COMP9020

Foundations of Computer Science

COMP9020 19T3 Staff

Lecturer: Paul Hunter

Email: paul.hunter@unsw.edu.au

Lectures: Mondays and Wednesdays 4-6pm Consults: Wednesdays, 2-3pm, Rm204 K17

Research: Theoretical CS: Algorithms, Formal verification

What you can expect from me

What is this course about?

What is Computer Science?

"Computer science no more about computers than astronomy is about telescopes"

– E. Dijkstra

Course Aims

The actual content is taken from a list of subjects that constitute the basis of the tool box of every serious practitioner of computing:

• number theory	week 1
 sets, relations and functions 	weeks 2–3
big-O notation	week 3
• recursion	week 4
• graph theory	week 5
• logic	week 6
• induction	week 7
• combinatorics	week 8
 probability and expectation 	week 9

Course Material

All course information is placed on the course website

www.cse.unsw.edu.au/~cs9020/

Content includes:

- Lecture slides and recordings
- Quizzes and Assignments
- Course Forums
- Practice questions
- Challenge questions

Course Material

Textbook:

• KA Ross and CR Wright: Discrete Mathematics

Supplementary textbook:

 E Lehman, FT Leighton, A Meyer: Mathematics for Computer Science

Assessment Summary

60% exam, 30% assignments, 10% quizzes:

- 16 quizzes, worth up to 1 mark each
- 3 assignments, worth up to 10 marks each
- final exam (2 hours) worth up to 60 marks

Quizzes are available for 2 days before each lecture. Assignments due at the end of weeks 4, 7 and 10.

You must achieve 40% on the final exam to pass

Your final score will be taken from your 10 best quiz results, 3 assignments and final exam.

More information

View the course outline at:

www.cse.unsw.edu.au/~cs9020/outline.html

Particularly the sections on **Student conduct** and **Plagiarism**.

What I will expect from you

Assessments

To achieve good marks in this course you need to demonstrate:

- Your understanding of the material
- Your ability to work with the material

Assessments

To achieve good marks in this course you need to **demonstrate**:

- Your understanding of the material
- Your ability to work with the material

Mathematical communication

Guidelines for good mathematical writing

Mathematical writing should be:

- Clear
- Logical
- Sensical

Examples

Example

Examples

Example

Ex. 2

$$(A \setminus B) \cup (B \setminus A) = (A \cap B^c) \cup (B \cap A^c)$$

$$= ((A \cap B^c) \cup B) \cap ((A \cap B^c) \cup A^c)$$

$$= (A \cup B) \cap (B^c \cup B)$$

$$\cap (A \cup A^c) \cap (B^c \cup A^c)$$

$$= (A \cup B) \cap (A^c \cup B^c)$$

$$= (A \cup B) \cap (A \cap B)^c$$

$$= (A \cup B) \setminus (A \cap B)$$
(Def.)
$$(Def.)$$

Examples

Example

Ex. 4a

We will show that if R_1 and R_2 are symmetric, then $R_1 \cap R_2$ is symmetric.

Suppose $(a,b) \in R_1 \cap R_2$. Then $(a,b) \in R_1$ and $(a,b) \in R_2$. Because R_1 is symmetric, $(b,a) \in R_1$. Because R_2 is symmetric, $(b,a) \in R_2$. Therefore $(b,a) \in R_1 \cap R_2$. Therefore $R_1 \cap R_2$ is symmetric.

Proofs

A large component of your work in this course is giving **proofs** of **propositions**.

A **proposition** is a statement that is either true or false.

Example

Propositions:

- 3+5=8
- All integers are either even or odd
- There exist a, b, c such that 1/a + 1/b + 1/c = 4

Not propositions:

- 3 + 5
- x is even or x is odd
- 1/a + 1/b + 1/c = 4

Proposition structure

Common proposition structures include:

```
If A then B (A \Rightarrow B)
A if and only if B (A \Leftrightarrow B)
For all x, A (\forall x.A)
There exists x such that A (\exists x.A)
```

 \forall and \exists are known as **quantifiers**.

Proofs

A large component of your work in this course is giving **proofs** of **propositions**.

A proof of a proposition is an argument to convince the reader/marker that the proposition is true.

