supply chain analysis

October 20, 2024

1 importing the necessary Python libraries and the dataset:

```
[190]: import pandas as pd
       import numpy as np
       import matplotlib.pyplot as plt
       import seaborn as sns
       from sklearn import linear_model
       import pylab as pl
       from sklearn.metrics import r2_score
[223]: | df = pd.read_csv('C:\\Users\\AQ\\Downloads\\supply_chain_data.csv')
       df.head()
[72]:
[72]:
         Product type
                        SKU
                                         Availability
                                                        Number of products sold
                                  Price
             haircare
                       SKU0
                              69.808006
                                                                             802
                                                    55
                                                                             736
       1
             skincare
                       SKU1
                              14.843523
                                                    95
       2
             haircare SKU2
                             11.319683
                                                    34
                                                                               8
             skincare
                       SKU3
                             61.163343
                                                    68
                                                                              83
             skincare SKU4
                               4.805496
                                                    26
                                                                             871
          Revenue generated Customer demographics Stock levels
                                                                   Lead times
       0
                8661.996792
                                        Non-binary
                                                               58
                                                                             7
       1
                7460.900065
                                            Female
                                                               53
                                                                            30
       2
                9577.749626
                                           Unknown
                                                                1
                                                                            10
       3
                7766.836426
                                        Non-binary
                                                                23
                                                                            13
                2686.505152
                                        Non-binary
                                                                             3
                                Location Lead time
                                                     Production volumes
          Order quantities
       0
                         96
                                  Mumbai
                                                 29
                                                                     215
                                  Mumbai
                                                 23
                                                                     517
       1
                         37 ...
       2
                         88
                                  Mumbai
                                                                     971
                                                 12
       3
                                 Kolkata
                                                 24
                                                                     937
                         59
                                   Delhi
                                                  5
                                                                     414
                         56
         Manufacturing lead time Manufacturing costs
                                                       Inspection results \
       0
                               29
                                            46.279879
                                                                    Pending
```

1		30	33	.616769	1	Pending
2		27	30	.688019]	Pending
3		18	35	.624741		Fail
4		3	92	.065161		Fail
	Defect rates	Transportation	modes	Routes	Costs	
0	0.226410		Road	Route B	187.752075	
1	4.854068		Road	Route B	503.065579	
2	4.580593		Air	Route C	141.920282	
3	4.746649		Rail	Route A	254.776159	
4	3.145580		Air	Route A	923.440632	
		7				

[5 rows x 24 columns]

[]:[

2 Statistics for Numerical Columns

[73]:	df.describe().T					
[73]:		count	mean	st	d mi:	n \
	Price	100.0	49.462461	31.16819	3 1.69997	6
	Availability	100.0	48.400000	30.74331	7 1.00000	0
	Number of products sold	100.0	460.990000	303.78007	4 8.00000	0
	Revenue generated	100.0	5776.048187	2732.84174	4 1061.61852	3
	Stock levels	100.0	47.770000	31.36937	2 0.00000	0
	Lead times	100.0	15.960000	8.78580	1.00000	0
	Order quantities	100.0	49.220000	26.78442	9 1.00000	0
	Shipping times	100.0	5.750000	2.72428	3 1.00000	0
	Shipping costs	100.0	5.548149	2.65137	6 1.01348	7
	Lead time	100.0	17.080000	8.84625	1.00000	0
	Production volumes	100.0	567.840000	263.04686	1 104.00000	0
	Manufacturing lead time	100.0	14.770000	8.91243	0 1.00000	0
	Manufacturing costs	100.0	47.266693	28.98284		
	Defect rates	100.0	2.277158	1.46136		
	Costs	100.0	529.245782	258.30169	6 103.91624	8
			25%	50%	75%	max
	Price	19 5				.171329
	Availability					.000000
	Number of products sold					.000000
	Revenue generated	2812.8				.465458
	Stock levels					.000000
	Lead times					.000000
	Order quantities					.000000
	Shipping times					.000000
	Shipping costs	3.5	40248 5.3	20534 7	.601695 9	.929816
	· ·					

Lead time	10.000000	18.000000	25.000000	30.000000
Production volumes	352.000000	568.500000	797.000000	985.000000
Manufacturing lead time	7.000000	14.000000	23.000000	30.000000
Manufacturing costs	22.983299	45.905622	68.621026	99.466109
Defect rates	1.009650	2.141863	3.563995	4.939255
Costs	318.778455	520.430444	763.078231	997.413450

