Machine Learning Assignment # 2 Universität Bern

Due date: 11/10/2017

Late submissions will incur a penalty. Submit your answers in ILIAS (as a pdf or as a picture of your written notes if the handwriting is very clear). Submission instructions will be provided via email.

You are not allowed to work with others.

Calculus review [Total 100 points]

Recall that the Jacobian of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is an $m \times n$ matrix of partial derivatives

$$Df(x) = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \cdots & \frac{\partial f_2(x)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \frac{\partial f_m(x)}{\partial x_2} & \cdots & \frac{\partial f_m(x)}{\partial x_n} \end{bmatrix}$$

where $x = [x_1 \ x_2 \ \dots \ x_n]^{\top}$, $f(x) = [f_1(x) \ f_2(x) \ \dots \ f_m(x)]^{\top}$ and $\frac{\partial f_i(x)}{\partial x_j}$ is the partial derivative of the *i*-th output with respect to the *j*-th input. When f is a scalar-valued function (*i.e.*, when $f: \mathbb{R}^n \to \mathbb{R}$), the Jacobian Df(x) is a $1 \times n$ matrix, *i.e.*, it is a row vector. Its transpose is called the *gradient* of the function

$$\nabla f(x) = Df(x)^{\top} = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

Also, recall that the **chain rule** is a tool to calculate gradients of function compositions. Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at x and $g: \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at f(x). Define the composition $h: \mathbb{R}^n \to \mathbb{R}^p$ by h(z) = g(f(z)). Then h is differentiable at x, with Jacobian

 $Dh(x) = Dg(z)\Big|_{z=f(x)} Df(x).$

- 1. Answer the following questions by using the above definitions (show all the steps of your working)
 - (a) Consider the function $f: \mathbb{R}^n \to \mathbb{R}^m$ and f(x) = Ax where $A \in \mathbb{R}^{m \times n}$. Show that Df(x) = A. [10 points]
 - (b) Consider the function $g: \mathbb{R}^n \to \mathbb{R}$ and $g(x) = x^\top x$. Calculate $\nabla g(x)$. [10 points]
 - (c) Consider the function $h: \mathbb{R}^n \to \mathbb{R}$ and $h(x) = x^\top Qx$, where $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix. Calculate $\nabla h(x)$ by using the chain rule, the Jacobian in (a), and without calculating any partial derivative. [20 points]
 - (d) Consider the function $f: \mathbb{R}^n \to \mathbb{R}$, where $f(x) = ||Ax b||^2$, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Calculate $\nabla h(x)$ by using the chain rule, the Jacobian in (a), and without calculating any partial derivative. [10 points]
- 2. Show that $tr(A^2) \leq tr(A^T A)$ for any matrix $A \in \mathbb{R}^{m \times m}$. [10 points]
- 3. Assume $A \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{m \times n}$, and $B \in \mathbb{R}^{m \times m}$. Show that
 - $\nabla_X tr(AX^T) = A$ [10 points]
 - $\nabla_X tr(X^T A) = A$ [10 points]
 - $\nabla_X tr(AX^TB) = BA$. [10 points]
- 4. Find the vector $\hat{x} = \arg\min_{x} \frac{x^T A x}{x^T x}$, where $A \in \mathbb{R}^{m \times m}$ is a real symmetric matrix. [10 points]