

DuPont™ Teflon® PTFE Specifications

904 West 6th Street, Shiner, Texas 77984 USA Phone: 1-361-594-2941 Fax: 1-361-594-2349 E-Mail: <u>bpi@boedeker.com</u>

1-800-444-3485

BPI Home Page | Applications | Materials Guide | Contact Us!

TECHNICAL DESCRIPTION

Discovered in 1938 by Dr. Roy J. Plunkett of the DuPont Company, Teflon® is a fluorocarbon-based polymer. PolyTetraFluoroEthylene is commonly abbreviated PTFE, and the Teflon® brand of PTFE is manufactured only by DuPont™. The fluoroplastic family offers plastics with high chemical resistance, low and high temperature capability, resistance to weathering, low friction, electrical and thermal insulation, and "slipperiness".

(see also Generic PTFE and Teflon® FEP & PFA Specifications)

GENERAL PROPERTIES

Mechanical properties of Teflon® are low compared to other plastics, but its properties remain at a useful level over a wide temperature range of of -100°F to +400°F (-73°C to 204°C). Mechanical properties are often enhanced by adding fillers (see paragraph below). It has excellent thermal and electrical insulation properties and a low coefficient of friction. PTFE is very dense and cannot be melt processed -- it must be compressed and sintered to form useful shapes.

FILLED GRADES

PTFE's mechanical properties can be enhanced by adding fillers such as glass fibers, carbon, graphite, molybdenum disulphide, and bronze. Generally, filled PTFE's maintain their excellent chemical and high temperature characteristics, while fillers improve mechanical strength, stability, and wear resistance.

The properties of 25% glass-filled and 25% carbon-filled PTFE grades are shown below for comparison purposes. There are literally dozens of different filled PTFE products and grades -- too many to be listed here. Please contact Boedeker Plastics for more information about other filled PTFE products for your application.

(see also <u>Semitron ESd 500 Static-Dissipative PTFE</u> | <u>Fluorosint Filled PTFE</u> | <u>Rulon Filled PTFE</u> | Specifications)

TYPICAL PROPERTIES of TEFLON® PTFE							
ASTM or UL test	Property	PTFE (unfilled)	PTFE (25% glass filled)	PTFE (25% carbon filled)			
	PHYSICAL	#					
D792	Density (lb/in³) (g/cm³)	0.078 2.16	0.081 2.25	0.075 2.08			
D 570	Water Absorption, 24 hrs (%)	< 0.01	0.02	0.05			
	MECHANICA	4L					
D638	Tensile Strength (psi)	3,900	2,100	1,900			
D638	Tensile Modulus (psi)	80,000	-	-			
D638	Tensile Elongation at Break (%)	300	270	75			
D790	Flexural Strength (psi)	No break	1,950	2,300			
D 790	Flexural Modulus (psi)	72,000	190,000	160,000			
D695	Compressive Strength (psi)	3,500	1,000	1,700			
D695	Compressive Modulus (psi)	70,000	110,000	87,000			
D785	Hardness, Shore D	D50	D60	D62			
D256	IZOD Notched Impact (ft-lb/in)	3.5	-	-			
THERMAL							
D696	Coefficient of Linear Thermal Expansion (x 10 ⁻⁵ in./in./°F)	7.5	6.4	6.0			
D648	Heat Deflection Temp (°F / °C) at 264 psi	132 / 55	150 / 65	150 / 65			
D3418	Melting Temp (°F / °C)	635 / 335	635 / 335	635 / 335			
	Max Operating Temp (°F / °C)	500 / 260	500 / 260	500 / 260			
C177	Thermal Conductivity (BTU-in/ft²-hr-°F) (x 10 ⁻⁴ cal/cm-sec-°C)	1.70 5.86	3.1 10.6	4.5 15.5			
UL94	Flammability Rating	V-O	V-O	V-O			
ELECTRICAL							
D149	Dielectric Strength (V/mil) short time, 1/8" thick	285	-	-			
D150	Dielectric Constant at 1 MHz	2.1	2.4				
D150	Dissipation Factor at 1 MHz	< 0.0002	0.05				
D257	Volume Resistivity (ohm-cm)at 50% RH	> 10 ¹⁸	> 10 ¹⁵	104			

NOTE: The information contained herein are typical values intended for reference and comparison purposes only. They should NOT be used as a basis for design specifications or quality control. Contact us for manufacturers' complete material property datasheets.

