Reykjavik University			1
		5.9. Chinese Remainder Theorem	15
		5.10. Linear Congruence Solver	15
		5.11. Numeric Integration	15
DanceParty		5.12. Fast Fourier Transform	15
Team Reference Document		5.13. Formulas	15
Team Reference Document		6. Geometry	16
		6.1. Primitives	16
		6.2. Polygon	16
		6.3. Convex Hull	17
		6.4. Line Segment Intersection	17
Contents		6.5. Great-Circle Distance	17
		6.6. Formulas	17
1. Code Templates	1	7. Other Algorithms	17
1.1. Basic Configuration	1	7.1. Binary Search	17
1.2. $C++$ Header	1	7.2. Ternary Search	18
1.3. Java Template	1	7.3. 2SAT	18
2. Data Structures	2	7.4. Stable Marriage	18
2.1. Union-Find	2	7.5. Algorithm X	18
2.2. Segment Tree	2	7.6. nth Permutation	19
2.3. Fenwick Tree	2	7.7. Cycle-Finding	19
2.4. Matrix	2	7.8. Dates	19
2.5. AVL Tree	3	8. Useful Information	20
2.6. Heap	4	8.1. Tips & Tricks	20
2.7. Skiplist	5	8.2. Fast Input Reading	20
2.8. Dancing Links	5	8.3. 128-bit Integer	20
3. Graphs	6	8.4. Worst Time Complexity	20
3.1. Breadth-First Search	6	8.5. Bit Hacks	20
3.2. Single-Source Shortest Paths	6		
3.3. All-Pairs Shortest Paths	7		
3.4. Strongly Connected Components	7		
3.5. Minimum Spanning Tree	7		
3.6. Topological Sort	7		
3.7. Euler Path	8		
3.8. Bipartite Matching	8		
3.9. Hopcroft-Karp algorithm	8		
3.10. Maximum Flow	9		
3.11. Minimum Cost Maximum Flow	9		
3.12. All Pairs Maximum Flow	10		
4. Strings	11		
4.1. Trie	11		
4.2. Suffix Array	11		
4.3. Aho-Corasick Algorithm	11		
4.4. The Z algorithm	12		
5. Mathematics	12		
5.1. Fraction	12		
5.2. Big Integer	13		
5.3. Binomial Coefficients	14		
5.4. Euclidean algorithm	14		
5.5. Trial Division Primality Testing	14		
5.6. Sieve of Eratosthenes	15		
5.7. Modular Multiplicative Inverse	15		
5.8. Modular Exponentiation	15		

```
Reykjavik University
----void update(int at, int by) {------------------------// 76 ------matrix<T> res(cols, rows);------------------// b5
-------while (at < n) data[at] += by, at |= at + 1; }-------// fb -------for (int i = 0; i < rows; i++)-------// 9c
------int res = 0;-------// c3 -----return res; }------// c3
------while (at >= 0) res += data[at], at = (at & (at + 1)) - 1;-------// 37 ----matrix<T> pow(int p) {---------// 68
-----return res; }------// e4 -----matrix<T> res(rows, cols), sq(*this);-------// 4d
};------// 57 -----while (p) {------// cb
-----x0(fenwick_tree(n)) { }------// 7c -----} return res; }-------
----// insert f(y) = my + c if x <= y-------// 17 ----matrix<T> rref(T &det) {-------// 89
void range_update(fenwick_tree_sq &s, int a, int b, int k) {-------// 89 -------while (k < rows && eq<T>(mat(k, c), T(0))) k++;-----// f9
------for (int i = 0; i < cols; i++)-----// ab
2.4. Matrix. A Matrix class.
                       -----swap(mat.at(k, i), mat.at(r, i));-----// 8d
public:-----T m = mat(i, c);------// e8
-----data.assign(cnt, T(0)); }-----// d0
                      ----matrix(const matrix& other) : rows(other.rows), cols(other.cols),------// fe -----} return mat; }-----
-----cnt(other.cnt), data(other.data) { }-----// ed
                       private:----// e0
----T& operator()(int i, int j) { return at(i, j); }------// e0
                       ----int cnt:-----// 6a
----void operator +=(const matrix& other) {------// c9
                       ----vector<T> data;------// 41
------for (int i = 0; i < cnt; i++) data[i] += other.data[i]; }------// e5
                       ----inline T& at(int i, int j) { return data[i * cols + j]; }------// 74
----void operator -=(const matrix& other) {------// 68
                       }:-----// b8
------for (int i = 0; i < cnt; i++) data[i] -= other.data[i]; }------// 88
----void operator *=(T other) {------// ba
                       2.5. AVL Tree. A fast, easily augmentable, balanced binary search tree.
------for (int i = 0; i < cnt; i++) data[i] *= other; }------// 40 #define AVL_MULTISET 0------// b5
------matrix<T> res(*this); res += other; return res; }------// 5d template <class T>-------// 22
------matrix<T> res(*this); res -= other; return res; }------// cf public:------// f6
------matrix<T> res(rows, other.cols);-------// 57 ------node(const T &item, node *p = NULL) : item(item), p(p),------// c5
-----for (int k = 0; k < cols; k++)------// fc ----avl_tree() : root(NULL) { }----------// dc
```

```
Reykjavik University
-----node *cur = root;-------// cf ------if (!cur) cur = root;------// 0a
------if (cur->item < item) cur = cur->r;-------// eb ------if (n < sz(cur->l)) cur = cur->l;------// 25
------else if (item < cur->item) cur = cur->l;------// de ------else if (n > sz(cur->l)) n -= sz(cur->l) + 1, cur = cur->r;-----// 8b
------else break: }-------// 05 ------else break:-------// 4c
-------node *prev = NULL, **cur = &root;----------// 60 ----inline int sz(node *n) const { return n ? n->size : 0; }------// 69
-----prev = *cur;------// 31 ----inline bool left_heavy(node *n) const {-------// d7
-------if ((*cur)->item < item) cur = &((*cur)->r);------// 39 -----return n && height(n->l) > height(n->r); }-----// 9d
#if AVL_MULTISET-----// d1 ----inline bool right_heavy(node *n) const {-------// 91
------else cur = \&((*cur)->l); ------// 3b -----return n \&\& height(n->r) > height(n->l); }-----// 77
#else-----// dc ----inline bool too_heavy(node *n) const {--------// 18
------else if (item < (*cur)->item) cur = &((*cur)->l);------// e5 -----return n && abs(height(n->l) - height(n->r)) > 1; }-----// fb
------else return *cur;------// 19 ----void delete_tree(node *n) {-------// 48
#endif-------if (n) { delete_tree(n->l), delete_tree(n->r); delete n; } }------// ea
------node *n = new node(item, prev);-------// 5b -----if (!n->p) return root;-------// af
-----*cur = n, fix(n); return n; }-------// 86 ------if (n->p->l == n) return n->p->l;-------// 95
----void erase(node *n, bool free = true) {-------// 89 ------assert(false); }------
------else if (n->l) && !n->r) parent_leg(n) = n->l, n->l->p = n->p; ------// 3d ------n->size = 1 + sz(n->l) + sz(n->r); -------// 14
-----node *s = successor(n);------// 16 ----#define rotate(l, r) N------// b7
------erase(s, false);-------// 17 -----node *l = n->l; \[\bar{N}\]
-----if (n->l) n->l->p = s;------// 88
                             -----parent_leg(n) = l; \(\bar{\gamma}\)------// 02
-----if (n->r) n->r->p = s;------// 42
                             -----n->l = l->r; \\ \[ \] ------// 08
-----parent_leg(n) = s, fix(s);-----// 87
------} else parent_leg(n) = NULL;---------// 58 ------l->r = n, n->p = l; \[ \bar{N} \]
------if (free) delete n; }------// 99 ----void left_rotate(node *n) { rotate(r, l); }------// 43
-----if (!n) return NULL;------// b3 ----void fix(node *n) {-------// 42
------if (too_heavy(n)) {------// 39
------return p: }--------| 03 ------------| 65e if (right_heavy(n) && left_heavy(n->r))-------// 09
-----node *p = n->p;------node *p = n->p; }-------// af
------while (p && p->l == n) n = p, p = p->p;-------// 03 -----n = n->p; } } };-------// 85
-----return p; }-----// 83
                              Also a very simple wrapper over the AVL tree that implements a map interface.
----inline int size() const { return sz(root); }-----// e2
                             #include "avl_tree.cpp"-----// 01
----void clear() { delete_tree(root), root = NULL; }-----// d4
                              -----// ba
----node* nth(int n, node *cur = NULL) const {------// f4
                             template <class K, class V>-----// da
```

```
Reykjavik University
class avl_map {------// 3f ------memset(newloc + len, 255, (newlen - len) << 2);------// 18
public:-----delete[] q, delete[] loc;------// 74
---avl_tree<node> tree;------// b1 -----}-----// b1 -----}
------typename avl_tree<node>::node *n = tree.find(node(key, V(0)));------// ba ------loc[n] = count, q[count++] = n;------// 6b
------if (!n) n = tree.insert(node(key, V(0)));-------// cb -----if (fix) swim(count-1); }------// bf
----}-----assert(count > 0);-------// eb
------if (fix) sink(0);------// 80
2.6. Heap. An implementation of a binary heap.
                                #define RESIZE-----// d0
                               ----int top() { assert(count > 0); return q[0]; }------// ab
#define SWP(x,y) tmp = x, x = y, y = tmp-----// fb
                               ----void heapify() { for (int i = count - 1; i > 0; i--)------// 39
struct default_int_cmp {------// 8d
                               -----if (cmp(i, (i-1)/2)) swp(i, (i-1)/2); }------// \theta b
----default_int_cmp() { }------// 35
                               ----void update_key(int n) {------// 26
----bool operator ()(const int &a, const int &b) { return a < b; } };-----// e9
                               -----assert(loc[n] != -1), swim(loc[n]), sink(loc[n]); }------// 7d
template <class Compare = default_int_cmp>------// 30
                               ----bool empty() { return count == 0; }------// f8
class heap {-----// 05
                               ----int size() { return count; }------// 86
private:----// 39
                               ----void clear() { count = 0, memset(loc, 255, len << 2); } };-----// 58
----int len, count, *q, *loc, tmp;-----// 0a
----Compare _cmp;-----// 98
                               2.7. Skiplist. An implementation of a skiplist.
----inline bool cmp(int i, int j) { return _cmp(q[i], q[j]); }------// a0
----inline void swp(int i, int j) {-------// 1c #define BP 0.20------// aa
------SWP(q[i], q[j]), SWP(loc[q[i]], loc[q[j]]); }------// 67 #define MAX_LEVEL 10--------------------------// 56
----void swim(int i) {------// 33 unsigned int bernoulli(unsigned int MAX) {------// 7b
------while (i > 0) {-------// 1a ----unsigned int cnt = 0;------// 28
------int p = (i - 1) / 2;------// 77 ----while(((float) rand() / RAND_MAX) < BP && cnt < MAX) cnt++;-----// d1
----void sink(int i) {------// ce ----struct node {------// 53
------int l = 2*i + 1, r = l + 1;------// b4 ------int *lens;------// 07
-----<mark>int</mark> m = r >= count || cmp(l, r) ? l : r;------// cc ------#define CA(v, t) v((t*)calloc(level+1, sizeof(t)))------// 25
public:-----// cd ----int current_level, _size;------// 61
-----q = new int[len], loc = new int[len];-------// f8 ----skiplist() : current_level(0), _size(0), head(new node(MAX_LEVEL, 0)) { };-// 7a
------memset(loc, 255, len << 2); }------// f7 -----skiplist() { clear(); delete head; head = NULL; }-----// aa
----~heap() { delete[] q; delete[] loc; }-------// 09 ----#define FIND_UPDATE(cmp, target) \[ \sqrt{\colored}\]-------// c3
-----if (len == count || n >= len) {------// 0f
                               -----memset(pos, 0, sizeof(pos)); \[\sigma_-----// f2\]
#ifdef RESIZE-----// a9
                                -----node *x = head; \[\sqrt{------// 0f}\]
------int newlen = 2 * len;-----// 22
                                -----node *update[MAX_LEVEL + 1]; \[\scrip_------// 01
------while (n >= newlen) newlen *= 2;-----// 2f
                               -----// 38
------int *newq = new int[newlen], *newloc = new int[newlen];------// e3
```

```
Reykjavik University
-----pos[i] = pos[i + 1]; \(\bar{\sqrt{0}}\)-------// 68 -------if (r) r->l = this;------// θb
-----}------// 61
                                        -----pos[i] += x->lens[i]; x = x->next[i]; } \[ \] \[ \] \]
                                        ----node *front, *back;-----// 23
-----update[i] = x; \\ -----// dd
                                        ----dancing_links() { front = back = NULL; }------// 8c
----node *push_back(const T &item) {------// d7
----int size() const { return _size; }------// 9a
                                        ------back = new node(item, back, NULL);------// 5d
----void clear() { while(head->next && head->next[0])-----// 91
                                        -----if (!front) front = back:-----// a2
-----erase(head->next[0]->item); }------// e6
                                        -----return back;-----// b4
----node *find(T target) { FIND_UPDATE(x->next[i]->item, target);------// 36
                                        -----return x && x->item == target ? x : NULL; }-----// 50
                                        ----node *nth(int k) { FIND_UPDATE(pos[i] + x->lens[i], k+1); return x; }-----// b8
                                        ------front = new node(item, NULL, front);------// 75
----int count_less(T target) { FIND_UPDATE(x->next[i]->item, target);------// 80
                                        -----if (!back) back = front;-----// d6
-----return pos[0]; }-----// 19
                                        -----return front;-----// ef
----node* insert(T target) {------// 80
                                        ------FIND_UPDATE(x->next[i]->item, target);------// 3a
                                        ----void erase(node *n) {------// 88
------if(x && x->item == target) return x; // SET------// 07
                                        ------if (!n->l) front = n->r; else n->l->r = n->r; ------// d5
------int lvl = bernoulli(MAX_LEVEL);------// 7a
                                        ------if (!n->r) back = n->l; else n->r->l = n->l;-------// 96
------if(lvl > current_level) current_level = lvl;------// 8a
                                        ----}-------------------------// ae
----x = new node(lvl, target);-----// 36
                                        ----void restore(node *n) {-------// 6d
-----for(int i = 0; i <= lvl; i++) {------// 49
                                        -----if (!n->l) front = n; else n->l->r = n;------// ab
-----x->next[i] = update[i]->next[i];------// 46
                                        ------if (!n->r) back = n; else n->r->l = n;-------------// 8d
-----x->lens[i] = pos[i] + update[i]->lens[i] - pos[0];-----// bc
                                        -----update[i] ->next[i] = x;-----// 20
                                         -----// 4f
-----update[i]->lens[i] = pos[0] + 1 - pos[i];-----// 42
3. Graphs
-----for(int i = lvl + 1: i <= MAX_LEVEL: i++) update[i]->lens[i]++:-----// 07
                                        3.1. Breadth-First Search. An implementation of a breadth-first search that counts the number of
-----size++;-----// 19
                                        edges on the shortest path from the starting vertex to the ending vertex in the specified unweighted
-----return x; }-----// c9
----void erase(T target) {------// 4d
                                        graph (which is represented with an adjacency list). Note that it assumes that the two vertices are
                                        connected. It runs in O(|V| + |E|) time.
------FIND_UPDATE(x->next[i]->item, target);------// 6b
-----if(x && x->item == target) {------// 76
                                        int bfs(int start, int end, vvi& adj_list) {------// d7
                                        ----queue<ii>> Q;------// 75
-----for(int i = 0; i <= current_level; i++) {------// 97
-----update[i]->next[i] = x->next[i];-----// 59 -----// 59
-----current_level--; } } ;-----// 59
                                        -----vi& adj = adj_list[cur.first];-----// 3f
                                        ------for (vi::iterator it = adj.begin(); it != adj.end(); it++)-----// bb
2.8. Dancing Links. An implementation of Donald Knuth's Dancing Links data structure. A linked
                                        -----Q.push(ii(*it, cur.second + 1));------// b7
list supporting deletion and restoration of elements.
                                        template <class T>-----// 82
                                        }-----// 7d
struct dancing_links {-----// 9e
----struct node {------// 62
                                         Another implementation that doesn't assume the two vertices are connected. If there is no path
                                        from the starting vertex to the ending vertex, a-1 is returned.
-----T item:-----// dd
-----node *l, *r:-----// 32
                                        int bfs(int start, int end, vvi& adj_list) {------// d7
-----node(const T &item, node *l = NULL, node *r = NULL)-----// 88
                                        ----set<<mark>int</mark>> visited;-----// b3
----: item(item), l(l), r(r) {------// 04
                                        ----queue<ii>> 0;------// bb
```

