Criteris de correcció

Química

SÈRIE 1

L'alumne ha de respondre 5 preguntes. Obligatòriament ha de respondre la 1, 2 i 3 i escollir una entre la 4 i la 5, i escollir una entre la 6 i la 7.

Com a norma general, tingueu en compte que un error no s'ha de penalitzar dues vegades. Si una subpregunta necessita un resultat anterior, i aquest és erroni, cal valorar la resposta independentment del valor numèric, i tenir en compte el procediment de resolució (sempre que els valors emprats i/o els resultats no siguin absurds).

Un error en la formulació penalitza 0,5 punts en aquella subpregunta, <u>com s'explicita</u> en la pauta. En cap cas una subpregunta pot tenir una puntuació "negativa".

Pregunta 1.a)

Reacció:
$$2 C_7H_5(NO_2)_3(s) \rightarrow 7 C(s) + 7 CO(g) + 3 N_2(g) + 5 H_2O(g)$$

$$\Delta H^{o}_{reacció} = (\Sigma n_{p} \Delta H^{o}_{f, productes}) - (\Sigma n_{r} \Delta H^{o}_{f, reactius})$$
 [0,2 p]

$$\Delta H^{o}_{reacció} = [(7 \times \Delta H^{o}_{f, monòxid de carboni}) + (5 \times \Delta H^{o}_{f, aigua})] - (2 \times \Delta H^{o}_{f, TNT})$$

$$\Delta H^{o}_{reacció}$$
= [(7 x (-110,3)) + (5 x (-241,6))] - (2 x (-364,1)

$$\Delta H^{o}_{reacció} = -1251,9 \text{ kJ}$$
 [0,3 p]

A pressió constant
$$\Rightarrow$$
 $q_p = \Delta H^o_{reacció}$ [0,2 p] (on q_p és la calor a pressió constant)

Massa molecular del TNT = (7x12)+(5x1)+(3x14)+(6x16)=227 g/mol

2,27 kg TNT x (1000 g TNT / 1 kg TNT) x (1 mol TNT / 227 g TNT) x
$$\times$$
 (-1251,9 kJ / 2 mol TNT) = -6259,5 kJ

Calor produïda =
$$6259,5 \text{ kJ}$$
 [0,3 p]

Criteris de correcció

Química

Pregunta 1.b)

a) El signe de la <u>variació d'entropia serà positiva</u> ja que el desordre en els productes és superior al dels reactius, degut al fet que el nombre de molècules de gas és major en els productes (15 molècules) que en els reactius (0 molècules).

↑ molècules de gasos ⇒ ↑ desordre ⇒
$$S^{\circ}$$
 ↑
$$S^{\circ}(\text{productes}) > S^{\circ} \text{ (reactius)}$$

$$\Delta S^{\circ} = S^{\circ}(\text{productes}) - S^{\circ}(\text{reactius}) > 0$$

$$\Delta S^{\circ} > 0$$
[0,5 p]

Per determinar l'espontaneïtat d'una reacció, a p i T constant, es calcula la variació d'energia lliure (ΔG°):

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

Si $\Delta G^{\circ} < 0 \Rightarrow$ reacció espontània [0,2 p]

En la reacció del TNT tenim:

$$\Delta H^{0} < 0$$

 $\Delta S^{0} > 0$

En l'equació $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$, el primer terme (ΔH°) és negatiu i el segon $(-T\Delta S^{\circ})$ és també negatiu, ja que la temperatura en Kelvin sempre és positiva. Per tant ΔG° serà sempre negativa

Per a qualsevol temperatura, la reacció serà espontània [0,3 p]

Oficina d'Accés a la Universitat		Pàgina 3 de 22
	PAU 2017	
Criteris de correcció		Química

Pregunta 2.a)

Procediment experimental per a construir la pila; material i reactius:

- Necessitem dos vasos de precipitats: un que contingui una solució de Ag⁺ 1 M i un altra que contingui una solució de Zn²⁺ 1 M.
 [0,2 p]
- Hi col·loquem, respectivament, <u>una làmina (o fil) de Ag i una làmina de Zn</u> parcialment submergides (elèctrodes). **[0,2 p]**
- Es connecten les làmines mitjançant <u>un fil conductor</u> a un <u>potenciòmetre</u> (ó <u>voltímetre</u>). [0,3 p]
- El circuit es tanca col·locant un <u>pont salí</u>: tub que connecta els dos vasos i que c<u>onté una solució d'un electròlit inert (</u>o una solució d'una sal soluble).**[0,3 p]**

El càlcul de la força electromotriu de la pila <u>no es demana</u> en aquest exercici i, per tant, no és necessari per tenir la màxima puntuació de la pregunta 2a.

