TEN 2008. Il metodo delle curve ellittiche ECM

Sia n un numero composto e sia p un suo divisore primo. Il metodo di fattorizzazione delle curve ellittiche ricalca in parte il metodo p-1 di Pollard: invece del gruppo \mathbb{Z}_p^* , sfrutta il gruppo $E(\mathbb{Z}_p)$ dei punti di una curva ellittica E su \mathbb{Z}_p . Il metodo p-1 di Pollard fallisce se n non ha fattori primi p per cui l'ordine $\#\mathbb{Z}_p^* = p-1$ del gruppo \mathbb{Z}_p^* è B-smooth. Il metodo delle curve ellittiche fallisce per una data curva E se n non ha fattori primi p per cui l'ordine $\#E(\mathbb{Z}_p)$ del gruppo $E(\mathbb{Z}_p)$ è B-smooth. Ma questo metodo ha il vantaggio che sullo stesso \mathbb{Z}_p ci sono diverse curve ellittiche e quindi diversi gruppi $E(\mathbb{Z}_p)$ a disposizione. Se l'ordine del gruppo dei punti di una data curva $E(\mathbb{Z}_p)$ non è B-smooth, possiamo tentare con un'altra.

Metodo delle curve ellittiche ECM.

Sia n un numero intero. Sia E una curva ellittica su \mathbb{Z}_n

$$Y^2 = X^3 + AX + B, \qquad \Delta = 4A^3 + 27B^2 \in \mathbb{Z}_n^*.$$

Anche quando n non è primo, i punti di $E(\mathbb{Z}_n)$ si possono sommare e duplicare con le stesse formule. Anche in questo caso per sommare o duplicare punti di $E(\mathbb{Z}_n)$ è necessario calcolare l'inverso moltiplicativo di un certo intero a modulo n (se si sommano punti distinti, $a = x_2 - x_1$ è la differenza delle ascisse di tali punti; se si duplica un punto, $a = 2y_1$ è due volte l'ordinata di tale punto). Ogni volta che questo inverso non esiste il risultato della somma o della duplicazione in questione è un punto all'infinito di $E(\mathbb{Z}_n)$ (vedi Esercizio ??). Questa circostanza si manifesta attraverso $\gcd(a,n) > 1$.

Notare che $\gcd(a,n)$ è un possibile fattore non banale di n !!

Stimiamo la probabilià che questo accada partendo dalla seguente osservazione:

Sia p un numero primo e sia $E(\mathbb{Z}_p)$ il gruppo dei punti di una curva ellittica su \mathbb{Z}_p . Se k è un multiplo intero di $\#E(\mathbb{Z}_p)$, dal Teorema di Lagrange segue che

$$k \cdot P = O$$
 in $E(\mathbb{Z}_p)$, per ogni $P \in E(\mathbb{Z}_p)$,

dove O indica l'elemento neutro, o punto all'infinito, del gruppo $E(\mathbb{Z}_p)$. Questo significa che nel calcolo di $k \cdot P$ appare un intero a che non è invertibile modulo p, per cui vale gcd(a, p) > 1.

Sia n un intero, sia E una curva ellittica su \mathbb{Z}_n e sia P un punto di $E(\mathbb{Z}_n)$. Se p è un divisore primo di n, allora

$$\#E(\mathbb{Z}_p) \cdot P \in \{\text{insieme dei punti all'infinito di } E(\mathbb{Z}_n)\}.$$

Per quanto osservato sopra infatti,

$$\#E(\mathbb{Z}_p) \cdot P = O$$
 in $E(\mathbb{Z}_p)$;

quindi nel calcolo di $\#E(\mathbb{Z}_p) \cdot P$ in $E(\mathbb{Z}_n)$ appare un intero a con $\gcd(a,p) > 1$. Poiché p divide n, vale anche $\gcd(a,n) > 1$ e $\#E(\mathbb{Z}_p) \cdot P$ è un punto all'infinito in $E(\mathbb{Z}_n)$.

Il problema è costruire un elemento a con gcd(a, n) > 1, senza conoscere p.

Questo è possibile per fattori primi particolari: quelli per cui esiste una curva ellittica il cui gruppo dei punti $E(\mathbb{Z}_p)$ su \mathbb{Z}_p è B-smooth.

Fissiamo allora un intero B.

Sia $k = \prod p_i^{\alpha_i}$ il prodotto di tutti i numeri primi $p_i \leq B$ tali che $p_i^{\alpha_i} \leq B$, con $\alpha_i > 0$ massimo. Se p è un divisore primo di n, e l'ordine del gruppo $\#E(\mathbb{Z}_p)$ dei punti di una curva ellittica E su \mathbb{Z}_p è B-smooth allora $\#E(\mathbb{Z}_p) \mid k$ e vale

$$k \cdot P = O$$
 in $E(\mathbb{Z}_p)$.

In particolare, nel calcolo $k \cdot P$ appare un elemento a con gcd(a, p) > 1 e a maggior ragione gcd(a, n) > 1. Verosimilmente gcd(a, n) è un fattore non banale di n.

L'algoritmo.

Sia n il numero da fattorizzare.

Fissati B e k come sopra, costruiamo E una curva ellittica E a caso su \mathbb{Z}_n con un punto P su di essa, nel modo seguente: †

prendiamo un punto a caso

$$P = (X_0, Y_0) \in \mathbb{Z}_n \times \mathbb{Z}_n$$

prendiamo un coefficiente a caso

$$A \in \mathbb{Z}_n$$

e consideriamo la curva

$$E: Y^2 = X^3 + AX + B, \quad \text{con } B = Y_0^2 - X_0^3 - AX_0 \in \mathbb{Z}_n;$$

controlliamo che $\gcd(\Delta,n)=1$, ossia che il discriminante $\Delta=4A^3+27B^2\in~\mathbb{Z}_n^*.$

CALCOLIAMO

$$k \cdot P$$
 su $E(\mathbb{Z}_n)$.

Se durante il calcolo di $k \cdot P$ appare un intero a che non ammette inverso moltiplicativo modulo n, e se $1 < \gcd(a, n) < n$, abbiamo un fattore non banale di n;

se invece $k \cdot P = Q$ è un punto "al finito" in $E(\mathbb{Z}_n)$, il primo ciclo dell'algoritmo ha fallito; in tal caso, ripartiamo da una nuova coppia (E, P).

Cerchiamo adesso di valutare le probabilità di successo di trovare un fattore di n con questo algoritmo.

• Se con questo metodo troviamo un fattore primo p di n, che tipo di fattore è?

Sappiamo che un ciclo dell'algoritmo individua un fattore primo p di n se il gruppo dei punti $E(\mathbb{Z}_p)$ della curva ellittica usata E ha ordine B-smooth.

Viceversa, un fattore primo p individuato in un ciclo di questo algoritmo è con grossa probabilità un primo per cui il gruppo dei punti $E(\mathbb{Z}_p)$ della curva ellittica usata E ha ordine B-smooth.

Supponiamo infatti che nel calcolo di $k \cdot P$ in $E(\mathbb{Z}_n)$ compaia un intero a che non è invertibile modulo n, per cui $\gcd(a,n)>1$. Allora esiste un fattore primo p di n per cui vale $\gcd(a,p)>1$. Questo implica che $k \cdot P=O$ in $E(\mathbb{Z}_p)$. Ciò significa che l'ordine di P nel gruppo $E(\mathbb{Z}_p)$ divide k ed è quindi B-smooth. Verosimilmente anche l'ordine del gruppo $\#E(\mathbb{Z}_p)$ è B-smooth. \dagger

ullet Dato un primo p, qual è la probabilità che il gruppo $E(\mathbf{Z}_p)$ dei punti di una curva ellittica E a caso su \mathbf{Z}_p abbia ordine B-smooth?

