Econometría Aplicada Propensity Score Matching Aplicación

Edinson Tolentino MSc Economics

email: edinson.tolentino@gmail.com

Twitter: @edutoleraymondi

Educate Peru

Contenido

Introducción

Pregunta 1

Pregunta 2

Pregunta 3

Pregunta 4

Introducción

Analisis de la productividad laboral y el crimen

La Información

La base de datos es trabajada en base a la Encuesta Nacional de Empresas (ENE-2015)

Se busca analizar, el rol del cual el crimen afecta a la productividad

Cuadro: Descripción de variables

crimen2 == 1 , :	ción si la empresa sufrio crimen (dinero), = 0 otro caso
crimen2 == 1 ,	si la empresa sufrio crimen (dinero), = 0 otro caso
Edad edad de SF ==1, s edadgroup1 ==1, s edadgroup3 ==1, s edadgroup4 ==1, s exporta ==1, s solefirms ==1, s	si la empresa sufrio crimen (activos), = 0 otro caso si la empresas es conducida por mujer, = 0 otro caso la empresa il la empresa si la empresa cesso de credito si el conductor es menor 30 años, = 0 otro caso si el conductor de 30-36 años, = 0 otro caso si el conductor de 36-46 años, = 0 otro caso si el conductor es mayor 55 años, = 0 otro caso si la empresa exporta, = 0 otro caso si la empresa exporta, = 0 otro caso si la empresa propia
	i la empresa pertenece manufactura

▶ Pregunta 1: Examine la información separada si la empresa sufre de un crimen o no. ¿Qué podemos concluir?

- Pregunta 1: Examine la información separada si la empresa sufre de un crimen o no. ¿Qué podemos concluir?
- Se realiza un analisis descriptivo de las variables demograficas del conductor, características de empresas (acceso al credito, acceso a exportar, sector economico, etc)

- Pregunta 1: Examine la información separada si la empresa sufre de un crimen o no. ¿Qué podemos concluir?
- Se realiza un analisis descriptivo de las variables demograficas del conductor, características de empresas (acceso al credito, acceso a exportar, sector economico, etc)
- En promedio, muchas de las variables no son estadisticamente significativas (evidenciando) el rol de ser variables que observables para el matching.

Cuadro: Estadistica descriptiva (promedio)

	Tratado (Crimen)	Controles (No-crimen)	Diferencia
gender condition	0.19	0.22	0.03
	(0.39)	(0.42)	
30-36 years old (owned)	`0.09	0.08	-0.01
	(0.29)	(0.28)	
36-46 years old (owned)	0.30	0.31	0.00
	(0.46)	(0.46)	
44-56 years old (owned)	0.36	0.37	0.0
	(0.48)	(0.48)	
More 55 years old (owned)	0.24	0.26	0.02
	(0.43)	(0.44)	
Access to capital credit	0.48	0.40	-0.08*
	(0.50)	(0.49)	
Years firms	12.43	12.27	-0.16
	(6.15)	(6.04)	
export status	0.11	0.10	-0.0
	(0.31)	(0.30)	
Sole firms (propietario)	0.38	0.40	0.02
	(0.49)	(0.49)	
sector2r4_2==Industrias manufactureras	0.26	0.34	0.09**
	(0.44)	(0.48)	
sector2r4_2==Comercio	0.10	0.09	-0.0
	(0.29)	(0.28)	
sector2r4_2==Servicios	0.37	0.36	-0.01
	(0.48)	(0.48)	
Observations	407	5708	6115

Modelo de regresion (MCO) del efecto crimen sobre el log-productividad (log(productividad))

Cuadro: Modelo de Regresion

	Model (1)	Model (2)
==1 crime (Capital)	-0.01	-0.08
	(0.06)	(0.05)
Observaciones	6115	6115
Adj. R ²	-0.00016	0.14
Sectors FE		\checkmark
Controls		√