A **proof** of a proposition is a finite sequence of logical steps, starting from base assumptions (**axioms** and **hypotheses**), leading to the proposition in question.

Proofs

Example

Prove: $3 \times 2 = 2 \times 3$

$$3 \times 2 = (2+1) \times 2$$

$$= (2 \times 2) + (1 \times 2)$$

$$= (1 \times 2) + (2 \times 2)$$

$$= 2 + (2 \times 2)$$

$$= (2 \times 1) + (2 \times 2)$$

$$= 2 \times (1+2)$$

$$= 2 \times 3.$$

Starting from the proposition and deriving true is not valid.

Example

Prove: 1 = -1

$$1 = -1$$

So $(1)^2 = (-1)^2$
So $1 = 1$ which is true.

Does this mean that 1 = -1?

Make sure each step is logically valid: for example, x = y implies $x^2 = y^2$ but $x^2 = y^2$ does not imply x = y.

Example

Suppose a = b. Then,

$$a^{2} = ab$$
So
$$a^{2} - b^{2} = ab - b^{2}$$
So
$$(a - b)(a + b) = (a - b)b$$
So
$$a + b = b$$
So
$$a = 0$$

This is true no matter what value *a* is given at the start, so does that mean everything is equal to 0?

For propositions of the form $\forall x.A$ where x can have infinitely many values:

- You cannot enumerate infinitely many cases in a proof.
- Only considering a finite number of cases is not sufficient.

Example

For all
$$n$$
, $n^2 + n + 41$ is prime

True for n = 0, 1, 2, ..., 39. Not true for n = 40.

The order of quantifiers matters when it comes to propositions:

Example

- For every number x, there is a number y such that y is larger than x
- There is a number y such that for every number x, y is larger than x

Proof strategies: direct proof

Proposition form	You need to do this
$A \Rightarrow B$	Assume A and prove B
$A \Leftrightarrow B$	Prove "If A then B" and "If B then A"
$\forall x.A$	Show A holds for every possible value of x
$\exists x.A$	Find a value of x that makes A true

Proof strategies: contradiction

To prove A is true, assume A is false and derive a contradiction. That is, start from the negation of the proposition and derive false.

Example

Prove: $\sqrt{2}$ is irrational

Proof: Assume $\sqrt{2}$ is rational ...

Proposition form	Its negation
A and B	Not A or not B
A or B	Not A and Not B
$A \Rightarrow B$	A and Not B
$A \Leftrightarrow B$	(A and Not B) or (not A and B)
$\forall x.A$	E x.not A
∃ <i>x</i> . <i>A</i>	

Proposition form	Its negation
A and B	?
A or B	
$A \Rightarrow B$	
$A \Leftrightarrow B$	
$\forall x.A$	
$\exists x.A$	

Proposition form	Its negation
A and B	?
A or B	?
$A \Rightarrow B$	
$A \Leftrightarrow B$	
$\forall x.A$	
$\exists x.A$	

Proposition form	Its negation
A and B	?
A or B	?
$A \Rightarrow B$?
$A \Leftrightarrow B$	
$\forall x.A$	
$\exists x.A$	

Proposition form	Its negation
A and B	?
A or B	?
$A \Rightarrow B$?
$A \Leftrightarrow B$?
$\forall x.A$	
∃ <i>x</i> . <i>A</i>	

Proposition form	Its negation
A and B	?
A or B	?
$A \Rightarrow B$?
$A \Leftrightarrow B$?
$\forall x.A$?
$\exists x.A$	

Proposition form	Its negation
A and B	? not a or not b
A or B	? not a and not b
$A \Rightarrow B$? a and not b
$A \Leftrightarrow B$	[?] a and not b, or b and not a
$\forall x.A$? E x not a
$\exists x.A$? floor x not

Proof strategies: contrapositive

To prove a proposition of the form "If A then B" you can prove "If not B then not A"

Example

Prove: If $m + n \ge 73$ then $m \ge 37$ or $n \ge 37$.

Proof strategies: dealing with \forall

How can we check infinitely many cases?

- Choose an arbitrary element: an object with no assumptions about it (may have to check several cases)
- Induction (see week 7)

Example

Prove: For every integer n, n^2 will have remainder 0 or 1 when divided by 4.

Note: "Arbitrary" is not the same as "random".

