DESIGN AND ANALYSIS OF ALGORITHMS

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017)

SEMESTER - IV

Subject Code	15CS43	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03

CREDITS - 04

Course objectives: This course will enable students to

- Explain various computational problem solving techniques.
- Apply appropriate method to solve a given problem.
- Describe various methods of algorithm analysis.

Describe various methods of algorithm analysis.	_
Module 1	Teaching
	Hours
Introduction: What is an Algorithm? (T2:1.1), Algorithm Specification (T2:1.2),	10 Hours
Analysis Framework (T1:2.1), Performance Analysis: Space complexity, Time	
complexity (T2:1.3). Asymptotic Notations: Big-Oh notation (O) , Omega notation (Ω) ,	
Theta notation (Θ), and Little-oh notation (o), Mathematical analysis of Non-Recursive	
and recursive Algorithms with Examples (T1:2.2, 2.3, 2.4). Important Problem Types:	
Sorting, Searching, String processing, Graph Problems, Combinatorial Problems.	
Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries.	
(T1:1.3,1.4)	
Module 2	
Divide and Conquer: General method, Binary search, Recurrence equation for divide	10 Hours
and conquer, Finding the maximum and minimum (T2:3.1, 3.3, 3.4), Merge sort, Quick	
sort (T1:4.1, 4.2), Strassen's matrix multiplication (T2:3.8), Advantages and	
Disadvantages of divide and conquer. Decrease and Conquer Approach: Topological	
Sort. (T1:5.3)	
Module 3	
Greedy Method: General method, Coin Change Problem, Knapsack Problem, Job	10 Hours
sequencing with deadlines (T2:4.1, 4.3, 4.5). Minimum cost spanning trees: Prim's	
Algorithm, Kruskal's Algorithm (T1:9.1, 9.2). Single source shortest paths: Dijkstra's	
Algorithm (T1:9.3). Optimal Tree problem: Huffman Trees and Codes (T1:9.4).	
Transform and Conquer Approach: Heaps and Heap Sort (T1:6.4).	
Module 4	
Dynamic Programming: General method with Examples, Multistage Graphs (T2:5.1,	10 Hours
5.2). Transitive Closure: Warshall's Algorithm, All Pairs Shortest Paths: Floyd's	
Algorithm, Optimal Binary Search Trees, Knapsack problem ((T1:8.2, 8.3, 8.4),	
Bellman-Ford Algorithm (T2:5.4), Travelling Sales Person problem (T2:5.9), Reliability	
design (T2:5.8).	
Module 5	<u>.u</u>
Backtracking: General method (T2:7.1), N-Queens problem (T1:12.1), Sum of subsets	10 Hours
problem (T1:12.1), Graph coloring (T2:7.4), Hamiltonian cycles (T2:7.5). Branch and	
Bound: Assignment Problem, Travelling Sales Person problem (T1:12.2), 0/1	
	1

Knapsack problem (T2:8.2, T1:12.2): LC Branch and Bound solution (T2:8.2), FIFO Branch and Bound solution (T2:8.2). NP-Complete and NP-Hard problems: Basic

concepts, non-deterministic algorithms, P, NP, NP-Complete, and NP-Hard classes (T2:11.1).

Course Outcomes: After studying this course, students will be able to

- Describe computational solution to well known problems like searching, sorting etc.
- Estimate the computational complexity of different algorithms.
- Devise an algorithm using appropriate design strategies for problem solving.

Graduate Attributes

- Engineering Knowledge
- Problem Analysis
- Design/Development of Solutions
- Conduct Investigations of Complex Problems
- Life-Long Learning

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- T1. Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009. Pearson.
- T2. Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press

Reference Books:

- 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI
- 2. Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education)