(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年2 月15 日 (15.02.2001)

PCT

(10) 国際公開番号 WO 01/10439 A1

(51) 国際特許分類?: A61K 31/40, 31/4025, 31/445, 31/4468, 31/4525, 31/4535, 31/454, 31/422, 31/404, 31/4155, 31/4245, 31/5377, 31/4545, 31/4709, 31/4184, 31/427, 31/506, 31/433, 31/423, 31/4192, 31/429, 31/53, A61P 37/08, 29/00, 31/18, 11/08, 43/00 // C07D 207/14, 211/56, 211/58, 211/26, 401/04, 401/06, 401/12, 401/14, 403/06, 403/12, 405/06, 405/12, 405/14, 409/12, 409/14, 413/06, 413/14, 417/06, 487/04, 495/06, 495/04, 513/04

(21) 国際出願番号:

PCT/JP00/05260

(22) 国際出願日:

2000年8月4日 (04.08.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願平11/220864 1999 年8 月4 日 (04.08.1999) JP

- (71) 出願人 (米国を除く全ての指定国について): 帝人株 式会社 (TEIJIN LIMITED) [JP/JP]; 〒541-0054 大阪府 大阪市中央区南本町1丁目6番7号 Osaka (JP).
- (72) 発明者; および.
- (75) 発明者/出願人 (米国についてのみ): 塩田辰樹 (SH-IOTA, Tatsuki) [JP/JP]; 〒191-0065 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東京研究センター内 Tokyo (JP). 須藤正樹 (SUDOH, Masaki) [JP/JP]; 〒475-0837 愛知県半田市有楽町7丁目106-1 ユートピアタウン112D Aichi (JP). 横山朋典 (YOKOYAMA,

Tomonori) [JP/JP]. 室賀由美子 (MUROGA, Yumiko) [JP/JP]. 上村 孝 (KAMIMURA, Takashi) [JP/JP]. 中西顕伸 (NAKANISHI, Akinobu) [JP/JP]; 〒191-0065 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東京研究センター内 Tokyo (JP).

- (74) 代理人: 前田純博(MAEDA, Sumihiro); 〒100-0011 東京都千代田区内幸町2丁目1番1号 帝人株式会社 知的財産センター内 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

-- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: CYCLIC AMINE CCR3 ANTAGONISTS

(54) 発明の名称: 環状アミンCCR3拮抗剤

(57) Abstract: Drugs containing as the active ingredient cyclic amine derivatives represented by general formula (I), pharmaceutically acceptable acid addition salts thereof or pharmaceutically acceptable C_{1-6} alkyl adducts thereof. These drugs are efficacious in preventing and treating diseases in which CCR3 participates such as asthma and allergic rhinitis.

(57) 要約:

下記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分として含有する医薬。喘息、アレルギー性鼻炎などのCCR3が関与する疾患を治療、予防する作用を有する。

$$\begin{array}{c}
R_{2}^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow R_{5}^{4} (CH_{2})_{q} - G - R_{6} \\
(CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{p} \longrightarrow R_{5}^{4} (CH_{2})_{q} - G - R_{6}
\end{array}$$

WO 01/10439 PCT/JP00/05260

1

明細書

環状アミンCCR3拮抗剤

5 技術分野

本発明は、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびクローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性腸症、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、および好酸球性白血病など、好酸球、好塩基球、活性化T細胞などの増加、組織への浸潤が病気の進行、維持に主要な役割を演じている疾患、またはHIV(ヒト免疫不全ウイルス)の感染に起因するエイズ(AIDS:後天性免疫不全症候群)に対する治療薬および/または予防薬として効果が期待できるCCR3拮抗剤に関する。

15 背景技術

10

20

近年、気管支喘息などのアレルギー性疾患の本質的な病態は慢性炎症であるという概念が確立され、なかでも好酸球の炎症局所への集積がその大きな特徴の一つとしてとらえられている(例えば、Busse, W. W. J. Allergy Clin. Immunol., 1998, 102, S17-S22; 藤澤隆夫,現代医療, 1999, 31, 1297など参照)。例えば、サルの喘息モデルにおいて抗接着分子(ICAM-1)抗体を投与することにより、好酸球の集積が抑えられ、遅発型の喘息症状発現が抑制されることからもアレルギー性疾患における好酸球の重要性が強く示唆されている(Wegner, C. D. et al., Science, 1990, 247, 456)。

この好酸球の集積/遊走を引き起こす特異的走化因子としてエオタキシンが同定された (例えば、Jose, P. J., et al., J. Exp. Med., 1994, 179, 881; Garcia-Zepda, E. A. et al., Nature Mcd., 1996, 2, 449; Ponath, P. D. et al., J. Clin. Invest., 1996, 97, 604; Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725など参照)。 さらに、エオタキシンは好酸球上に発現しているCCR3レセプターに結合し作用を発現することが解明され、また、エオタキシンー2、RANTES (regulated upon activation normal T-cell expressed and secretedの略称)、MCP-2 (monocyte chemoattractant protein-2の略称)、MCP-3 (

monocyte chemoattractant protein—3の略称)、MCP—4 (monocyte chemoatt ractant protein—4の略称)などの走化性因子もエオタキシンよりも作用強度は弱いもののCCR3を介してエオタキシンと同様の作用を示し得ることが知られている(例えば、Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725; Daugherty, B. L. et al., J. Exp. Med., 1996, 183, 2349; Ponath, P. D. et al., J. Exp. Med., 1996, 183, 2437; Hiath, H. et al., J. Clin. Invest., 1997, 99, 178; Patel, V. P. et al., J. Exp. Med., 1997, 185, 1163; Forssmann, U. et al., J. Exp. Med. 185, 2171, 1997など参照)。

エオタキシンの好酸球への作用は、遊走惹起のみでなく、接着分子受容体 (CD 11b) の発現増強 (例えば、Tenscher, K. et al., Blood, 1996, 88, 3195など 参照)、活性酸素の産生促進 (例えば、Elsner, J. et al., Eur. J. Immunol., 1996, 26, 1919など参照)、EDN (eosinophil-derived neurotoxineの略称)の放出促進 (El-Shazly, et al., Int. Arch. Allergy Immunol., 1998, 117 (suppl. 1), 55参照)など、好酸球の活性化に関する作用も報告されている。また、エオタキシンは骨髄からの好酸球およびその前駆細胞の血中への遊離を促進する作用を有することも報告されている (例えば、Palframan, R. T. et al., Blood, 1998, 91, 2240など参照)。

エオタキシンおよびCCR3が気管支喘息などのアレルギー性疾患において重要 な役割を演じていることが、多くの報告により示されている。例えば、マウス喘息 20 モデルにおいて抗エオタキシン抗体により好酸球浸潤が抑制されること (Gonzalo, J.-A. et al., J. Clin. Invest., 1996, 98, 2332参照)、マウス皮膚アレルギー モデルにおいて抗エオタキシン抗血清により好酸球浸潤が抑制されること(Teixeir a, M. M. et al., J. Clin. Invest., 1997, 100, 1657) 、マウスモデルにおいて 抗エオタキシン抗体が肺肉芽腫の形成を抑制すること(Ruth, J. H. et al., J. I mmunol., 1998, 161, 4276参照)、エオタキシン遺伝子欠損マウスを用いた喘息モ 25 デルおよび間質性角膜炎モデルにおいて好酸球の浸潤が抑制されること(Rothenber g, M. E. et al., J. Exp. Med., 1997, 185, 785参照)、喘息患者の気管支では健 常者に比べエオタキシンおよびCCR3の発現が、遺伝子レベル、蛋白レベルとも に亢進していること (Ying, S. et al., Eur. J. Immunol., 1997, 27, 3507参照) 、慢性副鼻腔炎患者の鼻上皮下組織ではエオタキシンの発現が亢進していること(A 30 m. J. Respir. Cell Mol. Biol., 1997, 17, 683参照) などが報告されている。

また、炎症性大腸疾患である潰瘍性大腸炎およびクローン病の炎症部位において、エオタキシンが多く発現していることが報告されていることから(Garcia-Zepda, E. A. et al., Nature Med., 1996, 2, 449参照)、これらの疾患においてもエオタキシンが重要な役割を担っていることがわかる。

5 これらのデータから、エオタキシンは、CCR3を介して好酸球を病変部位に集積、活性化することにより、好酸球が病変の進展に深く関わっていると想定され得る疾患、例えば、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびクローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性 間症、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、および好酸球性白血病などの発症、進展、維持に深く関与していることが強く示唆されている。

さらに、CCR3レセプターは好酸球のみならず好塩基球、Th2リンパ球上にも発現しており、エオタキシンによりこれらの細胞の細胞内カルシウムイオン濃度上昇および細胞遊走が惹起されることが報告されていることから、エオタキシンおよびCCR3は、これらの細胞を集積させ、活性化することによってもアレルギー性疾患など、これらの細胞が関与する疾患の発症、進展、維持に関わっていると考えられる(例えば、Sallusto, F. et al., Science, 1997, 277, 2005; Gerber, B. O. et al., Current Biol., 1997, 7, 836; Sallusto, F. et al., J. Exp. Med., 1998, 187, 875; Uguccioni, M. et al., J. Clin. Invest., 1997, 100, 1137; Yamada, H. et al., Biochem Biophys. Res. Commun., 1997, 231, 365など参照)。

15

20

25

したがって、エオタキシンのCCR3に対する結合を阻害する化合物、すなわち、CCR3拮抗剤は、エオタキシンに代表されるCCR3のリガンドの標的細胞への作用を阻害することにより、アレルギー性疾患、炎症性腸疾患などの疾患の治療薬および/または予防薬として有用であるといえるが、そのような作用を有する薬剤は現在知られてない。

また、HIV-1 (ヒト免疫不全ウイルス-1)が宿主細胞に感染する際にCCR3を利用することも報告されていることから、CCR3拮抗剤はHIVウイルスの 感染に起因するエイズ (AIDS:後天性免疫不全症候群)の治療薬もしくは予防薬としても有用であると考えられる (例えば、et al., Choe, H. et al., Cell, 19 96, 85, 1135; Doranz, B. J. et al., Cell, 1996, 85, 1149参照)。

最近、キサンテン-9-カルボキサミド誘導体(W09804554参照)、ピペラジンまたはピペリジン誘導体(EP903349; W00029377; W00031033; W00035449; W00035451; W00035452; W00035453; W00035454; W00035876; W00035877参照)、ピロリジン誘導体(W00031032参照)、フェニルアラニン誘導体(W09955324; W09955330; W00004003; W00027800; W00027835; W00027843参照)、およびその他の低分子化合物(W09802151参照)が、CCR3レセプターに対する拮抗活性を有することが報告されている。しかしながら、これらの化合物は、本発明で用いる化合物とは異なる。また、本発明で用いる化合物は、W09925686に記載されている化合物と同のものであるが、これらの化合物がCCR3レセプターに対する拮抗活性を有することは知られていない。

発明の開示

10

したがって、本発明の目的は、エオタキシンなどのCCR3のリガンドが標的細 15 胞上のCCR3に結合することを阻害する活性を有する低分子化合物を提供することである。

本発明のさらなる目的は、CCR3拮抗剤を用いて、エオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することが病因の一つであるような疾患の治療法および/または予防法を提供することである。

20 本発明者らは、鋭意研究を重ねた結果、アリールアルキル基を有する環状アミン誘導体、その薬学的に許容し得る $C_1 \sim C_6$ アルキル付加体、または薬学的に許容され得る酸付加体が、エオタキシンなどのCCR3のリガンドの標的細胞に対する結合を阻害する活性を有することを発見し、さらにはそれらの化合物がCCR3が関与すると考えられる疾患の治療薬もしくは予防薬となり得ることを知見して、さらに研究を進めた結果、本発明を完成した。

すなわち、本発明によれば、下記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3拮抗作用を有する薬剤が提供される。

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6} \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(1)

[式中、R¹はフェニル基、C₃-C₃シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1~3個有する芳香族複素環基を 表し、上記R¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはヘ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1~3個有する 10 芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R¹におけるフ ェニル基、C₃~C₈シクロアルキル基、芳香族複素環基、または縮合環は、任意個 のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモ イル基、C1-C6アルキル基、C3-C8シクロアルキル基、C3-C6アルケニル基 、 $C_1 - C_5$ アルコキシ基、 $C_1 - C_5$ アルキルチオ基、 $C_3 - C_5$ アルキレン基、 C_2 15 -C4アルキレンオキシ基、C1-C3アルキレンジオキシ基、フェニル基、フェノキ シ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C2 -C,アルカノイル基、C2-C7アルコキカルボニル基、C2-C7アルカノイルオ キシ基、C。-C,アルカノイルアミノ基、C。-C, N-アルキルカルバモイル基、 $C_4 - C_6 N - シクロアルキルカルバモイル基、<math>C_1 - C_6 アルキルスルホニル基、C$ 20 3-C。(アルコキシカルボニル)メチル基、N-フェニルカルバモイル基、ピペリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される 2価基、アミノ基、モノ($C_1 - C_6$ アルキル)アミノ基、もしくは、ジ($C_1 - C_6$ アルキル) アミノ基で置換されていてもよく、これらのフェニル基、C3-C8シク 25 ロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲ ン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、C1-C6アルキル基、 もしくはC,-C。アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒ
30 ドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは

 $C_1 - C_6$ アルコキシ基によって置換されていてもよい。ただし、j = 0 のときは R^2 はヒドロキシ基ではない。

jは0-2の整数を表す。

kは0-2の整数を表す。

5 mは2-4の整数を表す。

nは0または1を表す。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 またはC₁-C₆アルキル基を表し、R⁴およびR⁵におけるC₁-C₆アルキル基は、 任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カ ルバモイル基、メルカプト基、グアニジノ基、C₃-C₈シクロアルキル基、C₁-C ₆アルコキシ基、C₁-C₆アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基 15 、C1-C6アルキル基、C1-C6アルコキシ基、もしくはベンジルオキシ基によっ て置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジ ルオキシカルボニル基、C2-C7アルカノイル基、C2-C7アルコキシカルボニル 基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_9 - C_7 N$ -アルキルカルバモイル基、 $C_1 - C_6$ アルキルスルホニル基、アミノ基、モノ(C_1 20 -C₆アルキル) アミノ基、ジ(C₁-C₆アルキル) アミノ基、もしくは (ヘテロ原 子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族 複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換され ていてもよく、あるいは、R⁴およびR⁵は、いっしょになって3-6員環状炭化水 25 素を形成していてもよい。

pは0または1を表す。

qは0または1を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-N$ 30 R^7- 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 と

いっしょになってC2-C5アルキレン基を形成していてもよい。

 R^6 は、フェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_6$ シクロアルケニル基 、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒 素原子を1-3個有する芳香族複素環基を表し、上記R⁶におけるフェニル基、ベン ジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子 、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合し て縮合環を形成していてもよく、さらに上記R⁶におけるフェニル基、C₃-C₈シク ロアルキル基、C₃-C₆シクロアルケニル基、ベンジル基、芳香族複素環基、また は縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニ 10 トロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル 基、C,-C,アルキル基、C,-C,シクロアルキル基、C,-C,アルケニル基、C 」-C₆アルコキシ基、C₃-C₈シクロアルキルオキシ基、C₁-C₆アルキルチオ基 、C1-C3アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基 、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、 3-フェニルウレイド基、C2-C2アルカノイル基、C2-C2アルコキシカルボニ 15 ル基、C。一Cィアルカノイルオキシ基、C。一Cィアルカノイルアミノ基、C。一Cィ N-アルキルカルバモイル基、C₁-C₆アルキルスルホニル基、フェニルカルバモ イル基、N, N-ジ (C_1-C_6 アルキル) スルファモイル基、アミノ基、モノ (C_1 -C₆アルキル)アミノ基、ジ(C₁-C₆アルキル)アミノ基、ベンジルアミノ基、 $C_2 - C_7$ (アルコキシカルボニル) アミノ基、 $C_1 - C_6$ (アルキルスルホニル) ア 20 ミノ基、もしくはビス(C₁-C₆アルキルスルホニル)アミノ基により置換されて

ミノ基、もしくはビス(C_1-C_6 アルキルスルホニル)アミノ基により置換されていてもよく、これらのフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、

 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、モノ($C_1 - C_6$ アルキル)アミノ基、またはジ($C_1 - C_6$ アルキル)アミノ基によって置換されていてもよい。]

さらに、本発明によれば、上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬が提供される。

ここに、上記式(I)で表される化合物は、エオタキシンなどのCCR3レセプ

ターのリガンドが標的細胞に結合することを阻害する活性、およびエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する活性を有する。すなわち、上記式(I)で表される化合物はCCR3拮抗剤である。

5 発明を実施するための最良の形態

上記式(I)において、 R^1 はフェニル基、 $C_3 - C_8$ シクロアルキル基、またはへ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基を表し、上記 R^1 におけるフェニル基または芳香族複素環基は、ベン ゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子 10 を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに 上記R¹におけるフェニル基、C₃-C₈シクロアルキル基、芳香族複素環基、または 縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキ シル基、カルバモイル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 C_2 $-C_6$ アルケニル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_3-C_5 15 アルキレン基、 $C_2 - C_4$ アルキレンオキシ基、 $C_1 - C_3$ アルキレンジオキシ基、フ エニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベン ゾイルアミノ基、 $C_2 - C_7$ アルカノイル基、 $C_2 - C_7$ アルコキカルボニル基、 C_3 $-C_7$ アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アル キルカルバモイル基、 C_4-C_9 $N-シクロアルキルカルバモイル基、<math>C_1-C_6$ アル キルスルホニル基、 $C_3 - C_8$ (アルコキシカルボニル) メチル基、N-フェニルカ20 ルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、1-ピロリジ ニルカルボニル基、式:-NH(C=O)O-で表される2価基、式:-NH(C=S) O-で表される2価基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、も

 R^+ における「 $C_3 - C_8$ シクロアルキル基」とは、例えばシクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基などの環状のアルキル基を意味し、その好適な具体例としては、シクロプロピル基、シクロペンチル基、およびシクロヘキシル基などが挙げられる。

しくはジ(C₁-C₆アルキル)アミノ基で置換されていてもよい。

 R^{1} における、「ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原 30 子を1-3個有する芳香族複素環基」とは、例えば、チエニル、フリル、ピロリル 、イミダゾリル、ピラゾリル、オキサゾリル、イソオキサゾリル、チアゾリル、イ

30

ソチアゾリル、ピリジル、ピリミジニル、トリアジニル、トリアゾリル、オキサジアゾリル(フラザニル)、チアジアゾリル基などの芳香族複素環基を意味し、その好適な具体例としては、チエニル、フリル、ピロリル、イソオキサゾリル、およびピリジル基などが挙げられる。

R¹における「縮合環」とは、上記フェニル基または芳香族複素環基が、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と可能な任意の位置で縮合して形成される2環式芳香族複素環基を意味し、その好適な具体例としては、ナフチル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾトリアゾリル、ベンゾオキサジアゾリル(ベンゾフラザニル)、およびベンゾチアジアゾリル基などが挙げられる。

なかでもR¹は、フェニル基、チエニル基、ピラゾリル基、イソオキサゾリル基、ベンゾフラニル基、またはインドリル基である場合が特に好ましい。

 R^{1} におけるフェニル基、 C_{3} - C_{8} シクロアルキル基、芳香族複素環基、または縮 15 合環の置換基としての「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、 ヨウ素原子などを意味する。

 R^1 の置換基としての「 $C_1 - C_6$ アルキル基」とは、例えばメチル、エチル、n-プロピル、n-プチル、n-ペンチル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル

 R^1 の置換基としての「 C_3-C_8 シクロアルキル基」とは、前記 R^1 における「 C_3-C_8 シクロアルキル基」の定義と同様であり、その好適な具体例も同じ基を挙げることができる。

 R^1 の置換基としての「 C_2-C_6 アルケニル基」とは、例えば、ビニル、アリル、1-プロペニル、2-プテニル、3-プテニル、2-メチルー1-プロペニル、4-ペンテニル、5-ヘキセニル、4-メチルー3-ペンテニル基などの C_2-C_6 の直鎖または分枝状のアルケニル基を意味し、その好適な具体例としては、ビニル基および2-メチルー1-プロペニル基などが挙げられる。

 R^1 の置換基としての「 $C_1 - C_6$ アルコキシ基」とは、前記 $C_1 - C_6$ アルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、メトキシ基、エトキシ基などが挙げられる。

 R^1 の置換基としての「 C_1-C_6 アルキルチオ基」とは、前記 C_1-C_6 アルキル 基とチオ基とからなる基を意味し、その好適な具体例としては、メチルチオ基、エチルチオ基などが挙げられる。

 R^1 の置換基としての「 C_3-C_5 アルキレン基」とは、例えば、トリメチレン、テトラメチレン、ペンタメチレン、および1-メチルトリメチレン基などの C_3-C_6 の2価のアルキレン基を意味し、その好適な具体例としては、トリメチレン基、テトラメチレン基などが挙げられる。

 R^1 の置換基としての「 C_2-C_4 アルキレンオキシ基」とは、例えば、エチレンオキシ($-CH_2CH_2O-$)、トリメチレンオキシ($-CH_2CH_2CH_2O-$)、テトラメチレンオキシ($-CH_2CH_2CH_2CH_2O-$)、1、1-ジメチルエチレンオキシ($-CH_2C(CH_3)_2O-$)基などの、 C_2-C_4 の2価アルキレン基とオキシ基とからなる基を意味し、その好適な具体例としては、エチレンオキシ基、トリメチレンオキシ基などが挙げられる。

 R^1 の置換基としての「 C_1-C_3 アルキレンジオキシ基」とは、例えばメチレンジオキシ($-OCH_2O-$)、エチレンジオキシ($-OCH_2CH_2O-$)、トリメチレンジオキシ($-OCH_2CH_2CH_2O-$)、プロピレンジオキシ($-OCH_2CH$ (CH_3)O-)基などの C_1-C_3 の 2価アルキレン基と 2個のオキシ基とからなる基を意味し、その好適な具体例としては、メチレンジオキシ基、エチレンジオキシ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイル基」とは、例えば、アセチル、プロパノイル、ブタノイル、ペンタノイル、ヘキサノイル、ヘプタノイル、イソブチリル、3-メチルブタノイル、2-メチルプタノイル、ピバロイル、4-メチルペンタノイル、3, 3-ジメチルブタノイル、5-メチルヘキサノイル基などの C_2-C_7 の直鎖または分枝状のアルカノイル基を意味し、その好適な具体例としては、アセチル基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルコキシカルボニル基」とは、前記 C_1-C_6 30 アルコキシ基とカルボニル基とからなる基を意味し、その好適な具体例としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。

30

 R^1 の置換基としての「 C_2-C_7 アルカノイルオキシ基」とは、前記 C_2-C_7 アルカノイル基とオキシ基とからなる基を意味し、その好適な具体例としてはアセチルオキシキ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイルアミノ基」とは、前記 C_2-C_7 ア ルカノイル基とアミノ基とからなる基を意味し、その好適な具体例としては、アセチルアミノ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルキルカルバモイル基」とは、前記 C_1-C_6 アルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-メチルカルバモイル基、N-エチルカルバモイル基などが挙げられる。

10 R^1 の置換基としての「 C_4-C_9 N-シクロアルキルカルバモイル基」とは、前記 C_3-C_8 シクロアルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-シクロペンチルカルバモイル基、N-シクロヘキシルカルバモイル基などが挙げられる。

 R^1 の置換基としての「 $C_1 - C_6$ アルキルスルホニル基」とは、前記 $C_1 - C_6$ アルキル基とスルホニル基とからなる基を意味し、その好適な具体例としては、メチルスルホニル基などが挙げられる。

 R^1 の置換基としての「 C_3-C_8 (アルコキシカルボニル)メチル基」とは、前記 C_2-C_7 アルコキシカルボニル基とメチル基とからなる基を意味し、その好適な具 体例としては、メトキシカルボニルメチル基、エトキシカルボニルメチル基などが 挙げられる。

 R^1 の置換基としての「モノ(C_1 - C_6 アルキル)アミノ基」とは、前記 C_1 - C_6 アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、メチルアミノ基、エチルアミノ基などが挙げられる。

 R^1 の置換基としての「ジ(C_1-C_6 アルキル)アミノ基」とは、同一または異なった2つの前記 C_1-C_6 アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、ジメチルアミノ基、ジエチルアミノ基、N-エチル- N- チルアミノ基などが挙げられる。

上記の中でも、 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素 環基、または縮合環の置換基としては、ハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ 基、 C_3-C_5 アルキレン基、 C_2-C_4 アルキレンオキシ基、メチレンジオキシ基、

フェニル基、N-フェニルカルバモイル基、アミノ基、およびジ(C₁-C₆アルキ ル)アミノ基を特に好ましい具体例として挙げることができる。特に好ましくは、 ハロゲン原子、ヒドロキシ基、C,-C,アルキル基、C,-C,アルコキシ基、C, -C₆アルキルチオ基、メチレンジオキシ基、およびN-フェニルカルバモイル基を 挙げることができる。

さらに、R¹におけるフェニル基、C₃-C₈シクロアルキル基、芳香族複素環基、 または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基 、トリフルオロメチル基、C₁-C₆アルキル基、もしくはC₁-C₆アルコキシ基に よって置換されていてもよい。ここで、ハロゲン原子、C1-C6アルキル基、およ び $C_1 - C_6$ アルコキシ基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキ ル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であ り、同じ基を好適な具体例として挙げることができる。

10

20

25

上記式 (I) において、 R^2 は、水素原子、 $C_1 - C_2$ アルキル基、 $C_2 - C_3$ アル コキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、R²におけるC₁-C₆アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、C₁-C₆アルキル基、もしくはC₁-C₆アルコキシ基によって置換されていてもよい。た だし、j=0のときは、 R^2 はヒドロキシ基ではない。

 R^2 における $C_1 - C_6$ アルキル基および $C_2 - C_7$ アルコキシカルボニル基は、 R^1 におけるフェニル基、C₃-C₈シクロアルキル基、芳香族複素環基、または縮合環 の置換基についてそれぞれ定義されたものと同様であり、それぞれ同じ例を好適な 具体例として挙げることができる。

R²におけるC₁-C₆アルキル基またはフェニル基の置換基としてのハロゲン原子 、 $C_1 - C_6$ アルキル基および $C_1 - C_6$ アルコキシ基は、前記 R^1 におけるフェニル 基、C3-C8シクロアルキル基、芳香族複素環基または縮合環の置換基について定 義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることがで きる。

なかでもR²は、水素原子を表す場合が特に好ましい。

上記式 (I) において、jは0-2の整数を表す。jは0である場合が特に好ま しい。

30 上記式(I)において、kは0-2の整数を表し、mは2-4の整数を表す。な かでもkが0でmが3である場合の2-置換ピロリジン、kが1でmが2である場

合の3-置換ピロリジン、kが1でmが3である場合の3-置換ピペリジン、kが2でmが2である場合の4-置換ピペリジン、またはkが1でmが4である場合の3-置換ヘキサヒドロアゼピンが好ましい。特に好ましくは、kが1でmが2である場合の3-置換ピロリジンおよびkが2でmが2である場合の4-置換ピペリジンを挙げることができる。

上記式(I)において、nは0または1を表す。

特に、kが1でmが2でnが0である場合の3-アミドピロリジン、およびkが2でmが2でnが1である場合の4-(アミドメチル)ピペリジンを特に好ましい例として挙げることができる。

上記式(I)において、 R^3 は水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

 R^3 における C_1 $-C_6$ アルキル基は、前記 R^1 におけるフェニル基、 C_3 $-C_8$ > > 0 -

 R^3 における $C_1 - C_6$ アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 $C_1 - C_6$ アルキル基、および $C_1 - C_6$ アルコキシ基は、それぞれ、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

なかでも、 R^3 は水素原子または無置換の $C_1 - C_6$ アルキル基である場合が特に好ましい。

上記式(I)において、 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または C_1-C_6 アルキル基を表し、 R^4 および R^5 における C_1-C_6 アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 C_3-C_8 シクロアルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、

WO 01/10439

15

ベンジルオキシ基、ベンジルオキシカルボニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、または(ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいは、 R^4 および R^5 は、いっしょになって3-6員環状炭化水素を形成していてもよい。

 R^4 および R^5 における C_1 - C_6 アルキル基は、前記 R^1 におけるフェニル基、 C_3 10 - C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^4 および R^6 における $C_1 - C_6$ アルキル基の置換基としてのハロゲン原子、 C_1 $- C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_2 - C_7$ アルカノイル基、 $C_2 - C_7$ アルカノイル基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ アルカルバモイル基、 $C_1 - C_6$ アルキルスルホニル基、モノ($C_1 - C_6$ アルキル)アミノ基、およびジ($C_1 - C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、ま

たは縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適

な具体例として挙げることができる。

20 R^4 および R^5 における $C_1 - C_6$ アルキル基の置換基としての $C_3 - C_8$ シクロアルキル基、および、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基は、前記 R^1 において定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としてのフェニル基の置換基 としてのハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前 記 R^1 においてフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮 合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体 例として挙げることができる。

R⁴、R⁵およびその隣接炭素原子とからなる「3-6 員環状炭化水素」の好適な 30 具体例としては、シクロプロパン、シクロブタン、シクロペンタン、およびシクロ ヘキサンなどが挙げられる。なかでも、水素原子とC₁-C₆アルキル基を、R⁴とR

20

25

5の特に好ましい例として挙げることができる。

上記式(I)において、pは0または1を表し、qは0または1を表す。pとqがともに0である場合が特に好ましい。

上記式(I)において、Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-$ CO-、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7 ^7-SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-、または-O-CO-NH- で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 といっしょになって C_2-C_5 アルキレン基を形成していてもよい。

10 ここで、 $-CO-はカルボニル基を、<math>-SO_2-はスルホニル基を、-CS-はチオカルボニル基をそれぞれ意味する。Gの特に好ましい例としては、例えば<math>-NR^7-CO-3$ はび-NH-CO-NH-で表される基などが挙げられる。

 R^7 における $C_1 - C_6$ アルキル基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^5 と R^7 とからなる「 C_2 - C_5 アルキレン基」とは、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、1-メチルトリメチレン、ペンタメチレンなどの C_2 - C_5 の直鎖または分枝状アルキレン基を意味し、その好適な具体例としてはエチレン、トリメチレン、テトラメチレン基などが挙げられる。なかでも R^7 としては、水素原子を特に好ましい例として挙げることができる。

上記式(I)において、 R^6 はフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、

30 トリフルオロメチル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_3 - C_8$ シクロアルキルオキシ基、 C_1

WO 01/10439 PCT/JP00/05260

 $-C_6$ アルキルチオ基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、3-フェニルウレイド基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカルバモイル基、N, N-ジ(C_1-C_6 アルキル)スルファモイル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、ベンジルアミノ基、 C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル)アミノ基、もしくはビス(C_1-C_6 アルキルスルホニル)アミノ基ノ基により置換されていてもよい。

 R^6 における C_3 - C_8 シクロアルキル基、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基、および、縮合環は、前記 R^1 に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

10

 R^6 における「 $C_3 - C_8$ シクロアルケニル基」とは、例えば、シクロブテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、およびシクロオクテニル 基など環状アルケニル基を意味し、その好適な具体例としては、1-シクロペンテニル基、1-シクロヘキセニル基などが挙げられる。なかでも、 R^6 としては、フェニル基、フリル基、チエニル基、インドリル基、ベンゾフラザニル基を特に好まし い例として挙げることができる。

 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_1-C_6 アルキレンジオキシ基、 C_2-C_7 アルカノイル基、 C_2 05 $-C_7$ アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、モノ(C_1-C_6 アルキル)アミノ基、およびジ(C_1-C_6 アルキル)アミノ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を960な具体例として挙げることができる。

 R^6 の置換基としての $C_3 - C_8$ シクロアルキル基は、前記 R^1 における $C_3 - C_8$ シ

15

クロアルキル基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^6 の置換基としての「 C_3-C_8 シクロアルキルオキシ基」とは、前記 C_3-C_8 シクロアルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、

5 シクロプロピルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基など を挙げることができる。

 R^6 の置換基としての「N, N- \mathcal{Y} (C_1 - C_6 アルキル)スルファモイル基」とは、同一または異なった2つの前記 C_1 - C_6 アルキル基によって置換されたスルファモイル基を意味し、その好適な具体例としては、例えばN, N- \mathcal{Y} メチルスルファモイル基、N, N- \mathcal{Y} エチルスルファモイル基、N- \mathcal{Y} - $\mathcal{$

 R^6 の置換基としての「 C_2-C_7 (アルコキシカルボニル)アミノ基」とは、前記 C_2-C_7 アルコキシカルボニル基とアミノ基とからなる基を意味し、その好適な具体例としては、例えばメトキシカルボニルアミノ基、エトキシカルボニルアミノ基 などを挙げることができる。

 R^6 の置換基としての「 C_1-C_6 (アルキルスルホニル)アミノ基」とは、前記 C_1-C_6 アルキルスルホニル基とアミノ基とからなる基を意味し、その好適な具体例としては、(メチルスルホニル)アミノ基などを挙げることができる。

 R^6 の置換基としての「ビス(C_1-C_6 アルキルスルホニル)アミノ基」とは、同 20 一または異なった 2 つの前記 C_1-C_6 アルキルスルホニル基によって置換されたアミノ基を意味し、その好適な具体例としては、ビス(メチルスルホニル)アミノ基 などを挙げることができる。

なかでも、 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としては、

25 ハロゲン原子、メルカプト基、ニトロ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、フェニル基、ベンジルオキシ基、フェニルスルフィニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルアミノ基、アミノ基などを好ましい例として挙げることができる。特に好ましくは、ハロゲン原子、ニトロ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、フェニルスルフィニル基、およびアミノ基を挙げることができる。

さらに、 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロ

WO 01/10439

5

15

20

アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によって置換されていてもよい。

 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基の置換基としてのハロゲン原子、 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルキルチオ基、モノ($C_1 - C_6$ アルキル)アミノ基、およびジ($C_1 - C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、その治療有効量を製薬学的に許容される担体および/または希釈剤とともに医薬組成物とすることによって、本発明のエオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することを阻害する医薬、あるいはエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する作用をもつ医薬、さらにはCCR3が関与すると考えられる疾患の治療薬もしくは予防薬とすることができる。すなわち上記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加塩体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、経口的に、あるいは、静脈内、皮下、筋肉内、経皮、または直腸内など非経口的に投与することができる。

