Introdução à Econometria Semiparamétrica

Aula 3 - Estimação Semiparamétrica

Luis A. F. Alvarez

11 de outubro de 2024

EXEMPLO

- Considere uma população de interesse em que definimos um tratamento individual binário, denotado por uma variável aleatória, $D \in \{0,1\}$ e um resultado de interesse Y.
 - Os resultados potenciais, que descrevem o que acontece com um indivíduo caso ele seja alocado ao tratamento ou não, são dados por (Y(0),Y(1)), de modo que o resultado observado é dado por Y=DY(0)+(1-D)Y(1) e o efeito da política é Y(1)-Y(0).
- Sejam X um vetor de características observáveis, tais que seja razoável supor que:

$$Y(0) \perp D|X$$

Estimação do ATT

- Sob a hipótese de identificação anterior, se supomos que $\mathbb{P}[D=1] > 0$ e a seguinte hipótese de suporte comum (*overlap*):

$$\exists \epsilon > 0, \quad \mathbb{P}[\mathbb{P}[D = 0|X] \ge \epsilon] = 1$$

- Então é possível identificar o efeito médio do tratamento nos tratados,

$$\mathbb{E}[Y(1) - Y(0)|D = 1] = \frac{\mathbb{E}[DY]}{\mathbb{E}[D]} - \mathbb{E}\left[\frac{1}{1 - \mathbb{P}[D = 1|X = 1]}(1 - D)Y\right]$$

 O problema é que a hipótese de suporte comum pode ser irrazoável em alguns contextos.

Combinações convexas do ATT

- Considere, como alternativa, o estimando β^* que resolve

$$(\beta^*, g) = \operatorname{argmin}_{b \in \mathbb{R}, h \in \mathcal{H}} \mathbb{E}[(Y - bD - h(X))^2],$$

onde \mathcal{H} é um sub-espaço fechado de $L_2(\mathbb{P}_X)$.

- Nesse caso, é possível mostrar que, se $\mathbb{P}[D=1|X]\in\mathcal{H}$ ou $\mathbb{E}[Y(0)|X]\in\mathcal{H}$, então:

$$\beta^* = \frac{\mathbb{E}[\mathbb{E}[Y(1) - Y(0)|X](D - m(X))^2]}{\mathbb{E}[(D - m(X))^2]}$$

onde $m(X) = \operatorname{argmin}_{h \in \mathcal{H}} \mathbb{E}[(D - h(X))^2].$

- Resultado é extensão direta de Angrist (1998).
- Estimando é uma combinação convexa de ATTs, dando mais peso para pontos do suporte com melhor sobreposição.
 - Combinação convexa mais fácil de se estimar eficientemente (Goldsmith-Pinkham, Hull e Kolesár, 2024), sob algumas hipóteses.

Estimando β^*

- Com base no resultado anterior e uma amostra aleatória da população, poderíamos tentar estimar β^* resolvendo o análogo amostral do problema.
 - Para implementar a classes "complexas" \mathcal{H} , podemos alternar o estimador de MQO dos resíduos $(Y_i \tilde{g}(X_i))$ em D_i e o estimador que projeta $Y_i \tilde{\beta}D_i$ em \mathcal{H} até convergência.
- Note, entretanto, que para a representação anterior valer, devemos escolher uma classe suficiente expressiva para representar ou $\mathbb{E}[Y(0)|X]$ ou $\mathbb{P}[D=1|X]$.
 - Além disso, se temos muitos possíveis controles, mas somente um subconjunto deve ser relevante para explicar a seleção ao tratamento, deveríamos utilizar métodos de alta dimensão válidos sob esparsidade aproximada.
- Estimador resultante é dado por:

$$\hat{\beta} = \frac{1}{n} \frac{\sum_{i=1}^{n} D_i(Y_i - \hat{g}(X_i))}{\mathbb{E}_n D^2},$$

onde $\mathbb{E}_n X$ é abreviatura para $\frac{1}{n} \sum_{i=1}^n X_i$.

