

# Ingeniería de Software II

**Tema:** Estimación de Proyectos de Software



Docente: Mg. Mario Ruben Pérez Cargua



# **Objetivo**

Aplicar los diferentes métodos que existen para estimar costos a los proyectos de software

# Contenido

- Estimar Proyectos
- Métodos mas Utilizados



Porque Estimar Proyectos

#### Antecedentes

Las mejoras en el proceso de desarrollo de software y sistemas de calidad no pueden ser evaluadas sin un esfuerzo efectivo de medición.

#### Necesidades de medición

- Mejoras en la calidad y productividad.
- Planificación y estimación de proyectos con alguna precisión.
- Disposición del personal adecuado, bien utilizado y motivado.
- Existencia de una adecuada estructura organizacional.
- Uso de técnicas y herramientas efectivas para el proceso.
- Obtención de un espacio físico y ambiente de trabajo óptimo.

#### Antecedentes

Los aspectos esenciales de la medición son:

- **Datos duros**, son cuantificables con poca o sin subjetividad (esfuerzo, volumen documentación, errores detectados, etc.)
- **Datos blandos**, presentan un grado de subjetividad (habilidad y experiencia, presiones de tiempo, satisfacción del cliente, cooperación del cliente, etc.)
- Datos normalizados, son usados con propósito comparativo (LOC, PF,CC, PO)

#### Escalas de dimensionamiento

- **Escala Nominal**, la cual ordena ítems por categoría. Un ejemplo de esta escala de medición es cuando catalogamos un lenguaje de programación: C++, Java, entre otros.
- **Escala Ordinal**, la cual ordena ítems. Un ejemplo es cuando se asigna una severidad a la falla encontrada como menor, mayor, catastrófica.
- Escala de Intervalos, la cual define una distancia desde un punto a otro. Este tipo de escala entrega cálculos no disponibles en la escala ordinal, como el cálculo del significado
- Escala de Proporción, esta escala es la que entrega mayor información y flexibilidad, debido a que incorpora el cero absoluto. Mediciones como LOC y número de defectos son mediciones de proporción.

#### Que se puede medir en el Software

En general se desea medir los siguientes aspectos en Ingeniería de Software:

- Procesos o tareas a ejecutar (modelado, diseño, prueba).
- Productos entregados durante el proceso (documentación de diseño, código fuente, registro de pruebas).
- Recursos que permiten realizar el proceso (personal, computadoras, dinero).

#### Que se puede medir en el Software

En general se desea medir los siguientes aspectos en Ingeniería de Software:

- Procesos o tareas a ejecutar (modelado, diseño, prueba).
- Productos entregados durante el proceso (documentación de diseño, código fuente, registro de pruebas).
- Recursos que permiten realizar el proceso (personal, computadoras, dinero).

#### **Atributos internos y externos**

Un atributo interno es medido directamente desde la entidad. (código fuente : el tamaño medido por las líneas de código.

Un atributo externo es una medida de la entidad con relación a una necesidad externa definida por el ambiente en el cual es desarrollada o utilizada. Por ejemplo, la mantenibilidad del código fuente

#### Que se puede medir en el Software

| PRODUCTO         |                                                                                                            |                                              |  |  |
|------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|
| Entidades        | Atributos Internos                                                                                         | Atributos Externos                           |  |  |
| Especificaciones | Tamaño, re-uso, modularidad,<br>redundancia, funcionalidad,<br>correctitud                                 | Comprensibilidad,<br>mantenibilidad          |  |  |
| Diseño           | Tamaño, re-uso, modularidad,<br>acoplamiento, cohesividad,<br>funcionalidad                                | Calidad, complejidad,<br>mantenibilidad      |  |  |
| Codificación     | Tamaño, re uso, modularidad,<br>acoplamiento, funcionalidad,<br>complejidad algorítmico,<br>estructuración | Confiabilidad, Usabilidad,<br>mantenibilidad |  |  |
| Datos de prueba  | Tamaño, nivel de cobertura                                                                                 | Calidad                                      |  |  |

