### Determining d with a TQFT

#### Kevin van Helden

PhD in Fundamentals of the Universe Rijksuniversiteit Groningen

Talk 2 on Khovanov Homology

7 October 2020





### Summary of last week

- q-dimension:  $\operatorname{qdim}(\bigoplus_{m\in\mathbb{Z}}W^m)=\sum_{m\in\mathbb{Z}}q^m\operatorname{dim}(W^m)$
- Shift:  $W^m\{I\} = W^{m-1}$
- $V = \mathbb{Q}[x] \oplus \mathbb{Q}[1]$ ,  $\deg(x) = -1$ ,  $\deg(1) = 1$
- $\alpha \in \{0,1\}^n$  "bitcode", n = #original crossings of projection

• 
$$n_{+} = \#(\bigcirc)$$
,  $n_{-} = \#(\bigcirc)$ 

- $r_{\alpha} = |\alpha| = \#1$ 's in  $\alpha$ ,  $k_{\alpha} = \#$  circles in smoothing  $\Gamma_{\alpha}$
- $V_{\alpha} = V^{\otimes k_{\alpha}} \{ r_{\alpha} + n_{+} 2n_{-} \}$
- $C^{i,*}(D) = \bigoplus_{\alpha \in \{0,1\}^n} V_{\alpha}$  $r_{\alpha}=i+n_{-}$
- $ullet v \in C_{i,j}(D) ext{ if } egin{cases} i = r_{lpha} n_- \ j = \deg(v) + i + n_+ n_- \end{cases}$





#### What should d do?

 d maps on the edges on the n-dimensional cube with  $\{0,1\}^n$  as vertices







#### What should d do?

- d maps on the edges on the n-dimensional cube with  $\{0,1\}^n$  as vertices
- d moves "upwards": we go from a "0" to "1".







#### What should d do?

- d maps on the edges on the n-dimensional cube with  $\{0,1\}^n$  as vertices
- d moves "upwards": we go from a "0" to "1".
- We denote the maps by the bitcode and place ★ where the change occurs







### What are the edges?

 Look at the topology: each bitcode represents a disjoint union of circles





### What are the edges?

- Look at the topology: each bitcode represents a disjoint union of circles
- For each edge, the number of circles at the begin and the end differs by 1.
- How can we connect those sets of circles using topological objects?





### What are the edges?

- Look at the topology: each bitcode represents a disjoint union of circles
- For each edge, the number of circles at the begin and the end differs by 1.
- How can we connect those sets of circles using topological objects?
- Cobordisms!



#### Cobordisms

#### Definition (Cobordisms)

The category of 1 + 1-cobordisms, denoted by  $Cob_{1+1}$ , consists of

- Objects: closed oriented 1-manifolds (i.e. a disjoint union of oriented circles)
- Morphisms:  $W: \Gamma \to \Gamma'$  is a oriented 2-manifold such that  $\partial W = \Gamma' \sqcup \overline{\Gamma}$ , where  $\overline{\Gamma}$  is  $\Gamma$  with the reverse orientation

Convention: cobordisms go down the page Our choice of cobordism along the edges: if the circles do not

change, make cylinders. If they do, plug in





#### How to go back to vector spaces?

 We need something to transforms our cobordisms into vector spaces and linear maps





### How to go back to vector spaces?

- We need something to transforms our cobordisms into vector spaces and linear maps
- This is a TQFT!





# TQFTs (part 1)

#### Definition

A (2-dim) **TQFT** is a monoidal functor from  $Cob_{1+1}$  to  $Vect_{\mathbb{O}}$ .





### TQFTs (part 1)

#### **Definition**

A (2-dim) **TQFT** is a monoidal functor from  $Cob_{1+1}$  to  $Vect_{\mathbb{Q}}$ .

... using a TQFT! •0000oc

#### Definition

A (2-dimensional) TQFT is

- a functor T : Cob<sub>1+1</sub> → Vect<sub>□</sub> with
- a natural transformation  $\mu_{\Gamma,\Gamma'}: T(\Gamma) \otimes_{\mathbb{Q}} T(\Gamma') \to T(\Gamma \sqcup \Gamma')$ (isomorphism) such that

$$T(\Gamma_1) \otimes T(\Gamma_2) \otimes T(\Gamma_3) \xrightarrow{\mathrm{id} \otimes \mu_{\Gamma_2, \Gamma_3}} T(\Gamma_1) \otimes T(\Gamma_2 \sqcup \Gamma_3)$$

$$\downarrow^{\mu_{\Gamma_1, \Gamma_2} \otimes \mathrm{id}} \qquad \qquad \downarrow^{\mu_{\Gamma_1, \Gamma_2 \sqcup \Gamma_3}}$$

- $T(\Gamma_1 \sqcup \Gamma_2) \otimes T(\Gamma_3) \xrightarrow{\mu_{\Gamma_1} \sqcup \Gamma_2, \Gamma_3} T(\Gamma_1 \sqcup \Gamma_2 \sqcup \Gamma_3)$  commutes (assoc.)
- 2  $\mu_{\emptyset,\Gamma}: \mathbb{Q} \otimes_{\mathbb{Q}} T(\Gamma) \stackrel{\sim}{\to} T(\Gamma)$  and  $\mu_{\Gamma,\emptyset}: T(\Gamma) \otimes_{\mathbb{Q}} \mathbb{Q} \stackrel{\sim}{\to} T(\Gamma)$  are the canonical isomorphisms.

iversiteit



### TQFTs (part 2)

#### Definition

A (2-dimensional) **TQFT** is

- . . . .
- $\bullet$   $T(\emptyset) = \mathbb{Q}$ ;
- $T(\Gamma \times [0,1]) = id_{\Gamma}$
- If there exists a orientation preserving diffeomorphism  $\varphi:V\stackrel{\cong}{\to}W$  fixing the boundary, then V and W induce the same linear map, that is, T(V) = T(W).





