Rectificadores

E. Martins, DETI Universidade de Aveiro

4-38

Sistemas Electrónicos - 2020/2021

Rectificadores

• É uma das aplicações práticas mais importantes dos díodos;

Fonte de alimentação DC transformador 220V 50Hz rectificador transformador regulador de tensão carga

Rectificador de meia onda

• A tensão v_0 segue v_s (a menos de V_D) nas arcadas positivas:

$$v_0 \approx v_S - V_D$$

E. Martins, DETI Universidade de Aveiro

4-40

Sistemas Electrónicos - 2020/2021

Rectificador de meia onda

- A escolha do díodo a usar deve ter em conta os valores de:
 - ► I_{F(max)} a corrente directa máxima que o díodo irá conduzir (dependente da carga);
 - $ightharpoonup V_{R(max)}$ a tensão inversa máxima (igual ao valor de pico de v_s).

Rectificador de onda completa – com transformador

Sistemas Electrónicos - 2020/2021

Rectificador de onda completa – com transformador

KVL:
$$-v_{S(\text{max})} - v_{S(\text{max})} + V_D + V_{R(\text{max})} = 0$$

$$V_{R(\text{max})} = 2v_{S(\text{max})} - V_D$$

- A escolha dos díodos a usar deve ter em conta os valores de:
 - ► I_{F(max)} a corrente directa máxima que os díodos irão conduzir;
 - $V_{R(max)}$ a tensão inversa máxima.

Rectificador de onda completa – em ponte

Sistemas Electrónicos - 2020/2021

Rectificador de onda completa – em ponte

Tensões quando v_s atinge o valor máximo positivo

 Esta configuração requer um transformador mais pequeno - com metade do número de espiras relativamente à solução anterior. • A tensão máxima inversa $V_{R(max)}$ em cada um dos díodos é menor do que no caso anterior:

Do *loop* formado pelo secundário do transformador, D₄ e D₂:

KVL:
$$-v_{S(\text{max})} + V_{R(\text{max})} + V_{D} = 0$$

$$V_{R(\text{max})} = v_{S(\text{max})} - V_{D}$$

Rectificador com filtragem

• Condensador carrega na primeira arcada positiva; depois não tem por onde descarregar.

• A tensão v_o é puramente DC, mas apenas porque não temos carga na saída.

E. Martins, DETI Universidade de Aveiro

4-46

Sistemas Electrónicos - 2020/2021

Rectificador com filtragem

- Condensador carrega até ao valor máximo V_P ;
- depois D corta e o condensador descarrega sobre R;
 - D volta a conduzir
 quando v_I ultrapassa a
 tensão no condensador;
 - Quando maior C menor será a ondulação residual a tensão de ripple, V_r .

Cálculo da tensão de ripple, V_r

• Assumindo que $V_r \ll V_p$,

$$v_0 \approx V_P$$
 e $i_L \approx V_P/R$

Assim, quando **D** off, **C** descarrega com corrente constante

$$i_{L} = -i_{C} = -C \frac{dv_{0}}{dt}$$

$$= -C \frac{\Delta v_{0}}{\Delta t_{d}} = -C \frac{(V_{P} - V_{r}) - V_{P}}{\Delta t_{d}}$$

aproximando $\Delta t_d \approx T$

$$\frac{V_P}{R} = C \frac{V_r}{T} \iff V_r = V_P \frac{T}{RC}$$

E. Martins, DETI Universidade de Aveiro

4-48

Sistemas Electrónicos - 2020/2021

Rectificador de onda completa com filtragem

• Neste caso a frequência de *ripple* é o dobro da frequência do sinal sinusoidal

• A expressão para V_r é

$$V_r = V_P \frac{T}{2RC}$$

Para o mesmo valor de ripple o condensador pode ter metade do valor.
 A corrente no díodo é menor.

Díodos Zener e aplicações

E. Martins, DETI Universidade de Aveiro

4-50

Sistemas Electrónicos - 2020/2021

• Díodos especialmente concebidos para operar na região de *breakdown*.

- Valor de V_Z é determinado pelo grau de dopagem das regiões n e p;
- Fabricados com valores padrão de V_Z entre 2V e centenas de Volt;
- O facto de V_Z variar muito pouco com a corrente, torna o zener útil para regular tensões, e.g. atenuar o ripple duma tensão (rectificada).

