

A NEW VISION OF THE EMBEDDED WORLD

DATASHEET

APF6_DEV

V1.1

Disclaimer

The informations in this manual have been carefully checked and are believed to be accurate. Armadeus systems assumes no responsibility for any inaccuracies that may be contained in this document. Armadeus systems makes no commitment to update or keep current the informations contained in this manual. Armadeus systems reserves the right to make improvements to this document and / or product at any time without notice.

Warranty

This product is supplied with a 1 year warranty. Product warranty covers failure caused by any manufacturing defects.

Armadeus systems will make all reasonable effort to repair the product or replace it with an identical variant. Armadeus systems reserves the right to replace the returned product with an alternative part or an equivalent fit, form and functional product. Delivery charges will apply to all returned products.

Trademarks

ARM is a registered trademark of ARM Ltd. i.MX is a registered trademarks of Freescale semiconductor Linux is a registered trademark of Linus Torvalds

File name: dataSheet_APF6_Dev.odt

Last editing: 23 Jul 2015

Table of Contents

1 - APF6_Dev Overview	5
1.1 - Introduction	
1.2 - APF6Dev Features	
1.3 - Handling precautions	
2 - Quick Start	
3 - Hardware Description	Q
3.1 - Power Supplies	
3.1.2 - 5Vdc	
3.1.3 - 3.3Vdc	
3.1.4 - 3.6Vdc	
3.2 - System LEDs	10
3.3 - User LEDs	10
3.4 - User switches	10
3.5 - Jumpers	
3.5.1 - Boot mode jumpers (J31/J32)	10
3.5.2 - CAN jumper (J8)	
3.6 - Ethernet 10/100/1000 Mbits (J17)	
3.7 - SATA data / SATA power (J10/J13)	
3.8 - PCI express (J42)	
3.9 - Console/Debug (J4)	
3.10 - TFT CMOS Interface	
3.10.1 - Connector (J21)	
3.11 - TFT LVDS connector (J2)	
3.11.1 - connector (J2)	
3.12 - microSD (J6)	
3.13 - Audio In / Audio Out (J23)	
3.13.2 - Microphone Audio Connector (J23 down)	
3.14 - SPDIF Output (U16)	
3.15 - USB Hosts Interfaces (J22)	
3.16 - USB OTG Interface (J1)	
3.17 - HDMI Interface (J15)	
3.18 - CAN	_
3.19 - RTC	•
3.20 - GSM/GPRS/3G U2 (optional)	
3.20.1 - Characteristics	
3.20.2 - Interfaces	
3.20.3 - Antenna	
3.21 - GPS (optional)	
3.21.1 - Characteristics	
3.21.2 - Interfaces	
3.21.3 - Antenna (J25)	
3.23 - JTAG iMX (J36)	
3.24 - Extension1 (J18)	
3.25 - Extension2 (J5)	
ე.2ე - Patchsionz (იმ)	20

3.26 - JTAG FPGA (J14)	21
3.27 - HSMC (J19)	
4 - Mechanical and Assembly drawing	25
4.1 - Top Assembly	_
4.2 - Connectors and jumpers	
4.3 - Mechanical	
5 - Web Link	
6 - Component Link	
• • • • • • • • • • • • • • • • • • •	•••••

Edition	Date	Changes
Edition o.A (PCB ed 1)	26/08/14	Initial version
Edition o.B (PCB ed 1)	21/10/14	Verification by FabienM
Edition 1.0 (PCB ed Vo2)	29/06/15	Published, FPGA led/button pinout correction
Edition 1.1 (PCB ed Vo2)	10/07/15	Add FPGA connector descriptions

1 - APF6_Dev Overview

1.1 - Introduction

The APF6Dev/ APF6_SP_Dev is a full featured development board dedicated to the APF6 and APF6_SP single board computer.

This board offers access to the whole functionalities of the APF6 and provides several additional features. Its price and its connectors make it ideal for rapid development of embedded applications.

