Première partie

Introduction Générale

« L'altération de l'environnement du fait des actions humaines a déclenché la sixième grande extinction de l'histoire de la vie... » (Stuart Chapin III *et al.*, 2000)

Voici comment les experts mondiaux concluent sur le statut actuel et les évolutions futures de la biodiversité, incluant la diversité de tous les groupes taxonomiques à tous les niveaux : diversité génétique, diversité spécifique, diversité des communautés et des écosystèmes dans tous les habitats naturels. Dans le contexte du changement climatique et du déclin de la biodiversité, il est particulièrement important d'améliorer notre compréhension de la réponse des espèces aux changements globaux afin de prédire leur devenir. Afin de faire face à ce défit, il est d'abord nécessaire de comprendre correctement le fonctionnement des écosystèmes et des populations qui les habites et de leur dynamique.

Le travail présenté dans cette thèse s'inscrit dans le champs de l'étude expérimentale et théorique de la dynamique des populations. Plus précisément, ce travail apporte des éléments réponses quant aux mécanismes fins de régulation des populations, via la densité dépendance, notamment lorsque l'on considère leur structure en taille. Nous nous sommes d'abord intéressés à la description de la ynamiques de populations structurées en taille et des mécanismes en jeu dans leur régulation. Ceci nous a conduit à identifier la compétition par interférence comme un élément clé dans la régulation des populations. Nous avons ensuite établi un cadre théorique au rôle de l'interférence dans la dynamique des populations structurées. Puis, en intervenant expérimentalement sur la structure en taille de populations, nous avons pu démontrer l'existence de certains mécanismes proposés à la suite des études descriptive et théorique. Enfin, nous nous sommes intéressés au rôle de la température sur la dynamique des populations structurées, et à ses interactions avec les mécanismes de densité dépendance.

État de l'art et problématiques étudiées

1.1 Les conséquences écologiques de la structuration des populations

Pour comprendre le fonctionnement des écosystèmes et les réponses des espèces à leur environnement, il est d'important de comprendre leur démographie et la dynamique de leurs populations. De nombreuses études empiriques ont montré que ces populations étaient structurées de façon non triviales. Ce résultat très général a été vérifié à de nombreuses reprises, que ce soit en laboratoire, comme chez la drosophile (Madalena & Robertson, 1974) et les acariens par exemple (Benton & Beckerman, 2005), ou dans des populations naturelles telles que les populations de moutons de Soay (Coulson et al., 2001; Ozgul et al., 2009) ou de cerfs élaphe (Langvatn & Loison, 1999). Cela implique que la description d'une population comme un tout ou comme un assemblage de classes crées artificiellement représente généralement mal la réalité et n'intègre pas suffisamment de complexité pour décrire fidèlement les mécanismes qui régulent sa dynamique.

1.1.1 Différents niveaux de structuration

Dans une population, la structure émerge de l'hétérogénéité entre les individus d'une même espèce (Benton *et al.*, 2006). Plusieurs formes de structuration ont été classiquement prises en compte en écologie.

Structuration spatiale

Une première forme de structuration évidente est la structuration spatiale. Celle-ci décrit comment les individus d'une population s'organisent dans l'espace, et ce faisant, modifient leurs interactions entre eux et avec leur environnement.

La structuration spatiale des populations répond souvent à l'hétérogénéité de leur habitat. Ces hétérogénéités ont des conséquences directes sur la dynamiques des populations, par exemple en modifiant les schémas de dispersion des individus (Hiebeler, 2000), leur fitness (Zając *et al.*, 2008), l'accès aux ressources (Bürger & Goldoni, 2008), la sensibilité aux parasite ou pathogènes (Su *et al.*, 2009), *etc*.

L'étude de la dynamique des populations structurées spatialement constitue un champs de recherche extrêmement large et varié auquel notre étude ne se rattache pas directement.

Structuration génétique

Conséquence de la structuration spatiale, les populations sont souvent également structurées génétiquement. Les individus spatialement les plus proches les uns des autres, notamment dans des méta-populations, sont également plus proches génétiquement. L'analyse génétique d'une population permet alors d'obtenir des informations sur ses origines et sa structuration spatiale (Repaci *et al.*, 2006 ; Jorde *et al.*, 2007 ; Booth *et al.*, 2009).

Structuration en stades

Une des causes principales de l'hétérogénéité à l'origine de la structuration des populations vient du cycle de vie des individus. Lorsque le cycle de vie d'une espèce est tel que les traits d'histoire de vie comme la croissance, la reproduction ou la mortalité varient beaucoup entre des étapes différentes mais sont très similaires au sein d'une

même étape, on peut alors séparer la population en plusieurs stades définis par les différentes étapes du cycle de vie.

Cette forme de structuration, intégrée dans des modèles de dynamique de population depuis une trentaine d'année (Gurney et al., 1983; Nisbet & Gurney, 1983), permet une description plus rigoureuse des relations entre les traits d'histoire de vie individuels et la dynamique de la population. Cette forme de structuration et les modèles qui en découlent ont principalement été appliqués à des populations d'invertébrés et d'insectes dont le cycle de vie contient un ou plusieurs événements de métamorphose (Gurney et al., 1980, 1983; Nisbet & Gurney, 1983; Nisbet et al., 1989; McCauley et al., 1996).

Structuration en âges

La structuration en âge d'une population est également couramment utilisée en dynamique des populations lorsque l'âge de l'individu devient l'unité pertinente pour suivre les variations des traits d'histoire de vie. L'âge des individus est maintenant très couramment incorporé lors des études de dynamique de populations naturelles ou théoriques (par ex. Marteinsdottir & Begg, 2002 ; Coulson & Tuljapurkar, 2008 ; Worden *et al.*, 2010 ; Robinson *et al.*, 2013). Cependant, considérer une structuration par l'âge uniquement oblige à fixer pour tous les individus une même progression dans les trajectoires de vie. Or, il peut exister des différences d'histoire de vie entre deux individus du même âge dans une même population.

