## **Teaching by Example**

Using real world analyses to create a course on reproducible research

#### Zhian N. Kamvar

zkamvar@unl.edu 541-286-0187



#### **Problem Statement**

- The reproducibility crisis is due in part to a lack of training on reproducible research methods (Figure 1a)
- Current courses on genomic data analysis do not focus on reproducibility
- Examples of reproducible research for classroom settings do not involve large, real-world data sets

## **Project Goal**

To create a course on reproducible research in genomic data analysis using a study of local adaptation in the white mold fungus, *Sclerotinia sclerotiorum*.

# **Research Components**

- 96 isolates from hierarchical sampling in temperate and tropical climates over 8 subpopulations in North America and East Asia (Figure 1b)
- Use reproducible methods to test the hypothesis of local adaptation
- Create series of modules on reproducible research on data management from research

### **Expected Outcomes**

- Fine-scale knowledge of diversity across temparate regions within continents
- Future plant pathologists prepared to work in a reproducible manner



**Figure 1:** a) A reproducible research workflow b) A hypothesis of the evolutionary history of *Sclerotinia sclerotiorum* in temperate and subtropical regions

#### **Professional Goals**

- Obtain faculty postion in plant pathology with teaching, outreach, and research responsibilities, focus on teaching data and computer literacy
- Develop skills in evidence-based teaching and population genomic analyses

#### **Mentoring Plan**

- Work under the guidance of Dr. Sydney Everhart, collaborating with experts in evidence-based pedagogy.
- Attend Summer Institutes on Scientific Teaching
- Obtain certificate for Software and Data Carpentry workshop training
- Present research progress and results at American Phytopathological Society national meetings