Corriging

$$\int_{A}^{A} \int_{A}^{A} \int_{$$

3) Soit
$$a < 0$$
.

$$V(a) = \pi \cdot \int_{a}^{0} \left[f(x) \right]^{2} dx$$

$$= \pi \cdot \int_{a}^{0} (1-4x) e^{2x} dx$$

$$\begin{aligned}
& \int_{\mathcal{A}} \operatorname{Antin} : \\
& M(x) = \Lambda - 4x & N'(x) = e^{2x} \\
& M'(x) = -4 & N(x) = \frac{\pi}{2} e^{2x}
\end{aligned}$$

$$V(A) &= \pi \cdot \left[(\Lambda - 4x) \cdot \frac{\Lambda}{2} e^{2x} \right]_{A}^{O}$$

$$&= \pi \cdot \left[\frac{\Lambda}{2} - (\Lambda - 4A) \cdot \frac{\Lambda}{2} e^{2A} \right]_{A}^{O}$$

$$&= \pi \cdot \left[\frac{\Lambda}{2} - (\Lambda - 4A) \cdot \frac{\Lambda}{2} e^{2A} + \Lambda - e^{2A} \right]$$

$$&= \pi \cdot \left[\frac{\Lambda}{2} - (\Lambda - 4A) \cdot \frac{\Lambda}{2} e^{2A} + \Lambda - e^{2A} \right]$$

$$= \pi \cdot \left[\frac{3}{2} - \left(\frac{3}{2} - 2\pi \right) e^{2\pi} \right] \quad n.v.$$

$$\lim_{R \to -\infty} V(a)$$

$$= \lim_{R \to -\infty} \pi \cdot \left[\frac{3}{2} - \frac{3}{2} e^{2\pi} + \frac{2\pi}{e^{-2\pi}} \right]$$

$$= \frac{3\pi}{2} \quad n.v. \quad \left[\inf_{R \to \infty} t : \lim_{R \to \infty} \frac{2\pi}{e^{2\pi}} = \lim_{R \to \infty} \frac{\pi}{e^{-2\pi}} \right]$$

II
$$f(x) = x \cdot (1 + \ln^2 x)$$

A) $dom f = Jo; +\infty E = dom_{e} f = dom_{e} f$

• $\lim_{x \to 0} x \cdot (1 + \ln^2 x) = \lim_{x \to 0} \frac{1 + \ln^2 x}{4}$

= $\lim_{x \to 0} \frac{2(\ln x) \cdot \frac{1}{4}}{\frac{1}{4}} = \lim_{x \to 0} \frac{2 \cdot \ln x}{\frac{1}{4}}$

= $\lim_{x \to 0} \frac{2 \cdot \frac{1}{4}}{\frac{1}{4}} = \lim_{x \to 0} (+2x) = 0$
 $\lim_{x \to 0} \frac{2 \cdot \frac{1}{4}}{\frac{1}{4}} = \lim_{x \to 0} (+2x) = 0$

fin $\lim_{x \to 0} \frac{1 \cdot \frac{1}{4}}{\frac{1}{4}} = \lim_{x \to 0} (1 + \ln^2 x) = +\infty$
 $\lim_{x \to +\infty} \frac{1}{4} = \lim_{x \to +\infty} (1 + \ln^2 x) = +\infty$
 $\lim_{x \to +\infty} \frac{1}{4} = \lim_{x \to +\infty} (1 + \ln^2 x) = +\infty$
 $\lim_{x \to +\infty} \frac{1}{4} = \lim_{x \to +\infty} (1 + \ln^2 x) = +\infty$
 $\lim_{x \to +\infty} \frac{1}{4} = \lim_{x \to +\infty} (1 + \ln^2 x) = +\infty$
 $\lim_{x \to 0} \frac{1}{4} = \lim_{x \to 0} (1 + \ln^2 x) = +\infty$
 $\lim_{x \to 0} \frac{1}{4} = \lim_{x \to 0} (1 + \ln^2 x) = +\infty$
 $\lim_{x \to 0} \frac{1}{4} = \lim_{x \to 0} (1 + \ln^2 x) = \frac{2}{4} = \frac$

3) Soit a>0. Eq. de Ta: Y-f(a) = f'(a). (x-a) Ta game par 0(0;0) () 0 - f(a) = f'(a) · (0-a) f(a) = a.f'(a) R. (1+ lu a) = R. (1+ lu a) 1 1 1+ lu2 a = 1+ 2. ha + lu2 a 2 lu a = 0 Une seule tangente à Gy passe par O, à savoir là tangente To d'éq. Y = X. 4) [(x) dx = [(x + x.lu2x) dx $= \frac{1}{2} x^2 + \int x \cdot h \cdot \frac{1}{x} dx$ $\frac{4ax}{a(x) = \ln^2 x} \frac{\pi'(x) = x}{\pi'(x) = \frac{1}{2} x^2}$ $\pi'(x) = 2(\ln x) \cdot \frac{1}{x} \pi(x) = \frac{1}{2} x^2$ $= \frac{1}{2} x^{2} + \frac{1}{2} x^{2} \ln^{2} x - \int x \ln x \, dx$ $u'(x) = \frac{1}{x} \quad v(x) = \frac{1}{x} x^3$ 1 x2 + 1 x2 lu2x - 1 x2 lux + 1 1 x dx = 1 x2 + 1 x2 ln2x - 1 x2 lnx + 1 x2 + C = 1 x2 (2 lux - 2 lux + 3) + C $Air = \int \int (x) dx$ = 3 c2 - 3 = 3 (e2-1) M.A.

