课程编号: A073003

北京理工大学 2009-2010 学年第二学期

线性代数B试题B卷

班级 ______ 学号 _____ 姓名 _____ 成绩 _____

题 号	_	1 1	111	四	五.	六	七	八	九	+	总分
得 分											
签 名											

一、(10 分)设A是三阶矩阵, A^* 是其伴随矩阵,已知|A|=4,求行列式 $\left|\frac{1}{4}A^*-(4A)^{-1}\right|$ 的值。

二、(10分) 设矩阵
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & \frac{1}{2} & 0 \\ \frac{1}{3} & 0 & 0 \end{pmatrix}$$
, B 满足方程 $A^{-1}BA = 6A + BA$, 求 B .

三、(10分)已知向量 $\alpha_1 = (-2,1,0,3)$, $\alpha_2 = (1,-3,2,4)$, $\alpha_3 = (3,0,2,-1)$, $\alpha_4 = (2,-2,4,6)$,

- (1) 求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的秩和一个极大无关组;
- (2) 用所求的极大无关组线性表出剩余向量。

四、(10 分)设 $\alpha_1,\alpha_2,\alpha_3$ 与 β_1,β_2,β_3 是 \mathbf{R}^3 的两组基,且由基 β_1,β_2,β_3 到 $\alpha_1,\alpha_2,\alpha_3$ 的过

渡矩阵为
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
。

- (1) 如果 α 在基 $m{eta_1}$, $m{eta_2}$, $m{eta_3}$ 下的坐标为(2,-1,3),求 α 在基 $m{lpha_1}$, $m{lpha_2}$, $m{lpha_3}$ 下的坐标;
- (2) 如果 $\alpha_1 = (1,1,0)^T$, $\alpha_2 = (1,0,-1)^T$, $\alpha_3 = (0,-1,1)^T$, 求基 $\boldsymbol{\beta_1},\boldsymbol{\beta_2},\boldsymbol{\beta_3}$ 。

五、(10分) 求齐次线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 0 \\ 2x_1 + 3x_2 + 4x_3 + 5x_4 = 0 \end{cases}$$

的解空间的一个标准正交基。

六、(10分)设有线性方程组

$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$$

问: **λ**取何值时,此方程组有唯一解?无解?有无穷多解?并在有无穷多解时求通解。 (用导出组的基础解系表示通解)

七、(10 分) 已知矩阵
$$A = \begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix}$$
, 求可逆矩阵 P , 使 $P^{-1}AP$ 为对角矩阵。

八、(10分)已知实二次型

$$f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 4x_3^2 - 4x_1x_2 + 4x_1x_3 - 8x_2x_3$$

- (1) 求一正交变换 X = QY,将二次型 $f(x_1, x_2, x_3)$ 化为标准形;
- (2) 判断二次型 $f(x_1, x_2, x_3)$ 是否正定。

九、(10分)已知A是n阶实对称矩阵,且 $A^2 = A$ 。

(1) 证明存在正交矩阵 Q, 使得

$$Q^{-1}AQ = diag(1,1,...,1,0,...,0);$$

(2) 若 **r**(**A**)=**r**,则求 **det**(**A-2I**)。

十、 $(10 \, \beta)$ 已知三阶矩阵 A 的第一行是 (a,b,c), a,b,c 不全为零,矩阵 $B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{pmatrix}$

(k 为常数),且AB=0,求线性方程组AX=0的通解。