Part_2_slide_deck

October 1, 2022

1 Part II - Exploration and Analysis of Loan Data from Prosper

1.0.1 by F Njakai

Github | LinkedIn

1.1 Investigation Overview

1.1.1 Questions that guide the investigation

- what are the characteristics of Prosper's loans over time?
 - how many loans have been written?
 - what is the average rate offered to borrowers?
 - what is the average amount of a loan?
- what does the average customer look like?
 - another way of saying it is: to whom does Prosper lend?
- what affects the rate offered to a customer (borrower, if you like)?
- what affects the number of investors of a loan?

1.2 Summary of Findings

1.2.1 Loans

- average amount borrowed is *c*. USD 8,337.00; the range is USD 1,000.00 to 35,000.00
 - loans of amount USD 5k, 10k, 15k, 20k and 25k have higher-than-average frequency
- average rate is *c*. 0.19%; the range is zero to 0.5%
- the number of loans disbursed changes with time
 - the number fluctuates
 - there are seemingly regular but wide fluctuations
 - · fluctuations in the periods Q4 2013 to Q2 2014 inclusive are remarkably wide
 - * there are little to no fluctuations starting Q4 2008 to Q3 2009, inclusive (this is exactly 12 months)
 - the number of loans issued appears to increase exponentially despite the fluctuations

- the average number of loans issued, per annum, between 2005 and 2014 inclusive is c.
 4.3 million
- an overwhelming majority of loans of all terms are in the range 0.05% to 0.35% borrowing rate
- majority of the tenure of the loans is 3 years or more
- the least funded loans are at 70% funding for all levels of borrowing rate

1.2.2 Occupations and employment status

- an overwhelming majority of the top ten occupations are white collar
- a majority of the bottom ten occupations, that are not students, are blue collar; half of the occupations in the bottom ten are students
- Prosper lends to unemployed applicants

1.2.3 Income level

- Prosper appears to prefer to lend to high income earners at less-than-average rates
 - the region of high income and low rates is quite dense
 - an overwhelming majority of loans are issued to those whose income level is above USD 25,000.00 *p.a.*
 - * the top 2 groups account for 55.8% of loans issued
 - * the top 4 groups account for 85.4% of loans issued

1.2.4 Home ownership status

• there is an almost even split between those that own a home and those that do not; 50.4% of borrowers own a home

1.2.5 Location of borrower

- a majority of the states with the least borrowers are from the so-called "fly-over country"
- all of the states with the most borrowers are on either seaboard

1.2.6 Factors that affect the nominal borrowing rate

- there is weak, positive correlation between BorrowerRate and Term -> c. 0.02
- there is weak, negative correlation between
 - BorrowerRate and StatedMonthlyIncome -> c. -0.09
 - BorrowerRate and EmploymentStatusDuration -> c. -0.02
- there is strong, positive correlation between
 - BorrowerRate and BorrowerAPR $\rightarrow c.$ 0.99
- none of the variables of interest have a strong, negative correlation

1.2.7 Factors that affect the number of investors

- none of the variables of interest have a weak, positive correlation
- there is weak, negative correlation between
 - Investors and BorrowerRate -> c. -0.27
 - Investors and PercentFunded -> c. -0.05
- none of the variables of interest have a strong, positive correlation
- none of the variables of interest have a strong, negative correlation

1.3 Overview of dataset

1.3.1 Overall

- 113,937 observations
- 81 variables
 - 3 of type bool
 - 50 of type float
 - 11 of type int
 - 17 of type str

1.3.2 Missing and null values

- some observations in the data set have missing or null values
 - case(s) in point
 - * 100,596 under variable GroupKey
 - * 96,985 under variable LoanFirstDefaultedCycleNumber

