

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

SEPTEMBER 2019

MATHEMATICS P2/WISKUNDE V2 MARKING GUIDELINE/NASIENRIGLYN

MARKS/PUNTE: 150

This marking guideline consists of 16 pages./ *Hierdie nasienriglyn bestaan uit 16 bladsye*.

1.1		$ \sqrt{\frac{420.8}{80}} $ ✓ answer / antwoord	(2
1.2	total of heights / totaal van hoogtes = $4,86 \times 7 = 34,02$	\checkmark error / $fout = 0.09$	
	Error/ $fout = 4,98 - 4,89 = 0,09$ new total of heights / nuwe totaal van hoogtes	✓ new total / nuwe totaal	
	= 33,93 new mean / nuwe gemiddelde = $\frac{33,93}{7}$ = 4,85 m	✓ answer / antwoord	
	7		(3
1.3	Standard deviation of individual heights of the 80 giraffes would be bigger than that of 7 males. There is a bigger spread of heights among	✓ bigger/larger standard deviation groter standaardafwyking	
	population of juveniles and adults and babies.	✓ bigger spread of heights groter verspreiding van hoogtes	
	Standaardafwyking van individuele hoogtes van 80 kameelperde sal groter wees as die van die 7 manlike kameelperde.		
	Daar is 'n groter verspreiding van hoogtes onder die jeugdige en volwasse en baba		
	bevolking.		(2
	<u> </u>	1	[7

QUE	QUESTION 3 / VRAAG 3		
3.1	D(4;0)	✓ answer / antwoord	(1)
3.2	$m_{DE} = \frac{-\frac{4}{3} - 0}{0 - 4}$ $= -\frac{\frac{4}{3} \times \left(-\frac{1}{4}\right)}{3}$	✓ substitution / vervanging	(1)
	$=\frac{1}{3}$	✓ answer / antwoord	(2)
3.3	Angle of inclination of DE / Inklinasiehoek van DE $= \tan^{-1} \frac{1}{3}$ $= 18,43^{\circ}$ ODE = 18,43° (vert. opp. \angle s)/(regoorst. \angle e)	$\checkmark \tan^{-1} \frac{1}{3}$ $\checkmark 18,43^{\circ}$	
	OED = 71,57° (complementary ∠s) (komplementêre ∠e)	✓ answer / antwoord	
	$\therefore \overrightarrow{PRB} = 71,57^{\circ} (corr. \angle s:DE BC)$ $(ooreenk. \angle e : DE BC)$	✓ reason / rede	(4)
3.4	$DE = \sqrt{(4-0)^2 + \left(0 + \frac{4}{3}\right)^2}$	✓ substitution / vervanging	
	$=\frac{4\sqrt{10}}{3}$	✓ answer / antwoord	(2)
3.5	$\frac{AD}{AB} = \frac{3}{9} = \frac{1}{3}$	✓ ratios / verhoudings ✓ simplified answer / vereenvoudigde antwoord	(2)

