

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL

Inteligência Artificial

Plano de Aula: ALGORITMOS GENÉTICOS: PRINCÍPIOS E APLICAÇÕES

•

Referência: ALGORITMOS GENÉTICOS: PRINCÍPIOS E APLICAÇÕES Marco Aurélio Cavalcanti Pacheco

ALGORITMOS GENÉTICOS: PRINCÍPIOS E APLICAÇÕES

Algoritmos Genéticos (GAs-Genetic Algorithms) constituem uma técnica de busca e otimização, altamente paralela, inspirada no princípio Darwiniano de seleção natural e reprodução genética [1].

Os princípios da natureza nos quais os GAs se inspiram são simples. De acordo com a teoria de C. Darwin, o princípio de seleção privilegia os indivíduos mais aptos com maior longevidade e, portanto, com maior probabilidade de reprodução. Indivíduos com mais descendentes têm mais chance de perpetuarem seus códigos genéticos nas próximas gerações. Tais códigos genéticos constituem a identidade de cada indivíduo e estão representados nos cromossomas.

A analogia entre Algoritmos Genéticos e o sistema natural é representada através da tabela abaixo:

Natureza	Algoritmos Genéticos
Cnomossomo	Delerme bioánie restan etc
Cromossoma	Palavra binária, vetor, etc
Gene	Característica do problema
Alelo	Valor da característica
Loco	Posição na palavra, vetor
Genótipo	Estrutura
Fenótipo	Estrutura submetida ao problema
Indivíduo	Solução
Geração	Ciclo

Podemos caracterizar os Algoritmos Genéticos através dos seguintes componentes :

- Problema a ser otimizado
- Representação das Soluções de Problema
- Decodificação do Cromossoma
- Avaliação
- Seleção
- Operadores Genéticos
- Inicialização da População

1 - Problema

GAs são particularmente aplicados em problemas complexos de otimização: problemas com diversos parâmetros ou características que precisam ser combinadas em busca da melhor solução; problemas com muitas restrições ou condições que não podem ser representadas matematicamente; e problemas com grandes espaços de busca.

GAs têm sido aplicados a diversos problemas de otimização [3], tais como: Otimização de Funções Matemáticas, Otimização Combinatorial, Otimização de Planejamento, Problema do Caixeiro Viajante, Problema de Otimização de Rota de Veículos, Otimização de Layout de Circuitos, Otimização de Distribuição, Otimização em Negócios e Síntese de Circuitos

Alguns exemplos de produtos desenvolvidos no ICA são:

- Fluxo de Caixa Inteligente
- Classificação de Clientes (Data Mining)
- Alocação de Espaço Físico
- Planejamento e Otimização de Embarque de Minério no Porto de Tubarão
- Análise de Alternativas de Investimento em Projetos de Exploração e Prospecção de Petróleo sob Incertezas Técnicas e de Mercado
- Otimização da Quantidade e Localização de Poços Petrolíferos para o Desenvolvimento de um Campo de Petróleo sob condições de certeza

2 – Representação

A representação das possíveis soluções do espaço de busca de um problema define a estrutura do cromossoma a ser manipulado pelo algoritmo.

A representação do cromossoma depende do tipo de problema e do que, essencialmente, se deseja manipular geneticamente. Os principais tipos de representação são:

Representação	Problemas
Binária	Numéricos, Inteiros
Números Reais	Numéricos
Permutação de Símbolos	Baseados em Ordem
Símbolos Repetidos	Grupamento

A representação binária é simples, fácil de manipular cromossomas através dos operadores genéticos, fácil de ser transformada em inteiro ou real e, ainda, facilita a prova de alguns teoremas. Todavia, a representação por números reais (ponto flutuante) oferece melhor desempenho.

C1 0 0 1 0 0 1 representa x=9 C2 0 0 0 1 0 0 representa x=4

3 – Decodificação

A decodificação do cromossoma consiste basicamente na construção da solução real do problema a partir do cromossoma. O processo de decodificação constrói a solução para que esta seja avaliada pelo problema. A vantagem da representação binária é a fácil transformação para inteiro ou real.

Na transformação para número real, considera-se o intervalo de valores ou comprimento contínuo do domínio (C) dos reais de tal forma que

Equação 2

$$X_R = Xb \times \frac{C}{2^n - 1} + X_{\min}$$

Onde $X_R \in [X_{\min}, X_{\max}]$; Xb é o inteiro correspondente ao binário; n é o número de bits de do cromossoma; e C é o comprimento do domínio da variável X, dado por $C = |X_{\max} - X_{\min}|$.

