Local Image Features

Read Szeliski 4.1

Computer Vision

James Hays

"Flashed Face Distortion"
2nd Place in the 8th Annual
Best Illusion of the Year
Contest, VSS 2012

Keep your eyes on the cross

This section: correspondence and alignment

 Correspondence: matching points, patches, edges, or regions across images

Overview of Keypoint Matching

- 1. Find a set of distinctive key-points
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Review: Harris corner detector

- Approximate distinctiveness by local auto-correlation.
- Approximate local auto-correlation by second moment matrix
- Quantify distinctiveness (or cornerness) as function of the eigenvalues of the second moment matrix.
- But we don't actually need to compute the eigenvalues by using the determinant and trace of the second moment matrix.

Harris Detector [Harris88]

Second moment matrix

$$\mu(\sigma_{I},\sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$$
 1. Image derivatives (optionally, blur first)

$$\det M = \lambda_1 \lambda_2$$
$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

2. Square of derivatives

3. Gaussian filter $g(\sigma_i)$

4. Cornerness function – both eigenvalues are strong

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] =$$

$$g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

So far: can localize in x-y, but not scale

How to find corresponding patch sizes?

What Is A Useful Signature Function?

• Difference-of-Gaussian = "blob" detector

Difference-of-Gaussian (DoG)

Find local maxima in position-scale space of Difference-of-Gaussian

Orientation Normalization

Compute orientation histogram

[Lowe, SIFT, 1999]

- Select dominant orientation
- Normalize: rotate to fixed orientation

Maximally Stable Extremal Regions [Matas '02]

- Based on Watershed segmentation algorithm
- Select regions that stay stable over a large parameter range

Example Results: MSER

Comparison

Harris

LoG

Hessian

MSER

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = [x_1^{(1)}, \dots, x_d^{(1)}]$ each interest point.

3) Matching: Determine correspondence between descriptors in two views

Image representations

- Templates
 - Intensity, gradients, etc.

- Histograms
 - Color, texture, SIFT descriptors, etc.

Image Representations: Histograms

Global histogram

- Represent distribution of features
 - Color, texture, depth, ...

Image Representations: Histograms

Histogram: Probability or count of data in each bin

- Requires lots of data
- Loss of resolution to avoid empty bins

Marginal histogram

- Requires independent features
- More data/bin than joint histogram

Image Representations: Histograms

Clustering

Use the same cluster centers for all images

What kind of things do we compute histograms of?

Texture (filter banks or HOG over regions)

What kind of things do we compute histograms of?

Histograms of oriented gradients

SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation & scale
 - resample the window
- Based on gradients weighted by a Gaussian of variance half the window (for smooth falloff)

SIFT vector formation

- 4x4 array of gradient orientation histogram weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.

Ensure smoothness

- Gaussian weight
- Interpolation
 - a given gradient contributes to 8 bins:
 4 in space times 2 in orientation

Reduce effect of illumination

- 128-dim vector normalized to 1
- Threshold gradient magnitudes to avoid excessive influence of high gradients
 - after normalization, clamp gradients >0.2
 - renormalize

Local Descriptors: SURF

Fast approximation of SIFT idea

Efficient computation by 2D box filters & integral images

⇒ 6 times faster than SIFT

Equivalent quality for object identification

GPU implementation available

Feature extraction @ 200Hz (detector + descriptor, 640×480 img) http://www.vision.ee.ethz.ch/~surf

Local Descriptors: Shape Context

Count the number of points inside each bin, e.g.:

$$Count = 4$$

•

Count = 10

Log-polar binning: more precision for nearby points, more flexibility for farther points.

Shape Context Descriptor

Self-similarity Descriptor

Figure 1. These images of the same object (a heart) do NOT share common image properties (colors, textures, edges), but DO share a similar geometric layout of local internal self-similarities.

Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor

Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor

Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Learning Local Image Descriptors, Winder and Brown, 2007

Local Descriptors

- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
 - Robust
 - Distinctive
 - Compact
 - Efficient
- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = [x_1^{(1)}, \dots, x_d^{(1)}]$ each interest point.

3) Matching: Determine correspondence between descriptors in two views

Matching

- Simplest approach: Pick the nearest neighbor.
 Threshold on absolute distance
- Problem: Lots of self similarity in many photos

Distance: 0.34, 0.30, 0.40 Distance: 0.61

Distance: 1.22

Nearest Neighbor Distance Ratio

- $\frac{NN1}{NN2}$ where NN1 is the distance to the first nearest neighbor and NN2 is the distance to the second nearest neighbor.
- Sorting by this ratio puts matches in order of confidence.

Matching Local Features

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor

SIFT Repeatability

SIFT Repeatability

SIFT Repeatability

Choosing a detector

- What do you want it for?
 - Precise localization in x-y: Harris
 - Good localization in scale: Difference of Gaussian
 - Flexible region shape: MSER
- Best choice often application dependent
 - Harris-/Hessian-Laplace/DoG work well for many natural categories
 - MSER works well for buildings and printed things
- Why choose?
 - Get more points with more detectors
- There have been extensive evaluations/comparisons
 - [Mikolajczyk et al., IJCV'05, PAMI'05]
 - All detectors/descriptors shown here work well

Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

				Rotation	Scale	Affine		Localization		
Feature Detector	Corner	$_{\mathrm{Blob}}$	Region	invariant	invariant	invariant	Repeatability	accuracy	Robustness	Efficiency
Harris	√			√			+++	+++	+++	++
Hessian		\checkmark		\checkmark			++	++	++	+
SUSAN				√			++	++	++	+++
Harris-Laplace	\checkmark	(√)		√	√		+++	+++	++	+
Hessian-Laplace	(√)	\checkmark		\checkmark	\checkmark		+++	+++	+++	+
DoG	(√)	\checkmark		\checkmark	\checkmark		++	++	++	++
SURF	(√)	\checkmark		√	\checkmark		++	++	++	+++
Harris-Affine	√	(√)		√	√	√	+++	+++	++	++
Hessian-Affine	(√)	\checkmark		\checkmark	\checkmark	\checkmark	+++	+++	+++	++
Salient Regions	(√)	\checkmark		\checkmark	\checkmark	(√)	+	+	++	+
Edge-based	\checkmark			√	\checkmark	\checkmark	+++	+++	+	+
MSER				√	√	√	+++	+++	++	+++
Intensity-based			\checkmark	\checkmark	\checkmark	\checkmark	++	++	++	++
Superpixels			\checkmark	\checkmark	(√)	()	+	+	+	+

Choosing a descriptor

Again, need not stick to one

For object instance recognition or stitching,
 SIFT or variant is a good choice

Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG

- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT

