

REGRESIÓN LOGÍSTICA

ALAN REYES-FIGUEROA
ELEMENTS OF MACHINE LEARNING

(AULA 18) 28.MARZO.2023

Queremos estudiar otra familia de clasificadores sencillos: aquellos que dependen de una ecuación lineal (2 clases).

En este caso, buscamos una frontera de clasificación en la forma de un hiperplano en \mathbb{R}^d , dada por

$$w_0 + \mathbf{w}^T \mathbf{x} = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_d x_d = 0,$$
 (1)

donde $\mathbf{w} = (w_1, \dots, w_d) \in \mathbb{R}^d$ y $w_0 \in \mathbb{R}$.

Por simplicidad, haremos una identificación del conjunto de datos \mathbb{X} en \mathbb{R}^{d+1} mediante el mapa biyectivo $i:\mathbb{R}^d\to\mathbb{R}^{d+1}$ dado por

$$i(x) = (1, x).$$

Similarmente, denotaremos al vector $(w_0, w_1, \dots, w_d) \in \mathbb{R}^{d+1}$ simplemente por **w**. Así, la ecuación lineal (1) se escribe como $\mathbf{w}^T \mathbf{x} = \mathbf{0}$:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = w_{\mathsf{O}} + w_{\mathsf{1}}x_{\mathsf{1}} + w_{\mathsf{2}}x_{\mathsf{2}} + \ldots + w_{\mathsf{d}}x_{\mathsf{d}} = \mathsf{O}. \tag{2}$$

En general, separar un conjunto de datos (consistente de dos clases) mediante un hiperplano no siempre es posible. Distinguimos dos casos de conjuntos:

Definición

Un conjunto de datos $\mathbb{X} \in \mathbb{R}^{n \times (d+1)}$ que consiste de dos clases $y_i \in \{0,1\}$ se llama **linealmente separable**, si existe un vector $\mathbf{w} = (w_0, w_1, \dots, w_d) \in \mathbb{R}^{d+1}$ tal que la ecuación lineal $\mathbf{w}^T \mathbf{x} = 0$ es una frontera de clasificación del conjunto \mathbb{X} . Esto es

$$y_i = 1(\mathbf{w}^T \mathbf{x}_i > 0), \text{ para todo } i = 1, 2, ..., n.$$

Caso contrario, diremos que $\mathbb X$ no es linealmente separable.

Separabilidad lineal: (a) un conjunto no linealmente separable; (b) un conjunto linealmente separable.

Típicamente los clasificadores lineales se trabajan de dos formas

Etiquetas o y 1:
 En este caso, la clasificación de obtiene mediante el criterio

$$y(\mathbf{x}) = \mathbf{1}(\mathbf{w}^\mathsf{T}\mathbf{x} > 0).$$

• Etiquetas -1 y 1: En este caso, la clasificación de obtiene mediante el criterio

$$y(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x}).$$

En ambos casos, si queremos hallar el hiperplano separante óptimo $\mathbf{w} \in \mathbb{R}^{d+1}$, ambos criterios usan una función no-diferenciable.

Consideramos el caso del clasificador logístico Aquí consideramos etiquetas $\{0,1\}$, $\mathbf{x} \in \mathbb{R}$ y usamos el criterio de clasificación $\mathbf{1}(\mathbf{x} > 0)$.

El clasificador logístico utiliza la función sigmoide estándar

$$\sigma(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{x}}}$$

como una aproximación suave de la función $\mathbf{1}(\mathbf{x} > 0)$.

Observaciones:

- $\sigma: \mathbb{R} \to (0,1)$ es una función de clase C^{∞} que transforma números reales en valores que pueden interpretarse como probabilidades.
- En general, $\sigma(\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})}$ es una aproximación suave de $\mathbf{1}(\mathbf{w}^T\mathbf{x} > \mathbf{0})$.
- σ tiene la siguiente propiedad: $\frac{d}{d\mathbf{x}}\sigma(\mathbf{x}) = \sigma(\mathbf{x})(1 \sigma(\mathbf{x}))$. Prueba:

$$\frac{d}{d\mathbf{x}}\sigma(\mathbf{x}) = \frac{e^{-\mathbf{x}}}{(1+e^{-\mathbf{x}})^2} = \left(\frac{1}{1+e^{-\mathbf{x}}}\right) \left(\frac{e^{-\mathbf{x}}}{1+e^{-\mathbf{x}}}\right)$$
$$= \sigma(\mathbf{x})(1-\sigma(\mathbf{x})).$$

