Harmonizable Representation and Evolutionary Spectrum of Monotonically Modulated Stationary Gaussian Processes

Definition 1. [Harmonizable Process] A stochastic process $\{X_t, t \in \mathbb{R}\}$ is harmonizable if it admits the representation:

$$X_t = \int_{\mathbb{R}} e^{i\lambda t} dZ(\lambda) \tag{1}$$

where dZ is a complex-valued random measure with bounded variation, not necessarily having orthogonal increments. The correlation structure is given by:

$$\mathbb{E}\left[d\,Z(\lambda)\,d\overline{Z(\mu)}\right] = F(d\,\lambda,d\,\mu) \tag{2}$$

where F is a measure on \mathbb{R}^2 of bounded variation.

Definition 2. [Projection Operator for Time-Modulated Processes] Let $\{Y_{(t,\tau)}\}$ be a stochastic process defined on \mathbb{R}^2 and $\theta: \mathbb{R} \to \mathbb{R}$ be a monotonically increasing function. The projection operator P_{θ} is defined as:

$$(P_{\theta}Y)_t = Y_{(t,\theta(t))} \tag{3}$$

for all $t \in \mathbb{R}$. This operator projects from the space of processes on \mathbb{R}^2 to the space of processes on \mathbb{R} by restricting to the curve $\{(t, \theta(t)): t \in \mathbb{R}\}$.

The projection operator P_{θ} satisfies:

1. $P_{\theta}^2 = P_{\theta}$ (idempotent):

$$(P_{\theta}^{2}Y)_{t} = (P_{\theta}(P_{\theta}Y))_{t}$$

$$= P_{\theta}(Y_{(\cdot,\theta(\cdot))})_{t}$$

$$= Y_{(t,\theta(t))}$$

$$= (P_{\theta}Y)_{t}$$

$$(4)$$

2. $P_{\theta}^* = P_{\theta}$ (self-adjoint): If $\langle \cdot, \cdot \rangle$ denotes the inner product in the appropriate Hilbert space, then

$$\langle P_{\theta} Y, Z \rangle = \langle Y, P_{\theta} Z \rangle \tag{5}$$

Definition 3. [Evolutionary Spectrum] A non-stationary process $\{X_t, t \in \mathbb{R}\}$ has an evolutionary spectral representation if:

$$X_t = \int_{\mathbb{R}} A_t(\lambda) e^{i\lambda t} dZ(\lambda) \tag{6}$$

where:

- $dZ(\lambda)$ is an orthogonal increment process with $\mathbb{E} |dZ(\lambda)|^2 = d\lambda$
- $A_t(\lambda)$ is a time-varying amplitude function
- The evolutionary spectral density is $h_t(\lambda) = |A_t(\lambda)|^2$

Definition 4. [Monotonically Modulated Process] Let $X_0(t)$ be a stationary process with kernel $K_0(t-s)$. A monotonically modulated process is defined as:

$$X_t = X_0(\theta(t)) \tag{7}$$

where $\theta: \mathbb{R} \to \mathbb{R}$ is a monotonically increasing function, yielding the kernel:

$$K(t,s) = K_0 \left(\theta(t) - \theta(s)\right) \tag{8}$$

Theorem 5. [Harmonizable Structure of Modulated Processes] The monotonically modulated process $X_t = X_0(\theta(t))$ is a harmonizable process with spectral representation:

$$X_t = \int_{\mathbb{R}} e^{i\lambda\theta(t)} dZ_0(\lambda) \tag{9}$$

where $d Z_0$ is the spectral measure of the original stationary process X_0 .

Proof. Step 1: By Cramér's representation theorem, the stationary process $X_0(t)$ has representation:

$$X_0(t) = \int_{\mathbb{R}} e^{i\lambda t} dZ_0(\lambda) \tag{10}$$

where dZ_0 has orthogonal increments with $\mathbb{E}\left[dZ_0(\lambda)\,d\overline{Z_0(\mu)}\right] = \delta\left(\lambda - \mu\right)f_0(\lambda)\,d\lambda\,d\mu$.

