

Computer Science Department

Report About:

Dataset and Model Documentation

Team Members:

- 1- Aya Ahmed Abdelsatar
- 2- Sama sameh abdelal
- 3- Rehap abdelghani mohamed
- **4** Mena esmat abdelghani
- 5- Sara omar mohamed
- **6-** Sama haitham ezzat

Table of Contents

Dataset Overview	3
Numeric Dataset	3
- Description:	3
- Number of Records:	3
- Number of Features:	3
- Missing Data:	3
Image Dataset	3
- Description:	3
- Total Classes:	3
- Used Classes:	3
- Names of Used Classes:	3
Preprocessing Steps	4
Numeric Dataset	4
1. Handling Missing Values:	4
2. Feature Scaling:	4
Image Dataset	4
1- Resizing:	4
2- Filtering:	4
3- Augmentation:	4
4- Normalization:	4
5- Feature Extraction:	4
Models and Algorithms	5
Numeric Dataset Models	5
1- Linear Regression:	
2- K-Nearest Neighbors (KNN):	5
Comparison of Numeric Models	5
Conclusion:	5
Logistic Regression (Classification)	6
Purpose:	6
Evaluation Metric:	6
Image Dataset Model	6
1. Logistic Regression:	6
Tools and Libraries Used	6
- Libraries:	6
- Tools:	6
Conclusion	7
- Numeric Dataset:	7
- Image Dataset:	7
Comparison of Numeric Models	8
Comparison of Image Models	9

Dataset Overview

Numeric Dataset

- Description:
 - o This dataset contains information related to life expectancy metrics for various countries over multiple years.
- Number of Records:
 - o 2,342 entries (before preprocessing).
- Number of Features:
 - o 21 features.
- Missing Data:
 - Yes, missing data was handled using imputation techniques during preprocessing.

Image Dataset

- Description:
 - This dataset contains images of food items categorized into 101 distinct classes. However, only 5 classes were used for this project.
- Total Classes:
 - o 101 classes.
- Used Classes:
 - o 5 classes.
- Names of Used Classes:
 - Pizza, French Fries, Ice Cream, Donuts, and Hamburger.
 Missing Data: No missing images; all images used were intact.

Preprocessing Steps

Numeric Dataset

1. Handling Missing Values:

- Used SimpleImputer to fill missing values.
- Numerical columns: Imputed with the mean.
- Categorical columns: Imputed with the most frequent value.

2. Feature Scaling:

- Applied StandardScaler to normalize numerical features.

1. One-Hot Encoding:

- Categorical features were encoded using

OneHotEncoder.

2. Train-Test Split:

- Split data into 80% training and 20% testing sets.

Image Dataset

1- Resizing:

 All images resized to a uniform size for consistency.

2- Filtering:

o Applied Gaussian blur to reduce noise.

3- Augmentation:

a. Applied random flips, rotations ($\pm 30^{\circ}$), brightness adjustments, contrast changes, and Gaussian noise.

4- Normalization:

Normalized pixel values to a range of [0, 1].

5- Feature Extraction:

- a. Color Histogram.
- b. Local Binary Patterns (LBP).
- c. Edge Detection using Canny edge detector.

Models and Algorithms

Numeric Dataset Models

- 1- Linear Regression:
 - Used for predicting life expectancy.
 - **o** Evaluation Metrics:
 - Mean Squared Error (MSE): 4.32
 - Root Mean Squared Error (RMSE): 2.08
 - R-Squared (R²): 0.952

2- K-Nearest Neighbors (KNN):

- Used for predicting life expectancy.
- **o** Evaluation Metrics:
 - Mean Squared Error (MSE): 9.55
 - Root Mean Squared Error (RMSE): 3.09
 - R-Squared (R²): 0.893

Comparison of Numeric Models

Metric Linear Regression KNN Mean

Squared Error (MSE)	4.32	9.55
Root Mean Squared Error (RMSE)	2.08	3.09
R-Squared (R ²)	0.952	0.893

Conclusion:

Linear Regression outperformed KNN in all metrics for the numeric dataset.

Logistic Regression (Classification)

Purpose:

Binary classification of life expectancy as above or below the median value.

Evaluation Metric:

o Accuracy: 92.49%

Image Dataset Model

1. Logistic Regression:

- Used features extracted from images to classify food items.
- Evaluation Metrics:
 - Accuracy: Achieved high classification accuracy after augmentation and feature extraction.

Tools and Libraries Used

- Libraries:
 - Pandas, NumPy, Scikit-learn, Imgaug, OpenCV, Matplotlib.
- Tools:
 - o Jupyter Notebook for experimentation.
 - o Python for scripting and implementation.

Conclusion

- Numeric Dataset:

- Linear Regression was the best-performing model for predicting life expectancy.
- Logistic Regression effectively classified life expectancy into binary categories.

- Image Dataset:

 Preprocessing and augmentation enhanced feature extraction and classification accuracy.
 The chosen 5 classes (Pizza, French Fries, Ice Cream, Donuts, and Hamburger) were classified with high accuracy using Logistic Regression.

Comparison of Numeric Models

Comparison of Image Models

