Algorithmic Improvements in Approximate Counting for Probabilistic Inference: From Linear to Logarithmic SAT Calls

Supratik Chakraborty¹, **Kuldeep S. Meel²**, Moshe Y. Vardi²

- ¹ Indian Institute of Technology (IIT) Bombay
- ² Department of Computer Science, Rice University

From Probabilistic Inference to Model Counting

Model counting as the "assembly language" for probabilistic inference

ApproxMC2

Approximate Model Counting

- Approximate Model Counting
- Hashing-based $\Pr\left[\frac{|R_F|}{\text{plr6aches}} \le \text{ApproxMC}(F, \varepsilon, \delta) \le (1+\varepsilon)|R_F|\right] \ge 1-\delta$
- Hashing-based Approaches

- •CAV 2013
- •CP 2013
- •UAI 2013
- •NIPS 2013
- •DAC 2014
- •ICML 2014
- •AAAI 2014

- TACAS 2015
- IJCAI 2015
- ICML 2015
- UAI 2015
- AAAI 2016
- AISTATS 2016
- ICML 2016

Counting Dots

Solution to constraints

Partitioning into equal "small" cells

Partitioning into equal "small" cells

Estimate = # of solutions (dots) in cell * # of cells

ApproxMC2

The secret sauce

Howmany cells should we partition into?

Intelly, ##offcells=
$$\frac{|R_F|}{\text{pivot}}$$

But we do not know $|R_F|$!

Approxime (F, CMV CP2013)

$\begin{array}{c} \text{ApproxMC}(F, \varepsilon, \delta) \\ \text{ApproxMC}(F, \varepsilon, \delta) \end{array}$

Challenge

• Can we reduce the number of SAT calls from O(n)?

Experimental Observations

- ApproxMC "seems to work" even if we do not have independence across different hash functions
 - Can we really give up independence?

Beyond ApproxMC

- We want to partition into 2^m cells
 - \square Check for every m = 0,1...n if the number of solutions < pivot
 - ☐ Stop at the first m where number of solutions < pivot
 - Hash functions must be independent across different checks (Stockmeyer 1983, Jerrum, Valiant and Vazirani 1986.....)
- **Suppose:** Hash functions can be dependent across different checks
- # of solutions is monotonically non-increasing with m
 - Can find the right value of m by search in any order.
 - Binary search

ApproxMC2: From Linear to Logarithmic SAT calls

• The Proof: Hash functions *can be dependent* across different checks

- Key Idea: Probability of making a bad choice early on is very small.
 - ☐ Inversely (exponentially!) proportional to distance from m*)

ApproxMC2

Approxime (F, ε, δ)

Theorem 1:

$$\Pr\left[\frac{|R_F|}{(1+\varepsilon)} \le \operatorname{ApproxMC2}(F,\varepsilon,\delta) \le |R_F|(1+\varepsilon)\right] \ge 1-\delta$$

Theorem 2: Theorem 2:

$$\begin{array}{ll} ApproxMC2(F, \ calls \ to \ NP \ oracle \\ ApproxMC2(F, \varepsilon, \delta) \ makes \ O\left(\frac{(\log n) \log \frac{1}{\delta}}{\varepsilon^2}\right) \ \ calls \ to \ NP \ oracle \end{array}$$

Theorem 1 requires a completely new proof framework.

Runtime Performance Comparison

Beyond ApproxMC

• The proposed proof framework can be applied to other algorithms

- PAWS (Ermon et al 2014)
- WeightMC (Chakraborty et al 2014, Belle et al 2015)

• Reduces number of SAT calls from O(n) to O(log n)

Summary

- Model Counting as "assembly language" for inference
- Hashing-based techniques make O(n) or O(n log n) NP-oracle (SAT) queries
- The new proof framework reduces number of queries to O(log n)
- Massive speedups for ApproxMC, the state of the art approximate model counter