4 – Avaliação

A avaliação é o elo entre o GA e o mundo externo. A avaliação é feita através de uma função que melhor representa o problema e tem por objetivo fornecer uma medida de aptidão de cada indivíduo na população corrente, que irá dirigir o processo de busca. A função de avaliação é para um GA o que o meio ambiente é para seres humanos. Funções de avaliação são específicas de cada problema. No exemplo, a função matemática f(x) = x² mede aptidão de cada indivíduo. Na Tabela 2, C1 é um indivíduo mais apto que C2.

Tabela 2

	Cromossoma	X	f(x)
C1	0 0 1 0 0 1	9	81
C2	0 0 0 1 0 0	4	16

5 – Seleção

O processo de seleção em algoritmos genéticos seleciona indivíduos para a reprodução.

A seleção é baseada na aptidão dos indivíduos: indivíduos mais aptos têm maior probabilidade de serem escolhidos para reprodução.

Assim, se f_i é a avaliação do indivíduo i na população corrente, a probabilidade p_i do indivíduo i ser selecionado é proporcional a

$$p_i = \frac{f_i}{\sum_{j=1}^{N} f_i}$$

6 – Operadores Genéticos

Indivíduos selecionados (e reproduzidos na população seguinte) são recombinados através do operador de crossover (com uma probabilidade p_c). O operador de crossover é considerado a característica fundamental dos GAs. Pares de genitores são escolhidos aleatoriamente da população, baseado na aptidão, e novos indivíduos são criados a partir da troca do material genético. Os descendentes serão diferentes de seus pais, mas com características genéticas de ambos os genitores. Por exemplo:

	ponto de corte aleatório 1 1 0 0 0 0 0 0 0 1 0 0
G1	1 1 0 0 0 0
G2	0 0 0 1 0 0
D1	1 1 0 1 0 0
D2	0 0 0 0 0 0

7 – Inicialização da População

A inicialização da população determina o processo de criação dos indivíduos para o primeiro ciclo do algoritmo. Tipicamente, a população inicial é formada a partir de indivíduos aleatoriamente criados. Populações iniciais aleatórias podem ser semeadas com bons cromossomas para uma evolução mais rápida, quando se conhece, a priori, o valor de boas "sementes".

7 – Inicialização da População

A inicialização da população determina o processo de criação dos indivíduos para o primeiro ciclo do algoritmo. Tipicamente, a população inicial é formada a partir de indivíduos aleatoriamente criados. Populações iniciais aleatórias podem ser semeadas com bons cromossomas para uma evolução mais rápida, quando se conhece, a priori, o valor de boas "sementes".

8 – Parâmetros e Critérios de Parada

Em um algoritmo genético vários parâmetros controlam o processo evolucionário:

- Tamanho da População → número de pontos do espaço de busca sendo considerados em paralelo a cada ciclo.
- Taxa de Crossover → probabilidade (p_c) de um indivíduo ser recombinado com outro.
- Taxa de Mutação → probabilidade (p_m) do conteúdo de uma posição/gene do cromossoma ser alterado.
- Número de Gerações→ total de ciclos de evolução de um GA.
- Total de Indivíduos → total de tentativas em um experimento (tamanho da população x número de gerações)

Um algoritmo genético pode ser descrito como um processo contínuo que repete ciclos de evolução controlados por um critério de parada, conforme apresentado pela figura abaixo:

Um binário também pode representar um número real $X_R \in [X_{min}, X_{máx}]$, com precisão de p casas decimais. Para isso são necessários K bits, sendo K calculado pela inequação:

$$2^k \ge (X_{max} - X_{min}) \times 10^p$$

Na transformação para número real, considera-se o intervalo de valores ou comprimento contínuo do domínio (C) dos reais de tal forma que

$$X_R = Xb \times \frac{C}{2^n - 1} + X_{\min}$$

O processo de seleção em algoritmos genéticos seleciona indivíduos para a reprodução.

A seleção é baseada na aptidão dos indivíduos: indivíduos mais aptos têm maior probabilidade de serem escolhidos para reprodução.

Assim, se f_i é a avaliação do indivíduo i na população corrente, a probabilidade p_i do indivíduo i ser selecionado é proporcional a

$$p_i = \frac{f_i}{\sum_{i=1}^{N} f_i}$$

Onde N é o número de indivíduos na população.

