WHAT IS CLAIMED IS:

1. A compound represented by Formula I:

5

- 10

15

20

25

or a pharmaceutically acceptable salt thereof, wherein:

A is a heterocycle optionally substituted with one to five independent halogen, -CN, NO_2 , $-C_1$ -6alkyl, $-C_1$ -6alkenyl, $-C_1$ -6alkynyl, $-C_1$ -6alkyl, $-C_1$

R¹, R², and R³ each independently is -C₀₋₆alkyl, -C₃₋₇ rcycloalkyl, heteroaryl, or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, -C₁₋₆alkyl, -O(C₀₋₆alkyl), -O(C₃₋₇cycloalkyl), -O(aryl), -N(C₀₋₆alkyl)(C₀₋₆alkyl)(C₃₋₇cycloalkyl), -N(C₀₋₆alkyl)(aryl) substituents;

R⁴ is -C₁-6alkyl, -C₃-7cycloalkyl, heteroaryl, or aryl; optionally substituted with 1-5 independent halogen, -CN, -C₁-6alkyl, -O(C₀-6alkyl), -O(C₃-7cycloalkyl), -O(aryl), -N(C₀-6alkyl)(C₀-6alkyl), -N(C₀-6alkyl)(aryl) substituents;

B is aryl, heterocycle, $-C_{3-20}$ cycloalkyl, $-C_{3-20}$ cycloalkenyl, $-C_{3-20}$ cycloalkadienyl, $-C_{3-20}$ cycloalkatrienyl, $-C_{3-20}$ cycloalkadiynyl, $-C_{3-20}$ cycloalkadiynyl; optionally substituted with one to five independent halogen,

-CN, NO₂, -C₁-6alkyl, -C₁-6alkenyl, -C₁-6alkynyl, -OR⁵, -NR⁵R6, -C(=NR⁵)NR⁶R⁷, -N(=NR⁵)NR⁶R⁷, -NR⁵COR⁶, -NR⁵CO₂R⁶, -NR⁵SO₂R⁸, -NR⁵CONR⁶R⁷, -SR⁸, -SOR⁸, -SO₂R⁸, -SO₂NR⁵R⁶, -COR⁵, -CO₂R⁵, -CONR⁵R⁶, -C(=NR⁵)R⁶, -C(=NOR⁵)R⁶, aryl or heterocycle substituents; wherein the alkyl, alkenyl or alkynyl may optionally be substituted with 1-5 independent halogen, -CN, -C₁-6alkyl, -O(C₀-6alkyl), -O(C₃-7cycloalkyl), -O(aryl), -N(C₀-6alkyl)(C₀-6alkyl), -N(C₀-6alkyl)(C₃-7cycloalkyl), -N(C₀-6alkyl)(aryl) substituents;

R5, R6, and R7 each independently is -C0-6alkyl, -C3-7cycloalkyl, heteroaryl, or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, -C1-6alkyl, -O(C0-6alkyl), -O(C3-7cycloalkyl), -O(aryl), -N(C0-6alkyl)(C0-6alkyl), -N(C0-6alkyl)(C3-7cycloalkyl), -N(C0-6alkyl)(aryl) substituents;

R8 is -C₁₋₆alkyl, -C₃₋₇cycloalkyl, heteroaryl, or aryl;
optionally substituted with 1-5 independent halogen, -CN, -C₁₋₆alkyl, -O(C₀₋₆alkyl), -O(C₃₋₇cycloalkyl), -O(aryl), -N(C₀₋₆alkyl)(C₀₋₆alkyl), -N(C₀₋₆alkyl)(C₃₋₇cycloalkyl), -N(C₀₋₆alkyl)(aryl) substituents;

wherein the compound is isotopically labeled with at least one ¹¹C, ¹³C, ¹⁴C, ¹⁸F, ¹⁵O, ¹³N, ³⁵S, ²H, or ³H atom;

except when A = 6-methyl-2-pyridyl then B cannot be 3-methoxyphenyl or unsubstituted phenyl.

