STOCHASTIC CALCULUS

Kas Wei

Contents

1		babilities
	1.1	Event Sets
	1.2	Probability
	1.3	Infinite Spaces
		1.3.1 Uniform Lebesgue Measure on $(0, 1)$
		1.3.2 Infinite Sequence of Coin Tosses
2		ormation and Conditioning Information and σ -Algebras
3	\mathbf{Bro}	ownian Motion
	3.1	Scaled Random Walks
	3.2	Brownian Motion
	3.3	Quadratic Variation

Chapter 1

Probabilities

1.1 Event Sets

<u>DEFINITION</u>. A collection (or call it a set) \mathcal{F} of subsets of Ω is called a σ -algebra if it satisfies:

- 1. contains the empty set: $\emptyset \in \mathcal{F}$;
- 2. is closed under **countable** unions: $A_1, A_2, ..., \in \mathcal{F} \implies \bigcup_i A_i \in \mathcal{F}$;
- 3. is closed under complements: $A \in \mathcal{F} \implies A^C \in \mathcal{F}$;

It is trivial to know:

$$A_1, A_2, \dots \in \mathcal{F} \implies \bigcup_i A_i^C \in \mathcal{F}$$

 $\implies (\bigcup_i A_i^C)^C \in \mathcal{F}$
 $\implies \cap_i A_i \in \mathcal{F}$

<u>Trival σ -algebra</u>. $\mathcal{F}_0 = \{\emptyset, \Omega\}$ is a σ -algebra.

Collection of all subsets. $\mathcal{F} = 2^{\Omega}$ is a σ -algebra.

<u>DEFINITION</u>. Let \mathcal{G} be a collection of subsets of Ω . The σ -algebra generated by \mathcal{G} : $\sigma(\mathcal{G})$ is the **smallest** σ -algebra that contains \mathcal{G} .

<u>DEFINITION</u>. A pair is called a *measure space* (Ω, \mathcal{F}) if Ω is the sample space and \mathcal{F} is a σ -algebra of subsets.

1.2 Probability

<u>DEFINITION</u>. A function \mathbb{P} defined on (Ω, \mathcal{F}) : $\mathbb{P} : \mathcal{F} \to [0, 1]$ is called a *probability measure* if:

- 1. $\mathbb{P}(\Omega) = 1$
- 2. Only for *countable* unions: if $A_i \cap A_j = \emptyset$ for $i \neq j \implies \mathbb{P}(\cup_i A_i) = \sum_i \mathbb{P}(A_i)$

The countable sample space is easy to handle with, take $\mathcal{F} = 2^{\Omega}$ and some \mathbb{P} to assign each event to [0, 1]. But the uncountable space could be more delicate to solve.

1.3 Infinite Spaces

1.3.1 Uniform Lebesgue Measure on (0, 1)

Define a Lebesgue measure μ , then we can determine the probability that ω falls within an **open interval**:

$$\mathbb{P}(\{\omega : \omega \in (a,b)\}) = \mu((a,b)) := b - a, 0 < a \le b < 1$$

In this case we notice that $2^{\Omega} = 2^{(0,1)}$ is not a σ -algebra of (0, 1). Then we introduce the *Borel* σ -algebra on (0, 1) to make an appropriate sample space for our experiment:

$$\mathcal{B}((0,1)) := \sigma(\mathcal{O}) \text{ where } \mathcal{O} = \{ A \subseteq (0,1) : A = (a,b), 0 < a \le b < 1 \}$$

This note will not discuss much on the *Borel set*, it is about creating some subsets of open sets in Ω .

1.3.2 Infinite Sequence of Coin Tosses

Let $\omega = \omega_1 \omega_2 ... \omega_n$ where $\omega_i \in \{H, T\}$. If I have known ω_1, ω_2 , I can tell you if ω belongs to each of the sets in \mathcal{F}_2 : all possible cases for two tossing. When n becomes very large, then we have:

$$\mathcal{F} = \sigma(\mathcal{F}_{\infty}), \ \mathcal{F}_{\infty} = \cup_{\infty} \mathcal{F}_{n}$$

But things (or call them sets) like "sequences for which x percent of coin tosses are heads" are not in \mathcal{F}_{∞} , they are actually in \mathcal{F} .

<u>DEFINITION</u>. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, then if a set $A \in \mathcal{F}$ s.t. $\mathbb{P}(A) = 1$, then the event A occurs \mathbb{P} almost surely (i.e. \mathbb{P} -a.s.).

Chapter 2

Information and Conditioning

2.1 Information and σ -Algebras

<u>DEFINITION</u> 2.1.1. Let Ω be a nonempty set. Let T be a fixed positive number, and assume that for each $t \in [0, T]$ there is a

Chapter 3

Brownian Motion

3.1 Scaled Random Walks

3.2 Brownian Motion

<u>DEFINITION</u>. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, a *Brownian motion* is a stochastic process $W = (W_t)_{t \geq 0}$ that:

- 1. $W_0 = 0$
- 2. independent increment: if $0 \le r < s < t < u < \infty$ then $(W_u W_t) \perp (W_s W_r)$
- 3. stationary increment: if $0 \le r < s$ then $W_s W_r \sim \mathcal{N}(0, s r)$
- 4. the map $t \to W_t$ is continuous for every ω

The distribution of a normally distributed random vector is uniquely determined by its **mean vector** and **covariance matrix**.

