2021~2022 学年第二学期《线性代数》试卷(A)评分标准

一、填空题(每小题3分,共18分)

$$1$$
、 $\frac{-2^n}{}$; 2 、 $\frac{\binom{4}{8}}{\binom{8}{2}}$; 3 、 $\frac{\pi}{4}$ (亦可写成 45 °或者 $\arccos\frac{\sqrt{2}}{2}$); 4 、 $\underline{2}$; 5 、 $\underline{6}$; 6 、 $\underline{1}$.

二、选择题(每小题3分,共18分)

三、(**10**分)
$$n(\geq 3)$$
 阶行列式 $D_n = \begin{vmatrix} x & a & \cdots & a \\ a & x & \cdots & a \\ \vdots & \vdots & \ddots & \vdots \\ a & a & \cdots & x \end{vmatrix}, 求 A_{11} + A_{12} + \cdots + A_{1n}.$

其中 A_{ii} 为 D_n 的(i,j) 位置元素的代数余子式.

解:
$$\sum_{k=1}^{n} A_{1k}$$

$$= \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a & x & \cdots & a \\ \vdots & \vdots & \ddots & \vdots \\ a & a & \cdots & x \end{vmatrix}$$

$$\frac{r_{i} + r_{i} \times (-a)}{i = 2, \dots, n} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 0 & x - a & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x - a \end{vmatrix}$$

$$= (x - a)^{n-1}$$

四、(12分)
$$\mathbf{A} = \boldsymbol{\alpha} \boldsymbol{\beta}^T = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 2 & x \\ y & 3 & 6 \end{pmatrix}$$
, 其中 $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ 是 3 维实列向量.

(1) 求 $R(\mathbf{A})$ 以及 $x, y, \boldsymbol{\beta}^T \boldsymbol{\alpha}$; (2) 计算 \mathbf{A}^n, n 是大于等于 2 的正整数.

(1)**解**: 由 **A** 是非零矩阵, 故 $R(A) \ge 1$

又 $\mathbf{A} = \alpha \boldsymbol{\beta}^T$, 可知 $R(\mathbf{A}) \leq 1$. 综上 $R(\mathbf{A}) = 1$.

从而 x = 4, y = 3,

$$\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\alpha} = tr(\boldsymbol{\alpha} \boldsymbol{\beta}^{\mathrm{T}}) = 9.$$

$$(2)$$
解: $\mathbf{A}^n = \boldsymbol{\alpha} (\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\alpha})^{n-1} \boldsymbol{\beta}$
= $9^{n-1} \mathbf{A}$

五、(**12**分) 求向量组
$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 5 \\ 2 \\ 2 \\ 5 \end{pmatrix}$, $\boldsymbol{\alpha}_4 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$, $\boldsymbol{\alpha}_5 = \begin{pmatrix} 11 \\ 5 \\ 9 \\ 15 \end{pmatrix}$ 的秩以及一个极大线性无关组

并将其余向量用该极大无关组线性表示.

解:
$$(\boldsymbol{\alpha}_1 \ \boldsymbol{\alpha}_2 \ \boldsymbol{\alpha}_3 \ \boldsymbol{\alpha}_4 \ \boldsymbol{\alpha}_5) = \begin{pmatrix} 1 & 1 & 5 & 0 & 11 \\ 0 & 1 & 2 & 0 & 5 \\ 0 & 1 & 2 & 1 & 9 \\ 1 & 1 & 5 & 1 & 15 \end{pmatrix}$$

若干初等行变换
$$\begin{pmatrix} 1 & 0 & 3 & 0 & 6 \\ 0 & 1 & 2 & 0 & 5 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

故该向量组的秩为3

极大无关组可取 α_1 , α_2 , α_4

此时 $\boldsymbol{\alpha}_3 = 3\boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_5 = 6\boldsymbol{\alpha}_1 + 5\boldsymbol{\alpha}_2 + 4\boldsymbol{\alpha}_3.$

六、(12分)
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1-a \\ 1 & 0 & a \\ a+1 & 1 & a+1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ 2a-2 \end{pmatrix}$, 讨论 a 为何值时线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$

无解,有唯一解,有无穷多解?并在有无穷多解时求其通解.

