

MICROCOMPUTER

MN102H

MN102H60G/60K/F60G/F60K LSI User's Manual

Pub.No.22360-014E

Panasonic

PanaXSeries is a trademark of Matsushita Electric Industrial Co., Ltd.

The other corporation names, logotype and product names written in this book are trademarks or registered trademarks of their corresponding corporations.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this book and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this book is limited to showing representative characteristics and applied circuits examples of the products. It neither warrants non-infringement of intellectual property right or any other rights owned by our company or a third party, nor grants any license.
- (3) We are not liable for the infringement of rights owned by a third party arising out of the use of the product or technologies as described in this book.
- (4) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (5) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (6) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage, and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (7) When using products for which damp-proof packing is required, observe the conditions (including shelf life and amount of time let standing of unsealed items) agreed upon when specification sheets are individually exchanged.
- (8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.

If you have any inquiries or questions about this book or our semiconductors, please contact one of our sales offices listed at the back of this book.

About This Manual

This manual is intended for assembly-language programming engineers. It describes the internal configuration and hardware functions of the MN102H60G/60K/F60G/F60K microcontrollers.

Text Conventions

This manual contains titles, sub-titles, special notes and warnings. Supplementary comments appear in the sidebar.

Warning

Please read and follow these instructions to prevent damage or reduced performance.

Finding Desired Information

This manual provides four methods for finding desired information quickly and easily.

- (1) An index for the front of the manual for finding each section.
- (2) A table of contents at the front of the manual for finding desired titles.
- (3) A list of figures at the front of the manual for finding illustrations and charts by names.
- (4) A chapter name is located at the upper corner of each page.

Related Manuals

- MN102H Series LSI User's Manual
 - (Describes the MN102H series specifications)
- MN102H Series Instruction Manual
 - (Describes the instruction set)
- MN102H Series C Compiler User Manual Usage Guide
 - (Describes the installation, commands, and options for the C complier)
- MN102H Series C Compiler User Manual Language Description
 - (Describes the syntax for the C complier)
- MN102H Series C Compiler User Manual Library Reference
 - (Describes the standard libraries for the C complier)
- MN102H Series Cross Assembler User Manual Language Description
 - (Describes the assembler syntax and notation)
- MN102H Series C Source Code Debugger User Manual
 - (Describes the use of the C source code debugger)
- MN102H Series PanaXSeries Installation Manual
 - (Describes the installation of the C complier, cross-assembler, and C source code debugger and the procedures for using the in-circuit emulator)

1

2

3

4

5

6

7

8

9

10

11

Chapter 1 General Description

Chapter 2 Bus Interface

Chapter 3 Interrupts

Chapter 4 Timers

Chapter 5 Serial Interface

Chapter 6 Analog Interface

Chapter 7 ATC, ETC

Chapter 8 Ports

Chapter 10 System Control

Chapter 11 Low-power Modes

Chapter 11 Appendix

Contents

Chapter 1 General Description

1-1	General Description			
	1-1-1	Introduction	2	
	1-1-2	Feature	2	
	1-1-3	Overview	5	
1-2	Basic Spec	ifications	9	
1-3	Block Diagr	am	11	
1-4	Pin Descrip	tion	13	
	1-4-1	Single-chip Mode	13	
	1-4-2	Memory Expansion Mode with 8-bit Bus Address/Data		
		Separate Mode	14	
	1-4-3	Memory Expansion Mode with 16-bit Bus Address/Data Separate Mode	15	
	1-4-4	Memory Expansion Mode with 8-bit Bus Address/Data Shared Mode	16	
	1-4-5	Memory Expansion Mode with 16-bit Bus Address/Data Address/Data Shared Mode	17	
	1-4-6	Processor Mode with 8-bit Bus Address/Data Separate Mode	18	
	1-4-7	Processor Mode with 16-bit Bus Address/Data		
	1-4-8	Separate Mode Processor Mode with 8-bit Bus Address/Data Shared Mode	19 20	
	1-4-9	Processor Mode with 16-bit Bus Address/Data		
		Shared Mode	21	
	1-4-10	List of Pin Functions	22	
Cha	apter 2	Bus Interface		
2-1	Summary o	f Bus Interface	52	
	2-1-1	Overview	52	
	2-1-2	Control Registers	53	
2-2	Control Sig	nals	75	
	2-2-1	Overview	75	
2-3	Handshake	Wait Control	80	
	2-3-1	Overview	80	

Chapter 3 Interrupts

3-1 Interrupt Groups		oups	84
	3-1-1	Overview	84
	3-1-2	Control Registers	88
3-2	Interrupt Se	tup Examples	94
	3-2-1	External Pin Interrupt Setup Examples	94
	3-2-2	Key Input Interrupt Setup Examples	96
	3-2-3	Watchdog Timer Interrupt Setup Examples (1)	100
	3-2-4	Watchdog Timer Interrupt Setup Examples (2)	102
Cha	apter 4	Timers	
4-1	Summary of	f 8-bit Timer Functions	106
	4-1-1	Overview	106
	4-1-2	8-bit Timer Control Registers	110
	4-1-3	8-bit Timer Block Diagrams	112
4-2	8-bit Timer \$	Setup Examples	116
	4-2-1	Event Counter Using 8-bit Timer	116
	4-2-2	Clock Output Using 8-bit Timer	119
	4-2-3	Interval Timer Using 8-bit Timer	122
4-3	-	f 16-bit Timer Functions	126
	4-3-1	Overview	126
	4-3-2	16-bit Timer Control Registers	132
	4-3-3	16-bit Timer Block Diagrams	135
4-4	16-bit Timer	Setup Examples	137
	4-4-1	Event Counter Using 16-bit Timer	137
	4-4-2	One-phase PWM Output Using 16-bit Timer	140
	4-4-3	Two-phase PWM Output Using 16-bit Timer	145
	4-4-4	One-phase Capture Output Using 16-bit Timer	151
	4-4-5	Two-phase Capture Input Using 16-bit Timer	154
	4-4-6	Two-phase Encoder Input (4x) Using 16-bit Timer	158
	4-4-7	Two-phase Encoder Input (1x) Using 16-bit Timer	161
	4-4-8	One-shot Pulse Using 16-bit Timer	164
	4-4-9	External Count Direction Control Using 16-bit Timer	167
	4-4-10	External Reset Control Using 16-bit Timer	170

4-5	Summary o	f 8-bit PWM Functions	173
	4-5-1	Overview	173
	4-5-2	Control Registers	175
4-6	8-bit PWM	Setup Examples	177
	4-6-1	8-bit PWM Output	177
4-7	16-bit Pulse	Width Measure Functions	181
	4-7-1	Overview	181
	4-7-2	Control Registers	183
4-8	16-bit Pulse	Width Counter Setup	184
	4-8-1	16-bit Pulse Width Measure Counter	184
Cha	apter 5	Serial Interface	
•	apto. o		
5-1	Serial Interf	ace	188
	5-1-1	Overview	188
	5-1-2	Control Registers	190
	5-1-3	Serial Interface Connection	194
5-2	Serial Interf	ace Setup Examples	197
	5-2-1	Serial Transmission in Asynchronous Mode	197
	5-2-2	Serial Reception in Synchronous Mode	200
	5-2-3	Serial Clock Operation Example	203
	5-2-4	I ² C Transmission	207
	5-2-5	I ² C Reception	209
Cha	apter 6	Analog Interface	
6-1	Summary o	f A/D Converter	212
	6-1-1	Overview	212
	6-1-2	Control Registers	219
6-2	A/D Conver	ter Setup Examples	222
	6-2-1	Single Channel A/D Conversion	222
	6-2-2	Three Channel A/D Conversion	224

Chapter 7 ATC, ETC

7-1	Summary c	of ATC	228
	7-1-1	Overview	228
	7-1-2	Control Registers	230
7-2	ATC Setup	Examples	233
	7-2-1	Serial Reception	233
7-3	Summary of	of ETC	237
	7-3-1	Overview	237
	7-3-2	Control Registers	240
7-4	ETC Setup	Examples	243
	7-4-1	Transfer from External Memory to External Device	243
	7-4-2	Transfer from External Device to External Memory	
		(Burst Transfer)	247
	7-4-3	Transfer from External Device to External Memory	
		(One Byte Transfer)	251
Cha	apter 8	Ports	
8-1	Summary of	of Ports	256
	8-1-1	Overview	256
	8-1-2	Control Registers	257
	8-1-3	Port Block Diagram	260
8-2	Port Setup	Examples	272
	8-2-1	General-purpose Port Setup	272
8-3	Summary of	of Byte-swapped Registers	274
	8-3-1	Overview	274
Cha	apter 9	System Control	
9-1	Address Br	eak	278
	9-1-1	Overview	278
	9-1-2	Control Registers	279
	9-1-3	Address Break Setup Examples	280
9-2	System Re	lated Register Protection	282
	9-2-1	Overview	282
	9-2-2	Control Registers	282

Chapter 10 Low-power Modes

10-1	Summary of	f Low-power Modes	284
	10-1-1	Overview	284
	10-1-2	CPU Mode Control Registers	286
	10-1-3	Transferring between SLOW Mode and NORMAL Mode	288
	10-1-4	Switching to Standby Mode	291
Cha	apter 11	Appendix	
11-1	Electrical C	haracteristics	294
11-2	Data Appen	dix	321
	11-2-1	List of Special Registers	321
	11-2-2	MN102H60G/60K/F60G/F60K Address Map	498
	11-2-3	List of Pin Functions	500
11-3	Initialization	Program	502
11-4	Flash EEPF	ROM Version	504
	11-4-1	Overview	504
	11-4-2	Flash EEPROM Programming	506
	11-4-3	PROM Writer Mode	506
	11-4-4	Onboard Serial Programming Mode	506
	11-4-5	Hardware Used in Serial Programming Mode	507
	11-4-6	Connecting Onboard Serial Programming Mode	509
	11-4-7	System Configuration for Onboard Serial Programming	510
	11-4-8	Onboard Serial Programming Mode Setup	512
	11-4-9	Branch to User Program	514
	11-4-10	Serial Interface for Onboard Serial Programming	515
	11-4-11	PROM Writer/Onboard Serial Programming	515

MN102H Series Instruction Set MN102H Series Instruction Map

List of Figures

Figure 1-1-1	Processor Status Word (PSW)	5
Figure 1-1-2	Address Space (Memory Expansion Mode)	7
Figure 1-1-3	Interrupt Controller Configuration	8
Figure 1-1-4	Interrupt Servicing Sequence	8
Figure 1-3-1	Block Diagram	11
Figure 1-4-1	Pin Configuration in Single-chip Mode	13
Figure 1-4-2	Pin Configuration in Memory Expansion Mode	
	with 8-bit Bus Address/Data Separate Mode	14
Figure 1-4-3	Pin Configuration in Memory Expansion Mode	
	with 16-bit Bus Address/Data Separate Mode	15
Figure 1-4-4	Pin Configuration in Memory Expansion Mode	
	with 8-bit Bus Address/Data Shared Mode	16
Figure 1-4-5	Pin Configuration in Memory Expansion Mode	
	with 16-bit Bus Address/Data Shared Mode	17
Figure 1-4-6	Pin Configuration in Processor Mode	
	with 8-bit Bus Address/Data Separate Mode	18
Figure 1-4-7	Pin Configuration in Processor Mode	
	with 16-bit Bus Address/Data Separate Mode	19
Figure 1-4-8	Pin Configuration in Processor Mode	
	with 8-bit Bus Address/Data Shared Mode	20
Figure 1-4-9	Pin Configuration in Processor Mode	
_	with 16-bit Bus Address/Data Shared Mode	21
Figure 1-4-10	OSCI, OSCO Connection Example	48
Figure 1-4-11	XI, XO Connection Example	48
Figure 1-4-12	Reset Pin Connection Example	48
Figure 1-4-13	WAIT Signal Control Circuit Connection Example	48
Figure 1-4-14	External Dimensions	49
Figure 2-1-1	Address Space	52
Figure 2-1-2	SRAM Connection Example (16-bit Bus Width)	62
Figure 2-1-3	SRAM Connection Example (8-bit Bus Width)	63
Figure 2-1-4	DRAM (2WE Method) Connection Example	
	(16-bit Bus Width)	64
Figure 2-1-5	DRAM (2CAS Method) Connection Example	
	(16-bit Bus Width)	65
Figure 2-1-6	DRAM Connection Example (8-bit Bus Width)	66

Figure 2-3-1	Handshake Wait Control Timing	
	(1 Wait Cycles, Data Write)	80
Figure 2-3-2	Fixed Wait and Handshake Wait Control Timing (1 Wait Cycle	
	as Fixed Wait, 2 Wait Cycles as Whole Wait, Data Write)	81
Figure 3-1-1	Interrupt Controller Block Diagram	85
Figure 3-1-2	Watchdog Timer Block Diagram	85
Figure 3-1-3	Interrupt Servicing Time	87
Figure 3-2-1	External Pin Interrupt Block Diagram	94
Figure 3-2-2	External Pin Interrupt Timing	95
Figure 3-2-3	Key Input Interrupt Block Diagram	96
Figure 3-2-4	4×4 Key Input Interrupt Timing	96
Figure 3-2-5	Key Input Interrupt Timing	99
Figure 3-2-6	Watchdog Timer Interrupt Block Diagram	100
Figure 3-2-7	Watchdog Timer Interrupt Timing	101
Figure 3-2-8	Extended Watchdog Timer Interrupt Timing	102
Figure 4-1-1	8-bit Timer Block Diagram	107
Figure 4-1-2	Timer Configuration	109
Figure 4-1-3	8-bit Event Counter Input Timing	109
Figure 4-1-4	8-bit Timer Output and Interval Timer Timing	109
Figure 4-1-5	Timer 0 Block Diagram	112
Figure 4-1-6	Timer 1 Block Diagram	112
Figure 4-1-7	Timer 2 Block Diagram	113
Figure 4-1-8	Timer 3 Block Diagram	113
Figure 4-1-9	Timer 4 Block Diagram	114
Figure 4-1-10	Timer 5 Block Diagram	114
Figure 4-1-11	Timer 6 Block Diagram	115
Figure 4-1-12	Timer 7 Block Diagram	115
Figure 4-2-1	Event Counter Block Diagram	116
Figure 4-2-2	Event Counter Timing	118
Figure 4-2-3	Clock Output Configuration Example (8-bit Timer)	119
Figure 4-2-4	Clock Output Block Diagram (8-bit Timer)	119
Figure 4-2-5	Clock Output Timing (8-bit Timer)	121
Figure 4-2-6	Interval Timer Configuration Example (8-bit Timer)	122
Figure 4-2-7	Interval Timer Block Diagram (8-bit Timer)	122
Figure 4-2-8	Interval Timer Timing (8-bit Timer)	125

Figure 4-3-1	16-bit Timer Block Diagram	126
Figure 4-3-2	One-phase PWM Output Timing	128
Figure 4-3-3	One-phase PWM Output Timing (with Data Rewrite)	128
Figure 4-3-4	Two-phase PWM Output Timing	128
Figure 4-3-5	One-shot Pulse Output Timing	129
Figure 4-3-6	External Control Timing	129
Figure 4-3-7	Event Counter Input Timing	129
Figure 4-3-8	Input Capture 1 Timing	130
Figure 4-3-9	Input Capture 2 Timing	130
Figure 4-3-10	Two-phase Encoder (4x) Timing	131
Figure 4-3-11	Two-phase Encoder (1x) Timing	131
Figure 4-3-12	Timer 8 Block Diagram	135
Figure 4-3-13	Timer 9 Block Diagram	135
Figure 4-3-14	Timer 10 Block Diagram	136
Figure 4-3-15	Timer 11 Block Diagram	136
Figure 4-3-16	Timer 12 Block Diagram	136
Figure 4-4-1	Event Counter Block Diagram	137
Figure 4-4-2	Event Counter Timing (16-bit Timer)	139
Figure 4-4-3	One-phase PWM Output Block Diagram (16-bit Timer)	140
Figure 4-4-4	One-phase PWM Output Timing (16-bit Timer)	143
Figure 4-4-5	One-phase PWM Output Timing (16-bit Timer)	
	(Dynamical Duty Change)	144
Figure 4-4-6	Two-phase PWM Output Block Diagram	
	(16-bit Timer)	145
Figure 4-4-7	Two-phase PWM Output Timing (16-bit Timer)	149
Figure 4-4-8	Two-phase PWM Output Timing (16-bit Timer)	
	(Dynamical Duty Change)	150
Figure 4-4-9	One-phase Capture Input Block Diagram (16-bit Timer)	151
Figure 4-4-10	One-phase Capture Input Timing (16-bit Timer)	153
Figure 4-4-11	Two-phase Capture Input Block Diagram (16-bit Timer)	154
Figure 4-4-12	Two-phase Capture Input Timing (16-bit Timer)	157
Figure 4-4-13	Two-phase Encoder Input (4x) Block Diagram (16-bit Timer) .	158
Figure 4-4-14	Two-phase Encoder Input (4x) Configuration Example 1	158
Figure 4-4-15	Two-phase Encoder Input (4x) Configuration Example 2	158
Figure 4-4-16	Two-phase Encoder Input Timing (4x) (16-bit Timer)	160
Figure 4-4-17	Two-phase Encoder Input (1x) Block Diagram (16-bit Timer) .	161
Figure 4-4-18	Two-phase Encoder Input (1x) Configuration Example 1	161

Figure 4-4-19	Two-phase Encoder Input (1x) Configuration Example 2	161
Figure 4-4-20	Two-phase Encoder Input Timing (1x) (16-bit Timer)	163
Figure 4-4-21	One-shot Pulse Output Block Diagram (16-bit Timer)	164
Figure 4-4-22	One-shot Pulse Output Timing (16-bit Timer)	166
Figure 4-4-23	External Count Direction Control Block Diagram	
	(16-bit Timer)	167
Figure 4-4-24	External Count Direction Control Configuration Example	167
Figure 4-4-25	External Count Direction Control Timing (16-bit Timer)	169
Figure 4-4-26	External Reset Control Block Diagram (16-bit Timer)	170
Figure 4-4-27	External Reset Control Timing (16-bit Timer)	172
Figure 4-5-1	8-bit PWM Function	173
Figure 4-5-2	PWM Output Waveform	174
Figure 4-6-1	8-bit PWM Block Diagram	177
Figure 4-6-2	Timer 0 Timing	178
Figure 4-6-3	8-bit PWM Timing	180
Figure 4-7-1	16-bit Pulse Width Measure Counter	181
Figure 4-7-2	16-bit Pulse Width Measure Counter Operation Example	182
Figure 4-8-1	16-bit Pulse Width Measure Counter Block Diagram	184
Figure 4-8-2	16-bit Pulse Width Measure Counter Timing	186
Figure 5-1-1	Serial Interface Configuration	188
Figure 5-1-2	Synchronous Mode Connections	194
Figure 5-1-3	Asynchronous Mode Connections	194
Figure 5-1-4	I ² C Mode Connections	194
Figure 5-1-5	Asynchronous Serial Timing (Transmission)	195
Figure 5-1-6	Asynchronous Serial Timing (Reception)	195
Figure 5-1-7	Synchronous Serial Timing (Transmission)	196
Figure 5-1-8	Synchronous Serial Timing (Reception)	196
Figure 5-2-1	Asynchronous Transmission Block Diagram	197
Figure 5-2-2	Asynchronous Transmission Timing	199
Figure 5-2-3	Synchronous Reception Block Diagram	200
Figure 5-2-4	Clock Generation in Synchronous Reception	201
Figure 5-2-5	Serial Clock Block Diagram	203
Figure 5-2-6	Serial Clock Timing	206
Figure 5-2-7	Master Transmission Timing (with ACK)	208
Figure 5-2-8	Master Reception Timing	210

Figure 6-1-1	Analog Interface Configuration	212
Figure 6-1-2	A/D Converter Timing	213
Figure 6-1-3	Single Channel/Single Conversion Timing	214
Figure 6-1-4	Multiple Channels/Single Conversion Timing	215
Figure 6-1-5	Single Channel/Continuous Conversion Timing	216
Figure 6-1-6	Multiple Channels/Continuous Conversion Timing	217
Figure 6-1-7	A/D Converter Block Diagram	218
Figure 6-2-1	Analog Voltage Input Example	222
Figure 6-2-2	Single Channel A/D Conversion Block Diagram	222
Figure 6-2-3	Single Channel A/D Conversion Timing	223
Figure 6-2-4	3-channel A/D Conversion Configuration	224
Figure 6-2-5	3-channel A/D Conversion Block Diagram	224
Figure 6-2-6	3-channel A/D Conversion Timing	226
Figure 7-1-1	ATC Bus Acquisition Timing	228
Figure 7-2-1	ATC Serial Reception Block Diagram	233
Figure 7-2-2	Serial Reception Sequence	233
Figure 7-3-1	ETC Bus Acquisition Timing	237
Figure 7-4-1	ETC External Memory → External Device	
	Transfer Block Diagram	243
Figure 7-4-2	ETC External Memory → External Device	
	Transfer Connection	243
Figure 7-4-3	ETC External Memory → External Device	
	Burst Transfer Timing	246
Figure 7-4-4	ETC External Device → External Memory	
	(Burst) Transfer Block Diagram	247
Figure 7-4-5	ETC External Device → External Memory	
	(Burst) Transfer Configuration	247
Figure 7-4-6	ETC External Device → External Memory	
	Burst Transfer Timing	250
Figure 7-4-7	ETC External Device → External Memory	
	(One Byte) Transfer Block Diagram	251
Figure 7-4-8	ETC External Device → External Memory	
	(One Byte) Transfer Connection	251
Figure 7-4-9	ETC External Device → External Memory	
	(One Byte) Transfer Timing	254

Figure 8-1-1	I/O Port Configuration	256
Figure 8-2-1	General-purpose Port Setup Example	272
Figure 8-2-2	Basic Flowchart of General-purpose Port Input	273
Figure 8-2-3	Basic Flowchart of General-purpose Port Output	273
Figure 8-3-1	Byte-swapped Register	274
Figure 9-1-1	Address Break Block Diagram	278
Figure 9-1-2	Address Break Operation Example	278
Figure 9-1-3	Program Flow of Address Break Setup	280
Figure 9-1-4	Stack State after NMI Interrupt	281
Figure 10-1-1	CPU Operating Mode Changes	284
Figure 10-1-2	Operating Mode Control and Clock Oscillation On/Off	284
Figure 10-1-3	Sequence of Switching to/from Standby Mode	291
Figure 11-1-1	System Clock Timing	310
Figure 11-1-2	Reset Timing	310
Figure 11-1-3	Voltage Rise Timing	310
Figure 11-1-4	Data Transfer Signal Timing (Address/Data	
	Separate, without Wait, Read/Write)	311
Figure 11-1-5	Data Transfer Signal Timing (Address/Data	
	Separate, with Wait (1.5 or More), Read/Write)	312
Figure 11-1-6	Data Transfer Signal Timing (Address/Data Separate,	
	with Wait (1.5 or More), /RE Late, Short Mode)	313
Figure 11-1-7	Data Transfer Signal Timing (Address/Data Separate,	
	with Wait (1.5 or More), /WE Late, Short Mode)	314
Figure 11-1-8	Data Transfer Signal Timing (Address/Data Shared,	
	without Wait, Read/Write)	315
Figure 11-1-9	Data Transfer Signal Timing (Address/Data Shared,	
	with Wait (1.5 or More), Read/Write)	316
Figure 11-1-10	Data Transfer Signal Timing (Address/Data Shared,	
	with Wait (1.5 or More), ALE Late, Long Mode, /AD	
	Long Mode, Read)	317
Figure 11-1-11	Data Transfer Signal Timing (Address/Data Shared,	
	with Wait (1.5 or More), ALE Late, Long Mode, /AD	
	Long Mode, Write)	318

Figure 11-1-12	Bus Authority Request Signal Timing	319
Figure 11-1-13	Interrupt Signal Timing	319
Figure 11-1-14	Serial Interface Signal Timing 1 (Synchronous	
	Serial Transmission: Transfer in Progress)	319
Figure 11-1-15	Serial Interface Signal Timing 2 (Synchronous Serial	
	Transmission: Transfer End Timing at SBT Input)	319
Figure 11-1-16	Serial Interface Signal Timing 3 (Synchronous Serial	
	Transmission: Transfer End Timing at SBT Output)	320
Figure 11-1-17	Serial Interface Signal Timing 4 (Synchronous Serial	
	Reception: Transfer End Timing at SBT Input)	320
Figure 11-1-18	Timer/Counter Signal Timing	320
Figure 11-4-1	MN102HF60G EEPROM Memory Map	505
Figure 11-4-2	MN102HF60K EEPROM Memory Map	505
Figure 11-4-3	Flash EEPROM Program Flow	506
Figure 11-4-4	8-bit Serial Interface Block Diagram for Serial Writer	507
Figure 11-4-5	MN102HF60G EEPROM Memory Space	508
Figure 11-4-6	MN102HF60K EEPROM Memory Space	508
Figure 11-4-7	Pin Configuration During Serial Programming	509
Figure 11-4-8	System Configuration for Onboard Serial Writer	510
Figure 11-4-9	Target Board-Serial Writer Connection	510
Figure 11-4-10	Timing for Onboard Serial Programming Mode	512
Figure 11-4-11	Load Program Start Flow	513
Figure 11-4-12	Reset Service Routine Flow	514
Figure 11-4-13	Interrupt Service Routine Flow	514
Figure 11-4-14	Programming Flow	515

List of Tables

Table 1-1-1	Memory Modes	7
Table 1-2-1	Basic Specifications	9
Table 1-3-1	Block Functions	12
Table 1-4-1	List of Pin Functions	22
Table 2-1-1	Mode Setting	52
Table 2-1-2	List of Bus Interface Control Registers	61
Table 2-1-3	Address/Data Multiplex Mode (16-bit Bus Data Access)	67
Table 2-1-4	Address/Data Multiplex Mode (8-bit Bus Data Access)	68
Table 2-1-5	Address/Data Separate Mode (16-bit Bus Data Access)	69
Table 2-1-6	Address/Data Separate Mode (8-bit Bus Data Access)	70
Table 2-1-7	Address/Data Separate Mode (16-bit Bus DRAM	
	/WEH and /WEL Method)	71
Table 2-1-8	Address/Data Separate Mode (8-bit Bus DRAM	
	/WEH and /WEL Method)	72
Table 2-1-9	Address/Data Separate Mode (16-bit Bus DRAM	
	/UCAS and /LCAS Method)	73
Table 2-1-10	Address/Data Separate Mode (8-bit Bus DRAM	
	/UCAS and /LCAS Method)	74
Table 2-2-1	External Memory Control Signal Timing	75
Table 2-2-2	/RE Late and Short Modes (Address/Data Shared Mode)	76
Table 2-2-3	/WE Late and Short Modes (Address/Data Shared Mode)	77
Table 2-2-4	/RE Late and Short Modes (Address/Data Separate Mode)	78
Table 2-2-5	/WE Late and Short Modes (Address/Data Separate Mode) .	78
Table 2-2-6	ALE Late and Long Modes (Address/Data Shared Mode)	79
Table 2-2-7	AD Long Mode (Address/Data Shared Mode)	79
Table 3-1-1	Comparison of MN102H60G/60K/F60G/F60K and MN102B00/MN102L00	84
Table 3-1-2	Interrupt Vector and Class Assignment	86
Table 3-1-3	Handler Preprocessing	87
Table 3-1-4	Handler Postprocessing	87

Table 3-1-5	List of Interrupt Control Registers	91
Table 4-1-1	8-bit Timer Functions	108
Table 4-1-2	List of 8-bit Timer Control Registers	111
Table 4-3-1	16-bit Timer Functions	127
Table 4-3-2	List of 16-bit Timer Control Registers	134
Table 4-5-1	8-bit PWM Functions	174
Table 4-5-2	List of 8-bit PWM Registers	176
Table 4-7-1	List of 16-bit Pulse Width Measure Registers	183
Table 5-1-1	Serial Interface Functions	189
Table 5-1-2	List of Serial Interface Control Registers	193
Table 5-1-3	Baud Rate Setting Example in Asynchronous Mode	195
Table 5-2-1	Transfer Clock Setup Example	203
Table 6-1-1	A/D Converter Functions	213
Table 6-1-2	List of A/D Converter Control Registers	221
Table 7-1-1	ATC Functions	239
Table 7-1-2	List of ATC Control Registers	232
Table 7-3-1	ETC Connection Examples	238
Table 7-3-2	List of ETC Control Registers	242
Table 8-1-1	List of Port Control Registers	258
Table 8-1-2	Port Block Diagrams	260
Table 10-1-1	Watchdog Interrupt Interval	286
Table 11-4-1	Clock Frequency	511

Chapter 1 General Description

1-1 General Description

1-1-1 Introduction

The 16-bit MN102 series high-speed linear addressing version designs the new architecture for C-language programming based on a detailed analysis for embedded applications. This improves the previous system architecture in speed and function to meet the requirements in user systems including miniaturization to power consumption.

This series adapts a load/store architecture method for computing within registers instead of the accumulator system for computing within the memory space in the previous series. The basic instructions are one byte/one machine cycle. This reduces code size and improves compiler efficiency. This series uses the circuit designed for submicron technology providing optimized hardware and low system power consumption.

This series has up to 16 Mbytes of linear address space and can develop the highly efficient programs. The optimized hardware architecture allows lower power consumption even in large systems.

1-1-2 Features

This series contains a flexible and optimized hardware architecture as well as a simple and efficient instruction set. This allows economy and speed. This section describes the features of this series CPU.

1. High-speed Signal Processing

An internal multiplier operates 16-bit x16-bit = 32-bit in a single cycle. In addition, the hardware contains a saturation calculator which must be used in signal processing and increases the signal processing speed.

2. Linear Addressing for Large Systems

The MN102H series contains up to 16 Mbytes of linear address space. The CPU does not detect borders between address spaces, which provides an effective development environment. The hardware architecture is also optimized for large systems. The memory is not divided into instruction areas and data areas so that operations can share instructions.

3. Single-byte Basic Instruction Length

The MN102H series has replaced general registers with eight internal CPU registers divided four address registers (A0-A3) and four data registers (D0-D3). The register specification fields are four bits or less, and the code size of the basic instructions including register-to register operations and load/store operations is one byte.

4. High-speed Pipeline Processing

The MN102H series executes instructions in a 3-stage pipeline: fetch, decode, execute. This allows the MN102H series to execute instructions of single byte in one machine cycle.

5. Simple Instruction Set

The MN102H series uses an instruction set of 41 instructions, designed specially for the programming model for embedded applications. To shrink code size, instructions have a variable length of one to seven bytes. The most frequently used instructions in C-language compiler are single byte.

6. High-speed Interrupt Response

The MN102H series halts the instructions execution even during the execution of the instruction with long execution cycles. After an interrupt occurs, the program moves to the interrupt service routine within six cycles or less. The MN102H series improves real-time control performance using the interrupt handler which adjusts interrupt servicing speed.

7. Flexible Interrupt Control Structure

The interrupt controller supports a maximum of 64 interrupt vectors (of them, interrupt vectors 0 to 3 are reserved for nonmaskable interrupts). In addition, groups of up to four vectors are assigned to classes. Each class can be set to one of seven priority levels. This provides the software design flexibility and control. The CPU is compatible with software from previous Panasonic peripheral modules.

8. High-speed, High-functional External Interface

The MN102H series supports external interface functions including DMA, handshake function and bus arbitration.

9. C-language Development Environment

The MN102H series has simple hardware optimized for C-language programming and highly efficient C compiler. With this advantage, this series improves development environment for C-language embedded applications without expanding the program size. The **PanaXSeries** development tools support the MN102H series devices.

10. Outstanding Power Savings

The MN102H series contains separate buses for instructions, data and peripheral functions, which distribute and reduce load capacitance. This reduces overall power consumption. The MN102H series also supports three modes of SLOW, HALT and STOP for power savings.

PanaXSeries is a trademark of the Matsushita Electric Industrial Co., Ltd.

1-1-3 Overview

15

PSW

Reset:

This section describes the basic configuration and functions of the MN102H60G/60K/F60G/F60K.

■ Processor Status Word (PSW)

ST | S1 | S0 | IE

0

The PSW register contains the operating result flags and interrupt mask level flags.

IM2 IM1 IM0

Note 1

VX CX NX ZX

Note 2

CF NF

0

ZF

reset.

Note 1: These bits change depending on all 24 bits of the operation result.

Note 2: These bits change depending on the lower 16 bits of the operation result.

The IE flag should be set to 0 before the IM[2:0] flags of PSW are changed.

 Zero flag (ZF) is set if the lower 16 bits of the operation result are 0; otherwise it is reset.
 Negative flag (NF) is set if bit 15 of the op-

eration result is 0; otherwise it is reset.

Carry flag (CF) is set if the operation resulted in a carry or a borrow out of bit 15; otherwise it is

Overflow flag (VF) is set if the operation causes the sign bit to change in a 16-bit signed number; otherwise it is reset.

Extension zero flag (ZX) is set if all bits of the operation result are 0; otherwise it is reset.

Extension negative flag (NX) is set if the MSB of the operation result is 1, and it is reset if the MSB is 0.

Extension carry flag (CX) is set if the operation resulted in a carry or a borrow out of the MSB; otherwise it is reset.

Extension overflow flag (VX) is set if the operation causes the sign bit to change in a 24-bit signed number; otherwise it is reset.

IM[2:0] indicate the mask level (from 0 to 7) of interrupts that the CPU will accept from its seven interrupt input pins. The CPU will not accept any interrupt at a higher level than the indicated level here.

Interrupt enable flag (IE) controls maskable interrupt enable. The flag is set if IE=1, and it is reset if IE=0.

S[1:0] are OS software control bits. These are reserved for the OS.

Saturation flag controls whether or not the CPU performs a saturation operation. When this bit is 1, the CPU execute a saturate operation. When this bit is 0, the CPU operates a normal operation. The PXST instruction can reserve the meaning of this bit for the next instruction.

Figure 1-1-1 Processor Status Word (PSW)

Please refer to "MN102H Series Instruction Set" for the flags reflected by instructions.

■ Internal Registers, Memory, and Special Function Registers

Program Counter

The program counter specifies the 24-bit address of the program during the execution.

Address Registers

	_		
23			0
		A0	
		A1	
		A2	
		A3	

The address registers specify the data location on memory. Of four registers, A3 is assigned as the stack pointer.

Data Registers

The data registers perform all arithmetic and logic operations. When the byte-length (8-bit) or word-length (16-bit) data is transferred to memory or to another register, an instruction adds a zero or sign extension.

Multiplication/Division Register

15		0
	MDR	

The multiplication/division register stores the upper 16 bits of the 32-bit product of multiplication operations. In division operations, this register stores the upper 16 bits of the 32-bit dividend before execution, and the 16-bit remainder of the quotient after execution.

Processor Status Word

Memory, Special Function Registers, I/O Ports

ROM
RAM
CPUM, EFCR, IAGR
NMICR, xxICR
SCCTRn, TRXBUFn, SCSTRn
ANCTR, ANnBUF
TMn, BCn, BRn
MEMMD
PnOUT, PnIN, PnDIR

Memory (ROM, RAM), special function registers for peripheral function control and I/O ports are assigned to the same address space.

Internal Control Registers *

Interrupt Control Registers *

Serial Interfacel Registers *

A/D Converter Registers *

Timer/Counter Registers *

Memory Control Registers *

I/O Port Registers *

* This allocation is an example. Actual memory, peripheral functions, special function registers and I/O port allocation depends on the model.

Address Space

The memory contains up to 16 Mbytes of linear address space. The instruction and data areas are not separated, so that the internal RAM, special function registers for internal peripheral functions are allocated into the first 64 kbytes in memory as the basic configuration. There are three memory modes as following depending on models.

	*1	*2	*3	*4
MN102HF60G	128 KBytes	x'0A0000'	4 KBytes	x'009000'
MN102H60G	128 KBytes	x'0A0000'	4 KBytes	x'009000'
MN102HF60K	256 KBytes	x'0C0000'	10 KBytes	x'00A800'
MN102H60K	256 KBytes	x'0C0000'	10 KBytes	x'00A800'

Figure 1-1-2 Address Space (Memory Expansion Mode)

Table 1-1-1 Memory Modes

Mode	Address Bit Width	ROM Capacity	External Memory Access
Single-chip mode		128 K/256 Kbytes	Not accessible
Memory expansion mode	Up to 24 bits	120 10200 109100	Accessible
Processor mode Op to 24 bits		None	Acceptible

■ Interrupt Controller

The interrupt controller allocated to the outside of the core controls all nonmaskable and maskable interrupts except reset. Each class has up to four interrupt vectors and specifies any of seven priority levels.

Figure 1-1-3 Interrupt Controller Configuration

The CPU checks the processor status word to determine whether an interrupt request is accepted or not. If an interrupt is accepted, automatic servicing by hardware starts and the program counter and PSW are pushed to the stack. Next, the program moves to interrupt, searches the interrupt vector and branches to the entry address of the interrupt service routine for that interrupt.

Figure 1-1-4 Interrupt Servicing Sequence

1-2 Basic Specification

Table 1-2-1 Basic Specifications

Internal multiplier (16-bit×16-bit=32-bit) and internal saturate operation calculator Load/store architecture Eight registers: Four 24-bit data registers Four 24-bit data registers Others: 24-bit program counter 16-bit processor status word 16-bit multiplication/division register		Table 1-2-1 Basic opecinications
Eight registers: Four 24-bit data registers Four 24-bit address registers Others: 24-bit program counter 16-bit processor status word 16-bit multiplication/division register Instruction Set 41 instructions 6 addressing modes 1-byte basic instruction length Code assignment: 1 byte (basic) + 0 to 6 bytes (extension) Performance Performance For register-to-register operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For branch operations, minimum 2 cycles (117.6 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycl	Structure	Internal multiplier (16-bit×16-bit=32-bit) and internal saturate operation calculator
Four 24-bit address registers Others: 24-bit program counter 16-bit processor status word 16-bit multiplication/division register		Load/store architecture
Others: 24-bit program counter 16-bit processor status word 16-bit multiplication/division register Instruction Set 41 instructions 6 addressing modes 1-byte basic instruction length Code assignment: 1 byte (basic) + 0 to 6 bytes (extension) Performance Maximum of 17-MHz internal operating frequency with a 34-MHz external oscillator Instruction execution clock cycles: For register-to-register operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For branch operations, minimum 2 cycles (117.6 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/sto		Eight registers: Four 24-bit data registers
Instruction Set		Four 24-bit address registers
Interrupt Interrace clock generation		Others: 24-bit program counter
Instruction Set 41 instructions 6 addressing modes 1-byte basic instruction length Code assignment: 1 byte (basic) + 0 to 6 bytes (extension) Performance Performance Instruction execution clock cycles: For register-to-register operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For branch operations, minimum 2 cycles (117.6 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For loa		16-bit processor status word
Second Property of the Company of		16-bit multiplication/division register
1-byte basic instruction length Code assignment: 1 byte (basic) + 0 to 6 bytes (extension)	Instruction Set	41 instructions
Code assignment: 1 byte (basic) + 0 to 6 bytes (extension) Performance Maximum of 17-MHz internal operating frequency with a 34-MHz external oscillator Instruction execution clock cycles: For register-to-register operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For branch operations, minimum 2 cycles (117.6 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) Pipeline 3 stage: instruction fetch, decode, execute Up to 16-Mbyte linear address space Shared instruction/data space Interrupt 1 external nonmaskable interrupt 46 maskable interrupts 7 priority level settings Low-power Mode SLOW, STOP, HALT Oscillation Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation		6 addressing modes
Performance Maximum of 17-MHz internal operating frequency with a 34-MHz external oscillator Instruction execution clock cycles: For register-to-register operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For branch operations, minimum 2 cycles (117.6 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) Pipeline 3 stage: instruction fetch, decode, execute Address Space Shared instruction/data space Interrupt 1 external nonmaskable interrupt 46 maskable interrupts 7 priority level settings Low-power Mode SLOW, STOP, HALT Oscillation Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation		1-byte basic instruction length
Instruction execution clock cycles: For register-to-register operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For branch operations, minimum 2 cycles (117.6 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) Pipeline 3 stage: instruction fetch, decode, execute Address Space Up to 16-Mbyte linear address space Shared instruction/data space Interrupt 1 external nonmaskable interrupt 46 maskable interrupts 7 priority level settings Low-power Mode SLOW, STOP, HALT Oscillation Up to 34 MHz Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation		Code assignment: 1 byte (basic) + 0 to 6 bytes (extension)
For register-to-register operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) For branch operations, minimum 2 cycles (117.6 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) Pipeline 3 stage: instruction fetch, decode, execute Address Space Up to 16-Mbyte linear address space Shared instruction/data space Interrupt 1 external nonmaskable interrupt 46 maskable interrupts 7 priority level settings Low-power Mode SLOW, STOP, HALT Oscillation Up to 34 MHz Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7):	Performance	Maximum of 17-MHz internal operating frequency with a 34-MHz external oscillator
For branch operations, minimum 2 cycles (117.6 ns with a 34-MHz external oscillator) For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) Pipeline 3 stage: instruction fetch, decode, execute Address Space Up to 16-Mbyte linear address space Shared instruction/data space Interrupt 1 external nonmaskable interrupt 46 maskable interrupts 7 priority level settings Low-power Mode SLOW, STOP, HALT Oscillation Up to 34 MHz Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation		Instruction execution clock cycles:
For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator) Pipeline 3 stage: instruction fetch, decode, execute Address Space Up to 16-Mbyte linear address space Shared instruction/data space Interrupt 1 external nonmaskable interrupt 46 maskable interrupts 7 priority level settings Low-power Mode SLOW, STOP, HALT Oscillation Up to 34 MHz Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation		For register-to-register operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator)
Pipeline 3 stage: instruction fetch, decode, execute Address Space Up to 16-Mbyte linear address space Shared instruction/data space Interrupt 1 external nonmaskable interrupt 46 maskable interrupts 7 priority level settings Low-power Mode SLOW, STOP, HALT Oscillation Up to 34 MHz Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation		For branch operations, minimum 2 cycles (117.6 ns with a 34-MHz external oscillator)
Address Space Up to 16-Mbyte linear address space Shared instruction/data space Interrupt 1 external nonmaskable interrupt 46 maskable interrupts 7 priority level settings Low-power Mode SLOW, STOP, HALT Oscillation Up to 34 MHz Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation		For load/store operations, minimum 1 cycle (58.8 ns with a 34-MHz external oscillator)
Interrupt 1 external nonmaskable interrupt 46 maskable interrupts 7 priority level settings Low-power Mode SLOW, STOP, HALT Oscillation Up to 34 MHz Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation	Pipeline	3 stage: instruction fetch, decode, execute
Interrupt 1 external nonmaskable interrupt 46 maskable interrupts 7 priority level settings Low-power Mode SLOW, STOP, HALT Oscillation Up to 34 MHz Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation	Address Space	Up to 16-Mbyte linear address space
46 maskable interrupts 7 priority level settings Low-power Mode SLOW, STOP, HALT Oscillation Up to 34 MHz Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation		Shared instruction/data space
Low-power Mode SLOW, STOP, HALT Oscillation Up to 34 MHz Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation	Interrupt	1 external nonmaskable interrupt
Low-power Mode SLOW, STOP, HALT Oscillation Up to 34 MHz Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation		46 maskable interrupts
Oscillation Up to 34 MHz Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation		7 priority level settings
Frequency Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation	Low-power Mode	SLOW, STOP, HALT
Timer/Counter Eight 8-bit timers (TM0 to TM7): Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation	Oscillation	Up to 34 MHz
Cascading function (form as 16-bit to 64-bit timer) Timer output Internal clock source or external clock source Serial Interface clock generation	Frequency	
Timer output Internal clock source or external clock source Serial Interface clock generation	Timer/Counter	Eight 8-bit timers (TM0 to TM7):
Internal clock source or external clock source Serial Interface clock generation		Cascading function (form as 16-bit to 64-bit timer)
Serial Interface clock generation		Timer output
		Internal clock source or external clock source
Start timing generation for A/D converter		Serial Interface clock generation
		Start timing generation for A/D converter

Table 1-2-1 Basic Specifications

Timer/Counter	Five 16-bit timers (TM8 to TM12):
	Two channels of compare/capture registers
	Selectable internal or external clock
	PWM/one-shot pulse output
	Two-phase encoder input (4x or 1x method)
	Two 8-bit PWM (TM13, TM14):
	Two internal compare registers for each channel
	Two pattern outputs
	Can be cascaded
	One 16-bit pulse width counter (TM15):
	Capture the counter value whenever the input pulse rises
	16-bit watchdog timer
ATC	Four Channels
	Automatic transfer is possible between memories, memory and peripheral I/O for each interrupt vector.
	Transfer unit: byte or word
	Transfer mode: single-chip or burst mode
	Transfer addressing: source, destination pointer, increment
	Up to 4096 words can be transferred
	Access to 16-Mbyte address space
ETC	Two Channels
	Automatic transfer is possible between external device and external memory.
	Transfer unit: byte or word
	Transfer mode: single-chip or burst mode
	Transfer addressing: source, destination pointer, increment
	Up to 4096 words can be transferred
	Access to 16-Mbyte address space
Serial Interface	Three Synchronous Interfaces (ASCI0 to ASCI2)
	Two shared UART/Synchronous/I ² C (single master only) Interfaces (ASCI3, ASCI4)
A/D Converter	10-bit with 8 channels (can be used as 8-bit)
	Automatic Scanning
External Expansion	Address/data multiplex port function
	Address/data separate port function
Memory Interface	DRAM Interface (8-bit/16-bit width)
	Burst ROM Interface
I/O Port	Maximum of 82 I/O ports in single-chip mode
	Maximum of 47 I/O ports in address/data multiplex mode
	Maximum of 40 I/O ports in address/data separate mode
Package	100-pin LQFP

1-3 Block Diagram

Figure 1-3-1 Block Diagram

Table 1-3-1 Block Functions

Blcok	Function
Clock Generator	An oscillation circuit connected to an external crystal supplies the clock to all blocks in the CPU.
Program Counter	The program counter generates addresses for instruction queues. Normally it increments based on the sequencer indications, but for branch instructions and interrupt acceptance, it sets the branch address and the ALU operation result.
Instruction Queue	The instruction queue contains up to four bytes of prefetched instructions.
Instruction Decoder	The instruction decoder decodes the contents of instruction queue and generates control signals needed for the instruction execution. The instruction executes by controlling each block in the CPU.
Quick Decoder	The quick decoder decodes the 2-byte or larger instruction at faster speed.
Instruction Execution Controller	The instruction execution controller controls the CPU operations based on results from the instruction decoder and interrupt requests.
ALU	The ALU calculates the operand addresses for arithmetic operations, logic operations, shift operations, register relative indirect addressing, indexed addressing, register indirect addressing.
Multiplier	The multiplier calculates 16 bits \times 16 bits = 32 bits.
Internal ROM and RAM	These memory allocate the program, data and stack areas.
Address Registers (An)	The address registers (An) store the addresses in memory accessed during data transfer. They also store the base addresses in register relative indirect addressing, indexed addressing and register indirect addressing modes.
Operation Registers	The data registers (Dn) store data transferred to memory and results of arithmetic operations. They also store the offset addresses in indexed addressing and register indirect addressing modes. The multiplication/division register (MDR) stores data for multiplication/division operations.
PSW	The processor status word register stores the flags that indicate the status of the CPU interrupt controller and operation results.
Interrupt Controller	The interrupt controller detects interrupt requests from the peripheral functions, and requests the CPU to move to the interrupt servicing routine.
Bus Controller	The bus Controller controls the connection between the CPU internal bus and the CPU external bus. It also contains the bus arbitration function.
Internal Peripheral Function	The MN102H60G/60K/F60G/F60K contains internal peripheral functions including timers, serial interface, A/D converter and D/A converters. Internal peripheral functions vary depending on the chip models.

1-4 Pin Description

1-4-1 Single-chip Mode

Figure 1-4-1 Pin Configuration in Single-chip Mode

1-4-2 Memory Expansion Mode with 8-bit Bus Address/ Data Separate Mode

Figure 1-4-2 Pin Configuration in Memory Expansion Mode with 8-bit Bus Address/Data Separate Mode

1-4-3 Memory Expansion Mode with 16-bit Bus Address/Data Separate Mode

Figure 1-4-3 Pin Configuration in Memory Expansion Mode with 16-bit Bus Address/Data Separate Mode

1-4-4 Memory Expansion Mode with 8-bit Bus Address/Data Shared Mode

Figure 1-4-4 Pin Configuration in Memory Expansion Mode with 8-bit Bus Address/Data Shared Mode

1-4-5 Memory Expansion Mode with 16-bit Bus Address/Data Shared Mode

Figure 1-4-5 Pin Configuration in Memory Expansion Mode with 16-bit Bus Address/Data Shared Mode

1-4-6 Processor Mode with 8-bit Bus Address/Data Separate Mode

Figure 1-4-6 Pin Configuration in Processor Mode with 8-bit Bus Address/Data Separate Mode

1-4-7 Processor Mode with 16-bit Bus Address/Data Separate Mode

Figure 1-4-7 Pin Configuration in Processor Mode with 16-bit Bus Address/Data Separate Mode

1-4-8 Processor Mode with 8-bit Bus Address/Data Shared Mode

Figure 1-4-8 Pin Configuration in Processor Mode with 8-bit Bus Address/Data Shared Mode

1-4-9 Processor Mode with 16-bit Bus Address/Data Shared Mode

Figure 1-4-9 Pin Configuration in Processor Mode with 16-bit Bus Address/Data Shared Mode

1-4-10 List of Pin Functions

Refer to "11-2-3 List of Pin Functions" for each pin's input level and Schmidt availability. TTL in the input level column means that the input is determined at TTL level. CMOS in the input level column means that the input is determined at CMOS level. The column with "yes" sign shows Schmidt, while the column with no mark shows no Schmidt. Pull-up can be programmable with the pull-up control registers. Please refer to "Chapter 8 Ports" for details.

Table 1-4-1 List of Pin Functions (1/26)

Pin Number	Pin Name	I/O	Function	Description
17 22 66 83	VDD VDD VDD VDD		Power Power Power Power	There are four VDD pins. These four pins must be connected to a power supply of 3.0 V to 3.6 V.
19 92	Vss Vss	-	Power (Ground) Power (Ground)	There are two Vss pins. They must be connected to a power supply of 0 V.
34	AVDD	-	Analog Voltage	There is one AVDD. It must be connected to the same voltage as VDD.
61	AVss	-	Analog Voltage (Ground)	There is one AVss. It must be connected to the same voltage as Vss.
43	Vref -	-	Analog Basic Voltage	There is one Vref It must be connected with relation of Vss <= Vref - < Vref + <= VDD.
54	Vref +	-	Analog Basic Voltage	There is one Vref +. It must be connected with relation of Vss <= Vref - < Vref + <= VDD.

Table 1-4-1 List of Pin Functions (2/26)

Pin Number	Pin Name	I/O	Function	Description
23 24	osci osco	Input	High-speed Oscillator Input High-speed Oscillator Output	For a self-excited oscillator configuration, connect crystal or ceramic oscillator across these two pins. They have a built-in feedback resistor between them. For stability, insert capacitor of 20 pF to 33 pF between the OSCI pin or the OSCO pin and the Vss pin (For the exact capacitance, consult the oscillator manufacturer). For an external oscillator configuration, connect the OSCI pin to an oscillator with an amplitude of 4 MHz to 34 MHz and the width between Vpd and Vss. Leave the OSCO pin open. Refer to "Figure 1-4-10". Connecting the OSCO pin with the external circuit directly is not allowed when the oscillator clock is taken from the chip. Select the BOSC pin for a synchronous signal.
20 21	XI XO	Input	Low-speed Oscillator Input Low-speed Oscillator Output	For a self-excited oscillator configuration, connect crystal or ceramic oscillator across these two pins. They have a built-in feedback resistor between them. For stability, insert capacitor of 100 pF to 200 pF between the XI pin or the XO pin and the Vss pin (For the exact capacitance, consult the oscillator manufacturer). For an external oscillator configuration, connect the XI pin to an oscillator with an amplitude of 32 kHz to 166 kHz and the width between VDD and Vss. Leave the XO pin open. Refer to "Figure 1-4-11". If the XI pin is not used as the low-speed oscillator input pin, connect the XI pin to Vss or VDD. If the XO pin is not used as the low-speed oscillator output pin, leave the XO pin open. When the oscillation clock is taken from the chip, connecting the XO pin with the external circuit directly is not allowed. Select the BOSC pin for a synchronous signal.
	PB1	I/O	General-purpose port B1 pin	If pin 20 is not used as the XI pin, this pin can be used as the general-purpose I/O port. The PBMD register switches the function. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".

Table 1-4-1 List of Pin Functions (3/26)

Pin Number	Pin Name	I/O	Function	Description
82	RST	Input	Reset Input	This pin resets the chip. With a 34-MHz oscillator, reset starts when the low level is input to this pin for more than 117 ns. Reset starts even when the noise is input to this pin for 117 ns. When the high level is input to the pin, reset is released. After the reset pin becomes high level, the oscillation waits of the high-speed oscillation pins (OSCI and OSCO) are performed (approximately 3.855 ms with a 34-MHz oscillator). After that, the chip starts executing the instruction from x'080000'. Refer to "Figure 1-4-12".
18	BOSC	Output	System Clock Output	This pin provides the system clock. After reset release, the pin outputs BOSC. When the high-speed oscillation pin is operating at 34 MHz, the pin outputs the clock of 34 MHz.
	BIBT1 BIBT2	Output Output	Internal System Clock Output	Pin 18 can output BIBT1 or BIBT2 signal of the internal system clock by setting the PBMD register. These signals are inverted signals.
	PB0	I/O	General-purpose Port B0	If pin 18 is not used as the BOSC pin, it can be used as a general-purpose input/output port. The PBMD register switches the function. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
25	MODE	Input	Mode Setup Input	This pin sets either processor mode or single-chip mode (memory expansion mode). Pulling the pin low sets the processor mode. In processor mode, Internal ROM becomes the external memory area, and the chip executes the instruction from x'080000' in memory connected externally. Pulling the pin high sets the single-chip mode (memory expansion mode). The chip executes the instruction from x'080000' of Internal ROM. In memory expansion mode, the port mode register is set to address output and data output by instruction. Do not change the mode setting in this pin during operation. When the setting is changed, proper operation cannot be guaranteed. Refer to "2-1 Summary of Bus Interface".

Table 1-4-1 List of Pin Functions (4/26)

Pin Name	I/O	Function	Description
WORD	Input	Data Bus Width Setup Input	This pin sets either 8-bit data bus width or 16-bit data bus width in the external memory space 0 immediately after reset release in processor mode or memory expansion mode. Pulling the pin high sets 8-bit bus width while pulling the pin low sets 16-bit bus width. In processor mode or memory expansion mode, this pin must be used as the data bus width setup pin. The MEMMD1 register determines the data bus width for the external memory spaces 1 to 3. The MEMMD1 register can reset the data bus width for the external memory space 0 after reset release, regardless the level of this pin. Refer to "2-1 Summary of Bus Interface".
P57	I/O	General-purpose Port 57	This pin can be used as a general-purpose input/output port in single-chip mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
ADSEP	Input	Address/Data Separate, Shared Mode Setup	This pin sets either address/data separate mode or address/data shared mode in processor mode or memory expansion mode. Pulling the pin high sets the address/data separate mode while pulling the pin low sets the address/data shared mode. In processor mode or memory expansion mode, this pin must be used as the address/data separate, shared mode setup pin. Do not change this pin's input during operation. When the setting is changed, proper operation cannot be guaranteed. Refer to "2-1 Summary of Bus Interface".
PA5	I/O	General-purpose Port A5	This pin can be used as a general-purpose input/output port in single-chip mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	P57 ADSEP	P57 I/O ADSEP Input	WORD Input Data Bus Width Setup Input P57 I/O General-purpose Port 57 ADSEP Input Address/Data Separate, Shared Mode Setup

Table 1-4-1 List of Pin Functions (5/26)

Pin Number	Pin Name	I/O	Function	Description
9	BREQ P54	Input	Bus Request Input General-purpose Port 54	/BREQ and /BRACK pins operate bus arbitration. Pulling /BREQ low suspends the execution of the current instruction, makes addresses, data and control signals high impedance, and then releases bus. After that, pull /BRACK low. While the chip is accessing the bus, the chip releases the bus after the bus access is completed. Pulling /BREQ high at the level detector restores the bus. This pin can be used as a general-purpose input/output port in single-chip mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
10	BRACK	Output	Bus Request Enable Output	/BREQ and /BRACK pins operate bus arbitration. Refer to "Pin 9 /BREQ Description" for details.
	P55	I/O	General-purpose Port 55	This pin can be used as a general-purpose input/output port in single-chip mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
2	RE	Output	Read Enable Output	This pin provides a control signal for the external memory read in processor mode or memory expansion mode. When connecting SRAM and ROM, connect /RE to /OE in memory. /RE outputs low level during read operation and the chip reads the contents of the memory. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state. Refer to "11-2-3 List of Pin Functions".
	P61	I/O	General-purpose Port 61	This pin can be used as a general-purpose input/output port if it is not used as /RE in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".

Table 1-4-1 List of Pin Functions (6/26)

Pin Number	Pin Name	I/O	Function	Description
3	WEL	Output	Lower Byte Write Enable Output	This pin provides a control signal for the external memory write in processor mode or memory expansion mode. When connecting SRAM and ROM, connect /WEL to /WE in memory. /WEL outputs low level when writing the lower bytes (bits 0 to 7 of data) and writes the data to memory. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state. Refer to "11-2-3 List of Pin Functions".
	P62	I/O	General-purpose Port 62	This pin can be used as a general-purpose input/output port if it is not used as /WEL in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
4	WEH	Output	Upper Byte Write Enable Output	This pin provides a control signal for the external memory write in processor mode or memory expansion mode. When connecting SRAM and ROM, connect /WEH to /WE in memory. /WEH outputs low level when writing the upper bytes (bits 8 to 15 of data) and writes the data to memory. /WEH is invalid when 8-bit bus width is selected in processor mode or memory expansion mode so that it can be used as a general-purpose port 63 pin. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state. Refer to "11-2-3 List of Pin Functions".
	WE	Output	Write Enable Output for DRAM Connection	This pin provides a write enable pin when connecting DRAM in processor mode or memory expansion mode. When connecting DRAM with 2CAS method, connect this pin to /WE in DRAM. /WE outputs low during write operation and writes the data to DRAM. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state. Refer to "11-2-3 List of Pin Functions".

Table 1-4-1 List of Pin Functions (7/26)

Pin Number	Pin Name	I/O	Function	Description
	P63	I/O	General-purpose Port 63	This pin can be used as a general-purpose input/output port when 8-bit bus width is selected in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
5	CS0	Output	Chip Select Output	This pin provides a chip select signal corresponding to each external memory space when accessing SRAM and ROM connected to the external memory spaces 0 to 3 in processor mode or memory expansion mode. Connect /CS0 - /CS3 to /CS pins in external memory. /CS0 cannot be output when accessing Internal ROM or Internal RAM. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state. Refer to "11-2-3 List of Pin Functions".
	TM13OA	Output	Timer 13A Output	This pin can be used as a timer 13 PWM output pin if it is not used as a chip select output pin in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 4 Timers".
	P50	I/O	General-purpose Port 50	This pin can be used as a general-purpose input/output port if it is not used as /CS0 in single-chip mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
6	CS1	Output	Chip Select Output	Refer to "Pin 5 /CS0 Description" for details.
	TM13OB	Output	Timer 13B Output	This pin can be used as a timer 13 PWM output pin if it is not used as a chip select output pin in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 4 Timers".
	P51	I/O	General-purpose Port 51	This pin can be used as a general-purpose input/output port if it is not used as /CS1 in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
7	CS2	Output	Chip Select Output	Refer to "Pin 5 /CS0 Description" for details.
	TM14OA	Output	Timer 14A Output	This pin can be used as a timer 14 PWM output pin if it is not used as a chip select output pin in single-chip mode, processor mode or memory expansion mode. The same function is also assigned to pin 48. Refer to "Chapter 4 Timers".
	P52	I/O	General-purpose Port 52	This pin can be used as a general-purpose input/output port if it is not used as /CS2 in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".

Table 1-4-1 List of Pin Functions (8/26)

Pin Number	Pin Name	I/O	Function	Description
8	CS3	Output	Chip Select Output	Refer to "Pin 5 /CS0 Description" for details.
	TM14OB	Output	Timer 14B Output	This pin can be used as a timer 14 PWM output pin if it is not used as a chip select output pin in single-chip mode, processor mode or memory expansion mode. The same function is also assigned to pin 49. Refer to "Chapter 4 Timers".
	P53	I/O	General-purpose Port 53	This pin can be used as a general-purpose input/output port if it is not used as /CS3 in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
11	ALE	Output	Address Latch Enable Output (Positive Logic) Address Latch Enable Output (Negative Logic)	This pin provides a timing signal of latching the address which outputs to AD0 to AD15 pins during address/data shared mode in processor mode or memory expansion mode. ALE outputs at positive logic at reset release, but the P5HMD changes to negative logic. Because of this, ALE cannot be used at negative logic in processor mode. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state.
	BSTRE	Output	Read Enable for Burst ROM	When connecting burst ROM to the external memory space in processor mode or memory expansion mode, connect this pin to /RE in burst ROM. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state.
	P56	I/O	General-purpose Port 56	This pin can be used as a general-purpose input/output port if it is not used as ALE, /ALE or /BSTRE in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	TM15IA	Input	Timer 15A Input	This pin can be used as a timer 15 pulse input pin if it is not used as ALE, /ALE or /BSTRE in single-chip mode, processor mode or memory expansion mode. Because pin 26 has the same function, either pin 26 or pin 11 must be selected. Refer to "Chapter 4 Timers".

Table 1-4-1 List of Pin Functions (9/26)

Pin Number	Pin Name	I/O	Function	Description
1	WAIT	Input	Bus Cycle Wait Input	This pin extends or shortens the cycle of accessing to the external memory based on the signal inputted to this pin when the external memory wait is set to the handshake mode in processor mode or memory expansion mode. Pulling this pin low ends access to the external memory. Refer to "Figure 1-4-13, Table 2-1-3 to Table 2-1-6".
	P60	I/O	General-purpose Port 60	This pin can be used as a general-purpose input/output port if it is not used as WAIT in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	SBT2	I/O	Serial Interface 2 Clock Input/Output	This pin can be used as a synchronous transfer clock signal input/output pin for serial interface 2 if it is not used as WAIT in single-chip mode, processor mode or memory expansion mode. Because pin 13 has the same function, either pin 13 or pin 1 must be selected. Refer to "Chapter 5 Serial Interface".
13	A0	Output	Address Output	This pin outputs the address of the external memory in processor mode or memory expansion mode. Connect this pin to address pin of the external memory or address decode circuit. When it is not accessing the external memory, the output value is undefined. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state.
	P20	I/O	General-purpose Port 20	This pin can be used as a general-purpose input/output port if it is not used as the address output pin in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	SBT2	I/O	Serial Interface 2 Clock Input/Output	This pin can be used as a synchronous transfer clock signal input/output pin for serial interface 2 if it is not used as WAIT in single-chip mode, processor mode or memory expansion mode. Because pin 13 has the same function, either pin 13 or pin 1 must be selected. Refer to "Chapter 5 Serial Interface".

Table 1-4-1 List of Pin Functions (10/26)

Pin Number	Pin Name	I/O	Function	Description
14	A1	Output	Address Output	Refer to "Pin 13 A0 Description" for details.
	P21	I/O	General-purpose Port 21	Refer to "Pin 13 P20 Description" for details.
	SBI2	Input	Serial Interface 2 Data Input	This pin can be used as a data input pin for serial interface 2 if it is not used as the address output pin in single-chip mode, processor mode or memory expansion mode. Because pin 50 has the same function, either pin 50 or pin 14 must be selected. Refer to "Chapter 5 Serial Interface".
15	A2	Output	Address Output	Refer to "Pin 13 A0 Description" for details.
	P22	I/O	General-purpose Port 21	Refer to "Pin 13 P20 Description" for details.
	SBO2	Output	Serial Interface 2 Data Output	This pin can be used as a data output pin for serial interface 2 if it is not used as the address output pin in single-chip mode, processor mode or memory expansion mode. Because pin 53 has the same function, either pin 53 or pin 15 must be selected. Refer to "Chapter 5 Serial Interface".
16	A3	Output	Address Output	Refer to "Pin 13 A0 Description" for details.
	P23	I/O	General-purpose Port 23	Refer to "Pin 13 P20 Description" for details.

Table 1-4-1 List of Pin Functions (11/26)

Pin Number	Pin Name	I/O	Function	Description
26	A4	Output	Address Output	Refer to "Pin 13 A0 Description" for details.
	P24	I/O	General-purpose Port 24	Refer to "Pin 13 P20 Description" for details.
	TM15IA	Input	Timer 15 Pulse Input	This pin can be used as a timer 15 pulse input pin if it is not used as the address output pin in single-chip mode, processor mode or memory expansion mode. Because pin 11 has the same function, either pin 11 or pin 26 must be selected. Refer to "Chapter 4 Timers".
27-29	A5-A7	Output	Address Output	Refer to "Pin 13 A0 Description" for details.
	P25-P27	I/O	General-purpose Port 25-27	Refer to "Pin 13 P20 Description" for details.
30-33,	A8-A15	Output	Address Output	Refer to "Pin 13 A0 Description" for details.
35-38	P30-P37	I/O	General-purpose Port 30-37	Refer to "Pin 13 P20 Description" for details.
	K10-7	Input	Key Input Interrupt	These pins can be used as key input interrupt pins if they are not used as the address output pins in single-chip mode, processor mode or memory expansion mode. The key input interrupt pins can be controlled in bit units. Refer to "3-2-2 Key Input Interrupt Setup Examples".

Table 1-4-1 List of Pin Functions (12/26)

	Pin Number	Pin Name	I/O	Function	Description
	39-42	A16-A19	Output	Address Output	Refer to "Pin 13 A0 Description" for details.
		P40-P43	I/O	General-purpose Port 40-43	Refer to "Pin 13 P20 Description" for details.
_					
	44-45	A20-A21	Output	Address Output	Refer to "Pin 13 A0 Description" for details.
		P44-P45	I/O	General-purpose Port 44-45	Refer to "Pin 13 P20 Description" for details.
		AN4-AN5	Input	A/D Conversion Input	These pins can be used as A/D conversion input pins if they are not used as address output pins in single-chip mode, processor mode or memory expansion mode. Refer to "6-1 Summary of A/D Converter".
-	46	A22	Output	Address Output	Refer to "Pin 13 A0 Description" for details.
		P46	I/O	General-purpose Port 46	Refer to "Pin 13 P20 Description" for details.
		AN6	Input	A/D Converter 6 Conversion Input	This pin can be used as a A/D conversion input pin if it is not used as the address output pin in single-chip mode, processor mode or memory expansion mode. Refer to "6-1 Summary of A/D Converter".
		STOP	Output	STOP Status Output	This pin outputs high to indicate STOP status if it is not used as the address output pin in single-chip mode, processor mode or memory expansion mode.

Table 1-4-1 List of Pin Functions (13/26)

Pin Number	Pin Name	I/O	Function	Description
47	A23	Output	Address Output	Refer to "Pin 13 A0 Description" for details.
	P47	I/O	General-purpose Port 47	Refer to "Pin 13 P20 Description" for details.
	AN7	Input	A/D Converter 7 Conversion Input	This pin can be used as a A/D conversion input pin if it is not used as the address output pin in single-chip mode, processor mode or memory expansion mode. Refer to "6-1 Summary of A/D Converter".
	WDOUT	Output	Watchdog Timer Overflow Output	This pin outputs high when the watchdog timer overflows if it is not used as the address output pin in single-chip mode, processor mode or memory expansion mode.
84-91	D0-D7 AD0-AD7	I/O I/O	Data I/O Address/Data I/O	These pins input or output the lower 8-bit data of the external memory during address/data separate mode in processor mode or memory expansion mode. During address/data shared mode, these pins time-divides input or output the lower 8-bit address and the lower 8-bit data of the external memory. They become input when the external memory is not accessed. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state.
	P00-P07	I/O	General-purpose Ports 00-07	These pins can be used as general-purpose ports if they are not used as data input/output pins or address/data input/output pins in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".

Table 1-4-1 List of Pin Functions (14/26)

Pin Number	Pin Name	I/O	Function	Description
93	D8 AD8	I/O I/O	Data I/O Address/Data I/O	This pin inputs or outputs the upper 8-bit data of the external memory during address/data separate mode in processor mode or memory expansion mode. During address/data shared mode, this pin time-divides input or output the upper 8-bit address and the upper 8-bit data of the external memory. It becomes input when the external memory is not accessed. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state.
	P10	I/O	General-purpose Port 10	Refer to "Pins 84-91 P00-P07 Description" for details.
	TM8IOB	I/O	Timer 8B Input/Output	This pin can be used as a timer 8 input capture B input pin or a timer 8 output compare B output pin if it is not used as a data input/output pin or an address/data input/output pin in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 4 Timers".
94	D9 AD9	I/O I/O	Data I/O Address/Data I/O	Refer to "Pin 93 D8, AD8 Description" for details.
	P11	I/O	General-purpose Port 11	Refer to "Pins 84-91 P00-P07 Description" for details.
	TM8IC	Input	Timer 8C Input	This pin can be used as a timer 8 counter clear pin if it is not used as a data input/output pin or an address/data input/output pin in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 4 Timers".

Table 1-4-1 List of Pin Functions (15/26)

Pin Number	Pin Name	I/O	Function	Description
95	D10 AD10	I/O I/O	Data I/O Address/Data I/O	Refer to "Pin 93 D8, AD8 Description" for details.
	P12	I/O	General-purpose Port 12	Refer to "Pins 84-91 P00-P07 Description" for details.
	TM11IOA	I/O	Timer 11A Input/Output	This pin can be used as a timer 11 input capture A input pin or a timer 11 output compare A output pin if it is not used as a data input/output pin or an address/data input/output pin in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 4 Timers".
96	D11 AD11	I/O I/O	Data I/O Address/Data I/O	Refer to "Pin 93 D8, AD8 Description" for details.
	P13	I/O	General-purpose Port 13	Refer to "Pins 84-91 P00-P07 Description" for details.
	TM11IOB	I/O	Timer 11B Input/Output	This pin can be used as a timer 11 input capture B input pin or a timer 11 output compare B output pin if it is not used as a data input/output pin or an address/data input/output pin in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 4 Timers".
97	D12 AD12	I/O I/O	Data I/O Address/Data I/O	Refer to "Pin 93 D8, AD8 Description" for details.
	P14	I/O	General-purpose Port 14	Refer to "Pins 84-91 P00-P07 Description" for details.
	TM11IC	Input	Timer 11C Input	This pin can be used as a timer 11 counter clear pin if it is not used as a data input/output pin or an address/data input/output pin in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 4 Timers".

Table 1-4-1 List of Pin Functions (16/26)

Pin Number	Pin Name	I/O	Function	Description
98	D13 AD13	I/O I/O	Data I/O Address/Data I/O	Refer to "Pin 93 D8, AD8 Description" for details.
	P15	I/O	General-purpose Port 15	Refer to "Pins 84-91 P00-P07 Description" for details.
	TM12IOA	I/O	Timer 12A Input/Output	This pin can be used as a timer 12 input capture A input pin or a timer 12 output compare A output pin if it is not used as a data input/output pin or an address/data input/output pin in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 4 Timers".
99	D14 AD14	I/O I/O	Data I/O Address/Data I/O	Refer to "Pin 93 D8, AD8 Description" for details.
	P16	I/O	General-purpose Port 16	Refer to "Pins 84-91 P00-P07 Description" for details.
	TM12IOB	I/O	Timer 12B Input/Output	This pin can be used as a timer 12 input capture B input pin or a timer 12 output compare B output pin if it is not used as a data input/output pin or an address/data input/output pin in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 4 Timers".
100	D15 AD15	I/O I/O	Data I/O Address/Data I/O	Refer to "Pin 93 D8, AD8 Description" for details.
	P17	I/O	General-purpose Port 17	Refer to "Pins 84-91 P00-P07 Description" for details.
	TM12IC	Input	Timer 12C Input	This pin can be used as a timer 12 counter clear pin if it is not used as a data input/output pin or an address/data input/output pin in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 4 Timers".

Table 1-4-1 List of Pin Functions (17/26)

Pin Number	Pin Name	I/O	Function	Description
67	RAS	Output	DRAM Control Output	This pin outputs /RAS signal when connecting DRAM in processor mode or memory expansion mode. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state.
	P70	I/O	General-purpose Port 70	This pin can be used as a general-purpose input/output port if it is not used as /RAS in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	SBT0	I/O	Serial Interface 0 Clock Input/Output	This pin can be used as a synchronous transfer clock signal input/output pin for serial interface 0 if it is not used as /RAS in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 5 Serial Interface".
68	CAS LCAS	Output Output	DRAM Control Output DRAM Control Output	This pin outputs /CAS or /LCAS signal when connecting DRAM in processor mode or memory expansion mode. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state.
	P71	I/O	General-purpose Port 71	This pin can be used as a general-purpose input/output port if it is not used as /CAS or /LCAS in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	SBI0	Input	Serial Interface 0 Data Input	This pin can be used as a data input pin for serial interface 0 if it is not used as /CAS or /LCAS in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 5 Serial Interface".

Table 1-4-1 List of Pin Functions (18/26)

Pin Name	I/O	Function	Description
<u>UCAS</u>	Output	DRAM Control Output	This pin outputs /UCAS signal when connecting DRAM in processor mode or memory expansion mode. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state.
P72	I/O	General-purpose Port 72	This pin can be used as a general-purpose input/output port if it is not used as /UCAS in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
SBO0	Output	Serial Interface 0 Data Output	This pin can be used as a data output pin for serial interface 0 if it is not used as /UCAS in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 5 Serial Interface".
DUMX	Output	DRAM Control Output	This pin outputs DUMX signal when connecting DRAM in processor mode or memory expansion mode. Refer to "2-1 Summary of Bus Interface". During a bus request, STOP mode or HALT mode, this pin will be in a high impedance state.
P73	I/O	General-purpose Port 73	This pin can be used as a general-purpose input/output port if it is not used as DUMX in single-chip mode, processor mode or memory expansion mode. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
SBT1	I/O	Serial Interface 1 Clock Input/Output	This pin can be used as a synchronous transfer clock signal input/output pin for serial interface 1 if it is not used as DUMX in single-chip mode, processor mode or memory expansion mode. Refer to "Chapter 5 Serial Interface".
	P72 SBO0 DUMX	DUMX Output P73 I/O	DUMX Output DRAM Control Output Serial Interface 0 Data Output DUMX Output DRAM Control Output Serial Interface 0 Data Output DRAM Control Output Serial Interface 1 DRAM Control Output DRAM Control Output Serial Interface 1

Table 1-4-1 List of Pin Functions (19/26)

Pin Number	Pin Name	I/O	Function	Description
71	P74	I/O	General-purpose Port 74	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	SBI1	Input	Serial Interface 1 Data Input	This pin can be used as a data input pin for serial interface 1. Refer to "Chapter 5 Serial Interface".
72	P75	I/O	General-purpose Port 75	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	SBO1	Output	Serial Interface 1 Data Output	This pin can be used as a data output pin for serial interface 1. Refer to "Chapter 5 Serial Interface".
48	P80	I/O	General-purpose Port 80	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	TM14OA	Output	Timer 14A Output	This pin can be used as a timer 14 PWM output pin. The same function is also assigned to pin 7. Refer to "6-3 Summary of D/A Converter".
49	P81	I/O	General-purpose Port 81	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	TM14OB	Output	Timer 14B Output	This pin can be used as a timer 14 PWM output pin. The same function is also assigned to pin 8. Refer to "6-3 Summary of D/A Converter".

