Rasterization (Scan Conversion)

- a background process in the pipeline, one of the most basic problems
- after primitive assembling and clipping, primitives are still described with vertices:
 - a line is defined with 2 endpoints
 - a polygon is defined with an ordered vertex list
- for a raster-scan system, the pixels that are on or inside a primitive needs to be determined
- this task is figuring out which pixels to draw or fill on the screen

Line Drawing Algorithms

- we must "sample" a line at discrete positions
- idea: a line is sampled at unit intervals in one coordinate and the corresponding integer values nearest the line path are determined for the other coordinate

Towards the Ideal Line

- * An ideal line,
 - Must appear straight and continuous
 - Only possible with axis-aligned lines and lines having 45° with the axis
 - Must have uniform density and intensity
- * Must be drawn very quickly
- * Two algorithms: Digital Differential Analyser (DDA) Algorithm and Bresenham Algorithm

Using Cartesian Slope-Intercept Equation

* Before elaborating algorithms try to represent the lines

*
$$y = mx + b$$

m: slope of the line

b: y intercept

$$m = (y_1-y_0) / (x_1-x_0)$$

$$b = y_0 - m. x_0$$

y and x intervals dy = m.dx

DDA Algorithm

A line is sampled at unit intervals in one coordinate and the corresponding integer values nearest the line path are determined for the other coordinate.

```
eq.: y = mx + b; 2 endpoints: (x1, y1) and (x2, y2).

m (slope) = (y2 - y1) / (x2 - x1)

(x_k, y_k) is one point on the line, (x_{k+1}, y_{k+1}) is the next point.

m (slope) = (y_{k+1} - y_k) / (x_{k+1} - x_k) = dy/dx
```

Case 1: If m < 1 then x coordinate tends to the Unit interval (dx=1, dy<1)

$$X_{k+1} = X_k + 1$$

$$y_{k+1} = y_k + m$$

Round y_{k+1} to nearest integer value, increment k by 1 for each step

Case 2: If m > 1 then y coordinate tends to the Unit interval (dy=1, dx<1)

$$y_{k+1} = y_k + 1$$

$$x_{k+1} = x_k + 1/m$$

Round x_{k+1} to nearest integer value, increment k by 1 for each step

Case 3: If m = 1 then x and y coordinate tend to the Unit interval (dx=dy=1)

$$x_{k+1} = x_k + 1$$

$$y_{k+1} = y_k + 1$$

```
C function for DDA
inline int round (const float a) { return int (a + 0.5); }
void lineDDA (int x0, int y0, int xEnd, int yEnd)
   int dx = xEnd - x0, dy = yEnd - y0, steps, k;
   float xIncrement, yIncrement, x = x0, y = y0;
   if (fabs (dx) > fabs (dy))
     steps = fabs (dx);
   else
     steps = fabs (dy);
   xIncrement = float (dx) / float (steps);
   yIncrement = float (dy) / float (steps);
   setPixel (round (x), round (y));
   for (k = 0; k < steps; k++) {
     x += xIncrement;
     y += yIncrement;
     setPixel (round (x), round (y));
```

DDA Algorithm

- Simple but needs a lot of floating point arithmetic:
 - 'round's and 2 additions per pixel, sometimes the point position is not accurate
- Is there a simpler way?
- Can we use only integer arithmetic?

- Accurate and efficient
- Only incremental integer calculations

The method is described for a line segment with a positive slope less than one $(0 \le m \le 1)$ and $x \ge x \le 1$

Generalizes to line segments with other slopes by considering the symmetry between the various octants (1/8) and quadrants (1/4) of the xy plane

- Initial coordinates (10,11)
- Decide what is the next pixel position: right or upper right
 - (11,11) or (11,12)

In general; For the pixel position $x_{k+1}=x_k+1$, which one we should choose:

$$(x_{k+1}, y_k)$$
 or (x_{k+1}, y_{k+1})

NE E

Q: How we will decide?

