PHYSICS-INFORMED SOLUTIONS OF RADIATIVE TRANSFER PROBLEMS

Mario De Florio (PhD Student), Roberto Furfaro (Advisor) Systems & Industrial Engineering, The University of Arizona

(1) INTRODUCTION

Overview: The Extreme Theory of Functional Connections (X-TFC) is a physics-informed Neural Network (PINN) method: synergy of the TFC, introduced by Mortari, and the PINN, introduce by Raissi et al.

Goal: to develop an accurate and robust physics-informed framework to solve the Radiative Transfer Problem

(2) TRANSPORT THEORY FOR REMOTE SENSING

The (Photon) Transport Theory represents the theoretical underpinning of remote sensing.

(3) THEORY OF FUNCTIONAL CONNECTION (TFC)

- Methodology: X-TFC uses the constrained expressions that are a sum of a free-chosen function g(x) and a term which analytically satisfies the boundary conditions.
- For the problems treated here, X-TFC employs a single layer ChNN to expand the free chosen function.
- The ChNN is trained via ELM.

$$y(x) = g(x) + \sum_{l}^{n} \eta_{k} p_{k}(x) = g(x) + \eta^{T} p(x)$$

$$\downarrow h_{1} \qquad \xi_{1}$$

$$\downarrow h_{2} \qquad \xi_{2}$$

$$\downarrow h_{1} \qquad \xi_{2}$$

$$\downarrow h_{1} \qquad \xi_{2}$$

$$\downarrow h_{2} \qquad \xi_{2}$$

$$\downarrow h_{1} \qquad \xi_{2}$$

(4) RADIATIVE TRANSFER PROBLEM

The Radiative Transfer Equation according to Chandrasekhar is:

$$\mu \frac{\partial}{\partial t} I(\tau, \mu, \phi) + I(\tau, \mu, \phi) = \frac{\omega}{4\pi} \int_{-1}^{1} \int_{0}^{2\pi} p(\cos \Theta) I(\tau, \mu', \phi') d\phi' d\mu'$$

As the nature of the equation is linear, by applying TFC the problem reduces to the solution of the linear system of algebraic equations $A \xi = B$

(5) RESULTS AND DISCUSSIONS

7 digits Benchmark [Barry D. Ganapol]

μ	au = 0	$ au=0.05\Delta$	$ au=0.1\Delta$	$ au=0.2\Delta$	$ au=0.5\Delta$	$ au=0.75\Delta$	$ au = \Delta$
-1.0	2.7971665e-2	2.6583431e-2	2.5179489e-2	2.2342144e-2	1.3751918e-2	6.7043863e-3	0
-0.9	3.0180197e-2	2.8742728e-2	2.7276328e-2	2.4282402e-2	1.5036989e-2	7.3279307e-3	0
-0.8	3.1447755e-2	3.0070750e-2	2.8641094e-2	2.5662054 e-2	1.6096218e-2	7.8550379e-3	0
-0.7	3.4383906e-2	3.3055747e-2	3.1640694e-2	2.8605980e-2	1.8314210e-2	9.0026264e-3	0
-0.6	3.9130810e-2	3.7890987e-2	3.6513506e-2	3.3427829e-2	2.2097749e-2	1.1061916e-2	0
-0.5	4.5637920e-2	4.4617111e-2	4.3383966e-2	4.0403191e-2	2.8008565e-2	1.4514343e-2	0
-0.4	5.3511337e-2	5.2985449e-2	5.2140980e-2	4.9686294e-2	3.6854018e-2	2.0230769e-2	0
-0.3	6.1542012e-2	6.1991418e-2	6.1978635e-2	6.0886294e-2	4.9616521e-2	2.9827680e-2	0
-0.2	6.6956243e-2	6.9056402e-2	7.0499635e-2	7.2037240e-2	6.6696988e-2	4.6300639e-2	0
-0.1	6.5529583e-2	7.0004105e-2	7.3432378e-2	7.8590386e-2	8.4462845e-2	7.3611021e-2	0
-0.0	5.1748534e-2	6.1709609e-2	6.8016336e-2	7.7466538e-2	9.3997859e-2	9.7483668e-2	0
0.0	0	6.1709609e-2	6.8016336e-2	7.7466538e-2	9.3997859e-2	9.7483668e-2	7.9312594
0.1	0	2.2494931e-2	3.9518122e-2	6.2652973e-2	9.6254337e-2	1.0871841e-1	1.0818930
0.2	0	1.3100677e-2	2.5340076e-2	4.6772905e-2	9.1591615e-2	1.1381468e-1	1.2421167
0.3	0	1.0194331e-2	2.0270341e-2	3.9472225e-2	8.7467481e-2	1.1662007e-1	1.3571209
0.4	0	9.5290644e-3	1.9067650e-2	3.7770256e-2	8.8332315e-2	1.2250259 e-1	1.4826767
0.5	0	1.0263750e-2	2.0502330e-2	4.0649220e-2	9 64183456-2	1 3581653e-1	1 6751584

(6) CONCLUSIONS

• We developed a robust **physics-informed** framework to solve the Radiative Transfer Problem with high accuracy.

1.1563161

2.7414726

2.2483946

• Currently we are working on the application of our method to Tranport Theory problems modeled via PDEs (photon and neutron transport)

(7) ACKNOWLEDGEMENT

We would like to sincerely thanks the co-authors Enrico Schiassi, Barry D. Ganapol, and D. Mostacci.