量子线路和量子模拟

癸卯年十月初七 2023年11月19日15:50:24

In[1]:= << Wolfram`QuantumFramework`</pre>

目录

- 1. 量子线路模型
 - 1.1. 单比特门
 - 1.2. 受控门
 - 1.3. 测量
 - 1.4. 通用量子门
 - 1.5. 总结
- 2. 其他量子计算模型
- 3. 量子模拟

1量子线路模型 Quantum Circuit

本章将详细探讨量子计算,阐述量子计算的基本原理,建立量子电路的基本构造框架。量子线路是一种描述复杂量子计算的通用语言。

目前已知的两个基础量子算法量子傅里叶变换、量子搜索算法是由这些电路在接下来两章中构造的。

1.1 单比特门

X 门和 $R_X(\theta)$ 门

in[2]:= opx = QuantumOperator["X"];
 opx = QuantumOperator[PauliMatrix[1]];
 opx["Matrix"] // Normal // MatrixForm

Out[4]//MatrixForm= $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

In[5]:= opx // TraditionalForm

Out[5]//TraditionalForm= $\left| 0 \right\rangle \left\langle 1 \right| + \left| 1 \right\rangle \left\langle 0 \right|$

In[6]:= (QuantumState /@ (#/Norm[#] & /@ Eigenvectors[PauliMatrix[1]])) // TraditionalForm

Out[6]//TraditionalForm=

$$\left\{-\frac{\left|0\right\rangle}{\sqrt{2}} + \frac{\left|1\right\rangle}{\sqrt{2}}, \frac{\left|0\right\rangle}{\sqrt{2}} + \frac{\left|1\right\rangle}{\sqrt{2}}\right\}$$

$In[7]:= opx[QuantumState[{\alpha, \beta}]] // TraditionalForm$

Out[7]//TraditionalForm=

$$\beta |0\rangle + \alpha |1\rangle$$

In[8]:= QuantumOperator[{"RX", \(\theta\)}]["Matrix"] // Normal // FullSimplify // MatrixForm $MatrixExp[-I - PauliMatrix[1]] // MatrixForm(*绕着x轴旋转角度<math>\theta$ *)

I % /. $\theta \rightarrow \text{Pi}$ // MatrixForm

Out[8]//MatrixForm=

$$\begin{pmatrix} \cos\left[\frac{\theta}{2}\right] & -i\sin\left[\frac{\theta}{2}\right] \\ -i\sin\left[\frac{\theta}{2}\right] & \cos\left[\frac{\theta}{2}\right] \end{pmatrix}$$

Out[9]//MatrixForm=

$$\begin{pmatrix} \mathsf{Cos} \left[\frac{\theta}{2} \right] & -i \, \mathsf{Sin} \left[\frac{\theta}{2} \right] \\ -i \, \mathsf{Sin} \left[\frac{\theta}{2} \right] & \mathsf{Cos} \left[\frac{\theta}{2} \right] \end{pmatrix}$$

Out[10]//MatrixForm=

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Y门和 $R_Y(\theta)$ 门

In[11]:= opy = QuantumOperator[PauliMatrix[2]]; opy["Matrix"] // Normal // MatrixForm

Out[12]//MatrixForm=

$$\begin{pmatrix} 0 & -\bar{i} \\ \bar{i} & 0 \end{pmatrix}$$

In[13]:= QuantumOperator[{"RY", θ }]["Matrix"] // Normal // FullSimplify // MatrixForm

$$\mathsf{MatrixExp}\Big[-\mathsf{I} - \frac{\theta}{2} \, \mathsf{PauliMatrix[2]} \Big] /\!\!/ \, \mathsf{MatrixForm}$$

I% /. θ → Pi // MatrixForm

$$\begin{pmatrix} \operatorname{Cos}\left[\frac{\theta}{2}\right] & -\operatorname{Sin}\left[\frac{\theta}{2}\right] \\ \operatorname{Sin}\left[\frac{\theta}{2}\right] & \operatorname{Cos}\left[\frac{\theta}{2}\right] \end{pmatrix}$$

Out[14]//MatrixForm

$$\begin{pmatrix} \operatorname{Cos} \left[\frac{\theta}{2} \right] & -\operatorname{Sin} \left[\frac{\theta}{2} \right] \\ \operatorname{Sin} \left[\frac{\theta}{2} \right] & \operatorname{Cos} \left[\frac{\theta}{2} \right] \end{pmatrix}$$

Out[15]//MatrixForm=
$$\begin{pmatrix} 0 & -\bar{i} \\ \bar{i} & 0 \end{pmatrix}$$

Z 门和 $R_{7}(\theta)$ 门

In[16]:= QuantumCircuitOperator["Z"]; %["Matrix"] // Normal // MatrixForm

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

In[18]:= QuantumOperator["Z"] // TraditionalForm

Out[18]//TraditionalForm=

$$|0\rangle\langle 0| - |1\rangle\langle 1|$$

In[19]:= QuantumOperator[{"RZ", 0}]["Matrix"] // Normal // FullSimplify // MatrixForm

$$MatrixExp\left[-I - PauliMatrix[3]\right] // MatrixForm$$

I % /. θ → Pi // MatrixForm

Out[19]//MatrixForm=

$$\begin{pmatrix} e^{-\frac{i\theta}{2}} & 0 \\ 0 & e^{\frac{i\theta}{2}} \end{pmatrix}$$

Out[20]//MatrixF

$$\begin{pmatrix} e^{-\frac{i\theta}{2}} & 0 \\ 0 & e^{\frac{i\theta}{2}} \end{pmatrix}$$

Out[21]//MatrixForm=

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$R_x(\theta) \equiv e^{-i\theta X/2} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}X = \begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$$
(4.4)

$$R_{y}(\theta) \equiv e^{-i\theta Y/2} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}Y = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$$
(4.5)

$$R_z(\theta) \equiv e^{-i\theta Z/2} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}Z = \begin{bmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{bmatrix}$$
(4.6)

$R_n(\theta)$ 门: 绕着轴 $\mathbf{n} = (x,y,z)$ 旋转角度 θ

$$R_{\hat{n}}(\theta) \equiv e^{-i\theta \hat{n} \cdot \vec{\sigma}/2} = \cos\left(\frac{\theta}{2}\right) I - i\sin\left(\frac{\theta}{2}\right) (n_x X + n_y Y + n_z Z)$$
(4.8)

In[22]:= $n[i] := \{x, y, z\}[[i]];$

In[23]:= MatrixExp $\left[-\frac{\theta}{2} \text{Sum}[n[i] \times \text{PauliMatrix}[i], \{i, 3\}]\right]$ // Simplify[#, {x, y, z} \in Sphere[]] & // FullSimplify //

