Programação Matemática - Pesquisa Operacional

Professoras Maristela Santos

Instituto de Ciências Matemáticas e de Computação - ICMC Universidade de São Paulo - USP

2015

O PROBLEMA DE TRANSPORTE

- Transportar itens de centros de *origens* a centros de *destinos*,
- São dados conhecidos do problema:
 - o custo de transporte de cada item;
 - as quantidades dos itens disponíveis em cada centro;
 - e as demandas de cada consumidor.
- O transporte deve ser efetuado de modo que as limitações de oferta em cada centro seja respeitada e a demanda de cada mercado atendida e o custo total de transporte seja mínimo.

- Transportar itens de centros de origens i a centros de destinos j,
 - lacksquare o custo de transporte de cada item (c_{ij}) ;
 - **a** as quantidades dos produtos disponíveis em cada origem i (a_i) ;
 - \blacksquare e as demandas de cada destino (d_j) .
 - Definindo as variáveis de decisão como sendo: x_{ij} =quantidade transportado do produto da origem i para o destino j.

Possíveis Aplicações

O Problema de transporte pode surgir em diversas situações.

- Transporte de alimentos de indústrias aos mercados consumidores;
- Transporte de pedras de centros de mineração para depósitos ao longo de uma rodovia em construção;
- Designação de tarefas a máquinas;
- Transporte de produção agrícola do campo até armazéns.

Exemplo 1 - transporte de bebidas

Uma indústria de bebidas possui:

- Dois centros de produção (m=2), Araraquara e São José dos Campos
- Três mercados consumidores (n = 3), São Paulo, Belo Horizonte e Rio de Janeiro.

Sejam:

- x_{ij} a quantidade do produto (uma unidade pode ser um engradado contendo dezenas de garrafas) a ser enviada do centro de produção i ao mercado consumidor j.
- c_{ij} o custo unitário do transporte de uma unidade de produto do centro de produção i ao mercado consumidor j.

Exemplos

Exemplo 1

Os custos são dados na tabela abaixo:

Centro de Suprimento	São Paulo (1)	Belo Horizonte (2)	Rio de Janeiro (3)	Suprimento Disponível a _i
Araraquara (1)	4	2	5	800
S. J. dos Campos (2)	11	7	4	1000
Demanda dos (b_j) Mercados	500	400	900	1800

- Problema de Transporte
 - └- Exemplos

Exemplo 1

O modelo matemático para este problema é dado por:

Minimizar
$$f(x_{11},...,x_{23}) = 4x_{11} + 2x_{12} + 5x_{13} + 11x_{21} + 7x_{22} + 4x_{23}$$
 sujeito a:

$$x_{11} + x_{12} + x_{13} \le 800$$

 $x_{21} + x_{22} + x_{23} \le 1000$
 $x_{11} + x_{21} = 500$
 $x_{12} + x_{22} = 400$
 $x_{13} + x_{23} = 900$
 $x_{11} > 0, x_{12} > 0, x_{13} > 0, x_{21} > 0, x_{22} > 0, x_{23} > 0$

Exemplos

Exemplo 1

A solução ótima para este exemplo:

- x13 = 800ex23 = 100. Centro de Araraquara (1) manda 800 unidades para o Rio de Janeiro (3) e S.J. dos Campos (2) manda as outras 100 unidades para o Rio de janeiro, atendendo as 900 unidades solicitadas.
- S. J. dos Campos (2) manda as 500 unidades solicitadas por Sao Paulo e as 400 unidades solicitadas por Belo Horizonte (x22 = 400).

x11	500		
x12	300		
x13	0		
x21	0		
x22	100		
x23	900		
fo	6900		
Of1	800	<=	800
Of2	1000	<=	1000
D1	500	ig	500
D2	400	ig	400
D3	900	ig	900

- Problema de Transporte
 - L Exemplos

Exemplo 2 - transporte de rochas

Considere o problema de se transportar agregados para a construção de uma rodovia e suponha que:

- Não estejam disponíveis na região jazidas de rochas adequadas à obtenção de pedra britada;
- Este material deve ser transportado de jazidas próximas para alguns pontos convenientes preestabelecidos ao longo de onde será implantada a estrada.

