Svanberg's (strict) conservatism

$$x^{k} = 0.500$$

 $F^{k} = -0.175$
 $d_{x}^{k}F = -18.413$
 $dd_{x}^{k}F = 73.650$
 $\alpha_{F} = 1.000$

$$G^{k} = -0.239$$

 $d_{x}^{k}G = 2.303$
 $dd_{x}^{k}G = 9.213$
 $\alpha_{G} = 1.000$

with Lagrange multiplier $\lambda^{k\star}=3.820$ at the solution $x^{k\star}=0.588$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -1.514$$

$$\tilde{\mathbf{G}}^{k\star} = -0.000$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.013$$
$$G^{k\star} = 0.250$$

However, the solution (step) is deemed unacceptable, because

- \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.
- \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.500$$

$$F^{k} = -0.175$$

$$d_{x}^{k}F = -18.413$$

$$dd_{x}^{k}F = 73.650$$

$$\alpha_{F} = 2.000$$

$$G^{k} = -0.239$$

 $d_{x}^{k}G = 2.303$
 $dd_{x}^{k}G = 9.213$
 $\alpha_{G} = 2.000$

with Lagrange multiplier $\lambda^{k\star} = 1.803$ at the solution $x^{k\star} = 0.579$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -1.169$$

$$\tilde{\mathbf{G}}^{k\star} = 0.000$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.177$$
$$G^{k\star} = 0.237$$

However, the solution (step) is deemed unacceptable, because

- \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.
- \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.500$$

$$F^{k} = -0.175$$

$$d_{x}^{k}F = -18.413$$

$$dd_{x}^{k}F = 73.650$$

$$\alpha_{F} = 4.000$$

$$G^{k} = -0.239$$

 $d_{x}^{k}G = 2.303$
 $dd_{x}^{k}G = 9.213$
 $\alpha_{G} = 4.000$

with Lagrange multiplier $\lambda^{k\star} = 0.000$ at the solution $x^{k\star} = 0.562$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -0.750$$

$$\tilde{\mathbf{G}}^{k\star} = -0.023$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.428$$
$$G^{k\star} = 0.165$$

However, the solution (step) is deemed *unacceptable*, because

- \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.
- \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.500$$

 $F^{k} = -0.175$
 $d_{x}^{k}F = -18.413$
 $dd_{x}^{k}F = 73.650$
 $\alpha_{F} = 8.000$

$$G^{k} = -0.239$$

 $d_{x}^{k}G = 2.303$
 $dd_{x}^{k}G = 9.213$
 $\alpha_{G} = 8.000$

with Lagrange multiplier $\lambda^{k\star} = 0.000$ at the solution $x^{k\star} = 0.531$

At the solution of the QP the function approximations have the values

$$\tilde{F}^{k\star} = -0.462$$

$$\tilde{G}^{k\star} = -0.131$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.565$$
 $G^{k\star} = -0.069$

The solution leads to a feasible descent step and is therefore deemed *acceptable*, as is. (Note that the objective and/or constraint function approximation is not conservative in this case.)

$$x^{k} = 0.531$$

 $F^{k} = -0.565$
 $d_{x}^{k}F = -4.611$
 $dd_{x}^{k}F = 17.360$
 $\alpha_{F} = 1.000$

$$G^{k} = -0.069$$

 $d_{x}^{k}G = 7.691$
 $dd_{x}^{k}G = 28.955$
 $\alpha_{G} = 1.000$

with Lagrange multiplier $\lambda^{k\star} = 0.561$ at the solution $x^{k\star} = 0.540$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -0.605$$

$$\tilde{\mathbf{G}}^{k\star} = 0.000$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.583$$
$$G^{k\star} = 0.001$$

However, the solution (step) is deemed unacceptable, because

- \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.
- \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.531$$

 $F^{k} = -0.565$
 $d_{x}^{k}F = -4.611$
 $dd_{x}^{k}F = 17.360$
 $\alpha_{F} = 2.000$

$$G^{k} = -0.069$$

 $d_{x}^{k}G = 7.691$
 $dd_{x}^{k}G = 28.955$
 $\alpha_{G} = 2.000$

with Lagrange multiplier $\lambda^{k\star} = 0.526$ at the solution $x^{k\star} = 0.540$

At the solution of the QP the function approximations have the values

$$\tilde{F}^{k\star} = -0.604$$

$$\tilde{G}^{k\star} = 0.000$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.583$$
 $G^{k\star} = -0.000$

The solution leads to a feasible descent step and is therefore deemed *acceptable*, as is. (Note that the objective and/or constraint function approximation is not conservative in this case.)

$$x^{k} = 0.540$$

$$F^{k} = -0.583$$

$$d_{x}^{k}F = 0.553$$

$$dd_{x}^{k}F = 2.049$$

$$\alpha_{F} = 1.000$$

$$G^{k} = -0.000$$

 $d_{x}^{k}G = 8.000$
 $dd_{x}^{k}G = 29.634$
 $\alpha_{G} = 1.000$

with Lagrange multiplier $\lambda^{k\star} = 0.000$ at the solution $x^{k\star} = 0.440$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -0.628$$

$$\tilde{\mathbf{G}}^{k\star} = -0.652$$

while the actual functions are evaluated to be

$$F^{k\star} = 0.643$$

$$G^{k\star} = 0.015$$

However, the solution (step) is deemed unacceptable, because

- \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.
- \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.540$$

