Theory of Computer Games 2022 – Project 2

Overview: Train a player to play *Threes!* with high win rates.

- 1. Implement the n-tuple network.
- 2. Implement the TD(0) afterstate learning framework.
- 3. Train a player based on TD learning and n-tuple network.

Specification:

- 1. The player should be trained by the TD(0) afterstate learning framework as in [1].
 - a. An episode is defined as $s_0 \cdots \longrightarrow s_t \xrightarrow{a_t} s'_t \longrightarrow s_{t+1} \xrightarrow{a_{t+1}} s'_{t+1} \longrightarrow \cdots s_T$
 - b. The TD(0) afterstate learning framework adjusts the afterstate values, $V(s'_t)$, by $V(s'_t) \leftarrow V(s'_t) + \alpha (r_{t+1} + V(s'_{t+1}) V(s'_t))$. See Methodology for more details.
 - i. You can train the player with more sophisticated TD variants if needed.
 - ii. The total number of episodes for training is not limited.
- 2. The n-tuple network for storing afterstate values can only use 1GB of memory at most.
 - a. The structure of the n-tuple network (e.g., 8×4, 4×5, 4×6) is not limited.
 - b. The network should be serializable, i.e., be able to save to a file and load from a file.
- 3. The player takes actions based on the rewards and the afterstate values, $r_t + V(s'_t)$:
 - a. Not required to perform extra searching, i.e., just expand 4 afterstates.
 - b. The program speed should be at least 50000 actions per second. (an approximate value, see Scoring Criteria for details)
- 4. The environment and the rules are the same as those in Project 1.
- 5. The statistic is required, and the requirements are the same as those in Project 1.
- 6. The program arguments and record format are the same as those in Project 1.
- 7. The program should be able to execute in the Linux environment.
 - a. C++ is highly recommended for TCG projects since the methods involved are sensitive to CPU speed.
 - b. For other programming languages (e.g., Python), contact TAs for more details.
 - c. A makefile for the program should be provided.
 - i. Provide make for compiling the program.
 - ii. Provide make stats for executing the program, generating statistics of 1000 games and saving the results into a file named stats.txt.

Methodology:

- 1. The player should expand all afterstates, **evaluate the afterstate values by the n-tuple network**, then select an action according to the immediate rewards and the afterstate values. To achieve this, you need to
 - a. Design and implement an n-tuple network.
 - b. Implement the TD(0) afterstate learning algorithm.
 - c. Train an n-tuple network with TD(0) afterstate learning algorithm.
 - d. Use immediate rewards and afterstate values to take action.

- 2. Precautions for implementing an n-tuple network:
 - a. Try the simplest 8×4-tuple network first (4 vertical lines and 4 horizontal lines). It has 8 weight tables $\Theta_1, ..., \Theta_8$, corresponding to 8 tuples, $\phi_1, ..., \phi_8$:
 - iii. $\phi_1(s_t')$ maps the first row to an index for accessing feature weights in Θ_1 , e.g., Θ_1 maps to 0x6241. See Appendix for more details.
 - iv. Be careful to implement feature extraction and index encoding.
 - v. Once the simplest network works, you may refer to [2] for a more powerful ntuple network design or even design it yourself.
 - b. Isomorphic patterns with shared weights can speed up the training process.
 - Be careful with the order of accessing indexes. You should use the same order when accessing isomorphic patterns.
 - ii. Note that the simplest 8×4-tuple network does not consider weight sharing. It has 8 lines, each corresponding to a unique weight table. When weight sharing is applied, Only 2 weight tables are used to store 2 sets of tuples: the outer lines, and the inner lines.
 - iii. When you are using a larger network, it is highly recommended to use isomorphic patterns. In addition to speed up the training, it also significantly reduces the amount of required memory.
- 3. Precautions for implementing the TD(0) algorithm:

An episode is defined as
$$s_0 \cdots \longrightarrow s_t \xrightarrow{a_t} s'_t \longrightarrow s_{t+1} \xrightarrow{a_{t+1}} s'_{t+1} \longrightarrow \cdots s_T$$

- a. Take the simplest 8×4-tuple network as an example, there are 8 weight tables $\Theta_1, \dots, \Theta_8$, corresponding to 8 tuples, $\phi_1, \dots \phi_8$:
 - i. The value function $V(s_t')$ is calculated as $\Theta_1[\phi_1(s_t')] + \cdots + \Theta_8[\phi_8(s_t')]$.
 - ii. For a value function $V(s_t')$, only its corresponding 8 feature weights are adjusted: $\Theta_1[\phi_1(s_t')], \ldots, \Theta_8[\phi_8(s_t')]$. These 8 feature weights are adjusted with the same TD error: $\Theta[\phi(s_t')] \leftarrow \Theta[\phi(s_t')] + \alpha(r_{t+1} + V(s_{t+1}') V(s_t'))$.
- b. Do not forget to train the last afterstate s'_{T-1} . Its TD target should be 0.
- c. Do not **confuse the immediate rewards**. The TD target for $V(s'_t)$ is $r'_{t+1} + V(s'_{t+1})$.
 - i. Threes! has no official immediate reward. Instead, a value function F(s) of the whole puzzle is defined: $F(s) = \sum_{v} 3^{1 + \log_2(v/3)}$ for all $v \ge 3 \land v \in s$
 - ii. You may use the difference of F as the reward, i.e., $F(s'_t) F(s_t)$.
- d. Do not **confuse the feature weight and the value function** when calculating TD errors. The TD error for $\Theta[\phi(s_t')]$ is NOT $(r_{t+1} + \Theta[\phi(s_{t+1}')] \Theta[\phi(s_t')])$.
- e. Do not confuse the states and the afterstates.

