Симулятор электромагнитного взаимодействия

И. В. Сивиринов

Научный руководитель: А. С. Байгашов

Аннотация

Было создана программа для моделирования заряженных частиц в магнитных и электрических полях. Эта программа поможет учителям поехать взаимодействие между частицами ученикам.

Введение

Взаимодействие взаимодействия магнитов, электромагнитов, заряженных частиц является сложным и интересным особенно при добавлении больше одного магнита. А использование моделирования даёт нам возможность максимально верно и детально показать взаимодействия данных нам тел. Так что целью работы является создать программу для моделирования заряженных частиц в магнитных и электрических полях.

Постановка задачи

Для описания действия заряженной частицы использовались данные формулы:

1.
$$\frac{d^{2}x}{dt^{2}} = \frac{kq_{1}q_{0}}{((x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z-z_{0})^{2})^{\frac{3}{2}}} \cdot (x_{1}-x_{0})$$
2.
$$\frac{d^{2}y}{dt^{2}} = \frac{kq_{1}q_{0}}{((x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z-z_{0})^{2})^{\frac{3}{2}}} \cdot (y_{1}-y_{0})$$
3.
$$\frac{d^{2}z}{dt^{2}} = \frac{kq_{1}q_{0}}{((x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z-z_{0})^{2})^{\frac{3}{2}}} \cdot (z_{1}-z_{0})$$
4.
$$\frac{d^{2}x}{dt^{2}} = -\frac{GM_{1}M_{0}}{((x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z-z_{0})^{2})^{\frac{3}{2}}} \cdot (y_{1}-y_{0})$$
5.
$$\frac{d^{2}y}{dt^{2}} = -\frac{GM_{1}M_{0}}{((x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z-z_{0})^{2})^{\frac{3}{2}}} \cdot (y_{1}-y_{0})$$
6.
$$\frac{d^{2}z}{dt^{2}} = -\frac{GM_{1}M_{0}}{((x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z-z_{0})^{2})^{\frac{3}{2}}} \cdot (z_{1}-z_{0})$$

Для описания действия магнита использовались данные формулы:

1.
$$B_{x} = \frac{3\mu\mu_{d}}{((x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z-z_{0})^{2})^{\frac{5}{2}}} \cdot (x_{1}-x_{0})(z_{1}-z_{0})$$
2.
$$B_{y} = \frac{3\mu\mu_{d}}{((x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z-z_{0})^{2})^{\frac{5}{2}}} \cdot (y_{1}-y_{0})(z_{1}-z_{0})$$
3.
$$B_{z} = \frac{(2(z_{1}-z_{0})^{2}-(x_{1}-x_{0})^{2}-(y_{1}-y_{0})^{2})\mu\mu_{d}}{((x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z-z_{0})^{2})^{\frac{5}{2}}}$$
4.
$$\frac{d^{2}x}{dt^{2}} = \frac{q}{m}(v_{y}B_{z}-v_{z}B_{y})$$
5.
$$\frac{d^{2}y}{dt^{2}} = \frac{q}{m}(v_{z}B_{x}-v_{x}B_{z})$$
6.
$$\frac{d^{2}z}{dt^{2}} = \frac{q}{m}(v_{x}B_{y}-v_{y}B_{x})$$
7.
$$\frac{d^{2}x}{dt^{2}} = -\frac{GM_{1}M_{0}}{((x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z-z_{0})^{2})^{\frac{3}{2}}} \cdot (x_{1}-x_{0})$$
8.
$$\frac{d^{2}y}{dt^{2}} = -\frac{GM_{1}M_{0}}{((x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z-z_{0})^{2})^{\frac{3}{2}}} \cdot (y_{1}-y_{0})$$

9.
$$\frac{d^2z}{dt^2} = -\frac{GM_1M_0}{((x_1 - x_0)^2 + (y_1 - y_0)^2 + (z - z_0)^2)^{\frac{3}{2}}} \cdot (z_1 - z_0)$$

Для описания действия заряженной частицы использовались данные формулы:

1.
$$\frac{d^2x}{dt^2} = -\frac{GM_1M_0}{((x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2)^{\frac{3}{2}}} \cdot (x_1-x_0)$$

2.
$$\frac{d^2y}{dt^2} = -\frac{GM_1M_0}{((x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2)^{\frac{3}{2}}} \cdot (y_1 - y_0)$$

я описания действия заряженной частицы использовались дан
$$1. \ \frac{d^2x}{dt^2} = -\frac{GM_1M_0}{((x_1-x_0)^2+(y_1-y_0)^2+(z-z_0)^2)^{\frac{3}{2}}} \cdot (x_1-x_0)$$

$$2. \ \frac{d^2y}{dt^2} = -\frac{GM_1M_0}{((x_1-x_0)^2+(y_1-y_0)^2+(z-z_0)^2)^{\frac{3}{2}}} \cdot (y_1-y_0)$$

$$3. \ \frac{d^2z}{dt^2} = -\frac{GM_1M_0}{((x_1-x_0)^2+(y_1-y_0)^2+(z-z_0)^2)^{\frac{3}{2}}} \cdot (z_1-z_0)$$

4.
$$\frac{d^2x}{dt^2} = \frac{q}{m} (E_x + v_y B_z - v_z B_y)$$

5.
$$\frac{d^2y}{dt^2} = \frac{q}{m} (E_y + v_z B_x - v_x B_z)$$

6.
$$\frac{d^2z}{dt^2} = \frac{q}{m} (E_z + v_x B_y - v_y B_x)$$

Начальные условия и параметры

Электроны:

X	Вектор	y	у Вектор		Вектор	
	X		y		Z	
10	0	-10	0	10	-50	
-10	0	10	0	10	-50	

Магниты:

Marini Di.									
X	Вектор	у	Вектор г		Вектор масса		Магнитный		
	X		У		Z		момент		
							диполя		
-20	0	3	0	0	0	2	5		
0	0	0	0	0	0	10	1		

Электрическое поле:

X	Вект	у	Векто	Z	Векто	масса	E _x	E _y	E_{z}	B _x	$\mathbf{B}_{\mathbf{y}}$	Bz
	op x		ру		p z							
20	0	3	0	0	0	1	0.0000 00000 01	0	0	0.00 0000 0002	0	0

Результаты моделирования

В проведённых ниже изображениях мы можем увидеть детальное моделирование заряженных частиц в магнитных и электрических полях:

Заключение и перспективы

В будущем на базе этой программы будет написана игра-песочница, в которой можно будет увидеть взаимодействия частиц. На пример можно будет создать модель действия звёздного ветра на планеты.