PAT-NO:

JP02000134531A

DOCUMENT-IDENTIFIER:

JP 2000134531 A

TITLE:

IMAGE PICKUP DEVICE, ITS CONTROLLING METHOD

AND STORAGE

MEDIUM

PUBN-DATE:

May 12, 2000

INVENTOR-INFORMATION:

NAME

COUNTRY

KOIDE, YUJI

N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

CANON INC

N/A

APPL-NO:

JP10306069

APPL-DATE:

October 27, 1998

INT-CL (IPC): H04N005/232, H04N005/225

ABSTRACT:

PROBLEM TO BE SOLVED: To provide an image pickup device which immediately photographs a new image according to a photographing instruction from a user even while image data is transmitted from the image pickup device to a computer.

SOLUTION: This device contains <u>image</u> picking up parts 101 to 105, a signal processing part 106 which converts an <u>image</u> signal outputted from the <u>image</u> picking up parts into digital <u>image</u> data, a transmission data generating part 107 which divides the digital <u>image</u> data into data of a prescribed size and generates plural transmission packets, <u>switches</u> SW1 and SW2 with which a user

instructs a photographing preparation operation or a photographing operation, a

controlling part 115 which <u>interrupts the transmission</u> of the transmission

packets when the <u>switches</u> are operated in the middle of successively transmitting the plural transmission packets to the outside and controls so as

to continuously transmit untransmitted transmission packets among the plural

transmission packets when the switch operation is finished and an interrupt

signal outputting part 112 which transmits a signal showing that a transmission

operation is in the middle of being interrupted to a computer 103 while the.

transmission of the transmission packets is interrupted.

COPYRIGHT: (C) 2000, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出國公開番号 特開2000-134531 (P2000-134531A)

(43)公開日 平成12年5月12日(2000.5.12)

(51) IntCl'

鎮別配号

ΡI

ターヤフード(参考)

HO4N 5/232

5/225

H 0 4 N 5/232

Z 5C022

5/225

F

審査請求 未請求 請求項の数14 OL (全 11 頁)

(21) 出版番号

特謝平10-306069

(71)出剧人 000001007

キヤノン株式会社

(22)出版日 平成10年10月27日(1998.10.27)

イヤノン株式会在

東京都大田区下丸子3丁目30番2号

(72) 発明者 小出 裕司

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 100076428

弁理士 大禄 康徳 (外2名)

Pターム(参考) 50022 AA13 AC32 AC42 AC52 AC69

(54) 【発明の名称】 操像装置及びその制御方法及び記憶媒体

(57)【要約】

【課題】画像データを操像装置からコンピュータに送信している間でも、ユーザーからの撮影指示によってすぐ に新たな画像を撮影できる操像装置を提供する。

【解決手段】 操係部101~105と、操係部から出力された画像信号をディジタル画像データに突換する信号処理部106と、ディジタル画像データを所定の大きさのデータに分割して、複数の送信パケットを生成する送信データ生成部107と、ユーザーが撮影準偏動作るいは撮影動作を指示するスイッチSW1、SW2と、複数の送信パケットを順次外部に送信中に、スイッチが操作されたときに、送信パケットの送信を中断し、スイッチが持作されたときに、送信パケットの送信を中断し、スイッチがも制御部115と、送信パケットの送信の中断中に、送信動作の中断中であることを示す信号をコンピュータ103に送信する中断信号出力部112とを具備する。

【特許請求の範囲】

【請求項1】 被写体を振像して画像信号を出力する撮 像手段と、

該協催手段から出力された画像信号をディジタル画像デ ータに変換する信号処理手段と、

前記ディジタル画像データを所定の大きさのデータに分 割して、分割されたそれぞれのデータについての複数の 送信パケットを生成する送信データ生成手段と、

ユーザーが撮影準備動作あるいは撮影動作を指示する入 力手段と、

前記複数の送信パケットを順次外部に送信中に、前記入 力手段が操作されたときに、前記送信パケットの送信を 中断し、前記入力手段の操作が終了したときに、前記複 数の送信パケットの内の未送信の送信パケットを続けて 送信するように制御する制御手段と、

前記送信パケットの送信の中断中に、送信動作の中断中 であることを示す信号を前記画像データの送信相手先に 送信する中断信号出力手段とを具備することを特徴とす る操像装置、

【請求項2】 被写体を提像して画像信号を出力する提 20 像手段と、

該

最後

手段

から出力

された

画像

信号を

ディジタル

画像

デ ータに変換する信号処理手段と、

扱影処理中に前記ディジタル画像データを一時的に保持 する撮影用メモリと、

前記ディジタル画像データを記録する記録手段と、

ユーザーが撮影準備動作あるいは撮影動作を指示する入 力手段と、

外部から送信要求がきたときに、前記撮影用メモリある 大きさのデータに分割した送信パケットか、あるいは送 信の準備ができていないことを表わす送信準備未完了信 号のどちらかを送信する送信手段とを具備し、

ユーザーからの撮影準備の指示あるいは撮影の指示を受 けていないときで、且つ撮影処理を行っていないとき に、外部からの送信要求がきたときは、前記メモリある いは前記記録手段に保持されたディジタル画像データか ら作成した送信パケットを外部に送信し、

ユーザーからの撮影準備の指示あるいは撮影の指示を受 けているとき、あるいは撮影処理を行っているときに、 外部からの送信要求がきたときは、送信準備未完了信号 を送信することを特徴とする撮像装置。

【請求項3】 送信のためにディジタル画像データを一 時的に展開するためのメモリである送信データ展開用メ モリを備え、且つ、該送信データ展開用メモリと前記規 影用メモリとを共有し、前記送信データ展開用メモリを 確保している状態でユーザーからの撮影準備の指示ある いは撮影の指示を受けた場合、送信データ展開用メモリ を開放して撮影用メモリを確保することを特徴とする請 末項1に記載の提像装置。

【請求項4】 ディジタル画像データを外部に送信して いるときに、ユーザーからの撮影準備の指示あるいは撮 影の指示を受けた場合、その時点で送信が完丁した送信 パケットの量を記憶し、前記送信データ展開用メモリを 開放し、ユーザーからの撮影指示によって撮影処理を行 い、その後再び送信データ展開用メモリを確保し、送信 準備が完了した後に来た外部からの送信要求に対して、 未送信の送信パケットから順次送信することを特徴とす る請求項2に記載の提像装置。

