Week 3 Recitation

Inner Product Spaces and Linear Map

Yahoo

UM-SJTU Joint Institute

Summer 2017

- Inner Product Spaces
- 2 Linear Map

Definition

Let V be a real or complex vector space. Then a map $<\cdot,\cdot>:V\times V\to F$ is called a scalar product or inner product if for all $u,v,w\in V$ and all $\lambda\in F$

(i)
$$\langle v, v \rangle \ge 0$$
 and $\langle v, v \rangle = 0$ if and only if $v = 0$,

(ii)
$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$$
,

(iii)
$$\langle u, \lambda v \rangle = \lambda \langle u, v \rangle$$
,

(iv)
$$\langle u, v \rangle = \overline{\langle v, u \rangle}$$
.

The pair $(V, \langle \cdot, \cdot \rangle)$ is called an inner product space.

Definition

Let V be a real or complex vector space. Then a map $<\cdot,\cdot>:V\times V\to F$ is called a scalar product or inner product if for all $u,v,w\in V$ and all $\lambda\in F$

- (i) $\langle v, v \rangle \ge 0$ and $\langle v, v \rangle = 0$ if and only if v = 0,
- (ii) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$,
- (iii) $\langle u, \lambda v \rangle = \lambda \langle u, v \rangle$,
- (iv) $\langle u, v \rangle = \overline{\langle v, u \rangle}$.

The pair $(V, \langle \cdot, \cdot \rangle)$ is called an inner product space.

Comment.

Properties (iii) and (iv) imply that

$$\langle \lambda u, v \rangle = \overline{\langle v, \lambda u \rangle} = \overline{\lambda \langle v, u \rangle} = \overline{\lambda} \langle u, v \rangle.$$

Example

• In \mathbb{C}^n we can define the inner product

$$\langle x, y \rangle := \sum_{i=1}^{n} \overline{x_i} y_i,$$
 $x, y \in \mathbb{C}^n.$

• In C([a, b]), the space of complex-valued, continuous functions on the interval [a, b], we can define an inner product by

$$\langle f, g \rangle := \int_{a}^{b} \overline{f(x)} g(x) dx, \qquad f, g \in C([a, b]).$$

Definition

Let $(V, <\cdot, \cdot>)$ be an inner product space. The map

$$\|\cdot\|\colon V\to\mathbb{R},$$

$$\|v\| = \sqrt{\langle v, v \rangle}$$

is called the induced norm on V.

Definition

Let $(V, <\cdot, \cdot>)$ be an inner product space. The map

$$\|\cdot\|\colon V\to \mathbb{R},$$

$$||v|| = \sqrt{\langle v, v \rangle}$$

is called the induced norm on V.

Example

The induced norm on C([a, b]) is

$$||f|| = \sqrt{\langle f, f \rangle} = \sqrt{\int_a^b |f(x)|^2 dx} = ||f||_2$$

Cauchy-Schwarz Inequality

Theorem

Let $(V, <\cdot, \cdot>)$ be an inner product vector space. Then

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||$$

for all $u, v \in V$

Cauchy-Schwarz Inequality

Theorem

Let $(V, <\cdot, \cdot>)$ be an inner product vector space. Then

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||$$

for all
$$u, v \in V$$

Proof.

Let
$$e := v/||v||$$
. Then $< e, e > = < v, v > /||v||^2 = 1$ and

$$0 \le ||u - \langle e, u \rangle e||^2 = \langle u - \langle e, u \rangle e, u - \langle e, u \rangle e \rangle$$

= $||u||^2 - |\langle e, u \rangle|^2$

Cauchy-Schwarz Inequality

Theorem

Let $(V, <\cdot, \cdot>)$ be an inner product vector space. Then

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||$$

for all $u, v \in V$

Proof.

Let e := v/||v||. Then < e, e > = < v, $v > /||v||^2 = 1$ and

$$0 \le ||u - \langle e, u \rangle e||^2 = \langle u - \langle e, u \rangle e, u - \langle e, u \rangle e \rangle$$

= $||u||^2 - |\langle e, u \rangle|^2$

It follows that

$$|\langle u, v \rangle|^2 = ||v||^2 \cdot |\langle u, e \rangle|^2 \le ||u||^2 \cdot ||v||^2.$$

Theorem

The induced norm is actually a norm

- i. $||v|| = 0, ||v|| = 0 \Leftrightarrow v = 0$
- ii. $||\lambda v|| = |\lambda|||v||$
- iii. $||u + v|| \le ||u|| + ||v||$

Theorem

The induced norm is actually a norm

i.
$$||v|| = 0, ||v|| = 0 \Leftrightarrow v = 0$$

ii.
$$||\lambda v|| = |\lambda|||v||$$

iii.
$$||u + v|| \le ||u|| + ||v||$$

for all $u,v \in V$ and $\lambda \in \mathbb{F}$.

