

Find (aw, yw) in world coordinate frame
Proof using Basis vectors
•
In Linear algebra, Basis vectors are set of ontho normal unit vectors that spain the entire shaw
Shan in the set of all vectors that can be obtained by linear combinations of a given set of vectors
Shan $\{a,b\} = \{\underline{xa+bb}, \underline{xeR3}\}$
Standard Basis Vector.
For example, in $(R^2 \hat{i} = \{i\})$
For example, in (R^2) $\hat{i} = \begin{bmatrix} i \\ 0 \end{bmatrix}$, $\hat{j} = \begin{bmatrix} 0 \\ i \end{bmatrix}$ on (R^3) $\hat{i} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\hat{k} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
$ u R^n \qquad \hat{C}_i = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \qquad \hat{C}_n = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$
Basis vectors for IR" Locallo vectors innust be perpendicular/orthogonal to each other
LE They must be writ vedors LO They must show the entire shace IR"
Busis verton for (Xw, Yw) be standard busis verton in= [0], in= [0]

. Let

Any point
$$(x_w) = x_w \begin{bmatrix} 0 \\ y_w \end{bmatrix} + y_w \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Any point in the object $(x_0) = x_0 \hat{i}_0 + y_0 \hat{j}_0$

would object $(x_0) = x_0 \hat{i}_0 + y_0 \hat{j}_0$
 $(x_0) = x_0 \hat{i}_0 + y_0 \hat{j}$

$$\begin{bmatrix}
\chi_{u} \\
y_{u}
\end{bmatrix} = \begin{bmatrix}
\nu R(0) \\
\gamma R(0)
\end{bmatrix} \begin{bmatrix}
\chi_{0} \\
y_{0}
\end{bmatrix}$$

$$\begin{bmatrix}
\chi_{0} \\
\gamma R(0)
\end{bmatrix} = \begin{bmatrix}
\chi_{0} \\
\gamma R(0)
\end{bmatrix} = \begin{bmatrix}
\chi_{0} \\
\gamma R(0)
\end{bmatrix} \begin{bmatrix}
\chi_{0} \\
\gamma R(0)
\end{bmatrix} \begin{bmatrix}
\chi_{0} \\
\gamma R(0)
\end{bmatrix} = \begin{bmatrix}
\chi_{0} \\
\gamma R(0)
\end{bmatrix} \begin{bmatrix}
\chi_{0} \\
\gamma R(0)
\end{bmatrix} = \begin{bmatrix}
\chi_{0} \\
\gamma R(0)
\end{bmatrix} \begin{bmatrix}
\chi_{0} \\
\gamma R(0)
\end{bmatrix} \begin{bmatrix}
\chi_{0} \\
\gamma R(0)
\end{bmatrix} = \begin{bmatrix}
\chi_{0} \\
\gamma R(0)
\end{bmatrix} = \begin{bmatrix}
\chi_{0} \\
\gamma R(0)
\end{bmatrix} \begin{bmatrix}
\chi_{0} \\
\gamma$$

$$R^{T}R = T$$

$$R^{T} = R^{T}$$

$$R^{-1}A = T$$

ight hand hand x y (into the hapon) 2 (out paper)

Extending 2D to 3D Mb Rotation along Z-axis changes only X-Y coordinates $R(\theta_2) = \frac{1}{5} \frac{105\theta_2}{5} \frac{105\theta_2}{5} \frac{10}{5}$

$$R(\theta_{x}) = \begin{cases} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & (\cos\theta) \end{cases}$$

$$R(\theta_{x}) = \begin{cases} \cos\theta & \cos\theta \\ 0 & \cos\theta \\ -\sin\theta & \cos\theta \end{cases}$$

$$R(\theta_{x}) = \begin{cases} \cos\theta & \cos\theta \\ \cos\theta & \cos\theta \\ -\sin\theta & \cos\theta \end{cases}$$

$$R(\theta_{x}) = \begin{cases} \cos\theta & \cos\theta \\ \cos\theta & \cos\theta \\ -\sin\theta & \cos\theta \end{cases}$$

$$R(\theta_{x}) = \begin{cases} \cos\theta & \cos\theta \\ \cos\theta & \cos\theta \\ -\sin\theta & \cos\theta \end{cases}$$

$$R(\theta_{x}) = \begin{cases} \cos\theta & \cos\theta \\ \cos\theta & \cos\theta \\ -\sin\theta & \cos\theta \end{cases}$$

$$R(\theta_{x}) = \begin{cases} \cos\theta & \cos\theta \\ \cos\theta & \cos\theta \\ -\sin\theta & \cos\theta \end{cases}$$

$$R(\theta_{x}) = \begin{cases} \cos\theta & \cos\theta \\ \cos\theta & \cos\theta \\ -\sin\theta & \cos\theta \end{cases}$$

$$R(\theta_{x}) = \begin{cases} \cos\theta & \cos\theta \\ \cos\theta & \cos\theta \\ -\sin\theta & \cos\theta \end{cases}$$

$$R(\theta_{x}) = \begin{cases} \cos\theta & \cos\theta \\ \cos\theta & \cos\theta \\ -\sin\theta & \cos\theta \end{cases}$$

30 Rotation Zy Oz Zy (into the paper)

Renonautics

$$0_x = 970 ll$$
 $0_y = pitch$

 $\longrightarrow_{X}(\gamma^{0_{X}})$

Chain rotation, translation, transformations 26 = 5 R (\$) 20 2w = "R(0) 2LJ = R(O)(R(D))() $=(R(0)^{r}R(0)^{r}$

 $R = R(\theta_z)R(\theta_y)R(\theta_x)$ $your pitch hold
<math display="block">O_x \xrightarrow{\text{then }} \theta_y$ is sequence; $\frac{XYZ}{ZYX}$ $\int_{1}^{1} \theta_y \cos \theta_y d\theta_y$ $\int_{1}^{1} \frac{XYZ}{ZYX} d\theta_y$ This sequences 6 possible = Euler angle representation of 3D notation is a sequence of notation around standard axis Euler prepresentation with XYZ then Conversion from Euler engles to Rotation materia How to do the opposite?

convert from Rotation matrix to Euler angles?

$$R(0) = \begin{cases} \cos 0 & -\sin \theta \\ \sin 0 & \cos 0 \end{cases} = \begin{cases} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{cases}$$

$$0 = 1 = tom^{-1} \left(\frac{Y_{21}}{Y_{11}} \right) \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

$$0 = 0 \cdot \cot 2 \left(\frac{Y_{21}}{Y_{11}} \right) \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

$$R = R(\Psi) R(\Psi) R(\Psi) R(\Psi)$$

$$= \begin{cases} c(\Psi) - s(\Psi) \theta \\ s(\Psi) - s(\Psi) \theta \\ 0 & 1 \end{cases} = \begin{cases} c(\Psi) - s(\Psi) \theta \\ s(\Psi) - s(\Psi) \theta \\ 0 & 1 \end{cases} = \begin{cases} c(\Psi) - s(\Psi) \theta \\ s(\Psi) - s(\Psi) \theta \\ s(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi) - s(\Psi) - s(\Psi) \theta \\ c(\Psi) - s(\Psi) - s(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) \end{cases} = \begin{cases} c(\Psi) - s(\Psi) - s(\Psi$$

 $\phi = -sm^{-1}(Y_{31}) \in \{0, \pi\}$ $\frac{Y_{21}}{Y_{11}} = \frac{sm(\Psi) s(\Psi)}{cos(\Psi) c(\Psi)} \Rightarrow \Psi = orcton2(Y_{21},Y_{11})$ 0 = arctam 2 (Y32 1 Y33) Conversion from Rotation matrix to Euler angles Gunbal lock 12 17, y (into the paper) $\Theta_{x} = 30^{\circ} - \text{can bitrary}$ $\left(\left(\Theta_{y} = 90^{\circ} \right) \right)$ 10, = 45° = arbitrary deterministically
Rot mal Ewler multiple solutions angles It is impossible to Other reprentations.

prentations. It is overpossible to bresent 3D rotation with only 3 number

Degree of freedom but needs 4 numbers

3D not = 3 DOF + 1 constraint

to represent it

EAxis - angle representation F (3) Quaternions

Rot mats

Algebra

= (complex numbers)

@ Axis_angle representation

Any 3D notation com be represented as a unit rector (axis) and rotation angle around it.

axis = a = [ax, ay, az] axis = a = [ax, ay, az]

Free scalons Degree of freedom Constraint DOF of 2D Rot malnix = ? = 5 m (9) True for rotations R= Coso smo Free scalars = Two vector constraints of RTR = I = RRT 2 scalar constraints det (R) = +1 1 scalar constraints rather satisfy and rotation Reflection satisfy Reflection Reflectionnot Rotation noi sufflection det (Replection) = -1 Kodrigues notation formula Axis angle (O, K) R = I + sin 0 [kx]+(1-1050) [kx]