Scilab Textbook Companion for Optical Communication Systems by S. B. Gupta And A. Goel¹

Created by
Mohd Arif
B.Tech
Electronics Engineering
Uttarakhand Tech University
College Teacher
Arshad Khan
Cross-Checked by
Lavitha Pereira

October 16, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Optical Communication Systems

Author: S. B. Gupta And A. Goel

Publisher: University Science Press, New Delhi

Edition: 2

Year: 2011

ISBN: 978-81-318-0439-1

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Introduction to optical Communication Systems	7
2	Optical Fibres and its types	10
3	Transmission Characteristics of Fibre	25
5	Optical Fibre Connection	36
6	LED light source	38
7	LASER light source	46
8	Photodetectors	51

List of Scilab Codes

Exa 1.1	Velocity of light in a medium
Exa 1.2	Value of Critical Angle
Exa 1.3	Refractive Index of a medium
Exa 1.4	Velocity of light in a medium
Exa 1.5	Refractive Index of a medium
Exa 2.1	Refractive Index of cladding
Exa 2.2	Critical Angle at core cladding interface
Exa 2.3	Numeriacal aperture of the fibre
Exa 2.4	Numeriacal aperture and Acceptance angle 11
Exa 2.5	Acceptance and critical Angle
Exa 2.6	Refractive Index and Numeriacal aperture
Exa 2.7	V number of Fibre
Exa 2.8	Normalized Frequency and No of modes
Exa 2.9	Normalized Frequency
Exa 2.10	Numeriacal aperture and Critical Aangle 15
Exa 2.11	Speed of light in Fibre Core
Exa 2.12	Diameter of the Fibre Core
Exa 2.13	Relative Refractive Index Difference
Exa 2.14	Wavelength of the Light
Exa 2.15	Normalized Frequency and No of modes
Exa 2.16	No of Guided Modes
Exa 2.17	Refractive Index Difference and acceptance angle 19
Exa 2.18	Shortest Wavelength and Relative refractive index 20
Exa 2.19	Fibre Core diameter
Exa 2.20	Wavelength of the Light and fibre diameter 21
Exa 2.21	Single Mode Transmission
Exa 2.23	Cut off normalized frequency
Exa 2 24	Maximum Diameter of fibre 23

Exa 2.25	Maximum Diameter for step index fibre	23
Exa 3.1	Maximum Allowed Bit Rate	25
Exa 3.2	Intermodal Dispersion	26
Exa 3.3	Pulse Broadning per Km	26
Exa 3.4	Intermodal Dispersion	$\frac{1}{27}$
Exa 3.5	Bandwidth Distance Product and dispersion limited length	28
Exa 3.6	Max Bandwidth pulse dispersion	28
Exa 3.8	Pulse Broadning due to material dispersion	29
Exa 3.9	Appropriate Repeater Spring	29
Exa 3.10	Pulse and Material Dispersion	30
Exa 3.11	Material Dispersion coefficient and rms pulse broadning	31
Exa 3.12	delay Difference and max Bit Rate	32
Exa 3.13	Critical Radius of Curvature	32
Exa 3.14	Critical Radius of Curvature	33
Exa 3.15	Refractive Index of cladding refractive index difference	34
Exa 3.16	Wavelength of the transmitted Light	34
Exa 5.1	Fraction of Reflected and Transmitted Power	36
Exa 5.2	Loss in dB due to Fresnels reflection	36
Exa 6.1	Bulk recombination life time and efficiency	38
Exa 6.2	Internally Generated Optical Power	38
Exa 6.3	Peak Emission wavelength	39
Exa 6.4	Diffusion Coefficient of LED	40
Exa 6.5	3 dB optical Bandwidth	40
Exa 6.6	Optical Modulation Bandwidth	41
Exa 6.7	Electrical Modulation Bandwidth	41
Exa 6.8	Optical Output power	42
Exa 6.9	Optical Output power	42
Exa 6.10	optical emitted Power and External efficiency	43
Exa 6.11	External Power Eficiency	44
Exa 6.12	External Power Eficiency	44
Exa 7.1	Ratio of stimulated to spontaneous emission Rate	46
Exa 7.2	Length of Optical Cavity and no of modes	46
Exa 7.3	Length of crystal and Frequency separation	47
Exa 7.4	wavelength and Linewidth	48
Exa 7.5	Ratio of threshold current densities	48
Exa 7.6	Grating Period	49
Exa 7.7	Frequency spread and wavelength spread	49
Exa 8.1	Longest Wavelength cut off	51

Exa 8.2	Quantum Efficieny of photodiode	51
Exa 8.3	Responsivity of InGaAs photodiode	52
Exa 8.4		52
Exa 8.5	Multiplication Factor	53
Exa 8.6		53
Exa 8.7	Wavelength and incident optical power	54
Exa 8.8		55
Exa 8.9		55
Exa 8.10	NEP for Si pin photodiode	56
Exa 8.11		56
Exa 8.12		57
Exa 8.13		57
Exa 8.14	Generated shot noise in Ge pin photodiode	58
Exa 8.15	Multiplication Factor for an APD	59
Exa 8.16	Wavelength and output photocurrent	59
Exa 8.17	Quantum Efficieny and output photocurrent	60
Exa 8.18	Maximum SNR	61
Exa 8.19		61
Exa 8.20		62

Chapter 1

Introduction to optical Communication Systems

Scilab code Exa 1.1 Velocity of light in a medium

```
1 //Exa 1.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 //epsilon=2*epsilon_o;
7 //mu=2*mu_o;
8 disp("v=1/sqrt(mu*epsilon)");
9 disp("Putting value of mu and epsilon");
10 disp("v=1/sqrt(2*mu_o*2*epsilon_o)");
11 disp("v=1/(2*sqrt(mu_o*epsilon_o))");
12 disp("v=c/2");
13 c=3*10^8; //speed of light in m/s
14 v=c/2; //in m/s
15 disp(v,"Velocity of light in medium in m/s : ");
```

Scilab code Exa 1.2 Value of Critical Angle

```
1 //Exa 1.2
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5);
7 n1=1.5;//refractive index
8 n2=1.47;//refractive index
9 //Formula : sin(theta_c)=n2/n1;
10 theta_c=asind(n2/n1);//in Degree
11 disp(theta_c, "Critical Angle in Degree : ");
12 //Note : Answer in the book is wrong.
```

Scilab code Exa 1.3 Refractive Index of a medium

```
//Exa 1.3
clc;
clc;
clear;
close;
//Given data :
format('v',5);
n1=1.52;//refractive index
//Formula : sin(theta_c)=n2/n1;
theta_c=73.2;//in Degree
n2=n1*sind(theta_c);
disp(n2,"Refractive Index of another medium : ");
```

Scilab code Exa 1.4 Velocity of light in a medium

```
1 //Exa 1.4
2 clc;
```

```
3 clear;
4 close;
5 //Given data:
6 format('v',9);
7 n=1.33;//refractive index
8 //Formula: velocity_of_light_in_medium=
         velocity_of_light_in_free_space/Refractive_Index;
9 c=3*10^8;//in m/s
10 v=c/n;//in m/s
11 disp(v,"velocity of light in medium in m/s:");
```

Scilab code Exa 1.5 Refractive Index of a medium

Chapter 2

Optical Fibres and its types

Scilab code Exa 2.1 Refractive Index of cladding

```
1 //Exa 2.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 n1=1.40;//refractive index
7 delta=1;//relative refractive index difference in %
8 //Formula : n2/n1=1-delta
9 n2=n1*(1-delta/100);//refractive index(unitless)
10 disp(n2,"Refractive index of cladding : ");
```

