COT 6405 Introduction to Theory of Algorithms

Topic 17. NP-complete problems

What we have covered

- The role of computing (Ch.1)
- Analysis of Algorithms: Insertion Sort, Merge Sort (Ch.2)
- Growth functions, Asymptotic Notations (Ch.3)
- Divide and Conquer, Recurrences (Ch.4)
- Heapsort (Ch.6), Quicksort (Ch.7)
- Dynamic Programming (Ch. 15)
- Greedy Algorithms (Ch.16)
- Linear-time Sorting, Lower Bounds, Counting Sort, etc. (Ch.8)
- Elementary data structure (Ch.10) (Self study)
- Hash Tables (Ch.11), Binary Search Trees (Ch.12)
- Elementary graph algorithms, representation. DFS. BFS (Ch.22)
- Minimum Spanning Tree: Prim/ Kruskal algorithm. (Ch.23)
- Single source shortest path: Dijkstra's, Bellman-Ford (Ch.24)
- NP-completeness (Ch.34)

Classification of Problems

Which problems will we be able to solve in practice?

Yes
Shortest path
Minimum spanning tree
BFS
DFS
Sorting
Order statistics

Probably no
Longest path
Subset-sum
0/1 Knapsack
3CNF-SAT
Hamiltonian-cycle
Vertex cover

Classification of Problems

- 1. Tractable problems
- 2. Intractable problems
- 3. Impossible problems

Tractable Problems

- We have generally studied tractable problems (solvable in polynomial time).
- Algorithm design patterns: Examples.
 - Divide-and-conquer: O(n log n) merge sort.
 - May long, but we can solve them in known time

Intractable Problems

- There are other problems that probably require exponential time
- Examples:
 - Given a Turing machine, does it halt in at most k steps on any finite input?
 - In 1936, Alan Turing presented a model for the first digital computer, which is today known as the Turing Machine.

Turing Machine

- A state machine, a tape with symbols, a head
- Based on (Current state, input char)
- Transit into a New state, head move left/right,

Impossible Problems

- There are other problems that cannot be solved by any algorithms
 - E.g., Fermat's Last Theorem: no three positive integers a, b, and c can satisfy the equation $a^n + b^n = c^n$ for any integer value of n > 2
 - it is considered an impossible problem until 1995, proved by Andrew Wiles, > 350 years
 - The proof itself is over 100 pages long and consumed seven years of Wiles's research time.
- Why do we need to know this as an engineer?
 - We need to know that some problems cannot be solved efficiently
 - To develop approximation algorithms, instead of trying to find an efficient solution

The Halting Problem

- The halting problem is a particular decision problem
 - Given a description of a program and a finite input, decide whether the program will halt, or run forever on that input
 - Can we solve this?
- A general algorithm to solve the halting problem for all possible "program-input" pairs cannot exist: The halting problem is undecidable.

The Halting Problem: two examples

- Suppose your program consists of the instruction "take every number between 1 and 10, add 2 to it and then output the result".
 - It's obvious that this program halts after 10 steps
- If the instructions are "take a number x, which is not negative, and keep multiplying it by 2 until the result is bigger than 1",
 - then the program will stop as long as the input x is not0. If it is 0, it will keep going forever.

The Halting Problem

- In these two examples, it is easy to see whether the program stops or not.
- But what if the program is much more complicated?
- Of course, we can simply run it and see if it stops
 - but how long should you wait before you decide that it doesn't? A week, a month, a year?
- The basic question is whether there is a test which in a finite amount of time decides whether or not any given program ever halts.
 - as Turing proved, the answer is no.

Polynomial time algorithms

- Most algorithms we have studied so far are polynomial time in the size of their inputs n
 - We call them "in P"
- Worst case running time is O(n^k) for some constant k.
- Problems that are solvable by polynomial time algorithms are said to be tractable.

What's so great about polynomial time?

- 1. Although we would consider a problem that is $\Omega(n^{100})$, this type of problem is rarely encountered.
 - The exponents on the polynomial are usually small.
- 2. For most reasonable models of computation, a problem that can be solved in polynomial time in one model can be solved in polynomial time in another mode

Do all problems have polynomial time solutions?

NO!

- Some problems are not solvable
 - Turing's Halting problem is an example
 - Cannot be solved by any computer no matter how much time is given
- There is a large class of important problems for which we do not know the answer.
- These are the NP complete problems.

