#### **COURSE: UCS1502 - MICROPROCESSORS AND INTERFACING**

Timer Interface - 8253/8254

S. Angel Deborah Assistant Professor, Dept. of CSE



# **Learning Objective**

- To understand the architecture of 8253/8254
- To understand 8253's operation



### **Overview**

- Pin diagram of 8253
- Architecture
- Control word
- Modes of operation



# 8253 Pin Diagram





## 8253 Block Diagram



### **Pin Description**

- Clock: This is the clock input for the counter. The counter is 16 bits.
  - The maximum clock frequency is 1 / 380 nanoseconds or 2.6 megahertz. The minimum clock frequency is DC or static operation.
- Out: This single output line is the signal that is the final programmed output of the device.
  - Actual operation of the out line depends on how the device has been programmed.
- Gate: This input can act as a gate for the clock input line, or it can act as a start pulse, depending on the programmed mode of the counter.

#### **Counter Features**

- Each counter is identical, and each consists of a 16bit, pre-settable, down counter.
- Each is fully independent and can be easily read by the CPU.
- When the counter is read, the data within the counter will not be disturbed.
- This allows the system or your own program to monitor the counter's value at any time, without disrupting the overall function of the 8253.

### **Counter Selection**

|                              | RD | WR | AO | A1 | function        |
|------------------------------|----|----|----|----|-----------------|
| COUNTER 0                    | 1  | 0  | 0  | 0  | Load counter 0  |
| COUNTERU                     | 0  | 1  | 0  | 0  | Read counter 0  |
| COUNTER 1                    | 1  | 0  | 0  | 1  | Load counter 1  |
| COUNTERT                     | 0  | 1  | 0  | 1  | Read counter 1  |
| COUNTER 2                    | 1  | 0  | 1  | 0  | Load counter 2  |
| COUNTER 2                    | 0  | 1  | 1  | 0  | Read counter 2  |
| MODE WORD or<br>CONTROL WORD | 1  | 0  | 1  | 1  | Write mode word |
|                              | 0  | 1  | 1  | 1  | No-operation    |



### **Control Word Register**

- This internal register is used to write information to,
  prior to using the device.
- This register is addressed when A0 and A1 inputs are logical 1's.
- The data in the register controls the operation mode and the selection of either binary or BCD counting format.
- The register can only be written to.



#### **Control Word Format**

| D7      D6      D5      D4      D3      D2      D1      D0        SC1      SC0      RL1      RL0      M2      M1      M0      BCP | CONTROL BYTE D7 - D0 |     |     |     |    |    |    |     |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|-----|-----|----|----|----|-----|--|
| SC1 SC0 RL1 RL0 M2 M1 M0 BCP                                                                                                      | D7                   | D6  | D5  | D4  | DЗ | D2 | D1 | D0  |  |
|                                                                                                                                   | SC1                  | SCO | RL1 | RLO | M2 | M1 | MO | BCP |  |

| D7  | D6  |    | D5  | D4  | R         | D3 | D2 | D1 |                                   | DO | counts down in |          |  |
|-----|-----|----|-----|-----|-----------|----|----|----|-----------------------------------|----|----------------|----------|--|
| SC1 | SC0 |    | RL1 | RLO | ĸ         | M2 | M1 | MO | M                                 | 0  | binary         |          |  |
| 0   | 0   |    | 0   | 0   | C(<br>th  | 0  | 0  | 0  | m                                 | 1  | BCD            | al count |  |
| 0   | 1   |    |     |     | cc<br>lat | 0  | 0  | 1  | mode 1: programmable one-shot     |    |                |          |  |
| 1   | 0   |    | 0   | 1   | Re        | х  | 1  | 0  | mode 2: rate generator            |    |                |          |  |
| 1   | 1   | il | 1   | 0   | Rε        | х  | 1  | 1  | mode 3: square wave generator     |    |                |          |  |
|     |     |    | 1   | 1   | Re        | 1  | 0  | 0  | mode 4: software triggered strobe |    |                |          |  |
|     |     |    |     |     | th        | 1  | 0  | 1  | mode 5: hardware triggered strobe |    |                |          |  |

Once a counter is set up, it will remain that way until it is changed by another control word.