1.2 - APF6Dev Features

Input Power supply 12Vdc

On board regulators 5V / 3A max DC/DC converter 3.3V / 3A max DC/DC converter

High speed USB HOST 2.0 1 port USB OTG 2.0 1 port

Debug interface USB miniB port. USB to serial converter present on the board

Ethernet 10/100/1000 Mbits autoMDX with LEDs

TFT CMOS and LVDS interfaces

Touchscreen 4 wires resistive touch panel available on the CMOS TFT interface

Stereo Audio In/Out Controller

RTC

Headset stereo audio in/out

RTC backup with external battery

MicroSD 1 port CAN Controller CAN 2.0b

SATA II SATA data + power

PCI express Gen2 1 Lane (can not be used if APF6_SP board mounted)

HDMI HDMI 1.4

GPIOs up to 64 gpios (through FPGA)

GSM/GPRS/3G Optional. External antenna required. On boad SIM card connector

GPS **Optional**. External antenna required

Standard Connectors Jack 2.5mm for power supply

high speed USB host 2.0 (type A) OTG high speed USB (miniAB) USB miniB for debug (serial emulation) 10/100/1000 Mbits Ethernet (RJ45) with leds

HDMI

SATA data + power

PCI express

dual 3,5mm stereo jack for audio in and out

microSD

Specific connectors TFT interface including touchscreen (2.54mm header)

TFT LVDS interface

Extensions with CAN, GPIOs, UARTs, SPI, I2C, Keypad,

CMOS Sensor (FPC/FFC 33pin) GPS antenna connector (Hirose U.FL)

GSM/GPRS/3G connector

SIM card socket

JTAG for iMX (2.54mm header)

JTAG for FPGA

HSMC connector for FPGA

User LEDs 2x (one connected to the i.MX and the other to the FPGA)
User switches 2x (one connected to the i.MX and the other to the FPGA)

Reset Switch

1.3 - Handling precautions

Please ensure that should a board need to be returned to Armadeus systems, it is adequately packed, preferably in the original packing material.

2 - Quick Start

At first an APF6 module needs to be plugged on J7.

Once done, a power supply has to be connected to **J29**. The main characteristics of this input supply can be found in the section 3.1.1 below.

A micro-USB AB cable has to be connected between your PC and the micro USB connector (**J4**) of the board to get access to the debug console. See section 3.9 for details of the serial communication settings.

Ethernet cable can be connected to **J17**.

If a TFT has to be connected do not forget to align pin 1 of the TFT connector (**J21**) with pin 1 of the TFT flat cable (red line).

Please consult our wiki for initial setup (http://www.armadeus.com/wiki/index.php?title=Setup).

3 - Hardware Description

The following section provides a detailed description of the functions available on the APF6Dev.

U.FL: Antenna

Wireless option

3.1 - Power Supplies

Three supplies are present on the board: +5Vdc, +3.3Vdc and +3.6Vdc.

3.1.1 - Main input supply (J29)

This input is protected against over and reverse voltages

- Connector type: 2.5mm mono jack (internal plug: positive supply, external ring: GND)
- Input voltage: 12Vdc 2A max

3.1.2 - 5Vdc

This supply is directly generated from the main input supply by means of a DC/DC converter. It is mainly used to power the two USB host ports (500mA each) and the GSM/GPRS supply.

3.1.3 - 3.3Vdc

This supply is generated from the local 5Vdc supply and uses a 3A DC/DC converter. The APF6 is powered by this supply.

3.1.4 - 3.6Vdc

This supply is generated from the localc 5Vdc supply and uses a 3A DC/DC converter. It is used to power the GSM/GPRS module.

