ALGORITMOS DE ORDENAÇÃO

PROBLEMA – Rearranjar os registros de uma lista em uma ordem determinada (ordem numérica ou alfabética). A ordenação é considerada em relação a um determinado campo denominado chave da ordenação. Se os registros da lista contêm vários campos, um único campo deve ser escolhido como chave da ordenação.

Métodos de ordenação - Se a lista é inteiramente carregada na memória principal, os métodos de ordenação são denominados métodos de ordenação interna. Se a lista fica armazenada em dispositivos externos os métodos de ordenação são denominados métodos de ordenação externa. A diferença básica está no acesso aos registros da lista, que no segundo caso, deve ser feito em blocos ou següencialmente.

Algoritmos de ordenação - Um algoritmo de ordenação pode ser Local, em que os registros são rearranjados fisicamente ou **Indireto**, em que a ordenação é indicada por meio de apontadores (indicadores de posição).

Algoritmo de ordenação estável - Um algoritmo de ordenação é estável se preserva a ordem original para os registros que possuem valores iguais no campo chave.

Estratégias para ordenação - Os principais métodos de ordenação são baseados nas seguintes estratégias:

- Ordenação por trocas Cada dois registros da lista são trocados de posição até que a ordem desejada seja atingida. Os algoritmos BubbleSort e QuickSort pertencem a esse grupo.
- Ordenação por seleção A cada etapa, o maior (ou menor) item é selecionado e posicionado no lugar definitivo. Os algoritmos SelectionSort e HeapSort pertencem a esse grupo.
- Ordenação por inserção A cada etapa, um registro é inserido em uma parte da lista já ordenada. O algoritmo InsertionSort é baseado nessa idéia.

Complexidade do algoritmo - A complexidade de algoritmos de ordenação é medida em função do número de comparações e cópias de registros. Nos métodos de ordenação elementares, como o BubbleSort, o SelectionSort e o InsertionSort, esse número é proporcional a n² (em que n é o número de registros da lista).

Vamos considerar nesse texto o problema de ordenar uma lista de números inteiros em ordem crescente. Admitimos que a lista não contém duplicatas, não é vazia e encontrase armazenada em uma estrutura de armazenamento de dados A(lista de inteiro), nA(inteiro). Seja a lista de inteiros: 31, 41, 59, 26, 53, 58, 97, 93

Ordenação por seleção direta

O algoritmo SelectionSort é um algoritmo de ordenação por seleção direta, em que a cada etapa, o maior elemento é localizado e posicionado no sua posição definitiva. Assim, na etapa 1 o maior item é colocado na última posição, na etapa 2, considera-se a sublista contendo do primeiro até o penúltimo registro, e o maior item é localizado e colocado no final da sublista, e assim por diante até que na última etapa (são n-1 etapas) o maior dos dois itens restantes é colocado na segunda posição.

SelectionSort(A)

```
n \leftarrow nA; fim \leftarrow n;
para j de 1 até (n-1) repita
   pos \leftarrow 1;
   para k de 2 até fim repita se (A[k] > A[pos]) então pos \leftarrow k;
   se (pos \neq fim) então [aux \leftarrow A[fim]; A[fim] \leftarrow A[pos]; A[pos] \leftarrow aux];
   fim \leftarrow fim - 1:
```

Simulação do algoritmo										
ETAPA	1	2	3	4	5	6	7	8	pos	fim
1	31	41	59	26	53	58	97	93	7	8
	31	41	59	26	53	58	93	97	Troca	A[7] e A[8]
2	31	41	59	26	53	58	93	97	7	7
3	31	41	59	26	53	58	93	97	3	6
	31	41	58	26	53	59	93	97	Troca	A[3] e A[6]
4	31	41	58	26	53	59	93	97	3	5
	31	41	53	26	58	59	93	97	Troca	A[3] e A[5]
5	31	41	53	26	58	59	93	97	3	4
ļ	31	41	26	53	58	59	93	97	Troca	A[3] e A[4]
6	31	41	26	53	58	59	93	97	2	3
	31	26	41	53	58	59	93	97	Troca	A[2] e A[3]
7	31	26	41	53	58	59	93	97	1	
	26	31	41	53	58	59	93	97	Troca	A[1] e A[2]

58

59

93

97

FIM

Complexidade (Pior caso = Melhor caso = Caso médio):

