Integrated Planning and Reinforcement Learning for Compositional Domains

Harsha Kokel Research Scientist IBM Research

Integrated Planning and Reinforcement Learning for Compositional Domains

Harsha Kokel Research Scientist IBM Research

Prof. Sriraam Natarajan (left)

Reinforcement Learning

Planning

Planning

RL

- Search through space of states
- Relies on an explicit model of the environment

- Search through space of policies
- Relies on trial & error by interaction

Köhler (1948)

Integrating Planning and RL

Integrating Planning and RL

Decomposing GRMDP

Irrelevant variables

Factored MDP represented as Dynamic Bayesian Network (DBN)

Model-agnostic Abstraction

A model-agnostic abstraction $\phi(s)$ is such that for any action a and an abstract state \bar{s} , $\phi(s_1) = \phi(s_2)$ if and only if

$$\sum_{\{s'_{1}|\phi(s'_{1})=\bar{s}\}} R_{o}(s_{1},a,s'_{1}) = \sum_{\{s'_{2}|\phi(s'_{2})=\bar{s}\}} R_{o}(s_{2},a,s'_{2})$$

$$\sum_{\{s'_{1}|\phi(s'_{1})=\bar{s}\}} P_{o}(s_{1},a,s'_{1}) = \sum_{\{s'_{2}|\phi(s'_{2})=\bar{s}\}} P_{o}(s_{2},a,s'_{2})$$

Graphical models

D-FOCI

First Order Conditional Influence (FOCI) statements

Dynamic FOCI statements

$$[\langle subgoal \rangle]: \langle influents \rangle \stackrel{[+1]}{\longrightarrow} \langle resultant \rangle$$

D-FOCI

$$\begin{aligned} & \{ \operatorname{action}, \operatorname{taxi_at}(X) \} \overset{+1}{\longrightarrow} \operatorname{taxi_at}(X) \quad (3a) \\ & \operatorname{pick}(P) : \{ \operatorname{action}, \operatorname{taxi_at}(X), \operatorname{at}(P, Y), \\ & \operatorname{in_taxi}(P) \} \overset{+1}{\longrightarrow} \operatorname{in_taxi}(P) \quad (3b) \\ & \operatorname{pick}(P) : \{ \operatorname{in_taxi}(P) \} \overset{+1}{\longrightarrow} \operatorname{Reward} \quad (3c) \\ & \operatorname{drop}(P) : \{ \operatorname{at_dest}(P) \} \overset{-}{\longrightarrow} \operatorname{Reward} \quad (3d) \\ & \operatorname{drop}(P) : \{ \operatorname{at}(P, X), \operatorname{dest}(P, D), \operatorname{at_dest}(P) \} \\ & \overset{-}{\longrightarrow} \operatorname{at_dest}(P) \quad (3e) \\ & \operatorname{drop}(P) : \{ \operatorname{action}, \operatorname{taxi_at}(X), \operatorname{at}(P, Y), \\ & \operatorname{in_taxi}(P) \} \overset{+1}{\longrightarrow} \operatorname{at}(P, K) \quad (3f) \end{aligned}$$

Experiments

Domains

- Office World
- Minecraft World
- Relational Taxi
- Relational Box World
- Craft World
- Robotic Fetch domain

Baselines

- HRL (options framework)
- Tabular Q-learning
- Deep RL (DDQN, HDQN, SAC)
- Deep Relational RL
- Planning+RL (Taskable RL)

Experiments

Office World

Sample efficiency

Transfer across task

Symbol	Meaning
A	Agent
*	Furniture
₩	Coffee machine
\bowtie	Mail room
L	Office
A, B, C, D	Marked locations

Deliver mail and coffee

18

Deep Relational RL

¹Kokel et al. NCAA 2022a ²Li et al. ICRA 2022

RL

Domain independent heuristics

Domain knowledge

Symbolic

Domain dependent reward

Simulator and Data

Neural

Integrated Methods

Scalability

Sample efficiency

Neuro-Symbolic

Planning

RL

- Search through space of states
- Relies on an explicit model of the environment
- PDDL Task

- Search through space of policies
- Relies on trial & error by interaction
- MDP

PDDL Task $\langle \mathcal{L}, \mathcal{O}, I, G \rangle$

Lifted Action Models O

move(c_1_1, c_1_2, east), move(c_2_2, c_2_1, west), ...

