Mathématiques : Devoir maison n° 3

Thomas Diot, Jim Garnier, Jules Charlier, Pierre Gallois $1\mathrm{E}1$

Problème 1 - Partie entière

```
\begin{vmatrix}
\underline{5} \\
\underline{5}
\end{vmatrix} = 2

\lfloor -\pi \rfloor = -4

\lfloor \frac{2\pi}{7} \rfloor = 0
```

Version originale:

```
def partent(x):
    n = 0
    # Quand x est negatif, cette condition est fausse des le depart
    while n+1 <= x:
        n += 1
    return n

from math import pi
    print(partent(5/2)) # 2
    print(partent(-pi)) # 0 FAUX
    print(partent(2*pi/7)) # 0</pre>
```

Version corrigée :

```
def partent(x):
    n = 0
    while n+1 <= abs(x):
        n += 1
    if x >= 0:
        return n
    else:
        return -n-1

from math import pi
    print(partent(5/2)) # 2
    print(partent(-pi)) # -4
    print(partent(2*pi/7)) # 0
```

Versions optimisées :

```
def partent1(x):
    n = 0
    abs_x = abs(x)
    while (n := n+1) <= abs_x: pass
    return n-1 if x >= 0 else -n

def partent2(x):
    return int(x) - (1 if x <= 0 else 0)</pre>
```

Problème 2 - Notion de densité

1)

a)

Théorème (Grenouille généralisée). Soient $x, y \in \mathbb{R}$, x < y. Soit l = |x - y| et $0 < \delta < l$. Alors il existe $n \in \mathbb{Z}$ tel que $n\delta \in]x;y[$.

Démonstration. On procède par l'absurde en supposant que $n\delta \notin]x;y[$ pour tout $n\in \mathbb{Z}.$

Soit $p \in \mathbb{Z}$ le plus petit entier tel que $p\delta > y$. Son existence est assurée par l'existence de parties entières, en prenant $p = \left\lfloor \frac{y}{\delta} \right\rfloor + 1$, ou par la propriété archimédienne de \mathbb{R} . Par hypothèse, $(p-1)\delta \not\in]x;y[$. Par minimalité de $p, (p-1)\delta \leq y$. Donc $(p-1)\delta < x$.

Ainsi, on trouve que $(p-1)\delta < x < y < p\delta$. Donc $]x;y[\subseteq](p-1)\delta;p\delta[$, et $|p\delta - (p-1)\delta| = \delta \ge |x-y| = l$, ce qui est une contradiction.

Donc il existe $n \in \mathbb{Z}$ tel que $n\delta \in [x; y[$.

b) Si $0 \le x < y$, alors $n\delta > x$ est équivalent à ce que $n > \frac{x}{\delta}$. En particulier, si n est le plus petit tel entier, alors $n\delta \in]x;y[$. En effet, si $n\delta \ge y$, alors $m\ge n$ implique que $m\delta \ge y$ et m< n implique par hypothèse que $m\delta \le x$, et $m\delta \not\in]x;y[$ pour tout $m\in \mathbb{Z}$, ce qui contredit le théorème de la Grenouille.

Donc $n = \left\lfloor \frac{x}{\delta} \right\rfloor + 1$ est le plus petit entier tel que $n\delta > x$, et $n\delta \in]x; y[$. Donc la grenouille tombe dans la mare après $\left\lfloor \frac{x}{\delta} \right\rfloor + 1$ sauts.

2)

- a) $\frac{1}{n} < y x$ si et seulement si $\frac{1}{y-x} < n$. Donc $n = \left| \frac{1}{y-x} \right| + 1$ fonctionne.
- b) Soient $x, y \in \mathbb{R}$, x < y. Prouvons qu'il existe $a \in \mathbb{Q}$, $a \in]x; y[$. Par la question précédente, il existe $q \in \mathbb{N}^*$ tel que $\frac{1}{q} < y x$. Par le théorème de la Grenouille, il existe $p \in \mathbb{Z}$ tel que $p^{\frac{1}{q}} = \frac{p}{q} \in]x; y[$. Comme $\frac{p}{q} \in \mathbb{Q}$, \mathbb{Q} est dense dans \mathbb{R} .
- c) Soient $x,y \in \mathbb{R}, \ x < y$. Par densité de \mathbb{Q} dans \mathbb{R} , il existe $\frac{p}{q} \in]\frac{x}{\sqrt{2}}; \frac{y}{\sqrt{2}}[$. On peut choisir $\frac{p}{q} \neq 0$, soit si $0 \notin]x;y[$, soit en prenant $\frac{p}{q}$ dans $]0; \frac{y}{\sqrt{2}}[\subseteq]\frac{x}{\sqrt{2}}; \frac{y}{\sqrt{2}}[$. Dans ces deux cas, $\frac{p}{q}\sqrt{2} \in]x;y[$.

Montrons maintenant par l'absurde que $\frac{p}{q}\sqrt{2}$ est irrationel. Supposons que $\frac{p}{q}\sqrt{2} = \frac{a}{b}$, avec $\frac{a}{b} \in \mathbb{Q}$. Alors $\sqrt{2} = \frac{aq}{bp} \in \mathbb{Q}$, ce qui est impossible car $\sqrt{\not} \in \mathbb{Q}$.

Donc $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .