

FJ

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer: 0 350 733
A2

⑫

EUROPÄISCHE PATENTANMELDUNG

⑬ Anmeldenummer: 89111950.5

⑪ Int. Cl.4: C07D 401/04 , A61K 31/47 ,
C07D 471/04 , C07D 498/04 ,
C07D 487/04 , C07D 519/00 ,
C07D 513/04 , A61K 31/535 ,
A61K 31/54 , C07D 407/14 ,
C07D 215/56 , // (C07D498/04,
265:00,209:00), (C07D471/04,
221:00,209:00), (C07D487/04,
209:00,209:00)

⑭ Anmeldetag: 30.06.89

⑬ Priorität: 15.07.88 DE 3824072
01.03.89 DE 3906365

D-5068 Odenthal(DE)
Erfinder: Grohe, Klaus, Dr.
Am Wasserturm 10
D-5068 Odenthal(DE)
Erfinder: Schriewer, Michael, Dr
Am Thelen Siefen 1a
D-5068 Odenthal(DE)
Erfinder: Haller, Ingo, Dr.
Dornroeschenweg 4
D-5600 Wuppertal 1(DE)
Erfinder: Metzger, Karl Georg, Dr.
Pahlkestrasse 75
D-5600 Wuppertal 1(DE)
Erfinder: Endermann, Rainer, Dr.
In den Birken 152a
D-5600 Wuppertal 1(DE)
Erfinder: Zeller, Hans-Joachim, Dr.
Elsbeekerstrasse 46
D-5620 Velbert 15(DE)

⑭ Veröffentlichungstag der Anmeldung:
17.01.90 Patentblatt 90/03

⑬ Benannte Vertragsstaaten:
AT BE CH DE ES FR GB GR IT LI LU NL SE

⑮ Anmelder: BAYER AG

D-5090 Leverkusen 1 Bayerwerk(DE)

⑯ Erfinder: Petersen, Uwe, Dr.

Auf dem Forst 4
D-5090 Leverkusen(DE)
Erfinder: Schenke, Thomas, Dr.
Muehlenstrasse 113
D-5060 Bergisch-Gladbach 2(DE)
Erfinder: Krebs, Andreas, Dr.
Am Gartenfeld 70

⑭ 7-(1-Pyrrolidinyl)-3-chinolon- und -naphthyridoncarbon-säure-Derivate, Verfahren zu ihrer Herstellung sowie substituierte mono- und bicyclische Pyrrolidinderivate als Zwischenprodukte zu ihrer Herstellung, und sie enthaltende antibakterielle Mittel und Futterzusatzstoffe.

⑮ Die Erfindung betrifft 7-(1-Pyrrolidinyl)-3-chinolon- und -naphthyridoncarbonsäure-Derivate der Formel (I)

EP 0 350 733 A2

(I),

in welcher X^1 , X^2 , R^1 , R^2 , R^3 und A die in der Beschreibung angegebene Bedeutung haben, Verfahren sowie substituierte (Oxa)Diazabicyclooctane und -nonane als Zwischenprodukte zu ihrer Herstellung, und sie enthaltende antibakterielle Mittel und Futterzusatzstoffe.

7-(1-Pyrrolidinyl)-3-chinolon- und -naphthyridoncarbonsäure-Derivate, Verfahren zu ihrer Herstellung sowie substituierte mono- und bicyclische Pyrrolidinderivate als Zwischenprodukte zu ihrer herstellung, und sie enthaltende antibakterielle Mittel und Futterzusatzstoffe

Die Erfindung betrifft neue 7-(1-Pyrrolidinyl)-3-chinolon- und -naphthyridoncarbonsäure-Derivate, Verfahren zu ihrer Herstellung sowie diese enthaltende antibakterielle Mittel und Futterzusatzstoffe.

Es ist bereits eine Reihe von 3-Chinolon- und Naphthyridoncarbonsäuren bekanntgeworden, die in 7-Position durch einen Pyrrolidinyl-Ring substituiert sind. Deutsche Patentanmeldung 3 318 145, Europäische
5 Patentanmeldungen 106 489 und 153 826.

Es wurde gefunden, daß die 7-(1-Pyrrolidinyl)-3-chinolon- und -naphthyridoncarbonsäure-Derivate der Formel (I)

in welcher

X^1 für Halogen,

20 X^2 für Wasserstoff, Amino, Alkylamino mit 1 bis 4 Kohlenstoffatomen, Dialkylamino mit 1 bis 3 Kohlenstoffatomen je Alkylgruppe, Hydroxy, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Mercapto, Alkylothio mit 1 bis 4 Kohlenstoffatomen, Arylthio, Halogen,

R^1 für Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit 2 bis 4 Kohlenstoffatomen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, 2-Hydroxyethyl, 2-Fluorethyl, Methoxy, Amino, Methylamino, Ethylamino, Dimethylamino, gegebenenfalls durch 1 oder 2 Fluoratome substituiertes Phenyl,

25 R^2 für Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen oder (5-Methyl-2-oxo-1,3-dioxol-4-yl)-methyl,

R^3 für einen Rest der Struktur

steht, worin

R^4 für H, C₁-C₄-Alkyl, Aryl, C₁-C₄-Acyl

40 R^5 für H, C₁-C₄-Alkyl, OH, OCH₃, wobei R^4 und R^5 gemeinsam auch eine gegebenenfalls durch Methyl ein- oder zweifach substituierte C₁-C₃-Alkylenbrücke bedeuten können,

R^6 für H, gegebenenfalls durch Hydroxy substituiertes C₁-C₄-Alkyl, sowie Aryl, Heteroaryl, Benzyl, C₁-C₄-Alkoxy carbonyl, C₁-C₄-Acyl, (5-Methyl-2-oxo-1,3-dioxol-4-yl)-methyl oder C₃-C₆-Cycloalkyl,

R^7 für H oder C₁-C₄-Alkyl,

45 R' für H, CH₃ oder Phenyl,

R'' für H, CH₃ oder Phenyl,

R''' für H oder CH₃,

Y für O, CH₂, CH₂CH₂ oder CH₂-O stehen kann, wobei die Verknüpfung der CH₂-O-Gruppe zum Stickstoff sowohl über O als auch über CH₂ erfolgen kann,

Z für O oder S stehen kann,

50 A für N oder C-R^8 steht, worin

R^8 für H, Halogen, Methyl, Cyano, Nitro, Hydroxy oder r Methoxy steht oder auch gemeinsam mit R^1 eine Brücke der Struktur

-O-CH₂- C H-CH₃, -S-CH₂- C H-CH₃ oder

-CH₂-CH₂- C H-CH₃

5 bilden kann,

und deren pharmazeutisch verwendbaren Hydrate und Säureadditionssalze sowie die Alkali-, Erdalkali-, Silber- und Guanidiniumsalze der zugrundeliegenden Carbonsäuren eine hohe antibakterielle Wirkung insbesondere im grampositiven Bereich aufweisen.

Bevorzugt sind die Verbindungen der Formel (I)

10

15

20 in welcher

X¹ für Fluor oder Chlor,

X² für Wasserstoff, Amino, Alkylamino mit 1 bis 2 Kohlenstoffatomen, Dimethylamino, Hydroxy, Methoxy, Mercapto, Methylthio, Phenylthio, Fluor, Chlor,

25 R¹ für Alkyl mit 1 bis 3 Kohlenstoffatomen, Alkenyl mit 2 bis 3 Kohlenstoffatomen, Cycloalkyl mit 3 bis 5 Kohlenstoffatomen, 2-Hydroxyethyl, 2-Fluorethyl, Methoxy, Amino, Methylamino, Ethylamino, Dimethylamino, gegebenenfalls durch 1 oder 2 Fluoratome substituiertes Phenyl,

R² für Wasserstoff, Alkyl mit 1 bis 3 Kohlenstoffatomen oder (5-Methyl-2-oxo-1,3-dioxol-4-yl)-methyl,

R³ für einen Rest der Struktur

30

35

steht, worin

40 R⁴ für H, C₁-C₃-Alkyl, C₁-C₂-Acyl,
R⁵ für H, C₁-C₃-Alkyl, OH, OCH₃, wobei R⁴ und R⁵ gemeinsam auch eine gegebenenfalls durch Methyl ein- oder zweifach substituierte C₁-C₂-Alkylenbrücke bedeuten können,

R⁶ für H, gegebenenfalls durch Hydroxy substituiertes C₁-C₃-Alkyl, sowie Phenyl, Benzyl, C₁-C₄-Alkoxy carbonyl, C₁-C₂-Acyl, (5-Methyl-2-oxo-1,3-dioxol-4-yl)-methyl oder C₃-C₅-Cycloalkyl,

45 R⁷ für H oder C₁-C₂-Alkyl,

R' für H oder CH₃,

R'' für H oder CH₃,

R''' für H oder CH₃,

Y für O, CH₂, CH₂CH₂ oder CH₂-O stehen kann, wobei die Verknüpfung der CH₂-O-Gruppe zum Stickstoff sowohl über O als auch über CH₂ erfolgen kann,

50 Z für O oder S stehen kann,

A für N oder C-R⁸ steht, worin

R⁸ für H, Fluor, Chlor, Brom, Methyl, Nitro, Hydroxy oder Methoxy steht oder auch gemeinsam mit R¹ eine Brücke der Struktur

55 -O-CH₂- C H-CH₃,

bilden kann.

Besonders bevorzugt sind die Verbindungen der Formel (I)

- 10 in welcher
 X¹ für Fluor,
 X² für Wasserstoff, Amino, Methylamino, Fluor,
 R¹ für Alkyl mit 1 bis 2 Kohlenstoffatomen, Vinyl, Cyclopropyl, 2-Hydroxyethyl, 2-Fluorethyl, Methoxy,
 Methylamino, 4-Fluorphenyl, 2,4-Difluorphenyl,
 15 R² für Wasserstoff, Alkyl mit 1 bis 2 Kohlenstoffatomen,
 R³ für einen Rest der Struktur

- steht, worin
 R⁴ für H, C₁-C₂-Alkyl, Acetyl,
 R⁵ für H, C₁-C₂-Alkyl, wobei R⁴ und R⁵ gemeinsam auch eine gegebenenfalls durch Methyl substituierte C₁-C₂-Alkylenbrücke bedeuten können,
 30 R⁶ für H, CH₃, C₂H₅, HOCH₂CH₂, Benzyl, C₁-C₄-Alkoxy carbonyl, C₁-C₂-Acyl,
 R⁷ für H oder CH₃,
 R' für H oder CH₃,
 R'' für H oder CH₃,
 R''' für H oder CH₃,
 35 Y für O, CH₂, CH₂CH₂ oder CH₂-O stehen kann, wobei die Verknüpfung der CH₂-O-Gruppe zum Stickstoff sowohl über O als auch über CH₂ erfolgen kann,
 Z für O oder S stehen kann,
 A für N oder C-R⁸ steht, worin
 40 R⁸ für H, Fluor oder Chlor steht, oder auch gemeinsam mit R¹ eine Brücke der Struktur
 -O-CH₂-C(H-CH₃),

bilden kann.

Weiterhin wurde gefunden, daß man die Verbindungen der Formel (I) erhält, wenn man Verbindungen
 45 der Formel (II)

- 55 in welcher
 R¹, R², X¹ und X² die oben angegebene Bedeutung haben und
 X³ für Halogen, insbesondere Fluor oder Chlor steht, mit Verbindungen d r Formel (III)

R³-H (III),

in welcher

R³ die oben angegebene Bedeutung hat,gegebenenfalls in Gegenwart von Säurefängern umsetzt, und gegebenenfalls in R³ enthaltene Schutzgruppen abspaltet (Methode A).

Erfindungsgemäße Verbindungen der Formel (I)

10

15

in welcher

X¹, R¹, R², R³ und A die oben angegebene Bedeutung haben und20 X² für Amino, Alkylamino mit 1 bis 4 Kohlenstoffatomen, Dialkylamino mit 1 bis 3 Kohlenstoffatomen je Alkylgruppe, Hydroxy, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Mercapto, Alkylthio mit 1 bis 4 Kohlenstoffatomen oder Arylthio steht,
können auch erhalten werden, indem man eine Verbindung der Formel (IV)

25

30

in welcher

35 X¹, R¹, R², R³ und A die oben angegebene Bedeutung haben,
mit Verbindungen der Formel (V)X²-H (V),

in welcher

X² die oben angegebene Bedeutung hat, gegebenenfalls in Gegenwart von Säurefängern umsetzt (Methode B).

40 Erfindungsgemäße Verbindungen der Formel (Ia)

45

50

in welcher

X¹, X², R¹, R² und A die oben angegebene Bedeutung haben und R³ für einen Rest der Struktur

55

steht, worin

- 10 R^4 , R^5 , R^6 , R' , R'' , Y und Z die oben angegebene Bedeutung haben,
können auch erhalten werden, indem man eine Verbindung der Formel (VI)

in welcher

- 25 X^1 , X^2 , R^1 , R^2 und A die oben angegebene Bedeutung haben und
 R^{3a} für einen Rest der Struktur

- 35 steht,
worin R^4 , R^5 , R' , R'' , Y und Z die oben angegebene Bedeutung haben,
mit Verbindungen der Formel (VII)
 R^6-X^a (VII),

- 40 in welcher
 R^6 die oben angegebene Bedeutung hat und
 X^a für Chlor, Brom, Iod, Hydroxy oder Acyloxy steht,
gegebenenfalls in Gegenwart von Säurefängern umsetzt (Methode C).

- 45 Verwendet man beispielsweise 1-Cyclopropyl-6,7,8-trifluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure und
1-Methyl-octahydronnoro[3,4-b]pyridin als Ausgangsstoffe, so kann der Reaktionsverlauf durch folgendes
Formelschema wiedergegeben werden:

50

55

10

15

20

30

35

40

45

50

55

Verwendet man beispielsweise 1-Cyclopropyl-5,6,8-trifluor-1,4-dihydro-7-(2-methyl-2,7-diazabicyclo-[3.3.0] oct-3-yl)-4-oxo-3-chinolincarbonsäure und Ammoniak als Ausgangsstoffe, so kann der Reaktionsablauf durch folgendes Formelschema wiedergegeben werden:

45

50

55

25 Verwendet man beispielsweise 1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-7-yl)-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure und Ethanol/Chlorwasserstoff als Ausgangsstoffe, so kann der Reaktionsverlauf durch folgendes Formelschema wiedergegeben werden:

Die als Ausgangsstoffe verwendeten Verbindungen der Formel (II) sind bekannt oder können nach bekannten Methoden hergestellt werden. Als Beispiele seien genannt:

- 55 7-Chlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure (Deutsche Patentanmeldung 3 142 854),
 1-Cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure (Europäische Patentanmeldung 113 091),
 6-Chlor-1-cyclopropyl-7,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure (Deutsche Patentanmeldung 3

- 420 743),
 8-Chlor-1-cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure (Deutsche Patentanmeldung 3
 420 743),
 1-Cyclopropyl-6,7,8-trifluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure (Deutsche Patentanmeldung 3 318
 5 145),
 6,8-Dichlor-1-cyclopropyl-7-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure (Deutsche Patentanmeldung 3 420
 743),
 1-Cyclopropyl-6,7-difluor-1,4-dihydro-8-methyl-4-oxo-3-chinolincarbonsäure,
 1-Cyclopropyl-7-chlor-6-fluor-1,4-dihydro-8-nitro-4-oxo-3-chinolincarbonsäure,
 10 6,7-Difluor-1-ethyl-1,4-dihydro-4-oxo-3-chinolincarbonsäure,
 7-Chlor-6-fluor-1-ethyl-1,4-dihydro-4-oxo-3-chinolincarbonsäure,
 7-Chlor-6-fluor-1,4-dihydro-1-(2-hydroxyethyl)-4-oxo-3-chinolincarbonsäure,
 6,7-Difluor-1-(2-fluorethyl)-1,4-dihydro-4-oxo-3-chinolincarbonsäure,
 8-Chlor-1-(2,4-difluorophenyl)-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure (Europäische Patentanmel-
 15 dung 235 762),
 7-Chlor-6-fluor-1,4-dihydro-1-methoxy-4-oxo-3-chinolincarbonsäure,
 7-Chlor-6-fluor-1,4-dihydro-1-methylamino-4-oxo-3-chinolincarbonsäure,
 6,7-Difluor-1,4-dihydro-4-oxo-1-phenyl-3-chinolincarbonsäure,
 7-Chlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-1,8-naphthyridin-3-carbonsäure,
 20 6,7-Dichlor-1-cyclopropyl-1,4-dihydro-4-oxo-1,8-naphthyridin-3-carbonsäure,
 1-Cyclopropyl-6,7,8-trifluor-1,4-dihydro-4-oxo-3-chinolincarbonsäureethylester (Deutsche Patentanmeldung 3
 318 145),
 9,10-Difluor-2,3-dihydro-3-methyl-7-oxo-7H-pyrido[1,2,3-de][1,4]benzoxacin-6-carbonsäure (Europäische Pa-
 tentanmeldung 47 005),
 25 8,9-Difluor-6,7-dihydro-5-methyl-1-oxo-1H,5H-benzo[i,j]chinolin-2-carbonsäure,
 7-Chlor-6-fluor-1-phenyl-1,4-dihydro-4-oxo-1,8-naphthyridin-3-carbonsäure (Europäische Patentanmeldung
 153 580),
 7-Chlor-6-fluor-1-(4-fluorophenyl)-1,4-dihydro-4-oxo-1,8-naphthyridin-3-carbonsäure (Europäische Paten-
 tanzahlung 153 580),
 30 6,7,8-Trifluor-1,4-dihydro-1-methylamino-4-oxo-3-chinolincarbonsäure (Deutsche Patentanmeldung 3 409
 922),
 1-Amino-6,7,8-trifluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure (Deutsche Patentanmeldung 3 409 922),
 6,7,8-Trifluor-1,4-dihydro-1-dimethylamino-4-oxo-3-chinolincarbonsäure (Deutsche Patentanmeldung 3 409
 922),
 35 7-Chlor-6-fluor-1,4-dihydro-8-nitro-4-oxo-1-phenyl-3-chinolincarbonsäure,
 7-Chlor-6-fluor-1-(4-fluorophenyl)-1,4-dihydro-8-nitro-4-oxo-3-chinolincarbonsäure,
 6,7-Difluor-1-(4-fluorophenyl)-1,4-dihydro-8-methyl-4-oxo-3-chinolincarbonsäure,
 6-Chlor-7-fluor-1-(4-fluorophenyl)-1,4-dihydro-4-oxo-3-chinolincarbonsäure (Europäische Patentanmeldung
 131 839),
 40 5,6,7,8-Tetrafluor-1-(2,4-difluorophenyl)-1,4-dihydro-4-oxo-3-chinolincarbonsäure,
 5,7-Dichlor-6-fluor-1-(2,4-difluorophenyl)-1,4-dihydro-4-oxo-3-chinolincarbonsäure,
 5,7-Dichlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure,
 6-Chlor-7-fluor-1-(2,4-difluorophenyl)-1,4-dihydro-4-oxo-3-chinolincarbonsäure (Europäische Patentanmeldung
 131 839),
 45 6,7,8-Trifluor-1-(4-fluorophenyl)-1,4-dihydro-4-oxo-3-chinolincarbonsäure (Europäische Patentanmeldung 154
 780),
 6,7,8-Trifluor-1-(2,4-difluorophenyl)-1,4-dihydro-4-oxo-3-chinolincarbonsäure (Europäische Patentanmeldung
 154 780),
 6,7,8-Trifluor-1,4-dihydro-4-oxo-1-phenyl-3-chinolincarbonsäure (Europäische Patentanmeldung 154 780),
 50 7-Chlor-1-ethyl-6-fluor-1,4-dihydro-4-oxo-1,8-naphthyridin-3-carbonsäure,
 6,7-Difluor-1,4-dihydro-4-oxo-1-vinyl-3-chinolincarbonsäure,
 1-Cyclopropyl-5,6,7,8-tetrafluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure,
 5-Amino-1-cyclopropyl-6,7,8-trifluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure,
 1-Cyclopropyl-6,7,8-trifluor-1,4-dihydro-5-hydroxy-4-oxo-3-chinolincarbonsäure,
 55 1-Cyclopropyl-6,7-difluor-1,4-dihydro-8-methoxy-4-oxo-3-chinolincarbonsäure.

Die als Ausgangsverbindungen verwendeten Verbindungen der Form I (III) sind zum Teil neu. Sie können nach folgenden Verfahren hergestellt werden.

1. Ausgehend von dem N-geschützten 3,4-Epoxypprolidin (1) (Deutsche Offenlegungsschrift 1 929

237, US-Patent 4 254 135), das gegebenenfalls noch eine oder zwei Methyl- oder Phenylreste tragen kann, werden die Ausgangsverbindungen der Formel (IIIa)-(IIIe) hergestellt.

R⁹ = Benzyl, Acyl, Alkoxy carbonyl, Benzyloxycarbonyl, Trialkylsilyl, Sulfonyl (Beispiele für Schutzgruppen),
 X³ = Abgangsgruppe wie Halogen, Alkyl- oder Arylsulfonyloxy

30

35

40

45

50

55

2. Ausgangsverbindungen der Formel (IIIf) erhält man aus 2-(1,2-Dichlorethyl)-oxiran über die folgende Reaktionssequenz:

3. Durch Addition von Aziden an gegebenenfalls mit einem oder zwei Methyl- beziehungsweise Phenylresten substituierte N-Benzylmaleinimide können Ausgangsverbindungen der Formel (III g) hergestellt werden:

R¹⁰ = H, Alkyl, Benzyl.

4. Aus den 3,4-Epoxypyrrolidinen (1) erhält man über eine Cyclisierung mit Thionylchlorid die Ausgangsverbindungen der Formel (III h):

5. Durch Umsetzen der 3,4-Epoxypprolidine (1) mit Ethanolaminen erhält man durch intramolekulare Veretherung die Ausgangsverbindungen der Formel (III-i):

6. Die Ausgangsverbindungen der Formel (III j) erhält man aus Aminoacetaldehyddimethylacetal über eine intramolekulare 1,3-dipolare Cycloaddition.

7. Ausgehend von Pyridin-2,3-dicarbonsäure-N-benzylimid werden Ausgangsverbindungen (III k) beziehungsweise (III l) über die angegebenen Reaktionsschritte hergestellt.

8. N-Benzyl-maleinsäureimid addiert 2-Chlorethylamine zu den 3-(2-chlorethylamino)-succinimiden,

die zu den Ausgangsverbindungen der Formel (III m) umgestezt werden:

9. 2-Methyl-2-propenal-dimethylhydrazone reagiert mit N-Benzylmaleinsäureimid zu einem Cycloaddukt, welches nach der angegebenen Reaktionsfolge in die Ausgangsverbindung (III n) überführt werden kann.

40

45

50

55

30 10. Ausgangsverbindungen der Formeln (IIlo), (IIIp) oder (IIlq) können ausgehend von N-geschützten
2,5-Dihydropyrrolen (3-Pyrrolinen) durch Addition Sulfensäurechloriden auf folgenden Wege erhalten wer-
den:

35

40

45

50

55

35 R¹¹ = gegebenenfalls durch Halogen substituiertes C₁-C₄-Alkyl, gegebenenfalls durch Halogen, Nitro, Alkyl und Alkoxy substituiertes Phenyl, sowie Acyl, Alkoxy carbonyl.

Nach diesem allgemeinen Formelschema lassen sich zum Beispiel die folgenden Ausgangsverbindungen herstellen. Sie können als Diastereomerengemische, in diastereomerenreiner und auch enantionmerenreiner Form hergestellt und eingesetzt werden.

- 40 4-Amino-3-hydroxypyrrolidin,
3-Hydroxy-4-methylaminopyrrolidin,
4-Dimethylamino-3-hydroxypyrrolidin,
4-Ethylamino-3-hydroxypyrrolidin,
3-Amino-4-methoxypyrrolidin,
- 45 4-Methoxy-3-methylaminopyrrolidin,
3-Dimethylamino-4-methoxypyrrolidin,
3-Ethylamino-4-methoxypyrrolidin,
3-Amino-4-ethoxypyrrolidin,
4-Ethoxy-3-methylaminopyrrolidin,
- 50 3-Dimethylamino-4-ethoxypyrrolidin,
4-Ethoxy-3-ethylaminopyrrolidin,
3-Hydroxy-4-hydroxymaminopyrrolidin,
3-Hydroxy-4-methoxymaminopyrrolidin,
3-Hydroxymino-4-methoxypyrrolidin,
- 55 4-Methoxy-3-methoxymaminopyrrolidin,
3-Benzylamino-4-methoxypyrrolidin,
4-Methoxy-3-((5-methyl-2-oxo-1,3-dioxol-4-yl)-methylamino)-pyrrolidin,
3-Amino-4-methylmercaptopyrrolidin,

- 3-Acetoxy-4-dimethylaminopyrrolidin,
- 3-Acetamido-4-methoxypyrrolidin,
- 4-Methoxy-3-methoxycarbonylaminopyrrolidin,
- 3-Formamido-4-methoxypyrrolidin,
- 5 3-Amino-4-methoxy-2-methylpyrrolidin,
- 3-Amino-4-methoxy-5-methylpyrrolidin,
- 4-Methoxy-2-methyl-3-methylaminopyrrolidin,
- 4-Methoxy-5-methyl-3-methylaminopyrrolidin,
- 3-Amino-4-methoxy-2-phenylpyrrolidin,
- 10 4-Methoxy-3-methylamino-5-phenylpyrrolidin,
- 3-Methyl-2,7-diazabicyclo[3.3.0]octan,
- 4-Methyl-2,7-diazabicyclo[3.3.0]octan,
- 5-Methyl-2,7-diazabicyclo[3.3.0]octan,
- 3,5-Dimethyl-2,7-diazabicyclo[3.3.0]octan,
- 15 1,5-Dimethyl-2,7-diazabicyclo[3.3.0]octan,
- 2-Oxa-4,7-diazabicyclo[3.3.0]octan,
- 3,3-Dimethyl-2-oxa-4,7-diazabicyclo[3.3.0]octan,
- 3-Oxa-2,7-diazabicyclo[3.3.0]octan,
- 1,2-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan,
- 20 2,5-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan,
- 2,8-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan,
- 5-Methyl-3-oxa-2,7-diazabicyclo[3.3.0]octan,
- 2-Oxa-4,7-diazabicyclo[3.3.0]oct-3-en,
- 3-Methyl-2-oxa-4,7-diazabicyclo[3.3.0]oct-3-en,
- 25 3-Phenyl-2-oxa-4,7-diazabicyclo[3.3.0]oct-3-en,
- 6-Methyl-2-oxa-4,7-diazabicyclo[3.3.0]oct-3-en,
- 8-Methyl-2-oxa-4,7-diazabicyclo[3.3.0]oct-3-en,
- 3-Methyl-2,8-diazabicyclo[4.3.0]nonan,
- 4-Methyl-2,8-diazabicyclo[4.3.0]nonan,
- 30 5-Methyl-2,8-diazabicyclo[4.3.0]nonan,
- 6-Methyl-2,8-diazabicyclo[4.3.0]nonan,
- 3-Methyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan,
- 4-Methyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan,
- 1-Methyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan,
- 35 3,5-Dimethyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan,
- 2-Thia-5,8-diazabicyclo[4.3.0]nonan,
- 5-Methyl-2-thia-5,8-diazabicyclo[4.3.0]nonan,
- 3,5-Dimethyl-2-thia-5,8-diazabicyclo[4.3.0]nonan,
- 3-Oxa-2,8-diazabicyclo[4.3.0]nonan,
- 40 2-Methyl-9-oxa-2,8-diazabicyclo[4.3.0]nonan,
- 4-Methyl-3-oxa-2,8-diazabicyclo[4.3.0]nonan,
- 2,5-Dimethyl-3-oxa-2,8-diazabicyclo[4.3.0]nonan,
- 3-Oxa-5,8-diazabicyclo[4.3.0]nonan,
- 5-Methyl-3-oxa-5,8-diazabicyclo[4.3.0]nonan,
- 45 1,5-Dimethyl-3-oxa-5,8-diazabicyclo[4.3.0]nonan,
- 4,4-Dimethyl-3-oxa-5,8-diazabicyclo[4.3.0]nonan.

Die Umsetzung von (II) mit (III) gemäß Methode A, bei der die Verbindungen (III) auch in Form ihrer Hydrochloride eingesetzt werden können, wird vorzugsweise in einem Verdünnungsmittel wie Dimethylsulfoxid, N,N-Dimethylformamid, N-Methylpyrrolidon, Hexamethyl-phosphorsäuretrisamid, Sulfolan, Acetonitril, Wasser, einem Alkohol wie Methanol, Ethanol, n-Propanol, Isopropanol, Glykolmonomethylether oder Pyridin vorgenommen. Ebenso können Gemische dieser Verdünnungsmittel verwendet werden.

Als Säurebinder können alle üblichen anorganischen und organischen Säurebindungsmittel verwendet werden. Hierzu gehören vorzugsweise die Alkalihydroxide, Alkalicarbonate, organische Amine und Amidine. Als besonders geeignet seien im einzelnen genannt: Triethylamin, 1,4-Diazabicyclo[2.2.2]octan (DABCO), 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) oder überschüssiges Amin (III).

Die Reaktionstemperaturen können in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man zwischen etwa 20 und 200 °C, vorzugsweise zwischen 80 und 180 °C.

Die Umsetzung kann bei Normaldruck, aber auch bei erhöhtem Druck durchgeführt werden. Im

allgemeinen arbeitet man bei Drucken zwischen etwa 1 und 100 bar, vorzugsweise zwischen 1 und 10 bar.

Bei der Durchführung des erfindungsgemäßen Verfahrens setzt man auf 1 Mol der Carbonsäure (II) 1 bis 15 Mol, vorzugsweise 1 bis 6 Mol der Verbindung (III) ein.

- Freie Hydroxygruppen können während der Umsetzung durch eine geeignete Hydroxyschutzgruppe, 5 zum Beispiel durch den Tetrahydropyranylrest, geschützt und nach Beendigung der Reaktion wieder freigesetzt werden (siehe J.F.W. McMorie, Protective Groups in Organic Chemistry (1973), Seite 104).

Freie Aminofunktionen können während der Umsetzung durch eine geeignete Aminoschutzgruppe, zum Beispiel durch den Ethoxycarbonyl- oder den tert.-Butoxycarbonylrest, geschützt und nach Beendigung der Reaktion durch Behandlung mit einer geeigneten Säure wie Chlorwasserstoffsäure oder Trifluoresigsäure 10 wieder freigesetzt werden (siehe Houben-Weyl, Methoden der organischen Chemie, Band E4, Seite 144 (1983); J.F.W. McMorie, Protective Groups in Organic Chemistry (1973), Seite 43).

Die Umsetzung von (IV) mit (V) gemäß Methode B wird vorzugsweise in einem Verdünnungsmittel wie Dimethylsulfoxid, Dioxan, N,N-Dimethylformamid, N-Methylpyrrolidon, Hexamethyl-phosphorsäure-trisamid, Sulfolan, Wasser, einem Alkohol wie Methanol, Ethanol, n-Propanol, Isopropanol, Glykolmonomethylether 15 oder Pyridin vorgenommen. Ebenso können Gemische dieser Verdünnungsmittel verwendet werden.

Als Säurebinder können alle üblichen anorganischen und organischen Säurebindemittel verwendet werden. Hierzu gehören vorzugsweise die Alkalihydroxide, Alkalicarbonate, organische Amine und Amidine. Als besonders geeignet seien im einzelnen genannt Triethylamin, 1,4-Diazabicyclo[2.2.2]octan (DABCO) oder 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU).

- 20 Die Reaktionstemperaturen können in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man zwischen etwa 70 und etwa 200 °C, vorzugsweise zwischen 100 und 180 °C.

Die Umsetzung kann bei Normaldruck, aber auch bei erhöhtem Druck durchgeführt werden. Im allgemeinen arbeitet man bei Drucken zwischen etwa 1 bar und etwa 100 bar, vorzugsweise zwischen 1 und 10 bar.

- 25 Bei der Durchführung des erfindungsgemäßen Verfahrens gemäß Methode B setzt man auf 1 Mol der Verbindung (IV) 1 bis 50 Mol, vorzugsweise 1 bis 30 Mol der Verbindung (V) ein.

Zur Herstellung der erfindungsgemäßen Ester wird die zugrundeliegende Carbonsäure vorzugsweise in Überschüssigem Alkohol in Gegenwart von starken Säuren, wie Schwefelsäure, wasserfreiem Chlorwasserstoff, Methansulfonsäure, p-Toluolsulfonsäure oder sauren Ionenaustauschern, bei Temperaturen von etwa 30 20 ° bis 200 °C, vorzugsweise etwa 60 ° bis 120 °C umgesetzt. Das entstehende Reaktionswasser kann auch durch azeotrope Destillation mit Chloroform, Tetrachlormethan, Benzol oder Toluol entfernt werden.

Die Herstellung von Estern gelingt auch vorteilhaft durch Erhitzen der zugrundeliegenden Säure mit Dimethylformamiddialkylacetal in einem Lösungsmittel wie Dimethylformamid.

- 35 Die als Prodrug verwendeten (5-Methyl-2-oxo-1,3-dioxol-4-yl-methyl)-ester werden durch Umsetzung eines Alkalisalzes der zugrundeliegenden Carbonsäure mit 4-Brommethyl- oder 4-Chlormethyl-5-methyl-1,3-dioxol-2-on in einem Lösungsmittel wie Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon, Dimethylsulfoxid oder Tetramethylharnstoff bei Temperaturen von etwa 0 ° bis 100 °C, vorzugsweise 0 ° bis 50 °C, erhalten.

Die Herstellung der Säureadditionssalze der erfindungsgemäßen Verbindungen erfolgt in üblicher Weise zum Beispiel durch Lösen des Betains in überschüssiger wäßriger Säure und Ausfällen des Salzes mit einem mit Wasser mischbaren organischen Lösungsmittel wie Methanol, Ethanol, Aceton, Acetonitril. Man kann auch äquivalente Mengen Bétaïne und Säure in Wasser oder einem Alkohol wie Glykolmonomethylether erhitzen und anschließend bis zur Trockne eindampfen oder das ausgefallene Salz absaugen. Als pharmazeutisch verwendbare Salze sind beispielsweise die Salze von Salzsäure, Schwefelsäure, Essigsäure, Glykolsäure, Milchsäure, Bernsteinsäure, Zitronensäure, Weinsäure, Methansulfonsäure, 4-Toluolsulfonsäure, Galacturonsäure, Gluconsäure, Embonsäure, Glutaminsäure oder Asparaginsäure zu verstehen.

Die Alkali- oder Erdalkalisalze der erfindungsgemäßen Carbonsäuren werden beispielsweise durch Lösen des Betains in unterschüssiger Alkali- oder Erdalkalilauge, Filtration von ungelöstem Betain und Eindampfen des Filtrats bis zur Trockne erhalten. Pharmazeutisch geeignet sind Natrium-, Kalium- oder Calciumsalze. Durch Umsetzung eines Alkali- oder Erdalkalisalzes mit einem geeigneten Silbersalz wie Silbernitrat werden die entsprechenden Silbersalze erhalten.

Außer den in den Beispielen genannten Wirkstoffen können ebenfalls die in Tabelle 1 beispielhaft aufgeführten Verbindungen hergestellt werden, wobei diese Verbindungen sowohl als Diastereomerengemische als auch als diastereomerenreine oder enantiomerenrein V rbindungen vorliegen können.

			A
5		CH	
10	x ²	H	
15		H	
20	x ¹	F	
25		F	
30	R ³		
35		N-	
40	R ²		
45		H	
50	R ¹	C ₂ H ₅	
55			

NC(=O)c1cc(C(=O)OC(=O)R2)c(X2)c(*)c(*)c1N(*)C

C1CC2N(C1)C(=O)CN2

C1CC2N(C1)C(=O)N(C)C2

C1CC2SNC(C1)C(=O)N2

C1CC2N(C1)C(=O)N2

Tabelle 1

Tabelle 1 (Fortsetzung)

Table II (Continued)

			A	
5		CH		
10			CF	
15		H	F	F
20			F	H
25			F	H
30	R ³			
35				
40	R ²	H	H	H
45				
50	HO-CH ₂ CH ₂ -			
55				
			-C ₂ H ₅	

Tabelle 1 (Fortsetzung)

Table 1 (Fortsetzung)

5		A			
10		CF			
15	X ²	NH ₂	OH	H	
20	X ¹	F	F	F	
25					
30	R ³				
35		H	H	H	H
40	R ²	H	H	H	H
45					
50	R ¹				
55					

			A	
5			CF	
10			CF	
15			CF	
20			CF	
25			CF	
30			CF	
35			CF	
40			CF	
45			CF	
50			CF	
55			CF-CH ₂ CH ₂	
	R ¹	R ²	R ³	
		H		
		H		
		H		
		H		
		H		
	X ¹			
		F		
		F		
		F		
		F		
	X ²			
		H		
		F		
		H		
	X ³			

Tabelle 1 (Fortsetzung)

5		A		
10	X ²	NH ₂	CF	
15	X ¹	H	N	
20		F	CCl	CH
25		F	H	CF
30	R ³			
35		NH ₂ - N	NH ₂ - N	NH ₂ - N
40	R ²	H	H	H
45			H	H
50	R ¹			
55			CH ₃ O	CH ₃ -NH-

Tabelle 1 (Fortsetzung)

Table 1 (Continued)

Tabelle 1 (Fortsetzung)

5							
		A					
10		Cf	CH	Cf	CH	CCl	Cl
15		H	H	H	H	H	H
20		F	F	F	F	F	F
25							
30		R ³					
35							
40							
45		H ²	H	H	H	H	H
50		H ¹					
55							

Table 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

5		A	
10		X ²	
15		X ¹	
20		X ¹	
25			
30	R ³		
35			
40	R ²		
45	R ¹		
50			

Chemical structures and labels:

- Row 5: A (Amide group)
- Row 10: X² (H, N)
- Row 15: X¹ (F, NH₂)
- Row 20: X¹ (H, CF)
- Row 25: (empty)
- Row 30: R³ (CH₃O, H₂N⁻)
- Row 35: R³ (CH₃O, H₂N⁻)
- Row 40: R² (H, H)
- Row 45: R¹ (cyclopropyl, -C₂H₅, cyclopropyl, cyclopropyl, cyclopropyl, cyclopropyl)

Tabelle 1 (Fortsetzung)

R ¹	R ²	R ³	X ¹	X ²	A
1	CH ₃	CH ₃ O-N-	F	H	CF
-C ₂ H ₅	H	H ₂ N	H	H	N
		CH ₃ O-N-	F	H	CF
		H ₂ N	H	H	CH
		HO-N-	F	H	H
		H ₂ N	F	H	N
		CH ₃ O-N-			
		CH ₃ -NH-			
		S-C ₂ H ₅ -N-			
		H			

					A
5			C-CH ₃		
10		x ²		CCl	
15			H	H	N
20		x ¹	F		CF
25			F	F	
30		R ³		F	F
35		CH ₃ O-N-			
40		CH ₃ -NH-			
45	R ¹	H			
50	R ²		H		
55			H		
60			H		
65			H		

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

R ¹	R ²	R ³	X ¹	X ²	A
-C ₂ H ₅	H		F	H	CH
			F	H	CF
			F	H	CF
			F	H	CH
			F	H	

			A			
5						
10		x ²				
15						
20		x ¹				
25						
30	R ³					
35	<chem>CC1(C)N(C(=O)OC2CCN(C)C2)C1</chem>	<chem>CC1(C)N(C(=O)OC2CCN(C)C2)C1</chem>	<chem>CC1(C)N(C(=O)OC2CCN(C)C2)C1</chem>	<chem>CC1(C)N(C(=O)OC2CCN(C)C2)C1</chem>	<chem>CC1(C)N(C(=O)OC2CCN(C)C2)C1</chem>	<chem>CC1(C)N(C(=O)OC2CCN(C)C2)C1</chem>
40						
45	R ²					
50						
55	R ¹					

Chemical structures for R³:

- Row 30: CC1(C)N(C(=O)OC2CCN(C)C2)C1
- Row 31: CC1(C)N(C(=O)OC2CCN(C)C2)C1
- Row 32: CC1(C)N(C(=O)OC2CCN(C)C2)C1
- Row 33: CC1(C)N(C(=O)OC2CCN(C)C2)C1
- Row 34: CC1(C)N(C(=O)OC2CCN(C)C2)C1
- Row 35: CC1(C)N(C(=O)OC2CCN(C)C2)C1

Chemical structures for R¹:

- Row 45: Cyclopropane
- Row 46: Cyclopropane
- Row 47: Cyclopropane
- Row 48: Cyclopropane
- Row 49: Cyclopropane
- Row 50: Cyclopropane

Tabelle 1 (Fortsetzung)

5

10

15

20

25

30

35

40

45

50

55

Tabelle 1 (Fortsetzung)

R^1	R^2	R^3	X^1	X^2	A
1	H		F	H	N
2	H		F	H	CF
3	H		F	H	CCl
4	H		F	H	CF
5	H		F	H	CH
6					

5						
	A					
10						
	x2					
15						
	x1					
20						
	x					
25						
30						
	R3					
35						
	CH ₃ O					
40						
	H ₂ N					
45						
	H					
50						
	R2					
55						
	R1					

Chemical structures and labels:

- Row 35: CC1(C)N(C(=O)O)C[C@H]1c2ccccc2 (R3), CC1(C)N(C(=O)O)C[C@H](c2ccccc2)N (R3)
- Row 45: C1CC1 (R2), C1CC1 (R2)
- Row 55: C1CC1 (R1), C1CC1 (R1)
- Row 10: CF (A), H (x2), H (x1), CF (A), H (x2), H (x1), CF (A)
- Row 20: F (x2), F (x1), F (x2), F (x1), F (x2), F (x1)
- Row 30: H2N (R3), H2N (R3), H2N (R3), H2N (R3)
- Row 40: H (R2), H (R2), H (R2), H (R2)
- Row 50: H (R1), H (R1), H (R1), H (R1)

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

	R ¹	R ²	R ³	x ¹	x ²	A
5				CCl		
10				H		
15				H		
20				H		
25				F		
30			CH ₃ O-CO-NH-			
35			CH ₃ O-CO-NH-			
40			CH ₃ O-CO-NH-			
45		H		H		
50				H		
55				H		

5

10

15

20

25

30

35

40

45

50

55

Tabelle 1 (Fortsetzung)

	R^1	R^2	R^3	X_1	X_2	Δ
5	1-Cyclopropyl	1-Cyclopropyl	1-(4-Fluorophenyl)-4-methylpiperazine	H	H	CF
10	1-Cyclopropyl	1-Cyclopropyl	1-(4-Fluorophenyl)-4-methylpiperazine	H	H	CF
15	1-Cyclopropyl	1-Cyclopropyl	1-(4-Fluorophenyl)-4-methylpiperazine	H	H	C-CH ₃
20	1-Cyclopropyl	1-Cyclopropyl	1-(4-Fluorophenyl)-4-methylpiperazine	F	F	C-CH ₃
25	1-Cyclopropyl	1-Cyclopropyl	1-(4-Fluorophenyl)-4-methylpiperazine	F	F	C-CH ₃
30	1-Cyclopropyl	1-Cyclopropyl	1-(4-Fluorophenyl)-4-methylpiperazine	H	H	C-CH ₃
35	1-Cyclopropyl	1-Cyclopropyl	1-(4-Fluorophenyl)-4-methylpiperazine	H	H	C-CH ₃
40	1-Cyclopropyl	1-Cyclopropyl	1-(4-Fluorophenyl)-4-methylpiperazine	H	H	C-CH ₃
45	1-Cyclopropyl	1-Cyclopropyl	1-(4-Fluorophenyl)-4-methylpiperazine	H	H	C-CH ₃
50	1-Cyclopropyl	1-Cyclopropyl	1-(4-Fluorophenyl)-4-methylpiperazine	H	H	C-CH ₃
55	1-Cyclopropyl	1-Cyclopropyl	1-(4-Fluorophenyl)-4-methylpiperazine	H	H	C-CH ₃

	A	N	CH	CCl	CF	CF
5						
10		x ²				
15			H	H	H	NH ₂
20			F		F	
25		x ¹		F	F	F
30						
35		R ³				
40						
45		R ²			C ₂ H ₅	
50			H	H		H
55		R ¹				

Tabelle 1 (Fortsetzung)

	A					
5		CH				
10			CF			
15	X2	C1		N	CF	CH
20			C1	H	H	H
25	X1	F	F	F	F	F
30	R ³					
35						
40	R ²					
45		H	H	H	H	H
50	R ¹					
55						

Tabelle 1 (Fortsetzung)

		A				
5		CC1				
10			CF			
15		H		NH ₂	C1	C1
20			F		F	F
25						
30	R ³					
35						
40						
45	R ²	H	H	H	H	H
50	R ¹					
55						

Tabelle 1 (Fortsetzung)

			A		
5		N	CH	CC1	CF
10		H			
15		N	H	F	NH ₂
20		F	F	F	F
25					
30	R ³				
35		H	H	H	H
40					
45	R ²	H	H	H	H
50	R ¹				
55					

Tabelle 1 (Fortsetzung)

		A			
5		CH			
10		CF	N	CF	
15	X ²	C1	H	H	
20	X ¹	F	F	F	
25					
30	R ³				
35					
40					
45	R ²	H	H	H	
50					
55	R ¹				

Tabelle 1 (Fortsetzung)

			A			
5			CC1			
10		H	CF			
15		F	NH ₂		C1	CF
20	X ¹	F	F	F	F	F
25						
30	R ³					
35						
40	R ²	H	H	H	H	H
45						
50	R ¹					
55						

Tabelle 1 (Fortsetzung)

		A		
5		CF		
10		CH		
15	X ²	H	H	H
20	X ¹	F	F	F
25				
30	R ³			
35				
40				
45	R ²	H	H	H
50				
55	R ¹			

Tabelle 1 (Fortsetzung)

			A	
5				
	C1	C1	CF	N
10				N
				N
15				
	C1	H	H	H
20				
		H	H	H
25				
		F	F	F
30				
	R ³			
35				
40				
	R ²			
45				
50				
	R ¹			
55				

R¹

R²

R³

X¹

X²

A

Chemical structures:

- Row 30: Five nitrogen-containing heterocyclic rings labeled R³. From left to right: 1,4-dihydro-2H-pyrazole (with NH), 4-methyl-1,4-dihydro-2H-pyrazole (with NH), 4-methyl-1,4-dihydro-2H-1,3-dioxolopyrazole (with NH), 4-methyl-1,4-dihydro-2H-1,3-dioxolopyrazole (with NH), and 4-(methylcarbamoyl)-1,4-dihydro-2H-1,3-dioxolopyrazole (with NH).
- Row 50: Five 4-fluorophenyl groups labeled R¹.
- Row 55: Five hydrogen atoms labeled H.

Tabelle 1 (Fortsetzung)

		A				
5		N	CH	CCl	CF	CF
10		H	H	H	F	
15						NH ₂
20		F	F	F	F	F
25						
30		R ³				
35						
40						
45		R ²	H	H	H	H
50		R ¹				
55						

Tabelle 1 (Fortsetzung)

			A	
5			CH	
10		X ²	CF	
15		X ¹	C1	
20			F	
25				
30	R ³			
35	CH ₃ O-	N-		
40	H ₂ N			
45	R ²		H	
50				
55	R ¹			

Chemical structures and labels:

- Row 30: CC(=O)N1CCC[C@H]1N (CH₃O-) and CC(=O)N1CCC[C@H]1N (H₂N)
- Row 35: CC(C)C(=O)N1CCC[C@H]1N (C₂H₅O-) and CC(C)C(=O)N1CCC[C@H]1N (H₂N)
- Row 40: CC(C)C(=O)N1CCC[C@H]1N (C₂H₅O-) and CC(C)C(=O)N1CCC[C@H]1N (H₂N)
- Row 45: CC(C)C(=O)N1CCC[C@H]1N (C₂H₅O-) and CC(C)C(=O)N1CCC[C@H]1N (H₂N)
- Row 50: CC(C)C(=O)N1CCC[C@H]1N (C₂H₅O-) and CC(C)C(=O)N1CCC[C@H]1N (H₂N)
- Row 55: CC(C)C(=O)N1CCC[C@H]1N (C₂H₅O-) and CC(C)C(=O)N1CCC[C@H]1N (H₂N)

Tabelle 1 (Fortsetzung)

			A				
5			N	CH	CCl	CF	CF
10		x2	H	H	H	F	
15			F	F	F	F	NH ₂
20	x1		F	F	F	F	
25							
30	R ³						
35			CH ₃ O-N ⁻ H ₂ N				
40	R ²		H	H	H	H	H
45							
50	R ¹						
55							

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

5								
10								
15								
20								
25								
30								
35								
40								
45								
50								
55								
	R ¹	R ²	R ³	X ¹	X ²	X ³		A
		H		F	C1	CH		
		H		F	C1	CF		
		H		F	H	N		
		H		F	H	CF		
		H		F	H	CH		

Beispiel für eine erfindungsgemäße Tablette

5

Jede Tablette enthält:	
10	Verbindung des Beispiels 1 583,0 mg
	Mikrokristalline Cellulose 55,0 mg
	Maisstärke 72,0 mg
	Poly-(1-vinyl-2-pyrrolidon) unlöslich 30,0 mg
	Hochdisperses Siliciumdioxid 5,0 mg
15	Magnesiumstearat 5,0 mg
	750,0 mg

20

Die Lackhülle enthält:	
25	Poly-(O-hydroxypropyl-O-methyl)-cellulose 15 cp 6,0 mg
	Macrogol 4000 rec. INN Polyethylenglykole (DAB) 2,0 mg
	Titan-(IV)-oxid 2,0 mg
	10,0 mg

Die erfindungsgemäßen Verbindungen zeigen bei geringer Toxizität ein breites antibakterielles Spektrum gegen gram-positive und gram-negative Keime, insbesondere gegen Enterobakteriaceen; vor allem auch gegen solche, die resistent sind gegen verschiedene Antibiotika, wie z.B. Penicilline, Cephalosporine, Aminoglykoside, Sulfonamide, Tetracycline.

