А. Перекрёстная проверка

1 секунда[©], 256 мегабайт

Разбейте множество из N объектов, каждый из которых принадлежит к одному из M классов, на K частей. Каждый объект должен попасть ровно в одну часть так, чтобы размеры частей, а также распределение классов по этим частям было сбалансировано. Формально, пусть cnt(x,c) — число объектов с классом c попавших в часть x, тогда должно выполняться

$$\begin{array}{l} \forall x,y,c: |cnt(x,c)-cnt(y,c)| \leq 1 \text{ и} \\ \forall x,y: |\sum_{c} cnt(x,c) - \sum_{c} cnt(y,c)| \leq 1. \end{array}$$

Входные данные

Первая строка: три целых числа N, M, K ($1 \leq N \leq 10^5$, $1 \leq M, K \leq N$) — число объектов, классов и частей.

Вторая строка: N целых чисел C_i ($1 \leq C_i \leq M$) — класс i-го объекта.

Выходные данные

Выведите K строк. Каждая строка x начинается с целого числа S — размера части x. Далее идут S целых чисел — номера объектов попавших в часть x. Объекты нумеруются с единицы.

ВХОДНЫЕ ДАННЫЕ 10 4 3 1 2 3 4 1 2 3 1 2 1 ВЫХОДНЫЕ ДАННЫЕ 4 1 4 9 10 3 2 3 5 3 6 7 8

В первой части содержится четыре объекта, два из них первого класса, один второго и один четвёртого. Во второй и третьей части по три объекта первых трёх классов.

В. F-мера

1 секунда**⁰**, 256 мегабайт

В результате эксперимента по классификации на K классов была получена матрица неточностей (Confusion matrix) CM, где CM[c,t] — число объектов класса c, которые были классифицированы как t. Посчитайте по данной матрице неточностей средневзвешенную по классам макро и микро F-меру.

Входные данные

Первая строка содержит целое число K — число классов ($1 \leq K \leq 20$). Далее идёт K строк — описание матрицы неточностей. Каждая строка c содержит K целых чисел — c-я строка матрицы неточностей. $\forall c,t:0 \leq CM[c,t] \leq 100$ и $\exists c,t:CM[c,t] \geq 1$.

Выходные данные

Выведите два вещественных числа с плавающей точкой — взвешенно усреднённую по классам макро и микро F-меру. Абсолютная погрешность ответа не должна превышать 10^{-6} .

```
ВХОДНЫЕ ДАННЫЕ

2
0 1
1 3

ВЫХОДНЫЕ ДАННЫЕ

0.6
0.6
```

ВХОДНЫЕ ДАННЫЕ 3 3 1 1 3 1 1 1 3 1

выходные данные

```
0.326860841
0.316666667
```

В первом примере классы распределены как 1:4. Точность (precision), полнота (recall) и F-мера первого класса равны 0, а второго 0.75. При этом средняя точность, полнота и F-мера равны 0.6.

С. Непараметрическая регрессия

2 секунды €, 256 мегабайт

Реализуйте алгоритм непараметрической регрессии, который бы поддерживал различные функции расстояний, ядер и окон. Описание ядер можно найти здесь: https://en.wikipedia.org/w/index.php? oldid=911077090. Обратите внимание, что определение Прямоугольного ядра в данной задаче отличается.

Входные данные

Первая строка содержит два целых числа N и M — число объектов и признаков ($1 \leq N \leq 100, 1 \leq M \leq 10$).

Далее идёт N строк — описание набора данных. Каждая строка i содержит M+1 целое число $d_{i,j}$ $(-100 \le d_{i,j} \le 100)$ — описание i-го объекта. Первые M из этих чисел признаки i-го объекта, а последнее — его целевое значение.

Следующая строка описывает объект запроса q. Она состоит из M целых чисел $d_{q,j}$ $(-100 \le d_{q,j} \le 100)$ — признаки объекта q.

Далее идут три строки состоящих из строчных латинских букв.

Первая из них — название используемой функции расстояния: manhattan, euclidean, chebyshev.

Вторая — название функции ядра: uniform, triangular, epanechnikov, quartic, triweight, tricube, gaussian, cosine, logistic, sigmoid.

Третья — название типа используемого окна: fixed — окно фиксированной ширины, variable — окно переменной ширины.

Последняя строка содержит параметр окна: целое число h ($0 \le h \le 100$) — радиус окна фиксированной ширины, либо целое число K ($1 \le K < N$) — число соседей учитываемое для окна переменной ширины.

