Remarks 1.11. (a) Let $_{\varphi}$ be the normal state on M such that Fix(T) = \mathbb{C}_{φ} and let H := P_{\sigma}(A) \cap i\mathbb{R}. From the proof of Theorem 1.10 it follows that there exists a family $\{u_{\eta}:\eta\in H\}$ of unitaries in M such that $A'u_{\eta}=-\eta u_{\eta}$ and $A(u_{\eta}\phi)=\eta(u_{\eta}\phi)$ for all $\eta\in H$.

(b) If the group H is generated by a single element, i.e., H = $i\gamma\mathbb{Z}$ for some $\gamma\in\mathbb{R}$ then the family $\{u_{\gamma}^{\ k}:k\in\mathbb{Z}\}$ is a complete family of eigenvectors pertaining to the eigenvalues in H , where $u_{\gamma}\in\mathbb{M}$ is unitary such that $A'u_{\gamma}=i\gamma u_{\gamma}$.

<u>Proposition</u> 1.12. Suppose that T and M satisfy the assumptions of Theorem 1.10, and let N_\star be the closed linear subspace of M_\star generated by the eigenvectors of A pertaining to the eigenvalues in i $\mathbb R$. Denote by T_O the restriction of T to N_\star . Then

- (a) $G := (7_0)^- \subseteq L_s(N_*)$ is a compact, Abelian group.
- (b) $\operatorname{Id} | N_{\star} \in \{T_{O}(t) : t>s\}^{-} \subseteq L_{S}(N_{\star})$ for all $0 < s \in \mathbb{R}$.

Proof. For $\eta \in H:= P_{\sigma}(A) \cap i\mathbb{R}$ let

$$U(\eta) := \{ \psi \in D(A) : A\psi = \eta \psi \}$$

and U = {U(\eta) : $\eta \in H$ } . Then (span U) = N_* . For each $\psi \in U$ there exists $\eta \in H$ such that

$$\{T_{\Omega}(t)\psi : t\in\mathbb{R}_{+}\} = \{e^{-\eta t} \psi : t\in\mathbb{R}_{+}\}.$$

Consequently this set is relatively compact in $L_{_{\rm S}}({\rm N_{\star}})$. From [Schaefer (1966),III.4.5] we obtain that G is compact.

Next choose ψ_1 , ..., $\psi_n \in U$, $0 < s \in \mathbb{R}$ and $\delta > 0$. Since $T_O(t) \psi_1 = e^n i^t \psi_1$ ($1 \le i \le n$) for some $\eta_1 \in H$, it follows from a theorem of Kronek-ker (see, [Jacobs (1976), Satz 6.1., p.77]) that there exists s < t such that

$$|(1,1, ..., 1) - (e^{\eta}1^{t}, e^{\eta}2^{t}, ..., e^{\eta}n^{t})| < \delta$$
,

hence

$$\sup\{\|\psi_{i} - T_{O}(t)\psi_{i}\| : 1 \le i \le n\} < \delta$$

or
$$Id|N_{\star} \in \{T_{O}(t) : t>s\}^{-} \subseteq L_{s}(N_{\star})$$
.