CAS 701

Logic and Discrete Mathematics Fall 2017

3 Propositional Logic

William M. Farmer

Department of Computing and Software McMaster University

October 16, 2017

What is Logic?

- 1. The study of the principles underlying sound reasoning.
 - ► Central idea: logical consequence.
- 2. The branch of mathematics underlying mathematical reasoning and computation.

Fundamental Distinctions

Logic makes several fundamental distinctions:

- Syntax vs. semantics.
- Language vs. metalanguage.
- Theory vs. model.
- Truth vs. proof.

What is a Logic?

- Informally, a logic is a system of reasoning.
- Formally, a logic is a family of formal languages with:
 - 1. A common syntax.
 - 2. A common semantics.
 - 3. A notion of logical consequence.
- A logic may include one or more proof systems for mechanically deriving that a given formula is a logical consequence of a given set of formulas.
- Examples:
 - Propositional logic.
 - First-order logic.
 - Simple type theory (higher-order logic).

What is Propositional Logic?

- Propositional logic is the study of the truth or falsehood of propositional formulas (or propositions) formed using propositional connectives.
 - Also called sentential logic.
 - Began with the work of the Stoic philosophers, particularly Chrysippus, in the late 3rd century BCE.
- Most other logics are extensions of propositional logic.
- Main applications:
 - Basic logical reasoning.
 - Design of logical circuits.
 - Solving problems by encoding them as satisfiability (SAT) or tautology (TAUT) problems.
- We will develop propositional logic following Capter 3 of J. H. Gallier, Logic for Computer Science, Dover, 2015.

Syntax

- Let $PS = \{P_1, P_2, ...\}$ be a countable set of symbols calle propositional symbols.
 - These are also called propositional variables or propositional letters.
- Let \bot and \top be propositional constants.
- Let \neg , \wedge , \vee , and \supset be propositional connectives.
- The set PROP of propositional formulas is the set of strings defined inductively by:
 - 1. Each $P_i \in \mathbf{PS}$ is in PROP.
 - 2. \perp and \top are in PROP.
 - 3. If A and B are in PROP, then $\neg A$, $(A \land B)$, $(A \lor B)$, and $(A \supset B)$ are also in PROP.
- PROP is defined by a more formal inductive closure (i.e., inductive type) in Gallier 2015.

Semantics [1/3]

- Let $BOOL = \{T, F\}$ be the set of standard truth values.
- The propositional constants ⊥ and ⊤ are interpreted by F and T, resprectively.
- Each propositional connective X is interpreted as a function H_X on BOOL as shown by the following truth table:

P	Q	$H_{\neg}(P)$	$H_{\wedge}(P,Q)$	$H_{\lor}(P,Q)$	$H_{\supset}(P,Q)$
T	Т	F	Т	Т	Т
T	F	F	F	Т	F
F	Т	Т	F	Т	Т
F	F	Т	F	F	Т

Semantics [2/3]

- A truth assignment or valuation is a total function
 v : PS → BOOL.
- Every valuation v uniquely extends to a total function
 ŷ : PROP → BOOL that satisfies the following conditions for all A, B ∈ PROP:
 - 1. $\hat{\mathbf{v}}(\perp) = \mathbf{F}$.
 - 2. $\hat{\mathbf{v}}(\top) = \mathbf{T}$.
 - 3. $\hat{v}(P) = v(P)$ for all $P \in \mathbf{PS}$.
 - 4. $\hat{v}(\neg A) = H_{\neg}(\hat{v}(A)).$
 - 5. $\hat{\mathbf{v}}(A \wedge B) = H_{\wedge}(\hat{\mathbf{v}}(A), \hat{\mathbf{v}}(B)).$
 - 6. $\hat{v}(A \vee B) = H_{\vee}(\hat{v}(A), \hat{v}(B)).$
 - 7. $\hat{\mathbf{v}}(A \supset B) = H_{\supset}(\hat{\mathbf{v}}(A), \hat{\mathbf{v}}(B)).$

Semantics [3/3]

- Let v be a valuation, $A \in PROP$, and $\Gamma \subseteq PROP$.
- v satisfies A, written $v \models A$, if $\hat{v}(A) = \mathbf{T}$.
- v satisfies Γ if $v \models B$ for all $B \in \Gamma$.
- A is satisfiable if $v \models A$ for some valuation v.
- A is valid, written $\models A$, if $v \models A$ for all valuations v.
 - A valid propositional formula is called a tautology.
- Lemmas. A is valid iff $\neg A$ is unsatisfiable.
- Truth tables can be used to decide whether A is satisfiable, unsatisfiable, valid, or invalid (falsifiable).
- A is a semantic consequence of Γ , written $\Gamma \vDash A$, if, for all valuations ν , $\nu \vDash \Gamma$ implies $\nu \vDash A$.
 - ► Semantic consequence is a form of logical consequence.

