System Security fiche

Pierre Colson

January 2023

Contents

Architectural Support for Security	4
Trusted Execution Environment	,

Markdown version on github Compiled using pandoc and qpdf script

Side Channels & Tempest

- Compromising Emanations: Physical signals related to digital activity; break the assumption of higher-level abstractions; Root cause of many attacks
- Tempest: Passive leakage of plaintext information (E.g., video on screen)
 - Video Signal
 - * Signal in wire/connector/etc. not well shielded
 - * Current in wires generates EM waves
 - * Modulated with the pixel values
- Soft Tempest: Active version of Tempest; leakage used to exfiltrate data
 - Vide Signal
 - * Signal in wire/connector/etc. not well shielded
 - * Current in wires generates EM waves
 - * Modulated with the pixel values
 - * Use to transmit data
 - * Or to add noise Tempest leakage
 - * Possible with many other sources of leakage (e.g. memory access)
- **Side Channels**: Use leakage to attack cryptographic implementation (Only in proximity, with few exceptions)
- Type of *pysical leakage*: Execution time, Power, Magnetic and electromagnetic, optical, thermal, acoustic and vibrational, reflection of injected signals
- Type of attack: Passively recover plaintext, Actively exfiltrate data; attack cyrptographic implementation
- Symmetric encryption for confidentiality
 - Stream cypher
 - * Process a message bit by bit (byte by byte)
 - * KeyStream = PseudoRandomBitStreamGenerator(seed)
 - * CyphertextStream = KeyStream + PlaintextStream
 - Block cypher
 - * Process a message block by block (EAS, DES)
 - * Plaintext might need padding

- * Plaintext + Key = BlockCipher
- * All block cipher leads to the cipher text
- * There is different way to concatenate block cipher
- * Electronic CodeBlock (ECB, insecure) $C_1 = P_1 \bigoplus K$, $C_2 = P_2 \bigoplus K$, ...
- * Cipher Block Chaining (CBC) $C_1 = (P_1 \bigoplus IV) \bigoplus K$, $C_2 = (P_2 \bigoplus C_1) \bigoplus K$, ...
- Symmetric crypto for authentication
 - Message Authentication Code (MAC)
 - Shared key between A and B
 - A sends to B message M + MAC where MAC = MACFunction(M, K)
- · Asymmetric crypto for confidentiality
 - A and B exchange a key pair via a trusted channel
 - A wants to send M to B, she sends: $C = Encryption(Pu_B, M)$ where Pu_B is B's public key
 - B decrypts the message as follow: $M' = Decryption(Pr_B, C)$ where Pr_B is B's private key
- Asymmetric crypto for authentication
 - A send to B message M and Signature S, where $S = Encryption(Pr_A, M)$ where (A's private key)
 - B verifies the signature by checking: $Decryption(Pu_A, S) = M$ where $(Pu_A \text{ is } A\text{'s public key})$
- Combine the best of two: Asymmetric key exchange + Symmetric encryption
- Security of cryptographic algoritms
 - We *model* system and possible attackers
 - Security properties are valid under certain assumptions
- Side Channel concrete example
 - **Timing**: Measure execution time
 - * Classic timign attack against RSA
 - * Remote attack are possible
 - * Modern example of remote attack onc cryptocurrencies
 - Power Measure some physical quantity influenced by execution
 - * Simple Power Analysis (SPA)
 - * Differential Power Analysis (DPA)
 - * Correlation Power Analysis (CPA)
- Reminder on **RSA**
 - Key generation
 - 1. Chose numbers p, q such that p and q are prime and $p \neq q$
 - 2. Compute n = pq
 - 3. Compute $\Phi(n) = \Phi(p-1)\Phi(q-1)$
 - 4. Chose e such that e and $\Phi(n)$ are relative prime and $1 < e < \Phi(n)$
 - 5. Compute d as such that $de \mod \Phi(n) = 1$
 - 6. Public key $PU = \{e, n\}$
 - 7. Private key $PR = \{d, n\}$
 - Encryption
 - * Plaintext m < n
 - * Ciphertext $C = m^e mod n$
 - Decryption
 - $* \ {\bf Ciphertext} \ C$
 - * Plaintext $m = C^d mod n$
 - Signature
 - * Plaintext m < n
 - * Signature $s = m^d mod n$
 - The *security* of RSA is based on two hard problems
 - * The RSA problem, i.e., computing the e^{th} root of m modulo n from $C = m^e \mod n$
 - * FActoring large numbers into smaller primes
- ullet Exponentiation is implemented using $Square\ and\ multiply$
 - Problem 1
 - * Key dependant branching
 - * Execution time depends on the key d, if bit i of d is 0 is will be faster than if bit i of d is 1

- Problem 2
 - * Montgomery used for modular multiplication because it is more efficient
 - * Montgomery execution time T_{mont} depends on the plaintext m; there is a reduction step done only if necessary

• Countermeasures

• Constant time

- Relatively easy for specific cases
 - * E.g., modular multiplication without conditional reduction
- Generic protection is hard
 - * Identify and elininate all dependencies of time with plaintext and key
 - * Can have performance issues

· What if we artificially add noise

- An attacker jus theed more measurements to dig the signal out of the noise
- Masking: Can we make it impossible for the attacker to guess
 - Mask with random number C different for each message:
 - * $md \mod n \to [(m.X)d \mod n].[(X^{-1})d \mod n] \mod n$
 - Intuitively, given m and d_i the attacker cannot guess slow/fast any more

• A logic gate

- Electronic component that implements a logic operator (not, and, nand, or, xor)
- Stateless (Combinatorial)
- Together with memory elements it is used to implement finit state machines
- MOS transistor: electronic switch
- Logical gate can be implemented with MOS
- Data dependency: There are physical phenomena that create a data dependency between logic values and their transitions and the power consumption of the circuit

Measure

- We can measure the power consumption and observe these phenomena
- Signals are small, many measurements and statistical analysis are often needed
- Model: we know how it works: given some logic data manipulated by the software/hardware, we can predict the corresponding power consumption

• Countermeasures

- Problem: There is a data dependency (of some order) between plaintext, key and the power
- Add noise
 - * Desyncronize ther traces
 - * Inject random noise
 - * Defeated with better signal processing and more measurements
- Try to balance the hardware
 - * Filtering shielding (Filtering is not perfect, expensive, can be tempered)
 - * Make a processor where every instruction/operands consumes the same power (Not easy and expensive)
- $-N^{th}$ order masking
 - * Multiply each data with a random variable
 - * This algorithmically breaks the dependecy making it impossible to guess the intermediate value

• EM side channel

- Currents flowing in cables produce EM signals
- Clock might act as a carrier
- Emissions from localized areas, are not all overall power consumption

• Sound side channel

- Currents in certain capacitors make them vibrate and produce sounds
- We don't always need a physical access
- Tamper resistant systems take the bank vault approach
 - Prevention of break in
- Tamper responding systems use the burglar alarm approach
 - Real-time detection of intrusion and prevention of access to sensitive data

- Tamper evident system are designed to ensure that is a break-in occurs, evidence of the break in is left behind
 - Detection of intrusion

Architectural Support for Security

- Application security: Requirements
 - Launch-time integrity: correct application was started or loaded
 - Run-time isolation: no interference from malicious software, peripherals
 - Secure persistent storage
- OS Security: Privilege rings
 - Ring 3: applications
 - Ring 2: Device drivers
 - Ring 1: Device drivers
 - Ring 0: Kernel
 - Currently, only $ring \theta$ and ring 3 are used
 - CPU tracks the current privilege level CPL using two register bits
 - Main uses: limiting access to privileged instructions, I/O-ports
 - Legacy use: kernel memory protection
 - Privilege in Modern OS (only two levels)
 - * Level 0 for the kernel
 - * Level 3 for users
- Calls across Privilege Rings
 - 1. Before **syscall**, put argument into registers
 - 2. Issue **syscall** \rightarrow CPU changes privilege level and calls *Hook*
 - 3. Hook performs access policy checks and validates arguments
 - 4. Kernel performs the requests action
 - 5. Return to the application
- Discretionary Access Control (Linux Security Model)
 - A means of restricting access to objects based on the identity of subjects and/or groups to which they belong. The controls are discretionary in the sense that a subject with a certain access permission is capable of passing that permission to any other subject
- Users and Groups
 - A user-account (user, uid)
 - * Represents someone capable of using files
 - * Associated both with human and processes
 - A group-account (group, gid)
 - * Is a list of user-accounts
 - * Users have a main group
 - * May also belong to other groups
- Permissions
 - A file has owner and group id
 - A process has owner and group id
 - Kernel verifies permissions before executing system calls
 - * If owner uid = 0(root), everything in allowed
 - * Otherwise the uid and gid of the process and object are compared in this order and permission for the operation is searched based on owner, group, and other rights
- A basic transaction, wherein a *subject* (user or process) attemps some action (read, write, execute) against some *object* (file, directory, special file)
- setuid bit means program run with same privileges as owner
 - No matter who executes it
- setgid bit means run with same privileges as a member of the group which owns it
 - Again regardless of who executes it
- Password are changed using the program /bin/passwd