Scilab code Exa 2.2 Critical Angle at core cladding interface

```
1 //Exa 2.2
2 clc;
3 clear;
4 close;
5 //Given data :
```

```
format('v',5);
  n1=1.50;//refractive index
  n2=1.47;//refractive index
  //Formula : sin(theta_C)=n2/n1;
  theta_c=asind((n2/n1));//in degree
  disp(theta_c,"Critical Angle at core cladding interface in Degree : ");
```

Scilab code Exa 2.3 Numeriacal aperture of the fibre

```
//Exa 2.3
clc;
clear;
close;
f/Given data :
format('v',5);
delta=1;//relative refractive index difference in %
n1=1.50;//refractive index
//Formula : NA=n1*sqrt(2*delta);
NA=n1*sqrt(2*delta/100);
disp(NA,"Numerical Aperture of the fibre : ");
```

Scilab code Exa 2.4 Numeriacal aperture and Acceptance angle

```
1 //Exa 2.4
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5);
7 delta=1;//relative refractive index difference in %
8 n1=1.55;//refractive index
9 n2=1.51;//refractive index
```

```
//Formula : NA=sqrt(n1^2-n2^2);
NA=sqrt(n1^2-n2^2)
disp(NA,"Numerical Aperture of the fibre : ");
//Formula : NA=sin(fi_o)....(max)
fi_o_max=asind(NA);//in Degree
disp(fi_o_max,"Acceptance angle in degree : ");
```

Scilab code Exa 2.5 Acceptance and critical Angle

```
1 / Exa 2.5
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5);
7 NA=0.40; // Unitless
8 n1=1.50; //refractive index
9 delta=1;//relative refractive index difference in %
10 // Part (a) :
11 //Formula : NA=sin(fi_o)....(max)
12 fi_o_max=asind(NA);//in Degree
13 disp(fi_o_max, "Acceptance angle in degree : ");
14 // Part (b) :
15 //Formula : n2/n1=1-delta
16 n2=n1*(1-delta/100); //refractive index(unitless)
17 //Formula : \sin(\text{theta_C}) = n2/n1;
18 theta_c=asind((n2/n1)); //in degree
19 disp(theta_c," Critical Angle at core cladding
      interface in Degree : ");
```

Scilab code Exa 2.6 Refractive Index and Numeriacal aperture

```
1 / Exa 2.6
```

```
2 clc;
3 clear;
4 close;
5 //Given data :
6 v=2*10^8; //in m/s
7 fi_c=60;//in degree
8 // Part (a)
9 //Formula : v=c/n;
10 c=3*10^8; //in m/s
11 n1=c/v;//unitless
12 disp(n1, "Refractive index of core : ");
13 //Formula : sin(fi_c)=n2/n1;
14 n2=n1*sin(fi_c*%pi/180);//unitless
15 disp(n2, "Refractive index of cladding:");
16 // Part (b)
17 NA=sqrt(n1^2-n2^2); // Unitless
18 disp(NA, "Numerical Aperture: ");
```

Scilab code Exa 2.7 V number of Fibre

```
1 //Exa 2.7
2 clc;
3 clear;
4 close;
5 //Given data :
6 d=30; //in um
7 a=d/2; //in um
8 lambda=0.80; //in um
9 NA=0.74; // Unitless
10 V=2*%pi*a*NA/lambda; //V number
11 disp(V,"V number is : ");
```

Scilab code Exa 2.8 Normalized Frequency and No of modes

```
1 / Exa 2.8
2 clc;
3 clear;
4 close;
5 //Given data :
6 d=60; //in um
7 \text{ a=d/2;}//\text{in um}
8 delta=1;//relative refractive index difference in \%
9 lambda=0.80; //in um
10 n1=1.5; // Unitless
11 // Part (a)
12 //Formula : v=2*\%pi*a*n1*NA/lambda;
13 / NA = sqrt (2*delta)
14 v=2*%pi*a*n1*sqrt(2*delta/100)/lambda;//Normalized
      frequency
15 disp(v," Normalized frequency for the fiber: ");
16 // Part (b)
17 disp("Only the modes with cut-off v numbers below
      this value will propagate.");
18 N=v^2/2; //No. of modes supported
19 disp(round(N), "Number of modes supported : ");
20 //Note: Answer in the book is wrong.
```

Scilab code Exa 2.9 Normalized Frequency

```
1 //Exa 2.9
2 clc;
3 clear;
4 close;
5 //Given data :
6 NA=0.16; // Unitless
7 d=30; //in um
8 a=d/2; //in um
9 n1=1.50; // Unitless
10 lambda=0.9; //in um
```

Scilab code Exa 2.10 Numeriacal aperture and Critical Aangle

```
1 / Exa 2.10
2 clc;
3 clear;
4 close;
5 //Given data :
6 fi_o=22; //in Degree
7 delta=3;//relative refractive index difference in %
8 // Part (a) :
9 // Formula : NA=sin (fi_o) . . . . . (max)
10 NA=sind(fi_o); // Numerical Aperture(Unitless)
11 disp(NA, "Numerical Aperture: ");
12 / Part (b) :
13 //Formula : n2/n1=1-delta
14 //Let say, n2/n1=n2byn1
15 n2byn1=(1-delta/100);//refractive index(unitless)
16 //Formula : \sin (fi_C)=n2/n1;
17 fi_c=asind(n2byn1);//in degree
18 disp(fi_c, "Critical Angle at core cladding interface
       in Degree : ");
```

Scilab code Exa 2.11 Speed of light in Fibre Core

```
1 //Exa 2.11
2 clc;
3 clear;
4 close;
```

Scilab code Exa 2.12 Diameter of the Fibre Core

```
1 / Exa 2.12
2 clc;
3 clear;
4 close;
5 //Given data :
6 \text{ n1=1.5;} // \text{Unitless}
7 delta=1;//relative refractive index difference in %
8 \quad lambda=1.3; //in \quad um
9 N=1100; //No. of modes
10 //Formula : v=2*\%pi*a*n1*NA/lambda;
11 / NA = sqrt(2*delta)
12 //v = s q r t (2*N)
13 a = (sqrt(2*N)*lambda)/(2*%pi*n1*sqrt(2*delta/100)); //
      Normalized frequency
14 disp(2*a," Diameter of the fiber core in micro meter
      is : ");
```

Scilab code Exa 2.13 Relative Refractive Index Difference

```
1 //Exa 2.13
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5)
7 n1=1.52; // unitless
8 fi_o=8; //in Degree
9 //Formula : sin(fi_o)=n1*sqrt(2*delta)
10 delta=(sind(fi_o)/n1)^2/2; // Relative refractive index
11 disp("The value of relative refractive index difference is "+string(delta*100)+"%");
```

Scilab code Exa 2.14 Wavelength of the Light

```
1 //Exa 2.14
2 clc;
3 clear;
4 close;
5 //Given data :
6 N=700;//No. of modes
7 d=30;//in um
8 a=d/2;//in um
9 NA=0.62;//Numerical Aperture
10 //Formula : v=2*sqrt(N) and v=2*%pi*a*NA/lambda
11 lambda=2*%pi*a*NA/(2*sqrt(N));//in um
12 disp(lambda,"Wavelength of light propagating in fibre in micro meter : ");
```

