DIC L17: Delay (5)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

4.3. RC delay model (7)

- Example 4.4
 - A simple single time constant approximation

$$t_{pd} \approx \sum_{\text{nodes } i} R_{i-to-source} C_i$$
 Eq. (4.14)
$$= R_1 C_1 + \left(R_1 + R_2\right) C_2 + \ldots + \left(R_1 + R_2 + \ldots + R_N\right) C_N$$

$$\begin{array}{c} R_1 & R_2 & R_3 & R_N \\ \hline & C_1 & C_2 & C_3^{\circ \circ \circ} & C_N \end{array}$$

4.3. RC delay model (8)

Example 4.7 (h identical NANDs)

R/3

R/3

4.3. RC delay model (9)

- Delay components
 - Parasitic delay
 - 9 or 12 RC
 - Independent on load
 - Effort delay
 - 5*h* RC
 - Proportional to load capacitance

4.3. RC delay model (9)

- Layout dependence of capacitance
 - Good layout minimizes the diffusion area.

4.4. Linear delay model (1)

- Delay in a logic gate
 - Express delays in process-independent unit

$$d = \frac{t_{pd}}{\tau} = \frac{t_{pd}}{3RC}$$

Eq. (4.15)

– Delay has two components:

$$d = f + p$$

Eq. (4.20)

Effort delay

$$f = gh$$

Eq. (4.21)

- Logical effort, g
 - $g \equiv 1$ for inverter

4.4. Linear delay model (2)

- Delay in a logic gate (continued)
 - Electrical effort

$$h = \frac{C_{out}}{C_{in}}$$

Eq. (4.22)

- Ratio of output to input capacitance
- Parasitic delay, p
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

4.4. Linear delay model (3)

Normalized delay versus fanout

4.4. Linear delay model (4)

- Computing logical effort
 - Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delevering the same output current.

4.4. Linear delay model (5)

Logical effort of common gates

Gate type	Number of inputs					
	1	2	3	4	n	
Inverter	1					
NAND		4/3	5/3	6/3	(n+2)/3	
NOR		5/3	7/3	9/3	(2n+1)/3	
Tristate / mux	2	2	2	2	2	
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8		

4.4. Linear delay model (6)

Parasitic delay of common gates

Gate type	Number of inputs					
	1	2	3	4	n	
Inverter	1					
NAND		2	3	4	n	
NOR		2	3	4	n	
Tristate / mux	2	4	6	8	2n	
XOR, XNOR		4	6	8		

4.4. Linear delay model (7)

Example 4.10

- Logical Effort: g = 1
- Electrical Effort: h = 4
- Parasitic Delay: p = 1
- Stage Delay: d = 5
- When $\tau = 3RC = 3$ ps, the total delay is 15 ps.

4.4. Linear delay model (8)

• Example 4.11

- Logical Effort: g = 1
- Electrical Effort: h = 1
- Parasitic Delay: p = 1
- Stage Delay: d = 2
- Frequency: $f_{osc} = 1/(2*N*d) = 1/4N$