

AE5 – Modelado de Datos con Diagramas Entidad-Relación (ERD)

Módulo 5: Fundamentos de Bases de Datos Relacionales

Bootcamp Full Stack Python

Aprendizaje esperado: Elaborar un modelo de datos de acuerdo a estándares de modelamiento para resolver un problema de baja complejidad.

Objetivos de Aprendizaje

- Comprender el modelo Entidad-Relación (E-R)
- | Identificar entidades, atributos y relaciones
- Diferenciar entre modelo conceptual y modelo relacional
- Transformar un ERD en tablas relacionales
- Practicar con MySQL y VS Code

三Skillnest

¿Por qué diseñar bases de datos?

Eficiencia en el acceso a los datos

Optimiza la velocidad y rendimiento de las consultas

Garantizar integridad y consistencia

Asegura que los datos sean precisos y confiables

Seguridad y escalabilidad

Permite crecer y adaptarse a nuevas necesidades

Evitar redundancia y errores

Elimina duplicados y minimiza inconsistencias

<mark>Ejemplo sencillo:</mark>

Imagina una tienda online. ¿Qué pasa si el cliente "Juan Pérez" aparece registrado 10 veces con correos distintos? → Mala experiencia, pérdida de control.

El Proceso de Abstracción

Análisis de requerimientos ¿Qué datos necesito?

Modelo conceptual (E-R)

Dibujar entidades y relaciones

Modelo lógico (relacional)
Convertir a tablas

Modelo físico Implementar en MySQL

El Modelo Conceptual (E-R)

Componentes principales:

Entidad

Objeto real que almacena datos (Ej: Cliente,

Producto)

Atributos

Características de una entidad (Ej: nombre, precio)

Relación

Asociación entre entidades (Ej: Cliente realiza

Pedido)

Identificación de Entidades

Ejemplo: Sistema de Biblioteca

Libro

Almacena información sobre los libros disponibles

Usuario

Contiene datos de las personas que usan la biblioteca

Préstamo

Registra cuándo un usuario toma prestado un libro

Regla: una entidad debe ser única y representar algo importante.

Mini actividad:

En parejas, ¿qué entidades tendría un sistema de cine?

Atributos: propiedades de la entidad.

Clave primaria (PK): identificador único.

Ejemplo: Usuario

id_usuario (PK)

Identificador único del

usuario

nombre

Nombre completo del

usuario

correo (único)

Dirección de email del

usuario

Relaciones entre Entidades

1:N

1:1
Un pasaporte pertenece a un ciudadano.

Un cliente hace muchos pedidos.

Un estudiante toma varios cursos y un curso tiene varios estudiantes.

N:M

Entidades Fuertes y Débiles

Tipos de entidades:

Fuerte

Independiente (Cliente)

Existe por sí misma

Débil

Depende de otra entidad (Pedido depende de

Cliente)

No puede existir sin la entidad fuerte

Ejemplo:

Un pedido no existe sin un cliente.

三Skillnest

Del Modelo Conceptual al Relacional

Entidades

Se convierten en Tablas

Atributos

Se convierten en Columnas

Relación 1:N

Se implementa con clave foránea (FK)

Relación N:M

Requiere tabla intermedia

Ejemplo de Transformación

Modelo E-R:

Cliente (id_cliente, nombre, email)

Pedido (id_pedido, fecha, id_cliente)

Modelo Relacional (SQL):

```
CREATE TABLE Cliente (
    id_cliente INT PRIMARY KEY,
    nombre VARCHAR(100),
    email VARCHAR(100) UNIQUE
);
CREATE TABLE Pedido (
    id_pedido INT PRIMARY KEY,
    fecha DATE,
    id_cliente INT,
    FOREIGN KEY (id_cliente) REFERENCES Cliente(id_cliente)
);
```

Normalización

Beneficios:

- Elimina redundancia
- Garantiza consistencia
- Mejora la integridad de datos

Ejemplo:

No repetir datos del cliente en cada pedido.

Diccionario de Datos

Ejemplo tabla Cliente

Campo	Tipo	Restricción	Descripción
id_cliente	INT	PK	Identificador único
nombre	VARCHAR(100)	NOT NULL	Nombre completo
email	VARCHAR(100)	UNIQUE	Correo electrónico

El diccionario de datos documenta cada campo de la base de datos, facilitando su comprensión y mantenimiento.

Aplicación en la Vida Real

Entidades:

- Usuario
- Post
- Comentario
- Like

Relaciones:

- Usuario crea Post (1:N)
- Usuario da Like a Post (N:M)

Ejercicio Práctico en VS Code

Actividad Crea tablas para este ERD:

Usuario

id, nombre, email

Publicación

id, texto, id_usuario

Comentario

id, contenido, id_usuario, id_publicacion

Código inicial:

```
CREATE TABLE Usuario (
   id INT PRIMARY KEY,
   nombre VARCHAR(100),
   email VARCHAR(100) UNIQUE
);
```


Mini Desafío en Grupos

Diseña un modelo E-R para un sistema de "Pedidos de Comida Online"

Entidades mínimas:

- Cliente
- Pedido
- Producto

Relación:

- Cliente realiza Pedido
- Pedido contiene Producto

Trabajen en grupos para diseñar un diagrama E-R completo que resuelva este problema.

Discusión y Retroalimentación

¿Qué entidades definieron? Comparen sus modelos con los de otros grupos ¿Cómo resolvieron la relación N:M entre Pedido y Producto? Expliquen su estrategia para implementar esta relación ¿Qué dudas surgieron?
Compartan los desafíos que encontraron durante el ejercicio

Herramienta MySQL Workbench

Ventajas:

- Permite crear ERDs de forma visual
- Genera automáticamente el SQL
- Ideal para documentar y comunicar el diseño

Cierre Reflexivo

El buen diseño evita problemas en el futuro Invertir tiempo en planificar ahorra horas de correcciones

ERDs ayudan a pensar antes de programar Visualizar la estructura antes de escribir código Lo importante no es memorizar, sino entender las relaciones Comprender los conceptos fundamentales

👉 ¿Cómo cambia la calidad de una aplicación cuando la base de datos está bien diseñada?

Gracias y Próximos Pasos

- Practicar creando ERDs para distintos sistemas

 Aplica lo aprendido a diferentes contextos
- Explorar Workbench y generar código SQL Familiarízate con las herramientas profesionales
- Próxima sesión: consultas SQL (SELECT, JOIN)

 Prepárate para aprender a extraer información de las bases de datos