-----if (l) l->r = this;------// 1c ----Q.push(ii(start, 0));------// 3a

```
Reykjavik University
-----// db ----for (int i = 0; i < n; i++) dist[i] = i == s ? 0 : INF;------// 10
------if (cur.first == end)-------// 22 ------for (int k = 0; k < size(adj[j]); k++)------// 3f
-----return cur.second;------// b9 ------dist[adj[j][k].first] = min(dist[adj[j][k].first],-----// 61
-----/<sub>ba</sub> ------dist[j] + adj[j][k].second);-------// 47
-----vi& adj = adj_list[cur.first];-------// f9 ----for (int j = 0; j < n; j++)-------// 13
------for (vi::iterator it = adj.beqin(); it != adj.end(); it++)-------// 44 ------for (int k = 0; k < size(adj[j]); k++)---------// a0
-----if (visited.find(*it) == visited.end()) {-------// 8d -----if (dist[j] + adj[j][k].second < dist[adj[j][k].first])-----// ef
-----visited.insert(*it);-------// cb ---return dist;-----
----}--------// 0b
                                   3.3. All-Pairs Shortest Paths.
-----// 63
----return -1:-----// f5
                                  3.3.1. Floyd-Warshall algorithm. The Floyd-Warshall algorithm solves the all-pairs shortest paths
}-----// 03
                                  problem in O(|V|^3) time.
                                   void floyd_warshall(int** arr, int n) {------// 21
3.2. Single-Source Shortest Paths.
                                   ----for (int k = 0; k < n; k++)-----// 49
                                   ------for (int i = 0; i < n; i++)------// 21
3.2.1. Dijkstra's algorithm. An implementation of Dijkstra's algorithm. It runs in \Theta(|E|\log|V|)
                                   -----for (int j = 0; j < n; j++)-----// 77
time.
                                   -----if (arr[i][k] != INF && arr[k][j] != INF)-----// b1
int *dist. *dad:-----// 46
                                   -----arr[i][j] = min(arr[i][j], arr[i][k] + arr[k][j]);-----// e1
struct cmp {-----// a5
                                  }-----// 86
----bool operator()(int a, int b) {------// bb
-----return dist[a] != dist[b] ? dist[a] < dist[b] : a < b; }------// e6
                                  3.4. Strongly Connected Components.
};-----// 41
pair<int*, int*> dijkstra(int n, int s, vii *adj) {-----// 53
                                  3.4.1. Kosaraju's algorithm. Kosarajus's algorithm finds strongly connected components of a directed
----dist = new int[n];-----// 84
                                  graph in O(|V| + |E|) time.
----dad = new int[n];-----// 05
                                  #include "../data-structures/union_find.cpp"-----// 5e
----for (int i = 0; i < n; i++) dist[i] = INF, dad[i] = -1;------// d6
                                   -----// 11
                                  vector<br/>bool> visited;------// 66
----set<int. cmp> pg:-----// 04
------int cur = *pq.beqin(); pq.erase(pq.beqin());--------// 7d void scc_dfs(const vvi &adj, int u) {-----------------------------// a1
------int nxt = adj[cur][i].first,-------// b8 ----for (int i = 0; i < size(adj[u]); i++)------// c5
------ndist = dist[cur] + adj[cur][i].second;-------// 0c -----if (!visited[v = adj[u][i]]) scc_dfs(adj, v);-------// 6e
}-----// af ----order.clear();-------// 22
                                   ----union_find uf(n);-----// 6d
3.2.2. Bellman-Ford algorithm. The Bellman-Ford algorithm solves the single-source shortest paths
                                   ----vi dag;------// ae
problem in O(|V||E|) time. It is slower than Dijkstra's algorithm, but it works on graphs with
                                   ----vvi rev(n):-----// 20
negative edges and has the ability to detect negative cycles, neither of which Dijkstra's algorithm can
                                   ----for (int i = 0; i < n; i++) for (int j = 0; j < size(adj[i]); j++)------// b9
                                   -----rev[adj[i]]]].push_back(i);-----// 77
int* bellman_ford(int n, int s, vii* adj, bool& has_negative_cycle) {-------// cf ----visited.resize(n), fill(visited.begin(), visited.end(), false);-------// 04
```

```
------for (int i = 0; i < size(adi[u]); i++)-------// 90 -----if (!color[i]) {---------------------------// d5
------if (!visited[v = adj[u][i]]) S.push(v);-------// 43 -----tsort_dfs(i, color, adj, S, has_cycle);-------// 40
}-----// 97 ----while (!S.empty()) res.push_back(S.top()), S.pop();------// 94
                                   ----return res:------// 07
3.5. Minimum Spanning Tree.
                                   }-----// 1f
3.5.1. Kruskal's algorithm.
                                   3.7. Euler Path. Finds an euler path (or circuit) in a directed graph, or reports that none exist.
#include "../data-structures/union_find.cpp"-----------------------// 5e
                                   #define MAXV 1000-----// 2f
                                   #define MAXE 5000-----// 87
// n is the number of vertices-----// 18
                                   vi adj[MAXV];-----// ff
// edges is a list of edges of the form (weight, (a, b))-----// c6
                                   // the edges in the minimum spanning tree are returned on the same form-----// 4d
                                   ii start_end() {------// 30
vector<pair<int, ii> > mst(int n, vector<pair<int, ii> > edges) {------// a7
                                   ----int start = -1, end = -1, any = 0, c = 0;------// 74
----union_find uf(n);-----// 04
                                   ----for (int i = 0; i < n; i++) {------// 96
----sort(edges.begin(), edges.end());-----// 51
                                   -----if (outdeg[i] > 0) any = i;-----// f2
-----if (indeg[i] + 1 == outdeg[i]) start = i, c++;------// 98
----for (int i = 0; i < size(edges); i++)-----// ce
                                   ------else if (indeg[i] == outdeg[i] + 1) end = i, c++;------// 4f
-----if (uf.find(edges[i].second.first) !=-----// d5
                                   ------else if (indeg[i] != outdeg[i]) return ii(-1,-1);------// fa
------uf.find(edges[i].second.second)) {------// 8c
                                   ----}------// ef
-----res.push_back(edges[i]);-----// d1
                                   ----if ((start == -1) != (end == -1) || (c != 2 && c != 0)) return ii(-1,-1);--// 6e
-----uf.unite(edges[i].second.first, edges[i].second.second);-----// a2
                                   ----if (start == -1) start = end = any;-----// db
-----}-----// 5b
                                   ----return ii(start, end);-----// 9e
----return res;------// 46
                                   }-----// 35
}-----// 88
                                   bool euler_path() {-----// d7
                                   ----ii se = start_end();-----// 45
3.6. Topological Sort.
                                   ----int cur = se.first, at = m + 1;------// 8c
3.6.1. Modified Depth-First Search.
                                   ----if (cur == -1) return false;------// 45
void tsort_dfs(int cur, char* color, const vvi& adj, stack<int>& res,-----// ca
                                   ----stack<int> s;-----// f6
------bool& has_cycle) {------// a8
                                   ----while (true) {------// 04
----color[cur] = 1;------// 5b
                                   -----if (outdeg[cur] == 0) {------// 32
----for (int i = 0; i < size(adj[cur]); i++) {-------// 96
                                   -----res[--at] = cur:-----// a6
------int nxt = adj[cur][i];------// 53
                                   ------if (s.empty()) break;-----// ee
-----if (color[nxt] == 0)------// 00
                                   -----cur = s.top(); s.pop();-----// d7
-----tsort_dfs(nxt, color, adj, res, has_cycle);------// 5b
                                   -----} else s.push(cur), cur = adj[cur][--outdeg[cur]];-----// d8
-----else if (color[nxt] == 1)------// 53
                                   ----}------// ba
-----has_cycle = true;-----// c8
                                   ----return at == 0:-----// c8
-----if (has_cycle) return;-----// 7e
                                   l-----// aa
----}--------// 3d
----color[cur] = 2;-----// 16
                                   3.8. Bipartite Matching.
----res.push(cur):-----// cb
}-----// 9e
                                  3.8.1. Bipartite Matching. The alternating paths algorithm solves bipartite matching in O(mn^2) time,
------// ae where m, n are the number of vertices on the left and right side of the bipartite graph, respectively.
```