- Problema de Transporte
 - Exemplos

Exemplo 2 - transporte de rochas

Os caminhos que ligam cada pedreira aos pontos de depósito são representados pela figura:

Exemplos

Exemplo 2

Os custos de transporte de cada jazida aos depósitos são dados na seguinte tabela:

Pedreiras	Depósito 1	Depósito 2	Depósito 3	Oferta a _i
1	30	13	21	433
2	12	40	26	215
3	27	15	35	782
4	37	25	19	300
Demanda (b_j)	697	421	612	

 x_{ij} é a quantidade (m^3) transportada de rochas da jazida i para o deposito j.

- Problema de Transporte
 - Exemplos

Exemplo 2

O modelo matemático deste problema é dados por:

Minimizar

$$f(x_{11},...,x_{43}) = 30x_{11} + 13x_{12} + 21x_{13} + 12x_{21} + 40x_{22} + 26x_{23} + 27x_{31} + 15x_{32} + 35x_{33} + 37x_{41} + 25x_{42} + 19x_{43}$$
 sujeito a:

$$\begin{aligned} x_{11} + x_{12} + x_{13} &\leq 433 \\ x_{21} + x_{22} + x_{23} &\leq 215 \\ x_{31} + x_{32} + x_{33} &\leq 782 \\ x_{41} + x_{42} + x_{43} &\leq 300 \\ x_{11} + x_{21} + x_{31} + x_{41} &= 697 \\ x_{12} + x_{22} + x_{32} + x_{42} &= 421 \\ x_{13} + x_{23} + x_{33} + x_{43} &= 612 \end{aligned}$$

$$x_{ij} \ge 0, i = 1, ..., 4; j = 1, ...3$$

Exemplo 2 - transporte de rochas

A solução ótima para este exemplo:

x11	0		
x12	121		
x13	312		
x21	215		
x22	0		
x23	0		
x31	482		
x32	300		
x33	0		
x41	0		
x42	0		
x43	300		
fo	32719		
oferta1	433	<=	433
oferta2	215	<=	215
oferta3	782	<=	782
oferta4	300	<=	300
demanda 1	697	igual	697
demnda 2	421	igual	421
demanda 3	612	igual	612

- Problema de Transporte
 - Problema de Designação

Problema de Designação

O problema de transporte também pode surgir em outras situações. Suponha que n tarefas devam ser atribuídas a n pessoas e que p_{ij} mede o interesse do individuo i na realização da tarefa j. Variáveis de decisão:

- $\mathbf{z}_{ij} = 1$ se o individuo i for designado para a realização da tarefa j
- $x_{ij} = 0$, caso contrário.

- Problema de Transporte
 - └─ Problema de Designação

Formulação Matemática

A formulação do problema de designação (ou atribuição) é:

Maximizar
$$f(\mathbf{x_{11}}, \mathbf{x_{12}}, ..., \mathbf{x_{nn}}) = \sum_{i=1}^{n} \sum_{j=1}^{n} p_{ij} x_{ij}$$

Sendo:
$$\begin{cases} \sum_{j=1}^{n} x_{ij} = 1, i = 1, ..., n \\ \sum_{i=1}^{m} x_{ij} = 1, j = 1, ..., n \\ x_{ij} = 0 \text{ ou } 1, i = 1, ..., n \text{ e } j = 1, ..., n. \end{cases}$$

O PROBLEMA DE TRANSPORTE - Exercício

Considere o exemplo 1 - transporte de bebidas

Uma indústria de bebidas possui:

- Dois centros de produção (m=2), Araraquara (1) e São José dos Campos (2)
- Três mercados consumidores (n = 3), São Paulo(5), Belo Horizonte(6) e Rio de Janeiro(7).
- A indústria de bebidas dispõe de dois depósitos para abastecer os mercados consumidores: Campinas (3) e Barra Mansa (4).

