(Parametric linear programming) البرامج الخطية الوسيطية

تابع الهدف في البرنامج الخطى معطى بشكل وسيطى

لنأخذ البرنامج الخطى التالى:

$$\max z = \sum_{j=1}^{n} c_{j} x_{j}$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, & i = 1, ..., m \\ x_{j} \ge 0, & j = 1, ..., n \end{cases}$$
(LP)

نجد نجد ، $c_j = c_j^{'} + \lambda c_j^{''} - \infty < \lambda < +\infty, \ j=1,2,...,n$ لنفتر ض بأن

$$\max z(\lambda) = \sum_{j=1}^{n} (c'_{j} + \lambda c''_{j}) x_{j}$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, & i = 1, ..., m \\ x_{j} \ge 0, & j = 1, ..., n \end{cases}$$
(PLP)

ير تبط الحل المثالي لـ (PLP) بقيمة الوسيط λ . يمكن الملاحظة ببساطة بأنه يمكن تقسيم مجال تغير الوسيط λ إلى عدد محدود من المجالات ، يتطابق كل مجال من المجالات مع حل مثالي مختلف. تسمى هذه المجالات بمجالات الاستقر ار

لنفترض بأنه يوجد حل مثالي محدود $\tilde{x}(\lambda_0)$ للبرنامج الخطي LP من أجل القيمة مدود مدود $\tilde{x}(\lambda_0)$ للبرنامج الخطي الفترض بأنه يوجد حل مثالي مع جدول السمبلكس النهائي حيث جميع القيم c_j-z_j سالبة أو صفرية او

$$z_{j}=\sum_{i}a_{ij}c_{i} \quad \text{\mathfrak{g} $c_{j}=c_{j}^{'}+\lambda_{0}c_{j}^{''}$} \quad -\infty<\lambda_{0}<+\infty, \ j=1,2,...,n$$

$$c_{j}^{'} + \lambda_{0} c_{j}^{"} - \sum_{i} a_{ij} c_{i}^{'} - \lambda_{0} \sum_{i} a_{ij} c_{i}^{"} \le 0 \quad -\infty < \lambda_{0} < +\infty, \ j = 1, 2, ..., n$$

$$\lambda_0 (c_j^{"} - \sum_i a_{ij} c_i^{"}) + (c_j^{'} - \sum_i a_{ij} c_i^{'}) \le 0 \quad -\infty < \lambda_0 < +\infty, \ j = 1, 2, ..., n$$

يبقى الحل من أجل على من أجل جميع قيم $c_{j}(\lambda)$ بحيث أن تبقى القيم ينقى الحل من أجل على من أجل على عن أجل على أب ينقى الحل الحيث أن تبقى الحل الحيث أن تبقى الحيث أن ا

$$\lambda \le l_{j} = -\frac{c_{j}^{'} - \sum_{i} a_{ij} c_{i}^{'}}{c_{j}^{"} - \sum_{i} a_{ij} c_{i}^{"}} \ \forall j \in \{1, 2, ..., n\} \ such \ that \ c_{j}^{"} - \sum_{i} a_{ij} c_{i}^{"} > 0$$

نرمز بـ l_i^+ للقيم نرمز بـ المعرفة سابقاً

$$\lambda \ge l_{j} = -\frac{c_{j}^{'} - \sum_{i} a_{ij} c_{i}^{'}}{c_{j}^{"} - \sum_{i} a_{ij} c_{i}^{"}} \ \forall j \in \{1, 2, ..., n\} \ such \ that \ c_{j}^{"} - \sum_{i} a_{ij} c_{i}^{"} < 0$$

نرمز بـ l_i^- للقيم نرمز بـ l_i^- للقيم

 $.\,l_{\,0}^{\,-}=\max_{\,j}\,l_{\,j}^{\,-}\,$ و $.\,l_{\,0}^{\,+}=\min_{\,j}\,l_{\,j}^{\,+}\,$ ليكن

تبقى (λ_0) مثالية من أجل قيم λ بين l_0^- و l_0^+ . يدعى المجال $[l_0^-, l_0^+]$ بمجال إستقرار الحل (λ_0) ، و هذا المجال غير خال كونه يحتوي على الأقل λ_0 .

