IT486: Blockchains and Cryptocurrencies

Zero-knowledge range proofs

An interactive proof system

Examples of statements:

- I am Peggy (for identification)
- I have the secret key for this public key

Properties that zero-knowledge proofs must have

- Completeness
 - if statement is true, honest verifier will eventually be convinced by honest prover

Properties that zero-knowledge proofs must have

Completeness

• if statement is true, honest verifier will eventually be convinced by honest prover

Soundness

• if statement is false, no (cheating) prover can convince verifier that it is true (except with small probability)

Properties that zero-knowledge proofs must have

Completeness

• if statement is true, honest verifier will eventually be convinced by honest prover

Soundness

 if statement is false, no (cheating) prover can convince verifier that it is true (except with small probability)

Zero-knowledge

• if statement is true, no (cheating) verifier learns anything other than this fact. Verifier cannot even prove this fact to anyone later

Range proofs

- Prover tries to convince a verifier that a certain encrypted value x lies in a given range [a,b] without revealing any information on x besides that it lies in the given range
- Example: Proving that the transaction amount is non-negative

Fiat-Shamir ZKP

- Suppose N = pq, where p and q prime
- Computational assumption:
 - ullet Finding square roots modulo N when p, q are kept secret is hard
- Let $v = S^2 \mod N$. Revealing v does not reveal S
- Goal: Assume Alice knows S. She must convince Bob that she knows S without revealing any information about S

Fiat-Shamir ZKP

- Public: Modulus N and $v = S^2 \mod N$
- Alice selects random r
- ullet Bob chooses $e \in \{0,1\}$
- Bob verifies that $y^2 = r^2 \cdot S^{2e} = r^2 \cdot (S^2)^e = x \cdot v^e \mod N$

Can Bob find *S*?

- Public: $v = S^2 \mod N$
- ullet If Bob can find modular square roots, he can get S from public v

Can Bob find *S*?

- Bob sees $r^2 \mod N$ in message 1
- Bob sees $r \cdot S \mod N$ in message 3 (if e = 1)
- If Bob can find r from $r^2 \mod N$, he gets S. But that requires modular square root

Can Bob find *S*?

- Alice must use new r each iteration or else
- If e = 0, Alice sends r in message 3
- If e = 1, Alice sends $r \cdot S$ in message 3
- Anyone can find S given both r and $r \cdot S$

Protocol run with e = 1

- Public: Modulus N and $v = S^2 \mod N$
- Alice selects random r
- Suppose Bob chooses e = 1
- Bob must verify that $y^2 = x \cdot v \mod N$
- Alice must know *S* in this case

Protocol run with e = 0

- Public: Modulus N and $v = S^2 \mod N$
- Alice selects random r
- Suppose Bob chooses e = 0
- Bob must verify that $y^2 = x \mod N$
- Alice does not need to know S in this case!

Soundness property fulfilled?

- Suppose Alice does not know the secret S
- If Alice expects Bob to send e = 0, she can send $x = r^2$ in msg 1 and y = r in msg 3 (i.e., follow protocol)
- If Alice expects Bob to send e = 1, she can send $x = r^2v^{-1}$ in msg 1 and y = r in msg 3 (i.e., disobey protocol)

Soundness property fulfilled?

- Alice can fool Bob with prob 1/2, but . . .
- after *n* iterations, the probability that Alice can fool Bob is only $1/2^n$
- Bob's $e \in \{0,1\}$ must be unpredictable

Zero-knowledge property fulfilled?

- Can Bob forge a transcript on his own, without interacting with Alice?
- Bob's transcript will consist of a sequence of three-message rounds of the form:

$$\begin{array}{lll} A \rightarrow B: & x_1 \\ B \rightarrow A: & e_1 \\ A \rightarrow B: & y_1 \\ A \rightarrow B: & x_2 \\ B \rightarrow A: & e_2 \\ A \rightarrow B: & y_2 \end{array}$$

Zero-knowledge property fulfilled?

- Whatever Bob might be able to do after actually taking part in the protocol he could equally well do by just using a forged transcript
- Hence Bob doesn't gain any additional knowledge!

Proof of Knowledge of Exponent

- ullet Group G of prime order q with generator g
- Let $x \in Z_q$ be a secret quantity and let $X = g^x$
- Prover is able to prove her knowledge of x to Verifier
- No information about x is gained by Verifier

Schnorr's Protocol

- **1** Prover chooses $r \in Z_q$ randomly and hands $R = g^r$ to Verifier
- 2 Verifier chooses $c \in Z_q$ randomly and hands it to the Prover
- **3** Prover computes $s = cx + r \pmod{q}$ and hands s to the Verifier.

Schnorr's Protocol

- **1** Prover chooses $r \in Z_q$ randomly and hands $R = g^r$ to Verifier
- **2** Verifier chooses $c \in Z_q$ randomly and hands it to the Prover
- **3** Prover computes $s = cx + r \pmod{q}$ and hands s to the Verifier. Verifier accepts if $X^cR = g^s$

• If Prover reuses r, then her secret x is revealed to Verifier

- If Prover reuses r, then her secret x is revealed to Verifier
- But how?

• If the Prover learns the challenge c before sending R to Verifier, Prover can successfully fake knowledge of the secret x

- If the Prover learns the challenge c before sending R to Verifier, Prover can successfully fake knowledge of the secret x
- But how?

Schnorr's Protocol

- Completeness
 - If Prover knows the secret, Verifier will be convinced of this
- Soundness
 - Prover who does not know secret x has probability 1/q to convince Verifier that she knows the secret
- Zero-Knowledge
 - Verifier can forge a transcript without interacting with Prover!

Schnorr Signature Scheme

Let $H: \{0,1\}^* \to Z_q$ be a hash function.

- Setup: Signer chooses $x \in Z_q$ randomly, computes $y = g^x$ and outputs (pk, sk) = (y, x).
- Signer does the following on input x and message m:
 - **1** chooses $r \in Z_q$ randomly and computes $R = g^r$,
 - 2 computes c = H(R, m),
 - **3** computes $s = c \cdot x + r \pmod{q}$ and outputs signature (R, s).

Schnorr Signature Scheme

Let $H: \{0,1\}^* \to Z_q$ be a hash function.

- Setup: Signer chooses $x \in Z_q$ randomly, computes $y = g^x$ and outputs (pk, sk) = (y, x).
- Signer does the following on input x and message m:
 - **1** chooses $r \in Z_a$ randomly and computes $R = g^r$,
 - 2 computes c = H(R, m),
 - **3** computes $s = c \cdot x + r \pmod{q}$ and outputs signature (R, s).
- Verifier takes the public key y, message m, and a candidate signature (R,s), and accepts iff $y^{H(R,m)}R=g^s$.

 Computation of c is over m. This binds proof of knowledge to a particular message m

- Computation of c is over m. This binds proof of knowledge to a particular message m
- Signer generates the challenge, not the Verifier! This makes the scheme non-interactive

- If the challenge c can be fixed without fixing R, then forgery is possible – but how?
- Suppose we define c = H(R, m)

- If the challenge c can be fixed without fixing R, then forgery is possible – but how?
- Suppose we define c = H(R, m)
- This ensures that c cannot be fixed without fixing R

- Signing the hash avoids an existential forgery attack
- To see why hash is needed, let $c = R \cdot m$

- Signing the hash avoids an existential forgery attack
- To see why hash is needed, let $c = R \cdot m$
- Now suppose adversary sees signature (R, s) for m
- Let $m' = 2mR^{-1}$, s' = 2s, $R' = R^2$

- Signing the hash avoids an existential forgery attack
- To see why hash is needed, let $c = R \cdot m$
- Now suppose adversary sees signature (R, s) for m
- Let $m' = 2mR^{-1}$, s' = 2s, $R' = R^2$
- Show that (R', s') is a valid signature for m'

Recap: EC Schnorr

- Have message m, private key k, public key P = kG
- Make secret nonce r, public key of nonce R = rG
- Challenge: e = H(R|P|m)
- Signature: s = r + ek
- Verification: sG == R + eP

Recap: EC Schnorr

- Have message m, private key k, public key P = kG
- Make secret nonce r, public key of nonce R = rG
- Challenge: e = H(R|P|m)
- Signature: s = r + ek
- Verification: sG == R + eP
- remark: Signer must first choose *R* before challenge *e* can be computed

Insecure variant

- Make secret nonce r, public key of nonce R = rG
- Let's say we sign a message with e = H(P|m)
- Signature: s = r + ek
- Verification: sG == R + eP

Insecure variant

- Make secret nonce r, public key of nonce R = rG
- Let's say we sign a message with e = H(P|m)
- Signature: s = r + ek
- Verification: sG == R + eP
- remark: Signer can fix e without calculating R
- Forgery is possible, but how?

Transformation: non-EC operations to EC operations

- Multiplication becomes point addition
- Exponentiation becomes scalar multiplication

(Exponential) ElGamal encryption scheme

- Message: m
- (pk, sk) = (h, x), where $h = g^x$
- Encryption: pick a random K, compute $(c_1, c_2) = (g^K, g^m \cdot h^K)$
- Decryption:
 - Compute $g^m = c_2/(c_1^x)$
 - Solve the DLOG problem to find m (feasible if m is bounded)

(Exponential) ElGamal encryption scheme

- Message: m
- (pk, sk) = (h, x), where $h = g^x$
- Encryption: pick a random K, compute $(c_1, c_2) = (g^K, g^m \cdot h^K)$
- Decryption:
 - Compute $g^m = c_2/(c_1^x)$
 - Solve the DLOG problem to find m (feasible if m is bounded)
- $E(m_1) \cdot E(m_2) = E(m_1 + m_2)$

Proof of correctness of ElGamal encryption

- ullet Say Alice performs an ElGamal encryption of T using her public key h
- Verifier sees the ciphertext: $(c_1, c_2) = (g^K, g^T \cdot h^K)$
- Alice wants to prove that she knows the secret values (T, K) without revealing any information about them to Verifier
- But how?

ElGamal zero-knowledge proof

Prover

Choose random I, m

$$r_1 = g^I$$

$$r_2 = g^m \cdot h^l$$

$$\xrightarrow{r_1, r_2}$$

 s_1, s_2

$$s_1 = I + e \cdot K$$

$$s_2 = m + e \cdot T$$

Verifier

Generate random e

$$g^{s_1} \stackrel{?}{=} r_1 \cdot c_1^e$$

$$g^{s_2}\cdot h^{s_1}\stackrel{?}{=} r_2\cdot c_2^e$$

Soundness property

• Suppose that a prover who does not know (K, T) is able to answer correctly at least two challenges e and e', with $e \neq e'$, after sending r_1 , r_2 .

Soundness property

- Suppose that a prover who does not know (K, T) is able to answer correctly at least two challenges e and e', with $e \neq e'$, after sending r_1 , r_2 .
- That is, a prover is able to produce two valid conversations $(r_1, r_2; e; s_1, s_2)$ and $(r_1, r_2; e'; s'_1, s'_2)$. Then it follows that the prover actually knows K and T.

Soundness property

- Suppose that a prover who does not know (K, T) is able to answer correctly at least two challenges e and e', with $e \neq e'$, after sending r_1 , r_2 .
- That is, a prover is able to produce two valid conversations $(r_1, r_2; e; s_1, s_2)$ and $(r_1, r_2; e'; s'_1, s'_2)$. Then it follows that the prover actually knows K and T.
- Therefore, after sending r_1 , r_2 , the prover can answer at most one challenge correctly, if the prover does not know K and T.

Proving that T is representable with n bits

- Say Alice performs an ElGamal encryption of a value T using her public key h
- Alice wants to prove that T can be represented using n or fewer bits, implying $T \le 2^n 1$
- But how?

Proving that T is representable with n bits

• Write *T* in its binary representation:

$$\mathcal{T} = \sum_{i=0}^{n-1} \ 2^i \cdot b_i, ext{ where } b_i \in \{0,1\}$$

• Encrypt each bit b_i using the public key h:

$$(c_{1i}, c_{2i}) = (g^{K_i}, g^{b_i} \cdot h^{K_i}), 0 \le i \le n-1$$

• But how can Verifier check correctness of the above ciphertexts?