3.2 - System LEDs

LED	Description
D18	5V supply presence
D19	3.3V supply presence

3.3 - User LEDs

LED	Description
D6	FPGA user LED. Directly connected to HSMC_Do/ PIN_M10 ball of the FPGA. A high level will light the LED
D30	i.MX user LED. A high level on GPIO7_12 pin of the i.MX will light the LED

3.4 - User switches

Switch	Description
S1	FPGA user switch. Directly connected to HSMC_D2 / PIN_L9 ball of the FPGA. An FPGA internal pull up is required.
S6	i.MX user switch. Connected to GPIO1_9 pin of the i.MX.

3.5 - Jumpers

3.5.1 - Boot mode jumpers (J31/J32)

These two jumpers are used to select the APF6 boot mode.

By default (normal boot) only BOOTo (J31) must be mounted. For U-Boot recovery, only BOOT1 (J32) must be mounted.

Reminder: Do not forget to set again jumper BOOTo (J31) after U-Boot recovery!

3.5.2 - CAN jumper (J8)

If mounted, a 120 termination is placed between CANH and CANL signals.

3.6 - Ethernet 10/100/1000 Mbits (J17)

The Ethernet connector can be used to connect your APF6_Dev to your network.

Two LEDs (orange/green) respectively indicate the presence/activity of the link and the speed of this link.

Connector type: shielded RJ45

3.7 - SATA data / SATA power (J10/J13)

Standard SATA devices can be connected to these interfaces.

Connector type: SATA 7 pins

3.8 - PCI express (J42)

Standard 1 lane PCI express boards can be connected to this interface. 3.3V and 12V supplies are present on this connector. The interface does not support I2C/Wake signals

Connector type: PCI express 64 pins.

Remark: this connector can not be used if an APF6SP board is mounted

3.9 - Console/Debug (J4)

The console interface is available through an UART to USB converter (FTDI 231x). Default baud rate is 115200 (8bits data, parity none, 1 stop bit and no flow control)

Connector type: USB microAB

Signal level: USB

3.10 - TFT CMOS Interface

The LCD interface (24bits data wide) allows connecting to the APF6_Dev board:

- TFT displays
- Resistive touch panels

For compatibility reasons with the previous development kits, only 18bits of the 24bits interface are available on this interface.

3.10.1 - Connector (J21)

Pin	Description	Type	Pin	Description	Туре
1	CLK	Output 3.3V	2	3.3V	Power
3	Not connected		4	5V	Power
5	Not connected		6	CONTRAST	Output 3.3V
7	Not connected		8	DE	Output 3.3V
9	Not connected		10	HSYNC	Output 3.3V
11	GND	Bidir	12	VSYNC	Output 3.3V
13	B1	Output 3.3V	14	GND	Power
15	В3	Output 3.3V	16	B2	Output 3.3V
17	B5	Output 3.3V	18	B4	Output 3.3V
19	G1	Output 3.3V	20	Go	Output 3.3V
21	G3	Output 3.3V	22	G2	Output 3.3V
23	G5	Output 3.3V	24	G4	Output 3.3V
25	R2	Output 3.3V	26	R1	Output 3.3V
27	R4	Output 3.3V	28	R3	Output 3.3V
29	R5	Output 3.3V	30	GND	Power
31	Во	Output 3.3V	32	Ro	Output 3.3V
33	GND	Power	34	GND	Power
35	NC		36	NC	
37	Touch X+	Analog	38	Touch Y+	Analog
39	Touch X-	Analog	40	Touch Y-	Analog

Connector type: 2.54mm 30 pin dual rows

3.11 - TFT LVDS connector (J2)

A LVDS TFT display can be connected to this interface. An I2C bus and 2 GPios are although present on this connector for touch panel support.

