

OWNER'S MANUAL

TABLE OF CONTENTS

Keyboard	4
Memory	10
Stack Mechanics	11
Comparing and Addressing Real Numbers	12
Comparing and Addressing Complex Numbers	13
Addressing Labels	14
Addressing Catalog Items	15
Display	16
Fonts	22
Index of Operations	23
Detailed Catalog Contents	47
Constants	50
Unit Conversions	53
Messages	56
Appendix A: Internal Support Commands	58
Appendix B: Candidates for Further Functions	60

WELCOME

Dear user, you hold in your hands the result of careful customizing. Mechanics and hardware of your WP 34S are of the new *HP-30b Business Professional* as is: so you get its unexcelled processor speed as well as the famous rotate-and-click keys with the tactile feedback known and appreciated in vintage Hewlett-Packard calculators for decades. On the other hand, firmware and user interface of the WP 34S are newly designed and written from scratch to give you a **fast and compact <u>scientific</u> calculator like you have never had before**.

The function set of the WP 34S is based on the one of the renowned *HP-42S RPN Scientific*, the most powerful programmable RPN calculator built so far ¹. We expanded this set, incorporating completely the functionality of the famous programmer's calculator *HP-16C*, fraction mode of the *HP-32SII*, probability distributions as featured by the *HP-21S*, and **many more useful functions for mathematics, statistics, physics, engineering, programming etc.** like

- + Euler's Beta function, Fibonacci number calculation, Lambert's W (all these in real and complex domain), incomplete regularized Beta and Gamma, testing for prime numbers.
- + the error function as well as many statistical distributions and their inverses like Poisson, Binomial, Geometric as well as Exponential, Weibull for reliability analysis, and Gaussian with arbitrary mean and standard deviation,
- + programmable sums and products,
- + extended date and time calculations based on a real time clock,
- + integer computing in arbitrary bases from binary to hexadecimal,
- + financial operations like mean rate of return or margin calculations,
- + over 70 conversions, mainly between universal SI and old Imperial units,
- nearly 50 fundamental physical constants as precise as known today by national standards institutes like NIST or PTB.
- + complete Greek and extended Latin letter fonts covering many languages (upper and lower case in two font sizes each).

The WP 34S is the first RPN calculator overcoming the limits of a 4-level stack – forget worries about stack overflow in calculations. It features a choice of two stack sizes expanded by a complex LASTx register: traditional 4 stack levels for HP compatibility, 8 levels for convenient calculations in complex domain, for more advanced real formulas, or for whatever application you have in your mind. You get a full command set for navigation in either size.

Furthermore, the WP 34S features over 100 general purpose registers, 100 user flags, 476 program steps, 3 programmable hotkeys for your favorite programs, and a 31 byte alpha register for message generation.

_

¹ Though the *HP-42S* was sold in 1988 already, this statement holds still. – Due to display restrictions, matrix math cannot be supported by the WP 34S. Sorry for this.

If you know how to deal with a good old HP RPN calculator, start with your WP 34S right away. To show you its features completely, however, we wrote this little manual. It starts with a survey of the active keyboard in various modes, so you know where to find what you are looking for. It continues with tables about addressing, browsing the catalogs, and a paragraph about the display and indicators used to tell you what's going on. Then the major part of this booklet is taken by the index of operations, the catalog contents, constants and conversions featured. It closes with a list of messages the WP 34S will display if special input conditions prevent it from executing your command as expected.

Your WP 34S is the result of an intercontinental collaboration of two individuals, an Australian and a German, though we did this in our free time, so you may call it our hobby to some extent. The project was discussed in the online Museum of HP Calculators (www.hpmuseum.org) from its beginning, so we want to express our gratitude to all contributors there who taught us a lot and supported us in several stages of our project. Special thanks go to Marcus von Cube supporting us in bringing v1.14 in an emulator and the current version on your screen so you can use it. We baptized it 34S in honor of one of the most powerful LED pocket calculators, the HP-34C, and since it is our humble approach — with the hardware given — to a future 43S we can only dream of so far becoming the successor of the HP-42S. Maybe it will help convincing those having access to more resources than us that it is worthwhile covering the market of serious scientific instruments.

We have checked everything we could think of carefully to our best knowledge, so our hope may be justified the WP 34S is bug-free. We cannot guarantee this, however, nor can we bear any liability for errors in calculations nor their possible consequences. Nevertheless, we promise we will improve the WP 34S whenever it will turn out being necessary – so if you ever discover any strange result, please report it to us, and if it is unveiled being an internal error we will provide you with an update as soon as we have one.

Enjoy!

Paul Dale and Walter Bonin

PRINT CONVENTIONS

Throughout this manual, commands are generally called by their names, usually written in CAPITALS.

This **CPX** font is taken for explicit references to keys.

Register addresses are printed using Times New Roman. Lower case italic letters of this font are taken for register contents (e.g. y or r45 or alpha for contents of stack level Y or general purpose register R45 or the alpha register, respectively). Lower case bold italic Arial letters like n are used for variables.

All this holds unless stated otherwise explicitly.

KEYBOARD

Generally, white labels execute the *default primary function* of the respective key. To access a golden, blue, or green label, use *prefix* , g, or n, respectively. Any label underlined opens a *catalog*. For example, preceded by

- **f** executes $\mathbb{R}^{\triangleleft}$ converting 2D polar coordinates r in \mathbb{X} and \mathcal{G} in \mathbb{Y} into Cartesian ones, allowing also for switching representations of complex numbers,
- \bigcirc does the reverse, i.e. converts x and y into r and θ via \bigcirc ,
- **h** opens the catalog of conversions via **CONV**.
- The dark red letter **E** will become relevant in *alpha mode* as well as in integer modes of bases 15 and 16. Find out more about these and other modes below.

Further remarks:

- The *hotkeys* \mathbf{B} , \mathbf{C} , and \mathbf{D} immediately call the user programs carrying these labels if defined, else they act as (1/x), (y^x) , or (x), respectively.
- The key → trailed by H.MS, H.d, DEG, RAD, GRAD, 2, 8, 10, or 16, converts x.
- If . is used twice in numeric input, the WP 34S enters fraction mode.
- Prefix CPX is employed for calling functions in complex domain. Then names will be merged, e.g. CPX COS will be displayed and listed as COS. All complex functions in WP 34S operate on Cartesian coordinates exclusively. Generally, if an arbitrary real function f operates on ...
 - o x only, then its complex sibling ${}^{\mathbf{C}}\mathbf{f}$ will operate on $x_c = x + i y$.
 - o one register, e.g. R12, then cf will operate on R12 and R13.
 - o x and y, then c_f will operate on x, y, z and t.
- Most one-number real functions replace x by the result f(x) stored in X again. In analogy, respective complex functions replace x by the real part and y by the imaginary part of the complex result ${}^{C}f(x_c)$. Higher stack levels remain unchanged. Such functions are ${}^{C}1/x$, ${}^{C}ABS$, ${}^{C}FIB$, ${}^{C}FP$, ${}^{C}IP$, ${}^{C}ROUND$, ${}^{C}SIGN$, ${}^{C}W$, ${}^{C}W^{-1}$, ${}^{C}x!$, ${}^{C}x^2$, ${}^{C}\sqrt{}$, ${}^{C}+/-$, ${}^{C}\Gamma(x)$, logarithmic and exponential with bases 10, 2 and e, as well as hyperbolic, trigonometric, and their inverses.
 - Some real functions (e.g. DECOMP) operate on one number but return two. Other operations (like RCL or SUM) do not consume any stack input at all but just return one or two numbers. Then these extra number(s) will be pushed on the stack, taking one level per real or two per complex number, respectively.
- Two-number real functions replace x by the result f(x, y). Level Y is then filled with the content of the next higher level, i.e. z. This goes on for higher levels, only the number on top is repeated as shown \underline{below} .
 - In analogy, respective complex functions replace x by the real part and y by the imaginary part of the complex result ${}^{C}\mathbf{f}(x_{o},y_{c})$. The next stack levels are filled with the complex contents of higher levels, and the complex number in the top two levels is repeated as shown \underline{below} . Such complex functions are ${}^{C}\mathsf{LOG}_X$, ${}^{C}y^X$, ${}^{C}\beta(x,y)$, ${}^{C}/\!/$, and the basic arithmetic operations in complex domain.
- There are two three-number real functions included Iβ and %MRR replacing x by the result f(x, y, z). Then Y is filled with t and so on, and the content of the top level is repeated twice. No such complex functions are featured.

Please see the *index of operations* for a complete list of all the operations featured.

Virtual active keyboard in **hexadecimal mode**:

Primary functions of the top six keys will be numeric input, so their default primary functions are accessed using \bigcirc . The key \bigcirc is exclusively for addressing and temporary display in other bases (see <u>addressing tables</u> and <u>index of operations</u> below).

For smaller integer bases, the active keyboard will look alike, but those top keys not needed for numeric input there will keep their default primary functions, except Σ + and CPX. Attempts to enter an illegal digit will be blocked or throw an *error*.

Virtual active keyboard in alpha mode:

In this mode, the contents of the alpha register are displayed in the dot matrix, and the numeric line is accessible by commands only. All labels printed on dark red or blue background in this picture append characters to *alpha* immediately or via alpha catalogs; those on blue deviate from the prints on the WP 34S at these locations.

Alpha mode starts with upper case, then toggles upper and lower case. PSE appends a space. Primary function of most keys is appending the letter printed bottom left of this key – dark red on the key plate. Then is used for accessing the default

If *alpha* is going to exceed 31 characters, the leftmost character(s) will be discarded. See the *index of operations* for α STO, α RCL, α TIME, and more alpha commands.

A subset of these characters is sufficient for **browsing an open catalog**:

²The digits 0 and 1 may also be called using 10 or 11, respectively.

³ "Homonymic" according to ancient Greek pronunciation. And we assigned **Gamma** also to **C** due to the alphabet, and **Chi** to **H** since this letter comes next in pronunciation. Three Greek letters require special handling: **Psi** is accessed via **g 0** (below **PSE**), **Theta** via **g 1** (below **TEST** and following **T**), and **Eta** via **g ENTER†**. **Omicron** is not featured since looking exactly like **O** in either case. – Where we printed Greek capitals with lower contrast on page 7, they look like the respective Latin letters in our fonts. Greek professors, we count on your understanding.

A <u>temporary alpha</u> mode is entered during input processing in comparisons and addressing, e.g. during storing and recalling. See the respective virtual active keyboard here:

This mode is left automatically when sufficient characters are put in for the respective command. Find more about it below.

In this mode, ... is employed for FIX only (see *below*).

MEMORY

	Stack registers	G
	D *	
	C *	
	B *	
	A *	
	T	
Alpha (31 bytes)	Z	
	Y	
Display	X	
	L	I **
As the first calculator ever 4 or 8 stack levels. So eit		

Registers A - D will be allocated as stack registers if required.

Please see below for top level repetition and stack contents in complex calculations. While register L takes the real part of the last argument, I takes the imaginary part when a complex function was executed (see ^CLASTx).

After using $(\Sigma +)$, general purpose registers R87 - R99 will contain statistical sums as indicated. J and K may be taken for parameters of statistical distributions.

Unless required for the purposes just mentioned, the registers A - D, I, J, and K are available as additional general purpose registers.

System flags B and C are handled like in the HP-16C. Flag **D** is set if legal results include "NaN" and "infinite".

е	ral purpose regis	sters	User flags		Progr	am steps
	R00		00		000	
	R01		01		001	
	R02		02		002	
			•••			
	R85		97		473	
	R86		98		474	
	R87 Σ x		99		475	
	R88 Σ x ²					
	R89 Σ y		User readable			
	R90 Σ y ²		system flags	_	/	
	R91 Σ (<i>x y</i>)		B Big, overflow	<mark>/</mark>	i	X = R100
	R92 n		C Carry			Y = R101
	R93 Σ (ln x)		D Danger	/		Z = R102
	R94 Σ (ln² x)			/		T = R103
	R95 Σ (ln <i>y</i>)			/		A = R104
	R96 Σ (ln² y)			/		B = R105
	R97 Σ(ln <i>x</i> ln <i>y</i>)			/		C = R106
	R98 Σ (x ln y)			/		D = R107
	R99 Σ (y ln x)			<u>/</u>		L = R108
						I = R109
	J ***					J = R110
	K ***					K = R111

STACK MECHANICS

What happens with the contents of particular stack levels depends on the function executed, its domain (integer, real or complex) and the stack size chosen.

Real functions in a 4-level stack work as known for decades. In a larger stack, everything works alike on the WP 34S – just with more levels for intermediate results. Calculating formulas from inside out stays a wise strategy in either stack. With more levels, however, stack overflow will hardly ever happen, even with the most advanced formulas you compute in your life as a scientist or engineer.

Calculating with complex numbers uses two registers or levels for each such number as explained above and shown here:

	Level	Assumed stack contents at the beginning:	^C EN1	th	e (ts after excomplex s	ack re				ns cLASTx		complex fu 1 number like ^C x ²	2 numbers like ^C /		functi	er or <u>real</u> ons of 2 ers like /
With SSIZE4:	Т	$Im(y_c) = Im(t_c)$ $Re(y_c) = Re(t_c)$ $Im(x_c)$ $Re(x_c)$	Re($\begin{pmatrix} x_c \end{pmatrix}$ $\begin{pmatrix} x_c \end{pmatrix}$ $\begin{pmatrix} x_c \end{pmatrix}$		$y_c = t_c$ y_c	y _c			x_c $lastx_c$	$y_c = t_c$ $Im((x_c)^2)$ $Re((x_c)^2)$		$y_c = t_c$ $Im(y_c / x_c)$ $Re(y_c / x_c)$		<i>t z y x</i>	t t z y/x	
With SSIZE8:	D C	$\operatorname{Im}(t_c)$ $\operatorname{Re}(t_c)$	z_c	x_c		t_c	t_c	x_c	z_c		z_c		t_c	t_c		<i>d c</i>	$\frac{d}{d}$
	B A	$Im(z_c)$ $Re(z_c)$	y_c	x_c		t_c	z_c	t_c	y_c		y_c		z_c	t_c		<i>b a</i>	<i>c b</i>
	T Z	$\operatorname{Im}(y_c)$ $\operatorname{Re}(y_c)$	x_c	x_c		z_c	x_c	z_c	x_c		x_c		y_c	z_c		t z	a t
	Y X	$\operatorname{Im}(x_c)$ $\operatorname{Re}(x_c)$	x_c	x_c		y_c	y_c	y_c	t_c		lastx _c		$(x_c)^2$	y_c / x_c		<i>y x</i>	$\frac{z}{y/x}$

So, an 8-level stack gives you the same flexibility in complex domain you are used to with a 4-level stack in real domain.

COMPARING AND ADDRESSING REAL NUMBERS

1	User input Dot matrix display		< ?), (x≤ ?), (x≈ P _ (with tempor	x ≠ ?, ?, x ≥ ?, or x > ary alpha mode so		RCL, STO, RCLS, STOS, aRCL, aSTO, VIEW, x≥, DSE, ISG, DSZ, ISZ, FIX, SCI, ENG, DISP, BASE, CB and many more bit commands, or CF and the other flag commands OP _ (with temporary alpha mode set) e.g. RCL _ 4				
2	User input Dot matrix	0 or 1	Stack level or named reg. X, Y, OP x	ENTER 1 5 leaves temp. alpha mode.	opens indirect addressing. OP →_	Stack level or named register (X), (Y), (Z),, (K) 6	Number of register or flag or bit(s) or decimals ⁷	opens indirect addressing. OP →_		
	display	e.g. x≤ 0 ?	e.g. x ≥y ?			e.g. SCI Z	e.g. <mark>SF 15</mark>			
	User input Dot matrix	Compares x with the number 0 .	Compares x with the number on stack level Y .	Register no. 0 0 9 9 OP r nn	Look right for more about indirect ad- dressing.	Sets scientific display with the number of decimals specified in stack level Z .	Stack level etc. $(X), (Y), (Z),, (K)$ $(X) \rightarrow X$	Register number $\boxed{0 \ 0 \ \dots \ 9 \ 9}$ $\boxed{OP \rightarrow nn}$		
	display			e.g. <mark>x≠ r23?</mark>			e.g. VIEW →L	e.g. <mark>ST0 →45</mark>		
				Compares x with the number stored in R23 .			Shows the content of the register where L is pointing to.	Stores x into the location where R45 is pointing to.		

⁴ For **RCL** and **STO**, any of +, -, **x**, **/**, **△**, or **▼** may precede step 2, except in RCLM and STOM. **FIX** . calls ALL. See the index of operations.

⁵ You may skip this for register numbers >19.

⁶ Exceptions: RCL T, RCL x T, RCL Z, RCL+ Z require an **ENTER†** previous to **T** or **Z**, e.g. **RCL** + **ENTER† Z** for the latter. This holds for STO as well.

Register and flag numbers may be 00 ... 99, number of decimals 0 ... 11, integer bases 2 ... 16, bit numbers 0 to 63, and integer word size up to 64 bits. For numbers <10, you may key in e.g. **5 ENTER** instead of **0 5**. There are three additional flags addressed via **B**, **C**, and **D**. – Take into account some registers may be allocated to special applications.

