ASSIGNMENT-2

Individual Assignment (100 points)

Instructions:

- Submit the paper review as a word or pdf file.
- Submit elegant code with substantial comments as a Python notebook along with the HTML version.
- You are expected to work independently. Plagiarism in any form will not be tolerated.
- You may take selective help from AI models to solve this assignment.
- 1. Paper Review Select and review a technical paper from the list of papers in Group 2 (20)
- 2. Train two different FFN models using *Keras*: (20)
 - A model to learn the Sine function in the range $(-\pi, \pi)$ and the second to learn another arbitrary but non-trivial function of your choice.
 - Plot the learned mapping for a given range $(\pi, 2\pi)$ and compare it with the Sine wave for the first model and a suitable range for the second model.
 - Summarize the model architectures for both models.
 - Neural networks are known to be "Universal Function Approximators". Would you agree with the statement based on this experiment?
- 3. Build a CNN model using Keras to classify the IP 102 dataset with the given train-test-validation split (60).
 - a) Perform exploratory data analysis and data cleaning as necessary.
 - b) Filter out (ignore) classes with less than 200 samples in the trainset.
 - c) Build a Convolutional Neural Network (CNN) using Keras
 - Apply call backs such as Early Stopping and Learning Rate Scheduling
 - Hyperparameter tuning with an optimizer of your choice.
 - Use *Tensorboard* to analyze the model graph and metrics.
 - d) Make the following modifications to your architecture and study the impact on model performance.
 - Increase the number of neurons.
 - Add more hidden layers.
 - Add Batch Normalization in one or more layers.
 - Add L1/L2 regularization in one or more layers.
 - Add Dropout in one or more layers.
 - Experiment with at least two types of activation functions.

Provide comparative loss/accuracy tables and plots to track your experiments and model convergence.

- e) Persist the trained model and perform final evaluation using a model loaded from disk.
- f) Provide a manual calculation for the total number of parameters used in your neural network and verify the results with Keras *summary()*.