Basi Di Dati e di conoscenza

Modello Relazionale

Contenuti della Lezione

- modello relazionale
- strutture nidificate
- informazione incompleta

Modello relazionale

- Proposto da E. F. Codd nel 1970 per favorire l'indipendenza dei dati
- Disponibile in **DBMS reali nel 1981** (non è facile implementare l'indipendenza con efficienza e affidabilità!)
- Si basa sul concetto matematico di relazione (con una variante)
- Le relazioni hanno naturale rappresentazione per mezzo di tabelle

Relazione matematica

- $D_1, ..., D_n$: insiemi anche non distinti detti domini
- Il **prodotto cartesiano** $D_1 \times \cdots \times D_n$ è definito come:

l'insieme di tutte le n-uple $(d_1, ..., d_n)$ tali che $d_1 \in D_1, ..., d_n \in D_n$

- Una relazione matematica su $D_1, ..., D_n$ è un sottoinsieme di $D_1 \times \cdots \times D_n$.
- $D_1, ..., D_n$ sono i domini della relazione

Relazione matematica

$$\boldsymbol{D_1} = \{\boldsymbol{A}, \boldsymbol{B}\}$$

A B

$$\boldsymbol{D_2} = \{\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}\}$$

Y

prodotto cartesiano
$$D_1 \times D_2$$

AXAYAZBXBYBZ

Relazione
$$r ext{ } extstyle extstyle } D_1 imes D_2$$

AX BX BY

Relazione matematica: proprietà

- una relazione matematica è un insieme di n-uple ordinate:
 - $(d_1, ..., d_n)$ tali che $d_1 \in D_1, ..., d_n \in D_n$
- una relazione è un insieme; quindi:
 - 1. non c'è ordinamento fra le n-uple;
 - 2. le n-uple sono **distinte**
 - 3. ciascuna n-upla è ordinata: l' i-esimo valore proviene dall' i-esimo dominio

Relazione matematica: Esempio

Partite ⊆ string × string × int × int

Juve	Lazio	3	1
Lazio	Milan	2	0
Juve	Roma	0	2
Roma	Milan	0	2

- Ciascuno dei domini ha due **ruoli** diversi, distinguibili attraverso la posizione:
- La struttura è posizionale

Struttura non posizionale

• Se a ciascun dominio si associa un nome (attributo), che ne descrive il "ruolo,, la struttura diviene non posizionale.

Casa	Fuori	RetiCasa	RetiFuori
Juve	Lazio	3	1
Lazio	Milan	2	0
Juve	Roma	0	2
Roma	Milan	0	2

Collezione di funzioni

- Per meglio catturare il concetto di relazione del modello relazionale definiamo
 - $X = \{A_1, ..., A_n\}$: un insieme (non ordinato) di attributi
 - $DOM=X \rightarrow D$: funzione che associa ad un attributo il corrispondente dominio.

- Una ennupla o tupla è una funzione tche associa ad ogni $A \in X$ un valore del dominio.
- *t*[*A*] denota il valore della ennupla *t* sull'attributo *A*

Una relazione è una collezione di ennuple

Modello relazionale: esempio

• Esempio di relazione: Relazione rappresentata tramite tabella (solo una delle possibile forme)

Nome	Cognome	Matricola	Voto medio
Mario	Rossi	1	24
Luigi	Bianchi	2	28
Rosa	Rossa	3	26

Modello relazionale: notazione

- Notazione
- Se t è una tupla su X e A è un attributo, con $A \in X$ allora t[A] indica il valore di t su A.
- **Esempio**: se **t** è la prima tupla allora...

Nome	Cognome	Matricola	Voto medio
Mario	Rossi	1	24
Luigi	Bianchi	2	28
Rosa	Rossa	3	26

Tabelle e relazioni

- Una tabella rappresenta una relazione se
 - i valori di ogni colonna sono fra loro omogenei
 - le righe sono diverse fra loro
 - le intestazioni delle colonne sono diverse tra loro
- In una tabella che rappresenta una relazione
 - l'ordinamento tra le righe è irrilevante
 - l'ordinamento tra le colonne è irrilevante

Tabelle: esempi

- Ordine non rilevante
- NO due righe uguali
- NO dati non omogeni

Voto medio	Cognome	Nome	Matricola
24	Rossi	Mario	1
28	Bianchi	Luigi	2
26	Rossa	Rosa	3

Nome	Cognome	Matricola	Voto medio
Mario	Rossi	1	24
Luigi	Bianchi	2	28
Rosa	Rossa	3	26

Voto medio	Cognome	Nome	Matricola
24	Rossi	Mario	1
28	Bianchi	Luigi	2
26	Rossa	Rosa	3
24	Rossi	Mario	1

Voto medio	Cognom	Nome	Matricola
24	Rossi	Mario	1
Bianchi	28	Luigi	2
26	3	Rosa	Rossa

Modello basati sui valori

• i riferimenti fra dati in relazioni diverse sono rappresentati per mezzo di valori dei domini che compaiono nelle ennuple

studenti	Matricola	Cognome	Nome	Data di na	scita
	6554	Rossi	Mario	05/12/19	78
	8765	Neri	Paolo	03/11/19	76
	9283	Verdi	Luisa	12/11/19	79
	3456	Rossi	Maria	01/02/19	78
	esami	Studente	Voto	Corso	
		3456	30	04	
		3456	24	02	
		9283	28	01	
		6554	26	01	
	corsi	Codice	Titolo	Docente	
		01	Analisi	Mario	
		02	Chimica	Bruni	
		04	Chimica	Verdi	