Diese wertvollen Eigenschaften ermöglichen ihre Verwendung als chemotherapeutische Wirkstoffe in der Medizin sowie als Stoffe zur Konservierung von anorganischen und organischen Materialien, insbesondere von organischen Materialien aller Art, z.B. Polymeren, Schmiermitteln, Farben, Fasern, Leder, Papier und Holz, von Lebensmitteln und von Wasser.

Die erfindungsgemäßen Verbindungen sind gegen ein sehr breites Spektrum von Mikroorganismen wirksam. Mit ihrer Hilfe können gram-negative und gram-positive Bakterien und bakterienähnliche Mikroorganismen bekämpft sowie die durch diese Erreger hervorgerufenen Erkrankungen verhindert, gebessert und/oder geheilt werden.

40 Besonders wirksam sind die erfindungsgemäßen Verbindungen gegen Bakterien und bakterienähnliche Mikroorganismen. Sie sind daher besonders gut zur Prophylaxe und Chemotherapie von lokalen und systemischen Infektionen in der Human- und Tiermedizin geeignet, die durch diese Erreger hervorgerufen werden.

Beispielsweise können lokale und/oder systemische Erkrankungen behandelt und/oder verhindert werden, die durch die folgenden Erreger oder durch Mischungen der folgenden Erreger verursacht werden: Gram-positive Kokken, z.B. Staphylokokken (Staph. aureus, Staph. epidermidis) und Streptokokken (Strept. agalactiae, Strept. faecalis, Strept. pneumoniae, Strept. pyogenes); gram-negative Kokken (Neisseria gonorrhoeae) sowie gram-negative Stäbchen wie Enterobakteriaceen, z.B. Escherichia coli, Haemophilus influenzae, Citrobacter (Citrob. freundii, Citrob. diversus), Salmonella und Shigella; ferner Klebsiellen (Klebs. pneumoniae, Klebs. oxytoca), Enterobacter (Ent. aerogenes, Ent. agglomerans), Hafnia, Serratia (Serr. marcescens), Proteus (Pr. mirabilis, Pr. rettgeri, Pr. vulgaris), Providencia, Yersinia, sowie die Gattung Acinetobacter. Darüber hinaus umfaßt das antibakterielle Spektrum die Gattung Pseudomonas (Ps. aeruginosa, Ps. maltophilia) sowie strikt anaerobe Bakterien wie z.B. Bacteroides fragilis, Vertreter der Gattung Peptococcus, Peptostreptococcus sowie die Gattung Clostridium; ferner Mykoplasmen (M. pneumoniae, M. hominis, M. urealyticum) sowie Mykobakterien, z.B. Mycobacterium tuberculosis.

Die obige Aufzählung von Erregern ist lediglich beispielhaft und keineswegs beschränkend aufzufassen.

Als Krankheiten, die durch die genannten Erreger oder Mischinfektionen verursacht und durch die erfindungsgemäßen Verbindungen verhindert, gebessert oder geheilt werden können, seien beispielsweise

genannt:

Infektionskrankheiten beim Menschen wie zum Beispiel Otitis, Pharyngitis, Pneumonie, Peritonitis, Pyelonephritis, Cystitis, Endocarditis, Systeminfektionen, Bronchitis (akut, chronisch), septische Infektionen, Erkrankungen der oberen Luftwege, diffuse Panbronchiolitis, pulmonäres Emphysem, Dysenterie, Enteritis,

- 5 Leberabszesse, Urethritis, Prostatitis, Epididymitis, gastrointestinale Infektionen, Knochen- und Gelenkinfektionen, zystische Fibrose, Hautinfektionen, postoperative Wundinfektionen, Abszesse, Phlegmone, Wundinfektionen, infizierte Verbrennungen, Brandwunden, Infektionen im Mundbereich, Infektionen nach Zahnopositionen, Osteomyelitis, septische Arthritis, Cholecystitis, Peritonitis mit Appendicitis, Cholangitis, intraabdominale Abszesse, Pankreatitis, Sinusitis, Mastoiditis, Mastitis, Tonsillitis, Typhus, Meningitis und Infektionen des Nervensystems, Salpingitis, Endometritis, Genital-Infektionen, Pelvooperitonitis und Augeninfektionen.

Außer beim Menschen können bakterielle Infektionen auch bei anderen Spezies behandelt werden. Beispieldhaft seien genannt:

Schwein: Coli-diarrhoe, Enterotoxämie, Sepsis, Dysenterie, Salmonellose, Mastitis-Metritis-Agalaktie-Syndrom, Mastitis;

- 15 Wiederkäuer (Rind, Schaf, Ziege): Diarrhoe, Sepsis, Bronchopneumonie, Salmonellose, Pasteurellose, Mykoplasmosis, Genitalinfektionen;

Pferd: Bronchopneumonien, Fohlenlähme, puerperale und postpuerperale Infektionen, Salmonellose;

Hund und Katze: Bronchopneumonie, Diarrhoe, Dermatitis, Otitis, Harnwegsinfekte, Prostatitis;

- 20 Geflügel (Huhn, Pute, Wachtel, Taube, Ziervögel und andere): Mykoplasmosis, E. coli-Infektionen, chronische Luftwegserkrankungen, Salmonellose, Pasteurellose, Psittakose.

Ebenso können bakterielle Erkrankungen bei der Aufzucht und Haltung von Nutz- und Zierfischen behandelt werden, wobei sich das antibakterielle Spektrum über die vorher genannten Erreger hinaus auf weitere Erreger wie zum Beispiel Pasteurella, Brucella, Campylobacter, Listeria, Erysipelothrix, Corynebakterien, Borrelia, Treponema, Nocardia, Rickettsien, Yersinia, erweitert.

- 25 Zur vorliegenden Erfindung gehören pharmazeutische Zubereitungen, die neben nicht-toxischen, inerten pharmazeutisch geeigneten Trägerstoffen eine oder mehrere erfundungsgemäße Verbindungen enthalten oder die aus einem oder mehreren erfundungsgemäßen Wirkstoffen bestehen, sowie Verfahren zur Herstellung dieser Zubereitungen.

- 30 Zur vorliegenden Erfindung gehören auch pharmazeutische Zubereitungen in Dosierungseinheiten. Dies bedeutet, daß die Zubereitungen in Form einzelner Teile, z.B. Tabletten, Dragees, Kapseln, Pillen, Suppositorien und Ampullen vorliegen, deren Wirkstoffgehalt einem Bruchteil oder einem Vielfachen einer Einzeldosis entspricht. Die Dosierungseinheiten können z.B. 1, 2, 3 oder 4 Einzeldosen oder 1/2, 1/3 oder 1/4 einer Einzeldosis enthalten. Eine Einzeldosis enthält vorzugsweise die Menge Wirkstoff, die bei einer Applikation verabreicht wird und die gewöhnlich einer ganzen, einer halben oder einem Drittel oder einem Viertel einer 35 Tagesdosis entspricht.

Unter nicht-toxischen, inerten pharmazeutisch geeigneten Trägerstoffen sind feste, halbfeste oder flüssige Verdünnungsmittel, Füllstoffe und Formulierungshilfsmittel jeder Art zu verstehen.

- 40 Als bevorzugte pharmazeutische Zubereitungen seien Tabletten, Dragees, Kapseln, Pillen, Granulate, Suppositorien, Lösungen, Suspensionen und Emulsionen, Pasten, Salben, Gele, Cremes, Lotions, Puder und Sprays genannt.

Tabletten, Dragees, Kapseln, Pillen und Granulate können den oder die Wirkstoffe neben den üblichen Trägerstoffen enthalten, wie (a) Füll- und Streckmittel, z.B. Stärken, Milchzucker, Rohrzucker, Glukose, Mannit und Kieselsäure, (b) Bindemittel, z.B. Carboxymethylcellulose, Alginat, Gelatine, Polyvinylpyrrolidon, (c) Feuchthaltemittel, z.B. Glycerin, (d) Sprengmittel, z.B. Agar-Agar, Calciumcarbonat und Natriumcarbonat, (e) Lösungsverzögerer, z.B. Paraffin und (f) Resorptionsbeschleuniger, z.B. quarternäre Ammoniumverbindungen, (g) Netzmittel, z.B. Cetyl-alkohol, Glycerinmonostearat, (h) Adsorptionsmittel, z.B. Kaolin und Bentonit und (i) Gleitmittel z.B. Talkum, Calcium- und Magnesiumstearat und feste Polyethylenglykole oder Gemische der unter (a) bis (i) aufgeführten Stoffe.

- 45 50 Die Tabletten, Dragees, Kapseln, Pillen und Granulate können mit den üblichen, gegebenenfalls Opakisierungsmitteln enthaltenden, Überzügen und Hüllen versehen sein und auch so zusammengesetzt sein, daß sie den oder die Wirkstoffe nur oder bevorzugt in einem bestimmten Teil des Intestinaltraktes gegebenenfalls verzögert abgeben, wobei als Einbettungsmassen z.B. Polymersubstanzen und Wachse verwendet werden können.

- 55 Der oder die Wirkstoffe können gegebenenfalls mit einem oder mehreren der oben angegebenen Trägerstoffen auch in mikroverkapselter Form vorliegen.

Suppositorien können neben dem oder den Wirkstoffen die üblichen wasserlöslichen oder wasserunlöslichen Trägerstoffe enthalten, z.B. Polyethylenglykole, Fette, z.B. Kakaofett und höhere Ester (z.B. C₁₄-Alkohol mit C₁₆-Fettsäure) oder Gemische dieser Stoffe.

Salben, Pasten, Cremes und Gele können neben dem oder den Wirkstoffen die üblichen Trägerstoffe enthalten, z.B. tierische und pflanzliche Fette, Wachse, Paraffine, Stärke, Tragant, Cellulosederivate, Polyethylenglykole, Silikone, Bentonite, Kieselsäure, Talcum und Zinkoxid oder Gemische dieser Stoffe.

- Puder und Sprays können neben dem oder den Wirkstoffen die üblichen Trägerstoffe enthalten, z.B.
- 5 Milchzucker, Talcum, Kieselsäure, Aluminiumhydroxid, Calciumsilikat und Polyamidpulver oder Gemische dieser Stoffe. Sprays können zusätzlich die üblichen Treibmittel, z.B. Chlorfluorkohlenwasserstoffe, enthalten.

Lösungen und Emulsionen können neben dem oder den Wirkstoffen die üblichen Trägerstoffe wie Lösungsmittel, Lösungsvermittler und Emulgatoren, z.B. Wasser, Ethylalkohol, Isopropylalkohol, Ethylcarbonat, Ethylacetat, Benzylalkohol, Benzylbenzoat, Propylenglykol, 1,3-Butylenglykol, Dimethylformamid, Öle, insbesondere Baumwollsaatöl, Erdnußöl, Maiskeimöl, Olivenöl, Ricinusöl und Sesamöl, Glycerin, Glycerinformal, Tetrahydrofurfurylalkohol, Polyethylenglykole und Fettsäureester des Sorbitans oder Gemische dieser Stoffe enthalten.

Zur parenteralen Applikation können die Lösungen und Emulsionen auch in steriler und blutisotonischer Form vorliegen.

Suspensionen können neben dem oder den Wirkstoffen die üblichen Trägerstoffe wie flüssige Verdünnungsmittel, z.B. Wasser, Ethylalkohol, Propylenglykol, Suspendiermittel, z.B. ethoxylierte Isostearylalkohole, Polyoxyethylensorbit- und Sorbitan-Ester, mikrokristalline Cellulose, Aluminiummetahydroxid, Bentonit, Agar-Agar und Tragant oder Gemische dieser Stoffe enthalten.

20 Die genannten Formulierungsformen können auch Färbemittel, Konservierungsstoffe sowie geruchs- und geschmacksverbessernde Zusätze, z.B. Pfefferminzöl und Eukalyptusöl und Süßmittel, z.B. Saccharin, enthalten.

Die therapeutisch wirksamen Verbindungen sollen in den oben aufgeführten pharmazeutischen Zubereitungen vorzugsweise in einer Konzentration von etwa 0,1 bis 99,5, vorzugsweise von etwa 0,5 bis 95 Gew-%, der Gesamtmasse vorhanden sein.

Die oben aufgeführten pharmazeutischen Zubereitungen können außer den erfindungsgemäßen Verbindungen auch weitere pharmazeutische Wirkstoffe enthalten.

Die Herstellung der oben aufgeführten pharmazeutischen Zubereitungen erfolgt in üblicher Weise nach bekannten Methoden, z.B. durch Mischen des oder der Wirkstoffe mit dem oder den Trägerstoffen.

30 Die genannten Zubereitungen können bei Mensch und Tier entweder oral, rektal, parenteral (intravenös, intramuskulär, subkutan), intracisternal, intravaginal, intraperitoneal, lokal (Puder, Salbe, Tropfen) und zur Therapie von Infektionen in Hohlräumen, Körperhöhlen angewendet werden. Als geeignete Zubereitungen kommen Injektionslösungen, Lösungen und Suspensionen für die orale Therapie, Gele, Aufgußformulierungen, Emulsionen, Salben oder Tropfen in Frage. Zur lokalen Therapie können ophthalmologische und 35 dermatologische Formulierungen, Silber- und andere Salze, Ohrentropfen, Augensalben, Puder oder Lösungen verwendet werden. Bei Tieren kann die Aufnahme auch über das Futter oder Trinkwasser in geeigneten Formulierungen erfolgen. Ferner können Gele, Pulver, Puder, Tabletten, Retard-Tabletten, Premix, Konzentrate, Granulate, Pellets, Boli, Kapseln, Aerosole, Sprays, Inhalate bei Mensch und Tier angewendet werden. Ferner können die erfindungsgemäßen Verbindungen in andere Trägermaterialien wie zum Beispiel Kunststoffe (Kunststoffketten zur lokalen Therapie), Kollagen oder Knochenzement eingearbeitet werden.

40 Im allgemeinen hat es sich sowohl in der Human- als auch in der Veterinärmedizin als vorteilhaft erwiesen, den oder die erfindungsgemäßen Wirkstoffe in Gesamtmengen von etwa 0,5 bis etwa 500, vorzugsweise 5 bis 100 mg/kg Körpermassen je 24 Stunden, gegebenenfalls in Form mehrerer Einzelgaben, zur Erzielung der gewünschten Ergebnisse zu verabreichen. Eine Einzelgabe enthält den oder die erfindungsgemäßen Wirkstoffe vorzugsweise in Mengen von etwa 1 bis etwa 80, insbesondere 3 bis 30 mg/kg Körpermassen. Es kann jedoch erforderlich sein, von den genannten Dosierungen abzuweichen, und zwar in Abhängigkeit von der Art und dem Körpermassen des zu behandelnden Objekts, der Art und der Schwere der Erkrankung, der Art der Zubereitung und der Applikation des Arzneimittels sowie dem Zeitraum bzw. Intervall, innerhalb welchem die Verabreichung erfolgt.

50 So kann es in einigen Fällen ausreichend sein, mit weniger als der obengenannten Menge Wirkstoff auszukommen, während in anderen Fällen die oben angeführte Wirkstoffmenge überschritten werden muß. Die Festlegung der jeweils erforderlichen optimalen Dosierung und Applikationsart der Wirkstoffe kann durch jeden Fachmann aufgrund seines Fachwissens leicht erfolgen.

55 Die neuen Verbindungen können in den üblichen Konzentrationen und Zubereitungen zusammen mit dem Futter bzw. mit Futterzusätzen oder mit dem Trinkwasser gegeben werden. Dadurch kann eine Infektion durch gram-negative oder gram-positive Bakterien verhindert, gebessert und/oder geheilt werden und dadurch eine Förderung des Wachstums und eine Verbesserung der Verwertung des Futters erreicht werden.

Die minimalen Hemmkonzentrationen (MHK) wurden per Reihenverdünnungsverfahren auf Iso-Sensitest Agar (Oxoid) bestimmt. Für jede Prüfsubstanz wurde eine Reihe von Agarplatten hergestellt, die bei jeweils doppelter Verdünnung abfallende Konzentrationen des Wirkstoffes enthielten. Die Agarplatten wurden mit einem Multipoint-Inokulator (Denley) beimpft. Zum Beimpfen wurden Übernachtkulturen der Erreger ver-
wandt, die zuvor so verdünnt wurden, daß jeder Impfpunkt ca. 10^4 koloniebildende Partikel enthielt. Die beimpften Agarplatten wurden bei 37 °C bebrütet, und das Keimwachstum wurde nach ca. 20 Stunden abgelesen. Der MHK-Wert ($\mu\text{g}/\text{ml}$) gibt die niedrigste Wirkstoffkonzentration an, bei der mit bloßem Auge kein Keimwachstum zu erkennen war.

In der nachstehenden Tabelle sind die MHK-Werte einiger der erfindungsgemäßen Verbindungen im
Vergleich zu Ciprofloxacin angegeben.

15

20

25

30

35

40

45

50

55

Teststamm	Beispiel 1	2	3	4	5	6	7	8	9	10
<i>Escherichia coli</i> Neumann	$\leq 0,015$	$\leq 0,015$	$\leq 0,015$	$\leq 0,015$	$\leq 0,015$	$\leq 0,015$	$\leq 0,015$	$\leq 0,015$	$\leq 0,015$	$\leq 0,015$
<i>Proteus mirabilis</i> 8223	1	4	1	0,5	2	2	2	8	8	16
<i>Proteus vulgaris</i> 1017	$\leq 0,015$	0,125	$\leq 0,015$	$\leq 0,015$	0,03	0,03	$\leq 0,015$	$\leq 0,015$	$\leq 0,015$	$\leq 0,015$
<i>Morganella morganii</i> 932	$\leq 0,015$	0,03	0,03	$\leq 0,015$						
<i>Providencia stuartii</i> 12052	1	4	2	0,5	4	4	4	4	32	64
<i>Staphylococcus aureus</i>										
FK 4222	0,06	0,125	0,06	$\leq 0,015$	$\leq 0,015$	$\leq 0,015$	0,125	0,125	0,03	0,06
1756	0,06	0,125	0,06	$\leq 0,015$	$\leq 0,015$	$\leq 0,015$	0,125	0,125	0,03	0,06
133	0,06	0,125	0,03	$\leq 0,015$	$\leq 0,015$	$\leq 0,015$	0,125	0,125	0,03	0,06
<i>Enterococcus faecalis</i> 27101	0,125	-	0,125	0,06	0,25	0,25	0,25	0,125	0,125	0,25
9790	0,125	0,5	0,25	0,06	0,25	0,25	0,25	0,125	0,125	0,25

5
10
15
20
25
30
35
40
45
50
55

MHK-Werte (mg/l) bestimmt durch Agar-Verdünnungstest
(Denley Multipoint Inoculator; Iso-Sensitest-Agar, Oxid)

Teststamm	Ciprofloxacin					
	13	14	15	16	17	18
<i>Escherichia coli</i> Neumann	0,06	0,06	$\leq 0,015$	0,06	0,125	0,03
<i>Proteus mirabilis</i> 8223	1	4	0,5	4	8	1
<i>Proteus vulgaris</i> 1017	0,03	0,5	0,03	0,06	0,5	0,06
<i>Morganella morganii</i> 932	0,125	0,25	0,03	0,06	0,5	0,06
<i>Providencia stuartei</i> 12052	2	4	1	32	8	4
<i>Staphylococcus aureus</i>						
FK	422	0,06	0,25	0,03	0,125	0,5
1756	0,06	0,25	0,03	0,125	0,5	0,125
133	0,06	0,25	0,03	0,125	0,5	0,25
<i>Enterococcus faecalis</i> 27101	0,125	0,25	0,03	0,5	1	0,25
9790	0,25	0,5	-	0,5	2	0,5

Die folgenden Beispiele erläutern die Erfindung:

5 Herstellung der Zwischenprodukte:

Beispiel A

10

N-(cis-4-Methoxy-pyrrolidin-3-yl)-carbamidsäure-tert.-butylester

a) trans-1-Benzyl-3-hydroxy-4-methoxypyrrolidin

15

Man erhitzt 34,9 g (0,2 mol) 3-Benzyl-6-oxa-3-azabicyclo[3.1.0]hexan (US-Patent 4 254 135) mit 3,6 g (20 mmol) Natriummethylatlösung (30%) in 200 ml absolutem Methanol im Autoklaven 10 Stunden auf 120 °C. Nach dem Abkühlen neutralisiert man mit 1,2 g (20 mmol) Essigsäure und entfernt das Lösungsmittel am Rotationsverdampfer. Der Rückstand wird in Tetrahydrofuran aufgenommen und das Natriumacetat abfiltriert. Das Filtrat wird eingeengt und der Rückstand destilliert.

20 Ausbeute: 40,9 g (91% der Theorie)

Siedepunkt: 112-116 °C/ 0,1 mbar

Gehalt: 92%ig

25

b) cis-3-Amino-1-benzyl-4-methoxy-pyrrolidin

Man legt 5,6 g (25 mmol) trans-1-Benzyl-3-hydroxy-4-methoxypyrrolidin und 8,6 g (33 mmol) Triphenylphosphin in 40 ml absolutem Tetrahydrofuran vor und tropft bei 0 °C eine Lösung von 6 g (34 mmol) 30 Azodicarbonsäurediethylester in 40 ml absolutem Tetrahydrofuran hinzu. Anschließend gibt man bei 0 °C 3,9 g (27 mmol) Phthalimid in kleinen Portionen innerhalb einer Stunde hinzu. Man röhrt über Nacht bei Raumtemperatur und engt ein. Den Rückstand löst man in 80 ml Essigester und setzt 80 ml Petrolether hinzu. Man lässt über Nacht auskristallisieren und filtriert die Kristalle (Triphenylphosphinoxid und Hydracindicarbonsäurediethylester) ab. Das Filtrat wird eingeengt und der Rückstand mit 60 ml konzentrierter 35 Salzsäure über Nacht unter Rückfluß erhitzt. Man dekantiert von ungelösten Rückständen und engt die Lösung ein. Der Rückstand wird in wenig Wasser aufgenommen, die Lösung mit festem Kaliumcarbonat alkalisch gestellt und fünfmal mit 50 ml Chloroform extrahiert. Man trocknet über Kaliumcarbonat, engt ein und destilliert den Rückstand.

Ausbeute: 3,4 g (65,9% der Theorie)

40 Siedepunkt: 95 °C/0,2 mbar

c) N-(cis-1-Benzyl-4-methoxypyrrolidin-3-yl)-carbamidsäure-tert.-butylester

45 Zu einer Lösung von 0,65 g NaOH in 8 ml Wasser gibt man 3 g (14,5 mmol) cis-3-Amino-1-benzyl-4-methoxy-pyrrolidin und 11 ml tert.-Butanol. Dazu tropft man 3,5 g (16 mmol) Dikohlensäuredi-tert.-butylester. Man röhrt über Nacht bei Raumtemperatur, saugt anorganische Salze ab und extrahiert das Filtrat mit Chloroform. Man trocknet über Kaliumcarbonat, engt ein und destilliert den Rückstand.

Ausbeute: 3,8 g (85,5% der Theorie)

50 Siedepunkt: 130-140 °C/0,05 mbar

d) N-(cis-4-Methoxypyrrolidin-3-yl)-carbamidsäure-tert.-butylester

55 Man hydriert 3,5 g (11,4 mmol) N-(cis-1-Benzyl-4-methoxypyrrolidin-3-yl)-carbamidsäure-tert.-butylester in 100 ml Methanol bei 100 °C und 100 bar an 2 g Palladium-Aktivkohle (10% Pd). Man filtert den Katalysator ab, engt das Filtrat ein und destilliert den Rückstand.