経口投与の剤形としては、例えば錠剤、丸剤、顆粒剤、散剤、液剤、懸濁剤、カ プセル剤などが挙げられる。

25 錠剤の形態にするには、例えば乳糖、デンプン、結晶セルロースなどの賦形剤; カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリドンなどの結 合剤;アルギン酸ナトリウム、炭酸水素ナトリウム、ラウリル硫酸ナトリウムなど の崩壊剤などを用いて通常の方法により成形することができる。

丸剤、散剤、顆粒剤も同様に前記の賦形剤などを用いて通常の方法によって成形 30 することができる。液剤、懸濁剤は、例えばトリカプリリン、トリアセチンなどの グリセリンエステル類、エタノールなどのアルコール類などを用いて通常の方法に

よって成形される。カプセル剤は、顆粒剤、散剤、あるいは液剤などをゼラチンなどのカプセルに充填することによって成形される。

皮下、筋肉内、静脈内投与の剤型としては、水性あるいは非水性溶液剤などの形態にある注射剤がある。水性溶液剤は、例えば生理食塩水などが用いられる。非水性溶液剤は、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油、オレイン酸エチルなどが用いられ、これらに必要に応じて防腐剤、安定剤などが添加される。注射剤は、バクテリア保留フィルターを通す濾過、殺菌剤の配合の処置を適宜行うことによって無菌化される。

経皮投与の剤型としては、例えば軟膏剤、クリーム剤などが挙げられ、軟膏剤は 10 、ヒマシ油、オリーブ油などの油脂類、またはワセリンなどを用いて、クリーム剤 は、脂肪油、またはジエチレングリコールやソルビタンモノ脂肪酸エステルなどの 乳化剤を用いて通常の方法によって成形される。

直腸内投与のためには、ゼラチンソフトカプセルなどの通常の座剤が用いられる。本発明の環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学 的に許容されるC₁-C₆アルキル付加体の投与量は、疾患の種類、投与経路、患者の年齢や性別、および疾患の程度などによって異なるが、通常成人一人当たり1-500mg/日である。

上記式 (I) の環状アミン誘導体の好適な具体例として、以下のTable 1. 1-1. 221に示される各置換基を含有する化合物を挙げることができる。

20 Table1.1-1.221において、「chirality」は「絶対配置」、すなわち環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素原子がRの絶対配置をもつこと、「S」は、不斉炭素原子がSの絶対配置をもつこと、「-」はラセミ体であるか、あるいはその化合物が環状アミン上において不斉炭素原子をもたないことを意味する。

Table 1.1

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R3	$-(CH_2)_{P} + (CH_2)_{q} - (CH_2)_{Q} - (CH_2)_{Q}$
1	CH-{CH₂-	1	2	0	•	Н	- CH ₂ - N- C
2	CH-CH ₂ -	1	2	0	-	н	- CH ₂ -N-C-CH ₃
3	CH2-	1	2	.0	-	н	- CH ₂ -N- C-
4	с⊢СН₂-	1 .	2	0	- 	H	- CH ₂ -N-C-CF ₃
5	CH-CH ₂ -	1	2	0	S ·	H	-CH ₂ -N-C-CF ₃
6	CH-(CH ₂ -	1	2	0 :	S	н	$-CH_2-NC$ F_3C
7	С⊢СТ-СН₂-	. 1	2	0	S	Н	-CH ₂ -N-C-
8	C⊢√CH₂-	1 :	2	0	S	н	-CH ₂ -N-C
9	C⊢√CH₂-	1 2	2	0	S	н	-CH ₂ -N-C-CI
10	С⊢-{}СН₂-	1 2	2	0	S	н	-CH ₂ -N-C
11	CH-{	1 2	? (0	S	н	-CH ₂ -N-C

Table 1.2

. 447.0							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5}(CH_2)_q - G^6$
12	CI—CH₂-	1	2	0	S	н	- CH ₂ - N C - OCH ₃
13	CI—CH₂-	1	2	0	S	н	- CH ₂ - N C - CF ₃
14	С⊢√_СН₂-	1	2	0	S	H	-CH ₂ -N-C- CH ₃
15	CH-CH ₂ -	1	2	0	S ;	H	-CH ₂ -N-C-CI
16	CH-CH ₂ -	1	2	O _.	S	н	-CH ₂ -N C- OCH ₃
17	CH2−	1	2	0	S	н	- CH2- ¼ C- CI
18	C ⊢ CH ₂ -	1	2	0	S	. н	- CH ₂ -N C-
19	C	1	2	0	S	н	-CH ₂ -N-C-
20	C⊢-CH₂-	1	2	0			- CH ₂ -N-C-CF ₃
21	CH-€ CH ₂ -	1	2	0	S	H .	-CH ₂ -N-C- F
22	CH-{	1	2	0	S	н	- CH ₂ -N-C

Table 1.3

·ubic	1.0						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
23	CH-{CH₂-	1	2	0	S	Н	- CH ₂ -N-C-CF ₃
24	С├-СН₂-	1	2	0	S	н	-CH2-NC
25	CH-2-	1	2	0	S	н	-CH ₂ -N-C
26	CH-2-	1	2	0	S .	н	-CH ₂ -N-C
27	C├- (CH ₂ -	1	2	0	S .	. н	-CH ₂ -N-C
28	CH-CH ₂ -	. 1	2	0	S	н	- CH ₂ -N-C-NO ₂
29	СН-СН2-	1	2	0	R	н	$-CH_2-N$ CF_3 CF_3
30	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
31	CH ₂ -	1	2	0	R	Н	- CH ₂ -N-C
32	C⊢√ CH₂-	1	2	0	R	н	-CH ₂ -N-C
33	CH-{CH ₂ -	1	2	0	R	н .	-CH2-N-C-CI

Table 1.4

-							
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	·R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
34	CH-2-	. 1	2	0	R	Н	-CH ₂ -N-C-OCH ₃
35	C⊢(1	2	0	R	Н	-CH ₂ -N-C-OCH ₃
36	CH-CH ₂ -	1	2	0	R _.	н	- CH ₂ -N C-OCH ₃
37	CHCH ₂ -	1	2	0	.R	н .	-CH ₂ -N-C-CF ₃
38	CHCH ₂ -	1	2	0	R	H	- CH ₂ -N-C-CH ₃
39	CH2-	1	2	0	R	H .	- CH ₂ -N-C-CI
40	CH-CH ₂ -	1	2	0	R	Н	-CH₂-N-C- O' O' O' OCH₃
41	C ⊢ CH ₂ -	1	2	0	R	н	- CH ₂ - N- CI
42	C├ - CH ₂ -	1	2	0			- CH ₂ - N C-CN
43	CH-2-	1	2	0	R	н	-CH2-HC-0
44	С⊢{СН₂-	1	2	0	R	н	-CH ₂ -N-C

Table 1.5

	1.0					
Compd No.	· R ¹ (CH ₂)j-	k	m n	chirality	R³	-(CH ₂) _p G-R ⁶
45	СН2-	1	2 0	R	н	- CH ₂ -N-C
46	С⊢√_СН₂-	1	2 0	R	Н	- CH ₂ -N-C- H
47	С├-{}СН₂-	1	. 2 0	R	н .	OCF ₃
48	CH-CH ₂ -	1	2 0	R	н	- CH ₂ -N-C
49	C├ - CH ₂ -	1	2 0	R	Н	-CH ₂ -N-C-
50	с⊢СУ-сн₂-	1 ;	2 0	R	Н	-CH ₂ -N-C-CF ₃
51	CH-CH ₂ -	1 2	2 0	R _.	н	- CH ₂ -N C Br
52	CI—CH₂-	1 2	2 0	R	н	-CH ₂ -N-C
53	С⊢СН₂-	1 2	0	R	н	- CH ₂ -N-C-
54	C├ ~ CH ₂ -	1 2	0	R	Н	-CH2-N-C-
						- CH ₂ -N CI

Table 1.6

· abic ·							·
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	−(CH ₂) p 1 (CH ₂)q G-R ⁶
56	CI—CH ₂ -	1	2	0	R	Н	- CH ₂ -N-C-
57	C├ \ CH ₂ -	1	2	0	R	н	- CH ₂ -N C - H ₃ C
- 58	CH-CH ₂ -	1	2	0	R	н.	- CH ₂ -N-C-
59	CHCH ₂ -	1	2	0	R	н	- CH ₂ - N- C- Br
60	CHCH ₂ -	1	2	0	R	н	-CH ₂ -NC-
61	CH₂-	1	2	0	R	н	- CH ₂ -N C-CF ₃
62	CH-CH₂-	1	2	0	R	H	-CH ₂ -N C
63	CH-€ CH ₂ -	1	2	0	R	н	-CH ₂ -N-CH ₂ CH ₃
64	C⊢√CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
65	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
66	CH2⁻	. 1	2	0	R	н	- CH ₂ -N-C

Table 1.7

Compd No.	· R ¹ (CH ₂)j-	k	m n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
67	C├ - CH₂-	1	2 0	R	Н	- CH ₂ -N-C
68	CH2-	1 :	2 0	R	н	- CH ₂ - N-C
69	CH2-	1 2	2 0	R	н	-CH ₂ -N-C-F
70	C├ ─ CH ₂ -	1 2	2 0	R	н	- CH ₂ -N-C
71	С⊢-{	1 2	0	R	н	-CH ₂ -N-C
72	C├ - CH₂-	1 .2	0	R	н	O - CH ₂ -N-C
73	CH ₂ -	1 2	0	R	H ´	-CH ₂ -N-C
74	CI—CH₂-	1 2	0	R	н	$-CH_2-NC$ CO_2CH_3
75	CICH ₂ -	1 2	0	R	н	-CH ₂ -N-C
76	CH_2-	1 2	0	R	н	- CH ₂ -N-C
77	СҢСН₂-	1 2	0	R	Н	- CH ₂ -N C-F

Table 1.8

			•				,
Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
78	C├ - CH₂-	1	2	0	R	н	-CH ₂ -N-C-F
79	CI-CH ₂ -	1	2	0	R	н	$-CH_2-N \stackrel{\circ}{C} \longrightarrow CF_3$ F_3C
80	CH-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C
81	CH-CH ₂ -	1	2	0	R	' н	-CH ₂ -N-C-CH ₃
82	CH-CH ₂ -	1	2	0	-	—CH ₃	-CH ₂ -N-C
83	CH2-	1	2	0	R	Н	-CH ₂ -N-C-\(\sigma\)
84	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\(\bigcup_NO_2\)
85	CH2-	1	2	0	-	Н	-(CH ₂) ₂ -N-C-
86	C├ - CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -N-C
87	C ⊢ C H ₂ -	1	2	0	S	H	-(CH ₂) ₂ -N-C-NO ₂ -(CH ₂) ₂ -N-C-CF ₃ CF ₃ CF ₃
88	С⊢-{	1	2	0	S	н	-(CH ₂) ₂ -N-C

Table 1.9

Compd.	R ¹ (CH ₂) _j	k	. n	ח ו	chirality	. R3	$-(CH_2)_p + (CH_2)_q - G-R^6$
89	C⊢(CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
90	CI—CH₂-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-
91	ССH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
92	CH-2-	1	2	0	S	H	-(CH ₂) ₂ -N-C
93	CH-CH ₂ -	1	2	.0	S	н	OCH ₃
94	CH-{CH ₂ -	1	2	. 0	S .	Н	-(CH ₂) ₂ -N-C- OCH ₃
95	СН-СН ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CF ₃
96	CH-CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
97	C├ - CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CI
	СЊ_СН2-						-(CH ₂) ₂ -N-C
99	CH-2-	1	2	0	S _.	н	-(CH ₂) ₂ -N-C-CI

Table 1.10

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	ー(CH ₂) _{p に} (CH ₂)q G-R ⁶
100	C├ - CH₂-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-
101	C├ - CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-O
102	с⊢{	1	2	0	S	н	-(CH ₂) ₂ -N-C-
103	с⊢С сн₂-	. 1	2	0	S	н	-(CH ₂) ₂ -N-C
104	CH-2-	1	2	0	S	Н	-(CH ₂) ₂ -N-CF ₃
105	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
106	C ⊢ C H ₂ -	1	2	0	S	н .	-(CH ₃) ₂ -N-C-C-OCF ₃
107	C├	1	2	0	S	Н	O CF ₃
108	C├- \ CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C- H O ₂ N
109	C├ - CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-NO ₂
110	CHCH2-	1	2	0	S	н	-(CH ₂) ₂ -N-CNC ₂

Table 1.11

Compd. No.	R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
111	C├ - CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
112	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
113	CHCH2-	1	2	0	R	н	-(CH₂)₂-N:C-
114	CH-2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C F
115	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
116	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
117	CH-2-	1,	2	· O	R	Н	-(CH ₂) ₂ -N-C-OCH ₃
118	С⊢√СН₂-	1	2	0	R	Н	-(CH2)2-N-C OCH ₃ OCH ₃
119	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
120	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
121	CHCH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI

Table 1.12

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{P^5}}(CH_2)^{\frac{1}{q}}G^{-R^6}$
122	C├ - CH₂-	1	2	0	R	н .	-(CH ₂) ₂ -N-C
123	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
124	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
125	С├─(СН₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
126	CH-CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
127	CH_CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C- H
128	CH-€ CH₂-	1	2	0	R ·	н	-(CH ₂) ₂ -N-CF ₃
129	С⊢СН₂-	1	2	Ö	R	н	-(CH ₂) ₂ -N-C
130	C	1	2	0	R .	н	-(CH ₂) ₂ -N-C
131	С⊢ СН₂-	1	2	0	R	н	$-(CH_2)_2 - N - C - CF_3$ $-(CH_2)_2 - N - C - CF$ $-(CH_2)_2 - N - C - CF_3$
132	С⊢—СН₂-	· 1	2	0	R	н	-(CH ₂) ₂ -N-C-

Table 1.13

Compd. No.	R ² (CH ₂);	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
133	CI—CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-NO ₂
134	C	1	2	0	R	н	-(CH ₂) ₂ -N-C-(-NO ₂
135	CI—CH ₂ -	1	2	0	R	н .	-(CH ₂) ₂ -N-C
136	CHCH ₂ -	1	2	0	R	н.	-(CH ₂) ₂ -N-C
137	CH-2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-C
138	СН-СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
139	CHCH ₂ -		2	0	R	н	-(CH ₂) ₂ -N-CI
140	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
141	CH ₂ -	1	2	0	R	н	H ₃ CO O -(CH ₂) ₂ -N C H ₃ CO
142	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
143	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N·C

Table 1.14

Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	Ŗ³.	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
144	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
145	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -NC-CF ₃
146	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C- H C- CH ₃
147	CH_CH ₂ -	1	2	0	,R	н	-(CH ₂) ₂ -N-C-CH ₂ CH ₃
148	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CN
149	CHCH ₂	1	2 .	0	R	н	-(CH ₂) ₂ -N-C-
150	СҢ СН₂-	1	2	0	R .	, н	-(CH ₂) ₂ -N-C-
151	C├-{	1	2	0	R	н	-(CH ₂) ₂ -N-C
152	CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -NCF
153	C	1.	2	0	R	н	-(CH ₂) ₂ -N-C
154	С⊢—СН₂-	. 1	2	0	R	Н	-(CH ₂) ₂ -N-C

Table 1.15

	-						
Compd: No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
155	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
156	C├ ─ \CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCF ₃
157	C⊢√ CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C- H F ₃ CO
158	C├ ~ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
159	CH-CH ₂ -	1	2	0	. R	н	-(CH ₂) ₂ -N-C
160	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C- F ₃ C
161	С⊢—СН₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
162	С⊢√СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
163	СН-СН2-	1	2	0	R	н	$-(CH_2)_2 - NC - CF_3$ F_3C
164	СНСН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
165	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃

Table 1.16

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{1}$ $+ (CH_2)_{q}$ $+ G - R^6$
166	CI-CH ₂ -	1	2	0	R	н	(S) P CF ₃ -CH-N-C CF ₃
167	C ├── CH ₂ -	1	2	0	R	н	CH3
168	CHCH ₂ -	1	2	0	R	H	(S) P -CH-N-C-CI CH ₃
169	CH-2-	1	2	0	R	Н	(S) P CI -CHN-C-CI CH ₃
170	CH-2-	1	2	0	R ·	Н	(S) P CF ₃ -CH-N-C F
171	CH-2-	1	2	0	R	H .	CH3 CH3 CH3
172	CH-2-	1	2	0	·R	H .	(S) P -CH+N-C- CH ₃
173	CH-CH2-	1	2	0	R	н	(S) P NO2. -CHN-C NO2. CH3
174	C	. 1	,2	0	R	н	(A) PC-CF3 -CH-N-C-CF3 CH3
175	CH-CH ₂ -	1	2	0	R	н	(<i>F</i>)
176	C├ ─ CH₂-	1	2	0	R	н	CH ₃ (A) CH ₃
					_		·

Table 1.17

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p \downarrow 5}^{R^4}(CH_2)_{q}G-R^6$
177	CI—CH2-	1	2	0	R	Н	(A) 0 CI
178	CH2-	1	2	0	R	Н	(A) Q CF ₃ -CHN-C- F
179	C⊢√CH₂-	1	2	0	R	н	(R) P -CHN-C-CI CH3
180	C├ - ⟨CH ₂ -	1	2	0	R	Н	(F) P -CHN-C-CHO-CH3
181	CH-CH ₂ -	1	2	0	R	н	(F) -CHN-C-NO ₂ -CH ₃
182	CH₂-	1	2	· 0	R	н	CH ₃ O CF ₃
183	C⊢√CH₂-	1	2	0	R	н	CH3 O Br.
184	CH ₂ -	1	2	0	R	н	ÇH₃ O CI - CH• № Ĉ- C CH₃
185	CI-CH ₂ -	1	2	0	R	H	ÇH₃ 0 CI - CH+ N-C- CI CH₃
186	СН-2-	1 :	2	0	R	н	CH3 O CF3
187	CH_CH ₂ -	1 2	2	0	R	н .	CH3 O CI

Table 1.18

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
188	CI—(CH ₂ -	1	2	0	R	н	CH3 CH3
189	CI—CH₂-	1	2	0	Ŗ	н	ÇH ₃
190	CI——CH₂-	1	2	0	R	Н	(A) -CH-N-C-CF3 CH2-CH3
191	CH-2-	1	2	0	R	н	(A) Br -CH-N-C
192	C	1	2	0	R	н	(A) -CH-N-C
193	C⊢√CH₂-	1	2	0	R	Н	
194	C⊢————————————————————————————————————	1	2	0	R	н	-CH-N-C
195	CH-2-	1	2	0	R	н .	(F) P -CHNC-CI CH2-S
196	СН-СН2-	1	2	0	R	н	(A) P -CHN-C- CH ₂ (S)
197	C├-{CH ₂ -	1	2	0	R	н	(A) P
198	CH-2-	1	2	0	R ·	н	(A) P C CH2 S CF 3 CF 3 CH2 S CH2 S

Table 1.19

lable	1.19						•
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
199	CI-CH ₂ -	1	2	0	R	Н	(S) P -C++N-C-
200	C├-{\rightarrow} CH2-	1	2	0	R	н	(S) P -CH+N-C-
201	C⊢(CH₂-	1	· 2	0	·R	н	(5) -C+++C
202	CH2-	1	2	0	R	н	(5) P CF 3 -CH-NC- F
203	CHCH ₂ -	1	2	0	R	н	(S) P -CHN-C-CI CH ₂ -CI
204	CH-CH ₂ -	1	2	0	R	н .	(S) O CH2 CH2 S
205	CH_CH ₂ -	1	2	0	R	н.	(S) P NO 2 CH ₂ -C)
206	C├ - CH ₂ -	1	2	0	R	н	(O ₁ 2)2-2-CH3
207	CH2⁻	1	2	0	R	н	(S) PC- -CH- N-C- - H P P- (OH ₂) ₂ -S- CH ₃
208	C├ \ CH ₂ -	1	2	0	R	н	(O1 ₂) ₂ -9-O1 ₃
209	C⊢CH₂-	1	2	0	R	н	(OH ³) ⁵ - $\frac{1}{6}$ - CH ³ - CI
	•						

Table 1.20

Compd. No.	R ¹ (CH ₂);-	k	m	i n	chirality	Ŕ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
210	С├──СН₂-	1	2	0	A	н	(S) P CH ₃ F
211	CH ₂ -	1	2	0	R	Н.	(S) P CI (CH ₂) ₂ -5-CH ₃
212	CH-CH ₂ -	1	2	0	Ŕ	н	(S) P -CH-N-C- H Q (CH ₂) ₂ -5-CH ₃
213	с⊢С сн₂-	1	2	0	R	н	(S) O NO ₂ -CH-N-C
214	CH-CH ₂ -	1	2	0	- ,	Н	-(CH ₂) ₃ -C-
215	CH2-	1	2	0		н	-(CH ₂) ₃ -C
216	С⊢СН2-	1	2	0	-	Н	-(CH ₂) ₃ -C-S
217	CH-2-	1	2	0	-	н	-(CH ₂) ₂ -C-OCH ₃
218	CHCH ₂ -	1	2	0	-	Н	-(CH2)2-C-CH3 $H3C$
219	CI-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-C-OCH ₃
220	CH_CH2-	1	2 .	0	-	н	-(CH ₂) ₂ -C-CH ₃

Table 1.21

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
221	CH-2-	1	2	0	-	н	-(CH ₂) ₂ -C-
222	CH-CH2-	1	2	0		н	-(CH ₂) ₂ -C-CI
223	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -"C-\(\times\)-(\(\chi\) ₂) ₃ CH ₃
224	CHCH ₂ -	1	2	0	-	H	-CH ₂ -S-CH ₃
225	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N-
226	CH-(CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N-OCH ₃
227	CH2-	1	2 .	0	-	Н	-(CH ₂) ₃ - C- NH
228	CH-CH ₂ -	1	2	0	-	: Н	-(CH ₂) ₃ - C N- OCH ₃
229	CH-√_CH ₂ -	1	2	0	-	Н	- CH ₂ -C-CH ₂ -C-N-CH ₃
230	C├────────────────────────────────────	1	2	0	-	н	-CH ₂ CH ₂ -C N H
231	C├────────────────────────────────────	1	2	0	-	н	-(CH ₂) ₃ -C-H

Table 1.22

Compd.	R ¹ R ² (CH ₂)j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
232	CH-2-	1	2	0		н	-(CH ₂) ₃ -C-N-
233	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ - C-N-CH ₂
234	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
235	C├ - CH ₂ -	1	2	0	-	н	- CH2- CH2- C-N- CH2 - CI
236	CH-CH ₂ -	1	2	0	-	H ·	-CH ₂ -N-S-CH ₃
237	CH-€ CH₂-	1	2	0	-	Н	- CH ₂ -N-C-O-CH ₂ -
238	C⊢√ CH₂-	1	2	0	-	H .	- CH O- C- N CI
239	CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
240	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
241	CI CH₂−	1	2	0	S	н	-CH ₂ -N-C-
242	CH2−	1	2	0	S	Н	-CH ₂ -N-C-CF ₃

Table 1.23

Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
243	CI Ct	1	2	. 0	S	Н	-CH ₂ -N-C-CF ₃
244	CH ₃	1	2	0	S	н	-CH ₂ -N-C-⟨CF ₃
245	F_CH ₂ -	1	2	0	S	H	-CH ₂ -N-C-C-CF ₃
246	CICH ₂ _	1	2	0	S·	Н	-CH ₂ -N-C-CF ₃
247	CI	1	2	0	S	н	-CH ₂ -N-C-CF ₃
248	H₃CQ CH₂−	1	2	0	S _.	н .	-CH ₂ -N-C-(-)
249	F ₃ C ————————————————————————————————————	1	2	0	S	н	-CH ₂ -N-C-CF ₃
250	H ₃ C ————————————————————————————————————	1	2	0	S	н	-CH ₂ -N-C-CF ₃
251	FCH ₂ -	1.	2	0	S	н	-CH ₂ -N-C-CF ₃
252	H₃CO-{CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
253	H₃C- \ CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.24

Table	1.24						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p
254 	NO₂ CH2-	. 1	2	0	S	н	-CH ₂ -N-C-CF ₃
255	O ₂ N	1 .	2	0	S	н	-CH ₂ -N-C-CF ₃
256	O ₂ N-CH ₂ -	1 .	2	0	S	Н .	-CH ₂ -N-C-CF ₃
257	CF ₃	1	2	0	S	Н	-CH ₂ -N-C
258	CO ₂ CH ₂ CH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
259	СH ₃	1	2	0	S	Н	-CH ₂ -N-C-C-CF ₃
260	CI CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-C-CF ₃
261	F ₃ C-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
262	Br CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
	Br.—CH ₂ -					_. H	-CH ₂ -N-C-CF ₃
264	OH2-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃

Table 1.25

·abic	1.2.5						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
265	Br€	1	2	0	S	н	-CH ₂ -N-C-CF ₃
266	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
267	OCH₃ CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
268	₩C-C-N-()-CH2	1	2 .	0	S	н	-CH ₂ -N-C-CF ₃
269	H ₃ C-\$ CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C	1	2	0	S	н	-CH ₂ -N-C-CF ₃
271	F-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
272	HO-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
273	CN -CH ₂ -	· 1	2	0	S	н .	-CH ₂ -N-C-CF ₃
274	CN −CH₂− NC −CH₂−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
275	NC-⟨}CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.26

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
276	F—CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
277	QH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	н₃∞₂с-{	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
279	F ₃ CO—CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
280	F ₃ CQ . —CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
281	HO ₂ C-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
282	(H₃C)₃C{-}-CH₂-	1.	2	0	S	Н	-CH ₂ -N-C-CF ₃
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-CF ₃
284	CH-CH-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
285	~ CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
286	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.27

· ub.c ·							
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
287	CI CH₂-	1	2	0	Ŕ	н	-CH ₂ -N-C-CF ₃
288	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
289	CI CI	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
290	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
291	F—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
292	CI —CH ₂ -	1.	2	0	R	н	-CH ₂ -N-C-CF ₃
293	CtCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
294	H ₃ CQ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
295	F ₃ C ————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
296	H ₃ C —CH ₂ -	1	2	0	R	н ,	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
297	F—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.28

R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
H ₃ C−⟨CH ₂ −	· 1	2	0	R	н	-CH ₂ -N-C-CF ₃
$CH_2^{NO_2}$	1	2	0	R	H	-CH₂-N-C- CF₃
O ₂ N CH ₂ -	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
CF ₃ -CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
СО ₂ СН ₂ СН ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
CH₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
CI CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
F ₃ C-CH ₂ -	1	2	Ó	R	н	-CH ₂ -N-C-CF ₃
Br CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	H_3CO CH_2 H_3CO CH_2	$H_{3}CO - CH_{2} - 1$ $H_{3}C - CH_{2} - 1$ $O_{2}N - CH_{2} - 1$ $O_{2}N - CH_{2} - 1$ $CF_{3} - CH_{2} - 1$ $CO_{2}CH_{2}CH_{3} - 1$ $CH_{3} - CH_{2} - 1$ $CH_{3} - CH_{2} - 1$ $CH_{3} - CH_{2} - 1$ $CI - CH_{2} - 1$ $CI - CH_{2} - 1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H_3C- \bigcirc -CH_2- $ 1 2 0 R H $CC- \bigcirc -CH_2- $ 1 2 0 R H $CC- \bigcirc -CH_2- $ 1 2 0 R H $CC- \bigcirc -CH_2- $ 1 2 0 R H $CC- \bigcirc -CH_2- $ 1 2 0 R H $CC- \bigcirc -CH_2- $ 1 2 0 R H $CC- \bigcirc -CH_2- $ 1 2 0 R H $CC- \bigcirc -CH_2- $ 1 2 0 R H $CC- \bigcirc -CH_2- $ 1 2 0 R H $CC- \bigcirc -CH_2- $ 1 2 0 R H $CC- \bigcirc -CH_2- $ 1 2 0 R H $CC- \bigcirc -CH_2- $ 1 2 0 R H $CC- \bigcirc -CH_2- $ 1 2 0 R H

Table 1.29

. 45.0							
Compd.	R ¹ (CH ₂) _j	k	. w	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
309	Br CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
310	○ - OH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
311	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
312	O-CH₂-	_. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
313	OCH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
314	₩C-C-Å————αHΣ-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
315	H ₂ C-\$	1	2	0	R .	Н	-CH ₂ -N-C-CF ₃
	H ₃ CO ₂ C ————————————————————————————————————				•	•	-CH ₂ -N-C-CF ₃
317	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
318	· но-СН ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
319	CN CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.30

Compd No.	· R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
320	NC CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
321	NC	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
322	F-CH ₂ -	1	2	0	R	н	-сн ₂ -N-С-С-С-3
323	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
324	н₃∞₂с-{_}-сн₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
325	F ₃ CO-CH ₂ -	1	2	0	R [.]	н	-CH ₂ -N-C-CF ₃
326	F ₃ CQ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
327	HO ₂ C-CH ₂ -	1	2	0	R	H .	-CH ₂ -N-C-CF ₃
•	(H ₃ C) ₃ C-\(\bigc\)-CH ₂ -					н	-CH ₂ -N-C-CF ₃
-	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-C-CF ₃
330	CI—CH₂-	0	3	1		н	- CH ₂ -N-C-

Table 1.31

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	· R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
331	CI-CH ₂ -	0	3	1	<u>-</u>	н	- CH ₂ - N- C-
332	с⊢√_СН₂-	0	.3	1	-	н	- CH2- N- C - OCH3 OCH3
333	CH-CH ₂ -	0	3	. 1	-	· · H	- CH ₂ -N-C-\(\bigc\)
334	CH-CH ₂ -	0	3	1	-	н	-CH ₂ -N-C-CH ₃
335	CH-CH ₂ -	0	3	1	-	н	- CH ₂ -N- C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
336	CHCH2-	0	3	1	-	н	-CH ₂ -N-C-CF ₃
337	CH-CH ₂ -	0	3	1	-	н	-CH ₂ -N-C
338	CH-CH ₂ -	0	3	1	-	н	- CH ₂ - N- С-
339	CH-CH₂-	0	3	1	R	н	- CH ₂ -N-C-CF ₃
340	CH-CH₂-	0	3	1	S	Н	- CH ₂ -N-C-
341	CH2-	0	3	1	-	н	-(CH ₂) ₂ -N-C-
337 338 339	CH2- CH2- CH2- CH2- CH2-	0	3 3 3	1 1 1	- R S	н · · ·	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{3}-C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{3}-C$

Table 1.32

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	·R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
342	CH-€T-CH₂-	0	3	1	-	. н	CH3 O -CH N-C-
343	CH-2-	0	3	1	-	Н	- CH+ N+ C- H CH(CH ₃) ₂
344	CH2-	0	3	1		. н	- CH N C- - H CH ₂ CH(CH ₃) ₂
345	C├ - CH ₂ -	0	3	1	-	н	-(CH ₂) ₃ -C-
346	CH-2-	0	3	1	-	Н	-(CH ₂) ₂ -C
347	CH-CH ₂ -	0 -	3	1	- 	Н	-(CH ₂) ₂ -C-CH ₃
348	CH-CH ₂ -	0	3	, 1	~ · .	н	-(CH ₂) ₂ -C-CH ₃
349	CH-2-	0	3	1	. -	н	-CH ₂ -\$-CH ₃
350	CH-CH ₂ -	0	3	1	-	Н	-CH ₂ -N-S-CH ₃
351	CH-CH2-	0	3	1	-	н	-CH2-N-C-O-CH2-
352	CHCH ₂ -	0	3	1	-	н	- сно с∙ и— С Сно с• и— С Сп

Table 1.33

iable							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
353	C⊢-{CH₂-	1	2	1	-	įН	-CH2-N-C-
354	CH-CH ₂ -	1	3	0	-	н	-CH ₂ -N-C-
355	С⊢СН2-	1	3	0	-	н	- CH ₂ -N-C-CH ₃
356	CH-CH ₂ -	1	3	0.	-	Н	- CH ₂ -N-C-\(\bigcup_1\)
357	CH-CH ₂ -	1	3	0	-	н	-CH ₂ -N-C-
358	CH_CH ₂ -	1	3	0	-	Н	-CH ₂ -N-C-CF ₃
359	CH-CH ₂ -	1	3	0	-	Н	-(CH ₂) ₂ -N-C-
360	CHCH ₂ -	1	3	0	-	Н	-(CH ₂) ₂ -N-C
361	CH	1	3	.0		н	-(CH ₂) ₃ -C-
362	C⊢√CH₂-	1	3	0	-	н	-(CH ₂) ₃ -C
363	CH-CH ₂ -	1	3	0	-	Н	-(CH ₂) ₃ - C-S

Table 1.34

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
364	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
365	CH-√CH₂-	1	3	0	-	н .	-(CH2)2-CH3 $H3C$
366	CH√_CH₂-	1	3	Ö	-	н	-(CH ₂) ₂ -C-C-C-OCH ₃
367	CH-√CH₂-	1	3	0	-	н	-(CH ₂) ₂ -CH ₃
368`	CH ₂ -	1	3	. 0	-	н	-(CH ₂) ₂ -C-
369	C⊢√CH₂-	1	3	0		н	-(CH ₂) ₂ - C-CI
370	C⊢√_>-CH₂-	1	3	0	-	н	-(CH ₂) ₂ -C-C-CH ₂) ₃ CH ₃
371	C⊢√CH₂-	1	3	0	-	Н	-(CH ₂) ₂ -C-√
372	C⊢CH₂-	1	3	0	-	н	- CH ₂ - S - CH ₃
373	C├ - CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ - C-NH
374	CH-CH₂-	1	3	0		н	-(CH ₂) ₃ -C-N

;

Table 1.35

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
375	CH-CH2-	1	3	0	-	н	-(CH ₂) ₃ -C-N-Cl
376	CH-CH ₂ -	1	3	0	•	Н	-(CH ₂) ₃ -C-N-C-OCH ₃
377	CH2-	1	3	0	-	н	- CH ₂ -C-CH ₂ -C-N-CI
378	CH ₂ -	1	3	0	-	Н .	-CH ₂ -CH ₂ -C-N-F
379	C├─ \ CH ₂ -	1	3	0		н	-(CH ₂) ₃ -C-CH ₃
380	C⊢CH₂-	1	3	0	-	н	-(CH ₂) ₃ - C- N CH ₂ -
381	CH_CH₂-	1	3	0	-	н.	- CH ₂ - N- S- CH ₃
382	CHCH ₂ -	1	3	0	-	н	- CH ₂ - N- C- O- CH ₂ -
383	CH⊋-	1	3	0	-	н	- CH O C N CI
	C⊢√CH₂-						-CH ₂ -N-C
385	C⊢———CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-NO ₂