Scilab code Exa 2.15 Normalized Frequency and No of modes

```
1 / Exa 2.15
2 clc;
3 clear;
4 close;
5 //Given data :
6 n1=1.5; // unitless
7 alfa=2;//characteristic index profile
8 d=40; //in um
9 a=d/2;//in um
10 // Part (a) :
11 lambda=1.3; //in um
12 delta=1;
13 //Formula : v=2*\%pi*a*NA/lambda=2*\%pi*a*(n1*sqrt(2*
      delta))/lambda
14 v=2*\%pi*a*(n1*sqrt(2*delta/100))/lambda; // Unitless
15 disp(v, "Normalized Frequency for single mode
      transmission : ");
16 // Part (b) :
17 //Formula : N=(alfa/alfa+2)*(v^2/2)
18 N=(alfa/(alfa+2))*(v^2/2);//No. of guided modes
19 disp(N,"No. of guided modes propagating in the fibre
      : ");
```

Scilab code Exa 2.16 No of Guided Modes

```
1 //Exa 2.16
2 clc;
3 clear;
4 close;
5 //Given data :
```

```
6 d=60; //in um
7 a=d/2; //in um
8 NA=0.25; // Unitless
9 lambda=1.1; //in um
10 v=2*%pi*a*NA/lambda; // unitless
11 N=v^2/4; //No. of modes
12 disp(N,"Number of supported guided modes:");
```

Scilab code Exa 2.17 Refractive Index Difference and acceptance angle

```
1 / Exa 2.17
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',8)
7 d=10; //in um
8 \text{ a=d/2;}//\text{in um}
9 lambda_c=1.3; //in um
10 n1=1.55; //unitless
11 // Part (a)
12 //for single mode transmission cut-off wavelength is
       lambda_c = 2*\%pi*a*n1*sqrt(2*delta)/2.405
13 delta=(lambda_c*2.405/(2*%pi*a*n1))^2/2;//unitless
14 disp(delta, "Normalized refractive index difference
      in \% : ");
15 // Part (b)
16 //Formula : n2/n1=delta
17 n2=n1*(1-delta);
18 disp(n2, "Refractive index of cladding glass: ");
19 //Part (c) :
20 fi_o=asind(n1*sqrt(2*delta));//in degree
21 disp(fi_o, "Acceptance angle in degree : ");
```

Scilab code Exa 2.18 Shortest Wavelength and Relative refractive index

```
1 / Exa 2.18
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5);
7 d=7; //in um
8 \text{ a=d/2;}//\text{in um}
9 \text{ n1=1.49; } // \text{unitless}
10 delta=1;//relative refractive index difference in %
11 // Part (a)
12 / \text{Formula} : \text{lambda_c} = 2*\% \text{pi}*a*n1*\text{sqrt} (2*\text{delta}) / 2.405;
13 lambda_c=2*%pi*a*n1*sqrt(2*delta/100)/2.405;//in um
14 disp(lambda_c, "Shortest wavelength of the light in
      micre meter :");
15 // Part (b)
16 //Formula : delta = (1/2) * \{2.405 * lambda_c / (2 * \%pi * a * n1)\}
17 d=10; //in um
18 \quad a=d/2; //in \quad um
19 delta=(1/2)*{2.405*lambda_c/(2*\%pi*a*n1)}^2;//
       unitless
20 disp(delta*100, "Maximum possible relative refractive
       index difference in %:");
```

Scilab code Exa 2.19 Fibre Core diameter

```
1 //Exa 2.19
2 clc;
3 clear;
```

```
4 close;
5 //Given data :
6 format('v',5);
7 n1=1.49; // unitless
8 n2=1.48; // unitless
9 lambda_c=1.5; // in um
10 //Formula : a=2.405*lambda_c/(2*%pi*sqrt(n1^2-n2^2))
11 a=2.405*lambda_c/(2*%pi*sqrt(n1^2-n2^2)); // in um
12 disp(2*a,"Fibre core diameter in micro meter : ");
```

Scilab code Exa 2.20 Wavelength of the Light and fibre diameter

```
1 / Exa 2.20
2 clc;
3 clear;
4 close;
5 //Given data:
6 N=742; //No. of guided modes (unitless)
7 n1=1.5; //unitlessnm
8 alfa=2; //characteristic index profile
9 NA=0.3; // unitless
10 d=70; //in um
11 a=d/2; //in um
12 alfa=2; //Graded index profile for parabolic
13 //Formula : N=(alfa/(alfa+2))/(v^2/2)
14 v = sqrt(N*((alfa+2)/alfa)*2); // Unitless
15 //Formula : v=2*\%pi*a*NA/lambda
16 lambda=2*%pi*a*NA/v;//in um
17 disp(lambda, "Wavelength of light propagating in
      fibre in micro meter :");
18 //Formula : lambvda_c=lambda=2*%pi*a*NA/(2.405*(sqrt
     ((alfa+2)/alfa))
19 a=lambda*(2.405*(sqrt((alfa+2)/alfa)))/(2*%pi*NA);//
20 disp(2*a,"Diameter of fibre in micro meter: ");
```

Scilab code Exa 2.21 Single Mode Transmission

```
1 / \text{Exa} \ 2.21
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5);
7 \text{ n1=1.447; } // \text{unitless}
8 \text{ n2=1.442; } // \text{unitless}
9 lambda=1.3; //in um
10 d=7.2; //in um
11 a=d/2; //in um
12 / Formula : v=2*\%pi*a*sqrt(n1^2-n2^2)/lambda
13 v=2*\%pi*a*sqrt(n1^2-n2^2)/lambda;//unitless
14 disp(v, "Value of v : ");
15 disp ("To achieve single mode transmission in an
      idealised step index fibre, Value of v must be
      less than 2.405. Hence, the fibre given will
                                      transmission.")
      permit single mode
```

Scilab code Exa 2.23 Cut off normalized frequency

```
1 //Exa 2.23
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5);
7 alfa=1.9;
8 //characteristic index profile
```

```
9 //Formula : v=2.405*sqrt[(alfa+2)/alfa]
10 v=2.405*sqrt((alfa+2)/alfa);//unitless
11 disp(v,"Value of v : ");
12 //Note : Answer in the book is not accurate.
```

Scilab code Exa 2.24 Maximum Diameter of fibre

```
1 / Exa 2.24
2 clc;
3 clear;
4 close;
5 //Given data :
6 delta=1;//relative refractive index difference in \%
7 \text{ n1=1.47; } // \text{unitless}
8 lambda=1.5; //in um
9 disp("v=2*\%pi*a*n1*sqrt(2*delta)/lambda");
10 disp("For single mode transmission in graded index
      fibre, v=2.405*sqrt((alfa+2)/alfa)");
11 disp("Hence we have :");
12 alfa=2; //unitless
13 a=2.405*sqrt((alfa+2)/alfa)*lambda/(2*%pi*n1*sqrt(2*
      delta/100));
14 disp(2*a," Hence the diameter in micro meter: ");
```

Scilab code Exa 2.25 Maximum Diameter for step index fibre

```
1 //Exa 2.24
2 clc;
3 clear;
4 close;
5 //Given data :
6 delta=1;//relative refractive index difference in %
7 n1=1.47;//unitless
```

```
8 lambda=1.5; //in um

9 alfa=2; // unitless

10 //Formula : v=2*\%pi*a*n1*sqrt(2*delta)/lambda

11 a=2.405*lambda/(2*%pi*n1*sqrt(2*delta/100));

12 disp(2*a,"Hence the diameter in micro meter : ");
```