Many P and NP-Complete Problems are Closely Related

- Shortest path problem and longest path problem
- Euler tour and Hamiltonian Cycle
 - Euler tour of connected, directed graph visits each
 edge exactly once
 - Hamiltonian cycle begins and ends at the same vertex and visits each vertex exactly once
- 2-SAT and 3-SAT
 - 2-Conjunctive Normal Form (CNF) Satisfiability
 - $(x1 \lor \neg x2) \land (\neg x1 \lor x2) \land (x1 \lor x2)$
 - 3-Conjunctive Normal Form (CNF) Satisfiability
 - (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧(x1 ∨x2∨ ¬x3)

The Satisfiability Problem

- Given a Boolean formula containing variables whose value are 0 or 1, connected by the Boolean connectives
 ∧, ∨, and ¬.
- A Boolean formula is satisfiable if there is an assignment of values to variables that cause the formula to evaluate to 1
- k-SAT
 - Informal definition: A formula is in k-conjunctive normal form, if it is the AND of clauses of ORs of exactly k variables (or their negations)
- 3-SAT is NP-complete
 - $-(x1 \lor \neg x2 \lor x3) \land (\neg x1 \lor x2 \lor x3) \land (x1 \lor x2 \lor \neg x3)$

Three Classes of Problems

- P (Polynomial)
 - Problems solvable in polynomial time
 - Can be solved in time O(n^k) where k is a constant
- NP (Non-deterministic Polynomial)
 - Problems that are verifiable in polynomial time
 - Given a "<u>certificate</u>" of a solution, we can verify that the solution is correct in polynomial time
 - For Hamiltonian path, the certificate is a sequence of vertices
 - For 3-SAT (3-Conjunctive Normal Form Satisfiability), the certificate is an assignment of values to variables
- NPC (NP Complete)

NP Complete Problems

- The complexity status of these problems is unknown
- There is no established lower bound
- But, it is known that if one of these problems can be solved in polynomial time, all of them can.

What Do We Think?

- Most computer scientists believe that the NP complete problems are intractable.
- Why?
 - People have been trying to find efficient algorithms for them for a long time and no one has succeeded.

NP Complete Problems

- Informal definition:
 - A problem is in the class NPC if it is in NP and is as "hard" as any problem in NPC
 - No polynomial time solutions but "hard"
- If any problem in the class NPC can be solved in polynomial time, then all can be solved in polynomial time

Proofs of NP-Completeness

- Different from other proofs we have done
- Rather than show that a problem has an efficient algorithm, we will be demonstrating that it is hard
 - By mapping it to another 'hard' problem

Some NP-complete Problems

- Summarization
 - CIRCUIT-SAT -- Cook-Levin theorem
 - 3-SAT -- reduced from CIRCUIT-SAT
 - VERTEX-COVER reduced from 3-SAT
 - CLIQUE reduced from VERTEX-COVER
- SET-COVER: Given a collection of m sets, are there K of these sets whose union is the same as the whole collection of m sets?
 - NP-complete by reduction from VERTEX-COVER

Some Other NP-Complete Problems

- SUBSET-SUM: Given a set of integers and a distinguished integer K, is there a subset of the integers that sums to K?
 - NP-complete by reduction from VERTEX-COVER
- **0/1 Knapsack:** Given a collection of items with weights and benefits, is there a subset of weight at most W and benefit at least K?
 - NP-complete by reduction from SUBSET-SUM
- Hamiltonian-Cycle: Given an graph G, is there a cycle in G that visits each vertex exactly once?
 - NP-complete by reduction from VERTEX-COVER
- Traveling Salesman Tour: Given a complete weighted graph G, is there a cycle that visits each vertex and has total cost at most K?
 - NP-complete by reduction from Hamiltonian-Cycle.

Theory of NP-Completeness

- Limited to one type of problems decision problems
 - Each element of S (the set of solutions) is an element of {yes, no} (or {0, 1})
 - Usually dealing with <u>optimization problems</u> that are easily restated as a decision problem.
 - We can show that if the decision problem is easy, then the optimization problem is easy.

Optimization Problem vs Decision Problem

- Shortest path problem as an optimization problem
 Given a graph G= (V,E), two vertices u, v ∈ V, what is
 the shortest path that exists in G between u and v?
- Shortest path problem as a <u>decision problem</u>
 Given a graph G= (V,E), two vertices u, v ∈ V and a nonnegative integer k, does a path exist in G between u and v whose length is <u>at most k</u>?
 - k hops away

General Approach

To change an optimization problem to a decision problem, we can usually <u>just impose</u> a bound on the value to be optimized.

