11/04/2020 WeatherTrends

Udacity Data Analysis Nanodegree - Project 1: Exploring Weather Trends

Import Required Libraries

```
In [38]: import numpy as np import pandas as pd import matplotlib.pyplot as plt
```

Getting City Data

```
In [39]: kano_data = pd.read_csv("city_data.csv") # import Kano temperature dat
a over years to create a dataframe

In [40]: kano.head() # confirm the city data frame

Out[40]:
```

	year	city	country	avg_temp
0	1856	Kano	Nigeria	26.32
1	1857	Kano	Nigeria	25.43
2	1858	Kano	Nigeria	25.98
3	1859	Kano	Nigeria	25.78
4	1860	Kano	Nigeria	25.31

Getting global data

	yeai	avg_temp
0	1750	8.72
1	1751	7.98
2	1752	5.78
3	1753	8.39
4	1754	8.47

11/04/2020 WeatherTrends

Creating Rolling Averages

```
kano_moving_avg = kano_data['avg_temp'].rolling(7).mean() #we do not wan
In [43]:
         t to loose kano details in fluctuations
         global_moving_avg = global_data['avg_temp'].rolling(7).mean() #we do not
In [59]:
         want to loose global details in fluctuations
In [70]: plt.plot(global_data['year'],global_moving_avg,label='Global Temperatur
         e')
         plt.plot(kano data['year'],kano moving avg,label='Kano Temperature')
         plt.legend()
         plt.xlabel("Years")
         plt.ylabel("Temperature (°C)")
         plt.title("Kano Average Temperature")
         plt.xticks
         plt.yticks
         plt.rcParams["figure.figsize"] = (10,5)
         plt.show()
```


Insights

11/04/2020 WeatherTrends

Kano has been hotter than the global average temperature. Kano has maintained this trend over the years. Generally the world is getting hotter considering the trends in the data