Chapter 15: Linear Regression I

DSCC 462 Computational Introduction to Statistics

> Anson Kahng Fall 2022

Announcements

- Midterm grades are out
- Pickup tomorrow from 3-4 pm in my office (Wegmans 2401) or at office hours next Tuesday
- Project groups are due tomorrow! Datasets will be released tomorrow (no project proposal necessary)

Plan For Today

- Explain how one variable affects another: simple linear regression!
- Basics of regression
- Inference for parameters
- Confidence intervals for true values

- Simple linear regression allows us to explore the relationship between two continuous random variables (think scatterplot)
- Unlike correlation analyses, we can directly model how a change in one variable affects another variable
 - Explanatory variable affects the response variable
- Goal: Estimate the value of the response variable that is associated with a given value of the explanatory variable
 - Example: If a child is 9 years old, how tall do we expect them to be?

- In *linear* regression, we estimate the relationship between x (explanatory variable) and y (response variable) by a line
- Regression model: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ for i = 1, ..., n and $\epsilon_i \sim N(0, \sigma^2)$
 - Expressed another way: $y_i | x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$
 - eta_0 is the y-intercept and eta_1 is the slope for the population
- **Goal**: Estimate β_0 and β_1 based on a sample in order to model the relationship between y and x

- Assumptions:
 - Given x, the y's are independent
 - There is a linear relationship between y and x (i.e., $E(\epsilon) = 0$)
 - The variance σ^2 is constant across all values of x (i.e., $Var(\epsilon) = \sigma^2$), known as homoscedasticity
 - For a specified value of x, y is normally distributed
 - x are fixed, known quantities
- When the regression assumptions are met, the use of linear regression is appropriate for describing the relationship between y and x

- Once we have estimates $\hat{\beta}_0$ and $\hat{\beta}_1$, we can estimate what y_i would be for a given x_i , under the model
- $\bullet \quad \hat{\mathbf{y}}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$
- But how do we fit a linear regression model?

- Use the method of least squares to fit a straight line to a set of points (x_i, y_i)
- If we look at how much each predicted \hat{y}_i deviates from the true observed value y_i , we have the residual $e_i = y_i \hat{y}_i$
 - R = A P (residual = actual predicted)
- Residuals of $e_i=0$ indicate that the observed point lies directly on the regression line
- Ideally, we would want every point to lie directly on the line

- Since points do not all lie on the regression line, we must determine the best criterion for fitting the line in such a way as to make these residuals as small as possible
- Residual sum of squares:

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Plugging in $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$, we get:

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

• Using this, we get our parameter estimates as follows:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} = r \frac{s_y}{s_x}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

• Note, r is Pearson's correlation coefficient, s_y is the standard deviation of y, and s_x is the standard deviation of x

```
> summary(model1)
Call:
lm(formula = y \sim x)
Residuals:
    Min
              1Q Median
                                       Max
-1.27555 -0.34855 -0.09534 0.52797 1.28676
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3236 2.3820 0.136 0.89530
                       0.2209 3.884 0.00465 **
             0.8578
Х
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8009 on 8 degrees of freedom
Multiple R-squared: 0.6534, Adjusted R-squared: 0.6101
F-statistic: 15.08 on 1 and 8 DF, p-value: 0.004651
```

- Consider the economic data presented in the longley dataset
- Include economic variables from mid-1900s America
- GNP: in billions of US dollars
- Employment: in millions of people

ŷ vs. y

$$\hat{y} = 51.844 + 0.03475x$$

- cor(x,y) = r = 0.98355
- $sd(x) = s_x = 99.395$
- $sd(y) = s_y = 3.512$
- mean(x) = \bar{x} = 387.699
- mean(y) = $\bar{y} = 65.317$
- $\hat{\beta}_1 = 0.98355 \left(\frac{3.512}{99.395} \right) = 0.03475$
- $\hat{\beta}_0 = 65.317 0.03475(387.699) = 51.844$

Interpretation of Regression Estimates

- $\hat{\beta}_0$ is the y-intercept
 - When x=0 we expect y to be equal to $\hat{\beta}_0$
 - Only makes sense if x=0 is within the range of your data and has contextual meaning
 - E.g., 51.844 million people are expected to be employed with the GNP is \$0
- $\hat{\beta}_1$ is the slope
 - For each 1 unit increase in x, we expect y to increase by $\hat{\beta}_1$ according to the model
 - E.g., for each \$1 billion increase in GNP, we expect the number of people employed to increase by 0.03475 million

