Optimal transportation and pressure at zero temperature

Jairo K. Mengue

Universidade Federal do Rio Grande do Sul

February 3, 2025

Abstract

Given two compact metric spaces X and Y, a Lipschitz continuous cost function c on $X \times Y$ and two probabilities $\mu \in \mathcal{P}(X)$, $\nu \in \mathcal{P}(Y)$, we propose to study the Monge-Kantorovich problem and its duality from a zero temperature limit of a convex pressure function. We consider the entropy defined by $H(\pi) = -D_{KL}(\pi|\mu \times \nu)$, where D_{KL} is the Kullback-Leibler divergence, and then the pressure defined by the variational principle

$$P(\beta A) = \sup_{\pi \in \Pi(\mu,\nu)} \left[\int \beta A \, d\pi + H(\pi) \right],$$

where $\beta>0$ and A=-c. We will show that it admits a dual formulation and when $\beta\to+\infty$ we recover the solution for the usual Monge-Kantorovich problem and its Kantorovich duality. Such approach is similar to one which is well known in Thermodynamic Formalism and Ergodic Optimization, where β is interpreted as the inverse of the temperature $(\beta=\frac{1}{T})$ and $\beta\to+\infty$ is interpreted as a zero temperature limit.

Key words and phrases:

Monge-Kantorovich problem, Kantorovich duality, Kullback-Leibler divergence, Entropy, Pressure.

2020 Mathematics Subject Classification:

Primary: 37A50, 28A33, 28D20, 46E27, 60B10, 60F10, 47H10.

1 Introduction

We consider two compact metric spaces (X, d_X) , (Y, d_Y) and the product space $X \times Y$ with the metric $d_X + d_Y$. We consider also the Borel sigma algebra over each space and two probabilities, $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$ such that $\operatorname{supp}(\mu) = X$ and $\operatorname{supp}(\nu) = Y$. A probability $\pi \in \mathcal{P}(X \times Y)$ will be called a transference plan if it has x-marginal μ and y-marginal ν , that is,

$$\int f(x) d\pi(x,y) = \int f(x) d\mu(x)$$
 and $\int g(y) d\pi(x,y) = \int g(y) d\nu(y)$

for any $f \in C(X)$ and $g \in C(Y)$. We denote by $\Pi(\mu, \nu)$ the set of transference plans. Let $c: X \times Y \to \mathbb{R}$ be a Lipschitz continuous function (a cost function) and consider the problem of to find the number

$$\alpha(c) = \min_{\pi \in \Pi(\mu, \nu)} \int c(x, y) \, d\pi$$

and an optimal transference plan (Monge-Kantorovich problem).

A classical result concerning such variational principle is Kantorovich Duality: Let $\Phi_c := \{(\varphi, \psi) \in C(X) \times C(Y) \mid c(x, y) \geq \varphi(x) + \psi(y) \, \forall x, y\}$, then

$$\min_{\pi \in \Pi(\mu,\nu)} \int c(x,y) \, d\pi = \sup_{(\varphi,\psi) \in \Phi_c} \int \varphi(x) \, d\mu(x) + \int \psi(y) \, d\nu(y).$$

Such duality can be formulated in a broader sense (instead compact spaces and Lipschitz functions) and in [14, 15] can be found a general exposition of the optimal transportation theory. Anyway we remark that for any $p \ge 1$, if X = Y and the cost function is of the form $c(x, y) = [d(x, y)]^p$ then c is Lipschitz continuos.

As the set $\Pi(\mu, \nu)$ is convex and the map $\pi \mapsto \int c(x, y) d\pi$ is affine, the Monge-Kantorovich problem can be interpreted as a variational principle in convex analysis. In the present work we propose to consider the Kullback-Leibler divergence and relative entropy and then a different variational principle with introduction of such entropy (which we call the positive temperature approach). Furthermore, we will recover a solution of the Monge-Kantorovich problem and Kantorovich dual problem as a zero temperature limit, similarly as occur in Thermodynamic Formalism and Ergodic Optimization (see [1]). We believe that section 2 of [11] also helps to clarify our strategy.

If η and ρ are probabilities on a same measurable space, the Kullback-Leibler divergence is known as

$$D_{KL}(\eta|\rho) := \begin{cases} \int \log(\frac{d\eta}{d\rho}) \, d\eta & \text{if } \eta \ll \rho \\ \\ +\infty & \text{if } \eta \text{ is not absolutely continuous} \end{cases},$$
with respect to ρ

where $\frac{d\eta}{da}$ denotes the Radon-Nikodym derivative.

Following [8] we define the entropy of a probability $\eta \in \mathcal{P}(X \times Y)$ relative to $\mu \in \mathcal{P}(X)$ by $H^{\mu}(\eta) = -D_{KL}(\eta \mid \mu \times \rho)$, where ρ is the y-marginal of η . We refer [8] for additional results and characterization of H^{μ} . In [8, 9, 10, 11] can be found such entropy in the context of Ruelle Operator and a variational principle of the pressure, which is defined from a dynamical system or an iterated function system (IFS).

Supposing $\pi \in \Pi(\mu, \nu)$ we have $H(\pi) := H^{\mu}(\pi) = -D_{KL}(\pi \mid \mu \times \nu)$. In the present work, using such entropy $H(\pi)$, we introduce the following definition of pressure:

$$P(A) = \sup_{\pi \in \Pi(\mu,\nu)} \left[\int A \, d\pi + H(\pi) \right],$$

where $A: X \times Y \to \mathbb{R}$ is continuous. Let us consider the problem of to find a transference plan which attains the supremum for P (an equilibrium). In [7,

9, 10] appear some duality results for variational principles in different settings which consider a mixing of transport theory and ergodic theory. In such works it is considered a dynamic or IFS, but the pressure P(A) above defined does not consider any dynamic. Anyway, in [2] and its correction [3] there is a study of a general concept of pressure (without a dynamic) in convex analysis, being possible to check that it contains P(A) as an example.

Our goal is to prove the following theorem.

Theorem 1.1. Under above setting, writing A = -c and considering $\beta > 0$: 1- there is a pair of functions $\varphi_{\beta} \in C(X)$ and $\psi_{\beta} \in C(Y)$ such that

$$\int e^{\beta A(x,y) + \varphi_{\beta}(x) + \psi_{\beta}(y)} d\mu(x) = 1 \,\forall y \in Y \quad and \quad \int e^{A(x,y) + \varphi_{\beta}(x) + \psi_{\beta}(y)} d\nu(y) = 1 \,\forall x \in X.$$

Such functions are unique in the following sense: if $(\tilde{\phi}_{\beta}, \tilde{\psi}_{\beta})$ is another pair, then there is a constant d_{β} such that $\tilde{\phi}_{\beta} = \phi_{\beta} + d_{\beta}$ and $\tilde{\psi}_{\beta} = \psi_{\beta} - d_{\beta}$. Furthermore, these functions are Lipschitz continuous and satisfies $\text{Lip}(\varphi_{\beta}) \leq \beta \text{Lip}(A)$ and $\text{Lip}(\psi_{\beta}) \leq \beta \text{Lip}(A)$.

