

Show all work clearly and in order. Please box your answers. 10 minutes.

1. Let $X = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ be a collection of vectors in \mathbb{R}^n . Give the definition of $\mathrm{Span}(X)$:

$$Span(x) = \begin{cases} \alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \dots + \alpha_k \vec{x}_k & \alpha_1, \dots, \alpha_k \in \mathbb{R}, \ \vec{x}_1, \dots, \vec{x}_k \in X \end{cases}$$

$$OR$$

Span(x) is the set of all linear combinations of vectors in X

2. Let $X = \{x_1, x_2, x_3\}$ where

$$\mathbf{x}_1 = \left[egin{array}{c} 1 \\ -1 \\ 0 \end{array}
ight], \mathbf{x}_2 = \left[egin{array}{c} 0 \\ 1 \\ 2 \end{array}
ight], \mathbf{x}_3 = \left[egin{array}{c} 1 \\ 0 \\ 2 \end{array}
ight]$$

Is the vector $\mathbf{u} = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix}$ in Span(X)? If so, write \mathbf{u} as a linear combination of $\mathbf{x}_1, \mathbf{x}_2$, and \mathbf{x}_3 .

using the "membership test" disussed in class (and on p122 of the book)

 $\vec{u} \in Span(x)$ \iff there is a linear combination $\vec{u} = c_1 \vec{x_1} + c_2 \vec{x_2} + c_3 \vec{x_2}$

$$= \begin{bmatrix} \vec{X}_1 & \vec{X}_2 & \vec{X}_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

(so [\vec{\vec{\vec{v}}}_{c_3} \vec{\vec{v}}_{is} a solution of the equation $A[\vec{\vec{v}}_{i}] = \vec{\vec{u}}$

So far this problem:
$$\begin{bmatrix}
1 & 0 & 1 & | & 1 \\
-1 & 1 & 0 & | & -2 \\
0 & 2 & 2 & | & -2
\end{bmatrix}
\xrightarrow{R2 \rightarrow R2 + R1}
\begin{bmatrix}
1 & 0 & 1 & | & 1 \\
0 & 1 & 1 & | & -1 \\
0 & 2 & 2 & | & -2
\end{bmatrix}
\xrightarrow{R3 \rightarrow R3 - 2R2}
\begin{bmatrix}
1 & 0 & 1 & | & 1 \\
0 & 1 & 1 & | & -1 \\
0 & 0 & 0 & | & 0
\end{bmatrix}$$

$$C_1 = 1 - \mathbf{t}$$

$$C_2 = -1 - \mathbf{d}$$

so $x_1 + x_3 = 1$ so in parametric form $c_1 = 1 - t$ so pick some t $c_2 + c_3 = -1$ $c_3 = anything$ $c_3 = t$ so pick some t value to cyct $c_3 = anything$ $c_3 = t$ as linear combinators for exemple if t = 0 then $c_1 = 1, c_2 = -1, c_3 = 0$ so (NoTE: There are infinitely many solutions?)