Unet for Semantic segmentation

- . Architecture of Unet segmentation
- . Difference between upsampling and transpose convolution

• by Ahmed *Ibrahim*

Difference between SS and IS

Semantic Segmentation

Instance Segmentation

Convolutional for downsampling

2	4	9	1	4
2	1	4	4	6
1	1	2	9	2
7	3	5	1	3
2	3	4	8	5

Image

Filter / Kernel

Feature

Transposed Convolutions

- Super Resolution -> Upscaling the input image to higher resolutions.
- Semantic Segmentation -> From RGB image input to class-based visualisation.

1. upsampling

- Repeats the rows and columns of the data by size[0] and size[1] respectively.
- No trainable parameters.

1. upsampling

1	2
3	4

1	2
1	2
3	4
3	4

1	1	2	2
1	1	2	2
3	3	4	4
3	3	4	4

1. upsampling

1	2
3	4

1	1	2	2
1	1	2	2
3	3	4	4
3	3	4	4

- Convolution and upsampling.
- Trainable parameters.

Conv2DTranspose(1, (1, 1), strides = (2,2))

1	2
3	4

(w,b)

1x1 filter W = 2

b = 0

Conv2DTranspose(1, (1, 1), strides = (2,2))

1	2
3	4

2

1x1 filter W = 2

b = 0

12	2
3	4

2		

1	22
3	4

1	2
32	4

1	2
3	42

2	0	4	0
0	0	0	0
6	0	8	0
0	0	0	0

1	2
3	4

(w,b)

1x1 filter W = 2 b = 0

2	4
6	8

transpose convolution with stride 1 = no upsampling

U-Net

