100V 降压型 LED 恒流驱动器

■ 产品概述

LN2544 为一款高效率、降压型、内置高压 MOSFET 的 恒流 LED 驱动电路。

LN2544 采用固定关断时间的峰值电流检测模式,最高输出电压可达 100V。芯片包括一个 PWM 调光脚,可以通过外接 0-100%占空比的 PWM 信号或 0-1.2V 直流电位来实现调光功能。芯片还包括一个温度补偿管脚,通过和基准脚 VREF 和 GND 之间接分别接一个取样电阻和热敏电阻来实现温度补偿功能,可设定在超过某个温度后输出电流随着温度的升高而降低。LN2544 通过设定外部取样电阻来调节输出电流的能力。最高输出电流可达 1A。

LN2544 采用 MSOP-8/PP 封装。保证芯片体积小的同时具有一定的散热能力。

■ 应用

- 平板显示背光
- 电动自行车照明
- 汽车照明等

■ 典型应用电路

■ 产品特点

- 宽输入电压范围: 8V~100V
- 高效率: 可达 92%
- 输出电流范围: 20mA~1A
- 固定关断时间可调
- 线性和 PWM 调光
- 温度补偿
- 峰值电流采样电压: 0.5V

■ 封装形式

SOP-8/PP

- 备注: 1、R1 需要根据输入电压范围进行适当调整,以到达最大工作效率。
 - 2、R2 和 RNTC 在需要温度补偿功能的时候才需要接入。
 - 3、RCS 阻值决定输出 LED 的电流大小。

■ 订购信息

LN2544 (1)(2)

项目	单位	描述
1)		封装形式
	S	SOP-8
		卷盘编带
2	R	正向
	L	反向

■ 管脚示意图和功能

SOP-8/PP (TOP VIEW)

管脚	名称	功能		
1	VREF	芯片内部输出基准电压1.25V,不需要外接旁路电容。		
0 5114		芯片线性和MPW调光输入端。当该管脚接到地,则芯片处于关闭状态。当芯片接入高于1.2V		
2	2 DIM	或悬空状态,则芯片以100%电流输出。		
3	RNTC	芯片温度补偿接入端。		
4	GND	接地。		
5	DRAIN	芯片内部高压MOSFET源端。		
6	CS	电流取样端,通过外接电阻到地来设置芯片的输出电流。		
7	TOFF	在该管脚和GND之间接一电阻来设置MOSFET的关断时间,最小关断时间可达510ns,		
8	VIN	通过外接一个电阻连到最高100V直流电源上,必须接一个旁路电容。		

■ 功能框图

■ 最大极限参数

Parameter	Symbol	Maximum Rating	Unit
VIN pin voltage to GND	Vin	-0.3—14	V
CS, RNTC, DIM, TOFF, VREF pin voltage to GND		-0.3—6	V
GATE pin to GND	V_{GATE}	-0.3—12	V
VIN pin Input Current Range	I _{VIN}	1—20	mA
Storage temperature range	T _{STG}	-40—150	$^{\circ}$
Operating junction temperature	T_J	-40—150	$^{\circ}$
ESD Human Model		4000	V

■ 电学特性参数

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{INDC}	输入直流电压范围		8		100	V
V _{IN_clamp}	VIN 钳位电压		6.0	6.5	7.0	
I _{IN}	静态工作电流			0.4	1	mA
IOUT	输出电流范围		20		1000	mA
UVLO	VIN 欠压保护电压	VIN rising		5.5		V
∆ UVLO	欠压保护迟滞电压	VIN falling		700		mV
V_{DIM}	DIM 端调光电压范围		0.3		1.2	V
V_{DIMoff}	DIM 端关断电压		0.15	0.2	0.25	V
V_{DIMon}	DIM 端开启电压		0.20	0.25	0.3	V
R _{DIM}	DIM 端上拉电阻			200K		Ω
V _{CSTH}	电流取样端 CS 阈值电压			500		mV
V_{RNTC}	温度补偿端阈值电压		0.05		0.25	V
T _{OFF}	关断时间	T _{OFF} pin Floating		510		ns
V_{REF}	VREF 端电压			1.2		V
I _{REF}	VREF 端输出电流		0.15		2	mA
R _{DSON}	内置 MOSFET 导通电阻	VGS=4.5V,ID=1A		0.3		Ω
BVDSS	内置 MOSFET 击穿电压		100			V

