PSC 202 SYRACUSE UNIVERSITY

INTRODUCTION TO POLITICAL ANALYSIS

BIVARIATE HYPOTHESIS TESTING PART 2

EXAM

- Next week Monday: Exam #2
- Wednesday: Review
 - Please email questions etc. by tomorrow evening

WHERE WE ARE

- Formulate research question
- Propose explanation/theory, hypotheses
- Data collection process
- Use data to evaluate hypotheses
- Reassess explanation

HURDLES

- Is there a credible causal mechanism that connects X to Y?
- Can we rule out the possibility that Y could cause X?
- Is there covariation between X and Y?
- Have we controlled for all confounding variables (Z) that might make the association between X and Y spurious?

BIVARIATE RELATIONSHIPS

Independent Variable

le 		Nominal/Ordinal	Interval
Dependent Variable	Nominal/Ordinal	Cross-Tabulation	Not In This Class
	Interval	Mean Comparison	Correlation Coefficient

BIVARIATE RELATIONSHIPS

Independent Variable

le		Nominal/Ordinal	Interval
Dependent Variable	Nominal/Ordinal	Cross-Tabulation	Not In This Class
	Interval	Mean Comparison	Correlation Coefficient

CROSS-TABULATIONS

Gender

	Male	Female	Total
Approve	44.0% (11)	52.4% (22)	49.2% (33)
Do Not Approve	56.0% (14)	47.6% (20)	50.8%
Total	100%	100% (42)	100% (67)

CROSS-TABULATIONS

Gender

	Male 8.4	Female	Total
Approve	44.0% (11)	52.4%	49.2% (33)
Do Not Approve	56.0% (14)	47.6% (20)	50.8% (34)
Total	100% (25)	100% (42)	100% (67)

BIVARIATE RELATIONSHIPS

Independent Variable

e le		Nominal/Ordinal	Interval
ependent Variable	Nominal/Ordinal	Cross-Tabulation	Not In This Class
Depende	Interval	Mean Comparison	Correlation Coefficient

DEMOCRATIC PARTY

	Mean Thermometer Score	Frequency
Female	57.9	54
Male	50.0	27
Total	55.6	81

ZERO-ORDER RELATIONSHIP

	Mean Thermo	meter	Frequency
Female	57.9	7.9	54
Male	50.0		27
Total	55.6		81

BIVARIATE RELATIONSHIPS

Independent Variable

le		Nominal/Ordinal	Interval
ependent Variable	Nominal/Ordinal	Cross-Tabulation	Not In This Class
Depende	Interval	Mean Comparison	Correlation Coefficient

JOE BIDEN

r = -0.32

DONALD TRUMP

r = 0.67

 Important: Just because we find a correlation between two variables does *not* mean that the independent variable causes the dependent variable

WELL, MAYBE.

The other hurdles to causality still apply!

BIVARIATE RELATIONSHIPS

Independent Variable

le 		Nominal/Ordinal	Interval
Dependent Variable	Nominal/Ordinal	Cross-Tabulation	Not In This Class
	Interval	Mean Comparison	Correlation Coefficient

JOE BIDEN

- r=-0.32
- Correlation: Direction and strength of relation, not size

JOE BIDEN

• On average, how much higher is the thermometer score for someone who is a 20 on the liberal-conservative scale, compared to someone who is a 80?

On average, how much higher is the thermometer score for someone who is a 20 on the liberal-conservative scale, compared to someone who is a 80?

 On average, how much higher is the thermometer score for someone who is a 20 on the liberal-conservative scale, compared to someone who is a 80?

 On average, how much higher is the thermometer score for someone who is a 20 on the liberal-conservative scale, compared to someone who is a 80?

• On average, how much higher is the thermometer score for someone who is a 20 on the liberal-conservative scale, compared to someone who is a 80?

 On average, how much higher is the thermometer score for someone who is a 20 on the liberal-conservative scale, compared to someone who is a 80?

Slope=Rise over run

Slope=Rise over run=-20/60=-0.33

Slope=Rise over run

 For each one unit increase on the liberal-conservative scale, feelings towards J. Biden go down 0.33 points

NOTE

- In this case, it happens to be that slope is equal to correlation
- This does not need to be the case

Slope=Rise over run

 For each one unit increase on the liberal-conservative scale, feelings towards J. Biden go down 0.33 points

Slope=Rise over run

Slope=Rise over run

 Students who are very liberal (score=0) are expected to have a feeling thermometer score of 64.

LINEAR REGRESSION

- Linear regression: Equation that tells us direction and size of relationship between independent variable (IV) and dependent variable (DV)
- DV = Intercept + Slope * IV

Slope=Rise over run

Thermometer Score = Intercept + Slope * Lib/Cons

Slope=Rise over run

• Thermometer Score = 64 - 0.33 * Lib/Cons

WHAT THIS TELLS US

- Thermometer Score = 64 0.33 * Lib/Cons
- Can predict what someone's thermometer rating of Joe Biden will be, depending on where they are on liberal-conservative scale

WHAT THIS TELLS US

- Thermometer Score = 64 0.33 * Lib/Cons
- Lib/Cons scale of 0:
 - \bullet 64 0.33 * 0 = 64

LINE

• 64 - 0.33 * 0 = 64

LINE

WHAT THIS TELLS US

- Thermometer Score = 64 0.33 * Lib/Cons
- Lib/Cons scale of 50:
 - 64 0.33 * 50 = 47.5

LINE

• 64 - 0.33 * 50 = 47.5

LINE

64 - 0.33 * 100 = 31

BIVARIATE RELATIONSHIPS

Independent Variable

le		Nominal/Ordinal	Interval			
Dependent Variable	Nominal/Ordinal	Cross-Tabulation	Not In This Class			
	Interval	Mean Comparison	Correlation Coefficient, Linear Regression			

LINEAR REGRESSION

- A tool that tells us the direction and size of the effect of an independent variable on a dependent variable
 - both are interval-level

KENT SYVERUD

KENT SYVERUD

• Thermometer Score = 35 + 0.16 * Lib/Cons

DIFFERENT INDEPENDENT VARIABLE

Thermometer Score = 55 - 2.6 * Hours/Day

INTERPRETATION?

- Thermometer Score = 55 2.6 * Hours/Day
 - What does the 55 tell us?
 - What does the -2.6 tell us?

INTERPRETATION?

- Thermometer Score = 55 2.6 * Hours/Day
 - What does the 55 tell us?
 - A student who studies 0 hours per day has an expected thermometer score of 55
 - What does the -2.6 tell us?
 - For every one hour a student studies longer per day, their thermometer score is expected to decrease by 2.6 points

INTERPRETATION?

- Earlier we had:
 - Thermometer Score = 35 + 0.16 * Lib/Cons
- Now we have:
 - Thermometer Score = 55 2.6 * Hours/Day
- Does this mean that the effect of hours of study is larger than of how liberal-conservative students are?

Why this line?

Why not these?

MORE ON REGRESSION LINE

- How do I pick the line?
- How is linear regression useful?
- Caveats about linear regression

• Which line is better?

Actual y-value: y=28

• Predicted y-value: ŷ=19

• Prediction error: $y - \hat{y} = 28 - 19 = 9$

Actual y-value: y=1

• Predicted y-value: ŷ=14

• Prediction error: $y - \hat{y} = 1 - 14 = -13$

PREDICTION ERROR

- For each observation, we have a prediction error: y - ŷ
 - Some are positive, some are negative
- We square the prediction errors: $(y \hat{y})^2$
 - Now all are positive
 - Squared prediction errors especially large for predictions that are way off
 - e.g. prediction error 2 vs. 20
 - squared prediction errors will be 4 vs. 400

- Prediction error: $y \hat{y} = 28 19 = 9$
- Squared prediction error: 9²=81

- Prediction error: $y \hat{y} = 1 14 = -13$
- Squared prediction error: $(-13)^2 = 169$

- We sum squared prediction errors for all observations
- 81 + 169 + all the other observations = 696

- Sum of squared prediction error red line: 696
- Sum of squared prediction error blue line: 1880

BEST LINE

- The best line is the one with the smallest sum of squared prediction errors
- "Ordinary Least Squares" (OLS) Linear Regression

BEST-FITTING LINE

• Sum of squared prediction errors: 646.3

FINDINGS THE BEST LINE

 There is a lot of complicated math behind how to find the best line

$$\hat{eta} = rac{\sum x_i y_i - rac{1}{n} \sum x_i \sum y_i}{\sum x_i^2 - rac{1}{n} (\sum x_i)^2} = rac{\mathrm{Cov}[x,y]}{\mathrm{Var}[x]}, \quad \hat{lpha} = \overline{y} - \hat{eta} \, \overline{x} \; .$$

 Thankfully there are computer programs like R or Stata that do this for us....

BACK TO BIDEN EXAMPLE

. reg therm_2	libcons_1						
Source	SS	df	MS	S Number of obs		=	74
				- F(1,	72)	=	8.06
Model	3834.01698	1	3834.01698	3 Prob	> F	=	0.0059
Residual	34232.5776	72	475.452467	7 R-sq	uared	=	0.1007
				– Adj	R-squared	=	0.0882
Total	38066.5946	73	521.4602	2 Root	MSE	=	21.805
therm_2	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
libcons_1	347605	.1224088	-2.84	0.006	5916224		1035876
_cons	63.79618	4.3579	14.64	0.000	55.10887	•	72.4835

- DV: Rating of J. Biden (therm_2)
- IV: Liberal-conservative scale (libcons_1)

	. reg therm_2	libcons_1						
	Source	SS	df	MS	Number	of obs	=	74
-					- F(1, 72	2)	=	8.06
	Model	3834.01698	1	3834.01698	Prob >	F	=	0.0059
	Residual	34232.5776	72	475.452467	R-squa	red	=	0.1007
-					- Adj R-	squared	=	0.0882
	Total	38066.5946	73	521.4602	Root MS	SE	=	21.805
	therm_2	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
lotovoo	libcons_1	247605	.1224088			591622		1035876
Interce	Cons_cons	63.79618	4.3579	14.64	0.000	55.1088	7	72.4835

	. reg therm_2	libcons_1						
	Source	SS	df	MS	Numbe	er of obs	=	74
					- F(1,	72)	=	8.06
	Model	3834.01698	1	3834.01698	Prob	> F	=	0.0059
	Residual	34232.5776	72	475.452467	R-squ	uared	=	0.1007
					- Adj F	R-squared	=	0.0882
	Total	38066.5946	73	521.4602	Root	MSE	=	21.805
	therm_2	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
Slope	libcons_1 _cons	347605 63./9618	.1224088 4.3579		0.006 0.000	591622 55.1088		1035876 72.4835

. reg therm_2	libcons_1						
Source	SS	df	MS	Numb	er of obs	=	74
				- F(1,	72)	=	8.06
Model	3834.01698	1	3834.01698	B Prob	> F	=	0.0059
Residual	34232.5776	72	475.452467	7 R-sq	uared	=	0.1007
				- Adj	R-squared	=	0.0882
Total	38066.5946	73	521.4602			=	21.805
therm_2	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
libcons_1 _cons	347605 63.79618	.1224088 4.3579	-2.84 14.64	0.006 0.000	5916224 55.10887		1035876 72.4835

- Thermometer Score = 63.80 0.348 * Lib/Cons
- (I simplified numbers earlier to make math easier...)