Step 2: For any fixed time point $u \in \mathbb{R}$, we have:

$$X_0(u) = \int_{\mathbb{R}} e^{i\lambda u} dZ_0(\lambda) \tag{11}$$

Step 3: Setting $u = \theta(t)$ specifically, we get:

$$X_0(\theta(t)) = \int_{\mathbb{R}} e^{i\lambda\theta(t)} dZ_0(\lambda)$$
 (12)

Step 4: By definition of the modulated process $X_t = X_0(\theta(t))$, we have:

$$X_t = \int_{\mathbb{R}} e^{i\lambda\theta(t)} dZ_0(\lambda) \tag{13}$$

Step 5: The covariance function is directly calculated:

$$K(t,s) = \mathbb{E}[X_{t}\overline{X_{s}}]$$

$$= \mathbb{E}\left[\int_{\mathbb{R}} e^{i\lambda\theta(t)} dZ_{0}(\lambda) \int_{\mathbb{R}} e^{i\mu\theta(s)} dZ_{0}(\mu)\right]$$

$$= \mathbb{E}\left[\int_{\mathbb{R}} \int_{\mathbb{R}} e^{i\lambda\theta(t)} e^{-i\mu\theta(s)} dZ_{0}(\lambda) d\overline{Z_{0}}(\mu)\right]$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} e^{i\lambda\theta(t)} e^{-i\mu\theta(s)} \mathbb{E}\left[dZ_{0}(\lambda) d\overline{Z_{0}}(\mu)\right]$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} e^{i\lambda\theta(t)} e^{-i\mu\theta(s)} \delta(\lambda - \mu) f_{0}(\lambda) d\lambda d\mu$$

$$= \int_{\mathbb{R}} e^{i\lambda\theta(t)} e^{-i\lambda\theta(s)} f_{0}(\lambda) d\lambda$$

$$= \int_{\mathbb{R}} e^{i\lambda(\theta(t) - \theta(s))} f_{0}(\lambda) d\lambda$$

$$= K_{0}(\theta(t) - \theta(s))$$

$$(14)$$

Thus, X_t is harmonizable with the specified covariance structure.

Theorem 6. [Evolutionary Spectral Representation] The harmonizable process $X_t = X_0(\theta(t))$ has an exact evolutionary spectral representation:

$$X_t = \int_{\mathbb{R}} A_t(\lambda) e^{i\lambda t} dZ_0(\lambda)$$
 (15)

where $A_t(\lambda) = e^{i\lambda(\theta(t)-t)}$ is the time-varying amplitude function.

Proof. Step 1: Starting from the harmonizable representation:

$$X_t = \int_{\mathbb{R}} e^{i\lambda\theta(t)} dZ_0(\lambda) \tag{16}$$

Step 2: We perform exact algebraic manipulation of the complex exponential term:

$$e^{i\lambda\theta(t)} = e^{i\lambda\theta(t)} \cdot \frac{e^{i\lambda t}}{e^{i\lambda t}}$$

$$= e^{i\lambda t} \cdot e^{i\lambda\theta(t) - i\lambda t}$$

$$= e^{i\lambda t} \cdot e^{i\lambda(\theta(t) - t)}$$
(17)

Step 3: Substituting this factorization back:

$$X_{t} = \int_{\mathbb{R}} e^{i\lambda\theta(t)} dZ_{0}(\lambda)$$

$$= \int_{\mathbb{R}} e^{i\lambda t} \cdot e^{i\lambda(\theta(t)-t)} dZ_{0}(\lambda)$$
(18)

Step 4: Define the time-varying amplitude function:

$$A_t(\lambda) = e^{i\lambda(\theta(t) - t)} \tag{19}$$

Step 5: This gives us the evolutionary spectral representation:

$$X_t = \int_{\mathbb{R}} A_t(\lambda) e^{i\lambda t} dZ_0(\lambda)$$
 (20)

Step 6: The evolutionary spectral density is:

$$h_{t}(\lambda) = |A_{t}(\lambda)|^{2} \cdot f_{0}(\lambda)$$

$$= |e^{i\lambda(\theta(t)-t)}|^{2} \cdot f_{0}(\lambda)$$

$$= 1 \cdot f_{0}(\lambda)$$

$$= f_{0}(\lambda)$$
(21)

where we used the fact that $|e^{ix}|^2 = 1$ for any real x.