A definição de intensidade de seleção empregada em genética é a variação na aptidão média da população induzida pelo método de seleção [5]. A expressão da intensidade de seleção I é dada por:

Equação 4

$$I = \frac{M^* - M}{\sigma}$$

Onde M é a aptidão média da população, M* é o valor esperado da aptidão média após a seleção, e \sigma é o desvio padrão dos valores de aptidão da população antes da seleção.

No caso de seleção proporcional, a probabilidade de um indivíduo ser selecionado é simplesmente proporcional ao seu valor de aptidão, isto é:

Equação 5

$$p_i = \frac{f_i}{NM}$$

Onde pi é a probabilidade de seleção de um indivíduo i, fi é a aptidão do mesmo e N é o tamanho da população. Demonstra-se que a intensidade de seleção é dada por [5]:

$$I = \frac{\sigma}{M}$$

No método de seleção por torneios, um grupo de t indivíduos é aleatoriamente escolhido, e o indivíduo de melhor aptidão é selecionado. A intensidade de seleção é dada neste caso pela solução da seguinte equação integral [5]:

Equação 7

$$I = \int_{-\infty}^{\infty} t \cdot x \cdot \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}} \left(\int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{y^2}{2}} dy \right)^{t-1} dx$$

As variáveis de integração x e y representam os valores de aptidão da população. Assume-se uma distribuição Gaussiana de valores de aptidão por indivíduos. A partir da solução numérica da equação acima, observa-se que a pressão seletiva aumenta a medida em que o número de indivíduos envolvidos no torneio, t, aumenta.

No mecanismo de seleção por truncamento, dado um limiar T, apenas os T melhores indivíduos podem ser selecionados. Cada um desses indivíduos apresenta a mesma probabilidade de seleção. Demonstra-se [5] que a intensidade de seleção é dada por:

Equação 8

$$I = \frac{1}{T} \cdot \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{f_c^2}{2}}$$

Onde fc é o valor da menor aptidão entre os T melhores indivíduos. Traçando-se o gráfico da intensidade de seleção em função do limiar T, observa-se que a pressão seletiva diminui a medida em que T aumenta.

No método de seleção por normalização linear, os indivíduos são inicialmente ordenados de acordo com sua aptidão. A seguir, estes valores de aptidão são alterados de acordo com a posição relativa de cada indivíduo. Ao melhor indivíduo é assinalada uma aptidão de valor *máx* e ao pior indivíduo uma aptidão *mín*. Estes dois valores são determinados pelo usuário, mas a forma original deste método prevê que as condições m dx = 2 - m ine mín≥0 devam ser atendidas. Os demais indivíduos têm valores de aptidão linearmente distribuídos entre mín e máx, de acordo com sua posição relativa na ordenação (i=1 corresponde ao pior elemento).

Equação 9

$$A_{i} = min + \frac{(m\acute{a}x - min)}{n-1} \times (i-1)$$

A intensidade de seleção é dada por:

Equação 10

$$I = (1 - min) \frac{1}{\sqrt{\pi}}$$

A equação acima mostra que a pressão seletiva diminui a medida em que *mín* aumenta.

Podemos compreender melhor o princípio de funcionamento de algoritmos genéticos a partir da Teoria de Schema (padrões) formulada por John Holland em 1975 [1].

John Holland definiu schema como um padrão que descreve um conjunto de cromossomas com similaridades em algumas posições.

Para representar schemata (plural de schema) utiliza-se um símbolo adicional " Σ ".

Assim, para um espaço de busca representado por K^L existem (K+1) ^L schemata.

 $K \equiv n$ úmero de símbolos do alfabeto

 $L \equiv$ comprimento do cromossoma

Seja K = 2 e L = 3 definindo em espaço de busca de 8 pontos. Seja o schema H = 11Σ . H descreve o conjunto de elementos 111 e 110. H refere-se a conjectura que a razão pela qual 111 (ou 110) é um bom (ou mal) indivíduo são os dois bits mais significativos iguais a 1, não importando (don't care) os demais. Esta conjectura possui dois possíveis representantes que podem ou não estar presentes em determinada geração do GA.

Para compreendermos melhor porque os GAs funcionam, basta analisarmos o efeito dos processos de seleção, recombinação e mutação sobre schemata. Ou seja, estamos interessados em saber o que acontece, ciclo a ciclo, com os representantes de determinado grupo, aqueles indivíduos que possuem o padrão H. Utiliza-se nesta análise duas definições:

- O(H): ordem ou especificidade de um schema, como o número de posições fixas diferentes de Σ; e
- δ(H): comprimento do schema, como a distância entre a 1^a e a última posições fixas.

