

	7
V/////////////////////////////////////	1
V () () () () () () () () () (1
	1
	1
	1
	1
	1
V	1

Hinweise zur Personalisierung:

- Ihre Prüfung wird bei der Anwesenheitskontrolle durch Aufkleben eines Codes personalisiert.
- Dieser enthält lediglich eine fortlaufende Nummer, welche auch auf der Anwesenheitsliste neben dem Unterschriftenfeld vermerkt ist.
- Diese wird als Pseudonym verwendet, um eine eindeutige Zuordnung Ihrer Prüfung zu ermöglichen.

Grundlagen Rechnernetze und Verteilte Systeme (GRNVS)

Modul: IN0010 Prüfer: Prof. Dr.-Ing. Georg Carle

Klausur: Wiederholung **Datum:** Freitag, 30. September 2016, 15:30 – 17:00

	A 1	A 2	A 3	A 4	A 5	A 6
I						
П						

Bearbeitungshinweise

- Diese Klausur umfasst
 - 19 Seiten mit insgesamt 6 Aufgaben sowie
 - eine beidseitig bedruckte Formelsammlung.

Bitte kontrollieren Sie jetzt, dass Sie eine vollständige Angabe erhalten haben.

- Das Heraustrennen von Seiten aus der Prüfung ist untersagt.
- Mit * gekennzeichnete Teilaufgaben sind ohne Kenntnis der Ergebnisse vorheriger Teilaufgaben lösbar.
- Es werden nur solche Ergebnisse gewertet, bei denen der Lösungsweg erkennbar ist. Auch Textaufgaben sind grundsätzlich zu begründen, sofern es in der jeweiligen Teilaufgabe nicht ausdrücklich anders vermerkt ist.
- Schreiben Sie weder mit roter/grüner Farbe noch mit Bleistift.
- Die Gesamtpunktzahl in dieser Prüfung beträgt 85 Punkte.
- Als Hilfsmittel sind zugelassen:
 - ein nicht-programmierbarer Taschenrechner
 - ein analoges Wörterbuch Deutsch ↔ Muttersprache ohne Anmerkungen
- Schalten Sie alle mitgeführten elektronischen Geräte vollständig aus, verstauen Sie diese in Ihrer Tasche und verschließen Sie diese.

Aufgabe 1 Kurzaufgaben (20 Punkte)

Die nachfolgenden Teilaufgaben sind jeweils unabhängig voneinander lösbar.

werd	Nennen Sie zwei wesentliche Dienste, welche von der Sicherungsschicht des ISO/OSI Modells erb den.
b)* (lung	Gegeben sei das 64 bit lange Datum 0x0123456789abcdef in Network Byte Order. Wie lautet die Da in Big Endian?
c)* (Gegeben sei das folgende Netzwerk. Zeichnen Sie alle Broadcastdomänen ein.
d)* E	Erläutern Sie den wesentlichen Vorteil von OSPF gegenüber RIP.
e)* V	Was versteht man unter Classless Interdomain Routing?

f)* Worin besteht der Unterschied zwischen einem Resolver und einem autoritativen Nameserver?	1
g)* Begründen Sie, ob sich ein Resolver im selben Subnetz wie der anfragende Client befinden muss.	0
h)* Bestimmen Sie die IP-Adresse zum Reverse-FQDN 60.50.66.128.in-addr.arpa	0
i)* Damit ein Server eingehende UDP-Datagramme auf einem bestimmten Port liest, sind die Systemaufrufe socket(), bind() und recvfrom() erforderlich. Erläutern Sie kurz die Funktion der drei Systemaufrufe.	1 2
j)* Bestimmen Sie den Faktor, um den sich die Größe des IPv6-Adressraums gegenüber dem IPv4-Adressraum unterscheidet.	
k)* Worin besteht der Unterschied zwischen privaten IPv4 Adressen und Link Local Adressen bei IPv6?	
	1

I)* Worin besteht der Unterschied zwischen <i>Interior</i> und <i>Exterior Gateway Protokollen</i> hinsichtlich ihrei Verwendung?
m)* Geben Sie zwei Gründe an, warum moderne IEEE 802.3-Netzwerke kollisionsfrei arbeiten.
n)* Gegeben sei ein Übertragungskanal der Bandbreite 20 MHz. Berechnen Sie die maximal erzielbare Datenrate bei einem Signal-Rausch-Abstand von 30 dB.
o)* Gegeben sei ein Alphabet mit insgesamt 64 unterschiedlichen Zeichen deren Auftrittswahrscheinlichkeit gleichverteilt ist. Begründen Sie, ob die durchschnittliche Codewortlänge bei Nutzung des Huffman-Codes größer, gleich oder kleiner 7 bit ist.

