开发笔记

Ivan Lin

2017年1月13日

Visual Studio

Resharper插件

alt + o: .h和.cpp文件切换

alt + 鼠标: 框选模式

ctrl+k + ctrl+c: 注释代码

计算机图形学

坐标系模拟: 拇指x,食指y,中指z。左手系和右手系

标准化向量= 单位向量= 法线, $\mathbf{v}_{norm} = \frac{\mathbf{v}}{-\mathbf{v}-}$

 $\mathbf{a} + \mathbf{b}$ 几何解释: \mathbf{a} 的头连接 \mathbf{b} 的尾,然后从 \mathbf{a} 的尾向 \mathbf{b} 的头画一个向量

a - b 几何解释: a的尾连接b的尾,然后从b的头向a的头画一个向量

向量点乘: $\mathbf{a} \cdot \mathbf{b}(\mathbf{a}\mathbf{b}) = a_1b_1 + ... + a_nb_n$, 几何解释: $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} - \mathbf{b} - \mathbf{cos}\theta$ (两向量夹角)

向量投影: v分解为平行和垂直于n的两个分量。

$$\mathbf{v}_{||} = \mathbf{n} \frac{\mathbf{v} \cdot \mathbf{n}}{\underline{} - \mathbf{n} \underline{}^2} \qquad \mathbf{v}_{\perp} = \underline{} - \mathbf{v} \underline{} - \mathbf{v}_{||}$$

向量叉乘:仅可用于3D向量, $\mathbf{a} \times \mathbf{b} = \begin{bmatrix} \mathbf{a}_y \mathbf{b}_z - \mathbf{a}_z \mathbf{b}_y \\ \mathbf{a}_z \mathbf{b}_x - \mathbf{a}_x \mathbf{b}_z \\ \mathbf{a}_x \mathbf{b}_y - \mathbf{a}_y \mathbf{b}_x \end{bmatrix}$,几何解释:结果向

量垂直于原来两个向量, $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| sin\theta$, $|\mathbf{a} \times \mathbf{b}| = 0$ 表示 \mathbf{a} 与b平行或有一个为 $\mathbf{0}$

Sublime Text 2

ctrl+shift+up/down: move line up/down ctrl+alt+up/down: block edit up/down

Swift

http://blackblake.synology.me/wordpress/?p=29: Swift里的Optional和Unwrapping

PhotoShop

alt+ctrl+c: Resize Canvas

alt+ctrl+shift+s: Save for web

LaTeX