Chapter 3

Transmission Characteristics of Fibre

Scilab code Exa 3.1 Maximum Allowed Bit Rate

```
1 / Exa 3.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 lambda=1.5; //im um
7 deltaTwg=0.5; //in ns
8 deltaTmat=2.8; //in ns
9 Tt=2.5; // in ns
10 //For single mode fibre, deltaTmod=0;//in ns
11 deltaTmod=0; //in ns
12 deltaTtotal=sqrt(deltaTmod^2+deltaTmat^2+deltaTwg^2)
     ;//in ns
13 Tr=sqrt(Tt^2+deltaTtotal^2);//in ns
14 B=1/(2*Tr*10^-9); //in bits/sec
15 disp(B*10^-6, "Maximum allowed bit rate for the fibre
       in Mbits/sec : ");
16 // Note: Answer in the books not accurate.
```

Scilab code Exa 3.2 Intermodal Dispersion

```
1 / Exa 3.2
2 clc;
3 clear;
4 close;
5 //Given data :
6 n1=1.55; // unitless
7 n2=1.50; //unitless
8 l=15; //in Km
9 delta=(n1-n2)/n1; //unitless
10 c=3*10^8; //in m/s
11 deltaT=n1*delta/c;//in ns/m
12 deltaT=n1*delta*1000/c; //in ns/Km
13 disp(deltaT," Intermodal dispersion per Km of length
      in ns/Km : ");
14 deltaTtotal=deltaT*1*1000; //in ns
15 disp(deltaTtotal*1000, "Total intermodal dispersion
      in micro second: ");
16 //Note: Answer in the book is not accurate.
```

Scilab code Exa 3.3 Pulse Broadning per Km

```
9 lambda=0.9; //in um
10 lambda=0.9*10^-6; //in m
11 //let say, d^2n/dlambda^2=a
12 a=4*10^-2; //in um^-2
13 a=a*(10^-6)^-2; //in m^-2
14 c=3*10^8; //in m/s
15 deltaTmat_Km=(deltaTAUs*1000/c)*(lambda*a); //in sec/Km
16 disp(deltaTmat_Km*10^9, "Pulse broadning per Km in nano second per Km:");
```

Scilab code Exa 3.4 Intermodal Dispersion

```
1 / Exa 3.4
2 clc;
3 clear;
4 close;
5 //Given data :
6 n1=1.55; // unitless
7 n2=1.50; //unitless
8 l=15; //in Km
9 delta=(n1-n2)/n1; //unitless
10 c=3*10^8; //in m/s
11 //Formula Intermodal_dispersion/m : deltaT_perKm=n1*
      delta^2/(8*c)
12 //Formula Intermodal_dispersion/Km : deltaT_perKm=n1
     * delta^2 * 1000/(8*c)
13 deltaT_perKm=n1*delta^2*1000/(8*c); //in sec/km
14 deltaT_perKm=deltaT_perKm*10^9//in nanosec/km
15 disp(deltaT_perKm, Total intermodal dispersion per
     Km in nano second per Km: ");
16 disp ("Which is very much less than the step index
     fibre. the total intermodal dispersion for length
       of 15 Km :");
17 deltaTtotal=deltaT_perKm*l; //in ns
```

Scilab code Exa $3.5\,$ Bandwidth Distance Product and dispersion limited length

```
1 / Exa 3.5
2 clc;
3 clear;
4 close;
5 //Given data :
6 Tr=6; // in ns/Km
7 BitRate=10; //in Mbps
8 // part (a)
9 BDP=1/(2*Tr*10^-9); //in bps-Km
10 BDP=BDP/10^6; //in Mbps-Km
11 disp(BDP, "Bandwidth Distance Product for the fibre
     in Mbps-Km : ");
12 // Part (b)
13 lmax=BDP/BitRate; //in Km
14 disp(lmax, "Dispersion limited length of the fibre in
      Km : ");
```

Scilab code Exa 3.6 Max Bandwidth pulse dispersion

```
1 //Exa 3.6
2 clc;
3 clear;
4 close;
5 //Given data :
6 Tr=0.2;//in us
7 l=20;//in Km
```

```
8 //part (a)
9 B=1/(2*Tr*10^-6); //in Hz
10 B=B/10^6; //in MHz
11 disp(B, "Maximum possible assuming no intersymbol interference in MHz: ");
12 //Part (b)
13 Dispersion=Tr*10^-6/1; //in sec/Km
14 disp(Dispersion*10^9, "Dispersion in ns/Km: ");
15 //part (c)
16 BDP=B*1; //in MHz-Km
17 disp(BDP, "Band =width Distance product for the fibre in MHz-Km: ");
```

Scilab code Exa 3.8 Pulse Broadning due to material dispersion

```
1 //Exa 3.8
2 clc;
3 clear;
4 close;
5 //Given data :
6 deltaTau_s=2; //in nm
7 L=30; //in Km
8 Dmat=20; //in ps/nm-km
9 //formula : deltaT_mat=deltaTau_s*L*[(lambda/c)*(d ^2*n/d*lambda^2)]
10 //formula : deltaT_mat=deltaTau_s*L*Dmat
11 deltaT_mat=deltaTau_s*L*Dmat; //in ps
12 deltaT_mat=deltaTau_s*L*Dmat; //in ns
13 disp(deltaT_mat, "Pulse broadning due to material dispersion in ns : ");
```

Scilab code Exa 3.9 Appropriate Repeater Spring

```
1 / Exa 3.9
2 clc;
3 clear;
4 close;
5 //Given data :
6 FibreLoss=20;//in dB
7 //Pat (a)
8 lambda_a=1.3; ///in um
9 loss_a=1.5; //in dB/Km
10 //Repeater spacing
11 la=FibreLoss/loss_a;//in Km
12 disp(la," At wavelength of 1.3 micro meter, repeter
     spacing in Km: ");
13 //Pat (b)
14 lambda_b=1.5; ///in um
15 loss_b=0.5; //in dB/Km
16 //Repeater spacing
17 lb=FibreLoss/loss_b;//in Km
18 disp(lb," At wavelength of 1.5 micro meter, repeter
     spacing in Km: ");
```

Scilab code Exa 3.10 Pulse and Material Dispersion

```
1 //Exa 3.10
2 clc;
3 clear;
4 close;
5 //Given data :
6 Dmat=0.15; //in ns/nm-km
7 lambda=0.9; //in um
8 deltaTau_s=1.5; //in nm
9 //part (a)
10 //formula : deltaTmat/L=deltaTau_s*Dmat
11 deltaTmatBYL=deltaTau_s*Dmat; //in ns/Km
12 disp("Pulse dispersion per unit length of fibre is "
```

```
+string(deltaTmatBYL)+" ns/Km");
13 //part (b)
14 L=15; //in Km
15 //formula : deltaTmat=deltaTau_s*Dmat*L
16 deltaTmat=deltaTau_s*Dmat*L; //in ns
17 disp("Material dispersion per in a 15 Km length of fibre is "+string(deltaTmat)+" ns");
```

Scilab code Exa 3.11 Material Dispersion coefficient and rms pulse broadning

```
1 //Exa 3.11
2 clc;
3 clear;
4 close;
5 // Given data :
6 //Let Material Dispersion, lambda^2*(d^2n/dlambda^2)
7 a=0.03; //in ns
8 deltaTau_s=15; //in nm
9 lambda=1.3; //in um
10 lambda=1.3*10^3; //in nm
11 c=3*10^8; //speed of light in m/s
12 c=3*10^5; //speed of light in Km/s
13 // Part (a)
14 Dmat=a/(lambda*c); // \sec / \text{nm-Km}
15 Dmat=Dmat*10^12; // ps/nm-Km
16 disp ("Material dispersion coefficient at a
      wavelength of 1.3 micro meter is "+string(Dmat)+"
       ps/nm-Km");
17 // Part (b)
18 deltaTmat_perKm=deltaTau_s*Dmat;//in ps/km
19 disp ("Rms pulse broadning per Km due to material
      dispersion is "+string(deltaTmat_perKm)+" ps/km
      or "+string(deltaTmat_perKm*10^-3)+" ns/km");
```

Scilab code Exa 3.12 delay Difference and max Bit Rate

```
1 / Exa 3.12
2 clc;
3 clear;
4 close;
5 //Given data :
6 \ 1=6; //in \ Km
7 n1=1.5; // unitless
8 delta=1//in \%
9 c=3*10^8; //speed of light in m/s
10 // Part (a)
11 deltaT=1*10^3*n1*(delta/100)/c;//in sec
12 deltaT=deltaT*10^9; //in ns
13 disp(deltaT," Delay difference between the slowest
     and fastest modes at output in ns: ");
14 // Part (b)
15 B=1/(2*deltaT*10^-9); //in bps
16 B=B*10^-6; //in Mbps
17 disp(B, "Assuming no intersymbol interference,
     maximum bit rate in Mbps: ");
```

Scilab code Exa 3.13 Critical Radius of Curvature

```
1 //Exa 3.13
2 clc;
3 clear;
4 close;
5 //Given data :
6 lambda=1.3;//in um
7 lambda=1.3*10^-6;//in m
```

```
8     n1=1.5; // unitless
9     delta=3//in %
10     c=3*10^8; // speed of light in m/s
11     n2=n1*(1-delta/100); // unitless
12     Rcm=3*n1^2*lambda/(4*%pi*(n1^2-n2^2)^(3/2)); // in meter
13     Rcm=Rcm*10^6; // in um
14     disp(Rcm," Critical radius of curvature in micro meter : ");
```

Scilab code Exa 3.14 Critical Radius of Curvature

```
1 //Exa 3.14
2 clc;
3 clear;
4 close;
5 // Given data:
6 d=8; //in um
7 \text{ a=d/2;}//\text{in um}
8 a=a*10^-6; //in meter
9 n1=1.5; // unitless
10 n2=1.46; //unitless
11 lambda=1.55; //in um
12 lambda=1.55*10^-6; // in meter
13 c=3*10^8; //speed of light in m/s
14 lambda_c=(2*\%pi*a*sqrt(n1^2-n2^2))/2.405;//in meter
15 Rcs = (20*lambda/(n1-n2)^(3/2))*[(2.748*lambda_c)]
      -0.996*lambda)/lambda_c]^-3;//in meter
16 Rcs=Rcs*10^3; //in mm
17 disp(Rcs," Critical radius of curvature in milli
      meter : ");
18 //Note: Answer in the book is wrong.
```

Scilab code Exa 3.15 Refractive Index of cladding refractive index difference

```
1 / Exa 3.15
2 clc;
3 clear;
4 close;
5 //Given data:
6 format('v',6);
7 n1=1.49; //unitless
8 Rcs=10.4; // in mm
9 Rcs=Rcs*10^-3; //in meter
10 lambda=1.3; //in um
11 lambda=1.3*10^-6; //in meter
12 c=3*10^8; //speed of light in m/s
13 lambda_c=1.15; //in um
14 lambda_c=lambda_c*10^-6; //in meter
15 / part (a) :
16 //formula : (n1-n2)^{(3/2)} = (20*lambda/Rcs)*[(2.748*
     lambda_c - 0.996*lambda_)/lambda_c^- - 3
17 n2=n1-(20*lambda/Rcs)^(2/3)*[(2.748*lambda_c-0.996*]
      lambda)/lambda_c]^(-3*2/3);//unitless
18 disp(n2, "Refractive index of cladding: ");
19 //Part (b) :
20 delta=(n1-n2)/n1; //unitless
21 disp(delta*100, "Relative refractive index diference
      in \% : ");
```

Scilab code Exa 3.16 Wavelength of the transmitted Light

```
1 //Exa 3.16
2 clc;
3 clear;
4 close;
5 //Given data :
```

```
6  n1=1.46; // unitless
7  n2=1.45; // unitless
8  Rcm=84; // in  um
9  Rcm=Rcm*10^-6; // in  meter
10  lambda=Rcm*4*%pi*(n1^2-n2^2)^(3/2)/(3*n1^2); // in  meter
11  disp(lambda*10^6, "Wavelength of transmitted light in  micro meter : ");
```

Chapter 5

Optical Fibre Connection

Scilab code Exa 5.1 Fraction of Reflected and Transmitted Power

```
1 //Exa 5.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',6)
7 n=1.5;//refractive index
8 R=[(1-n)/(1+n)]^2;//unitless
9 disp(R*100," Reflected light in %");
10 disp(100-R*100," The remainder transmitted light in %");
11 loss=-10*log10(1-R);//in dB
12 disp(loss," Transmission loss in dB : ");
```

Scilab code Exa 5.2 Loss in dB due to Fresnels reflection

```
1 //Exa 5.2
2 clc;
```

```
3 clear;
4 close;
5 //Given data :
6 format('v',5);
7 n1=3.6; //refractive index
8 n2=1.48; //refractive index
9 R=[(n1-n2)/(n1+n2)]^2; // unitless
10 loss=-10*log10(1-R); // in dB
11 disp(loss, "Transmission loss in dB : ");
```

Chapter 6

LED light source

Scilab code Exa 6.1 Bulk recombination life time and efficiency

```
1 //Exa 6.1
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5);
7 Tr=40;//in ns
8 Tnr=90;//in ns
9 T=Tr*Tnr/(Tr+Tnr);//in ns
10 disp(T,"Bulk recombination life-time in nano second : ");
11 ETAint=(T/Tr)*100;//in %
12 disp(ETAint,"Internal Quantum Efficiency in % : ");
```

Scilab code Exa 6.2 Internally Generated Optical Power

```
1 //Exa 6.2
2 clc;
```

```
3 clear;
4 close;
5 //given data :
6 format('v',5);
7 lambda=1310; //in nm
8 lambda=lambda*10^-9; //in meter
9 ETAint=70; //in %
10 I=50; //in mA
11 I=I*10^-3; //in A
12 h=6.63*10^-34; //constant
13 c=3*10^8; //speed of light in m/s
14 q=1.6*10^-19; //in coulamb
15 Pint=(ETAint/100)*I*h*c/(q*lambda); //in Watts
16 disp(Pint*10^3, "Internally generated optical power in mWatt : ");
```

Scilab code Exa 6.3 Peak Emission wavelength

```
1 // Exa 6.3
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',6);
7 Pint=28.4; //in mw
8 Pint=Pint*10^-3; //in Watts
9 I = 60; //in mA
10 I = I * 10^{-3}; //in A
11 h=6.63*10^-34; //constant
12 c=3*10^8; //speed of light in m/s
13 q=1.6*10^-19; //in coulamb
14 //Tr=Tnr
15 //Formula : Pint = (Tnr/(Tr+Tnr))*(I*h*c/(q*lambda))
16 // as Tr=Tnr : (Tnr/(Tr+Tnr))=1/2
17 lambda=(1/2)*(I*h*c/(q*Pint)); //in m
```

18 disp(lambda*10^6, "Peak emission waslength from the device in micro meter: ");

Scilab code Exa 6.4 Diffusion Coefficient of LED

Scilab code Exa 6.5 3 dB optical Bandwidth

```
1 //Exa 6.5
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5);
7 EBW=50;//MHz in 3dB
8 //Formula : EBW(3dB)=OpticalBW(3dB)/sqrt(2)
9 OpticalBW=sqrt(2)*EBW;//in 3dB
10 disp(OpticalBW,"3dB Optical Bandwidth in MHz : ");
```

Scilab code Exa 6.6 Optical Modulation Bandwidth

Scilab code Exa 6.7 Electrical Modulation Bandwidth

```
9 disp("It gives : 1/((1+omega*tau)^2)^(1/2) = 1/2");
10 //Formula :omega=2*%pi*F;
11 F=sqrt(3)/(2*%pi*tau*10^-9);//in Hz
12 F=F*10^-6;//in MHz
13 EMB=F/sqrt(2);//in MHz
14 disp(EMB, "Electrical Modulation Bandwidth in MHz : ");
```

Scilab code Exa 6.8 Optical Output power

Scilab code Exa 6.9 Optical Output power

```
1 //Exa 6.9
2 clc;
3 clear;
4 close;
5 //given data :
```

Scilab code Exa 6.10 optical emitted Power and External efficiency

```
1 //Exa 6.10
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',6);
7 nm=3.5; //refractive index of InP; unitless
8 n=1; //refractive index of air; unitless
9 F=0.6; //Transmission factor at crystal-air interface
10 // Part (a)
11 disp("Pe=Pint*F*n^2/(4*nm^2)");
12 // \text{Let } F*n^2/(4*nm^2)=x
13 x=F*n^2/(4*nm^2);
14 disp(string(x)+"Pint");
15 disp ("Hence the power emitted into air is only 1.2%
      of the internal optical power.");
16 // Part (b)
17 disp("ETAext=(Pe/P) *100");
18 disp("ETAext = (0.012*Pint/P)*100")
19 / Given : Pint = 0.5P
20 disp("ETAext = (0.012*0.5*P/P)*100")
21 disp("ETAext : "+string((0.012*0.5)*100)+"%");
```

Scilab code Exa 6.11 External Power Eficiency

```
1 // Exa 6.11
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5);
7 // \text{Given} : \text{Pint} = 0.3 * P
8 nm=3.6; //refractive index of InP; unitless
9 n=1; //refractive index of air; unitless
10 F=0.68; // Transmission factor at crystal-air
      interface
11 disp("ETAext=Pint*100*F*n^2/(4*P*nm^2)");
12 // \text{Let } F*n^2/(4*nm^2)=x
13 // Pint / P = 0.3
14 / ETAext = 0.3 * x
15 x=100*F*n^2/(4*nm^2);
16 ETAext=0.3*x;
17 disp(ETAext, "External Power Efficiency in \%:");
```

Scilab code Exa 6.12 External Power Eficiency

```
1 //Exa 6.12
2 clc;
3 clear;
4 close;
5 //given data:
6 format('v',5);
7 ETAext=1.5;//in %
8 I=25;//in mA
```

```
9 V=4;//in Volt
10 F=0.8;//Transmission factor at crystal—air interface
11 nm=3.6;//refractive index of GaAs; unitless
12 n=1;//refractive index of air ; unitless
13 disp("ETAext=Pint*100*F*n^2/(4*P*nm^2)");
14 //P=V*I
15 Pint=(ETAext*4*V*I*10^-3*nm^2)/(F*100);//in watts
16 disp(Pint*1000,"Optical power generated in the device in mWatts:");
```

Chapter 7

LASER light source

Scilab code Exa 7.1 Ratio of stimulated to spontaneous emission Rate

```
1 //Exa 7.1
2 clc;
3 clear;
4 close;
5 // Given data:
6 format('v',10);
7 lambda=1.5; //in um
8 T=900; //in kelvin
9 h=6.63*10^-34; // Planks contant
10 c=3*10^8; //speed of light in m/s
11 K=1.38*10^-23; //Boltzman Constant
12 //Formula : StiEmissionRate/SponEmissionRate=1/(exp(
     h*F/(K*T) -1 = 1/(exp(h*c/(K*T*lambda)) -1)
13 StiEmRateBySponEmRate=1/(exp(h*c/(K*T*lambda*10^-6))
     -1);
14 disp(StiEmRateBySponEmRate, "Stimulated Emission Rate
     /Spontanious Emission Rate is : ");
```

Scilab code Exa 7.2 Length of Optical Cavity and no of modes

```
1 //Exa 7.2
2 clc;
3 clear;
4 close;
5 //Given data :
6 lambda=0.8; //in um
7 lambda=lambda*10^-6;//in meter
8 deltaNEU=300; //in GHz
9 deltaNEU=deltaNEU*10^9; //in Hz
10 c=3*10^8; //speed of light in m/s
11 n=3.6; // Refractive index (unitless)
12 // Part (a) :
13 //Formula : deltaNEU=c/(2*n*L)
14 L=c/(2*n*deltaNEU);//in meter
15 disp(L*10^6, "Length of optical cavity in micro meter
16 // Part (b) :
17 K=2*n*L/lambda; //No. of longitudinal modes
18 disp(K,"No. of longitudinal modes: ");
```

Scilab code Exa 7.3 Length of crystal and Frequency separation

```
1 //Exa 7.3
2 clc;
3 clear;
4 close;
5 //Given data :
6 lambda=0.55; //in um
7 lambda=lambda*10^-6; //in meter
8 c=3*10^8; //speed of light in m/s
9 n=1.78; // Refractive index (unitless)
10 K=260000; //No. of longitudinal modes
11 //Part (a) :
12 L=K*lambda/(2*n); //in meter
13 disp(L,"Length of the crystal in meter : ");
```

```
14 //Part (b):
15 deltaNEU=c/(2*n*L);//in Hz
16 disp(deltaNEU*10^-9, "Frequency separation of longitudinal modes in GHz: ");
```

Scilab code Exa 7.4 wavelength and Linewidth

```
1 / Exa 7.4
2 clc;
3 clear;
4 close;
5 //Given data :
6 Eg=1.43; //in eV
7 deltaLambda=0.1; //in nm
8 deltaLambda=deltaLambda*10^-9//in meter
9 c=3*10^8; //speed of light in m/s
10 h=6.63*10^-34; // Planks contant
11 // Part (a) :
12 //Fomula : Eg=h*c/lambda
13 lambda=h*c/(Eg*1.6*10^-19); //in meter
14 disp(lambda*10^6, "Wavelength of optical emission in
     micro meter : ");
15 // Part (b) :
16 //Formula : deltaNEU=c*deltaLambda/lambda^2;//in Hz
17 deltaNEU=c*deltaLambda/lambda^2;//in Hz
18 disp(deltaNEU*10^-9, Frequency separation of
     longitudinal modes in GHz : ");
```

Scilab code Exa 7.5 Ratio of threshold current densities

```
1 //Exa 7.5
2 clc;
3 clear;
```

```
4 close;
5 //Given data :
6 format('v',4)
7 To=150; //in kelvin
8 T1=20; //in degree C
9 T1=T1+273; //in kelvin
10 T2=70; //in degree C
11 T2=T2+273; //in kelvin
12 //Formula ; Jth=exp(T/To)
13 Jth20=exp(T1/To);
14 Jth70=exp(T2/To)
15 ratio=Jth70/Jth20; // unitless
16 disp(ratio, "Ratio of current densities for AlGaAs injection laser : ");
```

Scilab code Exa 7.6 Grating Period

```
1 //Exa 7.6
2 clc;
3 clear;
4 close;
5 //Given data :
6 lambda=1.55; //in um
7 m=1; // for first order
8 n=3.5; // Refractive Index(unitless)
9 //Formula : GratingPeriod=m*lambda/(2*n)
10 GratingPeriod=m*lambda/(2*n); //in um
11 disp(GratingPeriod, "grating Period for an InGaAsP DFB Laser diode : ");
```

