Linear Models and Perceptrons (with more gradient optimization)

CMSC 678 UMBC

Outline

Recap: Decision Theory and ERM

Gradient Optimization

Linear Models & Surrogate Loss

Example 1: Linear Regression

Example 2: Linear Classification Model

Example 3: Perceptrons

Recap from last time...

Probability Prerequisites

Basic probability axioms and definitions

Probability chain rule

Joint probability

Common distributions

Probabilistic Independence

Marginal probability

Expected Value (of a function) of a Random Variable

$$\mathbb{E}[f(X)] = \sum_{x} f(x) p(x)$$

Conditional probabilities $p(\cdot | Y)$ are still probabilities

Definition of conditional probability

Bayes rule

$$p(X \mid Y) = \frac{p(Y \mid X) * p(X)}{p(Y)}$$
posterior
$$p(Y \mid X) * p(X)$$
marginal

Decision Theory > Empirical Risk Minimization

"Decision theory is trivial, apart from the computational details" – MacKay, ITILA, Ch 36

Input: x ("state of the world")

Output: a decision ŷ

Requirement 1: a decision (hypothesis) function h(x) to produce \hat{y}

Requirement 2: a loss function $\ell(y, \hat{y})$ telling us how wrong we are

Goal: minimize expected loss across any possible input \rightarrow minimize expected loss across our observed input

Machine Learning Framework: Decision Theoretic Learning

Empirical Risk Minimization

minimize expected loss across our observed input

dictor

classifier/predictor

our

controlled by our parameters θ

change $\theta \rightarrow$ change the behavior of the classifier

Best (Practical) Case: Optimize Empirical Risk with Gradients

$$\arg\min_{\mathbf{h}} \sum_{i=1}^{N} \ell(y_i, h_{\theta}(\mathbf{x}_i))$$

$$\bigvee_{F}$$

$$\nabla_{\theta} F = \sum_{i} \frac{\partial \ell(y_i, \hat{y} = h_{\theta}(\mathbf{x}_i))}{\partial \hat{y}} \nabla_{\theta} h_{\theta}(\mathbf{x}_i)$$

differentiating might not always work: "... apart from the computational details"

Regression Loss Function Examples

squared loss

$$\ell(y, \hat{y}) = (y - \hat{y})^2$$

absolute loss

$$\ell(y, \hat{y}) = |y - \hat{y}|$$

Classification Loss Function: 0-1 Loss

$$\ell(y, \hat{y}) = \begin{cases} 0, & \text{if } y = \hat{y} \\ 1, & \text{if } y \neq \hat{y} \end{cases}$$

Problem: not differentiable wrt \hat{y} (or θ)

Solution 1: is h(x) a conditional distribution $p(y \mid x)$? Use MAP

Solution 2: use a surrogate loss that approximates 0-1

Solution 3: is the data linearly separable?

Perceptron can work

Outline

Recap: Decision Theory and ERM

Gradient Optimization

Linear Models & Surrogate Loss

Example 1: Linear Regression

Example 2: Linear Classification Model

Example 3: Perceptrons

Learning the Model's Parameters

$$F(x) = -(x-2)^{2}$$

$$differentiate$$

$$F'(x) = -2x + 4$$

$$Solve F'(x) = 0$$

$$x = 2$$

Common Derivative Rules

$$\frac{d \exp x}{dx} = \exp x \qquad \frac{df(x)g(x)}{dx} = \frac{df(x)}{dx}g(x) + \frac{dg(x)}{dx}f(x)$$

$$\frac{d\log x}{dx} = \frac{1}{x} \qquad \qquad \frac{df(g(x))}{dx} = \frac{df(g(x))}{dg(x)} \frac{dg(x)}{dx}$$

Optimizing $F(\theta)$ through Calculus

1. Directly solving for the gradient (derivative)

2. Gradient descent/ascent: incremental hillclimbing

Set t = 0Pick a starting value θ_t Until converged: 1. Get value $y_t = F(\theta_t)$

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

Score_{$$\theta$$}(x)
$$F(\theta; \{x\})$$

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

$$F(\theta) = -(c - h_{\theta}(X))^{2}$$

$$\frac{\partial F}{\partial \theta} = 2(c - h_{\theta}(X)) \frac{\partial h_{\theta}}{\partial \theta}$$

