Égéstermék elvezetés tervezése

Baumann Mihály PTE PMMK Épületgépészeti Tanszék

> Pécsi Tudományegyetem Pollack Mihály Műszaki Kar 7624 Pécs, Boszorkány u. 2.

MSZ EN 13384-1

Égéstermék-elvezető berendezések. Hő- és áramlástechnikai méretezési eljárás. Égéstermék-elvezető berendezések egy tüzelőberendezéssel.

2002. december

Égéstermék-elvezető berendezések.
Hő- és áramlástechnikai méretezési eljárás.
2. rész: Égéstermék-elvezető berendezések több tüzelőberendezés csatlakozással.

2003. május

MSZ EN 13384-3

Égéstermék-elvezető berendezések. Hő- és áramlástechnikai méretezési eljárás.

Eljárás egy tüzelőberendezéssel rendelkező égéstermék-elvezető berendezések méretezésére szolgáló táblázatok és diagramok kidolgozására.

2005. október

Diagramm 1.1. Földgáz

Gázkazán, atmoszférikus égővel, áramlásbiztosítóval. égéstermék hőmérséklet az áramlásbiztosító után : ≥ 80 °C és < 100 °C

Kéményméretezés az MSZ EN 13 384-1 szerint

- max. 2,0 m bekötő füstcsővel.
- · max. 2 db 90 ° os könyökkel,
- 4 Pa huzatigénnyel az égési levegő biztosításához

Égéstermék elvezető berendezések csoportosítása

Kialakítás szerint:

- Normál (égéstermék elvezetés és levegő utánpótlás külön)
- Égéstermék elvezetés és levegő utánpótlás közösen (LAS)

Nyomás szerint:

- Huzat vagy szívás hatása alatt álló (depressziós)
- Túlnyomásos

Üzemmód szerint:

- Nedves üzemű (kondenzáció üzemszerűen megengedett)
- Száraz üzemű (kondenzáció károsítja a kémény szerkezetet)

Kémény áramkör részei

Szélnyomás, kedvezőtlen kitorkollás

A szélnyomást P_L =25 Pa értékkel kell figyelembe venni belföldön.

Kedvezőtlen a kitorkollás, ha a kitorkollás magassága a gerinc felett <0,4 m, és a vízszintes távolság a tetőtől <2,3 m, illetve:

- A tető hajlásszöge >40°
- A tető hajlásszöge >25°, a légbeszívás és kitorkollás a gerinc ellenkező oldalán van és a gerinctől való távolság >1,0 m

Szélnyomás, kedvezőtlen kitorkollás

Környező tereptárgyak hatása:

Kedvezőtlen, ha:

L<15 m

α>30°

β>10°

Nyomásfeltétel

Huzat vagy szívás alatt működő (depressziós) égéstermék-elvezető berendezés

A következő feltételeket kell betartani:

$$P_Z = P_H - P_R - P_L \ge P_W + P_{FV} + P_B = P_{Ze}$$
 Pa (1)

$$P_7 \ge P_B$$
 Pa (2)

Ahol:

P_B a bevezetett levegő szükséges szállító nyomása, Pa;

P_{EV} az összekötőelem szükséges szállító nyomása, Pa;

P_H a nyugalmi nyomás, Pa;

P_L a szélnyomás, Pa,

P_R az égéstermék-elvezető berendezés függőleges szakaszának ellenállási nyomása, Pa;

P_w a tüzelőberendezés szükséges szállító nyomása, Pa;

P_Z a szívónyomás az égéstermék-elvezető berendezés függőleges szakaszának bevezetési pontján, Pa;

P_{Ze} a szükséges szívónyomás az égéstermék-elvezető berendezés függőleges szakaszának bevezetési pontján, Pa;

Nyomásfeltétel

Túlnyomásos égéstermék-elvezető berendezés

A következő feltételeket kell betartani:

$$P_{ZO} = P_R - P_H + P_L \le P_{WO} - P_B - P_{FV} = P_{Zoe}$$
 Pa (3)
 $P_{ZO} \le P_{Z \text{ excess}}$ Pa (4)
 $P_{ZO} + P_{FV} \le P_{ZV \text{ excess}}$ Pa (5)

Ahol:

P_B a bevezetett levegő szükséges szállító nyomása, Pa;

P_{EV} az összekötőelem szükséges szállító nyomása, Pa;

P_H a nyugalmi nyomás, Pa;

P_L a szélnyomás, Pa,

P_R az égéstermék-elvezető berendezés függőleges szakaszának ellenállási nyomása, Pa;

