Tutorial Exercises

Qs. 1

A transformation T is such that for the Basis vectors,

$$i = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $j = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$,

$$T(i) = 21 * i + 13 * j$$
 and $T(j) = 8 * i + 21 * j$ i.e.

$$\mathcal{T}\left(\left[\begin{array}{c}1\\0\end{array}\right]\right)=\left[\begin{array}{c}21\\13\end{array}\right] \text{ and } \mathcal{T}\left(\left[\begin{array}{c}0\\1\end{array}\right]\right)=\left[\begin{array}{c}8\\21\end{array}\right]\;.$$

Determine
$$T\left(\begin{bmatrix} 3\\5 \end{bmatrix}\right)$$
, i.e.

where does the transformation, T, send the vector $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$ to?

Qs. 2

Qs. 2

Let matrix
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$$
 and matrix $B = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$ and vector $v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

- Let u = A * v, calculate B * u. Find B * A. Show B * u = (B * A) * v
- ② Show that $A*B \neq B*A$. For matrices P and Q explain why, in general, that $P*Q \neq Q*P$.
- 3 Determine whether $(A * B)^T = B^T * A^T$

Let
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix}$

and C = A * B where

$$C = \left[\begin{array}{cccc} 12 & c_{12} & 30 & 13 \\ 8 & -4 & c_{23} & 12 \end{array} \right]$$

Calculate the values c_{12} and c_{23} .

Optional Question

Box of Coins.

(Optional Question)

A box holding pennies, nickels and dimes contains thirteen coins with a total value of 83 cents.

How many coins of each type are in the box?

(These are US coins; a penny is 1 cent, a nickel is 5 cents, and a dime is 10 cents.)