PROJECT REPORT

AI-POWERED NUTRITION ANALYZER FOR FITNESS ENTHUSIASTS

Team ID: PNT2022TMID35778

TEAM MEMBERS

Yogeeswar S - 2019503573

Sowmya J - 2019503052

Rohan G - 2019503552

Nithya U - 2019503030

INDEX

1. INTRODUCTION

- 1. Project Overview
- 2. Purpose

2. LITERATURE SURVEY

- 1. Existing problem
- 2. References
- 3. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 1. Empathy Map Canvas
- 2. Ideation & Brainstorming
- 3. Proposed Solution
- 4. Problem Solution fit

4. REQUIREMENT ANALYSIS

- 1. Functional requirement
- 2. Non-Functional requirements

5. PROJECT DESIGN

- 1. Data Flow Diagrams
- 2. Solution & Technical Architecture
- 3. User Stories

6. PROJECT PLANNING & SCHEDULING

- 1. Sprint Planning & Estimation
- 2. Sprint Delivery Schedule
- 3. Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 1. Feature 1
- 2. Feature 2

8. **TESTING**

- 1. Test Cases
- 2. User Acceptance Testing

9. **RESULTS**

- 1. Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code

GitHub & Project Demo Link

INTRODUCTION

Nutrition analysis is the process of determining the nutritional content of food. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food. Food is essential for human life and has been the concern of many healthcare conventions.

Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. A fruit dataset describes variety of fruit images apple, banana, orange, pineapple, watermelon. The fruit nutrition is done by analysis. The analysis can be done using convolution neural network. It has four layers as convolution layer, pooling layer, flattening layer and fully connected layer.

1. Project Overview

Different types of fruits are analyzed based on their images which are captured for classification . The analysis is done based on different characteristics like colour , shape, texture etc so as to provide a deep intellect about the nutritional characterization and benefits present in them. This model helps fitness enthusiasts and health conscious people in their journey to better understand their food and hygiene habits so as to hold a healthier life.

2. Purpose

The main purpose of the project is to build a model which is used for classifying the fruit depending on the different characteristics like colour, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent to the trained model. The model analyses the image and detects the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.)

LITERATURE SURVEY

S.NO	AUTHOR	TITLE	OBJECTIVE
1.	Praveen	ProgressiveSpinal Net	In this paper the Progressive
	Chopra et al.	architecture for FC layers	SpinalNet progressive
	(2022)		computational network for FC
			layers of deep- networks is
			introduced
			as an upgraded version of the
			DNN concept.
2.	H M Dipu Kabir	SpinalNet: Deep Neural	In this research, the SpinalNet
	et	Network with Gradual	DNN model was introduced. The
	al. (2022)	Input	chordate nervous system, which
		[2]	has a special way of connecting a
			lot of sensing data and making
			local decisions, is mimicked in the
			construction of Spinal Net.

3.	Mirra K B	Classification of	In this study a deep
		Fruits Using Deep	learning-based system
		Learning	for classifying fruits is suggested.
		Algorithms [3]	A DCNN
		[-]	model, an AlexNet model, and a
			MobileNetV2 model were
			investigated in the proposed
			framework. Three datasets with
			different sizes and levels
			of complexity were used to test
			the recommended framework.
4.	Feras Albardi et	A Comprehensive Study	This study attempts to investigate
	al (2021)	on Torchvision Pre-	various pre-trained models
		trained Models for	provided in the PyTorch library's
		Fine-grained Inter-	Torchvision package.
		species	And look into how well they can
		Classification	classify fine- grained photos.

5.	Nguyen Vuong	Fruits	In this paper, we examine the
	<u>Thinh</u> et al	classification by	methods for
	(2021)	using machine	classifying images that can be
		learning - An	used to
			categorise fruits. The study's
		experiment using	findings can be used to place fruit
		popular	on the correct shop shelves, spot
		approaches on	fruit mismatches there, or check
		le cal data	fruit prices without using a
		local data	barcode scanner. Three
			well-known classification
			models—Random Forest,
			K-Nearest Neighbors (KNN), and
			Support
			Vector Machine—are employed in
			this study (SVM).