2 - The probability $d\pi_{\beta} := e^{\beta A + \varphi_{\beta} + \psi_{\beta}} d\mu d\nu$ belongs to $\Pi(\mu, \nu)$. Furthermore,

$$P(\beta A) = \int \beta A \, d\pi_{\beta} + H(\pi_{\beta}) = -\int \varphi_{\beta} \, d\mu_{\beta} - \int \psi_{\beta} \, d\nu_{\beta}.$$

3 - The family of functions $(\frac{\varphi_{\beta}}{\beta})_{\beta>0}$ and $(\frac{\psi_{\beta}}{\beta})_{\beta>0}$ are equicontinuous and we can suppose uniformly bounded. Any uniform limit (φ, ψ) of $(\frac{\varphi_{\beta}}{\beta}, \frac{\psi_{\beta}}{\beta})$ as $\beta \to +\infty$ is a solution of the Kantorovich dual problem, that is, it belongs to Φ_c , also verifying $\alpha(c) = \int \varphi(x) d\mu(x) + \int \psi(y) d\nu(y)$. Any weak* limit π of π_{β} as $\beta \to +\infty$ is a solution of the Monge-Kantorovich problem, that is, it belongs to $\Pi(\mu, \nu)$ and satisfies $\int c d\pi = \alpha(c)$.

For compact metric spaces, the Kantorovich-Rubinstein Theorem claims (see Thm. 1.14 in [15]) that under the case X = Y and c(x,y) = d(x,y) (distance function) we have

$$\alpha(c) = \sup_{\text{Lip}(\varphi) \le 1} \int \varphi \, d(\mu - \nu).$$

As a corollary of above theorem we get a solution on the Kantorovich-Rubinstein dual problem.

Corollary 1.2. Considering the hypotheses and notations of Theorem 1.1 and supposing X = Y and c(x,y) = d(x,y), any uniform limit φ of $\frac{\varphi_{\beta}}{\beta}$ as $\beta \to +\infty$ is a solution of the Kantorovich-Rubinstein dual problem, that is, $\text{Lip}(\varphi) \leq 1$ and $\alpha(c) = \int \varphi d(\mu - \nu)$.

Concerning the velocity of convergence of π_{β} to the optimal transference plan π , we study if it satisfies a Large Deviation Principle (see [6]).

Proposition 1.3. Under the setting of Theorem 1.1, supposing there exist the uniform limits $\varphi = \lim_{\beta \to +\infty} \frac{\varphi_{\beta}}{\beta}$, $\psi = \lim_{\beta \to +\infty} \frac{\psi_{\beta}}{\beta}$ and the weak* limit $\pi = \lim_{\beta \to +\infty} \pi_{\beta}$ we have that (π_{β}) satisfies a large deviation principle with rate function $I(x,y) = c(x,y) - \varphi(x) - \psi(y)$.

Naturally we can ask if known results of Thermodynamic Formalism and Ergodic Optimization could be translated to Transport Theory. Let us denote, for A = -c,

$$m(A) := \sup_{\pi \in \Pi(\mu, \nu)} \int A \, d\pi = -\alpha(c);$$

$$\mathcal{M}_{max}(A) := \{ \pi \in \Pi(\mu, \nu) \mid \int A \, d\pi = m(A) \};$$

$$H_{max} := \sup_{\pi \in \mathcal{M}_{max}(A)} H(\pi)$$

(we can have $H_{\text{max}} = -\infty$). $\mathcal{M}_{max}(A)$ is the set of optimal plans to c and H_{max} is the biggest of the entropies of optimal plans. Next proposition is similar to a well know result in Thermodynamic Formalism (see [5]). It presents a characterization of the possible limits of π_{β} using the entropy H.

Proposition 1.4. Under above setting, with A = -c, the function

$$\beta \mapsto [P(\beta A) - \beta m(A)], \ \beta > 0$$

is non-increasing and $\lim_{\beta\to+\infty} P(\beta A) - \beta m(A) = H_{\text{max}}$. Furthermore, any accumulation point for π_{β} as $\beta \to +\infty$ has a maximal entropy H over optimal plans, that is, if π_{∞} is an accumulation point of π_{β} as $\beta \to +\infty$, then $\pi_{\infty} \in \mathcal{M}_{max}(A)$ and $H_{\text{max}} = H(\pi_{\infty})$ (which can be $-\infty$).

2 Basic properties of entropy and pressure

We remember that the entropy of a probability $\eta \in \mathcal{P}(X \times Y)$ relative to $\mu \in \mathcal{P}(X)$ was defined as $H^{\mu}(\eta) = -D_{KL}(\eta \mid \mu \times \rho)$, where ρ is the y-marginal of π . From Theorems 4.4 and 5.1 of [8] we get

$$H^{\mu}(\eta) = -\sup\{\int u(x,y)d\eta \mid \int e^{u(x,y)}d\mu(x) = 1 \,\forall y, \, u \, \text{Lipschitz}\}.$$

If $\pi \in \Pi(\mu, \nu)$ then ν is the y-marginal of π and we get

$$H(\pi) := -D_{KL}(\pi \mid \mu \times \nu) = -\sup\{\int u \, d\pi \mid \int e^{u(x,y)} d\mu(x) = 1 \, \forall y, \ u \text{ Lipschitz}\}.$$
 (1)

Proposition 2.1. Properties of the entropy H on $\Pi(\mu, \nu)$:

- 1. $H \le 0$ and $H(\mu \times \nu) = 0$;
- 2. H is a concave function;
- 3. H is upper semi-continuous, that is, if π_n converges to π in the weak* topology, then $\limsup_n H(\pi_n) \leq H(\pi)$.