Table 1-4-1 List of Pin Functions (20/26)

Pin Number	Pin Name	I/O	Function	Description
50	P82	I/O	General-purpose Port 82	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	ТМ0ІО	I/O	Timer 0 Input/Output	This pin can be used as a timer 0 input/output pin. Refer to "Chapter 4 Timers".
	SBI2	Input	Serial Interface 2 Data Input	This pin can be used as a data input pin for serial interface 2. Because pin 14 has the same function, either pin 14 or pin 50 must be selected. Refer to "Chapter 5 Serial Interface".
	SBT3	I/O	Serial Interface 3 Clock Input/Output	This pin can be used as a synchronous transfer clock signal input/output pin for serial interface 3. Refer to "Chapter 5 Serial Interface".
	SCL3	Output	Serial Interface 3 Clock Output	This pin can be used as an I ² C clock signal output pin for serial interface 3. Refer to "Chapter 5 Serial Interface".
51	P83	I/O	General-purpose Port 83	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	TM4IO	I/O	Timer 4 Input/Output	This pin can be used as a timer 4 input/output pin. Refer to "Chapter 4 Timers".
	SBI3	Input	Serial Interface 3 Data Input	This pin can be used as a data input pin for serial interface 3. Refer to "Chapter 5 Serial Interface".

Table 1-4-1 List of Pin Functions (21/26)

Pin Number	Pin Name	I/O	Function	Description
52	P84	I/O	General-purpose Port 84	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	ТМ7ІО	I/O	Timer 7 Input/Output	This pin can be used as a timer 7 input/output pin. Refer to "Chapter 4 Timers".
	SBO3	Output	Serial Interface 3 Data Output	This pin can be used as a data output pin for serial interface 3. Refer to "Chapter 5 Serial Interface".
	SDA3	I/O	Serial Interface 3 Data Input/Output	This pin can be used as an I ² C data input/output pin for serial interface 3. Refer to "Chapter 5 Serial Interface".
53	P85	I/O	General-purpose Port 85	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	ТМ9ІОА	I/O	Timer 9A Input/Output	This pin can be used as a timer 9 input/output pin. Refer to "Chapter 4 Timers".
	SBO2	Output	Serial Interface 2 Data Output	This pin can be used as a data output pin for serial interface 2. Because pin 15 has the same function, either pin 15 or pin 53 must be selected. Refer to "Chapter 5 Serial Interface".
	SBT4	I/O	Serial Interface 4 Clock Input/Output	This pin can be used as a synchronous transfer clock signal input/output pin for serial interface 4. Refer to "Chapter 5 Serial Interface".
	SCL4	Output	Serial Interface 4 Clock Output	This pin can be used as an I ² C clock signal output pin for serial interface 4. Refer to "Chapter 5 Serial Interface".

Table 1-4-1 List of Pin Functions (22/26)

Pin Number	Pin Name	I/O	Function	Description
55	P86	I/O	General-purpose Port 86	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	TM9IOB	I/O	Timer 9B Input/Output	This pin can be used as a timer 9 input/output pin. Refer to "Chapter 4 Timers".
	SBI4	Input	Serial Interface 4 Data Input	This pin can be used as a data input pin for serial interface 4. Refer to "Chapter 5 Serial Interface".
56	P87	I/O	General-purpose Port 87	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units.
				The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	TM9IC	Input	Timer 9C Input	This pin can be used as a timer 9 count clear input pin. Refer to "Chapter 4 Timers".
	SBO4	Output	Serial Interface 4 Data Output	This pin can be used as a data output pin for serial interface 4. Refer to "Chapter 5 Serial Interface".
	SDA4	I/O	Serial Interface 4 Data Input/Output	This pin can be used as an I ² C data input/output pin for serial interface 4. Refer to "Chapter 5 Serial Interface".

Table 1-4-1 List of Pin Functions (23/26)

Pin Number	Pin Name	I/O	Function	Description
57	P90	I/O	General-purpose Port 90	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	TM8IOA	I/O	Timer 8A Input/Output	This pin can be used as a timer 8 input/output pin. Refer to "Chapter 4 Timers".
	BIBT1	Output	Internal System Clock Output	Refer to "Pin 18 BIBT1 Description" for details. Refer to "Chapter 5 Serial Interface".
	DMAREQ1	Input	ETC1 Activation Request Input	This pin is an ETC activation request pin. When ETC starts, the data is transferred automatically between the external memory and the external device which requires no address specification. Refer to "Chapter 7 ATC, ETC".
58	P91	I/O	General-purpose Port 91	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	TM10IOA	I/O	Timer 10A Input/Output	This pin can be used as a timer 10 input/output pin. Refer to "Chapter 4 Timers".
	BIBT2	Output	Internal System Clock Output	Refer to "Pin 18 BIBT1 Description" for details. Refer to "Chapter 5 Serial Interface".
	DMAACK1	Output	ETC1 Acknowledge Output	This pin is an acknowledge signal output pin for ETC activation request. Refer to "Chapter 7 ATC, ETC".

Table 1-4-1 List of Pin Functions (24/26)

Pin Number	Pin Name	I/O	Function	Description
59	P92	I/O	General-purpose Port 92	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	TM10IOB	I/O	Timer 10B Input/Output	This pin can be used as a timer 10 input/output pin. Refer to "Chapter 4 Timers".
	DMAREQ0	Input	ETC0 Activation Request Input	This pin is an ETC activation request pin. When ETC starts, the data is transferred automatically between the external memory and the external device which requires no address specification. Refer to "Chapter 7 ATC, ETC".
60	P93	I/O	General-purpose Port 93	This pin can be used as a general-purpose input/output port. It can also be used as an LED drive port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	TM10IC	Input	Timer 10C Input	This pin can be used as a timer 10 counter clear input pin. Refer to "Chapter 4 Timers".
	DMAACK0	Output	ETC0 Acknowledge Output	This pin is an acknowledge signal output pin for ETC activation request. Refer to "Chapter 7 ATC, ETC".
62	P94	I/O	General-purpose Port 94	This pin can be used as a general-purpose input/output port. It can also be used as an LED drive port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	AN0	Input	A/D Converter 0 Conversion Input	This pin can be used as an A/D conversion input pin. Refer to "6-1 Summary of A/D Converter".

Table 1-4-1 List of Pin Functions (25/26)

Pin Number	Pin Name	I/O	Function	Description
63	P95	I/O	General-purpose Port 95	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	AN1	Input	A/D Converter 1 Conversion Input	This pin can be used as an A/D conversion input pin. Refer to "6-1 Summary of A/D Converter".
64	P96	I/O	General-purpose Port 96	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	AN2	Input	A/D Converter 2 Conversion Input	This pin can be used as an A/D conversion input pin. Refer to "6-1 Summary of A/D Converter".
65	P97	I/O	General-purpose Port 97	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	AN3	Input	A/D Converter 3 Conversion Input	This pin can be used as an A/D conversion input pin. Refer to "6-1 Summary of A/D Converter".
76	PA0	I/O	General-purpose Port A0	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	ĪRQ0	Input	External Interrupt 0 Input	This pin can be used as an external interrupt request input pin. Refer to "Chapter 3 Interrupts".
77	PA1	I/O	General-purpose Port A1	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	ĪRQ1	Input	External Interrupt 1 Input	This pin can be used as an external interrupt request input pin. Refer to "Chapter 3 Interrupts".

Table 1-4-1 List of Pin Functions (26/26)

Pin Number	Pin Name	I/O	Function	Description
78	PA2	I/O	General-purpose Port A2	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	ĪRQ2	Input	External Interrupt 2 Input	This pin can be used as an external interrupt request input pin. Refer to "Chapter 3 Interrupts".
79	PA3	I/O	General-purpose Port A3	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	ĪRQ3	Input	External Interrupt 3 Input	This pin can be used as an external interrupt request input pin. Refer to "Chapter 3 Interrupts".
80	PA4	I/O	General-purpose Port A4	This pin can be used as a general-purpose input/output port. The input/output direction is controlled in bit units. The pin has a built-in software control pull-up resistor. Refer to "Chapter 8 Ports".
	ĪRQ4	Input	External Interrupt 4 Input	This pin can be used as an external interrupt request input pin. Refer to "Chapter 3 Interrupts".
	TM15IB	Input	Timer 15B Input	This pin can be used as a base clock input pin for timer 15 pulse width measurement. Refer to "Chapter 4 Timers".
75	NMI	Input	Nonmaskable Interrupt Input	This pin can be used as a /NMI interrupt pin. The /NMI interrupt occurs on the falling edge of low level. In addition, this pin can reads the pin state as the general-purpose input port P76. Refer to "Chapter 3 Interrupts".
73-74	PULLUP	Input	Pull-up	These pins must be pullde up with 33 k Ω - 50 k Ω .

■ Connection Examples of Power Pins, Oscillator Circuits, Reset Pins

Note: The capacitance values vary depending on the crystal oscillator.

Figure 1-4-10 OSCI, OSCO Connection Example

Note: The capacitance values vary depending on the crystal oscillator.

Figure 1-4-11 XI, XO Connection Example

Figure 1-4-12 Reset Pin Connection Example

Figure 1-4-13 WAIT Signal Control Circuit Connection Example

Package Code: LQFP100-P-1414

 ${\bf Body\ Material:\ Epoxy\ Resin,\ Lead\ Material:\ FeNi42\ Alloy,\ Lead\ Finish\ Method:\ Solder\ Plating}$

Figure 1-4-14 External Dimensions (MN12-H60G/F60G/60K/F60K): 100-pin LQFP

External dimensions are subject to change. Before using, please contact your nearest sales office for the latest product specifications.

Chapter 1 General Description

Chapter 2 Bus Interface

2-1 Summary of Bus Interface

2-1-1 Overview

The MN102H60G/60K/F60G/F60K has a function to expand memory to external devices. Table 2-1-1 shows memory modes. 8 or 16-bit data bus width can be selected by setting pins.

Table 2-1-1 Mode Setting

Modes	External Connecting Modes	External Data Bus Width	MODE	ADSEP	/WORD	P0~P6MD Registers
Single-chip mode	-	-	Н	-	-	-
Memory Expansion	Address/data separate mode	8-bit	Н	Н	Н	Note 1
		16-bit	Н	Н	L	Note 1
	Address/data shared mode	8-bit	Н	L	Н	Note 1
		16-bit	Н	L	L	Note 1
Processor mode	Address/data separate mode	8-bit	L	Н	Н	Note 2
		16-bit	L	Н	L	Note 2
	Address/data shared mode	8-bit	L	L	Н	Note 2
		16-bit	L	L	L	Note 2

Note 1: Set each mode register to input or output an address/data control signal from single-chip mode using user program on internal ROM because the CPU starts in single-chip mode after reset

Note 2: Initialize the setting to input or output an address/data control signal after reset release.

Figure 2-1-1 Address Space

Control Registers 2-1-2

These registers control the bus interface: the external memory wait register (EXWMD), the memory mode setup 1 register (MEMMD1), the memory mode setup 2 register (MEMMD2), the DRAM control 1 register (DRAMMD1), the DRAM control 2 register (DRAMMD2), the RE waveform control register (REEDGE), the WE waveform control register (WEEDGE), the ALE waveform control register (ALEEDGE) and the address output time control register (MPXADR).

The EXWMD register sets the number of waits for devices in the external memory spaces 0 to 3.

^{*} Please refer to Figure 2-1-1 Address Space on page 52 for address allocation of the external memory spaces.

	Wait	Cycle
0000	0.0	1.0
0001	0.5	1.5
0010	1.0	2.0
0011	1.5	2.5
0100	2.0	3.0
0101	2.5	3.5
0110	3.0	4.0
0111	3.5	4.5
1000	4.0	5.0
1001	4.5	5.5
1010	5.0	6.0
1011	5.5	6.5
1100	6.0	7.0
1101	6.5	7.5
1110	7.0	8.0
1111	perform handshake mode by WAIT pin	

0.5 wait cycle corresponds to BOSC 1 cycle. 1 wait corresponds to 1 cycle of instruction. With a 34-MHz external oscillator, 0.5 wait: 29.4 ns

1.0 wait: 58.8 ns

The MEMMD1 register sets the wait cycles for internal peripherals, the bus widths and ROM burst modes for the external memory spaces 0 to 3.

Do not access the burst ROM area and other areas consecutively.

The MEMMD2 register sets the cycles during burst ROM mode and the fixed wait cycles during handshake mode.

MEMMD2: x'00FF84' 14 13 10 reser ved SC0 reser ved HS2 HS1 HS0 SC1 BST2 BST1 BST0 Cycle Setting for Burst ROM Shortening (First Cycle Setting at Burst Access) BST[2:0] 0.5 cycle 000 001 1.0 cycle 010 1.5 cycles 2.0 cycles 011 2.5 cycles 100 3.0 cycles 101 110 3.5 cycles 4.0 cycles 111 Reserved Set to 0 HS[2:0] SLOW Mode Operating Clock Setting *1 00 OSCI/2 01 10 OSCI/4 OSCI/8 Do not change these flags in SLOW mode, as this may cause erroneous operation. HS[2:0] Fixed Wait Setting When Controlling Wait Cycles in WAIT Pin Handshake Mode 000 No wait 0.5 wait cycle 001 010 1 wait cycle 011 1.5 wait cycles 100 2 wait cycles 2.5 wait cycles 101

3 wait cycles

3.5 wait cycles

110

111

The DRAMMD1 register sets the external memory DRAM operation, the timing of / RAS and /CAS, and the size of address shift.

^{*} Please refer to Figure 2-1-1 Memory Space on page 52 for address allocation of the external memory spaces.

The DRAMMD2 register sets the DRAM refresh operation, the refresh timing and the access method.

^{*1} Set "0" at MN10HF60G or ICE.

² CAS method is not usable.

The REEDGE register sets the /RE waveform control modes for the external memory spaces 0 to 3.

The WEEDGE register sets the WE waveform control modes for the external memory spaces 0 to 3.

Please refer to Table 2-2-3 on page 77 and Table 2-2-5 on page 78 for the timing.

The ALEEDGE register sets the /RE waveform control modes for the external memory spaces 0 to 3 during address/data shared mode.

The MPXADR register sets the address output timing for the external memory spaces 0 to 3 during address/data shared mode.

Table 2-1-2 List of Bus Interface Control Registers

Register	Address	R/W	Function
EXWMD	x'00FF80'	R/W	External Memory Wait Register
MEMMD1	x'00FF82'	R/W	Memory Mode Setup 1 Register
MEMMD2	x'00FF84'	R/W Memory Mode Setup 2 Register	
DRAMMD1	x'00FF90'	R/W	DRAM Control 1 Register
DRAMMD2	x'00FF92'	R/W	DRAM Control 2 Register
REEDGE	x'00FF86'	R/W	RE Waveform Control Register
WEEDGE	x'00FF88'	R/W	WE Waveform Control Register
ALEEDGE	x'00FF8A'	R/W	ALE Waveform Control Register
MPXADR	x'00FF8C'	R/W	Address Output Time Control Register

Please refer to Table 2-2-7 on page 79 for the timing.

■ Example of SRAM Connection (16-bit Bus Width, 1 Wait)

Figure 2-1-2 SRAM Connection Example (16-bit Bus Width)

■ Example of SRAM Connection (8-bit Bus Width, 1 Wait)

Figure 2-1-3 SRAM Connection Example (8-bit Bus Width)

■ Example of DRAM (2WE Method) Connection (16-bit Bus Width, 2 Wait)

Figure 2-1-4 DRAM (2WE Method) Connection Example (16-bit Bus Width)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
EXWMD					EW 23	EW 22	EW 21	EW 20											
					0	1	0	0											
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
MEMMD1			EB 21	EB 20								BRC 2							
			0	0								0							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
DRAMMD1		ARE 2			MMD 1	MMD 0	AS EN	SEL 2	SEL 1	SEL 0	CAS 2	CAS 1	CAS 0	RAS 2	RAS 1	RAS 0			
		1			0	0	1	0	1	0	0	1	1	0	0	1			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
DRAMMD2	DRAM ACC	DRAM TM				R ON	RCY 3	RCY 2	RCY 1	RCY 0	RCS 2	RCS 1	RCS 0	RRS 2	RRS 1	RRS 0			
	0	?	0	0	0	1	0	0	1	0	0	0	0	0	0	1			
	-	_	_		2	2													
D01 4D	7	6	5	4	3	2	1 P0	0 P0											
P0MD							MD1	MD0											
	_						0	1											
DILLE	7	6	5	4	3	2	1 P1	0 P1											
P1LMD							LMD1	LMD0											
	7		_	4	2	2	0	1				7		_		2	2	1	0
P3HMD	7 P3	6 P3	5 P3	4 P3	3 P3	2 P3	1 P3	0 P3		P3LM	ь [7 P3	6 P3	5 P3	4 P3		2 P3	1	0
PSHMD	HMD7 0	HMD6	HMD5 0	HMD4	HMD3 0	HMD2	HMD1 0	HMD0		PSLM	L	MD7 L	MD6 L	MD5 L	MD4 I	MD3 L	MD2		
	U	1	U	1	U	1	U	1				U	1	U	1	U	1		
	7	6	5	4	3	2 P4	1 P4	0 P4	ı										
P4LMD						LMD2	LMD1	LMD0											
						1	1	1											
	7	6	5 P6	4 P6	3 P6	2	1	0	I										
P6MD			MD5	MD4	MD3														
			1	1	1														
	7	6	5	4 P7	3 P7	2 P7	1 P7	0 P7	I										
P7LMD				LMD4	LMD3	LMD2	LMD1	LMD0											
				1	1	1	0	1											

■ Example of DRAM (2CAS Method) Connection (16-bit Bus Width, 2 Wait)

Figure 2-1-5 DRAM (2CAS Method) Connection Example (16-bit Bus Width)

■ Example of DRAM Connection (8-bit Bus Width, 2 Wait)

Figure 2-1-6 DRAM Connection Example (8-bit Bus Width)

Table 2-1-3 Address/Data Multiplex Mode (16-bit Bus Data Access)

Table 2-1-4 Address/Data Multiplex Mode (8-bit Bus Data Access)

Table 2-1-5 Address/Data Separate Mode (16-bit Bus Data Access)

Table 2-1-6 Address/Data Separate Mode (8-bit Bus Data Access)

Table 2-1-7 Address/Data Separate Mode (16-bit Bus DRAM /WEH and /WEL Method)

^{* /}CAS must be delayed externally to hold the setup time of the COLUMN address.

Table 2-1-8 Address/Data Separate Mode (8-bit Bus DRAM /WEH and /WEL Method)

			The length of wait cycle can be set in 0.5-cycle units.				
		1 Wait	2 Waits				
Base	Clock	BOSC BIBT2 BIBT1					
8-bit Da	ta Read	A22-8	A21-0 X ROW X COLUMN D7-0				
8-bit Da	ta Write	A22-8 A21-0 ROW COLUMN D7-0 D7-0 RAS CAS OE(RE) WEH WEL Wait, RAS, CAS and address switch timing of	1				
		No Wait	1 Wait				
Base	Clock	BOSC BIBT2 BIBT1					
No A	ccess	A22-8 D7-0 RAS CAS OE(RE) WEH WEL (No external access, Internal ROM, RAM access)	(Internal peripheral register access)				
Bus Request	Refresh	A22-8 D7-0 RAS Hi-Z CAS Hi-Z OE(RE) WEH WEL BREQ BRACK A22-8 Hi-Z A22-8 Hi-Z A22-8 Hi-Z A22-8 Hi-Z Hi-Z Hi-Z Hi-Z WEL Hi-Z	A22-8 A22-8 A22-8 Undefined Undefined (At auto refresh)				

 $^{^{\}star}$ /CAS must be delayed externally to hold the setup time of the COLUMN address.

Table 2-1-9 Address/Data Separate Mode (16-bit Bus DRAM /UCAS and /LCAS Method)

^{* /}UCAS and /LCAS must be delayed externally to hold the setup time of the COLUMN address.

Table 2-1-10 Address/Data Separate Mode (8-bit Bus DRAM /UCASand /LCAS Method)

^{* /}UCAS and /LCAS must be delayed externally to hold the setup time of the COLUMN address.

2-2 Control Signals

2-2-1 Overview

The MN102H60G/60K/F60G/F60K can delay or hasten the rising timing and the falling timing of /RE, /WE and ALE waveforms in the external memory extension mode. In addition, it can delay the switching timing of address and data in the address/data shared mode.

The following table shows settings.

Table 2-2-1 External Memory Control Signal Timing

Signal	Mode	Timing	Function				
/D.E.	Late	0.5 1, 2, 3 (Reset)	Delay the falling timing of /RE.				
/RE Short 0, 0.5, 1, 1.5		0, 0.5, 1, 1.5	Hasten the rising timing of /RE.				
22/5	Late	1, 2, 3 (Reset)	Delay the falling timing of /WE.				
WE Short 0, 0.5, 1, (Reset)		0, 0.5, 1, 1.5 (Reset)	Hasten the rising timing of /WE.				
ALE	Late	0, 0.5, 1, 1.5	Delay the rising timing of ALE.				
ALE	Short	0, 0.5, 1, 1.5	Hasten the falling timing of ALE.				
Address Data	Long	1, 1.5, 2, 3	Delay the switch timing of address and data in the address/data shared mode.				

Please refer to page 76 to page 79 for the waveform in each mode.

Table 2-2-2 /RE Late and Short Modes (Address/Data Shared Mode)

Table 2-2-3 /WE Late and Short Modes (Address/Data Shared Mode)

Table 2-2-4 /RE Late and Short Modes (Address/Data Separate Mode)

Table 2-2-5 /WE Late and Short Modes (Address/Data Separate Mode)

Table 2-2-6 ALE Late and Long Modes (Address/Data Shared Mode)

2-3 Handshake Wait Control

2-3-1 Overview

The MN102H60G/60K/F60G/F60K controls handshake wait cycles using WAIT pin when reading or writing the data for external memory or other devices.

The MN102H60G/60K/F60G/F60K determines the wait cycles using WAIT pin when reading or writing the data. When starting read/write access, input high level to the WAIT pin. High level must be input until BOSC signal falls in T2 interval shown in Figure 2-3-1 because the WAIT pin input level is checked every time BOSC signal falls. While the WAIT pin is high level, the access cycle for the external memory or other devices is continued. On the other hand, when the WAIT pin becomes low level, the access cycle ends 1.5 BOSC cycles later after the next BOSC signal falls.

Figure 2-3-1 Handshake Wait Control Timing (1.5 Wait Cycles, Data Write)

When controlling the handshake wait cycles using the WAIT pin, it is possible to insert a fixed-period wait unrelated to the WAIT pin status in one read/write access, and subsequently perform handshake wait control by means of the WAIT pin. In the case of consecutive access cycles to externally connected memory or another device, as high and low levels must be input to the WAIT pin at high speed, it may be difficult to input a high level before the initial fall of the BOSC signal in the access cycle. In this case, the second of consecutive access cycles will be a no wait cycle. To prevent this, a fixed-period wait cycle can be input at the start of an access cycle.

Figure 2-3-2 Fixed Wait and Handshake Wait Control Timing (1 Wait Cycle as Fixed Wait, 2 Wait Cycles as Whole Wait, Data Write)

Set '1111' to bits for the number of wait cycles of the EXWMD register to control handshake wait cycles. When the fixed wait cycle is required, set the necessary number of wait cycles to bits for number of fixed wait cycles of the MEMMD 2 register at the same time. (The wait cycle range from 0 to 3.5 cycles is set in 0.5 wait cycle.)

Chapter 2 Bus Interface

3-1 Interrupt Groups

3-1-1 Overview

The most important factor in the real time control is how fast the program moves to the interrupt handler processing. The MN102H60G/60K/F60G/F60K improves the interrupt response by aborting instructions, including the multiply and divide instruction, which require multiple clock cycles. The aborted instruction is executed once again after it is returned from the interrupt service routine.

This section describes the overview of the interrupt system. The MN102H60G/60K/F60G/F60K contains 56 interrupt groups. Each interrupt group controls interrupts. An interrupt is generated speedily because one interrupt vector is assigned to each interrupt group. Interrupt groups are classified into 14 classes, which set its interrupt level. All interrupts from the peripheral circuits (such as timers) and external pins, except reset interrupts, are registered into interrupt group controller. Once interrupts are registered, interrupt requests are sent to the CPU according to the interrupt priority level (level 0 to 6) set in interrupt group controller. Groups 0 to 3 are interrupts for the system. Table 3-1-1 shows the comparison between this LSI series and the previous 16-bit series.

Table 3-1-1 Comparison of MN102H60G/60K/F60G/F60K and MN102B00/MN102L00

Parameters	MN102B00/MN102L00	MN102H60G/60K/F60G/F60K			
Interrupt Groups (IAGR group numbers)	4 vectors per group (separated by interrupt service routine)	1 vector per group (Generated the group number for each interrupt)			
Interrupt Response Time	Good	Excellent			
Interrupt Level Setup	4 vectors per level	4 vectors per level			
Software Compatibility		Easily modified			

The MN102H60G/60K/F60G/F60K has five external interrupt pins and eight key interrupt pins. The IRQTRG register, the KEYTRG register and the KEYCTR register set the interrupt conditions (positive edge, negative edge, both edges or low level).

Figure 3-1-1 Interrupt Controller Block Diagram

The MN102H55D/55G/F55G contains the watchdog timer and the extended watchdog timer. The CPUM register and the WDREG register sets the interval until a watchdog interrupt occurs, watchdog timer/extended watchdog timer clear, the chip reset when a watchdog interrupt occurs.

* In the MN102HF60G/HF60K, use only the BOSC divisor of 2⁵.

Figure 3-1-2 Watchdog Timer Block Diagram

■ Notices When Using Watchdog Interrupt

The watchdog interrupt is used to detect error operations. Because of this, the CPU normal operation cannot be guaranteed after the watchdog interrupt service routine. Therefore, do not return the old program from the watchdog interrupt service routine. The watchdog interrupt occurs in the following cases.

- (1) The program cannot be executed using the normal algorithm due to the infinity loop or error operations.
- (2) The CPU hangs up due to the device errors or system errors. (The CPU hangs up the response signal without recognizing during the access to the external device.)

Especially, in case of (2), the instruction in progress enters the interrupt service routine without completing the instruction execution because the CPU terminates the bus cycles forcibly. In addition, the data may not be transferred correctly during the ATC operation. Due to this, the normal program operation cannot be guaranteed even though the program returns from the interrupt service routine.

Register Group Interrupt Vector Class Address GROUP 0 Non mascable 00FC40[R/W] NMI MN102H GROUP 1 CLASS 00FC42[R/W] Watchdog **CPU Core** 00FC44[R/W] **GROUP** Undefined instruction 0 GROUP 3 00FC46[R/W] Error interrupt GROUP 4 Reserved GROUP 5 CLASS Level 0 to 6 Reserved GROUP 6 Reserved 1 GROUP 7 Reserved 00FC50[R/W] GROUP 8 External interrupt 0 GROUP 9 Timer 0 underflow CLASS 00FC52[R/W] GROUP 10 Timer 8 underflow 00FC54[R/W] 2 GROUP 11 Timer 8 capture A 00FC56[R/W] GROUP 12 External interrupt 1 00FC58[R/W] GROUP 13 Timer 1 underflow GROUP 14 Timer 8 capture B 00FC5AIR/WI CLASS 00FC5C[R/W] 3 GROUP 15 Timer 9 underflow 00FC5E[R/W] GROUP 16 External interrupt 2
GROUP 17 Timer 2 underflow 00FC60[R/W] CLASS 00FC62[R/W] GROUP 18 Timer 9 capture A 4 00FC64[R/W] GROUP 19 Timer 9 capture B 00FC66[R/W] GROUP 20 External interrupt 3 00FC68[R/W] GROUP 21 Timer 3 underflow **CLASS** 00FC6A[R/W] GROUP 22 Timer 10 underflow 5 00FC6C[R/W] GROUP 23 Timer 10 capture A 00FC6E[R/W] GROUP 24 External interrupt 4 00FC70[R/W] GROUP 25 Timer 4 underflow CLASS 00FC72[R/W] GROUP 26 Timer 10 capture B 00FC74[R/W] 6 GROUP 27 Timer 11 underflow 00FC76[R/W] 00FC78[R/W] GROUP 28 External key interrupt GROUP 29 Timer 5 underflow CLASS 00FC7A[R/W] GROUP 30 Timer 11 capture A 00FC7C[R/W] GROUP 31 Timer 11 capture B 00FC7E[R/W] 00FC80[R/W] GROUP 32 AD conversion end GROUP 33 Timer 6 underflow **CLASS** 00FC82[R/W] GROUP 34 Timer 12 underflow 00FC84[R/W] 8 GROUP 35 Timer 12 capture A 00FC86[R/W] GROUP 36 Timer 7 underflow GROUP 37 Timer 12 capture B 00FC88[R/W] CLASS 00FC8A[R/W] GROUP 38 Reserved 9 GROUP 39 Reserved GROUP 40 Serial 0 transmission end 00FC90[R/W] GROUP 41 Serial 0 reception end 00FC92IR/WI CLASS GROUP 42 | Serial 1 transmission end 00FC94[R/W] 10 GROUP 43 Serial 1 reception end 00FC96[R/W] GROUP 44 Serial 2 transmission end 00FC98[R/W] GROUP 45 Serial 2 reception end CLASS 00FC9A[R/W] GROUP 46 Serial 3 transmission end 00FC9C[R/W] 11 GROUP 47 Serial 3 reception end 00FC9E[R/W] GROUP 48 Serial 4 transmission end 00FCA0[R/W] GROUP 49 Serial 4 reception end **CLASS** 00FCA2[R/W] GROUP 50 ETC0 transfer end 12 00FCA4[R/W] GROUP 51 ETC1 transfer end 00FCA6[R/W] GROUP 52 ATC0 transfer end 00FCA8[R/W] GROUP 53 ATC1 transfer end **CLASS** 00FCAA[R/W] GROUP 54 ATC2 transfer end 13 00FCAC[R/W] GROUP 55 ATC3 transfer end 00FCAE[R/W]

Table 3-1-2 Interrupt Vector and Class Assignment

Figure 3-1-3 Interrupt Servicing Time

Table 3-1-3 Handler Preprocessing

Sequence	А	ssembler	Byte	Cycle
Push register	add mov movx	-8, A3 A0, (A3) D0, (4, A3)	2 2 3	1 2 3
Read group number	mov	(FC0E), D0	3	1
Generate the first address for interrupt service routine	mov add mov	BASE, A0 D0, A0 (A0), A0	3 2 2	1 2 2
Branch	jsr	(A0)	2	5
Total			17	15

Table 3-1-4 Handler Postprocessing

Sequence	А	ssembler	Byte	Cycle
Pop register	mov (A3), A0 movx (4, A3), D0 add 8, A3		2 3 2	2 3 1
Total			7	6

3-1-2 Control Registers

These registers control the interrupt function: the interrupt accept group register (IAGR), the interrupt condition setup register (IRQTRG), the external key interrupt condition setup register (KEYTRG), the external key interrupt enable register (KEYCTR) and the watchdog interrupt extension control register (WDREG).

The following is an example of setting the interrupt level (LV) and the interrupt enable (IE) in the interrupt control register (XnICH). Interrupts must be disabled during this routine.

••••

and 0xf7ff,psw; Clear IE flag of PSW

nop ; Inserted to ensure that XnICH is accessible

nop ; after clearing IE flag completely

mov d0, (XnICH) ; Write LV/IE or 0x0800, psw ; Set IE flag of PSW The program does not need to clear the IE flag of PSW to disable interrupts during interrupt servicing, since IE = 0 unless the IE flag is set. The nop instructions can be any instructions except those which write the IE flag of PSW or LV and IE flags of XnICH register. Two nop instructions are inserted in the example to keep the minimum number of cycles to change the IE flag. More than two nop instructions can be inserted.

IAGR: x'00FC0E'

IRQTRG: x'00FCB0'

KEYTRG: x'00FCB2'

KEYCTR: x'00FCB4' ΕN ΕN ΕN ΕN ΕN ΕN ΕN ΕN 0 0 Reset 0 0 0 0 0 0 KI0EN OR interrupt trigger condition for KI0 pin KI1EN OR interrupt trigger condition for KI1 pin KI2EN OR interrupt trigger condition for KI2 pin KI3EN OR interrupt trigger condition for KI3 pin KI4EN OR interrupt trigger condition for KI4 pin KI5EN OR interrupt trigger condition for KI5 pin KI6EN OR interrupt trigger condition for KI6 pin KI7EN OR interrupt trigger condition for KI7 pin 0 Do not set

Set

Table 3-1-5 List of Interrupt Control Registers

Register	Address	R/W	Function
IARG	x'00FC0E'	R	Interrupt Accepted Group Number Register
NMICR	x'00FC40'	R/W	Nonmaskable Interrupt Control Register
WDICR	x'00FC42'	R/W	Watchdog Interrupt Control Register
UNICR	x'00FC44'	R/W	Undefined Instruction Interrupt Control Register
EIICR	x'00FC46'	R	Error Interrupt Control Register
IRQTRG	x'00FCB0'	R/W	External Interrupt Condition Setup Register
IQ0ICL	x'00FC50'	R/W	External Interrupt 0 Control Register
IQ0ICH	x'00FC51'	R/W	External Interrupt 0 Control Register
IQ1ICL	x'00FC58'	R/W	External Interrupt 1 Control Register
IQ1ICH	x'00FC59'	R/W	External Interrupt 1 Control Register
IQ2ICL	x'00FC60'	R/W	External Interrupt 2 Control Register
IQ2ICH	x'00FC61'	R/W	External Interrupt 2 Control Register
IQ3ICL	x'00FC68'	R/W	External Interrupt 3 Control Register
IQ3ICH	x'00FC69'	R/W	External Interrupt 3 Control Register
IQ4ICL	x'00FC70'	R/W	External Interrupt 4 Control Register
IQ4ICH	x'00FC71'	R/W	External Interrupt 4 Control Register
TM0UICL	x'00FC52'	R/W	Timer 0 Underflow Interrupt Control Register
TM0UICH	x'00FC53'	R/W	Timer 0 Underflow Interrupt Control Register
TM1UICL	x'00FC5A'	R/W	Timer 1 Underflow Interrupt Control Register
TM1UICH	x'00FC5B'	R/W	Timer 1 Underflow Interrupt Control Register
TM2UICL	x'00FC62'	R/W	Timer 2 Underflow Interrupt Control Register
TM2UICH	x'00FC63'	R/W	Timer 2 Underflow Interrupt Control Register
TM3UICL	x'00FC6A'	R/W	Timer 3 Underflow Interrupt Control Register
TM3UICH	x'00FC6B'	R/W	Timer 3 Underflow Interrupt Control Register
TM4UICL	x'00FC72'	R/W	Timer 4 Underflow Interrupt Control Register
TM4UICH	x'00FC73'	R/W	Timer 4 Underflow Interrupt Control Register
TM5UICL	x'00FC7A'	R/W	Timer 5 Underflow Interrupt Control Register
TM5UICH	x'00FC7B'	R/W	Timer 5 Underflow Interrupt Control Register
TM6UICL	x'00FC82'	R/W	Timer 6 Underflow Interrupt Control Register
TM6UICH	x'00FC83'	R/W	Timer 6 Underflow Interrupt Control Register
TM7UICL	x'00FC88'	R/W	Timer 7 Underflow Interrupt Control Register
TM7UICH	x'00FC89'	R/W	Timer 7 Underflow Interrupt Control Register
TM8UICL	x'00FC54'	R/W	Timer 8 Underflow Interrupt Control Register
TM8UICH	x'00FC55'	R/W	Timer 8 Underflow Interrupt Control Register
TM8AICL	x'00FC56'	R/W	Timer 8 Capture A Interrupt Control Register
TM8AICH	x'00FC57'	R/W	Timer 8 Capture A Interrupt Control Register
TM8BICL	x'00FC5C'	R/W	Timer 8 Capture B Interrupt Control Register
TM8BICH	x'00FC5D'	R/W	Timer 8 Capture B Interrupt Control Register
TM9UICL	x'00FC5E'	R/W	Timer 9 Underflow Interrupt Control Register
TM9UICH	x'00FC5F'	R/W	Timer 9 Underflow Interrupt Control Register
TM9AICL	x'00FC64'	R/W	Timer 9 Capture A Interrupt Control Register
TM9AICH	x'00FC65'	R/W	Timer 9 Capture A Interrupt Control Register
TM9BICL	x'00FC66'	R/W	Timer 9 Capture B Interrupt Control Register
TM9BICH	x'00FC67'	R/W	Timer 9 Capture B Interrupt Control Register

· · · · · · · · · · · · · · · · · · ·			1
TM10UICL	x'00FC6C'	R/W	Timer 10 Underflow Interrupt Control Register
TM10UICH	x'00FC6D'	R/W	Timer 10 Underflow Interrupt Control Register
TM10AICL	x'00FC6E'	R/W	Timer 10 Capture A Interrupt Control Register
TM10AICH	x'00FC6F'	R/W	Timer 10 Capture A Interrupt Control Register
TM10BICL	x'00FC74'	R/W	Timer 10 Capture B Interrupt Control Register
TM10BICH	x'00FC75'	R/W	Timer 10 Capture B Interrupt Control Register
TM11UICL	x'00FC76'	R/W	Timer 11 Underflow Interrupt Control Register
TM11UICH	x'00FC77'	R/W	Timer 11 Underflow Interrupt Control Register
TM11AICL	x'00FC7C'	R/W	Timer 11 Capture A Interrupt Control Register
TM11AICH	x'00FC7D'	R/W	Timer 11 Capture A Interrupt Control Register
TM11BICL	x'00FC7E'	R/W	Timer 11 Capture B Interrupt Control Register
TM11BICH	x'00FC7F'	R/W	Timer 11 Capture B Interrupt Control Register
TM12UICL	x'00FC84'	R/W	Timer 12 Underflow Interrupt Control Register
TM12UICH	x'00FC85'	R/W	Timer 12 Underflow Interrupt Control Register
TM12AICL	x'00FC86'	R/W	Timer 12 Capture A Interrupt Control Register
TM12AICH	x'00FC87'	R/W	Timer 12 Capture A Interrupt Control Register
TM12BICL	x'00FC8A'	R/W	Timer 12 Capture B Interrupt Control Register
TM12BICH	x'00FC8B'	R/W	Timer 12 Capture B Interrupt Control Register
SC0TICL	x'00FC90'	R/W	Serial 0 Transmission End Interrupt Control Register
SC0TICH	x'00FC91'	R/W	Serial 0 Transmission End Interrupt Control Register
SC0RICL	x'00FC92'	R/W	Serial 0 Reception End Interrupt Control Register
SC0RICH	x'00FC93'	R/W	Serial 0 Reception End Interrupt Control Register
SC1TICL	x'00FC94'	R/W	Serial 1 Transmission End Interrupt Control Register
SC1TICH	x'00FC95'	R/W	Serial 1 Transmission End Interrupt Control Register
SC1RICL	x'00FC96'	R/W	Serial 1 Reception End Interrupt Control Register
SC1RICH	x'00FC97'	R/W	Serial 1 Reception End Interrupt Control Register
SC2TICL	x'00FC98'	R/W	Serial 2 Transmission End Interrupt Control Register
SC2TICH	x'00FC99'	R/W	Serial 2 Transmission End Interrupt Control Register
SC2RICL	x'00FC9A'	R/W	Serial 2 Reception End Interrupt Control Register
SC2RICH	x'00FC9B'	R/W	Serial 2 Reception End Interrupt Control Register
SC3TICL	x'00FC9C'	R/W	Serial 3 Transmission End Interrupt Control Register
SC3TICH	x'00FC9D'	R/W	Serial 3 Transmission End Interrupt Control Register
SC3RICL	x'00FC9E'	R/W	Serial 3 Reception End Interrupt Control Register
SC3RICH	x'00FC9F'	R/W	Serial 3 Reception End Interrupt Control Register
SC4TICL	x'00FCA0'	R/W	Serial 4 Transmission End Interrupt Control Register
SC4TICH	x'00FCA1'	R/W	Serial 4 Transmission End Interrupt Control Register
SC4RICL	x'00FCA2'	R/W	Serial 4 Reception End Interrupt Control Register
SC4RICH	x'00FCA3'	R/W	Serial 4 Reception End Interrupt Control Register
AT0ICL	x'00FCA8'	R/W	ATC 0 Transfer End Interrupt Control Register
AT0ICH	x'00FCA9'	R/W	ATC 0 Transfer End Interrupt Control Register
AT1ICL	x'00FCAA'	R/W	ATC 1 Transfer End Interrupt Control Register
AT1ICH	x'00FCAB'	R/W	ATC 1 Transfer End Interrupt Control Register
AT2ICL	x'00FCAC'	R/W	ATC 2 Transfer End Interrupt Control Register
AT2ICH	x'00FCAD'	R/W	ATC 2 Transfer End Interrupt Control Register
AT3ICL	x'00FCAE'	R/W	ATC 3 Transfer End Interrupt Control Register
AT3ICH	x'00FCAF'	R/W	ATC 3 Transfer End Interrupt Control Register
	-		T

ETC0ICL	x'00FCA4'	R/W	ETC 0 Transfer End Interrupt Control Register
ETC0ICH	x'00FCA5'	R/W	ETC 0 Transfer End Interrupt Control Register
ETC1ICL	x'00FCA6'	R/W	ETC 1 Transfer End Interrupt Control Register
ETC1ICH	x'00FCA7'	R/W	ETC 1 Transfer End Interrupt Control Register
ADICL	x'00FC80'	R/W	AD Conversion End Interrupt Control Register
ADICH	x'00FC81'	R/W	AD Conversion End Interrupt Control Register
KIICL	x'00FC78'	R/W	External Key Interrupt Control Register
KIICH	x'00FC79'	R/W	External Key Interrupt Control Register
KEYTRQ	x'00FCB2'	R/W	External Key Interrupt Condition Setup Register
KEYCTR	x'00FCB4'	R/W	External Key Interrupt Enable Register
WDREG	x'00FCB6'	R/W	Watchdog Interrupt Extension Control Register

The error interrupt control register does not exist in the hardware. The CPU write 'C' to the IAGR register to indicate that it detected an error interrupt if the interrupt cannot be matched.

All registers except IAGR, IRQTRG, KEYTRG, KEYCTR and WDREG allow only byte-accesses. Use the MOVB instruction to set the data.

3-2 Interrupt Setup Examples

3-2-1 External Pin Interrupt Setup Examples

In this example, an interrupt occurs on the negative edge from the external interrupt pin IRQ0 (PA0).

On reset, all bits of the external interrupt condition setup register (IRQTRG) are set to 0 and the IRQ0IR flag of the external interrupt 0 control register (IQ0ICL) is set to 0.

Figure 3-2-1 External Pin Interrupt Block Diagram

■ Interrupt Enable Setting

(1) Set the interrupt conditions for the IRQ0 (PA0) pin. In this example, set IQ0TG[1:0] of the IRQTRG register to '2' (bit setting: 10).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	-	-	-	-	-								IQ1 TG0		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

(2) Enable interrupts after clearing all prior interrupt requests. To do this, set the IQ0IR flag of the external interrupt 0 control register (IQ0ICL) to 0, the IQ0LV[2:0] flags of the external interrupt 0 control register (IQ0ICH) to the interrupt level 0 to 6, the IQ0IE flag to '1'.

The interrupt level is 5 in this example.

(3) Enable interrupts by writing the IE flag of PSW to 1 and the IMn flag to 7 (bit setting: 111).

Thereafter, an interrupt occurs on the negative edge of the IRQ0 (PA0) pin. The program branches to x'080008' when the interrupt is accepted.

■ Interrupt Service Routine

- (4) Specify the interrupt group by reading the IAGR register during interrupt preprocessing.
- (5) Execute the interrupt service routine.
- (6) Clear the IQ0IR flag of the IQ0ICL register.
- (7) Return to the main program with the RTI instruction after the interrupt service routine ends.

Normally, the program generates the interrupt start address and then branches to that address.

During the interrupt service routine, disable an interrupt by setting the IM flag of PSW register to the interrupt level and the IE flag to 0. In addition, other interrupts except nonmaskable interrupts are not accepted unless PSW register is set.

Figure 3-2-2 External Pin Interrupt Timing

3-2-2 Key Input Interrupt Setup Examples

External pins P33 - P30 (KI3 - 0) generates key input interrupts. An interrupt signal is generated whenever one of P33 - P30 is low level.

After reset is released, the external key interrupt condition setup register (KEYTRG) is sets low level and the KIIR flag of the external key interrupt control register (KIICL) becomes 0.

Figure 3-2-3 Key Input Interrupt Block Diagram

Figure 3-2-4 4×4 Key Matrix Example

■ Interrupt Enable Setting

(1) Set the port functions to the port 3 mode register L and the port 3 mode register H (P3LMD and P3HMD). Set P33 - P30 pins to /KI input, select all P37 - P34 pins as ports .

P3I MD: x'00FFF4'

	J. A 00						
7	6	5	4	3	2	1	0
P3 LMD7	P3 LMD6	P3 LMD5	P3 LMD4	P3 LMD3	P3 LMD2	P3 LMD1	P3 LMD0
1	0	1	0	1	0	1	0

P3HMD: x'00FFF5'

1	1	7	6	5	1	3	2	1	0
ļ		/	0	3	4	3		1	U
		P3							
		HMD7	HMD6	HMD5	HMD4	HMD3	HMD2	HMD1	HMD0
l									
_		0	0	0	0	0	0	0	0

(2) Set the port 3 input/output control register (P3DIR) to the I/O direction. Set P37 - P34 pins to output. P33 - P30 pins are selected as input regardless of the set value of P3DIR because these pins are set to /KI input by the port 3 mode register L.

P3DIR: x'00FFE3'

7	6	5	4	3	2	1	0
Р3	Р3	Р3	P3	Р3	Р3	Р3	Р3
DIR7	DIR6	DIR5	DIR4	DIR3	DIR2	DIR1	DIR0
1	1	1	1	0	0	0	0

(3) Set P33 - P30 pins to pull-up by the port 3 pull-up control register (P3PUL) not to generate an interrupt when the key is not pushed. Set P37 - P34 pins to output low to generate an interrupt when one of any keys is pushed. Generate a key interrupt signal when any of P33 - P30 pins becomes 0 if one of keys is pushed.

P3PUL: x'00FFB3'

ĺ	7	6	5	4	3	2	1	0
	P3 PLU7	P3 PLU6	P3 PLU5	P3 PLU4	P3 PLU3	P3 PLU2	P3 PLU1	P3 PLU0
	0	0	0	0	1	1	1	1

P3OUT: x'00FFC3'

7	6	5	4	3	2	1	0
P3 OUT7	P3 OUT6	P3 OUT5	P3 OUT4	P3 OUT3	P3 OUT2	P3 OUT1	P3 OUT0
0	0	0	0	0	0	0	0

(4) Set the key input pin to low by the KEYTRG register. Enable P33 - P30 key interrupts of the KEYCTR register.

KEYTRG: x'00FCB2'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	KI7 TG0											l		-	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

KEYCTR: x'00FCB4'

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									KI7 EN	KI6 EN	KI5 EN	KI4 EN	KI3 EN	KI2 EN	KI1 EN	KI0 EN
_									0	0	0	0	1	1	1	1

Chapter 3 Interrupts

When applying to a remote controller, the program moves to the STOP mode to reduce power consumption. When an interrupt occurs during the STOP mode, the program waits for oscillation stabilization. The program waits for up to 3.855 ms with a 34-MHz oscillator. After that, the program branches to x'080008.

(5) Enable interrupts after clearing all prior interrupt requests. To do this, set the KIIR flag of the external key interrupt control register (KIICL) to 0, the KILV2-0 flags of the external key interrupt control register (KIICH) to the interrupt level 0 to 6, and the KIIE flag to '1'.

(6) Enable interrupts by writing the IE flag of PSW to 1 and the IMn flag to 7 (bit setting: 111).

Thereafter, an interrupt occurs when one of any keys is pushed.

Normally, the program gener-

ates the interrupt start address and then branches to that address

During the interrupt service routine, disable an interrupt by setting the IM flag of PSW register to the interrupt level and the IE flag to 0. In addition, other interrupts except nonmaskable interrupts are not accepted unless PSW register is set.

Key determination is performed by reading the port 3 input register (P3IN).

■ Interrupt Service Routine

- (7) Specify the interrupt group by reading the IAGR register during interrupt preprocessing.
- (8) Execute the key interrupt service routine.
- (9) Clear the KIIR flag of the KIICL register.
- (10) Execute the key determination routine.
- (11) Return to the main program with the RTI instruction after the interrupt service routine ends.

■ Key Determination Routine

- (12) Write x'E0' to the port 3 output register (P3OUT). (bit setting: 11100000 (set 0 to only P34)).
- (13) The bit corresponding to the port 3 input register (P3IN) becomes 0 if any one of keys 0, 4, 8, C. Check with the bit test instruction (BTST).
- (14) Write x'D0' to the P3OUT register. (bit setting: 11010000, set 0 only to P35)
- (15) The bit corresponding to the port 3 input register (P3IN) becomes 0 if any one of keys 1, 5, 9, D. Check with the bit test instruction (BTST).
- (16) Write x'B0' to the P3OUT register. (bit setting: 10110000, set 0 only to P36)
- (17) The bit corresponding to the port 3 input register (P3IN) becomes 0 if any one of keys 2, 6, A, E. Check with the bit test instruction (BTST).

- (18) Write x'70' to the P3OUT register. (bit setting: 01110000, set 0 only in P37)
- (19) The bit corresponding to the port 3 input register (P3IN) becomes 0 if any one of keys 3, 7, B, F. Check with the bit test instruction (BTST).

The following figure shows the timing of the key input interrupt.

Figure 3-2-5 Key Input Interrupt Timing

3-2-3 Watchdog Timer Interrupt Setup Examples

An interrupt occurs by using the watchdog timer.

The watchdog timer starts by setting the WDRST flag of the CPU mode control register (CPUM) to enable ('0') after reset. When the watchdog timer overflows, a nonmaskable interrupt occurs. This requires to clear the watchdog timer in the main program.

Figure 3-2-6 Watchdog Timer Interrupt Block Diagram

If WDM1 and WDM0 are 00, a watchdog interrupt occurs when the watchdog timer counts 2¹⁷ BOSC cycles (3.855 ms with a 34-MHz oscillator).

The following is the WDM setting.

00: 2¹⁷ BOSC cycles 01: 2⁵ BOSC cycles 10: 2¹³ BOSC cycles

11: 215 BOSC cycles

■ Interrupt Enable Setting

(1) Clear the WDRST flag of the CPUM register. This starts the watchdog timer. In addition, set the WDM flags to the time for error detection function.

CPUM: x'00FC00'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WD RST	WD M1	WD M0	-	-	-	-	-	-	-	-	OSC ID	STOP	HALT	OSC1	OSC0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

■ Clearing the Watchdog Timer

(2) Set the WDRST flag of the CPUM register to 1 and then immediately clear it to 0. The watchdog timer clears to 0 when the WDRST flag is 1.

Normally, clear the watchdog timer before an interrupt occurs.

■ Interrupt Service Routine

When an interrupt is generated and accepted, the program branches to x'080008'.

- (3) Specify the interrupt group by reading the IAGR register during interrupt preprocessing.
- (4) Verify a watchdog interrupt by reading the watchdog interrupt control register (WDICR). Check the WDID flag with the bit test instruction (BTST). If the WDID flag is 1, execute the interrupt service routine.
- (5) Clear the WDID flag of the WDICR register.
- (6) Return to the main program with the RTI instruction after the interrupt service routine ends.

The watchdog timer shares the oscillation stabilization wait counter. The WDID flag is cleared to 0 when the program moves to the STOP mode, because the watchdog timer operates as the oscillation stabilization wait counter when the program returns from the STOP mode. The WDID flag is cleared to 0 again after moving to the normal mode. ["2-6 Standby Function" in the MN10200 Series Linear Addressing Highspeed Version LSI User Manual]

Figure 3-2-7 Watchdog Timer Interrupt Timing

Normally, the program generates the interrupt start address and then branches to that address.

During the interrupt service routine, other interrupts are not accepted because IM of PSW becomes the highest level.

3-2-4 Watchdog Timer Setup Examples

The MN102H55D/55G/F55G has the extended watchdog timer which generates a longer watchdog interrupt than the normal watchdog timer does. In addition, the CPU resets itself instead of generating an interrupt. In this example, if the CPU does not clear the watchdog timer and the extended watchdog timer for 3.86 s with 34-MHz external oscillator, the CPU judges error operation and resets.

The CPU operation when the chip resets using the watchdog timer is the same as the CPU operation when low level is input to /RST pin. Generate a pulse signal of 2^{17} BOSC cycles using the CPUM register, and then set 2^{10} using the WDREG register. Since BOSC cycle at 30-MHz external oscillator is approximately 33.3 ns, 33.3ns× 2^{10} × 2^{17} =4.47 s and the watchdog timer the extended watchdog timer should be cleared during this interval.

Figure 3-2-8 Extended Watchdog Timer Block Diagram

The following is the WDP[2:0] setting.

000: 1

001: 22

010: 24

011: 2⁶

011.2

100: 2⁸ 101: 2¹⁰

110: 212

■ Interrupt Enable Setting

(1) Set WDP[2:0] bits of the WDREG register to the time for error detection function. In this example, set 2¹⁰. Since the chip is reset as soon as a watchdog interrupt occurs, set the WDRST flag to 1.

WDREG: x'00FCB6'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WD CLK	-	-	-	-	WD P2	WD P1	WD P0	-	-	-	-	-	-	-	WD RST
$\overline{}$	0	0	0	<u> </u>	1	0	1	0	0	$\overline{}$	0	0	0	0	1

(2) Clear the WDRST flag of the CPUM register. This starts the watchdog timer and the extended watchdog timer. In addition, set the WDM flags to the time for error detection function. In this example, select 2^{17} .

CPUM: x'00FC00'

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	WD RST	WD M1	WD M0	-	-	-	-	-	-	-	-	OSC ID	STOP	HALT	OSC1	OSC0
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

When the above steps complete, genertae a watchdog interrupt after 4.47 s and reset the chip.

If WDM1 and WDM0 are 00, a watchdog interrupt occurs when the watchdog timer counts 2¹⁷ BOSC cycles (3.855 ms with a 34-MHz oscillator).

The following is the WDM setting.

00: 2¹⁷ BOSC cycles
01: 2⁵ BOSC cycles
10: 2¹³ BOSC cycles

11: 215 BOSC cycles

■ Clearing the Watchdog Timer

(3) Set the WDCLK flag of the WDREG register and the WDRST flag of the CPUM register to 1 and then immediately clear them to 0. This clears the watchdog timer and the extended watchdog timer. The watchdog timer is continuously cleared while the WDRST flag is 1 and the extended watchdog timer is continuously cleared while the WDCLK flag is 1. Normally, clear the watchdog timer and the extended watchdog timer before a watchdog interrupt occurs.

Chapter 3 Interrupts

Chapter 4 Timers

4-1 Summary of 8-bit Timer Functions

4-1-1 Overview

The MN102H60G/60K/F60G/F60K contains eight 8-bit down counters that can serve as interval timers, event counters, clock outputs (underflow divided by 2), base clocks for serial interface, or start timing for A/D conversion. The internal clocks (oscillation frequency (BOSC)/2, low-speed frequency (XI)/4) or the external clocks (less than BOSC/4) can be selected as clock sources. Interrupts are generated when timers underflow.

Up to eight 8-bit timers can cascade. For example, cascading timers 4 and 5 forms a 16-bit timer, while cascading timers 0, 1, 2, 3 forms a 32-bit timer. When cascading timers, the clock source of the lowest cascaded timer should be selected as the clock source.

Timers 0 and 4 function as prescalars. They can supply to timers 1 to 3 and timers 5 to 7 as clock sources. This allows low-speed frequency generation and synchronization between timers easily. In addition, they can supply to 16-bit timers as clock sources.

The BOSC frequency is the same as the high-speed oscillation frequency in the normal mode, while the BOSC frequency is the same as the low-speed oscillation frequency in the slow mode. The XI frequency becomes the low-speed oscillation frequency under any modes.

Figure 4-1-1 8-bit Timer Block Diagram

Table 4-1-1 8-bit Timer Functions

		Time	or O	Tim	or 1	Tim	er 2	Tim	or 2	Tim	or 4	Tim	or 5	Time	or 6	Tim	ner 7
		TMC			1ICL		2ICL	TM3			4ICL		SICL	TM6			7ICL
Interrupt Request		Tivic	/IOL	""	HOL	1 1012	LIOL	TIVIC	JIOL	1101	TIOL	TIVI	JIOL	livic	JOL	11017	IOL
1.0		Time	er 0	Tim	er 1	Tim	er 2	Tim	er 3	Tim	er 4	Tim	er 5	Time	er 6	Tim	er 7
Interrupt Source		unde	erflow	unde	erflow	unde	erflow	unde	erflow	und	erflow	unde	erflow	unde	erflow	und	erflow
Interval Timer		~		•	/	•	/	v	•	·	/	·	/	·	/	·	/
Event Counter		~	1		-		-	-		·	′	-	-	-	-	·	/
Clock Source		_									,						
for 16-bit Timer					_	·							-		-		
Timer Output		TMOI			-		-	-		TM4I		-		-	-	TM7I	/ O pin
Clock Source for Serial Interface	;	-	•		/		/	-		·		•	/	-	-		-
A/D Conversion T	rigger	-			-		-	•	/	-			-	-	-		-
Clock Sources	0	ВО	SC/2	воз	SC/2	BOS	C/2	воз	SC/2	воз	SC/2	воз	SC/2	XI	1/4	XI	l/4
	1	ΧI	/4	TN	Л О	TN	<i>1</i> 0	TN	10	TN	<i>/</i> 10	ΙΤ	M0	TM	10	TN	M0
				under	rflow	unde	rflow	unde	erflow	unde	rflow	unde	erflow	unde	erflow	unde	erflow
	2	BOSO)	Cas	cade	Cas	cade	Cas	cade	Cas	cade	Caso	cade	Caso	cade	Caso	cade
	3	TMOI	O pin	TM under			M4 erflow		M4 erflow	TM4I	O pin	ВС	OSC	TM und	14 erflow	TM7I	IO pin
Cascade				/		/	v	,	~	,	·	,		/	·	,	

a 16-bit timer, 24-bit timer, 32-bit timer, 40-bit timer, 48-bit timer, 56-bit timer, or 64-bit timer.

Figure 4-1-2 Timer Configuration

Figure 4-1-3 8-bit Event Counter Input Timing

Figure 4-1-4 8-bit Timer Output and Interval Timer Timing

4-1-2 8-bit Timer Control Registers

The timer binary counters (TMnBC), the timer base registers (TMnBR) and the timer mode registers (TMnMD) control timer/counter functions. (n=0 to 7)

^{*1} Since the settings may differ depending on timers, check each register explanation in Appendix Section.

Table 4-1-2 List of 8-bit Timer Control Registers

R	egister	Address	R/W	Function
Timer 0	TM0BC	x'00FE00'	R	Timer 0 Binary Counter
	TM0BR	x'00FE10'	R/W	Timer 0 Base Register
	TM0MD	x'00FE20'	R/W	Timer 0 Mode Register
Timer 1	TM1BC	x'00FE01'	R	Timer 1 Binary Counter
	TM1BR	x'00FE11'	R/W	Timer 1 Base Register
	TM1MD	x'00FE21"	R/W	Timer 1 Mode Register
Timer 2	TM2BC	x'00FE02'	R	Timer 2 Binary Counter
	TM2BR	x'00FE12'	R/W	Timer 2 Base Register
	TM2MD	x'00FE22'	R/W	Timer 2 Mode Register
Timer 3	TM3BC	x'00FE03'	R	Timer 3 Binary Counter
	TM3BR	x'00FE13'	R/W	Timer 3 Base Register
	TM3MD	x'00FE23'	R/W	Timer 3 Mode Register
Timer 4	TM4BC	x'00FE04'	R	Timer 4 Binary Counter
	TM4BR	x'00FE14'	R/W	Timer 4 Base Register
	TM4MD	x'00FE24'	R/W	Timer 4 Mode Register
Timer 5	TM5BC	x'00FE05'	R	Timer 5 Binary Counter
	TM5BR	x'00FE15'	R/W	Timer 5 Base Register
	TM5MD	x'00FE25'	R/W	Timer 5 Mode Register
Timer 6	TM6BC	x'00FE06'	R	Timer 6 Binary Counter
	TM6BR	x'00FE16'	R/W	Timer 6 Base Register
	TM6MD	x'00FE26'	R/W	Timer 6 Mode Register
Timer 7	TM7BC	x'00FE07'	R	Timer 7 Binary Counter
	TM7BR	x'00FE17'	R/W	Timer 7 Base Register
	TM7MD	x'00FE27'	R/W	Timer 7 Mode Register

Data bus **1**8 **1**8 (FE10) Timer 0 base register TM0BR Load Reload] 8 [(FE20) (FE00) TM0S0 Timer 0 binary counter Timer 0 underflow interrupt TM0BC Underflow 16-bit timer Count BOSC/2 ➤ TM0IO pin (P82) Reset Timer output XI/4 underflow/2 Set output by P8LMD generator (circuit) BOSC -

4-1-3 8-bit Timer Block Diagrams

Figure 4-1-5 Timer 0 Block Diagram

Figure 4-1-6 Timer 1 Block Diagram

TM0IO pin

(P82)

3

Multiplex

Figure 4-1-7 Timer 2 Block Diagram

Figure 4-1-8 Timer 3 Block Diagram

Figure 4-1-9 Timer 4 Block Diagram

Figure 4-1-10 Timer 5 Block Diagram

Figure 4-1-11 Timer 6 Block Diagram

Figure 4-1-12 Timer 7 Block Diagram

4-2 8-bit Timer Setup Examples

4-2-1 Event Counter Using 8-bit Timer

Timer 0 divides TM0IO pin input by 4 and generates an underflow interrupt.

When the pulse is output by the event counter, the change timing is quantized (synchronized with BOSC).

Event counter operates even while the CPU stops. The event counter samples TMnIO pin input on BOSC when the CPU operates. On the other hand, the event counter counts when TMnIO pin input changes during the CPU stop. The CPU transfers to the normal mode after oscillation stability wait when an interrupt is generated. At this point, the event counter counts TMnIO pin input at the change timing until the oscillation stability wait is completed. The event counter, however, starts counting TMnIO pin input at the timing the event counter samples on BOSC.

Figure 4-2-1 Event Counter Block Diagram

- (1) Set the interrupt enable flag (IE) of the processor status word (PSW) to 1.
- (2) Verify that timer 0 counting is stopped with the timer 0 mode register (TM0MD).

This verification is unnecessary after a reset.

TM0MD: x'00FE20'

	U	3	4	3	2	1	0
TM0 TEN	ГМ0 LD					TM0 S1	TM0 S0

(3) Enable interrupts after clearing all existing interrupt requests. To do this, set IQ0LV[2:0] of the external interrupt 0 control register (IQ0ICH) to interrupt level 0-6, set TM0IR to 0, and set TM0IE to 1. Thereafter, an interrupt will be generated whenever timer 0 underflows.

IQ0ICH/TM0ICL/TM0ICH use only byte access. Use the MOVB instruction.

IQ0ICH sets the timer 0 interrupt level. [See "3-1 Interrupt Group"]

The interrupt level is 4 in this example.

IQ0ICH: x'00FC50'

7	6	5	4	3	2	1	0
	IQ0 LV2	IQ0 LV1	IQ0 LV0				IQ0 IE
	1	0	0				0

TM0ICL: x'00FC52'

7	6	5	4	3	2	1	0			
_	-	-	TM0 IR	-	-	-	TM0 ID			
	0									

TM0ICH: x'00FC53'

7	6	5	4	3	2	1	0
ı	-	ı	-	ı	-	-	TM0 IE
							1

(4) Set the timer 0 divisor. Since timer 0 divides TM0IO pin by 4, set the timer 0 base register (TM0BR) to 3. (The valid range for TM0BR is 0 to 255.)

TM0BR: x'00FE10'

7	6	5	4	3	2	1	0
							TM0 BR0
Ω	Λ	Λ	Λ	Λ	Λ	1	1

(5) Load TM0BR value to the timer 0 binary counter (TM0BC). At the same time, select TM0IO pin input as the clock source.

TM0MD: x'00FE20'

	_						
7	6	5	4	3	2	1	0
TM0 EN	TM0 LD					TM0 S1	TM0 S0
0	1					1	1

Set the value of timer 0 divisor -1 in the timer 0 base register (TM0BR). If 0 is set in the TM0BR register, the TM0BC value remains 0, but the cycle of the timer 0 underflow and the cycle of the clock source are same.

Setting TM0EN and TM0LD to 0 is required between (5) and (6) in the bank address version and the linear address version, but this setting is not required in the linear address high-speed version.

Do not change the clock source once you have selected it.
Selecting the clock source while setting the count operation control will corrupt the value in the binary counter.

(6) Set TM0LD to 0 and TM0EN to 1. This starts the timer. Counting begins at the start of the next cycle.

When the binary counter reaches 0 and loads the value 3 from the base register at the next count, a timer 0 underflow interrupt request will be sent to the CPU.

Figure 4-2-2 Event Counter Timing (8-bit Timer)

4-2-2 Clock Output Using 8-bit Timer

Timer 0 and timer 7 output a BOSC/2 divided by 6 (12-cycle) pulse (the duty is 1:1).

Figure 4-2-3 Clock Output Configuration Example (8-bit Timer)

Figure 4-2-4 Clock Output Block Diagram (8-bit Timer)

■ Port Setting

(1) Set TM7IO (P84) of the port 8 to timer output. Set P8MMD4-2 flags of the port 8 mode control register (P8MMD) to '010' (TM7IO output). With this setting, the direction control of P84 switches to output.

Setting the port 8 I/O control register (P8DIR) is not required. P8DIR operates only when it is used as the port input or output.

P8MMD: x'00FFFD'

7	6	5	4	3	2	1	0
P8							
MMD7	MMD6	MMD5	MMD4	MMD3	MMD2	MMD1	MMD0
0	0	0	0	1	0	0	0

This verification is unnecessary after a reset.

■ Timer 0 Setting

(2) Verify that timer 0 counting is stopped with the timer 0 mode register (TM0MD).

TM0MD: x'00FE20'

7	6	5	4	3	2	1	0
TM0 EN	TM0 LD					TM0 S1	TM0 S0
0							

(3) Set the timer 0 divisor. Since timer 0 divides BOSC/2 by 2, set the timer 0 base register (TM0BR) to 1. (The valid range for TM0BR is 0 to 255.)

TM0BR: x'00FE10'

7	6	5	4	3	2	1	0
	TM0 BR6						
0	0	0	0	0	0	0	1

Setting TM0EN and TM0LD to 0 is required between (4) and (5) in the bank address version and the linear address version, but this setting is not required in the linear address high-speed version.

TM0MD: x'00FE20'

7	6	5	4	3	2	1	0
TM0 EN	TM0 LD					TM0 S1	TM0 S0
0	1					0	0

Do not change the clock source once you have selected it.

Selecting the clock source while setting the count operation control will corrupt the value in the binary counter. (5) Set TM0LD and TM0EN of the TM0MD register to 0 and 1 respectively. This starts the timer. Counting begins at the start of the next cycle.

When the binary counter reaches 0 and loads the value 1 from the base register at the next count, a timer 0 underflow interrupt request will be sent to the CPU.

■ Timer 7 Setting

This verification is unnecessary after a reset.

(6) Verify that timer 7 counting is stopped with the timer 7 mode register (TM7MD).

TM7MD: x'00FE27'

7	6	5	4	3	2	1	0
TM7 EN	TM7 LD					TM7 S1	TM7 S0
^							

120

(7) Set the timer 7 divisor. Since timer 7 divides timer 0 output by 3, set the timer 7 base register (TM7BR) to 2. (The valid range for TM7BR is 0 to 255.)

TM7BR: x'00FE17'

7	6	5	4	3	2	1	0
TM7							
BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
0	0	0	0	0	0	1	0

(8) Load TM7BR value to the timer 7 binary counter (TM7BC). At the same time, select the timer 0 underflow as the clock source.

TM7MD: x'00FE27'

7	6	5	4	3	2	1	0
TM7 EN	TM7 LD					TM7 S1	TM7 S0
0	1					0	1

(9) Set TM7LD to 0 and TM7EN to 1. This starts the timer. Counting begins at the start of the next cycle.

When the timer 7 binary counter (TM7BC) reaches 0 and loads the value 1 from the timer 7 base register (TM7BR) at the next count, the TM7IO output signal is simultaneously inverted. The TM7IO signal starts 0, and then transfer to 1 at the start of the next count cycle. The TM7IO output signal backs to 0 at the start of the following count cycle. By repeating this inversion, the timers generate a 12-cycle (BOSC) clock output signal.

Setting TM0EN and TM0LD to 0 is required between (8) and (9) in the bank address version and the linear address version, but this setting is not required in the linear address high-speed version.

Do not change the clock source once you have selected it. Selecting the clock source while setting the count operation control will corrupt the value in the binary counter.

Figure 4-2-5 Clock Output Timing (8-bit Timer)

4-2-3 Interval Timer Using 8-bit Timer

Timer 0, timer 4 and timer 5 divide BOSC/2 by 120,000 and generate an interrupt.

Figure 4-2-6 Interval Timer Configuration Example (8-bit Timer)

Figure 4-2-7 Interval Timer Block Diagram (8-bit Timer)

■ Timer 0 Setting

This verification is unnecessary after a reset.

(1) Verify that timer 0 counting is stopped with the timer 0 mode register (TM0MD).

TM0MD: x'00FE20'

7	6	5	4	3	2	1	0
TM0 EN	TM0 LD					TM0 S1	TM0 S0
0							

(2) Set the timer 0 divisor. Since timer 0 divides BOSC/2 by 2, set the timer 0 base register (TM0BR) to 1. (The valid range for TM0BR is 0 to 255.)

TM0BR: x'00FE10'

7	6	5	4	3	2	1	0
					TM0 BR2		
	0	0	0	0	0	0	1

(3) Load TM0BR value to the timer 0 binary counter (TM0BC). At the same time, select BOSC/2 as the clock source.

TM0MD: x'00FE20'

	7	6	5	4	3	2	1	0
	TM0 EN	TM0 LD					TM0 S1	TM0 S0
•	0	1					0	0

(4) Set TM0LD to 0 and TM0EN to 1. This starts the timer. Counting begins at the start of the next cycle.

When the timer 0 binary counter (TM0BC) reaches 0 and loads the value 1 from the base register at the next count, a timer 0 underflow interrupt request will be sent to the CPU.

Setting TM0EN and TM0LD to 0 is required between (3) and (4) in the bank address version and the linear address version, but this setting is not required in the linear address high-speed version.

Do not change the clock source once you have selected it. Selecting the clock source while setting the count operation control will corrupt the value in the binary counter.

■ Timer 4, Timer 5 Settings

(5) Verify that timer counting is stopped with the timer 4 mode register (TM4MD) and the timer 5 mode register (TM5MD).

This verification is unnecessary after a reset.

TM4MD: x'00FE24'

7	6	5	4	3	2	1	0
TM4 EN	TM4 LD					TM4 S1	TM4 S0

0

TM5MD: x'00FE25'

TM5 TM5 S1 TM5 S1 S0	7	6	5	4	3	2	1	0
	_	_					l	l

(6) Enable interrupts after clearing all existing interrupt requests. To do this, set KILV[2:0] of the external key interrupt control register (KIICH) to interrupt level 0 to 6, set TM5IR to 0, TM5IE to 1, TM4IR to 0, and TM4IE to 0. Thereafter, an interrupt will be generated whenever timer 5 underflows. The timer 4 underflow is not required.

The timer 5 underflow interrupt level and the external key interrupt level should be the same. The interrupt level is 4 in this example.

KIICH: x'00FC79'

7	6	5	4	3	2	1	0
	KI LV2	KI LV1	KI LV0				KI IE
	- 1	_	_				

TM4UICL: x'00FC72'

	7	6	5	4	3	2	1	0		
				TM4U IR				TM4U ID		
•	0									

TM4UICH: x'00FC73'

7	6	5	4	3	2	1	0
							TM4U IE
						•	0

TM5UICL: x'00FC7A'

7	6	5	4	3	2	1	0			
			TM5U IR				TM5U ID			
0										

TM5UICH: x'00FC7B'

	7	6	5	4	3	2	1	0
								TM5U IE
•								1

When cascading timers, set the lowest timer divisor -1 to the lowest timer base register.

(7) Set the timer divisor. Since timer divides timer output by 60,000 (x'EA60'), set the timer 4 base register (TM4BR) and the timer 5 base register (TM5BR) to x'5F' and x'EA' respectively. (The valid range is 0 to 255.)

TM4BR: x'00FE14'

	7	6	5	4	3	2	1	0
								TM4 BR0
l	0	1		1	1	1	1	1

TM5BR: x'00FE15'

7	6	5	4	3	2	1	0
TM5 BR7							
1	1	1	0	1	0	1	0

(8) Load TM4BR value and TM5BR to the timer 4 binary counter (TM4BC) and the timer 5 binary counter (TM5BC) respectively. At the same time, select the timer 0 underflow and the timer 4 cascade as the clock source for timer 4 and timer 5 respectively.

Setting TM0EN and TM0LD to 0 is required between (8) and (9) in the bank address version and the linear address version, but this setting is not required in the linear address high-speed version.

TM4MD: x'00FE24'

7	6	5	4	3	2	1	0
TM4 EN	TM4 LD					TM4 S1	TM4 S0
0	1			-		0	1

TM5MD: x'00FE25'

7	6	5	4	3	2	1	0
TM5 EN	TM5 LD					TM5 S1	TM5 S0
0	1					1	0

(9) Set TM5LD to 0, TM5EN to 1, TM4LD to 0 and TM4EN to 1. This starts the timer. Counting begins at the start of the next cycle.

When both TM4BC value and TM5BC value reach 0 and the values from TM4BR register and TM5BR register are loaded at the next count, a timer 5 underflow interrupt request will be sent to the CPU. The timer 4 underflow interrupt request can not be used.

Do not change the clock source once you have selected it. Selecting the clock source while setting the count operation control will corrupt the value in the binary counter.

When starting the timer, use the MOV instruction to set TM5MD and TM4MD and only use 16-bit write operations. Or set TM5MD first and then set TM4MD.