Theorem

The induced norm is actually a norm

- i. $||v|| = 0, ||v|| = 0 \Leftrightarrow v = 0$
- ii. $||\lambda v|| = |\lambda|||v||$
- iii. $||u + v|| \le ||u|| + ||v||$

for all $u,v \in V$ and $\lambda \in \mathbb{F}$.

Proof.

All properties except for the triangle inequality are easily checked. By the Cauchy-Schwarz inequality, we have

$$||u + v||^{2} = ||u||^{2} + ||v||^{2} + 2\operatorname{Re}\langle u, v \rangle$$

$$\leq ||u||^{2} + ||v||^{2} + 2|\langle u, v \rangle|$$

$$\leq ||u||^{2} + ||v||^{2} + 2||u|||v||$$

$$= (||u|| + ||v||)^{2}.$$

Angle Between Vectors

Definition

Let V be a real inner product space and $u,v \in V$. We define the angle $\alpha(u,v) \in [0,\pi]$ between u and v by

$$\cos \alpha(u, v) = \frac{\langle u, v \rangle}{\|u\| \|v\|}.$$

Orthogonality

Definition

Let $(V, <\cdot, \cdot>)$ be an inner product vector space.

- (i) Two vectors $u, v \in V$ are called orthogonal or perpendicular if $\langle u, v \rangle = 0$, we then write $u \perp v$.
- (ii) We call

the orthogonal complement of a set $M \subset V$.

For short, we sometimes write $v \perp M$ instead of $v \in M^{\perp}$.

Pythagoras's Theorem.

Theorem

Let $(V, <\cdot, \cdot>)$ be an inner product space and M some subset of V. Let z=x+y, where $x\in M$ and $y\in M^\perp$. Then

$$||z||^2 = ||x||^2 + ||y||^2.$$

Orthonormal Systems

Theorem

Let $(V, <\cdot, \cdot>)$ be an inner product vector space. A tuple of vectors $(v_1, ..., v_r)$ $\subset V$ is called a (finite) orthonormal system if

$$\langle v_j, v_k \rangle = \delta_{jk} := \begin{cases} 1 & \text{for } j = k, \\ 0 & \text{for } j \neq k, \end{cases}, \qquad j, k = 1, \dots, r,$$

Orthonormal Systems

Theorem

Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product vector space and $F = (v_1, ..., v_r) \subset V$ an orthonormal system. Then the elements of $\mathcal F$ are linearly independent.

Proof.

$$\sum_{i=0}^{r} \lambda_i v_i = 0$$

$$0 = \langle v_i, 0 \rangle = \langle v_i, \sum_{i=0}^r \lambda_i v_i \rangle = \lambda_i \langle v_i, v_i \rangle = \lambda_i$$

Orthonormal Bases

Definition

Let $(V, \langle \cdot, \cdot \rangle)$ be a finite-dimensional inner product vector space and $\mathcal{B} = (e_1, ..., e_n)$ a basis of V. If \mathcal{B} is also an orthonormal system, we say that \mathcal{B} is an orthonormal basis (ONB).

Theorem

Basis representation

$$v = \sum_{j=1}^{n} \langle e_j, v \rangle e_j.$$

Projection of v onto ei

$$\pi_{e_i} v := \langle e_i, v \rangle e_i$$

Orthonormal Bases

Proof.

$$v = \sum_{i=0}^{n} \lambda_i e_i$$

$$\langle v, e_i \rangle = \langle \sum_{i=0}^n \lambda_i e_i, e_i \rangle = \lambda_i \langle e_i, e_i \rangle = \lambda_i$$

Orthonormal Bases

Proof.

$$v=\sum_{i=0}^n \lambda_i e_i$$

$$\langle v, e_i \rangle = \langle \sum_{i=0}^n \lambda_i e_i, e_i \rangle = \lambda_i \langle e_i, e_i \rangle = \lambda_i$$

Theorem

Let $(V, \langle \cdot, \cdot \rangle)$ be a finite-dimensional inner product vector space and $\mathcal{B} = (e_1, ..., e_n)$ a basis of V.

$$||v||^2 = \sum_{i=1}^n |\langle v, e_i \rangle|^2$$

The Projection Theorem

Definition

Let $(V, \langle \cdot, \cdot \rangle)$ be a (possibly infinite-dimensional) inner product vector space and $(e_1, ..., e_r)$, $r \in N$, be an orthonormal system in V. Denote $U := \operatorname{span}\{e_1, ..., e_r\}$. Then for every $v \in V$ there exists a unique representation

$$v = u + w$$

where $u \in U$ and $w \in U^{\perp}$

and

$$u = \sum_{i=1}^{r} \langle e_i, v \rangle e_i, \ w := v - u.$$

The Projection Theorem

Definition

Let $(V, \langle \cdot, \cdot \rangle)$ be a (possibly infinite-dimensional) inner product vector space and $(e_1, ..., e_r)$, $r \in N$, be an orthonormal system in V. Denote $U := \text{span}\{e_1, ..., e_r\}$. Then for every $v \in V$ there exists a unique representation

$$v = u + w$$

where $u \in U$ and $w \in U^{\perp}$

and

$$u = \sum_{i=1}^{r} \langle e_i, v \rangle e_i, \ w := v - u.$$

Proof.

Slides 94-95. Repeat the proof by yourself as a practice.

Bessel's Inequality

Theorem

Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and $(e_1, ..., e_r)$ an orthonormal system in V. Then, for every $v \in V$ and any $r \leq n$,

$$\sum_{k=1}^{r} |\langle e_k, v \rangle|^2 \le ||v||^2$$

Theorem

Best approximation

$$v \approx \sum_{i=1}^{r} \lambda_i e_i,$$

Gram-Schmidt Orthonormalization

Theorem

Assume that we have a system of vectors (perhaps a basis) $(v_1, ..., v_r)$ in an inner product vector space V. We wish to construct a new system $(w_1, ..., w_r)$ that is orthonormal.

$$w_{k} := \frac{v_{k} - \sum_{j=1}^{k-1} \langle w_{j}, v_{k} \rangle w_{j}}{\|v_{k} - \sum_{j=1}^{k-1} \langle w_{j}, v_{k} \rangle w_{j}\|}$$

- Inner Product Spaces
- 2 Linear Map

Definition

Let (U, \oplus, \odot) and (U, \boxplus, \boxdot) be vector spaces that are either both real or both complex. Then a map $L: U \to V$ is said to be linear if it is both homogeneous

$$L(\lambda \odot u) = \lambda \boxdot L(u)$$

and additive

$$L(u \oplus u') = L(u) \boxplus L(u'),$$

The set of all map $L: U \to V$ is $\mathcal{L}(U, V)$.

Comment.

- Usually, \oplus and \boxplus are just +, \odot and \boxdot are just \cdot .
- A linear map $L: U \rightarrow V: L(0) = 0$.

Example

- (i) All linear maps $\mathbb{R} \to \mathbb{R}$ are of the form $x \mapsto \alpha x$ for some $\alpha \in \mathbb{R}$.
- (ii) For $I \subset \mathbb{R}$, the map $\frac{d}{dx}$: $f \mapsto f'$ is a linear map $C^1(I) \to C(I)$.
- (iii) The map $(a_n) \mapsto a_0$ is a linear map from the space of all sequences to \mathbb{C} .
- (iv) The map $(a_n) \mapsto \lim_{n \to \infty} a_n$ is linear map from the space of all convergent sequences to \mathbb{C} .
- (v) If $\mathbb C$ is regarded as a real vector space, the map $z\mapsto \overline z$ is linear $\mathbb C\to\mathbb C$. It is not linear if $\mathbb C$ is regarded as a complex vector space.
- (vi) For any real or complex vector space V, the map $V \ni x \mapsto c \in \mathbb{F}$ $(\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C})$ is linear if and only if c = 0.

Theorem

Let U, V be real or complex vector spaces and $(b_1,...,b_n)$ a basis of U (in particular, it is assumed that $\dim U=n$). Then for every n-tuple $(v_1,...,v_n\in V^n)$ there exists a unique linear map $L:U\to V$ such that $Lb_k=v_k$, k=1,...,n.

