

9 脉冲波形的变换与产生

- 9.1 单稳态触发器
- 9.2 施密特触发器
- 9.3 多谐振荡器

TEST TO THE TEST OF THE TEST O

数字电路与逻辑设计 第9章 脉冲波形的变换与产生

> 张江山 zhangjs@hust.edu.cn 信息工程系

10,0,11

★电子信息与通信学院

2/18

A电子信息与通信学院 SCHOOL OF ELECTRONIC INFORMATION AND COMMUNICATIONS

9.1 单稳态触发器

双稳态电路:锁存器和触发器有两个稳定的状态(0,1),在外来信号作用下,可以从一个稳定状态变化到另一个稳定状态

单稳态触发器的工作特点:

- ① 一个稳态,一个暂稳态,在没有触发信号作用时处于稳态
- ② 在有效脉冲沿作用下,由稳态翻转至暂稳态
- ③ 暂稳态维持一定时间后, 自动回到稳态, 暂稳态维持时间取决于 RC 参数

9.1.1 CMOS 门电路组成微分型单稳态触发器

- (1) v₁=0 无触发, v₀=0 处于稳态
- $(2) \ v_1 = 1 \ \text{触发}, \ \ v_0 = 1 \ \text{进入暂稳态}$ $\bullet v_1 = 1 \ o v_d = 1 \ o v_{01} = 0 \ o v_{12} = 0 \ o v_0 = 1$ $\bullet C_d \ \text{和} \ C \ \text{开始充电}$
- (3) C 充电至 $v_{12} > 2.5 \text{ V}$, $v_0 = 0$ 回至稳态
 - • $v_0 = 0 \rightarrow v_{01} = 1 \rightarrow v_{12} = 7.5 \text{ V}$

9.1.1 CMOS 门电路组成微分型单稳态触发器

2. 主要参数计算

(1) 输出脉冲宽度 t_w

触发后,RC 充电过程决定暂稳态维持时间,设输出脉冲宽度 t_w

电容过渡过程全响应: $v_{\rm C}(t) = v_{\rm C}(0_+) e^{-\frac{t}{\tau}} + v_{\rm C}(\infty) (1 - e^{-\frac{t}{\tau}})$

 $t_{
m w}$ 是 $v_{
m 12}$ 从 $0{ o}V_{
m TH}$ 的时间 $t_{
m w}$ = $RC\lnrac{v_{
m C}(\infty)-v_{
m C}(0)}{v_{
m C}(\infty)-V_{
m TH}}$

将 $v_{\rm C}(0^+) = 0$, $v_{\rm C}(\infty) = V_{\rm DD}$, $\tau = RC$, $V_{\rm TH} = V_{\rm DD}/2$ 代入

得: $t_w = RC \ln 2 = 0.7RC$

- (2) 恢复时间 $t_{\rm re}$, 约为 $3 \sim 5\tau$
- (3) 最高工作频率 $f_{\text{max}} = \frac{1}{T_{\text{min}}} < \frac{1}{t_{\text{ty}} + t_{\text{max}}}$

A 电子信息与通信学院

9.1.1 CMOS 门电路组成微分型单稳态触发器

3. 讨论

(1) 保护措施

 v_{12} = $V_{\rm TH}$ = $0.5V_{\rm DD}$ 瞬间,正反馈使 $v_{\rm O1}$ = $V_{\rm DD}$, v_{12} = $1.5V_{\rm DD}$,可能损坏 ${
m MOS}$ 管

内加二极管钳位 $v_{12} \le V_{DD} + 0.7V$

由此恢复时间也缩短

(2) 为改善波形,可加反相器作为输出缓冲

▲ 电子信息与通信学院

9.1.2 集成单稳态触发器

集成单稳态触发器分为可重复触发和不可重复触发两种

↑ 触发的不可重复触发器

触发后,暂稳态期间不能被重新触发,输出脉宽不受其影响,仍为 t_w

↓ 触发的可重复触发器

触发后,暂稳态期间可被重新触发,输出脉冲在新触发后再延迟 t_{w}

▲电子信息与通信学院

7/18

9.1.3 单稳态触发器应用

单稳态触发器可用于定时、延时、测频

只有在暂稳态1时,才有输出脉冲

▲电子信息与通信学院

9.2 施密特触发器

施密特触发器电压传输特性及工作特点

- ① 施密特触发器是电平触发器
- ② 输入信号增或减时,分别有正阈值 (V_{T+}) 或负阈值电压 (V_{T-})

▲电子信息与通信学院

9.2.1 用门电路组成施密特触发器

1. 电路组成

CMOS 门组成的同相施密特触发器

 $v_{11} = V_{TH} = \frac{R_2}{R_1 + R_2} \cdot V_{T+}$

 $V_{\text{T+}} = \left(1 + \frac{R_1}{R_2}\right) V_{\text{TH}}$

 $V_{\mathrm{T+}}$: v_{II} 增至 V_{TH} 时,所对应 v_{I} 的值

2. 工作原理

设 $V_{\text{TH}} \approx 0.5 V_{\text{DD}}$, $R_1 < R_2$

ν, 为三角波

v₁₁ 决定电路状态 由叠加原理

$$v_{11} = \frac{R_2}{R_1 + R_2} \cdot v_1 + \frac{R_1}{R_1 + R_2} \cdot v_0$$

 $v_{\rm I}=0$, $v_{\rm O}=0$, $v_{\rm II}=0$

①
$$v_1 \nearrow$$
, 只要 $v_{11} < V_{TH}$, $v_0 = 0$ $v_{11} = \frac{R_2}{R_1 + R_2} \cdot v_1 + 0$

