Application No.: 10/700,333

AMENDMENTS TO THE CLAIMS

Please replace all prior versions and listings of claims with the amended claims as follows:

1. (Previously presented) A compound of formula I:

Ι

or a pharmaceutically acceptable salt thereof, wherein:

R¹ is a phenyl, cyclohexyl, cyclopentyl, pyridyl, morpholino, piperazinyl, or piperidinyl group, wherein R¹ is optionally substituted with q independent occurrences of Z-R^Z; wherein q is 0-5, Z is a bond or is a C₁-C₆ alkylidene chain wherein up to two non-adjacent methylene units of Z are optionally and independently replaced by CO, CO₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR; and each occurrence of R^Z is independently selected from R', halogen, NO₂, CN, OR', SR', N(R')₂, NR'COR', NR'CON(R')₂, NR'CO₂R', COR', CO₂R', OCOR', CON(R')₂, OCON(R')₂, SOR', SO₂R', SO₂N(R')₂, NR'SO₂R', NR'SO₂N(R')₂, COCOR', or COCH₂COR';

each occurrence of R is independently hydrogen or an optionally substituted C₁₋₆ aliphatic group; and each occurrence of R' is independently hydrogen or an optionally substituted C₁₋₆ aliphatic group, a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or R and R', two occurrences of R, or two occurrences of R', are taken together with the atom(s) to which they are bound to form an optionally substituted 3-12

Application No.: 10/700,333

membered saturated, partially unsaturated, or fully unsaturated monocyclic or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

 Z^1 is N;

 Z^7 is $C(U)_nR^Y$;

T and U are each independently a bond or a saturated or unsaturated C₁₋₆ alkylidene chain, wherein up to two methylene units of the chain are optionally and independently replaced by CO, CO₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR;

m and n are each independently 0 or 1;

 R^{X} and R^{Y} are each independently selected from R or Ar^{1} ;

 Z^2 is N or CR^2 ; Z^3 is N or CR^3 ; Z^4 is N or CR^4 ; Z^5 is N or CR^5 ; and Z^6 is N or CR^6 , wherein each occurrence of R^2 , R^3 , R^4 , R^5 or R^6 is independently R^U or $(V)_p R^V$, provided that a) no more than three of Z^2 , Z^3 , Z^4 , Z^5 or Z^6 is N, and b) at least one of Z^3 , Z^4 or Z^5 is CR^3 , CR^4 , or CR^5 , respectively, and at least one of R^3 , R^4 , or R^5 is R^U ,

each occurrence of R^U is NRCOR⁷, CONR(R⁷), SO₂NR(R⁷), NRSO₂R⁷, NRCONR(R⁷), NRSO₂NR(R⁷), or CONRNR(R⁷), wherein R⁷ is (CH₂)_t-Y-R⁸, and t is 0, 1, or 2, Y is a bond or is O, S, NR⁹, -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -S(CH₂)₂, or -NR⁹(CH₂)₂, and R⁸ is Ar², or R⁸ and R⁹, taken together with the nitrogen atom, form an optionally substituted 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur;

each occurrence of V is a bond or a saturated or unsaturated C₁₋₆ alkylidene chain, wherein up to two methylene units of the chain are optionally and independently replaced by CO, CO₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR;

each occurrence of p is 0 or 1;

each occurrence of RV is R or Ar2; and

Ar² is a 5-7 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system

Application No.: 10/700,333

having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein Ar² is optionally substituted with r independent occurrences of W-R^W; wherein r is 0-3, W is a bond or is a C₁-C₆ alkylidene chain wherein up to two non-adjacent methylene units of W are optionally replaced by CO, CO₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR; and each occurrence of R^W is independently selected from R', halogen, NO₂, CN, OR', SR', N(R')₂, NR'COR', NR'CON(R')₂, NR'CO₂R', COR', CO₂R', OCOR', CON(R')₂, OCON(R')₂, SOR', SO₂R', SO₂N(R')₂, NR'SO₂R', NR'SO₂N(R')₂, COCOR', or COCH₂COR';

provided that:

- a) when Z⁷ is CH and ring B is phenyl and at least one of R³ or R⁴ is NHCOR⁷, then R¹ is not phenyl only substituted with two or three occurrences of OR'; and
- b) when Z⁷ is CH and ring B is phenyl and at least one of R³ of R⁴ is NHCOR⁷, SO₂R⁷, CONRR⁷, then R¹ is not phenyl only substituted with one occurrence of -CON(R')₂ in the para position.

