Mathematische Grundlagen der Informatik

WiSe 2023/2024

KAPITEL II: Zahlbereiche

4. Reelle Zahlen

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Menge der reellen Zahlen

Erinnerung

 $\mathbb{R} = \mathsf{Menge} \; \mathsf{aller} \; \mathsf{Dezimalzahlen} \qquad \quad \mathsf{,,Menge} \; \mathsf{der} \; \mathsf{reellen} \; \mathsf{Zahlen''}$

Beispiel

$$\bullet 6,345 = 6 \cdot 10^{0} + 3 \cdot 10^{-1} + 4 \cdot 10^{-2} + 5 \cdot 10^{-3}$$

$$53,742\cdots = 5 \cdot 10^{1} + 3 \cdot 10^{0} + 7 \cdot 10^{-1} + 4 \cdot 10^{-2} + 2 \cdot 10^{-3} + \cdots$$

$$\begin{array}{l} \blacktriangleright \ \, -53,742\cdots = \\ -\left(5\cdot 10^{1} + 3\cdot 10^{0} + 7\cdot 10^{-1} + 4\cdot 10^{-2} + 2\cdot 10^{-3} + \cdots\right) \end{array}$$

Menge der reellen Zahlen

Bemerkung (ohne Beweis)

Mit einer Dezimalzahl

$$x=\pm a_{-m}\cdots a_0, a_1a_2a_3\cdots$$

wobei $a_k \in \{0, \dots, 9\}$, ist der "Grenzwert der unendlichen Reihe"

$$\pm \sum_{k=-m}^{\infty} a_k 10^{-k}$$

gemeint. $(\rightarrow \text{später})$

- Eine reelle Zahl kann beliebig gut durch eine rationale Zahl approximiert werden.
- $ightharpoonup \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}.$

wichtige Eigenschaften / Rechenregeln in \mathbb{R}

Für $x, y, z \in \mathbb{R}$ gelten:

- Summe x + y, Differenz x y, Produkt $x \cdot y$ und Quotient $\frac{x}{y}$, $y \neq 0$, ergeben wieder reelle Zahlen.
- $> x + (y + z) = (x + y) + z, x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (Assoziativität)
- $\triangleright x + y = y + x, x \cdot y = y \cdot x$ (Kommutativität)
- $x \cdot 0 = 0 \cdot x = 0$
- $x \cdot y = 0$ genau dann, wenn x = 0 oder y = 0
- Notation (falls $x \neq 0$): $x^{-1} = \frac{1}{x}$.
- Notation: $xy = x \cdot y$ (Der Malpunkt kann weggelassen werden.)

Anordnung der reellen Zahlen

Trichotomie

Für alle $x, y \in \mathbb{R}$ gilt genau eine der drei Beziehungen

$$x < y$$
 oder $x > y$ oder $x = y$.

Anschaulich:

x < y bedeutet, dass x auf der Zahlengeraden links von y liegt.

Weitere Festlegungen

Für zwei reelle Zahlen x und y schreibe

$$x \le y$$
 falls $x < y$ oder $x = y$;

$$x \ge y$$
 falls $x > y$ oder $x = y$.

Rechenregeln für Ungleichungen

Seien $x, y, z \in \mathbb{R}$ mit x < y. Dann gilt:

- 1. **Addieren einer Zahl** auf beiden Seiten ändert nichts, d.h. x + z < y + z;
- 2. **Multiplizieren mit einer positiven Zahl** ändert nichts, d.h. xz < yz falls z > 0;
- 3. Multiplizieren mit einer negativen Zahl ändert die Richtung der Ungleichung, d.h. xz > yz falls z < 0;
- 4. **Multiplizieren mit einer Unbekannten** erfordert daher eine Fallunterscheidung;
- 5. **Kehrwertbildung** ist komplizierter:
 - 5.1 Ist 0 < x < y oder x < y < 0, so gilt $\frac{1}{x} > \frac{1}{y}$;
 - 5.2 Ist x < 0 < y, so ist jedoch $\frac{1}{x} < \frac{1}{y}$.

Mathematische Grundlagen der Informatik

WiSe 2023/2024

KAPITEL II: Zahlbereiche

5. Beträge von Zahlen

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Absolutbetrag

Definition

Für $x \in \mathbb{R}$ ist der (Absolut-)Betrag definiert durch

$$|x| := \begin{cases} x & \text{falls } x \ge 0 \\ -x & \text{falls } x < 0. \end{cases}$$

Anschaulich: Für $x \in \mathbb{R}$ ist |x| der *Abstand* zwischen x und 0 auf der Zahlengeraden, und für $x,y \in \mathbb{R}$ ist |x-y| der Abstand zwischen x und y.

