

ENE310

FILTER DESIGN

PRACTICAL 2

Name and Surname	Student Number	Signature
L.M. Burgess	18015001	Liam)

By submitting this assignment I confirm that I have read and am aware of the University of Pretoria's policy on academic dishonesty and plagiarism and I declare that the work submitted in this assignment is my own as delimited by the mentioned policies. I explicitly declare that no parts of this assignment have been copied from current or previous students' work or any other sources (including the internet), whether copyrighted or not. I understand that I will be subjected to disciplinary actions should it be found that the work I submit here does not comply with the said policies.

Contents

1	Intro	ntroduction 6						
2	Des	ign obj	ectives	6				
3	Deta	ail Desi	ign	7				
	3.1	Desig	n Choice	7				
	3.2	Transf	er function	8				
	3.3	Secon	nd order Copy paste	8				
	3.4	Eight (order from cascaded design	8				
	3.5	Multife	edback implementation	9				
		3.5.1	Design equations	9				
	3.6	Ideal o	component design	10				
		3.6.1	Copy and paste second order filter	10				
		3.6.2	Cascaded second order filter	10				
		3.6.3	LTspice ideal copy-paste filter diagram	11				
		3.6.4	LTspice ideal cascade filter diagram	11				
	3.7	E6/E1	2 Resistor and Capacitor component design	12				
		3.7.1	Copy and paste second order filter	12				
		3.7.2	Cascaded filter	12				
		3.7.3	LTspice E6/E12 copy-paste filter diagram	13				
		3.7.4	LTspice E6/E12 cascade filter diagram	13				
	3.8	Altern	ate tolerance: E96/E24 Resistor and Capacitor component design	14				
		3.8.1	Copy and paste second order filter	14				
		3.8.2	Cascaded filter	14				
		3.8.3	LTspice E96/E24 copy-paste filter diagram	15				
		3.8.4	LTspice E96/E24 cascade filter diagram	15				
	3.9	Op-an	np considerations	16				

	3.10) Non-ic	deal circuits	17
4	Res	ults an	d simulations	18
	4.1	Copy-	paste transfer function	18
		4.1.1	Transfer function amplitude response of copy-paste filter	18
		4.1.2	Copy-paste cut off and design frequency	19
	4.2	Casca	ded transfer function	20
		4.2.1	Transfer function amplitude response of cascaded filter	20
		4.2.2	Copy-paste cut off and design frequency	20
	4.3	Comp	arison of transfer functions	21
		4.3.1	Amplitude response	21
		4.3.2	Unity frequency	21
		4.3.3	Phase comparison	22
	4.4	ldeal o	pircuit	23
	4.5	Сору	and paste Bessel multi-feedback low-pass filter	23
		4.5.1	Frequency response	23
		4.5.2	Transient response	24
		4.5.3	Interpretation of results for ideal copy-paste filter	26
	4.6	Casca	ded Bessel multi-feedback low-pass filter	27
		4.6.1	Frequency response	27
		4.6.2	Transient response	28
		4.6.3	Interpretation of results for ideal cascaded filter	30
	4.7	E6/E1	2 circuit	31
	4.8	Сору	and paste Bessel multi-feedback low-pass filter	31
		4.8.1	Frequency response	31
		4.8.2	Transient response	32
	4.9	Casca	ded Bessel multi-feedback low-pass filter	34
		4.9.1	Frequency response	34

Α	Theory questions	56
6	Conclusion	55
5	Discussion of results	54
	4.16.4 Interpretation of results for approximated and non-ideal filters	53
	4.16.3 Cut off amplitude response	52
	4.16.2 Amplitude response	51
	4.16.1 Frequency response	50
	4.16 Monte Carlo	50
	4.15.3 Transient response	49
	4.15.2 Frequency response vs MCP604	48
	4.15.1 Frequency response vs LF347	47
	4.15 Cascaded Bessel multi-feedback low-pass filter	47
	4.14.3 Transient response	45
	4.14.2 Frequency response of MCP604	44
	4.14.1 Frequency response of LM347	43
	4.14 Copy and paste Bessel multi-feedback low-pass filter	43
	4.13 Non-ideal components circuit	43
	4.12.2 Transient response	40
	4.12.1 Frequency response	40
	4.12 Cascaded Bessel multi-feedback low-pass filter	40
	4.11.2 Transient response	38
	4.11.1 Frequency response	37
	4.11 Copy and paste Bessel multi-feedback low-pass filter	37
	4.10 E96/E24 circuit	37
	4.9.2 Transient response	35