MDP $\langle S, A, T, R, \gamma \rangle$

Actions [east, west, north, south]


```
(:action pickup
:parameters (?k - key ?r - room)
:precondition (and (at ?k ?r)
   (at-agent?r)
   (empty-hand))
:effect (and (not (at ?k ?r))
   (not (empty-hand))
   (carry ?k))
```

Are all the parameters of LAM relevant?*

*Do they define different grounded actions that can be applied in a single state?

of grounding = #of keys * # of rooms

Relevant parameters

```
Know,
(at key1 room1) ⊕ (at key1 room2)
So,
(pickup key1 room1) ⊕
                (pickup key1 room2)
 ⊕: Mutually exclusive
```

```
(:action pickup
:parameters (?k - key ?r - room)
:precondition (and (at ?k?r)
   (at-agent?r)
   (empty-hand))
:effect (and (not (at ?k ?r))
   (not (empty-hand))
   (carry ?k))
```

Applicable Action Mutex Group (AAMG)

Action Space Reduction

Figure 2: Comparison of label set sizes on (a) 14 IPC STRIPS domains and (b) 7 HTG domains.

Impact on learning RL policies

Figure 3: Learning curve in the (a) ferry, (b) gripper, (c) blocks, and (d) logistics; with and without action label reduction.

Reference

- Harsha Kokel, Arjun Manoharan, Sriraam Natarajan, Balaraman Ravindran, Prasad Tadepalli, RePReL: Integrating Relational Planning and Reinforcement Learning for Effective Abstraction, In ICAPS 2021a.
- Harsha Kokel, Mayukh Das, Rakibul Islam, Julia Bonn, Jon Cai, Soham Dan, Anjali Narayan-Chen, Prashant Jayannavar, Janardhan Rao Doppa, Julia Hockenmaier, Sriraam Natarajan, Martha Palmer, Dan Roth, *Humanguided Collaborative Problem Solving: A Natural Language based Framework*, In **ICAPS (demo track) 2021b**.
- Harsha Kokel, Sriraam Natarajan, Balaraman Ravindran, Prasad Tadepalli, RePReL: A Unified Framework for Integrating Relational Planning and Reinforcement Learning for Effective Abstraction in Discrete and Continuous Domains, In NCAA 2022a.
- Harsha Kokel, Nikhilesh Prabhakar, Sriraam Natarajan, Balaraman Ravindran, Prasad Tadepalli, *Hybrid Deep RePReL:* Integrating Relational Planning and Reinforcement Learning for Information Fusion, In **FUSION 2022b**.
- Harsha Kokel, Mayukh Das, Rakibul Islam, Julia Bonn, Jon Cai, Soham Dan, Anjali Narayan-Chen, Prashant Jayannavar, Janardhan Rao Doppa, Julia Hockenmaier, Sriraam Natarajan, Martha Palmer, Dan Roth, Lara -- Human-guided collaborative problem solver: Effective integration of learning, reasoning and communication, In ACS 2022c.
- Harsha Kokel, Junkyu Lee, Michael Katz, Kavitha Srinivas, Shirin Sohrabi, Action Space Reduction for Planning Domains, IJCAI 2023

Sriraam Natarajan

Ravindran Balaraman

Arjun Manoharan

Eric Blasch

Junkyu Lee

Kavitha Srinivas

Michael Katz

Shirin Sohrabi

IBM Research

Questions?

33

Backup Slides

D-FOCI

Natarajan, Tadepalli, Dietterich, and Fern 2008

Abstraction

Definition 4 (Li, Walsh, and Littman (2006)). A model-agnostic abstraction $\phi(s)$ is such that for any action a and abstract state \bar{s} , $\phi(s_1) = \phi(s_2)$ if and only if

$$\sum_{\{s_1'|\phi(s_1')=\overline{s}\}} R_o(s_1,a,s_1') = \sum_{\{s_2'|\phi(s_2')=\overline{s}\}} R_o(s_2,a,s_2')$$

$$\sum_{\{s_1'|\phi(s_1')=\overline{s}\}} P_o(s_1, a, s_1') = \sum_{\{s_2'|\phi(s_2')=\overline{s}\}} P_o(s_2, a, s_2')$$

Collaborative Problem Solving

Kokel et al. ACS 2022c

Capabilities

Bidirectionally contentful

- ask for missing dimensions
- ask for reference points

Context-aware

Understand the next instruction in context of current structure

Composable Vocabulary

- can plan for arbitrary combinations of primitive shape
- learn a new shape from single example
- use learnt shape in various combinations

