PREDICTING IMDB MOVIE
GROSS INCOME USING
MULTIPLE LINEAR REGRESSION

Presented by Shu Jiang

WEB SCRAPING

USING THE LIBRARY
BEAUTIFULSOUP TO INSPECT
WEBPAGE AND EXTRACT
RELATED DATA CONCERNING
EACH MOVIE

Log transformation: gross_in_million and votes

Reclassify and sort the frequency of genre: Top 3: Drama, Comedy and Action

Change numerical variable "runtime" and "Year" to categorical variable

```
table(newmovie$final_Duration)
Long Normal Short
1222 2430 2157
```

> table(newmovie\$new_Year)

```
before2000 first_ten second_ten
2125 1865 1819
```

Call:

```
lm(formula = log_gross ~ new_Year + Level + final_Duration +
Score + log_Votes + Animation + Comedy + Drama + Sport, data = test)
```

Residuals:

```
Min 1Q Median 3Q Max
-3.4551 -0.4522 0.1284 0.5933 2.2949
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    -0.74908
                               0.47222 -1.586 0.11332
new_Yearfirst_ten
                    -0.14723
                               0.11624 -1.267 0.20590
new_Yearsecond_ten
                    0.14097
                               0.10660 1.322 0.18668
LevelPG-13
                    -0.49155
                               0.14848 -3.311 0.00100 **
LevelR
                    -1.08863
                               0.14020 -7.765 4.87e-14 ***
final_DurationNormal -0.52736
                               0.10121 -5.211 2.79e-07 ***
final_DurationShort -0.64907
                               0.12606 -5.149 3.81e-07 ***
                    -0.32906
                               0.05800 -5.673 2.41e-08 ***
Score
log_Votes
                    0.67671
                               0.04184 16.173 < 2e-16 ***
Animation
                    0.15732
                               0.25273 0.622 0.53391
Comedy
                     0.20744
                               0.09840
                                        2.108 0.03553 *
                    -0.28625
                               0.09847 -2.907 0.00382 **
Drama
Sport
                    0.11147
                               0.25163
                                        0.443 0.65797
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.9081 on 487 degrees of freedom Multiple R-squared: 0.5629, Adjusted R-squared: 0.5522 F-statistic: 52.27 on 12 and 487 DF, p-value: < 2.2e-16

Linear model on test data set R^squared: 0.5629

Linear model on training data set R^squared: 0.6461

summary(mbic)

```
## Call:
## lm(formula = log_gross ~ new_Year + Level + final_Duration +
      Score + log_Votes + Animation + Drama, data = datanml)
## Residuals:
                 1Q Median
## -2.46763 -0.44222 0.08769 0.50939 2.18998
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
## new_Yearfirst_ten
## new_Yearsecond_ten
## LevelPG-13
## final DurationNormal -0.29996
## final DurationShort -0.41889
                       -0.30418
                                  0.03136 -9.699 < 2e-16 ***
                       0.74709
                                  0.02192 34.079 < 2e-16 ***
## log_Votes
```

56

```
## Animation 0.59917 0.13159 4.553 5.74e-06 ***
## Drama -0.30303 0.04803 -6.309 3.76e-10 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7763 on 1403 degrees of freedom
## Multiple R-squared: 0.6461, Adjusted R-squared: 0.6435
## F-statistic: 256.1 on 10 and 1403 DF, p-value: < 2.2e-16
```

FINAL MODEL AND CROSS VALIDATION

SHINYAPP DEPLOYMENT

movie gross prediction by multiple linear regression

