TSPC

CONSTITUTION ET TRANSFORMATION DE LA MATIERE

Synthèse de molécules organiques

Activité n° 2 : Optimisation d'une étape de la synthèse d'un composé organique

PREREQUIS

Document 1 : Qu'est-ce qu'une synthèse en chimie organique ?

Une synthèse désigne un procédé permettant de produire un composé organique par transformation chimique et de le recueillir pur. Elle s'appuie sur le **choix d'une réaction chimique** dont ce composé organique constitue le produit d'intérêt et comporte différentes étapes :

- ① la mise en œuvre de la transformation chimique dont le protocole précise les conditions expérimentales (quantités initiales des réactifs, solvant, catalyseur, température, ...) et le montage adapté (montage de chauffage à reflux, bain-marie, ampoule de coulée ...).
- ② l'isolement du produit d'intérêt (séparation du mélange réactionnel) ; par exemple :
 - filtration si le produit d'intérêt a cristallisé ;
 - décantation si le produit d'intérêt est un liquide peu miscible avec le mélange réactionnel ;
 - extraction par solvant,

③ la purification du produit d'intérêt : recristallisation pour un produit solide, distillation fractionnée pour un liquide.

A l'issu de ces étapes, le produit obtenu peut être identifié et/ou caractérisé par mesure de ces propriétés physico-chimiques (températures de changement d'état, densité, ..) ou par **spectroscopie IR** ou par chromatographie sur couche mince.

Document 2 : Définition et calcul du rendement d'une synthèse

On envisage la synthèse d'un **produit d'intérêt P** par réaction chimique entre des **réactifs A et B** selon la réaction :

$$a A + b B \rightleftharpoons c P + d S$$

où S désigne un produit secondaire.

Le rendement R de la synthèse est alors défini par :

R(%) =
$$\frac{n(P)_{exp}}{n(P)_{max}}$$
 x100 = $\frac{m(P)_{exp}}{n(P)_{max} \times M(P)}$ x100

Où : $n(P)_{exp}$ et $m(P)_{exp}$ désignent la quantité de matière et la masse de produit effectivement recueilli, **mesurées à la fin de la synthèse** (en général, après purification de P) ;

 $n(P)_{max}$ est la **quantité maximale** du produit P **attendue** à la fin de la synthèse, **calculée à partir de l'avancement maximal** de la transformation chimique, à l'aide du tableau d'évolution ; connaissant les quantités initiales des réactifs A et B, on montre que : $\frac{n(P)_{max}}{c} = \min(\frac{n(A)_i}{a}; \frac{n(B)_i}{b})$

Une synthèse est d'autant plus performante que son rendement se rapproche de 100 %. Différents facteurs contribuent à limiter le rendement d'une synthèse :

- le taux d'avancement final de la transformation choisie, si celle-ci n'est pas totale.
- les pertes de produit résultant des traitements successifs permettant d'isoler et purifier ce produit.

Comment optimiser la première étape de la synthèse d'un composé organique?

1. ETUDE EXPERIMENTALE

L'éthanoate de benzyle E est un ester odorant présent dans l'huile essentielle extraite de la fleur de jasmin. Il peut aussi être synthétisé au laboratoire par réaction entre l'acide éthanoïque A et l'alcool

Acide Alcool Éthanoate éthanoïque benzylique de benzyle

Document a : Données physicochimiques

Espèce	M (g.mol ⁻¹)	θ _{éb} (°C)	densité	Solubilité dans l'eau	Sécurité
Acide éthanoïque A	60	118	1,05	très élevée	
Alcool benzylique B	108	205	1,04	faible	!
Éthanoate de benzyle E	150	212	1,05	très faible	<u>(1)</u>

Document b : Rappels sur masse volumique et densité (par rapport à l'eau)

- Unités de volume et conversion : $1 \text{ mL} = 1 \text{ cm}^3$ $1 \text{ L} = 10^3 \text{ mL} = 1 \text{ dm}^3$