Habitability

actionable errors/questions

Robustness

 Undo which doesn't lose context

RePReL

Integrating Relational Planning and Reinforcement Learning

Plan the sequence of high level subgoals and learn to execute each subgoal at lower level

Advantage:

- Compositionality
- Task specific state representations

Dynamic First Order Conditional Influence (D-FOCI) statements to obtain task-specific abstract representations

RePReL

Definition 3. The subgoal RMDP M_o for each operator o is defined by the tuple $\langle S, A, P_o, R_o, \gamma \rangle$ consisting of states S, actions A, transition function P_o , reward function R_o , and discount factor γ . State and Actions remain same as the original RMDP. The reward function R_o and transition probability distribution function P_o are defined as follows:

$$R_o(s,a,s') = \begin{cases} t_R + R(s,a,s') & \text{if } s' \in \beta(o) \text{ and } s \notin \beta(o) \\ 0 & \text{if } s' \in \beta(o) \text{ and } s \in \beta(o) \\ R(s,a,s') & \text{otherwise} \end{cases}$$

$$P_o(s, a, s') = \begin{cases} 0 & \text{if } s \in \beta(o) \text{ and } s' \notin \beta(o) \\ 1 & \text{if } s \in \beta(o) \text{ and } s' \in \beta(o) \\ P(s, a, s') & \text{otherwise} \end{cases}$$

with R(s, a, s') indicating the reward function from the original GRMDP definition. t_R is a fixed terminal reward.

Abstraction

Given:

```
a. D-FOCI statements from Equation 3
```

b. state
$$s = \{ at(p1,r), taxi_at(l3), dest(p1,d1), \neg at_dest(p1) \neg in_taxi(p1), at(p2,b), \neg at_dest(p2), \neg in_taxi(p2) \}$$

c. grounded option $o\theta$: pick(P) $\{P/p1\}$

Output: A set of relevant state literals: \hat{s}

Depth 1 unrolling:

 $\hat{s} \leftarrow \{\texttt{in_taxi}(\texttt{p1})\}$

Find a substitution that grounds relevant D-FOCI statements that have reward on RHS
 pick(p1): in_taxi(p1) → Reward

 $\theta = \{P/p1\}$ 2. Collect LHS in relevant literals set \hat{s}

Depth 2 unrolling:

Find a substitution that grounds relevant D-FOCI statements that have a relevant literal on RHS pick(P): { action, taxi_at(l3), at(p1, r), in_taxi(p1) } → in_taxi(p1)
 θ = {P/p1, X/l3, Y/r}
 Collect LHS in set ŝ

2. Collect LHS in set \hat{s} $\hat{s} \leftarrow \{\text{in_taxi}(p1), \text{action}, \text{taxi_at}(l3), \text{at}(p1, r)\}$

Depth 3 unrolling:

1. Ground applicable D-FOCI statements that have a relevant literal (\hat{s}) on RHS

```
{action, taxi_at(l3) } \xrightarrow{+1} taxi_at(l3) pick(p1): { action, taxi_at(l3), at(p1, r), in_taxi(p1) } \longrightarrow in_taxi(p1) \theta = \{P/p1, X/l3, Y/r\}
```

2. Collect LHS in set \hat{s}

 $\hat{s} \leftarrow \{ \texttt{in_taxi}(\texttt{p1}), \texttt{action}, \texttt{taxi_at}(\texttt{l3}), \texttt{at}(\texttt{p1}, \texttt{r}) \}$

recursive grounding and unrolling process

Lifted Successor Generation

Treats planning state as database and task of generating applicable action groundings as a database query.

(at obj1 l1)			(:precondition
(at obj2 l1)			(and (at ?X ?Y)
(at obj3 l3)		path ———	(path ?Y ?W) (path ?W ?Z)))
(at obj4 l2)	obj1 l1	l1 l2	
(path l1 l2)	obj2 l1	l1 l3	
(path l1 l3)	obj3 l3	l2 l3	
(path l2 l3)	obj4 l2	l3 l4	$\operatorname{at}(X,Y)\bowtie\operatorname{path}(Y,W)\bowtie\operatorname{path}(W,Z)$
(path l3 l4))			

Query Evaluation

If query hypergraph has a join-tree, it is acyclic Acyclic query evaluation is **output-polynomial**

If hypergraph is cyclic, the query evaluation is exponential in the size of input and output.

With parameter seed set we can improve cyclic query evaluation time.