Dobbiamo richiamare alcuni fatti dalla teoria delle curve ellittiche:

[†] Osserviamo che se n è un intero grande, determinare un punto P su una data curva ellittica $E(\mathbb{Z}_n)$ è un problema non banale: richiede di determinare una radice quadrata modulo n e ciò "in pratica" equivale a fattorizzare n (vedi: $http://www.math.clemson.edu/faculty/Gao/crypto_mod/node3.html).$

[†] Se l'ordine del gruppo $\#E(\mathbb{Z}_p)$ fosse il prodotto di primi $p_i \leq B$ e di un numero grosso Q, il punto P avrebbe ordine piccolo in $E(\mathbb{Z}_p)$, il che è poco probabile.

Il Teorema di Hasse stabilisce che fissato p, per una qualunque curva ellittica E su \mathbb{Z}_p l'ordine del gruppo $E(\mathbb{Z}_p)$ appartiene all'intervallo

$$(p+1-2\sqrt{p}, p+1-2\sqrt{p}).$$

Il Teorema di Deuring stabilisce che per ogni m in tale intervallo esistono curve ellittiche $E(\mathbb{Z}_p)$ di ordine m ed il loro numero al variare di m è grossomodo lo stesso. Il Teorema di Lenstra dice che il numero N(E) di curve ellittiche su \mathbb{Z}_p con la proprietà che $\#E(\mathbb{Z}_p)$ è B-smooth può essere stimato come

$$N(E) \sim \# S \cdot p^{3/2}$$
,

dove #S è il numero di interi B-smooth compresi nell'intervallo $(p+1-2\sqrt{p},p+1+2\sqrt{p})$. Tenendo conto che ci sono circa p^2 curve ellittiche su \mathbb{Z}_p , la probabilità di trovare una curva ellittica su \mathbb{Z}_p con ordine B-smooth può essere stimata come

$$\frac{N(E)}{p^2} \sim \frac{\#S}{p^2} p^{3/2} = \frac{\#S}{\sqrt{p}}.$$
 (1)

In altre parole, la probabilità di trovare una curva ellittica su \mathbb{Z}_p con la proprietà che $\#E(\mathbb{Z}_p)$ è B-smooth è paragonabile a quella di trovare un numero B-smooth nell'intervallo $(p+1-2\sqrt{p},p+1+2\sqrt{p})$: se in tale intervallo ci sono "abbastanza" numeri B-smooth, allora ci sono anche "abbastanza" curve ellittiche su \mathbb{Z}_p che hanno ordine B-smooth. Stimiamo adesso il numero di interi B-smooth nell'intervallo $(p+1-2\sqrt{p},p+1+2\sqrt{p})$

$$\#S = \psi(p+1+2\sqrt{p},B) - \psi(p+1-2\sqrt{p},B),$$

mediante la funzione di Dickman $\psi(x,B)$ (vedi Crandall-Pomerance, Sez.1.4.5). Ponendo $B=(p+1+2\sqrt{p})^{1/u}$ e $B=(p+1-2\sqrt{p})^{1/v}$, per opportuni u,v, per il teorema di Dickman abbiamo

$$\#S \sim (p+1+2\sqrt{p})u^{-u} - (p+1-2\sqrt{p})v^{-v}.$$

Poiché l'ordine di grandezza di $p + 1 \pm 2\sqrt{p}$ è all'incirca p, possiamo sostituire u e v con w, determinato da $B = p^{1/w}$, cosí che

$$\#S \sim 4\sqrt{p}w^{-w}, \qquad w \sim \frac{\ln p}{\ln B}.$$

La stima (1) diventa adesso

$$\frac{N(E)}{p^2}\sim \frac{4\sqrt{p}w^{-w}}{p^2}p^{3/2}\sim \frac{1}{w^w}.$$

CONCLUSIONE: fissato un primo p, la probabilità che il gruppo dei punti di una curva ellittica a caso E su \mathbb{Z}_p abbia ordine B-smooth è almeno

$$\frac{1}{w^w}$$
, con $w \sim \frac{\ln p}{\ln B}$. (2)

Osserviamo che la relazione (2) indica che con maggiore probabilità troviamo prima i fattori più piccoli di n. Questo dipende dal fatto che fissato B, i numeri B-smooth si diradano a mano che crescono, e lo stesso vale anche per le curve ellittiche con ordine B-smooth.

