Dynamical Systems (intro) / Discrete-Time Models

Dr. Dylan McNamara people.uncw.edu/mcnamarad

Introduction to Dynamical Systems

Dynamical Systems Theory

- Considers how systems autonomously change along time
 - Ranges from simple Newtonian mechanics to modern nonlinear dynamics theories
 - Probes underlying dynamical mechanisms, not just static properties
 - Provides suite of tools useful for studying complex systems
- A dynamical system is a system with a state that is uniquely specified by a finite set of variables (noise aside) and whose behavior is uniquely determined by "rules"

Discrete-time model:

$$x_{t} = F(x_{t-1}, t)$$

{difference/recurrence equations; iterative maps}

Continuous-time model:

$$dx/dt = F(x, t)$$

{differential equations}

X+: State variable(s) of the system at time t

F: Some function that determines the "rules"

Discrete-Time Models

Discrete-Time Model

- Easy to understand, develop, and simulate
 - Doesn't require expression for the rate of change (derivative)
 - Can model abrupt changes and/or chaos with few variables
 - Directly translatable to computer simulation
 - Easier to mesh with experimental data

 Linear: Right hand side is just a first-order polynomial of variables

$$x_{t} = a x_{t-1} + b x_{t-2} + c x_{t-3} ...$$

• Nonlinear: Pretty much everything else

$$x_{t} = a x_{t-1} + b x_{t-2}^{2} + c \sqrt{x_{t-1} x_{t-3}} ...$$

 1st-order: Right hand side refers only to last time step

$$x_{t} = a x_{t-1} (1 - x_{t-1})$$

• Higher-order: Pretty much everything else

$$x_{t} = a x_{t-1} + b x_{t-2} + c x_{t-3} ...$$

 Autonomous: Right hand side only includes state variables (x) and not t itself

$$x_{t} = a x_{t-1} x_{t-2} + b x_{t-3}^{2}$$

 Non-autonomous: Right hand side includes terms that explicitly depend on t

$$x_{t} = a x_{t-1} x_{t-2} + b x_{t-3}^{2} + sin(t)$$

 Non-autonomous, higher order equations can always be converted into autonomous, 1st-order equations

$$x_{t-2} \rightarrow y_{t-1}, y_t = x_{t-1}$$

 $t \rightarrow y_t, y_t = y_{t-1} + 1, y_0 = 0$

 Autonomous 1st-order equations can cover dynamics of any non-autonomous higher-order equations!!

• Linear equations:

- are analytically solvable
- show either equilibrium, exponential growth/ decay, periodic oscillation, or combos

• Nonlinear equations:

- may show more complex behaviors
- in general, are not analytically solvable

Simulating Discrete-Time Models

Exercise

• Simulate the following dynamical model to produce a time series for t = 1,...,10

$$x_{t} = 2 x_{t-1} + 1, x_{0} = 1$$

$$x_{t} = x_{t-1}^{2} + 1, x_{0} = 1$$

Exercise

 Simulate the following set of equations and see what happens if the coefficients are varied

$$x_{t} = 0.5 x_{t-1} + 1 y_{t-1}$$

 $y_{t} = -0.5 x_{t-1} + 1 y_{t-1}$
 $x_{0} = 1, y_{0} = 1$

Build Your Own Model Equation

Modeling tips

- Tweak an existing model
- Implement each assumption one by one
- Find where to change, replace with a newly designed function
- Use simplest form possible
- Check the extreme values

• Simple exponential growth model:

$$X_{t} = a X_{t-1}$$

- Problem: The model grows/dies only can one implement saturation of growth in this model?
- Think about a new nonlinear model:

$$x_{t} = f(x_{t-1}) x_{t-1}$$

$$x_{t} = f(x_{t-1}) x_{t-1}$$

- f(x) should approach 1 (no growth) when x goes to a "carrying capacity", call it K
- f(x) should approach the original growth rate a when x is very small

$$x_{t} = f(x_{t-1}) x_{t-1}$$

= $(- (a - 1) x_{t-1} / K + a) x_{t-1}$

• Using r = a-1:

$$x_{t} = (-r x_{t-1} / K + r + 1) x_{t-1}$$

= $x_{t-1} + r x_{t-1} (1 - x_{t-1} / K)$

Net growth

- N: Population
- r: Population growth rate
- K: Carrying capacity

1.8
1.6
1.4
1.2
1.10
1.5
20

Discrete-time version:

$$N_{t} = N_{t-1} + r(N_{t-1}(1 - N_{t-1}/K))$$

• Continuous-time version: Nonlinear dN/dt = r(N(1-N/K)) Nonlinear

 A nonlinear model of a simple ecosystem comprised of foxes (predators) and rabbits (prey)