#### Que se puede medir en el Software

| PROCESOS                            |                                                                        |                                                 |  |  |
|-------------------------------------|------------------------------------------------------------------------|-------------------------------------------------|--|--|
| Entidades                           | Atributos Internos                                                     | Atributos Externos                              |  |  |
| Especificación de<br>requerimientos | Tiempo, esfuerzo, número de cambios en los requerimientos              | Calidad, costo, estabilidad                     |  |  |
| Diseño detallado                    | Tiempo, esfuerzo, número de<br>especificaciones erróneas<br>detectadas | Costo, costo - eficacia                         |  |  |
| Pruebas                             | Tiempo, esfuerzo, número y<br>errores encontrados                      | Costo, costo - eficacia,<br>estabilidad         |  |  |
| Vista de Despliegue                 | Diagrama de Despliegue                                                 | Nodo, componente,<br>dependencia, localización. |  |  |

#### Que se puede medir en el Software

| RECURSOS  |                                               |                                              |  |  |
|-----------|-----------------------------------------------|----------------------------------------------|--|--|
| Entidades | Atributos Internos                            | Atributos Externos                           |  |  |
| Personal  | Años de experiencia, tasa de<br>trabajo       | Productividad, experiencia,<br>inteligencia. |  |  |
| Equipos   | Tamaño, nivel de comunicación, estructuración | Productividad, calidad.                      |  |  |
| Software  | Tamaño, costo                                 | Usabilidad, Confiabilidad                    |  |  |
| Hardware  | Precio, velocidad, tamaño de<br>la memoria    | Confiabilidad                                |  |  |
| Oficinas  | Tamaño, temperatura, luz                      | Confort, calidad                             |  |  |

#### Definición Atributos (Pg. 55)

| Atributo                | Definición                                                                                    |
|-------------------------|-----------------------------------------------------------------------------------------------|
| Acoplamiento            | Grado de fuerza de la inter-conexión entre los componentes del sistema.                       |
| Calidad                 | Grado de excelencia.                                                                          |
| Cohesividad             | Grado en que las entidades dependen o no de las otras entidades.                              |
| Correctitud             | Grado en el que un entidad satisface las especificaciones y cumple los objetivos del usuario. |
| Complejidad             | Cantidad de diversos elementos que lo componen.                                               |
| Complejidad algorítmica | Grado de relativa dificultad computacional de las funciones.                                  |
| Costo                   | Cuanto cuesta conseguir un objetivo determinado. (Monetariamente)                             |
| Costo-eficiencia        | Grado en que el costo esta relacionado con la eficencia obtenida.                             |
| Confiabilidad           | Grado con el que una entidad realiza su función con una precisión requerida.                  |
| Confort                 | Grado de comodidad.                                                                           |

#### Algunos Indicadores de Medición

Productividad = KLOC / PM

KLOC son las Kilo Líneas de Código fuente entregada y PM son las Personas Mes destinados al proyecto.

> Calidad = defectos / KLOC Costo = \$ / LOC Documentación = páginas de documentación / KLOC

> > Las mediciones asociadas a las LOC están en permanente discusión, ya que son dependientes del lenguaje de programación

#### Atributos de las técnicas de estimación

La estimación de costos, tiempos y recursos para el esfuerzo de desarrollo de Software requiere experiencia, acceso a una buena información histórica y coraje para confiar en medidas cuantitativas cuando todo lo que existe son datos cualitativos.

- La complejidad del proyecto, que tiene un gran efecto sobre la incertidumbre que es inherente a la planificación.
- El tamaño del proyecto, que es otro factor importante y puede afectar a la precisión y
  eficacia de las estimaciones
- El grado de estructuración del proyecto, que también tiene efecto sobre el riesgo de la estimación

### Estimación de Costos

#### Técnicas para la Estimación de Costos



#### Estimación de Costos

#### Técnicas para la Estimación de Costos



Los factores que afectan a la estimación de un proyecto son básicamente dos: la complejidad del proyecto y el tamaño del mismo.

