

Simplification of CFG

Shashank Gupta
Assistant Professor
Department of Computer Science and Information Systems

Simplification of CFG

CFG is often required in its simplest form.

One of the simplest and most useful forms is called as the Chomsky Normal Form

Chomsky Normal Form (CNF)

A context-free grammar is in Chomsky normal form if every rule is of the form

- $A \rightarrow BC$
- $A \rightarrow a$

where a is any terminal and A, B, and C are any variables

• Except that B and C may not be the start variable. In addition, we permit the rule $S \rightarrow \in$, where S is the start variable.

innovate achieve lead

Properties of CNF Grammar

CNF produces the same language as generated by CFG.

For generating string w of length 'x' requires '2x-1' derivation steps in CNF.

Chomsky Normal Form

Every CFL has a Context-Free Grammar G.

We can convert any grammar G into Chomsky normal form.

• The conversion has several stages wherein rules that violate the conditions are replaced with equivalent ones that are satisfactory.

First, we add a new start variable S_0 and the rule $S_0 \rightarrow S$, where S was the original start variable.

This change guarantees that the start variable doesn't occur on the right-hand side of a rule.

Remove an \in -rule $A \rightarrow \in$, where A is not the start variable.

- Then, for every occurrence of an A on the righthand side of a rule, add a new rule with that occurrence deleted.
- Consider the following Grammar

•
$$A \rightarrow \in$$

•
$$B \rightarrow uAv$$

•
$$C \rightarrow u_1 A u_2 A u_3$$

$$B \rightarrow uAv \mid uv$$

$$C \rightarrow u_1 A u_2 A u_3 | u_1 u_2 A u_3 | u_1 A u_2 u_3 | u_1 u_2 u_3$$

Remove a unit rule $A \rightarrow B$. Then, whenever a rule $B \rightarrow u$ appears, we add the rule $A \rightarrow u$.

We repeat these steps until we eliminate all the unit rules.

Conversion: **Step 3** (Continued....)

Suppose a grammar had the following rules:

$$A \rightarrow B$$

$$B \rightarrow u$$

Then the grammar formed by removing the rule $A \rightarrow B$ will have the corresponding set of rules

$$B \rightarrow u$$

 $A \rightarrow u$ (new rule added)

We replace each rule $A \to u_1 u_2 \cdot \cdot \cdot u_k$, (where $k \ge 3$ and each u_i is a variable or terminal symbol) with the following rules

- $A \rightarrow u_1 A_1$,
- $A_1 \rightarrow u_2 A_2$,
- $A_2 \rightarrow u_3 A_3$,
- •
- •
- . ,
- and $A_{k-2} \rightarrow u_{k-1}u_k$.

The A_i 's are new variables added to the Grammar We replace any terminal u_i in the preceding rule(s) with the new variable u_i and add the rule $U_i \rightarrow u_i$.

Replacing few terminal symbols on the RHS.

If there is a rule of the form $A \rightarrow uv$ where at least one of either u or v is a terminal symbol (let's assume u), then replace the rule $A \rightarrow uv$ with

- $A \rightarrow Uv$
- $U \rightarrow u$ (new rule added)
- where U is a new variable added to the grammar. Repeat until no such rules remain.

CFG

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \in$$

Step 1: Add a new start symbol

$$S_0 \rightarrow S$$
 (New Rule Added)

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \in$$

Step 2: Remove \in Productions

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \in$$

Step 2a: Removing $B \rightarrow \in$

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a$$

$$A \rightarrow B \mid S \mid \in$$

$$B \rightarrow b$$

Step 2b: Removing $A \rightarrow \in$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a$
 $A \rightarrow B \mid S \mid \in$
 $B \rightarrow b$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

Computation

Step 3: Remove Unit Rules

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

Step 3a: Removing $S_0 \rightarrow S$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

