F²MC-8FX 家族

8位微型控制器

MB95430 系列

电磁炉(半桥)演示板

用户手册

电磁炉(半桥)演示板 V1.3 修改记录

修改记录

版本	日期	作者	修改记录
1.0.0	2010-03-12	Kevin. Lin	初稿
1.1.0	2010-08-5	Kevin. Lin	增加图片
1.1.1	2010-10-11	Kevin. Lin	修改图 6-2
1.2.0	2010-11-17	Kevin. Lin	更新功率级,图 6-2,增加错误代码
1.3.0	2011-12-01	Vic, Lan	添加 3.2.6 和 3.2.7 节

本手册包含25页。

- 1. 本文档记载的产品信息及规格说明如有变动,恕不预先通知。如需最新产品信息和/或规格说明,联系富士通销售代表或富士通授权经销商。
- 2. 基于本文档记载信息或示意图的使用引起的对著作权、工业产权或第三方的其他权利的侵害,富士通不承担任何责任。
- 3. 未经富士通明文批准,不得对本文档的记载内容进行转让、拷贝。
- 4. 本文档所介绍的产品并不旨在以下用途: 需要极高可靠性的设备,诸如航空航天装置、海底中继器、核控制系统或维系生命的医用设施。
- 5. 本文档介绍的部分产品可能是"外汇及外贸管理法"规定的战略物资(或专门技术),出口该产品或其中部分元件前,应根据该法获得正式批准。

版权©2010 富士通半导体(上海)有限公司

目录

修	改记录	₹		2
目	录			3
1	序言.			5
	1.1	关于本手	=册	5
	1.2	参考资料	4	5
2	演示	扳概要		6
	2.1	概要		6
	2.2	特性		6
	2.3	演示板模	草块	6
3	演示	扳的系统	水平结构	8
	3.1	演示板的	· 方结构图	8
	3.2	控制模均	ե	9
		3.2.1	MCU 插槽	9
		3.2.2	按键和显示	9
		3.2.3	风扇和蜂鸣器	10
		3.2.4	温度测量电路	10
		3.2.5	调试器接口	11
		3.2.6	锅检测电路	11
		3.2.7	相位锁定以及频率跟踪控制电路	11
	3.3	电源		12
		3.3.1	SMPS	12
		3.3.2	过滤器和整流器	12
	3.4	谐振电路	ģ	12
		3.4.1	IGBT 驱动器	12

电磁炉(半桥)演示板 V1.3

目录

4 如何操作演示板	13
4.2 操作演示板 4.2.1 接通/断开电源 4.2.2 固定功率模式 4.2.3 恒温模式 4.2.4 计时模式 5 调试和编程 5.1 调试工具连接 5.2 工程概要 6 原理图 7 更多信息	14
4.2.1 接通/断开电源	14
4.2.2 固定功率模式	15
4.2.3 恒温模式	15
4.2.4 计时模式	15
 5 调试和编程	16
5.1 调试工具连接	16
5.2 工程概要	18
6 原理图	18
7 更多信息	19
	20
o Win	22
O IN X	23
8.1 图标索引	
8.2 MCU引脚分配	
8.3 错误代码	

1 序言

1.1 关于本手册

本手册详细描述了半桥电磁炉板的硬件设计。该演示板为半桥电磁炉的参考设计。

本手册"电磁炉(半桥)演示板用户手册"供开发电磁炉项目的软件、硬件和系统工程师阅读。 表**1-1** 简要介绍了本手册包括的章节。

表 1-1: 章节介绍

章节标题	描述
序言	本章介绍了本手册的内容。
演示板介绍	本章介绍了演示板的相关信息。
演示板的系统水平结构	本章说明了演示板的硬件设计。
如何操作演示板	本章描述了如何通过前面板操作演示板。
调试和编程	本章介绍了如何连接演示板至适配器。
示意图和 BOM	本章介绍了演示板的示意图和BOM。

