(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年7 月14 日 (14.07.2005)

PCT

(10) 国際公開番号 WO 2005/063725 A1

(51) 国際特許分類7:

C07D 263/48,

277/42, 277/36, 417/04, 417/12, A61K 31/421, 31/426, 31/4439, A61P 43/00, 3/10, 3/06, 15/00, 17/00, 19/02, 19/08, 9/10, 7/02, 1/14, 25/28, 25/24, 25/18, 3/04, 9/12, 35/00, 37/00, 29/00, 7/10, 25/00, 5/50

(21) 国際出願番号:

PCT/JP2004/019749

(22) 国際出願日:

2004年12月24日(24.12.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2003-435089

2003年12月26日(26.12.2003) JP

(71) 出願人 *(*米国を除く全ての指定国について*)*: 武田 薬品工業株式会社 (TAKEDA PHARMACEUTICAL COMPANY LIMITED) [JP/JP]; 〒5410045 大阪府大阪 市中央区道修町四丁目1番1号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 安間 常雄 (YA-SUMA, Tsuneo) [JP/JP]; 〒5670011 大阪府茨木市高田町 2 0 — 5 Osaka (JP). 佐々木 忍 (SASAKI, Shinobu) [JP/JP]; 〒6638201 兵庫県西宮市田代町 8 — 7 — 3 O 6 Hyogo (JP). 坂井 望 (SAKAI, Nozomu) [JP/JP];

〒6520045 兵庫県神戸市兵庫区松本通5丁目3-12 Hyogo (JP).

- (74) 代理人: 高島 (TAKASHIMA, Hajime); 〒5410044 大阪府大阪市中央区伏見町四丁目 1 番 1 号 明治安 田生命大阪御堂筋ビル Osaka (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: PHENYLPROPANOIC ACID DERIVATIVES

(54) 発明の名称: フェニルプロパン酸誘導体

$$\begin{array}{c|c}
R^{1} & X \\
R^{2} & N
\end{array}$$

$$\begin{array}{c|c}
E & S^{1} & O \\
R^{4} & R^{10}
\end{array}$$

$$\begin{array}{c|c}
COR$$
(I)

(57) Abstract: The invention provides novel compounds which have function-regulating effects on GPR 40 receptor and are useful as insulin secretagogue or preventive and therapeutic drugs for diabetes and so on. Compounds represented by the general formula (I), salts of the same, and prodrugs thereof have unexpected excellent GPR40 receptor agonism and are excellent in stability and other properties requisite to medicines, thus being useful as safe preventive and therapeutic agents for morbid states and diseases of mammals in which GPR40 receptor participates: (I) (wherein each symbol is as defined in the description).

○ (57) 要約: 本発明は、インスリン分泌促進薬や糖尿病などの予防・治療薬として有用なGPR40受容体機能調節では、作用を有する新規化合物を提供する。式(1) (式中、各記号は明細書と同義である)で表わされる化合物およびその塩並びにそのプロドラッグは、予想外にも優れたGPR40受容体アゴニスト活性を有し、更に安定性等の医薬品としての物性においても優れた性質を有しており、哺乳動物のGPR40受容体関連病態または疾患の予防・治療薬として安全でかつ有用な医薬となる。

明細書

フェニルプロパン酸誘導体.

技術分野

本発明は、GPR40受容体機能調節作用を有する、糖尿病治療剤として有用 5 な新規化合物に関する。

背景技術

近年、G蛋白質共役型受容体(G Protein-coupled Receptor; GPCR)の1つであるGPR40のリガンドが脂肪酸であり、膵臓の β 細胞にあるGPR40がインスリン分泌作用と深く関わっていることが報告されており(ネイチャー

(Nature)、2003年、422巻、173-176頁)、GPR40アゴニストはインスリン分泌を促進し、GPR40アンタゴニストはインスリン分泌を阻害し、これらのアゴニストおよびアンタゴニストは2型糖尿病、肥満症、耐糖能異常、インスリン抵抗性、神経退縮症(アルツハイマー病)などの治療薬として有用である(国際公開第03/068959号パンフレットおよび国際公開第02/057783号パンフレット参照)。

一方、糖尿病の治療薬として有用な化合物が多数報告されている。 例えば、国際公開第02/092590号パンフレットには、式:

HOOC
$$(CR^1R^2)m$$
 X^1 R^3 R^4 R^5 R^6 R^7 X^2 X^2 X^3 X^4 X^4

[X¹: C₁₋₃アルキル等; R¹、R²: H等; R³、R⁴、R⁵: H、CH₃等; R²⁶、R²⁷: H等; m:
 0-3; X²: O等; R⁶、R⁷: H等; Y、Z: 一方がCH、他方がSまたはO; R⁶: フェニル等; R⁰: C₁₋₆アルキル等]

で表わされるペルオキシソーム増殖因子活性化受容体(PPAR)調節剤がPPAR媒介疾患(例えば、糖尿病)の予防・治療剤として有用であることが開示されている。

国際公開第02/053547号パンフレットには、式:

$$R^1-X-Q-Y-A-z-B-U-W-(C=O)-R^3$$

【R¹: 置換されていてもよい5員芳香族複素環基; X: 結合手、0、S、-NR⁶-(R⁶: H、置換されていてもよい炭化水素基等)等; Q: C₁-20の2価の炭化水素基; Y: 結
 5 合手、0、S、-NR⁷-(R⁷: H、置換されていてもよい炭化水素基等)等; 環A: 1 ないし3個の置換基をさらに有していてもよい芳香環; Z: -(CH₂)n-Z¹-(n: 1~8、Z¹: 0等)等; 環B: 1 ないし3個の置換基をさらに有していてもよいベンゼン環等; U: 結合手等; W: C₁-20の2価の炭化水素基; R³: -OR՞-(R՞: H、置換されていてもよい炭化水素基)または-NR՞²R¹⁰-(R՞、R¹⁰: H、置換されていてもよい炭化水素基)等; ただし、環Bが1ないし3個の置換基をさらに有していてもよいベンゼン環の時、Uは結合手を示す]

で表わされるアルカン酸誘導体が、糖尿病、高脂血症、耐糖能異常などの予防・治療剤として有用であることが開示されている。

国際公開第99/11255号パンフレットには、式:

15

 $[R^1: C_{1-8}$ アルキル、 C_{1-8} アルコキシ、ハロゲン原子、トリフルオロメチル等; $R^2:$ $-COOR^3$ ($R^3: H$ 、 C_{1-4} アルキル)等; $A: C_{1-8}$ アルキレン等; $G: C_{1-8}$ アルキル、 C_{1-8} アルコキシ、ハロゲン原子、トリフルオロメチルまたはニトロで置換されてよい 炭素環等; $E^1: C_{1-8}$ アルキレン等; $E^2: -O$ -等; $E^3:$ 単結合等; n: O、1; Cyc_1

20 環:存在しない等]

で表わされる化合物がPPAR受容体の制御作用を有し、糖尿病、肥満、シンドロームX、高コレステロール血症、高リポ蛋白血症などの代謝異常疾患などの予防・治療剤として有用であることが開示されている。

国際公開第00/64876号パンフレットには、式:

$$\underbrace{ \left(\begin{array}{c} R_1 \\ R_2 \end{array} \right) \left(\begin{array}{c} R_3 \\ R_4 \end{array} \right) \left(\begin{array}{c} R_5 \\ R_6 \end{array} \right) \left(\begin{array}{c} R_7 \\ R_8 \end{array} \right) \left(\begin{array}{c} R_9 \\ R_{10} \end{array} \right) \left(\begin{array}{c} R_{11} \\ R_{12} \end{array} \right) E-Z }$$

【環ArI、環ArII、環ArIII: 置換していてもよい縮合環等; A: -0-、-S-、結合、-NR₁₃-(R₁₃: H、アルキル等)等; B: -0-等; D: 結合、エチレン; E: 結合、エチレン; Z: R₂₁0₂C-、(R₂₁)₂NCO-(R₂₁: H、アルキル等)等; a、b、c、e: 0-4; d: 0-5; f: 0-6; R_i∼R₁₂: H等〕

で表わされる化合物がPPARリガンド受容体結合剤、PPAR受容体アゴニスト、PPAR受容体アンタゴニストとして有用であり、糖尿病治療剤として用いられることが開示されている。

10 国際公開第01/00603号パンフレットには、式:

 $[X: COOH(エステル含む)等; X^1: CH_2等; 点線はX^1がCHの時のみ、描かれた結合が二重結合であることを示す; X^2: O等; R^1、R^2: H、Me等; n: 1、2; Y、Z: 一方がN、他方がSまたはO; y: 0-5の整数; R^3: CF₃等]$

15 で表わされる化合物が P P A R δ アゴニストとして用いられ、 P P A R δ 媒介疾患(例えば、高脂血症、動脈硬化症、1または2型糖尿病など)の予防・治療剤として有用であることが開示されている。

国際公開第97/31907号パンフレットには、式:

[A: 少なくとも0、N、Sから選ばれるヘテロ原子を1つ含む5-6員ヘテロ環等; B: C_{1-6} アルキレン等; ALK: C_{1-3} アルキレン; R^1 : H、 C_{1-3} アルキル; Z: ハロゲンで置換されていてよい- $(C_{1-3}$ アルキレン)フェニル等]

5 で表わされる化合物が P P A R γ アゴニストとして有用であり、高血糖、1 または2型糖尿病、高脂血症等の予防・治療剤として用いることができることが開示されている。

国際公開第02/083616号パンフレットには、式:

Ar-
$$(CH_2)m$$
-O R^4 $(CH_2)n$ R^2 R^2

- 10 [Ar: 1-5個の同一又は異なったハロゲン原子等で置換されたフェニル等; R¹: ハロゲン原子等; R²: H等; R³、R⁴: H、ハロゲン原子; m: 1、2; n: 2-7] で表わされる化合物が優れたインスリン抵抗性改善作用、血糖低下作用、脂質低下作用、抗炎症作用、免疫調節作用、過酸化脂質生成抑制作用、PPAR活性化作用を有し、糖尿病治療薬として有用であることが開示されている。
- 15 国際公開第01/55085号パンフレットには、式: ・・

[A: OH等で置換されていてもよいアリール; X_1 、 X_2 : H等; Y、Z: H等; n: O-3; m: O、1; Q: O等; Ar: アリーレン等; R_1 - R_4 : H等]

で表わされる化合物がPPAR関連疾患の治療薬として有用であり、例えば、2型糖尿病、耐糖能異常、インスリン抵抗性、高トリグリセリド血症等の治療薬として有用であることが開示されている。

しかしながら、これら公知の糖尿病治療薬がGPR40受容体機能調節作用を有することは全く開示がなく、これまでGPR40受容体機能調節作用を有する化合物(GPR40アゴニストおよびGPR40アンタゴニストとして有用な化合物)について報告されておらず、GPR40受容体機能調節作用を有する化合物の開発が望まれている。

発明の開示

本発明は、インスリン分泌促進薬や糖尿病などの予防・治療薬として有用なG PR40受容体機能調節作用を有する新規化合物を提供することを目的とする。

本発明者らは、種々鋭意研究を重ねた結果、後記式(I)で表わされる化合物が予想外にも優れたGPR40受容体アゴニスト活性を有し、更に安定性等の医薬品としての物性においても優れた性質を有しており、哺乳動物のGPR40受容体関連病態または疾患の予防・治療薬として安全でかつ有用な医薬となることを見出し、これらの知見に基づいて本発明を完成した。

すなわち、本発明は、

20 (1)式(I)

5

10

15

「式中、XはSまたはOを、

 R^1 および R^2 は同一または異なって、それぞれ水素原子、置換されていてもよい C_{6-14} アリール基、置換されていてもよい複素環基または置換されていてもよい C_{1-6} アルキル基を示すか、 R^1 および R^2 は互いに結合して、それらが結合する炭素原子と共に環を形成し、

Eは $-W^1-N$ (R^5) $-W^2-$ 、 $-W^1-CH$ (R^6) $-O-W^2-$ 、 $-W^1-O$ -CH (R^6) $-W^2-$ 、 $-W^1-S$ (O) $n-W^2-$ または $-W^1-CH$ (R^6) $-W^2-$ (W^1 及び W^2 は同一または異なって、結合手または置換されていてもよい C_{1-3} アルキレン基を、 R^5 および R^6 は置換されていてもよい複素環基また

- 5 は置換されていてもよい炭化水素基を、nは1または2を示す。但し、XがSである場合、R 5 およびR 6 はC $_{1-6}$ アルキル基でない。)を、
 - 環 S^1 は置換されていてもよい C_{1-6} アルキル基、置換されていてもよい C_{1-6} アルコキシ基およびハロゲン原子から選ばれる置換基をそれぞれさらに有していてもよいベンゼン環またはピリジン環を、
- 10 R^3 および R^4 は同一または異なって、それぞれ水素原子、ハロゲン原子、置換されていてもよい C_{1-6} アルキル基または置換されていてもよい C_{1-6} アルコキシ基を、
 - R 9 および R 10 は同一または異なって、それぞれ水素原子、ハロゲン原子または C_{1-6} アルコキシ基を、
- 15 Rは置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を 示す。〕で表わされる化合物またはその塩。
 - (2) Eが $-W^1-N$ (R^5) $-W^2-$ 、 $-W^1-CH$ (R^6) $-O-W^2-$ 、 $-W^1-O-CH$ (R^6) $-W^2-$ または $-W^1-CH$ (R^6) $-W^2-$ (W^1 及び W^2 は同一または異なって、結合手または置換されていてもよい C_{1-3} アルキレン基を、
- 20 R^5 および R^6 は置換されていてもよい複素環基または置換されていてもよい炭化水素基を示す。但し、XがSである場合、 R^5 および R^6 は C_{1-6} アルキル基でない。)、
- R^9 および R^{10} が水素原子である上記(1)の化合物またはその塩。
 - (3) 上記(1) の化合物またはその塩のプロドラッグ。

ベンゼン環、かつ

25

(4) R^3 および R^4 が同一または異なって、それぞれ水素原子またはハロゲン原子である上記(1)の化合物またはその塩。

(5) Eが $-W^1-N$ (R^5) $-W^2-$ (W^1 及び W^2 は同一または異なって、結合手または置換されていてもよい C_{1-3} アルキレン基を、 R^5 は置換されていてもよい複素環基または置換されていてもよい炭化水素基を示す。但し、XがSである場合、 R^5 は C_{1-6} アルキル基でない。)である上記(1)の化合物またはその塩。

- (6) R^5 が置換されていてもよい C_{7-16} アラルキル基である上記(5) の化合物またはその塩。
- (7) Rがヒドロキシ基である上記(1)の化合物またはその塩。
- (8) XがSである上記(1)の化合物またはその塩。
- 10 (9) \mathbb{R}^{1} がベンゼン環である上記(1)の化合物またはその塩。
 - (10) R⁹およびR¹⁰がともに水素原子である上記(1) の化合物またはその 塩。
 - (11)3-[4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸、
- 3-[2,6-ジフルオロ-4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸、
 2-フルオロ-3-{4-[(4-{[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸、
 3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1,3-チアゾール-2-イル)スルホニル] ブチル}ベンジル)オキシ]フェニル}プロパン酸、またはその塩。
- (12)上記(1)の化合物もしくはその塩またはそのプロドラッグを含有してなるGPR40受容体機能調節剤。
 - (13)上記(1)の化合物もしくはその塩またはそのプロドラッグを含有してなる医薬。
- 25 (14)糖尿病の予防・治療剤である上記(13)の医薬。
 - (15) GPR40受容体機能調節剤の製造のための、上記(1) の化合物もしくはその塩またはそのプロドラッグの使用。
 - (16)糖尿病の予防・治療剤の製造のための、上記(1)の化合物もしくはその塩またはそのプロドラッグの使用。

(17) 哺乳動物に対して、上記(1) の化合物もしくはその塩またはそのプロドラッグの有効量を投与することを特徴とする、該哺乳動物におけるGPR40 受容体機能調節方法。

(18) 哺乳動物に対して、上記(1)の化合物もしくはその塩またはそのプロドラッグの有効量を投与することを特徴とする、該哺乳動物における糖尿病の予防または治療方法。等に関する。

本発明の化合物、その塩またはそのプロドラッグは、優れたGPR40受容体機能調節作用を有しており、糖尿病などの予防・治療剤として用いることができる。

発明の詳細な説明

. . . .

. 10

発明を実施するための最良の形態

本明細書中の「ハロゲン原子」としては、特に断りのない限り、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。

本明細書中の「置換されていてもよい炭化水素基」としては、特に断りのない
15 限り、例えば、「置換されていてもよい C_{1-6} アルキル基」、「置換されていて
もよい C_{2-6} アルケニル基」、「置換されていてもよい C_{2-6} アルキニル基」、
「置換されていてもよい C_{3-8} シクロアルキル基」、「置換されていてもよい C_{6-14} アリール基」、「置換されていてもよい C_{7-16} アラルキル基」などが挙げ
られる。

20 本明細書中の「C₁₋₆アルキル基」としては、特に断りのない限り、例えばメ チル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、 tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシルなどが挙げら れる。

本明細書中の「 C_{2-6} アルケニル基」としては、特に断りのない限り、例えば 25 ビニル、プロペニル、イソプロペニル、2-ブテン-1-イル、4-ペンテン-1-イル、5-ヘキセン-1-イルなどが挙げられる。

本明細書中の「 C_{2-6} アルキニル基」としては、特に断りのない限り、例えば 2-ブチンー1-イル、4-ペンチンー1-イル、5-ヘキシンー1-イルなど が挙げられる。

本明細書中の「 C_{3-8} シクロアルキル基」としては、特に断りのない限り、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどが挙げられる。

本明細書中の「 C_{6-14} アリール基」としては、特に断りのない限り、例えばフェニル、1ーナフチル、2ーナフチル、2ービフェニリル、3ービフェニリル、4ービフェニリル、2ーアンスリルなどが挙げられる。該 C_{6-14} アリールは、部分的に飽和されていてもよく、部分的に飽和された C_{6-14} アリールとしては、例えばテトラヒドロナフチルなどが挙げられる。

本明細書中の「 C_{7-16} アラルキル基」としては、特に断りのない限り、例え 10 ばベンジル、フェネチル、ジフェニルメチル、1-ナフチルメチル、2-ナフチルメチル、2, 2-ジフェニルエチル、3-フェニルプロピル、4-フェニルブチル、5-フェニルペンチル、2-ビフェニリルメチル、3-ビフェニリルメチル、4-ビフェニリルメチルなどが挙げられる。

本明細書中の「置換されていてもよいヒドロキシ基」としては、特に断りのな 15 い限り、例えば、「ヒドロキシ基」、「置換されていてもよい C_{1-10} アルコキシ基(置換されていてもよい C_{1-6} アルコキシ基を含む)」、「置換されていてもよい複素環オキシ基」、「置換されていてもよい C_{6-14} アリールオキシ基」、「置換されていてもよい C_{7-16} アラルキルオキシ基」などが挙げられる。

本明細書中の「 C_{1-6} アルコキシ基」としては、特に断りのない限り、例えば 20 メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、 tert-ブトキシ、ペンチルオキシ、ヘキシルオキシなどが挙げられる。また、本 明細書中の「 C_{1-10} アルコキシ基」としては、上記 C_{1-6} アルコキシ基に加えて、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシなどが挙げられる。

25 本明細書中の「複素環オキシ基」としては、後述の「複素環基」で置換された ヒドロキシ基が挙げられる。該複素環オキシ基の好適な例としては、テトラヒド ロピラニルオキシ、チアゾリルオキシ、ピリジルオキシ、ピラゾリルオキシ、オ キサゾリルオキシ、チエニルオキシ、フリルオキシなどが挙げられる。

本明細書中の「C₆₋₁₄アリールオキシ基」としては、特に断りのない限り、

例えば、フェノキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。

本明細書中の「 C_{7-16} アラルキルオキシ基」としては、特に断りのない限り、例えばベンジルオキシ、フェネチルオキシなどが挙げられる。

5 本明細書中の「 C_{1-6} アルキルチオ基」としては、特に断りのない限り、例えばメチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、sec-ブチルチオ、tert-ブチルチオ、ヘキシルチオなどが挙げられる。

本明細書中の「複素環基」としては、特に断りのない限り、例えば、環構成原 子として、炭素原子以外に窒素原子、硫黄原子及び酸素原子から選ばれる1又は 10 2種、1ないし4個のペテロ原子を含む5ないし14員(単環、2環又は3環 式) 複素環基、好ましくは(i) 5ないし14員(好ましくは5ないし10員) 芳香族複素環基、(ii)5ないし10員非芳香族複素環基などが挙げられる。 なかでも5または6員芳香族複素環基が好ましい。具体的には、例えばチエニル (例:2ーチエニル、3ーチエニル等)、フリル(例:2ーフリル、3ーフリル 等)、ピリジル(例:2-ピリジル、3-ピリジル、4-ピリジル等)、チアゾ 15 リル(例:2ーチアゾリル、4ーチアゾリル、5ーチアゾリル等)、オキサゾリ ル(例:2-オキサゾリル、4-オキサゾリル、5-オキサゾリル等)、キノリ ル(例:2-キノリル、3-キノリル、4-キノリル、5-キノリル、8-キノ リル等)、イソキノリル(例:1-イソキノリル、3-イソキノリル、4-イソ 20 キノリル、5-イソキノリル等)、ピラジニル、ピリミジニル(例:2-ピリミ ジニル、4ーピリミジニル等)、ピロリル(例:1ーピロリル、2ーピロリル、 3ーピロリル等)、イミダゾリル(例:1-イミダゾリル、2-イミダゾリル、 4ーイミダブリル等)、ピラブリル(例:1ーピラブリル、3ーピラブリル、4 - ピラゾリル等)、ピリダジニル(例:3-ピリダジニル、4-ピリダジニル

25 等)、イソチアゾリル(例:3-イソチアプリル、4-イソチアプリル、5-イ ソチアプリル等)、イソオキサプリル(例:3-イソオキサブリル、4-イソオ キサプリル、5-イソオキサブリル等)、インドリル(例:1-インドリル、2 -インドリル、3-インドリル等)、2-ベンプチアプリル、2-ベンプオキサ プリル、ベンズイミダプリル(例:1-ベンズイミダプリル、2-ベンズイミダ

ゾリル等)、ベンゾ [b] チエニル (例:2-ベンゾ [b] チエニル、3-ベン ゾ [b] チエニル等)、ベンゾ [b] フラニル (例:2-ベンゾ [b] フラニル、 3-ベンゾ [b] フラニル等)などの芳香族複素環基;

例えばピロリジニル(例:1-ピロリジニル、2-ピロリジニル、3-ピロリジ 5 ニル等)、オキサゾリジニル(例:2-オキサゾリジニル等)、イミダゾリニル (例:1-イミダゾリニル、2-イミダゾリニル、4-イミダゾリニル等)、ピ ペリジニル(例:1-ピペリジニル、2-ピペリジニル、3-ピペリジニル、4 -ピペリジニル等)、ピペラジニル(例:1-ピペラジニル、2-ピペラジニル 等)、モリホリニル(例:2-モルホリニル、3-モルホリニル、4-モルホリ ニル等)、チオモルホリニル(例:2-チオモルホリニル、3-チオモルホリニル、4-チオモルホリニル等)、テトラヒドロピラニル、オキソジオキソリル (例:2-オキソ-1,3-ジオキソール-4-イル等)などの非芳香族複素環 基などが挙げられる。

本明細書中の「 C_{1-6} アルキルスルホニル基」としては、特に断りのない限り、 **15** 例えばメチルスルホニル、エチルスルホニル、プロピルスルホニル、イソプロピルスルホニル、ヘキシルスルホニル等が挙げられる。

本明細書中の「 C_{1-6} アルキルスルフィニル基」としては、特に断りのない限り、例えばメチルスルフィニル、エチルスルフィニル、プロピルスルフィニル、イソプロピルスルフィニル、ヘキシルスルフィニル等が挙げられる。

20 本明細書中の「 C_{6-14} アリールスルホニル基」としては、特に断りのない限り、例えば、フェニルスルホニル、1-ナフチルスルホニル、2-ナフチルスルホニルなどが挙げられる。

本明細書中の「 C_{6-14} アリールスルフィニル基」としては、特に断りのない限り、例えば、フェニルスルフィニル、1-ナフチルスルフィニル、2-ナフチルスルフィニルなどが挙げられる。

25

本明細書中の「エステル化されていてもよいカルボキシル基」としては、特に断りのない限り、例えばカルボキシル、 C_{1-6} アルコキシーカルボニル基(例:メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、tert-ブトキシカルボニル等)、 C_{6-14} アリールオキシーカルボニル基(例:フェノキシ

カルボニル等)、C₇₋₁₆アラルキルオキシーカルボニル基(例:ベンジルオキシカルボニル、フェネチルオキシカルボニル等)などが挙げられる。

本明細書中の「ハロゲン化されていてもよい C_{1-6} アルキル基」としては、特に断りのない限り、1ないし5個の上記「ハロゲン原子」で置換されていてもよい上記「 C_{1-6} アルキル基」が挙げられる。例えば、メチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチル、イソブチル、トリフルオロメチルなどが挙げられる。

本明細書中の「ハロゲン化されていてもよい C_{1-6} アルコキシ基」としては、特に断りのない限り、1ないし5個の上記「ハロゲン原子」で置換されていてもよい上記「 C_{1-6} アルコキシ基」が挙げられる。例えば、メトキシ、エトキシ、イソプロポキシ、tert-ブトキシ、トリフルオロメトキシなどが挙げられる。

本明細書中の「モノー又はジー C_{1-6} アルキルーアミノ基」としては、特に断りのない限り、上記「 C_{1-6} アルキル基」でモノー又はジー置換されたアミノ基が挙げられる。例えば、メチルアミノ、エチルアミノ、プロピルアミノ、ジメチルアミノ、エチルメチルアミノ、ジエチルアミノなどが挙げられる。

本明細書中の「モノー又はジー C_{6-14} アリールーアミノ基」としては、特に断りのない限り、上記「 C_{6-14} アリール基」でモノー又はジー置換されたアミノ基が挙げられる。例えば、フェニルアミノ、ジフェニルアミノ、1ーナフチルアミノ、2ーナフチルアミノ、ナフチルフェニルアミノなどが挙げられる。

20 本明細書中の「モノー又はジー C_{7-16} アラルキルーアミノ基」としては、特に断りのない限り、上記「 C_{7-16} アラルキル基」でモノー又はジー置換されたアミノ基が挙げられる。例えば、ベンジルアミノ、フェネチルアミノなどが挙げられる。

本明細書中の「 $N-C_{1-6}$ アルキルー $N-C_{6-14}$ アリールーアミノ基」とし 25 ては、特に断りのない限り、上記「 C_{1-6} アルキル基」及び上記「 C_{6-14} アリール基」で置換されたアミノ基が挙げられる。例えば、N-メチルーN-フェニルアミノ、N-エチルーN-フェニルアミノなどが挙げられる。

本明細書中の「 $N-C_{1-6}$ アルキルー $N-C_{7-16}$ アラルキルーアミノ基」としては、特に断りのない限り、上記「 C_{1-6} アルキル基」及び上記「 C_{7-16} ア

ラルキル基」で置換されたアミノ基が挙げられる。例えば、N-メチル-N-ベンジルアミノ、N-エチル-N-ベンジルアミノなどが挙げられる。

本明細書中の「モノー又はジー C_{1-6} アルキルーカルバモイル基」としては、特に断りのない限り、上記「 C_{1-6} アルキル基」でモノー又はジー置換されたカルバモイル基が挙げられる。例えば、メチルカルバモイル、エチルカルバモイル、イソプロピルカルバモイル、ヘキシルカルバモイル、ジメチルカルバモイル、ジェチルカルバモイル、ジェチルカルバモイル、エチルメチルカルバモイル等が挙げられる。

本明細書中の「モノー又はジー C_{6-14} アリールーカルバモイル基」としては、特に断りのない限り、上記「 C_{6-14} アリール基」でモノー又はジー置換された 10 カルバモイル基が挙げられる。例えば、フェニルカルバモイル、1ーナフチルカルバモイル、2ーナフチルカルバモイル、ジフェニルカルバモイル等が挙げられる。

本明細書中の「モノー又はジー5ないし7員複素環ーカルバモイル基」としては、特に断りのない限り、5ないし7員複素環基でモノー又はジー置換されたカルバモイル基が挙げられる。ここで、5ないし7員複素環基としては、環構成原子として、炭素原子以外に窒素原子、硫黄原子及び酸素原子から選ばれる1又は2種、1ないし4個のヘテロ原子を含む複素環基が挙げられる。該複素環基としては、例えばチエニル、フリル、ピリジル、チアゾリル、オキサゾリル、ピラジニル、ピリミジニル、ピロリル、イミダゾリル、ピラゾリル、ピリダジニル、イソチアゾリル、イソオキサゾリル等が挙げられる。

15

20

「モノー又はジー5ないし7員複素環ーカルバモイル基」の好適な例としては、 2-ピリジルカルバモイル、3-ピリジルカルバモイル、4-ピリジルカルバモ イル、2-チエニルカルバモイル、3-チエニルカルバモイル等が挙げられる。

本明細書中の「モノー又はジー C_{1-6} アルキルースルファモイル基」としては、 25 特に断りのない限り、上記「 C_{1-6} アルキル基」でモノー又はジー置換されたス ルファモイル基が用いられ、例えば、メチルスルファモイル、エチルスルファモイル、プロピルスルファモイル、イソプロピルスルファモイル、ヘキシルスルファモイル、ジメチルスルファモイル、ジメチルスルファモイル、ジェチルスルファモイル、エチルメチルス ルファモイルなどが挙げられる。

本明細書中の「モノー又はジー C_{6-14} アリールースルファモイル基」としては、特に断りのない限り、上記「 C_{6-14} アリール基」でモノー又はジー置換されたスルファモイル基が用いられ、例えば、フェニルスルファモイル、ジフェニルスルファモイル、1ーナフチルスルファモイル、2ーナフチルスルファモイルなどが挙げられる。