Figure 4-2-8 Interval Timer Timing (8-bit Timer)

4-3 Summary of 16-bit Timer Functions

4-3-1 Overview

The MN102H60G/60K/F60G/F60K has five 16-bit up/down counters. Each counter has two compare/capture registers which capture and compare the up/down counter value, generate PWM and interrupts. The PWM has a mode that changes cycle and transition at the beginning of the next cycle. This prevents PWM losses and waveform distortion.

16-bit timer underflow interrupts occur only during down counting.

These counters can serve as interval timers, event counters (in clock oscillation mode), one-phase PWMs, two-phase PWMs, one-phase captures, two-phase encoders (1x and 4x), one-shot pulse generators, and external count direction controllers. They select internal clocks, external pins, timer 0 underflow or timer 4 underflow as their clock sources.

Figure 4-3-1 16-bit Timer Block Diagram

Table 4-3-1 16-bit Timer Functions

	Timer 8	Timer 9	Timer 10	Timer 11	Timer 12
Interrupt Requests	T8UICL T8AICL T8BICL	T9UICL T9AICL T9BICL	T10UICL T10AICL T10BICL	T11UICL T11AICL T11BICL	T12UICL T12AICL T12BICL
Interrupt Sources	Timer 8 underflow Timer 8 capture A Timer 8 capture B	Timer 9 underflow Timer 9 capture A Timer 9 capture B	Timer 10 underflow Timer 10 capture A Timer 10 capture B	Timer 11 underflow Timer 11 capture A Timer 11 capture B	Timer 12 underflow Timer 12 capture A Timer 12 capture B
Clock Sources	Timer 0 underflow Timer 4 underflow TM8IB pin 1/2 of BOSC Two-phase encoder of TM8IOA, TM8IOB (4x) Two-phase encoder of TM8IOA, TM8IOB (1x) TM8IOA, TM8IOB (1x)	Timer 0 underflow Timer 4 underflow TM9IOB pin 1/2 of BOSC Two-phase encoder of TM9IOA, TM9IOB (4x) Two-phase encoder of TM9IOA, TM9IOB (1x)	Timer 0 underflow Timer 4 underflow TM10IOB pin 1/2 of BOSC Two-phase encoder of TM10IOA, TM10IOB (4x) Two-phase encoder of TM10IOA, TM10IOB (1x)	Timer 0 underflow Timer 4 underflow TM11IOB pin 1/2 of BOSC Two-phase encoder of TM11IOA, TM11IOB (4x) Two-phase encoder of TM11IOA, TM11IOB (1x)	Timer 0 underflow Timer 4 underflow TM12IOB pin 1/2 of BOSC Two-phase encoder of TM12IOA, TM12IOB (4x) Two-phase encoder of TM12IOA, TM12IOB (1x)
Count Direction	Up/Down	Up/Down	Up/Down	Up/Down	Up/Down
Interval Timer	✓	✓	✓	✓	✓
Event Counter	✓	✓	✓	✓	✓
PWM	✓	✓	✓	✓	✓
One-shot Pulse Output	✓	√	√	✓	✓
1-phase Capture Input	1	1	1	✓	✓
2-phase Capture Input	1	1	1	✓	✓
2-phase Encoder (4x)	1	1	1	✓	✓
2-phase Encoder (1x)	✓	✓	✓	✓	✓
External Count Direction Control	✓	√	√	1	1
Other	Switch edge polarity of TM8IC pin input Switch polarity of TM8IOA,TM8IOB output	Switch edge polarity of TM9IOB pin input Clear BC with TM9IOB pin input (Pulse phase difference detection)	• Switch edge polarity of TM10IOB pin input (rising edge, falling edge, or both edges)		

Figure 4-3-2 One-phase PWM Output Timing

Figure 4-3-3 One-phase PWM Output Timing (with Data Rewrite)

Figure 4-3-4 Two-phase PWM Output Timing

Figure 4-3-5 One-shot Pulse Output Timing

Figure 4-3-6 External Control Timing

Figure 4-3-7 Event Counter Input Timing

Figure 4-3-8 Input Capture 1 Timing

Figure 4-3-9 Input Capture 2 Timing

Figure 4-3-10 Two-phase Encoder (4x) Timing

Figure 4-3-11 Two-phase Encoder (1x) Timing

4-3-2 16-bit Timer Control Registers

The timer binary counter (TMnBC), the timer compare/capture register A (TMnCA), the timer compare/capture register B (TMnCB) and the timer mode register (TMnMD) control 16-bit timer/counter functions.

TMnBC [R]	TMn BC0		1	l .		l		l .		1		l l	TMn BC14	1
TMnCA [R/W]	TMn CA0	l	1		l .	l .	l .	l	l .	l .	l	l	TMn CA14	
TMnCB [R/W]	TMn CB0	l	1	TMn CB3	l .	l .		l .		1		l l	TMn CB14	1

Use the MOV instruction to set TMnCA register and TMnCB register and only use 16-bit write operations.

The timer compare/capture register set AX (TMnCAX) and the timer compare/capture register set BX (TMnCBX) are valid only when double buffer mode is selected in the compare register. These registers prevent PWM losses. The value cannot be written directly in these registers by software. TMnCA value and TMnCB value can write to TMnCAX and TMnCBX respectively by writing dummy data to TMnCAX and TMnCBX. TMnCAX and TMnCBX registers cannot be read.

TMnMD (n: 8 to 12)

Table 4-3-2 List of 16-bit Timer Control Registers

Re	egister	Address	R/W	Function
	TM8MD TM8BC TM8CA	x'00FE80' x'00FE82' x'00FE84'	R/W R R/W	Timer 8 Mode Register Timer 8 Binary Counter Timer 8 Compare/Capture Register A
Timer 8	TM8CAX TM8CB TM8CBX TM8MD2	x'00FE86' x'00FE88' x'00FE8A' x'00FE8E'	- R/W - R/W	Timer 8 Compare/Capture Register Set AX Timer 8 Compare/Capture Register B Timer 8 Compare/Capture Register Set BX Timer 8 Mode Register 2
Timer 9	TM9MD TM9BC TM9CA TM9CAX TM9CB TM9CBX TM9MD2	x'00FE90' x'00FE92' x'00FE94' x'00FE96' x'00FE98' x'00FE9A' x'00FE9E'	R/W R R/W - R/W - R/W	Timer 9 Mode Register Timer 9 Binary Counter Timer 9 Compare/Capture Register A Timer 9 Compare/Capture Register Set AX Timer 9 Compare/Capture Register B Timer 9 Compare/Capture Register Set BX Timer 9 Mode Register 2
Timer 10	TM10MD TM10BC TM10CA TM10CAX TM10CB TM10CBX TM10MD2	x'00FEA0' x'00FEA2' x'00FEA4' x'00FEA6' x'00FEA8' x'00FEAA'	R/W R R/W - R/W - R/W	Timer 10 Mode Register Timer 10 Binary Counter Timer 10 Compare/Capture Register A Timer 10 Compare/Capture Register Set AX Timer 10 Compare/Capture Register B Timer 10 Compare/Capture Register Set BX Timer 10 Mode Register 2
Timer 11	TM11MD TM11BC TM11CA TM11CAX TM11CB TM11CBX	x'00FEB0' x'00FEB2' x'00FEB4' x'00FEB6' x'00FEB8' x'00FEBA'	R/W R R/W - R/W	Timer 11 Mode Register Timer 11 Binary Counter Timer 11 Compare/Capture Register A Timer 11 Compare/Capture Register Set AX Timer 11 Compare/Capture Register B Timer 11 Compare/Capture Register Set BX
Timer 12	TM12MD TM12BC TM12CA TM12CAX TM12CB TM12CBX	x'00FEC0' x'00FEC2' x'00FEC4' x'00FEC6' x'00FEC8' x'00FECA"	R/W R R/W - R/W	Timer 12 Mode Register Timer 12 Binary Counter Timer 12 Compare/Capture Register A Timer 12 Compare/Capture Register Set AX Timer 12 Compare/Capture Register B Timer 12 Compare/Capture Register Set BX

4-3-3 16-bit Timer Block Diagrams

Figure 4-3-12 Timer 8 Block Diagram

Figure 4-3-13 Timer 9 Block Diagram

Figure 4-3-14 Timer 10 Block Diagram

Figure 4-3-15 Timer 11 Block Diagram

Figure 4-3-16 Timer 12 Block Diagram

4-4 16-bit Timer Setup Examples

4-4-1 Event Counter Using 16-bit Timer

In this example, timer 8 counts TM8IOB input (cycles of more than BOSC/4) and generates an interrupt on the second and fifth cycles.

Figure 4-4-1 Event Counter Block Diagram

Use the MOV instruction to set the data and only use 16-bit write operations.

The timer 8 binary counter (TM8BC) is stopped, and TM8BC register and RS.F.F. are initialized (cleared to 0).

■ Timer 8 Setting

(1) Set the operating mode in the timer 8 mode register (TM8MD). Set counting stop and interrupt disable. Select up counting. Then, select TM8IOB pin as the clock source.

TM8MD: x'00FE80'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TM8 NLD								_	TM8 ECLR		TM8 ASEL	-	TM8 S1	TM8 S0
0	0			0	0	0	0	0	0	0	1	0	0	1	0

(2) Set the timer 8 divisor. Since timer 8 divides TM8IOB pin by 5, set the timer 8 compare/capture register A (TM8CA) to 4. (The valid range is 1 to x'FFFE'.)

TM8CA: x'00FE84'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TM8		_			_			_	-		-		-	
CAIS	CA14	CA13	CA12	CAII	CA10	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2	CAI	CA0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

(3) Set the phase difference for timer 8. Since the phase difference is 2 cycles of TM8IOB, set the timer 8 compare/capture register B (TM8CB) to 1. (The valid range is $0 \le \text{TM8CB} < \text{TM8CA}$.)

TM8CB: x'00FE88'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TM8 CB14	1	1					1				_		_	
0		<u> </u>	0		$\overline{}$	<u> </u>		<u> </u>			0			0	1

(4) Set TM8NLD and TM8EN of TM8MD register to 1 and 0 respectively. This enables TM8BC and RS.F.F.

(5) Set TM8NLD and TM8EN to 1. This starts the timer. Counting begins at the start of the next cycle.

If this setting is omitted, the binary counter may not count the first cycle. Do not change to any

other operating modes.

138

■ Interrupt Enable Setting

(6) Enable interrupts after clearing all prior interrupt requests. To do this, set IQ0LV[2:0] of the external interrupt 0 control register (IQ0ICH) to the interrupt level 0 to 6), TM8AIR of the timer 8 capture A interrupt control register (TM8AICL) to 0, TM8BIR of the timer 8 capture B interrupt control register (TM8BICL) to 0, TM8AIE of TM8AICH register to 1 and TM8BIE of TM8BICH register to 1. Thereafter, a timer 8 capture A or B interrupt occurs when TM8BC counter matches TM8CA register or TM8CB register is generated.

Timer 8 functions as an event counter. Timer 8 does not operate stably when BOSC stops (in STOP mode). All external inputs are sampled on BOSC (synchronized with BOSC) when the external clock operates. The event counter frequency should be less than BOSC/4 (8.5 MHz with a 34-MHz oscillator).

Figure 4-4-2 shows an example of interrupt timing with an up counter.

Figure 4-4-2 Event Counter Timing (16-bit Timer)

4-4-2 One-phase PWM Output Using 16-bit Timer

Timer 8 is used to divide BOSC/2 by 5 and outputs a one-phase PWM on the fifth cycle. The signal duty is 2:3. To do this, set the compare/capture register A to the divisor of 5 (set value is 4) and the compare/capture register B to the cycle of 2 (the set value is 1).

Figure 4-4-3 One-phase PWM Output Block Diagram (16-bit Timer)

■ Timer 8 Setting

(1) Set the operating mode in the timer 8 mode register (TM8MD). Set counting stop and interrupt disable. Select up counting. Select BOSC/2 as the clock source. Select the double buffer operating mode.

TM8MD: x'00FE80'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TM8 NLD			TM8 UD1				1		TM8 ECLR		TM8 ASEL		TM8 S1	TM8 S0
0	0			0	0	0	0	0	1	0	1	0	0	1	1

(2) Set the timer 8 divisor. Since the divisor is BOSC/2 divided by 5, set the timer 8 compare/capture register A (TM8CA) to 4. (The valid range is 1 to x'FFFE'.)

TM8CA: x'00FE84'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM8 CA15	TM8 CA14					_			-		-				
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

(3) Set the phase difference for timer 8. Since the phase difference is 2/5 cycles of BOSC/2, set the timer 8 compare/capture register B (TM8CB) to 1. (The valid range is $0 \le TM8CB < TM8CA$.)

TM8CB: x'00FE88'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		1	TM8 CB10	ı			ı						
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

(4) Write the dummy data to the timer 8 compare/capture register AX (TM8CAX) to set the initial value in the TM8CAX register. The value cannot be written directly in the TM8CAX register by software. In the double buffer mode, read the timer 8 compare/capture register A (TM8CA) to TM8CAX when TM8CAX=TM8BC. To read the TM8CA value into TM8CAX, write the dummy data to TM8CAX.

Use the MOV instruction to set the data and only use 16-bit write operations.

The timer 8 binary counter (TM8BC) is stopped, and TM8BC register and RS.F.F. are initialized (cleared to 0).

If this setting is omitted, the binary counter may not count the first cycle. Do not change to any other operating modes.

- (5) Write the dummy data to the timer 8 compare/capture register BX (TM8CAX) to set the initial value in the TM8CBX register. The value cannot be written directly in the TM8CBX register by software. In the double buffer mode, read the timer 8 compare/capture register B (TM8CB) to TM8CBX when TM8CBX=TM8BC. To read the TM8CB value into TM8CBX, write the dummy data to TM8CBX.
- (6) Set TM8NLD and TM8EN of TM8MD to 1 and 0 respectively. This enables TM8BC and RS.F.F.
- (7) Set TM8NLD and TM8EN to 1. This starts the timer. Counting begins at the start of the next cycle.

Timer 8 outputs a one-phase PWM at any duty. Select up counting. Do not use timer 8 when BOSC stops (in STOP mode). All external inputs are sampled on BOSC (synchronized with BOSC) when the external clock operates.

Set the cycle (0 to x'FFFE') to the TM8CA register, and the duty to the TM8CB register. When TM8BC = TM8CB, reset RS.F.F and TM8BC at the start of the next cycle. The following shows the relationship between the waveforms of PWM output and the value of TM8CB register.

- 1) When TM8CA \leq TM8CB \leq x'FFFE': all output waveforms consist of 0.
- 2) When 0 ≤ TM8CB < TM8CA: under the condition that the PWM cycle is TM8CA+1 of the clock source, output 0 if TM8BC equals to the value between 0 and TM8BC, and output 1 if TM8BC equals to the value between TM8CB+1 and TM8CA.
- 3) When TM8BC=x'FFFF': all output waveforms consist of 1.

Figure 4-4-4 shows the TM8IOA pin output waveforms when TM8CA=4. A capture A interrupt or a capture B interrupt occurs. A capture B interrupt occurs only when TM8CB is set to 0 to TM8CA, and does not occur when TM8CB is set to any other values. (TM8BC and the value cannot be matched.) In Figure 4-4-4, CLRBC8 means an internal signal which clears TM8BC, S8 means an internal signal which sets RS.F.F. for TM8IOA pin output. R8 shows an internal signal which resets RS.F.F. for TM8IOA pin output.

Figure 4-4-4 One-phase PWM Output Timing (16-bit Timer)

When outputting the PWM waveform, the timer may change the duty of the PWM output dynamically and may invert '1' and '0' due to the circuit configuration. This is caused when the trigger to be changed is lost based on the T.F.F output circuit. The RS.F.F. configuration in timer 8 prevents this error of inverting '1' and '0' at the trigger loss. In addition, the PWM waveform may be corrupted and interrupts are lost depending on the timing of changing the duty dynamically (in the single buffer mode on the figure below). In the double buffer mode, the duty can be changed from the next cycle, and the PWM loss does not occur at any timing of changing TMnCB. This loss does not occur even when the output waveforms consist of 1s or 0s. Use double buffer mode normally when the PWM is used. Select single buffer mode based on applications.

Figure 4-4-5 One-phase PWM Output Timing (16-bit Timer)
(Dynamical Duty Change)

4-4-3 Two-phase PWM Output Using 16-bit Timer

Timer 8 is used to divide timer 0 underflow by 5 and outputs a two-phase PWM on the fifth cycle. The phase difference is two cycles. To do this, set the timer 8 compare/capture register A to the divisor of 5 (set value is 4) and the timer 8 compare/capture register B to the cycle of 2 (the set value is 1).

Figure 4-4-6 Two-phase PWM Output Block Diagram (16-bit Timer)

This verification is unnecessary after a reset.

■ Timer 0 Setting

(1) Verify that timer 0 counting is stopped with the timer 0 mode register (TM0MD).

TM0MD: x'00FE20'

			-				
7	6	5	4	3	2	1	0
TM0 EN	TM0 LD					TM0 S1	TM0 S0
Λ							

(2) Set the timer 0 divisor. Since timer 0 divides BOSC/2 by 2, set the timer 0 base register (TM0BR) to 1. (The valid range for TM0BR is 0 to 255.)

TM0BR: x'00FE10'

7	6	5	4	3	2	1	0
							TM0
BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
0	0	0	0	0	0	0	1

Setting TM0EN and TM0LD to 0 is required between (3) and (4) in the bank address version and the linear address version, but this setting is not required in the linear address high-speed version.

Do not change the clock source once you have selected it.
Selecting the clock source while setting the count operation control will corrupt the value in the binary counter.

(3) Load TM0BR value to the timer 0 binary counter (TM0BC). At the same time, select BOSC/2 as the clock source.

TM0MD: x'00FE20'

7	6	5	4	3	2	1	0
TM0 EN	TM0 LD					TM0 S1	TM0 S0
0	1					0	0

(4) Set TM0LD to 0 and TM0EN to 1. This starts the timer. Counting begins at the start of the next cycle.

When the timer 0 binary counter reaches 0 and the value 1 from the base register is loaded at the next count, a timer 0 underflow interrupt request will be sent to the CPU.

■ Timer 8 Setting

(1) Set the operating mode in the timer 8 mode register (TM8MD). Set counting stop. Select up counting. Select the timer 0 underflow as the clock source. Set T.F.F. as TM8IOA pin output. Select the double buffer mode in the compare register.

Use the MOV instruction to set the data and only use 16-bit write operations.

The timer 8 binary counter (TM8BC) is stopped, and TM8BC register and RS.F.F. are initialized (cleared to 0).

TM8MD: x'00FE80'

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TM8 EN	TM8 NLD			l		ı			ı	TM8 ECLR			TM8 S2	TM8 S1	TM8 S0
Į	0	0			0	0	0	0	0	1	0	1	1	0	0	0

(2) Set the timer 8 divisor. Since the divisor is the timer 0 underflow divided by 5, set the timer 8 compare/capture register A (TM8CA) to 4. (The valid range is 1 to x'FFFE'.)

TM8CA: x'00FE84'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	TM8 CA14					_			-		-			-	
CAIS	CAIT	CAIS	CAIZ	CAII	CAIO	CA	CAO	CAI	САО	CAS	СЛ	CAS	CAZ	CAI	CAO
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

(3) Set the phase difference for timer 8. Since the phase difference is 2 cycles of the timer 0 underflow, set the timer 8 compare/capture register B (TM8CB) to 1. (The valid range is $0 \le \text{TM8CB} < \text{TM8CA}$.)

TM8CB: x'00FF88'

I WIOO	D. A U	01 00	,												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_			_	_	TM8 CB10				_			_	TM8 CB2	TM8 CB1	TM8 CB0
$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	<u> </u>	$\overline{}$	1							

(4) Write the dummy data to the timer 8 compare/capture register AX (TM8CAX) to set the initial value in the TM8CAX register. The value cannot be written in the TM8CAX by software. In the double buffer mode, read the timer 8 compare/capture register A (TM8CA) to TM8CAX when TM8CAX=TM8BC. To read the TM8CA value into TM8CAX, write the dummy data to TM8CAX.

If this setting is omitted, the binary counter may not count the first cycle. Do not change to any other operating modes.

- (5) Write the dummy data to the timer 8 compare/capture register BX (TM8CAX) to set the initial value in the TM8CBX register. The value cannot be written in the TM8CBX by software. In the double buffer mode, read the timer 8 compare/capture register B (TM8CB) to TM8CBX when TM8CBX=TM8BC. To read the TM8CB value into TM8CBX, write the dummy data to TM8CBX.
- (6) Set TM8NLD and TM8EN of TM8MD to 1 and 0 respectively. This enables TM8BC and RS.F.F.
- (7) Set TM8NLD and TM8EN to 1. This starts the timer. Counting begins at the start of the next cycle.

Timer 8 outputs a one-phase PWM at any duty. Select up counting. Do not use timer 8 when BOSC stops (in STOP mode). All external inputs are sampled on BOSC (synchronized with BOSC) when the external clock operates.

Set the cycle (0 to x'FFFE') to the TM8CA register, and the phase difference to the TM8CB register. When TM8BC = TM8CB, generate a B8 pulse signal and invert T.F.F. for TM8IOB pin output at the start of the next cycle. When TM8BC = TM8CA, generate an A8 pulse signal, invert T.F.F. for TM8IOA pin output and reset TM8BC at the start of the next cycle. (A8 and B8 are internal control signals.)

Figure 4-4-7 shows the TM8IOA pin and TM8IOB pin output waveforms when TM8CA=4. A capture A interrupt and a capture B interrupt occur. Both interrupts occur at the start of the next cycle when TM8CA and TM8CB match. A capture B interrupt occurs only when TM8CB is set to 0 to TM8CA, and does not occur when TM8CB is set to any other value. (TM8BC and the value cannot be matched.)

Figure 4-4-7 Two-phase PWM Output Timing (16-bit Timer)

When outputting the PWM waveform, the timer may change the duty of the PWM output dynamically. The PWM waveform may be corrupted and interrupts are lost depending on the timing of changing the duty dynamically (in the single buffer mode on the figure below). In the double buffer mode, the duty can be changed from the next cycle, and the PWM loss does not occur at any timing of changing TM8CB. This loss does not occur even when the output waveforms consist of 1s or 0s. Use double buffer mode when the PWM is used. Select single buffer mode depending on applications.

Figure 4-4-8 Two-phase PWM Output Timing (16-bit Timer)
(Dynamical Duty Change)

4-4-4 One-phase Capture Input Using 16-bit Timer

Timer 8 is used to divide BOSC/2 by 65,536 and measure how long TM8IOA input is high. An interrupt occurs on capture B. The width is calculated by the instruction (TM8CB-TM8CA).

Figure 4-4-9 One-phase Capture Input Block Diagram (16-bit Timer)

Use the MOV instruction to set the data and only use 16-bit write operations.

The timer 8 binary counter (TM8BC) is stopped, and TM8BC register and RS.F.F. are initialized (cleared to 0).

If this setting is omitted, the binary counter may not count the first cycle. Do not change to any other operating modes.

When TM8MD0=0 and TM8MD1=1 (in capture mode), TM8CA and TM8CB become read-only registers. If TM8CB must be set, TM8MD0 and TM8MD1 must be set to 0.

■ Timer 8 Setting

(1) Set the operating mode in the timer 8 mode register (TM8MD). Set counting stop. Select up counting. Select BOSC/2 as the clock source. Set the operating mode of the capture register to capture on both edges of TM8IOA pin.

TM8MD: x'00FE80'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TM8 NLD								_	TM8 ECLR		TM8 ASEL		TM8 S1	TM8 S0
0	0			0	0	0	0	1	0	0	0	1or0	0	1	1

- (2) Set TM8NLD and TM8EN of TM8MD to 1 and 0 respectively. This enables TM8BC and RS.F.F.
- (3) Set TM8NLD and TM8EN to 1. This starts the timer. Counting begins at the start of the next cycle.

■ Interrupt Enable Setting

(4) Enable interrupts after clearing all prior interrupt requests. To do this, set IQ0LV[2:0] of the external interrupt 0 control register (IQ0ICH) to the interrupt level 0 to 6), TM8BIR of the timer 8 capture B interrupt control register (TM8BICL) to 0, and TM8BIE of the timer 8 capture B interrupt control register (TM8BICH) to 1. Thereafter, a timer 8 capture B interrupt occurs when the capture to the TM8CB register is generated on the rising edge of TM8IOA pin.

■ Interrupt Processing and Signal Width Calculation

- (5) Execute the interrupt service routine. The interrupt service routine determines the interrupt group and factor, and clears TM8BIR flag.
- (6) Calculate the signal width. Save the TM8CA value and the TM8CB value to the data registers (DR0 to DR3), and subtract the TM8CA value from the TM8CB value. The width will be calculated correctly even if the TM8CA value is greater than the TM8CB value by setting TM8LP to 0. Figure 4-4-10 shows 000A-0007=0003, or 3 cycles.

Timer 8 functions as a one-phase capture input. Select up counting. Timer 8 does not operate stably when BOSC stops (in STOP mode). All external inputs are sampled on BOSC (synchronized with BOSC) when the external clock operates. TM8CA is captured on the rising edge of TM8IOA, and TM8CB is captured on the falling edge of TM8IOA. A capture B interrupt is generated on the TM8CB capture, and the TM8CA and TM8CB values are read during the interrupt service routine. Figure 4-4-10 shows 000A-0007=0003, or 3 cycles. The same result is obtained even if the TM8CA value is greater than the TM8CB value. For example, 0003-FFFE=0005. The signal width is calculated by ignoring flags.

Figure 4-4-10 One-phase Capture Input Timing (16-bit Timer)

4-4-5 Two-phase Capture Input Using 16-bit Timer

Timer 8 is used to divide timer 0 underflow by 65,536 and measures the width from the rising edge of the TM8IOA input to the rising edge of TM8IOB input. An interrupt occurs on capture B. The width is calculated by the instruction (TM8CB-TM8CA).

Figure 4-4-11 Two-phase Capture Input Block Diagram (16-bit Timer)

■ Timer 0 Setting

(1) Verify that timer 0 counting is stopped with the timer 0 mode register (TM0MD).

This verification is unnecessary after a reset.

TM0MD: x'00FE20'

7	6	5	4	3	2	1	0
TM0 EN	TM0 LD					TM0 S1	TM0 S0
0							

(2) Set the timer 0 divisor. In this example, since timer 0 divides BOSC/2 by 2, set the timer 0 base register (TM0BR) to 1. (The valid range for TM0BR is 0 to 255.)

TM0BR: x'00FE10'

7	6	5	4	3	2	1	0
				TM0			
BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
0	0	0	0	0	0	0	1

(3) Load TM0BR value to the timer 0 binary counter (TM0BC). At the same time, select BOSC/2 as the clock source.

TM0MD: x'00FE20'

7	6	5	4	3	2	1	0
TM0 EN	TM0 LD					TM0 S1	TM0 S0
Λ	1			•		Λ	0

(4) Set TM0LD to 0 and TM0EN to 1. This starts the timer. Counting begins at the start of the next cycle.

When TM0BC reaches 0 and the value 1 from the TM0BR register is loaded at the next count, a timer 0 underflow interrupt request will be sent to the CPU.

Setting TM0EN and TM0LD to 0 is required between (3) and (4) in the bank address version and the linear address version, but this setting is not required in the linear address high-speed version.

Do not change the clock source once you have selected it. Selecting the clock source while setting the count operation control will corrupt the value in the binary counter.

Use the MOV instruction to set the data and only use 16-bit write operations.

The timer 8 binary counter (TM8BC) is stopped, and TM8BC register and RS.F.F. are initialized (cleared to 0).

If this setting is omitted, the binary counter may not count the first cycle. Do not change to any other operating modes.

When TM8MD0=0 and TM8MD1=1 (in capture mode), TM8CA and TM8CB become read-only registers. If TM8CB must be set, TM8MD0 and TM8MD1 must be set to 0.

■ Timer 8 Setting

(1) Set the operating mode in the timer 8 mode register (TM8MD). Set counting stop. Select up counting. By setting TM8NLD of the TM8MD register to 1, select repeat counting from 0 to x'FFFF'. Select timer 0 underflow as the clock source. Set the operating mode of the capture register to the rising edge of TM8IOA pin and the rising edge of TM8IOB pin.

TM8MD: x'00FE80'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_	TM8 NLD				-				_	TM8 ECLR		TM8 ASEL	TM8 S2	TM8 S1	TM8 S0
0	0			0	0	0	0	1	1		0	1or0	0	0	0

- (2) Set TM8NLD and TM8EN of TM8MD to 1 and 0 respectively. This enables TM8BC and RS.F.F.
- (3) Set TM8NLD and TM8EN to 1. This starts the timer. Counting begins at the start of the next cycle.

■ Interrupt Enable Setting

(4) Enable interrupts after clearing all prior interrupt requests. To do this, set IQ0LV[2:0] of the external interrupt 0 control register (IQ0ICH) to the interrupt level 0 to 6), TM8BIR of the timer 8 capture B interrupt control register (TM8BICL) to 0, and TM8BIE of the timer 8 capture B interrupt control register (TM8BICH) to 1. Thereafter, a timer 8 capture B interrupt occurs when the capture to TM8CB register is generated on the rising edge of TM8IOB pin.

■ Interrupt Processing and Signal Width Calculation

- (5) Execute the interrupt service routine. The interrupt service routine determines the interrupt group and factor, and clears TM8BIR flag.
- (6) Calculate the signal width. Save the TM8CA value and the TM8CB value to the data registers (DR0 to DR3), and subtract the TM8CA value from the TM8CB value. The width will be calculated correctly even if the TM8CA value is greater than the TM8CB value by setting TM8LP to 0. Figure 4-4-12 shows 000A-0007=0003, or 3 cycles.

Timer 8 functions as a one-phase capture input. Select up counting. Timer 8 does not operate stably when BOSC stops (in STOP mode). All external inputs are sampled on BOSC (synchronized with BOSC) when the external clock operates. The TM8CA register is captured on the rising edge of TM8IOA pin, and the TM8CB register is captured on the rising edge of TM8IOB pin. A capture B interrupt is generated on the TM8CB capture, and the TM8CA and TM8CB values are read during the interrupt processing routine. Figure 4-4-12 shows 000A-0007=0003, or 3 cycles. The same result is obtained even if the TM8CA value is greater than the TM8CB value. For example, 0003-FFFE=0005. The signal width is calculated by ignoring flags.

Figure 4-4-12 Two-phase Capture Input Timing (16-bit Timer)

4-4-6 Two-phase Encoder Input (4x) Using 16-bit Timer

Timer 8 receives a two-phase encoder input (4x) and counts up and down. An interrupt occurs when the TM8BC value reached the TM8CA value or the TM8CB value.

Figure 4-4-13 Two-phase Encoder Input (4x) Block Diagram (16-bit Timer)

Figure 4-4-14 Two-phase Encoder Input (4x) Configuration Example 1

As Figure 4-4-15 shown, it is possible to set capture A interupt and capture B interrupt in different places separately. (Setting TM8LP of the TM8MD register to 0 is required.)

Figure 4-4-15 Two-phase Encoder Input (4x) Configuration Example 2

■ Timer 8 Setting

(1) Set the operating mode in the timer 8 mode register (TM8MD). Set counting stop. Count setting is ignored. Since counting is performed by looping on the TM8CA value, set TM8LP of the TM8MD register to 1. Select the two-phase encoder (4x) as the clock source.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM8 EN	TM8 NLD									TM8 ECLR				TM8 S1	TM8 S0
0	0			0	0	0	0	0	0	0	1	1or0	1	0	0

(2) Set the timer 8 looping value to the TM8CA register (the valid range: 1 to x'FFFF'). The TM8BC counter counts from 0 to x'1FFF' when writing x'1FFF' to the TM8CA register.

TM8CA: x'00FE84'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM8 CA15					TM8 CA10										
0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1

(3) Set the timer 8 interrupt value to the TM8CB register (the valid range: 0 to TM8CA). In this example, write x'1000'. Whenever the up or down counter reaches this value, a capture B interrupt occurs at the beginning of the next cycle.

TM8CB: x'00FE88'

	000.		. Loc	•												
1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
- 1	- 1				l	TM8 CB10				ı	TM8 CB5	l		TM8 CB2	TM8 CB1	TM8 CB0
)	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

- (4) Set TM8NLD and TM8EN of the TM8MD register to 1 and 0 respectively. This enables TM8BC and RS.F.F.
- (5) Set TM8NLD and TM8EN of the TM8MD register to 1. This starts the timer. Counting begins at the start of the next cycle.

Use the MOV instruction to set the data and only use 16-bit write operations.

The timer 8 binary counter (TM8BC) is stopped, and TM8BC register and RS.F.F. are initialized (cleared to 0).

If this setting is omitted, the binary counter may not count the first cycle. Do not change to any other operating modes.

■ Interrupt Enable Setting

(6) Enable interrupts after clearing all prior interrupt requests. To do this, set IQ0LV[2:0] of the external interrupt 0 control register (IQ0ICH) to the interrupt level 0 to 6), TM8BIR of the timer 8 capture B interrupt control register (TM8BICL) to 0, and TM8BIE of the timer 8 capture B interrupt control register (TM8BICH) to 1. Thereafter, a timer 8 capture B interrupt occurs when the TM8BC counter matches TM8CB register.

■ Interrupt Processing

- (7) First, determine the interrupt group and factor, and clear TM8BIR flag during the interrupt service routine.
- (8) Execute the interrupt service routine.

Timer 8 functions as a two-phase encoder input. Timer 8 does not operate stably when BOSC stops (in STOP mode). All external inputs are sampled on BOSC (synchronized with BOSC) when the external clock operates.

Figure 4-4-16 shows the counting direction. When counting down, the next value after 0 becomes the TM8CA value. When the TM8BC value matches the TM8CB value, a capture B interrupt occurs.

Figure 4-4-16 Two-phase Encoder Input Timing (4x) (16-bit Timer)

4-4-7 Two-phase Encoder Input (1x) Using 16-bit Timer

Timer 8 receives a two-phase encoder input (4x) and counts up and down. An interrupt occurs when the preset value is reached.

Figure 4-4-17 Two-phase Encoder Input (1x) Block Diagram (16-bit Timer)

Figure 4-4-18 Two-phase Encoder Input (1x) Configuration Example 1

Figure 4-4-19 Two-phase Encoder Input (1x) Configuration Example 2

As Figure 4-4-19 shown, it is possible to set capture A interrupt and capture B interrput in different places separately. (Setting TM8LP of the TM8MD register to 0 is required.)

Use the MOV instruction to set the data and only use 16-bit write operations.

The timer 8 binary counter (TM8BC) is stopped, and TM8BC register and RS.F.F. are initialized (cleared to 0).

■ Timer 8 Setting

(1) Set the operating mode in the timer 8 mode register (TM8MD). Set counting stop. Count setting is ignored. Since counting is performed by looping on the TM8CA value, set TM8LP of the TM8MD register to 1. Select the two-phase encoder (1x) as the clock source.

TM8MD: x'00FE80'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM8	TM8			TM8	TM8	TM8	TM8	TM8	TM8						
EN	NLD			UD1	UD0	TGE	ONE	MD1	MD0	ECLR	LP	ASEL	S2	S1	S0
0	0			0	0	0	0	0	0	0	1	1or0	1	0	1

(2) Set the timer 8 looping value to the TM8CA register (the valid range: 1 to x'FFFF'). The TM8BC register counts from 0 to x'1FFF' when writing x'1FFF' to the TM8CA register.

TM8CA: x'00FE84'

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8
	CA15	CA14	CA13	CA12	CA11	CA10	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
ı	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1

(3) Set the timer 8 interrupt value to the TM8CB register (the valid range: 0 to TM8CA). Whenever the up or down counter reaches this value, a capture B interrupt occurs at the beginning of the next cycle.

TM8CB: x'00FE88'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_	_			_					_				-	TM8 CB1	
	0	0	1	<u> </u>	<u> </u>	0	<u> </u>	<u> </u>	<u> </u>		0	<u> </u>	0	0	0

(

If this setting is omitted, the binary counter may not count the first cycle. Do not change to any other operating modes.

- (4) Set TM8NLD and TM8EN of the TM8MD register to 1 and 0 respectively. This enables TM8BC and RS.F.F.
- (5) Set TM8NLD and TM8EN of the TM8MD register to 1. This starts the timer. Counting begins at the start of the next cycle.

■ Interrupt Enable Setting

(6) Enable interrupts after clearing all prior interrupt requests. To do this, set IQ0LV[2:0] of the external interrupt 0 control register (IQ0ICH) to the interrupt level 0 to 6), TM8BIR of the timer 8 capture B interrupt control register (TM8BICL) to 0, and TM8BIE of the timer 8 capture B interrupt control register (TM8BICH) to 1. Thereafter, a timer 8 capture B interrupt occurs when the TM8BC counter matches the TM8CB register.

■ Interrupt Processing

- (7) First, determine the interrupt group and factor, and clear TM8BIR flag during the interrupt service routine.
- (8) Execute the interrupt service routine.

Timer 8 functions as a two-phase encoder input. Timer 8 does not operate when BOSC stops (in STOP mode). All external inputs are sampled on BOSC (synchronized with BOSC) when the external clock operates.

Figure 4-4-20 shows the counting direction. When counting down, the next value after 0 becomes the TM8CA value. When the TM8BC value matches the TM8CB value, a capture B interrupt occurs.

Figure 4-4-20 Two-phase Encoder Input Timing (1x) (16-bit Timer)

4-4-8 One-shot Pulse Using 16-bit Timer

Timer 8 is used to generate a one-shot pulse. The pulse width is 2 cycles of BOSC/2.

Figure 4-4-21 One-shot Pulse Output Block Diagram (16-bit Timer)

■ Timer 8 Setting

(1) Set the operating mode in the timer 8 mode register (TM8MD). Set counting stop. Select up counting. Select BOSC/2 as the clock source. Set the TM8BC count range to 0 to TM8CA. Select one-shot operation as the counter operating mode. Set the count start external trigger to start counting on the falling edge of TM8IOB pin.

Use the MOV instruction to set the data and only use 16-bit write operations.

The timer 8 binary counter (TM8BC) is stopped, and TM8BC register and RS.F.F. are initialized (cleared to 0).

TM8MD: x'00FE80'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM8 EN	TM8 NLD				-			_		TM8 ECLR			TM8 S2	TM8 S1	TM8 S0
0	0			0	0	1	1	0	0	0	1	1or0	0	1	1

(2) Set the pulse width. Since the width is 2 cycles of BOSC/2, set the timer 8 compare/capture register A (TM8CA) to 3 (the valid range is 1 to x'FFFE'). TM8BC counts from 0 to 3, and TM8IOA pin outputs 'H' while TM8BC counts from 2 to 3 by setting TM8CB in the next procedure (3). The operation is the same as that of the two-phase PWM output.

TM8CA: x'00FE84'

Ì	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_	_		_	_	TM8 CA10				_	-		-		-	
	CAIS	CA14	CAIS	CAIZ	CAII	CAIO	CA9	CA8	CA/	CAo	CAS	CA4	CAS	CAZ	CAI	CAU
	Ω	Ω	Ο	Ω	Ω	Ω	Ω	Ω	Ω	Ο	Ω	Ω	Ω	Ω	1	1

(3) Write 1 to the timer 8 compare/capture register B (TM8CB). When TM8BC reaches TM8CB (TM8BC = 2), TM8IOA pin outputs 'H' at the start of the next cycle.

TM8CB: x'00FE88'

•	IVIOO	D. A 0	01 200	,												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		_			_	TM8 CB10				_	TM8 CB5		TM8 CB3	TM8 CB2	TM8 CB1	TM8 CB0
-	n	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	<u> </u>	$\overline{}$	$\overline{}$	<u> </u>	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	1

(4) Set TM8NLD and TM8EN of the TM8MD register to 1 and 0 respectively. This enables TM8BC and RS.F.F.

During the count operation, '1' is written automatically to TM8EN of the TM8MD register on the falling edge of TM8IOB pin. Therefore, counting starts at the beginning of the next cycle after TM8IOB pin falls. TM8EN of the TM8MD register can replace as the busy flag for one-shot operation.

If this setting is omitted, the binary counter may not count the first cycle. Do not change to any other operating modes. Timer 8 generates a one-shot pulse. Timer 8 does not operate when BOSC stops (in STOP mode). All external inputs are sampled on BOSC (synchronized with BOSC) when the external clock operates.

Figure 4-4-22 shows the timing chart. Set TM8EN of the TM8MD register on the falling edge of TM8IOB pin, and counting starts at the beginning of the next cycle. Before counting starts, TM8BC is 0, the initial value of TM8IOA pin is 0, and R8 (reset) signal or S8 (set) signal cannot be output. (R8 and S8 are internal control signals.) When counting starts, the count changes from 0 to 1 and the S8 signal is output. This sets TM8IOA pin to 1 and outputs the one-shot pulse. When the count reaches 3, TM8BC resets from 3 to 0, and the R8 signal is output simultaneously. TM8IOA pin outputs 0. Since TM8ONE of the TM8MD register is set to 1, TM8EN of the TM8MD register is resets and then counting stops. The state is the same state before the falling edge of TM8IOB pin. When the falling edge of TM8IOB pin occurs again, set TM8EN of the TM8MD register, repeat the same operations and then results in the one-shot pulse output.

Figure 4-4-22 One-shot Pulse Output Timing (16-bit Timer)

4-4-9 External Count Direction Control Using 16-bit Timer

Timer 8 counts BOSC/2 and TM8IOA pin controls the count direction (up or down). An interrupt occurs when the counter reaches the value set in TM8CB register.

Figure 4-4-23 External Count Direction Control Block Diagram (16-bit Timer)

Figure 4-4-24 External Count Direction Control Configuration Example

Use the MOV instruction to set the data and only use 16-bit write operations.

The timer 8 binary counter (TM8BC) is stopped, and TM8BC register and RS.F.F. are initialized (cleared to 0).

■ Timer 8 Setting

(1) Set the operating mode in the timer 8 mode register (TM8MD). Set counting stop. The count direction is up when TM8IOA is 1, while the direction is down when TM8IOA is 0. Select BOSC/2 as the clock source. Set the TM8BC count range to 0 to TM8CA.

TM8MD: x'00FE80'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM8 EN	TM8 NLD			TM8 UD1						TM8 ECLR		TM8 ASEL	TM8 S2	TM8 S1	TM8 S0
0	0			1	0	0	0	0	0	0	1	1or0	0	1	1

(2) Set the timer 8 looping value to the TM8CA register (the valid range: 1 to x'FFFE'). The TM8BC counter counts from 0 to x'1FFF' when writing x'1FFF' to the TM8CA register.

TM8CA: x'00FE84'

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8
	CA15	CA14	CA13	CA12	CA11	CA10	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
ı	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1

(3) Set the timer 8 interrupt value to the TM8CB register (the valid range: 0 to TM8CA). In this example, write x'1000'. Whenever the up or down counter reaches this value, a capture B interrupt occurs at the beginning of the next cycle.

TM8CB: x'00FE88'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_		_	_	-	-			_	TM8 CB5	-		-	-	
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

If this setting is omitted, the binary counter may not count the first cycle. Do not change to any other operating modes.

- (4) Set TM8NLD and TM8EN of the TM8MD register to 1 and 0 respectively. This enables TM8BC and RS.F.F.
- (5) Set TM8NLD and TM8EN of the TM8MD register to 1. This starts the timer. Counting begins at the start of the next cycle.

■ Interrupt Enable Setting

(6) Enable interrupts after clearing all prior interrupt requests. To do this, set IQ0LV[2:0] of the external interrupt 0 control register (IQ0ICH) to the interrupt level 0 to 6), TM8BIR of the timer 8 capture B interrupt control register (TM8BICL) to 0, and TM8BIE of the timer 8 capture B interrupt control register (TM8BICH) to 1. Thereafter, a timer 8 capture B interrupt occurs when the TM8BC counter matches the TM8CB register.

■ Interrupt Processing

- (7) First, determine the interrupt group and factor, and clear TM8BIR flag during the interrupt service routine.
- (8) Execute the interrupt service routine.

TM8IOA pin can control the timer 8 count direction. The count direction is controlled on the rising edge of the clock source (BOSC/2).

Timer 8 does not operate when BOSC stops (in STOP mode). All external inputs are sampled on BOSC (synchronized with BOSC) when the external clock operates.

Figure 4-4-25 shows the timing chart. In the example, an interrupt occurs when timer 8 changes from down counting to up counting.

Figure 4-4-25 External Count Direction Control Timing (16-bit Timer)

4-4-10 External Reset Control Using 16-bit Timer

Timer 8 is reset by an external signal while counting up.

Figure 4-4-26 External Reset Control Block Diagram (16-bit Timer)

■ Timer 8 Setting

(1) Set the operating mode in the timer 8 mode register (TM8MD). Set counting stop. Select up counting. Select BOSC/2 as the clock source. Set the TM8BC clear condition to clear when TM8IC pin is high. Set the TM8BC count range to 0 to TM8CA.

	.D. A 0	00	•												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM8 EN	TM8 NLD			TM8 UD1	TM8 UD0	TM8 TGE	_		_	TM8 ECLR		TM8 ASEL	TM8 S2	TM8 S1	TM8 S0
0	0			0	0	0	0	0	0	1	1	1or0	0	1	1

(2) Set the timer 8 looping value to the TM8CA register (the valid range: 1 to x'FFFE'). The TM8BC register counts from 0 to x'1FFF' when writing x'1FFF' to the TM8CA register.

TM8CA: x'00FE84'

1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
- 1	- 1	_			_	TM8 CA10				-		_				
	113	CA14	CAIS	CAIZ	CAII	CAIO	CA9	CAo	CA/	CAO	CAS	CA4	CAS	CAZ	CAI	CAU

- (3) Set TM8NLD and TM8EN of the TM8MD register to 1 and 0 respectively. This enables TM8BC and RS.F.F.
- (4) Set TM8NLD and TM8EN of the TM8MD register to 1. This starts the timer. Counting starts at the beginning of the next cycle.

If this setting is omitted, the binary counter may not count the first cycle. Do not change to any other operating modes.

Use the MOV instruction to set the data and only use 16-bit write operations.

The timer 8 binary counter (TM8BC) is stopped, and TM8BC register and RS.F.F. are initialized (cleared to 0).

Timer 8 is reset asynchronously while high is input from TM8IC pin. This allows to synchronize externally. It can be used to adjust the motor speed or to initialize the timer by the hardware.

Timer 8 does not operate when BOSC stops (in STOP mode). All external inputs are sampled on BOSC (synchronized with BOSC) when the external clock operates.

Figure 4-4-27 shows the timing chart.

Figure 4-4-27 External Reset Control Timing (16-bit Timer)

4-5 Summary of 8-bit PWM Functions

4-5-1 Overview

The MN102H60G/60K/F60G/F60K has two 8-bit PWM waveform counters (timer 13 and timer 14). A timer can output two waveforms using two output pins. Timers 13 and 14 can be cascaded for use as a 16-bit PWM waveform counter.

BOSC/2 or timer 0 underflow is selected as the clock source. Each counter sets the PWM cycle. Each counter can output two PWM waveforms with the different duties since each counter has two output compare registers. The PWM counters can not generate interrupts.

Figure 4-5-1 8-bit PWM Function

In addition to normal PWM waveforms, timer 13 can also output a three-value waveform including the Hi-Z state.

Figure 4-5-2 PWM Output Waveform

When the value in the output compare register matches the value in the binary counter, high level is output. When the binary counter underflows, low level is output. Counting starts when the value in the base register is read into the binary counter again. When used for three-value PWM, the output waveform depends on the value set in the output compare register. When x'00' is set in the output compare register, the PWM output becomes Hi-Z constantly. When x'01' to x'7F' is set in the output compare register, normally low output becomes Hi-Z. When x'80' to x'FF' is set in the output compare register, normally high output becomes Hi-Z. High and low signals are output by switching TMnOA pin or TMnOB pin to a general purpose port without using the PWM function. Figure 4-5-2 shows the waveforms which the PWM outputs. The PWM cycle is fixed and two waveforms with the different duties can be output. The binary counter is down counting.

Table 4-5-1 8-bit PWM Functions

	Timer 13	Timer 14
Clock Source	0: BOSC/2 1: Timer 0 underflow	0: BOSC/2 1: Timer 0 underflow
Output Compare Register	TM13CA TM13CB	TM14CA TM14CB
Output Pin	TM13OA TM13OB	TM14OA TM14OB
Cascading	_	V
Three-value PWM	√	_

Table 4-5-2 8-bit PWM Functions

Output Compare Register Set Value	PWM Output
x'00'	Hi-Z
x'01 - x'7F'	Hi-Z+H
x'80' - x'FF'	L+Hi-Z

4-5-2 Control Registers

TMnMD

^{*} Only TM13 TM14 should be set to "0".

TMnBC

7	6	5	4	3	2	1	0
					TMn BC2		

Binary Counter

TMnBR

7	6	5	4	3	2	1	0
			ı		TMn BR2	l	

Base Register

TMnCA

7	6	5	4	3	2	1	0
1	TMn CA6		ı		ı	ı	

Output Compare Register A

TMnCB

7	6	5	4	3	2	1	0
					TMn CB2		

Output Compare Register B

Table 4-5-2 List of 8-bit PWM Registers

Register	Address	Function
TM13BC	x'00FE08'	Timer 13 Binary Counter
TM13CA	x'00FE0A'	Timer 13 Output Compare Register A
TM13BR	x'00FE18'	Timer 13 Base Register
TM13CB	x'00FE1A'	Timer 13 Output Compare Register B
TM13MD	x'00FE28'	Timer 13 Mode Register
TM14BC	x'00FE09'	Timer 14 Binary Counter
TM14CA	x'00FE0B'	Timer 14 Output Compare Register A
TM14BR	x'00FE19'	Timer 14 Base Register
TM14CB	x'00FE1B'	Timer 14 Output Compare Register B
TM14MD	x'00FE29'	Timer 14 Mode Register

4-6 8-bit PWM Setup Examples

4-6-1 8-bit PWM Output

Timer 13 is used to output PWM from TM13OA pin and TM13OB pin. The PWM cycle is timer 0 underflow/9. The TM13OA pin duty is 1:2, and the TM13OB pin duty is 2:1. The PWM output starts low. Set timer 0 to underflow at BOSC/2 divided by 2.

Figure 4-6-1 8-bit PWM Block Diagram

(1) Set the timer 0 divisor. Since timer 0 divides BOSC/2 by 2, set the timer 0 base register (TM0BR) to 1. (The valid range for TM0BR is 0 to 255, and the actual setting is the divisor to be set-1.)

TM0BR: x'00FE10'

7	6	5	4	3	2	1	0
				TM0 BR3			
0	0	0	0	0	0	0	1

(2) Load TM0BR value to the timer 0 binary counter (TM0BC). At the same time, select BOSC/2 as the clock source.

TM0MD: x'00FE20'

7	6	5	4	3	2	1	0
TM0 EN	TM0 LD					TM0 S1	TM0 S0
0	1					0	0

(3) Set TM0LD and TM0EN of the TM0MD register to 0 and 1 respectively. This starts the timer. Counting begins at the start of the next cycle. When the timer 0 binary counter reaches 0, the value 1 of the timer 0 base register is loaded automatically to the TM8BC counter at the next count.

Figure 4-6-2 Timer 0 Timing

(4) Set the PWM cycle to the timer 13 base register. Since the PWM cycle is timer 0 underflow/9, set '8' to the TM13BR register.

TM13BR: x'00FE18'

7	6	5	4	3	2	1	0
TM13							
BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
0	0	0	0	1	0	0	0

(5) Set the duty to the timer 13 output compare register. When the TM13BC counter matches the TM13CA register, the PWM output of the TM13OA pin changes to low. When the TM13BC counter underflows, the PWM output of the TM13OA pin changes to high. When the TM13BC counter matches the TM13CB register, the PWM output of the TM13OB pin changes to low. When the TM13BC counter underflows, the PWM output of the TM13OB pin changes to high. The PWM output starts low at first. The TM13OA pin duty is 1:2, while the TM13OB pin duty is 2:1. Since the TM13BC counter is down counting, set the TM13CA register and the TM13CB register to 5 and 2 respectively.

TM13CA: x'00FE0A'

7	6	5	4	3	2	1	0
TM13	TM13	TM13	TM13	TM13	TM13	TM13	TM13
CA7	CA6	CA5	CAA	CA3	CA2	CA1	CAO
CIII	C110	C113	C114	C1 13	C112	C111	C2 10
Λ	Λ		0	0	1	0	1

TM13CB: x'00FE1A'

7	6	5	4	3	2	1	0
TM13							
CB7	CB6	CB5	CB4	CB3	CB2	CB1	CB0
0	0	0	0	0	0	1	0

(6) Load TM0BR value to the timer 13 binary counter (TM13BC). At the same time, select timer 0 underflow as the clock source. Set the PWM waveform polarity, which is output from TM13OA pin and TM13OB pin, to the positive logic. (When setting the polarity to the negative logic, an error of inverting high and low occurs.) To clear TM13BC counter or RS.F.F. for TM13OA pin output and TM13OB pin output, set the TM13CLR flag to 1.

TM13MD: x'00FE28'

7	6	5	4	3	2	1	0
TM13 EN	TM13 LD			TM13 TR	TM13 OB	-	TM13 S
0	1				0	0	1

(7) Set TM13OA pin and TM13OB pin. Since TM13OA pin and TM13OB pin function as P50 and P51 respectively, set the port 5 mode register L (P5LMD) to PWM output. Setting the port 5 direction control register (P5DIR) is not required. The PWM is output regardless of the P5DIR register value.

P5LMD: x'00FFF8'

7	6	5	4	3	2	1	0
P5 LMD7	P5 LMD6	P5 LMD5	P5 LMD4	P5 LMD3	P5 LMD2	P5 LMD1	P5 LMD0
0	0	0	0	1	0	1	0

(8) Set TM13LD, TM13EN and TM13CLR of the TM13MD register to 0, 1 and 0 respectively. This starts the timer. When the timer 0 binary counter reaches 0, the value 1 of the timer 0 base register is loaded automatically to the TM8BC counter at the next count.

TM13MD: x'00FE28'

7	6	5	4	3	2	1	0
TM13 EN	TM13 LD			TM13 TR	TM13 OB	TM13 OA	TM13 S
1	0				0	0	1

Figure 4-6-3 8-bit PWM Timing

4-7 16-bit Pulse Width Measure Functions

4-7-1 Overview

The MN102H60G/60K/F60G/F60K has one 16-bit pulse width measure counter.

The 16-bit binary counter value is read into the 16-bit capture register on the rising edge of the pulse waveform which inputs to TM15IA pin. Timer 0 underflow, TM15IB pin, BOSC/2 or BOSC is selected as the clock source.

Figure 4-7-1 16-bit Pulse Width Measure Counter

Figure 4-7-2 16-bit Pulse Width Measure Counter Operation Example

The binary counter is up counting. The contents of the binary counter are loaded into the capture register on the rising edge of TM15IA pin. The binary counter is cleared after BOSC 1 clock. The pulse width is always stored in the capture register.

4-7-2 Control Registers

TM15MD: x'00FED0'

TM15BC: x'00FED2'

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
- 1		_		_			_			_		TM15		_	_	
	BC15	BC14	BC13	BC12	BC11	BC10	BC9	BC8	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0

Binary Counter

TM15CA: x'00FED4'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	_			_					TM15 CA6		_	_		_	TM15 CA0	Capture Register

Table 4-7-1 List of 16-bit Pulse Width Measure Registers

Register	Address	Function
TM15MD	x'00FED0'	Timer 15 Mode Register
TM15BC	x'00FED2'	Timer 15 Binary Counter
TM15CA	x'00FED4'	Timer 15 Capture Register A

4-8 16-bit Pulse Width Counter Setup

4-8-1 16-bit Pulse Width Measure Counter

Timer 15 is used to measure the pulse width which is input from TM15IA pin. The pulse width is stored in the TM15CA register. Select TM15IB input as the clock source. Set the pulse width input from TM15IA pin to more than the width of the selected clock source. Set the pulse width input from TM15IB pin to more than BOSC/2.

Figure 4-8-1 16-bit Pulse Width Measure Counter Block Diagram

(1) Set the timer 15 mode register (TM15MD). Select TM15IB pin input as the clock source. Set counting stop.

TM15M	D.	v'00	EED	'n
I IVI I DIVI	D.	X UU	ㄷㄷㄴ	U

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM15 EN															TM15 CLK0
0														0	1

(2) Set TM15IA pin and TM15IB pin. By writing x'100' to P5HMD[4:2] flags of the port 5 mode register H (P5HMD), set P56 pin to TM15IA pin input. The P56 direction control becomes input automatically. Setting the port 5 direction control register (P5DIR) is invalid.

P5HMD: x'00FFF9'

7	6	5	4	3	2	1	0
			P5 HMD4	P5 HMD3	P5 HMD2	P5 HMD1	P5 HMD0
			1	0	0		

Set PA4 pin to TM15IB pin input by writing '1' to bit 4 of the port A mode register (PAMD). The PA4 pin direction control becomes input automatically. Setting the port A direction control register (PADIR) is invalid.

PAMD: x'00FFDC'

7	6	5	4	3	2	1	0
			ı	PA MD3		ı	PA MD0
			4				

(3) Set TM15EN flag of the TM15MD register to 1. This starts the timer.

TM15MD: x'00FED0'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM15 EN															TM15 CLK0
1														0	1

Thereafter, the TM15BC counter starts counting up on the rising edge of TM15IB pin input. The TM15BC counter value is loaded to the timer 15 capture register (TM15CA) on the rising edge of TM15IA pin. When TM15IA pin rises, clear TM15BC counter after BOSC 1 clock. This operation allows to store the pulse width, which is input from TM15IA pin, to the TM15CA register.

Figure 4-8-2 16-bit Pulse Width Measure Counter Timing

Chapter 5 Serial Interface

5-1 Serial Interface

5-1-1 Overview

The MN102H60G/60K/F60G/F60K contains two serial interfaces with asynchronous mode, clock synchronous mode and I²C mode. It also has three serial interface reserved for clock synchronous mode. The maximum baud rate in clock synchronous mode is 8.5 Mbps. The maximum baud rate in asynchronous mode is 28800 bps with a 34-MHz oscillator. (1228800 bps is possible by setting the oscillation frequency to 19.6608 MHz.)

Figure 5-1-1 Serial Interface Configuration

Table 5-1-1 Serial Interface Functions

	Clock Synchronous Mode	Asynchronous Mode	I ² C Mode	
Parity	None, 0, 1,			
Character Length	7-bit,	Master transmission		
Bit Order	LSB first or MSB first(8-bit only)	and reception are		
Clock Source	1/2, 1/8 of timers 1, 2, 4, 5 underflow External clock	1/8 of timers 1, 2, 4, 5 underflow	possible. (No start sequence detection function)	
Maximum Baud Rate	8.5 Mbps (with a 34-MHz oscillator)	28800 bps (1228800 bps) *		
Error Detection	Parity error Overrun error	Parity error Overrun error Framing error		
Buffers	Independent transmit/receive bu (single tranmit buffer, double re			
Interrupts	Transmission or reception end is			
Serial interface 0	√	-	-	
Serial interface 1	√	-	-	
Serial interface 2	√	-	-	
Serial interface 3	√	√	√	
Serial interface 4	√		√	

 $[\]ensuremath{^{*}}$ When the oscillation frequency of 19.6608 MHz is selected.

5-1-2 Control Registers

Three registers control the serial interface: the serial transmit/receive buffers (SCnTRB), the serial port status registers (SCnSTR) and the serial control registers (SCnCTR).

Transmission starts when the data is written to the SCnTRB register. The CPU reads the received data by reading the SCnTRB register. During 7-bit data transfer, the MSB (bit 7) is set to 0. When an interrupt occurs, or the SCnRXA flag of the SCnSTR register is 1, the CPU can read the SCnSTR register.

^{*1} An overrun error occurs when the next data is received completely before the CPU reads the received data (SCnTRB). Overrun error data is updated whenever the last data bit (seventh or eighth bit) is received.

^{*2} A parity error occurs when the parity bit is 1 although it is set to 0, when the parity bit is 0 although it is set to 1, when the parity bit is odd although it is set to even, and when the parity bit is even although it is set to odd. Parity error data is updated whenever the parity bit is received.

^{*3} A framing error occurs when the stop bit is 0. Framing error data is updated whenever the stop bit is received.

^{*4} Do not use the SCnRBY flag to set polling for the received data wait in clock synchronous mode. Use the interrupt service routine, the serial interrupt flag or the SCnRXA flag.

Table 5-1-2 List of Serial Interface Control Registers

Re	egister	Address	R/W	Function		
Serial 0	SC0CTR	x'00FD80'	R/W	Serial 0 Control Register		
	SC0TRB	x'00FD82'	R/W	Serial 0 Transmit/Receive Buffer		
	SC0STR	x'00FD83'	R	Serial 0 Status Register		
Serial 1	SC1CTR SC1TRB SC1STR	x'00FD88 x'00FD8A' x'00FD8B'	A' R/W Serial 1 Transmit/Receive Buffer			
Serial 2	SC2CTR	x'00FD90'	R/W	Serial 2 Control Register		
	SC2TRB	x'00FD92'	R/W	Serial 2 Transmit/Receive Buffer		
	SC2STR	x'00FD93'	R	Serial 2 Status Register		
Serial 3	SC3CTR	x'00FD98	R/W	Serial 3 Control Register		
	SC3TRB	x'00FD9A'	R/W	Serial 3 Transmit/Receive Buffer		
	SC3STR	x'00FD9B'	R	Serial 3 Status Register		
Serial 4	SC4CTR	x'00FDA0'	R/W	Serial 4 Control Register		
	SC4TRB	x'00FDA2'	R/W	Serial 4 Transmit/Receive Buffer		
	SC4STR	x'00FDA3'	R	Serial 4 Status Register		

In half-duplex connection mode, the SBT pin requires a pullup resistor externally or an internal pullup resistor.

5-1-3 Serial Interface Connection

[Clock Synchronous Mode]

The serial interface can connect using either simplex or duplex synchronous transfer.

Figure 5-1-2 Synchronous Mode Connections

[Asynchronous Mode]

The serial interface can connect using either simplex or duplex asynchronous transfer.

Figure 5-1-3 Asynchronous Mode Connections

[I²C Mode]

The serial interface can connect to slave transmitters or slave receivers.

Figure 5-1-4 I²C Mode Connection

The SDA and SCL pins connect a pullup resistor externally or an internal pullup resistor by setting the register.

Table 5-1-3 Baud Rate Setting Example in Asynchronous Mode

When BOSC = 15 MHz

Baud Rate	Timer 5 Divisor	Timer 4 Divisor	Timer 1 Divisor
19200	49	Unused	Unused
9600	98	Unused	Unused
4800	98	Unused	2
2400	98	Unused	4
1200	78	31	Unused
600	15		Unused
300	31	25	Unused

Baud Rate =
$$\frac{BOSC}{16 \times (Timer Divisor)}$$

Asynchronous Serial Timing Charts

8-bit charater length, no parity, two stop bits

Figure 5-1-5 Asynchronous Serial Timing (Transmission)

Figure 5-1-6 Asynchronous Serial Timing (Reception)

Synchronous Serial Timing Charts

8-bit charater length, parity

Figure 5-1-7 Synchronous Serial Timing (Transmission)

Figure 5-1-8 Synchronous Serial Timing (Reception)

5-2 Serial Interface Setup Examples

5-2-1 Serial Transmission in Asynchronous Mode

This section describes the example of serial interface 3 transmission in asynchronous mode with the following settings:

- Baud rate = 19200 bps (set transmit clock by timer 5)
- 8-bit data transmission
- two stop bits
- odd parity

Use a 8-bit timer to set the transmit clock.

See "5-2-3 Serial Clock Operation Example".

The next data is transmitted when a transmission end interrupt occurs.

Figure 5-2-1 Asynchronous Transmission Block Diagram

Data transmission starts when the data is written to the serial 3 transmit/receive buffer (SC3TRB). The transmission starts synchronizing with timer 5 underflow. When an interrupt occurs, the SC3TRB register is cleared and then the next data is written to the SC3TRB register. If polling, the data must be written to the SC3TRB register after verifying that the SC3TBY flag of the serial 3 status register (SC3STR) is 0.

Setting the P8MMD to SBO3 output slects the P84 direction to output. Setting the port 8 I/O control register (P8DIR) is not required. P8DIR operates only when it is used as the port input or output.

■ Port Setting

(1) Set P8MMD[4:2] flags of the port 8 mode control register (P8MMD) to '011'. This setting allows to output SBO0 of serial interface.

P8MMD: x'00FFFD'

7	6	5	4	3	2	1	0
P8							
MMD7	MMD6	MMD5	MMD4	MMD3	MMD2	MMD1	MMD0
0	0	0	0	1	1	0	0

■ Serial Interface Setting

(1) Select timer 5 underflow (1/8) as the serial 3 clock source because the transfer base clock is 1/8 of timer 5. Select asynchronous mode, odd parity, two stop bits, 8-bit transmission and LSB first bit order. Set the SC3REN and SC3TEN flags of the serial 3 control register (SC3CTR) to disable and the reserved flags to 0.

SC3CTR: x'00FD98'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SC3 REN				-	l		ı	1	ı	SC3 PTY0		-	SC3 S1	SC3 S0
0	0	0	0	0		0	0	1	1	1	1	1		1	1

(2) Enable serial transmission. To do this, set the SC3TEN flag of the serial 3 control register (SC3CTR) to 1.

SC3CTR: x'00FD98'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SC3 REN				-	l		ı	SC3 PTY2				-	SC3 S1	SC3 S0
1	<u> </u>	$\overline{}$				Λ	0	1	1	1	1	1		1	1

(3) Enable interrupts after clearing all existing interrupt requests. At the same time, set the interrupt level. Thereafter, a serial transmission end interrupt occurs when the data transfer ends.

SC3TICL: x'00FC9C'

7	6	5	4	3	2	1	0
-	-	-	SC3T IR	-	-	-	SC3T ID
			0				0

SC2T	ICH	I- v'	UUI	ECQ8'

7	6	5	4	3	2	1	0
-		SC2T LV1	SC2T LV0	-	-	-	SC2T IE
	1	0	1				0

SC3TICH: x'00FC9D'

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	SC3T IE
0	0	0	0	0	0	0	1

The interrupt level is 5 in this example.

- (4) Load the first transfer data to the serial 3 transmit/receive register (SC3TRB). Once the data is loaded to the SC3TRB register, transmission starts synchronizing with timer 5.
- (5) Execute the interrupt service routine when a serial transmission end interrupt occurs. The interrupt service routine determines the interrupt group and vector and clears the SC3TIR flag.
- (6) Write the next data. After the data is written, transfer starts in 1 2 cycles of the transfer base clock (timer 5 underflow).

Figure 5-2-2 illustrates the timing of asynchronous transmission.

Figure 5-2-2 Serial 3 Asynchronous Transmission Timing

5-2-2 Serial Reception in Synchronous Mode

This section describes the example of serial interface 0 reception in synchronous mode with the following settings:

- LSB first bit order
- 8-bit data transfer
- odd parity

The data is received when a serial reception end interrupt occurs.

Figure 5-2-3 Synchronous Reception Block Diagram

In synchronous mode, the data input from the SBIn pin is received synchronizing with the SBTn pin and the received data is stored into the serial n transmit/receive buffer (SCnTRB). The SBTn clock is generated in transmitter or receiver. When the SBTn clock is generated in transmitter, the clock is transferred to the receiver through the SBTn pin as soon as the transmitted data is written to the SCnTRB register. On the other hand, when the SBTn clock is generated in receiver, the dummy data must be written to the SCnTRB register in the receiver after writing the transmitted data into the SCnTRB register in the transmitter. The reason for the dummy data requirement is because the clock is generated as soon as the data is written to the SCnTRB register.

(1) Generate SBTn Clock in Transmitter

(2) Generate SBTn Clock in Receiver

Figure 5-2-4 Clock Generation in Synchronous Reception

■ Port 7 Setting

(1) Set P7LMD[2:0] flags and P7LMD[4:3] flags of the port 7 mode register (P7LMD) to '001' and '01' respectively. This setting allows to input SBT0 and SBI0 of serial interface.

P7LMD: x'00FFFA'

7	6	5	4	3	2	1	0
P7							
LMD7	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
0	0	0	0	1	0	0	1

■ Serial Interface 0 Setting

(1) Set the operating conditions in the serial 0 control register (SC0CTR). Select SBT0 pin as the clock source, 8-bit data transfer, odd parity, and reception enable. Set the reserved flags of the serial 0 control register (SC0CTR) to 0.

SC0CTR: x'00FD80'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	SC0 REN		1	reser ved	-	SC0 OD		ı	1	ı	SC0 PTY0		-	SC0 S1	SC0 S0
0	1	0	0	0	-	0	0	1	1	1	1	0	-	0	0

(2) Enable interrupts after clearing all existing interrupt requests. At the same time, set the interrupt level. Thereafter, a serial reception end interrupt occurs when the data transfer ends.

SCORICL: x'00FC92'

7	6	5	4	3	2	1	0		
-	-	-	SC0R IR	-	-	-	SC0R ID		
0									

SC0RICH: x'00FC93'

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	SC0R IE
							1

Thereafter, an interrupt occurs when the serial data is received.

5-2-3 Serial Clock Operation Example

This section describes how to set 19200 bps transfer clock for asynchronous serial interface by using timer 0 and timer 5 to divide BOSC/2 by 98. In this example, select 1/8 as the serial clock source and 8 times of baud rate as the transfer clock.

The serial Interface determines the baud rate with the 8-bit timer underflow. Select the transfer clock to make the timer 5 underflow twice or eight times of the baud rate. The serial interface divides the timer underflow by 2 or 8. (Always select 1/8 in asynchronous mode.) For a baud rate of 19200 bps, since BOSC/2 = 15 MHz with a 30-MHz oscillator,

15 MHz/98/8 = 19132.65 bps

This means the timer 5 underflow is divided by 98. In this example, timer 0 is divided by 49 and timer 5 by 2.

Figure 5-2-5 Serial Clock Block Diagram

Transfer Clock Setting Examples	Divisor at 30 MHz	Divisor Setting Method
38400 bps	49	Set divisor of 49 using timer 5.
19200 bps	98	Set divisor of 98 using timer 5. Set divisor of 49 using timer 0 and divisor of 2 using timer 5.
9600 bps	196	Set divisor of 196 using timers 4 and 5. Set divisor of 49 using timer 0 and divisor of 4 using timer 5.

This setting is unnecessary after a reset.

■ Timer 0 Setting

(1) Set timer 0 counting stop with the timer 0 mode register (TM0MD).

TM0MD: x'00FE20'

		-					
7	6	5	4	3	2	1	0
TM0 EN	TM0 LD					TM0 S1	TM0 S0
^							

(2) Set the timer 0 divisor. Since timer 0 divides BOSC/2 by 49, set the timer 0 base register (TM0BR) to 48 (x'30'). (The valid range for TM0BR is 0 to 255.)

TM0BR: x'00FE10'

7	6	5	4	3	2	1	0
TM0 BR7							TM0 BR0
0	0	1	1	0	0	0	0

Setting TM0EN and TM0LD to 0 is required between (3) and (4) in the bank address version and the linear address version, but this setting is not required in the linear address high-speed version.

Do not change the clock source once you have selected it. Selecting the clock source while setting the count operation control will corrupt the value in the binary counter.

(3) Load TM0BR value to the timer 0 binary counter (TM0BC). At the same time, select BOSC/2 as the clock source.

TM0MD: x'00FE20'

7	6	5	4	3	2	1	0
TM0 EN	TM0 LD					TM0 S1	TM0 S0
0	1					0	0

(4) Set TM0LD and TM0EN of the TM0MD register to 0 and 1 respectively. This starts the timer. Counting begins at the start of the next cycle.

When the timer 0 binary counter reaches 0 and loads the value 1 from the timer 0 base register at the next count, a timer 0 underflow interrupt request will be sent to the CPU.

■ Timer 5 Setting

(5) Set timer 5 counting stop with the timer 5 mode register (TM5MD).

This setting is unnecessary after a reset.

TM5MD: x'00FE25'

7	6	5	4	3	2	1	0
TM5 EN	TM5 LD					TM5 S1	TM5 S0
0	•						

(6) Set the timer 5 divisor. Since timer 5 divides BOSC/2 by 2, set the timer 5 base register (TM5BR) to 1. (The valid range for TM5BR is 0 to 255.)

TM5BR: x'00FE15'

7	6	5	4	3	2	1	0
TM5 BR7					TM5 BR2		
0	0	0	0	0	0	0	1

(7) Load TM5BR value to the timer 5 binary counter (TM5BC). At the same time, select the timer 0 underflow as the clock source.

TM5MD: x'00FE25'

7	6	5	4	3	2	1	0
TM5 EN	TM5 LD					TM5 S1	TM5 S0
0	1					0	1

(8) Set TM5LD and TM5EN of the TM5MD register to 0 and 1 respectively. This starts the timer. Counting begins at the start of the next cycle.

When the timer 5 binary counter reaches 0 and loads the value 1 from the timer 5 base register at the next count, a timer 5 underflow interrupt request will be sent to the CPU.

The serial interface operates synchronizing with the timer 5 underflow output.

Setting TM5EN and TM5LD to 0 is required between (7) and (8) in the bank address version and the linear address version, but this setting is not required in the linear address high-speed version.

Do not change the clock source once you have selected it.
Selecting the clock source while setting the count operation control will corrupt the value in the binary counter.

Figure 5-2-6 Serial Clock Timing

5-2-4 I²C Transmission

This section describes the I²C transmission using the serial interface 3. Master transmission is operated using SDA3 and SCL3 pins.

■ Initial Setting

(1) Set the SDA and SCL pins to open drain with the port 8 mode control registers (P8MMD, P8LMD).

P8MMD: x'00FFFD'

7	6	5	4	3	2	1	0	
P8								
MMD7	MMD6	MMD5	MMD4	MMD3	MMD2	MMD1	MMD0	
0	0	0	1	0	0	0	0	

P8LMD: x'00FFFC'

7	6	5	4	3	2	1	0
-	-	-	P8 LMD4	P8 LMD3	P8 LMD2	P8 LMD1	P8 LMD0
Λ	0	0	1	0	1	0	0

(2) Set the serial 3 control register (SC3CTR). Select 8-bit character length, I²C protocol, I²C mode on. The parity bit is set to 1 to enable both transmission and reception enable flags, disable the break and set the ACK output to 1.

ACK is set by the parity bits. To output '1' to ACK, select 1 by the parity bits. To output '0' to ACK, select 0 by the parity bits. To output none to ACK, select none by the parity bits.

SC3CTR: x'00FD98'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SC3 REN				-						SC3 PTY0		-	SC3 S1	SC3 S0
1	1	0	0	1		1	1	1	1	0	1	0		0	1

■ Start Sequence Transmission

(3) Write 1 to the I²C sequence output flag (SC3IIC) of the SC3CTR register. This sets the SDA3 pin output to low. When the start sequence occurs correctly, the I²C detection flag (SC3IST) of the serial 3 status register (SC3STR) becomes 1. The arbitration lost detection cannot be performed even though the start sequence exists.