Scilab code Exa 7.7 Frequency spread and wavelength spread

```
1 / Exa 7.8
```

```
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5)
7 L=0.3; //in mm
8 L=L*10^-3; //in meter
9 n=3.6; // Refractive Index (unitless)
10 c=3*10^8; //speed of light in m/s
11 lambda=0.82; //in um
12 lambda=lambda*10^-6;//in meter
13 deltaNEU=c/(2*n*L); //in Hz
14 disp(deltaNEU*10^-9, "Frequency spread between
      longitudinal modes in GHz");
15 deltaLambda=lambda^2/(c/deltaNEU)//in meter
16 disp(deltaLambda*10^9, "Wavelength spread between
      longitudinal modes in nano meter: ");
```

Chapter 8

Photodetectors

Scilab code Exa 8.1 Longest Wavelength cut off

```
1 //Exa 8.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 Eg=1.43; //in eV
7 T=300; //in kelvin
8 h=6.63*10^-34; //Planks constant
9 c=3*10^8; //speed of light in m/s
10 lambda_c=h*c/(Eg*1.6*10^-19); //in meter
11 disp(lambda_c*10^9, "Longest Wavelength cut-off in nm : ")
```

Scilab code Exa 8.2 Quantum Efficieny of photodiode

```
1 //Exa 8.2
2 clc;
3 clear;
```

Scilab code Exa 8.3 Responsivity of InGaAs photodiode

```
//Exa 8.3
clc;
clc;
clear;
close;
//Given data :
lambda=1300; //in nm
lambda=lambda*10^-9; //in meter
ETA=90; //quantum efficiency in %
h=6.63*10^-34; //Planks constant
q=1.6*10^-19; //in coulamb
c=3*10^8; //in m/s
R=(ETA/100)*q*lambda/(h*c); //in A/W
disp(R, "Responsivity of InGaAs in A/W : ");
```

Scilab code Exa 8.4 value of generated photocurrent

```
1 //Exa 8.4
2 clc;
3 clear;
4 close;
5 //Given data :
```

```
6 E=4.5*10^-21; //in Joule
7 R=0.9; //in A/W
8 P=20; //in uWatt
9 Ip=R*P; //in uA
10 disp(Ip, "Photocurrent generated in micro Ampere : ")
;
```

Scilab code Exa 8.5 Multiplication Factor

```
1 // Exa 8.5
2 clc;
3 clear;
4 close;
5 //Given data :
6 ETA=65; // Quantum efficiency in %
7 lambda=900; //in nm
8 lambda=lambda*10^-9;//in meter
9 q=1.6*10^-19;//in coulamb
10 h=6.63*10^-34; // Planks constant
11 c=3*10^8; //in m/s
12 P=0.5; //in uWatt
13 Im=20; //in uA
14 Ip=(ETA/100)*q*P*lambda/(h*c); //in micro Ampere
15 M=Im/Ip; //unitless
16 disp(M, "Multiplication Factor: ");
17 // Note: Ans in the book is not accurate.
```

Scilab code Exa 8.6 Circuit Bandwidth of pin phoodiode

```
1 //Exa 8.6
2 clc;
3 clear;
4 close;
```

```
5 //Given data :
6 C_A=2; //in pF
7 C_D=5; //in pF
8 RL=50; //in Ohm
9 RA=1; //in KOhm
10 RA=1*10^3; //in Ohm
11 C=C_A+C_D; //in pF
12 R=RA*RL/(RA+RL); //in Ohm
13 B=1/(2*%pi*R*C*10^-12); //in Hz
14 disp(B*10^-6, "Circuit Bandwidth of p-i-n photodiode in MHz:");
15 //Note: Ans in the book is not accurate.
```

Scilab code Exa 8.7 Wavelength and incident optical power

```
1 / Exa 8.7
2 clc;
3 clear;
4 close;
5 //Given data:
6 ETA=40; //quantum efficiency in \%
7 E=1.5; // in eV
8 Ip=3;//in uA
9 h=6.63*10^-34; // Planks constant
10 c=3*10^8; //in m/s
11 q=1.6*10^-19; //in coulamb
12 lambda=h*c/(E*1.6*10^-19); //in meter
13 disp(lambda*10^9, "Wavelength of photodiode in nm : "
      );
14 P = Ip * 10^- - 6 * (E * 1.6 * 10^- - 19) / (ETA * q / 100);
15 disp(P*10^6, "Power required in micro Watts; ");
16 //Note: Ans in the book is not accurate.
```

Scilab code Exa 8.8 Responsivity of the device

```
1 //Exa 8.8
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5);
7 photons=1600; //incident photons/sec
8 lambda=1.3; //in um
9 electrons=1100; //generated/sec
10 ETA=electrons/photons; // unitless
11 q=1.6*10^-19; //in coulamb
12 h=6.63*10^-34; // Planks constant
13 c=3*10^8; //in m/s
14 R=ETA*q*lambda*10^-6/(h*c); //in A/W
15 disp(R," Responsivity in A/W:");
```

Scilab code Exa 8.9 Maximum Load Resistance

```
1  //Exa 8.9
2  clc;
3  clear;
4  close;
5  //Given data :
6  C=1; //in pF
7  //Part (a) :
8  FH=1; //in MHz
9  R=1/((2*%pi*FH*10^6*C)*10^-12); //in ohm
10  disp(R*10^-3, "For 1 MHz, Maximum Load Resistnce in Kohm : ");
11
12  //Part (b) :
13  FH=1; //in GHz
14  R=1/((2*%pi*FH*10^9*C)*10^-12); //in ohm
```

```
15 disp(R,"For 1 GHz, Maximum Load Resistance in Ohm: ");
```

Scilab code Exa 8.10 NEP for Si pin photodiode

```
1 //Exa 8.10
2 clc;
3 clear;
4 close;
5 // Given data:
6 format('v',10);
7 lambda=1.3; //in um
8 lambda=lambda*10^-6;//in meter
9 Id=8; //in nA
10 ETA=55; //in \%
11 h=6.63*10^-34; // Planks constant
12 c=3*10^8; //in m/s
13 q=1.6*10^-19; //in coulamb
14 NEP=(h*c)*sqrt(2*q*Id*10^-9)/((ETA/100)*q*lambda);//
     in Ohm
15 disp(NEP, "NEP for Si p-i-n photodiode in Ohm: ");
```

Scilab code Exa 8.11 Smallest Detactable signal power

```
1 //Exa 8.11
2 clc;
3 clear;
4 close;
5 //Given data :
6 A=2.5;//in mm^2
7 A=A*10^-6;//in m^2
8 B=1;//in KHz
9 B=B*10^3;//in Hz
```

```
10 Dstar=10^11; //mHz^1/2W^-1
11 NEP=sqrt(A*B)/Dstar; //in Watts
12 disp(NEP*10^12, "Smallest detectable signal power in pW : ");
```

Scilab code Exa 8.12 NEP and detectivity of Ge pin photodiode

```
1 //Exa 8.12
2 clc;
3 clear;
4 close;
5 //Given data :
6 A=200*25; //in um^2
7 A = A * 10^- - 12; // in m^2
8 ETA=55; // Quantum Efficiency in %
9 lambda=1.3; //in um
10 lambda=lambda*10^-6; //in meter
11 Id=8; //in nA
12 Id=Id*10^-9; //i Ampere
13 h=6.63*10^-34; // Planks constant
14 q=1.6*10^-19;//in coulamb
15 c=3*10^8; //in m/s
16 NEP=h*c*sqrt(2*q*Id)/((ETA/100)*q*lambda);//in Watts
17 disp(NEP, "Noise equivalent power in Watts: ");
18 Dstar=sqrt(A)/NEP; //in m-Hz^2/W^-1
19 disp(Dstar, "Specific detectivity of Gep-i-n
      photodiode in m-Hz<sup>2</sup>/W: ");
20 //Note: Answer in the bok is not accurate.
```

