Esercizio (tratto dal Problema 14.17 del Mazzoldi 2)

Un gas ideale biatomico si trova in equilibrio nello stato A ($p_A = 1$ bar; $V_A = 20 \cdot 10^{-3}$ m³; $T_A = 288$ K). Con una compressione isoterma reversibile il volume viene ridotto a $V_B = 5 \cdot 10^{-3}$ m³; dallo stato B il gas passa successivamente allo stato C ed infine ritorna allo stato A con un'espansione adiabatica reversibile. Nella trasformazione $B \to C$ il gas assorbe il calore $Q_{B\to C} = 4.56$ kJ; la variazione di entropia dell'ambiente nella stessa trasformazione è $\Delta S_{\text{amb},B\to C} = -9.63$ J/K.

- 1. Calcolare il lavoro scambiato nel ciclo;
- 2. Calcolare il rendimento del ciclo;
- 3. Stabilire se la trasformazione $B \to C$ è reversibile o irreversibile.

di Fisica I

SOLUZIONE

Dati noti:

$$p_A = 1 \, \mathrm{bar} = 1 \cdot 10^5 \, \mathrm{Pa}$$
 $V_A = 20 \cdot 10^{-3} \, \mathrm{m}^3$
 $T_A = 288 \, \mathrm{K}$
 $V_B = 5 \cdot 10^{-3} \, \mathrm{m}^3$
 $Q_{B \to C} = 4.56 \, \mathrm{kJ}$
 $\Delta S_{amb,B \to C} = -9.63 \, \mathrm{J/K}$

1. Per iniziare calcoliamo anzitutto le variabili termodinamiche degli stati, per quanto è possibile

• Stato A

Di questo stato sappiamo tutto, tranne il numero di moli, che possiamo facilmente determinare applicando l'equazione di stato allo stato A

$$p_{A}V_{A} = nRT_{A}$$

$$\downarrow \downarrow$$

$$n = \frac{p_{A}V_{A}}{RT_{A}}$$
(1)

espressa in termini di dati noti.

• Stato B

Conosciamo V_B dal testo. Sappiamo inoltre che, essendo $A \to B$ un'isoterma,

$$T_B = T_A \tag{2}$$

Infine, dall'equazione dell'isoterma

$$p_A V_A = p_B V_B \tag{3}$$

ricaviamo che

$$p_B = p_A \frac{V_A}{V_B} \tag{4}$$

• Stato C

Dello stato C non conosciamo praticamente nulla, se non il fatto che il suo volume e pressione (entrambi però incogniti) soddisfano l'equazione dell'adiabatica reversibile $C \to A$

$$p_A V_A^{\gamma} = p_C V_C^{\gamma} \tag{5}$$

Dobbiamo valutare il lavoro fatto (o eseguito) dal gas. Cosa sappiamo?

(a) $A \rightarrow B$

è reversibile, sappiamo tutto sugli stati iniziale e finale, ed anche sugli stati intermedi (di equilibrio). Possiamo dunque calcolare sia il calore $Q_{A\to B}$ che il lavoro $W_{A\to B}$.

(b) $B \to C$

il testo non ci dice se è reversibile o no.

 $Q_{B\to C}$ ci è dato;

 $W_{B\to C}$ non è facilmente valutabile, perché non sappiamo attraverso quali stati passi il gas: non abbiamo la funzione p=p(V) e non sappiamo neanche se è definita, né abbiamo altri dati (ad es. la pressione esterna).

(c) $C \to A$

 $Q_{C\to A}=0$ perché è reversibile adiabatica;

 $W_{C\to A}$ non è facilmente valutabile, perché sullo stato C sappiamo solo che $pV^{\gamma}=\cos$ t, essendo $C\to A$ adiabatica. Quindi conosciamo la funzione $p(V)=p_A(\frac{V_A}{V})^{\gamma}$, ma non sappiamo l'estremo di integrazione V_C da cui integrarla per calcolare il lavoro.

Complessivamente abbiamo più informazioni sui calori scambiati in ciascuna trasformazione che sui lavori. Allora possiamo valutare il lavoro totale sfruttando il primo principio

$$Q - W = \Delta U = 0$$
 (dato che è un ciclo) (6)

da cui abbiamo

$$W = Q = \underbrace{Q_{A \to B}}_{\text{da determinarsi}} + \underbrace{Q_{B \to C}}_{\text{noto}} + \underbrace{Q_{C \to A}}_{=0}$$
 (7)

Per trovare $Q_{A\to B}$ possiamo applicare il primo principio al tratto $A\to B$:

$$\Delta U_{A \to B} = Q_{A \to B} - W_{A \to B} \tag{8}$$

$$\Rightarrow Q_{A \to B} = \Delta U_{A \to B} + W_{A \to B} =$$

$$= U_B - A_A + \int_{V_A}^{V_B} p dV =$$

$$= \underbrace{nc_V(T_B - T_A)}_{=0 \text{ isoterma}} + nRT_A \int_{V_A}^{V_B} \frac{dV}{V} =$$

$$= nRT_A \ln \frac{V_B}{V_A} =$$

$$= p_A V_A \ln \frac{V_B}{V_A}$$
(9)

