Symmetry restored in dibosons at the LHC?

Johann Brehmer

Universität Heidelberg

with JoAnne Hewett, Joachim Kopp, Thomas Rizzo, and Jamie Tattersall

DESY Theory Workshop October 1, 2015

Outline

Excitement

- 1. Anomalies at 2 TeV
 - 2. Fitting the data

- 3. New physics interpretations
 - 4. A right-handed W_R ?

Speculation↓

A diboson peak (and more) at 1.8...2.0 TeV

► ATLAS $VV \rightarrow JJ$: 3.4σ [1506.00962]

A diboson peak (and more) at 1.8...2.0 TeV

- ► ATLAS $VV \rightarrow JJ$: 3.4σ [1506.00962]
- ightharpoonup CMS VV o JJ: $\sim 1\,\sigma$ [1405.1994]
- ightharpoonup CMS $ZV
 ightharpoonup \ell \ell J$: $1.5 \, \sigma$ [1405.3447]
- ► CMS $WH \rightarrow \ell \nu J$: 2.1σ [CMS-PAS-EXO-14-010]
- ightharpoonup CMS jj: $\sim 2\,\sigma$ [1501.04198]
- ightharpoonup ATLAS jj: $\sim 1\,\sigma$ [1407.1376]

Combining searches in a cross-section fit

- Combining all 8 TeV searches for resonances in...
 - ► WW, ZZ, WZ (semileptonic and hadronic decays)
 - ► WH, ZH
 - ► *jj*, *tb*
- ► Input data:
 - lacktriangle Observed events, expected background in mass window $\sim 1.7 \dots 2.0$ TeV
 - ► Acceptance, efficiencies, systematics
- ► Handle with care: some rough approximations
 - ► Limits and significances can differ from official results

[JB, J. Hewett, J. Kopp, T. Rizzo, J. Tattersall 1507.00013; see also B. Allanach, B. Gripaios, D. Sutherland 1507.01638]

Fit results

 $\blacktriangleright VV$ states (green area: overall agreement with data at 68% CL):

- ► Other states:
 - ▶ HW signal $\sim 1 \dots 10$ fb
 - ► jj signal $\sim 50 \dots 140$ fb
 - ▶ $tb \text{ signal } \sim 0...50 \text{ fb}$

What do we know can we guess?

► ZZ or WZ excess (WW disfavoured), similarly sized WH peak (ZH disfavoured)

⇒ boson, likely charged

► \mathcal{O} (100 fb) production cross section, jj "signal"

 \Rightarrow sizable coupling to quarks or gluons

▶ Strong $\ell\ell$, $\ell\nu$ limits

 \Rightarrow suppressed leptonic decay mode

Interpretations on the market (1)

► Spin 1

- W' [S. Xue 1506.05994; B. Dobrescu, Z. Liu 1506.06736, 1507.01923;
 Y. Gao, T. Ghosh, K. Sinha, J. Yu 1506.07511; JB, J. Hewett, J. Kopp, T. Rizzo,
 J. Tattersall 1507.00013; J. Heeck, S. Patra 1507.01584; P. Bhupal Dev, R. Mohapatra 1508.02277; F. Deppisch, L. Graf, S. Kulkarni, S. Patra, W. Rodejohann, N. Sahu,
 U. Sarkar 1508.05940; U. Aydemir, D. Minic, C. Sun, T. Takeuchi 1509.01606,
 R. Awasthi, P. Bhupal Dev, M. Mitra 1509.05387]
- ▶ Z' [J. Hisano, N. Nagata, Y. Omura 1506.03931; A. Alves, A. Berlin, S. Profumo, F. Queiroz 1506.06767; L. Anchordoqui, I. Antoniadis, H. Goldberg, X. Huang, D. Lüst, T. Taylor 1507.05299; A. Faraggi, M. Guzzi 1507.07406; T. Li, J. Maxin, V. Mayes, D. Nanopoulos 1509.06821]
- ▶ W'+Z' [K. Cheung, W. Keung, P. Tseng, T. Yuan 1506.06064; Q. Cao, B. Yan, D. Zhang 1507.00268; T. Abe, R. Nagai, S. Okawa, M. Tanabashi 1507.01185; T. Abe, T. Kitahara, M. Nojiri 1507.01681; H. Fukano, S. Matsuzaki, K. Yamawaki 1507.03428]

