0.0.1 Splitting Fields

Definition 0.1 F field, $f(x) \in F[x]$ non-zero, a splitting field of f is a field extension E/F such that $f(x) = \alpha \Pi_i(x - \alpha_i)$, with $\alpha, \alpha_1, \alpha_2, ..., \alpha_n$ and $E = F(\alpha_1, ..., \alpha_n)$

F field, A, B rings [e.g. $A = F[x], F \to F[X]$]

$$A \xrightarrow{\phi} E$$

$$\downarrow_{i_A}^{i_B} \nearrow E$$

$$F$$

 $Hom_F(A, B) = \{\phi : A \to B \mid i_b = \phi i_A\}$

Proposition 0.2 $F \to F[x], F \to B$ any ring morphism.

 $Hom_F(F[x], B) \to [\cong]B$

 $\phi \mapsto \phi(x)$

Proof: Given $b \in B$, define $\phi_b : F[x] \to B$ by $\phi(\sum_{n=0}^m a_n x^n) = \sum_{n=0}^m a_n b^n$

Check ϕ_b is a ring morphism

Cor: Fix $f(x) \in F[X]$, then there is a bijection $Hom_F(\frac{F[x]}{f(x)}, B)$

TODO: Turn scratchwork into proof.

Scratchwork below [Also refer to video]

$$A \xrightarrow{\bar{\phi}_P} B$$

$$\downarrow_P \xrightarrow{\bar{\phi}} A/I$$

$$\phi(a+I) = \phi(a)$$

$$a + I = a' + I \implies a - a' \in I$$

So
$$\phi(a) = \phi(a')$$

$$A = F[x]$$

 \downarrow

$$\frac{F[X]}{f} \to B$$

Corollary 0.3 TODO: Write up from notes

Proof: $f(\alpha) = \frac{F[x]}{(f(x))}$, f min. poly of α

Cor: ANy two splitting fields $\frac{E_1}{F}$, and E_2/F of a poly $f(x) \in F[x]$ are F-isomorphic.

Proof: ETS there is an F-morphism $\phi: E_1 \to E_2$. Since then $[E_1:F] \leq [E_2:F]$ By symmetry there would be a map from E_2 to E_1 , so $[E_1:F] \geq [E_2:F]$

So ϕ will be an isomorphism.

Let $\alpha_1, ..., \alpha_n$ be the roots in E_1 of f, so $F(\alpha_1, ..., \alpha_n)$.

Assume by induction we abve $\phi_i: F(\alpha_1,..,\alpha_i) \to E_2$

$$F(\alpha_1, ..., \alpha_{i+1}) \supseteq F(\alpha_1, ..., \alpha_i) \rightarrow E_2$$

Let g(x) be the min poly of α_{i+1} over $F(\alpha_1,...,\alpha_i)$, then g|F. So there exists a root of $g \in E_2$, since F splits there.

User cor. to define ϕ_{i+1}

0.0.2 Computing the degree of a splitting field

1.
$$f(x) = x^3 - 2$$
 over \mathbb{Q} .
 $E = \mathbb{Q}()$

0.0.3 Lattice of subfields in F_{p^n}

X poset $x \leq y$

- 1) $Xset, P(X) = Y \subset Xsubset \ X \leq Y \iff Y \subset X$
- 2) V a vector space/F Subspaces $F(V) = \{W \leq V\}$
- 3) $F \subset K$ fields

Subfields_F(K) = $F \subseteq E \subset K$, E field

For all $m|n\exists ! subfield of \mathbb{F}_{p^n}$ which is isom to \mathbb{F}_{p^m}

Example $F_{p^1 2} \supseteq F_{p^6} F_{p^2} F_{p^4} F_{p^3} F_p$

Note:

$$F \subset E_1, E_2 \subset K$$
.

$$E_1 = E_2 \implies E_1 \cong E_2 \implies [E_1 : F] = [E_2 : F]$$

Converse not true, E.g. $\mathbb{Q}[\sqrt{2}], \mathbb{Q}[\sqrt{3}]$

•Look at $x^3 - 2$ over $\mathbb{Q} \sqrt[3]{2}$, $\sqrt[3]{2}\zeta$, $\sqrt[3]{2}\zeta^2 \in C$

$$\mathbb{Q}(\sqrt[3]{2}) \cong \mathbb{Q}(\sqrt[3]{2}\zeta)$$

$$\mathbb{Q}(\sqrt[3]{2}) \cong \mathbb{Q}[x]/(x^3 - 2) \cong \mathbb{Q}(\sqrt[3]{2}\zeta)$$

Fields are isom. but not equal.

$$\mathbb{F}_p^m = \{ a \in \mathbb{F}_{p^n} | a^{p^m} = a \}$$

Roots of $x^{p^n} - x$

Fixed points of $\phi^m = \phi \circ ... \phi(ntimes)$

 ϕ frobenius map $Def: E/F, \sigma: E \to E$ F-automomorphism. $(\sigma(a) = a \forall a \in F)$

$$E^{\sigma} = \{ a \in E | \sigma(a) = a \}$$

Note E^{σ} is a subfield of E, it contains F.

$$\sigma(1) = 1, \sigma(0) = 0$$

$$\sigma(a+b) = \sigma(a) + \sigma(b) = a+b \ \sigma(ab) = \sigma(a)\sigma(b) = ab$$

Def E/F field extension.

$$Aut(E/F) = \{\sigma : E \to E | \sigma \text{ auto} \}$$

This is a group. id_E , σ , $\tau \in Aut(E/F)$ so is $\sigma \circ \tau$.

Claim:
$$Aut(F_{p^n}) = \langle \phi \rangle \cong C_n$$

Pf: Let f be an irreducible polynomial of degree n.

$$\mathbb{F}_p[x]/(f) \cong \mathbb{F}_{p^n}$$

So all roots of f are in F_{p^n}

 $\alpha \mapsto \alpha_1, \alpha_n$ tf at most n automomorphism.