Sostituendo i dati

$$Q_{A\to B} = 10^{5} \operatorname{Pa} \cdot 20 \cdot 10^{-3} \operatorname{m}^{3} \ln \left(\frac{5 \cdot 10^{-3} \cancel{m}^{3}}{20 \cdot 10^{-3} \cancel{m}^{3}} \right) =$$

$$= 2 \cdot 10^{3} \operatorname{Pa} \operatorname{m}^{3} \ln \frac{1}{4} = [\operatorname{Pa} \operatorname{m}^{3} = \operatorname{N} \operatorname{m} = \operatorname{J}]$$

$$= -2.77 \cdot 10^{3} \operatorname{J} \quad \text{(calore ceduto)}$$
(10)

Sostituendo in (7) l'Eq.(10) ed il valore $Q_{B \to C} = 4.56\,\mathrm{kJ}$ dato dal testo, otteniamo

$$W = -2.77 \,\mathrm{kJ} + 4.56 \,\mathrm{kJ} + 0 = 1.79 \,\mathrm{kJ} \tag{11}$$

2. Il rendimento del ciclo è dato da

$$\eta = \frac{W}{Q_{ass}} =$$
[solo in $B \to C$ il gas assorbe calore, mentre in $A \to B$
il gas cede calore, e la $C \to A$ è adiabatica]
$$= \frac{W}{Q_{B \to C}} = \frac{1.79 \text{ kJ}}{4.56 \text{ kJ}} = 0.39$$
(12)

3. Per stabilire se la trasformazione $B \to C$ è reversibile o no, dobbiamo controllare $\Delta S_{B\to C}$. Siccome conosciamo $\Delta S_{amb,B\to C}$ abbiamo

$$\Delta S_{univ,B\to C} = \underbrace{\Delta S_{amb,B\to C}}_{\text{noto}} + \underbrace{\Delta S_{gas,B\to C}}_{\text{var. entropia del gas}}$$
(13)

Pertanto

$$\begin{cases} \text{ se } \Delta S_{univ,B\to C} = 0 & \to & B\to C \text{ è reversibile} \\ \\ \text{ se } \Delta S_{univ,B\to C} > 0 & \to & B\to C \text{ è irreversibile} \end{cases}$$

Per determinare la variazione $\Delta S_{gas,B\to C}$ di entropia del gas possiamo procedere in questo modo

$$\Delta S_{gas,A\to B} + \Delta S_{gas,B\to C} + \Delta S_{gas,C\to A} = \Delta S_{gas,ciclo} = 0$$
lo possiamo calcolare
$$= 0 \text{ perché è una}$$
perché S è una
perché di $A\to B$ cono-
sciamo tutto
$$= 0 \text{ perché è una}$$
funzione di stato

da cui

$$\Delta S_{gas,B\to C} = -\Delta S_{gas,A\to B} =$$

$$= -(S_{gas}(B) - S_{gas}(A)) =$$
[uso l'espressione di entropia per un gas perfetto]
$$= -(nc_V \ln \frac{T_B}{T_A} + nR \ln \frac{V_B}{V_A}) =$$

$$= 0 \text{ perché } A \to B$$

$$\stackrel{\text{è una isoterma}}{\text{euso Eq.}(1)}$$

$$= -\frac{p_A V_A}{T_A} \ln \frac{V_B}{V_A}$$
(15)

Sostituendo i dati

$$\Delta S_{gas,B\to C} = -\frac{10^5 \,\mathrm{Pa} \cdot 20 \cdot 10^{-3} \,\mathrm{m}^3}{288 \,\mathrm{K}} \ln \left(\frac{5 \cdot 10^{-3} \,\mathrm{m}^3}{20 \cdot 10^{-3} \,\mathrm{m}^3} \right) =$$

$$= -\frac{10^3}{144} \cdot \ln \frac{1}{4} \, \frac{\mathrm{Pa} \,\mathrm{m}^3}{\mathrm{K}} = \qquad [\mathrm{Pa} \,\mathrm{m}^3 = \mathrm{N} \,\mathrm{m} = \mathrm{J}]$$

$$= 9.63 \,\mathrm{J/K} \tag{16}$$

Abbiamo dunque

$$\Delta S_{univ,B\to C} = \Delta S_{amb,B\to C} + \Delta S_{gas,B\to C} =$$

$$= -9.63 \text{ J/K} + 9.63 \text{ J/K} =$$

$$= 0$$
(17)

Pertanto la trasformazione $B \to C$ è reversibile.