Satisfiability with Equivalences in Agreement

Krasimir Georgiev

September 12, 2016

Agreement

A sequence E_1, E_2, \dots, E_e of equivalence relations on A is in:

- ▶ refinement if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_e$
- ▶ global agreement if it forms a chain, that is $E_{\nu(1)} \subseteq E_{\nu(2)} \subseteq \cdots \subseteq E_{\nu(e)}$ for some permutation ν of [1,e]
- ▶ local agreement if the equivalence classes of any point form a chain, that is for any $a \in A$ there is some permutation ν of [1,e] such that $E_{\nu(1)}[a] \subseteq E_{\nu(2)}[a] \subseteq \cdots \subseteq E_{\nu(e)}$

equivalence class of E_1

equivalence class of E_2

Agreement

A sequence E_1, E_2, \dots, E_e of equivalence relations on A is in:

- ▶ refinement if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_e$
- ▶ global agreement if it forms a chain, that is $E_{\nu(1)} \subseteq E_{\nu(2)} \subseteq \cdots \subseteq E_{\nu(e)}$ for some permutation ν of [1,e]
- ▶ local agreement if the equivalence classes of any point form a chain, that is for any $a \in A$ there is some permutation ν of [1,e] such that $E_{\nu(1)}[a] \subseteq E_{\nu(2)}[a] \subseteq \cdots \subseteq E_{\nu(e)}$

Agreement

A sequence E_1, E_2, \dots, E_e of equivalence relations on A is in:

- ▶ refinement if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_e$
- ▶ global agreement if it forms a chain, that is $E_{\nu(1)} \subseteq E_{\nu(2)} \subseteq \cdots \subseteq E_{\nu(e)}$ for some permutation ν of [1,e]
- ▶ local agreement if the equivalence classes of any point form a chain, that is for any $a \in A$ there is some permutation ν of [1,e] such that $E_{\nu(1)}[a] \subseteq E_{\nu(2)}[a] \subseteq \cdots \subseteq E_{\nu(e)}$

equivalence class of E_1

equivalence class of E_2

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

 $ightharpoonup \mathcal{L}$ is the first-order predicate logic with equality featuring only unary and binary predicate symbols

- $ightharpoonup \mathcal{L}$ is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables

- L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols

- L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- $\qquad \qquad \textbf{a} \in \{\text{refine}, \text{local}, \text{global}\} \text{ specifies an agreement condition}$

- $ightharpoonup \mathcal{L}$ is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ightharpoonup a \in {refine, local, global} specifies an agreement condition
- ightharpoonup if p=0 only constantly many additional unary predicate symbols are allowed

- L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ightharpoonup a \in {refine, local, global} specifies an agreement condition
- if p = 0 only constantly many additional unary predicate symbols are allowed
- lacktriangleright if p=1 only additional unary predicate symbols are allowed

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

- ► L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ▶ a ∈ {refine, local, global} specifies an agreement condition
- if p = 0 only constantly many additional unary predicate symbols are allowed
- lacktriangleright if p=1 only additional unary predicate symbols are allowed

Examples

 $ightharpoonup \mathcal{L}_1$ is the monadic fragment

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

- L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ▶ a ∈ {refine, local, global} specifies an agreement condition
- if p = 0 only constantly many additional unary predicate symbols are allowed
- ightharpoonup if p=1 only additional unary predicate symbols are allowed

Examples

- \triangleright \mathcal{L}_1 is the monadic fragment
- $ightharpoonup \mathcal{L}_0 1\mathrm{E}$ is the fragment of a single equivalence

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

- L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ightharpoonup a \in {refine, local, global} specifies an agreement condition
- ightharpoonup if p=0 only constantly many additional unary predicate symbols are allowed
- lacktriangleright if p=1 only additional unary predicate symbols are allowed

Examples

- \triangleright \mathcal{L}_1 is the monadic fragment
- $ightharpoonup \mathcal{L}_0 1\mathrm{E}$ is the fragment of a single equivalence
- $ightharpoonup \mathcal{L}^2 2E_{\text{local}}$ is the two-variable fragment of two equivalences in local agreement

Goal

In this work, we investigate the *computational complexity* of the *satisfiability* for the *monadic* and the *two-variable fragment* in the presence of *equivalences in agreement*.

