OBJECT DETECTION USING THE SCATTERING TRANSFORM

Marius Hobbhahn

July 14, 2019

PROBLEMS

- 1. Loads of data necessary for training
- 2. Capability to generalize unclear for different circumstances (i.e. equivariances and invariances w.r.t. some transformations)

Possible solutions

- 1. Filters that generalize quickly
- 2. Filters that are globally equivariant and locally invariant w.r.t. some transformations, i.e. translation, rotation, scale

Basic Idea

Static image filter that has certain theoretical guarantees with respect to global equivariances and local invariances (i.e. translation, scale, rotation).

$$\psi(u) = C_1(e^{iu.\xi} - C_2)e^{\frac{-|u|^2}{2\sigma^2}}$$
 (1)

- \triangleright ξ : central frequency $(3\pi/4)$
- \triangleright σ : width of the Gaussian part (0.85)
- ▶ C_1 , C_2 : Constants, C_2 is chosen s.t. $\int \psi(u)du = 0$ and $C_1 = 1$

VISUALIZATION OF THE SCATTERING TRANSFORM

FIGURE 1: Complex Morlet wavelet in 1D and 2D

Visualization of the filter bank

FIGURE 2: Visualization of the filter bank. j = 3is denotes the down scale factor and $\theta = 8$ the number of angles. Color saturation and color hue $\stackrel{\mbox{\scriptsize FIGURE}}{\mbox{\scriptsize 3:}}$ respectively denote complex magnitude and complex phase.

Visualization of the low pass (Gaussian) Filter

SCATTERING NETWORKS

Basic Idea

Apply the scattering transform multiple times to get higher order scattering coefficients.

EXAMPLE

(A)

(C)

(B)

- a) original image
- b) Gaussian low-pass filter
- c) first order scattering coefficients (size 32x32)
- d) second order scattering coefficients (D) (size 32x32)

Introduction 00000000

Properties of the Scattering Transform

- Invariance: f(Tx) = f(x)
- ► Equivariance: f(Tx) = Tf(x)
- Local invariance but global equivariance

Hybrid scattering networks for classification

FIGURE 5: Architecture [OBZ17]

Method	100	500	1000
WRN 16-8	34.7 ± 0.8	46.5 ± 1.4	60.0 ± 1.8
Scat + WRN 12-8	$\textbf{38.9} \pm \textbf{1.2}$	$54.7 {\pm} 0.6$	62.0 ± 1.1

SINGLE SHOT MULTIBOX DETECTOR (SSD)

Scattering is applied before data is piped through SSD

PARALLEL SCATTERING SSD

Data is piped through scattering and standard SSD and continuously merged at different stages

DATASETS - VOC

FIGURE 6: Three samples from the PASCAL VOC dataset showing a dog, bus and TV monitor from left to right.

Datasets - Kitti

FIGURE 7: Four samples from the KITTI dataset.

Datasets - Toydata

FIGURE 8: Four samples from the toy data set.

IDEA

Test if the promised equivariances/invariances hold on specifically created toy datasets

- Translation dataset
- Scale dataset
- Rotation dataset
- Deformation dataset

Translation dataset

FIGURE 9: Four samples from the translation toy data set. a) is the base image; b) -d) are the translated versions

SCALE DATASET

FIGURE 10: Four samples from the scale toy data set. a) is the base image; b) -d) are the scaled versions

ROTATION DATASET

FIGURE 11: Four samples from the rotation toy data set. a) is the base image; b) -d) are the rotated versions

DEFORMATION DATASET

FIGURE 12: Four samples from the deformation toy data set. a) is the base image; b) -d) are the deformed versions

EXPERIMENTS

- 1. Performance on all datasets
- 2. Performance on very small datasets with low training time
- 3. Time consumption per forward pass

RESULTS - COMPARISON

FIGURE 13: Final comparison on all datasets

RESULTS - SMALL DATA EXPERIMENTS

Dataset	standard	sequential	parallel
Toy_data_small (25k)	0.630 ± 0.008	0.759 ± 0.004	0.411 ± 0.012
Toy_data_small (5k)	0.043 ± 0.007	$\textbf{0.121}\pm\textbf{0.027}$	0.003 ± 0.001
VOC (25k)	0.317 ± 0.011	0.053 ± 0.006	0.013 ± 0.001
VOC (5k)	$\textbf{0.025}\pm\textbf{0.001}$	0.011 ± 0.007	0.004 ± 0.000

RESULTS - TIMING EXPERIMENTS

network type	mean	std.
normal SSD	0.236	0.004
sequential scattering	0.178	0.004
parallel scattering	1.499	0.002

OUTRO 000

Conclusion

- ▶ The sequential Scattering Transform is faster and more robust method for some applications
- ▶ The parallel Scattering Transform is significantly slower and does not provide the supposed benefits
- ▶ (In a follow-up experiment the parallel scattering gets the best of both worlds while taking twice as long per forward pass)

QUESTIONS

Questions?

OUTRO 000

References

[BM12], [SM13], [OM14], [OBZ17], [ACC+17]

3d scattering transforms for disease classification in neuroimaging.

NeuroImage: Clinical, 14:506-517, 2017.

Exported from https://app.dimensions.ai on 2018/10/21.

Initiative, and the Alzheimer's Disease Neuroimaging.

Joan Bruna and Stéphane Mallat.

Invariant scattering convolution networks.

CoRR. abs/1203.1513, 2012,

Edouard Ovallon, Eugene Belilovsky, and Sergey Zagoruvko.

Scaling the scattering transform: Deep hybrid networks.

CoRR, abs/1703.08961, 2017.

Edouard Oyallon and Stéphane Mallat.

Deep roto-translation scattering for object classification.

CoRR. abs/1412.8659, 2014.

Laurent Sifre and Stephane Mallat.

Rotation, scaling and deformation invariant scattering for texture discrimination.

In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, CVPR '13. pages 1233-1240. Washington, DC, USA, 2013. IEEE Computer Society.

Backup Equations - number of filters

$$i\cdot (1+JL) \tag{2}$$

$$i \cdot (1 + JL + \frac{1}{2}J(J-1)L^2)$$
 (3)

- ▶ Let J = 2, L = 8, N, M = 32, 32 for a RGB image.
- ▶ number of outputs of the scattering network for m = 1:

$$3 \cdot (1 + 2 * 8) = 51$$

▶ number of outputs of the scattering network for m = 2:

$$3 \cdot (1 + 16 + 0.5 * 2 * 1 * 64) = 243$$

all outputs of size 8x8

More definitions:

Central Frequency:

$$\int_{-\infty}^{\infty} \omega |\Psi(\omega)|^2 d\omega$$

where Ψ is the Fourier Transform of the wavelet ψ . This is the centre of mass of $|\Psi(\omega)|^2$.

Coefficients - Example 1

(K)

Coefficients - Ellipse (scaled)

