Secure Design

고려대학교 (Korea Univ.)

사이버국방학과 · 정보보호대학원 (CIST) 보안성분석평가연구실 (Security Analysis and Evaluation Lab.)

김 승 주 (Seungjoo Kim)

www.kimlab.net

보안성분석평가연구실

김승주 교수 (skim71@korea.ac.kr)

로봇융합관306호

주요 경력:

- 1990.3~1999.2) 성균관대학교 공학 학사 석사 박사
- 1998.12~2004.2) KISA 암호기술팀장및 CC평가1팀장
- 2004.3~2011.2) 성균관대학교 정보통신공학부 부교수 2011.3~현재) 고려대학교 사이버국방학과 정보보호대학원 정교수

Founder of (사)HARU & SECUINSIDE

- 前) 육군사관학교 초빙교수
- 前) 선관위 DDoS 특별검사팀 자문위원
- 前) SBS 드라마'유령'및 영화'베를린'자문 / KBS '명정만리' 강연
- 現) 한국정보보호학회 이사
- 現) 대검찰청 디지털수사 자문위원
- 現) 개인정보분쟁조정위원회 위원
- '96: Convertible group signatures (AsiaCrypt)
- '97: Proxy signatures, revisited (ICICS): 670회이상인용
- '06: 국가정보원 암호학술논문공모전 우수상
- '07: 국가정보원장 국가사이버안전업무 유공자 표창
- '12.'16: 고려대학교 석탑강의상
- '13: Smart TV Security (Black Hat USA): 스마트TV 해킹(도청·도촬) 및 해적방송 송출 시연

Security Analysis and Evaluation Lab

www.KimLab.net / www.SecEng.net

연구분야

- Security Eng. for High-Assurance Trustworthy Systems
- High-Assurance Cryptography
- Security Testing (including End-to-End Provable Security, Formal Verification) and Security Evaluation (e.g. CMVP, CC, C&A, SSE-CMM)
- Usable Security

주요 R&D 성과

LG전자와 공동으로 국내 최초 스마트TV 보안 인증 획득 (2015년)

삼성전자와공동으로

국내 최초 프린터복합기보안 인증 획득 (2008년)

Cryptography & Secure Design

Cryptography & Secure Design

- Cryptography has a firmer theoretical foundation than other security techniques.
 - So if you study this, you will be able to have an insight to design and analyze other security systems more systematically.

Emphases of Modern Cryptography

- Modern cryptography, which is distinguished from classical cryptography by
 - Its emphasis on (),
 - If you don't know what it is you are trying to achieve, how can you hope to know when you have achieved it?
 - Precise (), and
 - Many cryptographic constructions cannot currently be proven secure in an unconditional sense. Security often relies, instead, on some widely-believed (albeit unproven) assumption. The modern cryptographic approach dictates that any such assumptions must be clearly and unambiguously defined.
 - () of security.
 - This is the essence of modern cryptography, and was responsible for the transformation of cryptography from an art to a science.

Symmetric Ciphers

The World of Symmetric Ciphers

Theoretical Construction

Practical Construction

- RSA, Discrete Log, Factoring ...
- One-Way Function (or One-Way Permutation)
- Hard-Core Predicate
- Pseudorandom Generator with +1 Expansion
- Pseudorandom Generator with Arbitrary Expansion
- Pseudorandom Function
- (Strong) Pseudorandom Permutation ← → Block Ciphers

CPA-Secure Secret-Key Encryption Scheme for fixed-length message

CPA-Secure Secret-Key Encryption Scheme for arbitrary-length messages & Existentially Unforgeable MAC

CCA-Secure Secret-Key Encryption Schemes

Modes of Operation

Of course, to get any information about practical relevance of these results one needs to look at the concrete parameters hidden in the "asymptotics".

Asymmetric Ciphers

Ideal Properties of a Proof

- The challenge(target) for the adversary should be as () as possible
- The adversary should be as () as possible
- The assumptions should be as () as possible
- Quality of security reduction should be as () as possible

Protocol Analysis Techniques

Brief History of Provable Security

Brief History of Provable Security

 Blum, Goldwasser & Micali (1982~1988) : Mathematical definitions of security

- Encryption [Goldwasser, Micali 86]
- Signatures [Goldwasser, Micali, Rivest 88]
- Now a common requirement to support emerging standards (IEEE P1363, ISO, Cryptrec, NESSIE).

