Tabel 2.1 State of The Art

No	Peneliti	Tah	Judul	Masalah	Metod	Hasil
		un			e	
1.	Dinda	2017	Analisis	Seberapa	Naïve	Dari pengolahan
	Ayu		Sentimen	besar efek	Bayes	data yang sudah
	Muthia		Pada	metode	Classif	dilakukan, Genetic
			Review	pemilihan	i er	Algorithm terbukti
			Restoran	fitur Genetic		dapat meningkatkan
			Dengan	Algorithm		akurasi
			Teks	pada akurasi		pengklasifikasi
			Bahasa	analisa		Naïve Bayes. Data
			Indonesia	sentiment		review restorandapat
			Menggunak	pada review		diklasifikasi dengan
			an	restoran		baik ke dalam
			Algoritma	dengan teks		bentuk positif dan
			Naïve	bahasa		negatif. Akurasi
			Bayes	Indonesia		Naïve Bayessebelum
						menggunakan
						penggabungan
						metode pemilihan
						fitur mencapai
						86.50% Sedangkan
						setelah
						menggunakan
						penggabungan
						metode pemilihan
						fitur, yaitu Genetic
						Algorithm,
						akurasinya
						meningkat hingga
						mencapai 90.50%.
						Peningkatan akurasi
						mencapai 4%.

2.	Alfa	2015	Implementa	Penting nya	Naïve	Berdasarkan data
	Saleh		si Metode	listrik	Bayes	rumah tangga yang
			Klasifikasi	berdampak	Classif	dijadikan data
			Naïve	pada	i er	training, metode
			Bayes	permintaan	1 er	Naive Bayes
			Dalam	listrik yang		berhasil
			Mempredik	semakin		mengklasifikasikan
			si Basarnya	besar, tetapi		47 data dari 60 data
			Penggunaaa	tidak linier		yang diuji. Sehingga
			n Listrik	dengan		metode Naive
			Rumah	persediaan		Bayesberhasil
			Tangga	listrik yang		memprediksibesarny
				belum		a penggunaan listrik
				mampu		rumah tanggadengan
				memenuhi		persentase
				permintaan		keakuratan sebesar
				listrik yang		78,3333%.
				begitu besar		
				tersebut.		

3.	Akhmad	2016	Naïve	Banyakny	Naïve	klasifikasi		
	Pandhu		Bayes	a informasi	Bayes	dokumen		
	Wijaya		Classificat	digital dalam		menggunakan Naïve		
	& Heru		ion Pada	bahasa		Bayes		
	Agus		Klasifikasi	Indonesia,		Classifier pada		
	Santoso		Dokumen	perlu untuk		penelitian ini dengan		
			Untuk	clustering		data training		
			Identifikas i	dokumen		sebanyak 260		
			Konten E-	berdasarka n		dokumen		
			Carramana	apa yang		politik den 222		
			Governme	dicari		politik dan 222 dokumen ekonomi		
			Nt	sehingga		menggunakan 40		
				untuk				
				mendapatk		data testing menunjukkan nilai		
				an beberapa		akurasi yang baik		
						informasi		pada keseluruhan klasifikasi, dengan
					dapat		akurasi keseluruhan	
				dilakukan		klasifikasi sebesar 85%.		
				dengan				
				sesuai,				
				ringkas,				
				menyeluru				
				h				

4.	Amrin, Hafdiarsy a Saiyar	2018	Aplikasi Diagnosa Penyakit Tuberculosi s Menggunak an algoritma Naïve Bayes	Penyakit Tuberculosis adalah penyakit yang mudah sekali menular . Sehingga sangat penting bagi untuk mendiagnosa secara dini penyakit ini untuk mengurangi penularan	Naïve Bayes Classif i er	performa model naïve bayesmemberikan tingkat akurasi kebenaran sebesar 94,18% dengan nilai area under the curve (AUC) sebesar 0,977. Hal ini menunjukkan bahwa model tersebut termasuk katagori klasifikasi sangat baik karena memiliki nilai AUC antara 0.90-1.00.
----	---------------------------	------	---	--	-----------------------------------	---

5.	Andriana	2015	Sistem	Dalam	Naïve	pengujian akurasi
] .	Candra	2013	Pakar	memproduks		terhadap variasi
	Dewi,		Diagnosa	i daging sapi	Bayes	datamenghasilkan
	Dewi,		Penyakit	faktor	Classif	nilai rata-rata
	Arief		Sapi Potong	penting yang	i er	akurasi masing-
	Andy		Dengan	harus dijaga		masing skenario
	-		Metode	adalah		sebesar 93,08%,
	Soebroto,			kesehatan		
	M T1		Naïve			93,85%, 93,85%,
	M. Tanzil		Bayes	sapi itu		92,31% dan
	Furqon			sendiri.		92,31%. Sehingga
				Biasanya		didapatkan rata-rata
				para		akurasi sistem
				peternak sapi		sebesar 93,08%.
				tidak begitu		Tingkat akurasi
				kenal dengan		tertinggi didapat
				berbagai		ketika variasi data
				penyakit		training berjumlah
				sapid an		40% dan 60% dari
				dokter pun		keseluruhan jumlah
				tidak selalu		data training yang
				tersedia		ada. Hal ini
						membuktikan
						bahwa komposisi
						data kasus
						berpengaruh dalam
						hasil akurasi sistem.