

Documento Ejecutivo - Arquitectura CloudOps

Sistema de Monitoreo y Respuesta de Emergencias en Tiempo Real para CCS

Compañía Colombiana de Seguimiento de Vehículos

Versión: 1.0 Fecha: Octubre 2024

Preparado para: CEO, Arquitecto de Soluciones, Arquitecto Cloud

Preparado por: Kevin Toledo - Arquitecto CloudOps

Estado: Propuesta Técnica Completa

Contents

0.1	Resumen Ejecutivo				
	0.1.1	Propósito del Documento	2		
	0.1.2	Problema o Necesidad Actual	2		
	0.1.3	Visión General de la Solución Propuesta	2		
	0.1.4	Beneficios Esperados	3		
0.2	Contexto y Problema de Negocio				
	0.2.1	Situación Actual	3		
	0.2.2	Desafíos Identificados	3		
0.3	Descripción de la Solución				
	0.3.1	Enfoque Arquitectónico	3		
	0.3.2	Decisiones Clave	4		
0.4	Arqui	itectura Detallada	4		
	0.4.1	Visión General de la Arquitectura	4		
	0.4.2	Descripción General	4		
	0.4.3	Escalabilidad y Resiliencia	6		
	0.4.4	Beneficios Clave	6		
0.5	Monit	toreo y Observabilidad	6		
	0.5.1	Amazon CloudWatch	6		
	0.5.2	AWS X-Ray	6		
	0.5.3	CloudWatch Logs Insights	6		
	0.5.4	AWS GuardDuty	6		

0.1 Resumen Ejecutivo

0.1.1 Propósito del Documento

Este documento presenta la propuesta de arquitectura CloudOps para modernizar y escalar el sistema de monitoreo de vehículos de carga de CCS, transformando la operación actual en una plataforma cloud-native que garantiza:

- Respuesta a emergencias en menos de 2 segundos
- Procesamiento de 5,000 señales por segundo
- Disponibilidad del 99.9%
- Reducción del 80% en tiempos de venta
- Escalabilidad para 10x el crecimiento actual

0.1.2 Problema o Necesidad Actual

CCS enfrenta limitaciones críticas en su infraestructura actual:

Problema	Impacto en el Negocio	Consecuencia
Proceso de ventas manual	5 días promedio por contrato	Pérdida de oportunidades de negocio
Sistema monolítico	Imposibilidad de escalar componentes	Crecimiento limitado
Falta de visibilidad en tiempo real	Clientes sin visualización en vivo	Baja satisfacción del cliente
Capacidad limitada	Máximo 1,000 vehículos simultáneos	Restricción de crecimiento
Sin automatización	Gestión manual de alertas y emergencias	Tiempos de respuesta lentos
Costos fijos altos	Pago por capacidad máxima	40% de recursos subutilizados

0.1.3 Visión General de la Solución Propuesta

Arquitectura cloud-native en AWS con microservicios, procesamiento en tiempo real y automatización completa.

Componentes Principales

- 1. AWS IoT Core para ingesta masiva
- 2. Amazon Kinesis + Lambda para análisis en tiempo real
- 3. DynamoDB, Aurora Serverless v2, S3 y Timestream para almacenamiento
- 4. API Gateway y AppSync GraphQL
- 5. ECS Fargate con auto-scaling
- 6. Step Functions para workflows
- 7. CloudFront + S3 para frontend

0.1.4 Beneficios Esperados

Operacionales

- Respuesta en menos de 2 segundos
- Escalabilidad de 1,000 a 10,000+ vehículos
- Alta disponibilidad (99.9%)
- Observabilidad completa

De Negocio

- Reducción del 80% en tiempos de venta
- Ahorro de costos del 35-40%
- Nuevas fuentes de ingresos
- Incremento de satisfacción del cliente (40%)

0.2 Contexto y Problema de Negocio

0.2.1 Situación Actual

Infraestructura on-premise con limitaciones técnicas:

- Procesamiento básico de telemetría
- Sin visualización en tiempo real
- Capacidad fija (1000 vehículos)
- Procesos manuales

0.2.2 Desafíos Identificados

Técnicos

Escalabilidad limitada, latencia alta, sin alta disponibilidad, stack obsoleto.

Operacionales

Gestión manual de emergencias, sin automatización, costos fijos altos.

De Negocio

Pérdida de ventas, baja retención, limitaciones para nuevos servicios.

0.3 Descripción de la Solución

0.3.1 Enfoque Arquitectónico

- Microservicios
- Event-Driven

- Serverless-First
- API-First
- Observabilidad integrada

0.3.2 Decisiones Clave

Por qué AWS:

- Servicios IoT maduros
- Ecosistema de streaming
- Bases de datos especializadas
- Capacidades serverless líderes

0.4 Arquitectura Detallada

0.4.1 Visión General de la Arquitectura

La arquitectura propuesta proporciona una infraestructura escalable, segura y automatizada que soporta el ciclo completo de despliegue, operación y monitoreo de aplicaciones en la nube. El diseño se alinea con los principios del AWS Well-Architected Framework, abarcando los pilares de excelencia operativa, seguridad, fiabilidad, eficiencia en el rendimiento y optimización de costos.

0.4.2 Descripción General

La solución se compone de varias capas funcionales:

- Capa de Ingesta y Acceso: Utiliza Amazon CloudFront y API Gateway para exponer interfaces seguras y globales hacia los usuarios y dispositivos IoT. WAF y ACM proporcionan seguridad de capa 7 y gestión de certificados SSL.
- Capa de Procesamiento: Implementada con Amazon Kinesis, Lambda y ECS Fargate. El flujo de datos IoT se analiza en tiempo real, generando alertas automáticas mediante EventBridge y Step Functions.
- Capa de Datos: Almacenamiento estructurado y no estructurado mediante Amazon S3, Aurora Serverless v2, DynamoDB y Timestream. AWS Glue y Lake Formation gestionan el catálogo y control de acceso.
- Capa de Observabilidad: CloudWatch, Prometheus y Grafana proporcionan monitoreo integral, con dashboards personalizados para métricas operativas y de negocio.
- Capa de Seguridad y Cumplimiento: IAM, KMS, CloudTrail y Security Hub aseguran identidad, auditoría, cifrado y cumplimiento regulatorio.
- Capa de Automatización y DevOps: CodePipeline, CodeBuild, Terraform, Helm y ArgoCD gestionan infraestructura y aplicaciones mediante pipelines declarativos de CI/CD.

Figure 1: Arquitectura CloudOps propuesta para el sistema de monitoreo en tiempo real.

0.4.3 Escalabilidad y Resiliencia

El diseño es modular y se despliega en múltiples zonas de disponibilidad (AZs) para garantizar alta disponibilidad. El autoescalado ajusta la capacidad con base en la demanda en tiempo real.

0.4.4 Beneficios Clave

- Despliegues rápidos y seguros mediante CI/CD automatizado.
- Reducción del riesgo operativo gracias a la observabilidad centralizada.
- Cumplimiento de mejores prácticas de seguridad en toda la capa de datos.
- Escalabilidad horizontal bajo demanda, optimizando costos.
- Infraestructura reproducible con IaC y trazabilidad completa.

0.5 Monitoreo y Observabilidad

0.5.1 Amazon CloudWatch

Métricas, alarmas y dashboards en tiempo real.

0.5.2 AWS X-Ray

Tracing distribuido e identificación de cuellos de botella.

0.5.3 CloudWatch Logs Insights

Centralización de logs y consultas SQL.

0.5.4 AWS GuardDuty

Detección de amenazas y seguridad inteligente.