- Real UID (RUID): UID of the user running the program
- Effective UID (EUID): UID of uer with whose privileges the program runs
- getuid() returns RUID
- geteuid() returns EUID
- setuid(uid) set UID
 - If EUID == root, set EUID and RUID
 - If not root, sets EUID if certain conditions are met
- setruid(uid) set RUID
- seteuid(uid) set EUID
- fork() functions shall create a new process. The new process (child process) shall be an extact copy of the calling process (parent process)
- Linux uses a DAC security model but Mandotory Access Control (MAC) imposes a global security policy on all users
 - User may not set controls weaker than policy
 - Normal admin done with accounts without authority to change the global security policy
 - but MAC systems have been hard to manage

• SE linux

- In SELinux, all access must be explicitely granted
- Allows no acces by default, regardless of the linux user/groups ids
- There is no default superuser in SELinux unlike the root in standard linux
- Each individual subject and object in SELinux is governed by a **security context** being a:
 - * User individual user (human or daemon)
 - * Role like a group, assumed by user
 - * Domain (type) a sandbox being a combination of subjects and objects that may interact with each other
 - * this model is called **Type enforcement (TE)**
- Decision making
 - * **Access** decisions: when subject do things to objects that already exist, create new things in expected domain
 - * Transition decisions: invocation of processes in different domains than the one in which the subject process is running; creation of objects in defferent types (domains) than their parents domain; transitions must be authorized by SELinux policy
- Access in granted by specifying access from a subject type (that is, a damain) and an object type using an allow rule
- A domain transition is allowed only when the following three conditions are tue
 - * The process' new domain type has entrypoint access to executable file type
 - * The process' current domain type has execute access to the entry point file type
 - * The process' current domain type has transition access to the new domain type

• Paging-based Security

- Security-relevant data in page table entries
- Supervisor bit: if set, this page is accessible only in ring 0 (isolates OS from applications)
- RW bits: to distinguish between read-only and writeable pages
- Non executable (NX) bit: if set, the page is not executable (prevents run-time code injection)

• Virtual address space

- Every process has its own virtual address space
- Kernel address space is protected with the supervisor bit

Firewire DMA

- Key idea: Access RAM is tightly controlled by the CPU, but this can be circumvented through DMA (Direct Memory Access)
- Firewire technology allow for fast communication speeds between devices, use DMA
- The attacker uses a Firewire cable to connect to a (locked) PC and issue a DMA request to fetch the contents of RAM
- Later on, can look in the collected data and leak keys and other passwords

• BadUSB

- Key idea: change a USB device controller to mimic another device class

• DMA remapping

- Setup by the OS, similar to MMU
- Control DMA access to physical memory
- OS trust assumptions
 - Intel Managment Engine
 - BIOS/UEFI
 - Periferical firmware
 - etc.

• Physical access Attacks are harder to defend for the OS

- Remove the hard drive from a machine left unattended
- Boot from a USB key and copy the data out/change the password
- Trivial (and possibly broken) solutions:
 - * Prevent booting from an external source from the BIOS (Broken; we can reset the bios by removing the battery)
 - * Protect the BIOS with a password (Broken; we can reset the bios by removing the battery)
 - * Partial/Full disk encryption
 - * Data hiding

• Disk encryption

- Simple approach: use password only
 - * The disk is encrypted with a key that is protected using a user-privided password
 - * Problem: password can be brute-forced
- Better approach: leverage a secure element
 - * The disk key encryption is stored in a secure element
 - * Example: Trusted Platform Module (TPM) chip on motherboard