本明細書中の「置換されていてもよいC₁₋₆アルキル基」、「置換されていて もよいC2-6アルケニル基」、「置換されていてもよいC2-6アルキニル基」お よび「置換されていてもよいC,-,0アルコキシ基(置換されていてもよいC,-6アルコキシ基を含む)」としては、例えば(1)ハロゲン原子;(2)ヒドロキ シ基; (3) アミノ基; (4) ニトロ基; (5) シアノ基; (6) ハロゲン原子、 ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化されていてもよいC 1-6アルキル基、モノー又はジー C_{1-6} アルキルーアミノ基、 C_{6-14} アリール 基、モノー又はジーC₆₋₁₄アリールーアミノ基、C₃₋₈シクロアルキル基、C₁ -6アルコキシ基、C₁₋₆アルキルチオ基、C₁₋₆アルキルスルフィニル基、C₁ -6アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カル 15 バモイル基、チオカルバモイル基、モノー又はジーC1-6アルキルーカルバモイ ル基、モノー又はジーC₆₋₁₄アリールーカルバモイル基、スルファモイル基、 モノー又はジーC₁₋₆アルキルースルファモイル基およびモノー又はジーC₆₋₁ 4アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されて 20 いてもよい複素環基(好ましくはフリル、ピリジル、チエニル、ピラゾリル、チ アゾリル、オキサゾリル、2-オキソー1,3-ジオキソール-4-イル): (7) モノー又はジー C_{1-6} アルキルーアミノ基; (8) モノー又はジー C_{6-14} アリールーアミノ基; (9) モノー又はジー C_{7-16} アラルキルーアミノ基; (10) $N-C_{1-6}$ アルキル- $N-C_{6-14}$ アリール-アミノ基; (11) $N-C_{1-6}$ $_{6}$ アルキル-N-C $_{7-16}$ アラルキル-アミノ基; (12) C $_{3-8}$ シクロアルキル 25 基; (13) ハロゲン化されていてもよい C_{1-6} アルコキシ基; (14) C_{1-6} アル キルチオ基;(15)C,_。アルキルスルフィニル基;(16)C,_。アルキルスル ホニル基: (17) エステル化されていてもよいカルボキシル基; (18) カルバ モイル基; (19) チオカルバモイル基; (20) モノー又はジーC,-6アルキルー

カルバモイル基; (21) モノー又はジー C_{6-14} アリールーカルバモイル基; (22) モノー又はジー5ないし7員複素環ーカルバモイル基; (23) カルボキシル基で置換されていてもよい C_{1-6} アルキルーカルボニルアミノ基(例:アセチルアミノ、プロピオニルアミノ等); (24) ハロゲン原子、ヒドロキシ基、

- T ミノ基、ニトロ基、シアノ基、ハロゲン化されていてもよい C_{1-6} アルキル基、モノー又はジー C_{1-6} アルキルーアミノ基、 C_{6-14} アリール基、モノー又はジー C_{6-14} アリールーアミノ基、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、 C_{1-6} アルキルスルフィニル基、 C_{1-6} アルキルスルホニル基、 C_{1-6} アルとれていてもよいカルボキシル基、カルバモイル基、チオカ
- 10 ルバモイル基、モノー又はジー C_{1-6} アルキルーカルバモイル基、モノー又はジー C_{6-14} アリールーカルバモイル基、スルファモイル基、モノー又はジー C_{1-6} アルキルースルファモイル基およびモノー又はジー C_{6-14} アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよい C_{6-14} アリールオキシ基; (25) ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、
 - 5 シアノ基、ハロゲン化されていてもよい C_{1-6} アルキル基、モノー又はジー C_{1-6} アルキルーアミノ基、 C_{6-14} アリール基、モノー又はジー C_{6-14} アリールーアミノ基、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、 C_{1-6} アルキルスルフィニル基、 C_{1-6} アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カルバモイル基、チオカルバモイル基、モ
- 20 ノー又はジー C_{1-6} アルキルーカルバモイル基、モノー又はジー C_{6-14} アリールーカルバモイル基、スルファモイル基、モノー又はジー C_{1-6} アルキルースルファモイル基およびモノー又はジー C_{6-14} アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよい C_{6-14} アリール基;
- (26) 複素環オキシ基; (27) スルファモイル基; (28) モノー又はジー C_{1-6} アルキルースルファモイル基; (29) モノー又はジー C_{6-14} アリールースルファモイル基; (30) ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化されていてもよい C_{1-6} アルキル基、モノー又はジー C_{1-6} アルキルーアミノ基、 C_{6-14} アリール基、モノー又はジー C_{6-14} アリールーアミノ基、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、

 C_{1-6} アルキルスルフィニル基、 C_{1-6} アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジー C_{1-6} アルキルーカルバモイル基、モノー又はジー C_{6-14} アリールーカルバモイル基、スルファモイル基、モノー又はジー C_{1-6} アルキルースルファモイル基およびモノー又はジー C_{6-14} アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよい C_{7-16} アラルキルオキシ基などから選ばれる1ないし5個の置換基をそれぞれ置換可能な位置に有していてもよい、

「 C_{1-6} アルキル基」、「 C_{2-6} アルケニル基」、「 C_{2-6} アルキニル基」およ 10 び「 C_{1-10} アルコキシ基(C_{1-6} アルコキシ基を含む)」が挙げられる。

本明細書中の「置換されていてもよい C_{3-8} シクロアルキル基」、「置換されていてもよい C_{6-14} アリール基」、「置換されていてもよい C_{7-16} アラルキル基」、「置換されていてもよい複素環基」、「置換されていてもよい複素環オキシ基」、「置換されていてもよいでもよい C_{6-14} アリールオキシ基」および「置換され

- 15 ていてもよいC₇₋₁₆アラルキルオキシ基」としては、例えば(1) ハロゲン原子;(2) ヒドロキシ基;(3) アミノ基;(4) ニトロ基;(5) シアノ基;
 - (6) 置換されていてもよい C_{1-6} アルキル基; (7) 置換されていてもよい C_{2-6} アルケニル基; (8) 置換されていてもよい C_{2-6} アルキニル基; (9) ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化されてい
- 20 てもよい C_{1-6} アルキル基、モノー又はジー C_{1-6} アルキルーアミノ基、 C_{6-1} $_4$ アリール基、モノー又はジー C_{6-14} アリールーアミノ基、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、 C_{1-6} アルキルスルフィニル基、 C_{1-6} アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジー C_{1-6} アルキルーカ
- 25 ルバモイル基、モノー又はジー C_{6-14} アリールーカルバモイル基、スルファモイル基、モノー又はジー C_{1-6} アルキルースルファモイル基およびモノー又はジー C_{6-14} アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよい C_{6-14} アリール基; (10) ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化されていてもよい C_{1-6} アルキル基、

モノー又はジー C_{1-6} アルキルーアミノ基、 C_{6-14} アリール基、モノー又はジ - C₆₋₁₄アリールーアミノ基、C₃₋₈シクロアルキル基、C₁₋₆アルコキシ基、 C₁₋₆アルキルチオ基、C₁₋₆アルキルスルフィニル基、C₁₋₆アルキルスルホ ニル基、エステル化されていてもよいカルボキシル基、カルバモイル基、チオカ ルバモイル基、モノー又はジーC₁₋₆アルキルーカルバモイル基、モノー又はジ -C₆₋₁₄アリールーカルバモイル基、スルファモイル基、モノー又はジーC₁₋ 。アルキルースルファモイル基およびモノー又はジーC 6-14 アリールースルフ ァモイル基から選ばれる1ないし3個の置換基で置換されていてもよい C6-14 アリールオキシ基;(11)ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、 シアノ基、ハロゲン化されていてもよいC₁₋₆アルキル基、モノー又はジーC, -₆アルキルーアミノ基、C₆₋₁₄アリール基、モノー又はジーC₆₋₁₄アリール -アミノ基、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチ オ基、C₁₋₆アルキルスルフィニル基、C₁₋₆アルキルスルホニル基、エステル 化されていてもよいカルボキシル基、カルバモイル基、チオカルバモイル基、モ ノー又はジーC₁₋₆アルキルーカルバモイル基、モノー又はジーC₆₋₁₄アリー ルーカルバモイル基、スルファモイル基、モノー又はジーC1-6アルキルースル ファモイル基およびモノー又はジーC₆₋₁₄アリールースルファモイル基から選 ばれる1ないし3個の置換基で置換されていてもよいC₇₋₁₆アラルキルオキシ 基;(12)ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハ ロゲン化されていてもよい C_{1-6} アルキル基、モノー又はジー C_{1-6} アルキルー 20 アミノ基、C₆₋₁₄アリール基、モノー又はジーC₆₋₁₄アリールーアミノ基、C 3-8シクロアルキル基、C₁₋₆アルコキシ基、C₁₋₆アルキルチオ基、C₁₋₆ア ルキルスルフィニル基、C₁₋₆アルキルスルホニル基、エステル化されていても よいカルボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジーC 1-6アルキルーカルバモイル基、モノー又はジーC₆₋₁₄アリールーカルバモイ 25 ル基、スルファモイル基、モノー又はジーC1-6アルキルースルファモイル基お よびモノー又はジーC 6-14アリールースルファモイル基から選ばれる1ないし 3個の置換基で置換されていてもよい複素環基(好ましくはフリル、ピリジル、 チエニル、ピラゾリル、チアゾリル、オキサゾリル); (13) モノー又はジー

 C_{1-6} アルキルーアミノ基;(14)モノー又はジー C_{6-14} アリールーアミノ基;(15)モノー又はジー C_{7-16} アラルキルーアミノ基;(16)Nー C_{1-6} アルキルーNー C_{6-14} アリールーアミノ基;(17)Nー C_{1-6} アルキルーNー C_{7-16} アラルキルーアミノ基;(18) C_{3-8} シクロアルキル基;(19)置換されていてもよい C_{1-6} アルコキシ基;(20) C_{1-6} アルキルチオ基;(21) C_{1-6} アルキルスルフィニル基;(22) C_{1-6} アルキルスルホニル基;(23)エステル化されていてもよいカルボキシル基;(24)カルバモイル基;(25)チオカルバモイル基;(26)モノー又はジー C_{1-6} アルキルーカルバモイル基;(27)モノー又はジー C_{6-14} アリールーカルバモイル基;(28)モノー又はジー C_{6-14} アリールーカルブテモイル基;(30)モノー又はジー C_{1-6} アルキルースルファモイル基;(31)モノー又はジー C_{6-14} アリールースルファモイル基;(31)モノースはジー C_{6-14} アリールースルファモイル基などから選ばれる 1 ないし 1 個の置換基をそれぞれ置換可能な位置に有していてもよい、

「 C_{3-8} シクロアルキル基」、「 C_{6-14} アリール基」、「 C_{7-16} アラルキル 15 基」、「複素環基」、「複素環オキシ基」、「 C_{6-14} アリールオキシ基」および「 C_{7-16} アラルキルオキシ基」が挙げられる。

本明細書中の「置換されていてもよいアミノ基」としては、特に断りのない限り、(1)置換されていてもよい C_{1-6} アルキル基;(2)置換されていてもよい C_{2-6} アルケニル基;(3)置換されていてもよい C_{2-6} アルケニル基;(4)置20 換されていてもよい C_{3-8} シクロアルキル基;(5)置換されていてもよい C_{6-14} アリール基;(6)置換されていてもよい C_{1-6} アルコキシ基;(7)置換されていてもよいアシル基;(8)置換されていてもよい複素環基(好ましくはフリル、ピリジル、チエニル、ピラゾリル、チアゾリル、オキサゾリル);(9)スルファモイル基;(10)モノー又はジー C_{1-6} アルキルースルファモイル基;25 (11)モノー又はジー C_{6-14} アリールースルファモイル基などから選ばれる 1または 2 個の置換基で置換されていてもよいアミノ基が挙げられる。また、「置換されていてもよいアミノ基」が 2 個の置換基で置換されたアミノ基である場合、

これらの置換基は、隣接する窒素原子とともに、含窒素複素環を形成していても

少なくとも1個の窒素原子を含み、さらに酸素原子、硫黄原子及び窒素原子から選ばれる1ないし2個のヘテロ原子を含有していてもよい5ないし7員の含窒素複素環が挙げられる。該含窒素複素環の好適な例としては、ピロリジン、イミダゾリジン、ピラゾリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、チアゾリジン、オキサゾリジンなどが挙げられる。

本明細書中の「置換されていてもよいアシル基」としては、特に断りのない限り、式: $-COR^7$ 、 $-CO-OR^7$ 、 $-SO_2R^7$ 、 $-SOR^7$ 、-PO (OR 7) (OR 8) 、 $-CO-NR^{7a}R^{8a}$ 、 $-CS-NR^{7a}R^{8a}$ [式中、 R^7 および R^8 は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す。 R^{7a} および R^{8a} は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、 R^{7a} および R^{8a} は、隣接する窒素原子とともに、置換されていてもよい含窒素複素環を形成していてもよい]で表される基などが挙げられる。

15 R⁷*およびR⁸*が隣接する窒素原子とともに形成する「置換されていてもよい含窒素複素環」における「含窒素複素環」としては、例えば、環構成原子として炭素原子以外に少なくとも1個の窒素原子を含み、さらに酸素原子、硫黄原子及び窒素原子から選ばれる1ないし2個のヘテロ原子を含有していてもよい5ないし7員の含窒素複素環が挙げられる。該含窒素複素環の好適な例としては、ピロリジン、イミダゾリジン、ピラゾリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、チアゾリジン、オキサゾリジンなどが挙げられる。

該含窒素複素環は、置換可能な位置に1ないし2個の置換基を有していてもよい。このような置換基としては、ヒドロキシ基、ハロゲン化されていてもよい C_{1-6} アルキル基、 C_{6-14} アリール基、 C_{7-16} アラルキル基などが挙げられる。

25 「置換されていてもよいアシル基」の好適な例としては、ホルミル基、カルボキシル基、カルバモイル基、 C_{1-6} アルキルーカルボニル基(例:アセチル、イソプタノイル、イソペンタノイル等)、 C_{1-6} アルコキシーカルボニル基(例:メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、tert-プトキシカルボニル等)、 C_{3-8} シクロアルキルーカルボニル基(例:シクロペン

チルカルボニル、シクロヘキシルカルボニル等)、C₆₋₁₄アリールーカルボニ ル基 (例:ベンゾイル、1ーナフトイル、2ーナフトイル等)、C7-16アラル キルーカルボニル基(例:フェニルアセチル、2ーフェニルプロパノイル等)、 C₆₋₁₄アリールオキシーカルボニル基(例:フェニルオキシカルボニル、ナフ チルオキシカルボニル等)、C₇₋₁₆アラルキルオキシーカルボニル基(例:べ ンジルオキシカルボニル、フェネチルオキシカルボニル等)、モノー又はジーC ₁₋₆アルキルカルバモイル基、モノー又はジーC₆₋₁₄アリールーカルバモイル 基、C₃₋₈シクロアルキルーカルバモイル基(例:シクロプロピルカルバモイル 等)、C₇₋₁₆アラルキルーカルバモイル基(例:ベンジルカルバモイル等)、 C₁₋₆アルキルスルホニル基、C₆₋₁₄アリールスルホニル基、含窒素複素環ー ·-10 カルボニル基(例:ピロリジニルカルボニル、ピペリジノカルボニル等)、C, - 6アルキルスルフィニル基、C 6-14アリールスルフィニル基、チオカルバモイ ル基、スルファモイル基、モノー又はジーC1-6アルキルスルファモイル基、モ ノー又はジーC₆₋₁₄アリールースルファモイル基、モノー又はジーC₇₋₁₆アラ 15 ルキルースルファモイル基(例:ベンジルスルファモイル等)などが挙げられる。 本明細書中の「置換されていてもよいC₁₋₃アルキレン基」における「C₁₋₃ アルキレン基」は、直鎖状または分岐鎖状であり、例えばメチレン、エチレン、 1ーメチルエチレン、プロピレンなどが挙げられる。該C₁₋₃アルキレン基は、 置換可能な位置に、1ないし3個の置換基を有していてもよい。このような置換 20

置換可能な位置に、1ないし3個の置換基を有していてもよい。このような置換基としては、例えばハロゲン原子、ヒドロキシ基、アミノ基、モノー又はジーC $_{1-6}$ アルキルーアミノ基、モノー又はジーC $_{6-14}$ アリールーアミノ基、モノー又はジーC $_{7-16}$ アラルキルーアミノ基、ニトロ基、シアノ基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、 C_{1-6} アルキル基などが挙げられる。

R¹およびR²が互いに結合してそれらが結合する炭素原子と共に形成する 25 「環」としては、例えば環構成原子として炭素原子以外に窒素原子、硫黄原子及 び酸素原子から選ばれる1ないし2個のヘテロ原子を含んでいてもよい5ないし 8員環が挙げられる。このような環の好適な例としては、ベンゼン、ジヒドロベ ンゼン、テトラヒドロベンゼンなどの5ないし8員炭化水素環;ピロリン、ピラ ゾリン、ピリジン、ジヒドロピリジン、テトラヒドロピリジン、ピリミジン、ジ

ヒドロピリミジン、テトラヒドロピリミジン、チオフェン、ジヒドロチオフェン、フラン、ジヒドロフラン、ピラン、ジヒドロピラン、アゼピン、オキサゼピンなどの5ないし8員複素環などが挙げられる。

本発明の式(I)で表わされる化合物(以下、化合物(I)と略する場合がある)およびその塩について説明する。

式(I)中のXはSまたはOを示す。Xは好ましくはSである。

式(I)中の R^1 および R^2 は同一または異なって、それぞれ水素原子、置換されていてもよい C_{6-14} アリール基、置換されていてもよい複素環基または置換されていてもよい C_{1-6} アルキル基を示すか、 R^1 および R^2 は互いに結合し

10 て、それらが結合する炭素原子と共に環を形成する。 R^1 および R^2 は、それぞれ、好ましくは水素原子、置換されていてもよい C_{6-14} アリール基、複素環基、またはハロゲン化されていてもよい C_{1-6} アルキル基を示す。

 R^1 は好ましくは水素原子であり、 R^2 は好ましくは置換されていてもよい C_6 -14アリール基またはハロゲン化されていてもよい C_{1-6} アルキル基、さらに好 ましくは置換されていてもよい C_{6-14} アリール基である。

ここで、置換されていてもよい C_{6-14} アリール基は、好ましくはハロゲン原子、ハロゲン化されていてもよい C_{1-6} アルキル基から選ばれる1ないし3個の置換基で置換されていてもよい C_{6-14} アリール基(好ましくはフェニル)である。

式(I)中のEは-W¹-N(R⁵)-W²-、-W¹-CH(R⁶)-O-W²-、-W¹-O-CH(R⁶)-W²-、-W¹-S(O)n-W²-または-W¹-CH(R⁶)-W²-(W¹およびW²は、同一または異なって、結合手または置換されていてもよいC₁₋₃アルキレン基を、R⁵およびR⁶は置換されていてもよい複素環基または置換されていてもよい炭化水素基を、nは1または2を示す。但し、XがSである場合、R⁵およびR⁶はC₁₋₆アルキル基でない。)を示し、好ましくは-W¹-N(R⁵)-W²-または-W¹-S(O)n-W²-(W¹、W²、R⁵およびnは前記と同意義を示す。)を示す。Eはさらに好ましくは一W¹-N(R⁵)-W²-または-W¹-S(O)n-W² (W¹、W²、R⁵およびnは前記と同意義を示す。)を示す。Eはさらに好ましくはでW¹-N(R⁵)-W²-(W¹、W²およびR⁵は前記と同意義を示す。

れていてもよい C_{7-16} アラルキル基を示す。但し、XがSである場合、R⁵は C_{1-6} アルキル基でない。)を示す。

 R^5 の好適な具体例としては、(1)ハロゲン原子および C_{1-6} アルキル基から 選ばれる 1 ないし 3 個の置換基で置換されていてもよい C_{7-16} アラルキル基

- 5 (好ましくはベンジル、フェネチル、3-フェニルプロピル)、および
- (2) C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、モノー又はジー C_{1-6} アルキルーアミノ基、複素環基(好ましくはピリジル)、 C_{1-6} アルキルスルフィニル基および C_{1-6} アルキルスルホニル基から選ばれる1ないし3個の置換基で置換されていてもよい C_{1-6} アルキル基(但し、XがSである場合、R 5 は C_{1-6} アルキル基でない)が挙げられる。

Eの好適な具体例としては、1) $-W^1-N$ (R^5) $-W^2-$ (W^1 が結合手、 W^2 が C_{1-3} アルキレン基 (好ましくはメチレン) 、かつ

- R^5 が(1)ハロゲン原子および C_{1-6} アルキル基から選ばれる 1 ないし 3 個の置換基で置換されていてもよい C_{7-16} アラルキル基(好ましくはベンジル、フェネチル、3-フェニルプロピル)、または
- (2) C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、モノー又はジー C_{1-6} アルキ 20 ルーアミノ基、複素環基(好ましくはピリジル)、 C_{1-6} アルキルスルフィニル 基および C_{1-6} アルキルスルホニル基から選ばれる 1 ないし 3 個の置換基で置換 されていてもよい C_{1-6} アルキル基(但し、XがSである場合、R 5は C_{1-6} アルキル基でない);および
- 2) $-W^1-S$ (O) $n-W^2-$ (W^1 が結合手、 W^2 が C_{1-6} アルキル基で置換 25 されていてもよい C_{1-3} アルキレン基 (好ましくはメチレン) 、かつnが1または2を示す) が挙げられる。
 - 式 (I) 中の環 S^1 は置換されていてもよい C_{1-6} アルキル基、置換されていてもよい C_{1-6} アルコキシ基およびハロゲン原子から選ばれる置換基をそれぞれさらに有していてもよいベンゼン環またはピリジン環を示す。これら置換基の数

は、例えば1または2個であり、置換位置は特に限定されない。環 S^1 は好ましくはベンゼン環またはピリジン環を示し、さらに好ましくはベンゼン環を示す。

- 式(I)中の R^3 および R^4 は同一または異なって、それぞれ水素原子、ハロゲン原子、置換されていてもよい C_{1-6} アルキル基または置換されていてもよい C_{1-6} アルコキシ基を示し、好ましくは水素原子またはハロゲン原子(好ましくはフッ素原子)を示す。
- 式(I)中の R^9 および R^{10} は同一または異なって、それぞれ水素原子、ハロゲン原子または C_{1-6} アルコキシ基を示し、好ましくは水素原子またはハロゲン原子(好ましくはフッ素原子)を、さらに好ましくは水素原子示す。
- 式(I)中のRは置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を示し、好ましくは置換されていてもよいヒドロキシ基を示し、さらに好ましくはヒドロキシ基または C_{1-6} アルコキシ基を示す。なかでも、ヒドロキシ基が好ましい。

「化合物(I)の好適な例」としては、以下の化合物が挙げられる。

15

[化合物A]

 R^{1} 及び R^{2} が同一または異なって、それぞれ(1)水素原子、

- (2) ハロゲン原子で置換されていてもよい C_{6-14} アリール基(好ましくはフェニル)、
- 20 (3) 複素環基 (好ましくはピリジル)、または
 - (4) C₁₋₆アルキル基;

 $E m^{5} - W^{1} - N (R^{5}) - W^{2} - \sqrt{}$

かつ W^1 および W^2 が、同一または異なって、結合手または C_{1-3} アルキレン基(好ましくは、 W^1 が結合手、かつ W^2 が C_{1-3} アルキレン基(好ましくはメチ

25 レン))、

- R^5 が(1)ハロゲン原子および C_{1-6} アルキル基から選ばれる 1 ないし 3 個の置換基で置換されていてもよい C_{7-16} アラルキル基(好ましくはベンジル、フェネチル、3-フェニルプロピル)、または
- (2) C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、モノー又はジー C_{1-6} アルキ

ルーアミノ基、複素環基(好ましくはピリジル)、 C_{1-6} アルキルスルフィニル基および C_{1-6} アルキルスルホニル基から選ばれる1ないし3個の置換基で置換されていてもよい C_{1-6} アルキル基(但し、XがSである場合、R 5 は C_{1-6} アルキル基でない);

5 R^3 および R^4 が同一または異なって、水素原子またはハロゲン原子; $環 S^1$ がベンゼン環:

R⁹およびR¹⁰が水素原子:かつ

Rがヒドロキシ基または C_{1-6} アルコキシ基(好ましくはヒドロキシ基)である化合物。

10

[化合物B]

R¹及びR²が同一または異なって、それぞれ(1)水素原子、

- (2) ハロゲン原子、ハロゲン化されていてもよい C_{1-6} アルキル基から選ばれる1ないし3個の置換基で置換されていてもよい C_{6-14} アリール基(好ましく はフェニル)、
 - (3) 複素環基 (好ましくはピリジル)、または
 - (4) ハロゲン化されていてもよいC₁₋₆アルキル基;

 $E \, \mathfrak{D}^{5}1) - W^{1} - N \, (R^{5}) - W^{2} - \sqrt{}$

かつ W^1 および W^2 が、同一または異なって、結合手または C_{1-3} アルキレン基 20 (好ましくは、 W^1 が結合手、かつ W^2 が C_{1-3} アルキレン基(好ましくはメチレン))、

 R^5 が(1)ハロゲン原子および C_{1-6} アルキル基から選ばれる1ないし3個の置換基で置換されていてもよい C_{7-16} アラルキル基(好ましくはベンジル、フェネチル、3-フェニルプロピル)、または

25 (2) C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、モノー又はジー C_{1-6} アルキルーアミノ基、複素環基(好ましくはピリジル)、 C_{1-6} アルキルスルフィニル基および C_{1-6} アルキルスルホニル基から選ばれる1ないし3個の置換基で置換されていてもよい C_{1-6} アルキル基(但し、XがSである場合、R 5 は C_{1-6} アルキル基でない): または

2) $-W^{1}-S$ (O) $n-W^{2}-$

かつ W^1 および W^2 が、同一または異なって、結合手または C_{1-6} アルキル基で置換されていてもよい C_{1-3} アルキレン基(好ましくは、 W^1 が結合手、かつ W^2 が C_{1-6} アルキル基で置換されていてもよい C_{1-3} アルキレン基(好ましくはメチレン))、

nが1または2;

5

 R^3 および R^4 が同一または異なって、水素原子またはハロゲン原子(好ましくはフッ素原子);

10 R^9 および R^{10} が同一または異なって、水素原子またはハロゲン原子(好ましくはフッ素原子);かつ

Rがヒドロキシ基または C_{1-6} アルコキシ基(好ましくはヒドロキシ基)である化合物。

15 [化合物 C]

3-[4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ] メチル]ベンジル]オキシ]フェニル]プロパン酸 (実施例32);

3-[2,6-ジフルオロ-4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸 (実施例4

20 2);

2-フルオロ-3-{4-[(4-{[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸 (実施例 5 1);

3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1,3-チアゾール-2-イル)スルホニル]

25 ブチル}ベンジル)オキシ]フェニル}プロパン酸 (実施例 5 7); またはその塩。

化合物(I)の塩としては、例えば金属塩、アンモニウム塩、有機塩基との塩、 無機酸との塩、有機酸との塩、塩基性又は酸性アミノ酸との塩等が挙げられる。 金属塩の好適な例としては、例えばナトリウム塩、カリウム塩等のアルカリ金属

塩;カルシウム塩、マグネシウム塩、バリウム塩等のアルカリ土類金属塩;アルミニウム塩等が挙げられる。有機塩基との塩の好適な例としては、例えばトリメチルアミン、トリエチルアミン、ピリジン、ピコリン、2,6ールチジン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、シクロヘキシルアミン、バックロヘキシルアミン、N,N'ージベンジルエチレンジアミン等との塩が挙げられる。無機酸との塩の好適な例としては、例えば塩酸、臭化水素酸、硝酸、硫酸、リン酸等との塩が挙げられる。有機酸との塩の好適な例としては、例えば半酸、酢酸、トリフルオロ酢酸、フタル酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、pートルエンスルホン酸等との塩が挙げられる。塩基性アミノ酸との塩の好適な例としては、例えばアルギニン、リジン、オルニチン等との塩が挙げられる。
、酸性アミノ酸との塩の好適な例としては、例えばアスパラギン酸、グルタミン酸等との塩が挙げられる。

. .. 10

このうち、薬学的に許容し得る塩が好ましい。例えば、化合物内に酸性官能基 15 を有する場合にはアルカリ金属塩(例:ナトリウム塩、カリウム塩等)、アルカ リ土類金属塩(例:カルシウム塩、マグネシウム塩、バリウム塩等)等の金属 塩;アンモニウム塩等が、また、化合物内に塩基性官能基を有する場合には、例 えば塩酸、臭化水素酸、硝酸、硫酸、リン酸等の無機酸との塩;又は酢酸、フタ ル酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、メタン 20 スルホン酸、pートルエンスルホン酸等の有機酸との塩が好ましい。

化合物(I)およびその塩のプロドラッグは、生体内における生理条件下で酵素や胃酸等による反応により化合物(I)に変換する化合物、すなわち酵素的に酸化、還元、加水分解等を起こして化合物(I)に変化する化合物、胃酸等により加水分解等を起こして化合物(I)に変化する化合物をいう。

25 化合物(I)のプロドラッグとしては、化合物(I)のアミノ基がアシル化、 アルキル化またはリン酸化された化合物(例えば、化合物(I)のアミノ基がエ イコサノイル化、アラニル化、ペンチルアミノカルボニル化、(5-メチル-2 ーオキソー1,3-ジオキソレン-4-イル)メトキシカルボニル化、テトラヒ ドロフラニル化、ピロリジルメチル化、ピバロイルオキシメチル化、tert-ブ