- Masse volumique d'une espèce : $\rho_{\rm espèce} = \frac{m}{V}$ en g.cm⁻³ ; $\rho_{\rm eau} = 1,00$ g.cm⁻³ à 20 °C

- Densité d'une espèce (solide ou liquide) : $d_{espèce} = \frac{\rho_{espèce}}{\rho_{eau}}$ avec $\rho_{espèce}$ et ρ_{eau} dans la même unité

1.1. Protocole de la synthèse de l'éthanoate de benzyle

- \gt Introduire dans un **ballon,** 5,0 mL d'alcool benzylique et V_A mL d'acide éthanoïque à 80% et V_C mL d'acide sulfurique à 5 mol.L⁻¹.
- ➤ Placer le ballon dans un **chauffe-ballon** surélevé, le fixer avec une pince puis adapter un **réfrigérant à eau** et mettre en route **la circulation d'eau** (entrée d'eau par le bas du réfrigérant) et le chauffe-ballon.
- ➤ Déclencher le chronomètre lorsque le <u>reflux</u> commence et chauffer le mélange à <u>ébullition douce</u> pendant 30 min.
- ➤ Après 30 min, retirer le chauffe-ballon et laisser refroidir le ballon pendant 5 min puis ajouter **petit à petit** 100 mL d'eau glacée par le haut du réfrigérant.
- ➤ Verser le contenu du ballon dans une ampoule à décanter (**robinet fermé**) puis laisser décanter pendant 5 minutes.
- > Recueillir la phase inférieure dans un flacon.

Expérience	1	2	3
V _A (mL)	3,8	3,8	19 (5 x 3,8)
V _C (mL)	1,0	0	1

- a) Justifier le port de gants et de lunettes de protection pour la réalisation de cette synthèse.
- **b)** Calculer la quantité de matière initiale d'alcool benzylique n(B)_i et en déduire la quantité maximale d'ester attendue à la fin de cette synthèse, sachant que l'alcool benzylique B est le réactif limitant,
- c) Quel est l'intérêt de chauffer le mélange réactionnel ?
- d) Légender le schéma du montage de chauffage à reflux. Quel est l'intérêt de ce montage ?
- **e)** Justifier l'existence de deux phases dans l'ampoule à décanter et préciser le contenu de la phase inférieure.

1.2. Protocole de titrage de l'acide éthanoïque dans l'état final

- ➤ Verser le liquide restant dans l'ampoule à décanter dans une fiole jaugée de 200 mL puis compléter avec de l'eau distillée jusqu'au trait de jauge. Boucher et agiter pour homogénéiser la solution S.
- ➤ Prélever V = 20,0 mL de cette solution dans erlenmeyer puis mettre en place le dispositif ci-contre pour réaliser le titrage de l'acide éthanoïque CH_3 — CO_2H contenu dans cet échantillon de S par une solution d'hydroxyde de sodium, $Na^+_{(aq)} + HO^-_{(aq)}$, de concentration C = 1,0 mol. L^{-1} en présence de 5 gouttes de **bleu de thymol**.
- \gt Verser la solution titrante goutte à goutte dans l'erlenmeyer et noter le volume V_E versé à l'équivalence pour laquelle le second virage du bleu de thymol est observé. (voir Tableau page 4)

Teinte	1 ^{ère} zone de	Teinte	2 ^{ème} zone de	Teinte de
de InH ₂	virage	de InH-	virage	In ²⁻
Rouge	1,2 < pH < 2,8	Jaune	8,0 < pH < 9,6	Bleue

- a) Ecrire l'équation de la réaction-support du titrage, entre l'acide éthanoïque et l'ion hydroxyde.
- **b)** Rappeler la définition de l'équivalence et en déduire une relation entre la quantité d'acide éthanoïque dans l'échantillon titré n(A)_{éch} et V_E.
- c) En déduire la quantité de matière d'acide éthanoïque restant dans le ballon à la fin du reflux, n(A)_{fr}.