Выходные данные

Выведите одно вещественное число с плавающей точкой — результат запроса. Допустимая абсолютная и относительная погрешность $10^{-6}\,$.

```
ВХОДНЫЕ ДАННЫЕ

3 2
0 2 1
1 1 0
2 0 1
0 0
euclidean
uniform
fixed
2

ВЫХОДНЫЕ ДАННЫЕ
0.00000000000
```

BXOДНЫЕ ДАННЫЕ 3 2 0 2 1 1 1 0 2 0 1 0 0 euclidean gaussian variable 2 ВЫХОДНЫЕ ДАННЫЕ

о.6090086848

В случае неопределённости, когда в окно не попало ни одного объекта, требуется вывести значение по умолчанию для задачи регрессии — среднее значение целевой переменной по всем объектам из обучающей выборки.

D. Линейная регрессия

1 секунда⁰, 256 мегабайт

Найдите коэффициенты уравнения прямой по заданному набору данных.

Входные данные

Первая строка содержит два целых числа N ($1 \le N \le 10^4$) — число объектов в обучающем множестве, и M ($1 \le M \le \min(N, 1000)$) — число признаков у объектов исключая зависимую переменную.

Следующие N строк содержат описание объектов. i-я из этих строк содержит описание i-го объекта, M+1 целых чисел. Первые M из этих чисел: $X_{i,j}$ ($|X_{i,j}| \leq 10^9$) — признаки i-го объекта, а последнее Y_i ($|Y_i| \leq 10^9$) — значение его зависимой переменной.

Выходные данные

Выведите M+1 вещественных чисел с плавающей точкой A_j — коэффициенты прямой из уравнения

$$Y = A_0 \cdot X_0 + A_1 \cdot X_1 + \dots + A_{M-1} \cdot X_{M-1} + A_M$$

Система оценки

Целевая функция ошибки SMAPE вычисленная на скрытом множестве данных. $SMAPE(Y,\hat{Y})=\frac{1}{|Y|}\sum_i \frac{|Y_i-\hat{Y}_i|}{|Y_i|+|\hat{Y}_i|}$, где Y и \hat{Y} — вектор предсказанных и реальных значений целевой переменной.

Пусть $Score=100\cdot \frac{B-S}{B-J}$, где S — SMAPE вашего решения, J — SMAPE решения эталона с запасом $\approx 1\%$, B — SMAPE наивного решения с запасом $\approx 2\%$.

Tогда
$$ext{Verdict} = \left\{ egin{array}{ll} ext{Ok} & ext{Score} \geq 100 \\ ext{PartiallyCorrect} & 0 \leq ext{Score} < 100 \\ ext{WrongAnswer} & ext{Score} < 0 \end{array} \right.$$

входные данные	
2 1	
2015 2045	
2016 2076	
выходные данные	
31.0	
-60420.0	

вх	одные данные	
4 1 1 0 1 2 2 2 2 4		
вых	ходные данные	
2.0		

He стоит «дудосить» тестирующую систему для подбора оптимальных параметров алгоритма! Их следует настраивать локально используя следующие наборы данных: https://drive.google.com/file/d/1D2xJ6ujn4qR73suNJ64DGosfUlb-xmgD

Эти наборы данных отличаются от тех, на которых будет тестироваться ваше решение, но они получены тем же самым методом генерации. Каждый набор данных начинается с целого положительного числа M ($1 \leq M \leq 1000$) — число признаков. Далее следуют два множества объектов: тренировочное и тестовое. Каждое множество начинается с целого положительного числа N_t ($1 \leq N_t \leq 10^4$) — число объектов в множестве. Далее следуют N_t объектов в формате, который соответствует формату задачи на codeforces.

Е. Метод опорных векторов

1 секунда⁹, 256 мегабайт

Найдите коэффициенты λ_i опорных векторов и сдвиг b, для классификации по формуле

 $class(x)=sign(\sum_i y_i\cdot \lambda_i\cdot k(x,x_i)+b)$, где x — это векторное описание запрашиваемого объекта, а k — функция ядра.

Входные данные

В первой строке находится целое число N ($1 \leq N \leq 100$) — число объектов в обучающем множестве.

Следующие N строк содержат описание объектов по одному объекту на строке. i-й объект описывается N+1 целым числом: первые N из них $K_{i,j}$ ($|K_{i,j}| \leq 10^9$) — значение функции ядра между i-м и j-м объектом, последнее Y_i ($Y_i = \pm 1$) — класс i-го объекта.