Structuration physiologique

Afin de palier à ce défaut, les écologues ont considéré des caractères physiologiques comme éléments structurants des populations. De cette façon, les traits d'histoire de vie des individus n'ont pas besoin d'être divisibles en des classes bien distinctes, mais l'impact de l'état physiologique de l'individu sur ses traits d'histoire de vie – que sont

par exemple la reproduction, la croissance, la mortalité ou la vitesse d'ingestion de l'énergie – est tout de même pris en compte.

Un cadre théorique complet a été développé pour permettre d'étudier la dynamique des populations structurées physiologiquement. Les modèles de population physiologiquement structurés (modèles PSP pour "Physiologically Structured Population") constituent une part importante de ce cadre théorique (Metz & Diekmann, 1986; De Roos *et al.*, 1992; De Roos, 1997), et permettent de tenir compte des histoires de vie dans les quelles les traits physiologiques et les interactions écologiques varient de façon continue.

Une sous partie des modèles PSP s'intéressent particulièrement au rôle de la taille corporelle dans les interactions écologiques, l'histoire de vie, et les répercutions sur la dynamique des populations.

1.1.2 L'importance de la taille corporelle

La taille corporelle constitue un facteur clé dans la compréhension des rapports entre état individuel et traits d'histoire de vie, et leur conséquences sur la dynamique des populations et des communautés.

Impact sur les traits d'histoire de vie

L'influence de la taille corporelle sur les performances écologiques, mesurées notamment par les taux vitaux (croissance, reproduction ou mortalité) ou les interactions trophiques, on fait l'objet d'un grand nombre d'études théoriques et expérimentales (Peters, 1986; Calder, 1996; De Roos & Persson, 2001; Claessen *et al.*, 2004, ...). Par exemple, des individus plus larges vont généralement être plus efficaces dans leur recherche de nourriture, pouvoir se nourrir de proies plus grandes et courir un risque réduit de prédation comparé à des individus plus petits (Paradis *et al.*, 1996).

Dans un autre registre, les capacités de recherche de nourriture de la daphnée en fonction de sa taille ont été mesurées en détail dans un grand nombre de conditions différentes, et reliées à l'allocation de l'énergie assimilée à la croissance, à la reproduction ou au métabolisme (par ex. Lampert, 1978; Gurney et al., 1990; McCauley et al., 1990; Kooijman, 2000). De nombreuses études se sont également intéressées au comportement de recherche de nourriture et à la gestion de l'énergie chez des populations de poissons (par ex. Elliott, 1975 ; Mittelbach, 1981 ; Fuiman, 1994 ; Hjelm & Persson, 2001). Ces différentes études expérimentales ont conduit au développement de modèles génériques reliant énergie et traits d'histoire de vie tels que la capacité à rechercher de la nourriture, la croissance et le développement (Kooijman, 2000 ; Nisbet et al., 2000; West et al., 2001). Dans ses travaux, Kooijman (2000) propose un cadre théorique à la fois concis et complet, le budget énergétique dynamique ("dynamic energy budget"), qui décrit la consommation de l'énergie et des nutriments à l'échelle de l'individu en relation avec sa taille corporelle, et leur utilisation pour les différents traits d'histoire de vie. C'est dans ce cadre théorique notamment que l'on étudie l'impact sur la dynamique des populations de la dépendance des traits d'histoire de vie à la taille corporelle.

Interaction histoire de vie et la dynamique des populations

Les premier modèles de dynamique des populations structurées par stade (Gurney et al., 1980 ; Lawton & Hassell, 1981 ; Gurney et al., 1983 ; Nisbet & Gurney, 1983) ont été inspirés par des observations de populations d'insectes, naturelles ou en laboratoire. Ces populations montraient une dynamique fluctuante, même si l'environnement pouvait être considéré comme constant (Nicholson, 1954 ; Gurney et al., 1983 ; Ebenman, 1988 ; Godfray & Hassell, 1989). Ces dynamiques fluctuantes présentaient la particularité d'être due à une succession dans le temps de générations sans chevauchement, même si les histoires de vie individuelles le rendaient possible. Ces études ainsi que

les travaux de Gurney & Nisbet (1985) ont alors permis d'identifier deux types de cyclicité différentes suivant la période du cycle, par rapport au temps de génération : (i) des cycles d'une seule génération ("single generation cycles") avec une périodicité autour du temps de génération, éventuellement légèrement supérieure, mais toujours inférieure à deux fois le temps de génération ; et (ii) des cycles dit "delayed-feedback cycles" où la périodicité est cette fois entre deux et quatre fois le temps de génération. Ces cycles de différentes périodes sont expliqués par une compétition différentielle entre les différents stades présents dans la population, et à un changement des taux vitaux individuels avec la densité d'individus dans les chaque stade.

L'identification de ces deux types de cycles a été une avancée majeure dans la théorie des interactions entre histoire de vie et dynamique des populations. Ces deux concepts sont généraux et s'appliquent plus largement qu'aux seuls modèles structurés par stades. Ils se retrouvent notamment dans des modèles structurés en âge. Ces cycles ont par la suite fait l'objet d'études expérimentales. McCauley & Murdoch (1987) ont par exemple observé l'existence de cycles "single generation" dans le système ressources – consommateur constitué d'algues et de daphnées. Plus récemment, Murdoch *et al.* (2002) ont démontré l'importance des deux types de cycles dans les populations naturelles en citant plus de cent espèces différentes montrant des dynamiques cycliques ressemblantes. Ceci a permis de montrer qu'un grand nombre de dynamiques de populations observées dans la nature sont en partie expliquées par des aspects individuels liés aux histoires de vie et à la structure des populations.