2-4. (Canceled)

- 5. (Previously presented) The compound of claim 1, wherein R¹ is an optionally substituted phenyl, cyclohexyl, or pyridyl group.
- 6. (Original) The compound of claim 1, wherein R¹ is optionally substituted phenyl.
- 7. (Original) The compound of claim 1, wherein q is 0, 1, 2, or 3 and each independent occurrence of ZR^Z is C_{1-4} alkyl, $N(R')_2$, OR', SR', $CON(R')_2$, NR'COR', $NR'SO_2R'$, or $SO_2N(R')_2$.
- 8. (Original) The compound of claim 1, wherein q is 1 and ZR^Z is -NH₂, -OH, C₁-4alkoxy, or -S(O)₂NH₂.

- 9. (Original) The compound of claim 1, wherein q is 1, and ZR^Z is in the meta position and ZR^Z is -NH₂, -OH, C₁₋₄alkoxy, or -S(O)₂NH₂.
- 10. (Original) The compound of claim 1, wherein $(T)_m R^X$ and $(U)_n R^Y$ are hydrogen, halogen, NO₂, CN, OR, SR or N(R)₂, or C₁₋₄aliphatic optionally substituted with oxo, OR, SR, N(R)₂, halogen, NO₂ or CN.
- 11. (Original) The compound of claim 1, wherein $(T)_m R^X$ and $(U)_n R^Y$ are each independently hydrogen, Me, OH, OMe or $N(R)_2$.
- 12. (Original) The compound of claim 1, wherein $(T)_m R^X$ and $(U)_n R^Y$ are each hydrogen.
- 13. (Original) The compound of claim 1, wherein ring B is one of rings **i-xiv:**

$$R^{6}$$
 R^{2}
 R^{3}
 R^{6}
 R^{5}
 R^{5}
 R^{5}
 R^{6}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{8}
 R^{6}
 R^{8}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}

- 14. (Original) The compound of claim 1, wherein t is 0, Y is a bond, and R⁸ is an optionally substituted aryl or heteroaryl moiety.
- 15. (Original) The compound of claim 1, wherein t is 0, Y is a bond, and R⁸ is an optionally substituted heteroaryl moiety.
- 16. (Original) The compound of claim 1, wherein R^7 is $-CH_2-Y-R^8$, and Y is NR^9 , O or S, and R^8 is an optionally substituted aryl or heteroaryl moiety.
- 17. (Original) The compound of claim 1, wherein R^7 is $-CH_2-Y-R^8$, and Y is NR^9 , O or S, and R^8 is an optionally substituted aryl moiety.
- 18. (Original) The compound of claim 1, wherein t is 0 or 1, Y is NR⁹, and R⁸ and R⁹, taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur.
- 19. (Original) The compound of claim 1, wherein R⁸ is a 5- or 6-membered aryl or heteroaryl group having one of the formulae:

Application No.: 10/700,333

20. (Original) The compound of claim 1, wherein R⁸ is a 5- or 6-membered heteroaryl group having one of the formulae:

Application No.: 10/700,333

21. (Original) The compound of claim 1, wherein R⁸ and R⁹, taken together, form a group having one of the formulae:

