II. ARTIK 7 _ I _ II _

3. Analog Control(1)

Analog / Digital Converter

ADC(Analog/Digital Converter)

- An apparatus that converts an analog signal (sensor) to digital data (computer, MCU, etc.)
- Depending on the range of the physical quantity to be measured and the application purpose of the system, the one with the appropriate resolution and precision is used.
- Resolution
 - Minimum change of analog input to change digital output value by one class
 - Minimum analog amount that the ADC can represent
 - The minimum data range of the output is $1/2^n$, in case of n-bit ADCs
- Conversion time
 - Time required to perform A / D conversion
 - Expressed in terms of sampling rate per second

Analog / Digital Converter

ADC example

■ The ADC interface of ARTIK 520 converts the analog input signal into 12-bit binary code.

ADCs in ARTIK

ADC pins

- J24[A0] (Analog input 0)
- J24[A1] (Analog input 1)

(1) ARTIK5 Board

Header J24 (analog inputs)

	ader of randrog inputs				
PIN [SILKSCREEN]	MAPPING				
J24[A0]	Analog input 0				
J24[A1]	Analog input 1				

(2) ARTIK5 Pin mapping(J24)

List of examples

Photoresistor(CdS) example

Using C compiler

Infrared(IR) sensor example

- Using Linux command line
- Using C compiler

Humidity/Temperature sensor example

- Using C compiler
- Using Arduino IDE

Photoresistor (CdS)

Symbol of Photoresistor

CdS Sensor

- A sensor varing with the intensity of the debt
- Features
 - The photoconductive sensor, which is an N-type semiconductor, diffuses resistance according to the illuminance because the electrons in the N-type semiconductor become free electrons when the light energy is received.
 - Small diameter CdS has a smaller illuminance measurement range
 - The allowable operating temperature range is-30 ~ +60 °C

(1) 조도센서(cds)

Photoresistor (CdS)

■ Structure of Photoresistor

- CdS is placed in a sealed container, and the light receiving window is made of transparent plastic or glass
- Two leads with no polarity

Output voltage

- The CdS resistance (R_s) decreases, the current Increases when light comes in.
- CdS resistance(R_s) and load resistance(R_L) is direct connection
- Current $i = \frac{V_{cc}}{R_S + R_L}$

CdS voltage
$$V = \frac{R_S}{R_S + R_L} V_{cc}$$

Required Hardware

- ARTIK 5 beta developer kit
- Illuminance sensor (GL5528)
- LED
- 10K ohm resistor, 220 ohm resistor
- Breadboard
- Connector wires

■ Circuit Configuration

Source Code

```
#include <stdio.h>
                                                                 int testSensor() {
#include <stdlib.h>
                                                                                long SenVal = 0;
#include <stdbool.h>
                                                                                int i;
                                                                                for (i = 0; i < 10; i++) {
                              // A0
#define ANALOG_PIN 0
                                                                                               SenVal =
#define PWM_PIN 0
                                                                 analogRead(ANALOG_PIN);
#define PERIOD 1000000
                                                                                               if (SenVal == -1) return -1;
                                                                                               printf("Voltage_raw: %d -----
                                                                 --- %d₩n". SenVal. 10-i);
int analogRead(int pin) {
                                                                                               sleep(1);
  FILE * fd;
char fName[64];
                                                                                return 0;
char val[8];
// open value file
                                                                 int Con_duty(int duty)
sprintf(fName,
               "/sys/devices/126c0000.adc/iio:device0/in_volt
                                                                    pwmPin(0, PERIOD, duty, 1);
age%d_raw", pin);
               fd = fopen(fName, "r");
               if (!fd) {
                                                                 int main(void) {
                              printf("Error: can't open analog
                                                                   long SenVal = 0;
voltage value₩n");
                                                                   while(1) {
                              return -1:
                                                                      SenVal = analogRead(ANALOG_PIN);
                                                                      printf("val: %d₩n", SenVal);
               fgets(val, 8, fd);
               fclose(fd);
                                                                      if(SenVal > 900) { Con_duty(1000000); }
               return atoi(val);
                                                                      else if((SenVal <= 900) && (SenVal > 700))
                                                                 {Con_duty(800000); }
                                                                      else if((SenVal <= 700) && (SenVal > 500))
                                                                 {Con_duty(600000); }
```


Execution result

ARTIK 520

PS-ED500

Infrared(IR) Sensor

Infrared(IR) Sensor

- A device that detects physical quantities and stoichiometries such as temperature, pressure, and intensity of radiation using infrared rays and converts them into electrical quantities capable of signal processing
- In general, conversion formula is needed to measure physical quantities by sensors.
- Sending-light part : Emits light of a certain frequency
- Receiving-light part : Detect diverging light
- Sending-light part → Reflection on an object → Receiving-light part ⇒ Confirm the object existence and calculate the distance

Infrared(IR) Sensor

Infrared(IR) Sensor

Using Command Line

Required Hardware

- ARTIK 5 beta developer kit
- IR sensor (LK-DMS)
- Breadboard
- Connector wires

Circuit Configuration

Using Command Line

Command

- Read a raw voltage from ADC0 of ARTIK 520
 - cat /sys/devices126c0000.adc/iio:device0/in_voltage0_raw
- Read a raw voltage from ADC1 of ARTIK 520
 - cat /sys/devices126c0000.adc/iio:device0/in_voltage1_raw

```
[root@localhost ~]# cat /sys/devices/126c0000.adc/iio:device0/in_voltage0_raw
2074
[root@localhost ~]# cat /sys/devices/126c0000.adc/iio:device0/in_voltage0_raw
2029
```