Ausbeute: 1,9 g (81,6% der Theorie)

Siedepunkt: 84 °C/0,1 mbar

Beispiel B

5

N-(trans-4-Methoxy-pyrrolidin-3-yl)-carbamidsäure-tert.-butylester

10 a) trans-3-Amino-1-benzyl-4-methoxy-pyrrolidin

Man löst 27 g (0,41 mol) Natriumazid in 50 ml Wasser und setzt 17,5 g (0,1 mol) 3-Benzyl-6-oxa-3-azabicyclo[3.1.0]hexan in 300 ml Dioxan hinzu. Man erhitzt 72 Stunden unter Rückfluß, engt ein, löst anorganische Salze in Wasser und extrahiert mit Chloroform. Man trocknet über Kaliumcarbonat und engt ein. Der Rückstand wird in 50 ml absolutem Tetrahydrofuran gelöst und zu 4 g Natriumhydrid (80% in Paraffinöl) in 200 ml absolutem Tetrahydrofuran getropft. Man erhitzt eine Stunde unter Rückfluß und tropft dann 15 g (0,1 mol) Methyliodid hinzu. Anschließend erhitzt man über Nacht unter Rückfluß, engt ein, nimmt in Wasser auf und extrahiert mit Chloroform. Man trocknet über Kaliumcarbonat, engt ein und destilliert. Man erhält 13,1 g eines nach Gaschromatogramm 73%igen Materials. Hiervon tropft man 12,7 g in 40 ml absolutem Tetrahydrofuran zu einer Suspension von 4 g Lithiumaluminiumhydrid in 150 ml absolutem Tetrahydrofuran und erhitzt 2 Stunden unter Rückfluß. Man zersetzt überschüssiges Lithiumaluminiumhydrid durch vorsichtiges Zutropfen von je 4 ml Wasser, 15%iger Kalilauge und wieder 4 ml Wasser. Die anorganischen Salze werden abgesaugt und mehrfach mit Chloroform gewaschen. Die organischen Phasen werden über Kaliumcarbonat getrocknet, eingeengt und der Rückstand destilliert.

25 Ausbeute: 9 g (32,8% der Theorie)
Siedepunkt: 91 °C/0,07 mbar

Das Produkt hat einen gaschromatographisch (Flächenmethode) ermittelten Gehalt von 75%.

30 b) N-(trans-1-Benzyl-4-methoxypyrrolidin-3-yl)carbamidsäure-tert.-butylester

Zu einer Lösung von 1,3 g NaOH in 15 ml Wasser gibt man 8,2 g (30 mmol) trans-3-amino-1-benzyl-4-methoxy-pyrrolidin und 21 ml tert.-Butanol. Dazu tropft man 7,1 g (31 mmol) Dikohlensäuredi-tert.-butylester und röhrt anschließend über Nacht bei Raumtemperatur. Man saugt von anorganischen Salzen ab, extrahiert 35 das Filtrat mit Chloroform, trocknet über Kaliumcarbonat, engt ein und destilliert den Rückstand.

Ausbeute: 7,7 g (84,4% der Theorie)
Siedepunkt: 148 °C/0,1 mbar
Schmelzpunkt: 88-90 °C

40

c) N-(trans-4-Methoxypyrrolidin-3-yl)-carbamidsäure-tert.-butylester

Man hydriert 6,7 g (22 mmol) N-(trans-1-Benzyl-4-methoxypyrrolidin-3-yl)-carbamidsäure-tert.-butylester in 150 ml Methanol bei 100 bar und 100 °C an 2 g Palladium-Aktivkohle (10% Pd). Man saugt den 45 Katalysator ab, engt das Filtrat ein und destilliert den Rückstand.
Ausbeute: 2,2 g (46% der Theorie)
Siedepunkt: 94 °C/0,05 mbar

50 Beispiel C

trans-3-Amino-4-hydroxy-pyrrolidin

55

a) trans-3-Amino-1-benzyl-4-hydroxy-pyrrolidin

Man erhitzt 8,9 g (50 mmol) 3-Benzyl-6-oxa-3-azabicyclo[3.1.0]hexan in 75 ml Ammoniaklösung

(25%ig) 8 Stunden im Autoklaven auf 120 °C. Die Lösung wird eingeeengt und der Rückstand destilliert.
 Ausbeute: 6 g (62,4% der Theorie)
 Siedepunkt: 130-140 °C/0,1 mbar
 Schmelzpunkt: 82-84 °C

5

b) trans-3-Amino-4-hydroxy-pyrrolidin

Man hydriert 5,2 g (27 mmol) trans-3-Amino-1-benzyl-4-hydroxy-pyrrolidin in 40 ml Methanol bei 100 °C
 10 und 100 bar an 1 g Palladium-Aktivkohle (10% Pd). Man saugt den Katalysator ab, engt das Filtrat ein und destilliert den Rückstand.
 Ausbeute: 1 g (36,3% der Theorie)
 Siedepunkt: 110 °C/0,3 mbar

15

Beispiel D

trans-4-Hydroxy-3-(2-hydroxyethylamino)-pyrrolidin

20

a) trans-1-Benzyl-4-hydroxy-3-(2-hydroxyethylamino)-pyrrolidin

Man erhitzt 40 g (0,22 mol) 3-Benzyl-6-oxa-3-azabicyclo[3.1.0]hexan mit 42 g (0,68 mol) 2-aminoethanol
 25 in 450 ml Wasser über Nacht unter Rückfluß. Man extrahiert die Lösung einmal mit tert.-Butylmethylether und engt die wäßrige Phase ein. Der Rückstand wird destilliert.
 Ausbeute: 34,1 g (65,6% der Theorie)
 Siedepunkt: 190 °C/0,1 mbar

30

b) trans-4-Hydroxy-3-(2-hydroxyethylamino)-pyrrolidin

Man hydriert analog Beispiel C b) trans-1-Benzyl-4-hydroxy-3-(2-hydroxyethylamino)-pyrrolidin und erhält das Reaktionsprodukt als Öl.

35

Beispiel E

40 trans-4-Hydroxy-3-(2-hydroxyethyl-methyl-amino)-pyrrolidin

a) trans-1-Benzyl-4-hydroxy-3-(2-hydroxyethyl-methyl-amino)-pyrrolidin

45 Man setzt 17,5 g (0,1 mol) 3-Benzyl-6-oxa-3-azabicyclo[3.1.0]hexan mit 17 g (0,1 mol) Methylaminoethanol analog Beispiel D a) in 200 ml Waser um.
 Ausbeute: 18,2 g (73% der Theorie)
 Siedepunkt: 180-190 °C/0,1 mbar

50

b) trans-4-Hydroxy-3-(2-hydroxyethyl-methyl-amino)-pyrrolidin

Analog Beispiel C b) hydriert man trans-1-Benzyl-4-hydroxy-3-(2-hydroxyethyl-methyl-amino)-pyrrolidin und erhält das Reaktionsprodukt als ölige Verbindung.

55

Beispiel F

2-Oxa-5,8-diazabicyclo[4.3.0]nonan-Dihydrochlorida) 8-Benzyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan

5

Man erhitzt 15,6 g (66 mmol) 1-Benzyl-4-hydroxy-3-(2-hydroxyethylamino)-pyrrolidin in einem Gemisch aus 60 ml konzentrierter Schwefelsäure und 20 ml Wasser 6 Stunden unter Rückfluß. Man stellt mit konzentrierter Natronlauge alkalisch, saugt ausgeschiedenes Natriumsulfat ab und extrahiert das Filtrat mit Chloroform. Man trocknet über Kaliumcarbonat, engt ein und destilliert den Rückstand.

10 Ausbeute: 4,1 g (28,5% der Theorie)

Siedepunkt: 122-128 °C (0,08 mbar)

b) 2-Oxa-5,8-diazabicyclo[4.3.0]nonan-Dihydrochlorid

15

Man hydriert eine Lösung von 4 g (18,2 mmol) 8-Benzyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan in 100 ml Methanol und 3,5 ml konzentrierter Salzsäure an 2 g Palladium-Aktivkohle (10% Pd) bei 80 °C und 100 bar. Der Katalysator wird abfiltriert und mit Wasser gewaschen. Die Filtrate werden eingeengt und durch Verreiben mit wenig Methanol kristallisiert. Man saugt ab, wäscht die Kristalle mit Aceton und trocknet an der Luft.

20 Ausbeute: 1,85 g (51% der Theorie)

Schmelzpunkt: 280 °C unter Zersetzung

25 c) 2-Oxa-5,8-diazabicyclo[4.3.0]nonan

Man hydriert 7,2 g (33 mmol) 8-Benzyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan in 400 ml Methanol mit 2,5 g Palladium-Aktivkohle (10 % Pd) bei 50 bar und 100 °C. Man saugt den Katalysator ab, engt das Filtrat ein und destilliert den Rückstand.

30 Ausbeute: 3,1 g (73,4 % der Theorie); cis-trans Isomerengemisch 1:7

Siedepunkt: 58 °C/0,1 mbar

d) trans-2-Oxa-5,8-diazabicyclo[4.3.0]nonan

35

Analog Beispiel D a) wird 3-Benzyl-6-oxa-3-azabicyclo[3.1.0]hexan mit 2-(Benzylamino)-ethanol zu trans-1-Benzyl-3-[N-benzyl-N-(2-hydroxyethyl)-amino]-4-hydroxypyrrolidin umgesetzt und anschließend analog Beispiel F a) zu 5,8-Dibenzyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan umgesetzt und chromatographisch gereinigt (Kieselgel, Cyclohexan/tert.-Butylmethylether/Essigsäureethylester 1:1:1).

40 Die hydrogenolytische Debenzylierung erfolgt analog Beispiel F c) zu trans-2-Oxa-5,8-diazabicyclo[4.3.0]nonan, Siedepunkt: 60 °C/0,1 mbar.

Beispiel G

45

5-Methyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan-Dihydrochlorida) 8-Benzyl-5-methyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan

Wie in Beispiel F a) setzt man 18 g (71,9 mmol) 1-Benzyl-4-hydroxy-3-(2-hydroxyethyl-methy-amino)-pyrrolidin in 60 ml konzentrierter Schwefelsäure und 30 ml Wasser um.

Ausbeute: 10 g (60% der Theorie)

55 Siedepunkt: 122 °C/0,08 mbar

b) 5-Methyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan-Dihydrochlorid

Man hydriert eine Lösung von 9,4 g (40 mmol) 8-Benzyl-5-methyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan in 150 ml Methanol und 7,4 ml konzentrierter Salzsäure an 3 g Palladium-Aktivkohle (10% Pd) bei 80 °C und 100 bar. Der Katalysator wird abgesaugt und das Filtrat eingeengt. Der Rückstand wird mit Butanol/Aceton 1:1 verrieben, die Kristalle abgesaugt und im Exsikkator über P₄O₁₀ getrocknet. Das Produkt ist sehr

5 hygroskopisch.

Ausbeute: 8,2 g (95% der Theorie)

Massenspektrum: m/e 142 (M^+), 112 (M^+-CH_2O), 100 ($M^+-CH_2-N=CH_2$), 82 ($C_4H_4NO^+$), 68 ($C_4H_6N^+$)

10 Beispiel H

2-Methyl-3-oxa-2,7-diazabicyclo[3.3.0]octan

15

a) N-(2,2-Dimethoxyethyl)-carbamidsäureethylester

Zu 214 g (2 mol) Aminoacetaldehyddimethylacetal in 1 l Toluol und 90 g NaOH in 500 ml Wasser tropft man 214 g (2 mol) Chlorameisensäureethylester bei 10 °C. Man röhrt noch zwei Stunden bei Raumtemperatur, trennt die wäßrige Phase ab, sättigt sie mit Kochsalz und extrahiert mit Toluol. Die Toluollösungen werden über Magnesiumsulfat getrocknet, eingeengt und destilliert.

20 Ausbeute: 338 g (95,4% der Theorie)

Siedepunkt: 60 °C/0,03 mbar

25

b) N-Allyl-N-(2,2-dimethoxyethyl)-carbamidsäureethylester

Man legt 20 g Natriumhydrid (80% im Paraffinöl) in 500 ml Toluol vor und tropft bei 80 °C 89 g (0,5 mol) N-(2,2-Dimethoxyethyl)-carbamidsäureethylester hinzu. Man röhrt eine Stunde bei 80 °C und tropft dann 73 g (0,6 mol) Allylbromid innerhalb von drei Stunden hinzu. Man röhrt über Nacht bei 80 °C, bringt die Salze mit Wasser in Lösung und trennt die organische Phase ab. Die wäßrige Phase wird mit Toluol extrahiert, die organischen Phasen über Kaliumcarbonat getrocknet, eingeengt und der Rückstand destilliert.

Ausbeute: 68 g (62,6% der Theorie)

Siedepunkt: 65 °C/0,09 mbar

35

c) N-Allyl-N-(2-oxoethyl)-carbamidsäureethylester

Man erhitzt 68 g (0,313 mol) N-Allyl-N-(2,2-dimethoxyethyl)-carbamidsäureethylester mit 150 ml Ameisensäure eine Stunde auf 100 °C. Man gießt auf Eis, extrahiert mehrfach mit Methylchlorid, wäscht die organischen Phasen mit Natriumhydrogencarbonatlösung, trocknet über Magnesiumsulfat, engt ein und destilliert.

Ausbeute: 46,7 g (87,2% der Theorie)

Siedepunkt: 58 °C/0,09 mbar

45

d) 2-Methyl-3-oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester

Man löst 10 g (0,12 mol) Methylhydroxylamin-Hydrochlorid in 50 ml Methanol, kühlt im Eisbad und tropft 22 g (0,12 mol) 30%ige Natriummethylatlösung in Methanol hinzu. Man saugt von Kochsalz ab und wäscht das Salz mit 80 ml Toluol. Die Lösung von Methylhydroxylamin tropft man innerhalb einer Stunde zu 20 g (0,117 mol) N-Allyl-N-(2-oxoethyl)-carbamidsäureethylester, der in 160 ml Toluol am Wasserscheider unter Rückfluß erhitzt wird. Man erhitzt über Nacht unter Rückfluß und extrahiert das Produkt zweimal mit je 80 ml 10%iger Salzsäure. Die salzauren Lösungen werden mit Kaliumcarbonat gesättigt und sechsmal mit je 200 ml Chloroform extrahiert. Man trocknet über K₂CO₃, engt ein und destilliert den Rückstand.

Ausbeute: 18,6 g (79,5% der Theorie)

Siedepunkt: 93 °C/0,09 mbar

e) 2-Methyl-3-oxa-2,7-diazabicyclo[3.3.0]octan

Man erhitzt 13 g (65 mmol) 2-Methyl-3-oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester in 300 ml Wasser mit 41 g Ba(OH)₂ · 8H₂O über Nacht unter Rückfluß. Man setzt Kaliumcarbonat hinzu, saugt ausgefallenes Bariumcarbonat ab und extrahiert das Filtrat zehnmal mit je 100 ml Chloroform. Man trocknet über Kaliumcarbonat, engt ein und destilliert den Rückstand.
 Ausbeute: 5,4 g (65% der Theorie)
 Siedepunkt: 80 °C/10 mbar

10

Beispiel I1-Methyl-octahydropyrrolo[3,4-b]pyrrol (2-Methyl-2,7-diazabicyclo[3.3.0]octan)

15

a) 1-Benzyl-3-(2-chlorethyl-methyl-amino)-pyrrolidin-2,5-dion

74,8 g (0,4 mol) N-Benzylmaleinimid [Arch. Pharm. 308, 489 (1975)] und 52,0 g (0,4 mol) 2-Chlorethyl-methyl-amin-Hydrochlorid werden in 400 ml Dioxan vorgelegt und 40,4 g (0,4 mol) Triethylamin bei 20 °C zugetropft. Anschließend wird 5 Stunden unter Rückfluß gekocht. Dann wird der Ansatz auf 2 l Eiswasser gegossen, mit 3 mal 400 ml Chloroform extrahiert, der Extrakt mit Wasser gewaschen, über Natriumsulfat getrocknet und am Rotationsverdampfer eingeengt. Bei der Chromatographie des Rückstands (101,1 g) auf Kieselgel mit Essigester:Petrolether (1:2) werden 56,8 g (51% der Theorie) eines Öls erhalten.
 25 R_f-Wert: 0,33 (Kieselgel, Essigester/Petrolether = 1:2)

b) 5-Benzyl-4,6-dioxo-1-methyl-octahydropyrrolo[3,4-b]pyrrol

30 7,2 g (0,24 mol) einer 80%igen Natriumhydrid-Suspension in Mineralöl werden in 150 ml absolutem Dimethylformamid (über Calciumhydrid getrocknet) suspendiert und 62 g (0,22 mol) 1-Benzyl-3-(2-chlorethyl-methylamino)-pyrrolidin-2,5-dion als Lösung in 50 ml absolutem Dimethylformamid bei Raumtemperatur zugetropft. Dabei erfolgt eine exotherme Reaktion unter Aufschäumen. Es wird mit weiteren 50 ml absolutem Dimethylformamid verdünnt, 1 Stunde bei Raumtemperatur nachgerührt, dann auf Eiswasser 35 gegossen und mit Dichlormethan extrahiert. Der Extrakt wird mit Wasser gewaschen, mit Natriumsulfat getrocknet und am Rotationsverdampfer eingeengt. Der Rückstand wird auf Kieselgel mit Essigester:Petrolether (1:2) und später (1:1) chromatographiert. Dabei werden zunächst 16,4 g Edukt wiedergefunden und anschließend 17,2 g (44% der Theorie, bezogen auf umgesetztes Edukt) öliges Produkt isoliert.
 40 R_r-Wert = 0,26
 (Kieselgel, Essigester:Petrolether = 1:1).

c) 5-Benzyl-1-methyl-octahydropyrrolo[3,4-b]pyrrol

45

1,52 g (40 mmol) Lithiumaluminiumhydrid werden in 30 ml wasserfreiem Tetrahydrofuran vorgelegt und 4,9 g (20 mmol) 5-Benzyl-4,6-dioxo-1-methyl-octahydropyrrolo[3,4-b]pyrrol als Lösung in 15 ml wasserfreiem Tetrahydrofuran zugetropft. Dann wird 3 Stunden bei Siedetemperatur nachgerührt. Nacheinander werden zu dem Ansatz 1,5 ml Wasser, 1,5 ml 15%ige Kalilauge und 4,5 ml Wasser getropft, dann wird der 50 Niederschlag abgesaugt und mit Tetrahydrofuran gewaschen. Das Filtrat wird am Rotationsverdampfer eingeengt und der Rückstand destilliert. Es werden 3,1 g (72% der Theorie) eines farblosen Destillats vom Siedepunkt 80 °C/0,07 mbar erhalten.

55

d) 1-Methyl-octahydropyrrolo[3,4-b]pyrrol

6,49 g (30 mmol) 5-Benzyl-1-methyl-octahydropyrrolo[3,4-b]-pyrrol werden in 100 ml absolutem Ether gelöst und 5,2 g über Phosphorpentoxid getrockneter Chlorwasserstoff eingeleitet. Die entstandene

Hydrochlorid-Suspension wird im Vakuum eingeengt und der Rückstand in 100 ml Methanol aufgenommen. Dann wird mit 2 g Pd-C (5 %) 4 Stunden bei 80 °C und 50 bar hydriert. Der Katalysator wird anschließend abfiltriert, das Filtrat eingeengt und der Rückstand mit 30 ml 40%iger Natronlauge und 50 ml Ether versetzt. Die etherische Phase wird abgetrennt und die wäßrige Phase mit 2 x 50 ml Ether extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, eingeengt und destilliert. Es werden 1,3 g (34% der Theorie) eines farblosen Öls vom Siedepunkt 65-66 °C/12 mbar erhalten.
Reinheit: >99%

10 Beispiel JOctahydropyrrolo[3,4-b]pyrrol (2,7-Diazabicyclo[3.3.0]octan)

- 15 a) 1-Benzyl-3-(2-chlorethylamino)-pyrrolidin-2,5-dion

Nach der Arbeitsvorschrift des Beispiels Ia werden 74,8 g (0,4 mol) N-Benzylmaleinimid mit 58 g (0,5 mol) 2-Chlorethylamin-Hydrochlorid und 50,5 g (0,5 mol) Triethylamin umgesetzt. Nach der chromatographischen Aufarbeitung werden 81,6 g (77% der Theorie) eines Öls mit einem R_f-Wert von 0,24 (auf Kieselgel mit Essigester:Petrolether = 1:1) erhalten.

b) 5-Benzyl-4,6-dioxo-octahydropyrrolo[3,4-b]pyrrol

25 Nach der Arbeitsvorschrift des Beispiels Ib werden 17,4 g (0,58 mol) Natriumhydridsuspension mit 119 g (0,45 mol) 1-Benzyl-3-(2-chlorethylamino)-pyrrolidin-2,5-dion in 550 ml absolutem Dimethylformamid umgesetzt. Nach dem Stehen über Nacht wird wäßrig aufgearbeitet. Bei der chromatographischen Reinigung werden Verunreinigungen zunächst mit Essigester und dann das Produkt mit Essigester:Methanol (3:1) (R_f-Wert 0,55) eluiert. Es werden 57,7 g Produkt (56% der Theorie) isoliert.

c) 5-Benzyl-octahydropyrrolo[3,4-b]pyrrol

35 Nach der Arbeitsvorschrift des Beispiels Ic werden 57,7 g (0,25 mol) rohes 5-Benzyl-4,6-dioxo-octahydropyrrolo[3,4-b]pyrrol mit 21,4 g (0,56 mol) Lithiumaluminiumhydrid durch 10-stündiges Kochen in 700 ml abs. Tetrahydrofuran reduziert. Bei der destillativen Aufarbeitung werden 21,0 g (41,1% der Theorie) eines Öls vom Siedepunkt 95 °C/0,1 mbar erhalten.

- 40 d) Octahydropyrrolo[3,4-b]pyrrol

21,0 g (0,104 mol) 5-Benzyl-octahydropyrrolo[3,4-b]pyrrol werden in 180 ml eisgekühltem Methanol vorgelegt und mit 17,3 ml (0,208 mol) konzentrierter Salzsäure versetzt. Dann wird mit 2 g Pd-C (5 %) 4 Stunden bei 90 °C und 100 bar hydriert. Der Katalysator wird abfiltriert, das Filtrat mit 37,4 g (0,208 mol) 30%iger Natriummethylat-Lösung versetzt, erneut filtriert und das Filtrat eingeengt. Der Rückstand wird über eine kleine Vigreux-Kolonne destilliert. Es werden 5,6 g eines farblosen Öls (48% der Theorie) vom Siedepunkt 93-95 °C/30 mbar erhalten, welches an der Luft raucht und in der Vorlage langsam erstarrt (Schmelzpunkt 40 °C).

50

Beispiel KOctahydropyrrolo[3,4-b]pyridin (2,8-Diazabicyclo[4.3.0]nonan)a) 6-Benzyl-5,7-dioxo-octahydropyrrolo[3,4-b]pyridin

47,6 g (0,2 mol) Pyridin-2,3-dicarbonsäure-N-benzylimid (Brit. Pat. 1 086 637; Chem. Abstr. 68, 95695w) werden in 400 ml Glykolmonomethylether über 15 g Ruthenium auf Aktivkohle (5%) bei 90 °C und 100 bar hydriert, bis die berechnete Wasserstoffmenge aufgenommen worden ist. Dann wird der Katalysator abfiltriert und das Filtrat am Rotationsverdampfer eingeengt. Es werden 44 g eines ölichen Rohproduktes erhalten.

5 Die entsprechende Hydrierung mit Palladium/Aktivkohle (5 %ig) liefert in quantitativer Ausbeute ein Reinprodukt vom Schmelzpunkt 67-69 °C.

10 b) 6-Benzyl-octahydropyrrolo[3,4-b]pyridin

Nach der Arbeitsvorschrift des Beispiels Ic werden 44 g (ca. 0,18 mol) rohes oder reines 6-Benzyl-5,7-dioxooctahydropyrrolo[3,4-b]pyridin mit 15,2 g (0,40 mol) Lithiumaluminiumhydrid in 390 ml absolutem Tetrahydrofuran innerhalb von 10 Stunden reduziert. Bei der Destillation werden 24,4 g eines farblosen Öls mit einem Siedepunkt von 93-95 °C/0,06 mbar erhalten.

15 c) Octahydropyrrolo[3,4-b]pyridin

20 69 g (0,32 mol) 6-Benzyl-octahydropyrrolo[3,4-b]pyridin werden in 450 ml Methanol bei 90 °C/90 bar über 7 g Palladium auf Aktivkohle (5 %ig) innerhalb von 3 Stunden hydriert. Der Katalysator wird anschließend abfiltriert, das Filtrat eingeengt und der Rückstand destilliert. Es werden 33,8 g (84 % der Theorie) eines farblosen Festkörpers mit einem Schmelzpunkt von 65-67 °C und einem Siedepunkt von 78 °C/9 mbar erhalten.

25

Beispiel L

30 1-Methyl-octahydropyrrolo[3,4-b]pyridin (2-Methyl-2,8-diazabicyclo[4.3.0]nonan)

a) 1-Methyl-pyridinium-2,3-dicarbonsäure-N-benzyl-imid-iodid

35 190,5 g (0,8 mol) Pyridin-2,3-dicarbonsäure-N-benzyl-imid werden unter Erwärmung in 800 ml Nitromethan gelöst und 136 g (0,96 mol) Methyliodid zugetropft. Anschliessend wird 8 Stunden unter Rückflußkühlung (Kühlwasser 0 °C) gekocht. Nach dem Erkalten wird der Feststoff abgesaugt und mit Dichlormethan gewaschen. Es werden 123 g dunkelrote Kristalle mit einem Schmelzpunkt 162-165 °C (Zersetzung) erhalten.