Fuente: INEI - ENE. Elaboracion: Autor ***, **, * denote statistical sign

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

| EDÚCATE PERÚ | CONSULTORES

Pregunta 2

▶ Ahora estimamos el modelo de regresión logistico:

Ahora estimamos el modelo de regresión logistico:

$$prob\left(\mathit{crimen} == 1
ight) = rac{exp(z_i)}{1 + exp(z_i)}$$

Ahora estimamos el modelo de regresión logistico:

$$\begin{aligned} &\textit{prob}\left(\textit{crimen} == 1\right) = \frac{\textit{exp}(z_i)}{1 + \textit{exp}(z_i)} \\ z_i &= \gamma_i + \gamma_2 \textit{female}_i + \gamma_3 \textit{Grupo} - \textit{edad2} + \gamma_4 \textit{Grupo} - \textit{edad3} \\ &+ \gamma_5 \textit{Grupo} - \textit{edad4} + \gamma_6 \textit{Grupo} - \textit{edad5} + \gamma_7 \textit{SF} + \gamma_8 \textit{Edad} \end{aligned}$$

 $+\gamma_9$ exporta $+\gamma_{10}$ solefirms $+\gamma_{11}$ manufacturing $+\gamma_{12}$ commerce $+\gamma_{13}$ services

| EDÚCATE PERÚ | CONSULTORES

Pregunta 2

► Ahora estimamos el modelo de regresión logistico:

$$\begin{aligned} &prob\left(\textit{crimen} == 1\right) = \frac{\textit{exp}(z_i)}{1 + \textit{exp}(z_i)} \\ z_i &= \gamma_i + \gamma_2 \textit{female}_i + \gamma_3 \textit{Grupo} - \textit{edad2} + \gamma_4 \textit{Grupo} - \textit{edad3} \\ &+ \gamma_5 \textit{Grupo} - \textit{edad4} + \gamma_6 \textit{Grupo} - \textit{edad5} + \gamma_7 \textit{SF} + \gamma_8 \textit{Edad} \end{aligned}$$

$$+\gamma_{9}\textit{exporta} + \gamma_{10}\textit{solefirms} + \gamma_{11}\textit{manufacturing} + \gamma_{12}\textit{commerce} + \gamma_{13}\textit{services}$$

¿Cuál es la propuesta de esta ecuación en este actual contexto?

- Esta es la ecuación de asignación de tratamiento y esto es estimado usando un modelo logistico
- La variable dependiente en este caso (si la empresa sufre de crimen o no, crime2) representa los tratados (treatment)
- El modelo de regresión logisitica provee una estimación de propensity scores, el cuál predice las probabilidades de poder tene run crimen en este caso.
- La inclusión de variables debe influir el tratamiento y la variable producto, pero no influye en la variable treatment

- Esta es la ecuación de asignación de tratamiento y esto es estimado usando un modelo logistico
- La variable dependiente en este caso (si la empresa sufre de crimen o no, crime2) representa los tratados (treatment)
- El modelo de regresión logisitica provee una estimación de propensity scores, el cuál predice las probabilidades de poder tene run crimen en este caso.
- La inclusión de variables debe influir el tratamiento y la variable producto, pero no influye en la variable treatment
- El supuesto crucial es el supuesto de independencia condicional (CIA, siglas en ingles).

| EDÚCATE PERÚ | CONSULTORES

Pregunta 2

El supuesto implica que , dado (o seleccionada) un conjunto de covariable observables que no se ven afectadas por el tratamiento (selección de observables), producto potenciales son independiente de la asignación del tratamiento.

| EDÚCATE PERÚ | CONSULTORES

- El supuesto implica que , dado (o seleccionada) un conjunto de covariable observables que no se ven afectadas por el tratamiento (selección de observables), producto potenciales son independiente de la asignación del tratamiento.
- Por lo tanto, la CIA implica que cualquier diferencia sistemática en los resultados entre los grupos tratados y control con los mismos valores de las covariables es atribuible al tratamiento.