1.3. Influence des conditions expérimentales de la synthèse

Tableau d'avancement de la réaction entre l'acide éthanoïque A et l'alcool benzylique B

Equation		А	+ B <	<u></u> E +	- H ₂ O
Etat	Avancement	n(A)	n(B)	n(E)	
initial	x = 0	n(A)i	n(B)i	0	
intermédiaire	<i>x</i> > 0				

a) Compléter le tableau ci-dessus et en déduire une relation entre $n(A)_{fr}$, $n(A)_i$ et la quantité d'ester formée à la fin du reflux, $n(E)_{fr}$.

b) Compléter le tableau suivant à partir des mesures effectuées.

Donnée: Pour les expériences A et C, le volume à l'équivalence mesuré V_{Emes} correspond au titrage simultanée de l'acide éthanoïque et l'acide sulfurique ; on montre que le volume à l'équivalence V_{E} correspondant au titrage de l'acide éthanoïque seul est donné, en mL, par $V_{\text{E}} = V_{\text{Emes}} - 1,0$

Expérience	1	2	3
n(A) _i (mmol)	49	49	245 (5 x 49)
Acide sulfurique	oui	non	oui
V _{Emes} (mL)	3,4	4,7	21,6
$V_E = V_{Emes} - 1,0 \text{ (mL)}$			
n(A) _{fr} (mmol)			
n(E) _{fr} (mmol)			

c) On suppose la transformation de l'expérience 1 terminée à la fin du reflux. Calculer le taux d'avancement final et justifier le caractère limité de cette transformation.

d) Que montre la comparaison des expériences 1 et 2 ? Quel est le rôle de l'acide sulfurique ? Quel serait la valeur du taux d'avancement final dans l'expérience 2 ?

e) Que montre la comparaison des expériences 1 et 3 ? Quel est l'influence de l'excès d'acide éthanoïque sur la vitesse de formation de l'ester ? Sur le rendement de la transformation ?

2. OPTIMISATION DE L'ETAPE DE TRANSFORMATION LORS D'UNE SYNTHESE

2.1. Optimisation de la durée de la transformation chimique

Pour réduire la durée de la transformation chimique, on peut :

•

• éventuellement, augmenter la concentration de l'un des réactifs.

2.2. Optimisation du rendement

Dans le cas d'une transformation chimique limitée, **augmenter le rendement** de la synthèse consiste à **augmenter le taux d'avancement final** de la transformation chimique par **déplacement d'équilibre** dans le sens de la formation des produits. Pour cela, on peut :

• soit apporter l'un des réactifs en large excès par rapport au réactif limitant ;

On considère la réaction : A + B \rightleftharpoons P + S , $K = Q_{r,éq} = \frac{n(P)_f \times n(S)_f}{n(A)_f \times n(B)_f}$ et $\tau = \frac{n(P)_f}{n(B)_i}$

• soit éliminer l'un des produits au fur et à mesure de sa formation ;

On considère la réaction : A + B \rightleftharpoons P + S , $K = Q_{r,éq} = \frac{n(P)_f \times n(S)_f}{n(A)_f \times n(B)_f}$ et $\tau = \frac{n(P)_f}{n(B)_i}$

En pratique :

si l'un des produits a une température d'ébullition plus faible que les réactifs, on utilise un **montage de distillation fractionnée**

Si le produit secondaire est l'eau, on utilise le montage schématisé à droite : l'appareil de Dean-Stark permet de piéger l'eau présente dans la vapeur liquéfiée dans le réfrigérant.

Application : Pour la transformation chimique étudiée dans la partie 1, on pourrait déplacer augmenter le rendement par élimination en utilisant

Remarque : si la transformation chimique mise en œuvre est quasi-totale, cela n'impacte pas la valeur du rendement.