第2章

多様体のあれこれ

この章では、主に多様体に関する内容を雑多にまとめる.

2.1 位相多様体の性質

まず、コンパクト性に類似する概念をいくつか紹介する:

定義 2.1: 被覆

• 集合族 $\mathcal{U} \coloneqq \{U_{\lambda}\}_{\lambda \in \Lambda}$ が集合 X の被覆 (cover) であるとは、

$$X\subset\bigcup_{\lambda\in\Lambda}U_\lambda$$

が成り立つこと.

- 位相空間 X の被覆 $\mathcal{U} \coloneqq \left\{U_{\lambda}\right\}_{\lambda \in \Lambda}$ が開 (open) であるとは、 $\forall \lambda \in \Lambda$ に対して U_{λ} が X の開集合であること.
- 位相空間 X の被覆 $\mathcal{V}\coloneqq \left\{V_{\alpha}\right\}_{\alpha\in A}$ が,別の X の被覆 $\mathcal{U}\coloneqq \left\{U_{\lambda}\right\}_{\lambda\in\Lambda}$ の細分 (refinement) であるとは, $\forall V_{\alpha}\in\mathcal{V}$ に対してある $U_{\lambda}\in\mathcal{U}$ が存在して $V_{\alpha}\subset U_{\lambda}$ が成り立つこと.
- 位相空間 X の開被覆 $\mathcal{U}\coloneqq \left\{U_{\lambda}\right\}_{\lambda\in\Lambda}$ が局所有限 (locally finite) であるとは、 $\forall x\in X$ に対して以下の条件が成り立つこと:

(locally finiteness) x のある近傍 $V \subset X$ が存在して集合

$$\{ \lambda \in \Lambda \mid U_{\lambda} \cap V \neq \emptyset \}$$

が有限集合になる.

定義 2.2: パラコンパクト・コンパクト・局所コンパクト

位相空間 X を与える.

- パラコンパクト (paracompact) であるとは、任意の開被覆が局所有限かつ開な細分を持つこと.
- 位相空間 X の部分集合 $A \subset X$ は、以下の条件を充たすとき**コンパクト** (compact) であると言われる:

(Heine-Boral の性質) A の任意の開被覆 $\mathcal{U} \coloneqq \left\{U_{\lambda}\right\}_{\lambda \in \Lambda}$ に対して,ある<u>有限</u>部分集合 $I \subset \Lambda$ が存在して $\left\{U_{i}\right\}_{i \in I} \subset \mathcal{U}$ が A の開被覆となる。

• 位相空間 X が局所コンパクト (locally compact) であるとは, $\forall x \in X$ が少なくとも 1 つのコンパクトな近傍を持つこと.

^a このことを「任意の開被覆は有限部分被覆を持つ」と表現する.

2.2 微分構造の構成

微分構造を定義通りに構成するならば,まず位相多様体であることを確認してから座標変換が C^{∞} 級であることを確認しなくてはならず,若干面倒である.しかし,幸いにしてこの確認の工程をまとめた便利な補題がある [?, p.21, Lemma 1.35].

補題 2.1: 微分構造の構成

- 集合 M
- M の部分集合族 $\left\{U_{\lambda}\right\}_{\lambda\in\Lambda}$
- 写像の族 $\{\varphi_{\lambda}\colon U_{\lambda}\longrightarrow \mathbb{R}^n\}_{\lambda\in\Lambda}$

の3つ組であって以下の条件を充たすものを与える:

- (DS-1) $\forall \lambda \in \Lambda$ に対して $\varphi_{\lambda}(U_{\lambda}) \subset \mathbb{R}^{n}$ は \mathbb{R}^{n} の開集合であり, $\varphi_{\lambda} \colon U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ は全単射である.
- (DS-2) $\forall \alpha, \beta \in \Lambda$ に対して $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta}), \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}^{n}$ は \mathbb{R}^{n} の開集合である.
- (DS-3) $\forall \alpha, \beta \in \Lambda$ に対して、 $U_{\alpha} \cap U_{\beta} \neq \emptyset$ ならば $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \colon \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \longrightarrow \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ は C^{∞} 級である.
- (DS-4) 添字集合 Λ の可算濃度の部分集合 $I \subset \Lambda$ が存在して $\{U_i\}_{i \in I}$ が M の被覆になる.
- **(DS-5)** $p, q \in M$ が $p \neq q$ ならば、ある $\lambda \in \Lambda$ が存在して $p, q \in U_{\lambda}$ を充たすか、またはある $\alpha, \beta \in \Lambda$ が存在して $U_{\alpha} \cap U_{\beta} = \emptyset$ かつ $p \in U_{\alpha}, q \in U_{\beta}$ を充たす.

このとき,M の微分構造であって, $\forall \lambda \in \Lambda$ に対して $(U_{\lambda}, \varphi_{\lambda})$ を C^{∞} チャートとして持つものが一意的に存在する.

証明 位相の構成

 \mathbb{R}^n の Euclid 位相を $\mathcal{O}_{\mathbb{R}^n}$ と表記する. 集合

$$\mathscr{B} := \left\{ \varphi_{\lambda}^{-1}(U) \mid \lambda \in \Lambda, \ U \in \mathscr{O}_{\mathbb{R}^n} \right\}$$

が開基の公理 (B1), (B2) を充たすことを確認する.

- (B1) (DS-4) より明らか.
- **(B2)** $B_1, B_2 \in \mathcal{B}$ を任意にとる.このとき \mathcal{B} の定義から,ある $\alpha, \beta \in \Lambda$ および $U, V \in \mathcal{O}_{\mathbb{R}^n}$ が存在して $B_1 = \varphi_{\alpha}^{-1}(U), B_2 = \varphi_{\beta}^{-1}(V)$ と書ける.補題??-(4) より

$$B_1 \cap B_2 = \varphi_{\alpha}^{-1}(U) \cap \varphi_{\beta}^{-1}(V)$$
$$= \varphi_{\alpha}^{-1} (U \cap (\varphi_{\alpha} \circ \varphi_{\beta}^{-1})(V))$$
$$= \varphi_{\alpha}^{-1} (U \cap (\varphi_{\beta} \circ \varphi_{\alpha}^{-1})^{-1}(V))$$

が成り立つが、**(DS-3)** より $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ は連続なので $(\varphi_{\beta} \circ \varphi_{\alpha}^{-1})^{-1}(V) \in \mathscr{O}_{\mathbb{R}^n}$ である. よって

$$B_1 \cap B_2 \in \mathscr{B}$$

であり, **(B2)** が示された.

従って定理??より、 $\mathscr B$ を開基とする M の位相 $\mathscr O_M$ が存在する.

$arphi_{\lambda}$ が同相写像であること

 $\forall \lambda \in \Lambda$ を 1 つ固定する. \mathcal{O}_M の構成と補題??-(4) より、 $\forall V \in \mathcal{O}_{\mathbb{R}^n}$ に対して $\varphi_{\lambda}^{-1}(V \cap \varphi_{\lambda}(U_{\lambda})) = \varphi_{\lambda}^{-1}(V) \cap U_{\lambda}$ は U_{λ} の開集合である*1. i.e. $\varphi_{\lambda} \colon U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ は連続である.

 $\forall B \in \mathcal{B}$ をとる.このとき補題??-(9) より $\varphi_{\lambda}(B \cap U_{\lambda}) = \varphi_{\lambda}(B) \cap \varphi_{\lambda}(U_{\lambda})$ が成り立つが, \mathscr{O}_{M} の定義より $\varphi_{\lambda}(B) \in \mathscr{O}_{\mathbb{R}^{n}}$ なので $\varphi_{\lambda}(B \cap U_{\lambda})$ は $\varphi_{\lambda}(U_{\lambda})$ の開集合である.相対位相の定義と de Morgan 則より, U_{λ} の任意の開集合は $B \cap U_{\lambda}$ の形をした部分集合の和集合で書けるので,補題??-(1) と位相 空間の公理から φ_{λ} は U_{λ} の開集合を $\varphi_{\lambda}(U_{\lambda})$ の開集合に移す.i.e. $\varphi_{\lambda} \colon U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ は連続な全単射でかつ開写像であるから同相写像である.

