THEOREMS OF DIFFERENTIATION

RULE 1:

Derivative of a constant

1.
$$f(x) = 7$$

 $f'(x) = 0$

RULE 2:

Derivative of a power

$$f(x) = x^4$$
 $n = 4$
= $4x^4 - 1$
 $f'(x) = 4x^4$

RULE 3:

Derivative of a constant times a function.

$$f(x) = 5x^{3}$$

$$= 5 * x^{3}$$

$$= 5x3x^{3}-1$$

$$= 5*3x^{2}$$

$$f'(x) = 15x^{2}$$

RULE 4:

Derivative of sum and difference

$$f(x) = x^3+4x-6$$

$$= 3x^3-1+4-0$$

$$= 3x^3-1+4*1x^1-1-0$$

$$= 3x^2+4*1x^0-0$$

$$= 3x^2+4-0$$

$$f'(x) = 3x^2+4$$

RULE 5:

Derivative of a Product

$$h(x) = x^2 e^x = 2x^2 e^x + x^2 e^x = 2xe^x + x^2 e^x h(x) = e^x (2x + x^2)$$

$$f(x) = x^2 f'(x) = 2x$$

$$g(x) = e^x g'(x) = e^x$$

RULE 6: Derivative of a Quotient

RULE 7: Derivative of a reciprocal

$$f(x) = 1$$

$$x^{2}$$

$$f'(x) = -2$$

$$x^{3}$$

$$1 = x^{2}$$

$$x^{2}$$

$$-2x^{3}$$

RULE 8: Derivative of a radical

$$f'(x) = \frac{1}{2}\sqrt{x^{3}}$$

$$3$$

$$= x - - - 2$$

$$2$$

$$3$$

$$- - - 2$$

$$2 x^{3/2 - 1}$$

$$3$$

$$= - - - 2$$

$$2 x^{1/2}$$

RULE 9:

Derivative of a function with a radical exponent

$$h(x) = x^3/4$$

$$= \frac{3}{4}$$

$$= \frac{3}{4}$$

$$h'(x) = \frac{3}{4^4 \sqrt{x}}$$

RULE 10:

GENERAL POWER RULE

$$f(x) = (3x+2)^5$$

= 5 (3x+2)^4 *3
 $f'(x) = 15(3x+2)^4$

RULE 11:

CHAIN RULE

$$h(x) = (\sin(2x))$$
= f'(g(x)) * g'(x)
= cos2x * 2
h'(x) = 2cos2x

$$f'(x) = \cos 2x$$

$$g(x) = 2x$$

$$g'(x) = 2$$

IMPLICIT DIFFERENTIATION

1. $x^2 + y^2 - 2x + 3y = 4$

$$= 2x^{2}-1 + 2y^{2}-1y - 2(1)x^{1}-1 + 3(1)y^{1}-1y' = 0$$

$$= 2x + 2yy' - 2 + 3y' = 0$$

$$= 2yy' + 3y = -2x + 2$$

$$= y'(2y+3) -2x + 2$$

$$-2y+3 -2y + 3$$

$$y' = -2x + 2$$

-----2y + 3

$$y = f(x)$$

 $y' = f'(x)$

* cancelled 2yy'/2y

3.
$$Y + (2x - 5)^3 = 3$$
 (CHAIN RULE)

$$y' + 3(2x-5)^2(2) = 0$$

= $y' + 6(2x-5)^2 = 0$
y ' = $6(2x-5)^2$

4. $x^2 + 3x^4y^2 + y^2 = -4x$ (PRODUCT RULE)