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

$$F(\theta) = -(c - h_{\theta}(X))^{2}$$

$$\frac{\partial F}{\partial \theta} = 2(c - h_{\theta}(X)) \frac{\partial h_{\theta}}{\partial \theta}$$

$$h_{\theta}(X) = X * \theta$$

Set
$$t = 0$$

Pick a starting value θ_t
Until converged:

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

$$F(\theta) = -(c - h_{\theta}(X))^{2}$$

$$\frac{\partial F}{\partial \theta} = 2(c - h_{\theta}(X)) \frac{\partial h_{\theta}}{\partial \theta}$$

$$h_{\theta}(X) = X * \theta$$

$$X = 0.2 c = 1, \rho_t = 2^{-(t+1)}$$

Learning rate

$$F(\theta) = -(c - h_{\theta}(X))^{2}$$

$$\frac{\partial F}{\partial \theta} = 2(c - h_{\theta}(X)) \frac{\partial h_{\theta}}{\partial \theta}$$

$$h_{\theta}(X) = X * \theta$$

$$X = 0.2 c = 1, \rho_t = 2^{-(t+1)}$$

Set t = 0Pick a starting value θ_t

Until converged:

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

$$\theta_0 = 2$$

$$F(\theta_0) = -(1 - 0.2 * 2)^2 = -0.36$$

$$F(\theta) = -(c - h_{\theta}(X))^{2}$$

$$\frac{\partial F}{\partial \theta} = 2(c - h_{\theta}(X)) \frac{\partial h_{\theta}}{\partial \theta}$$

$$h_{\theta}(X) = X * \theta$$

$$X = 0.2 c = 1, \rho_t = 2^{-(t+1)}$$

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

$$t=0$$

$$\theta_0 = 2$$

$$F(\theta_0) = -(1 - 0.2 * 2)^2 = -0.36$$

$$\frac{\partial F}{\partial \theta} = 2(1 - 0.2 * 2) * 0.2 = 0.24$$

$$F(\theta) = -(c - h_{\theta}(X))^{2}$$

$$\frac{\partial F}{\partial \theta} = 2(c - h_{\theta}(X)) \frac{\partial h_{\theta}}{\partial \theta}$$

$$h_{\theta}(X) = X * \theta$$

$$X = 0.2 c = 1, \rho_t = 2^{-(t+1)}$$

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

t=0
$\theta_0 = 2$
$F(\theta_0) = -(1 - 0.2 * 2)^2 = -0.36$
$\frac{\partial F}{\partial \theta} = 2(1 - 0.2 * 2) * 0.2 = 0.24$
$\rho_0 = 2^{-(0+1)} = 0.5$
$\theta_1 = \theta_0 + \rho_0 * g_0 = 2 + 0.5 * 0.24 = 2.12$

$$F(\theta) = -(c - h_{\theta}(X))^{2}$$

$$\frac{\partial F}{\partial \theta} = 2(c - h_{\theta}(X)) \frac{\partial h_{\theta}}{\partial \theta}$$

$$h_{\theta}(X) = X * \theta$$

$$X = 0.2 c = 1, \rho_t = 2^{-(t+1)}$$

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

t=0	t=1
$\theta_0 = 2$	$\theta_1 = 2.12$
$F(\theta_0) = -(1 - 0.2 * 2)^2 = -0.36$	$F(\theta_1) = -(1 - 0.2 * 2.12)^2$ = -0.33
$\frac{\partial F}{\partial \theta} = 2(1 - 0.2 * 2) * 0.2 = 0.24$	
$\rho_0 = 2^{-(0+1)} = 0.5$	
$\theta_1 = \theta_0 + \rho_0 * g_0 = 2 + 0.5 * 0.24$ = 2.12	

$$F(\theta) = -(c - h_{\theta}(X))^{2}$$

$$\frac{\partial F}{\partial \theta} = 2(c - h_{\theta}(X)) \frac{\partial h_{\theta}}{\partial \theta}$$

$$h_{\theta}(X) = X * \theta$$

$$X = 0.2 c = 1, \rho_t = 2^{-(t+1)}$$

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

t=0	t=1
$\theta_0 = 2$	$\theta_1 = 2.12$
$F(\theta_0) = -(1 - 0.2 * 2)^2 = -0.36$	$F(\theta_1) = -(1 - 0.2 * 2.12)^2$ = -0.33
$\frac{\partial F}{\partial \theta} = 2(1 - 0.2 * 2) * 0.2 = 0.24$	$\frac{\partial F}{\partial \theta} = 2(1 - 0.2 * 2.12) * 0.2 = 0.2304$
$\rho_0 = 2^{-(0+1)} = 0.5$	$\rho_1 = 2^{-(1+1)} = 0.25$
$\theta_1 = \theta_0 + \rho_0 * g_0 = 2 + 0.5 * 0.24$ = 2.12	$\theta_2 = \theta_1 + \rho_1 * g_1$ = 2.12 + 0.25 * 0.2304 = 2.1776

