Theory Assignment for Module 1 & 2

MA423: Matrix Computations

S. Bora

Total Marks: 20

Important instructions:

- Only pdf files neatly typed in LaTex will be accepted. File name should be M12GyT.pdf where y is group number. For example for Group 11 it will be M12G11T.pdf
- 2. Write the Group number and names of all group members on the top of the file.
- 1. Prove that running Gaussian elimination with complete pivoting on a square matrix A produces permutation matrices P and Q, a unit lower triangular matrix L and an upper triangular matrix U such that PAQ = LU. (8 marks)
- 2. From the backward error analysis it is well known that given floating point numbers $u_i, w_i, i = 1, ..., n$, there exist $\gamma_i, i = 1, ..., n$, satisfying $|\gamma_i| \le nu + O(u^2)$, such that in the presence of rounding errors,

$$fl\left(\sum_{i=1}^{n} u_i w_i\right) = \sum_{i=1}^{n} u_i w_i (1 + \gamma_i).$$
(1)

<u>irrespective of the order of summation.</u> Answer the following question using (1). You may assume basic inequalities like $|AB| \le |A||B|$, $|Ax| \le |A||x|$ for matrices A and B and vectors x such that the products are defined.

Let V be any $n \times n$ invertible matrix. Prove that given any $n \times n$ matrix A, there exists an $n \times n$ matrix δA , such that $\mathrm{fl}(VA) = V(A + \delta A)$ with $|\delta A_j| \leq \gamma |V^{-1}||V||A_j|$, for a scalar γ (which does not depend on j) such that $|\gamma| \leq nu + O(u^2)$ for all $j = 1, \ldots, n$, A_j and δA_j being the j^{th} columns of A and δA respectively. (6 marks)

3. Given $A = [a_{ij}]_{n \times n}$ let $A^{(k)} = [a_{ij}^{(k)}]_{n \times n}$ be the matrix obtained at the end of step k of Gaussian elimination in theory. The pivotal growth factor of the process is defined as

$$\rho(A) = \left(\max_{\substack{1 \le i, j \le n \\ 1 \le k \le n-1}} |a_{ij}^{(k)}|\right) / \left(\max_{1 \le i, j \le n} |a_{ij}|\right).$$

Prove that for GEPP, $\frac{\|U\|_{\infty}}{\|A\|_{\infty}} \le n\rho(A) \le n2^{n-1}$. (6 marks)