

UNIVERSITU

ADD: FUJJAN GJAMEN

P.C:361005 **CABLE:0633**

实验十九 RLC串联谐振特性的研究

-. 实验目的

1.观察交流电路串联谐振丽观象,掌握测量谐振曲线的方法。

2.研究RLC电路元件对串联电路简谐振特性m影响及电路品质因数Q值m测定

二 实验仪器

函数信号发生器,双通道毫伏表,电阻箱、电容箱、导线若干。

三. 实验原理

1. RLC串联电路

如图1所示,RLC串联电路由电阻器及,电感器L和电容C与信号源压串联而成。Um.Im分别代表电 压和电流的幅值,W为信号源的角频率,W=25f,回路的总电阻尺=R.+r.trc,其中r.为电感器L的 耗损内阻,re为电容器Cm耗损内阻,可以忽略,若接入正弦交流电压 U=Umsinwt,则回路m电流 式(1); 回路m电流有效值1表示为 $1=\frac{U}{\sqrt{R^2+(ul-\frac{1}{ul})^2}}$, 式(2);电流与信号源电压Um相位差V可表示为 $\varphi = tg^{1} \frac{wl - \dot{wc}}{R}, \dot{\mathfrak{A}}(3).$

2. RLC 串联电路

(1)由式(1)、式(2)、式(3)可知, Z、1 γ都随信号频率f而变化、在交流电路中的电影和电容的作用是相

反m,具有互相抵消m作用·下面分别对三种情况进行讨论.

a.如图(a)所示,当WL-wc=O时, Z=VR+(WL-wc)=R, 此时回路m总阻抗最小电路呈统电 阻性,此时回路和电流有效值 1有最大值 1_{max} = $\frac{1}{6}$; 15 Um相 位差 γ = $\frac{1}{6}$ = $\frac{1}{6}$ $\frac{1}{6}$ = $\frac{1}{6}$ $\frac{1}{6}$ 与电压相同相,这就是所谓的回路谐振。此时对应的信号频率f。= ITILC 称为谐振频率,又称为 回路的国有频平,它决定于回路的元件参数L和C,而与R无关。

图(a) 图2. RIC年联电路中电压电流处图 b. 如图(b)所示,当WL-w20时,即U2V2时,y=tg-w2处正值,电压超前于电流,电影m作用大于 略分作用,电路呈电影性。

它如图(c)所示,当wt-wc<0时,即U<Uc时, y=tg1wl-wc是负值, 电存标电流, 电容标用大手 电断倾,电路呈电容性.

UNIVERSITY

ADD: FUJIAN GIAMEN

CABLE:0633 P.C:361005

(2)选择不同mf、L、C或Rm值,可以实现不同m相移Y,RLC串联电路m相频特性曲线如图3所示,当wl=wc时,Y=0,W=W,电路处于谐振状态,当Wl>ick时,Y>0,U超前1,回路呈电离性;当W很大时,Y接近于至;当WL>wc时,Y<0,U落后于1,回路呈电容性,当W很小时,Y接近于一歪。

3. RLC 串联电路丽谐振特性

RLC市联电路m谐振特性,常用电路m电流与频平m关系即I-f谐振曲线来描述。如图4所示,谐振曲线m形状,与RLCm取值有关;谐振曲线m形状,常用'通频带宽度'来描述,"通频带宽度'规定为当电流1 是最大值1m的; = 70.7%(初为牛功车点,)时m频平宽度 △f=fz-f.。

图4 MC串联电路丽谐振特性曲线

4.回路mm质因数Q值

可见Q值只与回路的电路元件参数相关。L值越大,Q值越高,R、C越小,Q值越高。回路的Q值越大,进振曲线尖锐。Ux、Ux和Uc均随频平f而变化,当于元人(即fofo)时,UL=Uc,即UL=Uc=QU;当长fo

IZ I° XIAWEN

UNIVERSITU

ADD: FUFFOR GRAMEN

CABLE:0633 P.C:361005

U、くUc,当f>f。耐,U、2Uc,说明低频信号主要降在电容C上,而高频信号主要降在电容L上;具件变化关系用幅 特性曲线表示图S中 U↑ 11 11

图5 凡C 安果电烙与幅频特性曲线

鎮上所述、田路谐振时,以、有极大值,且为于信号滑电压值U,即以,m=U,同时U。=U。=QU,即谐振时,电容或电影两端和电压是信号器电压的Q任,因此及LC串联谐振,又称电压谐振、Q值亦可定义为Q=U2=U2。 四、实验内容

根据图6连接电路、用双通道毫伏表的一路豪伏表加以挂在信号源的输出游、监测信号源的电压,毫代表加以的"他"机壳与信号源的"他"接在一起。双通道毫代表的另一路毫代表加以影换用于测量电压Ux、U、U、测量Ux,由、毫代表加以的"他"端与信号源的"他"游技在一起。测量电压Ux Ux 时,毫代表加以注意选择适当的量程

1.测量1-f谐振曲线

(1)选择电路元件参数,选取L=0.100H, C=0.0500,UF, R=100.01, U=a900V,这时回路的总电风=Roth.

