Function Approximation for Adaptive Learning of Label Distributions

Miao Cheng

Email: mcheng@mailbox.gxnu.edu.cn
School of Computer Science and Information Engineering
Guangxi Normal University
Guilin, Guangxi, China

ICSIP, Oct 2021

- Introduction
 - Background Knowledge
 - Keypoints
 - Main Ideas
- Function Approximation to LDL
 - Affinity of Probabilistic Labels
 - Gaussian Function Approximation
 - Function Adjustment
 - Adaptive Label Predication
- Experiments
 - Experimental Setting
- 4 Conclusion

- Introduction
 - Background Knowledge
 - Keypoints
 - Main Ideas
- 2 Function Approximation to LDL
 - Affinity of Probabilistic Labels
 - Gaussian Function Approximation
 - Function Adjustment
 - Adaptive Label Predication
- 3 Experiments
 - Experimental Setting
- 4 Conclusion

Background Knowledge

Label Distribution Learning

- Traditional classification methods focus on absolute label learning.
- Label Distribution Learning (LDL) aims to estimate the probabilistic labels of instances, which outputs the range probabilities of categories with the sums of unity.
- As a consequence, more category and distribution information can be provided.

- Introduction
 - Background Knowledge
 - Keypoints
 - Main Ideas
- Function Approximation to LDL
 - Affinity of Probabilistic Labels
 - Gaussian Function Approximation
 - Function Adjustment
 - Adaptive Label Predication
- Experiments
 - Experimental Setting
- 4 Conclusion

Keypoints

Keypoints

- Estimation of Label Probabilities: only feature information of instances are available.
- Bridge the connection between informative patterns of samples and categories.
- The adaptive learning mechanism is hardly to be devised to match with LDL problems, while ubiquitous computing is desired.

- Introduction
 - Background Knowledge
 - Keypoints
 - Main Ideas
- 2 Function Approximation to LDL
 - Affinity of Probabilistic Labels
 - Gaussian Function Approximation
 - Function Adjustment
 - Adaptive Label Predication
- 3 Experiments
 - Experimental Setting
- 4 Conclusion

Main Ideas

Main Ideas

- In theory, the distributions of instances are quite related with the features of themselves, of which the calculation and estimation are feasible for the rough distirbutions of instances.
- The estimated values fails to accurately depict the true distributions of each instances, but further steps of adjustments are available for improvements.
- The probabilistic labels of out-of-class samples can be predicated by following the learned models, while enhanced learning is proposed to obtain the ideal estimations with adaptive learning of iterations.

- Introduction
 - Background Knowledge
 - Keypoints
 - Main Ideas
- 2 Function Approximation to LDL
 - Affinity of Probabilistic Labels
 - Gaussian Function Approximation
 - Function Adjustment
 - Adaptive Label Predication
- 3 Experiments
 - Experimental Setting
- 4 Conclusion

Dimensionality Reduction

 Rather than the state-of-the-art methods, random projections are referred in this work, and consequently, calculation convenience and efficiency can be preserved, e.g.,

$$F\left(x_{i}\right) = \theta^{T} x_{i},\tag{1}$$

 Note that, it actually makes tiny impact on learning results in this work.

Adherent Affinity of Probabilistic Labels

Adherent Affinity for Transformed Samples

- Obviously, the probabilistic labels of supervised instances can be adhered naturally, but dimensionality reduction is preferred simultaneously.
- In terms of this, randomly selected normalized samples are referred as projection directions, while it resorts to label affinity also.
- As a consequence, the affinity of probabilistic labels can be adopted to pre-processing in a single one step, and class-specific samples black are generated as

$$a_{i,j} = f_j(x_i) = d_{i,j}F(x_i).$$
 (2)

- Introduction
 - Background Knowledge
 - Keypoints
 - Main Ideas
- Function Approximation to LDL
 - Affinity of Probabilistic Labels
 - Gaussian Function Approximation
 - Function Adjustment
 - Adaptive Label Predication
- 3 Experiments
 - Experimental Setting
- 4 Conclusion

Categorical Distributions of Instances

Gaussian Approximation

- Without loss of generality, the Gaussian normal distribitions of each classes are calculate, by assuming the generated samples of each category are common with the Gaussian distribitions.
- More specifically, the class mean μ and covariance σ are calculated, and the distribition of each sample can be estimated by

$$g_{\mu,\sigma^2}\left(a_{i,j}\right) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(a_{i,j} - \mu\right)^T \Gamma\left(a_{i,j} - \mu\right)}{2\sigma^2}\right).$$
 (3)

- Introduction
 - Background Knowledge
 - Keypoints
 - Main Ideas
- Function Approximation to LDL
 - Affinity of Probabilistic Labels
 - Gaussian Function Approximation
 - Function Adjustment
 - Adaptive Label Predication
- 3 Experiments
 - Experimental Setting
- 4 Conclusion

Function Adjustment

Function Adjustment

- The obtained distribution functions are deduced from the class-specific feature data, and fail to match with the corresponding ground truth of label distributions normally.
- In terms of this, a further step of adjustment is adopted to enhance the connection between the learned distributions and ground truth, e.g.,

$$d_{i,j} = \rho\left(x_i\right) = h_j\left(g_j\left(f_j\left(x_i\right)\right)\right) \tag{4}$$

and

$$a_{i,j} \to g(\cdot) \to h(\cdot) \sim d_{i,j}.$$
 (5)

Function Adjustment

Function Ajustment

- There are many candidate solutions to such problem, while nonnegative learning is adopted for convenience.
- Without loss of generality, the optimization problem and approximate solution are respectively,

$$D_i \approx Wg(a_i)$$
 s.t. $W \geq 0$ (6)

and

$$W_{r,c} \leftarrow W_{r,c} \frac{\left(D_i g(a_i)^T\right)_{r,c}}{\left(W_g(a_i) g(a_i)^T\right)_{r,c}} \tag{7}$$

The Proposed Algorithm of Learning Model

Algorithm 1

Input: Given data pairs of training instances

$$T_r = \{(x_1, D_1), (x_2, D_2), \cdots, (x_n, D_{n_r})\}.$$

Output: The weighted feature function $f(\cdot)$, the distribution function $g(\cdot)$, and the approximate function $h(\cdot)$.

- Calculate the artificially generated samples of each instance x_i corresponding to class-specific weighted random projections, and obtain $a_{i,1}, a_{i,2}, \dots, a_{i,c}$.
- Calculate the mean vector μ and variance σ associated with the generated samples of each feature function, and obtain the gaussian distribution function $g_i(\cdot)$, $j=1,2,\cdots,c$.
- Solve the problem defined in (6) by updating W as (7), and obtain the approximate function $h(\cdot)$.

- Introduction
 - Background Knowledge
 - Keypoints
 - Main Ideas
- Function Approximation to LDL
 - Affinity of Probabilistic Labels
 - Gaussian Function Approximation
 - Function Adjustment
 - Adaptive Label Predication
- 3 Experiments
 - Experimental Setting
- 4 Conclusion

Adaptive Label Predication

Label Predication with Learned Model

- With the learned functions, it is still unable to make predication for new instances, owing to the fact that their label affinity are unknown beforehand.
- To conquer this problem, the alternating optimization idea is adopted, which is derived from iterative optimization of expectation-maximization (EM) algorithm.

Adaptive Label Predication

Label Predication with Learned Model

- The initial probabilities of predicated instances are averagely set to be equivalent distributions for each class.
- The objective values are calculated with optimized parameters, and then the parameters are updated based on predicated objective values, till stable results are obtained.
- During the iterations, the probabilistic labels are necessary to be further normalized, namely

$$p(l_i|y) = \frac{\rho_i(y_i)}{\sum\limits_{i=1}^c \rho_i(y_i)}.$$
 (8)

The Predication Procedure for A New Instance y

Algorithm 2

Input: Given the pre-learned approximate functions $g(\cdot)$ and $f(\cdot)$, the feature data of y, the maximum number of iteration t.

- **Output:** The predicated labels $p(l_i | y)$.
 - Initial probabilistic labels of instance $p(l_i | y)$ with average label distributions.
 - lacktriangle While maximum iteration t or stable predication $p\left(l_i \mid y\right)$ has never been reached
 - Calculate the generated samples of instance y with the weighted feature function $f(\cdot)$.
 - Calculate the values of approximate distribution function $g(\cdot)$ corresponding to the generated samples, and obtain transformed nonnegative distributions $\rho_i(y)$ with adjusted function $h(\cdot)$.
 - Normalize and obtain the predicated labels $p(l_i|y)$ with Eq. (8).
 - Obtain the final p (I_i | y) as output.

- Introduction
 - Background Knowledge
 - Keypoints
 - Main Ideas
- 2 Function Approximation to LDL
 - Affinity of Probabilistic Labels
 - Gaussian Function Approximation
 - Function Adjustment
 - Adaptive Label Predication
- 3 Experiments
 - Experimental Setting
- 4 Conclusion

Experimental Setting

Data Sets

 The benchmark LDL data sets consisting of 15 artificial data sets are employed in this experiment.

Hardwares

- 2.8 GHz CPU
- 16 GB Memory

Experimental Setting

Setting

- Each data set is randomly splitted into five folds, and four folds of them are used for training while the remaining one fold data is for testing.
- The original data are reduced down to ten features with random sampling directions.
- 5,000 iterations are mostly performed in the stage of nonnegative learning.

Experimental Results

Experimental Results

- As shown in Tab. I-VI, the proposed FA-LDL method is able to achieve comparable results associated with the median ranking ones in most cases.
- Stable results are obtained on diverse data sets with different measure distances.

Experimental Results

The predicated label distributions of different algorithms on diverse data sets. The subfigures from the first to the sixth columns respectively denote the label distributions from original, AA-kNN, PT-Bayes, SA-IIS, SA-BFGS, and FA-LDL.

Conclusion

- By calculating the Gaussian distribution functions of each class, the label distributions of each sample is estimated accordingly.
- To improve the estimated results, a further **adjustment** step is proposed with **nonnegative learning**.
- Since the label affinity of testing instances are unknown beforehand, an adaptive label predication is adopted with average initialization.
- Experimental results on diverse artificial data sets demonstrate that, the proposed adaptive learning method is able to give stable performance with comparable results.

Thank you for your participation!