SỞ GD VÀ ĐT THỪA THIÊN HUẾ TRƯỜNG THPT VINH LỘC

ĐỀ KIỂM TRA 1 TIẾT – NĂM HỌC 2012 - 2013 Môn: TOÁN – Giải tích 12, CHƯƠNG I, Lần 2(Cơ bản)

Thời gian làm bài: 45 phút

ĐỀ CHÍNH THỰC

MA TRẬN ĐỀ KIỂM TRA

			Mức độ nhận thức			
Chủ đề - mạch kiến thức kỹ năng		Nhận biết	Thông hiểu	Vận dụng (1)	Vận dụng cấp cao (2)	Cộng
	Khảo sát sự biến thiên và vẽ đồ thị hàm số.	1 3,0đ				1 3,0đ
Hàm số bậc ba	Dựa vào đồ thị, tìm <i>m</i> để phương trình có nghiệm.	1 1,5đ				1 1,5đ
	Viết phương trình tiếp tuyến với đồ thị tại điểm cho trước.		1 1,5đ			1 1,5đ
Hàm số phân thức:	Tìm giao điểm của đồ thị với đường thẳng.		1 1,0đ			1 1,0đ
$y = \frac{ax + b}{cx + d}$ $(c \neq 0,)$	Tìm điểm thuộc đồ thị thỏa mãn các điều kiện		1,00	1/2	1/2	1
(ad - bc ≠ 0)	cho trước.			1,5đ	1,5đ	3,0đ
Tổng toàn bài		2 4,5đ	2 2,5đ	1/2 1,5đ	1/2 1,5đ	5 10,0đ

* Chú thích:

- a) Đề được thiết kế với tỉ lệ:
 - + 45% nhận biết,
 - + 35% thông hiểu,
 - + 10% vận dụng (1) và
 - + 10% vận dụng (2), tất cả các câu đều tự luận (TL).
- b) Cấu trúc bài: 02 câu
- c) Cấu trúc câu hỏi:

Số lượng câu hỏi (ý) là: 05

ĐỀ KIỂM TRA 1 TIẾT – NĂM HỌC 2012 - 2013 Môn: TOÁN – Giải tích 12, CHƯƠNG I, Lần 2(Cơ bản)

Thời gian làm bài: 45 phút

ĐỀ CHÍNH THỰC

Đề 1:

Câu 1.(6,0 điểm) Cho hàm số: $y = x^3 - 3x^2 + 2$ có đồ thị (C).

- a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
- b) Tìm m để phương trình sau có 3 nghiệm phân biệt: $-x^3 + 3x^2 + m = 0$.
- c) Viết phương trình tiếp tuyến với đồ thị (C) tại điểm A(1;0).

Câu 2. (4,0 điểm) Cho hàm số: $y = \frac{2x+1}{x+1}$ có đồ thị (C).

- a) Tìm giao điểm của đồ thị (C) với đường thẳng (d): y = -x + 3.
- b) Tìm trên đồ thị (C) những điểm có tổng khoảng cách đến hai đường tiệm cận là nhỏ nhất.

SỞ GD VÀ ĐT THÙA THIÊN HUẾ TRƯ**ỜNG THPT VINH LỘC**

ĐỀ KIỂM TRA 1 TIẾT – NĂM HỌC 2012 - 2013 Môn: TOÁN – Giải tích 12, CHƯƠNG I, Lần 2(Cơ bản) Thời gian làm bài: 45 phút

ĐỀ CHÍNH THỨC

Đề 2:

Câu 1.(6,0 điểm) Cho hàm số: $y = x^3 + 3x^2 - 2$ có đồ thị (C).

- a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
- b) Tìm m để phương trình sau có 3 nghiệm: $-x^3 3x^2 + m 1 = 0$.
- c) Viết phương trình tiếp tuyến với đồ thị (C) tại điểm M(1;2).

Câu 2. (4,0 điểm) Cho hàm số: $y = \frac{2x-3}{x+1}$ có đồ thị (C).

- a) Tìm giao điểm của đồ thị (C) với đường thẳng (d): y = x 1.
- b) Tìm trên đồ thị (C) điểm M, sao cho tiếp tuyến tại M cắt hai đường tiệm cận lần lượt tại A, B và đoạn thẳng AB là ngắn nhất.

