Държавен изпит за завършване на образователно-квалификационната степен "Бакалавър" специалност Статистика септември, 2011

Задача 1.

Корените x_1, x_2, x_3, x_4 на полинома $f(x) = x^4 + 3x^3 + px^2 + qx + 2 \in \mathbb{R}$ изпълняват равенството

$$x_1 + x_2 + x_3 = 2x_4$$
.

- (a) Да се докаже, че p=q.
- (б) Да се намерят стойностите на $p \in \mathbb{R}$, за които

$$(x_1x_2 + x_1x_3 + x_2x_3)^2 = x_1x_2x_3(x_1 + x_2 + x_3).$$

Задача 2.

Hека $X \in Exp(\theta), \ \theta > 0, \ m.e.$ нейната вероятностна плътност $e \ f(x) = 1/\theta \exp\{-x/\theta\}.$

- а) Намерете разпределението на сл. в. $Y=\min\{X_1,X_2\}$, където X_1 и X_2 са независими и еднакво разпределени сл. в., както X.
- б) Нека X_1, \dots, X_n са независими наблюдения над X . Докажете, че статистиката $\bar{X}_n = \{\sum_{i=1}^n X_i\}/n$ е ефективна оценка за параметъра θ .
 - в) Намерете критичната област в задачата за проверка на хипотези:

 $H_0: \theta=2$ срещу алтернативата $H_1: \theta=3$ с ниво на значимост $\alpha=0.1\%$ по n=7 независими наблюдения над X.

Таблица на χ^2 разпределение

d.f.	2,50%	5%	10%	90%	95%	97,50%
1	0,00	0,00	0,02	2,71	3,84	5,02
2	0,05	0,10	0,21	4,61	5,99	7,38
3	0,22	0,35	0,58	6,25	7,81	9,35
4	0,48	0,71	1,06	7,78	9,49	11,14
5	0,83	1,15	1,61	9,24	11,07	12,83
6	1,24	1,64	2,20	10,64	12,59	14,45
7	1,69	2,17	2,83	12,02	14,07	16,01
8	2,18	2,73	3,49	13,36	15,51	17,53
9	2,70	3,33	4,17	14,68	16,92	19,02
10	3,25	3,94	4,87	15,99	18,31	20,48
11	3,82	4,57	5,58	17,28	19,68	21,92
12	4,40	5,23	6,30	18,55	21,03	23,34
13	5,01	5,89	7,04	19,81	22,36	24,74
14	5,63	6,57	7,79	21,06	23,68	26,12
15	6,26	7,26	8,55	22,31	25,00	27,49
16	6,91	7,96	9,31	23,54	26,30	28,85
17	7,56	8,67	10,09	24,77	27,59	30,19
18	8,23	9,39	10,86	25,99	28,87	31,53
19	8,91	10,12	11,65	27,20	30,14	32,85
20	9,59	10,85	12,44	28,41	31,41	34,17
21	10,28	11,59	13,24	29,62	32,67	35,48
22	10,98	12,34	14,04	30,81	33,92	36,78
23	11,69	13,09	14,85	32,01	35,17	38,08
24	12,40	13,85	15,66	33,20	36,42	39,36
25	13,12	14,61	16,47	34,38	37,65	40,65