Sirut Buasai CS 525 Prof. Xiaozhong Liu Assignment 1

Task 1

1. Most common 100 words in real news, fake news, and collection of both

a. Real news

Word	Freq	Word	Freq	Word	Freq	Word	Freq
said	99062	leader	10575	day	8095	made	6422
trump	54732	security	10466	russia	8064	city	6389
u	47110	court	10460	presidential	8039	department	6364
state	37677	donald	10456	wednesday	8014	issue	6342
would	31605	percent	10012	democrat	7984	000	6246
reuters	28976	say	9949	may	7842	company	6234
president	28728	north	9912	political	7723	make	6188
republican	23007	time	9699	support	7675	part	6179
year	22622	law	9665	thursday	7664	comment	6143
government	19992	tax	9653	million	7661	according	6142
house	17030	white	9618	bill	7618	police	6088
new	16917	clinton	9570	policy	7589	take	6086
also	15954	minister	9569	american	7536	attack	6041
united	15590	obama	9406	plan	7407		
people	15356	month	9275	member	7363		
party	15294	senate	9253	friday	7332		
election	14759	right	9229	korea	7299		
official	14620	vote	9105	monday	7101		
told	14245	china	8866	force	7095		
country	14161	first	8810	office	6968		
one	13750	national	8582	committee	6889		
could	13711	statement	8528	deal	6884		
washington	12988	administration	8427	called	6804		
last	12776	democratic	8387	many	6724		
two	12711	since	8334	agency	6577		
campaign	11155	foreign	8270	congress	6503		
group	11129	tuesday	8268	senator	6502		
week	10658	military	8171	federal	6457		
former	10638	including	8123	russian	6456		
10111101	10003	meraamg	8123	1 4331411	6436		

b. Fake news

Word	Freq	Word	Freq	Word	Freq	Word	Freq
trump	79519	twitter	11722	show	8378	attack	6636
said	33763	campaign	11640	black	8340	man	6620
president	28310	make	11639	featured	8261	support	6532
people	26657	woman	11552	last	8258	another	6489
one	25389	country	11449	group	8209	member	6448
u	24545	house	11292	according	8076	called	6431
state	23658	america	11254	united	8011	family	6368
would	23562	first	10612	take	7952	since	6359
clinton	19826	election	10302	see	7923	never	6326
time	19214	could	10246	report	7888	pic	6322
year	19073	day	10153	come	7820	candidate	6266
obama	18797	many	9945	fact	7704	2016	6265
like	18649	think	9916	may	7700	muslim	6262
american	18120	want	9886	political	7654		
donald	17681	going	9808	life	7464		
republican	16726	way	9768	world	7463		
say	15782	government	9704	vote	7450		
also	15403	law	9381	national	7345		
right	14860	thing	9183	former	7303		
news	14629	video	9169	democrat	7248		
new	14394	told	9122	need	7227		
image	14319	police	9120	million	7203		
hillary	14127	made	9119	much	7135		
even	14012	two	9116	story	7021		
white	13566	back	9039	bill	6826		
via	12776	go	8721	public	6779		

get	12368	well	8619	week	6678	
know	12055	party	8548	watch	6656	
medium	11801	com	8541	official	6653	

c. Collection of real and fake

Word	Freq	Word	Freq	Word	Freq	Word	Freq
trump	134251	white	23184	police	15208	senate	12930
said	132825	campaign	22795	leader	14940	report	12830
u	71655	two	21827	image	14923	well	12742
state	61335	official	21273	million	14864	attack	12677
president	57038	last	21034	since	14693	including	12626
would	55167	news	20661	know	14565	north	12583
people	42013	first	19422	way	14467	world	12301
year	41695	group	19338	bill	14444	public	12226
republican	39733	law	19046	percent	14429	go	12190
one	39139	washington	18729	back	14338	department	12151
also	31357	day	18248	month	14313	need	12119
new	31311	even	17943	administration	14299	russian	11984
government	29696	former	17906	twitter	14253	military	11949
reuters	29425	make	17827	according	14218		
clinton	29396	week	17336	support	14207		
time	28913	hillary	16870	going	14192		
house	28322	get	16793	think	14165		
obama	28203	many	16669	take	14038		
donald	28137	vote	16555	russia	14034		
say	25731	security	16349	member	13811		
american	25656	medium	16319	america	13811		
country	25610	court	16253	presidential	13783		
election	25061	national	15927	statement	13602		

right	24089	want	15658	tax	13524	
could	23957	may	15542	democratic	13288	
party	23842	made	15541	via	13285	
united	23601	political	15377	called	13235	
like	23448	woman	15267	policy	13050	
told	23367	democrat	15232	office	12999	

2. Difference between real news and fake news

a. Given the top 100 most common words, both real and fake news seem to be using similar set of words. This is reasonable given that fake news are attempting to mimic the real content but with a twist of their own, therefore we can expect both real and fake news to report on the same topic, using the same set of words. However, fake news differs from the real ones in their word frequency distribution. The top 5 most common words from real news are "said", "trump", "u", "state", "would" while the top 5 from fake news are "trump", "said", "president", "people", "one". Real news tend to utilize more verbs and focus their reports on actions. Fake news, on the other hand, tend to focus on more striking nouns. In fact, the word "trump" appears 1.5 times as much in fake news as real news. Given these observations, there seems to be a differing word frequencies between real and fake news, thus, a strong feature set would be certain nouns that more frequently than others in certain document.

