Introduction to Big Data Analytics and Engineering

Schedule

- What is "Big Data"
- The Hadoop ecosystem
- Working with Spark RDDs
- Competition

Download

Slides: http://goo.gl/oukHdC

Files: http://gitlab.cambridgespark.com/pub/bigdata-spark

Setup Instructions (see SETUP.MD)

- Python 3.6 / Anaconda: https://www.anaconda.com/download
- JDK 8: https://java.com/en/download/help/index installing.xml
- pip install pyspark
- jupyter notebook Spark.ipynb

What is "Big Data"

Big Data knows what we do

Context

http://radar.oreilly.com/2011/08/building-data-startups.html

Context

https://www.karlrupp.net/wp-content/uploads/2015/06/35years.png

Context

- 1. More Data
- 2. Cheaper hardware
- 3. Going parallel and distributed

Defining Big Data

- 1. Volume
- 2. Velocity
- 3. Variety

Defining Big Data

Many of the technologies described in this book fall within the realm of the *Big Data* buzzword. However, the term "Big Data" is so overused and underdefined that it is not useful in a serious engineering discussion. This book uses less ambiguous terms, such as single-node versus distributed systems, or online/interactive versus offline/batch processing systems.

NoSQL... Big Data... Scalability... CAP

Theorem... Eventual Consistency...

Sharding...

Nice buzzwords, but how does the stuff actually work?

LA >>> What volume do you deal with?

What sort of volume are you dealing with at your workspace?

- In terms of disk space?
- In terms of number of files?
- In terms of number of transactions?

Volume example

- Facebook average daily contribution of one user takes 1MB of space
- Upwards of 1,000 million users.
- This translates into an average of **1,000TB** or **1PB** per day.

Volume trend

Exabyte

Digital content production in 1999

1,5 exabyte

1,500 petabyte

1,500,00 terabyte

Equivalent to **750,000,000** HD images

Zetabyte

Cisco reported global IP traffic in 2016 exceeded **1 Zetabyte** (1000EB)

This is roughly as many bits as there are stars in the universe!

Yottabyte = 1,000ZB

- \$30 to buy a standard terabyte hard-drive.
- \$ 30 trillion to store one yottabyte.

Volume challenges

- Single machine not enough
- How to process data across multiple machines?
- How to provide fault tolerance?

Velocity

- CERN tracks ~600 million particle collisions per second resulting in 10 GB of data transferred from its servers every second.
- Twitter recently indicated that they handle **3,000 images every second**.
- WhatsApp is reported to process 60 billion messages a day.

Variety

- Popular columns and rows model
- Relational databases
- Conceptually simple to related to

Variety challenges

- Unified database schema impractical
- Graph structures
- Some data is semi-structured (JSON)
- Some data is *unstructured* (e.g. images and videos)

See previous database module to understand data model trade-offs

Big Data Systems

Batch processing: examples

- Calculate a monthly payroll summary.
- Train a machine learning model.
- Analyse a large set of statements to build regulatory compliance reports.

Batch processing

- Data at rest
- High latency
- Concerned with volume and variety

Stream processing: examples

- Classify an incoming email as spam or not.
- Detect whether a bank transaction is fraudulent.

Stream processing

- Data in motion
- Low latency
- Concerned with velocity

LA >>> Quiz

Which of the following business problems are suited for batch or stream processing?

- 1. Generate a balance sheet from all the invoices in a month.
- 2. Provide real-time alerts to stock market changes.
- 3. Build page-rank metrics for the web.
- Detect anomalies in network traffic.

Big Data: recap

- Big Data can be characterised by *volume*, *velocity* and *variety*.
- Batch processing is used to process all the data in one go.
- Stream processing is used to process data in real-time, as it is received.

Hadoop ecosystem

Too slow

Too slow

Scaling-up

LA >>> Quiz: What are the pros and cons of each approach?

Scaling-up

- ✓ Same programming model
- High upfront cost
- Flexibility
- Single point of failure
- X Technological limitations

Scaling-out

- Difficult to use
- ✓ Cheap
- ✓ Flexible
- ✓ Fault tolerant

Hadoop ecosystem

Data processing:

Hadoop MapReduce Apache Spark

Resource management:

Hadoop YARN

File system:

Hadoop HDFS

- Scalability
- Fault tolerance

Hadoop HDFS

Name node

Data nodes

Hadoop HDFS

- Files are broken down into *blocks* and spread across machine
 - High bandwidth access to the data
 - Fault tolerance

File /user/alice/data1.txt => 1, 2, 3

Blocks

1, 3 2, 3 1,2,3

1,2

Data nodes

Interacting with HDFS

- File system shell
 - o /bin/hdfs dfs -ls
 - o /bin/hdfs dfs -mkdir
 - o /bin/hdfs dfs -copyFromLocal
 - o /bin/hdfs dfs -copyToLocal
- Hadoop MapReduce / Apache Spark