チル化された化合物等);化合物(I)の水酸基がアシル化、アルキル化、リン酸化またはホウ酸化された化合物(例えば、化合物(I)の水酸基がアセチル化、パルミトイル化、プロパノイル化、ピバロイル化、スクシニル化、フマリル化、アラニル化、ジメチルアミノメチルカルボニル化された化合物等);化合物

- 5 (I) のカルボキシ基がエステル化またはアミド化された化合物(例えば、化合物(I) のカルボキシ基が C_{1-6} アルキルエステル化、フェニルエステル化、カルボキシメチルエステル化、ジメチルアミノメチルエステル化、ピバロイルオキシメチルエステル化、エトキシカルボニルオキシエチルエステル化、フタリジルエステル化、(5-メチル-2-オキソ-1, 3-ジオキソレン-4-イル)メ10 チルエステル化、シクロヘキシルオキシカルボニルエチルエステル化、メチルアミド化された化合物等)等が挙げられ、なかでも化合物(I) のカルボキシ基がメチル、エチル、tertーブチルなどの C_{1-6} アルキル基でエステル化された化合物が好ましく用いられる。これらの化合物は自体公知の方法によって化合物(I) から製造することができる。
- 15 また、化合物 (I)のプロドラッグは、広川書店1990年刊「医薬品の開発」第7巻分子設計163頁から198頁に記載されているような生理的条件で化合物 (I) に変化するものであってもよい。

以下に、化合物(I)またはその塩の製造法を説明する。

25

以下の反応式における各記号は、特記しないかぎり前記と同意義を示す。また、 20 反応式中の各化合物は、塩を形成していてもよく、該塩としては、例えば化合物 (I) の塩と同様のものが挙げられる。

反応式中の各工程において、生成物は反応混合物のまま、あるいは粗製物として次反応に用いることもできるが、常法に従って反応混合物から単離することもでき、通常の分離手段(例:再結晶、蒸留、クロマトグラフィーなど)により容易に精製することもできる。また、各化合物の製造時に使用する溶媒の量は、反応混合物が撹拌できる量であれば特に限定はない。

化合物(I)は、例えば以下の反応式1等で示される方法またはこれに準じた 方法に従って製造することができる。

反応式1

10

HO
$$R^3$$
 R^9 R^9 R^1 R^2 R^3 R^9 R^9 R^1 R^2 R^3 R^9 R^9

上記反応式中、式(I)、(III)、(III)、(I-1)で表わされる化合物は、以下、それぞれ化合物(I)、化合物(II)、化合物(III)、化合物(I-1)と略す。

化合物(I) および化合物(I-1) は、化合物(II) と化合物(III) とを反応 させて得られる化合物を所望により加水分解反応に付すことによって製造するこ とができる。

化合物(II)と化合物(III)との反応は、例えば光延反応(シンセシス(Synthesis)、1981年、1-27頁)を利用して行われる(工程A)。工程Aで用いられる化合物(II)のRは、置換されたヒドロキシ基または置換されていてもよいアミノ基であることが望ましい。

工程Aでは、化合物(II) と化合物(III) とを、アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル、1,1'-(アゾジカルボニル)ジピペリジンなどのアゾジカルボキシラート類およびトリフェニルホスフィン、トリブチルホスフィンなどのホスフィン類の存在下で反応させる。

15 化合物 (III) の使用量は、化合物 (II) 1モルに対し、約1ないし約5モル、 好ましくは約1ないし約2モルである。

該「アゾジカルボキシラート類」および「ホスフィン類」の使用量は、それぞれ化合物(II) 1モルに対し、約0.5ないし約5モル、好ましくは約1ない

し約2モルである。

15

20

25

工程Aの反応は該反応に不活性な溶媒を用いて行うのが有利である。このような溶媒としては、反応が進行する限り特に限定されないが、例えばジェチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、

1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類;ベンゼン、トルエンなどの芳香族炭化水素類;シクロヘキサン、ヘキサンなどの飽和炭化水素類; N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルホスホリックトリアミドなどのアミド類;1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類;ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類;アセトニトリル、プロピオニトリルなどのニトリル

10 のハロゲン化炭化水素類;アセトニトリル、プロピオニトリルなどのニトリル 類;アセトン、エチルメチルケトンなどのケトン類;ジメチルスルホキシドなど のスルホキシド類などの溶媒またはそれらの混合溶媒などが好ましい。

工程Aの反応時間は通常約5分ないし約48時間、好ましくは約10分ないし約24時間である。工程Aの反応温度は通常約-20ないし約200 $\mathbb C$ 、好ましくは約0ないし約100 $\mathbb C$ である。

工程Aにより得られた化合物(I)において、Rが置換されたヒドロキシ基または置換されていてもよいアミノ基(好ましくはメトキシ基、エトキシ基、tert-ブトキシ基、イソプロポキシ基などの C_{1-6} アルコキシ基)である場合には、化合物(I)を加水分解反応に付すことにより、化合物(I)のうちRがヒドロキシ基である化合物、すなわち、化合物(I-1)を製造することができる(工程B)。

該加水分解反応は、酸あるいは塩基を用い、常法にしたがって行われる。酸としては、例えば塩酸、硫酸などの鉱酸類;三塩化ホウ素、三臭化ホウ素などのルイス酸類;トリフルオロ酢酸、p-トルエンスルホン酸などの有機酸類などが用いられる。ここで、ルイス酸は、チオールまたはスルフィドと併用することもできる。

塩基としては、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの水酸化アルカリ金属;水酸化バリウムなどの水酸化アルカリ土類金属;炭酸ナトリウム、炭酸カリウムなどの炭酸アルカリ金属;ナトリウムメトキシド、ナ

トリウムエトキシド、カリウム第三ブトキシドなどのアルカリ金属アルコキシド;トリエチルアミン、イミダゾール、ホルムアミジンなどの有機塩基類などが用いられる。これら酸および塩基の使用量は、化合物(I) 1 モルに対して約 0 . $5\sim 1$ 0 モル、好ましくは約 0 . $5\sim 6$ モルである。

5 加水分解反応は、無溶媒で行うか、該反応に不活性な溶媒を用いて行われる。このような溶媒としては、反応が進行する限り特に限定されないが、例えばメタノール、エタノール、プロパノールなどのアルコール類;ベンゼン、トルエンなどの芳香族炭化水素類;シクロヘキサン、ヘキサンなどの飽和炭化水素類;ギ酸、酢酸などの有機酸類;テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタンなどのエーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素類;アセトン、メチルエチルケトンなどのケトン類;ジメチルスルホキシドなどのスルホキシド類;水などの溶媒、またはそれらの混合溶媒などが好ましい。

20

反応式2

[式中、Lは脱離基を、R*は置換されていてもよい炭化水素基を示す] 上記反応式中、式(IV)、(V)、(VI-1)で表わされる化合物は、以下、それぞれ 化合物(IV)、化合物(V)、化合物(VI-1)と略す。

Lで示される「脱離基」としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子のハロゲン原子;例えばメタンスルホニルオキシ、エタンスルホニルオキシ、トリクロロメタンスルホニルオキシなどのハロゲン化されていてもよい C₁₋₆アルキルスルホニルオキシ基;置換基を有していてもよい C₆₋₁₀アリールスルホニルオキシ基などが挙げられる。該「置換基を有していてもよい C₆₋₁ でリールスルホニルオキシ基」としては、例えばメチル、エチルなどの C₁₋₆アルコル本ニルオキシ基」としては、例えばメチル、エチルなどの C₁₋₆アルコキシ基;およびニトロ基から選ばれる置換基を1ないし3個有していてもよい C₆₋₁₀アリールスルホニルオキシ基(例:フェニルスルホニルオキシ、ナフチルスルホニルオキシ等)などが挙げられ、具体例としては、フェニルスルホニルオキシ、m-ニトロフェニルスルホニルオキシ、p-トルエンスルホニルオキシなどが挙げられる。

 R^* で示される「置換されていてもよい炭化水素基」は、前記「置換されていてもよい炭化水素基」と同義であり、なかでも、例えばメチル、エチル、tertプチル、イソプロピルなどの C_{1-6} アルキル基が好ましい。

反応式2において、化合物(V)と化合物(IV)とを反応させることによって化合物(VI-1)を製造する(工程C)。

工程Cの反応は、無溶媒で行うか、該反応に不活性な溶媒を用いて行われる。このような溶媒としては、反応が進行する限り特に限定されないが、例えば 5 N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミドなどのアミド類;1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類;ジメチルスルホキシドなどのスルホキシド類;ベンゼン、トルエンなどの芳香族炭化水素類;シクロヘキサン、ヘキサンなどの飽和炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、10 1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類;ジクロロメタン、

クロロホルムなどのハロゲン化炭化水素類;酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル類などの溶媒またはそれらの混合溶媒などが好ましい。 工程Cの反応は、所望により塩基の存在下で行われる。該「塩基」としては、

金属ナトリウム、金属カリウムなどのアルカリ金属;水素化ナトリウムなどの金 I5 属水素化物;ブチルリチウムなどの有機リチウム試薬;トリエチルアミン、トリ プロピルアミン、トリブチルアミン、N-エチルジイソプロピルアミン、シクロ ヘキシルジメチルアミン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、 N-メチルピペリジン、N-メチルピロリジン、N-メチルモルホリンなどの第3級 アミン類;水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウ

ムなどの水酸化アルカリ金属;水酸化バリウムなどの水酸化アルカリ土類金属; 炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどの炭酸アルカリ金属;炭酸水素ナトリウムなどの炭酸水素アルカリ金属;酢酸ナトリウム、酢酸アンモニウムなどの酢酸塩などが挙げられる。これら塩基の使用量は、化合物(IV)1モルに対して約1ないし約20モル、好ましくは約1ないし約10モルである。

20

25 化合物(IV)のW²が結合手である場合は、一般に金属触媒を用いて反応を促進させることができる。該金属触媒としては、さまざまな配位子を有する金属複合体が用いられ、例えばパラジウム化合物 [例:パラジウム(II) アセテート、テトラキス(トリフェニルホスフィン)パラジウム(0)、塩化ビス(トリフェニルホスフィン)パラジウム(II)、ジクロロビス(トリエチルホスフィン)パラジウム

(0)、トリス(ジベンジリデンアセトン)ジパラジウム-2, 2'ービス(ジフェニルホスフィノ)-1, 1'ービナフチル、酢酸パラジウム(II)と1, 1'ービス(ジフェニルホスフィノ)フェロセンの複合体など]、ニッケル化合物 [例:テトラキス(トリフェニルホスフィン)ニッケル(0)、塩化ビス(トリエチルホスフィン)ニッケル(II)など]、ロジウム化合物 [例:塩化トリス(トリフェニルホスフィン)ニッケル(II)など]、ロジウム化合物 [例:塩化トリス(トリフェニルホスフィン)ロジウム(III)など]、コバルト化合物、銅化合物 [例:酸化銅、塩化銅(II)など]、白金化合物などが用いられる。なかでも、パラジウム化合物、ニッケル化合物および銅化合物が好ましい。これらの金属触媒の使用量は、化合物(IV)1モルに対し、約0.00001~5モル、好ましくは約0.0001~1モルである。本反応で酸素に不安定な金属触媒を用いる場合には、不活性なガス(例えばアルゴンガ

5

.. 10

20

25

スもしくは窒素ガス)気流中で反応を行うことが好ましい。 化合物(V)の使用量は、化合物(IV)1モルに対し、約1ないし約5モル、 好ましくは約1ないし約2モルである。

15 工程Cの反応時間は、通常約10分ないし約12時間、好ましくは約10分ないし約5時間である。工程Cの反応温度は、通常約-30ないし約150℃、好ましくは約-20ないし約100℃である。

ついで、化合物(VI-1)を還元反応に付すことにより化合物(III-1)を製造する(工程D)。還元反応は、還元剤を用い、常法にしたがって行われる。該還元剤としては、例えば水素化アルミニウム、水素化ジイソブチルアルミニウム、水素化トリプチルすずなどの金属水素化物;水素化リチウムアルミニウム、水素化ホウ素ナトリウムなどの金属水素錯化合物;ボランテトラヒドロフラン錯体、ボランジメチルスルフィド錯体などのボラン錯体;アキシルボラン、ジシアミルボランなどのアルキルボラン類;ジボラン;亜鉛、アルミニウム、すず、鉄などの金属類;ナトリウム、リチウムなどのアルカリ金属/液体アンモニア(バーチ還元)などが挙げられる。還元剤の使用量は、還元剤の種類によって適宜決定される。例えば金属水素化物、金属水素錯化合物、ボラン錯体、アルキルボラン類またはジボランの使用量は、化合物(VI-1)1モルに対して、それぞれ約1ないし約10モル、好ましくは約1ないし約5モルであり、金属類(バーチ還元で

使用するアルカリ金属を含む)の使用量は、化合物 (VI-1) に対して約 1 ないし約 2 0 当量、好ましくは約 1 ないし約 5 当量である。

工程Dの反応では所望によりルイス酸類を用いてもよい。該「ルイス酸類」としては、例えば塩化アルミニウム、臭化アルミニウム、四塩化チタン、二塩化すず、塩化亜鉛、三塩化ホウ素、三臭化ホウ素、三フッ化ホウ素などが用いられる。ルイス酸の使用量は、化合物(VI-1)1モルに対して約1ないし約10モル、好ましくは約1ないし約5モルである。

工程Dの反応は、該反応に不活性な溶媒を用いて行うのが有利である。このような溶媒としては、反応が進行する限り特に限定されないが、例えばメタノール、

- 10 エタノール、1-プロパノール、2-プロパノール、tert-ブチルアルコールなどの アルコール類;ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテ ル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタンなどのエー テル類;ベンゼン、トルエンなどの芳香族炭化水素類;シクロヘキサン、ヘキサ ンなどの飽和炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトア
- 15 ミド、ヘキサメチルホスホリックトリアミドなどのアミド類;ギ酸、酢酸、プロパン酸、トリフルオロ酢酸、メタンスルホン酸などの有機酸類などの溶媒またはそれらの混合溶媒などが好ましい。

工程Dの反応時間は、用いる還元剤の種類や量によって異なるが、通常約1時間ないし約100時間、好ましくは約1時間ないし約50時間である。工程Dの反応温度は、通常約-20ないし約120 $\mathbb C$ 、好ましくは約0ないし約80 $\mathbb C$ である。

20

なお、反応式2で用いられる化合物 (IV) 及び (V) は、市販品として容易に入手でき、また、自体公知の方法またはこれらに準じた方法に従って製造することもできる。

25 例えば、化合物 (V) は以下の反応式 3 で示される方法によって製造することができる。

反応式3

15

[式中、L¹は脱離基を示す。]

上記反応式中、式(VII)、(VIII)で表わされる化合物は、以下、それぞれ化合物(VII)、化合物(VIII)と略す。

5 L¹で示される脱離基としては、前述のLとして例示したものが挙げられ、中 でも塩素原子、臭素原子などのハロゲン原子が好ましい。

反応式 3 においては、化合物 (VII) と化合物 (VIII) とを反応させることにより、化合物 (V) を製造する (工程E)。

工程Eの反応は、無溶媒で行うか、該反応に不活性な溶媒を用いて行われる。

- 10 このような溶媒としては、反応が進行する限り特に限定されないが、例えばメタ ノール、エタノール、1-プロパノール、2-プロパノール、tert-ブチルアルコー ルなどのアルコール類; N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミ ドなどのアミド類; 1, 3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンな どの環状尿素及びアミド類; ベンゼン、トルエンなどの芳香族炭化水素類;シク
 - ロヘキサン、ヘキサンなどの飽和炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類;ジクロロメタン、クロロホルム、1,2-ジクロロエタンなどのハロゲン化炭化水素類;酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル類などの溶媒またはそれらの混合溶媒などが好ましい。
- 20 工程Eの反応は、所望により塩基の存在下で行われる。該「塩基」としては、 トリエチルアミン、トリプロピルアミン、トリプチルアミン、N-エチルジイソ プロピルアミン、シクロヘキシルジメチルアミン、4-ジメチルアミノピリジン、 N, N-ジメチルアニリン、N-メチルピペリジン、N-メチルピロリジン、N-メチル モルホリンなどの第3級アミン類;水酸化ナトリウム、水酸化カリヴム、水酸化

リチウムなどの水酸化アルカリ金属;水酸化バリウムなどの水酸化アルカリ土類金属;炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどの炭酸アルカリ金属;炭酸水素ナトリウムなどの炭酸水素アルカリ金属;酢酸ナトリウム、酢酸アンモニウムなどの酢酸塩などが挙げられる。これら塩基は、化合物 (VII) 1モルに対して約1ないし約20モル、好ましくは約1ないし約10モル用いられる。

化合物 (VIII) の使用量は、化合物 (VII) 1モルに対し、約0.3ないし約10モル、好ましくは約0.5ないし約2モルである。

工程Eの反応時間は、通常約10分ないし約12時間、好ましくは約10分ないし約5時間である。工程Eの反応温度は、通常約-30ないし約200℃、好ましくは約-20ないし約150℃である。

.10

20

工程Eの反応により得られた化合物 (V) は、通常適当な分離手段 (例:再結晶、蒸留、クロマトグラフィーなど)により単離精製した後、次の反応 (前述の工程C) に用いられるが、場合によってはこの単離精製工程を省略し、本工程Eにより得られた化合物 (V) を含む反応混合物を、そのまま次の工程Cに用いることもできる。この場合の工程Eは無溶媒で行うか、工程Cに不活性な溶媒を用いて行われる。このような溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類;ベンゼン、トルエンなどの芳香族炭化水素類;シクロヘキサン、ヘキサンなどの飽和炭化水素類;ジエチルエーテ

ル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、 1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類;ジクロロメタン、 クロロホルムなどのハロゲン化炭化水素類;酢酸メチル、酢酸エチル、酢酸ブチ ルなどのエステル類などの溶媒またはそれらの混合溶媒などが好ましい。

反応式3で用いられる化合物 (VII) 及び (VIII) は、市販品として容易に入 25 手でき、また、自体公知の方法またはこれらに準じた方法に従って製造すること もできる。

また、化合物(I)のうち、 $E=-W^1-N$ (R^5) $-W^2-$ であり、かつ W^1 が結合手である、式(I-2)及び(I-3)の化合物(化合物(I-2)及び化合物(I-3))は、以下の反応式 4 で示される方法によっても製造することができる。

反応式4

5

[式中、L²は脱離基を示す]

上記反応式中、式 (IX) で表わされる化合物は、以下、化合物 (IX) と略す。 L^2 で示される「脱離基」としては、前述のLとして例示したものが挙げられる。

反応式4において、化合物(I-2)は、化合物(V)と化合物(IX)とを反応させることによって製造される(工程F)。

工程Fの反応は、無溶媒で行うか、該反応に不活性な溶媒を用いて行われる。 このような溶媒としては、反応が進行する限り特に限定されないが、例えば

- 10 N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミドなどのアミド類;1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類;ジメチルスルホキシドなどのスルホキシド類;ベンゼン、トルエンなどの芳香族炭化水素類;シクロヘキサン、ヘキサンなどの飽和炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、
- 15 1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類;ジクロロメタン、 クロロホルム、四塩化炭素などのハロゲン化炭化水素類;酢酸メチル、酢酸エチル、酢酸プチルなどのエステル類などの溶媒またはそれらの混合溶媒などが好ま しい。

工程Fの反応は、所望により塩基の存在下で行われる。該「塩基」としては、

前記工程Cにおいて例示したものが用いられる。これら塩基の使用量は、化合物 (IX) 1 モルに対して約1ないし約20モル、好ましくは約1ないし約10モルである。

化合物(IX)のW²が結合手である場合は、工程Cと同様に金属触媒を用いて 反応を促進させることができる。金属触媒の使用量は、化合物(IX)1モルに対し、約0.00001~5モル、好ましくは約0.0001~1モルである。 化合物(V)の使用量は、化合物(IX)1モルに対し、約1ないし約5モル、好ましくは約1ないし約2モルである。また、工程Fにおける化合物(V)としては、例えば前述の工程Eの反応により得られた化合物(V)を含む反応混合物 をそのまま用いることができる。この場合の工程Eは、工程Fに不活性な溶媒を用いて行われる。

工程Fの反応時間は、通常約10分ないし約12時間、好ましくは約10分ないし約5時間である。工程Fの反応温度は、通常約-30ないし約150 \mathbb{C} 、好ましくは約-20ないし約100 \mathbb{C} である。

15 工程Fにより得られた化合物 (I-2) において、Rが置換されたヒドロキシ基または置換されていてもよいアミノ基 (好ましくはメトキシ基、エトキシ基、tert-ブトキシ基、イソプロポキシ基などの C_{1-6} アルコキシ基)である場合には、化合物 (I-2) を加水分解反応に付すことにより、化合物 (I-2) のうちRがヒドロキシ基である化合物、すなわち、化合物 (I-3) を製造することができる (工程G)。

該加水分解反応は、前述の反応式1における工程Bと同様にして行われる。

また、反応式4の工程Gに用いられる化合物(I-2)は、通常工程Fによって製造した後、適当な分離手段(例:再結晶、蒸留、クロマトグラフィーなど)により単離精製した後に用いられるが、場合によってはこの単離精製工程を省略し、工程Fにより得られた化合物(I-2)を含む反応混合物を、そのまま次の工程Gに用いることもできる。この場合、工程Gの加水分解反応は、好ましくは塩基を用いて行われる。また、塩基を用いる加水分解反応は、工程Fが終了した後、得られた化合物(I-2)を含む反応混合物に必要に応じて適当な塩基及び溶媒を追加して行うこともできるが、工程Fにおいて過剰の塩基を用いた場合には、この塩

25

基によって工程Gの加水分解反応が進行し、格別の追加操作を行わなくても化合物 (I-3) が得られる場合もある。

本反応式4で用いられる化合物(IX)は、自体公知の方法またはこれらに準 じた方法によって製造することができる。例えば化合物(IX)は、以下の反応 式5で示される方法によって製造することができる。

反応式5

10

HO
$$R^3$$
 R^9 (X) $($

上記反応式中、式(X)で表わされる化合物は、以下、化合物(X)と略す。

反応式5では、化合物(II)と化合物(X)とを反応させることにより、化合物(IX)を製造する(工程H)。本反応は、前記反応式1における工程Aと同様にして行われる。

工程Hで用いられる化合物 (II) のRは、置換されたヒドロキシ基または置換されていてもよいアミノ基であることが望ましい。反応式 5 で用いられる化合物 (X) は、市販品として容易に入手でき、また、自体公知の方法またはこれらに準じた方法に従って製造することもできる。

前述の化合物(I I I)のうち、 $E=-W^1-N$ (R^5) $-W^2-$ であり、かつ W^1 が $-W^3-CH$ (R^y)-(W^3 は結合手または置換されていてもよい C_{1-2} アルキレン基を示し、 R^y は水素原子または置換されていてもよい C_{1-2} アルキレン基を示す)である式(III-2)の化合物(化合物(III-2))は、例えば以下 の反応式 6 で示される方法によって製造される。

反応式6

上記反応式中、式(XI)、(XII)、(VI-2)で表わされる化合物は、以下、それぞれ化合物(XI)、化合物(XII)、化合物(VI-2)と略す。

 R^y で示される「置換されていてもよい C_{1-2} アルキル基」における置換基と しては、前記「置換されていてもよい C_{1-3} アルキレン基」で例示した置換基が 挙げられる。

 W^3 で示される「置換されていてもよい C_{1-2} アルキレン基」としては、前記 W^1 として例示した「置換されていてもよい C_{1-3} アルキレン基」のうち、「 C_{1-3} アルキレン基」が「 C_{1-2} アルキレン基」のものが挙げられる。

10 但し、 W^3 が結合手である場合、 R^y は置換されていてもよい C_{1-2} アルキル基であり、 W^3 が「置換されていてもよいメチレン基」である場合、 R^y は置換されていてもよいメチル基であり、 W^3 が「置換されていてもよいエチレン基」である場合、 R^y は水素原子である。

反応式6では、まず化合物(XI) と化合物(XII)とを還元アミノ化反応(例え 5 ば、ジャーナル オブ ジ アメリカン ケミカル ソサイエティー(J. Am. Chem. Soc.) 1971年、2897-2904頁に記載)に付すことにより、化合物(VI-2)を製造する(工程I)。該還元アミノ化反応では、化合物(XI)と化合物

(XII)との反応によって生成したイミン体を、還元反応に付すことにより化合物 (VI-2) を得る。

該還元反応は、通常還元剤を用いて、常法にしたがって行われる。このような 還元剤としては、例えば水素化アルミニウム、水素化ジイソブチルアルミニウム、 水素化トリブチルすずなどの金属水素化物;水素化シアノホウ素ナトリウム、水 素化トリアセトキシホウ素ナトリウム、水素化ホウ素ナトリウムなどの金属水素 錯化合物:ボランテトラヒドロフラン錯体、ボランジメチルスルフィド錯体など のボラン錯体;テキシルボラン、ジシアミルボランなどのアルキルボラン類;ジ ボラン; 亜鉛、アルミニウム、すず、鉄などの金属類; ナトリウム、リチウムな どのアルカリ金属/液体アンモニア (バーチ還元) などが挙げられる。還元剤の 10 使用量は、還元剤の種類によって適宜決定される。例えば金属水素化物または金 属水素錯化合物の使用量は、化合物(XI)1モルに対してそれぞれ約1ないし 約10モル、好ましくは約1ないし約5モルであり、ボラン錯体、アルキルボラ ン類またはジボランの使用量は、化合物 (XI) 1モルに対して約1ないし約1 0モル、好ましくは約1ないし約5モルであり、金属類 (バーチ還元で使用する 15 アルカリ金属を含む)の使用量は、化合物(XI)1モルに対して約1ないし約 20当量、好ましくは約1ないし約5当量である。

また、還元反応は、水素添加反応により行うこともできる。この場合、例えばパラジウム炭素、二酸化白金、ラネーニッケル、ラネーコバルトなどの触媒が用いられる。該触媒の使用量は、化合物(XI)1モルに対して約5ないし約100重量%、好ましくは約10ないし約300重量%である。水素添加反応は、ガス状水素の代わりに種々の水素源を用いることによっても行われる。このような水素源としては、例えばギ酸、ギ酸アンモニウム、ギ酸トリエチルアンモニウム、ホスフィン酸ナトリウム、ヒドラジンなどが用いられる。水素源の使用量は、化合物(XI)1モルに対して約1ないし約10モル、好ましくは約1ないし約5モルである。

工程Iの反応は、該反応に不活性な溶媒を用いて行うのが有利である。このような溶媒としては、該反応が進行する限り特に限定されないが、例えばメタノール、エタノール、1-プロパノール、2-プロパノール、tert-プチルアルコールな

どのアルコール類;ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類;ベンゼン、トルエンなどの芳香族炭化水素類;シクロヘキサン、ヘキサンなどの飽和炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルホスホリックトリアミドなどのアミド類;ギ酸、酢酸、プロパン酸、トリフルオロ酢酸、メタンスルホン酸などの有機酸類などの溶媒、またはそれらの混合溶媒などが好ましい。

ついで、化合物 (VI-2) を還元反応に付すことにより化合物 (III-2) を製造する (工程J)。該還元反応は、前述の反応式2における工程Dと同様に行われ 10 る。

反応式6で用いられる化合物(XI)及び(XII)は、市販品として容易に入手でき、また、自体公知の方法またはこれらに準じた方法に従って製造することもできる。

前述の化合物 (III) のうち、E=-W¹-CH (R⁶) -O-W²-である式 (III-3) の化合物 (化合物 (III-3)) は、例えば以下の反応式 7 で示される 方法によって製造される。

反応式7

$$R^1$$
 X W^1 R^6 R^2 N OH (XIV) (XIV)

[式中、L³は水酸基または脱離基を示す]

上記反応式中、式(XIII)、(XIV)、(XV)、(VI-3)で表わされる化合物は、以下、 それぞれ化合物(XIII)、化合物(XIV)、化合物(XV)、化合物(VI-3)と略す。

 L^3 で示される脱離基としては、前述のLとして例示したものが挙げられる。 反応式 7 では、まず化合物(XIII)を還元反応に付すことにより化合物

5 (XIV) を製造する(工程K)。該還元反応は、反応式2における工程Dと同様に して行われる。

次いで、得られた化合物(XIV)と化合物(XV)とを反応させることにより化合物(VI-3)を製造する(工程L)。本反応は、化合物(XV)中のW 2 の種類によって、適宜選択される。例えば、W 2 が結合手である化合物(VI-3)は、L 3 が水酸基である化合物(XV)を用いて、反応式1における工程Aと同様にして製造できる。また、W 2 が置換されていてもよいC $_{1-3}$ アルキレン基である化合物(VI-3)は、例えば、L 3 が前述のLとして例示した脱離基である化合物(XV)と化合物(XIV)とを所望により塩基の存在下で反応させることにより製造することができる。該反応は、例えば、反応式2における工程Cと同様に行われる。

15 さらに、反応式7では、(VI-3)を還元反応に付すことにより、化合物 (III-3)を製造する(工程M)。該還元反応は、前述の反応式2における工程D と同様にして行われる。

反応式7で用いられる化合物 (XIII) 及び (XV) は、市販品として容易に入 手でき、また、自体公知の方法またはこれらに準じた方法に従って製造すること 20 もできる。

前述の化合物(III)のうち、 $E=-W^1-CH$ (R^6) $-W^2-$ であり、かつ W^2 が $-CH_2-W^4-$ (W^4 は結合手または置換されていてもよい C_{1-2} アルキレン基を示す)である式(III-4)の化合物(化合物(III-4))は、例えば以下の 反応式 8 で示される方法によって製造される。

反応式8

[式中、Arは置換されていてもよいフェニル基を、L⁴は脱離基を示す]

