Project 7

MGMTMFE 405

Runhong Huang

Question 1.

 $\Delta X = \sigma \sqrt{\Delta}$

	Explicit	implicitly	CN method
Pu	0.502236	-0.502236	-0.251118
Pm	-8e-05	2.00008	1.50004
Pd	0.497764	-0.497764	-0.248882

$$\Delta X = \sigma \sqrt{3} \Delta$$

	Explicit	implicitly	CN method
Pu	0.167958	-0.167958	-0.0839788
Pm	0.666587	1.33341	1.16671
Pd	0.165376	-0.165376	-0.0826878

$$\Delta X = \sigma \sqrt{4} \Delta$$

	Explicit	implicitly	CN method
Pu	Pu: 0.126118	Pu:-0.126118	Pu:-0.063059
Pm	Pm: 0.74992	Pm: 1.25008	Pm: 1.12504
Pd	Pd: 0.123882	Pd:-0.123882	Pd:-0.061941

III

We compared the put option price of produced by three methods with the value calculated from the Black Scholes formula. We can see from the graph that all of the three methods give a good approximation of the Black-Scholes values. The Cranck Nicholson Method and Implicitly methods outperforms the Explicitly methods, giving a much closer estimation of the option price.

	BS	Explicit	Implicity	Crank Nicholson
European Put	0.4647	0.48584	0.463115	0.463416
option				

Question 2.

	Explicit	implicitly	CN method
Call option	0.622911	0.660353	0.660819
Put option	0.497392	0.48076	0.481251