All values at 73°F (23°C) unless otherwise noted.

TEFLON ® is a registered trademark of DuPont

Boedeker Plastics, Inc.

904 West 6th Street, Shiner, Texas 77984 USA **USA TOLLFREE: 1-800-444-3485**

Phone: 1-361-594-2941 Fax: 1-361-594-2349 E-Mail: bpi@boedeker.com

© Copyright Boedeker Plastics, Inc. 2007

thermoset laminate properties

Properties	NEMA grade reinforcement~ resin binder	FR4 glass~ epoxies	FR5 glass~ epoxy HT	G9 glass~ melamine	G7 glass~ silicone	GP0 1 glassmat~ polyester	GP03 glassmat~ polyester	X paper pheno.
Tensile Stre	ngth							
	lengthwise, PSI	40,000	40,000	37,000	23,000	12,000	11,000	20,00
	crosswise, PSI	35,000	35,000	30,000	18,000	-	-	16,00
Compressiv	e Strength							
	flatwise, PSI	60,000	60,000	70,000	45,000	40,000	30,000	36,00
	edgewise, PSI	35,000	35,000	25,000	14,000	-	-	19,00
Flexural Sti	ength							
	lengthwise, PSI	55,000	55,000	55,000	23,000	23,000	20,000	25,00
	crosswise, PSI	45,000	45,000	35,000	20,000	-	-	22,00
Properties	NEMA grade reinforcement~ resin binder	FR4 glass~ epoxies	FR5 glass~ epoxy HT	G9 glass~ melamine	G7 glass~ silicone	GP0 1 glassmat~ polyester	GP03 glassmat~ polyester	X paper phenol
Modulus of	Elasticity in flex							
lengt	hwise, PSI x 10 ⁶	2.7	2.7	2.5	1.4	-	-	1.8
crosswise, PSI x 10 ⁶		2.2	2.2	2.0	1.2	-	-	1.3
Shear Strength, PSI		19,000	19,000	20,000	17,000	-	-	12,00
IZOD Impa	ct							
flatwise	e, ft lb per inch of notch	7	7	12	8.5	-	-	4

edgewise	, ft lb per inch of notch	5.5	5.5	8	7.5	-	-	0.5
Rockwell Hardness M scale		110	110	120	100	-	-	110
Specific Gra	vity	1.82	1.82	1.9	1.68	1.8	1.85	1.36
Coefficient of	of Thermal Expan	sion		•				
cm/c	em/ deg C x 10 -5	.9	.9	1	1	-	-	6
Properties	NEMA grade reinforcement~ resin binder	FR4 glass~ epoxies	FR5 glass~ epoxy HT	G9 glass~ melamine	G7 glass~ silicone	GP0 1 glassmat∼ polyester	GP03 glassmat~ polyester	X paper pheno:
Water Abso	rption							
.062" th	ick, % per 24 hrs	0.25	0.25	0.8	0.3	0.35	0.4	6
.125" th	ick, % per 24 hrs	0.15	0.15	0.7	0.2	-	-	3.3
.500" th	ick, % per 24 hrs	0.10	0.10	0.4	0.15	-	-	1.1
Dielectric St	rength, volt/mil							
perpendicula	r to laminations; sl	nort						
.062" thick		500	500	400	400	370	400	700
.125" thick		400	400	350	350	-	-	500
Dissipation 1	Factor							
condition	n A, 1 megacycle	0.025	0.025	0.017	0.003	-	-	0.06
Dielectric C	onstant							
condition	n A, 1 megacycle	5.2	5.2	7.12	4.2	-	-	6
				1	ır		11 1	
Properties	NEMA grade reinforcement~ resin binder	FR4 glass~ epoxies	FR5 glass~ epoxy HT	G9 glass~ melamine	G7 glass~ silicone	GP0 1 glassmat~ polyester	GP03 glassmat∼ polyester	X paper pheno
Insulation R	esistance							
Condition: 96 hours at 90% relative humidity (in mega ohms)		200,000	200,000	10,000	200,000	-	-	-
Flame Resis	tance							