$$F(\theta) = -(c - h_{\theta}(X))^{2}$$

$$\frac{\partial F}{\partial \theta} = 2(c - h_{\theta}(X)) \frac{\partial h_{\theta}}{\partial \theta}$$

$$h_{\theta}(X) = X * \theta$$

$$X = 0.2 c = 1, \rho_t = 2^{-(t+1)}$$

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

t=0	t=1	t=2
$\theta_0 = 2$	$\theta_1 = 2.12$	$\theta_2 = 2.1776$
$F(\theta_0) = -(1 - 0.2 * 2)^2 = -0.36$	$= -(1 - 0.2 * 2.12)^2$	$F(\theta_2)$ = -(1 - 0.2 * 2.1776) ² = -0.3186
$\frac{\partial F}{\partial \theta} = 2(1 - 0.2 * 2) * $ $0.2 = 0.24$	$\frac{\partial F}{\partial \theta} = 2(1 - 0.2 * 2.12) * $ $0.2 = 0.2304$	***
$\rho_0 = 2^{-(0+1)} = 0.5$	$\rho_1 = 2^{-(1+1)} = 0.25$	
$\theta_1 = \theta_0 + \rho_0 * g_0$ = 2 + 0.5 * 0.24 = 2.12	$\theta_2 = \theta_1 + \rho_1 * g_1$ = 2.12 + 0.25 * 0.2304 = 2.1776	

Gradient = Multi-variable derivative

K-dimensional input

K-dimensional output

Gradient Ascent

Optimizing a Function can be an Art

Set t = 0

Pick a starting value θ_t

Until converged:

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor p_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

Convergence to Global Optima with Convex (Concave) Functions

Road Bumps in Gradient Ascent

Non-convex function

Choice of step size

Too small → slow convergence

Too large → no convergence

http://stanford.edu/~boyd/cvxbook/

A1, Q4: You explore two strategies of setting the step size

Minimizing vs. Maximizing

Maximizing F

Set t = 0

Pick a starting value θ_t

Until converged:

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

Minimizing vs. Maximizing

Maximizing F

Set t = 0

Pick a starting value θ_t

Until converged:

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$
- 5. Set t += 1

Minimizing F

Set t = 0

Pick a starting value θ_t

Until converged:

- 1. Get value $y_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

Outline

Recap: Decision Theory and ERM

Gradient Optimization

Linear Models & Surrogate Loss

Example 1: Linear Regression

Example 2: Linear Classification Model

Example 3: Perceptrons

Linear Models

Classification as (Linear) Separability

predict y_i from $\mathbf{x_i}$

value y_i

data point x_i, as a vector of features

A Simple Linear Regression Model: From ERM

Common

loss function:

regression
$$\ell = (y_i - \widehat{y_i})^2$$

Start with the ERM objective...

$$\underset{h}{\operatorname{argmin}} \sum_{i=1}^{N} \ell(y_i, h(\boldsymbol{x}_i))$$

ESL, Fig 3.1

A Simple Linear Regression Model: From ERM

Common

regression
$$\ell = (y_i - \hat{y_i})^2$$

loss function:

Start with the ERM objective...

$$\underset{h}{\operatorname{argmin}} \sum_{i=1}^{N} \ell(y_i, h(\boldsymbol{x}_i))$$

and get...

$$\arg\min_{w} \sum_{i} (y_i - \mathbf{w}^{\mathsf{T}} x_i - b)^2$$

least squares estimation

ESL, Fig 3.1

A Simple Linear Regression Model: From ERM

Common regression $\ell = (y_i - \widehat{y_i})^2$ loss function:

$$\arg\min_{w} \sum_{i} (y_i - \mathbf{w}^T x_i - b)^2 = \min_{w} (\mathbf{y} - \mathbf{X}\mathbf{w} - \mathbf{b})^T (\mathbf{y} - \mathbf{X}\mathbf{w} - \mathbf{b})$$

