May 15, 1998

www.www.www.WES

Generate Collection

L12: Entry 7 of 31

-File: JPAB

PUB-NO: JP410126207A

DOCUMENT-IDENTIFIER: JP 10126207 A TITLE: SURFACE ACOUSTIC WAVE DEVICE

PUBN-DATE: May 15, 1998

INVENTOR-INFORMATION:

NAME

COUNTRY

ITO, MIKI

ASSIGNEE - INFORMATION:

NAME

COUNTRY

KYOCERA CORP

APPL-NO: JP09142673 APPL-DATE: May 30, 1997

INT-CL (IPC): H03 H 9/25; H03 H 9/145

ABSTRACT:

PROBLEM TO BE SOLVED: To protect an excitation electrode and to obtain superior characteristics and reliability by laminating an excitation electrode, which generates a <u>surface acoustic wave</u> and a semiconductor layer satisfying a specific relational expression and has a specific resistance value in order on a piezoelectric substrate.

SOLUTION: On a piezoelectric substrate 3 of lithium tantalate single crystal, etc., an IDT electrode 4 as the excitation electrode formed of aluminum, etc., and reflectors 5 at both its ends are arranged respectively. On those IDT electrode 4 and reflectors 5, a semiconductor layer 6 as a protective film is laminated in sequentially, by using a semiconductor material such as a compound material containing conductive materials of silicon, etc. Consequently, a foreign body is prevented from sticking on the excitation electrode. Further, an electrode such as the excitation electrode or its semiconductor layer is prevented from being destroyed, owing to discharge caused by the pyroelectricity of the piezoelectric substrate. In this case, the specific resistance value of the semiconductor layer is 102 to 107Ω.cm and 0.07 COPYRIGHT: (C) 1998, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号。

特開平10-126207

(43)公開日 平成10年(1998) 5 月15日

(51) Int.Cl.6

H03H 9/25

識別配号

FΙ

H03H 9/25

Α С

9/145

9/145

С

審査請求 未請求 請求項の数2 OL (全 6 頁)

(21)出願番号

特願平9-142673

(22)出願日

平成9年(1997)5月30日

(31) 優先権主張番号 特顧平8-229099

(32)優先日

平8 (1996) 8月29日

(33)優先権主張国

日本(JP)

(71)出顧人 000006633

京セラ株式会社

京都府京都市山科区東野北井ノ上町5番地

0)22

(72)発明者 伊藤 幹

京都府相楽郡精華町光台3丁目5番地 京

セラ株式会社中央研究所内

(54) 【発明の名称】 弾性表面波装置

(57)【要約】

【課題】 励振電極の保護を行うとともに、従来のよう な特性劣化がなくむしろ特性を向上させ、信頼性の非常 に優れた弾性表面波装置を提供すること。

【解決手段】 圧電基板3上に、弾性表面波を発生させ る励振電極4、及び半導体層6を順次積層して成る弾性 表面波装置Sで、半導体層6が0.07 < hS/h e < 0.15 (ただし、hS: 半導体層6の厚さ、h e:励振電極4の厚さ)を満足することを特徴とする。

(b)

1

【特許請求の範囲】

【請求項1】 圧電基板上に、弾性表面波を発生させる 励振電極、及び下記式を満足し且つ比抵抗値が10² ~ 10⁷ Ω·cmの半導体層を順次積層して成る弾性表面 波装置。

0.07 < hS /he < 0.15 (ただし、hS : 半導体層の厚さ、he : 励振電極の厚

【請求項2】 前記圧電基板がタンタル酸リチウム単結 晶であり、前記半導体層がシリコンであることを特徴と 10 する請求項1に記載の弾性表面波装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えばタンタル酸リチウム単結晶、ニオブ酸リチウム単結晶、四ホウ酸リチウム単結晶等の圧電基板に励振電極を設けて成る弾性表面波(SAW)フィルタ等の弾性表面波装置に関する。

[0002]

【従来の技術とその課題】現在、タンタル酸リチウム (LiTaO3)等の単結晶は、一般に圧電材料の性能 評価として用いられる電気機械結合係数が大きい材料と して大変注目されており、例えば、弾性表面波装置、バ ルク波デバイス等の各種圧電デバイスに用いられる材料 として有望視されている。