Cuadro: Modelo Logistico

	Model	(1)
==1 crime (Capital)		
gender condition	-0.19	(0.13)
30-36 years old (owned)	-0.32	(0.26)
36-46 years old (owned)	-0.39*	(0.20)
44-56 years old (owned)	-0.44**	(0.21)
More 55 years old (owned)	-0.53**	(0.23)
Access to capital credit	0.36***	(0.11)
Years firms	0.01	(0.01)
export status	0.26	(0.17)
Sole firms (propietario)	-0.06	(0.11)
sector2r4_2==Industrias manufactureras	-0.67***	(0.15)
sector2r4_2==Comercio	-0.25	(0.20)
sector2r4_2==Servicios	-0.22*	(0.13)
Constant	-2.09***	(0.25)
Observaciones	6115	
AIC	2976.7	

Fuente: INEI - ENE. Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

Cuadro: Modelo Logistico

	Model	(1)
==1 crime (Capital)		
gender condition	-0.19	(0.13)
30-36 years old (owned)	-0.32	(0.26)
36-46 years old (owned)	-0.39*	(0.20)
44-56 years old (owned)	-0.44**	(0.21)
More 55 years old (owned)	-0.53**	(0.23)
Access to capital credit	0.36***	(0.11)
Years firms	0.01	(0.01)
export status	0.26	(0.17)
Sole firms (propietario)	-0.06	(0.11)
sector2r4_2==Industrias manufactureras	-0.67***	(0.15)
sector2r4_2==Comercio	-0.25	(0.20)
sector2r4_2==Servicios	-0.22*	(0.13)
Constant	-2.09***	(0.25)
Observaciones	6115	
AIC	2976.7	

Fuente: INFL - FNF Elaboracion: Autor

and 10% levels respectively for zero.

***, **, * denote statistical significance at the 1%, 5%

▶ Indicador de Performance AIC, para evaluar el desarrollo del modelo

Cuadro: Modelo Logistico

	Model	(1)
==1 crime (Capital)		
gender condition	-0.19	(0.13)
30-36 years old (owned)	-0.32	(0.26)
36-46 years old (owned)	-0.39*	(0.20)
44-56 years old (owned)	-0.44**	(0.21)
More 55 years old (owned)	-0.53**	(0.23)
Access to capital credit	0.36***	(0.11)
Years firms	0.01	(0.01)
export status	0.26	(0.17)
Sole firms (propietario)	-0.06	(0.11)
sector2r4_2==Industrias manufactureras	-0.67***	(0.15)
sector2r4_2==Comercio	-0.25	(0.20)
sector2r4_2==Servicios	-0.22*	(0.13)
Constant	-2.09***	(0.25)
Observaciones	6115	
AIC	2976.7	

Fuente: INFL - FNF Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

- ▶ Indicador de Performance AIC, para evaluar el desarrollo del modelo
- ► El Modelo Logistico permitira estimar el score de cada empresa dado el matching

Cuadro: Modelo Logistico

	Model	(1)
==1 crime (Capital)		
gender condition	-0.19	(0.13)
30-36 years old (owned)	-0.32	(0.26)
36-46 years old (owned)	-0.39*	(0.20)
44-56 years old (owned)	-0.44**	(0.21)
More 55 years old (owned)	-0.53**	(0.23)
Access to capital credit	0.36***	(0.11)
Years firms	0.01	(0.01)
export status	0.26	(0.17)
Sole firms (propietario)	-0.06	(0.11)
sector2r4_2==Industrias manufactureras	-0.67***	(0.15)
sector2r4_2==Comercio	-0.25	(0.20)
sector2r4_2==Servicios	-0.22*	(0.13)
Constant	-2.09***	(0.25)
Observaciones	6115	
AIC	2976.7	

Fuente: INFL - FNF Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10 % levels respectively for zero.

