---problem 2---

(a)

x <- runif(10000, min=-2, max=2)
y <- runif(10000,x,2)
plot(density(y), main="marginal univariate density of y")</pre>

marginal univariate density of y

Figure 1

bivariate density of (X,Y)

Figure 2

(b)

mean(y)

---problem 4---

calculate std through 1584 funds

```
tbl_funds <- read.csv('funds-1584g-mon.csv')
std <- sapply(tbl_funds[,2:ncol(tbl_funds)], sd)
avg_std <- mean(std)</pre>
```

simulate normal random variables

```
tbl_tstat <- matrix(0,nrow=1,ncol=100)
tbl_high_tstat <- matrix(0,nrow=10000,ncol=5)
tbl_rand_tstat <- matrix(0,nrow=10000,ncol=5)

for (j in 1:10000){
    tbl_norm <- rnorm(6000,0.01,avg_std)
    dim(tbl_norm) <- c(60,100)
    for (i in 1:100) {
        tbl_tstat[i] <- abs(t.test(tbl_norm[,i], mu=0.01, conf.level = 0.95)$statistic)
    }
    high_tstat <- sort(tbl_tstat,decreasing = TRUE)[1:5]
    rand_tstat <- sample(tbl_tstat)[1:5]
    tbl_high_tstat[j,] <- high_tstat
    tbl_rand_tstat[j,] <- rand_tstat
}</pre>
```

info required for Table1

```
round(colMeans(tbl_high_tstat),4)
round(colMeans(tbl_rand_tstat),4)

round(colSums(abs(tbl_high_tstat)>=2)/nrow(tbl_high_tstat),3)
round(colSums(abs(tbl_rand_tstat)>=2)/nrow(tbl_rand_tstat),3)

quantile_high <- matrix(0,nrow=1,ncol=5)
quantile_rand <- matrix(0,nrow=1,ncol=5)
for (i in 1:5) {quantile_high[i] <- round(quantile(tbl_high_tstat[,i], 0.975),4)}
for (i in 1:5) {quantile_rand[i] <- round(quantile(tbl_rand_tstat[,i], 0.975),4)}
```

Table 1: Simulated Type 1 error – probability of rejection under the HO

		•					
	Highest five (of 100) t-statistics						
	t ₁	t ₂	t ₂	t ₄	t ₅		
1) Mean	2.8583	2.4879	2.2879	2.1493	2.0426		
2) Pr(reject H ₀ H ₀ true)	0.994	0.963	0.884	0.744	0.569		
3) 97.5% of t _i	3.8904	3.1612	2.8296	2.6313	2.4711		

	Randomly chosen five t-statistics					
	t1	t2	t2	t4	t5	
1) Mean	0.0157	-0.0129	0.0021	0.0052	0.0050	
2) Pr(reject H ₀ H ₀ true)	0.053	0.050	0.050	0.052	0.048	
3) 97.5% of t _i	2.0233	1.9949	1.9972	2.0095	1.9813	

plot figure3

histogram of the fifth highest t-statistic

Figure 3