Diviser pour régner

Introduction

I. Principe

Résolution d'un problème en 3 étapes

- 1. Diviser le problème P en sous problèmes \to apparition d'un certain nombre de sous-problèmes de même instance que P
- 2. Régner: résoudre les sous problèmes de manière récursive ou non
- 3. Combiner les solutions au sous problèmes en une solution à P

a. Diviser

Division d'un problème P en sous problèmes de taille environ $\frac{n}{b}$.

Par exemple,

- On divise en 2 sous problèmes de taille identique b=2
- On divise en 2 sous problèmes de taille inégale
- Autres combinaisons de sous problèmes

On divise les problème jusqu'à ce que les sous problèmes aient une résolution triviale.

Lien avec les algorithmes récursifs:

- un problème non trivial : appel récursif
- un problème trivial : cas de base

Problème lié avec la récursivité: taille de la pile. Solution: arrêt des appels récursifs quand un seuil s est atteint. Ce seuil s peut dépendre de:

- des ressources machines
- type de données
- •

Il est possible de combiner les méthodes de programmation pour gagner en efficacité. Par exemple, pour trouver des racines à une fonction.

Il est possible d'avoir plusieurs cas de base:

- moins efficace du point de vue temporel
- plus efficace du point de vue gestion de la mémoire

Le coût engendré par l'étape de division est noté D(n)

b. Régner

Obtention d'un ou de plusieurs sous problème(s) trivial(aux) : résolution directe (cas de base)

Possibilité d'obtenir des sous problèmes un peu différents du problème : intégration de ces cas dans l'étape combiner

On note le coût engendré par l'étape régner $aT\left(\frac{n}{h}\right)$

Par exemple,

- $\bullet\,$ pour une division en 2 sous problèmes de taille égale dont les 2 doivent être résolus, a=2, b=2. On a donc $2T\left(\frac{n}{2}\right)$ • pour une division en 2 sous problèmes de taille égale dont un seul doit être
- résolu, a = 1, b = 2. On a donc $T\left(\frac{n}{2}\right)$

c. Combiner

Combinaison des solutions au sous problèmes (même ou différente instance)

Production de la solution au problème P

Coût: C(n)

Coût temporel:

Forme général:

$$T(n) = aT\left(\frac{n}{b}\right) + D(n) + C(n)$$

Remarque: les parties entières $\lfloor \ \rfloor$ sont généralement omises. Par exemple, $\frac{n}{2}$ si n est impaire

Conditions souvent ignorés: n=1 ou n=s avec un coût supposé en $\Theta(n)$. Ce n'est pas forcément le cas (non traité)

II. Exemples déjà vus en cours

• Recherche de valeur dans un tableau trié

 $\Theta(n)$ pour la version itérative

 $\Theta(\ln n)$ pour la version diviser pour régner (dichotomie) On a a=1 et b=2 car le tableau est divisé en 2.

• Exponentiation a^n

 $\Theta(n)$: coût linéaire pour la version itérative

 $O(\ln n)$ pour la version récursive car le problème est divisé par 2 à chaque appel récursif

III. Autres exemples

Algorithmes de tri

Stratégie:

- exploration exhaustive (toutes les possibilités): bogosort
- glouton: tri par insertion
- diviser pour régner: diviser en sous tableaux dont le tri est trivial (tri fusion)

Déjà vus:

- tri par insertion (glouton exact) meilleur: O(n), pire: $O(n^2)$
- tri par sélection (glouton) $O(n^2)$

Tri fusion:

Complexité: $O(n \ln(n))$ car

- Division: pour une profondeur de k, on a $2^k \geqslant n \geqslant 2^{k+1}$ donc $n = e^{k \ln 2}$ et donc $k = \log_2(n)$
- Combinaison: On a n comparaisons car il y a n éléments dans le tableau

Mise en place:

```
Fonction TriFusion(T, inf, sup)
    Si inf = sup
        Retourner T
    Sinon
        m <- floor((inf + sup) / 2)
        TriFusion(T, inf, m)
        TriFusion(T, m+1, sup)</pre>
```

```
Fusion(T, inf, m, sup)
    Fin Si
Fin
Fonction Fusion(T, inf, m, sup)
    taille1 <- floor(m - inf) + 1
    taille2 <- floor(sup - m)</pre>
    gauche <- []
    droite <- []</pre>
    Pour i = inf à sup
        Si i \le m
             gauche[i] <- T[i]</pre>
        Sinon
             droite[i - m] <- T[i]</pre>
        Fin Si
    Fin Pour
    i <- 0
    j <- 0
    k <- 0
    Tant que i < taille1 && j < taille 2
        Si gauche[i] < droite[j]</pre>
             T[k] = gauche[i]
             i <- i + 1
        Sinon
             T[k] = droite[j]
             j <- j + 1
        Fin Si
        k < - k + 1
    Fin tant que
    Si i > taille1
        Tant que j > taille2
             T[k] <- droite[j]</pre>
             k < - k + 1
             j <- j + 1
        Fin tant que
    Sinon
         Tant que i > taille1
             T[k] <- gauche[i]</pre>
             k < - k + 1
             i <- i + 1
```

Tri rapide

Principe:

- positionner une valeur directement à sa place définitive
- placer les plus petits à gauche et les plus grands à droite

Avantage: économe en place (pas de nouveau tableau, pas de variable auxiliaire)

La fonction TriRapide sépare le tableau en fonction de la position de la clé

```
Fonction TriRapide(T, inf, sup)
    Si sup <= inf
        Retourner T
    Fin Si
    clé <- Position(T, inf, sup)</pre>
    TriRapide(T, inf, clé)
    TriRapide(T, clé + 1, sup)
Fin
Fonction Position(T, inf, sup)
    clé <- T[inf]</pre>
    i <- inf // gauche
    j <- sup // droite
    Tant que j \ge i
        Tant que i < j et T[i] < cle</pre>
            i <- i + 1
        Fin Tant que
        Tant que i < j et T[j] > cle
            j <- j - 1
        Fin Tant que
        Si j > i et T[i] > T[j]
            Échanger(T, i, j)
        Fin Si
    Fin Tant que
    Échanger(T, 0, j)
    Retourner j
```

```
Fin
Fonction Échanger(T, i, j)
    temp <- T[j]</pre>
    T[j] \leftarrow T[i]
    T[i] <- temp
Fin
Étude des boucles
   • boucle sur i
     terminaison: j - i + 1
     invariant: \forall k \in [[\inf +1, i]], T[k-1] \leq cle
   • boucle sur j
     terminaison: j
     invariant: \forall k \in [j, \sup], T[k+1] \geqslant cle
   • boucle extérieur:
     terminaison: j - i + 1
     invariant: combinaison des invariants des deux boucles
Complexité:
   • meilleur des cas: O(n \ln(n))
   • pire des cas: O(n^2)
Autre algorithme:
Fonction Position(T, inf, sup)
     cle <- T[inf]</pre>
     j <- sup + 1
    Pour i = \sup à \inf + 1 (décroissant)
         Si T[i] >= cle
              j <- j - 1
              Échanger(T, i, j)
         Fin Si
    Fin Pour
    Échanger(T, inf, j-1)
    Retourner j-1
```

Fin

Programmation dynamique

Objectifs du cours:

- Cadre pour les techniques de programmation
- Programmation dynamique

I. Introduction - Cadre pour l'algorithmique

Formulation d'un problème en algorithmique:

- Soit P un problème quelconque
- Soit A un algorithme résolvant le problème P

Quelles sont les familles de problèmes P?

Problème de décision (ou reconnaissance)

Objectif: validation de l'existence d'une solution

A chaque instance du problème P, la réponse apportée par l'algorithme est oui ou non (résultat binaire)

Problème de classification

Exemple: soit n un entier naturel, déterminer si n est un nombre premier

Problème de recherche

Objectif: trouver une solution lorsqu'un algorithme n'est pas écrit mais que la spécification de la solution est connue.

Trouver, si elle existe, une solution associée à une instance d'entrée grace à une relation figurant dans l'énoncé de la recherche.

Problème de décision : restriction d'un problème de recherche

Exemple : trouver les facteurs premiers d'un entier naturel \boldsymbol{n}

Problème de dénombrement

Objectif: dénombrer les solutions

Déterminer le nombre de solutions à un problème de recherche

Sous problème du problème de dénombrement et de décision :

- unicité d'une solution optimale
- énumération des solutions

Exemple: soit n un entier naturel, déterminer le nombre de facteurs premiers non triviaux de n

Problème d'optimisation

Objectif : recherche de la meilleure solution parmi toutes les solutions possibles d'un problème P sur une instance I

Détermination d'un jeu de paramètres en entrée d'une fonction donnant à cette fonction la valeur maximale ou minimale

Optimisation sous contrainte ou sans contrainte (méthode de descente, programmation linéaire, \dots)

Exemple: recherche du plus grand facteur premier non trivial d'un entier naturel \boldsymbol{n}

Problème de fonction

Objectif: engendrer les solution

Un seul résultat attendu pour chaque entrée

Plus complexe que le problème de décision car le résultat est une valeur plutôt qu'un résultat binaire

Exemple: problème de régression \rightarrow prévision de valeur

II. Programmation dynamique: exemple

Découpe de barres d'acier

Entreprise \rightarrow achat et revente de barres d'acier

Coupe de barres d'acier pour optimiser les profits

Hypothèses:

- Découpe d'une barre en barres de $i = 1, 2, \ldots$ cm
- Prix des tronçons de i cm à la revente connus :

$\overline{\text{Longueure } i}$	1	2	3	4	5	6	7	8	9	10
(cm) Prix	1	5	8	9	10	17	17	20	24	30

Bilan des présentations:

- Pas facile de présenter un code \implies algorithme ?
- Attention à la lisibilité (couleur et taille)
- Trop de code \rightarrow difficile à appréhender
- Position / pertinence des commentaires
- Pertinence des éléments sur les diapos
 - Utilité
 - Aide / illustration du discours
- Définir un plan
- Exemples
- Éviter trop de textes / phrases trop longues
- Travail en équipe \rightarrow répartition des rôles
 - oral
 - élaboration du diapo
 - relecture des diapos

Présentation orale:

- 1. Contexte / Présentation du problème
- 2. Plan
- 3. Méthodes utilisées
 - Formulation mathématique du problème (éventuellement)
 - Choix / justification du choix d'une méthode de programmation
- 4. Détail / Mise en œuvre des méthodes
 - Architecture global ? (liste des fonctions, et rôles de ces fonctions)
 - Algorithmes pour les principes (à dérouler ?)
 - Code pour les particularités de traduction \rightarrow exploitation des langages
 - Correction / terminaison des algorithmes
- 5. Bilan / Comparaison des performances ? \rightarrow complexité

Le revenu maximum est donc $r_n = \max(p_n, p_1 + r_{n-1}, \dots, p_{n-1} + r_1)$.

Revenu maximum : $r_n = \max_{i \in \mathbb{N}} (p_i + r_{n-i})$

La valeur de i qui maximise r_n est inconnue: il faut tester toutes les valeurs

Décomposition du problème initial en 2 sous problèmes du même type de taille plus petite, indépendants \rightarrow instances plus petites du problème initial

Solution optimale global: celle qui maximise chacun des 2 sous problèmes

Autres manière d'organiser la structure:

- Structure récursive : découpe = tronçon de gauche de longueur i ne pouvant être découpé + tronçon pouvant être découpé de longueur n-i
- Solution sans coupe
 - Le tronçon de coupe est de taille i = n, de revenu p_n
 - le revenu du tronçon de droite restant de taille 0 est $r_0 = 0$

Nouvelle expression de l'optimisation de la coupe :

$$r_n = \max_{0 \leqslant i \leqslant n} (p_i + r_{n-i})$$

Implémentation utilisant la récursivité (cf. présentations) \rightarrow complexité temporelle : $O(2^n)$

Optimisation de la récursivité par la programmation dynamique

Fonction récursive inefficace: plusieurs évaluations identiques \rightarrow chevauchements des sous problèmes

Idée: mémoriser les résultats pour ne les évaluer qu'une seule fois

- consulter les résultats mémorisés
- Si évaluation déjà produite, la renvoyer
- Sinon, procéder à l'évaluation

Compromis temps/mémoire

- Programmation dynamique plus coûteuse en mémoire mais gain temporel
- Recherche d'une complexité polynomiale plutôt qu'exponentielle
 - Coût polynomial si chacun des sous problèmes distincts se résout en temps polynomial par rapport à la taille des données d'entrée : $O(n^{\alpha})$.

Idée: mémoriser les résultats pour ne les évaluer qu'une seule fois

- approche descendante : mémoïsation
- approche ascendante

Approche descendante

- Écriture de la fonction récursive
- Modification
 - Introduction d'une structure permettant de sauvegarder les évaluations

- structure utilisée : tableau ou table de hachage
- Vérification si le sous problème est déjà évaluée avant les appels récursifs

Approche ascendante:

- Associée à une notion de taille dans les sous problèmes
- Tri des sous problèmes par taille
- Résolution des sous problèmes en commençant par les plus petits

```
Fonction CoupeBarreMemo(p,n):
    Entrée: p, le tableau des revenus et n taille de la barre (entier)
    Sortie: q, revenu maximum (entier)
    Début
        memo = CreerTableau(dimension: n, valeurs: -1)
        Fonction Aux(p, n, memo):
            Début
                 Si memo[n] >= 0 alors
                     Retourner memo[n]
                 Fin Si
                 Si n = 0 alors
                     q = 0
                 Sinon
                     q = -1
                     Pour i allant de 1 à n faire
                         q = max(q, p[i] + Aux(p, n-i, memo))
                     Fin Pour
                 Fin Si
                 memo[n] = q
                 Retourner q
        Retourner Aux(p, n, memo)
    Fin
Ordre des appels récursifs pour n = 4:
                            4 \rightarrow 3 \rightarrow 2 \rightarrow 1
donc programmation dynamique descendante
Fonction CoupeBarreAsc(p, n)
    Entrée: p, tableau des revenus et n, taille de la barre (entier)
    Sortie: q, revenu maximum (entier)
```

```
Début
   asc = CreerTableau(dimension : n + 1, valeurs : -1)
   asc[1] = 0

Pour j allant de 2 à n + 1 faire
   q = -1

   Pour i allant de 1 à j - 1 faire
   q = max(q, p[i] + asc[j-i])
   Fin Pour

   asc[j] = q
   Fin Pour

Retourner asc[n]

Fin
```

III. Principe de la programmation dynamique

Historique

Programmation dynamique \rightarrow planification de tâches (Richard Bellman 1953) Résolution de problèmes d'optimisation

Cadre d'utilisation

Chevauchement de sous problèmes: évaluation redondante (plusieurs appels d'une fonction avec les mêmes arguments)

Ordre total \rightarrow possibilité d'ordonner les sous problèmes

La solution d'un problème se calcule à partir des solutions des sous problèmes

 \rightarrow Optimisation d'une programmation récursive

Conception

Définition des sous problèmes

Identifier la relation de récurrence entre les sous problèmes

Nécessité de comprendre les interdépendances entre les sous problèmes

En déduire un algorithme récursif avec approche ascendante et descendante

Méthode ascendante et descendante

Résoudre le sous problème original à partir des solutions des sous problèmes Nécessité de comprendre les interdépendances entre les sous problèmes Arbre des appels récursifs \rightarrow identification des chevauchements Mise en place du graphe des sous problèmes:

Graph orienté

- sommet pour chaque sous problème
 - arc orienté allant du sous problème x au sous problème y
 - solution optimale de x dépend de la solution optimale de y

Taille du graph donne une indication sur le temps d'exécution

Chaque sous problème n'est résolu qu'une fois \to somme des temps Exemple: découpe de barre avec n=4

Méthode ascendante:

Résolution des sous problèmes les plus petits en premier

Nécessité d'un ordre total sur l'ensemble des sous problèmes \to sous problème traité lorsque les sous problèmes dont il dépend ont été résolus

Méthode descendante (mémoïsation):

Mémoïser: Conserver les résultats à la fin de l'exécution d'une fonction le résultat associé aux arguments d'appels pour éviter d'avoir à recalculer

Parcours en profondeur du graph de sous problèmes

Complexité

Temporelle \rightarrow polynomiale n^{α}

Nombre de sous problèmes à évaluer

Temps nécessaire pour évaluer chaque sous problème

nombre de sous problèmes \times complexité par sous problèmes (sans compté les appels récursifs)

Spatiale

Nombre de sous problèmes dont il faut garder la trace à chaque étape

Bilan

Exploration exhaustive \rightarrow Force brute

Détermination de toutes les solutions

Choix d'une des solutions

Décomposition en sous problèmes

• Diviser pour régner

Décomposer en sous problèmes

Instances plus petites du problème initial

Obtention de sous problèmes triviaux

Combinaison des solutions triviales

• Gloutons

Choix d'une solution optimale à un problème élémentaire

Incorporation progressive des solutions

• Programmation dynamique

Décomposer en sous problèmes

Instances plus petites du problème initial

Chevauchement des sous problèmes

Ordre total parmi les sous problèmes

Mémorisation des résolutions

Algorithmes gloutons

c.f. polycopié

II. Exemple : choix d'activités

Sous-structure optimale:

Ajout de a_k dans $A_{ij} \to$ définition de deux sous-problèmes dans S_{ij} . On peut définir

$$A_{jk} = A_{ij} \cap S_{ik}$$
$$A_{kj} = A_{ij} \cap S_{kj}$$

On a donc $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$ avec A_{ik} avec $|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$.

À démontrer : la solution optimale A_{ij} doit-elle nécessairement inclure les solution optimales de S_{ik} et S_{ki} ?

Hypothèse : On peut bâtir A'_{ik} , sous ensemble d'activités mutuellement compatibles dans S_{ik} tel que $|A'_{ik}| > |A_{ik}|$.

Alors, on peut trouver un sous-ensemble A'_{ij} tel que $A'_{ij} = A'_{ik} \cup \{a_k\} \cup A_{kj}$. On a alors $|A'_{ij}| = |A'_{ik}| + |A_{kj}| + 1 > |A_{ij}| = |A_{ik}| + |A_{kj}| + 1$.

Ce qui contredit l'hypothèse initiale affirmant que A_{ij} est un sousensemble de plus grande taille d'activités mutuellement compatible de S_{ij} .

Raisonnement similaire pour A_{kj} .

Conclusion: La solution optimale de S_{ij} inclut les solutions optimales de S_{ik} et S_{kj} .

Chevauchements de sous-problèmes :

Taille d'une solution optimale pour S_{ij} contenue dans le tableau à 2 dimensions : $|A_{ij}| = c[i, j]$.

Soit
$$c[i, j] = c[i, k] + c[k, j] + 1$$
.

En pratique, on ignore si la solution optimale du sous-problème S_{ij} contient la solution a_k .

Nouvelle formulation : examen de toute les activités de S_{ij} pour déterminer k :

$$c[i, j] = \begin{cases} 0 & \text{si } S_{ij} = \varnothing, \\ \max_{a_k \in S_{ij}} \left\{ c[i, k] + c[k, j] + 1 \right\} & \text{si } S_{ij} \neq \varnothing. \end{cases}$$

D'où les chevauchements de sous-problèmes (résoudre $S_{i\,m+1}$ nécessite de résoudre S_{im}).

Programmation dynamique envisageable mais lourde à mettre en œuvre.

Est-ce que le choix glouton fait toujours partie de la solution optimale ?

Théorème:

 $c.f.\ polycopi\acute{e}$

Soit un sous-problème S_k non vide. Soit a_m l'activité de S_k ayant l'heure d'achèvement la plus précoce.

Alors, a_m est incluse dans un certain sous-ensemble de taille maximale d'activités mutuellement compatibles de S_k .