UNIVERSITY OF PADOVA

ENGINEERING SCHOOL

Master thesis:

Color coding for 3D models in augmented reality applications

Supervisor: Prof. Simone Milani

Candidate: Enrico Polo

Academic Year: 2016/17

Introduction

• What is augmented reality (AR)?

- Human perception enhancement through computer-generated contents

Which AR applications are we interested in?

-Visual AR

-Real time applications

3D objects representation

Region-Adaptive Hierarchical Transform

Transform developed by Microsoft to compress voxelized attributes

$$-\begin{pmatrix} DC \\ AC \end{pmatrix} = \frac{1}{\sqrt{w_1 + w_2}} \begin{pmatrix} \sqrt{w_1} & \sqrt{w_2} \\ -\sqrt{w_2} & \sqrt{w_1} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

$$-w_1 = w_1 + 1$$

Single frame (intra coding)

RAHT v1

- Color organized as a 3D structure
- Requires full volume scansion

• RAHT v2

- Color organized as an array of (color, coordinate) pairs
- Requires coordinate update and sorting after each iteration

Prediction (inter coding)

• Yes:
$$d_k(t) = I_k(t) - \hat{I}_k(t-1)$$

• No:
$$d_k(t) = I_k(t) - \overline{\hat{I}_k(t-1)}$$

Results: intra coding complexity

• Girl: 0.1% o.v.

• Hockey: 0.2% o.v.

• Vase: 0.4% o.v.

• Resolution: 512³

Results: intra coding compression

• Distortion metric:

$$PSNR = 20 \log_{10} \left(\frac{255}{\sqrt{MSE}} \right) \quad [dB]$$

• Rate metric:

$$bpv = \frac{B_{tot}}{N_{occ}}$$

YUV color space must be preferred

Results: inter coding complexity

• Resolution: 512³

• Sarah: 0,2% avg. o.v.

• Frames: 207

Results: intra vs inter compression

Ricardo

Sarah

Sequence	$30 \mathrm{dB}$	$32.5 \mathrm{dB}$	35 dB	$37.5 \mathrm{dB}$	$40 \mathrm{dB}$	Average
Andrew	69.09%	64.30%	54.18%	49.09%	49.80%	57.29%
David	32.22%	26.70%	21.55%	19.05%	18.30%	23.56%
Phil	39.65%	34.51%	30.64%	29.02%	29.08%	32.58%
Ricardo	52.81%	47.80%	43.19%	39.56%	39.52%	44.57%
Sarah	84.88%	81.03%	77.93%	72.39%	67.19%	76.68%

Results: Microsoft comparison

• Milani-Limuti-Polo:

- Lossless geometry transform (intra coding)
- RAHT color transform (inter coding)

• Queiroz-Chou:

- Lossy geometry coding
- RAHT color transform
- Motion-compensated prediction for both

Conclusion

• Execution time:

- For resolutions $< 512^3$ we satisfy real-time constraints (30 fps)
- For 512^3 resolution we are able to encode 6-10 fps

- Parallelization
- GPU programming

• Compression:

- Prediction allows us to save (on average) about 50% of the bits
- Effective performances depends on the specific subject

AC optimization