Supersymmetry

Emmanuel Flores

April 12, 2025

Advanced Mathematical Methods, Tufts University

Contents

1. Motivation

- 2. The supersymmetric oscillator
- 3. Supersymmetric quantum mechanics with a superpotential
- 4. Supersymmetric quantum mechanics and differential forms

Motivation

Combining Bosonic and Fermionics Systems

By taking tensor products (\otimes) of bosonic and fermionic systems, the operators (bosonic of fermionic) will continue to act on the combined systems.

And the idea is to consider some very special operators:

- They appear to mix bosonic and fermionic systems.
- They commute with the hamiltonian *H*.

The supersymmetric oscillator

Bosonic Harmonic Oscillator

Definition

The Hamiltonian of a bosonic harmonic oscillator in d-dimensions, with state space \mathcal{F}_d is given by:

$$H=rac{1}{2}\hbar\omega\sum_{j=1}^d(a_{B_j}^\dagger a_{B_j}+a_{B_j}a_{B_j}^\dagger),$$

or

$$H = \sum_{i=1}^{d} (N_{B_j} + \frac{1}{2})\hbar\omega$$

where N_{B_i} has eigenvalues $n_{B_i} = 0, 1, 2, ...$

Fermionic Harmonic Oscillator

Definition

The Hamiltonian of a fermionic harmonic oscillator in d-dimensions, with state space \mathcal{F}_d^{\dagger} is given by:

$$H=rac{1}{2}\hbar\omega\sum_{j=1}^d(a_{F_j}^\dagger a_{F_j}-a_{B_j}a_{B_j}^\dagger),$$

or

$$H = \sum_{i=1}^{d} (N_{F_j} - \frac{1}{2})\hbar\omega$$

where N_{B_i} has eigenvalues $n_{B_i} = 0, 1$

Definition of the Full System

By taking the state spaces \mathcal{F}_d and \mathcal{F}_d^\dagger we can make the new state

$$\mathcal{H} = \mathcal{F}_d \otimes \mathcal{F}_d^\dagger$$

with a corresponding Hamiltonian given by

$$H = \sum_{j=1}^d (N_{B_j} + N_{F_j})\hbar\omega,$$

and the lowest energy state has energy $|0\rangle$ has energy 0.

Supersymmetric quantum mechanics with a superpotential

mechanics and differential forms

Supersymmetric quantum