclave qui lui vas faire varier sa sortie pour impacter l'organe de réglage...

2) Remplacer FT1 par FT2..

TT1

TagName	TT1		LIN Name	TT1	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mΑ	
LR	0.0	%	HR_in	20.00	mΑ
			LR_in	4.00	mΑ
НіНі	100.0	%	AI	0.00	mA
Hi	100.0	%	Res	0.000	Ohms
Lo	0.0	%			

PID maître :

TagName	maitre		LIN Name	maitre	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	REMOTE—		Alarms		
FallBack	REMOTE				
			HAA	100.0	%
PV	0.0	%	LAA	0.0	%
SP	0.0	%	HDA	100.0	%
OP	100.0	%	LDA	100.0	%
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	%
Track	0.0	%	TI	0.00	
			TD	0.00	
HR SP	100.0	%			

PID esclave:

TagName	esclave		LIN Name	esclave
Туре	PID		DBase	<local></local>
Task	3 (110ms)		Rate	0
Mode	F_AUTO		Alarms	
FallBack	F_AUTO			
			HAA	100.0
PV	0.0	%	LAA	0.0
SP	0.0	%	HDA	100.0
OP	0.0	%	LDA	100.0
SL	0.0	%		
TrimSP	0.0	%	TimeBase	Secs
RemoteSP	0.0	%	XP	100.0
Track	0.0	%	TI	0.00
			TD	0.00

FT2 : changement de FT1 à FT2

TagName	FT1		LIN Name	FT1	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	1	
PV	0.0	%	Channel	2	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mA
			LR_in	4.00	mA
HiHi	100.0	%	AI	0.00	mΑ
Hi	100.0	%	Res	0.000	Ohms
Lo	nn	%			

TagName	FV2		LIN Name	FV2	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			SiteNo	2	
0P	0.0	%	Channel	2	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	mΑ
			LR_out	4.00	mΑ
Out	0.0	%	AO	0.00	mΑ
Track	0.0	%			
Trim	0.000	mA	Options	>0000	
			Status	>0000	

TagName	esclave		LIN Name	esclave	
Туре	PID		DBase	<local></local>	l 4 0-b
Task	3 (110ms)		Rate	0 GIODA	l, <=8chars
Mode	REMOTE		Alarms		
FallBack	REMOTE				
			HAA	100.0	%
PV	4.7	%	LAA	0.0	%
SP	1.8	%	HDA	100.0	%
OP	9.3	%	LDA	100.0	%
SL	1.8	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	1.8	%	XP	40.0	%
Track	0.0	%	TI	20.00	
			TD	0.00	
HD CD	100.0	94			

Méthode :

4) On voit que grace à l'anticipation de la cascade la mesure de température n'est pas trop impacter..

La vanne réagis lorsque le débit diminue...

5)
Cela permet d'anticiper une variation de mesure qui pourrait impacter la régulation.. Ici on voit que le débit d'eau chaude peut faire varier la température, le but ici est de réduire limpact de cette variation. Cela peut être utilisé dans pleins d'autre cas, sur des débit pour réguler des température, sur des régulation de PH ou autre...