解: |A| = a(a-2)

当 $a \neq 0$ 且 $a \neq 2$ 时有唯一解;

当 a=0 时该方程组无解;

当 a=2 时,该方程组有无穷多解,

此时(
$$\mathbf{A}$$
 \mathbf{b}) 若干初等行变换
$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

等价于解方程组
$$\left\{ egin{array}{l} x_1 + 2x_3 = 1 \ x_2 - 3x_3 = -1 \end{array} \right.$$

取 x_3 为自由变元, 求得一个特解为 $\alpha = (1 - 1 \ 0)^T$,

 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的一组基础解系为 $\boldsymbol{\beta} = (-2 \ 3 \ 1)^T$.

此时通解可取为 $\alpha + k\beta$, $k \in \mathbb{R}$

2021~2022 学年第二学期《线性代数》试卷(A)评分标准

七、(12分)已知二次型 $f(x_1,x_2,x_3) = ax_1^2 + ax_2^2 + ax_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$ 的秩为 2.

(1) 求 a;

(2)
$$f$$
 经过正交变换 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \boldsymbol{P} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ 化为标准形,求 \boldsymbol{P} 以及对应的标准形.

解: (1)由条件可知二次型的矩阵为
$$\mathbf{A} = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$$

由 **A** 的秩为 2, 可得 |A| = 0 且 $a \neq 1$, 故 a = -2.

$$(2)|\mathbf{A} - \lambda \mathbf{E}| = -\lambda(\lambda + 3)^2$$
, 从而 \mathbf{A} 的特征值为 0 , -3 (二重)

求解
$$\mathbf{A}\mathbf{x} = \mathbf{0}$$
, 可得 \mathbf{A} 的属于特征值 0 的一个特征向量 $(1 \ 1 \ 1)^T$, 单位化得 $\boldsymbol{\alpha}_1 = \frac{1}{\sqrt{3}} (1 \ 1 \ 1)^T$;

求解 (A + 3E)x = 0, 可得 A 的属于特征值 -3 的两个线性无关的特征向量 $(-110)^T$, $(-101)^T$,

正交化、单位化可得
$$\boldsymbol{\alpha}_2 = \frac{1}{\sqrt{2}} (-1 \ 1 \ 0)^T$$
, $\boldsymbol{\alpha}_3 = \frac{\sqrt{6}}{3} \left(-\frac{1}{2} \ -\frac{1}{2} \ 1 \right)$.

可取
$$\mathbf{P} = (\boldsymbol{\alpha}_1 \ \boldsymbol{\alpha}_2 \ \boldsymbol{\alpha}_3)$$
,此时 $\mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$.

八、(6分) α_1 , α_2 , α_3 , α_4 皆是 3 维实列向量,且 α_1 , α_2 线性无关, α_3 , α_4 线性无关. 证明: 必存在 3 维非零列向量 β , 满足 β 既可由 α_1 , α_2 线性表示,也可由 α_3 , α_4 线性表示.

证明:由于都是3维列向量,

故 α_1 , α_2 , α_3 , α_4 线性相关.

从而存在不全为 0 的 k_i , i=1,2,3,4

使得 $k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + k_3\boldsymbol{\alpha}_3 + k_4\boldsymbol{\alpha}_4 = \boldsymbol{0}$

亦即 $k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 = -k_3 \boldsymbol{\alpha}_3 - k_4 \boldsymbol{\alpha}_4$

由 α_3 , α_4 线性无关, 可知若 $k_1 = k_2 = 0$, 必有所有 k_i 全为 0, 矛盾.

故 k_1 , k_2 不全为 0, 由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$ 线性无关 可知 $k_1\boldsymbol{\alpha}_1+k_2\boldsymbol{\alpha}_2\neq\boldsymbol{0}$

 \diamondsuit $\boldsymbol{\beta} = k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2$ 得证.