Set Theory

Prof. Asim Tewari IIT Bombay

Set Theory: Basics

Set is a correlation of mathematical objects taken from a suitable domain of disclosure.

Examples:

•
$$N = \{0, 1, 2, 3, 4...\}$$
 (set of **natural numbers**)

•
$$\mathbf{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$
 (set of **integers**)

•
$$E = \{0, 2, 4, 6...\}$$
 (set of even natural numbers)

Set Operators

- Union of two sets A and B is the set of all elements in either set A or B.
 - Written $A \cup B$.
 - \blacksquare A \cup B = { $x \mid x \in A \text{ or } x \in B$ }
- Intersection of two sets A and B is the set of all elements in both sets A or B.
 - Written $A \cap B$.
 - \blacksquare A \cap B = { $x \mid x \in A \text{ and } x \in B$ }
- *Difference* of two sets A and B is the set of all elements in set A which are not in set B.
 - Written A B.
 - A B = $\{x \mid x \in A \text{ and } x \notin B\}$

Set Operators

- Symmetric Difference of two sets A and B is the set of all elements which are either in "set A and not in B" or in "set B and not in A"
 - Written A Δ B.
 - $A \triangle B = (A \setminus B) \cup (B \setminus A)$
- *Complement* of a set is the set of all elements <u>not</u> in the set.
 - Written A^c
 - Depends on the choice of superset/universal set S
 - $A^c = \{x \mid x \in S / A \}$

Cartesain Product

- Cartesian Product: Given two sets A and B, the set of
 - All ordered pairs of the form (a, b) where a is any element of A and b any element of B, is called the Cartesian product of A and B.
- Denoted as A x B
 - $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$
 - **Example**: Let $A = \{1,2,3\}$; $B = \{x,y\}$
 - AxB = $\{(1,x),(1,y),(2,x),(2,y),(3,x),(3,y)\}$
 - B x A = $\{(x,1),(y,1),(x,2),(y,2),(x,3),(y,3)\}$
 - B x B = B² = {(x,x),(x,y),(y,x),(y,y)}
- In general,

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_1 \in A_1, ... \times a_n \in A_n\}$$

Example:

$$R^2 = R X R (2 - D Euclidean space)$$

= $\{(x_1, x_2): x_1, x_2 \in R\}$

$$R^d = R X R \dots X R(d - D Euclidean space)$$

$$= \{(x_1, x_2 \dots x_d) : x_1, x_2 \dots x_d \in R\}$$

Topology in Euclidean Space

Euclidean Metric – A measure of distance between two points

$$||x - y|| = \sqrt{(x_1 - y_1)^2 + \dots (x_d - y_d)^2}$$

Closed Ball

$$b(a,r) = \{ x \in R^d : ||x - a|| \le r \}$$

Open Ball

$$b^{int}(a,r) = \{x \in R^d : ||x - a|| < r\}$$

- Bounded Set Set A is bounded if there is a ball b(a,r), such that $A \in b(a,r)$
- A sequence $\{x_1, x_2 \dots \}$ is said to converge to x if $\lim_{n\to\infty} ||x_n x|| = 0$

Topology in Euclidean Space

- **Open Set** A set is said to be open if for each $x \in A$, a positive number ϵ can be found depending on x, such that $b(x, \epsilon) \in A$
- Example: In case of d = 1, (u,v) is a open set
 - System of open sets of R^d is denoted by O.
- Closed Set A set is said to be closed if its complement A^c is open
- Important: For closed set we need a specific superset S to define A^c
- *Example:* Hypercubes

$$[u_1, v_1] X [u_2, v_2] X \dots [u_d, v_d]$$

Hyperplanes

$$x = \{(x_1, \dots, x_d) \in \mathbb{R}^d : \sum_{i=1}^d X_i a_i = b\}$$

where b, a_1, \dots, a_d are constants with a_i are not equal to 0

Topology in Euclidean Space

- **The Interior** A^{int} of a general set A is the **union** of all the open sets contained in A
 - **A**^{int} is the largest open set contained in A.
- **The Closure** A^{cl} of a general set A is the **intersection** of all the closed sets containing A
 - A^{cl} is the smallest closed set containing A
- Properties of A^{cl} and A^{int}
 - $\blacksquare \quad \mathbf{A^{int}} \subset \mathbf{A} \subset \mathbf{A^{cl}}$
 - Also, $A^{int} = ((A^c)^{cl})^c$
 - A set A is open precisely when $A^{int} = A$
 - A set A is <u>closed precisely</u> when $A^{cl} = A$
 - If $A = (A^{int})^{cl}$, then A is said to be **regular closed**
 - The boundary of a set A, $\partial A = A^{cl} \setminus A^{int}$
 - A set $K \in \mathbb{R}^d$ is said to be **Compact**, if it is both closed as well as bounded

• Addition:
$$x + y = (x_1 + y_1, x_2 + y_2, \dots x_d + y_d)$$

Translation: $A_x = A + x = \{y + x : y \in A\}, for x and A \in \mathbb{R}^d$

• Scalar Multiplication by
$$c \in R$$
,
 $c \cdot x = cx = (cx_1, cx_2, \dots cx_d)$

■ **Reflection**: Scalar Multiplication by c = -1, $\check{A} = -A = \{-x : x \in A\}$ for $A \subset R^d$

- Minkowski Addition: $A \oplus B = \{x + y : x \in A, y \in B\}$ for A, B
 - It is both Associative and Commutative
 - $A_x = A \oplus \{x\}$
 - $\bullet \quad A \oplus B = \bigcup_{y \in B} A_y = \bigcup_{x \in A} B_x$
 - $\blacksquare B \oplus A = \{x : B \cap \check{A}_x \text{ is not empty}\}\$
 - $\bullet A \oplus (B_1 \cup B_2) = A \oplus B_1 \cup A \oplus B_2$
 - If $A_1 \subset A_2$, then $A_1 \oplus B \subset A_2 \oplus B$

- Minkowski Subtraction: $A \ominus B = \bigcap_{y \in B} A_y$
 - or $(A^c \oplus B)^c$
 - $\bullet \quad (A \ominus \check{C}) \oplus C \subseteq A \subseteq (A \oplus \check{C}) \ominus C$

- **Dilation:** $A \mapsto A \oplus \check{C}$
- **Erosion:** $A \mapsto A \ominus \check{C}$
 - Opening of A by C (Erosion followed by Dilation)
 - Closing of A by C (Dilation followed by Erosion)

- (a) The operations of erosion and opening applied to a set. Components that overlap are separated while small components and roughnesses vanish or are reduced.
- (b) The operations of dilation and closing applied to a set. Gaps are closed up, concavities vanish or are reduced, and clusters of small particles are merged