3.11.1 - connector (J2)

Pin	Description	Туре	Pin	Description	Туре
1	GND	Power	2	GND	Power
3	DISP_TXoP	LVDS 3.3V	4	DISP_TXoN	LVDS 3.3V
5	GND	Power	6	GND	Power
7	DISP_TX1P	LVDS 3.3V	8	DISP_TX1N	LVDS 3.3V
9	GND	Power	10	GND	Power
11	DISP_TX2P	LVDS 3.3V	12	DISP_TX2N	LVDS 3.3V
13	GND	Power	14	GND	Power
15	DISP_TX3P	LVDS 3.3V	16	DISP_TX3N	LVDS 3.3V
17	GND	Power	18	GND	Power
19	DISP_CLKP	LVDS 3.3V	20	DISP_CLKN	LVDS 3.3V
21	GND	Power	22	GND	Power
23	I2C1_SCL	iMX6 I2C1 clock output (3.3Vdc)	24	I2C1_SCL	iMX6 I2C1 data line (3.3Vdc)
25	GPIO5_21	iMX6 GPIO 5_21 (3.3Vdc)	26	GPIO5_18	iMX6 GPIO 5_18 (3.3Vdc)
27	+12V	Power	28	+12V	Power
29	+5V	Power	30	+5V	Power
31	+3V3	Power	32	+3V3	Power
33	GND	Power	34	GND	Power

Connector type: 2.54mm 30 pin dual rows

3.12 - microSD (J6)

A standard microSD card can be connected to the APF6Dev providing additional storage capacity.

Connector type: Hirose DM3ATxxx

3.13 - Audio In / Audio Out (J23)

A complete audio stereo codec (Freescake SGTL5000) is present on the APF6Dev board providing a stereo HP output and one microphone input.

A synchronous serial interface (SSI) is used to exchange the audio data between the codec and the i.MX. The configuration of the SGTL5000 is done through the I2C2 interface.

Details concerning the SGTL5000 can be found in the References Chapter

3.13.1 - HP Audio Connector (J23 up)

Connector type: 3.5mm stereo jack

Signal level for headset output: 0.8Vrms full scale, 1.5V output common mode

3.13.2 - Microphone Audio Connector (J23 down)

Connector type: 3.5mm stereo jack

Signal level for headset input: 0.7Vrms full scale, 1.5V output common mode

3.14 - **SPDIF Output (U16)**

A standard SPIDF output is available on U16.

3.15 - USB Hosts Interfaces (J22)

One high speed USB host interface is available.

Connector type: dual USB A

Signal level: USB

3.16 - USB OTG Interface (J1)

One high speed USB OTG interface is available through J1.

Connector type: USB microAB

Signal level: USB

3.17 - HDMI Interface (J15)

One HDMI interface is available through **J15**. This interface is directly connected to the APF6 HDMI output.

Connector type: HDMI

3.18 - CAN

The CAN 2.0 controller of the APF6 is connected to a CAN transceiver (MCP2551) which converts the CMOS signals of the iMX6 into CAN differential signals.

A 120 ohms termination between CANH and CANL can be enabled by mounting **J8**.

Can signals are available on J18

3.19 - RTC

A RTC is present on the APF6_Dev boad. This RTC (MCP79400) is connected on the I2C2 bus of the APF6.

RTC backup can be done by connecting a battery cell to **J3** (Pin 1: VCC, Pin 2: GND)

3.20 - GSM/GPRS/3G U2 (optional)

An optional GSM/GPRS/3G module (Sagem Hilo series) can be connected to the APF6_Dev.

The communication with the module is done through the APF6 UART3 interface.

A SIM card support is although located on the APF6_Dev.

