

01076001 วิศวกรรมคอมพิวเตอร์เบื้องต้น Introduction to Computer Engineering

Arduino #2

Serial, Analog Read, LDR, 7 Segment

การติดต่อระหว่าง Arduino IDE กับบอร์ด

- ในบางครั้งเราต้องการติดต่อระหว่าง Arduino IDE กับ บอร์ด
 - กรณีที่ต้องการส่งค่าจากคีย์บอร์ดไปที่บอร์ด Arduino
 - กรณีที่ต้องการส่งค่าจากบอร์ด Arduino ไปแสดงผล เช่น กรณี debug โดยการ แสดงตัวแปร
 - กรณีต้องการ plot กราฟข้อมูล

การติดต่อระหว่าง Arduino IDE กับบอร์ด

- ใน Arduino IDE จะมีหน้าต่าง Serial Monitor
- Tools -> Serial Monitor
- ช่องด้านบนสำหรับส่งข้อมูลจาก
 PC -> Arduino Board
- หน้าต่างด้านล่างสำหรับแสดงผล ข้อมูลที่ส่งจาก Arduino Board
- Note : ต้องเลือก baud rate
 ให้ตรงกับโปรแกรม
- ข้อควรระวัง : หากเปิด Serial
 Monitor จะ Upload ไม่ได้

Serial Function - Begin

ใช้สำหรับกำหนดว่ามีการใช้งาน Serial และกำหนดค่าความเร็ว (ต้องเท่ากัน)

Syntax:

Serial.begin(speed)

Parameter:

speed: in bits per second(baud)

300, 600, 1200, 2400, 4800, <u>**9600</u>, 14400, 19200, 28800, 38400, 57600, or**</u>

<u>115200</u>

Serial Function - Begin

สั่งเริ่มต้นการใช้ Serial

Example:

```
void setup()
{
    Serial.begin(9600);
}
```

Serial Function - Print

• สั่งให้บอร์ดส่งข้อมูลไปแสดงผลใน Serial Monitor

Syntax:

```
Serial.print(val)
Serial.print(val, format)
Serial.println(val)
Serial.println(val, format)
```

Parameter:

Serial Function - Print

Example:

Prints data to the serial port as human-readable ASCII text
 Serial.print(78) gives "78"
 Serial.print(1.23456) gives "1.23"
 Serial.print('N') gives "N"

• An optional second parameter specifies the base (format)

```
Serial.print(78, BIN) gives "1001110"
Serial.print(78, OCT) gives "116"
Serial.print(78, DEC) gives "78"
Serial.print(78, HEX) gives "4E"
```

Activity

ให้นักศึกษา นำ Switch ต่อกับบอร์ด Arduino ที่ขา 2 รันโปรแกรมและเปิด
 Serial Monitor ดู

```
#define button 2 // switch input Active Low
#define pressed LOW

void setup()
{
    Serial.begin(9600);
    pinMode(button,INPUT_PULLUP);
}

void loop()
{
    bool ReadSwitch = digitalRead(button);
    if(ReadSwitch == pressed)
    {
        Serial.println("Pressed Switch."); delay(500);
    }
}
```

Analog Read

 นอกจาก Arduino จะสามารถอ่านค่าในแบบ Digital แล้ว ยังให้ขาสำหรับอ่านค่า แบบ Analog (ไม่ใช่แค่ 0,1) มาด้วย จำนวน 6 ขา คือ A0-A5 โดยค่าที่อ่านจะอยู่ ระหว่าง 0-1023 โดย 0=0v และ 1023=5v

Syntax:

analogRead(pin)

Parameter:

pin: the number of the pin whose mode you wish to set

Return:

Integer: 0-1023 (0-5V)

Potentiometer

คือ ตัวต้านทานแบบปรับค่าได้

Activity

• ให้ต่อวงจรตามรูป และเขียนโปรแกรมเพื่ออ่านค่ามาแสดงใน Serial Plotter

Serial Plotter

นอกจากจะแสดงเป็นข้อความแล้ว ยังสามารถแสดงเป็นกราฟได้อีกด้วย

Activity

• ให้นำโปรแกรมต่อไปนี้ไปรัน และดูผลใน Serial Plotter

```
void setup() {
   Serial.begin(9600);
void loop()
  //Sine Wave & Cosine Wave
  float angle=0;
  for (angle=0; angle<=90; angle=angle+0.1)</pre>
    float sina=sin(angle);
    float cosa=cos(angle);
    Serial.print(sina);
    Serial.print(" ");
    Serial.println(cosa);
    delay(1);
```

