

Why Predict Conflict?

- •Africa's complex conflict landscape.
- •Importance of early warning for:
 - Humanitarian aid planning
 - Peacekeeping operations
 - Policy intervention
 - Resource allocation
- •Goal: To leverage machine learning and ACLED data to develop a monthly conflict prediction model at the Admin1 level for Africa.

Introduction & Background

Project Objectives

- Key Objectives
 - Analyze historical conflict trends in Africa (2012-2023) using ACLED data.
 - Engineer a comprehensive set of temporal and spatial features.
 - Develop and train machine learning models (XGBoost primary, baselines for comparison) to predict conflict likelihood one to three months ahead.
 - Evaluate model performance using appropriate metrics.
 - Identify key drivers and predictors of conflict.

The ACLED Dataset

- Armed Conflict Location & Event Data Project.
- Disaggregated event data: dates, actors, locations, fatalities, event types.
- Global coverage, real-time updates.
- Scope for this project: Africa, Jan 2012 Dec 2023.
- Unit of Analysis: Country-Admin1-Month.

AF10	v !	$\times \checkmark$	$\int x \vee$																										
A	В	С	D	Е	F	G	Н	1	J	K	L	М	N O	Р	Q	R	S	Т	U	V	W	X	Υ	Z	AA	AB	AC	AD	AE
1 event_ic	d_c event_date	year	time_preci disc	order_type	event_type	sub_event	t actor1	assoc_act	inter1	actor2	assoc_act	inter2	interactior civilian_ta	iso	region	country	admin1	admin2	admin3	location	latitude	longitude g	geo_precis	source	source_sc	notes	fatalities	tags	timestam
2 SUD353	17(16-May-25	5 2025	2 Stra	ategic deve	Strategic c	Arrests	Military Fo	Military Fo	State force	Civilians (Civilians (I	Civilians	State forces-Civilian	s 72	29 Northern	/ Sudan	Red Sea	Al Ganab		Arb'at	19.7494	37.0956	1	Al Rakoba	National	Around 16	6 0)	1.7E+09
3 ALG130)50 16-May-25	5 2025	1 Pol	itical violer	Battles	Armed cla	Military Fo	rces of Alg	State force	Unidentifi	ed Armed G	Political n	State forces-Politica	l 1	12 Northern	/ Algeria	Khenchela	Chechar		Chechar	35.0381	7.0042	2	Algeria Pre	National	On 16 May	y 1		1.7E+09
4 BFO138	319 16-May-29	5 2025	1 Pol	itical violer	Violence a	Attack	JNIM: Grou	ip for Supp	Rebelgrou	Civilians (I	Burkina Fas	Civilians	Rebel grou Civilian ta	r 85	54 Western	A Burkina F	a Est	Tapoa	Diapaga	Diapaga	12.0731	1.7884	1	Al Zallaqa;	New media	On 16 May	у ()	1.7E+09
5 BFO138	32(16-May-25	5 2025	1 Stra	ategic deve	Strategic c	Looting/p	JNIM: Grou	up for Supp	Rebelgrou	Civilians (I	Labor Gro	Civilians	Rebel group-Civilian	s 85	54 Western	A Burkina F	a Centre-Es	Boulgou	Bane	Ouada-V1	11.4974	-0.3536	1	Whatsapp	New media	Property d	1 0)	1.7E+09
6 BFO138	32: 16-May-25	5 2025	1 Pol	itical violer	Violence a	Attack	JNIM: Grou	ip for Supp	Rebelgrou	Civilians (I	Burkina Fas	Civilians	Rebel grou Civilian ta	r 85	54 Western	A Burkina F	a Boucle du	Banwa	Solenzo	Kouna	12.2017	-4.1727	1	Undisclos	Local parti	On 16 May	у ()	1.7E+09
7 BFO138	322 16-May-25	5 2025	1 Pol	itical violer	Violence a	Attack	JNIM: Grou	up for Supp	Rebelgrou	Civilians (I	Burkina Fas	Civilians	Rebel grou Civilian ta	r 85	54 Western	A Burkina F	a Boucle du	Banwa	Solenzo	Lekoro	12.1943	-4.2105	1	Undisclos	Local parti	On 16 May	у ()	1.7E+09
8 CAO16	88 16-May-25	5 2025	1 Pol	itical violer	Violence a	Attack	Boko Hara	ım - Jamaat	Rebelgrou	Civilians (Kourgui Co	Civilians	Rebel grou Civilian ta	r 12	20 Middle At	fr Cameroo	r Extreme-N	Mayo-Sav	Mora	Kourgui	11.0881	14.1111	1	Humanity	New media	On 16 May	y 2	2	1.7E+09
9 CDI326	4 16-May-25	5 2025	1 Der	nonstratio	Protests	Peacefulp	Protesters	PDCI: Den	Protesters				Protesters only	38	84 Western	A Ivory Coas	s Lacs	Moronou	Bongouar	n Bongouan	6.6517	-4.2039	1	AIP (Ivory 0	National	On 16 May	у (crowd size	1.7E+09
10 CHA207	77 16-May-25	5 2025	1 Stra	ategic deve	Strategic c	Arrests	Military Fo	rces of Cha	State force	Civilians (Transform	Civilians	State forces-Civilian	s 14	48 Middle At	fr Chad	Ndjamena	Ndjamena	Ndjamena	a Ndjamena	12.1085	15.0482	1	Alwihda (C	National-F	On 16 May	у ()	1.7E+09
11 CHA207	79 16-May-25	5 2025	1 Der	nonstratio	Protests	Peacefulp	Protesters	Muslim Gr	Protesters				Protesters only	14	48 Middle At	fr Chad	Ouaddai	Ouara	Kachimel-	- Abeche	13.829	20.832	1	Alwihda (C	National	On 16 May	у (crowd size	1.7E+09
12 CHA208	30 16-May-25	5 2025	2 Stra	ategic deve	Strategic c	Arrests	Military Fo	rces of Cha	State force	Civilians (Chad)	Civilians	State forces-Civilian	s 14	48 Middle At	fr Chad	Logone O	Dodje		Mandakao	8.7595	15.3828	1	Alwihda (C	National-I	Around 16	6 ()	1.7E+09

