DK112 高性能开关电源控制芯片

功能描述

DK112 芯片是专用小功率开关电源控制芯片,广泛用于电源适配器、LED电源、电磁炉、空调、DV等小家电产品。

一、产品特点

- ? 采用双芯片设计,高压开关管采用双极型晶体管设计,以降低产品成本;控制电路采用大规模 MO数字电路设计,并采用 E极驱动方式驱动双极型晶体芯片 ,以提高高压开关管的安全耐压值。内建自供电电路,不需要外部给芯片提供电源,有效的降低外部元件的数量及成本。
- ? 芯片内集成了高压恒流启动电路,无需外部加启动电阻。
- ? 内置过流保护电路,防过载保护电路,输出短路保护电路,温度保护电路及光藕失效保护电路。
- ? 内置斜坡补偿电路,保证在低电压及大功率输出时的电路稳定。
- ?内置 PW振荡电路,并设有抖频功能,保证了良好的 特性。 EMC
- ?内置变频功能,待机时自动降低工作频率,在满足欧洲绿色能源标准(< 0.3W)同时,降低了输出电压的纹波。
- ? 内置高压保护,当输入母线电压高于保护电压时,芯片将自动关闭并进行延时重启。
- ? 内建斜坡电流驱动电路,降低了芯片的功耗并提高了电路的效率。
- ? 4KV 防静电 ES测试。

二、功率范围

输入电压	(85 ~ 264V ac)	(85 ~ 145V ac)	(180 ~ 264V ac)
最大输出功率	12W	18W	18W

三、封装与引脚定义

引脚	符号	功能描述
1	Gnd	接地引脚。
2	Gnd	接地引脚。
3	Fb	反馈控制端。
4	Vcc	供电引脚。
5678	Collector	输出引脚,连接芯片内高压开关管 Collector 端,与开关变压器相连。

四、内部电路框图

五、极限参数

供电电压 Vcc -0.3V--9V 供电电流 Vcc 100mA 引脚电压 -0.3V--Vcc+0.3V 开关管耐压 -0.3V--780V 峰值电流 800mA 总耗散功率 1000mW 工作温度 0 --125 储存温度 -55 --+150 焊接温度 +280 /5S

六、电气参数

项目	测试条件	最小	典型	最大	单位
电源电压 Vcc	AC 输入85V265V	4	5	6	V
启动电压	AC 输入85V265V	4.8	5	5.2	V
关闭电压	AC 输入85V265V	3.6	4	4.2	V
电源电流	Vcc=5V, Fb=2.2V	20	30	40	mA
启动时间	AC 输入 85V			500	mS
Collector 保护电压	L=1.2mH	460	480	500	V
开关管耐压	loc=1mA	700			V
开关管电流	Vcc=5V, Fb=1.6 V3.6V	600	650	700	mA
峰值电流保护	Vcc=5V, Fb=1.6 V3.6V	650	720	800	mA
振荡频率	Vcc=5V, Fb=1.6 V2.8V	60	65	70	KHz
变频频率	Vcc=4.6V , Fb=2.8V3.6V	0.5		65	KHz
抖频步进频率	Vcc=4.6V , Fb=1.6 V2.8V	0.8	1	1.2	KHz
温度保护	Vcc=4.6V , Fb=1.6 V3.6V	120	125	130	
占空比	Vcc=4.6V , Fb=1.6 V3.6V	5		70	%
控制电压 Fb	AC 输入85V265V	1.6		3.6	V

七、工作原理

? 上电启动: 当外部电源上电时,直流高压经开关变压器传至芯片的 COLLECTOR 端引脚),后经内建高压恒流启动电路将启动电流送至开关管 Q1 的B极,通过开关管 Q1 的电流放大(约为 20 倍放大)进入电源管理电路经 D1为Vcc 外部电容 C1 充电,同时 为Fb 预提供一个 3.6V 电压(Fb 引脚对地应接入一只滤波电容),当 Vcc 的电压逐步上升至 5V 时,振荡器起振,电路开始工作,控制器为 Fb 开启一个约为 25uA 的对地电流源,电路进入正常工作。

上电原理图

上电时序图

? 正常工作:电路完成启动后,振荡器开始工作,触发器的 输出高电架,QQC 晶体管与功率 MOS 管同时导通,开关电流经晶体管与功率 MO管接到 40 电流取样电阻,并在电阻上产生与电流成正比的电压,(由于开关变压器分布电容的存在,在电路开通的瞬间有一个高的尖峰电流,为了不引起电路的误动作,在电路开通时启动一个前沿消隐电路将尖峰电流去除,消隐时间为 250nS),控制端 Fb 电压经斜坡补偿后与取样电阻上的电压相加后与 0.6V 的基准电压相比较,当电压高于基准电压时比较器输出低电平,触发器的 Q1,Q2 输出低电平,高压晶体管与功率 MOS 管同时关断,COLLECTO端电压上升,电路进入反激工作,在下一个振荡周期到时,电路将重新开始导通工作。

