Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа ядерных технологий Направление – Ядерные физика и технологии Отделение ядерно-топливного цикла

Отчет

по лабораторной работе № 4 «Изучение взаимосвязи рабочих параметров газовой центрифуги с параметрами разделительного каскада» по дисциплине «Теория газовых центрифуг»

Исполнитель:			
Студент, гр. 0А8Д			А.С. Кузьменко
	подпись	дата	
Проверил:			
Доцент ОЯТЦ			С.Н. Тимченко
	подпись	дата	

ЦЕЛЬ РАБОТЫ: Изучить взаимосвязь рабочих параметров газовой центрифуги с параметрами разделительного каскада.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Введение

Используемые каскады из газовых центрифуг для изотопного обогащения урана представляют собой типичный прямоугольный каскад с циркуляцией, схема которого приведена на рисунке 1. Ступени такого каскада состоят из *i* газовых центрифуг, параллельно соединенных на общие потоки отбора, отвала и питания. Каждая центрифуга выполняет здесь роль разделительного элемента и если каждая из них имеет оптимальные рабочие характеристики и работает в оптимальном режиме, то и сам каскад будет иметь оптимальные рабочие параметры.

К рабочим параметрам каскада относятся

- 1. Производительность ступеней
- 2. Мощность разделения каскада
- 3. Число ступеней в регенеративной, обогатительной части и для всего каскада в целом.
- 4. Внешние параметры каскада поток питания F, с концентрацией легкого изотопа c_F , поток отбора P, с концентрацией легкого изотопа c_P и поток отвала W, с концентрацией легкого изотопа c_W .
- 5. Внутренние переменные каскада потоки и их концентрации по ступеням. В регенеративной части потоки питания Q_j , с концентрацией легкого изотопа c_j , потоки отбора Q_j , с концентрацией легкого изотопа c_j , потоки отвала Q_j , с концентрацией легкого изотопа c_j , где j текущий номер ступени в регенеративной части каскада. В обогатительной части потоки питания Q_i , с концентрацией легкого изотопа c_i , потоки отбора Q_i с концентрацией легкого изотопа c_i , потоки отвала Q_i с концентрацией легкого изотопа c_i , потоки отвала e_i с концентрацией легкого изотопа e_i номер ступени обогатительной части каскада.

- 6. Общий поток вещества в каскаде, Ј.
- 7. Время установления стационарного состояния в каскаде, tcт

Все указанные параметры имеют свои математические зависимости. Мы рассмотрим на примере идеального каскада.

1.2. Основные соотношения для рабочих параметров идеального каскада

Графическая форма идеального каскада, представляющая собой изменение производительности ступени $Q_{i,j}$ или нагрузки на ступень, от 3 номера ступени n представлена на рисунке 2. Для такого каскада можно записать следующие основные соотношения.

Рисунок 1 – Схема каскада

Рисунок 2 – Схема формы каскада

Число ступеней в регенеративной части каскада, $n_{\rm w}$.

$$n_{W} = \ln \left(\frac{c_{F} \left(1 - c_{W} \right)}{\left(1 - c_{F} \right) \cdot c_{W}} \right) / \ln \left(a_{\Pi} \right) \tag{1}$$

где a_{Π} – полный коэффициент разделения для газовой центрифуги.

Число ступеней в обогатительной части каскада, $n_{\rm P}$.

$$n_P = \ln \left(\frac{c_P \left(1 - c_F \right)}{\left(1 - c_P \right) \cdot c_F} \right) / \ln \left(a_{II} \right)$$
 (2)

Общее число ступеней в каскаде, n

$$n = n_P + n_W = n_P = \ln \left(\frac{c_P (1 - c_W)}{(1 - c_P) \cdot c_W} \right) / \ln (a_{II})$$
 (3)

Концентрация легкого изотопа в питании для ступеней регенеративной части каскада

$$c_{j} = \frac{1}{1 + \frac{1 - c_{W}}{c_{W}} \cdot \frac{1}{\exp\left(\ln\left(a_{\Pi}\right) \cdot n_{j}\right)}}$$
(4)

где $n_{\rm j}$ – номер ступени в сторону отвала.

$$c_{i} = \frac{1}{1 + \frac{1 - c_{F}}{c_{F}} \cdot \frac{1}{\exp(\ln(a_{II}) \cdot n_{i})}}$$

$$(5)$$

где $n_{\rm i}$ — номер ступени в сторону отвала.

