

Team AWFY: Analyzing Massive Social Graphs in a Blink of an Eye

Moritz Kaufmann, Manuel Then, Tobias Mühlbauer, Andrey Gubichev {kaufmanm,then,muehlbau,gubichev}@in.tum.de

Technische Universität München

Introduction

Our Background

- High-performance main memory databases (HyPer)
- Instant loading of text files
- RDF (graph) query execution

The Challenge

- Shortest Path
- Connected Components
- Region containment
- Graph Centrality (APSP)

Our Runtime over time

General Overview

LDBC Files Data Loading / Indexing **Query Processing** Chunk-parallelized Inter- / intra- and batch-parallel SIMD-optimized processing Handcrafted data structures Minimize and optimize allocations **Dispatching** Queries Fine grained tasks Interleave indexing and query execution Smart (re)ordering of tasks

Task: Find shortest path between persons *a* and *b* over friends that have more than *x* comments in reply to each other

SSSP on unweighted graphs → Bidirectional BFS

Task: Find *top-k* interests with the largest connected components of persons younger than a specific birthday *b*

Example: k=3, birthday threshold=February / 1995

Current top-k list

Interest	Largest CC
Soccer	9920
Brazil	8137
Hiking	4219

Pruning potential

Interest	Min. Bthdy.	#persons
Travel	May / 1004	12519
Surfing	May / 1996	712
Databases	June / 1999	5

Task: Find the *top-k* pairs of people, that are not more than *h* friends apart, live at place *p*, and have the most interests in common

Basics

- Places are defined as hierarchies
- A person can have multiple places

Solved Challenges

- Fast Set intersection "SIMD Compression and the Intersection of Sorted Integers" [Daniel Lemire et al.]
- H-neighborhood → BFS

Query 3 (Nested Intervals)

Remaining Challenge: Efficiently check if a person belongs to a place

Task: Find *top-k* most "central" people in subgraph defined by query Naïve solution requires computing APSP

Make it fast Aggressive Pruning!

- Pruning requires threshold and lower distance sum bound
- Goal A: Get good top-k thresholds early
- Goal B: Have good lower distance bounds for pruning

Solution: Good lower bound for distance sum

Query 4 (Distance Sum Estimate)

Intuition: The set of persons someone can reach with k+1 hops is the union of the set of persons its friends can reach with k hops.

Set Approximation:

- FM Sketch
- Cardinalities

Conclusion

Q4 **dominates** this competition >**75**% of total runtime (in our implementation)

Final performance not predictable

Learned a lot!

Lots of work but even more fun!

Runtime Tracing

Relative cost compared to total runtime