Design Secure Asymmetric Cipher

☐ One-Way Function : A function

$$f: \{0,1\}^* \rightarrow \{0,1\}^*$$

is called "one-way" if there is an efficient algorithm that on input x outputs f(x), whereas any feasible algorithm that tries to find a preimage of f(x) under f may succeed only with negligible probability.

- Any Feasible Algorithm:

- HW: DTM / NDTM / PTM
- SW: COA / KPA / CPA / CCA

- Preimage :

Whole / Partial / Correlated

- Preimage (Goal)
 - One-Way (OW): Hard to invert the encryption function
 - Semantically Secure (IND): Hard to obtain any partial information of a plaintext from the ciphertext
 - Non-Malleability (NM): For any non-trivial relation R, E(M) -> E(R(M)) is hard

- Algorithm (HW Attack Method)
 - FA (Finite Automata)
 - PDA (Pushdown Automata)
 - TM (Turing Machine)
 - PTM (Probabilistic TM)
 - von Neumann Machine

Algorithm (SW Attack Method)

- Passive Attack (CPA)
 - Ciphertext Only Attack (COA)
 - Chosen Plaintext Attack (CPA)

Active Attack (CCA)

- Chosen Ciphertext Attack (CCA)
- 1990) Static Chosen-Ciphertext Attack (Lunch time attack, Naor & Yung)
- 1991) Adaptive Chosen-Ciphertext Attack (Rackoff & Simon)

Algorithm (SW Attack Method)

Type of attack	Known to cryptanalyst
Ciphertext only	•Encryption algorithm •Ciphertext
Known plaintext	Encryption algorithm Ciphertext Several pairs plaintext-ciphertext
Chosen plaintext	Encryption algorithm Ciphertext Several pairs plaintext-ciphertext, where the plaintext was chosen by the attacker
Chosen ciphertext	Encryption algorithm Ciphertext Several pairs plaintext-ciphertext, where the ciphertext was chosen by the attacker
Chosen text	Encryption algorithm Ciphertext Several pairs plaintext-ciphertext, where the plaintext or the ciphertext was chosen by the attacker

6 Notions of Security

Relations

A —— B: proven that meeting notion A implies meeting B

A ---- B: proven that meeting notion A implies **not** meeting B

NOTE: A implies B iff there is a path from A to B

One-Wayness (OW-CPA)

Security Goal: One-wayness

 Easy to compute ciphertext from plaintext but hard to invert.

Attacker Model:

Security Proof: Relative complexity by reduction

One-Wayness (OW-CPA)

** Partial information problem: Leak partial information if the plaintext comes from small plaintext space!

OW-CPA Example : Rabin Scheme

- Private Key: p = q = 3 (mod 4)
- Public Key: n = pq
- Encryption : C = M² (mod n)
- Decryption :
 - $m_1 = C^{(p+1)/4}$ (mod p), $m_2 = (p C^{(p+1)/4})$ (mod p), $m_3 = C^{(q+1)/4}$ (mod q), $m_4 = (q C^{(q+1)/4})$ (mod p).
 - $a = q(q^{-1} \mod p), p = p(p^{-1} \mod q).$
 - $M_1 = (am_1 + bm_3) \mod n$, $M_2 = (am_1 + bm_4) \mod n$, $M_3 = (am_2 + bm_3) \mod n$, $M_4 = (am_2 + bm_4) \mod n$.
 - M is one of $\{M_1, M_2, M_3, M_4\}$

Proof Sketch of Rabin Scheme

Let A be an adversary that breaks the Rabin scheme. Then A can be used to solve IFP. If so, we say solving IFP reduces to breaking the Rabin scheme.

-> Conclusion: If IFP untractable then Rabin scheme is unbreased (1)

Polynomial Security (IND-CPA)

Security Goal: Polynomial Security

 Cannot distinguish 2 ciphertexts (Indistinguishability)

Attacker Model:

→ Encryption Alg. : must be probabilistic!

Probabilistic Encryption

Probabilistic Encryption

Probabilistic Encryption

Semantic Security

Semantic Security (= Polynomial Security) is a () of Shannon's "perfect secrecy".

Semantic Security

Semantic Security (= Polynomial Security) is a () of Shannon's "perfect secrecy".

How to define this goal formally?

How to Make Semantic Secure Cipher?

How to make it?

Chosen Ciphertext Attack

Chosen Ciphertext Attack

Chosen Ciphertext Attack

After queries to DOBefore queries to DO

Non-Malleability

m' is unknown, but related in some known way to m

Non-Malleability

How to Make Non-Malleable Cipher?

