Math 222 Problem Set 1

Lev Kruglyak

Due: February 5, 2025

Problem 2. Let G have the structures of a group and a smooth manifold, and suppose that multiplication $G \times G \to G$ is smooth. Prove that inversion $G \to G$ is smooth map.

Let $m: G \times G \to G$ be the multiplication map. For any fixed element $g \in G$, the left multiplication map $L_g: G \to G$ is a diffeomorphism. Consider the map

$$f: G \times G \longrightarrow G \times G$$

 $(g,h) \longmapsto (g,gh).$

At the identity (e, e), the differential of this map takes the form

$$df_{(e,e)} : T_eG \oplus T_eG \longrightarrow T_eG \oplus T_eG$$
$$\xi \oplus \eta \longmapsto \xi \oplus (\xi + \eta).$$

By the inverse function theorem, this means that f is a diffeomorphism in a neighborhood of (e, e). By composing with the left multiplication diffeomorphisms, we can see that f is a diffeomorphism over the whole manifold. Since the inversion map $i: G \to G$ can be written as $i(g) = \pi_2 \circ f^{-1}(g, e)$, a composition of smooth maps, the inversion map must be a smooth map as well.

Problem 4. Classify 1-dimensional Lie groups G which have two components and whose identity component is diffeomorphic to the circle.

Pick any nonzero vector $\xi \in \mathfrak{g}$ and consider the exponential map

$$\begin{array}{cccc} \exp \,:\, \mathbb{R} & \longrightarrow & G \\ & t & \longmapsto & \exp(t\xi). \end{array}$$

This is a homomorphism of Lie groups. Since the identity component is diffeomorphic to S^1 and the exponential map is a homomorphism of Lie groups, it follows that there is a non-empty lattice $\ker(\exp) = \Lambda \subset \mathbb{R}$ so that we have an isomorphism $\mathbb{R}/\Lambda \to G$ of Lie groups. This let's us construct isomorphism with the circle group $\mu \to G_e$ so G_e is not only diffeomorphic to a circle but has the group structure of the circle group.

Next, note that G/G_e is a group of order two and so must be isomorphic to μ_2 . From a group theoretic perspective, the only group structures on G are then $G \times \mu_2$ and $G \times \mu_2$. These correspond to the Lie groups $\mu_2 \times \mu$ and O_2 respectively.

Problem 5.

(a). Identify the group of rotations in \mathbb{R}^3 with the matrix group SO₃.

Any rotation in \mathbb{R}^3 must preserve distances, preserve orientation, and fixes a line. Let $G \subset GL_3(\mathbb{R})$ be the group of matrices representing rotations. The requirement that rotations preserve distances restricts us to $O_3 \subset GL_3(\mathbb{R})$ and the requirement that rotations preserve orientation restricts us to $SO_3 \subset O_3$. Therefore $G \subset SO_3$ so it suffices to show that every special orthogonal matrix corresponds to a rotation.

Let $A \in SO_3$ be a special orthogonal matrix. The characteristic polynomial of A is a real polynomial is a degree 3 real polynomial and so it must have a real root λ . We can thus write A as

$$A = \begin{pmatrix} \lambda & 0 \\ 0 & M \end{pmatrix}$$

for some 2×2 matrix M in a basis $\{e_1, e_2, e_3\}$ It follows that (λ) and M must be orthogonal matrices, which in particular implies that $\lambda = \pm 1$. Therefore, A represents rotation about the e_1 axis.

(b). Embed O_2 as a Lie subgroup of SO_3 .

For any basis, consider the inclusion map

$$\begin{array}{cccc} f \ : \ \mathcal{O}_2 & \longrightarrow & \mathcal{S}\mathcal{O}_3 \\ & M & \longmapsto & \begin{pmatrix} \det(M) & 0 \\ 0 & M \end{pmatrix}. \end{array}$$

Since the determinant of the matrix f(M) is $det(M)^2$, it follows that f(M) is a special orthogonal matrix. This is injective and a Lie group homomorphism because

$$\begin{pmatrix} \det(M_1) & 0 \\ 0 & M_1 \end{pmatrix} \begin{pmatrix} \det(M_2) & 0 \\ 0 & M_2 \end{pmatrix} = \begin{pmatrix} \det(M_1 M_2) & 0 \\ 0 & M_1 M_2 \end{pmatrix}.$$