▶ Indicador de Performance AIC, para evaluar el desarrollo del modelo

► El Modelo Logistico permitira estimar el score de cada empresa dado el matching

Se usa el modelo de regresión lineal logistica para calcular el propensity score (la estimación de probabilidad)

| EDÚCATE PERÚ | CONSULTORES

Pregunta 3

Luántas observaciones estan sobre soporte comun en esta aplicación?

| EDÚCATE PERÚ | CONSULTORES

Figura: Densidad kernel de propensity score

| EDÚCATE PERÚ | CONSULTORES

Figura: Histograma de propensity score por treatment y control group

| EDÚCATE PERÚ | CONSULTORES

Pregunta 3

. su phat if crime2==1

Variable	Obs	Mean	Std. Dev.	Min	Max
phat	407	.0732417	.0225737	.0311882	.1530884

end of do-file

- . do "C:\Users\edinson\AppData\Local\Temp\STD5ea4_000000.tmp"
- . su phat if crime2==0

Variable	Obs	Mean	Std. Dev.	Min	Max
phat	5,708	.0660811	.0204855	.0215849	.1612774

| EDÚCATE PERÚ | CONSULTORES

Pregunta 3

su phat if crime2==1

	Variable	0bs	Mean	Std. Dev.	Min	Max
_	phat	407	.0732417	.0225737	.0311882	.1530884

- end of do-file
- . do "C:\Users\edinson\AppData\Local\Temp\STD5ea4_000000.tmp"
- . su phat if crime2==0

Variable	Obs	Mean	Std. Dev.	Min	Max
phat	5,708	.0660811	.0204855	.0215849	.1612774

La manera mas usual es chequear el soporte comun en los valores minimos y maximos del propensity score para ambas empresas que sufren de un crimen versus las que no.

| EDÚCATE PERÚ | CONSULTORES

Pregunta 3

su phat if crime2==1

Variab	ole	0bs	Mean	Std. Dev.	Min	Max
ph	ıat	407	.0732417	.0225737	.0311882	.1530884

- end of do-file
- . do "C:\Users\edinson\AppData\Local\Temp\STD5ea4_000000.tmp"
- . su phat if crime2==0

Variable	0bs	Mean	Std. Dev.	Min	Max
phat	5,708	.0660811	.0204855	.0215849	.1612774

- La manera mas usual es chequear el soporte comun en los valores minimos y maximos del propensity score para ambas empresas que sufren de un crimen versus las que no.
- El rango en el propensity score para la empresas que sufre de crimen (treated), grupo treatment, es de 0.0311 para 0.1538

. su phat if crime2==1

Variable	0bs	Mean	Std. Dev.	Min	Max
phat	407	.0732417	.0225737	.0311882	.1530884

- end of do-file
- . do "C:\Users\edinson\AppData\Local\Temp\STD5ea4_000000.tmp"
- . su phat if crime2==0

Variable	Obs	Mean	Std. Dev.	Min	Max
phat	5,708	.0660811	.0204855	.0215849	.1612774

- La manera mas usual es chequear el soporte comun en los valores minimos y maximos del propensity score para ambas empresas que sufren de un crimen versus las que no.
- El rango en el propensity score para la empresas que sufre de crimen (treated), grupo treatment, es de 0.0311 para 0.1538
- Algunos de los valores del propensity score para las empresas se encuentran fuera del rango predecido para grupo tratados (treatment)

► El propensity score para la empresas que no sufre de crimen (no crimen), grupo control tiene rango de 0.0215 para 0.1612

- ► El **propensity score** para la empresas que no sufre de crimen (no crimen), grupo **control** tiene rango de **0.0215** para **0.1612**
- Algunos de los valores de los non crimen tendrian que salir del soporte comun

- ► El propensity score para la empresas que no sufre de crimen (no crimen), grupo control tiene rango de 0.0215 para 0.1612
- Algunos de los valores de los non crimen tendrian que salir del soporte comun
- Estos son 26 non tea farmers fuera del soporte comun en este caso, y no deberían ser usados en el emparejamiento de kernel.

