

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT540 Octal buffer/line driver; 3-state; inverting

Product specification
File under Integrated Circuits, IC06

December 1990

Octal buffer/line driver; 3-state; inverting

74HC/HCT540

FEATURES

- Inverting outputs
- Output capability: bus driver
- I_{CC} category: MSI

The 74HC/HCT540 are octal inverting buffer/line drivers with 3-state outputs. The 3-state outputs are controlled by the output enable inputs \overline{OE}_1 and \overline{OE}_2 . A HIGH on \overline{OE}_n causes the outputs to assume a high impedance OFF-state. The "540" is identical to the "541" but has inverting outputs.

GENERAL DESCRIPTION

The 74HC/HCT540 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

QUICK REFERENCE DATA

$GND = 0 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
t_{PHL}/t_{PLH}	propagation delay A_n to \overline{Y}_n	$C_L = 15 \text{ pF}$; $V_{CC} = 5 \text{ V}$	9	11	ns
C_I	input capacitance		3.5	3.5	pF
C_{PD}	power dissipation capacitance per buffer	notes 1 and 2	39	44	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o) \text{ where:}$$

f_i = input frequency in MHz

f_o = output frequency in MHz

$\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}
For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "[74HC/HCT/HCU/HCMOS Logic Package Information](#)".

Octal buffer/line driver; 3-state; inverting

74HC/HCT540

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 19	$\overline{OE}_1, \overline{OE}_2$	output enable input (active LOW)
2, 3, 4, 5, 6, 7, 8, 9	A_0 to A_7	data inputs
10	GND	ground (0 V)
18, 17, 16, 15, 14, 13, 12, 11	\overline{Y}_0 to \overline{Y}_7	bus outputs
20	V_{CC}	positive supply voltage

Fig.1 Pin configuration.

Fig.2 Logic symbol.

Fig.3 IEC logic symbol.

Octal buffer/line driver; 3-state; inverting

74HC/HCT540

FUNCTION TABLE

INPUTS		OUTPUT
\overline{OE}_1	\overline{OE}_2	A_n
L	L	L
L	L	H
X	H	X
H	X	X
		Z
		Z

Notes

1. H = HIGH voltage level
L = LOW voltage level
X = don't care
Z = high impedance OFF-state

Fig.4 Functional diagram.

Fig.5 Logic diagram.

Octal buffer/line driver; 3-state; inverting

74HC/HCT540

DC CHARACTERISTICS FOR 74HCFor the DC characteristics see "*74HC/HCT/HCU/HCMOS Logic Family Specifications*".

Output capability: bus driver

I_{CC} category: MSI**AC CHARACTERISTICS FOR 74HC**GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF

SYMBOL	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS			
		74HC							V _{cc} (V)	WAVEFORMS		
		+25			−40 to +85		−40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay A _n to Y _n	30 11 9	100 20 17		125 25 21		150 30 26	ns	2.0 4.5 6.0	Fig.6		
t _{PZH} / t _{PZL}	3-state output enable time OE to Y _n	52 19 15	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig.7		
t _{PHZ} / t _{PLZ}	3-state output disable time OE to Y _n	61 22 18	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig.7		
t _{THL} / t _{TLH}	output transition time	14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.6		

Octal buffer/line driver; 3-state; inverting

74HC/HCT540

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "*74HC/HCT/HCU/HCMOS Logic Family Specifications*".

Output capability: bus driver

I_{CC} category: MSI**Note to HCT types**The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications.To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
\overline{OE}_1	1.50
\overline{OE}_2	1.00
A _n	1.40

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF

SYMBOL	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS			
		74HCT							V _{CC} (V)	WAVEFORMS		
		+25			−40 to +85		−40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay A _n to Y _n		13	24		30		36	ns	4.5	Fig.6	
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE} to Y _n		22	35		44		53	ns	4.5	Fig.7	
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE} to Y _n		23	35		44		53	ns	4.5	Fig.7	
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6	

Octal buffer/line driver; 3-state; inverting

74HC/HCT540

AC WAVEFORMS

(1) HC : $V_M = 50\%$; $V_I = \text{GND to } V_{CC}$.
 HCT: $V_M = 1.3 \text{ V}$; $V_I = \text{GND to } 3 \text{ V}$.

Fig.6 Waveforms showing the input (A_n) to output (\bar{Y}_n) propagation delays and the output transition times.

(1) HC : $V_M = 50\%$; $V_I = \text{GND to } V_{CC}$.
 HCT: $V_M = 1.3 \text{ V}$; $V_I = \text{GND to } 3 \text{ V}$.

Fig.7 Waveforms showing the 3-state enable and disable times.

PACKAGE OUTLINES

See "[74HC/HCT/HCU/HCMOS Logic Package Outlines](#)".