1.3.3 Duplicated observations

• the data set has no duplicated observations

1.3.4 Multiple values for a variable

• observations in the data set have 1 value per variable

```
In [2]: # import all packages and set plots to be embedded inline
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

//matplotlib inline

# suppress warnings from final output
   import warnings
   warnings.simplefilter("ignore")
   from contextlib import suppress
```

```
In [4]: # load in the dataset into a pandas dataframe
        df = pd.read_csv('prosper_loans_data.csv', sep=',')
        df.head()
Out [4]:
                        ListingKey ListingNumber
                                                               ListingCreationDate
                                                     2007-08-26 19:09:29.263000000
          1021339766868145413AB3B
                                            193129
        1 10273602499503308B223C1
                                           1209647
                                                     2014-02-27 08:28:07.900000000
        2 0EE9337825851032864889A
                                             81716 2007-01-05 15:00:47.090000000
                                            658116 2012-10-22 11:02:35.010000000
        3 OEF5356002482715299901A
        4 0F023589499656230C5E3E2
                                            909464 2013-09-14 18:38:39.097000000
          CreditGrade Term LoanStatus
                                                  ClosedDate BorrowerAPR \
                                         2009-08-14 00:00:00
        0
                    С
                          36 Completed
                                                                   0.16516
                          36
        1
                  NaN
                                Current
                                                                   0.12016
                                                          NaN
        2
                   HR
                          36
                             Completed
                                         2009-12-17 00:00:00
                                                                   0.28269
        3
                                Current
                  NaN
                          36
                                                          NaN
                                                                   0.12528
        4
                  NaN
                          36
                                Current
                                                          {\tt NaN}
                                                                   0.24614
           BorrowerRate
                         LenderYield
                                                 LoanOriginationDate
        0
                 0.1580
                               0.1380
                                                  2007-09-12 00:00:00
                                                 2014-03-03 00:00:00
        1
                 0.0920
                               0.0820
        2
                 0.2750
                               0.2400
                                                 2007-01-17 00:00:00
        3
                 0.0974
                               0.0874
                                                 2012-11-01 00:00:00
        4
                 0.2085
                               0.1985
                                                 2013-09-20 00:00:00
           LoanOriginationQuarter
                                                  MemberKey
                                                              MonthlyLoanPayment
        0
                           Q3 2007
                                    1F3E3376408759268057EDA
                                                                           330.43
        1
                           Q1 2014 1D13370546739025387B2F4
                                                                           318.93
        2
                           Q1 2007 5F7033715035555618FA612
                                                                           123.32
        3
                           Q4 2012 9ADE356069835475068C6D2
                                                                           321.45
        4
                           Q3 2013 36CE356043264555721F06C
                                                                           563.97
                               LP_CustomerPrincipalPayments
                                                               LP_InterestandFees
          LP_CustomerPayments
                     11396.14
        0
                                                      9425.00
                                                                           1971.14
        1
                         0.00
                                                         0.00
                                                                              0.00
        2
                      4186.63
                                                      3001.00
                                                                          1185.63
        3
                      5143.20
                                                      4091.09
                                                                          1052.11
        4
                       2819.85
                                                      1563.22
                                                                          1256.63
          LP ServiceFees PercentFunded Investors
        0
                 -133.18
                                    1.0
                                              258
                    0.00
                                    1.0
                                                 1
        1
        2
                  -24.20
                                    1.0
                                               41
                 -108.01
        3
                                    1.0
                                              158
                  -60.27
                                               20
                                    1.0
```

Note that the above cells have been set as "Skip"-type slides. That means that when the

[5 rows x 72 columns]

notebook is rendered as http slides, those cells won't show up.

1.4 Visualisation 1

Q: how does the number of loans written behave over the years?

- does it change at all?
 - if yes, what is the direction of change?

