# Deep Exponential Families (AISTATS 2015)

Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei

Presented by
Wittawat Jitkrittum
Gatsby machine learning journal club

18 May 2015

# Exponential families

$$p(x|\eta) = \exp(\eta^{\top} T(x) - a(\eta))$$

- $\blacksquare \eta = \text{natural parameter.} \ T(x) = \text{sufficient statistic.} \ a(\eta) = \log \text{ partition.}$
- $\blacksquare \mathbb{E}[T(x)] = \nabla_{\eta} a(\eta).$
- Poisson:  $p(z|\eta) = z!^{-1} \exp(\eta z \exp(\eta))$
- Gamma:  $p(z|\alpha,\beta) = z^{-1} \exp(\alpha \log(z) \beta z \log \Gamma(\alpha) \alpha \log \beta)$
- To be more flexible, propose deep exponential families (DEF).

# Deep exponential families [Ranganath et al., 2015]



- For each observation  $x_n$ , L layers of hidden variables  $\{z_{n,1}, \ldots, z_{n,L}\}$ .
- lacksquare  $K_{\ell}$ -dimensional  $\boldsymbol{z}_{n,\ell} = (z_{n,\ell,1},\ldots,z_{n,\ell,K_{\ell}})^{\top}$ .
- L-1 layers of weights  $\{\boldsymbol{W}_1,\ldots,\boldsymbol{W}_{L-1}\}$ .
- $m{W}_{\ell} = (m{w}_{\ell,1}, \dots, m{w}_{\ell,K_l}) \in \mathbb{R}^{K_{\ell+1} \times K_{\ell}}$ . Prior  $p(m{W}_{\ell})$ .
- Dropping subscript *n*:

$$p(z_{\ell,k} \mid \boldsymbol{z}_{\ell+1}, \boldsymbol{w}_{\ell,k}) = \operatorname{ExpFam}_{\ell}(g_{\ell}(\boldsymbol{z}_{\ell+1}^{\top} \boldsymbol{w}_{\ell,k})).$$

- Link function  $g_{\ell}: \boldsymbol{z}_{\ell+1}^{\top} \boldsymbol{w}_{\ell,k} \mapsto$  natural param.
- Likelihood  $p(x_{n,i} \mid \boldsymbol{z}_{n,1})$ .
- Sigmoid belief net = Bernoulli layers + identity link function

# $\nabla a$ and non-linearity

■ Expected sufficient statistics = gradient of the log parition

$$\mathbb{E}[T(z_{\ell,k})] = \nabla_{\eta_{\ell,k}} a(g_{\ell}(\boldsymbol{z}_{\ell+1}^{\top} \boldsymbol{w}_{\ell,k})),$$

where  $\eta_{\ell,k} := g_{\ell}(\boldsymbol{z}_{\ell+1}^{\top} \boldsymbol{w}_{\ell,k}).$ 



- Consider  $g_{\ell}(x) = x$  and  $T(z_{\ell,k}) = z_{\ell,k}$ .
- Then  $\mathbb{E}[z_{\ell,k}] = \text{linear function of } w_{\ell,k} \text{ tranformed by } \nabla_{\eta_{\ell,k}} a(\cdot).$
- This is one source of non-linearity.

#### Inference with mean field

- Log partition function a intractable.
- N observations. Mean field approximation:

$$q(z, W) = q(\boldsymbol{W}_0) \prod_{l=1}^{L} q(\boldsymbol{W}_l) \prod_{n=1}^{N} q(\boldsymbol{z}_{n,l}),$$

and  $q(\boldsymbol{W}_l), q(\boldsymbol{z}_{n,l})$  fully factorized.

■ Maximize evidence lower bound (ELBO)

$$\mathcal{L}(q) = \mathbb{E}_{q(z,W)} \left[ \log p(x, z, W) - \log q(z, W) \right] \le \log p(X).$$

- $\blacksquare q(W \mid \xi)$  in the same family as p(W).
- $\mathbf{q}(z_{n,l,k} \mid \lambda_{n,l,k}) = \operatorname{ExpFam}_{l}(z_{n,l,k} \mid \lambda_{n,l,k}),$  same family as p.
- lacksquare  $\mathbb{E}_{q(z,W)}[\cdots]$  will not have a simple analytic form.
- Use blackbox variational inference (BBVI).

# Blackbox variational inference (BBVI) [Ranganath et al., 2013]

- Stochastic optimization. Follow noisy unbiased gradients.
- Gradient:

$$\begin{split} \nabla_{\lambda_{n,\ell,k}} \mathcal{L}(q) &= \nabla_{\lambda_{n,\ell,k}} \mathbb{E}_{q(z,W)} \left[ \log p(x,z,W) - \log q(z,W) \right] \\ &= \mathbb{E}_{q} \left\{ \nabla_{\lambda_{n,\ell,k}} \log q(z_{n,\ell,k}) \left[ \log \frac{p_{n,\ell,k}}{k}(x,z,W) - \log q(z_{n,\ell,k}) \right] \right\}. \end{split}$$

where  $p_{n,\ell,k}(x,z,W)=$  terms in the joint containing  $z_{n,\ell,k}$  (its Markov blanket).

Markov blanket terms:

$$\log p_{n,\ell,k}(x,z,W) = \log p(z_{n,\ell,k} \mid z_{n,\ell+1}, w_{\ell,k}) + \log p(z_{n,\ell-1} \mid z_{n,\ell}, W_{\ell-1}).$$

- Draw from q. Monte Carlo estimate of  $\nabla_{\lambda_{n,\ell,k}} \mathcal{L}(q)$ .
- $\blacksquare$  Can parallelize  $n=1,\ldots,N$ .
- Gradients of  $\xi$  (for W) are similar.

#### **Algorithm 1** BBVI for DEFs

```
Input: data X, model p, L layers.
Initialize \lambda, \xi randomly, t = 1.
repeat
  Sample a datapoint x
  for s = 1 to S do
     z_r[s], W[s] \sim q
     p[s] = \log p(z_x[s], W[s], x)
     q[s] = \log q(z_x[s], W[s])
     q[s] = \nabla \log q(z_x[s], W[s])
  end for
  Compute gradient using BBVI
  Update variational parameters for z and W
until change in validation likelihood is small
```

■ Gradient = average g[s] for s = 1, ..., S.

## Example: sparse gamma DEF

Gamma distributed layers.

$$p(z|\alpha, \beta) = z^{-1} \exp(\alpha \log(z) - \beta z - \log \Gamma(\alpha) - \alpha \log \beta).$$

Link functions

$$g_{\alpha} = \alpha_{\ell},$$

$$g_{\beta} = \frac{\alpha_{\ell}}{\boldsymbol{z}_{\ell+1}^{\top} \boldsymbol{w}_{\ell,k}}.$$

- $lackbox{\textbf{p}}(W) = \mathsf{Gamma} \ \mathsf{distribution} \ \mathsf{so} \ m{z}_{\ell+1}^{\top} m{w}_{\ell,k} > 0.$
- lacksquare  $\alpha_\ell$  and shape parameters of p(W) are set to be less than 1.
- Probability mass near  $0 \Rightarrow$  sparse gamma.

## Example: Poisson DEF

$$p(z|\eta) = z!^{-1} \exp(\eta z - \exp(\eta))$$

with mean  $\exp(\eta)$ .

■ Poisson DEF = Poisson latent + log-link function.

$$p(z_{\ell,k} \mid \boldsymbol{z}_{\ell+1}, \boldsymbol{w}_{\ell,k}) = (z_{\ell,k}!)^{-1} \exp(\log(\boldsymbol{z}_{\ell+1}^{\top} \boldsymbol{w}_{\ell,k}) z_{\ell,k} - \boldsymbol{z}_{\ell+1}^{\top} \boldsymbol{w}_{\ell,k}).$$

- $\blacksquare$  So, the mean of  $z_{\ell,k}$  is  $\boldsymbol{z}_{\ell+1}^{\top}\boldsymbol{w}_{\ell,k}$ .
- lacksquare  $p(oldsymbol{W}_\ell)$  a factorized gamma distribution.

## Experiment: text modelling

- Datasets: The New York Times (NYT), and Science.
- Multinomial likelihood:  $p(\text{count of } w \mid \text{latent})$ .
- 3 cases for latent: Poisson, gamma and Bernoulli.
- All methods see 10% of the words in each doc. 90% held-out.
- Perplexity on a held out set of 1000 documents.

$$\exp\left(\frac{-\sum_{d \in \mathrm{docs}} \sum_{w \in d} \log p(w \mid \# \mathrm{held \ out \ words \ in \ } d)}{N_{\mathrm{held \ out \ words}}}\right).$$

Lower is better.

### Text modelling results

| Model                      | DEF W         | NYT  | Science |
|----------------------------|---------------|------|---------|
| LDA [6]                    |               | 2717 | 1711    |
| DocNADE [19]               |               | 2496 | 1725    |
| Sparse Gamma 100           | Ø             | 2525 | 1652    |
| Sparse Gamma 100-30        | Γ             | 2303 | 1539    |
| Sparse Gamma 100-30-15     | Γ             | 2251 | 1542    |
| Sigmoid 100                | Ø             | 2343 | 1633    |
| Sigmoid 100-30             | $\mathcal{N}$ | 2653 | 1665    |
| Sigmoid 100-30-15          | $\mathcal{N}$ | 2507 | 1653    |
| Poisson 100                | Ø             | 2590 | 1620    |
| Poisson 100-30             | $\mathcal{N}$ | 2423 | 1560    |
| Poisson 100-30-15          | $\mathcal{N}$ | 2416 | 1576    |
| Poisson log-link 100-30    | Γ             | 2288 | 1523    |
| Poisson log-link 100-30-15 | Γ             | 2366 | 1545    |

- 100-30-15 indicates sizes of the layers.
- DEFs outperform the baselines (LDA and DocNADE).
- Deeper layers help.
- Sigmoid DEFs difficult to train.

### Experiment: matrix factorization

Consider user-item matrices containing ratings.

$$p(x_{n,i} \mid \boldsymbol{z}_{n,1}^c, \boldsymbol{z}_{i,1}^r) = \text{Poisson}(\boldsymbol{z}_{n,1}^{c\top} \boldsymbol{z}_{i,1}^r).$$

- $\mathbf{z}_{n,1}^c = \text{hidden representation of user } n.$
- $\mathbf{z}_{i,1}^r = \text{hidden representation of item } i.$
- Put hierarchies on both  $z^c$  and  $z^r$ .
- Datasets:
  - 1 Netflix movie ratings. 50K users. 17.7K movies.
  - 2 ArXiv click data.
    - Viewers × papers matrix containing click counts.
    - 18K users. 20K docs.

#### Matrix factorization results

| Model              | Netflix Perplexity | Netflix NDCG | ArXiv Perplexity | ArXiv NDCG |
|--------------------|--------------------|--------------|------------------|------------|
| Gaussian MF [32]   | -                  | 0.008        | _                | 0.013      |
| 1 layer Double DEF | 2319               | 0.031        | 2138             | 0.049      |
| 2 layer Double DEF | 2299               | 0.022        | 1893             | 0.050      |
| 3 layer Double DEF | 2296               | 0.037        | 1940             | 0.053      |

#### items

|       | tr | te |
|-------|----|----|
| users | te | tr |

Layer sizes: 100-30-15.

- Report perpexity on the test set as before.
- 1000 users in the test set.
- Claim: deeper is better (sort of).
- Gaussian MF =  $\ell_2$ -regularized Gaussian matrix factorization.
- NDCG = multi-level ranking measure.

#### References I

Ranganath, R., Gerrish, S., and Blei, D. M. (2013). Black Box Variational Inference. arXiv:1401.0118 [cs, stat].

arXiv: 1401.0118.

Ranganath, R., Tang, L., Charlin, L., and Blei, D. (2015). {Deep Exponential Families}. pages 762–771.

# All DEFs in the paper

| z-Dist    | $\mathbf{z}_{\ell+1}$  | W-dist | $\mathbf{w}_{\ell,k}$ | $g_\ell$            | $\mathrm{E}[T(z_{\ell,k})]$                                                                                                 |
|-----------|------------------------|--------|-----------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Gamma     | $R_{+}^{K_{\ell+1}}$   | Gamma  | $R_{+}^{K_{\ell+1}}$  | [constant; inverse] | $[z_{\ell+1}^{\top} \mathbf{w}_{\ell,k}; \Psi(\alpha_{\ell}) - \log(\alpha) + \log(z_{\ell+1}^{\top} \mathbf{w}_{\ell,k})]$ |
| Bernoulli | $\{0,1\}^{K_{\ell+1}}$ | Normal | $R^{K_{\ell+1}}$      | identity            | $\sigma(z_{\ell+1}^{\top}\mathbf{w}_{\ell,k})$                                                                              |
| Poisson   | $N^{K_{\ell+1}}$       | Gamma  | $R_{+}^{K_{\ell+1}}$  | log                 | $z_{\ell+1}^{	op}\mathbf{w}_{\ell,k}$                                                                                       |
| Poisson   | $N^{K_{\ell+1}}$       | Normal | $R^{K_{\ell+1}}$      | log-softmax         | $\log(1 + \exp(z_{\ell+1}^{\top} \mathbf{w}_{\ell,k}))$                                                                     |

Table 1: A summary of all the DEFs we present in terms of their layer distributions, weight distributions, and link functions.

Focus on document (bag of words) modelling .