Hybrid Stylistic Shift Detection

Authors: Maja Gwóźdź (ETH-Z) and Gefei Wang (UZH) Po

Poster by: Maja Gwóźdź

Course: Computational Semantics for Natural Language Processing (July 11, 2025)

ETH zürich

PAPER

Problem

Dataset

We are solving the 2025 PAN shared task on Multi-Author Writing Style Analysis. The dataset consists of Reddit comments. The training set has 158280 labels, and we test on 33654 labels from another set. There are three difficulty levels:

- ▶ Easy: The sentences in the document cover various topics, which allows for the use of topic information to detect authorship changes.
- ▶ **Medium**: The topic changes in the document are subtle, which forces the method to focus more on style to effectively solve the detection task.
- ▶ **Hard**: All sentences in the document involve the same topic.

Results

Model Variant	Features	OT Variant	Macro F1			
			Easy	Medium	Hard	Mean
Balanced OT (blur = 0.05)	✓	balanced Sinkhorn	0.9050	0.8114	0.7644	0.8270
Unbalanced OT ($\tau = 0.8$)	\checkmark	unbalanced Sinkhorn	0.9134	0.8224	0.7853	0.8404
$CL + OT (\lambda = 0.1)$	✓	balanced Sinkhorn	0.9024	0.8215	0.7871	0.8370
Balanced OT (blur = 0.03)	Х	balanced Sinkhorn	0.9118	0.8252	0.7698	0.8356
Sliced OT $(n_{\pi} = 64, \mathtt{style_dim} = 64)$	X	sliced W_1	0.9122	0.8260	0.7725	0.8369
Max-proj OT ($n_{\pi}=128$, style_dim = 64)	X	max-sliced W ₁	0.9133	0.8273	0.7731	0.8379
Multi-scale OT $(n_{\pi} \in \{8, 32, 128\})$	X	multi-scale sliced	0.9140	0.8262	0.7715	0.8372
Factorized Attention Model	✓	N/A	0.9034	0.8208	0.7904	0.8382
Multi-OT (5 ep) + CL+OT + $2 \times UB + B$ (no feats)	X/✓	mixed	0.9179	0.8286	0.7933	0.846
Multi-OT $(7 \text{ ep}) + 2 \times \text{CL} + \text{OT} + 2 \times \text{UB} + \text{B} \text{ (no feats)}$	X/✓	mixed	0.9186	0.8299	0.7942	0.847
Multi-OT (5 ep) + $2 \times CL + OT + 2 \times UB + B$ (no feats)	X/✓	mixed	0.9186	0.8301	0.7943	0.847

The table presents macro F1 scores and their arithmetic mean for selected configurations in each model family.

- ▶ Unless indicated otherwise, all models have been trained for 3 epochs.
- \triangleright n_{π} denotes the number of random directions.
- blur = $\sqrt{\varepsilon}$, where ε is the parameter in the entropy-regularised 1-Wasserstein cost.
- style_dim corresponds to the style dimension embedding.
- \triangleright Intuitively, τ penalises creating or destroying mass.
- Ensemble results: UB Unbalanced Optimal Transport, B Balanced OT
- CL Contrastive Learning, ep. epoch.The multiplier indicates the voting weight in the ensemble.

Key Findings

- ▶ OT-based ensemble models outperform single methods
- > OT-based methods reach better average performance than the Factorized Attention model
- the Factorized Attention model reaches the best score on the Hard set
- Feature-free OT-based methods are very close to the feature-informed approaches on the Hand set
- proaches on the Hard setpoor generalization on a dataset from a specialized domain (StackExchange)
- epochs) achieved only **0.4211**) the methods outperform naïve baselines (≈ 0.45) but do not reach state-of-the-

(best ensemble model: 2×Unbalanced OT + Multi-OT (5 epochs) + Multi-OT (7

- art results (0.863 macro F1 score) from the similar 2024 PAN shared task
- ▶ **future research directions:** computational diachronic semantics, extension to paragraph-based authorship detection, feature-free ensemble models

Ablation: Factorized Attention

- CLS-only: A simple classifier using only the CLS token embedding from the transformer.
- CLS + Orthogonality: Applies an orthogonality constraint between style and content projections.
- CLS + Style Features + Content Embedding: Uses content projection along with style features, but not style embedding.

Macro F₁ score for Different Feature Extraction Methods 0.90 0.85 0.80 0.70 Feature Set 1 Feature Set 2 Feature Set 3

Feature Ablation

- Feature Set 2 is customized for comments on social plat
- ▶ Feature Set 2 is customized for comments on social platforms, including the number of function words, the number of punctuation marks, the type-token ratio, average sentence length, readability score, the uppercase ratio, number of slang terms, number of URLs, whether there is a subject, and the type of the subject.
- *Feature Set 3* was obtained by modifying *Feature Set 2*, but with the number of slang terms and the number of URLs removed. Instead, part of speech n-gram features were added.

What do the results imply? A plausible explanation of this trend is that social media markers actually *decrease* performance on topically homogeneous sets but have a negligible positive effect on performance in the case of more heterogeneous sets.

Solution: Factorized Attention

Solution: Optimal Transport

Ablation: Optimal Transport