Task 21. Algorithm Performance

ML Model	Feature	Precision	Recall	Accuracy
Logistic Regression	TF-IDF	0.981	0.987	0.985
Multinomial Naive Bayes	TF-IDF	0.935	0.933	0.938
Logistic Regression	Bag of Words	0.995	0.997	0.996
Multinomial Naive Bayes	Bag of Words	0.945	0.954	0.952

a. Rank 1: Logistic Regression on Bag of Words Feature Set

b. Rank 2: Logistic Regression on TF-IDF Feature Set

2. Error Analysis

a. In Task 2, the top 2 best performing models are both logistic regression models on bag of words feature and TF-IDF feature. Both of these models yielded high precision, recall, and accuracy score. According to the two confusion matrices, the models were able to predict the labels correctly in both real and fake categories. This may be attributed to the fact that logistic regression models are extremely good at finding the decision boundary for linearly separable dataset. As seen from task 1, the word distribution between real and fake news seems to be separating by the frequency of certain words. Moreover, we can attribute this high performance metrics to the extremely clean data of real and fake news from Kaggle. Since the dataset had relatively small number of NaN values and that the string formatting of the tabular data cells were easy to parse through, data processing tasks were much easier than expected.

Furthermore, it is worth mentioning that multinomial naive bayes models also performed extremely well on this data set, although not as well as logistic regression. This is again attributed to the clean dataset with elementary data preprocessing. One reason that logistic regression performed relatively better than multinomial naive bayes model may be attributed to the linearly separable nature of the dataset. As such, the logistic regression were able to find a better decision boundary. However, we cannot overlook the fact that logistic regression model may be overfitting the dataset given the limited amount of data that we have.

Task 31. Algorithm Performance

ML Model	Feature	Filter	Precision	Recall	Accuracy
Logistic Regression	TF-IDF	Nouns	0.982	0.979	0.981
Logistic Regression	TF-IDF	Verbs	0.932	0.941	0.939
Logistic Regression	TF-IDF	Nouns, Verbs	0.980	0.986	0.984
Multinomial Naive Bayes	TF-IDF	Nouns	0.921	0.912	0.921
Multinomial Naive Bayes	TF-IDF	Verbs	0.918	0.922	0.924
Multinomial Naive Bayes	TF-IDF	Nouns, Verbs	0.926	0.923	0.929
Logistic Regression	Bag of Words	Nouns	0.994	0.990	0.992
Logistic Regression	Bag of Words	Verbs	0.949	0.940	0.947
Logistic Regression	Bag of Words	Nouns, Verbs	0.995	0.993	0.995
Multinomial Naive Bayes	Bag of Words	Nouns	0.930	0.935	0.935
Multinomial Naive Bayes	Bag of Words	Verbs	0.921	0.954	0.939
Multinomial Naive Bayes	Bag of Words	Nouns, Verbs	0.938	0.947	0.945

2. Comparison with Task 2

a. Compared to the machine learning models from Task 2, POS tagging seems to have an insignificant effect on both logistic regression and multinomial naive bayes models and both bag of words and TF-IDF features. This may be attributed to the fact that even before POS tagging and filtering, the data were already linearly separable given the abundance of nouns and verbs in both real and fake data with fake data having abnormal frequency of nouns. Thus, when filtering the data using only nouns, verbs, and nouns combined with verbs, the model showed no improvement due to the minimal change in the dataset after the filter.

In this task, the top 2 best performing models are logistic regression on bag of words with filtering on nouns and nouns + verbs. This further cemented the assumption that the decision boundary between fake and real news may lie in the differing frequencies of nouns between the two classes.

Task 4

One interesting idea that inspired me from reading the papers is the usage of contextual data that can be extracted along with the text such as new sources credibility and contextual online environment. I believe that contextual knowledge is extremely relevant when it comes to determining the reliability news content. This is already the norm in the academia world given that researchers build up their reputation based on their peer reviews and research reputation. The same can be applied to the general media where the environment data such as social media platform or the information source such as authors can be included as a feature for machine to learn the relevance of those features.