Reykjavik University

```
Reykjavik University
vi* adj;------memset(L, -1, sizeof(int) * N);-------// 16
bool* done:-----memset(R, -1, sizeof(int) * M):-------// e4
----done[left] = true;-------// 86
------int right = adj[left][i];------// b6
                   3.10. Maximum Flow.
------if (owner[right] == -1 || alternating_path(owner[right])) {------// d2
-----owner[right] = left; return 1;-----// 26
                   3.10.1. Dinic's algorithm. An implementation of Dinic's algorithm that runs in O(|V|^2|E|). It com-
------} }------// 7a
                   putes the maximum flow of a flow network.
----return 0: }-----// 83
                   #define MAXV 2000-----// ba
3.9. Hopcroft-Karp algorithm. An implementation of Hopcroft-Karp algorithm.
                   int q[MAXV], d[MAXV];-----// e6
struct bipartite_graph {------// 2b -----edge() { }-----// 38
------L(new int[N]), R(new int[M]), adj(new vi[N]) {}----------// 46 ----int n, ecnt, *head, *curh;------------------------// 77
----~bipartite_graph() { delete[] adj; delete[] L; delete[] R; }-------// b9 ----vector<edge> e, e_store;--------------------------// d0
----bool bfs() {-------// 3e ----flow_network(int n, int m = -1) : n(n), ecnt(0) {------// 80
------int l = 0, r = 0; -------// a4 ------e.reserve(2 * (m == -1 ? n : m)); -------// 5d
------else dist(v) = INF;--------// c4 -----memset(head, -1, n * sizeof(int));-------// f6
------while(l < r) {------// 3f ----void destroy() { delete[] head; delete[] curh; }------// 21
------int v = q[l++];------// 69 ----void reset() { e = e_store; }------// 60
------if(dist(v) < dist(-1)) {--------// b2 ----void add_edge(int u, int v, int uv, int vu = 0) {------// dd
-----foreach(u, adj[v]) if(dist(R[*u]) == INF)------// 63 -----e.push_back(edge(v, uv, head[u])); head[u] = ecnt++;------// 7a
------}-----memset(d, -1, n * sizeof(int));--------// 66
----void add_edge(int i, int j) { adj[i].push_back(j); }------// 87 ------for (int v = q[l++], i = head[v]; i != -1; i = e[i].nxt)-----// 6d
```

```
Reykjavik University
-----memcpv(curh, head, n * sizeof(int)):-------// b6 ---int u, v, w, c:-------
-----if (res) reset();-------// 08 ------u = _u; v = _v; w = _rev;------// b2
}:-----// cf -----// 31
                      ii min_cost_max_flow(int n, int s, int t, vector<pair<int, ii> >* adj) {------// 4d
3.10.2. Edmonds Karp's algorithm. An implementation of Edmonds Karp's algorithm that runs in
                     ----vector<mcmf_edqe*>* q = new vector<mcmf_edqe*>[n];------// θε
O(|V||E|^2). It computes the maximum flow of a flow network.
                      ----for (int i = 0; i < n; i++) {------// a7
----int u, v, w; mf_edge* rev;-------------// ab ------mcmf_edge *cur = new mcmf_edge(i, adj[i][j].first,------// 28
----mf_edge(int _u, int _v, int _w, mf_edge* _rev = NULL) {-------// 96 ------adj[i][j].second.first, adj[i][j].second.second),-----// 71
-----ce = new mf_edge(i, adj[i][j].first, adj[i][j].second);-----// ed ----mcmf_edge** back = new mcmf_edge*[n];------// 90
-----g[i].push_back(ce);------// 09 ----int* dist = new int[n];------// 05
------g[ce->v].push_back(ce->rev); } }------// 58 -------for (int i = 0; i < n; i++) back[i] = NULL, dist[i] = INF;------// 41
------back.assign(n, NULL);---------// 4d ------for (int i = 0; i < n - 1; i++)---------// c3
------queue<int> 0; 0.push(s);-------// 18 -------for (int j = 0; j < n; j++)-------// 5e
------while (!Q.empty() && (cur = Q.front()) != t) {------// a7 --------if (dist[j] != INF)------// dd
------mf_edge* nxt = g[cur][i]:------// 86 ------dist[g[j][k]->v]) {-------// ec
------for (int i = 0; i < size(g[t]); i++) {-------// 1e -----mcmf_edge* cure = back[t];------// f8
------if (cap == 0) continue;------// 92 -----cap = min(cap, cure->w);-----// ff
-----assert(cap < INF);--------// fb -------if (cure->u == s) break;-------// ce
-----z->w -= cap, z->rev->w += cap;------// 67 -----cure = back[cure->u];-----// c6
-----ce->w -= cap, ce->rev->w += cap;-------// 9c -----assert(cap > 0 && cap < INF);-------// 72
----return make_pair(flow, q); }-----------------------// f8 -------while (true) {----------------------------------// c9
                      ------cost += cap * cure->c;------// e4
3.11. Minimum Cost Maximum Flow. An implementation of Edmonds Karp's algorithm, modi-
```

minimum cost.

```
Reykjavik University
                                         11
-----cure = back[cure->u];-------// 03 int compute_max_flow(int s, int t, const pair<vii, vvi> &gh) {------// 16
----// instead of deleting q, we could also-------// 5d ------cur = min(cur, qh.first[at].second), at = qh.first[at].first;------// bd
----// use it to get info about the actual flow-------// 5a ----return min(cur, gh.second[at][t]);------// 6d
-----for (int j = 0; j < size(q[i]); j++)-----// 4b
-----delete q[i][j];-----// bb
                              4. Strings
----delete[] q;------// 37
                     4.1. Trie. A Trie class.
----delete[] back;-----// 42
                     template <class T>-----// 82
----delete[] dist;------// 28
                     class trie {-----// 9a
----return ii(flow, cost);------// 32
                     private:----// f4
}-----// 16
                     ----struct node {------// ae
                     -----map<T. node*> children:-----// a0
3.12. All Pairs Maximum Flow.
                     ------int prefixes, words;------// e2
3.12.1. Gomory-Hu Tree. An implementation of the Gomory-Hu Tree. The spanning tree is con-
                     -----node() { prefixes = words = 0; } };------// 42
structed using Gusfield's algorithm in O(|V|^2) plus |V|-1 times the time it takes to calculate the max-
                     public:-----// 88
imum flow. If Dinic's algorithm is used to calculate the max flow, the running time is O(|V|^3|E|).
                     ----node* root;-----// a9
#include "dinic.cpp"-----// 58
                     ----trie() : root(new node()) { }-----// 8f
-----// 25 ----template <class I>-------// 89
------int l = 0, r = 0;-------// 3e
------memset(d, 0, n * sizeof(int));-------// 79 ------typename map<T, node*>::const_iterator it;------// 01
------memset(same, 0, n * sizeof(int));--------// b0 -----it = cur->children.find(head);-------// 77
------while (l < r) {------// 45 -------pair<T, node*> nw(head, new node());------// cd
-----same[v = g[l++]] = true;------// c8 ------it = cur->children.insert(nw).first;-----// ae
----}------T head = *begin;-------// 5c
-----cap[cur][i] = mn;------// 63 ------begin++, cur = it->second; } } }------// 7c
-----mn = min(mn, par[cur].second), cur = par[cur].first;-------// 28 ----int countPrefixes(I begin, I end) {---------------------------// 85
```

```
Reykjavik University
-----T head = *begin;--------// 43 ------foreach(c, *k)-----------------------// 38
-----typename map<T. node*>::const_iterator it:------// 7a ------cur = cur->next.find(*c) != cur->next.end() ? cur->next[*c] :--// 3d
-----it = cur->children.find(head);-------// 43 ------(cur->next[*c] = new go_node());------// 75
------if (it == cur->children.end()) return 0;-------// 71 -----cur->out = new out_node(*k, cur->out);------// 6e
-----begin++, cur = it->second; } } } ;------// 26 -----}-----------------------// 96
                               -----queue<go_node*> q;------// 8a
4.2. Suffix Array. An O(n \log n) construction of a Suffix Tree.
                               ------foreach(a, qo->next) q.push(a->second);------// a3
struct entry { ii nr; int p; };------// f9 ------while (!q.empty()) {------// 43
bool operator <(const entry &a, const entry &b) { return a.nr < b.nr; }------// 77 ------go_node *r = q.front(); q.pop();------// 2e
struct suffix_array {-------// 87 ------foreach(a, r->next) {------// 25
----string s; int n; vvi P; vector<entry> L; vi idx;------// b6 ------go_node *s = a->second;------// cb
----suffix_array(string s) : s(s), n(size(s)) {-------// 26 -----q.push(s);------------------------// 76
-----L = vector<entry>(n), P.push_back(vi(n)), idx = vi(n);------// ca ------go_node *st = r->fail;------// fa
------P.push_back(vi(n));------// de ------if (!st) st = go;-----// e7
-----i + cnt < n ? P[stp - 1][i + cnt] : -1);------// e2 ------if (!s->out) s->out = s->fail->out;------// 80
-----sort(L.beqin(), L.end());------// ed
------for (int i = 0; i < n; i++)------// 34 -------out_node* out = s->out;-----// bf
------L[i].nr == L[i - 1].nr ? P[stp][L[i - 1].p] : i;------// 57 ------out->next = s->fail->out;------// 65
----int lcp(int x, int y) {--------// e8
}:------cur = cur->fail;------// 9e
                               ------if (!cur) cur = qo;-----// 2f
4.3. Aho-Corasick Algorithm. An implementation of the Aho-Corasick algorithm. Constructs a
                               -----cur = cur->next[*c];------// 58
state machine from a set of keywords which can be used to search a string for any of the keywords.
                               -----if (!cur) cur = go;-----// 3f
struct aho_corasick {------// 78
                               -----for (out_node *out = cur->out; out = out->next)-----// e0
----struct out_node {------// 3e
                               -----/res.push_back(out->keyword);------// 0d
-----string keyword; out_node *next;------// f0
                               -----}-----// fd
-----out_node(string k, out_node *n) : keyword(k), next(n) { }------// 26
                               return res:----// c1
----};-------// b9
                               ----struct qo_node {------// 40
                               }:-----// 32
-----map<char, qo_node*> next;------// 6b
-----out_node *out; go_node *fail;-----// 3e
                               4.4. The Z algorithm. Given a string S, Z_i(S) is the longest substring of S starting at i that is
-----go_node() { out = NULL; fail = NULL; }-----// Of
                               also a prefix of S. The Z algorithm computes these Z values in O(n) time, where n = |S|. Z values
----};------// c0
                               can, for example, be used to find all occurrences of a pattern P in a string T in linear time. This is
                               accomplished by computing Z values of S = TP, and looking for all i such that Z_i \geq |T|.
----ao_node *ao:-----// b8
-----go_node *cur = go;------// 9d ----int l = 0, r = 0;-------// 1c
```

```
Reykjavik University
---z[0] = n;------// 98 ------return !(*this == other); }------// d1
-z[i] = 0: -c
                          5.2. Big Integer. A big integer class.
------if (i > r) {-------// 26
                          struct intx {-----// cf
-----l = r = i:-----// a7
                          ----intx() { normalize(1); }------// 6c
----intx(string n) { init(n); }-------// b9
----intx(int n) { stringstream ss; ss << n; init(ss.str()); }------// 36
-----} else if (z[i - l] < r - i + 1) z[i] = z[i - l]:----// bf
                          ----intx(const intx& other) : sign(other.sign), data(other.data) { }------// 3b
-----else {------// b5
-----l = i;-----// 02
                          ----int sign;------// 26
                          ----vector<unsigned int> data;------// 19
------while (r < n \&\& s[r - l] == s[r]) r++;
                          ----static const int dcnt = 9;-----// 12
-----z[i] = r - l; r--; } }-----// 8d
                          ----static const unsigned int radix = 1000000000U;-----// f0
----return z;-----// 53
                          ----int size() const { return data.size(); }------// 29
}-----// db
                          ----void init(string n) {------// 13
                          -----intx res; res.data.clear();-----// 4e
          5. Mathematics
                          -----if (n.empty()) n = "0";------// 99
5.1. Fraction. A fraction (rational number) class. Note that numbers are stored in lowest common
                          -----if (n[0] == '-') res.sign = -1, n = n.substr(1);------// 3b
                          ------for (int i = n.size() - 1; i >= 0; i -= intx::dcnt) {-------// e7
public:------digit = digit * 10 + (n[idx] - '0');-------------------------// 1f
-----assert(d_ != 0);-----// 3d -----}----// fb
-----T q = gcd(abs(n), abs(d));--------// fc ---}------// fc
------n /= g, d /= g; }-------// al ----intx& normalize(int nsign) {-------// 3b
----fraction(T n_) : n(n_), d(1) { }-------// 84 ------if (data.empty()) data.push_back(θ);-------// fa
----fraction(const fraction<T>& other) : n(other.n), d(other.d) { }-------// 01 -------for (int i = data.size() - 1; i > 0 && data[i] == 0; i--)-------// 27
------return fraction<T>(n * other.d + other.n * d, d * other.d);}-------// 3b ------sign = data.size() == 1 \& \& data[0] == 0 ? 1 : nsign;-------// ff
------return fraction<T>(n * other.d - other.n * d, d * other.d);}------// 47 ----}
----fraction<T> operator /(const fraction<T>& other) const {-------// ca ------bool first = true;-----------------// 33
------for (int i = n.size() - 1; i >= 0; i--) {-------// 63
-----return n * other.d < other.n * d; }------// 8c -----else {--------|
------stringstream ss; ss << cur;-------// 8c
------return other < *this; }-------// 6e -------int len = s.size();-------// 0d
------return n == other.n && d == other.d: }------// 14 -----}
----bool operator !=(const fraction<T>& other) const {-------// ec -----return outs;-----
```

```
Reykjavik University
------if (sign != b.sign) return sign < b.sign;--------// cf ------assert(!(d.size() == 1 && d.data[0] == 0));-------// e9
------if (size() != b.size())--------// 4d ------intx q, r; q.data.assign(n.size(), θ);-------// ca
-----return sign == 1 ? size() < b.size() : size() > b.size();------// 4d ------for (int i = n.size() - 1; i >= 0; i--) {-------// 1a
------for (int i = size() - 1; i >= 0; i--) if (data[i] != b.data[i])------// 35 ------r.data.insert(r.data.begin(), 0);--------// c7
------return false;-------// ca -------long long k = θ;--------// cc
------if (sign > 0 && b.sign < 0) return *this - (-b);---------// 36 ------r = r - abs(d) * k;-----------------// 15
-----intx c; c.data.clear();-------// 18 -----}------// 2f