Table 1.3.6

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{A^5}$ $(CH_2)_q$ $G-R^6$
386	—CH₂-	2	2	0	-	H	-CH ₂ -N-C-
387	CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-
388	CH ₂ -	2	2	0	-	H :	-CH ₂ -N-C-
389		2	2	0	-	, н	-CH ₂ -N-C- Н
390	—CH₂-	2	2	0	-	н	-CH ₂ -N-C-CF ₃
391	—CH₂-	2	2 -	0	-	Н	-CH ₂ -N-C-CF ₃
392	—CH ₂ -	2	.2	0	-	н	-CH ₂ -N-C-OCF ₃
393	—CH₂-	2	2	0	-	н	-CH ₂ -N-C-
394	CH₂-	2	2	0	-	н	-CH ₂ -N-C-
395	CH₂-					н	-CH ₂ -N-C
396	CH ₂ -	2	2	0	-	н.	-CH2-N-C-

Table 1.37

Compd.	R ² -(CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
397	CH₂-	2	2	0	-	н	-CH ₂ -N-C-CI
398	—CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
399	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-
400	CH₂-	2	2	0	- · .	н	-(CH ₂) ₂ -N-C
401	- CH ₂ -	2	2	0	-	Н	-(CH ₂) ₂ -N-C
402	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-C-
403	СН ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
404	—CH₂-	2	2	0	- -	Н	-(CH ₂) ₂ -N-C-C-C-C-
405	CH₂-	2	2	0	-		-(CH ₂) ₂ -N-C-
406	€ CH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C-C
407	CH₂-	2	2	0	· <u>-</u>	H	-(CH ₂) ₂ -N-C

Table 1.38

lable !	1.50						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	⁻ R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
408	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-F
409	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-CI
410	CH₂-	2	2	0	-	H	(S) P -CH-N-C- CH ₂ CH(CH ₃) _{2:}
411	. CH ₂ -	2	2	0	-	Н	(S) CH ₂ CH(CH ₃) ₂
412	—CH₂—	2	2	0	-	н	(5) -CH-N-C
413	CH ₂ -	2	2	0	-	н	(S) 0 -CH-N-CCO ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
414		2	2	0	-	H	(S) -CH-N-C- CH ₂ CH(CH ₃) ₂
415	CH₂-	2	2	0	-	H	(5) CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
416	CH₂-	2	2	0	-	Н	(S) OCF ₃ -CH-N-C- H H CH ₂ CH(CH ₃) ₂
417	CH₂-	2	2	0	-	Н	(S) Br -CH-N-C- CH-N-C- CH ₂ CH(CH ₃) ₂
418	—CH₂—	2	2	0	-	Н	(S) -CH-N-C- -CH ₂ CH(CH ₃) ₂

Table 1.39

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
419.	CH₂-	2	2	0	-	Н	(S) P -CH-N-C- Br - H CH₂CH(CH ₃)₂
420	CH ₂ −	2	2	0	•	н .	(S) F -CH-N-C
421	CH ₂ -	2	2	0	-	н	(S) -CH-N-C-CI CH ₂ CH(CH ₃) ₂
422	—CH₂-	2	2	0	-	H	(A) (P) (P) (P) (P) (P) (P) (P) (P) (P) (P
423	—CH₂-	2	2	. 0	-	Н	(FI)
424	CH ₂ -	2	2	0	-	н	(FI) II NO ₂ -CH-N-C- CH ₂ CH(CH ₃) ₂
425	CH ₂ -	2	2	0	-	н	(<i>H</i>) -CH-N-C
426	CH ₂ -	2	2	0	-	н	(F) PCF3 -CH-N-C- H CH ₂ CH(CH ₃) ₂
427	CH₂-	2	2	0	-	Н	(F) Q CF ₃ -CH-N-C- H H CH ₂ CH(CH ₃) ₂ F
428	CH₂-	2	2	0.	•	Н	(FI) -CH-N-C- H CH ₂ CH(CH ₃) ₂
429	CH₂-	2	2	0	-	н	(A) P Br -CH-N-C

Table 1.40

R ² (CH ₂) ₁ -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
CH₂-	2	2	, 0	-	н	(<i>F</i>) - CH-N-C (CH ₃) ₂
CH ₂ -	2	2	0	-	н	(<i>H</i>)
CH₂-	2	2	0	-	н .	(H) O F -CH-N-C-F CH ₂ CH(CH ₃) ₂
CH₂-	2	2	0	-	н	(A) CI -CH-N-C-CI CH ₂ CH(CH ₃) ₂
CH	1	3	1	-	Н	-CH ₂ -N-C-
С⊢СН2-	1	3	1	-	н	-CH ₂ -N-C-
CH2-	1	3	1	-	н	-CH ₂ -N-C-NO ₂
CHCH ₂ -	1	3	1	-	н	-CH ₂ -N-C
C├-{	1	3	1	-		-CH ₂ -N-C-CF ₃
C	1	3	1	-	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-C-CF ₃
CHCH ₂ -	1	3	1	-	н	OCF ₃
	CH₂- CH₂-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1.41

2.0	. , ,						
Compd. No.	R ¹ -(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $G-R^6$
441	CH-CH ₂ -	1	3	1	-	н	-CH ₂ -N-C
442	CH-CH ₂ -	1	3	1	•	Н	-CH ₂ -N-C-
443	СНСН2-	1	3	1	-	н	-CH ₂ -N-C-\Br
444	CHCH ₂	1	3	1	-	н	-CH ₂ -N-C
445	C ⊢ CH₂-	1	3	1	-	н	-сн ₂ -N-с-Сі
446	CH-€	1	3	1	-	н	-(CH ₂) ₂ -N-C-
447	С⊢—СН₂-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-
448	с⊢—СН₂-	1	3	1		н	-(CH ₂) ₂ -N-C
	С⊢—СН₂-						-(CH ₂) ₂ -N-C-\ \ H
450	ССН2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-CF ₃ -(CH ₂) ₂ -N-C-F ₃
451	_ CH ₂ -	1	3	1	•	H _.	-(CH ₂) ₂ -N-C-CF ₃

Table 1.42

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G^-R^6$
452	С⊢(СН₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
453	C⊢√CH ₂ -	1	3	1	-	Н	-(CH ₂) ₂ -N-C-
454	C⊢-{CH₂-	1	3	1	-	Н.	-(CH ₂) ₂ -N-C-C
455	CH-CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C
456	CHCH2-	1 .	3	1	-	н	-(CH ₂) ₂ -N-C
457	CH-CH ₂ -	1	3	1		Н	-(CH ₂) ₂ -N-C-CI
458	CH- (CH₂-	2	2	1 .	-	н	- CH ₂ -N-C-
459	CHCH ₂ -	2	2	1	-	Н.	- CH ₂ - N-C-CH ₃
460	C├ - CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CH ₃
461	CH-CH ₂ -	2	2	1	-	н '	- CH ₂ - N- C-
462	С⊢ СН₂-	2	2	1	-	н [,]	- CH ₂ -N-C-

Table 1.43

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R ^a	$-(CH_2)_{p}$ $+$ $\frac{R^4}{R^5}(CH_2)_{q}$ $-G^{-R^6}$
463	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-C
464	C├ - CH₂-	2	2	1	-	Н	$-CH_2-N-C$ OCH ₃ OCH ₃
465	СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-N
466	CI—CH₂-	2	2	1	-	. н	-CH ₂ -N-" NO ₂
467	CH-CH ₂ -	2	2 -	1	-	н	- CH ₂ - N- C-
468	CH-(-)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-C-N-CH ₃) ₂
469	CH_CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
470	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CN
471	CH-CH2-	2	2	1	-	Н	-CH ₂ -N-C- H C- CO ₂ CH ₃
472	CH-CH2-	2	2	1	-	Н	- CH ₂ -N-C
473	С⊢—СН₂-	2	2	1		н	- CH₂-N-C

Table 1.44

Table I							
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	. R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
474	C ⊢ CH₂-	2	2	1	-	н	-CH ₂ -N-CF ₃
475	C⊢-{CH₂-	2	2	1	-	н	- CH ₂ -N-C- CH(CH ₃) ₂
476	CH-CH2-	2	2	1	-	н	- CH ₂ -N C- NO ₂
477	C⊢-()- CH₂-	2	2	1	- ,	н	- CH ₂ -N-C OCH(CH ₃) ₂
478	CH-CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- N-
479	CH-€CH2-	2	2	1	-	н	-CH ₂ -N-C-0
480	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -NC-OBr
481	CH2-	2	2	1	-	н	-CH ₂ -N-C-S
482	CH2-	2	2	1	-	Н	- CH ₂ -N-C-S
483 ⁻	CHCH ₂ -	2	. 2	1	-	['] H	-CH2-NC- S CH3
484	C⊢√_CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-H

Table 1.45

rabie	1.75						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^- R^6$
485	CH-{	2	2	1	-	н	- CH ₂ -N-C-CF ₃
486	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N C-CN
487	CH-CH ₂ -	2	2	1	- ,	н	- CH ₂ -N-C-CI
488	CHCH2-	2	2	1	-	Н .	- CH ₂ -N-C-\(\bigc\)
489	CH√CH₂-	2	2	1	-	н	$-CH_2-NCC-CF_3$ F_3C
490	C⊢√CH₂-	2	2	1	-	н	- CH2- N- C- OCH2CH3
491	CH2−	ż	2	1	-	Н	- CH ₂ -N-C-CF ₃
492	CH-CH ₂ -	2	. 2	1	-	н	$-CH_2-N$ $-CH_2-N$ $-CH_2-N$
493	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N·C-CF ₃
494	CH⊋-	2	2	1	-	н	- CH ₂ -N-C
495	C⊢CH₂-	2	2	1	-		- CH ₂ -N-C-CF ₃

Table 1.46

Compd. No.	R (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
496	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C- F
497	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-
498	CH-€ CH₂-	2	2	1	-	H .	- CH ₂ -N C-
499	CH- (CH₂-	2	2	1	٠	Н	- CH ₂ - N- C- N(CH ₃) ₂
500	CH2-	2	2	1	-	Н	-CH₂-N-C- H-C- OCH₃
501	CI-CH ₂ -	2	2	1		н	-CH ₂ -N-C-NO ₂
502	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
503	CH-CH2-	2	2	1	- .	H	-CH ₂ -N-C
504	CH-CH ₂ -	2	2	1	-	н	- CH ₂ - N C - OCH ₃ OCH ₃
505	CH-2-					н	-CH ₂ -N-C
506	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-\

Table 1.47

12310							
Compd. No.	R (CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
507	CICH ₂ -	2	2	1	-	н	- CH ₂ -N-C
508	CI-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-S
509	CH2-	2	2	1	-	н	-CH2-N-C-S
510	CH-CH ₂ -	2	2	1	-	Н	- CH₂- N- C- CH₃
511	CH-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C C(CH ₃) ₃
512	CH-CH ₂ -	2	2	1	-	н	ÇN CHCH₃ - CH₂- N- C-
513	CH-2-	2	2	1	-	Н	O C-CH ₃ -CH ₂ -N-C-
514	CHCH ₂ -	2	2	1	-	н	- CH ₂ -N-C(CH ₃) ₃
515	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- H . CH ₂ OH
	H ₂ N-CH ₂ -						-CH ₂ -N-C-CF ₃
517	H ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.48

Compd.	R_(CH.)-	<u> </u>			chirality		$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
No.	R ² /(0112/i		111		Criticality		R ⁵
518	NH ₂ —CH ₂ -	2	2	1	-	H .	-CH ₂ -N-C-CF ₃
519	C-N-C-H2-	2	2	. 1	-	н	CH ₂ -N-C-CF ₃
520	CHCH2-	2	2	1	-	—CH ₃	-CH ₂ -N-C-CF ₃
521	C⊢————————————————————————————————————	2	2	1		-(CH ₂) ₂ CH-	-CH ₂ -N-C-CF ₃
522	C├ - CH ₂ -	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-C
523	C⊢————————————————————————————————————	2	2	1		-(CH ₂) ₂ CH-	-CHZ-N-C-
524	C⊢√CH ₂ -	2	2	1	-	-CH ₂ CH-	-CH2-N-C-
525 _.	CI⟨ CH₂-	2	2	1	-	н	-CH ₂ -N-C
526	CH-2-	2	2	1	<u>.</u>	Н	-CH ₂ -N-C-
527	CH-2-	2	2	1	-	Н	-CH2-N-C-
528	CH2-	2	2	1	-	н	-CH ₂ -N-C

Table 1.49

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
529	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-VO
530	C	2	2	1	-	н	-CH ₂ -N-C-
531	CH-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-\S
532	С⊢СН₂-	2	2	1	-	н	$-CH_2-N-C H_3C$
533	CHCH ₂ -	2	2	1		Н	-CH ₂ -N-CO H ₃ C
534	С ⊢ СН ₂ -	2	2	1	- -	н	-CH ₂ -N-C-\ H -H ₃ C
535	CHCH ₂ -	2	2	1	-	н	-сн ₂ -N-с-С _S
536	CH2-	2	2	1	-	н	-CH ₂ -N-CN-CH ₃ H ₃ C CH ₃
537	CH2-	2	2	1	-	н	-CH ₂ -N-C-C(CH ₃) ₃
538	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CO
539	CI—CH₂-	2	2	1	•	н	-CH ₂ -N-C-O H ₃ C -CH ₂ -N-C-O H ₃ C -CH ₂ -N-C-O F ₃ C -CH ₂ -N-C-O F ₃ C

Table 1.50

Compd. No.	R ¹ (CH ₂) _j -	k	m	n c	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
540	CI—CH₂-	2	2	1 .	•	н	-CH ₂ -N-C-N
541	C ⊢ CH₂-	2	.2	1 .	-	н	-CH ₂ -N-C-NO ₂
542	C⊢√CH₂-	2	2	1 .	-	Н	-CH ₂ -N-C-CH ₂ CH ₃
543	C⊢CH₂-	2	2	1	- ,	н	-CH ₂ -N-C- CH ₂ CH ₃
544	CH2−	2	2	1	-	H .	CH ₂ -N-C-
545	CH-2-	2	2	1	· .	H	-CH ₂ -N-C-CI
546	CH2-	2	2	1	-	Н	-CH ₂ -N-C-CI
547	C⊢CH₂-	2	2	1	-	. Н	-CH ₂ -N-C-CI
548	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
549	CH-CH2-	2	2	1	-	Н	-CH ₂ -N-C-
550	C├- ⟨	2	2 .	1	-	н	$-CH_2-N-C$ O_2N CI

Table 1.51

Table !							
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
551	с⊢(Сн₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CH ₃
552	CH-2-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
553	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
554	CH-2-	2	2	1	-	н	-CH ₂ -N-C-N H
555	C ⊢ CH₂-	2	2	1		н	-CH ₂ -N-C-\N-CI
556	CH-CH ₂ -	2	2 .	, ∙1	-	н	-CH ₂ -N-C-N-H H
557	C;⟨CH2-	2	2	1	-	н	-(CH ₂) ₂ -N-C-
558	CH2-	2	2	-1	-	н	CH3 0 - CH N- C-
559	CH-CH ₂ -	2	2	1	-	н	-CHNC-CF ₃ -CH ₃ CF ₃
560	CH_CH ₂ -	2	2	1	-	Н	- CH N C - CN CH ₃
561	CI-CH ₂ -	2	2	1	-	н	-CH N-C - Br
							•

Table 1.52

Compd.	R ¹ / _{R²} (CH ₂) _j	k	m	n	chirality	ft³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
562	C⊢-{CH₂-	2	2	1	-	н	-CH N C CI
563	CI-CH ₂ -	2	2	1	-	н	- CH N C - CF3 - CH3 F3C
564	CH-CH ₂ -	2	2	1		н	- CH N- C - OCH ₂ CH ₃
565	CH-2-	2	2	1	-	н	-CHNC-CF3
566	CH-2-	2	2	1	-	н	-CHNC-CH3
567	C├────────────────────────────────────	2	2	. 1	-	н	-CHNC-CF3
568	C⊢√CH ₂ -	2	2	1	-	н	-CHNC-CF3
569	C├ - CH ₂ -	2	2	1	-	н	-CHNC-CF3 -CHNC-CF3 F
570	CI—CH₂-	2	2	1	-	н	-CHNC-F
571	CI—CH ₂ -	2	2	1	. -	н	CH ₃ O CH N C CH ₃
572	C⊢CH₂-	2	2	1	-	н	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃

Tab	le	1.	5	3
-----	----	----	---	---

Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p +5(CH ₂) _q -G-R ⁶
573	CI—CH₂-	2	2	1	- ;	н	-CHN-C-S
574	CHCH ₂ -	2	2	1	-	н	-CHNC-S Br
575	CH2-	2	2.	1	· -	н	-CHNC-OC(CH3)3
576	CHCH ₂ -	2	2	1	-	Н	-CHNC-OSCH3
577	CH2-	2	2	1	-	Н	-CH K C-O
578	CH2-	2	2	1	-	н	-CHNC-S
579	C ⊢ CH ₂ -	2	2	1	-	н	-CHNC-NH
580	C⊢(CH ₂ -	2	2 .	1	-	н	-CHNC-S H S CH3
581	C⊢—CH₂-	2	2	1	-	н	-CHNC-(3) H S CH3
582	- CH₂-	2	2	1	-	н	-CH NC-S
583	C├ - ⟨CH ₂ -	2	2	1	-	н	CH ² CH ³
					•		

Table 1.54

Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
584	С⊢—СН₂-	2	2	1	-	н	- CH V C - C - C - C - C - C - C - C - C - C
585	C⊢- CH₂-	2	2	1	-	н	- СН И С- СН3
586	CH-CH ₂ -	2	2	1	-	н	- CH N C - CI
587	CH-CH ₂ -	2	2	1	-	/ H	-CHNC-CF3
588	CH-CH ₂ -	2	2	1	-	н	$\begin{array}{c} O \\ -CH NC \\ I \\ H \\ CH_3 \end{array}$
589	CH-CH ₂ -	2	2	1	÷	Н	-CHN-C
590	CH-CH ₂ -	2	2	1	·	н	O − CH N C − CH(CH ₃) ₂ CH ₃
591	CH-2-	2	2	1	-	н	-CHNCH ₃) ₂
592	CI-CH ₂ -	2	2	1	-	н	- СН N С — ОСН3 СН3
593	CH-2-	2	2	1	-	н	- СН N С-
594	CHCH ₂ -	2	2	1	-	н	-сн ³ сн ³ он

Table 1.55

, 4510							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	'R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - R^6$
595	CH ₂ -	2	2	1	-	Н	-CH N C
596	CHCH ₂ -	2	2	1	-	н	-CH N C C-CH3
597	CH-CH ₂ -	2	2	1		н	о - сн м с - сн, сн,
598	C├ ~ CH₂-	2	2	1	-	н	- CH N C - 0 CH3
599	CHCH ₂ -	2	2	1	- ·	н	-CH N C-N CH3 CH3
600	C⊢√ CH₂-	2	2	1	-	Н	-CH N-C- Br
601	CH-CH ₂ -	2	2	1	-	H	-CH-N-C
602	CH-{CH₂-	2	2	1	-	Н	-CH N C N(CH ₃) ₂
603	CH-CH ₂ -	2	2	1	-	н	-CHNC-NH ₂
604	C ⊢ CH₂-	2	2	1	-	н	-CH-V-C-V
605	C⊢—CH₂-	2	2	1	-	н	-сн ³

Table 1.56

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	[°] R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
606	CI—(CH ₂ -	2	2	1	-	н	-CHN-C-S
607	CI—CH₂-	2	2	1	-	н	-CH-N-C- S
608	CH-CH ₂ -	2	2	1		Н	-CH-N-C
609	CH-CH ₂ -	2	2	1	-	н	-CHNC-O
610	CH-CH ₂ -	2	2	1	-	Н	-CHH C-CH3
611	CHCH2-	2	2	1	-	н	-CH-N-C-O CH ₃ H ₃ C
612	CH-CH ₂ -	2	2	1	-	н	-ch hc
613	CHCH ₂ -	2	2	1	· <u>-</u>	н	-CH-N-C-CH ₃ CH ₃ F ₃ C
614	CH-€ CH ₂ -	2	2	1	-	Н	-CH-N-C
615	CH-2-	2	2	1	-	н	-CH-N-C- NH
616	CH-CH2-	2	2	1	-	H .	-CH H CH3

Table 1.57

lable	1.57						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	[.] R³	-(CH ₂) _p R ⁴ /R ⁵ (CH ₂) _q G-R ⁶
617	C├ - CH₂-	. 2	2	1	-	н	-CHNC-CF3
618	С-СH ₂ -	2	2	1	-	н	-CHN C-CH(CH ₃) ₂
619	CHCH ₂ -	2	2	1	-	н	-CH N C CN H CH(CH ₃) ₂
620	C├─ \ CH ₂ -	2	2	1	-	Н	O - CH- N- C- - H - H - CH(CH ₃) ₂
621	CH-CH ₂ -	2	2	1	-	н	O CI -CH-N-C- H CH(CH ₃) ₂
622	CH_CH2-	2	2	1	-	н	-CH-N-C- H CH(CH ₃) ₂
623	CH2-	2	2	1	-	н	-CH N C - OCH3 -CH(CH3)2
624	CHCH ₂ -	2	2	1	-	н	- CH+ N C - NO ₂ - CH(CH ₃) ₂
625	C├- \ CH ₂ -	2	2	1	-	н	- CH- N- C- NH ₂ - CH(CH ₃) ₂
626	C	2	2	1		Н	F3 C O O O O O O O O O O O O O O O O O O O
627	C├ - CH ₂ -	2	2	1	-	н	OCH ₂ CH ₃ - CH N C CH(CH ₃) ₂

Table 1.58

	•						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
628	С⊢СН₂-	2	2	1	-	н	-CH-N-C- H CH(CH ₃) _{2.}
629	СН-СН ₂ -	2	2	1	-	H	-CHNC
630	C⊢—CH₂-	. 2	2	1.	-	н	OCF ₃ -CH-N-C- H CH(CH ₃) ₂
631	с⊢(Сн₂-	2	2	1	-	н	OCI -CHNC- H CH(CH ₃) ₂ CF ₃
632	CH-CH ₂ -	2	2	1	-	н	-CHNC- HCH(CH ₃) ₂ CF ₃
633	CHCH ₂ -	2	2	1	-	Н	-CHNC
634	CH-CH ₂ -	2	2	1	-	н	CF ₃ -CH N C − F H CH(CH ₃) ₂
635	.CH_CH ₂ -	2	2	1		н	OHO CH(CH ₃) ₂ -CH N C- CH(CH ₃) ₂ -CH(CH ₃) ₂
636	С├-{}СН₂-	2	2	1	-	Н	- CH N C - CH ₃ - CH N C - CH ₃ - CH (CH ₃) ₂
637	C ← CH₂-	2	2	1	-	н	CF ₃ -CH N C- H CH(CH ₃) ₂
638	CHCH ₂ -	2	2	1	-	н	- СН N С С С С С С С С С С С С С С С С С

Table	1	.5	9
-------	---	----	---

	•						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	[°] R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
639	CH_CH ₂ -	2	2	1	- -	н	-CH-N-C
640	С├-{Сн₂-	2	2	1	-	Н	- СН N С Н СН(СН ₃) ₂
641	С⊢-СН₂-	2	2	1	-	н	O O CH N C CO₂CH₃ OH(CH₃)₂
642	CH2-	2	2	1	-	Н	-CH N C-
643	CH-CH ₂ -	2	2	1	-	Н .	- СН N С — СF ₃ СН(СН ₃₎₂
644	C├ \ CH ₂ -	2	2	1	-	н	О - СН- N- С- - СН- N- С- - С(СН ₃) ₂
645	C⊢CH₂-	2	2	1	-	Н	- CH-N-C-NH ₂ - CH(CH ₃) ₂
646	C ├── CH ₂ -	2	2	1	-	н	- СН- N- С
647	CI—CH₂-	2	2	1	-	н	-CHNC
648	C├ - CH ₂ -	2	2	1	-	н	- CH N C - CH(CH ₃) ₂ H CH(CH ₃) ₂
649	CH2-	2	2	1	-	н	- СН N С — ОСН(СН ₃) ₂ СН(СН ₃) ₂
							•

Table 1.60

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q-G}^{-R^6}$
650	с⊢(Сн₂-	2	2	1	-	н	-CH-N-C
651	CHCH ₂ -	2	2	1	-	Н	CH(OH ₃) ₂
652	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
653	CH- CH₂-	2	2	1	· -	Н	-CH-N-C
654	CH2-	2	2	1	-	н	-CH-N-C
655	C├ -	2	2	1	-	н	-CHN-C
656	CI————————————————————————————————————	2	2	1	-	H .	-CH-N-C-C) CH(CH ₃) ₂
657	C├─ੑCH ₂ -	2	2	1		Н	-CH-N-C- CH(CH ₃) ₂
658	с⊢С сн₂-	2	2	1	-	н.	-CH-N-C- NH CH(CH ₃) ₂
659	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- S H CH(CH ₃) ₂ NO ₂
660	С⊢—СН₂-	2	2	1	-	н	-CH-N-C-N CH(CH ₃) ₂

Table 1.61

Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	H3	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
661	С├-{}СН₂-	2	2	1	.	н	-CH-N-C- S H CH(CH3)2 OCH3
662	CH2−	2	2	1	-	н	-CH/CH3)2 CH3
663	C├─ (2	2	1	-	н	CH(CH ₃) ₂
664	С⊢ СН₂-	2	2	1	-	н	-CH-N-C
665	CH-CH ₂ -	2	2	1	- .	Н	-CH-N-C-S -CH(CH ₃) ₂
666	CH-CH ₂ -	2	2	1	-	н	CH(CH ₃) ₂ CH ₃ CH ₃
667	CH-CH ₂ -	2	2	1	-	Н	O CH3 -CH-N-C-O -CH (OH3)2
668	CH-CH ₂ -	2.	2	1	-	н	-CH-N-C- -CH-N-C- -CH-N-C- -CH ₃ -CH ₃
669	CH-2-	2	2	1 .	-	н	-CHM-C- H N CH(CH ₃) ₂ CH ₃
670	CH-2-	2	2	1	-	н	-CH-N-C- CH(CH ₃) ₂
671	CH-2-	. 2	2	1		н	-CH-N-C

Table 1.62

					•		
Compd.	R ² -(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G$ $-R^6$
672	С-С-СН2-	2	2	1	-	н	CH(CH ³) ⁵ H
673	СН ₂ -	2	2	1	-	н	-CHNC-S C(CH ₃) ₂
674	CHCH2-	2	2	1	-	Н	-CH-N-C-S
675	.CH-CH ₂ -	2	2	1	-	Н	-CHN-C-S-CH3
676	CH-CH ₂ -	2	2	1	-	н	-CHN-C-N-CH(CH ₃) ₂ H
677	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-N-C-N-CH(CH ₃) ₂ CH ₃
678	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
679	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C- CH(CH ₃) ₂
680	CH-CH2-	2	2	1	-	Н	-CHN-C-S Br
681	C├ - CH ₂ -	2	2	i	•	н	-CH-N-C-CH ₃ CH(CH ₃) ₂ CH ₃
682	C├ \ CH ₂ -	2	2	1	-	н	-CH-N-C

Table 1.63

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
683	CH-CH2-	2	2	1		H	-CH-N-C
684	CH_CH ₂ -	2	2	1	-	н	-CH-NC- H S S-CH(CH ₃) ₂ CH(CH ₃) ₂
685	С⊢ СН₂-	2	2	1	-	н	-CH-N-C- S S-CH ₃
686	С⊢С Н₂-	2	2	1	-	Н	- СН N- С- Н СН ₂ СН(СН ₃) ₂
687	С⊢С СН₂-	2	2	1	-	н	-CHN-C-
688	CH_CH ₂ -	2	2	1	d.	н	-CHNC
689	C⊢√_CH₂-	2	2	1	-	н ,	-CHNC-OON
690	CHCH2-	2	2	1	-	н	-CH N C-Br
691	C	2	2	1	-	н	-CH N-C-
692	CH2-	2	2	1	-	н	-CH M G - OCH3
	C⊢—CH₂-						-CHNC
						•	

Table 1.64

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	Ή³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
694	CI-CH ₂ -	2	2	1	-	н .	-CH N-C
695	с⊢(СН₂-	2	2	1	-	Н	-CH № C- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
696	с⊢—СН ₂ -	2	2	1	-	н	- CH N C - OCF3
697	CICH ₂ -	2	2	1	-	н	-CH-N-C
698	CHCH_2-	2	2	1	-	н	-CH N CH ₃)₂
699	CHCH ₂ -	2	2	1	-	н	-CH N-C
700	CH-(CH ₂ -	2	2	1	-	н	-CHN-C- CO2CH3
701	C├ - CH ₂ -	2	2	1	-	н	-CH N-C- C-CH3
702	CH√-CH₂-	2	2	1	-	н	-CH N-C
703	CI————————————————————————————————————	2	2	1	-	н	-CH N-C- CH(CH ₃) ₂
704 ·	C ├── CH ₂ -	2	2	1	-	Н	-CHN-C-NO2

Table 1.65

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
705	С⊢ СН₂-	.2	2	1.	-	н -	-CHNC- H3C
706	CH-CH ₂ -	2	2	1	-	н	-CHN-C-STCH3
707	CHCH ₂ -	2	2	1	-	н	-CHN-C-C+3
708	CH2-	2	2	1	-	Н	-CHN-C-S Br
709	С⊢√_СН2-	2	2	1		н	-CH-N-C-SJSCH3
710	CHCH2-	2	2	1	-	н .	-CHN C S
711	CHCH_2-	2	2	1	-	н	-CH-N-C-CH ₃
712	C⊢√CH₂-	2	2	1	-	н	-chnc-s
713	C⊢————— CH₂-	2	2	1	-	H	-CHN C- H3C
714	C ├── CH ₂ -	2	2	1	-	н	-CHNC-N
715	CH_CH ₂ -	2	2	1	-	н	-CHN-C-(\$)

Table 1.66

Compd. No.	R ¹ (CH ₂) _i	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
716	CH-€-	2	2	1	-	Н	-CHN-C-\N
717	CI—CH ₂ -	2	2	1	-	H·	-CHN-C- NO2
718	C├ - CH ₂ -	2	2	1		н	-CHN-C-NH
719	CH-CH ₂ -	2	2	1	-	н	-c+n-c-
720	CHCH2-	2	2	1	· -	н	-CHNC- Br
721	CH2-	2	2	1	-	н	-CHN-C-N CH ₃
722	C├ - CH ₂ -	2	2	1	-	н	-сн-n-ссн ₂ он
723	C├ - CH ₂ -	2	2	1	-	н	-CHN-C-Q-NH2
724	CI⟨	2	2	.1	-	H	-CH-V-C-(CH3)3
725	C├ ~ CH ₂ -	2	2	1	-	н	-c+4-c
							-сни-с-сн ³

Table 1.67

. 45.0						·	
Compd. No.	R ¹ /(CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{G}$ $+R^6$
727	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-()-CI
728	CH-CH2-	2	2	1	-	н	-CH-N-C-\(\sigma\) NH ₂
729	CH-€CH2-	2	2	1	-	н	-CH-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
730	CH-CH2-	2	2	1	-	H	-CHN-C-
731	CH-CH2-	2	2	1	-	Н	-CH-NC-CH3
732	CH_CH2-	.2	2	1	-	Н	-CHNC-CF3
733	CH_CH2-	2	2	1	-	н	-CH-N-C- HO CH(CH ₃) ₂
734	CH-CH ₂ -	2	2	1	-	н	-CHNC
735	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
736	CH-CH ₂ -	2	2	1	-	H	-CH-N-C
737	CH-CH ₂ -	2	2	1	-	н	-c+n-c-

Table 1.68

, abic							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}^{-\frac{R^4}{+}}(CH_2)_{q}^{-}G^{-}R^6$
738	CH2-	2	2	1	-	н	-CH-N-CO
739	_ CH-CH2-	2	2	1		н	-CHN-C-NH
740 ·	CH-(2	2	1	-	н	-CH-N-C-\O_NO_2
741	CHCH ₂ -	2	2	1	-	Н	-CHN-C-CS
742	CH-CH ₂ -	2	2	1	-	н	-CHN-C-S
743	С-СН2-	2	2	1	-	н	-chyc-Co
744	CH-CH2-	2	2	1	_ ·	Н	-CHNC-CH3
	CH-CH ₂ -					н	-CH-N-C-(CH ₃) ₃
746	CH2-	2	2	1	-	н	-CH-N-C-N-CH3
747	CH-CH2-	2	2	1	-	н	-CH-N-C
748	С⊢√СН2-	2	2	1	-	H .	-CHMC-Cs

Table 1.69

Table I	.03						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
749	CHCH ₂ -	2	2	1	-	н	-CH-N-C
750	CH-€ CH ₂ -	2	2	1	-	н .	-CH-N-CO
751	CHCH ₂ -	2	2	1	-	н	-CH-N-C-CH3 CH2OH
752	С├-{}СН₂-	. 2	2	1	- ·	н	-CH-N-C-CF ₃ -CH ₂ OH CF ₃
753	CH-CH2-	2	2	1	-	Н	-CH-N-C-CN -CH₂OH
754	CH-CH2-	2	2	1	-	. н	-CH-N-C- H CH2OH
755	CH-CH ₂ -	2	2	1	· -	н	-CH-N-C- H CH₂OH
756	CH-CH2-	2	2	1	-	н	-CH-N-C- H CH ₂ OH
757	CH-CH ₂ -	2	2	1	-	н	-CH-V-C- CH ⁵ OH
758	C├ - CH ₂ -	2	2	1	-	н	-CHN-C-CO₂CH ₃ -CH2OH
759	C├ ~ CH₂-	2	2	1	-	н	-CH-N-C
							=

