JUAS22: Accelerator Design Workshop - Lattice Design Group 10

Marvin Noll Javier Olivares Adrien Plaçais

February 1, 2022

Design of Arc Cell (1): Cell type and phase advance

• Cell type: FODO

• Phase advance: $\mu = 90^{\circ}$

Design of Arc Cell (1): Cell layout

Design of Arc Cell (1): θ and k_1

• Bending angle θ :

$$\epsilon_{x} = \frac{C_{q}}{J_{x}} \gamma^{2} \theta^{3} F$$
, with: $F = F_{\text{FODO}} = \frac{1}{2 \sin \mu} \frac{5 + 3 \cos \mu}{1 - \cos \mu} \frac{L_{\text{cell}}}{L_{B}}$
 $\Leftrightarrow \theta = 1.323 \, \text{mrad}$

• Quadrupole strength k_1 :

$$\sin \frac{\mu}{2} = \frac{L_Q}{4 f}, \text{ and } \frac{1}{f} = k_1 L_Q$$

 $\Leftrightarrow k_1 = 0.057 \, 14 \, \text{m}^{-2}$

Design of Arc Cell (1): Tune Matching

```
match, sequence = JC_fodo_arc; 
 GLOBAL, Q1=0.25+0.00001; 
 GLOBAL, Q2=0.25+0.00001; 
 VARY, NAME= K1QF, STEP=0.000001; 
 VARY, NAME= K1QD, STEP=0.000001; 
 LMDIF, CALLS=50, TOLERANCE=1e-8;//method adopted endmatch:
```

	Target Value	Final Value	
q1 q2	$2.5001 \times 10^{-1} \\ 2.5001 \times 10^{-1}$	$2.5001003\times10^{-1}\\2.5001003\times10^{-1}$	
	D. (A.C	

	Before matching		After matching	
k1qf	5.714	$\times10^{-2}$	4.767	$\times 10^{-2}$
k1qd	-5.714	$\times 10^{-2}$	-4.767	$\times 10^{-2}$

Design of Arc Cell (1): Chromaticity Matching

```
match, sequence = JC\_fodo\_arc; GLOBAL, dq1=0; GLOBAL, dq2=0; VARY, NAME= K2SF, STEP=0.0000001; VARY, NAME= K2SD, STEP=0.0000001; LMDIF, CALLS=200, TOLERANCE=1e-6; endmatch:
```

	Target Value	Final Value
dq1	0	7.035×10^{-14}
dq2	0	2.599×10^{-13}

	Before matching	After matching	
k2sf	0	2.61	$\times 10^{-1}$
k2sd	0	-5.003	$ imes 10^{-1}$

Design of Arc Cell (1): Closing the Ring

• Close the ring with a loop:

```
 \begin{array}{lll} i &=& 0; \\ JC\_ring &: SEQUENCE, & refer=centre \ , & L=L\_JC\_ring \ ; \\ & while & (i &< numberOfCells) \ \{ \\ & & JC\_fodo\_arc \ , & at=(i \ + \ 0.5) \ * \ Lcell \ ; \\ & & i &=& i \ + \ 1; \\ & & \\ ENDSEQUENCE; \end{array}
```

• Check if ring is closed with survey:

$$\frac{\int \rho \, \mathrm{d}\theta - 2\pi}{2\pi} = \frac{6.2854196 - 2\pi}{2\pi} = 0.035\%$$

Design of Arc Cell (1): Synchrotron Radiation and Emittance

• Energy loss:

$$U_0 = \frac{C_q E^4 I_2}{2 \pi} = 3.96 \times 10^{-8} \,\mathrm{J} \tag{1}$$

• Emittance:

$$\epsilon_{x} = \frac{C_q \gamma_L^2 I_5}{J_x I_2} = 2.58 \,\text{nm rad} \tag{2}$$