 $z_{j}-c_{j}$ ملاحظة في حالة تقليل LP ملاحظة، في حالة تقليل

قيم الجانب الأيمن من القيود في البرنامج الخطي معطاة بشكل وسيطي

لنأخذ البرنامج الخطى التالى:

$$\max z = \sum_{j=1}^{n} c_{j} x_{j}$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}' + \lambda b_{i}'', & i = 1, ..., m, \lambda \text{ real parameter} \\ x_{j} \geq 0, & j = 1, ..., n \end{cases}$$
(LP)

باستخدام مفهوم الترافق، يمكن رد هذه المسألة إلى مسألة تابع الهدف معطى بشكل وسيطي يعطى البرنامج المرافق لـ LP على الشكل التالى:

$$\min w = \sum_{i=1}^{m} (b_{i}^{'} + \lambda b_{i}^{"}) y_{i} \qquad (\lambda \ real \ parameter)$$

$$\begin{cases} \sum_{i=1}^{m} a_{ij} y_{i} \ge c_{j}, & j = 1,...,n, \\ y_{i} \ge 0, & i = 1,...,m \end{cases}$$

و هذا برنامج خطى فيه تابع الهدف معطى بشكل وسيطى و يحل كما في الحالة السابقة

البرامج الخطية الوسيطية (أمثلة)

مثال 1. لنأخذ البرنامج الخطي الوسيطي التالي:

(1) إذا كان $\lambda = 0$ فإن جدول السمبلكس النهائي يعطى كما يلي:

	max		1	3	0	0	0
B	$c_{\scriptscriptstyle B}$	b	x_1	x_2	t_1	t_2	t_3
<i>x</i> ₁	1	6	1	0	3/5	-1/5	0
x_2	3	8	0	1	2/5	1/5	0
t_3	0	8	0	0	-4/5	3/5	1
-30			0	0	-9/5	-2/5	0

الحل المثالي للمسألة هو

$$x_1 = 6, x_2 = 8, z = 30$$

2) إذا كان $\lambda > 0$ فإن جدول السمبلكس يعطى كما يلى:

		max		1	$3-3\lambda$	0	0	0
	В	C_B	b	x_1	x_2	t_1	t_2	t_3
·	x_1	1	6	1	0	3/5	-1/5	0
·	x_2	$3-3\lambda$	8	0	1	2/5	1/5	0
•	- t ₃	0	8	0	0	-4/5	3/5	1
			$-30 + 24\lambda$	0	0	$-9/5+6\lambda/5$	$-2/5+3\lambda/5$	0

 $x_1 = 6, x_2 = 8$ الحل المثالي للمسألة هو

يبقى هذا الحل مثالياً من أجل جميع قيم ٨ التي تحقق الشروط التالية

$$-9/5 + 6\lambda/5 \le 0 \Rightarrow \lambda \le 3/2$$
$$-2/5 + 3\lambda/5 \le 0 \Rightarrow \lambda \le 2/3$$

يدعى المجال $2/3 \geq \lambda \leq 2/3$ أو $I_1 = [0,2/3]$ بمجال الاستقرار

 $z=30-24\lambda$, $\lambda\in[0,2/3]$ إذا الحل $x_1=6,x_2=8$ بيقى مثالياً من أجل جميع قيم

