FISEVIER

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Erratum

Corrigendum to "Computing random consistency indices and assessing priority vectors reliability" [Inf. Sci. 420 (2017) 532–542]

Bice Cavallo

Department of Architecture, University of Naples "Federico II", Via Toledo 402, Naples 80134, Italy

ARTICLE INFO

Article history: Received 8 November 2017 Accepted 11 November 2017 Available online 15 November 2017

Keywords:

Multiple-criteria evaluation Pairwise comparison matrix Random consistency index Ordinal reliability measure Priority vector

ABSTRACT

Algorithm 2 given in Information Sciences 420 (2017) 532–542 is revised. Corrected algorithm does not affect abstract, main findings and conclusions of the original paper.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Condition $a_{ij} \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $\forall i < j$ is not sufficient for ensuring transitivity of a reciprocal MPCM $A = (a_{ij})$; thus, Algorithm 2 in [1] has to be revised. As an example, the following MPCM:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ \frac{1}{2} & 1 & 3 \\ 1 & \frac{1}{3} & 1 \end{pmatrix}$$

is not transitive. For a better understanding of further conditions included in the corrected Algorithm 2, the following theorem is provided:

Theorem 1. [2] The following assertions are equivalent:

- 1. $A = (a_{ij})$ is transitive;
- 2. (a) $a_{ij} > 1$, $a_{jk} > 1 \Rightarrow a_{ik} > 1$, (b) $a_{ij} = 1$, $a_{jk} = 1 \Rightarrow a_{ik} = 1$;
- 3. $a_{ij} > 1, a_{jk} \ge 1 \Rightarrow a_{ik} > 1$;
- 4. $a_{ii} \ge 1, a_{ik} > 1 \Rightarrow a_{ik} > 1$.

DOI of original article: 10.1016/j.ins.2017.08.082 *E-mail address*: bice.cavallo@unina.it

Algorithm 2 Building a transitive MPCM.

```
1: OUTPUT: a transitive MPCM of order n
2:
3: for i = 1 ... n do
4:
       a_{ii} = 1
5: end for
6: for i = 1 ... n - 1 do
       a_{i i+1} = sample.int(Saatyscale)
7:
       a_{i+1 \ i} = 1/a_{i \ i+1}
8:
9: end for
10: for i = 1 ... n - 2 do
       for j = i + 2 ... n do
11.
          if a_{i,i-1} == 1 and a_{i-1,i} == 1 then
12:
13:
             a_{ij} = 1
14:
15:
             a_{ij} = sample.int(Saatyscale - \{1\})
16:
          end if
          a_{ii} = 1/a_{ii}
17:
       end for
18:
19: end for
```

Table 2 RI, RI_{CD} , RI_{PL} and RI_{GCI} values derived from simulation (R, T and WC denote reciprocal, transitive and weakly consistent MPCMs, respectively)

n	RI			RI_{CD}	RI _{CD}			RI_{PL}			RI _{GCI}			
_	R	T	WC	R	T	WC		R	T	WC		R	T	WC
3	0.497	0.157	0.024	38.016	5.912	1.772		36.252	4.257	0.484		2.505	0.898	0.142
4	0.836	0.257	0.032	13.158	4.792	1.603		35.923	4.422	0.424		2.511	0.93	0.127
5	1.049	0.325	0.035	11.044	4.635	1.531		36.004	4.536	0.37		2.513	0.954	0.112
6	1.182	0.377	0.036	10.378	4.634	1.507		36.026	4.66	0.343		2.514	0.978	0.105
7	1.267	0.414	0.036	10.079	4.657	1.48		35.708	4.741	0.316		2.51	0.994	0.097
8	1.328	0.442	0.036	9.909	4.671	1.468		35.901	4.794	0.299		2.51	1.004	0.092
9	1.376	0.463	0.035	9.844	4.684	1.456		35.955	4.813	0.281		2.515	1.01	0.088
10	1.406	0.483	0.035	9.765	4.718	1.45		35.863	4.862	0.272		2.509	1.019	0.085
11	1.433	0.498	0.034	9.739	4.743	1.444		35.798	4.899	0.262		2.511	1.026	0.082
12	1.455	0.511	0.035	9.713	4.759	1.444		35.837	4.917	0.258		2.51	1.03	0.081
13	1.472	0.522	0.034	9.697	4.778	1.438		35.802	4.94	0.248		2.51	1.034	0.078
14	1.487	0.531	0.034	9.684	4.791	1.435		35.817	4.959	0.244		2.51	1.038	0.077
15	1.502	0.54	0.034	9.685	4.811	1.434		35.923	4.979	0.24		2.513	1.042	0.076

Table 3Mean of *T/R* and *WC/T* in Table 2 for each random consistency index.

RI		RI_{CD}		RI_{PL}		RI_{GCI}	RI_{GCI}		
T/R	WC/T	T/R	WC/T	T/R	WC/T	T/R	WC/T		
0.339	0.08	0.389	0.311	0.132	0.065	0.397	0.096		

2. Corrections

Algorithm 2, provided in this corrigendum, is a correct algorithm for building a transitive MPCM, with $a_{ij} \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \ \forall i < j$.

According to the new Algorithm 2, four columns in Table 2 of [1], i.e. those related to consistency indices of transitive MPCMs, change as shown in current Table 2; thus, Table 3 of [1] is replaced by current Table 3 and, at page 538 of [1], corrected percentages are shown in the following statement: " RI_{PL} of transitive MPCMs is on average 13.2% of RI_{PL} of reciprocal MPCMs, and RI_{PL} of weakly consistent MPCMs is on average 6.5% of RI_{PL} of transitive MPCMs." Finally, Figs. 1 and 2 of [1], which synthesize the results of the simulations, are replaced by current Figs. 1 and 2.

Fig. 1. Random consistency indices related to CI, CI_{CD} , CI_{PL} and GCI. On the x-axis, n is the size of the MPCMs. On the y-axis, random consistency index. For each random consistency index, series \circ represents reciprocal MPCMs, series \square represents transitive MPCMs, series \diamond represents weakly consistent MPCMs.

RORM (Reciprocal MPCMs)

RORM (Transitive MPCMs)

Fig. 2. RORM for reciprocal and transitive MPCMs. On the *x*-axis, *n* is the size of the MPCMs. On the *y*-axis, *RORM*. Series * represents $RORM(\underline{w}_{gm})$, series \diamond represents $RORM(\underline{w}_{gm})$, series \diamond represents $RORM(\underline{w}_{gm})$.

3. Conclusions

By comparing this corrigendum with [1], it is crucial to emphasize that, although corrected random consistency indices and RORM of transitive MPCMs (see Table 2, Figs. 1 and 2) are slightly smaller than those provided in [1] (see Table 3, Fig. 1 and 2 of [1]), the new Algorithm 2 does not affect main findings and conclusions of [1].

References

- [1] B. Cavallo, Computing random consistency indices and assessing priority vectors reliability, Inf. Sci. 420 (2017) 532-542.
- [2] B. Cavallo, L. D'Apuzzo, Reciprocal transitive matrices over abelian linearly ordered groups: characterizations and application to multi-criteria decision problems, Fuzzy Sets Syst. 266 (2015) 33–46.