Enabling transmission detects the start sequence.

■ Data Transmission 1

- (4) Load the data to the serial 3 transmit/receive buffer (SC3TRB). This allows the data to output. The SDA3 pin output changes with a 1/8 cycle delay of the falling edge of the SCL3 pin output.
- (5) After transmission ends, SDA3 pin output and SCL3 pin output stay low.

■ Data Transmission 2

(6) Load the data to the serial 3 transmit/receive buffer (SC3TRB) if the next data is transmitted continuously.

■ Stop Sequence

- (7) Write 0 to the SC3IIC flag of the SC3CTR register to end the data transmission. Do not write during transmission.
- (8) Set the SCL3 pin output to high as soon as the SC3IIC flag is written. One cycle later, set the SDA3 pin output to high to start the stop sequence transmission. The SC3ISP flag of the SC3STR register becomes 1. (Reception must be enabled to detect the stop sequence.) Clear the SC3IST and SC3ISP flags of the SC3STR register by writing to or reading from the SC3TRB register.

Figure 5-2-7 Master Transmission Timing (With ACK)

5-2-5 I²C Reception

This section describes the I²C reception using the serial interface 3. Master reception is operated using SDA3 and SCL3 pins.

To enter the master reception mode, the first 1 byte must be transmitted during master transmission. Therefore, master reception is performed during the interrupt service routine which runs after the data has been transferred. Please refer to "5-2-4 I²C Transmission" for master transmission.

■ Initial Setting

(1) Enable the reception enable flag (SC3REN) of the serial 3 control register (SC3CTR) during the serial transmission end interrupt service routine.

SC3CTR: x'00FD98'

1	15	14	13	12	11	10	g	8	7	6	5	4	3	2	1	0
	13	17	13	12	11	10		0	,	0	-	7	3		1	0
			SC3 BRE		SC3 PTL	-	SC3 OD	SC3 ICM	ı			SC3 PTY0		-	SC3 S1	SC3 S0
	Λ	1	Λ	Λ	1		1	1	1	1	Λ	1	Λ		Λ	1

■ Data Reception

- (2) Load the dummy data x'FF' to the serial 3 transmit/receive buffer (SC3TRB). This starts master reception by setting SDA3 pin output to high.
- (3) Retrieve the data by reading the SC3TRB register during the serial reception interrupt service routine. (A serial transmission end interrupt can be served as a serial reception end interrupt.)
- (4) Load the dummy data x'FF' to the SC3TRB register if the next data is received continuously.

■ Stop Sequence

- (5) Write 0 to the SC3IIC flag of the SC3CTR register to start the stop sequence.
- (6) The stop sequence output makes the data reception in progress. After the stop sequence is output, disable the reception enable flag and initialize the reception.

This step is not required when reception is enabled by the initial setting.

This step can be omitted if it is the same setting in transmission

ACK is set by the parity bits. To output '1' to ACK, select 1 by the parity bits. To output '0' to ACK, select 0 by the parity bits. To output none to ACK, select none by the parity bits.

Figure 5-2-8 Master Reception Timing

Chapter 6 Analog Interface

6-1 Summary of A/D Converter

6-1-1 Overview

The MN102H60G/60K/F60G/F60K contains a 10-bit charge redistribution A/D converter which processes up to 8 channels. Using the clock selection bits, the clock source for A/D converter is selected to BOSC/2, BOSC/4, BOSC/8 or BOSC/16. When BOSC is 34 MHz, the clock source must be set to BOSC/8 (conversion time = 3.29 µs) or higher.

The voltage between Vref+ and Vref- must be input to each analog input pin. Set the voltages of Vref+ pin and Vref- pin as follows:

$$Vss \le Vref - < Vref + \le VDD$$

Figure 6-1-1 Analog Interface Configuration

■ Notices When Using A/D Converter

- (1) Set the impedance of the analog signal for A/D conversion to 8 k Ω or less.
- (2) If the impedance of the analog signal cannot be set to $8\,\mathrm{k}\Omega$ or less, connect the A/D input pin to the condenser of 2000 pF or more to control the voltage change of the A/D input pin.
- (3) To prevent the power potential fluctuation, do not change the chip output level from high level to low level or vice verse, or do not switch the peripheral load circuit on/off during A/D conversion.

Feature	Description
Sample and Hold	Built-in
Conversion Resolution	10-bit
	The A/D converter converts the voltage between Vref+ and Vref- divided into 1024,
	and this converted result is stored in ANnBUF.
Conversion Time	2.8 μs or more per channel, 3.29 μs per channel with a 34-MHz external oscillator
Clock Source	Internal Clock BOSC divided by 2, 4, 8, 16
Operating Mode	30 operating modes:
	Single conversion of channel 0 to n (n=1 to 7)
	Single conversion of channel m (m=0 to 7)
	Continous conversion of channel 0 to n (n=1 to 7)
	Continous conversion of channel m (m=0 to 7)
Converstion Start	Timer 3 underflow or register setting
Interrupts	An interrupt occurs each time the conversion sequence ends

■ Selecting the A/D Converter Clock Source

The A/D converter clock source is selected to BOSC/2, BOSC/4, BOSC/8 or BOSC/16 as the A/D conversion time is 2.8 μ s or more at 10-bit resolution and 2.4 μ s or more at 8-bit resolution.

Calculate the A/D conversion time as follows:

Conversion time (s) (10-bit resolution) = $[14 \times BOSC \text{ cycle/Clock Source}]$ /ch Conversion time (s) (8-bit resolution) = $[12 \times BOSC \text{ cycle/Clock Source}]$ /ch For example, when the A/D converter clock source is selected to BOSC/8, the conversion time is BOSC×112 cycles (10-bit resolution). Figure 6-1-2 shows the A/D Converter timing.

Figure 6-1-2 A/D Converter Timing

Therefore, select the A/D converter clock source as follows:

[Clock Source ≤ 5 MHz/BOSC frequency]

For example, select BOSC/8 or BOSC/16 with a 30-MHz external oscillator since Clock Source \leq 5 MHz/30 MHz.

■ Single Channel/Single Conversion Timing

When the operating mode selection bits (ANMD[1:0]) are set to single channel/single conversion, the A/D converter converts one AN input signal once. An interrupt occurs when the conversion ends. The number of channel to be converted is set to the channel selection bits (AN1CH[2:0]). (ANNCH[2:0] are ignored.)

When the software starts the conversion, write 0 and 1 to the timer conversion start flag (ANTC) and the conversion start/execution flag (ANEN) of the A/D converter control register (ANCTR) respectively. When ANTC=1, the ANEN flag becomes 1 at timer 3 underflow. The ANEN flag remains 1 during the conversion and clears 0 when the conversion ends.

Figure 6-1-3 Single Channel/Single Conversion Timing

■ Multiple Channels/Single Conversion Timing

When the operating mode selection bits (ANMD[1:0]) are set to multiple channels/ single conversion, the A/D converter converts consecutive AN input signals once. An interrupt occurs when the conversion sequence ends. The channel selection bits (AN1CH[2:0]) are set to channel 0 and the number of the final channel to be converted is set to ANNCH[2:0]. The conversion always starts with channel 0.

When the software starts the conversion, write 0 and 1 to the timer conversion start flag (ANTC) and the conversion start/execution flag (ANEN) of the A/D converter control register (ANCTR) respectively. When ANTC=1, the ANEN flag becomes 1 at timer 3 underflow. The ANEN flag remains 1 during the conversion and clears 0 when the conversion ends. AN1CH[2:0] show the number of channel being converted and they clear to 0 when the conversion sequence ends.

Figure 6-1-4 Multiple Channels/Single Conversion Timing

■ Single Channel/Continuous Conversion Timing

When the operating mode selection bits (ANMD[1:0]) are set to single channel/continuous conversion, the A/D converter converts one AN input signal continuously. An interrupt occurs when the conversion ends. The number of channel to be converted is set to the channel selection bits (AN1CH[2:0]). (ANNCH[2:0] are ignored.)

When the software starts the conversion, write 0 and 1 to the timer conversion start flag (ANTC) and the conversion start/execution flag (ANEN) of the A/D converter control register (ANCTR) respectively. When ANTC=1, the ANEN flag becomes 1 at timer 3 underflow. The ANEN flag remains 1 during the conversion. To end the conversion, write 0 to the ANEN flag.

Figure 6-1-5 Single Channel/Continous Conversion Timing

■ Multiple Channels/Continuous Conversion Timing

When the operating mode selection bits (ANMD[1:0]) are set to multiple channels/continuous conversion, the A/D converter converts multiple, consecutive AN input signals continuously. An interrupt occurs when the conversion sequence ends. The channel selection bits (AN1CH[2:0]) are set to channel 0 and the number of the final channel to be converted is set to ANNCH[2:0]. The conversion always starts with channel 0.

When the software starts the conversion, write 0 and 1 to the timer conversion start flag (ANTC) and the conversion start/execution flag (ANEN) of the A/D converter control register (ANCTR) respectively. When ANTC=1, the ANEN flag becomes 1 at timer 3 underflow. The ANEN flag remains 1 during the conversion. To end the conversion, write 0 ti the ANEN flag. AN1CH[2:0] show the number of channel being converted and they clear to 0 when the conversion sequence ends.

Figure 6-1-6 Multiple Channels/Continous Conversion Timing

Figure 6-1-7 A/D Converter Block Diagram

6-1-2 Control Registers

The A/D converter contains the A/D converter control register (ANCTR) and the A/D conversion data buffers (ANnBUF) corresponded to AN7 pin to AN0 pin.

,	ANnBl	JF															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	-	-	-	-	-	-	ANn BUF9	ANn BUF8	ANn BUF7	ANn BUF6	ANn BUF5	ANn BUF4	ANn BUF3	ANn BUF2	ANn BUF1	ANn BUF0	ANnBUF
Reset:	0	0	0	0	0	0	Undefined										

At 8-bit resolution, the ANnBUF[7:0] bits hold the data and the ANnBUF[9:8] bits become 0. At 10-bit resolution, the ANnBUF[9:0] bits hold the data. At reset the data is undefined.

Table 6-1-2 List of A/D Converter Control Registers

Register	Address	R/W	Function
ANCTR	x'00FF00'	R/W	A/D Converter Control Register
AN0BUF	x'00FF08'	R	A/D 0 Conversion Data Buffer
AN1BUF	x'00FF0A'	R	A/D 1 Conversion Data Buffer
AN2BUF	x'00FF0C'	R	A/D 2 Conversion Data Buffer
AN3BUF	x'00FF0E'	R	A/D 3 Conversion Data Buffer
AN4BUF	x'00FF10'	R	A/D 4 Conversion Data Buffer
AN5BUF	x'00FF12'	R	A/D 5 Conversion Data Buffer
AN6BUF	x'00FF14'	R	A/D 6 Conversion Data Buffer
AN7BUF	x'00FF16'	R	A/D 7 Conversion Data Buffer

A/D Converter Setup Examples 6-2

6-2-1 Single Channel A/D Conversion

The AN6 pin inputs an analog voltage (Vref- to Vref+) and obtains the 10-bit A/D conversion results.

Figure 6-2-1 Analog Voltage Input Example

Figure 6-2-2 Single Channel A/D Conversion Block Diagram

■ Port Input and A/D Converter Setup

- (1) Set AN6 pin (P46) of the port 4 to AN6 input using the P4HMD register.
- (2) Set the operating conditions in the A/D converter control register (ANCTR). Select single channel/single conversion mode by setting ANMD[1:0] to 00, BOSC/8 as the clock source by setting ANCK[1:0] to 10, and 10-bit conversion resolution by setting ANDEC to 1. Set the conversion start/execute flag (ANEN) to 0 and

AN1CH[2:0] bits to the number of channel to be converted. ANCTR: x'00FF00'

4	AINCI	N. XU	01100	,												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	AN NCH2	AN NCH1	AN NCH0	-	AN 1CH2	AN 1CH1	AN 1CH0	AN EN	AN TC	AN DEC	-	AN CK1	AN CK0	AN MD1	AN MD0
•	0	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0

The P46 direction is always set to input regardless of the P4DIR value.

- (3) Set the ANEN flag to 1 to start conversion. Conversion begins on the first rising edge of the A/D converter clock after the ANEN flag is set. The conversion time is 14 cycles of the A/D converter clock (3.73 μ s, 3.73 μ s to 4.0 μ s after the ANEN flag is set).
- (4) Wait for conversion to end. The ANEN flag is 1 during the conversion and is cleared to 0 when the conversion is completed. The program waits until the ANEN flag becomes 0.
- (5) Read the AN6 conversion data buffer (AN6BUF). The converter divides the voltage between Vref- and Vref+ into 1024, and the conversion result is a value from 0 to 1023.

AN6BUF: x'00FF14'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	AN6 BUF9				AN6 BUF5					

The CPU can read the result value by generating an interrupt. In this case, the program does not need to wait until the ANEN flag is 0 because an interrupt occurs after the result data is stored in the AN6BUF register.

Figure 6-2-3 Single Channel A/D Conversion Timing

6-2-2 Three Channel A/D Conversion

The ANO, AN1 and AN2 pins input analog voltages (Vref+ to Vref-) and the A/D converter converts 8-bit data. The conversion occurs periodically (when timer 3 underflows).

Figure 6-2-4 3-channel A/D Conversion Configuration

Figure 6-2-5 3-channel A/D Conversion Block Diagram

■ Port Input and A/D Converter Setup

(1) Set AN0, AN1 and AN2 pins (P94, P95 and P96) of the port 8 to input using the P9HMD register.

P9HMD: x'00FFED'

7	6	5	4	3	2	1	0
P9 MD7	P9 MD6	P9 MD5	P9 MD4	P9 MD3	P9 MD2	P9 MD1	P9 MD0
0	0	0	1	1	1	0	0

(2) Set the operating conditions in the A/D converter control register (ANCTR). Select multiple channel/single conversion mode, BOSC/8 as the clock source, and 8-bit conversion resolution. Set the conversion start/execute flag (ANEN) and the ANTC flag to 0 and 1 respectively. Set the AN1CH[2:0] flags to channel 0 and the ANNCH[2:0] flags to the number of the final channel to be converted (2 in this example).

ANCTR: x'00FF00'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	AN NCH2	AN NCH1	AN NCH0	-	AN 1CH2	AN 1CH1	AN 1CH0	AN EN	AN TC	AN DEC	ı	AN CK1	AN CK0	AN MD1	AN MD0
Λ	0	1	0	0	0	0	0	0	1		0	1		0	1

■ A/D Conversion Interval Setup

(3) Set the divisor for timer 3. To divide BOSC/2 by 256, write 255 to the timer 3 base register (TM3BR). (The valid range is 0 to 255.)

TM3BR: x'00FE13'

7	6	5	4	3	2	1	0
					TM3 BR2		
1	1	1	1	1	1	1	1

(4) Load the value of the TM3BR register to the timer 3 binary counter (TM3BC).

TM3BR: x'00FE13'

	,, t. ,t o	0	•				
7	6	5	4	3	2	1	0
TM3 EN	TM3 LD	-	-	-	-	TM3 S1	TM3 S0
0	1					0	0

Do not change the clock source. Selecting the clock source while controlling the count operation will corrupt the value in the binary counter. (5) Set TM3LD and TM3EN of the TM3MD register to 0 and 1 respectively. This starts the timer. Counting begins at the start of the next cycle.

When the timer 3 binary counter reaches 0 and loads the value 255 from the timer 3 base register at the next count, a timer 3 underflow interrupt request will be sent to the CPU. The A/D converter converts each AN0 to AN2 a single time at timer 3 underflow.

Figure 6-2-6 3-channel A/D Conversion Timing

Chapter 7 ATC, ETC (Data Automatic Transfer Function)

7

7-1 Summary of ATC

7-1-1 Overview

The MN102H60G/60K/F60G/F60K contains an automatic transfer control (ATC). The ATC has four channels to transfer the data between the memory spaces. The time required from the data transfer request until the data transfer end is the total of the bus acquisition and the data transfer time.

However, the transfer source and the data transfer destination cannot be used as DRAM set external memory space.

The data transfer time changes depending on the number of waits in the transfer source and the transfer destination. The time required for bus acquisition is a minimum of $1.75 \times \text{internal operating cycle}(s)$ after the ATC receives a data transfer request. For example, if the internal operating cycle is 58.8 ns (with a 34-MHz external oscillator), the time for bus acquisition is 102.9 ns.

Figure 7-1-1 ATC Bus Acquisition Timing

After bus is acquired, the time required for the data transfer is calculated as follows:

 $(4+Ws+Wd) \times m \times internal operating cycle(s)$

where m: the number of data transfer words

Ws: the number of waits in the source

Wd: the number of waits in the destination

After the transfer ends, an ATC transfer end interrupt occurs. ATC does not accept an interrupt except NMI during transfer, but ATC accepts an interrupt after the transfer ends. When NMI occurs during transfer, ATC stops the transfer and executes the interrupt service routine.

The bus acquisition priority is as follows:

ATC0 > ATC1 > ATC2 > ATC3 > CPU

Mode Memory Operation by ATC Transfer Operation ATC Main Interrupt Program Transfer Program One Byte/Word Transfer Serial Reception Interrupt Interrupt program is activated only when the last transfer ends. Main ATC Interrupt Program Transfer Program DMA Transfer Using Interrupt Burst Interrupt Interrupt program is activated only when the transfer ends. ATC Main Interrupt Transfer Program Program One Byte/Word Transfer Data Transfer to FDC MOV

Table 7-1-1 ATC Functions

Interrupt program activation can be set optionally.

() shows one instruction.

7-1-2 Control Registers

The ATC contains the ATC control registers (ATnCTR) and the ATC transfer word count registers (ATnCNT), the source address pointers (ATnSRC) and the destination address pointers (ATnDST).

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	-	-	-	-	ATn CNT11	ATn CNT10	ATn CNT9	ATn CNT8	ATn CNT7	ATn CNT6	ATn CNT5	ATn CNT4	ATn CNT3	ATn CNT2	ATn CNT1	ATn CNT0	ATnCNT
Reset:	0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	
																The	ATnCNT register writes
																only	16-bit data. Use the MOV uction to set the data.
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	-
	ATn SRC15	ATn SRC14	ATn SRC13	ATn SRC12	ATn SRC11	ATn SRC10	ATn SRC9	ATn SRC8	ATn SRC7	ATn SRC6	ATn SRC5	ATn SRC4	ATn SRC3	ATn SRC2	ATn SRC1	ATn SRC0	ATnSRC
Reset:	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	•
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	-	-	-	-	-	-	-	-	ATn SRC23	ATn SRC22	ATn SRC21	ATn SRC20	ATn SRC19	ATn SRC18	ATn SRC17	ATn SRC16	
Reset:	0	0	0	0	0	0	0	0	undefined								
																	ATnSRC register and the
																	DST register write only 24- ata or 16-bit data. Use the
																	/ instruction or the MOVX
	1.5	1.4	10	10		10	0	0	-		-	,		2			uction to set the data.
	15 ATn	14 ATn	13 ATn	12 ATn	11 ATn	10 ATn	9 ATn	8 ATn	7 ATn	6 ATn	5 ATn	4 ATn	3 ATn	2 ATn	1 ATn	0 ATn	
	DST15	DST14		1	DST11		DST9	DST8	DST7	DST6	DST5	DST4	DST3	DST2	DST1	DST0	ATnDST
Reset:	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	-	-	-	-	-	-	-	-	ATn DST23	ATn DST22	ATn DST21	ATn DST20	ATn DST19	ATn DST18	ATn DST17	ATn DST16	

Table 7-1-2 List of ATC Control Registers

R	egister	Address	R/W	Function
ATC0	AT0CTR AT0CNT AT0SRC AT0DST	x'00FD00' x'00FD02' x'00FD04' x'00FD08'	R/W R/W R/W	ATC 0 Control Register ATC 0 Transfer Word Count Register ATC 0 Source Address Pointer ATC 0 Destination Address Pointer
ATC1	AT1CTR AT1CNT AT1SRC AT1DST	x'00FD10' x'00FD12' x'00FD14' x'00FD18'	R/W R/W R/W	ATC 1 Control Register ATC 1 Transfer Word Count Register ATC 1 Source Address Pointer ATC 1 Destination Address Pointer
ATC2	AT2CTR AT2CNT AT2SRC AT2DST	x'00FD20' x'00FD22' x'00FD24' x'00FD28'	R/W R/W R/W	ATC 2 Control Register ATC 2 Transfer Word Count Register ATC 2 Source Address Pointer ATC 2 Destination Address Pointer
ATC3	AT3CTR AT3CNT AT3SRC AT3DST	x'00FD30' x'00FD32' x'00FD34' x'00FD38'	R/W R/W R/W	ATC 3 Control Register ATC 3 Transfer Word Count Register ATC 3 Source Address Pointer ATC 3 Destination Address Pointer

7-2 ATC Setup Examples

7-2-1 Serial Reception

The serial interface 0 receives the 5-byte data. After the serial reception is completed, ATC reads the data using the serial reception buffer and writes the data on the memory. After that, ATC generates an interrupt and starts software processing.

Figure 7-2-1 ATC Serial Reception Block Diagram

Figure 7-2-2 Serial Reception Sequence

■ ATC Setup

(1) Set the address x'00FD82' of the serial 0 reception buffer to the ATC0 source address pointer (AT0SRC).

ATOSRC: x'00FD04'

		· · ·													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT0 SRC15	AT0 SRC14	AT0 SRC13	AT0 SRC12			ı		AT0 SRC7	l		ı				AT0 SRC0
1	1	1	1	1	1	0	1	1	0	0	0	0	0	1	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	AT0 SRC23					AT0 SRC18		AT0 SRC16
		-	-	-	-		-	0	0	0	0	0	0	0	0

(2) Secure the space for the 5-byte serial 0 reception data. Set the first address of the secured space to the ATC0 destination address pointer (AT0DST).

The space for 5 bytes is from x'008000' to x'008004'.

ATODST: x'00FD08'

	•														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT0 DST15	AT0 DST14							AT0 DST7		AT0 DST5	ı		AT0 DST2	-	AT0 DST0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	AT0 DST23	AT0 DST22	AT0 DST21				-	AT0 DST16
								0	0	0	0	0	0	0	0

(3) Set the bytes to be transferred automatically. In this example, 5-byte data is transferred so that the value '4' subtracting 5 by 1 is set to the ATC0 transfer word count register (AT0CNT).

AT0CNT: x'00FD02'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	AT0 CNT11	AT0 CNT10				AT0 CNT6				AT0 CNT2		AT0 CNT0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

(4) Set the ATC0 control register (AT0CTR). Select a serial 0 reception end interrupt. Set the source pointer to be fixed and the destination pointer to increment by 1. Select one byte unit and one byte/word transfer as the transfer mode. Set the transfer start/busy flag to disable. Select 16-bit as both source bus width and

destination bus width.

ATOCTR: x'00FD00'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT0 EN	AT0 MD1	AT0 MD0	ı	l		AT0 SB8	l .	-	-	-	-	AT0 IQ3	AT0 IQ2	AT0 IQ1	
0	0	0	1	0	1	0	0	0	0	0	0	1	0	1	1

and 16-bit destination bus width. Select 8-bit source bus width -bit source bus width and 8-bit destination bus width only when 8-bit bus width for the external memory space is selected.

Select 16-bit source bus width

(5) Enable an ATC0 transfer end interrupt.

The interrupt level is 5 in this example.

ATOICH: x'00FCA9'

7	6	5	4	3	2	1	0
-		AT0 LV1		-	-	-	AT0 IE
	1	0	1				1

In this example, an error cannot be detected during the transfer. When an error is needed to be detected, set the AT0BW flag of the AT0CTR register to 1 to enable the word transfer. This allows to transfer the data between the SC0TRB register and the SCOSTR register. The 5-word (10-byte) memory space is required. Checking the contents of the SCOSTR register transferred to the memory during the interrupt service routine indicates each reception status.

■ Serial Setup

(6) Disable a serial 0 reception end interrupt. (If an interrupt is enabled, the serial 0 reception end interrupt is processed after ATC one-byte transfer ends.)

SCORICH: x'00FC92'

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	SC0R IE
0	0	0	0	0	0	0	0

(7) Select serial reception mode. Refer to "Serial Interface Setup Examples" for details.

■ ATC Reset

(8) Process the 5-byte serial 0 reception data. Each ATC register value is set as follows:

ATOCTR: x'00FD00'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT0 EN	AT0 MD1	AT0 MD0	AT0 BW	AT0 DB8	AT0 DI	AT0 SB8	AT0 SI	-	-	-	-	AT0 IQ3	AT0 IQ2	AT0 IQ1	AT0 IQ0
0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
Busy flag indication		Hold	Hold	Hold	Hold	Hold	Hold					Reset a		yte data	ı

ATOCNT: x'0FFF' (This value is always set regardless of the bytes to be transferred.) ATOSRC: x'00FD82' (The last value is stored.)

AT0DST: x'008005' (The result incremented by 1 is set after the last transfer is completed.)

- (9) Secure the space for the 5-byte serial 0 reception data. Reset the first address of the secured space to the ATC0 destination address pointer (AT0DST).
- (10) Set the bytes to be transferred automatically. In this example, 5-byte data is transferred so that the value '4' subtracting 5 by 1 is set to the ATC0 transfer word count register (AT0CNT).

ATOCNT: x'00FD02'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	-	-	-	AT0 CNT11									AT0 CNT2		
				0	0	0	0	Ω	0	0	Ω	0	1	Λ	Λ

- (11) Set the ATC0 control register (AT0CTR). Reselect a serial 0 reception end interrupt. Select the conditions as set in procedure (4).
- (12) Verify that a serial 0 reception end interrupt does not occur. If the serial 0 reception end interrupt occurs, avoid the interrupt by setting the AT0EN flag of the AT0CTR register to 1 (start the first byte data transfer by software). The data after the second byte is transferred automatically with the serial reception end interrupt.

If this setting is omitted, the 4096-byte data is transferred because the ATOCNT value is x'0FFF'.

7-3 Summary of ETC

7-3-1 Overview

The MN102H60G/60K/F60G/F60K contains an external transfer control (ETC). The ETC has two channels to transfer the data between the external memory and the external device. The data transfer request occurs when /DMAREQ[1:0] become low. /DMAACK[1:0] become low when the ETC accepts the data transfer request. The time required from the data transfer request until the data transfer end is the total of the bus acquisition and the data transfer time.

The data transfer time changes depending on the number of waits in the transfer source and the transfer destination. The time required for bus acquisition is a minimum of $1.75 \times \text{internal operating cycle}(s)$ after the ETC receives a data transfer request. For example, if the internal operating cycle is 58.8 ns (with a 34-MHz external oscillator), the time for bus acquisition is 102.9 ns.

Figure 7-3-1 ETC Bus Acquisition Timing

After bus is acquired, the time required for the data transfer is calculated as follows:

 $(4+Ws+Wd) \times m \times internal operating cycle(s)$

where m: the number of data transfer words

Ws: the number of waits in the source

Wd: the number of waits in the destination

After the transfer ends, an ETC transfer end interrupt occurs. ETC does not accept an interrupt except NMI during transfer, but the ETC accepts an interrupt after the transfer ends. When NMI occurs during transfer, the ETC stops the transfer and executes the interrupt service routine.

The bus acquisition priority is ETC0 > ETC1 > CPU

Table 7-3-1 ETC Connection Examples

ETC stops executing the CPU's program and transfers the data automatically between the external memory and the external device when low level is input to /DMAREQn pin from bus master. /DMAACKn becomes /RE or /WE signal for the external device. After the transfer ends, ETC restarts executing the program.

External memory is a device (such as SRAM) that has address input pins, data input/output pins, the /RE control pin and the /WE control pin. The external memory is connected to the chip in processor mode or address expansion mode with either address/data separate mode or address/data shared mode. The external memory has a register to set the number of waits.

External device is a device (such as ASIC) that has data input/output pins, the /RE control pin and the /WE control pin without using address input pins. The external device needs to output the data when a signal is input to /RE and read the data when a signal is input to /WE. When waits are required for accesses, the number of waits is set using the register in the external memory.

7-3-2 Control Registers

The ETC contains the ETC control registers (ETnCTR) and the ETC transfer word count registers (ETnCNT), the source address pointers (ETnSRC) and the destination address pointers (ETnDST).

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_
	-	-	-	-	ETn CNT11	ETn CNT10	ETn CNT9	ETn CNT8	ETn CNT7	ETn CNT6	ETn CNT5	ETn CNT4	ETn CNT3	ETn CNT2	ETn CNT1	ETn CNT0	ETnCNT
Reset:	0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	
																only	ETnCNT register writes 16-bit data. Use the MOV uction to set the data.
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	-
	ETn SRC15	ETn SRC14	ETn SRC13	ETn SRC12	ETn SRC11	ETn SRC10	ETn SRC9	ETn SRC8	ETn SRC7	ETn SRC6	ETn SRC5	ETn SRC4	ETn SRC3	ETn SRC2	ETn SRC1	ETn SRC0	ETnSRC
Reset:	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	•
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	-	-	-	-	-	-	-	-	ETn SRC23	ETn SRC22	ETn SRC21	ETn SRC20	ETn SRC19	ETn SRC18	ETn SRC17	ETn SRC16	
Reset:	0	0	0	0	0	0	0	0	undefined	·							
																	ETnSRC register and the
																	DST register write only 24- ata or 16-bit data. Use the
																	/ instruction or the MOVX
																	uction to set the data.
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	ETn DST15	ETn DST14	ETn DST13	ETn DST12	ETn DST11	ETn DST10	ETn DST9	ETn DST8	ETn DST7	ETn DST6	ETn DST5	ETn DST4	ETn DST3	ETn DST2	ETn DST1	ETn DST0	ETnDST
Reset:	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	-	-	-	-	-	-	-	-	ETn DST23	ETn DST22	ETn DST21	ETn DST20	ETn DST19	ETn DST18	ETn DST17	ETn DST16	

Table 7-3-2 List of ETC Control Registers

Re	egister	Address	R/W	Function
ETC0	ET0CTR ET0CNT ET0SRC ET0DST	x'00FD40' x'00FD42' x'00FD44' x'00FD48'	R/W R/W R/W	ETC 0 Control Register ETC 0 Transfer Word Count Register ETC 0 Source Address Pointer ETC 0 Destination Address Pointer
ETC1	ET1CTR ET1CNT ET1SRC ET1DST	x'00FD50' x'00FD52' x'00FD54' x'00FD58'	R/W R/W R/W	ETC 1 Control Register ETC 1 Transfer Word Count Register ETC 1 Source Address Pointer ETC 1 Destination Address Pointer

7-4 ETC Setup Examples

7-4-1 Transfer from External Memory to External Device

/DMAREQ0 input from bus master is an activation factor. Each bytedata is transferred from the external memory to the external device.

Figure 7-4-1 ETC External Memory → External Device Transfer Block Diagram

Figure 7-4-2 ETC External Memory → External Device Transfer Connection

■ ETC Setup

(1) Set the source address x'100000' of the external memory to the ETC0 source address pointer (ET0SRC).

ET0SRC: x'00FD44'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ET0 SRC15	ET0 SRC14	ET0 SRC13	ET0 SRC12	ET0 SRC11	ET0 SRC10	ET0 SRC9			ET0 SRC6	ET0 SRC5	ET0 SRC4	ET0 SRC3	ET0 SRC2	ET0 SRC1	ET0 SRC0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	ET0 SRC23	ET0 SRC22	ET0 SRC21	ET0 SRC20	ET0 SRC19	ET0 SRC18	ET0 SRC17	ET0 SRC16
		-	-	-	-	-	-	0	0	0	1	0	0	0	0

(2) Set the bytes to be transferred automatically. In this example, 2-byte data is transferred so that the value '1' subtracting 2 by 1 is set to the ETC0 transfer word count register (ET0CNT).

ET0CNT: x'00FD42'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	ET0 CNT11	ET0 CNT10	ET0 CNT9	ET0 CNT8	ET0 CNT7		ET0 CNT5	ET0 CNT4	ET0 CNT3	ET0 CNT2	ET0 CNT1	ETO CNTO
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

(3) Set the ETC0 control register (ET0CTR). Select burst transfer mode. Select one byte unit and the source pointer to increment by 1. Select the transfer direction is from external memory to external device. Set the transfer start/busy flag to disable.

ET0CTR: x'00FD40'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ET0 FLG	-	ET0 MD0	l	ET0 DB8	ET0 DI	ET0 SB8	ET0 SI	-	-	-	-	-	-	ET0 DIR	ET0 EN
0	0	1	1	0	0	1	1	0	0	0	0	0	0	1	1

■ Interrupt Setup

(4) Enable an ETC0 transfer end interrupt

ET0ICL: x'00FDA5'

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	ET0 EN
0	0	0	0	0	0	0	1

The interrupt level is set in SC4TLV[2:0] of the SC4TICH register.

Under this state, ETC0 starts transferring when /DMAREQ0 becomes low by bus master. After the ETC0 transfer ends, an ETC0 transfer end interrupt occurs. Each ETC0 register value is set as follows:

ETOCNT: x'0FFF' (This value is always set regardless the bytes to be transferred.)
ET0SRC: x'100002' (The result incremented by 1 is set after the last transfer is completed.)

Note: the number of external memory waits = 1, the number of data transfer bytes =2

Figure 7-4-3 ETC External Memory \rightarrow External Device Burst Transfer Timing

7-4-2 Transfer from External Device to External Memory (Burst Transfer)

/DMAREQ0 input from bus master is an activation factor. Each 16 bits of 4-byte data are transferred from the external device to the external memory.

Figure 7-4-4 ETC External Device → External Memory (Burst)Transfer Block Diagram

Figure 7-4-5 ETC External Device → External Memory (Burst) Transfer Connection

external device.

■ ETC Setup

(1) Set the destination address x'100000' of the external memory to the ETC0 destination address pointer (ET0SRC).

ET0DST: x'00FD48'

	O														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETO DST15	ET0 DST14	ET0 DST13	ET0 DST12	ET0 DST11	ET0 DST10	ET0 DST9		ET0 DST7	ET0 DST6	ET0 DST5	ET0 DST4	ET0 DST3	ET0 DST2	ET0 DST1	ETO DSTO
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	ET0 DST23	ET0 DST22	ET0 DST21	ET0 DST20	ET0 DST19	ET0 DST18	ET0 DST17	ET0 DST16
								0	0	0	1	0	0	0	0

(2) Set the words to be transferred automatically. In this example, 2-word data is transferred so that the value '1' subtracting 2 by 1 is set to the ETC0 transfer word count register (ET0CNT).

ET0CNT: x'00FD42'

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	ET0 CNT11	ET0 CNT10	ET0 CNT9	ET0 CNT8		ET0 CNT6		-	ET0 CNT3	ETO CNT2	ETO CNT1	ETO CNTO
_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

(3) Set the ETC0 control register (ET0CTR). Select burst transfer mode. Select one byte unit and the destination pointer to increment by 1. Select the transfer direction is from external device to external memory. Set the transfer start/busy flag to disable.

ET0CTR: x'00FD40'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ET0 FLG	-	ET0 MD0	ET0 BW	ET0 DB8	ET0 DI	ET0 SB8	ETO SI	-	1	-	-	-	-	ET0 DIR	ET0 EN
0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1

■ Interrupt Setup

(4) Enable an ETC0 transfer end interrupt

ET0ICL: x'00FDA5'

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	ET0 EN
0	0	0	0	0	0	0	1

The interrupt level is set in SC4TLV[2:0] of the SC4TICH register.

Under this state, ETC0 starts transferring when /DMAREQ0 becomes low by bus master. After the ETC0 transfer ends, an ETC0 transfer end interrupt occurs. Each ETC0 register value is set as follows:

ETOCNT: x'0FFF' (This value is always set regardless of the bytes to be transferred.)
ET0DST: x'100004' (The result incremented by 1 is set after the last transfer is
completed.)

Note: the number of external memory waits =1, the number of data transfer bytes =2

Figure 7-4-6 ETC External Device → External Memory Burst Transfer Timing

7-4-3 Transfer from External Device to External Memory (One Byte Transfer)

/DMAREQ0 input from bus master is an activation factor. The twobyte data is transferred from the external device to the external memory.

Figure 7-4-7 ETC External Device → External Memory (One Byte) Transfer Block Diagram

Figure 7-4-8 ETC External Device → External Memory (One Byte) Transfer Connection

external device.

■ ETC Setup

(1) Set the destination address x'100000' of the external memory to the ETC0 destination address pointer (ET0SRC).

ET0DST: x'00FD48'

	•														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETO DST15	ET0 DST14	ET0 DST13	ET0 DST12	ET0 DST11	ET0 DST10	ET0 DST9			ET0 DST6	ET0 DST5	ET0 DST4	ET0 DST3	ET0 DST2	ET0 DST1	ETO DSTO
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	ET0 DST23	ET0 DST22	ET0 DST21	ETO DST20	ET0 DST19	ET0 DST18	ET0 DST17	ET0 DST16
								0	0	0	1	0	0	0	0

(2) Set the words to be transferred automatically. In this example, 1-word data is transferred so that the value '0' subtracting 1 by 1 is set to the ETC0 transfer word count register (ET0CNT).

ET0CNT: x'00FD42'

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	ET0 CNT11	ET0 CNT10	ET0 CNT9	ET0 CNT8		ET0 CNT6		-	ET0 CNT3	ETO CNT2	ET0 CNT1	ET0 CNT0
_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(3) Set the ETC0 control register (ET0CTR). Select burst transfer mode. Select one word unit and the destination pointer to be fixed. Select the transfer direction is from external device to external memory. Set the transfer start/busy flag to enable.

ET0CTR: x'00FD40'

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ET0 FLG	-	ET0 MD0		ET0 DB8	ET0 DI	ET0 SB8	ET0 SI	İ	ı	ı	-	-	-	ET0 DIR	ET0 EN
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

■ Interrupt Setup

(4) Enable an ETC0 transfer end interrupt

ET0ICL: x'00FDA5'

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	ET0 EN
0	0	0	0	0	0	0	1

The interrupt level is set in SC4TLV[2:0] of the SC4TICH register.

Under this state, ETC0 starts transferring when /DMAREQ0 becomes low by bus master. After the ETC0 transfer ends, an ETC0 transfer end interrupt occurs. Each ETC0 register value is set as follows:

ETOCNT: x'0FFF' (This value is always set regardless of the bytes to be transferred.)
ET0DST: x'100000' (The result incremented by 1 is set after the last transfer is
completed.)

Note: the number of external memory waits =0, the number of data transfer bytes =1

Figure 7-4-9 ETC External Device → External Memory (One Byte) Transfer Timing

8-1 Summary of Ports

8-1-1 Overview

The MN102H60G/60K/F60G/F60K contains twelve I/O ports. Functions can be switched depending on the selected mode pins. Please refer to "11-2-3 Pin Functions" for details.

Figure 8-1-1 I/O Port Configuration

8-1-2 Control Registers

The MN102H60G/60K/F60G/F60K contains the port output register (PnOUT), the port input registers (PnIN), the port mode registers (PnMD), the port input/output control registers (PnDIR) and the port pull-up control registers (PnPLU). Refer to "11-2-3 List of Pin Functions" for details because some bits are not carried depending on ports. The port input/output control register is valid only when each port is used as its port input/output function. The direction is determined by setting each mode register when each port is used as an input/output pin of peripheral function.

Table 8-1-1 List of Port Control Registers

			Total Registers
Register	Address	R/W	Function
P0PLU	x'00FFB0'	R/W	Port 0 Pull-up Control Register
P0OUT	x'00FFC0'	R/W	Port 0 Output Register
POIN	x'00FFD0'	R/W	Port 0 Input Register
P0DIR	x'00FFE0'	R/W	Port 0 Input/Output Control Register
P0MD	x'00FFF0'	R/W	Port 0 Mode Register
P1PLU	x'00FFB1'	R/W	Port 1 Pull-up Control Register
P1OUT	x'00FFC1'	R/W	Port 1 Output Register
P1IN	x'00FFD1'	R/W	Port 1 Input Register
P1DIR	x'00FFE1'	R/W	Port 1 Input/Output Control Register
P1LMD	x'00FFF2'	R/W	Port 1 Mode Register L
P1HMD	x'00FFF3'	R/W	Port 1 Mode Register H
P2PLU	x'00FFB2'	R/W	Port 2 Pull-up Control Register
P2OUT	x'00FFC2'	R/W	Port 2 Output Register
P2IN	x'00FFD2'	R/W	Port 2 Input Register
P2DIR	x'00FFE2'	R/W	Port 2 Input/Output Control Register
P2MD	x'00FFF1'	R/W	Port 2 Mode Register
P3PLU	x'00FFB3'	R/W	Port 3 Pull-up Control Register
P3OUT	x'00FFC3'	R/W	Port 3 Output Register
P3IN	x'00FFD3'	R/W	Port 3 Input Register
P3DIR	x'00FFE3'	R/W	Port 3 Input/Output Control Register
P3LMD	x'00FFF4'	R/W	Port 3 Mode Register L
P3HMD	x'00FFF5'	R/W	Port 3 Mode Register H
P4PLU	x'00FFB4'	R/W	Port 4 Pull-up Control Register
P4OUT	x'00FFC4'	R/W	Port 4 Output Register
P4IN	x'00FFD4'	R/W	Port 4 Input Register
P4DIR	x'00FFE4'	R/W	Port 4 Input/Output Control Register
P4LMD	x'00FFF6'	R/W	Port 4 Mode Register L
P4HMD	x'00FFF7'	R/W	Port 4 Mode Register H
P5PLU	x'00FFB5'	R/W	Port 5 Pull-up Control Register
P5OUT	x'00FFC5'	R/W	Port 5 Output Register
P5IN	x'00FFD5'	R/W	Port 5 Input Register
P5DIR	x'00FFE5'	R/W	Port 5 Input/Output Control Register
P5LMD	x'00FFF8'	R/W	Port 5 Mode Register L
P5HMD	x'00FFF9'	R/W	Port 5 Mode Register H
P6PLU	x'00FFB6'	R/W	Port 6 Pull-up Control Register
P6OUT	x'00FFC6'	R/W	Port 6 Output Register
P6IN	x'00FFD6'	R/W	Port 6 Input Register
P6DIR	x'00FFE6'	R/W	Port 6 Input/Output Control Register
P6MD	x'00FFFF'	R/W	Port 6 Mode Register
L	l		1

P7PLU	x'00FFB7'	R/W	Port 7 Pull-up Control Register
P7OUT	x'00FFC7'	R/W	Port 7 Output Register
P7IN	x'00FFD7'	R/W	Port 7 Input Register
P7DIR	x'00FFE7'	R/W	Port 7 Input/Output Control Register
P7LMD	x'00FFFA'	R/W	Port 7 Mode Register L
P7HMD	x'00FFFB'	R/W	Port 7 Mode Register H
P8PLU	x'00FFB8'	R/W	Port 8 Pull-up Control Register
P8OUT	x'00FFC8'	R/W	Port 8 Output Register
P8IN	x'00FFD8'	R/W	Port 8 Input Register
P8DIR	x'00FFE8'	R/W	Port 8 Input/Output Control Register
P8LMD	x'00FFFC'	R/W	Port 8 Mode Register L
P8MMD	x'00FFFD'	R/W	Port 8 Mode Register M
P8HMD	x'00FFFE'	R/W	Port 8 Mode Register H
P9PLU	x'00FFB9'	R/W	Port 9 Pull-up Control Register
P9OUT	x'00FFC9'	R/W	Port 9 Output Register
P9IN	x'00FFD9'	R/W	Port 9 Input Register
P9DIR	x'00FFE9'	R/W	Port 9 Input/Output Control Register
P9LMD	x'00FFEC'	R/W	Port 9 Mode Register L
P9HMD	x'00FFED'	R/W	Port 9 Mode Register H
PAPLU	x'00FFBA'	R/W	Port A Pull-up Control Register
PAOUT	x'00FFCA'	R/W	Port A Output Register
PAIN	x'00FFDA'	R/W	Port A Input Register
PADIR	x'00FFEA'	R/W	Port A Input/Output Control Register
PAMD	x'00FFDC'	R/W	Port A Mode Register
PBPLU	x'00FFBB'	R/W	Port B Pull-up Control Register
PBOUT	x'00FFCB'	R/W	Port B Output Register
PBIN	x'00FFDB'	R/W	Port B Input Register
PBDIR	x'00FFEB'	R/W	Port B Input/Output Control Register
PBMD	x'00FFDD'	R/W	Port B Mode Register

8-1-3 Port Block Diagram

The MN102H60G/60K/F60G/F60K contains twelve I/O ports of P0 to PB. A set consists of two ports to eight ports. Each pin serves as a general-purpose port function or an input/output function for each peripheral function. The function can be switched by each port mode register. When the input/output pin of the peripheral function is selected, setting each port mode register determines the input/output direction automatically. When the general-purpose input/output port is selected, each port direction control register controls the input/output direction. Each port has a pull-up resistor which is controlled by software and switches ON/OFF regardless of each port mode register and the direction control register setup.

Table 8-1-2 Port Block Diagram (1/12)

Table 8-1-2 Port Block Diagram (2/12)

Port Pin Name Block Diagram P27 to P20 Port 2 A07 to A00 SBT2 P2PLU7 - 0 Register SBO₂ SBI2 P2OUT7 - 0 Register TM15IA Address Output Selector (A07 - A00) SBT2 Output (P20) SBO2 Output (P22) P2MD7, 5 - 2, 0 Register Register P2DIR7 - 0 P27 - 20 Address Output Control Selector SBT2 Input/Output Control (P20) SBI2 Input Control (P21) SBO2 Output Control (P22) TM15IA Input Control (P24) P2IN7 - 0 (Port Input) P6MD2 - 0 SBT2 Input (P20) (P60) P60 Pin P8LMD4 - 2 SBI2 Input (P21) P82 Pin P5HMD4 - 2 TM15IA Input (P24) P56 Pin Note: The set value of the P2DIR register is valid only when the port function is selected by the P2MD register. The input or output direction of SBT2, SBI2, SBO2 and TM15IA is determined by setting the P2MD register.

Table 8-1-2 Port Block Diagram (3/12)

Table 8-1-2 Port Block Diagram (4/12)

Port Pin Name Block Diagram Port 4 P47 to P40 A23 to A16 **STOP** P4PLU7 - 0 ◀ **WDOUT** AN7 to AN4 Register P4OUT7 - 0 Address Output (A23 - A16) Selector STOP Output (P46) P47 - 40 WDOUT Output (P47) P4LMD7 - 0 P4HMD3 - 0 P4DIR7 - 0 Register Address Output Control Selector STOP Output Control (P46) WDOUT Output Control (P47) P4IN7 - 0 (Port Input) AN7 - 4 (A/D Input) Note: The set value of the P4DIR register is valid only when the port function is selected by the P4LMD register or the P4HMD register. The input or output direction of STOP and WDOUT is determined automatically by setting the P4LMD register or the P4HMD register.

Table 8-1-2 Port Block Diagram (5/12)

Table 8-1-2 Port Block Diagram (6/12)

Port Pin Name Block Diagram Port 6 P63 to P60 SBT2 /RE /WEL P6PLU3 - 0 ◀ Register /WEH P6OUT3 - 0 Register WAIT SBT2 Output (P60) Selector /RE Output (P61) /WEL Output (P62) /WEH Output (p63) P67 - 60 P6MD5 - 0 Register Register P6DIR3 - 0 Selector SBT2 Input/Output Control (P60) /RE,/WEL,/WEH Output Control (P61 - P63) P6IN7 - 0 (Port Input) WAIT Input (P60) (Handshake Input) SBT2 Input (P60) (To Port 2 Block) Note: The set value of the P6DIR register is valid only when the port function is selected by the P6MD register. The input or output direction of SBT2, /RE, /WEL, /WEH and WAIT is determined automatically by setting the P6MD register.

Table 8-1-2 Port Block Diagram (7/12)

Table 8-1-2 Port Block Diagram (8/12)

Port Pin Name **Block Diagram** Port 8 P87 to P80 TM0IO TM4IO P8PLU7 - 0 -Register TM7IO TM9IOA P8OUT7 - 0 Register TM9IOB TM14OA Output (P80) TM9IC TM14OB Output (P81) TM0IO Output (P82) TM14OA SBT3 Output (P82) SCL3 Output (P82) TM14OB TM4IO Output (P83) Selector TM7IO Output (P84) SBI2 SBO3 Output (P84) SDA3 Output (P84) SBO₂ TM9IOA Output (P85) SBT4 Output (P85) SBT3 SBL4 Output (P85) P87 - 80 SBO2 Output (P85) SCL3 TM9IOB Output (P86) SBO4 Output (P87) SBI3 SDA4 Output (P87) SBO3 P8LMD4 - 0 SDA3 Register P8MMD7 - 0 P8HMD3 - 0 SBT4 SCL4 P8DIR7 - 0 → Register SBI4 SBO4 TM0IO,4IO,7IO,9IOA,9IOB,9IC Input/Output Control (P82 - 87) SDA4 Selector SBI2,3,4 SBO2,3,4 SBT2,3,4 SCL3,4 SDA3,4 Input/Output Control (P82 - 87) TM14OA, 14OB Output Control (P80, P81) P8IN7 - 0 (Port Input) TM0IO,4IO,7IO,9IOA, 9IOB,9IC Input (P82 - 87) SBI2,3,4, SBT2,3,4 SCL3,4 SDA3,4 Input (P82,P84 - 87) Note: The set value of the P8DIR register is valid only when the port function is selected by the P8LMD register, the P8HMD register. The input or output direction of timer function and serial function is determined automatically by setting the P8LMD register or the P8HMD register.

Table 8-1-2 Port Block Diagram (9/12)

Table 8-1-2 Port Block Diagram (10/12)

Table 8-1-2 Port Block Diagram (11/12) Port Pin Name Block Diagram Port A PA5 to PA0 /IRQ4 to /IRQ0 TM15IB PAPLU0 - 5 ◀ Register **ADSEP** PAOUT0 - 5 Register PAMD4 - 0 Register PA5 - 0 PADIR5 - 0 Register PAIN5 - 0 (Port Input) /IRQ4 - 0 Input (PA4 - PA0) TM15IB Input (PA4) ADSEP Input (PA5) Note: The set value of the PADIR register is valid only when the port function is selected by the PAMD register. The input or output direction of interrupt and timer function is determined automatically by setting the PAMD register.

Table 8-1-2 Port Block Diagram (12/12)

8-2 Port Setup Examples

8-2-1 General-purpose Port Setup

This section describes a light-emitting diode (LED) on/off based on switch input status. P71 is connected to the switch and P70 is connected to the LED. In this configuration, the LED is on when the switch is on while the LED is off when the switch is off.

Figure 8-2-1 General-purpose Port Setup Example

(1) Both P71 pin and P70 pin are set to input by the initial values after reset release. Under this condition, the LED is off. Next, set the P70 pin to the general-purpose port output.

P7DIR: x'00FFE7'

7	6	5	4	3	2	1	0
P7 DIR7	P7 DIR6		P7 DIR4			P7 DIR1	P7 DIR0
0	0	0	0	0	0	0	1

P7LMD: x'00FFFA'

7	6	5	4	3	2	1	0
P7	P7	P7	P7	P7	P7	P7	P7
LMD7	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
0	0	0	0	0	0	0	0

(2) Read the P71 pin status (P7IN) with the MOVB instruction. If bit 1 is '0', set P0OUT to x'00'.

P7OUT: x'00FFC7'

7	6	5	4	3	2	1	0
P7	P7	P7	P7	P7	P7	P7	P7
OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
0	0	0	0	0	0	0	0

P7IN: x'00FFD7'

7	6	5	4	3	2	1	0
P7	P7	P7	P7	P7	P7	P7	P7
IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0

On the contrary, if bit 1 is '1', set P7OUT to x'01'.

P7OUT: x'00FFC7'

7	6	5	4	3	2	1	0
P7	P7	P7	P7	P7	P7	P7	P7
OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
0	0	0	0	0	0	0	1

Under this condition, the low level is output to P70 pin if the switch is on while the high level is output to P70 pin if the switch is off resulting that the light-emitting diode is on or off. Thereafter, reading the P71 pin status is repeated.

Figure 8-2-2 and Figure 8-2-3 show the flowcharts of general-purpose port operations. When the port is input, set the PnMDm flag and PnDIRm flag to '0' and read the PnINm flag. When the port is output, set PnDIRm flag to '1' and write the data output to the PnOUTm flag. Regardless of input or output direction, set the PnPLUm flag to '1' for the pull-up setting. (n means the port number, m means bit position.)

Figure 8-2-2 Basic Flowchart of General-purpose Port Input

Figure 8-2-3 Basic Flowchart of General-purpose Port Output

When P94 and P93 are selected as the LED drive ports, the following software solutions are required.

High level is output from P93

- 1. Set the LED drive select flag (P9HMD6) of the port 9 mode register H (x'00FFED') to 0.
- 2. Set P9OUT6 of the port 9 output register (x'00FC9') to 1.
- 3. Set P9DIR of the port 9 input/output control register (x'00FFE9') to 1.

Low level is output from P93 when P93 is selected as the LED drive port.

- 1. Set POOUT6 of the port 9 output register (x'00FC9') to 0.
- 2. Set the LED drive select flag (P9HMD6) of the port 9 mode register H (x'00FFE9') to 1.
- 3. Set P9DIR of the port 9 input/output control register (x'00FFE9') to 1.

In the above step 2 setting, the LED is on no matter how the P9DIR flag is set. However, the LED becomes weak when P9DIR remains 0. Therefore, the step 3 must be set.

The solutions for P94 are the same as ones for P93.

8-3 Summary of Byte-swapped Registers

8-3-1 Overview

The MN102H60G/60K/F60G/F60K contains byte-swapped registers for pointers and long-word data. Each written data is swapped and read as follows.

Point byte swap registers PBSWPH(x'00FFBE') PBSWPL(x'00FFBC') (Initial values are all 0.)

Long word byte swap registers LBSWPH(x'00FFCE') LBSWPL(x'00FFCC') (Initial values are all 0.)

Figure 8-3-1 Byte-swapped Register

The MN102H60G/60K/F60G/F60K has no byte-swapped registers for the word data. When the word data needs to be swapped, use the byte-swapped register for long-word data. Write the word data to LBSWPH (x'00FFCE') and read the data from LBSWPL (x'00FFCC') or vice versa.

Chapter 8 Ports

9-1 Address Break

9-1-1 Overview

In the MN102HF60G/HF60K or ICE, the address break 0 and 1 generation flags of the address break control register cannot be used. Instead, the function of these flags are substituted by verifying whether the PC values (upper or lower bits) on the stack pointer match the address break 0/1 address pointer during NMI interrupt routine service. Please refer to the technical report when using the function.

The MN102H60G/60K/F60G/F60K generates a NMI interrupt before executing the instruction located on an arbitrary address. The MN102H60G/60K/F60G/F60K has two registers of the address break 0 address pointer and the address break 1 address pointer specifying the address where an interrupt is generated. When the address of the instruction fetch matches the address of either the address break 0 address pointer or the address break 1 address pointer, the CPU generates a NMI interrupt by replacing its instruction code into the undefined instruction (x'FF'). This function can debug the software or correct mask ROM under the production process.

Figure 9-1-1 Address Break Operation Example

Set the first address of the instruction code to be suspended to the address break address pointer.

The address break function makes the CPU suspend executing all instructions.

Figure 9-1-2 Address Break Block Diagram

9-1-2 Control Registers

The MN102H60G/60K/F60G/F60K contains the address break address pointers (ADBn) and the address break control register (ADBCTL).

9-1-3 Address Break Setup Examples

When an error occurs in the routine on the internal ROM, the program cannot be corrected normally. An error, however, can be avoided by storing the solution program on the internal RAM or the external RAM and setting the address break.

For example, the CPU stores the address where the instruction execution is halted and the substitute program on the nonvolatile memory connected externally to the MN102H60G/60K/F60G/F60K. Then the CPU accesses the nonvolatile memory from the main routine after reset. Finally, the CPU loads the address where the instruction execution is halted and the substitute program on the register or the internal RAM when the address break function is required. In this example, execute the subroutine 2 on the internal RAM without executing the subroutine 1 on the internal ROM.

- Primarily, the program subroutine calls from the main routine to the subroutine 1 by the JSR instruction.
- Úse the address break function and generate a NMI interrupt before executing the first address of the subroutine 1.
- Jump from the NMI interrupt service routine to the subroutine 2 on the internal RAM using the JMP instruction.
- 4. Return to the main routine using the RTS instruction.

Figure 9-1-3 Program Flow of Address Break Setup

■ Address Break Setup

- (1) Set the first address of the subroutine to the address break 0 address pointer (ADB0).
- (2) Set 1 to the ADBOON bit of the address break control register.

ADBCTL: x'00FCDA'

7	6	5	4	3	2	1	0
-	-	-	-	ADB1 ON		ADB1 CK	
Λ	0	0	0	0	1	0	0

Thereafter, a NMI interrupt occurs when the CPU executes the address set in the step (1).

■ NMI Interrupt Service Routine

(3) Jump to the address x'80008' when the address break occurs. The value of the IAGR register at this point is 8. Verify that the ADB0CK flag of the address break control register (ADBCTL) is 1 during the interrupt service routine. This determines whether a NMI interrupt occurs by the address break or other factors. Clear the ADB0CK flag and the ADB1CK flag to '0' by software after verification because both the ADB0CK flag and the ADB1CK flag are not cleared automatically.

ADBCTL: x'00FCDA'

7	6	5	4	3	2	1	0
-	-	-	-	ADB1 ON		ADB1 CK	ADB0 CK
0	0	0	0	0	1	0	1

(4) Jump into the subroutine 2 developed on the internal RAM in advance. Add 6 to the value of the stack pointer (AR3 register) to remove the program counter (PC) value and PSW value stored by the NMI interrupt from the stack. In addition, clear the NMIF flag of the NMICR register to 0.

Figure 9-1-4 Stack State after NMI Interrupt

(5) Execute the subroutine 2 on the internal RAM and return to the original main routine with the RTS instruction.

9-2 System Related Register Protection

9-2-1 Overview

The MN102H60G/60K/F60G/F60K contains the system control register which prohibits programming the system related registers by the erroneous operations. Writing the value except x'7D' to the system control register prohibits programming the system related registers.

9-2-2 Control Registers

7D: Program all registers (at reset)

Others: Do not program the following the system related registers

CPU Control : CPUM, EFCR

Address Break : ADB0, ADB1, ADBCTL

Memory Control: EXWMD, MEMMD1, MEMMD2

DRAMMD1, DRAMMD2

Port Control : P0MD, P1LMD, P1HMD

: P2MD, P3LMD, P3HMD : P4LMD, P4HMD, P5LMD : P5HMD, P6MD, P7LMD : P7HMD, P8LMD, P8MMD : P8HMD, P9LMD, P9HMD

: PAMD, PBMD

10-1 Summary of Low-power Modes

10-1-1 Overview

The MN102H60G/60K/F60G/F60K provides two oscillation pins (high-speed and low speed) for system clock. It has two CPU operating modes, NORMAL and SLOW, and two standby modes, HALT and STOP. The high-speed oscillation divided by 2, 4, or 8 can also be used as the operating clock. Using these modes effectively helps to reduce power consumption.

Figure 10-1-1 CPU Operating Mode Changes

Sample programs for program *1 to program *7 are described on the following pages.

The MN102H60G/60K/F60G/F60K contains two oscillation circuits for system clock. OSCI is the pin for high-speed operation (in NORMAL mode) while XI is the pin for low-speed operation (in SLOW mode). In addition to XI, OSCI divided by 2, 4, or 8 can also be used as the low-speed operation clock. The CPU mode control register (CPUM) controls the transitions between NORMAL mode and SLOW mode or from NORMAL/SLOW mode to standby mode. Selection of the low-speed operation clock is specified by means of memory mode register 2 (MEMMD2). A normal reset or an interrupt recovers the CPU from standby mode. The oscillation stabilization wait occurs when the CPU returns from STOP mode. The oscillation stabilization wait does not occur when the CPU returns from HALT mode. when the CPU returns from standby mode, NORMAL/STOP mode becomes the state before the CPU enters the standby mode.

The current from pins and the input pin level must not be unstable to reduce power consumption in STOP mode or HALT mode. For output pins, either match the output level to the level input to this pin externally or set the pin to input. For input pins, high or low level is fixed externally.

10-1-2 Control Registers

The CPU mode control register (CPUM) controls each mode transition.

Figure 10-1-2 Operating Mode Control and Clock Oscillation On/Off

Table 10-1-1 Watchdog Interrupt Interval

Watchdog Interrupt Expected Return WDM1 WDM0 Interval (BOSC Signal) Time from STOP 217 Cycles $2^{17} \times (1/\text{fosc}1)$ 0 0 0 $2^5 \times (1/\text{fosc}1)$ 1 2⁵ Cycles 213 Cycles $2^{13} \times (1/\text{fosc}1)$ 0 1 215 Cycles 1 $2^{15} \times (1/\text{fosc}1)$

WDM bits reduce the oscillation stabilization wait time from STOP mode. When both WDM1 and WDM0 are 0, the expected oscillation stabilization time is calculated as follows.

Oscillation stabilization wait time (tosciw) of the oscillation frequency fosci is: $tosciw = 2^{17} \times (1/fosci)$

For example, tosciw = 3.85506 ms when fosci is 34 MHz.

*1 The CPU transits from NOR-MAL mode to HALT0 mode, from SLOW1 mode to HALT1 mode, and from SLOW2 mode to HALT2 mode.

*2 The CPU transits from NOR-MAL mode to STOP0 mode, from SLOW1 mode to STOP1 mode, and from SLOW2 mode to STOP2 mode.

*3 The CPU mode control register settings are the same for SLOW1 and SLOW2, HALT1 and HALT2, and STOP1 and STOP2, respectively. These are differentiated by means of the SLOW mode operating clock selection flags of the memory mode setting 2 register, set in NORMAL mode.

The program changes the oscillation stabilization wait time. The oscillation stablization wait time is 2¹⁷ at reset. The time for error detection function changes as a result of the oscillation stablization wait time change.

Do not set '01' in the WDM flags in the MN102HF60G/HF60K, as this may cause erroneous operation.

Do not change these flags in SLOW1 mode or SLOW2 mode, as this may cause erroneous operation.

The SLOW mode operating clock can be changed by setting the SLOW mode operating clock selection flags in NORMAL mode. When XI is set as the operating clock, a transition is made to SLOW1 mode by means of a write setting in the CPU mode register. When OSCI/2, OSCI/4, or OSCI/8 is set as the operating clock, a transition is made to SLOW2 mode by means of a write setting in the CPU mode register.

10-1-3 Transferring between SLOW Mode and NORMAL Mode

The MN102H60G/60K/F60G/F60K has two CPU operating modes, NORMAL and SLOW. There are two SLOW modes: SLOW1 mode in which the low-speed oscillation clock (XI) is used as the operating clock, and SLOW2 mode in which the high-speed oscillation clock (OSCI) is used. Selection of the operating clock in SLOW mode is performed by means of the memory mode setting 2 register in NORMAL mode. The CPU needs to go through IDLE mode when switching from SLOW1 mode to NORMAL mode, but this is not necessary when switching from SLOW2 mode to NORMAL mode.

The system clock monitor flag (OSCID) is used to identify whether the system clock currently being supplied to the peripheral functions is the high-speed oscillation clock, or is the low-speed oscillation clock or a clock scaled from the high-speed oscillation clock. An OSCID value of 0 means that the high-speed oscillation clock is being supplied, while an OSCID value of 1 means that the low-speed oscillation clock or a clock scaled from the high-speed oscillation clock is being supplied.

■ Transferring from NORMAL mode to SLOW mode

A transition from NORMAL mode to SLOW mode is made by a write setting in the CPU mode control register after setting the SLOW mode operating clock with the memory mode setting 2 register. When XI is set as the operating clock, a transition is made to SLOW1 mode by means of a write setting in the CPU mode register. When OSCI/2, OSCI/4, or OSCI/8 is set as the operating clock in the memory mode setting 2 register, a transition is made to SLOW2 mode by means of a write setting in the CPU mode register. When the CPU transits from NORMAL mode to SLOW mode, the CPU does not need to go through IDLE mode, since the low-speed oscillation clock operates stably in both SLOW1 mode and SLOW2 mode.

The SLOW mode operating clock selection flags in the memory mode setting 2 register can only be modified in NOR-MAL mode. Modifying these flags in SLOW mode may cause erroneous operation.

```
Program *3
            mov
                   0xff84, al
                   (al), d0
                                : Read MEMMD2
            mov
                   0xff3f, d0
            and
                                ; Set XI
                   d0, (al)
            mov
                   0xfc00, a1
            mov
                                ; Read CPUM register
            mov
                   (a1), d0
                   0x3, d0
                                ; Set SLOW mode
            or
                   d0, (a1)
            mov
```

The following is a sample program for switching from NORMAL mode to SLOW2 mode.

```
Program *4
             mov
                   0xff84, al
                   (al), d0
                                ; Read MEMMD2
             mov
                   0xff3f, d0
             and
             or
                   0x0040, d0
                                ; Set OSCI/2
                   d0, (al)
             mov
                   0xfc00, a1
             mov
                   (a1), d0
                                ; Read CPUM
             mov
                   0x3, d0
                                ; Set SLOW mode
             or
                   d0, (a1)
             mov
```

■ Transferring from SLOW mode to NORMAL mode

When the CPU transits from SLOW1 mode to NORMAL mode, the CPU needs to wait in IDLE mode with the program until the high-speed oscillation clock starts oscillation and becomes stable (It takes at least 3.9 ms when the CPU switches from SLOW1 mode to NORMAL mode (at 34 MHz operation)). The following is the program example of switching from SLOW1 mode to NORMAL mode.

The CPU operates based on low-speed oscillation clock in IDLE mode.

```
Program *5
                      0xfc00, a1
                mov
                       (a1), d0
                                    ; Read CPUM register
                mov
                       0xfffd, d0
                                    ; Set IDLE mode
                and
                       d0, (a1)
                mov
Program *6
                mov
                      43, d0
                                    ; This is the loop of waiting for 3.9 ms
  LOOP
                add
                       -1, d0
                                    ; in 32-kHz clock operation to switch
                       LOOP
                bne
                                    ; from 32-kHz clock operation to 34-
                                    ; MHz clock operation.
                      0xfc00, a1
                                    ; Not required when the program
                mov
                                    ; continues from program *5
                       (a1), d0
                                    ; Read CPUM register
                mov
                      0xfff0, d0
                                    ; Set NORMAL mode
                and
                      d0, (a1)
                mov
```


The oscillation stabilization wait time is required to stabilize oscillation. The program needs to count the same time as the oscillation stabilization time. When the CPU transits from SLOW2 mode to NORMAL mode, only a write setting in the CPU mode control register is necessary, since the high-speed oscillation clock operates stably. In this case, the CPU does not need to go through IDLE mode. The following is a sample program for switching from SLOW2 mode to NORMAL mode.

Program *7

mov 0xfc00, a1

mov (a1), d0 ; Read CPUM

and 0xfffd, d0 ; Set NORMAL mode

mov d0, (a1)

10-1-4 Switching to Standby Mode

The program transits the CPU from the CPU operating mode to the standby mode. An interrupt switches the CPU from the standby mode to the CPU operating mode.

The following procedures are required before transferring to the standby mode.

- (1) Clear the interrupt enable flag (IE) of the processor status word (PSW) and the interrupt enable flag (xxIE) of the maskable interrupt control register (xxICH) to disable all interrupts temporarily.
- (2) Specify interrupt vector for returning from standby mode to the CPU operating mode and set only appropriate xxIE. In addition, set the IE flag of PSW.

The CPU cannot recover to the CPU operating mode when interrupt is enabled and the interrupt priority level is higher than the mask level set in PSW before switching to the CPU operating mode.

Figure 10-1-3 Sequence of Switching to/from Standby Mode

Assign the JMP instruction and set the CPUM write to an even address with ALIGN instruction. This prevents the effects due to the difference of memory mode and expansion bus widths and outcomes the same result under any conditions.

Note:

The ALIGN value must be set to more than 2 when the ALIGN value is set by the quasi-SEC-TION instruction before this example within the file describing the program.

When the CPU ends the oscillation stabilization wait and switches to the CPU operating mode, the watchdog timer becomes disabled automatically. When the watchdog timer operation is required, set the watchdog timer enabled.

The oscillation stabilization wait is executed by hardware when returning from STOP mode. The program does not need to count the oscillation stabilization wait time.

■ Switching to HALT mode

The CPU transits from NORMAL mode to HALT0 mode, from SLOW1 mode to HALT1 mode, and from SLOW2 mode to HALT2 mode. In each case, only the CPU stops, and the oscillation state is maintained. When the CPU switches to HALT mode while the watchdog timer is enabled, the watchdog timer stops counting. The following is the program example of switching to HALT mode.

Program *1			
	mov or jump align	(a1), d0 0x4, d0 stp_hlt 2	; Read CPUM ; Set HALT mode ; Branch unconditionally to an even ad- ; dress to erase the difference of operating ; conditions.
stp_hlt	mov nop nop	d0, (a1)	; Insert more than three nops to execute a ; few instructions in the state of pipeline ; after writing to CPUM.

■ Returning from HALT mode

An interrupt or a reset recovers the CPU from HALT mode. Reset proceeds normal operation. An interrupt returns the previous mode before entering HALT mode and the watchdog timer restarts counting.

■ Switching to STOP mode

The CPU transits from NORMAL mode to STOP0 mode, from SLOW1 mode to STOP1 mode, and from SLOW2 mode to STOP2 mode. In both cases, the oscillation and the CPU stop. When the CPU switches to STOP mode, the watchdog timer is reset. The following is the program example of switching to STOP mode.

Program *2			
	mov mov or jump align	0xfc00, a1 (a1), d0 0x8, d0 stp_hlt 2	; Read CPUM ; Set STOP mode ; Branch unconditionally to an even ad- ; dress to erase the difference of operating
stp_hlt	mov nop nop	d0, (a1)	; conditions. ; Insert more than three nops to execute a ; few instructions in the state of pipeline ; after writing to CPUM.

■ Returning from STOP mode

An interrupt or a reset recovers the CPU from STOP0, STOP1 mode, and STOP2 mode. At reset, the watchdog timer becomes disabled after operating as the oscillation stabilization wait counter.

11-1 Electrical Characteristics

This LSI user's manual describes standard specifications. When using this LSI chip, please contact one of our sales offices for product standards.

Structure	CMOS integrated circuit
Application	General purpose
Function	16-bit microcontroller
Pin Configuration	Figure 1-4-1 to Figure 1-4-9
External Dimensions	Figure 1-4-14

A. Absolute Maximum Ratings

Vss = 0 V

	Parameter		Rating	Unit
A1	Power supply voltage	VDD	-0.3 to +4.6	V
A2	Input pin voltage	Vı	-0.3 to VDD+0.3	V
А3	Output pin voltage	Vo	-0.3 to VDD+0.3	٧
A4	Input/output pin voltage	Vio	-0.3 to VDD+0.3	V
A5	Operating ambient temperature	Topr	-40 to +85	°C
A6	Storage temperature	Tstg	-55 to +125	°C

Note:

- Absolute Maximum Ratings are stress ratings not to cause damage to the device.
 Operation at these ratings is not guaranteed.
- 2. All of the V_{DD} and V_{SS} pins are external pins. Connect them directly to the power source and ground.
- 3. To prevent latch-up tolerance, connect more than one by-pass condenser between power supply pins and ground. Use at lease $0.2\mu F$ condenser.