------unsigned long long carry = 0;-------// 5c ------return pair<intx, intx>(q.normalize(n.sign * d.sign), r);------// a1
-----carry += (i < size() ? data[i] : 0ULL) +------// 91 ----intx operator /(const intx& d) const {-------// a2
-----c.data.push_back(carry % intx::radix);-------// 86 ----intx operator %(const intx& d) const {--------// 07
-----carry /= intx::radix;------// fd -----return divmod(*this,d).second * sign; }-----// 5a
-----return c.normalize(sign);------// 20
                                     5.2.1. Fast Multiplication. Fast multiplication for the big integer using Fast Fourier Transform.
#include "intx.cpp"-----// 83
----intx operator -(const intx& b) const {--------// 53
                                     #include "fft.cpp"-----// 13
------if (sign > 0 && b.sign < 0) return *this + (-b);------// 8f
                                      -----// e0
-----if (sign < 0 && b.sign > 0) return -(-*this + b);------// 1b
                                     intx fastmul(const intx &an, const intx &bn) {-----// ab
------if (sign < 0 && b.sign < 0) return (-b) - (-*this);------// a1
                                      ----string as = an.to_string(), bs = bn.to_string();-----// 32
-----if (*this < b) return -(b - *this);------// 36
-----intx c; c.data.clear();------// 6b
                                      ----int n = size(as), m = size(bs), l = 1,------// dc
                                      -----len = 5, radix = 100000,-----// 4f
-----long long borrow = 0;-----// f8
------for (int i = 0; i < size(); i++) {------// a7
                                      -----*a = new int[n], alen = 0,-----// b8
                                      -----*b = new int[m], blen = 0;------// 0a
------borrow = data[i] - borrow - (i < b.size() ? b.data[i] : 0ULL);-----// a9
                                      ----memset(a, 0, n << 2);-----// 1d
-----c.data.push_back(borrow < 0 ? intx::radix + borrow : borrow);-----// ed
------borrow = borrow < 0 ? 1 : 0;-----// 0d
                                     ----memset(b, 0, m << 2);-----// 01
                                      ----for (int i = n - 1; i >= 0; i -= len, alen++)------// 6e
------for (int j = min(len - 1, i); j >= 0; j--)-----// 43
-----return c.normalize(sign);------// 35
                                      -----a[alen] = a[alen] * 10 + as[i - j] - '0';------// 14
----}-------// 85
----intx operator *(const intx& b) const {------// bd
                                      ----for (int i = m - 1; i >= 0; i -= len, blen++)------// b6
-----intx c; c.data.assign(size() + b.size() + 1, 0);-----// d0
                                      ------for (int j = min(len - 1, i); j >= 0; j--)------// ae
-----for (int i = 0; i < size(); i++) {------// 7a
                                      -----b[blen] = b[blen] * 10 + bs[i - j] - '0';------// 9b
                                      ----while (l < 2*max(alen,blen)) l <<= 1;------// 51
-----long long carry = 0:-----// 20
                                     ----cpx *A = new cpx[l], *B = new cpx[l];-----// 0d
------for (int j = 0; j < b.size() || carry; j++) {------// c0
-----if (j < b.size()) carry += (long long)data[i] * b.data[j];----// af
                                      ----for (int i = 0; i < l; i++) A[i] = cpx(i < alen ? a[i] : 0, 0);------// 35
                                      ----for (int i = 0; i < l; i++) B[i] = cpx(i < blen ? <math>b[i] : 0, 0);-----// 66
-----carry += c.data[i + j];-----// 18
                                      ----fft(A, l); fft(B, l);-----// f9
-----.c.data[i + j] = carry % intx::radix;------// 86
                                     ----for (int i = 0; i < l; i++) A[i] *= B[i];------// e7
-----carry /= intx::radix;-----// 05
                                     ----fft(A, l, true);------// d3
----ull *data = new ull[l];-----// e7
-----}-----// 9e
                                      ----for (int i = 0; i < l; i++) data[i] = (ull)(round(real(A[i])));------// 06
```

```
----for (int i = 0; i < l - 1; i++)-----// 90
                                             5.6. Sieve of Eratosthenes. An optimized implementation of Eratosthenes' Sieve.
-----if (data[i] >= (unsigned int)(radix)) {-------// 44
                                             vi prime_sieve(int n) {-----// 40
-----data[i+1] += data[i] / radix;-----// e4
                                             -----data[i] %= radix;-----// bd
                                             ----vi primes:-----// 8f
                                             ----bool* prime = new bool[mx + 1];------// ef
----int stop = l-1;-----// cb
                                             ----memset(prime, 1, mx + 1);------// 28
----while (stop > 0 && data[stop] == 0) stop--:-----// 97
                                             ----if (n >= 2) primes.push_back(2);-----// f4
----stringstream ss:-----// 42
                                             ----while (++i <= mx) if (prime[i]) {------// 73
----ss << data[stop];------// 96
                                             -----primes.push_back(v = (i << 1) + 3);-----// be
----for (int i = stop - 1; i >= 0; i--)-----// bd
                                             -----if ((sq = i * ((i << 1) + 6) + 3) > mx) break;-----// 2d
-----ss << setfil('0') << setw(len) << data[i];------// b6
                                             ------for (int i = sq: i <= mx: i += v) prime[i] = false: }------// 2e
----delete[] A; delete[] B;-----// f7
                                             ----while (++i <= mx) if (prime[i]) primes.push_back((i << 1) + 3);------// 29
----delete[] a: delete[] b:-----// 7e
                                             ----delete[] prime; // can be used for O(1) lookup------// 36
----delete[] data;------// 6a
                                             ----return primes; }-----// 72
----return intx(ss.str()):-----// 38
                                             5.7. Modular Multiplicative Inverse. A function to find a modular multiplicative inverse.
                                             5.3. Binomial Coefficients. The binomial coefficient \binom{n}{k} = \frac{n!}{k!(n-k)!} is the number of ways to choose
                                               -----// e8
k items out of a total of n items.
                                             int mod_inv(int a, int m) {------// 49
int nck(int n, int k) {------// f6
                                             ----int x, y, d = eqcd(a, m, x, y);------// 3e
----if (n - k < k) k = n - k;------// 18
                                             ----if (d != 1) return -1;------// 20
----int res = 1:------// cb
                                             ----return x < 0 ? x + m : x:-----// 3c
----for (int i = 1; i \le k; i++) res = res * (n - (k - i)) / i;------// bd
}-----// 03
                                             5.8. Modular Exponentiation. A function to perform fast modular exponentiation.
                                             template <class T>-----// 82
5.4. Euclidean algorithm. The Euclidean algorithm computes the greatest common divisor of two
                                             T mod_pow(T b, T e, T m) {-----// aa
integers a, b.
                                             ----T res = T(1);-----// 85
int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }-----// d9
                                             ----while (e) {------// b7
 The extended Euclidean algorithm computes the greatest common divisor d of two integers a, b
                                             -----if (e & T(1)) res = mod(res * b, m);------// 41
and also finds two integers x, y such that a \times x + b \times y = d.
                                             -----b = mod(b * b, m), e >>= T(1); }-----// b3
                                             ----return res:-----// eb
int eqcd(int a, int b, int& x, int& y) {------// 85
----if (b == 0) { x = 1; y = 0; return a; }------// 7b
                                             }-----// c5
----else {------// 06
-----int d = egcd(b, a % b, x, y);-----// 34
                                             5.9. Chinese Remainder Theorem. An implementation of the Chinese Remainder Theorem.
-----x -= a / b * y;-----// 4a
                                             #include "egcd.cpp"-----// 55
-----Swap(x, y):-----// 26
                                             int crt(const vi& as, const vi& ns) {-----// c3
                                             ----int cnt = size(as), N = 1, x = 0, r, s, l;------// 55
-----return d:-----// db
                                             ----for (int i = 0; i < cnt; i++) N *= ns[i]; ------// 88
----}------------// 9e
                                             ----for (int i = 0; i < cnt; i++)-----// f9
                                             ------egcd(ns[i], l = N/ns[i], r, s), x += as[i] * s * l;-------// b\theta
5.5. Trial Division Primality Testing. An optimized trial division to check whether an integer is
                                             ----return mod(x, N); }-----// 9e
prime.
----if (n < 2) return false;------// c9 n.
----if (n % 2 == 0 || n % 3 == 0) return false;------// Of vi linear_congruence(int a, int b, int n) {-------// c8
----if (n < 25) return true;------// ef ----int x, y, d = egcd(a, n, x, y);------// 7a
----int s = static_cast<int>(sqrt(static_cast<double>(n)));------// 64 ----vi res;-----
----for (int i = 5; i <= s; i += 6)------// 6c ----if (b % d != 0) return res;------// 30
----return true; }-----return true; }------// 43 ----for (int k = 0; k < d; k++) res.push_back(mod(x0 + k * n / d, n));------// 21
```

```
----return res;------// 03
}-----// 1c
```