	м	ean		+-+	est	V(T)/
Variable		Control	%bias	t	p> t	V(C)
female	.18765	.20957	-5.4	-0.78	0.435	
edad_group2	.09383	.08627	2.6	0.38	0.708	
edad_group3	.30617	.30319	0.6	0.09	0.927	
edad_group4	.36049	.36898	-1.8	-0.25	0.802	
edad_group5	.23704	.25497	-4.2	-0.59	0.554	
SF	.48148	.41698	13.0	1.85	0.065	
Edad	12.457	12.336	2.0	0.28	0.779	1.03
exporta	.11111	.10467	2.1	0.29	0.768	
solefirms	.38025	.39308	-2.6	-0.37	0.708	
manufacturing	.25432	.30573	-11.3	-1.63	0.103	
commerce	.0963	.09219	1.4	0.20	0.842	
services	.37531	.38632	-2.3	-0.32	0.747	

^{*} if variance ratio outside [0.82; 1.22]

Pregunta 4

Figura: Diagnostico de propiedad de balance

	M	Mean			t-test		
Variable	Treated	Control	%bias	t	p> t	V(C)	
female	.18765	.20957	-5.4	-0.78	0.435		
edad_group2	.09383	.08627	2.6	0.38	0.708		
edad_group3	.30617	.30319	0.6	0.09	0.927		
edad_group4	.36049	.36898	-1.8	-0.25	0.802		
edad_group5	.23704	.25497	-4.2	-0.59	0.554		
SF	.48148	.41698	13.0	1.85	0.065		
Edad	12.457	12.336	2.0	0.28	0.779	1.03	
exporta	.11111	.10467	2.1	0.29	0.768		
solefirms	.38025	.39308	-2.6	-0.37	0.708		
manufacturing	.25432	.30573	-11.3	-1.63	0.103		
commerce	.0963	.09219	1.4	0.20	0.842		
services	.37531	.38632	-2.3	-0.32	0.747		

^{*} if variance ratio outside [0.82; 1.22]

► Pegunta 4: examine la propiedad de balance en esta aplicación

Pregunta 4

	M	Mean			t-test		
Variable	Treated	Control	%bias	t	p> t	V(C)	
female	.18765	.20957	-5.4	-0.78	0.435		
edad_group2	.09383	.08627	2.6	0.38	0.708		
edad_group3	.30617	.30319	0.6	0.09	0.927		
edad_group4	.36049	.36898	-1.8	-0.25	0.802		
edad_group5	.23704	.25497	-4.2	-0.59	0.554		
SF	.48148	.41698	13.0	1.85	0.065		
Edad	12.457	12.336	2.0	0.28	0.779	1.03	
exporta	.11111	.10467	2.1	0.29	0.768		
solefirms	.38025	.39308	-2.6	-0.37	0.708		
manufacturing	.25432	.30573	-11.3	-1.63	0.103		
commerce	.0963	.09219	1.4	0.20	0.842		
services	.37531	.38632	-2.3	-0.32	0.747		

^{*} if variance ratio outside [0.82; 1.22]

- Pegunta 4: examine la propiedad de balance en esta aplicación
- Una medida popular para medir la distancia en la distribución marginal de las covariables estandarizadas es el sesgo estandarizado (SB, standardized bias)

Pregunta 4

	Me	Mean			t-test	
Variable	Treated	Treated Control		t	p> t	V(C)
female	.18765	.20957	-5.4	-0.78	0.435	
edad_group2	.09383	.08627	2.6	0.38	0.708	
edad_group3	.30617	.30319	0.6	0.09	0.927	
edad_group4	.36049	.36898	-1.8	-0.25	0.802	
edad_group5	.23704	.25497	-4.2	-0.59	0.554	
SF	.48148	.41698	13.0	1.85	0.065	
Edad	12.457	12.336	2.0	0.28	0.779	1.03
exporta	.11111	.10467	2.1	0.29	0.768	
solefirms	.38025	.39308	-2.6	-0.37	0.708	
manufacturing	.25432	.30573	-11.3	-1.63	0.103	
commerce	.0963	.09219	1.4	0.20	0.842	
services	.37531	.38632	-2.3	-0.32	0.747	
	1					