B. Operating Conditions

Vss = 0 VTa = -40 °C to +85 °C

	Parameter		Symbol Conditions		Capacitance				
i didilletei		J Symbol J Soliditions		Min	Тур	Max	Unit		
B1	Power supply voltage	V_{DD}		3.0	3.3	3.6	V		
	Crystal Oscillator 1 (OSCI)								
B2	Oscillator frequency	Fosc1		4		34	MHz		
	Crystal Oscillator 2 (XI)								
В3	Oscillator frequency	Fosc2		32		166	kHz		

C. Electrical Characteristics

1. DC Characteristics

 $V_{DD} = 3.3 \text{ V}$ $V_{SS} = 0 \text{ V}$ $T_{a} = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$

1a = -40 °C to +85 °C							
Parameter		Symbol	Conditions	С	Unit		
		Symbol	Conditions	Min	Тур	Max	Offic
	Power supply current during operation	loo1	VI = VDD or Vss				mA
C1			Fosc1 = 34 MHz			60+10α*	
			Output pins open				
	Power supply current in SLOW mode	loo2	VI = VDD or Vss				
C2			Fosc2 = 32 kHz			5	mA
			Output pins open				
	Power supply current in STOP mode	IDD3	Oscillator stop				
C3			All functions stop			70	μA
	Power supply current in HALT0 mode	IDD4	Fosc1 = 34 MHz				mA
C4			- 00 HI-			30+10α*	
			Fosc2 = 32 kHz				
C5	Power supply current in HALT1 mode	IDD5	Fosc1 = oscillator stop			2	mA
			Fosc2 = 32 kHz			_	111/4

 $^{^*}$ α depends on the model. MN102H60G/60K α =0 MN102HF60G α =1 MN102HF60K α =2

 $V_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$ $V_{SS} = 0 \text{ V}$ $T_{a} = -40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C}$

Parameter		Symbol	Conditions	Capacitance			Unit	
		Symbol	Conditions	Min	Тур	Max	Offic	
Input/Output Pins 1 <output input="" level="" lvttl="" programmable="" pullup="" pushpull="" schmidt="" trigger=""> P00-P07, P10-P17, P20-P27, P30-P37, P40-P43, P50-P57 P60-P63, P70-P75, P80-P87, P90-P92, PA0-PA5, PB0(BOSC)</output>								
C6	Input high voltage	VIH1		2.2			V	
C7	Input low voltage	VIL1				0.6	V	
C8	Output high voltage	Voн1	IOH = -2.0 mA VDD = 3.3 V	2.4			V	
C9	Output low voltage	VOL1	IOL = 2.0 mA VDD = 3.3 V			0.4	V	
C10	Output leakage current	ILO1	Vo = Hi-z	-10		10	μΑ	
C11	Pullup resistance	PPU1	VI = VSS VDD = 3.3 V	10	30	90	kΩ	
Input/Output Pins 2 <output input="" level="" lvttl="" programmable="" pullup="" pushpull="" schmidt="" trigger=""></output>								
C12	Input high voltage	VIH2		2.2			V	
C13	Input low voltage	VIL2				0.6	V	
C14	Output high voltage	VOH2	IOH = -2.0 mA VDD = 3.3 V	2.4			V	
C15	Output low voltage 1	VOL2	IOL = 2.0 mA VDD = 3.3 V			0.4	V	
C16	Output low voltage 2	VOL2	In case of LED output setting IOL = 30 mA VDD = 3.3 V			0.4	V	
C17	Output leakage current	ILO2	Vo = Hi-z	-10		10	μΑ	
C18	Pullup resistance	PPU2	VI = VSS VDD = 3.3 V	10	30	90	kΩ	

 $V_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$ $V_{SS} = 0 \text{ V}$ $T_{a} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C}$

Parameter		Symbol	Conditions	C	Unit				
	raiailietei			Min	Тур	Max	Unit		
	Input/Output Pins 3 <output analog="" cmos="" input="" level="" pins="" programmable="" pullup="" pushpull="" schmidt="" trigger=""> P44-P47(AN4-7), P95-P97(AN1-3)</output>								
C19	Input high voltage	VIH3		VDD x 0.8			V		
C20	Input low voltage	VIL3				VDD x 0.2	V		
C21	Output high voltage	Vонз	IOH = -2.0 mA VDD = 3.3 V	VDD-0.6			٧		
C22	Output low voltage	VOL3	IOL = 2.0 mA VDD = 3.3 V			0.4	V		
C23	Output leakage current	ILO3	Vo = Hi-Z	-10		10	μΑ		
C24	Pullup resistance	PPU3	VI = VSS VDD = 3.3 V	10	30	90	kΩ		
	Input/Output Pins 4 <output analog="" cmos="" input="" level="" pins="" programmable="" pullup="" pushpull="" schmidt="" trigger=""> P94(AN0)</output>								
C25	Input high voltage	VIH4		VDD x 0.8			V		
C26	Input low voltage	VIL4				VDD x 0.2	V		
C27	Output high voltage	Voн4	IOH = -2.0 mA VDD = 3.3 V	VDD-0.6			V		
C28	Output low voltage 1	VOL4	IOL = 2.0 mA VDD = 3.3 V			0.4	V		
C29	Output low voltage 2	VOL4	In case of LED output setting IOL = 30 mA VDD = 3.3 V			0.4	V		
C30	Output leakage current	ILO4	Vo = Hi-z	-10		10	μΑ		
C31	Pullup resistance	PPU4	VI = VSS VDD = 3.3 V	10	30	90	kΩ		

 $V_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$ $V_{SS} = 0 \text{ V}$ $T_{a} = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C}$

				(
Parameter		Symbol	Conditions	Min	Тур	Max	Unit		
<inpu< td=""><td colspan="9">Input Pins <input cmos="" level="" schmidt="" trigger=""/> /NM, MODE, /RST</td></inpu<>	Input Pins <input cmos="" level="" schmidt="" trigger=""/> /NM, MODE, /RST								
C32	Input high voltage	VIH5		VDD x 0.9			V		
C33	Input low voltage	VIL5				VDD x 0.1	V		
C34	Input leakage current	VOH5	VDD = 3.6 V VI = VSS to VDD	-10		10	μΑ		
OSCI	OSCI pin, XI pin (at external clock input) : crystal, ceramic self-excited oscillation See Figure 1-4-10 to Figure 1-4-11								
C35	Input high voltage	VIH6		VDD x 0.8		VDD	V		
C36	Input low voltage	VIL6		Vss		VDD x 0.2	V		
Pin C	Pin Capacitance								
C37	Input pin	Cin			7	15	pF		
C38	Output pin	Соит	Ta=25 °C		7	15	pF		
C39	Input/output pin	Ci/o			7	15	pF		

D. D/A Converter Characteristics

VDD = AVDD = 3.3 V VSS = AVSS = 0 VTa = 25 °C

Parameter		Symbol	Conditions	С	Unit		
		Symbol		Min	Тур	Max	Offic
D1	Resolution	LSB1				10	Bits
D2	Zero-scale transition voltage	Vzs	VREF+ = 3.3 V	-16.1		16.1	mV
			VREF- = 0 V				
D3	Full-scale transaction voltage	VFS1	VREF+ = 3.3 V	3.28		3.32	V
			VREF- = 0 V				
D4	Non-linearity error	NLE1	VREF+ = 3.3 V	-4		4	LSB
			VREF- = 0 V				
D5	Differential non-linearity error	DNLE1	VREF+ = 3.3 V	-4		4	LSB
			VREF- = 0 V				
D6	A/D conversion time	TSET1	Fosc = 34 MHz	3.29			μs
			At 10-bit resolution				
D7	A/D conversion cycle	TSET2	Fosc = 34 MHz	3.29			μs
			At 10-bit resolution				
D8	Analog input voltage	VIA		VREF-		VREF+	V

Note: Always set in relation of VDD >= AVDD >= VREF +> VREF- >= AVSS >= VSS.

E. AC Characteristics

Input Timing Conditions

 $V_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$ $V_{SS} = 0 \text{ V}$ $T_{a} = -40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C}$

	Parameter	Symbol	Conditions	Ca	pacitanc	e	Unit			
	Parameter	Symbol	Conditions	Min	Тур	Max	Unit			
External Clock Input Timing (Fosc1 = 34 MHz)										
E1	External clock input cycle time	t EXCcyc		29.4			ns			
E2	External clock input high pulse width	t exch		texccyc 3			ns			
E3	External clock input low pulse width	t excL	Fig 11-1-1	texccy -3			ns			
E4	External clock input rise time	t excr				3	ns			
E5	External clock input fall time	t excf				3	ns			
Rese	t Input Timing									
E6	Reset signal pulse width (/RST)	t RSTW	Fig 11-1-2	4			t EXCcyc			
Powe	Power Rise Timing									
E7	VDD-VPP setup time	t RSTS	Fig 11-1-3	2			ms			

Input Timing Conditions

 $V_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$ $V_{SS} = 0 \text{ V}$ $T_{a} = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$

		I	1a = -40 °C to +85 °C					
	Parameter	Symbol	Conditions	Ca	apacitano	ce	Unit	
	1 didinotor	Cymbol	Containons	Min	Тур	Max	Onic	
Data ¹	Transfer Signal Input Timing							
E8	Data acknowledge signal setup time (WAIT)	t ws	Fig 11-1-5	12			ns	
E9	Data acknowledge signal hold time (WAIT)	t wн	Fig 11-1-9	0			ns	
Data Transfer Signal Input Timing								
E10	Read data setup time (D15-00)	t RDS	Fig 11-1-4 Fig 11-1-5 Fig 11-1-6	25+tcyc x Sre*			ns	
E11	Read data hold time (D15-00)	t RDH	Fig 11-1-8 Fig 11-1-9 Fig 11-1-10	-tcyc x Sre*			ns	
Bus A	Authority Request Input Timing							
E12	Bus authority request signal setup time (/BREQ)	t BREQS	Fig 11-1-12	0			ns	
E13	Bus authority request signal hold time (/BREQ)	t breqh		0			ns	
Interr	upt Signal Input Timing							
E14	Nonmaskable interrupt signal pulse width (NMI)	t _{NMIW}	Fig 11-1-13	10 (Note)			tcyc	
E15	External interrupt signal pulse width (/IRQ4 to 0)	t IRQW		4 (Note)			tcyc	

Note: An interrupt may occur when the noise of the specified time or less is input.

^{*} SRE means /RE short mode. (SRE = 0, 0.5, 1, 1.5)

Input Timing Conditions

 $V_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$ $V_{SS} = 0 \text{ V}$ $T_{a} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C}$

	Parameter	Cumbal	Conditions	С	apacitano	се	Unit
	raidillelei	Symbol	Conditions	Min	Тур	Max	Uniii
Seria	I Interface Related Signal Timing (Sync	hronous	Serial Reception	on)			
E16	E16 Data reception setup time (SBI4-0)		Fig 11-1-17	17			ns
E17	Data reception hold time (SBI4-0)	t RXDH		17			ns
E18	Transfer clock input high pulse width (SBT4-0)	tscн	Fig 11-1-16	tcyc x 4			ns
E19	Transfer clock input low pulse width (SBT4-0)	tscl	Fig 11-1-17	tcyc x 4			ns
Time	r/Counter Signal Input Timing						
E20	Timer external input clock low pulse width (TMnIO: n=0, 4, 7) (TMnIOA, TMnIOB, TMnIC: n=8-12) (TMnIA, TMnIB: n=13-15)	tтсськь	Fig 11-1-18	2			tcyc
E21	Timer external input clock low pulse width (TMnIO: n=0, 4, 7) (TMnIOA, TMnIOB, TMnIC: n=8-12) (TMnIA, TMnIB: n=13-15)	tтсськн		2			tcyc

F. AC Characteristics (Output)

Output Signal Characteristics

 $V_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$ $V_{SS} = 0 \text{ V}$ $T_{A} = -40 \,^{\circ}\text{C}$ to $+85 \,^{\circ}\text{C}$ $C_{L} = 70 \,^{\circ}\text{pF}$

	Parameter	Symbol	Conditions	С	ce	Unit	
	i diametei	Oymbor	Conditions	Min	Тур	Max	Offic
Syste	em Clock Output Timing						
F1	System clock output cycle time (BOSC)	tcyc		29.4			ns
F2	System clock output low pulse width (BOSC)	t cL	Fig 11-1-1	9.70			ns
F3	System clock output high pulse width (BOSC)	t cH	Fig 11-1-4 to 11	9.70			ns
F4	System clock output rise time (BOSC)	t cr				5	ns
F5	System clock output fall time (BOSC)	t cF				5	ns

V_{DD} = 3.0 V to 3.6 V V_{SS} = 0 V Ta = -40 °C to +85 °C C_L = 70 pF

	CL = 70	РΙ								
	Parameter	Symbol	Conditions	Сар	acitance		Unit			
	rarameter	Cymbol	Conditions	Min	Тур	Max				
Data	Data Transfer Signal Output Timing 1									
F6	Address delay time 1 (A23-0), (A23-16), (AD15-0)	t AD1	Fig 11-1-4 Fig 11-1-5 Fig 11-1-8 to 11			10	ns			
F7	Address hold time 1 (A23-0), (A23-16)	t AH1	Fig 11-1-4 Fig 11-1-8	tcyc x S*			ns			
F8	Address hold time 2	t AH2	ALE late 0, long 0 mode AD long 1 mode Fig 11-1-8	20			ns			
	(AD15-0)		Other Modes Fig 11-1-8	tcyc x (Lad- Lale-1)*						
F9	Write data delay time (D15-0), (AD15-0)	t DD1	Fig 11-1-4 to 5 Fig 11-1-7			10	ns			
F10	Write data hold time (D15-0)	t DH1	Fig 11-1-4 to 5 Fig 11-1-7 to 10	tcyc x S*			ns			

^{*} S means /WE short mode. (S=0,0.5,1,1.5)
LAD means AD long mode. (LAD=1,2,3)

Lale means ALE long mode. (Lale=0,0.5,1,1.5)

 $V_{DD} = 3.0 \ V \ to \ 3.6 \ V \\ V_{SS} = 0 \ V \\ T_{A} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C \\ C_{L} = 70 \ pF$

	Parameter		Conditions	Ca	apacitano	е	Unit
	Falametei	Symbol	Conditions	Min	Тур	Max	Oline
Data	Transfer Signal Output Timing 2						
F11	Chip-select signal fall delay time (/CS3-0), (/CS3-1)	tcsDF1	Fig 11-1-4 to 5			11	ns
F12	Chip-select signal rise delay time (/CS3-0), (/CS3-1)	tcsdr1	Fig 11-1-8 to 9			14	ns
F13	Chip-select signal hold time (/CS3-0)	tсsн	Fig 11-1-4 Fig 11-1-8	tcyc x S*			ns
F14	Address latch signal rise delay time (ALE)	t ALER1	Fig 11-1-8 to 11			10	ns
F15	Address latch signal fall delay time (ALE)	talef1	Fig 11-1-8 to 11			5	ns

^{*} S means /WE short mode. (S=0,0.5,1,1.5)

 $VDD = 3.0 \ V \ to \ 3.6 \ V$ $VSS = 0 \ V$ $Ta = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$ $CL = 70 \ pF$

	Parameter	Symbol	Conditions	Ca _l	pacitance)	Unit
	Falametei	Symbol	Conditions	Min	Тур	Max	Offic
Data	Transfer Signal Output Timing 3						
F16	Read enable signal fall delay time 1	t REDF1	Late 0.5 mode Fig 11-1-4 to 6			25	ns
	(/RE)		Other modes Fig 11-1-4 to 6			10	ns
F17	Read enable signal fall delay tie 2	tredf2	ALE late 0, long 0 mode AD long 1 mode Fig 11-1-8 to 9			30	ns
	(/RE)		Other modes Fig 11-1-8 to 9			10	
F18	Read enable signal rise delay time (/RE)	t REDR1	Fig 11-1-4 to 6			10	ns
	Write enable signal fall delay time 1		Late 1 mode Fig 11-1-4 to 5 Fig 11-1-7 to 9			20	
F19	(/WEH, WEL)	t WEDF1	Other modes Fig 11-1-4 to 5 Fig 11-1-7 to 9			8	ns
F20	Write enable signal fall delay time 2	twedf2	ALE late 0, long 0 mode AD long 1 mode Fig 11-1-8 to 9			30	ns
	(/WEH,WEL)		Other modes Fig 11-1-8 to 9			8	
F04	Write enable pulse width time	4	Late 1 mode Fig 11-1-4 to 5 Fig 11-1-7 to 9	tcyc x (2W-L-S+2) -20*			
	(WEH,WEL)	t wepw	Other modes Fig 11-1-4 to 5 Fig 11-1-7 to 9	tcyc x (2W-L-S+2) -10*			ns

^{*} W is the number of waits. (W=0,0.5,1,1.5,..7) L means /WE late mode. (L=1,2,3) S means /WE short mode. (S=0,0.5,1,1.5)

 $V_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$ $V_{SS} = 0 \text{ V}$ $T_{A} = -40 \,^{\circ}\text{C}$ to $+85 \,^{\circ}\text{C}$ $C_{L} = 70 \,^{\circ}\text{F}$

	Parameter	Symbol	Conditio	C	ce	Unit				
	raramotor	Cymbol	Condition	Min	Тур	Max	Offic			
Seria	Serial Interface Signal Output Timing (Synchronous Serial Transmission)									
F00	Transfer data delay time (SBO4-0)	tavas		Normal			15	ns		
F22	(3004-0)	тхор Fig 11-1-16 Fig 11-1-16		I ² C			tcyc x 4	ns		
F23	Transfer data hold time (transfer in progress) (SBO4-0)	t TXDH1	Fig 11-1	-14	0			ns		
F24	Transfer data hold time (Transfer end timing at SBT input) (SBO4-0)	t TXDH2	Fig 11-1	-15	tcyc (Note)			ns		
F25	Transfer data hold time (Transfer end timing at SBT output) (SBO4-0)	t тхрнз	Fig 11-1	-16 -	tsch+tscl 2	-		ns		

Note: Set SBO4-0 output hold time to BOSC cycle or more in SCnCTR (n=4-0) register.

AC Timing Voltage Level

(Both setup time and hold time are VDD×0.5)

Figure 11-1-1 System Clock Timing

Figure 11-1-2 Reset Timing

Figure 11-1-3 Voltage Rise Timing

Figure 11-1-4 Data Transfer Signal Timing (Address/Data Separate, Without Wait, Read/Write)

Figure 11-1-5 Data Transfer Signal Timing (Address/Data Separate, With Wait (1.5 or More), Read/Write)

Figure 11-1-6 Data Transfer Signal Timing (Address/Data Separate, With Wait (1.5 or More), /RE Late, Short Mode)

N = 2(W-1) (W: the number of waits 1.5, 2, 2.5..., 7)

Figure 11-1-7 Data Transfer Signal Timing (Address/Data Separate, With Wait (1.5 or More), /WE Late, Short Mode)

Figure 11-1-8 Data Transfer Signal Timing (Address/Data Shared, Without Wait, Read/Write)

Figure 11-1-9 Data Transfer Signal Timing (Address/Data Shared, With Wait (1.5 or More), Read/Write)

Figure 11-1-10 Data Transfer Signal Timing (Address/Data Shared, With Wait (1.5 or More), ALE late, long mode, /AD long mode, Read)

Figure 11-1-11 Data Transfer Signal Timing

(Address/Data Shared, With Wait (1.5 or More), ALE late, long mode, /AD long mode, Write)

Figure 11-1-12 Bus Authority Request Signal Timing

Figure 11-1-13 Interrupt Signal Timing

Figure 11-1-14 Serial Interface Signal Timing 1 (Synchronous Serial Transmission: Transfer in Progress)

Figure 11-1-15 Serial Interface Signal Timing 2 (Synchronous Serial Transmission: Transfer End Timing at SBT Input)

Figure 11-1-16 Serial Interface Signal Timing 3 (Synchronous Serial Transmission: Transfer End Timing at SBT Output)

Figure 11-1-17 Serial Interface Signal Timing 4 (Synchronous Serial Reception: Transfer End Timing at SBT Input)

Figure 11-1-18 Timer/Counter Signal Timing

G H

7

ر __

M

0

P

Q

R

S

T

U

V

W

X

Y

Z

11-2 Data Appendix

11-2-1 List of Special Registers

About This Section

■ Description of Each Page

Each page of this chapter describes one or more registers. Each page lists the register name, address, register access, bit map, flag explanation of each bit number and supplementary explanation. The following is the layout and definition of this section.

x'00FC00'

CPU Mode Control

16-bit access register

CPUM controls the CPU modes

and oscillator for watchdog

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WD	WD	WD	-	-	-	-	-	-	-	-	OSC	STOP	HALT	OSC1	OSC0
RST	M1	M0									ID				
R/W	R/W	R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1

15 Watchdog Timer Enable

0: Enable

1: Disable and clear

14:13 Watchdog Timer Count *

00: 2¹⁷ 01: 2⁵ 10: 2¹³

11: 215

Shorten the oscillation wait time from STOP mode and a watchdog timer interrupt cycle. The same counter is used for setting both values. Set the WDREG register to extend the watchdog timer interrupt cycle additionally.

bit	Watchdog Interrupt	Return Time From
13, 14	Cycle (BOSC Signal)	STOP Mode
00	2 ¹⁷ cycles	2 ¹⁷ ×(1/fosci)
01	2 ⁵ cycles	25×(1/fosci)
10	2 ¹³ cycles	2 ¹³ ×(1/fosci)
11	2 ¹⁵ cycles	2 ¹⁵ ×(1/fosci)

CPUM:

Register

timer.

0: OSCI input

1: Low-speed clock input

3:2 CPU Operating Control

1:0 Oscillator Control

STOP	HALT	OSC1	OSC0	CPU Mode	CPU	Clock	OSC1D Value
0	0	0	0	NORMAL	On	OSCI	0
0	0	1	1	SLOW1*	On	X1	1
0	0	1	1	SLOW2*	On	OSCI	0
0	1	0	0	HALT0	On	OSCI	0
0	1	1	1	HALT1*	On	XI	1
0	1	1	1	HALT2*	On	OSCI	0
1	0	0	0	STOP0	Off	-	_
1	0	1	1	STOP1*	Off	_	-
1	0	1	1	STOP2*	Off	-	_

The following describes programming rules and precautions in the STOP/HALT mode.

Points for Programming

- (1) Setting the CPUM address in the address register in advance, set the CPUM register using the MOV instruction with the register indirect addressing mode.
- (2) Immediately after the MOV instruction, locate three NOPs consecutively.
- (3) Immediately before the MOV instruction, locate the JMP instruction and align to the even address. This avoids the effects by the differences of the bus widths in the memory mode or expansion mode and provides the same result when operating in any conditions.

Programming Coding Example in Assembler (as 102Ver.1.0, Ver.2.0)

MOV CPUM, A0 : Set A0 to the CPUM address. MOV : Transfer the contents of CPUM to D0. (A0), D0 OR x'000*', D0 : Generate the data to set the STOP/HALT mode. **JMP** STP HLT ; Branch unconditionally to the even address to ALIGN ; eliminate the difference of operating conditions. 2 STP_HLT MOV D0, (A0) ; Set the STOP/HALT mode to CPUM. NOP ; Dummy NOP ; Dummy

Precautions

NOP

- (1) * of OR instruction varies depending on the STOP or HALT mode.
- (2) Set the ALIGN value to '2' or more in the above file when the ALIGN value is set using SECTION dummy instruction before this programming coding is described.

; Dummy

(3) Code the above programming in another file of the assembler source file when the program is developed with C complier cc 102. * The CPUM settings are the same for SLOW1 and SLOW2, HALT1 and HALT2, and STOP1 and STOP2, respectively. These are differentiated by means of the SLOW mode operating clock selection flags of the MEMMD2 register, set in NORMAL mode.

^{*} In the MN102HF60G/HF60K, set these bits to only '01' (2⁵).

⁴ System Clock Monitor

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	STEN	reserved
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0/1	0/1

1 Saturation Operation Setup

0: Disable (normal operation)

1: Enable (saturation operation when the ST flag of the PSW register is 1.)

0 Reserved

Set to 0.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	GN5	GN4	GN3	GN2	GN1	GN0	-	-
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0	0

7:2 Returns the group number multiplied by 4

IAGR : x'00FC0E'

EFCR:

Register

mode.

x'00FC08'

Expansion Control

16-bit access register

EFCR sets saturation operation

Interrupt Accept Group Register

16-bit access register

IAGR returns the group number of the accepted interrupt.

IAGR stores the group number of the accepted interrupt. The 6-bit GN field indicates the group number. When the first address of the interrupt service routine, add the contents of the IAGR register to the first address of the table in which registered vector address for each interrupt servicing. The IAGR register is only read.

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	NMID
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Nonmaskable Interrupt Detect Flag 0: No interrupt detected

1: Interrupt detected

NMICR:

x'00FC40'

Nonmaskable Interrupt Control Register

8-bit access register

NMICR verifies a nonmaskable interrupt.

ı

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	WDID
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Watchdog Interrupt Detect Flag 0: No interrupt detected

1: Interrupt detected

WDICR:

x'00FC42'

Watchdog Interrupt Control Register

8-bit access register

WDICR verifies a watchdog interrupt.

L	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	UNID
	R	R	R	R	R	R	R	R/W
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0/1

0 Undefined Instruction Interrupt Detect Flag 0: No interrupt detected

1: Interrupt detected

UNICR:

x'00FC44'

Undefined Instruction
Interrupt Control Register

8-bit access register

UNICR verifies an undefined instruction interrupt.

7	6	5	4	3	2	1	0
_	_	-	-	_	-	-	_
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

EIICR: x'00FC46'

Error Interrupt Control Register

8-bit access register

EIICR verifies an error interrupt.

This register does not exist. When an interrupt vector is not determined, this register indicates an error by writing IAGR register to 'C'.

7	6	5	4	3	2	1	0
-	-	-	IQ0 IR	-	-	-	IQ0 ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 External Interrupt 0 0: No interrupt requested Request Flag 1: Interrupt requested

0 External Interrupt 0 0: No interrupt detected
Detect Flag 1: Interrupt detected

7	6	5	4	3	2	1	0
-	IQ0 LV2	IQ0 LV1	IQ0 LV0	-	-	-	IQ0 IE
R	R/W	R/W	R/W	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0/1	0/1	0/1	0	0	0	0/1

6:4 External Interrupt 0 Set the level from 0 to 6 Level Setup

0 External Interrupt 0 Interrupt 0: Disable Enable Flag 1: Enable

IQ0ICL: x'00FC50'

External Interrupt 0 Control Register

8-bit access register

IQ0ICL requests and verifies an external interrupt 0 interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

IQ0ICH: x'00FC51'

External Interrupt 0 Control Register

8-bit access register

IQ0ICH sets an external interrupt 0 interrupt level and enables an interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

7	6	5	4	3	2	1	0
-	-	-	TM0U IR	-	-	-	TM0U ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 0 Underflow Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 0 Underflow Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM0U IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 0 Underflow Interrupt 0: Disable
Enable Flag 1: Enable

TM0UICL: x'00FC52'

Timer 0 Underflow Interrupt Control Register

8-bit access register

TMOUICL requests and verifies a timer 0 interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

TMOUICH: x'00FC53'

Timer 0 Underflow Interrupt Control Register

8-bit access register

TM0UICH enables a timer 0 interrupt.

This register allows only byte-accesses. Use MOVB instruction to set the data. The interrupt level is the same level set in the IQ0LV[2:0] bits of the IQ0ICH register.

7	6	5	4	3	2	1	0
-	-	-	TM8U	-	-	-	TM8U
R	R	R	IR R/W	R	R	R	ID R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 8 Underflow Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 8 Underflow Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM8U IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 8 Underflow Interrupt Enable Flag

0: Disable 1: Enable

TM8UICL: x'00FC54'

Timer 8 Underflow Interrupt Control Register

8-bit access register

TM8UICL requests and verifies a timer 8 interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

TM8UICH: x'00FC55'

Timer 8 Underflow Interrupt Control Register

8-bit access register

TM8UICH enables a timer 8 interrupt.

This register allows only byte-accesses. Use MOVB instruction to set the data. The interrupt level is the same level set in the IQ0LV[2:0] bits of the IQ0ICH register.

7	6	5	4	3	2	1	0
-	-	-	TM8A IR	-	-	-	TM8A ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 8 Capture A Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 8 Capture A Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM8A IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 8 Capture A Interrupt 0: Disable
Enable Flag 1: Enable

TM8AICL: x'00FC56'

Timer 8 Capture A Interrupt Control Register

8-bit access register

TM8AICL requests and verifies a timer 8 capture A interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

TM8AICH: x'00FC57'

Timer 8 Capture A Interrupt Control Register

8-bit access register

TM8AICH enables a timer 8 capture A interrupt.

This register allows only byte-accesses. Use MOVB instruction to set the data. The interrupt level is the same level set in the IQ0LV[2:0] bits of the IQ0ICH register.

7	6	5	4	3	2	1	0
ı	-	-	IQ1 IR	-	-	-	IQ1 ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 External Interrupt 1 0: No interrupt requested Request Flag 1: Interrupt requested

0 External Interrupt 1 0: No interrupt detectedDetect Flag 1: Interrupt detected

7	6	5	4	3	2	1	0
-	IQ1 LV2	IQ1 LV1	IQ1 LV0	-	-	-	IQ1 IE
R	R/W	R/W	R/W	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0/1	0/1	0/1	0	0	0	0/1

6:4 External Interrupt 1 Set the level from 0 to 6 Level Setup

0 External Interrupt 1 Interrupt 0: DisableEnable Flag 1: Enable

IQ1ICL : x'00FC58'

External Interrupt 1 Control Register

8-bit access register

IQ1ICL requests and verifies an external interrupt 1 interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

IQ1ICH: x'00FC59'

External Interrupt 1 Control Register

8-bit access register

IQ1ICH sets an external interrupt 1 interrupt level and enables an interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

7	6	5	4	3	2	1	0
1	-	-	TM1U IR	-	-	-	TM1U ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 1 Underflow Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 1 Underflow Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM1U IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 1 Underflow Interrupt 0: Disable
Enable Flag 1: Enable

TM1UICL: x'00FC5A'

Timer 1 Underflow Interrupt Control Register

8-bit access register

TM1UICL requests and verifies a timer 1 interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

TM1UICH: x'00FC5B'

Timer 1 Underflow Interrupt Control Register

8-bit access register

TM1UICH enables a timer 1 interrupt.

This register allows only byte-accesses. Use MOVB instruction to set the data. The interrupt level is the same level set in the IQ1LV[2:0] bits of the IQ1ICH register.

7	6	5	4	3	2	1	0
/	U	3	4	3		1	U
-	-	-	TM8B	-	-	-	TM8B
			IR				ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 8 Capture B Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 8 Capture B Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	TM8B IE
	R	R	R	R	R	R	R	R/W
	0	0	0	0	0	0	0	0
Г	0	0	0	0	0	0	0	0/1

0 Timer 8 Capture B Interrupt 0: Disable Enable Flag 1: Enable

TM8BICL: x'00FC5C'

Timer 8 Capture B Interrupt Control Register

8-bit access register

TM8BICL requests and verifies a timer 8 capture B interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

TM8BICH: x'00FC5D'

Timer 8 Capture B Interrupt Control Register

8-bit access register

TM8BICH enables a timer 8 capture B interrupt.

This register allows only byte-accesses. Use MOVB instruction to set the data. The interrupt level is the same level set in the IQ1LV[2:0] bits of the IQ1ICH register.

7	6	5	4	3	2	1	0
-	-	-	TM9U IR	-	-	-	TM9U ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 9 Underflow Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 9 Underflow Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM9U IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

Timer 9 Underflow Interrupt 0: DisableEnable Flag 1: Enable

TM9UICL: x'00FC5E'

Timer 9 Underflow Interrupt Control Register

8-bit access register

TM9UICL requests and verifies a timer 9 interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

TM9UICH: x'00FC5F'

Timer 9 Underflow Interrupt Control Register

8-bit access register

TM9UICH enables a timer 9 interrupt.

This register allows only byte-accesses. Use MOVB instruction to set the data. The interrupt level is the same level set in the IQ1LV[2:0] bits of the IQ1ICH register.

7	6	5	4	3	2	1	0
-	-	1	IQ2 IR	-	ı	ı	IQ2 ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 External Interrupt 2 0: No interrupt requested Request Flag 1: Interrupt requested

0 External Interrupt 2 0: No interrupt detected
Detect Flag 1: Interrupt detected

7	6	5	4	3	2	1	0
-	IQ2 LV2	IQ2 LV1	IQ2 LV0	-	-	-	IQ2 IE
R	R/W	R/W	R/W	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0/1	0/1	0/1	0	0	0	0/1

6:4 External Interrupt 2 Set the level from 0 to 6 Level Setup

0 External Interrupt 2 Interrupt 0: Disable Enable Flag 1: Enable

IQ2ICL: x'00FC60'

External Interrupt 2 Control Register

8-bit access register

IQ2ICL requests and verifies an external interrupt 2 interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

IQ2ICH: x'00FC61'

External Interrupt 2 Control Register

8-bit access register

IQ2ICH sets an external interrupt 2 interrupt level and enables an interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

7	6	5	4	3	2	1	0
-	-	-	TM2U IR	-	-	-	TM2U ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 2 Underflow Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 2 Underflow Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM2U IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

Timer 2 Underflow Interrupt 0: DisableEnable Flag 1: Enable

TM2UICL: x'00FC62'

Timer 2 Underflow Interrupt Control Register

8-bit access register

TM2UICL requests and verifies a timer 2 interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

TM2UICH: x'00FC63'

Timer 2 Underflow Interrupt Control Register

8-bit access register

TM2UICH enables a timer 2 interrupt.

This register allows only byte-accesses. Use MOVB instruction to set the data. The interrupt level is the same level set in the IQ2LV[2:0] bits of the IQ2ICH register.

7	6	5	4	3	2	1	0
-	-	-	TM9A IR	-	-	-	TM9A ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 9 Capture A Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 9 Capture A Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	TM9A IE
ľ	R	R	R	R	R	R	R	R/W
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0/1

0 Timer 9 Capture A Interrupt Enable Flag 0: Disable 1: Enable

TM9AICL: x'00FC64'

Timer 9 Capture A Interrupt Control Register

8-bit access register

TM9AICL requests and verifies a timer 9 capture A interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

TM9AICH: x'00FC65'

Timer 9 Capture A Interrupt Control Register

8-bit access register

TM9AICH enables a timer 9 capture A interrupt.

This register allows only byte-accesses. Use MOVB instruction to set the data. The interrupt level is the same level set in the IQ2LV[2:0] bits of the IQ2ICH register.

7	6	5	4	3	2	1	0
1	-	-	TM9B IR	-	-	-	TM9B ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 9 Capture B Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 9 Capture B Interrupt
Detect Flag

0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM9B IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 9 Capture B Interrupt 0: Disable
Enable Flag 1: Enable

TM9BICL: x'00FC66'

Timer 9 Capture B Interrupt Control Register

8-bit access register

TM9BICL requests and verifies a timer 9 capture B interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

TM9BICH: x'00FC67'

Timer 9 Capture B Interrupt Control Register

8-bit access register

TM9BICH enables a timer 9 capture B interrupt.

This register allows only byte-accesses. Use MOVB instruction to set the data. The interrupt level is the same level set in the IQ2LV[2:0] bits of the IQ2ICH register.

7	6	5	4	3	2	1	0
-	-	-	IQ3 IR	-	-	-	IQ3 ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 External Interrupt 3 0: No interrupt requested Request Flag 1: Interrupt requested

0 External Interrupt 3 0: No interrupt detected
Detect Flag 1: Interrupt detected

7	6	5	4	3	2	1	0
-	IQ3 LV2	IQ3 LV1	IQ3 LV0	-	-	-	IQ3 IE
R	R/W	R/W	R/W	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0/1	0/1	0/1	0	0	0	0/1

6:4 External Interrupt 3 Set the level from 0 to 6
Level Setup

0 External Interrupt 3 Interrupt0: DisableEnable Flag1: Enable

IQ3ICL: x'00FC68'

External Interrupt 3 Control Register

8-bit access register

IQ3ICL requests and verifies an external interrupt 3 interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

IQ3ICH: x'00FC69'

External Interrupt 3 Control Register

8-bit access register

IQ3ICH sets an external interrupt 3 interrupt level and enables an interrupt.

This register allows only byteaccesses. Use MOVB instruction to set the data.

7	6	5	4	3	2	1	0
-	-	-	TM3U IR	-	-	-	TM3U ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 3 Underflow Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 3 Underflow Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM3U IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 3 Underflow Interrupt 0: Disable
Enable Flag 1: Enable

TM3UICL: x'00FC6A'

Timer 3 Underflow Interrupt Control Register

8-bit access register

TM3UICL requests and verifies a timer 3 interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

TM3UICH: x'00FC6B'

Timer 3 Underflow Interrupt Control Register

8-bit access register

TM3UICH enables a timer 3 interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the IQ3LV[2:0] bits of the IQ3ICH register.

7	6	5	4	3	2	1	0
-	-	-	TM10U IR	-	-	-	TM10U ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 10 Underflow Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 10 Underflow Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM10U IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

Timer 10 Underflow Interrupt 0: DisableEnable Flag 1: Enable

TM10UICL: x'00FC6C'

Timer 10 Underflow Interrupt Control Register

8-bit access register

TM10UICL requests and verifies a timer 10 interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

TM10UICH: x'00FC6D'

Timer 10 Underflow Interrupt Control Register

8-bit access register

TM10UICH enables a timer 10 interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the IQ3LV[2:0] bits of the IQ3ICH register.

7	6	5	4	3	2	1	0
-	-	-	TM10A IR	-	-	-	TM10A ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 10 Capture A Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 10 Capture A Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM10A IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 10 Capture A Interrupt 0: Disable Enable Flag 1: Enable

TM10AICL: x'00FC6E'

Timer 10 Capture A Interrupt Control Register

8-bit access register

TM10AICL requests and verifies a timer 10 capture A interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

TM10AICH: x'00FC6F'

Timer 10 Capture A Interrupt Control Register

8-bit access register

TM10AICH enables a timer 10 capture A interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the IQ3LV[2:0] bits of the IQ3ICH register.

7	6	5	4	3	2	1	0
-	-	-	IQ4 IR	-	ı	ı	IQ4 ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 External Interrupt 4 0: No interrupt requested Request Flag 1: Interrupt requested

0 External Interrupt 4Detect Flag1: Interrupt detected

7	6	5	4	3	2	1	0
-	IQ4 LV2	IQ4 LV1	IQ4 LV0	-	-	-	IQ4 IE
R	R/W	R/W	R/W	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0/1	0/1	0/1	0	0	0	0/1

6:4 External Interrupt 4 Set the level from 0 to 6
Level Setup

0 External Interrupt 4 Interrupt 0: Disable Enable Flag 1: Enable

IQ4ICL : x'00FC70'

External Interrupt 4 Control Register

8-bit access register

IQ4ICL requests and verifies an external interrupt 4 interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

IQ4ICH: x'00FC71'

External Interrupt 4 Control Register

8-bit access register

IQ4ICH sets an external interrupt 4 interrupt level and enables an interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

7	6	5	4	3	2	1	0
-	-	-	TM4U IR	-	-	-	TM4U ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 4 Underflow Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 4 Underflow Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM4U IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 4 Underflow Interrupt 0: Disable
Enable Flag 1: Enable

TM4UICL: x'00FC72'

Timer 4 Underflow Interrupt Control Register

8-bit access register

TM4UICL requests and verifies a timer 4 interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

TM4UICH: x'00FC73'

Timer 4 Underflow Interrupt Control Register

8-bit access register

TM4UICH enables a timer 4 interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the IQ4LV[2:0] bits of the IQ4ICH register.

7	6	5	4	3	2	1	0
-	-	-	TM10B IR	-	-	-	TM10B ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 10 Capture B Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 10 Capture B Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM10B IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 10 Capture B Interrupt 0: Disable Enable Flag 1: Enable

TM10BICL: x'00FC74'

Timer 10 Capture B Interrupt Control Register

8-bit access register

TM10BICL requests and verifies a timer 10 capture B interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

TM10BICH: x'00FC75'

Timer 10 Capture B Interrupt Control Register

8-bit access register

TM10BICH enables a timer 10 capture B interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the IQ4LV[2:0] bits of the IQ4ICH register.

7	6	5	4	3	2	1	0
-	-	-	TM11U IR	-	-	-	TM11U ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 11 Underflow Interrupt Request Flag

0: No interrupt requested1: Interrupt requested

0 Timer 11 Underflow Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM11U
							IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 11 Underflow Interrupt 0: Disable Enable Flag 1: Enable

TM11UICL: x'00FC76'

Timer 11 Underflow Interrupt Control Register

8-bit access register

TM11UICL requests and verifies a timer 11 interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

TM11UICH: x'00FC77'

Timer 11 Underflow Interrupt Control Register

8-bit access register

TM11UICH enables a timer 11 interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the IQ4LV[2:0] bits of the IQ4ICH register.

7	6	5	4	3	2	1	0
-	-	-	KI IR	-	-	-	KI ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

External Key Interrupt 0: No interrupt requested **Request Flag** 1: Interrupt requested

External Key Interrupt 0 0: No interrupt detected **Detect Flag** 1: Interrupt detected

KIICL:
x'00FC78'
External Key Interrupt

Control Register

8-bit access register

KIICL requests and verifies an external key interrupt interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

7	6	5	4	3	2	1	0
-	KI LV2	KI LV1	KI LV0	-	-	-	KI IE
R	R/W	R/W	R/W	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0/1	0/1	0/1	0	0	0	0/1

6:4 **External Key Interrupt** Set the level from 0 to 6 **Level Setup**

0 **External Key Interrupt** 0: Disable **Enable Flag** 1: Enable

KIICH: x'00FC79'

External Key Interrupt Control Register

8-bit access register

KIICH sets an external key interrupt level and enables an interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

7	6	5	4	3	2	1	0
-	-	-	TM5U IR	-	-	-	TM5U ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 5 Underflow Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 5 Underflow Interrupt Detect Flag 0: No interrupt detected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM5U IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

Timer 5 Underflow Interrupt 0: DisableEnable Flag 1: Enable

TM5UICL: x'00FC7A'

Timer 5 Underflow Interrupt Control Register

8-bit access register

TM5UICL requests and verifies a timer 5 interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

TM5UICH: x'00FC7B'

Timer 5 Underflow Interrupt Control Register

8-bit access register

TM5UICH enables a timer 5 interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the KILV[2:0] bits of the KIICH register.

TM11AICL:

Timer 11 Capture A

x'00FC7C'

Interrupt Control Register

TM11AICL requests and verifies

This register allows only byte-

accesses. Use the MOVB instruction to set the data.

a timer 11 capture A interrupt.

8-bit access register

7	6	5	4	3	2	1	0
-	-	-	TM11A IR	-	-	-	TM11A ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 11 Capture A Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 11 Capture A Interrupt Detect Flag 0: Interrupt undetected

1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM11A IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 11 Capture A Interrupt 0: Disable Enable Flag 1: Enable

TM11AICH: x'00FC7D'

Timer 11 Capture A Interrupt Control Register

8-bit access register

TM11AICH enables a timer 11 capture A interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the KILV[2:0] bits of the KIICH register.

7	6	5	4	3	2	1	0
-	-	-	TM11B IR	-	-	-	TM11B ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 11 Capture B Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0: Interrupt undetected1: Interrupt detected

0 Timer 11 Capture B Interrupt Detect Flag

TM11BICL : x'00FC7E'

Timer 11 Capture B Interrupt Control Register

8-bit access register

TM11BICL requests and verifies a timer 11 capture B interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM11B IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 11 Capture B Interrupt 0: Disable Enable Flag 1: Enable

TM11BICH: x'00FC7F'

Timer 11 Capture B Interrupt Control Register

8-bit access register

TM11BICH enables a timer 11 capture B interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the KILV[2:0] bits of the KIICH register.

7	6	5	4	3	2	1	0
-	-	-	AD IR	-	-	-	AD ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 AD Conversion End Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 AD Conversion End Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

7	6	5	4	3	2	1	0
-	AD LV2	AD LV1	AD LV0	-	-	-	AD IE
R	R/W	R/W	R/W	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0/1	0/1	0/1	0	0	0	0/1

6:4 AD Conversion End Interrupt Level Setup

Set the level from 0 to 6

0 AD Conversion End Interrupt Enable Flag 0: Disable 1: Enable

ADICL: x'00FC80'

AD Conversion End Interrupt Control Register

8-bit access register

ADICL requests and verifies an AD conversion end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

ADICH: x'00FC81'

AD Conversion End Interrupt Control Register

8-bit access register

ADICH sets an AD conversion end interrupt level and enables an interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

7	6	5	4	3	2	1	0
-	-	-	TM6U IR	-	-	-	TM6U ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 6 Underflow Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 6 Underflow Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

7	6	5	4	3	2	1	0
1	1	-	-	-	-	-	TM6U IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 6 Underflow Interrupt 0: Disable
Enable Flag 1: Enable

TM6UICL: x'00FC82'

Timer 6 Underflow Interrupt Control Register

8-bit access register

TM6UICL requests and verifies a timer 6 interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

TM6UICH: x'00FC83'

Timer 6 Underflow Interrupt Control Register

8-bit access register

TM6UICH enables a timer 6 interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the ADLV[2:0] bits of the ADICH register.

7	6	5	4	3	2	1	0
-	-	-	TM12U IR	-	-	-	TM12U ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 12 Underflow Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 12 Underflow Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

8-bit access register
TM12UICL requests and veri-

fies a timer 12 interrupt.

Interrupt Control Register

x'00FC84'

TM12UICL:

Timer 12 Underflow

This register allows only byteaccesses. Use the MOVB instruction to set the data.

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM12U IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

O Timer 12 Underflow Interrupt C Enable Flag

0: Disable 1: Enable

TM12UICH: x'00FC85'

Timer 12 Underflow Interrupt Control Register

8-bit access register

TM12UICH enables a timer 12 interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the ADLV[2:0] bits of the ADICH register.

7	6	5	4	3	2	1	0
-	-	-	TM12A IR	-	-	-	TM12A ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 12 Capture A Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 12 Capture A Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

5 4 3 2 0 6 TM12A ΙE R R R R R R R R/W 0 0 0 0 0 0 0 0 0 0 0 0 0 0/1

0 Timer 12 Capture A Interrupt 0: Disable
Enable Flag 1: Enable

TM12AICL: x'00FC86'

Timer 12 Capture A Interrupt Control Register

8-bit access register

TM12AICL requests and verifies a timer 12 capture A interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

TM12AICH: x'00FC87'

Timer 12 Capture A Interrupt Control Register

8-bit access register

TM12AICH enables a timer 12 capture A interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the ADLV[2:0] bits of the ADICH register.

x'00FC88'

Interrupt Control Register

TM7UICL requests and verifies

This register allows only byte-

accesses. Use the MOVB instruction to set the data.

8-bit access register

a timer 7 interrupt.

TM7UICL:

Timer 7 Underflow

7	6	5	4	3	2	1	0
-	-	-	TM7U IR	-	-	-	TM7U ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 7 Underflow Interrupt Request Flag

0 Timer 7 Underflow Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

0: No interrupt requested
1: Interrupt requested

TM7UICH: x'00FC89'

Timer 7 Underflow Interrupt Control Register

8-bit access register

TM7UICH enables a timer 7 interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

	7	6	5	4	3	2	1	0
	-	TM7U LV2	TM7U LV1	TM7U LV0	-	-	-	TM7U IE
I	R	R/W	R/W	R/W	R	R	R	R/W
	0	0	0	0	0	0	0	0
(0	0/1	0/1	0/1	0	0	0	0/1

6:4 Timer 7 Underflow Interrupt Level Setup

Set the level from 0 to 6

0 Timer 7 Underflow Interrupt Enable Flag 0: Disable 1: Enable

7	6	5	4	3	2	1	0
-	-	-	TM12B IR	-	-	-	TM12B ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Timer 12 Capture B Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Timer 12 Capture B Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	TM12B IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Timer 12 Capture B Interrupt 0: Disable Enable Flag 1: Enable

TM12BICL: x'00FC8A'

Timer 12 Capture B Interrupt Control Register

8-bit access register

TM12BICL requests and verifies a timer 12 capture B interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

TM12BICH: x'00FC8B'

Timer 12 Capture B Interrupt Control Register

8-bit access register

TM12BICH enables a timer 12 capture B interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the TM7ULV[2:0] bits of the TM7UICH register.

7	6	5	4	3	2	1	0
-	-	-	SC0T IR	-	ı	ı	SC0T ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Serial 0 Transmission End Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Serial 0 Transmission End Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

SC0TICL: x'00FC90'

Serial 0 Transmission End Interrupt Control Register

8-bit access register

SCOTICL requests and verifies a serial 0 transmission end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

7	6	5	4	3	2	1	0
-		SC0T LV1	SC0T LV0	-	-	-	SC0T IE
R	R/W	R/W	R/W	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0/1	0/1	0/1	0	0	0	0/1

6:4 Serial 0 Transmission End Interrupt Level Setup Set the level from 0 to 6

0 Serial 0 Transmission End Interrupt Enable Flag 0: Disable 1: Enable

SC0TICH: x'00FC91'

Serial 0 Transmission End Interrupt Control Register

8-bit access register

SCOTICH sets a seial 0 transmission end interrupt level and enables an interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

7	6	5	4	3	2	1	0
-	-	-	SC0R IR	-	-	-	SC0R ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Serial 0 Reception End Interrupt Request Flag

0: No interrupt requested1: Interrupt requested

0 Serial 0 Reception End Interrupt Detect Flag

0: Interrupt undetected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	SC0R IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Serial 0 Reception End 0: Disable Interrupt Enable Flag 1: Enable

SCORICL: x'00FC92'

Serial 0 Reception End Interrupt Control Register

8-bit access register

SCORICL requests and verifies a seial 0 reception end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

SCORICH: x'00FC93'

Serial 0 Reception End Interrupt Control Register

8-bit access register

SCORICH enables a serial 0 reception end interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the SC0TLV[2:0] bits of the SC0TICH register.

_		
7		١
	•	į

7	6	5	4	3	2	1	0
-	-	-	SC1T IR	-	-	-	SC1T ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Serial 1 Transmission End Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Serial 1 Transmission End Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	SC1T IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Serial 1 Transmission End Interrupt Enable Flag

0: Disable 1: Enable

SC1TICL: x'00FC94'

Serial 1 Transmission End Interrupt Control Register

8-bit access register

SC1TICL requests and verifies a serial 1 transmission end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

SC1TICH: x'00FC95'

Serial 1 Transmission End Interrupt Control Register

8-bit access register

SC1TICH enables a seial 1 transmission end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the SC0TLV[2:0] bits of the SC0TICH register.

7	6	5	4	3	2	1	0
-	-	-	SC1R IR	-	-	-	SC1R ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Serial 1 Reception End Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Serial 1 Reception End Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

/	6	٥	4	3	2	1	0
-	-	-	-	-	-	-	SC1R IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Serial 1 Reception End 0: Disable Interrupt Enable Flag 1: Enable

SC1RICL: x'00FC96'

Serial 1 Reception End Interrupt Control Register

8-bit access register

SC1RICL requests and verifies a seial1 reception end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

SC1RICH: x'00FC97'

Serial 1 Reception End Interrupt Control Register

8-bit access register

SC1RICH enables a serial 1 reception end interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the SC0TLV[2:0] bits of the SC0TICH register.

7	6	5	4	3	2	1	0
-	-	-	SC2T IR	-	ı	ı	SC2T ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Serial 2 Transmission End Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Serial 2 Transmission End Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

l	7	6	5	4	3	2	1	0
	-	SC2T LV2	SC2T LV1	SC2T LV0	-	-	-	SC2T IE
	R	R/W	R/W	R/W	R	R	R	R/W
I	0	0	0	0	0	0	0	0
ĺ	0	0/1	0/1	0/1	0	0	0	0/1

6:4 Serial 2 Transmission End Interrupt Level Setup Set the level from 0 to 6

0 Serial 2 Transmission End Interrupt Enable Flag 0: Disable1: Enable

SC2TICL: x'00FC98'

Serial 2 Transmission End Interrupt Control Register

8-bit access register

SC2TICL requests and verifies a serial 2 transmission end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

SC2TICH: x'00FC99'

Serial 2 Transmission End Interrupt Control Register

8-bit access register

SC2TICH sets a seial 2 transmission end interrupt level and enables an interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

7	6	5	4	3	2	1	0
1	-	-	SC2R IR	-	-	-	SC2R ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Serial 2 Reception End Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Serial 2 Reception End Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

- - - - - - SC2R IE R R R R R R R R R/W	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	SC2R
R R R R R R R R/W								IE
	R	R	R	R	R	R	R	R/W
	0	0	0	0	0	0	0	0
0 0 0 0 0 0 0 0/1	0	0	0	0	0	0	0	0/1

0 Serial 2 Reception End 0: Disable Interrupt Enable Flag 1: Enable

SC2RICL: x'00FC9A'

Serial 2 Reception End Interrupt Control Register

8-bit access register

SC2RICL requests and verifies a seial 2 reception end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

SC2RICH: x'00FC9B'

Serial 2 Reception End Interrupt Control Register

8-bit access register

SC2RICH enables a serial 2 reception end interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the SC2TLV[2:0] bits of the SC2TICH register.

_		
7		١
	•	į

7	6	5	4	3	2	1	0
-	-	-	SC3T IR	-	-	-	SC3T ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Serial 3 Transmission End Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Serial 3 Transmission End Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

/	6	٥	4	3	2	1	0
-	-	1	1	-	1	-	SC3T IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Serial 3 Transmission End Interrupt Enable Flag 0: Disable 1: Enable

SC3TICL: x'00FC9C'

Serial 3 Transmission End Interrupt Control Register

8-bit access register

SC3TICL requests and verifies a serial 3 transmission end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

SC3TICH: x'00FC9D'

Serial 3 Transmission End Interrupt Control Register

8-bit access register

SC3TICH enables a seial 3 transmission end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the SC2TLV[2:0] bits of the SC2TICH register.

7	6	5	4	3	2	1	0
-	-	-	SC3R IR	-	-	-	SC3R ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Serial 3 Reception End Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Serial 3 Reception End Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

SC3RICL: x'00FC9E'

Serial 3 Reception End Interrupt Control Register

8-bit access register

SC3RICL requests and verifies a seial 3 reception end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

5 4 3 2 0 6 SC3R ΙE R R R R R R R/W R 0 0 0 0 0 0 0 0 0 0 0 0 0 0/1

0 Serial 3 Reception End Interrupt Enable Flag 0: Disable

1: Enable

SC3RICH: x'00FC9F'

Serial 3 Reception End Interrupt Control Register

8-bit access register

SC3RICH enables a serial 3 reception end interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the SC2TLV[2:0] bits of the SC2TICH register.

7	6	5	4	3	2	1	0
-	-	-	SC4T IR	-	ı	ı	SC4T ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Serial 4 Transmission End Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Serial 4 Transmission End Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

7	6	5	4	3	2	1	0
-		SC4T LV1	SC4T LV0	-	-	-	SC4T IE
R	R/W	R/W	R/W	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0/1	0/1	0/1	Λ	Λ	0	0/1

6:4 Serial 4 Transmission End Interrupt Level Setup Set the level from 0 to 6

0 Serial 4 Transmission End Interrupt Enable Flag 0: Disable1: Enable

SC4TICL: x'00FCA0'

Serial 4 Transmission End Interrupt Control Register

8-bit access register

SC4TICL requests and verifies a serial 4 transmission end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

SC4TICH: x'00FCA1'

Serial 4 Transmission End Interrupt Control Register

8-bit access register

SC4TICH sets a seial 4 transmission end interrupt level and enables an interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

7	6	5	4	3	2	1	0
-	-	-	SC4R IR	-	-	-	SC4R ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 Serial 4 Reception End Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 Serial 4 Reception End Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

/	6	5	4	3	2	1	0
-	1	-	-	-	-	-	SC4R
							IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 Serial 4 Reception End 0: Disable Interrupt Enable Flag 1: Enable

SC4RICL: x'00FCA2'

Serial 4 Reception End Interrupt Control Register

8-bit access register

SC4RICL requests and verifies a seial 4 reception end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

SC4RICH: x'00FCA3'

Serial 4 Reception End Interrupt Control Register

8-bit access register

SC4RICH enables a serial 4 reception end interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the SC4TLV[2:0] bits of the SC4TICH register.

7	6	5	4	3	2	1	0
-	-	-	ETC0 IR	-	-	-	ETC0 ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 ETC 0 Transfer End Interrupt Request Flag 0: No interrupt requested

1: Interrupt requested

0 ETC 0 Transfer End Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	ETC0
							IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 ETC 0 Transfer End Interrupt 0: E Enable Flag 1: E

0: Disable

1: Enable

ETCOICL: x'00FCA4'

ETC 0 Transfer End Interrupt Control Register

8-bit access register

ETCOICL requests and verifies a ETC 0 transfer end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

ETC0ICH: x'00FCA5'

ETC 0 Transfer End Interrupt Control Register

8-bit access register

ETC0ICH enables a ETC 0 transfer end interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the SC4TLV[2:0] bits of the SC4TICH register.

7	6	5	4	3	2	1	0
-	-	-	ETC1 IR	-	-	-	ETC1 ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 ETC 1 Transfer End Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 ETC 1 Transfer End Interrupt Detect Flag 0: Interrupt undetected1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	ETC1
							IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 ETC 1 Transfer End Interrupt 0: Disable Enable Flag 1: Enable

ETC1ICL: x'00FCA6'

ETC 1 Transfer End Interrupt Control Register

8-bit access register

ETC1ICL requests and verifies a ETC 1 transfer end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

ETC1ICH: x'00FCA7'

ETC 1 Transfer End Interrupt Control Register

8-bit access register

ETC1ICH enables a ETC 1 transfer end interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the SC4TLV[2:0] bits of the SC4TICH register.

7	6	5	4	3	2	1	0
-	-	-	AT0 IR	-	-	-	AT0 ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

ATC 0 Transfer End Interrupt Request Flag

0: No interrupt requested

1: Interrupt requested

ATC 0 Transfer End Interrupt 0 **Detect Flag**

0: Interrupt undetected

1: Interrupt detected

7	6	5	4	3	2	1	0
-	AT0 LV2	AT0 LV1	AT0 LV0	-	1	-	AT0 IE
R	R/W	R/W	R/W	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0/1	0/1	0/1	0	0	0	0/1

6:4 **ATC 0 Transfer End Interrupt Level Setup**

Set the level from 0 to 6

0 **ATC 0 Transfer End Interrupt Enable Flag**

0: Disable

1: Enable

x'00FCA8'

ATOICL:

ATC 0 Transfer End **Interrupt Control Register**

8-bit access register

ATOICL requests and verifies an ATC 0 transfer end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

ATOICH: x'00FCA9'

ATC 0 Transfer End **Interrupt Control Register**

8-bit access register

AT0ICH sets an ATC 0 transfer end interrupt level and enables an interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

7	6	5	4	3	2	1	0
-	-	-	AT1 IR	-	-	-	AT1 ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 ATC 1 Transfer End Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 ATC 1 Transfer End Interrupt Detect Flag 0: Interrupt undetected

1: Interrupt detected

	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	AT1
								ΙE
Ī	R	R	R	R	R	R	R	R/W
Ī	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0/1

0 ATC 1 Transfer End Interrupt
Enable Flag

0: Disable

1: Enable

AT1ICL: x'00FCAA'

ATC 1 Transfer End Interrupt Control Register

8-bit access register

AT1ICL requests and verifies an ATC 1 transfer end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

AT1ICH: x'00FCAB'

ATC 1 Transfer End Interrupt Control Register

8-bit access register

AT1ICH enables an ATC 1 transfer end interrupt.

This register allows only byte-accesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the ATOLV[2:0] bits of the ATOICH register.

x'00FCAC'

Interrupt Control Register

AT2ICL requests and verifies an

8-bit access register

ATC 2 transfer end interrupt.

ATC 2 Transfer End

AT2ICL:

7	6	5	4	3	2	1	0
-	-	-	AT2 IR	-	-	-	AT2 ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

ATC 2 Transfer End Interrupt Request Flag

0: No interrupt requested

1: Interrupt requested

ATC 2 Transfer End Interrupt 0 **Detect Flag**

0: Interi 1: Interi

rrupt undetected	This register allows only byte-
rrupt detected	accesses. Use the MOVB in-
	struction to set the data.

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	AT2 IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 **ATC 2 Transfer End Interrupt** 0: Disable **Enable Flag** 1: Enable

AT2ICH: x'00FCAD'

ATC 2 Transfer End **Interrupt Control Register**

8-bit access register

AT2ICH enables an ATC 2 transfer end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the AT0LV[2:0] bits of the AT0ICH register.

7	6	5	4	3	2	1	0
-	-	-	AT3 IR	-	-	-	AT3 ID
R	R	R	R/W	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0/1	0	0	0	0/1

4 ATC 3 Transfer End Interrupt Request Flag 0: No interrupt requested1: Interrupt requested

0 ATC 3 Transfer End Interrupt Detect Flag 0: Interrupt undetected

1: Interrupt detected

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	AT3 IE
R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0/1

0 ATC 3 Transfer End Interrupt 0: Disable Enable Flag 1: Enable

AT3ICL: x'00FCAE'

ATC 3 Transfer End Interrupt Control Register

8-bit access register

AT3ICL requests and verifies an ATC 3 transfer end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data.

AT3ICH: x'00FCAF'

ATC 3 Transfer End Interrupt Control Register

8-bit access register

AT3ICH enables an ATC 3 transfer end interrupt.

This register allows only byteaccesses. Use the MOVB instruction to set the data. The interrupt level is the same level set in the ATOLV[2:0] bits of the ATOICH register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	IQ4 TG1	IQ4 TG0	IQ3 TG1	IQ3 TG0	IQ2 TG1	IQ2 TG0	IQ1 TG1	IQ1 TG0	IQ0 TG1	IQ0 TG0
R	R	R	R	R	R	R/W									
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

- 9:8 Set Trigger Conditions for IRQ4 Pin Interrupt
- 7:6 Set Trigger Conditions for IRQ3 Pin Interrupt
- 5:4 Set Trigger Conditions for IRQ2 Pin Interrupt
- 3:2 Set Trigger Conditions for IRQ1 Pin Interrupt
- 1:0 Set Trigger Conditions for IRQ0 Pin Interrupt

TG1	TG0	Trigger Condition
0	0	Low Level
0	1	Both Edges (Positive edge, Negative edge)
1	0	Falling edge (Negative edge)
1	1	Rising edge (Positive edge)

IRQTRG: x'00FCB0'

External Interrupt Condition Setup Register

16-bit access register

IRQTRG sets the trigger conditions for external interrupts.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
KI7 TG1	KI7 TG0	KI6 TG1	KI6 TG0	KI5 TG1	KI5 TG0	KI4 TG1	KI4 TG0	KI3 TG1	KI3 TG0	KI2 TG1	KI2 TG0	KI1 TG1	KI1 TG0	KI0 TG1	KI0 TG0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15:14 Set Trigger Conditions for K17 Pin Interrupt

13:12 Set Trigger Conditions for K16 Pin Interrupt

11:10 Set Trigger Conditions for K15 Pin Interrupt

- 9:8 Set Trigger Conditions for K14 Pin Interrupt
- 7:6 Set Trigger Conditions for K13 Pin Interrupt
- 5:4 Set Trigger Conditions for K12 Pin Interrupt
- 3:2 Set Trigger Conditions for K11 Pin Interrupt
- 1:0 Set Trigger Conditions for K10 Pin Interrupt

TG1	TG0	Trigger Condition
0	0	Low Level
0	1	Both Edges (Positive edge, Negative edge)
1	0	Falling edge (Negative edge)
1	1	Rising edge (Positive edge)

KEYTRG: x'00FCB2'

External Key Interrupt Condition Setup Register

16-bit access register

KEYTRG sets the trigger conditions for external key interrupts.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	KI7 EN	KI6 EN	KI5 EN	KI4 EN	KI3 EN	KI2 EN	KI1 EN	KI0 EN
R	R	R	R	R	R	R	R	R/W							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	Set OR Pin for K17 Pin	0: Don't set 1: Set
6	Set OR Pin for K16 Pin	0: Don't set 1: Set
5	Set OR Pin for K15 Pin	0: Don't set 1: Set
4	Set OR Pin for K14 Pin	0: Don't set 1: Set
3	Set OR Pin for K13 Pin	0: Don't set 1: Set
2	Set OR Pin for K12 Pin	0: Don't set 1: Set
1	Set OR Pin for K11 Pin	0: Don't set 1: Set
0	Set OR Pin for K10 Pin	0: Don't set 1: Set

KEYCTR: x'00FCB4'

External Key Interrupt Enable Register

16-bit access register

KEYCTR enables an external key interrupt.

When OR pin is selected, a key interrupt is generated by triggering the condition set in the KEYTRG register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WD CLR	-	-	-	-	WD P2	WD P1	WD P0	-	-	-	-	-	-	-	WD RST
R/W	R	R	R	R	R/W	R/W	R/W	R	R	R	R	R	R	R	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0	0	0	0	0/1	0/1	0/1	0	0	0	0	0	0	0	0/1

15 Expansion Watchdog

Counter Clear

10:8 Watchdog Interrupt

Generation Time

000: Watchdog time set in CPUM

register \times 1

0: Don't clear

1: Clear

001: Watchdog time set in CPUM

register \times 4

010: Watchdog time set in CPUM

register \times 16

011: Watchdog time set in CPUM

register × 64

100: Watchdog time set in CPUM

 $register \times 256$

101: Watchdog time set in CPUM

register × 1024

110: Watchdog time set in CPUM

register \times 4096

0 Watchdog Timer Reset

0: Don't reset

1: Reset

WDREG: x'00FCB6'

Watchdog Interrupt Extension Control Register

16-bit access register

WDREG extends the watchdog interrupt cycles set in the CPUM register.

The extended watchdog counter count during those setting time.

7		6	5	4	3	2	1	0
SY	S	SYS						
C7	,	C6	C5	C4	C3	C2	C1	C0
R/V	V	R/W						
0		1	1	1	1	1	0	1
0/1		0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Programming Disable of Registers Related to System Operations

7D: Enable all register programming Others: Disable programming for the

following registers

CPU Control CPUM, EFCR Address Break ADB0, ADB1

ADBCTL

Memory Control EXWMD

MEMMD1 MEMMD2 DRAMMD1 DRAMMD2

Ports P0MD, P1LMD, P1HMD

P1MD, P3LMD, P3HMD

P4LMD, P4HMD

P5LMD, P5HMD, P6MD

P7LMD, P7HMD

P8LMD, P8MMD, P8HMD

P9LMD, P9HMD PAMD, PBMD

SYSCTL: x'00FCD0'

System Control Register

8-bit access register

SYSCTL disables programming of registers related to system control.

Programming registers related to system control is disabled by writing the value except x'7D' to the SYSCTL register. This prevents programming these registers when the CPU runs erroneous operations.

S

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADB0	ADB0	ADB0	ADB0	ADB0	ADB0	ADB0	ADB0	ADB0	ADB0	ADB0	ADB0	ADB0	ADB0	ADB0	ADB0
A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_	-	-	-	-	-	-	-	ADB0							
								A23	A22	A21	A20	A19	A18	A17	A16
R	R	R	R	R	R	R	R	R/W							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

14 13 11 10 8 15 12 9 7 6 5 4 3 2 0 1 ADB1 A15 A14 A13 A12 A11 A10 Α9 A8 A7 A5 A4 А3 A2 A1 A0 A6 R/W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_	-	_	-	-	-	-	-	ADB1							
								A23	A22	A21	A20	A19	A18	A17	A16
R	R	R	R	R	R	R	R	R/W							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

ADB0: x'00FCD2'

Address Break 0 Address Pointer

16/24-bit access register

ADB0 sets the address to stop address break 0 operation.

This register writes only 24-bit data or 16-bit data. Use the MOV instruction or the MOVX instruction to set the data.

ADB1: x'00FCD6'

Address Break 1 Address Pointer

16/24-bit access register

ADB1 sets the address to stop address break 1 operation.

7	6	5	4	3	2	1	0
-	-	-	-	ADB1 ON	ADB0 ON	ADB1 CK	ADB0 CK
R	R	R	R	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0/1	0/1	0/1	0/1

Address Break 1 On/Off	0: Off
	1: On
Address Break 0 On/Off	0: Off
	1: On
Address Basel 4 Commettee	O. Not somewated
Address Break 1 Generation	0: Not generated
	1: Generated
Address break 0 Generation	0: Not generated
	Address Break 1 On/Off Address Break 0 On/Off Address Break 1 Generation Address break 0 Generation

1: Generated

ADBCTL: x'00FCDA'

Address Break Control Register

8-bit access register

ADBCTL selects the address break function and verifies the address break is generated.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT0	AT0	AT0	AT0	AT0	AT0	AT0	AT0	-	-	-	-	AT0	AT0	AT0	AT0
EN	MD1	MD0	BW	DB8	DI	SB8	SI					IQ3	IQ2	IQ1	IQ0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0/1	0/1	0/1	0/1

15 Transfer Busy/Start Flag 0: Disable

1: Transfer start/transfer in progress

14:13 Transfer Mode 00: One byte/word transfer

01: Burst transfer10: Two bytes transfer

11: Reserved

12 Transfer Units 0: Word

1: Byte

11 Destination Bus Width 0: 16-bit

1: 8-bit

10 Destination Pointer 0: Fixed

Increment 1: Increment

9 Source Bus Width 0: 16-bit

1: 8-bit

8 Source Pointer Increment 0: Fixed

1: Increment

3:0 ATC Activation Factor Setup 0000: Software Initialization

0001: /DMAREQ0 pin input 0010: External interrupt 0 0011: External interrupt 1 0100: External interrupt 4

0101: Timer 3 underflow interrupt

0110: Timer 7 underflow interrupt
0111: Timer 9 underflow interrupt
1000: Timer 10 capture A interrupt
1001: Timer 11 capture B interrupt
1010: Serial 0 transmission end interrupt
1011: Serial 0 reception end interrupt
1100: Serial 3 transmission end interrupt
1101: Serial 3 reception end interrupt

1110: A/D conversion end interrupt

1111: Key interrupt

AT0CTR: x'00FD00'

ATC 0 Control Register

16-bit access register

ATOCTR sets the ATC0 operating control conditions.

Selecting the two bytes transfer mode is valid only in byte access. The LSB of the address in the first byte forcibly becomes 0, and the LSB of the address in the second byte forcibly becomes 1.

Selecting word as the unit is not allowed when 8-bit bus width is allowed in the external memory space.

Selecting 8-bit destination bus width or 8-bit source bus width is allowed only when 8-bit bus width is selected in the external memory space.

When destination pointer increment or source pointer increment is selected, the pointer increments by 1 in byte access and by 2 in word access.

The ATOIQ[3:0] bits are cleared to 0 by the ATC0 transfer end interrupt.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	AT0 CNT11	AT0 CNT10									-	AT0 CNT0
R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

AT0CNT: x'00FD02'

ATC 0 Transfer Word Count Register

16-bit access register

ATOCNT sets the bytes to be transferred subtracted by 1. Decrement by 1 every time 1-byte data is transferred and reach x'0FFF' when the transfer is completed.

This register writes only 16-bit data. Use the MOV instruction to set the data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT0	AT0	AT0	AT0	AT0	AT0	AT0		AT0	AT0	AT0			AT0	AT0	AT0
SRC15	SRC14	SRC13	SRC12	SRC11	SRC10	SRC9	SRC8	SRC7	SRC6	SRC5	SRC4	SRC3	SRC2	SRC1	SRC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	AT0 SRC23	AT0 SRC22	AT0 SRC21			AT0 SRC18		AT0 SRC16
R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

ATOSRC: x'00FD04'

ATC 0 Source Address Pointer

16/24-bit access register

ATOSRC sets the transfer source address. When the source pointer increment bit is set to be fixed, the transfer source address do not change. When the source pointer increment bit is set to increment, increment by 1 in the byte transfer and by 2 in the word transfer.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT0	AT0	AT0	AT0	AT0	AT0	AT0	AT0	AT0	AT0	AT0	AT0	AT0	AT0	AT0	AT0
DST15	DST14	DST13	DST12	DST11	DST10	DST9	DST8	DST7	DST6	DST5	DST4	DST3	DST2	DST1	DST0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	AT0							
								DST23	DST22	DST21	DST20	DST19	DST18	DST17	DST16
R	R	R	R	R	R	R	R	R/W							
0	0	0	0	0	0	0	0	undefined							
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

AT0DST: x'00FD08'

ATC 0 Destination Address Pointer

16/24-bit access register

ATODST sets the transfer destination address. When the destination pointer increment bit is set to be fixed, the transfer source address do not change. When the source pointer increment bit is set to increment, increment by 1 in the byte transfer and by 2 in the word transfer.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT1	AT1	AT1	AT1	AT1	AT1	AT1	AT1	-	-	-	-	AT1	AT1	AT1	AT1
EN	MD1	MD0	BW	DB8	DI	SB8	SI					IQ3	IQ2	IQ1	IQ0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0/1	0/1	0/1	0/1

15	Transfer Busy/Start Flag	0: Disable
----	--------------------------	------------

1: Transfer start/transfer in progress

14:13 Transfer Mode 00: One byte/word transfer

01: Burst transfer10: Two bytes transfer

11: Reserved

12 Transfer Units 0: Word

1: Byte

11 Destination Bus Width 0: 16-bit

1: 8-bit

10 Destination Pointer 0: Fixed

Increment

1: Increment

9 Source Bus Width 0: 16-bit

1: 8-bit

8 Source Pointer Increment 0: Fixed

1: Increment

3:0 ATC Activation Factor Setup

0000: Software Initialization 0001: /DMAREQ1 pin input 0010: External interrupt 2 0011: External interrupt 3

0100: Timer 0 underflow interrupt
0101: Timer 4 underflow interrupt
0110: Timer 8 underflow interrupt
0111: Timer 9 capture A interrupt
1000: Timer 10 capture B interrupt
1001: Timer 12 capture B interrupt
1010: Serial 0 transmission end interrupt
1011: Serial 0 reception end interrupt
1100: Serial 1 transmission end interrupt

1101: Serial 1 reception end interrupt

1110: Serial 4 transmission end interrupt

1111: Serial 4 reception end interrupt

AT1CTR: x'00FD10'

ATC 1 Control Register

16-bit access register

AT1CTR sets the ATC1 operating control conditions.

Selecting the two bytestransfer mode is valid only in byte access. The LSB of the address in the first byte forcibly becomes 0, and the LSB of the address in the second byte forcibly becomes 1.

Selecting word as the unit is not allowed when 8-bit bus width is allowed in the external memory space.

Selecting 8-bit destination bus width or 8-bit source bus width is allowed only when 8-bit bus width is selected in the external memory space.

When destination pointer increment or source pointer increment is selected, the pointer increments by 1 in byte access and by 2 in word access.

The AT1IQ[3:0] bits are cleared to 0 by the ATC1 transfer end interrupt.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	AT1 CNT11				AT1 CNT7					AT1 CNT2		AT1 CNT0
R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

AT1CNT: x'00FD12'

ATC 1 Transfer Word Count Register

16-bit access register

AT1CNT sets the bytes to be transferred subtracted by 1. Decrement by 1 every time 1-byte data is transferred and reach x'0FFF' when the transfer is completed.

This register writes only 16-bit data. Use the MOV instruction to set the data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT1 SRC15	AT1	AT1	AT1	AT1	AT1	AT1		AT1				AT1	AT1	AT1	AT1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	AT1 SRC23	AT1 SRC22	AT1 SRC21		AT1 SRC19	AT1 SRC18	AT1 SRC17	AT1 SRC16
R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

AT1SRC: x'00FD14'

ATC 1 Source Address Pointer

16/24-bit access register

AT1SRC sets the transfer source address. When the source pointer increment bit is set to be fixed, the transfer source address do not change. When the source pointer increment bit is set to increment, increment by 1 in the byte transfer and by 2 in the word transfer.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT1 DST15	AT1 DST14	AT1 DST13	AT1 DST12				AT1 DST8			AT1 DST5			AT1 DST2	AT1 DST1	AT1 DST0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	AT1	AT1		AT1			AT1	AT1
								DST23	DST22	DST21	DST20	DST19	DST18	DST17	DST16
R	R	R	R	R	R	R	R	R/W							
0	0	0	0	0	0	0	0	undefined							
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

AT1DST: x'00FD18'

ATC 1 Destination Address Pointer

16/24-bit access register

AT1DST sets the transfer destination address. When the destination pointer increment bit is set to be fixed, the transfer source address do not change. When the source pointer increment bit is set to increment, increment by 1 in the byte transfer and by 2 in the word transfer.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	_	-	-	-	AT2	AT2	AT2	AT2
EN	MD1	MD0	BW	DB8	DI	SB8	SI					IQ3	IQ2	IQ1	IQ0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0/1	0/1	0/1	0/1

15 Transfer Busy/Start Flag 0: Disable

1: Transfer start/transfer in progress

14:13 Transfer Mode 00: One byte/word transfer

01: Burst transfer10: Two bytes transfer

11: Reserved

12 Transfer Units 0: Word

1: Byte

11 Destination Bus Width 0: 16-bit

1: 8-bit

10 Destination Pointer 0: Fixed

Increment

1: Increment

9 Source Bus Width 0: 16-bit

1: 8-bit

8 Source Pointer Increment 0: Fixed

1: Increment

3:0 ATC Activation Factor Setup

0000: Software Initialization 0001: /DMAREQ0 pin input 0010: External interrupt 0 0011: External interrupt 1

0100: Timer 1 underflow interrupt
0101: Timer 5 underflow interrupt
0110: Timer 8 capture A interrupt
0111: Timer 9 capture B interrupt
1000: Timer 11 underflow interrupt
1001: Timer 12 capture A interrupt
1010: Serial 1 transmission end interrupt
1011: Serial 1 reception end interrupt
1100: Serial 2 transmission end interrupt

1101: Serial 2 reception end interrupt1110: Serial 4 transmission end interrupt

1111: Serial 4 reception end interrupt

AT2CTR: x'00FD20'

ATC 2 Control Register

16-bit access register

AT2CTR sets the ATC2 operating control conditions.

Selecting the two bytes transfer mode is valid only in byte access. The LSB of the address in the first byte forcibly becomes 0, and the LSB of the address in the second byte forcibly becomes 1.

Selecting word as the unit is not allowed when 8-bit bus width is allowed in the external memory space.

Selecting 8-bit destination bus width or 8-bit source bus width is allowed only when 8-bit bus width is selected in the external memory space.

When destination pointer increment or source pointer increment is selected, the pointer increments by 1 in byte access and by 2 in word access.

