Μέρος 10: LSH & Hypercube

1 Μεταγλώττιση & Εκτέλεση

Τα προγράμματα μεταγλωττίζονται με τη χρήση του αρχείου Makefile και συγκεκριμένα τις εντολές:

- make
 - Για τη δημιουργία και των δύο εκτελέσιμων
- make 1sh
 - Για τη δημιουργία μόνο του εκτελέσιμου lsh
- make cube
 - Για τη δημιουργία μόνο του εκτελέσιμου cube

Για την εκτέλεση του LSH:

```
./lsh -d < input file > -q < query file > -k < int > -L < int > o - < output file >
```

Όπου L είναι το πλήθος των hash tables που θα δημιουργηθούν και k είναι το πλήθος των συναρτήσεων κατακερματισμού h_i ανά hash table.

Για την εκτέλεση της τυχαίας προβολής στον υπερκύβο:

```
./cube -d <input file > -q <query file > -k <int > -M <int > -p <int > o- <output file >
```

Όπου k είναι η διάσταση του υπερκύβου, M το μέγιστο πλήθος σημείων που θα ελέγχονται σε κάθε αναζήτηση και p το μέγιστο πλήθος κορυφών που θα ελέγχονται ανά αναζήτηση.

2 Οργάνωση Κώδικα

Ο κώδικας οργανώνεται σε διαφορετικά αρχεία ανάλογα με το σκοπό και τη λειτουργικότητά του. Συγκεκριμένα στα εξής αρχεία:

- lsh.cpp
 - Περιέχει την υλοποίηση του LSH καθώς και την εκτέλεση του με εκτύπωση αποτελεσμάτων και στατιστικών
- cube.cpp
 - Περιέχει την υλοποίηση της προβολής στον υπερκύβο καθώς και την εκτέλεση του με εκτύπωση αποτελεσμάτων και στατιστικών
- hash_table.cpp/.hpp

- Περιέχει την υλοποίηση των πινάκων κατακερματισμού που χρησιμοποιεί ο αλγόριθμος
 LSH
- hasher.cpp/.hpp
 - Περιέχει την υλοποίηση των μετρικών που χρησιμοποιούνται και από τις δύο μεθόδους (ευκλείδιας απόστασης και συνημιτόνου)
- point.cpp/.hpp
 - Περιέχει την υλοποίηση του ΑΤΔ point το οποίο αναπαριστά τα σημεία των datasets και τα διανύσματα των αλγορίθμων
- util.cpp/.hpp
 - Περιέχει γενικές συναρτήσεις που χρησιμοποιούνται και από τις δύο μεθόδους

3 Σύγκριση Μεθόδων

Για την σύγκριση των δύο μεθόδων θα χρησιμοποιήσουμε την μετρική συνημιτόνου.

3.1 Ενδεικτικές Εκτελέσεις

Στη συνέχεια βλέπουμε τις επιδόσεις των μεθόδων για διαφορετικές παραμέτρους. Είναι πολύ σημαντικό να σημειώθει ως σημείο αναφοράς ότι ο ντετερμινιστικός αλγόριθμος πλησιέστερου γείτονα τρέχει κατά μέσο όρο σε χρόνο 0.05s. Χρησιμοποιούμε ένα dataset 10000 σημείων ως είσοδο και ένα dataset 100 σημείων για queries.

3.1.1 LSH

\underline{k}	$\mid L \mid$	Max Approx.	Avg. Approx	Avg. Time
3	5	1	1	0.2292
4	5	1.0559	1.0011	0.2089
6	5	1.1177	1.0050	0.1469
8	5	1.1070	1.0058	0.0900
10	5	1.5502	1.0367	0.0456
12	5	1.8626	1.0400	0.0416
14	5	2.1293	1.0489	0.0298
15	5	2.1771	1.0786	0.0202
16	5	2.3813	1.0956	0.0274
16	6	2.1134	1.0783	0.0421
16	7	2.0756	1.0808	0.0357
16	8	1.8307	1.0690	0.0235
16	9	1.7638	1.0438	0.0341
16	10	1.6221	1.0505	0.0464

