Introduction to Model-Checking

Theory and Practice

Beihang International Summer School 2018

Petri Nets

dealing with infinite systems

Unbounded nets

- For model-checking, we have only worked with bounded nets, i.e. nets with a finite reachability graph
- Several questions:
 - is it possible to test whether a system is bounded?
 - can we analyze the behavior of unbounded nets?

Example of an unbounded net

We model the life of a student at Beihang

- 1. initially the student is in class where (s)he is writing homework
- then (s)he can finish class and go home, where (s)he can work, reread his homework and gain knowledge
- 3. next (s)he can stop working and go to bed where he can forget some of what (s)he learned today
- 4. finally, he can end the day and go to sleep

A day in the life of a student

- initially the student is in class where (s)he is writing homework
- 2. then (s)he can finish class and go home, where (s)he can work, reread his homework and gain knowledge
- 3. next (s)he can stop
 working and go to bed
 where he can forget some
 of what (s)he learned
 today
- 4. finally he can end the day

Partial graph

We can approximate the behavior of the net by using a bound on the number of states we can generate

Another solution is to build the coverability graph

≡ an over-approximation

knowledge

bed

of the behavior

home

homework

class

Monotonicity

- Consider a marked net (N, m_0)
- The monotonicity property states that:

if $m \to m'$ in N then necessarily, $\forall \Delta \in \mathbb{N}^P$

$$m + \Delta \rightarrow m' + \Delta$$

$$m_0' - m_0 = \Delta \ge 0$$

• As a consequence, if $m_0' \ge m_0$ then:

$$|reach(m_0')| \ge |reach(m_0)|$$
 (more markings) $|RG(m_0')| \ge |RG(m_0)|$ (more transitions)

Deciding whether N is k-safe

• Consider a marked net (N, m_0)

• We observe that the net has an infinite number of markings (\equiv unbounded \equiv not k-safe) iff there is a reachable marking m, and a vector $\Delta > \overline{0}$, such that:

(repetitive) increasing sequence

$$m_0 \rightarrow \dots \rightarrow m \rightarrow \dots \rightarrow m + \Delta$$

Dickson's lemma

• Idea: try to find an infinite, "non-increasing", sequence of elements of \mathbb{N}^2 . Same with \mathbb{N}^P .

Proof

• If we have $m \to ... \to m + \Delta$, then we can "pump" the same sequence of transitions

$$m \rightarrow^* m + \Delta \rightarrow^* m + 2.\Delta \rightarrow^* m + 3.\Delta \rightarrow \dots$$

we write: $m \rightarrow^* m + \omega \Delta$

• Conversely, if it is impossible to find m and Δ such that $m \to^* m + \Delta$ then the reachability graph of (N, m_0) must be finite

• We consider markings with values in $\mathbb{N} \cup \{\omega\}$, where ω stands for an unbounded amount of tokens

$$n + \omega = \omega$$

$$\omega + \omega = \omega$$

$$\omega - n = \omega$$

$$0 \cdot \omega = 0$$

$$n \cdot \omega = \omega$$

• We can define transitions on ω -markings as we do with normal markings

Build a graph by computing the successors

• If we find two markings such that $m \to^* m'$ and $\Delta = m' - m > \overline{0}$ then replace m' with

$$m + \Delta \cdot \omega$$

Stop when you have enumerated all possibilities

we put together increasing markings, e.g. we have a "loop" (2, write, 2) because only place homework increases.

home

class

bed

finish

stop

sleep

write

write

finish

Comparison R.G. vs C.G.

- Consider a marked net (N, m_0)
- By construction, we have:
- \Leftrightarrow marking m is in $reach(m_0)$ if and only if m appears as a vertex (node) in the Reachability Graph
 - By construction, we have:
- marking m is in $reach(m_0)$ implies m is covered by some vertex m_ω of the Coverability Graph:

$$m \leq m_{\omega}$$

What you need to remember

• It is possible to reason about unbounded nets, but we only have an over-approximation in this case

Structural Analysis

where linear algebra meets P/T nets

Analyzing without exhaustive search

- All our methods so far have relied on constructing the R. G. of a net
- Even the coverability graph is ≈ an exhaustive enumeration of the states
- When finite, the size of the R. G. can be exponential in size
- Next → a method to prove properties on nets based only on a mathematical analysis of their "topology"

A P/T net is a tuple $N = \langle P, T, F, W \rangle$ where

- *P* is a finite set of places
- T is a distinct finite set of transitions $(P \cap T = \emptyset)$
- *F* is the flow relation: $F \subseteq (P \times T) \cup (T \times P)$
- W are the weight of the arcs: $W: F \to \mathbb{N}^*$

A marking m defines a distribution of tokens to places $m: P \to \mathbb{N}$

A marked P/T net (N, m_0) is a net with initial marking m_0

$$Pre_t(p) = W(p,t)$$
 if $p \in Pre(t)$
and $Pre_t(p) = 0$ otherwise

 $Post_t(p) = W(t,p)$ if $p \in Post(t)$ and $Post_t(p) = 0$ otherwise

$$\begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} \quad Pre_F = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad Post_F = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Pre	S	Α	В	С	F
p_0	1	0	0	0	0
p_1	0	1	0	0	0
p_2	0	0	0	0	1
p_3	0	0	1	0	0
p_4	0	0	0	1	1

Post	S	А	В	С	F
p_0	0	0	0	0	1
p_1	1	0	0	0	0
p_2	0	1	0	0	1
p_3	1	0	0	1	0
p_4	0	0	1	0	0

Pre	S	Α	В	С	F
p_0	1	0	0	0	0
p_1	0	1	0	0	0
p_2	0	0	0	0	1
p_3	0	0	1	0	0
p_4	0	0	0	1	1

Post	S	А	В	С	F
p_0	0	0	0	0	1
p_1	1	0	0	0	0
p_2	0	1	0	0	0
p_3	1	0	0	1	0
p_4	0	0	1	0	0

Incidence matrix $|P| \times |T|$

$$C = Post - Pre$$

$$C(p_i, t_j) = W(t_j, p_i) - W(p_i, t_j)$$

C	S	Α	В	С	F
p_0	-1	0	0	0	1
p_1	1	-1	0	0	0
p_2	0	1	0	0	1
p_3	1	0	-1	1	0
p_4	0	0	1	-1	-1

Another example

C	Α	В	С
X	-3	-2	5
Y	3	2	-5

A net is pure if $\forall p, t . W(t, p) \times W(p, t) = 0$. (no test arcs!) When a net is pure, we can reconstruct the flow function from the incidence matrix.

Compared to the previous example, this net is not pure.

Commutative image of a trace

- A trace σ is a sequence of transitions, e.g. A.A.B.C...
- Let $\#_t(\sigma)$ be the number of occurrences of t in the trace σ , the Parikh's number of t

The commutative image of σ , also called its Parikh's image, is the vector:

$$\#(\sigma) = \left(\#_{t_1}(\sigma), \dots, \#_{t_n}(\sigma)\right) \in \mathbb{N}^T$$

e.g.
$$\#(A.A.B.C) = (2, 1, 1)$$

Fundamental equation

- We already saw that we can write markings as vectors in \mathbb{N}^P
- We can also write traces as vectors in \mathbb{N}^T (but we forget in which order transitions are fired).

Fundamental equation:

if
$$m_1 \to^{\sigma} m_2$$
 then we have that $m_2 = m_1 + C.\#(\sigma)$

Corollary

Reachability:

If a marking m is reachable from (N, m_0) then there is a vector $X \in \mathbb{N}^T$ such that $m = C.X + m_0$

 We can use this property to show that some markings are not reachable

Example

- Initial marking $m_0 = (1 \ 0)$
- Incidence matrix $\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$

- Is it possible to reach marking (1 1) from m_0 ?
- Answer: of course not, because the following equation has no solutions:

$$(1\ 1) = (1\ 0) + \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \cdot (x_1\ x_2)$$

or equivalently: $x_2 - x_1 = 0$ and $x_1 - x_2 = 1$

T-invariants

- If we have a vector T such that $C.T = \overline{0}$ then we have that m = m + C.T
- Firing a trace with commutative image T gets you back to the state where you came from. So they indicate possible cycles (loops) in the reachability graph
- T is called a transition invariant or T-invariants

• in our example, $T = (1 \ 1)$ is an invariant.

P-invariants

- If we have a vector F such that $F.C = \overline{0}$ then we have that F.m = F.(m + C.X) for all $X \in \mathbb{N}^T$
- When we fire transitions from a marking m_1 and reach marking m_2 then $F.m_1=F.m_2$. That is, the value F.m is constant among all reachable states.
- F is called a place invariant or P-invariants

• in our example, $P=(1\ 1)$ is also a P-invariant, meaning that p_0+p_1 is an invariant (=1)

Example: mutual exclusion

We want to ensure mutual exclusion between places p_1 and p_3

Therefore we want to prove $p_1 + p_3 \le 1$

We can find some P-invariants for the net

$$p_0 + p_1 = 1$$
 $p_2 + p_3 = 1$ $p_1 + p_4 + p_3 = 1$

So it is obvious!

Example: mutual exclusion

We want to ensure mutual exclusion between places c_1 and c_2

Therefore we want to prove $c_1 + c_2 \le 1$

We can find some P-invariants for the net

$$p_0 + p_2 + c_1 = 1$$
 $p_5 + p_3 + c_2 = 1$ $c_1 + p_6 = 1$ $c_2 + p_7 = 1$

Try to find the right combination!

Siphon and Traps

using the net topology

Trap

- A trap is a set of places $S \subseteq P$ such that $Post(S) \subseteq Pre(S)$
- Therefore, when you take some tokens from S (you fire a transition in Post(S)), you should also leave at least one token in $S \Rightarrow$ once there is a token in S, there will always be a token in S
- We say that trap S is marked in m if $m(p) \ge 1$ for at least one place $p \in S$

Traps \equiv once marked, marked forever

Mutual Exclusion

In this example, the set $\{p_6, p_7\}$ is a trap. Therefore there is always a token in at least one of them.

Therefore we have $p_6 + p_7 \ge 1$

If we add the invariants computed previously, we obtain: $c_1 + p_6 = 1$ and $c_2 + p_7 = 1$.

Hence $c_1 + p_6 + c_2 + p_7 = 2$ and $p_6 + p_7 \ge 1$, which gives: $c_1 + c_2 \le 1$ as needed

Siphon

- A siphon is a set of places $S \subseteq P$ such that $Pre(S) \subseteq Post(S)$
- Therefore, when you put tokens in S (you fire a transition in Pre(S)), you should also take tokens from $S \Rightarrow$ once there are no tokens in S, then you cannot fire transition in Pre(S)

Siphon \equiv once empty, empty forever

Siphons and Traps

If every siphon contains a marked trap then the net is deadlock free

Stubborn Sets

Doing better than exhaustive search

Swimming Pool again

 60 taks need to enter a critical section; two type of resources (30 of each)

• We want to test *deadlocks*; starvation; reversibility; ...

A practical example "size 2" (91 states only)

A practical example

System '30' has 23e6 states, exploration takes 4 minutes

With size '15' it has ½ a million states and it takes 4 seconds.

Problem with exhaustive search

- We can do better by choosing a "clever" order and by stopping when a problem is found
 - Counterexample has size 120!
 - But breadth-first search ⇒ still 4.6e6 states and 46s

Partial-Order reduction

Idea: some of the complexity comes from the interleaving of "independent" actions

Partial-Order reduction

Solution: choose an arbitrary order between independent transitions when you can always postpone/reorder them (this relation may change during the evolution of the system)

Using abstraction

Example has 23e6 states

• Exploration using *persistent* states is instantaneous for $N \leq 100$; ... takes 125ms for 6000 banhistas

 Predicted size for 'N = 6000' is 1e525 states!

swimming ₹ skeig cabins

tina -q -P swimming-HUGE.ndr