Scale of Fluctuation(SoF)

Ningxin Yang, PhD student

Imperial College London Concept of SoF

Figure 1: Illustration of the soil inherent variability[1]

Concept of SoF

Figure 1: Illustration of the soil inherent variability[1]

The random field can be expressed as:

$$g(z) = t(z) + w(z)$$
 (1)

Concept of SoF

Figure 1: Illustration of the soil inherent variability[1]

The random field can be expressed as:

$$g(z) = t(z) + w(z)$$
 (1)

Concept of SoF

Figure 1: Illustration of the soil inherent variability[1]

The random field can be expressed as:

$$g(z) = t(z) + w(z) \tag{1}$$

Some bullet point list for SoF:

soil are rarely homogeneous

Concept of SoF

Figure 1: Illustration of the soil inherent variability[1]

The random field can be expressed as:

$$g(z) = t(z) + w(z) \tag{1}$$

- soil are rarely homogeneous
- g(z) can be detrended into a stationary random function w(z)

Concept of SoF

Figure 1: Illustration of the soil inherent variability[1]

The random field can be expressed as:

$$g(z) = t(z) + w(z) \tag{1}$$

- soil are rarely homogeneous
- g(z) can be detrended into a stationary random function w(z)
- indicator of the estimated distance over a soil property

Concept of SoF

Figure 1: Illustration of the soil inherent variability[1]

The random field can be expressed as:

$$g(z) = t(z) + w(z) \tag{1}$$

- soil are rarely homogeneous
- g(z) can be detrended into a stationary random function w(z)
- indicator of the estimated distance over a soil property
- measure for spatial variability of a soil property in a random field

 For the SoF reported, horizontal SoF is generally larger than the vertical SoF

- For the SoF reported, horizontal SoF is generally larger than the vertical SoF
- Vertical SoF is relatively narrow, from 0.06 to 2.6 m

- For the SoF reported, horizontal SoF is generally larger than the vertical SoF
- Vertical SoF is relatively narrow, from 0.06 to 2.6 m
- horizontal SoF for CPT is fairly broad compared with Vertical SoF, from 0.14 to 80 m.

Calculation of SoF-ACFM method

$$\hat{\rho}(\tau) = \frac{\sum\limits_{i=1}^{n(\tau)} \left[w\left(z_i\right) - \bar{w} \right] \left[w\left(z_i + \tau\right) - \bar{w} \right]}{\left[n\left(\tau\right) - 1 \right] \hat{\sigma}^2} \tag{2}$$

where $\hat{\rho}(\tau)$ is autocorrelation function, \bar{w} and $\hat{\sigma}^2$ denote the sample mean and the sample variance of w(z), $n(\tau)$ is number of lag distance τ

- Autocorrelation fitting method (ACFM) is to be one of the most widely used methods for estimating SoF.
- The main idea of ACFM is to fit theoretical models to the sample autocorrelation function $\hat{\rho}(\tau)$ based on an ordinary least squares approach

Table 1: Theoretical autocorrelation models

Model	Autocorrelation fuction
Triangular	$\rho\left(\tau\right) = \begin{cases} 1 - \left \tau\right /\delta & \left \tau\right \leq \delta \\ 0 & \left \tau\right > \delta \end{cases}$
Exponential	$ \rho\left(\tau\right) = \exp\left(-\frac{2\left \tau\right }{\delta}\right) $
Squared exponential	$ \rho\left(\tau\right) = \exp\left(-\pi\left(\frac{\tau}{\delta}\right)^2\right) $
Cosine exponential	$\rho(\tau) = \cos\left(\frac{\tau}{\delta}\right) \exp\left(\frac{- \tau }{\delta}\right)$
Second-order Markov	$\rho(\tau) = \left(1 + \frac{4 \tau }{\delta}\right) \exp\left(-\frac{4 \tau }{\delta}\right)$

 $^{^{1}}$ Note: au is the separation distance and δ is the scale of fluction.

Five common theoretical autocorrelation models are given above

Imperial College London Calculation of SoF-Fitting

Imperial College London Calculation of SoF-Fitting

Figure 2: Illustration of the soil inherent variability followed [1]

Calculation of SoF-Fitting

Figure 2: Illustration of the soil inherent variability followed [1]

ullet Get autocorrelation coefficients for varying au

Calculation of SoF-Fitting

Figure 2: Illustration of the soil inherent variability followed [1]

- Get autocorrelation coefficients for varying au
- Utilize the autocorrelation function to fit the coefficients

Calculation of SoF-Fitting

Figure 2: Illustration of the soil inherent variability followed [1]

- ullet Get autocorrelation coefficients for varying au
- Utilize the autocorrelation function to fit the coefficients
- Obtain the distance as the intersection with the redline

Imperial College London Reference

[1] X Nie et al. "Scale of fluctuation for geotechnical probabilistic analysis scale of fluctuation for geotechnical probabilistic analysis". In: *Proc. of the 5th International Symposium on Geotechnical Safety and Risk.* Vol. 1. 2015, pp. 834–40.