Question:1

Find the complement of each of the following angles:

i 35 $^{\circ}$

 $ii\,47\,^{\circ}$

iii 60°

iv 73°

Solution:

i The given angle measures 35°.

Let the measure of its complement be \boldsymbol{x} .

$$x + 35^{\circ} = 90^{\circ}$$

or
$$x = 90 - 35^{\circ} = 55^{\circ}$$

Hence, the complement of the given angle will be 55°.

ii The given angle measures 47°.

Let the measure of its complement be x.

$$x + 47^{\circ} = 90^{\circ}$$

or
$$x = 90 - 47^{\circ} = 43^{\circ}$$

Hence, the complement of the given angle will be 43°.

iii The given angle measures 60°.

Let the measure of its complement be x° .

$$x + 60^{\circ} = 90^{\circ}$$

or
$$x = 90 - 60^{\circ} = 30^{\circ}$$

Hence, the complement of the given angle will be 30°.

iv The given angle measures 73°.

Let the measure of its complement be \boldsymbol{x} .

$$x + 73^{\circ} = 90^{\circ}$$

or
$$x = 90 - 73^{\circ} = 17^{\circ}$$

Hence, the complement of the given angle will be 17°.

Question:2

Find the supplement of each of the following angles:

i 80°

ii 54°

iii 105°

iv 123°

Solution:

i The given angle measures 80°.

Let the measure of its supplement be \boldsymbol{x} .

$$x + 80^{\circ} = 180^{\circ}$$

or x =
$$180 - 80^{\circ}$$
 = 100°

Hence, the complement of the given angle will be 100°.

ii The given angle measures 54°.

Let the measure of its supplement be x.

$$x + 54^{\circ} = 180^{\circ}$$

or
$$x = 180 - 54^{\circ} = 126^{\circ}$$

Hence, the complement of the given angle will be 126°.

 $\it iii$ The given angle measures 105°.

Let the measure of its supplement be \boldsymbol{x} .

$$x + 105^{\circ} = 180^{\circ}$$

or,
$$x = 180 - 105^{\circ} = 75^{\circ}$$

Hence, the complement of the given angle will be 75°.

iv

The given angle measures 123°.

Let the measure of its supplement be x.

$$x + 123^{\circ} = 180^{\circ}$$

or x =
$$180 - 123^{\circ}$$
 = 57°

Hence, the complement of the given angle will be 57° .

Question:3

Among two supplementary angles, the measure of the larger angle is 36° more than the measure of the smaller. Find their measures.

Solution:

Let the two supplementary angles be x° and $180 - x^{\circ}$.

Since it is given that the measure of the larger angle is 36° more than the smaller angle, let the larger angle be x°.

$$\therefore 180 - x^{\circ} + 36^{\circ} = x^{\circ}$$

or
$$216 = 2x$$

Larger angle = 108°

Smaller angle = $108 - 36^{\circ}$

Question:4

Find the angle which is equal to its supplement.

Solution:

Let the measure of the required angle be x.

Since it is its own supplement:

$$x + x = 180^{\circ} or \ 2x = 180^{\circ} or \ x = 90^{\circ}$$

Therefore, the required angle is 90°.

Question:5

Can two angles be supplementary if both of them are:

i acute?

ii obtuse?

iii right?

Solution:

 $\it i$ No. If both the angles are acute, i.e. less than 90°, they cannot be supplementary as their sum will always be less than 180°.

ii No. If both the angles are obtuse, i.e. more than 90°, they cannot be supplementary as their sum will always be more than 180°.

iii Yes. If both the angles are right, i.e. they both measure 90°, then they form a supplementary pair.

Question:6

In the given figure, AOB is a straight line and the ray OC stands on it.

If
$$\angle AOC = 64^{\circ}$$
 and $\angle BOC = x^{\circ}$, find the value of x.

Solution:

By linear pair property:

$$\angle AOC + \angle COB = 180\degree 64\degree + \angle COB = 180\degree \angle COB = x\degree = 180\degree - 64\degree = 116\degree$$

Question:7

In the given figure, AOB is a straight line and the ray OC stands on it. If $\angle AOC = (2x - 10)^\circ$ and $\angle BOC = (3x + 20)^\circ$, find the value of x. Also, find $\angle AOC$ and $\angle BOC$

Solution:

By linear pair property:

$$\angle AOC + \angle BOC = 180\ \degree or\ (2x-10)\ \degree + (3x+20)\ \degree = 180\ \degree \quad (given) or\ 5x \ + \ 10 \ = 180 or\ 5x \ = \ 170 or\ x \ = \ 34$$
 $\therefore\ \angle AOC\ = (2x-10)\ \degree = \ (2\times 34-10)\ \square = ($

Question:8

In the given figure, AOB is a straight line and the rays OC and OD stands on it. If $\angle AOC = 65^{\circ}$, $\angle BOD = 70^{\circ}$ and $\angle COD = x^{\circ}$ find the value of x.

Solution:

Since AOB is a straight line, we have:

$$\angle AOC + \angle BOD + \angle COD = 180° \text{ or } 65° + 70° + x° = 180° \text{ (given) or } 135° + x° = 180° \text{ or } x° = 45° \text{ Thus, the value of } x \text{ is } 45° \text{ (given) or } 135° + x° = 180° \text{ or } x° = 45° \text{ Thus, the value of } x \text{ is } 45° \text{ (given) or } 135° + x° = 180° \text{ or } x° = 45° \text{ Thus, the value of } x \text{ is } 45° \text{ (given) or } 135° + x° = 180° \text{ or } x° =$$

Question:9

In the given figure, two straight line AB and CD intersect at a point O. If $\angle AOC = 42^{\circ}$, find the measure of each of the angles:

 $i \angle AOD$ $ii \angle BOD$

iii ∠COB

Solution:

AB and CD intersect at O and CD is a straight line.

(i) $\angle COA + \angle AOD = 180^{\circ}$ (linear pair) $42^{\circ} + \angle AOD = 180^{\circ} \angle AOD = 138^{\circ}$ (ii) $\angle COA$ and $\angle BOD$ are vertically opposite angles. $\therefore \angle COA$

Question:10

In the given figure, two straight line $\it PQ$ and $\it RS$ intersect at a $\it O$.

If $\angle POS = 114^{\circ}$, find the measure of each of the angles:

 $i \angle POR$

 $ii \angle ROQ$

 $iii \angle QOS$

Solution:

(i)
$$\angle POS + \angle POR = 180^\circ$$
 (linear pair) or $114^\circ + \angle POR = 180^\circ$ or $\angle POR = 180^\circ - 114^\circ = 66^\circ$ (ii) Since $\angle POS$ and $\angle QOR$ are vertically

Question:11

In the given figure, rays OA, OB, OC and OD are such that $\angle AOB = 56^{\circ}$, $\angle BOC = 100^{\circ}$, $\angle COD = x^{\circ}$ and $\angle DOA = 74^{\circ}$.

Find the value of x.

Solution:

Sum of all the angles around a point is 360°.

$$\therefore \angle AOB + \angle BOC + \angle COD + \angle DOA = 360^{\circ} \text{ or } 56^{\circ} + 100^{\circ} + x^{\circ} + 74^{\circ} = 360^{\circ} \text{ (given) or } 230^{\circ} + x^{\circ} = 360^{\circ} \text{ or } x^{\circ} = 130^{\circ} \text{ or } x = 130^{\circ} \text{ o$$