

第六章 IIR数字滤波器设计

IIR Digital Filter Design

6.1 数字滤波器设计方法概述

6.2 模拟滤波器的设计

6.3 脉冲响应不变法

6.4 双线性变换法

6.5

IIR数字滤波器设计方法小结

第六章 IIR数字滤波器设计

IIR Digital Filter Design

6.2 模拟滤波器的设计

模拟巴特沃斯低通滤波器的设计方法(1)

华东理工大学信息科学与工程学院 万永菁

模拟滤波器的设计方法

模拟滤波器的理论和设计方法已发展得相当成熟,且有若干典型的模拟滤波器供我们选择,如:

- (1) 巴特沃斯(Butterworth)滤波器
- (2) 切比雪夫(Chebyshev)滤波器
- (3) 椭圆(Ellipse)滤波器
- (4) 贝塞尔(Bessel)滤波器

这些滤波器都有严格的设计公式、现成的曲线和图表供设计人员使用。

一、模拟低通滤波器的设计指标及逼近方法

模拟低通滤波器的设计指标有 α_p , Ω_p , α_s 和 Ω_s 。 Ω_p 和 Ω_s 分别称为通带截止频率和阻带截止频率, α_p 是通带 $\Omega(0\sim\Omega_p)$ 中的最大衰减系数 α_s 是阻带 $\Omega\geq\Omega_s$ 的最小衰减系数

$$\alpha_p = 20 \lg \frac{|H_a(j\Omega_0)|}{|H_a(j\Omega_p)|} dB = -20 \lg |H_a(j\Omega_p)| dB$$

$$\alpha_s = 20 \lg \frac{|H_a(j\Omega_0)|}{|H_a(j\Omega_s)|} dB = -20 \lg |H_a(j\Omega_s)| dB$$

一、模拟低通滤波器的设计指标及逼近方法

 Ω_{c} 称为3dB截止频率: $|H_{a}(j\Omega_{c})| = \frac{\sqrt{2}}{2} = 0.707$, $20 \lg |H_{a}(j\Omega_{c})| = 3 dB$

一、模拟低通滤波器的设计指标及逼近方法

滤波器的技术指标给定后,需要设计一个传输函数 $H_a(s)$,希望其幅度平方函数满足给定的指标 α_p 和 α_s ,一般滤波器的单位冲激响应h(t)为实数,有:

$$\begin{aligned} \left| H_a(j\Omega) \right|^2 &= H_a(j\Omega) H_a^*(j\Omega) \\ &= H_a(j\Omega) H_a(-j\Omega) \\ &= H_a(s) H_a(-s) \Big|_{s=j\Omega} \end{aligned}$$

模拟巴特沃斯低通滤波器的设计方法

- > 巴特沃斯低通滤波器的设计方法
 - (1) 巴特沃斯低通滤波器的幅度平方函数
 - (2) 幅度平方函数极点分布及 $H_a(s)$ 的构成
 - (3) 频率归一化方法
 - (4) 阶数 N 的确定

1、巴特沃斯低通滤波器的幅度平方函数 $|H_a(j\Omega)|^2$ 用下式表示:

$$\left|H_a(j\Omega)\right|^2 = \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2N}}$$

2、幅度平方函数极点分布及 $H_a(s)$ 的构成

将幅度平方函数 $|H_a(j\Omega)|^2$ 写成 s的函数:

$$H_a(s)H_a(-s) = \frac{1}{1 + \left(\frac{s}{j\Omega_c}\right)^{2N}}$$

上式表明,极点 s_k 用下式表示: $s_k = (-1)^{\frac{1}{2N}} (j\Omega_c) = \Omega_c e^{j\pi \left(\frac{1}{2} + \frac{2k+1}{2N}\right)}$

为形成稳定的滤波器,2N个极点中只取 s 平面<mark>左半平面的N个</mark>极点构成 $H_a(s)$,而右半平面的N个极点构成 $H_a(-s)$ 。

 $H_a(s)$ 的表示式为:

$$H_a(s) = \frac{\Omega_c^N}{\prod_{k=0}^{N-1} (s - s_k)}$$

设N=3,极点有6个,它们分别为:

$$s_3 = \Omega_c e^{-j\frac{1}{3}\pi}$$

$$s_4 = \Omega_c$$

$$s_5 = \Omega_c e^{j\frac{1}{3}\pi}$$

因果稳定

取s平面<u>左半平面</u>的极点 s_0,s_1,s_2 组成 $H_a(s)$:

$$\boldsymbol{H}_{a}(s) = \frac{\Omega_{c}^{3}}{(s + \Omega_{c})(s - \Omega_{c}e^{j\frac{2}{3}\pi})(s - \Omega_{c}e^{-j\frac{2}{3}\pi})}$$

3、频率归一化

由于各滤波器的幅频特性不同,为使设计统一,将所有的频率归一化。 用对3dB截止频率 Ω_c 归一化,归一化后 $H_a(s)$ 表示为:

$$H_a(s) = \frac{1}{\prod_{k=0}^{N-1} \left(\frac{s}{\Omega_c} - \frac{s_k}{\Omega_c} \right)}$$

式中, $s/\Omega_c = j\Omega/\Omega_c$ 。

令 $\lambda = \Omega/\Omega_c$, λ 称为归一化频率;令 $p = j\lambda = j\Omega/\Omega_c$, p 称为归一化复变量,这样归一化巴特沃斯的传输函数为:

$$H(p) = \frac{1}{\prod_{k=0}^{N-1} (p - p_k)}$$

式中, p_k 为归一化极点,用下式表示:

$$p_k = e^{j\pi\left(\frac{1}{2} + \frac{2k+1}{2N}\right)}, \quad k = 0,1,...,N-1$$

带入 $H_a(p)$ 表达式,得到的 $H_a(p)$ 的分母是p的N阶多项式,用下式表示:

$$H(p) = \frac{1}{b_0 + b_1 p + \dots + b_{N-1} p^{N-1} + p^N}$$

归一化的传输函数系数 H(p) 的系数以及极点可以查表得到。

表6.2.1 巴特沃斯归一化低通滤波器参数(1)

极点位置 阶数N	$P_{0,N\text{-}1}$	$P_{1,N-1}$	$P_{2,N-1}$	$P_{3, N-1}$	$P_{4, N-1}$
1	-1.0000				
2	$-0.7071 \pm j0.7071$		二 共 4	厄极点对刑	ジ式、う
3	-0.5000±j0.8660	-1.0000			
4	-0.3827±j0.9239	$-0.9239 \pm j0.3827$. 0		
5	-0.3090±j0.9511	$-0.8090 \pm \mathbf{j} 0.5878$	-1.0000		
6	-0.2588±j0.9659	$-0.7071 \pm j0.7071$	$-0.9659 \pm j0.2588$		
7	-0.2225±j0.9749	$-0.6235 \pm j0.7818$	-0.9010±j0.4339	-1.0000	
8	-0.1951±j0.9808	$-0.5556 \pm j0.8315$	-0.8315±j0.5556	-0.9808±j0.1951	
9	-0.1736±j0.9848	$-0.5000 \pm j0.8660$	$-0.7660 \pm j0.6428$	$-0.9397 \pm \mathbf{j} 0.3420$	-1.0000

表6.2.1 巴特沃斯归一化低通滤波器参数(2)

分母多项式	$B(p) = p^{N} + b_{N-1}p^{N-1} + b_{N-2}p^{N-2} + + b_{1}p^{1} + b_{0}$								
阶数N	b_0	b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8
1	1.00000								
2	1.00000	1.4142			Ç	多	项式系	系数、	\3
3	1.00000	2.0000	2.0000					<u>ر</u>	
4	1.00000	2.6131	3.4142	2.6131	• 0	0			
5	1.00000	3.2361	5.2361	5.2361	3.2361				
6	1.00000	3.8637	7.4641	9.1416	7.4641	3.8637			
7	1.00000	4.4940	10.0978	14.5918	14.5918	10.0978	4.4940		
8	1.00000	5.1258	13.1371	21.8462	25.6884	21.8462	13.1371	5.1258	
9	1.00000	5.7588	16.5817	31.1634	41.9864	41.9864	31.1634	16.5817	5.7588

