Igneous Rocks

How do magmas form?

How do Magmas Form?

Decompression melting
Decrease in pressure

How do Magmas Form?

Decompression melting
Decrease in pressure

Decompression melting in a mantle plume

Decompression melting beneath a rift

Decompression melting beneath a mid-ocean ridge

(b)

How do magmas form?

1. Decompression melting

Geothermal gradient

Decompression

Divergent margin

Divergent Margin

Where Magma Form

Mantle Plumes

"Hot Spots"

How Magma Forms

- Mantle Plumes (Hot Spots)
- Decompression

https://commons.wikimedia.org/w/index.php?curid=4618531 By Los688 - myown work, Public Domain,

Hotspots

How do Magmas Form?

2. Addition of volatiles

Water lowers melting temperature at a given pressure (depth)

How Magma Forms

- 2. Addition of volatiles (e.g. water, carbon dioxide)
- Volatiles break silica bonds allowing the material to flow

How Magma Forms

- 2. Addition of volatiles (e.g. water, carbon dioxide)
- Water comes from rocks subducted
- Convergent margins

Convergent Margin

How do Magmas Form?

3. Heat transfer from rising magma

Igneous Rocks

- Cooling magma similar to freezing process
- Different magmas "freeze" at different temperatures (650° – 1100° C)

Magma Composition

- Expressed as oxides
 - Silicon (SiO₂)
 - Aluminium (Al₂O₃)
 - Iron (Fe0/Fe₂O₃)
 - Magnesium (MgO)
 - Calcium (CaO)
 - Potassium (K₂O) and sodium (Na₂O)
 - And "volatiles" (H_2O, CO_2)
- Other elements in minor amounts

Classifying Igneous Rocks

Amount of Silica

Felsic66	- /	6	%	51	$U_{2_{1}}$
-------------------------------------	-----	---	---	----	-------------

_	Intermed	liate	52	2-6	6%	6 S	iO	7

Mafic	45-52% SiO ₂
-------------------------	-------------------------

Ultramafic38-45% SiO₂

Igneous Minerals

Mafic Minerals

- Olivine (Fe, Mg)₂SiO₄
- Pyroxene (Fe,Mg)SiO₃
- Amphibole (Fe,Mg)Al Si0
- Biotite (FeMg)KAlSi0

Felsic Minerals

- Plagioclase feldspar (Ca,Na)(Al,Si)₄O₈
- Quartz SiO₂
- K-feldspar KAlSiO₃
- Muscovite

Bowen's Reaction Series

Figure 3.3.1 The Bowen reaction series describes the process of magma crystallization.

Igneous Rocks

- Intrusive
 - Form from magma
 - Cool underground
 - Coarser grained
- Extrusive ("volcanic")
 - Form from lava
 - Cool above ground
 - Fine-grained or aphanitic

Factors Controlling Texture

- Cooling rate (ΔT/Δt)
- Diffusion rate
- Rate of nucleation of new crystals
- Rate of growth of crystals

Phaneritic Textures

• A.

https://www2.tulane.edu/~sanelson/eens212/textures_igneous_rocks.htm

Aphanitic Texture

• B

Aphanitic Texture

https://www2.tulane.edu/~sanelson/eens212/textures_igneous_rocks.htm

Holohyaline (glassy) Texture

• C

https://www2.tulane.edu/~sanelson/eens212/textures igneous rocks.htm

Intrusive Rocks

- Slow cooling magmas because of insulation by country rocks
- Relatively coarse-grain size (>1mm)

Classification by Texture

- Intrusive textures (slow cooling)
 - Crystalline
 - Grain size are grains large or small?
 - Fine-grained (<1mm)</p>
 - Medium-grained
 - Coarse-grained (>5mm)
 - Equigranular grains are the same size

Classification by Texture

- Extrusive (or rapidly cooled intrusive rocks)
 - Aphanitic
 - crystals cannot be distinguished with a hand lens)
 - Holohyaline
 - glassy

Textures

- Porphyritic (both intrusive and extrusive)
 - mix of large, euhedral grains, and fine-grained or aphanitic groundmass

Why do magmas move?

- Buoyancy
- Weight of overlying rocks

Speed of magma?

- Determined by viscosity
- Controlled by
 - Temperature
 - Silica content
 - Volatiles

"Freezing"

- Occurs due to
 - Cooling
 - Loses volatiles
- Rate of cooling
 - Depth
 - Shape and size
 - Groundwater

Intrusive Rocks

Intrusive Rocks

Amount Of Silica:

(Intrusive / Extrusive)

• **Felsic** - 66-76% silica

(granite / rhyolite)

- high viscosity less dense
- Light colour solid @ 650C +/-
- Intermediate 52-66%

(diorite / andesite)

- interm viscosity mod density
- interm colour 900C+/-
- Mafic 45-52%

(gabbro / basalt)

- low viscosity dense
- dark colour >1000C
- Ultramafic 38-45%

(peridotite/komatiite)

- (1300C+/-)
- very low viscosity very dense dark coloured

Volcanic (Extrusive) Rocks

- Two main groups of volcanic rocks
 - Lava flows
 - Pyroclastic rocks

Classifications

Textures

- Obsidian- volcanic glass- dark, sharp
- Pumice felsic, "frothy", vesicles, light colour, floats
- Scoria -mafic, vesicles, dark colour, dense
- Fragmented Pyroclastic extrusive
 - Depends on size of fragments
 - Tuff fine (ash)
 - Volcanic breccia fragments of volcanic debris (coast fabrics)

Bowen's Reaction Series

Figure 3.3.1 The Bowen reaction series describes the process of magma crystallization.

Why are there different types of Igneous Rocks?

- Source rock
- CrystalFractionation
- Partial Melting
- Assimilation
- Magma mixing

Crystal Fractionation

- Mafic minerals crystallize first
- More dense crystals fall out, leaving a more silica-rich magma

Assimilation

 Add elements from the surrounding rocks

http://jan.ucc.nau.edu/~nrr/GLG100-101/outlines/igneousl.html

Partial Melting

- Silica-rich minerals melt first
- Partial melting produces melts with more silica
- Remove melt:
 - Silica-rich melt
 - Mafic residue

Magma Mixing

 Magmas of different compositions mix together, producing a magma of intermediate composition

Magma Composition

- Silicon (Si)
- Oxygen (O)
- Al
- Mg, Fe
- Ca, K, Na
- And water! (H₂O)
- Other elements in minor amounts

Classifying Igneous Rocks

Amount of Silica

– Felsic	66-76% SiO ₂

52-66% SiO ₂
)

Classifying Igneous Rocks

Amount of silica

Intrusive/Extrusive

Felsic

Granite/ Rhyolite

High viscosity – less dense

Light colour – solid @ 650°C

Intermediate

Diorite/ Andesite

Intermediate viscosity and moderate density

- Intermediate colour - solid @900°C

Mafic

Gabbro/Basalt

Low Viscosity – dense

– Dark colour - >1000°C

Ultramafic

(intrusive only)

Very low viscosity – very dense – dark colour 1300°C

Geochemistry of Rocks

GRANITE CHEMISTRY

SiO2 70.24

TiO2 1.21

Al203 13.23

FeOt 2.21

MgO 1.49

CaO 1.11

Na2O 3.50

K2O 5.43

P2O5 0.13

LOI 2.60

LOI = Loss on Ignition FeOt = total iron