

MITx: 14.310x Data Analysis for Social Scientists

<u>Hel</u>j

Bookmarks

- Module 1: The Basics of R and Introduction to the Course
- ▶ Entrance Survey
- Module 2: Fundamentals of Probability, Random Variables, Distributions, and Joint Distributions
- Module 3: Gathering and Collecting Data, Ethics, and Kernel Density Estimates
- Module 4: Joint,
 Marginal, and
 Conditional
 Distributions &
 Functions of Random
 Variable

Module 7: Assessing and Deriving Estimators - Confidence Intervals, and Hypothesis Testing > Confidence Intervals and Hypothesis Testing > The t-distribution - Quiz

The t-distribution - Quiz

☐ Bookmark this page

Question 1

1.0 point possible (graded)

Suppose we are sampling from a $N(\mu, \sigma^2)$ distribution. Which of the following statements is true? (Select all that apply)

$$^{\square}$$
 a. $rac{(n-1)s^2}{\sigma^2} \sim N(0,1)$

$$^{ extstyle eta}$$
 b. $rac{(n-1)s^2}{\sigma^2}\sim \chi_n^2$

$$^{ extstyle ullet}$$
 c. $rac{(n-1)s^2}{\sigma^2}\sim \chi^2_{n-1}$

$$lacksquare$$
 d. $rac{(ar{X}-\mu)}{\sqrt{(rac{\sigma^2}{n})}}\sim \chi^2_{n-1}$

$$^{\square}$$
 e. $rac{(ar{X}-\mu)}{\sqrt{(rac{\sigma^2}{n})}}\sim \chi_n^2$

- Module 5: Moments of a Random Variable,
 Applications to Auctions,
 Intro to Regression
- Module 6: Special
 Distributions, the
 Sample Mean, the
 Central Limit Theorem,
 and Estimation
- Module 7: Assessing and Deriving Estimators - Confidence Intervals, and Hypothesis Testing

<u>Assessing and Deriving</u> <u>Estimators</u>

Finger Exercises due Nov 14, 2016 at 05:00 IST

Confidence Intervals and Hypothesis Testing

Finger Exercises due Nov 14, 2016 at 05:00 IST

Module 7: Homework

Homework due Nov 07, 2016 at 05:00 IST

V

Submit

You have used 1 of 2 attempts

✓ Correct (1/1 point)

Question 2

1/1 point (graded)

True or False: Let $X_1,\ldots,X_n\sim N(\mu,\sigma^2)$, and suppose σ^2 is known, then

$$rac{ar{X}-\mu}{\sqrt{(rac{\sigma^2}{n})}}\sim t_n$$

- a. True
- b. False

Exit Survey

Explanation

Professor Ellison explained in class, that if $X\sim N(0,1)$ and $Z\sim \chi_n^2$ then $rac{X}{\sqrt{rac{Z}{n}}}\sim t_n$. This is useful

because it allows us to characterize the sample distribution in cases where the variance is unknown. Because we know that if X_1,\ldots,X_n are i.i.d from a standard normal distribution, then the **estimator** of the sample variance s^2 follows a chi squared distribution with (n-1) degrees of freedom, so we appeal to this distributional fact to form the confidence interval. However, if the variance is known, then we know that

$$rac{ar{X}-\mu}{\sqrt{(rac{\sigma^2}{n})}}\sim N(0,1)$$

so we can construct the confidence interval.

Submit

You have used 1 of 1 attempt

✓ Correct (1/1 point)

Discussion

Topic: Module 7 / The t-distribution - Quiz

Show Discussion

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