Cluster managers

- Examples Hadoop YARN, Apache Mesos, Spark Standalone
- Data processing application requests executors
 - Memory (MB)
 - CPU (Cores)

Executor 3

Hadoop MapReduce vs Apache Spark

	MapReduce	Spark	
Initial release	2011	2014	
# Operations	2	~20	
Iterative computation	No	Yes	
Interactive shell	No	Yes	
Sorting 100TB	72 mins with 2100 machines	23 mins with 206 machines	

Map - Reduce Pattern

Hadoop: recap

- Hadoop ecosystem makes distributed systems easy to use
- You will mainly interact with two components:
 - HDFS to store large files in a distributed way
 - Apache Spark to do data processing
- One single machine is always easier to work with than a distributed system

Spark RDD

Apache Spark

Apache Spark Architecture

Apache Spark: Resilient Distributed Datasets (RDDs)

- Most basic abstraction
- Collection of elements (e.g. data points)
- Divided across the cluster

RDD

Amelia	Olivia	Charlie	George
Jack	Harry	Isla	James
Jessica	Lily	William	Sophie

Creating an RDD

Basic RDD manipulation

- rdd.count(): returns the number of elements in your RDD
- rdd.take(n): returns the first n elements in your RDD

Transformations and Actions

- Transformations: operations that return a new RDD
- Actions: operations that return a value to your Python programs

Quiz:

- Is count() an action or a transformation?
- Is take() an action or a transformation?

Common transformations: filter()

Amelia Jack Jessica Olivia Harry Lily filter(lambda name: name[0] == 'J')

Jack Jessica

Common transformations: map()

Amelia Jack Jessica Olivia Harry Lily map(lambda name: name.upper())

AMELIA
JACK
JESSICA
OLIVIA
HARRY

LILY

Common transformations: flatMap()

Amelia
Jack
Jessica
Olivia
Harry
Lily

flatMap(lambda name: name.split('i'))

Note: the function split returns a list

Amel а Jack Jess са 01 Harry ly

Common transformations: distinct()

Hands-on session

>>> Create RDDs, filter(), map() and distinct()

Set-like transformations: union()

Amelia Jessica Jack

names1.union(names2)

Harry Jessica Olivia Amelia
Jessica
Jack
Harry
Jessica
Olivia

Set-like transformations: intersection()

Amelia Jessica Jack

names1.intersection(names2)

Harry Jessica Olivia Jessica

Set-like transformations: subtract()

Amelia Jessica Jack

names1.subtract(names2)

Amelia Jack

Harry Jessica Olivia

Common actions

- count()
- take()
- collect(): opposite of parallelize(), turns an RDD into a Python list

[1, 4, 9, 16]

Common actions: reduce()

Takes as input a function that processes two elements and returns one

Hands-on session >>> Set like transformations, reduce() & bonus

RDD Basics: recap

- RDDs are Sparks main abstraction to hold collections
- They have a rich API to process them
 - Transformations (filter(), map(), union()...) return processed RDDs
 - Actions (count(), collect(), reduce()...) return values to the Python program

Lazy evaluation

All transformations are *lazy*, they are only executed once an action gets called.

Similar in concept to a recipe:

- Transformations (e.g. filter(), map()) add instructions onto the recipe
- Actions (e.g. count(), collect()) process the entire recipe to return a result

Lazy evaluation

Allows Spark to batch together transformations:

Lazy evaluation

Allows Spark to batch together transformations:

Amelia		
Jack	 Jack	 JACK
Jessica	Jessica	JESSICA

Pair RDDs

Spark's way of storing key/value pairs

Normal RDD where elements are tuples

```
(key, value)
```

Note that in Python, the key and value of a tuple can be accessed as:

```
key = key_value[0]
value = key_value[1]
```

Transformations on pair RDDs: groupByKey()

```
Alice: skiing
Bob: cats
Bob: coffee
Greg: pasta
Alice: cars
Alice: dogs
```

```
groupByKey() Alice:[skiing, dogs, cars]
Bob: [cats, coffee]
Greg: [pasta]
```

Transformations on pair RDDs: reduceByKey()

```
Alice: 4
Bob: 2
Bob: 1
Greg: 4
Alice: 3
Alice: 3
```

Some useful pair RDD transformations

- keys(): an RDD of the keys
- values(): an RDD of the values
- mapValues(func) and flatMapValues(func): Apply func onto the values

Hands-on session >>> Word count in Spark, average of each key

Quiz >>> Implement lookup as a transformation

• lookup(key): returns the values associated with a key

RDD Further: recap

- Transformations are lazy
- Pair RDDs store keys and values
- They have a few specific transformations
 - o groupByKey(), reduceByKey()...
- Joins are useful to merge pair RDDs together

Spark dataset challenge: Analysing the HackerNews dataset

