

Hardware Triggered Scanning: Hardware

Philip Taylor, Emma Arandjelovic Observatory Sciences Limited

Overview

Motion trajectory control

Flexible triggering, and fast position capture

Data capture

Typical Triggering Setup

Triggering Setup: Warning

Trigger received when detector still reading out...

Triggering Setup: Warning

Trigger Signals

- The PMAC has 3 GPIO output signals, generated during a scan
- They are fed into the PandA box, which in turn triggers detector acquisition
- There are a wide range of detectors in use at Diamond which may require different trigger signals – the PandA can be configured to output an appropriate signal
- The GPIO signals are:
 - 1. Live: The start of a frame
 - 2. Dead: The start of a period when no frames are acquired
 - 3. Centre: The middle of the current frame (not normally used)

Snake Scan

Motion Control Hardware

- Motion control performed by Delta Tau PMAC
- Note: Must be CLIPPER or Geobrick LV IMS II (old style Geobricks don't have enough memory)
- Co-ordinate system needed to run motion program

Geo Brick LV IMS-II

Trajectory Control Overview

- Precise control of the trajectory is needed
- For each step, the user specifies the end position, the velocity at the end point and the time period for that step
- This is called PVT mode:
 - > Position
 - > Velocity
 - > Time

Trajectory Control Sequence

- 1. Malcolm generates trajectory positions and delta times using the Python module *scanpointgenerator*
- 2. EPICS writes them to the PMAC via the *pmac* driver
- The PMAC calculates velocities and performs the scan using PVT mode
- 4. PMAC User Subroutines, which output GPIO signals, are called as each scan point is reached. 8 routines are available, corresponding to all combinations of the 3 signals: Live + Dead + Centre

7th January 2018 Hardware 10

PandABox Overview

- Position and Acquisition Box
- Flexible, modular platform
- Supports a variety of scanning applications
- Based on a PicoZed module which integrates:
 - 1. ARM processor running embedded Linux
 - 2. FPGA firmware providing configurable function blocks

PandA Hardware

Functional Blocks

- Each one performs a specific function, e.g. position capture
- Configured via a number of registers
- Wired up and configured at runtime via a TCP server
- Configurations saved to disk

Available Function Blocks

Function Block	Description
INENC, OUTENC	Input and output encoder signals
TTLIN, TTLOUT	TTL Input and output signals
COUNTER	Up/down pulse counter
CALC	Sums up to 4 position inputs
LUT	Performs logical function on 5 inputs
PCAP	Position capture – options for min, max, sum
PULSE	One-shot pulse delay and stretch
SRGATE	Set Reset Gate – set configurable high or low output

For the full list and more information, see: https://pandablocks-fpga.readthedocs.io/en/latest/blocks.html

Configuring PandA

- PandA runs an embedded web server
- Point a browser directly to this for low level configuration such as updating packages
- For normal use, use Malcolm web gui:
 - Test rig: http://localhost:8008/gui
 - Beamlines: http://ixx-control:8008/gui

7th January 2018 Hardware 15

PandA Configuration GUI

7th January 2018 Hardware 16