3 Check for missing values in each column

```
[188]: categorical_cols = [
           'Product type', 'Customer demographics', 'Shipping carriers',
           'Supplier name', 'Location', 'Inspection results', 'Transportation modes',
        ⇔'Routes'
       for col in categorical_cols:
           print(f"\nDistribution of {col}:\n", df[col].value_counts())
      Distribution of Product type:
       Product type
      skincare
                   40
                   34
      haircare
      cosmetics
                   26
      Name: count, dtype: int64
      Distribution of Customer demographics:
       Customer demographics
                    31
      Unknown
      Female
                    25
      Non-binary
                    23
      Male
                    21
      Name: count, dtype: int64
      Distribution of Shipping carriers:
       Shipping carriers
      Carrier B
                   43
      Carrier C
                   29
      Carrier A
                   28
      Name: count, dtype: int64
      Distribution of Supplier name:
       Supplier name
      Supplier 1
                    27
      Supplier 2
                    22
      Supplier 5
                    18
      Supplier 4
                    18
      Supplier 3
                    15
```

Name: count, dtype: int64 Distribution of Location: Location Kolkata 25 Mumbai 22 Chennai 20 Bangalore 18 Delhi 15 Name: count, dtype: int64 Distribution of Inspection results: Inspection results Pending 41 Fail 36 23 Pass Name: count, dtype: int64 Distribution of Transportation modes: Transportation modes Road 29 Rail 28 Air 26 Sea 17 Name: count, dtype: int64 Distribution of Routes: Routes Route A 43 Route B 37 Route C 20 Name: count, dtype: int64 [78]: print(df.info()) <class 'pandas.core.frame.DataFrame'> RangeIndex: 100 entries, 0 to 99 Data columns (total 24 columns):

Data	columns (total 24 columns	s):	
#	Column	Non-Null Count	Dtype
0	Product type	100 non-null	object
1	SKU	100 non-null	object
2	Price	100 non-null	float64
3	Availability	100 non-null	int64
4	Number of products sold	100 non-null	int64
5	Revenue generated	100 non-null	float64
6	Customer demographics	100 non-null	object
7	Stock levels	100 non-null	int64

```
8
   Lead times
                             100 non-null
                                             int64
9
    Order quantities
                             100 non-null
                                             int64
10
   Shipping times
                             100 non-null
                                             int64
11
   Shipping carriers
                             100 non-null
                                             object
12
   Shipping costs
                             100 non-null
                                             float64
13
   Supplier name
                             100 non-null
                                             object
14 Location
                             100 non-null
                                             object
15 Lead time
                             100 non-null
                                             int64
16 Production volumes
                             100 non-null
                                             int64
17 Manufacturing lead time
                             100 non-null
                                             int64
18 Manufacturing costs
                             100 non-null
                                             float64
19
   Inspection results
                             100 non-null
                                             object
20 Defect rates
                             100 non-null
                                             float64
21
   Transportation modes
                             100 non-null
                                             object
22 Routes
                             100 non-null
                                             object
23 Costs
                             100 non-null
                                             float64
```

dtypes: float64(6), int64(9), object(9)

memory usage: 18.9+ KB

None

[74]: df.isnull().sum()

[74]: Product type 0 SKU 0 Price 0 Availability 0 Number of products sold 0 Revenue generated 0 0 Customer demographics Stock levels 0 Lead times 0 Order quantities 0 Shipping times 0 Shipping carriers 0 Shipping costs 0 Supplier name 0 Location 0 Lead time 0 Production volumes 0 Manufacturing lead time 0 Manufacturing costs 0 Inspection results 0 Defect rates 0 Transportation modes 0 Routes 0 0 Costs dtype: int64

```
[80]: print(df.drop_duplicates(inplace=True))
```

None

3.0.1 A new column titled 'Inventory Turnover' has been added to the dataset to assess inventory management effectiveness.