Производительность отдельной ступени в регенеративной части каскада, $Q_{\rm j}$

$$Q_{j} = \frac{a_{ff} + 1}{a_{ff} - 1} \cdot W \cdot c_{W} \cdot \left(\frac{1 - c_{F}}{c_{F}}\right) \cdot \left(a_{ff}^{nw+1} - a_{ff}^{j}\right) \cdot \left[1 + \left(\frac{c_{F}}{1 - c_{F}}\right) \cdot a_{ff}^{-j}\right], \text{ KF/c}$$
(6)

где $a_{\rm ff}$ – эффективный коэффициент разделения газовой центрифуги.

$$a_{ff} = \sqrt{a_{II}} \tag{7}$$

Производительность отдельной ступени в обогатительной части каскада, $Q_{\rm i}$

$$Q_{i} = \frac{a_{ff} + 1}{a_{ff} - 1} \cdot P \cdot c_{P} \cdot \left(\frac{1 - c_{F}}{c_{F}}\right) \cdot \left(a_{ff}^{-i} - a_{ff}^{-(np+1)}\right) \cdot \left[1 + \left(\frac{c_{F}}{1 - c_{F}}\right) \cdot a_{ff}^{j}\right], \text{ KF/c}$$
(8)

где i — номер ступени, куда подается питание, $n_{\rm p}$ — количество ступеней в отборе.

Внешние потоки вещества в каскаде W и F рассчитываются через параметры, которые обычно задаются заранее: p, c_P , c_F , c_W .

$$W = P \cdot \frac{c_P - c_F}{c_F - c_W}, \text{ K}\Gamma/c$$
 (9)

$$F = W + P = P \cdot \frac{c_P - c_W}{c_F - c_W}, \text{ KT/c}$$

$$\tag{10}$$

При этом для каскада всегда должно выполнятся условие материального баланса по веществу

$$F = W + P \tag{11}$$

и по легкому изотопу

$$F \cdot c_F = W \cdot c_W + P \cdot c_P \tag{12}$$

Суммарный поток вещества в каскаде

$$J = \frac{a_{ff} + 1}{\left(a_{ff} - 1\right) \cdot \ln\left(a_{ff}\right)} \cdot \begin{bmatrix} W \cdot \left(2 \cdot c_{W} - 1\right) \cdot \ln\left(\frac{c_{W}}{1 - c_{W}}\right) + \\ +P \cdot \left(2 \cdot c_{P} - 1\right) \cdot \ln\left(\frac{c_{P}}{1 - c_{P}}\right) - \\ -F \cdot \left(2 \cdot c_{F} - 1\right) \cdot \ln\left(\frac{c_{F}}{1 - c_{F}}\right) \end{bmatrix}, \text{ KIT/C}$$

$$(13)$$

Мощность разделения каскада

$$D = W \cdot (2 \cdot c_W - 1) \cdot \ln \left(\frac{c_W}{1 - c_W}\right) + P \cdot (2 \cdot c_P - 1) \cdot \ln \left(\frac{c_P}{1 - c_P}\right) - F \cdot (2 \cdot c_F - 1) \cdot \ln \left(\frac{c_F}{1 - c_F}\right), \text{ KG/C}$$

$$(14)$$

Количество газовых центрифуг по ступеням каскада В регенеративной части:

$$N_{j} = \frac{Q_{j}}{\dot{G}},\tag{15}$$

В обогатительной части:

$$N_i = \frac{Q_i}{\dot{G}},\tag{16}$$

где \dot{G} – весовая производительность газовой центрифуги

$$\dot{G} = 2\pi\eta \cdot \left(\frac{r_a^2 - r_i^2}{L}\right), \text{ KF/c}$$
(17)

Здесь L - длинна ротора, м; $r_{\rm a}$ — периферийный радиус, м; $r_{\rm i}$ — внутренний радиус ротора, м; η — коэффициент вязкости, $\frac{\kappa \mathcal{E}}{M \cdot c}$.

$$\eta = 4 \cdot 10^{-5} \cdot \sqrt{\frac{\mu_{cpeo}}{T}},\tag{18}$$

где T - температура изотопной газовой смеси, K; μ_{cpeo} — средний молекулярный вес изотопной смеси

$$\mu_{cneo} = \mu_1 \cdot c_1 + \mu_2 \cdot c_2 \tag{19}$$

Здесь μ_1, c_1, μ_2, c_2 — молекулярные веса и дольные концентрации легкого и тяжелого изотопов, соответственно.