Theorem 7. [Stationary Dilation via Naimark's Theorem] The harmonizable process $X_t = X_0(\theta(t))$ admits a stationary dilation $Y_{(t,\tau)}$ in an expanded space:

$$Y_{(t,\tau)} = \int_{\mathbb{R}} e^{i\lambda\tau} dZ_0(\lambda) \tag{22}$$

The original harmonizable process is recovered via the projection operator P_{θ} :

$$X_t = (P_{\theta} Y)_t = Y_{(t,\theta(t))}$$
 (23)

4

Proof. Step 1: We construct the stationary dilation:

$$Y_{(t,\tau)} = \int_{\mathbb{R}} e^{i\lambda\tau} dZ_0(\lambda) \tag{24}$$

Step 2: This process is stationary in the parameter τ as shown by its covariance:

$$\tilde{K}((t,\tau),(s,\sigma)) = \mathbb{E}[Y_{(t,\tau)}\overline{Y_{(s,\sigma)}}] \\
= \mathbb{E}\left[\int_{\mathbb{R}} e^{i\lambda\tau} dZ_{0}(\lambda) \int_{\mathbb{R}} e^{i\mu\sigma} dZ_{0}(\mu)\right] \\
= \mathbb{E}\left[\int_{\mathbb{R}} \int_{\mathbb{R}} e^{i\lambda\tau} e^{-i\mu\sigma} dZ_{0}(\lambda) d\overline{Z_{0}(\mu)}\right] \\
= \int_{\mathbb{R}} \int_{\mathbb{R}} e^{i\lambda\tau} e^{-i\mu\sigma} \mathbb{E}\left[dZ_{0}(\lambda) d\overline{Z_{0}(\mu)}\right] \\
= \int_{\mathbb{R}} \int_{\mathbb{R}} e^{i\lambda\tau} e^{-i\mu\sigma} \delta(\lambda - \mu) f_{0}(\lambda) d\lambda d\mu \\
= \int_{\mathbb{R}} e^{i\lambda\tau} e^{-i\lambda\sigma} f_{0}(\lambda) d\lambda \\
= \int_{\mathbb{R}} e^{i\lambda(\tau - \sigma)} f_{0}(\lambda) d\lambda \\
= K_{0}(\tau - \sigma)$$
(25)

The covariance depends only on $\tau - \sigma$, confirming stationarity.

Step 3: Apply the projection operator P_{θ} defined earlier:

$$(P_{\theta}Y)_{t} = Y_{(t,\theta(t))}$$

$$= \int_{\mathbb{R}} e^{i\lambda\theta(t)} dZ_{0}(\lambda)$$

$$= X_{t}$$
(26)

Step 4: Verify that P_{θ} is idempotent (already established in the definition):

$$(P_{\theta}^{2}Y)_{t} = (P_{\theta}(P_{\theta}Y))_{t}$$

$$= P_{\theta}(Y_{(\cdot,\theta(\cdot))})_{t}$$

$$= Y_{(t,\theta(t))}$$

$$= (P_{\theta}Y)_{t}$$

$$(27)$$

Step 5: This confirms that $Y_{(t,\tau)}$ is the stationary dilation of X_t , and the original process is precisely the projection of this stationary process via the projection operator P_{θ} .

Corollary 8. [Complete Characterization] For a monotonically modulated process $X_t = X_0(\theta(t))$:

1. It is harmonizable with representation

$$X_t = \int_{\mathbb{R}} e^{i\lambda\theta(t)} dZ_0(\lambda) \tag{28}$$

2. It has evolutionary spectral representation

$$X_t = \int_{\mathbb{R}} e^{i\lambda(\theta(t) - t)} e^{i\lambda t} dZ_0(\lambda)$$
 (29)

3. It is the projection of a stationary process

$$Y_{(t,\tau)} = \int_{\mathbb{R}} e^{i\lambda\tau} dZ_0(\lambda) \tag{30}$$

via

$$X_t = (P_{\theta} Y)_t = Y_{(t,\theta(t))}$$
(31)

4. Its kernel

$$K(t,s) = K_0 \left(\theta(t) - \theta(s) \right) \tag{32}$$

maintains positive definiteness from the original process