

Ασκήσεις Κεφαλαίου 5

- **1.** Έστω ότι η f είναι συνεχής συνάρτηση. Να γίνει η γραφική παράσταση της f για τις πιο κάτω περιπτώσεις
 - f(2) = 4, f'(2) = 0, f''(x) < 0, $\forall x \in \Re$ i.
 - f(2) = 4, f'(2) = 0, f''(x) < 0, ótav x < 2 kal f''(x) > 0, ótav x > 2
 - f(2) = 4, f''(x) > 0, όταν $x \neq 2$ και $\lim_{x \to 2^+} f'(x) = -\infty$, $\lim_{x \to 2^-} f'(x) = +\infty$ iii.
- **2.** Το σημείο (-1/2,4) είναι τοπικό ακρότατο της $f(x) = x^2 + \frac{1}{x} + ax + b$. Να βρεθούν οι τιμές των σταθερών a και b .
- 3. Να εξεταστούν ως προς τη μονοτονία οι συναρτήσεις:
- $f(x) = x^4 8x^2 + 17$ ii. $f(x) = x^3 + 2x^2 x 2$ iii. $f(x) = \sin x x$

- Να παρασταθούν γραφικά οι συναρτήσεις:
- $f(x) = \frac{2(x+6)(x-4)}{(x-6)(x+4)}$ ii. $f(x) = \frac{2x-x^2}{x^2-2x-3}$ iii. $f(x) = 1-x^{2/3}$

(όχι σημεία καμπής)

- iv. $f(x) = x^4 2x^2 + 1$
- v. $f(x) = \frac{x}{\sqrt{x^2 9}}$ vi. $f(x) = x\sqrt{1 x}$
- **5.** Να βρεθεί η ελάχιστη απόσταση του σημείου (4,2) από την παραβολή $y^2 = 8x$.
- **6.** Να βρεθεί το σημείο της καμπύλης $2y^2 = 5(x+1)$ το οποίο είναι το πλησιέστερο στην αρχή των αξόνων.
- **7.** Να βρεθούν τα σημεία της καμπύλης $x^2 y^2 = 1$ τα οποία είναι πλησιέστερα στο σημείο (0,2).
- 8. Να βρεθούν τα απόλυτα ακρότατα των πιο κάτω συναρτήσεων στα διαστήματα που δίνονται:
 - $f(x) = 2\sec x \tan x$, $[0, \pi/4]$
- ii. f(x) = |6 4x|, [-3,3]
- $f(x) = \sin(\cos x), \quad [0,2\pi]$ iii.
- iv. $f(x) = 1 + \frac{1}{x}$, $(0,+\infty)$
- 9. Να βρεθούν τα απόλυτα ακρότατα της συνάρτησης

$$f(x) = \begin{cases} 4x - 2, & x < 1 \\ (x - 2)(x - 3), & x \ge 1 \end{cases}$$

στο διάστημα [1/2,7/2].

- **10.** Δίνεται η συνάρτηση $f(x) = \frac{(x-1)^2}{x^2+x+1}$. Να δειχθεί ότι η f(x) είναι πάντοτε μη αρνητική. Να βρεθούν οι ασύμπτωτες και τα τοπικά ακρότατα της καμπύλης y=f(x) και στη συνέχεια να γίνει η γραφική παράσταση της καμπύλης. Να βρεθούν (αν υπάρχουν) τα απόλυτα ακρότατα της f(x).
- **11.** Η καμπύλη με εξίσωση $y=\frac{ax+b}{x^2-x-2}$, όπου a και b είναι σταθερές, έχει στάσιμο σημείο το (1,1). Να βρεθούν οι τιμές των σταθερών a και b και στην συνέχεια να γίνει η γραφική παράσταση της καμπύλης.
- **12.** Η καμπύλη $f(x) = x^3 + ax^2 + bx + c$ έχει τοπικό ακρότατο το σημείο (1,8) και το σημείο με τετμημένη x = -1 σημείο καμπής. Να βρείτε τις τιμές των a, b και c.
- **13.** Να δειχθεί ότι η συνάρτηση $y = \frac{ax+b}{cx+d}$ δεν έχει τοπικά ακρότατα.
- **14.** Να εξεταστεί αν η συνάρτηση $y = x^3 3px + q$ έχει τοπικά ακρότατα.
- **15.** Να εξεταστεί αν η συνάρτηση $2x^2 4xy + 3y^2 8x + 8y 1 = 0$ έχει τοπικά ακρότατα.
- **16.** Να αποδειχθεί ότι για τη συνάρτηση $f(x) = x^3 + x^2 4x + 1$ εφαρμόζεται το θεώρημα του Rolle στο διάστημα [-1,2] και να βρεθεί $c \in (-1,2)$ τέτοιο ώστε f'(c) = 0.
- **17.** Να χρησιμοποιηθεί το θεώρημα του Rolle προκειμένου να δειχθεί ότι η εξίσωση $6x^5 4x + 1$ έχει τουλάχιστον μια ρίζα στο διάστημα (0,1).
- **18.** Δίνεται η συνάρτηση $f(x) = \frac{x}{2} + \sqrt{x}$, με $x \in [0,4]$. Να βρείτε τον αριθμό $c \in (0,4)$ που ικανοποιεί το συμπέρασμα του θεωρήματος μέσης τιμής.
- **19.** Δίνεται η συνάρτηση f , με f'(x) = -3 , $\forall x \in \Re$. Αν f(2) = 1 , να χρησιμοποιήσετε το θεώρημα μέσης τιμής για να δείξετε ότι f(x) = -3x + 7 .
- **20.** Να βρείτε τα διαστήματα στα οποία οι πιο κάτω συναρτήσεις είναι αύξουσες ή φθίνουσες καθώς και τα ακρότατα των συναρτήσεων:

(a)
$$f(x) = x^2 - \ln(2x+1)$$
 (b) $f(x) = \frac{1}{x-1} - \frac{1}{x+1}$ (c) $f(\chi) = \chi^2 - 1 - 2\chi^2 \ln x$

21. Να βρείτε τα απόλυτα ακρότατα των πιο κάτω συναρτήσεων στα διαστήματα που δίνονται:

(a)
$$f(x) = x^2 - \ln(2x+1)$$
, $\left(-\frac{1}{2}, 2\right]$

(
$$\beta$$
) $f(x) = \frac{1}{x-1} - \frac{1}{x+1}$, $\left[-\frac{1}{2}, \frac{1}{4} \right]$

(y)
$$f(x) = x^2 - 1 - 2x^2 \ln x$$
, (0,4]