【請求項5】 ユーザーからの撮影準備の指示を受けた 10 ときに、撮影準備中であることを外部に通知し、ユーザ ーからの撮影の指示を受けて撮影処理中であるときに、 撮影処理中であることを外部に通知することを特徴とす る請求項1に配載の撮像装置。

【請求項6】 撮影によって新しいディジタル画像デー クあるいは圧縮した画像データを作成したときは、新し い画像データを作成したことを外部に通知することを特 徴とする請求項1に記載の撮像装置。

【請求項7】 被写体を摄像して画像信号を出力する撮 像手段と、該提像手段から出力された画像信号をディジ タル画像データに変換する信号処理手段と、前記ディジ タル画像データを所定の大きさのデータに分割して、分 **割されたそれぞれのデータについての複数の送信パケッ** トを生成する送信データ生成手段と、ユーザーが撮影準 偏動作あるいは撮影動作を指示する入力手段とを具備す る損像装置の制御方法であって、

前記複数の送信パケットを順次外部に送信中に、前記入 力手段が操作されたときに、前記送信パケットの送信を 中断し、前記入力手段の操作が終了したときに、前記技 いは前記記録手段から読み出された画像データを所定の 30 数の送信パケットの内の未送信の送信パケットを続けて 送信する送信工程と、

> 前記送信パケットの送信の中断中に、送信動作の中断中 であることを示す信号を前記画像データの送信相手先に 送信する中断信号出力工程とを具備することを特徴とす る操像装置の制御方法。

【請求項8】 被写体を擬像して画像信号を出力する提 像手段と、該摄像手段から出力された画像信号をディジ タル画像データに変換する信号処理手段と、撮影処理中 に前記ディジタル画像データを一時的に保持する撮影用 40 メモリと、前記ディジタル画像データを記録する記録手 段と、ユーザーが撮影準備動作あるいは撮影動作を指示 する入力手段と、外部から送信要求がきたときに、前記 撮影用メモリあるいは前記記録手段から読み出された画 像データを所定の大きさのデータに分割した送信パケッ トか、あるいは送信の準備ができていないことを表わす 送信準備未完了信号のどちらかを送信する送信手段とを 具備する提倡装置の制御方法であって、

ユーザーからの撮影準備の指示あるいは撮影の指示を受 けていないときで、且つ撮影処理を行っていないとき

50 に、外部からの送信要求がきたときは、前記メモリある

いは前記配録手段に保持されたディジタル画像データから作成した送信パケットを外部に送信し、

ユーザーからの撮影準備の指示あるいは撮影の指示を受けているとき、あるいは撮影処理を行っているときに、外部からの送信要求がきたときは、送信準備未完了信号を送信することを特徴とする場像装置の制御方法。

【請求項9】 前配提像装置は、送信のためにディジタ ル面像データを一時的に展開するためのメモリである送 信データ展開用メモリを備え、且つ、該送信データ展開 用メモリと前記操影用メモリとを共有し、前記送信デー 10 夕展開用メモリを確保している状態でユーザーからの提 影準備の指示あるいは撮影の指示を受けた場合、送信デ ータ展開用メモリを開放して撮影用メモリを確保するこ とを特徴とする請求項8に記載の撮像装置の制御方法。 【請求項10】 ディジタル画像データを外部に送信し ているときに、ユーザーからの撮影準備の指示あるいは 撮影の指示を受けた場合、その時点で送信が完了した送 信パケットの量を記憶し、前記送信データ展開用メモリ を開放し、ユーザーからの撮影指示によって撮影処理を 行い、その後再び送信データ展開用メモリを確保し、送 20 信準備が完了した後に来た外部からの送信要求に対し て、未送信の送信パケットから順次送信することを特徴 とする請求項9に記載の振像装置の制御方法。

【請求項11】 ユーザーからの撮影準備の指示を受けたときに、撮影準備中であることを外部に通知し、ユーザーからの撮影の指示を受けて撮影処理中であるときに、撮影処理中であることを外部に通知することを特徴とする請求項8に記載の操像装置の制御方法。

【請求項12】 撮影によって新しいディジタル画像データあるいは圧縮した画像データを作成したときは、新 30 しい画像データを作成したことを外部に通知することを特徴とする請求項8に記載の撮像装置の制御方法。

【請求項13】 被写体を協像して画像信号を出力する 振像手段と、該協像手段から出力された画像信号をディ ジタル画像データに変換する信号処理手段と、前記ディ ジタル画像データを所定の大きさのデータに分割して、 分割されたそれぞれのデータについての複数の送信パケットを生成する送信データ生成手段と、ユーザーが撮影 準備動作あるいは撮影動作を指示する入力手段とを具備 する撮像装置を制御するための制御プログラムを記憶し 40 た記憶媒体であって、前記制御プログラムが、

前記複数の送信パケットを順次外部に送信中に、前記入力手段が操作されたときに、前記送信パケットの送信を中断し、前記入力手段の操作が終了したときに、前記複数の送信パケットの内の未送信の送信パケットを続けて送信する送信工程のコードと、

前記送信パケットの送信の中断中に、送信動作の中断中であることを示す信号を前記画像データの送信相手先に送信する中断信号出力工程のコードとを具備することを特徴とする記憶媒体。

4

【請求項14】 被写体を撮像して画像信号を出力する 撮像手段と、鼓提像手段から出力された画像信号をディ ジタル面像データに交換する信号処理手段と、撮影処理 中に前記ディジタル面像データを一時的に保持する撮影 用メモリと、前記ディジタル面像データを記録する記録 手段と、ユーザーが撮影準備動作あるいは撮影動作を指 示する入力手段と、外部から送信要求がきたときに、前 記塡影用メモリあるいは前記記録手段から読み出された 画像データを所定の大きさのデータに分割した送信パケ ットか、あるいは送信の準備ができていないことを表わ す送信準備未完了信号のどちらかを送信する送信手段と を具備する提係装置を制御するための制御プログラムを 記憶した記憶媒体であって、前記制御フログラムが、 ユーザーからの撮影準備の指示あるいは撮影の指示を受 けていないときで、且つ撮影処理を行っていないとき に、外部からの送信要求がきたときは、前記メモリある いは前記記録手段に保持されたディジタル面像データか ら作成した送信パケットを外部に送信する工程のコード ٤. ٠

0 ユーザーからの撮影準備の指示あるいは撮影の指示を受けているとき、あるいは撮影処理を行っているときに、 外部からの送信要求がきたときは、送信準備未完了信号を送信する工程のコードとを具備することを特徴とする 記憶媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、画像信号を外部に 送信可能な振像装置及びその制御方法及び記憶媒体に関 するものである。

[00002]