3.20.1 - Characteristics

Frequency bands: GSM850, EGSM900, DCS1800, PCS1900 and UMTS 900/1900/2100 (3G only)

Voice codec: Half rate, full rate, enhanced full rate, adaptative multi rate

Transmit power:

Class 4 (2W) for GSM850 / EGSM900

Class 1 (1W) for DCS 1800 / PCS 1900

Class E2 EDGE 900 / 1800 (3G only)

Class 3 for UMTS 900/1900/2100 (3G only)

SIM: ISO7816-3 card support

Data / Command multiplexing: GSM 07.10 standard with AT_Command

Data services: GPRS, CSD, Fax. HSDPA and EDGE for 3G module

GPRS: SMG 31bis, multi slot class 10, class B terminal, PBCCH support

EDGE: multi slot class 12 (3G only)

UMTS/HSDPA: class E2, voice and data in parallel for UMTS/HSDPA, 4 logical channels (3G only)

HSPDA: 3.6Mbps (3G only)

3.20.2 - Interfaces

UART: TX, RX, CTS, RTS 115200 bps and 921600 bps for 3G module

SIM: support 1.8 and 3V sim cards

3.20.3 - Antenna

An U.FL connector allows connecting an external antenna. Take care about the frequency range when choosing the external antenna. **Do not place the GSM/GPRS antenna near the GPS one!**

3.21 - GPS (optional)

An optional GPS module from U-Blox (or equivalent, NEO 5/6 model) can be mounted.

The communication with this module is done through the APF6 UART1.

3.21.1 - Characteristics

- 50-channel with over 1 million effective correlators
- <1 second Time To First Fix for Hot and Aided starts
- -160dBm Supersense acquisition and tracking sensitivity
- Cold start: 32s
- Horizontal position accuracy: < 2.5m
- A-GPS, NMEA and UBX support
- · High immunity to jamming
- 4Hz position update rate
- GPS sleep

3.21.2 - Interfaces

UART: TX, RX 38400 bps

3.21.3 - Antenna (J25)

An U.FL connector allows connecting an external antenna. Do not place the GPS antenna near the GSM one!

3.22 - CMOS Sensor Interface (J12)

This interface can be used to connect a standard MIPI CMOS sensor for image acquisition. Usually an adapter board/cable will be required.

Communication with the CMOS sensor is done through the I2C2 interface while image data are transferred on a dedicated bus (MIPI).

Pin	Description	Туре
1	CSI_CLKoP	MIPI CLKP line
2	CSI_CLKoM	MIPI CLKN line
3	GND	Power
4	CSI_DoP	MIPI D1P line
5	CSI_DoM	MIPI D1N line

6	GND	Power
7	CSI_D1P	MIPI D1P line
8	CSI_D1M	MIPI D1N line
9	GND	Power
10	CSI_D2P	MIPI D2P line
11	CSI_D2M	MIPI D2N line
12	GND	Power
13	CSI_D3P	MIPI D3P line
14	CSI_D3M	MIPI D3N line
15	GND	Power
16	NC	Not connected
17	NC	Not connected
18	GND	Power
19	NC	Not connected
20	NC	Not connected
21	GND	Power
22	NC	Not connected
23	NC	Not connected
24	GND	Power
25	I2C1_SCL	iMX6 I2C clock. 3.3Vdc
26	I2C2_SDA	iMX6 I2C data line. 3.3Vdc
27	+3V3	Power
28	+3V3	Power
29	CSI_MCLK	Clock output. 3.3Vdc
30	GPIO5_20	iMX6 gpio5_20. 3.3Vdc
31	GPIO5_19	iMX6 gpio5_19. 3.3Vdc
32	+5V	Power
33	+5V	Power

Connector type: FPC/FFC 33pin o.5mm pitch Top/bottom contacts Signal levels: MIPI standard levels and 3.3V level for other signals

3.23 - JTAG iMX (J36)

A standard JTAG connector is available for debug purpose of the iMX processor.

