

SEQUENCE LISTING

<110> WEIGEL, Detlef
KARDAILSKY, Igor

<120> FLOWERING LOCUS T (FT) AND GENETICALLY
MODIFIED PLANTS HAVING MODULATED FLOWER DEVELOPMENT

<130> SALKINS.026DV1

<140> 09/845,849

<141> 2001-04-30

<150> 09/060,726

<151> 1998-04-15

<160> 13

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 856

<212> DNA

<213> Arabidopsis thaliana

<400> 1

tctagaacta gtggatcccc cgggctgcag gaattcagca cgaggttgt tcaagatcaa 60
agatgtctat aaatataaga gacccttta tagtaagcag agttgttgg aacgttctt 120
atccgtttaa tagatcaatc actctaaagg ttacttatgg ccaaagagag gtgactaatg 180
gcttggatct aaggccttct caggtcaaa acaagccaaag agttgagatt ggtggagaag 240
acctcaggaa ctctatact ttggtatgg tggatccaga tggatccaaatg cctagcaacc 300
ctcaccccg agaataatctc cattggatgg tgactgatat ccctgctaca actggaaacaa 360
ccttggcaa ttagattgtg tgtagatccaa atccaagtcc cactgcagga attcatcg 420
tcgtgttat attgtttca cagcttggca ggcaaaacagt gtatgcacca gggatggcgcc 480
agaactcaa cactcgcgag tttgtcgaga tctacaatct cggccttccc gtggcccgag 540
ttttctacaa ttgtcgagg gagatgtggct gcggaggaaag aagactttat atggcttctt 600
ccttataac caattgatat tgcatctc gatgagattt atgcatctat agtattttaa 660
ttaataacc attttatgat acgagtaacg aacgggtatg atgcctatag tagttcaata 720
tataagtgtg taataaaaaat gagagggggga ggaaaatgag agtgtttac ttatatagtg 780
tgtgatgcga taattatatt aatctacatg aaatgaatgt ttatatttt aaaaaaaaaa 840
aaaaaaaaaa ctcgag 856

<210> 2

<211> 175

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Ser Ile Asn Ile Arg Asp Pro Leu Ile Val Ser Arg Val Val Gly
1 5 10 15
Asp Val Leu Asp Pro Phe Asn Arg Ser Ile Thr Leu Lys Val Thr Tyr
20 25 30
Gly Gln Arg Glu Val Thr Asn Gly Leu Asp Leu Arg Pro Ser Gln Val
35 40 45
Gln Asn Lys Pro Arg Val Glu Ile Gly Gly Glu Asp Leu Arg Asn Phe
50 55 60
Tyr Thr Leu Val Met Val Asp Pro Asp Val Pro Ser Pro Ser Asn Pro

65	70	75	80
His	Leu	Arg	Glu
Tyr	Leu	His	Trp
85	90	95	
Thr	Gly	Thr	Phe
			Gly
			Asn
			Glu
			Ile
			Val
			Cys
			Tyr
			Glu
			Asn
			Pro
			Ala
			Thr
100	105	110	
Pro	Thr	Ala	Gly
Ile			
115	120	125	
Gly	Arg	Gln	Thr
			Val
			Tyr
			Ala
			Pro
			Gly
			Trp
			Arg
			Gln
			Asn
			Phe
			Asn
			Thr
130	135	140	
Arg	Glu	Phe	Ala
			Glu
			Ile
			Tyr
			Asn
			Leu
			Gly
			Leu
145	150	155	160
Phe	Tyr	Asn	Cys
			Gln
			Arg
			Glu
			Ser
			Gly
			Cys
			Gly
			Arg
			Arg
			Leu
165	170	175	

<210> 3
 <211> 856
 <212> DNA
 <213> Arabidopsis thaliana

<400> 3
 ctcgaggttt tttttttttt tttttataa atataaacact tcatttcatg tagattaata 60
 taattatcgc atcacacact atataagtaa aacactctca ttttcctccc cctctcattt 120
 ttattacaca ctatataattt gaactactat aggcatcatc accgttcgtt actcgtatca 180
 taaaatggtt attaaatattaa aatactatag atgcataaat ctcatcagag tatgcaatat 240
 caattggta taaaggaaga agccatctaa agtcttcttc ctccgcagcc actctccctc 300
 tgacaattgt agaaaaactgc ggccacggga aggccgagat ttagatctc agcaaactcg 360
 cgagtgttga agttctggcg ccaccctgggt gcatacactg ttgcctgcc aagctgtcga 420
 aacaatataa acacgacacg atgaattcct gcagtgggac ttggattttc gtaacacaca 480
 atctcattgc caaagggtgt tccagttgtc gcaggatcat cagtcaccaa ccaatggaga 540
 tattctcgga ggtgagggtt gctaggactt ggaacatctg gatccaccaat aaccaaaagta 600
 tagaaggttcc tgaggtcttc tccaccaatc tcaactctt gttgtttt aacctgagaa 660
 ggccttagat ccaaggccatt agtcacctt ctttggccat aagtaacctt tagagtattt 720
 gatctattaa acggatcaag aacgtctcca acaactctgc ttactataag agggtctctt 780
 atatttataa acatcttta tcttgaacaa acctcgtgtc gaattcctgc agcccggggg 840
 atccactagt tctaga 856