Activity

• ทดลองสร้างคลื่น Triangle, Saw tooth และ Square

LDR module

- เป็นโมดูลสำหรับใช้วัดความสว่างของแสง
- LDR ย่อมาจาก Light Detector Resister
- LDR จะเปลี่ยนค่าความต้านทานไปตาม ความสว่างของแสง

- โมดูลจะมี 4 ขา คือ
 - Vcc ต่อกับ 5V เพื่อเลี้ยงวงจร, Gnd ต่อกับ Ground ของ Arduino
 - AO (Analog Out) จะให้ Output เป็น Analog (0-1023)
 - DO (Digital Out) จะให้ Output เป็น HIGH เมื่อความสว่างมากกว่าที่กำหนด (สามารถกำหนดโดย R ปรับค่าได้ (สีฟ้า))

7-Segments

รายละเอียดแต่ละ Segment ใน 7 Segment

LED 7 Segment ชนิดหลายหลัก

อยากให้ 7-Segments แสดงเลข 3 ค่า a-g จะต้องมีค่าเป็น เท่าใดตามลำดับ

การคำนวณตัวต้านทานสำหรับ 7-Segments

- Input voltage จากวงจร 5 Volts
- 7-Segment รับกระแส 15mA และ forward voltage drop ที่ 2 Volts
- ต้องใช้ R เท่าไหร่ สีอะไร

ตัวอย่างการต่อ 7 Segment กับ Arduino

ตัวเลขสุ่ม (Random Number) มีลักษณะอย่างไร

Random

Real Random

ระบบคอมพิวเตอร์ สร้าง
Real Random Number
ได้อย่างไร

Pseudo Random

ระบบคอมพิวเตอร์ สร้าง
Pseudo Random Number
ได้อย่างไร

Random

Real Random

วัดค่าจากแหล่งภายนอก เช่น Key Stroke , Voltage ที่มีการ สุ่มค่าจริงๆ

Pseudo Random

Pseudo Random Number Generator Algorithm โดยใช้ สูตรคณิตศาสตร์ มาสร้างตาราง ที่มีชุดตัวเลขที่เดาค่าได้ยาก

random()

- Generate pseudo-random number
- Syntax
 - -random(max)
 - -random(min,max) 5, 10 6 5 -9
- Return
 - -A random number between min and max-1 (long)

randomseed()

- Initial random number generator
- Start point of random sequences
- Parameter
 - —Long int : parameter to generate the seed

bitRead()

Description

Reads a bit of a number.

Parameters

x: the number from which to read

n: which bit to read, starting at O for the least-significant (rightmost) bit

การเลือกบิตในใบต์มาใช้งาน

- โดยใช้ bitRead() เช่น bitRead(5,2) จะ return ค่า บิตที่ 2 นับจากขวาสุดของ 0000101 นั่นก็คือ 1
- โดยใช้การ shift bit เช่น ((5) >> (2)) & 0x01
 - หมายถึง การนำเลข 5 มาเลื่อนไปทางขวา 2 ครั้ง (101 -> 10 -> 1)
 - จากนั้นนำไปทำ Logical AND กับ 0x01 (0000001b)

 - ถ้าบิตที่ 2 (3 นับจากขวา) มีค่าเป็น 0 จะได้ผลเป็น 0

• ใน arduino หากต้องการกำหนดข้อมูลเป็นฐาน 2 ให้ใช้ B00000101

Assignment #2

- ต่อวงจรโดยใช้สวิตซ์ 2 ตัว A และ B และต่อ 7 Segment จำนวน 1 ตัว
- ให้สร้าง Dice Game โดยเมื่อกดสวิตซ์ A ให้แสดงผลใน 7 Segment เพิ่มครั้ง ละ 1 ถ้าเกิน 6 ให้กลับมาเริ่มที่ 1 ใหม่
- ถ้ากดสวิตซ์ B ให้ทำการสุ่มและแสดงผล แล้วถ้าตรงกันให้แสดง ?? ที่แสดงว่า ชนะ ถ้าไม่ตรงกันกันให้แสดง ?? ที่แสดงว่าแพ้
- ให้กำหนดตัวเลขใน Array และการแสดงผลให้ทำเป็นฟังก์ชันเดียว ห้ามทำเป็น ฟังก์ชัน แสดงเลข 0,1,2,3,4,5,6,7,8,9 แยกกันไป ห้ามทำเป็น if หรือ case
- คะแนน 2 คะแนน
- มีคะแนนความคิดสร้างสรรค์ เพิ่มต่างหาก 0.5 คะแนน


```
void setup() {
      //setup pin mode and randomseed
loop(){
      handle guess button();
      handle start button();
void handle_guess_button() {
      //increment guess number in pressed.
void handle start button() {
      // if start pressed :
      // random and show
      //
             if guess == random : hooray() else boo()
```


For your attention