This connector is compatible with most of the JTAG debugger

Pin	Description	Туре	Pin	Description	Туре
1	JTAG_VREF	Power (3.3Vdc)	2	+3V3	Power
3	JTAG_TRSTB	Input 3.3Vdc	4	GND	Power
5	JTAG_TDI	Input 3.3Vdc	6	GND	Power
7	JTAG_TMS	Input 3.3Vdc	8	GND	Power
9	JTAG_TCK	Input 3.3Vdc	10	GND	Power
11	Not connected		12	GND	Power
13	JTAG_TDO	Output 3.3Vdc	14	GND	Power
15	RESET#	Bidirectional	16	GND	Power
17	Not connected		18	GND	Power
19	Not connected		20	GND	Power

Connector type: 2.54mm 20 pin dual row header

Signal levels: 3.3Vdc

3.24 - Extension1 (J18)

This connector is foreseen for APF6_Dev extensions and can be used for rapid prototyping of specific products.

Pin	Description	Туре	Pin	Description	Туре
1	+3V3	Power	2	+3V3	Power
3	UART3_TX	GPIO (3.3V)*	4	UART3_RX	GPIO (3.3V)*
5	UART3_CTS	GPIO (3.3V)*	6	UART3_RTS	GPIO (3.3V)*
7	GPIO5_12 (DISPo_DAT18)	GPIO (3.3V)*	8	GPIO5_13 (DISPo_DAT19)	GPIO (3.3V)*

9	GPIO5_14 (DISPo_DAT20)	GPIO (3.3V)*	10	GPIO5_15 (DISPo_DAT21)	GPIO (3.3V)*
11	GPIO5_16 (DISP0_DAT22)	GPIO (3.3V)*	12	GPIO5_17 (DISPo_DAT23)	GPIO (3.3V)*
13	GPIO5_18** (CSIo_PIXCLK)	GPIO (3.3V)*	14	GPIO5_19* (CSIo_MCLK)	GPIO (3.3V)*
15	GPIO5_20* (CSIo_DATA_EN)	GPIO (3.3V)*	16	GPIO5_21** (CSIo_VSYNC)	GPIO (3.3V)*
17	CANL	CAN differential pair	18	CANH	CAN differential pair
19	GND	Power	20	GND	Power

available although on J22 available although on J2

*multiplexed GPIO. See APF6 datasheet J3/J4 connector definitions for multiplexing details

Connector type: 2.54mm 20 pin dual row header

3.25 - Extension2 (J₅)

This connector is foreseen for APF6_Dev extensions and can be used for rapid prototyping of specific products.

Pin	Description	Туре	Pin	Description	Туре
1	+3V3	Power	2	+3V3	Power
3	I2C1_SDA	iMX6 I2C1 data line (3.3V)	4	I2C1_SCL	iMX6 I2C1 clock line (3.3V)
5	SPI1_SCLK	GPIO (3.3V)*	6	SPI1_MISO	GPIO (3.3V)*
7	SPI1_SS1	GPIO (3.3V)*	8	SPI1_SS2	GPIO (3.3V)*
9	SPI1_SS0	GPIO (3.3V)*	10	SPI1_MOSI	GPIO (3.3V)*
11	GPIO7_11	GPIO (3.3V)*	12	GPIO4_20 (DIo_PIN4)	GPIO (3.3V)*
13	UART2_TX	GPIO (3.3V)*	14	UART2_RX	GPIO (3.3V)*
15	UART5_CTS	GPIO (3.3V)*	16	UART5_RTS	GPIO (3.3V)*
17	UART5_RX	GPIO (3.3V)*	18	UART5_TX	GPIO (3.3V)*
19	GND	Power	20	GND	Power

^{*}multiplexed GPIO. See APF6 datasheet J3/J4 connectors definitions for multiplexing details Connector type: 2.54mm 20 pin dual row header

3.26 - JTAG FPGA (J14)

A JTAG connector is available for debug purpose of the FPGA on the APF6_SP_Dev boards.