E.g. Let $W := (W_{t_1}, W_{t_2}, \dots, W_{t_d})$ is a d-dimensional normally distributed variable, what is the covariance matrix? We have $\mathbb{E}[W_{t_1}, W_{t_2}, \dots, W_{t_d}] = 0$. Then for $T \geq t$:

$$\begin{split} Co\mathbb{V}[W_T,W_t] &= \mathbb{E}W_TW_t - \mathbb{E}W_T\mathbb{E}W_t \\ &= \mathbb{E}W_TW_t \\ &= \mathbb{E}(W_T - W_t + W_t)W_t \\ &= \mathbb{E}[(W_T - W_t)W_t] + \mathbb{E}W_t^2 \\ &= \mathbb{E}[W_T - W_t]\mathbb{E}W_t + \mathbb{E}W_t^2 \\ &= \mathbb{V}W_t = t \end{split}$$

3.3. QUADRATIC VARIATION CHAPTER 3. BROWNIAN MOTION

The covariance matrix is: $C = \begin{pmatrix} t_1 & t_1 & \dots & t_1 \\ t_1 & t_2 & \dots & t_2 \\ \vdots & \vdots & \ddots & \vdots \\ t_1 & t_2 & \dots & t_d \end{pmatrix}$

<u>DEFINITION</u>. A filtration for the Brownian motion W is a collection of σ -algebra $\mathbb{F} = (\mathcal{F}_t)t \geq 0$:

- 1. Gathering more and more information: if $0 \le s < t$ then $\mathcal{F}_s < \mathcal{F}_t$
- 2. Adaptivity: for all $t \geq 0$, we have $W_t \in \mathcal{F}_t$
- 3. Independence of future increments: if $u > t \ge 0$ then $(W_u W_t) \perp \mathcal{F}_t$

By contrast, a Brownian motion W is a martingale under such filtration \mathbb{F} :

$$\mathbb{E}[W_t|\mathcal{F}_s] = \mathbb{E}[W_t - W_s|\mathcal{F}_s] + \mathbb{E}[W_s|\mathcal{F}_s] = 0 + W_s = W_s$$

3.3 Quadratic Variation

Let Π be a partition on [0, T] and $||\Pi|| = \max_i (t_{i+1} - t_i)$. <u>DEFINITION</u>. The first variation of f up to time T is:

$$FV_T(f) := \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} |f(t_{j+1}) - f(t_j)|$$

<u>Lemma</u>. By the Mean Value Theorem there $\exists t_i^* \in [t_j, t_{j+1}]$ s.t.

$$f(t_{j+1}) - f(t_j) = f'(t_j^*)(t_{j+1} - t_j)$$

 $\implies FV_T(f) = \int_0^T |f'(t)| dt$

<u>DEFINITION</u>. Let $f:[0,T] \to \mathbb{R}$, the quadratic variation of f up to time T is:

$$[f, f]_T := \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} [f(t_{j+1}) - f(t_j)]^2$$

<u>Lemma</u>. $[W, f]_T = 0$ for any smooth function f(t).

Proof. For any partition Π of [0,T] we have:

$$\sum_{j=0}^{n-1} [f(t_{j+1}) - f(t_j)]^2 = \sum_{j=0}^{n-1} [f'(t_j^*)]^2 (t_{j+1} - t_j)^2$$

$$\leq ||\Pi|| \sum_{j=0}^{n-1} [f'(t_j^*)]^2 (t_{j+1} - t_j)$$

3.3. QUADRATIC VARIATION CHAPTER 3. BROWNIAN MOTION

Insert the inequality into the definition of $[f, f]_T$ to obtain:

$$[f, f]_T \le \lim_{\|\Pi\| \to 0} ||\Pi|| \cdot \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} [f'(t_j^*)]^2 (t_{j+1} - t_j)$$
$$= 0 \cdot \int_0^T |f'(t)|^2 dt = 0$$

<u>THEOREM</u>. Let W be a Brownian motion. Then for all $T \geq 0$ we have $[W, W]_T = T$ almost surely.

Proof. For a fixed partition $\Pi = \{0 = t_0, t_1, \dots, t_n = T\}$ the sampled quadratic variation of W, denoted as Q_{Π} :

$$Q_{\Pi} := \sum_{j=0}^{n-1} (W_{t_{j+1}} - W_{t_j})^2$$

Since $Q_{\Pi} \to [W, W]_T$ as $||\Pi|| \to 0$, it is sufficient to show if $\mathbb{E}\Pi \to T$ and $\mathbb{V}\Pi \to 0$ then the theorem holds. By $W_{t_{j+1}} - W_{t_j} \sim \mathcal{N}(0, t_{j+1} - t_j)$:

$$\mathbb{E}[W_{t_{j+1}} - W_{t_j}]^2 = t_{j+1} - t_j$$

$$\mathbb{V}[W_{t_{j+1}} - W_{t_j}]^2 = 2(t_{j+1} - t_j)^2$$

Take back to deliver that:

$$\mathbb{E}\Pi = \sum_{j=0}^{n-1} (W_{t_{j+1}} - W_{t_j})^2 = \sum_{j=0}^{n-1} t_{j+1} - t_j = T$$

$$\mathbb{V}\Pi = \sum_{j=0}^{n-1} (2(t_{j+1} - t_j)^2) \le ||\Pi|| \sum_{j=0}^{n-1} 2(t_{j+1} - t_j) = 2\Pi T \to 0$$

But it is incorrect to say that $dW_t^2 = dt$. In fact, $dW_t^2 \xrightarrow{d} dt$. <u>DEFINITION</u>. Let $f, g : [0, T] \to \mathbb{R}$. The covariation of f and g is:

$$[f,g]_T = \lim_{||\Pi|| \to 0} \sum_{j=0}^{n-1} [f(t_{j+1}) - f(t_j)][g(t_{j+1}) - g(t_j)]$$