Advanced NLP Assignment Report

Patil Anirudha Vivek (22234)

September 17, 2025

1 For RNN

1.1 Classification Report

Table 1: Classification Report for the Simple RNN Model

Class	Precision	Recall	F1-Score	Support
Neutral	0.23	0.12	0.16	592
Positive	0.29	0.17	0.21	1041
Extremely Negative	0.12	0.06	0.08	619
Negative	0.26	0.62	0.36	947
Extremely Positive	0.23	0.12	0.15	599
Accuracy			0.25	3798
Macro Avg	0.23	0.22	0.19	3798
Weighted Avg	0.23	0.25	0.21	3798

Final Test Accuracy: 0.2462

1.2 Inference

The RNN model has failed to learn any meaningful patterns, a behavior known as model collapse. It has adopted a simplistic strategy of predicting the "Negative" class for nearly every input. This is clearly evidenced by three key metrics in the report:

- The recall for the "Negative" class is exceptionally high, showing it correctly identifies all true "Negative" samples by guessing "Negative" every time.
- The recall for all other classes is extremely low, indicating the model completely fails to identify any other sentiment.
- The final accuracy of ~25% is not a measure of success, but simply reflects the baseline frequency of the "Negative" class in the test data.

This outcome is a classic symptom of the vanishing gradient problem in Simple RNNs, which prevents the model from learning complex relationships within the text.

2 For LSTM

2.1 Classification Report

Table 2: Classification Report for the LSTM Model

Class	Precision	Recall	F1-Score	Support
Neutral	0.73	0.66	0.69	592
Positive	0.66	0.67	0.67	1041
Extremely Negative	0.82	0.77	0.79	619
Negative	0.66	0.72	0.69	947
Extremely Positive	0.76	0.75	0.76	599
Accuracy			0.71	3798
Macro Avg	0.73	0.71	0.72	3798
Weighted Avg	0.71	0.71	0.71	3798

Final Test Accuracy: 0.7098

2.2 Inference

The report indicates that the model has successfully learned to differentiate between all five sentiment classes, showing a deep understanding of the text data with an accuracy of 70%.

- Balanced Performance: The model provides consistently strong and balanced F1-scores across all categories, ranging from 0.67 to an impressive 0.79. This proves it is not ignoring any single class and is making nuanced predictions.
- Architectural Success: This successful outcome is due to the LSTM's architecture. Its internal gating mechanisms allowed it to capture longer-range dependencies and contextual information within the tweet data, a task where simpler recurrent models often fail.
- **Signal Detection:** The model shows a particular strength in identifying high-intensity sentiment, achieving its best F1-score of 0.79 on the "Extremely Negative" category.

3 For Transformer

3.1 Classification Report

Final Test Accuracy: 0.7133

3.2 Inference

The Transformer model has proven to be a highly effective and robust classifier for this sentiment analysis task, achieving a final test accuracy of 71.3%. The classification report reveals two key strengths:

Table 3: Classification Report for the Transformer Model

Class	Precision	Recall	F1-Score	Support
Neutral	0.73	0.70	0.71	592
Positive	0.65	0.69	0.67	1041
Extremely Negative	0.80	0.80	0.80	619
Negative	0.68	0.65	0.67	947
Extremely Positive	0.77	0.76	0.77	599
Accuracy			0.71	3798
Macro Avg	0.73	0.72	0.72	3798
Weighted Avg	0.71	0.71	0.71	3798

- Balanced Multi-Class Performance: The model successfully learned to distinguish between all five distinct sentiment categories. This is evidenced by the strong and consistent F1-scores across all classes, ranging from 0.67 to a high of 0.80.
- Strong Signal Detection: The model demonstrates a particular aptitude for identifying clear sentiment, achieving its best performance on the "Extremely Negative" (0.80 F1-score) and "Extremely Positive" (0.77 F1-score) categories.

Overall, the results indicate that the Transformer architecture successfully captured the complex contextual nuances within the text data to make accurate and reliable predictions.