上記反応式中、式(XVI)、(XVII)、(VI-4)で表わされる化合物は、以下、それぞれ化合物(XVI)、化合物(XVII)、化合物(VI-4)と略す。

 W^4 で示される「置換されていてもよい C_{1-2} アルキレン基」としては、前記 W^3 として例示したものが挙げられる。 L^4 で示される脱離基としては、前述の Lとして例示したものが挙げられる。なかでも、塩素原子、臭素原子、ョウ素原 子などのハロゲン原子が好ましい。Arで示される「置換されていてもよいフェニル基」としては、「置換されていてもよい C_{6-14} アリール基」のうち C_{6-14} 7リール基がフェニル基であるものが挙げられる。

式:PAr₃で表わされるトリアリールホスフィン類としては、例えばトリフェニルホスフィン等が用いられる。

反応式8では、まず化合物(XVI)とトリアリールホスフィン類との反応により化合物(XVI)のホスホニウム塩を生成させ、該ホスホニウム塩を化合物

15 (XIII) と反応させることにより、化合物(XVII)を製造する(工程N)。

化合物(XVI)とトリアリールホスフィン類との反応は、該反応に不活性な溶媒を用いて行うのが有利である。このような溶媒としては、該反応が進行する限り特に限定されないが、例えばジエチルエーテル、ジイソプロピルエーテル、ジ

フェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエ タンなどのエーテル類;ベンゼン、トルエンなどの芳香族炭化水素類;シクロへ キサン、ヘキサンなどの飽和炭化水素類;N,N-ジメチルホルムアミド、N,N-ジ メチルアセトアミド、ヘキサメチルホスホリックトリアミドなどのアミド類;

1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類、またはそれらの混合溶媒などが好ましい。トリアリールホスフィン類の使用量は、化合物(XVI)1モルに対し、約1ないし約5モル、好ましくは約1ないし約2モルである。

工程Nにおいて、化合物 (XVI) のホスホニウム塩を単離することも可能であり、また単離操作を行わず、化合物 (XVI) のホスホニウム塩を含む反応液に化合物 (XIII) を加えることにより、連続して反応を行うこともできる。

化合物(XVI)のホスホニウム塩と化合物(XIII)との反応は、例えばウィティッヒ(Wittig)反応を用いて行われる。該反応は、通常塩基の存在下行われる。該塩基としては、水素化ナトリウムなどの金属水素化物;トリエチルアミン、

15 トリプロピルアミン、トリブチルアミン、N-エチルジイソプロピルアミン、シクロヘキシルジメチルアミン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルピペリジン、N-メチルピロリジン、N-メチルモルホリンなどの第3級アミン類;水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの水酸化アルカリ金属;水酸化バリウムなどの水酸化アルカリ土類金属;炭酸ナトリ

20

- ウム、炭酸カリウム、炭酸セシウムなどの炭酸アルカリ金属;炭酸水素ナトリウムなどの炭酸水素アルカリ金属;酢酸ナトリウム、酢酸アンモニウムなどの酢酸塩;メチルリチウム、nーブチルリチウム、secーブチルリチウム、tertーブチルリチウムなどの有機リチウム類;ナトリウムアミド、リチウムジイソプロピルアミド、リチウムへキサメチルジシラジドなどの金属アミド類などが挙げられる。
- 25 これらの塩基は、化合物 (XVI) またはそのホスホニウム塩1モルに対して、約 1ないし約20モル、好ましくは約1ないし約10モル用いる。

化合物 (XIII) の使用量は、化合物 (XVI) またはそのホスホニウム塩1モルに対し、約1ないし約5モル、好ましくは約1ないし約2モルである。

化合物(XVI)のホスホニウム塩と化合物(XIII)との反応は、該反応に不活

性な溶媒を用いて行うのが有利である。このような溶媒としては、反応が進行する限り特に限定されないが、例えばジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類;ベンゼン、トルエンなどの芳香族炭化水素類;シクロヘキサン、ヘキサンなどの飽和炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルホスホリックトリアミドなどのアミド類;1,3-ジメチル-2-イミダブリジノン、N-メチルピロリドンなどの環状尿素及びアミド類、またはそれらの混合溶媒などが好ましい。

次いで化合物 (XVII) を水素添加反応に付すことにより、化合物 (VI-4) を 10 製造する (工程0)。該水素添加反応は、前記反応式6の工程Iにおいて例示した水素添加反応と同様にして行われる。

次いで化合物 (VI-4) を還元反応に付すことにより、化合物 (III-4) を製造する (工程P)。該還元反応は、前述の反応式 2 における工程Dと同様にして行われる。

15 本反応式8で用いられる化合物(XVI)は、自体公知の方法またはこれらに準 じた方法によって製造することができる。

また、化合物(I)のうち、 $E=-W^1-S$ (O) $n-W^2-$ であり、かつ W^1 が結合手である、式(I-4)及び(I-5)の化合物(化合物(I-4)及び化合物(I-5))は、以下の反応式 9 で示される方法によっても製造することができる。 反応式 9

$$L^{5}-W^{2}-S^{1}$$
 COR R^{2} R^{9} R^{1} R^{2} R^{1} R^{2} R^{2} R^{3} R^{9} R^{9} R^{2} R^{3} R^{9} R

20

[式中、L⁵は水酸基または脱離基を示す]

上記反応式中、式(XVIII)、(XIX)、(XX)で表わされる化合物は、以下、それぞれ化合物(XVIII)、化合物(XIX)、化合物(XX)と略す。

 L^5 で示される「脱離基」としては、前述のLとして例示したものが挙げられ δ る。

反応式9では、まず化合物(XVIII)と化合物(XIX)とを反応させることにより化合物(XX)を製造する(工程Q)。本反応は、化合物(XVIII)中の L^5 の種類によって適宜選択される。

 L^5 がヒドロキシ基である場合、本反応は、前述の反応式1における工程Aと 10 同様にして行われる。また L^5 が脱離基である場合、本反応は、前述の反応式2 における工程Cと同様にして行われる。

反応式9で用いられる化合物 (XVIII) 及び(XIX)は、市販品として容易に入手でき、また、自体公知の方法またはこれに準じた方法に従って製造することもできる。

15 次いで、化合物(XX)を酸化反応に付すことにより化合物(I-4)を製造することができる(工程R)。本反応は、酸化剤を用い、常法にしたがって行われる。該酸化剤としては、例えば過酸化水素、過酢酸、過安息香酸、メタクロロ過安息香酸などの過酸類;メタ過ヨウ素酸ナトリウム、ヒドロペルオキシド、オゾン、二酸化セレン、クロム酸、四酸化二窒素、硝酸アシル、ヨウ素、臭素、Nーブロモスクシンイミド、ヨードシルベンゼン、塩化スルフリルと含水シリカゲル、次亜塩素酸ターシャリーブチルなどが挙げられる。これら酸化剤の使用量は化合物(XX)1モルに対し約0.5~10.0モル、好ましくは約1.0~5.0モルである。

本反応は、反応に不活性な溶媒を用いて行うのが有利である。このような溶媒 25 としては反応が進行する限り特に限定されないが、例えばメタノール、エタノール、プロパノールなどのアルコール類;ジエチルエーテル、テトラヒドロフラン、ジオキサン、1,2ージメトキシエタンなどのエーテル類;アセトン、メチルエチルケトンなどのケトン類;ベンゼン、トルエン、シクロヘキサン、ヘキサンなどの炭化水素類;N,Nージメチルホルムアミド、N,Nージメチルアセトアミ

ドなどのアミド類;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素類;ぎ酸、酢酸などの有機酸類;水;などの溶媒もしくはそれらの混合溶媒などが好ましい。

反応時間は、用いる酸化剤の種類や量によって異なるが、通常5分~48時間、 好ましくは10分~12時間である。

反応温度は、通常 $-40\sim200$ °、好ましくは $-10\sim120$ °である。

工程Rにより得られた化合物(I-4)において、Rが置換されたヒドロキシ基または置換されていてもよいアミノ基(好ましくはメトキシ基、エトキシ基、tert-ブトキシ基、イソプロポキシ基などの C_{1-6} アルコキシ基)である場合には、化合物(I-4)を加水分解反応に付すことにより、化合物(I-4)のうちRがヒドロキシ基である化合物、すなわち、化合物(I-5)を製造することができる(工程S)。

該加水分解反応は、前述の反応式1における工程Bと同様にして行われる。

上記反応式1~9に従って製造された各化合物は、通常の分離手段(例:再結 15 晶、蒸留、クロマトグラフィーなど)により容易に精製することができ、また化 合物によっては、自体公知の方法によりそれらの塩あるいはプロドラッグ等に変 換することができる。

また、前記した各反応において、原料化合物が置換基としてアミノ基、カルボキシル基、ヒドロキシ基、メルカプト基を有する場合、これらの基にペプチド化学などで一般的に用いられるような保護基が導入されたものであってもよく、反応後に必要に応じて保護基を除去することにより目的化合物を得ることができる。アミノ基の保護基としては、例えば、ホルミル基、置換基をそれぞれ有してい

20

25

てもよい、 C_{1-6} アルキルーカルボニル基(例えば、アセチル、エチルカルボニルなど)、フェニルカルボニル基、 C_{1-6} アルキルーオキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニル(Boc)など)、アリルオキシカルボニル(Aloc)基、フェニルオキシカルボニル基、フルオレニルメチルオキシカルボニル(Fmoc)基、 C_{7-10} アラルキルーカルボニル基(例えば、ベンジルカルボニルなど)、 C_{7-10} アラルキーオキシカルボニル基(例えば、ベンジルカルボニル(Z)など)、 C_{7}

-10アラルキル基(例えば、ベンジルなど)、トリチル基、フタロイル基、ジチアスクシノイル基またはN,Nージメチルアミノメチレン基などが挙げられる。これらの置換基としては、フェニル基、ハロゲン原子、 C_{1-6} アルキルーカルボニル基(例えば、アセチル、エチルカルボニル、ブチルカルボニルなど)、ハロゲン原子で置換されていてもよい C_{1-6} アルコキシ基(例えば、メトキシ、エトキシ、トリフルオロメトキシなど)、ニトロ基などが用いられ、置換基の数は1ないし3個程度である。

5

カルボキシル基の保護基としては、例えば、置換基をそれぞれ有していてもよい、 C_{1-6} アルキル基、アリル基、ベンジル基、フェニル基、トリチル基または 10 トリアルキルシリル基などが挙げられる。これらの置換基としては、ハロゲン原 子、ホルミル基、 C_{1-6} アルキルーカルボニル基(例えば、アセチル、エチルカルボニル、ブチルカルボニルなど)、ハロゲン原子で置換されていてもよい C_{1-6} アルコキシ基(例えば、メトキシ、エトキシ、トリフルオロメトキシなど)、ニトロ基などが用いられ、置換基の数は1ないし3個程度である。

- 15 ヒドロキシ基の保護基としては、例えば、置換基をそれぞれ有していてもよい、 C_{1-6} アルキル基、 C_{7-20} アラルキル基(例えば、ベンジル、トリチルなど)、ホルミル基、 C_{1-6} アルキルーカルボニル基(例えば、アセチル、エチルカルボニルなど)、ベンゾイル基、 C_{7-10} アラルキルーカルボニル基(例えば、ベンジルカルボニルなど)、テトラヒドロピラニル基、フラニル基またはトリアルキルシリル基(例えば、トリメチルシリル、tert-ブチルジメチルシリル、ジイソプロピルエチルシリルなど)などが挙げられる。これらの置換基としては、ハロゲン原子、 C_{1-6} アルキル基、フェニル基、 C_{7-10} アラルキル基(例えば、ベンジルなど)、 C_{1-6} アルコキシ基、ニトロ基などが用いられ、置換基の数は1ないし4個程度である。
 - 25 メルカプト基の保護基としては、例えば、置換基をそれぞれ有していてもよい、 C_{1-6} アルキル基、 C_{1-6} アルキルーカルボニル基(例えば、アセチル、エチルカルボニルなど)、 C_{7-20} アラルキル基(例えば、ベンジル、トリチルなど)などが挙げられる。これらの置換基としては、ハロゲン原子、 C_{1-6} アルキル基、フェニル基、 C_{7-10} アラルキル基(例えば、ベンジルなど)、 C_{1-6} アルコキ

シ基、ニトロ基などが用いられ、置換基の数は1ないし4個程度である。

また、保護基の除去方法としては、それ自体公知またはそれに準じた方法が用いられるが、例えば酸、塩基、還元、紫外光、ヒドラジン、フェニルヒドラジン、Nーメチルジチオカルバミン酸ナトリウム、テトラブチルアンモニウムフルオリド、酢酸パラジウムなどで処理する方法が用いられる。

このようにして得られる化合物(I)、その他の反応中間体及びその原料化合物は、反応混合物から自体公知の方法、例えば抽出、濃縮、中和、濾過、蒸留、再結晶、カラムクロマトグラフィー、薄層クロマトグラフィー、分取用高速液体クロマトグラフィー(分取用HPLC)、中圧分取液体クロマトグラフィー(中圧分取して)等の手段を用いることによって、単離、精製することができる。

·10

化合物(I)の塩は、それ自体公知の手段に従い、例えば化合物(I)が塩基性化合物である場合には無機酸又は有機酸を加えることによって、あるいは化合物(I)が酸性化合物である場合には有機塩基または無機塩基を加えることによって製造することができる。

15 化合物(I)に光学異性体が存在し得る場合、これら個々の光学異性体及びそれら混合物のいずれも当然本発明の範囲に包含されるものであり、所望によりこれらの異性体をそれ自体公知の手段に従い光学分割したり、個別に製造することもできる。

化合物(I)が、コンフィギュレーショナル アイソマー(配置異性体)、ジ20 アステレオマー、コンフォーマー等として存在する場合には、所望により、前記の分離、精製手段によりそれぞれを単離することができる。また、化合物(I)がラセミ体である場合には、通常の光学分割手段によりS体及びR体に分離することができる。

化合物(I)に立体異性体が存在する場合には、この異性体が単独の場合及び 25 それらの混合物の場合も本発明に含まれる。

また、化合物(I)は、水和物又は非水和物であってもよい。

化合物 (I) は同位元素 (例: ³H、¹⁴C、³⁵S) 等で標識されていてもよい。

化合物(I)、その塩およびそのプロドラッグ(以下、本発明の化合物と略記

する場合がある)は、GPR40受容体機能調節作用(GPR40受容体アゴニスト活性およびGPR40受容体アンタゴニスト活性)、特にGPR40受容体アゴニスト活性を有しており、また毒性が低く、かつ副作用(例:急性毒性、慢性毒性、遺伝毒性、生殖毒性、心毒性、薬物相互作用、癌原性等)も少ないため、安全なGPR40受容体機能調節剤、好ましくはGPR40作動剤として有用である。

本発明の化合物を含有してなる医薬は、哺乳動物(例えば、マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ヒツジ、サル、ヒト等)に対して、優れたGPR40受容体機能調節作用を有しているので、GPR40受容体が関与する生理機能の調節剤またはGPR40受容体が関与する病態または疾患の予防・治療剤として有用である。

10

具体的には、本発明の化合物を含有してなる医薬は、インスリン分泌調節剤 (好ましくはインスリン分泌促進剤)、血糖低下剤、膵β細胞保護剤として有用 である。

- 15 さらに、本発明の化合物を含有してなる医薬は、例えば、糖尿病、耐糖能異常、ケトーシス、アシドーシス、糖尿病性神経障害、糖尿病性腎症、糖尿病性網膜症、 黄斑浮腫、高脂血症、性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血 栓性疾患、消化不良、記憶学習障害、うつ病、躁鬱病、精神分裂病、注意欠陥多 動障害、視覚障害、食欲調節障害(例、過食症等)、肥満、低血糖症、高血圧、
- 20 浮腫、インスリン抵抗性、不安定糖尿病、脂肪萎縮、インスリンアレルギー、インスリノーマ、脂肪毒性、膵疲弊、高インスリン血症、癌(例、乳癌等)、メタボリックシンドローム、免疫系疾患(例、免疫不全等)、炎症性疾患(例、腸炎、関節炎、アレルギー等)、多発性硬化症、急性腎不全などの疾患;特に、糖尿病、耐糖能異常、ケトーシス、アシドーシス、糖尿病性神経障害、糖尿病性腎症、糖
- 25 尿病性網膜症、黄班浮腫、高脂血症、性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良、記憶学習障害などの疾患に対する予防・治療剤として有用である。ここで、糖尿病には、1型糖尿病、2型糖尿病および妊娠糖尿病が含まれる。また、高脂血症には、高トリグリセリド血症、高コレステロール血症、低HDL血症、食後高脂血症などが含まれる。

糖尿病の判定基準については、1999年に日本糖尿病学会から新たな判定基準が報告されている。

この報告によれば、糖尿病とは、空腹時血糖値(静脈血漿におけるグルコース 濃度)が126mg/d1以上、75g経口ブドウ糖負荷試験(75gOGT 5 T)2時間値(静脈血漿におけるグルコース濃度)が200mg/d1以上、随 時血糖値(静脈血漿におけるグルコース濃度)が200mg/d1以上のいずれ かを示す状態である。また、上記糖尿病に該当せず、かつ、「空腹時血糖値(静 脈血漿におけるグルコース濃度)が110mg/d1未満または75g経口ブド ウ糖負荷試験(75gOGTT)2時間値(静脈血漿におけるグルコース濃度) が140mg/d1未満を示す状態」(正常型)でない状態を、「境界型」と呼 ぶ。

また、糖尿病の判定基準については、1997年にADA(米国糖尿病学会)から、1998年にWHOから、新たな判定基準が報告されている。

これらの報告によれば、糖尿病とは、空腹時血糖値(静脈血漿におけるグルコ 15 一ス濃度)が126mg/d1以上であり、かつ、75g経口ブドウ糖負荷試験 2時間値(静脈血漿におけるグルコース濃度)が200mg/d1以上を示す状態である。

20

25

また、上記報告によれば、耐糖能異常とは、空腹時血糖値(静脈血漿におけるグルコース濃度)が126mg/d1未満であり、かつ、75g経口ブドウ糖負荷試験2時間値(静脈血漿におけるグルコース濃度)が140mg/d1以上200mg/d1未満を示す状態である。さらに、ADAの報告によれば、空腹時血糖値(静脈血漿におけるグルコース濃度)が110mg/d1以上126mg/d1未満の状態をIFG(Impaired Fasting Glucose)と呼ぶ。一方、WHOの報告によれば、該IFG(Impaired Fasting Glucose)のうち、75g経口ブドウ糖負荷試験2時間値(静脈血漿におけるグルコース濃度)が140mg/d1未満である状態をIFG(Impaired Fasting Glycemia)と呼ぶ。本発明の化合物は、上記した新たな判定基準により決定される糖尿病、境界型、耐糖能異常)、IFG(Impaired Fasting Glycemia)と呼ぶ。で動糖能異常)、IFG(Impaired Fasting Glycemia)と呼ぶ。

に、本発明の化合物は、境界型、耐糖能異常)、IFG (Impaired Fasting Glucose) またはIFG (Impaired Fasting Glycemia) から糖尿病への進展 を防止することもできる。

また、本発明の化合物は、スルホニルウレア2次無効糖尿病治療剤としても有 用であり、スルホニルウレア化合物や速効性インスリン分泌促進薬ではインスリ ン分泌効果が得られず、したがって十分な血糖低下効果が得られない糖尿病患者 においても、優れたインスリン分泌効果および血糖低下効果を奏する。

ここで、スルホニルウレア化合物としては、スルホニルウレア骨格を有する化 合物またはその誘導体、例えばトルブタミド、グリベンクラミド、グリクラジド、 ·····10 · · · クロルプロパミド、トラザミド、アセトヘキサミド、グリクロピラミド、グリメ ピリド、グリピザイド、グリブゾールなどが挙げられる。

また、速効性インスリン分泌促進薬としては、スルホニルウレア骨格を有さな いが、スルホニルウレア化合物と同様に膵β細胞からのインスリン分泌を促進す る化合物、例えばレパグリニド、セナグリニド、ナテグリニド、ミチグリニドま たはそのカルシウム塩水和物などのグリニド系化合物などが挙げられる。

本発明の化合物を含有してなる医薬は、毒性が低く、医薬製剤の製造法として 一般的に用いられている自体公知の手段に従って、本発明の化合物をそのまま、 あるいは薬理学的に許容される担体と混合して医薬製剤とした後に、経口的又は 非経口的(例:局所、直腸、静脈投与等)に安全に投与することができる。

前記医薬製剤の剤形としては、例えば、錠剤(舌下錠、口腔内崩壊錠を含む)、 20 カプセル剤(ソフトカプセル、マイクロカプセルを含む)、顆粒剤、散剤、トロ ーチ剤、シロップ剤、乳剤、懸濁剤などの経口剤;および注射剤(例:皮下注射 剤、静脈内注射剤、筋肉内注射剤、腹腔内注射剤、点滴剤)、外用剤(例:経皮 製剤、軟膏剤)、坐剤(例:直腸坐剤、膣坐剤)、ペレット、経鼻剤、経肺剤 25 (吸入剤)、点眼剤等の非経口剤が挙げられる。

15

これらの製剤は、速放性製剤または徐放性製剤などの放出制御製剤(例:徐放 性マイクロカプセル)であってもよい。

本発明の化合物の医薬製剤中の含有量は、製剤全体の約0.01ないし約10 0重量%である。本発明の化合物の投与量は、投与対象、投与ルート、疾患、症

状等により異なるが、例えば成人の糖尿病患者(体重約60kg)に経口投与する場合、1日当たり、約0.01ないし約30mg/kg体重、好ましくは約0.1ないし約20mg/kg体重を、更に好ましくは約1ないし約20mg/kg体重である。この量を1日1ないし数回に分けて投与すればよい。

5 前記した薬理学的に許容される担体としては、製剤素材として慣用の各種有機 あるいは無機担体物質が挙げられ、例えば固形製剤における賦形剤、滑沢剤、結 合剤及び崩壊剤、あるいは液状製剤における溶剤、溶解補助剤、懸濁化剤、等張 化剤、緩衝剤及び無痛化剤等が挙げられる。更に必要に応じ、防腐剤、抗酸化剤、 着色剤、甘味剤、吸着剤、湿潤剤等の添加物を用いることもできる。

10 賦形剤としては、例えば乳糖、白糖、D-マンニトール、デンプン、コーンス ターチ、結晶セルロース、軽質無水ケイ酸等が挙げられる。

滑沢剤としては、例えばステアリン酸マグネシウム、ステアリン酸カルシウム、 タルク、コロイドシリカ等が挙げられる。

結合剤としては、例えば結晶セルロース、白糖、D-マンニトール、デキスト 15 リン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、 ポリビニルピロリドン、デンプン、ショ糖、ゼラチン、メチルセルロース、カル ボキシメチルセルロースナトリウム等が挙げられる。

崩壊剤としては、例えばデンプン、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、カルボキシメチルスターチナトリウム、L-ヒドロキシプロピルセルロース等が挙げられる。

20

25

溶剤としては、例えば注射用水、アルコール、プロピレングリコール、マクロゴール、ゴマ油、トウモロコシ油、オリーブ油等が挙げられる。

溶解補助剤としては、例えばポリエチレングリコール、プロピレングリコール、 Dーマンニトール、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム等が 挙げられる。

懸濁化剤としては、例えばステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリン等の界面活性剤:例えばポリビ

ニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の親水性高分子等が挙げられる。

等張化剤としては、例えばブドウ糖、 Dーソルビトール、塩化ナトリウム、 グリセリン、Dーマンニトール等が挙げられる。

緩衝剤としては、例えばリン酸塩、酢酸塩、炭酸塩、クエン酸塩等の緩衝液等 が挙げられる。

無痛化剤としては、例えばベンジルアルコール等が挙げられる。

防腐剤としては、例えばパラヒドロキシ安息香酸エステル類、クロロブタノー

10 ル、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸等
が挙げられる。

抗酸化剤としては、例えば亜硫酸塩、アスコルビン酸、αートコフェロール等が挙げられる。

着色剤としては、例えば水溶性食用タール色素(例:食用赤色2号および3号、 15 食用黄色4号および5号、食用青色1号および2号などの食用色素)、水不溶性 レーキ色素(例:前記水溶性食用タール色素のアルミニウム塩)、天然色素 (例:β-カロチン、クロロフィル、ベンガラ等)等が挙げられる。

甘味剤としては、例えばサッカリンナトリウム、グリチルリチン酸二カリウム、アスパルテーム、ステビア等が挙げられる。

- 20 本発明の化合物は、糖尿病治療剤、糖尿病性合併症治療剤、高脂血症治療剤、 降圧剤、抗肥満剤、利尿剤、化学療法剤、免疫療法剤、抗炎症薬、抗血栓剤、骨 粗鬆症治療剤、ビタミン薬、抗痴呆薬、頻尿・尿失禁治療薬、排尿困難治療剤な どの薬剤(以下、薬物Xと略記する場合がある)と組み合わせて用いることがで きる。
- 25 上記糖尿病治療剤としては、インスリン製剤(例:ウシ、ブタの膵臓から抽出された動物インスリン製剤;大腸菌、イーストを用い、遺伝子工学的に合成したヒトインスリン製剤;インスリン亜鉛;プロタミンインスリン亜鉛;インスリンのフラグメントまたは誘導体(例:INS-1等);経口インスリン製剤など)、インスリン感受性増強剤[例:ピオグリタゾンまたはその塩(好ましくは塩酸

塩)、ロシグリタゾンまたはその塩(好ましくはマレイン酸塩)、レグリキサン (Reglixane) (JTT-501)、ネトグリタゾン(Netoglitazone) (MCC-5 55)、GI-262570、FK-614、リボグリタゾン (Rivoglitazone) (CS-011)、ムラグリタザール (Muraglitazar) (BMS-298585)、W099/58510に記載の化合物(例えば(E)-4-[4-(5-メチル-2-フェニ ル-4-オキサゾリルメトキシ)ベンジルオキシイミノ]-4-フェニル酪酸等)、 W001/38325に記載の化合物、テサグリタザール(Tesaglitazar)(AZ-242)、 BM-13-1258、LM-4156、MBX-102、LY-519818、MX-6054、LY-510929、バラグリ タゾン(Balaglitazone)(NN-2344)、T-131またはその塩、THR-0921等〕、αー 10 グルコシダーゼ阻害剤(例:ボグリボース、アカルボース、ミグリトール、エミ グリテート等)、ビグアナイド剤(例:フェンホルミン、メトホルミン、ブホル 🗀 ミンまたはそれらの塩(例:塩酸塩、フマール酸塩、コハク酸塩等)等)、イン スリン分泌促進剤 [スルホニルウレア剤 (例:トルプタミド、グリベンクラミド、 グリクラジド、クロルプロパミド、トラザミド、アセトヘキサミド、グリクロピ ラミド、グリメピリド等)、レパグリニド、セナグリニド、ミチグリニドまたは 15 そのカルシウム塩水和物、ナテグリニド等]、GLP-1受容体アゴニスト [例:GLP-1、GLP-1MR剤、NN-2211、AC-2993(exendin-4)、BIM-51077、 Aib(8,35)hGLP-1(7,37)NH。、CJC-1131等】、ジペプチジルペプチダーゼIV阻 害剤(例:NVP-DPP-278、PT-100、P32/98、P93/01、 20 NVP-DPP-728、LAF237、TS-021等)、β3アゴニスト(例:CL-31624 3 SR-58611-A UL-TG-307 AI-9.6.77 AZ401 40等)、アミリンアゴニスト(例:プラムリンチド等)、ホスホチロシンホス ファターゼ阻害剤 (例:バナジン酸ナトリウム等)、糖新生阻害剤 (例:グリコ ーゲンホスホリラーゼ阻害剤、グルコースー6-ホスファターゼ阻害剤、グルカ 25 ゴン拮抗剤等)、SGLT(sodium-glucose cotransporter)阻害剤(例: T-1095等)、 $11\beta-ヒドロキシステロイドデヒドロゲナーゼ阻害薬・$ (例:BVT-3498等)、アジポネクチンまたはその作動薬、IKK阻害薬(例:AS-2868等)、レプチン抵抗性改善薬、ソマトスタチン受容体作動薬(W001/25228、 W003/42204、W098/44921、W098/45285、W099/22735に記載の化合物等)、グル

コキナーゼ活性化薬 (例: Ro-28-1675等) 等が挙げられる。

糖尿病性合併症治療剤としては、アルドース還元酵素阻害剤(例:トルレスタット、エパルレスタット、ゼナレスタット、ゾポルレスタット、フィダレスタット(SNK-860)、AS-3201、ミナルレスタット(ARI-509)、 CT-112等)、神経栄養因子およびその増加薬(例:NGF、NT-3、 BDNF、W001/14372に記載のニューロトロフィン産生・分泌促進剤(例えば4-(4-クロロフェニル)-2-(2-メチル-1-イミダゾリル)-5-[3-(2-メチルフェノキシ)プロピル]オキサゾールなど)等)、プロテインキナーゼC(PKC)阻害薬(例:ルボキシスタウリン メシレート(ruboxistaurin mesylate); LY-3 33531等)、AGE阻害剤(例:ALT-945、ピマゲジン、ピラトキサチン、N-フェナシルチアゾリウムブロミド(ALT-766)、EXO-226、ALT-711、ピリドリン(Pyridorin)、ピリドキサミン等)、活性酸素消去薬(例:チオクト酸等)、脳血管拡張剤(例:チオプリド等)、ソマトスタチン受容体作動薬(BIM23190)、アポトーシスシグナルレギュレーティングキナー15 ゼ-1 (ASK-1) 阻害薬等が挙げられる。

高脂血症治療剤としては、HMG-CoA還元酵素阻害剤(例:プラバスタチン、シンバスタチン、ロバスタチン、アトルバスタチン、フルバスタチン、ビタバスタチン、ロスバスタチンまたはそれらの塩(例:ナトリウム塩、カルシウム塩等)等)、スクアレン合成酵素阻害剤(例:W097/10224に記載の化合物、例20 えばN-[[(3R,5S)-1-(3-アセトキシ-2,2-ジメチルプロピル)-7-クロロ-5-(2,3-ジメトキシフェニル)-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル]アセチル]ピペリジン-4-酢酸など)、フィブラート系化合物(例:ベザフィブラート、クロフィブラート、シムフィブラート、クリノフィブラート等)、抗酸化剤(例:リポ酸、プロブコール等)等が挙げられる。