Out[23]//MatrixFo

$$\begin{pmatrix} \cos\left[\frac{\theta}{2}\right] - i z \sin\left[\frac{\theta}{2}\right] & (-i x - y) \sin\left[\frac{\theta}{2}\right] \\ (-i x + y) \sin\left[\frac{\theta}{2}\right] & \cos\left[\frac{\theta}{2}\right] + i z \sin\left[\frac{\theta}{2}\right] \end{pmatrix}$$

Hadamard 门

In[24]:= H = QuantumCircuitOperator["H"]; %["Matrix"] // Normal // MatrixForm

Out[25]//MatrixForm=

$$\begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{pmatrix}$$

In[26]:= QuantumOperator["H"] // TraditionalForm

QuantumOperator["H"]@QuantumState[{1, 0}] // TraditionalForm QuantumOperator["H"]@QuantumState[{0, 1}] // TraditionalForm

Out[26]//TraditionalForm=

$$\frac{\left|0\right\rangle\left\langle 0\right|}{\sqrt{2}}+\frac{\left|0\right\rangle\left\langle 1\right|}{\sqrt{2}}+\frac{\left|1\right\rangle\left\langle 0\right|}{\sqrt{2}}-\frac{\left|1\right\rangle\left\langle 1\right|}{\sqrt{2}}$$

Out[27]//TraditionalForm=

$$\frac{\left|0\right\rangle}{\sqrt{2}} + \frac{\left|1\right\rangle}{\sqrt{2}}$$

Out[28]//TraditionalForm=

$$\frac{\left|0\right\rangle}{\sqrt{2}} - \frac{\left|1\right\rangle}{\sqrt{2}}$$

In[29]:= (H/*H)["Matrix"] // Normal // MatrixForm

Out[29]//MatrixForm=

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

In[30]:= H[QuantumState[{1, 0}]] // TraditionalForm H[QuantumState[{0, 1}]] // TraditionalForm

Out[30]//TraditionalForm=

$$\frac{\left|0\right\rangle}{\sqrt{2}} + \frac{\left|1\right\rangle}{\sqrt{2}}$$

Out[31]//TraditionalForm=

$$\frac{\left|0\right\rangle}{\sqrt{2}} - \frac{\left|1\right\rangle}{\sqrt{2}}$$

用 H 门制作均匀(等系数)叠加态

In[32]:= QuantumCircuitOperator["HHH"][QuantumState[{1, 0, 0, 0, 0, 0, 0, 0, 0}]] // TraditionalForm

Out[32]//TraditionalForm=

$$\frac{\left|000\right\rangle}{2\sqrt{2}} + \frac{\left|001\right\rangle}{2\sqrt{2}} + \frac{\left|010\right\rangle}{2\sqrt{2}} + \frac{\left|011\right\rangle}{2\sqrt{2}} + \frac{\left|100\right\rangle}{2\sqrt{2}} + \frac{\left|101\right\rangle}{2\sqrt{2}} + \frac{\left|111\right\rangle}{2\sqrt{2}} + \frac{\left|111\right\rangle}{2\sqrt{2}}$$

相位门S

In[33]:= QuantumOperator["S"]["Matrix"] // Normal // MatrixForm

Out[33]//MatrixForm=

$$\left(\begin{smallmatrix} 1 & 0 \\ 0 & i \end{smallmatrix} \right)$$

TIT

In[34]:= QuantumOperator["T"]["Matrix"] // Normal // MatrixForm

$$\begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix}$$

单比特门的一般性质

将一个单比特门视为对gubit的一次旋转

任何单比特门(U(2))都是旋转 $R_n(\theta)$ 乘一个相位

习题 4.8 对实数 α 和 θ , 三维实单位向量 \hat{n} , 任意一单量子比特酉算子可表示为

$$U = \exp(i\alpha)R_{\hat{n}}(\theta) \tag{4.9}$$

- 1. 证明上述事实。
- 2. 求出阿达玛门 H 对应的 α , θ 和 \hat{n} 。
- 3. 求出 S 门对应的 α , θ 和 \hat{n} 。

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \tag{4.10}$$

■ u ∈ U(2),存在 s ∈ SU(2), 满足 u = $e^{i\alpha}$ s

In[35]:= **rnt2 =**

MatrixExp $\left[-1 - \frac{\theta}{2} \text{Sum}[n[i] \times \text{PauliMatrix}[i], \{i, 3\}]\right] / \text{Simplify}[\ddagger, \{x, y, z\} \in \text{Sphere}[]] \& // \text{FullSimplify};$

% // MatrixForm

$$\begin{pmatrix} \mathsf{Cos} \begin{bmatrix} \frac{\theta}{2} \end{bmatrix} - i \, \mathsf{z} \, \mathsf{Sin} \begin{bmatrix} \frac{\theta}{2} \end{bmatrix} & (-i \, \mathsf{x} - \mathsf{y}) \, \mathsf{Sin} \begin{bmatrix} \frac{\theta}{2} \end{bmatrix} \\ (-i \, \mathsf{x} + \mathsf{y}) \, \mathsf{Sin} \begin{bmatrix} \frac{\theta}{2} \end{bmatrix} & \mathsf{Cos} \begin{bmatrix} \frac{\theta}{2} \end{bmatrix} + i \, \mathsf{z} \, \mathsf{Sin} \begin{bmatrix} \frac{\theta}{2} \end{bmatrix} \end{pmatrix}$$

