

Basic Kernel Methods

Statistical Methods for Machine Learning

Christian Igel Department of Computer Science

Mernel Perceptron

Kernel Nearest Neighbor

Representer Theorem

Kernel Perceptron

Kernel Nearest Neighbor

Representer Theorem

Perceptron learning algorithm

Algorithm 1: Kernel perceptron

```
Input: data \{(x_1,y_1),\dots\}\subseteq (\mathcal{X}\times\{-1,1\})^\ell, kernel k
Output: hypothesis h(x)=\mathrm{sgn}\left(\sum_{i=1}^\ell\alpha_iy_ik(x_i,x)\right)

1 \alpha\leftarrow 0
2 repeat
3 | for i=1,\dots,\ell do
4 | if y_i\sum_{j=1}^\ell\alpha_jy_jk(x_j,x_i)\leq 0 then
5 | \alpha_i\leftarrow\alpha_i+1
```

6 until no mistake made within for loop

Mernel Perceptron

Kernel Nearest Neighbor

Representer Theorem

κ -nearest neighbor (κ -NN)

Algorithm 2: κ -nearest neighbor

Input: kernel k, $\kappa \in \mathbb{N}^+$, data $\{(x_1,y_1),\dots\}\subseteq (\mathcal{X}\times\{-1,1\})^\ell$, new input x to be classified

Output: predicted label y of x

1
$$S = \{(x_1, y_1), \dots\}$$

2
$$S_{\kappa}=\emptyset$$

3 while
$$|S_{\kappa}| < \kappa$$
 do

4
$$S' \leftarrow \left\{ \operatorname{argmin}_{(x_i, y_i) \in S} \sqrt{k(x, x) - 2k(x, x_j) + k(x_j, x_j)} \right\}$$

$$S_{\kappa} \leftarrow S_{\kappa} \cup S'$$

$$\mathbf{6} \quad \mid \quad S \leftarrow S \setminus S'$$

Result:
$$y = \operatorname{sgn}\left(\frac{1}{|S_{\kappa}|} \sum_{(x_i, y_i) \in S_{\kappa}} y_i\right)$$

Mernel Perceptron

Kernel Nearest Neighbor

- **3** Representer Theorem
- 4 Regularization Networks

Representer theorem

Let $\Omega:[0,\infty[\to\mathbb{R}]$ be a strictly monotonic increasing function, \mathcal{H} a RKHS with kernel k on \mathcal{X} and L a loss function. Given $S=\{(x_1,y_1),\ldots,(x_\ell,y_\ell)\}\subset (\mathcal{X}\times\mathbb{R})^\ell$, each minimizer $f\in\mathcal{H}^b$ of the regularized empirical risk

$$\sum_{i=1}^{\ell} L(y_i, f(x_i)) + \Omega(\|f\|_k^2)$$

admits a representation of the form

$$f(x) = \sum_{i=1}^{\ell} \beta_i k(x_i, x) + b$$

with $\alpha_1, \ldots, \alpha_\ell, b \in \mathbb{R}$.

Proof of representer theorem

Projecting candidate solution onto span of training patterns

$$f(x) = f_{\parallel}(x) + f_{\perp}(x) + b = \sum_{i=1}^{\ell} \alpha_i k(x_i, x) + f_{\perp}(x) + b$$

$$\forall j \in \{1, \dots, \ell\} : f(x_j) = \langle f(\cdot), k(x_j, \cdot) \rangle + b$$

$$= \sum_{i=1}^{\ell} \alpha_i k(x_i, x_j) + \langle f_{\perp}(\cdot), k(x_j, \cdot) \rangle + b = \sum_{i=1}^{\ell} \alpha_i k(x_i, x_j) + b$$

$$\Omega\left(\left\|\sum_{i=1}^{\ell} \alpha_i k(x_i,.)\right\|_k^2 + \|f_{\perp}\|_k^2\right) \ge \Omega\left(\left\|\sum_{i=1}^{\ell} \alpha_i k(x_i,.)\right\|_k^2\right)$$

Mernel Perceptron

Kernel Nearest Neighbor

Representer Theorem

Regularization networks I

The squared loss function gives an empirical risk

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (y_i - f(x_i))^2 .$$

Applying Tikhonov regularization leads to regularized riks

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (y_i - f(x_i))^2 + \gamma ||f||^2$$

for $f \in \mathcal{H}$; we know there is a solution of the form

$$f(x) = \sum_{i=1}^{\ell} \alpha_i k(x_i, x) .$$

Regularization networks II

We have $\partial f(x)/\partial \alpha_i = k(x_i,x)$. Setting functional derivative of regularized loss to zero yields for all $i=1,\ldots,\ell$:

$$\frac{2}{\ell} \sum_{j=1}^{\ell} (y_j - f(x_j)) k(x_i, x_j) - 2\gamma \langle f, k(x_i, \cdot) \rangle = 0$$

$$\sum_{j=1}^{\ell} (y_j - f(x_j)) k(x_i, x_j) - \ell \gamma f(x_i) = 0$$

$$\sum_{j=1}^{\ell} \left[y_j - \sum_{m=1}^{\ell} \alpha_m k(x_m, x_j) \right] k(x_i, x_j) - \ell \gamma \sum_{l=1}^{\ell} \alpha_l k(x_l, x_i) = 0$$

$$\sum_{j=1}^{\ell} \left[y_j - \sum_{m=1}^{\ell} \alpha_m k(x_m, x_j) - \ell \gamma \alpha_j \right] k(x_i, x_j) = 0$$

Regularization networks III

$$\sum_{j=1}^{\ell} \left[y_j - \sum_{m=1}^{\ell} \alpha_m k(x_m, x_j) - \ell \gamma \alpha_j \right] k(x_i, x_j) = 0$$

for all i is fulfilled if for all j

$$y_j - \sum_{m=1}^{\ell} \alpha_m k(x_m, x_j) - \ell \gamma \alpha_j = 0$$

(which is necessary if k is strictly positive definite) In matrix form we have

$$\boldsymbol{y} - (\ell \gamma \boldsymbol{I} + \boldsymbol{K}) \boldsymbol{\alpha} = \boldsymbol{0}$$

Algorithm "almost magical for its simplicity and effectiveness" (Poggio & Smale, 2003)

Regularization networks IV

Algorithm 3: Regularization network

Input: kernel k, regularization parameter $\gamma \in \mathbb{R}^+$, data

$$\{(x_1,y_1),\ldots\}\subseteq (\mathcal{X}\times\mathbb{R})^\ell$$

Output: hypothesis $h(x) = \sum_{i=1}^{\ell} \alpha_i k(x_i, x)$

- 1 $y = (y_1, \dots, y_{\ell})^{\mathsf{T}}$
- 2 $I = \operatorname{diag}(1, \dots, 1) \in \mathbb{R}^{\ell \times \ell}$
- з $oldsymbol{K} \in \mathbb{R}^{\ell imes \ell}, [oldsymbol{K}]_{ij} = k(x_i, x_j)$
- 4 $\boldsymbol{\alpha} \leftarrow (\ell \gamma \boldsymbol{I} + \boldsymbol{K})^{-1} \boldsymbol{y}$

Summary

- Kernel trick leads to many simple, but effective algorithms
- Regularization networks algorithm is key learning method
- Minimizer of the regularized loss lies in the span of the kernels centered on the training points

References:

- B. Schölkopf and A. J. Smola, Learning with Kernels, MIT Press, 2002.
- T. Poggio and S. Smale, The mathematics of learning: Dealing with data. Notices of the American Mathematical Society, 50(5):537–544, 2003