- 22. (Original) The compound of claim 1, wherein r is 0 or 1.
- 23. (Original) The compound of claim 19, 20, or 21, wherein r is 1, 2, or 3, and each occurrence of halogen, C_{1-4} alkyl, $-(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$.
- 24. (Original) The compound of claim 19, 20, or 21, wherein t is 0, Y is a bond, and R⁸ is an optionally substituted heteroaryl moiety selected from one of groups **b** through **r**.
- 25. (Original) The compound of claim 24, wherein R⁸ is an optionally substituted heteroaryl group **b-i**, **k-i**, or **l-i**.
- 26. (Original) The compound of claim 1, wherein t is 1, Y is O, S or NR⁹, and R⁸ is optionally substituted phenyl.
- 27. (Original) The compound of claim 1, wherein t is 0 or 1, Y is NR⁹, and R⁸ and R⁹, taken together form an optionally substituted group selected from s, u or v.
- 28. (Previously presented) The compound of claim 1, wherein Z^3 or Z^5 is CR^3 or CR^5 , respectively, and R^3 or R^5 is $NRC(O)R^7$, wherein R^7 is $(CH_2)_{t-}Y-R^8$, wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR^9 , -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -S(CH₂)₂, or $NR^9(CH_2)_2$, and wherein R^8 is Ar^2 , or R^8 and R^9 , taken together with the nitrogen atom, form

Application No.: 10/700,333

a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur, and compounds have the formula **II-A:**

$$\begin{array}{c|c} R^1 & NH \\ N & N \\ R^{Y}_{n}(U) & & Z^{2}_{0} & R \\ R^{X}(T)_{m} & & Z^{6}_{0} & Z^{5} \\ \end{array}$$

II-A

29. (Previously presented) The compound of claim 28, wherein ring B is selected from i, ii, iii, iv, v, vii, viii, ix, x, xi, xii, or xiii and compounds have one of formulas II-A-i, II-A-ii, II-A-iii, II-A-iii, II-A-iv, II-A-vii, II-A-viii, II-A-viii, II-A-xiii:

$$R^1$$
 NH
 R^2
 R^3
 R^3
 R^4
 R^5
 R^4
 R^5

$$\begin{array}{c|c}
R & NH \\
N & N \\
R^{Y}_{n}(U) & R^{X}(T)_{m} & R^{M} & R^{7}
\end{array}$$

II-A-i

II-A-ii

$$R^{1}$$
 NH
 $R^{Y}_{n}(U)$
 $R^{X}(T)_{m}$
 R^{X}
 $R^{Y}_{n}(U)$
 R^{X}
 R^{X}
 $R^{Y}_{n}(U)$
 $R^{Y}_{n}(U)$
 R^{X}
 $R^{Y}_{n}(U)$
 R^{X}
 $R^{Y}_{n}(U)$
 R^{X}
 $R^{Y}_{n}(U)$
 R^{X}
 $R^{Y}_{n}(U)$
 R^{X}
 $R^{Y}_{n}(U)$
 $R^$

$$\begin{array}{c|c}
R^{1} & NH \\
N & N \\
R^{Y}_{n}(U) & R^{X}(T)_{m} & R^{6} & N \\
\hline
 & II-A-iv
\end{array}$$

Application No.: 10/700,333

II-A-v

$$R^{1} \longrightarrow NH$$

$$R^{Y}_{n}(U) \longrightarrow R^{X}(T)_{m} \longrightarrow R^{6} \longrightarrow R^{5}$$

$$R^{5} \longrightarrow R^{4} \longrightarrow R^{7}$$

II-A-viii

$$R^{1} \longrightarrow NH$$

$$R^{Y}_{n}(U) \longrightarrow R^{X}(T)_{m} \longrightarrow R^{6} \longrightarrow R^{5}$$

$$R^{5} \longrightarrow R^{5}$$

II-A-x

$$R^{1} \longrightarrow NH$$

$$N \longrightarrow N$$

$$R^{Y}_{n}(U) \longrightarrow N$$

$$N \longrightarrow$$

II-A-xii

30.

