INTERROGATION 2 MERCREDI 3 AVRIL 2024 DURÉE : 45 MINUTES

Toutes les réponses doivent être rigoureusement justifiées. Les documents, calculatrices et objets connectés ne sont pas autorisés.

Questions de cours : Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I. Montrer que si la série $\sum f_n$ converge normalement sur I alors elle converge uniformément sur I. Voir le Théorème 7.31, pages 90-91, du poly.

Exercice.

Pour $x \in]0, +\infty[$ et $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{1}{n+n^3x}$.

On étudie la série $\sum f_n$ pour $n \ge 1$.

(1) Montrer que la série $\sum_{n\geq 1} f_n$ converge simplement sur $]0,+\infty[$.

Soit $x \in]0, +\infty[$, on a $f_n(x) \underset{n \to +\infty}{\sim} \frac{1}{x} \cdot \frac{1}{n^3}$. Comme la série $\sum_{n \geqslant 1} \frac{1}{n^3}$ est convergente et comme $(\frac{1}{n^3})$ est une suite positive on conclut que pour tout $x \in]0, +\infty[$ la série $\sum_{n \geqslant 1} f_n(x)$ est convergente. Autrement dit, la série $\sum_{n \geqslant 1} f_n$ converge simplement sur $]0, +\infty[$.

(2) On note $f(x) = \sum_{n \ge 1} f_n(x)$. Montrer que f est continue sur $]0, +\infty[$.

Soit $a \in]0, +\infty[$. Pour tout $n \in \mathbb{N}^*$ et pour tout $x \in [a, +\infty[$ on a

$$f_n(x) \leqslant f_n(a) = \frac{1}{n+n^3a}.$$

De nouveau, on a $\frac{1}{n+n^3a} \sim \frac{1}{n \to +\infty} \frac{1}{a} \cdot \frac{1}{n^3}$ et la série $\sum_{n\geqslant 1} \frac{1}{n^3}$ est convergente. On conclut que la série de fonctions $\sum_{n\geqslant 1} f_n$ est normalement convergente sur $[a,+\infty[$.

Un résultat du cours affirme alors que la série $\sum_{n\geqslant 1}f_n$ converge uniformément sur $[a,+\infty[$. Comme de plus chaque fonction f_n est continue, un autre résultat du cours affirme que la fonction f est continue sur $[a,+\infty[$, pour tout réel a>0. Par ailleurs on a

$$]0,+\infty[=\bigcup_{a\in]0,+\infty[}[a,+\infty[\,.$$

On conclut que f est continue en tout point $x \in]0, +\infty[$.

(3) Montrer que pour tout réel a > 0 la série $\sum_{n \ge 1} f'_n$ converge normalement sur $[a, +\infty[$.

Pour tout $n \in \mathbb{N}^*$, la fonction f_n est dérivable sur $]0, +\infty[$ et pour tout $x \in]0, +\infty[$ on a

$$f'_n(x) = \frac{-n^3}{(n+n^3x)^2}.$$

Ainsi, pour tout $n \in \mathbb{N}^*$ et pour tout $x \in [a, +\infty[$ on a

$$|f'_n(x)| \le \frac{n^3}{(n+n^3a)^2} \underset{n \to +\infty}{\sim} \frac{1}{a^2} \cdot \frac{1}{n^3}.$$

La série $\sum_{n\geqslant 1}\frac{1}{n^3}$ est convergente, par conséquent la série de fonctions $\sum_{n\geqslant 1}f'_n$ est normalement convergente sur $[a,+\infty[$, pour tout réel a>0.

(4) Montrer que f est dérivable sur $]0, +\infty[$.

Soit $x_0 \in]0, +\infty[$ et soit $a \in]0, x_0[$. D'après les hypothèses et les questions précédentes on sait que :

- f_n est dérivable sur $]a, +\infty[$ pour tout $n \in \mathbb{N}^*$,
- la série $\sum_{n\geq 1} f_n$ converge simplement vers f sur $]a,+\infty[$,
- la série des dérivées $\sum_{n\geqslant 1} f'_n$ converge normalement, et donc uniformément, sur $]a,+\infty[$, vers une fonction g.

Un théorème du cours affirme alors que la fonction f est dérivable sur $]a, +\infty[$ et de plus f' = g. Comme $x_0 \in]a, +\infty[$, la fonction f est dérivable en x_0 .

Ainsi, f est dérivable en tout point $x_0 \in]0, +\infty[$.

(5) La série converge-t-elle normalement sur $]0, +\infty[$? Justifier.

On voudrait savoir s'il existe une suite réelle positive (a_n) telle que

- (i) $|f_n(x)| < a_n$ pour tout $n \in \mathbb{N}^*$ et pour tout réel x > 0,
- (ii) la série numérique $\sum_{n\geq 1} a_n$ est convergente.

Soit (a_n) une suite réelle vérifiant la condition (i) ci-dessus. On a donc pour tout réel x > 0 et pour tout $n \in \mathbb{N}^*$:

$$\frac{1}{n+n^3x} < a_n.$$

En faisant tendre x vers 0 on obtient ainsi

$$\frac{1}{n} \leqslant a_n$$
, pour tout $n \in \mathbb{N}^*$.

Comme la série $\sum_{n\geqslant 1}\frac{1}{n}$, il découle que la série $\sum_{n\geqslant 1}a_n$ est nécessairement divergente.

La série de fonctions $\sum_{n\geqslant 1} f_n$ ne converge donc pas normalement sur $]0,+\infty[$.

(6) Calculer la limite de f en $+\infty$.

On sait d'après les questions précédentes que la série de fonctions $\sum_{n\geqslant 1} f_n$ converge normalement, et donc uniformément, vers f sur $[a,+\infty[$.

Un résultat du cours permet donc d'intervertir le signe somme avec le passage à la limite quand $x \to +\infty$. On a donc

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sum_{n \ge 1} f_n(x) = \sum_{n \ge 1} \lim_{x \to +\infty} f_n(x).$$

Or, pour tout $n \in \mathbb{N}^*$ on a

$$\lim_{x \to +\infty} f_n(x) = \lim_{x \to +\infty} \frac{1}{n + n^3 x} = 0.$$

On a donc

$$\lim_{x \to +\infty} f(x) = 0.$$