Graph Partitioning Clustering

Mehrdad Mohammadian 39700248

Data

T1	T2	T 3	T4
0.1	0.4	0.1	0.3
0.1	0.2	0.5	0.4
0.4	0.1	0.1	0.3
0.2	0.4	0.1	0.3
0.2	0.1	0.5	0.4
0.1	0.1	0.1	0.2

Calculate Similarity Matrix

```
sim(T_i,T_j) = \sum_{k=1}^N (w_{ik}	imes w_{jk})
```

```
import numpy as np
import pandas as pd
terms = ['t1', 't2', 't3', 't4']
sim_matrix = np.zeros(shape=(len(terms), len(terms)), dtype=float)
data = pd.DataFrame(data={
    't1': [0.1, 0.1, 0.4, 0.2, 0.2, 0.1],
    't2': [0.4, 0.2, 0.1, 0.4, 0.1, 0.1],
    't3': [0.1, 0.5, 0.1, 0.1, 0.5, 0.1],
    't4': [0.3, 0.4, 0.3, 0.3, 0.4, 0.2]
})
for xkey, xterm in enumerate(terms):
    for ykey, yterm in enumerate(terms):
        if yterm != xterm:
            sim_matrix[xkey][ykey] = np.dot(x[xterm], x[yterm])
print(sim_matrix)
```

output:

note: T1 dotproduct T1 = 0, T2 dotproduct T2 = 0 , ...

$$\begin{bmatrix} 0 \\ 0.21 & 0 \\ 0.23 & 0.25 & 0 \\ 0.35 & 0.41 & 0.51 & 0 \end{bmatrix}$$

set tershold:

treshold = 0.35

Apply Clique Method

$$[T1, T4]$$

 $[T3, T4]$
 $[T2, T4]$

Apply Single Link Method

 $\left[T4,T3,T2,T1\right]$

The End 1400/7/22