【従来の技術】ディジタルカメラなどの撮像装置においては、CCDなどの撮像素子で撮影された面像信号を、A/D変換器および信号処理手段によってディジタル画像信号に圧縮手段像信号に変換する。このディジタル画像信号に圧縮手段によってJPEGなどの圧縮処理を施し、面像ファイルにしてメモリカードなどの記録手段に保存する。

[0003]

【発明が解決しようとする課題】ところで、操像装置と コンピュータとをRS232CやUSBなどのケーブル 0 で接続して、メモリカードに保存された画像ファイルを 操像装置からコンピュータに透信することがある。

【0004】従来の撮像装置においては、面像ファイルを送信している間は、送信処理を優先していたため、ユーザーがシャッターを押しても即時に新たな画像を撮影することができないという問題点があった。

【0005】従って、本発明は上述した課題に鑑みてなされたものであり、その目的は、面像データを撮像装置からコンピュータに送信している間でも、ユーザーからの撮影指示によってすぐに新たな画像を提影できる撮像 50 装置及びその制御方法及び記憶媒体を提供することであ å.

【0006】また、本発明の他の目的は、摄像装置が撮影のために画像データの送信を中断しても、コンピュータが送信処理が失敗したと判断しない場像装置及びその制御方法及び記憶媒体を提供することである。

【0007】また、本発明のさらに他の目的は、余分な メモリを必要としないで、撮影指示によってすぐに新た な画像を撮影できる操像装置及びその削御方法及び記憶 媒体を提供することである。

【0008】また、本発明のさらに他の目的は、撮影に 10よって画像データの送信が中断され、その後送信を再開する際に、画像データの最初から送信しなおすことなく、中断されたデータから送信を再開することができる 最優装置及びその制御方法及び記憶媒体を提供することである。

[0009]

【課題を解決するための手段】上述した課題を解決し、 目的を達成するために、本発明に係わる操像装置は、被 写体を撮像して画像信号を出力する提像手段と、眩摄像 手段から出力された画像信号をディジタル画像データに 20 変換する信号処理手段と、前記ディジタル画像データを 所定の大きさのデータに分割して、分割されたそれぞれ のデータについての複数の送信パケットを生成する送信 データ生成手段と、ユーザーが撮影準備動作あるいは提 影動作を指示する入力手段と、前記複数の送信パケット を順次外部に送信中に、前記入力手段が操作されたとき に、前記送信パケットの送信を中断し、前記入力手段の 操作が終了したときに、前記複数の送信パケットの内の 未送信の送信パケットを続けて送信するように制御する 制御手段と、前記送信パケットの送信の中断中に、送信 30 動作の中断中であることを示す信号を前記画像データの 送信相手先に送信する中断信号出力手段とを具備するこ とを特徴としている。

【0010】また、本発明に係わる緑像装置は、被写体 を操像して画像信号を出力する操像手段と、該提像手段 から出力された画像信号をディジタル画像データに変換 する信号処理手段と、攝影処理中に前記ディジタル画像 データを一時的に保持する撮影用メモリと、前記ディジ タル画像データを記録する記録手段と、ユーザーが撮影 準備動作あるいは撮影動作を指示する入力手段と、外部 40 から送信要求がきたときに、前記撮影用メモリあるいは 前記記録手段から読み出された画像データを所定の大き さのデータに分割した送信パケットか、あるいは送信の 準備ができていないことを表わす送信準備未完了信号の どちらかを送信する送信手段とを具備し、ユーザーから の撮影準備の指示あるいは撮影の指示を受けていないと きで、且つ撮影処理を行っていないときに、外部からの 送信要求がきたときは、前記メモリあるいは前記記録手 段に保持されたディジタル画像データから作成した送信

示あるいは撮影の指示を受けているとき、あるいは撮影 処理を行っているときに、外部からの送信要求がきたと きは、送信準備未完了信号を送信することを特徴として いる。

【0011】また、この発明に係わる撮像装置におい て、送信のためにディジタル面像データを一時的に展開 するためのメモリである送信データ展開用メモリを備 え、且つ、該送信データ展開用メモリと前記撮影用メモ リとを共有し、前記送信データ展開用メモリを確保して いる状態でユーザーからの撮影準備の指示あるいは撮影 の指示を受けた場合、送信データ展開用メモリを開放し て撮影用メモリを確保することを特徴としている。 【0012】また、この発明に係わる撮像装置におい て、ディジタル画像データを外部に送信しているとき に、ユーザーからの撮影準備の指示あるいは撮影の指示 を受けた場合、その時点で送信が完了した送信パケット の量を記憶し、前記送信データ展開用メモリを開放し、 ユーザーからの撮影指示によって撮影処理を行い、その 後再び送信データ展開用メモリを確保し、送信準備が完 了した後に来た外部からの送信要求に対して、未送信の 送信パケットから順次送信することを特徴としている。 【0013】また、この発明に係わる撮像装置におい て、ユーザーからの撮影準備の指示を受けたときに、提 影準備中であることを外部に通知し、ユーザーからの撮 影の指示を受けて撮影処理中であるときに、撮影処理中 であることを外部に通知することを特徴としている。 【0014】また、この発明に係わる提係装置におい て、撮影によって新しいディジタル画像データあるいは 圧縮した画像データを作成したときは、新しい画像デー タを作成したことを外部に通知することを特徴としてい る.

【0015】また、本発明に係わる撮像装置の制御方法 は、被写体を操像して画像信号を出力する撮像手段と、 **該掃像手段から出力された画像信号をディジタル画像デ** ータに変換する信号処理手段と、前記ディジタル面像デ ータを所定の大きさのデータに分割して、分割されたそ れぞれのデータについての複数の送信パケットを生成す る送信データ生成手段と、ユーザーが撮影準備動作ある いは撮影動作を指示する入力手段とを具備する撮像装置 の制御方法であって、前記複数の送信パケットを順次外 部に送信中に、前記入力手段が操作されたときに、前記 送信パケットの送信を中断し、前記入力手段の操作が終 了したときに、前記複数の送信パケットの内の未送信の 送信パケットを続けて送信する送信工程と、前記送信パ ケットの送信の中断中に、送信動作の中断中であること を示す信号を前配画像データの送信相手先に送信する中 断信号出力工程とを具備することを特徴としている。

送信要求がきたときは、前記メモリあるいは前記記録手 【0016】また、本発明に係わる最優装置の制御方法 段に保持されたディジタル画像データから作成した送信 は、被写体を操像して画像信号を出力する振像手段と、 パケットを外部に送信し、ユーザーからの撮影準備の指 50 該場像手段から出力された画像信号をディジタル画像デ ータに変換する信号処理手段と、撮影処理中に前記ディ ジタル画像データを一時的に保持する撮影用メモリと、

