# Laboratorio di Fisica 1 R9: Misura della viscosità della glicerina

Gruppo 15: Bergamaschi Riccardo, Graiani Elia, Moglia Simone 16/04/2024 - 23/04/2024

#### Sommario

Il gruppo di lavoro ha misurato la concentrazione e il coefficiente di viscosità di una soluzione acquosa di glicerina, studiando il moto di caduta di svariate sferette all'interno di essa.

# 0 Materiali e strumenti di misura utilizzati

| Strumento di misura               | Soglia            | Portata            | Sensibilità       |
|-----------------------------------|-------------------|--------------------|-------------------|
| Cronometro                        | $0.033\mathrm{s}$ | N./A.              | $0.033\mathrm{s}$ |
| Micrometro ad asta filetta-<br>ta | $0.01\mathrm{mm}$ | $25.00\mathrm{mm}$ | $0.01\mathrm{mm}$ |
| Metro a nastro                    | $0.1\mathrm{cm}$  | $300.0\mathrm{cm}$ | $0.1\mathrm{cm}$  |
| Bilancia di precisione            | $0.01\mathrm{g}$  | $6200.00{ m g}$    | $0.01\mathrm{g}$  |
| Termometro ambientale             | ?                 | ?                  | 0.2 °C            |

| Altro              | Descrizione/Note                                                                                         |
|--------------------|----------------------------------------------------------------------------------------------------------|
| Telecamera         | Utilizzata per acquisire fotogrammi del sistema a intervalli regolari.                                   |
| Cilindro finito    | Utilizzato per contenere la glicerina. Su di esso sono indicati, con nastro adesivo nero, due traguardi. |
| Sferette           | Distribuibili in tre classi ("piccole", "medie" o "grandi") sulla base di diametro e massa.              |
| Pinzetta           | Per maneggiare le sferette.                                                                              |
| Tappo del cilindro | Per contenere le sferette durante la misurazione della massa.                                            |

# 1 Esperienza e procedimento di misura

- 1. Misuriamo la temperatura ambiente  $T_{\rm amb}$  per assicurarci che non sia cambiata significativamente dall'acquisizione precedente.
- 2. Misuriamo la distanza tra i due traguardi  $L=(18.0\pm0.1)\,\mathrm{cm}$  con il metro a nastro.
- 3. Per ogni classe k di sferette:
  - (a) Contiamo le sferette della classe k (indicheremo questo numero con  $N_k$ ).
  - (b) Misuriamo la massa media  $\overline{m}_k$  e il raggio medio  $\overline{r}_k$  di tutte e  $N_k$  le sferette.
  - (c) Per ogni sferetta i:
    - i. Avviamo l'acquisizione del filmato sulla videocamera.
    - ii. Rilasciamo i da ferma, poco sopra la superficie della soluzione, nel contenitore della glicerina, assicurandoci che la sua traiettoria non si avvicini alle pareti del recipiente<sup>3</sup>.
    - iii. Al termine del moto della sferetta, interrompiamo la registrazione

L'esperienza è stata ripetuta completamente in due giornate differenti, con  $T_{\rm amb,1}=(24.6\pm0.2)\,^{\circ}{\rm C}$  e  $T_{\rm amb,2}=(19.4\pm0.2)\,^{\circ}{\rm C}$ . Ciò si è rivelato molto utile per poter valutare la coerenza dei risultati ottenuti, anche alla luce della notevole differenza tra le due temperature.

## 2 Analisi dei dati raccolti e conclusioni

**Nota.** Avendo valutato gli errori sulle grandezze misurate direttamente come piccoli, casuali e indipendenti, per svolgere ogni calcolo abbiamo utilizzato la tradizionale propagazione degli errori.

#### 2.1 Il modello fisico

Scelta arbitrariamente una sferetta i appartenente alla classe k, fissiamo un sistema di riferimento cartesiano ortogonale, con asse  $z \parallel \vec{g}$  e origine nel punto in cui la sferetta viene rilasciata.

 $<sup>^1</sup>$  Abbiamo misurato direttamente la massa totale  $m_k^{\rm tot}$  mediante la bilancia di precisione, per poi calcolare  $\overline{m}_k = \frac{1}{N_k} m_k^{\rm tot}$ , assumendo tutte le sferette di ugual massa.

