Camada de Aplicação

Introdução a Redes Prof. Raquel Cruz

Camada de Aplicação

- Os protocolos de rede são projetados para suportar as diversas aplicações de rede que conhecemos:
 - Correio Eletrônico
 - Transferências de arquivo
 - Grupos de discussão
 - Bate-papo
 - Videoconferência
 - Telefonia por Internet

- Um software de aplicação de rede é distribuído entre dois ou mais sistemas finais
- Na aplicação Web, por exemplo, a comunicação ocorre entre o browser no host e o software no servidor Web
- Esses softwares na verdade são processos que se comunicam através da troca de mensagens por meio da rede de computadores

Camada de Aplicação (cont.)

- O processo de origem cria e envia mensagens para a rede
- O processo de destino recebe essas mensagens e possivelmente responde, devolvendo outras mensagens
- As aplicações de rede têm protocolos de camada de aplicação que definem tanto o formato e a ordem das mensagens trocadas entre os processos como as ações realizadas na transmissão e na recepção de uma mensagem

Aplicações comunicantes

Camada de Aplicação (cont.)

- Aplicações de rede X protocolos de camada de aplicação
- Exemplo:
 - A Web é uma aplicação de rede que permite que os usuários obtenham "documentos" de servidores Web por demanda
 - Nessa aplicação há diversos componentes: padrão para formato de documentos (HTML); browsers (Firefox, Internet Explorer, Chrome, etc); servidores Web (Apache, IIS); protocolo da camada de aplicação
 - O protocolo utilizado pela Web, o HTTP, define como as mensagens são passadas entre o browser e o servidor Web

Camada de Aplicação (cont.)

- Um protocolo de camada de aplicação define como os processos de aplicação, que rodam em diferentes sistemas finais, passam mensagens uns para os outros. Um protocolo de camada de aplicação define:
 - Os tipos de mensagens trocadas
 - A sintaxe dos vários tipos de mensagens
 - A semântica dos campos
 - As regras

Clientes e Servidores

- Um protocolo de aplicação de rede tem normalmente duas partes: o lado cliente e o lado servidor
- Exemplo:
 - Um browser Web implementa o lado cliente do HTTP e um servidor Web implementa o lado servidor do HTTP

Interação Cliente-Servidor

Arquitetura P2P

- No modelo peer-to-peer (par-a-par) não há um servidor sempre funcionando no centro da aplicação
- Nenhum dos hosts participantes precisa estar sempre em funcionamento
- É possível que o host mude de endereço IP cada vez que é ligado

Aplicação P2P

Processos que se comunicam por meio de uma rede

- Uma aplicação envolve dois processos em hosts diferentes que se comunicam
- Processo: programa executando em um host
- Os dois processos se comunicam enviando e recebendo mensagens através de suas portas
- Processo cliente: processo que inicia a comunicação
- Processo servidor: processo que espera para ser contatado

Processos de aplicação

Processos que se comunicam por meio de uma rede (cont.)

 Uma porta ou socket é a interface entre a camada de aplicação e a camada de

transporte

Endereçamento de processos

- Para um processo receber mensagens, ele deve ter um identificador
- Um host possui um endereço IP de 32 bits
- O endereço IP do host onde o processo está executando é suficiente para identificar o processo?
- Não, muitos processos podem estar em execução no mesmo host
- O identificador inclui o endereço IP e o número da porta

De que serviços de transporte uma aplicação necessita?

- Perda de dados
 - Algumas aplicações (ex.: áudio) podem tolerar alguma perda
 - Outras aplicações (ex.: transferência de arquivos, telnet) exigem transferência de dados 100% confiável

De que serviços de transporte uma aplicação necessita? (cont.)

- Largura de banda
 - Algumas aplicações (ex.: multimídia) exigem uma banda mínima para serem "efetivas"
 - Outras aplicações ("aplicações elásticas")
 melhoram quando a banda disponível aumenta
- Temporização
 - Algumas aplicações (ex.: telefonia Internet, jogos interativos) exigem baixos atrasos para serem "efetivos"

Requisitos de transporte de aplicações comuns

Aplicação	Perdas	Banda	Sensível ao atraso
file transfer	sem perdas	elástica	não
e-mail	sem perdas	elástica	não
Web documents	tolerante	elástica	não
real-time áudio/vídeo	tolerante	aúdio: 5 Kb-1 Mb	sim, 100's mseg
		vídeo:10 Kb-5 Mb	
stored áudio/video	tolerante	igual à anterior	sim, segundos
jogos interativos	tolerante	kbps	sim, 100's mseg
e-business	sem perda	elástica	sim

Serviços dos protocolos de transporte da Internet

- Serviço TCP
 - Orientado à conexão: conexão requerida entre processos cliente e servidor
 - Transporte confiável entre os processos de envio e recepção
 - Controle de fluxo: o transmissor n\u00e3o sobrecarrega o receptor
 - Controle de congestionamento: protege a rede do excesso de tráfego
 - Não oferece: garantias de temporização e de banda mínima

Serviços dos protocolos de transporte da Internet (cont.)

- Serviços UDP
 - Transferência de dados não confiável entre os processos transmissor e receptor
 - Não oferece: estabelecimento de conexão, confiabilidade, controle de fluxo e de congestionamento, garantia de temporização e de banda mínima
- Porque ambos? Porque existe o UDP?

Referência

KUROSE, James F. Redes de computadores e a internet, Editora: Addison Wesley. 2003.