### Properties of TQFTs

- Every cobordism Γ gets a vector space V<sub>Γ</sub>.
- $\Gamma \sqcup \Gamma' \leadsto V_{\Gamma} \otimes V_{\Gamma'}$
- Diffeomorphic cobordisms induce the same linear map







### Making algebra easier (part 1)

In a TQFT, the building blocks are circles/cylinders and the following operations:

|                       | .89      |
|-----------------------|----------|
| Coming together       |          |
|                       | <u> </u> |
| Branching out         | 64       |
| Starting from scratch |          |
| Ending in scratch     |          |





# Making algebra easier (part 2)

This corresponds to linear maps on  $V := T(S^1)$ :

|                       | .679 |                                  |                  |
|-----------------------|------|----------------------------------|------------------|
| Coming together       |      | $m: V \otimes V \rightarrow V$   | multiplication   |
|                       |      |                                  |                  |
| Branching out         | 609. | $\Delta: V \to V \otimes V$      | comultiplication |
| Starting from scratch |      | $\eta:\mathbb{Q}	o 	extcolor{V}$ | unit             |
| Ending in scratch     |      | $\epsilon: V \to \mathbb{Q}$     | counit           |



### Frobenius algebra

#### **Definition**

A **Frobenius algebra** is a finite-dimensional  $\mathbb{Q}$ -algebra V with four maps

... using a TQFT! 0000000

- lacktriangledown  $m: V \otimes V \rightarrow V$ :
- $\triangle: V \to V \otimes V$ :
- 0  $\eta: \mathbb{Q} \to V$ ;
- $\bullet: V \to \mathbb{O}$ :

such that  $V \to V^*, v \mapsto \epsilon(m(v \otimes \cdot))$  is an isomorphism, and such that  $\Delta(v) = \sum_i v_1^i \otimes v_2^i$  if and only if

$$m(v \otimes w) = \sum_{i} v_1^i \epsilon(m(v_2^i \otimes w)).$$





### Frobenius algebras and TQFTs

#### Theorem

There is an equivalence of categories between the category of (2-dimensional) TQFTs and the category of Frobenius algebras by sending T to  $T(S^1)$ .





### Our Frobenius algebra

Our choice of Frobenius algebra is  $V = \mathbb{Q}[x] \oplus \mathbb{Q}[1]$ ,  $\deg(x) = -1$ ,  $\deg(1) = 1$ 

- $m(1 \otimes 1) = 1$ ,  $m(x \otimes 1) = x = m(1 \otimes x)$ ,  $m(x \otimes x) = 0$ ;
- $\eta(1) = 1$ ;
- $\epsilon(1) = 0, \, \epsilon(x) = 1.$

Call the corresponding TQFT *T*.





### Actually determining *d*!

#### Definition

For  $v \in V_{\alpha} \subseteq C^{i,*}(D)$ , we set

$$d^{i}(v) = \sum_{\substack{W \text{ edge of cube} \\ \text{such that Tail}(W) = \alpha}} \operatorname{sign}(W)d_{W}(v), \tag{1}$$

where  $d_W := T(W) : V_{\alpha} \to V_{\alpha}$  is the map from the corresponding TQFT and where  $sign(W) = (-1)^{\# 1}$ 's to the left of  $\star$  in  $\alpha$ .





### The start of (co)homology

#### **Proposition**

$$d^2 = 0$$
.

#### Proof.

- Look at the faces of the cube {0, 1}<sup>n</sup>.
- Prove that they commute without the signs (use the cobordisms).
- Then put the signs in to make them anti-commutative.

























| Homological degree | -2                                        | -1                | 0                                                    |  |
|--------------------|-------------------------------------------|-------------------|------------------------------------------------------|--|
| Cycles             | $\{1\otimes x - x\otimes 1, x\otimes x\}$ | $\{(1,1),(x,x)\}$ | $\{1\otimes 1, 1\otimes x, x\otimes 1, x\otimes x\}$ |  |
| Boundaries         | -                                         | $\{(1,1),(x,x)\}$ | $\{1\otimes x + x\otimes 1, x\otimes x\}$            |  |
| Homology           | $\{1\otimes x - x\otimes 1, x\otimes x\}$ | -                 | $\{1\otimes 1, 1\otimes x\}$                         |  |
| q-degrees          | -4, -6                                    |                   | 0, -2                                                |  |





| Homological degree | -2                                           | -1                | 0                                                    |
|--------------------|----------------------------------------------|-------------------|------------------------------------------------------|
| Cycles             | $\{1 \otimes x - x \otimes 1, x \otimes x\}$ | $\{(1,1),(x,x)\}$ | $\{1\otimes 1, 1\otimes x, x\otimes 1, x\otimes x\}$ |
| Boundaries         | -                                            | $\{(1,1),(x,x)\}$ | $\{1\otimes x + x\otimes 1, x\otimes x\}$            |
| Homology           | $\{1 \otimes x - x \otimes 1, x \otimes x\}$ | -                 | $\{1\otimes 1, 1\otimes x\}$                         |
| q-degrees          | -4, -6                                       |                   | 0, -2                                                |

| j $i$ | -2 | -1 | 0            |
|-------|----|----|--------------|
| 0     |    |    | $\mathbb{Q}$ |
| -1    |    |    |              |
| -2    |    |    | Q            |
| -3    |    |    |              |
| -4    | Q  |    |              |
| -5    |    |    |              |
| -6    | Q  |    |              |



