# Вероятностные алгоритмы проверки чисел на простоту

Лабораторная работа №5

Данилова А.С.

#### Цели и задачи

Изучить вероятностные алгоритмы проверки чисел на простоту и реализовать их программно на языке Julia.

## Тест Ферма

При проверке числа на простоту тестом Ферма выбирают несколько чисел а. Чем больше количество а, для которых утверждение истинно, тем больше вероятность, что число п простое.

#### Символ Якоби

Символ Якоби обобщает символ Лежандра на все нечётные числа, большие единицы. Символ Кронекера-Якоби, в свою очередь, обобщает символ Якоби на все целые числа, но в практических задачах символ Якоби играет гораздо более важную роль, чем символ Кронекера-Якоби.

## Тест Соловея-Штрассена

Тест всегда корректно определяет, что простое число является простым, но для составных чисел с некоторой вероятностью он может дать неверный ответ. Основное преимущество теста заключается в том, что он, в отличие от теста Ферма, распознает числа Кармайкла как составные.

### Тест Миллера-Рабина

Тест Миллера-Рабина — вероятностный полиномиальный тест простоты. Тест Миллера-Рабина позволяет эффективно определять, является ли данное число составным. Однако, с его помощью нельзя строго доказать простоту числа. Тем не менее тест Миллера-Рабина часто используется в криптографии для получения больших случайных простых чисел.

```
using Random
   r = powermod(a, n - 1, n)
       return "Число $n, вероятно, простое"
       return "Число $n составное"
   println("Введите число п")
   println(result)
```

Рис. 1: Тест Ферма

```
using Random
2 v function ja sym(a::Int, n::Int)
```

# Полученный результат

```
5/7 = -1

** Terminal will be reused by tasks, press any key to close it.

Activating new project at `C:\Users\nastd\.julia\environments\v1.11`
Введите а:

4
Введите n:
7
4/7 = 1
```

Рис. 3: Символ якоби от 4 и 7

```
function s_test(n::Int)
    a = rand(2:(n - 2))
    r = powermod(a, dix(n - 1, 2), n)

if r == 1 || r == n - 1
    | return "Mucno $n, вероятно, простое"
end

return (r != ja_sym(a, n) % n) ? "Mucno $n составное" : "Число $n, вероятно, простое"
end

println("Beogure n:")
n = parse(int, readline())
println(s_test(n))
```

Рис. 4: Тест Соловэя-Штрассена

```
using Random
       y = powermod(a, d, n)
               return "Число $n составное"
           return "Число $n составное"
   return "Число $n простое"
println("Введите число:")
```

# Полученный результат

```
Activating new project at `C:\Users\nastd\.julia\environments\v1.11`
Введите n:
31
Число 31, вероятно, простое
* Terminal will be reused by tasks, press any key to close it.

Activating new project at `C:\Users\nastd\.julia\environments\v1.11`
Введите n:
33
Число 33 составное
* Terminal will be reused by tasks, press any key to close it.
```

Рис. 6: Результаты



Мы изучили вероятностные алгоритмы проверки чисел на простоту и реализовали их программно на языке Julia.