- It returns a raw measurement value, so you should convert it to a voltage measurement. The equation :
 - (Voltage) = (in_voltage X_raw)*0.439453125 [mV], for ARTIK module
 - (Voltage) = (in_voltage X_raw)*0.439453125*2 [mV], for ARTIK development board

Required Hardware

- ARTIK 5 beta developer kit
- IR sensor (LK-DMS)
- Breadboard
- Connector wires

Circuit Configuration

Source Code

```
#include "wiringARTIK.h"

#define ANALOG_PIN 0  // A0

int main(void) {
   int SenValue = 0;

   while(1) {
      SenValue = analogRead(ANALOG_PIN);
      printf("val : %d\n", SenValue);
   }
}
```


Execution result

Red – 5V, Black – GND, Yellow – A0
ARTIK 520

PS-ED500

II. ARTIK 7 | â II â

4. Analog Control(2)

Humidity/Temperature Sensor

Humidity/Temperature sensor

- Humidity sensor :Use the react to humidity and the influence of electric current flow
- Temperature sensor : Use a thermal resistor whose resistance varies with temperature
- Humidity/Temperature sensor : Modular product with temperature sensor and humidity sensor on one board

HT-01DV & ETH-01DV

- Integrated sensor of capacitive humidity sensor and band gap temperature sensor
- Convert digital measurement to voltage and output

Sungkyun kwan university
Control & Robotics Lab.

Humidity/Temperature Sensor

HT-01DV specifications

Specifications

항목		상대습도		온도			
		Min	Тур	Max	Min	Тур	Max
Reso	lution	14 bit		14 bit			
Operating Range		0		100%RH	-40 ℃		120 ℃
	Typical		±2.5%RH			±0.5 ℃	
Accuracy	Maximal	Fig. 1 참조			Fig. 2 참조		
Hysteresis < ±1.5%RH		n/a					
Response Time		10 sec		15 sec		25 sec	

- Signal output
 - Change the analog input data to the actual temperature / humidity unit

<Temperature Output>

Control & Robotics Lab.

Vout = (Vin/100) X %RH

 $%RH = V_{out}/(V_{in}/100)$

---2.3V ---3.5V

5.57

 $V_{out} = (V_{in}/165) X(\%+40)$

 $^{\circ}$ C = $V_{out}/(V_{in}/165)-40$

Humidity/Temperature Sensor

ETH-01DV specifications

Specifications

Fig.2

Signal output

• Change the analog input data to the actual temperature / humidity unit

Required Hardware

- ARTIK 5 beta developer kit
- Humidity/Temperature sensor (HT-01DV)
- Breadboard
- Connector wires

Circuit Configuration

Source Code

```
#include "wiringARTIK.h"
#define ANALOG_PIN0 0 // A0
#define ANALOG_PIN1 1 // A1
int main(void) {
     float SenVal1 = 0;
     float SenVal2 = 0;
     float vol1 = 0; // temperature voltage
     float vol2 = 0; // humidity voltage
     float tem = 0;
     float hum = 0;
     while(1) {
         SenVal1 = analogRead(ANALOG_PIN0);
         SenVal2 = analogRead(ANALOG_PIN1);
         vol1 = (SenVal1*0.439453125)*2; // mV단위로 변환
         vol2 = (SenVal2*0.439453125)*2;
         tem = -66.875 + 218.75*(vol1/5000);
         hum = -12.5 + 125*(vol2/5000);
          printf("=======<del>\\</del>n");
          printf("val1: %2.2f | temperature: %2.2f₩n", SenVal1, tem);
          printf("val2: %2.2f | humidity : %2.2f₩n", SenVal2, hum);
          printf("=======<del>\\</del>n");
         sleep(1);
     return 0;
```


Execution result

ARTIK 520

PS-ED500

Execution result

Using Arduino IDE

Required Hardware

- ARTIK 5 beta developer kit
- Humidity/Temperature sensor (HT-01DV)
- Breadboard
- Connector wires

Circuit Configuration

Using Arduino IDE

Arduino Source Code

```
HTSensor
#include <DebugSerial.h>
int voltage_raw0, voltage_raw1;
float voltageO, voltage1;
float temperature, humidity;
void setup() {
  DebugSerial.begin(9600);
void loop() {
  voltage_raw0 = analogRead(0);
  voltage_raw1 = analogRead(1);
  voltage0 = voltage_raw0*0.439453125*2;
  voltage1 = voltage_raw1*0.439453125*2;
  temperature = -66.875 + 217.75*(voltage0/5000);
  humidity = -12.5 + 125*(voltage1/5000);
  DebugSerial.print("Temperature : ");
  DebugSerial.println(temperature);
  DebugSerial.print("Humidity : ");
  DebugSerial.println(humidity);
  delay(5000);
```


Using Arduino IDE

Execution result

ARTIK 520

```
Temperature: 24.34
Humidity: 21.56
Temperature: 25.06
Humidity: 22.04
Temperature: 24.45
Humidity: 21.71
Temperature: 25.06
Humidity: 21.93
Temperature: 25.10
Humidity: 22.00
Temperature: 24.41
Humidity: 21.71
```