25 降圧剤としては、アンジオテンシン変換酵素阻害剤(例:カプトプリル、エナラプリル、デラプリル等)、アンジオテンシンII受容体拮抗剤(例:ロサルタン、カンデサルタン シレキセチル、エプロサルタン、バルサルタン、テルミサルタン、イルベサルタン、オルメサルタン メドキソミル、タソサルタン、1-[[2'-(2,5-ジヒドロ-5-オキソ-4H-1,2,4-オキサジアゾール-3-イル)ビフェニ

ル-4-イル]メチル]-2-エトキシ-1H-ベンズイミダゾール-7-カルボン酸等)、カルシウムチャネルブロッカー(例:マニジピン、ニフェジピン、アムロジピン、エホニジピン、ニカルジピン等)、クロニジン等が挙げられる。

抗肥満剤としては、例えば中枢性抗肥満薬(例:デキスフェンフルアミン、フェンフルラミン、フェンテルミン、シブトラミン、アンフェプラモン、デキサンフェタミン、マジンドール、フェニルプロパノールアミン、クロベングレックス;MCH受容体拮抗薬(例:SB-568849;SNAP-7941;W001/82925およびW001/87834に記載の化合物等);ニューロペプチドY拮抗薬(例:CP-422935等);カンナビノイド受容体拮抗薬(例:SR-141716、SR-147778等);グレリン拮抗薬;11βーヒドロキシステロイドデヒドロゲナーゼ阻害薬(例:BVT-3498等)等)、膵リパーゼ阻害薬(例:オルリスタット、ATL-962等)、β3アゴニスト(例:CL-316243、SR-58611-A、UL-TG-307、AJ-9677、AZ40140等)、ペプチド性食欲抑制薬(例:レプチン、CNTF(毛様体神経栄養因子)等)、コレシストキニンアゴニスト(例:リンチトリプト、FPL-15849等)、摂食抑制薬(例:P-57等)等が挙げられる。

利尿剤としては、例えばキサンチン誘導体(例:サリチル酸ナトリウムテオブロミン、サリチル酸カルシウムテオブロミン等)、チアジド系製剤(例:エチアジド、シクロペンチアジド、トリクロルメチアジド、ヒドロクロロチアジド、ヒドロクロロチアジド、ヒドロフロロチアジド、ペンフルチジド、ポリチアジド、メチクロチアジド等)、抗アルドステロン製剤(例:スピロノラクトン、トリアムテレン等)、炭酸脱水酵素阻害剤(例:アセタゾラミド等)、クロルベンゼンスルホンアミド系製剤(例:クロルタリドン、メフルシド、インダパミド等)、アゾセミド、イソソルビド、エタクリン酸、ピレタニド、ブメタニド、フロセミド等が挙げられる。

化学療法剤としては、例えばアルキル化剤(例:サイクロフォスファミド、イフォスファミド等)、代謝拮抗剤(例:メソトレキセート、5ーフルオロウラシルおよびその誘導体等)、抗癌性抗生物質(例:マイトマイシン、アドリアマイシン等)、植物由来抗癌剤(例:ビンクリスチン、ビンデシン、タキソール等)、

シスプラチン、カルボプラチン、エトポシドなどが挙げられる。なかでも5-フルオロウラシル誘導体であるフルツロンあるいはネオフルツロンなどが好ましい。

免疫療法剤としては、例えば微生物または細菌成分(例:ムラミルジペプチド誘導体、ピシバニール等)、免疫増強活性のある多糖類(例:レンチナン、シゾフィラン、クレスチン等)、遺伝子工学的手法で得られるサイトカイン(例:インターフェロン、インターロイキン(IL)等)、コロニー刺激因子(例:顆粒球コロニー刺激因子、エリスロポエチン等)などが挙げられ、なかでもIL-1、IL-2、IL-12などのインターロイキンが好ましい。

抗炎症薬としては、例えばアスピリン、アセトアミノフェン、インドメタシン などの非ステロイド抗炎症薬等が挙げられる。

抗血栓剤としては、例えばヘパリン(例:ヘパリンナトリウム、ヘパリンカルシウム、ダルテパリンナトリウム(dalteparin sodium)など)、ワルファリン(例:ワルファリンカリウムなど)、抗トロンビン薬(例:アルガトロバン(aragatroban)など)、血栓溶解薬(例:ウロキナーゼ(urokinase)、チソキナーゼ(tisokinase)、アルテプラーゼ(alteplase)、ナテプラーゼ(nateplase)、モンテプラーゼ(monteplase)、パミテプラーゼ(pamiteplase)など)、血小板 凝集抑制薬(例:塩酸チクロピジン(ticlopidine hydrochloride)、シロスタ ゾール(cilostazol)、イコサペント酸エチル、ベラプロストナトリウム (beraprost sodium)、塩酸サルポグレラート(sarpogrelate hydrochloride) など)などが挙げられる。

15

20

25

骨粗鬆症治療剤としては、例えばアルファカルシドール (alfacalcidol)、カルシトリオール (calcitriol)、エルカトニン (elcatonin)、サケカルシトニン (calcitonin salmon)、エストリオール (estriol)、イプリフラボン (ipriflavone)、パミドロン酸ニナトリウム (pamidronate disodium)、アレンドロン酸ナトリウム水和物 (alendronate sodium hydrate)、インカドロン酸ニナトリウム (incadronate disodium)、リセドロン酸ニナトリウム (risedoronate disodium)等が挙げられる。

ビタミン薬としては、例えばビタミン B_1 、ビタミン B_{12} 等が挙げられる。 抗痴呆薬としては、例えばタクリン(tacrine)、ドネペジル(donepezil)、

リバスチグミン (rivastigmine) 、ガランタミン (galanthamine) 等が挙げられる。

頻尿・尿失禁治療薬としては、例えば塩酸フラボキサート (flavoxate hydrochloride)、塩酸オキシブチニン (oxybutynin hydrochloride)、塩酸プロピベリン (propiverine hydrochloride) 等が挙げられる。

排尿困難治療剤としては、アセチルコリンエステラーゼ阻害薬 (例:ジスチグミン等)等が挙げられる。

さらに、動物モデルや臨床で悪液質改善作用が認められている薬剤、すなわち、シクロオキシゲナーゼ阻害剤(例:インドメタシン等)、プロゲステロン誘導体

10 (例:メゲステロールアセテート等)、糖質ステロイド(例:デキサメサゾン
等)、メトクロプラミド系薬剤、テトラヒドロカンナビノール系薬剤、脂肪代謝
改善剤(例:エイコサペンタエン酸等)、成長ホルモン、IGF-1、あるいは
悪液質を誘導する因子であるTNF-α、LIF、IL-6、オンコスタチンM
に対する抗体なども本発明の化合物と併用することができる。

- 15 さらに、糖化阻害剤(例:ALT-711等)、神経再生促進薬(例:Y-128、VX853、prosaptide等)、抗うつ薬(例:デシプラミン、アミトリプチリン、イミプラミン等)、抗てんかん薬(例:ラモトリジン、トリレプタル (Trileptal)、ケプラ (Keppra)、ゾネグラン (Zonegran)、プレギャバリン (Pregabalin)、ハーコセライド (Harkoseride)、カルバマゼピン等)、抗不整脈薬(例:メキシ
- 20 レチン等)、アセチルコリン受容体リガンド(例:ABT-594等)、エンドセリン受容体拮抗薬(例:ABT-627等)、モノアミン取り込み阻害薬(例:トラマドル等)、麻薬性鎮痛薬(例:モルヒネ等)、GABA受容体作動薬(例:ギャバペンチン、ギャバペンチンMR剤等)、α2受容体作動薬(例:クロニジン等)、局所鎮痛薬(例:カプサイシン等)、抗不安薬(例:ベンゾチアゼピン等)、ホスホジエス
- 25 テラーゼ阻害薬 (例:シルデナフィル等)、ドーパミン受容体作動薬 (例:アポモルフィン等) なども本発明の化合物と併用することができる。

上記薬物Xは、2種以上を適宜の割合で組み合せて用いてもよい。 本発明の化合物と薬物Xとを組み合わせることにより、

(1) 本発明の化合物または薬物 X を単独で投与する場合に比べて、本発明の化

合物および/または薬物Xの投与量を低減することができる、

·10

15

(2) 本発明の化合物と作用機序が異なる薬物 X を選択することにより、治療期間を長く設定することができる、

- (3) 本発明の化合物と作用機序が異なる薬物 X を選択することにより、治療効果の持続を図ることができる、
 - (4) 本発明の化合物と薬物 X とを併用することにより、相乗効果が得られる、などの優れた効果を得ることができる。

本発明の化合物と薬物Xを組み合わせて使用する際、本発明の化合物と薬物Xの投与時期は限定されず、本発明の化合物と薬物Xとを、投与対象に対し、同時に投与してもよいし、時間差をおいて投与してもよい。薬物Xの投与量は、臨床上用いられている投与量に準ずればよく、投与対象、投与ルート、疾患、組み合わせ等により適宜選択することができる。

また、本発明の化合物と薬物 X の投与形態は、特に限定されず、投与時に、本発明の化合物と薬物 X とが組み合わされていればよい。このような投与形態としては、例えば、(1)本発明の化合物と薬物 X とを同時に製剤化して得られる単一の製剤の投与、(2)本発明の化合物と薬物 X とを別々に製剤化して得られる2種の製剤の同一投与経路での同時投与、(3)本発明の化合物と薬物 X とを別々に製剤化して得られる2種の製剤の同一投与経路での時間差をおいての投与、

- (4)本発明の化合物と薬物Xとを別々に製剤化して得られる2種の製剤の異な 20 る投与経路での同時投与、(5)本発明の化合物と薬物Xとを別々に製剤化して 得られる2種の製剤の異なる投与経路での時間差をおいての投与(例えば、本発 明の化合物;薬物Xの順序での投与、あるいは逆の順序での投与)などが挙げら れる。
- 式(I)中、Eが $-CH_2-N(C_{1-6}$ アルキル基)-、 $-N(C_{1-6}$ アルキル基) $-CH_2-$ 、25 $-S-CH(C_{1-6}$ アルキル基)-または $-CH_2-CH(C_{1-6}$ アルキル基)-である化合物またはその塩、および
 - 式(I)中、XがS、環S1が置換されていてもよい C_{1-6} アルキル基、置換されていてもよい C_{1-6} アルコキシ基およびハロゲン原子から選ばれる置換基をさらに有していてもよいピリジン環、かつEが-W1-N (R5) -W2-、-W

 1 -CH (R 6) -O-W 2 -、-W 1 -O-CH (R 6) -W 2 -、-W 1 -S (O) 1 n-W 2 -または-W 1 -CH (R 6) -W 2 - (W 1 及びW 2 は同一または異なって、結合手または置換されていてもよいC 1 - 3 アルキレン基を、R 5 およびR 6 はC 1 - 6 アルキル基、nは1または2を示す)である化合物またはその塩は、上記と同様に、製造または製剤化でき、哺乳動物に対して、G PR 4 0 受容体機能調節剤、糖尿病の予防・治療剤などとして用いることができる。

実施例

本発明は、更に以下の参考例、実施例、製剤例及び実験例によって詳しく説明されるが、これらの例は単なる実施であって、本発明を限定するものではなく、

10 また本発明の範囲を逸脱しない範囲で変化させてもよい。

以下の参考例、実施例中の「室温」は通常約10 ℃ないし約35 ℃を示す。%は、収率はmol/mol%を、クロマトグラフィーで用いられる溶媒は体積%を、その他は重量%を示す。プロトンNMRスペクトルで、OHやNHプロトン等ブロードで確認できないものについてはデータに記載していない。

15 その他の本文中で用いられている略号は下記の意味を示す。

s : シングレット (singlet)

d : ダブレット (doublet)

t : トリプレット (triplet)

q : クァルテット (quartet)

20 m : マルチプレット (multiplet)

br : ブロード (broad)

J : カップリング定数 (coupling constant)

Hz : ヘルツ (Hertz)

CDC1。: 重クロロホルム

25 ¹H NMR : プロトン核磁気共鳴

以下の参考例、実施例において、マススペクトル (MS) は以下の条件により 測定した。測定機器:ウォーターズ社 ZMD、ウォーターズ社 ZQ2000またはマイクロマス社 プラットフォームII

イオン化法:電子衝撃イオン化法 (Electron Spray Ionization : ESI)、

または大気圧化学イオン化法(Atmospheric Pressure Chemical Ionization: APCI)。特記なき場合、ESIを用いた。

また、実施例における分取HPLCによる精製は以下の条件により行った。 分取HPLC機器: ギルソン社ハイスループット精製システム

5 $\lambda \neq \Delta$: YMC Combiprep ODS-A S-5 μ m, 20 X 50 mm

溶媒:A液: 0.1% トリフルオロ酢酸 含有水、

グラジエントサイクルB: 0.00分(A液/B液=95/5), 1.00分(A液/B液=95/5), 5.20分(A液/B液=5/95), 6.40分(A液/B液=5/95), 6.50分(A液/B液=95/5), 6.60分(A液/B液=95/5).

流速: 25 mL/min、検出法: UV 220 nm

10

20

本明細書中、融点は、例えば、微量融点測定器(ヤナコ、MP-500D型またはBuchi、B-545型)またはDSC(示差走査熱量分析)装置
 (SEIKO、EXSTAR6000)等を用いて測定される融点を意味する。

一般に、融点は、測定機器、測定条件などによって変動する場合がある。本明 細書中の結晶は、通常の誤差範囲内であれば、本明細書に記載の融点と異なる値 を示す結晶であってもよい。

参考例 1 4-イソプロピル-N-(2-フェニルエチル)-1,3-チアゾール-2-アミン

3-メチル-2-ブタノン (0.86 g) のメタノール (10 mL) 溶液に-30℃で臭素 (1.60 g) を加え、室温に戻して、臭素の赤色が消失するまでかき混ぜた。得 5れた無色溶液に、酢酸ナトリウム (1.60 g) 、N-(2-フェニルエチル)チオ尿

素 (1.80~g) を加え、加熱環流しながら4時間かき混ぜた。反応混合物に飽和炭酸水素ナトリウム水溶液 (10~mL) を加え、濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン(容積比で1:9から2:1までグラジエント)で展開することにより、表題化合物 (1.26~g、収率51%)を無色結晶として得た。

MS: m/z 247 (M+H).

参考例 2 N-[2-(4-フルオロフェニル)エチル]-4-イソプロピル-1,3-チアゾール-2-アミン

10 参考例1と同様にして、N-[2-(4-フルオロフェニル)エチル]チオ尿素から収率52%で表題化合物を合成した。無色結晶。

MS: m/z 265 (M+H).

参考例 3 4-イソプロピル-N-(2-ピリジン-2-イルエチル)-1,3-チアゾール-2-アミン

15

20

参考例1と同様にして、N-(2-ピリジン-2-イルエチル)チオ尿素から収率51%で表題化合物を合成した。黄色油状物。

¹H NMR (300 MHz, CDCl₃) δ ppm 1.22(6H, d, J=6.8Hz), 2.76-2.89(1H, m), 3.12(2H, t, J=6.4Hz), 3.65(2H, q, J=6.1Hz), 5.71(1H, s), 5.99-6.09(1H, m), 7.11-7.20(2H, m), 7.57-7.65(1H, m), 8.52-8.57(1H, m).

参考例 4 N-[2-(2-フルオロフェニル)エチル]-4-イソプロピル-1,3-チアゾー

ル-2-アミン

参考例1と同様にして、N-[2-(2-フルオロフェニル)エチル]チオ尿素から収率4%で表題化合物を合成した。黄色固体。

5 ¹H NMR (300 MHz, CDCl₃) δ ppm 1. 23 (6H, d, J=7. 0Hz), 2. 75-2. 90 (1H, m), 3. 00 (2H, t, J=7. 0Hz), 3. 50 (2H, q, J=6. 8Hz), 5. 11 (1H, s), 6. 07 (1H, d, J=0. 8Hz), 6. 96-7. 13 (2H, m), 7. 17-7. 25 (2H, m).
 参考例 5 4-イソブチル-N-(2-フェニルエチル)-1. 3-チアゾール-2-アミン

4-メチル-2-ペンタノン(2.00 g)のメタノール(10 mL)溶液に-30℃で臭素(3.20 g)を加え、室温に戻して、臭素の赤色が消失するまでかき混ぜた。得られた無色溶液に、酢酸ナトリウム(3.20 g)、N-(2-フェニルエチル)チオ尿素(1.80 g)を加え、加熱還流しながら4時間かき混ぜた。反応混合物に飽和炭酸水素ナトリウム水溶液(10 mL)を加え、濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン(容積比で1:9から2:1までグラジエント)で展開することにより、表題化合物(1.15 g、収率41%)を淡黄色結晶として得た。

MS: m/z 261 (M+H).

参考例 6 N-[2-(4-フルオロフェニル)エチル]-4-イソブチル-1,3-チアゾール-20 2-アミン

参考例 5 と同様にして、N-[2-(4-フルオロフェニル)エチル]チオ尿素から収率42%で表題化合物を合成した。無色結晶。

MS: m/z 279 (M+H).

5 参考例 7 N-(2-フェニルエチル)-4-プロピル-1,3-チアゾール-2-アミン

2-ペンタノン(1.72 g)のメタノール(10 mL)溶液に-30℃で臭素(3.20 g)を加え、室温に戻して、臭素の赤色が消失するまでかき混ぜた。得られた無色溶液に、酢酸ナトリウム(3.20 g)、N-(2-フェニルエチル)チオ尿素(2.70 10 g)を加え、加熱還流しながら4時間かき混ぜた。反応混合物に飽和炭酸水素ナトリウム水溶液(10 mL)を加え、濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン(容積比で1:9から2:1までグラジエント)で展開することにより、表題化合物(850 mg、収率23%)を淡黄色結晶として得た。

15 MS: m/z 247 (M+H).

参考例 8 N-(2-フェニルエチル)-4-[4-(トリフルオロメチル)フェニル]-1,3-チアゾール-2-アミン

2-ブロモ-1-[4-(トリフルオロメチル)フェニル]エタノン(5.34 g)、N-(2-フェニルエチル)チオ尿素(3.60 g) およびN,N-ジメチルホルムアミド(20 mL)の混合物を室温で1時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層を無水硫酸マグネシウムで乾燥後、濃縮して表題化合物(5.20 g、収率74%)を無色結晶として得た。

MS: m/z 349 (M+H).

参考例 9 3-(4-{[4-(クロロメチル)ベンジル]オキシ}フェニル)プロパン酸メ チル

10

5

4-(クロロメチル)ベンジルアルコール(4.68 g)、3-(4-ヒドロキシフェニル) プロパン酸メチル(5.40 g)およびトリフェニルホスフィン(9.20 g)をトルエン (60 mL)-テトラヒドロフラン(30 mL)の混合溶媒に溶解し、0℃に冷却してアゾ ジカルボン酸ジエチル(40% トルエン溶液、15.2 g)をかき混ぜながら滴下した。

15 滴下終了後、反応混合物を室温に戻してさらに1時間かき混ぜた。反応混合物を 濃縮し、残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチル ーヘキサン (容積比で1:19から1:1までグラジエント) で展開することにより、 表題化合物(5.19 g、収率54%)を無色結晶として得た。

¹H NMR (300 MHz, CDCl₃) δ : 2.59(2H, t, J=7.7Hz), 2.89(2H, t, J=7.7Hz),

20 3.66(3H, s), 4.59(2H, s), 5.04(2H, s), 6.89(2H, d, J=8.7Hz), 7.11(2H, d, J=8.7Hz), 7.35-7.45(4H, m).

参考例 1 0 3-(4-{[4-(クロロメチル)ベンジル]オキシ}-2-フルオロフェニル) プロパン酸エチル

参考例9と同様にして、3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エ 5 チルから収率73%で表題化合物を合成した。無色結晶。

¹H NMR (300 MHz, CDCl₃) δ ppm 1.23(3H, t, J=7.1Hz), 2.58(2H, t, J=7.6Hz), 2.90(2H, t, J=7.6Hz), 4.12(2H, q, J=7.1Hz), 4.60(2H, s), 5.02(2H, s), 6.62-6.70(2H, m), 7.10(1H, t, J=8.8Hz), 7.41(4H, s).

参考例11 N-[3-(メチルチオ)プロピル]-4-フェニル-1,3-チアゾール-2-アミ

10 ン

15

2-ブロモ-1-フェニルエタノン(1.99 g)、N-[3-(メチルチオ)プロピル]チオ尿素(1.64 g) およびN,N-ジメチルホルムアミド(5 mL)の混合物を室温で1時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層を無水硫酸マグネシウムで乾燥後、濃縮して表題化合物(1.85 g、収率70%)を黄色油状物として得た。

¹H NMR (300 MHz, CDCl₃) δ ppm 1.95-2.06(2H, m), 2.13(3H, s), 2.63(2H, t, J=7.1Hz), 3.4-3.5(2H, m), 5.78(1H, s), 6.69(1H, s), 7.29-7.49(3H, m), 7.69-7.86(2H, m).

20 参考例 1 2 N-(2-フェニルエチル)-4-ピリジン-2-イル-1, 3-チアゾール-2-ア ミン

2-ブロモ-1-ピリジン-2-イルエタノン 臭化水素酸塩 (4.00 g)、N-(2-フェニルエチル)チオ尿素 (3.60 g)、酢酸ナトリウム (1.60 g) およびエタノール (30 mL)の混合物を加熱還流しながら1時間かき混ぜた。反応混合物を冷却後水に注ぎ、酢酸エチルで抽出した。酢酸エチル層を無水硫酸マグネシウムで乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーヘキサン (容積比で1:9から2:1までグラジエント)で展開することにより、表題化合物(2.71 g、収率48%)を黄色油状物として得た。

MS: m/z 282 (M+H).

10 参考例 1 3 (4-{[(4-フェニル-1, 3-チアゾール-2-イル)(2-ピリジン-2-イル エチル)アミノ]メチル}フェニル)メタノール

2-ブロモ-1-フェニルエタノン(1.0 g)、N-(2-ピリジン-2-イルエチル)チオ尿素(0.90 g) およびN,N-ジメチルホルムアミド(5 mL)の混合物を室温で1時間かき混ぜた。反応混合物に水素化ナトリウム(60%、油性、400 mg)を加え、室温でさらに1時間かき混ぜた。反応混合物に氷冷下、4-(ブロモメチル)安息香酸メチル(1.15 g)を加え、室温に戻してさらに1時間かき混ぜた。反応混合物をリン酸2水素1ナトリウム水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層を無水硫酸マグネシウムで乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン(容積比で1:9から2:1までグラジエント)で展開することにより、黄色油状物を得た。この黄色油状物をテトラヒドロフラン(30 mL)に溶解し、水素化リチウムアルミニウム(120 mg)を氷

冷下少量ずつ加えた。反応混合物を氷冷下30分間かき混ぜた後、硫酸ナトリウム 10水和物 (1.0 g) を加え、室温に戻して30分間かき混ぜた。析出物をろ過により除き、ろ液を濃縮して表題化合物 (890 mg、収率44%) を黄色油状物として得た。

¹H NMR (300 MHz, CDCl₃) δ ppm 1.66(1H, t, J=5.9Hz), 3.20(2H, t, J=7.5Hz), 3.90(2H, t, J=7.5Hz), 4.59-4.75(4H, m), 6.72(1H, s), 7.03-7.23(2H, m), 7.22-7.33(5H, m), 7.33-7.42(2H, m), 7.53-7.68(1H, m), 7.79-7.94(2H, m), 8.54(1H, dd, J=4.1, 0.8Hz).

参考例 1 4 (4-{[[2-(4-フルオロフェニル)エチル](4-イソプロピル-1,3-チア 10 ゾール-2-イル)アミノ]メチル}フェニル)メタノール

N-[2-(4-フルオロフェニル)エチル]-4-イソプロピル-1,3-チアゾール-2-アミン (550 mg)、水素化ナトリウム (80 mg) およびN,N-ジメチルホルムアミド (5 mL) の混合物を室温で1時間かき混ぜた。反応混合物に氷冷下、4-(プロモ メチル)安息香酸メチル (500 mg) を加え、室温に戻してさらに1時間かき混ぜた。反応混合物を1規定塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層を無水硫酸マグネシウムで乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン (容積比で1:9から1:1までグラジエント)で展開することにより、黄色油状物を得た。この黄色油状物をテトラヒ ドロフラン (30 mL) に溶解し、水素化リチウムアルミニウム (80 mg) を氷冷下少量ずつ加えた。反応混合物を氷冷下30分間かき混ぜた後、硫酸ナトリウム10水和物 (1.0 g) を加え、室温に戻して30分間かき混ぜた。析出物をろ過により除き、ろ液を濃縮して表題化合物 (720 mg、収率90%) を黄色油状物として得た。

25 ¹H NMR (300 MHz, CDCl₃) δ ppm 1.26(6H, d, J=6.8Hz), 1.61(1H, t, J=5.8Hz),

2.83-2.94(3H, m), 3.53-3.60(2H, m), 4.56(2H, s), 4.68(2H, d, J=5.8Hz), 6.06(1H, d, J=0.9Hz), 6.92-6.99(2H, m), 7.08-7.15(2H, m), 7.23-7.34(4H, m).

参考例 1 5 4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)ア 5 ミノ]メチル]安息香酸メチル

4-フェニル-N-(2-フェニルエチル)-1,3-チアゾール-2-アミン(4.63 g、16.5 mmol)のN,N-ジメチルホルムアミド(50 mL)溶液に60%水素化ナトリウム(990 mg、24.8 mmol)を加えて30分間撹拌した後、4-(ブロモメチル)安息香10酸メチル(4.54 g、19.8 mmol)を加えた。混合物を室温で2時間撹拌した後、反応液に水を加え、酢酸エチルで抽出した。抽出液を水洗した後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し、表題化合物(3.39 g、収率48%)を黄色油状物として得た。

¹H NMR (CDCl₃) δ 3.00(t, J=7.8Hz, 2H), 3.69(t, J=7.8Hz, 2H), 3.90(s, 3H), 4.71(s, 2H), 6.76(s, 1H), 7.18-7.41(m, 10H), 7.86-7.88(m, 2H), 7.98-8.00(m, 2H).

参考例 1 6 [4-[[(2-フェニルエチル)(4-フェニル-1, 3-チアゾール-2-イル)ア ミノ]メチル]フェニル]メタノール

mL) 溶液に 1.5M 水素化ジイソブチルアルミニウムトルエン溶液 (2.4 mL、3.64 mmol) を加えた。反応液を室温で2時間撹拌した後、硫酸ナトリウム 1 0水和物(1.29 g、4 mmol)を加えて室温で1時間撹拌した。不溶物をろ去後、ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=2:3) で精製し、表題化合物 (409 mg、収率81%) を無色油状物として得た。 ¹H NMR (CDCl₃) δ 2.99(t, J=8.1Hz, 2H), 3.68(t, J=8.1Hz, 2H), 4.65-4.69(m, 4H), 6.74(s, 1H), 7.19-7.41(m, 12H), 7.87-7.90(m, 2H). 参考例 1 7 3-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]安息香酸メチル

. 10

参考例 1 5 と同様の方法を用いて、4-フェニル-N-(2-フェニルエチル)-1,3-チアゾール-2-アミンと3-(ブロモメチル)安息香酸メチルから表題化合物(収率 14%)を黄色油状物として得た。

 ^{1}H NMR (CDC13) δ 2.96-3.05(2H,m), 3.65-3.73(2H,m), 3.91(3H,s),

15 4.70(2H,s), 6.75(1H,s), 7.19-7.33(6H,m), 7.35-7.43(3H,m), 7.52(1H,d,J=7.7Hz), 7.86-7.91(2H,m), 7.92-8.00(2H,m). 参考例 1 8 「3-「「(2-フェニルエチル) (4-フェニル-1 3-チアゾール-2-

参考例 18 [3-[[(2-フェニルエチル)(4-フェニル-1, 3-チアゾール-2-イル)ア ミノ]メチル]フェニル]メタノール

20 参考例16と同様の方法を用いて、3-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]安息香酸メチルから表題化合物(収率

85%)を黄色油状物として得た。

¹H NMR (CDCl₃) δ 3. 00 (2H, t, J=8. 1Hz), 3. 70 (2H, t, J=8. 1Hz), 4. 61-4. 72 (4H, m), 6. 74 (1H, s), 7. 15-7. 34 (10H, m), 7. 39 (2H, t, J=7. 4Hz), 7. 82-7. 94 (2H, m).

5 参考例19 2-ヒドロキシ-1-フェニルプロパン-1-オン

15

20

2-ヒドロキシ-1-フェニルプロパン-1-オン (1.00 g、6.66 mmol)およびシアン酸カリウム (1.08 g、13.3 mmol) の2-プロパノール(15 mL)溶液に、酢酸 (960 mg、16.0 mmol)を50℃で1時間かけて滴下した。混合物を50℃で5時間撹拌した後、反応液を水に注いだ。晶出物をろ取し、イソプロピルエーテル-ヘキサンから再結晶化し、表題化合物 (430 mg、収率37%)を白色結晶として得た。MS:m/z 176 (M+H).

参考例21 2-クロロ-5-メチル-4-フェニル-1.3-オキサゾール

5-メチル-4-フェニル-1,3-オキサゾール-2(3H)-オン (430 mg、2.45 mmol) のオキシ塩化リン (2.36 g、14.7 mmol) 懸濁液にピリジン (194 mg、2.45 mmol)を添加し、120℃で2時間撹拌した。反応液をアセトニトリルで希釈した後、

5 水(約30℃)に滴下した。有機物を酢酸エチルで抽出した後、飽和食塩水で洗 浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラム クロマトグラフィー(ヘキサン/酢酸エチル=7:3)で精製し、表題化合物・(233 mg、収率49%)を黄色油状物として得た。

MS : m/z 194 (M+H).