Время установления стационарного состояния в каскаде, $t_{\rm cr}$. Если $a_{\rm II} \! < \! 2$, то

$$t_{cm} = 2 \cdot \frac{t_{\min}}{\varepsilon^2_{\Pi}} \cdot Y_{H.A.},$$
 (20)

При полном коэффициенте разделения $a_{\Pi} \ge 2$,

$$t_{cm} = 2 \cdot t_{\min} \cdot n, \text{ c} \tag{21}$$

Здесь $\varepsilon_{\it \Pi}$ – полный коэффициент обогащения

$$\varepsilon_{\Pi} = a_{\Pi} - 1 \tag{22}$$

 $Y_{\text{н.л.}}$ — функция наполнения каскада легким изотопом

$$Y_{H.J.} = \left(\frac{c_F + c_P - 2 \cdot c_F}{c_P - c_W}\right) \cdot \ln \left[\frac{c_P}{1 - c_P} \cdot \frac{1 - c_W}{c_W} - \frac{c_F + c_W}{c_W \left(1 - c_W\right)}\right]$$
(23)

 $t_{
m min}$ — минимальное время установления стационарного состояния в роторе газовой центрифуги

$$t_{\min} = \frac{L^2}{2D}, c \tag{24}$$

В данном случае D – коэффициент диффузии

$$D = \frac{0,3325}{p_{ra}} \cdot \sqrt{\frac{T}{\mu_{cpeo}}}, \ \frac{M^2}{c}$$
 (25)

где $p_{\rm ra}$ — давления газа на периферии ротора, Па.

Используя полученные соотношения, можно определить форму идеального каскада для любой изотопной газовой смеси при заданных значениях p, c_P , c_W , c_F .

В общем виде типичная форма идеального каскада из газовых центрифуг представлена на рисунке 3. Для прямоугольного каскада, когда $Q_i = Q_i = Q$, число центрифуг в каскаде определяется как

$$N = Q \cdot \frac{n}{\dot{G}} \tag{26}$$

Графическая форма такого каскада представлена на рисунке 4. Здесь при постоянной концентрации легкого изотопа в питании: а-пониженные концентрации легкого изотопа в отвале и в отборе, б-повышенные концентрации легкого изотопа в отвале и в отборе.

Кроме того, из приведенных соотношений следует, что рабочие параметры газовой центрифуги непосредственно влияют на рабочие параметры каскада.

1.3. Характер влияния рабочих параметром газовой центрифуги на рабочие параметры каскада

Рисунок 3 – Типичная форма идеального каскада из ГЦ

Рисунок 4 — Графическая форма такого каскада

Из формул (1÷3) следует, что чем больше полный коэффициент разделения газовой центрифуги, тем меньше число ступеней в каскаде и тем меньше время установления стационарного состояния (формулы 3, 21, 22). С уменьшением эффективного коэффициента разделения, αff, возрастает поток разделяемого продукта по ступеням и общий поток вещества в каскаде (формулы 6. 8, 14), а, следовательно, при постоянной производительности газовых центрифуг (формула 18) будет увеличиваться их общее количество в каскаде. При этом возрастает объем оборудования, капитальные и энергетические другой затраты. стороны, возрастанием производительности используемых газовых центрифуг сокращается их количество по ступеням и по всему каскаду в целом, исходя из этого, более предпочтительными являются надкритические центрифуги. Очень важным фактором является также выбор оптимального режима работы самой центрифуги, когда улучшается ее разделительная способность и повышается выход обогащенного продукта.

2. ПРАКТИЧЕСКАЯ ЧАСТЬ

Определить рабочие параметры каскада для газовой изотопной смеси, 80 Kr - 83 Kr, при следующих исходных данных: $P_{\rm ra}$ =13300 Па; L = 0,5 м; $r_{\rm a}$ = 0,05 м; $\underline{r}_{\rm i}$ = 0,025 м; T = 300 K; R = 8,32·10⁻³ град/кмоль·дж; $c_{\rm F}$ = 0,007; $c_{\rm W}$ = 0,003; $c_{\rm P}$ = 0,9; $c_{\rm F}$ = $c_{\rm 1}$; $c_{\rm 2}$ =1- $c_{\rm 1}$; $\alpha_{\rm \Pi 1}$ = 1,56; P = 2,22·10⁻⁶ кг/с, (84 Kr - 86 Kr, $\alpha_{\rm \Pi 1}$ = 1,3225 - дополнительно сделать расчет для данной смеси изотопов при указанном полном коэффициенте разделения).

