Microelectronics Circuit Analysis and Design Homework(11st)

Yuejin Xie U202210333

Oct 23rd, 2023

10.44 Consider the MOSFET current-source circuit in Figure P10.44 with $V^+=+2.5\mathrm{V}$ and $R=15~\mathrm{k}\Omega$. The transistor parameters are $V_{TN}=0.5\mathrm{V}, k_n'=80\mu\mathrm{A/V}^2, W/L=6$, and $\lambda=0$. Determine I_{REF}, I_O , and $V_{DS2}(\mathrm{sat})$.

Figure 1: Problem 10.44

Solution:

Because of KCL and MOSFET:

$$\frac{V^{+} - V_{GS}}{R} = K_n (V_{GS} - V_{TN})^2 \Rightarrow V_{GS} = 1.12V$$

So
$$I_{REF} = I_O = \frac{V^+ - V_{GS}}{R} = 92.05 \mu \text{A}, V_{DS2(sat)} = V_{GS} - V_{TN} = 0.62 \text{V}$$

10.54 The transistor circuit shown in Figure P10.54 is biased at $V^+ = +5V$ and $V^- = -5$ V.The transistor parameters are $V_{TP} = -1.2V$, $k_p' = 80\mu A/N^2$, $\lambda = 0$, $(W/L)_1 = (W/L)_2 = 25$, and $(W/L)_3 = (W/L)_4 = 4$. Determine I_{REF} , I_O , and V_{SD2} (sat).

Figure 2: Problem 10.54

Solution:

$$\begin{cases} I_{REF} = K_{p1}(V_{SG1} + V_{TP})^2 = K_{p3}(V_{SG3} + V_{TP})^2 = K_{p4}(V_{SG4} + V_{TP})^2 \\ V_{SG1} + V_{SG3} + V_{SG4} = V^+ - V^- \\ \Rightarrow V_{SG1} = 2.45 \text{V}, I_{REF} = I_O = 1.14 \text{mA} \end{cases}$$

So
$$V_{SD2(sat)} = V_{SD2} + V_{TP} = 1.25 \text{V}$$

10.60 The transistors in the circuit shown in Figure P10.60 have parameters $V_{TN}=0.4$ V, $V_{TP}=-0.4$ V, $k_n'=100\mu$ A/ V^2 , $k_p'=60\mu$ A/ V^2 , and $\lambda_n=\lambda_p=0$. The transistor width-to-length ratios are $(W/L)_1=(W/L)_2=20$, $(W/L)_3=5$, and $(W/L)_4=10$. Determine I_O , I_{REF} , and $V_{DS2}(sat)$. What are the values of V_{GS1} , V_{GS3} , and V_{SG4} ?

Figure 3: Problem 10.60

Solution:

$$\begin{cases} I_{REF} = K_{p4}(V_{SG4} + V_{TP})^2 = K_{n3}(V_{GS3} - V_{TN})^2 = K_{n1}(V_{GS1} - V_{TN})^2 = I_O \\ V_{SG4} + V_{GS3} + V_{GS1} = V^+ - V^- \\ \Rightarrow V_{GS1} = 1.395 \text{V}, V_{GS3} = 2.389 \text{V}, V_{SG4} = 2.216 \text{V} \end{cases}$$

So:

$$I_O = I_{REF} = K_{n3}(V_{GS3} - V_{TN})^2 = 0.99 \text{mA}, V_{GS2(sat)} = V_{GS1} - V_{TN} = 0.995 \text{V}$$

10.84 In the circuit in Figure P10.84, the active load circuit is replaced by Wilson current source. Assume that $\beta = 80$ for all transistors, and that $V_{AN} = 120$ V, $V_{AP} = 80$ V and $I_{REF} = 0.2$ mA. Determine the open-circuit small-signal voltage gain.

Figure 4: Problem 10.84

Solution:

Output resistance of Wilson source:

$$R_0 \cong \frac{\beta r_{03}}{2}$$

Solve out g_m and r_{03}

$$r_{03} = \frac{V_{AP}}{I_{REF}} = \frac{80}{0.2} = 400 \text{k}\Omega g_m = \frac{I_{REF}}{V_T} = \frac{0.2}{0.026} = 7.692 \text{mA/V}$$

Solve out A_v :

$$A_{\nu} = -g_{m} \left(r_{0} \left| \left| \frac{\beta r_{03}}{2} \right| \right) \Rightarrow A_{\nu} = -4448$$