# 模拟电子技术基础

## 复习随记

计算机 74 班 任隽阳

## 【目录】

|     | 半导体二极管及其应用  | 1  |
|-----|-------------|----|
| 第二章 | 晶体管及放大电路基础  | 2  |
| 第三章 | 场效应管及其放大电路  | 4  |
| 第四章 | 集成运算放大器     | 5  |
| 第五章 | 反馈及负反馈放大电路  | 6  |
| 第六章 | 集成运放组成的运算电路 | 8  |
| 第七章 | 信号检测与处理电路   | 9  |
|     | 信号发生器       |    |
| 第九章 | 功率放大电路      | 12 |
|     | 直流稳压电源      |    |

## 第一章 半导体二极管及其应用

PN 结的U - I关系:

$$i = I_s \left( e^{\frac{u}{U_T}} - 1 \right)$$

 $U_T \approx 26mV$ 

#### 二极管的击穿:

 $U_{BR} < 4V$ : 齐纳击穿  $U_{BR} > 6V$ : 雪崩击穿

### 二极管的正向特性:

$$i_D \approx I_s e^{\frac{u_D}{U_T}}$$

死区 
$$(i_D \approx 0)$$
:  $\begin{cases} ded 0.5V \\ ded 0.1V \end{cases}$ 

#### 含二极管电路分析方法:

假设二极管即将导通,此时i=0,判断此时二极管上的压降,若压降均为正,则压降高的优先导通。 含稳压管: 稳压管并联时uz小的先击穿, 若其中有一只正偏, 则其优先导通

## 第二章 晶体管及放大电路基础

#### 晶体管工作状态判断:

| 工作状态   | 放大 | 饱和 | 截止 | 倒置 |
|--------|----|----|----|----|
| 发射结(E) | 正偏 | 正偏 | 反偏 | 反偏 |
| 集电结(C) | 反偏 | 正偏 | 反偏 | 正偏 |

饱和时集电极最大电流近似:  $I_{CS} = \frac{V_{CC} - U_{CES}}{R_C}$ 

#### 晶体管极性判断:

NPN型:  $U_C >> U_B > U_E$ PNP型:  $U_C << U_B < U_E$ 

#### 放大电路的主要电参数:

共射极放大电路:  $\beta = \frac{l_c}{l_c}$ 

共基极放大电路:  $\alpha = \frac{l_c}{l}$ 





图 2.2 直流通路和交流通路

#### (a) 直流通路

### (b)交流通路

### 共射极放大电路的静态分析(固定式偏置)(估算法):

① 得到直流通路 (图 2.2(a))

② 
$$V_{CC} = I_{BQ}R_B + U_{BEQ} \Rightarrow I_{BQ} = \frac{V_{CC} - U_{BEQ}}{R_B}$$
,  $|U_{BEQ}|$  硅管可取为0.7 $V$ , 锗管0.3 $V$ 

- $(4) \quad U_{CEQ} = V_{CC} I_{CQ}R_C$



图 2.3 分压式偏置的直流通路

### 放大电路的静态分析(分压式偏置)(估算法)(图 2.3):

  
① 
$$I_{BQ} \approx 0 : U_{BQ} = V_{CC} \times \frac{R_{B_2}}{R_{B_1} + R_{B_2}}$$

② 
$$I_{EQ} = \frac{U_{BQ} - U_{BEQ}}{R_E} \approx I_{CQ}$$

#### 共射极放大电路的的动态分析:

#### 静态工作点的选择:

动态范围:  $U_{opp} = 2 \times min\{U_{CEO}, I_{CO}R_C\}$ 

画交流通路: ①耦合电容、旁路电容等大电容短路; ②直流源接地

如图 2.2(b)交流通路的动态范围:

$$U_{opp} = 2 \times \min \{ U_{CEQ} - U_{CES}, I_{CQ}(R_C//R_L) \}$$



图 2.4 晶体管的微变等效电路

#### 微变等效电路法 (图 2.4):

晶体管的交流输入电阻 $r_{be} = r_{bb}' + (1+\beta) \frac{u_T}{|I_{EO}|}$ 

其中基区体电阻 $r'_{bb}=300\Omega$ ,室温T=300K时,热电压 $U_T\approx 26mV$ , $\left|I_{EQ}\right|\approx \left|I_{CQ}\right|$ 

