Análisis Aplicado, Examen Final

Oscar Alejandro Aguilar Castillo - 173718 12 de diciembre de 2020

1. Gradiente Conjugado

1.1. Demuestre que si los vectores no nulos $p_1, p_2, ..., p_l$ satisfacen que :

$$p_i^T A p_i = 0, \forall i \neq j,$$

y A es simétrica y positiva definida, entonces los vectores son linealmente independientes.

1.2. Dado este resultado, ¿Por qué el gradiente conjugado converge en a lo más n iteraciones?.

Como tenemos que las direcciones p_i son linealmente independientes, logran generar todo \mathbb{R} . Entonces en clase vimos un teorema que mostraba que para cualquier $x_0 \in \mathbb{R}$ la sucesión x_k generada con el método de gradiente conjugado, converge a la solución x^* en a lo más n pasos.

Por otro lado, como complemento, en cuestiones de convergencia, también podemos ver que a lo más, la matriz formada por los vectores p_i linealmente independientes, tendría a lo más n eigenvalores distintos por lo tanto, usando otro teorema de convergencia, sabemos que si tenemos una matriz con n eigenvalores distintos, entonces la iteración del gradiente conjugado terminará a lo más en n iteraciones.

2. Quasi-Newton

2.1. Muestre que la segunda condición fuerte de Wolfe implica la condición de curvatura.

$$s_k^T y_k > 0.$$

1. Tenemas que la segunda candición fuerte de Wolfe está dada por: $|\nabla f(x_k + \alpha_k p_k)^T p_k I| \leq C_2 |\nabla f(x_k)^T p_k I| \quad |o| \text{ oud} \text{ implica:}$ $\Rightarrow |\nabla f(x_k + \alpha_k p_k)^T p_k I| \geq -C_2 |\nabla f(x_k)^T p_k I| = C_2 |\nabla f(x$

2.2. Verifique que B_{k+1} y H_{k+1} son inversas una de la otra.