 $F^{k} = -0.583$
 $d_{x}^{k}F = 0.553$
 $dd_{x}^{k}F = 2.049$
 $\alpha_{F} = 2.000$

$$G^{k} = -0.000$$

 $d_{x}^{k}G = 8.000$
 $dd_{x}^{k}G = 29.634$
 $\alpha_{G} = 2.000$

with Lagrange multiplier $\lambda^{k\star} = 0.000$ at the solution $x^{k\star} = 0.440$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -0.618$$

$$\tilde{\mathbf{G}}^{k\star} = -0.504$$

while the actual functions are evaluated to be

$$F^{k\star} = 0.643$$

 $G^{k\star} = 0.015$

However, the solution (step) is deemed unacceptable, because

- \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.
- \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.540$$

 $F^{k} = -0.583$
 $d_{x}^{k}F = 0.553$
 $dd_{x}^{k}F = 2.049$
 $\alpha_{F} = 4.000$

$$G^{k} = -0.000$$

 $d_{x}^{k}G = 8.000$
 $dd_{x}^{k}G = 29.634$
 $\alpha_{G} = 4.000$

with Lagrange multiplier $\lambda^{k\star} = 0.000$ at the solution $x^{k\star} = 0.472$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -0.601$$

$$\tilde{\mathbf{G}}^{k\star} = -0.270$$

while the actual functions are evaluated to be

$$F^{k\star} = 0.347$$
 $G^{k\star} = -0.208$

However, the solution (step) is deemed unacceptable, because

- \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.
- \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.540$$

 $F^{k} = -0.583$
 $d_{x}^{k}F = 0.553$
 $dd_{x}^{k}F = 2.049$
 $\alpha_{F} = 8.000$

$$G^{k} = -0.000$$

 $d_{x}^{k}G = 8.000$
 $dd_{x}^{k}G = 29.634$
 $\alpha_{G} = 8.000$

with Lagrange multiplier $\lambda^{k\star} = 0.000$ at the solution $x^{k\star} = 0.506$

At the solution of the QP the function approximations have the values

$$\begin{split} \tilde{\mathbf{F}}^{k\star} &= -0.592 \\ \tilde{\mathbf{G}}^{k\star} &= -0.135 \end{split}$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.283$$
 $G^{k\star} = -0.221$

However, the solution (step) is deemed unacceptable, because

 \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.

$$x^{k} = 0.540$$

 $F^{k} = -0.583$
 $d_{x}^{k}F = 0.553$
 $dd_{x}^{k}F = 2.049$
 $\alpha_{F} = 16.000$

$$G^{k} = -0.000$$

 $d_{x}^{k}G = 8.000$
 $dd_{x}^{k}G = 29.634$
 $\alpha_{G} = 8.000$

with Lagrange multiplier $\lambda^{k\star} = 0.000$ at the solution $x^{k\star} = 0.523$

At the solution of the QP the function approximations have the values

$$\begin{split} \tilde{\mathbf{F}}^{k\star} &= -0.587 \\ \tilde{\mathbf{G}}^{k\star} &= -0.102 \end{split}$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.508$$
 $G^{k\star} = -0.129$

However, the solution (step) is deemed unacceptable, because

 \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.

$$x^{k} = 0.540$$

 $F^{k} = -0.583$
 $d_{x}^{k}F = 0.553$
 $dd_{x}^{k}F = 2.049$
 $\alpha_{F} = 32.000$

$$G^{k} = -0.000$$

 $d_{x}^{k}G = 8.000$
 $dd_{x}^{k}G = 29.634$
 $\alpha_{G} = 8.000$

with Lagrange multiplier $\lambda^{k\star} = 0.000$ at the solution $x^{k\star} = 0.531$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -0.585$$

$$\tilde{\mathbf{G}}^{k\star} = -0.059$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.566$$
 $G^{k\star} = -0.067$

However, the solution (step) is deemed unacceptable, because

 \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.

$$x^{k} = 0.540$$

 $F^{k} = -0.583$
 $d_{x}^{k}F = 0.553$
 $dd_{x}^{k}F = 2.049$
 $\alpha_{F} = 64.000$

$$G^{k} = -0.000$$

 $d_{x}^{k}G = 8.000$
 $dd_{x}^{k}G = 29.634$
 $\alpha_{G} = 8.000$

with Lagrange multiplier $\lambda^{k\star} = 0.000$ at the solution $x^{k\star} = 0.536$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -0.584$$

$$\tilde{\mathbf{G}}^{k\star} = -0.032$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.580$$
 $G^{k\star} = -0.034$

However, the solution (step) is deemed unacceptable, because

 \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.

