Задача 0.1. Нека $\mathcal{A}=\langle \Sigma,\Gamma,Q,s,\Delta,Z\rangle$ е стеков автомат, за който всеки преход на $\langle (p,a,A),(q,\gamma)\rangle\in \Delta$ има свойството, че $|\gamma|\leq 2$. Със $\Sigma_{\varepsilon}=\Sigma\cup\{\varepsilon\}$ означаваме множеството от всички думи над Σ с дължина по-малка от 2. Нека $E=\{(p,A,q)\,|\,\exists u\in\Sigma^*((p,u,A)\Rightarrow^*(q,\varepsilon,\varepsilon))\}.$

Да разгледаме конструкцията:

1.
$$E_0 = \{(p, A, q) \mid \exists a \in \Sigma_{\varepsilon}(\langle (p, a, A), (q, \varepsilon) \rangle \in \Delta)\}.$$

2. $a\kappa o \ k \in \mathbb{N}$, mo:

$$\begin{array}{lll} E_{k+1} & = & E_k \cup \{(p,A,r) \mid \langle (p,a,A), (q,B) \rangle \in \Delta \& (q,B,r) \in E_k \ \textit{за някой } q,a \ \textit{u} \ B \in \Gamma \} \\ & \cup & \{(p,A,r) \mid \langle (p,a,A), (q,CB) \rangle \in \Delta \& (q,C,t) \in E_k \& (t,B,r) \in E_k \ \textit{за някой } q,t,a \ \textit{u} \ B,C \in \Gamma \}. \end{array}$$

Да се докаже, че:

- 1. $E_0 \subseteq E$
- 2. $E_k \subseteq E_{k+1}$ за всяко k.
- 3. $E_k \subseteq Q \times \Gamma \times Q$ за всяко k.
- 4. има $k \leq |Q|^2 |\Gamma|$, за което $E_k = E_{k+1}$.
- 5. ако $E_k = E_{k+1}$, то $E_k = E_j$ за всяко $j \ge k$ и $E_k = \bigcup_{j=0}^{\infty} E_j$.
- 6. $E_k \subseteq E$ за всяко k.
- 7. $\bigcup_{k=0}^{\infty} E_k \subseteq E$.
- 8. $E \subseteq \bigcup_{k=0}^{\infty} E_k$.
- 9. има $k \leq |Q|^2 |\Gamma|$, за което $|E_k| = |E_{k+1}|$ и за първото такова $k, E_k = E$.

Задача 0.2. Да се докаже, че за всяка дума $u \in \Sigma^*$, следните функции се представят от 1-управляващи граматики:

- 1. $f: \Sigma^* \to \Sigma^*$. $f(v) = u \cdot v$.
- 2. $q: \Sigma^* \to \Sigma^*, \ q(v) = u^{-1}v.$

Задача 0.3. Нека $G_i = \langle \Sigma, \mathcal{N}_i, P_i, S_i, F_i, \# \rangle$ за i = 1, 2 са 1-управляващи граматики, който представят функциите $f_i : \Sigma_0^* \to \Sigma_1^*$ за i = 1, 2. Нека $\Sigma', \Sigma'' \subseteq \Sigma_0$ са непресичащи се множества. Да се докаже, че $g : \Sigma_0^* \to \Sigma_1^*$ се представя от 1-управляваща граматика във всеки от случаите:

1.
$$g(w) = \begin{cases} f_1(w) & \text{ако } w[1] \in \Sigma' \\ f_2(w) & \text{ако } w[1] \in \Sigma''. \end{cases}$$

2.
$$g(w) = \begin{cases} f_1(w) \text{ and } w[1] \in \Sigma' \text{ usu } w = \varepsilon \\ f_2(w) \text{ and } w[1] \in \Sigma''. \end{cases}$$

3.
$$g(w) = \begin{cases} f_1(w[2..n]) \ a \text{ко } w[1] \in \Sigma' \\ f_2(w[2..n]) \ a \text{ко } w[1] \in \Sigma'', \end{cases}$$
 където $n = |w|$.

Упътване 0.1. 1. Приложете дефиницията за едностъпков преход в стеков автомат.

- 2. Разгледайте израза, който дефинира E_{k+1} .
- 3. Разгледайте израза, който дефинира E_{k+1} .
- 4. От 2 и крайността на E_k , покажете, че ако $|E_k| = |E_{k+1}|$, то $E_k = E_{k+1}$. От 3 и принципа на Дирихле, че заключете, че има $k \leq |Q|^2 |\Gamma|$, за което $|E_k| = |E_{k+1}|$.
- 5. Използвайте индукция по k и синтактичния вид на дефиницията на E_{k+1} .
- 6. Използвайте индукция по k и задача 2 за стекови автомати.
- 7. Допуснете противното и разгледайте най-малко n, за което има $(p,A,q) \in E \setminus \bigcup_{k=0}^{\infty} E_k$, за което има дума $u \in \Sigma^*$ и изпълнение:

$$\langle p, u, A \rangle \Rightarrow^{(n)} \langle q, \varepsilon, \varepsilon \rangle$$
.

Отхвърлете случая n=1 като сравните с дефиницията на E_0 . При $n\geq 2$, разгледайте случаи по първия преход $(p,u,A)\Rightarrow (r,u',\gamma)\Rightarrow^{(n-1)}(q,\varepsilon,\varepsilon)$. Използвайте условието, за да заключите, че $|\gamma|\leq 2$ и отхвърлете $|\gamma|=0$. При $|\gamma|=1$ съобразете, че $\gamma=B\in\Gamma$ и u=au' за някое $a\in\Sigma_\varepsilon$. Заключете, че $(r,B,q)\in E$ и от минималността на n, обосновете, че има k, за което $(r,B,q)\in E_k$. Докажете, че тогава $(p,A,q)\in E_{k+1}$ като използвате второто множество от обединението, което дефинира E_{k+1} .

При $|\gamma|=2$, съобразете, че $\gamma=CB$. Използвайте, че по време на изпълнението стековата дума намалява с най-много 1 на всяка стъпка. Заключете, че ако в началото |CB|=2, а в края стековата дума има дължина $|\varepsilon|=0$, то има междинен момент, в който стековата дума е с дължина точно 1. Разгледайте първият такъв момент n_1 и нека той разделя изпълнението $(r,u',\gamma)\Rightarrow^{(n-1)}(q,\varepsilon,\varepsilon)$ на:

$$(r, u', \gamma) \Rightarrow^{(n_1)} (t, u'', \gamma') \Rightarrow^{(n-n_1-1)} (q, \varepsilon, \varepsilon).$$

Знаейки, че $|\gamma'|=1$ и в първата част на изчислението всички останали стекови думи са с дължина поне 2, приложете задача 2 за стекови автомати, за да заключите, че u'=v'u'' и:

$$(r, v', C) \Rightarrow^{(n_1)} (t, \varepsilon, \varepsilon)$$
 и $\gamma' = B$.

От минималността на n и $n_1 < n, n-n_1-1 < n,$ заключете, че $(r,C,t) \in E_k$ и $(t,B,q) \in E_j$ за някои $k,j \in \mathbb{N}$. Покажете, че тогава $(p,A,q) \in E_{\max(k,j)+1}$.

8. Приложете предишните 5 подточки.

Упътване 0.2. Разгледайте граматики с $\mathcal{N} = \{S, F\}$ и:

- 1. за подточка 1: $P = \{S \to Fu\},\$
- 2. за подточка 2: $P = \{Su \to F\}.$

Упътване 0.3. Без ограничение на общността, $\mathcal{N}_1 \cap \mathcal{N}_2$.

1. Разгледайте конструкцията, $\mathcal{N} = \mathcal{N}_1 \cup \mathcal{N}_2 \cup \{S, F\}$, където $S, F \notin \mathcal{N}_1 \cup \mathcal{N}_2 \cup \Sigma_\#$,

$$P = P_1 \cup P_2 \cup \{Sa \to S_1 a \mid a \in \Sigma'\} \cup \{Sa \to S_2 a \mid a \in \Sigma''\} \cup \{F_1 \to F, F_2 \to F\}$$

$$G = \langle \Sigma, \mathcal{N}, P, S, F, \# \rangle$$

Обосновете, че ако $w \in \Sigma_0^+$, $w[1] \in \Sigma'$, то $S_1 w \# \Rightarrow_G^* F_1 f_1(w) \#$. Използвайте, че:

$$Sw[1] \rightarrow S_1w[1]$$
 и $F_1 \rightarrow F$ са в P ,

за да заключите, че $Sw\# \Rightarrow S_1w\# \Rightarrow F_1f_1(w)\# \Rightarrow Ff_1(w)\#$. Аналогично, покажете, че ако $w[1] \in \Sigma''$, то $Sw\# \Rightarrow Ff_2(w)\#$.

В обратната посока, ако $Sw\# \Rightarrow_G^* Fv\#$, покажете, че първото правило е от вида $Sw\# \Rightarrow S_iw\#$, а последното $F_jv\# \Rightarrow Fv \Rightarrow \#$. Като използвате, че $\mathcal{N}_1 \cap \mathcal{N}_2 = \emptyset$, аргументирайте, че правила приложени към \mathcal{N}_i , различни от $F_1 \to F$ и $F_2 \to F$, дават нетерминал от \mathcal{N}_i . Заключете, че i=j и:

$$S_i w \# \Rightarrow_G^* F_i v \#$$
 всъщност е извод в $G_i : S_i w \# \Rightarrow_{G_i}^* F_i v \#$.

Аргументирайте, че i=1, ако $w[1]\in \Sigma'$ и i=2, ако $w[1]\in \Sigma''.$

- 2. Модифицирайте горната конструкция като добавите $S\# \Rightarrow S_1\#$. Проведете разсъждението отново.
- 3. Забележете, че h(w) = w[2..n] е представима чрез:

$$G = \langle \Sigma, \{S, F\}, \{Sa \rightarrow F \mid a \in \Sigma\}, S, F, \# \rangle$$

и заключете, че $\widetilde{f}_i = f_i \circ h$ е представима. Приложете подточка 1 към \widetilde{f}_1 и \widetilde{f}_2 .