# Artificial Intelligence

Corso di Laurea in Computational Finance 2<sup>nd</sup> semester - 9 CFU

Luca Pajola, Luca Pasa, Elisa Tosetti



#### Let's start ...

What is a "daily" job of an Al Engineer?

#### Let's start ...

- The role of a data scientist is manifold
- Often confused with "training a model"
- ... the development is much more complex!



Source: Microsoft



#### 5 Steps

- 1. Business Understanding
- 2. Data Acquisition and Understanding
- 3. Modeling
- 4. Deployment
- 5. Customer Acceptance

- Two tasks addressed in this stage
  - Define the objectives
  - Identify data sources
- Objectives
  - Formalize the model targets
    - E.g., sales forecast, order being fraudulent
  - And the appropriate metrics
    - E.g., model accuracy, efficiency



- Examples of questions
  - a. How much or how many? (regression)
  - b. Which category? (classification)
  - c. Which group? (clustering)
  - d. Is this weird? (anomaly detection)
  - e. Which option should be taken? (recommendation)



- The SMART metric to evaluate a project
  - a. Specific define a clear goal
  - b. Measurable that can be measured
  - c. Achievable and achievable with the resources
  - d. Relevant what you achieve must be relevant
  - e. Time-bound a clear timeline to respect



- Identify the data sources
  - a. Data that's relevant to address the task
- Understand if something else is needed
  - a. Additional data?
  - b. Validity check?
  - c. Labelling operations?
  - d. Internal vs external data sources



# **Data Acquisition & Understanding**

- Three tasks addressed in this stage
  - a. Ingest the data
  - b. Explore the Data
  - c. Set up a data pipeline
- Different type of data pipeline
  - a. E.g., Batch-based, real-time



# Modeling

- Steps addressed
  - Feature engineering
  - Model training
  - Validation



- Feature engineering
  - Transform the raw data in features utilized in the analysis
  - Essential to understand the problem to produce a valid feature set
  - Requires domain-experts

# Modeling

- Model training
  - Different models (techniques)
    - Based on what we are trying to answer
  - Steps:
    - Split the data for training and evaluation purposes
    - ii. Train models
    - iii. Evaluate models
    - iv. Determine which model is more suitable
- Model Evaluation
  - Does the model satisfy the production requirement?
  - Should we try alternative approaches?
  - Debug models
  - Evaluate different aspects of the model



#### Deployment

- Goal
  - Operationalize a model
- What to do
  - Move the model into a realistic environment
    - E.g., server
  - Develop an open API interface



#### **Customer Acceptance**

- Goal
  - Finalize project deliverables
- What to produce
  - System Validation with customer's need
  - Project hand-off





Source: Microsoft



# The Machine Learning Anatomy

- When we design an AI application we talk about a complex system
  - Many operations are executed behind the scenes
- Many steps
  - Preprocessing
  - Feature Engineering
  - Al-Algorithm
  - Post Processing
  - Visualization and Dashboard
- Each essential for the overall Al execution



- Goal of preprocessing
  - From raw data to data utilizable by an automatized process
- Many techniques can be applied
  - Based on the nature of the data
- Data Cleaning
  - process of fixing or removing
    - Incomplete data
    - Incorrectly formatted data

Incorrect or inconsistent data leads to false conclusions

- Data quality
  - Validity data conform to rules (temperature of room cannot be 1000 celsius)
  - Accuracy a zip code that does not exist
  - Completeness any missing data?
  - Consistency multiple features are consistent? (someone 10 years old cannot be as marital status "divorced")
  - Uniformity is data written with the same unit measure (e.g., everything expressed in Kg)
- How to perform data quality assurance?
  - Inspect
  - Correct
  - Verify
  - Report

- Inspection
  - Data profiling or summary statistics
  - Visualization
  - Software Packages
- Cleaning
  - Irrelevant data
  - Duplicates
  - Type Conversion
  - Syntax Errors
  - Standardize
  - Scaling
  - Missing Values
    - Drop, Impute
  - Outlier

- Verification
  - After fixing data, you re-verify
  - After filling data, your data might violate some rules
- Reporting
  - Having a document that log errors that occurred and the type of actions you took to clean the data
  - Essential to better understand

# Feature Engineering

Feature engineering in refers to the process of selecting, transforming, and manipulating raw data into features that can be used in machine learning models

# Feature Engineering

- <u>Feature</u>: any measurable input that can be used in a predictive model
- In FE we transform <u>raw</u> data into expresfull representations
  - Often requires domain experts
- Different type of operations
  - Feature creation: age -> is legal age
  - Transformation: weight of a person expressed in grams -> kg
  - Feature Extraction
  - Exploratory Data Analysis
- Some overlap with the data cleaning

# **Machine Learning Models**

- A machine model is a tool
  - Learns to solve a task based on some data
- There are many families of ML algorithms
  - Each has some properties
  - And can solve a determinate set of tasks
- Tasks is the objective
  - How much or how many? (regression)
  - Which category? (classification)
  - Which group? (clustering)
  - Is this weird? (anomaly detection)
  - Which option should be taken? (recommendation)

# **Machine Learning Models**

- Terminology
  - Hyper-parameters: values that defines the ML algorithm structure
  - Parameters: values that are learned from the data to solve a specific task
- Two major families of tasks
  - Supervised
    - X is the dataset
    - y is the ground-truth
  - Unsupervised
    - Only X

## **Machine Learning Models**

- Evaluation: the process of evaluating the quality of a ML model
- Different aspects can be measured
  - E.g., performance, efficiency
- For instance, in a classification task
  - Accuracy = 100 \* (#corr / #errors)
- Evaluation metrics differ based on the type of task

## **Post Processing**

- Once the model is trained we debug it
  - Errors analysis
  - Explainable Al
  - Model robustness
  - Bias analyses
- Definition of interfaces
  - REST API
  - Dashboards

#### Visualization and Dashboard

- Data visualization is the graphical representation of some data
  - E.g., charts, maps, graphs
- Multipurpose
  - Understand the data and how it is distributed
  - Analyze the data to spot insights
  - Communicate insights
- A dashboard is a visualization that:
  - Is real-time
  - Is interactive
- Data visualization is dangerous
  - And often deceiving

#### If you are curious about

- https://www.youtube.com/watch?v=E91bGT9BjYk
- https://www.youtube.com/watch?v=bVG2OQp6jEQ
- https://www.youtube.com/watch?v=DcYLT37ImBY

#### **Lecture Sources**

- https://learn.microsoft.com/en-us/azure/architecture/ data-science-process/lifecycle
- https://towardsdatascience.com/the-ultimate-guide-t o-data-cleaning-3969843991d4
- https://builtin.com/articles/feature-engineering