Two Loss Functions in Deep Metric Learning

Xinyao Li

Department of Statistics and Data Science, SUSTech

July 20, 2023

- 1 The Contrastive Loss Function
- 2 The Triplet Loss Function
- 3 Paradigm Shift Between Deep Metric Learning and Contrastive SSL

- 1 The Contrastive Loss Function
- 2 The Triplet Loss Function
- 3 Paradigm Shift Between Deep Metric Learning and Contrastive SSL

Deep Metric Learning (DML)

Core Ideas

- Encouraging similarity between semantically transformed versions of an input.
- Training a network to predict whether two inputs are from the same class (or not) by making their embedding close (or far from each other).
- Positive pairs: the variants of the inputs;
 Negatives: the samples we wish to make dissimilar.

Dimensionality Reduction by Learning an Invariant Mapping (DrLIM)

Main Reference

R Hadsell, S Chopra, Y LeCun, Dimensionality Reduction by Learning an Invariant Mapping.

Background

Most existing dimensionality reduction techniques (e.g. **Locally Linear Embedding**) have some shortcomings:

- Do not produce a function (or a mapping) from input to manifold that can be applied to new points whose relationship to the training points is unknown.
- Presuppose the existence of a meaningful (and computable) distance metric in the input space.
- Tend to cluster points in output space, sometimes densely enough to be considered degenerate solutions.

Four Essential Characteristics of DrLIM

- Only needs neighborhood relationships between training samples coming from prior knowledge or manual labeling.
- Learns functions that are invariant to complicated non-linear transformations of the inputs, e.g. **lighting changes** and **geometric distortions**.
- The learned function can be used to map new samples not seen during training, with no prior knowledge.
- The mapping generated by the function is in some sense smooth and coherent in the output space.

Notations

Given a set of input vectors $\mathcal{I} = \left\{ ec{X}_1, ..., ec{X}_P
ight\}$, where $ec{X}_i \in \mathbb{R}^D$, $orall i = 1, \ldots, n$.

Find a parametric function $G_{W}: \mathbb{R}^{D} \to \mathbb{R}^{d}$ with $d \ll D$.

Learn the parameters W of the parameterized function G_{W} .

Gw can put neighbors together and push non-neighbors apart.

The semantic similarity: $D_W(\vec{X_1}, \vec{X_2}) = ||G_W(\vec{X_1}), G_W(\vec{X_2})||_2$.

The Contrastive Loss Function

The most general form of Contrastive Loss is:

$$\mathcal{L}(W) = \sum_{i=1}^{P} L(W, (Y, \vec{X}_1, \vec{X}_2)^i).$$

$$L(W, (Y, X_1, X_2)^i)$$
= $(1 - Y)L_S(D_W^i) + YL_D(D_W^i)$
= $(1 - Y)\frac{1}{2}(D_W)^2 + (Y)\frac{1}{2}\{max(0, m - D_W)\}^2$,

where Y=0 if $\vec{X_1}$ and $\vec{X_2}$ are deemed similar, and Y=1 if they are deemed dissimilar.

Spring Model Analogy

The Contrastive Loss Function

Consider the equation of a spring

$$F = -KX$$

where F is the force, K is the spring constant and X is the displacement of the spring from its rest length.

Two Special Springs

Attract-only:

The rest length is equal to zero.

m-Repulse-only:

The rest length is equal to m and there is no attractive force.

Attract-only Spring

Each point is connected by **Attract-only** springs to **similar** points.

Consider the loss function

$$L_S(W, \vec{X_1}, \vec{X_2}) = \frac{1}{2}(D_W)^2.$$

The gradient of L_S is

$$\frac{\partial L_S}{\partial W} = D_W \frac{\partial D_W}{\partial W}.$$

The gradient $\frac{\partial L_S}{\partial W}$ of L_S gives the attractive force between the two points. $\frac{\partial D_W}{\partial W}$ defines the spring constant K.

m-Repulse-only Spring

Each point is connected by **m-Repulse-only** springs to **dissimilar** points.

Consider the loss function

$$L_D(W, \vec{X_1}, \vec{X_2}) = \frac{1}{2} \{ max(0, m - D_W) \}^2.$$

When $D_W > m$, $\frac{\partial L_D}{\partial W} = 0$.