Hausdorff 性

位相空間 (M, \mathcal{O}_M) が Hausdorff 空間であることを示す. M の異なる 2 点 p, q を勝手にとる. このとき **(DS-5)** より,

- ある $\lambda \in \Lambda$ が存在して $p, q \in U_{\lambda}$ を充たす
- ある $\alpha, \beta \in \Lambda$ が存在して $U_{\alpha} \cap U_{\beta} = \emptyset$ かつ $p \in U_{\alpha}, q \in U_{\beta}$ を充たす

のいずれかである.後者ならば証明することは何もない.

前者の場合を考える。このとき $\varphi_{\lambda}(U_{\lambda})$ は \mathbb{R}^{n} の開集合だから, \mathbb{R}^{n} の Hausdorff 性から $\varphi_{\lambda}(U_{\lambda})$ も Hausdorff 空間であり,従って $\varphi_{\lambda}(U_{\lambda})$ の開集合 $U,V\subset\varphi_{\lambda}(U_{\lambda})$ であって $\varphi_{\lambda}(p)\in U$ かつ $\varphi_{\lambda}(q)\in V$ かつ $U\cap V=\emptyset$ を充たすものが存在する。このとき補題??-(4) より $\varphi_{\lambda}^{-1}(U)\cap\varphi_{\lambda}^{-1}(V)=\varphi_{\lambda}^{-1}(U\cap V)=\emptyset$ で,かつ \mathscr{O}_{M} の構成から $\varphi_{\lambda}^{-1}(U),\varphi_{\lambda}^{-1}(V)\subset M$ はどちらも M の開集合である。そのうえ $p\in\varphi_{\lambda}^{-1}(U)$ かつ $q\in\varphi_{\lambda}^{-1}(V)$ が成り立つので M は Hausdorff 空間である。

第2可算性

 \mathbb{R}^n は第 2 可算なので、 $\forall \lambda \in \Lambda$ に対して $\varphi_{\lambda}(U_{\lambda})$ も第 2 可算である. $\varphi_{\lambda} \colon U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ は同相写像なので、 U_{λ} も第 2 可算である.従って **(DS-4)** から M も第 2 可算である.

 $^{^{*1}}U_{\lambda}$ には (M, \mathscr{O}_{M}) からの相対位相が、 $\varphi_{\lambda}(U_{\lambda})$ には $(\mathbb{R}^{n}, \mathscr{O}_{\mathbb{R}^{n}})$ からの相対位相を入れている.

以上の考察から、位相空間 (M,\mathscr{O}_M) が位相多様体であることが示された. さらに **(DS-3)** より $A := \{(U_\lambda,\varphi_\lambda)\}_{\lambda\in\Lambda}$ は (M,\mathscr{O}_M) の C^∞ アトラスであることもわかる.

最後に、A の極大アトラス A^+ が、 $\underline{\$6}$ M 上の、与えられた全ての $(U_{\lambda}, \varphi_{\lambda})$ を C^{∞} チャートとする唯一の微分構造であることを示す.

位相の一意性

与えられた集合 M の上の位相 $\mathcal T$ であって,位相空間 $(M,\mathcal T)$ が第 2 可算な Hausdorff 空間となるようなものを任意にとる. $\forall \lambda \in \Lambda$ に対して与えられた全単射 $\varphi_{\lambda} \colon U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ が同相写像であるためには, $\forall V \in 2^{U_{\lambda}}$ に対して

$$V \in \mathscr{T} \iff \varphi_{\lambda}(V) \in \mathscr{O}_{\mathbb{R}^n}$$

が成り立つことが必要十分である. そしてこのとき

2.3 沈めこみ・はめ込み・埋め込み

 \mathbb{R}^n における逆関数定理から始める。まず距離空間に関する基本的な補題を用意する。

補題 2.2: Banach の不動点定理

空でない完備な距離空間 (X,d) を与える. このとき,以下の条件を充たす任意の写像 $F\colon X\longrightarrow X$ はただ 1 つの固定点を持つ:

(contraction) ある定数 $\lambda \in (0,1)$ が存在し、 $\forall x, y \in X$ に対して $d(F(x), F(y)) \leq \lambda d(x,y)$

<u>証明</u> まず固定点の存在を示す. $\forall x_0 \in X$ を 1 つとり,X の点列 $\left(x_i\right)_{i=0}^{\infty}$ を漸化式 $x_{i+1} = F(x_i)$ によって帰納的に定める. 仮定より $\lambda \in (0,1)$ なので, $\forall \varepsilon > 0$ に対して十分大きな $N_{\varepsilon} \in \mathbb{N}$ を取れば $\lambda^{N_{\varepsilon}} < \frac{1-\lambda}{d(x_1,x_0)} \varepsilon$ が成り立つようにできる. このとき $\forall m, n \geq N_{\varepsilon}$ $w \neq m \geq n$ に対して

$$d(x_m, x_n) \leq d(x_m, x_{m-1}) + \dots + d(x_{n+1}, x_n)$$

$$\leq \lambda^{m-1} d(x_1, x_0) + \dots + \lambda^n d(x_1, x_0)$$

$$\leq \lambda^n \left(\sum_{i=0}^{\infty} \lambda^i\right) d(x_1, x_0)$$

$$\leq \lambda^{N_{\varepsilon}} \frac{d(x_1, x_0)}{1 - \lambda} < \varepsilon$$

が成り立つ. i.e. 点列 $\left(x_i\right)_{i=0}^\infty$ は Cauchy 列であり, 仮定より X は完備なのでその収束点 $x\coloneqq\lim_{i\to\infty}x_i\in X$ が一意的に存在する. F は明らかに連続なので

$$F(x) = F(\lim_{i \to \infty} x_i) = \lim_{i \to \infty} F(x_i) = x$$

が成り立つ. i.e. x は固定点である.

次に固定点 x の一意性を示す.別の固定点 $x' \in X$ が存在したとする.このとき条件 (contraction) より

$$d(x, x') = d(F(x), F(x')) \le \lambda d(x, x') \iff (1 - \lambda)d(x, x') \le 0$$

が成り立つので x = x' でなくてはいけない.

定理 2.1: \mathbb{R}^n における逆関数定理

- 開集合 a $U, V \in \mathbb{R}^n$
- C^{∞} $\boxtimes F: U \longrightarrow V, x \longmapsto (F^1(x), \ldots, F^n(x))$

を与え、F の Jacobi 行列を返す C^{∞} 写像

$$DF: U \longrightarrow \mathcal{M}(n, \mathbb{R}), \ x \longmapsto \left[\frac{\partial F^{\mu}}{\partial x^{\nu}}(x)\right]_{1 \leq \mu, \ \nu \leq n}$$

を定める. このとき、ある点 $p \in U$ において $DF(p) \in GL(n, \mathbb{R})$ ならば、

- 点 $p \in U$ の連結な近傍 $p \in U_0 \subset U$
- 点 $F(p) \in V$ の連結な近傍 $F(p) \in V_0 \subset V$

が存在して $F|_{U_0}: U_0 \longrightarrow V_0$ が微分同相写像 になる.

<u>証明</u> $U'\coloneqq\left\{\,x-p\in\mathbb{R}^n\;\middle|\;x\in U\;\right\},\;V'\coloneqq\left\{\,x-F(p)\in\mathbb{R}^n\;\middle|\;x\in V\;\right\}$ とおく. このとき写像

$$F_1: U' \longrightarrow V', \ x \longmapsto F(x+p) - F(p)$$

は C^{∞} 級で、かつ $F_1(0)=0$ 、 $DF_1(0)=DF(p)$ を充たし、0 の連結な近傍 $0\in U_0'\subset U'$ 、 $0\in V_0'\subset V'$ が存在して $F_1|_{U_0'}\colon U_0'\longrightarrow V_0'$ が微分同相写像になることと、点 $p\in U$ の連結な近傍 $p\in U_0\subset U$ と点 $F(p)\in V$ の連結な近傍 $F(p)\in V_0\subset V$ が存在して $F|_{U_0}\colon U_0\longrightarrow V_0$ が微分同相写像になることは同値である.