The AT2IQ[3:0] bits are cleared to 0 by the ATC2 transfer end interrupt.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	AT2 CNT11	AT2 CNT10						AT2 CNT4				AT2 CNT0
R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

AT2CNT: x'00FD22'

ATC 2 Transfer Word Count Register

16-bit access register

AT2CNT sets the bytes to be transferred subtracted by 1. Decrement by 1 every time 1-byte data is transferred and reach x'0FFF' when the transfer is completed.

This register writes only 16-bit data. Use the MOV instruction to set the data.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2
S	RC15	SRC14	SRC13	SRC12	SRC11	SRC10	SRC9	SRC8	SRC7	SRC6	SRC5	SRC4	SRC3	SRC2	SRC1	SRC0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
uı	ndefined	undefined														
	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	1	-	-	AT2 SRC23						AT2 SRC17	
R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

AT2SRC: x'00FD24'

ATC 2 Source Address Pointer

16/24-bit access register

AT2SRC sets the transfer source address. When the source pointer increment bit is set to be fixed, the transfer source address do not change. When the source pointer increment bit is set to increment, increment by 1 in the byte transfer and by 2 in the word transfer.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2	AT2
DST15	DST14	DST13	DST12	DST11	DST10	DST9	DST8	DST7	DST6	DST5	DST4	DST3	DST2	DST1	DST0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	AT2 DST23					AT2 DST18		AT2 DST16
R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

AT2DST: x'00FD28'

ATC 2 Destination Address Pointer

16/24-bit access register

AT2DST sets the transfer destination address. When the destination pointer increment bit is set to be fixed, the transfer source address do not change. When the source pointer increment bit is set to increment, increment by 1 in the byte transfer and by 2 in the word transfer.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT3	AT3	AT3	AT3	AT3	AT3	AT3	AT3	-	-	-	-	AT3	AT3	AT3	AT3
EN	MD1	MD0	BW	DB8	DI	SB8	SI					IQ3	IQ2	IQ1	IQ0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0/1	0/1	0/1	0/1

15	Transfer Busy/Start Flag	0: Disable
----	--------------------------	------------

1: Transfer start/transfer in progress

14:13 Transfer Mode 00: One byte/word transfer

01: Burst transfer10: Two bytes transfer

11: Reserved

12 Transfer Units 0: Word

1: Byte

11 Destination Bus Width 0: 16-bit

1: 8-bit

10 Destination Pointer 0: Fixed

Increment

1: Increment

9 Source Bus Width 0: 16-bit

1: 8-bit

8 Source Pointer Increment 0: Fixed

1: Increment

3:0 ATC Activation Factor Setup

0000: Software Initialization 0001: /DMAREQ1 pin input 0010: External interrupt 2 0011: External interrupt 3

0100: Timer 2 underflow interrupt
0101: Timer 6 underflow interrupt
0110: Timer 8 capture B interrupt
0111: Timer 10 underflow interrupt
1000: Timer 11 capture A interrupt
1001: Timer 12 capture B interrupt
1010: Serial 2 transmission end interrupt
1011: Serial 2 reception end interrupt

1100: Serial 3 transmission end interrupt1101: Serial 3 reception end interrupt1110: A/D conversion end interrupt

1111: Key interrupt

AT3CTR: x'00FD30'

ATC 3 Control Register

16-bit access register

AT3CTR sets the ATC3 operating control conditions.

Selecting the two bytes transfer mode is valid only in byte access. The LSB of the address in the first byte forcibly becomes 0, and the LSB of the address in the second byte forcibly becomes 1.

Selecting word as the unit is not allowed when 8-bit bus width is allowed in the external memory space.

Selecting 8-bit destination bus width or 8-bit source bus width is allowed only when 8-bit bus width is selected in the external memory space.

When destination pointer increment or source pointer increment is selected, the pointer increments by 1 in byte access and by 2 in word access.

The AT3IQ[3:0] bits are cleared to 0 by the ATC3 transfer end interrupt.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	AT3 CNT11			_						AT3 CNT2		AT3 CNT0
R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

AT3CNT: x'00FD32'

ATC 3 Transfer Word Count Register

16-bit access register

AT3CNT sets the bytes to be transferred subtracted by 1. Decrement by 1 every time 1-byte data is transferred and reach x'0FFF' when the transfer is completed.

This register writes only 16-bit data. Use the MOV instruction to set the data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT3	AT3	AT3	AT3	AT3	AT3	AT3	AT3	AT3	AT3	AT3	AT3	AT3	AT3	AT3	АТ3
SRC15	SRC14	SRC13	SRC12	SRC11	SRC10	SRC9	SRC8	SRC7	SRC6	SRC5	SRC4	SRC3	SRC2	SRC1	SRC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	AT3 SRC23	AT3 SRC22						AT3 SRC16
R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

AT3SRC: x'00FD34'

ATC 3 Source Address Pointer

16/24-bit access register

AT3SRC sets the transfer source address. When the source pointer increment bit is set to be fixed, the transfer source address do not change. When the source pointer increment bit is set to increment, increment by 1 in the byte transfer and by 2 in the word transfer.

1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
A'	Т3	AT3	АТ3	АТ3	AT3	AT3										
DS'	T15	DST14	DST13	DST12	DST11	DST10	DST9	DST8	DST7	DST6	DST5	DST4	DST3	DST2	DST1	DST0
R/	W	R/W														
unde	fined	undefined														
0,	/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	AT3	AT3 DST22		AT3		AT3	AT3	AT3
R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

AT3DST: x'00FD38'

ATC 3 Destination Address Pointer

16/24-bit access register

AT3DST sets the transfer destination address. When the destination pointer increment bit is set to be fixed, the transfer source address do not change. When the source pointer increment bit is set to increment, increment by 1 in the byte transfer and by 2 in the word transfer.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ET0	-	ET0	ET0	ET0	ET0	ET0	ET0	-	-	-	-	-	-	ET0	ET0
FLG		MD0	BW	DB8	DI	SB8	SI							DIR	EN
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0	0	0/1	0/1

15 Transfer Busy/Start Flag 0: Disable

1: Transfer start/transfer in progress

13 Transfer Mode 0: One byte/word transfer

1: Burst transfer

12 Transfer Units 0: Word

1: Byte

11 Destination Bus Width 0: 16-bit

1: 8-bit

10 Destination Pointer 0: Fixed

Increment 1: Increment

9 Source Bus Width 0: 16-bit

1: 8-bit

8 Source Pointer Increment 0: Fixed

1: Increment

 $\textbf{1} \qquad \textbf{Transfer Direction} \qquad \qquad \textbf{0: External device} \rightarrow \textbf{external memory}$

1: External memory \rightarrow external device

0 ETC Transfer Enable 0: Disable

1: Enable

ETOCTR: x'00FD40'

ETC 0 Control Register

16-bit access register

ETOCTR sets the ETC0 operating control conditions. Transfers the data automatically between the external device with ACK input function and the external memory.

Selecting word as the unit is not allowed when 8-bit bus width is allowed in the external memory space.

Selecting 8-bit destination bus width or 8-bit source bus width is allowed only when 8-bit bus width is selected in the external memory space.

When destination pointer increment or source pointer increment is selected, the pointer increments by 1 in byte access and by 2 in word access.

The ET0EN flag is cleared to 0 by the ETC0 transfer end interrupt.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	ET0 CNT11	ET0 CNT10	ET 0 CNT9		ET0 CNT7	ET0 CNT6	ET0 CNT5	ET0 CNT4	ET0 CNT3	ET0 CNT2	ET0 CNT1	ET0 CNT0
R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

ETOCNT: x'00FD42'

ETC 0 Transfer Word Count Register

16-bit access register

ETOCNT sets the bytes to be transferred subtracted by 1. Decrement by 1 every time 1-byte/word data is transferred and reach x'0FFF' when the transfer is completed.

This register writes only 16-bit data. Use the MOV instruction to set the data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0
SRC15	SRC14	SRC13	SRC12	SRC11	SRC10	SRC9	SRC8	SRC7	SRC6	SRC5	SRC4	SRC3	SRC2	SRC1	SRC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	ET0 SRC23	ET0 SRC22	ET0 SRC21	ET0 SRC20	ET0 SRC19	ET0 SRC18	ET0 SRC17	ET0 SRC16
R	R	R	R	R	R	R	R	R/W							
0	0	0	0	0	0	0	0	undefined							
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

ETOSRC: x'00FD44'

ETC 0 Source Address Pointer

16/24-bit access register

ETOSRC sets the transfer source address. When the source pointer increment bit is set to be fixed, the transfer source address do not change. When the source pointer increment bit is set to increment, increment by 1 in the byte transfer and by 2 in the word transfer.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0	ET0
DST15	DST14	DST13	DST12	DST11	DST10	DST9	DST8	DST7	DST6	DST5	DST4	DST3	DST2	DST1	DST0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	ET0 DST23	ET0 DST22	ET0 DST21	ET0 DST20	ET0 DST19	ET0 DST18	ET0 DST17	ET0 DST16
R	R	R	R	R	R	R	R	R/W							
0	0	0	0	0	0	0	0	undefined							
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

ETODST: x'00FD48'

ETC 0 Destination Address Pointer

16/24-bit access register

ETODST sets the transfer destination address. When the destination pointer increment bit is set to be fixed, the transfer source address do not change. When the source pointer increment bit is set to increment, increment by 1 in the byte transfer and by 2 in the word transfer.

x'00FD50'

ET1CTR:

Register

ETC 1 Control

16-bit access register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ET1	-	ET1	ET1	ET1	ET1	ET1	ET1	-	_	-	_	_	_	ET1	ET1
FLG		MD0	BW	DB8	DI	SB8	SI							DIR	EN
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0	0	0/1	0/1

15	Transfer Busy/Start Flag Transfer Mode	0: Disable1: Transfer start/transfer in progress0: One byte/word transfer1: Burst transfer	ET1CTR sets the ETC1 operating control conditions. Transfers the data automatically between the external device with ACK input function and the external memory.
12	Transfer Units	0: Word 1: Byte	Selecting word as the unit is not allowed when 8-bit bus width is allowed in the external memory
11	Destination Bus Width	0: 16-bit 1: 8-bit	space. Selecting 8-bit destination bus
10	Destination Pointer Increment	0: Fixed 1: Increment	width or 8-bit source bus width is allowed only when 8-bit bus width is selected in the external memory space.
9	Source Bus Width	0: 16-bit 1: 8-bit	When destination pointer increment or source pointer incre-
8	Source Pointer Increment	0: Fixed 1: Increment	ment is selected, the pointer increments by 1 in byte access and by 2 in word access.
1	Transfer Direction	 0: External device → external memory 1: External memory → external device 	
0	ETC Transfer Enable	0: Disable 1: Enable	The ET1EN flag is cleared to 0 by the ETC1 transfer end interrupt.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	ET1 CNT11	ET1 CNT10	ET1 CNT9	ET1 CNT8	ET1 CNT7	ET1 CNT6	ET1 CNT5	ET1 CNT4	ET1 CNT3	ET1 CNT2	ET1 CNT1	ET1 CNT0
R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

ET1CNT: x'00FD52'

ETC 1 Transfer Word Count Register

16-bit access register

ET1CNT sets the bytes to be transferred subtracted by 1. Decrement by 1 every time 1-byte/word data is transferred and reach x'0FFF' when the transfer is completed.

This register writes only 16-bit data. Use the MOV instruction to set the data.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
E	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1
SR	C15	SRC14	SRC13	SRC12	SRC11	SRC10	SRC9	SRC8	SRC7	SRC6	SRC5	SRC4	SRC3	SRC2	SRC1	SRC0
R	/W	R/W														
und	lefined	undefined														
()/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	ET1 SRC23	ET1 SRC22	ET1 SRC21	ET1 SRC20	ET1 SRC19	ET1 SRC18	ET1 SRC17	ET1 SRC16
R	R	R	R	R	R	R	R	R/W							
0	0	0	0	0	0	0	0	undefined							
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

ET1SRC: x'00FD54'

ETC 1 Source Address Pointer

16/24-bit access register

ET1SRC sets the transfer source address. When the source pointer increment bit is set to be fixed, the transfer source address do not change. When the source pointer increment bit is set to increment, increment by 1 in the byte transfer and by 2 in the word transfer.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1	ET1
DST15	DST14	DST13	DST12	DST11	DST10	DST9	DST8	DST7	DST6	DST5	DST4	DST3	DST2	DST1	DST0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	ET1 DST23	ET1 DST22	ET1 DST21	ET1 DST20	ET1 DST19	ET1 DST18	ET1 DST17	ET1
R	R	R	R	R	R	R	R	R/W	R/W						
0	0	0	0	0	0	0	0	undefined	undefined						
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

ET1DST: x'00FD58'

ETC 1 Destination Address Pointer

16/24-bit access register

ET1DST sets the transfer destination address. When the destination pointer increment bit is set to be fixed, the transfer source address do not change. When the source pointer increment bit is set to increment, increment by 1 in the byte transfer and by 2 in the word transfer.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SC0	SC0	SC0	reserv	reserv	-	SC0	reserv	SC0	SC0	SC0	SC0	SC0	_	SC0	SC0
TEN	REN	BRE	ed	ed		OD	ed	LN	PTY2	PTY1	PTY0	SB		S1	S0
R/W	R/W	R/W	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0/1	0/1

SC0CTR: x'00FD80'

Serial 0 Control Register

16-bit access register

SC0CTR sets serial 0 operating

conditions.

15 Transmit Enable 0: Disable

1: Enable

14 Receive Enable

0: Disable1: Enable

13 Break Transmission

0: Don't break 1: Break

12 Reserved

Set to 0

11 Reserved

Set to 0

9 Bit Order Selection

0: LSB first

1: MSB first (select only when the character length is 8-bit.)

Set to 0

8 Reserved

0: 7-bit

7 Character Length

1: 8-bit

000: None

6:4 Parity Bit Selection

100: 0 (output low) 101: 1 (output high) 110: Even (1s are even) 111: Odd (1s are odd)

Others: Reserved

0: More than BOSC cycles

3 SBO0 Output Hold Time

1: More than timer 1 underflow cycles: When SBT0 is selected.

Timer 2 underflow cycle: When timer 2 underflow (1/2) is selected.

1:0 Serial 0 Clock Source

Selection

00: SBT0 pin

01: Timer 1 underflow (1/8)

10: Timer 2 underflow (1/2)

11: Timer 2 underflow (1/8)

The SBO0 output hold time is extended only when SBT0 pin or Timer 2 underflow (1/2) is selected as serial 0 clock source.

7	6	5	4	3	2	1	0
SC0	SC0	SC0	SC0	SC0	SC0	SC0	SC0
TRB7	TRB6	TRB5	TRB4	TRB3	TRB2	TRB1	TRB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Serial Transmit/Receive Data

SC0TRB: x'00FD82'

Serial 0 Transmit/ Receive Buffer

8-bit access register

SCOTRB writes the serial 0 transmit data and reads the serial 0 receive data.

Transmission starts by writing the data into this register. The data is received by reading this register. In 7-bit transfer, the MSB (bit 7) becomes 0. The data is read when an interrupt occurs or the SCORXA flag of the SCOSTR register is 1.

_	_	_		_	_		_
7	6	5	4	3	2	1	0
SC0	SC0	reserv	SC0	reserv	reserv	SC0	SC0
TBY	RBY	ed	RXA	ed	ed	PE	OE
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7 Transmission Busy Flag

0: Ready to transmit

1: Transmission in progress

6 Reception Busy Flag

0: Ready to receive

1: Reception in progress

5 Reserved

4 Received Data

0: No received data

1: Received data

3:2 Reserved

1 Parity Error

0: No error

1: Error

0 Overrun Error

0: No error

1: Error

SCOSTR: x'00FD83'

Serial 0 Status Register

8-bit access register

SCOSTR reads the status for serial interface 0.

A parity error occurs when the parity bit is 1 although it is set to 0, when the parity bit is 0 although it is set to 1, when the parity bit is odd although it is set to even, and when the parity bit is even although it is set to odd. Parity error data is updated whenever the parity bit is received.

An overrun error occurs when the next data is received completely before the CPU reads the received data (SC0TRB). Overrun error data is updated whenever the last data bit (seventh or eighth bit) is received.

Do not use the SCORBY flag to set polling for the received data wait in clock synchronous mode. Use the interrupt service routine, the serial interrupt flag or the SCORXA flag.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SC1	SC1	SC1	reserv	reserv	-	SC1	reserv	SC1	SC1	SC1	SC1	SC1	-	SC1	SC1
TEN	REN	BRE	ed	ed		OD	ed	LN	PTY2	PTY1	PTY0	SB		S1	S0
R/W	R/W	R/W	R	R	R	R/W	R	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0/1	0/1

SC1CTR: x'00FD88'

Serial 1 Control Register

16-bit access register

SC1CTR sets serial 1 operating

conditions.

15 Transmit Enable 0: Disable

1: Enable

14 Receive Enable

0: Disable 1: Enable

13 Break Transmission

0: Don't break

1: Break

12 Reserved

Set to 0

11 Reserved

Set to 0

9 Bit Order Selection

0: LSB first

1: MSB first (select only when the character length is 8-bit.)

Set to 0

8 Reserved

0: 7-bit

7 Character Length

1: 8-bit

6:4 Parity Bit Selection

000: None

100: 0 (output low) 101: 1 (output high) 110: Even (1s are even) 111: Odd (1s are odd) Others: Reserved

3 SBO1 Output Hold Time

0: More than BOSC cycles

1: More than timer 1 underflow cycles: When SBT1 is selected.

Timer 2 underflow cycle: When timer 2 underflow (1/2) is selected.

1:0 Serial 1 Clock Source

Selection

00: SBT1 pin

01: Timer 1 underflow (1/8)10: Timer 2 underflow (1/2)11: Timer 2 underflow (1/8)

The SBO1 output hold time is extended only when SBT1 pin or Timer 2 underflow (1/2) is selected as serial 1 clock source.

7	6	5	4	3	2	1	0
SC1	SC1	SC1	SC1	SC1	SC1	SC1	SC1
TRB7	TRB6	TRB5	TRB4	TRB3	TRB2	TRB1	TRB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Serial Transmit/Receive Data

SC1TRB: x'00FD8A'

Serial 1 Transmit/ Receive Buffer

8-bit access register

SC1TRB writes the serial 1 transmit data and reads the serial 1 receive data.

Transmission starts by writing the data into this register. The data is received by reading this register. In 7-bit transfer, the MSB (bit 7) becomes 0. The data is read when an interrupt occurs or the SC1RXA flag of the SC1STR register is 1.

7	6	5	4	3	2	1	0	
SC1 TBY	SC1 RBY	reserv ed	SC1 RXA	reserv ed	reserv ed	SC1 PE	SC1 OE	
R	R	R	R	R	R	R	R	
0	0	0	0	0	0	0	0	
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	

7 Transmission Busy Flag 0: Ready to transmit

1: Transmission in progress

6 Reception Busy Flag 0: Ready to receive

1: Reception in progress

5 Reserved

4 Received Data 0: No received data

1: Received data

3:2 Reserved

1 Parity Error 0: No error

1: Error

0 Overrun Error 0: No error

1: Error

SC1STR: x'00FD8B'

Serial 1 Status Register

8-bit access register

SC1STR reads the status for serial interface 1.

A parity error occurs when the parity bit is 1 although it is set to 0, when the parity bit is 0 although it is set to 1, when the parity bit is odd although it is set to even, and when the parity bit is even although it is set to odd. Parity error data is updated whenever the parity bit is received.

An overrun error occurs when the next data is received completely before the CPU reads the received data (SC1TRB). Overrun error data is updated whenever the last data bit (seventh or eighth bit) is received.

Do not use the SC1RBY flag to set polling for the received data wait in clock synchronous mode. Use the interrupt service routine, the serial interrupt flag or the SC1RXA flag.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SC2	SC2	SC2	reserv	reserv	-	SC2	reserv	SC2	SC2	SC2	SC2	SC2	_	SC2	SC2
TEN	REN	BRE	ed	ed		OD	ed	LN	PTY2	PTY1	PTY0	SB		S1	S0
R/W	R/W	R/W	R	R	R	R/W	R	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0/1	0/1

SC2CTR: x'00FD90'

Serial 2 Control Register

16-bit access register

SC2CTR sets serial 2 operating

conditions.

15 Transmit Enable 0: Disable

1: Enable

14 Receive Enable 0: Disable

1: Enable

13 Break Transmission 0: Don't break

1: Break

12 Reserved Set to 0

11 Reserved Set to 0

9 Bit Order Selection 0: LSB first

1: MSB first (select only when the character length is 8-bit.)

8 Reserved Set to 0

7 Character Length 0: 7-bit

1: 8-bit

6:4 Parity Bit Selection 000: None

100: 0 (output low) 101: 1 (output high) 110: Even (1s are even) 111: Odd (1s are odd) Others: Reserved

3 SBO2 Output Hold Time 0: More than BOSC cycles

1: More than timer 4 underflow cycles: When SBT2 is selected.

Timer 5 underflow cycle: When timer 5 underflow (1/2) is selected.

1:0 Serial 2 Clock Source

Selection 01: Timer 4 underflow (1/8)

10: Timer 5 underflow (1/2)

11: Timer 5 underflow (1/8)

00: SBT2 pin

The SBO2 output hold time is extended only when SBT2 pin or Timer 5 underflow (1/2) is selected as serial 2 clock source.

7	6	5	4	3	2	1	0
SC2	SC2	SC2	SC2	SC2	SC2	SC2	SC2
TRB7	TRB6	TRB5	TRB4	TRB3	TRB2	TRB1	TRB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Serial Transmit/Receive Data

SC2TRB: x'00FD92'

Serial 2 Transmit/ Receive Buffer

8-bit access register

SC2TRB writes the serial 2 transmit data and reads the serial 2 receive data.

Transmission starts by writing the data into this register. The data is received by reading this register. In 7-bit transfer, the MSB (bit 7) becomes 0. The data is read when an interrupt occurs or the SC2RXA flag of the SC2STR register is 1.

7	6	5	4	3	2	1	0
SC2	SC2	reserv	SC2	reserv	reserv	SC2	SC2
TBY	RBY	ed	RXA	ed	ed	PE	OE
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7 Transmission Busy Flag

0: Ready to transmit

1: Transmission in progress

6 Reception Busy Flag

0: Ready to receive

1: Reception in progress

5 Reserved

Received Data

0: No received data

1: Received data

3:2 Reserved

1 Parity Error

0: No error

1: Error

0 Overrun Error

0: No error

1: Error

SC2STR: x'00FD93'

Serial 2 Status Register

8-bit access register

SC2STR reads the status for serial interface 2.

A parity error occurs when the parity bit is 1 although it is set to 0, when the parity bit is 0 although it is set to 1, when the parity bit is odd although it is set to even, and when the parity bit is even although it is set to odd. Parity error data is updated whenever the parity bit is received.

An overrun error occurs when the next data is received completely before the CPU reads the received data (SC2TRB). Overrun error data is updated whenever the last data bit (seventh or eighth bit) is received.

Do not use the SC2RBY flag to set polling for the received data wait in clock synchronous mode. Use the interrupt service routine, the serial interrupt flag or the SC2RXA flag.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SC3	SC3	SC3	SC3	SC3	_	SC3	SC3	SC3	SC3	SC3	SC3	SC3	-	SC3	SC3
TEN	REN	BRE	IIC	PTL		OD	ICM	LN	PTY2	PTY1	PTY0	SB		S1	S0
R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0/1	0/1

SC3CTR: x'00FD98'

Serial 3 Control Register

16-bit access register

Transmit Enable 15 0: Disable 1: Enable

SC3CTR sets serial 3 operating

conditions.

14 **Receive Enable** 0: Disable 1: Enable

13 **Break Transmission** 0: Don't break 1: Break

12 I²C Start or Stop Sequence 0: Stop sequence output when changing this bit from 1 to 0.

1: Start sequence output when changing this bit from 0 to 1.

11 **Protocol Selection** 0: Asynchronous mode

1: Clock synchronous mode, I2C mode

9 **Bit Order Selection** 0: LSB first

1: MSB first (select only when the character length is 8-bit.)

I²C mode Selection 0: I2C mode off 1: I2C mode on 8

7 0: 7-bit **Character Length** 1: 8-bit

6:4 **Parity Bit Selection** 000: None

> 100: 0 (output low) 101: 1 (output high) 110: Even (1s are even) 111: Odd (1s are odd) Others: Reserved

3 **Stop Bit Selection** (asynchronous mode) **SBO3 Output Hold Time** 0: 1-bit 1: 2-bit

0: More than BOSC cycles (clock synchronous mode) 1: More than timer 4 underflow cycles: When SBT3 is selected.

Timer 5 underflow cycle: When timer 5 underflow (1/2) is selected.

1:0 **Serial 3 Clock Source** Selection

01: Timer 4 underflow (1/8) 11: Timer 5 underflow (1/8)

Clock synchronous mode

Asynchronous mode, I2C mode

00: SBT3 pin

01: Timer 4 underflow (1/8) 10: Timer 5 underflow (1/2) 11: Timer 5 underflow (1/8) The SBO3 output hold time is extended only when SBT3 pin or Timer 5 underflow (1/2) is selected as serial 3 clock source.

	7	6	5	4	3	2	1	0	
I	SC3								
	TRB7	TRB6	TRB5	TRB4	TRB3	TRB2	TRB1	TRB0	
Ī	R/W								
Ī	0	0	0	0	0	0	0	0	
Ī	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	

7:0 Serial Transmit/Receive Data

SC3TRB: x'00FD9A'

Serial 3 Transmit/ Receive Buffer

8-bit access register

SC3TRB writes the serial 3 transmit data and reads the serial 3 receive data.

Transmission starts by writing the data into this register. The data is received by reading this register. In 7-bit transfer, the MSB (bit 7) becomes 0. The data is read when an interrupt occurs or the SC3RXA flag of the SC3STR register is 1.

7	6	5	4	3	2	1	0
SC3	SC3	SC3	SC3	SC3	SC3	SC3	SC3
TBY	RBY	ISP	RXA	IST	FE	PE	OE
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	Transmission Busy Flag	Ready to transmit Transmission in progress
6	Reception Busy Flag	Ready to receive Reception in progress
5	I ² C Stop Sequence Detect	0: Undetected 1: Detected
4	Received Data	0: No received data 1: Received data
3	I ² C Start Sequence Detect	0: Undetected 1: Detected
2	Framing Error	0: No error 1: Error
1	Parity Error	0: No error 1: Error
0	Overrun Error	0: No error 1: Error

SC3STR: x'00FD9B'

Serial 3 Status Register

8-bit access register

SC3STR reads the status for serial interface 3.

This bit is cleared by the read or write operation of the SC3TRB register. Set 1 to the SC3REN bit.

This bit is cleared by the read or write operation of the SC3TRB register. Set 1 to the SC3REN bit.

A framing error occurs when the stop bit is 0. Framing error data is updated whenever the stop bit is received.

A parity error occurs when the parity bit is 1 although it is set to 0, when the parity bit is 0 although it is set to 1, when the parity bit is odd although it is set to even, and when the parity bit is even although it is set to odd. Parity error data is updated whenever the parity bit is received.

An overrun error occurs when the next data is received completely before the CPU reads the received data (SC3TRB). Overrun error data is updated whenever the last data bit (seventh or eighth bit) is received.

Do not use the SC3RBY flag to set polling for the received data wait in clock synchronous mode. Use the interrupt service routine, the serial interrupt flag or the SC3RXA flag.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SC4	SC4	SC4	SC4	SC4	-	SC4	SC4	SC4	SC4	SC4	SC4	SC4	_	SC4	SC4
TEN	REN	BRE	IIC	PTL		OD	ICM	LN	PTY2	PTY1	PTY0	SB		S1	S0
R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0/1	0/1

SC4CTR: x'00FDA0'

Serial 4 Control Register

16-bit access register

15 **Transmit Enable** 0: Disable 1: Enable

SC4CTR sets serial 4 operating

conditions.

14 **Receive Enable** 0: Disable 1: Enable

13 **Break Transmission** 0: Don't break 1: Break

12 I²C Start or Stop Sequence 0: Stop sequence output when changing this bit from 1 to 0.

1: Start sequence output when changing this bit from 0 to 1.

Change when transmission or reception is not in progress.

11 **Protocol Selection** 0: Asynchronous mode

1: Clock synchronous mode, I2C mode

9 **Bit Order Selection** 0: LSB first

1: MSB first (select only when the character length is 8-bit.)

I²C mode Selection 0: I2C mode off 1: I2C mode on 8

7 0: 7-bit **Character Length** 1: 8-bit

6:4 **Parity Bit Selection** 000: None

> 100: 0 (output low) 101: 1 (output high) 110: Even (1s are even) 111: Odd (1s are odd) Others: Reserved

3 **Stop Bit Selection** 0: 1-bit 1: 2-bit

(asynchronous mode)

0: More than BOSC cycles

SBO4 Output Hold Time (clock synchronous mode) 1: More than timer 1 underflow cycles: When SBT4 is selected.

Timer 5 underflow cycle: When timer 5 underflow (1/2) is selected.

1:0 **Serial 4 Clock Source** Selection

Asynchronous mode, I2C mode 01: Timer 1 underflow (1/8) 11: Timer 5 underflow (1/8) Clock synchronous mode

00: SBT4 pin

01: Timer 1 underflow (1/8) 10: Timer 5 underflow (1/2) 11: Timer 5 underflow (1/8) The SBO4 output hold time is extended only when SBT4 pin or Timer 5 underflow (1/2) is selected as serial 4 clock source.

7	6	5	4	3	2	1	0
SC4	SC4	SC4	SC4	SC4	SC4	SC4	SC4
TRB7	TRB6	TRB5	TRB4	TRB3	TRB2	TRB1	TRB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Serial Transmit/Receive Data

SC4TRB: x'00FDA2'

Serial 4 Transmit/ Receive Buffer

8-bit access register

SC4TRB writes the serial 4 transmit data and reads the serial 4 receive data.

Transmission starts by writing the data into this register. The data is received by reading this register. In 7-bit transfer, the MSB (bit 7) becomes 0. The data is read when an interrupt occurs or the SC4RXA flag of the SC4STR register is 1.

7	6	5	4	3	2	1	0
SC4	SC4	SC4	SC4	SC4	SC4	SC4	SC4
TBY	RBY	ISP	RXA	IST	FE	PE	OE
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	Transmission Busy Flag	0: Ready to transmit
		1: Transmission in progress
6	Reception Busy Flag	0: Ready to receive
		1: Reception in progress
5	I ² C Stop Sequence Detect	0: Undetected
		1: Detected
4	Received Data	0: No received data
		1: Received data
3	I ² C Start Sequence Detect	0: Undetected
		1: Detected
2	Framing Error	0: No error
		1: Error
1	Parity Error	0: No error
		1: Error
0	Overrun Error	0: No error
		1: Error

SC4STR: x'00FDA3'

Serial 4 Status Register

8-bit access register

SC4STR reads the status for serial interface 4.

This bit is cleared by the read or write operation of the SC4TRB register. Set 1 to the SC4REN bit.

This bit is cleared by the read or write operation of the SC4TRB register. Set 1 to the SC4REN bit

A framing error occurs when the stop bit is 0. Framing error data is updated whenever the stop bit is received.

A parity error occurs when the parity bit is 1 although it is set to 0, when the parity bit is 0 although it is set to 1, when the parity bit is odd although it is set to even, and when the parity bit is even although it is set to odd. Parity error data is updated whenever the parity bit is received.

An overrun error occurs when the next data is received completely before the CPU reads the received data (SC4TRB). Overrun error data is updated whenever the last data bit (seventh or eighth bit) is received.

Do not use the SC4RBY flag to set polling for the received data wait in clock synchronous mode. Use the interrupt service routine, the serial interrupt flag or the SC4RXA flag.

		9		
_	_	_	_	_

x'00FE00'
Timer 0 Binary
Counter

TM0BC:

8-bit access register

TM0BC operates timer 0 counting.

TM1BC: x'00FE01'

Timer 1 Binary Counter

8-bit access register

TM1BC operates timer 1 counting.

TM2BC: x'00FE02'

Timer 2 Binary Counter

8-bit access register

TM2BC operates timer 2 counting.

TM3BC: x'00FE03'

Timer 3 Binary Counter

8-bit access register

TM3BC operates timer 3 counting.

7	6	5	4	3	2	1	0
TM1 BC7	TM1 BC6	TM1 BC5	TM1 BC4	TM1 BC3	TM1 BC2	TM1 BC1	TM1 BC0
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7

TM0

BC7

R

0

0/1

5

TM0

BC5

R

0

0/1

6

TM0

BC6

R

0

0/1

4

TM0

BC4

R

0

0/1

2

TM0

BC2

R

0

0/1

TM0

BC1

R

0

0/1

3

TM0

BC3

R

0

0/1

0

TM0

BC0

R

0

0/1

7	6	5	4	3	2	1	0
TM2	TM2	TM2	TM2	TM2	TM2	TM2	TM2
BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	6	5	4	3	2	1	0
TM3 BC7	TM3 BC6	TM3 BC5	TM3 BC4	TM3 BC3	TM3 BC2	TM3 BC1	TM3 BC0
BC/	BC6	BC2	BC4	BC3	BC2	BCI	BC0
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Chapter 11 Appendix

7	6	5	4	3	2	1	0
TM4 BC7	TM4 BC6	TM4 BC5		TM4 BC3	TM4 BC2	TM4 BC1	TM4 BC0
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	6	5	4	3	2	1	0
TM5	TM5	TM5	TM5	TM5	TM5	TM5	TM5
BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
R	R	R	R	R	R	R	R
0	0 0		0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	6	5	4	3	2	1	0
TM6 BC7	TM6 BC6		TM6 BC4		TM6 BC2		TM6 BC0
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	6	5	4	3	2	1	0
TM7 BC7	TM7 BC6		TM7 BC4			TM7 BC1	TM7 BC0
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM4BC: x'00FE04'

Timer 4 Binary Counter

8-bit access register

TM4BC operates timer 4 counting.

TM5BC: x'00FE05'

Timer 5 Binary Counter

8-bit access register

TM5BC operates timer 5 counting.

TM6BC:

x'00FE06'

Timer 6 Binary Counter

8-bit access register

TM6BC operates timer 6 counting.

TM7BC: x'00FE07'

Timer 7 Binary Counter

8-bit access register

TM7BC operates timer 7 counting.

er	10	

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8
BC15	BC14	BC13	BC12	BC11	BC10	BC9	BC8	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM8BC:

x'00FE82'

Timer 8 Binary Counter

16-bit access register

TM8BC operates timer 8 counting.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9
BC15	BC14	BC13	BC12	BC11	BC10	BC9	BC8	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM9BC: x'00FE92'

Timer 9 Binary Counter

16-bit access register

TM9BC operates timer 9 counting.

1:	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM	10	TM10														
ВС	15	BC14	BC13	BC12	BC11	BC10	BC9	BC8	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
R		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/	1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM10BC: x'00FEA2'

Timer 10 Binary Counter

16-bit access register

TM10BC operates timer 10 counting.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11
BC15	BC14	BC13	BC12	BC11	BC10	BC9	BC8	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM11BC: x'00FEB2'

Timer 11 Binary Counter

16-bit access register

TM11BC operates timer 11 counting.

Chapter 11 Appendix

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г	M12	TM12														
E	3C15	BC14	BC13	BC12	BC11	BC10	BC9	BC8	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM12BC: x'00FEC2'

Timer 12 Binary Counter

16-bit access register

TM12BC operates timer 12 counting.

7	6	5	4	3	2	1	0
TM13	TM13	TM13	TM13	TM13	TM13	TM13	TM13
BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	6	5	4	3	2	1	0
TM14	TM14				TM14	TM14	TM14
BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0/1	0/1	0/1 0/1		0/1	0/1	0/1	0/1

TM13BC: x'00FE08'

Timer 8 Binary Counter

8-bit access register

TM13BC operates timer 8 counting.

TM14BC: x'00FE09'

Timer 14 Binary Counter

8-bit access register

TM14BC operates timer 14 counting.

Chapter 11 Appendix

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15
BC15	BC14	BC13	BC12	BC11	BC10	BC9	BC8	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM15BC: x'00FED2'

Timer 15 Binary Counter

16-bit access register

TM15BC operates timer 15 counting.

TM15BC is cleared on the rising of TM15IA pin.

7	6	5	4	3	2	1	0
TM0	TM0	TM0	TM0	TM0	TM0	TM0	TM0
BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	6	5	4	3	2	1	0
TM1	TM1	TM1	TM1	TM1	TM1	TM1	TM1
BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM0BR: x'00FE10'

Timer 0 Base Register

8-bit access register

TM0BR sets the timer 0 counting cycle.

TM0BR sets the counting cycle (1 to 256). The timer 0 binary counter counts the cycle of the TM0BR value +1. When BOSC is selected as the clock source, the valid range for TM0BR is 1 to 255. Otherwise, the valid range for TM0BR is 0 to 255.

TM1BR: x'00FE11'

Timer 1 Base Register

8-bit access register

TM1BR sets the timer 1 counting cycle.

TM1BR sets the counting cycle (1 to 256). The timer 1 binary counter counts the cycle of the TM1BR value +1. The valid range for TM1BR is 0 to 255.

T

Chapter 11 Appendix

7		6	5	4	3	2	1	0
TM	2	TM2						
BR	7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
R/V	V	R/W						
0		0	0	0	0	0	0	0
0/1	1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	6	5	4	3	2	1	0
TM3	TM3	TM3	TM3	TM3	TM3	TM3	TM3
BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM2BR: x'00FE12'

Timer 2 Base Register

8-bit access register

TM2BR sets the timer 2 counting cycle.

TM2BR sets the counting cycle (1 to 256). The timer 2 binary counter counts the cycle of the TM2BR value +1. The valid range for TM2BR is 0 to 255.

TM3BR: x'00FE13'

Timer 3 Base Register

8-bit access register

TM3BR sets the timer 3 counting cycle.

TM3BR sets the counting cycle (1 to 256). The timer 3 binary counter counts the cycle of the TM3BR value +1. The valid range for TM3BR is 0 to 255.

7	6	5	4	3	2	1	0
TM4	TM4	TM4	TM4	TM4	TM4	TM4	TM4
BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	6	5	4	3	2	1	0
TM5	TM5	TM5	TM5	TM5	TM5	TM5	TM5
BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM4BR: x'00FE14'

Timer 4 Base Register

8-bit access register

TM4BR sets the timer 4 counting cycle.

TM4BR sets the counting cycle (1 to 256). The timer 4 binary counter counts the cycle of the TM4BR value +1. The valid range for TM4BR is 0 to 255.

TM5BR: x'00FE15'

Timer 5 Base Register

8-bit access register

TM5BR sets the timer 5 counting cycle.

TM5BR sets the counting cycle (1 to 256). The timer 5 binary counter counts the cycle of the TM5BR value +1. When BOSC is selected as the clock source, the valid range for TM5BR is 1 to 255. Otherwise, the valid range for TM5BR is 0 to 255.

T

Chapter 11 Appendix

7	6	5	4	3	2	1	0
TM6	TM6	TM6	TM6	TM6	TM6	TM6	TM6
BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	6	5	4	3	2	1	0
TM7	TM7	TM7	TM7	TM7	TM7	TM7	TM7
BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM6BR: x'00FE16'

Timer 6 Base Register

8-bit access register

TM6BR sets the timer 6 counting cycle.

TM6BR sets the counting cycle (1 to 256). The timer 6 binary counter counts the cycle of the TM6BR value +1. The valid range for TM6BR is 0 to 255.

TM7BR: x'00FE17'

Timer 7 Base Register

8-bit access register

TM7BR sets the timer 7 counting cycle.

TM7BR sets the counting cycle (1 to 256). The timer 7 binary counter counts the cycle of the TM7BR value +1. The valid range for TM7BR is 0 to 255.

_	-	

	7	6	5	4	3	2	1	0
	TM13							
	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
Ī	R/W							
Ī	0	0	0	0	0	0	0	0
Ī	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	6	5	4	3	2	1	0
TM14	TM14	TM14	TM14	TM4	TM14	TM14	TM14
BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM13BR: x'00FE18'

Timer 13 Base Register

8-bit access register

Sets the timer 13 counting cycle.

Sets the counting cycle (1 to 256). The timer 13 binary counter counts the cycle of the TM13BR value +1. The valid range for TM13BR is 0 to 255.

TM14BR: x'00FE19'

Timer 14 Base Register

8-bit access register

Sets the timer 14 counting cycle.

Sets the counting cycle (1 to 256). The timer 14 binary counter counts the cycle of the TM14BR value +1. The valid range for TM14BR is 0 to 255.

Chapter 11 Appendix

7	6	5	4	3	2	1	0
TM0 EN	TM0 LD	-	-	-	-	TM0 S1	TM0 S0
R/W	R/W	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0	0	0	0	0/1	0/1

TMOMD:

x'00FE20'

Timer 0 Mode Register

8-bit access register

TM0MD sets the timer 0 operat-

ing conditions.

7 TM0BC Count 0: Disable

1: Enable

6 Load TM0BR to TM0BC 0: Disable

1: Enable

Reset the 1/2 divisor circuit.

1:0 Clock Source Selection 00: BOSC/2

01: XI/4 10: BOSC

11: TM0IO pin input

When BOSC is selected as the clock source, the valid range for

TM0BR is 1 to 255.

7	6	5	4	3	2	1	0
TM1 EN	TM1 LD	-	-	-	-	TM1 S1	TM1 S0
R/W	R/W	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0	0	0	0	0/1	0/1

TM1BC Count

TM1MD: x'00FE21'

Timer 1 Mode Register

8-bit access register

TM1MD sets the timer 1 operating conditions.

6 Load TM1BR to TM1BC 0: Disable

1: Enable

0: Disable

1: Enable

Reset the 1/2 divisor circuit.

1:0 Clock Source Selection 00: BOSC/2

01: Timer 0 underflow10: Timer 0 cascade11: Timer 4 underflow

7

7	6	5	4	3	2	1	0
TM2 EN	TM2 LD	-	-	-	-	TM2 S1	TM2 S0
R/W	R/W	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0	0	0	0	0/1	0/1

TM2MD:
x'00FE22'
Timer 2 Mode Register

8-bit access register

TM2MD sets the timer 2 operating conditions.

7 TM2BC Count 0: Disable

1: Enable

6 Load TM2BR to TM2BC 0: Disable

1: Enable

Reset the 1/2 divisor circuit.

1:0 Clock Source Selection 00: BOSC/2

01: Timer 0 underflow10: Timer 1 cascade11: Timer 4 underflow

7	6	5	4	3	2	1	0
TM3 EN	TM3 LD	-	-	-	-	TM3 S1	TM3 S0
R/W	R/W	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0	0	0	0	0/1	0/1

TM3BC Count

7

x'00FE23'
Timer 3 Mode Register

TM3MD:

Tilliel 3 Woue Negistel

8-bit access register

TM3MD sets the timer 3 operating conditions.

6 Load TM3BR to TM3BC 0: Disable

1: Enable

0: Disable

1: Enable

Reset the 1/2 divisor circuit.

1:0 Clock Source Selection 00: BOSC/2

01: Timer 0 underflow10: Timer 2 cascade11: Timer 4 underflow

Chapter 11 Appendix

7	6	5	4	3	2	1	0
TM4 EN	TM4 LD	-	-	-	-	TM4 S1	TM4 S0
R/W	R/W	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0	0	0	0	0/1	0/1

TM4MD: x'00FE24'

Timer 4 Mode Register

8-bit access register

TM4MD sets the timer 4 operat-

ing conditions.

TM4BC Count 0: Disable

1: Enable

Load TM4BR to TM4BC 0: Disable

1: Enable

Reset the 1/2 divisor circuit.

Clock Source Selection 1:0 00: BOSC/2

> 01: Timer 0 underflow 10: Timer 3 cascade 11: TM4IO pin input

7	6	5	4	3	2	1	0
TM5 EN	TM5 LD	-	-	-	-	TM5 S1	TM5 S0
R/W	R/W	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0	0	0	0	0/1	0/1

TM5MD: x'00FE25'

Timer 5 Mode Register

8-bit access register

7 **TM5BC Count** 0: Disable TM5MD sets the timer 5 operating conditions.

1: Enable

Load TM5BR to TM5BC 0: Disable

1: Enable

Reset the 1/2 divisor circuit.

00: BOSC/2 1:0 **Clock Source Selection**

> 01: Timer 0 underflow 10: Timer 4 cascade

11: BOSC

When selecting BOSC as the clock source (set '11'), the valid range for TM5BR is 1 to 255.

7	6	5	4	3	2	1	0
TM6 EN	TM6 LD	-	-	-	-	TM6 S1	TM6 S0
R/W	R/W	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0	0	0	0	0/1	0/1

TM6MD :
x'00FE26'
Timer 6 Mode Register

8-bit access register

TM6MD sets the timer 6 operating conditions.

7 TM6BC Count 0: Disable

1: Enable

6 Load TM6BR to TM6BC 0: Disable

1: Enable

Reset the 1/2 divisor circuit.

1:0 Clock Source Selection 00: XI/4

01: Timer 0 underflow10: Timer 5 cascade11: Timer 4 underflow

7	6	5	4	3	2	1	0
TM7 EN	TM7 LD	-	-	-	-	TM7 S1	TM7 S0
R/W	R/W	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0	0	0	0	0/1	0/1

TM7BC Count

7

x'00FE27'

TM7MD:

Timer 7 Mode Register

8-bit access register

TM7MD sets the timer 7 operating conditions.

6 Load TM7BR to TM7BC 0: Disable

1: Enable

0: Disable

1: Enable

Reset the 1/2 divisor circuit.

1:0 Clock Source Selection 00: XI/4

01: Timer 0 underflow10: Timer 6 cascade11: TM7IO pin input

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM8	TM8	-	-	TM8	TM8	TM8	TM8	TM8	TM8						
EN	NLD			UD1	UD0	TGE	ONE	MD1	MD0	ECLR	LP	ASEL	S2	S1	S0
R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W						
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM8MD: x'00FE80'

Timer 8 Mode Register

16-bit access register

TM8MD sets the timer 8 operating conditions.

During repeat counting, hold the

TM8EN flag state. During one-

shot counting, set the TM8EN flag to 0 when TM8BC=TM8CA.

15 **TM8BC Count** 0: Disable 1: Enable

TM8BC, T.F.F., RS.F.F. 14 Operation

0: Set TM8BC, T.F.F., RS.F.F. to 0 1: Operate TM8BC, T.F.F., RS.F.F.

11:10 Up/Down Counter Mode Selection (Ignored when twophase encoding is selected.)

00: Up counter 01: Down counter

10: Up when TM8IOA pin is high, down when TM8IOA pin is low 11: Up when TM8IOB pin is high, down when TM8IOB pin is low

9 **Count Start External Trigger**

Enable

0: Disable

1: Start counting on the falling edge of

TM8IOB pin

8 **Counter Operating Mode**

Selection

0: Repeat 1: One-shot counting

7:6 TM8CA, TM8CB Operating **Mode Selection**

00: Compare register (single buffer) 01: Compare register (double buffer)

10: Capture A when TM8IOA pin is high, Capture B when TM8IOA pin is low 11: Capture A when TM8IOA pin is high, Capture B when TM8IOB pin is high

5 TM8BC Clear 0: Don't clear 1: Clear

4 **TM8BC Count Range** 0: 0 to FFFF 1: 0 to TM8CA

3 **TM8IOA Pin Output** 0: RS.F.F. output (one-phase PWM)

1: T.F.F. output (two-phase PWM)

2:0 **Clock Source Selection** 000: Timer 0 underflow

> 001: Timer 4 underflow 010: TM8IOB pin 011: BOSC/2

100: Two-phase encoder (4x) of TM8IOA

pin, TM8IOB pin

101: Two-phase encoder (1x) of TM8IOA

pin, TM8IOB pin 110: TM8IC pin

428

7	6	5	4	3	2	1	0
-	-	-	-	-	TM8 IC	TM8 IOB	TM8 IOA
R	R	R	R	R	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0/1	0/1	0/1

2 TM8IC Pin Input Edge Select

0: Change TM8IOB pin output on the rising edge

1: Change TM8IOB pin output on the falling edge

1 TM8IOB Pin Output

0: Positive1: Negative

0 TM8IOA Pin Output

0: Positive1: Negative

TM8MD2: x'00FE8E'

Timer 8 Mode Register 2

8-bit access register

TM8MD2 sets the timer 8 operating conditions.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TM9	-	-	TM9						TM9			TM9	TM9	
EN	NLD			UD1	UD0	TGE	ONE	MD1	MD0	ECLR	LP	ASEL	S2	S1	S0
R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W						
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM9MD: x'00FE90'

Timer 9 Mode Register

16-bit access register

TM9MD sets the timer 9 operat-

ing conditions.

15 **TM9BC Count**

14

0: Disable

0: Set TM9BC, T.F.F., RS.F.F. to 0

TM9BC, T.F.F., RS.F.F.

1: Operate TM9BC, T.F.F., RS.F.F.

Operation

11:10 Up/Down Counter Mode

00: Up counter

Selection (Ignored when twophase encoding is selected.)

01: Down counter 10: Up when TM9IOA pin is high,

down when TM9IOA pin is low 11: Up when TM9IOB pin is high, down when TM9IOB pin is low

1: Enable

9 **Count Start External Trigger**

0: Disable

Enable

1: Start counting on the falling edge of

TM9IOB pin

Counter Operating Mode Selection

0: Repeat

1: One-shot counting

During repeat counting, hold the TM9EN flag state. During oneshot counting, set the TM9EN flag to 0 when TM9BC=TM9CA.

7:6 TM9CA, TM9CB Operating **Mode Selection**

00: Compare register (single buffer) 01: Compare register (double buffer)

10: Capture A when TM9IOA pin is high, Capture B when TM9IOA pin is low 11: Capture A when TM9IOA pin is high,

Capture B when TM9IOB pin is high

5 **TM9BC Clear** 0: Don't clear

1: Clear (when external synchronization is

used)

4 **TM9BC Count Range** 0: 0 to FFFF 1: 0 to TM9CA

3 **TM9IOA Pin Output** 0: RS.F.F. output (one-phase PWM) 1: T.F.F. output (two-phase PWM)

2:0 **Clock Source Selection**

000: Timer 0 underflow 001: Timer 4 underflow 010: TM9IOB pin

011: BOSC/2

100: Two-phase encoder (4x) of TM9IOA

pin, TM9IOB pin

101: Two-phase encoder (1x) of TM9IOA

pin, TM9IOB pin

	7	п	

7	6	5	4	3	2	1	0
-	-	-	-	-	-	TM9 BC	TM9 IB
R	R	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0/1	0/1

1 TM9BC Clear Using TM9IOB

Pin Input

0: Don't clear

1: Clear

0 TM9IB Pin Input Polarity

0: Positive1: Negative

TM9MD2: x'00FE9E'

Timer 9 Mode Register 2

8-bit access register

TM9MD2 sets the conditions to clear the timer 9 binary counter.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM10	TM10	-	-	TM10											
EN	NLD			UD1	UD0	TGE	ONE	MD1	MD0	ECLR	LP	ASEL	S2	S1	S0
R/W	R/W	R	R	R/W											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM10MD: x'00FEA0'

Timer 10 Mode Register

16-bit access register

15 TM10BC Count

14

0: Disable 1: Enable

TM10MD sets the timer 10 operating conditions.

TM10BC, T.F.F., RS.F.F. Operation

0: Set TM10BC, T.F.F., RS.F.F. to 0 1: Operate TM10BC, T.F.F., RS.F.F.

11:10 Up/Down Counter Mode

Selection (Ignored when twophase encoding is selected.) 00: Up counter01: Down counter

10: Up when TM10IOA pin is high, down when TM10IOA pin is low11: Up when TM10IOB pin is high,

down when TM10IOB pin is low

9 Count Start External Trigger

Enable

0: Disable

1: Start counting on the falling edge of

TM10IOB pin

8 Counter Operating Mode

Selection

0: Repeat 1: One-shot counting

During repeat counting, hold the TM10EN flag state. During one-shot counting, set the TM10EN flag to 0 when TM10BC = TM10CA.

7:6 TM10CA, TM10CB Operating Mode Selection

00: Compare register (single buffer)01: Compare register (double buffer)

10: Capture A when TM10IOA pin is high, Capture B when TM10IOA pin is low

11: Capture A when TM10IOA pin is high, Capture B when TM10IOB pin is high

5 TM10BC Clear

0: Don't clear

1: Clear (when external synchronization is used)

4 TM10BC Count Range

0: 0 to FFFF

1: 0 to TM10CA

3 TM10IOA Pin Output

0: RS.F.F. output (one-phase PWM)1: T.F.F. output (two-phase PWM)

2:0 Clock Source Selection

000: Timer 0 underflow

001: Timer 4 underflow

010: TM10IOB pin (Rising, falling, both edges)

011: BOSC/2

100: Two-phase encoder (4x) of TM10IOA

pin, TM10IOB pin

101: Two-phase encoder (1x) of TM10IOA

pin, TM10IOB pin

The TM10IOB pin edge is set in the TM10MD2 register.

-		٦
	П	

7	6	5	4	3	2	1	0
-	-	-	1	-	-	TM10 IB1	TM10 IB0
R	R	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0/1	0/1

1:0 TM10IB Pin Input Edge

00: Rising edge01: Falling edge10: Both edges

TM10MD2: x'00FEAE'

Timer 10 Mode Register 2

8-bit access register

TM10MD2 sets the TM10IB pin input edge.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM11	TM11	-	-	TM11											
EN	NLD			UD1	UD0	TGE	ONE	MD1	MD0	ECLR	LP	ASEL	S2	S1	S0
R/W	R/W	R	R	R/W											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM11MD: x'00FEB0'

Timer 11 Mode Register

16-bit access register

15 TM11BC Count 0: Disable 1: Enable

TM11MD sets the timer 11 operating conditions.

14 TM11BC, T.F.F., RS.F.F. Operation

0: Set TM11BC, T.F.F., RS.F.F. to 0 1: Operate TM11BC, T.F.F., RS.F.F.

11:10 Up/Down Counter Mode Selection (Ignored when twophase encoding is selected.) 00: Up counter01: Down counter

10: Up when TM11IOA pin is high, down when TM11IOA pin is low11: Up when TM11IOB pin is high, down when TM11IOB pin is low

9 Count Start External Trigger

Enable

0: Disable

1: Start counting on the falling edge of

TM11IOB pin

8 Counter Operating Mode Selection 0: Repeat

1: One-shot counting

During repeat counting, hold the TM11EN flag state. During one-shot counting, set the TM11EN flag to 0 when TM11BC = TM11CA.

7:6 TM11CA, TM11CB Operating Mode Selection

00: Compare register (single buffer)01: Compare register (double buffer)

10: Capture A when TM11IOA pin is high,Capture B when TM11IOA pin is low11: Capture A when TM11IOA pin is high,

Capture B when TM11IOB pin is high

5 TM11BC Clear

0: Don't clear

1: Clear (when external synchronization is used)

4 TM11BC Count Range

0: 0 to FFFF

1: 0 to TM11CA

3 TM11IOA Pin Output

0: RS.F.F. output (one-phase PWM)1: T.F.F. output (two-phase PWM)

2:0 Clock Source Selection

000: Timer 0 underflow 001: Timer 4 underflow

010: TM11IOB pin 011: BOSC/2

100: Two-phase encoder (4x) of TM11IOA

pin, TM11IOB pin

101: Two-phase encoder (1x) of TM11IOA

pin, TM11IOB pin

The TM10IOB pin edge is set in the TM10MD2 register.

Ш		
Ш		
Ш		
ш		
ш		
ш		
ш		

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM12	TM12	-	-	TM12											
EN	NLD			UD1	UD0	TGE	ONE	MD1	MD0	ECLR	LP	ASEL	S2	S1	S0
R/W	R/W	R	R	R/W											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM12MD: x'00FEC0'

Timer 12 Mode Register

16-bit access register

TM12MD sets the timer 12 operating conditions.

15 **TM12BC Count** 0: Disable 1: Enable

14 TM12BC, T.F.F., RS.F.F. Operation

0: Set TM12BC, T.F.F., RS.F.F. to 0 1: Operate TM12BC, T.F.F., RS.F.F.

11:10 Up/Down Counter Mode Selection (Ignored when twophase encoding is selected.)

00: Up counter 01: Down counter

10: Up when TM12IOA pin is high, down when TM12IOA pin is low 11: Up when TM12IOB pin is high, down when TM12IOB pin is low

9 **Count Start External Trigger** 0: Disable

Enable

1: Start counting on the falling edge of

TM12IOB pin

Counter Operating Mode Selection

0: Repeat 1: One-shot counting During repeat counting, hold the TM12EN flag state. During oneshot counting, set the TM12EN flag to 0 when TM12BC = TM12CA.

7:6 TM12CA, TM12CB Operating **Mode Selection**

00: Compare register (single buffer) 01: Compare register (double buffer)

10: Capture A when TM12IOA pin is high, Capture B when TM12IOA pin is low

11: Capture A when TM12IOA pin is high, Capture B when TM12IOB pin is high

5 TM12BC Clear 0: Don't clear

1: Clear (when external synchronization is used)

TM12BC Count Range

0:0 to FFFF 1: 0 to TM12CA

3 **TM12IOA Pin Output**

0: RS.F.F. output (one-phase PWM) 1: T.F.F. output (two-phase PWM)

2:0 **Clock Source Selection** 000: Timer 0 underflow 001: Timer 4 underflow 010: TM12IOB pin 011: BOSC/2

100: Two-phase encoder (4x) of TM12IOA

pin, TM12IOB pin

101: Two-phase encoder (1x) of TM12IOA

pin, TM12IOB pin

7	6	5	4	3	2	1	0
	TM13	-	-	TM13			
EN	LD			TR	OB	OA	S
R/W	R/W	R	R	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0	0	0/1	0/1	0/1	0/1

TM13MD: x'00FE28'

Timer 13 Mode Register

8-bit access register

7 TM13BC Count 0: Disable

TM13MD sets the timer 13 operating conditions.

6 Load TM13BR to TM13BC

1: TM13OA and TM13OB output signals go low (when positive logic is selected

1: Enable

for the output edge)

3 TM13OA, TM13OB Waveform Select

0: Normal

0: Disable

1: Three-value PWM

2 TM13OB Output Edge Select

0: Positive logic 1: Negative logic

1 TM13OA Output Edge Select

0: Positive logic 1: Negative logic

O Clock Source Selection 0: BOSC/2

1: Timer 0 underflow

7	6	5	4	3	2	1	0
TM14	TM14	-	TM14	reserved	TM14	TM14	TM14
EN	LD		CAS		OB	OA	S
R/W	R/W	R	R/W	R/W	R	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0	0/1	0/1	0	0/1	0/1

TM14MD: x'00FE29'

Timer 14 Mode Register

8-bit access register

7 TM14BC Count 0: Disable 1: Enable

TM14MD sets the timer 14 operating conditions.

6 Load TM14BR to TM14BC 0: Disable

1: TM14OA and TM14OB output signals go low (when positive logic is selected

for the output edge)

4 Timer 14 Cascading 0: No cascading

1: Cascading (TMnS invalid)

3 Reserved Set to "0".

2 TM140B Output Edge Select

0: Positive logic 1: Negative logic

1 TM14OA Output Edge Select

0: Positive logic 1: Negative logic

0 Clock Source Selection

00: BOSC/2

01: Timer 0 underflow

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM15 BC	reserv ed	-	-	-	-	-	-	-	-	-	-	-	-		TM15 CLK0
R/W	R/W	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0	0	0	0	0	0	0	0	0	0	0	0	0/1	0/1

TM15MD: x'00FED0'

Timer 15 Mode Register

16-bit access register

TM15MD sets the timer 15 operating conditions.

15 TM15BC Count 0: Disable 1: Enable

14 Reserved Set to 0

1:0 Clock Source Selection 00: Timer 0 underflow

01: IRQ4 pin 10: BOSC/2 11: BOSC

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8
CA15	CA14	CA13	CA12	CA11	CA10	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C
AX15	AX14	AX13	AX12	AX11	AX10	AX9	AX8	AX7	AX6	AX5	AX4	AX3	AX2	AX1	AX0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

TM8CA: x'00FE84'

Timer 8 Compare/ Capture Register A

16-bit access register

TM8CA sets the timer 8 counting cycle.

The timer 8 binary counter counts the cycle of the TM8CA value +1. TM8CA changes PWM and generates a timer 8 capture A interrupt. When capture is selected, this register is read only. A timer 8 capture A interrupt is generated when capture occurs. When compare is selected, set the PWM cycle. When this register matches the timer 8 binary counter, a timer 8 capture A interrupt occurs.

This register write only 16-bit data. Use the MOV instruction to set the data.

TM8CAX: x'00FE86'

Timer 8 Compare/ Capture Register Set A

16-bit access register

This register is valid only when the associated compare register is set to the double-buffer mode. The TM8CAX cannot read or write. The contents of TM8CA are loaded to TM8CAX by write signal.

TM8CAX sets the PWM cycle. When TM8BC=TM8CAX, a timer 8 capture A interrupt occurs. The contents of TM8CA are loaded to TM8CAX by a timer 8 capture A interrupt and TM8CAX prevents the PWM loss.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8	TM8
CB15	CB14	CB13	CB12	CB11	CB10	CB9	CB8	CB7	CB6	CB5	CB4	CB3	CB2	CB1	CB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C	T8C
BX15	BX14	BX13	BX12	BX11	BX10	BX9	BX8	BX7	BX6	BX5	BX4	BX3	BX2	BX1	BX0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-

TM8CB: x'00FE88'

Timer 8 Compare/ Capture Register B

16-bit access register

TM8CB sets the timer 8 PWM duty, changes PWM and generates a timer 8 capture B interrupt.

When capture is selected, this register is read only. A timer 8 capture B interrupt is generated when capture occurs. When compare is selected, set the PWM duty. When this register matches the timer 8 binary counter, a timer 8 capture B interrupt occurs.

This register write only 16-bit data. Use the MOV instruction to set the data.

TM8CBX: x'00FE8A'

Timer 8 Compare/ Capture Register Set B

16-bit access register

This register is valid only when the associated compare register is set to the double-buffer mode. TM8CBX cannot read or write. The contents of TM8CB are loaded to TM8CBX by write signal.

TM8CBX sets the PWM cycle. When TM8BC=TM8CBX, a timer 8 capture B interrupt occurs. The contents of TM8CB are loaded to TM8CBX by a timer 8 capture B interrupt and TM8CBX prevents the PWM loss.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9
CA15	CA14	CA13	CA12	CA11	CA10	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C
AX15	AX14	AX13	AX12	AX11	AX10	AX9	AX8	AX7	AX6	AX5	AX4	AX3	AX2	AX1	AX0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

TM9CA: x'00FE94'

Timer 9 Compare/ Capture Register A

16-bit access register

TM9CA sets the timer 9 counting cycle.

The timer 9 binary counter counts the cycle of the TM9CA value +1. TM9CA changes PWM and generates a timer 9 capture A interrupt. When capture is selected, this register is read only. A timer 9 capture A interrupt is generated when capture occurs. When compare is selected, set the PWM cycle. When this register matches the timer 9 binary counter, a timer 9 capture A interrupt occurs.

This register write only 16-bit data. Use the MOV instruction to set the data.

TM9CAX: x'00FE96'

Timer 9 Compare/ Capture Register Set A

16-bit access register

This register is valid only when the associated compare register is set to the double-buffer mode. The TM9CAX cannot read or write. The contents of TM9CA are loaded to TM9CAX by write signal.

TM9CAX sets the PWM cycle. When TM9BC=TM9CAX, a timer 9 capture A interrupt occurs. The contents of TM9CA are loaded to TM9CAX by a timer 9 capture A interrupt and TM9CAX prevents the PWM loss.

			·												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9	TM9
CB15	CB14	CB13	CB12	CB11	CB10	CB9	CB8	CB7	CB6	CB5	CB4	CB3	CB2	CB1	CB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C	T9C
BX15	BX14	BX13	BX12	BX11	BX10	BX9	BX8	BX7	BX6	BX5	BX4	BX3	BX2	BX1	BX0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

TM9CB: x'00FE98'

Timer 9 Compare/ Capture Register B

16-bit access register

TM9CB sets the timer 9 PWM duty, changes PWM and generates a timer 9 capture B interrupt.

When capture is selected, this register is read only. A timer 9 capture B interrupt is generated when capture occurs. When compare is selected, set the PWM duty. When this register matches the timer 9 binary counter, a timer 9 capture B interrupt occurs.

This register write only 16-bit data. Use the MOV instruction to set the data.

TM9CBX: x'00FE9A'

Timer 9 Compare/ Capture Register Set B

16-bit access register

This register is valid only when the associated compare register is set to the double-buffer mode. TM9CBX cannot read or write. The contents of TM9CB are loaded to TM9CBX by write signal.

TM9CBX sets the PWM cycle. When TM9BC=TM9CBX, a timer 9 capture B interrupt occurs. The contents of TM9CB are loaded to TM9CBX by a timer 9 capture B interrupt and TM9CBX prevents the PWM loss.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10
CA15	CA14	CA13	CA12	CA11	CA10	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C
AX15	AX14	AX13	AX12	AX11	AX10	AX9	AX8	AX7	AX6	AX5	AX4	AX3	AX2	AX1	AX0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

TM10CA: x'00FEA4'

Timer 10 Compare/ Capture Register A

16-bit access register

TM10CA sets the timer 10 counting cycle.

The timer 10 binary counter counts the cycle of the TM10CA value +1. TM10CA changes PWM and generates a timer 10 capture A interrupt.

When capture is selected, this register is read only. A timer 10 capture A interrupt is generated when capture occurs. When compare is selected, set the PWM cycle. When this register matches the timer 10 binary counter, a timer 10 capture A interrupt occurs.

This register write only 16-bit data. Use the MOV instruction to set the data.

TM10CAX: x'00FEA6'

Timer 10 Compare/ Capture Register Set A

16-bit access register

This register is valid only when the associated compare register is set to the double-buffer mode. The TM10CAX cannot read or write. The contents of TM10CA are loaded to TM10CAX by write signal.

TM10CAX sets the PWM cycle. When TM10BC=TM10CAX, a timer 10 capture A interrupt occurs. The contents of TM10CA are loaded to TM10CAX by a timer 10 capture A interrupt and TM10CAX prevents the PWM loss.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10	TM10
CB15	CB14	CB13	CB12	CB11	CB10	CB9	CB8	CB7	CB6	CB5	CB4	CB3	CB2	CB1	CB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C	T10C
BX15	BX14	BX13	BX12	BX11	BX10	BX9	BX8	BX7	BX6	BX5	BX4	BX3	BX2	BX1	BX0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

TM10CB: x'00FEA8'

Timer 10 Compare/ Capture Register B

16-bit access register

TM10CB sets the timer10 PWM duty, changes PWM and generates a timer 10 capture B interrupt.

When capture is selected, this register is read only. A timer 10 capture B interrupt is generated when capture occurs. When compare is selected, set the PWM duty. When this register matches the timer 10 binary counter, a timer 10 capture B interrupt occurs.

This register write only 16-bit data. Use the MOV instruction to set the data.

TM10CBX: x'00FEAA'

Timer 10 Compare/ Capture Register Set B

16-bit access register

This register is valid only when the associated compare register is set to the double-buffer mode. TM10CBX cannot read or write. The contents of TM10CB are loaded to TM10CBX by write signal.

TM10CBX sets the PWM cycle. When TM10BC=TM10CBX, a timer 10 capture B interrupt occurs. The contents of TM10CB are loaded to TM10CBX by a timer 10 capture B interrupt and TM10CBX prevents the PWM loss.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11
CA15	CA14	CA13	CA12	CA11	CA10	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C
AX15	AX14	AX13	AX12	AX11	AX10	AX9	AX8	AX7	AX6	AX5	AX4	AX3	AX2	AX1	AX0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

TM11CA: x'00FEB4'

Timer 11 Compare/ Capture Register A

16-bit access register

TM11CA sets the timer 11 counting cycle.

The timer 11 binary counter counts the cycle of the TM11CA value +1. TM11CA changes PWM and generates a timer 11 capture A interrupt.

When capture is selected, this register is read only. A timer 11 capture A interrupt is generated when capture occurs. When compare is selected, set the PWM cycle. When this register matches the timer 11 binary counter, a timer 11 capture A interrupt occurs.

This register write only 16-bit data. Use the MOV instruction to set the data.

TM11CAX: x'00FEB6'

Timer 11 Compare/ Capture Register Set A

16-bit access register

This register is valid only when the associated compare register is set to the double-buffer mode. The TM11CAX cannot read or write. The contents of TM11CA are loaded to TM11CAX by write signal.

TM11CAX sets the PWM cycle. When TM11BC=TM11CAX, a timer 11 capture A interrupt occurs. The contents of TM11CA are loaded to TM11CAX by a timer 11 capture A interrupt and TM11CAX prevents the PWM loss.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11	TM11
CB15	CB14	CB13	CB12	CB11	CB10	CB9	CB8	CB7	CB6	CB5	CB4	CB3	CB2	CB1	CB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C	T11C
BX15	BX14	BX13	BX12	BX11	BX10	BX9	BX8	BX7	BX6	BX5	BX4	BX3	BX2	BX1	BX0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

TM11CB: x'00FEB8'

Timer 11 Compare/ Capture Register B

16-bit access register

TM11CB sets the timer11 PWM duty, changes PWM and generates a timer 11 capture B interrupt.

When capture is selected, this register is read only. A timer 11 capture B interrupt is generated when capture occurs. When compare is selected, set the PWM duty. When this register matches the timer 11 binary counter, a timer 11 capture B interrupt occurs.

This register write only 16-bit data. Use the MOV instruction to set the data.

TM11CBX: x'00FEBA'

Timer 11 Compare/ Capture Register Set B

16-bit access register

This register is valid only when the associated compare register is set to the double-buffer mode. TM11CBX cannot read or write. The contents of TM11CB are loaded to TM11CBX by write signal.

TM11CBX sets the PWM cycle. When TM11BC=TM11CBX, a timer 11 capture B interrupt occurs. The contents of TM11CB are loaded to TM11CBX by a timer 11 capture B interrupt and TM11CBX prevents the PWM loss.

This register writes only 16-bit data. Use the MOV instruction to set the data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12
CA15	CA14	CA13	CA12	CA11	CA10	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C
AX15	AX14	AX13	AX12	AX11	AX10	AX9	AX8	AX7	AX6	AX5	AX4	AX3	AX2	AX1	AX0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

TM12CA: x'00FEC4'

Timer 12 Compare/ Capture Register A

16-bit access register

TM12CA sets the timer 12 counting cycle.

The timer 12 binary counter counts the cycle of the TM12CA value +1. TM12CA changes PWM and generates a timer 12 capture A interrupt.

When capture is selected, this register is read only. A timer 12 capture A interrupt is generated when capture occurs. When compare is selected, set the PWM cycle. When this register matches the timer 12 binary counter, a timer 12 capture A interrupt occurs.

This register write only 16-bit data. Use the MOV instruction to set the data.

TM12CAX: x'00FEC6'

Timer 12 Compare/ Capture Register Set A

16-bit access register

This register is valid only when the associated compare register is set to the double-buffer mode. The TM12CAX cannot read or write. The contents of TM12CA are loaded to TM12CAX by write signal.

TM12CAX sets the PWM cycle. When TM12BC=TM12CAX, a timer 12 capture A interrupt occurs. The contents of TM12CA are loaded to TM12CAX by a timer 12 capture A interrupt and TM12CAX prevents the PWM loss.

This register writes only 16-bit data. Use the MOV instruction to set the data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12	TM12
CB15	CB14	CB13	CB12	CB11	CB10	CB9	CB8	CB7	CB6	CB5	CB4	CB3	CB2	CB1	CB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C	T12C
BX15	BX14	BX13	BX12	BX11	BX10	BX9	BX8	BX7	BX6	BX5	BX4	BX3	BX2	BX1	BX0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

TM12CB: x'00FEC8'

Timer 12 Compare/ Capture Register B

16-bit access register

TM12CB sets the timer 12 PWM duty, changes PWM and generates a timer 12 capture B interrupt.

When capture is selected, this register is read only. A timer 12 capture B interrupt is generated when capture occurs. When compare is selected, set the PWM duty. When this register matches the timer 12 binary counter, a timer 12 capture B interrupt occurs.

This register write only 16-bit data. Use the MOV instruction to set the data.

TM12CBX: x'00FECA'

Timer 12 Compare/ Capture Register Set B

16-bit access register

This register is valid only when the associated compare register is set to the double-buffer mode. TM12CBX cannot read or write. The contents of TM12CB are loaded to TM12CBX by write signal.

TM12CBX sets the PWM cycle. When TM12BC=TM12CBX, a timer 12 capture B interrupt occurs. The contents of TM12CB are loaded to TM12CBX by a timer 12 capture B interrupt and TM12CBX prevents the PWM loss.

This register writes only 16-bit data. Use the MOV instruction to set the data.

7	6	5	4	3	2	1	0
TM13	TM13	TM13	TM13	TM13	TM13	TM13	TM13
CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	6	5	4	3	2	1	0
TM13	TM13	TM13	TM13	TM13	TM13	TM13	TM13
CB7	CB6	CB5	CB4	CB3	CB2	CB1	CB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM13CA: x'00FE0A'

Timer 13 Capture A Register

8-bit access register

TM13CA sets the timing of changing the PWM waveform output from TM13OA pin from low level to high level.

The valid range for TM13CA is 1 to TM13BR.

TM13CB: x'00FE1A'

Timer 13 Capture B Register

8-bit access register

TM13CB sets the timing of changing the PWM waveform output from TM13OB pin from low level to high level.

The valid range for TM13CB is 1 to TM13BR.

7	6	5	4	3	2	1	0
TM14	TM14	TM14	TM14	TM14	TM14	TM14	TM14
CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	6	5	4	3	2	1	0
TM14	TM14	TM14	TM14	TM14	TM14	TM14	TM14
CB7	CB6	CB5	CB4	CB3	CB2	CB1	CB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM14CA: x'00FE0B'

Timer 14 Capture A Register

8-bit access register

TM14CA sets the timing of changing the PWM waveform output from TM14OA pin from low level to high level.

The valid range for TM14CA is 1 to TM14BR.

TM14CB: x'00FE1B'

Timer 14 Capture B Register

8-bit access register

TM14CB sets the timing of changing the PWM waveform output from TM14OB pin from low level to high level.

The valid range for TM14CB is 1 to TM14BR.

T

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15	TM15
CA15	CA14	CA13	CA12	CA11	CA10	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

TM15CA: x'00FED4'

Timer 15 Capture Register A

16-bit access register

TM15CA captures the contents of TM15BC on the rising of TM15IA pin.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	AN NCH2	AN NCH1	AN NCH0	-	AN 1CH2	AN 1CH1	AN 1CH0	AN EN	AN TC	AN DEC	-	AN CK1	AN CK0	AN MD1	AN MD0
R	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0/1	0/1	0/1	0	0/1	0/1	0/1	0/1	0/1	0/1	0	0/1	0/1	0/1	0/1

ANCTR: x'00FF00'

A/D Converter Control Register

16-bit access register

ANCTR sets the A/D converter operating conditions.

14:12 Channel Selection for Multiple Channel Conversion

000: Convert AN0

001: Convert from AN0 to AN1

010: Convert from AN0 to AN2 011: Convert from AN0 to AN3

100: Convert from AN0 to AN4101: Convert from AN0 to AN5110: Convert from AN0 to AN6

111: Convert from AN0 to AN7

10:8 Channel Selection for Single Channel Conversion

000: Convert AN0 001: Convert AN1 010: Convert AN2

011: Convert AN3 100: Convert AN4 101: Convert AN5 110: Convert AN6 111: Convert AN7

7 Conversion Start/Execution

0: No conversion

Flag

1: Conversion in progress

6 Conversion Start at Timer 3

underflow

0: Disable1: Enable

5 AD Converter Resolution

0: 8-bit 1: 10-bit

3:2 Clock Source Selection

00: BOSC/2 01: BOSC/4 10: BOSC/8 11: BOSC/16

1:0 Operating Mode Selection

00: Single channel, single conversion01: Multiple channels, single conversion10: Single channel, continuous conversion11: Multiple channels, continuous conversion

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	AN0 BUF9					AN0 BUF4				
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
0	0	0	0	0	0	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined

AN0BUF: x'00FF08'

AN0 Conversion Data Buffer

16-bit access register

AN0 conversion data

When 8-bit is selected as A/D converter resolution, the AN0BUF[7:0] bits hold the data and the AN0BUF[9:8] bits become 0. When 10- bit is selected as A/D converter resolution, the AN0BUF[9:0] bits hold the data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	1	-	-	AN1 BUF9	AN1 BUF8	AN1 BUF7	AN1 BUF6	AN1 BUF5	AN1 BUF4		AN1 BUF2	AN1 BUF1	AN1 BUF0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R 0	R 0	R 0	R 0	R 0		R Undefined									

AN1BUF: x'00FF0A'

AN1 Conversion Data Buffer

16-bit access register

AN1 conversion data

When 8-bit is selected as A/D converter resolution, the AN1BUF[7:0] bits hold the data and the AN1BUF[9:8] bits become 0. When 10- bit is selected as A/D converter resolution, the AN1BUF[9:0] bits hold the data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	AN2	AN2	AN2	AN2	AN2	AN2	AN2	AN2	AN2	AN2
						BUF9	BUF8	BUF7	BUF6	BUF5	BUF4	BUF3	BUF2	BUF1	BUF0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	1		••	1	1	1	1	1	1	11	1	- 1	- 1	1	1
0	0	0	0	0		Undefined					Undefined			Undefined	

AN2BUF: x'00FF0C'

AN2 Conversion Data Buffer

16-bit access register

AN2 conversion data

When 8-bit is selected as A/D converter resolution, the AN2BUF[7:0] bits hold the data and the AN2BUF[9:8] bits become 0. When 10- bit is selected as A/D converter resolution, the AN2BUF[9:0] bits hold the data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	1	-	-	AN3 BUF9		1		AN3 BUF5			AN3 BUF2		AN3 BUF0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R 0	R 0	R 0	R 0	R 0		R Undefined									

AN3BUF: x'00FF0E'

AN3 Conversion Data Buffer

16-bit access register

AN3 conversion data

When 8-bit is selected as A/D converter resolution, the AN3BUF[7:0] bits hold the data and the AN3BUF[9:8] bits become 0. When 10- bit is selected as A/D converter resolution, the AN3BUF[9:0] bits hold the data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	AN4 BUF9							AN4 BUF2		AN4 BUF0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
0	0	0	0	0	0	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

AN4BUF: x'00FF10'

AN4 Conversion Data Buffer

16-bit access register

AN4 conversion data

When 8-bit is selected as A/D converter resolution, the AN4BUF[7:0] bits hold the data and the AN4BUF[9:8] bits become 0. When 10- bit is selected as A/D converter resolution, the AN4BUF[9:0] bits hold the data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	AN5 BUF9								AN5 BUF1	
R	R	n	n	n	n	n	n	n	n	ъ	n	R	n	n	n
	K	R	R	R	R	R	K	R	R	R	R	K	R	R	R
0	0	0	0	0	_	Undefined	Undefined								

AN5BUF : x'00FF12'

AN5 Conversion Data Buffer

16-bit access register

AN5 conversion data

When 8-bit is selected as A/D converter resolution, the AN5BUF[7:0] bits hold the data and the AN5BUF[9:8] bits become 0. When 10- bit is selected as A/D converter resolution, the AN5BUF[9:0] bits hold the data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	_	-	-	_	AN6									
						BUF9	BUF8	BUF7	BUF6	BUF5	BUF4	BUF3	BUF2	BUF1	BUF0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
0	0	0	0	0	0	Undefined									
						0/1	0/1		0/1	0/1		0/1			0/1

AN6BUF : x'00FF14'

AN6 Conversion Data Buffer

16-bit access register

AN6 conversion data

When 8-bit is selected as A/D converter resolution, the AN6BUF[7:0] bits hold the data and the AN6BUF[9:8] bits become 0. When 10- bit is selected as A/D converter resolution, the AN6BUF[9:0] bits hold the data.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	AN7 BUF9	AN7 BUF8	AN7 BUF7		AN7 BUF5			AN7 BUF2		AN7 BUF0
Ī	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Ī	0	0	0	0	0	0	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
Γ	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

AN7BUF : x'00FF16'

AN7 Conversion Data Buffer

16-bit access register

AN7 conversion data

When 8-bit is selected as A/D converter resolution, the AN7BUF[7:0] bits hold the data and the AN7BUF[9:8] bits become 0. When 10- bit is selected as A/D converter resolution, the AN7BUF[9:0] bits hold the data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EW	EW	EW	EW	EW	EW	EW	EW	EW	EW	EW	EW	EW	EW	EW	EW
33	32	31	30	23	22	21	20	13	12	11	10	03	02	01	00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

- 15:12 Wait Setting for External Memory Space 3 *
- 11:8 Wait Setting for External Memory Space 2 *
- 7:4 Wait Setting for External Memory Space 1 *
- 3:0 Wait Setting for External Memory Space 0 *

Se	tting	Waits	Cycles
0	0000	0.0	1.0
1	0001	0.5	1.5
2	0010	1.0	2.0
3	0011	1.5	2.5
4	0100	2.0	3.0
5	0101	2.5	3.5
6	0110	3.0	4.0
7	0111	3.5	4.5
8	1000	4.0	5.0
9	1001	4.5	5.5
10	1010	5.0	6.0
11	1011	5.5	6.5
12	1100	6.0	7.0
13	1101	6.5	7.5
14	1110	7.0	8.0
15	1111	perform l	nandshake mode
		by WAIT	pin

EXWMD: x'00FF80'

External Memory Wait Register

16-bit access register

EXWMD sets the external memory wait cycles.

* Please refer to Figure 2-1-1 Address Space on page 52 for address allocation of external memory spaces.

0.5 wait cycle corresponds to BOSC 1 cycle. 1 wait cycle corresponds to 1 cycle of instruction. With a 34-MHz oscillator,
0.5 wait cycle = 29.4 ns
1 wait cycle = 58.8 ns

	31	30	21	20	11	10	01	00	1	0	3	2	1	0	1	0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W							
Single-chip Mode	0	0	0	0	0	0	0	undefined	0	0	0	0	0	0	1	1
Memory Expansion Mode (16-bit bus width)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Memory Expansion Mode (8-bit bus width)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1
Processor Mode (16-bit bus width)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Processor Mode (8-bit bus width)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1
	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

MEMMD1:

x'00FF82'

Memory Mode Setup 1 Register

16-bit access register

MEMMD1 sets the bus width for external memory and the wait cycles for internal I/O registers.

Do not access the burst ROM area and other areas consecutively.

15:14 Bus Width Setting

for External Memory Space 3 *

13:12 Bus Width Setting

for External Memory Space 2 *
11:10 Bus Width Setting

for External Memory Space 1 *

9:8 Bus Width Setting for External Memory Space 0 *

00: 16-bit bus width 01: 8-bit bus width

EB EB EB EB EB EB EB EB BRS BRS BRC BRC BRC IOW IOW

10: Reserved

11: 8-bit bus width when A8 is high, 16-bit bus width when A8 is low * Please refer to Figure 2-1-1 Address Space on page 52 for address allocation of external memory spaces.

EB[01:00] bits at reset can be changed depending on /WORD pin input.

16-bit Bus Width 8-bit Bus Width

7:6 Address Setting for Burst Operation

 00: A0, A1
 2 words
 4 bytes

 01: A0, A1, A2
 4 words
 8 bytes

 10: A0, A1, A2, A3
 8 words
 16 bytes

 11: A0, A1, A2, A3, A4
 16 words
 32 bytes

5 Burst ROM setting for External Memory Space 3

4

Burst ROM setting for External Memory Space 2

3 Burst ROM setting for External Memory Space 1

2 Burst ROM setting for External Memory Space 0

1:0 Wait Setting for Internal I/O Space

O: Disable

1: Enable (Only when 16-bit bus width is

0: Disable

1: Enable (Only when 16-bit bus width is set at external memory space.)

set at external memory space.)

0: Disable

1: Enable (Only when 16-bit bus width is set at external memory space.)

0: Disable

1: Enable (Only when 16-bit bus width is set at external memory space.)

00: 1.0 wait cycle 01: 1.5 wait cycles 10: 2.0 wait cycles 11: 3.0 wait cycles 0.5 wait cycle corresponds to BOSC 1 cycle. 1 wait cycle corresponds to 1 cycle of instruction. With a 34-MHz oscillator, 0.5 wait cycle = 29.4 ns

1 wait cycle = 58.8 ns

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	HS2	HS1	HS0	SC1	SC0	reserv	reserv	-	BST	BST	BST
										ed	ed		2	1	0
R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R	R	R	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0	0	0	0/1	0/1	0/1

MEMMD2 : x'00FF84'

Memory Mode Setup 2 Register

16-bit access register

10:8 Fixed Wait Setting 000: No wait

001: 0.5 wait cycle 010: 1 wait cycle 011: 1.5 wait cycles 100: 2 wait cycles 101: 2.5 wait cycles 110: 3 wait cycles 111: 3.5 wait cycles MEMMD2 sets the burst ROM cycles and changes the pulse timing of /WEH, /WEL and /RE.

7:6 SLOW Mode Operating Clock Setting*

01: OSCI/2 10: OSCI/4 11: OSCI/8

00: XI

* Do not change these flags in SLOW mode, as this may cause erroneous operation.

The transition to SLOW mode differs according to the setting of these flags.

Bits 7 and 6	1 0	SLOW	HALT from	STOP from
	in SLOW Mode		SLOW Mode	SLOW Mode
00	XI	SLOW1	HALT1	STOP1
01	OSCI/2			
10	OSCI/4	SLOW2	HALT2	STOP2
11	OSCI/8			

5 Reserved Set to 0

4 Reserved Set to 0

2:0 Cycle Setting for Burst ROM Shortening (First Cycle at Burst Access) 000: 0.5 cycle 001: 1 cycle 010: 1.5 cycles 011: 2 cycles 100: 2.5 cycles 101: 3 cycles 110: 3.5 cycles 111: 4 cycles

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ARE	ARE	ARE	ARE	MMD	MMD	ASEN	SEL	SEL	SEL	CAS	CAS	CAS	RAS	RAS	RAS
3	2	1	0	1	0		2	1	0	2	1	0	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

DRAMMD1: x'00FF90'

DRAM Control 1 Register

16-bit access register

DRAMMD1 sets the DRAM modes.

* Please refer to Figure 2-1-1 Address Space on page 52 for address allocation of external memory spaces.

15 **DRAM (PSRAM) Operation**

0: Disable for External Memory Space 3 * 1: Enable

14 **DRAM (PSRAM) Operation** for External Memory Space 2 *

0: Disable 1: Enable

13 **DRAM (PSRAM) Operation** for External Memory Space 1 * 0: Disable 1: Enable

12 **DRAM (PSRAM) Operation** for External Memory Space 0 * 0: Disable 1: Enable

11:10 Shift Size of DRAM Address

00: 8-bit 01: 9-bit 10: 10-bit 11: Reserved

MMD(1:0)	Setting	00	01	10
		Shift 8	Shift 9	Shift 10
Pin Name	ROW Address Output	COL Addres	s Output	
P46	A22	-	(A11)	(A11)
P45	A21	-	(A10)	(A10)
P44	A20	-	(Lo)	A10
P43	A19	-	(Lo)	A9
P42	A18	-	A9	A8
P41	A17	-	A8	A7
P40	A16	A8	A7	A6
P37	A15	A7	A6	A5
P36	A14	A6	A5	A4
P35	A13	A5	A4	A3
P34	A12	A4	A3	A2
P33	A11	A3	A2	A1
P32	A10	A2	A1	A0
P31	A9	A1	A0	(A0)
P30	A8	A0	l-	-

9 **Shift Setting from Row** addresses of AD15-0 pins to Column addresses

0: Don't shift 1: Shift

8:6 **Shift Timing Setting from Row Address to Column Address**

000: At the beginning of 0.5 cycle 001: At the beginning of 1.0 cycle

5:3 Timing Setting of CAS (CS) **Falling Edge**

010: At the beginning of 1.5 cycles 011: At the beginning of 2.0 cycles 100: At the beginning of 2.5 cycles

2:0 **Timing Setting of RAS Falling** Edge

101: At the beginning of 3.0 cycles 110: At the beginning of 3.5 cycles

111: At the beginning of 4.0 cycles

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DRA	MDRAM	reserv	reserv	reserv	RON	RCY	RCY	RCY	RCY	RCS	RCS	RCS	RRS	RRS	RRS
ACC	TM	ed	ed	ed		3	2	1	0	2	1	0	2	1	0
R/W	R/W	R	R	R	R/W										
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15 DRAM Access Method *1 Selection

0: 2WE method
1: 2CAS method

14 Clock Source Selection for DRAM Refresh 0: Timer 12 underflow1: Timer 10 underflow

13:11 Reserved

Set to 0

10 DRAM Refresh Enable

0: Disable 1: Enable *2

0000: 2.0 cycles

9:6 Cycle Setting at Refresh

0001: 2.5 cycles 0010: 3.0 cycles 0011: 3.5 cycles 0100: 4.0 cycles 0101: 4.5 cycles 0110: 5.0 cycles 0111: 5.5 cycles 1000: 6.0 cycles 1001: 6.5 cycles 1010: 7.0 cycles Other: 7.0 cycles

5:3 Timing Setting of CAS (CS)

Falling Edge

000: At the beginning of 0.5 cycle 001: At the beginning of 1.0 cycle 010: At the beginning of 1.5 cycles 011: At the beginning of 2.0 cycles

2:0 Timing Setting of RAS Falling Edge

100: At the beginning of 2.5 cycles 101: At the beginning of 3.0 cycles 110: At the beginning of 3.5 cycles 111: At the beginning of 4.0 cycles

DRAMMD2: x'00FF92'

DRAM Control 2 Register

16-bit access register

 ${\sf DRAMMD2}$ sets the ${\sf DRAM}$ modes.

*1 Set to "0" at MN102HF60G or ICE

2 CAS method is not usable.

 $^{*}2$ DRAM is refreshed once when a timer 10 or 12 underflow interrupt occurs. At 256 times/8 ms, the refresh interval is 31.25 μ s or less.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	REES 31	REES 30	REEL 31	REEL 30	REES 21	REES 20	REEL 21	REEL 20	REES	REES	REEL 11	REEL 10	REES 01	REES 00	REEL 01	REEL 00
									R/W							
Processor Mode	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Other Modes	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

REEDGE:

x'00FF86'

RE Waveform Control Register

16-bit access register

REEDGE sets the RE waveform control modes.

15:14 RE Short Mode in CS3 Space 00: RE Short 0 Mode (Reset)

01: RE Short 0.5 Mode10: RE Short 1 Mode11: RE Short 1.5 Mode

13:12 RE Late Mode in CS3 Space 00: RE Late 0.5 Mode (Reset)

01: RE Late 1 Mode 10: RE Late 2 Mode 11: RE Late 3 Mode

11:10 RE Short Mode in CS2 Space 00: RE Short 0 Mode (Reset)

01: RE Short 0.5 Mode10: RE Short 1 Mode11: RE Short 1.5 Mode

9:8 RE Late Mode in CS2 Space 00: RE Late 0.5 Mode (Reset)

01: RE Late 1 Mode 10: RE Late 2 Mode 11: RE Late 3 Mode

7:6 RE Short Mode in CS1 Space 00: RE Short 0 Mode (Reset)

01: RE Short 0.5 Mode10: RE Short 1 Mode11: RE Short 1.5 Mode

5:4 RE Late Mode in CS1 Space 00: RE Late 0.5 Mode (Reset)

01: RE Late 1 Mode10: RE Late 2 Mode11: RE Late 3 Mode

3:2 RE Short Mode in CS0 Space 00: RE Short 0 Mode

01: RE Short 0.5 Mode (Reset)

10: RE Short 1 Mode11: RE Short 1.5 Mode

1:0 RE Late Mode in CS0 Space 00: RE Late 0.5 Mode (Reset)

01: RE Late 1 Mode10: RE Late 2 Mode11: RE Late 3 Mode

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WEES	WEES	WEEL	WEEL	WEES	WEES	WEEL	WEEL	WEES	WEES	WEEL	WEEL	WEES	WEES	WEEL	WEEL
31	30	31	30	21	20	21	20	11	10	11	10	01	00	01	00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

WEEDGE: x'00FF88'

WE Waveform Control Register

16-bit access register

WEEDGE sets the WE waveform control modes.

15:14 WE Short Mode in CS3 Space 00: WE Short 0 Mode (Reset)

01: WE Short 0.5 Mode 10: WE Short 1 Mode 11: WE Short 1.5 Mode

13:12 WE Late Mode in CS3 Space 00: WE Late 1 Mode (Reset)

01: WE Late 2 Mode 10: WE Late 3 Mode 11: Reserved

11:10 WE Short Mode in CS2 Space 00: WE Short 0 Mode (Reset)

01: WE Short 0.5 Mode 10: WE Short 1 Mode 11: WE Short 1.5 Mode

9:8 WE Late Mode in CS2 Space 00: WE Late 1 Mode (Reset)

01: WE Late 2 Mode 10: WE Late 3 Mode 11: Reserved

7:6 WE Short Mode in CS1 Space 00: WE Short 0 Mode (Reset)

01: WE Short 0.5 Mode10: WE Short 1 Mode11: WE Short 1.5 Mode

5:4 WE Late Mode in CS1 Space 00: WE Late 1 Mode (Reset)

01: WE Late 2 Mode 10: WE Late 3 Mode 11: Reserved

3:2 WE Short Mode in CS0 Space 00: WE Short 0 Mode (Reset)

01: WE Short 0.5 Mode10: WE Short 1 Mode11: WE Short 1.5 Mode

1:0 WE Late Mode in CS0 Space 00: WE Late 1 Mode (Reset)

01: WE Late 2 Mode 10: WE Late 3 Mode

11: Reserved

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ALEG	ALEG	ALEL	ALEL	ALEG	ALEG	ALEL	ALEL	ALEG	ALEG	ALEL	ALEL	ALEG	ALEG	ALEL	ALEL
31	30	31	30	21	20	21	20	11	10	11	10	01	00	01	00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

ALEEDGE: x'00FF8A'

ALE Waveform Control Register

16-bit access register

ALEEDGE sets the ALE waveform control modes.

15:14 ALE Long Mode 00: ALE Long 0 Mode (Reset) in CS3 Space 01: ALE Long 0.5 Mode

10: ALE Long 1 Mode 11: ALE Long 1.5 Mode

13:12 ALE Late Mode 00: ALE Late 0 Mode (Reset)

in CS3 Space 01: ALE Late 0.5 Mode 10: ALE Late 1 Mode

11: ALE Late 1.5 Mode

11:10 ALE Long Mode 00: ALE Long 0 Mode (Reset)

in CS2 Space 01: ALE Long 0.5 Mode 10: ALE Long 1 Mode

11: ALE Long 1.5 Mode

9:8 ALE Late Mode 00: ALE Late 0 Mode (Reset)

in CS2 Space 01: ALE Late 0.5 Mode 10: ALE Late 1 Mode 11: ALE Late 1.5 Mode

7:6 ALE Long Mode 00: ALE Long 0 Mode (Reset)

in CS1 Space 01: ALE Long 0.5 Mode

10: ALE Long 1 Mode11: ALE Long 1.5 Mode

5:4 ALE Late Mode 00: ALE Late 0 Mode (Reset)

in CS1 Space 01: ALE Late 0.5 Mode 10: ALE Late 1 Mode

11: ALE Late 1.5 Mode

3:2 ALE Long Mode 00: ALE Long 0 Mode

in CS0 Space

01: ALE Long 0.5 Mode 10: ALE Long 1 Mode (Reset)

11: ALE Long 1.5 Mode

1:0 ALE Late Mode 00: ALE Late 0 Mode

in CS0 Space 01: ALE Late 0.5 Mode

10: ALE Late 1 Mode (Reset)11: ALE Late 1.5 Mode

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_	_	-	-	-	-	-	-	ADL							
								31	30	21	20	11	10	01	00
R	R	R	R	R	R	R	R	R/W							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

MPXADR: x'00FF8C'

Address Output Time Control Register

16-bit access register

MPXADR sets the address output time control modes during address/data shared mode.

7:6 Address Long Mode 00: AD Long 1 Mode (Reset) in CS3 Space 01: AD Long 1.5 Mode

10: AD Long 2 Mode 11: AD Long 3 Mode

5:4 Address Long Mode 00: AD Long 1 Mode (Reset)

in CS2 Space 01: AD Long 1.5 Mode

10: AD Long 2 Mode11: AD Long 3 Mode

3:2 Address Long Mode 00: AD Long 1 Mode (Reset)

in CS1 Space 01: AD Long 1.5 Mode

10: AD Long 2 Mode11: AD Long 3 Mode

1:0 Address Long Mode 00: AD Long 1 Mode in CS0 Space 01: AD Long 1.5 Mode

10: AD Long 2 Mode

11: AD Long 3 Mode (Reset)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PBS	PBS	PBS	PBS	PBS	PBS	PBS	PBS	PBS	PBS	PBS	PBS	PBS	PBS	PBS	PBS
W15	W14	W13	W12	W11	W10	W9	W8	W7	W6	W5	W4	W3	W2	W1	W0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	1	-	-	1	-	-		PBS W23	PBS W22	PBS W21	PBS W20	PBS W19	PBS W18	PBS W17	PBS W16
R	R	R	R	R	R	R	R	R/W							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

PBSW: x'00FFBC'

Pointer Byte Swap Register

16/24-bit access register

PBSW writes 24-bit pointer data.

During read operations, the upper 8-bit data and the lower 8-bit data are inverted. The middle 8-bit remains.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS
WL15	WL14	WL13	WL12	WL11	WL10	WL9	WL8	WL7	WL6	WL5	WL4	WL3	WL2	WL1	WL0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

LBSWL:

x'00FFCC'

Long Word Byte Swap Register L

8/16-bit access register

LBSWL writes 16-bit data.

During read operations, bits [7:0] read bits[15:8] of the LBSWH register, and bits 15-8 read bits[7:0] of the LBSWH register. Combining with the LBSWH register, 24-bit upper and lower data can swapped in 8-bit unit. In addition, 16-bit upper and lower data can be swapped by writing the 16-bit data to the LBSWL register and reading the data from the LBSWH register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS
WH15	WH14	WH13	WH12	WH11	WH10	WH9	WH8	WH7	WH6	WH5	WH4	WH3	WH2	WH1	WH0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

x'00FFCF' x'00FFCD' x'00FFCC' x'00FFCE' 8 7 15 0 15 8 7 0 LBSWL Write LBS/WH 8 7 0 15 8 0:15 Read LBSWH LBSWL

LBSWH:

x'00FFCE'

Long Word Byte Swap Register H

8/16-bit access register

LBSWH writes 16-bit data.

During read operations, bits[7:0] read bits[15:8] of the LBSWL register, and bits[15:8] read bits [7:0] of the LBSWL register.

7	6	5	4	3	2	1	0
P0	P0	P0	P0	P0	P0	P0	P0
PLU7	PLU6	PLU5	PLU4	PLU3	PLU2	PLU1	PLU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 0 Pullup Resistor

0: Off

1: On

7	6	5	4	3	2	1	0
P1	P1	P1	P1	P1	P1	P1	P1
PLU7	PLU6	PLU5	PLU4	PLU3	PLU2	PLU1	PLU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 1 Pullup Resistor

0: Off

1: On

7	6	5	4	3	2	1	0
P2	P2	P2	P2	P2	P2	P2	P2
PLU7	PLU6	PLU5	PLU4	PLU3	PLU2	PLU1	PLU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 2 Pullup Resistor

0: Off

1: On

7	6	5	4	3	2	1	0
P3	Р3						
PLU7	PLU6	PLU5	PLU4	PLU3	PLU2	PLU1	PLU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 3 Pullup Resistor

0: Off

1: On

P0PLU:

x'00FFB0'

Port 0 Pullup Control Register

8-bit access register

P0PLU controls the port 0 pullup resistor.

P1PLU:

x'00FFB1'

Port 1 Pullup Control Register

8-bit access register

P1PLU controls the port 1 pullup resistor.

P2PLU:

x'00FFB2'

Port 2 Pullup Control Register

8-bit access register

P2PLU controls the port 2 pullup resistor.

P3PLU:

x'00FFB3'

Port 3 Pullup Control Register

8-bit access register

P3PLU controls the port 3 pullup resistor.

7	6	5	4	3	2	1	0
P4	P4	P4	P4	P4	P4	P4	P4
PLU7	PLU6	PLU5	PLU4	PLU3	PLU2	PLU1	PLU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 4 Pullup Resistor

0: Off

1: On

7	6	5	4	3	2	1	0
P5	P5	P5	P5	P5	P5	P5	P5
PLU7	PLU6	PLU5	PLU4	PLU3	PLU2	PLU1	PLU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 5 Pullup Resistor

0: Off

1: On

7	6	5	4	3	2	1	0
-	-	-	-	P6 PLU3	P6 PLU2	P6 PLU1	P6 PLU0
R	R	R	R	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0/1	0/1	0/1	0/1

3:0 Port 6 Pullup Resistor

0: Off

1: On

7	6	5	4	3	2	1	0
1	-	P7	P7	P7	P7	P7	P7
		PLU5	PLU4	PLU3	PLU2	PLU1	PLU0
R	R	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0/1	0/1	0/1	0/1	0/1	0/1

5:0 Port 7 Pullup Resistor

0: Off

1: On

P4PLU:

x'00FFB4'

Port 4 Pullup Control Register

8-bit access register

P4PLU controls the port 4 pullup resistor.

P5PLU:

x'00FFB5'

Port 5 Pullup Control Register

8-bit access register

P5PLU controls the port 5 pullup resistor.

P6PLU:

x'00FFB6'

Port 6 Pullup Control Register

8-bit access register

P6PLU controls the port 6 pullup resistor.

P7PLU:

x'00FFB7'

Port 7 Pullup Control Register

8-bit access register

P7PLU controls the port 7 pullup resistor.

P

	7	6	5	4	3	2	1	0
	P8	P8	P8	P8	P8	P8	P8	P8
P	LU7	PLU6	PLU5	PLU4	PLU3	PLU2	PLU1	PLU0
F	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	0	0	0	0	0	0	0	0
	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 8 Pullup Resistor

0: Off

1: On

7	6	5	4	3	2	1	0
P9	P9	P9	P9	P9	P9	P9	P9
PLU7	PLU6	PLU5	PLU4	PLU3	PLU2	PLU1	PLU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 9 Pullup Resistor

0: Off

1: On

ı	7	6	5	4	3	2	1	0
	-	-	PA	PA	PA	PA	PA	PA
			PLU5	PLU4	PLU3	PLU2	PLU1	PLU0
I	R	R	R/W	R/W	R/W	R/W	R/W	R/W
I	0	0	0	0	0	0	0	0
	0	0	0/1	0/1	0/1	0/1	0/1	0/1

5:0 Port A Pullup Resistor

0: Off

1: On

7	6	5	4	3	2	1	0
-	-	-	reserv ed	reserv ed	reserv ed	PB PLU1	PB PLU0
R	R	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0/1	0/1	0/1	0/1	0/1	0/1

4:2 Reserved

Set to 0

1:0 Port B Pullup Resistor

0: Off

1: On

P8PLU:

x'00FFB8'

Port 8 Pullup Control Register

8-bit access register

P8PLU controls the port 8 pullup resistor.

P9PLU:

x'00FFB9'

Port 9 Pullup Control Register

8-bit access register

P9PLU controls the port 9 pullup resistor.

PAPLU:

x'00FFBA'

Port A Pullup Control Register

8-bit access register

PAPLU controls the port A pullup resistor.

PBPLU:

x'00FFBB'

Port B Pullup Control Register

8-bit access register

PBPLU controls the port B pullup resistor.

7	6	5	4	3	2	1	0
P0	P0	P0	P0	P0	P0	P0	P0
OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 0 Output

0: Output low

1: Output high

7	6	5	4	3	2	1	0
P1 OUT7	P1 OUT6	P1 OUT5	P1 OUT4	P1 OUT3	P1 OUT2	P1 OUT1	P1 OUT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 1 Output

0: Output low

1: Output high

7	6	5	4	3	2	1	0
P2	P2	P2	P2	P2	P2	P2	P2
OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 2 Output

0: Output low

1: Output high

7	6	5	4	3	2	1	0
P3 OUT7	P3						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 3 Output

0: Output low

1: Output high

POOUT:

x'00FFC0'

Port 0 Output Register

8-bit access register

POOUT sets the data output to the port 0.

P10UT:

x'00FFC1'

Port 1 Output Register

8-bit access register

P1OUT sets the data output to the port 1.

P2OUT:

x'00FFC2'

Port 2 Output Register

8-bit access register

P2OUT sets the data output to the port 2.

P3OUT:

x'00FFC3'

Port 3 Output Register

8-bit access register

P3OUT sets the data output to the port 3.

P

7	6	5	4	3	2	1	0
P4	P4	P4	P4	P4	P4	P4	P4
OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 4 Output

0: Output low

1: Output high

7	6	5	4	3	2	1	0
P5 OUT7	P5 OUT6	P5 OUT5	P5 OUT4	P5 OUT3	P5 OUT2	P5 OUT1	P5 OUT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 5 Output

0: Output low

1: Output high

7	6	5	4	3	2	1	0
-	-	-	-	P6 OUT3	P6 OUT2	P6 OUT1	P6 OUT(
R	R	R	R	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0/1	0/1	0/1	0/1

3:0 Port 6 Output

0: Output low

1: Output high

7	6	5	4	3	2	1	0
-	-	P7 OUT5	P7 OUT4	P7 OUT3	P7 OUT2	P7 OUT1	P7 OUT0
R	R	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0/1	0/1	0/1	0/1	0/1	0/1

5:0 Port 7 Output

0: Output low

1: Output high

P4OUT:

x'00FFC4'

Port 4 Output Register

8-bit access register

P4OUT sets the data output to the port 4.

P5OUT:

x'00FFC5'

Port 5 Output Register

8-bit access register

P5OUT sets the data output to the port 5.

P6OUT:

x'00FFC6'

Port 6 Output Register

8-bit access register

P6OUT sets the data output to the port 6.

P7OUT:

x'00FFC7'

Port 7 Output Register

8-bit access register

P7OUT sets the data output to the port 7.

7	6	5	4	3	2	1	0
P8	P8	P8	P8	P8	P8	P8	P8
OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 8 Output

0: Output low

1: Output high

7	6	5	4	3	2	1	0
P9 OUT7	P9 OUT6	P9 OUT5	P9 OUT4	P9 OUT3	P9 OUT2	P9 OUT1	P9 OUT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 9 Output

0: Output low

1: Output high

7	6	5	4	3	2	1	0
-	-	PA	PA	PA	PA	PA	PA
		OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
R	R	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0/1	0/1	0/1	0/1	0/1	0/1

5:0 Port A Output

0: Output low

1: Output high

7	6	5	4	3	2	1	0
-	-	-		reserv		PB	PB
			ed	ed	ed	OUT1	0010
R	R	R	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0	0/1	0/1	0/1	0/1	0/1

4:2 Reserved

Set to 0

1:0 Port B Output

0: Output low

1: Output high

P80UT:

x'00FFC8'

Port 8 Output Register

8-bit access register

P8OUT sets the data output to the port 8.

P9OUT:

x'00FFC9'

Port 9 Output Register

8-bit access register

P9OUT sets the data output to the port 9.

PAOUT:

x'00FFCA'

Port A Output Register

8-bit access register

PAOUT sets the data output to the port A.

PBOUT:

x'00FFCB'

Port B Output Register

8-bit access register

PBOUT sets the data output to the port B.

P

7	6	5	4	3	2	1	0
P0 IN7	P0 IN6	P0 IN5	P0 IN4	P0 IN3	P0 IN2	P0 IN1	P0 IN0
R	R	R	R	R	R	R	R
Port	Port	Port	Port	Port	Port	Port	Port
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 0 Input

0: Input low

1: Input high

	7	6	5	4	3	2	1	0
	P1							
	IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0
I	R	R	R	R	R	R	R	R
Ī	Port							
	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 1 Input

0: Input low

1: Input high

7	6	5	4	3	2	1	0
P2 IN7	P2 IN6	P2 IN5	P2 IN4	P2 IN3	P2 IN2	P2 IN1	P2 IN0
R	R	R	R	R	R	R	R
Port	Port	Port	Port	Port	Port	Port	Port
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 2 Input

0: Input low

1: Input high

7	6	5	4	3	2	1	0
P3 IN7	P3 IN6	P3 IN5	P3 IN4	P3 IN3	P3 IN2	P3 IN1	P3 IN0
R	R	R	R	R	R	R	R
Port	Port	Port	Port	Port	Port	Port	Port
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 3 Input

0: Input low

1: Input high

POIN:

x'00FFD0'

Port 0 Input Register

8-bit access register

P0IN reads the port 0 data.

P1IN:

x'00FFD1'

Port 1 Input Register

8-bit access register

P1IN reads the port 1 data.

P2IN:

x'00FFD2'

Port 2 Input Register

8-bit access register

P2IN reads the port 2 data.

P3IN:

x'00FFD3'

Port 3 Input Register

8-bit access register

P3IN reads the port 3 data.

7	6	5	4	3	2	1	0
P4	P4	P4	P4	P4	P4	P4	P4
IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0
R	R	R	R	R	R	R	R
Port	Port	Port	Port	Port	Port	Port	Port
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 4 Input

0: Input low

1: Input high

7	6	5	4	3	2	1	0
P5	P5	P5	P5	P5	P5	P5	P5
IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0
R	R	R	R	R	R	R	R
Port	Port	Port	Port	Port	Port	Port	Port
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 5 Input

0: Input low

1: Input high

7	6	5	4	3	2	1	0
-	-	-	-	P6 IN3	P6 IN2	P6 IN1	P6 IN0
R	R	R	R	R	R	R	R
0	0	0	0	Port	Port	Port	Port
0	0	0	0	0/1	0/1	0/1	0/1

3:0 Port 6 Input

0: Input low

1: Input high

7	6	5	4	3	2	1	0
-	P7 IN6	P7 IN5	P7 IN4	P7 IN3	P7 IN2	P7 IN1	P7 IN0
R	R	R	R	R	R	R	R
0	Port						
0	0/1	0/1	0/1	0/1	0/1	0/1	0/1

6:0 Port 7 Input

0: Input low

1: Input high

P4IN:

x'00FFD4'

Port 4 Input Register

8-bit access register

P4IN reads the port 4 data.

P5IN:

x'00FFD5'

Port 5 Input Register

8-bit access register

P5IN reads the port 5 data.

P6IN:

x'00FFD6'

Port 6 Input Register

8-bit access register

P6IN reads the port 6 data.

P7IN:

x'00FFD7'

Port 7 Input Register

8-bit access register

P7IN reads the port 7 data.

The NMI pin input state can be confirmed by reading the port 76 pin.

P

7	6	5	4	3	2	1	0
P8 IN7	P8 IN6	P8 IN5	P8 IN4	P8 IN3	P8 IN2	P8 IN1	P8 IN0
R	R	R	R	R	R	R	R
Port	Port	Port	Port	Port	Port	Port	Port
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 8 Input

0: Input low

1: Input high

7	6	5	4	3	2	1	0
P9	P9	P9	P9	P9	P9	P9	P9
IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0
R	R	R	R	R	R	R	R
Port	Port	Port	Port	Port	Port	Port	Port
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 9 Input

0: Input low

1: Input high

7	6	5	4	3	2	1	0
-	-	PA	PA	PA	PA	PA	PA
		IN5	IN4	IN3	IN2	IN1	IN0
R	R	R	R	R	R	R	R
0	0	Port	Port	Port	Port	Port	Port
0	0	0	0	0/1	0/1	0/1	0/1

5:0 Port A Input

0: Input low

1: Input high

7	6	5	4	3	2	1	0
-	-	-	-	-	-	PB IN1	PB IN0
R	R	R	R	R	R	R	R
0	0	0	0	0	0	Port	Port
0	0	0	0	0	0	0/1	0/1

1:0 Port B Input

0: Input low

1: Input high

P8IN:

x'00FFD8'

Port 8 Input Register

8-bit access register

P8IN reads the port 8 data.

P9IN:

x'00FFD9'

Port 9 Input Register

8-bit access register

P9IN reads the port 9 data.

PAIN:

x'00FFDA'

Port A Input Register

8-bit access register

PAIN reads the port A data.

PBIN:

x'00FFDB'

Port B Input Register

8-bit access register

PBIN reads the port B data.

7	6	5	4	3	2	1	0
P0	P0	P0	P0	P0	P0	P0	P0
DIR	DIR6	DIR5	DIR4	DIR3	DIR2	DIR1	DIR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 0 Input/Output

0: Input

1: Output

7	6	5	4	3	2	1	0
P1	P1	P1	P1	P1	P1	P1	P1
DIR7	DIR6	DIR5	DIR4	DIR3	DIR2	DIR1	DIR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 1 Input/Output

0: Input

1: Output

7	6	5	4	3	2	1	0
P2	P2	P2	P2	P2	P2	P2	P2
DIR7	DIR6	DIR5	DIR4	DIR3	DIR2	DIR1	DIR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 2 Input/Output

0: Input

1: Output

7	6	5	4	3	2	1	0
Р3	Р3	Р3	Р3	Р3	Р3	Р3	Р3
DIR7	DIR6	DIR5	DIR4	DIR3	DIR2	DIR1	DIR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 3 Input/Output

0: Input

1: Output

PODIR:

x'00FFE0'

Port 0 Input/Output Control Register

8-bit access register

P0DIR controls the port 0 input/output.

P1DIR:

x'00FFE1'

Port 1 Input/Output Control Register

8-bit access register

P1DIR controls the port 1 input/output.

P2DIR:

x'00FFE2'

Port 2 Input/Output Control Register

8-bit access register

P2DIR controls the port 2 input/output.

P3DIR:

x'00FFE3'

Port 3 Input/Output Control Register

8-bit access register

P3DIR controls the port 3 input/output.

P

7	6	5	4	3	2	1	0
P4	P4	P4	P4	P4	P4	P4	P4
DIR7	DIR6	DIR5	DIR4	DIR3	DIR2	DIR1	DIR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 4 Input/Output

0: Input

1: Output

7	6	5	4	3	2	1	0
P5 DIR7	P5 DIR6	P5 DIR5	P5 DIR4	P5 DIR3	P5 DIR2	P5 DIR1	P5 DIR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 5 Input/Output

0: Input

1: Output

7	6	5	4	3	2	1	0
-	-	-	-	P6	P6	P6	P6
				DIR3	DIR2	DIR1	DIR0
R	R	R	R	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0/1	0/1	0/1	0/1

3:0 Port 6 Input/Output

0: Input

1: Output

7	6	5	4	3	2	1	0
-	-	P7 DIR5	P7 DIR4	P7 DIR3	P7 DIR2	P7 DIR1	P7 DIR0
R	R	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0/1	0/1	0/1	0/1	0/1	0/1

5:0 Port 7 Input/Output

0: Input

1: Output

P4DIR:

x'00FFE4'

Port 4 Input/Output Control Register

8-bit access register

P4DIR controls the port 4 input/output.

P5DIR:

x'00FFE5'

Port 5 Input/Output Control Register

8-bit access register

P5DIR controls the port 5 input/output.

P6DIR:

x'00FFE6'

Port 6 Input/Output Control Register

8-bit access register

P6DIR controls the port 6 input/output.

P7DIR:

x'00FFE7'

Port 7 Input/Output Control Register

8-bit access register

P7DIR controls the port 7 input/output.

7	6	5	4	3	2	1	0
P8	P8	P8	P8	P8	P8	P8	P8
DIR7	DIR6	DIR5	DIR4	DIR3	DIR2	DIR1	DIR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 8 Input/Output

0: Input

1: Output

7	6	5	4	3	2	1	0
P9	P9	P9	P9	P9	P9	P9	P9
DIR7	DIR6	DIR5	DIR4	DIR3	DIR2	DIR1	DIR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7:0 Port 9 Input/Output

0: Input

1: Output

	7	6	5	4	3	2	1	0
	-	-	PA DIR5	PA DIR4	PA DIR3	PA DIR2	PA DIR1	PA DIR0
İ	R	R	R/W	R/W	R/W	R/W	R/W	R/W
ĺ	0	0	0	0	0	0	0	0
ĺ	0	0	0/1	0/1	0/1	0/1	0/1	0/1

5:0 Port A Input/Output

0: Input

1: Output

7	6	5	4	3	2	1	0
-	-	-	reserv ed	reserv ed	reserv ed	PB DIR1	PB DIR0
R	R	R	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0	0/1	0/1	0/1	0/1	0/1

4-2 Reserved

Port B Input/Output 0: Input

1: Output

Set to 0.

P8DIR:

x'00FFE8'

Port 8 Input/Output Control Register

8-bit access register

P8DIR controls the port 8 input/output.

P9DIR:

x'00FFE9'

Port 9 Input/Output Control Register

8-bit access register

P9DIR controls the port 9 input/output.

PADIR:

x'00FFEA'

Port A Input/Output Control Register

8-bit access register

PADIR controls the port A input/output.

PBDIR:

x'00FFEB'

Port B Input/Output Control Register

8-bit access register

PBDIR controls the port B input/output.

1-0

	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	P0	P0
							MD1	MD0
	R	R	R	R	R	R	R/W	R/W
Processor address/data separate mode	0	0	0	0	0	0	0	1
Processor address/data shared mode	0	0	0	0	0	0	1	0
Other modes	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0/1	0/1

P0MD: x'00FFF0' Port 0 Mode Register

8-bit access register

1:0 P0 Input/Output Signal Switch 00: Port 01: Data

10: Address/data shared mode

P0MD sets a signal output to the port 0.

			-					
	7	6	5	4	3	2	1	0
	-	P1	P1	P1	P1	P1	P1	P1
		LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Processor address/data separate mode (16-bit bus width)	0	0	0	0	0	0	0	1
Processor address/data shread mode (8-bit bus width)	0	0	0	0	0	0	1	0
Other modes	0	0	0	0	0	0	0	0
	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1

P1LMD : x'00FFF2' Port 1 Mode Register L

8-bit access register

6:5 P12 Input/Output Signal Switch 00: Port

01: TM11IOA input10: TM11IOA output

4 P11 Input/Output Signal Switch 0: Port

1: Reserved

3:2 P10 Input/Output Signal Switch 00: Port

01: TM8IOB input10: TM8IOB output

1:0 P1 Input/Output Signal Switch 00: Poi

00: Port/each funtion

01: Data output

10: Address/data shared mode

P1LMD sets a signal output to

the port 1.

When P1 is used as a port or an input/output pin of each peripheral function, always set

P1LMD[1:0] to 00.

	1
_	4

7	6	5	4	3	2	1	0
P1	P1	P1	P1	P1	P1	P1	P1
HMD7	HMD6	HMD5	HMD4	HMD3	HMD2	HMD1	HMD0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7

P1HMD : x'00FFF3' Port 1 Mode Register H

8-bit access register

P1HMD sets a signal output to

the port 1.

P17 Input/Output Signal Switch 0: Port

1: TM12IC input

6:5 P16 Input/Output Signal Switch 00: Port

01: TM12IOB input 10: TM12IOB output

4:3 P15 Input/Output Signal Switch 00: Port

01: TM12IOA input 10: TM12IOA output

2 P14 Input/Output Signal Switch 0: Port

1: TM11IC input

1:0 P13 Input/Output Signal Switch 00: Port

01: TM11IOB input 10: TM11IOB output When P1 is used as a port or an input/output pin of each peripheral function, always set

P1LMD[1:0] to 00.

	7	6	5	4	3	2	1	0
	P2	-	P2	P2	P2	P2	-	P2
	MD7		MD5	MD4	MD3	MD2		MD0
	R/W	R	R/W	R/W	R/W	R/W	R	R/W
Processor address/data separate mode	0	0	0	0	0	0	0	1
Other modes	0	0	0	0	0	0	0	0
	0/1	0	0/1	0/1	0/1	0/1	0	0/1

P2MD:

x'00FFF1'

Port 2 Mode Register

8-bit access register

7 P24 Input/Output Signal Switch 0: Port

1: TM15IA input

(cannot use P56 as TM15IA input)

P2MD sets a signal output to the

port 2.

5 P22 Input/Output Signal Switch 0: Port

1: SBO2 output

4 P21 Input/Output Signal Switch 0: Port

1: SBI2 input

(cannot use P82 as SBI2 input)

3:2 P20 Input/Output Signal Switch 00: Port

01: SBT2 input

(cannot use P60 as SBT2 input)

10: SBT2 half-duplex output

11: SBT2 output

0 P2 Input/Output Signal Switch 0: Port/each Function

1: Address

P23, P25, P26 and P27 can be used as ports if P2MD0 is set to 0. When P2 is uesed as a port or an input/output pin of each peripheral function, P2MD0 is al-

ways set to 0.

	7	6	5	4	3	2	1	0
	Р3							
	LMD7	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
	R/W							
Processor address/data separate mode	0	1	0	1	0	1	0	1
Other modes	0	0	0	0	0	0	0	0
	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

P3LMD:
x'00FFF4'
Port 3 Mode Register L

8-bit access register

P3LMD sets a signal output to

the port 3.

7:6 P33 Input/Output Signal Switch 00: Port

01: A11 output 10: /KI3 input

5:4 P32 Input/Output Signal Switch 00: Port

01: A10 output 10: /KI2 input

3:2 P31 Input/Output Signal Switch 00: Port

01: A9 output 10: /KI1 input

1:0 P30 Input/Output Signal Switch 00: Port

01: A8 output 10: /KI0 input

7:6

	7	6	5	4	3	2	1	0
	Р3							
	HMD7	HMD6	HMD5	HMD4	HMD3	HMD2	HMD1	HMD0
	R/W							
Processor address/data separate mode	0	1	0	1	0	1	0	1
Other modes	0	0	0	0	0	0	0	0
	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

P3HMD :
x'00FFF5'
Port 3 Mode Register H

8-bit access register

P37 Input/Output Signal Switch 00: Port

01: A15 output 10: /KI7 input P3HMD sets a signal output to

the port 3.

5:4 P36 Input/Output Signal Switch 00: Port

01: A14 output 10: /KI6 input

3:2 P35 Input/Output Signal Switch 00: Port

01: A13 output 10: /KI5 input

1:0 P34 Input/Output Signal Switch 00: Port

01: A12 output 10: /KI4 input

	7	6	5	4	3	2	1	0
	P4							
	LMD7	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
	R/W							
Processor mode	0	1	0	1	1	1	1	1
Other modes	0	0	0	0	0	0	0	0
	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

P4LMD :
x'00FFF6'
Port 4 Mode Register L

8-bit access register

P4LMD sets a signal output to the port 4.

7:6 P45 Input/Output Signal Switch 00: Port

01: A21 output

10: AN5

5:4 P44 Input/Output Signal Switch 00: Port

01: A20 output

10: AN4

3 P43 Input/Output Signal Switch 0: Port

1: A19 output

2 P42 Input/Output Signal Switch 0: Port

1: A18 output

1 P41 Input/Output Signal Switch 0: Port

1: A17 output

0 P40 Input/Output Signal Switch 0: Port

1: A16 output

Chapter 11 Appendix

3:2

	7	6	5	4	3	2	1	0
	-	-	-	-	P4	P4	P4	P4
					HMD3	HMD2	HMD1	HMD0
	R	R	R	R	R/W	R/W	R/W	R/W
Processor mode	0	0	0	0	0	1	0	1
Other modes	0	0	0	0	0	0	0	0
	0	0	0	0	0/1	0/1	0/1	0/1

P4HMD :
x'00FFF7'
Port 4 Mode Register H

8-bit access register

P47 Input/Output Signal Switch 00: Port

01: A23 output

10: AN7

11: WDOUT output

P4HMD sets a signal output to

the port 4.

1:0 P46 Input/Output Signal Switch 00: Port

01: A22 output

10: AN6

11: STOP output

	7	6	5	4	3	2	1	0
	P5							
	LMD7	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
	R/W							
Processor mode	0	1	0	1	0	1	0	1
Other modes	0	0	0	0	0	0	0	0
	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

P5LMD:
x'00FFF8'
Port 5 Mode Register L

8-bit access register

P5LMD sets a signal output to

the port 5.

7:6 P53 Input/Output Signal Switch 00: Port

01: /CS3 output 10: TM14OB output

5:4 P52 Input/Output Signal Switch 00: Port

01: /CS2 output 10: TM14OA output

3:2 P51 Input/Output Signal Switch 00: Port

01: /CS1 output 10: TM13OB output

1:0 P50 Input/Output Signal Switch 00: Port

01: /CS0 output 10: TM13OA output

	7	6	5	4	3	2	1	0
	-	-	-	P5	P5	P5	P5	P5
				HMD4	HMD3	HMD2	HMD1	HMD0
	R	R	R	R/W	R/W	R/W	R/W	R/W
Processor address/data separate mode	0	0	0	0	1	1	0	0
Processor address/data shared mode	0	0	0	0	0	1	0	0
Other modes	0	0	0	0	0	0	0	0
	0	0	0	0/1	0/1	0/1	0/1	0/1

P5HMD :
x'00FFF9'
Port 5 Mode Register H

8-bit access register

4:2 P56 Input/Output Signal Switch 000: Port

001: ALE output 010: /ALE output 011: /BSTRE output 100: TM15IA

(cannot use P24 as TM15IA input)

1 P55 Input/Output Signal Switch 0: Port

1: /BRACK output

0 P54 Input/Output Signal Switch 0: Port

1: /BREQ input

P5HMD sets a signal output to the port 5.

	7	6	5	4	3	2	1	0
	_	_	P6	P6	P6	P6	P6	P6
			MD5	MD4	MD3	MD2		MD0
	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Processor mode (16-bit)	0	0	1	1	1	0	0	0
Processor mode (8-bit)	0	0	0	1	1	0	0	0
Other modes	0	0	0	0	0	0	0	0
	0	0	0/1	0/1	0/1	0/1	0/1	0/1

P6MD: x'00FFFF'

Port 6 Mode Register

8-bit access register

5 P63 Input/Output Signal Switch 0: Port

1: /WEH (/WE) output

P6MD sets a signal output to the

port 6.

4 P62 Input/Output Signal Switch 0: Port

1: /WEL output

3 P61 Input/Output Signal Switch 0: Port

1: /RE output

2:0 P60 Input/Output Signal Switch 000: Port

001: WAIT input 010: SBT2 input

(cannot use P20 as SBT2 input)

011: SBT2 output

100: SBT2 half-duplex output

7	6	5	4	3	2	1	0
-	P7	P7	P7	P7	P7	P7	P7
	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0/1	0/1	0/1	0/1	0/1	0/1	0/1

P7LMD: x'00FFFA' Port 7 Mode Register L

8-bit access register

6:5 P72 Input/Output Signal Switch 00: Port

01: SBO0 output10: UCAS output

P7LMD sets a signal output to

the port 7.

4:3 P71 Input/Output Signal Switch 00: Port

01: SBI0 input10: LCAS output11: CAS output

2:0 P70 Input/Output Signal Switch 000: Port

001: SBT0 input 010: SBT0 output

011: SBT0 half-duplex output

101: RAS output

	1

7	6	5	4	3	2	1	0
-	P7	P7	P7	P7	P7	P7	P7
	HMD6	HMD5	HMD4	HMD3	HMD2	HMD1	HMD0
R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0/1	0/1	0/1	0/1	0/1	0/1	0/1

P7HMD:
x'00FFFB'
Port 7 Mode Register H

8-bit access register

P7HMD sets a signal output to

the port 7.

6:5 P75 Input/Output Signal Switch 00: Port

01: SBO1 output

4:3 P74 Input/Output Signal Switch 00: Port

01: SBI1 input

2:0 P73 Input/Output Signal Switch 000: Port

001: SBT1 input 010: SBT1 output

011: SBT1 half-duplex output

100: /DMUX output

7	6	5	4	3	2	1	0
-	-	-	P8	P8	P8	P8	P8
			LMD4	LMD3	LMD2	LMD1	LMD0
R	R	R	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0	0/1	0/1	0/1	0/1	0/1

P8LMD : x'00FFFC' Port 8 Mode Register L

8-bit access register

4:2 P82 Input/Output Signal Switch 000: Port

001: TM0IO input, SBT3 input

010: TM0IO output 011: SBT3 output

100: SBT3 half-duplex output101: SBT3 open drain output

110: SBT2 input

(cannot use P21 as SBI2 input)

1 P81 Input/Output Signal Switch 0: Port

1: TM14OB output

0 P80 Input/Output Signal Switch 0: Port

1: TM14OA output

P8LMD sets a signal output to the port 8.

_
_

7	6	5	4	3	2	1	0
P8	P8	P8	P8	P8	P8	P8	P8
MMD7	MMD6	MMD5	MMD4	MMD3	MMD2	MMD1	MMD0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

P8MMD: x'00FFFD' Port 8 Mode Register M

8-bit access register

P8MMD sets a signal output to

the port 8.

7:5 P85 Input/Output Signal Switch 000: Port

001: TM9IOA input, SBT4 input

010: TM9IOA output 011: SBT4 output

100: SBT4 half-duplex output101: SBT4 open drain output

110: SBO2 output

4:2 P84 Input/Output Signal Switch 000: Port

001: TM7IO input 010: TM7IO output 011: SBO3 output

100: SBD3 open drain input/output

1:0 P83 Input/Output Signal Switch 00: Port

01: TM4IO input, SBI3 input

10: TM4IO output11: Reserved

7	6	5	4	3	2	1	0
-	-	-	-	P8	P8	P8	P8
				HMD3	HMD2	HMD1	HMD0
R	R	R	R	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0	0	0/1	0/1	0/1	0/1

P8HMD : x'00FFFE' Port 8 Mode Register H

8-bit access register

3:2 P87 Input/Output Signal Switch 00: Port

01: SBO4 output

10: SBD4 open drain output, SBD4 input

11: TM9IC input

P8HMD sets a signal output to

the port 8.

1:0 P86 Input/Output Signal Switch 00: Port

01: TM9IOB input, SBI4 input

10: TM9IOB output

7	6	5	4	3	2.	1	0
			<u> </u>			-	
P9	P9	P9	P9	P9	-	P9	P9
LMD7	LMD6	LMD5	LMD4	LMD3		LMD1	LMD0
R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0	0/1	0/1

P9LMD : x'00FFEC' Port 9 Mode Register L

8-bit access register

7:6 P92 Input/Output Signal Switch 00: Port

01: TM10IOB input, /DMAREQ0 input

10: TM10IOB output

P9LMD sets a signal output to

the port 9.

5:3 P91 Input/Output Signal Switch 000: Port

001: TM10IOA input 010: TM10IOA output 011: BIBT2 output 100: /DMAACK1 output

1:0 P90 Input/Output Signal Switch 00: Port

01: TM8IOA input, /DMAREQ1 input

10: TM8IOA output11: BIBT1 output

Chapter 11 Appendix

7	6	5	4	3	2	1	0
P9	P9	P9	P9	P9	P9	P9	P9
HMD7	HMD6	HMD5	HMD4	HMD3	HMD2	HMD1	HMD0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

7	6	5	4	3	2	1	0
P9	P9	P9	P9	P9	P9	P9	P9
HMD7	HMD6	HMD5	HMD4	HMD3	HMD2	HMD1	HMD0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

P9HMD: x'00FFED' Port 9 Mode Register H

8-bit access register

P9HMD sets a signal output to

the port 9.

P94 LED Drive Select 7 0: Disable

1: Enable

P93 LED Drive Select 6 0: Disable

1: Enable

5 P97 Input/Output Signal Switch 0: Port

1: AN3 input

4 P96 Input/Output Signal Switch 0: Port

1: AN2 input

3 P95 Input/Output Signal Switch 0: Port

1: AN1 input

P94 Input/Output Signal Switch 2 0: Port

1: AN0 input

P93 Input/Output Signal Switch 1:0 00: Port

> 01: TM10IC input 10: /DMAACK0 output

7	6	5	4	3	2	1	0
-	-	-	PA MD4	PA MD3	PA MD2	PA MD1	PA MD0
R	R	R	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
0	0	0	0/1	0/1	0/1	0/1	0/1

PAMD:

port A.

x'00FFDC'

Port A Mode Register

8-bit access register

PAMD sets a signal output to the

4 PA4 Input/Output Signal Switch 0: Port

1: /IRQ4 input or TM15IB input

3 PA3 Input/Output Signal Switch 0: Port

1: /IRQ3 input

2 PA2 Input/Output Signal Switch 0: Port

1: /IRQ2 input

1 PA1 Input/Output Signal Switch 0: Port

1: /IRQ1 input

0 PA0 Input/Output Signal Switch 0: Port

3

reserv

ed

R/W

0/1

7

R

0

6

reserv

ed

R/W

0

0/1

5

reserv

ed

R/W

0

0/1

4

reserv

ed

R/W

0

0/1

2

PB

MD2

R/W

0/1

PB

MD1

R/W

0

0/1

0

PB

MD0

R/W

0/1

1: /IRQ0 input

PBMD:

x'00FFDD'

Port B Mode Register

8-bit access register

6:4 Reserved Set to 0

3 Reserved Set to 1

2 PB1 Input/Output Signal Switch 0: Port

1: XI input

1:0 PB0 Input/Output Signal Switch 00: Port

01: BOSC output10: BIBT1 output11: BIBT2 output

PBMD sets a signal output to the port B.

11-2-2 MN102H60G/60K/F60G/F60K Address Map

	Registers									lo l									
	Internal Control Registers				Interrupt Control	Registers				System Control		ΔTC)		ETC	2		Serial Interface	
0	CPUM	O reserved NMICR	C C	C C C	O O IO4ICH	C C HOLDA	О С	O O	IRQTRG	SYSCTL	ATOCTR •	AT1CTR •	AT2CTR •	AT3CTR •	ETOCTR ◆	ET1CTR •	SCOCTR	SC2CTR	SC4CTR
2 1	reserved	C C reserved WDICR reserved	C C	O O O O O O O O O O O O O O O O O O O	O O	C C C	O O O	O O O O O O O O O O O O O O O O O O O	KEYTRG	ADBOL*	ATOCNT ◆	AT1CNT ◆	AT2CNT ◆	AT3CNT ◆	ET0CNT ◆	ET1CNT ◆	SCOSTR SCOTRB	SC2STR SC2TRB	SC4STR SC4TRB
4 3		O JNICR reserve	O TWOULD	O TMZUIC	O 110BICL TM4UIC	O TM6UIC	O C1TICL SCORIC	O TC0ICL SC4RIC		ADB0H A			*	*	*		SCOST	SC2ST	SC4ST
2	reserved	C C C C C C C C C C C C C C C C C C C	C TM8UICH TM	O TM9AICH TI	O :L TM10BICH'TN	O :L	O SC1TICH S	O ETC01CH E	KEYCTR		H ATOSRCL *	H ATISRCL *	H AT2SRCL	H AT3SRCL	H ETOSRCL	H ET1SRCL *			
9 2	reserved	C C C C C C C C C C C C C C C C C C C	TM8AICH TM8UICH TM8UICL TM0UICH TM0UICL	O O O O O O O O O O O O O O O O O O O	O O O O O O O O O O O O O O O O O O O	O O O O O O O O O O O O O O O O O O O	SC1RICH SC1RIC	О О С	WDREG	ADB1L *	AT0SRCH	AT1SRCH	AT2SRCH	AT3SRCH	ETOSRCH	ET1SRCH			
8	EFCR	reserved	O O O	C	C C C	O IM7UICL	SCZRICH SCZRICH SCZTICH SCZTRICH SCZTRI	O O ATOICL		ADB1H	ATODSTL *	AT1DSTL *	AT2DSTL *	AT3DSTL *	ETODSTL *	ET1DSTL *	SC1CTR	SC3CTR	reserved
B A	reserved	reserved		1		O O O BICH TM12BICL T	O O SICH SC2RICL S	O O AT11CL		OADBCTL	AT0DSTH	AT1DSTH	AT2DSTH	АТЗОЅТН	ET0DSTH	ET1DSTH	SC1STR SC1TRB	SC3STR SC3TRB	reserved reserved
D C E	reserved		TM9UICH TM9UICL TM8BICH TM1UICH TM1UICH	TM10AICH TM10UICH;TM10UICH TM3UICH TM3UICH	O	TM12	SC3TICH SC3TICL SC2	O O ATZICH ATZICL AT1									SCI	SS	rese
Е	IAGR		C C C	O O O M10AICH TM10AICL T	O O O M11BICH TM11BICL T		SC3RICH SC3RICL SC3TICH SC3TICL	O O AT31CL											
Lower 4 bits Upper 20 bits	x,00FC00'	x'00FC40'	x'00FC50'	x'00FC60' π	x'00FC70' π	x'00FC80'	x'00FC90' s	x'00FCA0'	x'00FCB0'	x'00FCD0'	x'00FD00'	x'00FD10'	x'00FD20'	x'00FD30'	x'00FD40'	x'00FD50'	x'00FD80'	x'00FD90'	x'00FDA0'

O:8-bit access Use the MOVB instruction.

^{♦: 16-}bit access during write operation Use the MOV instruction.

^{*: 16-}bit or 24-bit access during write operation Use the MOV instruction or the MOVX instruction.

^{□:} This register cannot neither read nor write. This register is used as a double buffer of the compare register when the PWM functions is selected.

		8-bit Timers					16-bit Timers					АД Сопуепег			CPU Memory	Control			Port Control			
1 0	O O TM1BC TM0BC	O O TM1BR TM0BR	C C C TM1MT		TM8MD	ТМ9МD	TM10MD	TM11MD	TM12MD	TM15MD	ANCTR	AN4BUF	reserved	reserved	EXWMD •	DRAMMD1 ◆	D O O	O O P10014	O O NITA	O O O NOTE	O O DM24	
3 2	О О О	O O TW3BR TW2BR	O DM2MT		TM8BC	TM9BC	TM10BC	TM11BC	TM12BC	TM15BC		ANSBUF	reserved	reserved	MEMMD1 ◆	DRAMMD2	O O O	O O P30UT P20UT	O O NIEd	O O Padir	O O O MHIMD	
5 4	O D D TM5BC	O C TM5BR TM4BR			TM8CA	TM9CA	TM10CA	TM11CA	TM12CA	TM15CA	reserved	ANGBUF		reserved	MEMMD2 ◆		O O O DEPLO	D O D	O O DIEN PAIN	O O O P5DIR	С С	
9 2	О С С	O			TM8CAX	ТМ9САХ □	TM10CAX ☐	TM11CAX	TM12CAX			AN7BUF		reserved	REEDGE ◆		O O O	C C C	NI94 NIZA	O O PTDIR PEDIR	O O O P4LMD	
8	TM14BC TM13BC T	TM14BR TM13BR T	T GM21MT GM21MT		TM8CB	TM9CB	TM10CB	TM11CB	TM12CB		ANOBUF			reserved	weedge ◆		C C C	C C C	NI84 NI64	O O O PODIR	ОМЛЗЯ	
В	O C D D TM13CA T	C C C C T T T T T T T T T T T T T T T T			TM8CBX	TM9CBX	TM10CBX	TM11CBX	TM12CBX		AN1BUF			reserved	ALEEDGE •		O O O	O PAOUT	ONIA	O O O PBDIR	O P7LMD	
О					reserved	reserved	reserved	reserved	reserved		AN2BUF			reserved	◆ MPXADR	reserved	PBSWL	LBSWL	O O O D	С С С	C C C	
ш					C TM8MD2	C TM9MD2	O TM10MD2				AN3BUF			reserved		reserved	PBSWH	LBSWH			С С С С С С С	ne MOVE
Lower 4 bits Upper 20 bits	x'00FE00'	x'00FE10'	x'00FE20'	x'00FE30'	x'00FE80'	x'00FE90'	x'00FEA0'	x'00FEB0'	x'00FEC0'	x'00FED0'	x'00FF00'	x'00FF10'	x'00FF40'	x'00FF70'	x'00FF80'	x'00FF90'	x'00FFB0'	x'00FFC0'	x'00FFD0'	x'00FFE0'	x'00FFF0'	O:8-bit access

O : 8-bit access Use the MOVB instruction.

^{◆: 16-}bit access during write operation Use the MOV instruction.

^{□:} This register cannot neither read nor write. This register is used as a double buffer of the compare register when the PWM functions is selected. *: 16-bit or 24-bit access during write operation Use the MOV instruction or the MOVX instruction.

11-2-3 List of Pin Functions

EO = External Oscillation

								EO = Exter	nal Oscillation	
	Pin Name	Input Level	Output Level	Schumitt	Pull-up	RESET Note 1	RESET Note 2	RESET Note 3	BREQ="L"	STOP/HALT
1	P60,WAIT	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
2	P61,/RE	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z at /RE	Hi-Z at /RE
3	P62,/WEL	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z at /WEL	Hi-Z at /WEL
4	P63,/WEH	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z at /WEH	Hi-Z at /WEH
5	P50,/CS0	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z at /CS0	Hi-Z at /CS0
6	P51,/CS1	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z at /CS1	Hi-Z at /CS1
7	P52,/CS2	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z at /CS2	Hi-Z at /CS2
8	P53,/CS3	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z at /CS3	Hi-Z at /CS3
9	P54,/BREQ	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Low	*
10	P55,/BRACK	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Low	*
11	P56,ALE,/ALE,/BSTRE	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Low	Hi-Z except P56	Hi-Z except P56
12	P57,/WORD	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
13	P20,A00	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A00	Hi-Z at A00
14	P21,A01	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A01	Hi-Z at A01
15	P22,A02	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A02	Hi-Z at A02
16	P23,A03	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A03	Hi-Z at A03
17	VDD	-	-	-	-	-	-	-	-	-
18	BOSC	TTL	CMOS	Yes	Programmable	Low	Low	Low	*	Note 4
19	VSS	-	-	-	-	-	-	-	-	-
20	ХІ	CMOS	-	-	-	-	-	-	-	-
21	ХО	-	-	-	-	High (EO)	High (EO)	High (EO)	*	Note 5
22	VDD	-	-	-	-	-	-	-	-	-
23	OSCI	CMOS	-	-	-	-	-	-	-	-
24	osco	-	-	-	-	High (EO)	High (EO)	High (EO)	*	Note 6
25	MODE	CMOS	-	Yes	No	High (Input)	High (Input)	High (Input)	MODE	MODE
26	P24,A04	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A04	Hi-Z at A04
27	P25,A05	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A05	Hi-Z at A05
28	P26,A06	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A06	Hi-Z at A06
29	P27,A07	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A07	Hi-Z at A07
30	P30,A08	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A08	Hi-Z at A08
31	P31,A09	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A09	Hi-Z at A09
32	P32,A10	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A10	Hi-Z at A10
33	P33,A11	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A11	Hi-Z at A11
34	AVDD	-	-	-	-	-	-	-	-	-
35	P34,A12	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A12	Hi-Z at A12
36	P35,A13	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A13	Hi-Z at A13
37	P36,A14	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A14	Hi-Z at A14
38	P37,A15	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Hi-Z	Hi-Z at A15	Hi-Z at A15
39	P40,A16	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Undefined	Hi-Z at A16	Hi-Z at A16
40	P41,A17	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Undefined	Hi-Z at A17	Hi-Z at A17
41	P42,A18	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Undefined	Hi-Z at A18	Hi-Z at A18
42	P43,A19	TTL	CMOS	Yes	Programmable	Hi-Z	Undefined	Undefined	Hi-Z at A19	Hi-Z at A19
43	Vref-	-	-	-	-	-	-	-	-	-
44	P44,A20,AN4	Analog,CMOS	CMOS	No	Programmable	Hi-Z	Undefined	Undefined	Hi-Z at A20	Hi-Z at A20
45	P45,A21,AN5	Analog,CMOS	CMOS	No	Programmable	Hi-Z	Undefined	Undefined	Hi-Z at A21	Hi-Z at A21
46	P46,A22,STOP,AN6	Analog,CMOS	CMOS	No	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z at A22	Hi-Z at A22
47	P47,A23,WDOUT,AN7	Analog,CMOS	CMOS	No	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z at A23	Hi-Z at A23
48	P80,DAC0	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
49	P81,DAC1	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
50	P82,TM2IO	Analog,CMOS	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*

51	P83,TM3IO	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
52	P84,TM4IO	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
53	P85,TM5IO	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
54	Vref+	-	-	-	-	-	-	-	-	-
55	P86,TM6IOA	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
56	P87,TM6IOB	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
57	P90,TM6IC	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
58	P91,TM7IOA	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
59	P92,TM7IOB	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
60	P93,TM7IC	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
61	AVSS	-	-	-	-	-	-	-	-	-
62	P94,AN0	Analog,CMOS	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
63	P95,AN1	Analog,CMOS	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
64	P96,AN2	Analog,CMOS	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
65	P97,AN3	Analog,CMOS	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
66	VDD	-	-	-	-	-	-	-	-	-
67	P70,SBT0	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
68	P71,SBI0	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
69	P72,SBO0	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
70	P73,SBT1	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
71	P74,SBI1	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
72	P75,SBO1	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
73	Pull-up	-	-	-	-	-	-	-	-	-
74	Pull-up	-	-	-	-	-	-	-	-	-
75	/NMI	CMOS	-	Yes	No	/NMI	/NMI	/NMI	/NMI	/NMI
76	PA0,/IRQ0	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
77	PA1,/IRQ1	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
78	PA2,/IRQ2	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
79	PA3,/IRQ3	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
80	PA4,/IRQ4	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	*	*
81	PA5,ADSEP	TTL	CMOS	Yes	Programmable	Hi-Z	High (Input)	Low (Input)	*	*
82	/RST	CMOS	-	Yes	No	Low (Input)	Low (Input)	Low (Input)	High	High
83	VDD	-	-	-	-	-	-	-	-	-
84	P00,D00,AD00	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P00	Hi-Z excapt P00
85	P01,D01,AD01	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P01	Hi-Z excapt P01
86	P02,D02,AD02	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P02	Hi-Z excapt P02
87	P03,D03,AD03	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P03	Hi-Z excapt P03
88	P04,D04,AD04	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P04	Hi-Z excapt P04
89	P05,D05,AD05	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P05	Hi-Z excapt P05
90	P06,D06,AD06	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P06	Hi-Z excapt P06
91	P07,D07,AD07	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P07	Hi-Z excapt P07
92	VSS	-	-	-	-	-	-	-	-	-
93	P10,D08,AD08	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P10	Hi-Z excapt P10
94	P11,D09,AD09	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P11	Hi-Z excapt P11
95	P12,D10,AD10	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P12	Hi-Z excapt P12
96	P13,D11,AD11	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P13	Hi-Z excapt P13
97	P14,D12,AD12	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P14	Hi-Z excapt P14
98	P15,D13,AD13	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P15	Hi-Z excapt P15
99	P16,D14,AD14	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P16	Hi-Z excapt P16
100	P17,D15,AD15	TTL	CMOS	Yes	Programmable	Hi-Z	Hi-Z	Hi-Z	Hi-Z excapt P17	Hi-Z excapt P17
1,201	1 11,010,0010	1 ''5	0.1100	1	1. rogrammable	2	l '"-	l '"-	. " = 0x0apt 1 17	= onoupt 1 17

*: Depends on pin setting Note 1: Single-chip mode Note 2: Processor mode (address/data separated mode)

Note 3: Processor mode (address/data shared mode)

Note 4: Low during STOP0/1 mode

Note 5: High during STOP0/1 mode Note 6: High during STOP0/1, HALT1 mode

11-3 Initialization Program

After reset, the initialization program must be located in the external memory space 0 (x'000000' to x'3FFFFF).

11-4 Flash EEPROM Version

11-4-1 Overview

The MN102HF60G has 128-Kbyte electrically erasable/programmable flash EEPROM, while the MN102HF60K has 256-Kbyte electrically erasable/programmable flash EEPROM.

The MN102HF60G has two modes: PROM writer mode which uses a dedicated writer and onboard serial programming mode which the CPU controls.

The 128-Kbyte flash memory in the MN102HF60G and the 256-Kbyte flash memory in the MN102HF60K are divided into two spaces as follows:

- ♦ The load program area (x'80000' x'807FF') in the MN102HF60G or MN102HF60K stores the load program for serial programming. The load program area is hardware-protected, and can only be programmed in PROM writer mode.
- ♦ MN102HF60G firm area (126 Kbytes: x'80800' x'9FFFF')

 MN102HF60K firm area (254 Kbytes: x'80800' x'BFFFF')

 The firm area stores the user program. This area can be programmed in both PROM writer mode and onboard serial programming mode.

The operation is guaranteed with up to thirty programming.

The on-chip flash EEPROM memory maps (block divisions) are shown in the figures below.

Figure 11-4-1 MN102HF60G EEPROM Memory Map

x'80000'	District A IVIs de	
x'80400'	Block1 : 1 Kbyte	Load Program Area
	Block2 : 1 Kbyte	
x'80800'	Block3 : 1 Kbyte	
x'80C00'	Block4 : 1 Kbyte	
x'81000'	Block5 : 60 Kbyte	
x'90000'	Block6 : 60 Kbyte	
x'9F000'	Block7 : 4 Kbyte	Firm Area
x'A0000'	Block8 : 4 Kbyte	Tilli Alea
x'A1000'	Block9 : 60 Kbyte	
x'B0000'	Block10 : 60 Kbyte	
x'BF000'	Block11 : 1 Kbyte	
x'BF400'	Block12 : 1 Kbyte	
x'BF800'	Block13 : 1 Kbyte	
x'BFC00' x'BFFFF'	Block14 : 1 Kbyte	

Figure 11-4-2 MN102HF60K EEPROM Memory Map

11-4-2 Flash EEPROM Programming

The following figure shows the steps of flash memory programming.

Figure 11-4-3 Flash EEPROM Program Flow

As the above figure shows, programming starts after erasing is completed.

11-4-3 PROM Writer Mode

Note that the DATA-I/O LabSite writer is not supported.