Table 1.70

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
760	C⊢-(CH₂-	2	. 2	1	-	н	-CH-N-C
761	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-CF3 -CH₂OH
762	CH-CH ₂ -	2	2 .	1	-	Н	CF ₃ -CH-N-C-CF ₃ CH ₂ OH
763	CH-CH ₂ -	2	.2	1	-	н	-çн-n-с- сн₂он
764	CHCH ₂ -	2	2	1	-	, н	CH ₃ P -C-N-C- CH ₃
765	CH-2-	2	2	1	-	Н	CH ₃ O CH ₃ -C-N-C-
766	CHCH ₂ -	2	2	1	-	н	CH ₃ O CF ₃ -C-N-C-C
767	CH-2-	2	2	1	-	H	-C-N-C-
768	CH2⁻	2	2	1	~		CH3 P Br
769	C ← CH ₂ -	2	2	1	-	Н	CH ₃ OCF ₃ CH ₃ OCF ₃
770	C	2	2	1	-	н	CH ₃ O OCF ₃ -C-N-C- CH ₃ O CF ₃ -C-N-C- CH ₃ O CF ₃

Table 1.71

Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^-R^6$
771	CI-CH ₂ -	2	2	1	-	н	CH ₃ O CF ₃ -C-N-C-F CH ₃
772	CH2-	2	2	1	-	н	CH ₃ Q -C-N-C-C-C-CF ₃ CH ₃
773	CH-2-	2	2	1		н	CH ₃ O C(CH ₃) ₃
774	CH2-	2	2	1		н	CH ₃ Q CH ₃ Q CH ₃ SCH ₃
775	CH-2-	2	2	1	-	н	CH ₃ C(CH ₃) ₃
776	CH-CH2-	2	2	1	-	н	CH3 CH3
777	C├─ ○ CH ₂ -	2	2	1	-	н	CH ₃ O CF ₃ -C-N-C-O -H CH ₃
778	CI-CH ₂ -	2	2	1	-	н	CH ₃ O NO ₂ -C-N-C-CI -CH ₃ O CI
779	CHCH ₂ -	2	2	1	-	Н	CH ₃ O CI -C-N-C-C
780	CHCH ₂ -	2	2	1	-	н	-CH ₃ O NO ₂
781	C├ - CH ₂ -	2	2	1	-	Н	-CH3 H

Table 1.72

						•	
Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
782	С├-{_}-СН₂-	2	2	1	-	н	CH ₃ OCH ₃
783	C├ - CH₂-	2	2	1	- ,	н	CH ₃ OCH ₂ CH ₃ -C-N-C-
784	CH_CH ₂ -	2	2	†·	-	н	CH ₃ Q -C-N-C-CH ₂ CF ₃
785	CH-CH ₂ -	2	2	1	-	н	CH ₃ O OCH ₃ -C-N-C-OCH ₃ -CH ₃ OCH ₃
786	CI-CH ₂ -	2	2	1	-	н	H ₂ C—CH ₂
787	С⊢СН₂-	2	2	1	. .	н .	H ₂ C CH ₂
788	CHCH ₂ -	2	2	1	-	н	H ₂ C-CH ₂ CF ₃
789	C├─ ○ -CH ₂ -	2	2	1	-	н	-C-N-C
790	C├─ \ CH ₂ -	2	2	1	-	н	-C-N-C-CH ₂
791	CH-CH ₂ -	2	2	1	-	Н	H ₂ C-CH ₂ OCF ₃
792	С⊢-{Сн₂-	2	2	1	-	Н	-C-N-C- H ₂ C-CH ₂

Table 1.73

Table 1							
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5}(CH_2)_q - G - R^6$
793	CI-CH ₂ -	2	2	1	-	н	H ₂ C-CH ₂
794	CH-CH ₂ -	2	2	1	-	н .	H ₂ C-CH ₂ F
795	CH-CH ₂ -	2	2	1	-	н	$ \begin{array}{c} -C - N - C - C - C - C - C - C - C - C -$
796	CH-2-	2	2	1	-	н	H ₂ C—CH ₂ SCH ₃
797	CH-CH ₂ -	2	2	1	-	н	C(CH ₃) ₃
798	CH-2-	2	2	1	-	н	H2C CH2 CH3
799	CH ₂ -	2	2	1	-	_. H	H ₂ C—CH ₂
800	CHCH ₂ -	2	2	1	-	н [.]	H_2C-CH_2
801		2	2	1	-	Н	$\begin{array}{c} O \\ O $
802	C⊢√CH₂-	2	2	1	-	н	H ₂ C—CH ₂
803	C├ - CH₂-	2	2	1	-	н	H ₂ C-CH ₂ H ₂ C-CH ₂ H ₂ C-CH ₂ OCH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃

Table 1.74

	-						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
804	с⊢()— сн₂-	2	2	1	-	Н	-C-N-C-CH ₂ CF ₃
805	C├ \ CH₂-	2	2	1	-	н	$-C$ H_2 C
806	CHCH ₂ -	2	2	1	. · ·	н	H ₂ C CH ₂
807	CH2-	2	2	1	-	н	-CH-N-C-WH ₂
808	CH-CH ₂ -	2	2	1	-	H	CH-N-C
809	C├─ ○ CH ₂ -	2	2	1	-	н	- CH-N-C
810	C├ - CH ₂ -	2	2	. 1	· -	н.	(CH2)2- C NH2
811	C⊢√CH₂-	2	2	1	-	н	-CH-N-C-NH ₂ (CH ₂) ₇ C-NH ₂
812	C ├── CH ₂ -	2	2	1	-	н	O Q Q Q H S SCH ₃
813	C├ - CH ₂ -	. 2	2	1	-	н	-CH-N-C
814	C⊢√CH₂-	2	2	1	-	н	-CH-N-C

Table 1.75

·ubic	•						
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
815	CI-CH ₂ -	2	2	1	-	н	· - CH-N-C
816	C├ - ⟨}-CH ₂ -	2	2	1	-	н	-CH-N-C
817	C	2	2	1	-	Н	-C++ N-C- CF3 -C+2) ₂ -C-NH ₂
818	CH-CH ₂ -	2	2	1	-	н	CH-N-C
819	CHCH_2-	2	2	.1	-	Н	-CH-N-C-NH2 CF3
820	CH_CH ₂ -	2	2	1	-	Н	- CH-N-C
821	CH-CH ₂ -	2	2	1	-	Н	CH-N-C- CH ₂ OCH ₃ NO ₂ CI CH ₂ OCH ₃
822	CH-CH2-	2	2	1	-	H	CH ₂ OCH ₃
823	СН ₂ -	2	2	1	-	н	CH ⁵ OCH ³
824	CH-CH2-	2	2	1	-	н	-CH-N-C-C(CH ₃) ₃
825	СН-СН2-	2	2	1	-	н	-cH-V-c

Table 1.76

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
826	с⊢(Сн₂-	2	2	1	-	н	-CH-N-C-CH3 CH2OCH3
827	CH-{	2	2	1	- -	н	-CH-N-C-NH H CH ₂ OCH ₃
828	CH-{-}-CH₂-	2	2	1	-	н	-CH-N-C- H CH2OCH3
829	CH-CH ₂ -	Ż	2	1	-	н	-CH-N-C-CF ₃ -CH ₂ OCH ₃ F
830	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C-F H CH ₂ OCH ₃
831	CH-CH ₂ -	2	2	1	- -	Н	-CH-N-C- H CH2OCH3
832 .	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-CI CH2OCH3
833	CH-CH ₂ -	2	2	1	-	Н	CH2OCH3
834	CH2-	2	2	1	-	н	-CH-N-C-CF ₃ CH ₂ OCH ₃
835	CH-{CH₂-	2	2	1	-	н	-CH-N-C- CH₂OCH₃
836	CH-{	2	2	1	-	н	-CH-N-C

Table 1.77

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
837	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C- CH ₂ OCH ₃
838	CH-CH ₂ -	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C- H CH ₂ OCH ₃
839	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C
840	CH2-	2	2	1	-	н	-(CH ₂) ₃ -C-
841	CH-CH ₂ -	2	2	1	<u>.</u> .	н	O -(CH ₂) ₂ -C-
842	C⊢√_CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-Cl
843	C⊢√ CH₂-	2	2	1	-	Н	-(CH ₂) ₂ -C-CH ₃
844	CH-CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-CH ₃
845	CH-2-	2	2	1	-	Н	$-(CH2)2-C- \bigcirc O - S-CH3$
846	CH-CH2-	2	2	1	-	н	-(CH ₂) ₂ -C
847	C⊢-(CH ₂ -	2	2	1	-	н	$-(CH_2)_2$ - C

Table 1.78

Table !	., 0						
Compd.	R ¹ (CH ₂)	k	m	n :	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
848	CH2-	2	2	1	-	н	$-(CH_2)_2 - CH_3$
849	CH2-	2	2	1	-	н	O O O O O O O O O O
850	CH2-	2	2	1	•	Н	- CH ₂ -S-CH ₃
851	C⊢CH₂-	2	2	1	-	н	- CH ₂ - N- C- N- CF ₃
852	CH2-	2	2	1	-	Н	-CH ₂ -N-CF ₃
853	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-N-
854	C├-{_}-CH2-	2	2	1	-	н	- CH ₂ - N- C- N- CH ₃
855	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
856	CHCH ₂ -	2	2	1 '	-	н	-CH ₂ -N-C-N-C-CH ₃
857	С⊢ СН₂-	2	2	1	-	н	- CH ₂ -N-C-N- OCH ₃
858	CH-2 ⁻	2	2	1	-	н	-CH ₂ -N-C-N-OCH ₃
							· · · · · · · · · · · · · · · · · · ·

Table 1.79

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
859	CH-CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-C1
860	CH-€	2	2	1	-	н	-CH ₂ -N-C-N-CN
861	CH2-	2	2	1	-	. Н	- CH ₂ -N-C-N-
862	CH-€T-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
863	CH2-	2	2	1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
864	CH-2-	2	2	· 1	<u>-</u>	Н	-CH ₂ -N-C-N-OCH ₃
865	CH₂-	2	2	1	-	. Н	-CH ₂ -N-S-CH ₃
866							- CH ₂ -N-S-
867	CH2-	2	2	1	-	н	$-CH_{2}-N+S - CF_{3}$ $-CH_{2}-N+S - CF_{3}$ $-CF_{3}$
868	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-S-CH ₂ CH ₃
869	СН2-	2	2	1	-	н	-CH ₂ -N-S

Table 1.80

							·
Compd.	R (CH ₂)-	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
870	CH₂-	2	2	1	-	н	- CH ₂ - N- S - CH ₃
871	C ├── CH₂-	2	2	1	· -	H	- CH ₂ - N S (CH ₂) ₃ CH ₃
872	CH_CH ₂ -	2	2	1	•	н	- CH ₂ -N-S
873	C⊢√CH₂-	2	2	1	-	H •	- CH ₂ -N-C-O CH ₂ -
874	CH2-	2	2	1	-	н	- cно-с-и—Сі
875	CH₂-	2	2	1	•	н .	- CH ₂ -N-C-CF ₃
876	Br-CH ₂ -	2	. 2	1	-	H	-CH ₂ -N C-CF ₃
877	NC-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
878	O ₂ N-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
879	O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
880	O^O CH₂-	2	2	1	-	н	- CH ₂ - N-C-CF ₃

Table 1.81

. 45.0							
Compd.	R ¹ / _P (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
881	Br CH ₂ -	2	2	1	-	H .	- CH ₂ -N-C-
882	O-O-O-O-12-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
883	CI - CH ₂ -	2	2	1	.* -	н	-CH ₂ -N-C-CF ₃
884	₩с·с-Й—Сиз-	2	2	1	-	н	-CH ₂ -N-C- CF₃
885	H ₃ C-\$ CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃
886	F-CH ₂ -	2	2	1	.	Н .	-CH ₂ -N-C-CF ₃
887	F ₃ C-CH ₂ -	2	2	Í	-	н	- CH ₂ -N-C-CF ₃
888	HO-CH ₂ -	2	2	1	<u>-</u> .	н	-CH ₂ -N-C-CF ₃
·889 -	CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF ₃
890	CH ₂ -	2	2	1		Н	-CH ⁵ -N-C-CL ³
891	CH2−	- 2	2	1	. -	н	-CH ₂ -N-CF ₃

Table 1.82

lable 1	1.8 2						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} + (C$
892	H ₃ CO CH ₂ -	2	2	1	-	н	- CH2- N C- CF3
893	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N-C- CF ₃
894	HO CH_3 CH_2 - CH_3	2	2	1	-	. н	- CH ₂ - N C - CF ₃
895	(CH ₂) ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
896	CN CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
897	HO ₂ C	2	2	1	- .	Н	-CH ₂ -N-C-CF ₃
898	HO ₂ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-CF ₃
899	OCH₃ CH₂-	2	2	1	- .	н	-CH ₂ -N-C-CF ₃
90 <u>0</u>	н₃∞₂с-√-Сн₂-	2	2	1	-	H	- CH ₂ - N C - CF ₃
901	○-CH-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
.902	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃

Table 1.83

Compd. No.	R^2 $(CH_2)_i$	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
903	H ₃ CO CH ₂ - OCH ₃	2	2	1	-	Н	- CH ₂ - N- C-
904	HO CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
905	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
906	(CH ₂) ₃ -	2	2	1	-	н .	- CH ₂ - N- C- CF ₃
907	CH(CH ₂) ₂ -	2	2	1	-	н	CH ₂ -N-C
908	N+C,0 N+C,0	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
909	О Н С-С-СН2-	2	2 .	1	-	Н	-CH ₂ -N-C-CF ₃
910	CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
911	CICH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
912	Br Br CH₂-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
913	H ₃ CO-CH ₂ -	2	2	1	-	H.	CF ₃

Table 1.84

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
914	OH2O-CH2-	2	2	1	-	Н	- CH ₂ -N-C-
915	OH CHCH₂-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
916	. N CH₂-	2	2	1	-	н	CH ₂ -N-C-CF ₃
917	N⊨ CH₂-	2	2	.1	· _	Н	- CH ₂ -N-CF ₃
918	H ₂ CO ₂ C·OH ₂	2	2	1	-	н .	- CH ₂ -N-C-CF ₃
919	H ₃ CCH ₂ -	2	2	1	-	н	- CH ₂ -N-C-
920	OCF₃ CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
921	CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
922	⊳ −сн ₂ -						- CH ₂ - N- C- CF ₃
923	CH-O-CH-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
924	H ₂ N-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃

Table 1.85

. 20.0	1.00						
Compd.	R ¹ /(CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
925	H ₂ N-C	2	2	1	<u>-</u>	н	-СH ₂ -N-С-СБ3
926	CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
927	F ₃ CO —CH ₂ -	2	2	1	7	н	-CH ₂ -N-C-CF ₃
928	F ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
929	H ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
930	CH₃ −CH₂−	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
931	NC —CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-⟨CF ₃
•	NO ₂					Н	-CH ₂ -N-C-CF ₃
933	CH-CH-	2	2	1	-	Н	CH ₂ -N-C-CF ₃
934		2	2	1	-	н	-CH ₂ -N-C-CF ₃
935	O ₂ N —CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃

Table 1.86

Compd.	R ¹ (CH ₂) _i	k	m	n	chirality	·R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
936	NO₂ CH₂-	2	2	1	-	н	-CH2-N-C-CF3
937	(H ₃ C) ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
938	с⊢√Сн₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
939	O ₂ N CH-2-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
940	OH CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
941	F ₃ C CH ₂ -CH ₂ -	2	2	1	-	Н.	-CH ₂ -N-C-CF ₃
942	с⊢С СН₂-	2	2	1	<u>.</u> .	Н	-CHNC-CF ₃ -CHNC-CF ₃ -CH(CH ₃) ₂ CF ₃
943	C├ - CH ₂ -	1	4	0		Н	-CH ₂ -N-C-CF ₃
944	C⊢(CH ₂ -	1	4	0	-	Н	-CH ₂ -N-C-CH ₃
945	CH2−	1	4	0	- ·	н .	-CH ₂ -N-C-NO ₂
946	CI—(1	4	0		Н	-(CH ₂) ₂ -N-C-NO ₂

Table 1.87

Table 1.07									
Compd.	R ² -(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶		
947	С⊢{_}-СН₂-	1	4	0	-	Н	-(CH ₂) ₂ -N-C		
948	CH-CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-N-CI		
949	C├ \ CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₂ -		
950	С⊢СН2-	0	4	1	-	н	- CH ₂ -N- C-		
951	CH-CH ₂ -	1	2	0	R	н	CH ₂ -N-C С СН ₃		
952 ·	CH-CH ₂ -	1	2	0	R	H _. .	-CH ₂ -N-C-(CH ₃) ₂		
953	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C		
954	CHCH_2-	1	2	0	R [.]	н	-CH ₂ -N-C-\ H ₃ C-NH		
955	CI-CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C- H H ₃ C-NH		
956	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C		
957	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OH		

Table 1.88

						•	
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
958	СН ₂ -	.1	2	0	R	н	-(CH ₂) ₂ -N-C-
959	CI—CH₂-	1	. 2	0	R	H	-CH ₂ -N-C-CH ₃
960	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CH ₃
961	CH-CH ₂ -	1	2	0	R	н	-CH2-N-C
962	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-CH ₃
963	CH_CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-С-ОН
964	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H C- CO ₂ CH ₃
965	CHCH ₂ -	1	2	0	Ŗ	н	-(CH ₂) ₂ -N-С-С-Д-Ф ₂ СН ₃
966	CH-CH ₂ -	1	2	0	R	Н	-сн ₂₋ н с-сн ₃
967	CH2-	1	2	0	R	H .	-(CH ₂) ₂ -N-C-CH ₃
968	C ⊢ CH ₂ -	1	2	0	R	н	-CH2-N-C-NH

Table 1.89

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p
969	с⊢ СН₂-	1	2	0	R	н	-(CH ₂) _Z -N-C-NH
970	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\) N(CH ₃) ₂
971	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-\(\sigma\).
972	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NH ₂
973	C ├── CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C-
974	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\\ -CH ₂ -N-C-\\ H
975	C ├── CH ₂ -	1	2	0	Ŗ	Н .	-(CH ₂) _Z -N-C-\(\bigc\)-NH ₂
	CH_CH₂-			•	R	н	-CH ₂ -N-C-\NH
977	С⊢-{	1	2	0	R	H	-(CH ₂) ₂ -N-C-NH
978	CH-CH ₂ -	1	2	0	R	Н	-CH2-N-C-NH
979	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH

Table 1.90

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
980	C├-{_}- CH₂-	1	2	0	R	·н	-CH2-N-C-CH3
981	CI—CH₂-	1	2	. 0	R	н	-(CH ₂) ₂ -N-C-CH ₃
982	CH-√_CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
983	CH-CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C- H (H ₃ C) ₂ N
984	CF————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-CCH ₂ OH
985 [.]	CH-CH ₂ -	. 1	2	0 .	R	Н	-(CH ₂) ₂ -N-С-С-С-СН ₂ ОН
986	CHQ-CH-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
987	CH-CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
988	СНСН2-	1	4	0	-	н	-CH2-N-C-CF3
							-CH ₂ -N-C-O-CH ₂ -
990	C├ - CH ₂ -	1	4	0	-	н	-сн ₂ -N-с-

Table 1.91

Compd. No.	R (CH ₂) _j -	k	m	n	chirality ·	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
991	CH√2-	1	4	0	-	Н	-(CH ₂) ₂ -C-
992	CHCH ₂ -	1	4	0	•	H	$\begin{array}{c} OCH_3 \\ -(CH_2)_2 - C - \begin{array}{c} OCH_3 \\ -OCH_3 \end{array}$
993	CHCH ₂ -	1	4	0	-	н	-(CH ₂) ₂ -C
994	CH2-	1	4	0	-	Н	-(CH ₂) ₃ -C-
995	CH-CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-\OCH ₃
996	CH-CH ₂ -	1	4	0	-	Н	-(CH ₂) ₃ -C-N-CH ₃
997	CHCH ₂ -	2	2	1	-	н	-CHN-C
998	CH-CH2-	2	2	1	-	н	CH ₂ CH(CH ₃) ₂
999	CH-CH ₂ -	2	2	1	-	Ĥ	-CHN-C-CH3 -CH2CH(CH3)2
1000	CHCH2-	2	2	1	-	н .	OHN-C- H OH2CH(CH3)2
1001	C├ - CH₂-	2	2	1	•	н	OCH ₂ CH ₃ -CH-N-C

Table 1.92

· able					•		
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	⁻ R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1002	С├-СН₂-	2	2	1	-	н	R ⁵ OCF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1003	C⊢√ CH₂-	. 2	2	1	-	· H	-CHN-C-CH2CH3 -CH2CH(CH3)2
1004	- CI— CH₂-	2	2	1	-	н	- CH N-C- H CH2CH(CH3)2 OCH3
1005	CH-CH ₂ -	2	.2	1	-	н	-CHN-C- H CH2CH(CH3)2 OCH3
1006	CH-CH ₂ -	2	2	1	- ·	н	OCH ₂ CH ₃ -CH-N-C
1007	CH-CH ₂ -	2	2	1	-	н	OCH ₂ CH ₃ -CH N-C- CH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
1008	CHCH ₂ -	2	2	1	-	H .	- CH-N- C OH-2 (CH ₂) ₂ - G-NH ₂
1009	CH-CH ₂ -	2	2 ·	1	-	н .	CH ₂) ₂ -G-NH ₂
1010	· CH₂-	2	2	1	-	н	(CH ₅) ₂₋ C-NH ₅
1011	C├ - CH ₂ -	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C- OCH ₂ CH ₃
1012	C├ - CH ₂ -	2	2	1	-	н	(CH ₂) ₂ -G-NH ₂ OCH ₃

Table 1.93

Compd. No.	R ¹ / _{R²} (CH ₂) _j -	k	m	n	chirality	Ŕ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1013	с⊢С}-сн₂-	2	2	1		. н	(CH ₂) ₂ -C-NH ₂ OCH ₃
1014	CI-CH ₂ -	2	2	1	-	н	OCH2CH3
1015	CH_CH2-	2	2	1	-	н	OCH ₂ CH ₃ -CH ₂) ₂ -C-NH ₂ OCH ₂ CH ₃ OCH ₂ CH ₃
1016	CH-CH2-	2	2	0	-	н	
1017	CH-CH₂-	2	2	0 ·	-	н	-CH ₂ -N-C-
1018	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1019	с⊢СН₂-	2	2	1		н	-CH ₂ -N-C
1020	CH-CH ₂ -	2	2	1	- ^N	Н .	OCH ₂ CH ₃
1021	CHCH ₂ -	2	2	1	- .	Н	OCH ₂ CF ₃ -CH ₂ -N-C-
1022	C⊢CH₂-	2	2	1	-	н	(S) OCH3 -CH-N-C OCH3
1023	CI—CH₂-	2	2	1	-	Н	(S) Q CH ₂ CH ₃ -CH-N-C-C-CH ₃

Table 1.94

Compd. No.	R ¹ (CH ₂) _j -	ķ	m	n	chirality	[*] R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1024	CI—CH₂	2	2	1	-	Н	(S) Q OCH ₃ -CH-N-C-\ OCH ₃ OCH ₃
1025	CHCH ₂ -	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C
1026	CHCH ₂ -	2	2	1 .	-	н .	(S) OCH ₂ CH ₃ -CH-N-C
1027	CH-CH ₂ -	2	2	1	-	H	(S) OCH ₂ CH ₃ -CH ₃ OCH ₃
1028	CH-CH ₂ -	2	2	1	- ·	Н	(S) QCH ₂ CF ₃ -CH-N-C- H CH ₃ OCH ₂ CF ₃
1029	CH⊋-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C-C
1030	CH-CH ₂ -	2	2	1	- .	н	(S) POCF3 -CHNC-CH3
1031	CH2-	2	2	1	-	. H	(S) OCH ₃ -CH-N-C-
1032	C	2	2	1	-	Н	(F) OCH ₃ -CH-N-C-CH ₃ CH ₃ OCH ₃
1033	CH-2⁻	2	2	1	-	Н	(F) P CH ₂ CH ₃ -CH-N-C-CH CH ₃
1034	C	2	2	1	-	н	(F) OCH ₃ -CH-N-C-OCH ₃ -CH ₃ OCH ₃
							•

114

Table 1.95

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1035	C├── CH ₂ -	2	2	1	-	н	(FI) Q OCH ₂ CH ₃ -CH-N-C- OCH ₂ CH ₃ -CH ₃
1036	CHCH ₂ -	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C
1037	. с⊢С СН₂-	2	2	1	-	н	(F) OCH ₂ CH ₃
1038	с⊢С сн₂-	2	2	1	-	н	(F) OCH ₂ CF ₃ · OCH ₂ CF ₃ · OCH ₂ CF ₃
1039	CH-CH ₂ -	2	2	1.	-	н	(F) OCH ₂ CH ₃ -CH-N-C-C-CH ₃ CH ₃
1040	C├ - CH ₂ -	2	2	1	-	н	(FI) OCF3 -CH-N-C-H H CH ₃
1041	C	2	2	1	-	н .	(H) OCH3 -CH-N-C-
1042	CH-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1043	C	2	2	1	-	н	$-CH_2-NC$ H_2N
1044	CH-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1045	CHCH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{3}$ $-CH_{2}-N-C$ $H_{2}N$

Table 1.96

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1046	С⊢√_СН₂-	2	2	1		H.	-CH ₂ -N-C-
1047	CHCH ₂ -	2	2	. 1	- .	Н	-CH ₂ -N-C-CH ₃
. 1048	CH-CH ₂ -	2	2	1	-	H .	$-CH_2-N-C \longrightarrow OCH_3$ $H_2N OCH_3$
1049	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1050	CH2-	2	2	1	<u>-</u> .	н .	(S) Q OCH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₃
1051	CH	2	2	1	-	H	(S) Q CH ₂ CH ₃ -CH-N-C- H H CH ₂ CH(CH ₃) ₂
1052	C ← CH ₂ -	2	2	1	· •	н	(S) Q OCH ₃ -CH-N-C OCH ₃ H OCH ₂ CH(CH ₃) ₂ OCH ₃
1053	CH⊋-	2	2	1	-	H	(S) OCH ₂ CH ₃ -CH-N-C
1054	C	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C
1055	CH⊋-	2	2	1	-	н	(S) P OCH ₂ CH ₃ -CH-N-C
1056	C⊢√_CH2-	2	2	1	•	Н	(5) OCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃

Table 1.97

Table I							
Compd.	R1 (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1057	CHCH_2-	2	2	1	<u>-</u>	.Н	(F) Q OCH₂CH₃ -CH-N-C- OCH₂CH₃ -CH-CH(CH₃)₂
1058	CH-CH ₂ -	2	2	1	-	н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
1059	CH-CH ₂ -	2	2	1	-	H	(S) OCF ₃ -CH-N-C
1060	CH-CH ₂ -	2	2	1	-	H	(FI) OCH ₂ CH ₃ -CH-N-C
1061	С⊢-{-}-СН₂-	2	2	1	-	H	(F) OCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
1062	С⊢-{	2	2	1	-	н	(S) Q OCH ₂ CH ₃ -CH-N-C CH ₂ CH(CH ₃) ₂
1063	CH-CH2-	2	2	1	-	н	(F) OCH ₃ -CH-N-C
1064	С⊢СН₂-	2	2	1	-	н	(F) P OCF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1065	CH-CH ₂ -	2	2	1	-	Н	(A) OCH3 -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH3
1066	C├─ \ CH ₂ -	2	2	1	-	н	(A) CH ₂ CH ₃ -CH-N-C-CH-N-C-CH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1067	C├ ~ CH₂-	2	. 2	1	-	H ·	(H) OCH ₃ -CH-N-C

Table 1.98

CH ₂) _ G-R ⁶
OCH ₂ CH ₃ OCH ₂ CH ₃
OCH ₂ CH ₃
S SCH
H ₃ O C(CH ₃) ₃
€. (1) (2) (3)
ocf,
NO ₂
○ -CF ₃
H _z
·

Table 1.99

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	· R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1079	CH-CH2-	2	2	1	-	н	-CH-N-C-CH ₃
1080	CH-CH ₂ -	2	2	1	-	, н	OH ₂ OCH ₂ CH ₃
1081	C⊢√CH₂-	2	2	1	-	Н	OCH3 OCH3 OCH3
1082	CH2 ⁻	2	2	1	~	Н	(S) P - CH+N-C-
1083	CH-CH ₂ -	2	2	1	-	н	CH-N-C-C
1084	CHCH ₂ -	1	2	0	R	Н ·.	$-CH_2-N-C$ H_2N
1085	CH-√CH₂-	1	2	0	R	н	$-CH_2 \xrightarrow{N-C} \xrightarrow{NO_2} H_2N$
1086	C├ ~ CH ₂ -	1	2	0	R	н .	$-CH_2-NCC-$ H_2N
1087	CH2-	1	2	0	R	н	-CH ₂ -N-C-N-C-N-
1088	CH-CH ₂ -	1	2	0	R	Н	-сн ₂ -N-С-С
1089	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C
					•		

Table 1.100

Compd. No.	R ¹ >-(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1090	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1091	CH-CH ₂ -	1	2	0	R	н	-CH ₂ CH ₂ -N-C-
1092	CHCH ₂ -	1,	2	0	R	н	$-CH_2CH_2-N-C-$ H_2N
1093	CH-CH₂-	1	2	0	R	н	$-CH_2CH_2-N-C$ H_2N
1094	C├ - CH ₂ -	1	2	0	R	·. Н	-CH ₂ CH ₂ -N-C-N-H
1095	C⊢-€	1	2	0	Ŗ.	H	-CH2CH2-N-C-
1096	C├─ \ CH ₂ -	1	2	0	R	Н	-CH ₂ CH ₂ -N-C-N-H-F
1097	CHCH ₂ -	1	2	0	R	н	-CH2CH2-N-C-C-W
1098	CI—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1099	C⊢CH₂-	1	2	0	R	н	-CH ₂ -N-C
1100	C├ - CH ₂ -	1	2	0	R	Н	$-CH_{2}-N \cdot C \longrightarrow F$ $-CH_{2}-N \cdot C \longrightarrow F$

Table 1.101

1 abic 1	.,						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. H3	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- G^- R^6$
1101	C⊢√}CH₂-	1	2	0	R	H	-CH ₂ -N-C
1102	CH2-	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1103	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1104	H ₃ CCH ₂ - ′	1	2	0	R	н	-CH ₂ -N-C
1105	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI
1106	H₃C-√CH₂-	1	2	0	R	Н .	-CH ₂ -N-C-CH ₃
	H ₃ C-CH ₂ -						-CH ₂ -N-CNO ₂
1108	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-Br
1109	CH ₃ N—CH ₂	1	2	0	R	H	-CH ₂ -N-CF
1110	CH₃ N—CH₂- CH₃	· 1	2	0	R	н	-CH ₂ -N-C-F
1111	CH₃ CH₃	1	2	C) R	H .	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{3}$

Table 1.102

	·						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1112	CH ₃ CH ₂ - CH ₃	1	2	0	R	н .	-CH ₂ -N-CNO ₂
1113	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C- H
1114	C├ ~ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1115	CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
1116	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- CH ₃
1117	CHCH ₂ -	2	. · . ·	1	-	н	-CH ₂ -N-C-NO ₂
1118		1	2	0	R	н	-CH ₂ -N-C-CF ₃
1119	H₃CS-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1120	H ₃ CO — CH ₂ - OCH ₃	1	2	. 0	R .		-CH ₂ -N-C-CF ₃
1121	H ₃ C O ₂ N — CH ₂ - (H ₃ C) ₂ CH — CH ₂ - CH(CH ₃) ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1122	H3G (H3C)2CH-CH2- CH(CH3)2	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.103

Compd.	R ¹ (CH ₂),—	k	m	n	chirality	'R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $-G$ $-R^6$
1123	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1124	O ₂ N_O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1125	C⊢-{CH₂-	2	2	1	-	н	- CH- N-C- CI CH_2O CH_2
1126	C⊢-{¯}-CH₂-	2	2	1	-	н	-CH-N-C
1127	CH-CH₂-	2	2	1	-	н	-CHNC-NH CH2OCH2
1128	CH- (CH ₂ -	2	2	1	-	H	-CH-N-C-CF3 OH ₂ OCH ₂ -CF3
1129	CH	.2	2	1	-	Н	-CH-N-C
1130.	C⊢-⟨	2	2	1	-	н	-CH-N-C
1131	C├ - CH₂-	2	2	1	-	H .	- CH- N-C
1132	C├ - CH ₂ -	2	2	1	-	. H	OH ₂ O CH ₂ -CF ₃
1133	H ₃ CO — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.104

Table	1.104			_			
Compd.	R ² (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}} - R^6$
1134	H ₃ CO — CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1135	O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1136	H ₃ CO	1	2	0	R	н	-CH ₂ -N-C
1137	CH ₂ − Br	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1138	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1139	(CH ₂) ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1140	O ₂ N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1141 .	-CH ₂ -	1	2	0	R	H 	-CH₂-N-C-CF3
1142	CH ₂ -	1	2	0	R		-CH ₂ -N-C- CF ₃
1143	OH2O CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1144	CH ₂ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.105

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1145	H ₃ CQ H ₃ CO-CH ₂ - NO ₂	1	2	0	R	Н .	-CH₂-N-C-CF3
1146		1	2	0	R	н	-CH ₂ -N-C-CF ₃
1147	4c-c-H CH2	1	2	0	R	Н	-CH ₂ -N-C
1148	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃
1149	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C
1150	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH₂-N-G-CH₂CH₃
1151	CH ₃ CH₂− CH₃					Н .	-CH ₂ -N-C-CH ₂ -CF ₃
1152	CH₃ N CH₂- CH₃	1	2	0	R	н.	-CH ₂ -N-C-N-H
	J3						-CH ₂ -N-C-N-H
1154	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1155	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N_1-CH_3$ F_3C

Table 1.106

lable	1.100		_			_	
Compd. No.	R ¹ (CH ₂)-	k	m	п	chirality	[°] R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1156	CH ₃ CH ₂ - CH ₃	1	2	0	Ŕ	н,	-CH ₂ -N-C-(CH ₃) ₃
1157	CH ₃ CH ₂ - CH ₃	1	2	Ó	R	н	-CH ₂ -N-C-SSCH ₃
1158	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	$-CH_2-N-C-$ H_2N CI
1159	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$
1160	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C
1161	OH H₃CO—CH₂-	1	2	0.	R	н	-CH ₂ -N-C-CF ₃
1162	H ₃ CO—CH ₂ —CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-⟨ CF ₃
~	H ₃ CO-CH ₂ -						-CH ₂ -N-C-CF ₃
1164	H ₃ CO—CH ₂ —	1	2	0	R	н	$-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{3}-N+C-$ $-CF_{3}$ $-CH_{2}-N+C-$ $-CF_{3}$
1165	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1166	H ₃ CO—CH ₂ -	1,	2	0	R	н	-CH ₂ -N-C-CF ₃
							•

