Лабораторная работа № 4.3.2 Дифракция света на ультразвуковой волне в жидкости

Илья Прамский

Апрель 2024

Введение

Цель: изучение дифракции света на синусоидальной акустической решётке и наблюдение фазовой решётки методом тёмного поля.

Используются в работе: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор ультразвуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

1 Теоретическая справка

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m\ll 1$).

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k = 2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1.

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых воли в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

Рис. 1 — Эффект дифракции на ультразвуковой волне

2 Экспериментальная установка

Источник света Π с помощью конденсора K проецируется на входную (коллиматорную) щель S. Входная щель ориентирована горизонтально и прикрыта красным светофильтром Φ . Коллиматорный объектив O_1 посылает параллельный пучок на кювету с водой . Излучатель Q создаёт УЗ-волну. Параллельный пучок света, дифграгируя на стоячей звуковой волне, образует дифракционную картину в фокальной плоскости F камерного объектива O_2 . Картину можно наблюдать в микроскоп M.

Рис. 2 — Схема экспериментальной установки

3 Ход работы

Определение скорости ультразвука по дифракционной картине

Для начала соберём и настроим схему, затем определим ноль для ширины щели (момент её открытия). Получился $d=77\pm1$ мкм. Установим рабочую ширину в диапазоне 20-30 мкм. Установили на $d=100\pm1$ мкм, соответственно рабочая ширина щели равна 23 ± 1 мкм.

Чёткая дифракционную картина в поле зрения микроскопа получается при $\nu=984,6\pm0,1$ к Γ ц., оценим по порядку величину длины УЗ-волны как удвоенное расстояние между наиболее чёткими дифракционными картинами. Две чёткие дифракционные картины получились на 19 и 99 соответственно(в ценах деления лимба излучателя, каждая из которых равна 10 мкм). Получается $\Lambda=2\cdot(l_2-l_1)=1600\pm30$ мкм. Теперь оценим скорость звука в воде по формуле (5).

$$v = 1570 \pm 30 \text{m/c}$$

Теперь определим координаты дифракционных полос для различных частот, затем по полученным данным построим графики зависимости Y=Y(m), с помощью которых определим расстояние между соседними полосами, после чего при помощи формулы (4), рассчитаем длину УЗ-волны, а также с помощью формулы (5) найдём значение скорости звука в воде. f=28 см, $\lambda=6400\pm200$ Å. $\sigma_Y=4$ мкм.

	$ u_1 = 984, 4 \ к\Gamma$ ц	$ u_2 = 1002, 0 \ \mathrm{k}\Gamma$ ц	$ u_3 = 1006, 0 \ \text{к} \Gamma$ ц
m	Y, mkm	Y, mkm	Y, mkm
-3	4600	4652	4644
-2	4500	4516	4524
-1	4388	4392	4400
0	4248	4264	4264
1	4120	4128	4124
2	4004	4008	3988
3	3868	3884	3864

	$ u_4 = 1025, 0 \ к\Gamma$ ц	$ u_5 = 1600, 0 \ к\Gamma$ ц	$ u_6 = 4420, 0 \ \text{к} \Gamma$ ц
m	Y, mkm	Y, mkm	Y, mkm
-3			
-2	4560		
-1	4440	4460	4820
0	4268	4256	4260
1	4092	4056	3700
2	3948		
3			

График зависимости Y от m для v1 (полоски погрешностей крайне малы, из-за чего их не видно) Equation y = a + b*x4600 4246,85714 ± 4,62822 а b -123,42857 ± 2,31411 4400 ₩ ¥ 4200 -4000 3800 2 -2 0 -4 m

4000

3800 -

-4

График зависимости Y от m для v4 (полоски погрешностей крайне малы, из-за чего их не видно)

0

m

2

-2

График зависимости Y от m для v5 (полоски погрешностей крайне малы, из-за чего их не видно)

График зависимости Y от m для v6 (полоски погрешностей крайне малы, из-за чего их не видно) $5000\ \mbox{\ T}$

Полученные значения занесём в таблицу

ν , к Γ ц	Δl , mkm	$\sigma_{\Delta l}$, MKM	Λ , mkm	σ_{Λ} , MKM	V, м/с	σ_V , м/с
984,4	123	2	1457	50	1434	51
1002,0	128,0	0,9	1400	40	1403	45
1006,0	128,6	1,4	1393	50	1402	46
1025,0	130	5	1378	70	1413	70
1060,0	202,0	1,2	887	30	1419	45
4420,0	560	0	320	10	1414	44

Получается средняя скорость звука в воде исходя из проведённых измерений равна $V=1414\pm21~\mathrm{m/c}$. Теоретическое же значение равно $1403~\mathrm{m/c}$, что находится достаточно близко к полученному на опыте (даже лежит в пределах погрешности экспериментального значения).

Определение скорости ультразвука методом тёмного поля

Теперь поставим между щелью и микроскопом дополнительную линзу, затем также установим в воде пластинку с калибровочной сеткой, сторона квадрата у которой равна 1 мм. При помощи этой сетки откалибруем окулярную шкалу микроскопа. Так, на 1 квадрат, приходится 23 штриха окулярной шкалы микроскопа, значит цена деления равна $\frac{1}{23}$ мм.

Также закроем нулевой дифракционный максимум проволочкой. Теперь, меняя частоту, найдём наиболее чёткие картины звуковой решётки, затем измерим координаты первой и последней тёмных полос и количество светлых промежутков между ними. Результаты измерений занесём в таблицу, с их помощью найдём длину УЗ-волны Λ , учитывая удвоение числа наблюдаемых полос. Построим график зависимости $\Lambda = f(\frac{1}{\nu})$, при помощи которого (по наклону) определим скорость звука в воде. (x_1, x_n) координаты первой и последней полосы соответственно). Также в таблице единица "дел" отвечает за 25 штрихов окулярной шкалы.

ν , к Γ ц	x_1 , дел	x_n , дел	Δx , mm	m	Λ , mm	σ_{Λ} , mm
940	-1	7,73	9,49	13	1,46	0,01
975	-1	7,37	9,10	13	1,40	0,01
1010	-1	7,83	9,60	14	1,37	0,01
1043	-1	7,98	9,76	15	1,30	0,008

Получается из графика $V=1459\pm178~{\rm m/c},$ что также охватывает в свой диапазон теоретическое значение.

4 Вывод

В ходе данной работы была изучена дифракция на акустической решётке, с её помощью различными способами была как и оценена скорость звука в воде($v=1570\pm30~{\rm M/c}$), так и вычислена более точно при помощи формул (4) и (5) и исследования зависимости координат дифракционных полос от порядка максимума при различных частотах, в результате чего было получено значение $v=1414\pm21~{\rm M/c}$. Также во время выполнения удалось получить чёткие картины звуковой решётки, с помощью которых также была вычислена скорость звука в воде(получившееся значение равно $v=1459\pm178~{\rm M/c}$). Теоретическое же значение равно $1403~{\rm M/c}$, что согласуется с полученными нами данными. Самым дальним от табличного получилось первое значение, что можно объяснить недостаточной точностью этого способа вычисления(в задании просили оценить этим способом значение скорости звука в воде).