【0003】また、インタディジタル(以下、IDTと略記する)電極材料としてはアルミニウム(A1)またはアルミニウムを主体とする合金(例えば、アルミニウムー銅(A1-Cu)合金等)が用いられているが、弾性表面波装置の基本特性は、IDT電極の膜厚によって30変化するため、最適膜厚を探索・検討する必要があり、この方面の研究が盛んに行われている。

【0004】例えば36° YカットX伝搬のタンタル酸リチウム単結晶を基板として用い、アルミニウムをID T電極材料として用いた場合、伝搬させる弾性表面波の波長に対するIDT電極の規格化膜厚H/λを0.1以下にすることが最適であるとされている(例えば、特開平6-188673号公報等を参照)。

【0005】しかしながら、例えばセルラー電話、PHS (Personal Handy-phone System)等の移動体通信用電話に使用されるフロントエンドSAWフィルタ (アナログ:900MHz帯,デジタル:15GHz帯)を構成するには、例えばAMPS (Advanced Mobile Phone Service)方式であれば、20dB以上の大きな帯域外減衰量が最低でも必要とされるにもかかわらず、特性的に優れたタンタル酸リチウム単結晶を基板材料に適用しようとしても、上述のような帯域外減衰量を備え、しかも挿入損失が小さいものはなかった。

【0006】この原因の一つとして以下のことが考えら 単結晶などの圧電性の基板3上に、アルミニウムやアルれる。すわわち、基板及び励振電極上に導電性の異物が 50 ミニウムを主成分とする合金(Al-Si系, Al-C

製造工程中などで付着し、これにより特性劣化が生じるためと考えられる。特に上記したような高周波帯域の周波数を利用する弾性表面波装置においては、励振電極の電極指間の距離が非常に狭く微細なため、このような異物の付着が、完成品の特性のばらつきや特性不良の発生を誘発するという問題が生じていたのである。例えば、弾性表面波フィルタの場合、フィルタ特性である通過帯域幅が小さくなったり、挿入損失が大きくなることがあったのである。このため、励振電極上にSiO2等の絶縁膜を被覆して励振電極を異物から保護する方法が提案されているが(例えば、特開昭59-210708号公報等を参照)、このような絶縁膜を焦電性の有る圧電基板上に形成させると絶縁破壊が生じやすくなり非常に問題である。

【0007】そこで、励振電極の保護を行うとともに、 従来のような特性劣化がなくむしろ特性を向上させ、信 頼性の非常に優れた弾性表面波装置を提供することを本 発明の目的とする。

[0008]

20 【課題を解決するための手段】上記目的を達成させるために、本発明の弾性表面波装置は、圧電基板上に、弾性表面波を発生させる励振電極、及び下記式を満足し且つ 比抵抗値が10² ~10⁷ Ω·cmの半導体層を順次積層して成る。

【0009】0.07 < hS /he < 0.15 (ただし、hS:半導体層の厚さ、he:励振電極の厚 さ)

また、圧電基板がタンタル酸リチウム単結晶であり、半導体層がシリコンであることを特徴とする。

30 【0010】ここで、半導体層とは上記シリコン以外 に、樹脂又はガラス等に炭素や金属材料などの導電材料 を含有させた複合材料等をいうものとする。

[0011]

【発明の実施の形態】以下、本発明に係る実施の形態について図面に基づき詳細に説明する。本発明の弾性表面波装置Sは、例えば図1に示すように、直列接続された複数の弾性表面波共振器1と並列接続された複数の弾性表面波共振器2から構成され、いわゆるバランス型フィルタなどの弾性表面波フィルタ等をいうが、特にこれに40 限定されるものではない。

【0012】図1に示す弾性表面波装置Sは、複数の直列接続された弾性表面波共振器1でもってローパスフィルタを構成し、並列接続された弾性表面波共振器2でもってハイパスフィルタを構成して所望の特性を得るものである。

【0013】ここで、図2(a)に示すように、弾性表面波共振器1又は2は、それぞれタンタル酸リチウム単結晶、ニオブ酸リチウム単結晶、又は四ホウ酸リチウム単結晶などの圧電性の基板3上に、アルミニウムやアルミニウムを主成分とする合金(A1-Si系,A1-C

