

Plano de Ensino

- Sistemas de Numeração
- Arquitetura de Computadores
- Linguagem de Máquina
- Microcontroladores

Livro-Texto

- Livro-Texto:
 - » PEREIRA, Fabio. Microcontroladores PIC - Técnicas avançadas. 4ª ed. São Paulo: Erica, 2006.
- Bibliografia Complementar:
 - » GIMENEZ, S.P.. Microcontroladores 8051. 2^a ed. São Paulo: Pearson Education, 2005.

4. Hier. de Memória - Introdução

- Os programas gastam a maior parte do tempo acessando a memória.
- Programadores gostariam de ter ao ser dispor quantidade ilimitada de memória com acesso instantâneo.
- O projeto do sistema de memória segue alguns princípios os quais tentam dar a ilusão ao programador de que ele dispõe de uma grande quantidade de memória com tempo de acesso pequeno.

4. Hier. de Memória - Introdução

- Ao estudar uma determinada matéria, você não precisa acessar todos os seus livros/cadernos.
- Portanto, basta deixar sobre a mesa os livros que estão sendo usados para o estudo. Os demais livros podem ficar nos seus lugares, nas prateleiras...
- Talvez a mesa n\u00e3o possa acomodar todos os livros/cadernos.
- E caso pudesse, o tempo para encontrar a matéria em um livro seria muito grande, dificultando o estudo.

4. Hier. de Memória - Introdução

- Localidade Temporal: "se um item é referenciado, ele tende a ser referenciado novamente dentro de um espaço curto de tempo."
 - » A maioria dos programas contém laços (instruções e dados do laço tendem a ser acessados de maneira repetitiva).
- Localidade Espacial: "se um item é referenciado, itens cujos endereços sejam próximos dele tendem a ser logo referenciados."
 - » Nos programas, as instruções estão armazenadas na memória de maneira seqüencial; os itens de matrizes e de registros também se encontram armazenados de maneira seqüencial.

SRAM (Static Random Access Memory): » Memórias de acesso rápido. » Mais caras. » Aquecem mais. » Circuitos no modelo flip-flop. » Tipos de memória SRAM: • L1: memória SRAM presente dentro do processador. • L2: memória SRAM presente dentro da placa de silício do processador. • L3: memória SRAM presente na placa-mãe.

4. Hier. de Memória – Tipos de Memória • Hard Disk Drive (HDD) » O disco rígido é uma memória não-volátil. » Considerado o principal meio de armazenamento de dados em massa. » Nos sistemas recentes ele é também utilizado para expandir a memória RAM, através da memória virtual. » Os discos magnéticos de um disco rígido são recobertos por uma camada magnética extremamente fina; laminada (plated media), mídia mais densa, de qualidade superior. » A cabeça de r/w de um disco rígido funciona como um eletroímã composta de uma bobina de fios que envolve um núcleo de ferro; dispositivo este extremamente pequeno e preciso, a ponto de ser capaz de gravar trilhas medindo menos de um centésimo de milímetro de largura.

4. Hier. de Memória - Tipos de Memória

- Solid State Hybrid Drive (SSHD)
 - » Dispositivo híbrido com pontos positivos do SSD e do HDD.
 - » Alta velocidade em decorrência das eficientes performances de SSDs (que usam memória flash do tipo NAND);
 - » Pode armazenar grandes quantidades de dados, uma vez que faz uso também das tecnologias dos tradicionais HDDs;
 - » É capaz de priorizar determinados dados, melhorando assim a resposta de certos processos.
 - » Mais barato que um SSDs com capacidades maior de armazenamento.
 - » 4,5 vezes mais rápidos que os HDDs de 7.200 RPM.

