Chemical Casserole

Purpose

To show different types of reactions (precipitation reaction and complex ion formation)

Materials

6 beakers 17M NH₄OH

1M AgNO₃ 1M KBr

0.1M NaOH 1M Na₂S₂O₃

1M NaCl 1M KI

Procedure

- 1) Mix 5mL 1M AgNO3 and 20mL H2O
- 2) Fill each beaker with one of the following solution of the given volume:
 - a. 10mL of 1M KI
 - b. 10mL of 0.1M NaOH
 - c. 10mL of 1M NaCl
 - d. 15mL of 17m NH₄OH
 - e. 10mL of 1M KBr
 - f. 20mL of 1M Na₂S₂O₃
- 3) Add just enough of the AgNO₃ solution into each beaker as to allow reactions to occur. Solutions should be mixed in the following order:
 - a. $10\text{mL}\ 0.1\text{M NaOH} \rightarrow \text{AgOH (brown)}$
 - b. $10mL\ 1M\ NaCl \rightarrow AgCl\ (white)$
 - c. $15\text{mL} 17\text{m NH}_4\text{OH} \rightarrow \text{Ag(NH}_3)_2^+ \text{(clear)}$
 - d. $10mL\ 1M\ KBr \rightarrow AgBr\ (off-white)$
 - e. $20mL\ 1M\ Na_2S_2O_3 \rightarrow Ag(S_2O_3)_2^{3-}$ (clear)
 - f. $10mL\ 1M\ KI \rightarrow AgI\ (yellow)$

Additional Information

1) Possible reactions can involve cyanide and sulfide ions however CN- is too hazardous and S2- is too smelly

- 2) At any point, the demonstration may be stopped and equilibrium constants used to explain an observation or to predict an upcoming change
- 3) Just enough solution can be added at each point to create or dissolve the precipitate

Disposal

Solutions should be placed in properly labeled waste containers with UI# 100963.