前記ディジタル画像データを記録する記録手段と、ユ ーザーが撮影準備動作あるいは撮影動作を指示する入力 手段と、外部から送信要求がきたときに、前記撮影用メ モリあるいは前配記録手段から読み出された画像データ を所定の大きさのデータに分割した送信パケットか、あ るいは送信の準備ができていないことを表わす送信準備 未完了信号のどちらかを送信する送信手段とを具備する ・攝像装置の制御方法であって、ユーザーからの撮影準備 10 の指示あるいは撮影の指示を受けていないときで、且つ 撮影処理を行っていないときに、外部からの送信要求が きたときは、前記メモリあるいは前記記録手段に保持さ れたディジタル画像データから作成した送信パケットを 外部に送信し、ユーザーからの撮影準備の指示あるいは 撮影の指示を受けているとき、あるいは撮影処理を行っ ているときに、外部からの送信要求がきたときは、送信 準備未完了信号を送信することを特徴としている。

【0017】また、この発明に係わる撮像装置の制御方法において、前記撮像装置は、送信のためにディジタル 20 面像データを一時的に展開するためのメモリである送信データ展開用メモリを備え、且つ、該送信データ展開用メモリと前記撮影用メモリとを共有し、前記送信データ展開用メモリを確保している状態でユーザーからの撮影準備の指示あるいは撮影の指示を受けた場合、送信データ展開用メモリを開放して撮影用メモリを確保することを特徴としている。

【0018】また、この発明に係わる撮像装置の制御方法において、ディジタル画像データを外部に送信しているときに、ユーザーからの撮影準備の指示あるいは撮影 30の指示を受けた場合、その時点で送信が完了した送信パケットの量を記憶し、前記送信データ展開用メモリを開放し、ユーザーからの撮影指示によって撮影処理を行い、その後再び送信データ展開用メモリを確保し、送信準備が完了した後に来た外部からの送信要求に対して、未送信の送信パケットから順次送信することを特徴としている。

【0019】また、この発明に係わる操像装置の制御方法において、ユーザーからの撮影準備の指示を受けたときに、撮影準備中であることを外部に通知し、ユーザー 40からの撮影の指示を受けて撮影処理中であるときに、撮影処理中であることを外部に通知することを特徴としている。

【0020】また、この発明に係わる提像装置の制御方法において、撮影によって新しいディジタル画像データあるいは圧縮した画像データを作成したときは、新しい画像データを作成したことを外部に通知することを特徴としている。

【0021】また、本発明に係わる記憶媒体は、被写体 入る。撮影準備動作では、AE動作やAF動作を行い操 を操像して画像信号を出力する操像手段と、該撮像手段 50 影のための準備をする。ユーザーがシャッターボタンを

8

から出力された画像信号をディジタル画像データに変換 する信号処理手段と、前配ディジタル画像データを所定 の大きさのデータに分割して、分割されたそれぞれのデ ータについての複数の送信パケットを生成する送信デー 夕生成手段と、ユーザーが撮影準備動作あるいは撮影動 作を指示する入力手段とを具備する最像装置を制御する ための制御プログラムを配憶した配憶媒体であって、前 記制御プログラムが、前記複数の送信パケットを順次外 部に送信中に、前記入力手段が操作されたときに、前記 送信パケットの送信を中断し、前記入力手段の操作が終 了したときに、前記複数の送信パケットの内の未送信の 送信パケットを続けて送信する送信工程のコードと、前 記送信パケットの送信の中断中に、送信動作の中断中で あることを示す信号を前配画像データの送信相手先に送 信する中断信号出力工程のコードとを具備することを特 徴としている。

【0022】また、本発明に係わる記憶媒体は、被写体 を操像して画像信号を出力する撮像手段と、該撮像手段 から出力された画像信号をディジタル画像データに変換 する信号処理手段と、撮影処理中に前記ディジタル画像 データを一時的に保持する撮影用メモリと、 前記ディ ジタル画像データを記録する記録手段と、ユーザーが掻 影準備動作あるいは撮影動作を指示する入力手段と、外 部から送信要求がきたときに、前記撮影用メモリあるい は前記記録手段から読み出された画像データを所定の大 きさのデータに分割した送信パケットか、あるいは送信 の準備ができていないことを表わす送信準備未完了信号 のどちらかを送信する送信手段とを具備する撮像装置を 制御するための制御プログラムを記憶した記憶媒体であ って、前記制御プログラムが、ユーザーからの撮影準備 の指示あるいは撮影の指示を受けていないときで、且つ 撮影処理を行っていないときに、外部からの送信要求が きたときは、前配メモリあるいは前配配録手段に保持さ れたディジタル画像データから作成した送信パケットを 外部に送信する工程のコードと、ユーザーからの撮影準 備の指示あるいは撮影の指示を受けているとき、あるい は操影処理を行っているときに、外部からの送信要求が きたときは、送信準備未完了信号を送信する工程のコー ドとを具備することを特徴としている。

40 [0023]

【発明の実施の形態】以下、本発明の好適な一実施形態について、添付図面を参照して詳細に説明する。図1は本発明の一実施形態に係わる撮像装置100の構成を示すプロック図である。

【0024】図1で116および117は、それぞれシャッターボタンに連動されたスイッチSW1、SW2をあらわす。ユーザーがシャッターボタンを半押し状態にするとSW1がONになり、撮像装置は撮影準備動作に入る。撮影準備動作では、AE動作やAF動作を行い撮影のための推価をする。コーザーがシャッターボタンを

押し込むとSW2がONになり実際の撮影動作が行われる。撮影動作では、まずレンズ101、絞り103、シャッター102を通過して取り込まれた被写体像がCCD104で光電変換され、A/D変換器105、および信号処理回路106によってディジタル画像信号に変換される。ディジタル画像信号は、メモリコントローラ110を介して一旦メインメモリ107に取り込まれる。メインメモリ107に取り込まれたディジタル画像信号は、圧積ユニット111によってJPEGなどの圧縮処理を受けて、ファイルとしてメモリカード109に取り込まれる。メモリカード109は撮像装置本体100と着脱可能な記録媒体である。

【0025】SW2がONになった状態から、画像ファイルがメモリカード109に取り込まれるまでが一連の 扱影動作である。

【0026】なお、フラッシュメモリ108は、最像装置本体100に内蔵され、メモリカード109と同様に面像ファイルを記憶するためのメモリである。また、115は撮像装置全体を制御するシステムコントローラ、114はCPUである。

【0027】一方コンピュータはデータ通信ケーブルを介して、RS232CやUSBなどの通信インターフェイス回路112に接続される。コンピュータ側にも同様の通信I/P回路が内蔵されている。コンピュータと提係装置とを接続することによって、操像装置のメモリカードに取り込まれた画像ファイルを、コンピュータに送信することができる。

【0028】撮像装置とコンピュータはMessageをやりとりすることによって通信する。図5は撮像装置とコンピュータとの間の通信でやりとりされるMessageの構成をあらわしている。ひとつのMessageは4ByteからなるMessage IDを含めたMessage全体のサイズを表わすMessage Sizeと、Messageのパラメータとから構成される。Messageの種類によってはパラメータを持たないものもある。

【0029】図6はMessageの種類をあらわしている。R QLEVENTはコンピュータから撮像装置に送信されるMess ageで、撮像装置で生じたイベントの内容の取得を要求 する。Meg DATAはコンピュータから撮像装置に送信される るMessageで、撮像装置のメモリカードに記録されてい る画像ファイルから作成するパケットの送信を要求す る。WAIT_DATAは損像装置からコンピュータに送信される Messageで、REQ_DATA Messageに対して面像ファイル から作成するパケットの送信の準備がまだ完了していないことを知らせる。

【0030】REPLY_DATAは損傷装置からコンピュータに送信されるMessageで、REQ_DATA Messageに対して、画像ファイルから最高64By teの大きさで画像データを分割して、それをパラメータとして送信する、NO_EVE NTは操像装置からコンピュータに送信されるMessage

10 で、REQ_BVENT Messageに対して、操像装置でイベント が発生していないことを知らせる。

【0031】SVI_DN_EVENTは損像装置からコンピュータに送信されるMessageで、REQ_EVENTMessageに対して、 協像装置でSW1が押されたことを知らせる。SW2_DN_E VENTは操像装置からコンピュータに送信されるMessage で、REQ_EVENT Messageに対して、操像装置でSW2が 押されたことを知らせる。NEW_FILE_EVENTは損像装置か らコンピュータに送信されるMessageで、REQ_EVENT Mes sageに対して、損像装置で撮影を行ったことによって新 しい画像ファイルが作成されたことを知らせる。このMe ssageをトリガーにして、コンピュータが新しく作成さ れた画像ファイルを撮像装置から取り込むなどの処理が 可能になる。

【0032】画像ファイルをコンピュータに送信するには、コンピュータから送信されてくるREQ_DATA Message に対して、操像装置がREPLY_DATA Messageをコンピュータに送信する動作を、1つの画像ファイル全体が送られるまで繰り返す。そのために、撮像装置ではコンピュータからREQ_DATA Messageを受けると、メインメモリ107内に送信のために画像ファイルを展開するバッファ領域を確保し、確保した領域にメモリカード109から読み出した画像ファイルを展開する。さらに読み出した画像ファイルを64Byteの大きさのパケットに分割する。画像ファイル全体のByte数が64Byteで割り切れない場合は、最後のパケットは画像ファイルのByte数を64Byteで割った余りのByte数となる。

【0033】コンピュータからのREQ_DATA Messageに対して、撮像装置が画像ファイルから作成するREPLY_DATA Messageを準備できていない状態の場合には、通信インターフェイスに対してあらかじめ設定することによって、ハードウェアにより自動的にWAIT_DATA Messageをコンピュータに送信することができる。これによって、コンピュータはREPLY_DATA Messageが送られてこない場合でも、通信エラーと判断せずに引き続き損像装置に対してREQ_DATA Messageを出し続ける。また損像装置は画像データの送信以外の処理に専念することができる。

【0034】摄像装置でREPLY_DATA Messaseの準備ができている状態の場合、コンピュータから送られてくるREQ_DATA Messaseに対して、画像ファイルから作成したRBPLY_DATA Messaseを送る。コンピュータ側では順々に送られてくるREPLY_DATA Messaseのパラメータ部分を繋ぎ合わせることによって、再び画像ファイルを作成することができる。

【0035】図2は本実施形態における提像装置の通信 動作と撮影動作の関連を示したフローチャートである。 【0036】本実施形態の開像装置では、画像データを コンピュータに転送動作中であっても、ユーザーがシャ 50 ッターを押したときに素早く画像を撮影できることを特

徴とする。したがって、SW1およびSW2が押された かどうかのイベントの検知を最長でも100msごとに 行っている。

【0037】そのために、提像装置からコンピュータに 画像ファイルを送信する際に、画像ファイルを分割して・ REPLY_DATA Messageの大きさを十分小さいものとしてい る。たとえば通信速度38.4kbpsのRS232C の通信手段で100Kbyteの画像ファイルを連続的 に転送しようとすると、最短でも21.38の時間がか かるが、これをひとつ64Byteのパケットに分割す 10 ると、パケット数は1600個になり、ひとつひとつの REPLY_DATA Messageの大きさは72Byteになるた め、ひとつのREPLY_DATA Messageの転送に必要な時間は 18.75msとなり、SW1、SW2のイベント検知 の間隔に比べて許容できる程度に短くなる。

【0038】また、本撮像装置では内部でModeとい う状態を管理している。操像装置が撮影準備状態であっ たり撮影処理状態であるなど、コンピュータからのREQL DATAMessageに対してREPLY_DATA Messageを送信できな い状態のときはMode=M1となる。一方、撮像装置が送信 用のメモリ領域をメインメモリ内に確保し、画像データ 送信をそのメモリ領域に読み出していて、コンピュータ からのREQ_DATA Messageに対してREPLY_DATA Messageを 送信できる状態のときはMode=W2となる。

【0039】図2では、まずステップS202でNode=# 1に設定し、コンピュータからのREQ_DATA Messageが来 ても、撮像装置では準備ができていないため、通信イン ターフェイスに対してWAIT_DATA Messageをハードウェ アで自動的に応答するように設定する。

かどうかを見て、SW1が押されているときは、ステッ プS204で現在Node=N2であるかどうかを見る。初期 状態ではMode=M1であるので、ステップS207へ進 み、Mode=M1に設定しAF(オートフォーカス)、AE (自動露出) などの撮影準備を行う。

