(1/27, 30 mins) Write a program that includes functions that convert between wavelength, frequency, and energy, and between F_{λ} (in ergs/cm²/s/Å) and F_{ν} (in ergs/cm²/s/Hz). All of these functions should exist in a single file in Python (preferred), IDL, C, C++, or Fortran file. Use the routines to determine frequency and energy at 5500 Å as well as the conversion factor between F_{λ} and F_{ν} at 3000Å, 5500Å, and 8000Å.

Using

$$F_{\nu} = F_{\lambda} \frac{\lambda^2}{c}$$
$$\frac{F_{\nu}}{F_{\lambda}} = \frac{\lambda^2}{c}$$

the conversion factor is $\frac{\lambda^2}{c}$. This produces a conversion factor of 3.002×10^{-20} for $\lambda=3000\text{Å}$, 1.009×10^{-19} for $\lambda=5500\text{Å}$, and 2.135×10^{-19} for $\lambda=8000\text{Å}$.