- Qual è la complessità di un ciclo di questo algoritmo?
- Assegnare una curva ellittica E su \mathbb{Z}_n , con un punto $P \in E(\mathbb{Z}_n)$: dare a caso X_0, Y_0, A e calcolare $B = Y_0^2 X_0^3 AX_0 \mod n$ $\mathcal{O}(\ln^2 n)$
- calcolare $k \cdot P$ mediante $\ln k$ "duplicazioni succesive", modulo n: scrivere $k = a_{m-1}2^{m-1} + \ldots + a_12 + a_0$ in forma binaria, e calcolare
- +2P $\mathcal{O}(\ln^3 n)$ (la complessità di questo calcolo è dominata dal $\gcd(2Y_0, n)$) +2(2P) $\mathcal{O}(\ln^3 n)$

$$\vdots \\ +2\dots(2P) \qquad \mathcal{O}(\ln^3 n)$$
 Totale: $\mathcal{O}(\ln k \ln^3 n)$

CONCLUSIONE: la complessità di un ciclo di questo algoritmo si stima come

$$\mathcal{O}(\ln^2 n) + \mathcal{O}(\ln k \ln^3 n) \sim \mathcal{O}(\ln k \ln^3 n) = \mathcal{O}(B \ln^3 n),$$

ossia è lineare in B (ricordiamo che $B \sim \ln k$ (dal Teorema dei Numeri Primi)).

ullet Sia p un primo. Determiniamo ora qual è il bound B ottimale per determinare un fattore di n dell'ordine di grandezza di p.

Per la discussione precedente, w^w tentativi "probabilmente" produrranno una curva E su \mathbb{Z}_p con gruppo $E(\mathbb{Z}_p)$ di ordine B-smooth, e la complessità dei calcoli su ogni singola curva è dell'ordine di $B \ln^3 n$. In totale, esprimendo B come $B = p^{1/w}$, la complessità del calcolo che "probabilmente" produrrà un fattore p risulta dunque

$$w^w \cdot B \ln^3 n \sim w^w p^{1/w} \ln^3 n$$
 dove $w = \frac{\ln p}{\ln R}$.

Stimiamo qual è il bound B che minimizza il lavoro per determinare p, cercando il minimo della funzione

$$w \mapsto w^w p^{1/w} \ln^3 n, \qquad w = \frac{\ln p}{\ln R}$$
 (3)

o meglio del suo logaritmo:

$$w \mapsto \ln(w^w p^{1/w} \ln^3 n) = w \ln w + \frac{1}{w} \ln p + 3 \ln(\ln n) \sim w \ln w + \frac{1}{w} \ln p.$$

Il grafico approssimativo della funzione $w \ln w + \frac{1}{w} \ln p$.

La funzione $w\mapsto w\ln w+\frac{1}{w}\ln p$ tende all'infinito per $w\to 0^+$ e per $w\to \infty$. La sua derivata si annulla in w se e solo se w soddisfa l'equazione

$$1 + \ln w - \frac{1}{w^2} \ln p = 0 \quad \Leftrightarrow \quad w^2 \ln(we) = \ln p \quad \Leftrightarrow \quad (ew)^2 \ln(ew)^2 = 2e^2 \ln p.$$

Poniamo $x=(ew)^2$ e approssimiamo $x\sim \frac{y}{\ln y}$ con $y=x\ln x=2e^2\ln p$. Otteniamo

$$(ew)^2 = \frac{2e^2 \ln p}{\ln(2e^2 \ln p)} \sim \frac{2e^2 \ln p}{\ln(\ln p)}.$$

Ne segue che il lavoro per ottenere un fattore dell'ordine di grandezza di p è minimizzato da

$$w_0 = \sqrt{\frac{2\ln p}{\ln(\ln p)}}.$$

Di conseguenza, per ottenere un fattore dell'ordine di grandezza di p con w^w curve, la scelta ottimale di B si può stimare con

$$B_{best} = e^{\frac{\ln p}{w_0}} = e^{\sqrt{\frac{\ln p \ln \ln p}{2}}}.$$

OSSERVAZIONE: Sia p un primo fissato. Il lavoro per determinare p tende all'infinito per $w \to 0^+$, ossia per $B \to \infty$ (gestire un bound grosso richiede calcoli pesanti) oppure per $w \to +\infty$, ossia per $B \to 0^+$ (in questo caso il bound è piccolo rispetto a p ed è necessario tentare con molte curve).

La siguiente tabla muestra los valores óptimos de B1 según la cantidad de dígitos del factor y la cantidad esperada de curvas usando ese límite. Estos valores son promedios.

Dígitos	Valor de B1	Curvas esperadas
15	2000	25
20	11000	90
25	50000	300
30	250000	700
35	1 000000	1800
40	3 000000	5100
45	11 000000	10600
50	43 000000	19300
55	110 000000	49000
60	260 000000	124000
65	850 000000	210000
70	2900 000000	340000

Este programa usa 25 curvas con límite B1 = 2000, 300 curvas con límite B1 = 50000, 1675 curvas con límite B1 = 1000000 y finalmente usa curvas con límite B1 = 11000000 hasta encontrar todos los factores.

Una tabella dal sito Alpertron.

CONCLUSIONE: Sceqliendo il bound ottimale

$$B_{best} = e^{\sqrt{\frac{\ln p \ln \ln p}{2}}},$$

la complessità del calcolo che "probabilmente" produrrà un fattore dell'ordine di grandezza di p si può stimare con

 $w_0^{w_0} p^{1/w_0} = w_0^{w_0} B_{best} = e^{\sqrt{2 \ln p \ln \ln p}}.$

Tenuto conto che verosimilmente troveremo prima i fattori più piccoli di n, la complessità probabilistica di questo algoritmo è subesponenziale nel numero di cifre del fattore più piccolo di n.

Caso peggiore: $p = \sqrt{n}$ e $w^w p^{1/w} = e^{\sqrt{\ln n \ln \ln n}} \sim e^{\sqrt{\ln n}}$.

Esempio. Supponiamo di voler fattorizzare n = 77.

Consideriamo la curva ellittica $E: Y^2 = X^3 - X + 3$ su \mathbb{Z}_n , con $\Delta = -4 + 27 \cdot 9 \equiv 8 \in \mathbb{Z}_{77}^*$, ed il punto $P = (2,3) \in E$.

Fissiamo B = 3 e prendiamo k = B! = 6.

Calcoliamo 6P in $E(\mathbb{Z}_{77})$.

2P:

indichiamo con m il coefficiente angolare della "retta tangente" alla curva in P;

$$m = (3 \cdot 4 - 1)6^{-1} = -11,$$
 $2P = (40, 47);$

(abbiamo potuto fare il calcolo perchè gcd(6,77) = 1)

۱D.

indichiamo con m il coefficiente angolare della "retta tangente" alla curva in 2P;

$$m = (3 \cdot 40^2 - 1)94^{-1} = 6,$$
 $4P = (33, 5);$

(abbiamo potuto fare il calcolo perchè gcd(94,77) = 1)

6P = 2P + 4P: indichiamo con m il coefficiente angolare della "retta secante" per 2P e 4P;

$$m = -42(-7)^{-1}$$
, $\gcd(-7,77) = 7 \neq 1$!!!!!!???????

Poiché $\gcd(-7,77)=7\neq 1$, non possiamo calcolare $(-7)^{-1}$ in \mathbb{Z}_{77} , dunque neanche m. In compenso abbiamo trovato un fattore di n=77!!!

Cosa è successo??

È successo che 77 = 7 · 11. Il gruppo $E(\mathbb{Z}_7)$ ha 6 elementi, il punto P ha ordine 6 nel gruppo $E(\mathbb{Z}_7)$ e dunque $6P = \infty$ in $E(\mathbb{Z}_7)$ (il gruppo $E(\mathbb{Z}_{11})$ invece ha 13 elementi).

La seconda fase.