#### 表 2.3 晶体管基本放大电路的类型及其参数计算

|           | 基本电路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 微变等效电路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 静态参数                                                                                                                          | 动态参数                                                                                                                                                                                         |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 固定偏置放大电路  | $\begin{array}{c c} & & & & & & & & & & & & \\ & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $I_{B} = \frac{U_{CC} - U_{BE}}{R_{B}}$ $I_{C} = \beta I_{B}$ $U_{CE} = U_{CC} - R_{C}I_{C}$                                  | $A_{u} = -\frac{\beta(R_{C}//R_{L})}{r_{be}}$ $R_{i} = R_{B}//r_{be} \approx r_{be}$ $R_{o} = R_{C}$                                                                                         |
| 共集电极放大电路  | $R_{B}$ $C_{1}$ $U_{CC}$ $R_{S}$ $U_{I}$ $U_{$ | $R_{S} \downarrow U_{i} \downarrow R_{B} \downarrow R_{E} \downarrow R_{L} \downarrow U_{o}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $I_B = \frac{U_{CC} - U_{BE}}{R_B + (1 + \beta)R_E}$ $I_E = (1 + \beta)I_B$ $U_{CE} = U_{CC} - R_E I_E$                       | $A_{u} = \frac{(1+\beta)(R_{E}//R_{L})}{r_{be} + (1+\beta)(R_{E}//R_{L})} \approx 1$ $R_{i} = R_{B}//[r_{be} + (1+\beta)R_{E}//R_{L}]$ $R_{o} = R_{E}//\frac{(Rs//R_{B}) + r_{be}}{1+\beta}$ |
| 共基极放大电路   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $R_{S} \downarrow^{+} U_{i} R_{E} \downarrow^{I_{c}} R_{C} \downarrow^{I_{c}} R_{C} \downarrow^{I_{c}} R_{L} \downarrow^{I_{c}} U_{o}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $V_B = \frac{R_{B2}}{R_{B1} + R_{B2}} U_{CC}$ $I_C \approx I_E = \frac{V_B - U_{BE}}{R_E}$ $U_{CE} = U_{CC} - (R_C + R_E)I_C$ | $A_u = rac{eta(R_C//R_L)}{r_{be}}$ (大小同共射) $R_i = R_E//rac{r_{be}}{1+eta}$ (同共集电 $R_o$ ) $R_o = R_C$ (同共射 $R_o$ )                                                                          |
| 分压式偏置放大电路 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $R_{S} \cap H_{R_{B1}} \cap H_{R_{B2}} \cap H_{R_{C}} \cap H_{R_{L}} \cap H_{C} \cap H_{R_{C}} \cap H_{R_{L}} \cap H_{C} \cap H_$ | $V_B = \frac{R_{B2}}{R_{B1} + R_{B2}} U_{CC}$ $I_C \approx I_E = \frac{V_B - U_{BE}}{R_E}$ $U_{CE} = U_{CC} - (R_C + R_E)I_C$ | $A_{u} = -\frac{\beta(R_{C}//R_{L})}{r_{be} + (1+\beta)R_{E1}}$ $R_{i} = R_{B1}//R_{B2}//[r_{be} + (1+\beta)R_{E1}]$ $R_{o} = R_{C}$                                                         |

#### 多级放大电路的计算:

$$R_{i} = R_{i1} \quad R_{o} = R_{on}$$

$$\dot{A}_{u} = \prod_{i=1}^{n} \dot{A}_{u_{i}}$$

$$\sum_{i=1}^{n} \dot{A}_{u_{i}}$$

$$f_L = 1.1 \sqrt{\sum_{i=1}^{n} f_{L_i}^2}$$
  $f_H = 0.9 \frac{1}{\sqrt{\sum_{i=1}^{n} f_{H_i}^2}}$ 



