где V_0 и au - известные постоянные величины, V_0 задана в $\frac{ extit{M}}{c}$, au - в секундах.

Точка движется, когда ее скорость отлична от нуля, в том числе и при отрицательных значениях t.

- **1.4.1** Постройте график зависимости величины $\frac{V}{V_0}$ (т.е. скорости, измеренной в
- единицах V_0) от величины $\frac{t}{ au}$ (т.е. времени измеренном в единицах au).
- **1.4.2** Используя построенный график, найдите путь (в M), пройденный точкой, за все время движения.
- **1.4.3** Используя тот же график, найдите зависимость ускорения точки (в единицах системы СИ) от времени.

<u>Задание 2</u> «Кастрюля»

В этой задаче Вам необходимо описать нагревание и остывание воды в кастрюле с учетом теплообмена с окружающей средой. Как Вам, наверное, известно, мощность тепловых потерь в окружающую среду пропорциональна разности температур тела и окружающей среды:

$$P_{\uparrow} = \alpha (T - T_0) \tag{1},$$

где α - коэффициент тепловых потерь (постоянная для поверхности некоторого вещества величина); T - температура тела; T_0 - температура окружающей среды.

В кастрюлю доверху наливают $m = 3.0 \, \kappa c$ воды (удельная теплоемкость $c = 4200 \, \mathcal{J} \mathcal{M} / \kappa c^{\circ} C$) при $T = 0.0^{\circ} C$ и ставят на плиту.

При решении задачи используйте следующие приближения:

- мощность плиты постоянна;
- плита передает тепло только кастрюле;
- температуры воды и кастрюли всегда одинаковы;
- температура окружающей среды остается всегда постоянной;
- потери тепла через дно кастрюли отсутствуют;
- вода не испаряется;
- теплоемкость кастрюли равна нулю.
- **2.1** Плиту включили и измерили зависимость температуры от времени. В результате были получены следующие данные. От $0^{\circ}C$ до $5^{\circ}C$ вода нагрелась за 51 секунду; от $40^{\circ}C$ до $45^{\circ}C$ за 89 секунд; и от $80^{\circ}C$ до $85^{\circ}C$ за 339 секунд.
- **2.1.1** Исходя из этих данных, покажите, что мощность теплопотерь действительно пропорциональна разности температур (формула (1)).
- **2.1.2** Определите коэффициент тепловых потерь α . Укажите размерность этого коэффициента.
 - **2.1.3** Определите, за какое время вода нагревается от $20^{\circ}C$ до $25^{\circ}C$.
- **2.1.4** Определите, до какой максимальной температуры можно нагреть воду на этой плите.
- **2.2** После длительного нагревания, плиту выключили, и кастрюля начала остывать. Было обнаружено, что вода остыла от $95^{\circ}C$ до $90^{\circ}C$ за 67 секунд; от $65^{\circ}C$ до $60^{\circ}C$ за 114 секунд; и от $35^{\circ}C$ до $30^{\circ}C$ за 393 секунды.

- **2.2.1** Покажите, что и в этом случае мощность теплопотерь пропорциональна разности температур.
 - **2.2.2** Определите значение комнатной температуры T_0 .
 - **2.2.3** Определите, за какое время вода остывает от $50^{\circ}C$ до $45^{\circ}C$.
 - **2.2.4** Используя данные части 2.1, определите мощность электрической плиты P.

Задание 3. «Чем длина отличается от ширины?»

3.1 Цилиндр радиуса r и длиной L изготовлен из материала с удельным электрическим сопротивлением ρ_1 . Цилиндр покрывают тонкой оболочкой толщиной h (h << r) из материала, удельное сопротивление которого равно ρ_2 . Полученный таким образом образец зажимают между двумя хорошо проводящими пластинами. Найдете электрическое сопротивление полученного элемента, при его подключении к проводящим пластинами.

3.2 Электрическая цепь, состоящая из двух последовательно соединенных резисторов, сопротивления которых равны R_1 и R_2 , подключена к источнику постоянного напряжения U_0 . Найдите силу тока в цепи и напряжение на резисторе R_1 .

3.3 В цепи, рассмотренной в предыдущем пункте, к резистору R_{1} параллельно подключают резистор сопротивлением R_{0} . При этом в цепь включают амперметр и вольтметр, как Считая приборы идеальными показано схеме. (сопротивление амперметра пренебрежимо вольтметра очень сопротивление велико), показания этих приборов. Найдите показания этих приборов, если сопротивление R_0 значительно больше сопротивлений

 R_1 и R_2 . В этом случае ток через амперметр оказывается малым, поэтому вместо амперметра в цепь включают миллиамперметр.

3.4 Для измерения удельного сопротивления изоляционного материала используют следующую методику. Цилиндр радиуса r и длиной L (L>>r) с удельным сопротивлением ρ_0 покрывают тонким слоем исследуемого материала толщиной h (h<< R) . Полученный таким образом элемент помещают внутрь цилиндрической трубки, электрическое сопротивление которой пренебрежимо мало. Этот элемент включают в электрическую цепь, как показано на схеме. Напряжение

источника равно U_0 , амперметр показывает малый (по сравнению с током через источник) ток величиной I. Определите по этим данным удельное электрическое сопротивление исследуемого изоляционного материала.

Во всех пунктах данной задачи сопротивлением подводящих проводов можно пренебречь.