Performance Report

Nikhil Barhate and Sriranga Kalkunte Ramaswamy

CSCI 5673 Distributed Systems programming assignment 2

Performance figures

	Number of buyer instances	Number of seller instances	Response time (ms)	Throughput (requests / sec)
1	1	1	7.3157	146
2	10	10	46.4196	21
3	100	100	-	-

Explanation

The system seems to be very inefficient and its performance seems to degrade with the increase in number of client instances. The server crashes even at a modest load of 20 to 30 instances.

Comparison between assignment 1 and 2

The system seems to have degraded in performance as compared to the system built using TCP-IP sockets. This might be because of several reasons.

- A. Overhead: The model from PA1 has very little overhead as compared to this. The RPC-based approaches (REST and gRPC) have additional overheads such as serialization/deserialization, protocol overhead, and network latency, which could add up and impact performance.
- B. The RPCs are built on top of TCP sockets, so if the payload size is relatively small, which it is in this case, the additional overhead of the RPC-based approaches might outweigh the benefits of using them. Sockets might be more efficient for small payloads, especially if the communication is local.
- C. Sockets are more efficient for concurrent requests while RPCs are better suited for asynchronous communication.