5.11. Numeric Integration. Numeric integration using Simpson's rule.

5.12. **Fast Fourier Transform.** The Cooley-Tukey algorithm for quickly computing the discrete Fourier transform. Note that this implementation only handles powers of two, make sure to pad with zeros.

```
#include <complex>-----// 8e
typedef complex<long double> cpx;-----// 25
void fft(cpx *x, int n, bool inv=false) {------// 23
----for (int i = 0, j = 0; i < n; i++) {------// f2
------if (i < j) swap(x[i], x[j]);------// 5c
-----int m = n>>1:-----// e5
------while (1 <= m && m <= j) j -= m, m >>= 1;------// fe
-----j += m;-----// ab
----}-----// 1e
----for (int mx = 1; mx < n; mx <<= 1) {------// 9d
------for (int m = 0; m < mx; m++, w *= wp) {------// 40
------for (int i = m; i < n; i += mx << 1) {------// 33
-----cpx t = x[i + mx] * w;-----// f5
-----x[i + mx] = x[i] - t;
-----x[i] += t:-----// c7
-----}-----// c2
----}------// 70
----if (inv) for (int i = 0; i < n; i++) x[i] /= cpx(n);-----// 3e
}-----// 7d
```

5.13. Formulas.

- Number of ways to choose k objects from a total of n objects where order matters and each item can only be chosen once: $P_k^n = \frac{n!}{(n-k)!}$
- Number of ways to choose k objects from a total of n objects where order matters and each item can be chosen multiple times: n^k
- Number of permutations of n objects, where there are n_1 objects of type 1, n_2 objects of type 2, ..., n_k objects of type k: $\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! \times n_2! \times \dots \times n_k!}$
- Number of ways to choose k objects from a total of n objects where order does not matter and each item can only be chosen once:
- $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{n-k} = \prod_{i=1}^{k} \frac{n-(k-i)}{i} = \frac{n!}{k!(n-k)!}, \binom{n}{0} = 1, \binom{0}{k} = 0$
- Number of ways to choose k objects from a total of n objects where order does not matter and each item can be chosen multiple times: $f_k^n = \binom{n+k-1}{k} = \frac{(n+k-1)!}{k!(n-1)!}$
- Number of integer solutions to $x_1 + x_2 + \cdots + x_n = k$ where $x_i \ge 0$: f_k^n
- Number of subsets of a set with n elements: 2^n

- $|A \cup B| = |A| + |B| |A \cap B|$
- $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- Number of ways to walk from the lower-left corner to the upper-right corner of an $n \times m$ grid by walking only up and to the right: $\binom{n+m}{m}$
- Number of strings with n sets of brackets such that the brackets are balanced: $C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k} = \frac{1}{n+1} {n \choose n}$
- Number of triangulations of a convex polygon with n points, number of rooted binary trees with n+1 vertices, number of paths across an $n \times n$ lattice which do not rise above the main diagonal: C_n
- Number of permutations of n objects with exactly k ascending sequences or runs: $\binom{n}{k} = \binom{n}{n-k-1} = k \binom{n-1}{k} + (n-k+1) \binom{n-1}{k-1} = \sum_{i=0}^{k} (-1)^i \binom{n+1}{i} (k+1-i)^n, \binom{n}{0} = \binom{n}{n-1} = \binom{n}{k} = \binom{n}{k$
- Number of permutations of n objects with exactly k cycles: $\binom{n}{k} = \binom{n-1}{k-1} + (n-1) \binom{n-1}{k}$
- Number of ways to partition n objects into k sets: $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}, \binom{n}{0} = \binom{n}{n} = 1$
- Heron's formula: A triangle with side lengths a, b, c has area $\sqrt{s(s-a)(s-b)(s-c)}$ where $s = \frac{a+b+c}{2}$.
- Pick's theorem: A polygon on an integer grid containing i lattice points and having b lattice points on the boundary has area $i + \frac{b}{2} 1$.
- **Divisor sigma:** The sum of divisors of n to the xth power is $\sigma_x(n) = \prod_{i=0}^r \frac{p_i^{(a_i+1)x}-1}{p_i^x-1}$ where $n = \prod_{i=0}^r p_i^{a_i}$ is the prime factorization.
- Divisor count: A special case of the above is $\sigma_0(n) = \prod_{i=0}^r (a_i + 1)$.
- Euler's totient: The number of integers less than n that are comprime to n are $n \prod_{p|n} \left(1 \frac{1}{p}\right)$ where each p is a distinct prime factor of n.
- König's theorem: In any bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum vertex cover.
- The number of vertices of a graph is equal to its minimum vertex cover number plus the size of a maximum independent set.

6. Geometry

6.1. **Primitives.** Geometry primitives.