(Canceled)

$$R^{1} \longrightarrow NH$$

$$R^{Y}_{n}(U) \longrightarrow R^{X}(T)_{m} \longrightarrow R^{6} \longrightarrow N^{2} \longrightarrow N$$

$$R^{2} \longrightarrow N$$

$$R^{2} \longrightarrow N$$

$$R^{3} \longrightarrow N$$

$$R^{4} \longrightarrow N$$

$$R^{2} \longrightarrow N$$

$$R^{7} \longrightarrow N$$

$$R$$

$$R^{1} \longrightarrow NH$$

$$R^{Y}_{n}(U) \longrightarrow R^{X}(T)_{m} \longrightarrow R^{6} \longrightarrow N$$

$$R^{2} \longrightarrow R^{2} \longrightarrow R^{7}$$

$$R^{4} \longrightarrow R^{7}$$

$$R^{4} \longrightarrow R^{4} \longrightarrow R^{7}$$

$$R^{4} \longrightarrow R^{4} \longrightarrow R^{4}$$

$$\begin{array}{c|c}
R^{1} & & \\
N & N & \\
N & N & \\
R^{Y}_{n}(U) & & & \\
R^{X}(T)_{m} & & & \\
R^{5} & & & \\
\end{array}$$

II-A-xi

$$R^1$$
 NH
 $R^Y_n(U)$
 $R^X(T)_m$
 R^6
 R^8
 R^9
 R^9
 R^7

II-A-xiii

Application No.: 10/700,333

31. (Previously presented) The compound of claim 1, wherein Z^4 is CR^4 , and R^4 is $NRC(O)R^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR^9 , -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -S(CH₂)₂, or -NR⁹(CH₂)₂, and wherein R^8 is Ar^2 , or R^8 and R^9 , taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur, and compounds have formula **II-B**:

$$\begin{array}{c|c} R^1 \\ NH \\ N \\ R^{Y}_{n}(U) \\ R^{X}(T)_{m} \end{array} \begin{array}{c} Z^2 \\ Z^6 \\ Z^5 \end{array} \begin{array}{c} Q \\ R \\ R \end{array}$$

II-B

32. (Previously presented) The compound of claim 31, wherein ring B is selected from i, ii, iii, iv, vi, viii, ix, xii, or xiv and compounds have one of formulas II-B-i, II-B-ii, II-B-iii, II-B-iv, II-B-vi, II-B-vi, II-B-xii, or II-B-xii:

Application No.: 10/700,333

$$R^1$$
 NH
 $R^Y_n(U)$ $R^X(T)_m$ R^2 R^3 R^3 R^7

II-B-iii

$$\begin{array}{c|c}
R^1 \\
NH \\
N \\
N \\
N
\end{array}$$

$$\begin{array}{c|c}
R^3 \\
N \\
R
\end{array}$$

II-B-iv

$$\begin{array}{c|c}
R^{1} & NH \\
N & N & R^{2} \\
R^{Y}_{n}(U) & & B & N & O \\
R^{X}(T)_{m} & & R^{6} & N & R
\end{array}$$

II-B-vi

$$\begin{array}{c|c}
R^{1} & & \\
NH & & \\
N & N \\
R^{Y}_{n}(U) & & \\
R^{X}(T)_{m} & & \\
R^{6} & & \\
R^{5} & & \\
R^{7}
\end{array}$$

II-B-viii

$$\begin{array}{c|c}
R^1 & & \\
NH & & R^2 \\
R^Y_n(U) & & R^3 \\
R^X(T)_m & & R^6 & & N \\
R^3 & & & R^7
\end{array}$$

II-B-ix

II-B-xii

$$R^1$$
 NH NA N $R^Y_n(U)$ $R^X(T)_m$ R^3 R^3 R^7

II-B-xiv

33. (Canceled)

Application No.: 10/700,333

34. (Previously presented) The compound of claim 1, wherein Z^3 or Z^5 is CR^3 or CR^5 , respectively, and R^3 or R^5 is $C(O)N(R)(R^7)$, wherein R^7 is $(CH_2)_t$ -Y-R⁸, wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR^9 , -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -S(CH₂)₂, or – $NR^9(CH_2)_2$, and wherein R^8 is Ar^2 , or R^8 and R^9 , taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur and compounds have formula **II-C:**

$$\begin{array}{c|c} R^1 & NH \\ N & N & O \\ R^Y_n(U) & & & & & \\ R^X(T)_m & & & & & \\ Z^6 & & & & & \\ Z^{5'}Z^4 & & & & \\ \end{array}$$

