Platform Services

Identity Sign-Up and sign-in

Services Compute

Integration

Media & CDN

Web and Mobile

API Push Notifications

Developer Services

Data

Analytics & IoT

Data Device Data Data Source Collection Data Source

loT Device Mobile Analytics

Distributed In-Memory Search

Domain Join & Policy Management

Server Data Backup

Hybrid

Operations

Directory
Health Monitoring

Privileged Identity
Management

Operational Analytics

Bulk Data Import And Export

Disaster Recovery

Infrastructure Services

OS/Server Compute

Storage

Networking

Datacenter Infrastructure (30 Regions, 22 Online)

Transform data into intelligent action

Microsoft & Machine Learning 17 years of realizing innovation

John Platt,Distinguished scientist at Microsoft Research

Machine learning is pervasive throughout

Microsoft products."

Microsoft Azure Machine Learning

Built for a cloud-first, mobile-first world

Fully managed

No software to install, no hardware to manage, and one portal to view and update.

Integrated

Simple drag, drop and connect interface for Data Science. No need for programming for common tasks.

Best in Class Algorithms + R + Python

Built-in collection of best of breed algorithms. Support for R and Python.

Deploy in Seconds

Operationalize models with a single click.
Retrain models programmatically.

Data Science Process

Everyday examples of predictive analytics

- Product recommendation "customers who bought this item also bought"
- Mortgage applications credit worthiness
- Pattern recognition speech recognition on your smart phone, character recognition on postal mails, facial recognition on security systems
- Web search page result display sequences to render on page
- Predictive Maintenance used on things we can monitor: planes, elevators, cars, data centers, etc.
- Healthcare determine patient outcomes and future care

Getting Started with Azure Machine Learning (First time setting up)

- Set up a Microsoft Azure Account
- One stop shop for Azure services -> portal.microsoft.com
- Set up an AzureML Workspace -> under Intelligence + analytics, choose Machine Learning Workspace
- Give a workspace name
- Set up a new Resource Group
- Set up a new Storage Account
- Set up a new Web Service Plan
- Launch AzureML Studio

Accessing Azure Machine Learning (Return visits)

Option 1

- Log in to Azure portal -> portal.microsoft.com
- Select your AzureML workspace on the dashboard
- Launch AzureML Studio

Option 2

Log in directly to AzureML Studio -> studio.azureml.net

Creating an Experiment

Basic Azure ML Elements

Import Data

Reference to all the AzureML Elements

https://msdn.microsoft.com/en-us/library/dn906013.aspx

Cloud ML Team Microsoft Confidential

10

Import Data

- Read data from:
 - Web URL
 - Hive query
 - Azure SQL database
 - Azure table
 - Azure blob storage

 Load a collection of images from blob storage for use in image classification tasks

Preprocess Data

Prepare data for Machine Learning

- Merging datasets
- Grouping and summarizing data
- Converting values to another type
- Checking for missing values and replacing them with appropriate values
- Flagging columns as features (for example, labels)

 Microsoft Confidential

Choosing a Model

Initialize Model – Classification

 Predict the class or category for data

Machine Learning Algorithms Split into two main categories:

- Supervised learning
 - Labels provided
 - Predicting the future
 - Learn from known past examples to predict future
- Unsupervised learning
 - Labels not provided
 - Understanding the past and making sense of data
 - Learning the structure of data

Supervised learning – example

Machine Learning Capabilities

SUPERVISED How much/many Which category (Regression) (Classification) Is it odd (Anomaly)

UNSUPERVISED

Which group (Clustering, Recommender)

Testing the Model

Apply a trained model to the test data to get:

- Estimates of projected demand, volume, or other numeric quantity, for regression models
- Cluster assignments
- A predicted class or outcome, for classification models
- Probability scores associated with these outputs

Train

Score

Evaluating the Model

Metrics for Classification Models

- Accuracy
- Recall
- Precision
- F-Score
- AUC
- Average Log Loss
- Training Log Loss

Metrics for Regression Models

- Mean absolute error (MAE)
- Root mean squared error (RMSE)
- Relative absolute error (RAE)
- Relative squared error (RSE)
- Coefficient of determination

Azure Machine Learning – Aerospace Predictive Maintenance

Predict the time-to-failure of aircraft engine components.

Data – sensor readings from plane engines

Sample training data

~20k rows, 100 unique engine id

id	cycle	setting1	setting2	setting3	s1	s2	s3	 s19	s20	s21
1	. 1	-0.0007	-0.0004	100	518.67	641.82	1589.7	100	39.06	23.419
1	. 2	0.0019	-0.0003	100	518.67	642.15	1591.82	100	39	23.4236
1	. 3	-0.0043	0.0003	100	518.67	642.35	1587.99	100	38.95	23.3442
1	191	0	-0.0004	100	518.67	643.34	1602.36	100	38.45	23.1295
1	192	0.0009	0	100	518.67	643.54	1601.41	100	38.48	22.9649
2	1	-0.0018	0.0006	100	518.67	641.89	1583.84	100	38.94	23.4585
2	2	0.0043	-0.0003	100	518.67	641.82	1587.05	100	39.06	23.4085
2	. 3	0.0018	0.0003	100	518.67	641.55	1588.32	100	39.11	23.425
2	286	-0.001	-0.0003	100	518.67	643.44	1603.63	100	38.33	23.0169
2	287	-0.0005	0.0006	100	518.67	643.85	1608.5	100	38.43	23.0848

s1 – s21 are raw features.

a1 – a21 and sd1 – sd21 are aggregated features, they represent moving average and standard deviation of sensor values in the most recent 5 cycles.

Building a regression model (part 1 of 2)

- Data Input and Output -> Import training data
 - Web URL via HTTP
 - http://azuremlsamples.azureml.net/templatedata/PM_step1output_train.csv
 - Csv with header
- Data Transformation -> Manipulation -> Select Columns in dataset
 - Select all columns except for label1 and label2
- Data Transformation -> Manipulation -> Edit Metadata
 - Change RUL to label
- Feature Selection -> Filter Based Feature Selection
 - Feature scoring method: Pearson correlation
 - · select RUL as target column
 - Number of desired features -> set to 35

Building a regression model (part 2 of 2)

- Machine Learning -> Initialize Model -> Regression -> Decision Forest Regression
 - · Leave parameters as defaults
- Machine Learning -> Initialize Model -> Regression -> Linear Regression
 - Leave parameters as defaults
- Machine Learning -> Train -> Train Model
 - Set it for both models
 - Select RUL as column name
- Machine Learning -> Score -> Score Model
 - · Set it for both models
- Machine Learning -> Evaluate -> Evaluate Model
- Data Input and Output -> Import training data
 - Web URL via HTTP
 - http://azuremlsamples.azureml.net/templatedata/PM_step1output_test.csv
 - · Csv with header
 - Connect to second port of the Score Model module
- Run the model

Evaluating regression models

- What features are used?
 - Select Visualize from "Filter Based Feature Selection"
- What are the predicted numeric outcomes?
 - Select Visualize from "Score Model"
- What are the evaluation indicators?
 - Mean Absolute Error
 - Root Mean Squared Error
 - Relative Absolute Error
 - Relative Squared Error
 - Coefficient of Determination

Azure Machine Learning – Aerospace Predictive Maintenance

Predict if an asset will fail within certain time frame (e.g. days).

Building a classification model (part 1 of 2)

- Re-use your regression model template
 - Save As -> New Name
- Re-use the same data for train and test
- Data Transformation -> Manipulation -> Select Columns in dataset
 - Make sure you select label 1 as well, and exclude RUL and label 2
- Data Transformation -> Manipulation -> Edit Metadata
 - Change label1 to label
- Feature Selection -> Filter Based Feature Selection
 - Feel free to try another feature scoring method
 - select label1 as target column
- Number of desired features -> set to any number you like

Building a classification model (part 2 of 2)

- Try FOUR different two-class classification algorithms
- Evaluate all FOUR models
 - Evaluate Model module compares takes at most two models as inputs, so you will need two Evaluate Model modules
- Data Transformation -> Manipulation -> Add Rows
 - Join both Evaluate Model Modules
 - · This step will append the evaluation metrics and stack them into one single table for all four models
- R Language Modules -> Execute R Script
 - · Keep the first line and last line
 - Delete the rest, and add the following code to the body
 - Give the descriptions of your models, from left to right

```
a <- c("Logistic Regression", "Boosted Decision Tree", "Decision Forest", "Neural Network")
data.set <- cbind(a, dataset)

names(data.set)[1] <- c("Algorithms")

Microsoft Confidential
```

Evaluating classification models (part 1 of 2)

	Event=Positive	Event=Negative	Events	
Predicted Positive	True Positive(TP)	False Positive(FP)	TP+FP	
Predicted Negative	False Negative(FN)	True Negative(TN)	FN+TN	
Observations	TP+FN	FP+TN	Te	

Accuracy

- Ratio of correctly predicted observations
- Accuracy=(TP+TN)/Te
- Good for even distribution of data say 50/50

Precision

- What percentage of Predicted observation were correct
- Precision=(TP)/(TP+FP)
- Good for uneven distribution

Recall

- What percentage of positive events were correctly predicted(sensitivity)
- Recall=TP/(TP+FN)
- Good for uneven distribution

F1 Score

- Weighted average of Precision and Recall
- F1 Score=2*(Recall*Precision)/(Recall + Precision)
- Better way to show uneven distribution

Data Set	Events=Positive	Events=Negative	Events
Predicted Positive	2894	994	3888
Predicted Negative	643	11750	12393
Observations	3537	12744	16281

Total Events=16281

Accuracy=(2894+1750)/16281=~90%

Precision=2894/3537=~82%

Recall=2894/3888=~74%

F1 Score= 2*(0.74*0.82)/(0.74+0.82)=~78%

Evaluating classification models (part 2 of 2)

ROC- Receiver operating characteristics

AUC- Area under the curve

Between 0 and 1, ideally should be close to 1

Precision / Recall Plot

Threshold

Optimize based on cost of False positive vs False negatives

Let the game begin...

- Please choose one final champion model.
- Metrics in order of importance for this game:
 - AUC
 - Accuracy
 - Precision
 - Recall
 - F1 Score

Sample experiment in AzureML

Cloud ML Team

Operationalize your model as a web service

Here are the stages that a typical solution follows as you develop and deploy it using AzureML

Cloud ML Team Microsoft Confidential 32

Cortana Intelligence Gallery

 Preconfigured machine learning templates and solutions -> https://gallery.cortanaintelligence.com/

Azure IoT Suite

Preconfigured Azure IoT solutions -> <u>azureiotsuite.com</u>

The following diagram outlines the logical components of the preconfigured solution:

Export data for later use

- Data Input and Output -> Export Data
 - Azure Blob Storage
 - Authentication Type Account
 - Put in storage name (obtained from your storage service)
 - Put in account key (obtained from your storage service)
 - Put in container and blob name (obtained from your storage service) put it in this format container/blob.csv

Cloud ML Team Microsoft Confidential 35