UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE CIENCIAS

LA PARADOJA DE PARRONDO

Alumnos:

JUNIOR HUALLPA AIQUIPA RICARDO DELGADO BACA LUIS FLORES VICTOR SARAVIA

Profesor

Cesar Lara Ávila

2018-II

Paradoja de Parrondo: Ganancia de capitales en condiciones desfavorables

Resumen

La paradoja de Parrondo, trata 2 juegos de azar muy simples diseñados de tal forma que, en promedio, el jugador tiende a perder en ambos. Esta tendencia se invierte independientemente de la forma en que se alternan los juegos.

En este informe ponemos a prueba la paradoja en una situación hipotética, donde un empleado debe atender al día 1 de los 2 negocios para obtener ganancia, a pesar que ambos negocios tienden a perder capital, corriendo el riesgo de ser despedido si no los abre. Simulamos los resultados mediante graficas en R y usando probabilidades buscamos una solución óptima.

1 Introducción

1.1 Presentación de la paradoja

Lleva el nombre de su creador, Juan Parrondo, quien descubrió la paradoja en 1996. Una descripción más explicativa es:

Existen pares de juegos, cada uno con una mayor probabilidad de perder que de ganar, para lo cual es posible construir una estrategia ganadora al jugar los juegos alternativamente.

Parrondo ideó la paradoja en relación con su análisis del trinquete browniano, un experimento de pensamiento sobre una máquina que supuestamente puede extraer energía de movimientos aleatorios de calor popularizados por el físico Richard Feynman. Sin embargo, la paradoja desaparece cuando se analiza rigurosamente. Más recientemente, los problemas en biología evolutiva y ecología se han modelado y explicado en términos de la paradoja.

1.2 Objetivos

El objetivo de nuestro proyecto es poner a prueba y optimizar como una combinación de estrategias perdedoras se convierte en una estrategia ganadora para lograr todo esto tendremos que usar nuestros conocimientos en el curso de Probabilidades para determinar como dos juegos perdedores jugados alternadamente se convierten en ganadores teniendo en cuenta ciertas restricciones y también aprovechar nuestro conocimiento en el lenguaje R para visualizar gráficamente como para un nmero grande de juegos alternos la estrategia trae un resultado positivo.

2 Estado del arte

Su formulación tuvo que ver de hecho con el problema de los motores brownianos, ya mencionado antes. Parrondo estudió el comportamiento de las moléculas sometidas a ciertas fuerzas y tradujo su explicación en términos de un juego de azar.

Otra aplicación en la física es en mecánica cuántica, donde científicos en India usaron una variante de la paradoja para explicar el comportamiento de un qutrit en una caminata cuántica.

Los economistas son los que mas aplicación han encontrado de momento a la paradoja. El Dr. Sergei Maslov recientemente publicó la demostración de cómo un inversor compartiendo capital entre dos bolsas de valores a la baja, obtiene un incremento de su capital en lugar de la esperada bancarrota. Aunque admite que es aun pronto para aventurarse a aplicar el experimento al modelo de mercado actual dada su complejidad.

De igual forma se ha contemplado la posibilidad de que dos malos indicadores como son la tasa de nacimiento y la de mortalidad, de encontrarse ambos en declive puedan generar consecuencias favorables.

2.1 Artículos científicos

"Losing strategies can win by Parrondo's paradox",:

De los investigadores australianos Derek Abbott y Gregory P. Harmer, y su correspondiente reseña "Good news for losers" de Philip Ball. El artículo habla de una paradoja de la teoría de la probabilidad que se puede formular de manera muy sencilla: dos juegos de azar perdedores dan lugar, cuando se alternan, a un juego ganador.

• "Optimal sequence for Parrondo's games"

De Luis Dinis, investigador de la Universidad Complutense de Madrid. Prueba que para los juegos de Parrondo, la secuencia que optimiza el resultado positivo de la paradoja es ABABB mediante un algoritmo que, dicho sea de paso, se puede generalizar para optimizar los resultados de dichos juegos con varios jugadores.

 "Why Parrondo's paradox is irrelevant for utility theory, stock buying and the emergence of life"

Artículo de Raghuram Iyengar y Rajeev Kohli. Planteó el problema de un juego con varios jugadores y la forma de decidir la secuencia de A y B, aunque Parrondo no tiene una buena opinión sobre el resto del trabajo.

3 Diseño del experimento

Realizaremos un experimento en el que se verá con claridad como un empleado puede obtener ganancia a partir de 2 negocios con tendencia a perder capital.

Se pone a disposición los siguientes negocios:

El negocio A, según los reportes de ventas hay una ligero porcentaje menor al 50% de perder un 1 UIT(s/.4150.00 al 2018) del capital cualquier día. Si el empleado decide solo abrir el negocio A, claramente se ve con el pasar de los días una tendencia a perder capital como muestra la gráfica:

En este caso, se tendrá una probabilidad de ganancia ligeramente menor a $\frac{1}{2}$.

Nego	Negocio A			
Probabilidad de ganancia	Probabilidad de perdida			
1/2 - ε	1/2 + ε			

El negocio B, los reportes muestran que si el capital es múltiplo de 3 el porcentaje de obtener una ganancia de 1 UIT es muy inferior (ligeramente mayor a 9%) que la ganancia (ligeramente menor a 75%) si el capital no fuera múltiplo de 3.

Aquí se tienen 3 opciones, si el capital actual es múltiplo de 3 respecto al día de inicio de labores del empleado. La probabilidad de ganancia es ligeramente menor a 1/10. En caso no sea múltiplo de 3 su probabilidad de ganancia aumenta a poco menos de ¾.

	Negocio B							
	Es el capital múltiplo de 3?							
NO		SÍ						
	Probabilidad de ganancia			Probabilidad de ganancia	Probabilidad de perdida			
	3/4 - ε	1/4 + ε		1/10 - ε	9/10+ ε			

Se podría pensar que al tener el capital en múltiplo de 3 + 1 o +2, se tiene una alta probabilidad de ganancia, así este sería un negocio rentable. Pero la probabilidad actual siempre depende o esta "encadenado" del resultado anterior, lo que se conoce como cadenas de Markov.

Supongamos que el empleado trabaja con un capital actual de 1002 UIT, entonces tendrá casi 90% de perder capital, pasando este a 1001UIT. Al día siguiente tendría casi 75% de ganar capital, lo cual le obliga a tener un 90% de perdida al día siguiente. Con este corto ejemplo vemos que, en 3 días el empleado tuvo 2 días con una alta probabilidad a perder capital.

Por tanto, al igual que con el negocio A, si decide abrir todos los días el negocio B, este tendrá a perder capital como muestra la siguiente gráfica:

Llegados a este punto, ya hemos observado como ambos negocios tienden a perder capital a largo plazo. Ahora bien, alternando ambos negocios es cuando nos topamos con la paradoja, puesto que el resultado será una ganancia de capital, lo interesante es que dicha paradoja se da independientemente de la secuencia de negocios que decida atender, es decir, eligiendo con cierto capital abrir aleatoriamente tal negocio siempre se obtendrá ganancia a largo plazo.

Evaluamos el capital con distintas secuencias A y B.

Comentado [jha1]: