	Another example of augmented AVI tree:
	Orthogonal Range Searching
_	Input: A set of points T < R2 4
	Input: A set of points $T \subset \mathbb{R}^2$ & a rectangle $(\varkappa_1, y_1, \varkappa_2, y_2) =: \mathbb{R}$. Output: All points in the rectangle, ie. Tor.
	Bouter-Coace: It can be
	solved in O(n) time.
	On: Can it be done 0 x1 x2 Significantly faster?
	Let k := TARI.
	e., a.t. 1.1 1.1
	Easier question: Find the points on the line (x1, x2)?
	· Store the points in an AVL tree with the
	x-coordinate.
	· Search x_1, x_2 in T & find the least common ancestor (lea) y.

- Next, how do we find the points in TAR?
- -Ans: Augment each node v by adding another copy of tree(v) as: An AVL tree organized with y-coordinates. I call this Ytree(v).
- This inspires the following pseudocode for Range Search (T, x1, x2, y1, y2);

We may . For root v of each blue shaded subtree?

Make O(lgn) & Do Range Search (Ytree (v), y, y2) }

such calls. For the other blue vertices v on the

	Search path: Check whether v E? TAR.
	search path: Check whether v =? TAR. Output the ones found in TAR.
>	> Orthogonal Range Search can be done in
	O(k+lfn) time.
	Orthogonal Range Search can be done in O(k+lfn) time. (Exercise)
-	· Note that preprocessing time taken is
	O(nlg n).
	Note that preprocessing time taken is $O(nlg n)$. But, the query time is significantly lower!
	lower!
	Note that the space required by the augmented AVL tree is ~
	augmented AVL tree is ~
	$\frac{2}{v \in T} = \sum_{u \in T} \#(v \in T: v \text{ is an ancestor of } u)$
	= ITI · depth (T)
	= O(nlgn).

P

Interval Trees

- Computational geometry, or scheduling, problems require organization of intervals.
- Interval $i = [t_1, t_2]$ has the low endpoint $t_1 = low(i)$ & high endpoint $t_2 = high(i)$.
- Interval i, i' overlap if ini' # \$.

 Equivalently, low(i) high(i) high(i) low(i) \leftarrow high(i) high(i).

 Low(i) \leftarrow high(ii) high(ii)
- On: Is there a data structure where an overlapping interval can be searched in O(gn) time? (given an i)
- Ans: Let The the set of n intervals.
 Organize Tinto an AVL tree wat the low endpoints,

	-	- The pseudocode for Search (T,i) is
		The pseudocode for Search (T,i) is mainly guided by "low(i) (max (left(v))"
		· v < root(T);
		· v ← root(T); · while (i does not overlap int(v)) {
h	igh(i)	· if (low(i) < max (left(v)))
W	it w	sed? then $v \leftarrow left(v)$;
		else $v \leftarrow right(v)$; }
		· réturn v;
		Gution: Handle the boundary conditions
		like - v=NULL or left(v) = NULL or
		Gution: Handle the boundary conditions like - $v = NULL$ or left(v) = $NULL$ or right(v) = $NULL$ or
	Exer	ise: Show that it correctly finds a
		ise: Show that it correctly finds a vET s.t. int(v) ni + & in O(Gn) time.
-	Hint 1	Loop invariant - If i overlaps with some
		interval in T, then " " "
		" tree (v).

Hint 2: If low(i) < max(left(v)) & i overlaps
With some interval in tree(v),
then i overlaps with someone in left(v). Troof: · Otherwise, it means that $\forall u \in left(v)$, $int(u) = \phi$. => lowli) > high (int(u)) OR high(i) < low (int(u)) => Jueleft(v), high(i) < low (int(u)) Lilow(i) < max(left(v))] > low(i) <high(i) < low(int(u)). · Shis means that high (i) (low (int (ii)),

Yu's tree (right (v))U(v). [: T uses low endpoints]

· Hence, i does not overlap with any interval in tree(v). ! It's a tricky proof, as it deduces a lot about high(i) !

	Apply to Rectangle Overlap
	Input: A list L of axis-parallel rectangles (n of them via 2n points)
_	Output: YES if two of them overlap
Qn	: Can you solve in time less than O(n2)?
_	Idea: (Virtual line sweep!)
	Order the
	red & blue 1
	y-coordinates in 1
	an array A. Dish a poden a Ca A i malan
	· Pick an edge e from A, in order. · If e is blue: Check whether e overlaps
	with an edge in an interval tree T; if
	no, Insert (T,e).

off e is red: Let e' be the appointed blue edge. Search & Delete e' from T. If e' & T then OUTPUT OVERLAP.
Else go to the next e in A.

Exercise: Write the pseudocode & prove that it works in time O(nlgn).

- Invariant 1: That non-overlapping blue rntervals with their reds yet to be swept.
- Invariant 2: Unmatched red means an overlap.

- Eg. BRBR
Eg. BBRR
Eg. BBRR