Types d'informations

Exemples de types d'informations traitées par un ordinateur (si vous avez d'autres idées au cours de l'année, n'hésitez pas à en parler au professeur) :

- des images, videos, textes (mis en forme ou non), sons, musiques
- des dates (J/M/A), horaires, durées
- des localisations (coordonnées GPS ou adresse postale)
- des nombres pour décrire des données comme le poids d'une personne, le nombre d'enfants par famille, la température, le volume d'une télévision (en décibels ou le réglage de 0 à 100)
- des nombres et textes informatiques : URLs IPs
- des fichiers, programmes informatiques, fonctions, logiciels et applications (quand on les télécharge et les installe par exemple)

TOUT CECI EST CODÉ EN BINAIRE POUR ÊTRE MANIPULÉ PAR UN ORDINATEUR!

On regroupe souvent les chiffres binaires (<u>bits</u>) 0 et 1 par 8 pour former un <u>octet</u> (<u>byte</u> en anglais).

Attention, les FPS représentent la quantité d'images calculées par secondes lors d'un jeu, et la fréquence se rafraîchissement est mesurée en Herz. Ils ne sont pas vraiment « manipulés, transmis et reçus » pas des ordinateurs.

Nombre de couleurs

Une image se décompose en pixels, chacun ayant une couleur codée sur 3 octets (3×8 chiffres binaires ou 3×8 bits) car chaque canal, Rouge, Vert et Bleu, est codé sur un octet.

Combien de couleurs différentes peut-on coder ?

Nombres relatifs

Nous savons maintenant coder un nombre entier en binaire. Sur 1 octet (8 chiffres binaires, ou 8 bits), nous pouvons coder nombres entiers positifs (de à). Comment peut-on s'organiser pour coder des nombres entiers relatifs (positifs et négatifs) sur 8 bits ?

Types d'informations

Exemples de types d'informations traitées par un ordinateur (si vous avez d'autres idées au cours de l'année, n'hésitez pas à en parler au professeur) :

- des images, videos, textes (mis en forme ou non), sons, musiques
- des dates (J/M/A), horaires, durées
- des localisations (coordonnées GPS ou adresse postale)
- des nombres pour décrire des données comme le poids d'une personne, le nombre d'enfants par famille, la température, le volume d'une télévision (en décibels ou le réglage de 0 à 100)
- des nombres et textes informatiques : URLs IPs
- des fichiers, programmes informatiques, fonctions, logiciels et applications (quand on les télécharge et les installe par exemple)

TOUT CECI EST CODÉ EN BINAIRE POUR ÊTRE MANIPULÉ PAR UN ORDINATEUR!

On regroupe souvent les chiffres binaires (<u>bits</u>) 0 et 1 par 8 pour former un <u>octet</u> (<u>byte</u> en anglais).

Attention, les FPS représentent la quantité d'images calculées par secondes lors d'un jeu, et la fréquence se rafraîchissement est mesurée en Herz. Ils ne sont pas vraiment « manipulés, transmis et reçus » pas des ordinateurs.

Nombre de couleurs

Une image se décompose en pixels, chacun ayant une couleur codée sur 3 octets (3×8 chiffres binaires ou 3×8 bits) car chaque canal, Rouge, Vert et Bleu, est codé sur un octet.

Combien de couleurs différentes peut-on coder ?

Nombres relatifs

Nous savons maintenant coder un nombre entier en binaire. Sur 1 octet (8 chiffres binaires, ou 8 bits), nous pouvons coder nombres entiers positifs (de à). Comment peut-on s'organiser pour coder des nombres entiers relatifs

(positifs et négatifs) sur 8 bits ?