- 1. Tenemos un cliente que se quiere conectar a una página web. El cliente establece una conexión con el servidor web mandando un mensaje con el bit SYN a 1 y el número de secuencia 24. El servidor contesta con otro mensaje con el bit SYN a 1 y número de secuencia 509. Después de recibir el SYN del servidor el cliente manda un ACK y hace la petición de un fichero de 40 KB.
 - a) [5 puntos] Viendo el gráfico y la tabla, rellena toda la información de números de secuencia y ACK entre los 2 equipos.
 - Ten en cuenta que el cliente puede almacenar todos los paquetes que le lleguen del servidor aunque lleguen en desorden.

Иō	SEC	ACK	Data
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			

- b) Después de tener la tabla completada, ¿cuántos paquetes le quedan por mandar al servidor si suponemos que ya no hay más fallos durante el resto de envíos y cuál será su tamaño?
- c) Si la MTU es de 1400 (capa de red), la cabecera IP es de 20 Bytes, el tamaño de MSS es 1300 (capa de transporte), ¿Qué podemos decir de las cabeceras TCP e IP?