Proof. Let us denote by $N = \{u : X \times Y \to \mathbb{R} \mid \int e^{u(x,y)} d\mu(x) = 1 \,\forall y, \ u \text{ Lipschitz} \}.$ We have, $H(\pi) = \inf_{u \in N} [-\int u \, d\pi].$

- 1. If we consider u = 0 we get $u \in N$ and then $H(\pi) \leq 0$. On the other hand, $H(\mu \times \nu) = -D_{KL}(\mu \times \nu | \mu \times \nu) = 0$.
 - 2. For $\pi_1, \pi_2 \in \Pi(\mu, \nu)$ and $\lambda \in [0, 1]$, if $\pi = \lambda \pi_1 + (1 \lambda)\pi_2$ we have

$$H(\pi) = \inf_{u \in N} [-\lambda \int u d\pi_1 - (1 - \lambda) \int u d\pi_2]$$

$$\geq \inf_{u_1 \in N} [-\lambda \int u_1 d\pi_1] + \inf_{u_2 \in N} [-(1 - \lambda) \int u_2 d\pi_2]$$

$$= \lambda H(\pi_1) + (1 - \lambda) H(\pi_2).$$

- 3. It suppose that $\pi_n \to \pi$ in the weak* topology.
- If $H(\pi) = -\infty$ then for each k < 0 there is $u \in N$ such that $-\int u \, d\pi \le k$. As $\pi_n \to \pi$, for sufficiently large n we get $-\int u \, d\pi_n \le k + 1$, that is, $H(\pi_n) \le k + 1$. Consequently $\limsup_n H(\pi_n) \le k + 1$. As k is arbitrary, $\limsup_n H(\pi_n) = -\infty$.
- If $H(\pi) > -\infty$, for each $\epsilon > 0$ there is $u \in N$ such that $-\int u \, d\pi \leq H(\pi) + \epsilon$. For sufficiently large n we get $-\int u \, d\pi_n \leq -\int u \, d\pi + \epsilon$, that is, $H(\pi_n) \leq H(\pi) + 2\epsilon$. As ϵ is arbitrary we get $\limsup_n H(\pi_n) \leq H(\pi)$.

Example 2.2. The entropy H is not affine (see also Example 2.4 in [10]).

Suppose $X = \{1, 2\}$, $Y = \{1, 2\}$ $\mu = (1/2, 1/2)$, $\nu = (1/2, 1/2)$ and consider the following probabilities in $\{1, 2\} \times \{1, 2\}$:

$$\pi_1 = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}, \ \pi_2 = \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix}, \ \pi = \begin{pmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{pmatrix}.$$

We have that $\pi, \pi_1, \pi_2 \in \Pi(\mu, \nu)$, $\pi = \frac{1}{2}\pi_1 + \frac{1}{2}\pi_2$, but $H(\pi) = 0$ while $H(\pi_1) = H(\pi_2) = -\log(2)$ (consequently $H(\pi) \neq \frac{1}{2}H(\pi_1) + \frac{1}{2}H(\pi_2)$). Indeed, $\pi = \mu \times \nu$ and then $H(\pi) = 0$. On the other hand, as $X \times Y$ is a finite set, $\pi_1 \ll \mu \times \nu$ and its Radon-Nikodym derivative satisfies (a.e.)

$$\frac{d(\pi_1)}{d(\mu \times \nu)} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} =: J_1.$$

We can conclude this, observing that, for any $f:\{1,2\}\times\{1,2\}\to\mathbb{R}$, we have

$$\int f \, d\pi_1 = f(1,1) \cdot \frac{1}{2} + f(2,2) \cdot \frac{1}{2} = \sum_{i,j} f(i,j) \cdot J_1(i,j) \cdot \frac{1}{4} = \int f \cdot J_1 \, d(\mu \times \nu).$$

Consequently $H(\pi_1) = -\int \log(\frac{d(\pi_1)}{d(\mu \times \nu)}) d\pi_1 = -\log(2)$. Similarly $H(\pi_2) = -\log(2)$.

Notation 2.3. If Z is a compact metric space, let us denote the supremum norm on C(Z) by $|f|_{\infty} := \sup_{z \in Z} |f(z)|$.

Next proposition particularly shows that the pressure in the present work is contained in the definition of pressure in [2] and its correction [3].

Proposition 2.4. Properties of the pressure

For any $A, B \in C(X \times Y)$, $c \in \mathbb{R}$ and $\lambda \in [0, 1]$ we have:

- 1. Image: $P(A) \in [\min(A), \max(A)]$;
- 2. monotonicity: $A \leq B \Rightarrow P(A) \leq P(B)$;
- 3. translation invariance: P(A+c) = P(A) + c;
- 4. convexity: $P(\lambda A + (1 \lambda)B) \le \lambda P(A) + (1 \lambda)P(B)$;
- 5. continuity: $|P(A) P(B)| \le |A B|_{\infty}$.

Proof. 1. Considering $\pi = \mu \times \nu$ we get

$$P(A) \ge \iint A d\mu d\nu + H(\mu \times \nu) = \iint A d\mu d\nu \ge \min(A).$$

on the other hand, as $H \leq 0$, for any $\pi \in \Pi(\mu, \nu)$ we have

$$\int A d\pi + H(\pi) \le \int A d\pi \le \max(A)$$

and consequently $P(A) \leq \max(A)$.

2. and 3.: it is an immediate consequence of the definition. 4.

$$P(\lambda A + (1 - \lambda)B) = \sup_{\pi} [\lambda \int A \, d\pi + (1 - \lambda) \int B \, d\pi + \lambda H(\pi) + (1 - \lambda)H(\pi)]$$

$$\leq \sup_{\pi_1} [\lambda (\int A \, d\pi_1 + H(\pi_1))] + \sup_{\pi_2} [(1 - \lambda)(\int B \, d\pi_2 + H(\pi_2))]$$

$$= \lambda P(A) + (1 - \lambda)P(B).$$

5. Supposing $P(A) \geq P(B)$ we get

$$P(A) - P(B) = \left[\sup_{\pi_1} \int A \, d\pi_1 + H(\pi_1)\right] - \left[\sup_{\pi_2} \int B \, d\pi_2 + H(\pi_2)\right]$$

$$\leq \left[\sup_{\pi_1} \int B \, d\pi_1 + H(\pi_1) + |A - B|_{\infty}\right] - \left[\sup_{\pi_2} \int B \, d\pi_2 + H(\pi_2)\right]$$

$$= |A - B|_{\infty}.$$

The set $\Pi(\mu, \nu)$ is convex and we say that $\pi \in \Pi(\mu, \nu)$ is a vertex of $\Pi(\mu, \nu)$ if there is not $\pi_1, \pi_2 \in \Pi(\mu, \nu)$ and $\lambda \in (0, 1)$ such that $\pi = \lambda \pi_1 + (1 - \lambda)\pi_2$.

Proposition 2.5. For each $A \in C(X \times Y)$ there is at least one probability $\pi \in \Pi(\mu, \nu)$ such that $P(A) = \int A d\pi + H(\pi)$. It is possible that none of the vertices of $\Pi(\mu, \nu)$ reaches the supremum defining P(A).