<sup>&</sup>lt;sup>2</sup>Essendo le sferette essenzialmente indistinguibili, abbiamo misurato direttamente, per ogni classe k, tre diametri con il micrometro ad asta filettata, per poi calcolarne la media  $\overline{d}_k$  e ottenere il raggio con la semplice  $\overline{r}_k = \frac{1}{2}\overline{d}_k$ . Il gruppo di lavoro ritiene che si tratti di una buona stima per il raggio medio di tutte le sferette, anche considerato il fatto che i tre valori, in tutte le misurazioni, erano compatibili fra loro.

<sup>&</sup>lt;sup>3</sup>Quest'ultima richiesta sarà chiarita nella sezione 2.

**Notazione.** Indicheremo con  $\rho_{sf}$  e  $\rho_{sol}$  le densità, rispettivamente, delle sferette e della soluzione e con  $\eta$  la viscosità di quest'ultima.

Possiamo ora studiare la dinamica del corpo tra i due traguardi. Per semplificare la discussione, assumeremo:

- 1. Che il moto del centro di massa sia rettilineo uniforme con velocità  $\vec{v}_i \parallel \vec{g}$ ;
- 2. Che il moto avvenga in regime laminare (ovvero Re =  $\frac{1}{\eta}\rho_{\text{sol}}\varnothing v_i \ll 1200$ , dove  $\varnothing$  è il diametro del recipiente);
- 3. Che, rispetto alla sferetta, il recipiente possa essere considerato di dimensione indefinita: che si possano, cioè, trascurare gli effetti di bordo;
- 4. Che il diametro  $2r_i$  non superi, in ordine di grandezza,  $10^{-3}$  m.

Valuteremo più avanti, alla luce dei dati raccolti e dei risultati ottenuti, se queste condizioni sono state verificate.

Le forze applicate alla sferetta sono la forza peso, la spinta di Archimede e la forza di attrito viscoso  $\vec{F}_{\eta}$ . Sotto le ipotesi (2.), (3.) e (4.),  $\vec{F}_{\eta}$  può essere espressa come  $\vec{F}_{\eta} = -6\pi\eta r_i v_i \hat{z}$ .

Allora, dalla prima legge di Newton:

$$\frac{4}{3}\pi g r_i^3 (\rho_{\rm sf} - \rho_{\rm sol}) \hat{z} - 6\pi \eta r_i v_i \hat{z} = 0$$

ovvero:

$$v_i = \frac{2g(\rho_{\rm sf} - \rho_{\rm sol})}{9n} r_i^2$$

Per semplificare i calcoli, il gruppo di lavoro ha assunto tutte le sferette della stessa classe essenzialmente indistinguibili. Sono stati perciò messi in relazione i valori medi per ogni classe:

$$\overline{v}_k = \frac{2g(\rho_{\rm sf} - \rho_{\rm sol})}{9\eta} \overline{r}_k^2$$

### 2.2 Misura della densità media di tutte le sferette

Per calcolare  $\rho_{\rm sf}$ , il gruppo di lavoro ha scelto di effettuare una media ponderata delle densità medie delle tre classi:

$$\rho_{\rm sf} = \frac{1}{\sum_{k} N_{k}} \sum_{k} \overline{\rho}_{k} N_{k} = \frac{1}{\sum_{k} N_{k}} \sum_{k} \frac{\overline{m}_{k}}{\frac{4}{3} \pi \overline{r}_{k}^{3}} N_{k} = \frac{3}{4 \pi} \frac{1}{\sum_{k} N_{k}} \sum_{k} \frac{\overline{m}_{k}}{\overline{r}_{k}^{3}} N_{k}$$

La densità media delle sferette è risultata essere, in entrambi i giorni,  $(7.713 \pm 0.045)\,\mathrm{kg/dm}^3$ .

## 2.3 Distribuzioni delle velocità

Di seguito riportiamo le distribuzioni delle velocità per ogni classe di sferette, di entrambi i giorni:



**Nota.** In questa sezione abbiamo trascurato la presenza di attriti, ma chiaramente gli attriti ci sono e il moto è smorzato. Nella sezione successiva tratteremo proprio questo fenomeno, determinando, alla luce dei dati raccolti, quanto influisca sul valore di g.

