Université de Gabes

Institut Supérieur d'Informatique Mednine

Année universitaire 2023-2024

Durée 1h 30

Responsable: Mr H.Touati

Matière: Thermodynamique

Filière: L1TIC

Question de cours:

- 1/ Enoncer le premier principe de la thermodynamique.
- 2/ Donner l'équation d'état d'un gaz.
- 3/ Enoncer le second principe de la thermodynamique.
- 4/ Rappeler les différents coefficients calorifiques.

Exercice1

Calculer le travail entre deux états pour les transformations :

- 1/ Transformation isotherme.
- 2/ Transformation isobare.
- 3/ Transformation isochore

Exercice2

- 1/ Enoncer le premier principe de la thermodynamique.
- 2/ Démontre les relations suivantes :

a-
$$C_V = \frac{1}{\gamma - 1} nR$$

et

$$C_P = \frac{\gamma}{\gamma - 1} n R$$

$$b-h=-V$$

$$c- \lambda = \frac{C_V \cdot V}{nR} = \frac{V}{\gamma - 1}$$

$$\mu = \frac{C_P \cdot P}{nR} = \frac{\gamma}{\gamma - 1} P$$

Exercice3

- 1/ Enoncer le second principe de la thermodynamique.
- 2/ Définir l'entropie d'un système.
- 3/ Donner son expression.

Institut Supérieur d'Informatique

De Médenine

Examen

Programmation avancée C++

Enseignante: Mme N.D Classe: L1TIC

Durée: 1h:30

A.U: 2023-2024

Exercice 1

Compléter le programme ci-dessous.

```
cout<<.....
  cout << ..... << endl;
// déclaration de la fonction TailleNomPatient()
int TailleNomPatient(patient *z)
   int ....=strlen(.....);
    . . . . . . . . . . . . . . . . . . ;
int main()
          struct patient p, *p1;
          p1=&p;
     ....AjoutPatient(....,5,"Ali");
     .... AffichePatient(....);
          cout << "la taille du nom de patient
          est"<<....;
          return 0;
```

Exercice 2

Soit le programme qui suit: quelles sont les valeurs des variables a, b et c à la ligne 20 et la ligne 24 du programme.

```
#include<stdio.h>
void main()
{
  float a=7,b=8,c=9;
  float *p,*q,*r;
  p=&a;
```

```
q=&b;
r=&c;
*p--;
*p=*p*q;
++*q;
*r=*p/2; //ligne 20
q=p;
++*q; //ligne 24
}
```

Exercice 3

Écrire en langage C++ les déclarations des fonctions suivantes(ne pas oublier de noter le type de retour de chaque fonction):

- AjoutListe(Element *list, int val1) qui ajoute un élément entête de la liste.
- Suppliste(Element *list) qui supprime le dernier élément de la liste.
- Afficheliste(Element *list) qui affiche la liste.

Bon courage

Ministère de l'Enseignement Supérieur Université de Gabés

Institut Supérieur d'Informatique De Médenine

Année Universitaire: 2023/2024

Classes: L1TIC

Documents: non autorisés

Durée: 1h30mn

Nombre des pages: 1

Examen: Analyse 2

Exercice 1: (8 points)

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$, 2π – périodique impaire définie par

$$\forall x \in]0,\pi], \ f(x) = \frac{\pi - x}{2}$$

Représenter f.

2. Calculer les coefficients de Fourier def.

3. En déduire la valeur de la somme.

$$\sum_{p=1}^{+\infty} \frac{1}{n^2}$$

4. En déduire pour $\theta \in]0,2\pi[$ la valeur de la somme

$$\sum_{p=1}^{+\infty} \frac{\sin n\theta}{n}$$

Exercice 2: (12 points)

Soient la fonction porte $\Pi(x)$ et la fonction de triangle $\Delta(x)$, telles que

$$\Pi(x) = \begin{cases} 1 \text{ si } |x| \le \frac{1}{2} \\ 0 \text{ si } |x| > \frac{1}{2} \end{cases}, \quad \Delta(x) = \begin{cases} 1 - |x| \text{ si } |x| < 1 \\ 0 \text{ si } |x| \ge 1 \end{cases}$$

1) Représenter graphiquement $\Pi(x)$ et $\Delta(x)$

2) Calculer la transformée de Fourier de $\Pi(x)$ et $\Delta(x)$

3) En déduire la transformée de Fourier des fonctions suivantes :

a)
$$\Pi\left(\frac{x+1}{2}\right)$$
, b) $(x+1)\Pi(x)$, c) $\Pi(x)*\Pi(x)$, d) $\frac{\sin\pi s}{\pi s}$, e) $\left(\frac{\sin\pi s}{\pi s}\right)^2$ 4) utiliser l'identité de Parseval pour en déduire l'intégrale

$$\int_{\mathbb{R}} \left(\frac{\sin \pi x}{\pi x} \right)^2 dx$$

Bon travail

De Médenine

A.U: 2023-2024

Examen

Bases de Données

Enseignante: Mme N.D Classe: L1TIC1

Durée: 1h:30

Exercice 1

Lier les notions à gauche à leurs définitions à droite.

- 1- Une clé étrangère d'une relation a. p
- 2- Une clé primaire d'une table
- 3- La commande SELECT
- 4- L'algèbre relationnelle
- 5- La commande DISTINCT

- a. permet d'éliminer les doublons.
- b. est une projection sur une relation.
- c. est forcément une clé primaire d'une autre table.
- d. n'est pas forcément une clé étrangère d'une autre table.