Dado un conjunto de datos $\mathbb{X} \in \mathbb{R}^{n \times (d+1)}$ con etiquetas binarias, nuestro interés es hallar el vector óptimo de separación $\mathbf{w} \in \mathbb{R}^{d+1}$ tal que $y(\mathbf{x})$ sea lo más próximo al clasificador logístico

$$\widehat{y}(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}.$$

Recordatorio: Regresión lineal.

Recordemos la función de pérdida en el caso de regresión. Tenemos

$$L = \mathbb{E} L(y_i, \widehat{y}_i) = \frac{1}{n} ||\mathbf{y} - \mathbb{X}\mathbf{w}||^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \mathbf{w}^\mathsf{T} \mathbf{x}_i)^2.$$

En este caso podemos resolver de forma directa los coeficientes óptimos **w**. Para ello, basta diferenciar con respecto de **w**:

$$\begin{array}{lcl} \nabla_{\mathbf{w}} L & = & \nabla_{\mathbf{w}} \frac{1}{n} ||\mathbf{y} - \mathbb{X}\mathbf{w}||^2 = \nabla_{\mathbf{w}} \frac{1}{n} \langle \mathbf{y} - \mathbb{X}\mathbf{w}, \mathbf{y} - \mathbb{X}\mathbf{w} \rangle \\ & = & -\frac{2}{n} \langle \mathbb{X}, \mathbf{y} - \mathbb{X}\mathbf{w} \rangle = -\frac{2}{n} (\mathbb{X}^T \mathbf{y} - \mathbb{X}^T \mathbb{X}\mathbf{w}) = \mathbf{0}. \end{array}$$

 $\Rightarrow \mathbb{X}^T \mathbb{X} \mathbf{w} = \mathbb{X}^T \mathbf{y}$, lo que conduce a la solución óptima $\mathbf{w}^* = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{y}$.

En el caso de la clasificación logística, tenemos la función de pérdida

$$L = \mathbb{E} L(y_i, \widehat{y}_i) = \frac{1}{n} ||\mathbf{y} - \sigma(\mathbb{X}\mathbf{w})||^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i))^2.$$

Al replicar la estrategia anterior, resulta:

$$\nabla_{\mathbf{w}} L = \nabla_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i))^2 = -\frac{2}{n} \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) \sigma(\mathbf{w}^T \mathbf{x}_i) (1 - \sigma(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i.$$

Esta ecuación ya no produce una solución directa para **w**. Sin embargo, es posible utilizar métodos iterativos para hallar el óptimo. Por ejemplo, podemos usar métodos de descenso gradiente

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \alpha \nabla_{\mathbf{w}} L(\mathbf{w}^{(k)}).$$

Sea Z una v.a. con distribución Ber(p), o 1. Tenemos las probabilidades condicionales

$$\mathbb{P}(Z = 1; p) = \mathbb{P}(Z = 1; \mu = p) = p,$$

 $\mathbb{P}(Z = 0; p) = \mathbb{P}(Z = 0; \mu = p) = 1 - p.$

Dado un conjunto de datos (\mathbf{x}_i, y_i) donde los $y_i \in \{0, 1\}$, podemos modelar el comportamiento de las y_i como una v.a. $Y \sim Ber(p)$, donde $\widehat{p} = \mathbb{E}(y_i = 1) = \frac{m}{n}$, con m el número de datos en la clase y = 1.