さらに、 $V''\coloneqq \left\{DF_1(0)^{-1}(x)\in\mathbb{R}^n\mid x\in V'\right\},\ V_0''\coloneqq \left\{DF_1(0)^{-1}(x)\in\mathbb{R}^n\mid x\in V_0'\right\}$ とおくと写像*2

$$F_2: U' \longrightarrow V'', x \longmapsto DF_1(0)^{-1}(F_1(x))$$

は C^{∞} 級で, $DF_2(0)=1_n$ かつ $V_0''\subset V''$ は 0 の連結な近傍であり*3, $F_2|_{U_0'}\colon U_0'\longrightarrow V_0''$ が微分同相写像になることと $F_1|_{U_0'}\colon U_0'\longrightarrow V_0''$ が微分同相写像になることは同値である.以上の考察から,

- $p = 0 \in U$
- $F(p) = 0 \in V$
- $DF(p) = 1_n$

を仮定しても一般性を失わないことが分かった.

ここで C^{∞} 写像

$$H: U \longrightarrow \mathbb{R}^n, \ x \longmapsto x - F(x)$$

を考える. まず $DH(0)=1_n-1_n=0$ が成り立つことがわかる. さらに写像 $DH:U\longrightarrow \mathrm{M}(n,\mathbb{R}),\ x\longmapsto$

 $^{{}^}a\mathbb{R}^n$ には通常の Euclid 位相を入れる.

 $^{^{}b}F = (F^{1}, \ldots, F^{n})$ の各成分 F^{i} が任意回偏微分可能.

 $[^]c$ i.e. $F|_{U_0}$ は C^{∞} 級の逆写像を持つ.

 $^{^{*2}}$ $DF_1(0)^{-1}ig(F_1(x)ig)$ と言うのは,列ベクトル $F_1(x)\in\mathbb{R}^n$ に n imes n 行列 $DF_1(0)^{-1}\in\mathrm{M}(n,\,\mathbb{R})$ を作用させると言う意味.

 $^{^{*3}}$ V_0' が連結であり、行列 $DF_1(0)^{-1}$ をかけると言う写像は連続なので.

DH(x) の連続性*4から, $B_{\delta}(0) \subset U$ を充たす $\delta > 0$ が存在して, $\forall x \in \overline{B_{\delta}(0)}$ に対して*5

$$||DH(x) - DH(0)|| = ||DH(x)|| \le \frac{1}{2}$$

が成り立つようにできる.

F は $\overline{B_\delta(0)}$ 上単射

 $\forall x, y \in \overline{B_{\delta}(0)}$ をとる. $\overline{B_{\delta}(0)}$ は凸集合なので $\forall t \in [0, 1]$ に対して $x + t(y - x) \in \overline{B_{\delta}(0)}$ が成り立つ. よって

$$\begin{aligned} |H(y) - H(x)| &= \left| \int_0^1 \mathrm{d}t \, \frac{\mathrm{d}}{\mathrm{d}t} H\big(x + t(y - x)\big) \right| \\ &= \left| \int_0^1 \mathrm{d}t \, DH\big(x + t(y - x)\big)(y - x) \right| \\ &\leq \int_0^1 \mathrm{d}t \, \left| DH\big(x + t(y - x)\big)(y - x) \right| \\ &\leq \int_0^1 \mathrm{d}t \, \sup_{x \in \overline{B_\delta(0)}} \|DH(x)\| |y - x| \\ &\leq \frac{1}{2} |y - x| \end{aligned}$$

が言える. 故に

$$|y - x| = |F(y) - F(x) + H(y) - H(x)|$$

$$\leq |F(y) - F(x)| + |H(y) - H(x)|$$

$$\leq |F(y) - F(x)| + \frac{1}{2}|y - x|$$

が成り立ち,

$$\frac{1}{2}|y-x| \le |F(y) - F(x)|$$

が従う. 故にノルムの正定値性から $\overline{B_\delta(0)}$ 上 F が単射だと分かった.

$\overline{B_{\delta/2}(0)} \subset F(\overline{B_{\delta}(0)})$

 $\forall y \in \overline{B_{\delta/2}(0)}$ に対してある $x_y \in \overline{B_{\delta}(0)}$ が存在して $F(x_y) = y$ を充たすことを示す. C^{∞} 写像

$$G: U \longrightarrow \mathbb{R}^n, \ x \longmapsto y + H(x) = y + x - F(x)$$

を考える. 不等式 $(\ref{eq:continuous})$ から $\forall x \in \overline{B_\delta(0)}$ に対して

$$|G(x)| \leq |y| + |H(x)| \leq \frac{\delta}{2} + \frac{1}{2}|x| \leq \delta$$

が成り立つので $G(\overline{B_{\delta}(0)}) \subset \overline{B_{\delta(0)}}$ が分かった. その上再度 $(\ref{eq:total_sign})$ から $\forall x,y \in \overline{B_{\delta}(0)}$ に対して

$$|G(x) - G(y)| = |H(x) - H(y)| \le \frac{1}{2}|x - y|$$

 $^{^{*4}~}H$ が C^{∞} 級なので DH は連続.

^{*5} $\|\cdot\|: \mathrm{M}(n, \mathbb{R}) \longrightarrow \mathbb{R}_{>0}$ は Frobenius ノルム.

が成り立つので、空でない完備な距離空間 $\overline{B}_{\delta}(0)$ 上の写像 $G|_{\overline{B}_{\delta}(0)}$: $\overline{B}_{\delta}(0)$ → $\overline{B}_{\delta}(0)$ は補題??の 条件 **(contraction)** を充たし、G はただ 1 つの固定点 $x_y \in \overline{B}_{\delta}(0)$ を持つ、G の定義より $G(x_y) = x_y$ \implies $F(x_y) = y$ である.

以上の議論から, $U_0 := \overline{B_\delta(0)} \cap F^{-1}\big(\overline{B_{\delta/2}(0)}\big)$, $V_0 := \overline{B_{\delta/2}(0)}$ とおくと $F|_{U_0} : U_0 \longrightarrow V_0$ が全単射になることが分かった.従って逆写像* 6 $F^{-1} : V_0 \longrightarrow U_0$ が存在する.さらに $\forall x', y' \in V_0$ をとり不等式(??)において $x = F^{-1}(x')$, $y = F^{-1}(y')$ とおくことで F^{-1} が連続写像であることがわかる.i.e. $F|_{U_0}$ は同相写像である.よって V_0 が定義から連結なので U_0 も連結である.

F^{-1} が C^{∞} 級

まず $F^{-1}\colon V_0\longrightarrow U_0$ が C^1 級であることを示す. $\forall y\in V_0$ を 1 つ固定する. 偏微分の連鎖律より $D(F^{-1})(y)=DF\big(F^{-1}(y)\big)^{-1}$ であるから,

$$\lim_{y' \to y} \frac{F^{-1}(y') - F^{-1}(y) - DF(F^{-1}(y))^{-1}(y' - y)}{|y' - y|} = 0$$

を示せば良い. $\forall y' \in V_0 \setminus \{y\}$ を取り、 $x \coloneqq F^{-1}(y), \ x' \coloneqq F^{-1}(y') \in U_0 \setminus \{x\}$ とおく. すると

と評価できるが,F が C^∞ 級なので $\sup_{x\in U_0}\|DF(x)^{-1}\|$ は有限確定値である.F の連続性から $y'\to y$ のとき $x'\to x$ であり,仮定より F は C^∞ 級なので,この極限で最右辺が 0 に収束すること が分かった.

次に F^{-1} が $\forall k \in \mathbb{N}$ について C^k 級であることを数学的帰納法により示す. k=1 の場合は先ほど示した. k>1 とする. $D(F^{-1})={}^{-1}\circ DF\circ F^{-1}$ であるから *7 , 帰納法の仮定より $D(F^{-1})$ は C^k 級関数の合成で書けているので C^k 級である. よって F^{-1} は C^{k+1} 級であり,帰納法が完成した.

 $^{^{*6}}$ 厳密には $(F|_{U_0})^{-1}$ と書くべきだが略記した.

^{*} $^{7-1}$: $\mathrm{GL}(n,\mathbb{R})\longrightarrow \mathrm{GL}(n,\mathbb{R}), X\longmapsto X^{-1}$ とおいた. Cramer の公式よりこれは C^{∞} 級である.

