Enunciat de la pràctica de laboratori

Muntatge d'un microcontrolador sobre protoboard

Muntatge d'un microcontrolador sobre protoboard

L'objectiu d'aquesta pràctica és el muntatge complet d'un sistema microcontrolador senzill. El circuit haurà d'encendre un led connectat a un pin d'un port de sortida (PORT**B**) en funció de l'estat del pin d'un port d'entrada (PORT**A**) que canviarà a través del pulsament d'un botó. D'altra banda, pel PORT**C** generarem un senyal digital periòdic.

L'esquema del circuit es mostra en la figura 1.

Figura 1

S'utilitzarà el micro PIC18F45K22 i el circuit s'implementarà sobre una placa protoboard com la que vau fer servir a la sessió de Fonaments d'Electrònica. Per recordar els detalls del funcionament del protoboard, podeu revisar de nou el document que us vam proporcionar a Atenea: "Annex. Manual del Protoboard".

Figura 2

El protoboard, els components, els cables i les eines necessàries estaran disponibles al laboratori. També disposareu de font d'alimentació i oscil·loscopi pel correcte desenvolupament de la pràctica.

En acabar la pràctica l'alumne serà capaç de:

- Implementar un sistema microcontrolador a partir del xip i els components discrets necessaris.
- Utilitzar correctament la font d'alimentació i els equips d'instrumentació.
- Utilitzar correctament les eines de desenvolupament per a la generació de *firmware*.

El codi amb el que programarem el micro es mostra a continuació:

```
; DEFINITIONS
;-----
; RESET and INTERRUPT VECTORS
;-----
    ; Reset Vector
RST code 0x0
    goto Start
; CODE SEGMENT
PGM
Start
    MOVLB 0x0F ;Triem els bank 0F on hi ha els SFR CLRF ANSELA,1 ;Posem el PORTA en Digital CLRF ANSELC,1 ;Posem el PORTB en Digital ;Posem el PORTC en Digital
    SETF TRISA,1 ; PORTA INPUT
CLRF TRISB,1 ; PORTB OUTPUT
CLRF TRISC,1 ; PORTC OUTPUT
CLRF PORTC,1 ; PORTC INIT a 0
Loop
    INCF PORTC, 1 ;Incrementar el registre associat a PORTC
    MOVF PORTA, 0, 1 ; W=PORTA
    MOVWF PORTB, 1 ; PORTB=W
    NOP
                  ;No Operation
    NOP
                  ;No Operation
    goto Loop
;-----
    END
```

Treball previ

(temps aproximat: 3 hores)

- Entendre el funcionament del circuit a partir de l'esquema electrònic, així com el codi lliurat.
- Implementar el circuit de la Figura 1 sobre Proteus.
- Ensamblar el programa usant Proteus.
- Simular el funcionament del circuit sobre Proteus. Fer servir el *debugger* i comprovar que el contingut dels registres involucrats al programa s'actualitza correctament.
- Introduir un oscil·loscopi virtual en el disseny Proteus i connectar-hi un canal al pin 0 del PORTC. Mesurar la freqüència del senyal generat, així com la duració dels 2 semiperíodes (si tanqueu la finestra de l'oscil·loscopi, podeu tornar a recuperar-la anant al menú Debug→Digital Oscilloscope). Comprovar si el senyal és simètric o no i justificar-ho a partir del codi.

En un senyal digital periòdic, els semiperíodes son els espais de temps dins del període en què el senyal està a 0 o a 1, tal com es veu a la figura 3. Si el semiperíode de 0 té la mateixa duració que el semiperíode de 1, es diu que el senyal és simètric.

- Revisar el document explicatiu del protoboard: "Annex. Manual del Protoboard"
- Contesteu les preguntes del Full d'Entrega que trobareu al final d'aquest document.

Entregueu el projecte Proteus (fitxer amb extensió .pdsprj) pel Racó, abans de la vostra sessió de pràctiques. Per a garantir compatibilitats de versions, us suggerim que treballeu directament amb el Proteus instal·lat als ordinadors de la FIB, o bé assegureu-vos que treballeu amb la mateixa versió que hi ha als laboratoris: v8.4 SP0.

Treball a realitzar al laboratori

- Abans de l'inici de classe penjar el Full d'Entrega al racó (el teniu al final d'aquest document).
- A l'inici de la classe demostrar al professor la pràctica funcionant sobre el simulador.
- Implementació física del circuit de la figura 1 sobre la protoboard.

Nota important sobre el muntatge:

La tensió d'alimentació V_{CC} l'obtindrem d'una font d'alimentació. Haurem d'ajustar la font per a que ens doni una tensió de **5 Volts**.