Proof. By definition of supremum, for each n there is a probability $\pi_n \in \Pi(\mu, \nu)$ such that

$$\int A d\pi_n + H(\pi_n) \ge P(A) - \frac{1}{n}.$$

As $X \times Y$ is compact there exists a probability π and a subsequence (π_{n_j}) of (π_n) such that $\pi_{n_j} \to \pi$ in the weak* topology. We have $\pi \in \Pi(\mu, \nu)$ and as H is upper semi-continuous we get

$$\int A d\pi + H(\pi) \ge \limsup_{n_j} \left[\int A d\pi_{n_j} + H(\pi_{n_j}) \right] = P(A).$$

As the reverse inequality is consequence of the definition of P we get the equality.

Let us present an example where the optimal π is unique but it is not a vertex. Consider $X = \{1, 2\}, Y = \{1, 2\}$ $\mu = (1/2, 1/2), \nu = (1/2, 1/2)$ and the probabilities

$$\pi_1 = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}, \ \pi_2 = \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix}, \ \pi_3 = \begin{pmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{pmatrix}.$$

The vertices of $\Pi(\mu, \nu)$ are just the probabilities π_1 and π_2 . Following Example 2.2, for A=0 we get that $P(A)=\sup_{\pi\in\Pi(\mu,\nu)}H(\pi)=0=\int A\,d\pi_3+H(\pi_3)$. On the other hand, $\int A\,d\pi_1+H(\pi_1)=-\log(2)=\int A\,d\pi_2+H(\pi_2)$. More generally if A is approximately zero the vertices π_1 and π_2 are not optimal for the pressure.

3 Proof of Theorem 1.1

3.1 Proof of item 1

We can drop β in the proof of item 1.

Proposition 3.1. There is a pair of functions $\varphi \in C(X)$ and $\psi \in C(Y)$ such that

$$\int e^{A(x,y)+\varphi(x)+\psi(y)}d\mu(x) = 1 \,\forall y \in Y \quad and \quad \int e^{A(x,y)+\varphi(x)+\psi(y)}d\nu(y) = 1 \,\forall x \in X.$$

Remark 3.2. If X = Y is a finite set and $\mu = \nu$ is the probability with uniform distribution, we are constructing a double stochastic matrix and such proposition can be found in [12, 13].

The proof of this proposition follows some ideas of [4] (see also [11]).

Proof. For each 0 < s < 1, we define $T_u^s : C(X) \to C(Y)$ by

$$T_{\mu}^{s}(f)(y) = -\log \int_{X} e^{A(x,y)+sf(x)} d\mu(x)$$

and $T_{\nu}^{s}:C(Y)\to C(X)$ by

$$T_{\nu}^{s}(g)(x) = -\log \int_{Y} e^{A(x,y) + sg(y)} d\nu(y).$$

We have

$$|T_{\mu}^{s}(f_{1}) - T_{\mu}^{s}(f_{2})|_{\infty} = \sup_{y} |\log \int_{X} e^{A(x,y) + sf_{1}(x)} d\mu(x) - \log \int_{X} e^{A(x,y) + sf_{2}(x)} d\mu(x)|$$

$$< s|f_{1} - f_{2}|_{\infty}$$

and analogously $|T_{\nu}^{s}(g_{1}) - T_{\nu}^{s}(g_{2})|_{\infty} \leq s|g_{1} - g_{2}|_{\infty}$. It follows that $T_{\nu}^{s} \circ T_{\mu}^{s}$ is a contraction on C(X) and $T_{\mu}^{s} \circ T_{\nu}^{s}$ is a contraction on C(Y) for the supremum norm. Consequently they have unique fixed points φ^{s} and ψ^{s} , respectively.

We claim that $T^s_{\mu}(\varphi^s) = \psi^s$ and $T^s_{\nu}(\psi^s) = \varphi^s$. Indeed, denoting $g^s := T^s_{\mu}(\varphi^s)$ we get $T^s_{\mu} \circ T^s_{\nu}(g^s) = T^s_{\mu} \circ T^s_{\nu} \circ T^s_{\mu}(\varphi^s) = T^s_{\mu}(\varphi^s) = g^s$. As ψ^s is the unique fixed point of $T^s_{\mu} \circ T^s_{\nu}$ we conclude that $g^s = \psi^s$ and then $\psi^s = T^s_{\mu}(\varphi^s)$. Furthermore $T^s_{\nu}(\psi^s) = T^s_{\nu}(T^s_{\mu}(\varphi^s)) = \varphi^s$.

We claim that for any $s \in (0,1)$, the functions φ^s and ψ^s are Lipschitz continuous, with $\text{Lip}(\varphi^s) \leq \text{Lip}(A)$ and $\text{Lip}(\psi^s) \leq \text{Lip}(A)$. Indeed, for any $x_1, x_2 \in X$ we have

$$\varphi^{s}(x_{1}) = -\log \int e^{A(x_{1},y)+s\psi^{s}(y)} d\nu(y) = -\log \int e^{A(x_{2},y)-A(x_{2},y)+A(x_{1},y)+s\psi^{s}(y)} d\nu(y)$$

$$\leq -\log \int e^{A(x_{2},y)-\text{Lip}(A)\cdot d(x_{1},x_{2})+s\psi^{s}(y)} d\nu(y)$$

$$= -\log \int e^{A(x_{2},y)+s\psi^{s}(y)} d\nu(y) + \text{Lip}(A)\cdot d(x_{1},x_{2})$$

$$= \varphi^{s}(x_{2}) + \text{Lip}(A)\cdot d(x_{1},x_{2})$$

It follows that $\frac{\varphi^s(x_1)-\varphi^s(x_2)}{d(x_1,x_2)} \leq \operatorname{Lip}(A)$ for any $x_1,x_2 \in X$. Analogously we can obtain that $\operatorname{Lip}(\psi^s) \leq \operatorname{Lip}(A)$.

We have that $-\operatorname{Lip}(A) \cdot \operatorname{diam}(X) \leq \varphi^s - \max(\varphi^s) \leq 0$ and then the family $(\varphi^s - \max(\varphi^s))_{0 < s < 1}$ is equicontinuous and uniformly bounded and similarly to $(\psi^s - \max(\psi^s))_{0 < s < 1}$. Before to apply Arzelà-Ascoli theorem, let us to consider the numbers $\max(\psi^s) + s \max(\varphi^s)$.