Prediction

- We can use our regression line to make predictions
- Suppose we want to predict employment numbers when GNP is \$350 billion
- $\hat{y} = 51.844 + 0.03475x = 51.844 + 0.03475 \cdot 350 = 64.0065$ billion USD

Extrapolation

- We can only use our regression line to make predictions over the set of values for which we have observations
- The regression line should not be extended outside the range for which we have data
- Intuition: Our model was created only for our range of data, and we do not know what happens outside of this range

Extrapolation

- Regression line is based on a sample, but we want to make a conclusion about a population
- Create confidence intervals for \hat{eta}_0 and \hat{eta}_1
- Perform hypothesis tests
 - If $\beta_1 = 0$, this implies that a change in x has no impact on y
 - Hypothesis tests for β_0 are often unimportant and have little meaning, so we will focus only on β_1

• Since different samples will lead to different values of $\hat{\beta}_0$ and $\hat{\beta}_1$, this implies that there is variability to these estimates

•
$$Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

•
$$Var(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right)$$

• Note that σ^2 is the variance of the residuals around the predicted regression line

• Estimate
$$\sigma^2$$
 with sample $s^2 = Var(e_i) = \frac{1}{n-2} \sum_{i=1}^n e_i^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{y}_i)^2$

• Using this estimate s^2 for unknown σ^2 , we get the following

•
$$Var(\hat{\beta}_1) = \frac{s^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

•
$$Var(\hat{\beta}_0) = s^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right)$$

- ullet We typically are interested only in hypothesis tests regarding \hat{eta}_1
- ullet The slope tells us of the relationship between x and y
- Test the null hypothesis $H_0: \beta_1 = \beta_1^*$ vs. $H_1: \beta_1 \neq \beta_1^*$, where β_1^* is some population slope value, at the α significance level
 - Generally interested in the case of $\beta_1^* = 0$
 - No relationship vs. some relationship

• Consider the test statistic
$$t = \frac{\hat{\beta}_1 - \beta_1^*}{SE(\hat{\beta}_1)}$$

•
$$SE(\hat{\beta}_1) = \sqrt{\frac{S^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

- Under null hypothesis H_0 , t follows a t-distribution with n-2 degrees of freedom
- Our p-value is thus 2*pt(-abs(t), df=n-2)
- If the p-value $p \le \alpha$, we reject the null hypothesis

- In this simple regression case, if $\beta_1 = 0$, then $\rho = 0$
- The test of the null hypothesis $H_0: \beta_1=0$ is the same as the test of $H_0: \rho=0$
 - ullet Both hypotheses claim that y does not change as x increases

- Consider our employment example
- Test the hypotheses $H_0: \beta_1=0$ vs. $H_1: \beta_1\neq 0$ at the $\alpha=0.05$ significance level
- We calculated $\hat{\beta}_1 = 0.03475$
- s = 0.6566

$$SE(\hat{\beta}_1) = \frac{0.6566}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}} = 0.001706$$

$$t = \frac{0.03475}{0.001706} = 20.37$$

- $p = 2*pt(-20.37, df=14) = 8.4 \times 10^{-12}$
- Since the p-value is less than 0.05, we reject the null hypothesis and conclude that there is a significant linear relationship between GNP and employment

Confidence Intervals for Regression Coefficients

- We can also create confidence intervals for regression coefficients
- A $(1-\alpha) \times 100 \%$ confidence interval for $\hat{\beta}_1$ is given as $\left(\hat{\beta}_1 t_{\alpha/2} SE(\hat{\beta}_1), \hat{\beta}_1 + t_{\alpha/2} SE(\hat{\beta}_1)\right)$

Confidence Intervals for Regression Coefficients

Applied to our example:

```
CI = 0.03475 \pm qt(0.975,14)(0.001706)
= 0.03475 \pm 2.145(0.001706)
= (0.03109, 0.03841)
```

• We are 95% confident that the interval (0.03109, 0.03841) contains the true population slope

Confidence Intervals for Regression Coefficients

ANOVA Approach to Regression

- We can decompose the variability in a regression model in a way similar to what we did with ANOVA
- The sum of squared errors (SSE) is defined as follows:

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- This is also known as the residual sum of squares and describes the random variability about the regression line
- The mean squared error is then

$$MSE = \frac{SSE}{n-2}$$

• Since we have two unknown parameters (β_0 and β_1), this is analogous to the n-k degrees of freedom with the MSE in ANOVA

ANOVA Approach to Regression

• The treatment sum of squares (SST) gets redefined as the regression sum of squares (the explained variability):