NO ENGEGUEU LA FONT D'ALIMENTACIÓ FINS QUE EL PROFESSOR US DONI EL VIST-I-PLAU!

A part del circuit que veiem a la figura 1, hem de fer les connexions necessàries amb els pins d'alimentació del PIC. El Proteus no ens mostra els diferents pins d'alimentació del micro, però son els següents:

- Pins 11 i 32: tots dos s'han de connectar a V_{CC} (és la tensió positiva d'alimentació; també es pot anomenar V_{DD}). Normalment, fem les seves connexions amb cables de color vermell.
- Pins 12 i 31: tots dos s'han de connectar a GND (és la referència de 0 Volts d'alimentació, o GROUND; també es pot anomenar V_{SS}). Normalment, farem les seves connexions amb cables de color negre.

Cal ser extremadament cuidadós amb les connexions dels diferents pins d'alimentació.

Una tensió incorrecta, o connectar l'alimentació al revés pot causar la destrucció dels components !!!

MCLR/Vpp/RE3 [RA0 [RA1] RA2 [RA3] RA4 [RA5 [RE0 [RE1] Vbb [Vss [RA7 [RA6 [RC0	3 4 5 6 7 8 9 10 11 12 13 14 15	HIC18(L)F4XK222 39 38 36 35 32 32 28 29 29 26 26	R87/PGD R86/PGC R85 R84 R83 R82 R81 R80 V0D VSS RD7 RD6 RD6 RD5
RA7 RA6	13 14	29 28 27 26 25 24 23 22 21	RD5

Figura 4. Disposició física dels pins al PIC18F45K22. En gairabé tots els xips, la numeració dels pins comença a dalt a l'esquerra (acostuma a haver-hi un xanflà, o un punt indicant el primer pin), continua cap a baix i després segueix cap a la dreta, tornant a pujar cap a dalt on estarà l'últim pin.

Recordeu que la disposició dels pins físicament en el microcontrolador no té per què coincidir amb la disposició dels mateixos en l'esquemàtic de Proteus.

- Execució del programa i funcionament del circuit de forma autònoma sobre protoboard.
- Comprovació dels senyals d'E/S usant l'oscil·loscopi.

Full d'entrega

Muntatge d'un micro sobre protoboard. TREBALL PREVI.

Noms: ____Bernat Borràs i Miquel Torner_____ Grup: ___13___

- 1- A quina **escala** (i.e. volts/div) heu ajustat l'amplitud del canal en què visualitzeu el senyal (PORTC) en l'oscil·loscopi?
- 2.5 V/div
- 2- A quina **base de temps** (i.e. temps/div) heu ajustat l'oscil·loscopi per a tenir una bona resolució per mesurar el període al pin RCO?
- 12,5 microsegons/div
- 3- Quina és la **freqüència** del senyal generat al pin RC0?
- 16 MHz
- 4- Mesura la **freqüència** per la resta de pins del PORTC.

5- Com modificaríeu el projecte si volguéssiu invertir el funcionament del led (apagat amb el botó premut i encès quan el botó no ho estigui). Proposeu tres solucions, dues per hardware, modificant el connexionat dels components de la Figura 1 (dibuixeu l'esquema) i l'altre per software, tot mantenint l'esquema de l'enunciat (escriviu el codi).


```
; Reset Vector
RST code 0x0
    goto Start
; CODE SEGMENT
PGM code
Start
     MOVLB 0x0F
                   Triem els bank OF on hi ha els SFR
     CLRF ANSELA, 1 ; Posem el PORTA en Digital
     CLRF ANSELB,1 ;Posem el PORTB en Digital
     CLRF ANSELC, 1 ; Posem el PORTC en Digital
     SETF TRISA, 1
                   ; PORTA INPUT
     CLRF TRISB,1
                   ; PORTB OUTPUT
     CLRF TRISC,1 ; PORTC OUTPUT
     CLRF PORTC,1 ; PORTC INIT a 0
Loop
     INCF PORTC, 1 ;Incrementar el registre associat a PORTC MOVF PORTA, 0, 1 ;W=PORTA
     XORLW 1 ;ACTIVAR AQUESTA LINEA PER INVERTIR EL FUNCIONAMENT
     MOVWF PORTB, 1 ; PORTB=W
     NOP
                    ;No Operation
     NOP
                    ;No Operation
     goto Loop
    END
```


6- Dibuixeu a sobre de la següent figura totes les connexions i tots els components necessaris per fer l'esquema de la Figura 1.

