

L4 Background Subtraction

Corso di Fondamenti di Visione Artificiale AA 2019/2020

Background Subtraction

- Insieme di tecniche per separare in un'immagine lo **sfondo** dagli oggetti di interesse
- Tecnica applicata in sequenze riprese con una telecamera fissa
- Sfondo (Background)
 - Parte statica, che non cambia nel tempo
- Foreground
 - Parte dell'immagine che cambia rispetto al background

Background subtraction

background image

Background

- Parte quasi statica dell'immagine
- Può subire, nel tempo, lente variazioni in colore e intensità
- Difficile da definire:
 - Cambiamenti ripetitivi
 - Onde, foglie, ombre
 - Cambiamenti a lungo termine
 - Auto che parcheggia

Foreground

- Foreground = Frame Background
- Rappresenta la parte dell'immagine che varia in una sequenza

Background subtraction

- I metodi di base hanno diversi limiti:
 - Si basano sulla storia del singolo pixel.
 - Non usano informazioni spaziali.
 - Le soglie ed i parametri sono difficili da scegliere.

Frame Precedente

■ Il background stimato al passo 'n' è l'immagine analizzata al passo 'n-1

$$B_n = I_{n-1}$$

Media a finestra mobile

Il background è stimato come la media degli ultimi k frame.

$$B_n = \frac{1}{k} \sum_{i=n-1-k}^{n-1} I_i$$

- Il parametro k determina quanto velocemente il background si adatta ai cambiamenti.
- L'occupazione in memoria è k*dimensione_immagine!

Media mobile esponenziale

Il background è stimato con la seguente formula d'aggiornamento:

$$B_{n+1} = \alpha B_n + (1 - \alpha)I_n$$

- Il parametro alfa determina la velocità di aggiornamento del background:
 - alfa → 1: aggiornamento lento.
 - alfa → 0: aggiornamento veloce.
- L'utilizzo di memoria è costante.

Background subtraction

- Vedremo alcuni metodi di base:
 - Frame Precedente
 - Media a finestra mobile
 - Media mobile esponenziale
- Una volta stimato il background B, data una nuova immagine I, il pixel (i,j) appartiene al foreground se:

$$|I(i,j) - B(i,j)| > T_F$$

Esercizio

- Implementate i metodi di background subtraction di base:
 - Frame precedente.
 - Media a finestra mobile.
 - Media esponenziale.
- Visualizzate su una finestra il background calcolato.
 - Come cambia il background al variare di k e alfa?
- Partire dall'esempio fornito utilizzando le immagini Candela.zip:
 - simple -i Candela_m1.10_%06d.pgm -t 500