$$\begin{split} &\left\{\left\{\mathsf{X} \to \frac{2\,i\,(\beta - \mathsf{Re}[\beta])}{\sqrt{4 + \alpha^2 - \mathsf{Conjugate}[\alpha]^2 - 4\,\alpha\,\mathsf{Re}[\alpha]}}\,,\right. \\ &\left. \mathsf{y} \to -\frac{2\,\mathsf{Re}[\beta]}{\sqrt{4 + \alpha^2 - \mathsf{Conjugate}[\alpha]^2 - 4\,\alpha\,\mathsf{Re}[\alpha]}}\,,\right. \mathsf{z} \to \frac{2\,i\,(\alpha - \mathsf{Re}[\alpha])}{\sqrt{4 + \alpha^2 - \mathsf{Conjugate}[\alpha]^2 - 4\,\alpha\,\mathsf{Re}[\alpha]}}\,,\right. \\ &\left. \theta \to 2\,\mathsf{ArcTan}\Big[2\,\mathsf{Re}[\alpha],\,\,\sqrt{4 + \alpha^2 - \mathsf{Conjugate}[\alpha]^2 - 4\,\alpha\,\mathsf{Re}[\alpha]}\,\Big]\right\},\\ &\left\{\mathsf{X} \to -\frac{2\,i\,(\beta - \mathsf{Re}[\beta])}{\sqrt{4 + \alpha^2 - \mathsf{Conjugate}[\alpha]^2 - 4\,\alpha\,\mathsf{Re}[\alpha]}}\,,\right. \\ &\left. \mathsf{y} \to \frac{2\,\mathsf{Re}[\beta]}{\sqrt{4 + \alpha^2 - \mathsf{Conjugate}[\alpha]^2 - 4\,\alpha\,\mathsf{Re}[\alpha]}}\,,\right. \\ &\left. \mathsf{z} \to -\frac{2\,i\,(\alpha - \mathsf{Re}[\alpha])}{\sqrt{4 + \alpha^2 - \mathsf{Conjugate}[\alpha]^2 - 4\,\alpha\,\mathsf{Re}[\alpha]}}\,,\right. \\ &\left. \mathsf{z} \to -\frac{2\,i\,(\alpha - \mathsf{Re}[\alpha])}{\sqrt{4 + \alpha^2 - \mathsf{Conjugate}[\alpha]^2 - 4\,\alpha\,\mathsf{Re}[\alpha]}}\,,\right. \\ &\left. \theta \to 2\,\mathsf{ArcTan}\Big[2\,\mathsf{Re}[\alpha],\,-\sqrt{4 + \alpha^2 - \mathsf{Conjugate}[\alpha]^2 - 4\,\alpha\,\mathsf{Re}[\alpha]}\,\Big]\right\}\right\} \end{split}$$

2. 哈达玛门

In[38]:= h = QuantumCircuitOperator["H"]["Matrix"] // Normal;

% // MatrixForm

Det[h]

sol /.
$$\left\{\alpha \to \sqrt{\mathsf{Det}[h]} \ \mathsf{h}\llbracket 1,\, 1 \rrbracket,\, \beta \to \sqrt{\mathsf{Det}[h]} \ \mathsf{h}\llbracket 1,\, 2 \rrbracket \right\}$$

Out[39]//MatrixForm=

$$\begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{pmatrix}$$

Out[40]=

-1

Out[41]=

$$\left\{\left\{x \to -\frac{1}{\sqrt{2}}, \ y \to 0, \ z \to -\frac{1}{\sqrt{2}}, \ \theta \to \pi\right\}, \left\{x \to \frac{1}{\sqrt{2}}, \ y \to 0, \ z \to \frac{1}{\sqrt{2}}, \ \theta \to -\pi\right\}\right\}$$

3. 相位门

In[42]:= s = QuantumCircuitOperator["S"]["Matrix"] // Normal;

% // MatrixForm

Det[s]

$$sol /. \left\{\alpha \to \sqrt{\text{Conjugate@Det[s]}} \text{ s[[1, 1]]}, \beta \to \sqrt{\text{Conjugate@Det[s]}} \text{ s[[1, 2]]} \right\} // \text{Simplify}$$

Out[43]//MatrixForm=

$$\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

Out[44]=

Ī

Out[45]=

$$\left\{\left\{x\to0,\ y\to0,\ z\to1,\ \theta\to\frac{\pi}{2}\right\},\ \left\{x\to0,\ y\to0,\ z\to-1,\ \theta\to-\frac{\pi}{2}\right\}\right\}$$

 $In[46]:=\sqrt{\text{Det[s]}}$ MatrixExp $\left[-I\frac{\pi}{4}\text{PauliMatrix[3]}\right]$ // MatrixForm // Simplify(*验证解出来的n, θ 和 α 确实能得到S*)

Out[46]//MatrixForm=

3维与2维的旋转的联系

习题 4.6 (旋转的布洛赫球解释) $R_{\hat{n}}(\theta)$ 算子被称为旋转算子的一个原因是以下事实,请读者 证明。假设一单量子比特状态可由布洛赫向量 $\vec{\lambda}$ 表示。则旋转 $R_n(\theta)$ 对该状态的作用是在布洛赫

In[48]:= 球上关于 \hat{n} 轴旋转角度 θ 。这个事实解释了旋转矩阵中貌似神秘的两个因子。

In[49]:= Clear[n]

In[50]:= **n[i_] := {x, y, z}[[i]];(*转轴*)**

In[51]:= **rnt2** =

 $\mathsf{MatrixExp}\left[-\mathsf{I} - \frac{\theta}{2} \mathsf{Sum}[\mathsf{n}[i] \times \mathsf{PauliMatrix}[i], \{i, 3\}]\right] / \mathsf{Simplify}[\ddagger, \{x, y, z\} \in \mathsf{Sphere}[]] \& // \mathsf{FullSimplify};$

% // MatrixForm

$$blc2 = \left\{ Cos\left[\frac{\alpha}{2}\right], E^{i\beta} Sin\left[\frac{\alpha}{2}\right] \right\}; (*变换前的qubit, \alpha和β分别是Bloch矢量的极角与经度角*)$$

rp = rnt2.blc2 // FullSimplify;

rp // MatrixForm

Out[52]//MatrixForm=

$$\begin{pmatrix} \cos\left[\frac{\theta}{2}\right] - i z \sin\left[\frac{\theta}{2}\right] & (-i x - y) \sin\left[\frac{\theta}{2}\right] \\ (-i x + y) \sin\left[\frac{\theta}{2}\right] & \cos\left[\frac{\theta}{2}\right] + i z \sin\left[\frac{\theta}{2}\right] \end{pmatrix}$$

$$\begin{pmatrix} (\mathsf{x} - \emph{i} \, \mathsf{y}) \, \mathsf{Sin} \big[\frac{\alpha}{2} \big] \, (-\emph{i} \, \mathsf{Cos}[\beta] + \mathsf{Sin}[\beta]) \, \mathsf{Sin} \big[\frac{\theta}{2} \big] + \mathsf{Cos} \big[\frac{\alpha}{2} \big] \, \big(\mathsf{Cos} \big[\frac{\theta}{2} \big] - \emph{i} \, \mathsf{z} \, \mathsf{Sin} \big[\frac{\theta}{2} \big] \big) \\ (-\emph{i} \, \mathsf{x} + \mathsf{y}) \, \mathsf{Cos} \big[\frac{\alpha}{2} \big] \, \mathsf{Sin} \big[\frac{\theta}{2} \big] + e^{\emph{i} \, \beta} \, \mathsf{Sin} \big[\frac{\alpha}{2} \big] \, \big(\mathsf{Cos} \big[\frac{\theta}{2} \big] + \emph{i} \, \mathsf{z} \, \mathsf{Sin} \big[\frac{\theta}{2} \big] \big) \end{pmatrix}$$

