Human■Aware Work Systems

Pilot Briefs & Runbook

Contents

- 1) Pilot Brief Bio■Aware Workforce Analytics (Team■Level, Privacy■First)
- 2) Pilot Brief Context■Aware HR Copilot (No Emotion Recognition)
- 3) Runbook Navigation Outline for Both Pilots

Prepared by: Insight Companion (Marketing Research & Competitive Analysis)

Date: October 09, 2025

Table of Contents

Pilot Brief — Bio-Aware Workforce Analytics (Team-Level, Privacy-First)	3
Pilot Brief — Context-Aware HR Copilot (No Emotion Recognition)	5
Runbook — Navigation Outline for Both Pilots	7

Pilot Brief 1 — Bio■Aware Workforce Analytics (Team■Level, Privacy■First)

Problem to prove

Managers need leading indicators of fatigue/heat risk that are simple, ethical, and useful for operational decisions—not medical surveillance. Research indicates leading indicators support proactive safety, and adoption hinges on usefulness, ease, pilotability, and compatibility.

Objective (60-90 days)

Quantify whether team level exposure signals (e.g., time in heat risk zones, shift fatigue flags) help managers prevent near misses or reprioritize work/rest schedules.

Hypotheses

⊌1: Alerting on WBGT/Heat Index thresholds at team level reduces time spent above risk thresholds by ≥20%.

H2: Teams using a standardized HRV protocol (same time, posture, duration) show clearer fatigue trends correlated with near∎miss patterns.

H3: Managers perceive ≥30% time saved vs. manual checks for heat/fatigue planning.

Scope & signals

Signals: Heat (WBGT/Heat Index), workload/time■on■task, optional opt■in HRV snapshots (protocolized), near■miss/proximity events from Safety Twin Lite.

Views: Team

■level only (no individual dashboards).

Privacy: Ingest \rightarrow compute team KPI \rightarrow discard raw biometrics; provide consent & retention statements (US/EU variants).

Success metrics (decision grade)

Decrease in time in high

■heat bands per shift.

Decrease in near miss frequency during high exposure windows.

Manager utility score ≥70% (clarity for planning).

Pilot extension / LOI for live deployment.

Data & methods

Use Safety Twin Lite map + WBGT/Heat Index model; add a lightweight HRV protocol to reduce noise. Weekly report: exposure minutes, alerts, actions taken, and near misses, with notes. Include prevention cost context from national injury cost data.

Timeline

Weeks 1–2: setup + baseline \rightarrow Weeks 3–8: intervention \rightarrow Weeks 9–10: readout.

Deliverables

Pilot dashboard access, weekly one ■pager, end ■of ■ pilot Decision Memo with metrics & recommendations.

Key references

Safety Science (leading indicators); National Safety Council Injury Facts (costs); HRV stress evidence (peer reviewed); adoption predictors (usefulness, ease, pilotability, compatibility).

Pilot Brief 2 — Context■Aware HR Copilot (No Emotion Recognition)

Problem to prove

HR needs faster onboarding/answers without privacy or compliance risk. The EU AI Act prohibits workplace emotion recognition; buyers prefer assistive GenAI that improves cycle time and quality.

Objective (60-90 days)

Demonstrate a reduction in onboarding cycle time and HR ticket backlog using a compliant copilot that answers policy questions, guides checklists, and drafts manager checklins—without emotion inference.

Hypotheses

H1: Time■to■proficiency for new hires decreases by 20–30% (access + mandatory tasks).

⊌42: Self■service resolution rate increases for routine HR questions (benefits, PTO, policies).

H3: Manager effort for onboarding admin decreases by ≥25% (tickets/time logs).

Scope & guardrails

Features: role■aware checklists, policy Q&A; with citations, draft 30/60/90 plans, calendar nudges.

Compliance: EU mode (no emotion AI per Article 5(1)(f)); US mode may allow aggregate text sentiment only with explicit consent.

Data: HRIS/LMS knowledge base indexing; no biometric/affect data.

Success metrics (decision ■ grade)

Reduction in average onboarding days (access + training complete).

Increase in first■month task completion rate.

Reduction in Tier■1 HR ticket volume/handle time.

CSAT ≥ 4.2/5 for new hires & managers.

Timeline

Weeks 1–2: connect knowledge base & SOPs → Weeks 3–8: run on a cohort → Weeks 9–10: readout.

Deliverables

Copilot access, weekly KPI snapshots, ROI worksheet (time saved, deflected tickets), final Decision Memo.

Key references

EU AI Act Article 5(1)(f); analyst research on GenAI in HR (recruiting/onboarding/service); adoption and governance best practices.

Runbook — Navigation Outline for Both Pilots

Steps

Define the decision threshold (e.g., ≥20% reduction in high heat exposure minutes; ≥25% onboarding cycle time reduction).

Pick one site/cohort (single construction site; single new hire class).

Baseline for 1–2 weeks; capture exposure minutes/near misses or onboarding timelines and ticket volumes.

Intervention for 6–8 weeks; turn on alerts/copilot; log actions.

Measure & attribute vs. baseline or prior cohorts; note confounders (weather, staffing, workload spikes).

Executive readout: Problem \rightarrow Intervention \rightarrow Before/After \rightarrow Quotes \rightarrow Risks/Compliance \rightarrow Decision.

Scale or stop: convert to a 60 day paid pilot with integration plan or document learnings and adjust.