2. A compound represented by Formula II:

or a pharmaceutically acceptable salt thereof, wherein:

20

25

A is pyridinyl, pyrrolyl, imidazolyl, pyridazinyl, pyrimidinyl, pyrazoyl, pyrazinyl, triazolyl, triazinyl, tetrazolyl, tetrazolyl, tetrazepinyl, isoxazolyl, oxazolyl, oxadiazolyl, oxatriazolyl, oxazinyl, oxadiazinyl, isothiazolyl, thiadazinyl, thiadiazolyl, thiadiazepinyl, dioxazolyl, oxathiazolyl, oxathiazinyl, oxazepinyl, oxadiazepinyl, azepinyl, and 5. diazepinyl, optionally substituted with one to five independent halogen, -CN, NO₂, -C₁-6alkyl, -C₁-6alkynyl, -OR¹, -NR¹R², - $C(=NR^1)NR^2R^3$, $-N(=NR^1)NR^2R^3$, $-NR^1CO_2R^2$, $-NR^1SO_2R^4$, $-NR^{1}CONR^{2}R^{3}$, $-SR^{4}$, $-SO_{2}R^{4}$, $-SO_{2}NR^{1}R^{2}$, $-COR^{1}$, $-CO_{2}R^{1}$, -CONR¹R², -C(=NR¹)R², or -C(=NOR¹)R² substituents; wherein the alkyl, 10 alkenyl or alkynyl may optionally be substituted with 1-5 independent halogen, -CN, -C1-6alkyl, -O(C0-6alkyl), -O(C3-7cycloalkyl), -O(aryl), -N(C0-6alkyl)(C0-6alkyl), -N(C0-6alkyl)(C3-7cycloalkyl), -N(C0-6alkyl)(aryl) substituents: 15

R¹, R², and R³ each independently is -C₀₋₆alkyl, -C₃₋₇ reycloalkyl, heteroaryl, or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, -C₁₋₆alkyl, -O(C₀₋₆alkyl), -O(C₃₋₇cycloalkyl), -O(aryl), -N(C₀₋₆alkyl)(C₀₋₆alkyl)(C₀₋₆alkyl)(C₃₋₇cycloalkyl), -N(C₀₋₆alkyl)(aryl) substituents;

R⁴ is -C₁-6alkyl, -C₃-7cycloalkyl, heteroaryl, or aryl; optionally substituted with 1-5 independent halogen, -CN, -C₁-6alkyl, -O(C₀-6alkyl), -O(C₃-7cycloalkyl), -O(aryl), -N(C₀-6alkyl)(C₀-6alkyl), -N(C₀-6alkyl)(aryl) substituents;

20

B is phenyl, -C₃₋₂₀cycloalkyl, -C₃₋₂₀cycloalkenyl, -C₃₋₂₀cycloalkenyl, -C₃₋₂₀cycloalkadienyl, -C₃₋₂₀cycloalkatrienyl, -C₃₋₂₀cycloalkynyl, -C₃₋₂₀cycloalkynyl, -C₃₋₂₀cycloalkadiynyl, indenyl, dihydroindenyl, naphthalenyl, dihydropyranyl, dihydronaphthalenyl, pyridinyl, thiazolyl, furyl, dihydropyranyl, dihydrothiopyranyl, piperidinyl, isoxazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolyl, quinolinyl, isoquinolinyl, optionally substituted with one to five independent halogen, -CN, NO₂, -C₁₋₆alkyl, -C₁₋₆alkenyl, -C₁₋₆alkynyl, -OR⁵, -NR⁵R⁶, -C(=NR⁵)NR⁶R⁷, -N(=NR⁵)NR⁶R⁷, -NR⁵COR⁶, -NR⁵CO₂R⁸, -NR⁵CONR⁶R⁷, -SR⁸, -SOR⁸, -SO₂R⁸, -SO₂R⁸, -SO₂R⁸, -SO₂R⁸, -C(=NOR⁵)R⁶, aryl

or heterocycle substituents; wherein the alkyl, alkenyl or alkynyl may optionally be substituted with 1-5 independent halogen, -CN, -C₁₋₆alkyl, -O(C₀₋₆alkyl), -O(C₃₋₇cycloalkyl), -O(aryl), -N(C₀₋₆alkyl)(C₀₋₆alkyl), -N(C₀₋₆alkyl)(aryl) substituents;

5

10

15

R5, R6, and R7 each independently is -C0-6alkyl, -C3-7cycloalkyl, heteroaryl, or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, -C1-6alkyl, -O(C0-6alkyl), -O(C3-7cycloalkyl), -O(aryl), -N(C0-6alkyl)(C0-6alkyl), -N(C0-6alkyl)(C3-7cycloalkyl), -N(C0-6alkyl)(aryl) substituents;

 R^8 is -C1-6alkyl, -C3-7cycloalkyl, heteroaryl, or aryl; optionally substituted with 1-5 independent halogen, -CN, -C1-6alkyl, -O(C0-6alkyl), -O(C3-7cycloalkyl), -O(aryl), -N(C0-6alkyl)(C0-6alkyl), -N(C0-6alkyl)(aryl) substituents; and

wherein the compound is isotopically labeled with at least one ¹¹C, ¹³C, ¹⁴C, ¹⁸F, ¹⁵O, ¹³N, ³⁵S, ²H, or ³H atom;

and except when A = 6-methyl-2-pyridyl then B cannot be 3-methoxyphenyl or unsubstituted phenyl.