- minimization problem example:
 - length of shortest path <u>at most k</u>
- maximization problem example:
 - length of longest path <u>at least k</u>

General statements

- Usually, if we can solve the optimization problem quickly, we can solve the decision problem quickly.
- Also, if we can provide evidence that the decision problem is <u>hard</u>, we also provide evidence that the optimization problem is hard.

Nondeterministic Polynomial (NP)

- Let an oracle guess an answer to the problem (certificate).
- If we can find an algorithm that can verify that the answer is correct in polynomial time, then this problem is in the class NP
- P is clearly a subset of NP
 - The complexity class P is the set of concrete decision problems that are solvable in polynomial time.

P = NP?

Theorem

- If any NP-complete problem is polynomialtime solvable, then P = NP.
- All problems in NP can be reduced to a NPcomplete problem in polynomial time

Example: Hamiltonian Cycle Problem, HAM-CYCLE

- A <u>Hamiltonian cycle</u> of an undirected graph G=(V,E) is a simple cycle that contains each vertex in V.
- The Hamiltonian-cycle problem asks if a given graph contains a Hamiltonian cycle.

$HAM-CYCLE \in NP$

- HAM-CYCLE is an element of NP, because we can verify an answer
 - Given a list of vertices, does the list represent a Hamiltonian cycle?
 - We can find a polynomial time algorithm to determine if this list is a Hamiltonian cycle.
 - Is the first vertex the same as the last vertex?
 - Are all vertices visited?
 - For each vertex in the list, is there an edge to the next vertex in the list?
 - Is any vertex other than the first repeated

Showing Problems to be NP- Complete

- Restate a problem as a decision problem
- Demonstrate that the decision problem is in the class NP
- Show that a problem known to be NP-Complete can be reduced to the current problem in polynomial time.

Reducibility

Decision problem A is <u>polynomial-time reducible</u> to decision problem B if a polynomial time algorithm can be developed

- which changes each instance of problem A to an instance of problem B
- such that: if the answer for an instance of B is yes, the answer to the corresponding instance of A is yes.

A First NP-Complete Problem

- This technique for showing that a problem is in the class NP-Complete requires that we have one NP-Complete problem to begin with
- <u>Circuit satisifiability</u> was the first problem to be shown to be in NP-Complete.
- Cook's Theorem
 - Stephen Arthur Cook

Sketch of NP-Completeness Proof for CIRCUIT-SAT

- Very long and difficult in the details.
- Used to provide the basis for most other proofs of NP-Completeness.
- Problem domain is combinatorial circuits.

Combinatorial Circuit Components

х	$\neg x$
0	1
1	0

$$\begin{array}{c|cccc} x & y & x \wedge y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

$$\begin{array}{c|cccc}
x & y & x \lor y \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}$$

(a)

(b)

Circuit-Satisfiability Problem

Given a Boolean combinatorial circuit composed of AND, OR, and NOT gates, is it satisfiable? The output is 1.

Demonstrating Circuit Satisfiability is NP Complete

- This proof was done from first principles.
- It did not depend on the existence of any other NPC problems.
- A problem Q is NP-Complete if
 - 1. It is an element of the class NP
 - 2. $Q' \leq_{p} Q$ for every Q' in NP

Step 1: Prove CIRCUIT-SAT ∈ NP

- Develop an algorithm A that can verify a solution in polynomial time.
- Inputs for A
 - A standard representation of a combinatorial circuit
 - An assignment of input values to the circuit
- Algorithm A determines the output of the combinatorial circuit. Output is 0 or 1.
- This can be done in polynomial time (linear for a clever algorithm.)
- Therefore, CIRCUIT-SAT ∈ NP

Step 2: Reduction

- We need to show that every other problem in NP can be reduced to CIRCUIT-SAT.
- The basic argument is:
 - A combinatorial circuit can be used to implement a computer: Program, Memory, Program counter, Working storage, etc.
 - We can show that every problem in NP can be mapped onto operations that can be represented as a sequences of states of combinatorial circuits.
 - We show that this can be done in polynomial time.
 - It is not simple to show all of this, but in the end we can show that any problem in NP can be reduced to CIRCUIT-SAT in polynomial time

Implications of CIRCUIT-SAT∈NPC

- CIRCUIT-SAT is the "seed" problem in NPC
- Once we know that one problem is in NPC, we can use it to demonstrate that other problems are in NPC using a simpler procedure.

Summary

- Classification of problems
- P and NP
- Well-known NP complete problems
- Optimization problems v.s. decision problems
- General ways to prove whether or not a problem is in NP and NPC
- Common mistakes: NPC stands for nonpolynomial. This is actually unknown.

11/19/2018