3.6 ΔABC ||| ΔADE

$$\therefore \frac{AD}{AB} = \frac{DE}{BC} = \frac{1}{3}$$

$$BC = 3DE$$

$$= 3\left(\frac{4\sqrt{10}}{3}\right)$$

$$\therefore BC = 4\sqrt{10}$$

✓ ratio of corresponding sides verhouding van ooreenstemmende sye

✓isolating / isoleer BC

✓ substitution / *vervanging*

OR/OF

OR/OF

equation of BC / vergelyking van BC

$$y - 6 = \frac{1}{3}(x - 4)$$

$$\therefore \quad y = \frac{1}{3}x + \frac{14}{3}$$

$$m_{AC} = \frac{\frac{5}{3}}{\frac{3}{-4}} = -\frac{5}{12}$$

equation of AC / vergelyking van AC

$$y = -\frac{5}{12}x - \frac{4}{3}$$

$$\therefore \frac{1}{3}x + \frac{14}{3} = -\frac{5}{12}x - \frac{4}{3}$$

$$4x + 56 = -5x - 16$$

$$9 x = -72$$

$$\therefore x = -8$$

$$y = \frac{1}{3}(-8) + \frac{14}{3}$$

$$\dot{v} = 2$$

$$C(-8;2)$$
 and/ en $B(4;6)$

$$\therefore BC = \sqrt{(-8-4)^2 + (2-6)^2} = 4\sqrt{10}$$

✓ equation of BC / vergelyking van BC

✓ equation of AC / vergelyking van AC

✓ answer / antwoord

(3)

3.7.1	Midpoint of DE / Middelpunt van DE		
	$\left\{\frac{4+0}{2}; \frac{0-\frac{4}{3}}{2}\right\}$		
	$\left(2;-\frac{2}{3}\right)$	✓✓ coordinates / koördinate	(2)
3.7.2	$m_{bisector}/m_{halveerlyn} = -3$ Equation of bisector / Vergelyking van halveerlyn	✓ gradient of bisector / gradiënt van halveerlyn	
	$y + \frac{2}{3} = -3(x - 2)$ $\therefore y = -3x + \frac{16}{3}$	✓ substitution / vervanging ✓ equation / vergelyking	(3)
3.8	LHS/LK = -3 RHS/RK = -3(4) + $\frac{16}{3}$ = $-\frac{20}{3}$ = $-6\frac{2}{3} \approx -6,66$	✓ substitution / vervanging	
	LHS/LK ≠ RHS/RK No, bisector does not pass through A. / Nee, die halveerlyn gaan nie deur A nie	✓ conclusion / gevolgtrekking	(2)

QUESTION 4/VRAAG 4			
4.1	$x^{2} - 6x + y^{2} = 16$ $(x - 3)^{2} + (y - 0)^{2} = 16 + 9$ $(x - 3)^{2} + (y - 0)^{2} = 25$ Hence centre / Gevolglik middelpunt (3; 0) Radius/Radius = $\sqrt{25} = 5$	 ✓ completing the square voltooiing van vierkant ✓ final form / finale vorm ✓ taking square root / vierkantswortel 	(3)
4.2.1	y = 0: hence/gevolglik $(x-3)^2 = 25$ $x-3 = \pm 5$ B (8; 0) OR / OF $r=5$ M (3; 0) B (8; 0)	 ✓ equating / stel y = 0 ✓ solving for x / Los op vir x ✓ coordinates of B koördinate van B OR / OF ✓ ✓ use of horizontal distance / gebruik van 	
4.2.2	$x = 0 : \text{then/dan} (-3)^2 + y^2 = 25$ $9 + y^2 = 25$ $y^2 = 16$ $y = \pm 4$ $C(0; -4)$	horisontale afstand ✓ equating x to 0 stel x gelyk aan 0 ✓ coordinates of C koördinate van C	(3)
	OR/OF using Pythagoras / gebruik van Pythagoras : $MD^2 = OM^2 + OD^2$ $5^2 = 3^2 + OD^2$ $4 = OD = OC$ $C(0; -4)$	OR/OF ✓ use of Pythagoras gebruik van Pythagoras ✓ coordinates of C koördinate van C	(2)
4.3		✓ radius ⊥ tangent radius ⊥ raaklyn ✓ substitution into Pythag. Thm vervanging in Stelling van Pyth ✓ answer / antwoord OR/OF	
	$P\widehat{OC} = 90^{\circ}$ $PC^{2} = PO^{2} + OC^{2}$ $PO = 8\frac{1}{3} - 5 + 2 = \frac{16}{3} \text{ and/en OC} = 4$ $PC^{2} = (\frac{16}{3})^{2} + 4^{2}$ $PC = \sqrt{\frac{400}{9}} = \frac{20}{3} = 6,67$	✓ calculation of PO berekening van PO ✓ substitution into Pythag. Thm vervanging in Stelling van Pyth ✓ answer / antwoord	(3)

