IIT Kanpur Intensive Training School (ITS) on PYTHON for Machine Learning, Neural **Networks and Deep Learning**

2nd to 22nd December 2023 **Assignment #2**

1. The centroid of the *i*th cluster in *l*th iteration, denoted by $\overline{\mu}_i^{(l)}$, is

a.
$$\sum_{j=1}^{M} \alpha_i^{(l)}(j) \bar{\mathbf{x}}(j)$$

b.
$$\sum_{j=1}^{M} \bar{\mathbf{x}}(j)$$

$$C. \quad \frac{\sum_{j=1}^{M} \bar{\mathbf{x}}(j)}{\sum_{j=1}^{M} (l) (i)}$$

$$\Delta_{j=1}^{M} \alpha_i^{(l)}(j) \bar{\mathbf{x}}(j)$$

$$\Delta_{j=1}^{M} \alpha_i^{(l)}(j) \bar{\mathbf{x}}(j)$$

2. The entropy H(X) of a source is defined as

a.
$$-\sum_{i=1}^{n} p(x_i) \log_2 \frac{1}{p(x_i)}$$

b.
$$\sum_{i=1}^{n} \frac{1}{p(x_i)} \log_2 \frac{1}{p(x_i)}$$

b.
$$\sum_{i=1}^{n} \frac{1}{p(x_i)} \log_2 \frac{1}{p(x_i)}$$

c. $-\sum_{i=1}^{n} \frac{1}{p(x_i)} \log_2 \frac{1}{p(x_i)}$

d.
$$\sum_{i=1}^{n} p(x_i) \log_2 \frac{1}{p(x_i)}$$

3. Consider the table below showing *joint probabilities* of

$$X = \{IC, \overline{IC}\}, Y = \{CHOC, \overline{CHOC}\}$$

$\Lambda = \{10,$	$IC_{j}, I = \{CIIO($	a, circes
	IC	ĪC
СНОС	$\frac{1}{6}$	$\frac{1}{3}$
СНОС	$\frac{1}{6}$	$\frac{1}{3}$

The quantity $H(Y|X = \overline{IC})$ is given as

4. Consider the example

The quantity H(Y|Italian) =

- a.
- b. $\frac{1}{2}$
- c. $\frac{1}{4}$
- d. 0
- 5. The size of a typical neuron is
 - a. 4 microns to 100 picometres
 - b. 4 microns to 100 nanometres
 - c. 4 microns to 100 micrometres
 - d. 4 microns to 100 femtometres
- 6. There are approximately ______ neurons in the human brains
 - a. 10 billion
 - b. 10 million
 - c. 10 thousand
 - d. 10 trillion
- 7. In comparison to silicon logic gates, *Neurons*
 - a. Have an equal speed of operation
 - b. Depends on the type of Neuron
 - c. Are Much faster
 - d. Are Much slower
- 8. The activation function employed in the *McCulloch–Pitts model* of a neural network is
 - a. Sigmoid function
 - b. ReLU function
 - c. Linear function
 - d. Threshold function
- 9. Consider the loss function of a single neuron neural net given as

$$L(\overline{\mathbf{w}}_k) = \frac{1}{2} \left(y_k - \psi \left(\underbrace{\sum_{j=1}^m w_{kj} x_j + b_k}_{u_k} \right) \right)^2$$

The corresponding update rule for the weight vector is

a.
$$\overline{\mathbf{w}}_k(n+1) = \overline{\mathbf{w}}_k(n) - \eta_k \left(y - \psi(u_k(n)) \right) \psi'(u_k(n)) \overline{\mathbf{x}}$$

b.
$$\overline{\mathbf{w}}_k(n+1) = \overline{\mathbf{w}}_k(n) + \eta_k \left(y - \psi(u_k(n)) \right) \overline{\mathbf{x}}$$

c.
$$\overline{\mathbf{w}}_k(n+1) = \overline{\mathbf{w}}_k(n) + \eta_k \left(y - \psi(u_k(n)) \right) \psi'(u_k(n)) \overline{\mathbf{x}}$$

d.
$$\overline{\mathbf{w}}_k(n+1) = \overline{\mathbf{w}}_k(n) + \eta_k \psi'(u_k(n)) \overline{\mathbf{x}}$$

- 10. The **ReLU function** f(x) is defined as
- 11. In a two layer deep neural network, the gradient to update the weights of layer 1 during backpropagation is determined as
 - a. $\frac{\partial}{\partial \mathbf{W}^{[1]}} L = \left(\left(\mathbf{W}^{[2]} \right)^T \phi^{[2]} \right) \times \left(\overline{\mathbf{x}}^{[0]} \right)^T$
 - b. $\frac{\partial}{\partial \mathbf{W}^{[1]}} L = \left(\left(\mathbf{W}^{[2]} \right)^T \phi^{[2]} \odot \left(\psi^{[1]} \right)' \left(\overline{\mathbf{z}}^{[1]} \right) \right) \times \left(\overline{\mathbf{x}}^{[0]} \right)^T$
 - c. $\frac{\partial}{\partial \mathbf{W}^{[1]}} L = \left(\left(\mathbf{W}^{[2]} \right)^T \phi^{[2]} \odot \left(\psi^{[1]} \right)' \left(\overline{\mathbf{z}}^{[1]} \right) \right) \times \overline{\mathbf{x}}^{[0]}$
 - d. $\frac{\partial}{\partial \mathbf{W}^{[1]}} L = \left(\left(\mathbf{W}^{[2]} \right)^T \odot \left(\psi^{[1]} \right)' \left(\mathbf{\bar{z}}^{[1]} \right) \right) \times \left(\mathbf{\bar{x}}^{[0]} \right)^T$
- 12. In a K layer neural network, the size of the matrix $\mathbf{W}^{[l]}$ for one of the inner layers is $m \times n$, where m, n are respectively
 - a. Number of neurons in layers l, l-1
 - b. Number of neurons in layers l-1, l
 - c. Number of neurons in layers l and number of inputs in layer 0
 - d. Number of neurons in layers l and number of outputs in layer K
- 13. Convolutional neural nets are primarily suited for
 - a. Gaussian datasets
 - b. Purchase datasets
 - c. Random datasets
 - d. Images/ video datasets
- 14. Consider the simple image below

2	2	3	1
4	3	4	2
2	2	1	1
3	5	2	3

Max pooling with 2×2 filters and stride 2 leads to a. $\boxed{3 \mid 4}$

- 3
- b.
- c.
- d.

4

15. Consider the simple image below

-				
	2	2	3	1
	4	3	4	2
	2	2	1	1
	3	5	2	3

Average pooling with 2×2 filters and stride 2 leads to

a.

2.75	2.25
3	1.75

b.

2.75	2.5
3	1.75

c.
2.75 2.5 3.25 1.75
d.
2.75 2.5 3 1.5
3 113
1 12 1 1807(18) 1 5 1 1
121515
13161 13131
18171 4 26181
12.19.20/3/
- 人物 ペイル ハインコン
070
OF TECHNO