图 2.7 一阶高通电路和低通电路

#### 只考虑一个电容影响时的频率特性计算:

 $f_L$ 计算:

当放大电路在低频区工作,并只考虑一个电容影响时,首先将所考虑的电容所在回路经过等效后,等效成图 2.7(a)所示的一阶高通电路。则 $f_L=\frac{1}{2\pi RC}$ 

 $f_H$ 计算: 当放大电路在高频区工作, 并只考虑一个电容影响时, 首先将所考虑的电容所在回路经过等效后,

等效成图 2.7(b)所示的一阶低通电路。则 $f_H = \frac{1}{2\pi RC}$ 

其他频率特性计算可参考书本例题。

### 第三章 场效应管及其放大电路

#### 场效应管(以 N 沟道为例):



### 场效应管基本放大电路的动态计算(忽略 $r_{ m ds}$ 的影响):



## 第四章 集成运算放大器



- (d) 共模输入时的交流通路

#### 差分电路的静态分析:

$$\begin{split} I_{EQ} &\approx \frac{V_{EE} - U_{BE}}{2R_E} \\ U_{\text{CEQ}} &\approx V_{\text{CC}} + V_{\text{EE}} - I_C (R_C + 2R_E) \\ U_{\text{CQ}} &= V_{\text{CC}} - I_C R_C \end{split}$$

#### 共模抑制比:

$$K_{CMR} = \left| \frac{A_{ud}}{A_{uc}} \right|$$

#### 差模信号下:

| 双端输出                                                                   | 单端输出                                                                                                                                                                                              |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $A_{ud} = A_{ud1} = -\beta \frac{R_C / / \frac{R_L}{2}}{R_B + r_{be}}$ | $A_{ud} = rac{1}{2} A_{ud1} (u_{od_1}$ 单端输出时) == $-rac{eta}{2} rac{R_C//R_L}{R_B + r_{ m be}}$ $A_{ud} = rac{1}{2} A_{ud2} (u_{od_2}$ 单端输出时) = $rac{eta}{2} rac{R_C//R_L}{R_B + r_{ m be}}$ |  |
| $R_{id} = 2(R_B + r_{be})$                                             |                                                                                                                                                                                                   |  |
| $R_o = 2R_C$                                                           | $R_o = R_C$                                                                                                                                                                                       |  |

### 共模信号下:

| 双端输出         |                                         | 单端输出                                                                              |  |
|--------------|-----------------------------------------|-----------------------------------------------------------------------------------|--|
| $A_{uc}=0$   |                                         | $A_{uc} pprox rac{R_C//R_L}{2R_E} \Rightarrow K = rac{\beta R_E}{R_B + r_{be}}$ |  |
|              | $R_{ic} = R_B + r_{be} + 2(1+\beta)R_E$ |                                                                                   |  |
| $R_o = 2R_C$ |                                         | $R_o = R_C$                                                                       |  |

#### 信号分解:

$$u_{id} = u_{i1} - u_{i2}$$

$$u_{ic} = \frac{u_{i1} + u_{i2}}{2}$$

$$\Delta u_{0} = A_{id} \cdot \Delta u_{id} + A_{ic} \cdot \Delta u_{id}$$

$$\Delta u_o = A_{ud} \cdot \Delta u_{id} + A_{uc} \cdot \Delta u_{ic}$$

#### 复合管:

同种类型的管子组成复合管:

$$\beta = \beta_1 + \beta_2 + \beta_1 \beta_2 \approx \beta_1 \beta_2$$

$$r_{\text{be}} = r_{\text{be}1} + (1 + \beta_1) r_{\text{be}2}$$

不同类型的管子组成复合管:

$$\beta = \beta_1 + \beta_1 \beta_2 \approx \beta_1 \beta_2$$
$$r_{\text{be}} = r_{\text{be}1}$$



