Random Phenomena

SAMPLE SPACE - All possible outcomes Probability = 1/2 = 50%. S = [H] {T}

TRIAL - Toss two coins simultaneously

SAMPLE SPACE - S = &H,H} {T,T} {H,T} {T,H}

The probability of an event is the number of outcomes in the event divided by the total number of possible outcomes. For a particular event, A:

$$P(\mathbf{A}) = \frac{\text{number of outcomes in } \mathbf{A}}{\text{Total number of outcomes}}$$

$$P(\text{not Black}) = \frac{6}{10} = 0.6 = 60\%$$

$$P(\text{Black}) + P(\text{not Black}) = 100\%$$

$$Total probability = 100\%$$

A person's blood type is A, B, AB or O. Suppose 45% of the population has type O blood, 40% type A, 11% type B and the rest type AB.

Display this information as a probability distribution.

Complement Rule:

Outcome

- The set of outcomes that are not in the event A is called the complement of A, denoted A^C.
- The probability of an event occurring is 1 minus the probability that it doesn't occur: $P(A) = 1 - P(A^{C})$

Events that have no outcomes in common (and, thus, cannot occur together) are called disjoint (or mutually exclusive).

Addition Rule for disjoint sets A and B. P(A or B) = P(A) + P(B)

$$P(\text{Even}) = \{2, 6, 22, 48, 34\}$$
 $P(\text{odd}) = \{3, 9, 11, 23, 25\}$
 $P(\text{Even OR ODD}) = P(\text{Even U Odd})$

Addition Rule for sels A and B which are NOT DISJOINT

 $P(A \text{ and } B) = P(A) \times P(B)$, provided that A and B are independent.

P(Gands)

Question 2: Blood type

A person's blood type is A, B, AB or O. Suppose 45% of the population has type O blood, 40% type A, 11% type B and the rest type AB.

= 0.51 = 51%.

1. What is the probability that a random blood donor a) has blood type AB? 0.04 = 4 1/2. b) has type A of type B blood? = P(A) + P(B) c) is not type O? 1-16)=1-0.45

Outcome	A	B	AB	0
P robubility	0.40	0.11	0.04	0.45

2. Among four random donors, what is the probability that

- a) all are type O?
- b) no-one is type AB?
- c) they are not all type A?
- d) at least one person is type B?
- e) the second person only is type O? P (all are type 0)

$$= P(0) \times P(0) \times P(0) \times P(0)$$

$$=0.45 \times 0.45 \times 0.45 \times 0.45 = 0.041 = 4.1%$$

40+11.0 + 04.0

- 0.55

Question 3: Probability notation activity

The table below provides figures on the distribution for marital status for a group of adults by gender.

	Single	Married	Widowed	Divorced	TOTALS
Male	187	510	19	45	761
Female	149	520	106	66	841
TOTALS	336	1030	125	111	1602

For a randomly selected person from this group, let A be the event that the person is male and let B be the event that the person is divorced.

2. Are events A and B mutually exclusive? Explain.

No,
$$P(Andb) \Rightarrow 0$$

 $P(A \cap B) = P(A) + P(B) - P(B)$

(c) =
$$P(AadB) = \frac{45}{1602} = 0.028$$

(d) = $P(B^c) = 1 - P(B)$
= $1 - 0.069$
= 0.931

 $(a) = P(A) = \frac{761}{1602} = 0.475$

(b)= P(B)= 111 = 0.069

Question 4: Venn diagram exercise

$$P(T) = 0.23$$

$$P(y) = 0.74$$
 $P(T) = 0.23$ $P(Y \text{ and } T) = 0.12$

For a particular demographic 74% of the group use YouTube, 23% use Twitter and 12% use YouTube and Twitter.

- Construct a Venn diagram to display the information.
- 2. Use your diagram to answer the following.
 - a) What percentage of people only use YouTube? 62%.
 - b) What is the probability that someone uses neither social media? 15% 040-15
 - c) What percentage of people use YouTube or Twitter?
 - d) Are using YouTube and using Twitter mutually exclusive events? Explain.
 - e) Are using YouTube and using Twitter independent events? Explain.

(c)
$$P(Y \text{ or } T) = P(Y) + P(T) - P(Y \text{ and } T)$$

= 0.74 + 0.23 - 0.12
= 0.85

Conditional probability (cont.)

To find the probability of the event B given the event A, we restrict our attention to the outcomes in A. We then find in what fraction of those outcomes B also occurred.

$$P(\mathbf{B}|\mathbf{A}) = \frac{P(\mathbf{A} \text{ and } \mathbf{B})}{P(\mathbf{A})}$$

Question 5: Conditional probability

Suppose 74% of the population use YouTube, 23% use Twitter and 12% use YouTube and Twitter.

 $P(Y) = 0.74^{\circ}$ $P(T) = 0.23 \sim$ $P(Y \text{ and } T) = 0.12^{\circ}$

- 1. Given that someone uses Twitter, what is the probability that they also use YouTube?
- 2. What is the probability that someone uses Twitter if it is known that they use YouTube?

Candibina

1)
$$P(Y/T) = \frac{P(Y \text{ and } T)}{P(T)} = \frac{0.12}{0.23} = 0.521$$

2)
$$P(T/y) = \frac{P(Y \text{ and } T)}{P(Y)} = \frac{6.12}{0.74} = 0.162$$

QUIZ PRACTICÉ

P(B and R) = 0.25

A recent survey of adults found that 50% of them regularly bike ride for exercise, 35% are runners and 25% ride and run.

a) Using a Venn diagram or otherwise, find the percentage of these adults that:

(i) run but don't ride (1 mark)
$$35\% - 25\% = 10\%$$

O40%

O60%

○32%

057%

(ii) run or ride (1 mark)
$$P(Bike OR RUN) = P(B) + P(R) - P(B and R)$$

$$= 0.50 + 0.35 - 0.25$$

$$= 0.60$$

O97%

O25%

O47%

25 +25 +10 = 60

```
(iii) ride if it is known that they run (2 marks)

(43.9%

(1.4%

(166.7%

(25%

(iv) neither run nor ride (1 mark)

(147%

(1-P(BORR)

(25%

(32%

(33%

(40%

(53%)
```

```
b) Are running and riding disjoint? (1 mark)

OYes, because adults only ride or run

No, because an adult can ride and run for exercise.

OYes, because riding a bike doesn't affect the likelihood of being a runner.

OYes, because an adult can ride and run for exercise.

ONo, because riding a bike and running are independent events.
```

Question 6: Tree diagram

A star player for a team is injured and has been given a 70% chance of playing in the next game. If the star plays, the team has an 80% chance of winning their next game. Without the star, the team has a 60% chance of winning.

Use a tree diagram to find the probability of the team winning the next game.

The expected value of a (discrete) random variable can be found by summing the products of each possible value and the probability that it occurs:

$$\mu = E(X) = \sum x \cdot P(x)$$

The variance for a random variable is:

$$\sigma^2 = Var(X) = \sum (x - \mu)^2 \cdot P(x)$$

-= ≥(x-μ)2. P(x)

The standard deviation for a random variable is:

$$\sigma = SD(X) = \sqrt{Var(X)}$$

Question 7: Discrete random variable

Follow example 3.58 on p. 118 of the text then find the mean and standard deviation for the following random variable.

X	1	2	3	4	5
P(x)	0.6	0.1	0.1	0.1	0.1

x	P(x)	x. P(x)	2-µ	(x+)2	(2-M)2 x P(x)
1	0.6	0.6	1-2 = -1	1	1x0.6 = 0.6
2	0.1	0.5	0	0	$Q \times Q \cdot \overline{Q} = Q \cdot Q$
3	0.1	0-3	1	1	1 x0.1 = 0.1
		0.4		4	4 x0.1 = 0.4
5	0.1	0.5	3	9	9×0.7 =0.9
	\	120		1	2.0

Mean,
$$\mu = E(X) = \sum x \cdot P(x) = 2$$

$$\mu = 1 imes 0.6 + 2 imes 0.1 + 3 imes 0.1 + 4 imes 0.1 + 5 imes 0.1 = 2$$

Standard deviation, S.D
$$\sigma = \left[\sum (x-\mu)^2 \cdot P(x) \right] = \left[2 \right] = 1.414$$

$$egin{aligned} \sigma^2 &= (1-2)^2 imes 0.6 + (2-2)^2 imes 0.1 + (3-2)^2 imes 0.1 + (4-2)^2 imes 0.1 + (5-2)^2 imes 0.1 \ &= 2 \ \sigma &= \sqrt{2} = 1.42 \end{aligned}$$

Online adulator

 $\underline{https://www.mathportal.org/calculators/statistics-calculator/probability-distributions-calculator.php}$

Enter Values for X (separate by $\, , \, : \, ; \,$ or blank space)

Enter Values for P(X) (separate by , : ; or blank space)

All values of P(X) must sum to one. Example: 1/3, 1/6, 0.5

The mean (expectation) of the given distribution is:

$$\mu=2$$

explanation

In order to find the mean (expectation) of the given distribution, we will use the following formula:

$$\mu = \sum x \cdot p(x)$$

So, first we need to multiply each value of X by each probability P(X), then add these results together. In this example we have:

$$\mu = 1 \cdot 0.6 + 2 \cdot 0.1 + 3 \cdot 0.1 + 4 \cdot 0.1 + 5 \cdot 0.1$$

$$\mu = 2$$

The standard deviation of the given distribution is:

 $\sigma = 1.4142$