3) من أجل $2/3 > \lambda > 2/3$ عندئذ جدول السمبلكس يعطى كالتالى:

		max	ζ	1	$3-3\lambda$	0	0	0
	B	C_B	b	x_1	x_2	t_1	t_2	t_3
	x_1	1	26/3	1	0	1/3	0	1/3
•	$-x_2$	$3-3\lambda$	16/3	0	1	2/3	0	-1/3
	t_2	0	40/3	0	0	-4/3	1	5/3
			$-74/3 + 16\lambda$	0	0	$-7/3+2\lambda$	0	$2/3-\lambda$
	<i>t</i> ₂	U		0	0		0	

الحل 16/3 التي تحقق الشروط التالية: $x_1 = 26/3$, يبقى مثالياً من أجل جميع قيم $x_2 = 26/3$

$$-7/3 + 2\lambda \le 0 \Rightarrow \lambda \le 7/6$$
$$2/3 - \lambda \le 0 \Rightarrow \lambda \ge 2/3$$

 $I_2 = [2/3,7/6]$ يعطى مجال الاستقرار بـ

 $z = 74/3 - 16\lambda$, $\lambda \in [2/3, 7/6]$ ونا أجل جميع قيم $x_1 = 26/3, x_2 = 16/3$ إذا الحل

4) من أجل $3/6 < \lambda > 7/6$ عندئذ جدول السمبلكس يعطى كالتالى:

max			1	$3-3\lambda$	0	0	0
B	C_B	b	x_1	x_2	t_1	t_2	t_3
x_1	1	6	1	-1/2	0	0	1/2
t_1	0	8	0	3/2	1	0	-1/2
t_2	0	24	0	2	0	1	1
		-6	0	$7/2-3\lambda$	0	0	-1/2

الحل $x_1 = 6, x_2 = 0$ يبقى مثالياً من أجل جميع قيم $x_1 = 6, x_2 = 0$ التالية:

 $7/2 - 3\lambda \le 0 \Rightarrow \lambda \ge 7/6$

 $I_3=[7/6,\infty[$ يعطى مجال الاستقر ال بz=6 , $\lambda\in[7/6,\infty[$ يبقى مثالياً من أجل جميع قيم $x_1=6,x_2=0$ إذا الحل

مثال 2. لنأخذ البرنامج الخطي الوسيطي التالي:

(1) إذا كان $\lambda = 0$ فإن جدول السمبلكس النهائي يعطى كما يلي:

min			14	12	12	0	0
В	C_B	b	y_1	y 2	<i>y</i> ₃	u_1	u_2
<i>y</i> ₁	14	9/5	1	0	4/5	-3/5	-2/5
y 2	12	2/5	0	1	-3/5	1/5	-1/5
		30	0	0	-8	-6	-8

يعطى الحل المثالي كما يلي:

$$y_1 = 9/5, y_2 = 2/5, y_3 = 0, x_1 = 6, x_2 = 8, z = 30$$

2) إذا كان $\lambda > 0$ فإن جدول السمبلكس يعطى كما يلي:

		min		14	$12 + 5\lambda$	$12-10\lambda$	0	0
	$\boldsymbol{\mathit{B}}$	$c_{\scriptscriptstyle B}$	b	y_1	<i>y</i> ₂	<i>y</i> ₃	u_1	u_2
•	- y ₁	14	9/5	1	0	4/5	-3/5	-2/5
	<i>y</i> ₂	$12 + 5\lambda$	2/5	0	1	-3/5	1/5	-1/5
			$30 + 2\lambda$	0	0	-8 + 7λ ♠	$-6 + \lambda$	$-8-\lambda$

$$-8 + 7\lambda \le 0$$

$$-8 - \lambda \le 0$$

 $0 \le \lambda \le 8/7$, $I_1 = [0, 8/7]$

من ذلك ينتج

الحل
$$\lambda$$
 التي تحقق $y_1 = 9/5, y_2 = 2/5, y_3 = 0, x_1 = 6 - \lambda, x_2 = 8 + \lambda$ التي تحقق $z = 30 + 2\lambda$, $\lambda \in [0,8/7]$,