6.	Haci Bayram	Fruit Recognition	This suggested study employs
	<u>Ünal</u>	and Classification	image
	et al. (2021)	with Deep Learning	processing techniques for fruit
		Support on	recognition.
		Embedded System	Convolutional Neural Networks (ConNN)*
		(fruitnet)	deep learning model for
			classification is created in the
			study. The Keras platform was
			used to construct the suggested
			model.
7.	Marieke van	Using Natural	According to this paper's point of
	Erp et al.	Language	view,
	(2021)	Processing and	Interdisciplinary approaches
		Artificial	should be
		Altiliciai	used to address food and recipe
		Intelligence to	research in
		Explore the	order to address health and
		Nutrition and	sustainability issues. These
		Sustainability of	approaches should combine NLP
		Recipes and Food	and other AI techniques with

			historical food research, food
			science, nutrition, and
			sustainability expertise.
8.	Mehenag	Fruits	This study investigates a
	Khatun et	Classification	CNN-based classification of fruits.
	al. (2020)	using	For five
		using	scenarios utilising the fruits-360
		Convolutional	dataset, the accuracy and loss
		NeuralNetwork	curves were created using various
			combinations of
			hidden layers. This paper
			discusses several computer
			vision-based approaches and
			algorithms for fruit recognition and
			classification.
9.	Siyuan Lu et al.	Fruit classification	In this study, we introduced a
	(2016)	by HPA-SLFN	brand-new
			fruit classification method called
			HPA-
			SLFN. The findings indicated that
			HPA-
			classification SLFN's accuracy of
			89.5% was superior to those of
			other classification

			techniques.
10.	Ghulam	Date fruits	In this study a suggested
	Muhammad et	classification using	technique breaks down a visual
	al.	texture descriptors	image of a date into its component
	(2015)	and shape-size	colours. The local texture
		features [10]	descriptor, such as a Weber local
			descriptor
			(WLD) histogram or a local binary
			pattern
			(LBP), is then applied to each
			component in order to encode the
			texture pattern of the date. To
			characterise the image, the
			texture patterns fromeach
			component are
			combined.

2. references -

- 1. Muhammad, Ghulam. "Date fruits classification using texture descriptors and shape-size features." Engineering Applications of Artificial Intelligence 37 (2015): 361-367.
- 2. Lu, Siyuan, et al. "Fruit classification by HPA-SLFN." 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP). IEEE, 2016.
- 3. Khatun, Mehenag, et al. "Fruits Classification using Convolutional Neural Network." GRD Journals-Global Research and Development Journal for Engineering 5.8 (2020).

- 4. Ünal, Haci Bayram, et al. "Fruit recognition and classification with deep learning support on embedded system (fruitnet)." 2020 Innovations in Intelligent Systems and Applications Conference (ASYU). IEEE, 2020.
- 5. Thinh, Nguyen Vuong, et al. "Fruits classification by using machine learning-An experiment using popular approaches on local data." 2021 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT). IEEE, 2021.
- 6. Albardi, Feras, et al. "A comprehensive study on torchvision pre-trained models for fine-grained inter-species classification." 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2021.
- 7. KB, Mirra, and R. Rajakumari. "Classification of Fruits Using Deep Learning Algorithms." Available at SSRN 4068366.
- 8. Chopra, Praveen. "Progressivespinalnet architecture for fc layers." arXiv preprint arXiv:2103.11373 (2021).
- 9. Kabir, HM Dipu, et al. "Spinalnet: Deep neural network with gradual input." IEEE Transactions on Artificial Intelligence (2022).
- 10. Van Erp, Marieke, et al. "Using natural language processing and artificial intelligence to explore the nutrition and sustainability of recipes and food." Frontiers in artificial intelligence 3 (2021): 62157

IDEATION & PROPOSED SOLUTION

1. Empathy Map Canvas

2. Ideation & Brainstorming

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions. Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

3

3. Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	To develop an AI powered system that identifies edible products and discerns their nutritional information for the benefit of fitness enthusiasts.

