IO Impedance Control

November 21, 2017 11:21

The equivalent model with feedback 3:

1/0 impedance with feedback

Rif =
$$\frac{Vi}{It}$$
, $It = \frac{Vi}{Ri}$, $Vt = Vi + PVi$, $Vo = AVi$

Aif = $\frac{RIVL}{Vi}$

Aif = $\frac{RIVL}{Vi}$

Aif = $Ri(I+AP)$

$$Rof = \frac{VL}{IR}, I_{t} = \frac{VL - AVI}{RO}, V_{t} = VL$$

$$It = \frac{VL + AISVL}{RO}$$

$$Rof = \frac{Ro}{VL + APVL}$$

(corrent amplifier)

Using test sources to find 1/0 impedance: $R_{ij} = \frac{R_{ij}}{I+A_{ij}}$ $R_{of} = R_{o}(I+A_{ij})$

Shunt-Shurt Feedback Amplifice: Rrf = Ri (Transresistance)

IS->Vo

Rof = Rf

Series - Series Feedbook Ampliter: $Rif = (1+A\beta)Ri$ (Transcondactance) $Rof = (1+A\beta)Rs$ $Vs \rightarrow I_0$