least squares estimation

A Simple Linear Regression Model: From ERM

least squares estimation

loss function:
$$\ell = (y_i - \widehat{y}_i)^2$$

$$\underset{w}{\operatorname{argmin}} \sum_{i} (y_i - \mathbf{w}^T x_i - b)^2 = \min_{w} (\mathbf{y} - \mathbf{X}\mathbf{w} - \mathbf{b})^T (\mathbf{y} - \mathbf{X}\mathbf{w} - \mathbf{b})$$

$$\mathcal{L}(\mathbf{w})$$

A1, Q1 {E, F}

Outline

Recap: Decision Theory and ERM

Gradient Optimization

Linear Models & Surrogate Loss

Example 1: Linear Regression

Example 2: Linear Classification Model

Example 3: Perceptrons

A Simple Linear Classifier: From ERM

decision rule:
$$\widehat{y}_i = \begin{cases} 0, & \mathbf{w}^T \mathbf{x_i} < 0 \\ 1, & \mathbf{w}^T \mathbf{x_i} \ge 0 \end{cases}$$

loss function:
$$\ell = \begin{cases} 1, & y_i \mathbf{w^T x_i} < 0 \\ 0, & y_i \mathbf{w^T x_i} \ge 0 \end{cases}$$

Q: Are there any issues?

A Simple Linear Classifier: From ERM

decision rule:
$$\widehat{y}_i = \begin{cases} 0, & \mathbf{w}^T \mathbf{x_i} < 0 \\ 1, & \mathbf{w}^T \mathbf{x_i} \ge 0 \end{cases}$$

loss function:
$$\ell = \begin{cases} 1, & y_i \mathbf{w}^T \mathbf{x_i} < 0 \\ 0, & y_i \mathbf{w}^T \mathbf{x_i} \ge 0 \end{cases}$$

Q: Are there any issues?

A: Objective is piecewise constant wrt weights **w**

Loss Function Example: 0-1 Loss

$$\ell(y, \hat{y}) = \begin{cases} 0, & \text{if } y = \hat{y} \\ 1, & \text{if } y \neq \hat{y} \end{cases}$$

Problem: not differentiable wrt \hat{y} (or θ)

Solution 1: is h(x) a conditional distribution $p(y \mid x)$? Use MAP

Solution 2: use a surrogate loss that approximates 0-1

Solution 3: is the data linearly separable?

Perceptron can work

Why Do We Care about Probabilities? Classification

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification

Language Identification

Sentiment analysis

. . .

$$p(Y \mid X) =$$
observed data

class-based likelihood (language model)

prior probability of class

$$\frac{p(X \mid Y) * p(Y)}{p(X)}$$

observation likelihood (averaged over all classes)

 $argmax_{Y}p(Y \mid X)$

$$\operatorname{argmax}_{Y} \frac{p(X \mid Y) * p(Y)}{p(X)}$$

$$\underset{constant \ with \ respect \ to \ X}{\operatorname{p}(X \mid Y) * p(Y)}$$

$$\operatorname{argmax}_{Y} p(X \mid Y) * p(Y)$$

$$argmax_Y log p(X | Y) + log p(Y)$$

$$argmax_Y log p(X | Y) + log p(Y)$$

how likely is label Y overall?

$$argmax_Y log p(X | Y) + log p(Y)$$

how well does blob X represent label Y?

how likely is label Y overall?

$$argmax_Y log p(X | Y) + log p(Y)$$

how well does blob X represent label Y?

For "simple" or "flat" labels:

- * iterate through labels
- * evaluate score for each label, keeping only the best (n best)
- * return the best (or n best) label and score

decision rule:

$$\widehat{y}_i = \begin{cases} 0, & p(\widehat{y}_i = 1 \mid \mathbf{x_i}) < .5 \\ 1, & p(\widehat{y}_i = 1 \mid \mathbf{x_i}) \ge .5 \end{cases}$$

turn responses into probabilities

minimize posterior 0-1 loss:

$$\min_{\mathbf{w}} \sum_{i} \mathbb{E}_{\widehat{y_i} \sim p(\cdot | x_i)} [\ell(y_i, \widehat{y_i})] =$$

decision rule:

$$\widehat{y_i} = \begin{cases} 0, & p(\widehat{y_i} = 1 \mid \mathbf{x_i}) < .5 & \text{minimize posterior 0-1 loss:} \\ 1, & p(\widehat{y_i} = 1 \mid \mathbf{x_i}) \ge .5 & \\ & & \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{$$

turn responses into probabilities

$$\min_{\mathbf{w}} \sum_{i} \mathbb{E}_{\widehat{y_i} \sim p(\cdot | x_i)} [\ell(y_i, \widehat{y_i})] =$$

$$\min_{\mathbf{w}} \sum_{i} \sum_{j} (1 - \delta_{y_i j}) p(\widehat{y_i} = j | x_i) =$$