Vantaggi della struttura basata sui valori

- indipendenza dalle strutture fisiche (si potrebbe avere anche con puntatori di alto livello) che possono cambiare dinamicamente
- si rappresenta solo ciò che è rilevante dal punto di vista dell'applicazione
- l'utente finale vede gli stessi dati dei programmatori
- i dati sono portabili più facilmente da un sistema ad un altro
- i puntatori sono direzionali

Modello relazionale: Definizioni

• Schema di relazione:

un nome R con un insieme di attributi A_1 , ..., A_n :

$$R(A_1,...,A_n)$$

• Schema di base di dati:

insieme di schemi di relazione:

$$R = \{R_1(X_1), ..., R_k(X_k)\}$$

Schema di relazione e di base di dati: (esempio)

Schema di relazione

```
STUDENTI (Matricola, Cognome, Nome, Data di Nascita)
```

Schema di basi di dati

```
STUDENTI (Matricola, Cognome, Nome, Data di Nascita)
ESAMI (Matricola, Voto, Corso)
CORSO (Codice, Titolo, Docente)
```

Modello relazionale: Definizioni

- (Istanza di) relazione su uno schema R(X):
 insieme r di ennuple su X
- (Istanza di) base di dati su uno schema $R = \{R_1(X_1), ..., R_n(X_n)\}$: insieme di relazioni $r = \{r_1, ..., r_n\}$ (con r_i relazione su R_i)

Relazioni su singoli attributi

studenti

Matricola	Cognome	Nome	Data di nascita
6554	Rossi	Mario	05/12/1978
8765	Neri	Paolo	03/11/1976
9283	Verdi	Luisa	12/11/1979
3456	Rossi	Maria	01/02/1978

studenti lavoratori

Matricola
6554
3456

Contenuti della Lezione

- modello relazionale
- strutture nidificate
- informazione incompleta

Strutture nidificate

	RICEVUTA FISCALE 1235 DEL 12/10/2000				
3	Coperti	3,00			
2	Antipasti	6,20			
3	Primi	12,00			
2	Bistecche	18,00			
	TOTALE	39,20	elazionale		

DA FILIPPO VIA ROMA 2, ROMA				
RICEVUTA FISCALE 1240 DEL 13/10/2000				
2	Coperti	2,00		
2	Antipasti	7,00		
2	Primi	8,00		
2	Orate	20,00		
2	Caffè	2,00		
	TOTALE	39,00		

Rappresentazione relazionale delle strutture nidificate

Ricevute

Numero	Data	Totale
1235	12/10/2000	39,20
1240	13/10/2000	39,00

Dettaglio

Numero	Qtà	Descrizione	3,00
1235	3	Coperti	3,00
1235	2	Antipasti	6,20
1235	3	Primi	12,00
1235	2	Bistecche	18,00
1240	2	Coperti	2,00

Strutture nidificate

- Abbiamo rappresentato veramente tutti gli aspetti delle ricevute?
- Dipende da che cosa ci interessa!
 - l'ordine delle righe e' rilevante?
 - possono esistere linee ripetute in una ricevuta?
- Sono possibili rappresentazioni diverse

Rappresentazione alternativa

Ricevute

Numero	Data	Totale
1235	12/10/2000	39,20
1240	13/10/2000	39,00

Dettaglio

Numero	Riga	Qtà	Descrizione	Importo
1235	1	3	Coperti	3,00
1235	2	2	Antipasti	6,20
1235	3	3	Primi	12,00
1235	4	2	Bistecche	18,00
1240	1	2	Coperti	2,00

Contenuti della Lezione

- modello relazionale
- strutture nidificate
- informazione incompleta

Informazione incompleta

- Il modello relazionale impone ai dati una struttura rigida:
 - le informazioni sono rappresentate per mezzo di ennuple
 - solo alcuni formati di ennuple sono ammessi: quelli che corrispondono agli schemi di relazione
- I dati disponibili possono non corrispondere al formato previsto

Informazione incompleta: motivazioni

Nome	SecondoNome	Cognome
Franklin	Delano	Roosevelt
Winston		Churchill
Charles		De Gaulle
Josip		Stalin

Informazione incompleta: soluzioni?

- non conviene (anche se spesso si fa) usare valori del dominio (0, stringa nulla, "99", ...):
 - potrebbero non esistere valori "non utilizzati"
 - valori "non utilizzati" potrebbero diventare significativi
 - in fase di utilizzo (nei programmi) sarebbe necessario ogni volta tener conto del "significato" di questi valori

Informazione incompleta nel modello relazionale

- Si adotta una tecnica rudimentale ma efficace:
 - valore nullo: denota l'assenza di un valore del dominio (e non è un valore del dominio)
- t[A], per ogni attributo A, è un valore del dominio dom(A) oppure il valore nullo NULL
- Si possono (e debbono) imporre restrizioni sulla presenza di valori nulli

Troppi valori nulli

studenti

Matricola	Cognome	Nome	Data di nascita
6554	Rossi	Mario	05/12/1978
9283	Verdi	Luisa	12/11/1979
NULL	Rossi	Maria	01/02/1978

esami	Studente	Voto	Corso
	NULL	30	NULL
	NULL	24	02
	9283	28	01

corsi	Codice	Titolo	Docente
	01	Analisi	Mario
	02	NULL	NULL
	04	Chimica	Verdi

Tipi di valore nullo

- (almeno) tre casi differenti
 - valore sconosciuto
 - valore inesistente
 - valore senza informazione
- I DBMS non distinguono i tipi di valore nullo