II-C

35. (Previously presented) The compound of claim 34, wherein ring B is selected from i, ii, iii, iv, v, vii, viii, ix, x, xi, xii, or xiii and compounds have one of formulas II-C-i, II-C-ii, II-C-iii, II-C-iii, II-C-iv, II-C-vii, II-C-viii, II-C-ix, II-C-xi, II-C-xii; or II-C-xiii:

$$\begin{array}{c|ccccc}
R^{1} & NH & & & \\
N & N & R^{2} & O & & \\
R^{Y}_{n}(U) & & & & & \\
R^{X}(T)_{m} & & N & & R^{5}
\end{array}$$

II-C-v

$$R^1$$
 NH R^1 NH R^2 R R R R R

II-C-viii

$$\begin{array}{c|ccccc}
R^1 & & & & & \\
N & & & & & \\
N & & & & & \\
R^Y_n(U) & & & & & \\
R^X(T)_m & & & & & \\
R^6 & & & & & \\
R^5 & & & & & \\
\end{array}$$

II-C-x

$$\begin{array}{c|c}
R^{1} & NH \\
N & N & O \\
R^{Y}_{n}(U) & N & N & R^{7}
\end{array}$$

II-C-xii

$$R^{1} \longrightarrow NH$$

$$R^{Y}_{n}(U) \longrightarrow R^{X}(T)_{m} \longrightarrow R^{6} \longrightarrow N$$

$$R^{2} \longrightarrow N$$

$$R^{7} \longrightarrow R$$

$$R^{7} \longrightarrow R$$

$$R^{7} \longrightarrow R$$

$$\begin{array}{c|c}
R^{1} & \text{NH} \\
N & N & R^{2} & O \\
R^{Y}_{n}(U) & & B & R^{4}
\end{array}$$

$$\begin{array}{c|c}
R^{X}(T)_{m} & R^{6} & N & R^{4}
\end{array}$$

$$\begin{array}{c|c}
R^{Y} & R^$$

$$\begin{array}{c|c}
R^1 & NH \\
N & N & R^2 & O \\
R^Y_{n}(U) & B & N & R^7
\end{array}$$

II-C-xi

$$R^{1} \longrightarrow NH$$

$$R^{Y}_{n}(U) \longrightarrow R^{X}(T)_{m} \longrightarrow R^{6} \longrightarrow N$$

$$R^{5} \longrightarrow N$$

$$R^{7} \longrightarrow R$$

II-C-xiii

Application No.: 10/700,333

36. (Canceled)

37. (Previously presented) The compound of claim 1, wherein Z^4 is CR^4 , and R^4 is $C(O)N(R)(R^7)$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR^9 , -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -S(CH₂)₂, or -NR⁹(CH₂)₂, and wherein R^8 is Ar^2 , or R^8 and R^9 , taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur and compounds have formula **II-D**:

38. (Previously presented) The compound of claim 37, wherein ring B is selected from i, ii, iii, iv, vi, viii, ix, xii, or xiv and compounds have one of formulas II-D-i, II-D-ii, II-D-iii, II-D-iv, II-D-vi, II-D-vi, II-D-ix, II-D-xii, or II-D-xii:

$$\begin{array}{c|ccccc}
R^1 & NH & & & \\
N & N & R^2 & & \\
R^Y_{n}(U) & & & & & R^3 & \\
R^X(T)_m & & & & & & R^3 & \\
& & & & & & & & R^7
\end{array}$$

II-D-iii

$$R^1$$
 NH
 $N A$
 R^2
 $R^Y_n(U)$
 $R^X(T)_m$
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

II-D-vi

$$\begin{array}{c|c}
R^{1} & NH \\
N & N & R^{2} \\
R^{Y}_{n}(U) & B & R^{3} \\
R^{X}(T)_{m} & R^{6} & N & R^{7}
\end{array}$$

II-D-ix

$$R^{1} \longrightarrow NH$$

$$R^{Y}_{n}(U) \longrightarrow R^{X}(T)_{m} \longrightarrow R^{6} \longrightarrow R^{3}$$

$$R^{3} \longrightarrow R^{3}$$

$$R^{3} \longrightarrow R^{7}$$

II-D-iv

II-D-viii

$$\begin{array}{c|c}
R^{1} & NH \\
N & N \\
R^{Y}_{n}(U) & N \\
R^{X}(T)_{m} & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
R^{3} \\
R \\
N \\
N
\end{array}$$

$$\begin{array}{c|c}
R^{3} \\
N \\
R^{7}
\end{array}$$

II-D-xii

$$\begin{array}{c|c}
R^1 & NH \\
N & N \\
R^Y_{n}(U) & N & N \\
R^X(T)_{m} & R^6 & N & N \\
0 & N & R^7
\end{array}$$

II-D-xiv

Application No.: 10/700,333

39. (Canceled)

40. (Previously presented) The compound of claim 1, where R¹ is optionally substituted phenyl and ring B is an optionally substituted phenyl group and compounds have the general formula **IV**:

q(
$$R^{Z}Z$$
)

NH

NA

N

R

N

R

R

R

R

R

R

IV

41. (Previously presented) The compound of claim 40, wherein, R³ is NRCOR⁷ and compounds have the general formula **IV-A-(i)**:

42. (Previously presented) The compound of claim 40, wherein R⁴ is NRCOR⁷ and compounds have the general formula **IV-B-(i)**:

Application No.: 10/700,333

$$R^{Y}_{n}(U)$$
 $R^{X}(T)_{m}$
 R^{G}
 R^{S}
 R^{S}
 R^{S}
 R^{S}
 R^{S}
 R^{S}
 R^{S}
 R^{S}
 R^{S}
 R^{S}

43. (Previously presented) The compound of claim 40, wherein R³ is CONRR⁷ and compounds have the general formula **IV-C-(i)**:

44. (Previously presented) The compound of claim 40, wherein R⁴ is CONRR⁷ and compounds have the general formula **IV-D-(i)**:

q(R^ZZ) NH
$$R^{Y}_{n}(U)$$

$$R^{X}(T)_{m}$$

$$R^{0}$$

$$R^$$

Application No.: 10/700,333

45. (Previously presented) The compound of claim 40, wherein R¹ is optionally substituted phenyl, ring A is pyrimidinyl, ring B is phenyl, and R², R⁵, and R⁶ are each hydrogen, and compounds have the general formula **VI**:

$$q(R^{Z}Z) = NH$$

$$NA$$

$$NA$$

$$B$$

$$R^{2}$$

$$VI$$

- 46. (Previously presented) The compound of claim 40 or 45, wherein
 - (a) q is 0 or 1 and ZR^Z is -NH₂, -OH, C₁₋₄alkoxy, or -SO₂NH₂;
 - (b) R^3 is NRCOR⁷, wherein R^7 is $(CH_2)_t$ -Y-R⁸, and t is 0, Y is a bond, and R^8 is phenyl (**a**), or is an optionally substituted heteroaryl moiety selected from one of groups **b** through **r**, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and
 - (c) R⁴ is hydrogen.
- 47. (Previously presented) The compound of claim 40 or 45, wherein:
 - (a) q is 0 or 1 and ZR^Z is -NH2, -OH, $C_{1\text{--}4}alkoxy,$ or -SO2NH2;
 - (b) R^3 is $CONRR^7$, wherein R^7 is $(CH_2)_{t}$ -Y- R^8 , and t is 0, Y is a bond, and R^8 is phenyl (a) or is an optionally substituted heteroaryl moiety selected from one of groups **b** through **r**, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, $-(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$; and
 - (c) R⁴ is hydrogen.