40

b) 6-Benzyl-1-methyl-5,7-dioxo-octahydropyrrolo[3,4-b]pyridin

38 g (0,1 mol) 1-Methyl-pyridinium-2,3-dicarbonsäure-N-benzyl-imid-iodid werden bei 30 °C und 70 bar über 1 g Platinoxid in 450 ml Glykolmonomethylether bis zur Beendigung der Wasserstoffsaufnahme (51 Stunden) hydriert. Der Katalysator wird dann abfiltriert, das Filtrat eingeengt, der Rückstand in 300 ml Chloroform aufgenommen und die Lösung 2 x mit je 300 ml 10%iger Sodalösung sowie 300 ml Wasser gewaschen. Nach dem Trocknen über Natriumsulfat wird eingeengt. Es bleiben 27 g eines ölichen Rückstands zurück.

50

c) 6-Benzyl-1-methyl-octahydropyrrolo[3,4-b]pyridin

Nach der Arbeitsvorschrift des Beispiels Ic werden 19,2 g (0,08 mol) rohes 6-Benzyl-1-methyl-5,7-dioxooctahydropyrrolo[3,4-b]pyridin mit 6,1 g (0,16 mol) Lithiumaluminiumhydrid im absolutem Tetrahydrofuran reduziert. Ausbeute: 9,5 g (52% der Theorie), Siedepunkt: 93-96 °C/0,1 mbar.

d) 1-Methyl-octahydropyrrolo[3,4-b]pyridin

- Nach der Arbeitsvorschrift des Beispiels Id werden 11,7 g (54 mmol) 6-Benzyl-1-methyl-octahydropyrrolo[3,4-b]pyridin als Dihydrochlorid in 100 ml Methanol über Palladium auf Aktivkohle hydriert.
- 5 Bei der destillativen Aufarbeitung werden 2,6 g (34% der Theorie) eines farblosen Öls vom Siedepunkt 83-85 °C/12 mbar erhalten.

Beispiel M

10

trans-4-Methoxy-3-methylamino-pyrrolidin-Dihydrochlorid15 a) trans-1-Benzyl-3-benzylmethylamino-4-hydroxy-pyrrolidin

- Man erhitzt 19,4 g (0,1 mol) 90 %iges 3-Benzyl-6-oxa-3-azabicyclo[3.1.0]hexan mit 14,5 g (0,12 mol) Benzylmethyamin in 100 ml Dioxan und 200 ml Wasser über Nacht unter Rückfluß. Man extrahiert mit CHCl₃, trocknet die Extrakte mit K₂CO₃, engt ein und destilliert bis 160 °C (Ölbadtemperatur) an.
- 20 Rohausbeute: 18,3 g
Gehalt: 100 % (gaschromatographisch bestimmt)

25 b) trans-1-Benzyl-3-benzylmethylamino-4-methoxy-pyrrolidin

- Man tropft 17,3 g (58 mmol) rohes trans-1-Benzyl-3-benzylmethylamino-4-hydroxy-pyrrolidin in 80 ml absolutem Tetrahydrofuran zu 2,8 g (93,3 mmol) 80 %igem Natriumhydrid in 40 ml absolutem Tetrahydrofuran und erhitzt gleichzeitig unter Rückfluß. Nach dem Ende der Wasserstoffentwicklung tropft man 8,7 g (61 mmol) Methyliodid hinzu und erhitzt dann über Nacht unter Rückfluß. Man gießt auf Eiswasser, extrahiert mit Toluol, trocknet die Extrakte mit K₂CO₃, engt ein und destilliert.
- Ausbeute: 9,7 g (52 % der Theorie)
Siedepunkt: 140-150 °C/0,1 mbar

35 c) trans-4-Methoxy-3-methylamino-pyrrolidin-Dihydrochlorid

- Man löst 9,3 g (29 mmol) trans-1-Benzyl-3-benzylmethylamino-4-methoxy-pyrrolidin in 100 ml Methanol, fügt 4,8 ml konzentrierte Salzsäure hinzu und hydriert an 4 g 10 %iger Pd-Aktivkohle bei 90 °C und 100 bar. Man saugt den Katalysator ab, engt das Filtrat ein und kristallisiert den Rückstand aus Isopropanol/Methanol um.
- Ausbeute: 3,7 g (62,8 % der Theorie)
Schmelzpunkt: 157-162 °C

45 Beispiel N

2,5-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan50 a) N-(2-Methylprop-2-enyl)-N-(2,2-dimethoxyethyl)-urethan

- Zu 20 g Natriumhydrid (80 %ig) in 500 ml absolutem Toluol tropft man bei 90 °C 89 g (0,5 mol) N-(2,2-Dimethoxyethyl)-urethan. Wenn kein Wasserstoff mehr entsteht tropft man 54 g (0,6 mol) Methylallylchlorid hinzu und röhrt über Nacht bei 90 °C. Das ausgeschiedene Kochsalz wird mit wenig Wasser gelöst, die organische Phase abgetrennt, über K₂CO₃ getrocknet, eingeeengt und destilliert.
- Ausbeut : 71,3 g (61,7 % d r Theorie)
Siedepunkt: 60 °C/0,08 mbar

b) N-(2-Methylprop-2-enyl)-N-(2-oxoethyl)-urethan

Man erhitzt 11,5 g (50 mmol) N-(2-Methylprop-2-enyl)-N-(2,2-dimethoxyethyl)-urethan und 1,25 g (5 mmol) Pyridinium-p-toluolsulfonat in 100 ml Aceton und 10 ml Wasser zwei Tage unter Rückfluß. Man engt ein und destilliert den Rückstand.

5 Ausbeute: 5,3 g (61,2 % der Theorie)

Siedepunkt: 73 °C/0,1 mbar

10 c) 2,5-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester

Zu 10 g (0,12 mol) N-Methylhydroxylamin-Hydrochlorid in 26 ml Methanol tropft man 21,7 g 30 %ige Natriummethylatlösung. Man saugt das Kochsalz ab und wäscht mit 8 ml Methanol und 80 ml Toluol. Diese Lösung tropft man zu 19,2 g (0,11 mol) N-(2-Methyl-prop-2-enyl)-N-(2-oxoethyl)-urethan, das in 160 ml

15 Toluol am Wasserabscheider unter Rückfluß erhitzt wird. Man erhitzt über Nacht unter Rückfluß, extrahiert das Produkt mit 160 ml 10 %iger Salzsäure, stellt die salzaure Lösung mit Kaliumcarbonat alkalisch und extrahiert mit sechsmal 200 ml CHCl₃. Man trocknet die Extrakte über K₂CO₃, engt ein und destilliert.

Ausbeute: 13 g (55 % der Theorie)

Siedepunkt: 88-95 °C/0,08 mbar

20

d) 2,5-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan

Man erhitzt 13 g (60,6 mmol) 2,5-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester mit 33 g Ba(OH)₂ · 8H₂O in 330 ml Wasser über Nacht unter Rückfluß. Man saugt BaCO₃ ab, setzt K₂CO₃ zum Filtrat, saugt erneut ab und extrahiert das Filtrat zehnmal mit je 100 ml CHCl₃. Man trocknet die Extrakte über K₂CO₃, engt ein und destilliert.

Ausbeute: 5,9 g (63,7 % der Theorie)

Siedepunkt: 64 °C/5 mbar

30

Beispiel O35 2,8-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octana) N-(1,1-Dimethoxyprop-2-yl)-urethan

40 Zu 86,2 g (0,72 mol) 2-Aminopropionaldehyddimethylacetal in 350 ml Toluol und 32 g (0,8 mol) NaOH in 300 ml Wasser tropft man unter Eiskühlung 80 g (0,73 mol) Chlorameisensäureethylester. Man röhrt noch zwei Stunden bei Raumtemperatur, trennt die organische Phase ab, extrahiert die wäßrige Phase mit Toluol und trocknet die Toluollösungen über K₂CO₃. Man engt ein und destilliert.

Ausbeute: 132 g (95 % der Theorie)

45 Siedepunkt: 55 °C/0,06 mbar

b) N-Allyl-N-(1,1-dimethoxyprop-2-yl)-urethan

50 Zu 25 g Natriumhydrid (80 %ig) in 700 ml absolutem Toluol tropft man bei 90 °C 131 g (0,686 mol) N-(1,1-Dimethoxyprop-2-yl)-urethan. Nach Beendigung der Wasserstoffentwicklung tropft man bei 90 °C 61,2 g (0,8 mol) Allylchlorid hinzu und röhrt über Nacht bei 90 °C. Ausgeschiedenes Kochsalz wird mit Wasser aufgelöst, die organische Phase abgetrennt, über K₂CO₃ getrocknet, eingeeengt und destilliert.

Ausbeute: 78 g (31,7 % der Theorie)

55 Siedepunkt: 62-69 °C/0,06 mbar.

Gehalt: 64,5 %ig (gaschromatographisch bestimmt)

c) N-Allyl-N-(1-oxoprop-2-yl)-urethan

- Man erhitzt 76,5 g (0,213 mol) 64,5 %iges N-Allyl-N-(1,1-dimethoxyprop-2-yl)-urethan in 180 ml Ameisensäure eine Stunde auf 100 °C. Man gießt auf Eiswasser, extrahiert mit CH₂Cl₂, wäscht die Extrakte mit NaHCO₃-Lösung neutral, trocknet über MgSO₄, engt ein und destilliert.
 5 Ausbeute: 36 g (80,9 % der Theorie)
 Siedepunkt: 97-102 °C/8 mbar
 Gehalt: 88,8 %ig (gaschromatographisch bestimmt)

10

d) 2,8-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester

- Man stellt aus 16,4 g (0,2 mol) N-Methylhydroxylamin-Hydrochlorid in 33 ml absolutem Methanol und 36 g (0,2 mol) 30 %iger Natriummethylatlösung eine methanolische Methylhydroxylaminlösung her,
 15 verdünnt sie mit 130 ml Toluol und tropft sie zu 354 g (0,17 mol) N-Allyl-N-(1-oxoprop-2-yl)-urethan in 250 ml Toluol, welches am Wasserabscheider unter Rückfluß erhitzt wird. Man erhitzt über Nacht unter Rückfluß, extrahiert das Produkt mit verdünnter Salzsäure, stellt die salzaure Lösung mit K₂CO₃ alkalisch und extrahiert mit CHCl₃. Man trocknet über K₂CO₃, engt ein und destilliert.
 Ausbeute: 18,5 g (50,8 % der Theorie)
 20 Siedepunkt: 95-105 °C/0,1 mbar

e) 2,8-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan

- 25 Man erhitzt 9,2 g (42,9 mmol) 2,8-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester mit 23,5 g Ba(OH)₂ · 8H₂O in 235 ml Wasser über Nacht unter Rückfluß. Man saugt BaCO₃ ab, versetzt das Filtrat mit K₂CO₃ und saugt erneut ab. Das Filtrat wird zehnmal mit je 50 ml CHCl₃ extrahiert, die Extrakte über K₂CO₃ getrocknet, eingeengt und destilliert.
 Ausbeute: 1,7 g
 30 Siedepunkt 87-92 °C/10 mbar
 Es handelt sich um ein Gemisch der möglichen Stereoisomeren im Verhältnis 3:1 (¹H-NMR).
 Im Nachlauf konnten 4 g Ausgangsmaterial zurückgewonnen werden.

35 Beispiel P2-Methyl-4-oxo-2,8-diazabicyclo[4.3.0]nonan

40

a) 4-Hydroxymethyl-3-methylaminopyrrolidin-1-carbonsäureethylester

- Man hydriert 10 g (50 mmol) 2-Methyl-3-oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester (Beispiel H d)) in 200 ml Ethanol an 3 g Pd-Aktivkohle (10 % Pd) bei 50 °C und 50 bar. Der Katalysator wird abfiltriert, das Filtrat eingeengt und der Rückstand destilliert.
 45 Ausbeute: 8,1 g (80 % der Theorie)
 Siedepunkt: 135-140 °C/0,1 mbar

50

b) 2-Methyl-4-oxa-2,8-diazabicyclo[4.3.0]nonan-8-carbonsäureethylester

- Man löst 10,1 g (50 mmol) 4-Hydroxymethyl-3-methylamino-pyrrolidin-1-carbonsäureethylester und 8 g (0,1 mol) 37 %ige Formaldehydlösung in 100 ml Butanol und röhrt über Nacht bei Raumtemperatur. Anschließend engt man ein und destilliert den Rückstand.
 55 Ausbeute: 9,5 g (88,7 % der Theorie)
 Siedepunkt: 110 °C/0,1 mbar

c) 2-Methyl-4-oxa-2,8-diazabicyclo[4.3.0]nonan

Man erhitzt 9 g (42 mmol) 2-Methyl-4-oxa-2,8-diazabicyclo[4.3.0]nonan-8-carbonsäureethylester mit 28 g Ba(OH)₂ • 8H₂O in 280 ml Wasser über Nacht unter Rückfluß. Man saugt BaCO₃ ab, engt ein und kocht den Rückstand mit Dioxan aus. Die Dioxanlösung wird eingeeengt und der Rückstand destilliert.
 5 Ausbeute: 1,3 g (21,8 % der Theorie)
 Siedepunkt: 115 °C/8 mbar.

10 d) 4-Hydroxymethyl-3-methylaminopyrrolidin

Man erhitzt 34 g (0,168 mol) 4-Hydroxymethyl-3-methylaminopyrrolidin-1-carbonsäureethylester mit 100 g Ba(OH)₂ • 8H₂O in 400 ml Wasser über Nacht unter Rückfluß. Man saugt BaCO₃ ab, engt das Filtrat ein und kocht den Rückstand zehnmal mit je 100 ml Dioxan aus. Man filtriert die Dioxanlösungen, engt ein und destilliert.
 15 Ausbeute: 13 g (60,3 % der Theorie)
 Siedepunkt: 85-88 °C/0,08 mbar

20 e) 2-Methyl-4-oxa-2,8-diazabicyclo[4.3.0]nonan

Zu 13 g (0,101 mol) 4-Hydroxymethyl-3-methylaminopyrrolidin in 100 ml n-Butanol tropft man bei Raumtemperatur 8,1 g (0,1 mol) 37 %ige Formaldehydlösung in 20 ml n-Butanol hinzu. Man röhrt über Nacht bei Raumtemperatur, engt ein und destilliert.
 25 Ausbeute: 8,7 g (61,2 % der Theorie)
 Siedepunkt: 84 °C/6 mbar

Beispiel Q

30

3-Oxa-2,7-diazabicyclo[3.3.0]octan35 a) 2-(Tetrahydropyran-2-yl)-3-oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester

Man erhitzt 18,1 g (0,106 mol) N-Allyl-N-(2-oxoethyl)-carbamidsäureethylester (Beispiel M c)) in 220 ml Toluol unter Rückfluß und tropft 14,2 g (0,12 mol) 5-Hydroxypentanaloxim (Acta Chim. Acad. Sci. Hung., 14, 333 (1958)) in 55 ml heißem Toluol gelöst hinzu. Man erhitzt über Nacht unter Rückfluß, engt ein und destilliert.
 40 Ausbeute: 15,5 g (54 % der Theorie)
 Siedepunkt: 160 °C/0,01 mbar

45 b) 3-Oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester

Man erhitzt 15 g (55,5 mmol) 2-(Tetrahydropyran-2-yl)-3-oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester mit 8,25 g (56 mmol) 70 %iger Perchlorsäure in 100 ml Ethanol 30 Minuten unter Rückfluß. Man setzt 10,5 g (58 mmol) 30 %ige Natrium methylatlösung hinzu, engt ein, nimmt in Wasser auf, sättigt mit K₂CO₃ und extrahiert mit CHCl₃. Man trocknet über K₂CO₃, engt ein und destilliert.
 50 Ausbeute: 7,6 g (73,5 % der Theorie)
 Siedepunkt: 125-130 °C/0,1 mbar

55 c) 3-Oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester

Man erhitzt 8,5 g (50 mmol) N-(2-Oxoethyl)-N-allylcarbamidsäureethylester mit 5,5 g (50 mmol) o-Trimethylsilylhydroxylamin in 100 ml Xylool über Nacht unter Rückfluß. Man engt ein und destilliert.

Ausbeute: 6,8 g (73 % der Theorie)
 Siedepunkt: 120-122 °C/0,05 mbar

5 d) 3-Oxa-2,7-diazabicyclo[3.3.0]octan

Man erhält diese Substanz analog Beispiel N d) durch Verseifen von 3-Oxa-2,7-diazabicyclo[3.3.0]-octan-7-carbonsäureethylester mit Ba(OH)₂ • 8H₂O.
 Siedepunkt: 75 °C/10 mbar.

10

Beispiel R

15 3-Methyl-2,7-diazabicyclo[3.3.0]octan

Analog Beispiel I erhält man 3-Methyl-2,7-diazabicyclo[3.3.0]octan.
 Siedepunkt: 68-70 °C/6 mbar.

20

Beispiel S

25 2,3-Dimethyl-2,7-diazabicyclo[3.3.0]octan

Analog Beispiel I erhält man 2,3-Dimethyl-2,7-diazabicyclo[3.3.0]octan.
 Siedepunkt: 72-74 °C/10 mbar.

30 Beispiel T

1,2-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan

35

a) N-Allyl-N-(2,2-dimethoxypropyl)-acetamid

Zu 29,6 g (0,987 mol) Natriumhydrid (80 %ig in Paraffinöl) in 750 ml absoluten Toluol tropft man bei 40 80 °C 119 g (74 mol) 2,2-Dimethoxypropylacetamid. Anschließend röhrt man eine Stunde und tropft dann 100 g (0,83 mol) Allylbromid bei 80 °C hinzu. Man röhrt über Nacht bei 80 °C, kühlt ab und löst die Salze mit Wasser. Man trennt die wäßrige Phase ab und extrahiert sie zweimal mit je 100 ml Toluol. Man trocknet die Toluollösungen über K₂CO₃, engt ein und destilliert.

Ausbeute: 112 g (75,6 % der Theorie)

Siedepunkt: 70 °C/0,08 mbar.

45

b) N-Allyl-N-(2-oxopropyl)-acetamid

Man erhitzt 85,5 g (0,425 mol) N-Allyl-N-(2,2-dimethoxypropyl)-acetamid mit 212 ml Ameisensäure eine 50 Stunde unter Rückfluß. Man gießt auf 500 g Eis, extrahiert mehrfach mit Methylenchlorid, wäscht die organischen Phasen mit Natriumhydrogencarbonatlösung, trocknet über Magnesiumsulfat, engt ein und destilliert.

Ausbeute: 50 g (75,8 % der Theorie)

Siedepunkt: 79 °C/0,25 mbar.

55

c) 7-Acetyl-1,2-dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan

Man löst 15,5 g (0,1 mol) N-Allyl-N-(2-oxopropyl)acetamid in 100 ml Dioxan und setzt 9 g wasserfreies Natriumacetat sowie 9 g (0,108 mol) N-Methylhydroxylaminhydrochlorid in 10 ml Wasser hinzu. Man erhitzt über Nacht unter Rückfluß, kühlt ab, saugt Salze ab und wäscht sie mit Dioxan. Das Filtrat wird eingeengt, der Rückstand in 100 ml Wasser aufgenommen und mit K_2CO_3 versetzt. Man extrahiert mit $CHCl_3$, trocknet

- 5 Über K_2CO_3 , engt ein und destilliert.
Ausbeute: 15,9 g (86,3 % der Theorie)
Siedepunkt: 75 °C/0,1 mbar.

10 d) 1,2-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan

Man erhitzt 11,8 g (64 mmol) 7-Acetyl-1,2-dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan mit 12 g NaOH in 36 ml Wasser über Nacht unter Rückfluß. Man sättigt mit K_2CO_3 , extrahiert mehrfach mit $CHCl_3$, trocknet

- Über K_2CO_3 , engt ein und destilliert.
Ausbeute: 4,7 g (51,6 % der Theorie)
Siedepunkt: 40 °C/0,2 mbar.

Beispiel U

20

2,4-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan

25 a) N-(But-2-enyl)-N-(2,2-dimethoxyethyl)-carbamidsäureethylester

Zu 17,5 g (0,58 mol) NaH (80 %ig in Paraffinöl) in 500 ml absolutem Toluol tropft man bei 80 °C 89 g (0,5 mol) N-(2,2-Dimethoxyethyl)-carbamidsäureethylester. Anschließend röhrt man eine Stunde und tropft dann bei 80 °C 80 g (0,59 mol) 1-Brom-2-butene hinzu. Man röhrt über Nacht bei 80 °C, kühlt ab, bringt die

- 30 Salze mit Wasser in Lösung, trennt die wäßrige Phase ab und extrahiert sie mit Toluol. Die Toluolösungen werden über K_2CO_3 getrocknet, eingeengt und destilliert.
Ausbeute: 90 g (77,8 % der Theorie)
Siedepunkt: 65 °C/0,1 mbar.

35

b) N-(But-2-enyl)-N-(2-oxoethyl)-carbamidsäureethylester

Man erhitzt 90 g (0,39 mol) N-(But-2-enyl)-N-(2,2-dimethoxyethyl)-carbamidsäureethylester mit 200 ml Ameisensäure eine Stunde unter Rückfluß. Man gießt auf 500 g Eis, extrahiert mit Methylenchlorid, wäscht

- 40 die organischen Phasen mit Natriumhydrogencarbonatlösung, trocknet über Magnesiumsulfat, engt ein und destilliert.
Ausbeute: 33,6 g (46,5 % der Theorie)
Siedepunkt: 65 °C/0,1 mbar.

45

c) 2,4-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester

Man löst 18,4 g (0,1 mol) N-(But-2-enyl)-N-(2-oxoethyl)-carbamidsäureethylester in 100 ml Dioxan und setzt 9 g wasserfreies Natriumacetat sowie 9 g (0,108 mol) N-Methylhydroxylaminhydrochlorid in 10 ml

- 50 Wasser hinzu. Man erhitzt über Nacht unter Rückfluß, kühlt ab, saugt Salze ab und wäscht sie mit Dioxan. Das Filtrat wird eingeengt, der Rückstand in 100 ml Wasser aufgenommen und mit K_2CO_3 versetzt. Man extrahiert mit $CHCl_3$, trocknet über K_2CO_3 , engt ein und destilliert.
Ausbeute: 15,0 g (70 % der Theorie)
Siedepunkt: 74-87 °C/0,1 mbar.

55

d) 2,4-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan

Man erhitzt 13,2 g (61,6 mmol) 2,4-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester mit 39 g Ba(OH)₂ · 8H₂O in 200 ml Wasser über Nacht unter Rückfluß. Man versetzt mit K₂CO₃, saugt BaCO₃ ab und extrahiert das Filtrat mehrfach mit CHCl₃. Man trocknet über K₂CO₃, engt ein und destilliert. Ausbeute: 4,8 g (54,8 % der Theorie)

5 Siedepunkt: 74 °C/8 mbar.

Beispiel V

10

2,7-Diazabicyclo[3.3.0]octan-2-carbonsäureethylester

Analog Beispiel Oa) wird 7-Benzyl-2,7-diazabicyclo[3.3.0]octan (Beispiel Jc) mit Chlorameisensäureethylester zu 7-Benzyl-2,7-diazabicyclo[3.3.0]octan-2-carbonsäureethylester umgesetzt und dieser anschließend analog Beispiel Jd) hydrogenolytisch debenzyliert. Es wird in farbloses Öl vom Siedepunkt 90 °C/0,1 mbar erhalten.

Beispiel W

20

2-Phenyl-2,7-diazabicyclo[3.3.0]octan

Die Herstellung erfolgt analog Beispiel I);
25 Siedepunkt: 103 °C/0,08 mbar.