• Cold Boot Attack Process

- Normal operation
 - * The user logs with a password
 - * The disk encryption key is kept in RAM when the computer is locked
- Attack process
 - * Attacker opens the machine to expose the RAM chips
 - * Remove power
 - * Cool down RAM (dust-sprayer upside down (-50 degree), LN2 (-192 degree))
 - * Plug RAM module to another (acquisition) platform
 - * Recover kev
- Cold Boot Attack: Countermeasures
 - Erase key from memory on every (controlled) suspend
 - * User needs to type in password often
 - * Does not help sudden power loss
 - Prevent booting from external media
 - * Does not prevent DRAM component transfers
 - Physical protection
 - * Components that respond to enclosure opening or low temperatures
 - * Expensive for commodity systems
 - Avoid placing the key in memory
 - * Performs encryption in disk controller
 - * Requires architectural changes

• TPM Support

- Secure boot: OS boots only if the chain of trust is valid
- Authenticated boot: System records chain of trust but the OS boots even if the chain of trust
 in invalid
- UEFI instead of BIOS
- Hardware-supported OS-based Application Security

	Hardware support for OS-based Security
CPU	Privilege rings
	Memory Management Unit
Chipset	DMA Remapping tables
Periferals	Trusted Platform Module
	Normal HDD with OS-enforced access control

- Runtime Attacks: Typical Attacks
 - Buffer overflows
 - Format string
 - Double free
 - Use-after-free
- Runtime Attacks: Mitigation Techniques
 - Non-executable pages (NX)
 - * Attackers used to place shell code in normal data pages/stack
 - * Stack should not be executable
 - * Mark all pages that do not contain code as Non-executable (NX)
 - * Hardware support required
 - * Mark all pages with executable code as read-only
 - * Not always possible

- Stack canaries

- * Add random stack canaries
- * To overwrite the return pointer, the stack canary must also be overwritten
- * Check the value before jumping to return address
- * Can prevent some attacks
- * Assumes the attacker cannot read memory

- Address space layout randomization (ASLR)

- * Return to libc: overwrite return pointer with address of exec(/bin/sh)
- * What if we move the binary by a few MB in its virtual address space?
- * The location of exec will be unknown to the attacker
- * Implemented in all major operating systems
- * KASLR (linux) also defends against Meltdown
- * Broken if the attacker can read memory (separate info leak exploit)

- Control flow integrity

- * Generate all legal control flow transfers
- * Verify every transfer at runtime
- * Straight forward for direct-control transfers
- * Static destination addresses
- * Forward edges: switch statements, indirect calls, etc.
- * Backward edges: returns

Trusted Execution Environment

- Defense in depth:
 - Small Trusted Computing Base (TCB)
 - Even if the OS/Hypervisor are comprised, code/data can be protected
- Confidential computing:
 - Client can verify what is running on remote system; operator cannot violate the integrity of the execution
 - Operator cannot see the code/data of the client
- Enforced in Hardware (typically via special CPU instructions or co-processor)
- We need to trust the HW manufacturers: Intel, AMD
- Vulnerable to some side channel attack

• Computing Systems Trust Model

- The **Trusting Computing Base** (TCB) is the set of software and hardware components that need to be trusted for an application to execute securely
- For instance, the TCB of a banking application includes the Operating System, the CPU, the DRAM chips, the disk ...
 - * If any of these are malicious the execution integrity and confidentiality cannot be guaranteed
- Other applications are not in the TCB
- In principle, they can be malicious and the OS (with hardware support) still provides isolation to other benign apps
 - * However some exploit can lead to privilege escalation
- Trusted Execution Environment (TTEs) usually aim to reduce the TCB needed to execute applications
- Primitives: Isolation, Bootstrapping trust, Sealing storage
- **Isolation** (defense in depth and confidential computing)
 - CPUs traditionally enforce isolation between permission levels
 - More privileged levels control and can modify less privileged levels
- Intel SGX Isolate 'small' Apps into enclaves
 - Design choice
 - * Create isolated environments at the application level, called **enclaves**
 - * Enclaves are isolated from all the other software in the system OS/Hypervisor
 - Resists a physical attacker (cold boot attack, bus tapping, etc)
 - * Everything outside the CPU die is untrusted
 - * The CPU die is assumed to be secure
 - The OS and the Hypervisor are still in charge of managing virtual memory and interrupts
 - The CPU keeps track of whether it is currently executing in enclave-mode and which enclave is executing
 - Memory reads to enclave memory when not in enclave mode always return Oxff
 - Trying to read another enclave memory returns Oxff
 - Similarly, not authorized memory writes fail silently
 - Enclaves can read/write the memory to their untrusted app
 - New component on the CPU takes care of securing memory, the Memory Encryption Engine (MEE)
 - The CPU is trusted, so data resides in the cache in plain text
 - While the content of memory pages is protected by SGX and the MEE, page metadata is not, metadata includes:
 - * Access permissions of a page
 - * Accessed bit: whether a memory page was recently accessed
 - * Dirty bit: whether a memory page was recently written

