N95-13594

23077 P-18 07181 322/50

CERAMIC BRUSH SEALS DEVELOPMENT

Harold Howe Technetics Corporation DeLand, Florida

CERAMIC BRUSH SEALS

METALLIC BRUSH SEALS

- A. BENEFITS OVER CURRENT SEALS
 - 1. HIGHER EFFICIENCY
 - 2. ABLE TO WITHSTAND SHAFT EXCURSIONS
 - 3. ABLE TO TAKE UP BUILD TOLERANCES
 - 4. REDUCE SECONDARY FLOW LOSSES

B. LIMITATIONS

- 1. TEMPERATURE
- 2. LIFE/WEAR
- 3. OXIDATION

CERAMIC

- A. HIGHER TEMPERATURE
- B. LOWER WEAR
- C. INTERFERENCE FIT BENEFIT

TECHNETICS TEST RIG

2450/36/.003

R & D

PURPOSE:

- A. INVESTIGATE AND SHOW FEASIBILITY
- B. BUILD AND INITIAL TEST OF CERAMIC BRUSH SEAL

TECHNICAL OBJECTIVES:

- A. IDENTIFY MATERIALS
- B. DEMONSTRATE
 MANUFACTURABILITY
- C. TEST SEAL INTEGRITY

MATERIALS:

INDUSTRY STANDARD MATERIALS

CERAMIC FIBER

- A. NEEDS
 - 1. SIZE (.002"-.006")
 - 2. FLEXIBLE
 - 3. QUALITY
 - 4. PRICE

B. AVAILABLE

- 1. ALUMINUM OXIDE
- 2. SILICON CARBIDE
- 3. TITANIUM DIBORIDE
- 4. QUARTZ

AVAILABLE CERAMIC BRISTLE MATERIALS

	AL ₂ 0 ₃ SINGLE CRYSTAL	SIC <u>CVD FILAMENT</u>	SIU ₂ FIBER OPTICS
SIZE	.005	.0056/.0031	,004
Modulus (MSI)	60	58	10
TENSILE (KSI)		500	
HARDNESS (MOHS)	9	2040-4487 <u>KG</u> VICKERS	7-8
BEND RADIUS (IN)	5/16	13/64 / 7/64	1
OPERATING TEMPERATURE (°F	3632	BELOW 1800	2000

HAYNES 25 COBALT ALLOY

MODULUS (MsI)	25.9 a 1300°F
TENSILE (KSI)	145-165
OPERATING TEMPEATURE (°F)	1200-1400°F

MANUFACTURING

A. ALL CERAMIC

- 1. BRISTLES CAST IN PLACE
- 2. BRISTLES PRESSED IN PLACE
- 3. POST FIRING BRISTLE PLACEMENT

B. BRAZED ASSEMBLY

- 1. METAL BACKING/CERAMIC FIBER
- 2. PLATING PROCESS
- 3. DIRECT BRAZE PROCESS

BRAZED ASSEMBLY DEVELOPMENT

- A. BRAZE ALLOYS
 - 1. DUCTILE
 - 2. HIGH TEMPERATURE
 - 3. OXIDATION RESISTANT
- B. BRAZE METHOD (WETTING OF CERAMIC)
 - 1. MOLY-MANGANESE
 - 2. ACTIVE METALS
 i.e., Ti, Zr, V, etc.
 (ABA)
 - 3. ACTIVE METAL HYDRIDES i.e., TiH2, ZrH2, etc.

CONTROLLING BRAZE FLOW

- A. EXCESSIVE WICKING
 - 1. ABA ALLOYS (i.e.,
 TiCuSil)
 - 2. ACTIVE METAL BRAZING
- B. LIMIT FLOW USING BRAZE BARRIERS (STOP-OFF)
- C. ACTIVE METAL HYDRIDE PROCESS
 - 1. ONE STEP
 - 2. EASY APPLICATION
 - 3. ALLOWS FOR BATCH PROCESSING
 - 4. BRAZE ONLY WHERE ACTIVE METAL IS DEPOSITED

BRAZE ALLOYS

NAME	COMPOSITION	LIQUIDUS (°F)	SOLIDUS (°F)
CUSIL	AG - 72 CU - 28	1436	1436
TICUSIL	TI - 4.5 CU - 26.7 AG - 68.8	1562	1526
50% GOLD 50% COPPER	AU - 50 CU - 50	1778	1751
PALMANSIL 5	AG - 75 PD - 20 MN - 5	1962	1846
NIORO (AMS-4787; BAU-4)	AU - 82 NI - 18	1742	1742
PALNIRO 1 (AMS-4784)	AU - 50 PD - 25 NI - 25	2050	2016
PALNIRO 7 (AMS-4786)	AU - 70 PD - 8 NI - 22	1899	1841

FIBER SELECTION

- 1. QUARTZ (SiO₂)
- 2. ALUMINUM OXIDE (Al₂O₃)
- 3. SILICON CARBIDE (SiC)

CONSIDERATIONS

- 1. AVAILABILITY (Size/Price)
- 2. BRAZE WETTING
- 3. USE TEMPERATURE
- 4. INTEGRITY OF ASSEMBLY

BRAZE RESULTS

- 1. ALUMINUM OXIDE
- 2. QUARTZ
- 3. SILICON CARBIDE/Ni
- 4. SILICON CARBIDE/Cusil
- 5. SILICON CARBIDE/Au-Cu
- 6. SILICON CARBIDE/PALMANSIL

CURRENT CONFIGURATION

- 1. SiC/CuSil to 1200°F
- 2. SiC/Au-Cu to 1600°F

PRELIMINARY TEST RESULTS

- 1. LOW WEAR
- 2. SAME PERFORMANCE AS METALLICS
- 3. HIGH FRICTIONAL HEATING

CURRENT WORK

- 1. HIGHER TEMPERATURE FIBERS
- 2. HIGHER TEMPERATURE BRAZE ALLOYS
- 3. OTHER ACTIVE METAL HYDRIDES
- 4. IMPROVING PROCESS
- 5. TESTING

FUTURE WORK

- 1. ROTOR COATING
- 2. FURTHER TESTING
- 3. ALL-CERAMIC BRUSH SEAL

Figure 1 Sic/Palniro 7 Braze Sample

Figure 2 Nickel Attack on SiC Fiber

Figure 3 Cusil/Active Metal Wicking

Figure 4 Active Metal Hydride on SiC Fiber

Figure 5 Active Metal Hydide Deposited on SiC Fiber

Figure 6 SiC Fiber Braze Sample Cusil/Active Metal Hydride

Figure 7
Improper Active Metal Hydride Application Result

Figure 8
Aluminum Oxide/50% Gold 50% Copper Braze Sample

Figure 9 SiC Fiber/Active Metal Hydride Active Metal Flow

Figure 10
Aluminum Oxide/50% Gold 50% Copper
Dark Field

Figure 11 Aluminum Oxide/50% Gold 50% Copper Light Field

Figure 12 SiC/Cusil/Titanium Hydride - Brush Seal

Figure 13 Brazed SiC Fiber/Metal Backing - Brush Seal

Figure 14
Cracking in Ceramic
Ceramic Powder Pressed Around Fiber

Figure 15
All-Ceramic Brush Seal Concept
Fiber Placed After Firing

Figure 16
Ceramic Ring with Aluminum Oxide Fiber