

3rd Semester B.Tech Mid-Term Exam 2024-25

DIGITAL ELECTRONICS(BTEC-T-ES-003)

BRANCH(S) - Computer Engineering, Computer Science and Technology, Computer Science & Engineering

	SIC No	
Du	ration: 01:30 Total No. of Pages:-01	Full Marks: 25
1A	Answer All	
a	Convert $(1375)_8$ = $(?)_2$ = $(?)_{10}$	1
b	Applying DeMorgan's theorem to the expression $\frac{\overline{(X+Y)}+\overline{Z}}{\overline{(X+Y)}}$, we get	1
c		
d	Convert Binary code 1011001 to Gray code	1
e	Find the Excess-3 code for the given binary code (0110) ₂	1
f	Add 59 & 39 using BCD addition.	1
2 A	Inswer All	
a	Express the decimal number -75 as an 8-bit number in the sign-magnitude, signed 1's complement, and signed 2's complement forms	3
b	Using Boolean theorem, simplify the expression Y=ABC'D'+A'BC'D'+A'BCD'+ABCD' Also mention the theorem used in each step.	3
c	•	3
	(i)Express in sum of minterms	
	(ii) Express in Canonical POS	
3 <i>A</i>	nswer any One	
a	Reduce the expression using boolean algebra and implement using NOR gates only $f = A + B [AC + (B + C')D]$	5
b	Perform the following operations using 2's complement method for X=33 and Y=45	5
	(i) X-Y (ii) Y-X	
4 <i>A</i> .	nswer any One	
a	$F=\Sigma_{m} (0,2,3,6,7)+\Sigma_{d}(8,10,11,15).$	5
	Simplify the given Boolean function using KMAP and implement using basic logic gates.	

After discovering the truth table, design a full adder circuit using logic gates by finding the

expressions for the output. Use KMap whenever necessary. Show the full adder as a

combination of half-adders and some logic gates.

5