

8086 Hardware Specifications

Dept. of Computer Science and Engineering BRAC University

CSE 341 Team

Book:

Microprocessors and Interfacing: Programming and Hardware,

Author: Douglas V. Hall

The 8086/8088 Family: Design, Programming, And Interfacing,

Author: John Uffenbeck.

- is a 40-pin DIPs; Dual in-line package
- DIP refers to a rectangular housing with two parallel rows of electrical connection pins.
- DIPs have a notch on one end to show its correct orientation.
- The pins are then numbered as shown in the figure below.

Recap

8086 Pin Specification

CLK, input

- provides basic timing to control processor operation
- frequencies of different versions are 5, 8 or 10 MHz
- asymmetric with a 33% duty cycle

$$AD_0 - AD_{15}$$
, $bi - directional$

- lines are multiplexed bidirectional address/data bus.
- During T_1 , they carry 16-bit address.
- In remaining clock cycles T_2 , T_3 and T_4 , I 6-bit data.
- $AD_0 AD_7$ carry lower order data byte
- $AD_8 AD_{15}$ carry higher order data byte

$$A_{19}/S_6$$
, A_{18}/S_5 , A_{17}/S_4 , A_{16}/S_3 , **output**

- lines are multiplexed address and status bus.
- During T_1 , they carry the highest order 4-bit address.
- During T_2 , T_3 and T_4 , status signals.
- S_3 and S_4 , segment identifiers as in table below

S4	<i>S3</i>	Function
0	0	Extra segment access
0	1	Stack segment access
1	0	Code segment access
1	1	Data segment access

$$A_{19}/S_6$$
, A_{18}/S_5 , A_{17}/S_4 , A_{16}/S_3 , **output**

 S_5 : Indicates if interrupt is enabled or disabled.

- If $S_5 = I$, then the IF = I, so the interrupt is enabled.
- If $S_5 = 0$, then the IF = 0, so the interrupt is disabled.

 S_6 : Indicates if 8086 is the bus master or not

- If $S_6 = 0$, 8086 is the bus master
- If $S_6 = 1$, 8086 is not the bus master

 \overline{BHE}/S_7 , output

- Bus High Enable
- \overline{BHE} is active low
- To indicate the transfer of data over $AD_8 AD_{15}$
- Related to memory bank
- Selects odd/high memory bank when \overline{BHE} is 0
- S_7 : Reserved for further development

 \overline{RD} , output

- is active low
- Indicates read operation when low
- Processor reading from memory or I/O device
- Is low during T_2 , T_3 and T_w states of the read cycle

\overline{TEST} , input

- Is examined by the WAIT instruction.
- If this pin is Low, execution continues.
- Else the processor waits in an idle state.

8086 Pin Specification

READY, input

- acknowledgement from a slow I/O device or memory
- To indicate ready/completion of data transfer
- When low, microprocessor enters wait state, T_w .

RESET, input

- To reset the system reset.
- And terminates the current activity.
- Must be active for at least four clock cycles

INTR, input

- Interrupt request
- Used to request a hardware interrupt.
- Can be masked.

NMI, input

- Non-maskable interrupt signal.
- Causes a type-2 interrupt.
- Initiates the interrupt at the end of the current instruction.

HOLD, input

- To request for bus by another device.
- It is an active HIGH signal.

HLDA, output

- Hold Acknowledgment.
- When acknowledged, it relinquish the bus to the requesting device

\overline{WR} , output

- Active low write signal.
- Writes data to memory or output device depending on M/\overline{IO} signal.

M/\overline{IO} , output

- Differentiates memory access from I/O access.
- When high, memory is accessed.
- When low, I/O devices are accessed.

DT/\bar{R} , output

- Data Transmit/Receive signal.
- indicates the direction of flow through the transceiver.
- When high, data is transmitted out i.e. written to.
- When low, data is received in i.e. read in.

\overline{DEN} , output

- Data Enable signal.
- Used to enable a transceiver connected to the μP

ALE, output

- Address Latch Enable
- indicates an address is available on bus $AD_0 AD_{15}$.
- active high during T_1 state

INTA, output

- An active low signal.
- An interrupt acknowledge signal.
- When microprocessor receives an INTR signal, it acknowledges the interrupt by generating this signal
- When low it indicates an interrupt is being serviced.

8086 Maximum Mode Pins

Dept. of Computer Science and Engineering BRAC University

CSE 341 Team

 QS_0 and QS_1 , output

- Instruction queue status.
- Instruction queue is 6 bytes long

		Function
0	0	No Operation. During the last clock cycle, nothing was taken from the queue.
0	1	First Byte. The byte taken from the queue was the first byte of the instruction.
1	0	Queue Empty. The queue has been reinitialized as a result of the execution of a transfer instruction.
1	1	Fetch subsequent byteSubsequent Byte. The byte taken from the queue was a subsequent byte of the instruction.

- Status Signals.
- indicate operation done by the microprocessor
- Related to memory and I/O access control signals.