Kronecker delta: 1 if $y_i = j$, 0 otherwise

decision rule:

$$\widehat{y}_i = \begin{cases} 0, & p(\widehat{y}_i = 1 \mid \mathbf{x_i}) < .5 \\ 1, & p(\widehat{y}_i = 1 \mid \mathbf{x_i}) \ge .5 \end{cases}$$

turn responses into probabilities

minimize posterior 0-1 loss:

$$\min_{\mathbf{w}} \sum_{i} \mathbb{E}_{\widehat{y_i} \sim p(\cdot | x_i)} [\ell(y_i, \widehat{y_i})] =$$

$$\min_{\mathbf{w}} \sum_{i} \sum_{j} (1 - \delta_{y_i j}) p(\widehat{y_i} = j | x_i) =$$

$$\min_{\mathbf{w}} \sum_{i} \left[1 - \sum_{j} \delta_{y_{i}j} p(\widehat{y}_{i} = j | x_{i}) \right]$$

decision rule:

$$\widehat{y}_i = \begin{cases} 0, & p(\widehat{y}_i = 1 \mid \mathbf{x_i}) < .5 \\ 1, & p(\widehat{y}_i = 1 \mid \mathbf{x_i}) \ge .5 \end{cases}$$

turn responses into probabilities

minimize posterior 0-1 loss:

$$\widehat{y}_i = \begin{cases} 0, & p(\widehat{y}_i = 1 \mid \mathbf{x_i}) < .5 \\ 1, & p(\widehat{y}_i = 1 \mid \mathbf{x_i}) \ge .5 \end{cases} \min_{\mathbf{w}} \sum_{i} \mathbb{E}_{\widehat{y}_i \sim p(\cdot \mid \mathbf{x}_i)} [\ell(y_i, \widehat{y}_i)] =$$

$$\min_{\mathbf{w}} \sum_{i} \sum_{j} (1 - \delta_{y_i j}) p(\widehat{y_i} = j | x_i) =$$

$$\min_{\mathbf{w}} \sum_{i} \left[1 - \sum_{j} \delta_{y_{i}j} p(\widehat{y}_{i} = j | x_{i}) \right]$$

why MAP classifiers are reasonable

$$\max_{\mathbf{w}} \sum_{i} p(\widehat{y}_i = y_i | x_i)$$

$$\widehat{y_i} = \begin{cases} 0, & \sigma(\mathbf{w^T x_i} + b) < .5\\ 1, & \sigma(\mathbf{w^T x_i} + b) \geq .5\\ & turn\ responses \end{cases}$$
into probabilities

minimize posterior 0-1 loss:

$$\min_{\mathbf{w}} \sum_{i} \mathbb{E}_{\widehat{y_i}} [\ell^{0/1}(y, \widehat{y_i})] = \\ \max_{\mathbf{w}} \sum_{i} p(\widehat{y_i} = y_i | x_i) \\ why MAP \\ classifiers are \\ reasonable$$

Loss Function Example: 0-1 Loss

$$\ell(y, \hat{y}) = \begin{cases} 0, & \text{if } y = \hat{y} \\ 1, & \text{if } y \neq \hat{y} \end{cases}$$

Problem: not differentiable wrt \hat{y} (or θ)

Solution 1: is h(x) a conditional distribution $p(y \mid x)$? Use MAP

Solution 3: is the data linearly separable?