Siano n, B, k come sopra.

Siano (E, P) una curva ellittica su \mathbb{Z}_n ed un punto su di essa.

Se dal calcolo

$$k \cdot P = Q$$

su $E(\mathbb{Z}_n)$ si è ottenuto un punto "al finito" (nel corso del calcolo di $k \cdot P$ nessuna inversione modulo n ha prodotto fattori non banali di n), questo ciclo dell'algoritmo ha fallito.

Questo succede se per nessun fattore primo p di n la curva $E(\mathbb{Z}_p)$ ha ordine B-smooth.

Nella seconda fase dell'algoritmo si dovrebbero individuare fattori primi p di n per cui l'ordine della stessa curva E su \mathbb{Z}_p sia della forma

$$\#E(\mathbf{Z}_p) = q \cdot m,$$

dove m è un numero B-smooth e q è numero primo in un intervallo $[B_1, B_2]$, con $B_1 = B$. Si parte dal punto "al finito" Q prodotto dalla prima fase su E e si calcolano in $E(\mathbb{Z}_n)$ tutti i multipli

$$q_1 \cdot Q, \quad q_2 \cdot Q, \quad \dots \quad q_i \cdot Q, \quad \dots$$

al variare dei primi q_i nell'intervallo $[B_1, B_2]$. Infatti, se per un certo i il calcolo di

$$q_i \cdot Q = q_i k \cdot P$$

provoca un problema di inversione modulo n e individua un fattore non banale di n, vuol dire che per qualche fattore primo p di n

$$q_i \cdot Q = q_i k \cdot P = O$$
 su $E(\mathbb{Z}_p)$;

verosimilmente

$$\#E(\mathbb{Z}_p)$$
 divide $q_i k$

e dunque $\#E(\mathbb{Z}_p) = q_i \cdot m$ è il prodotto di un primo $q_i \in [B_1, B_2]$ per un numero B-smooth m.

L'algoritmo.

Un modo economico per completare questa seconda fase è il seguente:

PRECALCOLO a monte del programma:

- fissare un secondo bound B_2 ;
- enumerare tutti i primi $q_1,\ q_2,\ \dots\ ,\ q_{\alpha}$ nell'intervallo $[B_1,B_2],$ con $B=B_1;$
- precalcolare tutti gli incrementi $\delta_i = q_{i+1} q_i$, per $i = 1, \dots, \alpha$;
- sia $M = \max_i \delta_i$ l'ampiezza massima degli incrementi δ_i .

Osserviamo che al variare di $i=1,\ldots,\alpha$, gli incrementi δ_i sono relativamente "piccoli" e molti di essi coincidono: dal Teorema dei Numeri Primi, si stima infatti che nell'intervallo $[B_1,B_2]$, di ampiezza B_2-B_1 ci sono all'incirca $\pi(B_2)-\pi(B_1)\sim \frac{B_2}{\ln B_2}-\frac{B_1}{\ln B_1}$ numeri primi...

PRECALCOLO a monte della seconda fase di ogni ciclo:

Sia Q il punto al finito prodotto dalla prima fase (fallita) dell'algoritmo su una curva E;

- precalcolare i tutti i possibili multipli $m \cdot Q$, al variare di $m = 2, \ldots, M$ pari;

in questo modo ci siamo calcolati di fatto tutti i punti

$$R_i := \delta_i Q, \quad \text{su } E(\mathbb{Z}_n).$$

- calcolare in successione

$$Q_1 = q_1 \cdot Q,$$

$$Q_2 = Q_1 + R_1 = Q_1 + \delta_1 Q = q_1 Q + (q_2 - q_1) Q = q_2 Q$$

$$\dots$$

$$Q_i = Q_{i-1} + R_{i-1} = q_{i-1} Q + \delta_{i-1} Q = q_{i-1} Q + (q_i - q_{i-1}) \cdot Q = q_i Q$$

Se alla fine dei calcoli troviamo ancora un punto al finito, anche la fase 2 di questo ciclo ha fallito. Iniziamo un nuovo ciclo cambiando curva.