1

Matrix theory Assignment 14

Shivangi Parashar

Abstract—This document contains the concept of linear transformations.

Download all python codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/tree/master/Assignment14/ Codes

Download latex-tikz codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment14/ Assignment 14.tex

1 Problem

Let T be the linear operator on C^2 defined by :

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}$$

. Let β be the standard ordered basis for \mathbb{C}^2 and let

$$\beta' = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

be the ordered basis defined by

$$\alpha_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}, \alpha_2 = \begin{pmatrix} -i \\ 2 \end{pmatrix}$$

What is the matrix of **T** relative to the pair β, β' ?

2 Solution

$$\beta = \{\epsilon_1, \epsilon_2\} \implies \epsilon_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \epsilon_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (2.0.1)

Hence, β as matrix

$$\beta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{2.0.2}$$

$$\beta' = \{\alpha_1, \alpha_2\} \implies \alpha_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}, \alpha_2 = \begin{pmatrix} -i \\ 2 \end{pmatrix} \quad (2.0.3)$$

Hence, β' as matrix

$$\beta' = \begin{pmatrix} 1 & -i \\ i & 2 \end{pmatrix} \tag{2.0.4}$$

Geometrically, **T** is a projection onto the x-axis.

For projection, let Consider Matrix A as

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \tag{2.0.5}$$

The matrix A is representation of the linear transformation T that is projection on x-axis. After applying linear operator T on it,

$$\mathbf{T}(\beta) = \mathbf{A}\beta = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} (2.0.6)$$

$$\begin{pmatrix} 1 & -i & 1 & 0 \\ i & 2 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 = R_2 - iR_1} \begin{pmatrix} 1 & -i & 1 & 0 \\ 0 & 1 & -i & 0 \end{pmatrix} \quad (2.0.7)$$

$$\stackrel{R_1=R_1+iR_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -i & 0 \end{pmatrix} \tag{2.0.8}$$

Therefore matrix of relative to the pair β , β'

$$\mathbf{T}(\beta) = \begin{pmatrix} 2 & 0 \\ -i & 0 \end{pmatrix} \beta' \tag{2.0.9}$$