Lecture 3: Finite Automata

Dr Kieran T. Herley

Department of Computer Science University College Cork

2018/19

Summary

Deterministic finite automata (DFA). Definition and operation of same. DFAs as string classifiers or pattern recognizers. Algorithm for simulation of DFAs.

Finite Automata

 A finite automaton (aka finite state machine) is a simple abstract device that categorizes input strings as either accepted or rejected.

Operation of (deterministic) finite automaton:

- Place token on start state.
- For each input symbol in turn, move token along (unique) edge whose label matches that symbol.
- Accept/reject input if token in accept/non-accept state at the end.

Deterministic Finite Automata

Definition

Deterministic Finite Automaton (DFA) a consists of

- Σ an alphabet
- S a finite set of states
- so a start state
- A a set of accept states and
- T=(S,E) a directed graph in which each edge in E is labelled with one or more elements of Σ and no two edges bearing the same label emanate from the same state.

^aWill consider *nondeterministic* finite automata (NFA) later

Example cont'd

•

$$\Sigma = \{a, b, c\}$$
 $S = \{s_0, s_1, s_2, s_3\}$
 $A = \{s_2\}$

Aside

Transition graph often represented by a transition table:

	a	b	С
<i>s</i> ₀	s_1	<i>s</i> ₂	s_1
s_1	<i>s</i> ₁	<i>s</i> ₂	s_1
<i>s</i> ₂	s ₂	<i>s</i> ₃	<i>s</i> ₂
s 3	s 3	<i>s</i> ₃	s 3

KH (10/09/18)

Lecture 3: Finite Automata

Input: a c a c c a

$$a, c$$
 b
 a, c
 a, c

Input: a c a c c a Reject!

Input: a c b c c a

Input: a c a c c c a Reject! Input: a c b c c a Accept! Input: a a b b c a

Key:

start state

accept state

Input: a c a c c c a Reject!
Input: a c b c c a Accept!
Input: a a b b c a Reject!

Input: $b \ a \ c \ b \ c \ a$

Key:

→ start state

accept state

```
Input: a c a c c a Reject!
Input: a c b c c a Accept!
Input: a a b b c a Reject!
Input: b a c b c a Reject!
Input: b b c a c a
```

Input: a c a c c a Reject!
Input: a c b c c a Accept!
Input: a a b b c a Reject!
Input: b a c b c a Reject!
Input: b b c a c a Reject!

Observation

Accepts all strings with exactly one b.

4□ > 4□ > 4□ > 4□ > 4□ > 9

KH (10/09/18)

Formal Acceptance Criterion

Formal Criterion

Definition

The automaton *accepts* string $x_1x_2\cdots x_n$ if there is a path in T from the start state to one of the accept states such that for each i, the ith edge on the path bears label x_i . All other strings are *rejected*.

Pic

Example

•

• Accepts 01001:

$$s_0 \overset{0}{\rightarrow} s_0 \overset{1}{\rightarrow} s_1 \overset{0}{\rightarrow} s_1 \overset{0}{\rightarrow} s_1 \overset{1}{\rightarrow} s_0$$

• Rejects 010101.

Example

• Accepts 01001:

$$s_0 \overset{0}{\rightarrow} s_0 \overset{1}{\rightarrow} s_1 \overset{0}{\rightarrow} s_1 \overset{0}{\rightarrow} s_1 \overset{1}{\rightarrow} s_0$$

- Rejects 010101.
- •

Observation

Accepts strings of even parity, rejects odd.

How to prove this?

Another Example

Another Example

Claim

Accepts all strings containing exactly three 1s.

- Each '0' leaves state unchanged, each '1' moves one state to right
- Rightmost state is a "trap state": once entered there is no way of "escaping" and reaching the accept state to its left.