#### Estimación de Costos

Los componentes principales de costos son:

- Hardware.
- Entrenamiento.
- Esfuerzo.



Modelo Punto Función

#### Método Punto Función

El Análisis de Puntos de Función (FPA, por sus siglas en inglés) es una técnica de medición de las funcionalidades ofrecidas por un software desde el punto de vista de sus usuarios.

Punto de función (FP, pos sus siglas en inglés), que es su unidad de medida, tiene por objetivo tornar la medición independiente de la tecnología utilizada para su construcción. Es decir, el FPA busca medir lo que el software hace y no como es construido (No considera ningún aspecto de implementación ).

Método estándar ISO/IEC 20926 de medición de software que cuantifica los requisitos funcionales del usuario

No por tener mas pantallas el sistema tiene que costar mas

#### Método Punto Función

- Estimar el esfuerzo en un proyecto informático horas hombre (HH)
- Estimar la duración de un proyecto de software (en meses)
- Estimar el costo del proyecto informático

#### Análisis divide la especificación funcional

- Interacción
- Almacenamiento

#### Componentes funcionales básicos

- Interacción Función de transacción (interacciones con el usuario)
- Almacenamiento Función de datos

#### Método Punto Función



#### Almacenamiento Función de datos

#### Archivo lógico interno (ILF: Internal Logical File)

- Archivo del punto de vista lógico, no como en un sistema operativo
- Puede ser tabla en la base de datos

#### Archivo lógico interno (EIF: External Interface File)

- Datos referenciados a otros sistemas
- Datos mantenidos por otros sistemas, pero usados por el sistema actual

#### Interacción Función de transacción

#### Entrada externa (EI: External input)

Pantallas donde el usuario ingresa datos

#### Salida externa (EO: External output)

Informes, gráficos, Lista de datos

#### Consulta externa (EQ: External query)

• Recuperar y mostrar datos al usuario - buscar

#### Método Punto Función

- Buscar (EQ)
- Actualizar (EI)
- Insertar (EI)
- · Listar (EO)
- Eliminar <sup>b</sup>(EI)
- Informes o reportes (EO)
- Tablas de BD (ILF)

| Tipo / Complejidad                | Baja | Media | Alta  |
|-----------------------------------|------|-------|-------|
| (EI) Entrada externa              | 3 PF | 4 PF  | 6 PF  |
| (EO) Salida externa               | 4 PF | 5 PF  | 7 PF  |
| (EQ) Consulta<br>externa          | 3 PF | 4 PF  | 6 PF  |
| (ILF) Archivo lógico<br>interno   | 7 PF | 10 PF | 15 PF |
| (EIF) Archivo de interfaz externo | 5 PF | 7 PF  | 10 PF |

Valores estándar (IFPUG) International Function Point Users Group

#### Método Punto Función

- Para el siguiente ejemplo, se considerará que todas las funciones identificadas serán de complejidad media.
- El sistema requerido es:
  - Registro de Equipos de futbol
  - Registros de partidos
  - Buscar partido por fecha
  - Actualización de datos del equipo
  - Eliminar equipos
  - Listado de equipos
  - 1 reporte de los equipos registrados por rango de fechas
  - 1 reporte de partidos

#### Requerimientos Funcionales

#### Método Punto Función

```
- Registro de Equipos de futbol (EI 4 PF)

    Registros de partidos (EI 4 PF)

    Buscar partido por fecha (EQ 4 PF)

    Actualización de datos del equipo (EI 4 PF)

- Eliminar equipos (EI 4 PF)

    Listado de equipos (EO 5 PF)

    1 reporte de los equipos registrados por rango de fechas

   (EO 5 PF)
1 reporte de partidos (EO 5 PF)
4 Tablas en BD (ILF 40 PF)
Puntos de función sin ajustar (PFSA): 75
```

#### Método Punto Función

| Tipo /<br>Complejidad                   | Baja | Media     | Alta  | TOTAL |
|-----------------------------------------|------|-----------|-------|-------|
| (EI) Entrada<br>externa                 | 3 PF | 4 x 4 PF  | 6 PF  | 16    |
| (EO) Salida<br>externa                  | 4 PF | 3 x 5 PF  | 7 PF  | 15    |
| (EQ) Consulta<br>externa                | 3 PF | ₫ x 4 PF  | 6 PF  | 4     |
| (ILF) Archivo<br>lógico interno         | 7 PF | 4 x 10 PF | 15 PF | 40    |
| (EIF) Archivo de<br>interfaz<br>externo | 5 PF | 0 x 7 PF  | 10 PF | 0     |
|                                         |      |           | PFSA  | 75    |

#### Determinación de los niveles de influencia

| Factor de Ajuste               | Puntaje |
|--------------------------------|---------|
| Comunicación de Datos          | 4       |
| Procesamiento Distribuido      | 4       |
| Objetivos de Rendimiento       | 1       |
| Configuración del equipamiento | 1       |
| Tasa de transacciones          | 3       |
| Entrada de Datos en Línea      | 5       |
| Interfase con el usuario       | 2       |
| Actualizaciones en Línea       | 3       |
| Procesamiento Complejo         | 1       |
| Reusabilidad del Código        | 1       |
| Facilidad de Implementación    |         |
| Facilidad de Operación         | 1       |
| Instalaciones Múltiples        | 2       |
| Facilidad de Cambios           | 4       |
| Factor de Ajuste               | 32      |

El cálculo del factor de ajuste está basado en 14 características generales de los sistemas que miden la funcionalidad general de la aplicación. A cada característica se le atribuye un peso que varía de 0 a 5 e indica el grado o nivel de influencia que cada característica tiene en la aplicación que está siendo estudiada.

https://www.oocities.org/gimenezpy/ajuste.htm

#### Estimación del Esfuerzo

```
• PFA = PFSA*[0.65+(0.01*factor de ajuste)]
```

- Donde:
  - PFSA: Puntos de función sin ajustar
  - PFA : Puntos de función ajustado

PFA = 
$$75 * [0.65 + (0.01 * 32)]$$
PFA =  $75 * [0.65 + 0.32]$ 
PFA =  $75 * 0.97$ 
PFA =  $73.8 \rightarrow 74$ 

#### Estimación de esfuerzo (H/H)

| Lenguaje                 | Horas PF promedio | Lineas de código por PF |
|--------------------------|-------------------|-------------------------|
| Ensamblador              | 25                | 300                     |
| COBOL                    | 15                | 100                     |
| Lenguajes 4ta Generación | 8                 | 20                      |

H/H = PFA \* Horas PF promedio

H/H = 74 \* 8

H/H = 592 Horas hombre

Ejemplo: 🝃

5 horas diarias de trabajo

1 mes = 20 días

592/ 5 = 118,4 días de trabajo

118,4 / 20 = 5,92 meses para desarrollar el software de lunes a viernes 5 horas diarias con 1 trabajador (ESTIMACIÓN de duración del proyecto)

#### Estimación del Tiempo y Presupuesto

```
H/H = 592 Horas hombre
Desarrolladores = 3
Horas = 592 / 3 = 197,3 horas (Duración del proyecto en horas)
197,3 / 5 = 39,46 días de trabajo
39,46 / 20 = 1,97 meses para desarrollar el software de lunes a viernes 5 horas
diarias con 3 desarrolladores (ESTIMACIÓN de duración del proyecto)
Costo = (Desarrolladores * Duración del proyecto en meses * sueldos )+ otros
Sueldos=
Duración del proyecto en meses= 1.97
Otros=
Costo Estimado:
```



Modelo COCOMO

#### Método COCOMO

Modelo COCOMO II, modelo de estimación que se encuentra en la jerarquía de modelos de estimación de software con el nombre de COCOMO, por Constructive Cost Model (Modelo Constructivo de Coste).

El modelo COCOMO original se ha convertido en uno de los modelos de estimación de coste del software más utilizados y estudiados en la industria.

