Self Organizing maps for Pest Profile Analysis

A– Input matrix

	Species1	Species2	Species3	Species4		Species n
Region 1	1	1	, 1	0		1
Region 2	0	0	, ,0	1		1
Region 3 (target region)	0	1	1 ,	·	1	1
Region 4	0	0	1	٠, δ	1	1
	•••	•••	•••			1
Region m	1	0	1	0		0

B- SOM output map

Target

region

Region

Region 8

Region 2

- $-\cdot-\cdot-\cdot-$ Weight vector per species (w1, w2, ... wn)
- 1- Choose a target region to conduct the analysis (A).
- 2- Obtain the input matrix of coded presence/absence occurrence for global pest species Each row of the matrix is a regional pest profile (A).
- 3- Introduce the occurrence matrix as an input in the self-organizing maps (A and B).
- 4- Obtain a classification map of the regions according to their pest profile similarity (B).
- 5- Obtain the weights per species for the cell of the map where the target region is clustered in (B).
- 6- Create a risk list for the target region using the weight value as risk index (C).
- 7- Rank the species according to their risk index for the target region (C).
- 8- Prioritize the species that are still absent in the target region according to their rank in the risk list. (C)

Rank	Species	Risk index	Present or Absent
1	Species 615	0.82	Present
2	Species 3	0.79	Absent
3	Species 70	0.73	Absent
4	Species 5	0.69	Absent
n	Species n	0.0	Present