			Function
0	0	0	Interrupt acknowledgement
0	0	1	Read data from I/O port
0	1	0	Write data from I/O port
0	1	1	Halt
1	0	0	Opcode fetch
1	0	1	Memory read
1	1	0	Memory write
1	1	1	Passive state

\overline{LOCK} , output

- When low, all interrupts are masked
- Indicates to other processors to not request for system bus.
- No HOLD request is granted.
- No bus is relinquished to the other processors

$$\overline{RQ/GT_0}$$
 and $\overline{RQ/GT_1}$, bi - directional

- Request/Grant pins.
- Other processors request the CPU through these for system bus.
- CPU sends acknowledge signal on the same lines.
- $\overline{RQ/GT_0}$ has higher priority than $\overline{RQ/GT_1}$.

QUIZ

- Assuming you want to type a secret message using a keypad connected to an 8086 microprocessor, deduce the values of the following pins during that time. Justify your anwers too.
 - a) \overline{RD} e.g. mention if low (0) / high (1) and why.
 - b) \overline{WR}
 - c) M/\overline{IO}
- 2) Do you think there may be other pins involved? If so, justify your answer.

8086 Clocks & Timing Diagrams

Dept. of Computer Science and Engineering BRAC University

CSE 341 Team

Microprocessor Operation

- An instruction e.g. MOV [7531h], AX; SUB CH, [0ABCh] etc
- The time a μP requires to complete fetch-(decode)-execute operation of a single instruction is known as *Instruction*

Microprocessor Operation

- Instruction Cycle consists of one or more Machine
 Cycles
- \square A basic μP operation such as reading/writing a byte from or

Microprocessor Operation

- A Machine (bus) cycle consists of at least four clock
 cycles, called T states.
- One cycle of a clock is called a **State**
- Each read or write operation takes I bus cycle.

Clock generator circuit is 8284A and connected to pin19 (CLK) of 8086.

System Clock Concept

- 8086 is found to operate in between 5 to 10 Mhz.
- An 8086 running at 5MHz, its clock pulses will be of 200ns and it would take 800ns for a complete bus cycle.

Clock States - Why are there T states?

- In 8086, address and data lines are multiplexed to reduce number of pins e.g. AD_{0-15} else 32 pins would have been needed instead of 16
 - The μp needs time to change the signals during each bus cycle.
 - Memory devices need time to interpret the address value and then read/write the data (access time)
 - A specific defined action occurs during each T state $(T_1 T_4)$
 - $\vdash T_1$: Address is output
 - T₂: Bus cycle type (Mem/IO, read/write)
 - ► T₃: Data is supplied / Data is received
 - T_4 : Data latched by CPU, control signals removed

T₁: Address is output

Address of memory is sent out by 8086 via address bus Used Control signals: ALE, DT/R', M/IO' shows some output

T₂: Bus cycle type (MEMORY/IO, READ/WRITE)

8086 issues either RD' or WR' and DEN' In case of WRITE (WR) operation, data to be written appear on data bus

T₂: Data is supplied

READY is sampled at the end of T2

If READY is low, T3 becomes a wait state (Tw), means no operation (NOP). In READ bus cycle data bus is sampled at end of T3

T₂: Data latched by μP, control signals removed

All bus signals deactivated in preparation for next bus cycle μP sampled data bus for data that read from M or I/O

Clock States

- \Box A specific, defined action occurs during each T states $(T_1 T_4)$
- T₁: Address is output
 - Address of memory is sent out by 8086 via address bus
 - Used Control signals: ALE, DT/R', M/IO' shows some output
- \square \mathbf{T}_2 : Bus cycle type (MEMORY/IO, READ/WRITE)
 - 8086 issues either RD' or WR' and DEN'
 - ☐ In case of **WRITE (WR)** operation, data to be written appear on data bus

Clock States

- \Box T_3 : Data is supplied
 - READY is sampled at the end of T₂
 - If READY is low, T_3 becomes a wait state (T_w) , means no operation (NOP).
 - In READ bus cycle data bus is sampled at end of T₃
- \Box T_{a} : Data latched by μ P, control signals removed
 - All bus signals deactivated in preparation for next bus cycle
 - □ µP sampled data bus for data that read from M or I/O
 - At trailing edge of WR', transfer data to M or I/O

- The READY input is controlled to insert "Wait states" into the timing of the microprocessor for slower memory and I/O components..
- If the READY pin is at a logic 0 level, the micro-processor enters into wait states and remains idle.
- When it is high (logic I), it indicates that the device is ready to transfer data.
- A wait state is a situation in which a computer processor is waiting for the completion of some event before resuming activity.
- A program or process in a wait state is inactive for the duration of the wait state.

- When a computer processor works at a faster <u>clock speed</u> than the random access memory (RAM) that sends it instructions, it is set to go into a wait state for one or more clock cycles so that it is synchronized with RAM speed. In general, the more time a processor spends in wait states, the slower the performance of that processor.
- Wait states are a pure waste for a processor's performance. Modern designs try to eliminate or hide them using a variety of techniques: <u>CPU caches</u>, <u>instruction pipelines</u>, <u>instruction prefetch</u>, <u>simultaneous multithreading</u> and others.

Thank You Questions are welcome in the discussion class