4.4

$$m_{BD} = -\frac{1}{2}$$

$$\tan^{-1}(-\frac{1}{2}) = -26,57^{\circ}$$

$$\therefore \alpha = 180 - 26,57^{\circ}$$

$$\therefore \theta = 180^{\circ} - 153,43^{\circ} = 26,57^{\circ}$$

$$D\widehat{B} C = 2 \times 26,57^{\circ}$$

$$= 53,14^{\circ}$$

$$\sin \theta = \frac{\mathbf{OR} / \mathbf{OF}}{4}$$
$$\sin^{-1}(0.4472...) = 26.57^{\circ}$$

$$D\widehat{B} C = 2 \times 26, 57^{\circ} = 53,14^{\circ}$$

OR / OF

$$\tan D\widehat{B}O = \frac{4}{8} = \frac{1}{2}$$
 $D\widehat{B}O = 26.57^{\circ}$

 $D\widehat{B}O = 26,57^{\circ}$ $D\widehat{B}C = 2 \times 26,57^{\circ}$ $= 53,14^{\circ}$ ✓ gradient of BD / gradient van BD

✓ calculation of α / berekening van α

✓ angle θ / hoek θ

✓ doubling the angle / verdubbeling van hoek

OR / OF

✓ sin definition / sin-definisie

✓ use of arcsin / gebruik van sin⁻¹

✓ angle θ / hoek θ

✓ doubling the angle / verdubbeling van hoek

OR / OF

✓ tan ratio / tan *verhouding*

✓ use of arctan to find angle / gebruik van tan⁻¹ om hoek te bepaal

✓ angle / hoek

✓ doubling the angle / verdubbeling van hoek

(4)

4.5 New circle centre/Nuwe sirkel middelpunt - $M^{\prime}(5;1)$

$$C'(2; -3)$$

$$m_{M'C'} = \frac{4}{3}$$

$$m_{tan} = -\frac{3}{4}$$

$$-3 = -\frac{3}{4}(2) + c$$

$$\therefore c = -\frac{3}{2}$$

$$\therefore v = -\frac{3}{2}r - \frac{3}{2}$$

✓ coordinates of M[′] and C[′] koördinate van M[′] en C[′]

✓ gradient of MC / gradiënt van MC

✓ gradient of tangent / gradiënt van raaklyn

✓ equation / vergelyking

	OR / OF		OR / OF	
He va	radient of MC / Gradiënt van MC = $\frac{4}{3}$ ence gradient of M'C' / Gevolglik gradiënt an M'C' = $\frac{4}{3}$ (MC M'C') radient of tangent at C' / Gradiënt van taklyn by C' = $-\frac{3}{4}$ (M'C' \perp tang at C')	_	nt of MC / gradiënt van MC nt of M'C' / gradiënt van M'C'	
	(M'C' \perp raaklyn by C') $y + 3 = -\frac{3}{4}(x - 2)$ $y = -\frac{3}{4}x - \frac{3}{2}$		nates of C' / koördinate van C' on / vergelyking	
	4 2			(4) [19]
OUESTI	ON 5/VRAAG 5			
5.1.1	1		✓ answer / antwoord	
				(1)
5.1.2	cos 2A		✓ answer / antwoord	(1)
5.2.1	$3^2 = 2^2 + k^2$ $k = -\sqrt{5}$		 ✓ distance formula / afstand formule Pythagoras Thm / Stelling ✓ answer with correct sign antwoord met korrekte teken 	(2)
5.2.2(a)	$\tan (\theta - 180^{\circ}) = \tan \theta$ $= -\frac{\sqrt{5}}{2}$		✓ reduction / reduksie ✓ answer / antwoord	(2)
5.2.2(b)	$\frac{1-\sin^2 2\theta}{1-2\sin^2 \theta} = \frac{\cos^2 2\theta}{\cos 2\theta}$ $= \cos 2\theta$ $= 1 - 2\sin^2 \theta$ $= 1 - 2\left(-\frac{\sqrt{5}}{3}\right)^2$ $= 1 - \frac{10}{9}$ $= -\frac{1}{9}$		✓ $1 - \sin^2 2\theta = \cos^2 2\theta$ ✓ $1 - 2\sin^2 \theta = \cos 2\theta$ ✓ substitution for sin <i>vervanging vir</i> sin ✓ answer / <i>antwoord</i>	
	$\frac{1-\sin^2 2\theta}{1-2\sin^2 \theta} = \frac{\cos^2 2\theta}{\cos 2\theta}$ $= \cos 2\theta$ $= 2\cos^2 \theta - 1$ $= 2\left(\frac{2}{3}\right)^2 - 1$ $= \frac{8}{9} - 1$ $= -\frac{1}{9}$		OR / OF ✓ $1 - \sin^2 2\theta = \cos^2 2\theta$ ✓ $1 - 2\sin^2 \theta = \cos 2\theta$ ✓ substitution for cos vervanging vir cos ✓ answer / antwoord	