41

$$EC(n) = (n-1) + (n-2) + (n-3) + ... + 2 + 1 = n(n-1)/2 = O(n^2)$$

53

Ordenação por trocas - BubbleSort

31

26

O algoritmo BubbleSort é um algoritmo de ordenação por trocas, em que a cada etapa, itens consecutivos são comparados e, se necessário, são trocados de posição. Como resultado da primeira etapa, o maior elemento é levado mediante sucessivas trocas até a sua posição definitiva. Na etapa 2, considera-se a sublista contendo do primeiro até o penúltimo registro, e a varredura dessa sublista tem por finalidade comparar (e trocar) pares de itens consecutivos de forma que o maior item é levado para o final da sublista, e assim por diante até que na última etapa (são n-1 etapas) os dois primeiros itens são comparados (trocados, se necessário) de modo que o maior dos dois ocupe a segunda posição.

BubbleSort(A)

```
n \leftarrow nA; fim \leftarrow n;
para j de 1 até (n-1) repita
   para k de 1 até (fim-1) repita
        se (A[k] > A[k+1]) então |aux \leftarrow A[k]; A[k] \leftarrow A[k+1]; A[k+1] \leftarrow aux
   fim \leftarrow fim - 1;
```

Simulação do algoritmo

ETAPA	10 00 aig	2	3	4	5	6	7	8		fim
1	31	41	59	26	53	58	97	93		8
	31	41	26	53	58	59	93	97	Trocas	3,4,5,7
2	31	41	26	53	58	59	93	97		7
	31	26	41	53	58	59	93	97	Trocas	2
3	31	26	41	53	58	59	93	97		6
	26	31	41	53	58	59	93	97	Trocas	1
4	26	31	41	53	58	59	93	97		5
5	26	31	41	53	58	59	93	97		4
6	26	31	41	53	58	59	93	97		3
7	26	31	41	53	58	59	93	97		2
	26	31	41	53	58	59	93	97	FIM	

Complexidade (Pior caso = Melhor caso):

$$EC(n) = (n-1) + (n-2) + (n-3) + ... + 2 + 1 = n(n-1)/2 = O(n^2)$$

Ordenação por inserção direta - InsertionSort

Nesse processo, consideramos a lista formada por duas sublistas: uma sublista esquerda, já ordenada e uma sublista direita, não ordenada. A cada etapa, um item da sublista direita é inserido na sublista esquerda. Na primeira etapa, a sublista esquerda é unitária, contendo somente o primeiro registro e a sublista direita contém os n-1 registros restantes. Como resultado da primeira etapa, a sublista esquerda passa a conter os dois primeiros registros, já ordenados. Na etapa 2, o terceiro registro é inserido na sublista esquerda. Na última etapa (são n-1 etapas) a sublista esquerda contém (n-1) registros ordenados e o último registro é finalmente inserido. A cada etapa, é necessário efetuar uma busca (busca em lista ordenada) seguida de uma inserção. O processo de busca e o de inserção podem ser conjugados de forma a compartilhar o mesmo loop.

InsertionSort(A)

```
n \leftarrow nA; fim \leftarrow n;
para j de 2 até n repita
   A[0] \leftarrow A[j]; k \leftarrow j-1;
    enquanto (A[0] < A[k]) faça |A[k+1] \leftarrow A[k]; k \leftarrow k-1;
    A[k+1] \leftarrow A[0];
```

Simulação do algoritmo

Etapa	1	2	3	4	5	6	7	8		j
1	31	41	59	26	53	58	97	93		2
2	31	41	59	26	53	58	97	93		3
3	31	41	59	26	53	58	97	93		4
	26	31	41	59	53	58	97	93	inserção	A[1]
4	26	31	41	59	53	58	97	93		5
	26	31	41	53	59	58	97	93	inserção	A[4]
5	26	31	41	53	59	58	97	93		6
	26	31	41	53	58	59	97	93	inserção	A[5]
6	26	31	41	53	58	59	97	93		7
7	26	31	41	53	58	59	97	93		8
	26	31	41	53	58	59	93	97	inserção	A[7]
	26	31	41	53	58	59	93	97	FIM	

Complexidade

Pior caso - lista invertida

$$WEC(n) = 2 + 3 + 4 + ... + n = (n-1)(n+2)/2 = O(n^2)$$

Melhor Caso - lista ordenada

$$bEC(n) = 1 + 1 + 1 + ... + 1 = n-1 = O(n)$$

Caso médio - lista aleatória

$$AEC(n) = (n - 1)(n+4)/4 = O(n^2)$$