系 2.2: 陰関数定理

 $\mathbb{R}^n \times \mathbb{R}^k$ の座標を $(x, y) := (x^1, \dots, x^n, y^1, \dots, y^k)$ と書く.

- 開集合 $U \subset \mathbb{R}^n \times \mathbb{R}^k$
- C^{∞} 関数 $\Phi: U \longrightarrow \mathbb{R}^k, (x, y) \longmapsto (\Phi^1(x, y), \dots, \Phi^k(x, y))$

を与える. このとき, 点 $(a, b) \in U$ において

$$\left[\frac{\partial \Phi^{\mu}}{\partial y^{\nu}}(a, b)\right]_{1 \leq \mu, \nu \leq k} \in GL(k, \mathbb{R})$$

が成り立つならば,

- 点 a の近傍 $a \in V_0 \subset \mathbb{R}^n$
- 点 b の近傍 $b \in W_0 \subset \mathbb{R}^k$
- C^{∞} 関数 $F: V_0 \longrightarrow W_0, x \longmapsto (F^1(x), \dots, F^k(x))$

の3つ組であって

$$\Phi^{-1}(\{c\}) \cap (V_0 \times W_0) = \left\{ (x, F(x)) \in V_0 \times W_0 \right\}$$

を充たすものが存在する. ただし $c := \Phi(a, b) \in \mathbb{R}^k$ とおいた.

証明 C^{∞} 写像

$$\Psi \colon U \longrightarrow \mathbb{R}^n \times \mathbb{R}^k, \ (x, \, y) \longmapsto \big(x, \, \Phi(x, \, y)\big)$$

を考える. 仮定より点 $(a, b) \in U$ において

$$D\Psi(a, b) = \begin{bmatrix} 1_n & 0 \\ \left[\frac{\partial \Phi^{\mu}}{\partial x^{\nu}}(a, b)\right]_{1 \le \mu \le k, \ 1 \le \nu \le n} & \left[\frac{\partial \Phi^{\mu}}{\partial y^{\nu}}(a, b)\right]_{1 \le \mu, \ \nu \le k} \end{bmatrix} \in GL(n + k, \mathbb{R})$$

であるから、逆関数定理より点 (a,b) の連結な近傍 $U_0\subset U$ と点 (a,c) の連結な近傍 $Y_0\subset \mathbb{R}^n\times \mathbb{R}^k$ が存在して $\Psi|_{U_0}\colon U_0\longrightarrow Y_0$ が微分同相写像になる。 U_0,Y_0 を適当に小さくとることで $U_0=V\times W$ の形をしていると仮定して良い*8.

 $\forall (x,y) \in Y_0$ に対して $\Psi^{-1}(x,y) = \left(A(x,y),\,B(x,y)\right)$ とおくと $A\colon Y_0 \longrightarrow \mathbb{R}^n,\,B\colon Y_0 \longrightarrow \mathbb{R}^k$ はどちらも C^∞ 関数で、

$$(x, y) = \Phi \circ \Psi^{-1}(x, y)$$
$$= \left(A(x, y), \Psi(A(x, y), B(x, y)) \right)$$

が成り立つ. よって

$$\Psi^{-1}(x, y) = (x, B(x, y)),$$
$$y = \Psi(x, B(x, y))$$

^{*8} 開集合の直積は積位相の開基を成すので.

が従う.

ここで $V_0 := \{ x \in V \mid (x, c) \in Y_0 \}, W_0 := W$ とおき,

$$F: V_0 \longrightarrow W_0, x \longmapsto B(x, c)$$

と定義する. すると $\forall x \in V_0$ に対して

$$c = \Phi(x, B(x, c)) = \Psi(x, F(x))$$

である. i.e. $\Phi^{-1}(\{c\})\cap (V_0\times W_0)\supset \left\{\left(x,\,F(x)\right)\in V_0\times W_0\right\}$ が言えた. 逆に $\forall (x,\,y)\in\Phi^{-1}(\{c\})\cap (V_0\times W_0)$ をとる. このとき $\Phi(x,\,y)=c$ なので $\Psi(x,\,y)=\left(x,\,\Phi(x,\,y)\right)=(x,\,c)$ であり、

$$(x, y) = \Psi^{-1}(x, c) = (x, B(x, c)) = (x, F(x))$$

が成り立つ. i.e. $\Phi^{-1}(\{c\})\cap (V_0\times W_0)\subset \Big\{ \left(x,\,F(x)
ight)\in V_0\times W_0\Big\}$ が言えた.

2.3.1 局所微分同相写像

定義 2.3: 局所微分同相写像

境界なし/あり C^{∞} 多様体 M, N を与える.

 C^∞ 写像 $F\colon M\longrightarrow N$ が**局所微分同相写像** (local diffeomorphism) であるとは、 $\forall p\in M$ が以下の条件を充たす近傍 $p\in U_p\subset M$ を持つことを言う:

- (1) $F(U_p) \subset N$ が開集合
- (2) $F|_{U_p}:U_p\longrightarrow F(U_p)$ が微分同相写像

定理 2.3: 境界を持たない C^{∞} 多様体における逆関数定理

- 境界を持たない C^{∞} 多様体 M,N
- C^{∞} 写像 $F: M \longrightarrow N$

を与える. このとき, ある点 $p \in M$ において $T_pF: T_pM \longrightarrow T_{F(p)}N$ が全単射ならば,

- 点 $p \in M$ の連結な近傍 $p \in U_0 \subset M$
- 点 $F(p) \in N$ の連結な近傍 $p \in V_0 \subset N$

が存在して $F|_{U_0}:U_0\longrightarrow V_0$ が微分同相写像になる.

<u>証明</u> T_pF が全単射なので、 $\dim M = \dim N =: n$ である。p を含むチャート (U, φ) と F(p) を含むチャート (V, ψ) を, $F(U) \subset V$ を充たすようにとる。すると

- \mathbb{R}^n の開集合 $\varphi(U), \psi(V) \subset \mathbb{R}^n$
- C^{∞} 関数 $\widehat{F} := \psi \circ F \circ \varphi^{-1} : \varphi(U) \longrightarrow \psi(V)$

の 2 つ組は、仮定より点 $\varphi(p)\in \varphi(U)$ において $T_{\varphi(p)}\widehat{F}=T_{F(p)}\psi\circ T_pF\circ T_{\varphi(p)}(\varphi^{-1})\in \mathrm{GL}(n,\mathbb{R})$ を充たすので、 \mathbb{R}^n の逆関数定理が使えて

- 点 $\varphi(p) \in \varphi(U)$ の連結な近傍 $\varphi(p) \in \widehat{U_0} \subset \varphi(U)$
- 点 $\widehat{F}(\varphi(p)) = \psi(F(p)) \in \varphi(U)$ の連結な近傍 $\widehat{F}(\varphi(p)) \in \widehat{V_0} \subset \varphi(V)$

であって $\widehat{F}|_{\widehat{U_0}}:\widehat{U_0}\longrightarrow\widehat{V_0}$ が微分同相写像となるようなものがある。従って $U_0:=\varphi^{-1}(\widehat{U_0})\subset M$, $V_0:=\psi^{-1}(\widehat{V_0})\subset N$ とおけばこれらはそれぞれ点 p,F(p) の連結な近傍で,かつ $F|_{U_0}=\psi^{-1}|_{V_0}\circ\widehat{F}|_{\widehat{U_0}}\circ\varphi|_{U_0}:U_0\longrightarrow V_0$ は微分同相写像の合成なので微分同相写像である。

定理??を、値域の C^{∞} 多様体が境界を持つ場合に拡張できる *9 . 鍵となるのは次の補題である:

補題 2.3:

- 境界を持たない C^{∞} 多様体 M
- 境界付き C^{∞} 多様体 N
- C^{∞} 写像 $F: M \longrightarrow N$

を与える. このとき, 点 $p\in M$ において $T_pF\colon T_pM\longrightarrow T_{F(p)}N$ が単射ならば $F(p)\in \operatorname{Int} N$ である.

証明 $F(p) \in \partial N$ だと仮定し、点 $p \in M$ を含むチャート $(U, \varphi) = (U, (x^{\mu}))$ および点 $F(p) \in \partial N$ の境界 チャート $(V, \psi) = (V, (y^{\mu}))$ をとる.このとき F の座標表示 $\widehat{F} := \psi \circ F \circ \varphi^{-1} : \varphi(U) \longrightarrow \psi(V), x \longmapsto (\widehat{F}^1(x), \ldots, \widehat{F}^{\dim N}(x))$ は $\widehat{F}^{\dim N}(\varphi(p)) = 0$ を充たす.ところで $\psi(V) \subset \mathbb{H}^n$ なので $\forall x \in \varphi(U)$ に対して $\widehat{F}^{\dim N}(x) \geq 0$ であり, C^{∞} 関数 $\widehat{F}^{\dim N} : \varphi(U) \longrightarrow \mathbb{R}$ は点 $\varphi(p) \in \varphi(U)$ において最小値をとることが分かった.従って $\partial \widehat{F}^{\dim N} / \partial x^{\nu} (\varphi(p)) = 0$ $(1 \leq \forall \nu \leq \dim N)$ であり,点 $\varphi(p) \in \varphi(U)$ における \widehat{F} の Jacobi 行列の第 $\dim N$ 行が全て 0 だと言うことになるが,これは T_pF が単射であることに矛盾.よって背理法から $F(p) \notin \partial N$ \iff $F(p) \in \operatorname{Int} N$ が示された.

<u>定理</u> 2.4: C^{∞} 多様体における逆関数定理

- 境界を持たない C^{∞} 多様体 M
- 境界あり/なし C^{∞} 多様体 N
- C^{∞} 写像 $F: M \longrightarrow N$

を与える. このとき, ある点 $p \in M$ において $T_pF: T_pM \longrightarrow T_{F(p)}N$ が全単射ならば,

- 点 $p \in M$ の連結な近傍 $p \in U_0 \subset M$
- 点 $F(p) \in N$ の連結な近傍 $p \in V_0 \subset N$

が存在して $F|_{U_0}: U_0 \longrightarrow V_0$ が微分同相写像になる.

証明 N が境界を持たない場合は定理??が使える.

N が境界付き C^{∞} 多様体だとする. 仮定より T_pF は単射なので補題??から $F(p) \in \operatorname{Int} N$ が分かる. Int N は境界を持たない C^{∞} 多様体なので定理??の証明がそのまま成り立つ.

 $^{^{*9}}$ 定義域の C^{∞} 多様体が境界を持つ場合は上手くいかない.

2.3.2 ランク定理

定義 2.4: *C*[∞] 写像のランク

境界あり/なし C^{∞} 多様体 M, N および C^{∞} 写像 $F: M \longrightarrow N$ を与える.

- 点 $p \in M$ における F の**ランク** (rank) とは、線型写像 $T_pF: T_pM \longrightarrow T_{F(p)}N$ のランク、i.e. $\dim(\operatorname{Im}(T_pF)) \in \mathbb{Z}_{\geq 0}$ のこと、 $\forall p \in M$ における F のランクが等しいとき、F は**定ランク** (constant rank) であると言い、 $\operatorname{rank} F \coloneqq \dim(\operatorname{Im}(T_pF))$ と書く.
- 点 $p \in M$ における F のランクが $\min \{\dim M, \dim N\}$ に等しいとき,F は点 p においてフルランク (full rank at p) であると言う. $\operatorname{rank} F = \min \{\dim M, \dim N\}$ ならば F はフルランク (full rank) であると言う.

位相空間 M,N を与える. 連続写像 $F:M\longrightarrow N$ が位相的埋め込み (topological embedding) であるとは, $F(M)\subset N$ に N からの相対位相を入れたときに写像 $F:M\longrightarrow F(M)$ が同相写像になることを言う.

定義 2.5: C^{∞} 沈めこみ・ C^{∞} はめ込み・ C^{∞} 埋め込み

境界あり/なし C^{∞} 多様体 M, N および定ランクの C^{∞} 写像 $F: M \longrightarrow N$ を与える.

- F が C^{∞} 沈め込み (smooth submersion) であるとは、 $\forall p \in M$ において $T_pF: T_pM \longrightarrow T_{F(p)}N$ が全射である、i.e. rank $F = \dim N$ であることを言う.
- F が C^{∞} はめ込み (smooth immersion) であるとは、 $\forall p \in M$ において $T_pF: T_pM \longrightarrow T_{F(p)}N$ が単射である、i.e. rank $F = \dim M$ であること を言う.
- F が C^{∞} 埋め込み (smooth embedding) であるとは, F が C^{∞} はめ込みであってかつ位相 的埋め込みであることを言う.

命題 2.1: 局所微分同相写像と C^{∞} 沈めこみ・ C^{∞} はめ込み

- 境界を持たない C^{∞} 多様体 M
- 境界あり/なし C^∞ 多様体 N
- 写像 $F: M \longrightarrow N$

を与える. このとき以下が成り立つ:

- (1) F が局所微分同相写像 \iff F は C^{∞} 沈め込みかつ C^{∞} はめ込み
- (2) $\dim M = \dim N$ かつ F が C^∞ 沈め込みまたは C^∞ はめ込み \implies F は局所微分同相

$\underline{\text{証明}}$ (1) \Longrightarrow

F が局所微分同相だとする. $\forall p \in M$ を 1 つ固定する. 仮定よりこのとき p の近傍 $p \in U \subset M$ であって $F|_U \colon U \longrightarrow F(U)$ が微分同相写像となるようなものがある.

 $[^]a$ 階数・退化次元の定理から $\dim(\operatorname{Ker} T_p F) + \dim(\operatorname{Im} T_p F) = \dim M$ なので、 $\operatorname{rank} F = \dim(\operatorname{Im} T_p F) = \dim M$ ⇒ $\dim(\operatorname{Ker} T_p F) = 0$ ⇔ $\operatorname{Ker} T_p F = 0$

特に局所微分同相写像の定義から U, F(U) はそれぞれ M, N の開集合なので,包含写像 $\iota_U \colon U \hookrightarrow M, \, \iota_{F(U)} \colon F(U) \hookrightarrow N$ の微分 $T_p(\iota_U) \colon T_pU \longrightarrow T_pM, \, T_{F(p)}\big(\iota_{F(U)}\big) \colon T_{F(p)}\big(F(U)\big) \longrightarrow T_{F(p)}N$ はベクトル空間の同型写像である. さらに $F|_U$ が微分同相写像なので $T_p(F|_U) \colon T_pU \longrightarrow T_{F(p)}\big(F(U)\big) \cong T_{F(p)}N$ はベクトル空間の同型写像だが, $T_p(F|_U) = T_p(F \circ \iota_U) = T_pF \circ T_p(\iota_U)$ なので, $T_pF \colon T_pM \longrightarrow T_pN$ 自身もベクトル空間の同型写像である.故に rank $F = \dim M = \dim N$ が言える.

 \leftarrow

F が C^∞ 沈め込みかつ C^∞ はめ込みであるとする. すると $\forall p \in M$ に対して $T_pF \longrightarrow T_pM \longrightarrow T_{F(p)}N$ は全単射なので, C^∞ 多様体における逆関数定理が使える.

(2) $\forall p \in M$ をとる. $\dim M = \dim N$ かつ $T_pF \colon T_pM \longrightarrow T_{F(p)}N$ が単射ならば、階数-退化次元の定理より $\dim(\operatorname{Im} T_pF) = \dim M - \dim(\operatorname{Ker} T_pF) = \dim M = \dim N$ なので T_pF が全単射だとわかる. $\dim M = \dim N$ かつ $T_pF \colon T_pM \longrightarrow T_{F(p)}N$ が全射ならば、階数-退化次元の定理より $\dim(\operatorname{Ker} T_pF) = \dim M - \dim(\operatorname{Im} T_pF) = \dim M - \dim N = 0$ なので T_pF が全単射だとわかる. よってどちらの場合も C^∞ 多様体における逆関数定理が使える.

