ENV 710

linear models

- exam results by next week
- comment on grading
- download tad.usgab.csv & covid.csv

linear models

ļ

continuous dependent variable, continuous independent variable

continuous dependent variable, categorical independent variable

group projects

Name	Group	Name	Group
Benaka, Isaac	1	Campos, Gabriel	6
Go, Li Jia	1	Healey, Liam	6
Owens, Katie	1	Rowley, Caroline	6
Bernaus, Katrina	2	Carlson, Maria	7
Gulino, Justin	2	Hyun, Jiwon	7
Palia, Sophia	2	Satagopan, Nanditha Ram	7
Bi, Yuntian	3	Davidson, Kelly	8
Haber, Jordan	3	Jackson, Rachel	8
Pang, Miaojun	3	Seagle, Jenna	8
Bliska, Hanna	4	Diaz, Danae	9
Harvey, Marla	4	Kuhlmann, Emily	9
Pike, Rachel	4	Sepe, Stevie	9
Brentjens, Emma	5	Dye, Logan	10
Hays, Brandon	5	Li, Jiahuan	10
Price, Noah	5	Zungailia, Isabel	10
		Franzetti, Tristan	11
		Martinez, Laura	11
		White, Libby	11
		Freedman, Jacob	12
		Merritt, Melissa	12
		Wong, Richard	12

- cars

Does the distance a car can travel in a set period of time increase with its speed?

- I. download the data: data (cars)
- 2. hypotheses? response variable? explanatory variable?
- 3. build the model, validate the model assumptions, interpret model fit and parameters

l – cars

Cars is a standard built-in dataset, in R – it consists of 50 observations (rows) and 2 variables (columns) – dist (distance) and speed (speed).

- I. what is your hypothesis?
- 2. which is the response variable? explanatory variable? write the model...
- 3. build the model, validate the model assumptions, interpret model fit and parameters

GGally::ggpairs(cars)

plot(c1)

- cars

```
c1 <- lm(dist ~ speed, data = cars)</pre>
summary(c1)
Call:
lm(formula = dist ~ speed, data = cars)
Residuals:
   Min
            10 Median
                                   Max
-29.069 -9.525 -2.272
                         9.215 43.201
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791
                        6.7584 -2.601
                                         0.0123 *
             3.9324
                        0.4155
                                 9.464 1.49e-12 ***
speed
Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
```


Leverage

Fitted values

- cars

summary(c1)

Call:

lm(formula = dist ~ speed, data = cars)

Residuals:

Min 1Q Median 3Q Max -29.069 -9.525 -2.272 9.215 43.201

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***

Residual standard error: 15.38 on 48 degrees of freedom Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438 F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

of cases and deaths from 56 US

I. what is the null hypothesis?

states and territories.

- 2. what is the alternative hypothesis?
- 3. what is the model?
- 4. how do you feel about the data?

> summary(covid)

place	cases.100k	deaths.100k	
Length: 56	Min. : 0	Min. : 0.00	
Class :character	1st Qu.:1252	1st Qu.: 22.00	
Mode :character	Median :2049	Median : 36.50	
	Mean :1894	Mean : 48.66	
	3rd Qu.:2448	3rd Qu.: 67.00	
	Max. :3540	Max. :181.00	

cvd <- with(covid, lm(deaths.100k ~ cases.100k))
summary(cvd)</pre>

Call:

lm(formula = deaths.100k ~ cases.100k)

Residuals:

Min 1Q Median 3Q Max -43.710 -18.914 -8.482 8.797 123.356

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.59726 11.36961 0.580 0.564157
cases.100k 0.02221 0.00547 4.061 0.000159 ***

Residual standard error: 35.1 on 54 degrees of freedom Multiple R-squared: 0.234, Adjusted R-squared: 0.2198 F-statistic: 16.49 on 1 and 54 DF, p-value: 0.0001589

summary.aov(cvd)

Df Sum Sq Mean Sq F value Pr(>F)
cases.100k 1 20322 20322 16.5 0.000159 ***
Residuals 54 66529 1232


```
cvd <- with(covid, lm(deaths.100k ~ cases.100k))
summary(cvd)</pre>
```

Call:

lm(formula = deaths.100k ~ cases.100k)

Residuals:

Min 1Q Median 3Q Max -43.710 -18.914 -8.482 8.797 123.356

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.59726 11.36961 0.580 0.564157
cases.100k 0.02221 0.00547 4.061 0.000159 ***

Residual standard error: 35.1 on 54 degrees of freedom Multiple R-squared: 0.234, Adjusted R-squared: 0.2198 F-statistic: 16.49 on 1 and 54 DF, p-value: 0.0001589

summary.aov(cvd)

```
Df Sum Sq Mean Sq F value Pr(>F)
cases.100k 1 20322 20322 16.5 0.000159 ***
Residuals 54 66529 1232
```



```
ggplot(covid, aes(x = cases.100k, y = deaths.100k)) +
    geom_point() + stat_smooth(method = "lm", col = "red") +
    theme bw()
```

```
Standardized residuals
                                                                                Residuals
cvd1 \leftarrow with(covid, lm(log(deaths.100k + 1) \sim cases.100k))
summary(cvd1)
                                                                                     7
Call:
lm(formula = log(deaths.100k + 1) \sim cases.100k)
                                                                                                3.0
                                                                                                     3.5
                                                                                                          4.0
Residuals:
                                                                                                 Fitted values
                                                                                                                                       Theoretical Quantiles
     Min
                 10 Median
                                               Max
-2.21777 -0.48060 -0.09219 0.47731 1.48480
Coefficients:
                                                                                /Standardized residuals
                                                                                               Scale-Location
                                                                                                                                     Residuals vs Leverage
                                                                                                                          Standardized residuals
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.2177726 0.2234578
                                        9.925 8.93e-14 ***
cases.100k 0.0007153 0.0001075
                                        6.654 1.50e-08 ***
                                                                                     1.0
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                                     0.0
Residual standard error: 0.6899 on 54 degrees of freedom
Multiple R-squared: 0.4505, Adjusted R-squared: 0.4404
                                                                                           2.5
                                                                                                     3.5
                                                                                                           4.0
                                                                                                                                 0.00
                                                                                                                                           0.04
                                                                                                                                                     0.08
F-statistic: 44.28 on 1 and 54 DF, p-value: 1.501e-08
                                                                                                 Fitted values
                                                                                                                                            Leverage
```

