Arrays and Structures: Matrix Transpose

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

Fall 2024

Outline

Matrix Transpose

Matrix Multiplication

Arrays and Structures: Sparse Matrix ADT
Matrix Transpose

Outline

Matrix Transpose

Matrix Multiplication

Transposing a Matrix (1/4)

$$M \in \mathbb{Z}^{6 \times 6}$$
:

Transposing a Matrix (1/4)

$$M \in \mathbb{Z}^{6 \times 6}$$
:

$M^{\top} \in \mathbb{Z}^{6 \times 6}$:

Transposing a Matrix (2/4)

 $M \in \mathbb{Z}^{6 \times 6}$:

	Row	Col	Value
A[0]	6	6	8
A[1]	0	0	15
A[2]	0	3	22
A[3]	0	5	-15
A[4]	1	1	11
A[5]	1	2	3
A[6]	2	3	-6
A[7]	4	0	-91
A[8]	5	2	-28

Fall 2024

Transposing a Matrix (2/4)

$M \in \mathbb{Z}^{6 \times 6}$:

	Row	Col	Value
A[0]	6	6	8
A[1]	0	0	15
A[2]	0	3	22
A[3]	0	5	-15
A[4]	1	1	11
A[5]	1	2	3
A[6]	2	3	-6
A[7]	4	0	-91
A[8]	5	2	-28

$M^{\top} \in \mathbb{Z}^{6 \times 6}$:

	Row	Col	Value
A[0]	6	6	8
A[1]	0	0	15
A[2]	0	4	91
A[3]	1	1	11
A[4]	2	1	3
A[5]	2	5	28
A[6]	3	0	22
A[7]	3	2	-6
A[8]	5	0	-15

Arrays and Structures: Sparse Matrix ADT
Matrix Transpose

Transposing a Matrix (3/4)

Algorithm 1

- for each row i,
 - place element $\langle i, j, \text{value} \rangle$ in element $\langle j, i, \text{value} \rangle$

Algorithm 2

- for each column j,
 - place element $\langle i, j, \text{value} \rangle$ in element $\langle j, i, \text{value} \rangle$

Arrays and Structures: Sparse Matrix ADT
Matrix Transpose

Transposing a Matrix (3/4)

Algorithm 1

- for each row i,
 - place element $\langle i, j, \text{value} \rangle$ in element $\langle j, i, \text{value} \rangle$

Algorithm 2

- for each column j,
 - place element $\langle i, j, \text{value} \rangle$ in element $\langle j, i, \text{value} \rangle$
- What's the difficulty for Algorithm 1?

Transposing a Matrix (4/4) $O(columns \times elements)$

```
void transpose(term a[], term b[]) { // b is set to the transpose of a
   int n, i, j, currentb;
   n = a[0].value; // total number of elements
   b[0].row = a[0].col; // rows in b = columns in a
    b[0].col = a[0].row: // columns in b = rows in a
   b[0].value = n;
    if (n > 0) { // dealing with a nonzero matrix
        currentb = 1:
        for (i=0; i<a[0].col; i++) // transpose by the columns in a
            for (j=1; j<=n; j++) // find elements from the current column
                if (a[j].col == i) { // element is in current column, add it to b
                    b[currentb].row = a[j].col;
                    b[currentb].col = a[j].row;
                    b[currentb].value = a[j].value;
                    currentb++:
                }
```

Arrays and Structures: Sparse Matrix ADT
Matrix Multiplication

Outline

Matrix Transpose

Matrix Multiplication

Arrays and Structures: Sparse Matrix ADT

Discussions

