Verfeinerungen von Zerlegungen der Eins

Sei R ein kommutativer Ring und sei

$$1 = s_1 + \dots + s_n$$

eine Zerlegung der Eins von $R, s_1, \ldots, s_n \in R$. Seien weiter für jeden der lokalisierten Ringe $R[s_i^{-1}]$ Zerlegungen

$$1 = t_{i,1} + \dots + t_{i,m_i}$$

der Eins von $R[s_i^{-1}]$ gegeben, $t_{i,1}, \ldots, t_{i,m_i} \in R[s_i^{-1}]$.

Behauptung. Dann gibt es eine Zerlegung

$$1 = u_1 + \dots + u_N$$

von R, $u_1, \ldots, u_N \in R$ derart, dass es zu jedem der lokalisierten Ringe $R[u_j^{-1}]$ jeweils ein $i \in \{1, \ldots, n\}$ und ein $k \in \{1, \ldots, m_i\}$ gibt, sodass s_i und $t_{i,k}$ in $R[u_j^{-1}]$ invertierbar sind.

Beweis. Jedes $t_{i,k}$ hat die Form $t_{i,k} = t'_{i,k}/s_i^{\ell_{i,k}}$ für ein $t'_{i,k} \in R$ und $\ell_{i,k} \geq 0$. Ohne Einschränkung können wir davon ausgehen, dass die $\ell_{i,k}$ für alle $k \in \{1, \ldots, m_i\}$ gleich sind (nötigenfalls einfach die Brüche noch mit geeigneten Potenzen von s_i erweitern). Somit können wir $t_{i,k} = t'_{i,k}/s_i^{\ell_i}$ für ein allen k gemeinsamen Exponenten $\ell_i \geq 0$ schreiben.

Dass die $t_{i,k}$, $k=1,\ldots,m_i$ eine Zerlegung der $1\in R[s_i^{-1}]$ bilden, bedeutet, dass wir einen Exponenten $r_i\geq 0$ mit

$$s_i^{r_i} s_i^{\ell_i} = s_i^{r_i} (t'_{i,1} + \dots + t'_{i,m})$$

finden. Sei $r := \max_{i=1,\dots,n} (r_i + \ell_i)$. Dann können wir für alle $i \in \{1,\dots,n\}$

$$s_i^r = t_{i,1}'' + \dots + t_{i,m_i}''$$

schreiben, wenn wir $t_{i,k}'' := s_i^{r-\ell_i} t_{i,k}' \in R$ setzen.

Nach der üblichen Überlegung, wie wir sie schon mehrmals in der Vorlesung vorkam, finden wir Koeffizienten $b_1, \ldots, b_n \in R$ derart, dass

$$1 = \sum_{i=1}^{n} b_i s_i^{r+1} = \sum_{i=1}^{n} \sum_{k=1}^{m_i} b_i s_i t_{i,k}''$$

gilt. Das ist unsere gesuchte Zerlegung der Eins, denn in $R[(b_i s_i t''_{i,k})^{-1}]$ sind $b_i s_i t''_{i,k}$ und damit insbesondere s_i und $t''_{i,k}$, und damit wiederum $t_{i,k}$, invertierbar.