机器学习导论综合能力测试

学号,作者姓名,邮箱

2017年6月11日

1 [40pts] Exponential Families

指数分布族(Exponential Families)是一类在机器学习和统计中非常常见的分布族,具有良好的性质。在后文不引起歧义的情况下,简称为指数族。

指数分布族是一组具有如下形式概率密度函数的分布族群:

$$f_X(x|\theta) = h(x)\exp\left(\eta(\theta) \cdot T(x) - A(\theta)\right) \tag{1.1}$$

其中, $\eta(\theta)$, $A(\theta)$ 以及函数 $T(\cdot)$, $h(\cdot)$ 都是已知的。

- (1) [10pts] 试证明多项分布(Multinomial distribution)属于指数分布族。
- (2) [10pts] 试证明多元高斯分布(Multivariate Gaussian distribution)属于指数分布族。
- (3) [20pts] 考虑样本集 $\mathcal{D} = \{x_1, \dots, x_n\}$ 是从某个已知的指数族分布中独立同分布地(i.i.d.)采样得到,即对于 $\forall i \in [1, n]$,我们有 $f(x_i|\boldsymbol{\theta}) = h(x_i) \exp\left(\boldsymbol{\theta}^T T(x_i) A(\boldsymbol{\theta})\right)$. 对参数 $\boldsymbol{\theta}$,假设其服从如下先验分布:

$$p_{\pi}(\boldsymbol{\theta}|\boldsymbol{\chi},\nu) = f(\boldsymbol{\chi},\nu) \exp\left(\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\chi} - \nu A(\boldsymbol{\theta})\right)$$
(1.2)

其中, χ 和 ν 是 θ 生成模型的参数。请计算其后验,并证明后验与先验具有相同的形式。(**Hint**: 上述又称为"共轭"(Conjugacy),在贝叶斯建模中经常用到)

Solution. 此处用于写证明(中英文均可)

2 [40pts] Decision Boundary

考虑二分类问题,特征空间 $X \in \mathcal{X} = \mathbb{R}^d$,标记 $Y \in \mathcal{Y} = \{0,1\}$.我们对模型做如下生成式假设:

- attribute conditional independence assumption: 对已知类别, 假设所有属性相互独立, 即每个属性特征独立地对分类结果发生影响;
- Bernoulli prior on label: 假设标记满足Bernoulli分布先验, 并记 $Pr(Y = 1) = \pi$.
- (1) [20pts] 假设 $P(X_i|Y)$ 服从指数族分布, 即

$$Pr(X_i = x_i | Y = y) = h_i(x_i) \exp(\theta_{iy} \cdot T_i(x_i) - A_i(\theta_{iy}))$$

请计算后验概率分布 $\Pr(Y|X)$ 以及分类边界 $\{x \in \mathcal{X} : P(Y=1|X=x) = P(Y=0|X=x)\}$. (**Hint**: 你可以使用sigmoid函数 $\mathcal{S}(x) = 1/(1+e^{-x})$ 进行化简最终的结果).

[20] [20pts] 假设 $P(X_i|Y=y)$ 服从高斯分布,且记均值为 μ_{iy} 以及方差为 σ_i^2 (注意,这里的方差与标记Y是独立的),请证明分类边界与特征X是成线性的。

Solution. 此处用于写解答(中英文均可)

3 [70pts] Theoretical Analysis of k-means Algorithm

给定样本集 $\mathcal{D} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$, k-means聚类算法希望获得簇划分 $\mathcal{C} = \{C_1, C_2, \dots, C_k\}$, 使得最小化欧式距离

$$J(\gamma, \mu_1, \dots, \mu_k) = \sum_{i=1}^n \sum_{j=1}^k \gamma_{ij} ||\mathbf{x}_i - \mu_j||^2$$
(3.1)

其中, μ_1, \ldots, μ_k 为k个簇的中心(means), $\gamma \in \mathbb{R}^{n \times k}$ 为指示矩阵(indicator matrix)定义如下: 若 \mathbf{x}_i 属于第j个簇, 则 $\gamma_{ij} = 1$, 否则为0.