Criteris de correcció

Química

Pregunta 2.b)

Formulació. Nitrat de coure(II): Cu(NO₃)₂

[penalització: -0,5 punts]

Les possibles reaccions (no igualades) en els vasos serien:

Vas 1:
$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$

o $Zn(s) + Cu(NO_3)_2 (aq) \rightarrow Zn(NO_3)_2 (aq) + Cu(s)$
Vas 2: $Ag(s) + Cu^{2+}(aq) \rightarrow Ag^{+}(aq) + Cu(s)$
o $Ag(s) + Cu(NO_3)_2 (aq) \rightarrow AgNO_3 (aq) + Cu(s)$

Justificar si hi haurà reacció. Cal raonar si les reaccions són espontànies.

Raonament 1:

Per saber si la reacció redox és espontània cal calcular la força electromotriu de la pila en què tingués lloc aquesta reacció en condicions estàndard (E°). Tenim:

$$E^{\circ} > 0 \Rightarrow \text{reacci\'o redox espontània}$$
 [0,4 p] (opcional: reacci\'o espontània $\Rightarrow \Delta G = - \text{n F E}^{\circ} < 0$)

Calculem el valor de E°.

El càtode és sempre el Cu²⁺/Cu –reducció– i l'ànode és el Zn²⁺/Zn (vas 1) o el Ag⁺/Ag (vas 2) –oxidació–.

Vas 1:
$$E^{\circ} = E^{\circ}_{\text{CATODE}} - E^{\circ}_{\text{ANODE}} = E^{0}(\text{Cu}^{2+}/\text{Cu}) - E^{0}(\text{Zn}^{2+}/\text{Zn})$$

 $E^{\circ} = (+0,34) - (-0,76) = +1,10 \text{ V} > 0$

$$E^{\circ} > 0$$
 Reacció espontània. Hi haurà reacció [0,2 p]

Vas 2:
$$E^{\circ} = E^{\circ}_{\text{CATODE}} - E^{\circ}_{\text{ANODE}} = E^{0}(\text{Cu}^{2+}/\text{Cu}) - E^{0}(\text{Ag}^{+}/\text{Ag})$$

 $E^{\circ} = (+0.34) - (+0.80) = -0.46 \text{ V} < 0$

E° <0 Reacció no espontània. No hi haurà reacció [0,2 p]

Criteris de correcció

Química

Raonament 2:

També es pot raonar indicant que el potencial de reducció del parell que es redueix (Cu²⁺/Cu, càtode) hauria de ser <u>més gran</u> que el que s'oxida (Zn²⁺/Zn o Ag⁺/Ag, ànode) perquè la reacció sigui espontània. **[0,4 p]**

Tenim:

Vas 1:
$$E^{0}(Cu^{2+}/Cu) > E^{0}(Zn^{2+}/Zn)$$
 o $E^{0}_{càtode} > E^{0}_{anode}$

Reacció espontània. Hi haurà reacció

[0,2 p]

Vas 2:
$$E^0(Cu^{2+}/Cu) < E^0(Ag^+/Ag)$$
 o $E^0_{càtode} < E^0_{anode}$

Reacció no espontània. No hi haurà reacció

[0,2 p]

Igualació de la reacció que es produeix (vas 1):

Reacció igualada (vas 1):

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$
 [0,2 p]

o també:
$$Zn(s) + Cu(NO_3)_2 (aq) \rightarrow Zn(NO_3)_2 + Cu(s)$$

• En la reacció igualada, <u>no és necessari que indiquin els estats físics</u> de reactius i productes per tenir la màxima puntuació (0,2 p).

Criteris de correcció

Química

Pregunta 3.a)

Reacció global del procés de descomposició de l'ozó:

Cal sumar les reaccions de les dues etapes elementals:

$$2 O_3 \rightarrow 3 O_2$$
 [0,2 p]

Representació gràfica de la reacció (dibuix aproximat):

[0,8 p]

Coordenada de reacció

E_{a1:} Energia d'activació de l'etapa 1 E_{a2:} Energia d'activació de l'etapa 2

ΔH: Entalpia de la reacció

- Es penalitzarà 0,2 p si no indiquen bé l'energia d'activació (E_{a1})
- Es penalitzarà 0,2 p si no indiquen bé l'energia d'activació (E_{a2})
- Es penalitzarà 0,2 p si no indiquen bé l'entalpia de la reacció (ΔΗ)
- Es penalitzarà 0,2 p si indiquen que l'energia de productes és més gran que la de reactius (cal tenir en compte que la reacció és exotèrmica)

Oficina d'Accés a la Universitat

Pàgina 7 de 22 PAU 2017

Criteris de correcció

Química

Pregunta 3.b)

Cal emprar el model de l'estat de transició (o complex activat).

Explicació del concepte d'energia d'activació

[0,6p]

Dins d'un mecanisme de reacció, en una etapa elemental per passar dels reactius als productes cal sempre passar per un estat anomenat estat de transició o complex activat, que té sempre més energia que reactius i productes. La diferència d'energia entre aquest estat de transició i els reactius s'anomena 'energia d'activació'.