	A.1	Explain the difference between the natural frequency and the cut-off frequency. How does the relationship between the two vary for Chebyshev and Butterworth responses?	56
	A.2	Designers need to choose between topologies when implementing their filters. What are some reasons that a designer may choose a KRC filter over a Multiple Feedback filter?	56
	A.3	Designers need to choose between topologies when implementing their filters. What are some reasons that a designer may choose a Multiple Feedback filter over a KRC filter?	56
	A.4	In cascade design, how would one order the different sections?	56
В	Pyth	non code	57
Li	ist d	of Figures	
	1	Ideal copy-paste filter diagram	11
	2	Ideal cascade filter diagram	11
	3	Ideal copy-paste filter diagram	13
	4	Ideal cascade filter diagram	13
	5	Ideal copy-paste filter diagram	15
	6	Ideal cascade filter diagram	15
	7	MCP604 (top), LF347 (middle), Ideal (bottom) filter circuit diagrams	17
	8	Copy-paste python simulation	18
	9	Copy-paste cut-off and design frequency	19
	10	Cascade python simulation	20
	11	Cascade cut-off and design frequency	20
	12	Comparison of amplitude responses, purple is CP, red is Cas	21
	13	Comparison of unity frequencies, purple is CP, red is Cas	21
	14	Comparison of phase, purple is CP, red is Cas	22
	15	Frequency response	23
	16	Transient response of voltage gain	24
	17	Transient response of phase and gain at cut-off frequency	25

18	Frequency response	27
19	Transient response of voltage gain	28
20	Transient response of phase and gain at cut-off frequency	29
21	Frequency response	31
22	Transient response of voltage gain	32
23	Transient response of phase and gain at cut-off frequency	33
24	Frequency response	34
25	Transient response of voltage gain	35
26	Transient response of phase and gain at cut-off frequency	36
27	Frequency response	37
28	Transient response of voltage gain	38
29	Transient response of phase and gain at cut-off frequency	39
30	Frequency response	40
31	Transient response of voltage gain	41
32	Transient response of phase and gain at cut-off frequency	42
33	Frequency response	43
34	Frequency response	44
35	Transient response of voltage gain	45
36	Transient response of phase and gain at cut-off frequency	46
37	Frequency response	47
38	Frequency response	48
39	Transient response of phase and gain at cut-off frequency	49
40	Monte Carlo analysis of Frequency response	50
41	Monte Carlo analysis of Amplitude response	51
42	Monte Carlo analysis of Cut off amplitude response	52

1 Introduction

Filter design is an important process for deigning unique high quality filters. The designer is able to create and optimize the filter based on the topology and hyper parameters it is made up of. The different design parameters require optimisation and fine tuning to maximise the design goals and to compensate for physical deficiencies which may exist. The design process and parameters are investigated.

2 Design objectives

Design two eighth order filters. One where a second order filter is copy and pasted (CP) four times to make an eighth order system. The second is designed using cascaded design with frequency and quality factor scaling. The filter is required to be a Bessel filter with a cutoff (design) frequency of 56.8KHz. The topology of the circuit must be researched and chosen (KRC, Multifeedback). The quality factor and frequency may then be observed from the simulations. The component tolerances must be investigated with different resistor and capacitor standards. The hyper parameters such as the quality may be affected by the component tolerance. Monte Carlo may also be used to investigate the tolerances. Physical op-amps are also investigated to simulate affects the likes of voltage offset and gain bandwidth product on the filter and it's response.