Газовая изотопная смесь 80 Kr - 83 Kr.

Определено число ступеней в регенеративной, обогатительной частях и во всем каскаде:

$$n_W = \ln\left(\frac{0,007 \cdot (1 - 0,003)}{(1 - 0,007) \cdot 0,003}\right) / \ln(1,56) \approx 2$$
 (27)

$$n_P = \ln\left(\frac{0.9 \cdot (1 - 0.007)}{(1 - 0.9) \cdot 0.007}\right) / \ln(1.56) \approx 17$$
 (28)

$$n = 2 + 17 = 19 \tag{29}$$

Определена весовая производительность газовой центрифуги:

$$\eta = 4 \cdot 10^{-5} \cdot \sqrt{\frac{0.08 \cdot 0.007 + 0.083 \cdot (1 - 0.007)}{300}} \approx 6.65 \cdot 10^{-7} \frac{\kappa 2}{M \cdot c}$$
 (30)

$$\dot{G} = 2\pi \cdot 6,65 \cdot 10^{-7} \cdot \left(\frac{0,05^2 - 0,025^2}{0,5}\right) \approx 1,57 \cdot 10^{-8} \frac{\kappa 2}{c}$$
 (31)

По формулам (4) и (5) определены концентрации по ступеням в регенеративной и обогатительной частях каскада. По формулам (6) и (8) определены потоки по ступеням в регенеративной и обогатительной частях каскада. По формулам (15) и (16) определено число газовых центрифуг в ступенях каскада. Результаты расчета приведены в таблице 1.

Таблица 1 — Результаты расчета параметров каскада для изотопной смеси $^{80}{\rm Kr}$ - $^{83}{\rm Kr}$

	n	С	Q	N
Регенеративная	1	0,00300	$1,34\cdot10^{-3}$	47424
часть	2	0,00467	$0,74\cdot10^{-3}$	85489
	3	0,00700	$2,02\cdot10^{-3}$	128902
	4	0,01088	$1,61\cdot10^{-3}$	102827
	5	0,01687	$1,28\cdot10^{-3}$	81948
	6	0,02606	$1,02 \cdot 10^{-3}$	65227
Обогатительная часть	7	0,04008	$8,12\cdot10^{-4}$	51835
	8	0,06115	6,44.10-4	41107
	9	0,09223	$5,10\cdot10^{-4}$	32511
	10	0,13681	$4,02\cdot10^{-4}$	25619
	11	0,19824	$3,15\cdot10^{-4}$	20090
	12	0,27835	$2,45\cdot10^{-4}$	15650
	13	0,37567	1,89·10 ⁻⁴	12077
	14	0,48419	$1,44\cdot10^{-4}$	9195
	15	0,59421	$1,08\cdot 10^{-4}$	6861
	16	0,69553	$7,77 \cdot 10^{-5}$	4958
	17	0,78088	$5,32\cdot10^{-5}$	3392
	18	0,84754	3,27·10 ⁻⁵	2085
	19	0,89661	1,52·10 ⁻⁵	973

На рисунке 5 представлена рассчитанная графическая форма каскада.

Рисунок 5 — Графическая форма каскада для смеси $^{80} Kr$ - $^{83} Kr$

Газовая изотопная смесь 84 Kr - 86 Kr.

Определено число ступеней в регенеративной, обогатительной частях и во всем каскаде:

$$n_W = \ln\left(\frac{0,007 \cdot (1 - 0,003)}{(1 - 0,007) \cdot 0,003}\right) / \ln(1,3225) \approx 4$$
 (32)

$$n_P = \ln\left(\frac{0.9 \cdot (1 - 0.007)}{(1 - 0.9) \cdot 0.007}\right) / \ln(1.3225) \approx 26$$
(33)

$$n = 4 + 26 = 30 \tag{34}$$

Определена весовая производительность газовой центрифуги:

$$\eta = 4 \cdot 10^{-5} \cdot \sqrt{\frac{0,084 \cdot 0,007 + 0,086 \cdot (1 - 0,007)}{300}} \approx 6,77 \cdot 10^{-7} \frac{\kappa z}{M \cdot c}$$
 (35)

$$\dot{G} = 2\pi \cdot 6,77 \cdot 10^{-7} \cdot \left(\frac{0,05^2 - 0,025^2}{0,5}\right) \approx 1,60 \cdot 10^{-8} \frac{\kappa z}{c}$$
 (36)

Результаты расчета концентраций, потоков и числа газовых центрифуг приведены в таблице 2.