- * Starting point (x1,y1)
- * Ending point (x2,y2)
- * dx=x2-x1, dy=y2-y1
- * decision variable d=2dy-dx (initial value, will be changed on each step)
- * \triangle E=2dy (east, right),

 \triangle NE=2(dy-dx) (north east, upper right)

These values won't be changed

* If $d \le 0 \rightarrow \text{choose E}$

* If $d>0 \rightarrow$ choose NE

$$x=x1+1, y=y1+1, d=d+\triangle NE$$

* Continue until x=x2

Draw a line from (2,1) to (8,5)

dx=x2-x1=8-2=6; dy=y2-y1=5-1=4

d=2dy-dx=8-6=2 (initially); \triangle E=2dy=8; \triangle NE=2(dy-dx)=2(4-6)=-4

x	У	d	Next Pixel
2	1	2	NE
3	2	-2	E
4	2	6	NE
5	3	2	NE
6	4	-2	E
7	4	6	NE
8	5		

```
C function for Bresenham
/* Bresenham line-drawing procedure for |m| < 1.0. */
  void lineBres (int x0, int y0, int xEnd, int yEnd)
   int dx = fabs (xEnd - x0), dy = fabs(yEnd - y0);
   int x, y, p = 2 * dy - dx;
   int twoDy = 2 * dy, twoDyMinusDx = 2 * (dy - dx);
   /* Determine which endpoint to use as start position. */
   if (x0 > xEnd) {
     x = xEnd; y = yEnd; xEnd = x0;
   else {
     x = x0; y = y0;
   setPixel(x, y);
   while (x < xEnd) {
     X++;
     if (p < 0)
       p += twoDy;
     else {
       y++;
       p += twoDyMinusDx;
     setPixel(x, y);
```


- * If x2<x1, take (x2, y2) as the starting point and (x1, y1) as the endpoint
- * if m<0 get the line with a positive slope by reflecting the original line around the X-axis, perform the algorithm and reflect back around the X-axis
- * if m> 1, exchange the x and y values, perform the algorithm and exchange the x and y values back

Scan Converting Circles

- * a circle is an eight-way symmetric shape, all quadrants of a circle are the same
- * can be defined as a combination of points that all points are at the same distance (or radius) from the center point
- * for a point P1(R, S) we can represent the other seven points:

$$P_2(R, -S)$$

$$P_3(-R, -S)$$

$$P_4(-R, S)$$

$$P_6(S, -R)$$

Scan Converting Circles

2 standard methods to define a circle mathematically:

- A circle with a second-order polynomial equation
- A circle with trigonometric/ polar coordinates

$$y^{2} = r^{2} - x^{2}$$

Scan Converting Circles

$$x = r \cos \theta$$

 $y = r \sin \theta$

2 standard methods to define a circle mathematically:

- A circle with a second-order polynomial equation
- A circle with trigonometric/ polar coordinates

2 algorithms to draw a circle:

- Bresenham's Circle drawing
 Algorithm
- Midpoint Circle Drawing
 Algorithm

a point P, select the closest pixel position to complete the arc $f(x,y) = x^2+y^2-r^2$ (equation of the circle)

If f(x,y) = 0 then it is on the circle.

f(x,y) > 0 then it is outside the circle.

f(x,y) < 0 then it is inside the circle.

- * Only one octant of the circle need be generated, other parts can be obtained by successive reflections.
- * If the first octant (0 to 45) is generated, the second octant can be obtained by reflection through the line y=x to yield the first quadrant
- * The results in the first quadrant are reflected through the line x=0 to obtain the second quadrant
- * Upper semicircle is reflected through the line y=0 to complete the circle

for a point (X,Y), decide the next point (N or S)

P: decision parameter

If $P \le 0$, choose N(X+1, Y)

If P > 0, choose S(X+1, Y-1)

Step-1: Input radius r and circle center (X_C, Y_C) , the first point (X_0, Y_0)

