Module UM –
Introduction à la modélisation des plantes. Les modèles Structure-Fonctions(12-16
Novembre 2018)

TD analyse de sensibilité et ideotypage

15 novembre 2018 Raphael Perez, Christian Fournier

SUPPORT DU TD

https://github.com/openalea/hbma312 training 2018

Ouvir Lpy et charger sensitivity_analysis.lpy

Script python: sensitivity_analysis_batch.py

Script R:

SensitivityAnalysis_UM2018.Rproj → TD_sensitivity-UM2018.R

Données:

res_isolated3125simus.csv; res_non_isolated3125simus.csv

LE MODÈLE 3D

- Représentation 3D de l'architecture aérienne du pommier
- 5 paramètres liés à la géométrie des ramifications
 - 1. INSERTION_ANGLE
 - 2. PHYLLOTAXY
 - 3. BRANCH_ELASTICITY
 - 4. INTERNODE_FLENGTH
 - 5. LONGGU_PEAK_POSITION

LE MODÈLE 3D + MODÈLE DE LUMIÈRE

Sensitivity_analysis.lpy
Générer des maquettes 3D avec différentes
combinaisons de paramètres puis estimer leur niveau
d'interception dans une scène isolée (Leaf_Ei)

Proposer un idéotype relatif à Leaf_Ei (sauver la combinaison de paramètres)

Générer des maquettes 3D avec différentes combinaisons de paramètres puis estimer leur niveau d'interception dans une scène isolée (Leaf_Ei)

Notations

$$\mathbf{y} = \mathcal{G}(\mathbf{x}) \\
= \mathcal{G}(x_1, ..., x_K)$$

- $> x_1, ..., x_K =$ variables d'entrée et paramètres incertains
- \triangleright $x_1, ..., x_K$ les K facteurs incertains
- ▶ $\mathbf{x} = (x_1, ..., x_K) \in \mathbb{R}^K$
- ▶ y peut être multidimensionnel

Objectif

- Répondre à la question
 - Quelles sont les principales sources d'incertitude parmi x_1, \dots, x_K qui influencent $\mathcal{G}(\mathbf{x})$?

Variance de $\mathcal{G}(\mathbf{x}) = \mathsf{Effet} \; \mathsf{de} \; x_1 + \mathsf{Effet} \; \mathsf{de} \; x_2 + \dots$

Analyse de sensibilité

- ▶ identifier les paramètres et les variables d'entrée qui ont une forte influence sur les sorties d'un modèle
 - → Important de les connaître avec précision
- identifier les paramètres et les variables d'entrée qui ont une influence moindre sur les sorties
 - → Moins important de les connaître avec précision
- analyser le comportement du modèle

Grille de choix des méthodes d'analyse

Bertrand looss (EDF R&D)

Classification des méthodes d'analyses de sensibilité **epr

Faivre R., looss B., Mahevas S., Makowski D., Monod H., editors, 2013. Analyse de sensibilite et exploration de modeles. Applications aux modeles environnementaux.

Collection \Savoir Faire", Quae, 2013, 352p.

Indices basés sur une décomposition de la variance

$$Var[\mathcal{G}(\mathbf{x})] = \underbrace{Var_{x_1} + Var_{x_2} + Var_{x_3} + \dots}_{\downarrow} + \underbrace{Var_{x_1.x_2} + Var_{x_1.x_3} + \dots}_{\downarrow}$$
Variance totale de la variable de sortie Effets principaux des facteurs incertains

Métamodélisation

$$\mathbf{y} = \mathcal{G}(\mathbf{x})$$

 $\approx \mathcal{M}(x_1, ..., x_K)$

Métamodèle Polynomial

$$y = \sum_{a=1}^{A} \beta_a \left(\prod_{k=1}^{K} x_k^{d_{a,k}} \right) + \varepsilon$$

- K nombre de paramètres ;
- $A = C_{K+D}^D$ nombre de termes croisés $(0 \le \sum_k d_{a,k} \le D)$;
- D degré maximal des polynomes ;
- ε terme d'erreur d'espérance nulle, indépendant des variables x_k .

Décomposition des sources de variation de x_1 (% de variance expliquée, \mathbb{R}^2)

- Effet principal : $X_1 + X_1^2 + X_1^3$
- Total: $x_1 + x_1^2 + x_1^3 + x_1 x_2 + x_1 x_2^2 + x_1^2 x_2 + x_1 x_3 + x_1 x_3^2 + x_1^2 x_3 + x_1 x_2 x_3 + \dots$

Analyse de sensibilité

Plan d'expérience de type hypercube latin (LHS)

un point par segment sur chaque paramètre

TD_sensitivity-UM2018.R

- Générer le plan d'expérience LHS proposé (tester avec différentes tailles)
- Représenter la distribution des valeurs échantillonnées de chaque paramètres du plan d'expérience et visualiser la grille d'échantillonnage
- Récupérer les sorties des simulations en situation isolé ou en verger (res_isolated3125simus.csv+ res_non_isolated3125simus.csv) et ajuster un métamodèle polynomial de degré 3
- Estimer et représenter la contribution des paramètres à Ei_leaf_isol et Ei_leaf_canop
- Représenter la maquette maximisant Ei _leaf_isol du plan LHS et la comparer à la maquette minimisant Ei_leaf_isol, celle maximisant Ei _leaf_canop, et celle de l'idéotype que vous aviez sélectionné

Représenter la distribution des valeurs échantillonnées de chaque paramètres du plan d'expérience et visualiser la grille d'échantillonnage

11

TD_sensitivity-UM2018.R

- Générer le plan d'expérience LHS proposé (tester avec différentes tailles)
- Représenter la distribution des valeurs échantillonnées de chaque paramètres du plan d'expérience et visualiser la grille d'échantillonnage
- Récupérer les sorties des simulations en situation isolé ou en verger (res_isolated3125simus.csv+ res_non_isolated3125simus.csv) et ajuster un métamodèle polynomial de degré 3
- Estimer et représenter la contribution des paramètres à Ei_leaf_isol et Ei_leaf_canop
- Représenter la maquette maximisant Ei _leaf_isol du plan LHS et la comparer à la maquette minimisant Ei_leaf_isol, celle maximisant Ei _leaf_canop, et celle de l'idéotype que vous aviez sélectionné

Estimer et représenter la contribution des paramètres à Leaf_Ei_isol

TD_sensitivity-UM2018.R

- Générer le plan d'expérience LHS proposé (tester avec différentes tailles)
- Représenter la distribution des valeurs échantillonnées de chaque paramètres du plan d'expérience et visualiser la grille d'échantillonnage
- Récupérer les sorties des simulations en situation isolé ou en verger (res_isolated3125simus.csv+ res_non_isolated3125simus.csv) et ajuster un métamodèle polynomial de degré 3
- Estimer et représenter la contribution des paramètres à Ei_leaf_isol et Ei_leaf_canop
- Représenter la maquette maximisant Ei _leaf_isol du plan LHS et la comparer à la maquette minimisant Ei_leaf_isol, celle maximisant Ei _leaf_canop, et celle de l'idéotype que vous aviez sélectionné

Représenter la maquette maximisant Ei _leaf_isol du plan LHS et la comparer à la maquette maximisant Ei _leaf_canop et l'idéotype que vous aviez sélectionné

Simu 3121 Leaf_Ei_canop= 0.52

Simu 2271 Leaf_Ei_isol= 0,01

TD_sensitivity-UM2018.R

Faire la même analyse sur d'autres sortie (Fruit_Ei_isol,...) et interpréter

AS for leaf mutual shading