This connector is compatible with Altera USB blaster

Pin	Description	Туре	Pin	Description	Туре
1	JTAG_TCK	Input 3.3Vdc	2	GND	Power
3	JTAG_TDO	Output 3.3Vdc	4	+3V3	Power
5	JTAG_TMS	Input 3.3Vdc	6	nc	
7	nc		8	nc	
9	JTAG_TDI	Input 3.3Vdc	10	GND	Power

Connector type: 2.54mm 10 pin dual row header

Signal levels: 3.3Vdc

3.27 - HSMC (J19)

This connector is only available on the APF6_SP_Dev boards and is compatible with the Altera HSMC standard. Complete HSMC standard can be found here: www.altera.com/literature/ds/hsmc_spec.pdf

Pin	Function	FPGA pin	Pin	Function	FPGA pin	Description
1	nc		2	nc		
3	nc		4	nc		
5	nc		6	nc		
7	nc		8	nc		
9	nc		10	nc		
11	nc		12	nc		
10	nc		14	nc		
13	nc nc		14	iic .		
15	nc		16	nc		
17	nc		18	nc		
19	nc		20	nc		
21	XCVR_TXP2	J2	22	XCVR_RXP2	L2	Transceiver
	VOVD TVNo	T-	0.4	VCVD DVNo	T.	Transceiver
23	XCVR_TXN2	J1	24	XCVR_RXN2	L1	Transceiver

25	XCVR_TXP1	N2	26	XCVR_RXP1	R2	Transceiver
27	XCVR_TXN1	N1	28	XCVR_RXN1	R1	Transceiver
29	XCVR_TXPo	U2	30	XCVR_RXPo	W2	Transceiver
31	XCVR_TXNo	U1	32	XCVR_RXNo	W1	Transceiver
33	nc		34	ne		
35	ne		36	ne		
37	nc		38	nc		
39	CLKOUTo	R10	40	CLKINo	T10	CMOS CLK
41	Do	M10	42	D1	K15	CMOS
43	D2	L9	44	D3	L15	CMOS
45	3.3V		46	12V		
47	LVDS_TX_Po	Y11	48	LVDS_RX_Po	Y9	CMOS/LVDS
49	LVDS_TX_No	W11	50	LVDS_RX_No	AA9	CMOS/LVDS
51	3.3V		52	12V		
53	LVDS_TX_P1	T13	54	LVDS_RX_P1	U11	CMOS/LVDS
55	LVDS_TX_N1	R12	56	LVDS_RX_N1	U10	CMOS/LVDS
57	3.3V		58	12V		
59	LVDS_TX_P2	AB13	60	LVDS_RX_P2	V9	CMOS/LVDS
61	LVDS_TX_N2	AA13	62	LVDS_RX_N2	U8	CMOS/LVDS
63	3.3V		64	12V		
65	LVDS_TX_P3	AB11	66	LVDS_RX_P3	T12	CMOS/LVDS
67	LVDS_TX_N3	AB10	68	LVDS_RX_N3	U12	CMOS/LVDS
69	3.3V		70	12V		
71	LVDS_TX_P4	AA10	72	LVDS_RX_P4	V13	CMOS/LVDS
73	LVDS_TX_N4	Y10	74	LVDS_RX_N4	W13	CMOS/LVDS
75	3.3V		76	12V		
77	LVDS_TX_P5	Y15	78	LVDS_RX_P5	Y12	CMOS/LVDS
79	LVDS_TX_N5	AA15	80	LVDS_RX_N5	W12	CMOS/LVDS