L'existence de ces cycles est principalement du au temps nécessaire à un juvénile pour atteindre la maturité, appelé "juvenile delay". De Roos *et al.* (1990) et De Roos (1997) ont montré, en modélisant une population de daphnées se nourrissant d'algues, que les cycles de génération apparaissaient à cause des changement dans la relation âge–taille avec le niveau de ressources. L'augmentation du niveau de ressource a plusieurs effets : (i) les individus se développent plus vite et maturent donc plus tôt ;

(ii) ils atteignent une plus grande taille et sont plus efficace dans leur recherche de nourriture ; et (iii) possèdent une plus grande fécondité. La variation dans l'âge à maturité est un facteur majeur de la déstabilisation en cycles de génération.

L'étude plus approfondie de modèles PSP et de modèles à deux stades (juvéniles et adultes, De Roos & Persson, 2003) a également montré que les cycles de génération apparaissaient dans le cas d'un déséquilibre de compétition entre des individus de taille différente. Si les individus les plus petits sont compétitivement supérieurs, la dynamique de la population tend vers des cycles de génération dominés par la présence des juvéniles, appelés "juvenile driven cycles". A l'inverse, lorsque l'avantage compétitif est aux plus grands individus, les caractéristiques des cycles observés changent. En particulier, l'amplitude diminue, la fécondité et le nombre d'adulte n'oscillent plus en phase, et la survie des adultes est grandement allongée. Ces cycles, dominés par la présence des adultes, sont appelés "adult driven cycles". Si les capacité de compétition sont équilibrées entre les individus de différentes tailles, les oscillations disparaissent et la dynamique se stabilise.

Toutefois, ces modèles n'ont jusqu'à présent pas permis d'expliquer les cycles dit "delayed-feedback cycles" qui ne sont présents que dans les modèles structurés en stades dans lesquels un effet différé de la compétition intra-stade sur les performances écologiques est explicitement incorporé.

Bien que les cycles de générations soit présents dans un grand nombre de modèles de populations structurées, certains modèles plus complexes développent de nouvelles dynamiques. Par exemple, l'ajout de cannibalisme intra-stade permet de prédire des dynamiques fluctuantes apériodiques, voir chaotiques (Costantino *et al.*, 1997 ; Dennis *et al.*, 1997).

Impact sur la structure et la dynamique des communautés

L'incorporation de la structure des populations dans la compréhension de leurs dynamiques a aussi un impact direct sur la compréhension de certaines dynamiques de communautés. Si l'on considère une population de proie structurée en âge, taille ou stade, il est possible d'imaginer que des prédateurs se spécialisant sur des étapes différentes de la vie des proies occuperaient des niches écologiques différentes, et pourraient ainsi coexister dans une même communauté.

Une conséquence nouvelle de la prédation spécialisée sur une classe de taille précise a été montrée par De Roos & Persson (2002) en modélisant une chaine trophique linéaire à trois niveaux : (i) une ressource non structurée ; (ii) un consommateur structuré en taille ; et (iii) un prédateur non structuré qui s'attaque aux consommateurs de petite taille. Alors que le modèle classique non structuré prédit une corrélation positive entre la densité de prédateur et celle de la ressource dès lors que le prédateur peut se maintenir, le modèle structuré prédit une bistabilité entre un équilibre sans prédateur et un équilibre avec prédateur pour une grande région de productivité de la ressource. Cette bistabilité est due aux changements que le prédateur cause dans la distribution en taille des proies. En s'attaquant aux plus petits individus, le prédateur relâche la pression de compétition subie par les plus grands consommateurs, ce qui leur permet de grandir et de se reproduire d'avantage. A son tour, cela augmente la disponibilité en proies vulnérables aux prédateurs. Ainsi, les prédateurs montrent alors un effet Allee émergent alors même qu'ils ne possèdent aucune des caractéristiques classiquement requises telles que la recherche de nourriture en groupe ou la reproduction sexuelle. Cet effet Allee émergent n'est en revanche possible que si, en l'absence de prédateurs, la croissance et le développement des juvéniles chez les proies dépendent de leur densité (De Roos & Persson, 2003). Dans ce cas de figure, dans la zone de bistabilité, le prédateur ne peut s'établir que s'il est présent en densité suffisante pour impulser un changement durable dans la distribution en taille de la population de consommateur, nécessaire à sa propre subsistance.

En conséquence de cet effet Allee émergent, le prédateur est susceptible de subir un effondrement de sa population si la productivité du système passe sous un seuil critique. Passé ce seuil, le prédateur ne pourra plus se réinstaller dans la communauté, même si la productivité repasse le seuil en question. Cet effet Allee émergent ainsi que ses conséquences sur les population de prédateurs sont probablement relativement communs dans les populations naturelles, en particulier chez les daphnées (McCauley & Murdoch, 1987) ou certaines populations de poissons, et pourraient expliquer la disparition de certaine populations de prédateurs sans observer leur retour, comme pour la morue dans le nord-ouest de l'Atlantique (Carscadden *et al.*, 2001).

Ainsi, contrairement aux modèles classiques de réseaux trophiques où les conséquences de la consommation d'un niveau trophique sont toujours négatives, les résultats liés aux populations structurées montrent qu'à cause de la dépendance des performances écologiques aux histoires de vies et à la taille des individus, les rétroactions des individus sur leurs propres performances peuvent être subtiles, et donner lieu à des phénomènes nouveaux en écologie des populations et des communautés.

1.2 Densité dépendance, compétition et régulation des populations

1.2.1 Densité dépendance

Les organismes grandissent, se reproduisent puis meurent; ils se développent dans un environnement donné, et sont affectés par les ressources à leur disposition. Pendant toute ou partie de leur vie, ils sont entourés d'autres individus de leur propre espèce pour constituer ce que l'on appelle une population (Begon *et al.*, 2009).

Une population évolue dans son écosystème à une échelle géographique finie, ce qui la soumet à sa propre densité. On appelle alors densité dépendance le principe qui décrit comment les taux intrinsèques de la population – tels que le taux d'accroissement, les taux de naissance ou de mort, les taux d'immigration ou d'émigration, *etc.* – varient à cause de la taille de la population elle même, ou de sa densité.

