BigMart Project— Product Analytics and EDA

EDA - Numeric

Dataset contains:

- 5 numeric columns
- Item_Weight has 1463 missing records

EDA - Categorical

Dataset contains:

- 7 categorical columns
- Outlet size contains 2410 missing records
- Low Fat records IN Item_Fat_Content are represented differently and this has to be cleaned. Low Fat is represented as low fat and LF. And also, replace reg with Regular

EDA – Bivariate Analysis

 No clear linear relationships exist b/n Item Outlet sales and Item_Visibility, Item_Weight.

2. A linear relationship exists between ltem_Sales_Outlet and Item_MRP

EDA - Bivariate

EDA - Bivariate

Product Questions and Methods

The product will be a **report** that details the influence of item characteristics and store profile on item_sales.

In addition, the product will contain a user-friendly application that will provide business teams the ability to predict/forecast the sales of an item based on the item characteristics and store profile

Methods I will use include

- Descriptive Statistics:
- Univariate and Bivariate analysis:
- Correlation Analysis:
- Modelling: Here, I will build predictive models that best fit the data and evaluate each model using the adjusted R-squared metric.

More Data Questions

The analysis will be validated in two ways:

- 1. We will document domain knowledge within the organization i.e. interview various stores to understand their beliefs of how item characteristics and store profile affects sales. After this, we will test whether our model validates or contradicts their beliefs.
- 2. We will request for new data to evaluate/validate our model and check whether our model test performance (measured by RMSE/MAE or Adjusted-R-squared), is at least better than our training performance (from our analysis).

Audience:

The audience of this report are in 2 broad folds:

- Upper-level management: A comprehensive report detailing the influences/factors that affect item_outlet_sales will be submitted to this audience. This report will significantly guide strategic decisionmaking.
- 2. Supply Chain and Sales teams: A prediction/forecasting tool (or application) will be delivered to this audience to enable planning and sales forecast.

Other Considerations

The product will be used in the following ways:

- Report: This will be used to enable strategic decision-making. For instance, this will inform decisions on what outlet locations and types influence item sales.
- Application: This tool will be used by mid-level staff for tactical and operational decision-making, such as forecasting sales for a given product in a given store.

How much detail to include?

- 1. Report: This should be high-level information and not include so much detail on modelling approaches and others.
- 2. Application: This should contain enough detail for the application to be used to predict/forecast sales.

<u>Handling Missing Data – Item-Weight</u>

A closer look at the Item Weight column revealed that all the missing records were from a single year, i.e. 1985, for outlets OUT027 and OUT019.

Given that all the missing Item Weight records are from 1985, performing a listwise deletion will mean I lose insightful data that will be invaluable in this analysis.

I used correlation analysis to inspect the relationship between the item weight and other predictors to prevent this data loss from listwise deletion.

The result revealed low correlations between Item_Weight and the other columns. As a result of the low correlations discovered, I decided to exclude the item weight column from my predictive analysis.

	Item_Outlet_Sales	Item_Visibility	Item_Weight	Item_MRP
Item_Outlet_Sales	1.00000000	-0.085334041	0.01412274	0.620961316
Item_Visibility	-0.08533404	1.000000000	-0.01404773	-0.006061148
Item_Weight	0.01412274	-0.014047726	1.00000000	0.027141154
Item_MRP	0.62096132	-0.006061148	0.02714115	1.000000000

Handling Missing – Outlet Size

A closer look at the missing values from the dataset reveals that most missing values from the outlet location type Tier 2 with 1855 missing records and Tier 3 with 555 missing records.

All Tier 3 missing records are from outlet OUT010, while the rest are from outlets OUT017 and OUT045 in Tier 2. I then studied the sales profile from the missing records, discovering that the average sales per outlet size and location type followed no definite pattern, hence not allowing for logical imputation. Based on the above, I decided not to impute the missing records and exclude this column from my analysis.