APROXIMAÇÃO ASSINTÓTICA DO ESTIMADOR

$$\sqrt{n}\left(\hat{\beta}_{0} - \beta^{*}\right) = \underbrace{\left(\frac{1}{n}\sum_{i\in I}D_{i}^{2}\right)^{-1}\frac{1}{\sqrt{n}}\sum_{i\in I}D_{i}U_{i}}_{=:a} + \underbrace{\left(\frac{1}{n}\sum_{i\in I}D_{i}^{2}\right)^{-1}\frac{1}{\sqrt{n}}\sum_{i\in I}D_{i}\left(g\left(X_{i}\right) - \hat{g}\left(X_{i}\right)\right)}_{=:b}$$

onde $U_i = Y_i - \beta^* D_i - g(X_i)$.

- Termo a é bem comportado em amostras grandes $a \stackrel{d}{\rightarrow} N(0, \sigma^2)$.
- No entanto, termo b é dado por: $b = (E[D^2])^{-1}$ $\sum_{m_2} m_2(X_1)(m_2(X_2))$

$$b = (E[D_i^2])^{-1} \frac{1}{\sqrt{n}} \sum_{i \in I} m_0(X_i) (g_0(X_i) - \hat{g}_0(X_i)) + o_P(1)$$

- Esse termo não é bem comportado para estimadores não paramétricos, especialmente modernos.
 - Comparar EQM do MQO com outras alternativas que operam no trade-off viés variância.
 - No MQO, $\sqrt{n}(\hat{\delta}'x \delta_0'x) \stackrel{d}{\to} N(0, x'\Sigma_{\hat{\delta}}^2x)$, de modo que esperamos que, em amostras grandes, $\infty > \mathbb{V}[b] > 0$, mas $\mathbb{E}[b] \approx 0$.
 - Para estimadores não paramétricos modernos que operam no tradeoff vié-variância $\mathbb{E}[b]=\frac{1}{n^{-1/2+\psi}}$, para $\psi<-1/2$ (ver exemplo do Lasso.).
 - Distribuição arbitrariamente não centrada em eta^* em amostras grandes.

EXEMPLO: VIÉS NA DISTRIBUIÇÃO DO ESTIMADOR SEMIPARAMÉTRICO "INGÊNUO"

ESTIMADOR ALTERNATIVO

 É possível mostrar que parâmetro de interesse pode ser identificado como:

$$\beta^* = \frac{\mathbb{E}[(Y_i - g(X))(D - m(X))]}{\mathbb{E}[(D - m(X))D]}$$

- Considere então:

$$\check{\beta} = \left(\frac{1}{n}\sum_{i\in I}\hat{V}_iD_i\right)^{-1}\frac{1}{n}\sum_{i\in I}\hat{V}_i\left(Y_i-\hat{g}_0\left(X_i\right)\right),\,$$

onde $\hat{V}_i = D_i - \hat{m}(X_i)$.

Propriedades do estimador alternativo.

- Estimador escrever-se-á como:

$$\sqrt{n}(\check{\beta}-\beta^*)=a+b+c+o_{\mathbb{P}}(1),$$

onde

1.
$$a^* = (E[V^2])^{-1} \frac{1}{\sqrt{n}} \sum_{i \in I} V_i U_i \stackrel{d}{\rightarrow} N(0, \sigma^2)$$

- Termo bem comportado, como antes

2.
$$b^* = (E[V^2])^{-1} \frac{1}{\sqrt{n}} \sum_{i \in I} (\hat{m}(X_i) - m(X_i)) (\hat{g}(X_i) - g(X_i))$$

- Agora, viés dos estimadores não paramétricos podem decair para zero a $n^{-1/4}$ e $b^* = o_{\mathbb{P}}(1)$.

