Fundamentals of Flow Measurement

Lecture Notes

Kantaphan Punnaanan

March 10, 2025

Outline

- Introduction
- 2 Basic Principles of Flow Measurement
- Streamlined and Turbulent Flow
- 4 Flow Profile
- 5 Energy of a Fluid in Motion
- 6 Viscosity
- 7 Bernoulli's Theorem
- 8 Modification of Flow Equations for Gases
- 9 Fluid Flow in Closed Pipes
 - Principles and Methods
 - Differential-Pressure Devices
 - Orifice Plate
 - Venturi Tube
 - Rotameter
 - Pitot Tube
 - Ultrasonic Flow Meter
 - Magnetic Flow Meter

Introduction

- Flow measurement is essential in processes where material moves from one point to another.
- Ensures accurate quantification, control, and efficiency of transport operations.
- Typical applications: oil and chemical industries, water and wastewater systems, and more.

Basic Principles of Flow Measurement

- Flow can be measured in terms of:
 - Volumetric flow: Volume per unit time.
 - Velocity-based flow: Instantaneous fluid speed at a given cross-section (often converted to volumetric flow).
- Selection of a flowmeter depends on:
 - Material compatibility (viscosity, pressure, temperature).
 - Desired accuracy and repeatability.
 - Maintenance and installation constraints.

Streamlined (Laminar) and Turbulent Flow

- For certain (low) velocities, flow remains smooth and parallel (laminar).
- Above a critical velocity, flow becomes turbulent, mixing significantly.
- Reynolds number (Re) determines flow regime:
 - Re < 2000 \rightarrow Laminar
 - Re $> 4000 \rightarrow Turbulent$
 - In between: Transition region

Flow Profile

- Velocity distribution across a pipe's diameter is known as the *velocity profile*.
- In laminar flow, profile is parabolic; peak velocity at the center is about twice the mean velocity.
- In turbulent flow (after sufficient straight pipe run), the profile is *fully developed*, with the center at roughly 1.2 times the mean velocity.

Energy of a Fluid in Motion

- Equation: Total Energy = Potential + Kinetic + Pressure Energy
- Often expressed per unit mass:

$$E = zg + \frac{V^2}{2} + \frac{p}{\rho}$$

where

- z is elevation (m),
- g is gravitational acceleration (m/s²),
- V is fluid velocity (m/s),
- p is static pressure (Pa),
- ρ is fluid density (kg/m³).
- Conservation of energy applies along a streamline for inviscid, steady flow.

Viscosity

- Viscosity measures a fluid's resistance to flow.
- In liquids, viscosity generally decreases as temperature increases.
- In gases, viscosity increases with temperature.
- Viscosity helps dampen swirling or turbulent eddies, restoring a stable flow profile downstream of bends or valves.

Bernoulli's Theorem

States that for a steady, incompressible, inviscid flow:

$$zg + \frac{V^2}{2} + \frac{p}{\rho} = \text{constant}$$

where

- z g represents **potential** energy per unit mass,
- $\frac{V^2}{2}$ is **kinetic** energy per unit mass, $\frac{P}{2}$ is **pressure** energy per unit mass.
- Foundation of flow calculations in closed conduits.

Modification of Flow Equations from Bernoulli for Gases

- When gas density is not constant, corrections must account for expansion.
- Introduce γ (ratio of specific heats) and an expansibility factor ϵ .
- For ideal compressible fluids,

$$\epsilon = f(\gamma, \text{ pressure drop}, \dots)$$

 Adjusts the flow equation to handle changes in volume due to pressure variations.

10 / 19

Principles and Methods

- Accurate flow measurement ensures proper process control in piping systems.
- Methods vary in complexity, cost, accuracy, and suitability for fluid properties.
- Next, we explore common device types and their pros/cons.

Differential-Pressure Devices

- Use a constriction to create pressure drop proportional to flow rate.
- Pros: Simple, widely used, well-understood, many standard guidelines.
- **Cons:** Pressure losses can be significant; accuracy depends on flow regime and geometry.

Orifice Plate

- Thin plate with a precise opening centered in the flow path.
- Pressure taps measure differential pressure across the orifice.
- Pros:
 - Simple design
 - Low cost
 - Widely documented
- Cons:
 - Higher permanent pressure drop
 - Susceptible to wear or clogging

Venturi Tube

- Smoothly convergent inlet followed by a cylindrical throat and divergent outlet.
- Differential pressure is measured between inlet and throat.
- Pros:
 - Lower head loss than orifice
 - Suitable for high flow rates
 - Good accuracy
- Cons:
 - Larger size and higher cost
 - Installation may require more space

Rotameter (Variable-Area Meter)

- Tapered tube with a float; float rises as flow increases.
- Position of float indicates flow rate on a calibrated scale.
- Pros:
 - Direct visual indication
 - Simple, low cost
- Cons:
 - Orientation usually vertical
 - Limited to relatively low pressures

Pitot Tube

 Measures fluid velocity at a point by comparing stagnation pressure to static pressure.

Pros:

- Simple construction
- Inexpensive
- · Good for velocity profiling

• Cons:

- Can be invasive, prone to clogging
- Requires careful alignment with the flow

Ultrasonic Flow Meter

- Uses sound pulses transmitted diagonally across the pipe:
 - **Transit-Time Method:** Measures time difference of upstream vs downstream signals.
 - Doppler Method: Detects frequency shift caused by particle reflection.

• Pros:

- Noninvasive (clamp-on types)
- Low pressure drop
- Can measure dirty or corrosive fluids (depending on design)

Cons:

- Accuracy can decrease with highly turbulent or multiphase flows
- Proper sensor alignment and maintenance needed

Magnetic Flow Meter

 Based on Faraday's Law of electromagnetic induction: voltage induced in a conductive fluid moving through a magnetic field.

Pros:

- No obstruction to flow
- Excellent for slurries or dirty liquids
- Wide range

• Cons:

- Requires conductive fluid
- More costly electronics

Conclusion

- Flow measurement techniques are numerous and must be matched to application needs.
- Understanding fluid behavior (laminar vs. turbulent), energy principles, and device capabilities is crucial.
- The correct selection optimizes performance, accuracy, and cost-effectiveness in industrial processes.