P_w a tüzelőberendezés szükséges szállító nyomása, Pa;

P_{WO} a tüzelőberendezés maximális nyomáskülönbsége, Pa;

P_{ZO} az égéstermék-elvezető berendezés belépési pontjának túlnyomása, Pa;

P_{Zoe} az égéstermék-elvezető berendezés belépési pontjának maximális nyomáskülönbsége, Pa;

Pz excess az égéstermék-elvezető berendezés engedélyezett üzemi nyomása, Pa;

Hőmérsékleti feltétel

A következő összefüggést kell igazolni:

 $T_{iob} \ge T_{q}$ K (6)

Ahol:

T_{iob} állandósult viszonyok mellett a kitorkolásnál számított belsőfali hőmérséklet, K;

T_a a belsőfali határhőmérséklet, K

A száraz üzemmódban működő égéstermék-elvezető berendezések belső fal határhőmérséklete T_g az égéstermék harmatponti hőmérsékletének $T_{\rm sp}$ felel meg.

A nedves üzemmódban működő (kondenzációs) égéstermék-elvezető berendezések esetén T_g = 273,15 K. Ez a feltétel az égéstermék-elvezető berendezés kitorkolásánál a jégképződéstől véd.

Égéstermék és égési levegő mennyiségének számítása

Pontos számítás: sztöchiometriai számítással **Közelítő számítás:** Rosin - Fehling egyenletek Elméleti levegőszükséglet:

$$L'_{\min} = a_1 \cdot \frac{H_i}{4186} + a_2 \quad [Nm^3 / kg \quad ill. \quad Nm^3 / Nm^3]$$

Elméleti füstgázmennyiség:

$$V'_{f \min} = b_1 \cdot \frac{H_i}{4186} + b_2 \quad [Nm^3 / kg \quad ill. \quad Nm^3 / Nm^3]$$

Tüzelőanyag	al	a2	b1	b2
Szilárd	1,01	0,5	0,89	1,65
Cseppfolyós	0,85	2,0	1,11	1,0
Gáz 18420 <hi<43960< td=""><td>1,154</td><td>-0,466</td><td>1,215</td><td>0,05</td></hi<43960<>	1,154	-0,466	1,215	0,05
Gáz 73270 <hi<175850< td=""><td>0,2756</td><td>-0,466</td><td>0,29</td><td>0,05</td></hi<175850<>	0,2756	-0,466	0,29	0,05

Időegység alatti tüzelőanyag fogyasztás:

$$G = \frac{\dot{Q}}{\eta \cdot H_i} \quad [kg/s \quad ill. \quad Nm^3/s]$$

Időegységre eső mennyiségek (tökéletes égés):

$$L_{\min} = G \cdot L'_{\min} \quad \left[Nm^3 / s \right]$$

$$V_{f \min} = G \cdot V'_{f \min} \quad \left[Nm^3 / s \right]$$

Légellátási tényező:

$$n = \frac{V_{f \min}}{L_{\min}} \cdot \left(\frac{CO_{2\max}}{CO_2} - 1\right) + 1$$

Tüzelőanyag	n
Gyenge minőségű barnaszén	2,0 - 2,5
Jó minőségű barnaszén	1,4 - 2,0
Koksz	1,4 - 1,7
Olajtüzelés	1,1 - 1,5
Gáztüzelés	1,05 -1,25

Valóságos normálértékek:

$$L_0 = n \cdot L_{\min} \quad \left[Nm^3 / s \right]$$

$$V_{f0} = r \cdot V_{f \min} = V_{f \min} + (n-1) \cdot L_{\min} \quad [Nm^3 / s]$$

Égéstermék higítási tényező:

$$r = \frac{CO_{2 \text{max}}}{CO_2}$$

Valóságos értékek:

$$L = \frac{T \cdot p_0}{T_0 \cdot p} \cdot L_0 \quad \left[m^3 / s \right]$$

$$V_f = \frac{T \cdot p_0}{T_0 \cdot p} \cdot V_{f0} \quad \left[m^3 / s \right]$$