#### Estimación del Esfuerzo



#### Método COCOMO II

Los submodelos son tres: básico, intermedio y detallado. Por su parte, los modos de desarrollo son también tres: orgánico, semi-acoplado y empotrado.

Tabla 2 Esquema de modos de desarrollo de software

| Modo de desarrollo | Requisitos   | Татаñо                  | Complejidad | Personas | Experiencia |
|--------------------|--------------|-------------------------|-------------|----------|-------------|
| Orgánico           | Poco rígidos | Pequeño<br>(<50KLDC)    | Pequeña     | Pocas    | Mucha       |
| Semiacoplado       | Poco/medio   | Medio<br>(50 a 300KLDC) | Medio       | Medio    | Medio       |
| Empotrado          | Alto         | Grande<br>(>300KLDC)    | Alta        | Alta     | Poca        |

Nota: (Boehm, 1981).

El caso del tamaño, se consideran las líneas de código fuente del software en unidades de miles de líneas de código (KDLC, por sus siglas en inglés).

#### Método COCOMO

Estos valores constantes, codificados aquí como "a", "b", "c" y "d", son propuestos por el modelo COCOMO para complementar las ecuaciones de cálculo usadas en el modelo.

Valores constantes por modo de desarrollo

| Modo de desarrollo | COCOMO<br>Básico<br>a | COCOMO<br>Intermedio<br>A | ь    | с    | d    |
|--------------------|-----------------------|---------------------------|------|------|------|
| Orgánico           | 2.4                   | 3.2                       | 1.05 |      | 0.38 |
| Semiacoplado       | 3.0                   |                           | 1.12 | 2.50 | 0.35 |
| Empotrado          | 3.6                   | 2.8                       | 1.20 |      | 0.32 |

Nota: (Boehm, 1981).

#### Ecuaciones

Estas ecuaciones se utilizan para calcular el esfuerzo nominal en personas/mes (E), tiempo estimado en meses (T) y personal requerido (P).

Ecuaciones por tipo de modelo COCOMO: Básico e intermedio

| Ecuación     | Submodelo básico    | Submodelo intermedio       |
|--------------|---------------------|----------------------------|
| Esfuerzo (E) | ( E ) = a * (KLDC)b | ( E ) = $a * (KLDC)b * ME$ |
| Tiempo (T)   | (T) = c * (E)d      | (T) = c * (E)d             |
| Personal (P) | (P) = E/T           | (P)=E/T                    |

Nota: (Boehm, 1981).

#### Modelo COCOMO Básico

|                                   | ORGANICO                                                                                                                                                                                                                                                                                                 | SEMIDESCONECTADO                 | INTEGRADO                        |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|--|
| Esfuerzo Estimado [PM]            | $E_D = 2.4 \times (KLDC)^{1.05}$                                                                                                                                                                                                                                                                         | $E_D = 3.0 \times (KLDC)^{1.12}$ | $E_D = 3.6 \times (KLDC)^{1.20}$ |  |
| Tiempo de desarrollo [Meses]      | $T_D = 2.5 \times (E_D)^{0.38}$                                                                                                                                                                                                                                                                          | $T_D = 2.5 \times (E_D)^{0.35}$  | $T_D = 2.5 \times (E_D)^{0.32}$  |  |
| Productividad                     |                                                                                                                                                                                                                                                                                                          | $\Pr = \frac{LDC}{E_D}$          |                                  |  |
| N° medio de personas              | $P = \frac{E_D}{T_D}$                                                                                                                                                                                                                                                                                    |                                  |                                  |  |
| Esfuerzo de mantenimiento<br>[PM] | TCA (Tráfico de Cambio Anual): porción de instrucciones fuente que sufren algún cambio durante un año, bien sea por adición o modificación. $E_M = TCA \cdot E_D$ Y por lo tanto, el número medio de personas a tiempo completo dedicadas a mantenimiento durante 12 meses sería: $P_M = \frac{E_M}{12}$ |                                  |                                  |  |