Remove other Unit Rules

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

Step 3b: Removing $A \rightarrow B$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow S \mid b$$

$$B \rightarrow b$$

Remove other Unit Rules

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow S \mid b$$

$$B \rightarrow b$$

Step 3c: Removing
$$A \rightarrow S$$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$$

$$B \rightarrow b$$

Step 4: Shortening the RHS

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$$

$$B \rightarrow b$$

Step 4: Shortening the RHS

$$S_0 \rightarrow AC \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow AC \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid AC \mid aB \mid a \mid SA \mid AS$$

$$B \rightarrow b$$

$$C \rightarrow SA$$

Step 5: Replacing few Terminals on RHS

$$S_0 \rightarrow AC \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow AC \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid AC \mid aB \mid a \mid SA \mid AS$
 $B \rightarrow b$
 $C \rightarrow SA$

Step 5: Replacing few Terminals on RHS

$$S_0 \rightarrow AC \mid DB \mid a \mid SA \mid AS$$

$$S \rightarrow AC \mid DB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid AC \mid DB \mid a \mid SA \mid AS$$

$$B \rightarrow b$$

$$C \rightarrow SA$$

$$D \rightarrow a$$

More Examples

Consider the following CFG and convert it into CNF CFG.

$$S \rightarrow aXbX$$

$$X \rightarrow aY \mid bY \mid \in$$

$$Y \rightarrow X \mid c$$

Given CFG

$$S \rightarrow aXbX$$

$$X \rightarrow aY \mid bY \mid \in$$

$$Y \rightarrow X \mid c$$

Step 1 can be skipped

$$S \rightarrow aXbX$$

$$X \rightarrow aY \mid bY \mid \in$$

$$Y \rightarrow X \mid c$$

Step 2: Remove ∈ Productions

$$S \rightarrow aXbX$$

$$X \rightarrow aY \mid bY \mid \in$$

$$Y \rightarrow X \mid c$$

Step:2a Removing $X \rightarrow \in$

$$S \rightarrow aXbX \mid abX \mid aXb \mid ab$$

$$X \rightarrow aY \mid bY$$

$$Y \rightarrow X \mid c \mid \in$$

$$S \rightarrow aXbX \mid abX \mid aXb \mid ab$$

$$X \rightarrow aY \mid bY$$

$$Y \rightarrow X \mid c \mid \in$$

Step:2b Removing $Y \rightarrow \in$

$$S \rightarrow aXbX \mid abX \mid aXb \mid ab$$

$$X \rightarrow aY \mid bY \mid a \mid b$$

$$Y \rightarrow X \mid c$$

Step 3: Remove Unit Rules

$$S \rightarrow aXbX \mid abX \mid aXb \mid ab$$

$$X \rightarrow aY \mid bY \mid a \mid b$$

$$Y \rightarrow X \mid c$$

Step3: Removing $Y \rightarrow X$

$$S \rightarrow aXbX \mid abX \mid aXb \mid ab$$

$$X \rightarrow aY \mid bY \mid a \mid b$$

$$Y \rightarrow c | aY | bY | a | b$$

Step 4: Replacing certain terminals

$$S \rightarrow aXbX \mid abX \mid aXb \mid ab$$

$$X \rightarrow aY \mid bY \mid a \mid b$$

$$Y \rightarrow c \mid aY \mid bY \mid a \mid b$$

Step 4: Replacing certain terminals

$$S \rightarrow AXBX \mid ABX \mid AXB \mid AB$$

$$X \rightarrow AY \mid BY \mid a \mid b$$

$$Y \rightarrow c |AY|BY|a|b$$

$$A \rightarrow a$$

$$B \rightarrow a$$

1

Step 5: Shortening RHS

$$S \rightarrow AXBX \mid ABX \mid AXB \mid AB$$

$$X \rightarrow AY \mid BY \mid a \mid b$$

$$Y \rightarrow c |AY|BY|a|b$$

$$A \rightarrow a$$

$$B \rightarrow a$$

Step 5: Shortening RHS

$$S \rightarrow PQ \mid AQ \mid PB \mid AB$$

$$X \rightarrow AY \mid BY \mid a \mid b$$

$$Y \rightarrow c |AY|BY|a|b$$

$$A \rightarrow a$$

$$B \rightarrow a$$

$$P \rightarrow AX$$

$$Q \rightarrow BX$$