 A nonlinear model of a simple ecosystem comprised of foxes (predators) and rabbits

Naturally grows to carrying capacity if isolated

if isolated

 A nonlinear model of a simple ecosystem comprised of foxes (predators) and rabbits (prey)

Rabbit:
$$x_{t} = x_{t-1} + a x_{t-1} (1 - x_{t-1})$$

Fox: $y_{t} = b y_{t-1} (0 < a, 0 < b < 1)$

 A nonlinear model of a simple ecosystem comprised of foxes (predators) and rabbits

- Introduced coefficient to the first term of x that captures the negative influence of foxes on rabbits survival rate
- Replaced b with a coefficient that captures the positive influence of rabbits on foxes' growth

Rabbit:
$$x_{t} = (1 - c y_{t-1}) x_{t-1} + a x_{t-1} (1 - x_{t-1})$$

Fox: $y_{t} = (b + d x_{t-1}) y_{t-1} (0 < a, 0 < b < 1, 0 < c, 0 < d)$

Lotka-Volterra Model

This model can be rewritten as:

$$x_{t} - x_{t-1} = \alpha x_{t-1} (1 - x_{t-1}) - \beta x_{t-1} y_{t-1}$$

 $y_{t} - y_{t-1} = - \gamma y_{t-1} + \delta x_{t-1} y_{t-1}$

- Known as the "Lotka-Volterra" equations
- One of the most famous early nonlinear systems with more than one variable

Analysis of Discrete-Time Models

Fixed points

- Fixed points represent a state of the system that will not change in time (a.k.a steady state)
- Can be found by setting all X values to X*
- Examples

$$N_{t} = N_{t-1} + r N_{t-1} (1 - N_{t-1}/K)$$

$$x_{t} = 2x_{t-1} - x_{t-1}^{2}$$

$$x_{t} = x_{t-1} - x_{t-2}^{2} + 1$$

Phase Space Visualization

Phase space

- Developed in late 19th century by J. Henri Poincare
- Way to visualize the behavior of dynamical systems as trajectories in a phase space - dynamics become a "flow" in the space
- Every state of the system corresponds to a point in the phase space – the axis thus represent the degrees of freedom (variables)
- Produces insight from geometrical structure and global behavior in the space that can't be gleaned from algebraic methods

Phase space

- Attractor: A subset of the space that nearby trajectories flow into and then do not leave (as long as the "forcing" doesn't change)
- Basin of attraction: A set of states which will eventually end up in a given attractor
- Mass on a spring:

Exercise

 Draw the phase space and some sample trajectories for the following model:

$$x_{t} = 0.5 x_{t-1} + 1 y_{t-1}$$

 $y_{t} = -0.5 x_{t-1} + 1 y_{t-1}$
 $x_{0} = 1, y_{0} = 1$

Exercise

• Draw the phase space and some sample trajectories for the following model:

$$X_{t} = -0.5 X_{t-1} - 0.7 Y_{t-1}$$

 $Y_{t} = X_{t-1} - 0.5 Y_{t-1}$

Cobweb Plot

Cobweb Plot

- A visual tool to study the behavior of 1-D iterative maps
- Take X_{t-1} and X_t as the two axes
- Draw the map of interest (x_t=F(x_{t-1})) and the x_t=x_{t-1} reference line these will intersect at "fixed points"
- Trace the development of the system by jumping between these two lines

Cobweb Plot

Cobweb Plot

Rescaling Variables

Rescaling Variables

 Dynamics of a system should not depend on unit size – so should be able to choose any linear rescaled version of variables and keep same behavior

• Simplify the logistic growth model by rescaling $x \rightarrow \alpha x'$

$$x_{t} = x_{t-1} + r x_{t-1} (1 - x_{t-1}/K)$$

Analysis of Linear Systems

- Many systems can be considered as being linear in certain regions of phase space. Dynamics of linear systems can be studied analytically.
- A linear system is: $x_t = A x_{t-1}$ where A is a "coefficient" matrix
- A good question to ask of a linear system is where will the system go eventually?