Proving that T is representable with n bits

Write T in its binary representation:

$$\mathcal{T} = \sum_{i=0}^{n-1} \ 2^i \cdot b_i, ext{ where } b_i \in \{0,1\}$$

• Encrypt each bit b_i using the public key h:

$$(c_{1i}, c_{2i}) = (g^{K_i}, g^{b_i} \cdot h^{K_i}), 0 \le i \le n-1$$

- But how can Verifier check correctness of the above ciphertexts?
- Execute an OR-proof for every encrypted bit so that verifier is convinced that it is the encryption of 0 or 1, but does not learn any additional information besides that

Proof of the encryption of 0

• put m = 0 and T = 0 in our previous protocol

Prover

Choose random 1

$$r_1=g^I$$

$$r_2 = h^I$$

$$s = I + e \cdot K$$

Verifier

Generate random e

 r_1, r_2

$$g^s \stackrel{?}{=} r_1 \cdot c_1^e$$

$$h^s \stackrel{?}{=} r_2 \cdot c_2^e$$

Proof of the encryption of 1

• put m=1 and T=1 in our previous protocol

Prover

Choose random 1, m

$$r_1 = g^I$$

$$r_2 = g \cdot h^I$$

$$s = I + e \cdot K$$

Verifier

$$\xrightarrow{r_1, r_2}$$

Generate random e

$$g^{s} \stackrel{?}{=} r_{1} \cdot c_{1}^{e}$$

$$g^{e+1} \cdot h^{s} \stackrel{?}{=} r_{2} \cdot c_{2}^{e}$$

Proving that the bit representation represents T

- Verifier has the ciphertext: $(c_1, c_2) = (g^K, g^T \cdot h^K)$
- Both the Verifier and Alice compute the following ciphertext:

$$\tilde{c} = \left(\frac{c_{1}}{\prod_{i=0}^{n-1} c_{1i}^{2^{i}}}, \frac{c_{2}}{\prod_{i=0}^{n-1} c_{2i}^{2^{i}}}\right) \\
= \left(g^{K-\sum_{i=0}^{n-1} 2^{i} \cdot K_{i}}, g^{T-\sum_{i=0}^{n-1} 2^{i} \cdot b_{i}} \cdot h^{K-\sum_{i=0}^{n-1} 2^{i} \cdot K_{i}}\right)$$

Proving that the bit representation represents T

- Verifier has the ciphertext: $(c_1, c_2) = (g^K, g^T \cdot h^K)$
- Both the Verifier and Alice compute the following ciphertext:

$$\tilde{c} = \left(\frac{c_{1}}{\prod_{i=0}^{n-1} c_{1i}^{2^{i}}}, \frac{c_{2}}{\prod_{i=0}^{n-1} c_{2i}^{2^{i}}}\right)
= \left(g^{K-\sum_{i=0}^{n-1} 2^{i} \cdot K_{i}}, g^{T-\sum_{i=0}^{n-1} 2^{i} \cdot b_{i}} \cdot h^{K-\sum_{i=0}^{n-1} 2^{i} \cdot K_{i}}\right)$$

- Now Alice proves that $\tilde{c}=(g^{\tilde{K}},h^{\tilde{K}})$ is an encryption of 0
 - This proof is exactly the same as our previous protocol for the proof of the encryption of 0

Proving that the bit representation represents T

- Verifier has the ciphertext: $(c_1, c_2) = (g^K, g^T \cdot h^K)$
- Both the Verifier and Alice compute the following ciphertext:

$$\tilde{c} = \left(\frac{c_{1}}{\prod_{i=0}^{n-1} c_{1i}^{2^{i}}}, \frac{c_{2}}{\prod_{i=0}^{n-1} c_{2i}^{2^{i}}}\right)
= \left(g^{K-\sum_{i=0}^{n-1} 2^{i} \cdot K_{i}}, g^{T-\sum_{i=0}^{n-1} 2^{i} \cdot b_{i}} \cdot h^{K-\sum_{i=0}^{n-1} 2^{i} \cdot K_{i}}\right)$$

- Now Alice proves that $\tilde{c}=(g^{\tilde{K}},h^{\tilde{K}})$ is an encryption of 0
 - This proof is exactly the same as our previous protocol for the proof of the encryption of 0
- ullet This proves that the bit representation actually represents T