

# Detecting Button presses with Autoencoders

**Neuroinformatics: Machine Learning for Neuronal Data Analysis** 

Luis Caumel Morales Lukas Karner Alexander Stähle Patrick Pollek

#### INTRODUCTION

Why Anomaly Detection using (Convolutional) Autoencoders on diverse datasets of button press EEG data makes sense:

- real-time detection of button presses in EEG data
- varying types of presses can be detected (duration, motion)
- applicable to a range of applications (HCI, industrial, security systems)

Overall: more robust and generalizable way to detect decision making



#### **DATA**

We have two datasets to analyze:

- NoMT (Image a): Experiments where recording sessions were passively watched the computer screen throughout the recording session where a greater number of imageries were shown.
- FreeForm (Image c): Examining the discrimination of voluntary motor movements prior to their physical manifestation,
  - Participants were asked to press the "d" or "l" keys voluntarily, using the left or right hand, at arbitrary times.





#### PROCESSING DATA

- We transform the data to a mne array to make it easier to deal with the data and set eeg reference average as we are working with EEG data.
- Create annotations, for annotating segments of our data.
- Creation of epochs, to divide our dataset and identify when an experiment is taking place, since the eGUI state is easy to identify.
- Creation of datasets, splitting into training and testing
  - Data NoMT, our baseline and where the subject is in a resting position which no input on the screen, event with the ID o
  - Data NoMT2, will correspond to the data which comes from the same trials and session of the previous data but we select here epochs where there is something shown on the screen, events
     2
  - FREEFORM data, here the subject can voluntarily press buttons (either left or right)
- Scale the data, as we observed a large difference between the observed datasets, the data have been normalised allowing for a more accurate comparison.

### **METHODS**



Idea: Train AE on resting state data.

Observe high reconstruction error on button press data.

- Brain activity which is generated by planning to press a button should change the EEG signal in a way such that is is different enough to create a higher reconstruction error.
- How big should the autoencoder be ?
- Should we use Convolutional autoencoder?



### **SIZES OF AE**

We tried several sizes of AE to see which one performs best:

|                             | <u>small:</u>                      | <u>medium:</u>                    | <u>large:</u>                            |
|-----------------------------|------------------------------------|-----------------------------------|------------------------------------------|
| Е                           | Input 8421 neurons                 | Input 8421                        | Input 8421                               |
| n<br>c                      |                                    | dense layer 256                   | dense layer 1024                         |
| 0                           |                                    | dense layer 128                   | dense layer 512                          |
| d<br>er                     |                                    |                                   | dense layer 128                          |
|                             |                                    |                                   |                                          |
|                             | dense layer 64                     | dense layer 64                    | dense layer 64                           |
| D                           | dense layer 64                     | dense layer 64                    | <b>dense layer 64</b><br>dense layer 128 |
| D<br>e<br>c                 | dense layer 64                     | dense layer 64<br>dense layer 128 | <b>→</b>                                 |
| D<br>e<br>c<br>o            | dense layer 64                     | •                                 | dense layer 128                          |
| D<br>e<br>c<br>o<br>d<br>er | dense layer 64 output 8421 neurons | dense layer 128                   | dense layer 128<br>dense layer 512       |

Parameter: 1,08 mio 2.19 mio 18.4 mio

## **CONVOLUTIONAL AE**

| е | dense layer 50  |
|---|-----------------|
| d | Flatten         |
| 0 | MaxPooling1D(2) |
| С | Conv1D(84,3)    |
|   | MaxPooling1D(2) |
| n | Conv1D(42,3)    |
| Ε | Input (401,21)  |
|   | <u>CONV ae:</u> |

0011/22

|                         | dense layer 50  |
|-------------------------|-----------------|
|                         | Flatten         |
| dense layer 256         | MaxPooling1D(2) |
| Flatten                 | Conv1D(168,3)   |
| MaxPooling1D(2)         | MaxPooling1D(2) |
| Conv1D(84,3)            | Conv1D(84,3)    |
| MaxPooling1D(2)         | MaxPooling1D(2) |
| Conv1D(42,3)            | Conv1D(42,3)    |
| Input (401,21)          | Input (401,21)  |
| <u>MORE LATENT VAR:</u> | MORE LAYERS:    |

Parameter: 900k 4.4 mio 1 mio.

### TRAINING OF THE AUTOENCODERS

- Error measure : MSE
- optimizer : ADAM (several different lr's)
- dropout after every layer
- 1000 epochs (none conv ones)
- batchsize 512
- training of one AE in the range of 2 to 10 min
- activation functions: Relu,Gelu

### **RESULTS**

normal Autoencoder, unscaled data

| model size | NoMT   | NoMT2  | FREEFORM |
|------------|--------|--------|----------|
| small      | 90.32  | 89.93  | 19.91    |
| medium     | 128.32 | 125.52 | 24.48    |
| large      | 178.56 | 174.09 | 30.59    |

Table: Reconstruction errors on different test sets.

### **RESULTS**

#### normal Autoencoder, scaled data

| model size | NoMT   | NoMT2  | FREEFORM |
|------------|--------|--------|----------|
| small      | 0.4276 | 0.4523 | 0.6897   |
| medium     | 0.5591 | 0.5889 | 0.8299   |
| large      | 0.6307 | 0.6506 | 0.8386   |

Table: Reconstruction errors on different test sets.

#### **SMALL AUTOENCODER - UNSCALED DATA**

Reconstruction Error of: X\_nomt\_test Mean = 89.639534 Median = 37.58262

Reconstruction Error of : X\_free Mean = 19.766518 Median = 16.590572



#### **MEDIUM AUTOENCODER - UNSCALED DATA**

Reconstruction Error of: X\_nomt\_test

Mean = 125.83797 Median = 43.448288

Reconstruction Error of: X\_free

Mean = 24.586403 Median = 19.243282



#### LARGE AUTOENCODER - UNSCALED DATA

Reconstruction Error of: X\_nomt\_test

Mean = 174.92694 Median = 48.188297

Reconstruction Error of: X\_free

Mean = 30.278997 Median = 22.69931



#### **SMALL AUTOENCODER - SCALED DATA**

Reconstruction Error of: X\_nomt\_test

Mean = 0.42486674 Median = 0.17336366

Reconstruction Error of: X\_free

Mean = 0.68259436 Median = 0.60096836



#### **MEDIUM AUTOENCODER - SCALED DATA**

Reconstruction Error of: X\_nomt\_test

Mean = 0.5512001

Median = 0.20311476

Reconstruction Error of: X\_free

Mean = 0.8318454

Median = 0.69081753



#### LARGE AUTOENCODER - SCALED DATA

Reconstruction Error of: X\_nomt\_test

Mean = 0.6125158

Median = 0.20422757

Reconstruction Error of: X\_free

Mean = 0.84346235 Median = 0.7008301



#### **RESULTS - AUTOENCODER**

Based on the histograms we take the thresholds to be:

- small → 0.4
- medium → 0.42
- large  $\rightarrow$  0.42

and get the classification accuracies:

- small  $\rightarrow$  0.8718
- medium  $\rightarrow$  0.8526
- large  $\rightarrow$  0.8563

#### **CONVOLUTIONAL AUTOENCODER**

Reconstruction Error of: X\_nomt\_test

Mean = 0.32027975 Median = 0.1996785

Reconstruction Error of: X\_free

Mean = 0.64917845 Median = 0.60304785



#### **CONV. AUTOENCODER - MORE LATENT VARIABLES**

Reconstruction Error of: X\_nomt\_test

Mean = 0.24402161 Median = 0.13725924

Reconstruction Error of: X\_free

Mean = 0.42459446 Median = 0.38303673



#### **CONVOLUTIONAL AUTOENCODER - MORE LAYERS**

Reconstruction Error of: X\_nomt\_test

Mean = 0.31996152 Median = 0.19738552

Reconstruction Error of: X\_free

Mean = 0.6446158 Median = 0.5971612



#### **RESULTS - CONVOLUTIONAL AUTOENCODER**

Based on the histograms we take the thresholds to be:

- normal  $\rightarrow$  0.4
- more latent variables → 0.25
- more layers → 0.4

and get the classification accuracies:

- normal  $\rightarrow$  0.9113
- more latent variables → 0.8841
- more layers  $\rightarrow$  0.9161

### **DISCUSSION**

- different scale of data poses a problem when using MSE
- does good accuray come from scaling the data instead of "structure"?
- More Data
- Questions:
  - How to scale in online setting (hopefully we don't have to)

### **SOURCES**

https://www.compthree.com/blog/autoencoder/