$$x_{t} = A^{t} x_{o}$$

• Let $\{v_i\}$ be n linearly independent eigenvectors of the coefficient matrix

• Write the initial condition using eigenvectors,

$$x_0 = b_1v_1 + b_2v_2 + ... + b_nv_n$$

• Then:

$$\mathbf{x}_{t} = \mathbf{A}^{t} \mathbf{x}_{0}$$

$$= \lambda_{1}^{t} \mathbf{b}_{1} \mathbf{v}_{1} + \lambda_{2}^{t} \mathbf{b}_{2} \mathbf{v}_{2} + \dots + \lambda_{n}^{t} \mathbf{b}_{n} \mathbf{v}_{n}$$

• Dominant eigenvector:

If
$$|\lambda_1| > |\lambda_2|$$
, $|\lambda_3|$, ..., $x_t = \lambda_1^{\dagger} \{ b_1 v_1 + (\lambda_2/\lambda_1)^{\dagger} b_2 v_2 + ... + (\lambda_n/\lambda_1)^{\dagger} b_n v_n \}$
 $\lim_{t \to \infty} x_t \sim \lambda_1^{\dagger} b_1 v_1$

 If the system has just one such dominant eigenvector, it's state will be eventually along that vector regardless of where it starts

 An eigenvalue tells whether a particular "state" of the system (specified by its corresponding eigenvectors) grows or shrinks

```
|\lambda| > 1 -> growing
|\lambda| < 1 -> shrinking
```

Phase space of a two variable linear difference equation

- When a system is at it's fixed point, what happens when it is slightly perturbed?
- Fixed point is called:
 - Stable if the system eventually falls back to the fixed point
 - Lyapunov stable if the system doesn't go far form the fixe point
 - Unstable otherwise

 Linear stability analysis studies whether a nonlinear system is stable or not at its fixed point by locally linearizing the dynamics near that point

- Let $\Delta \times$ be a small difference between the system's current state \times and it's fixed point \times_e i.e.
- Plug $x = x_e + \Delta x$ into differential equations and ignore quadratic or higher order terms of Δx
- This operation does the trick of converting the dynamics of Δx into a product of a matrix and Δx
- The eigenvalues of the matrix reveal whether x_e is stable or not.

• Mathematically speaking...

Taylor series expansion:
$$F(x) = \sum_{n=0 \sim \infty} F^{(n)}(a)/n! \ (x-a)^n$$
 Let $x \to x_e + \Delta x$ and $a \to x_e$, then
$$F(x_e + \Delta x) = F(x_e) + F'(x_e) \Delta x$$
 Ignore

• For discrete-time models...

$$x_{t} = F(x_{t-1})$$
Left = $x_{e} + \Delta x_{t}$
Right = $F(x_{e} + \Delta x_{t-1})$
 $\sim F(x_{e}) + F'(x_{e}) \Delta x_{t-1}$
= $x_{e} + F'(x_{e}) \Delta x_{t-1}$
Therefore,

$$\Delta x_{t} = F'(x_{e}) \Delta x_{t-1}$$

For discrete-time models...

This can hold even if x is a vector

What corresponds to the first-order derivative in such a case:

$$F'(x_e) = dF/dx_{(x=x_e)} =$$

what corresponds to the first-order derivative in such a case:

$$F'(x_e) = dF/dx_{(x=x_e)} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial F_n}{\partial x_1} & \frac{\partial F_n}{\partial x_2} & \cdots & \frac{\partial F_n}{\partial x_n} \end{bmatrix}$$

Jacobian matrix at $x = x_e$

- If all the eigenvalues indicate that ∆x will shrink over time
 - -> stable point
- If all the eigenvalues indicate that ∆x will grow over time
 - -> unstable point
- If some eigenvalues indicate shrink and others indicate grow of ∆x over time
 - -> saddle point (this is also unstable)

Linear stability analysis (2-D systems)

- If both eigenvalues indicate that ∆x will shrink over time
 - -> stable spiral focus

- If both eigenvalues indicate that ∆x will grow over time
 - -> unstable spiral focus

- If both eigenvalues indicate neither shrink nor growth of ∆x
 - -> neutral center (but this may or may not be true for nonlinear models; further analysis is needed to check if nearby trajectories are truly cycles or not)