Poiché l'unica forza esterna al sistema che compie un momento lungo  $\hat{k}$  è la forza peso, si ha:

$$\sum \vec{\tau}_z^{\,\rm ext} = \vec{r}_{\rm CM} \times M \vec{g} = -Mg \, r_{\rm CM} \sin(\theta) \hat{k}.$$

L'equazione differenziale che descrive il moto del centro di massa del pendolo fisico sarà allora:

 $\ddot{\theta} = -\frac{Mg \, r_{\rm CM}}{I_z^{\rm tot}} \sin(\theta)$ 

È possibile semplificare il modello fisico approssimando  $\sin(\theta) \simeq \theta$ . Il gruppo di lavoro ha ritenuto valida questa operazione solo quando

$$|\theta_0 - \sin(\theta_0)| < \delta\theta$$

Essendo, nel nostro caso,  $\delta\theta=0.02\,\mathrm{rad},$ abbiamo scelto  $\theta_0^\mathrm{max}=0.49\,\mathrm{rad}.$  Infatti:

$$0.49 \, \text{rad} - \sin(0.49 \, \text{rad}) \simeq 0.019 \, \text{rad}$$
  $0.50 \, \text{rad} - \sin(0.50 \, \text{rad}) \simeq 0.021 \, \text{rad}$ 

Prima di prendere ogni misura, il gruppo di lavoro si è assicurato che  $\theta_0$  soddisfacesse abbondantemente la condizione  $|\theta_0| < |\theta_0^{\max}|$ .

L'equazione differenziale semplificata è allora:

$$\ddot{\theta} = -\frac{Mg \, r_{\mathrm{CM}}}{I_{z}^{\mathrm{tot}}} \theta$$

Questa equazione descrive un moto armonico. Le soluzioni sono infatti del tipo:

$$\theta(t) = \theta_0 \cos(\omega t)$$
 dove  $\omega = \sqrt{\frac{Mg \, r_{\rm CM}}{I_z^{\rm tot}}}$  è detta "pulsazione".

Possiamo tuttavia facilmente esprimere  $\omega$  in funzione del periodo T del moto oscillatorio, più semplice da calcolare dai dati acquisiti. Vale infatti:

$$\omega = \frac{2\pi}{T}$$
 e quindi  $\frac{I_z^{\mathrm{tot}}}{Mr_{\mathrm{CM}}} = g\frac{T^2}{4\pi^2}$ 

La formula utilizzata per il calcolo di  $I_z^{\rm tot}$  riflette la composizione del sistema, sfruttando la proprietà additiva del momento d'inerzia:

$$I_z^{\rm tot} = I_{z, {\rm rotore}} + I_{z, {\rm asta}} + \sum_{\gamma \in \Gamma} I_{z, \gamma}$$

Chiaramente, per calcolare i momenti d'inerzia rispetto all'asse di rotazione è necessario applicare il teorema di Huygens-Steiner a quelli calcolati sui rispettivi centri di massa<sup>4</sup>:

$$\begin{split} I_{z,\text{asta}} &= I_{\text{CM},\text{asta}} + m_{\text{asta}} \left(\frac{L_{\text{asta}} + \varnothing_{\text{rotore}}}{2}\right)^2 \\ \\ I_{z,(i,d)} &= I_{\text{CM},i} + m_i \left(d + \frac{h_i - \varnothing_{\text{rotore}}}{2}\right)^2 \quad \forall (i,d) \in \Gamma \end{split}$$

Per calcolare il termine  $Mr_{\rm CM}$ , si osservi che, per la definizione di posizione del centro di massa, la massa totale si semplifica:

$$Mr_{\text{CM}} = M \cdot \frac{1}{M} \left( m_{\text{rotore}} \cdot 0 + m_{\text{asta}} r_{\text{CM,asta}} + \sum_{(i,d) \in \Gamma} m_i r_{\text{CM},i} \right)$$

$$= m_{\text{asta}} \left( \frac{L_{\text{asta}} + \varnothing_{\text{rotore}}}{2} \right) + \sum_{(i,d) \in \Gamma} m_i \left( d + \frac{h_i - \varnothing_{\text{rotore}}}{2} \right)$$

Di seguito riportiamo le misure, dirette e indirette, utilizzate per il calcolo dei momenti d'inerzia $^5$ :

| Oggetto | L (cm)         | Ø (mm)           | m (g)            | $I_{\rm CM} \ (10^{-5}{\rm kgm^2})$ |
|---------|----------------|------------------|------------------|-------------------------------------|
| Asta    | $60.0 \pm 0.1$ | $5.94 \pm 0.01$  | $45.82 \pm 0.01$ | $568.5 \pm 1.5$                     |
| Rotore  | N./A.          | $13.41 \pm 0.01$ | $22.4 \pm 0.1^*$ | $0.058 \pm 0.001^*$                 |