Beispiel X

30

4-Oxa-2,8-diazabicyclo[4.3.0]nonan

a) 3-Amino-4-hydroxymethyl-pyrrolidin-1-carbonsäureethylester
35 Analog Beispiel Pa) wird 3-Oxa-2,7-diazabicyclo[3.3.0]octan-7-carbonsäureethylester (Beispiel Qc) hydriert.
Siedepunkt: 163-168 °C/0,8 mbar

40

b) 3-Amino-4-hydroxymethyl-pyrrolidin

Analog Beispiel Pd) wird 3-Amino-4-hydroxymethylpyrrolidin-1-carbonsäureethylester verseift.
Siedepunkt: 78 °C/0,06 mbar

45

c) 4-Oxa-2,8-diazabicyclo[4.3.0]nonan

Analog Beispiel Pe) wird 3-Amino-4-hydroxymethylpyrrolidin mit Formaldehydlösung umgesetzt.
50 Siedepunkt: 50-60 °C/0,07 mbar

Beispiel Y

55

trans-3-Ethylamino-4-methylthio-pyrrolidin

a) 1-Benzoyl-trans-3-ethylamino-4-methylthio-pyrrolidin

- 8,65 g (50 mmol) 1-Benzoyl-2,5-dihydropyrrol [Chem. Ber. 22, 2521 (1889)] werden in 30 ml Dichlormethan vorgelegt und bei 0 °C 4,94 g (60 mmol) Methansulfonsäurechlorid in 20 ml Dichlormethan zugetropft.
- 5 Es wird 16 Stunden bei 20-25 °C nachgerührt, bei 8 mbar eingeengt und der Rückstand in 50 ml Tetrahydrofuran gelöst. Dann werden 18 g (0,2 mol) 50 %ige wäßrige Ethylamin-Lösung zugesetzt. Der Ansatz wird 18 Stunden unter Rückflußkühlung gekocht, auf Wasser gegossen und mit Dichlormethan extrahiert. Beim Einengen werden 11,1 g Rohprodukt erhalten, das mit Essigsäureethylester/Ethanol 5:1 auf Kieselgel (RF-Wert 0,34) chromatographiert wird.
- 10 Ausbeute: 7,4 g (56 % der Theorie).

b) trans-3-Ethylamino-4-methylthio-pyrrolidin

- 15 6,0 g (22 mmol) 1-Benzoyl-trans-3-ethylamino-4-methylthio-pyrrolidin werden mit 22 ml 5 n NaOH 24 h bei 100 °C kräftig gerührt, bis der Ansatz homogen ist. Dann wird mit 3 x 80 ml Ether extrahiert, der Extrakt über Natriumsulfat getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt wird über eine Mikro-Einstichkolonne destilliert.
- Ausbeute: 1,56 g (44 % der Theorie) farblose Flüssigkeit,
- 20 Siedepunkt: 52 °C/0,1 mbar

Beispiel Z

- 25 trans-3-Amino-4-methylthio-pyrrolidin

In Analogie zu Beispiel Y läßt man 1-Benzoyl-2,5-dihydropyrrol mit Methylsulfonylchlorid zu 1-Benzoyl-3-chlor-4-methylthio-pyrrolidin reagieren, setzt dieses als Rohprodukt mit Ammoniak zu 3-Amino-1-benzoyl-4-methylthio-pyrrolidin um und entfernt den Benzoylrest mit Natronlauge.

30 Ausbeute Über 3 Stufen: 47 % der Theorie,
Siedepunkt: 108-110 °C/11 mbar.

Beispiel ZA4-Methyl-2,8-diazabicyclo[4.3.0]nonan

- 40 a) 5-Methyl-1,4-dihydropyridin-2,3-dicarbonsäure-N-benzylimid

33 g (0,29 mol) 2-Methyl-2-propenal-dimethylhydrazone und 55 g (0,29 mol) N-Benzylmaleimid werden in 225 ml Acetonitril 3 Stunden bei 60 °C gerührt. Dann wird das Lösungsmittel am Rotationsverdampfer entfernt, der Rückstand in 600 ml Toluol aufgenommen und unter Zusatz von 150 g Kieselgel 1 Stunde unter Rückflußkühlung gekocht. Dann wird heiß filtriert und das Kieselgel mehrmals mit Ethanol ausgekocht. Die vereinigten organischen Phasen werden am Rotationsverdampfer eingeengt. Es werden 17,5 g (24 % der Theorie) rote Kristalle vom Schmelzpunkt 184-186 °C erhalten.

- 50 b) 5-Methyl-hexahydropyridin-2,3-dicarbonsäure-N-benzylimid

17,5 g (70 mmol) 5-Methyl-1,4-dihydropyridin-2,3-dicarbonsäure-N-benzylimid werden in 150 ml Tetrahydrofuran bei 70 °C und 100 bar über Palladium auf Aktivkohle hydriert. Dann wird der Katalysator abfiltriert und das Filtrat eingeengt. Der ölig-feste Rückstand (13,0 g) wird als Rohprodukt in die nächste Stufe eingesetzt.

c) 8-Benzyl-4-methyl-2,8-diazabicyclo[4.3.0]nonan

- 13,0 g rohes 5-Methyl-hexahydropyridin-2,3-dicarbonsäure-N-benzylimid werden als Lösung in 50 ml absolutem Tetrahydrofuran zu vorgelegt n 4,6 g (0,12 mol) Lithiumaluminiumhydrid in 100 ml absolutem Tetrahydrofuran getropft. Dann wird 17 Stunden unter Rückflußkühlung gekocht. Nacheinander werden 4,6 g Wasser in 14 ml Tetrahydrofuran, 4,6 g 10%ige Natronlauge sowie 13,8 g Wasser zugetropft. Die Salze werden abgesaugt, das Filtrat eingeengt und der Rückstand destilliert.
Ausbeute: 8,7 g (54 % bezogen auf 5-Methyl-1,4-dihydropyridin-2,3-dicarbonsäure-N-benzylimid)
Siedepunkt: 95-98 °C/0,1 mbar.

10

d) 4-Methyl-2,8-diazabicyclo[4.3.0]nonan

- 18,0 g (35 mmol) 8-Benzyl-4-methyl-2,8-diazabicyclo[4.3.0]nonan werden in 60 ml Methanol gelöst und bei 100 °C und 100 bar über Palladium auf Aktivkohle hydriert. Dann wird der Katalysator abfiltriert, das Filtrat eingeengt und der Rückstand destilliert.
Ausbeute: 3,3 g (67 % der Theorie),
Siedepunkt: 88-89 °C/11 mbar.

Das ¹H-NMR-Spektrum weist die Verbindung als Gemisch zweier Stereoisomere im Verhältnis 7:2 aus.

20

Beispiel AA25 5,6,7,8-Tetrafluor-1-(2,4-difluorphenyl)-1,4-dihydro-4-oxo-3-cholinolcarbonsäurea) 2-(2,3,4,5,6-Pentafluorbenzoyl)-3-(2,4-difluorphenylamino)-acrylsäureethylester

- 30 Zu einer Lösung von 115 g 3-Ethoxy-2-(2,3,4,5,6-pentafluorbenzoyl)-acrylsäureethylester in 380 ml Ethanol gibt man unter Eiskühlung und Rühren tropfenweise 44,3 g 2,4-Difluoranilin. Man röhrt 1 Stunde bei Raumtemperatur, versetzt unter Eiskühlung mit 380 ml Wasser, saugt den Niederschlag ab, wäscht mit Ethanol/H₂O (1:1) und trocknet. Man erhält 135,4 g der Titelverbindung vom Schmelzpunkt 97-99 °C.

35

b) 5,6,7,8-Tetrafluor-1-(2,4-difluorphenyl)-1,4-dihydro-4-oxo-3-cholinolcarbonsäureethylester

- Ein Gemisch von 135,4 g 2-(2,3,4,5,6-Pentafluorbenzoyl)-3-(2,4-difluorphenylamino)-acrylsäureethylester, 20,6 g Natriumfluorid und 300 ml wasserfreiem Dimethylformamid wird 3 Stunden auf 140-150 °C erhitzt. Die Suspension wird heiß auf 2 kg Eis gegossen, der Niederschlag abgesaugt, mit Wasser gewaschen und getrocknet. Man erhält 122 g der Titelverbindung vom Schmelzpunkt 160-162 °C.

45

c) 5,6,7,8-Tetrafluor-1-(2,4-difluorphenyl)-1,4-dihydro-4-oxo-3-cholinolcarbonsäure

- Zu einem Gemisch von 28,5 ml konz. Schwefelsäure, 250 ml Eisessig und 200 ml Wasser gibt man 40,1 g 5,6,7,8-Tetrafluor-1-(2,4-difluorphenyl)-1,4-dihydro-4-oxo-3-cholinolcarbonsäureethylester und erhitzt 2 Stunden unter Rückfluß. Man gießt die heiße Lösung auf 2 kg Eis, saugt den Niederschlag ab, wäscht mit Wasser und trocknet. Es werden 34,5 g der Titelverbindung vom Schmelzpunkt 250-252 °C erhalten.

50

Beispiel AB55 5,7-Dichlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-cholinolcarbonsäurea) (2,4-Dichlor-3,6-difluorbenzoyl)-essigsäureethylester

- 2,1 g Magnesiumspäne werden in 5 ml wasserfreiem Ethanol suspendiert. Man versetzt mit 0,5 ml Tetrachlorkohlenstoff und tropft, wenn die Reaktion in Gang gekommen ist, ein Gemisch von 14 g Malonsäureethylester, 10 ml abs. Ethanol und 41 ml Toluol zu. Dann wird noch 1,5 Stunden auf 70 °C erhitzt, mit Aceton/Trockeneis auf -5 °C bis -10 °C gekühlt und bei der Temperatur eine Lösung von 21,5 g 2,4-Dichlor-3,6-difluorbenzoylchlorid in 30 ml Toluol langsam zugetropft. Man röhrt 1 Stunde bei 0 °C, lässt über Nacht auf Raumtemperatur kommen und lässt unter Eiskühlung ein Gemisch von 35 ml Eiswasser und 5 ml konzentrierter Schwefelsäure zulaufen. Die Phasen werden getrennt und zweimal mit Toluol nachextrahiert. Die vereinigten Toluollösungen werden einmal mit gesättigter Kochsalzlösung gewaschen, mit Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum abgezogen. Man erhält 34,7 g (2,4-Dichlor-3,6-difluorbenzoyl)-malonsäurediethylester als Rohprodukt.
- Eine Emulsion von 34,7 g rohem (2,4-Dichlor-3,6-difluorbenzoyl)-malonsäurediethylester in 40 ml Wasser wird mit 0,04 g p-Toluolsulfonsäure versetzt. Man erhitzt unter gutem Rühren 3 Stunden zum Sieden, extrahiert die erkalte Emulsion mehrmals mit Methylchlorid, wäscht die vereinigten CH₂Cl₂-Lösungen einmal mit gesättigter Kochsalzlösung, trocknet mit Na₂SO₄ und destilliert das Lösungsmittel im Vakuum ab. Die Fraktionierung des Rückstandes (33,9 g) im Vakuum liefert 13,9 g (2,4-Dichlor-3,6-difluorbenzoyl)-essigsäureethylester vom Siedepunkt 110-115 °C/0,05 mbar; n_D²⁵ : 1,5241.

b) 2-(2,4-Dichlor-3,6-difluorbenzoyl)-3-ethoxy-acrylsäureethylester

- 13,7 g (2,4-Dichlor-3,6-difluorbenzoyl)-essigsäureethylester werden mit 10,25 g Orthoameisensäuretriethylester und 11,8 g Essigsäureanhydrid 2 Stunden unter Rückfluß erhitzt. Anschließend wird bis 140 °C Badtemperatur im Vakuum eingeeignet und 15,7 g 2-(2,4-Dichlor-3,6-difluorbenzoyl)-3-ethoxy-acrylsäureethylester als Öl erhalten; n_D²⁵ : 1,5302.

c) 2-(2,4-Dichlor-3,6-difluorbenzoyl)-3-cyclopropylamino-acrylsäureethylester

- 15,6 g (2,4-Dichlor-3,6-difluorbenzoyl)-3-ethoxyacrylsäureethylester werden in 50 ml Ethanol gelöst und unter Kühlung 2,75 g Cyclopropylamin zugetropft. Man röhrt 1 Stunde bei Raumtemperatur, versetzt unter Eiskühlung mit 50 ml Wasser, saugt ab, wäscht mit Ethanol/H₂O (1:1) nach und trocknet. Es werden 14,1 g 2-(2,4-Dichlor-3,6-difluorbenzoyl)-3-cyclopropylamino-acrylsäureethylester vom Schmelzpunkt 106-107 °C erhalten.

- d) 5,7-Dichlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäureethylester

- 6 g 2-(2,4-Dichlor-3,6-difluorbenzoyl)-3-cyclopropylamino-acrylsäureethylester werden in 100 ml Dimethylformamid mit 2,75 g Kaliumcarbonat 2,5 Stunden auf 150 °C erhitzt. Die Mischung wird auf 600 ml Eiswasser gegossen, der Niederschlag abgesaugt, mit Wasser gewaschen und getrocknet. Es werden 5,2 g 5,7-Dichlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäureethylester vom Schmelzpunkt 227-229 °C erhalten.

- e) 5,7-Dichlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure

- 5,2 g 5,7-Dichlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäureethylester werden in einer Mischung aus 38 ml Essigsäure, 30 ml Wasser und 4,3 ml konzentrierter Schwefelsäure 2,5 Stunden unter Rückfluß erhitzt. Nach dem Abkühlen wird auf 250 ml Eiswasser gegossen, der Niederschlag abgesaugt, mit Wasser gewaschen und getrocknet. Es werden 4,8 g 5,7-Dichlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure vom Schmelzpunkt 277-278 °C erhalten.

Beispiel AC

- 5,7-Dichlor-6-fluor-1-(2,4-difluorphenyl)-1,4-dihydro-4-oxo-3-chinolincarbonsäure

a) 2-(2,4-Dichlor-3,6-difluorbenzoyl)-3-(2,4-difluorphenylamino)-acrylsäureethylester

35,3 g 2-(2,4-Dichlor-3,6-difluorbenzoyl)-3-ethoxyacrylsäureethylester werden in 120 ml Ethanol gelöst und unter Eiskühlung 12,9 g 2,4-Difluoranilin zugetropft. Man röhrt 1,5 Stunden bei Raumtemperatur, 5 versetzt unter Kühlung mit 120 ml Wasser, saugt ab, wäscht mit Ethanol/H₂O (1:1) nach und trocknet. Es werden 40,5 g 2-(2,4-Dichlor-3,6-difluorbenzoyl)-3-(2,4-difluorphenylamino)-acrylsäureethylester erhalten. Schmelzpunkt: 84-86 °C.

10 5,7-Dichlor-6-fluor-1-(2,4-difluorphenyl)-1,4-dihydro-4-oxo-3-cholinolcarbonsäureethylester

43,6 g 2-(2,4-Dichlor-3,6-difluorbenzoyl)-3-(2,4-difluorphenylamino)-acrylsäureethylester werden in 260 ml Dimethylformamid mit 15,2 g Kaliumcarbonat 2,5 Stunden auf 150 °C erhitzt. Die Mischung wird auf 1 Liter Eiswasser gegossen, der Niederschlag abgesaugt, mit Wasser gewaschen und getrocknet. Es werden 15 38,6 g 5,7-Dichlor-6-fluor-1-(2,4-difluorphenyl)-1,4-dihydro-4-oxo-3-cholinolcarbonsäureethylester erhalten.

c) 5,7-Dichlor-6-fluor-1-(2,4-difluorphenyl)-1,4-dihydro-4-oxo-3-cholinolcarbonsäure

20 41,6 g 5,7-Dichlor-6-fluor-1-(2,4-difluorphenyl)-1,4-dihydro-4-oxo-3-cholinolcarbonsäureethylester werden mit 250 ml Essigsäure, 200 ml Wasser und 28,5 ml konzentrierter Schwefelsäure 3 Stunden unter Rückfluß erhitzt. Nach dem Abkühlen wird auf 2 Liter Eiswasser gegossen, der Niederschlag abgesaugt, mit Wasser gewaschen und getrocknet. Es werden 35,5 g 5,7-Dichlor-6-fluor-1-(2,4-difluorphenyl)-1,4-dihydro-4-oxo-3-cholinolcarbonsäure erhalten. Schmelzpunkt: 244-246 °C.

25

Beispiel 1

30

35

40

A. 855 mg (3 mmol) 1-Cyclopropyl-6,7,8-trifluor-1,4-dihydro-4-oxo-3-cholinolcarbonsäure werden in einer Mischung aus 9 ml Acetonitril und 4,5 ml Dimethylformamid in Gegenwart von 330 mg (3,3 mmol) 1,4-Diazabicyclo[2.2.2]octan und 750 mg trans-3-tert.-Butoxycarbonyl-amino-4-methoxy-pyrrolidin 1 Stunde unter Rückfluß erhitzt. Die Mischung wird eingedampft, mit Wasser verrührt und getrocknet.

45

Ausbeute: 1,3 g (90,5% der Theorie) 7-(trans-3-tert.-Butoxycarbonylamino-4-methoxy-1-pyrrolidinyl)-1-cyclopropyl-6,8-difluor-1,4-dihydro-4-oxo-3-cholinolcarbonsäure.

Schmelzpunkt: 222-224 °C (unter Zersetzung) (aus Glykolmonomethyläther).

B. 1,2 g (3,5 mmol) des Produktes aus Stufe A werden in 10 ml 3n-Salzsäure eingetragen, bis zur Lösung gerührt und eingeeengt. Der Rückstand wird mit Ethanol verrieben, abgesaugt und bei 60 °C im Hochvakuum getrocknet.

50

Ausbeute: 0,73 g (70% der Theorie) 7-(trans-3-Amino-4-methoxy-1-pyrrolidinyl)-1-cyclopropyl-6,8-difluor-4-oxo-3-cholinolcarbonsäure-Hydrochlorid.

Schmelzpunkt: 279 °C (unter Zersetzung).

55

Beispiel 2

5

10

Analog Beispiel 1 setzt man 1-Cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-cholinolincarbonsäure um und erhält:

15

- A. 7-(trans-3-tert.-Butoxycarbonylamino-4-methoxy-1-pyrrolidinyl)-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-cholinolincarbonsäure, Schmelzpunkt: 247-249 °C (unter Zersetzung).
- B. 7-(trans-3-Amino-4-methoxy-1-pyrrolidinyl)-1-cyclopropyl-6-fluor-4-oxo-3-cholinolincarbonsäure-Hydrochlorid, Schmelzpunkt: ab 293 °C (unter Zersetzung).

20

Beispiel 3

25

30

35

30

- Analog Beispiel 1 wird mit cis-3-tert.-Butoxycarbonylamino-4-methoxy-pyrrolidin umgesetzt zu:
- A. 7-(cis-3-tert.-Butoxycarbonylamino-4-methoxy-1-pyrrolidinyl)-1-cyclopropyl-6,8-difluor-1,4-dihydro-4-oxo-3-cholinolincarbonsäure, Schmelzpunkt: 230-231 °C (unter Zersetzung).
 - B. 7-(cis-3-Amino-4-methoxy-1-pyrrolidinyl)-1-cyclopropyl-6,8-difluor-4-oxo-3-cholinolincarbonsäure-Hydrochlorid, Schmelzpunkt 201-203 °C (unter Zersetzung).

40

Beispiel 4

45

50

- A. 1,5 g (5 mmol) 8-Chlor-1-cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-cholinolincarbonsäure werden in einer Mischung aus 10 ml Acetonitril und 5 ml Dimethylformamid mit 550 mg (5 mmol) 1,4-Diazabicyclo-[2.2.2]octan und 1,2 g (5,6 mmol) cis-3-tert.-Butoxycarbonylamino-4-methoxy-pyrrolidin 2 Stunden unter Rückfluß erhitzt. Man läßt abkühlen, saugt den ausgefallenen Niederschlag ab, wäscht gut mit Wasser nach und trocknet bei 100 °C im Vakuum.
- Ausbeute: 2,0 g (80,7%) 7-(cis-3-tert.-Butoxycarbonylamino-4-methoxy-1-pyrrolidinyl)-8-chlor-1-cyclopropyl-

6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: 222-225 °C (unter Zersetzung).

B. 1,9 g (3,8 mmol) des Produktes aus Stufe A werden in 10 ml Trifluoressigsäure 20 Minuten bei Raumtemperatur gerührt, die Lösung eingeeengt, das zurückbleibende Öl zweimal mit Dichlormethan abgedampft und der Rückstand mit Ether verröhrt. Der ausgefallene Niederschlag wird abgesaugt, mit Ether gewaschen und bei 60 °C im Vakuum getrocknet.

Ausbeute: 1,9 g (97% der Theorie) 7-(cis-3-Amino-4-methoxy-1-pyrrolidinyl)-8-chlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure-Trifluoracetat, Schmelzpunkt 235-239 °C (unter Zersetzung).

Beispiel 5

10

15

20

Analog Beispiel 1 wird cis-3-tert.-Butoxycarbonylamino-4-methoxy-pyrrolidin mit 1-Cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure umgesetzt zu:

A. 7-(cis-3-tert.-Butoxycarbonylamino-4-methoxy-1-pyrrolidinyl)-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure, Schmelzpunkt 232-233 °C (unter Zersetzung).

B. 7-(cis-3-Amino-4-methoxy-1-pyrrolidinyl)-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure-Hydrochlorid, Schmelzpunkt 252-256 °C (vorher Sintern).

30

Beispiel 6

35

40

Analog Beispiel 1 wird cis-3-tert.-Butoxycarbonylamino-4-methoxypyrrolidin mit 7-Chlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-1,8-naphthyridin-3-carbonsäure umgesetzt zu:

A. 7-(cis-tert.-Butoxycarbonylamino-4-methoxy-1-pyrrolidinyl)-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-1,8-naphthyridin-3-carbonsäure, Schmelzpunkt 214-216 °C (unter Zersetzung).

B. 7-(cis-3-Amino-4-methoxy-1-pyrrolidinyl)-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-1,8-naphthyridin-3-carbonsäure-Hydrochlorid, Schmelzpunkt 205-210 °C (unter Zersetzung).

50 Massenspektrum: m/e 362 (M^+), 330 ($M^+ - 32$), 318 ($M^+ - CO_2$), 286, 260, 41 (C_3H_5), 36 (HCl).

Beispiel 7

55

5

10

1,33 g (5 mmol) 1-Cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure werden in einer Mischung aus 30 ml Acetonitril und 5 ml Dimethylformamid mit 1,1 g (10 mmol) 1,4-Diazabicyclo[2.2.2]-octan und 0,55 g (5,4 mmol) trans-3-Amino-4-hydroxy-pyrrolidin versetzt und 1 Stunde unter Rückfluß erhitzt. Die Suspension wird eingeeengt, der Rückstand mit Wasser versetzt, das ungelöste Produkt abgesaugt und aus Dimethylformamid umkristallisiert.

15 Ausbeute: 1,2 g (73% der Theorie) 7-(trans-3-Amino-4-hydroxy-1-pyrrolidinyl)-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure,
Schmelzpunkt: 274-278 °C (unter Zersetzung).

20

Beispiel 8

25

30

35

850 mg (3 mmol) 1-Cyclopropyl-6,7,8-trifluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure werden in 9 ml Pyridin mit 630 mg (3,1 mmol) 2-Oxa-5,8-diazabicyclo[4.3.0]nonan-Dihydrochlorid und 500 mg (4,5 mmol) 1,4-Diazabicyclo[2.2.2]octan 1 Stunde unter Rückfluß erhitzt. Die Mischung wird eingeeengt, der Rückstand mit Wasser verrührt, der Niederschlag abgesaugt, mit Wasser gewaschen, getrocknet und aus Glykolmonomethylether umkristallisiert.

40 Ausbeute: 840 mg (72% der Theorie) 1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(2-oxa-5,8-diazabicyclo[4.3.0]-non-8-yl)-4-oxo-3-chinolincarbonsäure,

Schmelzpunkt: 289-291 °C (unter Zersetzung);

Massenspektrum: m/e 391 (M^+), 347 ($M^+ - CO_2$), 331, 306, 294, 262, 234, 98, 41 (C_3H_5).

45

Beispiel 9

50

55

5

10

15

Analog Beispiel 8 setzt man mit 5-Methyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan-Dihydrochlorid um und erhält: 1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(5-methyl-2-oxa-5,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: ab 270 °C (unter Zersetzung);
Massenspektrum: m/e 405 (M^+), 361 ($M^+ - CO_2$), 331, 112, (100%).

20

Beispiel 10

25

30

35

40

795 mg (3 mmol) 1-Cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure werden in einer Mischung aus 9 ml Acetonitril und 4,5 ml Dimethylformamid mit 890 mg (4,1 mmol) 5-Methyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan-Dihydrochlorid und 860 mg (7,8 mmol) 1,4-Diazabicyclo[2.2.2]octan 2 Stunden unter Rückfluß erhitzt. Die Mischung wird eingedampft, mit Wasser verrührt, das ungelöste Produkt wird abgesaugt, mit Wasser gewaschen, getrocknet und aus Dimethylformamid umkristallisiert. Ausbeute: 0,8 g (69% der Theorie) 1-Cyclopropyl-6-fluor-1,4-dihydro-7-(5-methyl-2-oxa-5,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-chinolincarbonsäure, Schmelzpunkt 340 °C (unter Zersetzung) (die Substanz wird bereits beim Aufheizen ab etwa 300° dunkel).
Massenspektrum: m/e (M^+), 343 ($M^+ - CO_2$), 313, 244, 112, (100%).

45

Beispiel 11

50

55

Analog Beispiel 10 setzt man mit 8-Chlor-1-cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbon-säure um und erhält 8-Chlor-1-cyclopropyl-6-fluor-1,4-dihydro-7-(5-methyl-2-oxa-5,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-chinolincarbonsäure, Schmelzpunkt 258-262 °C (unter Zersetzung) (umkristallisiert aus Dimethylformamid).

