ASSIGNMENT-III

BUILD CNN MODEL for CLASSIFICATION of FLOWERS

Assignment Date 30 September 2022

Student Name Prajisha B

Student Roll Number 963619104012

Maximum Marks 2 Marks

Question-1:

Download the dataset

Question-2:

Image Augmentation

Solution

from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True)

test_datagen=ImageDataGenerator(rescale=1./255)

Question-3:

Create model

Solution

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten model=Sequential()

3)Create Model	
[] from tensorflow.keras.models import Sequential	
[] from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten	
[] model=Sequential()	
	↑ ↓ © □ / □ i i

Question-4:

Add Layers (Convolution, MaxPooling, Flatten, Dense-(Hidden Layers), Output)

Solution

a)Convolution Layer

model.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1,1),input_shape=(64,64,3)))

b) MaxPooling Layer

model.add(MaxPooling2D(pool_size=(2,2)))

c) Flatten Layer

model.add(Flatten())

d) Dense(Hidden layer)

model.add(Dense(300,activation="relu"))
model.add(Dense(300,activation="relu"))

e) Output layer

model.add(Dense(5,activation="softmax"))

Question-5:

Compile The Model

Solution

model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')

```
5)Compile the model

[ ] model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')
```

Question-6:

Fit The Model

Solution

 $model.fit(x_train,epochs=5,steps_per_epoch=len(x_train),validation_data=x_test,validation_steps=len(x_test))$

a)Convolution Layer		
[] model.add(ConvolutionZD(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1,1),input_shape=(64,64,3)))		
b)MaxPooling Layer		
[] model.add(MaxPooling2D(pool_size-(2,2)))		
c)Flatten		
[] model.add(flatten())		
d)Dense(Hidden layer)		
[] model.add(Dense(300,activation="relu"))		
[] model.add(Dense(300,activation="relu"))		
d)Dense(Hidden layer)		
[] model.add(Dense(300,activation="relu"))		
[] model.add(Dense(300,activation="relu"))		
e)Output layer		
<pre>model.add(Dense(5,activation="softmax"))</pre>	↑ ↓ ⊕ 目 ‡ № î :	

```
↑ ↓ © 目 / □ î :
6)Fit the model
[\ ] \ \ model.fit(x\_train,epochs=5,steps\_per\_epoch=len(x\_train),validation\_data=x\_test,validation\_steps=len(x\_test))
           138/138 [====
          ========] - 26s 190ms/step - loss: 0.1125 - accuracy: 0.9623 - val_loss: 2.1169 - val_accuracy: 0.6735
             138/138 [===
           <keras.callbacks.History at 0x7f5d21b18710>
```

Question-7:

Save The Model

Solution

model.save("Flowers.h5")

7)Save the model [] model.save("Flowers.h5")

Question-8:

Test The Model

Solution import

numpy as np

from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image model=load model("Flowers.h5") img=image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64,64)) x=image.img_to_array(img) x=np.expand_dims(x,axis=0) pred=model.predict(x) pred index=['daisy','dandelion','rose','sunflower','tulip'] index[np.argmax(pred)]

8)Test the model	
[] import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image	
[] model=load_model("Flowers.h5")	
[] img-image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target	_size=(64,64))
[] img	
[] x=image.img_to_array(img)	
[] x=np.expand_dims(x,axis=0)	
[] x=image.img_to_array(img)	
[] x=np.expand_dims(x,axis=0)	
[] pred-model.predict(x)	
[] pred	
array([[1., 0., 0., 0., 0.]], dtype=float32)	
[] index=['daisy','dandelion','rose','sunflower','tulip']	↑ ↓ ⊕ □ ‡ 🖟 🖥 🗄
index[np.argmax(pred)]	4 4 6 4 F F 1
'daisy'	