<210> 4
 <211> 11
 <212> PRT
 <213> Rattus norvegicus

<400> 4
 Ala Ala Asp Ile Ser Gln Trp Ala Gly Pro Leu
 1 5 10

<210> 5
 <211> 114
 <212> PRT
 <213> Arabidopsis thaliana

<400> 5
 Met Pro Leu Ile Gly Arg Val Val Gly Asp Val Leu Asp Phe Pro Thr
 1 5 10 15
 Val Tyr Lys Val Asn Gly Glu Leu Pro Ser Val Lys Pro Arg Val Glu
 20 25 30
 Ile Gly Asp Leu Arg Thr Leu Val Met Asp Pro Asp Pro Pro Ser Asp
 35 40 45

Pro Leu Glu Leu His Trp Val Ile Pro Gly Thr Thr Asp Phe Gly Lys
50 55 60
Glu Val Tyr Glu Pro Arg Pro Gly Ile His Arg Val Phe Val Leu Phe
65 70 75 80
Arg Gln Gln Arg Gly Ser Arg Phe Asn Thr Arg Phe Ala Tyr Asp Leu
85 90 95
Gly Leu Pro Val Ala Ala Val Phe Phe Asn Ala Gln Arg Glu Ala Arg
100 105 110
Arg Arg

<210> 6
<211> 8
<212> PRT
<213> Arabidopsis thaliana

<400> 6
Ser Ile Asn Ile Arg Asp Pro Leu
1 5

<210> 7
<211> 72
<212> PRT
<213> Rattus norvegicus

<400> 7
Met Ala Ala Pro Leu Val Pro Leu Val Tyr Gly Val Gly Leu Pro Gln
1 5 10 15
Val Asn Pro Gly Asp Leu Tyr Thr Leu Val Thr Asp Pro Asp Ala Pro
20 25 30
Ser Asp Pro Arg Glu Trp His Leu Val Val Gly Asp Ser Gly Tyr Pro
35 40 45
Pro Gly His Arg Tyr Val Gln Gln Leu Gly Arg Phe Phe Tyr Leu Gly
50 55 60
Pro Val Ala Phe Ala Gln Arg Glu
65 70

<210> 8
<211> 115
<212> PRT
<213> Arabidopsis thaliana

<400> 8
Met Ala Ala Asp Pro Leu Ile Gly Arg Val Val Gly Asp Val Leu Asp
1 5 10 15
Phe Pro Thr Val Tyr Lys Val Asn Gly Glu Leu Pro Ser Val Lys Pro
20 25 30
Arg Val Glu Ile Gly Asp Leu Arg Leu Tyr Thr Leu Val Met Thr Asp
35 40 45
Pro Asp Ala Pro Ser Pro Ser Pro Arg Glu Trp His Trp Val Val Asp
50 55 60
Ile Pro Gly Thr Ser Gly Lys Glu Ile Tyr Pro Arg Pro Pro Gly Ile
65 70 75 80
His Arg Tyr Val Leu Phe Arg Gln Leu Gly Ser Arg Asn Thr Arg Phe
85 90 95
Ala Asp Leu Gly Leu Pro Val Ala Val Phe Asn Ala Gln Arg Glu Ala

100 105 110
Arg Arg Arg
115

<210> 9
<211> 11
<212> PRT
<213> Arabidopsis thaliana

<400> 9
Glu Asn Met Gly Thr Arg Val Ile Glu Pro Leu
1 5 10

<210> 10
<211> 9
<212> PRT
<213> Antirrhinum majus

<400> 10
Ala Ala Lys Val Ser Ser Asp Pro Leu
1 5

<210> 11
<211> 7
<212> PRT
<213> Arabidopsis thaliana

<400> 11
Ala Ala Ser Val Asp Pro Leu
1 5

<210> 12
<211> 110
<212> PRT
<213> Arabidopsis thaliana

<400> 12
Met Asp Pro Leu Ile Val Arg Val Val Gly Asp Val Leu Asp Phe Leu
1 5 10 15
Val Tyr Gly Val Thr Asn Gly Leu Pro Ser Gln Val Asn Lys Pro Arg
20 25 30
Val Glu Ile Gly Asp Leu Arg Tyr Thr Leu Val Met Asp Pro Asp Pro
35 40 45
Ser Pro Ser Pro Leu Arg Glu Leu His Trp Leu Val Asp Ile Pro Thr
50 55 60
Thr Phe Gly Glu Ile Val Tyr Glu Pro Pro Gly Ile His Arg Val Phe
65 70 75 80
Leu Phe Arg Gln Arg Gly Arg Asn Phe Asn Thr Arg Phe Ala Tyr Leu
85 90 95
Gly Leu Pro Val Ala Ala Val Phe Asn Gln Arg Glu Arg Arg
100 105 110

<210> 13
<211> 11

<212> PRT

<213> Homo sapiens

<400> 13

Pro Val Asp Leu Ser Lys Trp Ser Gly Pro Leu
1 5 10