Reductions

Refinement is the easiest condition to work with, so we define polynomial time reductions to its satisfiability problem:

$$\begin{split} & \mathrm{SAT}\text{-}\mathcal{L}^{\nu}_{\rho} e \mathrm{E}_{\mathsf{global}} \leq_{\mathrm{m}}^{\mathrm{PTIME}} \mathrm{SAT}\text{-}\mathcal{L}^{\nu}_{\rho} e \mathrm{E}_{\mathsf{refine}} \\ & \mathrm{SAT}\text{-}\mathcal{L}^{\nu}_{\rho} e \mathrm{E}_{\mathsf{local}} \leq_{\mathrm{m}}^{\mathrm{PTIME}} \mathrm{SAT}\text{-}\mathcal{L}^{\nu}_{\rho} e \mathrm{E}_{\mathsf{refine}}. \end{split}$$

Central to these reductions is the notion of *levels*.

Levels

The *level sequence* L_1, L_2, \ldots, L_e of a sequence E_1, E_2, \ldots, E_e of equivalence relations on A in local agreement is defined by:

$$L_m = \bigcap \{ E_{i_1} \cup E_{i_2} \cup \cdots \cup E_{i_m} \mid 1 \leq i_1 < i_2 < \cdots < i_m \leq e \}.$$

Levels

The *level sequence* L_1, L_2, \ldots, L_e of a sequence E_1, E_2, \ldots, E_e of equivalence relations on A in local agreement is defined by:

$$L_m = \bigcap \{ E_{i_1} \cup E_{i_2} \cup \cdots \cup E_{i_m} \mid 1 \leq i_1 < i_2 < \cdots < i_m \leq e \}.$$

Remark

The level sequence is a sequence of equivalence relations on A in refinement.

equivalence class of E_1

equivalence class of E_2

Levels

The *level sequence* L_1, L_2, \ldots, L_e of a sequence E_1, E_2, \ldots, E_e of equivalence relations on A in local agreement is defined by:

$$L_m = \bigcap \{ E_{i_1} \cup E_{i_2} \cup \cdots \cup E_{i_m} \mid 1 \leq i_1 < i_2 < \cdots < i_m \leq e \}.$$

Remark

The level sequence is a sequence of equivalence relations on A in refinement.

equivalence class of L_1

equivalence class of L_2

Monadic fragments

It is known that

- $ightharpoonup SAT-\mathcal{L}_1$ is in NEXPTIME [Löwenheim 1915] and is NEXPTIME-hard
- ▶ $SAT-\mathcal{L}_01E$ is PSPACE-complete
- ▶ $SAT-\mathcal{L}_02E$ is undecidable [Janiczak 1953]

Monadic fragments

It is known that

- $ightharpoonup {
 m SAT-}{\cal L}_1$ is in NEXPTIME [Löwenheim 1915] and is NEXPTIME-hard
- ightharpoonup SAT- $\mathcal{L}_01\mathrm{E}$ is PSPACE-complete
- ▶ $SAT-\mathcal{L}_02E$ is undecidable [Janiczak 1953]

We show that

- ▶ $SAT-\mathcal{L}_11E$ is N2EXPTIME-complete
- ▶ In general, SAT- $\mathcal{L}_1e\mathrm{E}_{\mathsf{refine}}$ is $\mathrm{N}(e+1)\mathrm{ExpTime}$ -complete

Monadic fragments

We show that

- ▶ $SAT-\mathcal{L}_11E$ is N2ExpTime-complete
- ▶ In general, SAT- \mathcal{L}_1e E $_{\mathsf{refine}}$ is N(e+1)EXPTIME-complete

Approach: "work at the quantifier rank level of abstraction"

- for the upper bound, we use Ehrenfeucht-Fraïssé games to bound the size of a minimal model of a satisfiable formula
- for hardness, we reduce a version of the domino tiling problem to satisfiability