Далее идёт строка содержащая целое число C ($1 \leq C \leq 10^5$) — ограничение на коэффициенты λ_i .

Выходные данные

Выведите N+1 число с плавающей точкой: первые N чисел — коэффициенты λ_i ($0 \le \lambda_i \le C$, $\sum \lambda_i \cdot Y_i = 0$) соответствующие объектам из тренировочного множества, последнее число b ($|b| < 10^{12}$) — коэффициент сдвига.

Система оценки

входные данные

Пусть $Score=100\cdot \frac{F-B}{J-B}$, где $F-F_1$ -мера вашего решения, $J-F_1$ -мера решения эталона с запасом $\approx 1\%$, $B-F_1$ -мера наивного решения с запасом $\approx 2\%$.

Тогда
$$Verdict = \left\{ egin{array}{ll} Ok & Score \geq 100 \\ PartiallyCorrect & 0 \leq Score < 100 \\ WrongAnswer & Score < 0 \end{array}
ight.$$

F. Наивный байесовский классификатор

1 секунда⁰, 256 мегабайт

Реализуйте наивный байесовский классификатор.

Априорные вероятности классов оцениваются обыкновенным частотным методом.

Для оценки вероятности встречи слов в каждом классе используется модель Бернулли с аддитивным сглаживанием (сглаживание Лапласа) $p(x)=rac{count(x)+lpha}{\sum_{y\in Q}count(y)+lpha\cdot|Q|}$, где x — рассматриваемое

событие, а Q — множество всех событий.

Каждое слово это отдельный признак с двумя возможными событиями встретилось / не встретилось.

Входные данные

В первой строке содержится целое положительное число K ($1 \le K \le 10$) — число классов.

Во второй строке содержится K целых положительных чисел λ_C ($1 \leq \lambda_C \leq 10$) — штрафы за ошибки классификации сообщений соответствующих классов.

В третьей строке содержится целое положительное число α ($1 < \alpha < 10$) — интенсивность аддитивного сглаживания.

Следующая строка содержит целое положительное число N ($1 \leq N \leq 200$) — число сообщений в обучающей выборке.

Следующие N строк содержат описания соответствующих сообщений из обучающей выборки. Каждое сообщение в ней начинается с целого положительного числа C_i ($1 \le C_i \le K$) — класса к которому относится i-е сообщение. Далее следует целое положительное число L_i ($1 \le L_i \le 10^4$) — число слов в i-м сообщении. Затем следует содержание сообщения — L_i слов состоящих из маленьких латинских букв.

Далее в отдельной строке содержится целое положительное число M ($1 \leq M \leq 200$) — число сообщений в проверочной выборке.

Следующие M строк содержат описания соответствующих сообщений из проверочной выборки. Каждое сообщение в ней начинается с целого положительного числа L_j ($1 \le L_j \le 10^4$) — число слов в j-м сообщении. Затем следует содержание сообщения — L_j слов состоящих из маленьких латинских букв.

Гарантируется, что сумма длин всех сообщений в обучающей и проверочной выборках меньше чем $2\cdot 10^6$.

Выходные данные

Выведите M строк — результаты мягкой классификации оптимального наивного байесовского классификатора соответствующих сообщений из проверочной выборки. Допустимая абсолютная и относительная погрешность 10^{-4} .

Каждый j-й результат мягкой классификации должен содержать K чисел p_C — вероятности того, что j-е сообщение относится к классу C

входные данные 1 1 1 1 1 2 ant emu 3 dog fish dog 3 bird emu ant 1 3 ant dog bird 2 emu emu 5 emu dog fish dog fish 5 fish emu ant cat cat 2 emu cat 1 cat выходные данные 0.4869739479 0.1710086840 0.3420173681 0.1741935484 0.7340501792 0.0917562724 0.4869739479 0.1710086840 0.3420173681 0.4869739479 0.1710086840 0.3420173681 0.4869739479 0.3420173681 0.1710086840

В примере условные вероятности выглядят следующим образом:

$$p(w_x|c_y)$$
 ant bird dog emu fish c_1 3/4 1/2 1/2 1/2 1/4 c_2 1/3 1/3 2/3 1/3 2/3 c_3 2/3 2/3 1/3 2/3 1/3

Слово cat не рассматривается, так как оно ни разу не встретилось в обучающей выборке.

Для первого запроса X: $p(c_1)\cdot p(X|c_1)=\frac{2}{4}\cdot \left(1-\frac{3}{4}\right)\cdot \left(1-\frac{1}{2}\right)\cdot \left(1-\frac{1}{2}\right)\cdot \left(\frac{1}{2}\right)\cdot \left(1-\frac{1}{4}\right)$ и $p(c_1|X)=\frac{3/256}{3/256+1/243+2/243}$

G. Дерево принятия решений

1.5 секунд €, 256 мегабайт

Постройте дерево принятия решений.

Входные данные

Первая строка содержит три целых положительных числа M ($1 \leq M \leq 100$) — число признаков у объектов (исключая класс), K ($1 \leq K \leq 20$) — число классов и H ($1 \leq H \leq 10$) — максимальная глубина (в рёбрах) дерева принятия решений.

Вторая строка содержит целое положительное число N ($1 \le N \le 4000$) — число объектов в обучающей выборке.

Следующие N строк содержат описания объектов в обучающей выборке. В i-й из этих N строк перечислено M+1 целое число: первые M чисел $A_{i,j}$ ($|A_{i,j}| \leq 10^9$) — признаки i-го объекта, последнее число C_i ($1 \leq Ci \leq K$) — его класс.

Выходные данные

Выведите построенное дерево принятия решений.

В первой строке выведите целое положительное число S ($1 \leq S \leq 2^{11}$) — число вершин в дереве.

В следующих S строках выведите описание вершин дерева. В v-й из этих строк выведите описание v-й вершины:

- Если v-я вершина узел, выведите через пробел: заглавную латинскую букву 'Q', целое положительное число f_v ($1 \leq f_v \leq M$) индекс признака по которому происходит проверка в данном узле, вещественное число с плавающей точкой b_v константа с которой происходит сравнения для проверки, два целых положительных числа l_v и r_v ($v < l_v, r_v \leq S$) индекс вершины дерева в которую следует перейти, если выполняется условие $A[f_v] < b_v$, и индекс вершины дерева в которую следует перейти, если условие не выполняется.
- Если v-я вершина лист, выведите через пробел: заглавную латинскую букву 'С' и целое положительное число D_v ($1 \le D_v \le K$) класс объекта попавшего в данный лист.

Вершины нумеруются с единицы. Корнем дерева считается первая вершина.

Система оценки

Решение будет проверено на секретном наборе данных. На основании предсказанных и реальных классов вычисляется усреднённая по классам микро F_1 -мера.

Пусть $Score=100\cdot \frac{F-B}{J-B}$, где $F-F_1$ -мера вашего решения, $J-F_1$ -мера решения эталона с запасом $\approx 1\%$, $B-F_1$ -мера наивного решения с запасом $\approx 2\%$.

Тогда
$$Verdict = \left\{ egin{array}{ll} Ok & Score \geq 100 \\ PartiallyCorrect & 0 \leq Score \leq 100 \\ WrongAnswer & Score < 0 \end{array} \right.$$

входные данные 2 4 2 8 1 2 1 2 1 1 3 1 2 4 2 2 3 4 3 4 3 3 1 3 4 2 4 4 выходные данные Q 1 2.5 2 5 Q 2 2.5 3 4 C 1 С 4 Q 2 2.5 6 7 C 2 C 3

Н. Логическое выражение

1 секунда €, 256 мегабайт

Постройте искусственную нейронную сеть, вычисляющую логическую функцию f, заданную таблицей истинности.

Входные данные

Первая строка содержит целое число M ($1 \leq M \leq 10$) — число аргументов f. Следующие 2^M строк содержат значения f в таблице истинности (0 — ложь, 1 — истина). Строки в таблице истинности последовательно отсортированы по аргументам функции от первого к последнему. Например:

M=1	M=2	M=3
f(0)	f(0, 0)	f(0, 0, 0)
f(1)	f(1,0)	f(1,0,0)
	f(0,1)	f(0,1,0)
	f(1,1)	f(1,1,0)
		f(0,0,1)
		f(1,0,1)
		f(0,1,1)
		f(1,1,1)

Выходные данные

В первой строке выведите целое положительное число D ($1 \leq D \leq 2$) — число слоёв (преобразований) в вашей сети.

На следующей строке выведите D целых положительных чисел n_i ($1 \leq n_i \leq 512$ и $n_D=1$) — число искусственных нейронов на i-м слое. Предполагается, что $n_0=M$.