Theorem

Let U, V be real or complex vector spaces and $(b_1,...,b_n)$ a basis of U (in particular, it is assumed that $\dim U=n$). Then for every n-tuple $(v_1,...,v_n\in V^n)$ there exists a unique linear map $L:U\to V$ such that $Lb_k=v_k,\ k=1,...,n$.

Proof.

Slides 111-112.

Theorem

Let U, V be real or complex vector spaces and $(b_1,...,b_n)$ a basis of U (in particular, it is assumed that $\dim U=n$). Then for every n-tuple $(v_1,...,v_n\in V^n)$ there exists a unique linear map $L:U\to V$ such that $Lb_k=v_k,\ k=1,...,n$.

Proof.

Slides 111-112.

Comment.

- The identity map $id: V \rightarrow V, id(v) = v$, is linear.
- The set L(U, V) is again a vector space when endowed with pointwise addition and scalar multiplication.
- The composition of linear maps is linear.

Dual Basis

Let V be a real or complex vector space. Then $L(V,\mathcal{F})$ is known as the dual space of V and denoted by V. The dual space of V is of course itself a vector space. Let $\dim V = n$ and $\mathcal{B} = (b_1,...,b_n)$ be a basis of V. Then for every k = 1,...,n there exists a unique map

$$b_k^* \colon V \to \mathbb{F}, \qquad b_k^*(b_j) = \delta_{jk} = \begin{cases} 1, & j = k, \\ 0, & j \neq k. \end{cases}$$

Comment.

It turns out (see exercises) that the tuple of maps $\mathcal{B}^* = (b_1^*, ..., b_n^*)$ is a basis of $V^* = L(V, \mathbb{F})$ (called the dual basis of \mathcal{B}) and thus dim $V = \dim V = n$.

Range and Kernel

$$\operatorname{ran} L := \left\{ v \in V \colon \underset{u \in U}{\exists} v = Lu \right\}$$

$$\ker L := \{ u \in U : Lu = 0 \}.$$

Comment.

 $L \in \mathcal{L}(U, V)$ is injective if and only if ker $L = \{0\}$.

Nomenclature

- ▶ an *isomorphism* if *L* is bijective;
- ightharpoonup an endomorphism if U=V;
- \blacktriangleright an automorphism if U=V and L is bijective;
- epimorph if L is surjective;
- ► *monomorph* if *L* is injective.

Comment.

If L is an isomorphism, the its inverse, is also linear and hence also an isomorphism.

Isomorphisms

Theorem

L is an isomorphism if and only if for every basis $(b_1, ..., b_n)$ of U the tuple $(Lb_1, ..., Lb_n)$ is a basis of V.

Isomorphisms

Theorem

L is an isomorphism if and only if for every basis $(b_1, ..., b_n)$ of U the tuple $(Lb_1, ..., Lb_n)$ is a basis of V.

Proof.

Slides 117-118.

Isomorphisms

Theorem

L is an isomorphism if and only if for every basis $(b_1, ..., b_n)$ of U the tuple $(Lb_1, ..., Lb_n)$ is a basis of V.

Proof.

Slides 117-118.

Theorem

Two finite-dimensional vector spaces U and V are isomorphic if and only if they have the same dimension:

The Dimension Formula

 $\dim \operatorname{ran} L + \dim \ker L = \dim U$.

Proof.

Slides 120-121.

The Dimensional Theorem

Theorem

dim U= dim V. Then a linear map $L\in\mathcal{L}(U,V)$ is injective if and only if it is surjective.

The Dimensional Theorem

Theorem

dim U= dim V. Then a linear map $L\in\mathcal{L}(U,V)$ is injective if and only if it is surjective.

Proof.

$$L$$
 injective \Leftrightarrow $\ker L = \{0\}$
 \Leftrightarrow $\dim \ker L = 0$
 \Leftrightarrow $\dim \operatorname{ran} L = \dim U = \dim V$
 \Leftrightarrow $\operatorname{ran} L = V$
 \Leftrightarrow L surjective

Bounded Linear Maps and The Operator Norm

Definition

Bounded Linear Maps

$$||Lu||_V \leq c \cdot ||u||_U$$

for all $u \in U$.

Definition

The Operator Norm

$$||L|| := \sup_{\substack{u \in U \\ u \neq 0}} \frac{||Lu||_V}{||u||_U} = \sup_{\substack{u \in U \\ ||u||_U = 1}} ||Lu||_V$$

Thank you for your attention!