

a. Esprimi, in funzione dell'ampiezza α (in gradi) dell'angolo $A\widehat{B}C$, le ampiezze (in gradi) degli angoli del triangolo ACD.

b. Determina per quale valore di α l'ampiezza dell'angolo $A\widehat{O}C$ supera di 15° quella dell'angolo $D\widehat{A}C$.

[a.
$$\alpha$$
, 45°, 135° $-\alpha$; b. $\alpha = 50$ °]

$$l_r$$
) $2\alpha = 15^{\circ} + 135^{\circ} - \alpha$ $3\alpha = 150^{\circ} = 2 \alpha = 50^{\circ}$

135 In riferimento agli angoli rappresentati nella figu-

- l'ampiezza dell'angolo $A\widehat{E}B$ supera di 40° quella di
- l'ampiezza di $B\widehat{O}D$ è il quadruplo di quella di $A\widehat{D}C$. Qual è l'ampiezza di \widehat{ADC} ?

4d = 140°

α = 140° = 35°

Dato un triangolo rettangolo ABC, di ipotenusa AB, sia CM la mediana relativa all'ipotenusa. Dimostra, utilizzando gli angoli al centro e alla circonferenza, che $\angle CMB \cong 2\angle CAB$.

[35°]

AM & MB TESI

CÂB = 2 CÂB

Trocció la semicirconferensa de centre H e 1008 is AM. C affortiere

a tale servicinconferensa

CAB à angol de inconferense conispondente all'onegli d'entre CPB, duque CHB = 2 CAB QED

Dol disono si vede ouche che in un trionaglo rottoraglo la mediana relativa all'ifotenusa è congruente alla meta dell'iptemesa stessa.

175 In riferimento alla figura, determina l'ampiezza dell'angolo $E\widehat{A}C$. (Suggerimento: traccia la corda FC e applica il teorema dell'angolo esterno al triangolo AFC)

$$L = \frac{175^{\circ} - 51^{\circ}}{2} = \frac{124^{\circ}}{2} = 62^{\circ}$$

FCB = 51° (onego alle 2 circ. coming di FOB)