Decision: I felt confident that the outlet identifier column implicitly revealed information about the outlet size.

Outlet_Size	Outlet_Location_Type	Outlet_Identifier	null_count	avg_sales
<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>
Small	Tier 1	OUT019	0	340.3297
Small	Tier 1	OUT046	0	2277.8443
Medium	Tier 1	OUT049	0	2348.3546
NA	Tier 2	OUT017	926	2340.6753
Small	Tier 2	OUT035	0	2438.8419
NA	Tier 2	OUT045	929	2192.3848
NA	Tier 3	OUT010	555	339.3517
High	Tier 3	OUT013	0	2298.9953
Medium	Tier 3	OUT018	0	1995.4987
Medium	Tier 3	OUT027	0	3694.0386

							A tiddle: 10 × 14						
Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type	Item_Outlet_Sales	sales_contribution	rolling_sum
<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
NCE42	NA	Low Fat	0.01055095	Household	234.9958	OUT027	1985	Medium	Tier 3	Supermarket Type3	13086.965	0.0007039361	0.0007039361
FDQ19	NA	Regular	0.01429556	Fruits and Vegetables	242.6512	OUT027	1985	Medium	Tier 3	Supermarket Type3	12117.560	0.0006517927	0.0013557288
FDZ20	NA	Low Fat	0.00000000	Fruits and Vegetables	253.0356	OUT027	1985	Medium	Tier 3	Supermarket Type3	11445.102	0.0006156218	0.0019713506
FDP33	NA	Low Fat	0.08883995	Snack Foods	254.2672	OUT027	1985	Medium	Tier 3	Supermarket Type3	10993.690	0.0005913407	0.0025626914
FDI50	NA	Regular	0.03069331	Canned	228.0352	OUT027	1985	Medium	Tier 3	Supermarket Type3	10306.584	0.0005543819	0.0031170733
FDF39	14.850	Regular	0.01949505	Dairy	261.2910	OUT013	1987	High	Tier 3	Supermarket Type1	10256.649	0.0005516960	0.0036687693
FDU14	NA	Low Fat	0.03458436	Dairy	248.3750	OUT027	1985	Medium	Tier 3	Supermarket Type3	10236.675	0.0005506216	0.0042193908
NCH18	NA	Low Fat	0.04444496	Household	245.2802	OUT027	1985	Medium	Tier 3	Supermarket Type3	10072.888	0.0005418116	0.0047612025
NCM05	6.825	Low Fat	0.05984697	Health and Hygiene	262.5226	OUT046	1997	Small	Tier 1	Supermarket Type1	9779.936	0.0005260540	0.0052872565
FDC17	NA	Low Fat	0.01538586	Frozen Foods	208.9928	OUT027	1985	Medium	Tier 3	Supermarket Type3	9678.069	0.0005205747	0.0058078312

The top 10 items listed below contribute to about 0.6% of the total item outlet sales in the dataset.

Correlation Analysis

	Item_Outlet_Sales	Item_Visibility	Item_Weight	Item_MRP
Item_Outlet_Sales	1			
Item_Visibility	-0.085	1		
Item_Weight	0.0141	-0.014	1	
Item_MRP	0.621	-0.006	0.027	1

Item Outlet Sales				
Variable	Correlation	Statistic	P-Value	
Item_Fat_Content	0.019	1.728	0.084	
Outlet_Identifier	0.162	15.185	0.000	
Outlet Size	-0.129	-10.175	0.000	
Outlet Location Type	0.089	8.283	0.000	
Item Identifier	0.003	0.265	0.791	
Outlet Type	0.401	40.470	0.000	

Predictive Model

The following models were trained:

- Linear Regression
- Support Vector Machine
- Classification and Regression Trees
- Xgboost model

Model	Test - RMSE
Support Vector Machine	0.64
XGBoost	0.651
Bagged CART Model	0.658
Linear Regression	0.662
Random Forest Model	0.664

Thank you