Two-variable fragments

Only the variables x and y are allowed. It is known that:

- ▶ SAT- \mathcal{L}^2 is NEXPTIME-complete [Grädel, Kolaitis, Vardi, 1997]
- ▶ SAT- \mathcal{L}^21E is NEXPTIME-complete [Kieroński, 2005]
- ▶ SAT- \mathcal{L}^2 2E is N2ExpTIME-complete [Kieroński, Michaliszyn, Pratt-Hartmann, Tendera, 2014]
- ► SAT- \mathcal{L}^2 3E is undecidable [Kieroński, Otto, 2005]

Two-variable fragments

Only the variables x and y are allowed. It is known that:

- ▶ SAT- \mathcal{L}^2 is NEXPTIME-complete [Grädel, Kolaitis, Vardi, 1997]
- ▶ SAT- $\mathcal{L}^21\mathrm{E}$ is NEXPTIME-complete [Kieroński, 2005]
- ▶ SAT- \mathcal{L}^2 2E is N2ExpTIME-complete [Kieroński, Michaliszyn, Pratt-Hartmann, Tendera, 2014]
- ► SAT- \mathcal{L}^2 3E is undecidable [Kieroński, Otto, 2005]

We show that

▶ $SAT-\mathcal{L}^2eE_{refine}$ is in NEXPTIME

Approach: "work at the level of abstraction of types"

Types

- \blacktriangleright A 1-type π is a maximal consistent set of literals featuring only the variable $\textbf{\textit{x}}$
- ▶ A 2-type τ is a maximal consistent set of literals featuring the variables \boldsymbol{x} and \boldsymbol{y} that contains $(\boldsymbol{x} \neq \boldsymbol{y})$

$$\mathrm{tp}_{\mathbf{x}}\tau\bullet\frac{\tau}{\tau^{-1}}\bullet\mathrm{tp}_{\mathbf{y}}\tau$$

- ▶ If τ is a 2-type, $tp_x\tau$ is the one-type consisting of the literals from τ featuring only the variable x,
- ▶ τ^{-1} is the two-type obtained by swapping ${\bf x}$ and ${\bf y}$ in the literals of τ
- and $\operatorname{tp}_{\mathbf{y}} \tau = \operatorname{tp}_{\mathbf{x}}(\tau^{-1})$.

Classified signatures

A classified signature $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$ consists of a predicate signature Σ together with a nonempty sequence $\bar{\boldsymbol{m}} = \boldsymbol{m}_1 \boldsymbol{m}_2 \dots \boldsymbol{m}_m$ of distinct binary predicate symbols from Σ .

We say that the Σ -structure ${\mathfrak A}$ is a structure for $\langle \Sigma, \bar{{\boldsymbol m}} \rangle$ if

$$\mathfrak{A} \vDash \bigwedge_{1 \leq i \leq m} \forall \mathbf{x} \exists \mathbf{y} (\mathbf{m}_i(\mathbf{x}, \mathbf{y}) \land (\mathbf{x} \neq \mathbf{y}))$$

Type instances

- ▶ A type instance T over the classified signature $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$ is a nonempty set of 2-types that is closed under inversion.
- ▶ The type instance of a structure $\mathfrak A$ for $\langle \Sigma, \bar{\boldsymbol m} \rangle$ is defined by

$$T = \left\{ \mathsf{tp}^{\mathfrak{A}}[a, b] \mid a \in A, b \in A \setminus \{a\} \right\}.$$

▶ The type realizability problem is: given a classified signature $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$ and a type instance T over $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$, is T the type instance of some $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$ -structure?

Approach

- reduce the satisfiability problem for $\mathcal{L}^2e\mathrm{E}_{\mathsf{refine}}$ to an appropriate type realizability problem in nondeterministic exponential time
- show that the type realizability problem can be decided in nondeterministic polynomial time
- we do this by defining star-types to "witness the local environment" around elements in models
- collecting them in "not too big" certificates and
- constructing a model from a given certificate