# Introduction to CUDA Parallel Programming CUDA平行計算導論

https://ceiba.ntu.edu.tw/1092Phys8061\_CUDA

Professor Ting-Wai Chiu (趙挺偉) Email: twchiu@phys.ntu.edu.tw Physics Department National Taiwan University

#### Vector Addition (1)

$$\begin{array}{cccc}
C & = & A & + & B \\
\begin{pmatrix}
c_0 \\
c_1 \\
c_2 \\
\vdots \\
c_{N-2} \\
c_{N-1}
\end{pmatrix} = \begin{pmatrix}
a_0 \\
a_1 \\
a_2 \\
\vdots \\
a_{N-2} \\
a_{N-1}
\end{pmatrix} + \begin{pmatrix}
b_0 \\
b_1 \\
b_2 \\
\vdots \\
b_{N-2} \\
b_{N-1}
\end{pmatrix}$$

#### Vector Addition (2)

$$C = A + B$$

$$Block0 \left\{ \begin{array}{c} \vdots \\ c_0 \\ c_1 \\ \vdots \\ \vdots \\ c_{N-2} \\ c_{N-1} \end{array} \right\} = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{N-2} \\ a_{N-1} \end{pmatrix} + \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_{N-2} \\ b_{N-1} \end{pmatrix}$$

$$Block(m-1) \left\{ \begin{array}{c} \vdots \\ c_{N-2} \\ c_{N-1} \\ \end{array} \right\} = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{N-2} \\ b_{N-1} \\ \end{array} \right\}$$

#### Use 1D grid and 1D blocks

vector index: i = blockDim.x \* blockIdx.x + threadIdx.x

#### Vector Addition (3)

### Vector Addition (4)

To make the computation more intensive, change it to the addition of the inverses of two vectors.

$$\begin{array}{c} C & = & 1/A & + & 1/B \\ \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{N-2} \\ c_{N-1} \end{pmatrix} = \begin{pmatrix} 1/a_0 \\ 1/a_1 \\ 1/a_2 \\ \vdots \\ 1/a_{N-2} \\ 1/a_{N-1} \end{pmatrix} + \begin{pmatrix} 1/b_0 \\ 1/b_1 \\ 1/b_2 \\ \vdots \\ 1/b_{N-2} \\ 1/b_{N-1} \end{pmatrix}$$

#### Vector Addition (5)

```
int main(void) // host (CPU) code fragment
  int N=40960000;
  // Allocate vectors in CPU (host) memory
  h_A = (float*)malloc(N*sizeof(float));
  h_B = (float*)malloc(N*sizeof(float));
  h_C = (float*)malloc(N*sizeof(float));
  // Initialize vectors h_A and h_B with random numbers
  RandomInit(h_A, N);
  RandomInit(h_B, N);
  for (int i = 0; i < N; i++)
    h_C[i] = 1.0/h_A[i] + 1.0/h_B[i];
```

#### Vector Addition (6)

#### Vector Addition (7)

```
// Device (GPU) code fragment
 _global__ void VecAdd(const float* A, const float* B, float* C, int N)
   int i = blockDim.x * blockIdx.x + threadIdx.x;
   if (i < N)
    C[i] = 1.0/A[i] + 1.0/B[i];
   _syncthreads();
// Host code fragment
int main(void) {
 VecAdd<<<br/>blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
```

### Vector Addition (8)

```
// Host code fragment
int main(void) {
// Allocate vectors in device memory
 cudaMalloc((void**)&d_A, N*sizeof(float));
 cudaMalloc((void**)&d_B, N*sizeof(float));
 cudaMalloc((void**)&d_C, N*sizeof(float));
// Copy vectors from host memory to device memory
 cudaMemcpy(d_A, h_A, N*sizeof(float), cudaMemcpyHostToDevice);
 cudaMemcpy(d_B, h_B, N*sizeof(float), cudaMemcpyHostToDevice);
 VecAdd<<<ble>blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
                        // See the complete codes at
             twqcd80:/home/cuda_lecture_2021/vecAdd_1GPU
```