, .. I

u系、Al-Ti系等) から成る励振電極であるIDT 電極4を配置するとともに、IDT電極4の両端にID T電極4と同様な材質から成る反射器5をそれぞれ配置 し、さらに、図2 (b) に示すように、これら I D T電 極4及び反射器5上にシリコン等や、樹脂又はガラス等 に炭素や金属材料などの導電材料を含有させた複合材料 等の半導体材料 (比抵抗値が $10^2 \sim 10^7 \Omega \cdot c m$ の 範囲内)であり、保護膜となる半導体層6を順次積層さ せている。そして、このようにして構成された基板3に 波長Aの弾性表面波をX方向に伝搬させるようにしたも 10 のである。なお、図2(a)では簡単のため半導体層6 の図示を省略しており、弾性表面波共振器の一部を図示 したものである。

【0014】このような弾性表面波装置では、異物が励 振電極上に付着することが防止されるので、異物付着に よる特性劣化が極力防止される。また、圧電基板の焦電 性から生じる放電により、励振電極等の電極やその半導 体層の破壊が極力防止される。そして、このような効果 は半導体層の比抵抗値が10² ~10⁷ Ω·cmの範囲 内でかつ0.07 < hS/he < 0.15(ただ 20 し、hS:半導体層の厚さ、he:励振電極の厚さ)を 満足しなければならない。すなわち、この数値より比抵 抗値が小さいと特性が劣化し、逆に大きいと絶縁破壊が 生じやすくなるのである。また、hS /he が0.07 より小さい場合や0.15より大きくなる場合は通過帯 域幅の変化量が負側に変化するだけでなく、挿入損失の 変化量が増大するからである。

【0015】なお、弾性表面波装置は上記の形態に限定 されるものではなく、圧電基板上に励振電極等の電極が 配設され、少なくとも励振電極上に半導体層が被覆され 30 た。 るようにしたものであればよく、圧電基板、励振電極、 半導体層等の材質についても上記のものに限定されず、 要旨を逸脱しない範囲で適宜変更し実施が可能である。 [0016]

【実施例】次に、具体的な実施例について説明する。図 1に示すように、直列及び並列の弾性表面波共振器の数 はそれぞれ4以下のものを用意した。また、基板3の材 料として36゜回転Yカットのタンタル酸リチウム単結 晶を使用し、IDT電極4及び反射器5として、アルミ ニウムから成る金属膜を成膜し、図2(b)に示すよう に、励振電極であるIDT電極4及び反射器5の上に半 導体層である非単結晶質のシリコン膜6(比抵抗が約4 $\times 10^5 \Omega \cdot cm$)を所定の厚さで被着形成した。ここ で、上記金属膜を成膜後、レジストをパターニングし て、次いでシリコン膜を蒸着し、最後にリフトオフ法に より引出し電極以外の領域をシリコン膜6で被着させ た。そして、得られた弾性表面波装置についてフィルタ の測定を行った。また、上記シリコン膜6を被着させな いもの、及びシリコンの代わりにSiOュを積層したも のも作製して、シリコン膜6を被着させたものと比較を 50 ことで、挿入損失がより小さくなりいっそう特性の優れ

行った。なお、絶縁破壊について検討するために、サン プルを150℃で約2時間加熱した後、イオン化された 空気を流しながら室温まで冷却させた。

【0017】ここで、弾性表面波共振器1のIDT電極 4の対数Nを40~120, 交差幅Wを10(λ)~4 Ο (λ)、弾性表面波共振器2のIDT対数Nも弾性表 面波共振器1のIDT電極と同様とした。なお、Aは弾 性表面波の波長である。

【0018】次に、IDT電極4及び反射器5の膜厚h e を150~200nm、IDT電極4及び反射器5の 上に成膜させるシリコン膜6の膜厚hs を10~40nm の範囲とした条件で、弾性表面波装装置Sを30個作製 し、フィルタ特性を測定しその平均値から評価を行った 結果について説明する。なお、中心周波数は1900M Hz±250MHzでフィルタ特性の測定を行った。