3.
$$c^* = (E[V^2])^{-1} \left[\frac{1}{\sqrt{n}} \sum_{i \in I} U_i \left(\hat{m}(X_i) - m(X_i) \right) + \frac{1}{\sqrt{n}} \sum_{i \in I} V_i \left(\hat{g}(X_i) - m(X_i) \right) \right]$$

- Termo captura a correlação dos estimadores com componente idiossincrático da amostra.
- Caso haja algum sobreajuste, esse termo n\u00e3o desaparecer\u00e1, produzindo vieses.
- Solução: estimar as funções não paramétricas em outra amostra I^C tal que I ∩ I^C.
- Nesse caso, garantiremos que esse termo possui média zero (por quê?) e que $c^* = o_{\mathbb{P}}(1)$.

Debiased machine learning

- A estratégia anterior de utilização de aprendizagem estatística para a estimação de parâmetros consistiu de dois ingredientes cruciais.
 - Um ajuste na fórmula do estimador como forma de reduzir o viés devido a regularização de estimadores que operam no trade-off viés-variância para reduzir EQM.
 - Sample-splitting como forma de remover o viés de sobreajuste que seria gerado em modelos muito complexos.
- Esse método recebeu na literatura o nome de *debiased machine learning* (DML) (Chernozhukov, Chetverikov et al., 2018).
- No que segue, vamos estudar como encontrar a correção do viés genericamente.

Função influência

- Seja $\hat{\theta}$ um estimador de um parâmetro escalar de interesse.
 - Seja $\theta(P)$ o limite de probabilidade do estimador, quando a distribuição verdadeira dos observáveis, S, é P.
 - Vamos focar no caso não-paramétrico, em que P pode ser "qualquer" distribuição de probabilidade sobre S, a não ser por condições de regularidade.
- Nesse caso, definimos a função influência de $\hat{\theta}$ como o mapa $\psi(S; P)$ tal que, para "qualquer" distribuição H:

$$\frac{d}{d\tau}\theta(P_{\tau})\Big|_{\tau=0} := \lim_{\tau\to 0} \frac{\theta(P+\tau(H-P))-\theta(P)}{\tau} = \int \psi(s;P)H(ds),$$

- onde $P_{\tau} = P + \tau (H P)$.
 - Nome função influência vem do fato de que, heuristicamente, ela nos dá o efeito sobre o viés do estimador de se incluir uma observação "contaminada" na amostra.
 - Aplicações em estimação robusta (Rousseeuw et al., 1986) e na construção de estimadores eficientes em modelos semiparamétricos estritos (em que P não pode ser qualquer coisa) (Newey, 1990; Bickel et al., 1993).

CÁLCULO DA FUNÇÃO INFLUÊNCIA E SUAS PROPRIEDADES

- Existe uma literatura bastante consolidada sobre como computar $\psi(S;P)$ na prática, que não entraremos por limitações de tempo.
 - Veja Ichimura e Newey (2022) e Kennedy (2023) para métodos.
- Somente notamos as seguintes propriedades de funções influência, que nos serão úteis a seguir.

$$\int \psi(s; P)P(ds) = 0$$

$$\int \frac{d}{d\tau}\psi(s; P_{\tau})\Big|_{\tau=0}P(ds) = -\int \psi(s; P)H(ds)$$

Um problema de estimação semiparamétrica

 Nesta aula, vamos focar no seguinte problema de função semiparamétrica. O objetivo é estimar

$$\theta_0 := \mathbb{E}[m(S; \gamma_0)],$$

onde γ_0 é uma função que desejamos aproximar não parametricamente (e.g. uma esperança condicional, quantil condicional ou densidade).

- Nós propomos estimar θ_0 partindo da seguinte condição de momento:

$$\mathbb{E}[m(S;\gamma_0)+\psi(s;P_0)]-\theta_0=0\,,$$

onde P_0 é a distribuição verdadeira, e $\psi(s; P_0)$ é a função influência de primeiro-estágio de se perturbar a parte não paramétrica:

$$\frac{d}{d\tau}\mathbb{E}[m(S;\gamma(P_0+\tau(H-P_0)))]\Big|_{\tau=0}=\int \psi(s;P_0)H(ds)$$

ROBUSTEZ LOCAL DA CONDIÇÃO DE MOMENTO E ESTIMADOR.