Principes généraux et définition

Formulée simplement, la densité dépendance représente l'idée que les comportements ou les traits écologiques varient en fonction du nombre d'individus présents dans la population. Ces traits écologiques comprennent classiquement le taux de croissance de la population ainsi que les principaux taux démographiques de la population (naissance, mort, immigration et émigration), mais peuvent également se référer au taux de croissance individuel, au taux de fécondité, ou à d'autres taux ou comportements au niveau individuel (Royama, 1977).

Le principe de densité dépendance, ou densité dépendance directe, impose un effet négatif sur les taux responsables de l'accroissement de la population, et un effet positif sur les taux responsable de sa décroissance (par opposition à la densité indirecte ou effet Allee qui a l'effet inverse). Si l'on note N la densité d'individus dans une population, alors une augmentation de N entraînera une diminution des taux tels que le taux de fécondité ou le taux de croissance, le taux de naissance dans la population ou d'immigration, et par incidence, du taux d'accroissement de la population. A l'inverse, l'augementation de N provoque l'augmentation du taux de mortalité ou d'émigration (Hixon & D. Johnson, 2009). Dans le cas ou le paramètre comportemental ou écologique à l'étude ne varie pas avec N il est alors dit densité indépendant.

Le principe de la densité dépendance est un élément fondamental, que ce soit en écologie et biologie des populations (Kingsland, 1995), en pêcherie (Rose *et al.*, 2001), en gestion de la biodiversité et de la vie sauvage (Gordon *et al.*, 2004), dans le

contrôle des ravageurs (Walde & Murdoch, 1988), ou en biologie de la conservation (Ginzburg *et al.*, 1990). En effet, ce mécanisme est essentiel dans la régulation des populations (Turchin, 1990 ; Murdoch, 1994). Le principe de la densité dépendance dans le contexte de la régulation des populations a été modélisé pour la première fois par Verhulst (1838) et a été très largement réutilisé et adapté depuis dans de nombreux modèles.

Une densité dépendance positive peut également se manifester sous la forme de l'effet Allee (Courchamp *et al.*, 1999). Dans ce cas, il existe un niveau minimum de densité que doit avoir la population pour être viable. En dessous de ce minimum, la dynamique de la population tendra inexorablement vers l'extinction. Ce phénomène se produit par exemple lorsqu'avec le déclin de la population, les rencontres entre partenaires sexuels se font de plus en plus difficiles, et la population ne parvient plus à se reproduire en nombre suffisant pour se maintenir. Bien qu'étant relativement répandu, nous n'accorderont pas ici plus de place à ce mécanisme. Nous nous intéresserons dans la suite uniquement à la densité dépendance négative, ou densité dépendance directe.

Les mécanismes de la densité dépendance

Les causes directes de la densité dépendance sont en premier lieu la compétition, et dans certains cas la prédation (incluant le parasitisme et les maladies). Par définition, la compétition est densité dépendante puisqu'elle relie le nombre d'individu à la disponibilité d'une ressource donnée. Ainsi, la compétition pour un territoire, pour un refuge contre les conditions environnementales ou contre un prédateur, pour la nourriture, ou pour la possibilité de se reproduire peuvent tous être à l'origine d'une réponse densité dépendante des taux démographiques d'une population (Keddy, 1989; Begon *et al.*, 2009).

De la même façon, les prédateurs peuvent également causer de la densité dépendance chez les proies, notamment sur la mortalité, par différents mécanismes (Taylor, 1984) : (i) si la population de prédateur réagit suffisamment vite à la présence de proie, l'augmentation de la population de proie provoque l'augmentation de la mortalité par prédation ; (ii) la configuration spatiale de l'environnement peut être telle que de nombreux prédateurs se retrouvent dans un même endroit si les proies y sont nombreuses, imposant alors une forte mortalité ; (iii) une réponse développementale du prédateur peut entraîner une augmentation du taux de consommation du prédateur lorsque les proies sont plus abondantes ; et (iv) une réponse fonctionnelle du prédateur de type III (Holling, 1965) cause une mortalité densité dépendante chez la proie lorsqu'elle est en faible densité.

Dans la suite des travaux, nous laisserons de côté les mécanismes de régulation par la prédation pour nous intéresser exclusivement à la régulation liée à la compétition pour les ressources.

1.2.2 La compétition par exploitation

La compétition pour les ressources est l'une des interactions écologiques essentielles dans la régulation des populations et des communautés. Elle est définie comme une interaction entre organismes telle que les performances d'un individus en termes de fécondité, croissance ou survie, sont réduites par la présence d'un autre organisme (Volterra & Brelot, 1931 ; Gause, 1932 ; Park, 1948, 1954, 1957). La compétition peut intervenir aussi bien entre des individus d'espèces différentes (compétition interspécifique) qu'au sein d'une population d'individus de la même espèce (compétition intra-spécifique). Il existe dans la nature deux grands types de compétition : (i) la compétition par exploitation ; et (ii) la compétition par interférence (Park, 1954, 1962 ; Begon *et al.*, 2009).

Définition

La compétition par exploitation est une forme de compétition où les individus ont un effet négatif les uns sur les autres en consommant une ressource qui leur est commune (Goss-Custard, 1980 ; Vance, 1984 ; Begon *et al.*, 2009). Les individus concernés n'interagissent alors pas directement les uns avec les autres, ils sont sensibles au niveau de ressources disponible après consommation par d'autres individus. Cette compétition est donc dite indirecte car elle ne requiert pas de contact physique entre les individus pour entrer en jeu. Enfin, il est indispensable que la ressource considérée soit limitante pour que les individus entre en compétition (Begon *et al.*, 2009).