Díodo Zener - modelos

- Características importantes:
 - $ightharpoonup V_z$: Especificado para uma dada corrente de teste I_{ZT} ;
 - r_Z: Resistência dinâmica, igual ao inverso do declive na região de breakdown.

Modelos do zener:

Tensão constante

4-52

E. Martins, DETI Universidade de Aveiro

Sistemas Electrónicos - 2020/2021

Características tipícas de díodos zeneres - exemplo

Série BZX79- Valores desde 2.1 a 75V

BZX79-XXX	$V_{Z}(V)$	$r_{Z}(\Omega)$	$I_{ZT}(mA)$
3V3	3.3	85	5
5V1	5.1	40	5
6V8	6.8	6	5
12	12	10	5
24	24	25	5

$$V_F = 0.9V @ 10mA;$$

 $P_{max} = 0.5W;$
 $I_{Zmax} = P_{max} / V_Z$

Aplicação 1: Zener como regulador de tensão

• A partir duma bateria de automóvel, cuja tensão pode variar entre 13.8V e 10.5V, queremos gerar uma tensão constante de 6.8V.

$$10.5V \le V_{bat} \le 13.8V$$

$$V_Z = 6.8V \implies$$
Zener BZX79-6V8

A corrente I_Z deve ser o mais próxima possível de $I_{ZT} = 5mA$.

Tomando o valor médio de V_{bat} :

$$\overline{V_{bat}} = (10.5 + 13.8)/2 = 12.2V$$

$$R = \frac{\overline{V_{bat}} - V_Z}{I_{ZT}} = \frac{12.2 - 6.8}{5} \approx 1K$$

E. Martins, DETI Universidade de Aveiro

4-54

Sistemas Electrónicos - 2020/2021

Aplicação 2: Zener como redutor de ripple

• A partir duma tensão não regulada (V_{NR}) de 18V, com 1V de ripple, pretendemos gerar uma tensão regulada de $V_{out} = 10V$.

$$V_{NR}$$
: $V_P = 18V; V_r = 1V$

$$V_Z = 10V \implies \text{Zener BZX79-10}$$

Valor de R, supondo $I_{ZT} = 5mA$:

$$R = \frac{17.5 - 10}{5} = 1.5 K\Omega$$

O ripple em V_{out} calcula-se usando o valor tabelado $r_z = 10\Omega$:

$$V_{r_{-}out} = V_r \frac{r_z}{r_z + R} = 6.6 mV$$

Aplicação 3: Zener como limitador (clipper)

Se o valor de v_I for baixo, tal que

$$-(V_{Z1}+V_F) < v_I < (V_F+V_{Z2}) \implies v_0$$
 acompanha v_I

Se v_I for elevado a ponto de \mathbb{Z}_1 e \mathbb{Z}_2 conduzirem...

$$\Rightarrow$$
 v_{θ} fica limitado superiormente a V_{F} + V_{Z2}

Se v_I baixar a ponto de Z_1 e Z_2 conduzirem...

 $\Rightarrow v_0$ fica limitado inferiormente a $-(V_{Z1} + V_F)$

E. Martins, DETI Universidade de Aveiro

4-56

Sistemas Electrónicos - 2020/2021

Díodo LED e fotodíodo

Díodo LED (Light-Emitting Diodes)

- A recombinação de electrões e lacunas nos semicondutores usados (e.g GaAs, GaP) resulta na emissão de fotões: *electroluminescência*;
- A cor da luz (λ) depende dos dopantes usados e pode ser visível ou não (IR);
- Tensão directa, V_F , depende muito da cor do LED, variando de 1.7 (vermelho) a 3.3V (azul);
- Disponíveis em potências de *mW* até *Watts* (LEDs usados em iluminação).

E. Martins, DETI Universidade de Aveiro

4-58

Sistemas Electrónicos - 2020/2021

Fotodíodo

- Funcionam em polarização inversa;
- Fotões incidentes na região de depleção geram pares electrão-lacuna (foto-ionização), aumentando a corrente inversa, I_S , do díodo;
- Usados como detectores/medidores de intensidade luminosa.

Aplicações de optoelectrónica

Acoplamento / isolamento óptico

• Usando quando se pretende isolar (por uma questão de segurança) um sistema de baixa tensão de outro de alta tensão;

Comunicação por fibra óptica

4-60