Далее выведите описание D слоёв. i-й слой описывается n_i строками, описанием соответствующих искусственных нейронов на i-м слое. Каждый искусственный нейрон описывается строкой состоящей из n_{i-1} вещественных чисел с плавающей точкой w_j и одного вещественного числа b — описание линейной зависимости текущего нейрона от выходов предыдущего i-го слоя. Линейная зависимость задается по формуле: $Y = \sum w_j \cdot x_j + b$. Предполагается, что после каждого вычисления линейной зависимости к её результату применяется функция ступенчатой активации $a(Y) = \begin{cases} 1 & Y > 0 \\ 0 & Y < 0 \end{cases}$. Обратите внимание, что в нуле

данная функция не определена, и если в ходе вычисления вашей сети будет вызвана активация от нуля, вы получите ошибку.

входные да	инные
2	
0	
1	
0	
1	

```
ВЫХОДНЫЕ ДАННЫЕ

2
2
1
1.0 -1.0 -0.5
1.0 1.0 -1.5
1 1 -0.5
```

```
ВХОДНЫЕ ДАННЫЕ

2
0
1
1
0

ВЫХОДНЫЕ ДАННЫЕ

2
2
1
1.0 -1.0 -0.5
-1.0 1.0 -0.5
1 1 -0.5
```

Во втором примере в результате получается следующая сеть:

Матричная функция

1 секунда⁰, 256 мегабайт

Вычислите матричную функцию и её производную по заданному графу вычислений.

Входные данные

В первой строке содержится три целых положительных числа $N,\,M,\,K$ ($1\leq M,\,K\leq N\leq 50$) — число вершин в графе вычислений, число входных параметров (вершин) и число выходных параметров (вершин). Далее следует N строк — описание вершин графа вычислений. i-я из этих строк содержит описание i-й вершины:

- ${\it var}\ r\ c\ (1 \le r, c \le 25)$ входной параметр функции, матрица состоящая из r строк и c столбцов.
- $tnh\ x\ (1 \le x < i)$ матрица из значений гиперболического тангенса вычисленного от соответствующих компонент матрицы полученной из x-й вершины графа вычислений.
- rlu α^{-1} x ($1 \leq \alpha^{-1} \leq 100$, $1 \leq x < i$) матрица из значений функции параметрического линейного выпрямителя с параметром α вычисленной от соответствующих компонент матрицы полученной из x-й вершины графа вычислений. α^{-1} целое число. Производная в нуле равна единице.
- mul a b $(1 \le a, b < i)$ произведение матриц полученных из a-й b-й вершины графа вычислений соответственно.
- **sum** $len\ u_1\ u_2\ ...\ u_{len}\ (1 \leq len \leq 10,\ \forall_{1 \leq j \leq len}: 1 \leq u_j < i)$ сумма матриц полученных из вершин u_1,u_2,\ldots,u_{len} графа вычислений.
- had $len\ u_1\ u_2\ ...\ u_{len}\ (1\leq len\leq 10,\ \forall_{1\leq j\leq len}: 1\leq u_j< i)$ произведение Адамара (покомпонентное) матриц полученных из вершин u_1,u_2,\ldots,u_{len} графа вычислений.

Гарантируется, что первые M вершин и только они имеют тип ${\bf var}$. Последние K вершин считаются выходными. Гарантируется, что размеры матриц аргументов для каждой вершины согласованны.

Далее следует описание M матриц — входных параметров соответствующих вершин графа вычислений в порядке возрастания их индексов.

Затем следует описание K матриц — производных функции по соответствующим выходным вершинам в порядке возрастания их индексов. Обратите внимание, что производные вычислены только из некоторых скрытых вершин. Если какая-та выходная вершина зависит от другой выходной вершины, то соответствующую производную нужно досчитать.

Каждая строка, каждой матрицы расположена на отдельной строке. Матрицы состоят из целых чисел по модулю не превышающих 10.

Выходные данные

Выведите K матриц — значение параметров соответствующих выходных вершин графа вычисления в порядке возрастания их индексов. Затем выведите M матриц производных функции по соответствующим входным вершинам в порядке возрастания их индексов. Допустимая абсолютная и относительная погрешность 10^{-4} .

```
ВХОДНЫЕ ДАННЫЕ

6 3 1
var 1 3
var 3 2
var 1 2
mul 1 2
sum 2 4 3
rlu 10 5
-2 3 5
4 2
-2 0
2 1
4 -2
-1 1
```

выходные данные

```
0.0 - 0.1

-3.8 2.0 -1.9

2.0 -0.2

-3.0 0.3

-5.0 0.5

-1.0 0.1
```

В примере вычисляется функция

$$ReLU_{lpha=0.1}\left(egin{pmatrix} 4 & 2 \ -2 & 0 \ 2 & 1 \end{pmatrix} + egin{pmatrix} 4 & -2 \end{pmatrix}
ight)$$
 , а $\begin{pmatrix} -1 & 1 \end{pmatrix}$ производная по её выходу.