1.2 参考资料

本手册与以下手册配合使用。

电磁炉(半桥)固件用户手册 V1.1.1

2 演示板概要

2.1 概要

电磁炉(半桥)演示板是提供给客户的一个参考设计。它包括两个部分,即主板和前面板。主板和前面板基于同一个 MCU-。

主板基于富士通 MB95F430 系列 MCU 设计。各种模块和外围设备让它非常适用于电磁炉设计,不管是半桥式还是单管。

前面板采用 LED 显示和电容触摸按钮。它最多支持 8 个独立的 LED、 一个 LED 模块以及 8 个按钮。

2.2 特性

该演示板支持以下特性。

最多支持 8 个独立的 LED 和一个 LED 模块 (8 段)。

支持8个触摸按钮。

为 MCU 提供调试接口,为 触摸芯片提供调谐接口。

9级功率: 600w、700w、900w、1200w、1400w、1800w、2000w、2400w、3000w。

三种模式: 固定功率模式、恒温模式、计时模式。

2.3 演示板模块

图 2-1 为主板及模块的正视图。

图 2-1: 主板

图 2-2 为前面板正视图。

图 2-2: 前面板

3 演示板的系统水平结构

3.1 演示板的结构图

图 3-1 显示了演示板的系统水平结构图。它包括以下部分:控制模块、电源和谐振电路。

图 3-1: 演示板的结构图

3.2 控制模块

该控制模块基于 MB95F430H,包括多个专用硬件外围设备,如 16 位输出比较单元、10 位 ADC、内部电压比较器、OPAMP、和蜂鸣器驱动器。这些都是电磁炉控制必需的。

3.2.1 MCU 插槽

演示板使用 LQFP32 封装。 此外,每个 MCU 引脚都有一个测试引脚。

3.2.2 按键和显示

前面板有 8 个独立的 LED (D1-D8) 以及一个 LED 模块。 LED 指示电磁炉处于的模式。LED 模块在固定功率模式下显示输出功率级别,在恒温模式下显示温度,在计时模式下显示时间。

所有按键都是电容触摸按钮。该功能由 AT5088 执行, AT5088 为电容触摸应用的 ASIP, 最大支持 8 个按钮。

图 3-2 显示了按键和显示的定义。

图 3-2: 按键定义

前面板通过 10 引脚端口连接至主板。10 引脚端口包括 LED COM 的 5 根连接线,I²C 总线的 2 根连接线,以及 GND 和 +5V 的 2 根连接线。前面板上的插槽 J2 用于 AT5088 配置。

图 3-3 显示了前面板接口。

图 3-3: 前面板接口

下表列出了前面板接口的引脚定义。

表 3-1:接口定义

引脚编号	1	2	3~7	8	9	10
引脚名	+5v	GND	COM0~COM4 (LED)	SDA	SCL	NC

3.2.3 风扇和蜂鸣器

电磁炉工作时,风扇需要同时工作以冷却散热片,降低整流器模块和 IGBT 的温度。风扇由 12V 驱动。7812 用于把 15V 电压转换为 12V。

蜂鸣器模块位于主板,由 MCU 的专用 BUZ 引脚驱动。

3.2.4 温度测量电路

为了避免高温导致的 IGBT 故障, IGBT Q1 上安装了一个 NTC 用于监测温度。

除了 IGBT 上的 NTC 外,还有一个用于测量锅温度的 NTC,安装在靠近锅底部的线盘中。

图 3-4: 温度测量端口

3.2.5 调试器接口

主板的插槽 J1 为 BGMA 提供了一个接口。用户可以使用 BGMA 对 MCU 进行编程和调试。

3.2.6 锅检测电路

电磁炉开始工作之前,必须放置锅于加热线圈上,否则电磁炉将不能启动。因此,系统需要判断是否有锅。

MCU 计数器根据内部集成的比较器输出,计算脉冲数,从而检测是否有锅。

图 3-5 显示了检锅的原理。

图 3-5: 检锅原理

3.2.7 相位锁定以及频率跟踪控制电路

相位锁定电路的设计使用了 CD4046 相位比较器。如果信号端输入的相位滞后于比较端输入,输出水平为 L; 如果信号端输入的相位超前于比较端输入,输出水平保持为 H。因此,根据 CD4046 的输入水平,MCU 可以判断出驱动频率是否低于电磁炉工作的谐振频率。