We claim that

$$-\max(A) \le \max(\psi^s) + s\max(\varphi^s) \le lip(A) \cdot diam(X) - \min(A).$$

Indeed, for any $y \in Y$ we have $e^{-\psi^s(y)} = \int e^{A(x,y)+s\varphi^s(x)} d\mu(x)$ and then $-\psi^s(y) \le \max(A) + s \max(\varphi^s)$. Consequently $-\max(A) \le \max(\psi^s) + s \max(\varphi^s)$. On the other hand,

$$-\psi^{s}(y) \ge \min(A) + s\min(\varphi^{s}) \ge \min(A) + s\max(\varphi^{s}) - s\operatorname{Lip}(A) \cdot diam(X)$$

and then $-\min(A) + \operatorname{Lip}(A) \cdot \operatorname{diam}(X) \ge \max(\psi^s) + s \max(\varphi^s)$. This concludes the proof of the claim.

With similar arguments we conclude that $\max(\varphi^s) + s \max(\psi^s)$ is bounded. Therefore, there exist an increasing sequence of positive numbers s_n which converges to 1, real numbers l_1 , l_2 and functions $\varphi_{\beta} \in C(X)$ and $\psi_{\beta} \in C(Y)$ such that $\max(\psi^{s_n}) + s_n \max(\varphi^{s_n}) \to l_1$, $\max(\varphi^{s_n}) + s_n \max(\psi^{s_n}) \to l_2$, $\varphi^{s_n} - \max(\varphi^{s_n}) \to \varphi$ (uniformly) and $\psi^{s_n} - \max(\psi^{s_n}) \to \psi$ (uniformly). Particularly we get $\max(\varphi_{\beta}) = \max(\psi_{\beta}) = 0$, $\operatorname{Lip}(\varphi) \leq \operatorname{Lip}(A)$ and $\operatorname{Lip}(\psi) \leq \operatorname{Lip}(A)$.

We have,

$$e^{-\psi(y)} = \lim_{n} e^{-\psi^{s_n}(y) + \max(\psi^{s_n})} = \lim_{n} \int e^{A(x,y) + s_n \varphi^{s_n}(x)} d\mu(x) e^{\max(\psi^{s_n})}$$

$$= \lim_{n} \int e^{A(x,y) + s_n(\varphi^{s_n}(x) - \max(\varphi^{s_n}))} d\mu(x) e^{\max(\psi^{s_n}) + s_n \max(\varphi^{s_n})}$$

$$= \int e^{A(x,y) + \varphi(x)} d\mu(x) \cdot e^{l_1}.$$

Consequently

$$\int e^{A(x,y)+\varphi(x)+\psi(y)+l_1} d\mu(x) = 1 \ \forall y.$$

With similar computations we get

$$\int e^{A(x,y)+\varphi(x)+\psi(y)+l_2} d\nu(y) = 1 \ \forall x.$$

Applying Fubini's Theorem we can conclude that

$$\iint e^{A(x,y)+\varphi(x)+\psi(y)+l_1} d\nu(y) d\mu(x) = 1 = \iint e^{A(x,y)+\varphi(x)+\psi(y)+l_2} d\nu(y) d\mu(x).$$

Then $l_1 = l_2$. Finally, replacing ψ by $\psi + l$ where $l := l_1 = l_2$ we complete the proof. As a final remark, observe that by construction, the number l satisfies

$$-\max(A) \le l \le lip(A) \cdot diam(X) - \min(A) \tag{2}$$

The proof of next proposition follows ideas of [12, 13].

Proposition 3.3. Suppose there are two pair of continuous functions (φ_1, ψ_1) , (φ_2, ψ_2) such that

$$\int e^{A(x,y)+\varphi_i(x)+\psi_i(y)} d\mu(x) = 1 \,\forall y \in Y \quad and \quad \int e^{A(x,y)+\varphi_i(x)+\psi_i(y)} d\nu(y) = 1 \,\forall x \in Y. \quad (3)$$

Then there is a constant d such that $\varphi_2 = \varphi_1 + d$ and $\psi_2 = \psi_1 - d$.

Proof. Let
$$p(x) = \varphi_2(x) - \varphi_1(x)$$
 and $q(y) = \psi_2(y) - \psi_1(y)$. We have
$$\int e^{A(x,y) + \varphi_1(x) + p(x) + \psi_1(y) + q(y)} d\mu(x) = 1 \,\forall y \in Y \tag{4}$$

and

$$\int e^{A(x,y)+\varphi_1(x)+p(x)+\psi_1(y)+q(y)} d\nu(y) = 1 \,\forall x \in X. \tag{5}$$

Let us denote by x_0 and y_0 two points satisfying $p_0 := p(x_0) = \min_{x \in X} p(x)$ and $q_0 := q(y_0) = \max_{y \in Y} q(y)$. For any $y \in Y$ we have

$$e^{q(y)} \stackrel{(4)}{=} \frac{1}{\int e^{A(x,y) + \varphi_1(x) + p(x) + \psi_1(y)} d\mu(x)} \leq \frac{1}{e^{p_0} \int e^{A(x,y) + \varphi_1(x) + \psi_1(y)} d\mu(x)} \stackrel{(3)}{=} e^{-p_0}$$

and for any $x \in X$ we have

$$e^{p(x)} \stackrel{(5)}{=} \frac{1}{\int e^{A(x,y) + \varphi_1(x) + \psi_1(y) + q(y)} d\nu(y)} \ge \frac{1}{e^{q_0} \int e^{A(x,y) + \varphi_1(x) + \psi_1(y)} d\nu(y)} \stackrel{(3)}{=} e^{-q_0}.$$

It follows that $q(y) \leq -p_0$ and $p(x) \geq -q_0$ and then $-p_0 = q_0$.

Now we will prove that p is constant. Indeed, if $p(\tilde{x}) > p_0$ for some \tilde{x} , then, denoting by $\epsilon = \frac{p(\tilde{x}) - p_0}{2} > 0$, there exists $\delta > 0$ such that $p(x) - p_0 > \epsilon$ for all x in the ball $B(\tilde{x}, \delta)$. It follows that

$$1 \stackrel{(4)}{=} \int e^{A(x,y)+\varphi_1(x)+p(x)+\psi_1(y_0)+q_0} d\mu(x) \stackrel{q_0=-p_0}{=} \int e^{A(x,y)+\varphi_1(x)+\psi_1(y_0)} e^{p(x)-p_0} d\mu(x)$$

$$\geq \int e^{A(x,y)+\varphi_1(x)+\psi_1(y_0)} d\mu(x) + \int_{B(\tilde{x},\delta)} e^{A(x,y)+\varphi_1(x)+\psi_1(y_0)} (e^{\epsilon}-1) d\mu(x) \stackrel{(3)}{>} 1$$

This is a contradiction. Consequently $p(x) = p_0$ for any $x \in X$. Analogously we can show that q is constant. Finally as $q_0 = -p_0$ we get q = -p and the proof is complete.