81	3.3V		82	12V		
83	LVDS_TX_P6	AB16	84	LVDS_RX_P6	W14	CMOS/LVDS
85	LVDS_TX_N6	AB15	86	LVDS_RX_N6	Y14	CMOS/LVDS
87	3.3V		88	12V		
89	LVDS_TX_P7	P12	90	LVDS_RX_P7	U17	CMOS/LVDS
91	LVDS_TX_N7	R11	92	LVDS_RX_N7	U16	CMOS/LVDS
93	3.3V		94	12V		
95	CLKOUT_1P	G18	96	CLKIN_1P	P9	LVDS CLKp/CMOS
97	CLKOUT_1N	G17	98	CLKIN_1N	R9	LVDS CLKn/CMOS
99	3.3V		100	12V		
101	LVDS_TX_P8	AB17	102	LVDS_RX_P8	Y17	CMOS/LVDS
103	LVDS_TX_N8	AA17	104	LVDS_RX_N8	Y16	CMOS/LVDS
105	3.3V		106	12V		
107	LVDS_TX_P9	AA18	108	LVDS_RX_P9	W17	CMOS/LVDS
109	LVDS_TX_N9	AB18	110	LVDS_RX_N9	W16	CMOS/LVDS
111	3.3V		112	12V		
113	LVDS_TX_P10	Y19	114	LVDS_RX_P10	W18	CMOS/LVDS
115	LVDS_TX_N10	AA19	116	LVDS_RX_N10	V18	CMOS/LVDS
117	3.3V		118	12V		
119	LVDS_TX_P11	R20	120	LVDS_RX_P11	V20	CMOS/LVDS
121	LVDS_TX_N11	R21	122	LVDS_RX_N11	V19	CMOS/LVDS
123	3.3V		124	12V		
125	LVDS_TX_P12	AB21	126	LVDS_RX_P12	T17	CMOS/LVDS
127	LVDS_TX_N12	AB20	128	LVDS_RX_N12	T18	CMOS/LVDS
129	3.3V		130	12V		
131	LVDS_TX_P13	Y20	132	LVDS_RX_P13	J17	CMOS/LVDS
133	LVDS_TX_N13	AA20	134	LVDS_RX_N13	J18	CMOS/LVDS
135	3.3V		136	12V		

137	LVDS_TX_P14	U22	138	LVDS_RX_P14	L18	CMOS/LVDS
13/	LVD0_IN_II4	022	130	2720_101_114	Elio	Chief, Ev De
139	LVDS_TX_N14	U21	140	LVDS_RX_N14	K19	CMOS/LVDS
141	3.3V		142	12V		
143	LVDS_TX_P15	T22	144	LVDS_RX_P15	L19	CMOS/LVDS
					_	
145	LVDS_TX_N15	R22	146	LVDS_RX_N15	L20	CMOS/LVDS
1.45	o oV		148	12V		
147	3.3V		140	127		
149	LVDS_TX_P16	G22	150	LVDS_RX_P16	R19	CMOS/LVDS
.,,						,
151	LVDS_TX_N16	G21	152	LVDS_RX_N16	P19	CMOS/LVDS
153	3.3V		154	12V		
155	CLKOUT_2P	AA22	156	CLKIN_2P	T15	LVDS CLKp/CMOS
157	CLKOUT_2N	AB22	158	CLKIN_2N	R15	LVDS CLKn/CMOS
				CMD		
159	3.3V		160	GND		

4 - Mechanical and Assembly drawing

4.1 - Top Assembly

4.2 - Connectors and jumpers

4.3 - Mechanical

5 - Web Link

Armadeus Systems general documentation: http://www.armadeus.org

APF6_Dev wiki page: http://www.armadeus.com/wiki/index.php?title=APF6_Dev

APF6 wiki page: http://www.armadeus.com/wiki/index.php?title=APF6

6 - Component Link

MCP2551: http://ww1.microchip.com/downloads/en/DeviceDoc/21667f.pdf

MCP79400: http://ww1.microchip.com/downloads/en/DeviceDoc/20005009D.pdf

SGTL5000: http://cache.freescale.com/files/analog/doc/data_sheet/SGTL5000.pdf

Hilo2: http://support.sagemcom.com/site/modele_fax.php?page=spec_gen&prd=HiloV2&pays=uk

Hilo3G: http://support.sagemcom.com/site/modele_fax.php?page=spec_gen&prd=Hilo3g&pays=uk

Neo6: http://www.ublox.com/images/downloads/Product_Docs/NEO-6_DataSheet_%28GPS.G6-HW-

<u>09005%29.pdf</u>