Программная система формирования признакового описания звукового сигнала

Выполнил:

студент группы 13-В-1

Смирнов Александр Вадимович

Научный руководитель:

Гай Василий Евгеньевич

Нижний Новгород, 2017г.

Цель и задачи работы

Цель работы: разработать систему формирования признакового описания звукового сигнала.

Задачи работы:

- 1. Выбор средств разработки
- 2. Выбор подхода к формированию признаков звукового сигнала
- 3. Проектирование структуры системы
- 4. Программная реализация системы
- 5. Тестирование системы

Выбор средств разработки

Язык программирования:

- Java
- C#
- C++

Операционная система:

- MacOS
- Linux
- Microsoft Windows 10

Среда разработки:

- Code::Blocks
- QtCreator
- Microsoft Visual Studio 2015

Подход к формированию признаков:

- Фурье-преобразование
- Вейвлет-преобразование
- Теория активного восприятия

Теория активного восприятия

Предварительная обработка и *U*-преобразование

Уровень 1

Pe	зультат у	множен	ки	Фильтр	Спектральные коэффициенты
12	13	8	10	№ 1	43
-12	-13	8	10	№ 2	-7
-12	13	8	-10	№ 3	-1
12	-13	8	-10	№ 4	-3

Уровень 2

Результат умножения								ектральные эффициенты		
	сегмент 1 сегмент 2			_	сегмент 1	сегмент 2				
3	2	4	3	4	3	2	4	№ 1	12	13
-3	-2	4	3	-4	-3	2	4	№ 2	2	-1
-3	2	4	-3	-4	3	2	-4	№ 3	0	-3
3	-2	4	-3	4	-3	2	-4	№ 4	2	-1
сегмент 3 сегмент 4					сегмент 3	сегмент 4				
2	2	3	1	2	2	2	4	№ 1	8	10
-2	-2	3	1	-2	-2	2	4	№ 2	0	2
-2	2	3	-1	-2	2	2	-4	№ 3	2	-2
2	-2	3	-1	2	-2	2	-4	№ 4	2	-2

Алгебра групп

Правила формирования операторов:

- 1) если $\mu_i > 0$, то имеем прямой оператор V_i .
- 2) если μ_i < 0, то имеем инверсный оператор $\neg V_i$.
- 3) если μ_i = 0, то оператор V_i отсутствует в описании сигнала.

Группы:

- 1) Полные: *P_n*
- 2) Замкнутые: P_s

Иерархия групп и операторов

Диаграмма преобразования данных

Блок-схема алгоритма

Общая структурная схема системы

Программная реализация

Было разработано 7 модулей:

- 1) tap_sound.cpp
- 2) mpg123_data.cpp
- 3) variables.cpp
- 4) getFullGroup.cpp
- 5) getClosedGroup.cpp
- 6) getClosedGropSets.cpp
- 7) getFeatures.cpp

Тестирование системы

Два набора данных:

- 1. Длина сигнала (количество отсчетов): 2048;
- 2. Длина сегмента: 32;
- 3. Количество элементов вектора *U*-преобразования: 32.

- 1. Длина сигнала (количество отсчетов): 9201024;
- 2. Длина сегмента: 287532;
- 3. Количество элементов вектора *U*-преобразования: 287532.

Результаты тестирования для набора №1

Функция	Среднее время	Среднее время	Коэффициент
	выполнения в R, мс.	выполнения в С++, мс.	ускорения
getFeatures_set1d	10.4	2.2	5
getFeatures_oper2d	6.3	1.1	6
<pre>getFeatures_full1d</pre>	4.3	0.9	5
getFeatures_full2d	8.1	4.2	2
<pre>getFeatures_cls1d</pre>	8.5	2.8	2
getFeatures_oper3d	5.8	4.9	>2
getFeatures_poper2d	4.2	0.9	5
<pre>getFeatures_pfull2d</pre>	6.7	1.6	4
<pre>getFeatures_pcls2d</pre>	4.8	1.2	4
<pre>getFeatures_poper2di</pre>	4.6	0.2	23

Результаты тестирования для набора №2

Функция	Среднее время	Среднее время	Коэффициент
	выполнения в R, c.	выполнения в С++, с.	ускорения
getFeatures_set1d	880.5	11.5	76
getFeatures_oper2d	61.7	8.7	7
<pre>getFeatures_full1d</pre>	243	3.8	61
getFeatures_full2d	408.5	25.6	16
getFeatures_cls1d	649.3	11.6	60
getFeatures_oper3d	205.5	35	6
getFeatures_poper2d	350	0.4	875
getFeatures_pfull2d	505.7	5.3	101
getFeatures_pcls2d	2400	17.7	135
getFeatures_poper2di	36.1	0.1	360

Заключение

- Была реализована программная система формирования признакового описания звукового сигнала;
- Была проверена точность вычисления признакового описания в сравнении с эталонной реализацией;
- Была протестирована производительность разработанной системы в сравнении с эталонной.

Дальнейшее развитие:

- Рефакторинг имеющегося кода и применение технологий гетерогенных вычислений
- Применение в связке с классификаторами

Спасибо за внимание