Perceptron can work

Solution 2: Convex surrogate loss functions

Surrogate loss: replace Zero/one loss by a smooth function

Easier to optimize if the surrogate loss is convex

Example: Exponential loss

$$\mathcal{L}(\mathbf{w}) = \sum_{n} \exp(-y_n \mathbf{w}^T \mathbf{x}_n)$$
 objective

Example: Exponential loss

$$\mathcal{L}(\mathbf{w}) = \sum_{n} \exp(-y_n \mathbf{w}^T \mathbf{x}_n)$$
 objective

$$\frac{d\mathcal{L}}{d\mathbf{w}} = \sum_{n} -y_n \mathbf{x}_n \exp(-y_n \mathbf{w}^T \mathbf{x}_n)$$
 gradient

Example: Exponential loss

$$\mathcal{L}(\mathbf{w}) = \sum_{n} \exp(-y_n \mathbf{w}^T \mathbf{x}_n)$$
 objective

$$\frac{d\mathcal{L}}{d\mathbf{w}} = \sum_{n} -y_n \mathbf{x}_n \exp(-y_n \mathbf{w}^T \mathbf{x}_n)$$
 gradient

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \quad \sum_{n} -y_n \mathbf{x}_n \exp(-y_n \mathbf{w}^T \mathbf{x}_n)$$
 update

loss term

$$\mathbf{w} \leftarrow \mathbf{w} + cy_n \mathbf{x}_n$$

high for misclassified points

Outline

Recap: Decision Theory and ERM

Gradient Optimization

Linear Models & Surrogate Loss

Example 1: Linear Regression

Example 2: Linear Classification Model with

Surrogate

Example 3: Perceptrons

Loss Function Example: 0-1 Loss

$$\ell(y, \hat{y}) = \begin{cases} 0, & \text{if } y = \hat{y} \\ 1, & \text{if } y \neq \hat{y} \end{cases}$$

Problem: not differentiable wrt \hat{y} (or θ)

Solution 1: is h(x) a conditional distribution $p(y \mid x)$? Use MAP

Solution 2: use a surrogate loss that approximates 0-1

Solution 3: is the data linearly separable? Perceptron can work

Ingredients for classification

Inject your knowledge into a learning system

Feature representation

Training data: labeled examples

Model

Ingredients for classification

Inject your knowledge into a learning system

Problem specific

Difficult to learn from bad ones

Feature representation

Training data: labeled examples

Model

Perceptron

Inputs are feature values

Each feature has a weight

Sum in the activation

$$\operatorname{activation}(\mathbf{w}, \mathbf{x}) = \sum_{i} w_{i} x_{i} = \mathbf{w}^{T} \mathbf{x}$$

 $\begin{bmatrix} x_1 \\ \hline x_2 \\ \hline \hline x_3 \\ \hline \end{bmatrix}$ $\begin{bmatrix} w_2 \\ \hline w_3 \\ \hline \end{bmatrix}$ $\begin{bmatrix} w_3 \\ \hline \end{bmatrix}$ $\begin{bmatrix} w_3 \\ \hline \end{bmatrix}$

If the activation is:

> b, output *class 1 ("positive")*otherwise, output *class 2 ("negative")*

$$\mathbf{x} o (\mathbf{x}, 1)$$
 $\mathbf{w}^T \mathbf{x} + b o (\mathbf{w}, b)^T (\mathbf{x}, 1)$

Example: Document Classification

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH

NOT TECH

preprocessing/
feature extraction

word	count
alerts	1
assist	1
bombing	1
Boston	2

x: "bag of words"

Example: Document Classification

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH
NOT TECH

count

feature	weight
alerts	.043
assist	-0.25
bombing	0.8
Boston	-0.00001

alerts	1
assist	1
bombing	1
Boston	2

word

w: weights

x: "bag of words"

Example: Document Classification

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH

NOT TECH

feature	weight
alerts	.043
assist	-0.25
bombing	0.8
Boston	-0.00001

w: weights

word	count
alerts	1
assist	1
bombing	1
Boston	2
•••	

x: "bag of words"

> b

Perceptron action

Reminder: Dot Product & Cosine

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} = |\mathbf{w}| |\mathbf{x}| \cos(\theta)$$

In the space of feature vectors examples are points (in D dimensions)

In the space of feature vectors examples are points (in D dimensions)

a weight vector is a hyperplane (a D-1 dimensional object)

In the space of feature vectors examples are points (in D dimensions)

a weight vector is a hyperplane (a D-1 dimensional object)

One side corresponds to y=+1

Other side corresponds to y=-1

$$\operatorname{activation}(\mathbf{w}, \mathbf{x}) = \sum_{i} w_i x_i = \mathbf{w}^T \mathbf{x}$$

In the space of feature vectors examples are points (in D dimensions)

a weight vector is a hyperplane (a D-1 dimensional object)

One side corresponds to y=+1

Other side corresponds to y=-1

Perceptrons are also called as linear classifiers

$$\operatorname{activation}(\mathbf{w}, \mathbf{x}) = \sum_{i} w_{i} x_{i} = \mathbf{w}^{T} \mathbf{x}$$