3 Detail Design

3.1 Design Choice

A multifeedback low pass filter was chosen for design and synthesis. The multifeedback topology allows potentially easier manipulation of the quality factor (Q) and gain at the expense of more components. Multifeedback circuit's also do not lose accuracy as fast as sallen-key circuits do at higher gains. A gain of ten is chosen for the design. Multifeedback circuits are also less sensitive to component changes (variance) which is beneficial when the tolerance of the component is unpredictable. At higher Q values the sallen-key may ripple more than the multifeedback around the resonance frequency. Albeit a Bessel filter is being designed for thus an extremely high Q will be required for any ripple to exist.

Sallen-keys however do possess more accuracy around the cut-off frequency. They will begin to attenuate closer to the value than a multifeedback would. However Bessel as it is normalized to be cascaded it loses a bit of accuracy around the cut off frequency as well. An alternate design with KRC will be included to observe the accuracy difference around the cut-off. The KRC also possess a lower noise gain than the multifeedback at lower frequencies.

The trade-off of a slightly less accurate low pass with multifeedback around the design frequency but better scaling with Q, and the gain due to more customization with components deems multifeedback as the choice for the design. The noise gain may be reduced into the circuit through physical measures such as buffers, shorter wires and the ordering of the cascade discussed further in the report.

3.2 Transfer function

The low pass transfer function of a second order circuit is given[1]:

$$H(jf) = \frac{H_0}{1 - (\frac{f}{f_c})^2 + (\frac{jf}{f_c})/Q} \tag{1}$$

The function is realized within python, code is attached in appendix B.

3.3 Second order Copy paste

From the cascade design table for a second order Bessel filter cascaded through copy and pasting (CP) to an eight order:

$$Q = 0.577$$

 $f_{scale} = 1.274$

$$H_{CP}(jf) = \left(\frac{H_0}{1 - (\frac{f}{f_{scale}*f_c})^2 + (\frac{jf}{f_{scale}*f_c})/Q}\right)^4$$
 (2)

The transfer function is multiplied by itself four times in identical cascaded design.

3.4 Eight order from cascaded design

Table of the different scaling frequencies and quality factors for each stage of eighth order Bessel:

Stage (n)	$f_{scale-n}$	Q_n
1	1.784	0.506
2	1.838	0.560
3	1.958	0.711
4	2.196	1.226

The transfer function follows the form of a second order above with each function being a stage with different Q and scaling frequencies:

$$H(jf) = \left(\frac{\sqrt[4]{H_0}}{1 - (\frac{f}{f_{scale-1}*f_c})^2 + (\frac{jf}{f_{scale-1}*f_c})/Q_1}\right) * \left(\frac{\sqrt[4]{H_0}}{1 - (\frac{f}{f_{scale-2}*f_c})^2 + (\frac{jf}{f_{scale-2}*f_c})/Q_2}\right) * \left(\frac{\sqrt[4]{H_0}}{1 - (\frac{f}{f_{scale-3}*f_c})^2 + (\frac{jf}{f_{scale-3}*f_c})/Q_3}\right) * \left(\frac{\sqrt[4]{H_0}}{1 - (\frac{f}{f_{scale-3}*f_c})^2 + (\frac{jf}{f_{scale-3}*f_c})/Q_4}\right)$$
(3)

Multifeedback implementation 3.5

3.5.1 **Design equations**

The equations are applied in the following order to derive components values: Determining the capacitance spread value n:

$$n \ge 4 * Q^2(1 + H_0) \tag{4}$$

Choosing capacitor values such that:

$$n = \frac{C_1}{C_2} \tag{5}$$

 R_3 may then be found:

$$R_3 = \frac{1 + \sqrt{1 - 4 * Q^2 * (1 + H_0)/n}}{2 * \omega_0 * Q * C_2} \tag{6}$$

and subsequently R_1 and R_2 :

$$R_1 = \frac{R_3}{H_0} \tag{7}$$

$$R_{1} = \frac{R_{3}}{H_{0}}$$

$$R_{2} = \frac{1}{\omega_{0}^{2} * R_{3} * C_{1} * C_{2}}$$
(8)

Smaller values for C_1 and C_2 allow for larger values for the resistors which prevents excessive power draw from small resistances and large currents.