How to make it?

How to Make Non-Malleable Cipher?

How to Make Non-Malleable Cipher?

Authenticated Encryption

Plaintext Awareness

Authenticated Encryption

Relevance to Internet Security

- Many popular Internet protocols rely on authenticated encryption schemes for privacy and authenticity.
 - Examples: SSL, TLS, SSH, IPSEC, ...

- Many applications on the Internet require both privacy and authenticity.
 - Examples: online banking, online retail, online auctions, instant messaging, remote login, secure file transfer, ...

Generic Composition Methods

- Encrypt-and-MAC
 - $\bar{E}_{Ke,Km}(M) = E_{Ke}(M) || T_{Km}(M)$
- MAC-then-Encrypt
 - $\bar{E}_{Ke,Km}(M) = E_{Ke}(M \mid\mid T_{Km}(M))$
- Encrypt-then-MAC
 - $\bar{E}_{Ke,Km} = E_{Ke}(M) || T_{Km}(E_{Ke}(M))$

Generic Composition Results

• Question:

 Assuming the base encryption scheme is secure (IND-CPA) and the base MAC scheme is secure (UF-CMA),

is the composed scheme CCA-secure?

Generic Composition Results

	Composition Method	Security
1)	Encrypt-and-MAC	
	$E_{Ke,Km}(M) = E_{Ke}(M) T_{Km}(M)$	
2)	MAC-then-Encrypt	
	$E_{Ke,Km}(M) = E_{Ke}(M T_{Km}(M))$	
3)	Encrypt-then-MAC	
	$E_{Ke,Km}(M) = E_{Ke}(M) T_{Km}(E_{Ke}(M))$	

Encrypt-then-MAC

Plaintext Awarenes

- PA is merely a () rather than a ().
- A scheme with IND-CPA security is plaintext aware (PA) if an adversary cannot produce a valid ciphertext without knowing the corresponding plaintext.
 - The adversary has access to an encryption oracle and random oracles but no decryption oracle.
- PA implies IND-CCA2 security.
 - Decryption queries give no information since the adversary already "knows" the plaintext.

PA & Random Oracle Model

- Sometimes it is helpful to consider models where some tools (primitives) used by cryptographic schemes such as,
 - Hash functions
 - Block ciphers
 - Finite groups

are considered to be ideal, that is, the adversary can only use (attack) them in a certain way.

- Idealized Security Models:
 - Hash function -> Random oracle
 - Block ciphers -> Ideal cipher
 - Finite groups -> Generic group
- Standard model: no idealized primitives (sort of)

PA & Random Oracle Model

- A paradigm for designing efficient provably secure protocols (M.Bellare and P.Rogaway, 1993)
- In cryptography, a RO is an oracle (a theoretical black box) that responds to every query with a (truly) random response chosen uniformly from its output domain, except that for any specific query, it responds the same way every time it receives that query.

PA & Random Oracle Model

- PA makes sense only in the ROM!
 - The RO is used in the definition of plaintext awareness to give the extractor a "window" into the internal state of the adversary (as revealed through its queries). If the external RO is replaced by an internal algorithm, then this window is closed.
 - In the standard model, the adversary can encrypt a plaintext and then "forget" it.

OAEP

- Optimal Asymmetric Encryption Padding
- The main drawback of the previous scheme is that ciphertexts are longer than a single element of Z_N*, even when short messages are encrypted.
- The encoding function OAEP is designed so that the only way to find an element in the image of OAEP is to choose m and r and then explicitly compute OAEP(m,r).
- OAEP is essentially a (

RSA-OAEP

OAEP++

- A new padding scheme OAEP++ was proposed by Jonsson (2002).
 - The one-time pad on the OAEP (xor between random and output of H) is replaced by a strong block cipher (ideal cipher model).
- Ideal Cipher Model
 - Consider block cipher E as a family of perfectly random and independent permutations.

Limits of Provable Security

- Provable security does not yield proofs
 - Proofs are relative (to computational assumptions) and to the definition of the scheme's goal
 - Proofs often done in ideal models (Random Oracle Model, Ideal Cipher Model, Generic Group Model) with debatable meaning.
 - Definitions and proofs need time for acceptance.

