Divide and Conquer

- MergeSort
 - We are given a list of n elements.
 - Split list into two lists each of length n/2.
 - More precisely, one with length: $\left\lceil \frac{n}{2} \right\rceil$ the other: $\left\lfloor \frac{n}{2} \right\rfloor$.
 - Sort each list using merge sort (recursive call).
 - Merge the sorted lists to get the final result.
- Merge sort analysis:
 - Let T(n) = number of comparisons to sort n items in the worst case. Note: T(1) = 0, T(2) = 1

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + \Theta(n) & \text{if } n > 1 \end{cases}$$

· Now what???

Floors and Ceilings

- In practice, floors and ceilings are often neglected.
- To be mathematically precise, we should not neglect them.
- This can nearly always be done, but details can get quite messy.
- In this course, we will almost always gloss over them. This is fine for our purposes, but in other settings it might not be (e.g. when writing a formal proof for publication).

Solving Recurrences

- Method 1: Recursion Trees
- Method 2: Master theorem
- Method 3: Guessing and Checking method
- We will study these in the next unit. For now, we solve the recurrence in an *ad-hoc* fashion.

Simple Merge Sort Analysis

- A simple analysis gives us a good guess:
 - -Assume $n = 2^k$. Then:

$$T(n) \le cn + 2T(n/2) \le cn + 2\{cn/2 + 2T(n/4)\}\$$

 $\le 2cn + 4T(n/4) = \dots$ (continuing)
 $\le icn + 2^i T(n/2^i)$ (in general)
 $\le kcn + n T(1)$ (when i is finally k)

 \rightarrow $T(n) \in O(n \log n)$ (since $k = \log n$).

A More Thorough Analysis

Write it as

$$T(n) \le \begin{cases} 0 & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + an & \text{if } n > 1 \end{cases}$$

- Prove $T(n) \le cn \log n$ by induction on n.
- Base case: n = 1. True since T(n) = 0.
- Inductive step: assume $T(k) \le ck \log k$ for k < n, and prove true for k = n.

Mergesort (cont.)

$$T(n) \le T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + an$$

$$\le c \left\lfloor \frac{n}{2} \right\rfloor \log \left\lfloor \frac{n}{2} \right\rfloor + c \left\lceil \frac{n}{2} \right\rceil \log \left\lceil \frac{n}{2} \right\rceil + an$$

$$\le c \left\lfloor \frac{n}{2} \right\rfloor \log \left(\frac{n}{2}\right) + c \left\lceil \frac{n}{2} \right\rceil \log n + an$$

$$\le c \left\lfloor \frac{n}{2} \right\rfloor (\log n - 1) + c \left\lceil \frac{n}{2} \right\rceil \log n + an$$

$$= cn \log n - c \left\lfloor \frac{n}{2} \right\rfloor + an$$

$$\le cn \log n - c \left(\frac{n}{2} - \frac{1}{2} \right) + an = cn \log n + \left(a - \frac{c}{2} \right) n + \frac{c}{2}$$

$$\le cn \log n \quad \text{for, say, } c = 4a$$

Divide-and-Conquer

- A general algorithmic paradigm (strategy)
 - Divide:
 - Separate a problem into subproblems.
 - Conquer:
 - Solve the subproblems (recursively).
 - Combine:
 - Use subproblem results to derive a final result for the original problem
 - Examples: binary search, quick sort, merge sort

When can we use D&C?

- Candidates for D&C:
 - Original problem is easily decomposable into subproblems.
 - We do not want to see "overlap" in the subproblems.
 - Combining solutions is not too costly.
 - Subproblems are about the same size.
 - We will see some examples of D&C with special emphasis on the analysis of execution time.

Multiplication of Large Integers

- We illustrate this problem with decimal digits.
 - An actual implementation would use word-size chunks of bits in binary, but the idea is the same.
 - Primitive operation: multiplying two digits (in practice: multiplying two words).
 - Addition is usually less expensive so we neglect it now.
 - Later, we will need to convince ourselves that the cost of additions is not asymptotically dominant.

The "Grade School" Algorithm

1	2	1	0	5	5	4
	9	8	1			
	1	9	6	2		
		2	9	4	3	
			3	9	2	4
			1	2	3	4
				9	8	1

- If numbers have
 n digits, this
 takes Θ(n²) time
- Can we do better?

1st D&C Try at Long Multiplication

• Divide step:

Split numbers in half, compute all products and combine with appropriate shifts. E.g.

$$0981 \times 1234 = (09 \cdot 10^{2} + 81) \times (12 \cdot 10^{2} + 34)$$
$$= 09 \times 12 \cdot 10^{4} + 09 \times 34 \cdot 10^{2} + 12 \times 81 \cdot 10^{2} + 81 \times 34$$

- Conquer:
 - Recursively compute the products of numbers of size n/2.
- Combine:
 - If we ignore additions this is free.
 - More realistically: cost is $\Theta(n)$.

Analysis

- Assume n is a power of two.
 - Then all splits are exact.
- Recurrence is:

$$T(n) = 4T(n/2) + \Theta(n) \qquad T(1) = 1$$

This has solution $T(n) \in \Theta(n^2)$.

- You can verify this by substitution...
- So we have not done better than before! 😊
 - But we do not give up...
 - To improve our approach, we try to reduce the number of subproblems.

A Better D&C Algorithm

- As before, we split the first number into $w \cdot 10^{n/2} + x$, and the second number into $y \cdot 10^{n/2} + z$.
- In our first approach we computed **four** products *wy*, *wz*, *xy*, *xz* recursively.
- Improvement:
 - In the final sum both wz and xy appear with the same power of 10, i.e:

$$(w\cdot 10^{n/2} + x) \times (y\cdot 10^{n/2} + z) = wy\cdot 10^n + wz\cdot 10^{n/2} + xy\cdot 10^{n/2} + xz$$

- so what we really need is: $(wz + xy) \cdot 10^{n/2}...$ yet this still requires two multiplications...

A Better D&C Algorithm

IDEA! Note that

1.
$$wz + xy = (w + x)(y + z) - wy - xz$$
.

2. Left side has 2 multiplies, right side has 3 \otimes but wy and xz need to be computed anyway so we have them for free! \odot

$$(w \cdot 10^{n/2} + x) \times (y \cdot 10^{n/2} + z) = wy \cdot 10^n + (wz + xy) \cdot 10^{n/2} + xz$$

Now our recurrence looks like

$$T(n)=3T(n/2)+\Theta(n)$$
.

– Note: Cost for addition in combine step is still $\Theta(n)$.

Analysis

Recurrence is now:

$$T(n) = 3T(n/2) + \Theta(n) \qquad T(1) = 1$$

We will eventually show that this has solution:

 $T(n) \in \Theta(n^{\log 3})$, that is: $T(n) \in \Theta(n^{1.585})$

- Overhead makes this expensive for small n
- For large n there are asymptotically better algorithms which are also more practical (though beyond the scope of this course).

What next?

- Taking stock of our progress so far:
 - We have studied various algorithms.
 - We have seen a few recursions:

$$T(n) = \begin{cases} 0 & \text{if } n = 1 \\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + \Theta(n) & \text{if } n > 1 \end{cases}$$

$$T(n) = 4T\left(n/2\right) + \Theta(n) \qquad T(1) = 1$$

$$T(n) = 3T\left(n/2\right) + \Theta(n) \qquad T(1) = 1$$

- As our algorithms get more complicated we will get into analysis work that is also more complicated.
 - It is reasonably clear that we are going to need a more systematic approach to solving recursions.
 - That is the topic of our next unit.