(a) 等效为 NPN 型 (b) 等效为 PNP 型 (c) 等效为 NPN 型 (d) 等效为 PNP 型

## 第五章 反馈及负反馈放大电路

#### 正/负反馈判断 (瞬时极性法):

- ① 在输入端加入对地瞬时极性为正的电压 $u_i$ 。
- ② 根据放大电路的工作原理,标出 $u_o$ 、 $u_F$ 的瞬时极性。
- ③ 判断反馈信号是增强还是削弱输入信号。

#### 电压/电流反馈判断:

令输出电压为零( $u_o=0$ ) 若反馈信号 $\dot{X}_f=0$ ,则为电压反馈 若反馈信号 $\dot{X}_f\neq0$ ,则为电流反馈

#### 串联/并联反馈判断:

反馈信号与输入信号接入在同一点:并联反馈 反馈信号与输入信号接入不在同一点:串联反馈

#### 闭环增益与开环增益间的关系:

$$A_f = \frac{A}{1 + AF} \approx \frac{1}{F}$$

#### 负反馈拓展通频带:

 $A_f f_{BWf} = A f_{BW}$ 

#### 负反馈电路的输入输出电阻:

$$R_{if} = \begin{cases} (1 + AF)R_i \big( \\ \\ \frac{R_i}{1 + AF} \big( \\ \\ \frac{1 + AF}{1 + AF} \big) \end{cases} R_{of} = \begin{cases} (1 + AF)R_o \big( \\ \\ \frac{R_o}{1 + AF} \big( \\ \\ \frac{R_o}{1 + AF} \big) \\ \end{cases} ($$

#### 负反馈电路的分析方法(见图 5.1):

- ① 确定反馈类型
- ② 求出反馈系数 $\dot{F} = \frac{\dot{x}_f}{\dot{x}_o}$
- ③ 求出反馈增益 $\dot{A}_f = \frac{\dot{X}_o}{\dot{X}_L} \approx \frac{1}{\dot{F}}$
- ④ 求出电路的电压增益 $\dot{A}_f = \frac{\dot{U}_o}{\dot{U}_t} = K\dot{A}_f$



图 5.1 负反馈电路的分析方法

#### 四种类型负反馈的表达式:

|             | 电压串联                                             | 电压并联                                         | 电流串联                                         | 电流并联                                         |
|-------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
|             | $(U_o, U)$                                       | $(U_o, I)$                                   | $(I_o, U)$                                   | $(I_o, I)$                                   |
| À           | $\dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{id}}$ | $\dot{A}_r = \frac{\dot{U}_o}{\dot{I}_{id}}$ | $\dot{A}_g = \frac{\dot{I}_o}{\dot{U}_{id}}$ | $\dot{A}_i = \frac{\dot{I}_o}{\dot{I}_{id}}$ |
| Ė           | $\dot{F}_u = \frac{\dot{U}_f}{\dot{U}_o}$        | $\dot{F}_g = rac{\dot{I}_f}{\dot{U}_o}$     | $\dot{F}_r = \frac{\dot{U}_f}{\dot{I}_o}$    | $\dot{F}_i = \frac{\dot{I}_f}{\dot{I}_o}$    |
| $\dot{A_f}$ | $\dot{A}_{uf} = \frac{\dot{U}_o}{\dot{U}_i}$     | $\dot{A}_{rf} = \frac{\dot{U}_o}{\dot{I}_i}$ | $\dot{A}_{gf} = \frac{\dot{I}_o}{\dot{U}_i}$ | $\dot{A}_{if} = \frac{\dot{I}_o}{\dot{I}_i}$ |