Ū	Inderwriter Labs, Classification	94V-0	94V-0	94V-0	94V-0	94HB	94V-0	94HI
Bond Streng	gth, in lbs	2,000	1,600	1,700	650	-	-	700
Max Contin	nuous Operating	Геmperature						
Approx	imate degrees F	285	300	285	465	265	265	285
Properties	NEMA grade reinforcement~ resin binder	FR4 glass~ epoxies	FR5 glass~ epoxy HT	G9 glass~ melamine	G7 glass~ silicone	GP0 1 glassmat~ polyester	GP03 glassmat∼ polyester	X paper pheno.
Acculam tradenames		Epoxyglas	EpoxyglasHT	Melaglas	Siliglas	Polymat-	Polymat-	Phenolk
Acculam grades		G10,FR4	G11,FR5	G5,G9	G7	GP0-1	GPO-3	X
sheet mil spec: Mil-I-24768 /		27	28	1	17	4	6	12
types		GEE-F	GEB-F *	GME	GSG	GPO1	GPO3	PBM

The above information is provided for informational purposes only. Accurate believes this data to be reliable but disclaims any liability for damages or injury which guarantee, warranty (including warranty of merchantability) or representation (including freedom from patent liability) by Accurate Plastics with respect to the da purpose is known to Accurate Plastics.

18 Morris Place, Yonkers, NY 10705 P. O. Box 2287, Weirton, WV 26062 33 Tech Park Drive, Falmouth, MA 02536 phone 800-431-2274, fax phone 800-445-1884, fax phone 800-222-8759, fax

Back to Top | Home

www.acculam.com

E-mail

Coefficient of thermal expansion

From Wikipedia, the free encyclopedia

During heat transfer, the energy that is stored in the intermolecular bonds between atoms changes. When the stored energy increases, so does the length of the molecular bond. As a result, solids typically* expand in response to heating and contract on cooling; this response to temperature change is expressed as its coefficient of thermal expansion:

The coefficient of thermal expansion is used in two ways:

- as a *volumetric* thermal expansion coefficient
- as a *linear* thermal expansion coefficient

Material Properties						
Specific heat	$c = \frac{T}{N} \left(\frac{\partial S}{\partial T} \right)$					
Compressibility	$\beta = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)$					
Thermal expansion	$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)$					

These characteristics are closely related. The volumetric thermal expansion coefficient can be measured for all substances of condensed matter (liquids and solid state). The linear thermal expansion can only be measured in the solid state and is common in engineering applications.

* Some substances have a negative expansion coefficient, and will expand when cooled (e.g. freezing water).

Contents

- 1 Volumetric thermal expansion coefficient
- 2 Linear thermal expansion coefficient
- 3 Applications
- 4 External links
- 5 References

Volumetric thermal expansion coefficient

The volumetric thermal expansion coefficient (sometimes simply thermal expansion coefficient) is a thermodynamic property of a substance given by (Incropera, 2001 p537)

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_P$$

where T is the temperature, V is the volume, ρ is the density, derivatives are taken at constant pressure P; β measures the fractional change in density as temperature increases at constant pressure.

Proof:

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{\mathrm{p}} = \frac{\rho}{m} \left(\frac{\partial V}{\partial \rho} \right)_{\mathrm{p}} \left(\frac{\partial \rho}{\partial T} \right)_{\mathrm{p}} = \frac{\rho}{m} (-\frac{m}{\rho^2}) \left(\frac{\partial \rho}{\partial T} \right)_{\mathrm{p}} = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right$$

where m is the mass.

The expansion of a crystalline material occurs only when the force field of the crystal deviates from a perfect quadratic. If the force field is perfectly parabolic, no expansion will occur.

