Transcendental function

A function that is not algebra is called transcendental function:

1- trigonometric function:

r: Hypotnuse (Hyp.)

y: opposite (Opp.)

x: Adjcent (Adj.)

There are six basics trigonometric functions:

$$\sin \theta = \frac{y}{r}$$

$$\tan \theta = \frac{y}{x} = \frac{\sin \theta}{\cos \theta}$$

$$\csc \theta = \frac{r}{y} = \frac{1}{\sin \theta}$$

$$\cot \theta = \frac{x}{y} = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$$

$$\sec \theta = \frac{r}{x} = \frac{1}{\cos \theta}$$

Special angle

θ	radians	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0	0	1	0
30°	$\pi/6$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
45°	$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
60°	$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
90°	$\pi/2$	1	0	_

Unit circle:

$$(x,y) = (\cos\theta, \sin\theta)$$

EX: If $cos\theta = \frac{2}{5}$ and $0 < \theta < 2\pi$, find the other five trigonometric functions of θ .

Sol: since $cos\theta = \frac{2}{5}$, this mean that the hypotenuse = 5 and the adjacent = 2. By using Pythagorean theorem gives $y^2 + 4 = 25$, then the opposite is $\sqrt{21}$.

Trigonometric identities:

$$sin^2\theta + cos^2\theta = 1 \dots \dots (*)$$

• Dividing eq.(*) by $cos^2\theta$ then

$$tan^2\theta + 1 = sec^2\theta$$

• Dividing eq.(*) by $sin^2\theta$ then

$$1 + \cot^2\theta = \cos^2\theta$$

Note: the sine is an odd function and cosine is an even function, we have

$$\sin(-\theta) = -\sin\theta \& \cos(-\theta) = \cos\theta$$

Note: Since the angles heta and heta + 2π have the same terminal side, we have

$$\sin(\theta + 2\pi) = \sin\theta \& \cos(\theta + 2\pi) = \cos\theta$$

These show that sine and cosine are periodic with period 2π

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$
$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

And

$$\sin(x - y) = \sin x \cos y - \cos x \sin y$$
$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

By dividing the two equations above, we have

$$\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

If we put y = x in the equation

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$
$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

We get the double-angle-formulas

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

By using $sin^2\theta + cos^2\theta = 1$, we have

$$\cos 2x = 2\cos^2 x - 1$$
$$\cos 2x = 1 - 2\sin^2 x$$

Now, we solve these equations:

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

Finally, we state the product identities

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)]$$

Find all values of x in the interval $[0, 2\pi]$ such that sinx = sin2x.

Sol: by using the double-angle-formula

$$\sin x = 2\sin x \cos x \qquad \text{or} \qquad \sin x (1 - 2\cos x) = 0$$

Therefore there are two possibilities:

$$\sin x = 0 \qquad \text{or} \qquad 1 - 2\cos x = 0$$

$$x = 0, \pi, 2\pi \qquad \cos x = \frac{1}{2}$$

$$x = \frac{\pi}{3}, \frac{5\pi}{3}$$

The given equation has five solutions: 0, $\pi/3$, π , $5\pi/3$, and 2π .