Rate Mechanism Worksheet

1. The rate law for the reaction: $2H_2 + 2NO \rightarrow N_2 + 2H_2O$ is rate = k [H₂][NO]² Which of the following mechanisms can be ruled out on the basis of the observed rate expression?

Mechanism 1:

$$H_2 + NO \rightarrow H_2O + N$$
 (slow)
 $N + NO \rightarrow N_2 + O$
 $O + H_2 \rightarrow H_2O$

Mechanism 2:

$$H_2 + 2NO \rightarrow N_2O + H_2O$$
 (slow)
 $N_2O + H_2 \rightarrow N_2 + H_2O$

Mechanism 3:

$$2NO \longleftrightarrow N_2O_2$$

$$N_2O_2 + H_2 \to N_2O + H_2O \qquad (slow)$$

$$N_2O + H_2 \to N_2 + H_2O$$

2. Which of the following reaction mechanisms is consistent with the rate law: rate = $k [ClO_2]^1 [F_2]^1$. Justify your choice. (APQ from 1991 B)

Mechanism I.

$$\begin{array}{ll} ClO_2 + F_2 \leftrightarrow ClO_2F_2 & (fast) \\ ClO_2F_2 \rightarrow ClO_2F + F & (slow) \\ ClO_2 + F \rightarrow ClO_2F & (fast) \end{array}$$

Mechanism II

$$F_2 \rightarrow 2 F$$
 (slow)
2 (ClO₂ + F \rightarrow ClO₂F) (fast)

3. The reaction between NO and H₂ is believed to occur in the following three-step process. (APQ 1996D)

$$NO + NO \rightarrow N_2O_2$$
 (fast)
 $N_2O_2 + H_2 \rightarrow N_2O + H_2O$ (slow)
 $N_2O + H_2 \rightarrow N_2 + H_2O$ (fast)

- a. Write a balanced equation for the overall reaction.
- b. Identify the intermediates in the reaction. Explain your reasoning.
- c. From the mechanism represented above, a student correctly deduces that the rate law for the reaction is rate = $k[NO]^2[H_2]$. The student then concludes that (1) the reaction is third-order and (2) the mechanism involves the simultaneous collision of two NO molecules and an H_2 molecule. Are conclusions (1) and (2) correct? Explain.

4. Identify which of the reaction mechanisms represented below is consistent with the rate law: rate = $k [A]^{1}[B]^{1}$. Justify your choice. (APQ 1997B)

Mechanism 1

$$A + B \rightarrow C + M$$
 Fast
 $M + A \rightarrow D$ Slow

Mechanism 2

$$\begin{array}{ll} B \leftrightarrow M & \textit{Fast equilibrium} \\ M + A \rightarrow C + X & \textit{Slow} \\ A + X \rightarrow D & \textit{Fast} \end{array}$$

Mechanism 3

$$A + B \rightarrow M$$
 Fast equilibrium
 $M + A \rightarrow C + X$ Slow
 $X \rightarrow D$ Fast

5. Use the information in the table below to answer the following questions. (APQ 200D)

Experiment Number	Initial [O ₃] (mol L ⁻¹)	Initial [NO] (mol L ⁻¹)	Initial Rate of Formation of [NO ₂] (mol L ⁻¹ s ⁻¹)
1	0.0010	0.0010	X
2	0.0010	0.0020	2x
3	0.0020	0.0010	2x
4	0.0020	0.0020	4x

- a. Write the rate-law expression for the reaction.
- b. The following three-step mechanism is proposed for the reaction. Identify the step that must be the slowest in order for this mechanism to be consistent with the rate-law expression derived in part (a). Explain.

Step I:
$$O_3 + NO \rightarrow O + NO_3$$

Step II:
$$O+O_3 \rightarrow 2 O_2$$

Step III:
$$NO_3 + NO \rightarrow 2 NO_2$$

6. An environmental concern is the depletion of O_3 in Earth's upper atmosphere, where O_3 is normally in equilibrium with O_2 and O. A proposed mechanism for the depletion of O_3 in the upper atmosphere is shown below. (APQ 2002D)

Step I
$$O_3 + Cl \rightarrow O_2 + ClO$$

Step II $ClO + O \rightarrow Cl + O_2$

- a. Write a balanced equation for the overall reaction represented by Step I and Step II above.
- b. Clearly identify the catalyst in the mechanism above. Justify your answer.
- c. Clearly identify the intermediate in the mechanism above. Justify your answer.
- d. If the rate law for the overall reaction is found to be rate = $k[O_3]$ [C1], determine the following.
 - i. The overall order of the reaction
 - ii. Appropriate units for the rate constant, k
 - iii. The rate-determining step of the reaction, along with justification for your answer

7. The reaction between chloroform and chlorine gas proceeds in a series of three elementary steps.

 $\begin{array}{lll} \text{Step 1:} & \text{$\text{Cl}_{2(g)} \longleftrightarrow 2\text{$\text{Cl}_{(g)}$}$} & \text{Fast, reversible} \\ \text{Step 2:} & \text{$\text{CHCl}_{3(g)} + \text{$\text{Cl}_{(g)}$} \nrightarrow \text{$\text{CCl}_{3(g)}$} + \text{$\text{HCl}_{(g)}$}} & \text{Slow} \\ \text{Step 3:} & \text{$\text{CCl}_{3(g)} + \text{$\text{Cl}_{(g)}$} \nrightarrow \text{$\text{CCl}_{4(g)}$}} & \text{Fast} \\ \end{array}$

- a. Overall reaction?
- b. Which of the steps in the rate determining step?
- c. Write the rate expression for the rate determining step.
- d. What is the molecularity of each step?
- e. Identify any intermediates.
- f. Identify a catalyst
- 8. The rate equation for the reaction: $Cl_{2(aq)} + H_2S_{(aq)} \rightarrow S_{(s)} + 2HCl_{(aq)}$ was found to be rate = $k[Cl_2][H_2S]$. Which of the following mechanisms are consistent with this rate law?
- (a) $Cl_2 \rightarrow 2Cl$ (slow) $Cl + H_2S \rightarrow HCl + HS$ (fast) $Cl + HS \rightarrow HCl + S$ (fast) $Overall: Cl_2 + H_2S \rightarrow S + 2HCl$
- (b) $Cl_2 \rightarrow 2Cl$ (fast) $Cl + H_2S \rightarrow HCl + HS$ (fast) $Cl + HS \rightarrow HCl + S$ (slow) $Overall: Cl_2 + H_2S \rightarrow S + 2HCl$
- (c) $Cl_2 + H_2S \rightarrow Cl + HS + HCl$ (slow) $Cl + HS \rightarrow HCl + S$ (fast) $Overall: Cl_2 + H_2S \rightarrow S + 2HCl$