② 当 $v_{\text{II}} = V_{\text{TH}}$, 电路输出发生跳变, 即 $v_{\text{O}} = 1$

A.电子信息与通信学院

10/18

9.2.1 用门电路组成施密特触发器

2. 工作原理

$$v_{11} = \frac{R_2}{R_1 + R_2} \cdot v_1 + \frac{R_1}{R_1 + R_2} \cdot v_0$$

$$V_{\text{T+}} = \left(1 + \frac{R_1}{R_2}\right) V_{\text{TH}}$$

$$4 v_{\text{II}} = V_{\text{TH}}$$
, 电路输出发生跳变, 即 $v_{\text{O}} = 0$

$$V_{11} = V_{TH} = \frac{R_2}{R_1 + R_2} \cdot V_{T-} + \frac{R_1}{R_1 + R_2} \cdot V_{DD}$$

$$V_{\rm DD} \approx 2V_{\rm TH}$$
 代入

$$V_{\rm T-} = \left(1 - \frac{R_1}{R_2}\right) V_{\rm TH}$$

$$AV = V - V$$

$$\approx 2 \frac{R_1}{R_2} V_{TH} = \frac{R_1}{R_2} V_{DD}$$

全 子信息与通信学院

9.2.3 施密特触发器的应用

施密特触发器可用于整形、抗干扰等波形变换

\电子信息与通信学院

9.3 多谐振荡器

概述

- ●振荡器: 是上电自动产生周期性振荡波形的电路
- ●多谐振荡器:又称矩形波发生器,有两个暂稳态,无稳态
- ●多谐振荡器由开关器件和 RC 电路组成

★包含信息与通信学院

1. 电路组成及工作原理

9.3.1 由 CMOS 门电路组成的多谐振荡器

 G_{1} $+V_{
m DD}$ CMOS门电路组成的多谐振荡器 $\mathbf{D}_{\mathbf{1}}\mathbf{\Delta}$ R D.

A.电子信息与通信学院

14/18

9.3.1 由 CMOS 门电路组成的多谐振荡器

1. 电路组成及工作原理

① 第一暂稳态

t = 0 时, $v_1 = 0$, $v_{01} = 1$, $v_0 = 0$ 此时 $v_c = 0$, 电容开始充电 电容充电至 $v_{\rm C} = V_{\rm TH}$ 时, $v_{\rm I} = V_{\rm TH}$, 反向器输出反转 $v_0 = V_{DD}$, 进入第二暂稳态

在反转瞬间 $v_{\rm C} = V_{\rm TH} = 2.5 \, \rm V$,故 $v_{\rm I}$ 瞬间被抬高至 7.5 $\rm V$ 由于 D_1 的钳位作用,使 $v_1 = V_{DD} + 0.7V$, $v_0 = 3.2V$ 电容开始放电至 $v_C = 0.7 \text{ V}$, $v_O = 5 \text{ V}$, 电路进入第二暂稳态

★包含信息与通信学院

15/18

13/18

9.3.1 由 CMOS 门电路组成的多谐振荡器

1. 电路组成及工作原理

② 第二暂稳态 $v_{\rm C} = 0.7 \text{ V}$, $v_{\rm O} = V_{\rm DD}$, $v_{\rm I} = V_{\rm DD} + 0.7 \text{ V}$

电容开始放电再反向充电 电容反向充电至 $v_{\rm C} = -V_{\rm TH}$ 时, $v_{\rm I} = V_{\rm TH}$,反向器输出反转

 $v_0 = 0$,回到第一暂稳态

在反转瞬间 $v_{\rm C}$ = - $V_{\rm TH}$ = -2.5 V ,故 $v_{\rm I}$ 瞬间被降至 -2.5 V 由于 D_2 的钳位作用,使 $v_1 = 0 - 0.7V$, $v_0 = 1.8 V$ 电容开始放电至 $v_C = -0.7 \text{ V}$, $v_O = 0 \text{ V}$, 电路回到第一暂稳态

A.电子信息与通信学院

9.3.1 由 CMOS 门电路组成的多谐振荡器

- ① 第一暂稳态开始, $v_0 = 0$, $v_I = v_C = -0.7V$ 电容充电, 使 v_1 升至 V_{TH} , 电路输出状态翻转至第二暂稳态, $v_0 = 1$
- ② 第二暂稳态开始, $v_0 = 1$, $v_C = 0.7V$, $v_I = v_0 + v_C = V_{DD} + 0.7V$ 电容放电再反向充电,使 $v_{\rm I}$ 降至 $V_{\rm TH}$,电路又翻转至第一暂稳态, $v_{\rm O}$ = 0

9.3.2 由施密特触发器构成波形产生电路

1. 工作原理

上电时, $v_C = 0 < V_{T-}, v_O = 1$

- ① 暂稳态 I: $v_0 = 1$, 对 C 充电, v_c
- ② 自动翻转 $I: \, \exists \, v_C > V_{T+}, \, v_O = 0$
- ③ 暂稳态 II: v₀=0, C 放电, v_c\
- ④ 自动翻转 II: 当 $\nu_{\rm C} < V_{\rm T}$, $\nu_{\rm O} = 1$, 又进入暂稳态 I

周而复始, 在两个暂稳态之间交 替变换,输出矩形波。

A.电子信息与通信学院

★电子信息与通信学院

17/18