Базовая статистика

ТИП ПЕРЕМЕННЫХ ОПРЕДЕЛЯЕТ НАБОР СТАТИСТИЧЕСКИХ МЕТОДОВ АНАЛИЗА ПЕРЕМЕННЫЕ КОЛИЧЕСТВЕННЫЕ КАТЕГОРИАЛЬНЫЕ ДИСКРЕТНЫЕ **НЕПРЕРЫВНЫЕ** порядковые **НОМИНАЛЬНЫЕ** (NOMINAL) (DISCRETE) (CONTINUOUS) (ORDINAL) ЧИСЛОВОЕ ОБОЗНАЧЕНИЕ НЕ ИМЕЕТ ЧИСЛОВОЕ ОБОЗНАЧЕНИЕ ИМЕЕТ СОДЕРЖАТЕЛЬНЫЙ СМЫСЛ СОДЕРЖАТЕЛЬНЫЙ СМЫСЛ

Пакет rstatix

install.packages(c("rstatix", "ggpubr"))
library(rstatix)
library(ggpubr)

https://rpkgs.datanovia.com/rstatix/

Описательная статистика

Описательная статистика

```
data_summary <- data %>%
  group_by(Group) %>%
  get_summary_stats()
```

type = c("full", "common", "robust", "five_number",
 "mean_sd", "mean_se", "mean_ci", "median_iqr",
 "median_mad", "quantile", "mean", "median", "min", "max")

Нормальное распределение

data_norm <- data %>%
 group_by(Group) %>%
 shapiro_test(
 Gene1_expression,
 Gene2_expression

	Сравнение с теоретическим средним	НР: Т-тест	
		ННР: тест Уилкоксона	
	Сравнение 2 групп	Не парное сравнение	HP: непарный T-тест
			ННР: тест Манна-Уитни
V		Парное сравнение	HP: парный T-тест
Как выбрать статистический			ННР: тест Уилкоксона
тест	Сравнение 3 и более групп	Не повторные измерения	HP: однофакторный дисперсионный анализ +post-hoc HHP: тест Крускала-Уоллиса +post-hoc
		Повторные измерения	HP: дисперсионный анализ с повторными измерениями +post-hoc
			HPP: тест Фридмана +post-hoc
	Корреляция	НР: корреляция Пирсона	
		ННР: корреляция Спирмана	
НР – нормальное			
распределение	Предсказание	На основе 1 переменной	НР: линейная регрессия
ННР – не			ННР: непараметрическая регрессия
нормальное распределение		На основе нескольких переменных	Множественная линейная и нелинейная регрессии

Сравнение с теоретическим средним - НР

```
data_exp <- data %>%
                                                      ggqqplot(data_exp, x = "Gene1_expression")
 filter(Group == "Experiment")
                                                       ttest_theor <- data_exp %>%
bxp <- ggboxplot(
                                                        t_{\text{test}}(\text{Gene1}_{\text{expression}} \sim 1, \text{ mu} = 3)
data_exp$Gene1_expression, width = 0,5, add = c("mean", "jitter"),
 ylab = "Gene", xlab = FALSE
                                                       bxp + labs(
                                                      subtitle = get_test_label(ttest_theor,
detailed = TRUE)
bxp
```

Сравнение 2 групп - НР

```
bxp <- ggboxplot(</pre>
                                          ttest_2g <- data %>%
 data, x = "Group", y =
                                            t_test(Gene1_expression ~ Group) %>%
"Gene1_expression",
                                            add_significance()
 ylab = "Gene 1", xlab = "Groups", add =
"iitter"
                                          ttest_2g <- ttest_2g %>%
                                           add_xy_position(x = "Group")
bxp
                                           bxp +
                                            stat_pvalue_manual(ttest_2g, tip.length
ggqqplot(data, x = "Gene1_expression",
                                           = 0) +
facet.by = "Group")
                                            labs(subtitle = get_test_label(ttest_2g,
                                           detailed = TRUE))
```

Сравнение с теоретическим средним - ННР

Сравнение 2 групп - ННР

```
bxp4 <- ggboxplot(
                                            wilcox_test_2g <- data %>%
 data, x = "Group", y = "Gene2_expression",
                                             wilcox_test(Gene2_expression ~ Group)
                                            %>%
 ylab = "Gene 2", xlab = "Groups", add =
"jitter"
                                             add_significance()
bxp4
                                            wilcox_test_2g <- wilcox_test_2g %>%
                                            add_xy_position(x = "Group")
                                            bxp4 +
                                             stat_pvalue_manual(wilcox_test_2g,
                                            tip.length = 0) +
                                             labs(subtitle =
                                            get_test_label(wilcox_test_2g, detailed =
                                            TRUE))
```

Сравнение 3 и более групп - НР

```
ggboxplot(data, x = "Category", y =
"Gene2_expression")
ggqqplot(data, "Gene2_expression",
facet.by = "Category")
anóva_1 <- data %>%
ghova_test(Gene2_expression ~
Category)
# Не достоверно!
pwc1 <- data %>%
tukey_hsd(Gene2_expression ~
Category)
```

```
pwc1 <- pwc1 %>% add_xy_position(x =
"Category")
ggboxplot(data, x = "Category", y =
"Gene2_expression") +
 stat_pvalue_manual(pwc1, hide.ns =
TRUE) +
 labs(
  subtitle = get_test_label(anova_1,
detailed = TRUE),
  caption = get_pwc_label(pwc1)
```

Сравнение 3 и более групп - ННР

```
ggboxplot(data, x = "Category", y =
"Gene 1_expression")
                                          pwc2 <- pwc2 \%>\% add_xy_position(x =
                                          "Category")
ggaqplot(data, "Gene1_expression",
                                          ggboxplot(data, x = "Category", y =
facet.by = "Category")
                                          "Gene1_expression") +
                                           stat_pvalue_manual(pwc2, hide.ns =
                                          TRUE) +
kruskal <- data %>%
kruskal_test(Gene1_expression ~
                                           labs(
(Category)
                                            subtitle = get_test_label(kruskal, detailed
# Не достоверно!
                                          = TRUE),
                                            caption = get_pwc_label(pwc2)
pwc2 <- data %>%
 dunn_test(Gene1_expression ~ Category,
p.adjust.method = "bonferroni")
```