(3)测量时,用双通道毫伏表中所毫伏表加处测量电阻几两端和电压 Us。改变频率f,每间隔100 Hz测量一次Us;在潜振志际近,电压变化较大,截据点墨取露些,可以每间隔50Hz测一次Us。注意:测量过程中,要保持信号源,电压U为恒定值,即始终保持为0.900V.

(3) 致变电阻器电阻值,使Ri=2R+YC,此时,回路M后电阻 Ri=2(R+YC)=2R,其他电路元件参数不变,重

复以上实验步骤

图6 RLC中联谐振电路实验连接线路图

2.观测NC电烙丽谐振观象

い特双通道意父表加以分别接到R、L、C的网路、连续调节信号源频平f、观察电压U、从和随频平f的变形情况。观察时、要注意双通道毫代表的加以量程,从和Uc可能很大。

山分别测出电压以,以和比为最大值时所对应m信号频率f、f、f和fc、比较他们之间m大小关系

的在谐振频平f.处,测量电影器L和电容器C的游响电压LL和U。

UNIVERSITU RIAMEN

ADD: FUJJAN GJAMEN CABLE: 0633 P.C:361005

五.数据记录

见附录表1.2.3

六.往唐事顶

(-)

1.以电抗元件作负载,信号康丽输出电压会随频率而改变,故在测量电压时,每改变-次频率都要调节 信号派电压U,以保持U为恒定值。

2.使用双通道全伏表时,必须校准零点,以保证读数准确;测量时由于谐振点附近Uz.Uz.Uz。变化较 大一定要先换好适当的量程再进行侧量。

ぬ. 重折整理数据表格.

表.测量1-f谐振曲线数据表

760	150 L=0.100 H, YL = 20.0 D. C=0.0500 MF, U=0.900 V							
项目		=/00.02	$R_o' = 2R_o + \Gamma_L = 220 \Omega$ $U_{R_o'} (mV) \qquad 1' = \frac{U_{R_o}'}{R_o} (mA)$					
数值		1= UR. (MA)	UR' (MV)	7'= UR (MA)				
f (kH2)	UR.(MV)	IF R. (MICH)		2 - 10				
1.4000	65.0		165					
7.5000	76.0		197					
1.6000	90.0		2//0	-				
1.7000	HO 110		290					
1.8000	140		240 290 3 8 0					
1.9000	185	-	490					
2.000	320260							
2.0500	320		560					
2/000	400		640	-				
2.1500	520		720	-				
2.2000	641		770					
2.2500	700		795					
2.3000	619		760					
2.3500	490		700					
2.4000	395	21	622					
2.4500	320		\$60	-				
2.5000	270	The same	500	June Martie				
2.6000	208		400					
2.7000	按170		340					
2.8000	140		300					
2.9000	120	1,	260					
, 3.0007	108	40 A	230					
3.1000	100		210	1				

ADD: FUJJAN GJAMEN CABLE: 0633 P.C: 361005

於飛行城	侧量 1-f 谐	质曲线 数据表				
2.2	L=0.100H, r=17s. C=0.0500µF, U=0.900 V					
数值 ^{项目}	Ro=10	0.0Ω	R'=2R+1=220.01			
f(kH2)	U _{Ro} (mV)	$1 = \frac{U_{R_{\bullet}}}{R_{\bullet}}(mA)$	U _{Ró} (mV)	$1' = \frac{U_{R'}}{R'_{o}}(mA)$		
1-4000	65.0	0.650	142	0.645		
1-5000	76.0	0.760	165	0.750		
1.6000	90.0	0.900	197	0.895		
1.7000	110	J. 10	240	1-09		
1.8000	140	1.40	290	1.32		
1.9000	187	1.85	380	1.73		
2.0000	260	2.60	490	2.23		
2.0500	320	3.20	560	2.55		
2.1000	400	4.00	640	2.91		
2.1500	520	5.20	720	3.27		
2.2000	641	6.41	770	3.50		
2.2500	700	7. <i>0</i> 0	795	3.61		
2.3000	619	6.19	760	3.45		
2.3500	490	4.90	700	3.18		
2.4000	395	<i>3.9</i> 5	622	2.83		
2.4500	320	3.20	560	2.53		
2.5000	270	2.70	100	2.27		
2.6000	208	2.08	400	1.82		
2.7000	170	1-70	340	1.55		
2.8000	140	KYO	300	1.36		
2-9000	120	1.20	260	1.18		
3.0000	168	1.08	230	1.05		
3./000	100	1-00	210	0.95		