■ 应用信息

● 工作原理

LN2544 采用峰值电流检测和固定关断时间的控制方式。电路工作在开关管导通和关断两种状态。参见典型应用电路图,当内置 MOS 开关管处于导通状态时,输入电压 VIN 通过 LED 灯、电感 L1、内置 MOS 开关管、电流检测电阻 RCS 对电感充电,流过电感的电流随充电时间逐渐增大,当电流检测电阻 RCS 上的电压降达到电流检测阈值电压 VCSTH 时,控制电路使得 Driver 输出端变为低电平并关断 MOS 开关管。当 MOS 开关管处于关断状态时,电感通过由 LED 灯、续流二极管 D1 以及电感自身组成的环路对电感储能放电。MOS 开关管在关断一个固定的时间 TOFF 后,重新回到导通状态,并重复以上导通与关断过程。

● TOFF 设置

固定关断时间可由连接到 TOFF 引脚端的电阻 RT 设定:

$$T_{OFF} = 3*10^{-11}*R_T$$

如 RT=200KΩ,则 T_{OFF} =3*10⁻¹¹*200*10³=6*10⁻⁶S=6uS

● 导通时间 TON

芯片的导通时间 TON 由下式决定:

$$TON = \frac{VLED * TOFF}{VIN - VLED}$$

● 输出电流设置

LED 输出电流由电流采样 RCS 以及 TOFF 等参数设定:

$$ILED = \frac{0.5}{RCS} - \frac{VLED * TOFF}{2L1}$$

其中 VLED 是 LED 的正向导通压降, L1 是电感值。

注:输出 LED 电流计算公式适用于电感电流处于连续模式

● 电感 L1 取值

为保证系统的输出恒流特性, 电感电流应工作在连续模式, 要求的最小电感取值为:

系统工作频率

系统工作频率 FS 由下式确定:

$$FS = \frac{VIN - VLED}{VIN * TOFF}$$

● 数字调光与模拟调光

数字调光即通过改变芯片调光脚 DIM 引脚上方波信号的占空比 Duty 实现调光,方波幅值应满足 1.2V<VDIM<6V,调光信号频率不建议使用过高频率,建议 100Hz<f_{VDIM}<2KHz(典型值推荐 500Hz),输出电流 I_{OUT} 正比于 DIM 引脚上的方波信号的占空比 Duty, 当 Duty=100%时,输出电流达到最大 I_{OUTmax}。在大电流输出应用时,由于在 Duty 的改变使得流过电感的电流处于 DCM 模式,采用如图所示的虚线框内电路可以降低电感由于低频产生的噪声,当使用虚线框内的电路时,须保证调光信号到达 DIM 脚的有效高电平高于 1.2V。

(注: 例如调光信号高电平为 5V,元件的选择可为 RD1=20K,RD2=10K,CD1=10nF)

模拟调光即改变芯片 DIM 调光脚的电压值,0.3V < VDIM < 1.2V,芯片 CS 脚检测电压 VCSTH 线性变化,输出电流为 $I_{LED} = (0.44*\ V_{DIM} - 0.027)/R_{CS} - 1.5*10^{-11}*V_{LED}*R_T/L$

当 VDIM>1.2V,芯片 CS 脚检测电压 VCSTH 保持不变;当 VDIM<0.3V,芯片 CS 脚检测电压为 0,芯片停止开关。

● 温度补偿

芯片设有温度补偿脚 RNTC,当 RNTC 脚电压 VRNTC 在 0.05V-0.25V 之间变化时,输出电流也随之变化;当 VRNTC>0.25V,则输出电流最大;当 VRNTC<0.05V,芯片停止工作,无输出电流。

注: 当不使用 RNTC 温度补偿脚时可直接与芯片基准脚 VREF 短接。

■ 封装信息

● SOP-8/PP

字符	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1. 350	1. 750	0.053	0.069	
A1	0. 050	0. 150	0.004	0. 010	
A2	1. 350	1. 550	0.053	0. 061	
Ь	0. 330	0. 510	0.013	0. 020	
O	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
D1	3. 202	3. 402	0.126	0. 134	
E	3. 800	4. 000	0.150	0. 157	
E 1	5. 800	6. 200	0. 228	0. 244	
E2	2. 313	2. 513	0.091	0. 099	
е	1. 270	1. 270 (BSC)		(BSC)	
L	0. 400	1. 270	0.016	0. 050	
θ	0°	8°	0°	8°	