Residuals vs Fitted

Normal Q-Q

```
cvd1 \leftarrow with(covid, lm(log(deaths.100k + 1) \sim cases.100k))
summary(cvd1)
Call:
lm(formula = log(deaths.100k + 1) \sim cases.100k)
Residuals:
     Min
              10 Median
-2.21777 -0.48060 -0.09219 0.47731 1.48480
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.2177726 0.2234578 9.925 8.93e-14 ***
cases.100k 0.0007153 0.0001075
                                  6.654 1.50e-08 ***
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \'.' 0.1 \' 1
Residual standard error: 0.6899 on 54 degrees of freedom
Multiple R-squared: 0.4505, Adjusted R-squared: 0.4404
F-statistic: 44.28 on 1 and 54 DF, p-value: 1.501e-08
```



```
cvd1 \leftarrow with(covid, lm(log(deaths.100k + 1) \sim cases.100k))
summary(cvd1)
Call:
lm(formula = log(deaths.100k + 1) \sim cases.100k)
Residuals:
     Min
              10 Median
-2.21777 -0.48060 -0.09219 0.47731 1.48480
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.2177726 0.2234578 9.925 8.93e-14 ***
cases.100k 0.0007153 0.0001075
                                  6.654 1.50e-08 ***
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \'.' 0.1 \' 1
Residual standard error: 0.6899 on 54 degrees of freedom
Multiple R-squared: 0.4505, Adjusted R-squared: 0.4404
F-statistic: 44.28 on 1 and 54 DF, p-value: 1.501e-08
exp(coef(cvd1))
(Intercept) cases.100k
   9.186846
              1.000716
```


2 - COVID

```
cvd1 \leftarrow with(covid, lm(log(deaths.100k + 1) \sim cases.100k))
summary(cvd1)
Call:
lm(formula = log(deaths.100k + 1) \sim cases.100k)
Residuals:
     Min
              10 Median
                                        Max
-2.21777 -0.48060 -0.09219 0.47731 1.48480
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.2177726 0.2234578
                                  9.925 8.93e-14 ***
cases.100k 0.0007153 0.0001075
                                  6.654 1.50e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6899 on 54 degrees of freedom
Multiple R-squared: 0.4505, Adjusted R-squared: 0.4404
F-statistic: 44.28 on 1 and 54 DF, p-value: 1.501e-08
exp(coef(cvd1))
(Intercept) cases.100k
   9.186846
                1.000716
```


year	no.smoothing	lowess	United.States	Gabon
1 1960	-0.03	0.03	2890696	132.0
2 1961	0.06	0.01	2880506	165.0
3 1962	0.03	-0.01	2987208	88.0
4 1963	0.05	-0.03	3119231	73.3
5 1964	-0.20	-0.04	3255995	190.7
6 1965	-0.11	-0.05	3390923	216.4
100			4 1	

is the global temperature anomaly related to greenhouse gas emissions in the United States? temperature anomalies (no.smoothing)
CO2 emissions (kt - kiloton) from the US and Gabon (an African country)

- download the data
- 2. response variable = no.smooth, explanatory variable = United.States
- 3. build the model, validate the model assumptions, interpret model fit and parameters

is the global temperature anomaly related to greenhouse gas emissions in the United States?

```
us.0 <- with (dat2, lm(no.smoothing ~ United.States))
summary (us.0)
Call:
lm(formula = no.smoothing ~ United.States)
Residuals:
   Min
            10 Median
-0.3749 -0.1318 -0.0332 0.1103 0.6329
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
             -1.041e+00 1.597e-01 -6.519 2.31e-08 ***
(Intercept)
United.States 2.853e-07 3.330e-08
                                   8.567 1.05e-11 ***
Residual standard error: 0.1933 on 55 degrees of freedom
Multiple R-squared: 0.5716, Adjusted R-squared: 0.5639
F-statistic: 73.4 on 1 and 55 DF, p-value: 1.048e-11
```


Is the global temperature anomaly related to greenhouse gas emissions in the United States?

```
us.1 <- lm(log(no.smoothing + 1) ~ United.States),
             data = dat2)
lm(formula = log(no.smoothing + 1) ~ United.States)
Residuals:
    Min
                   Median
                                        Max
-0.32277 -0.08579 -0.01265 0.08013 0.39651
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
              -8.288e-01 1.176e-01 -7.045 3.18e-09 ***
(Intercept)
                         2.453e-08
United States 2.268e-07
                                     9.246 8.55e-13 ***
Residual standard error: 0.1423 on 55 degrees of freedom
```

Multiple R-squared: 0.6085, Adjusted R-squared: 0.6014 F-statistic: 85.5 on 1 and 55 DF, p-value: 8.552e-13