When
$$D_W < m$$
, then

$$\frac{\partial L_D}{\partial W} = -(m - D_W) \frac{\partial D_W}{\partial W}.$$

The Algorithm

Step 1: For each input sample \vec{X}_i , do the following:

- (a) Using prior knowledge find the set of samples $S_{\vec{X_i}} = \{\vec{X_j}\}_{j=1}^p$, such that $\vec{X_j}$ is deemed similar to $\vec{X_i}$.
- (b) Pair the sample \vec{X}_i with all the other training samples and label the pairs so that: $Y_{ij} = 0$ if $\vec{X}_j \in \mathcal{S}_{\vec{X}_i}$, and $Y_{ij} = 1$ otherwise.

Combine all the pairs to form the labeled training set.

Step 2: Repeat until convergence:

- (a) For each pair (\vec{X}_i, \vec{X}_j) in the training set, do
 - i. If $Y_{ij}=0$, then update W to decrease $D_W=\|G_W(\vec{X}_i)-G_W(\vec{X}_j)\|_2$
 - ii. If $Y_{ij}=1$, then update W to increase $D_W=\|G_W(\vec{X_i})-G_W(\vec{X_j})\|_2$

Training Architecture

Experiments on MNIST

Produce the set S_{X_i} by choosing the 5 nearest neighbors. All other possible pairs are labeled dissimilar.

Department of Statistics and Data Science, SUSTech

Comparison with LLE under Transformation

Results of Test Samples

- 1 The Contrastive Loss Function
- 2 The Triplet Loss Function
- 3 Paradigm Shift Between Deep Metric Learning and Contrastive SSL

FaceNet

Main References

F Schroff et al, FaceNet: A Unified Embedding for Face Recognition and Clustering. A Hermans et al, In Defense of the Triplet Loss for Person Re-Identification.

Cores

- Directly learning a mapping from face images to a compact Euclidean space where distances directly correspond to a measure of face similarity.
- Minimizing the distance between an anchor and a **positive** and **maximizing** the distance between the anchor and a **negative**.

Triplet Loss

Anchor: x_i^a . Positive: x_i^p . **Negative**: x_i^n .

Triplet Loss

We want

$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha < ||f(x_i^a) - f(x_i^n)||_2^2,$$

$$\forall (f(x_i^a), f(x_i^p), f(x_i^n)) \in \mathcal{T},$$

where α is a margin that is enforced between positive and negative pairs, \mathcal{T} is the set of all possible triplets in the training set with cardinality N.

The Triplet loss is defined as:

$$\mathcal{L} = \sum_{i}^{N} \left[|f(x_{i}^{a}) - f(x_{i}^{p})||_{2}^{2} - ||f(x_{i}^{a}) - f(x_{i}^{n})||_{2}^{2} + \alpha \right]_{+}.$$

Triplet Selection

- easy triplets: $d(a, p) + \alpha < d(a, n)$;
- hard triplets: d(a, n) < d(a, p);
- semi-hard triplets: $d(a, p) < d(a, n) < d(a, p) + \alpha$.

Department of Statistics and Data Science, SUSTech

Triplet Selection

FaceNet

Pick a random semi-hard negative for every pair of anchor and positive, and train on these triplets.

Batch Hard

For each anchor, select the hardest positive (**biggest** d(a, p)) and the hardest negative among the batch.

- - The Contrastive Loss Function

 - 3 Paradigm Shift Between Deep Metric Learning and Contrastive SSL

Deep Metric Learning versus Contrastive SSL

Paradigm Shift Between Deep Metric Learning and Contrastive SSL

Deep Metric Learning

positive/negative pairs come from labels or fixed transforms e.g. two halves of an image

Hard-Negative Sampling for each mini-batch

encoder DN

small dataset (N<200k)

zero-shot k-NN validation

Contrastive SSL

positive pairs come from designed DAs that are continuously sampled, negative pairs are all non-positive pairs regardless of class membership

⇒ random sampling
 ⇒ encoder DN + projector MLP

⇒ large dataset

-zero-shot k-NN validation

-zero/few-shot/fine-tuning linear probing