

Chapter 1

22/09/2020

1.1 Introduction

Our aim is to abstract and generalize concepts such as space, distance and continuity.

As en example of the character of this theory, we intend not to distinguish subspaces A (circle) and B (square) of \mathbb{R}^2 , but to distinguish these from C (ring), as in figure 1.1.

Figure 1.1: Examples of topological subspaces of \mathbb{R}^2 .

1.2 Topological Spaces

Definition 1. Given a set X, we denote the set of all subsets of X as $\mathcal{P}(X)$, called the **power set** of X.

In topology, the union of potentially infinite (and uncountable) subsets. We write the union of a family of subsets $\{A_i : i \in I\}$ as $\cup_{i \in I} A_i$.

Definition 2. Given a non-empty set X, we say $\mathcal{T} \subseteq \mathcal{P}(X)$ is a **topology** on X if:

- 1. $X, \emptyset \in \mathcal{T}$
- 2. if $A, B \in \mathcal{T}$ then $A \cap B \in \mathcal{T}$
- 3. if $A_i \in \mathcal{T}$ for all $i \in I$, then $\bigcup_{i \in I} A_i \in \mathcal{T}$.

Then (X, \mathcal{T}) is a **topological space**, and the elements of X sometimes denotes by points.

Remark. For a finite family of subsets N, the reunion $\bigcap_{i \in N} A_i \in \mathcal{T}$.

Proof. The case for n=2 is taken care by the second axiom in 2. Assume $\bigcap_{i=1}^n A_i = B \in \mathcal{T}$. Then

$$\bigcap_{i=1}^{n+1} A_i = \left(\bigcap_{i=1}^n A_i\right) \cap A_{n+1} = B \cap A \in \mathcal{T}$$

so the statement holds by induction.

Example 1. Let $X_1 = \{a, b, c, d, e, f\}$ and $\mathcal{T}_1 = \{X_1, \emptyset, \{a\}, \{c, b\}, \{a, c, d\}, \{b, c, d, e, f\}\}$. Then \mathcal{T}_1 is a topology on X_1 .

Remark. For a finite set X, one does enough to test the union of each two subsets of \mathcal{T} , and the finite union follows by induction.

Example 2. Let $X = \{a, b, c, d\}$ and $\mathcal{T}_2 = \{X_2, \emptyset, \{a\}, \{c, d\}, \{a, c\}, \{a, c, d\}\}$. Then \mathcal{T}_2 is not a topology on X_2 , for $\{a\} \cap \{a, c\} = \{c\} \notin \mathcal{T}$.

Example 3. Let $\mathcal{T}_3 \subseteq \mathcal{P}(\mathbb{N})$ be such that

$$\mathcal{T}_3 = \{\mathbb{N}\} \cup \{A \subseteq \mathbb{N} : A \text{ is finite}\}.$$

 \mathcal{T}_3 is not a topology on \mathbb{N} . Let $B_n = \{2n+1\}$ for $n \in \mathbb{N}$. Then $B_n \in \mathcal{T}_3$ but

$$\bigcup_{n=1}^{\infty} B_n \notin \mathcal{T}_3.$$

Definition 3. Let X be a non-empty set. Then $\mathcal{T} = \mathcal{P}(X)$ is a topology on X, called the **discrete topology**.

Remark. Let (X, \mathcal{T}) be a topological space. Then \mathcal{T} is the discrete topology if and only if $\{x\} \in \mathcal{T}$ for all $x \in X$. These are called the **singular sets** of X.

Proof. Take $A \in \mathcal{P}(X)$ and let x_i for $i \in I$ be elements of X. If A is empty then it is simply the **empty union** of singleton sets. Otherwise, it implies that there does not exist a union such that

$$\bigcup_{i \in I} \{x_i\} = A.$$

Then there exists an element $x_k \in A$ that is not contained in the union. As every element of X is contained in the union of singletons sets of X, A contains an element that is not contained in X. Hence $A \notin \mathcal{P}(X)$, which is contradiction.

Definition 4. Let X be a non empty set. Then $\mathcal{T} = \{X, \emptyset\}$ is a topology of X, called the **indiscrete** topology \P .