Query Evaluation w/ Seed Set

$$Q(X,Y,W,Z) = \operatorname{at}(X,Y) \bowtie \operatorname{path}(Y,W) \bowtie \operatorname{path}(W,Z) \bowtie \operatorname{path}(Y,Z) \bowtie \operatorname{path}(Z,X)$$

Treat the non-seed parameters as non-distinguishable variable

$$Q(X,W,Z) = \operatorname{at}(X,Y) owtie \operatorname{path}(Y,W) \ owtie \operatorname{path}(W,Z) owtie \operatorname{path}(Y,Z) owtie \operatorname{path}(Z,X)$$

Modify the join order

$$Q(X,Y,W,Z) = \operatorname{path}(Y,Z) \bowtie \operatorname{at}(X,Y)$$
 $\bowtie \operatorname{path}(Y,W) \bowtie \operatorname{path}(W,Z) \bowtie \operatorname{path}(Z,X)$

Experiments

Sample efficiency

Transfer across task

Generalization across objects

Kokel et al. ICAPS 2021

Deep Relational RL

- 100 - 200 -300· O - RePReL --- RePReL+T **-400** - 🚣 - DQN DQN+T - 500 0.2 0.4 0.6 0.8 steps in env ·107

transport p1 and p2

transport p1, p2 and p3

Kokel et al. NCAA 2022a

transport p1

Extension to hybrid domain

Allow hybrid of structured and unstructured data

Neural predicates in D-FOCI

Kokel et al. FUSION 2022b

Extension to deep, relational RL

Allowed continuous state and action space

Batch learning allowed any off-policy RL agent (inc. deep relational RL)

Removed fixed depth unrolling limitation

OSU: AI Seminar

Reinforcement Learning

Skinner, B. F. (1961). Teaching machines.

OSU: AI Seminar

Compositional and Relational Domains

Compositional and Relational Domains

Compositional and Relational Domains

Sequential decision making

LMG to identify Seed Set

```
\ell = \langle \{?k - object\}, \{?r - location\}, 
{(at ?k - object ?r - location)} \rangle
```

Conditions

- 1. atom of LMG is part of precondition
- 2. variable types in LMG is super-type of variable type of action parameter

Then removing the *counted variable* of LMG from action parameter defines an AOMG.

So, counted variable is <u>not</u> a seed set.

Leverage multiple LMGs in sequence to further reduce the parameter set.

```
(:action pickup
:parameters (?k - key ?r - room)
:precondition (and (at ?k ?r)
   (at-agent?r)
   (empty-hand))
:effect (and (not (at ?k ?r))
   (not (empty-hand))
   (carry ?k))
```

OSU: AI Seminar 5

Lifted Mutex Group (LMG)

Mutex Group

A set of facts, of which only one fact is true in any reachable state

Example:

{ (at key1 room1), (at key1 room2), (at key1 room3), (at key1 room4) }

■ Lifted Mutex Group¹

An invariant candidate, whose *ground atom sets* are mutex groups

```
Example: fixed variables counted variables  \ell = \langle \, \{ ?k - key \} \,, \, \{ ?r - room \}, \, \{ (at \, ?k - key \, ?r - room) \}
```

$$\ell$$
 (?k/key1) = { (at key1 room1), (at key1 room2), (at key1 room3), (at key1 room4) }

$$\ell$$
 (?k/key2) = { (at key2 room1), (at key2 room2), (at key2 room3), (at key2 room4) }

Meltzoff, Waismeyer, & Gopnik (2012)

Hierarchical Planning

Planning for *Tasks* instead of goals

Methods to decompose tasks

Operators for executing action

Hierarchical Planning

Domain has predicates (Q), operators (O) and methods (M)

Methods have preconditions and subtasks

Operators have preconditions and effects

$$\mathcal{D} = \langle Q, O, M
angle$$

$$m = \langle task(m), pre(m), subtasks(m)
angle$$

$$o = \langle task(o), pre(o), eff(o) \rangle$$

$$\mathcal{P} = \langle \mathcal{D}, ext{initial state } s_0, ext{task list } t_o
angle$$

Example

task1(X): solid(Y, G) $\xrightarrow{+1}$ color(G, green)

task1(X): color(X, green) $\xrightarrow{+1}$ Reward

Abstract state for 2 task1(3):

Example

task1(X): dashed(G, Z) $\xrightarrow{+1}$ color(G, green)

task1(X): solid(Y, G) $\xrightarrow{+1}$ color(G, green)

 $task1(X): color(X, green) \xrightarrow{+1}$ Reward

