Data analysis and visualization using R Distributions, Sampling and Testing

Michiel Noback

november 2015

Distribution functions

statistic tests

Contents

- distributions and their functions
- sampling from a distribution
- sampling from your own data
- statistical tests

Distribution functions

Distribution associated functions

- R provides related functions for several distributions that can be used for
 - ▶ sampling: rxxxx
 - ► Probability Density Function (PDF): **d**xxxx
 - ► Cumulative Distribution Function (CDF): pxxxx
 - Quantile Function (inverse of pxxxx): qxxxx

rnorm()

- ▶ Random numbers from a normal distribution with parameters:
 - n number of observations
 - mean the mean of the distribution
 - sd the standard deviation of the distribution

```
x <- rnorm(n=1000, mean=10, sd=2)
hist(x, breaks=20)</pre>
```

Histogram of x

dnorm()

dnorm(x, mean, sd) gives the density (height) of x on the normal ditribution with the given mean and sd.

```
xseq <- seq(-4, 4, 0.01)
densities <- dnorm(xseq, 0, 1)
plot(xseq, densities, col="darkblue", xlab="", ylab="Densitives", lwd=2, main="PDF")</pre>
```

PDF

pnorm()

 ${\tt pnorm}({\tt q},\ {\tt mean},\ {\tt sd})$ gives the area under the standard normal curve to the left of q

CDF

other distributions

Similar to the xnorm() functions, there are corresponding functions for

- ▶ the binomial distribution xbinom()
- the poisson distribution xpois()
- Chi square chisq
- and many others see http: //www.statmethods.net/advgraphs/probability.html

Sampling from a set of values: sample()

- ► For some research aspects, shuffling the data (permutation) or taking random samples from a larger set is required.
- ▶ The sample() function can be used for both.

permutations without replacement

```
x <- 1:10
sample(x)

## [1] 10 7 6 9 8 1 4 2 5 3

sample(x)

## [1] 2 8 5 1 10 9 7 4 6 3</pre>
```

permutations with replacement

```
sample(x, replace = T)

## [1] 1 9 7 4 6 1 7 8 6 3

sample(x, replace = T)

## [1] 1 3 6 3 4 7 7 4 10 2
```

sampling integers from range 1 to X

```
sample.int(1e3, 5, replace = F)

## [1] 205 407 59 239 604

sample.int(2, 10, replace = T)

## [1] 1 1 1 2 2 2 2 2 1 2
```

sampling a fixed set

```
sample(x, size = 2, replace = T)
## [1] 4 5
sample(x, size = 2, replace = T)
## [1] 6 9
sample(x, size = 2, replace = T)
## [1] 4 4
```

sampling with probabilities

```
sample(1:3, size = 10, replace = T, prob = c(0.25, 0.5, 0.3
## [1] 1 1 2 1 2 2 2 2 3 2

sample(1:2, size = 10, replace = T, prob = c(0.2, 0.8))
## [1] 2 2 2 2 2 1 2 2 2 2
```

reproducible sampling using set.seed()

```
set.seed(1234)
sample(x)

## [1] 2 6 5 8 9 4 1 7 10 3

set.seed(1234)
sample(x)

## [1] 2 6 5 8 9 4 1 7 10 3
```

statistic tests

overview

test	application	R function
t-toets	diff between 2 means	t.test()
F-toets	diff between 2 variances	var.test()
1-way ANOVA	diff between >=2 means	aov()
chi2-toets	relation between 2 nominal vars	<pre>chisq.test()</pre>
z-toets	standaard normaal verdeeld	z.test() *

^{*[}in package:TeachingDemos]