3.2 Proof of item 2

Consider φ_{β} and ψ_{β} as defined in item 1. Then let us define the probability $\pi_{\beta} \in \mathcal{P}(X \times Y)$ by

$$\int u(x,y) d\pi_{\beta}(x,y) := \int e^{\beta A(x,y) + \varphi_{\beta}(x) + \psi_{\beta}(y)} u(x,y) d\mu(x) d\nu(y),$$

where $u \in C(X \times Y)$. We have then $d\pi_{\beta} := e^{\beta A + \varphi_{\beta} + \psi_{\beta}} d\mu d\nu$ and consequently $\pi_{\beta} \ll \mu \times \nu$ with Radon-Nikodym derivative $\frac{d\pi_{\beta}}{d(\mu \times \nu)} = e^{\beta A + \varphi_{\beta} + \psi_{\beta}}$. Observe that for any $f \in C(X)$, applying Fubini's Theorem, we have

$$\int f(x) d\pi(x,y) = \int e^{\beta A(x,y) + \varphi_{\beta}(x) + \psi_{\beta}(y)} f(x) d\mu(x) d\nu(y)$$
$$= \int e^{\beta A(x,y) + \varphi_{\beta}(x) + \psi_{\beta}(y)} d\nu(y) f(x) d\mu(x)$$
$$= \int 1 \cdot f(x) d\mu(x) = \int f(x) d\mu(x).$$

Analogously we have $\int g(y) d\pi(x,y) = \int g(y) d\nu(y) \, \forall g \in C(Y)$ and consequently $\pi_{\beta} \in \Pi(\mu,\nu)$.

By definition of entropy H, as $\frac{d\pi_{\beta}}{d(\mu \times \nu)} = e^{\beta A + \varphi_{\beta} + \psi_{\beta}}$ we have

$$H(\pi_{\beta}) = -\int \beta A + \varphi_{\beta} + \psi_{\beta} d\pi_{\beta} = -\int \beta A d\pi_{\beta} - \int \varphi_{\beta} d\mu - \int \psi_{\beta} d\nu$$

and then

$$\int \beta A \, d\pi_{\beta} + H(\pi_{\beta}) = -\int \varphi_{\beta} \, d\mu - \int \psi_{\beta} \, d\nu. \tag{6}$$

Let us show now that

$$P(\beta A) = \sup_{\pi \in \Pi(\mu,\nu)} \int \beta A \, d\pi + H(\pi) = -\int \varphi_{\beta} \, d\mu - \int \psi_{\beta} \, d\nu. \tag{7}$$

Let $\pi \in \Pi(\mu, \nu)$ be any transference plan. From equation (1) we have

$$H(\pi) = \inf\{-\int u(x,y)d\pi \mid \int e^{u(x,y)}d\mu(x) = 1 \,\forall y, \ u \, \text{Lipschitz}\}.$$

In this way $H(\pi) \leq -\int \beta A + \varphi_{\beta} + \psi_{\beta} d\pi$ and then, as $\pi \in \Pi(\mu, \nu)$,

$$\int \beta A \, d\pi + H(\pi) \le -\int \varphi_{\beta} \, d\mu - \int \psi_{\beta} \, d\nu.$$

This inequality combined with (6) concludes the proof of equation (7).

3.3 Proof of item 3

From item 1. we have $\operatorname{Lip}(\varphi_{\beta}) \leq \operatorname{Lip}(\beta A)$ and then $\operatorname{Lip}(\frac{\varphi_{\beta}}{\beta}) \leq \operatorname{Lip}(A)$. Analogously $\operatorname{Lip}(\frac{\psi_{\beta}}{\beta}) \leq \operatorname{Lip}(A)$. Furthermore, (following the proof of Proposition 3.1) we can suppose that $-\operatorname{Lip}(A)\operatorname{diam}(X) \leq \varphi_{\beta}/\beta \leq 0$ and $-\operatorname{Lip}(A)\operatorname{diam}(Y) + \frac{l_{\beta}}{\beta} \leq \psi_{\beta}/\beta \leq \frac{l_{\beta}}{\beta}$, where l_{β} satisfies (see equation (2))

$$-\beta \max(A) \le l_{\beta} \le \beta \operatorname{Lip}(A) \operatorname{diam}(X) - \beta \min(A).$$

From Arzelà-Ascoli Theorem, there exists an increasing sequence $\beta_n \to +\infty$ and Lipschitz functions φ and ψ such that $\frac{\varphi_{\beta_n}}{\beta_n}$ converges uniformly to φ and $\frac{\psi_{\beta_n}}{\beta_n}$ converges uniformly to ψ .

A proof of the following result can be found in [11].

Lemma 3.4. Let U, Z be compact metric spaces. Let $W_{\beta}: U \times Z \to \mathbb{R}$ be a family of measurable functions converging uniformly to a continuous function $W: U \times Z \to \mathbb{R}$, as $\beta \to +\infty$, and let ρ be a finite measure on U with $supp(\rho) = U$. Then

$$\frac{1}{\beta}\log \int_{U} e^{\beta W_{\beta}(u,z)} d\rho(u) \to \sup_{u \in U} W(u,z)$$

uniformly on Z, as $\beta \to +\infty$. The same is true if we replace β by a sequence β_n which converges to $+\infty$.

Using this lemma and taking $\lim_{\beta_n\to+\infty}\frac{1}{\beta_n}\log$ in both sides of the equations

$$\int e^{\beta A(x,y) + \varphi_\beta(x) + \psi_\beta(y)} d\mu(x) = 1 \, \forall y \in Y \ \text{ and } \ \int e^{\beta A(x,y) + \varphi_\beta(x) + \psi_\beta(y)} d\nu(y) = 1 \, \forall x \in X$$

we get

$$\sup_{x \in X} A(x,y) + \varphi(x) + \psi(y) = 0 \,\forall y \in Y \text{ and } \sup_{y \in Y} A(x,y) + \varphi(x) + \psi(y) = 0 \,\forall x \in X. \eqno(8)$$

Particularly $\sup_{x,y} A(x,y) + \varphi(x) + \psi(y) = 0$ and then, as A = -c we get $(\varphi, \psi) \in \Phi_c$. Furthermore, (φ, ψ) is a pair of conjugate c-concave functions (see [15] p. 33), that is,

$$\psi(y) = \inf_{x \in X} [c(x, y) - \varphi(x)] \,\forall y \in Y \text{ and } \varphi(x) = \inf_{y \in Y} [c(x, y) - \psi(y)] \,\forall x \in X.$$
 (9)