3.6 Ideal component design

The formulae above used in conjunction with the design frequency, frequency scaling factors, and Q are used to design an ideal filter realization. The ideal filter realizations do not use any set component standard. Raw numerical values are used for each component where possible.

The design frequency is 56.8KHz and a value of 100 pico-farads for capacitor C_2 is chosen.

3.6.1 Copy and paste second order filter

The gain is spread evenly among each stage as each stage is a duplicate.

Table showing ideal values of copy and paste filter:

H0	Fn	Q	n₋chosen	C1	C2	R1	R2	R3
1.778	1.274	0.577	3.699	3.699E-10	1.0E-10	1.07E+04	6.86E+03	1.91E+04
1.778	1.274	0.577	3.699	3.699E-10	1.0E-10	1.07E+04	6.86E+03	1.91E+04
1.778	1.274	0.577	3.699	3.699E-10	1.0E-10	1.07E+04	6.86E+03	1.91E+04
1.778	1.274	0.577	3.699	3.699E-10	1.0E-10	1.07E+04	6.86E+03	1.91E+04

3.6.2 Cascaded second order filter

Gain is also spread between each stage evenly.

Table showing ideal values of cascaded filter:

H0	Fn	Q	n₋chosen	C1	C2	R1	R2	R3
1.778	1.784	0.506	2.845	2.845E-10	1.000E-10	8.73E+03	5.59E+03	1.55E+04
1.778	1.838	0.56	3.485	3.485E-10	1.000E-10	7.65E+03	4.90E+03	1.36E+04
1.778	1.958	0.711	5.617	5.618E-10	1.000E-10	5.66E+03	3.62E+03	1.01E+04
1.778	2.196	1.226	16.703	1.670E-09	1.000E-10	2.93E+03	1.87E+03	5.20E+03

3.6.3 LTspice ideal copy-paste filter diagram

Figure 1: Ideal copy-paste filter diagram

3.6.4 LTspice ideal cascade filter diagram

Figure 2: Ideal cascade filter diagram

3.7 E6/E12 Resistor and Capacitor component design

The values from the ideal component design tables are approximated with real world components using the E6 resistor and E12 Capacitor standards.

3.7.1 Copy and paste second order filter

Table showing E6/E12 values of copy and paste filter:

C1	C2	R1	R2	R3
3.60E-10	1E-10	1.00E+04	6.81E+03	1.91E+04
3.60E-10	1E-10	1.00E+04	6.81E+03	1.91E+04
3.60E-10	1E-10	1.00E+04	6.81E+03	1.91E+04
3.60E-10	1E-10	1.00E+04	6.81E+03	1.91E+04

3.7.2 Cascaded filter

Table showing E6/E12 values of cascaded filter:

C1	C2	R1	R2	R3
2.70E-10	1E-10	1.00E+04	4.70E+03	1.50E+04
3.30E-10	1E-10	6.80E+03	4.70E+03	1.50E+04
5.60E-10	1E-10	4.70E+03	3.30E+03	1.00E+04
1.80E-09	1E-10	3.30E+03	2.20E+03	4.70E+03

3.7.3 LTspice E6/E12 copy-paste filter diagram

Figure 3: Ideal copy-paste filter diagram

3.7.4 LTspice E6/E12 cascade filter diagram

Figure 4: Ideal cascade filter diagram

3.8 Alternate tolerance: E96/E24 Resistor and Capacitor component design

In addition to the E6/E12 standard, the values from the ideal component design tables are approximated with real world components using the E96 resistor and E24 Capacitor standards. These values are used in conjunction with non ideal op-amps for testing.