1.□ 2.□ 3.□ 4.□	5.□
-----------------	-----

Exercice 2

Soit le schéma des relations entre les tables d'une base de données suivant.

- 1- Dégager le modèle logique de données (MLD).
- 2- Présenter le modèle conceptuel de données(MCD).
- 3- Corriger les phrases suivantes si elles sont fausses.
- D'un produit donné, un fournisseur fait plusieurs achats.
- Un produit donné peut-être acheté par un seul fournisseur.
- Un produit donné peut-être vendu à un seul client.
- A un client donné on vend un seul produit.

Exercice 3

Soient les relations suivantes:

CLIENT (IdCli, nom, ville)

PRODUIT (IdPro, désignation, marque, prix)

VENTE (IdCli, IdPro, date, qte)

1- Écrire les requêtes suivantes en utilisant le langage algébrique.

R1: « Donner les noms des produits de marque Apple et de prix>5000F»

R2: « Donner les clients ayant acheté un produit de marque Apple»

R3:« Donner les noms des clients qui ont la ville= 'Tunis' »

R4:« Donner les marques des produits qui ont la quantité>200»

2- Écrire les requêtes suivantes en utilisant le langage SOL.

R5: «Donner les prix des produits majorés de 20% et de marque IBM»

R6: «Donner les noms des clients ayant acheté un produit de marque Apple»

R7:« Donner les noms des produits ayant l'avant dernier lettre 'A' »

R8:« Donner les numéros des produits dont la quantité est inconnue»

Bon courage.

Année universitaire 2023-2024

Examen

Durée 1h 30

Responsable: Mr H.Touati

Filière: L.1 TIC

Matière: Electromagnetisme

Questions de cours(3 points)

- 1- Définir une onde plane.
- 2- Donner l'expression de propagation pour le champ électrostatique.
- 3- Citer les relations du passage.

Exercice 1(7 points)

Le demi-espace y < 0 étant conducteur parfait, on envisage une onde électromagnétique dans le demi-espace y > 0 vide de la forme :

$$\vec{E} = E_0 \sin(\alpha y) \cos(\omega t - kx) \vec{u}_z e t \vec{B} = \frac{\alpha E_0}{\omega} \cos(\alpha y) \sin(\omega t - kx) \vec{u}_x + \frac{k E_0}{\omega} \sin(\alpha y) \cos(\omega t - kx) \vec{u}_y$$

- 1- On suppose que $\omega > C\alpha$. Exprimer la relation de dispersion liant k et ω , puis la vitesse de phase $v_{\varphi} = \omega/k$.
- 2- Exprimer la moyenne spatio-temporelle du vecteur de Poynting et la moyenne spatiotemporelle de la densité volumique d'énergie électromagnétique.
- 3- En déduire la vitesse moyenne de propagation de l'énergie ve et commenter.

Exercice 2(10 points)

On considère une onde électromagnétique plane progressive se propageant dans le vide (pas de charge ni de courant). Avec $\vec{E} = E_0 e^{i(\omega t - \beta x)} \vec{U}_v$

- 1. Cette onde est elle plane?
- 2. Quelle est sa direction de propagation et sa polarisation
- 3. Etablir l'équation de propagation du champ électrostatique.
- **4.** En déduire une relation entre β , ω et C.
- 5. Déterminer son champ magnétique.
- 6. Quelle est la structure de cette onde.
- 7. Calculer sa vitesse de phase.
- 8. Calculer la densité d'énergie et le vecteur de Poynting.
- 9. En déduire la valeur moyenne temporelle de la densité d'énergie et le vecteur de Poynting

Année 2023-2024 Classes : L1TIC Durée : 1h30 Session : principale

Examen: Algèbre 2

Exercice 1 (12 points)

I. On considère $E = \mathbb{R}^3$ muni de la base canonique $\mathcal{B}_c = (e_1, e_2, e_3)$ et on considère l'endomorphisme f de \mathbb{R}^3 donné par

$$f(e_1) = e_{1+}e_3, \ f(e_2) = e_{1+}e_2, f(e_3) = -2e_2 + 2e_3$$
Soit $u_1 = \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, u_3 = \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix}$

- 1. Donner la matrice de f relativement à \mathcal{B}_c .
- 2. Calculer l'image f(v) pour un vecteur $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
- 3. Montrer que $\mathcal{B}=(u_1,u_2,u_3)$ est une base de \mathbb{R}^3
- 4. Donner la matrice de passage P de la base \mathcal{B}_c à la base \mathcal{B} et calculer P^{-1} .
- 5. Déterminer la matrice de f relativement à \mathcal{B} .
- II. On considère le système suivant :

$$(S) \begin{cases} x+y=1\\ y-2z=2\\ x+2z=-1 \end{cases}$$

- a) Le système (S) est-il de Cramer?
- b) Résoudre le système (S)

Exercice 2 (08 points)

Soit

$$A = \begin{pmatrix} 3 & 0 & -1 \\ 0 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix}$$

- 1. Vérifier que le polynôme caractéristique de A est $P_A(x) = (x-1)^2(2-x)$.
- 2. Déterminer les valeurs propres de A.
- 3. Pour chaque valeur propre de A déterminer le sous-espace propre correspondant.
- 4. La matrice A est-elle diagonalisable sur ℝ? Justifier votre réponse.
- 5. Déterminer la matrice P tel que $P^{-1}AP$ soit diagonale.
- 6. Calculer A^n pour $n \in \mathbb{N}$

Bon courage