5

Beispiel 12

10

15

20

Analog Beispiel 10 setzt man mit 1-Ethyl-6,7,8-trifluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure um und erhält 1-Ethyl-6,8-difluor-1,4-dihydro-7-(5-methyl-2-oxa-5,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-chinolincarbonsäure, Schmelzpunkt 279-281 °C (unter Zersetzung).

25

Beispiel 13

30

35

40

0,84 g (3 mmol) 1-Cyclopropyl-6,7,8-trifluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure werden in einer Mischung aus 6 ml Acetonitril und 3 ml Dimethylformamid mit 0,66 g (6 mmol) 1,4-Diazabicyclo[2.2.2]octan und 0,49 g (3,5 mmol) 2-Methyl-2,8-diazabicyclo[4.3.0]nonan 2 Stunden unter Rückfluß erhitzt. Die Suspension wird eingeeengt, mit 20 ml Wasser verrührt, mit 2n-Salzsäure auf pH 7 eingestellt, der Niederschlag wird abgesaugt, mit Wasser gewaschen, getrocknet und aus Glykolmonomethylether umkristallisiert. Ausbeute: 0,7 g (58% der Theorie) 1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(2-methyl-2,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-chinolincarbonsäure, Schmelzpunkt 204-207 °C.

50

Beispiel 14

55

Analog Beispiel 13 erhält man mit 1-Cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure 1-Cyclopropyl-6-fluor-1,4-dihydro-7-(2-methyl-2,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-chinolincarbonsäure, Schmelzpunkt 234-236.

15

Beispiel 15

20

A. Man setzt analog Beispiel 13 1-Cyclopropyl-6,7,8-trifluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure mit 2,8-Diazabicyclo[4.3.0]nonan um und erhält 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure, Schmelzpunkt 265-267 (unter Zersetzung) (umkristallisiert aus Dimethylformamid).

35 B. Führt man die Umsetzung des Beispiels 15 A) in einer Mischung aus Acetonitril/1-Methyl-2-pyrrolidinon durch und kristallisiert das Rohprodukt aus Dimethylformamid um, dann erhält man 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure vom Schmelzpunkt 269-271 °C (unter Zersetzung). Das Produkt ist nach chromatographischem und spektroskopischem Vergleich identisch mit dem nach Verfahren A) hergestelltem Produkt.

40 C. 65 g (167 mmol) des Betains (Stufe A) werden in 330 ml halbkonzentrierter Salzsäure durch Erwärmen gelöst, die Lösung wird eingeeengt und der Rückstand mit 300 ml Ethanol verrührt. Der ungelöste Niederschlag wird abgesaugt, mit Ethanol gewaschen und bei 100 °C in Vakuum getrocknet. Ausbeute: 66,3 g (93 % der Theorie) 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure-hydrochlorid, Schmelzpunkt: 303-305 °C (unter Zersetzung).

45

Beispiel 16

50

Analog Beispiel 13 erhält man mit 1-Cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure

und 2,7-Diazabicyclo[3.3.0]octan 1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-7-yl)-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: 260-282 °C (unter Zersetzung).
 Massenspektrum: m/e 357 (M^+), 313 (100%, $M^+ - CO_2$), 269, 257, 244, 82, 28.

5

Beispiel 17

10

15

Analog Beispiel 13 erhält man mit 1-Cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure und 20 2-Methyl-2,7-diazabicyclo[3.3.0]octan 1-Cyclopropyl-6-fluor-1,4-dihydro-7-(2-methyl-2,7-diazabicyclo[3.3.0]oct-7-yl)-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: 206-208 °C (unter Zersetzung).

25

30

35

40

Beispiel 19

45

50

Eine Mischung aus 2,83 g (10 mmol) 1-Cyclopropyl-6,7,8-trifluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure, 55 1,1 g (10 mmol) 1,4-Diazabicyclo[2.2.2]octan und 1,4 g (11 mmol) 2-Methyl-3-oxa-2,7-diazabicyclo[3.3.0]octan in 20 ml Acetonitril und 10 ml 1-Methyl-2-pyrrolidinon wird 1 Stunde unter Rückfluß erhitzt. Man engt im Vakuum ein, verröhrt den Rückstand mit Wasser (pH 7), saugt den Niederschlag ab, wäscht mit Wasser und trocknet bei 60 °C im Vakuum. Das Rohprodukt (3,7 g) wird aus Dimethylformamid umkristallisiert.

siert.

Ausbeute: 1.9 g (49% der Theorie) 1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(2-methyl-3-oxa-2,7-diazabicyclo[3.3.0]oct-7-yl)-4-oxo-3-chinolincarbonsäure, Schmelzpunkt 221-223 °C (unter Zersetzung).

5

Beispiel 20

10

15

20

Analog Beispiel 19 wird mit 2,5-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan zu 1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(2,5-dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]oct-7-yl)-4-oxo-3-chinolincarbonsäure vom Schmelzpunkt 237-238 °C (unter Zersetzung) umgesetzt.

25

Beispiel 21

30

35

40

Analog Beispiel 19 wird mit 2,8-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan zu 1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(2,8-dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]oct-7-yl)-4-oxo-3-chinolincarbonsäure vom Schmelzpunkt 197-199 °C umgesetzt.

45

Beispiel 22

50

55

A. 3 g (10 mmol) 8-Chlor-1-cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure werden in einer Mischung aus 30 ml Acetonitril und 15 ml 1-Methyl-2-pyrrolidinon mit 1,4 g (11 mmol) 2,8-Diazabicyclo[4.3.0]nonan und 1,65 g (15 mmol) 1,4-Diazabicyclo[2.2.2]octan 1 Stunde unter Rückfluß erhitzt. Die Suspension wird nach dem Abkühlen mit etwa 150 ml Wasser verrührt, der ungelöste Niederschlag

abgesaugt, mit Wasser und Ethanol gewaschen und bei 80 °C/12 mbar getrocknet. Das Rohprodukt wird aus 40 ml Glykolmonomethylether umkristallisiert.

Ausbeute: 2,3 g (57 % der Theorie) 8-Chlor-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: 224-226 °C (unter Zersetzung).

5 B. Man stellt analog Beispiel 22 A. das rohe Betain her, suspendiert dieses in 50 ml Wasser und bringt es durch Zugabe von 17 ml 1n-Salzsäure und Erwärmen in Lösung. Nach dem Abkühlen im Eisbad wird der ausgefallene Niederschlag abgesaugt, mit Ethanol gewaschen und bei 100 °C im Vakuum getrocknet.

10 Ausbeute: 2,7 g (61 % der Theorie) 8-Chlor-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure-hydrochlorid, Schmelzpunkt: ab 225 °C Zersetzung.

Beispiel 23

15

20

25

Analog Beispiel 22 wird die Umsetzung mit 9,10-Difluor-2,3-dihydro-3-methyl-7-oxo-7H-pyrido[1,2,3-de]-[1,4]benzoxacin-6-carbonsäure durchgeführt und das erhaltene Reaktionsprodukt durch Chromatographie an Kieselgel mit Dichlormethan/Methanol/17 %iger wäßriger Ammoniaklösung (30:8:1) als Laufmittel gereinigt. Man erhält 10-(2,8-Diazabicyclo[4.3.0]non-8-yl)-9-fluor-2,3-dihydro-3-methyl-7-oxo-7H-pyrido[1,2,3-de][1,4]-benzoxacin-6-carbonsäure vom Schmelzpunkt 291-292 °C (unter Zersetzung).

30

Beispiel 24

35

40

45

6 g (20 mmol) 1-Cyclopropyl-5,6,7,8-tetrafluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure werden in 30 ml 1-Methyl-2-pyrrolidinon und 60 ml Acetonitril mit 2,2 g (20 mmol) 1,4-Diazabicyclo[2.2.2]octan und 2,7 g (21,4 mmol) 2,8-Diazabicyclo[4.3.0]nonan 1 Stunde unter Rückfluß erhitzt. Die Mischung wird im Vakuum weitgehend eingengeht, der Rückstand mit 200 ml Wasser verrührt, das ungelöste Kristallsat abgesaugt, mit Wasser gewaschen und getrocknet.

50

Ausbeute: 6,3 g (77,4 % der Theorie) 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-5,6,8-trifluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure
Schmelzpunkt: 266-269 °C (unter Zersetzung); nach Umkristallisation aus Dimethylformamid : Schmelzpunkt: 272-273 °C (unter Zersetzung).

55

Beispiel 25

6

- 10 4,1 g (10 mmol) des Produktes aus Beispiel 24 werden in 40 ml Pyridin mit 20 ml gesättigter ethanolischer Ammoniak-Lösung versetzt und die Mischung im Autoklaven 12 Stunden auf 120 °C erhitzt. Die Suspension wird eingedampft, der Rückstand mit Wasser verrührt und mit 2n-Salzsäure auf pH 7 eingestellt. Der ausgefallene Niederschlag wird abgesaugt und aus Glykolomonomethylether umkristallisiert. Ausbeute: 0,7 g (17 % der Theorie) 5-Amino-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: 275-277 °C (unter Zersetzung).
 15 Massenspektrum: m/e 404 (M^+), 384 ($M^+ - HF$), 290, 249, 96 (100 %).

20 Beispiel 26

25

30

A. Analog Beispiel 13 erhält man mit 2,7-Diazabicyclo[3.3.0]octan 1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-7-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: 277-280 °C (unter Zersetzung).

35 B. 370 mg des Betains werden in 13 ml halbkonzentrierter Salzsäure gelöst, die Lösung eingeengt und der Rückstand mit 10 ml Ethanol behandelt. Das ungelöste Produkt wird abgesaugt, mit Ethanol gewaschen und getrocknet. Ausbeute: 290 mg 1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-7-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure-hydrochlorid, Schmelzpunkt: 269-271 °C (unter Zersetzung).

40 Beispiel 27

45

50

Analog Beispiel 8 wird mit trans-4-Methoxy-3-methylamino-pyrrolidin-Dihydrochlorid umgesetzt. Man erhält 1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(trans-4-methoxy-3-methylamino-1-pyrrolidinyl)-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: 268-270 °C (unter Zersetzung).

55

Beispiel 28

10 $\times CF_3COOH$

A. 1,4 g (2,9 mmol) Produkt aus Beispiel 3 A) und 1,98 ml (1,7 g, 12 mmol) Dimethylformamido-diethylacetal werden in 15 ml absolutem Dimethylformamid 2 Stunden auf 120 °C erhitzt. Danach engt man im Vakuum ein. Der verbleibende Rückstand wird mit Acetonitril verrührt. Der Niederschlag wird abgesaugt, mit wenig Acetonitril gewaschen und getrocknet.

15 Ausbeute: 0,8 g (54,4 % der Theorie) 7-(cis-3-tert-Butoxycarbonylamino-4-methoxy-1-pyrrolidinyl)-1-cyclopropyl-6,8-difluor-1,4-dihydro-4-oxo-3-cholinolincarbonsäureethylester,
Schmelzpunkt: 151-152 °C.

B. 0,3 g (0,6 mmol) Produkt aus Beispiel 28 A) werden in 10 ml Trifluoressigsäure 10 Minuten bei 20 °C gerührt. Anschließend wird die Trifluoressigsäure im Vakuum entfernt. Der Rückstand wird bei Zugabe von Diethylether fest. Der Feststoff wird isoliert, mit Diethylether gewaschen und getrocknet.

20 Ausbeute: 0,25 g (80,6 % der Theorie) 7-(cis-3-Amino-4-methoxy-1-pyrrolidinyl)-1-cyclopropyl-6,8-difluor-1,4-dihydro-4-oxo-3-cholinolincarbonsäureethylester-trifluoracetat
Schmelzpunkt: 124-126 °C.

25

Beispiel 29

30

40 Analog Beispiel 13 erhält man mit 2-Methyl-4-oxo-2,8-diazabicyclo[4.3.0]nonan-1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(2-methyl-4-oxa-2,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-cholinolincarbonsäure, Schmelzpunkt 258-260 °C (unter Zersetzung).

45 Beispiel 30

50

Analog Beispiel 19 erhält man mit 3-Oxa-2,7-diazabicyclo[3.3.0]octan-1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(3-oxa-2,7-diazabicyclo[3.3.0]octan-7-yl)-4-oxo-3-cholinolincarbonsäure.

Beispiel 31

6

10

A. 2,53 g (10 mmol) 1-Ethyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolinic acids werden in 30 ml Acetonitril und 15 ml Dimethylformamid mit 1,1 g (10 mmol) 1,4-Diazabicyclo[2.2.2]octan und 1,4 g (11 mmol) 2,8-Diazabicyclo[4.3.0]nonan versetzt und 1 Stunde unter Rückfluß erhitzt. Die Mischung wird eingeeengt, mit Wasser ver röhrt und der Niederschlag abgesaugt, mit Wasser gewaschen und getrocknet. Ausbeute: 3,1 g (86 % der Theorie) 7-(2,8-Diazabicyclo[4.3.0]non-8-yl)-1-ethyl-6-fluor-4-oxo-3-chinolinic acids, Schmelzpunkt: 259-261 °C (unter Zersetzung).

B. 2,9 g (8 mmol) des Betains aus Stufe A werden in 20 ml halbkonzentrierter Salzsäure in der Wärme gelöst, die Lösung heiß filtriert und aus dem Filtrat durch Zusatz von Ethanol das Hydrochlorid ausgefällt. Dieses wird abgesaugt, mit Ethanol gewaschen und bei 120 °C/12 mbar getrocknet. Ausbeute: 1,8 g (57 % der Theorie) 7-(2,8-Diazabicyclo[4.3.0]non-8-yl)-1-ethyl-6-fluor-4-oxo-3-chinolinic acids-Hydrochlorid, Schmelzpunkt unter Zersetzung: 299 °C (bereits ab ca. 215 °C beginnende Dunkelfärbung).

25

Beispiel 32

30

35

Analog Beispiel 31 erhält man mit 1-Cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolinic acids:

A. 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluor-4-oxo-3-chinolinic acids, Schmelzpunkt: 249-257 °C (unter Zersetzung)

B. 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluor-4-oxo-3-chinolinic acids-Hydrochlorid, Schmelzpunkt unter Zersetzung: 320 °C (bereits ab ca. 288 °C beginnende Dunkelfärbung).

45

Beispiel 33

50

55

1,1 g (3 mmol) 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6,8-difluor-4-oxo-3-chinolin-

carbonsäure werden in 10 ml Dimethylformamid und 1 ml Ameisensäure 4 Stunden unter Rückfluß erhitzt. Die Mischung wird eingedampft, der Rückstand mit 4 ml Wasser verrührt, der Niederschlag abgesaugt, getrocknet (Rohausbeute: 1 g, Gehalt: 99,5 %) und aus Dimethylformamid umkristallisiert.
 5 Ausbeute: 0,8 g (64 % der Theorie) 1-Cyclopropyl-6,8-difluor-7-(2-formyl-2,8-diazabicyclo[4.3.0]non-8-yl)-1,4-dihydro-4-oxo-3-chinolin carbonsäure, Schmelzpunkt: 276-278 °C.

Beispiel 34

10

15

20 1,1 g (3 mmol) 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolin carbonsäure werden in einer Mischung aus 8 ml Dioxan und einer Lösung von 120 mg Natriumhydroxid in 1 ml Wasser gelöst und unter Eiskühlung gleichzeitig mit 3 ml 1n-Natronlauge und 260 mg Acetylchlorid versetzt. Man lässt 2 Stunden bei Raumtemperatur nachröhren, verdünnt mit 30 ml Wasser und saugt den ausgefallenen Niederschlag ab. Das Rohprodukt wird aus Glykolmonomethylether umkristallisiert.
 25 Ausbeute: 0,6 g (46 % der Theorie) 7-(2-Acetyl-2,8-diazabicyclo[4.3.0]non-8-yl)-1-cyclopropyl-6,8-difluor-1,4-dihydro-4-oxo-3-chinolin carbonsäure, Schmelzpunkt: 261-263 °C (unter Zersetzung)

30

Beispiel 35

35

40

A. Analog Beispiel 13 erhält man mit 8-Chlor-1-cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolin carbonsäure und 2-Methyl-2,7-diazabicyclo[3.3.0]octan 8-Chlor-1-cyclopropyl-6-fluor-1,4-dihydro-7-(2-methyl-2,7-diazabicyclo[3.3.0]oct-7-yl)-4-oxo-3-chinolin carbonsäure, Schmelzpunkt: 222-227 °C (unter Zersetzung).
 45 B. 2,3 g (5,8 mmol) des Betains aus Stufe A werden in 15 ml 1n-Salzsäure in der Wärme gelöst, die Lösung eingedampft und der Rückstand mit Ethanol behandelt. Der Niederschlag wird abgesaugt, mit Ethanol gewaschen und getrocknet.
 Ausbeute: 2,2 g (87,7 % der Theorie) 8-Chlor-1-cyclopropyl-6-fluor-1,4-dihydro-7-(2-methyl-2,7-diazabicyclo[3.3.0]oct-7-yl)-4-oxo-3-chinolin carbonsäure-hydrochlorid, Schmelzpunkt: 303-305 °C (unter Zersetzung).

55

Beispiel 36

Analog Beispiel 13 wird mit 3-Methyl-2,7-diazabicyclo[3.3.0]octan 1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(3-methyl-2,7-diazabicyclo[3.3.0]oct-7-yl)-4-oxo-3-chinolincarbonsäure erhalten und analog Beispiel 15 C.
15 mit halbkonzentrierter Salzsäure in 1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(3-methyl-2,7-diazabicyclo-[3.3.0]oct-7-yl)-4-oxo-3-chinolincarbonsäure-Hydrochlorid, Schmelzpunkt 216-221 °C (unter Zersetzung) überführt.

20 Beispiel 37

A. Eine Mischung aus 1,45 g (5 mmol) 1-Cyclopropyl-6,7,8-trifluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure, 0,85 g (7,5 mmol) 1,4-Diazabicyclo[2.2.2]octan und 0,77 g (5,5 mmol) 2,3-Dimethyl-2,7-diazabicyclo[3.3.0]octan in 15 ml Acetonitril und 7,5 ml Dimethylformamid wird 1 Stunde unter Rückfluß erhitzt. Nach dem Abkühlen wird der Niederschlag abgesaugt, mit Wasser gewaschen und aus Glykolmonomethylether umkristallisiert.

Ausbeute: 1 g (47 % der Theorie) 1-Cyclopropyl-7-(2,3-dimethyl-2,7-diazabicyclo[2.2.2]oct-7-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: 208-209 °C (unter Zersetzung).

B. 0,7 g (1,7 mmol) des Betains aus Stufe A werden in 6 ml halbkonzentrierter Salzsäure heiß gelöst, die Lösung filtriert und im Vakuum weitgehend konzentriert. Man versetzt mit etwa 15 ml Ethanol, kühlt im Eisbad, saugt das Salz ab, wäscht mit Ethanol und trocknet bei 100 °C/1 mbar.

Ausbeute: 0,64 g (84 % der Theorie) 1-Cyclopropyl-7-(2,3-dimethyl-2,7-diazabicyclo[2.2.2]oct-7-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure-Hydrochlorid, Schmelzpunkt: 233-236 °C (unter Zersetzung).

50 Beispiel 38

Analog Beispiel 37 A. und B. erhält man mit 8-Chlor-1-cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure 8-Chlor-1-cyclopropyl-7-(2,3-dimethyl-2,7-diazabicyclo[2.2.2]oct-7-yl)-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure-Hydrochlorid, Schmelzpunkt: 240-241 °C (unter Zersetzung).

15

Beispiel 38

30

Analog Beispiel 19 wird mit 1,2-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan zu 1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(1,2-dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]oct-7-yl)-4-oxo-3-chinolincarbonsäure vom Schmelzpunkt 269-271 °C (unter Zersetzung) umgesetzt.

35

Beispiel 40

50

2,6 g (8,7 mmol) 8-Chlor-1-cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure werden in einer Mischung aus 25 ml Acetonitril und 12,5 ml Dimethylformamid mit 1,45 g (13 mmol) 1,4-Diazabicyclo[2.2.2]octan und 1,23 g (9,6 mmol) 2-Oxa-5,8-diazabicyclo[4.3.0]nonan versetzt und 1 Stunde unter Rückfluß erhitzt. Die Mischung wird eingengt, der Rückstand mit Wasser verrührt und der ungelöste Niederschlag abgesaugt und mit Wasser gewaschen. Dies rohe 1-Cyclopropyl-8-chlor-6-fluor-1,4-dihydro-7-(2-oxa-5,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-chinolincarbonsäure wird in 85 ml 1n-Salzsäure eingetragen und mit 6 ml konzentrierter Salzsäure versetzt. Das ausgefallene Hydrochlorid wird abgesaugt, mit Ethanol gewaschen und getrocknet.

55

Ausbeute: 3,0 g (77,7 % der Theorie) 8-Chlor-1-cyclopropyl-6-fluor-1,4-dihydro-7-(2-oxa-5,8-diazabicyclo-

[4.3.0]non-8-yl)-4-oxo-3-chinolincarbonsäure-Hydrochlorid, Schmelzpunkt: ab 290 °C Zersetzung.

Beispiel 41

5

Analog Beispiel 13 erhält man mit 8-Chlor-1-cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbon-säure und 2-Methyl-4-oxa-2,8-diazabicyclo[4.3.0]nonan-8-Chlor-1-cyclopropyl-6-fluor-7-(2-methyl-4-oxa-2,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: 202-203 °C (unter Zersetzung)

20 FAB-Massenspektrum: m/e 422 ($[M + H]^+$), 404 (422- H_2O).

Beispiel 42

25

A. Analog Beispiel 13 wird mit 2,7-Diazabicyclo[3.3.0]octan-2-carbonsäureethylester zu 1-Cyclopropyl-7-(2-ethoxycarbonyl-2,7-diazabicyclo[3.3.0]oct-7-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure vom Schmelzpunkt 191-192 °C umgesetzt.

40 B. 1,8 g (4 mmol) des Produktes aus Beispiel 42A werden in 30 ml konzentrierter Salzsäure unter leichtem Rückfluß während 15 Stunden erhitzt. Die Lösung wird eingeeengt, der Rückstand mit Ethanol verrührt, der Niederschlag abgesaugt, mit Ethanol gewaschen und bei 120 °C/12 mbar getrocknet.

45 Ausbeute: 1,1 g (67 % der Theorie) 1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-7-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure-hydrochlorid, Schmelzpunkt: 273-275 °C (unter Zersetzung). Das Produkt ist identisch mit der nach Beispiel 26B erhaltenen Verbindung.

Beispiel 43

50 A. 7,8 g (20 mmol) 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure werden in 175 ml Ethanol eingetragen und bei etwa 70 °C mit 2,4 g (25 mmol) Methansulfonsäure versetzt. Das Betain löst sich auf und beim Abkühlen fällt das Salz aus, das abgesaugt, mit Ethanol gewaschen und bei 120 °C/12 mbar getrocknet wird. Es ist in Wasser leicht löslich.

55 Ausbeute: 8,6 g (88,6 % der Theorie) 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure-Mesylat, Schmelzpunkt: 262-265 °C (unter Zersetzung).

Analog erhält man:

B. 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure-Tosylat, Schmelzpunkt: 248-250 °C (unter Zersetzung).

C. 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure-Lactat, Schmelzpunkt: 205 °C-215 °C nach vorhergehendem Sintern.

5 Beispiel 44

3,9 g (10 mmol) 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure werden in 50 ml Wasser suspendiert und bei Raumtemperatur mit 10 ml 1 n-Natronlauge versetzt, wobei sich das Produkt weitgehend auflöst. Von einer schwachen Trübung wird durch Filtration 10 über ein Membranfilter abgetrennt, das Filtrat im Hochvakuum eingeengt und der Rückstand mit Ethanol verröhrt, abgesaugt und getrocknet.
Ausbeute: 3,4 g (82,7 % der Theorie) 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure-Natriumsalz; das Salz zersetzt sich langsam oberhalb 210 °C ohne zu schmelzen.

15

Beispiel 45

20

25

30 Eine Mischung von 3,9 g (10 mmol) 1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure in 100 ml Dimethylformamid mit 4,2 g Triethylamin und 2,8 g 2-Bromethanol wird 20 Stunden auf 80-100 °C erhitzt. Danach wird die Lösung im Vakuum eingeengt und der erhaltene Rückstand an 200 g Kieselgel chromatographisch gereinigt (Laufmittel: CH₂Cl₂/CH₃OH/17 % -NH₃ = 30:8:1). Das Eluat wird eingeengt, mit Ethanol verröhrt, abgesaugt und getrocknet.
Ausbeute: 1,8 g (41,6 % der Theorie) 1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-[2-(2-hydroxyethyl)-2,8-diazabicyclo[4.3.0]non-8-yl]-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: 200-206 °C (unter Zersetzung).
Massenspektrum: ^{m/e} 433 (M⁺), 402 (M⁺-CH₂OH), 140, 110 (100%), 96

40

Beispiel 46

45

50

Analog Beispiel 13 wird mit trans-3-Ethylamino-4-methylthio-pyrrolidin zu 1-Cyclopropyl-7-(trans-3-ethylamino-4-methylthio)-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure umgesetzt, Schmelzpunkt: 215-216 °C (unter Zersetzung).

