

CEREAL GRAIN DATA ACQUISITION DEVICE

DESIGNED BY RYAN DONAHUE & KENNEDY CAISLEY

PROJECT BACKGROUND

After more than a century of research, wind induced crop failure remains an unsolved problem resulting in tens of billions of dollars in economic losses each year. Research from the University of Idaho is patenting tools that will allow plant breeders to develop crop varieties highly resistant to stalk failure.

DESIGN OUTCOMES

Plans for a commercially viable data acquisition platform were designed then sent to a contract manufacturer for assembly. The new embedded hardware improves upon the prototype devices, currently being used by the client, in a number of ways:

Requirement	Prototype Devices	Current Design
Reduced	20 hours of intern	One-click orders
Assembly	solder fun time	through small-batch
Time		assembly
Reduced	\$600 per board	\$150 per board
Cost		
Better Data	15Hz with 16-bit ADC	470Hz with 24-bit
Acquisition	load cell data	ADC load cell data
Improved	Mechanical button	Resistive touch-
User Input	input with delayed	screen with ms
	screen update rates	update rate
Quick Test	Keyboard entry	Keyboard entry and
Identification		barcode scanning
Increased	No ESD protection	IEC 61400-4 ESD
Reliability		protection
Easier Data	Obstructed SD card	USB bulk-transfer
Transfer	interface	
Decreased	Two boards with 15	One board ½ inch
Size	feet of cabling	total height
Centralized	Raspberry Pi and	PIC32 C based
Firmware	Arduino based	system with Github
Development	systems	code repository
Expandable	Requires new PCB for additional circuitry	Robust options for daughter boards

Figure 1: Rendering of CropTop PCB

Figure 2: CropTop PCB Layout Gerber

FUTURE WORK

Create application software for existing devices using the newly developed hardware and device drivers found on the CropTop Github repository.

Link: https://github.com/kcaisley/CropTop

DESIGN FEATURES

- USB 2.0 Embedded Host for Bulk Data Transfer & Human Interface Devices
- Three 24-bit $\Delta\Sigma$ ADC Channels for Fluke Load Cell Force Measurements
- Graphic Processing Unit for 800x480 7" TFT LCD GUI Control and Resistive Touchscreen Feedback
- 160W DC Motor Driver for Linear Actuator Control
- SD Card for Non-volatile Embedded Data Storage
- Configurable 3.3V/5V Rotary Encoder Interface
- ADC for Linear Actuator Positioning Potentiometer
- GPS Receiver with Onboard Antenna for Time, Date, and Test Location
- Ultrasonic Ranging Module Interface
- Accelerometer for Tilt Measurement
- Temperature and Humidity Sensor
- Stepper Motor Controller

TEAM CROPTOP

Left to Right: Ryan Donahue and Kennedy Caisley

ACKNOWLEDGEMENTS

for his feedback on the project's design.

Client and Advisor: Dr. Daniel Robertson.

Additional thanks to Conrad Mearns for LCD firmware,
Hailey Johnson for USB debugging help, and Ankit Gupta