3.8.1 Copy and paste second order filter

Table showing E6/E12 values of copy and paste filter:

C1	C2	R1	R2	R3
3.90E-10	1E-10	1.00E+04	6.80E+03	2.20E+04
3.90E-10	1E-10	1.00E+04	6.80E+03	2.20E+04
3.90E-10	1E-10	1.00E+04	6.80E+03	2.20E+04
3.90E-10	1E-10	1.00E+04	6.80E+03	2.20E+04

3.8.2 Cascaded filter

Table showing E6/E12 values of cascaded filter:

C1	C2	R1	R2	R3
2.70E-10	1E-10	1.00E+04	4.70E+03	1.50E+04
3.30E-10	1E-10	6.80E+03	4.70E+03	1.50E+04
5.60E-10	1E-10	4.70E+03	3.30E+03	1.00E+04
1.80E-09	1E-10	3.30E+03	2.20E+03	4.70E+03

3.8.3 LTspice E96/E24 copy-paste filter diagram

Figure 5: Ideal copy-paste filter diagram

3.8.4 LTspice E96/E24 cascade filter diagram

Figure 6: Ideal cascade filter diagram

3.9 Op-amp considerations

Two operational amplifier designs are considered within the investigation for component variations:

- 1. Ideal universal op-amp for ideal and single parameter testing considerations:
 - Gain bandwidth product is fixed at 10MHz
 - Voltage off-set is set to zero
- 2. LF347 op-amp for practical-real-life considerations
 - Gain bandwidth product is 4MHz
 - Voltage off-set is given as 5mV typically
- 3. Additionally the MCP604's frequency response is observed
 - Gain bandwidth product is 10MHz
 - Voltage off-set is given as 5μV typically

3.10 Non-ideal circuits

The E24/E96 resistor and capacitor standard circuit used in conjunction with the MCP604 and LF347 op-amps for non-ideal simulations.

Figure 7: MCP604 (top), LF347 (middle), Ideal (bottom) filter circuit diagrams

4 Results and simulations

4.1 Copy-paste transfer function

4.1.1 Transfer function amplitude response of copy-paste filter

Figure 8: Copy-paste python simulation

4.1.2 Copy-paste cut off and design frequency

Figure 9: Copy-paste cut-off and design frequency

4.2 Cascaded transfer function

4.2.1 Transfer function amplitude response of cascaded filter

Figure 10: Cascade python simulation

4.2.2 Copy-paste cut off and design frequency

Figure 11: Cascade cut-off and design frequency

4.3 Comparison of transfer functions

4.3.1 Amplitude response

Figure 12: Comparison of amplitude responses, purple is CP, red is Cas

4.3.2 Unity frequency

Figure 13: Comparison of unity frequencies, purple is CP, red is Cas

4.3.3 Phase comparison

Figure 14: Comparison of phase, purple is CP, red is Cas

4.4 Ideal circuit

4.5 Copy and paste Bessel multi-feedback low-pass filter

4.5.1 Frequency response

Figure 15: Frequency response

4.5.2 Transient response

Gain response

Figure 16: Transient response of voltage gain

Cut-off frequency transient response

Figure 17: Transient response of phase and gain at cut-off frequency

4.5.3	Inter	pretation	of res	ults for	ideal	copy-	paste filter
-------	-------	-----------	--------	----------	-------	-------	--------------

Ga	in
	Roll-off
	Cut-off
	Design frequency and natural frequency
	Final Q factor
	Unity frequency
	Phase shift

4.6 Cascaded Bessel multi-feedback low-pass filter

4.6.1 Frequency response

Figure 18: Frequency response

4.6.2 Transient response

Gain response

Figure 19: Transient response of voltage gain

Cut-off frequency transient response

Figure 20: Transient response of phase and gain at cut-off frequency

Gai	n
I	Roll-off
(Cut-off
I	Design frequency and natural frequency
İ	Final Q factor
ı	Unity frequency
ı	Phase shift