55

Beispiel 47

5

10 Analog Beispiel 13 wird mit 2-Phenyl-2,7-diazabicyclo[3.3.0]octan zu 1-Cyclopropyl-6,8-difluor-1,4-dihydro-4-oxo-7-(2-phenyl-2,7-diazabicyclo[3.3.0]oct-7-yl)-3-chinolinic acid umgesetzt. Schmelzpunkt: 259-260 °C (unter Zersetzung).

15 Beispiel 48

20

25

30

Analog Beispiel 13 erhält man mit 5,6,7,8-Tetrafluor-1-(2,4-difluorophenyl)-1,4-dihydro-4-oxo-3-chinolinic acid 5,6,8-Trifluor-1-(2,4-difluorophenyl)-1,4-dihydro-7-(2-methyl-2,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-chinolinic acid.

35

Beispiel 49

40

45

50

Analog Beispiel 24 erhält man mit 5,6,7,8-Tetrafluor-1-(2,4-difluorophenyl)-1,4-dihydro-4-oxo-3-chinolinic acid 7-(2,8-Diazabicyclo[4.3.0]non-8-yl)-5,6,8-trifluor-1-(2,4-difluorophenyl)-1,4-dihydro-4-oxo-3-chinolinic acid.

55

Beispiel 50

5

10

Beispiel 51

20

25

30

Analog Beispiel 15 A erhält man mit 5,7-Dichlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure (5 Stunden Rückfluß) 5-Chlor-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: 270 °C (Zersetzung).

35

Beispiel 52

40

45

50

Analog Beispiel 8 erhält man mit 5,7-Dichlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure (5 Stunden Rückfluß) 5-Chlor-1-cyclopropyl-6-fluor-1,4-dihydro-7-(2-oxa-5,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-chinolincarbonsäure.

55

Beispiel 53

Analog Beispiel 15 A erhält man mit 5,7-Dichlor-6-fluor-1-(2,4-difluorophenyl)-1,4-dihydro-4-oxo-3-chinolincarbonsäure (5 Stunden Rückfluß) 5-Chlor-7-(2,4-diazabicyclo[4.3.0]non-8-yl)-6-fluor-1-(2,4-difluorophenyl)-1,4-dihydro-4-oxo-3-chinolincarbonsäure.

Beispiel 54

20

Analog Beispiel 8 erhält man mit 5,7-Dichlor-6-fluor-1-(2,4-difluorophenyl)-1,4-dihydro-4-oxo-3-chinolin-carbonsäure (5 Stunden Rückfluß) 5-Chlor-6-fluor-1-(2,4-difluorophenyl)-1,4-dihydro-7-(2-oxa-5,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-chinolincarbonsäure.

Beispiel 55

45

50

Analog Beispiel 13 wird mit trans-3-Ethylamino-4-methylthio-pyrrolidin und 8-Chlor-1-cyclopropyl-6,7-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure zu 8-chlor-1-cyclopropyl-7-(trans-3-ethylamino-4-methylthio-1-pyrrolidinyl)-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure umgesetzt, Schmelzpunkt: 217-218 °C (unter Zersetzung).

Beispiel 56

5

10

Analog Beispiel 13 und 15 erhält man mit trans-3-Amino-4-methylthiopyrrolidin 7-(trans-3-Amino-4-methylthio-1-pyrrolidinyl)-1-cyclopropyl-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: 208-211 °C (unter Zersetzung) und 7-(trans-3-Amino-4-methylthio-1-pyrrolidinyl)-1-cyclopropyl-6,8-difluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure-Hydrochlorid, Schmelzpunkt: 255-257 °C (unter Zersetzung).

15

20

Beispiel 57

25

30

35

40

Analog Beispiel 13 und 15 erhält man mit 4-Methyl-2,8-diazabicyclo[4.3.0]nonan 1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(4-methyl-2,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-chinolincarbonsäure, Schmelzpunkt: 213-215 °C (unter Zersetzung) (umkristallisiert aus Glykolmonomethylether) und 1-Cyclopropyl-6,8-difluor-1,4-dihydro-7-(4-methyl-2,8-diazabicyclo[4.3.0]non-8-yl)-4-oxo-3-chinolincarbonsäure-Hydrochlorid, Schmelzpunkt: 204-212 °C (unter Zersetzung).

Das Produkt besteht aus einem Gemisch von 2 Stereoisomeren.

Ansprüche

45

1. 7-(1-Pyrrolidinyl)-3-chinolon- und -naphthyridoncarbonsäure-Derivate der Formel (I)

50

55

in welcher
X¹ für Halogen,

X^2 für Wasserstoff, Amino, Alkylamino mit 1 bis 4 Kohlenstoffatomen, Dialkylamino mit 1 bis 3-Kohlenstoffatomen j. Alkylgruppe, Hydroxy, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Mercapto, Alkylthio mit 1 bis 4 Kohlenstoffatomen, Arylthio, Halogen,

- 5 R^1 für Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit 2 bis 4 Kohlenstoffatomen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, 2-Hydroxyethyl, 2-Fluorethyl, Methoxy, Amino, Methylamino, Ethylamino, Dimethylamino, gegebenenfalls durch 1 oder 2 Fluoratome substituiertes Phenyl,
 R^2 für Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen oder (5-Methyl-2-oxo-1,3-dioxol-4-yl)-methyl und
 R^3 für einen Rest der Struktur

10

15

steht, worin

R^4 für H, C₁-C₄-Alkyl, Aryl, C₁-C₄-Acyl

- 20 R^5 für H, C₁-C₄-Alkyl, OH, OCH₃, wobei R⁴ und R⁵ gemeinsam auch eine gegebenenfalls durch Methyl ein- oder zweifach substituierte C₁-C₃-Alkylenbrücke bedeuten können,
 R^6 für H, gegebenenfalls durch Hydroxy substituiertes C₁-C₄-Alkyl, sowie Aryl, Heteroaryl, Benzyl, C₁-C₄-Alkoxy carbonyl, C₁-C₄-Acyl, (5-Methyl-2-oxo-1,3-dioxol-4-yl)-methyl oder C₃-C₆-Cycloalkyl,

R^7 für H oder C₁-C₄-Alkyl,

- 25 R' für H, CH₃ oder Phenyl,

R'' für H, CH₃ oder Phenyl,

R''' für H oder CH₃,

Y für O, CH₂, CH₂CH₂ oder CH₂-O stehen kann, wobei die Verknüpfung der CH₂-O-Gruppe zum Stickstoff sowohl über O als auch über CH₂ erfolgen kann, und

- 30 Z für O oder S stehen kann,

A für N oder C-R⁸ steht, worin

R^8 für H, Halogen, Methyl, Cyano, Nitro, Hydroxy oder Methoxy steht oder auch gemeinsam mit R¹ eine Brücke der Struktur

-O-CH₂- C H-CH₃, -S-CH₂- C H-CH₃

35

oder

-CH₂-CH₂- C H-CH₃

bilden kann,

- 40 und deren pharmazeutisch verwendbare Hydrate und Säureadditionssalze sowie die Alkali-, Erdalkali-, Silber- und Guanidiniumsalze der zugrundeliegenden Carbonsäuren.

2. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher

X^1 für Fluor oder Chlor,

X^2 für Wasserstoff, Amino, Alkylamino mit 1 bis 2 Kohlenstoffatomen, Dimethylamino, Hydroxy, Methoxy,

- 45 Mercapto, Methylthio, Phenylthio, Fluor, Chlor,

R^1 für Alkyl mit 1 bis 3 Kohlenstoffatomen, Alkenyl mit 2 bis 3 Kohlenstoffatomen, Cycloalkyl mit 3 bis 5 Kohlenstoffatomen, 2-Hydroxyethyl, 2-Fluorethyl, Methoxy, Amino, Methylamino, Ethylamino, Dimethylamino, gegebenenfalls durch 1 oder 2 Fluoratome substituiertes Phenyl,

R^2 für Wasserstoff, Alkyl mit 1 bis 3 Kohlenstoffatomen oder (5-Methyl-2-oxo-1,3-dioxol-4-yl)-methyl,

- 50 R^3 für einen Rest der Struktur

55

steht, worin

R⁴ für H, C₁-C₃-Alkyl, C₁-C₂-Acyl

R⁵ für H, C₁-C₃-Alkyl, OH, OCH₃, wobei R⁴ und R⁵ gemeinsam auch eine gegebenenfalls durch Methyl ein- oder zweifach substituierte C₁-C₂-Alkylenbrücke bedeuten können,

5 R⁶ für H, gegebenenfalls durch Hydroxy substituiertes C₁-C₃-Alkyl, sowie Phenyl, Benzyl, C₁-C₄-Alkoxy carbonyl, C₁-C₂-Acyl, (5-Methyl-2-oxo-1,3-dioxol-4-yl)-methyl oder C₃-C₅-Alkyl,

R⁷ für H oder C₁-C₂-Alkyl,

R' für H oder CH₃,

R'' für H oder CH₃,

10 R'' für H oder CH₃,

Y für O, CH₂, CH₂CH₂ oder CH₂-O stehen kann, wobei die Verknüpfung der CH₂-O-Gruppe zum Stickstoff sowohl über O als auch über CH₂ erfolgen kann, und

Z für O oder S stehen kann,

A für N oder C-R⁸ steht, worin

15 R⁸ für H, Fluor, Chlor, Brom, Methyl, Nitro, Hydroxy oder Methoxy steht oder auch gemeinsam mit R¹ eine Brücke der Struktur

-O-CH₂- C H-CH₃

bilden kann.

20 3. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher

X¹ für Fluor

X² für Wasserstoff, Amino, Methylamino, Fluor

R¹ für Alkyl mit 1 bis 2 Kohlenstoffatomen, Vinyl, Cyclopropyl, 2-Hydroxyethyl, 2-Fluorethyl, Methoxy, Methylamino, 4-Fluorphenyl, 2,4-Difluorphenyl,

25 R² für Wasserstoff, Alkyl mit 1 bis 2 Kohlenstoffatomen,

R³ für einen Rest der Struktur

35

steht, worin

R⁴ für H, C₁-C₂-Alkyl, Acetyl,

R⁵ für H, C₁-C₂-Alkyl, wobei R⁴ und R⁵ gemeinsam auch eine gegebenenfalls durch Methyl substituierte C₁-C₂-Alkylenbrücke bedeuten können,

40 R⁶ für H, CH₃, C₂H₅, HOCH₂CH₂, Benzyl, C₁-C₄-Alkoxy carbonyl, C₁-C₂-Acyl,

R⁷ für H oder CH₃,

R' für H oder CH₃,

R'' für H oder CH₃,

R''' für H oder CH₃,

45 Y für O, CH₂, CH₂CH₂ oder CH₂-O stehen kann, wobei die Verknüpfung der CH₂-O-Gruppe zum Stickstoff sowohl über O als auch über CH₂ erfolgen kann, und

Z für O oder S stehen kann,

A für N oder C-R⁸ steht, worin

R⁸ für H, Fluor oder Chlor steht, oder auch gemeinsam mit R¹ eine Brücke der Struktur

50 -O-CH₂- C H-CH₃,

bilden kann.

4. Verfahren zur Herstellung der Verbindungen der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß man Verbindungen der Formel (II)

55

5

- 10 in welcher
R¹, R², X¹ und X² die oben angegebene Bedeutung haben und
X³ für Halogen, insbesondere Fluor oder Chlor steht, mit Verbindungen der Formel (III)
R³-H (III),
in welcher
- 15 R³ die in Anspruch 1 angegebene Bedeutung hat, Bedeutung hat,
gegebenenfalls in Gegenwart von Säurefängern umsetzt, und gegebenenfalls in R³ enthaltene Schutzgruppen abspaltet.
- 5: Verfahren zur Herstellung der Verbindungen der Formel (I) gemäß Anspruch 1,

20

25

- 30 in welcher
X¹, R¹, R², R³ und A die oben angegebene Bedeutung haben und
X² für Amino, Alkylamino mit 1 bis 4 Kohlenstoffatomen, Dialkylamino mit 1 bis 3 Kohlenstoffatomen je
Alkylgruppe, Hydroxy, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Mercapto, Alkylthio mit 1 bis 4 Kohlenstoffatomen oder Arylthio steht,
dadurch gekennzeichnet, daß man eine Verbindung der Formel (IV)

40

45

- in welcher
X¹, R¹, R², R³ und A die oben angegebene Bedeutung haben,
mit Verbindungen der Formel (V)
X²-H (V),
50 in welcher
X² die oben angegebene Bedeutung hat, gegebenenfalls in Gegenwart von Säurefängern umsetzt.
6. Verfahren zur Herstellung von Verbindungen der Formel (Ia)

55

10 in welcher
X¹, X², R¹, R² und A die oben angegebene Bedeutung haben und R³ für einen Rest der Struktur

20 steht, worin
R⁴, R⁵, R⁶, R', R'', Y und Z die oben angegebene Bedeutung haben,
dadurch gekennzeichnet, daß man eine Verbindung der Formel (VI)

35 in welcher
X¹, X², R¹, R² und A die oben angegebene Bedeutung haben und
R³a für einen Rest der Struktur

50 steht,
worin R⁴, R⁵, R', R'', Y und Z die oben angegebene Bedeutung haben,
mit Verbindungen der Formel (VII)
R⁶-X⁸ (VII),
in welcher
R⁶ die oben angegebene Bedeutung hat und
X⁸ für Chlor, Brom, Iod, Hydroxy oder Acyloxy steht,
55 gegebenenfalls in Gegenwart von Säurefängern umgesetzt.
7. 7-(1-Pyrrolidinyl)-3-chinolin- und -naphthyridoncarbonsäure-Derivat der Formel (I) gemäß Anspruch
1 zur Anwendung in einem Verfahren zur therapeutischen Behandlung des menschlichen oder tierischen
Körpers.

8. Arzneimittel enthaltend Verbindungen der Formel (I) gemäß Anspruch 1.
9. Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 zur Herstellung von Arzneimitteln.
10. Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 als Tierfutterzusatzmittel.
11. Tierfutter bzw. Tierfutterzusatzmittel und Prämixe enthaltend Verbindungen der Formel (I) nach
5 Anspruch 1.
 12. Verbindungen aus der Gruppe bestehend aus
2-Oxa-5,8-diazabicyclo[4.3.0]nonan-dihydrochlorid,
trans-2-Oxa-5,8-diazabicyclo[4.3.0]nonan,
5-Methyl-2-oxa-5,8-diazabicyclo[4.3.0]nonan-dihydrochlorid,
 - 10 2,8-Diazabicyclo[4.3.0]nonan,
4-Methyl-2,8-diazabicyclo[4.3.0]nonan,
2-Methyl-2,8-diazabicyclo[4.3.0]nonan,
2,7-Diazabicyclo[3.3.0]octan,
2-Methyl-2,7-diazabicyclo[3.3.0]octan,
15 3-Oxa-2,7-diazabicyclo[3.3.0]octan,
2-Methyl-3-oxa-2,7-diazabicyclo[3.3.0]octan, 2,5-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan,
2,8-Dimethyl-3-oxa-2,7-diazabicyclo[3.3.0]octan,
2-Methyl-4-oxa-2,8-diazabicyclo[4.3.0]nonan,
3-Methyl-2,7-diazabicyclo[3.3.0]octan,
20 2,3-Dimethyl-2,7-diazabicyclo[3.3.0]octan,
2,7-Diazabicyclo[3.3.0]octan-2-carbonsäureethylester,
2-Phenyl-2,7-diazabicyclo[3.3.0]octan,
4-Oxa-2,8-diazabicyclo[4.3.0]nonan,
trans-3-ethylamino-4-methylthio-pyrrolidin und
25 trans-3-methylamino-4-methylthio-pyrrolidin.
 13. 5,6,7,8-Tetrafluor-1-(2,4-difluorphenyl)-1,4-dihydro-4-oxo-3-chinolincarbonsäure,
5,7-Dichlor-1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-3-chinolincarbonsäure und
5,7-Dichlor-6-fluor-1-(2,4-difluorphenyl)-1,4-dihydro-4-oxo-3-chinolincarbonsäure.

30

35

40

45

50

55

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: 0 350 733
A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89111950.5

(51) Int. Cl.⁵: C07D 401/04, A61K 31/47,
C07D 471/04, C07D 498/04,
C07D 487/04, C07D 519/00,
C07D 513/04, A61K 31/535,
A61K 31/54, C07D 407/14,
C07D 215/56, // (C07D498/04,
265:00,209:00), (C07D471/04,
221:00,209:00), (C07D487/04,
209:00,209:00)

(22) Anmeldetag: 30.06.89

(30) Priorität: 15.07.88 DE 3824072
01.03.89 DE 3906365

(43) Veröffentlichungstag der Anmeldung:
17.01.90 Patentblatt 90/03

(84) Benannte Vertragsstaaten:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(88) Veröffentlichungstag des später veröffentlichten
Recherchenberichts: 27.12.90 Patentblatt 90/52

(71) Anmelder: BAYER AG

D-5090 Leverkusen 1 Bayerwerk(DE)

(72) Erfinder: Petersen, Uwe, Dr.
Auf dem Forst 4
D-5090 Leverkusen(DE)
Erfinder: Schenke, Thomas, Dr.
Muehlenstrasse 113
D-5060 Bergisch-Gladbach 2(DE)

Erfinder: Krebs, Andreas, Dr.
Am Gartenfeld 70
D-5068 Odenthal(DE)
Erfinder: Grohe, Klaus, Dr.
Am Wasserturm 10
D-5068 Odenthal(DE)
Erfinder: Schriewer, Michael, Dr
Am Thelen Siefen 1a
D-5068 Odenthal(DE)
Erfinder: Haller, Ingo, Dr.
Dornroeschenweg 4
D-5600 Wuppertal 1(DE)
Erfinder: Metzger, Karl Georg, Dr.
Pahlkestrasse 75
D-5600 Wuppertal 1(DE)
Erfinder: Endermann, Rainer, Dr.
In den Birken 152a
D-5600 Wuppertal 1(DE)
Erfinder: Zeiler, Hans-Joachim, Dr.
Am Rohm 86
D-5600 Wuppertal 1(DE)

EP 0 350 733 A3

(54) 7-(1-Pyrrolidinyl)-3-chinolon- und -naphthyridoncarbon-säure-Derivate, Verfahren zu ihrer Herstellung sowie substituierte mono- und bicyclische Pyrrolidinderivate als Zwischenprodukte zu ihrer Herstellung, und sie enthaltende antibakterielle Mittel und Futterzusatzstoffe.

(57) Die Erfindung betrifft 7-(1-Pyrrolidinyl)-3-chinolon- und -naphthyridoncarbonsäure-Derivate der Formel (I)

R³ für einen Rest der Struktur

steht, worin

R⁴ für H, Alkyl, Aryl, Acyl

R⁵ für H, Alkyl, OH, OCH₃, wobei R⁴ und R⁵ gemeinsam auch eine gegebenenfalls durch Methyl ein- oder zweifach substituierte Alkylenbrücke bedeuten können,

R⁶ für H, gegebenenfalls durch Hydroxy substituiertes Alkyl, sowie Aryl, Heteroaryl, Benzyl, Alkoxy carbonyl, Acyl, (5-Methyl-2-oxo-1,3-dioxol-4-yl)-methyl oder C₃-C₆-Cycloalkyl,

R⁷ für H oder Alkyl,

R' für H, CH₃ oder Phenyl,

R'' für H, CH₃ oder Phenyl,

R''' für H oder CH₃,

Y für O, CH₂, CH₂CH₂ oder CH₂-O stehen kann, wobei die Verknüpfung der CH₂-O-Gruppe zum Stickstoff sowohl über O als auch über CH₂ erfolgen kann, und

Z für O oder S stehen kann,

in welcher X¹, X², R¹, R², und A die in der Beschreibung angegebene Bedeutung haben, Verfahren sowie substituierte (Oxa)Diazabicyclooctane und -nonane als Zwischenprodukte zu ihrer Herstellung, und sie enthaltende antibakterielle Mittel und Futterzusatzstoffe.

Europäisches
Patentamt

EUROPÄISCHER TEILRECHERCHENBERICHT,
der nach Regel 45 des Europäischen Patent-
Übereinkommens für das weiter Verfahren als
europäischer Recherchenbericht gilt

Nummer der Anmeldung

EP 89 11 1950

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrift Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
X	EP-A-0 241 206 (SANKYO) * Beispiele 23-25, 34-36, 64-71 * --		C 07 D 401/04 A 61 K 31/47 C 07 D 471/04 C 07 D 498/04 C 07 D 487/04 C 07 D 519/00 C 07 D 513/04 A 61 K 31/535 A 61 K 31/54 C 07 D 407/14 C 07 D 215/56 C 07 D 207/14// (C 07 D 498/04 C 07 D 265:00 C 07 D 209:00) (C 07 D 471/04 C 07 D 221:00 C 07 D 209:00) (C 07 D 487/04, .//.
X	JOURNAL OF MEDICINAL CHEMISTRY, Band 27, Nr. 12, Dezember 1984, Seiten 1543-1549, American Chemical Society; H. EGAWA et al.: "Pyridonecarboxylic acids as antibacterial agents. 4. Synthesis and antibacterial activity of 7-(3-amino-1-pyrrolydinyl)-1-ethyl-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid and its analogues" * Tabelle II; Verbindung 45a *	1-4, 8,9	RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
	--	.//.	C 07 D 401/00 C 07 D 471/00 C 07 D 498/00 C 07 D 487/00 C 07 D 519/00
UNVOLLSTÄNDIGE RECHERCHE			
Nach Auffassung der Recherchenabteilung entspricht die vorliegende europäische Patentanmeldung den Vorschriften des Europäischen Patentübereinkommens so wenig, daß es nicht möglich ist, auf der Grundlage einiger Patentansprüche sinnvolle Ermittlungen über den Stand der Technik durchzuführen.			
Vollständig recherchierte Patentansprüche: 1-6, 8-13			
Unvollständig recherchierte Patentansprüche: 7			
Nicht recherchierte Patentansprüche:			
Grund für die Beschränkung der Recherche:			
Verfahren zur chirurgischen oder therapeutischen Behandlung des menschlichen oder tierischen Körpers (Siehe Art. 52(4) des Europäischen Patentübereinkommens)			
Recherchenort DEN HAAG	Abschlußdatum der Recherche 09-10-1990	Prüfer	DE JONG
KATEGORIE DER GENANNTEN DOKUMENTEN		E : älteres Patentdokument, das jedoch erst am oder nach dem Anmelde datum veröffentlicht worden ist	
X : von besonderer Bedeutung allein betrachtet		D : in der Anmeldung angeführtes Dokument	
Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie		L : aus andern Gründen angeführtes Dokument	
A : technologischer Hintergrund		& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	
O : nichtschriftliche Offenbarung			
P : Zwischenliteratur			
T : der Erfindung zugrunde liegende Theorien oder Grundsätze			

Europäisches
Patentamt

EUROPÄISCHER TEILRECHERCHENBERICHT

Nummer der Anmeldung
EP 89 11 1950
-2-

EINSCHLÄGIGE DOKUMENTE			KLASSIFIKATION DER ANMELDUNG (Int. Cl. 4)
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	betrifft Anspruch	
X	CHEMICAL ABSTRACTS, Band 104, 1986, Seite 521, Zusammenfassung Nr. 50861t, Columbus, Ohio, US; & JP-A-60 126 284 (DAINIPPON PHARMACEUTICAL CO. LTD) 05-07-1985 * Zusammenfassung * --	1-3, 8,9	C 07 D 209:00 C 07 D 209:00)
A,D	EP-A-0 106 489 (WARNER-LAMBERT) * Zusammenfassung * --		RECHERCHIERTE SACHGEBIETE (Int. Cl. 4)
P,X	CHEMICAL ABSTRACTS, Band 111, 1989, Seite 742, Zusammenfassung Nr. 97210q, Columbus, Ohio, US; & JP-A-64 03 181 (SANKYO CO. LTD; UBE INDUSTRIES LTD) 06-01-1989 * Zusammenfassung * --	1-3, 8,9	
P,X	CHEMICAL ABSTRACTS, Band 111, 1989, Seite 721, Zusammenfassung Nr. 153779w, Columbus, Ohio, US; & JP-A-01 56 673 (DAINIPPON PHARMACEUTICAL CO. LTD) 03-03-1989 * Zusammenfassung * ----	1-3, 8,9	