Свёрточная сеть

1 секунда⁰, 256 мегабайт

Посчитайте значение выхода свёрточной сети и пересчитайте её производную.

Входные данные

В первой строке содержится описание входа свёрточной сети, трёхмерной матрицы. Высота этой матрицы совпадает с её шириной. Первое число N_0 ($1 \leq N_0 \leq 40$) — высота и ширина входной трёхмерной матрицы, второе число D_0 ($1 \leq D_0 \leq 10$) — её глубина. Следующие $D_0 \times N_0 \times N_0$ чисел — описание трёхмерной матрицы, значения её ячеек выписанных в порядке: глубина, высота, ширина.

Следующая строка содержит одно число L ($1 \leq L \leq 10$) — число слоёв (преобразований) в сети.

Следующие L строк содержат описания соответствующих преобразований:

- **relu** α^{-1} ($1 \le \alpha^{-1} \le 100$) функции параметрического линейного выпрямителя с параметром α .
- pool S $(1 \leq S \leq 5)$ операция субдискретизации (подвыборки) по высоте и ширине размера $S \times S$ с шагом S. В качестве свёртки используется операция максимума. Производная для максимума вычисляется как: $\frac{\partial \max}{\partial x_i}(x) = 1$ если $x_i = \max(x)$, иначе 0.

- bias B_1, B_2, \dots, B_D ($|B_i| \leq 10$) операция сдвига, прибавляющая к каждой ячейке матрицы на глубине i значение B_i, D глубина матрицы до и после преобразования.
- cnvm H K S P $A_{1,1,1,1}$, $A_{1,1,1,2}$, ..., $A_{H,D,K,K}$ $(1 \leq H \leq 10, 1 \leq K \leq 5, 1 \leq S \leq K, 0 \leq P < K, |A_i| \leq 10)$ свёртка с ядром A размера $H \times D \times K \times K$ с шагом S с зеркальным заполнением рамки размера P, где D глубина матрицы до преобразования. H глубина матрицы после преобразования. Значения ячеек A выписаны в порядке: глубина полученной матрицы, глубина исходной матрицы, высота ядра, ширина ядра.
- **cnve** H K S P $A_{1,1,1,1}, A_{1,1,1,2}, \ldots, A_{H,D,K,K}$ свёртка с расширением границы. Аналогична предыдущей.
- **cnvc** H K S P $A_{1,1,1,1}, A_{1,1,1,2}, \ldots, A_{H,D,K,K}$ свёртка с заполнением с циклическим сдвигом. Аналогична предыдущей.

Гарантируется, что размеры всех многомерных матриц согласованы с соответствующими гипер-параметрами преобразований.

В последней строке записана производная по выходу сети.

Все числа во входных данных целые.

Выходные данные

Выведите значение выходной трёхмерной матрицы.

Далее выведите производную по входу сети.

Затем для каждого слоя сдвига и свёртки в возрастающем порядке номера слоя выведите производную по его параметрам.

Выходные матрицы могут содержать числа с плавающей точкой. Допустимая абсолютная и относительная погрешность $10^{-4}.$

```
ВХОДНЫЕ ДАННЫЕ

4 1 4 3 2 1 3 2 1 0 2 1 0 1 1 0 1 2
4
cnvm 1 3 3 1 0 -1 0 -1 0 -1 0 -1 0
bias 4
relu 8
pool 2
1

Выходные данные

0.0
0.0 0.0 -2.0 0.0 0.0 0.0 0.0 -2.0 -2.0 0.0 0.0 -2.0 0.0
-2.0 -2.0 0.0
2.0 3.0 2.0 3.0 4.0 3.0 2.0 3.0 2.0
3.0
```

