HOMEWORK 12

Due date: Monday of Week 13

Exercises: 5.1, 5.2, 5.3, 5.6, 6.2, 6.3, 6.5, 6.6, 6.7, 6.10, 6.11, 8.1, 8.2, 8.6, 8.7, 8.8, 8.10, 8.12, 10.1, 10.2, 10.4, 11.4, 11.6, 11.8, 11.9, pages 72-76 of Artin's book

One important construction in group theory which is not covered in the textbook is *semidirect* product. We consider its definition here. Given a group N, recall that $\operatorname{Aut}(N)$ denotes the group of automorphisms of N. Its elements are $f: N \to N$ such that f is an isomorphism. For example, if $N = \mathbb{Z}^+$, the map $f: N \to N$ defined by f(x) = -x is an automorphism. The group structure on $\operatorname{Aut}(N)$ is just composition.

Let H and N be two groups and let $\phi: H \to \operatorname{Aut}(N)$ be a group homomorphism. In particular, for each $h \in H$, $\phi(h): N \to N$ is an automorphism. We now define a group $N \rtimes_{\phi} H$, which is called the (outer) semidirect product of N with H with respect to ϕ . As a set, $N \rtimes_{\phi} H$ is just the Cartesian product of N with H, namely, as a set $N \rtimes_{\phi} H = \{(n,h)|n \in N, h \in H\}$. The group operation \bullet (product in the group) is defined by

$$(n_1, h_1) \bullet (n_2, h_2) = (n_1 \phi(h_1)(n_2), h_1 h_2), n_1, n_2 \in \mathbb{N}, h_1, h_2 \in \mathbb{H}.$$

Here recall that $\phi(h_1): N \to N$ is an isomorphism, and thus $\phi(h_1)(n_2) \in N$. Note that if ϕ is the trivial homomorphism, namely, $\phi(h) = \mathrm{id}_N$ for every $h \in H$, then $N \rtimes_{\phi} H$ is just the direct product $N \times H$. Thus semidirect product is a generalization of product.

Problem 1. Show that $N \rtimes_{\phi} H$ defined above is indeed a group. Moreover, consider the map $i_N: N \to N \rtimes_{\phi} H$ defined by $i_N(n) = (n,1)$ and $i_H: H \to N \rtimes_{\phi} H$ defined by $i_H(h) = (1,h)$. Show that i_N, i_H are injective group homomorphisms. Furthermore, show that $i_N(N)$ is a normal subgroup of $N \rtimes_{\phi} H$.

One might ask how the group structure of $N \rtimes_{\phi} H$ depends on ϕ .

Problem 2. Let $f: H \to H$ be an automorphism and let $\phi_1: H \to \operatorname{Aut}(N)$ be a group homomorphism. Consider $\phi_2 = \phi_1 \circ f: H \to \operatorname{Aut}(N)$. Show that $N \rtimes_{\phi_1} H \cong N \rtimes_{\phi_2} H$.

Let n be a positive integer and let C_n denote the cyclic group of order n. We can realize $C_n \cong \mathbb{Z}/n\mathbb{Z}$ with addition as the group operation.

Problem 3. Show that $\operatorname{Aut}(C_n) = \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$. Here recall that

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{a \in \mathbb{Z}/n\mathbb{Z} : \text{ there is } b \in \mathbb{Z}/n\mathbb{Z}, \text{ such that } ab = 1\}.$$

If n = 10, this is Exercise 6.10 (a).

There are at least two elements ϕ_0, ϕ_1 in $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ defined by

$$\phi_0 = \mathrm{id}_{\mathbb{Z}/n\mathbb{Z}}; \phi_1(x) = -x, \forall x \in \mathbb{Z}/n\mathbb{Z}.$$

Consider the map

$$\phi: \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$$

defined by $\phi(\overline{0}) = \phi_0, \phi(\overline{1}) = \phi_1$. It is clear that ϕ is a group homomorphism.

Problem 4. Show that $\mathbb{Z}/n\mathbb{Z} \rtimes_{\phi} \mathbb{Z}/2\mathbb{Z}$ is isomorphic to D_n , the dihedral group of order 2n.

Problem 5. Let p, q be two primes.

- (1) If there exists a non-trivial group homomorphism $C_q \to \operatorname{Aut}(C_p)$, show that q|(p-1);
- (2) Suppose q|(p-1). Determine all group homomorphisms $C_q \to \operatorname{Aut}(C_p)$;
- (3) Suppose q|(p-1). Let ϕ_1, ϕ_2 be two different group homomorphisms $C_q \to \operatorname{Aut}(C_p)$. Show that there exists an isomorphism $f: C_q \to C_q$ such that $\phi_2 = \phi_1 \circ f$.

2 HOMEWORK 12

(4) Suppose q|(p-1). Conclude that there are only two isomorphism classes $C_p \rtimes_{\phi} C_q$.

We now consider a special case of semidirect product. Suppose that N and H are both subgroups of a group G with $N \cap H = \{1\}$. Moreover, suppose that for any $h \in H$ and $n \in N$, we have $hnh^{-1} \in N$. If this condition is satisfied, we say that H normalizes N. Then we define

$$\phi: H \to \operatorname{Aut}(N)$$

by $\phi(h)(n) = hnh^{-1}$. Then we can form the semidirect product. $N \rtimes_{\phi} H$. In this case, we often drop ϕ from the notation, and write it as $N \rtimes H$.

Problem 6. Show that there is an injective homomorphism $N \rtimes H \to G$.

Hint: the map is just $(n,h) \to nh$.

We then identify $N \rtimes H$ as a subgroup of G. This is called the inner semidirect product of N and H.

Problem 7. Suppose that N, H are two subgroups of G. Show that $G = N \rtimes H$ if and only if the following conditions hold.

- (1) N is normal in G;
- (2) G = NH;
- (3) $N \cap H = \{1\}.$

Compare this with Proposition 2.11.4, page 65.