Dans les modèles de population non structurés

En écologie des populations, la compétition par interférence a été introduite dans les premiers modèles par de la fonction logistique (Verhulst, 1838), sous la forme d'une capacité de charge (classiquement notée K). La variation de la densité N de la population s'écrit alors sous la forme

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

où r est le taux d'accroissement de la population. On constate alors que le taux de croissance per capita de la population $\frac{dN}{dt} \cdot \frac{1}{N}$ suit alors une loi affine décroissante dont la pente est $-\frac{1}{K}$. En d'autres termes, le taux de croissance de la population tend vers 0 lorsque la densité de la population s'approche de K. De plus, si la population est moins dense que K, elle va croître jusqu'à atteindre sa capacité de charge, mais à l'inverse, si elle est plus dense que K, le taux de croissance de la population est négatif et la densité va décroître jusqu'à K.

Ce modèle de dynamique de population intégrant de la densité dépendance fut un des premiers modèles présentés, mais il existe depuis un très grand nombre de déclinaisons ou d'alternatives à ce modèle. On peut citer par exemple les modèles à reproduction discrète où la compétition a été intégrée sous la forme de la loi de Beverton Holt. Dans ces différents modèles, la compétition est représentée sous une forme symétrique, sans aucune différence entre les individus constituants de la population.

En dynamique des populations structurées

L'aspect symétrique de la compétition telle que décrite précédemment représente bien les comportements moyens d'une population. Cependant, il est aisé d'imaginer que tous les individus d'une population ne sont pas identiques, et donc pas égaux non plus face à la compétition.

Si les différences entre individus sont fortement marquées, ou influent beaucoup sur leurs performances individuelles et écologiques, il devient alors important de considérer la structure de la population lorsque l'on cherche à décrire sa dynamique. Nous avons déjà fait référence au conséquences de la compétition par exploitation sur la dynamique d'une population structurée en taille (cf. section 1.1.2 page 8). L'étude des modèles physiologiquement structurés a montré que des capacités compétitives différentielles selon l'état physiologique de l'individu avaient un impact très fort sur la dynamique que suivait la population. Dans un modèle simplifié en deux stades aux capacités de compétition différentes, juvéniles et adultes, un avantage compétitif aux juvéniles entraînait des cycles de génération dit "juvenile driven", alors qu'un avantage aux adultes conduisait à des cycles "adult driven" aux caractéristiques différentes. Une compétition équilibrée se traduit par une dynamique stable de la population dans son ensemble.

1.2.3 La compétition par interférence

Définition

A l'opposé de la compétition par exploitation, il existe une autre forme de compétition appelée compétition par interférence. Cette compétition intervient quand les individus subissent une interaction directe négative où l'un d'eux réduit la compacité de l'autre à exploiter une ressource commune, quelque soit le niveau de cette ressource (Park, 1954; Vance, 1984). Ces interactions peuvent prendre différentes formes: agressivité (Schoener, 1976), territorialité (Walls, 1990; Kennedy & White, 1996), allelopathie (Harper, 1977; Rice, 1984; Nilsson, 1994), surdéveloppement et prolifération (Connell, 1961; Paine, 1966), ... Par définition dans la compétition par interférence, le compétiteur le plus fort réduit les performances du compétiteur le plus faible en lui interdisant partiellement ou totalement l'accès à la ressource convoitée (Schoener, 1983; Thompson & B. Fox, 1993). De fait, la domination dans une interaction par interférence est donc souvent liée aux différences physiologiques entre les individus, et notamment, souvent aux différences de taille corporelle, auquel cas, le plus grand est généralement le plus compétitif (McCormick & Weaver, 2012). Dans le cas de la compétition intra-spécifique, les conséquences de la compétition par interférence sur la dynamique de la population dépendent donc directement de la distribution en taille des individus de la population, ainsi que de leurs traits d'histoire de vie.

Modèles de compétition par interférence

La compétition par interférence a été largement observée et décrite dans la nature, que ce soit dans les cas inter-spécifiques ou intra-spécifiques. Cependant, les tentatives d'incorporer la compétition par interférence dans les modèles de dynamique de

populations sont encore relativement rares. De plus, la plupart de ces études se concentrent sur la compétition inter-spécifique (Case & Gilpin, 1974 ; Carothers & Jaksić, 1984 ; Vance, 1984 ; Adler & Mosquera, 2000). Une version de la compétition par interférence a notamment été proposée par Arditi et Ginzburg dans leur modèle ratio-dépendant (Arditi & Ginzburg, 1989; Arditi et al., 1991; Arditi & Ginzburg, 2012). Dans ce modèle de dynamique de populations dans un système prédateurproie, le taux annuel de consommation de la proie par le prédateur dépend du nombre de proies présentes par prédateur, plutôt que du nombre absolu de proie dans le système (voir Arditi & Ginzburg, 2012, pour les détails et dérivations du modèle). Ce modèle dit "ratio dépendant" conduit à des dynamiques différentes de ce qui est attendu dans le modèle de comparaison pour la compétition par exploitation, à savoir le modèle Rosenzweig-MacArthur, dans lequel le taux d'attaque du prédateur dépend uniquement de la densité de proie. Par expemple, le paradoxe de l'enrichissement qui conduit sous certaines conditions à un accroissement de la population de proies lorsque les prédateurs augmentent en nombre, est absent du modèle ratio-dépendant (Arditi & Ginzburg, 2012).

D'autres études proposent des approches différentes. Par exemple, Amarasekare (2002) propose un modèle réunissant compétition par exploitation et par interférence dans lequel la dynamique de la ressource est décrite explicitement. Avec ce modèle, l'auteur étudie la possibilité de la coexistence de deux espèces en compétition pour une même ressource. Cette étude montre alors deux cas de figure contrastés : (i) si la compétition par interférence a un coût pour les deux compétiteurs, les deux espèces ne peuvent pas cohabiter, même si l'espèce dominée dans la compétition par exploitation est dominante dans la compétition par interférence ; et (ii) si la compétition par interférence est coûteuse pour le perdant, mais strictement bénéfique pour le gagnant, les deux espèces peuvent cohabiter si l'infériorité dans la compétition par exploitation est contrebalancée par une supériorité dans la compétition par interférence.

La compétition par interférence peut également être considéré du point de vu intra-spécifique (Walde & Davies, 1984; Crowley et al., 1987; Maddonni & Otegui, 2004; Smallegange et al., 2006). Dans une étude récente, De Villemereuil & López-Sepulcre (2011) ont étudié différentes réponses fonctionnelles pour le consommateur, en étendant les réponses fonctionnelles classiques pour tenir compte des comportements d'interférence inter et intra-spécifiques. Dans plusieurs exemples, ils montrent notamment que la compétition par interférence intra-spécifique a un impact plus fort sur la régulation de la dynamique des populations étudiées que la compétition par interférence inter-spécifique.

Modéliser la compétition par interférence dans une population structurée

Le signe et l'intensité de la compétition par interférence dépend généralement des différences d'histoire de vie entre les compétiteurs (différences de force, de sexe, de taille corporelle,...). Pour décrire précisément sa dynamique, il est donc nécessaire d'adopter une approche tenant compte de la structure de la population. Dans ce cadre, modéliser un système ressource-consommateur simple incluant de la compétition par interférence chez le consommateur nécessite une approche centrée sur l'individu. Les modèles de population structurées physiologiquement (cf. section 1.1.2 page 8) apporte les éléments nécessaire à l'étude de la compétition intra-spécifique chez une population de consommateur structurée en taille. En effet, ces modèles tiennent compte explicitement de la distribution en taille de la population et dérive la dynamique à l'échelle de la population des processus modélisés à l'échelle de l'individu, tels que la croissance, la reproduction ou la mortalité (Kooijman & Metz, 1984 ; Metz & Diekmann, 1986 ; De Roos, 1997). De plus, puisque ces modèles intègrent directement le développement ontogénétique des individus, ils rendent possible l'intégration d'interactions compétitives dépendantes de la taille.

Ces modèles ont déjà été étudiés dans de nombreuses configurations, et ont donné

le jour à une théorie des conséquences du développement ontogénétique sur la dynamique des populations et des communautés (De Roos & Persson, 2013). Ce cadre servira de base à l'étude théorique des conséquences de la compétition par interférence sur la dynamique d'une population structurée.

1.3 Le rôle de la température

1.3.1 Température et changement climatique

Devenu incontesté dans la communauté scientifique, le réchauffement climatique affecte la planète et ses systèmes biologiques à tous les niveaux d'organisation (Sagarin et al., 1999; Sala et al., 2000; Walther et al., 2002; IPCC, 2007). Les prédiction actuelles, regroupées et validées par le Groupe d'experts Intergouvernemental sur Évolution du Climat, projettent une augmentation de la température moyenne à la surface du globe de 2 à 8°C d'ici à la fin du siècle (IPCC, 2007). Ce changement de température sera resenti différemment suivant les régions du globe, avec par exemple un réchauffement plus prononcé aux pôles qu'à l'équateur.

Des études sur le long terme ont montré que ces changements de température peuvent modifier la distribution des traits d'histoires de vie dans les populations naturelles (Parmesan, 2006 ; Ozgul *et al.*, 2009), mais également leur distribution géographique, leur activité ou leur phénologie (Walther *et al.*, 2002 ; Parmesan, 2006). Face à ces changements déjà engagés et à ceux à venir, il est important de comprendre et prédire l'impact que peut avoir la température et ses changements sur la dynamique des populations (Lavergne *et al.*, 2010).

1.3.2 Les effets de la températures sur les individus

Une population étant constituée de ses individus, il faut connaître les effets de la température sur les individus pour comprendre les répercussions sur les populations.

Selon la règle de Bergmann (1848), l'application de la thermodynamique aux organismes endothermes prédit que les individus grandissent moins dans un environnement chaud que dans un environnement froid. En effet, la perte de chaleur se fait par la surface de l'individu alors que sa production se fait proportionnellement à son volume. En environnement chaud, il est donc avantageux d'avoir une petite taille pour maximiser son rapport surface sur volume et favoriser ainsi la perte de chaleur. A l'inverse, en environnement froid, une plus grande taille confere un avantage en réduisant la perte de la chaleur produite par le corps. Cette règle a été énoncée pour les organismes produisant leur propre chaleur et a été effectivement vérifiée en comparant les tailles d'un grand nombre d'espèces de mammifères et leur température moyenne de vie.

Cependant, de façon plus surprenante, les organismes ectothermes suivent eux aussi une règle similaire et tendent également à avoir une plus petite taille corporelle dans des environnement plus chauds (Angilletta, 2009 ; Ohlberger, 2013). Cette tendance généralisée est appelée la règle taille–température ("temperature–size rule" Atkinson, 1994). Celle-ci suggère donc que les arguments thermodynamiques avancés par Bergmann ne sont probablement pas les seuls à conduire à une réduction de la taille corporelle en environnement chaud (Edeline *et al.*, 2013).

Dans une revue parue récemment, Ohlberger (2013) fait le point sur les implications de la température du niveau de l'individu et de sa physiologie à celui de la communauté. Une première observation est que la température agit sur la taille corporelle par l'intermédiaire de son action sur les réactions biochimiques, et notamment celles issues du métabolisme et de l'acquisition des ressources. La relation entre la vitesse des réactions biochimiques et la température n'est pas linéaire, le taux de réaction augmente régulièrement avec la température jusqu'à un optimum puis diminue très rapidement, conduisant à une sensibilité asymétrique à la température (Hochachka & Somero, 2002; Angilletta, 2009). Il existe donc un compromis entre performance à basse et haute température, et se spécialiser sur une température donnée n'est possible qu'au détriment des autres (Angilletta, 2009).