Complete Sets of Propositional Connectives

- A set C of propositional connectives is complete if every truth function can be represented by a propositional formula formed using only members of C.
- Examples of complete sets of propositional connectives:
 - $\blacktriangleright \{\neg, \land\}.$
 - $\blacktriangleright \{\neg, \vee\}.$
 - $\blacktriangleright \{\neg,\supset\}.$
 - ▶ {nand} (nand is known as the Sheffer stroke).
 - {nor} (nor is known as the Peirce arrow).

Sequents

- A sequent is an ordered pair $\{\Gamma, \Delta\}$ where $\Gamma = A_1, \ldots, A_m$ and $\Delta = B_1, \ldots, B_n$ are finite (possibly empty) sequences of proprositional formulas in PROP.
 - \blacktriangleright Γ is called the antecedent and Δ the succedent.
- A sequent $\{\Gamma, \Delta\}$ is written as $\Gamma \to \Delta$.
- A valuation v satisfies a sequent

$$A_1,\ldots,A_m\to B_1,\ldots,B_n$$

if

$$v \models (A_1 \land \cdots \land A_m) \supset (B_1 \lor \cdots \lor B_n).$$

• A sequent $\Gamma \to \Delta$ is satisfiable [valid] if $v \models \Gamma \to \Delta$ for some [all] valuations v.

Gentzen System *G'*

The Gentzen system G' is a proof system whose formulas are sequents where:

- 1. The axioms of G' are sequents $\Gamma \to \Delta$ such that Γ and Δ contain a common propositional formula.
- 2. G' has the following rules of inference:

$$\frac{\Gamma, A, B, \Delta \to \Lambda}{\Gamma, A \land B, \Delta \to \Lambda} \; (\land : \mathsf{left}) \quad \frac{\Gamma \to \Delta, A, \Lambda}{\Gamma \to \Delta, A \land B, \Lambda} \; (\land : \mathsf{right})$$

$$\frac{\Gamma, A, \Delta \to \Lambda \quad \Gamma, B, \Delta \to \Lambda}{\Gamma, A \lor B, \Delta \to \Lambda} \ (\lor : \mathsf{left}) \quad \frac{\Gamma \to \Delta, A, B, \Lambda}{\Gamma \to \Delta, A \lor B, \Lambda} \ (\lor : \mathsf{right})$$

$$\frac{\Gamma, \Delta \to A, \Lambda \quad B, \Gamma, \Delta \to \Lambda}{\Gamma, A \supset B, \Delta \to \Lambda} \ (\supset : \mathsf{left}) \ \frac{A, \Gamma \to B, \Delta, \Lambda}{\Gamma \to \Delta, A \supset B, \Lambda} \ (\supset : \mathsf{right})$$

$$\frac{\Gamma, \Delta \to A, \Lambda}{\Gamma, \neg A, \Delta \to \Lambda} \ (\neg : \mathsf{left}) \qquad \qquad \frac{A, \Gamma \to \Delta, \Lambda}{\Gamma \to \Delta, \neg A, \Lambda} \ (\neg : \mathsf{right})$$

Proofs and Counterexamples

- The set of deduction trees of G' is the least set of trees containing all one-node trees labeled by sequents and closed under the rules of inference of G'.
- The conclusion of a deduction tree is the sequent that labels the root of the tree.
- A deduction tree of G' is a proof tree if all the leaves of the tree are labeled by an axiom of G'.
- A deduction tree of G' is a counterexample tree if some leaf of the tree is labeled by a sequent Γ → Δ where Γ and Δ are disjoint sequences of propositional symbols.
- A sequent $\Gamma \to \Delta$ is provable in G', written $\vdash \Gamma \to \Delta$, if there is a proof tree whose conclusion is $\Gamma \to \Delta$.

Metatheorems about G'

- Theorem (Soundness). $\vdash \Gamma \to \Delta$ implies $\vDash \Gamma \to \Delta$.
- Theorem (Search Procedure). There is a procedure that terminates on every input sequent $\Gamma \to \Delta$. If $\Gamma \to \Delta$ is valid, the procedure produces a proof tree for $\Gamma \to \Delta$. If $\Gamma \to \Delta$ is invalid, it produces a counterexample tree the encodes all that falsifying valuations for $\Gamma \to \Delta$.
- Corollary (Completeness). $\models \Gamma \rightarrow \Delta$ implies $\vdash \Gamma \rightarrow \Delta$.
- Corollary (Decidability). The satisfiability and tautology problems for PROP are decidable.
 - ► The satisfiablity and tautology problems for PROP are NP-complete.