Ciclos de Potencia

Consideraciones básicas

- Los dispositivos reales son difíciles de analizar.
- Cuando al ciclo ideal se eliminan irreversibilidades y complejidades internas, se consigue un ciclo que se parece al real pero que está formado en su totalidad por procesos internamente reversibles.
- Un modelo idealizado simple permite estudiar los efectos de los principales parámetros que gobiernan el ciclo.

Ciclos de Potencia

Consideraciones básicas

Las máquinas térmicas se diseñan con el propósito de convertir energía térmica en trabajo y su desempeño se expresa en términos de la eficiencia térmica.

$$\eta_{ extit{termica}} = rac{W_{ extit{neto}}}{Q_{ extit{entrada}}}$$

- Las idealizaciones y simplificaciones empleadas comúnmente en el análisis de los ciclos de potencia, puede resumirse del siguiente modo:
 - El ciclo no implica ninguna fricción.
 - Todos los procesos de expansión y compresión ocurren en forma de cuasiequilibrio.
 - Las tuberías que conectan los diferentes componentes de un sistema están muy bien aisladas y la transferencia de calor a través de éstas es despreciable.

Ciclos de Potencia

□ Consideraciones básicas

> En los diagramas T-s y P-V el área encerrada por las curvas del proceso de un ciclo representa el *trabajo neto* producido durante el ciclo, lo cual también es equivalente a la transferencia de calor neta en este ciclo.

$$W_{neto} = Q_{entrada} - Q_{salida}$$

Ciclo de Carnot

■ Este es el mejor ciclo que existe. Este ciclo se compone de cuatro procesos totalmente reversibles:

- 2 3 Expansión isentrópica.
- 3 4 Rechazo de calor isotérmico.
- 4 1 Compresión isentrópica.

"No existe una máquina térmica con una eficiencia mayor a la eficiencia de la máquina de Carnot"

Ciclo de Carnot

□ Eficiencia térmica:

$$\eta_{termica} = \frac{W_{neto}}{Q_{entrada}}$$

$$\eta_{termica} = rac{ extstyle Q_{entrada} - extstyle Q_{salida}}{ extstyle Q_{entrada}}$$

$$\eta_{termica} = 1 - rac{Q_{salida}}{Q_{Entrada}}$$

$$\eta_{termica} = 1 - \frac{T_s}{T_s}$$

Ciclo de Carnot

□ Demostración de la eficiencia del ciclo:

Los cuatro procesos que componen este ciclo son reversibles.

> El calor se transfiere al sistema durante los procesos 1 y 2 y se rechaza durante los

procesos 3 y 4.

$$Q_{entrada} = T_1 (s_2 - s_1)$$

 $Q_{salida} = T_2 (s_3 - s_4)$

$$Q_{\text{salida}} = T_2 (s_2 - s_1)$$

$$\eta_{termica} = 1 - \frac{I_2(S_2 - S_1)}{T_1(S_2 - S_1)}$$

$$\eta_{termica} = 1 - \frac{I_2}{T_1}$$

Comparación con el Ciclo de Carnot

□ Demostración de la eficiencia del ciclo:

El rendimiento ($^{\eta}_s$) de una máquina térmica, se conoce como la relación entre la eficiencia térmica real ($^{\eta}_t$) y el Carnot ($^{\eta}_c$).

$${m \eta}_s = rac{{m \eta}_t}{{m \eta}_C}$$

- > El rendimiento no puede ser mayor que la unidad:
 - Si η, < ηc, la máquina es irreversible pero real.
 - Si $n_t = n_t$ c, la máquina es reversible y por ello es ideal e imposible.
 - Si η_t > ηc, la máquina es totalmente imposible.