The ACLED Dataset

Project Pipeline

Engineering Predictive Features

- **Goal:** Transform raw events into meaningful monthly signals for each Admin1 region.
- Base Metrics Calculated Monthly:
 - Event Counts (total, violent, specific types like battles, protests)
 - Fatalities (sum)
 - Actor Dynamics (distinct actor counts, distinct actor type counts)
 - Event Diversity (variety of event types, subtypes)
- Temporal Features Derived from Base Metrics:
 - Lags: (1, 2, 3, 6, 12 months) Recent history.
 - Rolling Statistics: (3, 6, 12-month means & sums) Sustained trends.
 - **Trend Features:** (Change over 1 & 3 months) Rate of change.
 - days_since_last_violent_event.

Target Variable & Dataset Balance

- Defining What We Predict
 - Target (conflict_occurs): Binary (1 = Conflict, 0 = No Conflict).
 - Definition: Conflict occurs
 if violent_events_count >= 1 in an Admin1
 region, X months in the future (Project
 used X=3 months).
 - Dataset Balance (Example from 3-month window run):
 - No Conflict (0): ~73.3%
 - Conflict Occurs (1): ~26.7%

Spatial Feature Engineering - The Geographic Context

- Rationale: Conflict in one region can influence its surroundings.
- Primary Method (Used in final run with Africa_Countries.shp):
 - Shapefile used to identify contiguous Admin1 neighbors.
 - Features: Avg. violent events, avg. fatalities, conflict density in neighboring regions (from t-1).
- Fallback (If no shapefile): Country-based features (activity in other Admin1s within the same country).

Predictive Models & Validation

- Primary Model: XGBoost Classifier (with temporal + spatial features).
 - Why XGBoost? Performance, handles non-linearity, regularization.
- **Baseline Models:** (For comparison, using temporal features)
 - RandomForest Classifier
 - XGBoost Classifier (without explicit spatial spillover features)
- Validation Strategy: Temporal Train-Test Split (80% train, 20% test).
 - Ensures model is tested on data "future" to its training data.
 - Cutoff for main model: ~August 2020 (for 2012-2023 data, 3-month window).

Evaluation Metrics

- Accuracy: Overall correctness.
- Precision, Recall, F1-Score: Focus on the "Conflict" class.
 - Precision: Of predicted conflicts, how many are real? (Minimizes false alarms)
 - Recall: Of actual conflicts, how many are caught? (Minimizes missed events)
- Confusion Matrix: Visualizes TP, TN, FP, FN.
- **ROC AUC:** Overall discrimination ability.
- **PR AUC:** Key for imbalanced data, focuses on positive class performance.

Baseline Performance & Comparison

Model	PR AUC	ROC AUC	Conflict Precision	Conflict Recall	Conflict F1- Score	Accuracy
XGBoost(Spatial Features)	0.8363	0.8809	~0.79	~0.62	~0.70	~0.81
XGBoost_Baseline	0.8278	0.8722	0.80	0.65	0.71	0.82
RandomForest_Baseline	0.8265	0.8678	0.79	0.65	0.71	0.81

Results - Spatial Model Performance

Predicted

• ROC AUC: 0.8809

• PR AUC: 0.8363

• Brief interpretation: "Strong discriminative power, significantly better than random."

Feature Importance -What Drives Predictions? (Baseline)

- Long-term rolling averages (especially 12month) are dominant.
- Key predictors:
 - violent events count roll mean 12 (Hig h value -> High conflict risk)
 - distinct_actors_count_roll_mean12 (Hig h value -> High conflict risk)
 - distinct_actor_types_count_roll_mean1 2 (High value -> High conflict risk)
- Shorter-term trends (e.g., 3-month violent events) also contribute.
- Higher historical violence, actor complexity, and event diversity consistently increase predicted risk.

Predicted High-Risk Regions

- Middle Shabelle, Somalia (Prob. 0.9999, Very High)
- Est, Burkina Faso (Prob: 0.9999, Very High)
- Analamanga, Madagascar (Prob. 0.9998, Very High)
- Gao, Mali (Prob: 0.9998, Very High)
- Nord-Ouest, Cameroon (Prob: 0.9998, Very High)

Discussion & Interpretation

- Machine learning models can effectively predict conflict likelihood with good accuracy using historical ACLED data.
- Sustained historical patterns (captured by long rolling windows) are more influential than isolated recent events for the baseline models.
- Incorporating spatial context (even simplified country-level effects or neighbor effects) provides a measurable uplift in predictive performance.
- The model identifies plausible high-risk areas.

Challenges & Future Work

Challenges:

- ACLED data biases (reporting variations).
- Defining "conflict" (sensitivity to event threshold).
- Computational resources for SHAP / complex spatial features.

Future Work:

- Systematic hyperparameter tuning.
- Refine spatial features (more advanced contiguity, distance decay).
- Incorporate external data (socio-economic, governance, climate).
- Focus on improving recall for the "conflict" class (e.g., scale_pos_weight, threshold tuning).
- Deeper error analysis.

Conclusion

- Successfully developed an end-to-end pipeline for conflict prediction.
- XGBoost model with spatial features achieved strong performance (PR AUC 0.8363, ROC AUC 0.8809).
- Demonstrated the value of both temporal feature engineering and spatial context.
- Provides a solid foundation for further research and potential application in early warning systems.