Tenemos

$$\mathbb{P}(y_i = 1 \mid \mathbf{x}_i; p) = p,
\mathbb{P}(y_i = 0 \mid \mathbf{x}_i; p) = 1 - p.$$

Sin embargo, queremos que nuestro modelo represente p en términos del parámetro lineal $\mathbf{w} \in \mathbb{R}^{d+1}$. Hacemos

$$\mathbb{P}(y_i = 1 \mid \mathbf{x}_i; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x}_i),$$

$$\mathbb{P}(y_i = 0 \mid \mathbf{x}_i; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \mathbf{x}_i).$$

Como Y es Bernoulli, podemos escribir la distribución condicional por

$$\mathbb{P}(y_i \mid \mathbf{x}_i; \mathbf{w}) = \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i)^{y_i} (1 - \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i))^{1 - y_i}.$$

Asumiendo independencia de las y_i , la verosimilitud de **w** dados los datos es

$$\mathcal{L}(\mathbf{w}) = \mathbb{P}(\mathbf{y} \mid \mathbb{X}; \ \mathbf{w}) = \prod_{i=1}^{n} \mathbb{P}(y_i \mid \mathbf{x}_i; \ \mathbf{w}) = \prod_{i=1}^{n} \sigma(\mathbf{w}^T \mathbf{x}_i)^{y_i} (1 - \sigma(\mathbf{w}^T \mathbf{x}_i))^{1-y_i}.$$

Para hallar el w óptimo, maximizamos la log-verosimilitud

$$\ell(\mathbf{w}) = \log \mathcal{L}(\mathbf{w}) = \log \prod_{i=1}^{n} \sigma(\mathbf{w}^{T} \mathbf{x}_{i})^{y_{i}} (1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}))^{1-y_{i}}$$
$$= \sum_{i=1}^{n} \left[y_{i} \log \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) + (1 - y_{i}) \log (1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i})) \right].$$

Diferenciando en w, resulta

$$\nabla_{\mathbf{w}}\ell(\mathbf{w}) = \nabla_{\mathbf{w}} \sum_{i=1}^{n} \left[y_{i} \log \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) + (1 - y_{i}) \log \left(1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \right) \right]$$

$$= \sum_{i=1}^{n} \left[\frac{y_{i}}{\sigma(\mathbf{w}^{T} \mathbf{x}_{i})} \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \left(1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \right) \mathbf{x}_{i} - \frac{1 - y_{i}}{1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i})} \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \left(1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \right) \mathbf{x}_{i} \right]$$

$$= \sum_{i=1}^{n} \left(y_{i} \left(1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \right) - (1 - y_{i}) \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \right) \mathbf{x}_{i}.$$

Así,

$$\nabla_{\mathbf{w}}\ell(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i.$$
 (3)

Finalmente, usamos (3) en el método de descenso gradiente

$$\mathbf{W}^{(k+1)} = \mathbf{W}^{(k)} + \alpha \nabla_{\mathbf{W}} \ell(\mathbf{W}^{(k)}).$$

Tenemos el siguiente

Algoritmo:

- **1.)** Inicio: Elegir $\alpha > 0$, $\mathbf{w}^{(0)} \in \mathbb{R}^{d+1}$ arbitrario.
- **2.)** Repetir para k = 0, 1, 2, ... (hasta cierto criterio de paro):
 - Calcular $\nabla_{\mathbf{w}} \ell(\mathbf{w}^{(k)})$ como en (3).
 - Recalcular $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \alpha \nabla_{\mathbf{w}} \ell(\mathbf{w}^{(k)})$.

Observaciones:

- El método de descenso "mueve" $\mathbf{w}^{(k)}$ según la contribución de los datos mal clasificados (proporcional a la diferencia $y_i \sigma(\mathbf{w}^T \mathbf{x}_i)$).
- La convergencia de este método depende del conjunto de datos:
 - El método de descenso gradiente siempre converge (a un mínimo local) para el caso de un conjunto linealmente separable.
 - La convergencia puede verse afectada en el caso no separable.
 Esto peude resolverse modificando o usando un método de descenso más elaborado (curso de Optimización).
- Las ideas aquí descritas dan origen a modelos lineales de transferencia de información (modelos neuronales). Por ejemplo, el perceptrón.

El perceptrón

El modelo perceptrón.

La salida esde la forma $y = \varphi(\mathbf{w}^T \mathbf{x})$, donde $\varphi : \mathbb{R} \to \mathbb{R}$ es una función de transferencia o función de activación.

El perceptrón