	OR / OF	OR / OF	
	$\frac{1 - \sin^2 2\theta}{1 - 2\sin^2 \theta} = \frac{1 - (2\sin\theta\cos\theta)^2}{1 - 2\sin^2 \theta}$ $= \frac{1 - \left[2(-\frac{\sqrt{5}}{3})(\frac{2}{3})\right]^2}{1 - 2(-\frac{\sqrt{5}}{3})^2}$ $= -\frac{1}{9}$	✓ sin²2θ = (2sinθcosθ)² ✓ substitution for sin θ vervanging vir sin θ ✓ substitution for cos θ vervanging vir cos θ ✓ answer / antwoord	(4)
			(4)
5.3	$\sin (-200^{\circ}).\cos 310^{\circ} + \tan (-135^{\circ}).\cos 380^{\circ}.\sin 230^{\circ}$ $= \sin (20^{\circ})(\cos 50^{\circ}) + (\tan 45^{\circ})(\cos 20^{\circ})(-\sin 50^{\circ})$ $= \sin 20^{\circ} \cos 50^{\circ} - (1)\cos 20^{\circ} \sin 50^{\circ}$ $= \sin (20^{\circ} - 50^{\circ})$ $= \sin (-30^{\circ})$ $= -\frac{1}{2}$	✓ ✓ ✓ reductions to acute angles / reduksie tot skerphoeke ✓ sin expansion / sin uitbreiding ✓ answer / antwoord	(6)
5.4	LHS/ $LK = \sin 2\theta + \cos (2\theta - 90^{\circ})$ $= \sin 2\theta + \sin 2\theta$ $= 2 \sin 2\theta$ $= 2(2\sin \theta \cos \theta)$ $= 4 \sin \theta \cos \theta$ = RHS/RK	✓ cos (2θ – 90°) = sin 2θ ✓ simplification vereenvoudiging ✓ expansion / uitbreiding	(3)
5.5	$10^{\sin x} + 10^{\sin x} \cdot 10^{1} = 110$ $10^{\sin x} (1+10) = 110$ $10^{\sin x} = 10^{1}$ $\therefore \sin x = 1$ $\therefore x = -270^{\circ} \text{ or/of } x = 90^{\circ}$	✓ split into product of 2 bases skei in product van 2 basisse ✓ simplification / factorisation vereenvoudiging/faktoriseri ng ✓ division by 11 / deel deur 11 ✓ equating the exponents gelykstel van eksponente ✓ both solutions / beide oplossings	(5)
			[24]