Input: training data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

Perceptron training algorithm (Rosenblatt, 57)

Initialize $\mathbf{w} \leftarrow [0, \dots, 0]$

for iteration = 1,...,T

Input: training data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

Perceptron training algorithm (Rosenblatt, 57)

Initialize $\mathbf{w} \leftarrow [0, \dots, 0]$

for iteration = 1,...,T

for example i = 1,.., N

Input: training data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

Perceptron training algorithm (Rosenblatt, 57)

Initialize
$$\mathbf{w} \leftarrow [0, \dots, 0]$$

for iteration = 1,...,T

for example i = 1,.., N

$$\hat{y}_i = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x}_i > 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x}_i \le 0 \end{cases}$$

Input: training data
$$(\mathbf{x}_1,y_1), (\mathbf{x}_2,y_2), \ldots, (\mathbf{x}_n,y_n)$$

Perceptron training algorithm (Rosenblatt, 57)

Initialize
$$\mathbf{w} \leftarrow [0, \dots, 0]$$

for iteration = 1,...,T

for example i = 1,.., N

$$\hat{y}_i = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x}_i > 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x}_i \le 0 \end{cases}$$

if
$$y_i = \hat{y}_i$$
, no change else, $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$

Input: training data $(\mathbf{x}_1,y_1), (\mathbf{x}_2,y_2), \ldots, (\mathbf{x}_n,y_n)$

Perceptron training algorithm (Rosenblatt, 57)

Initialize
$$\mathbf{w} \leftarrow [0, \dots, 0]$$

for iteration = 1,...,T

for example i = 1,.., N

$$\hat{y}_i = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x}_i > 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x}_i \le 0 \end{cases}$$

if
$$y_i = \hat{y}_i$$
, no change else, $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$

$$y_{i} = -1$$

Input: training data
$$(\mathbf{x}_1,y_1), (\mathbf{x}_2,y_2), \ldots, (\mathbf{x}_n,y_n)$$

Perceptron training algorithm (Rosenblatt, 57)

Initialize
$$\mathbf{w} \leftarrow [0, \dots, 0]$$

for iteration = 1,...,T

for example i = 1,.., N

$$\hat{y}_i = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x}_i > 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x}_i \le 0 \end{cases}$$

if
$$y_i = \hat{y}_i$$
, no change else, $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$

$$y_{i} = -1$$

Input: training data $(\mathbf{x}_1,y_1), (\mathbf{x}_2,y_2), \ldots, (\mathbf{x}_n,y_n)$

Perceptron training algorithm (Rosenblatt, 57)

Initialize
$$\mathbf{w} \leftarrow [0, \dots, 0]$$

for iteration = 1,...,T

for example i = 1,.., N

$$\hat{y}_i = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x}_i > 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x}_i \le 0 \end{cases}$$

if
$$y_i = \hat{y}_i$$
, no change else, $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$

Properties of perceptrons

Separability: some parameters will classify the training data perfectly

Properties of perceptrons

Separability: some parameters will classify the training data perfectly

Convergence: if the training data is separable then the perceptron training will eventually converge

Properties of perceptrons

Separability: some parameters will classify the training data perfectly

Convergence: if the training data is separable then the perceptron training will eventually converge

Mistake bound: the maximum number of mistakes is related to the **margin**

assuming,
$$||\mathbf{x}_i|| \le 1$$
#mistakes $< \frac{1}{\delta^2}$

$$\delta = \max_{\mathbf{w}} \min_{(\mathbf{x}_i, y_i)} [y_i \mathbf{w}^T \mathbf{x}_i]$$

such that, $||\mathbf{w}|| = 1$

Margin

$$margin(\mathbf{D}, w, b) = \begin{cases} \min_{(x,y) \in \mathbf{D}} y(w \cdot x + b) & \text{if } w \text{ separates } \mathbf{D} \\ -\infty & \text{otherwise} \end{cases}$$

Proof of convergence

separating hyperplane with margin= δ

$$\hat{\mathbf{w}}^T \mathbf{w}^{(k)} = \hat{\mathbf{w}}^T \left(\mathbf{w}^{(k-1)} + y_i \mathbf{x}_i \right)$$

$$w \text{ is } = \hat{\mathbf{w}}^T \mathbf{w}^{(k-1)} + \hat{\mathbf{w}}^T y_i \mathbf{x}_i$$

$$getting \text{ closer}$$

$$\geq \hat{\mathbf{w}}^T \mathbf{w}^{(k-1)} + \delta$$

$$\geq k\delta$$

update rule algebra definition of margin
$$||\mathbf{w}^{(k)}|| > k\delta$$

$$||\mathbf{w}^{(k)}||^2 = ||\mathbf{w}^{(k-1)} + y_i \mathbf{x}_i||^2$$

bound
 $\leq ||\mathbf{w}^{(k-1)}||^2 + ||y_i \mathbf{x}_i||^2$

the norm
 $\leq ||\mathbf{w}^{(k-1)}||^2 + 1$
 $\leq k$

update rule triangle inequality $\operatorname*{norm}\|\mathbf{w}^{(k)}\|<\sqrt{k}$

$$|k\delta \le ||\mathbf{w}^{(k)}|| \le \sqrt{k} \longrightarrow k \le \frac{1}{\delta^2}$$

Slide courtesy Hamed Pirsiavash

Limitations of Perceptrons

Convergence: if the data isn't separable, the training algorithm may not terminate noise can cause this data inherently not separable

Mediocre generalization: the algorithm finds a solution that "barely" separates the data

Overtraining: test/validation accuracy rises and then falls

Overly greedy updates: susceptible to most-recent inaccuracies

Problem: Late Misclassifications

Solution 1: Voted Perceptron

Solution 2: Averaged Perceptron

Voted perceptron

Key idea: remember how long each weight vector survives

$$\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(K)}$$
 sequence of weights $c^{(1)}, c^{(2)}, \dots, c^{(K)}$ "survival" times for each of these (# iterations since last update)

a weight that gets updated immediately gets c=1 a weight that survives another round gets c=2, etc.

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \operatorname{sign}\left(\mathbf{w}^{(k)T}\mathbf{x}\right)\right)$$

Q: What's potentially problematic here?

Voted perceptron

Key idea: remember how long each weight vector survives

$${f w}^{(1)}, {f w}^{(2)}, \ldots, {f w}^{(K)}$$
 sequence of weights $c^{(1)}, c^{(2)}, \ldots, c^{(K)}$ "survival" times for each of these (# iterations since last update)

a weight that gets updated immediately gets c=1 a weight that survives another round gets c=2, etc.

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \operatorname{sign}\left(\mathbf{w}^{(k)T}\mathbf{x}\right)\right)$$

Q: What's potentially problematic here?

A: Large memory requirements

Averaged perceptron

 $\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(K)}$ sequence of weights $c^{(1)}, c^{(2)}, \dots, c^{(K)}$ "survival" times for each of these (# iterations since last update)

a weight that gets updated immediately gets c = 1 a weight that survives another round gets c = 2, etc.

voted
$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^K c^{(k)} \operatorname{sign}\left(\mathbf{w}^{(k)T}\mathbf{x}\right)\right)$$
averaged $\hat{y} = \operatorname{sign}\left(\sum_{k=1}^K c^{(k)}\left(\mathbf{w}^{(k)T}\mathbf{x}\right)\right) = \operatorname{sign}\left(\bar{\mathbf{w}}^T\mathbf{x}\right)$
de courtesy Hamed Pirsiavash

Averaged Perceptron Training Algorithm

Initialize:
$$c=0, \mathbf{w}=[0,\dots,0], \bar{\mathbf{w}}=[0,\dots,0]$$
 for iter = 1,...,T for i = 1,...,n predict according to the current model

$$\hat{y}_i = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x}_i > 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x}_i \leq 0 \end{cases}$$

$$\text{if } y_i = \hat{y}_i \quad c = c + 1$$

$$\text{else:}$$

$$\mathbf{\bar{w}} \leftarrow \mathbf{\bar{w}} + c\mathbf{w}$$

$$\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$$

$$c = 1$$

return $\mathbf{\bar{w}} + c\mathbf{w}$

Comparison of perceptron variants: MNIST classification

Improving Perceptrons

Multilayer perceptrons: non-linear functions of the input (neural networks)

Feature-mapping: using kernels

Margin-based classifiers: improves generalization ability of the classifier (support vector machines, SVMs)

Outline

Recap: Decision Theory and ERM

Gradient Optimization

Linear Models & Surrogate Loss

Example 1: Linear Regression

Example 2: Linear Classification Model

Example 3: Perceptrons