Brennstoffart		Ch	arakteristis	che Brenns	stoffdaten				Koeffizienten	(Ausgangsv	verte) für die	e Berechnu	ng der Abga	sdaten			
	$H_{\scriptscriptstyle u}$	$V_{{\scriptscriptstyle Atr { m min}}}$	$V_{L\mathrm{min}}$	V_{H_2O}	$\sigma(CO_2)_{\max}$	$\sigma(SO_2)_{\mathrm{max}}$	f_{m1}	f_{m2}	f_R ohne Kond.	f_R mit Kond.	f_{c0}	f_{c1}	f_{c2}	f_{c3}	f_w	f_{s1}	f_{s2}
	kWh/kg kWh/m³	kWh/kg m³/m³	kWh/kg m³/m³	kWh/kg m³/m³	%	%	g·%/(kWs)	g/(kW·s)	1/%	1/%	J/(kgK·%)	J/(kgK ^{2.} %)	J/(kgK³·%)	1/%	%	К	К
Koks	8,06	7,64	7,66	0,13	20,60	0,09	7,06	0,033	-0,003 6	-0,003 8	3,4	0,014	-0,000 014	0,004 6	1.235	99	7
Steinkohle(Anthrazit)	9,24	8,37	8,55	0,44	19,05	0,10	6,23	0,036	-0,002 8	-0,003 3	5,6	0,014	-0,000 013	0,005 7	370	93	7
Braunkohle	5,42	5,09	5,17	0,68	19,48	0,04	6,61	0,055	-0,001 4	-0,002 6	10,3	0,015	-0,000 012	0,008 3	149	80	7
Schweröl < 4% S	9,43	9,91	10,48	1,15	16,17	0,28	6,14	0,052	-0,001 2	-0,002 4	10,7	0,014	-0,000 012	0,008 2	142	94	7
Schweröl < 2% S	9,61	10,06	10,67	1,21	16,15	0,14	6,11	0,052	-0,00 1	-0,002 3	11,0	0,014	-0,000 011	0,008 3	137	89	7
Schweröl < 1% S	9,74	10,17	10,79	1,25	16,09	0,07	6,07	0,052	-0,000 9	-0,002 2	11,2	0,014	-0,000 011	0,008 4	134	85	- 7
Heizől EL	11,86	10,52	11,26	1,49	15,40	0,00	4,94	0,046	-0,000 2	-0,001 8	13,0	0,014	-0,000 011	0,0093	111	0	0
Kerosin	12,09	11,36	12,14	1,57	15,00	0,00	5,09	0,047	-0,000 2	-0,0018	13,0	0,014	-0,000 011	0,0093	111	0	0
Erdgas H	10,03	8,67	9,57	1,86	12,00	0,00	3,75	0,053	0,003 2	0,000 2	23,0	0,015	-0,000 007	0,014 2	57	0	0
Erdgas L	9,03	7,87	8,63	1,70	11,80	0,00	3,72	0,054	0,003 3	0,000 3	23,5	0,015	-0,000 007	0,014 4	56	0	0
Flüssiggas	26,67	22,46	24,51	4,10	13,80	0,00	4,20	0,049	0,001 3	-0,000 9	17,6	0,015	-0,000 009	0,011 6	77	0	0
Holz (23,1%Feuchte)	3,70	3,44	3,45	0,80	20,50	0,00	6,89	0,076	0,000 1	-0,001 8	15,4	0,016	-0,000 011	0,0111	90	15	0
Holz (33,3%Feuchte)	3,12	2,98	2,99	0,86	20,50	0,00	7,08	0,090	0,00 1	-0,001 3	18,5	0,016	-0,000 010	0,0128	72	15	0
Holz, Pellets	5,27	4,78	4,81	0,78	20,31	0,00	6,66	0,060	-0,00 1	-0,002 4	11,6	0,015	-0,000 012	0,009 1	127	15	0

Égéstermék tömegárama:

$$\dot{m} = \left(\frac{f_{m1}}{\sigma(CO_2)} + f_{m2}\right) \cdot \dot{Q}_F \quad [g/s]$$

$$\dot{Q}_F = \frac{100}{\eta_W} \cdot \dot{Q}$$

 $\sigma(CO_2)$

 Q_{F}

Q

 η_{W}

égéstermék CO₂ koncentrációja, % tüzelőberendezés hőterhelése, kW tüzelőberendezés teljesítménye, kW tüzelőberendezés hatásfoka, %

Égéstermék gázállandója:

$$R = R_L \cdot [1 + f_R \cdot \sigma(CO_2)] \quad [J/kgK]$$

 $\sigma(\text{CO}_2)$ égéstermék CO_2 koncentrációja, % levegő gázállandója $R=288\ \text{J/kgK}$