【0019】まず、シリコン膜の膜厚と通過帯域幅の変 化量との関係について、シリコン膜を積層させない場合 と比較した変化量を調べたところ、図3に示すように、 上記条件でシリコン膜の膜厚比が0.07 < hS/ he < 0.15 (ただし、hS: 半導体層の厚さ、h e:IDT電極の厚さ)では、通過帯域幅の変化量が0 ~7MHzの範囲で増加する(広帯域となる)ことが判 明し、それ以外の膜厚では減少することが判明した。

【0020】また、シリコン膜の膜厚と挿入損失の変化 量との関係について、シリコン膜を積層させない場合と 比較した変化量を調べたところ、図4に示すように、上 記条件でシリコン膜の膜厚比hS /he が0.08~ 0.14では、挿入損失の変化量がマイナスとなること が判明し、それ以外の膜厚では増加することが判明し

【0021】また、放電による絶縁破壊の発生率につい て多数のサンプルを用いて調べたところ、絶縁材料であ る酸化シリコン(SiOz)膜を積層させた場合は、シ リコン膜を積層させた場合より4倍以上もの発生率であ った。すなわち、本実施例ではシリコン膜を積層させた 場合は0.1%以下の発生率であったのに対して、Si O2 膜を積層させた場合はO. 4%の発生率であった。 【0022】また、金属異物による特性変化を検討する ために、銀粉を基板及び励振電極上に付着させ、付着前 後の特性を比較したところ、図5に示すように、シリコ ン膜を形成した弾性表面波装置は銀粉付着後も特性変化 がなかったのに対して、シリコン膜を形成していない弾 性表面波装置では図6に示すように、銀粉付着後は挿入 損失が増大し、付着前に比べ著しい特性変化が生じた。 【0023】以上の結果より、シリコン膜の膜厚比hS **/he を0.07~0.15とすることで、通過帯域幅** の変化量がプラス側に増大し、特性の優れた好適な弾性 表面波装置を提供できることが判明した。さらに、シリ コン膜の膜厚比hS / he を0.08~0.14とする

5

た弾性表面波装置を提供できることが判明した。さらに また、上記構成によれば絶縁破壊による発生も皆無とな る。

[0024]

【発明の効果】以上説明したように、本発明の弾性表面 波装置によれば、異物が励振電極等の電極上に付着する ことが極力防止されるので、異物付着による特性劣化が 極力防止される。また、圧電基板の焦電性から生じる放 電により、励振電極等の電極や半導体層の破壊が極力防 止され、非常に高信頼性の弾性表面波装置を提供でき る。

【0025】また、特に圧電基板をタンタル酸リチウム 単結晶、半導体層をシリコン膜とした場合に、半導体層 の膜厚比を0.07~0.15とすることで、通過帯域 幅の変化量が増加し、特性の優れた好適な弾性表面波装 置を提供できる。さらに、シリコン膜の膜厚比を0.0 8~0.14とすることで、挿入損失が非常に小さく、 よりいっそう特性の優れた弾性表面波装置を提供できる。

【図面の簡単な説明】

【図1】本発明に係る一実施例の弾性表面波装置を示す 平面図。 【図2】(a)は本発明に係る弾性表面波装置を構成する弾性表面波共振器を示す平面図、(b)は II-II 線断面図。

6

【図3】シリコン半導体層の膜厚と通過帯域幅の変化量 との関係について、シリコン半導体層を積層させない場 合と比較した変化量を示すグラフ。

【図4】シリコン半導体層の膜厚と挿入損失の変化量との関係について、シリコン半導体層を積層させない場合と比較した変化量を示すグラフ。

10 【図5】本発明の銀粉付着前後における周波数と減衰量との関係を示すグラフ。

【図6】比較例の銀粉付着前後における周波数と減衰量 との関係を示すグラフ。

【符号の説明】

1 · · · 弹性表面波共振器(直列用)

2 · · · · 弹性表面波共振器 (並列用)

3 ・・・ 基板

4 ··· IDT電極 (励振電極)

5 · · · 反射器

20 6 · · · · 半導体層

S · · · · 弹性表面波装置

【図1】

【図2】

(b)

(Si膜厚)/(A1膜厚)

