Corrigendum: SE-Sync: A Certifiably Correct Algorithm for Synchronization over the Special Euclidean Group

David M. Rosen, Luca Carlone, Afonso S. Bandeira, and John J. Leonard

Abstract

This short note presents a correction for an error in the proof of Theorem 12 in the article "SE-Sync: A Certifiably Correct Algorithm for Synchronization over the Special Euclidean Group" [3] and its companion technical report [2]. Theorem 12 itself remains correct as originally stated.

1 Context

The article [3] and its companion technical report [2] describe an efficient algorithmic approach for computing solutions of the following special Euclidean synchronization problem in a non-adversarial noise regime: estimate the values of a set of n unknown group elements $x_1, \ldots, x_n \in SE(d)$ given noisy measurements $\tilde{x}_{ij} \in SE(d)$ of a subset $\vec{\mathcal{E}} \subset [n] \times [n]$ of their pairwise relative transforms $x_{ij} \triangleq x_i^{-1}x_j$. Under a suitable noise model, this problem can be formalized as the following maximum-likelihood estimation [3, Sec. 3.2]:

$$p_{\text{MLE}}^* = \min_{\substack{t_i \in \mathbb{R}^d \\ R_i \in SO(d) \ (i,j) \in \vec{\mathcal{E}}}} \sum_{\kappa_{ij} ||R_j - R_i \tilde{R}_{ij}||_F^2 + \tau_{ij} ||t_j - t_i - R_i \tilde{t}_{ij}||_2^2,$$
(1)

where we have exploited the identification $SE(d) \cong \mathbb{R}^d \rtimes SO(d)$ in order to write an element $x \in SE(d)$ componentwise as x = (t, R) for $t \in \mathbb{R}^d$ and $R \in SO(d)$.

After some algebraic manipulation (and a relaxation from SO(d) to O(d)), one can derive the following estimator for the orientation components of the unknown states [3, Sec. 4]:

$$p_{\mathcal{O}}^* = \min_{R \in \mathcal{O}(d)^n} \operatorname{tr}(\tilde{Q}R^{\mathsf{T}}R); \tag{2}$$

here $R \triangleq (R_1, \ldots, R_n)$ is a $d \times dn$ block matrix obtained by concatenating the orientations $R_1, \ldots, R_n \in \mathcal{O}(d)$, and $\tilde{Q} \in \mathbb{S}^{dn}_+$ is a symmetric data matrix constructed from the measurements \tilde{x}_{ij} . Note that the objective in (2) is invariant under the diagonal left-action \bullet of $\mathcal{O}(d)$ on $\mathcal{O}(d)^n$:

$$G \bullet (R_1, \dots, R_n) \triangleq (GR_1, \dots, GR_n),$$
 (3)

and therefore minimizers of (2) are non-unique; indeed, given any $R \in O(d)^n$, the orbit:

$$\mathcal{O}(R) \triangleq \{G \bullet R \mid G \in \mathcal{O}(d)\} \subset \mathcal{O}(d)^n \tag{4}$$

generated by R under \bullet is comprised of "equivalent" candidate solutions of (2). In consequence, when quantifying the estimation error of an estimate R^* of \underline{R} obtained as a minimizer of (2), it

is important to do so in a manner that accounts for this gauge symmetry. To that end, [2, 3] make use of the following *orbit distance*:

$$d_{\mathcal{O}}(X,Y) \triangleq \min_{G \in \mathcal{O}(d)} ||X - G \bullet Y||_F, \tag{5}$$

which measures the Frobenius-norm distance between the two nearest representatives of the orbits $\mathcal{O}(X)$ and $\mathcal{O}(Y)$ determined by X and Y, respectively. Theorem 12 of [2, 3] then provides an upper bound on the estimation error $d_{\mathcal{O}}(R, R^*)$, which we restate here for convenience:

Theorem (Theorem 12 of [2, 3]). Let Q be the data matrix of the form appearing in (2) constructed using the true relative transforms $\underline{x}_{ij} = (\underline{t}_{ij}, \underline{R}_{ij})$, $\underline{R} \in SO(d)^n$ the matrix composed of the true rotational states, and $R^* \in O(d)^n$ an estimate of \underline{R} obtained as a minimizer of (2). Then the estimation error $d_{\mathcal{O}}(\underline{R}, R^*)$ admits the following upper bound:

$$\sqrt{\frac{4dn\|\tilde{Q} - \underline{Q}\|_2}{\lambda_{d+1}(Q)}} \ge d_{\mathcal{O}}(\underline{R}, R^*). \tag{6}$$

2 Error in the proof of Theorem 12

The error in the proof of Theorem 12 occurs in the argument used to establish the following inequality (cf. equations (135)–(138) of [3], corresponding to equations (147)–(150) of [2]):

$$||P||_F^2 \ge \frac{1}{2} d_{\mathcal{O}}(\underline{R}, R^*)^2, \tag{7}$$

where P is the orthogonal projection of R^* onto the orthogonal complement of \underline{R} in $O(d)^n$ under the Frobenius inner product.

Theorem 5 of [2, 3] establishes:

$$d_{\mathcal{O}}(\underline{R}, R^*)^2 = 2dn - 2\left\|\underline{R}R^{*\mathsf{T}}\right\|_{*} \tag{8}$$

and [3, eq. (131)] (resp. [2, eq. (143)]) derives:

$$||P||_F^2 = dn - \frac{1}{n} ||\underline{R}R^{*\mathsf{T}}||_F^2.$$
 (9)

Letting

$$RR^{*\mathsf{T}} = U \operatorname{Diag}(\sigma_1, \dots, \sigma_d) V^{\mathsf{T}}$$
 (10)

be a singular value decomposition of $\underline{R}R^{*\top}$, equation (8) is equivalent to:

$$d_{\mathcal{O}}(\underline{R}, R^*)^2 = 2dn - 2\sum_{i=1}^{d} \sigma_i,$$
(11)

and

$$\left\|\underline{R}R^{*\mathsf{T}}\right\|_{F}^{2} = \sum_{i=1}^{d} \sigma_{i}^{2}.\tag{12}$$

In light of (9), (11), and (12), the argument for (7) in [2, 3] attempts to establish an *up*-per bound ϵ^2 for $\|\underline{R}R^{*\mathsf{T}}\|_F^2$ in terms of $\delta^2 \triangleq d_{\mathcal{O}}(\underline{R}, R^*)^2$ as the optimal value of the following

constrained optimization problem:

$$\epsilon^2 = \max_{\sigma_i \ge 0} \sum_{i=1}^d \sigma_i^2$$
s.t.
$$2dn - 2\sum_{i=1}^d \sigma_i = \delta^2$$
(13)

(cf. equations (135) of [3] and (147) of [2]); note that here the decision variables σ_i are each constrained to be nonnegative, since they represent singular values.

The argument proceeds by introducing a Lagrange multiplier $\lambda \in \mathbb{R}$ corresponding to a first-order KKT point $\sigma^* \in \mathbb{R}^d$ of (13) satisfying:

$$2\sigma^* + 2\lambda \mathbb{1}_d = 0,$$

$$2dn - 2\sum_{i=1}^d \sigma_i^* = \delta^2.$$
 (14)

Solving (14) produces:

$$\sigma^* = \left(n - \frac{\delta^2}{2d}\right) \mathbb{1}_d,\tag{15}$$

corresponding to an objective value in (13) of:

$$\sum_{i=1}^{d} (\sigma_i^*)^2 = d \left(n - \frac{\delta^2}{2d} \right)^2.$$
 (16)

Unfortunately, while σ^* is indeed a KKT point of (13), it is *not* a maximizer. As observed by Preskitt [1, Appendix D], equation (13) is equivalent to:

$$\epsilon^2 = \max_{\sigma \in \mathbb{R}^d} \|\sigma\|_2^2$$
s.t.
$$\|\sigma\|_1 = dn - \frac{\delta^2}{2}.$$
 (17)

