DATA BASE ADMIN

Y U NO LEARN NOSQLP!P!

TROLL MES

Propor um novo índice para algum NoSQL

mongoDB

Pesquisas

404 :(

Análise Experimental de Bases de Dados Relacionais e NoSQL no Processamento de Consultas sobre Data Warehouse

O MongoDB apresentou os piores resultados

O Fastbit foi o mais rápido

Implementação de índice Bitmap para o banco de dados MongoDB

Bitmap Join Index

Não há join no MongoDB

Implementação de índice Bitmap para o banco de dados MongoDB

Análise do Banco de Dados NoSQL MongoDB no Processamento de Consultas sobre Data Warehouse

Nova proposta

Obter melhor performance em consultas OLAP

Modelo estrela Multidimensional

Parallel Data Generation Framework

parts

800.000

customers

300.000

suppliers

20.000

dates

2.557

lineorders

10.001.101

Consultas

Q1

```
SELECT SUM(l_extendedprice*l_discount) AS revenue
FROM lineorders, dates
WHERE l_orderdate = d_datekey
AND d_year = 1993
AND l_discount BETWEEN 1 AND 3
AND l_quantity < 25;</pre>
```

```
var date_ids = [];
db.dates.find({d_year: 1993}).forEach( function (d) {
 date_ids.push(d._id);
});
db.lineorders.aggregate([
  { $match: { l_orderdate: { $in: date_ids },
              l_discount: { $gte: 1, $lte: 3},
              l_quantity: { $1t: 25} } },
  { $group: { _id: null,
              revenue: { $sum: {$multiply:
["$l_extendedprice", "$l_discount"]} } } }
1);
```

```
SELECT SUM(l_revenue), d_year, p_brand
FROM lineorders , dates, parts, suppliers
WHERE l_orderdate = d_datekey
AND l_partkey = p_partkey
AND l_suppkey = s_suppkey
AND p_category = 'MFGR#12'
AND s_region = 'AMERICA'
GROUP BY d_year, p_brand
ORDER BY d_year, p_brand
```

Não é possível agrupar por atributos de documentos de outras coleções :(

Q2

```
SELECT SUM(l_revenue), d_year
FROM lineorders , dates, parts, suppliers
WHERE l_orderdate = d_datekey
AND l_partkey = p_partkey
AND l_suppkey = s_suppkey
AND p_category = 'MFGR#12'
AND s_region = 'AMERICA'
GROUP BY d_year
ORDER BY d_year
```

```
var part_ids = \Pi;
db.parts.find({p_category: "MFGR#12"}).forEach( function (p) {
  part_ids.push(p._id);
});
var supplier_ids = [];
db.suppliers.find({s_region: "AMERICA"}).forEach( function (s) {
  supplier_ids.push(s._id)
});
var map = function () {
  var year = this.l_orderdate.toString().match(/[0-9]{4}/)[0];
  emit(year, this.l_revenue);
};
var reduce = function (key, values) {
  return Array.sum(values);
};
db.lineorders.mapReduce(
  map,
  reduce,
    out: "lineorders_grouped_by_year",
    query: {
      l_partkey: { $in: part_ids },
      l_suppkey: { $in: supplier_ids }
);
db.lineorders_grouped_by_year.find();
```

Resultados

Conclusão

Não é possível realizar todas consultas OLAP "comuns" no MongoDB utilizando o modelo estrela

As consultas no MongoDB ficaram bem mais complexas do que em SQL

Trabalhos futuros

Comparar a performance de consultas entre aggregation framework e map reduce