#include <complex>-----// 8e #define P(p) const point &p-----// b8 #define L(p0, p1) P(p0), P(p1)-----// 30 typedef complex<double> point;------// e1 double dot(P(a), P(b)) { return real(conj(a) * b); }-----// a9 double cross(P(a), P(b)) { return imag(conj(a) * b); }-----// ff point rotate(P(p), P(about), double radians) {------// e1 ----**return** (p - about) * exp(point(0, radians)) + about; }-----// *cb* point reflect(P(p), L(about1, about2)) {------// c0 ----point z = p - about1, w = about2 - about1;-----// 39 ----return conj(z / w) * w + about1; }-----// 03 point proj(P(u), P(v)) { return dot(u, v) / dot(u, u) * u; }------// fc**bool** parallel(L(a, b), L(p, q)) { return abs(cross(b - a, q - p)) < EPS; }-----// 6d double ccw(P(a), P(b), P(c)) { return cross(b - a, c - b); }-----// ca **bool** collinear(P(a), P(b), P(c)) { return abs(ccw(a, b, c)) < EPS; }-----// 75 bool collinear(L(a, b), L(p, q)) {------// 66 ----return abs(ccw(a, b, p)) < EPS && abs(ccw(a, b, q)) < EPS; }------// d6 double angle(P(a), P(b), P(c)) {------// d0

```
Reykjavik University
----return acos(dot(b - a, c - b) / abs(b - a) / abs(c - b)); }------// cc ----for (int i = 0, j = n - 1; i < n; j = i++)-----// 77
------if (CHK(real, p[i], q, p[j]) || CHK(real, p[i], q, p[i]) ------// 1f
bool intersect(L(a, b), L(p, q), point &res, bool segment = false) {------// d6 ----return in ? -1 : 1; }--------// 77
----// NOTE: check for parallel/collinear lines before calling this function---// 02 // pair<polygon, polygon cut_polygon (const polygon &poly, point a, point b) {-// 7b
----point r = b - a, s = q - p;-------// 79 //---- polygon left, right;-------// 6b
----double c = cross(r, s), t = cross(p - a, s) / c, u = cross(p - a, r) / c;--// a8 //---- point it(-100, -100);-------// c9
----if (segment && (t < 0-EPS || t > 1+EPS || u < 0-EPS || u > 1+EPS))-------// ae //---- for (int i = 0, cnt = poly.size(); i < cnt; i++) {-------------------------// 28
------return false:-------// a3 //------ int i = i == cnt-1 ? 0 ; i + 1;-------// 8e
----res = a + t * r;------// ca //------ point p = poly[i], q = poly[j];------// 19
point closest_point(L(a, b), P(c), bool segment = false) {-------// a1 //-----// myintersect = intersect where-----// 24
------if (dot(b - a, c - b) > 0) return b;-------// b5 //----- if (myintersect(a, b, p, q, it))-------// f0
------if (dot(a - b, c - a) > 0) return a;------// cf //------ left.push_back(it), right.push_back(it);------// 21
----double t = dot(c - a, b - a) / norm(b - a);------// aa //--- return pair<polygon, polygon>(left, right);------// 1d
----return a + t * (b - a);------// 7a // }-----// 37
}-----// e5
double line_segment_distance(L(a,b), L(c,d)) {------// 99
                              6.3. Convex Hull. An algorithm that finds the Convex Hull of a set of points.
----double x = INFINITY;------// 83 #include "polygon.cpp"-----// 58
----if (abs(a - b) < EPS && abs(c - d) < EPS) x = abs(a - c);------// df #define MAXN 1000------// 09
                              point hull[MAXN];-----// 43
----else if (abs(a - b) < EPS) x = abs(a - closest_point(c, d, a, true)); -----// da
------ (ccw(c, d, a) < 0) != (ccw(c, d, b) < 0)) x = 0;------// 79 -----real(a) < real(b) : imag(a) < imag(b); }------// 40
-----x = min(x, abs(b - closest_point(c,d, b, true)));------// ec ----sort(p.begin(), p.end(), cmp);------// 3d
-----x = min(x, abs(c - closest_point(a,b, c, true)));-------// 36 ----for (int i = 0; i < n; i++) {-------// 6f
-----x = min(x, abs(d - closest_point(a,b, d, true)));-------// e5 ------if (i > 0 && p[i] == p[i - 1]) continue;------// b2
}-----// b3 ---}-----// d8
                              ----int r = l:------// 59
6.2. Polygon. Polygon primitives.
                              ----for (int i = n - 2; i >= 0; i--) {------// 16
#include "primitives.cpp"------// e0 ------if (p[i] == p[i + 1]) continue;------// c7
----double area = 0; int cnt = size(p);-----// a2 ---}
-----area += cross(p[i] - p[0], p[i + 1] - p[0]);------// 7e }-----// 7e
----return area / 2; }------// e1
double polygon_area(polygon p) { return abs(polygon_area_signed(p)); }------// 25 6.4. Line Segment Intersection. Computes the intersection between two line segments.
```

```
------A = B = a; return abs(a - d) < EPS; }------// ee
----else if (abs(a - b) < EPS) {------// 03
-----A = B = a; double p = progress(a, c,d);------// c9
-----return 0.0 <= p && p <= 1.0-----// 8a
----else if (abs(c - d) < EPS) {------// 26
------A = B = c; double p = progress(c, a,b);------// d9
-----return 0.0 <= p && p <= 1.0-----// 8e
----else if (collinear(a,b, c,d)) {------// bc
------double ap = progress(a, c,d), bp = progress(b, c,d);------// a7
-----if (ap > bp) swap(ap, bp);-----// b1
------if (bp < 0.0 || ap > 1.0) return false;------// 0c
-----A = c + max(ap, 0.0) * (d - c);------// f6
-----B = c + min(bp, 1.0) * (d - c);------// 5c
-----return true; }-----// ab
----else if (parallel(a,b, c,d)) return false;-----// ca
----else if (intersect(a,b, c,d, A, true)) {------// 10
-----B = A; return true; }------// bf
----return false:-----// b7
}-----// 8b
-----// e6
```

6.5. Great-Circle Distance. Computes the distance between two points (given as latitude/longitude coordinates) on a sphere of radius r.

```
double gc_distance(double pLat, double pLong,-----// 7b
-----/ double qLat, double qLong, double r) {-----// a4
----pLat *= pi / 180; pLong *= pi / 180;-----// ee
----qLat *= pi / 180; qLong *= pi / 180;-----// 75
----return r * acos(cos(pLat) * cos(pLong) * cos(qLat) * cos(qLong) +-----// a1
-----cos(pLat) * sin(pLong) * cos(qLat) * sin(qLong) +-----// ea
-----sin(pLat) * sin(qLat)); }-----// 5b
```

- 6.6. Formulas. Let $a = (a_x, a_y)$ and $b = (b_x, b_y)$ be two-dimensional vectors.
 - $a \cdot b = |a||b|\cos\theta$, where θ is the angle between a and b.
 - $a \times b = |a||b|\sin\theta$, where θ is the signed angle between a and b.
 - $a \times b$ is equal to the area of the parallelogram with two of its sides formed by a and b. Half of that is the area of the triangle formed by a and b.

7. Other Algorithms

7.1. Binary Search. An implementation of binary search that finds a real valued root of the continuous function f on the interval [a, b], with a maximum error of ε .

```
double binary_search_continuous(double low, double high,-----// 8e
-----double eps, double (*f)(double)) {------// c0
----while (true) {------// 3a
-----double mid = (low + high) / 2, cur = f(mid);-----// 75
-----if (abs(cur) < eps) return mid;------// 76
-----else if (0 < cur) high = mid;-----// e5
-----else low = mid:-----// a7
----}------// b5
}-----// cb }-----// cb
```

```
Another implementation that takes a binary predicate f, and finds an integer value x on the integer
interval [a,b] such that f(x) \wedge \neg f(x-1).
```

```
----assert(low <= high);-----// 19
----while (low < high) {------// a3
------int mid = low + (high - low) / 2;-----// 04
------if (f(mid)) high = mid;------// ca
-----else low = mid + 1;-----// 03
----}-----// 9b
----assert(f(low));-----// 42
----return low:-----// a6
1-----// d3
7.2. Ternary Search. Given a function f that is first monotonically increasing and then monotoni-
```

cally decreasing, ternary search finds the x such that f(x) is maximized. template <class F>-----// d1

```
double ternary_search_continuous(double lo, double hi, double eps, F f) {-----// e7
----while (hi - lo > eps) {------// 3e
------double m1 = lo + (hi - lo) / 3, m2 = hi - (hi - lo) / 3;-----// e8
------if (f(m1) < f(m2)) lo = m1;------// 1d
-----else hi = m2:-----// b3
----}--------// bb
----return hi;------// fa
}-----// 66
```

7.3. **2SAT.** A fast 2SAT solver.

```
#include "../graph/scc.cpp"-----// c3
  -----// 63
bool two_sat(int n, const vii& clauses, vi& all_truthy) {------// f4
----all_truthy.clear();------// 31
----vvi adj(2*n+1);------// 7b
----for (int i = 0; i < size(clauses); i++) {-------// 9b
-----adj[-clauses[i].first + n].push_back(clauses[i].second + n);------// 17
-----if (clauses[i].first != clauses[i].second)------// 87
-----adi[-clauses[i].second + nl.push_back(clauses[i].first + n):-----// 93
----}-----------// d8
----pair<union_find, vi> res = scc(adj);------// 9f
----union_find scc = res.first;------// 42
----vi dag = res.second;------// 58
----vi truth(2*n+1, -1);------// 00
----for (int i = 2*n; i >= 0; i--) {------// f4
-----int cur = order[i] - n, p = scc.find(cur + n), o = scc.find(-cur + n); -\frac{1}{5}
-----if (cur == 0) continue;-----// 26
-----if (p == o) return false;-----// 33
```