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

- This describes variability that is explained due to the regression line
- The total sum of squares is then SSTo = SSR + SSE

ANOVA Approach to Regression

• We can compile this information into an ANOVA table

	Source	SS	df	MS	F
•	Regression	SSR	1	$MSR = \frac{SSR}{1}$	$F = \frac{MSR}{MSE}$
	Error	SSE	n-2	$MSE = \frac{SSE}{n-2}$	
	Total	SSTo	n-1		

- F can be used to test the hypothesis $H_0: \beta_1=0$
- F has an F distribution with 1 and n-2 degrees of freedom

- Regression parameter estimates have sampling distributions
 - If we selected a different sample, the regression line would be slightly different than the line we got from our sample
- We can use the regression line to estimate the mean value of y corresponding to a particular value of $x = x^*$
 - If we took many samples for a particular x^* and found their average response y, it would be equal to the estimated response from our regression

- Recall that we predicted, on average, employment to be 64.0065 million given GNP was 350 billion USD
- In actuality, when the GNP is 350 billion USD, the employment will not necessarily equal exactly 64.0065 million, but instead that will be the average response

- We can create a confidence interval for this mean value
- The $(1-\alpha)\%$ confidence interval for the true mean \bar{y} for the regression line at a particular point x^* is given as $(\hat{y} t_{\alpha/2}SE(\hat{y}), \hat{y} + t_{\alpha/2}SE(\hat{y}))$

• Here,
$$SE(\hat{y}) = s \sqrt{\left[\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right]}$$

- The standard error depends on the particular estimate of x^*
- The closer x^* is to \overline{x} , the smaller the variability around the line
 - At the mean, there is the most information and thus this is the best estimated point

- Create a confidence interval for \overline{y} at $x^* = 350$
- Recall that s=0.6566, $\bar{x}=387.698$, $s_x=99.395$, and n=16
- $\hat{y} = 64.0065$

•
$$SE(\hat{y}) = s\sqrt{\left[\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right]} = 0.6566\sqrt{\left[\frac{1}{16} + \frac{(350 - 387.698)^2}{15*99.395^2}\right]} = 0.17629$$

- qt(0.975, df=14) = 2.145
- CI: $64.0065 \pm 2.145 \cdot 0.17629$
- Conclusion: I am 95% confident that the interval (63.628, 64.385) million contains the true
 mean employment number when the GNP is 350 billion USD

Inference for Predicted Response

- Instead of considering the mean response of y for a given value of x, perhaps we are interested in the response of a single observation of x^*
 - "You find the GNP of a given area to be 350. What do we expect the area's employment numbers to be?"
- The best estimate we have is still the predicted value from the regression line
 - $y^* = \hat{\beta}_0 + \hat{\beta}_1 x^* = \hat{y}$
- We are less certain in this estimate; we know that on average it is good, but for one point, it is probably going to be a bit off

Inference for Predicted Response

- In creating the regression line, we have variability based on our sample
 - The variability of the regression line around the mean response at $x = x^*$ is what we calculated as $Var(\hat{y})$
- Now, we have added variability of y^* around the regression line
 - The variability of y^* around the regression line is given as σ^2 , since the outcomes of y are assumed to be normally distributed at a given value of $x = x^*$ with variance σ^2
- This means that the total standard error of y^* can be written as $SE(y^*) = s\sqrt{\left[1 + \frac{1}{n} + \frac{(x^* \overline{x})^2}{\sum_{i=1}^n (x_i \overline{x})^2}\right]}$
- The $(1-\alpha)$ % confidence interval for the true observed y^* (not the mean \overline{y} !) for the regression line at a particular point x^* is given as $(\hat{y} t_{\alpha/2}SE(y^*), \hat{y} + t_{\alpha/2}SE(y^*))$

Inference for Predicted Response

- Create a confidence interval for y^* at $x^* = 350$
- Recall that s=0.6566, $\bar{x}=387.698$, $s_x=99.395$, and n=16
- $\hat{y} = 64.0065$

•
$$SE(y^*) = s\sqrt{\left[1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}\right]} = 0.6566\sqrt{\left[1 + \frac{1}{16} + \frac{(350 - 387.698)^2}{15 * 99.395^2}\right]} = 0.6799$$

- qt(0.975, df=14) = 2.145
- CI: $64.0065 \pm 2.145 \cdot 0.6799$
- Conclusion: I am 95% confident that the interval (62.548, 65.465) million contains the true employment number when the GNP is 350 billion USD

Inference for Mean and Predicted Response