A: the number of loans written changes with time

- how does it change?
 - the number fluctuates
 - * there are seemingly regular but wide fluctuations according to the time series
 - · fluctuations in the periods Q4 2013 to Q2 2014 inclusive are remarkably wide
 - * there are little to no fluctuations starting Q4 2008 to Q3 2009, inclusive (this is exactly 12 months)
 - * the highest number of loans issued, in a year, before 2011 were issued in 2008 according to the bar chart
- there appears to be an exponential trend
 - trend shows that number of loans issued appears to increase exponentially despite the fluctuations

```
In [14]: #default blue
    default_blue = sns.color_palette('tab10')[0]

#default orange, if required
    default_orange = sns.color_palette('tab10')[1]

#default palette
    default_palette = sns.color_palette('tab10')

#template no. 2

'''

simple function to create `Figure` object
    using matplotlib that contains an x-lab,
    y-lab and title.

"Father Figure", if you like:)

3 params, all type `str`:
    x_lab, y_lab and title

Please make sure all args passed to the
```

```
function are type `str`
return: None
1.1.1
def create_fig(x_lab: str, y_lab: str, title: str):
    """create_fig function"""
    try:
        #fig size
        plt.figure(figsize=(10, 6.18), dpi=216, frameon=False, clear=True)
        #x-axis name
        plt.xlabel(x_lab)
        #y-axis name
        plt.ylabel(y_lab)
        #title
        plt.title(title)
    except ModuleNotFoundError:
        print(f'Please `import matplotlib.pyplot as plt` and try again')
        print(f'Failed to create template')
        raise
#template no. 3
simple function to create `Figure` object
using matplotlib for sub-plots.
"Father Figure" for subplots :)
2 params, type int; the number of sub-plots.
On row -> #rows
@n_col -> #cols
return: fig and ax objects
1.1.1
def create_sub(n_row: int=1, n_col: int=1):
    """create_sub function"""
    try:
        #fig, ax and figsize
        fig, ax = plt.subplots(n_row, n_col, figsize=(10, 6.18), dpi=216)
        fig.tight_layout(pad=10.0)
        return fig, ax
    except ModuleNotFoundError:
        print(f'Please `import matplotlib.pyplot as plt` and try again')
        print(f'Failed to create template')
        raise
```

```
#group data and find sum
111
Function to calculate sum of
grouped data
Takes in 2 args: var_1 and var_2
Both args must be columns of a pandas DF
return: sum of grouped data
def group_sum(var_1, var_2):
    """ function group_sum"""
    if var_1 and var_2:
        sum_gp_data = df.groupby(var_1)[var_2].sum()
        return sum_gp_data
    else:
        print(f'Check that both arguments are columns of s pandas DF and try again')
df.LoanOriginationDate = pd.to_datetime(df.LoanOriginationDate)
#sum of loans by year
sum_loan_time = group_sum('LoanOriginationDate', 'LoanNumber')
#number of loans issued
y = [sum_loan_time.values[i] for i in range(len(sum_loan_time))]
#time (years)
x = [sum_loan_time.index[i].year for i in range(len(sum_loan_time))]
#visualise said timelines
#create plot
create_fig('Time (Years)', '#Loans issued (tens of millions)', 'Number of loans issued
plt.bar(x, y, tick_label=x, color=default_blue)
plt.yticks(np.arange(0, 65000000, step=10000000));
#time series plot for `sum_loan_plot` by the day
create_fig('Time (Days)', '#Loans issued (tens of millions)', 'Number of loans issued or
sum_loan_time.plot(kind='line',color=default_blue)
plt.xlabel('Time (delta = 1 day)');
```


Q: what, really, happens:

- before 2007
- during Q4 2008 to Q3 2009, inclusive

A: nothing, for the most part

- what happens before 2007...
- activity begins at the beginning of Q2 2007
- little activity; less than a million loans, in total, are issued
- what happens during Q4 2008 to Q3 2009, inclusive...
- activity ceases during the middle of Q4 2008
- said activity stays at zero until late Q2 2009
- little activity; less than 15 million loans, in total, are issued

conclusion

- the first few years had little to no activity
- Prosper is growing its loan book in an exponential-like manner
- Prosper's ability to grow its loan book are affected directly by events in the financial system

```
In [15]: create_sub(2, 1)
    plt.suptitle('Loans written by Prosper: outliers')

#sub-plot #3: loans issued pre-2007
    plt.subplot(2, 1, 1)
    sum_loan_time.plot(kind='line',color=default_blue, xlim=['2005-12-31','2008-01-01'], ti
    plt.xlabel('Time (delta = 1 day)')
    plt.ylabel('#Loans issued');

#sub-plot #4: loans issued during Q4 2008 to Q3 2009
    plt.subplot(2, 1, 2)
    sum_loan_time.plot(kind='line',color=default_blue, xlim=['2008-09-01','2009-09-30'], ti
    plt.xlabel('Time (delta = 1 day)')
    plt.xticks(['2008-09', '2008-12', '2009-03', '2009-06', '2009-09'])
    plt.ylabel('#Loans issued');
```


1.5 Visualisation 2

Q: what is the correlation between the rate, term, stated monthly income and employment status duration of a loan?

A: a mix of weak positive and negative correlations, mostly

- there is weak, positive correlation between
 - Term and BorrowerRate -> c. 0.02
 - Term and StatedMonthlyIncome -> c.~0.03
 - Term and EmploymentStatusDuration -> c.~0.09
 - StatedMonthlyIncome and EmploymentStatusDuration $\rightarrow c.$ 0.07
- there is weak, negative correlation between
 - BorrowerRate and StatedMonthlyIncome -> c. -0.09
 - BorrowerRate and EmploymentStatusDuration -> c. -0.02
 - Term and BorrowerAPR -> c. -0.02
 - StatedMonthlyIncome and BorrowerAPR -> c. -0.08
 - EmploymentStatusDuration and BorrowerAPR -> c. -0.01
- none of the variables of interest have a strong, negative correlation

and then there's this...

