Thursday, January 24, 2019

11:24 PM

FRAME RELAY P2

Access Rate/Committed Info Rate

SP's build FR networks using very powerful switches: Devices only see switch int of SP

- From customer POV: FR single int config w/1/more PVCs
- · Customers buy FR services from SP

Access rate	Capacity of local loop: Refers to port speed Customer POV: SP provides serial connect/access link to FR network over leased line Rate at which access circuits join FR network May be 56 kb/s/T1 [1.544 Mb/s]/Fractional T1 [multiple 56 kb/s/64 kb/s] Clocked on FR switch: Not possible to send data higher than it
CIR	Committed Info Rate: Capacity through local loop guaranteed by provider Customers negotiate CIRs w/SP for each PVC: • Amt of data network receives from access circuit • SP guarantees customer can send data at CIR • All frames received at/below CIR accepted

CIR specifies max avg data rate network undertakes to deliver under normal conditions

- · When subscribing to FR service: Local access rate is specified
- Typically, provider asks customer to specify CIR for each DLCI

If customer sends info faster than CIR on a DLCI: Network marks some frames w/DE: Discard Eligibility bit

Network does its best to deliver all packets: Discards DE packets 1st if congestion

Customer pays for 3 FR cost components as follows:

Access rate	Cost of access line from DTE to DCE (customer to SP): Line charged based on port speed neg/install
PVC	Cost based on PVCs: After PVC established: Addl cost to increase CIR can be done
CIR	Customers normally choose CIR lower than access rate: Allows take advantage bursts

Oversubscription

 SP's sell more capacity than they have on assumption not everyone will demand their capacity all the time

Bursting: Any network capacity being unused is made avail/shared w/customers at no extra charge

· Allows customers to burst over CIR as bonus

Various terms used to describe burst rates:

- Bc: Committed Burst Size
- Be: Excess Burst Size

Bc is a negotiated rate above CIR that customer can use to transmit for short burst

- Represents max allowed traffic under normal working conditions
- · Allows traffic to burst to higher speeds as avail bw permits
- · cannot exceed access rate of link
- · device can burst up to Bc/still expect the data to get through
- If long bursts persist: Higher CIR should be purchased

Be describes bw avail above CIR up to access rate of link

- · Unlike Bc: Not negotiated
- Frames may be transmitted at this IvI but are most likely dropped

FR Flow Control

Congestion-notification mech:

- FECN: Fwd Explicit Congestion Notification
- BECN: Backward Explicit Congestion Notification

FECN/BECN each controlled by single bit contained in frame header

- · Let rtr know there is congestion: Should stop trans until condition reversed
- When DCE sets BECN bit to 1: Notifies devices in dir of source (upstream) there is congestion on

network

 When DCE sets FECN bit to 1: Notifies devices in dir of dest (downstream) there is congestion on network

Frame header: Also contains DE bit: ID's less impt traffic that can be dropped during periods of congestion

- DTE devices can set value of DE bit to 1: Indicates frame has lower imptance than others
- When network congested: DCE devices discard frames w/DE bit set to 1 before discarding those that don't
- Reduces likelihood of critical data being dropped during periods of congestion

Congestion? SP's FR switch applies following logic rules to each incoming frame based on whether CIR exceeded:

- If incoming frame doesn't exceed Bc: Frame passed
- If incoming frame exceeds Bc: Marked DE
- · If incoming frame exceeds Bc/Be: Discarded

Basic FR Config

Required Tasks	Optional
Enable FR encapsulation on int	Config LMI
Config dynamic/static addr mapping	Config FR SVC's
	Config FR traffic shaping
	Customize FR for network
	Monitor/maintain FR connections

R1(config)# int s0/0/1

R1(config-if)# bandwidth 64

R1(config-if)# ip address 10.1.1.1 255.255.255.0

R1(config-if)# ipv6 address 2001:db8:café:1::1/64

R1(config-if)# ipv6 address fe80::1 link-local

R1(config-if)# encapsulation frame-relay

R1(config)# int s0/0/1

R1(config-if)# bandwidth 64

R1(config-if)# ip address 10.1.1.2 255.255.255.0

R1(config-if)# ipv6 address 2001:db8:café:1::2/64

R1(config-if)# ipv6 address fe80::2 link-local

R1(config-if)# encapsulation frame-relay

Steps:

- 1. Set IP on int: IOS: FR most commonly supported on sync serial ints
- 2. Config Encapsulation: encapsulation frame-relay [cisco | ietf]
 - 1. Enables FR encapsulation/allows processing on supported int
 - 2. Cisco: Default: 4-byte header/2 bytes to ID DLCI/2 bytes to ID packet type
 - 3. ietf encapsulation complies w/RFC 1490/RFC 2427: Non-Cisco rtr
- Set BW
- 4. Set LMI Type (optional): Cisco/ANSI Annex D/Q933-A Annex A

Config Static FR Map

R1(config-if)# frame-relay map protocol protocol-addr dlci [broadcast]

Protocol	Defines supported protocol/bridging/logical link control: • ip/ipv6/AppleTalk/decnet/dlsw/ipx/llc2/rsrb/vines/xns
Protocol-addr	Defines network layer addr of dest rtr int
Dlci	Local DLCI used to connect to remote protocol addr
Broadcast	Optional: Allows broadcasts/multicasts over VC Permits use of dynamic r-protocols over VC

R1(config)# int s0/0/1

R1(config-if)# bandwidth 64

R1(config-if)# ip address 10.1.1.1 255.255.255.0

R1(config-if)# ipv6 address 2001:db8:café:1::1/64

R1(config-if)# ipv6 address fe80::1 link-local

R1(config-if)# encapsulation frame-relay

R1(config-if)# frame-relay map ipv6 2001:db8:café:1::2 102 R1(config-if)# frame-relay map ipv6 fe80::2 102 broadcast

R2(config)# int s0/0/1

R1(config-if)# bandwidth 64

R1(config-if)# ip address 10.1.1.2 255.255.255.0

R1(config-if)# ipv6 address 2001:db8:café:1::2/64

R1(config-if)# ipv6 address fe80::2 link-local

R1(config-if)# encapsulation frame-relay

R1(config-if)# frame-relay map ip 10.1.1.1 201 broadcast

R1(config-if)# frame-relay map ipv6 2001:db8:café:1::1 201

R1(config-if)# frame-relay map ipv6 fe80::1 201 broadcast

Cisco rtrs: Support all network layer protocols over FR [IPv4/6/IPX/AppleTalk]

Address-to-DLCI mapping can be done dynamically/statically

Dynamic mapping: Performed by I.ARP: Default enabled: No addl cmd req to config dynamic mapping on int

Static mapping: Manual: To map bet next hop protocol addr/DLCl dest add:

frame-relay map protocol protocol-address dlci [broadcast]

FR/ATM/X.25: Non-broadcast multi-access NBMA networks

- NBMA allow only data transfer from 1 computer to another over VC/across switching device
- Don't support multicast/broadcast traffic: Single packet can't reach all destinations
- · Regs you to replicate packets manually to all dest

broadcast allows IPv4 broadcasts/multicasts to be propagated to all nodes

- · Also allows IPv6 multicasts over PVC
- · When enabled: Rtr converts broadcast/multicast traffic into unicast so other nodes receive updates
- Some protocols may require addl config options: RIP/EIGRP/OSPF

Verify Static FR Map | R1# show frame-relay map

Reachability Issues: Default: Most FR networks provide NBMA connectivity: Using hub-and-spoke topology bet sites

- NBMA FR topology: When single multipoint int must be used to interconnect multiple sites
- R-update reachability issues may result
- With distance vectors: May result from split horizon/multicast/broadcast replication
- With link states: Issues w/DR/BDR election

Split Horizon: A loop prevention mech for distance vector routing protocols [EIGRP/RIP]

- Not applicable to link-state r-protocols
- Reduces r-loops by preventing an update that is received on int from being fwded out same int
- Not an issue if only 1 PVC config on phys int

Multicast/Broadcast Replication:

- Due to split horizon: When rtr supports multipoint connections over single int:
 - Must replicate broadcast/multicast packets
- In case of r-updates: Must be replicated/sent on each PVC to remote rtrs
- These packets consume BW/cause latency vars in usr traffic
- Amt of broadcast traffic/# of VCs terminating at each rtr should be evaluated during design phase of FR
- Overhead traffic [r-updates] Can affect delivery of critical usr data
 - Especially when delivery path contains low-BW [56 kb/s] links

Neighbor Discovery: DR/BDR

- Link-state r-protocols [OSPF] doesn't use split horizon rule for loop prevention
- · Reachability issues can arise with DR/BDR
- OSPF over NBMA networks works in non-broadcast network mode by default
- · Neighbors are not auto discovered
- · Neighbors can be statically config: Ensure hub rtr becomes DR
- NBMA network behaves like Ethernet: A DR needed to exchange r-info bet all rtrs on segment
- Only hub rtr can act as DR: Only rtr that has PVCs w/all other rtrs

Solving Reachability Issues

Disable split horizon	Method for solving reachability issues produced by split horizon
	 Disabling split horizon increases chances of loops
	 Only IP allows ability to disable split horizon: IPX/AppleTalk don't

Full meshed topology	Method is to use: Increases costs	
Subints	Hub-and-spoke FR topology: Hub rtr can be config w/logically assigned ints called subints	

FR Subints: Can partition phys int into multiple virtual ints called subints

Subint Logical int directly associated w/phys int

- To enable fwding of broadcast r-updates in FR: Can config rtr w/logically assigned subints
- Each VC can be config as p-t-p
- Partially meshed: Can be divided into # of smaller/fully meshed/p-t-p networks
- Each subnetwork can be assigned unique address
- · Allows each subint to act similarly to leased line
- Allows packets received on 1 subint to be sent out another: Even though packets being fwded out same phys int

FR subints can be config in either point-to-point/multipoint:

Point-to-point	Single p-t-p subint establishes 1 PVC connection to phys int/subint on remote rtr • Each pair of point-to-point rtrs is on its own subnet • Each point-to-point subint has single DLCI In p-t-p env: • Each subint acting like p-t-p int: For each VC: Separate subnet • Routing update traffic not subject to split horizon rule
Multipoint	Single m/p subint establishes multiple PVC connects to multiple phys ints/subint on remote rtrs • All participating ints are in same subnet • Subint acts like NBMA FR int • Routing update traffic subject to split horizon rule • All multipoint VCs belong to same subnet

When config subints: encapsulation frame-relay assigned to phys int

• All other config items: Network layer addr/DLCIs assigned to subint

Multipoint subint configs can be used to conserve addrs

- Helpful if VLSM: Var Length Subnet Masking not being used
- Config may not work properly given broadcast traffic/split horizons
- P-t-p subint created to avoid these issues

Config Point-to-Point Subints

R1(config-if)# int s0/0/0 number.subint {multipoint | point-to-point}

Multipoint	All rtrs exist in same subnet
Point-to-Point	So each pair of p-t-p rtrs have own subnet
	 Normally mask of 255.255.255.252

Assigning a DLCI:

R1(config-subif)# frame-relay interface dlci dlci-#

dlci-number	Defines local DLCI # being linked to subint
	 Only way to link LMI-derived DLCI to a subint
	 B/C LMI doesn't know about subints

Subints address limitations of FR by providing way to subdivide partially meshed FR:

- Into # of smaller/fully meshed/point-to-point: Subnetworks
- Each subnetwork assigned own network #/appears to protocols as if it were reachable through separate int

To create subint: Global:

int serial | physical port # | period | subint #

R1(config-if)# int s0/0/0.103 point-to-point Creates a point-to-point subint for PVC 103 to R3

- If subint config as point-to-point: Local DLCI for subint must also be config to distinguish from phys
 int
- DLCI also reg for multipoint subints for which I.ARP enabled for IPv4
- Not reg for multipoint subints config w/static route maps

R1(config-subif)# frame-relay interface-dlci Configs local DLCI on subint

• FR SP assigns DLCI #'s: Range from 16-992: Usually have only local sig: Range depends on LMI used

Config Point-to-Point Subints

R1(config)# int s0/0/1

R1(config-if)# encapsulation frame-relay

R1(config-if)# no shut

R1(config)# int s0/0/1.102 point-to-point

R1(config-subif)# ip address 10.1.1.1 255.255.255.252

R1(config-subif)# bandwidth 64

R1(config-fr-dlci)# frame-relay interface-dlci 102

R1(config-subif)# exit

R1(config)# int s0/0/1.103 point-to-point

R1(config-subif)# ip address 10.1.1.5 255.255.255.252

R1(config-subif)# bandwidth 64

R1(config-subif)# frame-relay interface-dlci 103

Config subints on phys int:

- Rem any network layer addr assigned to physical int: If phys int addr: Frames not received by local subints
- 2. Config FR encapsulation on phys int using encapsulation frame-relay
- 3. For each defined PVCs: Create logical subint: Specify port # followed by period [.] and subint #

 Subint # should match DLCI #
- 4. Config IP for int/set BW
- 5. Config local DLCI on subint using frame-relay interface-dlci FR SP assigns DLCI#'s

R1# show interfaces Verify FR is operating correctly on int

Verify FR: LMI

R1# show frame-relay Imi Displays sample output that shows # of status msgs exchanged bet local rtr/FR switch

- Ensure counters bet status msgs being sent/received are incrementing
- Validates there is active comm bet DTE/DCE
- Look for any non-0 Invalid items: Helps isolate problem of FR comm bet carrier's switch/client rtr

Verify FR: PVC Status

R1# show frame-relay pvc [interface interface] [dlci] View PVC/traffic statistics

- Useful for # of BECN/FECN packets received by rtr
- Status can be active/inactive/del

R1# show frame-relay pvc Displays status of all PVCs config on rtr: Can also specify particular PVC R1# clear counters Reset statistics counters: Wait 5/10min after clearing counters before issuing sh cmds again

Verify FR: I.ARP

R1# clear frame-relay inarp Clear dynamically created FR maps created using I.ARP R1# frame-relay inverse-arp Confirm whether cmd resolved remote IPv4 to local DLCI When I.ARP reg made: Rtr updates map table w/3 possible PVC connection states:

		· · · · · · · · · · · · · · · · · · ·
A	CTIVE	Successful end-to-end circuit [DTE to DTE]
II	NACTIVE	Successful connection to switch [DTE to DCE] w/out DTE detected on other end of PVC • Misconfig on switch
D	ELETED	DTE is config for DLCI that switch doesn't recognize as valid for that int

R1# show frame-relay map Display current map entries

R1# debug frame-relay Imi Determine whether rtr/FR switch are sending/receiving LMI packets properly Possible values of status fields:

0x0	Switch has DLCI programmed: But it's not usable • Possibly other end of PVC down
0x2	FR switch has DLCI: Everything operational
0x4	FR switch doesn't have DLCI programmed for rtr: • Was programmed at some point in past • Could be caused by DLCIs being reversed on router • PVC being del by SP in FR cloud