Cours N°C1: Transformations rapides et transformations lentes

Introduction: La combustion du feu d'artifice est une transformation rapide et la formation de rouille est une transformation lente, et les deux sont des réactions d'oxydo-réductions.

- Qu'est-ce qu'une réaction d'oxydo-réduction?
- Qu'est-ce qu'une transformation rapide et une transformation lente?
- Peut-on accélérer ou ralentir une réaction?

I. Réactions d'oxydoréduction (Rappel)

1. Définition:

Un oxydant est une espèce chimique susceptible de un ou plusieurs

Exemple:;;;, ... *etc*

Un réducteur est une espèce chimique susceptible de un ou plusieurs

Exemples:;; ..etc

Un couple oxydant/réducteur est l'ensemble d'un oxydant et de son réducteur conjugué. Il est noté :

Ox/Red, et caractérisé par une demi-équation électronique : $Ox + ne^- \Longrightarrow Red$

Une réaction d'oxydoréduction est une réaction qui fait intervenir un échange d'électrons entre les réactifs de deux couples Ox_1/Red_1 et Ox_2/Red_2 où le réducteur perd des électrons et est acquis par l'oxydant.

Soient les deux couples : Ox_1 réagit avec Red_2

 $\mathbf{O}_{X_1}/\mathbf{Red_1}: (\mathbf{O}_{X_1} + \mathbf{n_1}e^{-} \xrightarrow{\longrightarrow} \mathbf{Red_1}) \times \mathbf{n_2}$

 $\mathbf{0}\mathbf{x}_2/\mathbf{R}ed_2:(\mathbf{R}ed_2 \xrightarrow{\bullet} \mathbf{0}\mathbf{x}_2 + \mathbf{n}_2e^-) \times \mathbf{n}_1$

L'équation de la réaction d'oxydoréduction entre Ox1 et Red2 s'écrit, en combinant les demiéquations

 $n_2 \mathbf{O} \mathbf{x}_1 + n_1 \mathbf{R} e d_2 \rightarrow n_1 \mathbf{O} \mathbf{x}_2 + n_2 \mathbf{R} e d_1$

Exemple: Réaction entre les ions d'argent Ag^+ et le cuivre métal **Cu**.

L'équation de la réaction est :

...

Remarque: Le gain d'électron(s) = \mathbf{R} éduction ;

La perte d'électron(s) = Oxydation

- L'oxydation transforme **un réducteur** en son oxydant conjugué.
- La réduction transforme **un oxydant** en son réducteur conjugué.

2. Equilibre de la demi-équation

Pour établir une demi-équation d'oxydoréduction en milieu acide, il faut suivre les étapes suivantes :

1ère étape: Equilibrer tous les atomes autres que l'oxygène O et l'hydrogène H;

2^{ème} étape : Equilibrer les atomes <mark>d'oxygènes O</mark> en ajoutant des molécules d'eau H₂O;

 $3^{
m eme}$ étape : Equilibrer les atomes d'hydrogènes m H en ajoutant des protons $m H^+$

^{4ème} étape : Equilibrer les charges électriques en ajoutant des électrons,

Application 1: Ecr.	ire les demi-équations électroniques des couples oxydant/réducteur ci-dessous.
$H_{(aq)}^{+}/H_{2(g)}$	
$H_3O^+_{(aq)}/H_{2(g)}$	
$\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}$	
2. Écrire l'équation	de la réaction d'oxydoréduction qui traduit la transformation entre :
$H_3O^+_{(aq)}$ et $Zn_{(s)}$	
$Fe_{(aq)}^{2+}$ et $Cr_2O_7^{2-}$	
(uq) 2 / (wa)	
dans un tube à essai (1 1. Qu'observez-vous ? 2. Écrire l'équation d	se 20 <i>ml</i> de solution de sulfate de cuivre II ($Cu^{2^+} + SO_4^{2^-}$)), et on ajoute 10 <i>ml</i> de la soude ($Na^+ + HO^-$) à essai (2). P Quel est le nom du composé produit ? e cette réaction. -elle être suivie à l'œil nu ? Que concluez-vous ?
Exemples : Les réact	ions acido-basiques, quelques réactions de précipitation, les réactions explosives
potassium de concent sulfurique, et 50 m l c	ons lentes: age, dans un bécher, $50 \ ml$ de solution d'iodure de ration molaire $0,20 \ mol.L-1$ acidifiée par l'acide de l'eau oxygénée de concentration $0,01 \ mol.L^{-1}$ mélange avec le temps ?