Step-2: Calculate the initial value of decision parameter (P) as

$$P_0 = 3-2r$$

Step-3: Assume the starting coordinates are (X_K, Y_K) . Find the next point (X_{K+1}, Y_{K+1}) according to the value of the decision parameter P_K If $P_K < 0 \rightarrow (X_K + 1, Y_K)$, $P_{K+1} = P_K + 4X_K + 6$

Otherwise
$$(P_K \ge 0) \rightarrow (X_K + 1, Y_K - 1), P_{K+1} = P_K + 4(X_K - Y_K) + 10$$

Step-4: Move each pixel position (X,Y) into circular path:

$$X=X+X_C$$
 and $Y=Y+Y_C$

Step-5: Repeat step 3 and 4 until X≥Y

Step-6: Determine the symmetry points of the calculated points in other seven octant

Center $(X_C, Y_C)=(0,0)$; starting point $(X_0, Y_0)=(0,10)$; r=10 find the pixels for the first quadrant

P ₀ =3-2r=3-20=-17	P ₀ <0	$\rightarrow (X_1, Y_1) = (X_0 + 1, Y_0) = (1, 10)$
$P_1 = P_0 + 4X_0 + 6 = -17 + 0 + 6 = -11$	P ₁ <0	$\rightarrow (X_2, Y_2) = (X_1 + 1, Y_1) = (2, 10)$
$P_2 = P_1 + 4X_1 + 6 = -11 + 4 + 6 = -1$	P ₂ <0	$\rightarrow (X_3, Y_3) = (X_2 + 1, Y_2) = (3, 10)$
$P_3 = P_2 + 4X_2 + 6 = -1 + 8 + 6 = 13$	P ₃ ≥0	$\rightarrow (X_4, Y_4) = (X_3 + 1, Y_3 - 1) = (4, 9)$
$P_4 = P_3 + 4(X_3 - Y_3) + 10 = 13 + 4(3 - 10) + 10 = -5$	P ₄ <0	$\rightarrow (X_5, Y_5) = (X_4 + 1, Y_4) = (5,9)$
$P_5 = P_4 + 4X_4 + 6 = -5 + 16 + 6 = 17$	P ₅ ≥0	\rightarrow (X ₆ ,Y ₆)=(X ₅ +1,Y ₅ -1)=(6,8)
$P_6 = P_5 + 4(X_5 - Y_5) + 10 = 17 + 4(5 - 9) + 10 = 11$	P ₆ ≥0	\rightarrow (X ₇ ,Y ₇)=(X ₆ +1,Y ₆ -1)=(7,7)

X>=Y stop here

- * simple and easy to implement
- * less accurate than the midpoint algorithm

Midpoint Circle Algorithm

Step-1: Input radius r and circle center (X_C, Y_C) , the first point (X_0, Y_0)

Step-2: Calculate the initial value of decision parameter (d_0) as

$$d_0 = 1 - r$$

Step-3: Assume the starting coordinates are (X_K, Y_K) . Find the next point (X_{K+1}, Y_{K+1}) according to the value of the decision parameter (d_K) If $d_K < 0 \rightarrow X_{K+1} = X_K + 1$, $Y_{K+1} = Y_K$, $d_{K+1} = d_K + 2X_{K+1} + 1$

Otherwise
$$(d_{K} \ge 0) \rightarrow X_{K+1} = X_{K} + 1, Y_{K+1} = Y_{K} - 1, d_{K+1} = d_{K} - 2(Y_{K+1} - X_{K+1}) + 1$$

Step-4: Move each pixel position (X,Y) into circular path:

$$X=X+X_{C}$$
 and $Y=Y+Y_{C}$

Step-5: Repeat step 3 and 4 until X≥Y

Step-6: Determine the symmetry points of the calculated points in

other seven octant

Midpoint Circle Algorithm

Center $(X_C, Y_C)=(0,0)$; starting point $(X_0, Y_0)=(0,10)$; r=10 find the pixels for the first quadrant

X>=Y stop here

Determining the Symmetry Points

determine the symmetry points of the calculated points in other seven octant

Determining the Symmetry Points

Determining the Symmetry Points

Determ		Symmetry	
Quadrant 1 (p, q)	Quadrant 2 (-p, q)	Quadrant 3 (-p, -q)	Quadrant 4 (p, -q)
(0, 10)	(0, 10)	(0, -10)	(0, -10)
(1, 10)	(-1, 10)	(-1, -10)	(1, -10)
(2, 10)	(-2, 10)	(-2, -10)	(2, -10)
(3, 10)	(-3, 10)	(-3, -10)	(3, -10)
(4, 9)	(-4, 9)	(-4, -9)	(4, -9)
(5, 9)	(-5, 9)	(-5, -9)	(5, -9)
(6, 8)	(-6, 8)	(-6, -8)	(6, -8)
(8, 6)	(-8, 6)	(-8, -6)	(8, -6)
(9, 5)	(-9, 5)	(-9, -5)	(9, -5)
(9, 4)	(-9, 4)	(-9, -4)	(9, -4)
(10, 3)	(-10, 3)	(-10, -3)	(10, -3)
(10, 2)	(-10, 2)	(-10, -2)	(10, -2)
(10, 1)	(-10, 1)	(-10, -1)	(10, -1)
(10, 0)	(-10, 0)	(-10, 0)	(10, 0)

Area Filling

Q: how can we generate a solid color/patterned polygon area?

Edge Equations

- * We can make use of edge equations
- * Edge equations define the edges
- * Each line defines 2 half-spaces: <0 and >0
- * =0 is the edge

Edge Equations

a triangle can be defined as the intersection of three positive half-spaces

Edge Equations

to fill a triangle shaped area, turn on those pixels for which, all edge equations evaluate to >0 case

Area Filling

- Scan Line Algorithm
- Boundary Fill Algorithm
- Flood Fill Algorithm

Scan Line Algorithm

- Find out the ymin and ymax from the polygon
- Find each intersection point of the polygon with the scan line (p0,p1,p2,p3)
- Sort the intersection points in the increasing order of X coordinate (p0,p1,p2,p3)
- Fill pairwise (from p0 to p1 and from p2 to p3)

Special cases:

fill p0 to p1 and p1 to p2

if p1 is counted twice, p1 to p2 will be filled erroneously

Boundary Fill Algorithm

A recursive algorithm: If we have a specified boundary in a single color, then the algorithm proceeds pixel by pixel until the boundary color is encountered **Boundary fill (x, y, fill, boundary)**

- Initialize boundary of the region, and variable "fill with color"
- Let the interior pixel (x,y)current=getpixel(x,y)
- If current is not equal to boundary and current is not equal to fill then set pixel (x, y, fill)
 boundary fill 4(x+1,y,fill,boundary)
 - boundary fill 4(x-1,y,fill,boundary)
 - boundary fill 4(x,y+1,fill,boundary)
 - boundary fill 4(x,y-1,fill,boundary)
- End

4-Connected

8-Connected

Flood Fill Algorithm

- * We can recolor an area that is not defined within a single color boundary
- * We can paint such areas by replacing a color instead of searching for a boundary color value

```
Procedure floodfill (x, y,fill_ color, old_color: integer)
    If (getpixel (x, y)=old_color)
    {
        setpixel (x, y, fill_color);
        fill (x+1, y, fill_color, old_color);
        fill (x-1, y, fill_color, old_color);
        fill (x, y+1, fill_color, old_color);
        fill (x, y-1, fill_color, old_color);
      }
}
```

Boundary Fill vs. Flood Fill

Flood fill: more than one boundary colours

Boundary fill: single boundary colour

Flood fill: replaces every point color (all connected pixels of a selected color get replaced by a fill color)

Boundary fill: checks for the boundary colour (similar with the difference being the program stopping when a given color boundary is found)

Flood fill: high memory requirements (it isn't known how many sub-fills will be spawned)

Boundary fill: less amount of memory