| i | $m_i$ (g)         | $d_i^{\text{ext}}$ (mm) | $d_i^{\text{int}}$ (mm) | $h_i$ (mm)       | $I_{\mathrm{CM},i}~(\mathrm{mgm^2})$ |
|---|-------------------|-------------------------|-------------------------|------------------|--------------------------------------|
| A | $115.95 \pm 0.01$ | $29.95\pm0.05$          | $6.20 \pm 0.05$         | $19.93\pm0.01$   | $10.62 \pm 0.03$                     |
| В | $115.86 \pm 0.01$ | $29.95 \pm 0.05$        | $6.20 \pm 0.05$         | $19.89 \pm 0.01$ | $10.59 \pm 0.03$                     |
| С | $71.46 \pm 0.01$  | $29.95 \pm 0.05$        | $6.20 \pm 0.05$         | $12.08 \pm 0.01$ | $5.047 \pm 0.018$                    |

[\*] Valori dati

$$I_{\text{CM,asta}} = \frac{1}{12} m_{\text{asta}} L_{\text{asta}}^2 \qquad \quad I_{\text{CM},i} = \frac{1}{16} m_i \left( (d_i^{\text{ext}})^2 + (d_i^{\text{int}})^2 \right) + \frac{1}{12} m_i h_i^2 \quad \forall i \in \{A,B,C\}$$

<sup>&</sup>lt;sup>4</sup>Questi ultimi sono stati calcolati mediante le seguenti formule:

 $<sup>^5</sup>L_{\rm asta}$ è la lunghezza della parte dell'asta che sporge all'esterno del rotore.

Il periodo dell'oscillazione è stato misurato individuando N+1 zeri consecutivi di  $\theta(t)$ , diciamo  $\{t_0,t_1,\ldots,t_N\}$ . Allora, poiché tra uno zero e l'altro corre metà periodo, è possibile calcolare T in questo modo:  $T=\frac{2}{N}(t_N-t_0)$ 

Il gruppo di lavoro ha scelto N di volta in volta, in modo tale che fosse proporzionale al numero di oscillazioni compiute dal pendolo prima di fermarsi. Complessivamente, N ha assunto valori da 30 a 180.

Come descritto sopra, il gruppo di lavoro ha calcolato, per ogni configurazione  $\Gamma$ , i valori di  $\frac{I_{\rm con}^{\rm tot}}{M^2_{\rm CM}}$  e  $\frac{T^2}{4\pi^2}$ , riportati nel grafico seguente. Come è possibile osservare dalla relazione che le lega, la dipendenza tra

Come è possibile osservare dalla relazione che le lega, la dipendenza tra queste due grandezze è lineare: questo ci permette di determinare il valore di g come coefficiente angolare di una retta di regressione.

Figura 1: In rosso, la retta di regressione lineare e in rosa, appena visibile, la sua regione di incertezza. (le barre di errore sull'ascissa sono così ridotte da risultare invisibili)

- Intercetta =  $(0.003 \pm 0.005)$  m
- Coefficiente angolare  $g = (9.68 \pm 0.13) \text{ m/s}^2$

I risultati della regressione lineare sono chiaramente compatibili con i valori attesi. Infatti:

- Secondo il modello fisico utilizzato, l'intercetta dovrebbe essere nulla; in effetti,  $(0.003\pm0.005)$  m è compatibile con 0 m.
- Il valore di g atteso è 9.806 m/s²; si può osservare facilmente che il valore misurato, (9.68 ± 0.13) m/s², è compatibile con esso.

Possiamo pertanto concludere che l'esperienza ha avuto successo: mediante l'apparato sperimentale abbiamo ottenuto una misura di g compatibile con quella attesa.

## 2.4 Misura dello smorzamento

In questa sezione, illustreremo come il gruppo di lavoro abbia valutato lo smorzamento del moto e quanto questo sia significativo, prendendo come esempio la configurazione  $\Gamma = \{\}$ , dove il pendolo fisico è composto solamente da asta e rotore, senza l'aggiunta di cilindri.

Il gruppo di lavoro ha effettuato gli stessi passaggi per tutte le altre configurazioni: i risultati saranno messi in evidenza alla fine della sezione.