2. Écrire l'équation de cette réaction. On donne les couples mis en jeu : H ₂ O ₂ / H ₂ O	et I ₂ /I ⁻
3. Cette réaction peut-elle être suivie à l'œil nu ? Que concluez-vous ?	
Conclusion	
Exemples: Quelques réactions d'oxydoréduction, les réactions d'estérification et d'hy du fer en rouille.	drolyse, réaction d'oxydation
3. Quelques techniques physiques pour mettre en évidence les transformat	ions lentes :
- Mesure de la pression : Dans le cas de transformations accompagnées d'une modification de la quantité de matière gazeuse, nous utilisons le manomètre pour suivre la pression du mélange réactionnel dans le temps.	
- Conductimétrie : Dans le cas des transformations ioniques, nous utilisons la conductimétrie pour observer l'évolution de la conductivité du mélange réactionnel dans le temps.	os cos contactalers
- pH-métrie : Dans le cas des ions H_3O^+ et HO^- présent dans la réaction, nous utilisons le pH-mètre pour suivre l'évolution du pH de la solution (cà-d. $[H_3O^+]$).	45
III. Les facteurs cinétiques : 1. Définition :	
On appelle facteur cinétique tout paramètre capable d'influer sur la vitesse d'une trai	nsformation chimique.
2. Influence de la température :	
Activité 3: Les ions iodures $I_{(aq)}^-$ réagissent en milieu acide, lentement avec l'eau ox l'équation :	ygenee $H_2U_{2(aq)}$ selon
$2I^{-} + H_{2}O_{2(aq)} + 2H^{+} \rightarrow I_{2(aq)} + 2H_{2}O_{(aq)}$ (aq)	\\ //
Observation :	T ₂ > T ₁
Conclusion:	+ les ions iodures de potassium
	to total todays we posassium

3. Influence de la concentration initiale des réactifs :

Activité 4: Les ions iodures $I^-_{(aq)}$ réagissent en milieu acide, lentement avec l'eau oxygénée $H_2O_{2(aq)}$ selon l'équation : $\mathbf{2}I^- + H_2O_{2(aq)} + \mathbf{2}H^+ \to I_{2(aq)} + 2H_2O_{(aq)}$

Observation : Le mélange dans chacun des trois bécher prend progressivement une couleur jaune. Après quelques minutes, elle devient brune. Ce changement de couleur ne se fait pas à la même vitesse : le mélange dans le **3**ème **bécher** devient brun avant le mélange dans le **2**ème **bécher**, qui à son tour devient brun avant le mélange dans le **premier bécher**.

>	Conclusion:

Remarque: Il existe d'autres facteurs cinétiques comme le catalyseur et la nature du solvant.

Un catalyseur : est une espèce chimique capable de modifier la vitesse d'une réaction sans changer l'état d'équilibre du système (il n'apparaît pas dans l'équation de la réaction) . Exemple : acide sulfurique ..etc

4. Application de facteurs cinétiques :

a. Accélération d'une transformation chimique :

Dans certains cas, le chimiste est obligé d'accélérer les réactions chimiques, par exemple, il augmente la température.

Exemples: - Combustion d'essence - utilisation d'une cocotte-minute pour cuire des aliments ,...etc

b. Abaissement de la vitesse d'une transformation chimique :

Le contrôle des facteurs cinétiques permet d'abaisser la vitesse de certaines transformations chimiques très rapides ou les stoppées.

Exemples: transformations exothermique - conservation des aliments - arrêt d'une transformation chimique ...

Série N°C1: Transformations rapides et transformations lentes

Exercice 1 : Nous mélangeons à 25°C, un volume V_1 =10mL de l'eau oxygénée H_2O_2 acidifié de concentration molaire C_1 =0.5mol/L et un volume V_2 =20mL d'iodure de potassium (K^+ + I^-) de concentration molaire C_2 =0.8mol/L.

- 1. Déterminer les deux couples qui interviennent dans la réaction et écrire la demi-équation de chaque couple.
- **2.** Déduire l'équation bilan.de la réaction d'oxydoréduction.
- 3. Quelle est l'évolution du mélange qui se produit que nous pouvons distingué à l'œil nu.
- 4. Dresser le tableau d'évolution de la réaction.
- 5. Calculer l'avancement maximal \mathbf{x}_{max} , et déduire le réactif limitant.
- **6.** Déduire la quantité de matière de la diode formée à la fin de l'expérience.
- 7. Nous répétons l'expérience précèdent toute en gardant la même température et en augmentant la concentration de la solution iodure de potassium à C'₂=1mol/L. Qu'arrivera-t-il à la durée de la réaction ?
- 8. Que se passerait-il-si nous mettons le premier mélange dans l'eau glacée ?