

Introduction to Data Management

SQL, Keys, and Joins

Alyssa Pittman Based on slides by Jonathan Leang, Dan Suciu, et al

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Announcements

TA OH start next tomorrow

- HW1 released on the website
 - Let us know if you can't access your git repository!
 - Ask questions on Piazza

Recap - The Relational Model

- Flat tables, static and typed attributes, etc.
 - "It's a spreadsheet with rules"

Recap - The Relational Model

- Set semantics
 - No duplicate tuples
- Attributes are typed and static
 - INTEGER, FLOAT, VARCHAR(n), DATETIME, ...
- Tables are flat

Recap - SQL and RA

WHERE P.Job = TA';

SQL

(Next several lectures)

"What data do I want"

RA

(After SQL)

Allison

345

• "How does the computer get the data"

		UserID	Name	Job	Salawi
		UserID	Name	J0D	Salary
		123	Jack	TA	50000
		345	Allison	TA	60000
		567	Magda	Prof	90000
		789	Dan	Prof	100000
			$\sigma_{P.Jol}$	e,P.UserID 	
SELECT	P.Name,	P.UserID	Tuyi	Ott I	Name
FROM	Payroll	AS P			Jack

September 30, 2019 Aggle & September 30, 2019

Recap: For-each semantics

- Don't care about physical data layout or query plan
- But need to know the meaning of a query

Goals for Today

- Last time we talked about the <u>barebone</u> building blocks of an RDBMS
 - Individual tables with no special properties
 - SQL and RA that work over individual tables
- Today is about semantics and relationships in the relational data model

Outline

- Keys □ Identification
- Foreign Keys

 Relationships
- Joins in SQL
 - Inner joins
 - Outer joins
 - Self joins

Key

A **Key** is one or more attributes that uniquely identify a row.

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Key

A **Key** is one or more attributes that uniquely identify a row.

Definitely not a key

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Key

A **Key** is one or more attributes that uniquely identify a row.

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Key

A **Key** is one or more attributes that uniquely identify a row.

Is this a good candidate for a key?

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Key

A **Key** is one or more attributes that uniquely identify a row.

Is this a good candidate for a key?

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Key

A **Key** is one or more attributes that uniquely identify a row.

Is this a good candidate for a key?

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
913	Peter	TA	60000

Key

A **Key** is one or more attributes that uniquely identify a row.

Data comes from the real world so models ought to reflect that

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
913	Peter	TA	60000

```
CREATE TABLE Payroll (
   UserID INT,
   Name VARCHAR(100),
   Job VARCHAR(100),
   Salary INT);
```

Payroll(Userld, Name, Job, Salary)

```
CREATE TABLE Payroll (
UserID INT,

Name VARCHAR(100),

Job VARCHAR(100),

Salary INT);
```

Payroll(Userld, Name, Job, Salary)

```
CREATE TABLE Payroll (
UserID INT PRIMARY KEY,
Name VARCHAR(100),
Job VARCHAR(100),
Salary INT);
```

Payroll(<u>UserId</u>, Name, Job, Salary)

```
CREATE TABLE Payroll (
UserID INT,
Name VARCHAR(100),
Job VARCHAR(100),
Salary INT);
```

Payroll(Userld, Name, Job, Salary)

Payroll(<u>Userld</u>, <u>Name</u>, Job, Salary)

- Databases can hold multiple tables
- How do we capture relationships between tables?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

21

- Databases can hold multiple tables
- How do we capture relationships between tables?

Salary **UserID** Name Job 123 Jack TA 50000 345 Allison TA 60000 567 Prof 90000 Magda 789 100000 Dan Prof

Foreign Key

UserID	Car
123	Charger
567	Civic
567	Pinto

- Databases can hold multiple tables
- How do we capture relationships between tables?

23

Foreign Key

A **Foreign Key** is one or more attributes that uniquely identify a row in another table.

September 30, 2019 Aggregates 24

Foreign Key

A **Foreign Key** is one or more attributes that uniquely identify a row in *another table*.

Is this valid?

efe	rer	ices
	efe	eferer

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Car
Charger
Civic
Pinto

Foreign Key

A **Foreign Key** is one or more attributes that uniquely identify a row in *another table*.

