Course Notes

COMP130023.01 Theory of Computation

Spring 2024

• Instructor: Yuan Li

• Email: yuanli_li@fudan.edu.cn

TA	$week(n \in \mathbb{N})$
Yiwen Gao	5n + 1
Kexin Li	5n+2
Yangjun Li	5n+3
Shun Wan	5n+4
Shuangjun Zhang	5n + 5

What do we study?

- What is computation, i.e., computation model
- Finite automaton, context-free grammar
- Turing machine (= algorithm)
- \bullet Computability
- Complexity class (P, NP, PSPACE, EXP, L, NL, ...)
- NP completeness, reduction

Contents

1	Less	son 1	1
	1.1	Big-O Notation	1
	1.2	Alphabets and Languages	2
	1.3	Encoding of Problems	9
		1.3.1 Examples	3
		1.3.2 Analysis	4
		1.3.3 Conclusion	4
2	Less	son 2	6
	2.1	Finite Automaton	6
	2.2	Regular Language	7

1 Lesson 1

1.1 Big-O Notation

def 1.1. Let $f, g : \mathbb{N} \to \mathbb{R}$

- Write f = O(g) if $(\exists c > 0)(\exists N)(\forall n \ge N)(|f(n)| \le cg(n))$.
- Write $f = \Omega(g)$ if $(\exists c > 0)(\exists N)(\forall n \ge N)(|f(n)| \ge cg(n))$.
- Write $f = \Theta(g)$ if $(\exists c_1, c_2 > 0)(\exists N)(\forall n \ge N)(c_1g(n) \le |f(n)| \le c_2g(n))$.

• Write f = o(g) if $(\forall \epsilon > 0)(\exists N)(\forall n \ge N)(|f(n)| \le \epsilon g(n))$.

Big-O Notation is the most commonly used one among the four.

e.g. 1.1.
$$f(n) = 6n^4 - 3n^3 + 5 \Rightarrow f(n) = O(n^4)$$

Proof.
$$|6n^4 - 3n^3 + 5| \le 6n^4 + 3n^4 + 5n^4 = 13n^4$$

e.g. 1.2.
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} = O(n^3)$$

exercises 1.1. Write in big-O notation:

- 1. $5 + 0.001n^3 + 0.25n$
- 2. $500n + 100n^{1.5} + 50n \log_{10} n$
- 3. $n^2 \log_2 n + n(\log_2 n)^2$
- 4. $3\log_8 n + \log_2(\log_2 n)$

solution
$$O(n^3)$$
; $O(n^1.5)$; $O(n^2 \log n)$; $O(\log n)$

prop 1.1.

- $f_1 = O(g_1), f_2 = O(g_2) \Rightarrow f_1 f_2 = O(g_1 g_2)$
- f(O(g)) = O(fg)
- $f_1 = O(g_1), f_2 = O(g_2) \Rightarrow f_1 + f_2 = O(max(g_1, g_2))$
- $f_1 = O(g), f_2 = O(g) \Rightarrow f_1 + f_2 = O(g)$
- $f = O(g) \Rightarrow kf = O(g)$

often encountered:

•
$$constant: O(1)$$

$$-\sum_{k=1}^{n} \frac{1}{k} = \ln n + O(1)$$
$$-\sum_{k=1}^{n} \frac{1}{k^2} = O(1)$$
$$-\sum_{k=1}^{n} \frac{1}{k \ln k} = \ln \ln n + O(1)$$

- double logarithmic: $O(\log \log n)$
- logarithmic: O(log n)
- $polylogarithmic: O((\log n)^c), c > 0$
- linear: O(n)
- quasilinear: $O(n \log^c n)$, $O(n \log^{O(1)} n)$
- quadratic: $O(n^2)$

def 1.2.
$$\omega(g), \theta(g)$$

- $f = \omega(g) \ if(\forall c > 0)(\exists N)(\forall n \ge N)(f(n) \ge cg(n))$
- $g = \theta(g)$ (or equivalently $f \sim g$) if $(\forall \epsilon > 0)(\exists N)(\forall n \geq N)(|f(n) g(n)| < \epsilon g(n))$

1.2 Alphabets and Languages

def 1.3. (alphabet) An alphabet is a set of symbols

- Roman alphabet: a, b, c, d, \dots, z
- $binary\ alphabet: 0, 1$

def 1.4. (string and its length)

A string (over an alphabet) is a finite sequence of symbols from the alphabet.

Empty string is string of no symbols, denoted by ε .

The set of all string is denoted by Σ^* . Denote by Σ^n the set of all string of length n.

So,
$$\Sigma^* = \bigcup_{n>0} \Sigma^n$$
.

Denote the length of a string w by |w|

e.g. 1.3.
$$\{0,1\}^* = \{\varepsilon,0,1,00,01,\cdots\}, |\varepsilon| = 0, |0110| = 4$$

def 1.5. (concatenation) Two strings over the same alphabet can be combined by the operation of concatenation. The concatenation of x and y is denoted by xy.

def 1.6. (substring, suffix, prefix)

A string v is a substring of w if \exists strings x and y such that w = xvy.

If w = xv for some x, then v is a **suffix** of w.

If w = vy for some y, then v is a **prefix** of w.

def 1.7. ("power") The string w^i is defined: $w^0 = \varepsilon, w^{i+1} = w^i w, i \in \mathbb{N}$

e.g. 1.4.
$$01^0 = \varepsilon$$
, $01^1 = 01$, $01^2 = 0101$

def 1.8. (reversal) The reversal of a string w, denoted by w^R , is the string "spelled backwards" A formal definition can be given by induction on length:

- 1. If $w = \varepsilon$, $w^R = w = \varepsilon$
- 2. If |w| = n + 1, where w = ua, $a \in \Sigma$, then $w^R = au^R$

def 1.9. (language) **Language** is a set of strings over an alphabet, That is, $L \subseteq \Sigma^*$.

For example, \emptyset , Σ^* , Σ are all languages

- $\sigma = \{0, 1\}$
- $Even = \{0, 10, 100, 110, \cdots, \}$
- $Odd = \{1, 11, 101, \cdots\}$
- $Prime = \{10, 11, 101, 111, \cdots\}$
- $Palindrome = \{w | w^R = w\} = \{\varepsilon, 0, 1, 00, 11, \cdots\}$

def 1.10. (complement, binary language operations)

Let L be a language. The **complement** of L, denoted by \overline{L} , is $\Sigma^* - \overline{L}$. So $\overline{\overline{L}} = L$.

Note that since L is a set, we can define $union(\cup)$, $interchapter^*(\cap)$ and difference.

The concatenation of L_1 and L_2 is defined by $L_1L_2 = w \in \Sigma^*, w = xy, \exists x \in L_1, y \in L_2$

1.3 Encoding of Problems

1.3.1 Examples

- 1. (Integer multiplication) Given two non-negative integers x, y, compute xy.
- 2. (**Primality testing**) Given $n \in \mathbb{N}$, decide if n is a prime.
- 3. (Hamiltonian cycle) Given an undirected graph G, test if G has a Hamiltonian cycle.

1.3.2 Analysis

• **Decision** problem: 2,3

• Computation problem: 1

1.3.3 Conclusion

- By encoding, decision problem is language. Any computation problem is a function from Σ* to Σ*. Our course only concerns decision problem, namely language.
- By preprocessing, one can switch between encodings.

e.g. 1.5.

 \bullet graph

• adjacency matrix

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

• $adjacency\ list$ $(1,2),(1,3),\cdots$

all languages $L \subseteq \Sigma^* = \{\varepsilon, 0, 1, 00, 01, \cdots\}$

remark.

NP: problems that are efficiently verifiable

P: problems that are efficiently solvable, i.e. solvable in $n^{O(1)}$ time

regular language: problems that are solvable without memory, i.e. solvable by finite automation

2 Lesson 2

2.1 Finite Automaton

e.g. 2.1. Automatic Door

	front	rear	both	neither
front	\checkmark	×	\checkmark	×
rear	×	\checkmark	\checkmark	×

e.g. 2.2. $L = \{w \in \{0,1\}^* | w = w_1 w_2 \cdots w_n, w_n = 0\}$

remark. $q_0: accepted state$

$$Q = \{q_0, q_1\}, \Sigma = \{0, 1\}, \delta : Q \times \Sigma \to Q$$

	0	1
q_0	q_0	q_1
q_1	q_0	q_1

def 2.1. (finite automaton)

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:

- 1. Q is a finite set called the states
- 2. Σ is the alphabet
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function

- 4. q_0 is the start state
- 5. $F \subseteq Q$ is the set of accept states

def 2.2. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton, let $w = w_1 w_2 \cdots w_n$ be a string, where each $w_i \in \Sigma$.

Then M accept w if there is a sequence of states $r_0, r_1, \dots, r_n \in Q$, such that:

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, 1, 2, \dots, n-1$
- 3. $r_n \in F$

def 2.3. If L is the set of strings that M accepts, we say L is the language of M, and write L(M) = L, we say M recognizes/decides/accepts L.

If M accepts no string, it recognizes one language namely, the empty language.

e.g. 2.3. $L = \{w \in \{0,1\}^* | w = w_1 w_2 \cdots w_n, w_n = w_1\}$

2.2 Regular Language

def 2.4. (regular language) $L \subseteq \Sigma^*$ is a regular language if there is a finite automaton that accepts L

Let $A, B \subseteq \Sigma^*$, define:

- $(union) A \cup B = \{x \in \Sigma^* | x \in A \text{ or } x \in B\}$
- (concatenation) $AB = \{xy | x \in A, y \in B\}$

• $(star) A^* = \{x_1 x_2 \cdots x_k | k \ge 0, x_1, x_2, \cdots, x_k \in A\}$

thm 2.5. If A_1, A_2 are regular languages, so is $A_1 \cup A_2$

Proof. Let $M_1 = (Q_1, \Sigma_1, \delta_1, q_{10}, F_1)$ accepts A_1 , $M_2 = (Q_2, \Sigma_2, \delta_2, q_{20}, F_2)$ accepts A_2 , construct $M = (Q, \Sigma, \delta, q_0, F)$:

- 1. $Q = Q_1 \times Q_2 = \{(r_1, r_2) | r_1 \in Q_1, r_2 \in Q_2\}$
- 2. $\delta: Q \times \Sigma \to Q$ is defined as for each $(r_1, r_2) \in Q$, and each $a \in \Sigma$, let $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- 3. $q_0 = (q_{10}, q_{20})$
- 4. $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

remark. so is $A \cap B$

thm 2.6. If A_1, A_2 are regular languages, so is A_1A_2

- **DFA**: deterministic finite automaton
- NFA: nondeterministic...

If at least one of these processes accepts, then the entire computation accepts.

e.g. 2.4. NFA:

input: 010110

e.g. 2.5. Let A be the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end (e.g., 000100 is in A but 0011 is not). The following four-state NFA recognizes A.

Figure 1: The computation of NFA on input 010110

Figure 2: Deterministic and nondeterministic computations with an accepting branch

e.g. 2.6. $L = \{0^k, 2|k \text{ or } 3|k\}$

def 2.7. (NFA)

An **NFA** is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:

- $1.\ Q$ is a finite set of states
- 2. Σ is the alphabet
- 3. $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to P(Q)$ is the transive funtion
- 4. $a_0 \in Q$ is the start state
- 5. $F \subseteq Q$ is the set of accept states

def 2.8.

Let $N=(Q,\Sigma,\delta,q_0,F)$ be an NFA, and let $w\in\Sigma^*$. Say N accepts w if we can write $w=y_1y_2\cdots y_m$, where $y_i\in\Sigma\cup\{\varepsilon\}$, and there exist $r_0,r_1,\cdots,r_m\in Q$, such that:

- 1. $r_0 = q_0$
- 2. $r_{i+1} \in \delta(r_i, y_{i+1})$ for $i = 0, 1, \dots, m-1$
- 3. $r_m \in F$

thm 2.9. Every NFA has an equivalent DFA

Proof.