Aufgabe 2 Packet Pair Probing (11 Punkte)

Gegeben sei das in Abbildung 2.1 dargestellte Netzwerk. Knoten 1 und 4 sind mit ihren Routern jeweils über ein fullduplex-fähiges Netzwerk verbunden. Die symmetrischen Datenraten auf den Links betreagen r_{12} bzw. r_{34} Die Verbindung zwischen Knoten 2 und 3 ist bedeutend langsamer, d. h. $r_{23} < r_{12}$, r_{34} . Die beiden Distanzen d_{12} und d_{23} seien im Verhältnis zu d_{23} vernachlässigbar klein.

Abbildung 2.1: Vereinfachte Netztopologie

Knoten 1 soll die Datenrate r_{23} bestimmen, so dass möglichst wenig Last auf der ohnehin langsamen Verbindung entsteht. Dabei sei angenommen, dass alle Knoten über einen gewöhnlichen IP-Stack verfügen und ICMP Pakete zwischen Knoten 1 und 4 ausgetauscht werden können.

a)* Geben Sie die Serialierungszeit und Ausbreitungsverzögerung zwischen zwei benachbarten Knoten i und j in Abhängigkeit der Paketgröße p, Datenrate r_{ij} und Distanz d_{ij} an.

Knoten 1 sende nun unmittelbar nacheinander zwei ICMP-Echo-Requests der Länge p an Knoten 4. Dabei sei p genau so groß gewählt, dass entlang des Pfads zu Knoten 4 keine Fragmentierung notwendig ist. Knoten 4 wird auf jeden Echo Request mit einem Echo Reply derselben Größe p antworten. Vereinfachend seien Verarbeitungszeiten an den Knoten zu vernachlässigen.

b)* Ergänzen Sie das im Lösungsfeld abgebildete Weg-Zeit-Diagramm. **Hinweis:** Bei Bedarf finden Sie am Ende der Prüfung einen Ersatzvordruck.

	Durch die geringe Übertragungsrate zwischen Knoten 2 und 3 entsteht an Knoten 1 eine Empfangspause Δt . Diese kann von Knoten 1 gemessen und zur Bestimmung der gesuchten Übertragungsrate zwischen Knoten 2 und 3 verwendet werden.
0	c) Markieren Sie Δt in Ihrer Lösung von Teilaufgabe b).
1	d) Von welchen Größen hängt Δt ab, falls $r_{34} \geq r_{23}$ gilt.
0 1	
0	e) Begründen Sie, was sich im Vergleich zur vorherigen Teilaufgabe ändern würde, falls $r_{34} < r_{23}$ gilt.
1	
2	
0	f) Bestimmen Sie Δt allgemein für $r_{23} < r_{12}, r_{34}$. Vereinfachen Sie das Ergebnis soweit wie möglich.
2	
	g) Geben Sie einen Ausdruck für die gesuchte Datenrate r_{23} an. Vereinfachen Sie das Ergebnis soweit wie möglich.
1	

Aufgabe 3 IP-Fragmentierung (24 Punkte)

Wir betrachten das Netzwerk aus Abbildung 3.1. PC1 und PC2 kommunizieren mittels IPv4 über die beiden Router R1 und R2 miteinander.