(3) إذا كان 3 > 8 / 7 فإن جدول السمبلكس يعطى كما يلي:

min			14	$12 + 5\lambda$	$12-10\lambda$	0	0
В	C_B	b	<i>y</i> ₁	y 2	y 3	u_1	u_2
<i>y</i> ₃	12-10λ	9/4	5/4	0	1	-3/4	-1/2
<i>y</i> ₂	$12 + 5\lambda$	7/4	3/4	1	0	-1/4	-1/2
	•	48 – 55λ / 4	$10-35\lambda/4$	0	0	$-12 + 25\lambda/4$	$-12 + 5\lambda/2$

$$10 - 35\lambda / 4 \le 0$$

$$-12 + 25\lambda / 4 \le 0$$

$$-12 - 5\lambda / 2 \le 0$$

و منه ينتج

$$8/7 \le \lambda \le 48/25$$
, $I_2 = [8/7, 48/25]$

$$\lambda$$
 مثالیاً من أجل جمیع قیم $y_1=0,y_2=7/4,y_3=9/4,x_1=12-25\lambda/4,x_2=12-5\lambda/2$ التي تحقق
$$z=48-55\lambda/4$$
 , $\lambda\in[8/7,48/25]$

 $^{-6 + \}lambda \le 0$

$$\lambda > 48/25$$
 فإن الجاكان 3/4

$$-12 + 25\lambda/4 \ge 0$$

و جميع القيم في جدول السمبلكس السابق في نفس العمود سالبة و منه نستنتج بأن مسألة المرافق غير محدودة و بالتالي المسألة الأولية متعارضة أو غير ممكنة

مسائل

أوجد الحلول المثالية للبرامج الخطية الوسيطية التالية:

1. $\min z = -x_1 + (1 - \lambda)x_2$ $st 2x_1 - x_2 \ge -2$ $x_1 - x_2 \le 2$ $x_1 + x_2 \le 5$ $x_1, x_2, \lambda \ge 0$

3. $\max z = (0.5 + \lambda)x_1 + x_2$ $st \qquad x_1 + x_2 \le 3$ $-x_1 + x_2 \le 1$

 $x_1 \le 2$ $x_1, x_2, \lambda \ge 0$

5. $\max z = (2 + \lambda)x_1 + (2 - \lambda)x_2$ $st \qquad x_1 + x_2 \le 6$ $x_1 \le 4$ $x_2 \le 3$ $x_1, x_2 \ge 0, -4 \le \lambda \le 4$

7. $\max z = x_1 + 3x_2$ $st \qquad x_1 \le 4$ $x_1 + x_2 \le 5\lambda$ $-x_1 + x_2 \le 2 + \lambda$ $x_2 \le 3$ $x_1, x_2, \lambda \ge 0$ 2. $\max z = (5 - \lambda)x_1 + 7x_2$ $st \qquad x_1 + x_2 \ge 6$ $x_1 \ge 4$

 $x_2 \leq 3$

 $x_1, x_2, \lambda \ge 0$

 $x_1, x_2, \lambda \ge 0$

4. $\min z = -(1 - \lambda)x_1 + x_2$ $st 2x_1 - x_2 \ge 2$ $-x_1 + 2x_2 \ge -2$ $x_1 + x_2 \le 5$

6. min $z = (3 + \lambda)x_1 + (2 - \lambda)x_2$ st $x_1 + x_2 \ge 4$ $x_1 + 2x_2 \ge 5$ $x_1 \ge 2$ $x_1, x_2 \ge 0, -2 \le \lambda \le 3$

8

 $\min z = 4x_1 + 5x_2 + 3x_3$ $st -x_1 - 2x_2 + x_3 \le -5 + \lambda$ $-x_1 - x_2 + x_3 \ge 1 - 2\lambda$ $-x_2 - 2x_3 \le -3\lambda$ $x_1, x_2, x_3, \lambda \ge 0$