TT009 Modelos Matemáticos em Engenharia Ambiental I P1, 30 Abr 2003

Prof. Nelson Luís Dias

NOME:	Assinatura:

IMPORTANTE: Leia atentamente todas as questões, e comece pelas mais fáceis para você. Resolva as questões de forma limpa e organizada, nos espaços designados: o texto fora destes espaços não será considerado na correção. Boa prova.

 $\mathbf{1}$ [5,0] Seja $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ a base canônica em \mathbb{R}^3 . Desejo construir uma base ortonormal dextrógira $\mathcal{F} = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$. Os vetores \mathbf{f}_1 e \mathbf{f}_2 são

$$\mathbf{f}_1 = \frac{1}{\sqrt{3}}(1, 1, 1),\tag{1}$$

$$\mathbf{f}_2 = \frac{1}{\sqrt{6}}(2, -1, -1). \tag{2}$$

a) [2,0] Mostre que

$$\mathbf{f}_3 = \frac{1}{\sqrt{2}}(0, 1, -1). \tag{3}$$

b) [3,0] Calcule a matriz de rotação [C] cujos elementos atendem a $\mathbf{f}_j = \sum_i C_{ij} \mathbf{e}_i$.

SOLUÇÃO DA 1ª Questão:

- 1a) é óbvia: $\mathbf{f}_3 = \mathbf{f}_1 \times \mathbf{f}_2$.
- 1b) é resolvida com $C_{ij} = (\mathbf{f}_j \cdot \mathbf{e}_i)$, donde

$$[\mathbf{C}] = \begin{bmatrix} 1/\sqrt{3} & 2/\sqrt{6} & 0\\ 1/\sqrt{3} & -1/\sqrt{6} & 1/\sqrt{2}\\ 1/\sqrt{3} & -1/\sqrt{6} & -1/\sqrt{2} \end{bmatrix}.$$

 ${\bf 2}$ [5,0] Calcule a área da superfície externa do paraboló
ide de revolução $z=x^2+y^2,\,x^2+y^2\leq 1.$ SOLUÇÃO DA 2ª Questão:

Com
$$f(x,y)=x^2+y^2$$
, $\frac{\partial f}{\partial x}=2x$, $\frac{\partial f}{\partial y}=2y$, e
$$S=\iint_{x^2+y^2\leq 1}\sqrt{1+4x^2+4y^2}\,dydx$$

$$=\int_{\theta=0}^{2\pi}\int_{r=0}^1\sqrt{1+4r^2}\,r\,drd\theta$$

$$=\pi\frac{5\sqrt{5}-1}{6}$$