In[56]:= \rhoble blc = KroneckerProduct[rp, ConjugateTranspose[rp]] //

FullSimplify[\ddagger , $(\theta \mid \alpha \mid \beta \mid z \mid x \mid y) \in \text{Reals}$] &;(*变换后的态*)

$$In[57]:=$$
 blc3p = Table[Tr[ρ blc.PauliMatrix[i]], {i, 3}] // FullSimplify[#, {x, y, z} \in Sphere[]] &

Out[57]=

$$\begin{split} &\left\{ \text{Cos}[\beta] \left(1 + \text{y}^2 \left(-1 + \text{Cos}[\theta] \right) + \text{z}^2 \left(-1 + \text{Cos}[\theta] \right) \right) \text{Sin}[\alpha] - \text{x} \left(-1 + \text{Cos}[\theta] \right) \left(\text{z} \, \text{Cos}[\alpha] + \text{y} \, \text{Sin}[\alpha] \, \text{Sin}[\beta] \right) + \\ & \left(\text{y} \, \text{Cos}[\alpha] - \text{z} \, \text{Sin}[\alpha] \, \text{Sin}[\beta] \right) \text{Sin}[\theta], \, -\text{Cos}[\alpha] \left(\text{y} \, \text{z} \left(-1 + \text{Cos}[\theta] \right) + \text{x} \, \text{Sin}[\theta] \right) + \\ & \text{Sin}[\alpha] \left(\left(\text{y}^2 \left(1 - \text{Cos}[\theta] \right) + \text{Cos}[\theta] \right) \text{Sin}[\beta] + \text{Cos}[\beta] \left(\text{x} \, \text{y} - \text{x} \, \text{y} \, \text{Cos}[\theta] + \text{z} \, \text{Sin}[\theta] \right) \right), \\ & \text{Cos}[\alpha] \left(\text{z}^2 \left(1 - \text{Cos}[\theta] \right) + \text{Cos}[\theta] \right) + \\ & \text{Sin}[\alpha] \left(-\text{z} \left(-1 + \text{Cos}[\theta] \right) \left(\text{x} \, \text{Cos}[\beta] + \text{y} \, \text{Sin}[\beta] \right) + \left(-\text{y} \, \text{Cos}[\beta] + \text{x} \, \text{Sin}[\beta] \right) \text{Sin}[\theta] \right) \right\} \end{split}$$

In[58]:= m[1] = I D[RotationMatrix[θ , {1, 0, 0}], θ] /. $\theta \rightarrow 0$;

 $m[2] = ID[RotationMatrix[\theta, \{0, 1, 0\}], \theta] /. \theta \rightarrow 0;$

m[3] = ID[RotationMatrix[θ , {0, 0, 1}], θ] /. $\theta \rightarrow 0$;

$$M_{1} = i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad M_{2} = i \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix},$$

$$In[61]:= \qquad M_{3} = i \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \tag{2.4}$$

Out[61]=

$$M_{1} = i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad M_{2} = i \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix},$$

$$M_{3} = i \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$(2.4)$$

In[62]:= rnt3 = MatrixExp[-I θ Sum[n[i] × m[i], {i, 3}]] // FullSimplify[♯, {x, y, z} ∈ Sphere[]] & // FullSimplify; rnt3 // MatrixForm

Out[63]//MatrixForm=

$$\begin{pmatrix} 1+y^2\left(-1+\operatorname{Cos}[\theta]\right)+z^2\left(-1+\operatorname{Cos}[\theta]\right) & x\,y-x\,y\,\operatorname{Cos}[\theta]-z\,\operatorname{Sin}[\theta] & x\,z-x\,z\,\operatorname{Cos}[\theta]+y\,\operatorname{Sin}[\theta] \\ x\,y-x\,y\,\operatorname{Cos}[\theta]+z\,\operatorname{Sin}[\theta] & y^2+\operatorname{Cos}[\theta]-y^2\,\operatorname{Cos}[\theta] & y\,z-y\,z\,\operatorname{Cos}[\theta]-x\,\operatorname{Sin}[\theta] \\ x\,z-x\,z\,\operatorname{Cos}[\theta]-y\,\operatorname{Sin}[\theta] & y\,z-y\,z\,\operatorname{Cos}[\theta]+x\,\operatorname{Sin}[\theta] & z^2+\operatorname{Cos}[\theta]-z^2\,\operatorname{Cos}[\theta] \end{pmatrix}$$

ln[64]:= blc3 = CoordinateTransformData["Spherical" \rightarrow "Cartesian", "Mapping", $\{1, \alpha, \beta\}$]

Out[64]=

 $\{Cos[\beta] Sin[\alpha], Sin[\alpha] Sin[\beta], Cos[\alpha]\}$

In[65]:= blc3pp = rnt3.blc3 // FullSimplify[♯, {x, y, z} ∈ Sphere[]] &; % // MatrixForm(*旋转后的Bloch矢量*)

Out[66]//MatrixForm=

$$\left(\begin{array}{l} \operatorname{Cos}[\alpha] \left(x \, z - x \, z \, \operatorname{Cos}[\theta] + y \, \operatorname{Sin}[\theta] \right) + \operatorname{Sin}[\alpha] \left(\operatorname{Cos}[\beta] \left(1 + y^2 \, (-1 + \operatorname{Cos}[\theta]) + z^2 \, (-1 + \operatorname{Cos}[\theta]) \right) - \operatorname{Sin}[\beta] \left(x \, y \, (-1 + \operatorname{Cos}[\theta]) \right) \\ \left(y^2 \, (1 - \operatorname{Cos}[\theta]) + \operatorname{Cos}[\theta] \right) \operatorname{Sin}[\alpha] \operatorname{Sin}[\beta] - \operatorname{Cos}[\alpha] \left(y \, z \, (-1 + \operatorname{Cos}[\theta]) + x \, \operatorname{Sin}[\theta] \right) + \operatorname{Cos}[\beta] \operatorname{Sin}[\alpha] \left(x \, y - x \, y \, \operatorname{Cos}[\theta] \right) \\ \operatorname{Cos}[\alpha] \left(z^2 \, (1 - \operatorname{Cos}[\theta]) + \operatorname{Cos}[\theta] \right) + \operatorname{Sin}[\alpha] \left(-z \, (-1 + \operatorname{Cos}[\theta]) \left(x \, \operatorname{Cos}[\beta] + y \, \operatorname{Sin}[\beta] \right) + (-y \, \operatorname{Cos}[\beta] + x \, \operatorname{Sin}[\beta] \right) \right)$$