QUE	STION 7/VRAAG 7		
7.1	$\tan y = \frac{PB}{k}$ $\therefore PB = k.\tan y$	✓ use of tan ratio gebruik van tan verhouding ✓ PB = k.tan y	
	$\tan x = \frac{PB}{BC}$		
	$\therefore BC = \frac{PB}{\tan x}$	\checkmark BC = $\frac{PB}{\tan x}$	
	Hence/Gevolglik BC = $\frac{k \cdot \tan y}{\tan x}$		(3)
7.2	$(AC)^2 = (4,73)^2 + (3)^2 - 2(4,73)(3)(\cos 100^\circ)$	✓ use of cosine rule gebruik van cosinusreël	
	AC = 6,03 m	✓ correct substitution in cosine rule korrekte vervanging in cosinusreël	
		✓ answer / antwoord	(3)
			[6]

OHES	STION 8 / VRAAG8		
QUE	JIION 67 YRAMO		
8.1.1	$\widehat{BAE} = 90^{\circ} \ (\angle \text{ in a semi-circle } / \angle \text{ in halwe sirkel})$	✓ statement/stelling (S) ✓ reason / rede (R)	(2)
8.1.2	$\widehat{E}_1 = 40^{\circ}$ (sum of \angle s of Δ / som van \angle e van Δ)	✓ statement / S ✓ reason / R	(2)
8.1.3	$\hat{C}_1 = 40^\circ$ (\angle s subtended by AB OR \angle s in the same segment) (\angle e onderspan deur AB OF \angle e in dieselfde segment)	✓ statement / S ✓ reason / R	(2)
8.1.4	$\hat{C}_2 = 62^{\circ} \text{ (ext. } \angle \text{ of cyclic quad. } / \text{ buite } \angle \text{ van koordev.)}$	✓ statement / S ✓ reason / R	(2)
8.1.5	$\widehat{ABD} = 62^{\circ}$ (\angle s subtended by AD OR \angle s in the same segment OR ext. \angle of cyclic quad.) (\angle e onderspan deur AD OF \angle e in dieselfde segment OF buite \angle van koordevierhoek)	✓ statement / S ✓ reason / R	(2)
8.2	equal to the angle in the alternate segment/ gelyk aan die hoek in die oorstaande segment	✓ answer / antwoord	(1)
8.3	R.T.P / Te Bewys: STUR cyclic / koordevierhoek Proof: $\widehat{U}_2 = x$ (tan chord thm)/(raaklyn koord stelling) $\widehat{R}_3 = y$ (tan chord thm)/(raaklyn koord stelling) $\widehat{R}_2 = 180^\circ - (x+y)$ (\angle s on str line)/(\angle e op reguitlyn) OR/OF $\widehat{R}_2 = 180^\circ - (x+y)$ ($3 \angle$ s Δ)/($3 \angle$ e Δ) T + $\widehat{R}_2 = 180^\circ$ STUR cyclic (opposite angles are suppl.) STUR is 'n koordevierhoek (oorstaande hoeke is suppl.)	✓ statement / S ✓ reason / R ✓ S & R ✓ S & R ✓ opp. ∠ s of quad. supplementary teenoorst. ∠e van vierhoek supplementêr ✓ S & R	(5)
	(lynstuk vanaf middelpunt \perp koord) $M P^2 = 6^2 + 8^2$ (Pyth. Theorem)/(Pyth. Stelling) $MP = 10 \text{ units/eenhede}$ $MP = RM = MT = 10$ (radii)/(radiusse) $RT = 20 \text{ units/eenhede}$	✓ S & R ✓ S & R ✓ answer / antwoord	(4)
			[20]

