CBSE QUESTIONS

1 Vectors and Three-Dimensional Geometry

- 1. Find the magnitude of each of two vectors \vec{a} and \vec{b} , having the same magnitude such that the angle between them is 60° and their scalar product is $\frac{9}{2}$.
- 2. If θ is the angle between two vectors $\hat{i}-2\hat{j}+3\hat{k}$ and $3\hat{i}-2\hat{j}+\hat{k}$, find $\sin\theta$.
- 3. Let $\vec{a}=4\hat{i}+5\hat{j}-\hat{k},$ $\vec{b}=\hat{i}-4\hat{j}+5\hat{k}$ and $\vec{c}=3\hat{i}+\hat{j}-\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{c} and \vec{b} and $\vec{d}.\vec{a}=21$.
- 4. Find the shortest distance between the lines $\vec{r} = (4\hat{i} \hat{j}) + \lambda (\hat{i} + 2\hat{j} 3\hat{k})$ and $\vec{r} = (\hat{i} \hat{j} + 2\hat{k}) + \mu (2\hat{i} + 4\hat{j} 5\hat{k})$
- 5. Find the distance of the point (-1, -5, -10) from the point of intersection of the line $\vec{r} = 2\hat{i} \hat{j} + 2\hat{k} + \lambda \left(3\hat{i} + 4\hat{j} + 2\hat{k}\right)$ and the plane \vec{r} . $(\hat{i} \hat{j} + \hat{k}) = 5$.