表6.2.1 巴特沃斯归一化低通滤波器参数(3)

分解因式 阶数N	B(p)				
1	(p+1)				
2	(p²+1.4142p+1)				
3	$(p^2+p+1)(p+1)$				
4	$(p^2+0.7654p+1) (p^2+1.8478p+1)$				
5	$(p^2+0.6180p+1) (p^2+1.6180p+1) (p+1)$				
6	$(p^2+0.5176p+1) (p^2+1.4142p+1) (p^2+1.9319p+1)$				
7	$(p^2+0.4450p+1) (p^2+1.2470p+1) (p^2+1.8019p+1) (p+1)$				
8	$(p^2+0.3902p+1)\ (p^2+1.1111p+1)\ (p^2+1.6629p+1)\ (p^2+1.9616p+1)$				
9	$(p^2+0.3473p+1)\ (p^2+p+1)\ (p^2+1.5321p+1)\ (p^2+1.8794p+1)\ (p+1)$				

第六章 IIR数字滤波器设计

IIR Digital Filter Design

6.2 模拟滤波器的设计

模拟巴特沃斯低通滤波器的设计方法(1)

华东理工大学信息科学与工程学院 万永菁

第六章 IIR数字滤波器设计

IIR Digital Filter Design

6.2 模拟滤波器的设计

模拟巴特沃斯低通滤波器的设计方法(2)

华东理工大学信息科学与工程学院 万永菁

4、阶数N的确定

阶数N的大小主要影响幅度特性下降的速度,它应该由技术指标确定。将 $\Omega = \Omega_p$ 代入幅度平方函数中:

$$\left| H_a(j\Omega_p) \right|^2 = \frac{1}{1 + \left(\frac{\Omega_p}{\Omega_c}\right)^{2N}}$$

$$\therefore \alpha_p = -20 \lg |H_a(j\Omega_p)| \Rightarrow \alpha_p = -10 \lg |H_a(j\Omega_p)|^2$$

$$\therefore 1 + \left(\frac{\Omega_p}{\Omega_c}\right)^{2N} = 10^{\alpha_p/10}$$

将 $\Omega = \Omega_s$ 代入幅度平方函数中:

$$\left| \boldsymbol{H}_{a}(\boldsymbol{j}\boldsymbol{\Omega}_{s}) \right|^{2} = \frac{1}{1 + \left(\frac{\boldsymbol{\Omega}_{s}}{\boldsymbol{\Omega}_{c}}\right)^{2N}}$$

$$\therefore \alpha_s = -20 \lg |H_a(j\Omega_s)| \Rightarrow \alpha_s = -10 \lg |H_a(j\Omega_s)|^2$$

$$\therefore 1 + \left(\frac{\Omega_s}{\Omega_c}\right)^{2N} = 10^{\alpha_s/10}$$

$$\begin{array}{ccc}
\vdots & 1 + \left(\frac{\Omega_p}{\Omega_c}\right)^{2N} = 10^{\alpha_p/10} \\
\vdots & 1 + \left(\frac{\Omega_s}{\Omega_c}\right)^{2N} = 10^{\alpha_s/10} \\
\vdots & \left(\frac{\Omega_s}{\Omega_p}\right)^N = \sqrt{\frac{10^{\alpha_s/10} - 1}{10^{\alpha_p/10} - 1}}
\end{array}$$

用上式求出的N可能有小数部分,应取大于等于N的最小整数。

关于3dB截止频率 Ω_c ,如果技术指标中没有给出,可以按照下面两式求出:

$$\therefore 1 + \left(\frac{\Omega_p}{\Omega_c}\right)^{2N} = 10^{\alpha_p/10} \qquad \therefore \Omega_c = \Omega_p / (10^{\alpha_p/10} - 1)^{\frac{1}{2N}}$$

$$\therefore 1 + \left(\frac{\Omega_s}{\Omega_c}\right)^{2N} = 10^{\alpha_s/10} \qquad \therefore \Omega_c = \Omega_s / (10^{\alpha_s/10} - 1)^{\frac{1}{2N}}$$

通常是用一个算出 Ω_c ,然后用另一个来检验。

> 总结 —— 低通巴特沃斯滤波器的设计步骤如下:

(1) 根据技术指标 $\Omega_{\rm p}$, $\alpha_{\rm p}$, $\Omega_{\rm s}$, $\alpha_{\rm s}$, 求出滤波器的阶数N及 Ω_{c} 。

$$N = \frac{\lg k_{sp}}{\lg \lambda_{sp}}$$

$$\lambda_{sp} = \frac{\Omega_{s}}{\Omega_{p}} \quad k_{sp} = \sqrt{\frac{10^{\alpha_{s}/10} - 1}{10^{\alpha_{p}/10} - 1}}$$

(2) 求出归一化极点 p_k ,得到归一化传输函数H(p)。

$$p_{k} = e^{j\pi\left(\frac{1}{2} + \frac{2k+1}{2N}\right)}, \quad k = 0,1,...,N-1$$

$$H(p) = \frac{1}{b_{0} + b_{1}p + \cdots + b_{N-1}p^{N-1} + p^{N}}$$

(3) 将H(p)去归一化。将 $p=s/\Omega_c$ 代入H(p),得到实际的滤波器传输函数 $H_a(s)$ 。

$$\Omega_c = \Omega_p / (10^{\alpha_p/10} - 1)^{\frac{1}{2N}} \qquad H_a(s) = H(p) \Big|_{p = \frac{s}{\Omega_c}}$$

例: 已知通带截止频率 f_p =5KHz,通带最大衰减 α_p =2dB,截止频率 f_s =12KHz,阻带最小衰减 α_s =30dB,按照以上技术指标设计巴特沃斯低通滤波器。

解: (1) 确定阶数N

$$k_{sp} = \sqrt{\frac{10^{0.1\alpha_s} - 1}{10^{0.1\alpha_p} - 1}} = 41.328$$

$$\lambda_{sp} = \frac{2\pi f_s}{2\pi f_p} = 2.4$$

$$N = \frac{\lg 41.32}{\lg 2.4} = 4.2509 \implies N = 5$$

(2) 求极点:

$$P_0 = e^{j\frac{3}{5}\pi}$$
 $P_1 = e^{j\frac{4}{5}\pi}$ $P_2 = e^{j\pi}$

$$P_3 = e^{j\frac{6}{5}\pi}$$
 $P_4 = e^{j\frac{7}{5}\pi}$

归一化传输函数为

$$H(p) = \frac{1}{\prod_{k=0}^{4} (p - p_k)}$$

上式分母可以展开成为五阶多项式,或者将共轭极点放在一起,形成因式分解形式。不如直接查表简单,由N=5,直接查表得到:

极点: -0.3090±j0.9511、-0.8090±j0.5878、 -1.0000

$$H(p) = \frac{1}{b_0 + b_1 p + b_2 p^2 + b_3 p^3 + b_4 p^4 + p^5}$$

其中:

 b_0 =1.0000, b_1 =3.2361, b_2 =5.2361, b_3 =5.2361, b_4 =3.2361

華東習工大學

(3) 为将H(p)去归一化,先求3dB截止频率 Ω_c 。

$$\Omega_c = \Omega_p / (10^{\alpha_p/10} - 1)^{\frac{1}{2N}} = 2\pi \cdot 5.2755 \text{K} (rad/s)$$

检验:
$$\Omega_s = \Omega_c (10^{\alpha_s/10} - 1)^{\frac{1}{2N}} = 2\pi \cdot 10.525 \text{K} (rad/s)$$

可以看出,满足 α_s =30dB的真实 f_s 在10.525KHz处,与12KHz比,还有富裕量。

将 $p=s/\Omega_c$ 代入H(p)中得到:

$$H_a(s) = \frac{\Omega_c^5}{b_0 \Omega_c^5 + b_1 \Omega_c^4 s + b_2 \Omega_c^3 s^2 + b_3 \Omega_c^2 s^3 + b_4 \Omega_c s^4 + s^5}$$

第六章 IIR数字滤波器设计

IIR Digital Filter Design

6.2 模拟滤波器的设计

模拟巴特沃斯低通滤波器的设计方法(2)

华东理工大学信息科学与工程学院 万永菁