	Idea / Calution description	The idea is to use semi-luting a st
2.	Idea / Solution description	The idea is to use convolution neural
		networks, a type of artificial neural network
		used in image recognition and processing
		that is specifically designed to process
		pixel data, which is used to classify
		images. Once the row food items have
		been identified, their corresponding
		nutritional values are fetched from a
		database where the relevant details are
		stored.
		The application allows for a user to keep
		track of the amount of calories they
		consume in a day versus the total
		recommended amount for their dietary
		needs.
	Novelty / Uniqueness	Nutritional calculator that is
3.		straightforward, customizable, and
		user-friendly. The CNN based fruit
		classifier that supports nutrition analyser
		that provides nutrition values of the fruit.
	Social Impact / Customer	The proposed application helps fitness
4.	Social Impact / Customer Satisfaction	enthusiasts monitor their caloric intake and
	Salisiaction	
		maintain their physical condition with a
		free programme. This application can help
		people live healthier lives, regardless of
		how self-conscious they are about their
		physical appearance. It keeps track of
		what users consume, offers recipes and
		healthy alternatives, as well as fitness
		schedules.
F	Business Model (Revenue Model)	Public access to the application is possible
5.		after deployment. The software would
		attract the interest of various people who
		are motivated to live a healthy lifestyle and
		desire to change their physical
		appearance. The programme could be
		designed so that functions are gradually
		unlocked based on the membership fee
		provided by the user, starting from the
		feature that charts out a user's specific
		plans to the general nutrition analyzer tool.
	<u> </u>	1. 0 2.2 22.2 22.2 22.3 20.0

	Scalability of the Solution	There are various features in the
6.		suggested application. It can be improved
		further to incorporate new features based
		on user comments and ratings. The
		nutrition analyzer now only works with
		fruits, but it can be expanded to work with
		other foods. using a mobile app.

4. Problem Solution fit

REQUIREMENT ANALYSIS

1. Functional requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form
	-	Registration through Gmail
		Registration through LinkedIn
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User Login	Enter the login ID
		Enter the associated password given while
		registering
FR-4	Dataset	Images of different types of fruit are uploaded as
		part of the dataset
FR-5	Image Input	Interpreting the image input provided by the
		user
FR-6	Process	Testing the image by various convolution layers
FR-7	Result	Displays the nutrient content of a particular fruit

2. Non-Functional requirements

FR No.	Non-Functional Requirement	Description
--------	----------------------------	-------------

NFR-1	Usability	The majority of internet users are on mobile devices, and most of them use some common application to communicate based on its features. It is important that the application is easily accessible by users, and also that the user can report any issues to be resolved as soon as possible.
NFR-2	Security	The data is encrypted and highly secured during the logging process, preventing data plagiarism. The application must authenticate and authorize correctly.
NFR-3	Reliability	Maintaining calories in your desired food is offered by this application, helping you stay on track with your diet plan. Calories are displayed fairly accurately for the user, which makes it easier for them to maintain a healthy lifestyle
NFR-4	Performance	In order to maintain a user and attract new users, the performance of the application must be high enough. A good way to improve performance is by optimizing code, reducing redirects, and also by using Data Structures and Algorithms (DSA).
NFR-5	Availability	In addition to its excellent functionality for registered users, the application also has the capability of providing minimum functionality to non-registered users and to reach a wider audience
NFR-6	Scalability	A lot of consideration should be put into making the application as scalable as possible so that it can attract more users as their interest increases.

PROJECT DESIGN

1. Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored. Simplified diagram

Simplified diagram

DFD Level 0 (Industry Standard)

2. Solution & Technical Architecture

3. User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Mobile user)		As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail	I can receive conformation mail through gmail	Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password	I can log into the system using email and password	High	Sprint-1
	Dashboard	USN - 6	As a user, I can select the list of options provided in the dashboard	I can access the options according to my need	Medium	Sprint-1
Customer (Web user)	Search	USN-7	As a user, I can search for different variety of fruits	I can get the nutrition content of different fruits	High	Sprint-2
	View	USN-8	As a user, I can view the list of fruits	I will get the information such as calories, vitamins	High	Sprint-2
	Notifications	USN-9	As a user, I will receive notifications about variety and textures of different fruits	I will get the frequent update of different fruits	Low	Sprint-2
Customer Care Executive	Mediator	USN-10	As a customer care executive , they could take care of customer feedbacks and solve user requirements	Users can get help and support from customer care executives	Medium	Sprint-2
Administrator	Database	USN-11	As a admin, I will store the user database confidentially	I can store and access data if it is needed infuture	High	Sprint-1
	Data Information	USN-12	As a admin, I will include the dataset for performing various processes	I can store dataset and analyse it	High	Sprint-2
	Processing	USN-13	As a admin, I will use various convolution layers for image processing	I can process using various convolution layers	High	Sprint-2
	Nutrition Analyzer	USN-14	As a admin, I will predict the fruit that has send as input	I can get the nutrition content of particular food after processing and display it	High	Sprint-2

PROJECT PLANNING & SCHEDULING

1. Sprint Planning & Estimation1

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	User story	USN-1	A working Professional Mother is unable to evaluate the calorie value in food that they are Consuming.	4	High	Yogeeswar S
Sprint-1	Data sets	USN-2	Collect the image of different food Items and create the dataset	3	Medium	Sowmya J
Sprint-1	Data Preprocessing	USN-3	Process the Image from the dataset	4	High	Nithya U
Sprint-2	Image processing	USN-4	Once images are processed can be constructed for train and test	3	Medium	Rohan G
Sprint-2	Train and Test	USN-5	Apply Image data generator functionality to trainset and test set	2	Medium	Sowmya J
Sprint-2	Import Model	USN-6	Import the model building libraries with CNN algorithm	5	High	Yogeeswar S
Sprint-3	Configure Model	USN-7	Adding dense layer to configure the learning process to train and test the model	3	High	Rohan G
Sprint-3	Webpage Creation	USN-8	Create the HTML web page with python code	4	Medium	Nithya U
Sprint-3	Dashboard Creation	USN-9	It contains the details of predicting criteria and user information.	3	High	Sowmya J

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-4	Application Creation	USN-10		3	Medium	Rohan G
			Create the flask application and loading our model by using load model method			
Sprint-4	Application Building	USN-11	Routing the HTML Page and Run the Application	4	High	Yogeeswar S
Sprint-4	Train the Model	USN-12	Train the Model on IBM Cloud	5	High	Yogeeswar S

2. Sprint Delivery Schedule

Sprint	Milestone
Sprint 1	A working Professional Mother is unable to evaluate the calorie value in food that they are Consuming. Collect the image of different food Items and create the dataset.
	3. Process the Image from the dataset
Sprint 2	Once images are processed can be constructed for train and test Apply Image data generator functionality to trainset and test set 3.Import the model building libraries with
	CNN algorithm
Sprint 3	Adding dense layer to configure the learning process to train and test the model
	2. Create the HTML web page with python code
	 It contains the details of predicting criteria and user information.
Sprint 4	Create the flask application and loading our model by using load model method
	 Routing the HTML Page and Run the Application Train the Model on IBM Cloud

3. Reports from JIRA

BurnDown chart

Road Map

1. Feature 1 - MODEL BUILDING

We have created a model for classifying fruits using CNN which is one of the deep learning model. Below explains the model architecture proposed.

```
from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive
```

Importing Neccessary Libraries

```
import numpy as np#used for numerical analysis
import tensorflow #open source used for both ML and DL for computation
from tensorflow.keras.models import Sequential #it is a plain stack of layers
from tensorflow.keras import layers #A layer consists of a tensor-in tensor-out computation function
#bense layer is the regular deeply connected neural network layer
from tensorflow.keras.layers import Dense,Flatten
#Faltten-used fot flattening the input or change the dimension
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dropout #Convolutional layer
#MaxPooling2D-for downsampling the image
from keras.preprocessing.image import ImageDataGenerator
```