If π_{∞} is any limit of π_{β} in the weak* topology (as $\beta \to +\infty$), then clearly $\pi_{\infty} \in \Pi(\mu, \nu)$. Let us suppose that π_{∞} is a limit from a subsequence of β_n , which we also denote by β_n . Taking $\lim_{\beta_n \to +\infty} \frac{1}{\beta_n}(\cdot)$ in both sides of equation (6) and using that H is non-positive we get

$$\int A d\pi_{\infty} \ge - \int \varphi d\mu - \int \psi d\nu$$

and then (as A = -c)

$$\int c \, d\pi_{\infty} \le \int \varphi \, d\mu + \int \psi \, d\nu.$$

Consequently

$$\alpha(c) \le \int c \, d\pi_{\infty} \le \int \varphi \, d\mu + \int \psi \, d\nu \le \alpha(c)$$

(for the last inequality we use that for any $\pi \in \Pi(\mu, \nu)$ we have $\int \varphi d\mu + \int \psi d\nu \le \int c d\pi$, because $\varphi + \psi \le c$). Therefore $\alpha(c) = \int \varphi d\mu + \int \psi d\nu = \int c d\pi_{\infty}$. Particularly we conclude that any limit (φ, ψ) is an optimal dual pair.

On the other hand, if we start by considering π_{∞} as any limit of π_{β} , for example taking an increasing sequence β_m , then from such sequence we can take a subsequence (also denoted by β_m) and Lipschitz functions φ and ψ such that $\frac{\varphi_{\beta_m}}{\beta_m}$ converges uniformly to φ and $\frac{\psi_{\beta_m}}{\beta_m}$ converges uniformly to ψ . Finally, we can reply above computations to reach the same conclusion and then π_{∞} is an optimal transference plan.

4 Other proofs

4.1 Proof of Corollary 1.2

We follow the proof of item 3. of Theorem 1.1 and consider an increasing sequence $\beta_n \to +\infty$ and a function φ such that $\frac{\varphi_{\beta_n}}{\beta_n}$ converges uniformly to φ . We can take a subsequence of (β_n) also denoted by (β_n) such that $(\frac{\psi_{\beta_n}}{\beta_n})$ converges uniformly to a function ψ . We remark that $\text{Lip}(\varphi) \leq \text{Lip}(c)$ and $\text{Lip}(\psi) \leq \text{Lip}(c)$.

Supposing X = Y and c(x,y) = d(x,y) (distance function) we obtain from equation (9)

$$\psi(y) = \inf_{x \in X} [d(x, y) - \varphi(x)] \,\forall y \in Y \text{ and } \varphi(x) = \inf_{y \in Y} [d(x, y) - \psi(y)] \,\forall x \in X. \quad (10)$$

We remark that Lip(d) = 1. Indeed, for any $(x_1, y_1) \neq (x_2, y_2) \in X \times X$ we have

$$\frac{d(x_1, y_1) - d(x_2, y_2)}{d_{X \times Y}((x_1, y_1), (x_2, y_2))} = \frac{d(x_1, y_1) - d(x_2, y_2)}{d(x_1, x_2) + d(y_1, y_2)} \le \frac{d(x_1, x_2) + d(x_2, y_1) - d(x_2, y_2)}{d(x_1, x_2) + d(y_1, y_2)} \\
\le \frac{d(x_1, x_2) + d(y_1, y_2)}{d(x_1, x_2) + d(y_1, y_2)} = 1$$

and for $x_1 \neq x_2 = y_1 = y_2$ we reach the equality.

Let us show that $\psi = -\varphi$. Analyzing just the function ψ , as $\text{Lip}(\psi) \leq 1$ we get $\psi(y) - \psi(x) \le 1 \cdot d(x, y)$ for any x, y and consequently $-\psi(x) \le \inf_{y} [d(x, y) - \psi(y)]$. As (considering y = x in the infimum) $-\psi(x) \ge \inf_y [d(x,y) - \psi(y)]$ we conclude that $-\psi(x) = \inf_y [d(x,y) - \psi(y)] \stackrel{(10)}{=} \varphi(x)$. Applying item 3. of Theorem 1.1 we get

$$\alpha(d) = \alpha(c) = \int \varphi \, d\mu + \int \psi \, d\nu = \int \varphi \, d\mu - \int \varphi \, d\nu = \int \varphi \, d(\mu - \nu).$$

4.2 Proof of Proposition 1.3

We suppose that there exists the uniform limits $\varphi = \lim_{\beta \to +\infty} \frac{\varphi_{\beta}}{\beta}$, $\psi = \lim_{\beta \to +\infty} \frac{\psi_{\beta}}{\beta}$ and the weak* limit $\pi = \lim_{\beta \to +\infty} \pi_{\beta}$. We will show that π_{β} satisfies a large deviation principle with rate function $I(x,y) = c(x,y) - \varphi(x) - \psi(y)$.

Definition 4.1. Let $(\mu_{\beta})_{\beta>0}$ be a family of probabilities on a metric space Ω . We say that (μ_{β}) satisfy a large deviation principle (LDP) if there exists a lower semicontinuous rate function $I:\Omega\to[0,+\infty]$ such that

- 1. $\limsup_{\beta \to +\infty} \frac{1}{\beta} \log \mu_{\beta}(C) \leq -\inf_{\omega \in C} I(\omega)$, for any closed set $C \subset \Omega$; 2. $\liminf_{\beta \to +\infty} \frac{1}{\beta} \log \mu_{\beta}(U) \geq -\inf_{\omega \in U} I(\omega)$, for any open set $U \subset \Omega$.

We refer [6] for general results concerning large deviations. We will apply the following result in this section:

Lemma 4.2. Consider the family $(\pi_{\beta})_{\beta>0}$ of probabilities on $X\times Y$. Suppose that for any function $f \in C(X \times Y)$ there exists the limit

$$\Gamma(f) := \lim_{\beta \to \infty} \frac{1}{\beta} \log(\int e^{\beta f} d\pi_{\beta}).$$

Then (π_{β}) satisfies a LDP with rate function $I(x,y) = \sup_{x,y} [f(x,y) - \Gamma(f)]$. Furthermore,

$$\Gamma(f) = \sup_{x,y} [f(x,y) - I(x,y)], \,\forall f \in C(X \times Y). \tag{11}$$

Proof. See Theorem 4.4.2 in [6] (Bric's inverse Varadhan's Lemma).

