Soru II

20 μ C'luk bir başlangıç yüküne sahip 2.10⁻³ μ F'lık bir kondansatör 2000 Ω 'luk bir direnç üzerinden boşalmaktadır. Kondansatörün uçlarına bağlandıktan 9 μ s sonra dirençten geçen akımı hesaplayınız.

- A 0.392 A
- 0.526
- C 0.803 A
- 0.952A
- E 0.684 A

Kütlesi 50 g ve uzunluğu 50 cm olan iletken bir çubuk, şekildeki gibi iletken yaylarla asılmıştır. Bölgede kağıt dışına yönelik ve 0,2 T şiddetinde manyetik alan vardır. Yaylardaki kuvvetin sıfır olması için, bu çubuk üzerinden geçen akımın şiddeti ve yönü ne olmalıdır? (g=10 m/s2 alinız)

- A 5 Amper; Sola doğru
- B 5 Amper; Sağa doğrı
- c 25 Amper; Sola doğru
- D 2,5 Amper; Sola doğru
- F 50 Amper: Sola doğr

Puan: 5,00

Şekildeki tüm dirençler aynı R değerindedirler. R = $6~\Omega$ ve V = 39V ise a ve b noktaları arasındaki Vab potansiyel farkı kaç volt olur?

- Δ 28
- B 20
- C 15
- D 12

3q 4q

Şekildeki gibi dört nokta yük 2a kenar uzunluklu bir karenin köşelerinde bulunmaktadır. Artı q yüküne etkiyen bileşke kuvveti bulunuz.

- A 2,25 kg*2/a*2
- B 2,15 kq/a+2
- C 2,55 kq*2/a*2
- D 2,15 kq*2/a*2
- E 2,25 kq/a*2

t=0'da, C=2 μ F sığaya sahip yüksüz bir kondansatör sabit bir ϵ emk'ya sahip bir aküye R=3x10 6 Ω direnci üzerinden bağlıdır. Kondansatör, ulaşabileceği maksimum yük değerinin dörtte birine sahip olması için ne kadar zaman geçer?

- A 5.4 s
- B 1.73 s
- C 11.7 s
- D 13.5 s
- E 2.5 s

Yoğunluğu $4x10^3$ kg/m³, iletkenliği $8x10^5$ (Ω .m)-1 ve direnci 2 ohm olan bir telden 5 m üretmek

Yoğunluğu 4x10³ kg/m³, iletkenliği 8x10⁵ (Ω.m)⁻¹ ve direnci 2 ohm olan bir telden 5 m üretmek istiyoruz. Kaç gr metal kullanmamız gerekir?

- A 68,5
- 62,
- 70,5
- 60.5
- 50,5

201010

Bir elektron şekilde gösterildiği gibi manyetik alan bölgesine dik olarak 3x10⁸ m/s hızla giriyor ve bölgede 1.57 cm yol aldıktan sonra geliş yönüne dik olarak bölgeden çıkıyor.

Bölgedeki manyetik alanın şiddeti nedir? (Yol gösterme: Çeyrek çemberin uzunluğundan yarıçap bulunuz)

(pi sayısını 3.14 alınız)

Şekildeki dikdörtgen çerçeve z- ekseni etrafında dönebilen 20 sarımdan oluşmakta ve her sarımdan I=8 A akım geçmektedir.

Çerçevenin boyutları a=2m ve b=4m'dir. B=5 T manyetik alanı x-ekseni yönündedir.

Çerçeveye etkiyen manyetik torku hesaplayınız

(sin37=0.6, Sin53=0.8)

Kenar uzunlukları 50 cm ve 25 cm olan bakır dikdörtgen bir levha kendisine dik yönelmiş 8.10*4 N/C'luk elektrik alanına konuluyor. Her bir yüzeydeki toplam yükü bulunuz.

- A 0,885x10*-6
- B 0,176x10*-7
- C 0,0177x10*-6
- D 0,0885x10*-6
- E 0,177x10*-7

Şekildeki eş-eksenli iki sonsuz silindirik kabuktan, a yarıçaplı olanı üzerinden 3I akımı, b yarıçaplı olanı üzerinden zıt yönde I akımı geçmektedir. r > b bölgesinde manyetik alanı veren formül aşağıdakilerden hangisidir?

- A $\frac{3 \mu_0 I}{2 \pi r}$
- $\frac{\mu_0 I}{\pi r}$
- $\frac{2 \mu_0 I}{\pi r}$
- $\begin{array}{c} D & \bigcirc & \underline{\mu_0 I} \\ 4 \pi r \end{array}$
- $\frac{\mu_0 I}{2\pi r}$

şekildeki paralel teller II ve 12 akımları taşımaktadır. 12 okumi yukarı yönde 150 A olduğunda II ve 12 akımlarının 8 noktasında oluşturduğu manyetik alan sıfır olmoktadır. Buna göre iki telin tam ortasında bulunan A noktasında tellerin oluşturduğu manyetik alan sıfır olmoktadır. Buna göre iki telin tam ortasında bulunan A noktasında tellerin oluşturduğu manyetik alan sıfır olmoktadır. Buna göre iki telin tam ortasında bulunan A noktasında tellerin oluşturduğu manyetik alan sıfır olmoktadır. Buna göre iki telin tam ortasında bulunan A noktasında tellerin oluşturduğu manyetik alan sıfır olmoktadır. Buna göre iki telin tam ortasında bulunan A noktasında tellerin oluşturduğu manyetik alan sıfır olmoktadır. Buna göre iki telin tam ortasında bulunan A noktasında tellerin oluşturduğu manyetik alan sıfır olmoktadır.

Sayla düzleminden dişa doğru 0.016

3 Sayla düzleminden içeri doğru 0.014

Sayfa düzlerninden dışa doğru 0.014

A 0.22 T

B 0.17 T

C 0.15 T

D 0.19 T

E 0.11 T

Soru₁₇

Şekilde görülen devrede R₁ direncinde elektrik enerji harcanma hızı 30 W'tır. R₁ve R₂ dirençlerinin değerleri ve Pilin emk'sı nedir?

A
$$\Omega$$
 R₁=5 Ω , R₂=10 Ω ve ϵ =10 V

B
$$\Omega$$
 R₁=7,5 Ω , R₂=7,5 Ω ve ϵ =15 V

$$R_1=5 \Omega$$
, $R_2=4 \Omega$ ve $\epsilon=10 V$

R₁=15
$$\Omega$$
, R₂=60 Ω ve ϵ =30 V

R₁=5
$$\Omega$$
, R₂=8 Ω ve ϵ =10 V

Şeklidə verilən II, I2 və I3 akımları sırasıyla kaç amperdir?

- A +0.3, +0.6, +0.9
- B -0.9, +0.3, +0.6
- C -0.3, -0.6, -0.9
- D +0.3, -0.9, +0.6
- E +0.3, +0.3, +0.6

Seçimi Boş Bırakmak İstiyorum

Şekildeki P noktasında manyetik alan sıfır olması için alttan geçen düz teldeki akımın büyüklüğü ve yönü aşağıdakilerden hangisidir?

- A +x yönünde 2πl büyüklüğünde
- B +x yönünde 4πl büyüklüğünde
- C -x yönünde 2πi büyüklüğünde
- **D** -x yönünde πl büyüklüğünde
- E +x yönünde πl büyüklüğünde