10 参考例22 5-メチル-4-フェニル-N-プロピル-1,3-オキサゾール-2-アミン

2-クロロ-5-メチル-4-フェニル-1,3-オキサゾール (1.46 g、7.56 mmol) のエタノール(15 mL) 溶液にプロピルアミン(5 mL)を加えた後、封管中、110℃で8時間撹拌した。反応液を濃縮した後、水を加え、酢酸エチルで抽出した。飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=2:1) で精製し、表題化合物 (850 mg、収率52%) を黄色粉末として得た。

MS:m/z 217 (M+H).

参考例23 (2E)-3-(2-フルオロ-4-メトキシフェニル)アクリル酸エチル

20

水冷したジエチルホスホノ酢酸エチル (9.45 g、42.1 mmol) のテトラヒドロフラン (50 mL) 溶液に 60% 水素化ナトリウム (1.54 g、38.5 mmol) を加えて15分間撹拌した後、2-フルオロ-4-メトキシベンズアルデヒド (5.00 g、32.4 mmol) のテトラヒドロフラン (30 mL) 溶液を滴下した。混合物を室温で2時間撹拌した後、水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=4:1) で精製し、表題化合物 (7.07 g、収率97%) を無色油状物として得た。

¹H NMR (CDCl₃) δ 1.33(3H, t, J=7.1Hz), 3.83(3H, s), 4.26(2H, q, J=7.1Hz), 6.41(1H, d, J=16.2Hz), 6.61-6.73(2H, m), 7.45(1H, t, J=8.6Hz), 7.75(1H, d, J=16.2Hz).

参考例24 3-(2-フルオロ-4-メトキシフェニル)プロパン酸エチル

(2E)-3-(2-フルオロ-4-メトキシフェニル)アクリル酸エチル (7.07 g、31.5 mmol)、テトラヒドロフラン (50 mL)、エタノール (5 mL) および二酸化白金 (300 mg) の混合物を水素雰囲気下、室温で終夜撹拌した。触媒を濾別した後、 遮液を濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=4:1) で精製し、表題化合物 (5.97g、収率84%) を無色油状物として得た。

20 ¹H NMR (CDCl₃) δ 1.23(3H, t, J=7.2Hz), 2.58(2H, t, J=7.6Hz), 2.90(2H, t, J=7.6Hz), 3.77(3H, s), 4.12(2H, q, J=7.2Hz), 6.57-6.63(2H, m), 7.07-7.13(1H, m).

参考例25 3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチル

3-(2-フルオロ-4-メトキシフェニル)プロパン酸エチル (57.4 g, 254 mmol) および塩化アルミニウム (101 g, 761 mmol) のジクロロメタン (250 mL) 溶液に、1-オクタンチオール (74.3 g, 508 mmol)を滴下した後、室温下で2時間 撹拌した。反応液を氷水に注ぎ、30分間撹拌した。有機層を分離した後、飽和 食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカ ゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=4:1) で精製し、表題 化合物 (44.6 g、収率83%) を無色油状物として得た。

¹H NMR (CDCl₃) δ 1. 23 (3H, t, J=7. 2Hz), 2. 58 (2H, t, J=8. 1Hz),

10 2.89(2H, t, J=8.1Hz), 4.12(2H, q, J=7.2Hz), 6.51-6.56(2H, m), 7.01-7.06(1H, m).

参考例26 (2E)-3-(2,6-ジフルオロ-4-メトキシフェニル)アクリル酸エチル

ジエチルホスホノ酢酸エチル (2.34 g, 10.4 mmol)および60%水素化ナトリウム (0.38 g, 9.50 mmol)のテトラヒドロフラン (40 mL) 溶液を氷冷下10分間 攪拌した。この溶液に2,6-ジフルオロ-4-メトキシベンズアルデヒド(1.5 g, 8.71 mmol)を加え、室温にまで昇温しながら4時間攪拌した。反応溶液を酢酸エチルで希釈し、クエン酸水溶液、水、塩化ナトリウム水溶液で順次洗浄後、硫酸マグネシウムで乾燥、減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー (酢酸エチル:ヘキサン=1:10~1:5) に付し、表題化合物(1.1g、収率52%)を無色針状晶として得た。

MS: m/z 243 (M+H).

参考例27 3-(2,6-ジフルオロ-4-メトキシフェニル)プロパン酸エチル

(2E)-3-(2,6-ジフルオロ-4-メトキシフェニル)アクリル酸エチル (1.1 g,4.54 mmol)をテトラヒドロフラン(30 mL)とエタノール(30 mL)の混合溶媒に溶解し、10%パラジウムー炭素(0.30 g)を加え、水素雰囲気下、室温で5時間攪拌した。触媒を濾別し、得られた濾液を濃縮し、表題化合物(1.17 g、収率100%)を無色油状物として得た。

MS: m/z 245···(M+H).

5

参考例28 3-(2,6-ジフルオロ-4-ヒドロキシフェニル)プロパン酸エチル

3-(2,6-ジフルオロ-4-メトキシフェニル)プロパン酸エチル(1.17 g, 4.79 mmol)、塩化アルミニウム(1.9 g, 14.2 mmol)および1-オクタンチオール(1.7 mL, 9.80 mmol)のジクロロメタン溶液(20 mL)を氷冷下から室温で4時間攪拌した。反応溶液を氷水に注ぎ、1時間攪拌した。その混合溶液をジクロロメタンで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー(酢酸エチル:ヘキサン=1:10~1:5)に付し、表題化合物(1.0 g、収率91%)を無色油状物として得た。

MS: m/z 231 (M+H).

参考例29 N-(2-フェニルエチル)-4-[4-(トリフルオロメチル)フェニル]-1.3-チアゾール-2-アミン

20

N-(2-フェニルエチル)チオウレア (3.60 g、20 mmol)、2-ブロモ-1-[4-(トリフルオロメチル)フェニル]エタノン (5.34 g、20 mmol)、N,N-ジメチルホルムアミド (5 mL) の混合物を室温で 16 時間攪拌した。反応混合物を水に注ぎ、酢酸エチルで抽出した。抽出液を無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた固体をヘキサンで洗浄することにより、表題化合物 (5.2 g、収率74%) を淡黄色結晶として得た。

MS: m/z 349 (M+H).

参考例30 N-[2-(4-フルオロフェニル)エチル]-4-[4-(トリフルオロメチル)フェニル]-1,3-チアゾール-2-アミン

10

参考例29と同様にして、N-[2-(4-フルオロフェニル)エチル]チオウレアと 2-ブロモ-1-[4-(トリフルオロメチル)フェニル]エタノンの反応により、表題化 合物を淡黄色結晶として得た。収率 48%。

 ^{1}H NMR (CDCl3) δ 3.01(2H, t, J=7.0Hz), 3.53-3.62(2H, m), 6.71-

15 6.79(1H, m), 6.77(1H, s), 6.98-7.07(2H, m), 7.18-7.25(2H, m), 7.66(2H, d, J=8.3Hz), 7.89(2H, d, J=8.1Hz).

参考例31 3-{4-[(3-アミノベンジル)オキシ]フェニル}プロパン酸メチル

3-(4-ヒドロキシフェニル)プロパン酸メチル (5.10 g、28.3 mmol) のN, N-20 ジメチルホルムアミド (40 mL) 溶液に水素化ナトリウム (油性、1.20 g、30 mmol) を 0 ℃ で加え、同温で 1 時間攪拌後、3-ニトロベンジルブロミド (6.72 g、31.1 mmol) を加え、室温で 1 時間攪拌した。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層を水で洗浄後、無水硫酸マグネシウムで乾

燥、濃縮し黄色油状物を得た。得られた油状物、テトラヒドロフラン (50 mL)、エタノール (50 mL) の混合物に二酸化白金 (350 mg) を加え、大気圧の水素雰囲気下、16 時間攪拌した。不溶物をろ過で除き、ろ液を濃縮して表題化合物 (7.73 g、収率 96%、2工程) を淡黄色結晶として得た。

5 ¹H NMR (CDCl₃) δ 2.60 (2H, t, J=7.7Hz), 2.89 (2H, t, J=7.7Hz), 3.66 (3H, s), 4.95 (2H, s), 6.63 (1H, dd, J=7.8, 2.3Hz), 6.74-6.82 (2H, m), 6.89 (2H, d, J=8.5Hz), 7.07-7.18 (3H, m).

参考例32 3-{4-[(4-アミノベンジル)オキシ]フェニル}プロパン酸メチル

10 参考例31と同様にして、3-(4-ヒドロキシフェニル)プロパン酸メチルと4-ニトロベンジルブロミドの反応により、表題化合物を淡黄色結晶として得た。収 率 96%、2工程。

 $^{1}H \ NMR \ (CDC1_{3}) \ \delta \ 2.59 (2H, t, J=7.7 \ Hz), \ 2.88 (2H, t, J=7.7 \ Hz), \ 3.59-3.80 (5H, m), \ 4.90 (2H, s), \ 6.69 (2H, d, J=8.5 \ Hz), \ 6.89 (2H, d, J=8.5 \ Hz),$

7. 10 (2H, d, J=8.3 Hz), 7. 21 (2H, d, J=8.3 Hz).

参考例 3 3 $-[2-フルオロ-4-({4-[(プロピル{4-[4-(トリフルオロメチル)フェニル]-1,3-チアゾール-2-イル}アミノ)メチル]ベンジル}オキシ)フェニル]プロパン酸エチル$

N-プロピル-4-[4-(トリフルオロメチル)フェニル]-1,3-チアゾール-2-アミン (700 mg、2.44 mmol) のN,N-ジメチルホルムアミド (5 mL) 溶液に、室温で 水素化ナトリウム (100 mg、油性、2.5 mmol) を加え、室温で 1 時間攪拌した 後、3-(4-{[4-(クロロメチル)ベンジル]オキシ}-2-フルオロフェニル)プロパン

酸エチル (700 mg、 2.0 mmol) を加え室温でさらに 2 時間攪拌した。反応混合物を 1 規定塩酸に注ぎ、酢酸エチルで抽出した。有機層を濃縮して、残留物を分取HPLCで精製した。得られたフラクションを濃縮後、10% 炭酸水素ナトリウム水溶液で中性にして、酢酸エチルで抽出した。酢酸エチル層をPresep脱水チューブ (和光純薬工業 (株)) でろ過した後、濃縮して表題化合物を黄色油状物として得た。

MS: m/z 601 (M+H).

参考例 3 4 3-[2-フルオロ-4-($\{4$ -[(プロピル $\{4$ -[4-(トリフルオロメチル)フェニル]-1, 3-チアゾール-2-イル $\}$ アミノ)メチル]ベンジル $\}$ オキシ)フェニル]プ

10 ロパン酸

参考例33で得られた黄色油状物をエタノール(5 mL)、テトラヒドロフラン(5 mL)の混合溶媒に溶解し、2規定水酸化ナトリウム水溶液(2 mL)を加え、室温で2時間攪拌した。反応混合物を水で希釈後、1規定塩酸で中和し、析出する固体をろ取し、水で洗浄後、乾燥して表題化合物(345 mg、収率30%、2工程)を無色結晶として得た。

MS m/z 573 (M+H).

参考例35 3-[4-({4-[[(4-フェニル-1,3-チアゾール-2-イル)メチル](プロピル)アミノ]ベンジル}オキシ)フェニル]プロパン酸メチル

20

15

4-フェニル-1,3-チアゾール-2-カルバルデヒド (380 mg、2.0 mmol)、3-{4-[(4-アミノベンジル)オキシ]フェニル}プロパン酸メチル (570 mg、2.0 mmol)、

酢酸 (0.1 mL)、および1,2-ジクロロエタン (5 mL) の混合物に水素化トリアセトキシホウ素ナトリウム (0.6 g、2.8 mmo1) を氷冷下加え、室温に昇温して 1時間攪拌した。反応混合物にプロパナール (120 mg、2.1 mmo1)、および水素化トリアセトキシホウ素ナトリウム (0.4 g、1.9 mmo1) を加え、室温でさらに 1時間攪拌した。反応混合物を水に注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン (1:19から1:2 (体積比)までグラジェント) で展開して表題化合物 (340 mg、収率 68%)を黄色油状物として得た。

10 ¹H NMR (CDCl₃) δ 0.98(3H, t, J=7.3Hz), 1.70-1.80(2H, m),
2.59(2H, t, J=7.8 Hz), 2.89(2H, t, J=7.8Hz), 3.42-3.50(2H, m), 3.66(3H, s),
4.84(2H, s), 4.89(2H, s), 6.78(2H, d, J=8.8Hz), 6.89(2H, d, J=8.5Hz),
7.10(2H, d, J=8.5Hz), 7.24-7.35(3H, m), 7.36(1H, s), 7.40-7.47(2H, m),
7.86-7.91(2H, m).

15 参考例 3 6 3-[4-({4-[[(4-フェニル-1, 3-チアゾール-2-イル)メチル](プロ ピル)アミノ]ベンジル}オキシ)フェニル]プロパン酸

3-[4-({4-[[(4-フェニル-1,3-チアゾール-2-イル)メチル](プロピル)アミノ]ベンジル}オキシ)フェニル]プロパン酸メチル (240 mg、0.48 mmol)、エタ ノール (5 mL)、テトラヒドロフラン (5 mL) の混合物に、2 規定水酸化ナトリウム水溶液 (2 mL) を加え、室温で 2 時間攪拌した。反応混合物を水で希釈後、1 規定塩酸で中和し、酢酸エチルで抽出した。有機層を濃縮後、残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーヘキサン (1:4から4:1 (体積比)までグラジエント)で展開して表題化合物 (75 mg、収率 32%)を無色プリズム晶 (アセトンーへプタンより再結晶)として得た。

MS: m/z 487 (M+H).

参考例 3 7 3-[4-({3-[[(4-フェニル-1, 3-チアゾール-2-イル)メチル](プロピル)アミノ]ベンジル}オキシ)フェニル]プロパン酸メチル

5 4-フェニル-1,3-チアゾール-2-カルバルデヒド (210 mg、1.1 mmol)、3-(4-[(3-アミノベンジル)オキシ]フェニル}プロパン酸メチル (285 mg、1.0 mmol)、酢酸 (0.2 mL)、および1,2-ジクロロエタン (5 mL) の混合物に水素化トリアセトキシホウ素ナトリウム (0.6 g、2.8 mmol)を氷冷下加え、室温に昇温して 1時間攪拌した。反応混合物にプロパナール (200 mg、3.4 mmol)、を加え、室温 でさらに 1時間攪拌した。反応混合物を水に注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン (1:19から1:2 (体積比)までグラジエント)で展開して表題化合物 (393 mg、収率 78%)を黄色油状物として得た。

15 ^{1}H NMR (CDC1₃) δ 0.96(3H, t, J=7.4Hz), 1.65-

1.77 (2H, m), 2.58 (2H, t, J=7.8Hz), 2.87 (2H, t, J=7.8Hz), 3.40-3.47 (2H, m),

3.66(3H, s), 4.83(2H, s), 4.97(2H, s), 6.72(1H, dd, J=8.3, 2.3Hz), 6.77-

6.89 (4H, m), 7.06 (2H, d, J=8.7Hz), 7.18-7.25 (1H, m), 7.30-

7.37(1H, m), 7.34(1H, s), 7.39-7.46(2H, m), 7.87-7.91(2H, m).

20 参考例 3 8 3-[4-({3-[[(4-フェニル-1, 3-チアゾール-2-イル)メチル](プロピル)アミノ]ベンジル}オキシ)フェニル]プロパン酸

3-[4-({3-[[(4-フェニル-1,3-チアゾール-2-イル)メチル](プロピル)アミ

ノ]ベンジル}オキシ)フェニル]プロパン酸メチル (360 mg、0.72 mmol)、エタノール (5 mL)、テトラヒドロフラン (5 mL) の混合物に、2 規定水酸化ナトリウム水溶液 (2 mL) を加え、室温で 2 時間攪拌した。反応混合物を水で希釈後、1 規定塩酸で中和し、酢酸エチルで抽出した。有機層を濃縮後、残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン (1:4から4:1 (体積比)までグラジエント)で展開して表題化合物 (262 mg、収率75%)を無色プリズム晶 (アセトンーへプタンより再結晶)として得た。MS: m/z 487 (M+H).

参考例39 (2Z)-3-[4-(ベンジルオキシ)フェニル]-2-フルオロアクリル酸エチル

10

2-フルオロ-2-ホスホノ酢酸トリエチル (4.90 g、20.2 mmol) のテトラヒドロフラン (40 mL) 溶液を窒素雰囲気下 0 ℃ にて攪拌し、1.6 M n-ブチルリチウム/ヘキサン溶液 (13.1 mL、21.0 mmol) を滴下した。反応液を 0 ℃ にて 30 分間攪拌したのち、4-ベンジルオキシベンズアルデヒド (4.29 g、20.2 mmol) のテトラヒドロフラン (20 mL) 溶液を滴下した。得られた混合物を室温下で 3 時間撹拌したのち、氷冷した塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=3:97~20:80) で精製し、表題化合物 (4.90 g、収率 81%) を黄色油状物として得た。

¹H NMR (CDCl₃) δ 1. 29 (3H, t, J=7. 1Hz), 4. 28 (2H, q, J=7. 1Hz), 5. 09 (2H, s), 6. 79-7. 02 (3H, m), 7. 29-7. 63 (7H, m).

参考例40 2-フルオロ-3-(4-ヒドロキシフェニル)プロパン酸エチル

参考例 2 7と同様にして、(22)-3-[4-(ベンジルオキシ)フェニル]-2-フルオロアクリル酸エチルから表題化合物を無色油状物として得た。収率 50%。

¹H NMR (CDC1₃) δ 1.22-1.30(3H, m), 3.00-3.25(2H, m), 4.17-4.27(2H, m),
4.76-4.78(1H, m), 4.92-5.15(1H, m), 6.74-6.81(2H, m), 7.08-7.15(2H, m).

参考例 4 1 2,2-ジフルオロ-3-(4-ヒドロキシフェニル)プロパン酸エチル

シンセシス (Synthesis)、13巻、1917-1924頁、2000年に 記載の方法に従って合成した2,2-ジフルオロ-3-(4-メトキシフェニル)プロパン 10 酸エチル (1.72 g、7.05 mmol)、および塩化アルミニウム (2.82 g、21.2 mmol) のジクロロメタン (50 mL) 溶液に 1-オクタンチオール (2.06 g、14.1 mmol)を滴下した後、室温下で 2 時間半攪拌した。反応液を氷水に注ぎ、30 分間攪拌した。有機層を分離した後、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー (酢酸 エチル:ヘキサン=8:92~60:40) で精製し、表題化合物 (0.90 g、収率 56%)を無色油状物として得た。

¹H NMR (CDCl₃) δ 1.26(3H, t, J=7.1Hz), 3.30(2H, t, J=16.3Hz),
4.25(2H, q, J=7.2Hz), 4.84(1H, s), 6.74-6.82(2H, m), 7.13(2H, d, J=8.3Hz).
参考例 4 2 N-(3-メチルブチル)-4-[4-(トリフルオロメチル)フェニル]-1, 3チアゾール-2-アミン

20

N-(3-メチルプチル)チオウレア (3.00 g、20.5 mmol)、2-ブロモ-1-[4-(ト

リフルオロメチル)フェニル]エタノン (5.45 g、20.5 mmol) 、酢酸ナトリウム (2.19 g、26.7 mmol)のエタノール (50 mL) 溶液を 90 ℃ で 4 時間攪拌した。 反応混合物を水に注ぎ、酢酸エチルで抽出した。抽出液を無水硫酸ナトリウムで 乾燥後、減圧濃縮した。得られた固体をジクロロメタンーへキサンより再結晶化 し、表題化合物 (1.76 g、収率 74%) を淡黄色結晶として得た。

¹H NMR (CDC1₃) δ 0.95(6H, d, J=6.7Hz), 1.55(2H, q, J=7.0Hz), 1.63-1.79(1H, m), 3.24-3.36(2H, m), 5.29(1H, br s), 6.80(1H, s), 7.61(2H, d, J=8.3 Hz), 7.90(2H, d, J=8.3 Hz).

参考例 4 3 3-[4-({4-[((3-メチルブチル) {4-[4-(トリフルオロメチル)フェ 10 ニル]-1,3-チアゾール-2-イル}アミノ)メチル]ベンジル}オキシ)フェニル]プロ パン酸メチル

N-(3-メチルブチル)-4-[4-(トリフルオロメチル)フェニル]-1,3-チアゾール-2-アミン(500 mg、1.59 mmol)のN,N-ジメチルホルムアミド(10 mL)溶液に 60% 水素化ナトリウム(63.6 mg、1.59 mmol)を加えて30分間攪拌した後、3-(4-{[4-(クロロメチル)ベンジル]オキシ}フェニル)プロパン酸メチル(462 mg、1.45 mmol)を加えた。得られる混合物を室温で13時間撹拌した後、反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=5:95~40:60)で精製し、表題化合物(490 mg、収率 57%)を黄色油状物として得た。

MS: m/z 597 (M+H).

25

5

参考例 4 4 3-[4-({4-[((3-メチルブチル) {4-[4-(トリフルオロメチル)フェニル]-1,3-チアゾール-2-イル} アミノ) メチル] ベンジル} オキシ) フェニル] プロパン酸

PCT/JP2004/019749 . WO 2005/063725

後述する実施例32と同様にして、3-[4-({4-[((3-メチルブチル){4-[4-(ト リフルオロメチル)フェニル]-1,3-チアゾール-2-イル}アミノ)メチル]ベンジ ル}オキシ)フェニル]プロパン酸メチルから表題化合物(収率 40%)を無色結晶 として得た。

MS: m/z 583 (M+H).

5

15

参考例45 トリフルオロメタンスルホン酸 4-ブチリルフェニル

氷冷した1-(4-ヒドロキシフェニル)ブタン-1-オン (15.0 g、91.4 mmol) の ピリジン (100 mL) 溶液にトリフルオロメタンスルホン酸無水物 (30.9 g、110 10 mmol) を滴下した。得られる混合物を室温で 3 時間撹拌した後、水で希釈し、 酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで 乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エ チル: ヘキサン=5:95~40:60) で精製し、表題化合物 (27.1 g、収率 100%) を 淡黄色油状物として得た。

¹H NMR (CDCl₃) δ 1.01(3H, t, J=7.4Hz), 1.71-1.85(2H, m), 2.95(2H, t, J=7.3Hz), 7.34-7.41(2H, m), 8.02-8.09 (2H, m). 参考例46 4-プチリル安息香酸メチル

トリフルオロメタンスルホン酸 4-ブチリルフェニル (27.1 g、91.7 mmol)、 20

酢酸パラジウム (1.24 g、5.50 mmol)、1,3-ビス(ジフェニルホスフィノ)プロパン (2.45 g、6.05 mmol)、トリエチルアミン (23.2 g、229 mmol)、メタノール (200 mL) 及びジメチルスルホキシド (100 mL) の混合物を、一酸化炭素雰囲気下、80 ℃ で 8 時間加熱還流した。反応液を冷却後、0.5 規定塩酸を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=3:97~30:70)で精製したのち、酢酸エチルーヘキサンから再結晶し、表題化合物 (9.24 g、収率 49%)を無色結晶として得た。

MS: m/z 207 (M+H).

10 参考例 4 7 (4-{1-[(4-フェニル-1, 3-チアゾール-2-イル)メチル]ブチル}フェニル)メタノール

リービッヒズ アナーレン デア ケミー (Liebigs Annalen der Chemie)、4 巻、623-632頁、1981年に記載の方法に従って合成したトリフェニル 15 [(4-フェニル-1,3-チアゾール-2-イル)メチル]ホスホニウムブロミド (1.00 g、 1.94 mmol) のベンゼン (20 mL) 懸濁液に t-ブトキシカリウム (239 mg、 2.13 mmol) を加え、アルゴン雰囲気下室温で 3 時間攪拌した。反応溶液に 4-ブチリル安息香酸メチル (319 mg、1.55 mmol) のベンゼン (20 mL) 溶液を滴 下し、室温で 3 時間攪拌したのち、更に 16 時間加熱還流した。反応液を室温 まで冷却したのち水に注ぎ、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄 20 し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムク ロマトグラフィー (酢酸エチル:ヘキサン=5:95~20:80) で精製し黄色油状物を 得た。該油状物に、テトラヒドロフラン (20 mL)、メタノール(10 mL)および 10%パラジウムー炭素 (200 mg) を加え、水素雰囲気下、室温で2日間攪拌した。 25 触媒をろ別し、得られたろ液を濃縮し無色油状物を得た。該油状物のテトラヒド ロフラン(10 mL)溶液に、1.0M 水素化ジイソプチルアルミニウムトルエン溶

液 (10 mL、10 mmo1) を氷冷下で滴下した。反応液を室温で 2 時間攪拌したのち、硫酸ナトリウム 十水和物を加えて更に室温で 1 時間攪拌した。不溶物をろ去後、ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=10:90~60:40) で精製し表題化合物 (250 mg、収率 48%) を無色油状物として得た。

MS: m/z 338 (M+H).

· 5

参考例 4 8 3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1, 3-チアゾール-2-イル) メチル]ブチル}ベンジル)オキシ]フェニル}プロパン酸エチル

10 後述する実施例 3 1 と同様にして、3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチルと(4-{1-[(4-フェニル-1,3-チアゾール-2-イル)メチル]ブチル}フェニル)メタノールから表題化合物(収率 89%)を無色油状物として得た。MS: m/z 532 (M+H).

後述する実施例32と同様にして、3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1,3-チアゾール-2-イル)メチル]ブチル}ベンジル)オキシ]フェニル}プロパン酸エチルから表題化合物(収率72%)を無色結晶として得た。

20 MS: m/z 504 (M+H).

参考例 5 0 · 3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1, 3-チアゾール-2-イル) メチル]ブチル}ベンジル)オキシ]フェニル}プロパン酸 0.5カルシウム塩

後述する実施例33と同様にして、3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1,3-チアゾール-2-イル)メチル]ブチル}ベンジル)オキシ]フェニル}プロパン酸から表題化合物(収率70%)を無色結晶として得た。

5 MS: m/z 504 (M+H) (フリー).

参考例 51 6-{[(2-フェニルエチル)(4-フェニル-1, 3-チアゾール-2-イル)アミノ]メチル}ニコチン酸メチル

参考例15と同様にして、4-フェニル-N-(2-フェニルエチル)-1,3-チアゾー 10 ル-2-アミンと6-(ブロモメチル)ニコチン酸メチルから表題化合物(収率 65%) を黄色油状物として得た。

 ^{1}H NMR (CDCl3) δ 2.96-3.11(2H,m), 3.71-3.84(2H,m), 3.94(3H,s),

4.87(2H, s), 6.76(1H, s), 7.13-7.48(9H, m), 7.80-7.89(2H, m),

8. 20 (1H, dd, J=8. 2, 2. 2Hz), 9. 16 (1H, d, J=2. 1Hz).

15 参考例 5 2 (6-{[(2-フェニルエチル)(4-フェニル-1, 3-チアゾール-2-イル)ア ミノ]メチル} ピリジン-3-イル) メタノール

参考例16と同様にして、6-{[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ニコチン酸メチルから表題化合物(収率 65%)を

黄色油状物として得た。

¹H NMR (CDCl₃) δ 2.95-3.09(2H, m), 3.70-3.85(2H, m), 4.70(2H, s), 4.81(2H, s), 6.74(1H, s), 7.14-7.44(9H, m), 7.64(1H, dd, J=8.0, 2.2Hz), 7.80-7.92(2H, m), 8.54(1H, d, J=1.7Hz).

5 参考例 5 3 4-(1-ヒドロキシブチル)ベンズアルデヒド

4-(ジエトキシメチル)ベンズアルデヒド(10.4 g、50.0 mmol) のテトラヒ ドロフラン (200 mL) 溶液を室温、窒素雰囲気下攪拌した後、2 M 臭化 n-プロ ピルマグネシウム テトラヒドロフラン溶液 (27.5 mL、55.0 mmol) を滴下した。 10 30 分後、反応液に塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。抽 出液を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣 をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=10:90~20:80) で精製して、1-[4-(ジエトキシメチル)フェニル]ブタン-1-オール(6.39 g、 25.3 mmol) を無色油状物として得た。該油状物をテトラヒドロフラン (75 mL) 15 および水 (25 mL) の混液に溶解し、p-トルエンスルホン酸 一水和物 (0.500 g、 2.63 mmol) を加えて室温で 5 時間攪拌した。反応液を水で希釈し、酢酸エチ ルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、 減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキ サン=10:90~40:60) で精製して、表題化合物 (4.51 g、収率 51%、2 工程) 20 を無色油状物として得た。

¹H NMR (CDCl₃) δ 0.95(3H, t, J=7.3Hz), 1.29-1.53(2H, m), 1.63-1.86(2H, m), 1.94(1H, d, J=3.6Hz), 4.75-4.83(1H, m), 7.52(2H, d, J=8.2Hz), 7.87(2H, d, J=8.2Hz), 10.00(1H, s).

参考例54・1-[4-(ヒドロキシメチル)フェニル]ブタン-1-オール

5

10

4-(1-ヒドロキシブチル)ベンズアルデヒド(4.51 g、25.3 mmol)をメタノール(10 mL) およびテトラヒドロフラン(20 mL)の混液に溶解し、氷冷攪拌下、水素化ホウ素ナトリウム(0.479 g、12.7 mmol)を加えた後、同温で1.5時間攪拌した。反応液に水および1 規定塩酸を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=30:70~80:20)で精製して、表題化合物(4.32 g、収率95%)を無色油状物として得た。

¹H NMR (CDC1₃) δ 0.93(3H, t, J=7.3Hz), 1.22-1.52(2H, m), 1.61-1.86(4H, m), 4.65-4.73(3H, m), 7.35(4H, s).