In[67]:= blc3pp - blc3p // FullSimplify[#, {x, y, z} e Sphere[]] & // MatrixForm

Out[67]//MatrixForm=

 $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

用类似的方法可以完成下面的习题

习题 4.15 (单量子比特运算组合) 布洛赫表示对旋转结合提供了一种可见效果的方法。

1. 证明如果先绕轴 \hat{n}_1 旋转角度 β_1 , 再绕轴 \hat{n}_2 旋转角度 β_2 , 则整个旋转过程可表示为绕轴 \hat{n}_{12} 旋转角度 β_{12} , 其中

$$c_{12} = c_1 c_2 - s_1 s_2 \hat{n}_1 \cdot \hat{n}_2 \tag{4.19}$$

$$s_{12}\hat{n}_{12} = s_1c_2\hat{n}_1 + c_1s_2\hat{n}_2 + s_1s_2\hat{n}_2 \times \hat{n}_1 \tag{4.20}$$

In[68]:=

这里 $c_i = \cos(\beta_i/2), s_i = \sin(\beta_i/2), c_{12} = \cos(\beta_{12}/2), s_{12} = \sin(\beta_{12}/2)$ 。

2. 证明若 $\beta_1 = \beta_2$ 且 $\hat{n}_1 = \hat{z}$, 则等式可简化为

$$c_{12} = c^2 - s^2 \hat{z} \cdot \hat{n}_2 \tag{4.21}$$

$$s_{12}\hat{n}_{12} = sc(\hat{z} + \hat{n}_2) + s^2\hat{n}_2 \times \hat{z} \tag{4.22}$$

这里 $c = c_1, s = s_1$ 。

Out[68]=

习题 4.15 (单量子比特运算组合) 布洛赫表示对旋转结合提供了一种可见效果的方法。

1. 证明如果先绕轴 \hat{n}_1 旋转角度 β_1 , 再绕轴 \hat{n}_2 旋转角度 β_2 , 则整个旋转过程可表示为绕轴 \hat{n}_{12} 旋转角度 β_{12} , 其中

$$c_{12} = c_1 c_2 - s_1 s_2 \hat{n}_1 \cdot \hat{n}_2 \tag{4.19}$$

$$s_{12}\hat{n}_{12} = s_1c_2\hat{n}_1 + c_1s_2\hat{n}_2 + s_1s_2\hat{n}_2 \times \hat{n}_1 \tag{4.20}$$

这里 $c_i = \cos(\beta_i/2), s_i = \sin(\beta_i/2), c_{12} = \cos(\beta_{12}/2), s_{12} = \sin(\beta_{12}/2)$ 。

2. 证明若 $\beta_1 = \beta_2$ 且 $\hat{n}_1 = \hat{z}$, 则等式可简化为

$$c_{12} = c^2 - s^2 \hat{z} \cdot \hat{n}_2 \tag{4.21}$$

$$s_{12}\hat{n}_{12} = sc(\hat{z} + \hat{n}_2) + s^2\hat{n}_2 \times \hat{z}$$
(4.22)

这里 $c = c_1, s = s_1$ 。

不失一般性, 假设转轴沿着 z 方向

 $ln[69]:= rnt2 = MatrixExp[-I - PauliMatrix[3]] // Simplify[#, {x, y, z} \in Sphere[]] & // FullSimplify;$

% // MatrixForm

 $blc2 = \left\{ Cos \begin{bmatrix} \alpha \\ 2 \end{bmatrix}, E^{l\beta} Sin \begin{bmatrix} \alpha \\ 2 \end{bmatrix} \right\}; (*变换前的qubit, \alpha和β分别是Bloch矢量的极角与经度角*)$

rp = rnt2.blc2 // FullSimplify; rp // MatrixForm

Out[70]//MatrixForm=

$$\begin{pmatrix} e^{-\frac{i\theta}{2}} & 0 \\ 0 & e^{\frac{i\theta}{2}} \end{pmatrix}$$

Out[73]//MatrixForm=

$$\begin{pmatrix} e^{-\frac{i\theta}{2}} \cos\left[\frac{\alpha}{2}\right] \\ e^{\frac{1}{2}i(2\beta+\theta)} \sin\left[\frac{\alpha}{2}\right] \end{pmatrix}$$

in[74]:= ρblc = KroneckerProduct[rp, ConjugateTranspose[rp]] //
FullSimplify[♯, (θ | α | β | z | x | y) ∈ Reals] &;(*变换后的态*)

ln[75]:= blc3p = Table[Tr[ρ blc.PauliMatrix[i]], {i, 3}] // FullSimplify[\ddagger , {x, y, z} \in Sphere[]] &

Out[75]=

 $\{\cos[\beta + \theta] \sin[\alpha], \sin[\alpha] \sin[\beta + \theta], \cos[\alpha]\}$

In [76]:= m[3] = ID[RotationMatrix[θ , {0, 0, 1}], θ] /. $\theta \rightarrow 0$;

$$M_{1} = i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad M_{2} = i \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix},$$

$$In[77] := M_{3} = i \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$(2.4)$$

Out[77]=

$$M_{1} = i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad M_{2} = i \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix},$$

$$M_{3} = i \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$
(2.4)

In[78]:= rnt3 = MatrixExp[-I θ m[3]] // FullSimplify[#, {x, y, z} ∈ Sphere[]] & // FullSimplify; rnt3 // MatrixForm

Out[79]//MatrixForm=

$$\begin{pmatrix} \operatorname{Cos}[\theta] & -\operatorname{Sin}[\theta] & 0 \\ \operatorname{Sin}[\theta] & \operatorname{Cos}[\theta] & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

ln[80]:= blc3 = CoordinateTransformData["Spherical" \rightarrow "Cartesian", "Mapping", $\{1, \alpha, \beta\}$]

Out[80]=

 $\{Cos[\beta] Sin[\alpha], Sin[\alpha] Sin[\beta], Cos[\alpha]\}$

In[81]:= blc3pp = rnt3.blc3 // FullSimplify[♯, {x, y, z} ∈ Sphere[]] &; % // MatrixForm(*旋转后的Bloch矢量*)

Out[82]//MatrixForm=

$$\begin{pmatrix} \cos[\beta + \theta] \sin[\alpha] \\ \sin[\alpha] \sin[\beta + \theta] \\ \cos[\alpha] \end{pmatrix}$$