-----if (truth[p] == -1) truth[p] = 1;-----// c3

-----truth[cur + n] = truth[p];-----// b3

-----truth[o] = 1 - truth[p];-----// 80

-----if (truth[p] == 1) all_truthy.push_back(cur);-------// 5c ----}------// d9

```
Reykjavik University
                                           -----if (!ptr[i][j]) continue;-----// 76
7.4. Stable Marriage. The Gale-Shapley algorithm for solving the stable marriage problem.
                                           ------int ni = i + 1, nj = j + 1;------// 34
vi stable_marriage(int n, int** m, int** w) {------// e4
                                              ----queue<int> q;-----// f6
                                                 -----if (ni == rows + 1) ni = 0;------// 54
----vi at(n, \theta), eng(n, -1), res(n, -1); vvi inv(n, vi(n));------// c3
                                           -----/if (ni == rows || arr[ni][j]) break;---------// 77
----for (int i = 0; i < n; i++) for (int j = 0; j < n; j++)------// 05
-----inv[i][w[i][j]] = j;------// b9
                                                     -----// 47
----for (int i = 0; i < n; i++) q.push(i);-----// fe
                                                   -ptr[i][j]->d = ptr[ni][j];-----// a9
----while (!g.empty()) {------// 55
                                                  ---ptr[ni][j]->u = ptr[i][j];-----// c0
-----int curm = q.front(); q.pop();-----// ab
                                             ------while (true) {------// 0d
------for (int &i = at[curm]; i < n; i++) {-------// 9a
                                                 ------if (nj == cols) nj = 0;-----------------// a7
-----int curw = m[curm][i];-----// cf
                                             -----/if (i == rows || arr[i][nj]) break;------------// e9
-----if (eng[curw] == -1) { }------// 35
                                              -----++ni:-----// a6
------else if (inv[curw][curm] < inv[curw][enq[curw]])------// 10
-----q.push(eng[curw]);-----// 8c
                                              -----ptr[i][j]->r = ptr[i][nj];-------------------// b3
-----else continue;-----// b4
                                              -----ptr[i][nj]->l = ptr[i][j];-----// 46
-----res[eng[curw] = curm] = curw, ++i; break;------// 5e
                                           -----head = new node(rows, -1);------// 80
                                           -----head->r = ptr[rows][0];------// b9
                                           -----ptr[rows][0]->l = head:-----// c1
                                           ------head->l = ptr[rows][cols - 1];------// 28
7.5. Algorithm X. An implementation of Knuth's Algorithm X, using dancing links. Solves the
                                           -----ptr[rows][cols - 1]->r = head;------// 83
Exact Cover problem.
                                           ------for (int j = 0; j < cols; j++) {-------// 02
bool handle_solution(vi rows) { return false; }------// 63
                                           -----// 36
struct exact_cover {------// 95
                                           ------for (int i = 0; i \le rows; i++)------// 56
----struct node {------// 7e
                                           -----if (ptr[i][j]) cnt++, ptr[i][j]->p = ptr[rows][j];------// \theta 5
-----node *l, *r, *u, *d, *p;-----// 19
                                           -----/ptr[rows][j]->size = cnt;------// d4
------int row, col, size;------// ae
                                           ------}-----// 8f
-----node(int row, int col) : row(row), col(col) {------// 68
                                           ------for (int i = 0; i <= rows; i++) delete[] ptr[i];-----// cd
-----// 8f
                                           -----delete[] ptr:-----// 42
                                           ----}------// a9
----int rows, cols, *sol;------// 54
                                           ----#define COVER(c, i, j) \\ ------// 23
                                           ------for (node *i = c->d; i != c; i = i->d) \------// 5c
----exact_cover(int rows, int cols) : rows(rows), cols(cols), head(NULL) {-----// ce
                                           ------for (node *j = i->r; j != i; j = j->r) \sqrt{\phantom{a}}
-----arr = new bool*[rows]:-----// 15
                                           -----j->d->u = j->u, j->u->d = j->d, j->p->size--;------// 5a
-----sol = new int[rows];-----// 69
                                           ----<mark>#</mark>define UNCOVER(c, i, j) <mark>\</mark>------// 17
------for (int i = 0; i < rows; i++)-----// c7
                                           ------for (node *i = c->u; i != c; i = i->u) \------// 98
-----arr[i] = new bool[cols], memset(arr[i], 0, cols);------// 68
                                           ----void setup() {-------// a8 -----c->r->l = c->l->r = c;------// bb
-----node ***ptr = new node**[rows + 1];------// da ----bool search(int k = 0) {-------// 4f
------for (int i = 0; i <= rows; i++) {--------// ce -----if (head == head->r) {------// a7
-----ptr[i] = new node*[cols];------// cc -----vi res(k);------
------for (int j = 0; j < cols; j++)------// 56 ------for (int i = 0; i < k; i++) res[i] = sol[i];-----// c0
-----sort(res.begin(), res.end());------// 3e
------else ptr[i][j] = NULL;------// 40 -----return handle_solution(res);-----// dc
------for (int i = 0; i <= rows; i++) {-------// 80
                                           -----node *c = head->r, *tmp = head->r;-----// a6
-----for (int j = 0; j < cols; j++) {------// 86
```

```
------for (; tmp != head; tmp = tmp->r) if (tmp->size < c->size) c = tmp;---// 1e ----j = 80 * x / 2447;------------------------// 3d
------for (node *r = c->d; !found && r != c; r = r->d) {---------// 1e ----y = 100 * (n - 49) + i + x;--------------// 70
------for (node *j = r - r; j != r; j = j - r) { COVER(j - p, a, b); } -----// 3a
-----found = search(k + 1);-----// f4
                                                                    8. Useful Information
------for (node *j = r > l; j != r; j = j > l) { UNCOVER(j > p, a, b); } ----// 8a
                                                  8.1. Tips & Tricks.
------UNCOVER(c, i, i);------// 64
                                                    • How fast does our algorithm have to be? Can we use brute-force?
-----return found:-----// ff
                                                    • Does order matter?
• Is it better to look at the problem in another way? Maybe backwards?
}:-----// 10
                                                    • Are there subproblems that are recomputed? Can we cache them?
                                                    • Do we need to remember everything we compute, or just the last few iterations of computation?
7.6. nth Permutation. A very fast algorithm for computing the nth permutation of the list \{0, 1, \ldots, k-1\}
                                                    • Does it help to sort the data?
1}.
                                                    • Can we speed up lookup by using a map (tree or hash) or an array?
vector<int> nth_permutation(int cnt, int n) {------// 78
                                                    • Can we binary search the answer?
----vector<int> idx(cnt), per(cnt), fac(cnt);-----// 9e
                                                    • Can we add vertices/edges to the graph to make the problem easier? Can we turn the graph
----for (int i = 0; i < cnt; i++) idx[i] = i;------// 80
                                                      into some other kind of a graph (perhaps a DAG, or a flow network)?
----for (int i = 1; i <= cnt; i++) fac[i - 1] = n % i, n /= i;-----// 04

    Make sure integers are not overflowing.

----for (int i = cnt - 1; i >= 0; i--)-----// 52
                                                    • Is it better to compute the answer modulo n? Perhaps we can compute the answer modulo
-----per[cnt - i - 1] = idx[fac[i]], idx.erase(idx.begin() + fac[i]);-----// 41
                                                      m_1, m_2, \ldots, m_k, where m_1, m_2, \ldots, m_k are pairwise coprime integers, and find the real answer
----return per;------// 84
                                                      using CRT?
}-----// 97
                                                    • Are there any edge cases? When n = 0, n = -1, n = 1, n = 2^{31} - 1 or n = -2^{31}? When
                                                      the list is empty, or contains a single element? When the graph is empty, or contains a single
7.7. Cycle-Finding. An implementation of Floyd's Cycle-Finding algorithm.
                                                      vertex? When the graph contains self-loops? When the polygon is concave or non-simple?
ii find_cycle(int x0, int (*f)(int)) {------// a5
                                                    • Can we use exponentiation by squaring?
----int t = f(x\theta), h = f(t), mu = \theta, lam = 1:-----// 8d
----while (t != h) t = f(t), h = f(f(h));-----// 79
                                                 8.2. Fast Input Reading. If input or output is huge, sometimes it is beneficial to optimize the input
                                                  reading/output writing. This can be achieved by reading all input in at once (using fread), and then
----h = x0;
----while (t != h) t = f(t), h = f(h), mu++;------// 9d
                                                  parsing it manually. Output can also be stored in an output buffer and then dumped once in the end
----h = f(t);-----// 00
                                                  (using fwrite). A simpler, but still effective, way to achieve speed is to use the following input reading
----while (t != h) h = f(h), lam++:-----// 5e
                                                 method.
----return ii(mu. lam):-----// b4
                                                  void readn(register int *n) {------// dc
}------// 42
                                                  ----int sign = 1;------// 32
                                                  ----register char c;------// a5
7.8. Dates. Functions to simplify date calculations.
                                                  ----*n = 0;-----// 35
int intToDay(int jd) { return jd % 7; }-----// 89
                                                  ----while((c = qetc_unlocked(stdin)) != '\n') {------// f3
int dateToInt(int y, int m, int d) {-----// 96
                                                 -----switch(c) {------// 0c
----return 1461 * (y + 4800 + (m - 14) / 12) / 4 +-------// a8 ------case '-': sign = -1; break;------// 28
-----367 * (m - 2 - (m - 14) / 12 * 12) / 12 ------// d1 -----case ' ': qoto hell;------
-----3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 +-------// be ------case '\n': goto hell;-------// 79
-----d - 32075;-------default: *n *= 10; *n += c - '0'; break;------// c0
}------// fa _____}_____// 2d
void intToDate(int jd, int &y, int &m, int &d) {------// a1 ______/ c3
----int x, n, i, j;------// 00
                                                  hell:----// ba
----x = id + 68569;-----// 11
                                                 ----*n *= sign;-----// a0
----n = 4 * x / 146097;-----// 2f ].....// 67
---x = (146097 * n + 3) / 4:
----x -= 1461 * i / 4 - 31;------// 09 plication of 64-bit integers, or something needing a little more than 64-bits to represent.
```

Reykjavik University

Reykjavik University 21

8.4. Worst Time Complexity.

	1	
n	Worst AC Algorithm	Comment
≤ 10	$O(n!), O(n^6)$	e.g. Enumerating a permutation
≤ 15	$O(2^n \times n^2)$	e.g. DP TSP
≤ 20	$O(2^n), O(n^5)$	e.g. $DP + bitmask technique$
≤ 50	$O(n^4)$	e.g. DP with 3 dimensions $+ O(n)$ loop, choosing ${}_{n}C_{k} = 4$
$\leq 10^{2}$	$O(n^3)$	e.g. Floyd Warshall's
$\leq 10^{3}$	$O(n^2)$	e.g. Bubble/Selection/Insertion sort
$\le 10^{5}$	$O(n\log_2 n)$	e.g. Merge sort, building a Segment tree
$\le 10^{6}$	$O(n), O(\log_2 n), O(1)$	Usually, contest problems have $n \leq 10^6$ (e.g. to read input)

8.5. Bit Hacks.

- n & -n returns the first set bit in n.
- n & (n 1) is 0 only if n is a power of two.
- \bullet snoob(x) returns the next integer that has the same amount of bits set as x. Useful for iterating through subsets of some specified size.