

CloudNativeCon

Europe 2022

WELCOME TO VALENCIA

Autoscaling Kubernetes Deployments: A (Mostly) Practical Guide

Natalie Serrino, New Relic

About

Software engineer / TLM at New Relic

Contributor to Pixie

Observability and performance

Formerly worked in the data space

PromCon

Natalie Serrino

Content

- What is Kubernetes autoscaling (and why is it useful)?
- What knobs does Kubernetes autoscaling give us?
- Selecting an autoscaling metric for your application
- A Turing-complete autoscaler (?!)

What is Kubernetes autoscaling?

Resource sizing in Kubernetes

How do you select the following values?

of nodes in your cluster # of pods in a deployment Amount of resources to give a pod

Methods...

- Random guess
- Copypasta
- Proactive iteration
- Reactive iteration

Why is autoscaling useful?

- Ideal resource allocation depends on workload
- Workloads are often spikey and unpredictable

- Too few resources → bad user experience, latency, outages W
- Too many resources → wasteful, expensive

The types of autoscaling in Kubernetes

Kubernetes autoscaler	adds/removes	to your	based on
Cluster Autoscaler	Nodes	Cluster	Resource utilization
VerticalPodAutoscaler	Resources like CPU/Memory	Existing replicas	Resource utilization
HorizontalPodAutoscaler	Replicas	Workload	Resource utilization or user-defined metrics

Cluster Autoscaler

- Set pod resource requests and limits
- Make sure resource requests reflect actual usage
- Specify PodDisruptionBudgets
- Compare limits with available quota from your cloud provider (if applicable)
- Kubernetes contributors tested for <=1000 nodes with 30 pods each</p>

Image Credit: Understanding Kubernetes Cluster Autoscaling by Ajay Tripathy

VerticalPodAutoscaler (VPA)

- Can still set resource caps with VPA
- Updates may result in container restarts or pod rescheduling
- Use in cluster autoscaler to avoid VPA recommending more than available resources
- Can't use with HorizontalPodAutoscaler on the same application for CPU/memory yet
- Has not yet been tested on large clusters

Image Credit: Red Hat, How Full is my Cluster, Raffaele Spazzoli

HorizontalPodAutoscaler (HPA)

- Lots of flexibility for metric selection
- Check your service client affinity policies to ensure even load distribution
- When scaling on CPU/memory, make sure to set resource requests
- Can't use with VerticalPodAutoscaler on same application on CPU/memory yet

Demo: Horizontal pod autoscaling on CPU

HPA autoscaling equation

```
outputReplicas = ceil(
    currentReplicas * ( currentMetricValue / desiredMetricValue )
)
```

What knobs does Kubernetes autoscaling give us?

Scaling up and down

- How to set the minimum and maximum number of replicas?
- How often to look for changes in the metric?
- How quickly to add or remove pods?
- How many pods to add/remove in a single period?

Capping min/max pods

Stabilization period

Stabilization period reduces pod churn

Capping max pods to add/remove per period

Capping max step size reduces pod churn

Selecting an autoscaling metric for your application

HPA Metric Types

Category	Туре	Description	Examples
Resource Metrics	Built-in	Resource utilization metrics for pods and nodes only	Currently limited to CPU and memory
Custom Metrics	User-defined	Custom metrics about Kubernetes resources	Latency, throughput, queue depth
External Metrics	User-defined	Custom metrics NOT about Kubernetes resources	# of customers using website

Possible bottlenecks in an application

- CPU
- Memory
- Network
- # of worker threads
- # of outbound connections
- Downstream dependencies
- Queue depth
- ...Many more

The best metric to scale on depends on your workload!

Before #1

After #1

Before #2

After #2

A Turing-complete autoscaler?

Turing machine

Turing machines are capable of any computation, given enough time and tape.

Input program

Subleq

"One-instruction set computer", sufficient for Turing completeness.

```
Instruction subleq a, b, c
    Mem[b] = Mem[b] - Mem[a]
    if (Mem[b] \leq 0)
        goto c
```

Subleg pseudocode (credit: Wikipedia)

HPA subleq Turing machine

Input program: deployment name

Setting a certain # of output pods

```
outputReplicas = ceil(
    currentReplicas * ( currentMetricValue / targetMetricValue )
                                  Backwards calulating "current metric value"
currentMetricValue = (
    targetMetricValue * ( outputReplicas / currentReplicas )
```

Demo: Turing-complete autoscaler

SIG instrumentation

<u>github.com/kubernetes-sigs/custom</u> <u>-metrics-apiserver</u>

Load generator

github.com/rakyll/hey

CNCF Sandbox Project

github.com/pixie-io/pixie blog.px.dev