In[83]:= blc3pp - blc3p // FullSimplify[#, {x, y, z}

Sphere[]] & // MatrixForm

Out[83]//MatrixForm=

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

- 如何理解发生在Hilbert空间中的旋转?
- 量子现象发生在实验室的仪器中,与我们生活在相同的宇宙中,而不是发生在希尔伯特空间中,当粒子的z方向自旋角动量为 ½,即粒子处于|0)态,然后我们建立新坐标系使得新的x'轴与原来的z轴重合,那么新的量子态有确定的x方向自旋角动量,态应该变为|+⟩

- 描述因为旋转参考系空间的导致的态的变换,需要使用SO(3)的以单比特希尔伯特空间为表示 空间的某个群表示,即SU(2)
- SO(3)作用在3维线性空间上, SU(2)作用在2维希尔伯特空间上, 群作用的概念使得我们能将旋 转的概念从3维的实空间迁移到gubit生活的希尔伯特空间上。
- 演示the Belt Trick

$$SL(2,\mathbb{C})$$
 是 $SO^{\uparrow}(1,3)$ 的二重覆盖。2-1 同态 $\kappa: SL(2,\mathbb{C}) \to SO^{\uparrow}(1,3), X \mapsto Y$ 由
$$Y_{ij} = \frac{1}{2}\operatorname{tr}(\sigma_i X \sigma_j X^{\dagger}) \quad i,j=0,1,2,3 \tag{18.5}$$

给出 13 。 κ 也是 $SL(2,\mathbb{C})$ 的四维表示。为了简化记号,在不至于混淆的地方,通常使用"物理"的写法,对 $A \in$ $SL(2,\mathbb{C})$, 定义 $A(x) := \kappa(A)(x)$

对 z 方向的 Boost 和绕 z 轴的旋转分别有14

$$\kappa(\exp s\sigma_3/2) = B^s$$

$$\kappa(\exp(-i\theta\sigma_3/2)) = R_\theta$$

将κ从SL(2, C) 限制到SU(2) 即得映射到SO(3)的2-1 同态。我们称SU(2)是SO(3)的"正确版本",因为SO(3) 群的投影表示是 SU(2) 群的真正的线性表示, 类似地, $SL(2,\mathbb{C})$ 是 $SO^{\uparrow}(1,3)$ 的正确版本。

Out[84]=

In[84]:=

$$SL(2,\mathbb{C})$$
 是 $SO^{\uparrow}(1,3)$ 的二重覆盖。2-1 同态 $\kappa: SL(2,\mathbb{C}) \to SO^{\uparrow}(1,3), X \mapsto Y$ 由
$$Y_{ij} = \frac{1}{2} \operatorname{tr}(\sigma_i X \sigma_j X^{\dagger}) \quad i,j = 0,1,2,3 \tag{18.5}$$

给出 13 。 κ 也是 $SL(2,\mathbb{C})$ 的四维表示。为了简化记号,在不至于混淆的地方,通常使用"物理"的写法,对 $A \in \mathbb{C}$ $SL(2,\mathbb{C})$, 定义 $A(x) := \kappa(A)(x)$

对 z 方向的 Boost 和绕 z 轴的旋转分别有14

$$\kappa(\exp s\sigma_3/2) = B^s$$

$$\kappa(\exp(-i\theta\sigma_3/2)) = R_\theta$$

将κ从SL(2, C) 限制到SU(2) 即得映射到SO(3)的2-1 同态。我们称SU(2)是SO(3)的"正确版本",因为SO(3) 群的投影表示是 SU(2) 群的真正的线性表示,类似地, $SL(2,\mathbb{C})$ 是 $SO^{\uparrow}(1,3)$ 的正确版本。

将单比特门视为三次旋转的复合: 单比特门的 z-y-z 分解与欧拉角

定理 4.1 (单量子比特的 Z-Y 分解) 假设 U 是单量子比特上的酉操作,存在实数 α,β,γ 和 δ使得

$$U = e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta) \tag{4.11}$$

证明

In[85]:=

由于 U 是酉算子,则其行、列正交,故存在实数 α,β,γ 和 δ 使满足

$$U = \begin{bmatrix} e^{i(\alpha - \beta/2 - \delta/2)} \cos \frac{\gamma}{2} & -e^{i(\alpha - \beta/2 + \delta/2)} \sin \frac{\gamma}{2} \\ e^{i(\alpha + \beta/2 - \delta/2)} \sin \frac{\gamma}{2} & e^{i(\alpha + \beta/2 + \delta/2)} \cos \frac{\gamma}{2} \end{bmatrix}$$
(4.12)

由旋转矩阵定义和矩阵乘法易得式 (4.11)。

Out[85]=

定理 4.1 (单量子比特的 Z-Y 分解) 假设 U 是单量子比特上的酉操作,存在实数 α,β,γ 和 δ 使得

$$U = e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta)$$
(4.11)

证明

由于 U 是酉算子,则其行、列正交,故存在实数 α,β,γ 和 δ 使满足

$$U = \begin{bmatrix} e^{i(\alpha - \beta/2 - \delta/2)} \cos \frac{\gamma}{2} & -e^{i(\alpha - \beta/2 + \delta/2)} \sin \frac{\gamma}{2} \\ e^{i(\alpha + \beta/2 - \delta/2)} \sin \frac{\gamma}{2} & e^{i(\alpha + \beta/2 + \delta/2)} \cos \frac{\gamma}{2} \end{bmatrix}$$
(4.12)

由旋转矩阵定义和矩阵乘法易得式 (4.11)。

In [86]:= QuantumOperator[{"U3", θ , β , δ }]["Matrix"] // Normal // MatrixForm

Out[86]//MatrixForm=

$$\begin{pmatrix} \cos \left[\frac{\theta}{2}\right] & -e^{i\,\delta} \sin \left[\frac{\theta}{2}\right] \\ e^{i\,\beta} \sin \left[\frac{\theta}{2}\right] & e^{i\,(\beta+\delta)} \cos \left[\frac{\theta}{2}\right] \end{pmatrix}$$

In[87]:= **ZyZ** = $e^{\frac{1}{2}i(\beta+\delta)}$

QuantumOperator[{"RZ", β }]@QuantumOperator[{"RY", θ }]@QuantumOperator[{"RZ", δ }]; u3 = zyz["Matrix"] // Normal // FullSimplify(*定理4.1*); u3 // MatrixForm(*根据矩阵确定转轴和转角?*)