Considere que os mercados são abastecidos apenas a partir dos depósitos (centros intermediários). Chamamos estes problemas de Problemas de transbordo

Considere o exemplo 1 - Problemas de transbordo

- Dois centros de produção (m=2), Araraquara (1) e São José dos Campos (2)
- Três mercados consumidores (n = 3), São Paulo(5), Belo Horizonte(6) e Rio de Janeiro(7).
- A indústria de bebidas dispõe de dois depósitos para abastecer os mercados consumidores: Campinas (3) e Barra Mansa (4).

Exemplos

Exercício

Os custos unitários de transporte de centros de suprimento aos depósitos são dados na tabela abaixo:

	Campinas(3)	Barra Mansa(4)
Araraquara (1)	1	3
S.J. Campos(2)	1	2

Exemplos

Exercício

Os custos unitários de transporte dos depósitos aos mercados consumidores são dados abaixo:

	São Paulo (5)	Belo Horizonte(6)	Rio de Janeiro(7)
Campinas(3)	1	3	3
Barra Mansa(4)	3	4	1

Tabela: Informações da oferta e demanda

Centro de Suprimento	Oferta	Mercado	Demanda
Araraquara	800	São Paulo	500
São José Campos	1000	B. Horizonte	400
		Rio Janeiro	900

Apresente o modelo matemático.

Exemplos

Solução Problemas de transbordo

x13	800		
x14	0		
x23	100		
x24	900		
x35	500		
x36	400		
x37	0		
x45	0		
x46	0		
x47	900		
FO	5300		
Arararaqua	800	<=	800
Sjose	1000	<=	1000
SP	500	>=	500
BH	400	>=	400
RJ	900	>=	900
Fluxo Campinas	0	igua	0
Fluxo Barra Mansa		igua	0

Problema de Designação - Exercício

Problema de Designação

Problema de Designação - Exercício

Exercício

Quatro construções diferentes A, B, C e D devem ser levantadas em um campus universitário por quatro empreiteiras 1, 2, 3 e 4. Como todas as empreiteiras contribuem muito para o fundo dos alunos, cada uma delas deve construir um edifício. Cada empreiteira fez suas propostas no tocante às quatro construções. Estas aparecem no quadro abaixo: O problema consiste em determinar que construção designar a que empreiteira para que o custo da obtenção dos quatro edifícios permaneça mínimo. Apresente o modelo matemático. Resolva o exercício no Excel.

Problema de Designação - Exercício

Exemplos

Exercício -Designação

Empreiteira				
Construção	1	2	3	4
Α	48	48	50	44
В	56	60	60	68
С	96	94	90	85
D	42	44	54	46

Exemplos

Exercício -Designação

Solução do Exercício

x11	0		
x12	0		
x13	0		
x14	1		
x21	1		
x22	0		
x23	0		
x24	0		
x31	0		
x32	0		
x33	1		
x34	0		
x41	0		
x42	1		
x43	0		
x44	0		
fo	234		
empreiteira 1	1	igual	1
empreiteira 2	1	igual	1

O Problema de Corte e Empacotamento

O PROBLEMA DE CORTE E EMPACOTAMENTO

Introdução

Problema de Corte - consiste no uso de estratégias para a produção de ítens (peças pequenas), a partir do corte de um objeto (peça grande), garantindo que a perda do material utilizado seja mínima.

Problemas de Corte e Empacotamento
Aplicacões

Aplicações

- Corte de bobinas de papel bobinas-jumbo são cortadas em sub-bobinas (21cm, 29,7cm, etc) que, por sua vez, podem ainda ser cortadas em retângulos (tamanho A4, por exemplo);
- Corte de barras metálicas através do corte de tubos ou perfis metálicos grande são produzidas as treliças (estrutura formada de barras lineares, usadas na construção civil, construção de aviões, etc);
- Corte de tecidos;
- Corte de espumas para produção de colchões e travesseiros;
- Empacotamento de produtos em caminhões.

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

- Aplicações: Indústrias de papel, tecido, vidro, barras de aço, entre outras, que fabricam seus produtos em peças de tamanho fixo (tamanho padrão);
- Seja uma barra grande de comprimento L e um conjunto de pequenas barras de comprimento I_i , $i=1,\ldots,m$, chamaremos estas pequenas barras de ítens, e seja d_i uma determinada quantia de ítens de tamanho I_i desejados, $i=1,\ldots,m$.
- Assim, o problema de corte consiste em produzir ítens a partir do corte de barras grandes, de forma que a demanda seja atendida e uma determinada função seja otimizada, como por exemplo, minimizar o número de barras cortadas, minimizar a perda ou maximizar o lucro.

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

■ Objeto de tamanho padrão *L*:

• Ítens em carteira de pedidos:

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

■ Padrão de corte 1 definido por $a_1 = (a_{11}, a_{21}, a_{31})^T$, onde a_{i1} é o número de ítens do tipo i cortado conforme o padrão de corte 1. No exemplo, $a_1 = (5, 0, 0)^T$.

Padrão de corte 1 5 itens $\, l_1 \,$

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

■ Padrão de corte 2 definido por $a_2 = (a_{12}, a_{22}, a_{32})^T$, onde a_{i2} é o número de ítens do tipo i cortado conforme o padrão de corte 2. No exemplo, $a_2 = (0, 2, 0)^T$.

Padrão de corte 2 2 itens $\, l_2 \,$

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

■ Padrão de corte 2 definido por $a_3 = (a_{13}, a_{23}, a_{33})^T$, onde a_{i3} é o número de ítens do tipo i cortado conforme o padrão de corte 3. No exemplo, $a_3 = (0, 1, 2)^T$.

Padrão de corte 3 1 itens $\ l_2$ 2 itens $\ l_3$

- Problema do Corte Unidimensional

Padrões de corte

- Vários padrões distintos podem ser determinados.
- Como definir um padrão de corte?
- Um vetor α representa um padrão de corte se e somente se o seguinte sistema é satisfeito:

$$l_1\alpha_1 + l_2\alpha_2 + \ldots + l_m\alpha_m \le L$$

 $\alpha_j \ge 0$ e inteiro, $j = 1, \ldots, m$

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

Problema da Mochila Inteiro - Determinando um padrão de corte

- O problema anterior para determinação de padrões de corte é um problema de otimização linear inteira e será estudado brevemente após a primeira parte do curso.
- Observação: Para modelagem dos problemas de cortes, vamos supor que conhecemos todos os padrões, ou seja, conhecemos todas as maneiras possíveis de cortar uma peça de tamanho L em pecas de tamanhos l_i.

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

Vamos considerar um problema em que:

- L = 170 cm
- $I_1 = 30$ cm, $I_2 = 50$ cm, $I_3 = 55$ cm

e a demanda para os ítens menores é:

$$d_1 = 80, d_2 = 120, d_3 = 110$$

Quantos esquemas de corte são possíveis?

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

Vamos considerar um problema em que:

- L = 170 cm
- $I_1 = 30 \text{ cm}, I_2 = 50 \text{ cm}, I_3 = 55 \text{ cm}$

e a demanda para os ítens menores é:

$$d_1 = 80, d_2 = 120, d_3 = 110$$

Quantos esquemas de corte são possíveis?

$$30y_1 + 50y_2 + 55y_3 \le 170$$

 $y_j \ge 0$ e inteiro, $j = 1, 2, 3$

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

Existem 27 padrões de corte possíveis. Entre estes temos os seguintes padrões: $a_1, a_{19}, a_{22}, a_{23}, a_{24}, a_{27}$ e suas respectivas perdas:

	a_1	a ₁₉	a ₂₂	a ₂₃	a ₂₄	a ₂₇
I_1	0	2	3	4	1	2
I_2	0	0	1	1	2	1
I_3	1	2	0	0	0	1
perda	115	0	30	0	5	40

$$30y_1 + 50y_2 + 55y_3 \le 170$$

Construindo um modelo

Neste problema temos:

elementos conhecidos: esquema de corte, demanda de cada ítem;