PanaX Writer is a software development tool to accelerate softwares and hardwares of you set. For the mass production of you set, use a writer made of Business Partner.

In this mode, the MN102HF60G allows a PROM writer to program the flash EEPROM. Programming is performed with a Panasonic PanaX dedicated writer, using a dedicated programming adaptor. (Using the dedicated adaptor selects PROM writer mode automatically.)

11-4-4 Onboard Serial Programming Mode

The serial programming mode is used to program the flash ROM in the MN102HF60G that is installed on the board. The following sections describe the MN102HF60G hardware, system configuration, protocol for this programming mode.

When using YDC dedicated writer, please refer to its user manual. The load program is attached to the serial writer.

11-4-5 Hardware Used in Serial Programming Mode

■ Interface

The MN102HF60G incorporates the following functions as I/F for serial programming.

- One 8-bit Serial Interface
 - ♦ Data transmission/reception using external clock
 - ♦ Bit order: LSB first
 - ♦ Maximum transfer speed: 8.5 Mbps
 - ♦ Positive input/output logic
- Two Input/Output Pins
 - ♦ SBT, SBD reserved for serial interface (SBT5, SBD5)

■ I/F Block Diagram

Figure 11-4-4 8-bit Serial Interface Block Diagram for Serial Writer

■ Memory Space of Internal Flash EEPROM

Address	Size	Area
x'80000' x'807FF'	2 Kbyte	Serial Writer Load Program Area
x'80800' x'80807'	8 byte	Reserved
x'80808'	8 byte	Branch Instruction to Reset Service Routine
x'80810'	8 byte	Branch Instruction to Interrupt Service Routine
x'80818' x'9FFFF'	126 Kbyte to 32 byte	User Program Area

Address	Size	Area
x'80000' x'807FF'	2 Kbyte	Serial Writer Load Program Area
x'80800' x'80807'	8 byte	Reserved
x'80808'	8 byte	Branch Instruction to Reset Service Routine
x'80810'	8 byte	Branch Instruction to Interrupt Service Routine
x'80818' x'BFFFF'	254 Kbyte to 32 byte	User Program Area

Figure 11-4-5
MN102HF60G EEPROM Memory Space

Figure 11-4-6
MN102HF60KEEPROM Memory Space

- Serial Writer Load Program Area
 - ♦ The 2-Kbyte area from x'80000' to x'807FF' stores the load program for the onboard serial writer.
 - ♦ This area is hardware-protected against erasing and programming.
- Branch Instruction to Reset Start Service Routine
 - ♦ Normally, the reset start address is x'80000', but the program branches into x'80808' with the soft branch instruction in the serial writer loader. In this area, the JMP instruction to the actual reset service routine is stored.
- Branch Instruction to Interrupt Service Routine
 - ♦ Normally, the jump address at interrupt is x'80008', but the program branches into x'80810' with the soft branch instruction in the serial writer loader.
- User Program Area
 - ♦ This area stores the user program.

11-4-6 Connecting Onboard Serial Programming Mode

Use YDC serial writer for flash microcontroller.

All pins except MODE, /RST, ADSEP, /IRQ4-0, /WORD, SBT5, SBD5, XI, and OSCI must be set to input at reset release.

Figure 11-4-7 Pin Configuration During Serial Programming

Pins 73, 74 and 82 connect to the serial writer. VDD and Vss connect to the external power sources of 3.3 V and 0 V respectively. In addition, the level is detected by the writer, VDD and Vss must be output to the writer. OSCI and OSCO must be set to the self-excited oscillation or external excited oscillation. The input pins with no specifications in the above figure are 'don't care'. Fix them to VDD or Vss. The output pins with no specifications in the above figure must be open.

11-4-7 System Configuration for Onboard Serial Programming

■ System Configuration

Figure 11-4-8 System Configuration for Onboard Serial Writer

The PC sends the program data to the serial writer through RS-232C. The serial writer programs the flash memory through serial communication between the serial writer and the MN102HF60G on the target board. The power is required only when the power source is supplied to the target.

■ Pin Connection for Target Board

Figure 11-4-9 Target Board-Serial Writer Connection

■ Pin Description

♦ VDD: 3.0 V to 3.6 V external power supply

♦ VDD (for level detection): VDD level detection pin for target board

♦ /RST: Reset

♦ SBT : Serial interface clock supply♦ SBD : Serial interface data supply

♦ GND: Ground

- For the VDD pin, if the power supplied to the target board is insufficient, programming is carried out with power supplied from the serial writer. The user is free to select the connection for the target board.
- /RST outputs microcontroller reset.
- Connect pullup resistors to /RST, SBT and SBD on the target board. The pullup resistor value range is from 4.7 k Ω ± 10% minimum to 10 k Ω ± 10% maximum.
- /RST, SBT and SBD are output from the serial writer through an open collector.

■ MN102HF60G Clock on the Target Board

- Use the existing clock on the target board for the clock supply to the MN102HF60G on the target board. Because of this, the clock frequency of the MN102HF60G differs depending on each user purpose.
- The following table shows the clock frequency for the MN102HF60G during serial programming. The clock frequency for the MN102HF60G is assumed to be 34 MHz if the clock frequency is not specified in the manual. If the clock frequency for the MN102HF60G is different from the clock frequency on the target board, the value should be calculated proportionately depending on the clock frequency of the MN102HF60G.

Table 11-4-1 Clock Frequency

Max. Clock Frequency	Min. Clock Frequency
34 MHz	4 MHz

11-4-8 Onboard Serial Programming Mode Setup

■ Programming Mode Setup Timing

To set serial programming mode, the microcontroller must be in write mode. This section describes the pin setup for the serial writer.

Figure 11-4-10 Timing for Onboard Serial Programming Mode

■ Setup Steps

- 1. Supply VDD at Timing A. At this point, output /RST = SBD = Low.
- 2. Through the serial writer, drive /RST for T2 term from Timing B when SBT goes high while the MN102HF60G is on. The MN102HF60G initializes.
- 3. Through the serial writer, drive /RST for T4 term from Timing C when SBD goes high while the MN102HF60G is on. This informs that the MN102HF60G is connected to the serial writer.
- 4. During T4 term, the serial writer makes SBD pin to input low level longer enough than the MN102HF60G stabilization wait time.

■ Load Program

Figure 11-4-11 Load Program Start Flow

Conditions

- 1. SBD = low and SBT = high after the elapse of time T3 from the load program reset start.
- 2. The program waits for tWAIT1.
- 3. SBD must still be low and SBT high.
- 4. Wait that both SBD and SBT become high during tWAIT2.

If any above conditions are not met, the program returns to the user program.

11-4-9 Branch to User Program

■ Branch to Reset Service Routine

Figure 11-4-12 Reset Service Routine Flow

When the reset starts, the serial writer load program initializes only if SBD is low. The program branches to the user program at address x'80808'.

■ Branch to Interrupt Service Routine

Figure 11-4-13 Interrupt Service Routine Flow

Write only the instruction branching to address x'80810' at the interrupt start address.

11-4-10 Serial Interface for Onboard Serial Programming

Pins 73 and 74 can be used, respectively, as the SBD5 pin and SBT5 pin of the serial interface function. To use these pins as serial interface function pins, their function is switched by means of a PBMD register setting. The SBD5 pin becomes an input pin during data input, an output pin during data output, and an input pin (Hi-Z state) during standby. The SBT5 pin is always set to output during unidirectional or bidirectional transfer, and to half-duplex output during bidirectional half-duplex transfer.

11-4-11 PROM Writer/Onboard Serial Programming

Figure 11-4-14 Programming Flow

MN102H SERIES INSTRUCTION SET

Instruction	Mnemonic	Operation	OP EX.	VX	СХ	NX	ZX	ag VF	CF	NF	ZF	Code Size	Cycle	Machine Code
MOV	MOV Dm,An	Dm→An	+-	_	_	_	_	_	_	_	_	2	2	F2:30+Dm<<2+An
	MOV An,Dm	An→Dm		_	_	_	_	_	_	_	_	2	2	F2:F0+An<<2+Dm
	MOV Dn,Dm	Dn→Dm	_	_	_	_	_	_	_	_	_	1	1	80+Dn<<2+Dm *
	MOV An,Am	An→Am	1_	_	_	_	_	_	_	_	_	2	2	F2:70+An<<2+Am
	MOV PSW,Dn	PSW→Dn	0	_	_	_	_	_	_	_	_	2	2	F3:F0+Dn
	MOV Dn,PSW	Dn→PSW	1	•	•	•	•	•	•	•	•	2	3	F3:D0+Dn<<2 *
	MOV MDR,Dn	MDR→Dn	0	_	_	_	_	_	_	_	_	2	2	F3:E0+Dn
	MOV Dn,MDR	Dn→MDR	1_	_		_	_	_	_	<u> </u>	_	2	2	F3:C0+Dn<<2
	MOV (An),Dm	mem16(An)→Dm	S	_		_	_	_	_	_	_	1	1	20+An<<2+Dm
	MOV (d8,An),Dm	mem16(An+d8)→Dm	S	_	_	_		_	_	_	_	2	1	60+An<<2+Dm:d8
	MOV (d16,An),Dm	mem16(An+d16)→Dm	S	_				_	_	_	_	4	2	F7:C0+An<<2+Dm:d16-l:d16-h
	MOV (d24,An),Dm	mem16(An+d24)→Dm	S	_		_				<u> </u>		5	3	F4:80+An<<2+Dm:d24-l:d24-m:d24-l
	MOV (Di,An),Dm	mem16(An+Di)→Dm	S	_								2	2	F1:40+Di<<4+An<<2+Dm *
	MOV (abs16),Dn	mem16(abs16)→Dn	S	_	_	_				 _ 	_	3	1	C8+Dn:abs16-l:abs16-h
	MOV (abs24),Dn	mem16(abs24)→Dn	S									5	3	F4:C0+Dn:abs24-l:abs24-m:abs24-h
	MOV (An),Am	mem24(An)→Am	- 3						_			2	2	70+An<<2+Am:00 *
		mem24(An+d8)→Am	$\pm \pm$							_		2	2	70+An<<2+Am:d8
	MOV (d8,An),Am	` ′	+-	_	_	_	_	_	_	-	_	4	3	
	MOV (d16,An),Am	mem24(An+d16)→Am	+-	_	_	_	_	_	_	-	_	5		F7:B0+An<<2+Am:d16-l:d16-h
	MOV (d24,An),Am	mem24(An+d24)→Am		_	_	_	_	_	_	_	_	-	4	F4:F0+An<<2+Am:d24-l:d24-m:d24-l
	MOV (abs16),An	mem24(abs16)→An	+-	_	_	_	_	_	_	_	_	4	3	F7:30+An:abs16-l:abs16-h
	MOV (abs24),An	mem24(abs24)→An	+-	_	_	_	_	_	_	-	_	5	4	F4:D0+An:abs24-l:abs24-m:abs24-h
	MOV Dm,(An)	Dm→mem16(An)	+-	_	_	_	_	_	_	_	_	1	1	00+An<<2+Dm
	MOV Dm,(d8,An)	Dm→mem16(An+d8)		_	_		_	_		_	_	2	1	40+An<<2+Dm:d8
	MOV Dm,(d16,An)	Dm→mem16(An+d16)		_	_	_	_	_	_	_	_	4	2	F7:80+An<<2+Dm:d16-l:d16-h
	MOV Dm,(d24,An)	Dm→mem16(An+d24)		_	_	_	_	_	_	_	_	5	3	F4:00+An<<2+Dm:d24-l:d24-m:d24-l
	MOV Dm,(Di,An)	Dm→mem16(An+Di)		_	_	_	_	_		_	_	2	2	F1:C0+Di<<4+An<<2+Dm
	MOV Dn,(abs16)	Dn→mem16(abs16)		_	_	_	_	_	_	_	_	3	1	C0+Dn:abs16-l:abs16-h
	MOV Dn,(abs24)	Dn→mem16(abs24)		_	_	_	_	_	_	-	_	5	3	F4:40+Dn:abs24-l:abs24-m:abs24-h
	MOV Am,(An)	Am→mem24(An)		_	_	_	_	_	_	_	_	2	2	50+An<<2+Am:00 *
	MOV Am,(d8,An)	Am→mem24(An+d8)		_	_	_	_	_	_	_	_	2	2	50+An<<2+Am:d8
	MOV Am,(d16,An)	Am→mem24(An+d16)	_	_	_	_	_	_	_	_	_	4	3	F7:A0+An<<2+Am:d16-l:d16-h
	MOV Am,(d24,An)	Am→mem24(An+d24)		_	_	_	_	_	_	<u> </u>	_	5	4	F4:10+An<<2+Am:d24-l:d24-m:d24-h
	MOV An,(abs16)	An→mem24(abs16)	_	_	_	_	_	_	_	_	_	4	3	F7:20+An:abs16-l:abs16-h
	MOV An,(abs24)	An→mem24(abs24)		_	_	_	_	_	_	_	_	5	4	F4:50+An:abs24-l:abs24-m:abs24-h
	MOV imm8,Dn	imm8→Dn	S	_	_	_	_	_	_	_	_	2	1	80+Dn<<2+Dn:imm8
	MOV imm16,Dn	imm16→Dn	S	—	—	_	_	—	—	—	—	3	1	F8+Dn:imm16-l:imm16-h
	MOV imm24,Dn	imm24→Dn	_	_	_	_	_	_	_	—	_	5	3	F4:70+Dn:imm24-I:imm24-m:imm24-
	MOV imm16,An	imm16→An	0	_	_	_	_	_	_	_	_	3	1	DC+An:imm16-l:imm16-h
	MOV imm24,An	imm24→An	_	_	_	_	_	_	_	_	_	5	3	F4:74+An:imm24-I:imm24-m:imm24-
MOVX	MOVX (d8,An),Dm	mem24(An+d8)→Dm		_	_	_	_	_	_	_	_	3	3	F5:70+An<<2+Dm:d8
	MOVX (d16,An),Dm	mem24(An+d16)→Dm	_	_	_	_	_	_	_	_	_	4	3	F7:70+An<<2+Dm:d16-l:d16-h
	MOVX (d24,An),Dm	mem24(An+d24)→Dm		_	_	_	_	_	_	_	_	5	4	F4:B0+An<<2+Dm:d24-l:d24-m:d24-l
	MOVX Dm,(d8,An)	Dm→mem24(An+d8)	_	_	_	_	_	_	_	_	_	3	3	F5:50+An<<2+Dm:d8
	MOVX Dm,(d16,An)	Dm→mem24(An+d16)	1_	_	_	_	_	_	_	_	_	4	3	F7:60+An<<2+Dm:d16-l:d16-h
	MOVX Dm,(d24,An)	Dm→mem24(An+d24)	T_	_	_	_	_	_	_	_	_	5	4	F4:30+An<<2+Dm:d24-l:d24-m:d24-h
MOVB	MOVB (An),Dm	mem8(An)→Dm	S	_		_	_	_	_	_	_	2	2	30+An<<2+Dm:B8+Dn *
	MOVB (d8,An),Dm	mem8(An+d8)→Dm	S	_	_	_	_		_	_	_	3	2	F5:20+An<<2+Dm:d8
	MOVB (d16,An),Dm	mem8(An+d16)→Dm	S	_		_	_		_			4	2	F7:D0+An<<2+Dm:d16-l:d16-h
	MOVB (d24,An),Dm	mem8(An+d24)→Dm	S	_		_	_	_	_	<u> </u>	_	5	3	F4:A0+An<<2+Dm:d24-l:d24-m:d24-
	MOVB (Di,An),Dm	mem8(An+Di)→Dm	s		_				_			2	2	F0:40+Di<<4+An<<2+Dm
	MOVB (abs16),Dn	mem8(abs16)→Dn	S	_		_		_		 	 	4	2	CC+Dn:abs16-l:abs16-h:B8+Dn *
	MOVB (abs10),DII	mem8(abs24)→Dn	S	_	_	_				_		5	3	F4:C4+Dn:abs24-l:abs24-m:abs24-h
		Dm→mem8(An)	-	Ē	E					E		1	1	10+Dm<<2+An
	MOVB Dm,(An)	` ′	+-	Ε	Ε	Ε-	_	E	-	Ε-	Ε	_		
	MOVB Dm,(d8,An)	Dm→mem8(An+d8)	+	 -	_	<u> </u>	_	-	-	\vdash	\vdash	3	2	F5:10+An<<2+Dm:d8
	MOVB Dm,(d16,An)	Dm→mem8(An+d16)	+-	_	_	_	_	-	-	_	\vdash	4	2	F7:90+An<<2+Dm:d16-l:d16-h
	MOVB Dm,(d24,An)	Dm→mem8(An+d24)	+-	_	_	_	_	_	_	_	\vdash	5	3	F4:20+An<<2+Dm:d24-l:d24-m:d24-l
	MOVB Dm,(Di,An)	Dm→mem8(An+Di)	_	I —	—	_	_	_	—	ı —	-	2	2	F0:C0+Di<<4+An<<2+Dm

Notes: *1 Dn cannot be the same as Dm.

^{*2} In case of using this instruction, a value of PSW or the one that has been pushed in stack should not referred in the interrupt processing program.
*3 i cannot be the same as n.
*4 This instruction is supported by the assembler. The assembler will generate the bit pattern for "MOV(d8,An),Am"(d8=0).

^{*5} This instruction is supported by the assembler. The assembler will generate the bit pattern for "MOV Am,(d8,An)"(d8=0).

^{*6} This instruction is supported by the assembler. The assembler will generate the bit pattern for the two instructions "MOVBU(An), Dm and "EXTXB Dm".

^{*7} This instruction is supported by the assembler. The assembler will generate the bit pattern for the two instructions "MOVBU(abs16),Dm and "EXTXB Dn".

Instruction	Mnemonic	Operation	OP				FI	_				Code	Cycle	Machine Code		
		·	EX.	VX	СХ	NX	ZX	VF	CF	NF	ZF	Size				
MOVB	MOVB Dn,(abs16)	Dn→mem8(abs16)		_	_	_	_	_	_	_	_	3	1	C4+Dn:abs16-l:abs16-h		
	MOVB Dn,(abs24)	Dn→mem8(abs24)	<u> </u>	_	_	_	_	_	_	_	_	5	3	F4:44+Dn:abs24-l:abs24-m:abs24-h		
MOVBU	MOVBU (An),Dm	mem8(An)→Dm	0	_	_	_	_	_	_	_	_	1	1	30+An<<2+Dm		
	MOVBU (d8,An),Dm	mem8(An+d8)→>Dm	0	_	_	_	_	_	_		_	3	2	F5:30+An<<2+Dm:d8		
	MOVBU (d16,An),Dm	mem8(An+d16)→Dm	0	_	_	_	_	_	_	_	_	4	2	F7:50+An<<2+Dm:d16-l:d16-h		
	MOVBU (d24,An),Dm	mem8(An+d24)→Dm	0	_	_	_	_	_	_	_	_	5	3	F4:90+An<<2+Dm:d24-l:d24-m:d24-h		
	MOVBU (Di,An),Dm	mem8(An+Di)→Dm	0	_		_	_	_	_	_	_	2	2	F0:80+Di<<4+An<<2+Dm		
	MOVBU (abs16),Dn	mem8(abs16)→Dn	0	_	_	_	_	_	_	_	_	3	1	CC+Dn:abs16-l:abs16-h		
	MOVBU (abs24),Dn	mem8(abs24)→Dn	0	_	_	_	_	_	_	_	_	5	3	F4:C8+Dn:abs24-l:abs24-m:abs24-h		
EXT	EXT Dn	If Dn.bp15=0,	S	—	—	_	_	—	_	_	_	2	3	F3:C1+Dn<<2 *8		
		x'0000'→MDR														
		If Dn.bp15=1,														
=>/=>/	=\(\frac{1}{2}\)	x'FFFF'→MDR	-													
EXTX	EXTX Dn	If Dn.bp15=0,	S	_	-	_	_	—	_	_	_	1	1	B0+Dn *9		
		Dn&x'00FFFF'→Dn														
		If Dn.bp15=1,														
=>/=>//	EVENUE B	Dn I x'FF0000'→Dn	-											2.2		
EXTXU	EXTXU Dn	Dn&x'00FFFF→Dn	0	_	_	_	_	_	_	_	_	1	1	B4+Dn *10		
EXTXB	EXTXB Dn	If Dn.bp7=0,	S	_	_	_	_	_	_	_	_	1	1	B8+Dn *11		
		Dn&x'0000FF'→Dn														
		If Dn.bp7=1,														
EVEVEU	EVEVELLE	Dn I x'FFFF00'→Dn											_	DO D *10		
EXTXBU	EXTXBU Dn	Dn&x'0000FF'→Dn	0	_	_	_	_	_	_	_	_	1	1	BC+Dn *12		
ADD	ADD Dr. Ar	Dm+Dn→Dm	-	•	•	•	•	•	•	•	•	1	1	90+Dn<<2+Dm		
	ADD An Dm	An+Dm→An	_	•	•	•	•	•	•	•	•	2	2	F2:00+Dm<<2+An		
	ADD An,Dm	Dm+An→Dm	-	•	•	•	•	•	•	•	•	2	2	F2:C0+An<<2+Dm		
	ADD imms Dn	Am+An→Am	S	•	•	•	•	•	•	•	•	2	1	F2:40+An<<2+Am D4+Dn:imm8		
	ADD imm8,Dn	Dn+imm8→Dn	_	•	_	•	•	•	•	•	Ť			-		
	ADD imm16,Dn	Dn+imm16→Dn Dn+imm24→Dn	S	•	•	•	•	•	•	•	•	5	3	F4:60+Dn:imm76-i:imm76-n		
	ADD imm24,Dn ADD imm8,An	An+imm8→An	S	•	•	•	•	•	•	•	•	2	1	D0+An:imm8		
	ADD imm16,An	An+imm16→An	S		•	•		•		•		4	2	F7:08+An:imm16-l:imm16-h		
	ADD imm24,An	An+imm24→An	_		•	•	•	•	•	•		5	3	F4:64+An:imm24-l:imm24-m:imm24-h		
ADDC	ADDC Dn,Dm	Dm+Dn+CF→Dm	-	•	•	•	•	•	•	•	•	2	2	F2:80+Dn<<2+Dm		
ADDNF	ADDNF imm8,An	An+imm8→An	s		_	_	_	_	_	_	_	3	2	F5:0C+An:imm8 *13		
SUB	SUB Dn,Dm	Dm-Dn→Dm		•	•	•	•	•	•	•	•	1	1	A0+Dn<<2+Dm		
005	SUB Dm.An	An-Dm→An	-	•	•	•	•	•	•	•		2	2	F2:10+Dm<<2+An		
	SUB An,Dm	Dm-An→Dm	_	•	•	•	•	•	•	•	•	2	2	F2:D0+An<<2+Dm		
	SUB An,Am	Am-An→Am	_	•	•	•	•	•	•	•	•	2	2	F2:50+An<<2+Am		
	SUB imm16,Dn	Dn-imm16→Dn	s	•	•	•	•	•	•	•	•	4	2	F7:1C+Dn:imm16-l:imm16-h		
	SUB imm24,Dn	Dn-imm24→Dn	-	•	•	•	•	•	•	•	•	5	3	F4:68+Dn:imm24-l:imm24-m:imm24-h		
	SUB imm16,An	An-imm16→An	s	•	•	•	•	•	•	•	•	4	2	F7:0C+An:imm16-l:imm16-h		
	SUB imm24,An	An-imm24→An	-	•	•	•	•	•	•	•	•	5	3	F4:6C+An:imm24-l:imm24-m:imm24-h		
SUBC	SUBC Dn,Dm	Dm-Dn-CF→Dm	_	•	•	•	•	•	•	•	•	2	2	F2:90+Dn<<2+Dm		
MUL	MUL Dn,Dm	Dm * Dn→Dm	_	?	?	?	?	0	?	•	•	2	12	F3:40+Dn<<2+Dm *14		
		(Dm * Dn)>>16→MDR														
MULU	MULU Dn,Dm	Dm * Dn→Dm	<u> </u>	?	?	?	?	0	?	•	•	2	12	F3:50+Dn<<2+Dm *15		
		(Dm * Dn)>>16→MDR														
MULQ	MULQ Dn,Dm	Dm * Dn→Dm (H.M.)	_	_	_	_	_	_	_	_		3	3	F5:60+Dn<<2+Dm:10		
		(Dm * Dn)>>16→MDR														
MULQL	MULQL Dn,Dm	Dm * Dn→Dm (H.M.)	<u> </u>	<u> </u>	_	_	_	_	_	_		3	2	F5:40+Dn<<2+Dm:00		
	MULQL imm8,Dn	Dn * imm8→Dn (H.M.)	l —	-	_	_	_	_	_	_	_	4	2	F5:F0+Dn:04:imm8		
	MULQL imm16,Dn	Dn * imm16→Dn (H.M.)	T —	-	_	_	_	_	_	_	_	5	3	F5:F4+Dn:08:imm16-l:imm16-h		
MULQH	MULQH Dn,Dm	(Dm * Dn)>>16→Dm (H.M.)	s	_	_	_	_	_	_	_	_	3	2	F5:40+Dn<<2+Dm:01		
	MULQH imm8,Dn	(Dn * imm8)>>16→Dn (H.M.)	S	_	_	_	_	_	_	_	_	4	2			
	MULQH imm16,Dn	(Dn * imm16)>>16→Dn (H.M.)	S	_	_	_	_	_	_	_	_	5	3	F5:F4+Dn:09:imm16-l:imm16-h		
DIVU	DIVU Dn,Dm	(MDR<<16+Dm)/Dn→Dm		?	?	0/?	●/?	0/1	?	●/?	●/?	2	13	F3:60+Dn<<2+Dm *16		
		MDR														
L	L	1												<u> </u>		

Notes: *8 32-bit sign extended word data
*8 24-bit sign extended word data
*9 24-bit zero extended word data
*10 24-bit sign extended byte data
*11 24-bit zero extended byte data
*12 Addition without changing flag
*13 16x16 = 32 (signed)
*14 16x16 = 32 (unsigned)
*16 32+16 = 16...16 (unsigned)

Instruction	Mnemonic	Operation	OP EX.	VX	СХ	NX	FI ZX	ag VF	CF	NF	ZF	Code Size	Cycle	Machine Code			
CMP	CMP Dn,Dm	Dm-DnPSW	_	•	•	•	•	•	•	•	•	2	2	F3:90+Dn<<2+Dm			
	CMP Dm,An	An-DmPSW	_	•	•	•	•	•	•	•	•	2	2	F2:20+Dm<<2+An			
	CMP An,Dm	Dm-AnPSW	_	•	•	•	•	•	•	•	•	2	2	F2:E0+An<<2+Dm			
	CMP An,Am	Am-AnPSW	_	•	•	•	•	•	•	•	•	2	2	F2:60+An<<2+Am			
	CMP imm8,Dn	Dn-imm8PSW	S	•	•	•	•	•	•	•	•	2	1	D8+Dn:imm8			
	CMP imm16,Dn	Dn-imm16PSW	S	•	•	•	•	•	•	•	•	4	2	F7:48+Dn:imm16-l:imm16-h			
	CMP imm24,Dn	Dn-imm24PSW	_	•	•	•	•	•	•	•	•	5	3	F4:78+Dn:imm24-I:imm24-m:imm24-h			
	CMP imm16,An	An-imm16PSW	0	•	•	•	•	•	•	•	•	3	1	EC+An:imm16-l:imm16-h			
	CMP imm24,An	An-imm24PSW	_	•	•	•	•	•	•	•	•	5	3	F4:7C+An:imm24-I:imm24-m:imm24-h			
AND	AND Dn,Dm	Dm&(x'FF0000' I Dn)→Dm	_	_	_	_	_	0	0	•	•	2	2	F3:00+Dn<<2+Dm *17			
	AND imm8,Dn	Dn&(x'FF0000' I imm8)→Dn	0	_	_	_	_	0	0	•	•	3	2	F5:00+Dn:imm8 *17			
	AND imm16,Dn	Dn&(x'FF0000' I imm16)→Dn	_	-	_	_	_	0	0	•	•	4	2	F7:00+Dn:imm16-l:imm16-h *17			
	AND imm16,PSW	PSW&imm16→PSW	_	•	•	•	•	•	•	•	•	4	3	F7:10:imm16-l:imm16-h *17			
OR	OR Dn,Dm	Dm I (Dn&x'00FFFF')→Dm	_	_	_	_	_	0	0	•	•	2	2	F3:10+Dn<<2+Dm *17			
	OR imm8,Dn	Dn I imm8→Dn	0	_		_	_	0	0	•	•	3	2	F5:08+Dn:imm8 *17			
	OR imm16,Dn	Dn I imm16→Dn	_	_	_	_	_	0	0	•	•	4	2	F7:40+Dn:imm16-l:imm16-h *17			
	OR imm16,PSW	PSW I imm16→PSW	_	•	•	•	•	•	•	•	•	4	3	F7:14:imm16-l:imm16-h *17			
XOR	XOR Dn,Dm	Dm^(x'00FFFF'&Dn)→Dm	_	_	_	_	_	0	0	•	•	2	2	F3:20+Dn<<2+Dm *17			
	XOR imm16,Dn	Dn^imm16→Dn	_	_		_		0	0	•	•	4	2	F7:4C+Dn:imm16-l:imm16-h *17			
NOT	NOT Dn	Dn^x'00FFFF'→Dn	_	_	_	_	_	0	0	•	•	2	2	F3:E4+Dn *17			
ASR	ASR Dn	Dn.lsb→CF	T_	<u> </u>		_	_	0		•		2	2	F3:38+Dn *17			
	7.6.1.5.1.	Dn.bp→Dn.bp-1(bp15~1)							•	•		_	-				
		Dn.bp15→Dn.bp15															
LSR	LSR Dn	Dn.lsb→CF						0		0		2	2	F3:3C+Dn *17			
	LOICEII	Dn.bp→Dn.bp-1(bp15~1)								"		_	_	17.501511			
		0→Dn.bp15															
ROR	ROR Dn	Dn.lsb→temp			l			0				2	2	F3:34+Dn *17			
	NON BII	Dn.bp→Dn.bp-1(bp15~1)										_	_	10.541511			
		CF→Dn.bp15															
		temp→CF															
ROL	ROL Dn	Dn.bp15→temp						0				2	2	F3:30+Dn *17			
	KOL DII	Dn.bp→Dn.bp+1(bp14~0)	-					0					~	F3.30+DII			
		CF→Dn.lsb															
BTST	DTCT imm0 Dn	temp→CF										_		FF:04: Davisson			
D101	BTST imm8,Dn	Dn&imm8PSW	0		-	_	_	0	0	0	•	3	2	F5:04+Dn:imm8 F7:04+Dn:imm16-l:imm16-h			
BSET	BTST imm16,Dn	Dn&imm16PSW	0	-	-	_	_	0	_	-		2	2				
DOLI	BSET Dm,(An)	mem8(An)&DmPSW	0	_	_	_	_	0	0	0	•	2	5	F0:20+An<<2+Dm *18			
	DOFT: 0 (1 40)	mem8(An) I Dm→mem8(An)										-		F4 F0 1 401 1 401 : 0			
	BSET imm8,(abs16)	mem8(abs16) I imm8	-	-	_	_	-	_	—	—	-	5	4	F4:E3:abs16-l:abs16-h:imm8			
		→mem8(abs16)										_	_				
	BSET imm8,(abs24)	mem8(abs24) I imm8	_	—	_	_	-	_	—	-	-	6	5	F4:4B:abs24-l:abs24-m:abs24-h:imm8			
		→mem8(abs24)															
	BSET imm8,(d8,An)	mem8(An+d8) I imm8		—	_	_	—	_	—	—		4	4	F4:E8+An:d8:imm8			
		→mem8(An+d8)															
	BSET (abs16)bp	mem8(abs16) I (1< <bp)< td=""><td> —</td><td> -</td><td> —</td><td>_</td><td> —</td><td>_</td><td> —</td><td> —</td><td> —</td><td>4</td><td>4</td><td colspan="3">F5:D0+bp:abs16-l:abs16-h</td></bp)<>	—	-	—	_	—	_	—	—	—	4	4	F5:D0+bp:abs16-l:abs16-h			
		→mem8(abs16)															
	BSET (abs24)bp	mem8(abs24) I (1< <bp)< td=""><td> -</td><td> -</td><td> —</td><td>_</td><td> —</td><td> —</td><td> —</td><td> -</td><td> </td><td>6</td><td>6</td><td colspan="3">6 F3:FE:D0+bp:abs24-l:abs24-m:abs24-h</td></bp)<>	-	-	—	_	—	—	—	-		6	6	6 F3:FE:D0+bp:abs24-l:abs24-m:abs24-h			
		→mem8(abs24)															
	BSET (d8,An)bp	mem8(An+d8) I (1< <bp)< td=""><td> —</td><td> -</td><td> —</td><td>-</td><td> —</td><td>-</td><td> —</td><td> -</td><td>-</td><td>3</td><td>4</td><td colspan="3">· '</td></bp)<>	—	-	—	-	—	-	—	-	-	3	4	· '			
		→mem8(An+d8)										3	4	' I			
												4	5	F3:FF:90+bp:d8 An=A2			
												4	5	F3:FF:98+bp:d8 An=A3			
	1	1			1			1						I .			

Notes: *17 16-bit computation
*18 Performed under the conditions of bus lock and disabled interrupts.

Inot	M	0	OP				FI	ag				Code	C	Mashina Cada
Instruction	Mnemonic	Operation	EX.	VX	СХ	NX	ZX	VF	CF	NF	ZF	Size	Cycle	Machine Code
BCLR	BCLR Dm,(An)	mem8(An)&DmPSW mem8(An)&(~Dm)→mem8(An)	0	_	-	_	_	0	0	0	•	2	5	F0:30+An<<2+Dm *18
	BCLR imm8,(abs16)	mem8(abs16)&(~imm8) →mem8(abs16)	-	-	-	_	_	_	_	-	_	5	4	F4:E7:abs16-l:abs16-h:imm8
	BCLR imm8,(abs24)	mem8(abs24)&(~imm8)	-	_	-	_	_	-	-	-	_	6	5	F4:4F:abs24-l:abs24-m:abs24-h:imm8
	BCLR imm8,(d8,An)	→mem8(abs24) mem8(An+d8)&(~imm8) →mem8(An+d8)	_	-	_	_	_	_	_	_	_	4	4	F4:EC+An:d8:imm8
	BCLR (abs16)bp	mem8(abs16)&⁻(1< <bp) td="" →mem8(abs16)<=""><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>-</td><td>4</td><td>4</td><td>F5:D8+bp:abs16-l:abs16-h</td></bp)>	_	_	_	_	_	_	_	_	-	4	4	F5:D8+bp:abs16-l:abs16-h
	BCLR (abs24)bp	mem8(abs24)&~(1< <bp) td="" →mem8(abs24)<=""><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>6</td><td>6</td><td>F3:FE:D8+bp:abs24-l:abs24-m:abs24-h</td></bp)>	_	_	_	_	_	_	_	_	_	6	6	F3:FE:D8+bp:abs24-l:abs24-m:abs24-h
	BCLR (d8,An)bp	mem8(An+d8)&⁻(1< <bp) td="" →mem8(an+d8)<=""><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>3 3 4 4</td><td>4 4 5 5</td><td>F5:B0+bp:d8</td></bp)>	_	_	_	_	_	_	_	_	_	3 3 4 4	4 4 5 5	F5:B0+bp:d8
TBZ	TBZ (abs16)bp,label	mem8(abs16)&(1< <bp)psw if="" pc+5+d8(label)→pc="" pc+5→pc<="" td="" zf="0,"><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>0</td><td>0</td><td>0</td><td>•</td><td>5</td><td>5/4</td><td>F5:C0+bp:abs16-l:abs16-h:label</td></bp)psw>	_	_	_	_	_	0	0	0	•	5	5/4	F5:C0+bp:abs16-l:abs16-h:label
	TBZ (abs24)bp,label	mem8(abs24)&(1< <bp)psw if="" zf="1,</td"><td></td><td>_</td><td>_</td><td>_</td><td>_</td><td>0</td><td>0</td><td>0</td><td>•</td><td>7</td><td>7/6</td><td>F3:FE:C0+bp:abs24-l:abs24-m: abs24-h:label</td></bp)psw>		_	_	_	_	0	0	0	•	7	7/6	F3:FE:C0+bp:abs24-l:abs24-m: abs24-h:label
	TBZ (d8,An)bp,label	mem8(An+d8)&(1< bp)PSW If ZF=1, PC+4(5)+d8(label)→PC If ZF=0, PC+4(5)→PC	_	_	_	_	_	0	0	0	•	4 4 5 5	5/4 5/4 6/5 6/5	F5:80+bp:d8:label An=A0 F5:88+bp:d8:label An=A1 F3:FF:80+bp:d8:label An=A2 F3:FF:88+bp:d8:label An=A3
TBNZ	TBNZ (abs16)bp,label	mem8(abs16)&(1< bp)PSW If ZF=1, PC+5→PC If ZF=0, PC+5+d8(label)→PC	_	_	_	_	_	0	0	0	•	5	5/4	F5:C8+bp:abs16-l:abs16-h:label
	TBNZ (abs24)bp,label	mem8(abs24)&(1< <bp)psw if="" pc+7+d8(label)→pc<="" pc+7→pc="" td="" zf="0,"><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>0</td><td>0</td><td>0</td><td>•</td><td>7</td><td>7/6</td><td>F3:FE:C8+bp:abs24-l:abs24-m: abs24-h:label</td></bp)psw>	_	_	_	_	_	0	0	0	•	7	7/6	F3:FE:C8+bp:abs24-l:abs24-m: abs24-h:label
	TBNZ (d8,An)bp,label	mem8(An+d8)&(1< <bp)psw if="" pc+4(5)+d8(label)→pc<="" pc+4(5)→pc="" td="" zf="0,"><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>0</td><td>0</td><td>0</td><td>•</td><td>4 4 5 5</td><td>5/4 5/4 6/5 6/5</td><td>F3:FF:A0+bp:d8:label An=A2</td></bp)psw>	_	_	_	_	_	0	0	0	•	4 4 5 5	5/4 5/4 6/5 6/5	F3:FF:A0+bp:d8:label An=A2
Всс	BEQ label	If ZF=1, PC+2+d8(label)→PC If ZF=0, PC+2→PC	_	_	_	_	_	_	_	_	_	2	2/1	E8:d8 *19
	BNE label	If ZF=0, PC+2+d8(label)→PC If ZF=1, PC+2→PC	_	_	_	_	_	_	_	_	_	2	2/1	E9:d8 *20
	BLT label	If (VF^NF)=1, PC+2+d8(label)→PC If (VF^NF)=0, PC+2→PC	_	_	_	_	_	_	_	_	_	2	2/1	E0:d8 *21

Notes: *18 Performed under the conditions of bus lock and disabled interrupts.
*19 src=dest (lower 16 bits)
*20 src≠dest (lower 16 bits)
*21 src>dest (lower 16 bits, signed)

		0 "	OP				FI	ag				Code		
Instruction	Mnemonic	Operation	EX.	VX	СХ	NX	ZX		CF	NF	ZF	Size	Cycle	Machine Code
Bcc	BLE label	If ((VF^NF) I ZF)=1,	T -	_	_	_	_	_	_	_	_	2	2/1	E3:d8 *22
		PC+2+d8(label)→PC												
		If ((VF^NF) I ZF)=0,												
		PC+2→PC												
	BGE label	If (VF^NF)=0,	_	_	_	_	_	_	_	_	_	2	2/1	E2:d8 *23
		PC+2+d8(label)→PC												
		If (VF^NF)=1,												
		PC+2→PC												
	BGT label	If ((VF^NF) I ZF)=0,	T —	—	_	_	_	_	_	_	_	2	2/1	E1:d8 *24
		PC+2+d8(label)→PC												
		If ((VF^NF) I ZF)=1,												
		PC+2→P												
	BCS label	If CF=1,	-	_	_	-	-	—	_	—	_	2	2/1	E4:d8 *25
		PC+2+d8(label)→PC												
		If CF=0,												
		PC+2→PC												
	BLS label	If (CF I ZF)=1,	_	_	_	_	_	_	_	_	_	2	2/1	E7:d8 *26
		PC+2+d8(label)→PC												
		If (CF I ZF)=0,												
		PC+2→PC												
	BCC label	If CF=0,	_	_	_	_	_	_	_	_	_	2	2/1	E6:d8 *27
		PC+2+d8(label)→PC												
		If CF=1,												
		PC+2→PC												
	BHI label	If (CF I ZF)=0,	_	_	_	_	_	_	_	_	_	2	2/1	E5:d8 *28
		PC+2+d8(label)→PC												
		If (CF I ZF)=1,												
		PC+2→PC												
	BVC label	If VF=0,	T-	_	_	<u> </u>	-	_	_	_	Ι_	3	3/2	F5:FC:d8 *29
		PC+3+d8(label)→PC												
		If VF=1,												
		PC+3→PC												
	BVS label	If VF=1,	 	_	_	<u> </u>	 -	_	_	_	 -	3	3/2	F5:FD:d8 *30
		PC+3+d8(label)→PC												
		If VF=0,												
		PC+3→PC												
	BNC label	If NF=0,	Τ-	<u> </u>	_	 -	_	_	_	 -	_	3	3/2	F5:FE:d8 *31
		PC+3+d8(label)→PC												
		If NF=1,												
		PC+3→PC												
	BNS label	If NF=1,	_	_	_	<u> </u>	-	_	_	_	<u> </u>	3	3/2	F5:FF:d8 *32
		PC+3+d8(label)→PC												
		If NF=0,												
		PC+3→PC												
	BRA label	PC+2+d8(label)→PC	Τ-	<u> </u>	_	T-	_	_	_	_	_	2	2	EA:d8
Bccx	BEQX label	If ZX=1,	—	_	_	_	_	_	_	<u> </u>	_	3	3/2	F5:E8:d8 *33
		PC+3+d8(label)→PC												
		If ZX=0,												
		PC+3→PC												
	BNEX label	If ZX=0,	_	-	_	-	-	-	_	-	-	3	3/2	F5:E9:d8 *34
		PC+3+d8(label)→PC												
		If ZX=1,												
		PC+3→PC												
L		1 : 5 : 5			<u> </u>							1		

Notes: *22 src≥dest (lower 16 bits, signed)
*23 src≤dest (lower 16 bits, signed)
*24 src<dest (lower 16 bits, signed)
*25 src>dest (lower 16 bits, unsigned)
*26 src≥dest (lower 16 bits, unsigned)
*27 src≤dest (lower 16 bits, unsigned)
*28 src<dest (lower 16 bits, unsigned)
*29 VF=0
*30 VF=1
*31 NF=0
*32 NF=1
*33 src=dest (24 bits)
*34 src≠dest (24 bits)

Instruction	Mnemonic	Operation	OP					ag				Code	Cycle	Machine Code
			EX.	VX	СХ	NX	ZX	VF	CF	NF	ZF	Size	Cycle	
Bccx	BLTX label	If (VX^NX)=1, PC+3+d8(label)→PC If (VX^NX)=0, PC+3→PC	_	_	_	_	_	_	_	_	_	3	3/2	F5:E0:d8 *3
	BLEX label	If ((VX^NX) ZX)=1, PC+3+d8(label)→PC If ((VX^NX) ZX)=0, PC+3→PC		_	_	_	_	_	_	_	_	3	3/2	F5:E3:d8 *3
	BGEX label	If (VX^NX)=0, PC+3+d8(label)→PC If (VX^NX)=1, PC+3→PC	_	_	_	_	_	_	_	_	_	3	3/2	F5:E2:d8 *3
	BGTX label	If ((VX^NX) ZX)=0, PC+3+d8(label)→PC If ((VX^NX) ZX)=1, PC+3→PC	_	_	_	_	_	_	_	_	_	3	3/2	F5:E1:d8 *3
	BCSX label	If CX=1, PC+3+d8(label)→PC If CX=0, PC+3→PC	_	_	_	_	_	_	_	_	_	3	3/2	F5:E4:d8 *3
	BLSX label	If (CX ZX)=1, PC+3+d8(label)→PC If (CX ZX)=0, PC+3→PC	_	_	_	_	_	_	_	_	_	3	3/2	F5:E7:d8 *4
	BCCX label	If CX=0, PC+3+d8(label)→PC If CX=1, PC+3→PC	_	_	_	_	_	_	_	_	_	3	3/2	F5:E6:d8 *4
	BHIX label	If (CX ZX)=0, PC+3+d8(label)→PC If (CX ZX)=1 PC+3→PC		_	_	_	_	_	_	_	_	3	3/2	F5:E5:d8 *4
	BVCX label	If VX=0, PC+3+d8(label)→PC If VX=1, PC+3→PC	_	_	_	_	_	_	_	_	_	3	3/2	F5:EC:d8 *4
	BVSX label	If VX=1, PC+3+d8(label)→PC If VX=0, PC+3→PC	_	_	_	_	_	_	_	_	_	3	3/2	F5:ED:d8 *4
	BNCX label	If NX=0, PC+3+d8(label)→PC If NX=1, PC+3→PC	_	_	_	_	_	_	_	_	_	3	3/2	F5:EE:d8 *4
	BNSX label	If NX=1, PC+3+d8(label)→PC If NX=0, PC+3→PC	_	_	_	_	_	_	_	_	_	3	3/2	F5:EF:d8 *4
JMP	JMP label16	PC+3+d16(label16)→PC	_	_	_	_	_	_	_	_	_	3	2	FC:d16-l:d16-h
	JMP label24	PC+5+d24(label24)→PC	_	_	_	_	_	_	_	_	_	5	4	F4:E0:d24-l:d24-m:d24-h
	JMP (An)	An→PC	_	_	_	_	_	_	_	_	_	2	3	F0:An<<2

Notes: *35 src>dest (24 bits, signed)
*36 src≥dest (24 bits, signed)
*37 src≤dest (24 bits, signed)
*38 src>dest (24 bits, signed)
*39 src>dest (24 bits, unsigned)
*40 src≥dest (24 bits, unsigned)
*41 src≤dest (24 bits, unsigned)
*42 src>dest (24 bits, unsigned)
*43 VX=0
*44 VX=1
*45 NX=0
*46 NX=1

			ОР				Fla	ag				Code		
Instruction	Mnemonic	Operation	EX.	VX	СХ	NX	ZX	VF	CF	NF	ZF	Size	Cycle	Machine Code
JSR	JSR label16	A3-4→A3	_	_	_	_	_	_	_	_	_	3	4	FD:d16-l:d16-h
		PC+3→mem24(A3)												
		PC+3+d16(label16)→PC												
	JSR label24	A3-4→A3	-	_	_	_	_	_	_	_	_	5	5	F4:E1:d24-l:d24-m:d24-h
		PC+5→mem24(A3)												
		PC+5+d24(label24)→PC												
	JSR (An)	A3-4→A3	—	_	_	_	_	_	_	_	_	2	5	F0:01+An<<2
		PC+2→mem24(A3)												
		An→PC												
NOP	NOP	PC+1→PC	-	_	_	_	_	_	_	_	_	1	1	F6
RTS	RTS	mem24(A3)→PC	-	_	_	_	_	_	_	_	_	1	5	FE
		A3+4→A3												
RTI	RTI	mem16(A3)→PSW	-	•	•	•	•	•	•	•	•	1	6	EB
		mem24(A3+2)→PC												
		A3+6→A3												
PXST	PXST	Prefix instruction reversing the following instruction of addition/subtraction on saturation operation flag of PSW	_	_	_	_	_	_	_	_	_	2	2	F3:FC

Ver.3.2 (2002.03.31)

Reading the instruction set

■ Symbols used in tables

Dn, Dm, Di An, Am MDR, PSW, PC imm8, imm16, imm16-l, imm16-h imm24, imm24-l, imm24-m, imm24-h d8, d16, d16-l, d16-h d24, d24-l, d24-m, d24-h abs16, abs16-l, abs16-h

abs16, abs16-1, abs16-11 abs24, abs24-1, abs24-m, abs24-h mem8 (An), mem8 (abs16), mem8 (abs24) mem16 (An), mem16 (abs16), mem16 (abs24) mem24 (Am), mem24 (abs16), mem24 (abs24)

.bp,.lsb, .msb &, I , ^ ~, <<, >> VX, CX, NX, ZX, VF, CF, NF, ZF temp

→ , ...

Data register Address register

Multiply/Divide Register, Processor Status Word, Program Counter

Constant

Displacement

Absolute address

8-bit memory data which is determined by the address inside parentheses ()
16-bit memory data which is determined by the address inside parentheses ()

24-bit memory data which is determined by the address inside parentheses ()

Bit specification

Logical AND, logical OR, exclusive OR

Bit inversion, bit shift

Extended overflow flag, carry flag, negative flag, zero flag (24-bit data)

Overflow flag, carry flag, negative flag, zero flag (16-bit data)

CPU internal temporary register Substitution, reflects calculation results

■ OP EX. (Operand Extensions)

0	Zero-extension
S	Sign-extension
_	Not applicable

■ Flag

■ Code Size

•	Changes	Units : byte
-	No change	
0	Always 0	
1	Always 1	
?	Undefined	

■ Cycle

Minimum cycle count is shown.
(when quick decoder disabled)
Units: machine cycles
a/b: a cycles if branch taken
b cycles if branch not taken

■ Machine Code

":" indicates a delimiter between bytes.<<2 indicates a 2-bit shift.

Dn, Dm, Di, An, Am : Register numbers

D0 00 A0 00

D1 01 A1 01

D2 10 A2 10

D3 11 A3 11

■ Notes

- •16-bit or 24-bit access instruction must not access odd memory addresses.
- 8-bit displacements (d8) and 16-bit displacements (d16) are all sign-extended.

MN102H SERIES INSTRUCTION MAP

First byte Upper/Lowe	er O	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0		MOV	Dm, (An)													
1		MOV	B Dm, (Aı	n)												
2		MOV	(An), Dm	ı												
3		MOV	BU (An), I	Dm												
4		MOV	Dm, (d8,	An)												
5		MOV	Am, (d8,	An)												
6		MOV	(d8, An),	Dm												
7		MOV (d8, An), Am														
8		MOV	Dn, Dm,	(when src	=dest,MO	V imm8, [On)									
9		ADD	Dn, Dm													
Α		SUB	Dn, Dm													
В		EXT	X Dn			EXTX	U Dn			EXT	(B Dn			EXTX	BU Dn	
С		MOV Dn	ı, (abs16)			MOVB Dr	n, (abs16)		MOV (a	bs16),Dn		1	MOVBU ((abs16),Dn	1
D		ADD in	nm8, An			ADD im	m8, Dn			CMP in	nm8, Dn			MOV im	m16, An	
Е	BLT label	BGT label	BGE label	BLE label	BCS label	BHI label	BCC label	BLS label	BEQ label	BNE label	BRA label	RTI		CMP im	m16, An	
F	Extended code A	Extended code B	Extended code C	Extended code D	Extended code E	Extended code F	NOP	Extended code G		MOV im	m16, Dn		JMP label16	JSR label16	RTS	

Extended Code A
Second byte (Byte 1: F0)

Second byte	er O	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	JMP (A0)	JSR (A0)			JMP (A1)	JSR (A1)			JMP (A2)	JSR (A2)			JMP (A3)	JSR (A3)		
1																
2		BSET	Dm, (Aı	n)												
3		BCLR	R Dm, (A	n)												
4																
5		MOV	B (Di, An	n) Dm												
6		W.O.V.	J (DI, 7 III	.,, D												
7																
8																
9		MOVE	BU (Di, A	An), Dm												
Α			,	,,												
В																
С																
D		MOVE	B Dm, (D	Di, An)												
E			, (-	, ,												
F																

Extended Code B Second byte (Byte 1: F1)

Extended Code C Second byte (Byte 1: F2)

Second byte	e er O	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0		ADD	Dm, An													
1		SUB	Dm, An													
2		CMP	Dm, An													
3		MOV	Dm, An													
4		ADD	An, Am													
5		SUB	An, Am													
6		CMP	An, Am													
7		MOV	An, Am													
8		ADDO	C Dn, Dm													
9		SUBC	Dn, Dm													
Α																
В																
С		ADD	An, Dm													
D		SUB	An, Dm													
E		CMP	An, Dm													
F		MOV	An, Dm													

Extended Code D Second byte(Byte 1: F3)

Second byte Jpper/Lowe		1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0		AND	Dn, Dm													
1		OR D	n, Dm													
2		XOR	Dn, Dm													
3		ROL	_ Dn			ROF	R Dn			ASF	R Dn			LSF	? Dn	
4		MUL	Dn, Dm													
5		MULU	J Dn, Dm													
6		DIVU	Dn, Dm													
7																
8																
9		CMP	Dn, Dm													
Α																
В																
С	MOV D0, MDR	EXT D0			MOV D1, MDR	EXT D1			MOV D2, MDR	EXT D2			MOV D3, MDR	EXT D3		
D	MOV D0, PSW *1				MOV D1, PSW *1				MOV D2, PSW *1				MOV D3, PSW *1			
Е		MOV M	IDR, Dn			NO	ΓDn									
F		MOV P	SW, Dn										PXST		Extended code H	Extended code

Notes: *1 In case of using this instruction, a value of PSW or the one that has been pushed in stack should not be referred in the interrupt processing program.

Extended Code E Second byte (Byte 1: F4)

Second byte Jpper/Lowe		1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0		MOV	Dm, (d2	4, An)												
1		MOV	Am, (d2	4, An)												
2		MOVI	B Dm, (c	l24, An)												
3		MOV	X Dm, (d	l24, An)												
4		MOV Dn.	, (abs24	.)		MOVB Dr	n, (abs24))				BSET imm8,(abs24)				BCLR imm8,(abs24)
5		MOV An,	, (abs24)												
6		ADD im	m24, Dn			ADD im	m24, An			SUB im	m24, Dn			SUB im	m24, An	
7		MOV im	m24, Dn	l		MOV im	m24, An			CMP im	m24, Dn			CMP im	ım24, An	
8		MOV	(d24, Ar	n), Dm												
9		MOVI	BU (d24,	An), Dm												
А		MOVI	B (d24, A	An), Dm												
В		MOV	X (d24, A	An), Dm												
С		MOV (ab	s24), Dr	1		MOVB (a	bs24), Dn			MOVBU (abs24), D	n				
D		MOV (ab	os24), Ar	ı												
Е	JMP label24	JSR label24		BSET imm8,(abs16)				BCLR imm8,(abs16)	В	SET imm	8, (d8,An)	E	3CLR imm	8, (d8,An)
F		MOV	(d24, Ar	n), Am												

Extended Code F

Second byte(Byte 1: F5)

Second byte		1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0		AND im	ım8, Dn			BTST in	nm8, Dn			OR im	m8, Dn			ADDNF i	mm8, An	
1		MOV	B Dm, (da	8, An)												
2		MOV	B (d8, An)), Dm												
3		MOV	BU (d8, A	n), Dm												
4		Exter	ided Code	e J												
5		MOV	X Dm, (d8	3, An)												
6		Exte	nded Code	e K												
7		MOV	X (d8, An)), Dm												
8		TBZ(d8, A0) bp	o,label					TB	3Z(d8, A1)	bp,label					
9		BSET	(d8, A0) I	р					BS	ET(d8, A	1) bp					
А		TBNZ	Z(d8, A0) I	op,label					TB	BNZ(d8, A	1) bp,labe	l				
В		BCLF	R(d8, A0) b	ор					ВС	CLR(d8, A	1) bp					
С		TBZ(a	abs16) bp,	,label					ТВ	NZ(abs1	6) bp,label					
D		BSE1	(abs16) b	р					ВС	CLR(abs1	6) bp					
Е	BLTX label	BGTX label	BGEX label	BLEX label	BCSX label	BHIX label	BCCX label	BLSX label	BEQX label	BNEX label			BVCX label	BVSX label	BNCX label	BNSX label
F		Exter	nded Code	e L									BVC label	BVS label	BNC label	BNS label

Extended Code G Second byte (Byte 1: F7)

econd byt per/Low		1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0		AND imn	n16, Dn			BTST im	m16, Dn			ADD imr	n16, An			SUB im	m16, An	
1	AND imm16 PSW				OR imm16 PSW					ADD imn	n16, Dn			SUB im	m16, Dn	
2		MOV An,	(abs16)													
3		MOV (abs	s16), An													
4		OR imm	16, Dn							CMP imr	m16, Dn			XOR im	m16, Dn	
5		MOVB	BU (d16, <i>A</i>	n), Dm												
6		MOVX	(Dm ,(d1	6, An)												
7		MOVX	(d16, An), Dm												
8		MOV [Dm, (d16,	An)												
9		MOVB	3 Dm, (d1	6, An)												
Α		MOV A	Am, (d16,	An)												
В		MOV ((d16, An),	Am												
С		MOV ((d16, An),	Dm												
D		MOVB	3 (d16, An), Dm												
Е																
F																

Extended Code H

Third byte (Byte 1: F3, Byte 2 : FE)

Third byte Jpper/Lower	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0																
1																
2																
3																
4																
5																
6																
7																
8																
9																
Α _																
В																
С		TBZ (abs2	4)bp,labe	el					٦	TBNZ (abs	24)bp,lab	el				
D		BSET (abs	s24)bp						ļ	BCLR (ab	s24)bp					
E																
F																

Extended Code I

Third byte (Byte 1: F3, Byte 2: FF)

Third byte Upper/Lower	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0																
1																
2																
3																
4																
5																
6																
7																
8	-	TBZ (d8,A	2)bp,label						-	ΓBZ(d8,A	3)bp,label					
9	E	BSET(d8,A	42)bp							BSET (d8	,A3)bp					
Α	1	ΓBNZ (d8,	A2)bp,lab	el					7	ΓBNZ(d8,	A3)bp,labe	I				
В	E	BCLR(d8,A	42)bp							BCLR (d8	,A3)bp					
С																
D																
E																
F																

Extended Code J Third byte (Byte 1: F5, Byte 2: 4n)

Upper/Lowe	er 0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	MULQL Dn,Dm	MULQH Dn,Dm														
1																
2																
3																
4																
5																
6																
7																
8																
9																
Α																
В																
С																
D																
E																
F																

Extended Code K
Third byte (Byte 1: F5, Byte 2: 6n)

Upper/Low	er 0	1	2	;	3	4	5	6	7	8	9	Α	В	С	D	E	F
0																	
1	MULC Dn,Dn	1															
2																	
3																	
4																	
5																	
6																	
7																	
8																	
9																	
Α																	
В																	
С																	
D																	
E																	
F																	

Extended Code L

Third byte (Byte 1: F5, Byte 2: Fn)

Upper/Lowe	r 0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0					MULQL imm8,Dn	MULQH imm8,Dn			MULQL imm16,Dn	MULQH imm16,Dn						
1																
2																
3																
4																
5																
6																
7																
8																
9																
A																
В																
С																
D																
E																
F																

Ver.2.1 (2001.03.15)

Record of Changes

The following shows the changes in the publication of "MN102H60G/60K/F60G/F60K LSI User's manual. (From the 1st Edition 3rd Printing dated in February, 2002 to the 1st Edition 4th Printing dated in March, 2003.)

Dana	Lina	Difficition	Deta	ills of Changes
Page	Line	Difinition	Previous Edition (Ver.1.3)	New Edition (Ver.1.4)
I-20	Figure 1-4-8	Change	AD8	P10. TMBIOB
I-28	Table 1-4-1	Add	-	Pin Number 5 P50 Pin Number 6 P51 Pin Number 7 P52 Pin Number 8 P53
II-54	Figure	Change	BRC[3:0] Burst ROM Setting for External Memory Space 3-0	BRC[3:0] Burst ROM Setting for External Memory Space 3-0
II-57	Figure	Change	DRAMACC DRAM Access Method Selection 0 2WE method 1 2CAS method	DRAMACC DRAM Access Method Selection *1 0 2WE method 1 2CAS method *1 Set '0" at MN10HF60G or ICE. 2 CAS method is not usable.
II-65	Figure 2-1-5	Change	MN102HF60G A18 A17 A16	MN102H60G A18 A17 A16
II-76	Table 2-2-2	Change	AD15-8 ((AD long 3 mode) (/RE (Late 0.5 mode) Address Long 3 Mode (Late 1 mode) (/RE (Late 2 mode) (/RE (Late 3 mode) (/RE (Late 3 mode)	AD15-8 (AD long 3 mode) (AD long 3 mode) (AE (Late 0.5 mode) (AE (Late 1 mode) (AE (Late 2 mode) (AE (Late 3 mode) (AE (
III-87	Table 3-1-3	Change	Sequence Assembler Byte Cycle Generate the first address for interrupt service routine mov (D0, A0), A0 2 2	Sequence Assembler Byte Cycle Generate the first mov BASE, A0 3 1 address for interrupt add D0, A0 2 2 service routine mov (A0), A0 2 2
IV-173	9	Change	In addition to normal PWM waveform, a three-value wafeform including	In addition to normal PWM waveform, timer 13 can also output a three-value wafeform including
IV-174	Table 4-5-1	Change	Three-value PWM $\sqrt{}$	Three-value PWM √ -

			Details of	f Changes
Page	Line	Difinition	Previous Edition (Ver.1.3)	New Edition (Ver.1.4)
IV-175	Figure	Change	TMnTR TMn PWM Waveform Selection O Normal 1 Three-value	TMnTR TMn PWM Waveform Selection* 0 Normal 1 Three-value * Only TM13 TM14 should be set to "0".
V-192	Figure	Change	SCnSB Step Bit Selection (asynchronous mode) (clock synchronous mode) (clock synchronous mode) (clock synchronous mode) (step Step Step Step Step Step Step Step S	SCnSB Stop Bit Selection (asynchronous mode) SBO Output Hold Time (clock synchronous mode by SBTn pin or (clock synchronous mode by SBTn pin or 1) 1 2-bit More than BOSC cycles 1 2-bit More than Timer I or 4 underflow cycles : SBTn pin Timer 2 or 5 underflow cycle : Timer underflow (1/2)
VII-228	6	Add	-	However, the transfer source and the data transfer destination cannot be used as DRAM set external memory space.
VIII-268	Table 8-1-2	Change	Note: The set value of the PBDIR register is valid only when the port function is selected by the PBLMD register, the PBHMD register. The input or output direction of D/A function, timer function and serial function is determined automatically by setting the PBLMD register or the PBHMD register.	Note: The set value of the P8DIR register is valid only when the port function is selected by the P8LMD register, the P8HMD register. The input or output direction of timer function and serial function is determined automatically by setting the P8LMD register or the P8HMD register.
VIII-274	1	Add	-	When P94 and P93 are selected as the LED drive ports,
XI-295	Table	Change	P60-P63, P70-P75, <u>P82-P87</u> , P90-P92, PA0-PA5, PB0 (BOSC)	P60-P63, P70-P75, <u>P80-P87</u> , P90-P92, PA0-PA5, PB0 (BOSC)
XI-296	Table	Change	P44-P47 (AN4-7), <u>P80-P81 (DAC0-1)</u> , P95-P97 (AN0-3) P94	P44-P47 (AN4-7), P95-P97 (AN1-3) P94 (AN0)
XI-322	4	Change	2 bytes/1 cycle Decode Setup 0: Disable (Decode at the same cycle in the MN102L00 series. 1: Enable (Decode the 2-byte instruction at high speed.)	Reserved Set to "0".

		D.c	Details of	f Changes
Page	Line	Difinition	Previous Edition (Ver.1.3)	New Edition (Ver.1.4)
XI-396	22	Change	1: More than timer 1 underflow cycles	1: More than timer 1 underflow cycles : When SBT0 is selected. Timer 2 underflow cycle : When timer 2 underflow (1/2) is selected.
XI-399	22	Change	1: More than timer 1 underflow cycles	1: More than timer 1 underflow cycles : When SBT1 is selected. Timer 2 underflow cycle : When timer 2 underflow (1/2) is selected.
XI-402	22	Change	1: More than timer 4 underflow cycles	More than timer 4 underflow cycles : When SBT2 is selected. Timer 5 underflow cycle
XI-404	22	Change	1: More than timer 4 underflow cycles	1: More than timer 4 underflow cycles: When SBT3 is selected. Timer 5 underflow cycle: When timer 5 underflow (1/2) is selected.
XI-408	23	Change	1: More than timer 1 underflow cycles	1: More than timer 1 underflow cycles : When SBT4 is selected. Timer 5 underflow cycle : When timer 5 underflow (1/2) is selected.
XI-434	18	Change	TM14OA, TM14OB Waveform Select 0: Normal 1: Three-value PWM	Reserved Set to "0".
XI-455	16	Change	1: Enable	1: Enable (Only when 16-bit pulse width is set at external memory space.)
XI-460	1	Change	DRAM Access Method Selection	DRAM Access Method Selection *1 *2 Set to "0" at MN102HF60G or ICE. 2 CAS method is not usable.

Differences between 1st Edition 1st Printing and 1st Edition 3rd Printing (1/2)

			Details of	Changes
Page	Line	Definition	Previous Edition (Ver.1.1)	New Edition (Ver.1.3)
Cover	-	Change	MN102H00	MN102
Warning	-	Change	If you have any inquires or questions about this book or our semiconductors, please contact one of our sales offices at the back of this book or Matsushita Electronics Corporation's Sales Department.	If you have any inquires or questions about this book or our semiconductors, please contact one of our sales offices at the back of this book.
25	Table	Change	Function Description	Function Description
	1-6-1		Data BusPulling the pin low sets 8- Width Setup bit bus width while pulling the pin high sets 16-bit bus width	Data Bus Width Setup Input Midth Setup Input Midth Setup Input Midth Setup Input Midth Setup Midth Midth Setup Midth Midth Setup Midth
52	Attention	Add		The value of internal RAM is uncertain when power is applied to it. It needs to be initialized before it is used.
285	Figure	Change	Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
387	12	Change	Transfer Units 0: Byte 1: Word	Transfer Units 0: Word 1: Byte
393	12	Change	Transfer Units 0: Byte 1: Word	Transfer Units 0: Word 1: Byte
502	6	Delete	The dedicated writer supported in PROM writer mode is the Panasonic PanaX writer.	
504	Attention	Add		PanaX Writer is a software development tool

Differences between 1st Edition 1st Printing and 1st Edition 3rd Printing (2/2)

Page Line	Definition	Details of Changes	
		Previous Edition (Ver.1.4)	New Edition (Ver.1.3)
Title	Change	MN102H00 SERIES INDTRUCTION SET	MN102H SERIES INDTRUCTION SET
23	Delete	MOV (Di, An), Am - F1::00+Di<<4+An<<2+Am	
37	Delete	MOV Am, (Di, An) - F1::80+Di<<4+An<<2+Am	
Outside of the Table Notes:	Add		2* In case of using this instruction, a value of PSW or the one that has been pushed in stack should not refered in the interrupt processing program.
Column	Delete	*Cycle	
Outside of the Table	Delete	*When quick decorder enabled	
Notes: and Machine code	Change	*2 to *44	*3 to *45
Title	Change	MN102H00 SERIES INDTRUCTION MAP	MN102H SERIES INDTRUCTION MAP
Extended		MOV (Di, An), Am	
Code B		MOV Am, (Di, An)	
	Add		1* (4 points)
Code B	Add		1* In case of using this instruction, a value of PSW or the one that has been pushed in stack should not refered in the interrupt processing program.
	Delete	Matsushita Electronics Corporation	
		© Matsushita Electronics Corporation	
	Title 23 37 Outside of the Table Notes: Column Outside of the Table Notes: and Machine code Title	Title Change 23 Delete 37 Delete Outside of the Table Notes: Column Delete Outside of the Table Table Delete Title Change Extended Code B Extended Code D Add Add Add	Title Change MN102H00 SERIES INDTRUCTION SET 23 Delete MOV (Di, An), Am - F1::00+Di<4+An<2+Am 37 Delete MOV Am, (Di, An) - F1::80+Di<4+An<2+Am Outside of the Table Notes: Column Delete *Cycle Outside of the Table Notes: and Machine code Title Change MN102H00 SERIES INDTRUCTION MAP Extended Code B Delete MOV (Di, An), Am MOV Am, (Di, An) MOV Am, (Di, An) Extended Code D Add Add Add Delete Matsushita Electronics Corporation

MN102H60G/60K/F60G/F60K LSI User's Manual

March, 2003 1st Edition 4th Printing

Issued by Matsushita Electric Industrial Co., Ltd.

© Matsushita Electric Industrial Co., Ltd.

Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

Nagaokakyo, Kyoto 617-8520, Japan Tel: (075) 951-8151

http://panasonic.co.jp/semicon SALES OFFICES

■ NORTH AMERICA

●U.S.A. Sales Office:

Panasonic Industrial Company

[PIC]

• New Jersey Office:

Two Panasonic Way Secaucus, New Jersey 07094 U.S.A. Tel: 1-201-348-5257 Fax:1-201-392-4652

• Chicago Office:

1707 N. Randall Road Elgin, Illinois 60123-7847 U.S.A. Tel: 1-847-468-5720 Fax:1-847-468-5725

• Milpitas Office:

1600 McCandless Drive Milpitas, California 95035 U.S.A. Tel: 1-408-942-2912 Fax:1-408-946-9063

Atlanta Office:

1225 Northbrook Parkway Suite 1-151 Suwanee, GA 30024 U.S.A.

Tel: 1-770-338-6953 Fax:1-770-338-6849

• San Diego Office:

9444 Balboa Avenue, Suite 185, San Diego, California 92123 U.S.A.

Tel: 1-619-503-2903 Fax:1-858-715-5545

Canada Sales Office:

Panasonic Canada Inc. [PCI]

5770 Ambler Drive 27 Mississauga, Ontario, L4W 2T3 **CANADA**

Tel: 1-905-238-2315 Fax:1-905-238-2414

■ LATIN AMERICA

●Mexico Sales Office:

Panasonic de Mexico, S.A. de C.V. [PANAMEX]

Amores 1120 Col. Del Valle Delegacion Benito Juarez C.P. 03100 Mexico, D.F. MEXICO

Tel: 52-5-488-1000 Fax:52-5-488-1073

• Guadalajara Office:

SUCURSAL GUADALAJARA

Av. Lazaro Cardenas 2305 Local G-102 Plaza Comercial Abastos; Col. Las Torres Guadalajara, Jal. 44920 **MEXICO**

Tel: 52-3-671-1205 Fax:52-3-671-1256

●Brazil Sales Office:

Panasonic do Brasil Ltda. [PANABRAS]

Caixa Postal 1641, Sao Jose dos Campos, Estado de Sao Paulo

Tel: 55-12-335-9000 Fax:55-12-331-3789

■ EUROPE

●Europe Sales Office:

Panasonic Industrial Europe GmbH • U.K. Sales Office:

[PIE]

Willoughby Road, Bracknell, Berks., RG12 8FP, THE UNITED KINGDOM

Tel: 44-1344-85-3671 Fax:44-1344-85-3853

• Germany Sales Office:

Hans-Pinsel-Strasse 2 85540 Haar, GERMANY Tel: 49-89-46159-119 Fax:49-89-46159-195

■ ASIA

●Singapore Sales Office:

Panasonic Semiconductor of South Asia [PSSA]

300 Beach Road, #16-01, The Concourse, Singapore 199555 THE REPUBLIC OF SINGAPORE

Tel: 65-6390-3688 Fax:65-6390-3689

●Malaysia Sales Office:

Panasonic Industrial Company (M) Sdn. Bhd. [PICM]

Tingkat 16B, Menara PKNS Petaling Jaya, No.17, Jalan Yong Shook Lin 46050 Petaling Jaya, Selangor Darul Ehsan, MALAYSIA

Tel: 60-3-7951-6601 Fax:60-3-7954-5968 • Penang Office:

Suite 20-07.20th Floor, MWE Plaza, No.8, Lebuh Farquhar, 10200 Penang, MALAYSIA

Tel: 60-4-201-5113 Fax:60-4-261-9989

Johore Sales Office:

Menara Pelangi, Suite8.3A, Level8, No.2, Jalan Kuning Taman Pelangi, 80400 Johor Bahru, Johor, MALAYSIA Tel: 60-7-331-3822 Fax:60-7-355-3996

●Thailand Sales Office:

Panasonic Industrial (THAILAND) Ltd.

252-133 Muang Thai-Phatra Complex Building, 31st Fl. Rachadaphisek Rd., Huaykwang, Bangkok 10320, **THAILAND**

Tel: 66-2-693-3428 Fax:66-2-693-3422

Philippines Sales Office:

[PISP]

Panasonic Indsutrial Sales Philippines Division of Matsushita Electric Philippines Corporation

102 Laguna Boulevard, Bo. Don Jose Laguna Technopark, Santa. Rosa, Laguna 4026 PHILIPPINES

Tel: 63-2-520-8615 Fax:63-2-520-8629

●India Sales Office:

National Panasonic India Ltd.

[NPI]

[M&G]

E Block, 510, International Trade Tower Nehru Place, New Delhi_110019 INDIA

Tel: 91-11-629-2870 Fax:91-11-629-2877

●Indonesia Sales Office:

P.T.MET & Gobel

JL. Dewi Sartika (Cawang 2) Jakarta 13630, INDONESIA

Tel: 62-21-801-5666 Fax:62-21-801-5675

China Sales Office:

Panasonic Industrial (Shanghai) Co., Ltd.

Floor 12, Zhong Bao Mansion, 166 East Road Lujian Zui, PU Dong New District, Shanghai, 200120 CHINA

Tel: 86-21-5866-6114 Fax:86-21-5866-8000

Panasonic Industrial (Tianjin) Co., Ltd.

Room No.1001, Tianjin International Building 75, Nanjin Road, Tianjin 300050, CHINA

Tel: 86-22-2313-9771 Fax:86-22-2313-9770

Panasonic SH Industrial Sales (Shenzhen) Co., Ltd.

• Head Office:

7A-107, International Bussiness & Exhibition Centre, Futian Free Trade Zone, Shenzhen 518048, CHINA Tel: 86-755-8359-8500 Fax:86-755-8359-8516

Shum Yip Centre Office:

25F, Shum Yip Centre, #5045, East Shennan Road, Shenzhen, CHINA

Tel: 86-755-8211-0888 Fax:86-755-8211-0884

Panasonic Shun Hing Industrial Sales (Hong Kong) Co., Ltd. [PSI(HK)]

11th Floor, Great Eagle Center 23 Harbour Road, Wanchai, HONG KONG Tel: 852-2529-7322 Fax:852-2865-3697

●Taiwan Sales Office:

Panasonic Industrial Sales (Taiwan) Co.,Ltd. [PIST]

Head Office:

6F, 550, Sec. 4, Chung Hsiao E. RD. Taipei, 110, TAIWAN Tel: 886-2-2757-1900 Fax:886-2-2757-1906

. Kaohsiung Office:

6th Floor, Hsin Kong Bldg. No.251, Chi Hsien 1st Road Kaohsiung 800, TAIWAN

Tel: 886-7-346-3815 Fax:886-7-236-8362

•Korea Sales Office:

Panasonic Industrial Korea Co., Ltd.

[PIKL]

Kukje Center Bldg. 11th Fl., 191 Hangangro 2ga, Youngsan-ku, Seoul 140-702, KOREA

Tel: 82-2-795-9600 Fax:82-2-795-1542

110303