参考例 5 5 3-(2-フルオロ-4-{[4-(1-ヒドロキシブチル)ベンジル]オキシ}フェニル)プロパン酸エチル

3-(2-フルオロ-4-ヒドロキシフェニル) プロパン酸エチル (2.12 g、10.0 mmol)、1-[4-(ヒドロキシメチル) フェニル] ブタン-1-オール (1.80 g、10.0 mmol) およびトリブチルホスフィン (4.04 mL、20.0 mmol) のトルエン (150 mL) 溶液を氷冷下攪拌し、1,1'-(アゾジカルボニル) ジピペリジン (5.04 g、20.0 mmol) を少量ずつ加え、室温まで昇温して 22 時間攪拌した。反応液にヘキサン (75 mL) を加え、析出した不溶物を濾別し、濾液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=5:95~30:70)で精製して、表題化合物を無色油状物 (1.93 g、収率 52%) として得た。 ¹H NMR (CDCl₃) δ 0.93(3H, t, J=7.3Hz), 1.23(3H, t, J=7.1Hz), 1.27-1.51(2H, m), 1.61-1.86(3H, m), 2.58(2H, t, J=7.6Hz), 2.90(2H, t, J=7.6Hz),

4.12(2H, q, J=7.1Hz), 4.66-4.74(1H, m), 5.01(2H, s), 6.62-6.72(2H, m), 7.05-7.14(1H, m), 7.33-7.43(4H, m).

参考例 5 6 3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1,3-チアゾール-2-イル) チオ]ブチル}ベンジル)オキシ]フェニル}プロパン酸エチル

3-(2-フルオロ-4-{[4-(1-ヒドロキシブチル)ベンジル]オキシ}フェニル)プロパン酸エチル (0.500 g、1.34 mmol)、2-メルカプト-4-フェニルチアゾール (0.284 g、1.47 mmol) およびトリフェニルホスフィン (0.700 g、2.67 mmol)のトルエン (10 mL) 溶液に、室温攪拌下、アゾジカルボン酸ジエチル (40% トルエン溶液、1.21 mL、2.67 mmol)を加え、同温で 1.5 時間攪拌した。反応液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル:へキサン=0:100~20:80)で精製して、表題化合物 (0.555 g、収率 76%)を無色油状物として得た。

MS : m/z 550 (M+H).

5

15 参考例 5 7 3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1,3-チアゾール-2-イル) チオ]ブチル}ベンジル)オキシ]フェニル}プロパン酸

3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1,3-チアゾール-2-イル)チオ]ブチル}ベンジル)オキシ]フェニル}プロパン酸エチル (0.130 g、0.236 mmol) の 20 エタノール (0.5 mL) およびテトラヒドロフラン (1 mL) 混合溶液に 2 規定水酸化ナトリウム水溶液 (0.25 mL) を加え、50 ℃ で 3 時間攪拌した。反応液

に水を加え、1 規定塩酸で酸性にして、酢酸エチルで抽出した。抽出液を飽和 食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカ ゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=20:80~70:30)で精製 して、表題化合物(0.119 g、収率 97%)を無色油状物として得た。

5 MS: m/z 522 (M+H).

実施例 1 3-{4-[(4-{[ベンジル(4-フェニル-1, 3-チアゾール-2-イル)アミノ] メチル}ベンジル)オキシ]フェニル}プロパン酸

2-ブロモ-1-フェニルエタノン (100 mg) 、N-ベンジルチオ尿素 (83 mg) お は よびN, N-ジメチルホルムアミド (2 mL) の混合物を80℃で1時間かき混ぜた。反 応混合物を0℃に冷却し、水素化ナトリウム (60%、油性、80 mg) を加え、室 温で30分かき混ぜた。反応混合物に室温で3-(4-{[4-(クロロメチル)ベンジル] オキシ}フェニル)プロパン酸メチル (300 mg) を加え、室温で1時間かき混ぜた。 反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層をPresep

15 Dehydration tube (和光純薬(株)製)を用いて乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン(容積比で1:19から1:0までグラジエント)で展開することにより、表題化合物(110mg、収率41%)を無色結晶として得た。

MS: m/z 535 (M+H).

20 実施例 2 3-{4-[(4-{[(4-イソプロピル-1, 3-チアゾール-2-イル)(2-フェニル エチル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

3-{4-[(4-{[(4-イソプロピル-1,3-チアゾール-2-イル)(2-フェニルエチル) アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチル(350 mg)、2規 定水酸化ナトリウム水溶液(2 mL)およびエタノール(5 mL)の混合物を室温で1 時間かき混ぜた。反応混合物を水で希釈し、1規定塩酸で中和し、酢酸エチルで 抽出した。酢酸エチル層を無水硫酸マグネシウムで乾燥後、濃縮して表題化合物 (210 mg、収率62%)を無色結晶として得た。

MS: m/z 515 (M+H).

実施例 3 3-{4-[(4-{[(2-フェニルエチル)(4-ピリジン-2-イル-1, 3-チアゾー 10 ル-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

実施例 2 と同様にして、 $3-\{4-[(4-\{[(2-フェニルエチル)(4-ピリジン-2-イル-1,3-チアゾール-2-イル)アミノ]メチル\}ベンジル)オキシ]フェニル}プロパン酸メチルから表題化合物(収率72%)を淡黄色結晶として得た。$

15 MS: m/z 550 (M+H).

実施例 4 3-{4-[(4-{[[2-(4-クロロフェニル)エチル](4-フェニル-1,3-チア ゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

N-[2-(4-クロロフェニル) エチル] チオ尿素 (108 mg) 、2-ブロモ-1-フェニル エタノン (100 mg) およびN, N-ジメチルホルムアミド (3 mL) の混合物を室温 で1時間かき混ぜた。この混合物に水素化ナトリウム (60%、油性、40 mg) を氷冷下加え、室温に戻して1時間かき混ぜた。反応混合物に3-(4-{[4-(クロロメチル) ベンジル] オキシ} フェニル) プロパン酸メチル (159 mg) を氷冷下加え、室温に戻してさらに1時間かき混ぜた。反応混合物をリン酸 2 水素 1 カリウム水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層を濃縮し、残留物を分取 HPLC(グラジエントサイクルA) で精製して、表題化合物 (113 mg、収率39%) を黄色油状物として得た。

MS: m/z 583 (M+H).

10

実施例 5 3-{4-[(4-{[[3-(ジエチルアミノ)プロピル](4-フェニル-1, 3-チア ゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

15 N-[3-(ジエチルアミノ)プロピル]チオ尿素 (90 mg) 、2-ブロモ-1-フェニル エタノン (100 mg) およびN,N-ジメチルホルムアミド (3 mL) の混合物を室温 で1時間かき混ぜた。この混合物に水素化ナトリウム(60%、油性、40 mg)を氷冷

下加え、室温に戻して1時間かき混ぜた。反応混合物に3-(4-{[4-(クロロメチル)ベンジル]オキシ}フェニル)プロパン酸メチル(159 mg)を氷冷下加え、室温に戻してさらに1時間かき混ぜた。反応混合物をリン酸2水素1カリウム水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層を濃縮し、残留物を塩基性シリカゲルカラムクロマトグラフィーで精製して、黄色油状物を得た。この黄色油状物、2規定水酸化ナトリウム水溶液(2 mL)およびエタノール(5 mL)の混合物を室温で1時間かき混ぜた。反応混合物をリン酸2水素1カリウム水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層をPresep Dehydration tube(和光純薬(株)製)を用いて乾燥後、濃縮して表題化合物(142 mg、収率51%)を黄色油状物として得た。

MS: m/z 558 (M+H).

実施例 6 3-{4-[(4-{[(3-メトキシプロピル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

15 実施例4と同様にしてN-(3-メトキシプロピル)チオ尿素から収率49%で表題化 合物を合成した。黄色油状物。

MS: m/z 517 (M+H).

実施例 7 3-{4-[(4-{[[2-(4-メチルフェニル)エチル](4-フェニル-1,3-チア プール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

実施例4と同様にしてN-[2-(4-メチルフェニル)エチル]チオ尿素から収率44%で表題化合物を合成した。黄色油状物。

MS: m/z 563 (M+H).

5 実施例8 3-{2-フルオロ-4-[(4-{[[2-(4-フルオロフェニル)エチル](4-イソプロピル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸エチル

(4-{[[2-(4-フルオロフェニル)エチル](4-イソプロピル-1,3-チアゾール-2-10 イル)アミノ]メチル}フェニル)メタノール (510 mg) 、3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチル (280 mg) 、トリフェニルホスフィン (420 mg) およびアゾジカルボン酸ジエチル (40%トルエン溶液、750 mg) のトルエン(3 mL)溶液を室温で1時間かき混ぜた。反応混合物を濃縮し、残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン (容積比で1:

15 19から1:1までグラジエント)で展開することにより、表題化合物 (490 mg、 収率64%) を黄色油状物として得た。

MS: m/z 579 (M+H).

実施例 9 $3-\{2-フルオロ-4-[(4-\{[[2-(4-フルオロフェニル) エチル](4-イソ プロピル-1, 3-チアゾール-2-イル) アミノ] メチル} ベンジル) オキシ] フェニル} プロパン酸$

3-{2-フルオロ-4-[(4-{[[2-(4-フルオロフェニル)エチル](4-イソプロピル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸エチル(485 mg)をエタノール(5 mL)に溶解し、2規定水酸化ナトリウム水溶液(2 mL)を加え、室温で1時間かき混ぜた。反応混合物を水で希釈し、1規定塩酸で中和し、酢酸エチルで抽出した。Presep Dehydration tube(和光純薬
 (株)製)を用いて乾燥後、濃縮して表題化合物(354 mg、収率75%)を無色結晶として得た。

MS: m/z 551 (M+H).

15

黄色油状物。

実施例 1 0 3-{4-[(4-{[(4-フェニル-1, 3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチル

実施例8と同様にして、(4-{[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル}フェニル)メタノールと3-(4-ヒドロキシフェニル)プロパン酸メチルの光延反応により収率57%で表題化合物を合成した。

MS: m/z 564 (M+H).

実施例11 3-{2-フルオロ-4-[(4-{[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸エチル

5

実施例8と同様にして、(4-{[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル}フェニル)メタノールと3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチルの光延反応により収率41%で表題化合物を合成した。黄色油状物。

10 MS: m/z 596 (M+H).

実施例12 3-{4-[(4-{[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

実施例 9 と同様にして、3-{4-[(4-{[(4-フェニル-1,3-チアゾール-2-イ 15 ル)(2-ピリジン-2-イルエチル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチルの塩基性加水分解により表題化合物を収率82%で合成した。淡黄色結晶。

MS: m/z 550 (M+H).

実施例 1 3 3-{2-フルオロ-4-[(4-{[(4-フェニル-1, 3-チアゾール-2-イ 20 ル)(2-ピリジン-2-イルエチル)アミノ]メチル}ベンジル)オキシ]フェニル}プロ パン酸

実施例 9 と同様にして、3-{2-フルオロ-4-[(4-{[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸エチルの塩基性加水分解により表題化合物を収率70%で合成した。

5 淡黄色結晶。

MS: m/z 568 (M+H).

実施例 1 4 3-{4-[(4-{[(3-フェニルプロピル)(4-ピリジン-2-イル-1, 3-チア ゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

10 実施例 4 と同様にして、N-(3-フェニルプロピル)チオ尿素および2-ブロモ-1-ピリジン-2-イルエタノンから収率27%で表題化合物を合成した。茶色固体。

MS: m/z 564 (M+H).

実施例 1 5 3-{4-[(4-{[(4-イソプロピル-1, 3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

15

4-イソプロピル-N-(2-ピリジン-2-イルエチル)-1, 3-チアゾール-2-アミン

(127 mg) のN, N-ジメチルホルムアミド (2 mL) 溶液に水素化ナトリウム (20 mg) を加え、室温で1時間かき混ぜた。反応混合物に室温で3-(4-{[4-(クロロメチル)ベンジル]オキシ}フェニル)プロパン酸メチル (159 mg) を加え、室温で1時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル5 層をPresep Dehydration tube (和光純薬(株)製)を用いて乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン (容積比で1:19から1:1までグラジエント)で展開することにより、黄色油状物を得た。この油状物をメタノール (5 mL) に溶解し、2規定水酸化ナトリウム水溶液 (2 mL)を加え、室温で1時間かき混ぜた。反応混合物を水で希釈し、1規定塩酸で中和し、酢酸エチルで抽出した。Presep Dehydration tube (和光純薬(株)製)を用いて乾燥後、濃縮して表題化合物 (105 mg、収率41%)を無色結晶として得た。

MS: m/z 516 (M+H).

実施例 1 6 3-{4-[(4-{[(4-イソブチル-1, 3-チアゾール-2-イル)(2-フェニル 15 エチル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

実施例15と同様にして、4-イソブチル-N-(2-フェニルエチル)-1,3-チアゾ ール-2-アミンから収率45%で表題化合物を合成した。無色結晶。

MS: m/z 529 (M+H).

20 実施例17 3-{4-[(4-{[(3-フェニルプロピル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

実施例 1 5 と同様にして、4-フェニル-N-(3-フェニルプロピル)-1,3-チアゾール-2-アミンから収率41%で表題化合物を合成した。淡黄色結晶。

MS: m/z 563 (M+H).

5 実施例18 3-{4-[(4-{[(2-フェニルエチル)(4-プロピル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチル

N-(2-フェニルエチル)-4-プロピル-1,3-チアゾール-2-アミン(246 mg)の N,N-ジメチルホルムアミド(2 mL)溶液に水素化ナトリウム(40 mg)を加え、 室温で1時間かき混ぜた。反応混合物に室温で3-(4-{[4-(クロロメチル)ベンジル]オキシ}フェニル)プロパン酸メチル(318 mg)を加え、室温で1時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層をPresep Dehydration tube(和光純薬(株)製)を用いて乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン(容積比で1:19から1:1までグラジエント)で展開することにより、表題化合物(380 mg)を黄色油状物として得た。

MS: m/z 529 (M+H).

実施例19 3-{4-[(4-{[(2-フェニルエチル)(4-プロピル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

実施例9と同様にして、3-{4-[(4-{[(2-フェニルエチル)(4-プロピル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチルの塩基性加水分解により表題化合物を収率84%で合成した。黄色油状物。

5 MS: m/z 515 (M+H).

実施例 2 0 3-{4-[(4-{[[3-(メチルチオ)プロピル](4-フェニル-1,3-チアゾーール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチル

実施例18と同様にして、N-[3-(メチルチオ)プロピル]-4-フェニル-1,3-チ 10 アゾール-2-アミンから収率56%で表題化合物を合成した。黄色油状物。

¹H NMR (300 MHz, CDCl₃) δ ppm 1.90-2.02(2H, m), 2.08(3H, s), 2.42-

2.72(4H, m), 2.89(2H, t, J=7.8Hz), 3.54-3.64(2H, m), 3.66(3H, s),

4.78(2H, s), 5.02(2H, s), 6.71(1H, s), 6.82-6.94(2H, m),

7. 11(2H, d, J=8.7Hz), 7. 18-7.55(7H, m), 7. 74-7.97(2H, m).

15 実施例21 3-{4-[(4-{[[3-(メチルチオ)プロピル](4-フェニル-1,3-チアゾ ール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

実施例9と同様にして、 $3-\{4-[(4-\{[[3-(メチルチオ)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチルの塩基性加水分解により表題化合物を収率89%で合成した。黄色油状物。 MS: <math>m/z$ 533 (M+H).

5 実施例22 3-{4-[(4-{[[3-(メチルスルフィニル)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチル

MS: m/z 563 (M+H).

実施例 2 3 $3-\{4-[(4-\{[[3-(メチルスルホニル)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル<math>\}$ ベンジル)オキシ]フェニル $\}$ プロパン酸メチル

20

3-{4-[(4-{[[3-(メチルチオ)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチル(200 mg)、m ークロロ過安息香酸(263mg)およびテトラヒドロフラン (10 mL) の混合物を室温で3時間かき混ぜた。反応混合物を濃縮し、残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン (容積比で1:19から1:0までグラジエント)で展開することにより、表題化合物(141 mg、収率67%)を黄色油状物として得た。

MS: m/z 579 (M+H).

5

15

実施例24 3-{4-[(4-{[[3-(メチルスルフィニル)プロピル](4-フェニル-10 1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

実施例 9 と同様にして、3-{4-[(4-{[[3-(メチルスルフィニル)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチルの塩基性加水分解により表題化合物を収率75%で合成した。無色結晶。

MS: m/z 549 (M+H).

実施例25 3-{4-[(4-{[[3-(メチルスルホニル)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル)プロパン酸

20 実施例9と同様にして、3-{4-[(4-{[[3-(メチルスルホニル)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシラフェニルプ

105

ロパン酸メチルの塩基性加水分解により表題化合物を収率77%で合成した。無色 結晶。

MS: m/z 565 (M+H).

実施例26 3-{2-フルオロ-4-[(4-{[[2-(2-フルオロフェニル)エチル](4-イ 5 ソプロピル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル)プロパン酸

N-[2-(2-フルオロフェニル)エチル]-4-イソプロピル-1,3-チアゾール-2-アミン (139 mg) のN,N-ジメチルホルムアミド (2 mL) 溶液に水素化ナトリウム (20 mg) を加え、室温で1時間かき混ぜた。反応混合物に室温で3-(4-{[4-(クロロメチル)ベンジル]オキシ}-2-フルオロフェニル)プロパン酸エチル (175 mg) を加え、室温で1時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで 抽出した。酢酸エチル層をPresep Dehydration tube (和光純薬(株)製)を 用いて乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーヘキサン (容積比で1:19から1:1までグラジエント)で展開することにより、黄色油状物を得た。この油状物をエタノール (5 mL) に溶解し、2規定水酸化ナトリウム水溶液 (2 mL) を加え、室温で1時間かき混ぜた。 反応混合物を水で希釈し、1規定塩酸で中和し、酢酸エチルで抽出した。Presep Dehydration tube (和光純薬(株)製)を用いて乾燥後、濃縮して表題化合物 (206 mg、収率71%)を黄色油状物として得た。

MS: m/z 551 (M+H).

10

15

20

実施例 2 7 $3-\{2-フルオロ-4-[(4-\{[[2-(4-フルオロフェニル)エチル](4-イソプチル-1,3-チアゾール-2-イル)アミノ]メチル<math>\}$ ベンジル)オキシ]フェニル $\}$ プロパン酸

実施例26と同様にして、N-[2-(4-フルオロフェニル)エチル]-4-イソブチル-1,3-チアゾール-2-アミンから収率33%で表題化合物を合成した。黄色油状物。MS:m/z 565 (M+H).

5 実施例28 3-{4-[(4-{[(4-イソプロピル-1, 3-チアゾール-2-イル)(2-フェニルエチル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチル

実施例18と同様にして、4-イソプロピル-N-(2-フェニルエチル)-1,3-チア ゾール-2-アミンから収率68%で表題化合物を合成した。黄色油状物。

10 MS: m/z 529 (M+H).

実施例 2 9 3-{4-[(4-{[(2-フェニルエチル)(4-ピリジン-2-イル-1,3-チアゾ ール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチル

実施例 1 8 と同様にして、N-(2-フェニルエチル)-4-ピリジン-2-イル-1,3-チ 15 アゾール-2-アミンから収率92%で表題化合物を合成した。黄色油状物。

MS: m/z 564 (M+H).

実施例30 3-{4-[(4-{[[4-(4-クロロフェニル)-5-メチル-1,3-オキサゾー

ル-2-イル] (エチル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

3-(4-{[4-(クロロメチル)ベンジル]オキシ}フェニル)プロパン酸メチル (50 mg, 0.16 mmol)のN, N-ジメチルホルムアミド(1 mL)溶液に4-(4-クロロフェニ ル)-N-エチル-5-メチル-1,3-オキサゾール-2-アミン(45 mg, 0.19 mmol)の N, N-ジメチルホルムアミド(0.5 mL)溶液および炭酸カリウム(33 mg, 0.24 mmol)を加えて70℃で66時間攪拌した。反応液に水(2 mL)を加え、ジクロロメタン(2 mL)で抽出した。有機層をGeneVac遠心濃縮装置で減圧濃縮した。得られた生成物をメタノール(2 mL)に溶解し、1規定水酸化ナトリウム水溶液(0.32 mL, 0.32 mmol)を加え、室温で18時間攪拌した。反応液に1規定塩酸を加えて酸性とした後、ジクロロメタン(2 mL)で抽出した。有機層をGeneVac遠心濃縮装置で減圧濃縮した。残留物を分取HPLC(グラジエントサイクルB)で精製することにより表題化合物(4.6mg, 収率5%)を得た。

MS: m/z 505(M+H).

15 実施例31 3-[4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチル

[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]フェニル]メタノール (409 mg、0.98 mmol)、3-(4-ヒドロキシフェニル)プ

10 実施例32 3-[4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

3-[4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチル (270 mg、0.480 mmol)、テトラヒドロフラン (15 mL)、メタノール (10 mL)、水 (10 mL) および水酸化リチウム 1水和物 (60.4 mg、1.44 mmol) の混合物を室温で3時間撹拌した。反応混合物を 1規定塩酸で中和し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。残渣を酢酸エチルーヘキサンから再結晶化し、表題化合物 (162 mg、収率62%) を無色結晶として得た。

MS:m/z 549 (M+H).

融点 114 -115 ℃.

¹H NMR (CDC1₃) δ 2. 64(t, J=7.7Hz, 2H), 2. 90(t, J=7.6Hz, 2H), 2. 99(t, J=7.8Hz, 2H), 3. 68(t, J=7.8Hz, 2H), 4. 66(s, 2H), 5. 01(s, 2H),

6. 74(s, 1H), 6. 89(d, J=8.7Hz, 2H), 7. 11(d, J=8.7Hz, 2H), 7. 19-7.41(m, 12H), 7. 87-7.90(m, 2H).

実施例33 3-[4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸 0.5カルシウム塩

5

. 10

3-[4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸 (150 mg、0.274 mmol)のメタノール (10 mL)溶液に2規定水酸化ナトリウム水溶液 (0.27 mL、0.54 mmol)を加えてかき混ぜたのち、減圧濃縮した。残渣を水(15 mL)に溶解した後、塩化カルシウム水溶液 (0.137 M、2 mL、0.274 mmol)を滴下し、かき混ぜた。晶出物をろ取し、得られた粗結晶を水およびヘキサンで洗浄した。結晶をジイソプロピルエーテルーヘキサンから再結晶し、表題化合物 (128 mg、収率78%)を白色粉末として得た。

元素分析値 C₆₈H₆₂N₄S₂O₆Ca・3.0H₂Oとして

15 計算値: C, 68.66; H, 5.76; N, 4.71

実験値:C, 68.86; H, 5.85; N, 4.60

実施例34 3-[4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸(5-メチル-2-オキ ソ-1,3-ジオキソール-4-イル)メチルエステル

20

3-[4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミ

ノ]メチル]ベンジル]オキシ]フェニル]プロパン酸(450 mg、0.82 mmol)、4-(クロロメチル)-5-メチル-1,3-ジオキソール-2-オン(146 mg、0.99 mmol)および炭酸カリウム(170 mg、1.23 mmol) のN,N-ジメチルホルムアミド(10

mL) 溶液を室温で5時間撹拌した。反応混合物を水に注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。残渣をシリカゲルカラムクロマトグラフィーで精製し、表題化合物 (175 mg、収率32%) を無色油状物として得た。

¹H NMR (CDC1₃) δ 2. 12 (3H, s), 2. 63 (2H, t, J=7. 5Hz), 2. 89 (2H, t, J=7. 5Hz), 2. 94-3. 03 (2H, m), 3. 62-3. 72 (2H, m), 4. 66 (2H, s), 4. 80 (2H, s), 5. 01 (2H, s), 6. 74 (1H, s), 6. 84-6. 91 (2H, m), 7. 08 (2H, d, J=8. 7Hz), 7. 19-7. 41 (12H, m), 7. 84-7. 91 (2H, m).

実施例 35 3-[2-フルオロ-4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸エチル

·10

15 実施例31と同様の方法を用いて、3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチルと[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]フェニル]メタノールから表題化合物を無色油状物(収率51%)として得た。

¹H NMR (CDCl₃) δ 1. 20-1. 28 (3H, m), 2. 57 (2H, t, J=7. 6Hz),

20 2.89(2H, t, J=7.5Hz), 3.00(2H, t, J=7.7Hz), 3.63-3.73(2H, m), 4.08-4.16(2H, m), 4.66(2H, s), 4.99(2H, s), 6.61-6.70(2H, m), 6.74(1H, s), 7.08(1H, t, J=8.8Hz), 7.19-7.41(12H, m), 7.88(2H, d, J=7.4Hz). 実施例 3 6 3-[2-フルオロ-4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

実施例32と同様の方法を用いて、3-[2-フルオロ-4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸エチルから表題化合物(収率39%)を無色結晶として得た。

5 ¹H NMR (CDCl₃) δ 2.63(t, J=7.5Hz, 2H), 2.90(t, J=7.5Hz, 2H),
2.99(t, J=8.1Hz, 2H), 3.68(t, J=8.1Hz, 2H), 4.66(s, 2H), 4.99(s, 2H),
6.63-6.99(m, 2H), 6.74(s, 1H), 7.09(t, J=8.8Hz, 1H), 7.19-7.41(m, 12H),
7.87-7.90(m, 2H).

実施例37 3-[4-[[3-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-10 イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチル

実施例31と同様の方法を用いて、3-(4-ヒドロキシフェニル)プロパン酸メチルと[3-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]フェニル]メタノールから表題化合物(収率87%)を無色油状物として得

15 た。

¹H NMR (CDC1₃) δ 2. 58(2H, t, J=7.8Hz), 2. 87(2H, t, J=7.8Hz), 2. 98(2H, t, J=7.2Hz), 3. 60-3. 73(5H, m), 4. 66(2H, s), 5. 01(2H, s), 6. 74(1H, s), 6. 87(2H, d, J=8.7Hz), 7. 08(2H, d, J=8.5Hz), 7. 15-7. 43(12H, m), 7. 89(2H, d, J=7.4Hz).

20 実施例38 3-[4-[[3-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

実施例32と同様の方法を用いて、3-[4-[[3-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチルから表類化合物(収率39%)を無色結晶として得た。

5 ¹H NMR (CDC1₃) δ 2.62 (2H, t, J=7.7Hz), 2.87 (2H, t, J=7.7Hz), 2.97 (2H, t, J=7.5Hz), 3.67 (2H, t, J=7.5Hz), 4.66 (2H, s), 5.01 (2H, s), 6.74 (1H, s), 6.87 (2H, d, J=8.5Hz), 7.08 (2H, d, J=8.5Hz), 7.16-7.44 (12H, m), 7.88 (2H, d, J=7.4Hz).

実施例39 3-[4-[[4-[[(5-メチル-4-フェニル-1,3-オキサゾール-2-イ 10 ル)(プロピル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチル

20 ¹H NMR (CDCl₂) δ 0.90(t, J=7.2Hz, 3H), 1.58-1.75(m, 2H), 2.43(s, 3H),

2. 59(t, J=7.7Hz, 2H), 2. 89(t, J=7.7Hz, 2H), 3. 31-3. 35(m, 2H), 3. 66(s, 3H), 4. 67(2H, s), 5. 02(s, 2H), 6. 89(d, J=8.4Hz, 2H), 7. 11(d, J=8.4Hz, 2H), 7. 22-7. 43(m, 7H), 7. 58-7. 65(m, 2H).

実施例 4 0 · 3-[4-[[4-[[(5-メチル-4-フェニル-1,3-オキサゾール-2-イ 5 ル)(プロピル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

実施例32と同様の方法を用いて、3-[4-[[4-[[(5-メチル-4-フェニル-1,3-オキサゾール-2-イル)(プロピル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチルから表題化合物(収率17%)を淡黄色油状物として得た。

10 ¹H NMR (CDC1₃) δ 0.89(t, J=7.5Hz, 3H), 1.57-1.70(m, 2H), 2.42(s, 3H), 2.62(t, J=7.6Hz, 2H), 2.88(t, J=7.6Hz, 2H), 3.30-3.35(m, 2H), 4.67(s, 2H), 5.02(s, 2H), 6.87-6.90(m, 2H), 7.10-7.13(m, 2H), 7.22-7.41(m, 7H), 7.61-7.64(m, 2H).

実施例 4 1 3-[2,6-ジフルオロ-4-[[4-[[(2-フェニルエチル)(4-フェニル-15 1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸 エチル

実施例31と同様にして、3-(2,6-ジフルオロ-4-ヒドロキシフェニル)プロパン酸エチル(200 mg, 0.87 mmol)より表題化合物(300 mg、収率56%)を無色油20 状物として得た。

すなわち、[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)ア ミノ]メチル]フェニル]メタノール (350 mg、0.87 mmol)、3-(2,6-ジフルオ

ロ-4-ヒドロキシフェニル)プロパン酸エチル(200 mg、 0.87 mmol)およびトリブチルホスフィン (0.31 mL、1.24 mmol) のテトラヒドロフラン (30 mL) 溶液に1,1'-(アゾジカルボニル)ジピペリジン (320 mg、1.27 mmol) を加え、混合物を室温で 18 時間攪拌した。不溶物をろ去後、ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製し、表題化合物 (300 mg、収率 56%)を無色油状物として得た。

MS: m/z 613 (M+H).

5

¹H NMR (CDC1₃) δ 1.23(3H, t, J=7.2Hz), 2.54(2H, t, J=7.6Hz),

2.91(2H, t, J=7.6Hz), 3.00(2H, t, J=7.6Hz), 3.69(2H, t, J=7.6Hz),

10 4.12(2H, q, J=7.2Hz), 4.66(2H, s), 4.97(2H, s), 6.47(2H, d, J=9.4Hz), 6.75(1H, s), 7.17-7.44(12H, m), 7.89(2H, d, J=8.0Hz).

実施例 42 3-[2, 6-ジフルオロ-4-[[4-[[(2-フェニルエチル)(4-フェニル-1, 3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

15 実施例2と同様にして、3-[2,6-ジフルオロ-4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸エチル(300 mg, 0.49 mmol)より表題化合物(271 mg、収率94%)を無色プリズム晶として得た。

すなわち、3-[2,6-ジフルオロ-4-[[4-[[(2-フェニルエチル)(4-フェニル-20 1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸エチル(300 mg、0.49 mmol)をテトラヒドロフラン(8 mL)とエタノール(8 mL)の混合溶媒に溶解した。この溶液に85%水酸化カリウム(100 mg, 1.51 mmol)の水溶液(5 mL)を加え、室温で18時間攪拌した。反応溶液を酢酸エチルで希釈し、クエン酸水溶液、水、飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製、ジエチルエーテルーへキサンから結晶化し、表題化合物(271 mg、収率94%)

を無色プリズム晶として得た。

MS: m/z 585 (M+H).

 1 H NMR (CDC1₃) δ 2. 60 (2H, t, J=7. 6Hz), 2. 93 (2H, t, J=7. 6Hz),

.2.99(2H, t, J=7.6Hz), 3.69(2H, t, J=7.6Hz), 4.67(2H, s), 4.98(2H, s),

5 6.58(2H, d, J=9.6Hz), 6.75(1H, s), 7.16-7.43(12H, m), 7.84-7.93(2H, m). 実施例 4 3 3-[2-フルオロ-4-({4-[((2-フェニルエチル){4-[4-(トリフルオロメチル)フェニル]-1,3-チアゾール-2-イル}アミノ)メチル]ベンジル}オキシ)フェニル]プロパン酸エチル

N-(2-フェニルエチル)-4-[4-(トリフルオロメチル)フェニル]-1,3-チアゾール-2-アミン(500 mg、1.43 mmol)のN,N-ジメチルホルムアミド(5 mL)溶液に、室温で水素化ナトリウム(50 mg、油性、1.3 mmol)を加え、室温で1時間攪拌した後に、3-(4-{[4-(クロロメチル)ベンジル]オキシ}-2-フルオロフェニル)プロパン酸エチル(350 mg、1.0 mmol)を加え、室温でさらに2時間攪化た。反応混合物を1規定塩酸に注ぎ、酢酸エチルで抽出した。有機層を濃縮して、残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーヘキサン(1:19から3:2(体積比)までグラジェント)で展開して表題化合物を黄色油状物として得た。

MS: m/z 663 (M+H).

20 実施例44 3-[2-フルオロ-4-({4-[((2-フェニルエチル) {4-[4-(トリフルオロメチル) フェニル]-1, 3-チアゾール-2-イル} アミノ) メチル] ベンジル} オキシ) フェニル] プロパン酸

実施例43で得られた黄色油状物をエタノール (5 mL)、テトラヒドロフラン (5 mL) の混合溶媒に溶解し、2 規定水酸化ナトリウム水溶液 (2 mL) を加え、室温で 2 時間攪拌した。反応混合物を水で希釈後、1 規定塩酸で中和し、析出する固体をろ取し、水で洗浄後、乾燥して表題化合物 (300 mg、収率 47%、2工程) を無色結晶として得た。

MS: m/z 635 (M+H).

実施例 4 5 3-(2-フルオロ-4-{[4-({[2-(4-フルオロフェニル) エチル] [4-(4-フルオロフェニル) -1, 3-チアゾール-2-イル] アミノ} メチル) ベンジル] オキシ} フェニル) プロパン酸

10

5

2-ブロモ-1-(4-フルオロフェニル)エタノン (217 mg、1.0 mmol)、N-[2-(4-フルオロフェニル)エチル]チオ尿素 (198 mg、1.0 mmol)、N,N-ジメチルホル ムアミド (5 mL) の混合物を室温で 1 時間攪拌した。反応混合物に室温で水素 化ナトリウム (100 mg、油性、2.5 mmol) を加え、室温で 1 時間攪拌した後に、 3-(4-{[4-(クロロメチル)ベンジル]オキシ}-2-フルオロフェニル)プロパン酸エ 15 チル (350 mg、1.0 mmol) を加え、室温でさらに 2 時間攪拌した。反応混合物 を 1 規定塩酸に注ぎ、酢酸エチルで抽出した。有機層を濃縮して、残留物を シリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン(1: 19から3:2 (体積比) までグラジエント) で展開して黄色油状物を得た。該油 状物をエタノール (5 mL)、テトラヒドロフラン (5 mL) の混合溶媒に溶解し、 20 2 規定水酸化ナトリウム水溶液 (2 mL) を加え、室温で 2 時間攪拌した。反応 混合物を 1 規定塩酸に注ぎ、酢酸エチルで抽出した。有機層を無水硫酸マグネ シウムで乾燥し、濃縮して表題化合物 (264 mg、収率 44%、3工程) を淡緑色油 状物として得た。

25 MS: m/z 603 (M+H).

実施例 4 6 3-[4-({4-[([2-(4-フルオロフェニル) エチル] {4-[4-(トリフルオロメチル) フェニル] -1, 3-チア·ゾール-2-イル} アミノ) メチル] ベンジル} オキシ) フェニル] プロパン酸

N-[2-(4-フルオロフェニル)エチル]-4-[4-(トリフルオロメチル)フェニル]-5 1,3-チアゾール-2-アミン (400 mg、1.09 mmol) のN,N-ジメチルホルムアミド (5 mL) 溶液に、室温で水素化ナトリウム (50 mg、油性、1.3 mmol) を加え、 室温で 1 時間攪拌した後に、3-(4-{[4-(クロロメチル)ベンジル]オキシ}フェ ニル)プロパン酸メチル (318 mg、1.0 mmo1) を加え、室温でさらに 1 時間攪 拌した。反応混合物を 1 規定塩酸に注ぎ、酢酸エチルで抽出した。有機層を濃 10 縮して、残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチル - ヘキサン(1:19から1:1(体積比)までグラジエント)で展開して黄色油状 物を得た。該油状物をエタノール(5 mL)、テトラヒドロフラン(5 mL)の混合 溶媒に溶解後、2 規定水酸化ナトリウム水溶液 (2 mL) を加え、室温で 2 時間 攪拌した。反応混合物を水で希釈後、1 規定塩酸で中和し、析出する固体をろ 15 取し、水で洗浄後、乾燥して表題化合物 (109 mg、収率 17%、2工程)を無色結 晶として得た。

MS: m/z 635 (M+H).

実施例 4 7 3-[2-フルオロ-4-({4-[([2-(4-フルオロフェニル)エチル] {4-[4-20 (トリフルオロメチル)フェニル]-1,3-チアゾール-2-イル}アミノ)メチル]ベンジル}オキシ)フェニル]プロパン酸

N-[2-(4-フルオロフェニル)エチル]-4-[4-(トリフルオロメチル)フェニル]-1,3-チアゾール-2-アミン (500 mg、1.36 mmol) のN,N-ジメチルホルムアミ ド (5 mL) 溶液に、室温で水素化ナトリウム (40 mg、油性、1.0 mmol) を 加え、室温で 1 時間攪拌した後に、3-(4-{[4-(クロロメチル)ベンジル]オキ 5 シ}-2-フルオロフェニル)プロパン酸エチル (350 mg、1.0 mmo1)を加え、室温 でさらに 1 時間攪拌した。反応混合物を 1 規定塩酸に注ぎ、酢酸エチルで抽 出した。有機層を濃縮して、残留物をシリカゲルカラムクロマトグラフィーで精 製した。酢酸エチルーへキサン (1:19から1:1 (体積比) までグラジエント) で展開して黄色油状物を得た。該油状物をエタノール (5 mL)、テトラヒドロフ 10 ラン (5 mL) の混合溶媒に溶解し、2 規定水酸化ナトリウム水溶液 (2 mL) を 加え、室温で 2 時間攪拌した。反応混合物を 1 規定塩酸に注ぎ、酢酸エチル で抽出した。有機層を濃縮後、残留物を分取HPLCで精製した。得られたフラク ションを濃縮後、10% 炭酸水素ナトリウム水溶液で中性にして、酢酸エチルで 抽出した。酢酸エチル層をPresep脱水チューブ(和光純薬工業(株))でろ過 15 した後、濃縮して表題化合物 (139 mg, 収率 21%、2工程) を黄色油状物として 得た。

MS: m/z 653 (M+H).

20

実施例48 3-(4-{[4-({(2-フェニルエチル)[4-(トリフルオロメチル)-1,3-チアゾール-2-イル]アミノ}メチル)ベンジル]オキシ}フェニル)プロパン酸

実施例47と同様にして、N-(2-フェニルエチル)-4-(トリフルオロメチル)-

1,3-チアゾール-2-アミンと、3-(4-{[4-(クロロメチル)ベンジル]オキシ}フェニル)プロパン酸メチルから表題化合物(収率 27%、2工程)を得た。

MS: m/z 541 (M+H).

実施例49 3-{4-[(4-{(2-フェニルエチル)[(4-フェニル-1,3-チアゾール-2-5 イル)メチル]アミノ}ベンジル)オキシ]フェニル}プロパン酸

[(4-アミノベンジル)オキシ]フェニル}プロパン酸メチル (570 mg、2.0 mmol)、 酢酸 (0.1 mL)、1,2-ジクロロエタン (5 mL) の混合物に水素化トリアセトキシ ホウ素ナトリウム (1.2 g、 5.7 mmol) を氷冷下加え、室温に戻して 1 時間攪 10 拌した。反応混合物にフェニルアセトアルデヒド (35-50% フタル酸ジエチル溶 液、480 mg) を加え、室温でさらに 1 時間攪拌した。反応混合物を水に注ぎ、 酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで 乾燥後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製した。 酢酸エチルーヘキサン (1:19から1:2 (体積比) までグラジエント) で展開 15 して黄色油状物を得た。該油状物、エタノール (5 mL)、テトラヒドロフラン (5 mL) の混合物に、2 規定水酸化ナトリウム水溶液 (2 mL) を加え、室温で 14 時間攪拌した。反応混合物を水で希釈後、10% クエン酸水溶液で中和し、酢 酸エチルで抽出した。有機層を濃縮後、残留物をシリカゲルカラムクロマトグラ フィーで精製した。酢酸エチルーヘキサン(1:4から4:1(体積比)までグラ 20 ジエント) で展開して表題化合物 (267 mg、収率 24%) を黄色油状物として得 た。

4-フェニル-1,3-チアゾール-2-カルバルデヒド (380 mg、2.0 mmo1)、3-{4-

MS: m/z 549 (M+H).

実施例50 2-フルオロ-3-{4-[(4-{[(2-フェニルエチル)(4-フェニル-1,3-チ

アゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸エチル

[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]フェニル]メタノール (725 mg、1.81 mmol)、2-フルオロ-3-(4-ヒドロキシフェニル)プロパン酸エチル (300 mg、1.81 mmol) およびトリブチルホスフィン (550 mg、2.72 mmol) のテトラヒドロフラン (30 mL) 溶液に1,1'-(アゾジカルボニル)ジピペリジン (685 mg、2.72 mmol) を加え、混合物を室温で16 時間撹拌した。不溶物をろ去後、ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=3:97~40:60) で精製して、表題化合物 (798 mg、収率 78%、2 工程) を無色油状物として得た。

MS: m/z 595 (M+H).

10

20

¹H NMR (CDCl₃) δ 1. 21–1. 30 (3H, m), 2. 95–3. 03 (2H, m), 3. 04–3. 25 (2H, m), 3. 64–3. 71 (2H, m), 4. 21 (2H, q, J=7. 1Hz), 4. 66 (2H, s), 4. 91–5. 14 (3H, m), 6. 74 (1H, s), 6. 86–6. 94 (2H, m), 7. 12–7. 42 (14H, m), 7. 85–7. 91 (2H, m).

15 実施例 5 1 2-フルオロ-3-{4-[(4-{[(2-フェニルエチル)(4-フェニル-1,3-チ アゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

2-フルオロ-3-{4-[(4-{[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸エチル (740 mg、1.31 mmol)、テトラヒドロフラン (15 mL)、メタノール (10 mL)、水 (10 mL) および水酸化リチウム 1 水和物 (165 mg、3.92 mmol) の混合物を室温で 3 時間攪拌した。反応混合物を 1規定塩酸で中和し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留

去した。残渣をヘキサンージイソプロピルエーテルから再結晶化し、表題化合物 (505 mg、収率68%) を無色結晶として得た。

MS: m/z 567 (M+H).

¹H NMR (CDC1₃) δ 2.95-3.03(2H, m), 3.03-3.31(2H, m), 3.63-3.72(2H, m), 4.65(2H, s), 4.98-5.20(3H, m), 6.73(1H, s), 6.90(2H, d, J=8.5Hz), 7.12-7.43 (14H, m), 7.85-7.90(2H, m).

実施例 5 2 2, 2-ジフルオロ-3-{4-[(4-{[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸エチル

10

実施例 3 1 と同様にして、2, 2-ジフルオロ-3-(4-ヒドロキシフェニル)プロパン酸エチルと、[4-[[(2-フェニルエチル)(4-フェニル-1, 3-チアゾール-2-イル)アミノ]メチル]フェニル]メタノールから表題化合物 (収率 98%) を無色油状物として得た。

15 MS: m/z 613 (M+H).

実施例 5 3 2,2-ジフルオロ-3-{4-[(4-{[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

実施例32と同様にして、2,2-ジフルオロ-3-{4-[(4-{[(2-フェニルエチ 20 ル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸エチルから表題化合物 (収率 67%) を淡青色油状物として得た。

MS: m/z 585 (M+H).

実施例 5 4 3-{4-[(6-{[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ピリジン-3-イル)メトキシ]フェニル}プロパン酸メチル

5 実施例31と同様にして、3-(4-ヒドロキシフェニル)プロパン酸メチルと、(6-{[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ピリジン-3-イル)メタノールから表題化合物 (収率 70%) を無色油状物として得た。

MS: m/z 564 (M+H).

10 実施例 5 5 3-{4-[(6-{[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ピリジン-3-イル)メトキシ]フェニル}プロパン酸

実施例32と同様にして、3-{4-[(6-{[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ピリジン-3-イル)メトキシ]フェニル}プロパン酸メチルから表題化合物 (収率 63%) を無色結晶として得た。

MS: m/z 550 (M+H).

15

実施例 5 6 3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1, 3-チアゾール-2-イル) スルホニル]プチル}ベンジル)オキシ]フェニル}プロパン酸エチル

3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1,3-チアゾール-2-イル)チオ]ブチル}ベンジル)オキシ]フェニル}プロパン酸エチル (0.392 g、0.713 mmol) の 酢酸エチル (5 mL) 溶液に m-クロロ過安息香酸 (72%、0.513 g、2.14 mmol) を加え、室温で 22 時間攪拌した。反応液を、1 規定水酸化ナトリウム水溶液で洗浄し、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=10:90~40:60) で精製して、表題化合物 (0.397 g、収率 96%) を淡黄色油状物として得た。

10 MS: m/z 582 (M+H).

 ^{1}H NMR (CDC13) δ 0.92(3H, t, J=7.3Hz), 1.19-1.42(5H, m), 2.22-

2.50(2H, m), 2.58(2H, t, J=7.5Hz), 2.90(2H, t, J=7.5Hz),

4.11(2H, q, J=7.1Hz), 4.65(1H, dd, J=11.3, 4.0Hz), 4.97(2H, s),

6.58(1H, dd, J=11.9, 2.5Hz), 6.64(1H, dd, J=8.4, 2.5Hz),

7. 10(1H, t, J=8.7Hz), 7. 22-7. 32(4H, m), 7. 38-7. 51(3H, m), 7. 65(1H, s), 7. 87-7. 93(2H, m).

実施例 5 7 3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1,3-チアゾール-2-イル) スルホニル]ブチル}ベンジル)オキシ]フェニル}プロパン酸

20 3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1,3-チアゾール-2-イル)スルホニル]ブチル}ベンジル)オキシ]フェニル}プロパン酸エチル (0.360 g、0.619 mmol) のエタノール (1.5 mL) およびテトラヒドロフラン (3 mL) 混合溶液に

1 規定水酸化ナトリウム水溶液 (0.75 mL) を加え、50 ℃ で 1.5 時間攪拌した。反応液に水を加え、10% クエン酸水溶液で弱酸性にして、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサンでは、100:700-80:20)で特別し、酢酸エチルーへキサンから再結品して、表類化合物

=30:70~80:20) で精製し、酢酸エチルーへキサンから再結晶して、表題化合物(0.300 g、収率 88%) を無色結晶として得た。

MS: m/z 554 (M+H).

¹H NMR (CDC1₂) δ 0. 92 (3H, t, J=7. 3Hz), 1. 21-1. 42 (2H, m), 2. 22-

2.50(2H, m), 2.65(2H, t, J=7.5Hz), 2.91(2H, t, J=7.5Hz),

10 4.65(1H, dd, J=11.4, 4.1Hz), 4.97(2H, s), 6.59(1H, dd, J=11.9, 2.4Hz),

6.65(1H, dd, J=8.4, 2.5Hz), 7.10(1H, t, J=8.7Hz), 7.22-7.32(4H, m), 7.38-

7.51(3H, m), 7.65(1H, s), 7.87-7.93(2H, m).

製剤例1 (カプセルの製造)

 1) 実施例1の化合物
 30 mg

 2) 微粉末セルロース
 10 mg

 3) 乳糖
 19 mg

 4) ステアリン酸マグネシウム
 1 mg

 計 60 mg

20

上記1)、2)、3)および4)を混合して、ゼラチンカプセルに充填する。

製剤例2 (錠剤の製造)

	1) 実施例1の化合物				3 0	g
25	2) 乳糖				5 0	g
	3) トウモロコシデンプン				1 5	g
	4) カルボキシメチルセルロースカ	ルシウム			4 4	g
	5) ステアリン酸マグネシウム				1	g
		1000錠	計	1	4.0	σ

上記1)、2) および3) の全量と30gの4) とを水で練合し、真空乾燥後、整粒を行う。この整粒末に14gの4) および1gの5) を混合し、打錠機により打錠する。このようにして、1錠あたり実施例1の化合物30mgを含有する錠剤1000錠を得る。

実験例1 ヒト由来GPR40に対する本発明化合物のEC50値の決定

5

15

20

25

 EC_{50} 値の決定にはヒト由来GPR 40 を安定発現したCHO細胞株を用いた。特に記載が無い限りこのCHO細胞株は10% 牛胎児血清(Invitrogen)を含む $\alpha-MEM$ 培地(Invitrogen)を用いて培養した。

アッセイ前日に、ほぼコンフルエントになるまで培養した細胞を、PBS(Invitrogen)を用いてリンスした後、0.05%Trypsin・EDTA溶液(Invitrogen)を用いて剥がし、遠心操作にて回収した。得られた細胞の数を測定し、培地1mLあたり 3×10^5 個の細胞が含まれるように希釈し、Black welled 96-well plate(coster)に1穴あたり 100μ Lずつ分注後、 CO_2 培養器にて一晩培養した。このように調製したCHO細胞に各種試験化合物を添加し、この際の細胞内カルシウム濃度の変動をFLIPR(Molecular Device)を用いて測定した。FLIPRにて細胞内カルシウム濃度の変動を測定するために、以下の前処置を施した。

s)を加え混合後、牛胎児血清(105μ L)を添加したアッセイバッファー(10.6mL)に加え、蛍光色素溶液を調製した。アッセイ前日にB1ackwelled 96-well plateにまきなおしたCHO細胞の培地を除き、直ちに蛍光色素溶液を1穴あたり 100μ Lずつ分注後、 CO_2 培養器にて1時間培養し、細胞に蛍光色素を取り込ませた。培養後の細胞は上記のアッセイバッファーを用いて洗浄した後、FLIPRにセットした。試験化合物は、事前にジメチルスルホキシドを用いて希釈し、ポリプロピレン製96-wellplate(サンプルプレート)に 2μ 1ずつ分注、-20℃で凍結保存した。解凍したサンプルプレート)に 2μ 1ずつ分注、-20℃で凍結保存した。解凍したサンプルプレートに0.015%CHAPS(DOJIN)入りアッセイバッファーを 198μ 1ずつ添加し、細胞プレートと同時にFLIPRにセットした。以上の前処置を施した後、FLIPRにて各種試験化合物添加後の細胞内カルシウム濃度の変動を測定した。そしてそれらの結果より、各試験化合物での用量反応曲線を作成し、 EC_{50} 値を算出した。その結果を表1に示した。

15

· · · 10

表 1

化合物番号	EC ₅₀ (nM)
実施例2	48
実施例9	38
実施例12	19
実施例40	55
実施例42	65

産業上の利用可能性

本発明の化合物 (I) およびその塩並びにそのプロドラッグは、優れたGPR 40受容体機能調節作用を有しており、糖尿病などの予防・治療剤として用いる 20 ことができる。

本願は日本で出願された特願2003-435089を基礎としており、その 内容は本明細書中に全て包含されるものである。

請求の範囲

1. 式(I)

[式中、XはSまたはOを、

5 R^1 および R^2 は同一または異なって、それぞれ水素原子、置換されていてもよい C_{6-14} アリール基、置換されていてもよい複素環基または置換されていてもよい C_{1-6} アルキル基を示すか、 R^1 および R^2 は互いに結合して、それらが結合する炭素原子と共に環を形成し、

Eは $-W^1-N$ (R^5) $-W^2-$ 、 $-W^1-CH$ (R^6) $-O-W^2-$ 、 $-W^1-O$ 10 -CH (R^6) $-W^2-$ 、 $-W^1-S$ (O) $n-W^2-$ または $-W^1-CH$ (R^6) $-W^2-$ (W^1 及び W^2 は同一または異なって、結合手または置換されていてもよい C_{1-3} アルキレン基を、 R^5 および R^6 は置換されていてもよい複素環基または置換されていてもよい炭化水素基を、nは1または2を示す。但し、XがSである場合、 R^5 および R^6 は C_{1-6} アルキル基でない。)を、

 R^3 および R^4 は同一または異なって、それぞれ水素原子、ハロゲン原子、置換されていてもよい C_{1-6} アルキル基または置換されていてもよい C_{1-6} アルコキ

20 シ基を、

 R^9 および R^{10} は同一または異なって、それぞれ水素原子、ハロゲン原子または C_{1-6} アルコキシ基を、

Rは置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を示す。]で表わされる化合物またはその塩。

25

2.
$$E \not \supset -W^1 - N$$
 (R⁵) $-W^2 - (-W^1 - CH (R^6) - O - W^2 - (-W^1 - W^1 - CH (R^6) - O - W^2 - (-W^1 - W^1 -$

-O-CH (R⁶) $-W^2-$ または $-W^1-CH$ (R⁶) $-W^2-$ (W¹及びW²は同一または異なって、結合手または置換されていてもよいC₁₋₃アルキレン基を、R⁵およびR⁶は置換されていてもよい複素環基または置換されていてもよい炭化水素基を示す。但し、XがSである場合、R⁵およびR⁶はC₁₋₆アルキル基でない。)、

環 S^1 が置換されていてもよい C_{1-6} アルキル基、置換されていてもよい C_{1-6} アルコキシ基およびハロゲン原子から選ばれる置換基をさらに有していてもよいベンゼン環、かつ

R®およびR10が水素原子である請求項1記載の化合物またはその塩。

10 - ..

- 3. 請求項1記載の化合物またはその塩のプロドラッグ。
- 4. R³およびR⁴が同一または異なって、それぞれ水素原子またはハロゲン原子である請求項1記載の化合物またはその塩。

15

- 5. Eが $-W^1-N$ (R^5) $-W^2-$ (W^1 及び W^2 は同一または異なって、結合手または置換されていてもよい C_{1-3} アルキレン基を、 R^5 は置換されていてもよい複素環基または置換されていてもよい炭化水素基を示す。但し、XがSである場合、 R^5 は C_{1-6} アルキル基でない。)である請求項1記載の化合物または 20 その塩。
 - 6. R^5 が置換されていてもよい C_{7-16} アラルキル基である請求項 5 記載の化合物またはその塩。
- 25 7. Rがヒドロキシ基である請求項1記載の化合物またはその塩。
 - 8. XがSである請求項1記載の化合物またはその塩。
 - 9. 環S¹がベンゼン環である請求項1記載の化合物またはその塩。

10. R⁹およびR¹⁰がともに水素原子である請求項1記載の化合物またはその 塩。

- 11.3-[4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル) アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸、
 3-[2,6-ジフルオロ-4-[[4-[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸、
 2-フルオロ-3-{4-[(4-{[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸、
 3-{2-フルオロ-4-[(4-{1-[(4-フェニル-1,3-チアゾール-2-イル)スルホニル] ブチル}ベンジル)オキシ]フェニル}プロパン酸、またはその塩。
- 12. 請求項1記載の化合物もしくはその塩またはそのプロドラッグを含有して 15 なるGPR40受容体機能調節剤。
 - 13. 請求項1記載の化合物もしくはその塩またはそのプロドラッグを含有してなる医薬。
- 20 14. 糖尿病の予防・治療剤である請求項13記載の医薬。
 - 15. GPR40受容体機能調節剤の製造のための、請求項1記載の化合物もしくはその塩またはそのプロドラッグの使用。
- 25 16. 糖尿病の予防・治療剤の製造のための、請求項1記載の化合物もしくはその の塩またはそのプロドラッグの使用。
 - 17. 哺乳動物に対して、請求項1記載の化合物もしくはその塩またはそのプロドラッグの有効量を投与することを特徴とする、該哺乳動物におけるGPR40

受容体機能調節方法。

18. 哺乳動物に対して、請求項1記載の化合物もしくはその塩またはそのプロドラッグの有効量を投与することを特徴とする、該哺乳動物における糖尿病の予 5 防または治療方法。

International application No.

PCT/JP2004/019749

International application No.
PCT/JP2004/019749

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
A	JP 7-505647 A (Smithkline Beecham PLC), 22 June, 1995 (22.06.95), & WO 93/21166 A1 & AU 9339591 A1 & EP 635007 A1 & ZA 9302579 A & US 5589492 A	1-16		
	^			
	·			
	··			
	•			

International application No.

PCT/JP2004/019749

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: X
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
 As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
 4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Remark on Protest

International application No.

PCT/JP2004/019749

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl⁷ 35/00, 37/00, 29/00, 7/10, 25/00, 5/50

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum documentation searched (International Patent Classification (IPC))

Int.Cl⁷ 35/00, 37/00, 29/00, 7/10, 25/00, 5/50

Form PCT/ISA/210 (extra sheet) (January 2004)

•	国際調査報告	国際出願番号 PCT/JP20	04/019749
Int. Cl7 CO	属する分野の分類(国際特許分類(Ⅰ P C)) 7D263/48, 277/42, 277/36, 417/04, 417/12, A61K3 19/08, 9/10, 7/02, 1/14, 25/28, 25/24, 25/18, 3/0		
調査を行った。 Int. C17 C0	テった分野 设小限資料(国際特許分類(IPC)) 7D263/48, 277/42, 277/36, 417/04, 417/12, A61K3 19/08, 9/10, 7/02, 1/14, 25/28, 25/24, 25/18, 3/0		
最小限資料以外の資料で調査を行った分野に含まれるもの			
	-		
国際調査で使用	用した電子データベース(データベースの名称、	調査に使用した用語)	•
REGIST	RY (STN), CAPLUS (STN), C	AOLD (STN)	,
C. 関連する			
引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示			関連する 請求の範囲の番号
X	WO 02/053547 A1 (武田薬品工業株式 全文参照	会社)2002.07.11	1-16
:	& JP 2002-265457 A & CA 2433573 A & US 2004/058965 A1	A & EP 1357115 A1	
PΧ	 WO 2004/041266 A1 (武田薬品工業株 全文参照	式会社)2004.05.21	1-16.
	& JP 2005-15461 A	•	
			·
X C欄の続き	とにも文献が列挙されている。	□ パテントファミリーに関する別	川紙を参照。
* 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明			
「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連 文献(理由を付す) 上の文献 「O」口頭による開示、使用、展示等に言及する文献 よって近		の新規性又は進歩性がないと考 「Y」特に関連のある文献であって、 上の文献との、当業者にとって よって進歩性がないと考えられ 「&」同一パテントファミリー文献	えられるもの 当該文献と他の1以 自明である組合せに
国際調査を完了	「した日 14.03.2005	国際調査報告の発送日 29.3.	2005
	の名称及びあて先 記体数字(ISA/IB)	特許庁審査官(権限のある職員)	4 P 9 2 8 2

特許庁審査官(権限のある職員) 中木 亜希

電話番号 03-3581-1101 内線 3492

東京都千代田区段が関三丁目4番3号

日本国特許庁 (ISA/JP) 郵便番号100-8915

	C(続き).	関連すると認められる文献		
•	引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
	Α .	JP 7-505647 A (スミスクライン・ピーチャム・パプリック・リミテット゚・カンパニー)	1-16	
ĺ		1995. 06. 22	*	
	,	& WO 93/21166 A1 & AU 9339591 A1 & EP 635007 A1 & ZA 9302579 A & US 5589492 A		
	•		•	
	•			
	:	,		
	·			
			·	
	٠		·	
			٠.	
		•	į	
	;			
		·		
			,	
			•	
L				

第Ⅱ欄 請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. X 請求の範囲 17,18 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
請求の範囲17及び18に記載された発明は、治療による人体の処置方法に関するものである。
2. □ 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3.
第Ⅲ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 山願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. Ш 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意
□ 追加調査手数料の納付と共に出願人から異議申立てがあった。
追加調査手数料の納付と共に出願人から異議申立てがなかった。

様式PCT/ISA/210 (第1ページの続葉 (2)) (2004年1月)