#### Modelo COCOMO personal requerido



Figura 5.1: Curva de Rayleigh-Norden de esfuerzo de desarrollo

#### Modelo COCOMO personal requerido

Ecuaciones por tipo de modelo COCOMO: Básico e intermedio

| Multiplicadores de esfuerzo (ME) |      | Valoración                              |          |      |         |      |          |            |
|----------------------------------|------|-----------------------------------------|----------|------|---------|------|----------|------------|
|                                  |      |                                         | Muy bajo | Bajo | Nominal | Alto | Muy alto | Extr. alto |
|                                  |      | Atributos del producto                  |          |      |         |      |          |            |
| 1.                               | RELY | Fiabilidad requerida del software       | 0,75     | 0,88 | 1.00    | 1,15 | 1,40     |            |
| 2.                               | DATA | Tamaño de la base de datos              |          | 0,94 | 1.00    | 1,08 | 1,16     |            |
| 3.                               | CPLX | Complejidad del producto                | 0,70     | 0,85 | 1.00    | 1,15 | 1,30     | 1,65       |
|                                  | I    | Atributos de la computadora             |          |      |         |      |          |            |
| 4.                               | TIME | Restricciones del tiempo de ejecución   |          |      | 1.00    | 1,11 | 1,30     | 1,66       |
| 5.                               | STOR | Restricciones del almacenamiento princ. |          |      | 1.00    | 1,06 | 1,21     | 1,56       |
| 6.                               | VIRT | Inestabilidad de la máquina virtual     |          | 0,87 | 1.00    | 1,15 | 1,30     |            |
| 7.                               | TURN | Tiempo de respuesta del computador      |          | 0,87 | 1.00    | 1,07 | 1,15     |            |

#### Modelo COCOMO personal requerido

Ecuaciones por tipo de modelo COCOMO: Básico e intermedio

| Multiplicadores de esfuerzo (ME) |      | Valoración                                |          |      |         |      |          |            |
|----------------------------------|------|-------------------------------------------|----------|------|---------|------|----------|------------|
|                                  |      |                                           | Muy bajo | Bajo | Nominal | Alto | Muy alto | Extr. alto |
|                                  |      | Atributos del personal                    |          |      |         |      |          |            |
| 8.                               | ACAP | Capacidad del analista                    | 1,46     | 1,19 | 1.00    | 0,86 | 0,71     |            |
| 9.                               | AEXP | Experiencia en la aplicación              | 1,29     | 1,13 | 1.00    | 0,91 | 0,82     |            |
| 10.                              | PCAP | Capacidad de los programadores            | 1,42     | 1,17 | 1.00    | 0,86 | 0,70     |            |
| 11.                              | VEXP | Experiencia en S.O. utilizado             | 1,21     | 1,10 | 1.00    | 0,90 |          |            |
| 12.                              | LEXP | Experiencia en el lenguaje de progr.      | 1,14     | 1,07 | 1.00    | 0,95 |          |            |
|                                  |      | Atributos del proyecto                    |          |      |         |      |          |            |
| 13.                              | MODP | Uso de prácticas de programación modernas | 1,24     | 1,10 | 1.00    | 0,91 | 0,82     |            |
| 14.                              | TOOL | Uso de herramientas software              | 1,24     | 1,10 | 1.00    | 0,91 | 0,83     |            |
| 15.                              | SCED | Restricciones en la duración del proy.    | 1,23     | 1,08 | 1.00    | 1,04 | 1,10     |            |

#### Modelo COCOMO personal requerido

En el primer ejemplo, se desea estimar el costo del proyecto, de forma básica, utilizando el modelo COCOMO básico. El desarrollo de este ejemplo se muestra en la Tabla 6.

Tabla 6 Solución ejemplo #1. COCOMO básico modo semi-acoplado

| Ecuación     | Submodelo básico  | Aplicación de la ecuación                          |
|--------------|-------------------|----------------------------------------------------|
| Esfuerzo (E) | (E) = a * (KLDC)b | $= 3 * (100)^{1.12}$ $= 3 * 173.78$ $= 521,34$     |
| Tiempo (T)   | (T) = c * (E)d    | $= 2.5 * (521.34)^{0.35}$ $= 2.5 * 8,93$ $= 22,33$ |
| Personal (P) | (P) = E/T         | = 521.34 / 22.3<br>= 23.34                         |

#### Modelo COCOMO Ejemplos

En el primer ejemplo, se desea estimar el costo del proyecto, de forma básica, utilizando el modelo COCOMO básico. El desarrollo de este ejemplo se muestra en la Tabla 6.

