Appendix A

Problem and practice quiz solutions

Solutions to the Problems for Lecture 1

1.

$$a) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad b) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad c) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

1.
$$B - 2A = \begin{pmatrix} 0 & -4 & 3 \\ 0 & -2 & -4 \end{pmatrix}$$
, $3C - E$: not defined, AC: not defined, $CD = \begin{pmatrix} 11 & 10 \\ 10 & 11 \end{pmatrix}$, $CB = \begin{pmatrix} 8 & -10 & -3 \\ 10 & -8 & 0 \end{pmatrix}$.

2.
$$AB = AC = \begin{pmatrix} 4 & 7 \\ 8 & 14 \end{pmatrix}$$
.

3.
$$AD = \begin{pmatrix} 2 & 3 & 4 \\ 2 & 6 & 12 \\ 2 & 9 & 16 \end{pmatrix}, \quad DA = \begin{pmatrix} 2 & 2 & 2 \\ 3 & 6 & 9 \\ 4 & 12 & 16 \end{pmatrix}.$$

4.
$$[A(BC)]_{ij} = \sum_{k=1}^{n} a_{ik} [BC]_{kj} = \sum_{k=1}^{n} \sum_{l=1}^{p} a_{ik} b_{kl} c_{lj} = \sum_{l=1}^{p} \sum_{k=1}^{n} a_{ik} b_{kl} c_{lj} = \sum_{l=1}^{p} [AB]_{il} c_{lj} = [(AB)C)]_{ij}.$$

$$\mathbf{1.} \begin{pmatrix} -1 & 2 \\ 4 & -8 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

2. Let A be an m-by-p diagonal matrix, B a p-by-n diagonal matrix, and let C = AB. The ij element of C is given by

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}.$$

Since A is a diagonal matrix, the only nonzero term in the sum is k = i and we have $c_{ij} = a_{ii}b_{ij}$. And since B is a diagonal matrix, the only nonzero elements of C are the diagonal elements $c_{ii} = a_{ii}b_{ii}$.

3. Let A and B be n-by-n upper triangular matrices, and let C = AB. The ij element of C is given by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Since A and B are upper triangular, we have $a_{ik} = 0$ when k < i and $b_{kj} = 0$ when k > j. Excluding the zero terms from the summation, we have

$$c_{ij} = \sum_{k=i}^{j} a_{ik} b_{kj},$$

which is equal to zero when i > j proving that C is upper triangular. Furthermore, $c_{ii} = a_{ii}b_{ii}$.

Solutions to the Practice quiz: Matrix definitions

1. d. With
$$a_{ij} = i - j$$
, we have $a_{11} = a_{22} = 0$, $a_{12} = -1$, and $a_{21} = 1$. Therefore $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

2. a.
$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix}$$

3. b. For upper triangular matrices A and B, $a_{ik} = 0$ when k < i and $b_{kj} = 0$ when k > j.

1. Let A be an m-by-p matrix, B a p-by-n matrix, and C = AB an m-by-n matrix. We have

$$c_{ij}^{\mathrm{T}} = c_{ji} = \sum_{k=1}^{p} a_{jk} b_{ki} = \sum_{k=1}^{p} b_{ik}^{\mathrm{T}} a_{kj}^{\mathrm{T}}.$$

With $C^T = (AB)^T$, we have proved that $(AB)^T = B^T A^T$.

2. The square matrix $A+A^T$ is symmetric, and the square matrix $A-A^T$ is skew symmetric. Using these two matrices, we can write

$$A = \frac{1}{2} \left(A + A^T \right) + \frac{1}{2} \left(A - A^T \right).$$

3. Let A be a *m*-by-*n* matrix. Then using $(AB)^T = B^TA^T$ and $(A^T)^T = A$, we have

$$(A^TA)^T = A^TA.$$

1.

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix} = \begin{pmatrix} a^2 + b^2 + c^2 & ad + be + cf \\ ad + be + cf & d^2 + e^2 + f^2 \end{pmatrix}.$$

2. Let A be an m-by-n matrix. Then

$$Tr(A^{T}A) = \sum_{j=1}^{n} (A^{T}A)_{jj} = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ji}^{T} a_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^{2},$$

which is the sum of the squares of all the elements of A.