1)
$$4^{x+n} - 2^{x+2} + \ln a = 0$$
 ($a > 0$) 3) $\int \cos^4 x \cdot \sin^3 x \, dx$
 $= \int \cos^4 x \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int \cos^4 x \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int \cos^4 x \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int \cos^4 x \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int \cos^4 x \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int \cos^4 x \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int \cos^4 x \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^2 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \sin x) \cdot (1 - \cos^4 x) \cdot \sin x \, dx$
 $= \int (\cos^4 x \cdot \cos^4 x) \cdot (1 - \cos^4 x) \cdot \sin^4 x \, dx$
 $= \int (\cos^4 x \cdot \cos^4 x) \cdot (1 - \cos^4 x) \cdot \sin^4 x \, dx$
 $= \int (\cos^4 x \cdot \cos^4 x) \cdot (1 - \cos^4 x) \cdot \sin^4 x \, dx$
 $= \int (\cos^4 x \cdot \cos^4 x) \cdot (1 - \cos^4 x) \cdot \sin^4$

Corrigé du problème V200

(1) Par hypothèse f est paire, donc f(x) peut s'écrire sous la forme

$$f(x) = ax^4 + bx^2 + c,$$

où a, b et c sont les coefficients réels inconnus. Pour déterminer a, b et c, on résout le système suivant, formé des trois **conditions nécessaires**:

$$\begin{cases} f(0) = 2 \\ f(4) = 0 \\ f'(2) = 0 \end{cases}$$

(La 3^e condition est une condition nécessaire pour avoir un maximum en 2, mais évidemment cette condition n'est pas suffisante.) On trouve alors, à l'aide de la V200, la solution unique :

$$a = -\frac{1}{64}$$
, $b = \frac{1}{8}$ et $c = 2$.

Il reste à vérifier que la fonction trouvée

$$f: x \mapsto -\frac{1}{64}x^4 + \frac{1}{8}x^2 + 2$$

admet bien un maximum en 2. Or,

$$f''(2) = -\frac{1}{2} < 0,$$

donc f admet bien un maximum en 2. Le graphe de la fonction f représente donc le bord de la lèvre supérieure.

- (2) Il s'agit de résoudre l'équation f(x) = g(x). On trouve à l'aide de la V200 : x = 4 ou x = -4. D'où les points d'intersection de \mathcal{G}_f et \mathcal{G}_g : $I_1(-4,0)$ et $I_2(4,0)$.
- (3) Pour tout réel x, on a :

$$f'(x) = \frac{x}{4} - \frac{x^3}{16} = \frac{x}{16}(2-x)(2+x)$$

f' s'annule et change de signe en 0, 2 et -2. On sait déjà que f admet un maximum en 2 (voir question (1)) et en -2 (par symétrie). De plus,

$$f''(0) = \frac{1}{4} > 0,$$

donc f admet un minimum en 0.

D'autre part, pour tout réel x:

$$f''(x) = \frac{1}{4} - \frac{3x^2}{16}.$$

On a:

$$f''(x) = 0 \Leftrightarrow x = -\frac{2\sqrt{3}}{3}$$
 ou $x = \frac{2\sqrt{3}}{3} \cong 1,15$

f" s'annule et change de signe en ces réels (car f" est un polynôme du second degré), donc \mathcal{G}_f admet des points d'inflexion en $\pm \frac{2\sqrt{3}}{3}$.

D'où le tableau de variation et de concavité de f: on peut se restreindre à l'intervalle $[0, +\infty[$, à cause de la symétrie du graphe.

	0	$\frac{2\sqrt{3}}{3}$		2	$+\infty$
f'(x)	+		+	0	_
f"(x)	+	0			_
f(x)	2 (m)	77 36		$\frac{9}{4}$ (M)	8
$\mathcal{G}_{\!\scriptscriptstyle f}$		$P.I \left(\frac{2\sqrt{3}}{3}, \frac{77}{36}\right)$			

(4) Le logo est formé par les graphes de f et de g, restreints à [-4,4].

(5)
$$A = \int_{-4}^{4} (f(x) - g(x)) dx = \frac{128}{5}$$
 u.a.

(6) Soit $a \in [0,4]$ l'abscisse du bord droit du rectangle (cf. graphique). Donc -a est l'abscisse du bord gauche, puisque g est paire. La hauteur du

rectangle est $-g(a) = 2 - \frac{a^2}{8}$, puisque g est négative sur [0,4]. L'aire du rectangle s'écrit donc :

$$h(a) = -2ag(a) = \frac{-a(a^2 - 16)}{4}.$$

Il s'agit de voir si cette fonction admet un maximum sur [0,4]. Or,

$$h'(a) = 4 - \frac{3a^2}{4}$$
 et $h'(a) = 0 \Leftrightarrow a = \frac{4\sqrt{3}}{3}$ ou $a = -\frac{4\sqrt{3}}{3}$

La solution négative est évidemment à exclure. Il reste à voir si h admet bien un maximum en $\frac{4\sqrt{3}}{3}$. Or, $h"\left(\frac{4\sqrt{3}}{3}\right)=-2\sqrt{3}<0$. Donc h admet bien un maximum en $\frac{4\sqrt{3}}{3}\cong 2,3$. L'aire maximale du rectangle est ainsi :

$$h\left(\frac{4\sqrt{3}}{3}\right) = \frac{32\sqrt{3}}{9} \text{ u.a.}$$