Sempre applicando la seconda equazione cardinale della dinamica, è facile ricavare l'equazione differenziale che caratterizza il moto del sistema sotto l'effetto delle forze di attrito. Approssimando, come prima,  $\sin(\theta) \simeq \theta$ , si ottiene:

$$\ddot{\theta} = -2\lambda \dot{\theta} - \frac{Mg \, r_{\rm CM}}{I_{\star}^{\rm tot}} \theta$$

dove  $\lambda$  è una costante legata allo smorzamento del moto. Le soluzioni di questa equazione differenziale sono infatti della forma:

$$\theta(t) = \theta_0 \cos(\omega t) e^{-\lambda t}$$

dove la pulsazione del moto,  $\omega$ , è data da:

$$\omega^2 = \omega_0^2 - \lambda^2$$
 con  $\omega_0 = \sqrt{\frac{Mg \, r_{\rm CM}}{I_z^{\rm tot}}}.$ 

Figura 2: Parte dei dati di un'acquisizione di  $\theta(t)$  con  $\Gamma = \{\}$ , come raccolti dal sensore di rotazione, riportati su una larga scala temporale. Si può chiaramente notare lo smorzamento del moto.

Per stimare  $\lambda$ , il gruppo di lavoro ha proceduto come segue:

- 1. Per prima cosa, abbiamo individuato i massimi dei nostri dati, ovvero gli insiemi di punti della forma  $\{t_i, t_{i+1}, \dots, t_j\} \times \{\theta_k\}$  tali che  $\theta(t_{i-1}) < \theta_k > \theta(t_{j+1})$ .
- 2. Per ogni massimo, ne abbiamo calcolato il punto medio, prendendo come  $\delta t_{\rm picco}$  la semidispersione  $\frac{1}{2}(t_j t_i) + \delta t$ .
- 3. Infine, abbiamo graficato i punti così trovati su scala logaritmica e abbiamo effettuato una regressione lineare (pesata<sup>6</sup>) sulle nuove ordinate. Il coefficiente angolare di tale regressione dovrebbe essere proprio  $-\lambda$ .

 $<sup>^6\</sup>delta \ln |\theta|$ , infatti, varia molto, nonostante  $\delta |\theta|$  sia costante: ciò è conseguenza della propagazione degli errori. È inoltre possibile osservarlo nella Figura 2.

4. Abbiamo ripetuto i tre punti precedenti sugli stessi dati, con  $\theta$  cambiato di segno: così facendo, ai massimi si sostituiscono i minimi e tutto il resto dell'analisi è analoga. Per ogni configurazione abbiamo pertanto ottenuto due diversi valori di  $\lambda$ :  $\lambda_{\min}$  e  $\lambda_{\max}$ . Abbiamo scelto di porre  $\lambda = \frac{1}{2}(\lambda_{\min} + \lambda_{\max})$ .

Figura 3:  $\ln |\theta(t)|$  di massimi e minimi, su scala logaritmica (per  $\Gamma = \{\}$ ). Sono riportate anche le barre di errore sull'ordinata. In rosso, la retta di regressione lineare e in rosa la sua regione di incertezza.

Poiché l'obiettivo è calcolare g, la correzione da effettuare sul periodo, per tenere conto dell'attrito, è la seguente:

$$T_0^2 = \frac{4\pi^2}{\omega_0^2} = \frac{4\pi^2}{\omega^2 + \lambda^2} = \frac{4\pi^2}{\frac{4\pi^2}{T^2} + \lambda^2} = \frac{1}{\frac{1}{T^2} + \frac{\lambda^2}{4\pi^2}}$$

Effettuata questa correzione per ogni configurazione  $\Gamma$ , si può allora costruire nuovamente una retta di regressione, analogamente a quanto fatto nella sezione precedente. La relazione fra le grandezze misurate, ricordiamo, è lineare:

$$\frac{I_z^{\text{tot}}}{Mr_{\text{CM}}} = g \frac{T_0^2}{4\pi^2}$$

Riportiamo di seguito il grafico della nuova regressione, unitamente ai risultati ottenuti.

Figura 4: In rosso, la retta di regressione lineare e in rosa, appena visibile, la sua regione di incertezza. (le barre di errore sull'ascissa sono così ridotte da risultare invisibili)

I risultati della regressione lineare sono i seguenti:

- Intercetta =  $(0.003 \pm 0.005)$  m
- Coefficiente angolare  $q = (9.68 \pm 0.13) \text{ m/s}^2$

Come è possibile osservare comparando questi risultati a quelli precedentemente ottenuti, il valore di g risultante è rimasto essenzialmente invariato (al netto della sua incertezza).

In conclusione, possiamo affermare ragionevolmente che, rispetto alla sensibilità degli strumenti di misura, il contributo dell'attrito è trascurabile.