Égéstermék fajhője:

$$c_{P} = \frac{1011 + 0.05 \cdot t_{m} + 0.0003 \cdot t_{m}^{2} + (f_{c0} + f_{c1} \cdot t_{m} + f_{c2} \cdot t_{m}^{2}) \cdot \sigma(CO_{2})}{1 + f_{c3} \cdot \sigma(CO_{2})} \quad [J/kgK]$$

 $\sigma(CO_2)$ t_m égéstermék CO₂ koncentrációja, % égéstermék középhőmérséklete, °C

Égéstermék vízgőz koncentrációja, parciális vízgőznyomása és harmatponti hőmérséklete:

$$\sigma(H_2O) = \frac{100}{1 + \frac{f_W}{\sigma(CO_2)}} + 1,1 \quad [\%]$$

$$p_D = \frac{\sigma(CO_2)}{100} \cdot p_L \quad [Pa]$$

$$tp = \frac{4077.9}{23,6448 - \ln(p_D)} - 236,67 \quad [°C]$$

σ(CO₂) égéstermék CO₂ koncentrációja, % légköri nyomás, Pa

Harmatponti hőmérséklet emelkedés:

$$\Delta T_{sp} = f_{s1} + f_{s2} \cdot \ln(K_f) \quad [\circ C]$$

K_f átalakulási tényező SO₂-ről SO₃-ra, %

Égéstermék hővezetési tényezője és dinamikai viszkozitása:

$$\lambda_{A} = 0.0223 + 0.000065 \cdot t_{m} \quad [W/mK]$$

$$\eta_{A} = 15 \cdot 10^{-6} + 47 \cdot 10^{-9} \cdot t_{m} - 20 \cdot 10^{-12} \cdot t_{m}^{2} \quad [Ns/m^{2}]$$

t_m égéstermék középhőmérséklete, °C

Többrétegű kör keresztmetszetű kémény hőátbocsátási tényezője

Ha hőmérsékletek állandósultak:

$$k_b = \frac{1}{\frac{1}{\alpha_i} + \left(\frac{1}{\Lambda}\right) + \frac{D_h}{D_{ha} \cdot \alpha_a}} \quad \left[W/m^2 K\right]$$

Nem állandósult állapotban:

$$k_b = \frac{1}{\frac{1}{\alpha_i} + S_H \cdot \left[\left(\frac{1}{\Lambda} \right) + \frac{D_h}{D_{ha} \cdot \alpha_a} \right]} \quad [W/m^2 K]$$

 α_i belső hőátadási tényező α_a külső hőátadási tényező (1/ Λ) hővezetési ellenállás

D_h hidraulikai egyenértékű belső átmérő D_{ha} hidraulikai egyenértékű külső átmérő

Többrétegű kör keresztmetszetű kémény hőátbocsátási tényezője

$$\left(\frac{1}{\Lambda}\right) = y \cdot \sum_{n} \left[\frac{D_{h}}{2 \cdot \lambda_{n}} \cdot \ln \left(\frac{D_{h,n+1}}{D_{h,n}}\right) \right] \quad \left[m^{2} K / W \right]$$

λ_n D_h D_{h,n} y n-dik réteg hővezetési tényezője kémény hidraulikai egyenértékű belső átmérője n-dik körgyűrű hidraulikai egyenértékű belső átmérője alaktényező, y=1 kör és ovális keresztmetszetnél y=1,1 téglalap keresztmetszetnél 1:1,5 oldalarányig

Lehűlési tényező számítása

Lehülési tényező:

$$K = \frac{U \cdot k \cdot L}{\dot{m} \cdot c_{p}}$$

c_p égéstermék fajhője, J/kgK
 k hőátbocsátási tényező, W/m²K
 L szakasz hossza, m
 M égéstermék tömegárama, kg/s
 U belső kerület, m

Szakasz hőmérsékletek számítása

Szakasz átlaghőmérséklete:

$$T_m = T_u + \frac{T_e - T_u}{K} \cdot \left(1 - e^{-K}\right)$$

Szakasz kilépő hőmérséklete:

$$T_o = T_u + (T_e - T_u) \cdot e^{-K}$$

K lehűlési tényező

T_e belépő égéstermék hőmérséklet

T_{...} környezeti hőmérséklet

Szakasz áramlási ellenállása

$$\begin{split} P_R &= S_E \cdot P_E + S_{EG} \cdot P_G \quad \left[Pa\right] \\ P_R &= S_E \cdot \left(\psi \cdot \frac{L}{D_h} + \sum_n \zeta_n \right) \cdot \frac{\rho_m}{2} \cdot w_m^2 + S_{EG} \cdot P_G \quad \left[Pa\right] \\ ha \quad P_G &\geq 0 \quad S_{EG} = S_E \\ ha \quad P_G &< 0 \quad S_{EG} = 1,0 \\ \text{hidraulikai egyenértékű belső átmérő, m} \\ \text{L} \qquad \text{szakasz hossza, m} \\ P_E \qquad \text{szakasz csősúrlódásból és alaki ellenállásokból származó áramlási ellenállása, Pa} \\ P_G \qquad \text{sebességváltozásból eredő nyomásváltozás, Pa} \\ S_E \qquad \text{áramlástechnikai biztonsági tényező} \\ S_{EG} \qquad \text{sebességváltozásból eredő áramlástechnikai biztonsági tényező} \\ w_m \qquad \text{égéstermék közepes sebessége, m/s} \\ \text{égéstermék közepes sűrűsége, kg/m³} \\ \text{csősúrlódási tényező} \end{split}$$

Áramlástechnikai biztonsági tényező

A biztonsági tényező célja az üzem közbeni egyenlőtlenségek és az építési pontatlanságokból adódó kérdések kezelése:

- a hőtermelő nem tervezett túlterhelése
- a szokásosnál nagyobb légfelesleg-tényező az égésnél
- falslevegő belépés az összekötő vezetékben vagy a kéményben
- a számításokban figyelembe vett felületi érdességtől való eltérés
- a kémény hőátbocsátási tényezőjének eltérése a tervezettől
- méreteltérések
- nem kívánatos légköri viszonyok
- Huzat hatása alatt álló rendszereknél $S_E = 1,5$ Légtértől független üzemű ventilátoros készülékeknél $S_E = 1,2$ Túlnyomásos rendszereknél $S_E = 1,2$ minimálisan

Égési levegő bevezetés

Megoldások:

- 1. Nyílászárók résein
- 2. Légbevezető elemekkel
- 3. Légellátó zsaluk, légcsatornák
- 4. Ventilátorral biztosított légellátás
- Légbevezető elemek ellenállását milyen állásban, milyen külső hőmérséklet mellett számítsam?
- A kazánnak, vízmelegítőnek a lakótérben van a helye?

Szilárdtüzelésű berendezések

- A készülékeknek jelentős ellenállása van.
- Magas az égéstermék hőmérséklet alacsony a hatásfok.
- •Nagy légfelesleggel üzemelnek.

Brennstoff				Gleichungen fü	ir P _{W,nw} und	σ(CO ₂)		
Koks, Steinkohle, Braunkohle Briketts	Pw	=	{	15 · lg Q _N - 70 + 50 · lg Q _N 80 Pa	in Pa für in Pa für für	100 kW <	$Q_N \le Q_N \le Q_N \le Q_N > Q_N$	100 kW 1 000 kW 1 000 kW
Directo	ηω	=		68,65 + 4,35 · lg Q _N	in % für		$Q_{\rm N} \le$	2 000 kW
	σ(CO ₂)	=	{	9,5 % 4,1 + 2,7 · lg Q _N	für in % für	100 kW <	$Q_N \le Q_N \le$	100 kW 2 000 kW

Atmoszférikus égőjű készülékek nyomásigénye, égéstermék adatai

- Jellemző huzatigény érték 2-4 Pa
- Jellemző égéstermék CO₂ tartalom: teljes terhelésnél 5-8 % részterhelésnél 2-3 %

Ez teljes terhelésnél kb. 2, részterhelésnél 4 légfelesleg értéket jelent.

Atmoszférikus égőjű készülékek nyomásigénye, égéstermék adatai

Atmoszférikus égőjű készülék munkapontja

Huzatmegszakítós kémény munkapontja

Túlnyomásos tűzterű, blokkégős kazánok

- Jellemző huzatigény érték 0 Pa. A kémény depressziós üzemmódban üzemel.
- •Égéstermék CO₂ tartalom 10 % feletti, kis légfelesleg.
- •Égéstermék csonkon nagy sebesség, bővíteni célszerű.
- Magas égéstermék hőmérséklet. 140-200 °C
- Légellátás jellemzően ventilátorral.

