Class 3 CONTENTS

Class 3

Shikhar Saxena

January 10, 2023

Contents

- \circ Conditional Expectation $E[X \mid Y]$
 - $\star E[X \mid Y = y]$: Constant
 - \star $E[X \mid Y]$: Function of Y (Random Variable)
 - Law of iterated expectation E[E[X|Y]] = E[X]
- Stochastic Simulation
 - \star Inverse Transform Method
 - Sample from Uniform(0,1) and then compare with the PMF of the Random Variable and map to the value in the associated Range.
 - For continuous $X = F^{-1}(U)$ where F is CDF of X.
- Convergence of Random Variables
 - ★ Pointwise or sure convergence
 - $\{X_n, n \geq 0\}$ converges to X **pointwise** or **surely** if

$$\forall \omega \in \Omega, \quad \lim_{n \to \infty} X_n(\omega) = X(\omega)$$

* Almost sure convergence

$$P(\omega \in \Omega: \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1$$

* Strong Law of Large Numbers

$$S_n := \sum_{i=1}^n X_i$$
 then $\frac{S_n}{n} \to \mu$ a.s.

- Interchanging limits and expectation
 - \star Suppose $X_n\to X$ then when $\lim_{n\to\infty} E[X_n]$ equal to $E[\lim_{n\to\infty} X_n]=E[X]$
 - Counterexample where this doesn't work
 - · $U \sim U(0,1)$ and $X_n = n1_{\{U < 1/n\}}$
 - \star for when we can swap the expressions above; or limit and expectation:
 - Monotone Convergence Theorem
 - Dominated Convergence Theorem