Пример заполнения угла рамки для свёрточного слоя:

cnvm	18	17	16	15	16	17	18	19	cnve	0	0	0	0	1	2	3	4	cnvc	12	13	14	10	11	12	13	14
	13	12	11	10	11	12	13	14		0	0	0	0	1	2	3	4		17	18	19	15	16	17	18	19
	8	7	6	5	6	7	8	9		0	0	0	0	1	2	3	4		22	23	24	20	21	22	23	2
	3	2	1	0	1	2	3	4		0	0	0	0	1	2	3	4		2	3	4	0	1	2	3	-
	8	7	6	5	6	7	8	9		5	5	5	5	6	7	8	9		7	8	9	5	6	7	8	1
	13	12	11	10	11	12	13	14		10	10	10	10	11	12	13	14		12	13	14	10	11	12	13	1
	18	17	16	15	16	17	18	19		15	15	15	15	16	17	18	19		17	18	19	15	16	17	18	1
	23	22	21	20	21	22	23	24		20	20	20	20	21	22	23	24		22	23	24	20	21	22	23	2

К. LSTM сеть

1 секунда², 256 мегабайт

Дана сеть LSTM для обработки последовательностей.

Каждый блок этой сети вычисляет результат по формулам: $f_t = \sigma(W_f x_t + U_f h_{t-1} + b_f), \, i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i) \;,$ $o_t = \sigma(W_o x_t + U_o h_{t-1} + b_o),$ $c_t = f_t \circ c_{t-1} + i_t \circ tanh(W_c x_t + U_c h_{t-1} + b_c)$ и $h_t = o_t \circ c_t$, где x_t — вход t-го блока, h_t и c_t — векторы краткосрочной и долгосрочной памяти, o_t — выход t-го блока, а \circ — произведение Адамара.

Входные данные

В первой строке находится число N ($1 \leq N \leq 20$) — размер векторов LSTM.

Далее перечислены соответствующие матрицы и вектора W_f , U_f , B_f , W_i , U_i , B_i , W_o , U_o , B_o , W_c , U_c , B_c .

Затем следует число M ($1 \leq M \leq 20$) — число элементов последовательности обрабатываемой LSTM сетью.

Далее следуют два вектора h_0 и c_0 , а также M векторов x_t .

Затем следует вектора производных сети по выходным векторам h_M и c_M , а также M векторов производных по выходам o_t в обратном порядке o_M, o_{M-1}, \dots, o_1 .

Все вектора записаны N числами разделёнными пробелами на отдельной строке, а матрицы N векторами размера N. Все элементы векторов и матриц целые числа по модулю не превосходящие 10.

Выходные данные

Сперва выведите M векторов выходов сети o_t .

Далее выведите два последних вектора памяти h_M и c_M .

Затем выведите M векторов производных сети по входам x_t в обратном порядке.

Далее выведите два вектора производных сети по h_0 и c_0 .

После выведите производные по соответствующим матрицам и векторам параметров LSTM: $W_f,\,U_f,\,B_f,\,W_i,\,U_i,\,B_i,\,W_o,\,U_o,\,B_o,\,W_c,\,U_c,\,B_c.$

Выходные вектора и матрицы могут содержать числа с плавающей точкой. Допустимая абсолютная и относительная погрешность $10^{-6}.$

выходные данные

```
1.233945759863131E-4
-2.875857041962763E-5
-0.23306186831759548
-0.37692699674663843
0.21113860108361812
-0.047420021082055105
0.27102651105684017
0.13551325552842008
0.13551325552842008
0.159905268234481
0.0799526341172405
0.0799526341172405
1.8924865599381104E-4
9.462432799690552E-5
9.462432799690552E-5
-0.10011198258925587
-0.050055991294627934
-0.050055991294627934
```

L. Коэффициент корреляции Пирсона

1 секунда**⁰**, 256 мегабайт

Посчитайте корреляцию Пирсона двух численных признаков.

Входные данные

Первая строка содержит целое положительное число N ($1 \leq N \leq 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых числа x_1 и x_2 ($-10^9 \le x_1, x_2 \le 10^9$) — значения первого и второго признака описываемого объекта.

Выходные данные

Выведите одно вещественное число с плавающей точкой — корреляцию Пирсона двух признаков у заданных объектов. Допустимая абсолютная и относительная погрешность 10^{-6} .

входные данные	
5	
1 4	
2 5	
3 1	
4 2	
5 3	
выходные данные	
-0.500000000	

М. Коэффициент ранговой корреляции Спирмена

1 секунда €, 256 мегабайт

Посчитайте ранговую корреляцию Спирмена двух численных признаков.

Входные данные

Первая строка содержит целое положительное число N ($1 \leq N \leq 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых числа x_1 и x_2 ($-10^9 \le x_1, x_2 \le 10^9$) — значения первого и второго признака описываемого объекта. Гарантируется, что все значения каждого признака различны.