 A condição de momento modificada é localmente robusta a "'vieses" na estimação não paramétrica da primeira etapa, no sentido que:

$$\frac{d}{d\tau}\mathbb{E}[m(S;\gamma(P_{\tau}))+\psi(s;P_{\tau})]\Big|_{\tau=0}=0$$

- Metodologia de Chernozhukov, Chetverikov et al., 2018, particione amostra em \mathcal{I}_1 e \mathcal{I}_2 , com tamanhos aproximadamente iguais.
 - Na parte \mathcal{I}_1 , estime γ_0 , $\hat{\gamma}^1$ e a função influência (que no geral depende de uma parte não paramétrica), $\hat{\psi}^1$.
 - Na \mathcal{I}_2 , estimar θ como:

$$\hat{\theta}_2 = \frac{1}{|\mathcal{I}_2|} \sum_{i \in \mathcal{I}_2} m(S_i; \hat{\gamma}^1) + \hat{\psi}^1(S_i) \tag{1}$$

- Para não perder observações, podemos trocar o papel de \mathcal{I}_1 e \mathcal{I}_2 , calcular $\hat{\theta}_1$ analogamente e fazer o estimador *cross-fitted*:

$$\hat{\theta} = \frac{1}{2}\hat{\theta_1} + \frac{1}{2}\hat{\theta_2}$$

Inferência e extensões

- Resultado principal de Chernozhukov, Chetverikov et al., 2018:

$$\sqrt{n}(\hat{\theta} - \theta_0) \stackrel{d}{\rightarrow} N(0, \sigma^2)$$
, onde $\sigma^2 = \mathbb{V}[m(S; \gamma_0) + \psi(S; P_0)]$.

- Quantidade σ^2 pode ser estimada consistentemente usando a variância amostral do estimador $\hat{\theta}$.
- Inferência tornou-se imediata agora!
- Literatura enorme com extensões desse caso simples: GMM (Chernozhukov, Chetverikov et al., 2018; Chernozhukov, Escanciano et al., 2022), expected shortfall (Chetverikov, Liu e Tsyvinski, 2022), entre outros.

Bibliografia I

- Angrist, Joshua D. (1998). "Estimating the Labor Market Impact of Voluntary Military Service Using Social Security Data on Military Applicants". Em: *Econometrica* 66.2, pp. 249–288. ISSN: 00129682, 14680262. URL: http://www.jstor.org/stable/2998558 (acesso em 10/10/2024).
- Bickel, Peter J et al. (1993). Efficient and adaptive estimation for semiparametric models. Vol. 4. Springer.
- Chernozhukov, Victor, Denis Chetverikov et al. (jan. de 2018). "Double/debiased machine learning for treatment and structural parameters". Em: *The Econometrics Journal* 21.1, pp. C1–C68. ISSN: 1368-4221. DOI: 10.1111/ectj.12097. eprint:

https://academic.oup.com/ectj/article-pdf/21/1/C1/27684918/ectj00c1.pdf. URL: https://doi.org/10.1111/ectj.12097.

Bibliografia II

BIBLIOGRAFIA III

- Ichimura, Hidehiko e Whitney K. Newey (2022). "The influence function of semiparametric estimators". Em: Quantitative Economics 13.1, pp. 29-61. DOI: https://doi.org/10.3982/QE826. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.3982/QE826. URL:
 - https://onlinelibrary.wiley.com/doi/abs/10.3982/QE826.
- Kennedy, Edward H. (2023). Semiparametric doubly robust targeted double machine learning: a review. arXiv: 2203.06469 [stat.ME].
- Newey, Whitney K (1990). "Semiparametric efficiency bounds". Em: *Journal of applied econometrics* 5.2, pp. 99–135.
- Rousseeuw, Peter J et al. (1986). Robust statistics: the approach based on influence functions.