Tabla 6 Solución ejemplo #1. COCOMO básico modo semi-acoplado

| Ecuación     | Submodelo básico  | Aplicación de la ecuación                          |
|--------------|-------------------|----------------------------------------------------|
| Esfuerzo (E) | (E) = a * (KLDC)b | $= 3 * (100)^{1.12}$ $= 3* 173.78$ $= 521,34$      |
| Tiempo (T)   | (T) = c * (E)d    | $= 2.5 * (521.34)^{0.35}$ $= 2.5 * 8,93$ $= 22,33$ |
| Personal (P) | (P) = E/T         | = 521.34 / 22.3<br>= 23.34                         |

#### Modelo COCOMO Ejemplos ...

En el segundo ejemplo, se desea estimar el costo del proyecto, utilizando el modelo COCOMO intermedio, ajustado con la característica de la *fiabilidad requerida del software* (RELY) con una valoración de "alto". El desarrollo de este ejemplo se muestra en la Tabla 7.

Tabla 7 Solución ejemplo #2. COCOMO intermedio, modo semiacoplado con ME = RELY "alto"

| Ecuación     | Submodelo intermedio   | Aplicación de la ecuación                                             |
|--------------|------------------------|-----------------------------------------------------------------------|
| Esfuerzo (E) | (E) = a * (KLDC)b * ME | = 3 * (100) <sup>1.12</sup> * 1.15<br>= 3 * 173.78 * 1.15<br>= 599.54 |
| Tiempo (T)   | (T) = c * (E)d         | $= 2.5 * (599.541)^{0.35}$ $= 2.5 * 9.38$ $= 23.45$                   |
| Personal (P) | (P) = E/T              | = 599.541 / 23.45<br>= 25.57                                          |

#### Modelo COCOMO Ejemplos.

En el tercer ejemplo, se desea estimar del costo del proyecto, utilizando el modelo COCOMO intermedio, ajustado con las características fiabilidad requerida del software (RELY) con una valoración de "alto", y experiencia en la aplicación (AEXP) con una valoración de "bajo". El desarrollo de este ejemplo se muestra en la Tabla 8.

Tabla 8 Solución ejemplo #3. COCOMO intermedio, modo semiacoplado los ME RELY "alto" y AEXP "bajo"

| Ecuación     | Submodelo intermedio   | Aplicación de la ecuación                                                     |
|--------------|------------------------|-------------------------------------------------------------------------------|
| Esfuerzo (E) | (E) = a * (KLDC)b * ME | = 3 * (100) <sup>1.12</sup> * 1.15 * 1.13<br>= 3 * 173.78 * 1.299<br>= 677.22 |
| Tiempo (T)   | (T) = c * (E)d         | = 2.5 * (677.22) <sup>0.35</sup><br>= 2.5 * 9.78<br>= 24.45                   |
| Personal (P) | (P) = E/T              | = 677.22 / 24.45<br>= 27.69                                                   |

#### Fuente:

ISSN Electrónico: 2215-3470 DOI: <a href="http://dx.doi.org/10.15359/ru.32-1.8">http://dx.doi.org/10.15359/ru.32-1.8</a> Gabriela Garita-González y Fulvio Lizano-Madriz



# **Gracias**

Responsabilidad con pensamiento positivo

## **Tareas**



- Aplicar la estimación de costos punto función a su proyecto de clase
- Aplicar método COCOMO al proyecto utilizando herramienta COCOMOII

NOTA: El deber será enviado en formato PDF, especificando su nombre y número de semana y número grupo

Ejemplo: Semana1\_Mario\_Pérez\_Grupo1.pdf