COMPARING AND ADDRESSING COMPLEX NUMBERS

1	User input		CPX x=	? or x≠ ?		CPX (RCL), (STO), or (x2)					
	Dot matrix display		` .	ary alpha mode set) •x= _	OP _ (with temporary alpha mode set) e.g. PRCL _8						
2	User input	0 or 1	Stack level or named register (X), (Z), (A), (C), (L), or (J)	ENTER↑ 9 leaves temp. alpha mode	opens indirect addressing.	Stack level or named register Z ¹⁰ , A , C , L , or J	Register number	opens indirect addressing.			
	Dot matrix display	OP <i>n</i> e.g. "x= 0 ?	OP x e.g. ° x≠ z ?	OP r_	OP → _	OP x e.g. •RCL L	OP <i>nn</i> e.g. °STO 18	OP → _			
3	User input	Compares $x + i y$ with the real number 0 .	Compares $x + i y$ with $z + i t$.	Register number	Look right for more about indirect addressing.	This is ^C LASTx.	Stack level or named register X, Y,, K	Register number			
	Dot matrix display			OP r <i>nn</i> e.g. "x≠ r26?			OP → x e.g. ° x<> →Z	OP → nn e.g. •STO →45			
				Compares $x + i y$ with $r26 + i r27$.			Z is pointing to, the contents of the next one.	Stores $x + i y$ into 2 consecutive registers, starting with the one where R45 is pointing to.			

__

⁸ For **RCL** and **STO**, any of **+**, **-**, **x**, or **/** may precede step 2. See the index of operations.

⁹ You may skip this keystroke for register numbers >19.

Exceptions: CRCL Z, CRCL + Z, CSTO Z, and CSTO + Z require an **ENTER1** previous to **Z**, e.g. **CPX STO + ENTER1 Z** for the latter.

You may key in e.g. 8 ENTER1 instead of 08. Take care of pairs, since a complex operation will always affect two registers: the one specified and the one following this. We strongly recommend storing complex numbers with their real parts at even register numbers. – Take into account some registers may be allocated to special applications.

ADDRESSING LABELS

1 User input			(XEQ), (GTO) , (LBL) , (LBL) , (SLV) , (I) , (II) or (II)											
Dot matri displ	a a VEII 'I''		e.g. GTO _											
2 User input		B, C, or D	B, C, or D ENTER↑ sets alpha mode. opens indirect addressing and sets temporary alpha mode.											
Dot r	natrix ay	OP ' <i>label</i> ' e.g. Σ 'B'												
3 User input		Sums up the function labeled B .	Alphanumeric label (≤ 3 characters ¹³)	Stack level or named register X, Y, Z,, K	Register number									
Dot n			<mark>OP '<i>label</i>'</mark> e.g. SLV'F1μ'	OP → x e.g. ∫ → T	<mark>OP → nn</mark> e.g. XEQ →44									
			Solves the function F1µ (with F1µ keyed in as explained in footer).	Integrates the function whose label is on stack level T .	Executes the routine whose label is in R44 .									

¹² Works with all these operations except LBL .

The 3rd character terminates entry and closes alpha mode – shorter labels need a closing **ENTER**. For the example given here you just key in **ENTER CPX 1 EXIT 9 7** and you are done.

¹⁴ Some registers may be allocated to special applications. Please check the memory table above.

ADDRESSING CATALOG ITEMS

1	User input	CONST, CONV, MODE, PROB, P.FCN, STAT,	CPX, R♣, or R↑ in alpha mode	→, (TEST), or ./, in alpha mode								
	Dot matrix		t item in selected c	_								
	display	(e.g. BC? in P.FCN) Alpha mode is set.	(e.g. Á in CPX)	(e.g. , in ./.)								
2	User input	XEQ, ▼, ▲, EXIT, or 1 st character	XEQ, ▼, ▲, EXIT, or character									
		(e.g. F)	(e.g. O)									
	Dot matrix display	Shows 1 st item starting with this character *)	Shows 1 st item starting with this letter *)									
	display	(e.g. FB)	(e.g. Ó)									
3	User input	XEQ, ▼, ▲, EXIT, or 2 nd character										
		(e.g. S)										
	Dot matrix display	Shows 1 st item starting with this sequence *) (e.g. FS?)										
4	User input	XE	(e.g. ▼)									
	Dot	Shows	next item in this ca	talog								
	matrix display	(e.g. FS?C)	(e.g. Ò)	(e.g. ?)								
		Continue browsi	ng this way until reaching the	e item desired								
		(e.g. FS?F).	(e.g. Ö).	(e.g. 🕻).								
n	User		XEQ									
	input		the catalog returning to the n	node set before								
	Dot	and executes or inserts the command	and appends the selec	eted character to <i>alpha</i> .								
	matrix	chosen, or recalls the constant selected.	Contents of a	lpha register								
	display	Result	(e.g. Öst l	. Seite:)								

^{*)} If a character or sequence specified is not found in this catalog then the first item following alphabetically will be shown. You may key in more characters – within 3 seconds. Thereafter or after ▼ or ▲ , the search string will be reset and you may start with a first character again.

DISPLAY

The display features three sections: numeric, dot matrix and fixed symbols. The numeric section features a minus sign and 12 digits for the mantissa, as well as a minus sign and 3 digits for the exponent. The dot matrix is 6 dots high and 43 dots wide, allowing for some 7 to 12 characters, depending on their widths. The fixed symbols (except the big "=") are called *annunciators*, and are for indicating modes.

The dot matrix section above is used for

- 1. indicating some more modes than the annunciators allow,
- 2. passing additional information to the user.

The numeric section in the lower part of the LCD is used for displaying numbers in different formats, status, or messages.

If two or more requests concur for display space, the items will be shown according to their priorities as follows:

- 1. error messages as described in a paragraph further below,
- 2. special information as explained below,
- 3. information about the modes the calculator is running in.

The annunciators or specific characters in the display signal the modes:

Signal	INPUT	b	d	h	o		STO
Mode name if different	α	2			8	DECM	PRG
Set by	αΟΝ	BASE2	BASE10	BASE16	BASE8	BASE0	PRGON
Cleared by	αOFF	any	other BASE PROFRC,	setting, FF H.MS, TIM		FRC,	PRGOFF

Signal	360	RAD	G		
Mode name if different				H.MS	FRC
Set by	DEG	RAD	GRAD	H.MS, →H.MS	BASE1, FRACT IMPFRC, PROFRC 2 nd . in input
Cleared by	GRAD RAD	DEG GRAD	DEG RAD	Next keystroke	BASE ≠1 H.MS, TIME →H.MS

BEG indicates the program pointer standing at step 000 of program memory. A running program is signaled by a flashing **RCL** annunciator. The small equal sign = is lit while you are browsing a catalog. **RPN** may be lit permanently. Time modes (12h / 24h) are seen in the time string directly. The numeric formats of H.MS and fraction modes are unambiguous as well. Further settings are signaled in the dot matrix section, like the different date modes being indicated there by **D.MY** or **M.DY**. Defaults Y.MD and DECM are not indicated. Please check the examples below.

Some mode and display settings may be stored and recalled collectively by STOM and RCLM. The command RCLM recalls a 18-bit word containing mode data packed as follows, starting with the least significant bit:

Bits	Meaning	Values and corr	esponding setting	gs
0, 1	Display format for real numbers	0 = ALL 2 = SCI	1 = FIX 3 = ENG	
2 5	Number of decimals	0 12		
6, 7	Angular mode	0 = DEG	1 = RAD	2 = GRAD
8, 9	Date display format	0 = Y.MD	1 = D.MY	2 = M.DY
10	Time display format	0 = 24h	1 = 12h	
11	Radix mark	0 = point	1 = comma	
12 14	Curve fit model	0 = LinF 2 = PowerF	1 = ExpF 3 = LogF	4 = BestF
15, 16	Integer sign mode	0 = 2COMPL 2 = UNSIGN	1 = 1COMPL 3 = SIGNMT	
17	Stack depth	0 = 4 levels	1 = 8 levels	

So the start-up default with 4 stack levels, ALL, DEG, Y.MD, 24h, decimal point, LinF, and 2COMPL is zero. On the other hand, settings for e.g. 8 stack levels, SCI 2, RAD, D.MY, 12h, decimal comma, BestF, UNSIGN correspond to

$$1101001101010101010_2 = 445770_{10}$$
.

STOM takes such a number and sets the calculator modes accordingly. Please see the *index of operations* for more information about changing modes.

Some commands and modes use the display in a special way. They are listed below in order of falling priority:

1. **VERS** generates a display as shown on the title page of this manual. Pressing any key will delete this message and return to previous state.

2. **STATUS** displays the status of 30 flags very concisely, allowing an immediate status overview after some training. If e.g. flags 2, 3, 5, 7, 11, 13, 14, 17, 19, and 23 are set, and labels B, C, and D are defined in program memory, STATUS will display this:

Within the numeric section, each row of horizontal bars in the mantissa shows the status of 10 flags. When a flag is set, the respective bar turns black. So here the top row of bars indicates flags 0 and 1 are clear, 2 and 3 set, and flag 4 clear. Then, the divider II separates the first group of five flags from the next. Top row bars on its right side indicate flags 5 and 7 are set. Next row of bars shows flags 11, 13, 14, 17, 19 are set, and in the lowest row only flag 23 is set. All other flags in the range from 10 to 29 are clear.

Scrolling down by will display flags 10 - 39, then 20 - 49 etc. until 80 - D. Scrolling up by reverts this. Alternatively, pressing a digit, e.g. 5, will show 30 flags starting with 10 times this digit, e.g. flags 50 - 79. The numeric exponent always indicates the status of the 3 hotkeys top left on the keyboard.

The status will be displayed until any key is pressed but $\mathbf{\nabla}$, $\mathbf{\triangle}$, or a digit < 9.

3. During **command input**, the dot matrix displays the command chosen until input is completed, i.e. until all required trailing parameters are entered. The prefixes 1, 9, and 1 are shown until they are resolved. If you pressed any of 1, 9, or 1 erroneously, recovery is as easy as follows:

In addressing, progress is recorded as explained in the <u>addressing tables above</u> in detail.

4. In **programming mode**, the numeric display indicates the program step (000 – 475) in the mantissa and the number of free steps in the exponent, while the dot matrix shows the command contained in the respective step, e.g.:

5. For **floating point decimal numbers**, the mantissa will be displayed adjusted to the right, the exponent to the left. Within the mantissa, either points or commas may be selected as radix marks ¹⁵, and additional marks may be chosen to separate thousands. Assume the display set to FIX 4, then 12.345678901 millions may look like:

¹⁵ Starting here, decimal input is written using a point as radix mark throughout this manual, although significantly less visible, unless specified otherwise explicitly. By experience, the "comma people" are more capable to read radix points and interpret them correctly than vice versa.

with thousands separators on, and without them like:

These separators may also be beneficial in integer or fraction modes described below. – With ENG 3 and after changing the sign, the same number will look like this:

If the last operation executed was a complex one, a capital C is displayed top left in the dot matrix pointing to the fact that you find the result of this function in X and Y.

Floating point decimal numbers within $10^{-383} < x < 10^{+385}$ may be entered easily. Using a decimal mantissa, even numbers down to 10^{-394} can be keyed in. The calculator works with numbers down to 10^{-398} correctly. Smaller nonzero values are shown as 0^{-398} . For results $x \ge 10^{+385}$, error 4 or 5 will appear (see <u>below</u>).

6. In **integer modes**, numbers are displayed adjusted to the right as well. Word size and complement setting are indicated in the dot matrix using a format **xx.ww**, with **xx** being **1c** or **2c** for 1's or 2's complement, respectively, **un** for unsigned, or **sm** for sign-and-mantissa mode. Sign and first digit of the exponent show the base, a "c" in the second digit signals a carry bit set, an "o" in the third an overflow. Integer bases are indicated as follows:

Base	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Sign and 1 st digit of exponent displayed	b	3	4	5	6	7	0	9	d	-1	-2	-ვ	-4	-5	h

The example shows the WP 34S in unsigned hexadecimal mode with word size 64 and carry set:

After changing to binary mode, this number will need 28 digits, being 1001001110100001010010110110. Initially, the 12 least significant digits will be displayed together with an indication that there are three display windows in total with the rightmost shown:

Now press <a> and you will get the next 12 digits in the middle window:

Press <a> again to show the most significant digits:

If leading zeros were turned on, there will be six display windows in this case, with the three "most significant" containing only zeros.

Please note the window will also change in numeric entry when more than 12 digits are keyed in. Leftmost digits will leave the display window then.

7. **Fraction mode** works similar to HP-35S. In particular, DENMAX sets the maximum allowable denominator (see the <u>index of operations</u>). Display will look like in the examples below. If the fraction is exactly equal, slightly less, or greater than the floating point number converted, "=", "Lt", or "Gt" is indicated in the exponent, respectively.

Assume DENMAX ≥ 32. Then e.g. -47.40625 will be displayed as follows:

depending on the output setting for proper or improper fractions. Please note integers like 123 will be displayed as "123 0/1" or "123/1" in fraction mode, respectively.

Fraction mode can handle numbers with absolute values < 10,000 and > 0.0001. Maximum denominator is 9999.

Using DENMAX = 9999, squaring the improper fraction shown above results in

Now, enter ab/c for converting this result into a proper fraction. Your 34S will display

with a little hook left of the first digit shown. This indicates the first number being displayed incompletely – there are at least two digits preceding 47 but no more display space. Press **SHOW** to unveil the integer part of this proper fraction is <u>22</u>47.

8. In **H.MS** display mode, format is hhhh°mm'ss.dd" with the number of hours or degrees limited to 9000. Output may look like this:

depending on the radix setting. For decimal times less than 5ms or 0.005 angular seconds but greater than zero, an "u" for underflow will be lit in the exponent section. For times or angles exceeding the upper limit, an "o" will be shown there signaling an overflow.

9. Output of the function **DAY** will look as follows for an input of 1.13201 in M.DY mode (equivalent to inputs of 13.01201 in D.MY or 2010.0113 in Y.MD):

The display may look similar for a result of DAYS+.

10. In alpha mode, the alpha register is displayed in the dot matrix, starting with the first character it is containing, while the numeric section keeps the result of the last numeric operation, e.g.:

Different information may be appended to *alpha*. See the commands starting with " α " in the index of operations below. E.g. α TIME allows creating texts like

depending on time mode setting (12h / 24h). And α DATE will append – depending on date format setting – either 2011-03-14 or 14.03.2011 or 03/14/2011 to *alpha*.

Please note *alpha* may be considerably longer than the display window. And the WP 34S features a rich set of special letters. So you may store a message like

easily but you will see its right end only, i.e.

in this very special case.

All keyboard input will be interpreted according to the mode set at input time.

FONTS

The WP 34S features a large and a small font. Both are based on Luiz Viera's fonts as distributed in 2004. Some letters were added and some modified for better legibility, since the dot matrix is only 6 pixels high here. The following tables show the characters directly accessible through the keyboard. More are in the alpha catalogs (see <u>below</u>).

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ABCDEFGHIJKLM NOPQRSTUVWXYZ ABCDEFGHIJKLM NOPQRSTUVWXYZ

abcdefghijklm nopqrstuvwxyz

abcdef9hijklm noparstuvwxyz abcdefghijklm noparstuvwxyz

ΑΒΓΔΕΖΗΘΙΚΛΜ ΝΞΟΠΡΣΤΥΦΧΨΩ

ΑΒΓΔΕΖΗΘΙΚΑΜ ΝΞΟΠΡΣΤΥΦΧΨΩ ΑΒΓΔΕΖΗΘΙΚΑΜ ΝΞΟΠΡΣΤΥΦΧΨΩ

αβγδεζηθικλμ νξοπρστυφχψω

αβγέεζηθικλμυξοπρστυΦχψω αβγέεζηθικλμυξοπρστυφχψω

0 1 2 3 4 5 6 7 8 9	()+-×/±.!	↔ % √ \ & ≠ \$ € £ ¥
0123456789	0+-×/±.!	#%4/8 ≠ \$€£¥
0123456789	()+-×/±.!	ギバモ/を 4を6そ人

INDEX OF OPERATIONS

All functions available are found below with their names and keystrokes necessary. Names printed in **bold** face therein belong to commands directly accessible on the keyboard, the others are accessible via catalogs. These names will show up in program listings as well. Sorting in index and catalogs is case insensitive and works in the following order:

Super- and subscripts are handled like normal characters in sorting.

Generally, functions and keystroke programming will work as on *HP-42S*, bit and integer functions as on *HP-16C*, unless stated otherwise under remarks. Especially, all **tests** will return "Yes" or "No" in the dot matrix if called from the keyboard; if called in a program, they will skip the next program line if the test is false. Please refer to the manuals of the vintage calculators mentioned, e.g. on the DVDs distributed by *www.hpmuseum.org*.

Functions available on the WP 34S for the first time on an RPN calculator are highlighted yellow under remarks, while operations carrying a familiar name but deviating in their functionality here are marked light red.

Parameters will be taken from the lowest stack levels unless being mentioned explicitly in the 2^{nd} column. Then they must follow the command. If <u>underlined</u>, they may also be specified using indirect addressing, as shown in the <u>tables</u> above. Some parameters of statistical distributions must be given in registers **J** and **K** if specified.

Each function is listed stating the mode(s) it will work in, abbreviated by their <u>indicators</u>. In this column an "&" stands for a Boolean AND, a comma for an OR, and a backslash for "not". So e.g. 2^X works in all modes but alpha. DECM^H stands for "DECM, H.MS". All operations will also work in mode PRG unless stated otherwise explicitly.

Name	Keys to press	in modes	Remarks
с	<u>CPX</u>	DECM	Indicates an operation in complex domain (see <u>above</u>). CPX may be combined with all functions whose <u>names are printed in italics here</u> .
10 ^x	f 10 ^x	DECM	
12h	h MODE 12h	\α	Sets 12h time display mode meaning 1:23 becomes 1:23 a.m. and 13:45 becomes 1:45 p.m.
1COMPL	h MODE 1COMPL	\α	Sets 1's complement mode like in HP-16C.
1/x	f 1/x	DECM	
1/X	В	DECM	Shortcut as long as label B is not defined yet.
24h	h MODE 24h	\α	Sets 24h time display mode meaning 1:23 a.m. becomes 1:23, and 1:45 p.m. becomes 13:45.
2COMPL	h MODE 2COMPL	\α	Sets 2's complement mode like in <i>HP-16C</i> .

Name	Keys to press	in modes	Remarks
2 ×	f 2 *	\α	
ABS	f Ixl	\α	CABS returns $r = \sqrt{x^2 + y^2}$ in X and clears Y .
ACOS	g COS-1	DECM ^H	
ACOSH	g HYP-1 COS	DECM	
ALL	h FX .	\α	Selects the format displaying "all" digits.
		Integer	Works bitwise as in HP-16C.
AND	h (AND)	DECM	Works like AND in HP -28S, i.e. x and y are interpreted before executing this operation. 0 is "false", any other real number is "true".
ANGLE	h X.FCN ANGLE	DECM	Calculates the angle between positive x-axis and the straight line from the origin to the point (x, y) , returns this angle in X and clears Y .
ASIN	g SIN-1	DECM ^H	
ASINH	g HYP-1 SIN	DECM	
ASR	h X.FCN ASR <u>n</u>	Integer	Works like <i>n</i> (up to 63) consecutive ASRs in <i>HP-16C</i> . ASR 0 executes as NOP.
ATAN	g TAN-1	DECM ^H	
ATANH	g HYP-1 TAN	DECM	
BASE	h MODE BASE <u>n</u>		Sets the base for integer calculations, with
BASE10	f 10		$2 \le n \le 16$. Popular bases are directly accessible on the keyboard. Current integer base set-
BASE16	g 16	\α	ting is indicated in the exponent as explained above.
BASE2	f 2		Furthermore, BASE0 equals DECM, and BASE1 calls FRACT.
BASE8	g 8		DASET CAIIS FRACT.
BC?	h TEST BC? <u>n</u>	Integer	Tests the specified bit in x .
BestF	h STAT BestF	DECM	Selects the best curve fit model, maximizing the correlation like BEST does in <i>HP-42S</i> .
BS?	h TEST BS? <u>n</u>	Integer	Tests the specified bit in x .
B(m)	h PROB B(m)	DECM	= BINOMDIST(x ; j ; k ; 1) in MS Excel, with the sample size j and the gross error probabili-
B ⁻¹ (p)	h PROB B ⁻¹ (p)	DECIVI	ty k . $B^{-1}(p)$ returns the number of successes g for a given probability p in X .

Name	Keys to press	in modes	Remarks
СВ	h X.FCN CB n	Integer	Clears the specified bit in $oldsymbol{x}$.
CEIL	h X.FCN CEIL	DECM	Returns the smallest integer $\geq x$.
CF	h P.FCN CF n	\α	Clears the flag specified.
CLFLAG	h P.FCN CLFLAG	\α	Clears all user flags.
CLREG	h X.FCN CLREG	All	Clears all general purpose registers.
CLSTK	O g FLL	\ a.	Clears all stock registers
CLSTK	h P.FCN CLSTK	\α	Clears all stack registers.
CLx	h CLx	All	
CLX	CPX h CLx	DECM	Clears both X and Y.
CLα	f CLa	All	Clears the alpha register like CLA in HP-42S.
CLΣ	gCLΣ	DECM	Clears all statistical sums.
СОМВ	f Cy.x	DECM	Returns the number of possible <u>sets</u> of y items taken x at a time. No item occurs more than once in a set, and different orders of the same x items are <u>not</u> counted separately. Formula: $C_{y,x} = \begin{pmatrix} y \\ x \end{pmatrix} = \frac{y!}{x!(y-x)!}$
CONJ	CPX X.FCN CONJ	DECM	Changes the sign of y.
CORR	gr	DECM	Returns the correlation coefficient for the current statistical data and curve fitting model.
cos	fcos	DECM ^H	
COSH	f HYP COS	DECM	
DATE	h X.FCN DATE	DECM	Recalls the date from the real time clock and displays it in the numeric section in the format selected. See D.MY, M.DY, and Y.MD. The function DATE in <i>HP-12C</i> corresponds to DAYS+ in the WP 34S (see below).
DAY	h X.FCN DAY	DECM	Takes x as a date in the format selected and returns the name of the day in the dot matrix and a corresponding integer in the numeric display (Monday = 1, Sunday = 7).

Name	Keys to press	in modes	Remarks
DAYS+	h X.FCN DAYS+	DECM	Works like DATE in $HP-12C$, adding x days on a date in Y in the format selected and displaying the resulting date including the day of week in the same format as DAY does.
DBLR	h X.FCN DBLR		
DBL ×	h X.FCN DBL×	Integer	Double precision commands like in <i>HP-16C</i> .
DBL /	h X.FCN DBL/		
DEC	h P.FCN DEC r	\α	Decrements r by one, equivalent to 1 STO- r , but without modifying the stack.
DECM	f H.d	\α	
DECOMP	h X.FCN DECOMP	FRC	Decomposes x (after converting it into an improper fraction, if applicable), resulting in a stack [numerator(x), denominator(x), y, z] or [num(x), den(x), y, z, t, a, b, c], respectively. Reversible by division.
DEG	g DEG	DECM	Sets angular mode to degrees.
DENANY	h MODE DENANY	\α	Sets default fraction format like in <i>HP-35S</i> , allowing maximum precision. Any denominator up to the value set by DENMAX may appear.
DENFAC	h MODE DENFAC	\α	Sets "factors of the maximum denominator". With e.g. DENMAX = 60, possible denominators are 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60.
DENFIX	h MODE DENFIX	\α	Sets fixed denominator format, i.e. the denominator equaling DENMAX always.
DENMAX	h MODE DENMAX	\α	Works like $/c$ in HP -35S, but maximum value settable is 9999. The maximum denominator will be set to 9999 if $x < 1$ or $x > 9999$ at execution time. For $x = 1$ the current setting is recalled.
DISP	h MODE DISP	DECM	Changes the number of decimals while keeping the display format (FIX, SCI, ENG) as is.
DROP	h P.FCN DROP	\α	Drops x , changing stack contents to $[y, z, t, t]$ or $[y, z, t, a, b, c, d, d]$, respectively. See <u>above</u> for ^C DROP.
DSE	f DSE <u>r</u>	PRG & DECM	Given ccccc.fffii in <i>r</i> , this function decrements <i>r</i> by ii, skipping next program line if then cccccc ≤ fff.

Name	Keys to press	in modes	Remarks
DSZ	h P.FCN DSZ <u>r</u>	PRG	Decrements ${\bf r}$ by one, skipping next program line if then $ {\bf r} < 1$.
D.MY	h MODE D.MY	\α	Sets the format for date display.
D→J	h X.FCN D→J	DECM	Takes x as a date in the format selected and converts it to a Julian day number.
D→R	h X.FCN D→R	DECM	Takes x as degrees and converts them to radians. Angular mode is kept.
E3OFF	h MODE E30FF	\α	Toggle the thousands separator (either a point
E3ON	h MODE E3ON	ια	or a comma depending on the radix setting).
ENG	h ENG <u>n</u>	\α	Sets engineering display format.
ENTER↑	ENTER	\α	See <u>above</u> for ^c ENTER.
ERF	h STAT ERF	DECM	Calculates the error function $erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-\tau^{2}} d\tau$
EVEN?	h TEST EVEN?	\α	Checks if x is integer and even.
e *	f e ^x	DECM	
ExpF	h STAT ExpF	DECM	Selects the exponential curve fit model.
Ex(t)	h PROB Ex(t)	DECM	= EXPONDIST(x ; j ; 1) in MS Excel, with J containing the rate λ .
e ^x -1	h X.FCN e ^X -1	DECM	Returns more accurate results for the fractional part of e^X with $x \approx 0$.
Ex ⁻¹ (p)	h PROB Ex ⁻¹ (p)	DECM	$Ex^{-1}(p)$ returns the survival time t_s for a given probability p in X , with J containing the rate λ . See $Ex(t)$ for more.
FB	h X.FCN FB <u>n</u>	Integer	Inverts ("flips") the specified bit in x .
FC?			
FC?C	h TEST FC? <u>n</u>	\α	Tests the flag specified. Clears, flips, or sets
FC?F	etc.		this flag after testing, if applicable.
FC?S			
FF	h P.FCN FF <u>n</u>	\α	Flips the flag specified.
FIB	h X.FCN FIB	\α	Calculates the Fibonacci number F_x .

Name	Keys to press	in modes	Remarks
FILL	g FILL	\α	Copies x to all stack levels. See <u>above</u> for ^c FILL.
FIX	h FIX <u>n</u>	\α	Sets fixed point display format.
FLOOR	h X.FCN FLOOR	DECM	Returns the largest integer $\leq x$.
FP	gFP	DECM	Returns the fractional part of x .
FP?	h TEST FP?	\α	Tests <i>x</i> for having a nonzero fractional part.
FRACT	h P.FCN FRACT	DECM	Sets fraction mode like in HP-35S, but keeps display format as set by PROFRC and IMPFRC.
FS?			
FS?C	h TEST FS? <u>n</u>	\α	Tests the flag specified. Clears, flips, or sets
FS?F	etc.	ια	this flag after testing, if applicable.
FS?S			
F(x)	h PROB F(x)	DECM	F works like Q(F), F^{-1} like F_P in HP-21S.
F ⁻¹ (p)	h PROB F ⁻¹ (p)	DEGINI	The degrees of freedom are given in J and K .
f'(x)	h P.FCN f'(x) label	DEOM	Return the first or second derivative of the function $f(x)$ at position $x = x$, respectively, with $f(x)$ being specified in a routine starting with LBL <i>label</i> . The return stack will have y , z , and t cleared and the position x in x .
f"(x)	h P.FCN f"(x) label	DECM	labeled 'ōx' to provide a fixed step size <i>dx</i> . If that routine isn't defined, a step size of 1E-6 is employed instead. Different approximations will be attempted sequentially in the computation. The value <i>f(x)</i> itself will not be evaluated, just ≤ 10 positions nearby.
GCD	h X.FCN GCD	\α	Returns the Greatest Common Divisor of x and y .
Ge(m)	h PROB Ge(m)	DECM	Geometric distribution: $Ge(m) = 1 - (1 - p_0)^m$ is the probability for a first success after $m = x$ Bernoulli experiments. The probability p_0 for a success in each such experiment must be given in J .
Ge ⁻¹ (p)	h PROB Ge ⁻¹ (p)	DECM	Ge ⁻¹ (p) returns the number of failures <i>f</i> before the first success for a given probability <i>p</i> in X.

Name	Keys to press	in modes	Remarks
GRAD	g GRAD	DECM	Sets angular mode to gon or grads.
	h GTO label	PRG	Inserts an unconditional branch to label.
	<u>III GTO IIADEI</u>	∖PRG, ∖α	Positions the program pointer to <i>label</i> .
GTO	h GTO . nnn	\α	Positions the program pointer to line <i>nnn</i> (not programmable).
	h GTO	\α	Sets the program pointer to line 000 (not programmable) and lights the annunciator BEG .
H.MS	f H.MS	DECM	Assumes X containing a time in the format hhhh.mmssdd, and displays it in the format hhhh°mm'ss.dd" as shown above.
H.MS+	h P.FCN H.MS+	DECM	Assumes X and Y containing times in the format hhhh.mmssdd, and adds or subtracts
H.MS-	h P.FCN H.MS-	DLOW	them, respectively.
IMPFRC	g d/c	\α	Sets fraction mode allowing improper fractions in display (i.e. $5/3$ instead of 1 $2/3$). Converts x according to the settings by DEN Absolute decimal equivalents of x must be >1E-5 and <1E5. Compare PROFRC.
		FRC	Allows displaying improper fractions. Thus converts a proper fraction in X into the equivalent improper fraction, if applicable.
INC	h P.FCN INC <u>r</u>	\α	Increments r by one, equivalent to 1 STO+ r , but without modifying the stack.
INT?	h TEST INT?	\α	Tests x for being an integer, i.e. having a fractional part equal to zero. Compare FP?.
IP	f P	DECM	Returns the integer part of $oldsymbol{x}$.
ISG	g ISG r	PRG & DECM	Given ccccc.fffii in r , this function increments r by ii, skipping next program line if then cccccc > fff.
ISZ	h P.FCN ISZ <u>r</u>	PRG	Increments ${\bf r}$ by one, skipping next program line if then $\left r\right <1$.
Ιβ	h X.FCN Iβ	DECM	Returns the regularized incomplete beta function $\frac{\beta_x(x,y,z)}{\beta(y,z)} = \frac{1}{\beta(y,z)} \cdot \int_0^x t^{y-1} (1-t)^{z-1} dt \text{with}$ β_x being the incomplete beta function

Name	Keys to press	in modes	Remarks
ΙΓ	h X.FCN ΙΓ	DECM	Returns the regularized incomplete gamma function $\frac{\gamma(x,y)}{\Gamma(x)}$ with $\gamma(x,y) = \int_0^y t^{x-1}e^{-t}dt$ being the lower incomplete gamma function.
J→D	h X.FCN J→D	DECM	Takes x as a Julian day number and converts it to a date in the format selected.
LASTx	RCL L	\α	See <u>above</u> for ^c LASTx .
LBL	1 LBL label	PRG	Identifies programs and routines for execution and branching. See opportunities for specifying <i>label</i> in the table <u>above</u> .
LBL?	h (TEST) LBL? <u>label</u>	All	Tests for the existence of the label specified, anywhere in program memory. See opportunities for specifying <i>label</i> in the table <i>above</i> .
LCM	h X.FCN LCM	\α	Returns the Least Common Multiple of x and y .
LEAP?	h TEST LEAP?	DECM	Takes x as a date in the format selected, extracts the year, and tests for a leap year.
LinF	h STAT LinF	DECM	Selects the linear curve fit model.
LJ	h X.FCN LJ	Integer	
LN	gLN	DECM	
LN1+x	h X.FCN LN1+x	DECM	Natural logarithm for values close to zero. Returns $\ln(1+x)$, providing a much higher accuracy in the fractional part of the result.
LNβ	h STAT LNβ h X.FCN LNβ	DECM	Returns the natural logarithm of $\beta(x, y)$. See there.
LNΓ	h STAT LNF h X.FCN LNF	DECM	Returns the natural logarithm of $\Gamma(x)$. See there.
LOG ₁₀	gLG	DECM	
LOG ₂	gLB	\α	Calculates the logarithm of x for base 2.
LogF	h STAT LogF	DECM	Selects the logarithmic curve fit model.
	gLOGx	DECM	Calculates the logarithm of y for base x.
LOGx	CPX g LOGx	DECM	Calculates the complex logarithm of $z + it$ for the complex base $x + iy$.

Name	Keys to press	in modes	Remarks
LZOFF	h MODE LZOFF	Intonon	Toggles leading zeros like flag 3 does in HP-
LZON	h MODE LZON	Integer	16C.
L.R.	h L.R.	DECM	Calculates the parameters a1 and a0 of the fit curve through the data points accumulated, according to the model selected, and pushes them on the stack. For a straight regression line, a0 is the y-intercept and a1 the slope.
MASKL	h X.FCN MASKL <u>n</u>	Intogor	Work like MASKL and MASKR on <i>HP-16C</i> , but with the mask length following the command
MASKR	h X.FCN MASKR <u>n</u>	Integer	instead of taken from X .
MAX	h X.FCN MAX	\α	Returns the maximum of x and y .
MIN	h X.FCN MIN	\α	Returns the minimum of x and y .
MIRROR	h X.FCN MIRROR	Integer	Reflects the bit pattern in x (e.g. 000101 becomes 101000 for word size 6).
MOD	h MOD	\α	MOD of <i>HP-4</i> 2S equals RMD of <i>HP-16C</i> .
M.DY	h MODE M.DY	\α	Sets the format for date display.
NAND	h X.FCN NAND	\α	Works in analogy to AND.
NaN?	h TEST NaN?	\α	Tests <i>x</i> for "Not a Number".
nBITS	h X.FCN nBITS	Integer	Counts bits set in <i>x</i> like #B does on <i>HP-16C</i> .
NOP	h P.FCN NOP	PRG	
NOR	h X.FCN NOR	\α	Works in analogy to AND.
NOT	h NOT	\α	Works in analogy to AND.
nΣ	h STAT nΣ	DECM	Recalls the number of accumulated data points. Necessary for basic statistics.
N(x)	h PROB N(x)	DECM	= NORMDIST $(x; j; k; 1)$ in MS Excel, with the mean j and the standard deviation k .
N ⁻¹ (p)	h PROB N ⁻¹ (p)	DECM	= NORMINV $(x; j; k)$. See N(x) for more.
ODD?	h TEST ODD?	\α	Checks if x is integer and odd.
OR	hOR	\α	Works in analogy to AND.

Name	Keys to press	in modes	Remarks
PERM	g Py.x	DECM	Returns the number of possible <u>arrangements</u> of y items taken x at a time. No item occurs more than once in an arrangement, and different orders of the same x items <u>are</u> counted separately. Formula: $P_{y,x} = x!C_{y,x}$, see COMB and $x!$.
PowerF	N STAT PowerF	DECM	Selects the power curve fit model.
PRIME?	h TEST PRIME?	\α	Checks if the absolute value of the integer part of x is a prime number. Exact for $x < 66049$, Miller-Rabin with 40 iterations otherwise, with the probability P for erroneously claiming a composite is prime being $P \approx 2^{-80} \approx 10^{-24}$.
PROFRC flab/c	DECM	Sets fraction mode like in <i>HP-35S</i> , allowing only proper fractions or mixed numbers in display. Converts x according to the settings by DEN Absolute decimal equivalents of x must be >1E-5 and <1E5. Compare IMPFRC.	
		FRC	Allows displaying only proper fractions. Thus converts an improper fraction in X , e.g. 5/3 into 1 2/3, if applicable.
PROMPT	h P.FCN PROMPT	PRG	Displays <i>alpha</i> and stops program execution (equaling α VIEW followed by STOP actually). If alpha input is requested, use the sequence α ON PROMPT α OFF. With a program running, enter the value or text requested and press R/S to continue.
PSE	h PSE <u>nn</u>	PRG	Pauses program execution for about nn times 0.1s, with $0 \le nn \le 99$. Input of zero defaults to 10, i.e. the 1s-pause known before.
P(m)	h PROB P(m)	DECM	= POISSON(x ; $j*k$; 1) in MS Excel, with the gross error probability j and the sample size k . Alternatively, the Poisson parameter λ may be in J if $k = 1$.
P ⁻¹ (p)	h PROB P ⁻¹ (p)	DECM	P^{-1} returns the number of successes g for a given probability p in X . See $P(x)$ for more.
Q(x)	fQ	DECM	Works like Q in HP-32E and Q(z) in HP-21S.
Q ⁻¹ (p)	g Q-1	DECM	Works like Q^{-1} in <i>HP-32E</i> and z_P in <i>HP-21S</i> .
RAD	gRAD	DECM	Sets angular mode to radians.

Name	Keys to press	in modes	Remarks
RAN# FRAN#	DECM	Returns a random number between 0 and 1 like RAN in <i>HP-42S</i> .	
		Integer	Returns a random bit pattern for the word size set.
RCL	RCL s	\α	See the <u>addressing table above</u> for ^C RCL.
RCLM	RCL MODE	\α	Recalls selected mode settings into X . See the paragraph about <u>indicators</u> above.
RCLS	h P.FCN RCLS <u>s</u>	\α	Recalls 4 or 8 values from a set of registers starting at address s , and pushes them on the stack. This is the converse command of STOS.
RCL+	RCL + s		
RCL-	RCL - s		Recalls the content of address s , executes the specified operation on it and pushes the result
RCL×	RCL X s	١	on the stack.
RCL/	RCL / s	\α	E.g. RCL-12 recalls $r12$, subtracts x from it and displays the result. RCL \uparrow (\downarrow) recalls the
RCL↑	RCL <u>s</u>		maximum (minimum) of the values in s and X . See the <u>addressing table above</u> for ^C RCL.
RCL↓	RCL ▼ <u>s</u>		
RDX,	h ./,	DECM	Toggle the radix mark. Also available in P.FCN
RDX.		<i>B</i> 20.0.	FWIW.
RJ	h X.FCN RJ	Integer	Works in analogy to LJ.
RL	h X.FCN RL <u>n</u>	Integer	Works like n consecutive RLs / RLCs on $HP-16C$. For RL, $1 \le n \le 63$. For RLC, $1 \le n \le 63$.
RLC	h X.FCN RLC <u>n</u>	intoger	64. RL 0 and RLC 0 execute as NOP.
ROUND	a PND	DECM	Rounds x using the current display format, like RND in $HP-42S$.
KOUND	g RND	FRC	Rounds x using the current denominator, like RND in HP -35 S .
ROUNDI	h X.FCN ROUNDI	DECM	Rounds <i>x</i> to next integer. ½ rounds to 1.
RR	h X.FCN RR <u>n</u>	Integer	Works like <i>n</i> consecutive RRs / RRCs on
RRC	h X.FCN RRC <u>n</u>	micger	HP-16C. See RL / RLC for more.

Name	Keys to press	in modes	Remarks
RTN	g RTN	\PRG	Moves the program pointer to step 000.
		PRG	Last command in a routine. Returns control to the calling routine in program execution, i.e. moves the program pointer one step behind the most recent XEQ instruction encountered. If there is none, program execution halts.
R-CLR	h P.FCN R-CLR	DECM	Interprets x in the form $ss.nn$. Clears nn registers starting with number ss . E.g. for $x = 34.56$, R-CLR will clear $R34$ through $R89$.
R-COPY	h P.FCN R-COPY	DECM	Interprets x in the form ss.nndd. Takes nn registers starting with number ss and copies their contents to dd . E.g. for $x = 7.0345678$, $r07$, $r08$, $r09$ will be moved into R45, R46, R47, respectively.
R-SORT	h P.FCN R-SORT	DECM	Interprets x in the form ss.nn. Sorts the contents of nn registers starting with number ss . Assume $x = 49.026$, $r49 = 1.2$, $r50 = -3.4$; then R-SORT returns $r49 = -3.4$, $r50 = 1.2$.
R-SWAP	h P.FCN R-SWAP	DECM	Works like R-COPY but swaps the register contents of source and destination.
R→D	h X.FCN R→D	DECM	Takes x as radians and converts them to degrees. Angular mode is kept.
R↑ R↓	h Rt Rt	\α	Rotates the stack contents one level up or down, respectively. See <u>above</u> for complex rotations.
s	gs	DECM	Calculates the standard deviations \mathbf{s}_y and \mathbf{s}_x and pushes them on the stack.
SB	h X.FCN SB n	Integer	Sets the specified bit in x .
SCI	h sci <u>n</u>	\α	Sets scientific display format.
SEED	h STAT SEED	DECM	Stores a seed for random number generation.
SERR	h STAT SERR	DECM	Calculates the standard deviations and pushes the standard errors $\sqrt[s]{n}$ and $\sqrt[s]{n}$ on the stack.
SETDAT	h X.FCN SETDAT	DECM ^H	Sets the date or time, respectively, for the real
SETTIM	h X.FCN SETTIM	DECIVI	time clock.

Name	Keys to press	in modes	Remarks
SF	h P.FCN SF <u>n</u>	\α	Sets the flag specified.
SIGN	h X.FCN SIGN	\α	Returns 1 for $x > 0$, -1 for $x < 0$, and 0 for $x = 0$ or non-numbers.
	CPX X.FCN SIGN	DECM	Returns the unit vector of $x + i y$ in X and Y .
SIGNMT	h MODE SIGNMT	\α	Sets sign-and-mantissa mode for integers.
SIN	f SIN	DECM ^H	
SINC	h X.FCN SINC	DECM	Calculates $\frac{\sin(x)}{x}$.
SINH	f HYP SIN	DECM	
SL	h X.FCN SL <u>n</u>	Integer	Works like n (up to 63) consecutive SLs on HP-16C. SL 0 executes as NOP.
SLV	f SLV label	DECM	Solves the equation $f(x) = 0$, with $f(x)$ calculated by the routine specified. Two initial estimates of the root must be supplied in X and Y when calling SLV. For the rest, the user interface is as in $HP-15C$.
SR	h X.FCN SR <u>n</u>	Integer	Works like n consecutive SRs on <i>HP-16C</i> . SR 0 executes as NOP.
SSIZE4	h MODE SSIZE4 h MODE SSIZE8	\α	Set the stack size to 4 or 8 levels, respectively. If stack size grows, the top level contents will be copied into the new levels. If the stack shrinks, previous top levels will be lost. – The same will happen if stack size is changed via STOM.
SSIZE?	h TEST SSIZE?	\α	Returns the number of stack levels accessible.
STO	STO <u>d</u>	\α	See the <u>addressing table above</u> for ^c STO.
STOM	STO MODE	\α	Sets selected modes as encoded in x . See the paragraph about <u>indicators</u> above.
STOP	R/S	PRG	Stops program execution.
STOS	h P.FCN STOS <u>d</u>	\α	Stores all stack levels in a set of 4 or 8 registers, starting at destination d .

Name	Keys to press	in modes	Remarks
STO+ STO-	STO + <u>d</u> STO - <u>d</u>	\ α	Executes the specified operation on the content of address d and stores the result into said address. E.g. STO-12 subtracts x from $r12$, and stores the result in $R12$ again. STO \uparrow (\downarrow) takes the maximum (minimum) of the values in d and d and d and stores it. See the addressing table above for CSTO.
STO×	STO X d		
STO/	STO / <u>d</u>		
STO↑	STO A d		
STO↓	<u>STO</u> ▼ <u>d</u>		Total did discounty table above 101 GTG.
SUM	h STAT SUM	DECM	Recalls the linear sums $\boldsymbol{\Sigma}\boldsymbol{y}$ and $\boldsymbol{\Sigma}\boldsymbol{x}$. Useful for basic vector algebra.
TAN	f TAN	DECM ^H	
TANH	f HYP TAN	DECM	
TIME	h TIME	DECM, α	Recalls the time from the real time clock at execution and shows it in decimal mode.
t(x)	h PROB t(x)	DECM	t works like Q(t), t ⁻¹ like tp in HP-21S. The
t ⁻¹ (p)	PROB t ⁻¹ (p)	DECIVI	degree of freedom is stored in J.
UNSIGN	MODE UNSIGN	\α	Sets unsigned mode for integers.
VIEW	h VIEW s	All	Displays the content of address s until the next key is pressed.
W W -1	h X.FCN W h X.FCN W ⁻¹	DECM	W returns Lambert's W for given $x \ge -1/e$, while W ⁻¹ returns x for given W (≥ -1).
Wb(t)	h PROB Wb(t)	DECM	= WEIBULL $(x; j; k; 1)$ in Excel, with the shape parameter j and the characteristic lifetime k .
Wb ⁻¹ (p)	h PROB Wb ⁻¹ (p)	DECM	Wb ⁻¹ returns the survival time t_s for given probability \boldsymbol{p} . See Wb(t) for more.
WSIZE	h MODE WSIZE n	\α	Works like WSIZE on <i>HP-16C</i> , but with the parameter following the command instead of taken from X . WSIZE 0 sets the word size to maximum, i.e. 64 bits.
WSIZE?	h TEST WSIZE?	\α	Recalls the word size set.
x ²	g x ²	\α	

Name	Keys to press	in modes	Remarks		
		PRG	Calls the respective subroutine.		
	(XEQ) <u>label</u>	\PRG, \α	Executes the respective program.		
XEQ	B, C, or D (you may need for	PRG	Calls the respective subroutine, so e.g. XEQ C will be inserted when C is pressed.		
	accessing these hotkeys in integer bases >10.)	\PRG, \α	Executes the respective program if defined.		
XNOR	h X.FCN XNOR	\α	Works in analogy to AND.		
XOR	h XOR	\α	Works in analogy to AND.		
x	fx	DECM	Pushes $\frac{1}{n}\sum y$ and $\frac{1}{n}\sum x$ on the stack.		
Хw	h STAT xw	DECM	Returns the weighted mean $\sum xy / \sum y$.		
â	h STAT x̂	DECM	Returns a forecast x for a given y (in X) following the fit model chosen. See L.R. for more.		
x!	h!	DECM			
$x \rightarrow \alpha$	g x I > a	All	Interprets x as a code of up to 6 characters. Appends these characters to $alpha$, similar to XTOA in $HP-42S$.		
χ↔	hxt r	\α	Swaps the contents of \mathbf{X} and \mathbf{r} . See <u>above</u> for complex $\mathbf{x} \leftrightarrow .$		
x⇔y	x≷y	\α	Swaps x and y , performing Re \leftrightarrow Im if a complex operation was executed immediately before. See <u>above</u> for $^{\text{C}}x\leftrightarrow y$.		
x < ?	h TEST x < ? <u>a</u>				
x ≤ ?	h TEST x ≤ ? <u>a</u>		Compare x with a . The three dots will be replaced in the listing by a according to the ex-		
x = ?	f x = ? <u>a</u>		amples given in the <u>addressing table above</u> . $x \approx ?$ will be true if the <u>rounded</u> values of x and		
x ≈ ?	h TEST x≈? <u>a</u>	\α	a are equal (see ROUND).		
x ≠ ?	g x ≠ ? <u>a</u>		CPX f x = ? a and CPX g x ≠ ? a compare the complex		
x ≥ ?	h TEST x ≥ ? <u>a</u>		number $x + iy$ as explained in the <u>addressing</u> table above.		
x > ?	h TEST x > ? <u>a</u>		table above.		

Name	Keys to press	in modes	Remarks		
	f y ^x	\α	In integer modes x must be ≥ 0 .		
y ^x	C	\(\alpha, -3, -4, -5, h)	Shortcut working as long as label C is not defined yet.		
ŷ	fŷ	DECM	Returns a forecast y (in X) for a given x following the fit model chosen. See L.R. for more.		
Y.MD	h MODE Y.MD	\α	Sets the format for date display.		
αDATE	h X.FCN αDATE	\integer	Takes x as a date and appends it to $alpha$ in the format set. See DATE. – To append a date stamp to $alpha$, call DATE α DATE.		
αDAY	h X.FCN αDAY	\integer	Takes x as a date, recalls the name of the respective day and appends its first 3 letters to $alpha$.		
αΙΡ	h X.FCN αIP	All	Appends the integer part of x to $alpha$, similar to AIP in $HP-42S$.		
αLENG	h X.FCN αLENG	All	Returns the number of characters found in <i>all pha</i> , like ALENG in <i>HP-42S</i> .		
αΜΟΝΤΗ	h X.FCN αMONTH	\integer	Works like αDAY, but processing the month.		
αOFF	h P.FCN αOFF	PRG & α	Work like AOFF and AON in HP-42S, turning		
αΟΝ	h P.FCN αΟΝ	PRG & \α	alpha mode off and on.		
αRCL	f RCL s h X.FCN αRCL s	α \α	Interprets the content of the source s as characters and appends them to <i>alpha</i> .		
αRC#	h X.FCN αRC# s	All	Takes the content of s as a number, converts it to a string in the format set, and appends this to <i>alpha</i> . If e.g. s = 1234 and ENG 2 and RDX. are set, then _1.23E3 will be appended.		
αRL	h (X.FCN) αRL <u>n</u>	All	Rotates <i>alpha</i> by <i>n</i> characters like AROT in <i>HP-42S</i> , but with $n \ge 0$ and the parameter trailing the command instead of taken from X . α RL 0 executes as NOP.		
αRR	h X.FCN αRR <u>n</u>	All	Works like αRL but rotates to the right.		
αSL	h X.FCN αSL <u>n</u>	All	Shifts the n leftmost characters out of $alpha$, like ASHF in HP - $42S$. α SL 0 equals NOP.		
αSR	h X.FCN αSR <u>n</u>	All	Works like α SL but takes the n rightmost characters instead.		

Name	Keys to press	in modes	Remarks		
αSTO	STO d	α	Stores the first (i.e. leftmost) 6 characters in the		
ασιο	h X.FCN αSTO <u>d</u>	\α	alpha register into destination d .		
αТІМЕ	h X.FCN αTIME	\integer	Takes x as a time and appends it to $alpha$ in the format hh:mm:ss according to the time mode selected. See TIME. – To append a time stamp to $alpha$, call TIME α TIME.		
αVIEW	h X.FCN αVIEW	\α	Displays \emph{alpha} . In programs, use $\alpha VIEW$ followed by PSE for message output.		
$\alpha \rightarrow x$	f x∢▶a	All	Returns the character code of the leftmost character in <i>alpha</i> and deletes this character, like ATOX in <i>HP-42S</i> .		
β	h STAT β	DECM	Returns Euler's Beta $B(x, y) = \frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)}$ with		
P	h X.FCN β	BLOW	$\operatorname{Re}(x) > 0$, $\operatorname{Re}(y) > 0$. Called β here for avoiding ambiguities.		
Г	h STAT r	DECM			
,	h X.FCN Γ	DEOW			
ΔDAYS	h X.FCN ΔDAYS	DECM	Assumes X and Y containing dates in the format chosen and calculates the number of days between them. Works like in <i>HP-12C</i> .		
Δ%	f Δ%	DECM	Calculates $100 \cdot \frac{x-y}{y}$ like %CH in <i>HP-42S</i> .		
π	hπ	DECM	Complex version copies π in X and clears Y .		
П	fπ <u>label</u>	DECM	Computes a product with the routine specified by <i>label</i> . Initially, X contains the loop control number in the format <code>ccccc.fffii</code> and the product is set to 1. Each run through the routine specified computes a factor. At its end, this factor is multiplied with said product; the operation then decrements <code>cccccc</code> by <code>ii</code> and runs said routine again if <code>cccccc</code> is then <code>> fff</code> , else returns the resulting product in X .		

Name	Keys to press	in modes	Remarks			
Σ	gΣ <u>label</u>	DECM	Computes a sum with the routine specified by <i>label</i> . Initially, X contains the loop control number in the format <code>ccccc.fffii</code> and the sum is set to 0. Each run through the routine specified computes a summand; at its end, this is added to said sum; the operation then decrements <code>cccccc</code> by <code>ii</code> and runs said routine again if <code>cccccc</code> is then > <code>fff</code> , else returns the resulting sum in X .			
σ	h STAT σ	DECM	Works like s but calculates the standard deviation of the population instead.			
Σln ² x						
Σln²y						
Σlnx	-: 2		Recall the respective statistical sums. These			
Σlnxy		DECM	sums are necessary for curve fitting models beyond pure linear. Calling them by name en-			
Σlny			hances readability of programs significantly.			
ΣxIny						
Σylnx						
Σχ			Recall the respective statistical sums. These sums are necessary for basic statistics and li-			
Σx^2	h STAT Σχ					
Σχγ	etc.	DECM	near curve fitting. Calling them by name en-			
Σy			hances readability of programs significantly.			
Σy^2						
Σ+	Σ+	DECM				
Σ-	hΣ-					
χ²INV	h PROB χ²INV	DECM	χ^2 works like $Q(\chi^2)$, the inverse like χ^2_p in			
χ ² (x)	h PROB $\chi^2(x)$		HP-21S. The degree of freedom is given in J.			
+	+					
-	-	\α				
×	x	ια -				
/	/					

Name	Keys to press	in modes	Remarks
//	g ///	DECM	Calculates $\left(\frac{1}{x} + \frac{1}{y}\right)^{-1}$.
+/-	+/_	\α	
→DEG	→ (g) DEG	DECM	Takes x as an angle in the angular mode set, converts it to degrees and changes angular mode in parallel. Prefix g may be omitted here.
→GRAD	→ (g) GRAD	DECM	Works like →DEG, but converts to grads.
→ н	→ fH.d	DECM	Takes x as hours or degrees in the format hhhh.mmssdd and converts them into a decimal time.
→H.MS	→ f H.MS	DECM	Takes x as decimal hours or degrees, converts them into hhhh.mmssdd and displays the result like hhhhomm'ss.dd" as shown above.
→POL	g R∢⊳P	DECM	Assumes X and Y containing Cartesian coordinates (x, y) and converts them to the respective cylinder coordinates $(r, 9)$.
→RAD	→ (g) RAD	DECM ^H	Works like →DEG, but converts to radians.
→REC	f R∢▶P	DECM	Assumes X and Y containing cylinder coordinates (r, θ) and converts them to the respective Cartesian coordinates (x, y) .
%	9%	DECM	Calculates $\frac{x \cdot y}{100}$.
%MG	h X.FCN h % MG	DECM	Calculates the margin 16 $100 \cdot \frac{x-y}{x}$ in % for a price x and cost y , like %MU-Price in HP -17B.
%MRR	h X.FCN h % MRR	DECM	Calculates the mean rate of return in % per period, i.e. $100 \cdot \left[\left(\frac{x}{y} \right)^{\frac{1}{z}} - 1 \right]$ with $x = \text{FV} = \text{future}$ value after z periods, $y = \text{PV} = \text{present value}$. For $z = 1$, $\Delta\%$ returns the same result easier.
%Т	h X.FCN h % T	DECM	Calculates $100 \cdot \frac{x}{y}$, i.e. percent of <u>t</u> otal FWIW.

Name	Keys to press	in modes	Remarks		
%Σ	h STAT h % Σ h X.FCN h % Σ	DECM	Calculates $100 \cdot \frac{x}{\sum x}$.		
%+	%+ h %+		Adds a markup of x % to a price y , calculating $y \cdot \left(1 + 0.01 \cdot x\right)$ like in %MU-Cost of HP-17B.		
%+MG	%+MG h % +MG		Calculates a sales price $y/(1-0.01\cdot x)$ by adding a margin ¹⁶ of x % to the cost y , , as %MU-Price does in HP -17B.		
%-	h %-	DECM	Subtracts a discount of x % from the price y calculating $y \cdot \left(1 - 0.01 \cdot x\right)$.		
	f 🗷	\α			
√	D		Shortcut working as long as label D is not defined yet.		
ı	∫ <u>label</u> DECM		Integrates the function given in the routine specified. Lower and upper integration limits must be supplied in Y and X, respectively. Otherwise, the user interface is as in <i>HP-15C</i> .		
∞?	h TEST ∞?	\α	Tests <i>x</i> for infinity.		

Alphanumeric input:

Letter or digit	Keys to press	in modes	Remarks				
o	•	H.MS	Separates degrees or hours from minutes and seconds, so input format is hhhh.mmssdd. The user has to take care where an arbitrary real number represents such an angle or time.				
	09	\α	Standard numeric input. For integer bases <10, input of illegal digits throws an <u>error message</u> .				
0 9		in ad- dressing	Register input. See the <u>addressing tables</u> above for more.				
	0, 1, f 2,,	α	Appends the respective digit to <i>alpha</i> .				
A F	A F (red print)	-1, -2, -3, -4, -5, h					

¹⁶ Margin corresponds to "Handelsspanne" in German.

Letter or digit	Keys to press	in modes	Remarks		
A Z	A Z (red print)	in ad- dressing	Register input. See the <u>addressing tables</u> above for the letters applicable.		
		α	Alphabetic input. See page 7 for more.		
E	E (the key)	DECM	Like EEX in the older vintage calculators.		
[.]	,	D.MY, M.DY, Y.MD	Separates the leading unit in date modes. The user has to take care where an arbitrary real number represents a date.		
	α		Appends a point to <i>alpha</i> .		
[,]	h./, XEQ	α	Appends a comma to <i>alpha</i> .		
[.] or [,]	•	DECM	Inserts a radix mark as selected.		
[/]	Second ()		A persistent 2 nd in input switches to fraction mode and will be interpreted as explained below. Please note you cannot enter E after you entered twice – but you may delete the 2 nd dot while editing the input line.		
		FRC	First , is interpreted as a space, 2 nd as a fraction mark. E.g. input of 2,3,4 results in 2 ¾ in the display. Improper fractions may be entered starting with a , , e.g. ,3,2.		
(or)		α	Appends a left / right parenthesis to alpha.		

Non-programmable control, clearing and information commands:

Keys to press	in modes	Remarks				
	Status open	Goes to previous / next set of flags.				
	Catalog open	Goes to previous / next item in this catalog.				
A / V	α	Shifts the display window to the left / right in <i>alpha</i> if possible. Useful for longer strings.				
	Else	Acts like BST / SST in HP-42S.				
	Input pending	Deletes the last digit or character put in.				
	α	Deletes the rightmost character in alpha.				
\	PRG	Deletes current step.				
,	Else	Acts like CLx.				
f / g >	Integer	Shifts the display window to the left / right like in <i>HP-16C</i> . Helpful in working with small bases.				
f	α	Toggles upper and lower case.				
h X.FCN CLALL	\PRG	Clears all registers and programs if confirmed.				
h CLP	\α	Clears the current program (i.e. the one the program pointer is in) after confirmation.				
(ENTER†)	Catalog open	Selects the current item like XEQ below.				
ENIERI	α	Turns alpha mode off.				
	Catalog open	Leaves the catalog without executing anything.				
	Input pending	Cancels the execution of pending operations, returning to the calculator status as it was before beginning with this canceled operation.				
EXIT	\PRG & program running	Stops this program like R/S below.				
•	PRG	Leaves programming mode like h P/R below.				
	α	Turns alpha mode off like ENTER ↑ above.				
	Else	Does nothing.				
g OFF	All	Turns calculator off.				
ON	Calculator off	Turns calculator on.				
h P/R	\PRG, \α PRG	Toggle programming mode for keyboard entry.				

Keys to press	in modes	Remarks		
h X.FCN RESET	All	Executes CLALL and resets all modes to start-up default, i.e. 24h, 2COMPL, ALL, DEG, DENANY, DENMAX 0, DECM, LinF, PROFRC, SSIZE4, WSIZE 64, Y.MD.		
\PRG, \α		Entered from the keyboard: Runs the current program starting with the current step or stops the running program immediately. Compare the programmable command STOP.		
	DECM & \PRG	Shows the full mantissa until the next key is pressed.		
h SHOW	PRG	Displays a CRC-32 checksum of program memory contents (8 hex digits), allowing validation of program integrity.		
h STATUS	\PRG	Shows the status of all user flags, similar to STATUS on <i>HP-16C</i> . See <u>above</u> .		
h X.FCN VERS	\PRG	Shows the firmware version.		
XEQ	Catalog open	Selects the item currently displayed and exits, executing the respective command. See <u>above</u> .		
f a	\ α	Turns on alpha mode for keyboard entry. When entering alpha constants in programs, please note there is no concatenation character, since added characters are appended to $alpha$ always. For starting a new string, use $CL\alpha$ first. Alpha constants will be listed like e.g. 'Test 1'.		
→ f 10 → (g) 16 → (g) 8	\α	These commands show x in target integer representation until the next key is pressed. Base is kept as set. Prefix g may be omitted here. If used in integer bases 15 and 16, prefix g must precede the key g		

Catalogs (not programmable):

Calling a catalog will set temporary alpha mode to allow for typing the first 1 or 2 characters of the item wanted.

and

browse the catalog,

XEQ selects the item displayed and exits, while

EXIT leaves the catalog without executing anything, returning to the mode as set before. See the

table above about addressing cataloged items, and the
next paragraph for detailed item lists.

Keys to press	in modes	Contents		
h CONST	DECM	Constants like in HP35s. See them listed in a <u>table below</u> .		
CPX CONST	DECM	This will clear Y in recalling the constant selected since they are all real.		
h CONV	DECM	Conversions as listed in a <u>table below</u> .		
(CPX)	α	"Complex" letters mandatory for many languages. Upper or lower case will be displayed according to setting (see fabove).		
h MODE	\α	Mode setting functions.		
h PROB	DECM	Extra probability distribution functions.		
h P.FCN	\α	Extra programming functions.		
f R+	α	Subscripts.		
h Rt	α	Superscripts.		
h STAT	DECM	Extra statistical functions.		
	\α	All tests except the two on the keyboard.		
h (TEST)	α	Comparison symbols and brackets. Parentheses are called by f and g , respectively.		
	DECM	Extra real functions.		
h X.FCN	Integer	Extra integer functions.		
	α	Extra alpha functions.		
CPX X.FCN	DECM	Extra complex functions.		
h ./,	α	Punctuation marks and text symbols.		
f →	α	Arrows and mathematical symbols.		

DETAILED CATALOG CONTENTS

The characters necessary to access a specific function from an arbitrary position in the respective catalog are printed bold in this table - $\boxed{\bullet}$ has to be pressed once for each character printed red - if even the last letter of a function name is red, more strokes of $\boxed{\bullet}$ may be needed to access this function. A single function, e.g. CB, may be contained in more than one catalog. See also the catalogs CONST and CONV in separate paragraphs below. The alpha catalogs are found two pages below.

MODE TEST PROB STAT CPX X.FCN				7		7		1	_
12h BC? B(m) Best- 1COMPL BS? EVEN? Ex(t) ExpF 24h EVEN? Ex(t) ExpF 2COMPL FC? Ex -1 (p) LinF BASE FC?C F(x) LNβ DENANY FC?F F-1 (p) LNΓ DENFAC FC?S Ge(m) LogF DENMAX FS? N(x) PowerF DISP FS?C N -1 (p) SEED DISP FS?C P(m) SEED EX -1 (p) N(x) PowerF CLN1 -1 (p) SEED CLN1 -1 (p) SERR EX -1 (p) CLN1 -1 (p)	MODE		TEST		PROB		STAT		
24h EVEN? Ex(t) ExpF CDROP 2COMPL FC? Ex -1(p) LinF cex -1 BASE FC?C F(x) LNβ cflB DENANY FC?F F(p) LNΓ cflB DENFAC FC?S Ge(m) LogF cflNβ DENFIX FP? Ge -1(p) nΣ cflNγ DENMAX FS? N(x) PowerF cflNγ DISP FS?C N -1(p) SEED cflNγ DISP FS?F P(m) SERR cw E3ON INT? t(x) xw cw E3ON LBL? t(x) xw cm LZOFF LEAP? Wb(t) β cr M.DY Nan? yclny yclny yclny SIGNMT SSIZE4 SSIZE8 yclny yclny yclny WSIZE x </td yclny yclny yclny yclny yclny yclny <td>12h</td> <td></td> <td>BC?</td> <td></td> <td>B(m)</td> <td></td> <td>BestF</td> <td></td> <td>X.FCN</td>	1 2h		BC?		B (m)		B estF		X.FCN
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1COMPL		BS?		B ⁻¹ (p)		E RF		^c C ONJ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 4h		EVEN?		Ex(t)		Ex pF		^c D ROP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2COMPL		FC?		Ex ⁻¹ (p)		LinF		^с е ^х -1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B ASE		FC?C		F(x)		LNβ		^c F IB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DENANY		FC?F		F ⁻¹ (p)		LNF		^c LN1+x
DENMAX FS? N(x) PowerF csign DISP FS?C N -1(p) SEED csinc D.MY FS?F P(m) SERR cw E3OFF FS?S P -1(p) SUM cw -1 E3ON INT? t(x) xw cβ LZOFF LBL? t -1(p) xw cr LZON LEAP? Wb(t) β wb -1(p) r M.DY NaN? NaN? vb -1(p) r r r SIGNMT SIGNMT r r r r r r r SIGNMT NaN? r	DENFAC		FC?S		G e(m)		Lo gF		^c LNβ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DENFIX		FP?		Ge ⁻¹ (p)		nΣ		CLNC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DENMAX		FS?		N(x)		PowerF		^c S IGN
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DISP		FS?C		N ⁻¹ (p)		SEED		^c SINC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D.MY		FS?F		P(m)		SERR		cM
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E 3OFF		FS?S		P ⁻¹ (p)		SUM		^C W ⁻¹
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E3ON		INT?		t(x)		x w		сβ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LZOFF		LBL?		t ⁻¹ (p)		Ŷ		сС
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LZON		LEAP?		W b(t)		β		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M.DY		NaN?		Wb ⁻¹ (p)		Γ		
SSIZE8SSIZE? ΣIn^2y UNSIGNWSIZE? ΣInx WSIZE $x < ?$ $\Sigma Inxy$ Y.MD $\Sigma Inxy$ $\Sigma Inxy$ $\Sigma Inxy$ $\Sigma Inxy$ $\Sigma Inxy$ Σxy <td< td=""><td>SIGNMT</td><td></td><td>ODD?</td><td></td><td>χ²INV</td><td></td><td>σ</td><td></td><td></td></td<>	SIGNMT		ODD?		χ²INV		σ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SSIZE4		PRIME?		χ ² (x)		ΣI n ² x		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SSIZE8		SSIZE?			_	ΣIn ² y		
Y.MD $x \le ?$ $x \ge ?$ $x > ?$ $\Sigma \ln y$ Σy Σy^2 $\Sigma x > ?$ $\Sigma y = \Sigma y^2$	UNSIGN		WSIZE?				ΣΙηχ	/	ΣxIny
$x \approx ?$ $x \geq ?$ $x > ?$ Σx Σy^2 $\Sigma y = 2$	WSIZE		x < ?				ΣΙηχ		Σχγ
$x > ?$ Σx^2 $\Sigma y \ln x$	Y.MD		x ≤ ?				Σlny		Σy
		1	x ≈ ?		x ≥ ?		Σχ		Σy²
∞? %Σ				- v	x > ?		Σx²	/	Σylnx
					∞ ?			•	%Σ

X.FCN va	aries with the m	ode set; it con	tains in	
alpha	DECM:		integer r	nodes:
mode:	ANGLE	S ETDAT	A SR	RJ
C LALL	CEIL	SETTIM	СВ	RL
CLREG	CLALL	SIGN	CLALL	RLC
RESET	CLREG	SINC	CLFLAG	RR
V ERS	DATE	V ERS	CLREG	RRC
αDATE	DAY	W	D BLR	S B
αDAY	DAYS+	W ⁻¹	DBL*	SEED
αIP	DECOMP	XNOR	DBL/	SI GN
αLENG	D→J	αDATE	FB	SL
αM ONTH	D→R	αDAY	FIB	SR
αRC#	E RF	αIP	G CD	VERS
αRL	e ^x -1	αLENG	LCM	XNOR
αRR	F IB	αΜΟΝΤΗ	LJ	αIP
αSL	FLOOR	αRCL	MASKL	αLENG
αSR	G CD	αRC#	MASKR	αRCL
αTIME	Iβ	αRL	MAX	αRC#
	IL	α RR	MIN	αRL
	J→D	αSL	MIRROR	αRR
	LCM	αSR	NAND	αSL
	LN1+x	αSTO	nB ITS	αSR
	LNβ	αΤΙΜΕ	NOR	αSΤΟ
	LNF	α V IEW	RESET	αVIEW
	MAX	β		
	MIN	Γ		
	NAND	∆DAYS		
	NO R	%MG		
	RESET	%M RR		
	ROUNDI	%Т		
	R→D	%Σ		

P-FCN
CF
CL FLAG
CLSTK
DEC
DR OP
DSZ
F F
FRACT
f '(x)
f "(x)
H.MS+
H.MS-
INC
ISZ
NOP
P ROMPT
RCLM
RCLS
RDX.
RDX,
R- CLR
R-COPY
R-SORT
R-SWAP
S F
STOM
STO S
αOFF
αΟΝ

%+MG

		СР	X		
À Á ÂÃĀĂ Ä Å Ć Ç E È É	À	Ē	à	ā	10
Á	Ď.	ı E	á	<u>`a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,</u>	01 01 01 01 01 01 01 01 01 01 01 01 01 0
ÂÃĀĂ	_	Ē	âãāă	ā	Ī
Ä	ij.	:E	ä (ă)	Ö:	<u>.</u>
Å	À	:E •E •U	å	á	ġ
Ć	ć		ć	ć	Ē
Č	Ē	III CY 'M IM IM	č	Ξ	ų
Ç	Ç	Ç	Ç	£	ç
È	E	ш	è	ē	·
É	Ē	ш	é	ē	Ē
ÊĒĔĚ	#:#:#:#:#:#:#:#:#	E	êēĕě	ē	Ŧ
Ë	Ë	H	ë (ĕ)	ë	T
			ħ	ħ	ħ
Ì	Ī	<u> - - - :-</u>	ì	ī	ī
ĺ	Ī	-	ĺ	ī	ī
ÎĨĪĬ	Ī	-	îīīĭ	ī	ī
Ϊ	Ϊ	:-	Ϊ(ĭ)	ï	Ë
ÑŇ	:0:0,0'Z!н:н!н.н	21	ñň	ħ	Ē
Ò Ó	ō	10 10	ò	ō	5
Ó	ō		ó	ō	5
ÔÕŌŎ	ō	10	ôõōŏ	ō	10
Ö	0	:0	ö (ŏ)	ö	9
Ø Ř Š	Ø	Ø	Ø	ø	2 14 15 a a a a a a a a a a a
Ř	Ē	ī	ř	F	-
Š	丟	7	š	のににに、取ります	7
			ß	β	β
Ù	Ū		ù	ū	ū
Ú	Ū		ú	ű	ū
ÛŨŪŬ	Ū		ûũūŭ	ū	[]
Ü	<: c 0 !	כי כ:	ü (ŭ)	ü	ü
Ů	Ċ	Ċ	ů	제목(학교	ij
Ý	Ÿ	Ÿ	ý ÿ ž	ÿ	9
Ÿ	Ÿ	Ÿ	ÿ	ÿ	ij
Ž	M	71	ž	Ӣ	ī

Here are the contents of the alpha catalogs making the WP 34S the most versatile global calculator known. Big font is printed in left column or upper row, small font in right or lower. Accented letters show the same width as unaccented ones wherever possible.