### Different uses of the 8253 gate input pin

| Signal Status | Low or going low                                           | Rising                                              | High             |  |
|---------------|------------------------------------------------------------|-----------------------------------------------------|------------------|--|
| Mode          |                                                            |                                                     |                  |  |
| 0             | Disables counting                                          |                                                     | Enables counting |  |
| 1             |                                                            | Initiates counting  Resets output  after next clock |                  |  |
| 2             | 1) Disables counting<br>2) Sets output<br>immediately high | 1) Reloads counter<br>2) Initiates counting         | Enables counting |  |
| 3             | 1) Disables counting<br>2) Sets output<br>immediately high | Initiates counting                                  | Enables counting |  |
| 4             | Disables counting                                          |                                                     | Enables counting |  |
| 5             |                                                            | Initiates counting                                  |                  |  |

This table shows the different uses of the 8253 gate input pin.

Each mode of operation for the counter has a different use for the GATE input pin.



- Interrupt on Terminal Count
- The counter will be programmed to an initial value and afterwards **counts down** at a rate equal to the input clock frequency(8 MHz).
- When the count is equal to 0, the **OUT pin** will be a logical 1.
- The output will stay a logical 1 until the counter is reloaded with a new value or the same value or until a mode word is written to the device.
- Once the counter starts counting down, the GATE input can disable the internal counting by setting the GATE to a logical





- Programmable One-Shot
- In mode 1, the device can be setup to give an **output pulse** that is an integer number of clock pulses.
- The one-shot is triggered on the rising edge of the GATE input.
- If the trigger occurs during the pulse output, the 8253 will be **retriggered** again.







- Rate Generator
- The counter that is programmed for mode 2 becomes a "divide by n" counter.
- The **OUT pin** of the counter goes to low for one input clock period.
- The time between the pulses of going low is dependent on the present count in the counter's register.

- For example, suppose to get an output frequency of 1,000 Hz, the period would be 1 / 1,000 s = 1 ms or 1,000  $\mu$ s.
- If an input clock of **1 MHz** were applied to the clock input of the counter #0, then the counter #0 would need to be programmed to 1000 μs.
- This could be done in **decimal or in BCD**. (The period of an input clock of 1 MHz is  $1/1,000,000 = 1 \mu s$ .)
- The formula is: n=fi/fout, where fi = input clock frequency, fout = output frequency, n = value to be loaded.

### Mode 2: Rate Generator Clock





- Square Wave Generator
- Mode 3 is similar to the mode 2 except that the output will be high for half the period and low for half.
- If the count is odd, the output will be high for (n+1)/2 and low for (n-1)/2 counts.



# Mode 3: Square Wave Generator



- Software Triggered Strobe
- In this mode the programmer can set up the counter to give an **output timeout** starting when the register is loaded.
- On the terminal count, when the counter equals to 0, the output will go to a logical 0 for one clock period and then returns to a logical 1.
- Firstly, when the mode is set, the output will be a logical 1.

# Mode 4: Software Triggered Strobe





- Hardware Triggered Strobe
- In this mode the rising edge of the trigger input will start the counting of the counter.
- The output goes low for one clock at the terminal count.
- The counter is **re triggerable**, thus meaning that if the trigger input is taken low and then high during a count sequence, the sequence will start over.
- When the external trigger input goes to a logical 1, the timer will start to time out.
- If the external trigger occurs again, prior to the time completing a full timeout, the timer will retrigger.

## Mode 5: Hardware Triggered Strobe





# Summary

- Pin diagram of 8253
- Architecture
- Control word
- Modes of operation



# Check your understanding

 What are the different modes of operation of timer?



### Thank you

