6-5 Problem Set: Trig Unit Circle Practice (first part without calculator)

1a. Let $f(x) = \cos 2x$ and $g(x) = 2x^2 - 1$.

Find
$$f\left(\frac{\pi}{2}\right)$$
.

1b. Find
$$(g \circ f) \left(\frac{\pi}{2}\right)$$
. [2 marks]

1c. Given that
$$(g\circ f)(x)$$
 can be written as $\cos(kx)$, find the value of $k,k\in\mathbb{Z}$. [3 marks]

2a. Let $p=\sin 40^\circ$ and $q=\cos 110^\circ$. Give your answers to the following in terms of p and/or q .

Write down an expression for

(i) $\sin 140^{\circ}$;

(ii)
$$\cos 70^{\circ}$$
. [2 marks]

2b. Find an expression for
$$\cos 140^{\circ}$$
. [3 marks]

2c. Find an expression for
$$\tan 140^{\circ}$$
.

3a. A rectangle is inscribed in a circle of radius 3 cm and centre 0, as shown below. [2 marks]

The point P(x,y) is a vertex of the rectangle and also lies on the circle. The angle between (OP) and the x-axis is θ radians, where $0 \le \theta \le \frac{\pi}{2}$. Write down an expression in terms of θ for

- (i) x;
- (ii) y.

3b. The point P(x,y) is a vertex of the rectangle and also lies on the circle. The angle between (OP) and the x-axis is θ radians, where $0 \le \theta \le \frac{\pi}{2}$. Let the area of the rectangle be A.

Show that
$$A=18\sin 2\theta$$
. [3 marks]

4a. The following diagram shows a triangle ABC and a sector BDC of a circle with centre B and radius 6 cm. The points A, B and D are on the same line.

 $AB = 2\sqrt{3} \ cm, \, BC = 6 \ cm, \, area \, of \, triangle \, ABC = 3\sqrt{3} \ cm^2, \, A\hat{B}C$ is obtuse.

Find \hat{ABC} . [5 marks]

4b. Find the exact area of the sector BDC.

[3 marks]

Calculator section

5a. Consider the following circle with centre O and radius 6.8 cm.

The length of the arc PQR is 8.5 cm.

Find the value of heta . [2 marks]

5b. Find the area of the shaded region. [4 marks]

6a. The diagram below shows a circle centre 0, with radius r. The length of arc ABC is 3π cm and $\widehat{AOC} = \frac{2\pi}{9}$.

Find the value of *r*. [2 marks]

6b. Find the perimeter of sector OABC. [2 marks]

6c. Find the area of sector OABC. [2 marks]

7a. A circle centre O and radius r is shown below. The chord [AB] divides the area of the circle into two parts. Angle AOB is heta .

Find an expression for the area of the shaded region.

[3 marks]

7b. The chord [AB] divides the area of the circle in the ratio 1:7. Find the value of heta .

[5 marks]