4.7 E6/E12 circuit

4.8 Copy and paste Bessel multi-feedback low-pass filter

4.8.1 Frequency response

Figure 21: Frequency response

4.8.2 Transient response

Gain response

Figure 22: Transient response of voltage gain

Cut-off frequency transient response

Figure 23: Transient response of phase and gain at cut-off frequency

4.9 Cascaded Bessel multi-feedback low-pass filter

4.9.1 Frequency response

Figure 24: Frequency response

4.9.2 Transient response

Gain response

Figure 25: Transient response of voltage gain

Figure 26: Transient response of phase and gain at cut-off frequency

4.10 E96/E24 circuit

4.11 Copy and paste Bessel multi-feedback low-pass filter

4.11.1 Frequency response

Figure 27: Frequency response

4.11.2 Transient response

Gain response

Figure 28: Transient response of voltage gain

Figure 29: Transient response of phase and gain at cut-off frequency

4.12 Cascaded Bessel multi-feedback low-pass filter

4.12.1 Frequency response

Figure 30: Frequency response

4.12.2 Transient response

Gain response

Figure 31: Transient response of voltage gain

Figure 32: Transient response of phase and gain at cut-off frequency

4.13 Non-ideal components circuit

The circuits are comprised of E96/E24 resistors and capacitors with the op-amp being LF347.

4.14 Copy and paste Bessel multi-feedback low-pass filter

4.14.1 Frequency response of LM347

Figure 33: Frequency response

4.14.2 Frequency response of MCP604

Figure 34: Frequency response

4.14.3 Transient response

Gain response

Figure 35: Transient response of voltage gain

Figure 36: Transient response of phase and gain at cut-off frequency

4.15 Cascaded Bessel multi-feedback low-pass filter

4.15.1 Frequency response vs LF347

Figure 37: Frequency response

4.15.2 Frequency response vs MCP604

Figure 38: Frequency response

4.15.3 Transient response

Figure 39: Transient response of phase and gain at cut-off frequency

4.16 Monte Carlo

Monte carlo analysis of the cascaded circuit for further observations

4.16.1 Frequency response

Figure 40: Monte Carlo analysis of Frequency response

4.16.2 Amplitude response

Figure 41: Monte Carlo analysis of Amplitude response

4.16.3 Cut off amplitude response

Figure 42: Monte Carlo analysis of Cut off amplitude response

	4.16.4	Interpretation	of results for	approximated	and non-ideal filters
--	--------	----------------	----------------	--------------	-----------------------

Ga	ain
	Roll-off
	Cut-off
	Design frequency and natural frequency
	Final Q factor
	Unity frequency
	Phase shift

5 Discussion of results

6 Conclusion

Two eighth order filters were successfully implemented. A second order Bessel multifeed-back filter was copy and pasted four times to make an eighth order filter to a certain degree of success. A high order cascaded filter was successfully designed and simulated. A multifeedback circuit was successfully designed and implemented for both filters. Both circuits were investigated using varying physical components and different resistor-capacitor standards. The standards being the E96/E24 and E6/E12 standards and the MCP604 and LM347 op-amps investigated. Monte Carlo analysis was also successfully used for further observation of the cascaded circuit for varying component tolerances. The frequency error was observed for the Bessel filter of the cascaded filter. The cascaded filter was found to have a a closer resemblance to the ideal transfer function response than the copy-paste filter which performed well as a filter but not at the required design requirements.

A Theory questions

A.1 Explain the difference between the natural frequency and the cutoff frequency. How does the relationship between the two vary for Chebyshev and Butterworth responses?

The natural frequency of a filter is the frequency at which the the signal leaves the passband. This is the case for the Chebyshev filter which ripples before leaving the passband past the cut off frequency. The natural frequency may be the same as the cut off frequency. Which is the case for the Butterworth filter. The cut off frequency is the frequency at which the signal lowers to 3dB less than the maximum gain (in dB). This is where the gain is $1/\sqrt{2}$ the maximum gain. No distortion may be picked up by a human ear before this point as the gain reduces.

A.2 Designers need to choose between topologies when implementing their filters. What are some reasons that a designer may choose a KRC filter over a Multiple Feedback filter?

The KRC topology is less sensitive to noise for low frequency operations with low Q values. The sallen key does not invert its input at each stage. Gain accuracy is higher especially when used as a unity gain filter. The amount of components may also be potentially less in this topology.

A.3 Designers need to choose between topologies when implementing their filters. What are some reasons that a designer may choose a Multiple Feedback filter over a KRC filter?

