#### Corrientes de Entrada

Las corrientes de entradas





#### Proceso de Conversión

- X Son las tareas o funciones que llevan al sistema a alcanzar sus objetivos.
- X Para alcanzar los objetivos, parte de las tareas son del mantenimiento del mismo sistema.



#### Corriente de Salida

- X La corriente de salida equivale a la exportación que el sistema hace al medio en el q se encuentra.
- X Normalmente existen varias corrientes de salida de un sistema.



# Tipos de Corriente de Salida

- X Positivas para el medio : Cuando es útil
- X Negativas para el medio : Cuando no es útil

Nota: Por medio, nos referimos al supersistema que contiene al sistema que produce salidas.



#### Corrientes de Salida





#### Problema de las salidas

- X Todo sistema depende del medio, es decir, del supersistema al que pertenece, también de sus relaciones con otros sistemas.
- X La actividad positiva o negativa de este medio hacia el sistema es el factor más importante para determinar la continuación de su existencia o desaparición.



## Sistema Viable

- X Es el sistema que puede sobrevivir.
- X Se adapta al medio y sus exigencias
- X Exporta corrientes positivas de salida al medio.
- X Adaptarse al medio se conoce como "Legalización"



#### Retroalimentación

- X ¿Cómo sabe el sistema que ha alcanzado su objetivo?
- X "Comunicación de Retroalimentación"







#### Retroalimentación





#### Retroalimentación

- X Es un mecanismo de control
- X Su objetivo es verificar si se ha logrado la meta del sistema





# Sistema, Subsistema y SuperSistema



#### Recordando los elementos de un sistema

- X Los elementos de un sistema tienen características particulares que afectan o se ven expresadas en las características del sistema total.
- X Un elemento en sí mismo puede considerarse un sistema.



# Ejemplos

- X Partes de una computadora:
  - X Unidad central de proceso
  - X Teclado
  - X Monitor
- X Partes de una planta:
  - X Hojas
  - X Raiz
  - X Flor
  - X Fruto



# ¿Qué no es un sistema?

- X No todos los elementos del sistema son otros sistemas.
- X Para que un sistema lo sea, debe cumplir con la definición de sistema y tener los atributos de los sistemas(Entradas, procesos, Salidas)
- X Los elementos que no son sistemas no realizan acciones.



#### Relaciones

- X Es una situación que se da al menos entre dos cosas, ideas o hechos cuando están unidas de manera real o imaginaria.
- X Se puede hacer referencia a una relación utilizando los términos: unión, Conexión, Interacción o Enlace.



## Importancia de las Relaciones

X Las relaciones entre las partes de un sistema como su influencia mutua es más importante que la cantidad de partes o el tamaño de las mismas.





# Ejemplos de Relaciones

- X Enlace Químico: que une a los átomos en una molécula.
- X Palabras de enlace en un mapa conceptual.
- X Redes que interconectan sistemas de información.



## ¿Los sistemas son Divisibles o Indivisibles?

- X Los sistemas aunque formados por otros individuos, su agregación y desarrollo conducen a una creciente individualización en que las partes se vuelven cada vez más diferenciadas y menos independientes.
- "un individuo es un objeto que espacial, temporal y dinámicamente, constituye algo distinto de cualquier otro ser de su misma categoría.



## ¿Los sistemas son Divisibles o Indivisibles?

- X Los sistemas consisten en individualidades, por lo tanto indivisibles como sistemas aunque posean partes y subsistemas.
- X Un sistema necesita todas sus partes para funcionar correctamente.



#### Subsistemas

- X Def: es un conjunto de partes e interrelaciones que se encuentra estructuralmente y funcionalmente dentro de un sistema mayor, y que posee sus propias características.
- X Los subsistemas son sistemas pequeños dentro de sistemas mayores.



## Sistema















#### Subsistema

- X Las salidas de los subsistemas, se utilizan en los sistemas mayores.
- X Las tareas que realizan los subsistemas ayudan a los objetivos del Sistema mayor que los contiene.



### SuperSistema

X Es el sistema que integra a los sistemas desde el punto de vista de pertenencia





#### Contenciones entre sistemas





# Tipos de Complejidad en los sistemas

- X Complejidad en detalle: el sistema tiene muchas partes y muchas relaciones.
- X Complejidad dinámica: los elementos se relacionan unos con otros de muchas formas distintas, porque cada parte puede tener diferentes estados, de este modo unas cuantas partes pueden combinarse de muchas formas.



#### Fronteras en un sistema

- X Fronteras de un Sistema: Línea que separa el sistema de su entorno o suprasistema y que define lo que le pertenece o le queda fuera de él.
- X A pesar de todo existe dificultad en fijar fronteras debido a que existe relación entre sistemas.