3.1.2 Hypercube

\underline{k}	M	p	Max Approx.	Avg. Approx	Avg. Time
4	500	4	5.0334	1.3621	0.0027
5	500	4	4.9590	1.4644	0.0025
6	500	4	3.3547	1.2262	0.0024
6	1000	4	3.1239	1.1584	0.0050
6	1000	6	1.7797	1.0844	0.0054
6	1000	10	2.4349	1.0989	0.0052
6	2000	10	2.6356	1.0793	0.0069
7	3000	15	2.2929	1.0542	0.0119
7	3000	32	1.7262	1.0447	0.0131
7	3000	64	1.6721	1.0509	0.0138
5	3000	15	2.2484	1.0857	0.0149
5	3000	32	1.8530	1.0498	0.0150

3.1.3 Παρατηρήσεις & Σχόλια

Από τις παραπάνω εκτελέσεις παρατηρούμε ότι και οι δύο μέθοδοι καταφέρνουν αρκετά καλά αποτελέσματα με σχετικά παρόμοια ακρίβεια (συγκεκριμένα για k=16, L=9 στο LSH και k=7, M=3000, p=64 στον υπερκύβο). Παρατηρούμε όμως ότι η μέθοδος του υπερκύβου είναι περίπου 2 φορές πιο γρήγορη από το LSH και περίπου 3 φορές πιο γρήγορη από τον ντετερμινιστικό αλγόριθμο.

Επίσης, για το LSH παρατηρούμε ότι δεν έχει νόημα η παράμετρος k να παίρνει τιμές κάτω από 14 για τη συγκεκριμένη μετρική, διότι ο χρόνος που πετυχαίνει είναι χειρότερος από τον ντετερμινιστικό αλγόριθμο. Αυτό συμβαίνει διότι η συνάρτηση κατακερματισμού έχει πολλές συγκρούσεις για μικρά k.

Ακόμη, στον υπερκύβο παρατηρούμε ότι είναι σημαντικό όταν αυξάνεται το k να αυξάνεται και το p, το οποίο είναι λογικό αφού όταν έχουμε πολλές κορυφές θα πρέπει να επιτρέπουμε στον αλγόριθμο να επισκέπτεται περισσότερες.

3.2 Κατανάλωση Χώρου

3.2.1 LSH

Για την υλοποίηση του LSH χρησιμοποιούνται L hash tables, καθένα απο τα οποία χρησιμοποιεί τη δική του συνάρτηση κατακερματισμού και κάθε μια απ' αυτές έχει k "υπο-συναρτήσεις" με ξεχωριστά διανύσματα ανάλογα τη μετρική.

Για κάθε hash table δημιουργούνται k buckets, τα οποία αναπαρίστανται με C++ vectors και σε αυτά αποθηκεύονται οι δείκτες των σημείων που είναι αποθηκευμένα σε μια εξωτερική δομή για την αποφυγή της πολλαπλής (για την ακρίβεια k-πλής) αποθήκευσης των σημείων.

3.2.2 Υπερκύβος

Στην περίπτωση του υπερκύβου, έχουμε 2^k κορυφές οι οποίες έχουν ίδια μορφή με τα buckets των hash tables (C++ vectors με pointers σε σημεία), μόνο μια συνάρτηση κατακερματισμού με 2^k υποσυναρτήσεις και k συναρτήσεις $f: x \to [f_1(h_1(x),\ldots,f_{2^k}(h_{2^k}(x))) \in \{0,1\}^{2^k}]$. Για την υλοποίηση των συναρτήσεων f χρησιμοποιείται η δομή unordered_map της C++ όπου κάθε τιμή που δεν περιέχεται ήδη στο map προβάλεται τυχαία στο $\{0,1\}$.