(=). 绘制谐振曲线

当 R。和如 对 计=0.7071m时,fi=2.1480kHz,fz=2.3410kHz 当Ro= 220.0公时, 1=0.7071m时, f=2.0460 kHz, f=2.4460 kHz

UNIVERSITU

ADD: FUJIAN GIAMEN

- CABLE:0633 P.C:361005

谐振电路的通频带宽度of、谐振频平fo、品质因数Q值 (三)表3

3.44	项目	逾频带宽度△f		谐振频车 f。		品质因数 Q值				
数值 取目 电路		fi(kH2)		侧量值 of=	仕最		1/1/2/2	を加し、人とは、人とは、人とは、人とは、人とは、人とは、人とは、人とは、人とは、人とは	侧垂直 8=1元	理论值 Q=皮层
$C=0.0500\mu F$ $T_{L}=20.0\Omega$	R=(R0+YL) =120.0Ω	2./480	2.3410	0.1930	0.191	2.2500	2.2424	2.25	_ 11.62	11.8
		2.0460				2.2500	2.2371	2.25	5.593	5.89

R=120.00时, f=2.1480kHz, f=2.3410kHz

侧量值 $\triangle f = f_2 - f_1 = 2.3410 - 2.1480 = 0.1930 \text{ kHZ}$ 理论值 $\triangle f = \frac{R}{27L} = \frac{120.0}{27\times0.100} \times 10^{-3} = 0.191 \text{ HHZ}$

曲线峰点: f=2.2500 kHZ

测量值 fo=√f1f2=√2./480 ×2.3410 = 2.2424 kHZ

理论值: $f_0 = \frac{1}{27\sqrt{LC}} = \frac{1}{2\times7\times\sqrt{0.100\times0.05\times10^3}} = 2.25 \text{ kHz}$ 例量值: $Q = \frac{\sqrt{f_1f_2}}{f_2 - f_1} = \frac{\sqrt{2./480\times2.3440}}{2.3440 - 2./480} = 11.62$

 $E_{1} = \left| \frac{\Delta f_{\text{M}} - \Delta f_{\text{R}}}{\Delta f_{\text{R}}} \right| \times |00\%| = \frac{|0.1930 - 0.191|}{0.191} \times |00\%| = 11.8$

 $E_{2} = \left| \frac{f_{0} \partial y - f_{0} \partial y}{f_{0} \partial y} \right| \times 100\% = \left| \frac{2.2424 - 2.25}{2.25} \right| \times 100\% = 0.4\%$

 $E_{3} = \left| \frac{Q_{24} - Q_{22}}{Q_{22}} \right| \times 100\% = \left| \frac{11.62 - 11.8}{11.8} \right| \times 100\% = 1.5\%$ $R' = 240.0 \Omega \text{ B}^{\frac{1}{2}}, f_{1}' = 2.0460 \text{ kHz}, f_{2}' = 2.4460 \text{ kHz}$

侧量值af=fi-fi=0.4000 kHz

理论值:△f=朵= 0.382kHZ

曲线峰点: fo= 2.2500 kHZ

侧量值:fo=√ff{z=2.2371 kHz

理论值,fo= ____ = 2.25 kHZ

例**性**值: Q= <u>Nfizi</u> = 5.593

理论值: Q=大是=<u>140.0</u> J<u>0.100</u> = 5.89

$$E_s = \frac{f_{000} - f_{000}}{f_{200}} \times /00\% = 0.6\%$$

RAMEN UNIVERSITU

ADD: FUJJAN GJAMEN

CABLE:0633 P.C:361005

八.思考题

- 1.仍频段时容抗大,电容两端电压接近信号源电压。高频段时感抗大,电离两端电压接近信号源电压.
- 2. RLC申联谐振电路发生谐振时,电流与电压同相位,电流达最大,电容器和电离上的电压分别等于外加电压的Q倍,所以串联谐振又称电压谐振.
- 3.最大,达到谐振时,电压大小相等,方向相反,电路呈纯电阻性,几乎分掉所有分压.
- 4.谐振时,还有电感丝电阻, Roo电源内阻分压, 所以Uorn小子信号源两端电压。
- 5. 谐振时 WoL= woc, 所以可通过电影求电容或通过电容求电影。