Abbildung 3.1: Netztopologie und MTU der einzelnen Abschnitte

a) Enautern Sie alige	mein den Unterschied zv	wischen MTU und MSS.		
<u>, </u>				
) Wie sollte im Allger der Rechnung)?	neinen die MSS für TCP	in Abhängigkeit von der	MTU gewählt werden (Beg	gründung
)* Pagründan Sia ah	oin horoita frogmantiarte	sa Dakat naahmala fraam	antiart warden kann	
)* Begründen Sie, ob	ein bereits fragmentierte	es Paket nochmals fragm	entiert werden kann.	
)* Begründen Sie, ob	ein bereits fragmentierte	es Paket nochmals fragm	entiert werden kann.	
* Begründen Sie, ob	ein bereits fragmentierte	es Paket nochmals fragm	nentiert werden kann.	
* Begründen Sie, ob	ein bereits fragmentierte	es Paket nochmals fragm	entiert werden kann.	
* Begründen Sie, ob	ein bereits fragmentierte	es Paket nochmals fragm	nentiert werden kann.	
)* Begründen Sie, ob	ein bereits fragmentierte	es Paket nochmals fragm	entiert werden kann.	

	d)* Erläutern Sie, an welcher Stelle im Allgemeinen Fragmente wieder reassembliert werden können.
	e)* Wie erkennt der Empfänger, dass ein Paket ein Fragment eines größeren Pakets ist?
	The enterint der Emplanger, adde ein Faket ein Fragment eines greiberen Fakete let:
	f)* Was geschieht auf Schicht 3, wenn ein oder mehrere Fragmente nicht ankommen?
Ш	

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0 B		0:	x4			0>	< 5			8	8		8			8							-	150	0 ₍₁₀)						
4 B								0xd	ead									0	0							0						
8 B				63	(10)					8	8		8			8			8		8			8			8			8		
12 B															19	2.1	68.	1.1														
16 B															20	3.0	.113	3.2														
20 B																											8					

Abbildung 3.2: Darstellung des von PC1 in Richtung PC2 gesendeten IP-Pakets

Begründen Sie kurz, weswegen	PC1 203.0.113.2	als Ziel-Adresse	nutzt.	
An welcher Stelle im Netz wird o	das von PC1 geser	ndete Paket frac	mentiert?	
eswegen muss das erste Frag	ment eine Länge vo	on 572 B anstat	t der erwarteten 5	76 B aufweisen?

Abbildung 3.3: Vordrucke für Teilaufgabe k)

Abbildung 3.3: Vordrucke für Teilaufgabe k) (Fortsetzung)

Aufgabe 4 Datenkompression (10 Punkte)

In dieser Aufgabe betrachten wir eine vereinfachte Version des ITU T.30-Protokolls, besser bekannt als Telefax ("Fax"). Dieses verwendet eine Kombination aus Huffman-Code und Lauflängenkodierung (RLE). Der zugehörige Huffman-Baum ist in Abbildung 4.1a dargestellt. Abbildung 4.1b stellt das Codebuch dar, welches die binären Huffman-Codewörter (in Teilaufgabe b) zu bestimmen) auf RLE-Codewörter abbildet.

Abbildung 4.1: Huffman-Baum und Codebuch

a)* Erklären Sie kurz den Aufbau des Huffman-Baums aus Abbildung 4.1a.

b) Vervollständigen Sie das Codebuch in Abbildung 4.1b.

Sie erhalten die in Abbildung 4.2 dargestellte binäre Nachricht. Diese ist zunächst mittels Huffman kodiert.

0100100100	110000111000101	1001101110111011101
1100110011	011101110111011	100110011011101110
1110111001	100110110000011	101110011010010010

Abbildung 4.2: Empfangene Nachricht als binärer Datenstrom

c) Geben Sie die zu den **schwarz** gedruckten Teilen des Datenstroms zugehörigen RLE-Codewörter an. **Hinweis:** Das erste Bit des zweiten schwarz gedruckten Blocks stellt den Beginn eines Huffman-Codeworts dar.

Die RLE-Codewörter wiederum sind stets nach dem Schema <Zahl><w|s> aufgebaut. Ein RLE-Codewort gibt die Anzahl innerhalb einer Zeile aufeinander folgender weißer (w) oder schwarzer (s) Pixel an, wodurch zeilenweise eine Pixeldarstellung der Nachricht entsteht.

d) Vervollständigen Sie die Pixeldarstellung der Nachricht.

Hinweise:

- Die Zeilen 5-7 entsprechen dem ausgegrauten Teil der Nachricht aus Abbildung 4.2.
- Bei Bedarf finden Sie am Ende der Aufgabe einen weiteren Vordruck.

e)* Um welchen Faktor ist	die unkomprimierte Nachric	ht, bei der jedes P	ixel binär kodiert	wird $(0 = schwarz,$
1 = weiß), länger als die so	komprimierte Nachricht?			

