The Bitcraze ecosystem

Goals

An understanding of the Bitcraze ecosystem and how everything fits together

- Hardware
- Firmware
- Clients and libraries
- Use Cases

Hardware - Quadcopters - Crazyflie 2.1

- 7 min flight time
- 27 g
- 15 g lifting capacity
- Cortex-M4, 168MHz, 192kb SRAM, 1Mb flash
- 2.4 GHz Radio and BLE
- USB
- Expansion port
- Robust
- Brushed motors

Hardware - Quadcopters - The Bolt

- Specs similar to Crazyflie 2.1
- Custom frame
- Brushless motors
- Higher lifting capacity
- Larger battery

Hardware - Crazyradio PA

- USB dongle
- Long range
- 2.4 GHz
- 250 Kbit/s 2 Mbit/s
- 125 channels

Hardware - Expansion decks

- Sound and light
- Relative positioning
- Absolute positioning
- Development
- Other

Hardware - development support

- Design your own deck
 - Prototyping deck
 - o Breakout deck
- Debug adapter
 - For debugging firmware

Hardware - absolute positioning

- LPS
 - LPS deck
 - LPS Node (AKA Anchor)
- Lighthouse
 - Lighthouse deck
 - 2 x HTC Vive base station
- Motion capture
 - Marker deck
 - Active marker deck (Qualisys)
 - Motion capture system from any vendor

Hardware - relative positioning

- Z-ranger deck
- Multi-ranger deck
- Optical Flow deck

Hardware - the Roadrunner

- Crazyflie 2.1 + LPS deck motors
- Generic positioning device for LPS
- Position calculated in the Roadrunner
- Expansion port
- Compatible with firmware, libraries and clients

Firmware - Crazyflie

- Open source
- Intended to be modified
- C
- FreeRTOS

Clients - PC

- Python
- Linux / MacOS / Windows
- Connect to one Crazyflie / Roadrunner
- Manual flight with gamepad
- Examine internal state
- Configure
- Connects via radio or USB

Clients - python library

- Used by client
- Access to full system
- Can be used for scripting
 - Autonomous flight
 - Access to sensor data
 - Configuration and control
 - 0 ..

Clients - python library - log / param / mem

Log

expose variables in the Crazyflie.
Gives access to internal state

Param

set variables in the Crazyflie.
Enables real-time configuration and control

Mem

 mapping of memory in the Crazyflie to python objects. Useful for complex data structures and larger blobs of data.

Clients - mobile apps

- Android
- IOS
- Connects via BLE
- Limited functionality
- Manual flight

Clients - external libraries

- C, Java, JS...
- Maintained by the community
- Might not be up to date

Clients - Crazyswarm

- Library to simplify swarm support
- Handles large swarms
- Uses ROS
- Originally written for mocap systems but works with other position technologies as well

Use cases - manual flight

- Crazyflie
- PC
 - Crazyradio
 - Gamepad
 - Python client

Use cases - autonomous flight, LPS positioning

- Crazyflie
 - LPS deck
- PC
 - Crazyradio
 - Python script
- 8 x LPS Nodes

Use cases - autonomous flight, mocap positioning

- Crazyflie
 - Marker deck + passive markers
- PC
 - Mocap software
 - Python script
 - Crazyradio

Conclusions

- Everything fits together
- Designed for development
- Open source