工作时序图

电路在 t1 时间 Vcc 电压上升到 5V,电路开启工作, Q2 输出 PWM信号, t2 ~t3 时间 Vcc 电压高于 6V,电路停止输出, Q2 输出低电平, t3 ~t4 时间 Vcc电压回到范围之内,电路正常工作, t4 ~t5 时间 Vcc 电压低于 4V,电路停止输出, Q2 输出低电平, t6 时间 Fb 电压低于 1.6V,开路开启一个 24mS 的定时器, PWM以最大占空输出,直到 t7 时间 Fb 电压还未能高于 1.5V,电路开始重新启动, t9 时间 Vcc 电压上升到 5V,电路重新开启工作, t10 时间 Fb 电压高于 3.6V,电路停止输出。

? 控制引脚 Fb: **fb**脚外部应当连接一只电容,以平滑 电压,**fb**接电容会影响到电路的反馈瞬态特性及电路的稳定工作,典型应用可在 10nF ~100nF 之间选择;当 Fb 电压高于 1.5V 而小于 2.8V 时,电路将以 65KHz 的频率工作,当 Fb 电压高于 2.8V 而小于 3.6V 时,电路将随着 Fb 的电压升高而降低频率,当 Fb 电压高于 3.6V 时,电路将停止振荡,当 Fb 电压小于 1.5V 时,电路将启动一个 48mS 的延时电路,如在此期间 Fb 电压回复到 1.5V 以上,电路将继续正常工作,否则,芯片将进行重新启动,此电路完成了光藕失效的保护。

Is 与Fb 时序图

Fb 与工作频率(PWM 时序图

- ? 自供电电路:(已申请国家专利)芯片内建自供电电路,将电路的电源电压控制在左右,以提供芯片本身的电流消耗,自供电电路只能提供自身的电流消耗,不能为外部电路提供能量。
- ? 斜坡电流驱动:为了降低芯片的耗能及提高电路的效率,内部为高压晶体管的的基极电流采用了斜坡电流驱动技术,当开关电流 Is 为 0 时,基极电流约为 40mA, 随着开关电流的逐步增大,基极电流也逐步增大,当开关电流为 600mA 时,基极电流为 100mA

В

DK112 高性能开关电源控制芯片

Ib 与Is 时序图

- ? 抖频电路:为了能满足 的**要求**, 芯片内设有一个抖频电路, 的频率**将以** 65KHz 的频率为中心,以 1KHz 的步进在 8 个频率点上运行,这样有效的降低了 EMC 的设计的 复杂度及费用。
- ? 热保护:芯片的温度达到 125 时,芯片将进行重新启动,直至芯片的温度降低到 120 以下,芯片才会重新进入正常工作状态。
- ?峰值电流保护:因外部的某种异常引起的电流过大时,当电流达到 mA 时,芯片将720 进行重新启动。
- ? 电源异常:因外部的某种异常引起的电源电压高于 时,或电源**电**压低于 4V时,芯片将进行重新启动。
- ? 超压保护:芯片在完成启动后,芯片内部设定了一个电流的上升斜率检测电路,当外部的电压超高或者开关变压器的失效,都会引起电流的斜率变化,保护电路将会对电路进行重新启动,这样保证了高压晶体管的安全,同时对低频的浪涌电压进行了有效的保护。

斜率检测时序图

根据电感电流公式 I = U/L ?? t 可知,在电感不变时,在一个固定的时间上检测电流可计算出电压,芯片利用该原理在 350nS 时检测 Is 电流,当 Is 电流小于 0.14V 时,电路正常工作,当 Is 电流大于 0.14V 时,芯片进入异常保护;同理,当外部的电感器的电感量变小,也会让芯片进入异常保护;这样即可以保护母线电压过高引起的开关管的击穿,也可以保护因外部变压器的饱和或者短路引起的电感量下降导致 Is 电流过大,引起芯片的损坏。

直流母线保护电压与变压器电感量的关系图

八、芯片测试

8.1、耐压测试

8.2、电性能测试

九、典型应用一(12V/1A 输出离线反激式开关电源)

9.1 元器件清单

序号	元件名称	规格/型号	位号	数量	备注
1	保险丝	F2A/AC250V	F1	1	
2	安规 X 电容	104/AC275V	C1	1	
3	二极管	IN4007	D1~D4	4	
4		HER107	D5	1	
5		SR2100	D6	1	
6	稳压二极管	11V/0.5W	ZD1	1	
7	电解电容	33UF/400V	C2	1	
8		22UF/16V	C4	1	
9		1000UF/25V	C6	1	
10	瓷片电容	103/250V	C3	1	
11		103/25V	C5	1	
12	IC	DK112	IC1	1	
13		PC817	IC2	1	
14	色环电阻器	100K/0.25W	R1	1	
15		3K/0.25W	R2	1	
16		470R/0.25W	R3	1	
17	变压器	EE25	T1	1	

DK112 高性能开关电源控制芯片

- 9.2 变压器设计(只作参考)
- 9.2.1 参数确定:

变压器设计时,需要先确定一些参数,(1)输入电压范围,(2)输出电压、及电流,

- (3) 开关频率,(4) 最大占空比;
- (1)输入电压范围 AC85~265V
- (2)输出电压、电流 DC12V/1A
- (3) 开关频率 F=65KHz
- (4)最大占空比 D=0.5
- 9.2.2 磁心的选择:

先计算出电源的输入功率 P = Pout / (指开关电源的效率, 设为 0.8),

Pout = Vout ? lout = 12V ? 1A = 12W , P = 12/0.8 = 15W 。我们可以通过磁心的制造商提供的图表进行选择,也可通过计算方式选择,我们查图表方式选择 15W 电源可用 EE20 或者EE25 磁心,我们选择 EE25 磁心进行下一步的计算。

9.2.3 计算原边电压 Vs

输入电压为 AC85~265V, 计算最低电压下的最大功率, 最低电压为 85V

Vs = 85?1.3 = 110V (考虑了线路压降及整流压降)

9.2.4 计算导通时间

Ton = 1/F? D = 1/65? 0.5 = 7.7uS;

9.2.5 计算原边匝数 Np

 $Np = \frac{V \text{ sT on}}{? \text{ Bac Ae}}$

Np 原边匝数

Vs 原边直流电压(最低电压值)

Ton 导通时间

? Bac 交变工作磁密 (mT),设为 0.2

Ae 磁心有效面积 (mm²)EE25 磁心为50m㎡

Np = (110 ? 7.7)/(0 .2 ? 50) = 84.7 85

由于变压器不能取半匝,所以取 85 匝。

9.2.6 计算副边匝数 Ns

Ns 副边匝数

Np 原边匝数

Vout 输出电压(包含线路压降及整流管压降, 12V+1V=13V)

Vor 反激电压(设置该电压不高于 150V,以免造成芯片过压损坏 ,本设计中

设为100V)

DK112 高性能开关电源控制芯片

Ns=(13*85)/100=11 匝

9.2.7 计算原边电感量 Lp

Lp = (Vs?Ton)/Ip

Lp 原边电感量

Ip 原边峰值电流(芯片设定最大峰值电流 720mA)

Lp=(100*7.7)/720=1.18 1.2 (mH)

9.2.8 变压器的设计验证

变压器的设计时最大磁感应强度不能大于 0.4T , (铁氧体的饱和磁感应强度一般为 0.4T 左右),由于单端反激电路工作在 B-H 的第一象限,磁心又存在剩磁 Br 约为0.1T,所以最大的工作磁通 Bmax 最大只有0.4-0.1=0.3T

Bmax = (Ip ? Lp)/(Np ? Ae)

Bmax = (800 ? 1.2)/(85 ? 50) = 0.225

Bmax < 0.3 证明设计合理

9.2.9 变压器的漏感

由于变压器不是理想器件,在制造过程中一定会存在漏感,漏感会影响到产品的稳定及安全,所以要减小,漏电感应控制在电感量的 5%以内,三明治绕线方式可以减小漏感。

十、典型应用二(非离线式开关电源)

10.1 元器件清单

序号	元件名称	规格/型号	位号	数量	备注
1	保险丝	F2A/AC250V	F1	1	
2	安规电容	104/AC275V	C1	1	
3	二极管	IN4007	D1 D4	4	
4		HER107	D5, D6	2	
5	稳压二极管	16V/0.5W	ZD1	1	
6	电解电容	22UF/400V	C2	1	
7		22UF/16V	C4	1	
8		220UF/25V	C5	1	
9	瓷片电容	103/25V	C3	1	
10	IC	DK112	IC1	1	
11	色环电阻器	4.7K/0.25W	R1	1	
12	电感器	1.5mH	L1	1	

十一、设计注意事项

- 10.1、功率器件是需要散热的,芯片的主要热量来自功率开关管,功率开关管与引脚 5678相连接,所以在 PC的线时,应该将引脚 5678外接的铜箔的面积加大并作镀锡处理,以增大散热能力。
- 10.2、芯片的 5678引脚是芯片的高压部份,最高电压可达 600V以上,所以在线路布置上要与低压部份保证 1.5mm以上的安全距离,以免电路出现击穿放电现象。

十一、封装尺寸

01	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	3. 710	4. 310	0.146	0.170
A1	0. 510		0.020	
A2	3. 200	3.600	0. 126	0.142
В	0. 380	0.570	0.015	0.022
B1	1. 524 (BSC)		0. 060 (BSC)	
C	0. 204	0.360	0.008	0.014
D	9. 000	9.400	0.354	0.370
E	6. 200	6.600	0. 244	0. 260
E1	7. 320	7. 920	0. 288	0.312
e	2. 540	(BSC)	0.100	(BSC)
L	3. 000	3.600	0.118	0.142
E2	8. 400	9.000	0.331	0.354

十二、包装信息

12.1、芯片采用防静电管包装

代	最小值	额定值	最大值
号	(mm)	(mm)	(mm)
Α	11	11.5	12
В	11.5	12	12.5
С	10	10.5	11
D	0.4	0.5	0.6
E	3.5	4	4.5
F	5	5.5	6

12.2、包装数量

包装	数量	
单管	50	
单包装箱	2000	
大包装箱	20000	