## **Basic Electrical Technology (ESC101A)**

## **Assignment-1 (DC Circuit)**

**Problem-1** - Using nodal analysis, find the current flowing in the battery in Fig1.



**Problem-2-** Determine Current in each branch using nodal analysis for the given circuit Fig-2



**Problem-3-** Using Mesh Analysis find current in each branch of the given circuit fig-3



**Problem-4-** By using mesh resistance matrix, calculate the current in each branch of the circuit shown in Fig. 4



**Problem-5-** Determine the current through 6 ohm resistor using node analysis and mesh analysis.



**Problem-6-** Using superposition theorem, find the current through the 40  $\,\Omega$  resistor in the circuit shown in Fig. 6. All resistances are in ohms.



**Problem-7**- Draw the Thevenin's equivalent circuit and find the current through resistance R connected between points a and b in Fig. 7.



**Problem-8-** A Wheatstone bridge ABCD has the following details :  $AB = 10 \Omega$ ,  $BC = 30 \Omega$ ,  $CD = 15 \Omega$  and  $DA = 20 \Omega$ . A battery of e.m.f. 2 V and negligible resistance is connected between A and C with A positive. A galvanometer of 40  $\Omega$  resistance is connected between B and D. Using Thevenin's theorem, determine the magnitude and direction of current in the galvanometer.

**Problem-9-** Draw the Thevenin's and Norton's equivalent circuit for fig-9. Also, determine the current in 1  $\Omega$  resistor across AB of the network shown in Fig 9. All resistances are in ohms.



**Problem-10-** For the circuit shown in Fig. 10, find the value of R that will receive maximum power. Determine maximum power.



Fig-10

**Problem-11-** Solve the circuit shown in Fig. 11 using nodal analysis.



**Problem-12-** Using superposition theorem, find the current in 23  $\,\Omega$  resistor in the circuit shown in Fig. 12