- 4 ロ ト 4 昼 ト 4 種 ト 4 種 ト ■ 9 Q (C)

Yet Another Example

Yet Another Example

Claim

Accepts strings that do not contain two consecutive bs

Yet Another Example

Claim

Accepts strings that do not contain two consecutive bs

```
Algorithm DfaAccept(M, X):

s \leftarrow M.start

ch \leftarrow X.nextChar()

while ch \neq eof do

s \leftarrow M.moveTo(s, ch)

ch \leftarrow X.nextChar()

if s in M.accept then

return true

else

return false
```

```
Algorithm DfaAccept(M, X):
   s \leftarrow M.start
   ch \leftarrow X.nextChar()
   while ch \neq eof do
       s \leftarrow M.moveTo(s, ch)
       ch \leftarrow X.nextChar()
   if s in M.accept then
       return true
   else
       return false
```

M = **A**utomaton

M.start start state
M.accept accept
states
M.moveTo(..)
transition function

X = input

X.nextChar() returns next char eof Special end-ofinput char

```
Algorithm DfaAccept(M, X):
    s \leftarrow M start
    ch \leftarrow X.nextChar()
    while ch \neq eof do
                                                                             a, b, c
        s \leftarrow M.moveTo(s, ch)
        ch \leftarrow X.nextChar()
    if s in M.accept then
        return true
                                                   Key:
    else
                                                         start state
                                                         accept state
        return false
```

Algorithm emulates "token-tracing" process:

- s encodes state holding token
- moveTo emulates state transitions

KH (10/09/18)

```
Algorithm DfaAccept(M, X):

s ← M.start

ch ← X.nextChar()

while ch ≠ eof do

s ← M.moveTo(s, ch)

ch ← X.nextChar()

if s in M.accept then

return true

else

return false
```

Theorem

DfaAccept returns true if and only if automaton M accepts string X.

- For DFAs, string-path correspondance is unique
- Sequence of s values implicitly defines path
- and vice versa

```
Algorithm DfaAccept(M, X):

s \leftarrow M.start

ch \leftarrow X.nextChar()

while ch \neq eof do

s \leftarrow M.moveTo(s, ch)

ch \leftarrow X.nextChar()

if s in M.accept then

return true

else

return false
```

Claim

DfaAccept(M, X) runs in O(|X|) time i.e. linear in the input length.

Representing the Transition Function

- Transition function typically represented as table
- Example:

	а	b	С	 Z	
<i>s</i> ₀					
<i>s</i> ₀ <i>s</i> ₁ <i>s</i> ₂					
<i>s</i> ₂					
:					
s _n					

- For large alphabets and state sets, tables can be huge; also typically sparse.
- Permits fast lookup (O(1)), but space hungry.
- (Could also represent function using (say) map.)

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

FAs As Pattern Recognizers

 Since FAs categorize strings (accept/reject), can think of them as language recognizers: device to characterize which strings belong to some set and which don't.

0

 Accepts strings consisting of letters and digits that begin with a letter i.e. valid Pascal identifiers

Aside – String Matching

Matches P occurs with shift s if P[1..m] = T[s+1..s+m]

Goal Locate all occurrences of P in T.

Naive Algorithm

Algorithm NaiveStringMatch(T, P):
for
$$s \leftarrow 0$$
 to $n - m$ do
if $P[1..m] = T[s+1..s+m]$ then
print "pattern occurs with shift" s

Running Time
$$= O(nm)$$
 (SLOW)

DFAs and String Matching

Recall DFA can act as simple pattern recognition device, accepting some strings, rejecting others

Fact

For every string p there is a simple DFA M(p) that "recognizes" it. (Not obvious, but true.)

Cunning Plan

- •Build a DFA that "recognizes" string p
- •Run input through DFA
- •Watch for token entering accept state (signifies pattern occurrence)

M(ababaca) a DFA for ababaca

M(ababaca) cont'd

Notes

- Complete DFA has exactly one transition per state for each alphabet symbol
- •Implicit transitions of for $s_? o s_0$ are not shown to avoid cluttering diagram

Fascinating Fact Beginning at any state *s*, by following transitions labelled a-b-a-c-a you end up in the accept state!

Corollary DFA detects (by entering accept state) each occurrence of pattern ababaca in the input string