^{*} if variance ratio outside [0.82; 1.22]

- Pegunta 4: examine la propiedad de balance en esta aplicación
- Una medida popular para medir la distancia en la distribución marginal de las covariables estandarizadas es el sesgo estandarizado (SB, standardized bias)
- Como una regla, se puede experar que el SB_A se puede ubicar entre 3 % y 5 % (en terminos absolutos despues del emparejamiento exitoso.

Pregunta 4

	No.	ean		t-t	est	V(T)/
Variable	Treated	Control	%bias	t	p> t	V(C)
female	.18765	.20957	-5.4	-0.78	0.435	
edad_group2	.09383	.08627	2.6	0.38	0.708	
edad_group3	.30617	.30319	0.6	0.09	0.927	
edad_group4	.36049	.36898	-1.8	-0.25	0.802	
edad_group5	.23704	.25497	-4.2	-0.59	0.554	
SF	.48148	.41698	13.0	1.85	0.065	
Edad	12.457	12.336	2.0	0.28	0.779	1.03
exporta	.11111	.10467	2.1	0.29	0.768	
solefirms	.38025	.39308	-2.6	-0.37	0.708	
manufacturing	.25432	.30573	-11.3	-1.63	0.103	
commerce	.0963	.09219	1.4	0.20	0.842	
services	.37531	.38632	-2.3	-0.32	0.747	

^{*} if variance ratio outside [0.82; 1.22]

- Pegunta 4: examine la propiedad de balance en esta aplicación
- Una medida popular para medir la distancia en la distribución marginal de las covariables estandarizadas es el sesgo estandarizado (SB, standardized bias)
- ► Como una regla, se puede experar que el SB_A se puede ubicar entre 3 % y 5 % (en terminos absolutos despues del emparejamiento exitoso.
- El reporte de SB_B (standardized bias antes) reporta para la variable land es 47.3 %

Pregunta 4

	М	Mean			t-test		
Variable	Treated	Control	%bias	t	p> t	V(C)	
female	.18765	.20957	-5.4	-0.78	0.435		
edad_group2	.09383	.08627	2.6	0.38	0.708		
edad_group3	.30617	.30319	0.6	0.09	0.927		
edad_group4	.36849	.36898	-1.8	-0.25	0.802		
edad_group5	.23704	.25497	-4.2	-0.59	0.554		
SF	.48148	.41698	13.0	1.85	0.065		
Edad	12.457	12.336	2.0	0.28	0.779	1.03	
exporta	.11111	.10467	2.1	0.29	0.768		
solefirms	.38025	.39308	-2.6	-0.37	0.708		
manufacturing	.25432	.30573	-11.3	-1.63	0.103		
commerce	.0963	.09219	1.4	0.20	0.842		
services	.37531	.38632	-2.3	-0.32	0.747		

^{*} if variance ratio outside [0.82; 1.22]

- Pegunta 4: examine la propiedad de balance en esta aplicación
- Una medida popular para medir la distancia en la distribución marginal de las covariables estandarizadas es el sesgo estandarizado (SB, standardized bias)
- Como una regla, se puede experar que el SB_A se puede ubicar entre 3 % y 5 % (en terminos absolutos despues del emparejamiento exitoso.
- El reporte de SB_B (standardized bias antes) reporta para la variable land es 47.3 %
- ▶ y despues del matching, el SB_A se reduce a 5 %

Figura: Standardized % Bias (despues del emparejamiento) por variables

 Interprete precisamente el valor de ATT reportado para la variable resultado: log(productividad)

▶ La expresión para el ATT basado en el emparejamiento de kernel (KM) es:

- ▶ La expresión para el ATT basado en el emparejamiento de kernel (KM) es:
- donde hay N^T = 405 empresas que sufrieron crimen, entonces esto es ATT es promedio sobre los 405 empresas

- La expresión para el ATT basado en el emparejamiento de kernel (KM) es:
- ▶ donde hay $N^T = 405$ empresas que sufrieron crimen, entonces esto es ATT es promedio sobre los 405 empresas

$$ATT_{KM} = \frac{1}{N^T} \sum_{i \in T} \left(y_i^T - \sum_{i \in C} \pi_{ij} y_j^C \right)$$

- ▶ La expresión para el ATT basado en el emparejamiento de kernel (KM) es:
- donde hay N^T = 405 empresas que sufrieron crimen, entonces esto es ATT es promedio sobre los 405 empresas

$$ATT_{KM} = \frac{1}{N^T} \sum_{i \in T} \left(y_i^T - \sum_{i \in C} \pi_{ij} y_j^C \right)$$

Donde:

- La expresión para el ATT basado en el emparejamiento de kernel (KM) es:
- ▶ donde hay $N^T = 405$ empresas que sufrieron crimen, entonces esto es ATT es promedio sobre los 405 empresas

$$ATT_{KM} = \frac{1}{N^T} \sum_{i \in T} \left(y_i^T - \sum_{i \in C} \pi_{ij} y_j^C \right)$$

- Donde:
 - Y_i^T : el producto para treatment (sufrio crimen) unidad i

- La expresión para el ATT basado en el emparejamiento de kernel (KM) es:
- donde hav $N^T = 405$ empresas que sufrieron crimen, entonces esto es ATT es promedio sobre los 405 empresas

$$ATT_{KM} = \frac{1}{N^T} \sum_{i \in T} \left(y_i^T - \sum_{i \in C} \pi_{ij} y_j^C \right)$$

- Donde:
 - Y_i^T : el producto para treatment (sufrio crimen) unidad i
 - Y^{C} : el producto para control (no sufrio de un crimen) unidad i

- La expresión para el ATT basado en el emparejamiento de kernel (KM) es:
- donde hav $N^T = 405$ empresas que sufrieron crimen, entonces esto es ATT es promedio sobre los 405 empresas

$$ATT_{KM} = \frac{1}{N^T} \sum_{i \in T} \left(y_i^T - \sum_{i \in C} \pi_{ij} y_j^C \right)$$

- Donde:
 - Y_i^T : el producto para treatment (sufrio crimen) unidad i

 - Y_i^C: el producto para control (no sufrio de un crimen) unidad i π_{ii} : el peso estandarizado calculado para cada i y j par usando los valores de Espanechnikov

- La expresión para el ATT basado en el emparejamiento de kernel (KM) es:
- donde hav $N^T = 405$ empresas que sufrieron crimen, entonces esto es ATT es promedio sobre los 405 empresas

$$ATT_{KM} = \frac{1}{N^T} \sum_{i \in T} \left(y_i^T - \sum_{i \in C} \pi_{ij} y_j^C \right)$$

- Donde:
 - Y_i^T : el producto para treatment (sufrio crimen) unidad i

 - Y_i^C: el producto para control (no sufrio de un crimen) unidad i π_{ii} : el peso estandarizado calculado para cada i y j par usando los valores de Espanechnikov
 - ► N^T: el tamaño muestral en el grupo de tratamiento i

Pregunta 5

▶ Este es el resultado de *Linea Base* de ATT

- ▶ Este es el resultado de *Linea Base* de ATT
- Se observa los datos de estandar error y el ratio-t para el ATT

Figura: STATA resultado del *PSMATCH2* para la linea base de las empresas que se vieron afectadas por el crimen

Variable	Sample	Treated	Controls	Difference	S.E.	T-stat
lnpl	Unmatched	8.4144238	8.43164064	017216839	.062006924	-0.28
	ATT	8.4144238	8.44523084	030807035	.059427279	-0.52

Note: S.E. does not take into account that the propensity score is estimated.