WAVE NET: A GENERATIVE MODEL FOR RAW AUDIO

План

Вводная часть:

- Хранение аудиоволн на компьютере
- Спектрограмма, мел-спектрограмма

WaveNet:

- Область применения
- Архитектура сети Conditional WaveNet

Эксперименты:

- Multi-Speaker Speech Generation
- TTS
- Генерация музыки
- Speech recognition

Хранение аудиоволн на компьютере

1 Second

Спектрограмма

Получается с помощью преобразования Фурье на коротких фрагментах звукового сигнала

Мел-спектрограмма

Мел – единица измерения, основана на психо-физиологическом восприятии звука человеком и

логарифмически зависит от частоты.

Человеческое ухо более чувствительно к изменениям звука на низких частотах, чем на высоких.

Мел-спектрограмма получается из спектрограммы с помощью формулы:

$$m = 2595 \log_{10} \left(1 + rac{f}{700}
ight) = 1127 \ln \left(1 + rac{f}{700}
ight)$$

Предыстория

До появления WaveNet существовало два основных подхода к реализации части синтеза речи:

- Конкатенативный, непараметрический подход, основанный на примерах, строит высказывание из кусочков записанной речи. Звучит довольно роботизированно
- Параметрический, основанный на моделях, известный как статистический параметрический синтез речи использует генеративную модель.

Figure 6: Outline of statistical parametric speech synthesis.

WaveNet: Область применения. Решаемые задачи

- Генерация речи (не основанная на тексте)
- TTS
- Генерация музыки
- Распознавание речи
- Преобразование голоса
- Разделение источников аудио (source separation)

WaveNet

- DeepMind (Google), 2016
- Работает напрямую с необработанным звуком
- Генеративная, авторегрессионная модель

The joint probability of a waveform $\mathbf{x} = \{x_1, \dots, x_T\}$ is factorised as a product of conditional probabilities as follows:

$$p(\mathbf{x}) = \prod_{t=1}^{T} p(x_t \mid x_1, \dots, x_{t-1})$$
 (1)

Архитектура WaveNet: Causal convolutions

Гарантируем, что предсказания для текущего момента времени зависят только от значений предыдущих сэмплов.

В режиме обучения возможно параллельное вычисление.

Архитектура WaveNet: Dilated causal convolutions

- Главная фишечка модели
- Размер рецептивного поля растёт экспоненциально

В работе чередовались значения dilation по схеме: $1, 2, 4, \dots, 512, 1, 2, 4, \dots, 512, 1, 2, 4, \dots, 512$

Архитектура WaveNet: Gated Activation Units

Используется активация вида:

$$\mathbf{z} = \tanh \left(W_{f,k} * \mathbf{x} \right) \odot \sigma \left(W_{g,k} * \mathbf{x} \right)$$

Где * - оператор свёртки, \odot - поэлементное умножение, $W_{f,k}$ и $W_{g,k}$ - обучаемые ядра свёртки k-того слоя

Архитектура WaveNet: Residual and Skip Connections

Архитектура WaveNet: μ -law

$$f(x_t) = \operatorname{sign}(x_t) \frac{\ln(1 + \mu |x_t|)}{\ln(1 + \mu)}$$

where $-1 < x_t < 1$ and $\mu = 255$

Conditional WaveNets

Добавляется дополнительный параметр h. Есть два типа conditioning: глобальный (голос спикера) и локальный (лингвистические особенности)

$$p(\mathbf{x} \mid \mathbf{h}) = \prod_{t=1}^{T} p(x_t \mid x_1, \dots, x_{t-1}, \mathbf{h})$$

Активация для global conditioning:

$$\mathbf{z} = \tanh \left(W_{f,k} * \mathbf{x} + V_{f,k}^T \mathbf{h} \right) \odot \sigma \left(W_{g,k} * \mathbf{x} + V_{g,k}^T \mathbf{h} \right)$$
 где $V_{*,k}$ представляет собой обучаемую линейную проекцию

Активация для local conditioning:

$$\mathbf{z} = anh\left(W_{f,k} * \mathbf{x} + V_{f,k} * \mathbf{y}\right) \odot \sigma\left(W_{g,k} * \mathbf{x} + V_{g,k} * \mathbf{y}\right)$$
 где $\mathbf{y} = f(\mathbf{h})$

Context Stacks

Обрабатывает длинный фрагмент аудио, затем результат обработки используется в качестве conditional для обучаемой сети.

Неявный способ увеличить рецептивное поле.

ЭЭЭЭксперименты

- Multi-Speaker Speech Generation
- TTS
- Генерация музыки
- Speech recognition

Multi-Speaker Speech Generation

- Генерация речи без опоры на текст
- Модель обусловлена ID спикера (задан через one-hot вектор)

Text-To-Speech

- Локальная обусловленность лингвистическими признаками

Сравнение с лучшими бейзлайнами:

- конкатенативная модель

- параметрическая модель

- WaveNet

Text-To-Speech. Результаты сравнения

	Subjective 5-scale MOS in naturalness	
Speech samples	North American English	Mandarin Chinese
LSTM-RNN parametric HMM-driven concatenative WaveNet (L+F)	3.67 ± 0.098 3.86 ± 0.137 4.21 ± 0.081	3.79 ± 0.084 3.47 ± 0.108 4.08 ± 0.085
Natural (8-bit μ-law) Natural (16-bit linear PCM)	$4.46 \pm 0.067 4.55 \pm 0.075$	$4.25 \pm 0.082 4.21 \pm 0.071$

Table 1: Subjective 5-scale mean opinion scores of speech samples from LSTM-RNN-based statistical parametric, HMM-driven unit selection concatenative, and proposed WaveNet-based speech synthesizers, 8-bit μ -law encoded natural speech, and 16-bit linear pulse-code modulation (PCM) natural speech. WaveNet improved the previous state of the art significantly, reducing the gap between natural speech and best previous model by more than 50%.

Генерация музыки

Speech recognition

Можно модифицировать модель для распознавания речи

Использовались две функции потерь:

- одна для прогнозирования следующего сэмпла и
- одна для классификации фрагмента

Выводы

- WaveNet авторегрессионная модель, работает со звуком непосредственно на уровне вэйвформ, совершила скачок в качестве синтеза естественно звучащей человеческой речи;
- WaveNet объединяет идеи каузальных фильтров и разреженных свёрток;
- Рецептивное поле растёт экспоненциально с увеличением числа слоёв;
- WaveNets могут быть обусловлены глобально или локально;
- WaveNet показала многообещающие результаты в различных областях, связанных с обработкой звука

Материалы

https://arxiv.org/abs/1609.03499

https://deepmind.google/discover/blog/wavenet-a-generative-model-for-raw-audio/

https://books.ifmo.ru/file/pdf/3111.pdf

https://habr.com/ru/articles/462527/