Justificació de l'etapa més lenta

[0,4 p]

L'etapa més lenta és aquella en què cal més energia per passar dels reactius a l'estat de transició, és a dir, la que té una major energia d'activació.

⇒ L'etapa més lenta en la descomposició de l'ozó és l'etapa 1.

Criteris de correcció

Química

Pregunta 4.a)

Quan en una reacció química s'assoleix l'equilibri, les concentracions de reactius i productes es mantenen constants amb el temps. Segons el gràfic, les concentracions d'A, B i C en equilibri serien:

$$[A] = 5 M$$

$$[B] = 10 M$$

$$[C] = 15 M$$

[0,2 p]

Reacció: $2 A (g) \rightleftharpoons 2 B (g) + 3 C (g)$

Constant d'equilibri K_c:

Expressió de la constant:
$$K_c = ([B]^2 \times [C]^3) / ([A]^2)$$
 [0,2 p]

$$K_c = (10^2 \times 15^3) / (5^2)$$
 $K_c = 13500$
[0,2 p]

Si expressen la K_c amb unitats es penalitzarà 0,1 p.

Constant d'equilibri K_p:

Procediment 1 per calcular la K_p

$$K_{p} = K_{c} (RT)^{\Delta n}$$
 [0,2 p]

 $R = 0.082 \text{ atm L K}^{-1}$

T = 300 K

 Δn (diferència de coeficients estequiomètrics de gasos entre productes i reactius)

$$\Delta n = (2+3)-(2)=3$$

$$K_p = 13500 \times (0.082 \times 300)^3$$
 $K_p = 2.01 \times 10^8$ [0.2 p]

• Si expressen la K_p amb unitats es penalitzarà 0,1 p.

Procediment 2 per calcular la Kp

Expressió de la constant:
$$K_p = (p_B^2 \times p_C^3) / (p_A^2)$$
 [0,2 p]

Equació dels gasos en pressió parcial: $p_i V = n_i R T$

$$\begin{aligned} p_i &= n_i \, R \, T \, / \, V = C_i \, R \, T \\ p_A &= 5 \, x \, 0,082 \, x \, 300 = 123 \, atm \\ p_B &= 10 \, x \, 0,082 \, x \, 300 = 246 \, atm \\ p_C &= 15 \, x \, 0,082 \, x \, 300 = 369 \, atm \end{aligned}$$

Substituint les pressions en la Kp:

$$K_p = (246^2 \times 369^3) / (123^2)$$
 $K_p = 2,01 \times 10^8$
[0,2 p]

Si expressen la K_p amb unitats es penalitzarà 0,1 p.

Oficina d'Accés a la Universitat

PAU 2017

Pàgina 9 de 22

Criteris de correcció

Química

Pregunta 4.b)

Modificació de la K_c

[0,5 p]

La constant d'equilibri, K_c, només depèn de la temperatura.

Per tant, si la T es manté constant, la <u>K_c també es manté constant</u> (independentment del canvi de volum).

Modificació de la massa del reactiu A

[0,5 p]

Si augmentem el volum de recipient, **disminueix la pressió total** i la reacció per mantenir l'equilibri (*Llei de Le Chatelier*) **es desplaça cap a on hi ha més mols de gasos**.

Mols de gasos reactius (coeficients estequiomètrics) = 2Mols de gasos productes (coeficients estequiomètrics) = 2 + 3 = 5

La reacció es desplaça cap als productes i, per tant, disminueix la massa d'A.

Criteris de correcció

Química

Pregunta 5.a)

Energia d'enllaç C-Br = 276 kJ/mol

Primer, cal passar l'energia per mol a energia per enllaç:

 $(276 \text{ kJ/mol}) \times (1000 \text{ J/kJ}) \times (1 \text{ mol enllaç} / 6,02 \cdot 10^{23} \text{ enllaç}) = 4,585 \times 10^{-19} \text{ J/enllaç}$

[0,2 p]

A partir de l'equació de Planck, relacionarem l'energia de la radiació amb la freqüència:

$$E = h v$$
 [0,2 p]

$$v = E / h \implies v = 4,585 \cdot 10^{-19} / 6,63 \cdot 10^{-34}$$

Frequència:
$$v = 6.92 \cdot 10^{14} \text{ s}^{-1}$$
 (ó $6.92 \cdot 10^{14} \text{ Hz}$) [0,2 p]

Càlcul de la longitud d'ona:

$$\lambda = c / v$$
 [0,2 p]

$$\Rightarrow \lambda = 3.00 \times 10^8 / 6.92 \times 10^{14}$$

Longitud d'ona:
$$\lambda = 4{,}34 \times 10^{-7} \text{ m}$$
 [0,2 p]

Pregunta 5.b)

Un **orbital atòmic**, segons el model ondulatori de l'àtom, és una <u>funció d'ona</u> que ens descriu una <u>regió de l'espai</u> on hi ha una <u>alta probabilitat de trobar un electró</u> en un determinat estat energètic, fixats els nombres guàntics n, l i m.

[0,4 p]

El nombre atòmic de l'àtom de brom és: Z= 35 ⇒ el brom té 35 electrons

$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^{10}$, $4p^5$ [0,2 p]

L'electró més extern de l'àtom de brom es troba en l'orbital 4p.

Els seus nombres quàntics són:

[0,1 p per cada nombre quantic. Total: 0,4 p]

Criteris de correcció

Química

Pregunta 6.a)

Reacció de valoració:
$$Cl^{-}(aq) + AgNO_3(aq) \rightarrow AgCl(s) + NO_3^{-}(aq)$$

A partir de la reacció igualada (estequiometria 1 a 1):

AgNO₃
$$V = 23.5 \text{ mL} = 0.0235 \text{ L}$$

 $(0.0235 \text{ L}) \times (0.265 \text{ mol / L}) = 0.0062275 \text{ mol de AgNO}_3 \text{ gastats}$

mol de AgNO₃ gastats = mol inicials de Cl
$$^{-}$$
 \Rightarrow 0,0062275 mol de Cl $^{-}$

[0,4p]

Transformem els mols de Cl⁻ en g de NaCl:

[0,2 p]

Ho transformem en concentració:

Volum de solució valorada = 20,0 mL = 0,0200 L

Concentració de NaCl = (0,3643 g) / (0,0200 L) = 18,2 g/L

[0,4 p]

Oficina d'Accés a la Universitat

Pàgina 12 de 22 PAU 2017

Criteris de correcció

Química

Pregunta 6.b)

Equilibri de solubilitat:

$$AgCl(s) = Ag^{+} + Cl^{-}$$
 [0,2 p]

Càlcul de la solubilitat

Expressió de la constant de solubilitat:

$$K_{ps} = [Ag^{+}][CI^{-}]$$
 [0,2 p]

Introduïm la solubilitat a l'expressió anterior:

$$K_{ps} = (s) \cdot (s) = s^2$$
 [0,1 p]

$$s = (K_{ps})^{1/2}$$

 $s = (1,7x10^{-10})^{1/2}$
 $\Rightarrow s \text{ (solubilitat)} = 1,30x10^{-5} \text{ mol/L}$ [0,2 p]

La solubilitat del AgCl <u>disminuirà</u> en una solució aquosa concentrada de KCl per efecte de l'ió comú (ió clorur) que <u>desplaçarà la reacció de solubilitat cap a l'esquerra (reactius)</u>.

[0,3 p]

Opcional:

Criteris de correcció

Química

Pregunta 7.a)

Concentració de la solució aguosa de HCOOH formada en el nostre cos:

massa molecular HCOOH = 1+12+(2x16)+1 = 46 g/mol mols de HCOOH:

 $0,003 \text{ mL HCCOH x } (1,20 \text{ g HCOOH } / 1 \text{ mL HCOOH}) \text{ x } (1 \text{ mol HCOOH } / 46 \text{ g HCOOH}) = 7,826 \text{ x } 10^{-5} \text{ mol HCOOH}$ [0,1 p]

volum de la solució: podem negligir els 0,003 mL en front del 1,0 mL volum de la solució = 1,0 mL = 1,0 x 10^{-3} L

■ Es correcte si el volum total consideren que és la suma dels 0,003 mL més el 1,0 mL (V = 1,003 mL = 1,003x10⁻³ L).

$$C_{HCOOH} = 7.826 \times 10^{-5} \text{ mol HCOOH} / 1.0 \times 10^{-3} \text{ L}$$

$$C_{HCOOH} = 7.83 \times 10^{-2} \text{ M}$$
[0,1 p]

 Si han agafat el volum total 1,003 mL, la concentració de HCOOH té un valor de 7.80x10⁻² M.

Càlcul del pH:

Reacció de HCOOH en aigua (volum 1 litre)

$$K_a = [HCOO^-] \cdot [H_3O^+] / [HCOOH]$$
 [0,2 p]

$$1.8 \times 10^{-4} = [(x) \cdot (x)] / [0.0783 - x]$$

 $1.8 \cdot 10^{-4} = x^2 / (0.0783 - x)$

Si considerem:
$$0.0783 - x \approx 0.0783 \implies 1.8 \times 10^{-4} = x^2 / (0.0783)$$

 $x = (1.8 \times 10^{-4} \times 0.0783)^{1/2} = 0.003754 \text{ mols}$
 $[H_3O^+] = x = 0.003754 \text{ mol } / 1 \text{ L} = 0.003754 \text{ M}$ [0,2 p]

pH = - log [H₃O⁺]
pH = - log 0,003754
$$\Rightarrow$$
 pH = 2,4 [0,2 p]

Oficina d'Accés a la Universitat

PAU 2017

Pàgina 14 de 22

Criteris de correcció

Química

Pregunta 7.b)

Reacció de neutralització:

[0,5 p]

o també:
$$HCOOH + NaHCO_3 \rightarrow HCOO^{-} + Na^{+} + H_2CO_3$$

Càlcul de la massa de NaHCO₃ necessària per neutralitzar:

[0,5 p]

Massa molecular $NaHCO_3 = 23 + 1 + 12 + (16x3) = 84 \text{ g/mol}$

0,003 mL HCCOH x (1,20 g HCOOH / 1 mL HCOOH) x (1 mol HCOOH / 46 g HCOOH) x x (1 mol NaHCO₃ / 1 mol HCOOH) x (84 g NaHCO₃ / 1 mol NaHCO₃)= $6,57x10^{-3}$ g NaHCO₃

 \Rightarrow Es necessiten 6,57x10⁻³ g NaHCO₃ per neutralitzar l'àcid fòrmic que conté la picada.

Criteris de correcció

Química

SÈRIE 5

L'alumne ha de respondre a 5 qüestions. Obligatòriament ha de respondre a la 1, 2 i 3 i escollir una entre la 4 i la 5, i escollir una entre la 6 i la 7.

Com a norma general, tingueu en compte que un error no s'ha de penalitzar dues vegades. Si una subpregunta necessita un resultat anterior, i aquest és erroni, cal valorar la resposta independentment del valor numèric, i tenir en compte el procediment de resolució (sempre que els valors emprats i/o els resultats no siguin absurds).

Un error en la formulació penalitza 0,5 punts en aquella subpregunta, <u>com s'explicita</u> <u>en la pauta</u>. En cap cas una subpregunta pot tenir una puntuació "negativa".

Criteris de correcció

Química

Pregunta 1

a) Equilibri de solubilitat:
$$Mg(OH)_2$$
 (s) $\rightleftharpoons Mg^{2+}(aq) + 2 OH^-$ (aq) (0,3 punts) s 2 s

$$[OH^{-}] = 2 \text{ s} \Rightarrow \text{ s} = [OH^{-}]/2$$
 (0,2 punts)

pH =
$$-\log [H_3O^+] \Rightarrow [H_3O^+] = 10^{-pH}$$
;
Però també: $[H_3O^+] = K_w / [OH^-] \Rightarrow [OH^-] = K_w 10^{pH}$

(0,2 punts)

En conseqüència:

$$s = \frac{1}{2} K_w 10^{pH} = (\frac{1}{2}) (1.0 \times 10^{-14}) (10^{11.4}) = 1.2559 \times 10^{-3} \text{ mol/L}$$

 $s = (1.2559 \times 10^{-3} \text{ mol/L}) (58.3 \text{ g/mol}) (1000 \text{ mg/1 g}) = 73.221489948 \text{ mg/L}$
 $s = 73.2 \text{ mg/L}$ (0.3 punts)

b)
$$Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2 OH^-(aq)$$
 Equilibri de solubilitat $MgCl_2(aq) \rightarrow Mg^{2+}(aq) + 2 Cl^-(aq)$ Dissociació de la sal

La solubilitat disminueix per efecte de l'ió comú.

Com que la sal subministra ions Mg^{2+} , la concentració d'ions Mg^{2+} augmenta. Segons el principi de Le Châtelier, aquesta concentració ha de disminuir i, per tant, l'equilibri de solubilitat s'ha de desplaçar cap a l'esquerra, amb la qual cosa augmenta la quantitat de precipitat \Rightarrow la solubilitat disminueix. (0,5 punts)

$$Mg(OH)_2$$
 (s) $\rightleftarrows Mg^{2+}(aq) + 2 OH^-$ (aq) Equilibri de solubilitat $HCI(aq) + H_2O(I) \rightarrow H_3O^+(aq) + CI^-$ Dissociació de l'àcid fort

Els ions H₃O⁺ que provenen de l'àcid fort reaccionen amb els ions OH⁻ que provenen de l'equilibri de solubilitat i es forma aigua.

$$H_3O^+(aq) + OH^-(aq) \rightarrow 2 H_2O(I)$$
 (0,2 punts)

Llavors, la concentració de OH⁻ disminueix. Segons el principi de Le Châtelier, aquesta concentració ha d'augmentar. Això s'aconsegueix fent que l'equilibri de solubilitat es desplaci cap a la dreta, amb la qual cosa se solubilitza precipitat ⇒ la solubilitat augmenta. (0,3 punts)

Criteris de correcció

Química

Pregunta 2

a)

 $Mg^{2+}(l) + 2e^{-} \rightarrow Mg(l)$ Semireacció de reducció. Càtode (pol –) $2Cl^{-}(l) \rightarrow Cl_{2}(g) + 2e^{-}$ Semireacció d'oxidació. Ànode (pol +)

 $Mg^{2+}(1) + 2 Cl^{-}(1) \rightarrow Mg(1) + Cl_{2}(g)$

Reacció iònica global

Semireaccions: (0,4 punts)
Reacció iònica global: (0,2 punts)
Nom elèctrodes: (0,2 punts)
Polaritat: (0,2 punts)

b) Quantitat d'electricitat: $Q = I \cdot t = (200 \text{ A}) (18 \text{ x } 3600 \text{ s}) = 1,296 \text{ x } 10^7 \text{ C}$ (0,2 punts)

 $(1{,}296~x~10^{7}~C)~(1~mol~e^{-}/~96500~C)~(1~mol~Mg~/~2~mol~e^{-})~(24{,}3~g~Mg~/~1~mol~Mg) = 1631{,}75~g~Mg$

m = 1632 g Mg (0.8 punts)

Química

Pregunta 3

a)
$$NH_4Cl(s) \rightarrow NH_4^+(aq) + Cl^-(aq)$$

El clorur és neutre i no s'hidrolitza.

L'amoni és àcid (àcid conjugat d'una base feble, com és l'amoníac).

$$NH_4^+$$
 (aq) $+ H_2O \rightleftharpoons NH_3$ (aq) $+ H_3O^+$ (aq) K_a (0,2 punts) inicial c_o

equilibri $c_0 - x$ x

$$K_a = [NH_3] [H_3O^+] / [NH_4^+]$$
 (0,2 punts)

$$K_a = x \cdot x / (c_0 - x)$$

Per calcular x, primer s'ha d'avaluar c_o.

 $1,\!50 \text{ g NH}_4\text{Cl } (1 \text{ mol NH}_4\text{Cl} \,/\, 53,\!5 \text{ g NH}_4\text{Cl}) \ (1 \text{ mol NH}_4^+ / \, 1 \text{ mol NH}_4\text{Cl}) = 0,\!028037383 \text{ mol NH}_4^+ / \, 1 \text{$

$$c_0 = 0.028037383 \text{ mol NH}_4^+ / 0.1 \text{ L} = 0.28037383 \text{ mol / L}$$
 (0.2 punts)

$$K_a = K_w / K_b = 1.0 \times 10^{-14} / 1.8 \times 10^{-5} = 5.5555 \times 10^{-10}$$
 (0.2 punts)

Un cop coneguts c_0 i K_a , ja es pot calcular $x = 1,248 \times 10^{-5}$

- Es pot fer a partir d'una equació de segon grau,
- o també amb l'aproximació $c_0 x = c_0$, perquè x és un valor petit

$$pH = -\log [H_3O^+] = -\log x = -\log 1,248x \ 10^{-5} = 4,90$$

 $pH = 4,90$ (0,2 punts)

b) <u>Material</u>: Balança, vareta de vidre, vidre de rellotge, espàtula, matràs aforat de 100 mL, vas de precipitats i aigua destil·lada. (0,3 punts)

<u>Procediment</u>: Es pesen en una balança 1,50 g del sòlid (col·locat en un vidre de rellotge prèviament tarat) i es dissolen en un vas de precipitats amb un volum petit d'aigua destil·lada (per exemple uns 30 mL). S'aboca la dissolució dins un matràs aforat de 100 mL, es renta el vas de precipitats amb aigua destil·lada per recollir tot el solut i s'aboca al matràs aforat. S'enrasa amb aigua destil·lada, es tapa i s'agita per homogeneïtzar el contingut.

(0,7 punts)

Criteris de correcció

Química

Pregunta 4

a)
$$C_2H_5OH(1) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(1)$$
 a 25°C (0,2 punts)

Càlcul de la variació d'entalpia (ΔH°):

$$\Delta H^{\circ} = (\sum v_{i} \cdot \Delta H^{\circ}_{fi})_{productes} - (\sum v_{R} \cdot \Delta H^{\circ}_{fi})_{reactius}$$
 (0,1 punts)

$$\Delta H^{\circ} = [2 \cdot \Delta H^{\circ}_{f} (CO_{2}(g)) + 3 \cdot \Delta H^{\circ}_{f} (H_{2}O(I))] - [\Delta H^{\circ}_{f} (C_{2}H_{5}OH(I)) + 3 \cdot \Delta H^{\circ}_{f} (O_{2}(g))]$$

$$\Delta H^{\circ} = [2 \cdot (-393,5) + 3 \cdot (-285,8,5)] - [(-277,6) + 3 \cdot 0]$$

$$\Delta H^{\circ} = -787 - 857,4 + 277,6 = -1366,8 \text{ kJ/mol etanol}$$

$$\Delta H^{\circ} = -1366,8 \text{ kJ/mol}$$
 (0,3 punts)

Càlcul de la variació d'energia interna (ΔE°):

$$\Delta H^{\circ} = \Delta E^{\circ} + P \Delta V = \Delta E^{\circ} + \Delta v R T$$

Variació del nombre de mols de gas entre productes i reactius: $\Delta v = 2 - 3 = -1$

(0,2 punts)

$$\Delta E^{\circ} = \Delta H^{\circ} - \Delta n R T = -1366.8 \times 10^{3} - (-1) (8,31) (298) = -1364323.6 J/mol etanol $\Delta E^{\circ} = -1364.3 \text{ kJ/mol}$ (0,2 punts)$$

b)
$$P = constant. Q_p = \Delta H$$
 (0,2 punts)

Etanol : $V=1 L = 1000 cm^3$

$$n = (1000 \text{ cm}^3) (790 \text{ g/cm}^3) / (46 \text{ g/mol}) = 17,17391304 \text{ mol}$$

(0,2 punts)

$$Q_p = (17,17391304 \text{ mol etanol}) (-1366,8 \text{ kJ/mol etanol}) = -23473,30435 \text{ kJ}$$

$$Q_p = -23473,3 \text{ kJ}$$
 (0,3 punts)

Entropia: En els productes hi ha menys mols de gas i més mols de líquid que en els reactius. En passar de reactius a productes hi ha menys desordre, per tant, hi haurà una disminució de l'entropia. $\Delta S^{\circ} < 0$

(0,3 punts)

Criteris de correcció

Química

Pregunta 5

a)
$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftarrows 2 \operatorname{SO}_3(g)$$

 $2 \operatorname{mol} 1 \operatorname{mol} 2 \operatorname{mol}$

Càlcul de la Q_c:

$$Q_c = [SO_3]_o^2 / ([O_2]_o [SO_2]_o^2)$$
 $Q_c = (2/10)^2 / ((2/10)^2 (1/10)) = 10$ (0,4 punts)

Càlcula de la K_c:

$$\begin{split} K_p &= K_c \; (RT)^{\Delta n} \quad K_c = K_p \: / \: (RT)^{\Delta n} \\ \Delta n &= n_{(gasos \: productes)} \: \text{--} \: n_{(gasos \: reactius)} = (2) - (2+1) = \text{--} 1 \end{split}$$

$$\begin{split} K_c &= 2{,}5\ 10^{10}\,/\,(0{,}082\ x\ 500)^{\text{-}1} \\ K_c &= 1{,}025\ x\ 10^{12} \end{split}$$

(0,2 punts)

Comparació Q_c i K_c:

$$Q_c = 10 < i K_c = 1,025 \times 10^{12}$$

$$Q_c < \ K_c$$

No es troba a l'equilibri, i evoluciona cap a la formació de producte per igualar la $Q_{\rm c}$ amb la $K_{\rm c}$

(0,4 punts)

• També es podria argumentar a partir de $Q_P < K_P$.

b) Disminució de la temperatura.

Com que la reacció és exotèrmica, una disminució de la temperatura fa desplaçar l'equilibri cap a la formació de producte.

$$2 SO_2(g) + 3 O_2(g) \rightleftharpoons 2 SO_3(g) + "Q"$$

$$\downarrow T \Rightarrow \downarrow Q$$
. Segons Le Châtelier: $\uparrow Q \Rightarrow \rightarrow$ formació de producte. (0,3 punts)

D'altra banda, K_p augmenta en disminuir T ja que la reacció és exotèrmica. S'ha de recordar que la constant d'equilibri només depèn de T. (0,2 punts)

Disminució de la pressió.

Segons Le Châtelier:
$$\uparrow P \Rightarrow$$
 es desplaça cap a on hi ha més mols de gas \Rightarrow formació de reactius. (0,3 punts)

La K_p no varia amb la pressió ja que només depèn de la temperatura. (0,2 punts)

Criteris de correcció

Química

Pregunta 6

a)
$$v = k [C_2H_4]^a [O_3]^b$$

Experiments 1 i 2: $[O_3] = \text{constant.} \ v_2 / v_1 = [C_2H_4]_2^a / [C_2H_4]_1^a$

$$a = \ln (v_2 / v_1) / \ln ([C_2H_4]_2 / [C_2H_4]_1)$$

$$a = \ln (3 \times 10^{-12} / 1 \times 10^{-12}) / \ln (1,5 \times 10^{-7} / 0,5 \times 10^{-12}) = \ln 3 / \ln 3 = 1$$

$$a = 1 \text{ (ordre parcial de l'etilè)}$$

$$(0,4 \text{ punts})$$

Experiments 1 i 3: $v_3 / v_1 = ([C_2H_4]_3 / [C_2H_4]_1)^a ([O_3]_3 / [O_3]_1)^b \Rightarrow$

$$\begin{split} b &= ln \; ((v_3 \, / \, v_1) \; ([C_2H_4]_3 \, / \, [C_2H_4]_1)) \, / \; ln \; ([O_3]_3 \, / \, [O_3]_1) \\ b &= ln \; ((4 \; x \; 10^{-12} \, / \; 1 \; x \; 10^{-12}) \; (0.5 \; x \; 10^{-7} \, / \; 1 \; x \; 10^{-7})) \, / \; ln \; (2 \; x \; 10^{-8} \, / \; 1 \; x \; 10^{-8}) = ln \; 2 / \; ln \; 2 = 1 \end{split}$$

$$b = 1$$
 (ordre parcial de l'ozó) (0,4 punts)

Ordre total:
$$n = a + b = 1 + 1 = 2$$
 $n = 2$ (ordre total) (0,2 punts)

- Es pot argumentar, també, que en triplicar la concentració d'etilè fixant una concentració d'ozó (experiments 1 i 2) es triplica la velocitat. Per tant l'ordre parcial de l'etilè és 1.
- Es pot argumentar, també, que en duplicar la concentració d'etilè i d'ozó (experiments 1 i 3) es quadruplica la velocitat. Per tant, l'ordre parcial de l'ozó també és 1.
- **b)** Experiment 1 (es pot agafar qualsevol dels 3 experiments):

$$\begin{aligned} v_1 &= k \; [C_2H_4]_1 \; [O_3]_1 \Rightarrow k = v_1 / \left([C_2H_4]_1 \; [O_3]_1 \right) \\ k &= 1,0 \; x \; 10^{-12} \; \text{mol L}^{-1} \; s^{-1} / \left((0,5 \; x \; 10^{-7} \; \text{mol L}^{-1}) \; (1,0 \; x \; 10^{-7} \; \text{mol L}^{-1}) \right) = 2000 \; L \; \text{mol}^{-1} \; s^{-1} \\ k &= 2000 \; L \; \text{mol}^{-1} \; s^{-1} \end{aligned} \tag{0,5 punts}$$

• Cal donar la màxima puntuació (0,5 p) tot i que els ordres de reacció, calculats en l'apartat a, siguin incorrectes.

Un augment de la temperatura implica un augment de la constant de velocitat i, per tant, un augment de la velocitat de reacció. Segons la teoria de les col·lisions, quan augmenta la temperatura, augmenta el nombre de xocs i també l'energia de xoc. Per tant, és més probable que reaccionin el reactius, amb la qual cosa augmenta la velocitat de reacció.

(0,5 punts)

Criteris de correcció

Química

Pregunta 7

a) La primera energia d'ionització és l'energia que hem de subministrar a 1 mol d'un element gasós i en estat fonamental per perdre 1 electró.

(0,2 punts)

Per tant ens informa de com està lligat l'electró a l'àtom. Aquest lligam està relacionat amb l'estructura electrònica:

Liti
$$(Z = 3): 1s^2 2s^1$$

Beril·li $(Z = 4): 1s^2 2s^2$
Bor $(Z = 5): 1s^2 2s^2 2p^1$ (0,2 punts)

Li i Be (n = 2): El beril·li té més càrrega nuclear i atreu més l'electró de l'última capa. Costa més arrencar l'electró. Be (899,5 kJ/mol) > Li (520,2 kJ/mol).

(0,3 punts)

En el bor (n = 2) l'electró 2p esta més lluny del nucli que els electrons 2s del beril·li. Llavors, no està tan lligat tot i que hagi augmentat la càrrega nuclear. Per això té un valor intermedi d'energia d'ionització (800,6 kJ/mol). (0,3 punts)

b) La freqüència i la longitud de ona són les que corresponen a la radiació d'energia igual a la primera energia d'ionització. En el cas del liti és igual a 520,3 kJ/mol.

Energia d'ionització en J per àtom de Li:

$$(520,3 \times 10^3 \text{ J/mol}) (1 \text{ mol} / 6,023 \times 10^{23} \text{ àtoms}) = 8,638552217 \times 10^{-19} \text{ J/àtom}$$
(0,3 punts)

 ΔE_{min} = h ν_{min} \Rightarrow ν_{min} = ΔE_{min} / h = 8,638552217 x 10^{-19} J / 6,63 x 10^{-34} J \cdot s = 1,302949052 x 10^{15} s $^{-1}$

$$v_{min} = 1.30 \times 10^{15} \,\text{Hz} \, (\acute{o} \, \text{s}^{-1})$$
 (0,4 punts)

$$\lambda_{\text{max}} = c / \nu_{\text{min}} = 3.0 \text{ x } 10^8 / 1,302949052 \text{ x } 10^{15} = 2,302469152 \text{ x } 10^{-7} \text{ m}$$

$$\lambda_{\text{max}} = 2,30 \text{ x } 10^{-7} \text{ m}$$
 (0,3 punts)