Interpretations on the market (2)

- ► Spin 1 (continued)
 - Composite vector triplet [H. Fukano, M. Kurachi, S. Matsuzaki, K. Terashi, K. Yamawaki 1506.03751; D. Franzosi, M. Frandsen, F. Sannino 1506.04392;
 A. Thamm, R. Torre, A. Wulzer 1506.08688; A. Carmona, A. Delgado, M. Quiròs, J. Santiago 1507.01914; L. Bian, D. Liu, J. Shu 1507.06018; H. Fritzsch 1507.06499;
 K. Lane, L. Pritchett 1507.07102; M. Low, A. Tesi, L. Wang 1507.07557]
 - Generic / EFT [G. Cacciapaglia, M. Frandsen 1507.00900; B. Allanach, B. Gripaios,
 D. Sutherland 1507.01638; L. Bian, D. Liu, J. Shu, Y. Zhan 1509.02787]

Interpretations on the market (3)

► Spin 0

- ► Higgs singlet [C. Chen, T. Nomura 1509.02039]
- 2HDM [C. Chen, T. Nomura 1507.04431; Y. Omura, K. Tobe, K. Tsumura 1507.05028; W. Chao 1507.05310]
- ► Sparticle [C. Petersson, R. Torre 1508.05632]
- Composite scalars [C. Chiang, H. Fukada, M. Ibe, T. Yanagida 1507.02483;
 G. Cacciapaglia, A. Deandrea, M. Hashimoto 1507.03098]

Other

- ► Glueballs [V. Sanz 1507.03553]
- Excited composite object [H. Terezawa, M. Yasuè 1508.00172]
- Generic / EFT [J. Aguilar-Saavedra 1506.06739; D. Kim, K. Kong, H. Lee, S. Park 1507.06312; S. Liew, S. Shirai 1507.08273; P. Arnan, D. Espriu, F. Mescia 1508.00174; S. Fichet, G. von Gersdorff 1508.04814]

► No new physics

Issues with jet substructure and data-driven background estimation
 [D. Gonçalves, F. Krauss, M. Spannowsky 1508.04162]

The Left-Right Symmetric Model

$$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

$$g_L \qquad g_R$$

$$\kappa = g_R/g_L$$

$$\begin{pmatrix} u \\ d \end{pmatrix}_{L} \sim (2, 1, \frac{1}{3}) \qquad \begin{pmatrix} u \\ d \end{pmatrix}_{R} \sim (1, 2, \frac{1}{3})$$

$$\begin{pmatrix} \nu \\ \ell \end{pmatrix}_{L} \sim (2, 1, -1) \qquad \begin{pmatrix} N \\ \ell \end{pmatrix}_{R} \sim (1, 2, -1)$$

$$\Delta_{L} \sim (3, 1, -2) \qquad \Delta_{R} \sim (1, 3, -2)$$

$$\Phi \sim (2, 2, 0)$$

[J. Pati, A. Salam 1974; R. Mohapatra, J. Pati 1977;
G. Senjanovic, R. Mohapatra 1975...]

The Left-Right Symmetric Model

$$\begin{array}{c|c} SU(2)_L \times SU(2)_R \times U(1)_{B-L} & \begin{pmatrix} u \\ d \end{pmatrix}_L \sim (2,1,\frac{1}{3}) & \begin{pmatrix} u \\ d \end{pmatrix}_R \sim (1,2,\frac{1}{3}) \\ \kappa = g_R/g_L & \begin{pmatrix} \nu \\ \ell \end{pmatrix}_L \sim (2,1,-1) & \begin{pmatrix} N \\ \ell \end{pmatrix}_R \sim (1,2,-1) \\ \Delta_L \sim (3,1,-2) & \Delta_R \sim (1,3,-2) \\ \Phi \sim (2,2,0) & \\ & & & & & & \\ SU(2)_L & \times & U(1)_Y & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

G. Senjanovic, R. Mohapatra 1975...]

W_R phenomenology

▶ Direct coupling to RH quarks:

- ▶ $m_{N_\ell} > m_{W_R}$ avoids ℓN_ℓ limits [see also B. Dobrescu, Z. Liu 1506.06736; F. Deppisch, L. Graf, S. Kulkarni, S. Patra, W. Rodejohann, N. Sahu, U. Sarkar 1508.05940]
- ► Mixing gives diboson modes:

$$W_R \sim \mathcal{N}_R \approx W_R \sim \mathcal{N}_R \sim \sin \phi_w$$

Is That It? Fitting the W_R to data

- ► Same input as before (VV, VH, jj, tb searches)
- ► Narrow width approximation
- Production cross section based on MMHT2014 NNLO pdfs [1412.3989]

▶ $W_R \sim 1900$ GeV with coupling $\kappa = g_R/g_L \sim 0.6$ and mixing angle $\sin \phi_w \sim 0.0014$ can explain everything!

Is That It? Fitting the W_R to data

- ► Same input as before (VV, VH, jj, tb searches)
- ► Narrow width approximation
- Production cross section based on MMHT2014 NNLO pdfs [1412.3989]

▶ $W_R \sim 1900$ GeV with coupling $\kappa = g_R/g_L \sim 0.6$ and mixing angle $\sin \phi_w \sim 0.0014$ can explain everything!

13 TeV prospects

- ▶ W_R production cross section > 6 times larger than at 8 TeV
- ▶ Best-fit W_R can be excluded with 5 fb⁻¹ in jj (10 fb⁻¹ in tb, 15 fb⁻¹ in WZ, WH)

13 TeV prospects

- ▶ W_R production cross section > 6 times larger than at 8 TeV
- ▶ Best-fit W_R can be excluded with 5 fb⁻¹ in jj (10 fb⁻¹ in tb, 15 fb⁻¹ in WZ, WH)
- ► First result: ATLAS jj with 80 pb⁻¹ [ATLAS-CONF-2015-042]

Best-fit W_R prediction: $\sigma \cdot BR \cdot A \sim 300 \text{ fb}$

Summary

- ▶ Different excesses around 1.8...2.0 TeV in VV, VH, jj searches
- ► Combined fit to all sensitive searches prefers ~ 5 fb signal in WZ and WH, ~ 100 fb in jj
- ► In Left-Right Symmetric Model, W_R at 1.9 TeV can explain all measurements
- ▶ LHC at 13 TeV will soon be sensitive

Backup

Where is the Z_R ?

$$\frac{m_{Z_R}^2}{m_{W_R}^2} = \frac{2\kappa^2\cos^2\theta_w}{\kappa^2\cos^2\theta_w - \sin^2\theta_w} > 1$$

And one more!

- ► CMS e^+e^-jj : $2.8\,\sigma$ excess around 2.0 TeV [1407.3683]
- ► Could be $W_R \to eN \to ee \ W_R \to ee \ jj$
 - [B. Dobrescu, Z. Liu 1506.06736; F. Deppisch, L. Graf,
 - S. Kulkarni, S. Patra, W. Rodejohann, N. Sahu,
 - U. Sarkar 1508.05940]
- Issues:
 - ▶ Only e^+e^- , no $e^\pm e^\pm$ events (unlike expected from Majorana N_ℓ)
 - ▶ No peak in m_{e_2jj} distribution
 - ▶ Nothing in $\mu\mu\,jj$ searches
 - ▶ Constraints from $\mu \to e \gamma$

ATLAS VV o JJ

[1506.00962]

More di-things

CMS $WH \rightarrow \ell \nu J$: $2.1\,\sigma$ [CMS-PAS-EXO-14-010]

CMS jj: $\sim 2 \sigma$ [1501.04198]

ATLAS combination

[ATLAS-CONF-2015-045]