The letters provided here allow for correct writing the languages of more than 3.109 people, i.e. Afrikaans, Català, Cebuano, Česky, Cymraeg, Deutsch. Eesti, English, Español, Français, Gaeilge, Galego, Bahasa Indonesia, Italiano, Basa Jawa, Kiswahili, Kreyòl ayisyen, Magyar, Bahasa Melayu, Nederlands, Português, Quechua, Shqip, Slovenčina, Slovenščina, Basa Sunda, Suomeksi, Svenska, Tagalog, Winaray, Zhōngwén (with a little trick explained below), and almost Hrvatski and Srpski (sorry, no đ) as well as Dansk and Norsk (no æ). If you know further living languages covered, please tell us.

Mandarin Chinese (Zhōngwén) features four tones, usually transcribed like e.g. mā, má, má, and mà. So you need different letters for ā and ă here, and for e, i, o, and u as well. With 6 pixels total character height we found no way to display these in both fonts nicely, keeping letters and accents separated for easy reading. For an unambiguous solution, we suggest using a dieresis (else not employed in Hànyǔ pīnyīn) representing the third tone here. Pinyin writers, we ask for your understanding.

CONSTANTS

This lists the contents of the catalog CONST. Values of physical constants (*incl. their relative standard deviations given in parentheses below*) are from CODATA 2006, copied in August 2010. Green background denotes exact or almost exact values. The more the color turns to red, the less precise the respective constant is known ¹⁷.

The characters necessary to get to a specific function in the catalog are printed bold in this index – (▼) has to be pressed once for each character printed red.

For the units, remember Tesla with $1T=1\frac{Wb}{m^2}=1\frac{V\cdot s}{m^2}$, Joule with $1J=1N\cdot m=1\frac{kg\cdot m^2}{s^2}$ and on the other hand $1J=1W\cdot s=1V\cdot A\cdot s=\frac{1}{e}eV\approx 6.24\cdot 10^6 TeV$. Thus $1\frac{J}{T}=1A\cdot m^2$.

	Numeric value	Unit	Remarks
а	365.2425	d	Gregorian year (per definition)
a ₀	5.2917720859 E -11 (6.8 E -10)	m	Bohr radius $=\frac{\alpha}{4\pi \cdot R_{\infty}}$
С	2.99792458 E 8	m/s	Vacuum speed of light (per definition)
C ₁	3.74177118 E- 16 <i>(5.0E-8)</i>	$m^2 \cdot W$	First radiation constant $= 2\pi \cdot h \cdot c^2$
C ₂	0.014387752 <i>(1.7E-6)</i>	$m \cdot K$	Second radiation constant $=\frac{hc}{k}$
е	1.602176487 E -19 <i>(2.5E-8)</i>	С	Electron charge $=\frac{2}{K_J R_K} = \Phi_0 G_0$
еE	2.718281828459045	1	Euler's e. Please note the letter e is used for the electron charge elsewhere in this table.
F	96485.3399 <i>(2.5E-8)</i>	$\frac{C}{mol}$	Faraday's constant $= e N_A$
g	9.80665	$\frac{m}{s^2}$	Standard earth acceleration (per definition)
G	6.67428 E -11 <i>(1.0E-4)</i>	$\frac{m^3}{kg \cdot s^2}$	Newton's gravitation constant
G。	7.7480917004 E -5 (6.8 E -10)	$^{1}\!\!/_{\Omega}$	Conductance quantum $=\frac{2e^2}{h}=\frac{2}{R_K}$ with the von Klitzing constant $R_K=25812.807557~\Omega$

The bracketed values printed here for your kind attention allow you to compute the precision of results you may obtain using these constants. The procedure to be employed is called error propagation. It is often ignored, though essential for trustworthy results – not only in science. Please turn to respective texts before you believe in 4 decimals of a calculation result based on yardstick measurements.

17

	Numeric value	Unit	Remarks
g _e	2.0023193043622 (7.4 E -13)	1	Landé's g-factor
h	6.62606896 E -34 <i>(5.0E-8)</i>		Planck constant
ħ	1.054571628 E- 34 <i>(5.0E-8)</i>	Js	$=\frac{h}{2\pi}$
k	1.3806504 E -23 <i>(1.7E-6)</i>	$J/_{K}$	Boltzmann constant $= \frac{R}{N_A}$
m e	9.10938215 E -31 <i>(5.0E-8)</i>		Electron mass
m _n	1.674927211 E- 27 <i>(5.0E-8)</i>		Neutron mass
m _p	1.672621637 E -27 (5.0 E -8)	kg	Proton mass
mu	1.660538782 E- 27 <i>(5.0E-8)</i>		Atomic unit mass = $10^{-3} kg / N_A$
mμ	1.88353103 E -28 <i>(5.6E-8)</i>		Muon mass
N _A	6.02214179 E 23 <i>(5.0E-8)</i>	1/ mol	Avogadro's number
NaN	4		"not a number"
po	101325	Pa	standard atmospheric pressure (per definition)
R	8.314472 <i>(1.7E-6)</i>	$\frac{J}{mol \cdot K}$	Molar gas constant
r _e	2.8179402894 E -15 <i>(</i> 2.1 E -9 <i>)</i>	m	Classical electron radius $= \alpha^2 \cdot a_0$
R∞	1.0973731568527 E 7 (6.6 E -12)	1/m	Rydberg constant = $\frac{\alpha^2 m_e c}{2h}$
To	273.15	K	= 0°C, standard temperature (per definition)
t _p	5.39124 E -44 (5.0 E -5)	S	Planck time = $\sqrt{\hbar G/c^5}$
V _m	0.022413996 <i>(1.7E-6)</i>	m^3/mol	Molar volume of an ideal gas at standard conditions $=\frac{RT_0}{p_0}$
Z _o	376.730313461	Ω	Characteristic impedance of vacuum $= \sqrt{\frac{\mu_0}{\varepsilon_0}} = \mu_0 c$
α	7.2973525376 E -3 (6.8 E -10)	1	Fine-structure constant $=\frac{e^2}{4\pi\varepsilon_0\hbar c} \approx \frac{1}{137}$
γΕΜ	0.57721566490153286	1	Euler-Mascheroni constant

	Numeric value	Unit	Remarks
γр	2.675222099 E 8 (2.6 E -8)	$\frac{1}{s \cdot T}$	Proton gyromagnetic ratio $=\frac{2\mu_P}{\hbar}$
εο	8.854187817 E -12	$\frac{A \cdot s}{V \cdot m}$ or $\frac{F}{m}$	Electric constant, vacuum permittivity = $\frac{1}{\mu_0 c^2}$
λ_{c}	2.4263102175 E -12 <i>(1.4E-9)</i>		Compton wavelength of the electron = $\frac{h}{m_e c}$
λ <mark>c</mark> n	1.3195908951 E -15 <i>(1.5E-9)</i>	m	Compton wavelength of the neutron $= \frac{h}{m_n c}$
λ _{cp}	1.3214098446 E -15 <i>(1.9E-9)</i>		Compton wavelength of the proton $= \frac{h}{m_p c}$
μο	1.2566370614 E -6	$\frac{V \cdot s}{A \cdot m}$	Magnetic constant, also known as vacuum permeability = $4\pi \cdot 10^{-7} \frac{V \cdot s}{A \cdot m}$ (per definition)
μ _Β	9.27400915 E- 24 <i>(2.5E-8)</i>		Bohr's magneton $=\frac{e\hbar}{2m_e}$
μ _e	-9.28476377 E -24 <i>(</i> 2.5 E -8 <i>)</i>	1/	Electron magnetic moment
μ _n	-9.6623641 E -27 <i>(2.4E-7)</i>	J_T	Neutron magnetic moment
μ_{p}	1.410606662 E -26 (2.6 E -8)	or $A \cdot m^2$	Proton magnetic moment
μ _u	5.05078324 E- 27 (2.5 E -8)	TI III	Nuclear magneton $=\frac{e\hbar}{2m_p}$
μ_{μ}	-4.49044786 E -26 <i>(</i> 3.6 E -8 <i>)</i>		Muon magnetic moment
π	3.141592653589793	1	
σ_{B}	5.6704 E -8 <i>(7.0E-6)</i>	$\frac{W}{m^2K^4}$	Stefan Boltzmann constant $=\frac{2\pi^5 k^4}{15h^3c^2}$
Φ	1.61803398874989485	1	Golden ratio $=\frac{1+\sqrt{5}}{2}$
Фо	2.067833667 E -15 <i>(2.5E-8)</i>	Vs	Magnetic flux quantum $=\frac{h}{2e}=\frac{1}{K_J}$ with the Josephson constant $K_J=4.83597891\cdot 10^{14} \frac{Hz}{V}$
∞		1	Infinity (may the Lord of Mathematics forgive us calling this a constant)

UNIT CONVERSIONS

These are the contents of the catalog CONV 18 . The characters necessary to access a specific conversion there are printed bold in this index – $\boxed{\bullet}$ has to be pressed once for each character printed red. The constant $\boxed{\bullet}$ may be useful for conversions, too; it is found in the <u>catalog CONST</u>. The conversion factors or divisors listed in this table will not be seen when executing a conversion.

Conversion		Remarks	Class
°C→°F	* 1.8 + 32	Exactly	Temperature
°F→°C	- 32) / 1.8	Exactly	Temperature
a cres→ha	* 0.4046873	$1 \text{ ha} = 10^4 \text{ m}^2$	Area
ar .→dB	10 * lg(R)	Amplitude ratio. Exactly	Ratio
at m→Pa	* 1.01325 E 5	Exactly	Pressure
AU →km	* 1.495979 E 8	Astronomic units	Length
b hp→W	* 745.6999	British horse power	Power
Bt u→J	* 1055.056		Energy
c al→J	* 4.1868	Exactly	Energy
cf t→ <i>l</i>	* 28.31685	Cubic feet	Volume
cm→inches	/ 2.54	Exactly	Length
d B→ar.	$10^{R_{dB}/20}$	Amplitude ratio. Exactly	Ratio
dB→pr.	$10^{R_{dB}/10}$	Power ratio. Exactly	Ratio
f athom→m	* 1.8288		Length
fe et→m	* 0.3048	Exactly	Length
flozUK→ml	* 28.41306	$1 \ ml = 1 \ cm^3$	Volume
flozUS→ml	* 29.57353		Volume
galUK→ l	* 4.54609		Volume
galUS→ l	* 3.785418		Volume
g→oz	/ 28.34952		Mass
g→tr.oz	/ 31.10348		Mass
ha→acres	/ 0.4046873		Area

15

For most readers, many of the units appearing here may look obsolete at least. They die hard, however, in some corners of this world. For symmetry reasons, we may also add some traditional Indian and Chinese units. Anyway, this catalog provides the means to convert local to common units.

Conversion		Remarks	Class
HP _e →W	* 746	Exactly	Power
inches→cm	* 2.54	Exactly	Length
inHg→Pa	* 3386.389		Pressure
J →Btu	/ 1055.056		Energy
J →cal	/ 4.1868	Exactly	Energy
J→k Wh	/ 3.6 E 6	Exactly, since 1 h = 3600 s	Energy
k g→lbm	/ 0.4535924		Mass
km →AU	/ 1.495979 E 8	Astronomic units	Length
km → <i>l.y.</i>	/ 9.460730 E 12	Light years	Length
km <mark>→</mark> mi	/ 1.609344	Exactly	Length
km → nmi	/ 1.852	Nautical miles, exactly	Length
km <mark>→pc</mark>	/ 3.085678 E 16	Parsec	Length
kW h→J	* 3.6E6	Exactly	Energy
I bf→N	* 4.448222		Force
lb m→kg	* 0.4535924		Mass
<i>l.y.</i> →km	* 9.460730 E 12	Light years	Length
l →cft	/ 28.31685	Cubic feet	Volume
<i>l</i> →galUK	/ 4.54609		Volume
<i>l</i> →galUS	/ 3.785418		Volume
m bar→Pa	* 100	Exactly	Pressure
mi→ km	* 1.609344	Exactly	Length
m <i>l</i> →flozUK	/ 28.41306		Volume
m <i>l</i> →flozUS	/ 29.57353		Volume
mm Hg→Pa	* 133.3224	1 torr = 1 mm Hg	Pressure
m→ fathom	/ 1.8288		Length
m → feet	/ 0.3048	Exactly	Length
m → yards	/ 0.9144	Exactly	Length
n mi→km	* 1.852	Nautical miles, exactly	Length
N→lbf	/ 4.448222		Force

Conversion		Remarks	Class
o z→g	* 28.34952		Mass
P a→atm	/ 1.01325 E 5	Exactly	Pressure
Pa →inHg	/ 3386.389		Pressure
Pa→ mbar	/ 100	Exactly	Pressure
Pa→m mHg	/ 133.3224		Pressure
Pa→psi	/ 6894.757		Pressure
Pa→torr	/ 133.3224		Pressure
pc→km	* 3.085678 E 16	Parsec	Length
pr .→dB	10 * lg(R)	Power ratio. Exactly	Ratio
ps i→Pa	* 6894.757		Pressure
PS(hp)→W	* 735.4988		Power
s .tons→t	* 0.9071847	$1 t = 10^3 kg$	Mass
t ons→t	* 1.016047		Mass
to rr→Pa	* 133.3224	1 torr = 1 mm Hg	Pressure
tr .oz→g	* 31.10348		Mass
t→s.tons	/ 0.9071847		Mass
t→tons	/ 1.016047		Mass
W→bhp	/ 745.6999		Power
W→ HP _e	/ 746	Exactly	Power
W→P S(hp)	* 735.4988		Power
y ards→m	* 0.9144	Exactly	Length

In cases of emergency, remember that Becquerel equals Hertz, Gray is the unit for deposited or absorbed energy ($1Gy=1\frac{J}{kg}$), and Sievert is Gray times a radiation dependant dose conversion factor for the damage caused in human bodies. Also in this area are some outdated units, which may be found in older literature: Pour les amis de Mme. Curie, $1Ci=3.7\cdot10^{10}Bq$. And for those who admire the first Nobel laureate in physics, Mr. Röntgen, for finding the x-rays, $1R=2.58\cdot10^{-4}\frac{As}{kg}$.

MESSAGES

There are some commands generating messages also in the dot matrix section of the display. Four of them, DAY, DAYS+, STATUS, and VERS, were introduced above in the paragraph about display already. Others are PROMPT, aVIEW and many more alpha commands, and the test commands as mentioned above.

Two constants will return a special display when called: NaN and ∞ will show you Inf in 164 not nullatric

, respectively.

Furthermore, there are a number of error messages. Depending on error conditions, the following messages will be displayed in the mode(s) listed:

Message		Error Code	Mode(s)	Explanation and Examples
bad date Error	360 RPN	2	DECM	Invalid date format or incorrect date in input, e.g. month >12, day >31 etc.
bad di9it Error	RPN b	9	Integer	Invalid digit in integer input, e.g. 2 in binary, 9 in octal, or +/- in unsigned mode.
bad mode Error	360 RPN	13	All	Caused by calling an operation in a mode where it is not defined, e.g. SIN in hexadecimal.
domain Error	360 RPN	1	\α	An argument exceeds the domain of the mathematical function called. May be caused by roots or logs of negative numbers (if not preceded by (CPX)), by $0/0$, LN(0), $\Gamma(0)$, TAN(90°) and equivalents, ATANH(x) for $ Re(x) \ge 1$, ACOSH(x) for $Re(x) < 1$, etc.
no such LRbEL	360 RPN	6	All	Attempt to address an undefined label.
out of range				 A number exceeds the valid range. Caused e.g. by specifying decimals >11, word size >64, negative flag numbers, integers ≥2⁶⁴, hours or degrees >9000, invalid times, denominators ≥9999 etc.
Error	360 RPN	8	All	 A register address exceeds the valid range. May also happen in indirect ad- dressing.
				 An R-operation (e.g. R-COPY) attempts exceeding valid register numbers (0 99).

Message	Error Code	Mode(s)	Explanation and Examples
SLY J I T RAD STO RPN	7	PRG	Nested use of solve, integrate, sum or product is not allowed.
too few *** *******************************	15	DECM	A statistical calculation was started based on too few data points, e.g. regression or standard deviation for < 2 points.
undefined *** *** OP-COdE	3	All	An instruction with an undefined op-code occurred (should never happen, but who knows).
word size *** Łoo SMARLL ***	14	Integer, \PRG	Stack or register content is too big for the word size set.
+w 360 RPN	4	\α, \PRG	 Division of a number > 0 (or < 0) by zero. Divergent sum or product or integral.
— (X) 360 RPN	5	id, if its	 Positive (or negative) overflow in DECM (see <u>above</u>).
A8 levels RAD STO RPN	11	PRG	Subroutine nesting exceeds 8 levels.

Any key pressed will erase the error message displayed and execute with the stack contents present. Thus, the easiest return to the display shown before the error occurred is pressing a prefix twice.

APPENDIX A: INTERNAL SUPPORT COMMANDS

Some commands are used in internal routines exclusively and are not accessible from the keyboard. They are listed here for sake of a complete documentation:

Name	Purpose and remarks					
BACK <u>n</u>	Jumps n program steps backwards (1 $\leq n \leq$ 99). So e.g. BACK 01 goes to the previous step. Reaching step 000 stops program execution.					
ERR <u>n</u>	Raises the error specified. See <u>above</u> for the respective error codes.					
ERR <u>n</u> iC <u>n</u>						
	27 0.148874338981631210884826001129720 Location of g4, g5, k9 and k11 28 0.295524224714752870173892994651338 Gauss weight for g4 and g5 0.147739104901338491374841515972068 Kronrod weight for k9 and k11					
	Constants 2 29 are for the 10 / 21 point Gauss-Kronrod quadrature used by the internal integration command. Locations are in the range (0, 1) which is scaled to match the interval of integration. The quadrature sums the weight times the function value at each location to estimate the integral. In Gauss-Kronrod schemes the Gauss points are common to both quadratures although the weights are different. This means two estimates of the integral					

Name	Purpose and remarks
	can be performed without increasing the number of function evaluations which in turn allows an estimate of the error to be made. The cost for this is a reduction in the degree of polynomial function that is always integrated exactly.
RTN+1	Returns control to the calling routine like RTN does, but moves the program pointer to the <u>second</u> line following the most recent XEQ instruction encountered. If there is no matching XEQ, program execution halts.
SKIP <u>n</u>	Skips n program steps forwards (1 $\leq n \leq$ 99). So e.g. SKIP 02 skips over the next two steps, going e.g. from step 123 to step 126. If the skip would land beyond the end of <u>occupied</u> program memory, the same will happen as if a RTN had been encountered.
	The two solver commands described below may use some hidden registers and flags. The start points of the respective register and flag blocks are passed as one argument <i>n</i> . Registers: n+0 n+1: first two estimates <i>a</i> and <i>b</i> for the root n+2: third estimate <i>c</i> n+3: function value at first estimate f(a) n+4: function value at second estimate f(b) Flags:
	 n+0 n+7: an eight bit iteration counter n+8: "bracket flag" – true if we've got an interval with f(a) * f(b) < 0 n+9: true if all function evaluations have been constant so far
SLVI <u>n</u>	Initializes the solver. SLVI clears the iteration counter, takes a and b and calculates f(a) and f(b) , sets the last two flags accordingly, and produces a guess c . There is no stack interaction.
SLVS <u>n</u>	Solver step. Updates the internal solver state based on the last function evaluation. In particular, SLVS takes a , b , c , f(a) , and f(b) from the register block plus f(c) from X and updates the register values so that c and f(c) replace one of a and f(a) or b and f(b) . It also produces a new guess c and returns zero in X if the solving should continue and non-zero if not. Otherwise, the stack isn't altered.
	The built in solver loop looks like this in principle, assuming <i>n</i> = 0: SLVI ; calculate f(a) and f(b) and initialize the registers and flags LBL 00 RCL 02 ; recall c XEQUSR ; call the user's subroutine calculating f(c) x≈ 0? ; test if the solution has converged GTO 01 ; converged, so exit SLVS ; update estimates x= 0? ; should we continue? GTO 00 ; loop back again LBL 01 RCL 02 ; best guess so far RTN The actual solver is fairly complex. A combination of quadratic interpolation and a guarded secant method is used.

Name	Purpose and remarks
SPEC?	Tests if x is special (i.e. NaN or infinite).
XEQUSR	Calls a user subroutine (used by SLV, \int , Π and Σ). The subroutine is defined by the argument to the initial command (either numeric of alpha label).

APPENDIX B: CANDIDATES FOR FURTHER FUNCTIONS

If space allows, the following functions may be implemented easily since they are coded already. None of these are counting the catalog and function table overheads. Two bytes for a catalog entry (one for each catalog it is in) and 12-20 bytes for a function table entry (but only one of these), i.e. not terribly significant. These are all moderately useful functions.

Function name and remarks	Size	Domain
AGM = limit of arithmetic geometric mean.	528 B	\mathbb{R}
Bessel functions of first and second kinds: $ J_n \& I_n: \text{real and complex (argument and order);} $ $ Y_n \& K_n: \text{real and complex (argument and order).} $ $ Remember: J_n(x) = \sum_{r=0}^{\infty} \frac{(-1)^r \cdot \left(x/2\right)^{2r+n}}{r! \cdot \Gamma(n+r+1)} $	4470 B	R, C
Cube / cube root	576 B	\mathbb{Z} , \mathbb{R} , \mathbb{C}
Digamma function (ψ , needed for Bessel functions of second kind of integer order)	1384 B	R, C
Fused multiply and add The real version can be replaced by complex multiply. x+y*z can be done via (y, x) * (z, -1) at a pinch.	96 B	Z, R
Jacobi elliptic functions S _n , C _n & D _n	1780 B	R, C
Riemann's Zeta function $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ with $\operatorname{Re}(x) > 1$.	2012 B	R, C
x!!	288 B	R, C

PRIME? also includes overflow resistant code for $(a * b) \mod c$ and $(a * b) \mod c$ which could also be exposed if required.

 < and >: deleted HR, INPUT. 2 flag commands, and 2 conversions; extended explanations for addressing at COMPLEX & put XXR on the keyboard; corrected errors. 4.1.09 Added ASRN, CBC2, CBS, CCB, SCB, FLOAT, MIRROR, SLN, SRN, SBN, SDR, SCE, SLEX, SOCT, BETA, DATE, DDAYS, DIMY, MDY, VMO, CEIL, FLOOR, DSZ, LBZ, D-R, R-D, EMGAM, CSB, LINBETA, LINCAMM, MAX, MIN, NOP, REAL, RJ, W and WINV, ZETA, %+ and %-; renamed the top left keys B, C, and D, and botto felt EXIT. 1.3 17.1.09 Added AIP, ALENG, ARCL, AROT, ASHF, ASTO, ATOX, XTOA, AVIEW, CLA, PROMPT (all taken from 425 CAPP, FC7C, FS7C, SGMNT; and the# commands; renamed NBITS to BITS and STOWS to WSIZE; specific the bit toommands closer; deleted the 4 carpy bit operations. 1.4 10.2.09 Added CONST and a table of constants provided, D-J and J-D, LEAP?, %T, RCL and STO ▲ and ▼, and forgotten statistics registers; deleted CHS, EMGAM, GSB, REAL and ZETA; purged and renamed the bit operations; renamed many commands. 1.5 5.3.09 Added RNDINT, CONV and its table, a memory table, the description of XEQ B, C, D to the operation index, at a and g, to the table of constants; put CLSTK on a key, moved CLE and FILL, changed the % and log labels of the keyboard, put CLALL in XFCN; checked and cleaned alpha mode keyboard and added a temporary all keyboard; exampled the alphabet to put Greek after Latin, symbols after Greek consistently, separated the inpart of the command of the command of the separate deleted of the separate deleted of the command of the separate deleted of the separate deleted of the command of the separate deleted of the separate deleted of the separate deleted of the separate deleted of th		Date	Release notes
 and s; deleted HR, INPUT, 2 flag commands, and 2 conversions; extended explanations for addressing at COMPLEX 8	1	9.12.08	Start
DATE, DDAYS, D.MY, M.DY, Y.MD, CEIL, FLOOR, DSZ, ISZ, D.SR, R-D, EMGAM, GSB, LNBETA, LINBOY, LINETRA, LINBOY, REAL, RJV, Wand WINV, ZETTA, %+ and %-; renamed the top left keys B, C, and D, and botto left EXIT. 1.4 17.1.09 Added AIP, ALENG, ARCL, AROT, ASHF, ASTO, ATOX, XTOA, AVIEW, CLA, PROMPT (all taken from 435 CAPP, FCYC, FSYC, SGMNT, and the# commands: renamed NBITS to BITS and STOWS to WSIZE: specific the bit commands closer; deleted the 4 carry bit operations. 1.4 10.2.09 Added CONST and a table of constants provided, D-J and J>D, LEAP?, %T, RCL and STO ▲ and ▼, and forgotten statistics registers; deleted CHS, EMGAM, GSB, REAL and ZETA; purged and renamed the bit oper tions; renamed many commands. 1.5 5.3.09 Added RNDINT; CONV and its table, a memory table, the description of XEO B, C, D to the operation index and and g, to the table of constants; put CLSTK on a key, moved CLZ and FILL, changed the % and log labels is the keyboard, put CLALL in XFCN: checked and cleaned alpha mode keyboard and added a temporary and and g, to the table of constants; put CLSTK on a key, moved CLZ and FILL, changed the % and log labels is the keyboard, put CLALL in XFCN: checked and cleaned alpha mode keyboard and added a temporary side keyboard; rearranged the alphabet to put Greek after Latin, symbols after Greek consistently: separated the inp and non-programmable commands; cleaned the addressing tables. 1.6 12.8.09 Added BASE, DAYS+, DROP, PROPY, E3OFF, E3ON, E7CF, FC7S, FIB, FS7F, FS7S, GCD, LCM, SETDA SETTIM, SET24, SINC, TIME, VERS, GDAY, ob/NTH, dRC#, %Z, as well as F, t, and Scientification and improved the separated by the commands; cleaned the addressing tables. 1.7 9.9.09 Added P,FCN and STAT catalogs, 4 more conversions, 3 more flags, Greek character access, CLFLA DECOMP, DENAMY, DENAC, DENAMY, BROP, AND	1.1	15.12.08	Added the table of indicators; added NAND, NOR, XNOR, RCLWS, STOWS, //, N, SERR, SIGMA, < and >; deleted HR, INPUT, 2 flag commands, and 2 conversions; extended explanations for addressing and COMPLEX &; put XOR on the keyboard; corrected errors.
CAPP, FC7C, FS7C, SGMNT, and the# commands, renamed NBITS to BITS and STOWS to WSIZE; specific the bit commands closer, deleted the 4 carp bit operations. 1.4 10.2.09 Added CONST and a table of constants provided, D≥J and J>D, LEAP?, %T, RCL and STO ▲ and ▼, and forgotten statistics registers; deleted CHS, EMGAM, GSB, REAL and ZETA; purged and renamed the bit oper tions, renamed many commands. 1.5 5.3.09 Added RNDINT, CONV and its table, a memory table, the description of XEQ B, C, D to the operation index a and g, to the table of constants; put CLST on a key, moved CLΣ and FLL, changed the % and log labels is the keyboard, put CLALL in XFCN; checked and cleaned alpha mode keyboard and added a temporary and keyboard; carranged the alphabet to put Greek after Latin, symbols after Greek consistently, separated the in and non-programmable commands; cleaned the addressing tables. 1.6 12.8.09 Added BASE, DAYS+, DROP, DROPY, E3OFF, E3ON, FC7F, FC7S, FIB, FS7F, FS7S, GCD, LCM, SETDA SETTIM, SET24, SINC, TIME, VERS, GDAY, ad/ONTH, GRCF; %Z, as well as F, L, and y "distributions and the inverses, reassigned DATE, modified DEHMAX, FLOAT, arkOT, and GSHIFT; deleted BASE arithmete, B1 DEC, HEX, and OCT; updated the alpha keyboards, added flags in the memory table; includered addressing for comparisons; added a paragraph about the display, updated the table of indicators; corrected errors. 1.7 9.9.09 Added P.CN and STAT catalogs, 4 more conversions, 3 more flags, Greek character access, CLFLA DECOMP, DENAMY, DENFAC, DENFIX, IB, IF, dDATE, dRL, dRR, dSL, dSR, dTIME, 12h, 24h, fraction more more comparisons; added to pSE; swapped SHOW and PSE as well as 4% and % on the keyboard; relabeled PRG to P/R and PAUSE to PSE; swapped SHOW and PSE as well as 4% and % on the keyboard; relabeled QC or creted CELL and FLOOR; updated X-FC Na and alpha commands; updated the virtual alpha keyboard. 1.10 19.1.10 Added two complex comparisons; swapped and changed labels in the top three rows of keys, dropped CLS completed function a	1.2	4.1.09	Added ASRN, CBC?, CBS?, CCB, SCB, FLOAT, MIRROR, SLN, SRN, >BIN, >DEC, >HEX, >OCT, BETA, D>R, DATE, DDAYS, D.MY, M.DY, Y.MD, CEIL, FLOOR, DSZ, ISZ, D>R, R>D, EMGAM, GSB, LNBETA, LNGAMMA, MAX, MIN, NOP, REAL, RJ, W and WINV, ZETA, %+ and %-; renamed the top left keys B, C, and D, and bottom left EXIT.
forgotten statistics registers: deleted CHS, EMGAM, GSB, REAL and ZETA; purged and renamed the bit oper tions; renamed many commands. 1.5 5.3.09 Added RNDINT, CONV and its table, a memory table, the description of XEQ B, C, D to the operation index, at a and g, to the table of constants; put CLSTK on a key, moved CL2 and FILL, changed the % and log labels is the keyboard, put CLALT in X-FCN; checked and cleaned alpha mode keyboard and adea temporary alpik keyboard; rearranged the alphabet to put Greek after Latin, symbols after Greek consistently; separated the inp and non-programmable commands; cleaned the addressing tables. 1.6 128.09 Added BASE, DAYS+ DROP, DROPY, E3OFF, E3ON, FC7F, FC7S, FIB, FS7F, FS7S, GCD, LCM, SETDA SETTIM, SET24, SINC, TIME VERS, GDAY, MONTH, 40FC; %2, as well as F-1, and y-distributions and the inverses: reassigned DATE, modified DENMAX, FLOAT, dROT, and GSHIFT; deleted BASE arithmetic, BI DEC, HEX, and OCT; updated the lapha keyboards; added flags in the memory table; included indirect address ing for comparisons; added a paragraph about the display; updated the table of indicators; corrected errors. 1.7 9.9.09 Added P.FCN and STAT catalogs, 4 more conversions, 3 more flags, Greek character access, CLFLA DECOMP, DENANY, DENFAC, DENEIX, BI, r. (DATE, dRL, dRR, dSL, dSR, dTIME, 12h, 24h, fraction move limits, normal distribution and its inverse for arbitrary μ and σ, and Boolean operations working within FLOA deleted drROT, dSHIFT, the timer, and forced radians after inverse hyperbolics; renamed WINN to W ⁻¹ , and be and gamma commands to Greek; added tables of catalog contents; modified label addressing; reliabeled PRG to P/R and PAUSE to PSE; swapped SHOW and PSE as well as the and W on the keyboard. 1.8 29.10.09 Added R-CLR, R-COPY, R-SORT, R-SWAP, RCLM, STOM, alpha catalogs, 1 more constant and some moconversions, a table of error messages, as well as the binomial, Poisson, geometric, Welbuil and exponential distributions and their inverses, renamed some commands; put Y-from t	1.3	17.1.09	Added AIP, ALENG, ARCL, AROT, ASHF, ASTO, ATOX, XTOA, AVIEW, CLA, PROMPT (all taken from 42S), CAPP, FC?C, FS?C, SGMNT, and the# commands; renamed NBITS to BITS and STOWS to WSIZE; specified the bit commands closer; deleted the 4 carry bit operations.
a and <i>g</i> , to the table of constants; put CLSTK on a key, moved CLΣ and FILL, changed the % and log labels; the keyboard, put CLALL in XFCN; checked and cleaned alpha mode keyboard and added a temporary alpi keyboard; rearranged the alphabet to put Greek after Latin, symbols after Greek consistently; separated the inp and non-programmable commands; cleaned the addressing tables. 1.2.8.09 Added BASE, DAYS+, DROP, DROPY, E3OFF, E3ON, FC?F, FC?S, FIB, FS?F, FS?S, GCD, LCM, SETDA SETTIM, SET24, SINC, TIME, VERS, αDAY, αΜΟΝΤΗ, αRC#; %Σ, as well as F-, t., and χ²-distributions and the inverses; reassigned DATE, modified DEMMAX, FLOAT, αRCT, and OSHIFT; delta BASE arithmetic, BI DEC, HEX, and OCT; updated the alpha keyboards; added flags in the memory table; included indirect addres ing for comparisons; added a paragraph about the display; updated the table of indicators; corrected errors. Added P-FCN and STAT catalogs, 4 more conversions, 3 more flags, Greek character access, CLFLA DECOMP, DENANN, DENFAC, DENFIX, Iß, II, DAATE, αRL, αRR, αSL, αSR, αTIME, 12h, 24h, fraction more limits, normal distribution and its inverse for arbitrary and α, and Boolean operations working within FLCA deleted αROT, αSHIFT, the timer, and forced radians after inverse hyperbolics; renamed WINV to W⁻¹, and be and gamma commands to Greek; added tables of catalog contents; modified label addressing; relabeled PRG to P/R and PAUSE to PSE; swapped SHOW and PSE as well as Δ% and % on the keyboard; relabeled Q; corrected CEIL and FLOOR; updated X-FCN and alpha commands; updated the virtual alpha keyboard idistributions and their inverses; renamed some commands; put V⁻¹ instead of π on hotkey D. 1.9 14.12.09 Added RCLR, R-COPY, R-SQRT, R-SWAP, RCLM, STOM, alpha-commands and the message table; rename distributions and their inverses; renamed some commands; put V⁻¹ instead of π on hotkey D. 1.10 21.91.10 Added RCLR, R-COPY, R-SQRT, R-SWAP, RCLM, STOM, alpha-commands and the message table; rename the constant is included in Constant in clo	1.4	10.2.09	Added CONST and a table of constants provided, D>J and J>D, LEAP?, %T, RCL and STO ▲ and ▼, and 2 forgotten statistics registers; deleted CHS, EMGAM, GSB, REAL and ZETA; purged and renamed the bit operations; renamed many commands.
SETTIM, SET24, SINC, TIME, VERS, αDAY, αMONTH, αRC#; %Σ, as well as F-, t-, and χ²-distributions and the inverses; reassigned DATE, modified DEMMAX, FLOAT, αROT, and αSHIT-releted BASE arithmetic, BI DEC, HEX, and OCT; updated the alpha keyboards; added flags in the memory table; included indirect addres ing for comparisons; added a paragraph about the display, updated the table of indicators; corrected errors. 1.7 9.9.09 Added P-FCN and STAT catalogs, 4 more conversions, 3 more flags, Greek character access, CLFLA DECOMP, DENANY, DENFAC, DENFIX, Iβ, IΓ, αDATE, αRL, αRR, αSL, αSR, αTIME, 12h, 24h, fraction molimits, normal distribution and its inverse for arbitrary µ and r, and Boolean operations working within FLOA deleted αROT, αSHIFT, the timer, and forced radians after inverse hyperbolics; renamed VINIV to VT ² , and be and gamma commands to Greek; added tables of catalog contents; modified label addressing; relabeled PRG to P/R and PAUSE to PSE; swapped SHOW and PSE as well as Δ% and % on the keyboard; relabeled Qr corrected CEIL and FLOOR; updated X-FCN and alpha commands; updated the virtual alpha keyboard. 1.8 29.10.09 Added R-CLR, R-COPY, R-SORT, R-SWAP, RCLM, STOM, alpha catalogs, 1 more constant and some moconversions, a table of error messages, as well as the binomial, Poisson, geometric, Weibull and exponenti distributions and their inverses; renamed some commands; put VT instead of π on hotkey D. 1.9 14.12.09 Added two complex comparisons; swapped and changed labels in the top three rows of keys, dropped CLS completed function descriptions in the index. 1.10 19.1.10 Added IMPFRC, PROFRC, CENTER, dBEG, dEND, and an addressing table for items in catalogs; updated the porary alpha mode, display and indicators, RCLM and STOM, alpha-commands and the message table; rename the exponential distribution; wrote the introduction. 1.11 21.9.10 Changed keyboard layout to bring Π and Σ to the front, relabeled binary log, swapped the locations of π, CLP and STATUS, as well as SF and FS?; created	1.5	5.3.09	Added RNDINT, CONV and its table, a memory table, the description of XEQ B, C, D to the operation index, and a and g_e to the table of constants; put CLSTK on a key, moved CL Σ and FILL, changed the % and log labels on the keyboard, put CLALL in X.FCN; checked and cleaned alpha mode keyboard and added a temporary alpha keyboard; rearranged the alphabet to put Greek after Latin, symbols after Greek consistently; separated the input and non-programmable commands; cleaned the addressing tables.
DECOMP, DENANY, DENFAC, DENFIX, Iß, IΓ, αDATE, αRL, αRR, αSL, αSR, αTIME, 12h, 12h, fraction mow limits, normal distribution and its inverse for arbitrary μ and σ, and Boolean operations working within FLOA deleted αROT, αSHIFT, the timer, and forced radians after inverse hyperbolics; renamed WINV to W ⁻¹ , and be and gamma commands to Greek; added tables of catalog contents; modified label addressing; relabeled PRG to P/R and PAUSE to PSE; swapped SHOW and PSE as well as Δ% and % on the keyboard; relabeled PRG rected CEIL and FLOOR; updated X.FCN and alpha commands; updated the virtual alpha keyboard. 1.8 29.10.09 Added R-CLR, R-COPY, R-SORT, R-SWAP, RCLM, STOM, alpha catalogs, or more constant and some mo conversions, a table of error messages, as well as the binomial, Poisson, geometric, Weibull and exponenti distributions and their inverses; renamed some commands; put √ instead of π on hotkey D. 1.9 44.12.09 Added two complex comparisons; swapped and changed labels in the top three rows of keys, dropped CLS completed function descriptions in the index. 1.10 19.1.10 Added IMPFRC, PROFRC, ^C ENTER, αBEG, αEND, and an addressing table for items in catalogs; updated terporary alpha mode, display and indicators, RCLM and STOM, alpha-commands and the message table; rename the exponential distribution; wrote the introduction. 1.11 21.9.10 Changed keyboard layout to bring Π and Σ to the front, relabeled binary log, swapped the locations of π, CLP and STATUS, as well as SF and FS?; created a menu TEST for the comparisons removed and the other prigrammable tests from P.FCN; added «MG, %-MG, %-MGR, RESET, SSIZE4, SSIZE9, SSIZE9, ^C PDROP, ^C FL ^C RL, ^C R1, registers J and K, a table of contents and tables for stack mechanics and addressing in complex oper tions; updated memory and real number addressing tables, DECOMP, αOFF, αON, Π, and Σ; renamed ROUNU WISIZE7, β(x,y), Γ(x) and the constant p ₀ ; deleted DROPY (use x ↔ y, DROP instead), αAPP, αBEG, αEND, at the 'too long error' message; deleted DROP has been	1.6	12.8.09	Added BASE, DAYS+, DROP, DROPY, E3OFF, E3ON, FC?F, FC?S, FIB, FS?F, FS?S, GCD, LCM, SETDAT, SETTIM, SET24, SINC, TIME, VERS, α DAY, α MONTH, α RC#; α DAY, as well as F-, t-, and α -distributions and their inverses; reassigned DATE, modified DENMAX, FLOAT, α ROT, and α SHIFT; deleted BASE arithmetic, BIN, DEC, HEX, and OCT; updated the alpha keyboards; added flags in the memory table; included indirect addressing for comparisons; added a paragraph about the display; updated the table of indicators; corrected errors.
conversions, a table of error messages, as well as the binomial, Poisson, geometric, Weibull and exponenti distributions and their inverses; renamed some commands; put √ instead of π on hotkey D. 1.4.12.09 Added two complex comparisons; swapped and changed labels in the top three rows of keys, dropped CLS completed function descriptions in the index. 1.10 19.1.10 Added IMPFRC, PROFRC, ^C ENTER, αBEG, αEND, and an addressing table for items in catalogs; updated ter porary alpha mode, display and indicators, RCLM and STOM, alpha-commands and the message table; rename the exponential distribution; wrote the introduction. 1.11 21.9.10 Changed keyboard layout to bring Π and Σ to the front, relabeled binary log, swapped the locations of π, CLP and STATUS, as well as SF and FS?; created a menu TEST for the comparisons removed and the other programmable tests from P.FCN; added %MG, %+MG, %MRR, RESET, SSIZE4, SSIZE8, SSIZE7, ^C DROP, ^C FIL ^C R↓, ^C R↑, registers J and K, a table of contents and tables for stack mechanics and addressing in complex oper tions; updated memory and real number addressing tables, DECOMP, αOFF, αON, Π, and Σ; renamed ROUNI WSIZE?, β(X,Y), Γ(X) and the constant po; deleted DROPY (use x+y, DROP instead), αAPP, αBEG, αEND, at the "too long error" message; deleted Josephson and von Klitzing constants (they are just the inverses of oth constants included in CONST already); brought more symbols on the alpha keyboard. 1.12 22.12.10 Modified keyboard layout; added catalogs MODE and PROB; changed mode word, catalog contents and handlin (XEQ instead of ENTER), as well as some non-programmable info commands; expanded IMPFRC and PROFR added a paragraph about the fonts provided and explained alpha catalogs in detail; added PRIME? and son conversions; deleted FRACT, OFF and ON. 1.13 3.2.11 Modified keyboard layout; modified αTIME, radix setting, H.MS+ and H.MS-; added EVEN?, FP?, INT?, LZOF LZON, ODD?, RCLS, STOS, returned FRACT; added and renamed some conversions; updated the paragraph about displ	1.7	9.9.09	Added P.FCN and STAT catalogs, 4 more conversions, 3 more flags, Greek character access, CLFLAG, DECOMP, DENANY, DENFAC, DENFIX, I β , I Γ , α DATE, α RL, α RR, α SL, α SR, α TIME, 12h, 24h, fraction mode limits, normal distribution and its inverse for arbitrary μ and σ , and Boolean operations working within FLOAT; deleted α ROT, α SHIFT, the timer, and forced radians after inverse hyperbolics; renamed WINV to W $^{-1}$, and beta and gamma commands to Greek; added tables of catalog contents; modified label addressing; relabeled PRGM to P/R and PAUSE to PSE; swapped SHOW and PSE as well as Δ % and % on the keyboard; relabeled Q; corrected CEIL and FLOOR; updated X.FCN and alpha commands; updated the virtual alpha keyboard.
 completed function descriptions in the index. 19.1.10 19.1.10 Added IMPFRC, PROFRC, ^cENTER, αBEG, αEND, and an addressing table for items in catalogs; updated ter porary alpha mode, display and indicators, RCLM and STOM, alpha-commands and the message table; rename the exponential distribution; wrote the introduction. 1.11 Changed keyboard layout to bring Π and Σ to the front, relabeled binary log, swapped the locations of π, CLP and STATUS, as well as SF and FS?; created a menu TEST for the comparisons removed and the other programmable tests from P.FCN; added %MG, %+MG, %MRR, RESET, SSIZE4, SSIZE8, SSIZE9, ^cDROP, ^cFIL ^cR4, ^cR1, registers J and K, a table of contents and tables for stack mechanics and addressing in complex oper tions; updated memory and real number addressing tables, DECOMP, αOFF, αON, Π, and Σ; renamed ROUNI WSIZE7, β(x,y), Γ(x) and the constant po; deleted DROPY (use x ↔ y, DROP instead), αAPP, αBEG, αEND, at the "too long error" message; deleted Josephson and von Klitzing constants (they are just the inverses of oth constants included in CONST already); brought more symbols on the alpha keyboard. 1.12 22.12.10 Modified keyboard layout; added catalogs MODE and PROB; changed mode word, catalog contents and handlin (XEQ instead of ENTER), as well as some non-programmable info commands; expanded IMPFRC and PROFR added a paragraph about the fonts provided and explained alpha catalogs in detail; added PRIME? and son conversions; deleted FRACT, OFF and ON. 1.13 3.2.11 Modified keyboard layout; modified αTIME, radix setting, H.MS+ and H.MS-; added EVEN?, FP?, INT?, LZOF LZON, ODD?, RCLS, STOS, returned FRACT; added and renamed some conversions; updated the paragraph about display; added appendices A and B; baptized the device WP 34S. 1.14 18.3.11 Added DEC and INC, renamed FLOAT to DECM; redefined αTIME and H.MS mode; updated appendix A; doc mented the annunciators BEG and = as well as underflows and overflows in H.MS; correc	1.8	29.10.09	Added R-CLR, R-COPY, R-SORT, R-SWAP, RCLM, STOM, alpha catalogs, 1 more constant and some more conversions, a table of error messages, as well as the binomial, Poisson, geometric, Weibull and exponential distributions and their inverses; renamed some commands; put $\sqrt{}$ instead of π on hotkey D.
porary alpha mode, display and indicators, RCLM and STOM, alpha-commands and the message table; rename the exponential distribution; wrote the introduction. 21.9.10 Changed keyboard layout to bring Π and Σ to the front, relabeled binary log, swapped the locations of π, CLP and STATUS, as well as SF and FS?; created a menu TEST for the comparisons removed and the other programmable tests from P,FCN; added %MG, %+MG, %MRR, RESET, SSIZE4, SSIZE8, SSIZE7, °DROP, °FIL °R1, registers J and K, a table of contents and tables for stack mechanics and addressing in complex oper tions; updated memory and real number addressing tables, DECOMP, αOFF, αON, Π, and Σ; renamed ROUNT WSIZE?, β(x,y), Γ(x) and the constant po; deleted DROPY (use x+y), DROP instead), αAPP, αBEG, αEND, at the "too long error" message; deleted Josephson and von Klitzing constants (they are just the inverses of oth constants included in CONST already); brought more symbols on the alpha keyboard. 1.12 22.12.10 Modified keyboard layout; added catalogs MODE and PROB; changed mode word, catalog contents and handlin (XEQ instead of ENTER), as well as some non-programmable info commands; expanded IMPFRC and PROFR added a paragraph about the fonts provided and explained alpha catalogs in detail; added PRIME? and son conversions; deleted FRACT, OFF and ON. 1.13 3.2.11 Modified keyboard layout; modified αTIME, radix setting, H.MS+ and H.MS-; added EVEN?, FP?, INT?, LZOF LZON, ODD?, RCLS, STOS, returned FRACT; added and renamed some conversions; updated the paragraph about display; added appendices A and B; baptized the device WP 34S. Added DEC and INC, renamed FLOAT to DECM; redefined αTIME and H.MS mode; updated appendix A; doc mented the annunciators BEG and = as well as underflows and overflows in H.MS; corrected some errors shoring up with the emulator. 1.15 21.3.11 Modified FIX, removed ALL from MODE, updated CONV.	1.9	14.12.09	Added two complex comparisons; swapped and changed labels in the top three rows of keys, dropped CLST; completed function descriptions in the index.
and STATUS, as well as SF and FS?; created a menu TEST for the comparisons removed and the other programmable tests from P.FCN; added %MG, %+MG, %MRR, RESET, SSIZE4, SSIZE8, SSIZE7, CDROP, CFIL CR, R1, registers J and K, a table of contents and tables for stack mechanics and addressing in complex oper tions; updated memory and real number addressing tables, DECOMP, αOFF, αON, Π, and Σ; renamed ROUNE WSIZE7, β(x,y), Γ(x) and the constant po; deleted DROPY (use x ↔ y, DROP instead), αAPP, αBEG, αEND, at the "too long error" message; deleted Josephson and von Klitzing constants (they are just the inverses of oth constants included in CONST already); brought more symbols on the alpha keyboard. 1.12 22.12.10 Modified keyboard layout; added catalogs MODE and PROB; changed mode word, catalog contents and handlin (XEQ instead of ENTER), as well as some non-programmable info commands; expanded IMPFRC and PROFR added a paragraph about the fonts provided and explained alpha catalogs in detail; added PRIME? and son conversions; deleted FRACT, OFF and ON. 1.13 3.2.11 Modified keyboard layout; modified αTIME, radix setting, H.MS+ and H.MS-; added EVEN?, FP?, INT?, LZOF LZON, ODD?, RCLS, STOS, returned FRACT; added and renamed some conversions; updated the paragraph about display; added appendices A and B; baptized the device WP 34S. 1.14 18.3.11 Added DEC and INC, renamed FLOAT to DECM; redefined αTIME and H.MS mode; updated appendix A; doc mented the annunciators BEG and = as well as underflows and overflows in H.MS; corrected some errors showing up with the emulator. 1.15 21.3.11 Modified FIX, removed ALL from MODE, updated CONV.	1.10	19.1.10	Added IMPFRC, PROFRC, ^C ENTER, αBEG, αEND, and an addressing table for items in catalogs; updated temporary alpha mode, display and indicators, RCLM and STOM, alpha-commands and the message table; renamed the exponential distribution; wrote the introduction.
 (XEQ instead of ENTER), as well as some non-programmable info commands; expanded iMPFRC and PROFR added a paragraph about the fonts provided and explained alpha catalogs in detail; added PRIME? and son conversions; deleted FRACT, OFF and ON. 3.2.11 Modified keyboard layout; modified αTIME, radix setting, H.MS+ and H.MS-; added EVEN?, FP?, INT?, LZOF LZON, ODD?, RCLS, STOS, returned FRACT; added and renamed some conversions; updated the paragraph about display; added appendices A and B; baptized the device WP 34S. 1.14 Added DEC and INC, renamed FLOAT to DECM; redefined αTIME and H.MS mode; updated appendix A; documented the annunciators BEG and = as well as underflows and overflows in H.MS; corrected some errors showing up with the emulator. 1.15 21.3.11 Modified FIX, removed ALL from MODE, updated CONV. 	1.11	21.9.10	Changed keyboard layout to bring Π and Σ to the front, relabeled binary log, swapped the locations of π , CLPR, and STATUS, as well as SF and FS?; created a menu TEST for the comparisons removed and the other programmable tests from P.FCN; added %MG, %+MG, %MRR, RESET, SSIZE4, SSIZE8, SSIZE?, C DROP, C FILL, C R\$, registers J and K, a table of contents and tables for stack mechanics and addressing in complex operations; updated memory and real number addressing tables, DECOMP, α OFF, α ON, Π , and Σ ; renamed ROUNDI, WSIZE?, β (x,y), Γ (x) and the constant ρ_0 ; deleted DROPY (use $x \leftrightarrow y$, DROP instead), α APP, α BEG, α END, and the "too long error" message; deleted Josephson and von Klitzing constants (they are just the inverses of other constants included in CONST already); brought more symbols on the alpha keyboard.
LZON, ODD?, RCLS, STOS, returned FRACT; added and renamed some conversions; updated the paragraph about display; added appendices A and B; baptized the device WP 34S. 1.14 18.3.11 Added DEC and INC, renamed FLOAT to DECM; redefined αTIME and H.MS mode; updated appendix A; documented the annunciators BEG and = as well as underflows and overflows in H.MS; corrected some errors showing up with the emulator. 1.15 21.3.11 Modified FIX, removed ALL from MODE, updated CONV.	1.12	22.12.10	Modified keyboard layout; added catalogs MODE and PROB; changed mode word, catalog contents and handling (XEQ instead of ENTER), as well as some non-programmable info commands; expanded IMPFRC and PROFRC; added a paragraph about the fonts provided and explained alpha catalogs in detail; added PRIME? and some conversions; deleted FRACT, OFF and ON.
mented the annunciators BEG and = as well as underflows and overflows in H.MS; corrected some errors showing up with the emulator. 1.15 21.3.11 Modified FIX, removed ALL from MODE, updated CONV.	1.13	3.2.11	Modified keyboard layout; modified αTIME, radix setting, H.MS+ and H.MS-; added EVEN?, FP?, INT?, LZOFF, LZON, ODD?, RCLS, STOS, returned FRACT; added and renamed some conversions; updated the paragraph about display; added appendices A and B; baptized the device WP 34S.
	1.14	18.3.11	Added DEC and INC, renamed FLOAT to DECM; redefined α TIME and H.MS mode; updated appendix A; documented the annunciators BEG and = as well as underflows and overflows in H.MS; corrected some errors showing up with the emulator.
1.16 27.3.11 Added LBL?, f'(x), and f"(x); modified PSE; upgraded catalog searching.	1.15	21.3.11	Modified FIX, removed ALL from MODE, updated CONV.
	1.16	27.3.11	Added LBL?, f'(x), and f"(x); modified PSE; upgraded catalog searching.