$$x^{k} = 0.540$$

$$F^{k} = -0.583$$

$$d_{x}^{k}F = 0.553$$

$$dd_{x}^{k}F = 2.049$$

$$\alpha_{F} = 128.000$$

$$G^{k} = -0.000$$

 $d_{x}^{k}G = 8.000$
 $dd_{x}^{k}G = 29.634$
 $\alpha_{G} = 8.000$

with Lagrange multiplier $\lambda^{k\star} = 0.000$ at the solution $x^{k\star} = 0.538$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -0.583$$

$$\tilde{\mathbf{G}}^{k\star} = -0.017$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.583$$
 $G^{k\star} = -0.017$

However, the solution (step) is deemed unacceptable, because

 \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.

$$x^{k} = 0.540$$

 $F^{k} = -0.583$
 $d_{x}^{k}F = 0.553$
 $dd_{x}^{k}F = 2.049$
 $\alpha_{F} = 256.000$

$$G^{k} = -0.000$$

 $d_{x}^{k}G = 8.000$
 $dd_{x}^{k}G = 29.634$
 $\alpha_{G} = 8.000$

with Lagrange multiplier $\lambda^{k\star} = 0.000$ at the solution $x^{k\star} = 0.539$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -0.583$$

$$\tilde{\mathbf{G}}^{k\star} = -0.009$$

while the actual functions are evaluated to be

$$\mathbf{F}^{k\star} = -0.583$$

$$G^{k\star} = -0.009$$

The solution leads to a feasible descent step and is therefore deemed *acceptable*, as is. (Note that the objective and/or constraint function approximation is not conservative in this case.)

$$x^{k} = 0.539$$

 $F^{k} = -0.583$
 $d_{x}^{k}F = -0.076$
 $dd_{x}^{k}F = 0.284$
 $\alpha_{F} = 1.000$

$$G^{k} = -0.009$$

 $d_{x}^{k}G = 7.995$
 $dd_{x}^{k}G = 29.674$
 $\alpha_{G} = 1.000$

with Lagrange multiplier $\lambda^{k\star} = 0.009$ at the solution $x^{k\star} = 0.540$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -0.583$$

$$\tilde{\mathbf{G}}^{k\star} = 0.000$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.583$$
 $G^{k\star} = -0.000$

However, the solution (step) is deemed unacceptable, because

 \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.

$$x^{k} = 0.539$$

 $F^{k} = -0.583$
 $d_{x}^{k}F = -0.076$
 $dd_{x}^{k}F = 0.284$
 $\alpha_{F} = 2.000$

$$G^{k} = -0.009$$

 $d_{x}^{k}G = 7.995$
 $dd_{x}^{k}G = 29.674$
 $\alpha_{G} = 1.000$

with Lagrange multiplier $\lambda^{k\star} = 0.009$ at the solution $x^{k\star} = 0.540$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -0.583$$

$$\tilde{\mathbf{G}}^{k\star} = -0.000$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.583$$
 $G^{k\star} = -0.000$

However, the solution (step) is deemed unacceptable, because

 \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.

$$x^{k} = 0.539$$

 $F^{k} = -0.583$
 $d_{x}^{k}F = -0.076$
 $dd_{x}^{k}F = 0.284$
 $\alpha_{F} = 4.000$

$$G^{k} = -0.009$$

 $d_{x}^{k}G = 7.995$
 $dd_{x}^{k}G = 29.674$
 $\alpha_{G} = 1.000$

with Lagrange multiplier $\lambda^{k\star} = 0.009$ at the solution $x^{k\star} = 0.540$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -0.583$$

$$\tilde{\mathbf{G}}^{k\star} = 0.000$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.583$$
 $G^{k\star} = -0.000$

However, the solution (step) is deemed unacceptable, because

 \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.

$$x^{k} = 0.539$$

 $F^{k} = -0.583$
 $d_{x}^{k}F = -0.076$
 $dd_{x}^{k}F = 0.284$
 $\alpha_{F} = 8.000$

$$G^{k} = -0.009$$

 $d_{x}^{k}G = 7.995$
 $dd_{x}^{k}G = 29.674$
 $\alpha_{G} = 1.000$

with Lagrange multiplier $\lambda^{k\star} = 0.009$ at the solution $x^{k\star} = 0.540$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -0.583$$

$$\tilde{\mathbf{G}}^{k\star} = 0.000$$

while the actual functions are evaluated to be

$$F^{k\star} = -0.583$$
 $G^{k\star} = -0.000$

However, the solution (step) is deemed unacceptable, because

 \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.

$$x^{k} = 0.539$$

$$F^{k} = -0.583$$

$$d_{x}^{k}F = -0.076$$

$$dd_{x}^{k}F = 0.284$$

$$\alpha_{F} = 16.000$$

$$G^{k} = -0.009$$

 $d_{x}^{k}G = 7.995$
 $dd_{x}^{k}G = 29.674$
 $\alpha_{G} = 1.000$

with Lagrange multiplier $\lambda^{k\star} = 0.009$ at the solution $x^{k\star} = 0.540$

At the solution of the QP the function approximations have the values

$$\tilde{F}^{k\star} = -0.583$$

$$\tilde{G}^{k\star} = -0.000$$

while the actual functions are evaluated to be

$$\mathbf{F}^{k\star} = -0.583$$

$$G^{k\star} = -0.000$$