Circuits logiques et numériques [ELEC-H-305] TP 1 : Systèmes de numérotation – Corrigé

Question 1. Convertir dans les autres bases utiles les nombres suivants :

- a) $(82)_{10}$
- b) $(122)_{10}$
- c) $(1001110001)_2$
- d) (762)₈
- e) $(214)_8$
- f) $(F6D)_{16}$
- g) $(B65F)_{16}$
- h) $(0.625)_{10}$
- i) $(10110001101011.1111100000110)_2$
- j) $(127.4)_8$
- k) (673.12)₈
- 1) $(3A6.C)_{16}$

Réponse :

• Base $10 \rightarrow \text{base 2 par divisions successives} : (82)_{10} = (1010010)_2$

• Base $10 \rightarrow \text{base } 8 \text{ par divisions successives} : (82)_{10} = (122)_8$

• Base $10 \rightarrow \text{base } 16 \text{ par divisions successives} : (82)_{10} = (52)_{16}$

$$\begin{array}{c|cccc}
82 & :16 & 2 \\
5 & :16 & 5 \\
0 & & & \end{array}$$

• Base 2 \rightarrow base 8 par groupements : $(1001110001)_2 = (1161)_8$

$$\underbrace{001}_{1}\underbrace{001}_{1}\underbrace{110}_{6}\underbrace{001}_{1}$$

Corrigé

• Base 2 \rightarrow base 16 par groupements : $(1001110001)_2 = (271)_{16}$

$$\underbrace{0010}_{2}\underbrace{0111}_{7}\underbrace{0001}_{1}$$

• Base 8 \rightarrow base 2 par séparation : $(762)_8 = (111110010)_2$

$$\underbrace{7}_{111} \underbrace{6}_{110} \underbrace{2}_{010}$$

• Base $16 \to \text{base 2 par séparation} : (F6D)_{16} = (111101101101)_2$

$$F_{1111} \underbrace{6}_{0110} \underbrace{D}_{1101}$$

• Partie décimale en base $10 \rightarrow$ base 2 par multiplications successives : $(0.625)_{10} = (0.101)_2$

$$\begin{array}{c|c|c|c} .625 & x2 & 1 \text{ (MSB)} \\ .25 & x2 & 0 \\ .5 & x2 & 1 \text{ (LSB)} \\ 0 & & \end{array}$$

Le tableau suivant reprend tous les résultats de l'exercice.

Base 2	Base 8	Base 10	Base 16
1010010	122	82	52
1111010	172	122	7A
1001110001	1161	625	271
111110010	762	498	1F2
10001100	214	140	8C
111101101101	7555	3949	F6D
1011011001011111	133137	46687	B65F
0.101	0.5	0.625	0.A
10110001101011.111100000110	26153.7406	11371.93896484375	2C6B.F06
1010111.1	127.4	87.5	57.8
110111011.001010	673.12	443.15625	1BB.28
001110100110.1100	1646.6	934.75	3A6.C

Question 2. Effectuer l'addition suivante dans toutes les bases utiles. Vérifier les résultats en les convertissant en base 10 :

$$(3633)_{10} + (254)_{10}$$

Réponse:

Question 3. Représenter $(0.345)_{10}$ en base 2 et en base 8.

Réponse:

- $(0.010110...)_2$
- $(0.260507...)_8$

Question 4. Effectuer les opérations suivantes :

- a) $(10110)_2 (10010)_2$
- b) $(10110)_2 (10011)_2$
- c) $(5475)_8 (3764)_8$
- d) $(540045)_8 (325654)_8$
- e) $(E46)_{16} (59F)_{16}$
- f) $(4321)_{16} (2ECD)_{16}$
- g) $(1011)_2 * (1001)_2$
- h) $(762)_8 * (45)_8$
- i) $(543)_8 * (27)_8$
- j) $(1CF)_{16} * (B6)_{16}$
- k) $(2ECD)_{16} * (4321)_{16}$
- 1) $(1100)_2 : (011)_2$
- m) $(110101)_2 : (111)_2$
- n) $(533)_8:(26)_8$
- o) $(2ECD)_{16}:(12)_{16}$

Réponse:

- a) $(00100)_2$
- b) $(00011)_2$
- c) $(1511)_8$
- d) (212171)₈
- e) $(8A7)_{16}$
- f) $(1454)_{16}$
- g) $(1100011)_2$

page 4

- i) $(17745)_8$
- j) $(1492A)_{16}$
- k) $(C45AF6D)_{16}$
- 1) $(100)_2$
- $m) (111.100)_2$

- n) $(17.61)_8$
- o) $(299.B)_{16}$

Question 5. Représentation des nombres négatifs

a) Représenter $(-14)_{10}$ sur 8 bits en base 2 dans les 3 modes de représentation.

SVA C1Réponse: 10001110 11110001 11110010

b) Si on utilise 4 bits, quels sont, dans les 3 modes de représentation, les plus petites et les plus grandes valeurs représentables? Comment se représente la valeur 0?

C2

Réponse:

	\min	0	max	
SVA	1111	0000	0111	
		1000	0111	
C1	1000	0000	0111	
	1000	1111	0111	
C2	1000	0000	0111	

À titre de bonus, ci-suit un tableau comparatif des différents modes de représentation (sur 4 bits):

Base 10	Signé	C1	C2
7	0111	0111	0111
6	0110	0110	0110
5	0101	0101	0101
4	0100	0100	0100
3	0011	0011	0011
2	0010	0010	0010
1	0001	0001	0001
0	0000	0000	0000
	1000	1111	0000
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	N/A	N/A	1000

c) Effectuer les additions suivantes (sur 8 bits) dans les trois modes de représentation et repérez les problèmes d'overflow :

Réponse :

Base 10	52	-52	84	-84
SVA	00110100	10110100	01010100	11010100
C1	00110100	11001011	01010100	10101011
C2	00110100	11001100	01010100	10101100

• 52 + 84

Réponse:

- SVA : Overflow.
- C1 et C2 : overflow car le résultat n'est pas du même signe que les opérandes.
- 52 84

Réponse:

- SVA : Soustraction classique.
- C1 et C2 : Additionner 52 et -84.
- 84 52

Réponse:

- SVA : Soustraction classique.
- C1 : 84 + (-52) provoque un report de 1 sur le MSB qu'il faut ajouter au LSB.
- C2: Provoque aussi un report, mais on l'ignore.
- -84 52

Corrigé

page 6

Réponse :

- SVA: Les deux opérandes étant du même signe, on peut additionner 52 et 84, mais on a de nouveau un overflow.
- C1 et C2 : On additionne -52 et -84, mais le résultat n'est pas du même signe \rightarrow underflow.

Question 6. Représentation en virgule flottante (IEEE standard)

a) Si on vous donne le nombre (10100.10011)₂ et sachant que la partie entière et fractionnaire sont toutes les deux exprimées sur six bits, quel est son équivalent en virgule flottante?

Réponse:

- Signe : 0
- Exposant : 127 (base) + 4 (décalage) = $131_{10} = 10000011_2$

- b) Convertir en binaire les nombres suivants représentés en virgule flottante :
 - 0 10000010 10000010 ... 000

Réponse:

- Signe : +
- Exposant: $10000010_2 = 129_{10}$

 $0\ 10000010\ 10000010\ \dots\ 000 = (110.00001)_2$

• 1 01111000 01000110 ... 000

Réponse:

- Signe : -
- Exposant : $011111000_2 = 120_{10}$

 $1\ 011111000\ 01000110\ \dots\ 000 = -(0.00000010100011)_2$