Olaj- és gázkazánok adatai

Blokkégős kazán ellenállása a tömegáram függvényében

Olaj- és gázkazánok adatai

Öl und Gas (mit und ohne Gebläsebrenner)	Pw	=	{	15 · lg Q _N - 47 + 38,5 · lg Q _N	in Pa für in Pa für	Q _N :		100 kW 100 kW
Gebiasebieriner)	η _W	=	{	85,0 + 1,0 · lg Q _N 88,0 %	in % für für	Q _N : Q _N		1 000 kW 1 000 kW
	σ(CO ₂)	=	{	$\frac{f_{\text{x1}}}{1 - f_{\text{x2}} \cdot \lg Q_{\text{N}}}$	in % für	Q_{N}	<	100 kW
				f _{x3}	in % für	Q _N :	>_	100 kW

Tabelle B.3 – Werte für die Ermittlung von σ (CO₂) bei Öl- und Gasbrennern

Brennstoff		Gebläsebrenn	er	Atmosphärischer Brenner ^a			
	f _{x1}	f _{x2}	f _{x3}	f_{x1}	f _{x2}	f_{x3}	
ŎΙ	11,2	0,076	13,2	=	10.00	100	
Erdgas H	8,6	0,078	10,2	5,1	0,075	6,0	
Flüssiggas	10,0	0,080	11,9	5,9	0,079	7,0	

Hőtermelők tulajdonságainak tömegáramfüggése

$$\begin{split} P_{\text{Wc},j} &= b_0 + b_1 \cdot \left(\frac{\dot{m}_{\text{Wc},j}}{\dot{m}_{\text{W},j}}\right) + b_2 \cdot \left(\frac{\dot{m}_{\text{Wc},j}}{\dot{m}_{\text{W},j}}\right)^2 + b_3 \cdot \left(\frac{\dot{m}_{\text{Wc},j}}{\dot{m}_{\text{W},j}}\right)^3 + b_4 \cdot \left(\frac{\dot{m}_{\text{Wc},j}}{\dot{m}_{\text{W},j}}\right)^4 \quad \text{Pa} \\ t_{\text{Wc},j} &= y_0 + y_1 \cdot \left(\frac{\dot{m}_{\text{Wc},j}}{\dot{m}_{\text{W},j}}\right)^{y_2} \quad ^{\circ}C \end{split}$$

 $m_{Wc,j}$ hőtermelő számított tömegárama, kg/s $m_{W,j}$ hőtermelő referencia tömegárama, kg/s $P_{Wc,j}$ hőtermelő számított áramlási ellenállása, Pa égéstermék számított kilépő hőmérséklete, kg/s

b₀ ... b₄ és y₀ ... y₂ tényezőket a gyártóknak kellene megadnia

Hőtermelők tulajdonságainak tömegáramfüggése

Hőtermelő	Üzemállapot	$P_{Wc,j}$					$t_{Wc,j}$		
		b ₀	b ₁	b_2	b_3	b_4	y_0	y ₁	y ₂
Szilárdtüzelésű, blokkégő nélküli berendezések	Bekapcsolva	0	0	0	0	$P_{W,j}$	0	$t_{W,j}$	0,8
	Kikapcsolva	0	0	$P_{W,j}$	0	0	t _{uV,j}	0	0
Folyékony tüzelőanyaggal üzemelő berendezések, ventilátor nélkül	Bekapcsolva	0	0	$P_{W,j}$	0	0	$t_{W,j}$	0	0
	Kikapcsolva	0	0	$P_{W,j}$	0	0	t _{uV,j}	0	0
Atmoszférikus égőjű (deflektoros) berendezések	Bekapcsolva	0	0	$P_{W,j}$	0	0	$t_{uV,j}$	t _{W,j} -t _{uV,j}	-1
	Kikapcsolva	0	0	$P_{W,j}$	0	0	t _{uV,j}	0	0
Gázüzemű berendezések, ventilátorral felszerelve	Bekapcsolva	-P _{WG,j}	0	$\begin{array}{c} P_{W,j^+} \\ P_{WG,j} \end{array}$	0	0	$t_{W,j}$	0	0
	Kikapcsolva	0	0	$\begin{array}{c} P_{W,j^+} \\ P_{WG,j} \end{array}$	0	0	t _{uV,j}	0	0

LAS gyűjtőkémény méretezése

Szabvány csak huzat hatása alatt álló (depressziós) rendszerrel foglalkozik

Méretezés feltétele:

- Csatlakozó készülékek 0 Pa túlnyomással kapcsolódnak a függőleges szakaszhoz
- Az égéstermék elvezetését és a levegő hozzávezetését a gravitáció biztosítja
- A túlnyomás kiegyenlítő nyíláson hozzááramló levegő meghatározásával a munkapont meghatározása a feladat

Égéstermék hűl, égési levegő melegszik.

Turbó készülékek csatlakozása LAS gyűjtőkéményhez