Absolutbetrag

Definition

Für $x \in \mathbb{R}$ ist der (Absolut-)Betrag definiert durch

$$|x| := \begin{cases} x & \text{falls } x \ge 0 \\ -x & \text{falls } x < 0. \end{cases}$$

Rechenregeln

Für alle $x, y \in \mathbb{R}$ gilt:

- 1. $|x| \ge 0$, sowie $|x| = 0 \Leftrightarrow x = 0$;
- 2. $|x \cdot y| = |x| \cdot |y|$ (Multiplikativität);
- 3. $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$, falls $y \neq 0$;
- 4. |-x| = |x|
- 5. Sei $C \in \mathbb{R}$, $C \ge 0$. Dann gilt $-C \le x \le C$ genau dann, wenn $|x| \le C$.

Dreiecksungleichung

Satz

Für beliebige $x,y\in\mathbb{R}$ gilt

$$|x+y| \le |x| + |y|.$$

Beweis.

Da $x \le |x|$ und $y \le |y|$ gilt, folgt mit den Rechenregeln für reelle Zahlen

$$x + y \le |x| + |y|. \tag{1}$$

Desweiteren gelten $-x \le |-x| = |x|$ und $-y \le |-y| = |y|$ und deshalb auch

$$-(x+y) = -x + (-y) \le |x| + |y|. \tag{2}$$

Aus (1) und (2) folgt die Behauptung.

Mathematische Grundlagen der Informatik

WiSe 2022/2023

KAPITEL III: Relationen und Abbildungen

1. Grundbegriffe

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Binäre Relationen

Erinnerung: Sind A und B Mengen und $R \subseteq A \times B$, so bezeichnet man R als binäre oder zweistellige Relation zwischen A und B.

Definition

Eine binäre Relation $R \subseteq A \times B$ heißt

- ▶ linkstotal, falls für alle $x \in A$ ein $y \in B$ existiert mit $(x, y) \in R$.
- rechtstotal, falls für alle $y \in B$ ein $x \in A$ existiert mit $(x, y) \in R$.
- ▶ linkseindeutig, falls für alle $x_1, x_2 \in A$ und für alle $y \in B$ aus $(x_1, y), (x_2, y) \in R$ folgt, dass $x_1 = x_2$.
- rechtseindeutig, falls für alle $x \in A$ und für alle $y_1, y_2 \in B$ aus $(x, y_1), (x, y_2) \in R$ folgt, dass $y_1 = y_2$.

Funktionen

Definition

Seien A und B Mengen. Eine Relation $R \subseteq A \times B$ ist eine Abbildung oder Funktion, falls sie

linkstotal

und

rechtseindeutig

ist.

Bemerkung

Das heißt, jedem Element in A wird genau ein Element in B zugeordnet.

Funktionen (informell)

Seien A und B Mengen.

Eine Abbildung oder Funktion von A nach B ist eine Vorschrift f, die jedem $x \in A$ genau ein Element $f(x) \in B$ zuordnet.

Notation: $f: A \rightarrow B, x \mapsto f(x)$.

- ► A ist der Definitionsbereich von f.
- ▶ *B* ist die Zielmenge.
- ▶ $G(f) := \{(x, f(x)) : x \in A\} \subseteq A \times B$ ist der Graph von f.

Beispiele zur Visualisierung von Graphen

Graph von Geraden

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto 2x + 1$$

 $g: \mathbb{R} \to \mathbb{R}, \quad x \mapsto -x - 5$

Graph der Betragsfunktion

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto |x|, \text{ wobei } |x| = \left\{ \begin{array}{ll} x, & x \geq 0, \\ -x, & x < 0. \end{array} \right.$$

Graph von $\mathbb{R} \to \mathbb{R}, x \mapsto x^2$

Bild und Urbild einer Abbildung

Seien A und B Mengen und sei $f: A \rightarrow B$ eine Abbildung.

- ▶ Für $M \subseteq A$ ist $f(M) := \{f(x) : x \in M\} \subseteq B$ das Bild von M unter f.
- ▶ Für $N \subseteq B$ ist $f^{-1}(N) := \{x \in A : f(x) \in N\} \subseteq A$ das Urbild von N unter f.

Beispiele (Bild, Urbild)

Bild von M unter f

Urbild von **N** unter **f**

Beispiele (Bild, Urbild)