# Timing the GPU/CPU code in CUDA

Timing the GPU code

```
cudaEvent_t start, stop;
  // do some work on the CPU
cudaEventCreate(&start); //create and start the timer
cudaEventCreate(&stop);
cudaEventRecord( start, 0 );
  // do some work on the GPU
cudaEventRecord( stop, 0 );  // stop the timer
cudaEventSynchronize( stop );
float elapsedTime;
cudaEventElapsedTime( &elapsedTime, start, stop ) );
printf( "Time for GPU: %3.1f ms\n", elapsedTime );
                               // destroy the timer
cudaEventDestroy( start );
cudaEventDestroy( stop );
```

Documentation is essential for maintaining your codes, not just for yourself, but also for all potential users.

- Documentation is essential for maintaining your codes, not just for yourself, but also for all potential users.
- Compare the GPU and CPU results, using a problem with a feasible size for CPU.

- Documentation is essential for maintaining your codes, not just for yourself, but also for all potential users.
- Compare the GPU and CPU results, using a problem with a feasible size for CPU.
- Timing the GPU and CPU codes.

- Documentation is essential for maintaining your codes, not just for yourself, but also for all potential users.
- Compare the GPU and CPU results, using a problem with a feasible size for CPU.
- > Timing the GPU and CPU codes.
- To determine the optimal block size for each kernel. This should be repeated for each kind of GPU, and for each size of the problem.

- Documentation is essential for maintaining your codes, not just for yourself, but also for all potential users.
- Compare the GPU and CPU results, using a problem with a feasible size for CPU.
- > Timing the GPU and CPU codes.
- To determine the optimal block size for each kernel. This should be repeated for each kind of GPU, and for each size of the problem.
- To tune your CUDA code to attain the maximal performance for a GPU could be a long and tedious process. The limit is your understanding of the algorithm, the GPU hardware, and your imagination.

### Matrix Addition (1)

#### It is natural to use 2D grid and 2D blocks

matrix indices:

i = blockDim.x \* blockIdx.x + threadIdx.x

j = blockDim.y \* blockIdx.y + threadIdx.y

# Matrix Addition (2)



# Matrix Addition (3)

```
<u>_global__</u> void matAdd(float *A, float *B, float *C, int N)
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  int j = blockIdx.y * blockDim.y + threadIdx.y;
  if (i < N \&\& j < N)
     C[j][i] = A[j][i] + B[j][i];
int main()
  int N=1024;
  dim3 dimBlock(16, 16);
  \frac{\text{dim} 3}{\text{dim} \text{Grid}((N + \text{dim} \text{Block.x} - 1))} / \frac{\text{dim} \text{Block.x}}{\text{dim} \text{Block.x}}
                      (N + dimBlock.y - 1) / dimBlock.y);
   matAdd<<<dimGrid, dimBlock>>>(A, B, C, N);
```

# Field Theory on the 2D Lattice (1)



# Field Theory on the 2D Lattice (2)

 $\phi(x, y): \text{ Field variable at the site } (x, y)$   $x = 0, 1, \dots, N_x - 1,$   $y = 0, 1, \dots, N_y - 1,$   $i = x + N_x y = 0, 1, \dots, N_x N_y - 1,$ 

Thus the field variables can be labelled as  $\phi(i)$ , a vector

$$\left(egin{array}{c} oldsymbol{\phi}_0 \ oldsymbol{\phi}_1 \ oldsymbol{\phi}_2 \ dots \ oldsymbol{\phi}_{N-2} \ oldsymbol{\phi}_{N-1} \end{array}
ight)$$
 ,  $N=N_xN_y$ 

# Field Theory on the 2D Lattice (3)

 $\phi(x, y)$ : Field variable at the site (x, y)  $x = 0, 1, \dots, N_x - 1,$   $y = 0, 1, \dots, N_y - 1,$   $i = x + N_x y = 0, 1, \dots, N_x N_y - 1,$   $\nabla^2 \phi \to \phi(x+1, y) + \phi(x-1, y) + \phi(x, y+1) + \phi(x, y-1) - 4\phi(x, y)$   $\equiv D\phi$ 

Solving the Poisson equation  $\nabla^2 \phi = \rho$  amounts to solving the linear system  $D\phi = \rho$