Central England Temperature: Analysis and Forecasting

Antonio García-Ferrer

Dpto. de Análisis Económico: Economía cuantitativa.

Universidad Autónoma de Madrid

Peter C. Young

Centre for Research on

Environmental Sustems and Statistics

Lancaster University

Marcos Bujosa

Dpto. de Fundamentos del Análisis Económico II.

Universidad Complutense de Madrid

© 2008

Last Revision Date: June, 2008

- Introduction
- \bullet Preliminary results: data quality comments
- IRW and SRW estimation results
- Some forecasting results

Periods	1659-2007	1659-1698	1699-1738	1739-1961	1962-2007
Mean	9.21	8.64	9.34	9.18	9.74
Median	9.21	8.71	9.38	9.18	9.68
Max	10.82	10.13	10.47	10.62	10.82
Min	6.84	7.25	8.38	6.84	8.47
Std. Dev.	0.66	0.64	0.49	0.61	0.62

References

- Bujosa, M., García-Ferrer, A., & Young, P. C. (2007). Linear dynamic harmonic regression. *Comput. Stat. Data Anal.*, 52, 999–1024. 9
- García-Ferrer, A., Girón, F. J., & Moreno, E. (2008). A Bayesian approach for detecting multiple turning points in economic time series. Working Paper WP2008/13, Universidad Autónoma de Madrid, Madrid, Spain.
- Parker, D. E., Legg, T. P., & Folland, C. K. (1992). A New Daily Central England Temperature Series, 1772–1991. International Journal of Climatology, 12, 317–342.
- Thomson, D. J. (1995). The seasons, global temperature and precession. Science, 268, 59-67.
- Young, P. C. (2000). Analysis of Nonstationary Climatic Time-Series: Central England and Antarctic Air Temperature Series. CRESearch TR/182, Centre for Research on Environmental Systems and Statistics, Lancaster, UK.

• Data also available on monthly and daily bases. Anual CETs are the least uncertain

- Data also available on monthly and daily bases. Anual CETs are the least uncertain
- Although represets small portion of the globe, it offers valuable support to wider studies of European climate

- Data also available on monthly and daily bases. Anual CETs are the least uncertain
- Although represets small portion of the globe, it offers valuable support to wider studies of European climate
- Over the years data quality have been re-assessed reducing uncertenty due to the:
 - choice of stations
 - calibrations errors
 - reading precision errors
 - random screen errors
 - correction of urbanization bias
 - Changes in instrumentation and exposure
 - etc.

5

$$y_t = T_t + e_t$$

$$(1 - \alpha L)(1 - L)T_t = \xi_t; \qquad 0 \le \alpha \le 1;$$

where
$$\begin{cases} e_t & \sim \text{w.n.} (0, \sigma_e^2) \\ \xi_t & \sim \text{w.n.} (0, \sigma_T^2) \end{cases}$$
 and $\text{Corr} (e_t, \xi_t) = 0.$

$$NVR = \sigma_T^2/\sigma_e^2$$

Using LDHR (Bujosa et al., 2007)

Restricted identification: RW

- NVR = 0.0083
- Cycles > 116 years
- AR(20)

Free automatic identification: SRW ($\alpha = 0.91$)

- NVR = 0.00328
- Cycles > 38,56 years
- AR(20)

forced identification: IRW

- NVR = 0.00466
- Cycles > 34,70 years
- AR(11)

- What can we conclude from this evidence?
 - Is the rise in the mean temperature over the last 50 years significant in statistical terms?

- What can we conclude from this evidence?
 - Is the rise in the mean temperature over the last 50 years significant in statistical terms?
 - Would it be different our answer to the previous question had we removed the initial part of the CET series because the greater uncertainty in measurement over this early years?

- What can we conclude from this evidence?
 - Is the rise in the mean temperature over the last 50 years significant in statistical terms?
 - Would it be different our answer to the previous question had we removed the initial part of the CET series because the greater uncertainty in measurement over this early years?
 - Is it clear whether, in England at least, we are in the middle of a more permanent increase in annual mean temperatures or whether as in the early part of the CET series, we are encountering a perturbational increase that will be reversed some time in the future?

- Is the rise in the mean temperature over the last 50 years significant in statistical terms?
- Would it be different our answer to the previous question had we removed the initial part of the CET series because the greater uncertainty in measurement over this early years?
- Is it clear whether, in England at least, we are in the middle of a more permanent increase in annual mean temperatures or whether as in the early part of the CET series, we are encountering a perturbational increase that will be reversed some time in the future?
- What are the relevant forecasting exercises?

1. Using the whole sample

 ${\bf 2. \ Removing \ the \ last \ 25 \ obsevations}$

List of Slides

- Contents
- Central England Annual Temperatures (°C) Series: 1659–2007
- Preliminary results: data quality comments
- The model
- IRW Trend Derivative and Bayesian Turning Points
- Alternative IRW Trend Derivatives (Cycles)
- Recent estimation results
- Alternative estimated trends (from 1659 to 2007)
- 10 Alternative estimated trends (Last 50 years)
- 11 First differences of the estimated trends (cycles: 1659 to 2007) 12 SRW and IRW cycles and annual growth rate (last 50 years)
- Some forecasting results: open questions 13
- prediction error: AR (4) 14
- 15 prediction error: AR (10) 16 prediction error: AR (18)
- 17 prediction error: AR (36)
- prediction error: AR (4) 18 19 prediction error: AR (10)
- 20 prediction error: AR (18)
- 21prediction error: AR (36)