## 第六章 集成运放组成的运算电路

含负反馈的运放运用"虚短""虚断"进行分析和计算。

| 电路类型 原理电路 |       |                                                                                                                                                                         | 传递函数                                                                                                                                                              |
|-----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 同相比例器 | $R_1$ $R_2$ $R_1$ $R_2$ $R_1$ $R_2$                                                                                                                                     | $u_o = (1 + \frac{R_2}{R_1})u_i$                                                                                                                                  |
| 比例器       | 反相比例器 | $u_1$ $R_2$ $u_0$                                                                                                                                                       | $u_o = -\frac{R_2}{R_1} u_i$                                                                                                                                      |
| 加法器       | 同相加法器 | $R_{\rm F}$ $R_{\rm I}$ | $u_o = \frac{R + R_F}{R} (K_1 u_{i1} + K_2 u_{i2} + K_3 u_{i3})$ $K_1 = \frac{R_A}{R_1}, K_2 = \frac{R_A}{R_2}, K_3 = \frac{R_A}{R_3}, R_A = R_1 / / R_2 / / R_3$ |
| 器         | 反相加法器 | $u_{11}$ $R_{2}$ $u_{12}$ $R_{3}$ $u_{13}$ $u_{14}$ $u_{15}$                                                                                                            | $u_o = -\left(\frac{R_F}{R_1}u_{i1} + \frac{R_F}{R_2}u_{i2} + \frac{R_F}{R_3}u_{i3}\right)$                                                                       |
| 派         | 或去    | $u_1$ $R_3$ $u_2$ $R_4$                                                                                                                                                 | $u_o = \frac{R_1 + R_2}{R_1} \cdot \frac{R_4}{R_3 + R_4} u_{i2} - \frac{R_2}{R_1} u_{i1}$                                                                         |
| 私ク号       | 只子    | $u_1$ $R$ $u_2$ $u_3$ $u_4$ $u_4$ $u_5$                                                                                                                                 | $u_o(t) = -\frac{1}{RC} \int u_i(t)  \mathrm{d}t$                                                                                                                 |
| 行う書       | 数分各   | $u_1$ $R$ $u_0$                                                                                                                                                         | $u_o(t) = -RC \frac{\mathrm{d}u_i(t)}{\mathrm{d}t}$                                                                                                               |

|            | 模拟乘法器  | $u_{x}$ $u_{y}$ $u_{y}$                                                       | $u_O = Ku_X u_Y$                                             |
|------------|--------|-------------------------------------------------------------------------------|--------------------------------------------------------------|
| 模拟乘法器组成的电路 | 开方运算电路 | $u_{01}$ $R$ $A$                          | $u_0 = \sqrt{-\frac{u_I}{K}} (u_I < 0)$                      |
| 路          | 除法运算电路 | $u_{01}$ $K$ $u_{12}$ $u_{11}$ $R_1$ $R_2$ $R$ $U_{01}$ $R$ $U_{02}$ $U_{03}$ | $u_0 = -\frac{R_2}{KR_1} \frac{u_{11}}{u_{12}} (u_{12} > 0)$ |

## 第七章 信号检测与处理电路

### 三运放测量放大器 (图 7.1):

$$u_{0} = \left(1 + \frac{R_{4}}{R_{3}}\right) \times \frac{R_{6}}{R_{5} + R_{6}} u_{02} - \frac{R_{4}}{R_{3}} u_{01}$$

$$i = \frac{u_{01} - u_{02}}{R_{1} + R_{G} + R_{2}}$$

$$u_{01} - u_{02} = \frac{R_{1} + R_{G} + R_{2}}{R_{G}} u_{Id}$$

$$R_{1} = R_{2} = R_{3} = R_{4} = R_{5} = R_{6} = R, \text{ } \square$$



## 一阶低通有源滤波器 (图 7.2):

滤波器的通带增益 $A_0 = -\frac{R_2}{R_1}$ 滤波器的截止频率 $f_c = \frac{1}{2\pi R_2 C}$ 幅频特性曲线:

 $20 \lg A_0$ 





图 7.1 三运放测量放大器





图 7.3 一阶高通有源滤波器

### 一阶高通有源滤波器:

通带增益 $A_0 = -\frac{R_2}{R_1}$ 

截止频率 $f_c = \frac{1}{2\pi R_1 C}$ 

幅频特性曲线见右图。



运放的非线性应用(如正反馈情况下)时,"虚短"不成立,"虚断"仍可以使用,输出电阻仍可以认为是0。

### 常用基本电压比较器电路:

| 名称          |         | 电路结构                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 电压传输特性                                                                                          | 说明                                                                                                                                                             |
|-------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 开环型单位       | 反相输入串联  | $u_{1} \circ \begin{array}{c} R_{1} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c}$ | $ \begin{array}{c c} u_O & \\ +U_Z \\ \hline O & \\ -U_Z & \\ \end{array} $                     | 反相输入<br>运放工作于饱和区 $U_T = U_R$                                                                                                                                   |
|             | 同相输入串联  | $u_1 \circ A_1 + R_2 \circ u_0$ $U_R + U_Z \bullet U_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c c} u_0 \\ +U_Z \\ \hline O \\ -U_Z \end{array} \longrightarrow u_I $          | 同相输入<br>运放工作于饱和区 $U_T=U_R$                                                                                                                                     |
| 开环型单门限电压比较器 | 反相输入并联  | $U_{R} \circ \longrightarrow R_{1}$ $U_{R} \circ \longrightarrow R_{2}$ $U_{R} \circ \longrightarrow R_{4}$ $U_{L} \circ U_{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c c}  & u_0 \\ \hline  & U_T \\ \hline  & U_T \\ \hline  & -U_Z \end{array} $   | 反相输入<br>运放工作于饱和区 $U_T=-rac{R_1}{R_2}U_R$                                                                                                                      |
|             | 同相输入并联  | $U_{R} \circ \longrightarrow R_{1}$ $U_{R} \circ \longrightarrow R_{2}$ $U_{R} \circ \longrightarrow R_{3}$ $U_{R} \circ U_{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c c} u_{O} & \\ +U_{Z} \\ \hline U_{T} & O \\ -U_{Z} \end{array}$                | 同相输入<br>运放工作于饱和区 $U_T=-rac{R_1}{R_2}U_R$                                                                                                                      |
| 迟滞比较器 (     | 反相输入串联型 | $U_{R} \circ R_{1}$ $U_{R} \circ R_{1}$ $U_{R} \circ U_{Z}$ $U_{R} \circ U_{Z}$ $U_{R} \circ U_{Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $U_{\text{TL}}$ $U_{\text{TL}}$ $U_{\text{TL}}$ $U_{\text{TH}}$ $U_{\text{TH}}$ $U_{\text{TH}}$ | 反相输入<br>运放工作于非线性状态 $U_{TL} = \frac{R_2}{R_1 + R_2} U_R - \frac{R_1}{R_1 + R_2} U_Z$ $U_{TH} = \frac{R_2}{R_1 + R_2} U_R + \frac{R_1}{R_1 + R_2} U_Z$           |
| ( 运放正反馈 )   | 同相输入串联型 | $U_R \circ R_3 \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $U_{\text{TL}}$ $O$ $U_{\text{TH}}$ $U_{\text{I}}$ $U_{\text{TH}}$                              | 同相输入<br>运放工作于非线性状态 $U_{TL} = \left(1 + \frac{R_1}{R_2}\right) U_R - \frac{R_1}{R_2} U_Z$ $U_{TH} = \left(1 + \frac{R_1}{R_2}\right) U_R + \frac{R_1}{R_2} U_Z$ |

## 第八章 信号发生器

#### 文氏电桥振荡器:

当振荡频率 $f = f_0 = \frac{1}{2\pi RC}$ 时, $F = F_{max} = \frac{1}{3}$ ,

当 $A = 1 + \frac{R_1}{R_2} \ge 3$ 满足振荡条件。



图 8.1 文氏电桥振荡器

#### LC 并联谐振回路:



#### 正负反馈判别(其他判别法):

- ① 短接电路中大电容
- 2 直流电源交流接地
- ③ 断开反馈网络瞬时极性法判断各点极性
- ④ 判断是否为正反馈

是:有可能振荡 否:不可能振荡

### 方波发生器及三角波发生器:









## 第九章 功率放大电路

#### 乙类互补推挽功率放大电路:

峰峰值 $U_{opp} = 2(V_{CC} - U_{CES})$ 

## 相关指标计算(表 9.1):



图 9.1 乙类互补推挽功率放大电路

| <u> </u>      |                                                                                                                                                         |                                                                                                                                                                                             |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 一般                                                                                                                                                      | 极限                                                                                                                                                                                          |
| 电压幅值          | $U_{om} =  A_u U_{im}$                                                                                                                                  | $U_{om(max)} = V_{\rm CC} - U_{\rm CES}$                                                                                                                                                    |
| 输出功率          | $P_o = \frac{U_{\text{om}}^2}{2R_L}$                                                                                                                    | $P_{\rm om} = \frac{(V_{\rm CC} - U_{\rm CES})^2}{2R_L} \approx \frac{{V_{\rm CC}}^2}{2R_L}$                                                                                                |
| 电源供给功率(双电源供电) | $P_V = \frac{2}{\pi} \frac{V_{\rm CC} U_{\rm om}}{R_L}$                                                                                                 | $P_{\rm Vm} = \frac{2}{\pi} \frac{V_{\rm CC}(V_{\rm cc} - U_{\rm CES})}{R_L} \approx \frac{2}{\pi} \frac{V_{\rm CC}^2}{R_L}$                                                                |
| 能量转换效率        | $\eta = rac{\pi}{4} rac{U_{ m om}}{V_{ m CC}}$                                                                                                        | $\eta_m = \frac{\pi (V_{\rm CC} - U_{\rm CES})}{4V_{\rm CC}} \approx \frac{\pi}{4} = 78.5\%$                                                                                                |
| 晶体管耗散功率       | $P_T = P_V - P_o = rac{2}{\pi} rac{V_{ m CC} U_{ m om}}{R_L} - rac{1}{2} rac{U_{ m om}^2}{R_L}$ 平均到每只管子: $P_{T1} = P_{T2} = rac{1}{2} (P_V - P_o)$ | 当输出电压幅值为 $U_{\rm om}=\frac{2}{\pi}V_{\rm CC}$ 时,有晶体管最大管耗: $P_{\rm Tm}=\frac{2}{\pi^2}\frac{V_{\rm CC}^2}{R_L}\approx 0.4P_{\rm om}$ 平均到每只管子: $P_{\rm Tm1}=P_{\rm Tm2}\approx 0.2P_{\rm om}$ |

#### 单电源供电的甲乙类互补推挽电路:

电容C起负电源 $-V_{cc}$ 的作用。 近似为乙类互补推挽放大电路计算,每只管子的工作电压变成了 $\frac{V_{cc}}{2}$ ,在计算各项指标时电源电压要用 $\frac{V_{cc}}{2}$ 

#### 运放为前置级功率放大电路:

先根据深度负反馈计算电路的电压放大倍数,再根据输入电压 $u_i$ 计算出输出电压 $u_o$ ,得到输出电压的幅值 $U_{om}$ ,再根据表 9.1 的相关公式,计算功率电路的性能指标。



图 9.2 单电源供电的甲乙类互补推挽电路



## 第十章 直流稳压电源

#### 单相桥式整流电路(图 10.1):

输出直流电压 $U_o = \frac{2\sqrt{2}}{\pi}U_2 = 0.9U_2$ 

整流二极管的正向平均电流 $I_D = \frac{I_O}{2} = \frac{U_O}{2R_L} = \frac{0.9U_2}{2R_L} = \frac{0.45U_2}{R_L}$ 

整流二极管的最高反向电压 $U_{\rm RM} = \sqrt{2}U_2$ 

#### 电容滤波电路 (图 10.2):

输出电压平均值一般取 $U_{O(AV)} \approx 1.2U_2$ 

输出电流平均值 $I_{O(AV)} = \frac{U_{O(AV)}}{R_I} \approx 1.2 \frac{U_2}{R_I}$ 

整流二极管的最高反向电压 $U_{\rm RM}=\sqrt{2}U_2$ 

滤波电容须满足 $RC > (3~5)^{\frac{T}{2}}$ 

#### 串联反馈型线性稳压电路(图 10.3):

输出电压
$$U_0 = \frac{R_1 + R_W + R_2}{R_2 + R_W^{"}} U_{REF} (U_{REF} = \pm U_Z)$$

$$U_{Omin} = \frac{R_1 + R_W + R_2}{R_2 + R_W} \, U_{REF} \label{eq:omin}$$

$$U_{Omax} = \frac{R_1 + R_W + R_2}{R_2} U_{REF}$$



图 10.1 单相桥式整流电路



图 10.2 电容滤波电路



图 10.3 串联反馈型线性稳压电路

#### 固定式集成三端稳压器:

#### 型号(图10.4):

78×× (输出正电压) 系列

(1端: 输入端; 2端: 公共端; 3端: 输出端)

79×× (输出负电压) 系列

(1端:公共端; 2端:输入端; 3端:输出端)

××——输出电压的标称值

#### 提高输出电压(图 10.5):

$$U_{O}^{'} = U_{R1} = U_{XX}$$
  
 $U_{O} = (1 + \frac{R_{2}}{R_{1}})U_{O}^{'} + I_{Q}R_{2}$ 

忽略公共端电流,则 $U_0 \approx (1 + \frac{R_2}{R_1})U_0$ 



### 写在最后:

本复习随记是基于我在 2018~2019 第一学期期末复习时观看徐正红老师的 MOOC 视频后整理总结的复习随记,经团队"双一流重点建设编辑部(群号: 689822823, 若有兴趣, 欢迎加入)"补充审校完成的。模拟电子技术基础的确是一门"令人头大"的课程, 诚如徐正红老师在模电 MOOC 中所言, 这门课程与其他课程的不同在于"前难后易", 因为前面关于半导体的相关理论内容较为晦涩, 可能会打击初学者的信心, 建议大家初学时对半导体内部电子空穴导电等原理部分理解即可, 不必过分深究, 学到后面便会有豁然开朗的轻快之感。若在期末复习使用, 大家也可以对照书本例题及作业题进行复习, 体会各部分书本例题的解题方法, 并对本复习随记进行增删, 以更好符合每个人不同的复习需求。

因为能力一般,水平有限,整理过程中难免会出现一些错误,若本资料中的相关内容与书本有出入,请以书本或老师所讲授的内容为准。读者发现相关问题也可以向我反馈。

一学期的学习已经告一段落。感谢这一学期刘涛老师的悉心耐心教导、感谢徐正红老师的 MOOC, 感谢其他同教学班计算机、自动化等专业同学的帮助,也感谢现在正在阅读这段文字的读者的信任和支持,祝大家学习进步。



电子与信息工程学部·计算机学院

计算机74班任赁阳

初稿 2019 年 1 月 25 日 定稿 2019 年 2 月 17 日

获取其他资料,请扫描右侧小程序码:

- 1. 模拟电子技术基础各章节学习指导(摘自徐正红老师的 MOOC)
- 2. 概率统计与随机过程复习随记
- 3. 《概率统计与随机过程习题解集》机械工业出版社(若涉及版权问题,请及时联系 我进行删除)
- 4. 《军事理论教程(第 4 版)》书本知识要点及笔记整理(附十九大报告军事国防有 关内容、MOOC 测试题参考答案及南卷汇 2016 年版军理复习小贴士)
- 5. 《思想道德修养与法律基础 (2015 年修订版)》考点整理 (附 PPT 法律部分文字 及十九大报告)
- 6. 学术英语听说课程考察词汇及表达
- 7 .....



# 整理不易 打赏鼓励

(打印时可在打印选项中选择不打印此页)



# 支付就用支付宝



免费寄送收钱码: 拨打95188-6





