Exame de recurso de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2h15min

Este exame é constituído por 5 questões. Todas as respostas devem ser devidamente justificadas.

1. Seja $A = \{a, b, c\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4\}, A, A \cup \{\Delta\}, \delta, 0, 4, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	c	Δ
0				$(1, \Delta, D)$
1	(1,b,D)			(2, c, D)
2		(2, c, D)		$(3, \Delta, E)$
3	(3, a, E)	(3,b,E)	(3, c, E)	$(4, \Delta, C)$

A máquina \mathcal{T} calcula uma função parcial $g: A^* \times A^* \to A^*$.

- a) Represente \mathcal{T} graficamente.
- **b)** Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta} aaa \Delta bbab)$.
- c) Identifique o domínio D da função g.
- d) Para cada elemento $(u, v) \in D$, determine a palavra g(u, v).
- **2**. Considere o alfabeto $A = \{a, b, c\}$ e a linguagem

$$L = \{a^n u a^n : n \in \mathbb{N}_0, u \in \{b, c\}^*, |u| = n\}.$$

- a) Construa uma máquina de Turing que reconheça L e descreva informalmente a estratégia dessa máquina.
- b) Explique se o problema de decisão P(w): " $w \in L$?" é ou não decidível.
- **3**. Seja $h: \mathbb{N}_0^3 \to \mathbb{N}_0$ a função definida, para cada $(x,y,z) \in \mathbb{N}_0^3$, por h(x,y,z) = (x+z)(y+1).
 - a) Defina recursivamente a função h. Ou seja, determine funções $f: \mathbb{N}_0^2 \to \mathbb{N}_0$ e $g: \mathbb{N}_0^4 \to \mathbb{N}_0$ tais que h = Rec(f, g).
 - **b)** Mostre que *h* é uma função recursiva primitiva.
 - c) Determine a função M_h de minimização de h.

4. Seja $A = \{a, b\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A com duas fitas,

$$(a,\Delta)/(a,a),(D,D) \qquad (a,-)/(a,-),(E,C) \\ (b,\Delta)/(b,\Delta),(D,C) \qquad (b,a)/(b,\Delta),(E,E)$$

$$(\Delta,\Delta)/(\Delta,\Delta),(D,D) \qquad (\Delta,\Delta)/(\Delta,\Delta),(E,E) \qquad (\Delta,\Delta)/(\Delta,\Delta),(C,C) \qquad (\Delta,\Delta)/(\Delta,\Delta)$$

- a) Identifique a linguagem L reconhecida por \mathcal{T} .
- b) Determine a função de complexidade temporal da máquina \mathcal{T} .
- c) Mostre que $L \in DTIME(n)$.
- **d)** Sendo $K = \{1^n : n \in \mathbb{N}_0 \text{ \'e par}\}$, mostre que $L \leq_p K$.
- 5. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) O seguinte problema é decidível: Dada uma máquina de Turing \mathcal{T} , será que $L(\mathcal{T})$ é aceite em tempo polinomial?
 - b) A função característica χ_{AA} da linguagem AutoAceite é Turing-computável.
 - c) Existem uma linguagem regular K e uma linguagem recursiva L tais que $K \cap L$ não seja aceite por qualquer máquina de Turing.
 - d) Tem-se $L(\mathcal{T}_1) \subseteq L(\mathcal{T}_1 \longrightarrow \mathcal{T}_2)$ para a composição sequencial $\mathcal{T}_1 \longrightarrow \mathcal{T}_2$ de quaisquer máquinas de Turing \mathcal{T}_1 e \mathcal{T}_2 .

(FIM)

Cotação:
$$\begin{cases} \textbf{1.} & 4 \text{ valores } (1+1+1+1) \\ \textbf{2.} & 3,5 \text{ valores } (2,5+1) \\ \textbf{3.} & 3,5 \text{ valores } (1,5+1+1) \\ \textbf{4.} & 5 \text{ valores } (1,25+1,25+1+1,5) \\ \textbf{5.} & 4 \text{ valores } (1+1+1+1) \end{cases}$$