【0041】次にステップS208でSW2が押された かどうかを見る、SW2が押されるとステップS209 で撮影を行う。一方、ステップS208でSW2が押さ れていないとき、ステップS203で再びSW1がまだ 押されているかどうかを見る。SW1が押されていない 40 分送られてきた場合、処理を終了する。 とき、あるいはステップS209の撮影を行った後は、 ステップS210でコンピュータからのREQ_DATA Messa geが来ているかどうかを見る。

【0042】ステップS210でコンピュータからREQ DATA Messageが来ている場合、ステップS211で現在 Mode=M2かどうかを見る、現在Mode=M2に設定されていな い場合、コンピユータからのREQ_DATA Messageに対して REPLY_DATA Messageを送信することはできず、ハードウ ェアによって自動的にWAIT_DATA Messageを送信してい

212でNode=N2に設定し、送信用のメモリ領域を確保 する。さらにステップS213で未送信分の送信パケッ トを、確保したメモリ領域に読み出し、送信準備をす る. そしてステップS214で先に設定していたWAIT_D ATA設定を解除する。

【0043】これによって次のコンピュータからの配列_ DATA Messageに対してステップS215でREPLY_DATA M essageの送信が行われる。

【0044】ステップS211ですでにKode=M2に設定 されている場合も、同様にステップS215でRBPLY_DA TA Messageがコンピュータに転送される。

【0045】ユーザーからのSW1入力がないときは、 ステップS203、S210、S211、S215を縣 り返すことによって、コンピュータからのREQ_DATA Nes sageに対してREPLY_DATA Messageを送信し続ける。

【0046】本殻像装置では、メインメモリ107を撮 影した画像データを取り込むための領域として使用する と同時に、撮影処理を行っていないときは、コンピュー タからのREQ_DATA Kessageが来た場合、送信のために画 像ファイルを展開するためのバッファとしても使用す る。このため、送信のために画像ファイルを展開する余 分なメモリを必要としない。

【0047】一方、図3は本実施形態においてコンピュ ータが撮像装置から1つの画像ファイルを硬得する際の コンピュータ側の通信動作を示したフローチャートであ

【0048】まずS302でカウンタnを0に設定す る.カウンタnは撮像装置からWAIT_DATA Messageが連 統して送られてきた数をカウントしており、この数が特 【0040】次にステップS203でSW1が押された 30 定の値になると通信失敗と判断してコンピュータは<u>撮</u>像 装置に対してREQ_DATA Messageを出すのをやめる.

> 【0049】次に、ステップS303でコンピュータか ら操像装置にREQ_DATA Messageを送信する。

【0050】REQ_DATA Messageに対して、扱像装置から REPLY_DATA Messageが送られてきた場合、ステップS3 08で1つの画像ファイル分のREPLY_DATA Messageが送 られてきたかどうかを判断する。1つの面像ファイルに 満たない場合再びステップS303でREQ_DATA Message を送信する、REPLY_DATA Messageが1つの画像ファイル

【0051】一方、ステップS304で撮像装置からRB PLY_DATA Messageが送られてこなかった場合、ステップ S305で操像装置からWAIT_DATA Messageが送られて きたかどうかを見る。

【0052】WAIT_DATA Messageが送られてきた場合、 カウンタ n をひとつインクリメントして (ステップS3 06)、再びステップS303でREQ_DATA Messageを送 信する。

【0053】ステップS305で扱像装置からWAIT_DAT る。そこで、送信の準備をするために、まずステップS 50 A Nessageが送られてこなかった場合、またカウンタロ

があらかじめ定めた値Nに達したとき(ステップS30 7Yes)は、ステップS310で1つの画像ファイル を撮像装置から獲得することに失敗したと判断して、ス テップS311で終了する。

【0054】この場合コンピュータの画面上でユーザー にファイル獲得に失敗したことを通知するなどの処理を 行う.

【0055】図4は操像装置の週信動作と撮像動作、お よびコンピュータの通信動作の関連を時間軸上で併記し になっている。

【0056】図4で撮像装置が撮影準備や撮影処理を行 っているときは、コンピュータからのREQ_DATA Kessage に対して、撮像装置はWAIT_DATA Messageを送信する。 一方、最像装置が撮影準備や撮影処理を行っていないと きは、コンピュータからのREQ_DATA Messageに対して、 撮像装置は画像データから作ったREPLY_DATA Messageを 送信する。

【0057】また、本撮像装置では、コンピュータから 像装置の状態をコンピュータに送り返すことができる。 図4で、最便装置でSW2が押されたときは、RDLEVEN T Hessageに対して提係装置はSW2_ON_BVENT Hessageを 送信している。また撮影処理が終了したら、REQ_EVENT Messageに対してNEW_FILE_EVENT Messageを送信してい ð.

【0058】コンピュータではREQ_BVBNT Messageに対 LT. SWI_ON_BYENT Message PSW2_ON_EVENT Message # 送信されてきたときには、図3のカウンタnを0にリセ ットすることによって、長時間WAIT_DATA Messageが送 信されてくるときでも、画像ファイルの獲得に失敗した と判断しなくなる。

[0059]

【他の実施形態】また、本発明の目的は、前述した実施 形態の機能を実現するソフトウェアのプログラムコード を記録した記憶媒体を、システムあるいは装置に供給 し、そのシステムあるいは装置のコンピュータ(または CPUやMPU)が記憶媒体に格納されたプログラムコ ードを読出し実行することによっても、達成されること は言うまでもない。

【0060】この場合、記憶媒体から読出されたプログ ラムコード自体が前述した実施形態の機能を実現するこ とになり、そのプログラムコードを記憶した記憶媒体は 本発明を構成することになる。

【0061】プログラムコードを供給するための記憶媒 体としては、例えば、フロッピディスク、ハードディス ク、光ディスク、光磁気ディスク、CD-ROM、CD -R. 磁気テーア,不揮発性のメモリカード,ROMな どを用いることができる。

[0062]また、コンピュータが読出したプログラム 50 100 撮像装置本体

14

コードを実行することにより、前述した実施形態の健能 が実現されるだけでなく、そのプログラムコードの指示 に基づき、コンピュータ上で移動しているOS(オペレ ーティングシステム)などが実際の処理の一部または全 都を行い、その処理によって前述した実施形態の機能が 実現される場合も含まれることは言うまでもない。

【0063】さらに、配憶媒体から貯出されたプログラ 、ムコードが、コンピュータに挿入された機能拡張ボード やコンピュータに接続された機能拡張ユニットに備わる た図である。図4で、下に行くほど時間が経過する方向 10 メモリに書込まれた後、そのプログラムコードの指示に 基づき、その機能拡張ボードや機能拡張ユニットに備わ るCPUなどが実際の処理の一部または全部を行い、そ の処理によって前述した実施形態の機能が実現される場 合も含まれることは言うまでもない。