The mutlifeedback is less sensitive to component variations and high Q values being used in it's design. The filter topology is less sensitive to noise as frequency increases. The low pass multifeedback circuit at higher frequencies remains linear in attenuation at higher frequencies while the KRC loses attenuation linearity (and thus accuracy) from the topology of the shunt capacitor. The gain is easier to scale against Q.

A.4 In cascade design, how would one order the different sections?

The recommended order in the prescribed textbook [1]: the sections are ordered in ascending Q values for each section to avoid signal clipping and reduced dynamic range. Additional recommendations were found to be to place the highest Q stage first as to reduce the amount of internal noise which will be affected by the largest Q. Placing first allows the noise not be present or significantly reduced at the final stages output.

B Python code

```
import numpy as np
import matplotlib.pyplot as plt
import scipy as sp
from cmath import phase
def results(freq, mag, phase, title, xlab, ylab):
         plt.title(title, size=18)
         plt.xlabel(xlab, size=18)
         plt.ylabel(ylab, size=18)
         plt.grid(1)
         plt.xscale('log')
         plt.plot(freq, mag, 'r')
         plt.show()
         return
freq = np.logspace(0, 9, 500)
w_freq = freq * 2 * np.pi
fc = 56.8 * 10**3.0
wc = fc * 2 * np.pi
Gain = float(1.77827941)
def LP(Gain, Q, fn):
         wnc = float(fn * wc)
         mag = Gain / (1.0 - (w_freq / wnc) ** 2.0 + (1j * w_freq / wnc) / Q)
         return mag
mag_8_{cp} = LP(Gain, 0.577, 1.274)*LP(Gain, 0.577, 1.274)*LP(Gain
        red \hookrightarrow 1.274) * LP(Gain, 0.577, 1.274)
mag_8_ca = LP(Gain, 0.506, 1.784)*LP(Gain, 0.560, 1.838)*LP(Gain, 0.711,
        red \rightarrow 1.958) * LP(Gain, 1.226, 2.196)
#ph_1 = sp.angle(mag_8)
mag_8_ca = 20 * np.log10(np.abs(mag_8_ca))
mag_8_cp = 20 * np.log10(np.abs(mag_8_cp))
\#mag_2 = LP(2, Q)
\#mag_2 = 20 * np.log10(np.abs(mag_2))
#results(freq, mag, phase, "Test", "Hz", "dB")
plt.title("Transfer_Function_(dB)_of_8th_order_Low_Pass_Filters_against_
        red → Frequency (Hz)", size=18)
plt.xlabel("Frequency<sub>\(\sigma\)</sub>(Hz)", size=18)
plt.ylabel("|H(f)|_{\sqcup}(dB)", size=18)
plt.grid(1)
plt.xscale('log')
```

```
plt.plot(freq, mag_8_ca, 'r')
plt.plot(freq, mag_8_cp, 'm')
\#plt.axvline(x = 10**5, color = 'k', linestyle = '--')
\#plt.axvline(x = 10**6, color = 'k', linestyle = '--')
plt.axvline(x = fc, color = 'b', linestyle = '--')
\#plt.axhline(y = -3, color = 'k', linestyle = '--')
plt.axhline(y = mag_8_ca[0] - 3, color = 'k', linestyle = '--')
plt.show()
\#mag_8 = LP(2.0, 0.506)*LP(1.0, 0.56)*LP(1.0, 0.711)*LP(1.0, 1.226)
#ph_2 = sp.angle(mag_8)
\#mag_8 = 20 * np.log10(np.abs(mag_8))
\#mag_2 = LP(1, 0.506)
\#mag_2 = 20 * np.log10(np.abs(mag_2))
#plt.plot(freq, mag_8, 'g')
#plt.plot(freq, mag_2, 'm')
#plt.show()
#plt.title("Phase of Transfer Function (degrees) of an order 8 Low Pass
   red → Filter against Frequency (Hz)", size=18)
#plt.xlabel("Frequency (Hz)", size=18)
#plt.ylabel("|H(f)| (dB)", size=18)
#plt.grid(1)
#plt.xscale('log')
#plt.plot(freq, ph_1, 'r')
#plt.plot(freq, ph_2, 'm')
#plt.show()
```