МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФРМАТИКИ

Кафедра теории вероятностей и математической статистики

ПОЛУЗЁРОВ Тимофей Дмитриевич

ТЕМА РАБОТЫ

Магистерска диссертация специальность ... Прикладная математика и информатика

Научный руководитель
Харин Алексей Юрьевич
заведующий кафедрой, доктор
физико-математических наук,
профессор

Дог	ущена к защите	
« <u></u>	_» 2025 г.	
Зав	кафедрой теории вероятностей и математической ст	гатистики
	А. Ю. Харин	
док	гор физико-математических наук, профессор	

Минск, 2025

ОГЛАВЛЕНИЕ

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ	3
АГУЛЬНАЯ ХАРАКТЫРЫСТЫКА РАБОТЫ	4
GENERAL DESCRIPTION OF WORK	E C
введение	6
1. РОЛЬ ДАЛЬНОДЕЙСТВИЯ ПРИТЯЖЕНИЯ В ПРОСТЫХ	
жидкостях	7
1.1. Основные понятия	7
1.2. Сведение к процентным ставкам	8
ЗАКЛЮЧЕНИЕ	10
припожение а	11

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Ключевые слова: кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g

Задачи исследования:

- 1. пункт 1
- 2. пункт 2

Цель работы: тут цель

Объект исследования является

Предмет исследования является

Методы исследования: методы методы

Результаты работы

Области применения

АГУЛЬНАЯ ХАРАКТЫРЫСТЫКА РАБОТЫ

Ключавыя словы: кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g

Мэта работы: тут цель Задачи исследования:

- 1. пункт 1
- 2. пункт 2

Аб'ектам даследавання является Метады даследавання методы методы Вынікі работы Вобласть ўжывання

GENERAL DESCRIPTION OF WORK

Keywords: кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g

The object: тут цель

The objective:

- 1. item one
- 2. item two

Research methods: методы методы

The results

Application

введение

Тут введение будет

1. РОЛЬ ДАЛЬНОДЕЙСТВИЯ ПРИТЯЖЕНИЯ В ПРОСТЫХ ЖИДКОСТЯХ

1.1. Основные понятия

Будем рассматривать одношаговую задачу инвестирования.

Пусть инвестор имееот возможность разместить свой начальный капитал x по акциям A_1, \ldots, A_N , стоимость которых в момент n=0 равна соответственно $S_0(A_1), \ldots, S_0(A_N)$

Пусть $X_0(b) = b_1 S_0(A_1) + \dots + B_N S_0(A_N)$, где $b_i \ge 0, i = 1, \dots N$. Иначе говоря, пусть

$$b = (b_1, \dots, b_N)$$

есть портфель ценных бумаг, где b_i – число акций A_i стоимостью $S_0(A_i)$.

Будем предпоалагать, что эволбция каждой акции A_i определяется тем, что её цена $S_1(A_i)$ в момент n=1 подчиняется разностному уравнению

$$\Delta S_1(A_i) = \rho(A_i)S_0(A_i)$$

или, что равносильно,

$$S_1(A_i) = (1 = \rho(A_i))S_0(A_i)$$

где $\rho(A_i)$ – случайная процентная ставка акции $A_i, \, \rho(A_i) > -1.$

Если инвестор выбрал портфель $b=(b_1,\ldots,b_N)$, то его начальный капитал $X_0(b)=x$ превратится в

$$X_1(b) = b_1 S_1(A_1) + \cdots + b_N S_1(A_N),$$

и эту величину желательно сделать «побольше». Это желание, однако, должно рассматриваться с учетом «риска», связанного с получением «большего» дохода.

С этой целью Γ . Марковитц рассматривает две характеристики капитала $X_1(B)$:

$$\mathbb{E}\left[X_1(b)\right]$$

- математическое ожидание и

$$\mathbb{D}\left[X_1(b)\right]$$

– дисперсию.

Имея эти две характеристики, можно по-разному формулировать оптимизационную задачу выбора наилучшего портфеля в зависимости от критерия оптимальности.

Можно, например, задаться вопросом о том, на каком портфеле b^* достигается максимум некоторой целевой функции $f = f(\mathbb{E}[X_1(b)], \mathbb{D}[X_1(b)])$ при «бюджетном ограничении» на класс допустимых портфелей:

$$B(x) = \{b = (b_1, \dots, b_N) : b_i \ge 0, X_0(b) = x\}, x > 0$$

Естественна и следующая вариационная постановка: найти

$$\inf \mathbb{D}\left[X_1(b)\right]$$

в предположении, что inf берется по тем портфелям b, для которых выполнены ограничения

$$b \in B(x)$$
,

$$\mathbb{E}\left[X_1(b)\right] = m,$$

где m — некоторая константа.

1.2. Сведение к процентным ставкам

Покажем теперь, что в одношаговой задаче оптимизации портфеля ценных бумаг можно вместо величин $(s_1(A_1),\ldots,S_1(A_N))$ работать непосредственно с процентными ставками $(\rho(A_1),\ldots,\rho(A_N))$, подразумевая под этим следующее.

Пусть $b \in B(X)$, т.е. $x = b_1 S_0(A_1) + \cdots + b_N S_0(A_N)$. Введем величины $d = (d_1, \ldots, d_N)$, полагая

$$d_i = \frac{b_i S_0(A_i)}{r}$$

.

Поскольку $b \in B(X)$, получаем, что $d_i \ge 0$ и $\sum_{i=1}^N = 1$. Представим капитал $X_1(B)$ в виде

$$X_1(b) = (1 + R(b))X_0(b),$$

и пусть

$$\rho(d) = d_1 \rho(A_1) + \dots + d_N \rho(A_N).$$

Ясно, что

$$R(b) = \frac{X_1(b)}{X_0(b)} - 1 = \frac{X_1(b)}{x} - 1 = \frac{\sum b_i S_1(A_i)}{x} - 1 = \sum d_i \frac{S_1(A_i)}{S_0(A_i)} - 1 = \sum d_i \left(\frac{S_1(A_i)}{S_0(A_i)} - 1\right) = \sum d_i \left(\frac{S_1(A_i)}{S_0(A_i)} - 1$$

Итак,

$$R(b) = \rho(d),$$

откуда следует, что если $d=(d_1,\ldots,d_N)$ и $b=(b_1,\ldots,b_N)$ связаны соотношениями $d_i=\frac{b_iS_0(A_i)}{x}, i=1,\ldots,N,$ то для $b\in B(x)$ выполняется равенство

$$X_1(b) = x(1 + \rho(d)),$$

и, следовательно, с точки зрения оптимизационных задач для $X_1(b)$ можно оперировать с соотвествующими задачами для $\rho(d)$.

ЗАКЛЮЧЕНИЕ

приложение а