3. The compound of claim 1 wherein A is pyridinyl, pyrrolyl. imidazolyl, pyridazinyl, pyrimidinyl, pyrazoyl, pyrazinyl, triazolyl, triazinyl, 20 tetrazolyl, tetrazinyl, tetrazepinyl, isoxazolyl, oxazolyl, oxadiazolyl, oxatriazolyl, oxazinyl, oxadiazinyl, isothiazolyl, thiazolyl, thiadazinyl, thiadiazolyl, thiadiazepinyl, dioxazolyl, oxathiazolyl, oxathiazinyl, oxazepinyl, oxadiazepinyl, azepinyl, and diazepinyl, optionally substituted with one to five independent halogen, -CN, NO2, -C1-6alkyl, -C1-6alkenyl, -C1-6alkynyl,-25 OR^{1} , $-NR^{1}R^{2}$, $-C(=NR^{1})NR^{2}R^{3}$, $-N(=NR^{1})NR^{2}R^{3}$, $-NR^{1}COR^{2}$, -NR1CO₂R2, -NR1SO₂R4, -NR1CONR2R3,-SR4, -SOR4, -SO₂R4, -SO₂NR¹R², -COR¹, -CO₂R¹, -CONR¹R², -C(=NR¹)R², or -C(=NOR¹)R² substituents; wherein the alkyl, alkenyl or alkynyl may optionally be substituted with 1-5 independent halogen, -CN, -C1-6alkyl, -O(C0-6alkyl), -30 O(C3-7cycloalkyl), -O(aryl), -N(C0-6alkyl)(C0-6alkyl), -N(C0-6alkyl)(C3-7cycloalkyl), -N(C0-6alkyl)(aryl) substituents;

R¹, R², and R³ each independently is -C₀-6alkyl, -C₃-7cycloalkyl, heteroaryl, or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, -C₁-6alkyl, -O(C₀-6alkyl), -O(C₃-7cycloalkyl), -O(aryl), -N(C₀-6alkyl)(C₀-6alkyl)(C₃-7cycloalkyl), -N(C₀-6alkyl)(aryl) substituents;

R⁴ is -C₁-6alkyl, -C₃-7cycloalkyl, heteroaryl, or aryl; optionally substituted with 1-5 independent halogen, -CN, -C₁-6alkyl, -O(C₀-6alkyl), -O(C₃-7cycloalkyl), -O(aryl), -N(C₀-6alkyl)(C₀-6alkyl), -N(C₀-6alkyl)(aryl) substituents;

B is phenyl, -C₃₋₂₀cycloalkyl, -C₃₋₂₀cycloalkenyl, -C₃₋₂₀cycloalkadienyl, -C₃₋₂₀cycloalkatrienyl, -C₃₋₂₀cycloalkynyl, -C₃₋₂₀cycloalkynyl, -C₃₋₂₀cycloalkadiynyl, indenyl, dihydroindenyl, naphthalenyl, dihydronaphthalenyl, pyridinyl, thiazolyl, furyl, dihydropyranyl, dihydrothiopyranyl, piperidinyl, isoxazolyl, pyridazinyl, pyrimidinyl,

5

10

.5

.5

- pyrazinyl, indolyl, quinolinyl, isoquinolinyl, optionally substituted with one to five independent halogen, -CN, NO₂, -C₁-6alkyl, -C₁-6alkenyl, -C₁-6alkynyl, -OR⁵, -NR⁵R6, -C(=NR⁵)NR⁶R⁷, -N(=NR⁵)NR⁶R⁷, -NR⁵COR⁶, -NR⁵CO₂R⁶, -NR⁵SO₂R⁸, -NR⁵CONR⁶R⁷, -SR⁸, -SOR⁸, -SO₂R⁸, -SO₂R⁸, -SO₂NR⁵R⁶, -COR⁵, -CO₂R⁵, -CONR⁵R⁶, -C(=NOR⁵)R⁶, aryl
- or heterocycle substituents; wherein the alkyl, alkenyl or alkynyl may optionally be substituted with 1-5 independent halogen, -CN, -C1-6alkyl, -O(C0-6alkyl), -O(C3-7cycloalkyl), -O(aryl), -N(C0-6alkyl)(C0-6alkyl), -N(C0-6alkyl)(C3-7cycloalkyl), -N(C0-6alkyl)(aryl) substituents;