- Controlled Channel attacks

- * The os can remove execute or read/write access to memory page
- * This trigger an exception which contains the address of the memory page that was being accessed
- \ast This reveals enough information
- * Information from the accessed/dirty bits are also enough to leak information

- Side Channel attacks

- * Enclaves share resources with other applications in the system: cache, core execution units, branch prediction structure
- * Monitoring utilization of these resources from another application leaks information
- AMD SEV: Isolate entire VMS
 - Design choices:
 - * Isolate Virtual Machine from Hypervisor. VMs can execute code on ring 3,2 and 1
 - Resists low skilled physical attacker (cold boot, but not bus tampering)
 - * Everything outside the CPU die is untrusted
 - Comparison with SGX

- * SEV encrypts data that leaves the CPU die
- * However, it does not store a MAC tag together with the data (data in memory is not authenticated)
- * Like SGX, SEV keeps track of the different isolated environments with HW prinitives
- * While unauthorized writes cannot happen from the CPU, if memory is corrupted some other way VMs will read the wrong value from memory
- Key management
 - * SEV uses an ARM co-processor to manage the different encryption key for each VM
 - * At VM creation a new key is created in the co-processor to encrypt the VM memory
 - * Each new VM has a different encryption key
- ARM TrustZone: The tale of two world
 - Design choices:
 - * Have two separate isolated execution environments. These are referred to as the Non secure and the Secure world
 - No physical attacker
 - * Communication to peripherals is assumed to be trusted
 - The memory is partition between the Secure and Non-Secure world
 - The Secure world can read/write the Non-Secure world memory, but the Non-Secure world is restricted to its own memory
 - The TrustZone Address space is controller (TZASV) is a hardware component that is used to configure which ranges of memory belong to which world
 - Only the secure world can configure the TZASV
 - Memory is separated at the physical layer. That is there are two separate physical address ranges, one for the secure world and one for the non-secure world
 - The CPU keeps track of which world in currently executing
- Trusted Isoltation Environments Trust Model summary

- Bootstrapping trust (Attestation/Secure boot) (confidential computing)
 - The isolation provided by TEEs is a useful primitive
 - However secret need to get into the TEE somehow
 - How do we make sure that we are sending secret to the right TEE and not the malicious OS
 - The main way to prove the authenticity of a TEE:
 - * Secure boot check that at each boot stage, only trusted software is loaded
 - * Remote attestation
- Remote Attestation
 - Different Enclaves and keys involved
 - CPU measures the enclave and signs it hash

- Enclave invokes measurement, OS is suspended, CPU measures and returns the the signed hash
- This can be done so that client creates a secure channel into the enclave
- Sealing storage (defense in depth and confidential computing)
 - Enclave has no direct access to disk or IO / no access to persistent storage
 - No access to trusted clock, limited support for counters
 - Can do **sealing** store encrypted confidential data on disk
 - * This data is encrypted and MACed with enclave and processor specific keys
- Remote Attestation
 - During manufacturing, two keys are burned into the CPU
 - * Fused Seal key is used as Processor's secret
 - * Provisionning key serve as a proof for remote platform
 - * Remote platform issues an Attestation key which is encrypted and stored for future use
- To prevent attestation key from leaking the platform's identity, Intel introduces the EPID scheme
 - **EPID**: digital signature scheme with anonymity properties
 - * One group public key corresponds to multiple private keys
 - * Each unique private key can be used to generate a signature
 - * Signature can be verified using the group public key
 - * A signature cannot be linked to a private key