1.
$$\begin{pmatrix} 5 & 6 \\ 4 & 5 \end{pmatrix}^{-1} = \begin{pmatrix} 5 & -6 \\ -4 & 5 \end{pmatrix}$$
 and $\begin{pmatrix} 6 & 4 \\ 3 & 3 \end{pmatrix}^{-1} = \frac{1}{6} \begin{pmatrix} 3 & -4 \\ -3 & 6 \end{pmatrix}$.

2. From the definition of an inverse,

$$(AB)^{-1}(AB) = I.$$

Multiply on the right by B^{-1} , and then by A^{-1} , to obtain

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

3. We assume that A is invertible so that

$$AA^{-1} = I$$
 and $A^{-1}A = I$.

Taking the transpose of both sides of these two equations, using both $I^T = I$ and $(AB)^T = B^TA^T$, we obtain

$$(A^{-1})^TA^T=I\quad \text{and}\quad A^T(A^{-1})^T=I.$$

We can therefore conclude that A^T is invertible and that $(A^T)^{-1} = (A^{-1})^T$.

4. Let A be an invertible matrix, and suppose B and C are its inverse. To prove that B = C, we write

$$B = BI = B(AC) = (BA)C = C.$$

Solutions to the Practice quiz: Transpose and inverses

1. d.
$$(ABC)^T = ((AB)C)^T = C^T(AB)^T = C^TB^TA^T$$
.

2. c. A symmetric matrix C satisfies $C^T = C$. We can test all four matrices.

$$(A + A^{T})^{T} = A^{T} + A = A + A^{T};$$

$$(AA^T)^T = AA^T;$$

$$(A - A^{T})^{T} = A^{T} - A = -(A - A^{T});$$

$$(A^TA)^T = A^TA.$$

Only the third matrix is not symmetric. It is a skew-symmetric matrix, where $C^{T} = -C$.

3. a. Exchange the diagonal elements, negate the off-diagonal elements, and divide by the determinant. We have
$$\begin{pmatrix} 2 & 2 \\ 1 & 2 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}$$
.

1. Let Q_1 and Q_2 be orthogonal matrices. Then

$$(Q_1Q_2)^{-1} = Q_2^{-1}Q_1^{-1} = Q_2^TQ_1^T = (Q_1Q_2)^T.$$

2. Since I I = I, we have $I^{-1} = I$. And since $I^{T} = I$, we have $I^{-1} = I^{T}$ and I is an orthogonal matrix.

1.
$$R(-\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = R(\theta)^{-1}$$
.

2. The *z*-coordinate stays fixed, and the vector rotates an angle θ in the *x-y* plane. Therefore,

$$R_z = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

1.

$$\begin{split} P_{123} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad P_{132} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad P_{213} &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ P_{231} &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad P_{312} &= \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad P_{321} &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}. \end{split}$$

2.

$$\begin{split} P_{123}^{-1} = P_{123}, \quad P_{132}^{-1} = P_{132}, \quad P_{213}^{-1} = P_{213}, \quad P_{321}^{-1} = P_{321}, \\ P_{231}^{-1} = P_{312}, \quad P_{312}^{-1} = P_{231}. \end{split}$$

The matrices that are their own inverses correspond to either no permutation or a single permutation of rows (or columns), e.g., $\{1,3,2\}$, which permutes row (column) two and three. The matrices that are not their own inverses correspond to two permutations, e.g., $\{2,3,1\}$, which permutes row (column) one and two, and then two and three. For example, commuting rows by left multiplication, we have

$$P_{231} = P_{132}P_{213}$$

so that the inverse matrix is given by

$$P_{231}^{-1} = P_{213}^{-1} P_{132}^{-1} = P_{213} P_{132}.$$

Because matrices in general do not commute, $P_{231}^{-1} \neq P_{231}$. Note also that the permutation matrices are orthogonal, so that the inverse matrices are equal to the transpose matrices. Therefore, only the symmetric permutation matrices can be their own inverses.

138

Solutions to the Practice quiz: Orthogonal matrices

- 1. d. An orthogonal matrix has orthonormal rows and columns. The rows and columns of the matrix $\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$ are not orthonormal and therefore this matrix is not an orthogonal matrix.
- **2.** a. The rotation matrix representing a counterclockwise rotation around the x-axis in the y-z plane can be obtained from the rotation matrix representing a counterclockwise rotation around the z-axis in the x-y plane by shifting the elements to the right one column and down one row, assuming a periodic

extension of the matrix. The result is
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}.$$

3. b. Interchange the rows of the identity matrix:
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
.