QUEST	ΓΙΟΝ 9/VRAAG9		
9.1.1	$\frac{AD}{DE} = \frac{AC}{CF}$ (prop. theorem; DC EF) (Eweredigh. stelling; DC EF) $\frac{12}{3} = \frac{AC}{5}$	✓ S & R ✓ substitution / vervanging	
	20 =AC	✓ answer / antwoord	(3)
9.1.2	AO = 10 (diagonals of a parallelogram bisect) (hoeklyne van 'n parallelogram halveer)	✓ answer / antwoord	(1)
9.1.3	$\Delta ADC \parallel \Delta AEF \qquad (\angle, \angle, \angle)$ $\frac{AD}{AE} = \frac{DC}{EF} \qquad (\parallel \Delta s: sides in prop.)$ $(\parallel \Delta e: sye is eweredig)$ $EF = \frac{14}{15}$ $EF = \frac{14 \times 15}{12}$	✓ S & R ✓ statement / S	
	EF = 17,5	✓ answer / antwoord	(3)
9.2	$\frac{\text{A rea } \Delta \text{A D C}}{\text{A rea } \Delta \text{A E F}} = \left(\frac{12}{15}\right)^2$ $= \left(\frac{4}{5}\right)^2 = \frac{16}{25}$	(Area => Oppervlakte) $\checkmark \frac{\text{Area } \triangle \text{ADC}}{\text{Area } \triangle \text{AEF}} = \frac{16}{25}$	
	$\frac{\text{A rea } \Delta \text{A D O}}{\text{A rea } \Delta \text{A D C}} = \frac{1}{2}$ $\frac{\text{A rea } \Delta \text{A D C}}{\text{A rea } \Delta \text{A B F}} \times \frac{\text{A rea } \Delta \text{A D O}}{\text{A rea } \Delta \text{A D C}} = \frac{\text{A rea } \Delta \text{A D O}}{\text{A rea } \Delta \text{A E F}}$	$\checkmark \frac{\text{A rea } \Delta \text{A D O}}{\text{A rea } \Delta \text{A D C}} = \frac{1}{2}$	
	But/Maar: $\frac{\text{A rea } \Delta \text{A D C}}{\text{A rea } \Delta \text{A E F}} \times \frac{\text{A rea } \Delta \text{A D O}}{\text{A rea } \Delta \text{A D C}} = \frac{16}{25} \times \frac{1}{2}$ $= \frac{8}{25}$ Area $\Delta \text{A D O}$	✓ simplification / vereenvoudiging	
	$\frac{A \operatorname{Rea} \Delta A \operatorname{BF}}{A \operatorname{rea} \Delta A \operatorname{EF}} = \frac{8}{25}$ \mathbf{OR}/\mathbf{OF}	OR/OF	
	$\frac{\text{A rea } \triangle \text{A D O}}{\text{A rea } \triangle \text{A E F}} = \frac{\frac{1}{2} \text{A D . A O } \sin \text{D A O}}{\frac{1}{2} \text{A E . A F } \sin \text{D A O}}$	✓ use of area rule gebruik van oppervlakte reël	
	$= \frac{12 \times 10}{15 \times 25}$ $= \frac{8}{12}$	✓ area of ΔADO ✓ area of ΔAEF	
	25		(3) [10]