Figure 1.1 – Performance théorique en fonction de la température. D'après Ohlberger (2013), Figure 1. Un réchauffement du climat améliore les performances d'un individu qui vit dans des conditions sous optimales si le changement est de petite amplitude (flèche marron). Si l'individu est à l'optimum (point orange plein), le réchauffement lui fait diminuer ses performances (flèche orange pleine). Si le changement est de trop grande amplitude, les performances diminuent également (point marron vide, flèche orange pointillée)

Cette sensibilité asymétrique à la température se répercute ensuite au niveau de l'individu dans son ensemble, et en particulier sur son taux de croissance. Ainsi, pour un individu vivant à une température sous-optimale, une augmentation de température sera bénéfique alors qu'elle sera néfaste pour un individu vivant déjà à sa température optimale. De même, si l'amplitude de l'augmentation est trop importante, la température peut dépasser l'optimum et le réchauffement a alors un effet néfaste. Ceci est illustré par la Figure 1.1, d'après Ohlberger (2013). Cependant, les individus sont souvent capable d'adapter leur sensibilité à la température par plasticité phé-

notypique. Ces réponses plastiques peuvent alors différer suivant la fréquence et la longueur des changements de température (Huey *et al.*, 1999 ; Angilletta, 2009).

Lorsque les températures subies sont contenus dans des valeurs non extrêmes, permettant à un individu de se développer sans provoquer la diminution du taux de croissance, la plupart des ectothermes suivent alors règle taille—température déjà énoncée (Atkinson, 1994). Ainsi, au cours du développement, une plus forte température entraîne une augmentation du taux de croissance mais une diminution de la taille adulte (Figure 1.2). On observe donc une modification de la taille à un âge ou un stade donné avec la température (par exemple la taille à maturité). Le suivi de ces modification permet de déterminer précisément la norme de réaction à la température et la réponse d'un organisme à son changement.

FIGURE 1.2 – Norme de réaction théorique à la température (Ohlberger, 2013, Figure 2). Lors d'un changement de température, le changement de taille à un âge donné (point orange plein) dépend de l'importance relative de l'accélération de la croissance corporelle (point orange vide), et de l'accélération du développement (point marron vide).

1.3.3 Température et dynamique des populations

La taille corporelle des individus et sa distribution étant un élément essentiel dans la dynamique des populations, les variations de taille corporelle avec la température ont des conséquences sur les dynamiques des populations et des communautés.

En effet, la température de l'environnement peut provoquer un changement de la taille moyenne et de la structure d'une population. On retient en particulier deux changements possibles : (i) la diminution de la taille à un âge donné avec l'augmentation de la température ("size-at-age shift") ; et (ii) le changement de l'abondance relative des différents stades ou âges présents dans la population ("structure shift"). Ces changements de structures sont causés par l'intermédiaire de la croissance densité-dépendante, de la survie taille-dépendante, de la compétition asymétrique entre les différentes classes de taille et de la prédation taille-spécifique. Ces changements de structures au niveau population peuvent ensuite se répercuter au niveau de la communauté en affectant l'abondance relative de ses différentes espèces et son organisation trophique.

De plus, la température interagit fortement avec les mécanismes de densité dépendance. Ainsi, il a par exemple été montré que le taux de croissance d'une population peut augmenter avec la température si la population est présente en faible densité, et à l'inverse diminuer avec la température si la population est trop dense (chez le saumon royal Crozier *et al.*, 2010). Dans le même ordre d'idées, l'étude des registres de pêche du saumon d'atlantique a montré qu'une température plus chaude était associée à des individus de grande taille si la densité de la population était faible et l'inverse en climat froid (Huusko & Hyvärinen, 2012).

La densité dépendance étant notamment lié à la compétition pour l'accès aux ressources, qui elle-même dépend de la taille corporelle, l'augmentation de la température peut provoquer une diminution de la taille moyenne dans une population en

favorisant des individus plus petits, plus compétitifs dans la gestion de l'énergie s'il y a peu d'interférence (Persson *et al.*, 1998 ; Ohlberger *et al.*, 2012). Si la compétition par interférence est forte, et une grande taille corporelle fourni un avantage compétitif conséquent, l'effet de la température sur la compétition devient alors plus difficile à prédire.

Enfin, la température peut avoir des effets différentiels suivant le stade ou l'âge des individus. En effet, il a été suggéré que des individus juvéniles survivent plus facilement à un réchauffement que des individus plus grands ou plus vieux (Peck *et al.*, 2009). Une élévation de la température a donc des effets différents suivant l'âge, le stade et la taille des individus, ce qui se répercute sur la distribution de la taille dans la population, impactant fortement sa dynamique. Ces changement de dynamique d'une population se répercutent alors en cascade sur les communautés dont elles font partie, avec des issues encore difficiles à prévoir.

1.4 Problématiques étudiées

Dans un contexte de changements globaux affectant l'ensemble des écosystèmes et leurs populations, et en particulier de changement climatique, il est essentiel de décrypter et de comprendre correctement les dynamiques des populations pour pouvoir les prédire le plus fidèlement possible et anticiper les changement quelles sont susceptibles de subir.

Nous avons pu voir au cours de ce chapitre que plusieurs éléments entrent en jeu quand il s'agit de décrire précisément la dynamique d'une population naturelle. En particulier, la taille corporelle des individus joue un rôle essentiel à tous les niveaux de régulation de la population. En effet, la taille de chacun des individus d'une population constitue la structure en taille de la population, et cette structure est un élément essentiel dans la dynamique des populations. La taille des individus

détermine fortement leur capacité à accéder et gérer les ressources et l'énergie acquise, ce qui influe sur la dynamique de la population. Prendre en compte la structure de la population dans la modélisation de sa dynamique permet de prédire des dynamiques observées dans la nature, qui ne sont pas expliquées par les modèles classiques non structurés.

De plus, la taille des individus a un impact direct sur le résultat de leurs interactions, que ce soit au sein d'une population ou entre différentes populations. Les interactions entre individus interviennent en particulier dans la compétition par interférence qui influe sur les performances écologiques des individus et donc sur la dynamique de la population.

