Binomial Tree Limit

Consider a 100-strike option with $S=100, r=.06, \delta=.06, \sigma=.1$ and t=1. What happens as the number of binomial periods increases?

Num of Periods	Premium
1	4.70
2	3.32
3	4.07
4	3.53
5	3.94
6	3.60

Binomial Tree Limit

Continued ...

Num of Periods	Premium
7	3.89
8	3.64
9	3.86
10	3.66
11	3.84
12	3.67
i :	:
50	3.73
100	3.75
1000	3.755

Binomial Tree Limit

Eventually it settles near a specific value. As fun as it would be to do a 1000 period binomial tree, there is an easier way to find out what that limit is.

A set of equations gives us the limit. They are called the **Black-Scholes** equations.

The Black-Scholes equations:

$$d_1 = \frac{\log(S/K) + (r + .5\sigma^2)T}{\sigma\sqrt{T}}$$

$$d_2 = d_1 - \sigma\sqrt{T}$$

$$C = SN(d_1) - Ke^{-rT}N(d_2)$$

$$P = Ke^{-rT}N(-d_2) - SN(-d_1)$$

where $N(\cdot)$ is the normal CDF function, found from a table.

Consider a 100-strike option with S=100, r=.06, $\sigma=.1$ and T=1. Assume dividend rate $\delta=0$. What is the Black-Scholes price?

Consider a 100-strike option with S=100, r=.06, $\sigma=.1$ and T=1. Assume dividend rate $\delta=0$. What is the Black-Scholes price?

$$d_{1} = \frac{\log(S/K) + (r + .5\sigma^{2})T}{\sigma\sqrt{T}}$$

$$= \frac{\log(100/100) + (.06 + .5 \times .1^{2}) \times 1}{.1 \times \sqrt{1}}$$

$$= 0.65$$

$$d_{2} = d_{1} - \sigma\sqrt{T}$$

$$= 0.65 - 0.1 \times \sqrt{1}$$

$$= 0.55$$

Consider a 100-strike option with $S=100,\ r=.06,\ \sigma=.1$ and T=1. What is the Black-Scholes price?

$$d_1 = 0.65$$

 $d_2 = 0.55$

The call option price is:

$$C = 100N(d_1) - 100e^{-0.06}N(d_2)$$

= 100N(0.65) - 100e^{-0.06}N(0.55)
= 7.459322

Black-Scholes Practice

The current price of a stock is \$40, the risk free rate is r=.03, and the volatility of the stock is $\sigma=.1$. Using Black-Scholes, what is the price of a call option that expires in 9 months to purchase the stock at a strike price of 39?

$$d_1 = 0.595$$

 $d_2 = 0.509$

Black-Scholes Practice

The current price of a stock is \$40, the risk free rate is r=.03, and the volatility of the stock is $\sigma=.1$. Using Black-Scholes, what is the price of a call option that expires in 9 months to purchase the stock at a strike price of 39?

$$d_1 = 0.595$$

 $d_2 = 0.509$

The call option price is:

$$C = 40N(d_1) - 39e^{-0.03 \cdot 0.75}N(d_2)$$

= 2.483579

Black-Scholes Practice for Put Option

Using the same parameters, what is the price of a put option?

Black-Scholes Practice for Put Option

Using the same parameters, what is the price of a *put* option? The put option price is:

$$P = 39e^{-0.03 \cdot 0.75} N(-d_2) - 40N(-d_1)$$

= 0.6158774