Loan Default Prediction

Nihar Patel
Practical Data Science

Problem Definition

Problem:

 To increase the bank's profits they must incur less borrowers that default and create a loss for the bank

Objective:

 Predict what types of borrowers default based on their credit profile of relevant features by building a classification model

Can this model be used for deployment?

Problem Importance

Data Analysis

Insights from data exploration

- 70/30 breakdown of loan request 'REASON', both similar default %s
- Sales and Self-employed workers defaulted the most
- High 'DELINQ' and 'DEROG' mean default but this was <25%
- 'DEBTINC' contained the most missing values

Data Manipulation

- Treatment of Outliers
- Treatment of Missing Values
- Categorical to Numerical Transformations

Model Selection Criteria

What are the goals of our model?

- Maximize recall score through minimizing false negatives
- Predict rest of the borrowers (precision, accuracy)
- Perform well on test data and not overfit
- Be easy to understand and apply

Solution Approach - Tuned Decision Tree

- Models Ran on train and test data:
 - Logistic regression
 - Decision trees
 - Random forests
- Original Model vs Tuned Models
 - GridSearchCV gave stronger results
 - Precision score sacrificed for recall score
- Tuned Decision Tree
 - Insights and Scalability
 - 'DEBTINC' variable

Final Model Performance

- Recall score of 78%, performs well on test data
 - Of all the clients that were accepted for a loan, only 6% of these are projected to default
 - More overall defaults projected but that can be good sign
- Model simplicity with variable breakdown
- Enhancements
 - Gauge performance of max precision and accuracy
 - Additional tuning through gradient boosting or pruning
 - Reassess the treatment of outliers and missing values

Proposed Business Solution

What are our recommendations?

- Check for data privacy to ensure
 ECO Act compliance
- 2. Setup timeline and guidelines
- Implement cross functional infrastructure between systems and stakeholders
- 4. Intertwine current approval process with working model
- 5. Monitor progress and update model routinely

Executive Summary

- Tuned Decision Tree will dynamically solve the bank's dilemma by
 - Decreasing loan default rate
 - Efficiently using human, physical, and computational resources
 - Highlighting key features like debt to income to understand borrower's credit health
- A 78% recall score is a reliable metric to begin real world application
- Enforcing a standard of data completeness will reduce risk of default
- Continuously monitoring data and borrower trends will serve fruitful

Risks & Challenges

- Over reliance on model may make loan approval a transactional task and not a human decision
- Overemphasis on one metric such as debt to income ratio may reject too many borrowers that may have pay off their loan]
 - Keep examining data
- Capturing missing values may decrease the amount of applications received since borrowers may not want to to put their debt to income ratio

Thank You!

Appendix A

DecisionTreeClassifier

	Model	Train_Accuracy	Test_Accuracy	Train_Recall	Test_Recall	Train_Precision	Test_Precision
0	Logistic Reg	0.808	0.809	0.088	0.084	0.640	0.682
1	Decision Tree	1.000	0.847	1.000	0.574	1.000	0.627
2	Tuned Decision Tree	0.838	0.825	0.864	0.779	0.560	0.543
3	Random Forest	1.000	0.891	1.000	0.619	1.000	0.789
4	Tuned Random Forest	0.838	0.825	0.864	0.779	0.560	0.543

Appendix B

Appendix C

Appendix D