Out[88]//MatrixForm=

$$\begin{pmatrix}
\operatorname{Cos}\left[\frac{\theta}{2}\right] & -e^{i\delta}\operatorname{Sin}\left[\frac{\theta}{2}\right] \\
e^{i\beta}\operatorname{Sin}\left[\frac{\theta}{2}\right] & \operatorname{Cos}\left[\frac{\theta}{2}\right](\operatorname{Cos}[\beta+\delta]+i\operatorname{Sin}[\beta+\delta])
\end{pmatrix}$$

In[89]:= Det[u3] // Simplify

Out[89]=

$$Cos[\beta + \delta] + i Sin[\beta + \delta]$$

In[90]:= RollPitchYawMatrix[$\{\alpha, \beta, \gamma\}$, $\{1, 2, 3\}$] == EulerMatrix[$\{\gamma, \beta, \alpha\}$, $\{3, 2, 1\}$]

Out[90]=

True

习题 4.4 给定一个 φ ,将阿达玛门 H 表示为旋转算子 $R_x \setminus R_z$ 和 $e^{i\varphi}$ 的积。

$$\ln[91]:=\left(e^{\frac{1}{2}I(\pi)}\operatorname{QuantumOperator}\left[\left\{"RZ",\frac{\pi}{2}\right\}\right]@\operatorname{QuantumOperator}\left[\left\{"RX",\frac{\pi}{2}\right\}\right]@$$

QuantumOperator $\left[\left\{ \text{"RZ"}, \frac{\pi}{2} \right\} \right]$ ["Matrix"] // Normal // Simplify // MatrixForm

Out[91]//MatrixForm=

$$\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)$$

将H分解成Ry、Rz和相位因子的积

In[92]:= Is = QuantumOperator["H"]["ZYZ"] // QuantumShortcut QuantumOperator[%]["Matrix"] // Normal // MatrixForm

Out[92]=

$$\left\{ \left\{ U, \frac{\pi}{2}, 0, \pi \right\} \rightarrow \{1\} \right\}$$

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

 $ln[94]:=\left(e^{i(\pi)/2} \text{ QuantumOperator}[\{\text{"RZ", 0}\}] @ \text{ QuantumOperator}[\left\{\text{"RY", } \frac{\pi}{2}\right\}] @ \text{ QuantumOperator}[\left\{\text{"RZ", } \pi\right\}]\right)$

"Matrix"] // Normal // Simplify // MatrixForm

Out[94]//MatrixForm=

$$\begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{pmatrix}$$

不存在通用非门

通用非门:将任意 ψ 变为 ψ ^{normal}

1.2 多比特量子门 U(2ⁿ)与受控操作

CNOT (controlled-NOT)

เก[96]:= QuantumOperator[{"CNOT"→{1, 2}}] // TraditionalForm(*模2加法*) QuantumCircuitOperator["CNOT"] // TraditionalForm

Out[96]//TraditionalForm=

$$|00\rangle\langle 00| + |01\rangle\langle 01| + |10\rangle\langle 11| + |11\rangle\langle 10|$$

Out[97]//TraditionalForm=

QuantumCircuitOperator[{"X", "CNOT", "X"}] // TraditionalForm

Out[113]//TraditionalForm=

交换门

In[98]:= QuantumOperator["SWAP"] // TraditionalForm QuantumCircuitOperator["SWAP"] // TraditionalForm

Out[98]//TraditionalForm=

$$|00\rangle\langle 00| + |01\rangle\langle 10| + |10\rangle\langle 01| + |11\rangle\langle 11|$$

Out[99]//TraditionalForm=

SWAP门拆成三个CNOT门

In[100]:=

QuantumCircuitOperator[{"CNOT" \rightarrow {1, 2}, "CNOT" \rightarrow {2, 1}, "CNOT" \rightarrow {1, 2}}] == QuantumCircuitOperator["SWAP"]

Out[100]=

True

In[101]:= QuantumCircuitOperator[{QuantumOperator["CNOT", {1, 2}], QuantumOperator["CNOT", {2, 1}], QuantumOperator["CNOT", {1, 2}]]]["Diagram"]

In[102]:= QuantumCircuitOperator["SWAP"]["Diagram"]

Out[102]=

Toffoli 门和测量

In[103]:=

 $Quantum Circuit Operator ["Toffoli"], \ Quantum Circuit Operator [\{"XYZ"\}],$ QuantumMeasurementOperator["X", {3}],

 $Quantum Measurement Operator ["X", \{1, 2\}] \Big\}] ["Diagram"]$

Out[103]=

QuantumCircuitOperator["Toffoli"]["Diagram"]

Out[104]=

In[105]:=

 $tfl[a_, b_, c_] := \{a, b, Mod[c + a b, 2]\}$

In[106]:=

Out[106]//MatrixForm=

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

CZ[]

In[107]:=

习题 4.18 证明

In[108]:=

QuantumOperator[{"Z" \rightarrow {1, 2}}] // TraditionalForm QuantumOperator[{"Z" \rightarrow {2, 1}}] // TraditionalForm

Out[108]//TraditionalForm=

$$|00\rangle\langle 00| - |01\rangle\langle 01| - |10\rangle\langle 10| + |11\rangle\langle 11|$$

Out[109]//TraditionalForm=

$$|00\rangle\langle00| - |01\rangle\langle01| - |10\rangle\langle10| + |11\rangle\langle11|$$

一般的受控U门,单比特控制单比特

In[110]:=

我们当前的目标是了解如何只使用单量子比特运算和受控非门实现对任意单量子比特 U 的 受控 U 运算。基于推论 4.2 中给出的分解 $U=\mathrm{e}^{\mathrm{i}\alpha}AXBXC$,策略分为两部分。

推论 **4.2** 设 U 是作用在单量子比特上的一个酉门,则单量子比特上存在酉算子 A,B,C 使得 ABC = I 且 $U = e^{i\alpha}AXBXC$,其中 α 为某个全局相位因子。

X是泡利X矩阵

$$|00\rangle \rightarrow |00\rangle, \quad |01\rangle \rightarrow |01\rangle, \quad |10\rangle \rightarrow e^{i\alpha}|10\rangle, \quad |11\rangle \rightarrow e^{i\alpha}|11\rangle$$

$$\begin{bmatrix} e^{i\alpha} & 0 \\ 0 & e^{i\alpha} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{bmatrix}$$

图 4-5 受控相移门及其两量子比特等价电路

图 4-6 单量子比特 U 的受控 U 运算电路,其中 A,B,C 和 α 满足 $U=\mathrm{e}^{\mathrm{i}\alpha}AXBXC,ABC=I$