[87]: df['Inventory Turnover'] = df['Number of products sold'] / df['Stock levels']
print(df)

ـــــــــــــــــــــــــــــــــــــــ										
	Product type	SKU	Price	Availabil	ity	Number	of	products	sold	\
0	haircare	SKU0	69.808006		55				802	
1	skincare	SKU1	14.843523		95				736	
2	haircare	SKU2	11.319683		34				8	
3	skincare	SKU3	61.163343		68				83	
4	skincare	SKU4	4.805496		26				871	
	•••	•••		•••				•••		
95	haircare	SKU95	77.903927		65				672	
96	cosmetics	SKU96	24.423131		29				324	
97	haircare	SKU97	3.526111		56				62	
98	skincare	SKU98	19.754605		43				913	
99	haircare	SKU99	68.517833		17				627	
	Revenue gene	rated (lustomer der	mographi <i>c</i> s	Stoc	k leve	lq	Lead time	:s \	
0	8661.9			Non-binary	Duoc		58		7	
1	7460.9		•	Female			53		50	
2	9577.7			Unknown		`	1		.0	
3	7766.8		N	Non-binary		•	23		.3	
4	2686.5			Non-binary		•	5		3	
			_			•••		•••		
95	7386.3	63944		Unknown		:	15	1	4	
96	7698.4	24766	1	Non-binary		(37		2	
97	4370.9	16580		Male		4	16	1	.9	
98	8525.9	52560		Female		į	53		1	
99	9185.1	85829		Unknown		(55		8	
	Order quanti	ties .	Lead time	e Productio	n vol	umes '				
0	oracr quarrer	96				215	`			
1		37	0.0			517				
2		88 .				971				
3		59	0.4			937				
4		56	-			414				
			•••							
95		26 .	18	3		450				
96		32	28	3		648				
97		4	10)		535				
98		27	28	3		581				
99		59 .	29	9		921				

```
Manufacturing lead time Manufacturing costs Inspection results \
0
                                       46.279879
                          29
                                                             Pending
1
                          30
                                       33.616769
                                                             Pending
2
                          27
                                                             Pending
                                       30.688019
3
                                       35.624741
                                                                Fail
                          18
4
                           3
                                       92.065161
                                                                Fail
. .
95
                                       58.890686
                                                             Pending
                          26
                          28
                                       17.803756
                                                             Pending
96
97
                          13
                                       65.765156
                                                                Fail
98
                           9
                                        5.604691
                                                             Pending
                           2
99
                                       38.072899
                                                                Fail
    Defect rates
                  Transportation modes
                                          Routes
                                                        Costs Inventory Turnover
0
        0.226410
                                   Road
                                         Route B
                                                   187.752075
                                                                        13.827586
1
        4.854068
                                   Road
                                         Route B
                                                   503.065579
                                                                        13.886792
2
        4.580593
                                    Air
                                         Route C
                                                  141.920282
                                                                         8.000000
3
        4.746649
                                   Rail Route A 254.776159
                                                                         3.608696
4
        3.145580
                                    Air Route A 923.440632
                                                                       174.200000
. .
95
        1.210882
                                    Air Route A 778.864241
                                                                        44.800000
96
        3.872048
                                   Road Route A 188.742141
                                                                         4.835821
97
        3.376238
                                   Road Route A 540.132423
                                                                         1.347826
98
        2.908122
                                   Rail Route A 882.198864
                                                                        17.226415
99
        0.346027
                                   Rail Route B 210.743009
                                                                        11.400000
```

[100 rows x 25 columns]

4 Deep Exploratory Analysis

```
[90]: df.groupby(['Product type'])['Product type'].count().plot(kind='bar')
print(df.groupby(['Product type'])['Product type'].count())
```

Product type cosmetics 26 haircare 34 skincare 40

Name: Product type, dtype: int64

5 Analyzing SKUs

5.1 Number of sold Skincare products by SKU

5.2 Number of sold cosmetics by SKU

5.3 Number of sold Haircare products by SKU

```
ax.set_xticklabels(df_haircare['SKU'], rotation=45, ha='right')
plt.tight_layout()
plt.show()
```


5.4 Inventory Turnover Rate Per Product

```
[99]: plt.figure(figsize=(7, 6))
   plt.bar(df['Product type'], df['Inventory Turnover'], color='skyblue')
   plt.title('Inventory Turnover Rate per Product')
   plt.xlabel('Product type')
   plt.ylabel('Inventory Turnover Rate')
   plt.show()
```

Inventory Turnover Rate per Product

5.4.1 The analysis indicates that skincare products have the highest inventory levels, reflecting strong demand and consumer interest in skincare solutions.

5.5 Sales by product type

[102]: <function matplotlib.pyplot.show(close=None, block=None)>

Sales by product type

- 5.5.1 Skincare products are the most preferred products as they are the highest in sales.
- 5.6 Total Number of Products per Category

```
[106]: colors=['#3A6D8C','#6A9AB0','#001F3F']
    product_type_counts = df .groupby(['Product type'])['Product type'].count()
    product_type_counts.plot(kind='bar', figsize=(8, 6), color=colors)
    plt.title('Number of Products by Product Type')
    plt.xlabel('Product Type')
    plt.ylabel('Count')
    plt.show()
```


5.7 Total Revenue by City and Supplier

5.7.1 Supplier 1 generates the highest revenue in the city of Kolkata.

5.8 Distribution of Product Prices by Location and Type

```
[113]: plt.figure(figsize=(12, 6))
    sns.boxplot(data=df, x='Location', y='Price', hue='Product type')
    plt.title('Product Prices by Location and Product Type')
    plt.xlabel('Location')
    plt.ylabel('Price')
    plt.show()
```


5.8.1 When it comes to prices, Chennai leads in all the categories.

5.9 Total Revenue by product type

5.9.1 Skincare products generate the highest revenue.

5.10 Total Revenue by shipping carrier

- 5.10.1 The company use 3 Carriers for transportation and carrier B helps the company in generating more revenue.
- 5.11 Revenue distribution by customers demographics

Total Revenue per Customer Demographics

- 5.11.1~ so 28% of total revenue comes from Femals & 21% comes from Males.
- 5.12 Analyzing Lead Time and Manufacturing cost
- 5.12.1 Average lead time and Average Manufacturing Cost for all the products

```
[129]: Product type Average Lead Time Average Manufacturing Costs
0 cosmetics 13.538462 43.052740
1 haircare 18.705882 48.457993
2 skincare 18.000000 48.993157
```

5.13 Total Quantity Sold by Transportation Mode

5.14 Cost Distribution by Transportation Modes

```
plt.title('Cost Distribution by Transportation Modes')
plt.show()
```

Cost Distribution by Transportation Modes

- 5.14.1 Road and Rail transportation methods are more expensive for the company compared to other forms of transport.
- 5.15 Analyzing Defect Rate
- 5.15.1 Average Defect Rate by Product Type

```
[142]: colors=['#006400','#90EE90','#FFFF99']
    avg_defect=df.groupby('Product type')['Defect rates'].mean().reset_index()
    plt.figure(figsize=(8,5))
    plt.bar(avg_defect['Product type'],avg_defect['Defect rates'], color=colors)
    plt.xlabel('Product type')
    plt.ylabel('Average Defect rates')
    plt.title('Average Defect Rate by Product Type')
    plt.tight_layout()
    plt.show()
```


5.15.2 The defect rate for haircare products is the highest one.

5.15.3 Defect Rate by Transportation Mode

Defect Rate by Transportation Mode

- 5.15.4 Products delivered by road have the highest chance of being defective, while products delivered by air have the lowest rate of defects.
- 5.15.5 "Revenue vs. Manufacturing Scatter Plot"

```
[169]: regr = linear_model.LinearRegression()
    train_x = np.asanyarray(df[['Revenue generated']])
    train_y = np.asanyarray(df[['Manufacturing costs']])
    regr.fit(train_x, train_y)

print ('Coefficients: ', regr.coef_)
    print ('Intercept: ',regr.intercept_)

y_pred = regr.predict(train_x)
    r2 = r2_score(train_y, y_pred)

print("R-squared:", r2)

plt.scatter(df[['Revenue generated']], df[['Manufacturing costs']], u_color='blue')
    plt.plot(train_x, regr.coef_[0][0]*train_x + regr.intercept_[0], '-r')
    plt.xlabel('Revenue generated')
    plt.ylabel("Manufacturing costs")
```

plt.title('Revenue vs Manufacturing Costs with Regression Line')

Coefficients: [[-0.00226982]] Intercept: [60.37727428] R-squared: 0.0458067325432433

[169]: Text(0.5, 1.0, 'Revenue vs Manufacturing Costs with Regression Line')

5.15.6 Based on the linear regression analysis shown in the image, the R-squared value of 0.0458 indicates that the relationship between Manufacturing and Revenue is very weak. It also showed that all the tested data gave the same result..