则最经典的k-means聚类算法流程如算法1中所示(与课本中描述稍有差别, 但实际上是等价的)。

Algorithm 1: k-means Algorithm

- 1 Initialize μ_1, \ldots, μ_k .
- 2 repeat
- **Step 1**: Decide the class memberships of $\{\mathbf{x}_i\}_{i=1}^n$ by assigning each of them to its nearest cluster center.

$$\gamma_{ij} = \begin{cases} 1, & ||\mathbf{x}_i - \mu_j||^2 \le ||\mathbf{x}_i - \mu_{j'}||^2, \forall j' \\ 0, & \text{otherwise} \end{cases}$$

Step 2: For each $j \in \{1, \dots, k\}$, recompute μ_j using the updated γ to be the center of mass of all points in C_j :

$$\mu_j = \frac{\sum_{i=1}^n \gamma_{ij} \mathbf{x}_i}{\sum_{i=1}^n \gamma_{ij}}$$

- 5 until the objective function J no longer changes;
- (1) [10pts] 试证明, 在算法1中, Step 1和Step 2都会使目标函数J的值降低.
- (2) [**10pts**] 试证明, 算法1会在有限步内停止。
- (3) [10pts] 试证明, 目标函数J的最小值是关于k的非增函数, 其中k是聚类簇的数目。
- (4) [20pts] 记 $\hat{\mathbf{x}}$ 为n个样本的中心点, 定义如下变量,

total deviation	$T(X) = \sum_{i=1}^{n} \mathbf{x}_i - \hat{\mathbf{x}} ^2 / n$
intra-cluster deviation	$W_j(X) = \sum_{i=1}^n \gamma_{ij} \ \mathbf{x}_i - \mu_j\ ^2 / \sum_{i=1}^n \gamma_{ij}$
inter-cluster deviation	, <u>¬</u> n

试探究以上三个变量之间有什么样的等式关系?基于此,请证明,k-means聚类算法可以认为是在最小化intra-cluster deviation的加权平均,同时近似最大化inter-cluster deviation.

(5) [**20pts**] 在公式(3.1)中, 我们使用 ℓ_2 -范数来度量距离(即欧式距离), 下面我们考虑使用 ℓ_1 -范数来度量距离

$$J'(\gamma, \mu_1, \dots, \mu_k) = \sum_{i=1}^n \sum_{j=1}^k \gamma_{ij} ||\mathbf{x}_i - \mu_j||_1$$
 (3.2)

- [10pts] 请仿效算法1(k-means- ℓ_2 算法), 给出新的算法(命名为k-means- ℓ_1 算法)以优化公式3.2中的目标函数J'.
- [10pts] 当样本集中存在少量异常点(outliers)时,上述的k-means- ℓ_2 和k-means- ℓ_1 算法,我们应该采用哪种算法?即,哪个算法具有更好的鲁棒性?请说明理由。

Solution. 此处用于写解答(中英文均可)

4 [50pts] Kernel, Optimization and Learning

给定样本集 $\mathcal{D}=\{(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_m,y_m)\},\,\mathcal{F}=\{\Phi_1\cdots,\Phi_d\}$ 为非线性映射族。 考虑如下的优化问题

$$\min_{\mathbf{w}, \mu \in \Delta_q} \quad \frac{1}{2} \sum_{k=1}^d \frac{1}{\mu_k} \|\mathbf{w}_k\|_2^2 + C \sum_{i=1}^m \max \left\{ 0, 1 - y_i \left(\sum_{k=1}^d \mathbf{w}_k \cdot \mathbf{\Phi}_k(\mathbf{x}_i) \right) \right\}$$
(4.1)

其中, $\Delta_q = \{ \mu | \mu_k \ge 0, k = 1, \dots, d; \| \mu \|_q = 1 \}.$

(1) [30pts] 请证明, 下面的问题4.2是优化问题4.1的对偶问题。

$$\max_{\alpha} 2\alpha^{\mathrm{T}} \mathbf{1} - \left\| \begin{matrix} \boldsymbol{\alpha}^{\mathrm{T}} \mathbf{Y}^{\mathrm{T}} \mathbf{K}_{1} \mathbf{Y} \boldsymbol{\alpha} \\ \vdots \\ \boldsymbol{\alpha}^{\mathrm{T}} \mathbf{Y}^{\mathrm{T}} \mathbf{K}_{d} \mathbf{Y} \boldsymbol{\alpha} \end{matrix} \right\|_{p}$$

$$(4.2)$$

s.t.
$$0 \le \alpha \le C$$

其中, p和q满足共轭关系, 即 $\frac{1}{p} + \frac{1}{q} = 1$. 同时, $\mathbf{Y} = \operatorname{diag}([y_1, \cdots, y_m])$, \mathbf{K}_k 是由 $\mathbf{\Phi}_k$ 定义的核函数(kernel).

(2) [**20pts**] 考虑在优化问题4.2中, 当p = 1时, 试化简该问题。

Solution. 此处用于写解答(中英文均可)