Predicting Client Churn for Shield International Bank

What is Client Churn?

What is Client Churn?

A Client stops using your services

A Client Churns

Why Predict Client Churn?

Why Predict Client Churn?

Win clients back *before* they leave

Why Predict Client Churn?

Win clients back *before* they leave

Increase average lifetime value per customer

Rule of Thumb:

Acquiring a new customer is 5x more expensive than keeping one

Predicting Churn

Fit a Random Forest Model to the given data

- Handles non-linear relationships well

Predicting Churn

Evaluation Metrics:

- Recall, Precision, and F-beta score

Recall vs. Precision

Recall:

- What percent of the churning clients did we identify?

Recall vs. Precision

Recall:

- What percent of the churning clients did we identify?

Precision:

 What percent of the clients we identified as churning were correct?

Recall vs. Precision

Recall:

- What percent of the churning clients did we identify?

Precision:

 What percent of the clients we identified as churning were correct?

Predicting Churn

Assumed recall was 5x more valuable than precision based on 'Rule of Thumb'

Predicting Churn

Assumed recall was 5x more valuable than precision based on 'Rule of Thumb'

Used F-beta score to optimize parameters of model

- Beta is chosen such that recall is beta times more important than precision

App Demo

1250 clients out of 2000 in holdout set labeled as at-risk of churning (63%)

1250 clients out of 2000 in holdout set labeled as at-risk of churning (63%)

Model Recall: 92%

Model Precision: 30%

Compare to Random Selection of Clients:

Compare to Random Selection of Clients:

Recall: 61% --- 31% lower than model

Precision: 18% --- 12% lower than model

Future Work

Improve model precision without lowering recall

Future Work

Improve model precision without lowering recall

- Add features
- Neural Networks/Deep Learning

Thank you!

Any questions?

Appendix

