

서울 맞춤형 교육복지지수 개발 : 기회의 도시를 위한 균형 발전 전략

제7회 서울교육 데이터 분석·활용 아이디어 공모전

Team_CYClone 최원교 동덕여자대학교 최은준 동덕여자대학교 양혜원 동덕여자대학교

목차

1. 연구 배경 및 목적

- 주제 선정 이유 및 필요성

2. 데이터 수집 및 분석 방법

- 수집 데이터, 전처리, 분석 기법 및 도구

3. 분석 결과 및 시사점

- 지수 산출 결과와 주요 인사이트

4. 활용 방안 및 기대 효과

- 정책 제언 및 적용 가능성

1. 연구 배경 및 목적

서울, 기호의 도시? the City of Opportunity

그러나, 모두가 이 기회의 수혜자는 아니다.

서울 내부에도 지역 간 불균형 존재 특히, **교육 환경 격차는 자녀의 미래에 직접적인 영향**

***사는 곳이 자녀의 미래를 좌우한다"** 지역 간 교육 환경의 격차는 미래의 기회로 이어진다

교육을 위한 '이주' 또는 '포기' 교육은 선택이 아닌, 포기의 대상이 된다 현실의 벽은 부모의 교육 의지를 꺾고, 출산 기피로 이어진다

1. 연구 배경 및 목적

서울을 재해석하는 교육의 렌즈

연구 목적

서울시 교육 환경 격차 객관적으로 진단

-> 지역 간 형평성 수준 파악

학생·학부모 특성, 학교 환경, 지역사회 복지 인프라 등

-> 다양한 요인을 종합 반영한 지표 설계

CRITIC 기법을 활용해 지표별 가중치 산출

-> 교육 환경의 상대적 수준 정량화

서울 맞춤형 교육복지지수 개발

2. 데이터 수집 및 분석 방법

연구 대상 및 범위

대상: 서울시 25개 자치구 -> 11개 학군 분류

범위: 2018-2023 (6년간)

교육복지지수 구성:

- ㆍ학생 및 학부모 특성
- ㆍ학교 및 교육 환경
- ㆍ지역사회 및 복지 인프라

학군별 비교분석 및 시계열 분석

2. 데이터 수집 및 분석 방법

수집데이터 분류 및 활용방안

1. 학생 및 학부모 특성 데이터

항목	세부 설명	목적 (활용 방안)
근로 소득	학군별 1인당 연 근로 소득	지역 경제 수준을 나타내는 지표로, 교육 환경에 영향을 미치는 사회·경제적 배경 분석에 활용
학력	학군별 교육정도별 취업 인구 및 무급 가족 종사자 비율	학부모 세대의 교육 수준을 반영, 자녀 교육에 대한 기대 및 투자 가능성과의 관련성 분석
차상위 및 한부모	학군별 차상위계층 및 한부모 가정 수	취약계층 비율을 통해 지역 내 복지 수요 및 정책 집중 필요 지역 파악
다문화	학군별 다문화 인구 수	다문화 가정 학생의 비율을 통해 포용적 교육 환 경의 필요성과 다양성 관련 정책 방향 제시
특수학교	학군별 특수학교 수	장애 학생을 위한 교육 인프라 현황 파악, 교육복 지 환경의 포용성 평가 지표로 활용

2. 학교 및 교육환경 데이터

항목	세부 설명	목적 (활용 방안)
교사 1인당 학생 수	학군별 교원 수 대비 학생 수	교사 1인당 담당 학생 수를 통해 교사 배치의 적절성과 교육 질의 차 이를 진단
학급당 학생 수	학군별 전체 학생 수 대비 학급 수	과밀학급 여부 판단을 통해 수업 집중도 및 교육환경 쾌적성 평가에 활용
사립학교 비율	학군별 지역 내 공·사립학교 비율	공립 대비 사립학교 비중을 통해 교육비 부담 및 선택권과의 연관성 분석
특수학교 수	학군 내 특수학교 수	장애학생 수용 인프라 현황을 반영하여 교육 환경의 포용성과 공공 성 평가 지표로 활용