Table 1.107

					•		
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	K3	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1167	C ⊢ CH₂-	2	2	1		н	-CH ₂ -N-C-
1168	Cl N CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1169	н ₃ С-С СН ₂ - СН ₂ - СН ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1170	CH₂-	1	2	0	R	Н	-СH ₂ -N-С-С _Б
1171	CH-CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C
1172	C├─ \ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-N-H
1173	C├─ (CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-N-H-OCH ₃
1174	CH-2-	1	2	0	R.	н	$-CH_2-NC-$ H_2N
1175	H ₃ C-CH ₂ -	1	2	0	R .	н	· −CH₂−N-C−−Br
1176	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-H
							-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-

Table 1.108

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1178	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1179	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1180	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-N-C-N-H
1181	CH₃ CH₂- CH₃	. 1	2	0	R	н	-CH ₂ -N-C
1182	CH ₃ CH₂− CH₃	1	2	0	. R	н	-CH ₂ -N-C-N-H
1183	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1184	CH ₃ CH ₂ − CH ₃	1	2	0	R	H	$-CH_2-NCC \longrightarrow H_2N$
1185	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
							-CH ₂ -N-C-N-C-N-H
1187	C	2	2	1	<u>.</u>	н	-CH ₂ -N-C- CH ₃ Br
1188	CH-CH2-	2	2	1	•	H .	-CH ₂ -N-C

~			4	-	^	^
Ta	n	10	1	7	ы	ч
					v	•

	1.103						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R [€]
1189	C├ ~ CH₂-	2	2	. 1	-	Н	-CH ₂ -N-C-N-H-N-H-N-N-N-N-N-N-N-N-N-N-N-N-N-N
1190	CH-CH2-	. 2	2	1	-	н	-CH ₂ -N-C
1191	CH ₃ CH ₂ - CH ₃	1	2	.0	R	н	-CH ₂ -N-C-CF ₃
1192	CH₃ N — CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1193	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1194	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	$-CH_2-N-C$ F_3C
1195	CH ₃ CH ₂ - CH ₃					Н	-CH ₂ -N-C-
1196	CH ₃ CH ₃					-	-CH ₂ -N-C-\(\sigma\)
	CH₃ CH₃ CH₃						-CH ₂ -N-C- H F
	CH ₃ CH ₂ -					н	-CH ₂ -N-C-CH ₃
1199	CH ₃	1	2	0	R	н	-CH ₂ -N-C-

Table 1.110

Table	,,,,,,						
Compd.	R (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
	CH ₃ CH ₂ - CH ₃	•				н	-CH ₂ -N-C CI
1201	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-F
1202	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1203	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1204	H ₃ C-CH ₂ -	1	2	0	R	н -	-CH ₂ -N-C-CF ₃
1205	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	R	н	-CH₂-N-C-
1206	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1207	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H
1208	H ₃ C- € CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI
1209	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CH ₃
1210	H ₃ C	1	2	0	R	. н	-CH ₂ -N-C-CI

Table 1.111

Compd.	R ² (CH ₂);	k	m	n	chirality	·R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1211	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1212	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1213	CI—CH₂-	2	2	1		н	$-CH_2-N-C-$ F_3C
1214	CH-CH ₂ -	2	2	1	-	Н	CH ₂ -N-C
1215	CH-{	2	2	1	-	н	-CH ₂ -N-C-Cl
1216	CH-CH ₂ -	2	2	1	-	. н	-CH ₂ -N-CF
1217	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1218	C├ \ _CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1219	C⊢————————————————————————————————————	1	2	0	R .	н	-CH ₂ -N-C-CI
1220	C├ - CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C-
1221	C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F

Table 1.112

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1222	C	1	2	0	. R	н	-CH ₂ -N-C-N-N-H
1223	C├ ─ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1224	с⊢СН₂-	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1225	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C- CI
1226	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1227	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI
1228	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-NC - O $ H_2N
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C-F H H ₂ N
1230	H ₃ C-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-\ H
1231	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1232	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.113

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1233	CH₃ CH₂− CH₃	1	2	0	R	Н	-CH ₂ -N-C
1234	CH₃ CH₂−	1	2	0	R	Н	-CH ₂ -N-C
1235	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH2-N-C-CI
1236	CH₃ CH₂−	1	2	0	R	Н	-CH ₂ -N-C-
1237	CH₃ CH₃		•			н	$-CH_2-NC H_2N$
1238	CH₃ CH₂− CH₃					Н	-CH₂-N-C-N-CH₃
1239	CH₃ CH₃	· 1	2	.0	R	н	-CH2-N-C-
1240	CH³	1	2	0	R	· Н	-CH ₂ -N-C-→NO ₂
1241	CHCH2-	2	2	1	-	н	-CH ₂ -N-C
1242	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1243	CHCH ₂ -	2	2	1	-	Н	O CH₃ -CH₂-N-C-CI

Table 1.114

Table I							
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	—(CH ₂) _p
1244	C⊢CH₂-	2	2	1	-	н	$-CH_2-N$ C H_2N
1245	С⊢—СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
1246	C⊢√_CH₂-	2	2	1	-	н	-CH ₂ -N-C-(N-CH ₃)
1247	с⊢(сн₂-	2	2	1	-	н	-CH ₂ -N-C-
1248	с⊢—СН₂-	2	2	1		н	-CH ₂ -N-C-√NO ₂
1249	с⊢{	1	2	0	R	н	-CH ₂ -N-C
1250	H ₃ C	1	2	0	R	H	-CH ₂ -N-C
1251	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1252	CH2−	1	2	0	R	. н	-CH ₂ -N-C-CH(CH ₃) ₂
1253	H₃C-⟨	1	2	0	R	Н	-CH ₂ -N-C-CH(CH ₃) ₂
1254	CH ₃ N→CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-⟨CH(CH ₃) ₂

Table 1.115

·abic	1.115						
Compd.	R ¹ /(CH ₂)j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1255	C├ - ⟨	1	2	0	R	н	$-CH_2-N-C- \longrightarrow_{H_2N} Br$
1256	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1257	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1258	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1259	CH ₃ CH ₂ - CH ₃	1	2	0	R ·	H	-CH ₂ -N-C-
1260	H ₃ CCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1261	C⊢-(CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-O H ₃ C
1262	H ₃ C-⟨CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1263	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
.1264	C├ - CH ₂ -	1	2	0	R	Н	-CH2-N-C
1265	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N·C

Table 1.116

labic							
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1266	CH ₃ CH ₂ -	1	2	0	R	н	-CH2-HC-10
1267	CH-2-	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1268	CH2-	1	2	0	R	н	-CH ₂ -N-C
1269	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1270	CH2-	1	2	ó	R	H	-CH ₂ -N-C- HO
1271	С⊢—СН₂-	1	2	0	R	Н	-CH ₂ -N-C-F
1272	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-H-OCF ₃
1273	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
	H ₃ C-CH ₂ -						-CH₂-N-C-
1275 -	H₃CCH₂-	1	2	0	R	н.	-CH₂-N-C- HO
1276	H ₃ C-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C

Table 1.117

	•						
Compd No.	· R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1277	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1278	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
	CH ₃ N CH ₂ - CH ₃					н	-CH ₂ -N-C Br H HO
	CH₃ N CH₂- CH₃					н	-CH₂-N-C- HO
1281	CH ₃ CH ₂ − CH ₃	1	. 2	0	R	н	-CH ₂ -N-C
1282	с⊢Ср−сн₂-	2	2	1	-	н	-CH ² -N-C-N-COCF ³
1283	C⊢()-CH₂-	2	2	1	-	н	-CH ₂ -N-C
1284	C⊢—CH₂-	2	2	1	-	н	−CH ₂ −N-C−√Br H HO
1285	C⊢√CH₂-	2	2	1		Н	-CH ₂ -N-C
1286	H ₃ ¢ N(OH ₂) ₃ O———OH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1287	O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.118

Compd.	R ² (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1288	HQ H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1289	CH₃ N CH₂- CH₃	1	2	0	R	н	$-CH_2-N-C- \longrightarrow 0$ H_2N
1290	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	$-CH_2-NC-CH_3$ H_2NCH_3
1291	H ₃ C-⟨CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N H
1292	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N Br
1293	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1294	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
1295	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1296	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-SSCH3
1297	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1298	H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.119

Compd.	R ² (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1299	H ₃ CO H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1300	OCH ₃ H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1301	OCH ₃ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1302	H ₃ C CH ₃ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1303	H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1304	H ₂ CQ CH ₂ O-CH ₂ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1305	H ₃ CO-CH ₂ -	1	2	0	R	н .	-СH ₂ -N-С-СБ3
1306	H₃CCH₂Q H₃CO—CH₂-	1	2	0	R	Н	-СH ₂ -N-С-СБ ₃
1307	H ₃ CO CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	CH₂-						-CH ₂ -N-C-CF ₃
	H ₃ CQ H ₃ CO→CH ₂ -						-CH ₂ -N-C-CF ₃

Table 1.120

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{{p}} + (CH_2)_{{q}} G - R^6$
1310	H ₃ CO HO———————————————————————————————————	1	2	0	R	H .	-СH ₂ -N-С-СF ₃
1311	O^O → CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	I 	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1313	Br CH ₂ -	1	2	0	R		-CH ₂ -N-C-CF ₃
1314	O ₂ NCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1315	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1316	F ₃ C CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1317	O ₂ N CH ₂	1	、2	0	R	н	-CH ₂ -N-C-CF ₃
	CH2-						-CH ₂ -N-C-CF ₃
1319	CH2-	1	2	0	R	н	-CH2-N-C-CF3
1320	Br-CH ₂ -	1	2	0	R	H,	-CH ₂ -N-C-CF ₃
•							·

Table 1.121

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1321	С⊢_СН₂-	1	2	. 0	R .	н	-CH ₂ -N-C- CI
1322	C├ - CH₂-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1323	CH-CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C
1324	C├ \ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C CH ₃
1325	CH_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1326	C	. 1	2	0	R	н	-CH ₂ -N-C-
1327	CHCH2-	1	2	0	R	н	$-CH_2-N$ - C - H_2N
1328	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-CSr H
1329	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CH ₃
1330	H ₃ C-\	1	2	0	R	н.	-CH ₂ -N-C
1331	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.122

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	-(CH ₂) _p +5 (CH ₂) _q -G-R ⁶
1332	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1333	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1334	H ₃ C-CH ₂ -	1	2	0	· R	H	$-CH_2-N C \longrightarrow H_2N$
1335	CH ₃ CH ₃	1	2	0	R .	н	-CH ₂ -N-C-✓ Br
1336	CH ₃ N CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1337	CH ₃ N—CH ₂ − CH ₃	1	2	O	R	н	-CH ₂ -N-C-CI
1338	CH ₃ N—CH ₂ − CH ₃					н	-CH ₂ -N-C
1339	CH ₃ N—CH ₂ − CH ₃						-CH ₂ -N-C-
1340	CH ₃ · N CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1341	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1342	CHCH ₂ -	. 2	2	1	-		-СH ₂ -N-С

Table 1.123

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1343	с⊢—СН₂-	2	2	1	<u>-</u>	H	-CH ₂ -N-C-CH ₃
1344	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
1345	C├ - ⟨}CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-
1346	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1347	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-STCH ₃
1348	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-STCH ₃
1349	CH ₃ CH ₂ - CH ₃	1	2	0	R .	н	-CH ₂ -N-C-S CH ₃
	CH-CH ₂ -				-	Н	-CH ₂ -N-C-S CH ₃
1351	С-СН2-	1	2	0	R	Н	-0+2-H C-0+2
1352	H ₃ C-CH ₂ -	1	2		R ·	н	-012-H.C-012
1353	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-042-HC-042

Table 1.124

Compd. No.	R ¹ / _{CH₂),-}	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1354	C├ - CH ₂ -	2	2	1		н	, -045-ll c-013
1355	CH_CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1356	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N+C-$ H_2N
1357	CH ₃ CH ₂ CH ₃	1	2	0	R	н	$-CH_2-N-C H_2N$
1358	CH-CH3-	2	2	1	-	Н	$-CH_2-N$ - CN H_2N
1359	CH ₃ CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-
1360	CH₃ N CH₂- CH₃	1	2	0	R	H	-CH ₂ -N-C-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃
	H ₃ C-CH ₂ -						-CH ₂ -N-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
1362	CH ₃ CH ₂ CH ₃	1	2	0	R	· H	-CH ₂ -N-C-CH ₃
1363	CH₃ CH₂- CH₃	1	¸2	0	R	Н	-CH ₂ -N-C-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃
1364	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C-CH3

Table 1.125

	• -						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1365	CH ₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1366	CH₃ CH₃	1	2	0	R	H	$-CH_2-N-C-CH_3$
1367	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1368	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1369	C⊢√CH2-	1	2	0	R	н	-CH ₂ -N-C
1370	CH-2-	1	2	0	R	н	-CH ₂ -N-C-S Br
1371	с⊢{сн₂-	1	2	0	R	н	-CH ₂ -N-C-
1372	CH-CH2-	1	2	0	R	н	-CH2-N-C-
1373	H ₃ CCH ₂ -	1	2	. 0	R	Н	-CH ₂ -N-C-CI
1374	H ₃ CCH ₂ -	1	2	0	R	Н	OCH ₂ CF ₃
1375	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH₂-N-C-\S Br

Table 1.126

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1376	H₃C-⟨	1	2	0	R	Н	-CH2-N-C-
1377	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1378	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1379	CH ₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C
1380	CH ₃ CH₂- CH₃	1	2	0	R ·	н	-CH ₂ -N-C-S Br
1381	CH ₃ CH ₂ - CH ₃	. 1	2	0	R	н	-CH ₂ -N-C-
1382	CH ₃ CH₂− CH₃	1	2	0	R	н	-012-HC-
1383	CH	2	: 2	1	-	н	-CH ₂ -N-C-CF ₃
1384	C	2	2	1	-	H	-CH ₂ -N-C-S Br
1385	C├ - CH ₂ -	2	2	1.	-	Н	-CH ₂ -N-C-
1386	CH-{	2	2	1	-	н	-01 ⁵ -H _C -

Table 1.127

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1387	CH₃ CH₃ CH₃	1	2	0	R	н	-CH ₂ -N-C-
1388	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-\ N-N CC(CH ₃) ₃ -CH ₃ -N-C-\ CH ₃
	CH ₃					Н	-CH ³ -M-C-√NO
1390	H_3C CH_3 H_3C CH_2 CH_3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1391	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1392	C H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1393	H ₃ CCH ₂ —CH ₂ -	1	2	0	R .	н	$-CH_2-NC-$
1394	O ₂ N	1	2	0	R	н	$-CH_2-N$ C CF_3
•	H ₂ C=CH-CH ₂ -						-CH ₂ -N-C-CF ₃
1396	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1397	Br—CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.128

·abic	1.120						
Compd.	R ¹ /(CH ₂)/	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1398	CH-CH-CH-	1	2	0	R	н	CH ₂ -N-C-CF ₃
1399	CH—CH-CH-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1400	с⊢сн-	1	2	.0	R	н	-CH ₂ -N-C
1401	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\ N H
1402	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCH ₃ H H ₂ N OCH ₃
1403	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1404	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\\
1405	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1406	H ₃ C-CH ₂ -	1	2	0	R	н	-сн ₂ -№-с
1407	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N H ₃ CCH ₂ S
1408	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-√N
							/

Table 1.129

Compd. No.	R ¹ (CH ₂) _j	k	m	n (chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G^{-R^6}$
1409	H ₃ C-CH ₂ -	1	2	0 (R	н	-CH ₂ -N-C-CH ₃
1410	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1411	CH-CH2-	1	2	0	R	н	-CH2-NHC-
1412	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH H ₃ C-C-NH
1413	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-C-NH
1414	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1415	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCN H ₂ N
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C-SCN H ₂ N
1417	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1418	С⊢-{}СН₂-	2	2	1	· •	н	$-CH_2-N$ H_2N SCN H_2N SH
1419	ССН2-	1	2	0	R	н	-CH ₂ -N-C-SH

Table 1.130

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $G-R^6$
1420	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SH H ₂ N
1421	CH ₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-SH
1422	C⊢(2	2	1		н	-CH ₂ -N-C-SH H ₂ N
1423	C├ \ CH ₂ -	1	2	0	R	н	-СH ₂ -N-С-(-)
1424	H ₃ C-CH ₂ -	1	2	0	R	Н .	-CH ₂ -N-C
1425	CH₃ CH₃	1	2	0	R .	Н	-CH ₂ -N-C-
1426	C├ ─ CH ₂ -	2	2	1		н	-сн ₂ -N-с-
1427	CI—(CH₂-	2	2	1	~	н .	-CH ₂ -N-C-S
1428	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1429	ньссн₂о-{_} сн₂-	2	2	1	-	н	$\begin{array}{c} H \\ (H_3C)_2N \\ -CH_2-N-C \\ H_2N \end{array}$
1430	O-CH₂-	2	2	i	-	н	-CH ₂ -N-C

Table 1.131

	•						
Compd.	R ¹ /(CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $G-R^6$
1431	њссн₂о-{_}-сн₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N
1432	CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N Br
1433	њссн₂о-{_}_сн₂-	2	2	1	-	Н	-сн ₂ -м-с
1434	H3CCH 2O—СН2-	2	2	1	-	Н	-CH2-NC
1435	H ₃ CCH ₂ —CH ₂ -	. 2	2	1	-	н	$-CH_{2}-N-C-$ $H_{2}N$ $H_{2}N$
1436	(HgC)2CH-(2	2	1	-	н	$-CH_{2}-N$ $H_{2}N$ C
1437	ң ₅ С(СН ₂) ₂ О—(С)ОН ₂ -	2	2	1	-	H,	$-CH_2-N$ H_2N
1438	ң₅ссн ₂ —СН ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1439	(HgC)2CH-(2	2	1	-		-CH ₂ -N-C-SBr
1440	ң,с(сн ₂) ₂ о-{¯}-сн ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1441	н₃СS—СН₂-	2	2	1	-		-CH ₂ -N-C
							·

Table 1.132

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1442	н ₃ ССН ₂ —СН ₂ -	2	2	1	-	Н	-CH2-N-CH2CH
1443	(H ₂ C) ₂ CH-(-)-CH ₂ -	2	2	1	-	H ·	-CH2-NC
1444	H ₂ C(CH ₂) ₂ O	2	2	1	-	н	-CH ₂ -NC-O(CH ₂) ₂ CH ₅
1445	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	. Н	-CH2-NC-
1446	(H ₃ C) ₂ 'CH-√-CH ₂ -	2	2	1.	-	н	-CH2-N-C
1447	ңс(сн _{а)2} 0-{}	2	2	1	-	H	-012-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1448	H₃ÇS€CH₂-	2	2	1	-	н .	-CH ₂ -N-C- HN CH ₂ -SCH ₆
1449	ҧссн ₂ ——————сн ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1450	(HgC)2CH-(-)-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1451	(H3CCH3)3N-CH3-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1452	HQ H ₃ CO—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃

Table 1.133

Compd. No.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶
1453	н²с(сн²9²о-⟨}-сч²-	2	2	1	-	Н	-CH2-N-C CF3
1454	H2CCH 2O-CH2-	2	2	. 1	-	н	-CH ₂ -N-C-CF ₃
1455	н ₃ со но—Сн₂-	2	2	1	~	н	-CH ₂ -N-C-CF ₃
1456	O-CH₂-	2	2	1	-	н	-CH ₂ -N-C-√CF ₃
1457	(CH ₃) ₂ N-⟨CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1458	H ₃ CQ .	2	2.	1	-	Н	-CH ₂ -N-C-
1459	(H ₃ C) ₂ N	2	2	1	- '	н	$-CH_2-NC \longrightarrow Br$ H_2N
1460	H ₃ CQ HO−CH ₂ −	2	2	1	-	Н	$-CH_2-NC- \longrightarrow_{H_2N}^{O}$
1461	H ₃ CQ HO-CH ₂ -	2	2	1	-	Н	-CHZ-NC-CHZ-OCH
1462	H ₃ CQ HO————————————————————————————————————	2	2	1 .	· -	н .	-сн ₂ - м с — осн, осн, осн,
1463	CI—CH ₂ -	2	1	1	-	н	-CH2-N-C CF3

Table 1.134

					<u> </u>		
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $-G$ $-R^6$
1464	С├─्रि-СН₂-	2	1	1	-	н	-CH ₂ -N-C-C
1465	С⊢√СН₂-	2	1	1	-	н	-CH ₂ -N-C
1466	с⊢С}-сн₂-	2	1	1	-	н	-CH ₂ -N-C-
1467	CHCH ₂ -	2	1	1	-	н	-CH ₂ -N-C
1468	CHCH_2-	2	1	-1	-	Н	-CH ₂ -N-C
1469	СНСН₂-	2	1	1	-	н	-CH ₂ -N-C-⟨\$\ F
1.470	С⊢—СН₂-	2	1	1		Н .	-CH ₂ -N-C-CI
1471	C├ - CH ₂ -	2	1	1	-	н	-CH ₂ -N-CF
1472	CH ₃ CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1473	Br S-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1474	Br S CH ₂ - CI CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C

Table 1.135

Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p CH ₂) _q G-R ⁶
1475	CH ₂	1	2	0	Я	н	-CH ₂ -N-C-CF ₃
1476	Br S CH ₂ -	1	2	0	. R	H	-CH ₂ -N-C-CF ₃
1477	В СН2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	B O OH2-					н	-СH ₂ -N-С-С-Б
1479	CH ₃ CH ₂ CH ₃	1	2	0	R _.	н	-CH ₂ -N-C-CF ₃
1480	CH ₃	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
1481	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1482	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1483	H ₃ C CH ₂ -	1	2	0	R	,H	-CH ₂ -N-C-CF ₃
1484 c	() S () CH2-	1	2	0	R		-CH ₂ -N-C-CF ₃
1485	H ₃ C-{	1	2	0	R	н	-CH ₂ -N-C-S

Table 1.136

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} G - R^6$
1486	H ₃ C-CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C
1487	H₃C-⟨	1	2	0	R	н	-CH ₂ -N-C-
1488	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C✓
1489	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	R	Н	-сн ₂ -№с
1490	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1491	H ₃ C-CH ₂ -	1.	2	0	R	н	-CH ₂ -N-C-
1492	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N
	CH ₃ CH ₂ - CH ₃					Н	-012 H.c 25
1494	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-Chi
1495	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N H H ₃ C
1496	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-CH ₃ -CH ₃ -N-CH ₃ -CH ₃ -N-CH ₃ -CH ₃ -N-CH ₃ -CH ₂ -N-CH ₃ -CH ₃ -N-CH ₃ -CH ₃ -N-CH ₃ -CH ₃ -N-CH ₃ -CH ₃ -N-CH ₃ -N-CH ₃ -CH ₃ -N-CH

Table 1.137

Compd. No.	R1 (CH2)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2')_{\overline{q}}G - R^6$
1497	CH ₃ CH ₂ -	1	2	0	R	Н	-CH3-V-CH3 CH3
1498	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1499	CH ₃ CH ₃	1	2	0	R	H .	-СH ₂ -N-С√ Н
1500	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1501	CH ₃ CH ₂ - CH ₃	1	2	0	R .	н	-CH ₂ -N-C-
1502	CH ₃ CH ₂ -					н.	-CH ₂ -N-C
1503	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
	H ₂ N-CH ₂ -					н	-CH ₂ -N-C-CF ₃
1505 (CH ₂ O - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Sr
1506	CHCH_2-	2	1	1	-	Н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
1507	C⊢————————————————————————————————————	2	1	1		н	-CH ₂ -N-C

Table 1.138

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1508	C⊢-{_}-CH₂-	2	1	1		Н	-CH ₂ -N-C
1509	C⊢√_CH₂-	2	1	1	-	н	-CH ₂ -N-C-
1510	CH-CH ₂ -	2	1	1		н	-CH ₂ -N-C
1511	CHCH ₂ -	2	1	1	-	н	-CH ₂ -N-C-SBr
1512	C├ - CH ₂ -	2	1	1	-	н	-CH ₂ -N-C-
1513	CH-CH₂-	2	1	1	-	н	-CH ₂ -N-C-
1514	(H ³ CCH ³) ² V	2	2	1	-	н	-CH ₂ -N-C-
1515	HQ H ₃ CO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1516	(H ₃ CCH ₂) ₂ N-CH ₂ -	2	2	1 .	-	н	-CH ₂ -N-C
1517	HQ . H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $H_{2}N$ $-CH_{2}-NC$ CI
1518	HQ H ₃ CO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.139

	·						
Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1519	H ₃ CO-CH ₂ -	2	2	1	-	Ħ,	-ch2-hcoch
1520	В-СН ₂ -	1	2	0	R	Ħ	-CH ₂ -N-C-
1521	H ₃ CO-CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-Br
1522	CH₂-	1	2	0	R	н	-CH ₂ -N-C-Br
1523	H ₃ CO—CH ₂ -	1	2 ·	0	R	н	-CH ₂ -N-C-Br
1524	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1525	Br—CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-
1526	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C
	СH ₂ -						-CH ₂ -N-C
	H ₃ CO————————————————————————————————————						-CH ₂ -N-C-C-C-C-S
1529 ,	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.140

Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1530	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1531	H₃CO-€	1	2	0	R	н	-сн ₂ -N-с-С _Б
1532	CH₂-	1	2	0	R	н˙	-CH₂-N-C- H F
1533	H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-√CF ₃
1534	H ₃ CQ HO-CH ₂ -	1	2	O	R	н	-CH ₂ -N-C- H F
1535	Br—CH₂−	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
1536	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1537	0-√CH ₂ -	1	2	0	R	Н .	-CH ₂ -N-C-CF ₃
1538	H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1539	H ₃ CQ HO−CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1540	8r—CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CF_{3}$ $-CH_{2}-N-C-$ $+CF_{3}$ $-CF_{3}$ $+F$
	•						

Table 1.141

Compo	d. R ¹ /(CH	12)[-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
1541	н₃со-{	−СН ₂ −	1	2	0	R	Н	-CH ₂ -N-C
1542		CH₂-	1	2	0	R	н	-CH ₂ -N-C-F
1543	H ₃ CQ	-C H ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1544	H ₃ CQ	Сӊ <u>²</u> –	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1545	CL_S_CI	H ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1546	H ₃ CO-FF	CH₂−	1	2	0	R	н	-сн ₂ -N-С-С-С-Г3
1547	H ₃ CO	CH₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1548	H ₃ C-(:H ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1549	H ₃ C-\C	H ₂ –	1	2	0	R	Н .	-CH ₂ -N-C
1550	H ₃ C-C	H ₂ -	1 :	2	0	R	н	- CH2-H2-C-H3-CCH3
1551	н₃с-{}-сі	H ₂ -	1 ;	2	0	R	Н	-сн2- И с

Table 1.142

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1552	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1553	H ₃ C-CH ₂ -	1	2	0	R	н	-0+3-Hc-10
1554	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1555	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-VN H ₃ C
1556	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\Q H ₃ C
1557	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-V_N \\ + G_3$
1558	H ₃ C-CH ₂ -	1	2	0	R	·H	-CH ₂ -N-C- H H ₃ C N=N CH ₃
1559	H ₃ C-CH ₂ -	· 1	2	0	R	н	-CH ₂ -N-C-NN H ₃ C
1560	H ₃ C	1	2	0	R	н	-CH2-N-C-NO
1561	H ₃ C-{	1	2	0,	R	н	$-CH_2-NCC-CH_3 \\ -CH_3 \\ CH_3$
1562	H ₃ C-CH ₂ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C

Table 1.143

Compd.	R ² (CH ₂) _j	k	m	n	chirality	· R³	$-(CH_2)_{p} + \frac{R^4}{CH_2} (CH_2)_{q} - G^6$
1563	H ₃ C-CH ₂ -						-cn-hç-
1564	H₃C-{_}-CH₂-	1	2	Ó	R	н	-c+2-Hc-
1565	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C
1566	CH ₃ CH ₂ - CH ₃				R	н	-CH ₂ -N-C
1567	CH ₃ CH ₂ - CH ₃				R	н	-CH2-NC
1568	CH₃ CH₂− CH₃			٠		н	-012-17 C
1569	CH₃ CH₂-	1	2	0	R	н	-cH ₂ -N-c
1570	H₃CS-⟨}-CH₂-	2	2	1	-	н	-CH ₂ -N-C-
1571	H ₃ CS-CH ₂ -	2	2	1	-	н	H ₂ N -cH ₂ -N-C
1572	~ CHC-{-CH-2	2 .	2	1	-	н	-CH ₂ -N-C-CF ₃
1573	н,co	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.144

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\rho} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1574	H°C-{}_}; C-{}_C-CH-	2	. 2	1	-	Н	-CH ₂ -N-C-CF ₃
1575	с	2	2	1.	-	Н	-CH ₂ -N-C-⟨ CF ₃
1576	Q_V+C-{	2	2	1	-	Н	-СH ₂ -N-С-СF ₃
1577	но(сн.) 2-14 с	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1578	H ² C - CH ² -	2	2	1	·	Н	-CH ₂ -N-C-CF ₃
1579	CH ₃ P N C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1580	O-H-C	2	2	1	-	H	-CH ₂ -N-C-CF ₃
1581	CH-CH2-	2	2	1	<u>-</u>	Н	- CH ² - H C - NH
1582	CHCH ₂ -	2	2	1	-	н	-01-HC-8 W
1583	CHCH_2-	1	2	0	R	Н	-CH ₂ -N-C
1584	CH-CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$

Table 1.145

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G-R^6$
1585	CHCH ₂ -	. 1	2	0	·R	H	-CH ₂ -N-C-
1586	СН-СН2-	·1	2	0	R	н	-CH ₂ -N-C-\ N=\ CI
1587	с⊢{сн₂-	1	2	0	R	Н	-CH ₂ -N-C-
1588	СН-СН2-	1	2	0	R	Н	-CH ₂ -N-C-
1589	H ₃ C-CH ₂ -	1	2	0	R	.	-CH ₂ -N-C-C-CF ₃
1590	H ₃ C-CH ₂ -	1	2	0	R	н.	$-CH_2-N-C$ H_2N H_2N
1591	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CN-C-N
	H ₃ C-CH ₂ -					H .	-CH ₂ -N-C-N-CI
1593	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1594	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	$-CH_2-N-C \xrightarrow{\qquad \qquad CF_3} H_2N$
1595	CH ₃ CH ₂ - CH ₃	1	2	0	R _.	Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+L_{2}N-C$

Table 1.146

	•						
Compd.	R ² (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{\rho} + (CH_2)_{q} G - R^6$
1596	CH³ CH³-	1	2	0	R	н	$-CH_2-N-C R$ Br
1597	CH₃ CH₂− CH₃	1	2	0	R	н .	-CH ₂ -N-C-\ N=\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	CH ₃					н	-CH ₂ -N-C-
1599	CH ₃ CH ₃	1	2	0	R	Н	-сн ₂ -м-с-
1600	с⊢СН₂-	2	2	1	-	н.	$-CH_2-N-C-$ H_2N
1601	CCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1602	CCH ₂ -	2	2	1	-	н	$-CH_2-NC-$
1603					-	н .	-CH ₂ -N-C-N-CI
1604	CCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1605	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1606	CHCH ₂ -	1	2	0	R	н .	-CH ₂ -N-C

Table 1.147

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1607	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1608	CH₃ CH₃	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1609	С⊢—СН₂-	2	2	1	-	H .	-CH ₂ -N-C-SCF ₃
1610	CF ₃ Q CH ₂ -CH ₂ -	2	2	1	-	. н	CH ₂ -N-C-CF ₃
1611	CI-CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1612	н,со(сн.у- нс	2	2	1	-	H	CH ₂ -N-C-CF ₃
1613	#°~	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1614	F ₃ CS-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1615	F₃CS-⟨¯⟩-CH₂-	2	. 2	1	-	Н	-CH ₂ -N-C-⟨
	F3CS-CH2-						-CH ₂ -N-C-
1617	F3CS-()-CH2-	2	2	1	-	Н	-CH ₂ -N-C-Br

Table 1.148

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}} - R^6$
1618	. HQ H₃CO-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
1619	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-COCF ₃
1620	HQ H ₃ CO—CH ₂ -	1	2	0	R	. H	-CH ₂ -N-C-CF ₃
1621	HQ H ₃ CO—CH ₂ -	1	2	0	Ŗ	Н	-CH ₂ -N-C
1622	HQ H ₃ CO-CH ₂ -	1	2	0	R	Ĥ	-CH ₂ -N-C-CF ₃
1623	HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1624	HO€	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1625	HO{}-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	HO-{						-CH ₂ -N-CF
1627	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1628	H₃CS-{CH₂-	1	2	0	R .	н	$-CH_{2}-NCF$ F $-CH_{2}-NCF$ F

Table 1.149

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶ R ⁵
1629	H₃CS-{}CH ₂ -	. 1	2	0	R	н	CH ₂ -N-C
1630	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1631	H ₂ NCH ₂ —CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C
1632	CF_3 — CH_2 -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1633	H ₃ CS NC	1.	2	0	R .	н	-CH₂-N-C-
1634	(H ₂ C) ₂ CH-√2-0+2-	1	,2	0	R	Н	-CH2-N-C-CF3
1635	H ₃ C-\CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1636	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1637	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-(CH ₂) ₄ CH ₃
1638	CH ₃ CH₂- CH₃	1	2	0	R	н _.	-CH ₂ -N-C-(CH ₂) ₃ CH ₃
							-CH2-LC CH2CH3

Table 1.150

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1640	CH ₃ CH ₂ - CH ₃	1	2	0	R	н.,	-CH ₂ -H-C
1641	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
	CH ₃						$-CH_2-N$ C O_2N
1643	CH ₃ N −CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1644	CH ₃ NP CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1645	CI CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1646	Br O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1647	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1648	H ₃ C(CH ₂) ₃ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1649	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	$-CH_{2}-N\cdot C- CF_{3}$ $-CH_{2}-N\cdot C- CF_{3}$
1650	H ₃ C(CH ₂) ₂ —CH ₂ -	.1	2	0	R	н	-CH₂-N-C