- f. The backward method and the forward method are both common implementations:
 - i. The backward method updates the afterstates from the end to the beginning.

Step 1: after game over (s_{t+3}) , update the last state (s'_{t+2})

Step 2: update the previous afterstate (s'_{t+1})

Step 3: update the previous afterstate (s'_t)

ii. The forward method updates the afterstates from the beginning to the end.

Step 1: apply an action (s'_{t+1}) , update previous state (s'_t) .

Step 2: apply an action (s'_{t+2}) , update previous state (s'_{t+1}) .

Step 3: after game over (s_{t+3}) , update the last state (s'_{t+2})

- 4. Precautions for training the n-tuple with TD(0) algorithm learning algorithm:
 - a. The initial learning rate α should be calculated based on the number of features. For example, α can be $0.1 \div 8 = 0.0125$ for the simplest 8×4-tuple network.
 - i. For an isomorphic 4×6-tuple network, $\alpha = 0.1 \div 32$ since it has 32 features.
 - ii. Reduce the learning rate α only if the network is converged. In addition, do not reduce the learning rate too fast.
 - b. When using the provided framework for training, always set --total, --block, and --limit, e.g, --total=100000 --block=1000 --limit=1000.
 - c. Always keep the statistic files and log files. They are useful for further analysis.
 - i. To record the training log, use the tee command.
 - ii. It is recommended to use tmux or screen command to launch your program.

- d. Remember to regularly save network snapshots.
 - i. Even if all the code is bug-free, the network may sometimes become worse during the training, especially when the learning rate α is low. Snapshots help you recover from such a situation.
 - ii. You can refer to the README.md in the sample code for an example of taking snapshots during the long training.

Scoring Criteria:

- 1. **Performance (100 points)**: Calculated by round $\left(\left(\frac{\text{WinRate}_{384}}{10}\right)^2\right)$.
 - a. $WinRate_{384}$ is the reaching rate of the 384-tile in 1000 games.
 - b. A judge program is provided to assess the grade.
 - i. First, play 1000 games and write the statistics to stats.txt by your program:
 - \$./threes --total 1000 --save stats.txt --OTHER_ARGS You may change OTHER ARGS to other arguments required by the program.
 - ii. To judge the statistics, load it by the judge:
 - \$./threes-judge --load stats.txt --judge version=2
- 2. **Report (10 points, optional)**: Graded according to the completeness of the report.
 - a. Summarize the network design, the method used, the training process, and so on.
- 3. **Demo (requirement)**: Demo the project in person.
 - a. Demo your program and answer a question about implementation.
 - b. To be announced.
- 4. Penalties:
 - a. **Time limit exceeded (–30%)**: If the program speed does not meet the minimum speed expected by the judge program.
 - b. Memory limit exceeded (-30%): If the program uses more than the memory limit.
 - c. Late submission (-30%): If the project requires any modifications after the deadline.
 - d. No version control (-30%): If there is no version control.
 - e. **Failed demo (–30%~100%)**: If you cannot demo the program or cannot answer the asked question.
- 5. The final grade is the sum of the indicators minus the penalties.
 - a. The maximum grade is limited to 100 points.
 - b. The grade is not counted if the demo is not passed.

Submission:

- 1. The submission should be archived as a ZIP file and named ID.zip, where ID is your student ID, e.g., 0356168.zip.
 - a. Pack the source files, makefile, report, and other required files.
 - b. Submit the archive through the E3 platform.
 - c. Do not upload the network weights to the E3 platform.
 - i. We will announce another location for placing weight files.
 - d. Do not upload the version control hidden folder, e.g., the .git folder.

- 2. The program should be able to run under the provided Linux workstations.
 - a. Available hosts: tcglinux1.cs.nycu.edu.tw, ..., tcglinux10.cs.nycu.edu.tw
 - i. Use the <u>NYCU CSIT account</u> to log in via SSH.
 - ii. Place project files in /tcgdisk/ID, where ID is your student ID. Note that you need to create the folder first. For example, suppose that your ID is 0356168:
 \$ mkdir /tcgdisk/0356168 && chmod 700 /tcgdisk/0356168
 - b. The projects will be graded on the provided workstations.
 - i. You may use your machine for development. The judge program should work on most Linux platforms.
 - c. Do not occupy the workstations. Contact TAs if the workstations are crowded.
- 3. Version control (e.g., GitHub or Bitbucket) is required during the development.

References:

- [1] M. Szubert and W. Jaśkowski, **Temporal difference learning of N-tuple networks for the game 2048**, CIG 2014.
- [2] K. Matsuzaki, Systematic selection of N-tuple networks with consideration of interinfluence for game 2048, TAAI 2016.
- [3] K.-H. Yeh, I-C. Wu et al., Multi-Stage Temporal Difference Learning for 2048-like Games, IEEE TCIAIG 2016.
- [4] Threes JS, http://threesis.com/.

Appendix:

1. Average scores during the training of a million episodes:

