

T1 Graph Concepts

Szilard BaranyPrincipal Sales Engineer

Agenda

- Evolution of databases
- Evolution of graph databases
- Graph concepts
- Data science capabilities of a graph analytical platform

The Evolution of Databases

Relational Database

- Rigid schema
- High performance for transactions
- Poor performance for deep analytics

Key-Value Database

- Highly fluid schema/no schema
- High performance for simple transactions
- Poor performance deep analytics

Graph Database

- Flexible schema
- High performance for complex transactions
- High performance for deep analytics

The Evolution of Graph Databases

Graph 1.0

	Single server, non-parallel	NoSQL base for storage scale	Native, Parallel
Native Graph Storage		Key-value or column store	
Parallel Loading	Days to load terabytes	Days to load terabytes	Hours to load terabytes
Parallel Multi-Hop Analytics	Times out after 2 hops	Runs out of time/memory after 2 hops	Sub-second across 10+ hops
Parallel Updates (in real-time)	Batch updates	Batch updates	Mutable/ Transactional
Scale Out for Speed and Size	Requires manual sharding of data and queries	Sharded graphs, handles 1-2 hop queries	Auto distributed data & analytics, for TBs data & 2B+ deep queries/day
Privacy for Sensitive Data	×	×	MultiGraph

Graph 2.0

Graph 3.0

TigerGraph: 3rd Generation Graph Database

Real-time Performance

Sub-second response for queries touching tens of millions of entities/relationships.

Transactional (Mutable) Graph

- Hybrid Transactional / Analytical Processing (HTAP): OLTP and OLAP.
- Hundreds of thousands of updates per second, billions of transactions per day.

Scalability for Massive Datasets

100 B+ entities, 1 T+ relationships.

Deep Link Multi-Hop Analytics

• Queries traverse 10+ hops deep into the graph performing complex calculations.

Ease of Development & Deployment

- GraphStudio visual SDK.
- GSQL Intuitive, Turing complete graph query language for developing complex analytics in days.
- User extensible graph algorithms library.

Enterprise Grade Security

- Encryption support.
- Control access to sensitive data based on user role, department or organization with MultiGraph.

Graph is How We Think

Graph is a natural model for interconnected data. It is an organic way of modeling data for a variety of relationships and transactions.

What is a graph?

A collection of

- Vertices (vertexes, nodes) and
- Edges (links, relationships) between vertices

- A graph is an object consisting of two sets called vertex set and its edge set.
- The vertex set is a finite nonempty set.
- The edge set may be empty, but otherwise its elements are twoelement subsets of the vertex set.
- The elements of the vertex set of a graph are called vertices and the elements of the edge set are called edges.

What is a vertex? What is an edge?

- Vertices represent real life entities
 - People, products, parts, IP addresses, genre, location, date, ...
 - Visualised as circle/disc
 - Can be considered similar to a relational database table, but ...
 - Can be called nodes, but could that be unambiguous
- Edges represent relationships between real life entities
 - Parenthood, friendship, ownership, hierarchy, action, ...
 - Visualised as line or arrow
 - Can be considered similar to a join in a relational database, but ...
 - Sometimes a relationship can be better represented as a vertex

Vertices and Edges

- Vertices and edges
 - Have type
 - Can have attributes
- Vertices have (primary) IDs
 - Unique value within a vertex type
 - If you insert a vertex with the same ID, it will overwrite the previous one
 - Similar to primary key in relational databases
- Edges do not have IDs
 - They have source and target vertices (vertex IDs)
 - Their combination identifies the edge uniquely

Seven Key Data Science Capabilities

1 Deep Link Analysis

For a set of entities (e.g., customers, accounts, citizens, doctors), show all links or connections

2 Subgraph or Relationship Discovery & Computation

Given a graph (e.g., all payments or claims for a set of customers), find all the relevant subgraphs Multi-dimensional Entity & Pattern Matching

Query Pattern

Given a graph (e.g., all payments or claims for a set of customers), find similar graphs Hub & Community
Detection

Find most influential members of a group (customers, doctors, citizens) & detect community around them

(5) Geospatial graph analysis

Temporal (time-series) graph analysis

7 ML feature generation and explainable Al

Analyze changes in entities & relationships with location data

Analyze changes in entities & relationships over time

Extract graph-based features to feed as training data for ML; power explainable Al

Community resources

Developer Community

TG Community Forum

TG Community Chat

Developer Portal

Reddit

YouTube

LinkedIn

Twitter

Twitch

GitHub

community.tigergraph.com

discord.gg/F2c9b9v

https://dev.tigergraph.com/

reddit.com/r/tigergraph/

youtube.com/tigergraph

linkedin.com/company/tigergraph/

twitter.com/tigergraphdb

twitch.tv/tigergraph

github.com/tigergraph/ecosys

github.com/tigergraph/gsql-graph-algorithms

github.com/TigerGraph-OSS

Thank you!

Szilard Barany

szilard.barany@tigergraph.com

Discord: Szilard 🐆