3. 지역사회 및 복지 인프라 데이터

항목	세부 설명	목적 (활용 방안)
교육·복지 예산	자치구 교육·복지 관련 세출 총액	각 지역의 교육·복지 투자 수준을 비교하여 정책 집중 필요 지역 파악
청소년시설 수	청소년 수련관, 상담복지센터 등 관련 인프라 수	지역 내 청소년 여가·상담·지원 환경 수준을 반영, 지역사회 기반 학습지원 요소로 활용
공공 도서관 수	학군별 공공 도서관 수	자율 학습 접근성 및 정규 수업 외 학습 인프라 수준 진단 지표로 활용

CRITIC 기법 선택 이유

- · Criteria Importance Through Intercriteria Correlation
- · 변동성(표준편차) + 상관관계를 고려한 객관적 가중치 산출
- · 주관적 판단 배제, 데이터가 말하는 중요도 반영

방법론	장점	한계점	본연구 적합성
AHP	논리적 구조	전문가 주관 의존	່Ҳ객관성 부족
등가중치	단순, 명확	현실 반영 한계	່ ズ지표별 차이 무시
앤트로피	변동성 고려	상관관계 무시	Х지표 간 관계 중요
PCA	차원축소, 객관적	해석 어려움	່ Х정책활용 한계
CRITIC	객관적, 포괄적	계산 복잡	☑최적

학생 및 학부모 특성 학교 및 교육환경 학생 성과 및 학습지원

분석 과정 6단계

- 1. 데이터 정규화 (Min-Max Scaling, 0~1 범위)
- 2. 지표별 가중치 산출 (CRITIC 기법 적용)
- 3. 영역별 점수 계산 (가중합 방식)
- 4. 영역 간 가중치 산출 (2차 CRITIC 적용)
- 5. 최종 지수 도출 (영역점수 x 영역가중치, 0~100점 변환)
- 6. 결과 해석 및 검증

2. 데이터 수집 및 분석 방법

교육복지지수 CRITIC 분석 프로세스

CRITIC!

CRITIC!!

데이터 정규화	지표별	를 가중기	기 산출	영역별 점수 계산	영역 간 기	중치 산출	최종 지수 도출
서로 다른 단위와 범위를 가진 지표들을 0~1 범위로 통일	독립성	표의 정5 을 고려한 등요도 산	· 객관적	정규화된 지표값에 CRITIC 가중치를 적용하여 영역별 종합 점수 산출	3개 영역(희 학교환경, 지 상대적 중	역인프라) 간	영역별 점수에 영역간 가중치를 적용하여 최종 교육복지지수 산출
	예시: 동부 학	군					
	지표	C_{j}	가중치(w _j)	예시: 동부 학군	영역	가중치(w _j)	예시: 동부 학군
예시: 동부 학군 (정규화)	교육예산	0.1087	0.311962	교육예산 = 0.15 x 0.311962 = 0.0468 공공도서관 = 0.00 x 0.296298 = 0	학생 및 학부모특성	0.25122	영역1: 0.2218 × 0.25122 영역2: 0.5533 × 0.41120
교육예산: 0.149908 공공도서관: 0.000000	공공도서관	0.1031	0.296298	청소년시설 = 0.00 x 0.391740 = 0 총합 = 0.0468	학교 및 교육 환경	0.41120	영역3: 0.0468 x 0.33759
청소년시설: 0.000000	청소년시설	0.1361	0.391740	-> 동부의 지역 인프라 점수는 0.0468	지역사회 및 복지인프라	0.33759	-> 동부의 최종 교육복지지수는 0.29905로, 11학군 중 10위
모든 지표가 0~1 사이 값으로 변환되어 공정한 비교 기준 확보	상관관기	에 크고 다른 베가 낮을수 가중치 부(녹록 높은	각 영역 내에서 중요한 지표일수록 최종 점수에 더 큰 영향을 미침	계층적 구조에. 가중치를 객진		영역별 기여도를 고려한 종합점수 산출
$x' = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$	$C_j = \sigma_j ullet \sum_{k=1}^{r}$	$\sum_{k=1}^{n} (1 - r_{jk})^{-k}$	$v_j = \frac{C_j}{\sum_{k=1}^n C_j}$	영역별점수 $_i = \sum_{j=1}^n (x'_{ij} \cdot w_j)$	$C_j = \sigma_j \bullet \sum_{k=1}^n (1 -$	アjk	최종교육복지지수 $_{i}=\sum_{k=1}^{3}($ 영역점수 $_{ik}$ • 영역가중치 $_{k})$

3. 분석 결과 및 시사점

분석 결과(1): 영역별 가중치

CRITIC 기법을 통해 산출한 결과, '학교 및 학부모 특성'이 전체 교육복지지수에 가장 큰 영향을 미치는 영역으로 나타남.

영역	가중치	순위
학생 및 학부모 특성	0.25122	3
학교 및 교육 환경	0.41120	1
지역사회 및 복지 인프라	0.33759	2

→ 교육복지 개선을 위해 학교 환경의 질 향상이 핵심 과제

분석 결과(2): 지도로 보는 교육복지지수

서울시 11개 학군 교육복지지수 분포

순위	교육지원청	교육복지지수 (2023년)	학군
1	남부	0.64007	3
2	강남	0.60419	8
3	북부	0.57379	4
9	강서	0.28188	7
10	동부	0.29905	1
11	성북	0.36127	11

- 상위·하위 학군 간 최대 0.36점 격차 - 서북부 지역에 취약 학군 집중

지역별 맞춤형 정책 지원 필요성 대두

3. 분석 결과 및 시사점

분석 결과(3): 학군,영역별 교육복지지수

서울시 11개 학군 교육복지지수 분포

순위	교육지원청	교육복지지수 (2023년)	학군
1	남부	0.64007	3
2	강남	0.60419	8
3	북부	0.57379	4
9	강서	0.28188	7
10	동부	0.29905	1
11	성북	0.36127	11

- 상위·하위 학군 간 최대 0.36점 격차 : - 서북부 지역에 취약 학군 집중

- 지역별 맞춤형 정책 지원 필요성 대두

분석 시사점: 지수 활용의 의미

단순 순위 비교보다 맞춤형 정책 설계:

• 각 학군의 상대적 강점/약점에 기반한 세부 정책 필요

01

균형 잡힌 교육복지 환경 구축:

- 우수 학군도 특정 요소 열악 가능 -> 다각적 접근 필요
- (예: 강남 도서관 수 많으나 학급 규모 크고 청소년 시설 적음

02

지역 정책 설계의 질적 판단 기준:

- · 정량적 수단 + 지역 사회/교육 현장/학생 생활 종합 고려
- 실질적 복지 환경 개선 유도 근거 자료 활용

03

지속적 발전 가능성:

- ・새로운 데이터 적용 -> 지수 세밀화/정교화 가능
- ㆍ정책 수립 및 맞춤형 지원 방안 마련 기여

04

정책 활용

SELECTION, ALLOCATION, PLACEMENT, INTEGRATION

학생맞춤통합지원 사업 대상 선별

1. 우선 지원 대상 선정 2. 다차원적 요인 반영 3. 기존 정책과 상호 보완적

Integration

통합

교육 예산의 전략적 배분

- 1. 학군별 지표 기반 예산 배분
- 2. 물적/인적 자원 불균형 해소
- 3. 합리적/효육적 정책 결정

학교 배치 및 생활권 설계

- 1. 공간 분석 연계 배치 계획
- 2. 학교 및 지역 인프라 확충
- 3. 균형 잡힌 교육 환경 조성

유보통합 및 영유아 교육 시범 운영

- 1. 지수 기반 취약 학군 우선 선정
- 2. 영유아 교육 격차 조기 해소

정책 활용(1): 학생맞춤통합지원 사업

1. 우선 지원 대상 선정

- 교육복지지수 활용 -> 지원 시급 학군 식별
- 객관적 기준 기반 우선순위 설정

2. 다차원적 요인 반영

- · 성적/소득 넘어선 복합적 취약 지점 고려
- 학교, 지역 인프라 등 다각적 환경 분석

3. 기존 정책과 상호 보완적

- 기존 교육복지 정책과 연계
- 지원 사각지대 해소 기여

정책 활용(2): 교육 예산의 전략적 배분

1. 학군별 지표 기반 예산 배분

- 교육복지지수 및 세부 지표 분석 결과 활용
- 예산 배분 우선순위/규모 결정 근거 마련

2. 물적/인적 자원 불균형 해소

- · 학교 시설, 교원, 지역 인프라 등 부족 자원 집중 지원
- 학군별 특성 고려 맞춤형 예산 투입

3. 합리적/효율적 정책 결정

- ·데이터 기반 명확한 배분 기준 제시
- 정책 결정 투명성 및 효율성 증대

정책 활용(3): 학교 배치 및 생활권 설계

1. 공간 분석 연계 배치 계획

- · 교육복지지수 데이터 + 지리 정보 결합
- · 학교 신설/이전/통학 구역 조정 계획 수립

2. 학교 및 지역 인프라 확충

- 교육 환경 취약 지역 우선 고려
- · 학교 시설 개선 및 지역사회 인프라 확충

3. 균형 잡힌 교육 환경 조성

- · 모든 학생의 교육 접근성 향상
- ㆍ지원 간 격차 완화 및 생활권 교육 기반 구축

정책 활용(4): 유보통합 및 영유아 교육 시범 운영

1. 지수 기반 취약 학군 우선 선정

- · 교육복지지수 (특히 지역 인프라) 활용 취약 학군 식별
- · 유보통합/영유아 교육 시범 도입 우선 지역 선정

2. 영유아 교육 격차 조기 해소

- ㆍ영유아 시기 선제적 개입 강화
- 모든 아이에게 균등한 출발선 보장

서울 맞춤형 교육복지지수

장기적 기대 효과

- " 지역 간 교육복지 격차 완화 "
- 각 학군의 **실질적 약점** 정밀 진단
- **· 맞춤형 정책 설계** 및 자원 배분 가능
- 마마마마일질적인 지역 간 격차 감소 기대
 - · **균등한 교육 기회** 제공 기반 마련

- " 교육복지 개선을 통한 출산율 상승 기반 마련 "
 - · 교육 환경은 거주지 선택 및 자녀 계획에 큰 영향
 - · 교육 환경 개선으로정주 의사 및 출산 결정긍정적 영향
 - · 자녀 교육 **부담 완화** 기여
 - · 저출산 문제 해결에 **간접적, 장기적으로 기여**

" 지속 가능한 교육복지 지표 체계화 "

- ・본 연구 방법론 기반 매년 지수 갱신 및 주기적 모니터링 시스템 구축 가능
- 교육복지 관리지도 활용> 정책 효과 추적 및 평가
- · 지속적인 데이터 축적 -> 장기적 정책 방향 설정 지원

연구 핵심 요약

"문제 인식 "

서울의 기회 이면, **교육 환경 격차** 문제 심각성 제기 객관적 분석 및 해결 방안 모색 필요성 강조

" 연구 내용 "

'서울 맞춤형 교육복지지수' 개발 및 분석 '학교 환경'의 중요성 및 학군별 불균형 확인

"정책적 기여"

지수를 활용한 실질적 정책 설계 근거 제공 대상 선별, 예산 배분, 학교 배치, 유보통합 등

"기대 효과"

지역 간 **교육 격차 완화** 교육 여건 개선 통한 **출산율 기여** 지속 가능한 교육복지 관리 시스템 구축

THANKYOU

감사합니다

제7회 서울교육 데이터 분석・활용 아이디어 공모전

서울 맞춤형 교육복지지수 개발: 기회의 도시를 위한 균형 발전 전략

1. 연구 분강 및 목적

中 対理 中 対理 対 対 対 中 対 対 対 ア

선택에 여전 영향을 돌까?

BROLL EDUCATION EQUITY WORKING JECT | 2005

1. 연구 배경 및 목적

2. 데이터 수집 및 분석 방법

250 MIR		netronetril dguor iki digik 1965 ili lifti 208 ess		
10210	MIL	27.00	원경구 적원성	분석 과정 6단계
AHP	는데적 구조	현유가 주변 크는	X격관로부족	
8784	당소, 정확	현실 반당 한계	実지표별 차이 무시	1. 데이터 취규회
260.073	변하석 2개	삼관관계 무시	X 지표 간 관계 중요	(Min-Max Scaling, 0-1 990)
PCA.	차양속수, 객관적	예석 여러용	米점책받은 현계	2. 지표별 가중치 산출 (CRITIC 기업 제용
CRITIC	可否写、主意句	계신 복잡	5 44	3. 영역별 점수 계산 (가중합 병사)
	*2 9 2982	日本 日	2) 및 专会지원	 4. 양액 간 가용치 산출 (2차 CRITIC 적용 5. 최용 지수 도출 (양액검수 x 양약가들치, 0-100점 변화) 6. 결과 해석 명 건축

6

3. 분석 결과 및 시사점

9 10 11 12

14 15 16 17