Table 1.151

Compd No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{L^5}$ $(CH_2)_q$ $G-R^6$
1651	н ₃ С(СН ₂) ₃ ———————————————————————————————————	2	2	1	-	н	-CH2-N-C
1652	н ₃ с(сН ₂) ₃ —{	2	2	1	-	н	-CH ₂ -N-C
1653	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1654	H ₃ C(CH ₂) ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1655	H ₃ C(CH ₂) ₃ (CH ₂ -	2	2	1	-	Н	-CH2-N-C
1656	н ₃ С(СН ₂) ₃ —СН ₂ —	2	2	1	-	Н	-CH ₂ -N-C
1657	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-сн ₂ -м-с нм сн ₂ -(сн ₂) ₂ с нь
	H ₃ C(CH ₂) ₂				-	н	-CH ₂ -N-C-\(\sigma\) H ₂ N
1659	СНСН2-	2	2	1	-	н	$\begin{array}{c} H_2N\\ \\ H_2N \end{array}$
1660	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1661	BrCH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $+L$

Table 1.152

Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1662	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
1663	Вг-СН ₂ -	1	2	0	R	н	$-CH_2-NC-$ H_2N
1664	H₃CS-()-CH₂-	2	2	1	-	н	$-CH_{2}-N C - CF_{3}$ $+ H_{2}N$
1665	H ₃ CS—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-OCF ₃
1666	H ₃ CS-CH ₂ -	2	2	1	•	H	$-CH_2-N$ C H_2N F F
1667	H₃CCH₂—(CH₂-	2	2	. 1	<u>.</u>	н	-CH ₂ -N-C
1668	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	·H	$-CH_2-N-C$ H_2N
1669	H ₃ CCH ₂ -CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1670	H3CCH2-CH2-	2	2	1	-	H	-CH ₂ -N-C-
1671	н ₃ ссн ₂ ————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1672	Н₃ССН₂-{_}СН₂-	2	2	1	-	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{3}-N-C$ $-CH_{2}-N-C$ $H_{2}N$

Table 1.153

Compd. No.	R ¹ (CH ₂),—	k	m	n	chirality	. R3	−(CH ₂) p G (CH ₂) q G−R ⁶
1673	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- CI
1674	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- Br
1675	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
1676	FCH ₂ -	2	2	1	-	н	$-CH_2-N C - F$ H_2N
1677	FCH ₂ -	2	2	1	-	Н	$-CH_2-NC H_2N$ H_2N
1678	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1679	F-CH ₂ -	2	2	1	-	н	$-CH_2-N \cdot C - \underbrace{\begin{array}{c} CI \\ H_2 \\ H_2 \\ N \end{array}}_{C} \cdot \underbrace{\begin{array}{c} CI \\ \\ \end{array}}_{C}$
1680	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1681	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1682	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1683	CH₂-	2	2	1	-	н	-CH ₂ -N-C-O Br

Table 1.154

							
Compd.	R ² (CH ₂)	k	m	n	chirality		$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1684	N°C CH₂-	2	2	1	-	н	-CH ₂ -N-C
1685	N C- CH2-	2	2	1		н	$-CH_2-N-C$ H_2N
1686	H C-CH2-	2	2	1	-	н	-CH ₂ -N-C
1687		2	2	1	-	н	$-CH_2-N$ C H_2N
1688	H C-CH2-	2	2	1	-	H ·	$-CH_2-NC$ H_2N
1689	NH C-CH₂-	2	2	1	- -	н .	-CH ₂ -N-C
1690	H C-CH2-	2	2	1	· -	_. H	-CH ₂ -N-C
	H C-CH2-					H	-CH ₂ -N-C
1692	CH ₃	1	2	0.	R	Н	-CH ₂ -N-C-Br
	Н ₃ С-СН ₂ -					н	-CH ₂ -N-C-F H ₂ N
1694	CH ₃ C-CH ₂ -	1	2	0	R	н	$-CH_{2}-NC$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$

Table 1.155

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1695	CH ₃ CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-\Br
1696	H ₃ C-CH ₃	1	2	0	R	н	$-CH_2-NC-$ H_2N
1697	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1698	H ₃ C-CH ₂ -	1	2	0	R	н.	$-CH_2-N-C$ H_2N H_2N
1699	H ₃ C-CH ₃	1	2	0	R	н	-CH ₂ -N-C
1700	CH ₃ C-CH ₂ -	1	2	.0	R	Н	-CH ₂ -N-C
1701	H ₂ C=CH-CH ₂ -CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
	H₃CO-{}-CH₂-				R	н	-CH₂-N-C- H₂N
1703	CH ₂ -	1	2	0	R	н	$-CH_{2}-NC-$ $+L_{2}N$ $-CH_{2}-NC-$ $+L_{2}N$ $-CH_{2}-NC-$ $+L_{2}N$ $+L_{2}N$ $-CF_{3}$ $-CF_{3}$
	HO-{\bigce}-CH ₂ -					Н	-CH ₂ -N-C-✓ CF ₃
1705	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C

Table 1.156

Compo No.	$H^{1} \xrightarrow{R^{2}} (CH_{2})_{i}$	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1706	O-CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C
1707	н ₃ с ѕ-{-}-СН ₂ -	1	2	0	R	H·	$-CH_2-N-C H_2N$ CF_3
1708	н₃ссн ₂ ——————Сн ₂ -	1	2	0	R ,	н	$-CH_2-N-C$ H_2N CF_3
	(Hc)₂cH-{}-cH₂-					н	-CH ₂ -N-C-CF ₃
1710	H ₃ C Br————————————————————————————————————	1	2	0	R	н	-CH₂-N-C
1711	CH₃ —CH₂-	1	2	0	R	н	-CH₂-N-C CF₃
1712	H ₃ CCH ₂ Q HO—CH ₂ -	1	2	0	R	' н	-CH ₂ -N-C-CF ₃
1713	H ₃ C HO—CH ₂ -					Н	-CH ₂ -N-C-⟨CF ₃
1714	H ₃ CO− H ₀ − CH ₂ −	1	2	0	Ř	н	-CH ₂ -N-C-CF ₃
1715	N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1716	CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Ta	h.	اما	1	1	5	7

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1717	ОСН ₃ Н ₃ СО— СН ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
·1718	CH3 CH3 CH3	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1719	² N CH₂-	1	2	0	R .	Н	-CH ₂ -N-C-CF ₃
1720	H3CO-C) H3C-CH2- CH3-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1721	н₃ссн₂-√сн₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1722	CH ₂ −	1	2	0.	R ·	Н	-CH ₂ -N-C-CF ₃
1723	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1724	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1725	H_3C CH_3 H_3C	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	H₃CCH₂(-)-CH₂-						-CH ₂ -N-C-CF ₃
1727	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.158

Compo	$\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	k	m	, n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
							Ř ⁵
1728	CH ₂ -	1	2	0	R	Н	-CH₂-N-CF
1729	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1730	H ₂ C	1	2	0	R	н	-CH2-N-C-
1731	H ₂ CO N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1732	HOCH ₂ ————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1733	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1734	н₃СS- С Н₂-	1	2	0	R	н `	-CH ₂ -N-C-CF ₃
1735	н ₃ ссн ₂ —Сн ₂ -	. 1	2		R	н	-CH ₂ -N-C
1736	O-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1737	H₃C-€ CH₃	1	2	0	R	Н	-CH ₂ -N-C
1738	H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table	1.	1	5	9
-------	----	---	---	---

Compd No.	· R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
1739	(H6C)2CH-{\rightarrow}-CH2-	1	2	0	R	н	-CH ₂ -N-C
1740	CH₂-	1	2	0	R	н	-CH ₂ -N-C-√Br
1741	H ₃ CS-(-)-CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C-Br
1742	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1743	CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1744	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1745	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C-
1746	(H ₀ C) ₂ CH- CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1747	-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N H_2N
1748	н ₃ ссн ₂ —СН ₂ -	1	2	0	R		-CH ₂ -N-C-Br
1749	H ₃ C-CH ₃ -	1	2	0	A	н	-CH ₂ -N-C-Br H ₂ N

179

Table 1.160

							•	
Compo No.	d. R ¹ /(C	CH ₂);—	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
1750		−СН ₂ −	1	2	0	R	н .	-CH ₂ -N-C-OCF ₃
1751	н₃СЅ−	}–CH₂–	1	2	0	·R	н	-CH ₂ -N-C-OCF ₃
1752	њссн₂ `	_}_сн₂-	1	2	0	R.	н	-CH ₂ -N-C-C-C-C
1753		-CH₂-	1	2	0	R	• н	-CH ₂ -N-C-
1754	H ₃ C-	CH₃ CH₂-	1	2	0	R	н [.]	-CH ₂ -N-C-C-C-C-S
1755	H₃C → C	CH₃ −CH₂ -	1 .	2	0	R	Н	-СH ₂ -N-С-
1756	(њс)₂сн-{	}—αн <i>₹</i>	1 ·	2	0	R	н	-CH ₂ -N-C
1757	Br Br	-CH₂ -	1	2	0	R	Н	-CH ₂ -N-C
1758	H ₃ CO-Br E	Br —CH₂− Br	1	2 _.	0	R	н	-CH ₂ -N-C-CF ₃
1759	Н ₃ С-	-CH₂ -	1	2	0	R	н	-04-5Hc-
1760	н ₃ с-{}	-СН ₂ –	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -OH ₂ -N-C-CF ₃ -OH ₂ -N-C-CF ₃ -OH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ -CF ₂ CHCIF

~	_		le	-	.1	c	4
ı	a	u	ıe		. 1	U	- 1

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	· R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1761	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH2-N-C-N-CI
1762	CH ₃	1	2	0	·R	н	-CH ₂ -N-C-N-CI
1763	CH ₂ -	2	2	0	-	Н	-CH ₂ -N-C
1764	CH ₂ -	2	2	0	-	н	-CH ₂ CH ₂ -N-C- OCH ₂ CH ₃
1765	CH₂-	2	2	0		Н	(S)
1766	—CH₂-	· 2	2	0	-	н	(<i>H</i>) Q OCH ₂ CH ₃ −CH-N-C S OCH ₂ CH ₃ H CH ₂ CH(CH ₃) ₂
1767	C├ \ _CH ₂ -	1	3	1	-	Н	-CH ₂ -N-C
1768	C⊢————————————————————————————————————	1	3	1	-	Н	-CH ₂ CH ₂ -N-C
1769	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C
1770	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH2-HC
1771	CH ₃ N CH ₂ - CH ₃	1	2	.0	R	Н	-CH ₂ -NC

Table 1.162

Compd. No.	R ² ` *'				chirality	· R³	$-(CH_2)^{\frac{R^4}{p}}(CH_2)_{\overline{q}}G^{-R^6}$
1772	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CHH-C
1773	CH ₃ N CH ₂ − CH ₃	1	2	0	R	Н	H ₃ C - H ₃ C
1774	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1775	HO—CH ₂ —	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1776	H ₃ CO—CH ₂ —	1	2	0	R	Н	$-CH_2-NC - H - H_2N$
1777	CH2− CI	2	2	1	· ·	н	$-CH_2-N-C-\longrightarrow H_{H_2N}$
1778	H ₃ C-\(\bigce\)-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1779	-CH ₂ -	2	2	1	· -	H ·	$-CH_2-N-C$ H_2N CF_3 H_2N
1780	Br-CH ₂ -	2	2	1	· <u>-</u>	н	-CH ₂ -N-C
1781	HOCH ₂	2	2	1	: -	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CF_{3}$ $-CH_{2}-N-C$ $+CF_{3}$ $-CH_{2}-N-C$ $+CF_{3}$ $-CH_{2}-N-C$
1782	H ₂ C=CH-\(\bigc\)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R3	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1783	NC-CH ₂ -	2	2	1		н	-CH ₂ -N-C-\(\sigma\) H ₂ N
1784	CH₂-	2	2	1	-	н	$-CH_2-N-C- \longrightarrow CF_3$ H_2N
1785	CH ₃ (CH ₂) ₂	2	2	1	-	н	$-CH_2-N-C- \longrightarrow \begin{matrix} CF_3 \\ H_2N \end{matrix}$
1786	-CH ₂ -	2	2	1	-	н	$-CH_2-N-C- \longrightarrow_{H_2N}^{CF_3}$
1787	CH3(CH2)2-CH2-	· 1	2	0	R	н	-CH ₂ -N-C
1788	H ₃ C-CH ₂ -	2	2	1	-	H	$-CH_2-N-C-$ H_2N CF_3
1789	H ₃ CO-CH ₂ -	2	2	1 ·	-	н	$-CH_2-N-C-V$ H_2N
1790	C├─ੑ	1	2	0	S	Н	$-CH_2-N-C-$ H_2N
1791	C├ - CH₂-	1	2	0	S	н	$-CH_2-N-C-$ H_2N H_2N OCF_3
1792	CH ₃	2	2	1	-	н	-CH ₂ -N-C-F
1793	CI—CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$

Table 1.164

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. H3	$-(CH_2)_{\rho} + \frac{R^4}{R^5} (CH_2)_{q} - G-R^6$
1794	H ₃ C-{\rightarrow}-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1795	CH₂-	2	2	1	-	н	-CH ₂ -N-C-F
1796	8r—{	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1797	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1798	H ₃ CO-CH ₂ -	2	. 2	1	-	н	-CH ₂ -N-CF H ₂ N
1799	H ₂ C=CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1800	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1801	_CH₂-				-	н	$-CH_2-N-C$ H_2N F
1802	HO-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1803	HO-CH₂-	1	2	0	'R	Н	$-CH_2-N-C$ H_2 H_2 N
1804	H ₃ C(CH ₂) ₂ -CH ₂ -	2	2	1		н	-CH ₂ -N-C

Compd No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}} - R^6$
1805	Br—CH₂−	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1806	H ₃ CO-CH ₂ -	1	2	0	Я	н	-CH ₂ -N-C-SCF ₃
1807	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1808	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CSCF ₃
1809	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1810	CH₂-	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1811	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1812	H ₃ CS-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1813	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1814	O	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1815	CH ₃ H ₃ C−CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-SCF ₃

. . .

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	·R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1816	(CH ₃) ₂ CH-⟨CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-SCF ₃
1817	(CH ₃) ₃ C-\(\sum_{2}\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1818	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1819	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1820	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-CHF ₂
1821	HQ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-COCHF ₂
1822	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1823	CH2-	1	2	0	R ,	н	-CH ₂ -N-COCHF ₂
1824	CH ₂ -	1	2	0	R	Н	CH ₂ -N-C
1825	H₃CS-()-CH₂-	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂ -CH ₂ -N-C-OCHF ₂
1826	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C

Table 1.167

186

Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1827	О—СН ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1828	CH ₃	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1829	H ₃ C — CH ₂ - H ₃ C	1	2	0	R	н	-CH ₂ -N-C
1830	(CH ₃) ₂ CH-{-}-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1831	Br—CH₂-	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1832	H₃CO-{}-CH₂-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1833	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1834	HQ H₃CO-CH₂-	1	2	0	R	H :	-CH ₂ -N-C-(CH ₃) ₃
1835	HO()-CH ₂ -	1	2	0	. R	н	$-CH_2-N-C-(CH_3)_3$
	CH₂-					н	-CH ₂ -N-C-(CH ₃) ₃
1837	CH₂-	1	2	0	R	H	-CH ₂ -N-C-(CH ₃) ₃

187

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	· R³	-(CH ₂) , G (CH ₂) G-R ⁶
1838	H3CS-CH2-	1	2	0	['] R	Н	-CH ⁵ -M-C-(C(CH ³) ³
1839	н₃ссн₂{-}-сн₂-	1	2	0	R	. н	-CH ₂ -N-C-(CH ₃) ₃
1840	CH ₂ -	1	2	0	R .	н	$-CH_2-N-C-\bigvee_{H}^{Q}C(CH_3)_3$
1841	CH ₃	1	2	0	R	н	-CH ₂ -N-C- C(CH ₃) ₃
1842	H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1843	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1844	(CH ₃) ₃ C-\(\bigcirc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1845	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -NC
1846	H_3C CH_3 CH_2 CH_2	1	2	0	R .	н	-CH ₂ -N-C-SCF ₃
1847	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1848	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C

Ta	b	le	1	1	69
14	u				0 0

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
1849	-CH ₂ -	1	2	0	R	Н	-cH ₂ -N-c-
1850	н ₃ ССН ₂ ——————СН ₂ -	1	2	0	R	H	-CH ₂ -N-C
1851	CH ₃ CH ₂ -	1	2	0	R	н	-CH2-N-C-
1852	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1853	H ₃ CQ HO−CH ₂ −	1 .	2	0	R	н	-CH ₂ -N-C-
1854	CH ₂ -	1	2	0	R .	н .	-CH ₂ -N-C-
1855	н ₃ ссн ₂ —————сн ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1856	CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1857	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1858	Br-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1859	H₃CO- ()—CH₂-	.1	2	0	R	н	-CH ₂ -N-C Br

Table 1.170

Compd.	R ¹ (CH ₂) _j -	k	m	п	chirality	₽3	$-(CH_2)_{p}$ $\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1860	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1861	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1862	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1863	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\Br
1864	H ₃ CS-CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C
1865	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1866	H ₃ C — CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1867	(CH ₃) ₂ C H−√CH ₂ −				R .	н	$-CH_2-N-C$ H_2N
1868	(CH3/3 C-\CH2-	1	2	0	R	H	-CH ₂ -N-C
1869	Br—CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$
1870	H₃COCH₂-	1	2	0	R	н	-CH ₂ -N-C

Compd No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1871	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-
1872	HQ H ₃ CO-CH ₂ -	1	2	0	R	·H	$-CH_2-N$ H_2N
1873	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1874	O CH₂-	. 1	2	0	R	н	-CH ₂ -N-C-
1875	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1876	H3CS-CH2-	1	2	0	R	н	$-CH_2-N$ H_2N
1877	H₃CCH₂——————————————————————————————————	1	2	0	R	н	CH ₂ -N-C-
1878	O—CH₂-				R	Н	$-CH_2-N$ C H_2N
1879	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C-
1880	(CH ₃) ₂ C H−€−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1881	(CH ₃) ₃ C-\CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$

Table 1.172

Compd. No.	R1 (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
1882	Br—⟨CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1883	H₃CO-⟨¯¯}-CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1884	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1885	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1886	HO-CH ₂ -	1	2	0	Ŗ	Н	-CH ₂ -N-C-NO ₂
1887	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-NO ₂
1888	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1889	H₃CS-(1	2	0	R	Ή	$-CH_2-N-C$ H_2 H_2 NO_2 H_2 H_2
1890	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	Ŕ	н	-CH ₂ -N-C
1891	CH ₂ - CH ₃ H ₃ C- CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1892	н₃с-{СН₃ +3-СН₂-	.1	2	0	R ·	Н	$-CH_{2}-NC_{2}$ $-CH_{2}-NC_{2}$ $-CH_{2}-NC_{2}$ $-CH_{2}-NC_{2}$ $-CH_{2}-NC_{2}$

Table	1	.1	7	3
-------	---	----	---	---

Compo No.	$\begin{array}{ccc} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	k	m	n	chirality	R³	–(CH ₂) _p
1893	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1894	(CH ₃) ₂ CH	1	2	0	R	н	-CH ₂ -N-C
1895	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1896	HQ H₃CO—CH₂-	1	2	0	R	н	$-CH_2-NC-$ H_2N H_2N OCF_3
1897	н ₃ сs-{	1	2	0	R	Н	$-CH_2-N-C-$ H_2N OCF_3 H_2N
1898	н₃ссн₂—√—сн₂-	1	2	0	R	Н	$-CH_2-N-C$ H_2N OCF_3
1899	(СН ₃) ₂ СН-(СН ₂ -	1	2	0	R	н	-CH ₂ -N-C
1900	H ₃ CO HO———————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1901	H ₂ C(CH ₂) ₂	1	2	0	R	н	-CH ₂ -N-C-S
1902	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1903	(CH ₃)₂C H-√CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Τ.	a h	۱۵	1	4	7	1
- 1 7	aО	ıe	- 1	. 1	•	4

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1904	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1905	CI-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N O
1906	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1907	HO-CH ₂	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1908	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1909	H ₂ C=CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1910	Br-CH ₂ -	2	2	1	-	Н	$-CH_2-N^2C$ H_2N OCF_3
1911	CH2-	2	2	1	-	H	-CH ₂ -N-C
1912	HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1913	CH ₃ −CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
1914	H ₃ C-CH ₂ -	2	2	1		Н	$-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $+L_{2}N$

Table 1.175

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R3	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1915	H ₂ CCH ₂ Q HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1916	H ₃ C HO—CH ₂ —	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1917	H ₃ CCH ₂ Q HO————————————————————————————————————	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1918	H ₃ C HO—CH ₂ —	2	2	1		н	$-CH_2-N-C \longrightarrow H_2N$
1919	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1920	CI————————————————————————————————————	2	2	1	-	н	$-CH_2-N-C$ H_2N
1921	CH2-	1	2	0	R	Н	$-CH_2-N-C-$ H_2N OCF_3 H_2N
1922	NH₂ C⊢—CH₂-	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1923	Br—CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-SCF ₃
1924	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1925	FCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃

Table	1.1	76
-------	-----	----

Table	1.170						
Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	Á	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G-R^6$
1926	F-CH ₂ -	2	2	1		. F	-CH ₂ -N-C-SCF ₃
1927	HO-CH ₂ -	2	2	1	-	۲	-CH ₂ -N-C-SCF ₃
1928	CH₂-	2	2	1	-	ŀ	-CH ₂ -N-C-SCF ₃
1929	-CH ₂ -	2	2	- 1	-	ŀ	-CH ₂ -N-C-SCF ₃
1930	H₃CS-(2	2	1	· <u>-</u>	ŀ	$-CH_2-N-C-$
1931	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	}	-CH ₂ -N-C-SCF ₃
1932	O CH₂-	2	2	1	-	F	-CH ₂ -N-C-SCF ₃
	H ₃ C-CH ₃				-	1	-CH ₂ -N-C-\
1934	CH ₃ H ₃ C — CH ₂ -	2	2	1		ŀ	-CH ₂ -N-C-SCF ₃
	O ₂ N-CH ₂ -						cor
1936	H ₃ C-(CH ₂ -	2	` 2 [*]	1	-		-CH ₂ -N-C-SCF ₃

196

Tab	le.	1.	1	7	7
				•	•

Compd.	R ¹ (CH ₂) _j -	k	m	л	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1937	(CH ₃) ₂ CH-CH ₂ -CH ₂ -	2	2	1	-	н	-CH2-N-C-SCF3
1938	Br—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1939	H ₃ CO-(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1940	F—(CH ₂	2	2	1	-	н	-CH ₂ -N-C
1941	F-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ Br $-CH_3$ CH_3
1942	HO-{CH₂-	2	2	1	-	Н	$-CH_2-N-C$ CH_3
1943	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ \longrightarrow CH_3
1944	CH ₂ -	2	2	1	- .	н	-CH ₂ -N-C
1945	H ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- Br CH ₃
1946	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1947	P CH₂-	2	2	1	-	Н	-CH ₂ -N-CSr CH ₃

197

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^{\epsilon}$
1948	CH ₃	2	2	1		Н	-CH ₂ -N-C- Br CH ₃
1949	CH ₃ H ₃ C ← CH ₂ − H ₃ C	2	2	1		н	-CH ₂ -N-C-Br
1950	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C CH ₃
1951	H ₃ C-\CH ₂ -	. 2	2	1	·, -	н	-CH ₂ -N-C-Br
1952	Br—⟨ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-✓ Br
1953	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH₂-N-CS-F
1954	F(CH ₂	2	2	1	-	Н	-CH₂-N-C-S-F
1.955	FCH ₂ -	2	2	1	-	н	-CH₂-N-C
1956	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-⟨Sr F
1957	CH₂-	2	2	1	-	н	-CH ₂ -N-C-√Ser
1958	CH₂-	2	2	1	-	н	-CH ₂ -N-C-S

198

Compd.	· R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂)q G-R [€]
1959	H₃CS-⟨¯_}CH₂-	2	2	1	<u>.</u>	н	-CH ₂ -N-C
1960	Н₃ССН₂—⟨СН₂-	2	2	1	-	н	-CH ₂ -N-C
1961	O-CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C
	H ₃ C-CH ₂ -				,	н	-CH ₂ -N-C
1963	H ₃ C — CH ₂ -	2	2	1	· <u>-</u>	. н	-CH ₂ -N-C
1964	O ₂ N-(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1965	H ₃ C-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-CF
1966	(CH ₃) ₂ CH-√ CH ₂ -	2	2	1	-	H.	-CH ₂ -N-C
1967	Br—⟨¯_)-CH ₂ -	2	2	1	-	н	$-CH_2-NC H_2N$
1968	H₃CO-{}-CH₂-	2	2	1	·		$-CH_2-NC$ H_2N
1969	HO- (CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N

Table 1.180

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1970	O ← CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1971	-CH ₂ -	2	2	1		н	-CH ₂ -N-C-
1972	H ₃ CS	2	2	1	-	н	$-CH_2-\overset{\circ}{\underset{H_2}{N^+}}\overset{\circ}{\underset{C}{\overset{\circ}{C}}}\overset{F}{\underset{H_2}{N}}$
1973	н₃ссн₂— ()—сн₂-	2	2	1	-	н	-CH ₂ -N-C
1974	CH ₃ CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1975	O ₂ N-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1976	H ₃ C-CH ₂ -	2	2	. 1	· -	н	$-CH_2-N-C$ H_2N
1977	NC-CH₂-	2	2	1	. -	н	$-CH_2-N-C$ H_2N
	(CH ₃) ₂ CH-CH ₂ -					н	-CH ₂ -N-C
1979	-CH ₂ -	2	2	1	•	H	$-CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{3}-N-C$
1980	O-CH ₂ -	2	2	1		Н	$-CH_2-N-C$ H_2N

Compd No.	R ² (CH ₂) _i -	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} + (C$
1981	O ₂ N-CH ₂ -	2	2	1	<u>.</u>	н	-CH ₂ -N-C
1982	NC-CH2-	2	2	1	-	н	$-CH_2-N$ C H_2N F
1983	(CH ₃) ₂ CHCH ₂ -	2	2	1	-	H	$-CH_2-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$
1984	Вг—СН₂-	2	2	1	-	Н	-CH ₂ -N-C-
1985	H₃CO-{}-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1986	HO-CH ₂ -	2	2	1		н	-CH ₂ -N-C-
1987	CH₂-	2	2	1	-	н	-CH ₂ -N-C-
1988	CH ₂ -	2	2	1	<u>-</u> `	н	-CH ₂ -N-C-
1989	H₃CS-CH₂-	2	2	1	-	н	-CH ₂ -N-C-
1990	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1991	0 ← CH ₂ -	2	. 2	1	-		$-CH_2-N-C$ H_2N

201

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1992	CH ₃ H ₃ C−⟨ CH ₂ −	2	2	1	-	н	-CH ₂ -N-C-
1993	O ₂ N-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1994	H ₃ C-{\bigcirc}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1995	NC-CH ₂ -	. 2	2	1	-	н	-CH ₂ -N-C
1996	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-
1997	H ₃ C — CH ₂ — CH ₂ —	2	2	1	-	Н	-CH ₂ -N-C
1998	Br-CH ₂ -	2	2	1	-	Н .	-CH ₂ -N-C-
1999	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2000	- F—(¯)—CH ₂ –	2	2	1	-	Н	-CH ₂ -N-C-
2001	HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
2002	CH ₂ -	2	2	1	- -	н	- CH ₂ -N-C-

Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2003	CH₂-	2	2	1	-	Н	-CH ₂ -N-C-
2004	H ₃ CS-CH ₂ -	2	2	1	-	. Н	-CH ₂ -N-C-
2005	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	-CH ⁵ -V-C-
2006	CH ₃	2	2	1	-	н	-CH ₂ -N-C-
2007	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2008	· H ₃ C-CH ₂ -	2	2	1	-	H .	-CH2-N-C-CI
2009	NC-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
2010	(CH ₃) ₂ CH-CH ₂ -	2	2	1	<u>-</u> ·	H	-CH ₂ -N-C-CI
2011	CH ₃ H ₃ C — CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C
2012	Br-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2013	н₃со-{}-сн₂-	2	2	1	-	н	-CH ₂ -N-CBr

Compd No.	R ¹ (CH ₂);-	k	m	n	chirality	R ^o	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2014	HO€	2	2	1	'n	н	-CH ₂ -N-C-Br
2015	O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2016	CH₂-	2	2	1	-	н	-CH ₂ -N-C
2017	H₃CS-⟨}-CH₂-	2	2	1	-	н '	-CH ₂ -N-C- Br .
2018	H ₃ ССН ₂ —СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-✓ Br
2019	O-√CH ₂ -	2	2	1	-	Н	-CH₂-N-CCI
2020	CH ₃	2	2	1	-	н	-CH₂-N-C- H-C- H-C- CI
2021	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2022	H ₃ C-(2	2	1	-	Н	-CH ₂ -N-C
2023	NC-CH2-	2	2	1	-	Н	-CH ₂ -N-C
2024	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н	-CH2-N-C- Br CI

Ta	ы	م	1.	1	Я	5
	~				·	•

Compd. No.	R ¹ / _{R²} (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
2025	H ₃ C — CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2026	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2027	Br-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
2028	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
2029	HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$ Br
2030	O CH₂-	2	2	1	-	н ,	$-CH_2-N-C H_2N$ H_2N
2031	-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N Br
2032	CH ₂ -	2	2	1	÷	н	$-CH_2-N-C$ H_2N H_2N
2033	CH ₃					н	-CH ₂ -N-C
2034	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
	H₃C-(н	-CH ₂ -N-C

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
2036	NC-CH2-	2	2	1	-	Н	-CH ₂ -N-C
2037	CH ₃ H ₃ C CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N
2038	F-CH ₂ -	2	2	1	-	н.	-CH ₂ -N-C
2039	H ₃ C-CH ₂ -	2	2	1	-		-CH ₂ -N-C-CN
2040	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CH-OH
2041	H ₃ C-CH ₂ -	1	2	0	R	H.	-CH2-N-C-CH-
2042	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-H ₃ C-CH ₃
2043	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₂ -CH ₃ CH ₃ CH ₃
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C
2045	CH₃ CH₂− CH₃	1	2	0	Ŕ	Н	-CH ₂ -N-C-N-CI
2046	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C- HN C-N-CH ₃

Table 1.187

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G^{-R^6}$
2047	CH ₃ CH ₂ - CH ₃	1	2	0	R ·	Н	-сн-ж-с сн,сн,
2048	CH ₃ CH ₂ -	1	2	0 .	R	н	-CH ₂ -N-C
2049	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-CH ₃ -CH ₃ -CH ₃
2050	H ₃ C S CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
2051	H_3C $=N$ $-CH_2$	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2052	Br → CH ₂ – OCH ₂ CH ₃	2	2	1	-	н	$-CH_2-N-CF$ $\vdots H_2N$
2053	H ₂ CQ CH ₂ O-CH ₂ -	2	2	1	-	, H	$-CH_2-N-C$ H_2N H_2N
	H ₃ CO-CH ₂ -					Н	$-CH_2-N-C$ H_2N
2055	H ₃ CQ CH₂- OH	2	2	1	-	н	$-CH_2-N-C$ H_2N
2056	Br-CH ₂ -	2	2	1	- -	н	$-CH_2-N-C H_2N$
2057	H ₃ CO—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C

Table 1.188

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2058	H ₃ CQ OCH ₃	2	2	1	-	·Н	-CH ₂ -N-C
2059					-	н	-CH ₂ -N-C
2060	H ₃ CO — CH ₂ — OCH ₃	2	2	1	-	н	-CH ₂ -N-C
2061	F_CH ₃ CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
2062	H ₃ CO—CH ₂ -				-	н	-CH ₂ -N-C-F H ₂ N
2063	H ₃ CQ H ₃ C————————————————————————————————————	2	2	1	-	H	$-CH_2-N-C$ H_2N H_2N
2064	Br CH ₂ -				-	н.	$-CH_2-N$ C H_2N H_2N
2065	H3CCH2Q H3CCH2O———————————————————————————————————	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2066	OCH ₂ -CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2067	(H ₃ C) ₂ CHCH ₂ —CH ₂ —	2	2	1	-	н	$-CH_2-N-C$ H_2N F
2068	CI F—CH₂−	2	2	1	-	Н	$-CH_{2}-N-C$ $+CH_{2}-N$ $+CH_{2}-N$ $+CH_{2}-N$ $+CH_{2}-N$ $+CH_{2}-N$ $+CH_{2}-N$

Table 1.189

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^6$
2069	H ₃ C CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-F
2070	B ₂ —CH ₂ —OCH ₃	2	2	1	-	н	-CH ₂ -N-C-F
2071	H ₃ CO-CH ₂ -OCH ₃	2	2	1	-	н	-CH ₂ -N-C
2072	(H₃C)₂CHO-⟨¯¯⟩-CH₂-	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2073	CH ₂ Q	2	2	1	-	н	-CH ₂ -N-C
2074	н ₃ со-{}-О	2	2	1	-	н	-CH ₂ -N-C
2075	H ₃ CQ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2076	F-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2077	Cl CH₂− OH	2	2	1	-	н .	$-CH_2-N-C$ H_2 H_2 H_2 H_3
2078	H ₃ CCH ₂ Q OH CH ₂ -	2	2	1	-	H	$-CH_2-N-C \longrightarrow F$ H_2N
2079	—————————————————————————————————————	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N

Table 1.190

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2080	CH ₂ CO—CH ₂ -	2	2	1	-	н	CH ₂ -N-C F H ₂ N
2081	CI HO-CH ₂ -	2 [°]	2	1	· .	н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
2082	OH H₃CO-(CH₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2083	HO-CH ₂ -	1	2	. 0	R	н	$-CH_{2}-N-C \longrightarrow CF_{3}$ $+I_{2}N$
2084	H ₃ CQ HO-CH ₂ - H ₃ CO	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$
2085	OH H ₃ CO-CH ₂ -	1	2	0	R	н .	$-CH_2-N-C H_2N$ H_2N
2086	CI CH₂−	1	2	0	R	Н	-CH ₂ -N-C-\(\sigma\) H ₂ N
2087	(H ₃ C) ₂ N−⟨ CH ₂ −	1	2	0	R	Н	$-CH_{2}-N-C-$ $H_{2}N$ $H_{2}N$
2088	(H ₃ CCH ₂) ₂ N-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
2089	F-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\(\frac{\text{CF}_3}{\text{H}_2\text{N}}\)
2090	F-CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-$ $+I_{2}N$ $-CH_{2}-N-C-$ $+I_{2}N$ $-CH_{2}-N-C-$ $+I_{2}N$ $-CH_{2}-N-C-$ $+I_{2}N$