Linear thermal expansion coefficient

The **linear thermal expansion coefficient** relates the change in temperature to the change in a material's linear dimensions. It is the fractional change in length of a bar per degree of temperature change.

$$\alpha = \frac{1}{L}\frac{\partial L}{\partial T}$$

The expansion and contraction of material must be considered when designing large structures, when using tape or chain to measure distances for land surveys, when designing molds for casting hot material, and in other engineering applications when large changes in dimension due to temperature are expected. Some values for common materials, given in parts per million per Celsius degree: (NOTE: This can also be in kelvins as the changes in temperature are a 1:1 ratio)

coefficient of linear thermal expansion a				
material	α in 10 ⁻⁶ /K at 20 °C			
Mercury	60			
BCB	42			
Lead	29			
Aluminum	23			
Brass	19			
Stainless steel	17.3			
Copper	17			
Gold	14			
Nickel	13			
Concrete	12			
Iron or Steel	12			
Carbon steel	10.8			
Platinum	9			
Glass	8.5			
GaAs	5.8			
Indium Phosphide	4.6			
Tungsten	4.5			
Glass, Pyrex	3.3			
Silicon	3			
Diamond	1			
Quartz, fused	0.59			

For exactly isotropic materials, the linear thermal expansion coefficient is very closely approximated as one-third the volumetric coefficient.

$$\beta \cong 3\alpha$$

Proof:

$$\beta = \frac{1}{V} \frac{\partial V}{\partial T} = \frac{1}{L^3} \frac{\partial L^3}{\partial T} = \frac{1}{L^3} \left(\frac{\partial L^3}{\partial L} \cdot \frac{\partial L}{\partial T} \right) \cong \frac{1}{L^3} \left(3L^2 \frac{\partial L}{\partial T} \right) = 3 \cdot \frac{1}{L} \frac{\partial L}{\partial T} = 3\alpha$$

This ratio arises because volume is composed of three mutually orthogonal directions. Thus, in an isotropic material, one-third of the volumetric expansion is in a single axis (a very close approximation for small differential changes). Note that the partial derivative of volume with respect to length as shown in the above equation is exact, however, in practice it is important to note that the differential change in volume is only valid for small changes in volume (ie the expression is not linear). As the change in temperature increases, and as the value for the linear coefficient of thermal expansion increases, the error in this formula also increases. For nonnegligible changes in volume:

$$(L+\Delta L)^3 = L^3 + 3L^2\Delta L + 3L\Delta L^2 + \Delta L^3$$

Note that this equation contains the main term, $3L^2$, but also shows a secondary term that scales as $3L\Delta L^2=3L^3\alpha^2\Delta T^2$, which shows that a large change in temperature can overshadow a small value for the linear coefficient of thermal expansion. Although the coefficient of linear thermal expansion can be quite small, when combined with a large change in temperature the differential change in length can become large enough that this factor needs to be considered. The last term, ΔL^3 is vanishingly small, and is almost universally ignored. In anisotropic materials the total volumetric expansion is distributed unequally among the three axes.

Applications

For applications using the thermal expansion property, see bi-metal and mercury thermometer

Thermal expansion is also used in mechanical applications to fit parts over one another, e.g. a bushing can be fitted over a shaft by making its inner diameter slightly smaller than the diameter of the shaft, then heating it until it fits over the shaft, and allowing it to cool after it has been pushed over the shaft, thus achieving a 'shrink fit'

There exist some alloys with a very small CTE, used in applications that demand very small changes in physical dimension over a range of temperatures. One of these is Invar 36, with a coefficient in the 0.0000016 range. These alloys are useful in aerospace applications where wide temperature swings may occur.

External links

- Free database of engineering properties for over 50,000 materials (http://www.matweb.com/)
- Clemson University Physics Lab: Linear Thermal Expansion (http://phoenix.phys.clemson.edu/labs/223/expansion/index.html)
- USA NIST Website Temperature and Dimensional Measurement workshop (http://emtoolbox.nist.gov/Temperature/Slide1.asp#Slide1)

References

■ Incropera, Frank P.; David P. DeWitt (August 9 2001). *Fundamentals of Heat and Mass Transfer*, 5th Edition, Wiley. ISBN 0-471-38650-2.

Retrieved from "http://en.wikipedia.org/wiki/Coefficient_of_thermal_expansion"

Categories: Heat | Physical quantity

- This page was last modified 15:51, 13 January 2007.
- All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.) Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a US-registered 501(c)(3) tax-deductible nonprofit charity.