Virtual Shape Recognition using Leap Motion

EC 520: Digital Image Processing and Communication

Aditya Chechani and Harshil Prajapati

Department of Electrical and Computer Engineering: Boston University

Problem Statement

To develop a robust algorithm to extend Leap Motion capabilities to recognize hand drawn gestures of various 2D shapes (e.g. circle, ellipse, square, triangle, etc.)

(a) Leap Motion [2]

(b) Coordinates axes of Leap Motion

Data Acquisition

- · Leap Motion SDK Python
- x,y,z coordinates of the tip of the index finger
- · Store it in .json file

Figure 2: Capturing Leap data

Shape	Data		
Circle	50		
Rectangle	50		
Triangle	50		

Table 1: Generated Data

Data Preprocessing: Planner Fitting of 3D points

Shapes will not be on a plane || to XY plane of Leap Motion so we find a best fit plane which has the least squared error with the data points provided [4]. The equation of plane is given by:

$$z = Ax + By + D \tag{1}$$

The coefficients of plane are given by

$$c_x = -\frac{A}{D};$$
 $c_y = -\frac{B}{D};$ $c_z = \frac{1}{D}$

The normal vector of plane is

$$n_p = \left[-\frac{A}{D} - \frac{B}{D} \frac{1}{D} \right] \tag{2}$$

Normal vector to X-Y plane

$$n_{XY} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

3

Data Preprocessing: Planner Fitting of 3D points

Rotation Vector (u):

$$u = \frac{n_p}{\mid n_p \mid} \times n_{XY} \tag{3}$$

Rotation angle (θ):

$$\theta = \sin^{-1}(\mid n_p \mid) \tag{4}$$

Using the rotation vector and the angle we calculate rotation matrix "R" we get the transformed data

$$[x_{new}, y_{new}, z_{new}]^{T} = R[x, y, z]^{T}$$
(5)

Data Preprocessing: Plane Fitting of 3D points

Figure 3: Plane Fitting of 3D points

Data Preprocessing: Plane Fitting of 3D points

Figure 4: Plane Fitting of 3D points

Feature Extraction: Fourier Descriptor

Fourier Descriptor: We define

$$s[n] = x_n + iy_n$$

Taking the DFT of s[n]

$$a[k] = \frac{1}{N} \sum_{n=0}^{N-1} s[n] e^{\frac{-j2\pi nk}{N}}$$
 (6)

and coefficients can be recovered by

$$s[n] = \sum_{k=0}^{N-1} a[k] e^{\frac{i2\pi nk}{N}}$$
 (7)

Feature Extraction: Fourier Descriptor

(a) Fourier Descriptor of data points.

(b) Considering only 40 high energy points

Classification: k-NN

For a Data set $\mathfrak{D}=(\mathbf{x}_1,y_1),\cdots(\mathbf{x}_n,y_n)$ with \mathbf{x} as 20 point feature vector from feature extraction and test point \mathbf{x} Let $(\mathbf{x}_1,y_1),\cdots(\mathbf{x}_n,y_n)$ be reordered such that

$$d(x,x_1) \leq d(x,x_2), \cdots d(x,x_n)$$

where $d(x, x_i)$ can be l_p distance

$$|| x - x_{test} ||_p := (\sum_{i=1}^d |x_i - x_{test}|^p)^{\frac{1}{p}}$$

For our project we are considering the Euclidean distance (l_2)

$$h_{k-NN} = \underset{y=1 \cdot n}{\operatorname{argmax}} \sum_{j=1}^{k} 1(y_{(j)} = y)$$
 (8)

where $1(y_{(i)} = y)$ is the number of k-NNs of **x** with label =y [5]

Classification: k-NN

Figure 6: k-NN Example [1]

Classification: k-NN

	Ground Truth			
ict	10	0	0	
red	0	9	3	
<u> </u>	0	1	7	

Table 2: 80:20 Split (NN) CCR: 86.67%

	Ground Truth			
dict	10	1	1	
red	0	8	4	
Б	0	1	5	

Table 4: 80:20 Split (3-NN) CCR: 76.67%

	Ground Truth				
ict	19	1	1		
red	1	18	3		
Ы	0	1	16		

Table 3: 60:40 Split (NN) CCR: 88.33%

	Ground Truth				
ict	10	1	1		
red	0	7	6		
Ы	0	2	3		

Table 5: 80:20 Split (5-NN) CCR: 66.67%

Classification: SVM

For multiclass classification we extend binary SVM, using One v/s All (OVA) or One v/s One (OVO) approach.

Figure 7: SVM Example [3]

Results: SVM Classification

One v/s One:

	Ground Truth			
ict	8	0	0	
red	2	10	6	
Б	0	0	4	

Table 6: C=16, σ 16

CCR: 73.33%

	Ground Truth				
ict	10	0	0		
Predi	0	9	2		
Ā	0	1	8		

Table 7: C=16, σ 32

CCR: 90%

Results: SVM Classification

One v/s All:

- Mean CCR = 71.11% (C = 2, σ = 16)
- Mean CCR = 88.9% (C = 2, σ = 32)

C1	Gr	ound Truth	C2	Gro	ound Truth	C3	Gro	ound Truth
lict	8	0	lict	7	1	lict	6	0
rec	2	20	rec	3	19	rec	4	20

Table 8: OVO (C = 2, σ = 32)

Thank You

References i

http://www.d.umn.edu/~deoka001/knn.html.

Accessed: 2018-04-18.

Leap Motion Development SDK.

https://developer.leapmotion.com.

Accessed: 2018-04-09.

Open CV Tutorials:Introduction to Support Vector Machines. https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html.

Accessed: 2018-04-18.

립 D. Eberly.

Least squares fitting of data.

Chapel Hill, NC: Magic Software, 2000.

References ii

P. Ishwar.

EC 503 - Learning from Data , January - May 2018.