ANÁLISE DO EFEITO DA SELEÇÃO

Seja m(H, t) o número de representações de H em um ciclo t do algoritmo com n indivíduos na população. Assim, podemos calcular o número provável de representantes de H no próximo ciclo, seguinte como:

$$m(H, t+1) = n \times \frac{\sum_{i \in H} f_i}{\sum_{j=1}^n f_j}$$

Define-se f(H) como a aptidão média do schema H, dada por:

Equação 14

$$f(H) = \frac{\sum_{i \in H} f_i}{m(H, t)}$$

Assim, podemos rescrever m(H, t+1) através da equação abaixo:

$$m(H, t+1) = m(H, t) \times n \times \frac{f(H)}{\sum_{j=1}^{n} f_j}$$

A aptidão média da população, dada pela equação a seguir, nos permite fazer uma última transformação na fórmula de m(H, t+1).

Equação 16

$$\overline{f} = \frac{\sum_{j=1}^{n} f_j}{n}$$

$$m(H, t+1) = m(H, t) \times \frac{f(H)}{\overline{f}}$$

A interpretação desta equação reflete o efeito da seleção em GAs:

- Schemata (padrões) com aptidão acima da média tendem a proliferar nas gerações seguintes.
- Schemata com aptidão abaixo da média tendem a desaparecer.

$$m(H,t+1) = m(H,t) \times \frac{f(H)}{\overline{f}}$$

ANÁLISE DO EFEITO DO CROSSOVER

Nesta análise estamos interessados no impacto que o corte de um indivíduo venha a destruir um padrão, não transmitindo-o aos seus descendentes.

Seja p_d(H) a probabilidade de destruição de um schema H pelo crossover de um ponto:

$$p_d(H) = \frac{\delta(H)}{L-1}$$

Equação 21

$$p_s(H) = 1 - \frac{\delta(H)}{L - 1}$$

é a probabilidade de sobrevivência desse padrão.

Sendo p_c a taxa de aplicação de crossover e considerando-se que o par genitor de um cromossoma pode recuperar parte de um padrão destruído pelo crossover, temos a desigualdade:

Equação 22

$$p_s \ge 1 - p_c \times \frac{\delta(H)}{L - 1}$$

Isto significa que schemata curtos tem maior probabilidade de sobrevivência (se manterem intactos) após o crossover.

ANÁLISE DO EFEITO DA MUTAÇÃO

Seja p_m a probabilidade do operador de mutação ser aplicado a uma determinada posição do cromossoma. Assim a probabilidade de sobrevivência do cromossoma é dada por:

Equação 23

$$p_s = (1 - p_m)^{O(H)}$$

Para taxas de mutação $p_m << 1$, temos

$$p_s \cong 1 - p_m \times O(H)$$

Combinando o efeito da seleção, crossover e mutação, temos:

"Schemata curtos e de baixa ordem tendem a se proliferar ou desaparecer nas gerações seguintes, de acordo com a aptidão média".

DESEMPENHO DE ALGORITMOS GENÉTICOS

Algoritmos genéticos são sistemas não lineares com comportamento fortemente ecológico. GAs combinam mudanças aleatórias com processos probabilísticos. GAs são, portanto, estocásticos: dificilmente repetem um resultado de um experimento para outro.

O desempenho de um algoritmo genético é medido pelo grau de evolução alcançado durante todo o processo evolucionário (experimento). Devido à natureza estocástica dos GAs é necessário se avaliar o resultado médio de vários experimentos de um GA, para se ter uma idéia de seu desempenho.

DESEMPENHO DE ALGORITMOS GENÉTICOS

As principais medidas de desempenho são:

- Curva da <u>média dos melhores</u> cromossomas a cada ciclo em vários experimentos.
- Curva <u>on-line</u> da média da avaliação de todos os indivíduos até um determinado instante t em um experimento.
- Curva <u>off-line</u> da média da avaliação do melhores indivíduos até um instante t em um experimento.

TÉCNICAS, PARÂMETROS E OUTROS OPERADORES GENÉTICOS

Técnicas, parâmetros e tipos de operadores genéticos afetam significativamente o desempenho de um algoritmo genético. Em geral, o algoritmo genético é extremamente sensível a introdução ou combinação de técnicas empregadas. A escolha de técnicas, parâmetros e tipos de operadores é empírica, porém em sintonia com o problema.