Fit input

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Analysis		Selection	Mass bins [GeV]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ATLAS VV hadronic	[1506.00962]	WW selection	1750 – 2050
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ATLAS VV hadronic	[1506.00962]	ZZ selection	1750 - 2050
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ATLAS VV hadronic	[1506.00962]	WZ selection	1750 - 2050
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMS VV hadronic	[1405.1994]	Double tagged	1780 - 2030
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ATLAS VV , single lepton	[1503.04677]	Merged region	1700 - 2000
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CMS VV , single lepton	[1405.3447]	High purity	1700 - 2000
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ATLAS VV , double lepton	[1409.6190]	Merged region	1680 - 2060
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CMS VV , double lepton	[1405.3447]	High purity	1700 - 2000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMS $VH o bar b + u\ell$	[PAS-EXO-14-010]		1700 - 2000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CMS $VH \rightarrow \tau^+\tau^- + \text{hadronic } V$	[1502.04994]		1500 - 2000
CMS dijet $[1501.04198]$ $1678-1945$ ATLAS tb , hadronic t $[1408.0886]$ Double tagged $1600-2000$ ATLAS tb , leptonic t $[1410.4103]$ $1600-2000$	CMS VH hadronic	[1506.01443]	bb selection	1690 - 2030
ATLAS tb , hadronic t [1408.0886] Double tagged $1600-2000$ ATLAS tb , leptonic t [1410.4103] $1600-2000$	ATLAS dijet	[1407.1376]		1706 - 2030
ATLAS tb , leptonic t [1410.4103] 1600 – 2000	CMS dijet	[1501.04198]		1678 - 1945
	ATLAS tb , hadronic t	[1408.0886]	Double tagged	1600 - 2000
CMS tb , leptonic t [1402.2176] 1500 – 2000	ATLAS tb , leptonic t	[1410.4103]		1600 - 2000
	CMS tb , leptonic t	[1402.2176]		1500 - 2000

VV searches

Analysis		Excess $[\sigma]$	95% CL _s limits [fb]		
Allalysis		Excess [0]	WW	ZZ	WZ
ATLAS hadronic	[1506.00962]	2.4	20	25	26
CMS hadronic	[1405.1994]	1.0	18	17	18
ATLAS single lepton	[1503.04677]		6		12
CMS single lepton	[1405.3447]		8		17
ATLAS double lepton	[1409.6190]			14	29
CMS double lepton	[1405.3447]	1.5		10	21

VH searches

Analysis		Excess $[\sigma]$	95% CL ₃ WH	$\frac{1}{2}$ limits [fb]
ATLAS $b ar{b} + (\ell \ell, u \ell, u u)$	[1503.08089]		30	14
CMS $bar{b} + u \ell$	[PAS-EXO-14-010]	1.9	44	
CMS $ au^+ au^-$ + hadronic vector	[1502.04994]		36	32
CMS hadronic	[1506.01443]		13	13

Dijet and tb searches

Analysis		Excess $[\sigma]$	95% C jj	$t_{\rm s}$ limits [fb]
ATLAS jj	[1407.1376]	1.5	217	
CMS jj	[1501.04198]	1.9	173	
ATLAS tb , hadronic t	[1408.0886]			203
ATLAS tb , leptonic t	[1410.4103]			101
CMS tb , leptonic t	[1402.2176]			67

$Z_R \to \ell^+ \ell^-$ at 13 TeV

(dashed lines: $\sim 95\%$ CLs limits after 20, 100 fb⁻¹)

A connection to dark matter? (1)

- a) W_R -mediated DM interactions with SM partners
 - Charged partner χ^+ could be τ
 - ▶ DM χ^0 could be N_{τ} (but only if lighter than τ)
 - ► Hard to get relic density right
- b) W_R -mediated DM interactions with BSM partners
 - ▶ New particles χ^0 , χ^+ , with χ^+ slightly heavier
 - ▶ Freeze-out through χ^0 - χ^+ co-annihilation
 - Direct and indirect searches probably not sensitive
 - Potential LHC signatures: $pp \to W_R \to \chi^0 \chi^\pm \to \chi^0 \chi^0 q q'$, $\chi^+ \chi^-$ pair production

A connection to dark matter? (2)

- c) Z- and Z_R -mediated DM interactions
 - lacktriangledown N_ℓ DM faces same problems as in W_R -mediated scenario
 - \blacktriangleright Alternative: new RH doublet $\chi=(\chi^0,\chi^-)\sim(1,2,-1)$ with Majorana mass

A connection to dark matter? (3)

- d) Minimal Left-Right DM
 - New triplets $\chi_L \sim (3,1,0)$, $\chi_R \sim (1,3,0)$ with common Majorana mass [J. Heeck, S. Patra 1507.01584]
 - \blacktriangleright Electroweak radiative corrections potentially make charged states too light, but safe for $\kappa\sim0.6$
 - e) DM in supersymmetric LRM
 - ► Lightest neutralino is excellent MSSM-like DM candidate