Image Data Agumentation

```
#setting parameter for Image Data agumentation to the training data
train_datagen = ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)
#Image Data agumentation to the testing data
test_datagen=ImageDataGenerator(rescale=1./255)
```

Model creation and training

```
In [ ]: # Initializing the CNN
         classifier = Sequential()
         # First convolution layer and pooling
         classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
         classifier.add(MaxPooling2D(pool_size=(2, 2)))
         # Second convolution layer and pooling
         classifier.add(Conv2D(32, (3, 3), activation='relu'))
         # input_shape is going to be the pooled feature maps from the previous convolution layer
         classifier.add(MaxPooling2D(pool_size=(2, 2)))
         # Flattening the layers
         classifier.add(Flatten())
         # Adding a fully connected layer
         classifier.add(Dense(units=128, activation='relu'))
         classifier.add(Dense(units=5, activation='softmax')) # softmax for more than 2
In [ ]: |
         classifier.summary()#summary of our model
```

In []: classifier.summary()#summary of our model

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 62, 62, 32)	896
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 31, 31, 32)	0
conv2d_1 (Conv2D)	(None, 29, 29, 32)	9248
max_pooling2d_1 (MaxPooling 2D)	(None, 14, 14, 32)	0
flatten (Flatten)	(None, 6272)	0
dense (Dense)	(None, 128)	802944
dense_1 (Dense)	(None, 5)	645

Total params: 813,733 Trainable params: 813,733

Non-trainable params: 0

```
In [ ]: # Compiling the CNN
         # categorical_crossentropy for more than 2
         classifier.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```

```
In [ ]: # Compiling the CNN
      categorical_crossentropy for more than 2
     classifier.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
In [ ]: classifier.fit_generator(
          generator=x_train,steps_per_epoch = len(x_train),
epochs=10, validation_data=x_test,validation_steps = len(x_test))# No of images in test set
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future ver
     This is separate from the ipykernel package so we can avoid doing imports until
     Epoch 2/10
     Epoch 4/10
     526/526 [====
              Epoch 5/10
     .
526/526 [===========================] - 11s 21ms/step - loss: 2.3653e-05 - accuracy: 1.0000 - val_loss: 0.0033 - val_accuracy: 1.0000
     Epoch 6/10
     Epoch 7/10
     526/526 [===:
             Epoch 8/10
                    :========] - 12s 23ms/step - loss: 1.5010e-05 - accuracy: 1.0000 - val_loss: 3.7078e-04 - val_accuracy: 1.0000
     Epoch 9/10
     526/526 [==
                  Epoch 10/10
             Saving the model
In [ ]:
     # Save the model
      from tensorflow.keras.models import load model
      classifier.save('/content/drive/MyDrive/IBM/nutrition.h5')
     from tensorflow.keras.models import load_model
      from tensorflow.keras.preprocessing import image
      import numpy as np
     Testing the model
      img = image.load_img("/content/drive/MyDrive/IBM/Dataset/TRAIN_SET/APPLES/60_100.jpg",target_size= (64,64))#Loading of the image
Out[ ]:
      x=image.img_to_array(img)#conversion image into array
```

2. Feature 2 - WEB APPLICATION

the web application created is used to display the nutrient contents present in that particular food in our case the image will be uploaded by the user and this image will be given to the CNN model which will classify the fruit and with this information the API will return the nutritional contents present in that fruit which will be displayed in the web application for the user.

```
from flask import Flask, render_template, request
# Flask-It is our framework which we are going to use to run/serve our application.
#request-for accessing file which was uploaded by the user on our application.
import os
import numpy as np #used for numerical analysis
from tensorflow.keras.models import load model#to load our trained model
from tensorflow.keras.preprocessing import image
import requests
app = Flask(__name__,template_folder="templates") # initializing a flask app
# Loading the model
model=load_model('nutrition.h5')
print("Loaded model from disk")
@app.route('/')# route to display the home page
def home():
    return render_template('home.html')#rendering the home page
@app.route('/image1', methods=['GET', 'POST'])# routes to the index html
def image1():
    return render_template("image.html")
@app.route('/predict',methods=['GET', 'POST'])# route to show the predictions in a web UI
def launch():
    if request.method=='POST':
```

