Cartesian Product

- \bullet R×S
- set of all pairs of inputs
- each from r combined with each from 2

Union

- RUS
- set union with duplicate elimination
- bag union (commutative but not idempotent)
- require compatible schema between R and S

Difference

- R-S, R\S
- each from R, which is not in S
- set difference
- bag: element multiplicity of R minus multiplicity min(R,S)

Projection

- \bullet $\pi(R)$
- set: selection of attributes with duplicate elimination
- bag: selection of attribute
- extended projection
 - arithmetic expressions
 - * new columns based on computation
 - duplicate occurences

Selection (restriction)

- \bullet $\sigma(R)$
- selection of tuples satisfying condition
 - equivalent in set/bag

Composition of Complex Queries

- relational algebra expressions can be represented as data flow graph tree
 - leaf...tables
 - root/top...result

 Task: Compute the results for the following queries.

δ

 $\begin{array}{c} \pi_{\text{Customer},\text{Date}} \\ \mid \\ \sigma_{\text{O.PID=P.PID}} \\ \mid \\ \times \\ \text{Orders} \quad \sigma_{\text{Name} \in \{\text{Y},\text{Z}\}} \\ 0 \quad \mid \\ \text{Products} \end{array}$

Customer	Date
Α	'2019-06-22'
С	'2019-06-23'
D	'2019-06-23'

Orders				
OID	Customer	Date	Quantity	PID
1	A	'2019-06-22'	3	2
2	В	'2019-06-22'	1	3
3	A	'2019-06-22'	1	4
4	С	'2019-06-23'	2	2
5	D	'2019-06-23'	1	4
6	С	'2019-06-23'	1	1

Ycustomer,count(*) Orders	
Customer	Count
Customer A	Count 2

B 1

τ_{count DESC}, Customer ASC

	4	Z	75
	3	W	120
$\gamma_{ ext{Customer}}$,			
(O.Ouantity*P.Price)			

PID Name

Price 100

15

sum(O.Quantit	y*P.Price)
1	
⋈ _{0.PID}	=P.PID
Orders	Products
0	Р

Customer	Sum
Α	120
В	120
С	130
D	75

 $[[{\bf Relational~Algebra}]]$