Таблица 2 — Результаты расчета параметров каскада для изотопной смеси $^{84}{\rm Kr}$ - $^{86}{\rm Kr}$

	n	С	<i>Q</i> , кг/с	N
	1	0,00300	$2,62 \cdot 10^{-3}$	49908
	2	0,00396	$2,09\cdot10^{-3}$	93363
Регенеративная	3	0,00524	1,49·10 ⁻³	131214
часть	4	0,00691	7,96·10 ⁻⁴	164202
	5	0,00700	3,47·10 ⁻³	217297
	6	0,00924	$3,01\cdot10^{-3}$	188412
	7	0,01218	$2,61\cdot10^{-3}$	163292
	8	0,01604	2,26·10 ⁻³	141447
	9	0,02111	$1,95\cdot10^{-3}$	122449
	10	0,02773	1,69·10 ⁻³	105925
	11	0,03635	1,46·10 ⁻³	91553
	12	0,04751	$1,26\cdot10^{-3}$	79052
	13	0,06188	$1,09\cdot10^{-3}$	68177
	14	0,08024	9,37·10 ⁻⁴	58715
	15	0,10344	$8,05\cdot10^{-4}$	50481
Обогатительная	16	0,13238	6,91·10 ⁻⁴	43314
часть	17	0,16791	5,92·10 ⁻⁴	37074
	18	0,21065	$5,05\cdot10^{-4}$	31639
	19	0,26086	4,29·10 ⁻⁴	26901
	20	0,31822	3,63·10 ⁻⁴	22770
	21	0,38168	3,06·10 ⁻⁴	19163
	22	0,44945	$2,55\cdot10^{-4}$	16010
	23	0,51914	$2,11\cdot10^{-4}$	13250
	24	0,58810	1,73·10 ⁻⁴	10829
	25	0,65377	1,39·10 ⁻⁴	8699
	26	0,71406	1,09·10 ⁻⁴	6818
	27	0,76758	8,22·10 ⁻⁵	5150
	28	0,81370	5,84·10 ⁻⁵	3661

29	0,85243	3,71·10 ⁻⁵	2324
30	0,88425	$1,77\cdot10^{-5}$	1112

На рисунке 6 представлена рассчитанная графическая форма каскада.

Рисунок 6 — Графическая форма каскада для смеси $^{84}{
m Kr}$ - $^{86}{
m Kr}$

Из рисунков 5 и 6 видно, что для разделения изотопной смеси 84 Kr - 86 Kr при полном коэффициенте разделения 1,3225 требуется больше газовых центрифуг в каскаде и большее число ступеней, чем для разделения изотопной смеси 80 Kr - 83 Kr при полном коэффициенте разделения 1,56.

На рисунке 7 приведены рассчитанные графические формы каскадов для разделения различных изотопных смесей Kr при одинаковых параметрах.

Рисунок 7 – Графические формы каскадов

Из рисунка 7 видно, что для разделения изотопной смеси ⁸⁰Kr-⁸³Kr потребуется большее число газовых центрифуг, а наименьшее для изотопной смеси ⁸⁴Kr-⁸⁶Kr. Наибольшее отличие числа газовых центрифуг наблюдается на ступени подачи питания. На ступени отбора число газовых центрифуг практически одинаковое.

ВЫВОД

- 1. Изучена взаимосвязь рабочих параметров газовой центрифуги с параметрами разделительного каскада.
- 2. Рассчитаны параметры каскада для изотопных смесей 80 Kr 83 Kr и 84 Kr 86 Kr при полном коэффициенте разделения 1,56 и 1,3225 соответственно.
- 3. Установлено, что для разделения изотопной смеси 84 Kr 86 Kr требуется больше газовых центрифуг в каскаде и большее число ступеней, чем для разделения изотопной смеси 80 Kr 83 Kr 30 и 19 ступеней в каскаде соответственно.
- 4. Показано, что для разделения изотопной смеси ⁸⁰Kr-⁸³Kr потребуется большее число газовых центрифуг, а наименьшее для изотопной смеси ⁸⁴Kr-⁸⁶Kr. Наибольшее отличие числа газовых центрифуг наблюдается на ступени подачи питания. На ступени отбора число газовых центрифуг практически одинаковое.