Limits of Provable Security

- Still, provable security
 - Provides some form of guarantee that the scheme is not flawed
 - Motivates us to spell out (clarify) definitions and models formally, a process that, in itself, may help us to better understand the problem!
 - Gives well-defined reductions from which we can distill practical implications of the result (exact security)

Key Management

Diffie-Hellman Key Exchange

$$g^x \mod P = h_1$$

$$g^y \mod P = h_2$$

갑순이

$$K = h_2^x = (g^y)^x = g^{xy} \pmod{P}$$

$$K = h_1^y = (g^x)^y = g^{xy} \pmod{P}$$

Definition of Security

Indistinguishable!

- This is much stronger than simply requiring that the adversary be unable to compute K exactly.
 - Can compute K → Can distinguish K

2-Party Protocols

Interactive Protocol

Interactive Turing Machine

Interactive Protocol

Interactive Turing Machines

Zero-Knowledge Proofs

 An interactive proof system involves a prover and a verifier

> > (Interactive proofs)

Zero-Knowledge Proofs

- Idea: the prover proves a statement to the verifier without revealing anything except the fact that the statement is true
 - Zero-Knowledge Proof of Knowledge (ZKPK): prover convinces verifier that he knows a secret without revealing the secret

Properties of ZKPK

Completeness

 If both prover and verifier are honest, protocol succeeds with overwhelming probability

Soundness

- No one who does not know the secret can convince the verifier with nonnegligible probability
 - Intuition: the protocol should not enable prover to prove a false statement

Zero-Knowledge

The proof does not leak any information

Zero-Knowledge Property

- The proof does not leak any information
- There exists a simulator that, taking what the verifier knows before the protocol starts, produces a fake "transcript" of protocol messages that is indistinguishable from actual protocol messages
 - Because all messages can be simulated from verifier's initial knowledge, verifier does not learn anything that he didn't know before
 - Indistinguishability: perfect, statistical, or computational
- Honest-verifier ZK only considers verifiers that follow the protocol

Zero-Knowledge Property

 Zero knowledge proofs are simulatable (conversation distributions are indistinguishable)

Zero-Knowledge Property

- No one who does not know the secret can convince the verifier with nonnegligible probability.
- Let A be any prover who convinces the verifier ...
- ... there must exist a knowledge extractor algorithm that, given A, extracts the secret from A.
 - Intuition: if there existed some prover A who manages to convince the verifier that he knows the secret without actually knowing it, then no algorithm could possibly extract the secret from this A.

Zero-Knowledge for Kids

- 1. V stands at A.
- 2. P walks to C or D.
- 3. V walks to B.
- 4. V asks P to come L or R.
- 5. P follows the request.
- 6. Repeat 1 ~ 5, n times.

ZKIP for QRP

- System parameters
 - N

Cheating against ZKIP for QRP

- Prover can cheat if he can guess b in advance
 - Guess b, set y=z²a⁻b for random z in 1st message
 - What is the probability of guessing b?

P proves that he "knows" quadratic residue of a even though he does not know r

Schnorr's Id Protocol (ZKIP for DLP)

- System parameters
 - Prime p and q such that q divides p-1
 - g is a generator of an order-q subgroup of Z_p*

Cheating against Schnorr's Id Protocol

- Prover can cheat if he can guess c in advance
 - Guess c, set x=g^yt^{-c} for random y in 1st message
 - What is the probability of guessing c?

P proves that he "knows" discrete log of t even though he does not know s

But Schnorr's Id Protocol Is Sound

- Prover can cheat if he can guess c in advance
 - Given P who successfully passes the protocol, extract s such that t=g^s mod p

Schnorr's Id Protocol Is HVZK

 Simulator produces a transcript which is indistinguishable from the real transcript

Digital Signatures

Security Goal & Attack Model

- Target
 - Total Break : Find private key
 - Selective Forgery: Signature on selected message
 - Existential Forgery : Signature on some message

Security Goal & Attack Model

- Attack
 - Key-Only Attack
 - Known Message Attack
 - Chosen Message Attack

Existential Forgery - KOA

Selective Forgery - CMA

위조문서: $m = m_1 \times m_2$

위조서명: $\sigma = \sigma_1 \times \sigma_2$

공격자

Hash-and-Sign Paradigm

To Learn More

To Learn More

To Learn More

Secure Design

고려대학교 (Korea Univ.)

사이버국방학과 · 정보보호대학원 (CIST) 보안성분석평가연구실 (Security Analysis and Evaluation Lab.)

김 승 주 (Seungjoo Kim)

(FB) www.fb.com/skim71 (Twitter) @skim71 ਹਟਰਸਾਂਚੇਕ ਲੁਪੂਸ਼ ਹੈ ਹਰ ਸ਼ਹੂਰ ਸ