量子线路的特性

- 不出现回路, 无环
- 不允许扇入扇出,扇入不可逆,扇出是量子克隆

1.3 测量

In[134]:=

 $qc = QuantumCircuitOperator[\{"T", "CNOT" \rightarrow \{3, 2\}, "CZ" \rightarrow \{1, 4\}, \{1\}, \{2\}, \{3, 4\}\}];$ % // TraditionalForm

Out[135]//TraditionalForm=

In[148]:=

qc@QuantumState[{1, 0, 1, 1}]; %["ProbabilityPlot"] %%["StateAssociation"] // TraditionalForm

Out[150]//TraditionalForm=

$$\left\langle \left| \left| 0000 \right\rangle \rightarrow \left| 0000 \right\rangle, \, \left| 1000 \right\rangle \rightarrow e^{\frac{i\pi}{4}} \left| 1000 \right\rangle, \, \left| 1100 \right\rangle \rightarrow e^{\frac{i\pi}{4}} \left| 1100 \right\rangle \right| \right\rangle$$

延迟测量原理与经典的if-then语句

延迟测量原理:测量总是可以从量子电路的中间阶段移到电路末端;如果测量结果在电路某个阶段使用,那么经典条件运算可以用量子条件运算来代替。

习题 4.35 (测量与控制交换) 延迟测量原理的结果是,当被测量的量子比特是一个控制量子比特时,测量与量子门交换,即:

(回忆双线代表这个图中的经典比特)。证明第一个等式。最右侧电路只是一种方便的记法, 用来描述使用测量结果来经典地控制量子门。

In[262]:=

inis = (QuantumCircuitOperator["HH"]@QuantumState[{1, 0, 0, 0}])["Normalized"]; % // TraditionalForm

Out[263]//TraditionalForm=

$$\frac{\left|00\right\rangle}{2}+\frac{\left|01\right\rangle}{2}+\frac{\left|10\right\rangle}{2}+\frac{\left|11\right\rangle}{2}$$

左侧

In[292]:=

qc1 = QuantumCircuitOperator[{"CZ", {1}}];
qc1 // TraditionalForm
qmr = qc1@inis;
qmr["ProbabilityPlot"]
dst = qmr["Distribution"][[1, 1]];
qmr["StateAssociation"];
% // TraditionalForm

Out[293]//TraditionalForm=

Out[298]//TraditionalForm=

$$\left\langle \left| \left| 0 \right\rangle \rightarrow \frac{\left| 00 \right\rangle}{2} + \frac{\left| 01 \right\rangle}{2}, \left| 1 \right\rangle \rightarrow \frac{\left| 10 \right\rangle}{2} - \frac{\left| 11 \right\rangle}{2} \left| \right\rangle$$

In[334]:=

Normal[#["Normalized"]["DensityMatrix"]] & /@ qmr["StateAssociation"] // Values(*测量后的态*) dst.% // MatrixForm

Out[334]=

$$\left\{\left\{\left\{\frac{1}{2}, \frac{1}{2}, 0, 0\right\}, \left\{\frac{1}{2}, \frac{1}{2}, 0, 0\right\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\right\}, \left\{\left\{0, 0, 0, 0\right\}, \{0, 0, 0, 0\}, \left\{0, 0, \frac{1}{2}, -\frac{1}{2}\right\}, \left\{0, 0, -\frac{1}{2}, \frac{1}{2}\right\}\right\}\right\}$$

Out[335]//MatrixForm=

$$\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & 0 & 0 \\ 0 & 0 & \frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & -\frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

右侧

In[303]:=

qmr1 = QuantumMeasurementOperator[{1}]@inis; qmr1["ProbabilityPlot"] dst1 = qmr1["Distribution"][[1, 1]]; qmr1["StateAssociation"]; % // TraditionalForm

Out[304]=

Out[307]//TraditionalForm

$$\left\langle \left| \left| 0 \right\rangle \right\rangle \right\rangle \left\langle \left| 01 \right\rangle \right\rangle + \left| 01 \right\rangle \left\langle \left| 1 \right\rangle \right\rangle \right\rangle \left\langle \left| 10 \right\rangle \right\rangle + \left| 11 \right\rangle \left|$$

In[317]:=

cz = QuantumOperator["CZ"]["Matrix"] // Normal

Out[317]=

$$\{\{1, 0, 0, 0\}, \{0, 1, 0, 0\}, \{0, 0, 1, 0\}, \{0, 0, 0, -1\}\}$$

In[336]:=

Normal[#["Normalized"]["DensityMatrix"]] & /@ qmr1["StateAssociation"] // Values(*测量后的态*) $dst1 \llbracket 1 \rrbracket \times \% \llbracket 1 \rrbracket + dst1 \llbracket 2 \rrbracket cz. \% \llbracket 2 \rrbracket. ConjugateTranspose[cz] \textit{//} TraditionalForm$

Out[336]=

$$\left\{ \left\{ \left\{ \frac{1}{2}, \frac{1}{2}, 0, 0 \right\}, \left\{ \frac{1}{2}, \frac{1}{2}, 0, 0 \right\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\} \right\}, \left\{ \{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \left\{ 0, 0, \frac{1}{2}, \frac{1}{2} \right\}, \left\{ 0, 0, \frac{1}{2}, \frac{1}{2} \right\} \right\} \right\}$$

$$\begin{pmatrix}
\frac{1}{4} & \frac{1}{4} & 0 & 0 \\
\frac{1}{4} & \frac{1}{4} & 0 & 0 \\
0 & 0 & \frac{1}{4} & -\frac{1}{4} \\
0 & 0 & -\frac{1}{4} & \frac{1}{4}
\end{pmatrix}$$

隐含测量原理

隐含测量原理: 不失一般性, 可以假定在量子电路末端的任何未终止的量子线(未被 测量的量子比特)都将被测量。

习题 4.32 设 ρ 是描述两量子比特系统的密度矩阵。假设我们在第二个量子比特的计算基上进行 投影测量。设 $P_0=|0\rangle\langle 0|, P_1=|1\rangle\langle 1|$ 分别是第二个量子比特到 $|0\rangle$ 和 $|1\rangle$ 状态的投影。令 ρ' 是由 不知道测量结果的观察者在测量后赋给系统的密度矩阵。证明

$$\rho' = P_0 \rho P_0 + P_1 \rho P_1 \tag{4.40}$$

此外证明第一个量子比特的约化密度矩阵不受测量的影响,即 $\mathrm{tr}_2(\rho) = \mathrm{tr}_2(\rho')$ 。

在分析量子算法时带来一些便利。

Bell 基的测量

测量算符 U

习题 4.34

稳定子码: 多比特, 测量稳定子