- strong, positive correlation between
 - BorrowerAPR and BorrowerRate -> c. 0.99

conclusion

• the factors investigated do not affect the borrowing rate significantly; a more extensive and rigorous investigation must be done

In [18]: corr

Out[18]:		${ t BorrowerRate}$	Term	${ t BorrowerAPR}$	\
	BorrowerRate	1.000000	0.019477	0.991063	
	Term	0.019477	1.000000	-0.019929	
	BorrowerAPR	0.991063	-0.019929	1.000000	
	${ t Stated Monthly Income}$	-0.085369	0.025230	-0.080524	
	EmploymentStatusDuration	-0.019907	0.082476	-0.008589	

	StatedMonthlyIncome	EmploymentStatusDuration
BorrowerRate	-0.085369	-0.019907
Term	0.025230	0.082476
BorrowerAPR	-0.080524	-0.008589
${\tt StatedMonthlyIncome}$	1.000000	0.069830
EmploymentStatusDuration	0.069830	1.000000

1.6 Visualisation 3

Q: what is the correlation between the rate, proportion funded and number of investors of a loan?

A: weak positive correlation

- none of the variables of interest have a weak, positive correlation
- there is weak, negative correlation between
 - BorrowerRate and PercentFunded -> c. -0.03
 - BorrowerRate and Investors -> c. -0.27
 - PercentFunded and Investors -> c. -0.05
- none of the variables of interest have a strong, positive correlation
- none of the variables of interest have a strong, negative correlation

conclusion

• the factors investigated do not affect the proportion of loans invested in significantly; a more extensive and rigorous investigation must be done

```
In [19]: corr_df = pd.DataFrame([df.BorrowerRate, df.PercentFunded, df.Investors]).transpose()
    #sub-plots
    fig, ax = create_sub()

#correlation matrix
    corr = corr_df.corr()

#plot
    with suppress(DeprecationWarning, ImportWarning):
        sns.heatmap(corr, mask=np.zeros_like(corr, dtype=np.bool), cmap=sns.diverging_palet)
```


1.6.1 Generate Slideshow

Once you're ready to generate your slideshow, use the jupyter nbconvert command to generate the HTML slide show.

```
In [ ]: # Use this command if you are running this file in local
        !jupyter nbconvert Part_2_slide_deck.ipynb --to slides --post serve --no-input --no-prom
[{\tt NbConvertApp}] \  \, {\tt Converting} \  \, {\tt notebook} \  \, {\tt Part\_2\_slide\_deck.ipynb} \  \, {\tt to} \  \, {\tt slides}
[NbConvertApp] Writing 797610 bytes to Part_2_slide_deck.slides.html
[NbConvertApp] Redirecting reveal.js requests to https://cdnjs.cloudflare.com/ajax/libs/reveal.j
Serving your slides at http://127.0.0.1:8000/Part_2_slide_deck.slides.html
Use Control-C to stop this server
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: x-www-browser: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: firefox: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: iceweasel: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: seamonkey: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: mozilla: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: epiphany: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: konqueror: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: chromium-browser: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: google-chrome: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: www-browser: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: links2: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: elinks: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: links: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: lynx: not found
/usr/bin/xdg-open: 778: /usr/bin/xdg-open: w3m: not found
xdg-open: no method available for opening 'http://127.0.0.1:8000/Part_2_slide_deck.slides.html'
```

In the classroom workspace, the generated HTML slideshow will be placed in the home folder.

In local machines, the command above should open a tab in your web browser where you can scroll through your presentation. Sub-slides can be accessed by pressing 'down' when viewing its parent slide. Make sure you remove all of the quote-formatted guide notes like this one before you finish your presentation! At last, you can stop the Kernel.

1.6.2 Submission

If you are using classroom workspace, you can choose from the following two ways of submission:

- 1. **Submit from the workspace**. Make sure you have removed the example project from the /home/workspace directory. You must submit the following files:
- Part_I_notebook.ipynb
- Part_I_notebook.html or pdf
- Part_II_notebook.ipynb
- Part I slides.html
- README.md
- dataset (optional)
- 2. **Submit a zip file on the last page of this project lesson**. In this case, open the Jupyter terminal and run the command below to generate a ZIP file.

```
zip -r my_project.zip .
```

The command abobve will ZIP every file present in your /home/workspace directory. Next, you can download the zip to your local, and follow the instructions on the last page of this project lesson.