UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

CALCULO COMPLEJO

MAT. 525212 - 521250

Continuidad Uniforme. Sean Ω un abierto en \mathbb{C} , $f:\Omega\longrightarrow\mathbb{C}$ una función, decimos que f es uniformemente continua, si: $\forall \epsilon>0$, existe $\delta=\delta(\epsilon)>0$, de modo que $d(f(z),f(z'))<\epsilon$ toda vez que $z\in B(z_0,\delta)$.

Observación: Lo importante en la definición anterior es que dado z y $\epsilon > 0$, el δ que se encuentra depende solamente de ϵ .

Ejemplo: La función $f(z)=z^2$ es uniformemente continua en B(0,r), r>0.

Proposición. Sean K un cerrado y acotado en \mathbb{C} , $f:K\longrightarrow \mathbb{C}$ una función continua. Entonces, f es uniformemente continua.

DEFINICION (Convergencia Uniforme):

Sea $\{f_n\}_{n\in\mathbb{C}}$ una sucesión de funciones complejas definidas sobre un abierto D de \mathbb{C} . Decimos que la sucesión $\{f_n\}_{n\in\mathbb{C}}$ **CONVERGE UNIFORMEMENTE** a f, denotado $f=u\lim f_n$, si para todo $\epsilon>0$, existe $N=N(\epsilon)\in\mathbb{N}$ tal que $|f(z)-f_n(z)|<\epsilon$, para todo $z\in\mathbb{C}$ y cuando $n\geq N$.

Observación: Notar que en el caso de la definición anterior, tendremos que

$$\sup_{n} \{ |f(z) - f_n(z)| : z \in D \} \le \epsilon$$

TEOREMA. Sea $\{f_n\}_{n\in\mathbb{C}}$ una sucesión de funciones complejas definidas sobre un abierto D de \mathbb{C} , de modo que f_n es continua para todo n, y además f_n converge uniformemente a f. Entonces f es continua.

TEOREMA (el M-test de Wierstrass).

Sea $\{f_n\}_{n\in\mathbb{C}}$ una sucesión de funciones complejas definidas sobre un abierto D de \mathbb{C} , tal que $|f_n(z)| \leq M_n$ para todo z y para todo n. Suponga además que $\sum_{n=1}^{\infty} M_n < \infty$. Entonces $\sum_{n=1}^{\infty} f_n$ es uniformemente convergente.

TEOREMA (Criterio de Cauchy).

La serie $\sum_{n=1}^{\infty} f_n(z)$ converge uniformemente para todo $z \in D$ si, y sólo si vale el criterio de Cauchy. Esto es, para todo $\epsilon > 0$, existe $N \in \mathbb{N}$ (que depende sólo de z) tal que para todo n > N, todo p > 0 y para todo $z \in D$ resulta

$$|f_{n+1}(z) + \dots + f_{n+p}(z)| < \epsilon.$$

DEFINICION (Series de Potencia).

Una serie de potencia alrededor del punto complejo a, es una serie de la forma $\sum_{n=1}^{\infty} a_n (z-a)^n$.

Ejercicio. Pruebe que si |z| < 1, entonces

(i)
$$\lim_{n} z^n = 0$$
; (ii) $\sum_{n=1}^{\infty} z^n = \frac{1}{1-z}$.

DEFINICION. Dada la serie de potencia $\sum_{n=1}^{\infty} a_n (z-a)^n$, defina R por

$$\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}}$$

donde para una sucesión (b_n) , $\limsup_{n\to\infty} b_n = \lim_{n\to\infty} [\sup\{b_n, b_{n+1}, \cdots\}]$. Entonces se tiene el:

TEOREMA A. En la definición anterior se tiene que:

- (i) Si |z-a| < R, entonces la serie $\sum_{n=1}^{\infty} a_n (z-a)^n$ converge absolutamente.
- (ii) Si |z-a| > R, entonces la serie $\sum_{n=1}^{\infty} a_n (z-a)^n$ diverge.
- (iii) si 0 < r < R, entonces la serie $\sum_{n=1}^{\infty} a_n (z-a)^n$ converge uniformemente sobre los z tales que $|z| \le r$.
- (iv) R es el único complejo con las propiedades (i) y (ii) (R se llama **radio de convergencia de la serie de potencia**).

Proposición. Si $\sum_{n=1}^{\infty} a_n(z-a)^n$ es una serie de potencia con radio de convergencia R, entonces

$$R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$$

si el límite anterior existe.

TEOREMA B. Suponga que $f(z) = \sum_{n=1}^{\infty} a_n (z-a)^n$ tiene radio de convergencia R > 0. Entonces:

(i) Para cada entero $k \geq 1$ las series

$$\sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n(z-a)^{n-k}$$

tiene radio de convergencia R;

- (ii) La función f es infinitamente diferenciable sobre B(a,R) y, además $f^{(k)}(z)$ es dado por la serie de la parte (i) para todo $k \ge 1$ y |z-a| < R.
- (iii) Para $n \ge 0$, $a_n = \frac{1}{n!} f^{(n)}(a)$.