CD4046 的输出水平为 L 时,用户可以调整功率,直到 CD4046 的输出水平变为 H。然后,电磁炉的输出功率达到最大功率。

图 3-6: 相位锁定的原理

3.3 电源

3.3.1 SMPS

+15V DC电源(U1)是演示板的控制模块的主电源,直接向门控驱动器提供电源。风扇的+12V电源由调节器(U3)产生。+5V电源由调节器(U2)产生。

3.3.2 过滤器和整流器

进入谐振电路前,50HZ 交流电必须通过过滤器和整流桥转换成直流电。滤波器部分包括一些保护组件,感应器和电容器,例如保险丝、继电器(RL1)、感应器(L2)和电容器(C16、C14和C21)。

整流器模块 RL1 把交流电转换为直流。直流电通过 L1 和 C22 进入谐振槽。

变流器 T2 内置于电路中用于测量 AC 电流。

参见章节"示意图和 BOM"了解更多信息。

3.4 谐振电路

3.4.1 IGBT 驱动器

IGBT 驱动器电路位于 IR2113 附近。它有两个电源,一个(+15V)向 IGBT 门控提供电源,另一个(+5V)向组件的逻辑部分提供电源。

JMP1 用于禁用或启用驱动器输出。 跳线打开时,驱动程序输出被启用,否则被禁用。

图 3-7: IGBT 驱动器

3.4.2 谐振电路

IGBT Q1、Q2、 C18、 C24 和线盘构成谐振电路的主要部分。J8 和 J9 用作连接线盘的接口。变流器 T17 与线盘串联至空腔谐振器。它可以转换 MCU 电流,用于过电流保护。散热片用于 IGBT 和整流器的散热。

4 如何操作演示板

4.1 平台装配

该演示板包括以下部件。

主板

前面板

线盘

风扇

一个 10-线总线

图 4-1 显示了一个装配好的演示板平台。

图 4-1: 演示平台

4.2 操作演示板

4.2.1 接通/断开电源

如果连接主板至 220V 电源,MCU 将立刻运行。但电源部分不工作。用户可以通过按下按钮 6 打开继电器,然后系统在待机模式下运行。前面板上的 LED D5、D7 将亮启指示待机模式, D1~D8 和 LED 模块不会亮启。用户也可以通过按下按钮 6 关闭继电器。

以上操作只能在系统进入待机模式后执行。

图 4-2: 待机模式

4.2.2 固定功率模式

在待机模式下,按下按钮 1,系统进入固定功率模式。D4 和 D2 亮启,LED 模块将显示功率级别指明输出功率。

用户可以按下按钮 5 和按钮 4 选择功率级。第一次按下这两个按钮中的一个将触发选择程序。按下按钮 5 增加功率级,按下按钮 4 减少功率级。选择将在按下 5 秒后被确认。

图 4-3 显示了固定功率模式。

图 4-3: 固定功率模式

4.2.3 恒温模式

按下按钮 0 将从固定功率模式或待机模式切换至恒温模式,同时 D3、D1 亮启。 LED 模块将显示用户设置的温度。

用户可以按下按钮5或按钮4更改目标温度。

图 4-4 显示了恒温模式。

图 4-4: 恒温模式

4.2.4 计时模式

如果系统已经处于固定功率模式或恒温模式,用户可以按下按钮7让系统进入计时模式。系统将在固定功率模式或恒温模式下运行直到超时。接下来,系统会自动返回待机模式。

在计时模式下,用户可以按下按钮 3 和按钮 2 选择小时或分钟数,按下按钮 5 和按钮 4 更改设置内容。设置画面和之前一样以 1HZ 的频率闪烁。时间范围从一分钟到一小时 59 分钟。

图 4-5 显示了计时模式。

图 4-5: 固定功率输出的计时模式

电磁炉(半桥)演示板 V1.3 第 4 章 如何操作演示板

注意:

- 1 用户可以按下按钮 0、按钮 1、按钮 7 退出固定功率模式、恒温模式或者计时模式。
- 2 在时间模式下按下按钮 0 和按钮 1 无效。
- 3 在固定功率模式或恒温模式下按下按钮3和按钮2无效。

5 调试和编程

5.1 调试工具连接

图 5-1 显示了如何连接适配器至演示板。

图 5-1: 适配器连接

5.2 工程概要

使用 SOFTUNE V3.0 打开一个工程,文件显示在左边的列表中。 图 5-2 显示了该工程。

图 5-2: 工程

参见"SOFTUNE Workbench 用户手册"了解关于 SOFTUNE V3 的 更多信息。

6 原理图

图 6-1 显示了前面板电路。

图 6-1: 前面板

图 6-2 显示了主板电路。

图 6-2: 主板

7 更多信息

关于富士通半导体更多的产品信息,请访问以下网站:

英文版本地址:

http://www.fujitsu.com/cn/fsp/services/mcu/mb95/application_notes.html

中文版本地址:

http://www.fujitsu.com/cn/fss/services/mcu/mb95/application_notes.html

8 附录

8.1 图标索引

表 1-1:	章节介绍	5
表 3-1:	接口定义1	0
图 2-1:	主板	7
图 2-2:	前面板	7
图 3-1:	演示板的结构图	8
图 3-2:	按键定义	9
图 3-3:	前面板接口1	0
图 3-4:	温度测量端口	1
图 3-5:	检锅原理1	1
图 3-6:	相位锁定的原理	2
图 3-7:	IGBT 驱动器	3
图 4-1:	演示平台1	4
图 4-2:	待机模式1	5
图 4-3:	固定功率模式1	5
图 4-4:	恒温模式1	6
图 4-5:	固定功率输出的计时模式1	6
图 5-1:	适配器连接	8
图 5-2:	工程 1	9
图 6-1:	前面板2	20
图 6-2:	主板	<u>'</u> 1

8.2 MCU引脚分配

引脚编号	引脚名	功能
1	PG2/PPG0/X1A/OUT1	副时钟
2	PG1/TRG0/ADTG/X0A	副时钟
3	Vcc	Vcc
4	С	С
5	P60/OPAM_P	风扇
6	P61/OPAM_N	LED COM0
7	P62/OPAM_O	SYS_PW
8	P12/EC0/UI/DBG	DBG
9	P00/INT00/AN00	系统电压测量
10	P01/INT01/AN01/BZ	蜂鸣器
11	P02/INT02/AN02/UCK	NULL
12	P03/INT03/AN03/UO	SDA for I2C
13	P04/INT04/AN04/UI	SCL for I2C
14	P05/INT05/AN05/TO0	系统电流测量
15	P06/INT06/AN06/TO1	线盘温度测量
16	P07/INT07/AN07/EC0	IGBT温度测量
17	P70/CMP0_O/OUT0	IGBT 驱动器 H
18	P71/CMP0_P	LED COM2
19	P72/CMP0_N	LED COM3
20	P73/CMP1_O/OUT1	IGBT 驱动器 L
21	P74/CMP1_P	OC 保护参考电压
22	P75/CMP1_N	OC input
23	P76/CMP2_O/UCK	LED COM1
24	P63/CMP2_P	电涌保护参考电压
25	P64/CMP2_N	电涌输入
26	P65/CMP3_O/UO	LED COM4
27	P66/CMP3_P	短路保护参考电压

电磁炉(半桥)演示板 V1.3 第8章 附录

28	P67/CMP3_N	短路保护
29	PF2/RSTX	重置
30	PF0/X0	振荡器
31	PF1/X1	振荡器
32	Vss	Vss

8.3 错误代码

错误代码	描述	备注
E0	HW_STOP 设置	
E1	低电压	电源低于 185V
E2	过电压	电源高于 256V
E3	锅温度传感器短路	
E4	锅温度传感器开路	
E5	IGBT 温度传感器短路	
E6	IGBT 温度传感器开路	
E7	风扇过温	锅底温度高于 200 ℃
E8	IGBT 过温	IGBT 温度高于 80 ℃