

Quenching of spectroscopic factors in ^{10,12}Be(d, ³He) reactions

M. Lozano-González, A. Matta, B. Fernández-Domínguez

IGFAE and LPC-Caen

Zakopane 2024 Conference

A recap on spectroscopic factors

Spectroscopic factors arise from the breakdown of the single-particle scheme to describe nuclear reactions:

$$\sigma = C^2 S \cdot \sigma_{s.p}$$

- Long-range correlations: vibrations, giant resonances,...
- Short-range: tensor forces....

Reduction of $\sim 65 \%!$

T. Aumann et al. Prog. Part. Nucl. Phys. 118 (2021)

A long-standing puzzle

A trend with asymmetry $\Delta S \equiv S_n - S_p$ is found depending on the experimental **probe!**

T. Aumann et al. Prog. Part. Nucl. Phys. 118 (2021)

 \Rightarrow measure towards more exotic nuclei: 10,12 Be!

Importance of the overlaps

In a previous experiment by A. Matta and colleagues, for the $^{11}\text{Li}(d, ^3\text{He})^{10}\text{Be}$ reaction they found that the **geometrical mismatch factor** (GMF) plays an essential role.