Remark 4.3. Using continuous functions of the form

$$\delta_{(x_0,y_0)}^n(x,y) = \begin{cases} -n^2 \left[d(x,x_0) + d(y,y_0) \right] & \text{if } 0 \le d(x,x_0) + d(y,y_0) < 1/n \\ -n & \text{if } 1/n \le d(x,x_0) + d(y,y_0) \end{cases}$$

we can conclude that there is a unique lower semi-continuous function I satisfying equation (11).

Now we complete the proof of Proposition 1.3. We have, by definition of π_{β} (see item 2 of Theorem 1.1),

$$\Gamma(f) = \lim_{\beta \to \infty} \frac{1}{\beta} \log(\int e^{\beta A(x,y) + \varphi_{\beta}(x) + \psi_{\beta}(y) + \beta f(x,y)} d\mu(x) d\nu(y)).$$

From lemma 3.4 we conclude that $\Gamma(f) = \sup_{x,y} [A(x,y) + \varphi(x) + \psi(y) + f(x,y)]$. Consequently (π_{β}) satisfies a LDP with (a continuous) rate function $I(x,y) = c(x,y) - \varphi(x) - \psi(y)$.

4.3 Proof of Proposition 1.4

The proof below follows ideas present in [5].

Proof. Let π_{∞} be an accumulation probability measure of the family (π_{β}) in the weak* topology, as $\beta \to +\infty$. We know from Theorem 1.1 that $\pi_{\infty} \in M_{max}(A)$. We have, for $\epsilon > 0$,

$$P(\beta A) \ge \beta \int A \, d\pi_{\beta+\epsilon} + H(\pi_{\beta+\epsilon}) = (\beta + \epsilon) \int A \, d\pi_{\beta+\epsilon} + H(\pi_{\beta+\epsilon}) - \epsilon \int A \, d\pi_{\beta+\epsilon}$$
$$= P((\beta + \epsilon)A) - \epsilon \int A \, d\pi_{\beta+\epsilon}.$$

Then

$$P((\beta + \epsilon)A) \le P(\beta A) + \epsilon \int A d\pi_{\beta + \epsilon}$$

and therefore

$$P((\beta + \epsilon)A) - (\beta + \epsilon)m(A) \le P(\beta A) + \epsilon \int A \, d\pi_{\beta + \epsilon} - (\beta + \epsilon)m(A)$$

= $P(\beta A) - \beta m(A) + \epsilon (\int A \, d\pi_{\beta + \epsilon} - m(A)) \le P(\beta A) - \beta m(A).$

This shows that $\beta \mapsto [P(\beta A) - \beta m(A)]$ is not increasing. We have

$$[P(\beta A) - \beta m(A)] = [H(\pi_{\beta}) + \beta(\int A d\pi_{\beta} - m(A))] \le H(\pi_{\beta}).$$

As $[P(\beta A) - \beta m(A)]$ is not increasing and the entropy H is upper semi-continuous, if $\mu_{\beta_i} \to \mu_{\infty}$ we have

$$\lim_{\beta \to +\infty} [P(\beta A) - \beta m(A)] = \lim_{\beta_i \to +\infty} P(\beta_i A) - \beta_i m(A) \le \lim_{\beta_i \to +\infty} H(\pi_{\beta_i}) \le H(\pi_{\infty}).$$

On the other hand, for any $\pi \in \mathcal{M}_{max}(A)$ we have $\beta m(A) = \beta \int A d\pi$ and

$$\lim_{\beta \to +\infty} [P(\beta A) - \beta m(A)] \ge \lim_{\beta \to +\infty} [[\beta \int A \, d\pi + H(\pi)] - \beta \int A \, d\pi] = H(\pi).$$

This shows that $H(\mu_{\infty}) = H_{\text{max}}$ and that $\lim_{\beta \to +\infty} [P(\beta A) - \beta m(A)] = H_{\text{max}}$.

References

- [1] A. Baraviera, R. Leplaideur, and A. Lopes. Ergodic optimization, zero temperature limits and the max-plus algebra. Paper from the 29th Brazilian mathematics colloquium 29° Colóquio Brasileiro de Matemática, Rio de Janeiro, Brazil, July 22 August 2, 2013. Publ. Mat. IMPA. Rio de Janeiro: Instituto Nacional de Matemática Pura e Aplicada (IMPA), 2013.
- [2] A. Bis, M. Carvalho, M. Mendes, and P. Varandas. A convex analysis approach to entropy functions, variational principles and equilibrium states. *Commun. Math. Phys.* 394(1):215–256, 2022.
- [3] A. Bis, M. Carvalho, M. Mendes, P. Varandas, and X. Zhong. Correction to: A convex analysis approach to entropy functions, variational principles and equilibrium states *Commun. Math. Phys.* 401(3):3335–3342, 2023.
- [4] T. Bousch. La condition de Walters. Ann. Sci. Éc. Norm. Supér. (4), 34(2):287–311, 2001.
- [5] J. P. Conze and Y. Guivarc'h. Croissance des sommes ergodiques et principe variationnel. manuscript circa, 1993.
- [6] A. Dembo and O. Zeitouni. *Large deviations techniques and applications.*, volume 38 of *Stoch. Model. Appl. Probab.* Berlin: Springer, 2nd ed., corrected 2nd printing edition, 2010.
- [7] A. Lopes, J. Mengue. Duality Theorems in Ergodic Transport. *Journal of Statistical Physics*. 149, issue 5, 921–942, 2012.
- [8] A. Lopes and J. Mengue. On information gain, Kullback-Leibler divergence, entropy production and the involution kernel. *Discrete Contin. Dyn. Syst.*, 42(7):3593–3627, 2022.
- [9] A. Lopes, J. Mengue, J. Mohr and R. Souza. Entropy, Pressure and Duality for Gibbs plans in Ergodic transport. *Bull Braz Math Soc* 46, 353–389, 2015.
- [10] J. Mengue and E. Oliveira. Duality results for iterated function systems with a general family of branches. *Stoch. Dyn.*, 17(3):23, 2017. Id/No 1750021.
- [11] J. Mengue and E. Oliveira. Large Deviation for Gibbs Probabilities at Zero Temperature and Invariant Idempotent Probabilities for Iterated Function Systems. *Journal of Statistical Physics*, 192, 18, 2025.
- [12] R. Sinkhorn. A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices. *The Annals of Mathematical Statistics*, vol. 35, no. 2, 876–879, 1964.
- [13] R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices. *Pacific Journal of Mathematics* Vol. 21, No. 2, 343–348, 1967.
- [14] C. Villani. Optimal transport: old and new Springer Berlin, Heidelberg, 2009.

 $\left[15\right]$ C. Villani. Topics in optimal transportation. AMS, Providence, 2003.