Podemos classificar as técnicas empregadas em GAs nas seguintes classes:

- Técnica de Reprodução
- Técnica de Aptidão
- 3- Técnica de Interpolação de Parâmetros

TÉCNICAS DE REPRODUÇÃO DE OPERADORES GENÉTICOS

1- Troca de toda população:

A cada ciclo, N novos indivíduos são criados substituindo a população anterior: N/2 pares são escolhidos para o acasalamento, gerando N descendentes.

2- Troca de toda a população com elitismo:

Todos os cromossomas são substituídos, sendo o cromossoma mais apto da população corrente copiado na população seguinte.

TÉCNICAS DE REPRODUÇÃO DE OPERADORES GENÉTICOS

3- Troca parcial da população (steady state):

Gera M indivíduos (M<N), que substituem os piores indivíduos da população corrente (o número de indivíduos substituídos também é conhecido como GAP). Técnica elitista que mantém população mais estática, permitindo, portanto, a utilização de operadores menos conservadores como o crossover uniforme.

4- Troca parcial da população (steady state) sem duplicados:

Semelhante ao anterior, sem permitir a presença de indivíduos duplicados que são descartados da população. Garante, assim, o melhor aproveitamento do paralelismo intrínseco dos GAs (N pontos diferentes do espaço de busca sendo avaliados a cada ciclo). Todavia, implica em "overhead" para a detecção de duplicados e criação de novos indivíduos.

OPERADORES GENÉTICOS

Crossover de Dois Pontos:

Executa a recombinação de dois indivíduos a partir de dois pontos escolhidos aleatoriamente. Este operador é capaz de combinar schemata com posições fixas nas extremidades, como no exemplo abaixo.

OPERADORES GENÉTICOS

Crossover Uniforme:

O crossover de dois pontos também apresenta limitações na recombinação de schemata.

O crossover uniforme, por sua vez, é capaz de recombinar quaisquer posições entre dois genitores. Este operador utiliza um padrão (palavra binária) escolhida aleatoriamente para designar os bits selecionados em cada genitor na criação dos descendentes. Por exemplo:

G_1 G_2						0 1		
Padrão	0	1	1	0	1	0	0	
$egin{array}{c} D_1 \ D_2 \end{array}$						1 0		

OPERADORES GENÉTICOS

O crossover uniforme apresenta um poder de destruição maior que o crossover de um ponto e o de dois pontos que, por sua vez, preservam os códigos (schemata curtos) compactos. O crossover uniforme pode prejudicar a formação de padrões a partir de schemata curtos. Sua utilização deve ser, portanto, em ambientes altamente elitistas como na reprodução parcial da população (steady state), que garantem a permanência dos melhores indivíduos.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley 1989.
- [2] Marco Aurélio Pacheco, *Notas de Aula em Computação Evolucionária*, (www.ica.ele.pucrio.br).
- [3] Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs, Springer-Verlag-1994.
- [4] L. Davis, *Handbook of Genetic Algorithms*, VNR Comp. Library, 1990.
- [5] Blickle, T., "Theory of Evolutionary Algorithms and Application to System Synthesis", dissertação de doutorado, Swiss Federal Institute of Technology, Zurique, 1996.
- [6] Ricardo Salem Zebulum, Marco Aurélio C. Pacheco, Marley Maria B. R. Vellasco, "Evolutionary Electronics: Automatic Design of Electronic Circuits and Systems by Genetic Algorithms", CRC Press, Boca raton, Florida, ISBN: 0849308658, 2001.

- [7] Ricardo Salem Zebulum, Marco Aurélio C. Pacheco, Marley Maria B. R. Vellasco, "Evolutionary Electronics: Automatic Design of Electronic Circuits and Systems by Genetic Algorithms", CRC Press, Boca raton, Florida, ISBN: 0849308658, 2001.
- [8] Marco Aurélio C. Pacheco e Marley Vellasco, Sistemas Inteligentes de Apoio à Decisão: Análise Econômica de Projetos de Desenvolvimento de Campos de Petróleo sob Incerteza, Série Business Intelligence, ISBN: 978-85-7193-172-5 (brochura), ISBN: 978-85-7193-173-2 (cartonada), 300 págs, Série Business Intelligence, Ed. Interciência e Ed. PUC-Rio, Junho 2007.