R5, R6, and R7 each independently is -C0-6alkyl, -C3-

7cycloalkyl, heteroaryl, or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, -C1-6alkyl, -O(C0-6alkyl), -O(C3-7cycloalkyl), -O(aryl), -N(C0-6alkyl)(C0-6alkyl), -N(C0-6alkyl)(C3-7cycloalkyl), -N(C0-6alkyl)(aryl) substituents;

R⁸ is -C₁-6alkyl, -C₃-7cycloalkyl, heteroaryl, or aryl;

optionally substituted with 1-5 independent halogen, -CN, -C₁-6alkyl, -O(C₀-6alkyl), -O(C₃-7cycloalkyl), -O(aryl), -N(C₀-6alkyl)(C₀-6alkyl), -N(C₀-6alkyl)(aryl) substituents or a pharmaceutically acceptable salt thereof; and

wherein the compound is isotopically labeled with at least one ¹¹C, ¹³C, ¹⁴C, ¹⁸F, ¹⁵O, ¹³N, ³⁵S, ²H, or ³H atom;

and except when A = 6-methyl-2-pyridyl then B cannot be 3-methoxyphenyl or unsubstituted phenyl.

5

0

5

4. The compound of claim 2 wherein A is thiazolyl or isothiazolyl, optionally substituted with one to three independent halogen, – CN, NO₂, -C1-6alkyl, -C1-6alkenyl, -C1-6alkynyl, -OR1, -NR1R2, – C(=NR1)NR2R3, -N(=NR1)NR2R3, -NR1COR2, -NR1CO₂R2, -NR1SO₂R4, -NR1CONR2R3, -SR4, -SOR4, -SO₂NR1R2, -COR1, -CO₂R1, -CONR1R2, -C(=NR1)R2, or -C(=NOR1)R2 substituents; and

B is phenyl, $-C_{3-20}$ cycloalkyl, $-C_{3-20}$ cycloalkenyl, $-C_{3-20}$ cycloalkadienyl, $-C_{3-20}$ cycloalkadienyl, $-C_{3-20}$ cycloalkadiynyl, indenyl, dihydroindenyl, naphthalenyl, dihydronaphthalenyl, pyridinyl, thiazolyl, furyl, dihydropyranyl, dihydrothiopyranyl, piperidinyl, isoxazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolyl, quinolinyl, isoquinolinyl, optionally substituted with one to three independent halogen, -CN, NO_2 , $-C_{1-6}$ alkyl, $-C_{1-6}$ alkenyl, $-C_{1-6}$

6alkynyl, -OR5, -NR5R6, -C(=NR5)NR6R7, -N(=NR5)NR6R7, -NR5COR6, -NR5CO₂R6, -NR5SO₂R8, -NR5CONR6R7, -SR8, -SO₂R8, -SO₂R8, -SO₂NR5R6, -COR5, -CO₂R5, -CONR5R6, -C(=NR5)R6, -C(=NOR5)R6, aryl or heterocycle substituents or a pharmaceutically acceptable salt thereof;

wherein the compound is isotopically labeled with at least one ¹¹C, ¹³C, ¹⁴C, ¹⁸F, ¹⁵O, ¹³N, ³⁵S, ²H, or ³H atom.

5

0

5. The compound of claim 1 wherein A is pyridinyl, pyrrolyl, imidazolyl, pyridazinyl, pyrimidinyl, pyrazoyl, pyrazinyl, triazolyl, triazinyl, tetrazolyl, tetrazepinyl, isoxazolyl, oxazolyl, oxadiazolyl, oxatriazolyl, oxazinyl, oxadiazinyl, isothiazolyl, thiadazinyl, thiadiazolyl, thiadiazepinyl, dioxazolyl, oxathiazolyl, oxathiazinyl, oxazepinyl, oxadiazepinyl, azepinyl, and diazepinyl, optionally substituted with one to five independent halogen, -CN, NO₂, -C1-6alkyl, -C1-6alkenyl, -C1-6alkynyl, -OR1, -NR1R2, -C(=NR1)NR2R3, -N(=NR1)NR2R3, -NR1COR2,

-NR¹CO₂R², -NR¹SO₂R⁴, -NR¹CONR²R³, -SR⁴, -SO₂R⁴, -SO₂R⁴, -SO₂NR¹R², -COR¹, -CO₂R¹, -CONR¹R², -C(=NR¹)R², or -C(=NOR¹)R² substituents;

R1, R2, and R3 each independently is -C0-6alkyl, -C3-

5 7cycloalkyl, heteroaryl, or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, -C₁-6alkyl, -O(C₀-6alkyl), -O(C₃-7cycloalkyl), -O(aryl), -N(C₀-6alkyl)(C₀-6alkyl), -N(C₀-6alkyl)(C₃-7cycloalkyl), -N(C₀-6alkyl)(aryl) substituents;

0.

0

R⁴ is -C₁-6alkyl, -C₃-7cycloalkyl, heteroaryl, or aryl; optionally substituted with 1-5 independent halogen, -CN, -C₁-6alkyl, -O(C₀-6alkyl), -O(C₃-7cycloalkyl), -O(aryl), -N(C₀-6alkyl)(C₀-6alkyl), -N(C₀-6alkyl)(aryl) substituents;

B is pyridinyl or phenyl, optionally substituted with one to five independent halogen, –CN, NO₂, -C₁-6alkyl, -C₁-6alkenyl, -C₁-6alkynyl,

-OR5, -NR5R6, -C(=NR5)NR6R7, -N(=NR5)NR6R7, -NR5COR6, -NR5CO₂R6, -NR5SO₂R8, -NR5CONR6R7, -SR8, -SOR8, -SO₂R8, -SO₂NR5R6, -COR5, -CO₂R5, -CONR5R6, -C(=NR5)R6, -C(=NOR5)R6, aryl or heterocycle substituents;

R5, R6, and R7 each independently is -C0-6alkyl, -C3-

7cycloalkyl, heteroaryl, or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, -C1-6alkyl, -O(C0-6alkyl), -O(C3-7cycloalkyl), -O(aryl), -N(C0-6alkyl)(C0-6alkyl), -N(C0-6alkyl)(C3-7cycloalkyl), -N(C0-6alkyl)(aryl) substituents;

R8 is -C1-6alkyl, -C3-7cycloalkyl, heteroaryl, or aryl;

optionally substituted with 1-5 independent halogen, -CN, -C₁-6alkyl, -O(C₀-6alkyl), -O(C₃-7cycloalkyl), -O(aryl), -N(C₀-6alkyl)(C₀-6alkyl), -N(C₀-6alkyl)(aryl) substituents or a pharmaceutically acceptable salt thereof; and

wherein the compound is isotopically labeled with at least one ¹¹C, ¹³C, ¹⁴C, ¹⁸F, ¹⁵O, ¹³N, ³⁵S, ²H, or ³H atom;

and except when A = 6-methyl-2-pyridyl then B cannot be 3-methoxyphenyl or unsubstituted phenyl.

.5

0

5

0

5

)

- 6. The compound of claim 1 wherein A is selected from isothiazol-3-yl (1,2-thiazol-3-yl); thiazol-4-yl (1,3-thiazol-4-yl); thiazol-2-yl (1,3- thiazol-2-yl); oxazol-3-yl and oxazol-4-yl; 2-pyridinyl; 3-pyridinyl; 2-pyrrolyl; 3-pyridazinyl (1,2-diazin-3- yl); pyrimidin-4-yl (1,3-diazin-4-yl); pyrazin-3-yl (1,4-diazin-3-yl); pyrimidin-2-yl (1,3- diazin-2-yl); 1,3-isodiazol-4-yl; 1,3-isodiazol-2-yl; 1,2,3-triazin-4-yl; 1,2,4-triazin-6-yl; 1,2,4-triazin-3-yl; 1,2,4-triazin-5-yl; 1,3,5-triazin-2-yl; 1,2,3-triazol-4-yl; 1,3,4-triazol-3-yl; tetrazolyl; 1,2,4-thiadiazol-3-yl; 1,2,3- thiadiazol-4-yl; 1,3,4-thiadiazol-2-yl; 1,2,5-thiadiazol-3-yl; 1,2,4- thiadiazol-5-yl; 1,2,4-oxadiazol-3-yl and 1,2,4- oxadiazol-5-yl.
- 7. The compound of claim 6, wherein A is thiazolyl or isothiazolyl.
- 8. The compound of claim 1 wherein B is a substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, cycloalkadienyl, cycloalkatrienyl, cycloalkynyl or cycloalkadiynyl, bicyclic hydrocarbon wherein two rings have two atoms in common, or a substituted or unsubstituted heterocycle, optionally containing one or more double bonds.
- 9. The compound of claim 8 wherein B is cyclopropanyl, cyclopentenyl and cyclohexenyl, indenyl, dihydroindenyl, phenyl, naphthalenyl dihydronaphthalenyl, thiazolyl, furyl, dihydropyranyl, dihydrothiopyranyl, piperidinyl, isoxazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolyl and isoquinolinyl.
- 10. The compound of claim 9, wherein B is pyridinyl or phenyl.
 - 11. An isotopically labeled compound selected from:

	· · · · · · · · · · · · · · · · · · ·
D S N N N N N N N N N N N N N N N N N N	
H ₃ C N O 11CH ₃	D N 11CH ₃
Me—S CN 11CH3	O ¹¹ CH ₃
OCD ₂ ¹⁸ F	H ₃ C — S — OCD ₂ ¹⁸ F — ,
Me N 18F	Me N 18F N,

Soct,	OCT ₃
OCT ₃	D ₃ C - S O - 18 _F ,
Me—S N 11CH3	S CN
CN 18F ,	* = 14C · F
* = 14C CH ₃	Me - S - F - F - CN

or a pharmaceutically acceptable salt thereof.

5

)

12. A method for the preparation of the isotopically labeled compounds according to Claim 1 comprising the steps of reacting a precursor of a compound of Claim 1 with an isotopically labeled reagent containing one or more isotopes selected from ¹¹C, ¹³C, ¹⁴C ¹⁸F, ¹⁵O, ¹³N, ³⁵S, ²H, and ³H which is capable of reacting with said precursor wherein said isotopically labeled reagent produces an isotopically labeled substituent on said substrate using standard organic synthetic chemistry procedures to produce a compound of Claim 1.

5

5.

0

- 13. A method of performing positron emission tomography (PET) imaging comprising a step of administering a compound according to claim 1 as a tracer compound.
- 5 14. A method of performing positron emission tomography (PET) imaging comprising a step of administering a compound according to claim 5 as a tracer compound.
- 15. A method for imaging metabotropic glutamate receptors in a metabotropic glutamate receptor-rich tissue comprising:
 - a) administering an effective quantity of an isotopically labeled metabotropic glutamate receptor ligand according to claim 1;
 - b) positioning the subject in a PET device;
 - c) performing the emission scan of the metabotropic
 - glutamate receptor-rich tissue, and obtaining a PET image of the tissue; and
 - d) evaluating the PET image for the presence or absence of focally increased uptake of the isotopically labeled ligand in the tissue.
- 16. A method for imaging metabotropic glutamate receptors in a metabotropic glutamate receptor-rich tissue comprising:
 - a) administering an effective quantity of an isotopically labeled metabotropic glutamate receptor ligand according to claim 5;
 - b) positioning the subject in a PET device;
 - c) performing the emission scan of the metabotropic glutamate receptor-rich tissue, and obtaining a PET image of the tissue; and evaluating the PET image for the presence or absence of focally increased uptake of the isotopically labeled ligand in the tissue.
 - 17. The method of Claim 15 wherein the metabotropic glutamate receptor-rich tissue is cerebral tissue or neurotissue.

5

0

5

0

- 18. The method in Claim 15 where the tracer in the PET imaging allows monitoring of the metabolic activity of metabotropic receptors in vivo.
- 19. A method for diagnosing and monitoring the treatment of metabotropic glutamate receptor-modulated conditions, diseases or disorders comprising a step of administering to a patient suspected of having said condition, disease, or disorder an effective tracer amount of the compound of claim 11.

20. An isotopically labeled compound of Formula III wherein X is $^{-11}$ CH₃ or 18 F and Y is H or 2 H:

or a pharmaceutically acceptable salt thereof.

- 21. A method of performing positron emission tomography (PET) imaging to determine the receptor occupancy of a mGluR5 agonist or antagonist comprising a step of administering a compound according to claim 1 as a tracer.
- 22. A method of using an isotopically labeled compound to determine the receptor occupancy of a mGluR5 agonist or antagonist comprising a step of administering a compound according to claim 1 as a tracer.