- 48. (Previously presented) The compound of claim 40 or 45, wherein:
 - (a) q is 0 or 1 and ZR^{Z} is -NH₂, -OH, C_{1-4} alkoxy, or -S(O)₂NH₂;
 - (b) R^4 is $NRCOR^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , and t is 0, Y is a bond, and R^8 is phenyl (a) or an optionally substituted heteroaryl moiety selected from one of groups **b** through **z**, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, $-(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$; and
 - (c) R³ is hydrogen.
- 49. (Previously presented) The compound of claim 40 or 45, wherein:
 - (a) q is 0 or 1 and ZR^Z is -NH₂, -OH, C_{1-4} alkoxy, or -S(O)₂NH₂;
 - (b) R^4 is $CONRR^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , and t is 0, Y is a bond, and R^8 is phenyl (a) or an optionally substituted heteroaryl moiety selected from one of groups **b** through **z**, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, $-(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$; and
 - (c) R³ is hydrogen.
- 50. (Previously presented) The compound of claim 40 or 45, wherein:
 - (a) q is 0 or 1 and ZR^{Z} is -NH₂, -OH, C_{1-4} alkoxy, or -S(O)₂NH₂;
 - (b) R^3 is $NRCOR^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , and t is 0 or 1, Y is NR^9 , and R^8 and R^9 , taken together with the nitrogen atom, form a group selected from **s**, **t**, **u**, or **v**, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, $-(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$; and
 - (c) R⁴ is hydrogen.
- 51. (Previously presented) The compound of claim 40 or 45, wherein:
 - (a) q is 0 or 1 and ZR^Z is -NH₂, -OH, C₁₋₄alkoxy, or -S(O)₂NH₂;

- (b) R^3 is $CONRR^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , and t is 0 or 1, Y is NR^9 , and R^8 and R^9 , taken together with the nitrogen atom, form a group selected from **s**, **t**, **u**, or **v**, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, $-(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$; and
- (c) R⁴ is hydrogen.
- 52. (Previously presented) The compound of claim 40 or 45, wherein:
 - (a) q is 0 or 1 and $\mathbb{Z}\mathbb{R}^Z$ is -NH₂, -OH, $\mathbb{C}_{1\text{-4}}$ alkoxy, or -S(O)₂NH₂;
 - (b) R^4 is $NRCOR^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , and t is 0 or 1, Y is NR^9 , and R^8 and R^9 , taken together with the nitrogen atom, form a group selected from **s**, **t**, **u**, or **v**, and wherein r is 0 or 1, and WR^W substituents include halogen, C_{1-4} alkyl, NH_2 , OH, SH, SO_2NH_2 , C_{1-4} alkoxy, C_{1-4} thioalkyl, CH_2OR , $CH_2N(R)_2$, or CH_2SR ; and
 - (c) R³ is hydrogen.
- 53. (Previously presented) The compound of claim 40 or 45, wherein:
 - (a) q is 0 or 1 and ZR^{Z} is -NH₂, -OH, C_{1-4} alkoxy, or -S(O)₂NH₂;
 - (b) R^4 is $CONRR^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , and t is 0 or 1, Y is NR^9 , and R^8 and R^9 , taken together with the nitrogen atom, form a group selected from **s**, **t**, **u**, or **v**, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, $-(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$; and
 - (c) R³ is hydrogen.
- 54. (Previously presented) The compound of claim 1, having one of the following structures:

Application No.: 10/700,333

IV-B(i)-10

IV-B(i)-12

IV-B(i)-14

IV-B(i)-9

IV-B(i)-11

IV-B(i)-13

IV-B(i)-15

Application No.: 10/700,333

55. (Original) A pharmaceutical composition comprising a compound according to claim 1, and a pharmaceutically acceptable carrier, adjuvant, or vehicle.

- 56. (Previously presented) The composition of claim 55, further comprising an additional therapeutic agent selected from a treatment for Alzheimer's Disease, a treatment for asthma, an anti-inflammatory agent or an immunomodulatory or immunosuppressive agent.
- 57. (Canceled)
- 58. (Previously presented) A method of treating or lessening the severity of a disease or disorder selected from rheumatoid arthritis, allergic or type I hypersensitivity reaction, asthma, familial amyotrophic lateral sclerosis (FALS) or transplant rejection, comprising administering to a patient in need thereof a compound of claim 1 or a composition of claim 55.
- 59. (Canceled)