QUEST	ΓΙΟΝ 10/VRAAG 10		
10.1	$\frac{P}{Q}$ E R U		
	Construction: Mark D on PQ and E on PR such that PD = ST and PE = SU. Join DE. Konstruksie: Merk D op PQ en E op PR sodat PD = ST en PE = SU. Verbind DE. Proof/Bewys: In \triangle PDE and/en \triangle STU $\widehat{P} = \widehat{S}$ (given) / (gegee) PD = ST (construction) / (konstruksie)	✓ construction / konstruksie	
	PE = SU (construction) / (konstruksie) $\Delta PDE \equiv \Delta STU (SAS)$ $\therefore \widehat{D}_{1} = \widehat{T} (\equiv \Delta's)$ $But/Maar: \widehat{Q} = \widehat{T} (given) / (gegee)$ $\therefore \widehat{D}_{1} = \widehat{Q}$ $\therefore DE \parallel QR (corr. \angle s =) / (ooreenk. \angle e =)$	✓ S & R ✓ $\widehat{D}_1 = \widehat{T}$ ✓ $\widehat{D}_1 = \widehat{Q}$ ✓ reason for lines \parallel $rede\ vir\ \parallel\ lyne$	
10.2.1	$\therefore \frac{PD}{PQ} = \frac{PE}{PR} \qquad \text{(prop. theorem; DE QR)}$ $\therefore \frac{ST}{PQ} = \frac{SU}{PR}$ $\widehat{A} = x \qquad \text{(tan chord thm)/(raakl koord stelling)}$	✓ prop. theorem; DE QR eweredigh. stelling; DE QR ✓ statement(S) ✓	(6)
	$\hat{C}_3 = x$ (angles opp. = sides)/(hoeke teenoor = sye)	reason(R) ✓ S & R	(3)
10.2.2	R.T.P/Te Bewys: $\triangle TOC \parallel \triangle BPC$ A $\subset B = 90^{\circ}$ (\angle in the semi-circle)/(\angle in halwe sirkel) Proof/Bewys: $\widehat{C}_3 = \widehat{C}_1 = x$ (proved)/(reeds bewys) $\widehat{T}_2 = 90^{\circ} + x$ (ext. \angle of \triangle) / (buite \angle van \triangle) $\widehat{B}_1 = 90^{\circ} + x$ (ext. \angle of \triangle) / (buite \angle van \triangle) $\therefore \widehat{T}_2 = \widehat{B}_1$ $\therefore \widehat{O}_2 = \widehat{P}$ (sum of \angle s in \triangle) / (som van \angle e in \triangle) $\therefore \triangle TOC \parallel \triangle BPC$ (\angle , \angle , \angle)	✓ S & R ✓ S ✓ S & R ✓ S ✓ R	
	OR/OF	01401	
	$\stackrel{\circ}{A}\stackrel{\circ}{C}B = 90^{\circ}$ (\(\angle\) in the semi-circle) / (hoek in halwe sirkel)	✓ S & R	
	$B_{2} = 90^{\circ} - x (\text{sum of } \angle \text{s in } \Delta) / (\text{som van } \angle \text{e in } \Delta)$ $\therefore P = 90^{\circ} - 2x (\text{ext. } \angle \text{of } \Delta) / (\text{buite } \angle \text{van } \Delta)$ $0_{1} = 2x (\angle \text{at centre} = 2 \times \angle \text{at circum.}) / (\text{Middelpunts } \angle = 2 \times \text{Omtrekshoek})$ $\therefore 0_{2} = 90^{\circ} - 2x (\text{SO } \bot \text{AB})$ $\therefore 0_{2} = P$	✓ S ✓ S & R ✓ S ✓ R	
	$\hat{C}_3 = \hat{C}_1 = x \text{ (proved above)} / \text{(alreeds bo bewys)}$ $\therefore \Delta \text{TOC} \Delta \text{BPC}(\angle, \angle, \angle)$		(5)

10.2.3	R.T.P/Te Bewys: TO. PC = OB . BP		
10.2.3	TO OC	✓ sides in prop.	
	$Proof/Bewys: \frac{10}{BP} = \frac{60}{PC}$	sye is eweredig	
	, Bb bC	sye is eweredig	
	But/Maar OC = OB (radii)/(radiusse)	✓ S	
	TO OR		
	$\therefore \frac{\text{TO}}{\text{BP}} = \frac{\text{OB}}{\text{PC}}$		
	Bb bc		
	∴ TO. PC = OB . BP		
	10.1C = 0B . BI		(2)
10.2.4	In ΔOPC:		(2)
10.2.1		✓ S & R	
	$OP^2 = OC^2 + PC^2$ (Pyth. theorem/stelling)		
	But/Maar: OB = OC = BP (radii)/(radiusse)	\checkmark OB = OC = BP	
	$\therefore (2 O C)^2 = O C^2 + P C^2$		
		$\sqrt{(20C)^2} = 0C^2 + PC^2$	
	$4OC^{2} = OC^{2} + PC^{2}$	(200) -00 +10	
	$\therefore PC^2 = 3OC^2$		(3)
		1	[19]
		TOTAL/TOTAAL:	150