4. Hier. de Memória – Tipos de Memória			
Característica	SSD	HDD	SSHD
Tempo de acesso randômico	0.1 a 0.3ms	5 a 10ms	0.5 a 1.0ms
Latência de leitura	Baixa pois a leitura é direta de qualquer local do disco	Alta pois requer o tempo de posicionamento do leitor no local correto.	Baixa pois a leitura é realizada pelo SSD interno ao HD
Desfragmentação	Não requer pois a leitura de qualquer local do disco é rápida	Requer desfragmentação contínua para ter melhor rendimento	Requer desfragmentação
Ruído	Não produz ruído durante o funcionamento	As partes que se movimentam durante o funcionamento produzem ruído	Produz ruído na gravação
Fatores Externos	Não é sensível a choque, altitude, vibração, magnetismo	Sensível à choque, altitude, vibração e magnetismo (o último pode danificar arquivos)	Sensível à choque, altitude, vibração e magnetismo
Custos	O preço por GB de espaço é alto, já o consumo de energia é bastante baixo	Preço por GB de espaço é baixo, consumo de energia alto	Preço mediano, mas bem mais acessível que um SSD
Capacidade	A grande maioria dos SSDs comercializados atualmente (2015) é de 64GB à 480GB	Capacidade alta é comum, exemplares com 2TB são comercializados a preços acessíveis	Igual a um HDD
Longevidade	Possuem limitação de ciclos de escrita (em geral de 1 à 5 milhões de ciclos dependendo da tecnologia)	Não possuem limites de escrita, isso só ocorre em caso de defeito na trilha ou setor	Não possuem limites de escrita, pois a gravação é realizada no HD.

4. Hier. de Memória – Definições O objetivo do sistema hierárquico de memória é apresentar ao usuário uma capacidade de memória próxima à disponibilizada pela tecnologia mais barata, e um tempo de acesso próximo ao permitido pela tecnologia mais cara. O objetivo do sistema hierárquico de memória é apresentar ao usuário uma capacidade de memória próxima à disponibilizada pela tecnologia mais barata, e um tempo de acesso próximo ao permitido pela tecnologia mais cara. O objetivo do sistema hierárquico de memória é apresentar ao usuário uma capacidade pela tecnologia mais barata, e um tempo de acesso próximo ao permitido pela tecnologia mais cara. O objetivo do sistema hierárquico de memória é apresentar ao usuário uma capacidade pela tecnologia mais barata, e um tempo de acesso próximo ao permitido pela tecnologia mais barata, e um tempo de acesso próximo ao permitido pela tecnologia mais barata, e um tempo de acesso próximo ao permitido pela tecnologia mais cara.

4. Hier. de Memória - Definições

- A princípio, uma hierarquia de memória pode ter qualquer número de níveis
- Entretanto, os dados sempre serão copiados entre dois níveis adjacentes (i e i+1, onde i está mais próximo do processador).
- Podemos concentrar nossa atenção em dois níveis quaisquer i e i+1: i, que chamaremos de superior (mais próximo do processador) e i+1, que chamaremos de inferior.

4. Hier. de Memória - Definições

- Bloco → unidade mínima de informação, contendo um certo número de palavras de memória.
 - » Exemplo, com 8 palavras (de memória).

XXXXX000	
XXXXX001	informação*
XXXXX010	
XXXXXX011	
XXXXX100	
XXXXX101	
XXXXX110	
XXXXXX111	

*informação = instrução ou dado

4. Hier. de Memória - Definições

- Se a informação solicitada pelo processador estiver presente no nível superior da hierarquia, ocorre um acerto (hit).
- Se a informação solicitada pelo processador não puder ser encontrada no nível superior, a tentativa de encontrá-la gera uma falta (fault).
- Quando ocorre uma falta, o nível imediatamente inferior é acessado, na tentativa de se recuperar o bloco com a informação solicitada pelo processador.

A taxa de acertos ou razão de acertos (hit ratio) corresponde à fração dos acessos à memória encontrados no nível superior (com freqüência, é usada como medida de desempenho do sistema de memória). A taxa de faltas (= 1- taxa de acertos) é a fração de acessos à memória não encontrados no nível superior.