Construindo um modelo

Neste problema temos:

elementos conhecidos: esquema de corte, demanda de cada ítem; elementos desconhecidos: quantas vezes um determinado esquema de corte será usado; Problemas de Corte e Empacotamento

Problema do Corte Unidimensional

Construindo um modelo

Neste problema temos:

elementos conhecidos: esquema de corte, demanda de cada ítem; elementos desconhecidos: quantas vezes um determinado esquema de corte será usado;

objetivo a ser alcançado: usar o menor número possível de esquemas de corte;

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

Construindo um modelo

Neste problema temos:

elementos conhecidos: esquema de corte, demanda de cada ítem; elementos desconhecidos: quantas vezes um determinado esquema de corte será usado;

objetivo a ser alcançado: usar o menor número possível de esquemas de corte;

restrições: o número de ítens obtidos com os esquemas de corte usados de ser maior ou igual a demanda.

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

Construindo um modelo

Variáveis de decisão:

- Quantas vezes usar um determinado padrão de corte?
- Faça a_j , j = 1, 2, ..., n representar os diversos padrões de corte.

Definimos então as variáveis de decisão:

 $x_j =$ número de vezes que o padrão de corte j será usado, $j = 1, 2, \dots, n$.

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

Construindo um modelo- Podemos considerar os seguintes objetivos

Objetivo (1): Usar o menor número possível de padrões de corte:

$$\min z = x_1 + x_2 + \ldots + x_n$$

Objetivo (2): Seja r_j a perda associada ao padrão de corte j; Minimizar a perda total:

$$\min z = r_1 x_1 + r_2 x_2 + \ldots + r_n x_n$$

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

Construindo um modelo

Restrições:

- O número de ítens de cada tipo deve ser maior ou igual a demanda.
- Seja a_{ij} o número de peças do tipo i obtidos usando o esquema de corte j.
- Para atender a demanda do item 1 temos que:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n > b_1$$

■ De forma geral, a restrição relativa ao item *i* é dada por:

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \ge b_i$$

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

Modelo de Otimização

min
$$z = x_1 + x_2 + ... + x_n$$

Sujeito a:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \ge b_1$$
 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \ge b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \ge b_m$
 $x_1, x_2, \ldots, x_n \ge 0$ einteiras

Em geral, as variáveis x_1, x_2, \ldots, x_n são necessariamente inteiras pois representam o número de barras cortadas de acordo com um padrão de corte. Esta condição dificulta substancialmente a resolução do modelo matemático. Porém, em muitas situações práticas, essa condição de integralidade pode ser relaxada:

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

Modelo de Otimização

Podemos reescrever as restrições do problema na forma matricial:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \ge \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

- Observe que cada **coluna da matriz** está associada à um **padrão de corte**. Em geral, $n \Rightarrow \infty$.
- Impossível gerar ou mesmo armazenar o *n* padrões de corte.
 - Geração de colunas Problema da Mochila.

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

EXEMPLO 1

Na resolução apresentada a seguir, consideramos, para fins de ilustração, as variáveis não negativas e inteiras e apenas os seis padrões ilustrados anteriormente, ou seja, os padrões: a_1 , a_{19} , a_{22} , a_{23} , a_{24} , a_{27} . Além disso, consideramos o objetivo de minimizar o número de padrões usados, ou seja, o objetivo 1.

$$\min z = x_1 + x_{19} + x_{22} + x_{23} + x_{24} + x_{27}$$

Sujeito a:

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} x_1 + \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} x_{19} + \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} x_{22} + \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} x_{23} + \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} x_{24} + \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} x_{27} \ge \begin{bmatrix} 80 \\ 120 \\ 110 \end{bmatrix}$$
$$x_1, x_{19}, x_{22}, x_{23}, x_{24}, x_{27} \ge 0 \text{ e inteiras.}$$

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

EXEMPLO 1- Resolução

- Valor da função objetivo: z = 115,00
- Usar 55 vezes o padrão de corte 19: $A_{19}^t = (2,0,2)$
- Usar 60 vezes o padrão de corte 24: $A_{24}^t = (1,2,0)$
- Sobra de 90 ítens do tipo 1