Hinweis: Die komprimierte Nachricht aus Abbildung 4.2 hat eine Gesamtlänge von 127 bit.

			0
			1

Zusätzlicher Vordruck für Teilaufgabe d). Streichen Sie ungültige Lösungen deutlich!

Aufgabe 5 Drahthai (13 Punkte)

Gegeben sei der in Abbildung 5.1 dargestellte Hexdump in Network-Byte-Order des Beginn eines Ethernet-Rahmens, welcher im Folgenden analysiert werden soll.

0x0000	00	16	3e	c7	6d	64	00	25	90	57	22	4a	86	dd	60	00
0x0010	00	00	00	58	3a	38	26	06	28	00	42	00	3f	ff	00	00
0x0020	00	00	00	00	00	15	20	01	4c	a0	20	01	00	13	02	16
0x0030																

Abbildung 5.1: Hexdump eines Ethernet-Rahmens in Network-Byte-Order

Hinweis: Zur Lösung der Aufgabe sind Informationen von dem zusätzlich ausgeteilten Hilfsblatt notwendig.

0	b) Begründen Sie, welches Protokoll auf Schicht 3 verwendet wird.
0	b) begrunden die, weiches i Totokon auf Gement der wird.
1	
0	c) Bestimmen Sie die Länge des Headers auf Schicht 3 (Begründung).
1	
0	d) Geben Sie – sofern im Paket enthalten – TTL bzw. Hop Limit in dezimaler und hexadezimaler Schreibweise an.
1	
	a) Caban Cia dia Abaandaradraasa dar Cabiabt 2 in dar übliaban Cabraiburaisa an
0	e) Geben Sie die Absenderadresse der Schicht 3 in der üblichen Schreibweise an.
0	f) Woran ist zu erkennen, dass die Payload des Pakets zu ICMPv6 gehört?
1	

Wir betrachten von nun an die in Abbildung 5.2 dargestellte Payload des Pakets. Von dieser sei bekannt, dass es sich um ICMPv6 handelt.

0x0000	03	00	58	94	00	00	00	00	60	00	00	00	00	28	3a	01
0x0010	20	01	4c	a0	20	01	00	13	02	16	3e	ff	fe	c7	6d	64
0x0020	26	06	28	00	02	20	00	01	02	48	18	93	25	c8	19	46
0x0030	80	00	e9	ab	3c	43	00	21	48	49	4a	4b	4c	4d	4e	4f
0x0040	50	51	52	53	54	55	56	57	58	59	5a	5b	5c	5d	5e	5f
0x0050	60	61	62	63	64	65	66	67								

Abbildung 5.2: ICMPv6-Nachricht inklusive ICMPv6-Header in Network-Byte-Order

g)* Bestimmen Sie Typ und Code der ICMP-Nachricht.	
h) Wodurch wird eine solche Nachricht hervorgerufen?	1
i)* Markieren Sie das Ende des ICMP-Headers in Abbildung 5.2. j) Erläutern Sie, was die Payload einer solchen Nachricht grundsätzlich enthält.	
	1 2
k)* Das Paket wurde im Rahmen eines Traceroutes aufgezeichnet. Erklären die kurz die Funktionsweise von Traceroute.	1 2

Aufgabe 6 CRC (7 Punkte)

In dieser Aufgabe soll die zwei Oktette lange Nachricht 01101011 10101111 mittels des in der Vorlesung vorgestellten CRC-Verfahrens gesichert werden. Das Reduktionspolynom sei $r(x) = x^4 + x^2 + 1$.

a)* Bestimmen Sie die gesicherte Nachricht s(x).

b)* Bei der Übertragung trete nun das Fehlermuster 00000000 00101010 0000 auf. Zeigen oder begründen Sie, ob der Fehler erkannt wird. c)* Erläutern sie kurz, welche Fehler mittels CRC korrigiert werden können.

Zusätzlicher Vordruck für Aufgabe 2:

Zusätzlicher Platz für Lösungen. Markieren Sie deutlich die Zuordnung zur jeweiligen Teilaufgabe. Vergessen Sie nicht, ungültige Lösungen zu streichen.