References Nope

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
CREATE TABLE Payroll ( CREATE TABLE Regist (
UserID INT PRIMARY KEY, UserID INT,
Name VARCHAR(100), Car VARCHAR(100));
Job VARCHAR(100),
Salary INT);
```

Payroll(<u>Userld</u>, Name, Job, Salary)

Regist(Userld, Car)

27

Payroll(<u>Userld</u>, Name, Job, Salary)

Regist(UserId, Car)

The Relational Model Revisited

- More complete overview of the Relational Model:
 - Database

 collection of tables
 - All tables are flat
 - Keys uniquely ID rows
 - Foreign keys act as a "semantic pointer"
 - Physical data independence

Joins

- Foreign keys are able to describe a relationship between tables
- Joins are able to realize combinations of data

Inner Joins

- Bread and butter of SQL queries
 - "Inner join" is often interchangeable with just "join"

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID;

How do we algorithmically get our results?

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID;
```

```
for each row1 in Payroll:
   for each row2 in Regist:
      if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

	UserID	Name	Job	Salary
>	123	Jack	TA	50000
	345	Allison	TA	60000
	567	Magda	Prof	90000
	789	Dan	Prof	100000

UserID	Car	
123	Charger	(
567	Civic	
567	Pinto	

Name Car

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	4
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
      if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

37

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	(
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

	UserID	Name	Job	Salary
	123	Jack	TA	50000
	345	Allison	TA	60000
>	567	Magda	Prof	90000
	789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	—
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
      if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

	UserID	Name	Job	Salary
	123	Jack	TA	50000
	345	Allison	TA	60000
>	567	Magda	Prof	90000
	789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	—
567	Pinto	

Name	Car
Jack	Charger
Magda	Civic

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	-
567	Civic	
567	Pinto	

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	(
567	Pinto	

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

Inner Joins

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

50

```
SELECT P.Name, R.Car
```

Explicit

FROM Payroll AS P JOIN Regist AS R

ON P.UserID = R.UserID;

Implicit

SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

Now I want to include everyone, even if they don't drive.

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Now I want to include everyone, even if they don't drive.

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P LEFT OUTER JOIN Regist AS R
ON P.UserID = R.UserID;
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Allison	NULL
Magda	Civic
Magda	Pinto
Dan	NULL

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Allison	NULL
Magda	Civic
Magda	Pinto
Dan	NULL

NULL is a value placeholder. Depending on context, it may mean unknown, not applicable, etc.

- LEFT OUTER JOIN
 - All rows in left table are preserved
- RIGHT OUTER JOIN
 - All rows in right table are preserved
- FULL OUTER JOIN
 - All rows are preserved

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic';
```

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic' AND
R.Car = 'Pinto';
```

Will this work?

57

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
    R.Car = 'Civic' AND
    R.Car = 'Pinto';
```

Will this work?
Nope, empty set is returned

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic' OR
R.Car = 'Pinto';
```

Will this work?

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto
789	Civic

```
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic' OR
R.Car = 'Pinto';
```

Will this work? Nope, returns people who had just one type of car

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

61

```
FROM Payroll AS P, Regist AS R1, Regist AS R2
WHERE P.UserID = R1.UserID AND
    P.UserID = R2.UserID AND
    R1.Car = 'Civic' AND
    R2.Car = 'Pinto';
```

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

All pairs of cars a person can drive

```
SELECT P.Name, R1.Car
FROM Payroll AS P, Regist AS R1, Regist AS R2
WHERE P.UserID = R1.UserID AND
P.UserID = R2.UserID AND
```

R1.Car = 'Civic' AND R2.Car = 'Pinto';

A little extra SQL

 ORDER BY – Orders result tuples by specified attributes (default ascending)

```
SELECT P.Name, P.UserID

FROM Payroll AS P
WHERE P.Job = 'TA'
ORDER BY P.Salary, P.Name;
```

DISTINCT – Deduplicates result tuples

```
SELECT DISTINCT P.Job
FROM Payroll AS P
WHERE P.Salary > 70000;
```

Takeaways

- We can describe relationships between tables with keys and foreign keys
- Different joining techniques can be used to achieve particular goals
- Our SQL toolbox is growing!
 - Not just reading and filtering data anymore
 - Starting to answer complex questions