```
f=request.files['file'] #requesting the file
       basepath=os.path.dirname('__file__')#storing the file directory
       filepath=os.path.join(basepath, "uploads", f.filename) #storing the file in uploads folder
       f.save(filepath)#saving the file
       img=image.load img(filepath,target size=(64,64)) #load and reshaping the image
       x=image.img_to_array(img)#converting image to an array
       x=np.expand dims(x,axis=0)#changing the dimensions of the image
       pred=np.argmax(model.predict(x), axis=1)
       print("prediction",pred)#printing the prediction
       index=['APPLES','BANANA','ORANGE','PINEAPPLE','WATERMELON']
       result=str(index[pred[0]])
       x=result
       print(x)
       result=nutrition(result)
       print(result)
       return render_template("0.html", showcase=(result), showcase1=(x))
def nutrition(index):
   url = "https://calorieninjas.p.rapidapi.com/v1/nutrition"
   querystring = {"query":index}
     headers = {
          'x-rapidapi-key': "5d797ab107mshe668f26bd044e64p1ffd34jsnf47bfa9a8ee4",
          'x-rapidapi-host': "calorieninjas.p.rapidapi.com"
     response = requests.request("GET", url, headers=headers, params=querystring)
     print(response.text)
     return response.json()['items']
if name == " main ":
```

running the app

app.run(debug=False)

TESTING

Test Cases

Test case ID	Test case ID	Test case ID	Test case ID
Model Building_TC_001	Training and Testing	Python	Verify whether the image prediction is proper or not
Backend_TC_002	App Configuration	Python	It will get data from front end and process it
Frontend_TC_003	UI	Home page(user),user input Page,image prediction page page,about us page	user can give input as jpg,jpeg,png format and display output
Datebase_TC_004	Prediction	Python	Verify that it display the information as correct

Steps to Execute	Test Data	Expected Result	Status	Executed By
------------------	-----------	--------------------	--------	-------------

1.Importing dataset and unzip it 2.Image preprocessin g 3. Add convolution layers and predict fruit	http://127.0.0.1:5000/	Predict the fruit	Pass	NITHYA U
1.APP configuration 2. APP Route	http://127.0.0.1:5000/	Users data should process In Backend it should get data from frontend and display output.	Pass	ROHAN G

1.Enter the input image 2.Pick the image format as jpg,png,jpeg 3.Click submit	http://127.0.0.1:5000/ http://127.0.0.1:5000/image/ http://127.0.0.1:5000/imageprediction	User should navigate to home page and required pages they want to go.	Pass	S YOGEESWAR
1.displaying the nutrient values from api after user clicks submit button	http://127.0.0.1:5000/imageprediction	Display data returned by the API	Pass	SOWMYA J

User Acceptance Testing

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	8	3	2	1	14
Duplicate	0	1	0	2	3
External	3	2	0	1	6
Fixed	6	1	3	12	22
Not Reproduced	0	0	0	1	1
Skipped	0	0	1	0	1
Won't Fix	0	1	0	0	1
Totals	15	8	6	17	48

Section	Total Cases	Not Tested	Fail	Pass
Routing to pages	2	0	0	2
Client Application	4	0	0	4
Security	4	0	0	4
Image prediction	5	0	0	5
Final Output	5	0	0	5

RESULTS

1. Performance Metrics

NFT - Risk Assessment

Project Name	Scope	Functional Changes	Hardware Changes	Software Changes	Impact of Downtime	Risk Score
Al-powered Nutrition Analyzer for Fitness Enthusiats	New	Low	Moderate	Moderate	Low	GREEN

NFT - Detailed Test Plan

S.No	Project Overview	NFT Test approach	Assumptions/Dependen cies/Risks	Approvals/SignOff
1	Display nutrient content	Stress	App Crash/ Developer team/ Site Down	Approved
2	Display nutrient content	Load	Server Crash/ Developer team	Approved

End Of Test Report

NFR - Met	Test Outcome	GO/NO-GO decision	Recommendatio ns	Identified Defects (Detected/Close d/Open)
Performance	CPU -01	GO	High Performance	Closed
Database Information	Storage	NO-GO	SQLlite for access	Closed

ADVANTAGES & DISADVANTAGES

The advantages of this project includes better understanding of the food characterization. It helps individuals to live a healthier and better life by analyzing the fruits they eat and by providing a fitness goal and benefits based on that. The disadvantages involve the time required to build the model and analyzation of the fruits. The efficiency of the model could be improved by reducing time complexity of the classification by providing better image capturing and datasets.

CONCLUSION

Images of Different types of fruits are captured for classification and analyzed based on different characteristics like colour, shape, texture etc so as to provide an intellect about the nutritional characterization and benefits present in them. This model helps fitness enthusiasts and health conscious people in their journey to better understand their food and hygiene habits so as to hold a healthier life.

FUTURE SCOPE

Various food habits and fitness recommendations can be incorporated into the model so as to make it more efficient and useful to the fitness enthusiasts. Timely reminders, daily tasks and task completion updates could be provided to make the model more interactive.

main future scope is as follows,

- 1. Based On Reviews: In future the feedback is asked from users to meet their expectations like additional features such as BMI calculation, daily calorie intake calculator and various features.
- 2. Nutritional Chatbot: In future the nutrition chatbot will be used. It can have various type of input such as speech recognition, image input, input as name and will give output in form of voice or text. Analyzing according to the bowl size. We will try to take the disadvantages as the challenge and make it possible in the upcomings.

APPENDIX

Source Code

Al_Powered_Nutrition_Analyzer.ipynb

import numpy as np#used for numerical analysis

import tensorflow #open source used for both ML and DL for computation

from tensorflow.keras.models import Sequential #it is a plain stack of layers

from tensorflow.keras import layers #A layer consists of a tensor-in tensor-out computation function

#Dense layer is the regular deeply connected neural network layer

from tensorflow.keras.layers import Dense,Flatten

#Faltten-used fot flattening the input or change the dimension

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout #Convolutional layer

#MaxPooling2D-for downsampling the image

from keras.preprocessing.image **import** ImageDataGenerator

#setting parameter for Image Data agumentation to the training data

train datagen

ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=**True**)

#Image Data agumentation to the testing data

test_datagen=ImageDataGenerator(rescale=1./25

#performing data agumentation to train data

x train = train datagen.flow from directory(

x_test = test_datagen.flow_from_directory(r'/content/drive/MyDrive/IBM/Dataset/TEST_SET',

target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')

print(x train.class indices)#checking the number of classes

print(x test.class indices)#checking the number of classes

from collections import Counter as c

c(x train .labels)

```
# Initializing the CNN
classifier = Sequential()
# First convolution layer and pooling
classifier.add(Conv2D(32, (3, 3), input shape=(64, 64, 3), activation='relu'))
classifier.add(MaxPooling2D(pool size=(2, 2)))
# Second convolution layer and pooling
classifier.add(Conv2D(32, (3, 3), activation='relu'))
# input_shape is going to be the pooled feature maps from the previous convolution layer
classifier.add(MaxPooling2D(pool size=(2, 2)))
# Flattening the layers
classifier.add(Flatten())
# Adding a fully connected layer
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=5, activation='softmax')) # softmax for more than 2
classifier.summary()#summary of our model
# Compiling the CNN
# categorical_crossentropy for more than 2
classifier.compile(optimizer='adam',
                                                        loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
classifier.fit_generator(
     generator=x_train,steps_per_epoch = len(x_train),
     epochs=10, validation_data=x_test,validation_steps = len(x_
Save the model
from tensorflow.keras.models import load model
```

classifier.save('/content/drive/MyDrive/IBM/nutrition.h5')

from tensorflow.keras.models import load_model

from tensorflow.keras.preprocessing import image

import numpy as np

img =

image.load_img("/content/drive/MyDrive/IBM/Dataset/TRAIN_SET/APPLES/60_100.jpg",target_size= (64,64))#loading of the image

img

x=image.img_to_array(img)#conversion image into array
classifier = load_model("/content/drive/MyDrive/IBM/nutrition.h5") In []:

pred = classifier.predict(x)

Image_Preprocessing.ipynb

import numpy as np#used for numerical analysis

import tensorflow #open source used for both ML and DL for computation

from tensorflow.keras.models import Sequential #it is a plain stack of layers

from tensorflow.keras import layers #A layer consists of a tensor-in tensor-out computation function

#Dense layer is the regular deeply connected neural network layer

from tensorflow.keras.layers import Dense,Flatten

#Faltten-used fot flattening the input or change the dimension

from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dropout #Convolutional layer

#MaxPooling2D-for downsampling the image

from keras.preprocessing.image **import** ImageDataGenerator #setting parameter for Image Data agumentation to the training data

train_datagen =

ImageDataGenerator(rescale=1./255,shear range=0.2,zoom range=0.2,horizontal flip=True)

#Image Data agumentation to the testing data

test_datagen=ImageDataGenerator(rescale=1./255)

#performing data agumentation to train data

```
x_train = train_datagen.flow_from_directory(
  r'/content/drive/MyDrive/Colab Notebooks/Dataset/TRAIN_SET',
  target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')
#performing data agumentation to test data
x_test = test_datagen.flow_from_directory(
  r'/content/drive/MyDrive/Colab Notebooks/Dataset/TEST_SET',
  target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode
print(x train.class indices)#checking the number of classes
print(x test.class indices)#checking the number of classes
from collections import Counter as c
c(x train .labels)
app.py
from flask import Flask, render template, request
# Flask-It is our framework which we are going to use to run/serve our application.
#request-for accessing file which was uploaded by the user on our application.
import os
import numpy as np #used for numerical analysis
from tensorflow.keras.models import load model#to load our trained model
from tensorflow.keras.preprocessing import image
import requests
app = Flask(__name__,template_folder="templates") # initializing a flask app
# Loading the model
model=load model('nutrition.h5')
print("Loaded model from disk")
@app.route('/')# route to display the home page
def home():
  return render_template('home.html')#rendering the home page
```

```
@app.route('/image1',methods=['GET','POST'])# routes to the index html
def image1():
  return render_template("image.html")
@app.route('/predict',methods=['GET', 'POST'])# route to show the predictions in a web UI
def launch():
  if request.method=='POST':
    f=request.files['file'] #requesting the file
     basepath=os.path.dirname('__file__')#storing the file directory
    filepath=os.path.join(basepath,"uploads",f.filename)#storing the file in uploads folder
    f.save(filepath)#saving the file
     img=image.load_img(filepath,target_size=(64,64)) #load and reshaping the image
     x=image.img to array(img)#converting image to an array
     x=np.expand_dims(x,axis=0)#changing the dimensions of the image
     pred=np.argmax(model.predict(x), axis=1)
     print("prediction",pred)#printing the prediction
     index=['APPLES','BANANA','ORANGE','PINEAPPLE','WATERMELON']
    result=str(index[pred[0]])
     x=result
     print(x)
     result=nutrition(result)
     print(result)
     return render template("0.html",showcase=(result),showcase1=(x))
```

```
def nutrition(index):
  url = "https://calorieninjas.p.rapidapi.com/v1/nutrition"
  querystring = {"query":index}
  headers = {
     'x-rapidapi-key': "5d797ab107mshe668f26bd044e64p1ffd34jsnf47bfa9a8ee4",
     'x-rapidapi-host': "calorieninjas.p.rapidapi.com"
     }
  response = requests.request("GET", url, headers=headers, params=querystring)
  print(response.text)
  return response.json()['items']
if __name__ == "__main__":
GitHub & Project Demo Link
GITHUB LINK: <a href="https://github.com/IBM-EPBL/IBM-Project-5176-1658750221">https://github.com/IBM-EPBL/IBM-Project-5176-1658750221</a>
```

https://drive.google.com/file/d/1xR_4IVuHP71AVmvQNghgc9dTg8Ggfsfh/view?usp=share_link

PROJECT DEMO LINK: