Digital Logic Design

PI E PI CSE 131Digital Logic Design

Dr. Gamal Fahmy

K Maps

- Defn: Implicant Any selected Boolean cube with the same value on all vertices.
- Defn: Prime Implicant Any implicant that
 cannot be <u>completely</u>
 enclosed by another
 implicant.

Essential Prime Implicants: Prime Implicants (PI)
 covering a square covered by no other PI.

■ EX: Find the Min SOP for the following 3-variable function:

variable rail						
Α	В	С	F			
0	0	0	0			
0	0	1	1			
0	1	0	0			
0	1	1	1			
1	0	0	1			
1	0	1	1			
1	1	0	1			
1	1	1	1			

		С	
		0	1
AB	00	0	/1 \
	01	0	1
	11		1
	10	1	11/
	•		70

Construct the Karnaugh Map

- Fill in the K-Map
- Identify the adjacency groupings

- Using Karnaugh Maps to minimize functions by grouping 1's gave a Min SOP Form:
- Using Karnaugh Maps to minimize functions by grouping 0's gives a Min POS Form:

□ The dual of the Uniting theorem is the basis upon which POS is derived from K-Maps.
 Starting with a Canonical POS form.

Α	В	F	
0	0	1	
0	1	0	
1	0	1	
1	1	0	

$$F = (\overline{B} + A)(\overline{B} + \overline{A})$$

$$F = (\overline{B} + A\overline{A})$$
 Distr.

$$F = (\overline{B} + 0)$$
 Compl.

$$F = \overline{B}$$
. Ident.

- ☐ Eliminate the varying variable.
- Write Canonical POS form using remaining variables.

□ Following the dual of the development for SOP we could show that the Karnaugh Map Method is valid for POS forms.

■ EX: Find the Min POS for the following 3-variable function:

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	X
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

		С	
		0	1
AB	00		1
	01	X	1
	11	1	C*
	10	4. 0	0
_	<i>(</i> 0		

− Identify all Prime Implicants (A+C)

Identify Essential Prime Implicants

☐ TEAMS: Find the Min POS for the following

4-variable function:

C	me iu	HCHOL	l			
	CD					
	AB	00	01	_/ 11 /	10	
	00	XO	1	0	1	
	01	0	1	1	1	_
	11	0	χo	Χ°	0	\rightarrow
	10	0	1	6	1	H+10
						!

□ TEAMS: Find the Min POS for the following 4-variable function:

CD		,	•			
AB	ŎO	01	11 /	10		
00 -	1	0	0	Χſ	>A+B+D	
01		1	XI	0	_	
11	1	X	X /	1		
10.	1	Χo	Xo	1		
$(B+\overline{D})(A+\overline{B}+\overline{D})$						

SOP

POS

$$F = (\overline{A} + B + C + \overline{D}) (A + B + \overline{D}) (A + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

EPI

(B+C+D)