CS 310-0

Homework Assignment No. 2

Due Fri 4/14/2000

- 1. Using the Principle of Extension, prove the following (\triangle is symmetric difference):
 - (a) $A \triangle (B \triangle C) = (A \triangle B) \triangle C$.
 - (b) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.

You may use properties stated in the Notes or proven in previous homework assignments.

- 2. Prove that the following statements are equivalent:
 - (a) $A \subseteq B$.
 - (b) $A \cap B = A$.
 - (c) $A \cup B = B$.
 - (d) $A B = \emptyset$.

(One way to prove the equivalence is to prove the chain of implications: (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (a).)

- 3. Prove the following:
 - (a) $A \triangle B = \emptyset \Leftrightarrow A = B$.
 - (b) $A \triangle B \subseteq S \Leftrightarrow A S = B S$.
- 4. For $n \geq 1$ let A_n be the following interval: $A_n = [-2, (-1)^n (1 + 1/n)]$. Find the following $(k \in \mathbb{Z}^+)$: (a) $\bigcap_{n=k}^{\infty} A_n$, (b) $\bigcup_{n=k}^{\infty} A_n$, (c) $\bigcup_{k=1}^{\infty} \left(\bigcap_{n=k}^{\infty} A_n\right)$, (d) $\bigcap_{k=1}^{\infty} \left(\bigcup_{n=k}^{\infty} A_n\right)$.
- 5. Find the properties (reflexive, transitive, symmetric, antisymmetric) verified by the following relations:
 - (a) Strict inequality of integers: $x \Re y \Leftrightarrow x < y$.
 - (b) Set disjointness: $A \mathcal{R} B \Leftrightarrow A \cap B = \emptyset$.
 - (c) The following relation on \mathbb{Q} : $x \mathcal{R} y \Leftrightarrow x y \in \mathbb{Z}$.
 - (d) The following relation on \mathbb{Q} : $x \mathcal{R} y \Leftrightarrow x y \in \mathbb{N}$.
- 6. We define the following relation on \mathbb{N} : $x \leq y$ if and only if
 - (a) x is even and y is odd, or
 - (b) x and y have the same parity and $x \leq y$.

For instance: $2 \leq 6$, $3 \leq 7$, $2 \leq 5$, $24 \leq 3$.

- 1. Prove that \leq is a total order.
- 2. For each of the following numbers find a successor an immediate successor, a predecessor and an immediate predecessor, or show that there is none: 3, 2, 1, 0.
- 7. Prove that the following is an equivalence relation on \mathbb{N}^2 :

$$(a,b) \Re (a',b') \Leftrightarrow a+b'=a'+b.$$

- 8. Let \mathcal{U} be a nonempty set, and let $\mathcal{P}(\mathcal{U})$ be its power set. Let $S \in \mathcal{P}(\mathcal{U})$ be a subset of \mathcal{U} . In $\mathcal{P}(\mathcal{U})$ we define the following relation: $A \mathcal{R} B \Leftrightarrow A \triangle B \subseteq S$.
 - (a) Prove that \Re is an equivalence relation.
 - (b) Prove that all equivalence classes have the form $\mathcal{C}_A = \{A \cup S' \mid S' \in \mathcal{P}(S)\}$ for $A \in \mathcal{P}(\overline{S})$.
- 9. Find (if they exist) the greatest element, the least element, the least upper bound and the greatest lower bound for each of the following subsets of (\mathbb{R}, \leq) :
 - (a) $A = \{(-1)^n + 1/n \mid n \in \mathbb{Z}^+\}.$
 - (b) $B = \{x \in \mathbb{R} \mid x^2 < 5\}.$
 - (c) $C = \{x \in \mathbb{Q} \mid x^2 < 5\}.$
 - (d) $D = \{x \in \mathbb{Z} \mid x^2 < 5\}.$
- 10. Draw the *Hasse diagram* for the poset $P = (\{2, 3, 4, 5, 6, 7, 8, 9, 10\}, |)$, where "|" represents divisibility. Find the *minimal* and *maximal* elements in P.