

code !

Import pandas as pd

Stroke = pd. read_csv ("Stroke prediction.csv")

stroke. head ()

Dut	id	gend	age	hyper Tension	heart- disease	Ever_married	hlork type	Residona Type	avg_ glocose Level	bmî	Status	Stroke
Serve.	30669 30468 16523 56543 46136	Male Ferral Ferral	58.0 8.0 10.0	0	0 0 0 0	No Yes No Yes No	Private Private Private Private Never	orban urban Rural Rural	69.04	39.2 17.6 35.0	Never NAN Formul Smick	0
125	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	screte	Coursia	district (const.	gar.	discrete	divere	gran	Contract	(O Ah	Many 1	disc

strone. Shape

[Out]: (43400,12)

Stroke Info ()

information about stroke data.

```
create lins
       intervals = [0,12,19,30,60,90] -> #bins => Each intervals
       Categories = ["child", "teenager", young adult", "middle aged"
                               "Senior_citi zen"]
                                                      the Age column
                                                            Continous Data . So,
 F. Creating New Column & Storing The data of
                                                           We converting mito
                                                             Discrete Vo
                                           pivide.
        "Age
                                                           intervals
                                                         : 0-12 -> child
                                                          * 12-19 -> teerager
# Storke ["Age_category"] = pd. cut [x=
                                                            19-30 - young adult
                                                              30-60 - Middle aged
                                                           * 60-90 -> Senior citizen
           X = Stroke [Age], bins = intervals,
             Labels = categories]
                                             # Storke ["Age catory].
                                                   hist ()
                                                         Child
                                                               middle
                                                                      old.one
                                                                      (Senior_
                                                                       UHZONS)
 # stroke. head ()
                                    Changed Continous Data
                                                           Discrete Categorical data
                           Heart-
                                                Residence
                                                                   Smok grove
                                         WOYK
                                  Ever
                                                       Avg.
                                                              bmi
                    hypor
                                                       9 hose
Level
                                         type
                                 married
         gendur age
                                                Type
                           disease
     10
                                                                             child
               3.0
         Male
   30669
               68.0
                                                                            aged
   30468 Male
                                                                            child
    16523 Female
                8.0
   15654X Female
                                                                            Sem'or_
               10.0
                                                                             altzen
   46143 | Male
               14.0
                                                                             teen
```


* Machine Can't Understand Text Data. So, We Convert the discrete categorical "to "discrete Count" Data

* There are two types of Categorical Data

we should Treat Every variable

0	10	3 OTAT
AT	9	1079
A	8	maring y
Bt	7	- 1
B	6	
F	0	
	O AT A BT B F	0 10 At 9 A 8 Bt 7 B 6 F 0

>To convert categorical Data to Numeric :

odinal Dala

Nominal Data -> (dummies)

- 1. get Dummies (pandas)
- 2. One hot Encoding (sklearn)

whichis & given To state.

Hyd

Delhi

Mumbe

Kerala

Gujard

In this case, we can't

Decide by numbering

Odimal Data

- map (pandas) 2. Label Encoder (SKlearm)

# One Hot Emcoding	# Label Encoding
* Nominal	* Odinal

import pandas as Pd import Numpy as np import matplotlib. pyplot as pit 1. matplotlib inline

df = pd. read_csv ("homeprices.csv")

df. head ()

Out :

	1 1 1	SPE	
	Town	area	Price
01234	Chennai Chennai Chennai Chennai Banglore	3600 3000 3200 3600 2600	550000 5650000 6100000 6800000 5850000

Pd. get_dummies [Nominal Variable Encoding Using pandas]

dummies = Pd. get - dummies (df ["Town"])

dummies

	Bangbre	Chennai:	Hyderabad
0	0	1	0
	0	1	0
2	0	1	0
٤	0	1 0	0
5	1	0	0
6	2	0	0
7	1	0	0
0	<u></u>	0	1 4
9	8	1 0	1 1

put :- 1	0 11	d 11	70 · · · · · · · · · · · · · · · · · · ·	-4.5 6	
0-12 3 45 6 78 9 10 11 # df-du	Banglore Chenn 000011111000000000000000000000000000	000000000	, Laga	ch Ever Rec it shows For other shows:	columns it
Out:	ymî <i>es</i>	()		000021 S	Cod
Town	Area	price	Banglore	Chennai	Hyderabod
Chennai Chenna	2600 3000 3200 3600 2600 2800 3300 3600 2600	5500000 5650000 6100000 6800000 5850000 610000 7100000 5150000 600000	000001111000	1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000111

Q Q

ιÓ

Delete The Original column

df - dummies . drop ("town", axis = "columns", in place = True)

df - dummies

out:	Area	Price	Banglore	Chennai	Hyderabad
0	2600	5500000	0		0
2	3200	61 00000	0		0
4	3800 2600	5850000 5850000		1 Oxo 5. 1	0
5 6 7	2800 3300	6150000 7100000 5750000)	0	o samuel
3	3600 2600 2900	60 00000	0	0	
10	3100	69 00000	0 0	0 500	/ 51/

after deleting original column in New Data Cie. de-dummer Old-data (de) is still remains same.

Dummy Variable Trap

ラ	Bang	chenni	Hyder
	0	1	0
	0	1	0
	1	0	0
M	1	0	0
	0	0	1
- 1	D	0	1

1	Corn	161	(1)
•	Bang	chem	03;
	0	1	1
	0	10	1
	1	0	l var
	1	0	-9
	0	0	J-> hyderabad

If we Remove One of the column also, still we can also, still we can Identify, col mame by

We Can Write One line of Code To do all these

df-dum = Pd. get-dummies (df, drop_first = True)
df-dum

out:	Area	Price	town-chennai	town-hyderabad
0 2 10 11			tropodio (i- (c))	0 0 0

#This Diagram
is Exact of
revious Last page diagr

town-banglore [deleted] -> Because, By one chemen

(previous) Last page diagram.

But deleted banglere Replaced Chennai?

=> Dome Hot Encoding -> Nominal using sklearn

From Sklearn. Preprocessing import One Hot Encoder

enc = One Hot Encoder (drop = "First")

stoves in enc

enc_df = pd. Data Frame (enc. fit_transform,

S(df [["town"]]).

Townstring

out put

enc-df

	Out		0	1
		0	1.0	0.0
-		1	1,0	0.0
0		2	1.0	0.0
		3	1.0	0.0
Y			0.0	0.0
		45	0.0	0.0
-		6	0.0	0.0
		7	0.0	0.0
		789	0.0	1.0
-		9	0.0	1.0
1		10	0.0	1.0
-		11	0.0	1.0

Out	area	Price	0	311113 - 3
3 23 45 6 18 9 10 11	2600	5500000	000000000000000000000000000000000000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0

Out	town	Area	price
0 1 2	Chennai chennai Chennai Hyderabud	266D 360D 3266	5500000 5650000 61000000 :

From Sklearn. Preprocessing Import Label Encoder

dfnew town = Le, fit_transform (dfnew town)

dfnew

	,
Mul	20
10	

7:	price	Area	town) [
		0.1	1	0
		0.0	į	1
		513	i	2
		7 · 0	0	4
		0.0	6	
		$T_{\perp} = \{j_{\perp \mu}\}$		
		001	2	9
			2	
			1 00 0 0 2 2 2 2	3 456 1 8 90 11

Order
0 00