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

EXEMPLO 2

Considerando os mesmos 6 padrões de corte anteriores mas mudamos o objetivo. Agora consideramos que nosso objetivo seja minimizar as perdas. Outra vez consideramos que as variáveis são não negativas e inteiras:

$$\min z = 115x_1 + 0x_{19} + 30x_{22} + 0x_{23} + 40x_{24} + 5x_{27}$$

Sujeito a:

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} x_1 + \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} x_{19} + \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} x_{22} + \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} x_{23} + \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} x_{24} + \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} x_{27} \ge \begin{bmatrix} 80 \\ 120 \\ 110 \end{bmatrix}$$

$$x_1, x_{19}, x_{22}, x_{23}, x_{24}, x_{27} \ge 0 \text{ e inteiras.}$$

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

EXEMPLO 2- Resolução

- Valor da função objetivo: z = 0,00
- Usar 55 vezes o padrão de corte 19: $A_{19}^t = (2,0,2)$
- Usar 60 vezes o padrão de corte 23: $A_{23}^t = (4, 0, 1)$
- Sobra de 510 ítens do tipo 1

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

Padrões de corte para o EXEMPLO

Existem 27 padrões de corte para o exemplo:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	0	0	0	0	1	2	3	4	5	0	0	0
0	0	0	1	2	3	0	0	0	0	0	1	2	1
1	2	3	0	0	0	0	0	0	0	0	1	1	2

ſ													27
ſ	1	2	3	1	2	1	2	3	4	1	2	1	2
İ	0	0	0	0	0	1	1	1	1	2	2	1	1
	1	1	1	2	2	0	0	0	0	0	0	1	2 1 1

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

EXEMPLO 1 - Solução considerando o objetivo 1 - Minimizar o número de barras cortadas e as variáveis inteiras e não-negativas

Considerando todos os 27 padrões de corte possíveis:

- Valor da função objetivo: *z* = 90,00
- Usar 30 vezes o padrão de corte 3: $A_3^t = (0,0,3)$
- Usar 20 vezes o padrão de corte 13: $A_{13}^t = (0, 2, 1)$
- Usar 40 vezes o padrão de corte 25: $A_{25}^t = (2, 2, 0)$
- Não há sobra de ítens.

- Problemas de Corte e Empacotamento
 - Problema do Corte Unidimensional

EXEMPLO 2 - Solução - Considerando o objetivo 2 - minimizar as perdas e as variáveis inteiras e não-negativas

Considerando todos os 27 padrões de corte possíveis:

- Valor da função objetivo: z = 0,00
- Usar 55 vezes o padrão de corte 19: $A_{19}^t = (2, 0, 2)$
- Usar 60 vezes o padrão de corte 23: $A_{23}^t = (4, 0, 1)$
- Sobra de 510 ítens do tipo 1

Introdução

 Problema de Empacotamento - consiste no uso de estratégias de alocações de ítens em objetos, garantindo a minimização de espaços vazios.

Referências Bibliográficas

- ARENALES, M.; ARMENTANO, V. A.; MORABITO, R.; YANASSE, H. H. Pesquisa operacional. Rio de Janeiro: Campus/elsevier, 2007. 523 p. ISBN 10-85-352-145-1454-2.
- GOLDBARG, M.; LUNA, H. P. L.; Otimização
 Combinatória e Programação Linear. Campus, 2000.
- NASCIMENTO, M.C.V.; ALÉM JUNIOR, D.J; CHERRI, L.H.; MASSAMITSU,F. Apresentações para aulas de modelagem matemática. São Carlos: ICMC-USP, 2008.
- PERIN, C. Introdução à Programação Linear. Coleção Imecc - Textos Didáticos. V.2. Campinas: Universidade Estadual de Campinas, 2001. 177p.
- RANGEL, M.S. **Material de aula**. São José do Rio Preto: IBILCE-UNESP.