Table 1.191

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R ³	-(CH ₂) _p G-R ⁶
2091	CI-CH ₂ -	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C- H CH ₂ R
2092	CH-{	2	2	1	-	Н	(A) OCH, CH3
2093	CH2-CH2-	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ H CH ₂ CH ₂ SCH ₃
2094	CH-2-	2	2	1	. -	н	GH O OCH ₂ CH ₃ -CH-N-C-C
2095	CH-CH ₂ -	2	2	1		н	(F) OCH ₂ CH ₃ -CHN-C- H C(CH ₃) ₃
2096	CI—CH₂−	2	2	1	-	н	(R O OCH ₂ CH ₃ -CH-N-C-
2097	C├─(CH ₂ -	2	2	1	-	н	(R) OCH ₂ CH ₃ -CH-N-C
2098	CICH ₂ -	2	2	1	-	Н	(A O OCH ₂ CH ₃ -CH-N-C- CI
2099	CHCH_2-	2	2	1	-	Н	CHN-C-COCH2CH3
2100	CH-CH ₂ -	2	2	1	•	н	(R Q OCH ₂ CH ₃ -CH-N-C- H CH ₂ OCH ₃
2101	CH-CH2-	2	2	1	-	Н	(R OCH ₂ CH ₃ -CH-N-C-OCH ₃ (R OCH ₂ CH ₃ -CH-N-C-OCH ₂ CH ₃ -CH-N-C-OCH ₂ CH ₃

Table 1.192

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2102	CHCH2-	2	2	1	-	Н	CH2CH2-C-OCH2-
2103	CH-2-	2	2	1	-	Н	- () OCH ₂ CH ₃ -CH-N-C-H H H ₃ C-CHOCH ₂ -H R
2104	CH-2-	2	2	1	-	н	OCH ₂ CH ₃ -CHN-C- H CH ₂ CH ₂ COCH ₃ O R
2105	H ₃ CO OH CH ₂ -	2	2	1	-	Н	CH ₂ -N-C
2106	H ₃ C OH CH ₂ -	2	2	1	-	H	$-CH_2-N-C$ H_2N H_2N
2107	Br CH ₂ -	2	2	1		. H	-CH ₂ -N-C
2108	CH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N
2109	Br CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2110	H ₂ CCH ₂ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2111	F CH2−	2	2	1	-	н	
2112	H ₃ CO — CH ₂ —	2	2	1	-	н	$-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $+L_{2}N$

Table 1.193

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2113	H ₂ N H ₃ CO-CH ₂ -	2	2	. 1	-	Н	-CH ₂ -N-CF H ₂ N
2114	H ₂ N H ₃ C — CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-F H ₂ N
2115	CHCH ₂ -	2	2	1	-	н	(R) OCH ₂ CH ₃ -CH-N-C-C-CH-CH ₃ CH(CH ₃) ₂
2116	C├────────────────────────────────────	2	2	1,	-	н	$(H) \qquad OCH_2CH_3$ $-CH-N-C-$ H $CH(CH_3)CH_2CH_3$
2117	CH-{	2	2	1	-	н	CH2-NH
2118	HO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2119	OH HO-CH ₂ -	1	2	0	R	H	$-CH_2-N-C$ H_2N
2120	Br—CH ₂ -	1	2	0	R	Н	CH ₂ -N-C
2121	OCH ₃	1	2	0	R	Н	$-CH_2-N-C$ H_2N CF_3
2122	CH	1	2	0	R	н	-CH ₂ -N-C- H H ₂ N
2123	CH ₂ - CH ₂ - NO ₂	1	2	0	,R·	н	$-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $+_{2}N$ $-CF_{3}$ $-CH_{2}-N-C$ $+_{2}N$

Table 1.194

	R ¹					•	ਜ ⁴ _
No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G^-R^6$
2124	O ₂ N	1	2	0	Ŕ	Ĥ	-CH ₂ -N-C- H ₂ N
2125	O ₂ N H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
2126	O ₂ N H ₃ C — CH ₂ —	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2127	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
2128	H ₂ N H ₃ CO—CH ₂ —	1	2	0	· R	Н	$-CH_2$ $-N$ $-C$ $+$ $-CH_2$ $-N$ $-C$ $+$ $-CH_2$ $-N$ $-C$ $+$ $-CH_2$ $-N$ $-N$ $-CH_2$ $-N$
2129	H ₂ N H ₃ C — CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2130	O-V CH ⁵ -	2	2	1	-	н	-CH ₂ -N-C
2131	CH ₃ CH₂− CH₃	2	2	1	-	н	$-CH_2$ N C F H_2N
2132	H ₂ N CH ₂ -	1	2	0	R	н	$-CH_2-N-C- \longrightarrow H_2N \qquad .$
2133	(H ₃ C) ₂ N CI————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C- -CH ₂
2134	O CH ₂ - N(CH ₃) ₂	1	2	0	R	Н	-CH ₂ -N-C

Table 1.195

_							
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
2135	(H ₃ C) ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C- H ₂ N
2136	(H ₃ C) ₂ N H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H _{2-N} -CF ₃
2137	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2138	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C- H H ₂ N
2139	H ₃ C CH ₂ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
2140	OCH ₂ -NH ₂	2	2	1	-	н	$-CH_2-N-C H_2N$
2141	H ₂ N HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
2142	H ₂ N CH-2-					н	-CH ₂ -N-C
2143	HW. ^C -CH³-	2	2	1	-	н	H ₂ N
2144	H ₂ N H ₃ CO-CH ₂ -	2	2	1		н	-CH ₂ -N-C
2145	H ₂ N HO—CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$

Table 1.196

_							
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
2146	CH ₂ -NH ₂	2	2	1	•	н	-CH ₂ -N-C
2147	О Н ₃ C-С-NН Н ₃ CO СН ₂ -	2	2	1	-	н	-CH ₂ -N-C
2148	H ₃ C-C-NH HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N F F
2149	O ₂ N HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C- \longrightarrow_{H_2N}^{CF_3}$
2150	H ₃ C-C-NH CII—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2151	HMC-CH3	1	2	0	R	Н	$-CH_2-N-C- \longrightarrow CF_3$ H_2N
2152	H ₃ C-C-NH H ₃ CO-СН ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2153	H ₃ C-C-NH H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$ H_2N
2154	H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1	<u>.</u> ·	н	$-CH_2-N+C-$ H_2N H_2N
2155	H ₃ C-C-NH HO-CH ₂ -	2	2		-	н	$-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{3}N$ $-CH_{2}-N-C-$ $H_{3}N$
2156	HNG-CH ²	2	2	1	-	Н	$-CH_2-N-C H_2N$ H_2N

Table 1.197

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
2157	HO—CH ₂ —	1	2	0	R	Н .	-CH ₂ -N-C
2158	H ₃ C-NH HO-CH₂-	1	2	0	R	н	-CH ₂ -N-C
2159	H ₃ C-NH H ₃ CO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2160	H ₃ C-NH HO-⟨CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF H ₂ N
2161	H ₃ C-NH CH-2-	2	2	1		н	-CH ₂ -N-C
2162	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2163	H ₃ C-NH HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N CF_3
2164	,CH ₃	1	2	0	R	Н	-CH ₂ -N-C
2165	H N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2166	S CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
2167	H N CH ₂ -	1	2	0	R	H	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CH_{2}-N-C$

Table 1.198

Compd.	R^1 $(CH_2)_i$	k	m	n	chirality	R ³	$-(CH_2)_{\rho} + (CH_2)_{\overline{q}} G - R^6$
2168	С-ОСН ₃ H ₃ С СН ₂ - СН ₃	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2169	H₃C-СН₃ СН₃ СН₃	1	2	0	R	Н	-CH ₂ -N-C
2170	CI CN-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S
2171	H ₃ C N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2172	F ₃ C CH ₂ - CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$
2173	CH ₂ - S-CH ₃ -	1	2	0	R	Н	-CH ₂ -N-C- H H ₂ N
2174	H ₃ C CH ₃ B CH ₂ -	1	2	0	R	H	-CH ₂ -N-C- H H ₂ N
2175	OCH ₃ H ₃ CO-(N-)-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2176	H ₃ C CH ₂ -	1	. 2	0	R	н	$-CH_2-N-C-$ H_2N
2177	H ₃ C OH CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$
2178	CH ₂ OH	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $-CH_{3}-N-C$ $+L_{2}N$ $-CH_{3}-N-C$ $+L_{2}N$ $-CH_{3}-N-C$ $+L_{3}N$ $-CH_{4}-N-C$ $+L_{2}N$

Table 1.199

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2179	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2180	C-(CH ₂) ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
2181	H ₃ CQ N CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$ CF_3
2182	H ₃ C N CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N CF_3
2183	\$-N CH ₂ -	1	2	0	R	· H	$-CH_2-N-C$ H_2N CF_3
2184	\$-N CH ₂ -	2	2	1		н	$-CH_2-N-C$ H_2N
2185	\$-N N=\CH ₂	2	2	1	- .	н	$-CH_2-N-C$ H_2N
2186	H N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2187	H ₂ N HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2188	CH2-	2	2	1	-	н	-CH ₂ -N-C-
2189	CH2-	1	2	0	R	н	-CH ₂ -N-C

Table 1.200

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2190	H CH ₂ -	2	2	1	•	н	CH ₂ -N-C
2191	CH ₂ -	2	2	1		н	-CH ₂ -N-C
2192	S H CH ₂ -	2	2	1	-	н	$-CH_2-NC- \bigcirc CF_3$ $+CH_2-NC- \bigcirc CF_3$ $+CH_2-NC- \bigcirc CF_3$
2193	S H CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2194	H ₂ N H ₃ C-CH ₂ -	2	. 2	1	-	н	$-CH_2-N-C$ H_2N
2195	CH ₂ N CH ₂ -	2	2	1	-	н	$-CH_{2}-N+C-$ $H_{2}N.$ CF_{3} $H_{2}N.$
2196	H ₃ C-NH H ₃ C-CH ₂ -	1	2	0	R .	н	$-CH_2-N+C H_2N$
2197	H ₃ C-NH H ₃ CO-CH ₂ -	1	2	0 .	R	Н	$-CH_2-N+C H_2N$
2198	H ₃ C-NH CH ₂ -CH ₂ -				R	н	-CH ₂ -N-C
2199	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
2200	H ₃ C-NH CH ₂ -CH ₂ -	2	2	1	•	н	$-CH_2-N-C-$ H_2-N H_2-N

Table 1.201

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G-R^6$
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2202	S H CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S
2203	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2204	CH ₃	2	2	1	-	н	$-CH_2-NCC-$ H_2N
2205	CH ₃	2	2	1		н	-CH ₂ -N-C
2206	СH ₃ НО−⟨СН ₂ −	2	2	1	-	H	$-CH_2-N-C H_2N$ CF_3
2207	CH ₃	2	2	1.	-	H	$-CH_2-N-C$ H_2 H_2 H_2 H_3
	HN-CH ₃					Н	$-CH_2-N-CF_3$ H_2N
2209	HN-CH ₃ CH ₂ −	2	2	1	-	н	-CH _{2-N} -C
2210	CH ₂ -	1	2	0	R	Ĥ	$-CH_2-N+C- \longrightarrow_{H_2N}^{CF_3}$
2211	CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C-F$ $H_{2}N$ $-CH_{2}-N-C-F$ $H_{2}N$ $-CH_{2}-N-C-F$ $H_{2}N$ $-CH_{2}-N-C-F$ $H_{2}N$

Table 1.202

Compd.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
2212	CH₂-	2	2	1	-	н	-CH ₂ -N-C
2213	H ₂ N CH ₂ -CH ₂ -	2	2	1	-	Н	$-CH_2-N C - CF_3$ H_2N
2214	H ₂ N H ₃ C-CH ₂ -	2	2	1	-	H	$-CH_2-N$ CF_3 H_2N
2215	H ₃ C-HN CH-CH ₂ -	1	2	0	R	н	$-CH_2-N+C- \longrightarrow_{H_2N}^{CF_3}$
2216	H ₃ CCH ₂ H	1	2	0	. R	н	$-CH_{2}-N+C- \longrightarrow CF_{3}$ $H_{2}N$
2217	H ₃ CO-Ç H ₃ C-\ N-CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N+C-4$ H_2N
2218	C	1 .	2	0	R	H	- CH- N- C-N- CF3
2219	C⊢	1	2	0	R	н	-CH2-H H N CF3
2220	C├ (_)-CH ₂ -	1	2	0	R	н	-CH2-N-C
2221	C⊢- ()-CH ₂ -	1	2	0	R	н .	-CH2-NC-CF3
2222	H_3C CO_2CH_3 CH_2 CH_3 CH_3	1	2	0	R	н	$-CH_2-N$ C H_2N

Table 1.203

	• •						
Compd No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2223	CHCH2_	1	2	0	R	H	-CH ₂ -N-C-N-N CF ₃
2224	CH_CH2-	1	2	0	R	н	-CH2-H-C-N
	CH_CH2-					. н	CH ₂ -N-C-N-N
2226	H ₃ C, CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N - CH_2-N - $
2227	CHCH2-	1	2	0	R	н	- CH2-N-C-N-CH3/2
2228	CHCH ₂ -	1	2	0	R	Н	-CH_H C-N-CF3
2229	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ $+CH_2-N-C$ $+CH_2-N-C$ $+CH_2-N-C$
2230	H₃CCH₂—CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
2231	H ₃ CO—CH ₂ —CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C
2232	H ₃ C H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2233	CH ₂	1	2	0	R	Н	$-CH_2-N-C$ $-CH_2-N-C$ $-CH_2-N-C$ $+CH_2-N-C$ $+CH_$

Table 1.204

lable	1.204		•				
Compd.	R ¹ R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2234	CH ₂ - CH ₃	1	2	0	R	Н	CH ₂ -N-C
2235	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2236	F CH ₂ -					н	-CH ₂ -N-C
2237	CL CH ₂ -					н	-CH ₂ -N-C
2238	H ₃ CO CH ₂ -	1	2	0	R	, н	-CH ₂ -N-C
2239	CH ₂ -	1	2	0	R	н .	$-CH_2-N-C-$ H_2 H_2 H_2
2240	CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-NC-$ $H_{2}N$ $H_{2}N$
2241	H ₃ C N H	1	2	0	R	Н	$-CH_{2}-N-C$ H_{1} $H_{2}N$ $+N$
2242	CH ₂ -	1	. 2	0	R	н	$-CH_2-NCC\longrightarrow OCF_3$ H_2N
	(H ₃ Ç) ₂ N-CH ₂ -					н	$-CH_2-NC-$ H_2N H_2N
2244	FIN H	1	2	0	R	н	$-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$

Table 1.205

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
2245	H ₃ C N CH ₂	. 1	2	0	R	Н	-CH ₂ -N-C
2246	H ₃ CCH ₂ N CH ₂	. 1	2	0	R	н	-CH ₂ -N-C-\(\sigma\) H ₂ N
2247	(HSC) ₂ CH N CH ₂	. 1	2	0	R	н	$-CH_2-N-C- \longrightarrow_{H_2N}^{CF_3}$
2248	CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2249	H ₂ N H ₃ CO————————————————————————————————————	. 1	2	0	R	н	-CH ₂ -N-C
2250	HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2251	7130 1 0112				R	н	$-CH_2-NC-$ H_2N H_2N $+N$
2252	CH ₂ -	2	2	1	-	н	CH ₂ N-C
2253	F CH ₂ -				-	н	CH ₂ -N-C
2254	H ₃ CQ CH ₂ -				-	н	$-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$
2255	H ₃ C N H	2	2	1	-	н	-CH ₂ -N-C

Table 1.206

Table	1.200						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$
2256	CH ₂ -					Н	CF ₃
2257	H_3CQ C N N N	2	2	1	· -	н	$-CH_2-N+C-$ H_2N H_2N
2258	CI	1	2	0	R	н	(S) P -CH-N-C CI CH ₃
2259	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) Q CI -CH-N-C- CI CH ₃
2260	CH ₂ -	1	2	0	R	Н	(S) P -CH-N-C-N- CH ₃
2261	С⊢∕С}—СН₂-	1	2	0	R	Н	(S) P -CH-N-C-N- CH ₃
2262	H ₃ CS-CH ₂ -	1	2	0	Ŗ	н	(S) P -CH-N-C-N- CH3
2263	CICH ₂ -	1	2	0	S	н	(S) P -CH-N-C-CI CH ₃
2264	CI—CH ₂ -	1	. 2	0	S	н	(S) P -CH-N-C-CI H CH ₃
2265	H₃CS-CH₂-	1	2	0	S	н	(S) P -CH-N-C-CI H H CH ₃
2266	CHCH ₂ -	1	2	0	S	н	CH3 CH3

Table 1.207

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2267	CICH ₂ -	2	2	1	-	Н	(S) P CI -CH-N-C-CI CH ₃
2268	CH_CH2-	2	2	1	-	н	(S) CI -CH-N-C-CI CH ₃
2269	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) CI -CH-N-C-CI CH ₃
2270	CH ₂ —CH ₂ —	2	2	1	-	н	(S) P -CH-N-C-N- CH ₃
2271	CI-CH ₂ -	2	2	1	-	. н	(S) P -CH-N-C-N- CH ₃
2272	H₃CS-CH₂-	2	2	1	-	н	(S) P -CH-N-C-N-C-N-CH3
2273	CI CH2-	2	2	1	-	н	(S) Q CI -CI+N-C-C-CI CH(CH ₃) ₂
2274	H₃CS-CH₂-	2	2	1	-	Н	(S) O CI -CH-N-C-CI -CH(CH ₃) ₂
2275	CICH ₂ -	2	2	1	-	н	(S) N C
2276	C├─ { }-CH₂-	2	2	1	-	Н	(S) P -CH-N-C-N- CH(CH ₃) ₂
2277	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) O - CH-N-C-N- H H H CH(CH ₃) ₂

Table 1.208

Compd. No.	R^1 (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2278	CI————————————————————————————————————	1	2	0	R	Н	(S) PCF ₃ -CH _N -C−CF ₃ CH ₃ H ₂ N
2279	CH-CH ₂ -	1	2	0	R	н	(S)
2280	CI—CH ₂ -	1	2	0	S	н	(S) O CF ₃ -CH-N-C C CF ₃ H H CH ₃ H ₂ N
2281	H ₃ CS-CH ₂ -	1	2	0	S	н	$(S) \bigcap_{C \\ C \\$
2282	CH-2-	2	2	1	-	Н	$(S) \bigcap_{CH+N-C} CF_3$ $CH_3 H_2 N$
2283	H ₃ CS-CH ₂ -	2	2	1	-	H	$(S) \qquad Q \qquad CF_3$ $-CH+N-C- \qquad H$ $CH_3 \qquad H_2N$
2284	CICH ₂	2	2	1	-	Н	(S) P NH ₂ -CHN-C- H CH(CH ₃) ₂ CF ₃
2285	CHCH ₂ -	2	2	1	-	Н	(S) P NH ₂ - CH N-C CH ₃ - CH(CH ₃) ₂ CF ₃
2286	H₃CS—CH₂-	2	2	1	-	н	(S) (P) (NH ₂ -CH N-C (CH ₃) ₂ (CF ₃
2287	C	2	2	1	-	н	(S) S - C ++ N - C - N - C
2288	H₃CS—CH₂-	2	, 2	1	-	H	(S) Q CI -CH-N-C CI -CH ₂ OCONH ₂

Table 1.209

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
2289	CL CH ₂ -CH ₂ -	2	2	1	-	Н	(S) P -CH-N-C-N- H H (CH ₂) ₂ CONH ₂
2290	Cl CH ₂ −	2	2	1	-	Н	(S) P CI -CH+N-C CH2OH
2291	CI—CH ₂ -	2	2	1	-	н	(S) P CH+N+C-CH H CH₂OH
2292	H₃CS-{}CH₂-	2	2	1	· -	н	(S) P CI -CH-N-C-CI CH₂OH
	CH_CH2-					н	(S) 0 -CH-N-C-N-C-N-C-N-CH ₂ OH
2294	CH-CH ₂ -	2	2	1	-	Н	(S) P -CH-N-C-N-C CH ₂ OH
2295	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) Q -CH-N-C-N- CH ₂ OH
2296	CI CH ₂ -	1	2	0	R	н	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2297	H ₃ CS-CH ₂ -	1	2	.0	R	н	(S) Q -CH-N-C-CI H (CH ₂) ₂ SO ₂ CH ₃
2298	CICH ₂ -	1	2	0	R	Н	(S) 0 0 0 0 0 0 0 0 0 0
2299	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) (S)

Table 1.210

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G - R^6$
2300	C⊢—CH₂-	1	2	0	S	н	(S) CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2301	CL—CH ₂ -	1	2	0	S	Н	(S) CI -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
2302	CL CH2-	1	2	0	R	H	(S) P NH ₂ -CH-N-C
2303	CI—CH ₂ -	1	2	0	R .	Н	(S) PH2 -CH-N-C CH2 H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2304	H ₃ CS-CH ₂ -	1	2	0	R	Н	(S) P NH ₂ -CH-N-C
2305	CICH ₂ -	1	2	0	S	Н	(S) PH2 -CHN-C- H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2306	; H ₃ CS CH ₂ -	1	2	0	S	н	(S) PH2 -CHN-C- (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2307	с⊢—СН₂-	1	2	0	R	H	(S)
2308	H ₃ CS-CH ₂ -	1	2	0	R	Н .	(S) S -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
2309	CICH ₂ _					н	(S) S $-CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-$
2310		1	2	0	S	н	(S)

Table 1.211

								•
	Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
	2311	н₃СS - СН ₂ -	1	2	0	S	н	(S)
•	2312	H ₃ CS-\(\bigce\)-CH ₂ -	1	2	0	R	н	$(S) \bigcap_{\substack{C \leftarrow C + N - C - \\ C \vdash H_3 \\ C \vdash H_3}} CF_3$
	2313	CI	1	2	0	R	н	(S) P CI -CH-N-C-CH-CI
	2314	H₃CS-CH ₂ -	1	2	0	S	н	(S) 0 -CH-N-C-N- H H H
	2315	CICH ₂ -	2	2	1	-	H	(S) CI -CH-N-C-CI -CH(CH ₃) ₂
	2316	CH2-	1	2	0	S	н	(S) 0 NH ₂ -CH-N-C- H CH ₂) ₂ SO ₂ CH ₃ CF ₃
	2317	CI CI—CH₂-	2	2	1	-	н	(S) NH ₂ -CH-N-C NH ₂ -CH ₂ OH CF ₃
	2318	CI CI—CH ₂ -	1	2	0	R	н	(S) S - CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
	2319	CI CH2−	2	2	1	-	н	(S) S CH(CH ₃) ₂
	2320	CH2-CH2-	2	2	1,	. <u>.</u>	н	(S) S - CH-N-C-N- H H H CH(CH ₃) ₂
	2321	H₃CS-CH ₂ -	2	2	1	-	н	(S) S S S S S S S S S S S S S

Table 1.212

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
2322	CICH ₂ -	2	2	1	-	H	(S) S - CH-N-C-N- H H H CH(CH ₃) ₂
2323	H ₃ CS-{	2	2	1	-	н	(S) S -CH-N-C-N- - H H CH(CH ₃) ₂
2324	CICH ₂ -	2	2	1	-	н	$(S) \qquad CF_3$ $-CHN-C$ $\downarrow \qquad H$ $CH_3 \qquad H_2N$
2325	CICH ₂ -	1	2	0	R	н	(S) S -CH-N-C-N-C H H H
2326	C	1	2	0	R	Н	(S) S N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C
2327	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) S -CH-N-C-N-C-N-C-N-CH ₃
2328	CL_CH2-	1	2	0	S	Н	CH ₃
2329	C├ ─ _CH ₂ -	1	2	0	S	н	(S) S CH ₃ CH ₃
2330	H ₃ CS-CH ₂ -	1	2	0	S	н	(S) S S CH ₃ CH ₃
2331	CH2-	1	2	0	S	н	$(S) \qquad Q \qquad CF_3$ $-CH_1N-C-$ $H \qquad CH_3 \qquad H_2N$
	CI—(CH ₂ -					н	(S) P CI -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃

Table 1.213

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2333	C	1	2	0	R	Н	(S) O - CH- N-C- N- H H (CH ₂) ₂ SO ₂ CH ₃
2334	H₃CS	1	2	0	S	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2335	CICH ₂ -	1	2	0	S	н	(S)
2336	CHCH ₂	1	2	0	S	н	(S) O - C H N C - N - (S) H H H H (CH ₂) ₂ SO ₂ C H ₃
2337	H ₃ CS-CH ₂ -	1	2	0	S	н	(S) P -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2338	H₃CS-{	2	2	1	-	н	(S) P -CH-N-C-N- H H (CH ₂) ₂ CONH ₂
2339	C	2	2	1	-	Н	(S) P NH ₂ - CHN-C- H (CH ₂) ₂ CONH ₂ CF ₃
2340	H₃CS-{CH₂-	2	2	1	-	н	(S) P NH ₂ - CH N- C
2341	C├─ ()-CH₂-	2	2	1	-	н	(S) P NH ₂ -CH N-C- H CF ₃
2342	H₃CS-{\rightarrow}-CH2-	2	2	1	-	н	(S) O NH ₂ -CH-N-C- O CH ₃ -CH ₂ OH CF ₃
2343	CH ₂ —CH ₂ -	2	2	1	-	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ CONH ₂

Table 1.214

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2344	CHCH_2-	2	2	1	-	Н	(S) CI -CH-N-C-CI (CH ₂) ₂ CONH ₂
2345	CHCH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N- (CH ₂) ₂ CONH ₂
2346	CHCH ₂ -	2	2	1	-	Н.	(S) NH ₂ -CHN-C- H (CH ₂) ₂ CONH ₂ CF ₃
2347	CL_CH ₂ -	1	2	0	S	Н	(S) P -CH-N-C-N- CH ₃
2348	CICH ₂ _	1	2	0	R	н	(S) P CI -CH-N-C
2349	F—()-CH ₂ -	1	2	0	R	H	(S) P CI -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
2350	F—————————————————————————————————————	1	2	0	R	Н	(S) O CI -CH-N-C-CH-CI (CH ₂) ₂ SO ₂ CH ₃
2351	CH ₂ -	1	2	0	R	Н	(S) OCI -CH-N-C-C-CI (CH ₂) ₂ SO ₂ CH ₃
2352	CICH ₂ -	2	2	1	-	н	(S) 0 -CHN-C-N-C-CI CH3
2353	CI—CH ₂ -	2	2	1	-	н	(S) 0 -CH-N-C-N-CH CH ₃
2354	CI CI—CH₂-	1	2	0	R	н	(S) OCI

Table 1.215

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2355	Cl CH₂-	1	2	0	R	н	(S) CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2356	CICH ₂ -	1	2	0	R	н	(S) P CI -CH-N-C- (CH ₂) ₂ SO ₂ CH ₃ CI
2357	CI CH₂−	1	2	0	R	Н	(S) P -CH-N-C-S CI (CH ₂) ₂ SO ₂ CH ₃
2358	CI C⊢CH₂-	1	2	0	R	н	(S) (F) $(CH_2)_2 SO_2 CH_3$
2359	CI—CH ₂ -					Н	(S) O -CH-N-C-S (CH ₂) ₂ SO ₂ CH ₃
2360	CH_CH ₂ -	1	2	0	R	н	(S) 0 -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2361	CICH ₂ -	1	2	0	R	н	(S) P -CHN-C-N-CH (CH ₂) ₂ SO ₂ CH ₃
	Ct CH₂−					н	(S) P -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
	CICH ₂ -						CH ₃
2364	CICH ₂ -	2	2	1	-	Н	
2365	CH_CH2-	2	2	1	•	н	

Table 1.216

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G-R^6$
2366	CH2-CH2-	2	2	1		н	(S) 0 -CH-N-C-CH-3 CH3
2367	CH ₂ -CH ₂ -	2	2	1	<u>.</u>	н	(S) O O O O O O O O O O O O O O O O O O O
2368	CH ₂ —CH ₂ —	2	2	1	-	н	CH3
2369	CICH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N
2370	CH2-	2	2	1	-	н	CH ₃ CI
2371	CtCH ₂ -	2	2	1	-	Н	CH ₃
	CI CH ₂ -				-	н	(S) Q CI
	F—CH₂-					Н	(S) CH3 CI
2374	CH ₂ -	2	2	1	-	Н	(S) P CI CH ₃
2375	F-CH ₂ -	. 2	2	1	-	н	(S) P CI CI CH ₃
2376	F CH₂-	2	2	1		н	CH ₃ CH ₃ CH ₃ CH ₃ CI CI
		~					

Table 1.217

_							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G-R^6$
2377	F-CH ₂ -	. 2	2	1	-	Н	(S) O CI -CH-N-C-CI CH ₃
2378	CH ₂ -	2	2	1	-	н	(S) CI CI CI
2379	CI. CI—CH₂−	2	2	1	-	н	(S) P -CH-N-C
2380	CH ₂ -	2	2	1	-	н	(S) P -CH-N-C -CH ₃ H ₂ N
2381	CL CH ₂ -	2	2	1	-	Н	(S) O -CHN-C- H CH ₃ HO
2382	CI————————————————————————————————————	. 2	2	1	-	Н	(S) O -CH-N-C-OH CH ₃
2383	CH2-	2	2	1		н	(S) \$ -CHN-C-N-CH ₂ H H CH ₃
2384	CI_CI CH ₂ -	1	2	0	R	н	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2385	Ć—CH³-	1	2	0	R	н	(S) CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2386	CI CH₂−					H	(S) CI -CH-N-C-C-CI (CH ₂) ₂ SO ₂ CH ₃
2387	F_CH ₂ -	1	2	0	R	н	(S) Q CI -CH-N-C C CI (CH ₂) ₂ SO ₂ CH ₃

Table 1.218

i abie	1.210						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
2388	F-CH ₂ -	1	2	0	R	Н	(S) P CI -CH-N-C-C-CI (CH ₂) ₂ SO ₂ CH ₃
2389	CH ₂ -	1	2	. 0	R	н	(S) -CH-N-C
2390	CI—CH ₂ —	1	2	0	R	. H	(S) O NH ₂ -CH-N-C- CH ₂ (CH ₂) ₂ SO ₂ CH ₃ Br
2391	CH ₂ -	1	2	0	R	Н	(S) O
2392	CI-CH ₂ -	1	2	0	R	н	(S) O NH_2 $C+N-C O$ O O O O O O O O O
2393	CL CH2-	1 -	2	0	R	н	(S) S - C ++ N- C- N- CH ₂ - (CH ₂) ₂ SO ₂ CH ₃
2394	CI—CH ₂ —	2	2	1	-	н	(S) O CI -CH-N-C-CI - H (CH ₂) ₂ SCH ₃
2395	CH2-	2	2	1	-	н	(S) PCI CH-NC-CI CH ₂ OCH ₂ Ph
2396	CICH ₂ -	2	2	1	-	Н	(S) P CI -CI+N-C-CI (CH ₂) ₄ NH ₂
2397	CH2-CH2-	2	2	1	-	н	(9 -G+H-C-C-C) H-2C-C-C-C
2398	CL CH2−	2	2	1		Н	(5) QC(CH ₃) ₃

Table 1.219

Compo No.	$H = \frac{R^1}{R^2} - (CH_2)_j - \frac{R^2}{R^2}$	k	m	n	chirality	R ³	$-(CH_2)_{p} + G^4 + G^4 + G^6$
2399	CICH ₂ -	2	2	1	-	Н	(S) Q CI -CI+NC-CI
2400	CH ₂ -	2	2	1	-	н	(S) OF CI
2401	CL CH ₂ -	2	2	1		Н	(S) CI -CH-N-C-CI H ₂ C-CI
2402	CH2−	2	2	1	-	н	(S) P CH-N-C CI CH₂OH
2403	F—CH ₂ -	2	2	1	-	н	(S) P CI -CH-N-C-CH-CI CH ₂ OH
2404	CH ₂ -	2	2	1	·	н	(S) -CH-N-C-CI CH ₂ OH
2405	F-CH ₂ -	2	2	1	. -	н	(S) O CI -CH-N-C CI CH₂OH
	FCH ₂ -					н	(S) O CI -CH-N-C-CI CH₂OH
2407	CH ₂ -	2	2	1	-	н	(S) Q −CH-N-C-CI H CH₂OH
2408	H ₃ CSO ₂ ————————————————————————————————————	2	2	1	-	н	(S) P CI -CH-N-C-CI H H CH ₂ OH
2409	H ₃ CO ₂ C	2	2	1	-	н	(S) P CI -CH-N-C-CI CH ₂ OH

Table 1.220

–							
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
2410	CLCH ₂ -	2	2	1	-	н	(S) OCI -CH+N-C
2411	CICH ₂ -	2	2	1	· -	Н	(S) OCL CI -CH-N-C-C CH ₂ OH
2412	CL CH ₂ -	.2	2	1	-	Н	(S) P -CH-N-C-(S) CH ₂ OH
2413	CICH ₂ -	2	2	1	-	Н	(S) P -CH-N-C-N-(S)-OCH ₃ CH ₂ OH
2414	CI CH₂−	2	2	1	-	н	(S) P -CHN-C-(S) -CH ₂ OH
2415	CICH ₂ -	2	2	1	-	Н	(S) S OC H ₃ CH ₃ CH ₃ CH ₃
2416	CI CH2−	2	2	1	-	н	(S) S OCH3
	CH ₂ -					н	CH ₃
2418	CH ₂ —CH ₂ —	2	2	1	-	н	(S) S CH ₃ CH ₃
2419	CH ₂ -	2	2	1	-	• н	$ \begin{array}{c c} (S) & S \\ -CH & N - C - N - CH_3 \end{array} $ $ \begin{array}{c c} (S) & S \\ -CH & N - C - N - CH_3 \end{array} $ $ \begin{array}{c c} CI & CI \\ -CH & N - C - N - CH_3 \end{array} $
	CI—CH ₂ —						(S) S CH3