Standard norm inequalities give:

$$\frac{1}{\sqrt{d}} \|x\|_1 \le \|x\|_2 \le \|x\|_1,\tag{18}$$

with equality on the left for $x = c\mathbb{1}_d$ and equality on the right for $x = ce_i$, where $c \in \mathbb{R}$. In particular, we see that the KKT point σ^* identified in (15) is actually a *minimizer* of (13), rather than a *maximizer*. The error in the derivation of (15) is that the KKT system (14) does not include the inequality constraints present in the original problem (13), and in fact the maximizers

$$\mu_i^* \triangleq \left(dn - \frac{\delta^2}{2}\right) e_i, \quad i \in [d] \tag{19}$$

of (13) occur at points where at least one of the inequality constraints is binding. In light of (17) and (18), the correct optimal value of (13) is:

$$\epsilon^2 = \left(dn - \frac{\delta^2}{2}\right)^2 = d^2 \left(n - \frac{\delta^2}{2d}\right)^2,\tag{20}$$

which is greater than (16) by a factor of d. Unfortunately, this corrected bound is no longer sufficient to establish (7) (and, by extension, Theorem 12) using the original argument of [2, 3]; indeed, propagating the correction (20) through equations (139)–(140) of [3] (resp. (151)–(152) of [2]) produces:

$$||P||_F^2 \ge \frac{d}{2}d_{\mathcal{O}}(R, R^*)^2 - dn(d-1),$$
 (21)

which is weaker than the trivial (and asymptotically sharp) bound $||P||_F^2 \ge 0$ by a large constant dn(d-1) in the limit $d_{\mathcal{O}}(\underline{R}, R^*) \to 0^+$.

3 An alternative argument

Fortunately, it is still possible to establish (7) using an alternative (and more elegant) argument, also due to Preskitt [1, Appendix D]. In light of (8) and (9), inequality (7) is equivalent to:

$$\frac{1}{n} \left\| \underline{R} R^{*\mathsf{T}} \right\|_{F}^{2} \leq \left\| \underline{R} R^{*\mathsf{T}} \right\|_{*}. \tag{22}$$

Once again making use of the singular value decomposition (10), and defining $\sigma \triangleq (\sigma_1, \dots, \sigma_d)$, (22) is in turn equivalent to:

$$\frac{1}{n} \|\sigma\|_2^2 \le \|\sigma\|_1. \tag{23}$$

It therefore suffices to establish (23). By Hölder's inequality:

$$\|\sigma\|_2^2 \le \|\sigma\|_1 \|\sigma\|_{\infty},\tag{24}$$

and

$$\|\sigma\|_{\infty} = \left\|\underline{R}R^{*\mathsf{T}}\right\|_{2} = \left\|\sum_{i=1}^{n} \underline{R}_{i} R_{i}^{*\mathsf{T}}\right\|_{2} \le \sum_{i=1}^{n} \left\|\underline{R}_{i} R_{i}^{*\mathsf{T}}\right\|_{2} = n \tag{25}$$

since $\underline{R}_i R_i^{*\mathsf{T}}$ is orthogonal. Substituting (25) into (24) and dividing by n produces (23). We therefore conclude that (7) holds, as desired.

Acknowledgments

We would like to acknowledge and thank B.P. Preskitt and R. Saab for bringing this error to our attention, and for supplying the alternative argument used in Section 3.

References

- [1] B.P. Preskitt. *Phase Retrieval from Locally Supported Measurements*. PhD thesis, The University of California, San Diego, 2018.
- [2] D.M. Rosen, L. Carlone, A.S. Bandeira, and J.J. Leonard. SE-Sync: A certifiably correct algorithm for synchronization over the special Euclidean group. Technical Report MIT-CSAIL-TR-2017-002, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, February 2017.
- [3] D.M. Rosen, L. Carlone, A.S. Bandeira, and J.J. Leonard. SE-Sync: A certifiably correct algorithm for synchronization over the special Euclidean group. *Intl. J. of Robotics Research*, 38(2–3):95–125, March 2019.