ĐỀ KIỂM TRA 1 TIẾT – NĂM HỌC 2012 - 2013 Môn: TOÁN – Giải tích 12, CHƯƠNG I, Lần 2(Cơ bản)

Thời gian làm bài: 45 phút

ĐỀ CHÍNH CHỨC

HƯỚNG DẪN CHẨM

Bản hướng dẫn gồm 02 trang

I. Hướng dẫn chung

- 1) Nếu thí sinh làm bài không theo cách nêu trong đáp án nhưng đúng thì cho đủ số điểm từng phần như hướng dẫn quy định.
- 2) Việc chi tiết hóa (nếu có) thang điểm trong hướng dẫn chấm phải bảo đảm không làm sai lệch hướng dẫn chấm và phải được thống nhất trong toàn Tổ.
- 3) Sau khi cộng điểm toàn bài, làm tròn đến một chữ số thập phân.

II. Đáp án và thang điểmĐÈ 1:

CÂU Ý	NÔI DUNG		
1 a)	NỘI DUNG a) Tập xác định: $D=$; * Sự biến thiên: - Chiều biến thiên: $y'=3x^2-6x$, $y'=0 \Leftrightarrow \begin{bmatrix} x=0\\ x=2 \end{bmatrix}$ - Các khoảng đồng biến $(-\infty;0)$ và $(2;+\infty)$; khoảng nghịch biến $(0;2)$. - Cực trị: Hàm số tiểu cực tiểu tại $x=2, y_{CT}=-2$; đạt cực đại tại $x=0, y_{C\$}=2$. - Giới hạn: $\lim_{x\to-\infty} y=-\infty$; $\lim_{x\to+\infty} y=+\infty$ - Bảng biến thiên: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
(6,0 d) 3,0d	* Đồ thị:	0,75	

		b) Phương trình đã cho tương đương với phương trình:		
		$x^3 - 3x^2 + 2 = m + 2$ (1)	0,5	
	b) 1,5 đ	Số nghiệm của phương trình (1) chính bằng số giao điểm của đồ thị (C) với đường thẳng $y=m+2$.		
		Dựa vào đồ thị, để phương trình (1) có 3 nghiệm phân biệt khi và chỉ khi: $-2 < m+2 < 2 \Leftrightarrow -4 < m < 0$	0,5	
		c) Ta có: y'(1) = -3	0.75	
	c) 1,5 đ	Phương trình tiếp tuyến với đồ thị (C) tại A(1;0) là:		
		$(\Delta): y = -3(x-1) + 0 \Leftrightarrow y = -3x + 3$	0,75	
	a)	a) Phương trình hoành độ giao điểm:		
		$\frac{2x+1}{x+1} = -x+3 \ (x \neq -1)$	0,25	
		$\Leftrightarrow 2x+1=(x+1)(-x+3) \Leftrightarrow x^2=2$	0,25	
	1,0 đ	$\Leftrightarrow \begin{bmatrix} x = \sqrt{2} \Rightarrow y = 3 - \sqrt{2} \\ x = -\sqrt{2} \Rightarrow y = 3 + \sqrt{2} \end{bmatrix}$		
		$x = -\sqrt{2} \Rightarrow y = 3 + \sqrt{2}$		
		Vậy có hai giao điểm cần tìm: $A(\sqrt{2};3-\sqrt{2})$ và $B(-\sqrt{2};3+\sqrt{2})$.	0,5	
	b) 3,0 đ	b) Giả sử $M_0 \in (C)$, ta có: $M_0 \left(x_0; \frac{2x_0 + 1}{x_0 + 1} \right)$	0,25	
2 (4,0đ)		Đường tiệm cận đứng có phương trình: $x = -1$; đường tiệm cận ngang có phương trình: $y = 2$.		
(1,04)		Khoảng cách từ M_0 đến tiệm cận đứng: $d_1 = x_0 + 1 $;	0,5	
		Khoảng cách từ M_0 đến tiệm cận ngang: $d_2 = \frac{1}{ x_0 + 1 }$;	0,5	
		Tổng khoảng cách từ M_0 đến hai đường tiệm cận:		
		$d_1 + d_2 = x_0 + 1 + \frac{1}{ x_0 + 1 } \ge 2$	0,75	
		Tổng khoảng cách từ M_0 đến hai đường tiệm cận nhỏ nhất bằng 2 khi và chỉ		
		khi: $ x_0 + 1 = \frac{1}{ x_0 + 1 } \Leftrightarrow (x_0 + 1)^2 = 1 \Leftrightarrow \begin{bmatrix} x_0 = 0 \\ x_0 = -2 \end{bmatrix}$	0,75	
		Vậy có hai điểm cần tìm là: $M(0;1)$ và $M'(-2;3)$	0,25	

ĐỀ KIỂM TRA 1 TIẾT – NĂM HỌC 2012 - 2013 Môn: TOÁN – Giải tích 12, CHƯƠNG I, Lần 2(Cơ bản)

Thời gian làm bài: 45 phút

ĐỀ CHÍNH CHỨC

HƯỚNG DẪN CHẨM

Bản hướng dẫn gồm 02 trang

I. Hướng dẫn chung

- 1) Nếu thí sinh làm bài không theo cách nêu trong đáp án nhưng đúng thì cho đủ số điểm từng phần như hướng dẫn quy định.
- 2) Việc chi tiết hóa (nếu có) thang điểm trong hướng dẫn chấm phải bảo đảm không làm sai lệch hướng dẫn chấm và phải được thống nhất trong toàn Tổ.
- 3) Sau khi cộng điểm toàn bài, làm tròn đến một chữ số thập phân.

II. Đáp án và thang điểm ĐÈ 2:

CÂU	Ý	NỘI DUNG			
1 (6,0 d)	a) 3,0đ	a) Tập xác định: $D=1$ * Sự biến thiên: - Chiều biến thiên: $y'=3x^2+6x$, $y'=0 \Leftrightarrow \begin{bmatrix} x=0\\ x=-2 \end{bmatrix}$ - Các khoảng đồng biến $(-\infty;-2)$ và $(0;+\infty)$; khoảng nghịch biến $(-2;0)$. - Cực trị: Hàm số tiểu cực tiểu tại $x=2, y_{CT}=-2$; đạt cực đại tại $x=0, y_{C\S}=2$. - Giới hạn: $\lim_{x\to-\infty} y=-\infty$; $\lim_{x\to+\infty} y=+\infty$			
		- Bảng biến thiên: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,5		
		* Đồ thị:	0,75		
		* Lưu ý: - Nếu HS kết luận các khoảng đồng biến, nghịch biến và cực trị sau khi vẽ bảng biến thiên vẫn cho điểm tối đa phần này.	-		

		b) Phương trình đã cho tương đương với phương trình:	
		$x^3 + 3x^2 - 2 = m - 3$ (1)	0,5
	b)	Số nghiệm của phương trình (1) chính bằng số giao điểm của đồ thị (C) với	
	1,5 đ	đường thẳng $y=m-3$.	0,5
		Dựa vào đổ thị, để phương trình (1) có 3 nghiệm phân biệt khi và chỉ khi:	
		-2< <i>m</i> -3< 2⇔1< <i>m</i> <5	0,5
	c)	c) Ta có: y'(1) = 9	0.75
		Phương trình tiếp tuyến với đồ thị (C) tại $M(1;2)$ là:	
	1,5 đ	(Δ) : $y=9(x-1)+2 \Leftrightarrow y=9x-7$	0,75
		a) Phương trình hoành độ giao điểm:	
		$\frac{2x-3}{x+1} = x-1 \ (x \neq -1)$	
	a)	A 1	
	1,0 đ	$\Leftrightarrow 2x-3=(x+1)(x-1) \Leftrightarrow x^2-2x+2=0 (*)$	0,5
		Phương trình (*) vô nghiệm.	·
		Vậy đồ thị (C) và đường thẳng (d) : $y = x - 1$ không có giao điểm chung.	0,5
	b) 2,0 đ	b) Giả sử $M_0 \in (C)$, ta có: $M_0 \left(x_0; \frac{2x_0 - 3}{x_0 + 1} \right), \left(x_0 \neq -1 \right)$	0,25
2		Tiếp tuyến tại M_0 là: (Δ) : $y = \frac{5}{(x_0 + 1)^2} (x - x_0) + \frac{2x_0 - 3}{x_0 + 1}$	0,5
(4,0đ)		Giả sử tiếp tuyến (Δ) cắt tiệm cận đứng: $x = -1$ tại A và tiệm cận ngang:	
		$y = 2 \text{tai B}, \text{ ta c\'o: } A \left(-1; \frac{2x_0 - 8}{x_0 + 1} \right) \text{ và } B \left(2x_0 + 1; 2 \right)$	0,75
		Ta có: $AB = \sqrt{(2x_0 + 2)^2 + (\frac{2x_0 - 8}{x_0 + 1} - 2)^2} = \sqrt{4(x_0 + 1)^2 + \frac{100}{(x_0 + 1)^2}} \ge 2\sqrt{10}$	0,75
		Khoảng cách AB nhỏ nhất bằng 2√10 khi và chỉ khi:	
		$4(x_0 + 1)^2 = \frac{100}{(x_0 + 1)^2} \Leftrightarrow (x_0 + 1)^4 = 5^2 \Leftrightarrow (x_0 + 1)^2 = 5 \Leftrightarrow \begin{bmatrix} x_0 = \sqrt{5} - 1 \\ x_0 = -\sqrt{5} - 1 \end{bmatrix}$	0,5
		Vậy có hai điểm cần tìm là: $M(\sqrt{5}-1;2-\sqrt{5})$ và $M'(-\sqrt{5}-1;2+\sqrt{5})$.	0,25