Scilab code Exa 8.13 Maximum Load Resistance

```
1 //Exa 8.13
2 clc;
```

```
3 clear;
4 close;
5 //Given data :
6 C=6; //in pF
7 C=C*10^-12; //in F
8 FH=8; //in MHz
9 FH=FH*10^6; //in Hz
10 //Formula : FH=1/(2*%pi*R*C)
11 R=1/(2*%pi*FH*C); //in Ohm
12 disp(R*10^-3, "Maximum load resistance in Kohm");
```

Scilab code Exa 8.14 Generated shot noise in Ge pin photodiode

```
1 //Exa 8.14
2 clc;
3 clear;
4 close;
5 //Given data:
6 format('v',5);
7 lambda=0.9; //in um
8 lambda=lambda*10^-6;//in meter
9 ETA=60; // Quantum Efficiency in %
10 Id=3; //in nA
11 Id=Id*10^-9; //in Ampere
12 B=5; //in MHz
13 P = 200; //in nW
14 P=P*10^-9; //in Watts
15 h=6.63*10^-34; // Planks constant
16 q=1.6*10^-19; //in coulamb
17 c=3*10^8; //in m/s
18 Ip=P*(ETA/100)*q*lambda/(h*c); //in Ampere
19 //Formula : Is^2=2*q*(Ip+Id)*B
20 Is=sqrt(2*q*(Ip+Id)*B*10^6); //in Ampere
21 disp(Is*10^9, "Total shot noise current in nA: ");
```

Scilab code Exa 8.15 Multiplication Factor for an APD

```
1 // \text{Exa} \ 8.15
2 clc;
3 clear;
4 close;
5 //Given data :
6 lambda=1.35; //in um
7 lambda=lambda*10^-6;//in meter
8 ETA=40; // Quantum Efficiency in %
9 Im = 4.9; //in uA
10 Im=Im*10^-6; //in Ampere
11 P=0.2; ///in uW
12 P=P*10^-6; //in watts
13 h=6.63*10^-34; // Planks constant
14 q=1.6*10^-19; //in coulamb
15 c=3*10^8; //in m/s
16 M=Im*h*c/((ETA/100)*q*P*lambda);//unitless
17 disp(floor(M), "Multiplication factor: ");
```

Scilab code Exa 8.16 Wavelength and output photocurrent

```
1 //Exa 8.16
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5);
7 photons=10^13; //incident photons/sec
8 E=1.28*10^-19; //in Joule
9 h=6.63*10^-34; //Planks constant
10 q=1.6*10^-19; //in coulamb
```

```
11 c=3*10^8; //in m/s
12 //Part (a):
13 lambda=h*c/(E); //in meter
14 disp(lambda*10^6, "Wavelength of incident radiation
        in micro meter: ");
15 //Part (b):
16 Ip=q*photons; //in Ampere
17 disp(Ip*10^6, "Output photocurrent in micro Ampere:
        ");
18 //Part (c):
19 M=18; // unitless
20 Im=M*Ip; //in Ampere
21 disp(Im*10^6, "If device is an APD, Output
        photocurrent in micro Ampere: ");
```

Scilab code Exa 8.17 Quantum Efficieny and output photocurrent

```
1 //Exa 8.17
2 clc;
3 clear;
4 close;
5 //Given data :
6 \text{ M=20;} // \text{unitless}
7 lambda=1.5; //in um
8 lambda=lambda*10^-6;//in meter
9 R=0.6; //in A/W
10 h=6.63*10^-34; // Planks constant
11 q=1.6*10^-19; //in coulamb
12 c=3*10^8; //in m/s
13 photons=10^10; //incident photons/sec
14 Im=M*R*photons*h*c/lambda; //in Ampere
15 disp(Im*10^9, "Output Photo current in nA: ");
16 ETA=R*h*c/(q*lambda);//unitless
17 disp(round(ETA*100), "Quantum Efficiency in %: ");
```

Scilab code Exa 8.18 Maximum SNR

```
1 // Exa 8.18
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5);
7 RL=630; //in Ohm
8 B=50; //in MHz
9 B=B*10^6; // in Hz
10 Ip=10^-7; //in Ampere
11 T=18; //in degree C
12 T=T+273; //in kelvin
13 q=1.6*10^-19; //in coulamb
14 K=1.38*10^-23; //Boltzman Constant
15 SbyN=Ip^2/(2*q*B*Ip+4*K*T*B/RL); //unitless
16 SbyNdB=10*\log 10 (SbyN); //in dB
17 disp(round(SbyNdB), "Maximum SNR in dB : ");
```

Scilab code Exa 8.19 Mean square value of noise current

```
1 //Exa 8.19
2 clc;
3 clear;
4 close;
5 //Given data :
6 lambda=1.3; //in um
7 lambda=lambda*10^-6; //in meter
8 Id=16; //in nA
9 Id=Id*10^-9; //in Ampere
10 ETA=90; //Quantum Efficiency in %
```

```
11 RL=1000; //in Ohm
12 P=1.2; //in uW
13 P=P*10^-6; //in Watts
14 B=80; // in Mhz
15 B=B*10^6; //in Hz
16 T=20; //in degree C
17 T=T+273; //in kelvin
18 q=1.6*10^-19; //in c
19 K=1.38*10^-23; //Boltzman Constant
20 h=6.63*10^-34; // Planks constant
21 c=3*10^8; //in m/s
22 Ip=(ETA/100)*q*lambda*P/(h*c); //in Ampere
23 Iq=sqrt(2*q*Ip*B);//in Ampere
24 disp(Iq*10^9, "Mean square quantum nooise in nA : ");
25 I_dark=sqrt(2*q*Id*B);//in Ampere
26 disp(I_dark*10^9,"Mean square dark current noise in
     nA :");
27 It=sqrt(4*K*T*B/RL); //in Ampere
28 disp(round(It*10^9),"Mean square thermal current
      noise in nA:");
```

Scilab code Exa 8.20 Determine the SNR

```
1 //Exa 8.20
2 clc;
3 clear;
4 close;
5 //Given data :
6 F=3;//in dB
7 F=10^(F/10);//unitless
8 M=1;//unitless
9 lambda=1.3;//in um
10 lambda=lambda*10^-6;//in meter
11 Id=16;//in nA
12 Id=Id*10^-9;//in Ampere
```

```
13 ETA=90; // Quantum Efficiency in %
14 RL=1000; // in Ohm
15 P=1.2; // in uW
16 P=P*10^-6; // in Watts
17 B=80; // in Mhz
18 B=B*10^6; // in Hz
19 T=20; // in degree C
20 T=T+273; // in kelvin
21 q=1.6*10^-19; // in c
22 K=1.38*10^-23; // Boltzman Constant
23 h=6.63*10^-34; // Planks constant
24 c=3*10^8; // in m/s
25 Ip=(ETA/100)*q*lambda*P/(h*c); // in Ampere
26 SbyN=Ip^2*M^2/(2*q*B*(Ip+Id)*M^2+(4*K*T*B*F/RL));
27 disp(SbyN, "SNR at the output:");
```