定理 2.5: 局所的ランク定理 (境界を持たない場合)

- 境界を持たない C^{∞} 多様体 M, N
- 定ランクの C^{∞} 写像 $F: M \longrightarrow N$

を与える. このとき $\forall p \in M$ に対して

- 点 $p \in M$ を含む M の C^{∞} チャート (U_0, Φ) であって $\Phi(p) = 0 \in \mathbb{R}^{\dim M}$ を充たすもの
- 点 $F(p)\in N$ を含む N の C^∞ チャート (V_0,Ψ) であって $\Psiig(F(p)ig)=0\in\mathbb{R}^{\dim N}$ かつ $F(U)\subset V$ を充たすもの

が存在して、 $\forall (x^1, \ldots, x^{\dim M}) \in \Phi(U) \subset \mathbb{R}^{\dim M}$ に対して

$$\Psi \circ F \circ \Phi^{-1}(x^1, \dots, x^{\operatorname{rank} F}, x^{\operatorname{rank} F+1}, \dots, x^{\dim M})$$

$$= (x^1, \dots, x^{\operatorname{rank} F}, \underbrace{0, \dots, 0}_{\dim N - \operatorname{rank} F}) \in \Psi(V) \subset \mathbb{R}^{\dim N}$$

を充たす.

特にFが C^{∞} 沈め込みならば(??)は

$$\Psi \circ F \circ \Phi^{-1}(x^1, \dots, x^{\dim N}, x^{\dim N+1}, \dots, x^{\dim M}) = (x^1, \dots, x^{\dim N})$$

の形になり、F が C^{∞} はめ込みならば (??) は

$$\Psi \circ F \circ \Phi^{-1}(x^1, \dots, x^{\dim M}) = (x^1, \dots, x^{\dim M}, 0, \dots, 0)$$

の形になる.

証明 $\forall p \in M$ を 1 つ固定する. 以降では p を含む M の任意の C^{∞} チャート $(U,\varphi)=ig(U,(x^{\mu})ig)$ および

F(p) を含む N の任意の C^{∞} チャート $(V, \psi) = (V, (x'^{\mu}))$ に対して

$$\begin{split} \widehat{U} &\coloneqq \varphi(U) \subset \mathbb{R}^{\dim M}, \\ \widehat{V} &\coloneqq \psi(V) \subset \mathbb{R}^{\dim N}, \\ \widehat{F} &\coloneqq \psi \circ F \circ \varphi^{-1} \colon \widehat{U} \longrightarrow \widehat{V}, \\ \widehat{p} &\coloneqq \varphi(p) \in \widehat{U} \end{split}$$

とおく. 便宜上 C^{∞} チャート $(U,(x^{\mu})),(V,(x'^{\mu}))$ の座標関数をそれぞれ

$$(x, y) = (x^1, \dots, x^{\operatorname{rank} F}, y^1, \dots, y^{\dim M - \operatorname{rank} F}) := (x^1, \dots, x^{\dim M})$$

 $(v, w) = (v^1, \dots, v^{\operatorname{rank} F}, w^1, \dots, w^{\dim N - \operatorname{rank} F}) := (x'^1, \dots, x'^{\dim N})$

とおき直す. また、2 つの C^{∞} 写像を

$$Q: \widehat{U} \longrightarrow \mathbb{R}^{\operatorname{rank} F}, (x, y) \longmapsto (\widehat{F}^{1}(x, y), \dots, \widehat{F}^{\operatorname{rank} F}(x, y))$$

$$R: \widehat{U} \longrightarrow \mathbb{R}^{\dim N - \operatorname{rank} F}, (x, y) \longmapsto (\widehat{F}^{\operatorname{rank} F + 1}(x, y), \dots, \widehat{F}^{\dim N}(x, y))$$

と定義する. このとき $\hat{F} = (Q, R)$ と書ける.

仮定より F は定ランクなので,点 $\hat{p} \in \hat{U}$ において線型写像 $T_{\hat{p}}\hat{F} \colon T_{\hat{p}}\hat{U} \longrightarrow T_{\hat{F}(\hat{p})}\hat{V}$ の表現行列のランクは $\operatorname{rank} F$ である.必要ならば M,N の C^{∞} チャートを取り替えることで座標関数の順番を好きなように入れ替えることができる* 10 ので, $T_{\hat{p}}\hat{F}$ の表現行列* 11 の $\operatorname{rank} F$ 次首座小行列に対して

$$\left[\frac{\partial \widehat{F}^{\mu}}{\partial x^{\nu}}(\widehat{p})\right]_{1 \leq \mu, \nu \leq \operatorname{rank} F} = \left[\frac{\partial Q^{\mu}}{\partial x^{\nu}}(0, 0)\right]_{1 \leq \mu, \nu \leq \operatorname{rank} F} \in \operatorname{GL}(\operatorname{rank} F, \mathbb{R})$$

が成り立つような C^{∞} チャート $\left(U,\,(x,\,y)\right),\,\left(V,\,(v,\,w)\right)$ が存在する. さらに, $\widehat{U},\,\widehat{V}$ の原点を平行移動することでいつでも $\widehat{p}=(0,\,0)\in\mathbb{R}^{\dim M},\,\widehat{F}(\widehat{p})=(0,\,0)\in\mathbb{R}^{\dim N}$ が成り立つようにできる*12.

ここまでの議論の要請を満たす M,N の任意の C^{∞} チャート $(U,\varphi),(V,\psi)$ をとり、 C^{∞} 写像

$$\widehat{\Phi} \colon \widehat{U} \longrightarrow \mathbb{R}^{\dim M}, \ (x, y) \longmapsto (Q(x, y), y)$$

を考える. 点 $(0,0) \in \widehat{U}$ における Ψ の Jacobi 行列は

$$D\Psi(0,\,0) = \begin{bmatrix} \left[\frac{\partial Q^{\mu}}{\partial x^{\nu}}(0,\,0)\right]_{1\leq \mu,\,\nu\leq \operatorname{rank} F} & \left[\frac{\partial Q^{\mu}}{\partial y^{\nu}}(0,\,0)\right]_{1\leq \mu\leq \operatorname{rank} F,\,1\leq \nu\leq \dim M-\operatorname{rank} F} \\ 0 & 1_{\dim M-\operatorname{rank} F} \end{bmatrix}$$

となるが、仮定 (??) よりこれは正則行列である.よって $\mathbb{R}^{\dim M}$ における逆関数定理から

- 点 $(0,0) \in \widehat{U}$ の連結な近傍 $\widehat{U_0} \subset \widehat{U}$
- 点 $(0,0) \in \mathbb{R}^{\dim M}$ の連結な近傍 $\tilde{U}_0 \subset \mathbb{R}^{\dim M}$

^{*10} 座標を入れ替える写像は微分同相写像なので,M,N の C^∞ 構造の中には座標の入れ替えによって互いに移り合えるような C^∞ チャートたちが含まれている.

 $^{^{*11}}$ これは C^{∞} 関数 \widehat{F} の Jacobi 行列 $D\widehat{F}(\widehat{p})$ である.

^{*12} 平行移動は微分同相写像なので,M,N の C^∞ 構造には平行移動によって互いに移り合えるような C^∞ チャートたちが含まれている。

が存在して $\widehat{\Phi}|_{\widehat{U_0}}\colon \widehat{U_0}\longrightarrow \widetilde{U_0}$ が微分同相写像になる. $\widehat{U_0}$, $\widetilde{U_0}$ を適当に小さくとり直すことで $\widetilde{U_0}$ が開区間の直積であると仮定して良い. $\widehat{\Phi}|_{\widehat{U_0}}$ の逆写像を $\widehat{\Phi}^{-1}\colon \widetilde{U_0}\longrightarrow \widehat{U_0}$, $(x,y)\longmapsto \big(A(x,y),B(x,y)\big)$ と書くと $A\colon \widetilde{U_0}\longrightarrow \mathbb{R}^{\mathrm{rank}\,F}$, $B\colon \widetilde{U_0}\longrightarrow \mathbb{R}^{\mathrm{dim}\,M-\mathrm{rank}\,F}$ はどちらも C^∞ 写像で、 $\forall (x,y)\in \widetilde{U_0}$ に対して

$$(x, y) = \widehat{\Phi} \circ \widehat{\Phi}^{-1}(x, y) = \left(Q(A(x, y), B(x, y)), B(x, y)\right)$$

が成り立つ. よって

$$\widehat{\Phi}^{-1}(x, y) = (A(x, y), y),$$
$$x = Q(A(x, y), y)$$

であり,

$$\begin{split} \widehat{F} \circ \widehat{\Phi}^{-1}(x, y) &= \widehat{F} \big(A(x, y), y \big) \\ &= \Big(Q \big(A(x, y), y \big), \, R \big(A(x, y), y \big) \Big) \\ &= \Big(x, \, R \big(A(x, y), y \big) \Big) \end{split}$$

が分かった. 従って C^{∞} 写像 \tilde{R} : $\tilde{U}_0 \longrightarrow \mathbb{R}^{\dim N - \operatorname{rank} F}$, $(x,y) \longmapsto R\big(A(x,y),y\big)$ と定義すると, $\forall (x,y) \in \tilde{U}_0$ における $\hat{F} \circ \hat{\Phi}^{-1}$ の Jacobi 行列は

$$D(\widehat{F} \circ \Psi^{-1})(x, y)$$

$$= \begin{bmatrix} 1_{\text{rank } F} & 0 \\ \left[\frac{\partial \widetilde{R}^{\mu}}{\partial x^{\nu}}(x, y)\right]_{1 \leq \mu \leq \dim N - \text{rank } F, 1 \leq \nu \leq \text{rank } F} & \left[\frac{\partial \widetilde{R}^{\mu}}{\partial y^{\nu}}(x, y)\right]_{1 \leq \mu \leq \dim N - \text{rank } F, 1 \leq \nu \leq \dim M - \text{rank } F} \end{bmatrix}$$

と計算できる.ところが,仮定より行列 $D(\widehat{F})(x,y)$ のランクは $\mathrm{rank}\,F$ で,かつ $\widehat{\Phi}^{-1}$ は微分同相写像なので $D(\widehat{\Phi}^{-1})(x,y)\in\mathrm{GL}(\dim M,\mathbb{R})$ であり,行列 $D(\widehat{F}\circ\widehat{\Phi}^{-1})(x,y)=D(\widehat{F})(x,y)\circ D(\widehat{\Phi}^{-1})(x,y)$ のランクは $\mathrm{rank}\,F$ に等しい.よって $\forall (x,y)\in \widehat{U}_0$ において

$$\left[\frac{\partial \tilde{R}^{\mu}}{\partial y^{\nu}}(x, y)\right]_{1 \leq \mu \leq \dim N - \operatorname{rank} F, 1 \leq \nu \leq \dim M - \operatorname{rank} F} = 0$$

でなくてはいけない. \tilde{U}_0 は開区間の直積なので、このことから \tilde{R} が $(y^1,\ldots,y^{\dim M-\mathrm{rank}\,F})$ によらないことが分かった. よって $S(x)\coloneqq \tilde{R}(x,0)$ とおくと

$$\widehat{F} \circ \widehat{\Phi}^{-1}(x, y) = (x, S(x))$$

と書けることが分かった.

最後に、点 $\widehat{F}(\widehat{p})=(0,0)\in\widehat{V}$ の適当な近傍を構成する. 開集合*13 $\widehat{V_0}\subset\widehat{V}$ を

$$\widehat{V_0} := \left\{ (v, w) \in \widehat{V} \mid (v, 0) \in \widetilde{U}_0 \right\}$$

と定義すると, $\widehat{F}(\widehat{p})=(0,\,0)\in\widehat{V_0}$ なので $\widehat{V_0}$ は点 $\widehat{F}(\widehat{p})$ の近傍であり, \widetilde{U}_0 は開区間の直積なので $\ref{initial}$ から $\widehat{F}\circ\widehat{\Phi}^{-1}(\widetilde{U}_0)\subset\widehat{V_0}$ が成り立つ.そして C^∞ 写像

$$\widehat{\Psi} : \widehat{V_0} \longrightarrow \mathbb{R}^{\dim N}, \ (v, w) \longmapsto (v, w - S(v))$$

^{*13} 写像 $f: \hat{V} \longrightarrow \mathbb{R}^{\dim M}, (v, w) \longmapsto (v, 0)$ は連続で、 $\tilde{U}_0 \subset \mathbb{R}^{\dim M}$ は開集合なので、 $V_0 = \hat{V} \cap f^{-1}(\tilde{U}_0) \subset \hat{V}$ もまた開集合.

を考える. $\widehat{\Psi}$: $\widehat{V_0} \longrightarrow \widehat{\Psi}(\widehat{V_0})$ は C^{∞} 写像

$$\widehat{\Psi}^{-1} : \widehat{\Psi}(\widehat{V_0}) \longrightarrow \widehat{V_0}, \ (s, t) \longmapsto (s, t + S(s))$$

を逆写像に持つので微分同相写像であり, $(V_0,\,\widehat{\Psi})$ は N の C^∞ チャートである. その上 $(\ref{eq:property})$ から $\forall (x,\,y)\in \tilde{U}_0$ に対して

$$\widehat{\Psi}\circ\widehat{F}\circ\widehat{\Phi}^{-1}(x,\,y)=\widehat{\Psi}\big(x,\,S(x)\big)=(x,\,0)$$

となる.

以上をまとめると,

$$\begin{split} U_0 &\coloneqq \varphi^{-1}(\widehat{U_0}) \subset M, \\ V_0 &\coloneqq \psi^{-1}(\widehat{V_0}) \subset N, \\ \Phi &\coloneqq \widehat{\Phi} \circ \varphi \colon U_0 \longrightarrow \Phi(U_0), \\ \Psi &\coloneqq \widehat{\Psi} \circ \psi \colon V_0 \longrightarrow \Psi(V_0) \end{split}$$

とおくと Φ , Ψ は微分同相写像であり,

- 点 $p \in M$ を含む M の C^{∞} チャート (U_0, Φ)
- 点 $F(p) \in N$ を含む N の C^{∞} チャート (V_0, Ψ)

の 2 つ組は (??) から $\forall (x, y) \in \Phi(U_0) = \tilde{U}_0$ に対して

$$\Psi \circ F \circ \Phi(x, y) = \widehat{\Psi} \circ \widehat{F} \circ \widehat{\Phi}^{-1}(x, y) = (x, 0)$$

を充たすので証明が完了する.

系 2.6:

境界を持たない C^∞ 多様体 M,N と C^∞ 写像 $F\colon M\longrightarrow N$ を与える. このとき M が連結ならば 以下の 2 つは同値である:

- (1) F は定ランク
- (2) $\forall p \in M$ において, p, F(p) を含む M, N の C^{∞} チャート $(U, \varphi), (V, \psi)$ であって F の座標表示 $\psi \circ F \circ \varphi^{-1} \colon \varphi(U) \longrightarrow \psi(V)$ が線型写像となるようなものが存在する.

証明 (1) ⇒ (2)

定理??の(??)はFの座標表示が線型写像であることを意味する.

$(1) \Leftarrow (2)$

任意の線型写像のランクは一意に定まるので、 $\forall p \in M$ の近傍において F のランクは一定だが、仮定より M は連結なので F は定ランクである.

定理 2.7: 大域的ランク定理 (境界を持たない場合)

- 境界を持たない C^{∞} 多様体 M, N
- 定ランクの C^{∞} 写像 $F: M \longrightarrow N$

を与える. このとき以下が成り立つ:

- (1) F が全射 \implies F は C^{∞} 沈め込み
- (2) F が単射 \implies F は C^{∞} はめ込み
- (3) F が全単射 \implies F は微分同相写像
- **証明** (1) F が全射だとする. もし $\operatorname{rank} F < \dim N$ ならば、局所的ランク定理により $\forall p \in M$ に対して
 - 点 $p \in M$ を含む M の C^{∞} チャート (U_p, Φ) であって $\Phi(p) = 0 \in \mathbb{R}^{\dim M}$ を充たすもの
 - ・ 点 $F(p)\in N$ を含む N の C^∞ チャート (V_p,Ψ) であって $\Psiig(F(p)ig)=0\in\mathbb{R}^{\dim N}$ かつ $F(U_p)\subset V_p$ を充たすもの

が存在して,F の座標表示 $\Psi\circ F\circ \Phi^{-1}$: $\Phi(U_p)\to \Psi(V_p)$ が $(\ref{initial points})$ の形になる.必要なら U_p を適当に小さくとることで $\exists r>0$, $\Phi(U_p)=B_r(0)\subset \mathbb{R}^{\dim M}$ で,かつ $F(\overline{U_p})\subset V_p$ が成り立つと仮定して良い.このとき $F(\overline{U_p})$ は Hausdorff 空間 $\left\{y\in V_p\mid \Psi(y)=(y^1,\ldots,y^{\mathrm{rank}\,F},0,\ldots,0)\right\}$ のコンパクト部分集合なので,N の閉集合でかつ N の開集合を部分集合として持たない.i.e. N 上**疎** (nowhere dense) である.多様体の第 2 可算性より任意の多様体の開被覆は高々可算な部分被覆を持つから,M の開被覆 $\left\{U_p\right\}_{p\in M}$ および F(M) の開被覆 $\left\{V_p\right\}_{p\in M}$ はそれぞれ高々可算な部分被覆を持つがら, $\left\{U_i\right\}_{i\in I}$ 、 $\left\{V_i\right\}_{i\in I}$ を持つ.i.e. F(M) は高々可算個の疎集合 $F(\overline{U_i})$ たちの和集合なので,Baire のカテゴリー定理から F(M) の N における内部は空集合ということになるが,これは F が全射であることに矛盾する.よって背理法から $\operatorname{rank} F=\dim N$ が言えた.

- (2) F が単射だとする. もし rank $F < \dim M$ ならば、局所的ランク定理により $\forall p \in M$ に対して
 - 点 $p\in M$ を含む M の C^∞ チャート (U_p,Φ) であって $\Phi(p)=0\in\mathbb{R}^{\dim M}$ を充たすもの
 - ・ 点 $F(p)\in N$ を含む N の C^∞ チャート (V_p,Ψ) であって $\Psiig(F(p)ig)=0\in\mathbb{R}^{\dim N}$ かつ $F(U_p)\subset V_p$ を充たすもの

が存在して、F の座標表示 $\Psi \circ F \circ \Phi^{-1}$: $\Phi(U_p) \longrightarrow \Psi(V_p)$ が $(\ref{eq:condition})$ を充たす。このことから、十分小さな任意の $\varepsilon \in \mathbb{R}^{\dim M - \operatorname{rank} F}$ に対して $\Psi \circ F \circ \Phi^{-1}(0, \ldots, 0, \varepsilon) = \Psi \circ F \circ \Phi^{-1}(0, \ldots, 0)$ が成り立つことになり F の単射性に矛盾。

(3) (1), (2) より F が全単射なら F は C^∞ 沈め込みかつ C^∞ はめ込みであるから,命題??より F は全単射な局所微分同相写像である.よって F は微分同相写像である.

定理 2.8: はめ込みに関する局所的ランク定理(境界付き)

- 境界付き C^{∞} 多様体 M
- 境界を持たない C^{∞} 多様体 N
- C^{∞} はめ込みの C^{∞} 写像 $F: M \longrightarrow N$

を与える. このとき $\forall p \in \partial M$ に対して

- 点 $p \in M$ を含む M の C^{∞} 境界チャート (U_0, Φ) であって $\Phi(p) = 0 \in \mathbb{H}^{\dim M}$ を充たすもの
- 点 $F(p)\in N$ を含む N の C^∞ チャート (V_0,Ψ) であって $\Psiig(F(p)ig)=0\in\mathbb{R}^{\dim N}$ かつ $F(U)\subset V$ を充たすもの

が存在して、 $\forall (x^1, \ldots, x^{\dim M}) \in \Phi(U) \subset \mathbb{H}^{\dim M}$ に対して

$$\Psi \circ F \circ \Phi^{-1}(x^1, \, \dots, \, x^{\dim M}) = (x^1, \, \dots, \, x^{\dim M}, \, \underbrace{0, \, \dots, \, 0}_{\dim N - \operatorname{rank} M}) \in \Psi(V) \subset \mathbb{R}^{\dim N}$$

を充たす.

証明

2.3.3 C[∞] 埋め込み

命題 2.2:

境界あり/なし C^∞ 多様体 M,N および単射な C^∞ はめ込み $F\colon M\longrightarrow N$ を与える. このとき,以下のいずれかの条件が充たされれば F は C^∞ 埋め込みである:

- (1) F は開写像または閉写像
- (2) F は固有写像 (proper map^a)
- (3) *M* はコンパクト
- (4) $\partial M = \emptyset$ かつ $\dim M = \dim N$

a Y の任意のコンパクト部分集合の逆像が X のコンパクト部分集合

証明 (1) F が開写像だとする. $F: M \longrightarrow F(M)$ は全単射なので、逆写像 $F^{-1}: F(M) \longrightarrow M$ が存在する. このとき、X の任意の開集合 $U \subset X$ に対して $(F^{-1})^{-1}(U) = F(U) \subset Y$ は仮定より Y の開集合であるから、相対位相の定義より F(M) においても開集合である. i.e. F^{-1} は連続写像であり、 $F: M \longrightarrow F(M)$ が同相写像だと分かった. i.e. F は位相的埋め込みである. F が閉写像の場合も同様.

(2)

2.4 部分多様体

定理 2.9: Whitney の埋め込み定理

任意の n 次元 C^{∞} 多様体は \mathbb{R}^{2n+1} の中に閉部分多様体として埋め込むことができる.

2.4.1 誘導計量

定義 2.6: 誘導計量

(N,h) を Riemann 多様体, C^∞ 写像 $f\colon M\to N$ をはめ込みとする.このとき,2-形式 $h\in\Omega^2(N)$ の引き戻し(??) f^*h は M 上の Riemann 計量 $g\in\Omega^2(M)$ を定める:

$$g_p(u, v) := h_{f(p)}(f_*(u), f_*(v)), \quad \forall p \in M, \forall u, v \in T_pM$$

これを f による M の誘導計量と呼ぶ.

誘導計量を M のチャート $(U; x^{\mu})$ および N のチャート $(V; y^{\nu})$ に関して成分表示すると

$$g_{p}(u, v) = g_{\mu\nu}(p)u^{\mu}v^{\nu}$$
$$= h_{\alpha\beta}(f(p))\frac{\partial y^{\alpha}}{\partial x^{\mu}}(f(p))\frac{\partial y^{\beta}}{\partial x^{\nu}}(f(p))u^{\mu}v^{\nu}$$

だから,

$$g_{\mu\nu}(p) = h_{\alpha\beta}(f(p)) \frac{\partial y^{\alpha}}{\partial x^{\mu}}(f(p)) \frac{\partial y^{\beta}}{\partial x^{\nu}}(f(p))$$

である. 特に C^{∞} 多様体 M の Euclid 空間 \mathbb{R}^n へのはめ込み $r: M \to \mathbb{R}^n, (x^{\mu}) \mapsto r(x^{\mu})$ が与えられたとき,M の Riemann 計量がしばしば

$$g_{\mu\nu} = \frac{\partial \mathbf{r}}{\partial x^{\mu}} \cdot \frac{\partial \mathbf{r}}{\partial x^{\nu}}$$

と書かれるのはこのためである.

多様体 N が擬 Riemann 多様体のときは、多様体 M が誘導計量を持つとは限らない.

例えば Euclid 空間 \mathbb{R}^3 に埋め込まれた単位球面 S^2 を考える. はめ込みを

$$r : (\theta, \phi) \mapsto \begin{bmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{bmatrix}$$

として与えると、 S^2 の誘導計量は

$$g_{\mu\nu} dx^{\mu} \otimes dx^{\nu} = \frac{\partial \mathbf{r}}{\partial x^{\mu}} \cdot \frac{\partial \mathbf{r}}{\partial x^{\nu}} dx^{\mu} \otimes dx^{\nu}$$
$$= d\theta \otimes d\theta + \sin^{2}\theta d\phi \otimes d\phi$$

と求まる.

- 2.5 隅付き多様体
- 2.6 力学系としての多様体