

Varianta 085

Subjectul I

a) 13. b)
$$\frac{\sqrt{30}}{2}$$
; c) $\left(\frac{\sqrt{2}}{2}, \sqrt{2}\right)$; $\left(-\frac{\sqrt{2}}{2}, -\sqrt{2}\right)$. d) $2 \in \left(\frac{\pi}{2}, \pi\right)$, deci sin2>0, cos2<0, de

unde sin2>cos2. e) 6. f) $a=b=-\frac{\sqrt{2}}{2}$ aplicând Moivre

Subjectul II

- 1. a) $\log_3 4 > 1 \Leftrightarrow 4 > 3$. b) Relația se verifică pentru $\hat{x} \in \{\hat{1}, \hat{4}\}$. Probabilitatea este $\frac{2}{5}$
- c) $f(1)=10 \Rightarrow g(10)=1$. d) x=1 este unica soluție deoarece $f: \mathbf{R} \to \mathbf{R}$, $f(x) = 2^x + 8^x$ este funcție crescătoare. e) -10.
- 2. a) $f'(x)=3^x \cdot \ln 3 1$. b) 1. c) $f''(x)=3^x \cdot (\ln 3)^2 > 0$, deci f convexă pe **R**.

d) f'(1)=3ln3-1.e)
$$\lim_{x\to\infty} \frac{f'(x)}{f(x)} = \lim_{x\to\infty} \frac{3^x \ln 3 - 1}{3^x - x - 1} = \ln 3$$
.

Subjectul III

- a) $(x^2-1)(x^2+1)=x^4-1$.
- b) Scăzând coloana 1 din celelalte coloane , dezvoltând determinantul după prima linie, apoi dăm factor comun de pe coloane și finalizând calculele obținem $\det V=(x_2-x_1)(\ldots)$ egalitatea cerută.
- c) Polinomul g are rădăcini distincte, deci detV≠0 şi rangV=4.
- d) Se verifică prin calcul direct, folosnd faptul că pentru $i = \overline{1,4}$ avem x_i rădăcini ale polinomului g, deci $x_i^4 = 1$ și $f(x_i) = a + bx_i + cx_i^2 + dx_i^3$.
- e) Din d) obţinem $\det(AV)=f(x_1)f(x_2)f(x_3)f(x_4)\det V$ şi cum $\det(AV)=\det(A)\cdot\det(V)\neq 0$, rezultă că $\det(A)=f(x_1)f(x_2)$ $f(x_3)$ $f(x_4)$.

f) Avem A=
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 şi deci A²=
$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
, A⁴=
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = I_4$$

g) Din f) avem A⁴=I₄, deci A inversabilă și A⁻¹=A³

Subjectul IV

a) g(0)=0. h(0)=0.

b)
$$g'(x) = e^{-x} \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right) - e^{-x} \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} \right)$$
, deci

$$g'(x) = e^{-x} \cdot \frac{x^n}{n!} \cdot h'(x) = \frac{1}{n!} f(x) = \frac{1}{n!} e^{-x} \cdot x^n$$
 de unde $g'(x) = h(x)$.

c) Conform unei consecințe a teoremei lui Lagrange , două funcții cu derivatele egale diferă cel mult printr-o constantă, deci există $c \in \mathbf{R}$ astfel încât g(x)=h(x)+c și folosind a) obținem c=0, deci g(x)=h(x).

d)
$$\lim_{x \to \infty} e^{-x} \cdot x^n = \lim_{x \to \infty} \frac{x^n}{e^x} = 0.$$

e) Deoarece $f(x) \ge 0$, $\forall x \ge 0$ obţinem $h(x) \ge 0$, $\forall x \ge 0$ şi deci $g(x) \ge 0$, $\forall x \ge 0$.

f'(x)=-e^{-x} 'xⁿ+n' e^{-x} 'xⁿ⁻¹= e^{-x} 'xⁿ⁻¹(n-x)>0, $\forall x \in (0,n)$ deci f strict crescătoare pe [0,n].

Avem
$$g(x) = h(x) = \frac{1}{n!} \int_{0}^{x} f(t)dt \le \frac{1}{n!} \int_{0}^{x} f(x)dt = \frac{1}{n!} x f(x) = \frac{e^{-x} \cdot x^{n+1}}{n!}, \forall x \in [0, n]$$

f) Fie
$$a_n = \frac{x^{n+1}}{n!}$$
, pentru x>0. $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{x}{n+1} = 0 < 1$, $deci \lim_{n \to \infty} a_n = 0$.

Pentru x=0 egalitatea este evidentă.

g) Din e) obținem
$$0 \le 1 - e^{-x} \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + ... + \frac{x^n}{n!} \right) \le \frac{e^{-x} \cdot x^{n+1}}{n!}$$
 și, înmulțind inegalitățile

cu e^x, avem
$$0 \le e^{-x} - \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}\right) \le \frac{x^{n+1}}{n!}, \forall x \in [0, n], \forall n \in \mathbb{N}^*.$$

Trecând la limită în inegalități, obținem
$$\lim_{n\to\infty} \left(e^{-x} - \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right) \right) = 0$$
 de unde

$$\lim_{n \to \infty} \left(\left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right) \right) = e^x, \forall x \ge 0.$$