Table 1.221

Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	ー(CH ₂) _p
2421	CH ₂ -	2	2	1	-	Н	(S) S -CHN-C-N-C-H-F CH ₃
2422	CI—CH ₂ —	1	2	0	R	н	(S) S OCH ₃ -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2423	CICH ₂ -	1	2	0	R	Н	(S) S -CH-N-C-N-C-OCH ₃ -CH ₂) ₂ SO ₂ CH ₃
2424	CI—CH ₂ —	1	2	0	R	н	(S) \$ CH ₃ -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2425	CICH ₂ -	1	2	0	R	н	(S) \$ -CH-N-C-N-CH ₃ (CH ₂) ₂ SO ₂ CH ₃
2426	CICH ₂ -	1	2	0	R	н	(S) CI - CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2427	CI—CH ₂ —	1	2	0	R	н	(S) S -CH-N-C-N-(S)-CI H H (CH ₂) ₂ SO ₂ CH ₃
2428	CICH₂-	1	2	0	R	н	(S)

本発明においては、環状アミン化合物の酸付加体も用いられる。かかる酸として、例えば塩酸、臭化水素酸、硫酸、リン酸、炭酸などの鉱酸;マレイン酸、クエン酸、リンゴ酸、酒石酸、フマル酸、メタンスルホン酸、トリフルオロ酢酸、蟻酸などの有機酸が挙げられる。

本発明においては、上記式 (I) で表される化合物のラセミ体、および可能なすべての光学活性体も用いることができる。

上記式(I)で表される化合物は、国際公開WO9925686号パンフレットに記載されているように、下記に示すいずれかの一般的な製造法を用いることにより合成可能である。

(製造法1)

20

下記式 (II)

25
$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{n} - NH \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (II)
\end{array}$$

[式中、 R^1 、 R^2 、 R^3 、j、k、m、およびnは、上記式(I)におけるそれぞれ の定義と同じである。]

で表される化合物1当量と、下記式(III)

WO 01/10439 PCT/JP00/05260

242

5

10

[式中、 R^4 、 R^6 、 R^6 、G、p、およびqは、上記式 (I) におけるそれぞれの定義と同じである。]

で表されるカルボン酸、またはその反応性誘導体の0.1-10当量を無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式(III)で表されるカルボン酸の「反応性誘導体」とは、例えば酸ハロゲン化物、酸無水物、混合酸無水物などの合成有機化学分野において通常使用される反応性の高いカルボン酸誘導体を意味する。

かかる反応は、適当量のモレキュラーシーブなどの脱水剤; ジシクロヘキシルカ ルボジイミド(DCC)、N-エチル-N'-(3-ジメチルアミノプロピル)カ 15 ルボジイミド(EDCIまたはWSC)、カルボニルジイミダゾール(CDI)、 Nーヒドロキシサクシンイミド(HOSu)、Nーヒドロキシベンゾトリアゾール (HOBt)、ベンゾトリアゾール-1-イルオキシトリス (ピロリジノール) ホ スホニウム ヘキサフルオロホスフェート(PyBOP)、2-(1H-ベンゾトリアゾールー1-1イル)-1, 1, 3, 3-テトラメチルウロニウム ヘキサフ 20 ルオロホスフェート(HBTU)、2-(1H-ベンゾトリアゾール-1-イル)- 1, 1, 3, 3 - テトラメチルウロニウム テトラフルオロボレート **(**TBTU)、2-(5-ノルボルネン-2,3-ジカルボキシイミド)-1,1,3,3-テトラメチルウロニウム テトラフルオロボレート(TNTU)、O-(N-サク シニミジル) -1, 1, 3, 3 - テトラメチルウロニウム テトラフルオロボレー 25 ト (TSTU)、プロモトリス (ピロリジノ) ホスホニウム ヘキサフルオロホス フェート (РуВгоР) などの縮合剤;炭酸カリウム、炭酸カルシウム、炭酸水 素ナトリウムなどの無機塩基、トリエチルアミン、ジイソプロピルエチルアミン、 ピリジンなどのアミン類、(ピペリジノメチル)ポリスチレン、(モルホリノメチ ル) ポリスチレン、(ジメチルアミノメチル)ポリスチレン、ポリ(4 - ビニルピ 30 リジン)などの高分子支持塩基などの塩基を適宜用いることにより、より円滑に進

行させることができる。

(製造法2)

下記式 (IV)

5

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} \longrightarrow X
\end{array}$$
(IV)

で表されるアルキル化試薬1当量と、下記式(V)

15

30

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

20 [式中、R³、R⁴、R⁵、R⁶、G、k、m、n、p、およびqは、上記式 (I) に おけるそれぞれの定義と同じである。]

で表される化合物 0.1-10 当量を無溶媒下、または溶媒存在下に反応させることによる製造方法。

かかる反応は、上記製造法1と同様の塩基を適宜用いることにより、より円滑に 25 に進行させることができる。さらに、本製造方法において、ヨウ化カリウム、ヨウ 化ナトリウムなどのヨウ化物を共存させることにより、反応を促進できる場合があ る。

上記式(IV)において、Xはハロゲン原子、アルキルスルホニルオキシ基、アリールスルホニルオキシ基を表す。かかるハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が好ましく挙げられる。アルキルスルホニルオキシ基の好適な具体例としては、メチルスルホニルオキシ基、トリフルオロメチルスルホニルオキシ基

WO 01/10439 PCT/JP00/05260

244

などが挙げられる。アリールスルホニルオキシ基の好適な具体例としては、トシルオキシ基を挙げることができる。

(製造法3)

下記式 (VI)

5

$$R^1$$
 (CH₂)_{j-1}-CHO (VI)

10

25

[式中、 R^1 および R^2 は、上記式 (I) におけるそれぞれの定義と同じであり、 j は 1 または 2 を表す。]

または、下記式 (VII)

$$R^{1}-CHO$$
 (VII)

[式中、 R^1 は、上記式 (I) における R^1 の定義と同じであり、j は 0 を表す場合に相当する。]

で表されるアルデヒド1当量と、上記式 (V) で表される化合物 0. 1-10 当量 20 を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

かかる反応は、一般に還元的アミノ化反応と呼ばれ、還元条件としては、パラジウム、白金、ニッケル、ロジウムなど金属を含む触媒を用いる接触水素添加反応、水素化リチウムアルミニウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウムなどの複合水素化物およびボランを用いる水素化反応、または電解還元反応などを用いることができる。

2 4 5

(製造法4)

下記式 (VIII)

で表される化合物1当量と、下記式 (IX)

$$HO-\dot{A}-R^6$$
 (IX)

15 [式中、R⁶は、上記式 (I) におけるR⁶の定義と同じであり、Aはカルボニル基またはスルホニル基を表す。]

で表されるカルボン酸またはスルホン酸、またはそれらの反応性誘導体 0. 1-1 0当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式(IX)で表されるカルボン酸またはスルホン酸の反応性誘導体とは、例え 20 ば酸ハロゲン化物、酸無水物、混合酸無水物などの、合成有機化学分野で一般に使 用される反応性の高いカルボン酸またはスルホン酸誘導体を意味する。

かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いることにより、より円滑に進行させることができる。

(製造法5)

25 上記式 (VIII) で表される化合物 1 当量と、下記式 (X)

$$Z = C = N - R^{6} \tag{X}$$

[式中、 R^6 は上記式(I)における R^6 の定義と同じであり、Zは酸素原子または 30 硫黄原子を表す。]

で表されるイソシアネートまたはイソチオシアネート0.1-10当量を、無溶媒

下または溶媒存在下に反応させることによる製造方法。

(製造法6)

下記式 (XI)

[式中、R¹、R²、R³、R⁴、R⁵、j、k、m、n、p、およびqは、上記式(
 I)におけるそれぞれの定義と同じであり、Aはカルボニル基またはスルホニル基を表す。]

で表される化合物1当量と、下記式 (XII)

$$R^{6}-NH_{2} \qquad (XII)$$

25

30

[式中、 R^6 は、上記式 (I) における R^6 の定義と同じである。]

で表されるアミン0.1-10当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

20 かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いる ことにより、より円滑に進行させることができる。

上記製造法1-6において、各反応に供する基質が、一般に有機合成化学において各反応条件において反応するか、あるいは反応に悪影響を及ぼすことが考えられる置換基を有する場合には、その官能基を既知の適当な保護基で保護して反応に供した後、従来既知の方法を用いて脱保護することにより、目的の化合物を得ることができる。

さらに、本発明で用いられる化合物は、例えばアルキル化反応、アシル化反応、 還元反応などの、一般に有機合成化学において使用される既知の反応を用いて、上 記製造法6により製造される化合物の(単数または複数の)置換基をさらに変換す ることによっても得ることができる。

上記各製造法において、反応溶媒としてはジクロロメタン、クロロホルムなどの

ハロゲン化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、ジエチルエーテル、テトラヒドロフランなどのエーテル類、酢酸エチルなどのエステル類、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール類などが反応に応じて適宜用いられる。

いずれの製造方法においても、反応温度は-7.8℃から+1.50℃、好ましくは0℃から1.00℃の範囲である。反応完了後、通常の単離、精製操作、すなわち濃縮、濾過、抽出、固相抽出、再結晶、クロマトグラフィーなどを行うことにより、目的とする上記式(I)で表される環状アミン化合物を単離することができる。また、それらは通常の方法により、薬学的に許容される酸付加体または C_1-C_6 アルキル付加体に変換することができる。

実施例

本発明を以下、実施例に基づいて説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。以下の実施例において各化合物に付された化合物番号は、Table1.1-1.221において好適な具体例として挙げた化合物に付された化合物番号(Compd.No.)と対応している。

[参考例1] (R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフルオロベンゾイル) グリシル} アミノ] ピロリジン(化合物番号69)の合成本発明の化合物はWO9925686号パンフレット記載の製造法により合成したが、例えば化合物番号69の(R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフルオロベンゾイル) グリシル} アミノ] ピロリジンは以下のように合成した。

25

30

1) <u>3-アミノー1-(4-クロロベンジル)ピロリジン・二塩酸塩</u>

4- D = 4 -

25

30

ニル) アミノ $} -1-(4-\rho pp ベンジル) ピロリジン (6.43g、80%) を黄白色固体として得た:$

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ

1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); 純度はRPLC/MSで求めた(9 8 %); ESI/MS m/e 3 1 1.0 (M⁺+H、C₁₆H₂₄ClN₂O₂)

 $3-\{(tert-プトキシカルボニル) アミノ\}-1-(4-クロロベンジル) ピロリジン(6.38g、20.5 mmol) の<math>CH_3OH$ (80 mL)溶液に1

M HCl-Et₂O (100mL) を加え、25℃で15時間攪拌した。溶媒を減圧下に除去し、固体を得、再結晶 (CH₃OH/CH₃CN=1:2、130mL)で精製することにより、3-アミノ-1-(4-クロロベンジル) ピロリジン・二塩酸塩 (4.939g、85%) を白色粉末として得た:
 ¹H-NMR (d₆-DMSO、300MHz) δ

15 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); 純度はRPLC/MSで求めた(> 9 9%); ESI/MS m/e 211.0 (M++H、C11H16ClN2)

2) $(R) -3 - \{ (N - t e r t - \overline{J} + \overline{z} + \overline{z}$

(R) -3-アミノ-1- (4-クロロベンジル)ピロリジン・二塩酸塩 (4. 54 g、16. 0 mm o 1)、2 M NaOH溶液(80 mL)、および酢酸エチル(80 mL)の混合物を攪拌し、有機層を分離し、水層を酢酸エチル(80 mL×2)で抽出した。有機層を合わせて無水硫酸ナトリウムで乾燥、濾過、濃縮することにより遊離の (R) -3-アミノ-1- (4-クロロベンジル)ピロリジン(3.35 g、99%)を得た。

WO 01/10439

- (R) -3-アミノ-1-(4-クロロベンジル) ピロリジン(3.35g、16mmol)のCH₂Cl₂(80mL)溶液に、Et₃N(2.5mL、17.6mmol)、N-tert-プトキシカルボニルグリシン(2.79g、16.0mmol)、EDCI(3.07g、16.0mmol)およびHOBt(12.16g、16mmol)を加えた。反応混合物を25℃で16時間攪拌した後、2MNaOH溶液(80mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した(100mL×3)。有機層を合わせて水(100mL×2)と食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル)により、目的とする(R)-3-{N-(10tert-プトキシカルボニル)グリシル}アミノ-1-(4-クロロベンジル)ピロリジン(5.40g、92%)を得た。
 - 3) <u>(R) -1-(4-クロロベンジル) -3-(グリシルアミノ) ピロリジンの</u> 合成
- 15 $(R) - 3 - \{N - (tert - \vec{J}) + \hat{J} + \hat{J}$ (4-クロロベンジル) ピロリジン (5.39g、14.7mmol) のメタノー ル (60 mL) 溶液に、4 M HClジオキサン (38 mL) 溶液を加えた。この 溶液を室温で2時間攪拌した。反応混合物を濃縮し、2M NaOH溶液 (80m L)を加えた。混合液をジクロロメタン(80mL×3)で抽出し、抽出液を合わ 20 せて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー(Si〇。、 AcOEt/EtOH/Et $_{3}$ N=90/5/5) により、(R) -3-(グリシル アミノ) -1- (4-クロロベンジル) ピロリジン (3.374g、86%) を得 $t: ^{1}H-NMR$ (CDC1₃, 270MHz) δ 1.77 (dd, J = 1.3および6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3 25 および9.6 Hz, 1 H), 2.62 (dd, J = 6.6および9.6 Hz, 1 H), 2.78-2.87 (m, 1 H) , 3. 31 (s, 2 H), 3. 57 (s, 2 H), 4. 38-4. 53 (br, 1 H), 7. 18-7. 32 (m, 4 H), 7. 3 9 (br. s. 1 H)
- 4) (R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフルオロベ 30 ンゾイル) グリシル} アミノ] ピロリジン(化合物番号 69)
 - 3, 4-ジフルオロベンゾイルクロリド(0.060mmol)のクロロホルム

溶液 (0.4mL)を、(R)-1-(4-クロロベンジル)-3-(グリシルアミノ)ピロリジン(0.050mmol)とトリエチルアミン(0.070mmol)のクロロホルム(1.0mL)溶液に加えた。この反応混合物を室温で2.5時間攪拌した後、(アミノメチル)ポリスチレン樹脂(1.04mmol/g、50mg、50mmol)を加え、混合物を室温で12時間攪拌した。反応混合物を濾過し、樹脂をジクロロメタン(0.5mL)で洗浄した。濾液と洗液とを合わせ、ジクロロメタン(4mL)を加え、溶液を2M NaOH水溶液(0.5mL)にて洗浄し、濃縮することにより、(R)-1-(4-クロロベンジル)-3-[{N-(3,4-ジフルオロベンゾイル)グリシル}アミノ]ピロリジン(化合物番号69)を得た(7.8mg、38%):純度はRPLC/MSで求めた(>99%);ESI/MS m/e 408.0(M++H、C20H20C1F2N3O2)

[実施例1] エオタキシンにより惹起されるCCR3発現細胞の細胞内カルシウム 濃度上昇に対する被験化合物の阻害能の測定

15 CCR3レセプターを安定して発現するK562細胞を用いて、細胞内カルシウム濃度上昇に対する本発明による化合物の阻害能を次の方法にて測定した。

CCR3発現K562細胞を $10\,\text{mM}$ HEPES含有HBSS溶液に懸濁した ものに $1\,\text{mM}$ Fura $2\,\text{アセトキシメチルエステル}$ (同仁化学社製)を加え、 $3\,\text{7}$ ℃にて $3\,0\,\text{分間インキュベートした}$ 。これを $3\,4\,0\,\text{nm}$ と $3\,8\,0\,\text{nm}$ で励起し、

20 340/380比をモニターすることにより、細胞内カルシウム濃度を測定した。 アゴニストとしてヒトエオタキシン(0.5 μ g/m1)を用い、被験化合物の阻 害能はエオタキシンで刺激する5分前にCCR3発現K562細胞を被験化合物で 処理したときの細胞内カルシウム濃度を測定し、下記の式により抑制率(%)を算出した。

25

30

10

抑制率 (%) = $\{1 - (A - B) / (C - B)\} \times 100$

(A:被験化合物で処理した後エオタキシンで刺激したときの細胞内カルシウム濃度、B:無刺激のときの細胞内カルシウム濃度、C:被験化合物で処理せずにエオタキシンで刺激したときの細胞内カルシウム濃度)

本発明で用いる環状アミン誘導体の阻害能を測定したところ、例えば、下記の化

合物は、 $10 \mu M$ の濃度おいて、それぞれ20-50%、50%-80%、および、>80%の阻害能を示した。

 $10 \mu M$ の濃度において 20% - 50%の阻害能を示した化合物:

化合物番号11、156、234、330、392、424、481、523、5 25, 533, 558, 567, 582, 602, 613, 630, 646, 64 9, 701, 738, 741, 754, 767, 814, 816, 833, 839 . 873. 902. 909. 945. 1002. 1159. 1170. 1258. 1315, 1352, 1357, 1407, 1417, 1448, 1472, 15 04, 1508, 1531, 1558, 1562, 1569, 1661, 1670 10 . 1686, 1719, 1751, 1756, 1769, 1775, 1783, 1 797, 1802, 1803, 1815, 1834, 1841, 1846, 188 3, 1887, 1889, 1892, 1913, 1924, 1928, 1960, 2006, 2013, 2035, 2052, 2083, 2113, 2127, 21 36, 2189, 2320, 2321, 2323, 2327, 2330, 2334 15 , 2336, 2338, 2345, 2394, 2394, 2398, 2398, 2 400, 2400, 2406, 2406, 2407, 2407, 2409, 240 9, 2420, 2420, 2421, 2421

 $10\mu M$ の濃度において50%-80%の阻害能を示した化合物:

化合物番号83、115、146、150、216、294、297、322、4
20 05、440、459、461、466、482、484、487、490、49
2、503、526、528、550、562、570、578、620、623
、659、685、687、703、716、730、733、755、770、
850、856、867、876、998、1015、1024、1223、12
59、1267、1295、1377、1402、1412、1420、1485
25 、1519、1550、1560、1595、1601、1650、1701、1
725、1754、1836、1856、1870、1912、1923、192
9、2095、2120、2138、2179、2258、2260、2261、2267、2268、2270、2275、2276、2278、2287、22
90、2291、2294、2297、2300、2301、2302、2307
30 、2309、2313、2317、2322、2324、2326、2328、2

329, 2333, 2335, 2343, 2344, 2346, 2347, 234 8, 2350, 2351, 2353, 2358, 2360, 2361, 2364, 2365, 2368, 2369, 2377, 2379, 2381, 2402, 24 03, 2404, 2405, 2408, 2410, 2411, 2416, 2417, 2418

10μΜの濃度において>80%の阻害能を示した化合物:

5

化合物番号7、32、68、169、173、203、209、215、520、544、547、851、852、855、874、910、1003、1012、1032、1038、1042、1043、1046、1114、1190、1

244、1247、1384、1441、1513、1527、1545、1582、1673、1687、1689、1705、1850、1869、1871、1876、1877、1899、2027、2289、2293、2296、2298、2315、2318、2319、2325、2332、2349、2352、2354、2355、2356、2357、2359、2362、2363、2354、2356、2378、2371、2372、2373、2374、2375、2376、2378、2382、2383、2390、2393、2396、2412、2413、2414、2415、2422、2423、2424、2425、2426、2427、2428

- 20 [実施例2] <u>CCR3発現細胞膜画分へのエオタキシンの結合に対する阻害能の測定</u> ヒトCCR3発現K562細胞より調製した細胞膜画分を0.5mg/mLになるようにアッセイバッファー(25mM HEPES、pH7.6、1mM Ca Cl₂、5mM MgCl₂、0.5%BSA) に懸濁し膜画分懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を被験化合物溶液とした。[1²⁵I] 標25 識ヒトエオタキシン(アマシャム社製)を1μCi/mLになるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。0.5%BSAで被覆した96ウェルマイクロプレートに、1ウェルあたり被験化合物溶液25μL、標識リガンド溶液25μL、膜画分懸濁液50μLの順番に分注し撹拌後(反応溶液100μL)、25℃で90分インキュベートした。
- 30 反応終了後、あらかじめ0.5%ポリエチレンイミン溶液にフィルターを浸漬した96ウェルフィルタープレート(ミリポア社製)で反応液をフィルター濾過し、フィ

ルターを冷洗浄バッファー(アッセイバッファー+0.5M NaCl) 150μL で4回洗浄した(冷洗浄バッファー150μLを加えた後、濾過)。フィルターを風乾後、液体シンチレーターを1ウェルあたり25μLずつ加え、フィルター上の膜画分が保持する放射能をトップカウント(パッカード社製)にて測定した。

5 被験化合物の代わりに非標識ヒトエオタキシン100ngを添加したときのカウントを非特異的吸着として差し引き、被験化合物を何も添加しないときのカウントを100%として、ヒトエオタキシンのCCR3膜画分への結合に対する被験化合物の阻害能を算出した。

10 阻害率 (%) = $\{1 - (A - B) / (C - B)\} \times 100$

(A:被験化合物添加時のカウント、B:非標識ヒトエオタキシン100ng添加時のカウント、C: [125 I] 標識ヒトエオタキシンのみ添加したときのカウント) 本発明で用いる環状アミン誘導体の阻害能を測定したところ、本実施例における代表的な化合物の阻害能は、実施例1で認められた阻害能とほぼ同等であった。

産業上の利用可能性

15

20

25

本発明の環状アミン化合物、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁-C₆アルキル付加体を有効成分とする薬剤、もしくはCCR3が関与する疾患の治療薬もしくは予防薬は、CCR3拮抗剤として、エオタキシンなどのCCR3のリガンドの標的細胞に対する作用を抑制する作用を有する。したがって、これらは気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、ならびに潰瘍性大腸炎およびクローン病などの炎症性腸疾患など、好酸球、好塩基球、活性化T細胞などの組織への浸潤が病気の進行、維持に主要な役割を演じている疾患に対する治療薬および/または予防薬として有用である。また、CCR3拮抗作用に基づくHIV-1の感染を阻害する作用により、エイズの治療薬および/または治療薬としても有用である。

請求の範囲

1. 下記式 (I) で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3拮抗 作用を有する薬剤。

[式中、 R^1 はフェニル基、 $C_3 - C_8$ シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を 表し、上記R¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはへ 15 テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R¹におけるフ ェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環は、任意個 のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモ イル基、C₁-C₆アルキル基、C₃-C₈シクロアルキル基、C₂-C₆アルケニル基 20 、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_3 - C_5$ アルキレン基、 C_2 - C₄アルキレンオキシ基、C₁-C₃アルキレンジオキシ基、フェニル基、フェノキ シ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンソイルアミノ基、C2 - C₁アルカノイル基、C₂-C₁アルコキカルボニル基、C₂-C₁アルカノイルオ キシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アルキルカルバモイル基、 25 C_4-C_6 N-シクロアルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、C $_3-C_8$ (アルコキシカルポニル)メチル基、N-フェニルカルバモイル基、ピペリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される 2価基、アミノ基、モノ($C_1 - C_6$ アルキル)アミノ基、もしくはジ($C_1 - C_6$ ア 30 ルキル) アミノ基で置換されていてもよく、これらのフェニル基、 $C_3 - C_8$ シクロ

アルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 - C_6$ アルキル基、もしくは $C_1 - C_6$ アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0 のときは R^2 はヒドロキシ基ではない。

jは0-2の整数を表す。

10 kは0-2の整数を表す。

mは2-4の整数を表す。

nは0または1を表す。

素を形成していてもよい。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、 ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換 されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 またはC₁-C₆アルキル基を表し、R⁴およびR⁵におけるC₁-C₆アルキル基は、 任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カ 20 ルバモイル基、メルカプト基、グアニジノ基、C₃-C₈シクロアルキル基、C₁-C $_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基 、 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルコキシ基、もしくはベンジルオキシ基によっ て置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジ ルオキシカルボニル基、C₂-C₁アルカノイル基、C₂-C₁アルコキシカルボニル 基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N 25 ーアルキルカルバモイル基、C₁-C₆アルキルスルホニル基、アミノ基、モノ(C₁ - C₆アルキル) アミノ基、ジ(C₁-C₆アルキル) アミノ基、もしくは(ヘテロ原 子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族 複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換され 30 ていてもよく、あるいは、R⁴およびR⁵は、いっしょになって3-6員環状炭化水

pは0または1を表す。

qは0または1を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 といっしょになって C_2-C_5 アルキレン基を形成していてもよい。

 R^6 は、フェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_6$ シクロアルケニル基 、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒 素原子を1-3個有する芳香族複素環基を表し、上記R⁶におけるフェニル基、ベン 10 ジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子 、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合し て縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 $C_3 - C_8$ シク ロアルキル基、 $C_3 - C_6$ シクロアルケニル基、ベンジル基、芳香族複素環基、また は縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニ 15 トロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル 基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基、C $_1$ - C_6 アルコキシ基、 C_3 - C_8 シクロアルキルオキシ基、 C_1 - C_6 アルキルチオ基 、 $C_1 - C_3$ アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基 、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、 20 3-フェニルウレイド基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニ ル基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ N-アルキルカルバモイル基、 C_1 - C_6 アルキルスルホニル基、フェニルカルバモ イル基、N, N-ジ(C_1 - C_6 アルキル)スルファモイル基、アミノ基、モノ(C_1 $-C_6$ アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、ベンジルアミノ基、 25 C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル)ア ミノ基、もしくは、ビス(C_1-C_6 アルキルスルホニル)アミノ基により置換され ていてもよく、これらのフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロ アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任 意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基 30

、 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、モノ(

 $C_1 - C_6$ アルキル)アミノ基、もしくはジ($C_1 - C_6$ アルキル)アミノ基によって置換されていてもよい。]

- - 3. 上記式 (I) において k=0 かつm=3 である、請求項1記載のCCR3 拮抗作用を有する薬剤。
- 4. 上記式(I) においてk=1かつm=3である、請求項1記載のCCR3拮抗作用を有する薬剤。
 - 5. 上記式(I)においてk=2かつm=2である、請求項1記載のCCR3拮抗作用を有する薬剤。

15

- 6. 上記式 (I) においてk=1かつm=4である、請求項1記載のCCR3拮抗作用を有する薬剤。
- 7. 上記式(I)で表される化合物、その薬学的に許容される酸付加体、または 20 その薬学的に許容される $C_1 C_6$ アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬。
 - 8. 疾患がアレルギー性疾患である請求項7記載の治療薬もしくは予防薬。
- 25 9. 疾患が気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮 膚炎、またはアレルギー性結膜炎である請求項8記載の治療薬もしくは予防薬。
 - 10. 疾患が炎症性腸疾患である請求項7記載の治療薬もしくは予防薬。
- 30 11. 疾患がエイズである請求項7記載の治療薬もしくは予防薬。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/05260

A. CLASSIFICATION OF SUBJECT MATTER Int.C1 ⁷ A61K31/40, 4025, 445, 4468, 4525, 4535, 454, 4709, 4184, 427, 506, 433, 423, 4192, 429, 53, A61P37/C C07D207/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/04 According to International Patent Classification (IPC) or to both national classification B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification system	108, 29/00, 31/18, 11/08, 43/00 / , 12, 405/06, 12, 14, 409/12, 14 a and IPC
Minimum documentation searched (classification system followed by classification sys	mbols)
4709, 4184, 427, 506, 433, 423, 4192, 429, 53, A61P37/0 C07D207/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 413/06, 14, 417/06, 487/06, 405/05, 05, 532/04	mbols)
Documentation searched other than minimum documentation to the extent that such do	03, 29/00, 31/18, 11/08, 43/00 / 12, 405/06, 12, 14, 409/12, 14
Electronic data base consulted during the international search (name of data base and, v	
REGISTRY (STN), CA (STN), CAOLD (STN), CAPLUS (STN)	where practicable, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT	
Category* Citation of document, with indication, where appropriate, of the rele	evant passages Relevant to claim No.
X WO, 99/25686, A1 (TEIJIN LIMITED)	1-10
A 27 May, 1999 (27.05.99) & EP, 1030840, A1 & AU, 9913741, A & NO, 2000002486, A	11
X EP, 217286, A1 (OKAMOTO SHOSUKE), 08 April, 1987 (08.04.87), Compound No.42 & JP, 63-022061, A & US, 4895842, A & AU, 8663051, A & CA, 1297633, A	1,5,7-10 2-4,6,11
X WO, 98/50534, A1 (SMITHKLINE BEECHAM CORPOR 12 November, 1998 (12.11.98) & EP, 991753, A1 & AU, 9872885, A & BR, 9808502, A & ZA, 9803843, A	PATION), 1,2,5 3,4,6-11
X GB, 2106108, A (JOHN WYETH AND BROTHER LIMI 07 April, 1983 (07.04.83) & US, 4443461, A	TED), 1,5 2-4,6-11
X WO, 97/40051, A1 (TAKEDA CHEMICAL INDUSTRIE 30 October, 1997 (30.10.97)	S, LTD.), 1,5 2-4,6-11
Further documents are listed in the continuation of Box C. See patent fam	ily annex.
considered to be of particular relevance artier document but published on or after the international filing date and understand the p document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	published after the international filing date or a tot in conflict with the application but cited to rinciple or theory underlying the invention ticular relevance; the claimed invention cannot be to cannot be considered to involve an inventive extrement is taken alone ticular relevance; the claimed invention cannot be yolve an inventive step when the document is no or more other such documents, such as owners are such documents, such as obvious to a person skilled in the art er of the same patent family
Date of the actual completion of the international search 31 October, 2000 (31.10.00) Date of mailing of th 07 Novemb	e international search report per, 2000 (07.11.00)
ame and mailing address of the ISA/ Japanese Patent Office Authorized officer	
acsimile No. Telephone No.	1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/05260

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	& JP, 10-226689, A & EP, 915888, A1 & CA, 2251625, A & AU, 9724048, A & ZA, 9703493, A & CN, 1223659, A	
X A	KHALID, M. et al., "N,N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agents", Drugs Exp. Clin. Res. (1987), Vol.13, Suppl. 1, p.57-60	1,5 2-4,6-11
PX PA	WO, 00/31032, A1 (F.HOFFMANN-LA ROCHE AG), 02 June, 2000 (02.06.00) & DE, 19955794, A & GB, 2343893, A & FR, 2786185, A	1,2,7-11 3-6

国際調査報告

国際出願番号 PCT/JP00/05260

A. 発明の属する分野の分類(国際特許分類(I P C)) Int. Cl ⁷ A61K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 404, 4155, 4245, 5377, 4545, 4709, 4184, 427, 506, 433, 423, 4192, 429,63, A61P37/08, 29/00, 31/18, 11/08, 43/00 //、C07D207/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 12, 405/06, 12, 14, 409/12, 14, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/04						
B. 調査を行	テった分野					
調査を行った	最小限資料(国際特許分類(IPC))					
Int. Cl ⁷ A61K 429, 53, A61P3	Int. Cl ⁷ A61K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 404, 4155, 4245, 5377, 4545, 4709, 4184, 427, 506, 433, 423, 4192, 429, 53, A61P37/08, 29/00, 31/18, 11/08, 43/00 // C07D207/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 12, 405/06, 12, 14, 409/12, 14, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/04					
最小限資料以外の資料で調査を行った分野に含まれるもの						
		:				
国際調査で使用	用した電子データベース(データベースの名称、	調査に使用した用語)				
REGIST	TRY (STN), CA (STN), CAOLI	O (STN), CAPLUS (STN)				
C. 関連する	3と認められる文献					
引用文献の			関連する			
カテゴリー*	引用文献名 及び一部の箇所が関連する。		請求の範囲の番号			
X	WO, 99/25686, A1 (TEIJIN LIMITED) 2	27. 5月. 1999 (27. 05. 99)	1-10			
A	&EP, 1030840, A1 &AU, 9913741, A &NC	J, 2000002486, A	11			
Х	EP, 217286, A1 (OKAMOTO SHOSUKE) 8.	4月. 1987 (08. 04. 87)	1, 5, 7-10			
A	化合物No. 42参照		2-4, 6, 11			
	&JP, 63-022061, A &US, 4895842, A &A	JU, 8663051, A &CA, 1297633, A				
X	WO 98/50534 A1 (SMITHKLINE REPORT	M CODDODATION)	1, 2, 5			
A	WO, 98/50534, A1 (SMITHKLINE BEECHAM CORPORATION) 12.11月.1998(12.11.98)		3, 4, 6-11			
	&EP, 991753, A1 &AU, 9872885, A &BR,	9808502, A &ZA, 9803843, A	5, 1, 0 1 <u>1</u>			
x C欄の続き	にも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。			
* 引用文献の	ウカテゴリー	の日の後に公表された文献				
「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表され						
もの 出願と矛盾するものではなく、発明の原理又は: 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの			8明の原理又は理論			
以後に公表されたもの 「X」特に関連のある文献であって、当記						
「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考える 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当覧						
文献 (理由を付す) 上の文献との、当業者にとって自明である組合せ			明である組合せに			
「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献						
国際調査を完了した日 国際調査報告の発送日 07.11.00			00			
31. 10. 00						
		特許庁審査官(権限のある職員)	4P 9638			
日本国特許庁(ISA/JP) 郵便番号100-8915		榎本 佳予子 (一句)				
東京都千代田区霞が関三丁目4番3号		電話番号 03-3581-1101	内線 3492			

国際調査報告

国際出願番号 PCT/JP00/05260

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X X	GB, 2106108, A (JOHN WYETH AND BROTHER LIMITED)	1,5
A	7. 4月. 1983 (07. 04. 83)	2-4, 6-11
	&US, 4443461, A	
X	WO, 97/40051, A1 (TAKEDA CHEMICAL INDUSTRIES, LTD.)	1, 5 2-4, 6-11
A	30. 10月. 1997 (30. 10. 97) &JP, 10-226689, A &EP, 915888, A1 &CA, 2251625, A &AU, 9724048, A &ZA, 9703493, A &CN, 1223659, A	2-4, 0-11
Х	KHALID, M. et al., "N, N'-disubstituted L-isoglutamines as	1, 5
A	novel cancer chemotherapeutic agents",	2-4, 6-11
	Drugs Exp. Clin. Res. (1987), Vol.13, Suppl. 1, p.57-60	
PX PA	WO, 00/31032, A1 (F. HOFFMANN-LA ROCHE AG) 2.6月.2000(02.06.00) &DE, 19955794, A &GB, 2343893, A &FR, 2786185, A	1, 2, 7-11 3-6
	·	
	· · ·	

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING .
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П отнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)