APPM 5600 — HOMEWORK # 4

- 1. (10 pts) Let x_0, x_1 be two successive points from a secant method applied to solving f(x) = 0 with $f_0 = f(x_0), f_1 = f(x_1)$. Show that regardless of which point x_0 or x_1 is regarded as the most recent point, the new point derived from the secant step will be the same.
- 2. (10 points) Determine whether the following sets of vectors are dependent or linearly independent:
 - (a) (1,2,-1,3), (3,-1,1,1), (1,9,-5,11)
 - (b) (1,1,0), (0,1,1), (1,0,1)
- 3. (10 points) Let x_1, x_2, \ldots, x_k be linearly independent vectors in \mathbb{R}^n and let A be a nonsingular $n \times n$ matrix. Define $y_i = \mathsf{A}x_i$ for $i = 1, 2, \ldots, k$. Show that y_1, y_2, \ldots, y_k are linearly independent.
- 4. (10 points) Given the orthogonal vectors

mal vectors
$$oldsymbol{u}_1=(1,2,-1) \quad oldsymbol{u}_2=(1,1,3)$$

produce a third vector u_3 such that $\{u_1, u_2, u_3\}$ is an orthogonal basis for \mathbb{R}^3 . Normalize the vectors to create an orthonormal basis.

- 5. (20 points) Prove that similar matrices have the same eigenvalues and that there is a one-to-one correspondence of the eigenvectors.
- 6. (25 points) A matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if and only if $\langle Ax, x \rangle > 0$ for all $x \in \mathbb{R}^n$; $x \neq 0$.

Prove that if A is positive definite, then A is non-singular.

7. (15 points) Let M be any real $n \times n$ non-singular matrix and let $A = M^T M$. Prove that A is positive definite.

Fun fact: any positive definite matrix can be written in the form $A = R^*R$ for some upper-triangular matrix R. This important factorization is Cholesky Decomposition.