Выходные данные

Выведите одно вещественное число с плавающей точкой — коэффициент ранговой корреляции Спирмена двух признаков у заданных объектов. Допустимая абсолютная и относительная погрешность $10^{-6}\,$.

входные	данные	
5 1 16 2 25 3 1 4 4 5 9		
выходны -0.5000000	е данные	

N. Расстояния

1 секунда⁰, 256 мегабайт

Посчитайте зависимость категориального признака Y от числового X по внутриклассовому и межклассовому расстоянию:

- Внутриклассовое расстояние $=\sum_{i,j:y_i=y_j}|x_i-x_j|$
- Межклассовое расстояние $=\sum_{i,j:y_i
 eq y_i} |x_i x_j|$

Входные данные

Первая строка содержит одно целое положительное число K ($1 \leq K \leq 10^5$) — максимальное число различных значений Y второго признака.

Следующая строка содержит одно целое положительное число N ($1 \leq N \leq 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых числа x и y ($|x| \leq 10^7, 1 \leq y \leq K$) — значения первого и второго признака описываемого объекта.

Выходные данные

В первой строке выведите одно целое число — внутриклассовое расстояние.

Во второй строке выведите одно целое число — межклассовое расстояние.

входн	ные данные			
2 4 1 1 2 2 3 2 4 1				
выход	цные данные	2		
8 12				

О. Условная дисперсия

1 секунда €, 256 мегабайт

Вычислите критерий связи двух признаков категориального X и числового Y на основе математического ожидания условной дисперсии D(Y|X). Вероятности для X оцениваются обыкновенным частотным методом.

Входные данные

Первая строка содержит одно целое положительное число K ($1 \leq K \leq 10^5$) — максимальное число различных значений признака X.

Следующая строка содержит целое положительное число N ($1 \leq N \leq 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых положительных числа x и y ($1 \le x \le K$, $|y| \le 10^9$) — значения признаков X и Y.

Выходные данные

Выведите одно вещественное число с плавающей точкой — математическое ожидание условной дисперсии. Допустимая абсолютная и относительная погрешность 10^{-6} .

входн	ые данные	
2		
4		
1 1		
2 2		
2 3		
1 4		
выход	ные данные	
1.25		

Р. Хи-квадрат

1 секунда €, 256 мегабайт

Посчитайте зависимость двух категориальных признаков согласно критерию хи-квадрат (критерий согласия Пирсона).

Входные данные

Первая строка содержит два целых положительных числа K_1 и K_2 ($1 \leq K_1, K_2 \leq 10^5$) — максимальное число различных значений первого и второго признака.

Следующая строка содержит целое положительное число N ($1 \leq N \leq 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых положительных числа x_1 и x_2 ($1 \le x_1 \le K_1$, $1 \le x_2 \le K_2$) — значения первого и второго признака описываемого объекта.

Выходные данные

Выведите одно вещественное число с плавающей точкой — критерий хи-квадрат зависимости двух признаков у заданных объектов. Допустимая абсолютная и относительная погрешность 10^{-6} .

входные д	анные		
2 3			
5			
1 2			
2 1			
1 1			
2 2			
1 3			
выходные	данные		
0.833333333			

В примере реальное число наблюдений наблюдений выглядит как

	1	2	3	1	2	3
1	1	1	$oldsymbol{1}$, а ожидаемое число наблюдений $oldsymbol{1}$	1.2	1.2	0.6
2	1	1	0 2	0.8	0.8	0.4

Q. Условная энтропия

1 секунда⁰, 256 мегабайт

Вычислите критерий связи двух категориальных признаков X и Y на основе математического ожидания условной энтропии H(Y|X). Вероятности оцениваются обыкновенным частотным методом. При расчётах используйте натуральный логарифм ln(x), либо логарифм идентичный натуральному $\log_e(x)$.

Входные данные

Первая строка содержит два целых положительных числа K_x и K_y ($1 \leq K_x, K_y \leq 10^5$) — максимальное число различных значений признаков X и Y.

Следующая строка содержит целое положительное число N ($1 \leq N \leq 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых положительных числа x и y ($1 \le x \le K_x$, $1 \le y \le K_y$) — значения признаков X и Y.

Выходные данные

Выведите одно вещественное число с плавающей точкой — математическое ожидание условной энтропии. Допустимая абсолютная и относительная погрешность $10^{-6}\,$.

```
ВХОДНЫЕ ДАННЫЕ

2 3
5
1 2
2 1
1 1
2 2
1 3

Выходные данные

0.9364262454248438
```