Enfin, la taille individuelle est déterminante dans la réponse à la température et à ses changements, puisque la température influe directement sur la taille atteinte à un âge donnée. A son tour, cela impacte directement les performances individuelles, la structure de la population et la composition de la communauté.

Au vu de l'importance de la taille individuelle et de la structure de la population dans la régulation de la dynamique des populations via les interactions entre individus et la réponse à l'environnement, je me suis intéressé dans cette thèse au rôle que joue la compétition par interférence dans la régulation des populations structurées, à la fois d'un point de vu empirique et théorique, d'abord à une seule condition de température, puis à plusieurs températures pour comprendre comment la température modifie les effets de la compétition par interférence. Afin de répondre à ces différents points, j'ai séparé mon étude en deux questions principales :

- 1. Quelle est le rôle de la compétition par interférence dans la régulation des populations structurées en taille ?
- 2. Comment la température interagit avec les mécanismes de compétition et modifie leurs impacts sur la régulation des populations structurées ?

1.4.1 Le rôle de la compétition par interférence dans la dynamique des populations structurées

Comme nous l'avons dit, la structure de la population et les différences de performances des individus de différentes taille est à l'origine d'un certains nombre de dynamiques que les modèles classique de dynamique des populations ne peuvent pas expliquer. La compétition par exploitation a déjà été largement étudiée, mais peu d'études empiriques ou théoriques se sont attelées au rôle de la compétition par interférence dans la dynamiques de populations, et particulièrement dans la dynamiques des populations structurées.

Compétition par interférence et populations structurées, analyse de séries temporelles de populations expérimentales (Chapitre 3)

Dans un premier temps, nous nous sommes intéressé aux effets de la compétition par interférence dans la régulation des populations structurées d'un point de vu empirique. Au cours de cette étude, nous avons suivi pendant plusieurs années des populations de collemboles *Folsomia candida* dans un environnement contrôlé. Le collembole constitue en effet une espèce modèle en écologie (Fountain & Hopkin, 2005) qui permet le suivi fin et précis de nombreuses population avec assez peu de difficultés. Des mesures hebdomadaires de la structure détaillée des populations nous ont permis d'étudier le rôle des structures passées et présentes des populations dans la régulation de la dynamique future, ainsi que l'importance de la présence dans les populations d'individus de grande taille, particulièrement performants dans la compétition par interférence, dans les dynamiques observées.

Analyse théorique du rôle de la compétition par interférence dans la dynamique des populations structurées (Chapitre 4)

D'un point de vu théorique, les conséquences de la compétition par interférence sur la dynamique des population structurées n'ont encore pas été explorées. Dans une seconde étude, nous proposons une extension du modèle classique de Kooijman & Metz (1984) en ajoutant explicitement de la compétition par interférence. Nous définissons l'interférence comme une interactions directe entre deux individus où le plus grand des deux a un avantage compétitif qui réduit les possibilités du plus petit d'accéder à la ressource. Nous étudions différentes conditions allant d'une compétition par exploitation pure à une domination de la compétition par interférence. Notre objectif est d'étudier le rôle de la compétition intra-spécifique par interférence sur la dynamique des populations structurées en utilisant les effets largement étudiés de la compétition par exploitation comme référence. Nous comparons ensuite les prédiction de notre modèle aux résultats tirés de l'analyse des séries temporelles issues des populations expérimentales de l'étude précédente.

Vérification expérimentale de l'importance des individus de grande taille et de la compétition par interférence dans la dynamique des populations structurées (Chapitre 5)

Nos observations expérimentales et notre étude théorique semblent confirmer le rôle prépondérant que jouent les individus de grande taille dans la dynamique de la structure d'une population de collemboles. Afin de vérifier expérimentalement les conclusions des précédentes études et de déterminer le rôle exacte des individus de grande taille dans la structuration de nos populations, nous avons réalisé une seconde étude expérimentale. Au cours de cette étude, nous avons utiliser des populations arrivées à l'équilibre présentant des structures similaires, et nous avons alors isolé

certaines classes d'individus de ces populations et fondé avec chacune de nouvelles populations. Nous avons ensuite observer le retour à l'équilibre de chaque sous population après perturbation. Parallèlement à cette analyse sur le long terme, nous avons réalisé des suivis comportementaux au niveau de la ressource afin d'observer qui accède à la nourriture et dans quelles conditions. Cette étude permet de répondre à deux questions : (i) quel rôle jouent les individus de grande taille dans l'établissement d'une structure cyclique ou stable dans nos populations de collemboles ? Et (ii) L'accès à la nourriture se fait-il de façon homogène ou peut-on observer des comportement d'interférence dans l'accès aux ressources ?

1.4.2 Interaction entre température et compétition par interférence dans la régulation des populations structurées (Chapitre 6)

Nous avons pu voir que la température est un élément extérieur essentiel dans la régulation physiologique des individus, et a des répercussion immédiates sur les dynamiques des populations et des communautés.

Ayant démontré l'importance de la compétition par interférence dans la régulation de la dynamique des populations structurées, nous nous intéressons maintenant aux interactions entre effet de température et processus individuels dans la dynamique des populations structurées. Les approches classiques dans l'étude de l'influence de la température consistent à mesurer des normes de réaction à la température sur des individus isolés ou des petites cohortes. Mais les connaissance acquises par ces études ne permettent pas d'extrapoler directement au niveau de la population car il manque les processus de densité dépendance. Nous nous demandons donc si les normes de réactions individuelles peuvent aider dans la prédiction de la réponse des populations à un changement de température. Nous cherchons à comprendre comment les effets

de la température sur les traits d'histoire de vie sont modulés par les rétroactions démographiques.

En comparant des normes de réactions mesurées sur des individus isolées à leur équivalents mesurées dans des populations, nous cherchons à extraire les effets de la température sur les traits d'histoire de vie au niveau individuel pour voir comment la température affecte les poids relatifs de la compétition par interférence et par exploitation dans la régulation de la population et de sa structure en taille.