[0064]

【発明の効果】以上説明したように、本発明によれば、 画像データを操像装置からコンピュータに送信している 間でも、ユーザーからの撮影指示によってすぐに新たな 画像を撮影することができる。

定期的に送られてくるRBQ_EVENT Messageに対して、撮 20 【0065】また、コンピュータからの送信要求に対し て送信準備未完了信号を送信することによって、撮像装 置が撮影のために画像データの送信を中断しても、コン ビュータが送信処理が失敗したと判断しないようにする ことができる。

> 【0066】また、摄像装置に余分なメモリを必要とし ないで、撮影指示によってすぐに新たな画像を撮影する ことができる。

【0067】また、画像データの最初から送信しなおす ことなく、中断されたデータから送信を再開することが 30 できる。

【0068】また、提像装置が撮影のために画像データ の送信を中断しても、コンピュータが送信処理が失敗し たと判断しないようにすることができる。

[0069]

【図面の簡単な説明】

【図1】本発明の一実施形態に係わる損儀装置の構成を 示すブロック図である。

【図2】一実施形態における撮像装置の通信動作と撮影 動作の関連を示したフローチャートである。

【図3】一実施形態においてコンピュータが撮像装置か ら1つの画像ファイルを獲得する際のコンピュータ側の 通信動作を示したフローチャートである。

【図4】撮像装置の通信動作と撮像動作、およびコンピ ュータの通信動作の関連を時間軸上で併記した図であ

【図5】閩像装置とコンピュータとの間の通信でやりと りされるNessageの構成をあらわす図である。

【図6】Messageの種類をあらわす図である。

【符号の説明】

【図1】

109 メモリカード

[图2]

存成要素	サイズ (Byte)	構成要素の意味	
Message ID	4	Mossage の概以子	
Mersage Size	4	Massage Dを含めたMassage全体のサイズ	
パラメータ	Manage Size - 8	Meanage のパラメータ	

[图6]

Message ID	パラメータ	送信元	Message の意味
WESSARC ID	(サイズ)	AQ167L	IATESPACIAL AN ENNIN
	·		The state of the state of
REQ_EVENT	なし	3767-)	コルピュータルト提像装置に対する イベントの取得の要求
REQ_DATA	なし	ל-נשענ	コンじュータムの撮像装置に対する 画像データイケットの送信要求
WAIT_DATA	なし	撮像装置	REQ_DATAに対して画像チャクバットの 送信準備が完了していないことも、 提像装置が5.37ビュータに知らせる
REPLY_DATA	画像データ (Max64Byte)	പ	RBQ_DATAに対して画像データから 作ったパケットす、操像装置からコンピュータに 送信する
NO_EVENT	なし	损像装置	REQ_EVENTに対して、イベットが 発生していないことも撮像装置から コンビュータに知らせる
SW1_ON_EVBNT	なし	摄像装置	REQ_EVENTに対して、SVIが 押されたことを提供装置から コンピューチに知らせる
SW2_ON_EVENT	たなし	撮像装置	REQ_BYENTに対して、SW2が 押されたことも提像装置が コンピューた知られる
NEW_FILE_EVENT	在し	撮像装置	REQ_EVENTに対して、協像装置での 撮影によって新しいフェイルが作成 れたことを提像装置が コンピュー外知らせる

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates a picture signal to the image pick-up equipment which can be transmitted outside, its control approach, and a storage.

[0002]

[Description of the Prior Art] In image pick-up equipments, such as a digital camera, the picture signal photoed with image sensors, such as CCD, is changed into a digital image signal with an A/D converter and a signal-processing means. Compression processing of JPEG etc. is performed to this digital image signal with a compression means, and it is made an image file, and saves for record means, such as a memory card.

[0003]

[Problem(s) to be Solved by the Invention] By the way, image pick-up equipment and a computer may be connected by cables, such as RS232C and USB, and the image file saved at the memory card may be transmitted to a computer from image pick-up equipment.

[0004] In conventional image pick-up equipment, since priority was given to transmitting processing while having transmitted the image file, even if the user pushed the shutter, the trouble that a new image could not be photoed was immediately.

[0005] Therefore, this invention is made in view of the technical problem mentioned above, and the purpose is offering the image pick-up equipment which can photo a new image immediately with the photography directions from a user, its control approach, and a storage, also while having transmitted image data to the computer from image pick-up equipment.

[0006] Moreover, even if other purposes of this invention interrupt transmission of image data for photography of image pick-up equipment, they are offering the image pick-up equipment which a computer's does not judge that transmitting processing went wrong, its control approach, and a storage. [0007] Moreover, the purpose of further others of this invention is offering the image pick-up equipment which can photo a new image immediately with photography directions, its control approach, and a storage without needing excessive memory.

[0008] Moreover, the purpose of further others of this invention is offering the image pick-up equipment which can resume transmission from the interrupted data, its control approach, and a storage, without retransmitting from the beginning of image data, in case transmission of image data is interrupted by photography and transmission is resumed after that by it.

[Means for Solving the Problem] In order to solve the technical problem mentioned above and to attain the purpose, the image pick-up equipment concerning this invention An image pick-up means to picturize a photographic subject and to output a picture signal, and a signal-processing means to change into digital image data the picture signal outputted from this image pick-up means, A transmit data generation means to divide said digital image data into the data of predetermined magnitude, and to generate two or more transmitting packets about each divided data, One by one, when said input means

is operated while transmitting outside, an input means by which a user directs photography housekeeping operation or photography actuation, and said two or more transmitting packets When transmission of said transmitting packet is interrupted and actuation of said input means is completed The control means controlled to continue the transmitting packet which is not transmitted of said two or more transmitting packets, and to transmit, It is characterized by providing a suspend signal output means to transmit the signal which shows that a send action is being interrupted during interruption of transmission of said transmitting packet to the transmitting phase hand of said image data. [0010] Moreover, an image pick-up means for the image pick-up equipment concerning this invention to picturize a photographic subject, and to output a picture signal, A signal-processing means to change into digital image data the picture signal outputted from this image pick-up means. The memory for photography which holds said digital image data temporarily during photography processing. A record means to record said digital image data, an input means by which a user directs photography housekeeping operation or photography actuation, and when a Request to Send comes from the exterior In the transmitting packet which divided into the data of predetermined magnitude the image data read from said memory for photography, or said record means In or the time of providing a transmitting means to transmit one showing transmission not being ready of the transmitting preparation noncompleted signals, and having not received directions of the photography preparation from a user, or directions of photography And when omitting photography processing and the Request to Send from the outside comes When transmitting outside the transmitting packet created from the digital image data held at said memory or said record means and having received directions of the photography preparation from a user, or directions of photography, Or while performing photography processing, when the Request to Send from the outside comes, it is characterized by transmitting transmitting preparation a non-completed signal.

[0011] Moreover, in the image pick-up equipment concerning this invention, it has the memory for transmit data expansion which is the memory for developing digital image data temporarily for. transmission. And when directions of the photography preparation from a user or directions of photography is received in the condition of having shared this memory for transmit data expansion, and said memory for photography, and having secured said memory for transmit data expansion, It is characterized by opening the memory for transmit data expansion wide, and securing the memory for photography.

[0012] Moreover, in the image pick-up equipment concerning this invention, when having transmitted digital image data outside When directions of the photography preparation from a user or directions of photography is received, the amount of the transmitting packet which transmission completed at the time is memorized. It is characterized by carrying out sequential transmission from a non-transmitted transmitting packet to the Request to Send from the outside which came after it opened said memory for transmit data expansion wide, and the photography directions from a user performed photography processing, securing the memory for transmit data expansion again after that and completing transmitting preparation.

[0013] Moreover, in the image pick-up equipment concerning this invention, when it notifies outside that it is [photography] under preparation when directions of the photography preparation from a user are received and is [photography] under processing in response to directions of the photography from a user, it is characterized by notifying outside that it is [photography] under processing.

[0014] Moreover, in the image pick-up equipment concerning this invention, when new digital image data or the compressed image data is created by photography, it is characterized by notifying having created new image data outside.

[0015] Moreover, the control approach of the image pick-up equipment concerning this invention An image pick-up means to picturize a photographic subject and to output a picture signal, and a signal-processing means to change into digital image data the picture signal outputted from this image pick-up means, A transmit data generation means to divide said digital image data into the data of predetermined magnitude, and to generate two or more transmitting packets about each divided data, Are the control approach of image pick-up equipment of providing an input means by which a user directs photography

housekeeping operation or photography actuation, and one by one, when said input means is operated while transmitting outside, said two or more transmitting packets When transmission of said transmitting packet is interrupted and actuation of said input means is completed It is characterized by providing the suspend signal output process of transmitting the signal which shows the transmitting process which continues the transmitting packet which is not transmitted of said two or more transmitting packets, and is transmitted, and that a send action is being interrupted during interruption of transmission of said transmitting packet to the transmitting phase hand of said image data. [0016] Moreover, the control approach of the image pick-up equipment concerning this invention An image pick-up means to picturize a photographic subject and to output a picture signal, and a signalprocessing means to change into digital image data the picture signal outputted from this image pick-up means. The memory for photography which holds said digital image data temporarily during photography processing, a record means to record said digital image data, an input means by which a user directs photography housekeeping operation or photography actuation, and when a Request to Send comes from the exterior In the transmitting packet which divided into the data of predetermined magnitude the image data read from said memory for photography, or said record means By or the time of being the control approach of image pick-up equipment of providing a transmitting means to transmit one showing transmission not being ready of the transmitting preparation non-completed signals, and having not received directions of the photography preparation from a user, or directions of photography And when omitting photography processing and the Request to Send from the outside comes When transmitting outside the transmitting packet created from the digital image data held at said memory or said record means and having received directions of the photography preparation from a user, or directions of photography, Or while performing photography processing, when the Request to Send from the outside comes, it is characterized by transmitting transmitting preparation a non-completed

[0017] In the control approach of the image pick-up equipment concerning this invention moreover, said image pick-up equipment It has the memory for transmit data expansion which is the memory for developing digital image data temporarily for transmission. And when directions of the photography preparation from a user or directions of photography is received in the condition of having shared this memory for transmit data expansion, and said memory for photography, and having secured said memory for transmit data expansion, It is characterized by opening the memory for transmit data expansion wide, and securing the memory for photography.

[0018] Moreover, in the control approach of the image pick-up equipment concerning this invention, when having transmitted digital image data outside When directions of the photography preparation from a user or directions of photography is received, the amount of the transmitting packet which transmission completed at the time is memorized. It is characterized by carrying out sequential transmission from a non-transmitted transmitting packet to the Request to Send from the outside which came after it opened said memory for transmit data expansion wide, and the photography directions from a user performed photography processing, securing the memory for transmit data expansion again after that and completing transmitting preparation.

[0019] Moreover, in the control approach of the image pick-up equipment concerning this invention, when it notifies outside that it is [photography] under preparation when directions of the photography preparation from a user are received and is [photography] under processing in response to directions of the photography from a user, it is characterized by notifying outside that it is [photography] under processing.

[0020] Moreover, in the control approach of the image pick-up equipment concerning this invention, when new digital image data or the compressed image data is created by photography, it is characterized by notifying having created new image data outside.

[0021] Moreover, an image pick-up means for the storage concerning this invention to picturize a photographic subject, and to output a picture signal, A signal-processing means to change into digital image data the picture signal outputted from this image pick-up means, A transmit data generation means to divide said digital image data into the data of predetermined magnitude, and to generate two or

more transmitting packets about each divided data, It is the storage which memorized the control program for controlling the image pick-up equipment possessing an input means by which a user directs photography housekeeping operation or photography actuation. One by one, when said input means is operated while transmitting outside, said control program said two or more transmitting packets When transmission of said transmitting packet is interrupted and actuation of said input means is completed. The code of the transmitting process which continues the transmitting packet which is not transmitted of said two or more transmitting packets, and is transmitted, It is characterized by providing the code of the suspend signal output process of transmitting the signal which shows that a send action is being interrupted during interruption of transmission of said transmitting packet to the transmitting phase hand of said image data.

[0022] Moreover, an image pick-up means for the storage concerning this invention to picturize a photographic subject, and to output a picture signal, A signal-processing means to change into digital image data the picture signal outputted from this image pick-up means, The memory for photography which holds said digital image data temporarily during photography processing, a record means to record said digital image data, an input means by which a user directs photography housekeeping operation or photography actuation, and when a Request to Send comes from the exterior In the transmitting packet which divided into the data of predetermined magnitude the image data read from said memory for photography, or said record means Or it is the storage which memorized the control program for controlling the image pick-up equipment possessing a transmitting means to transmit one showing transmission not being ready of the transmitting preparation non-completed signals. When said control program has not received directions of the photography preparation from a user, or directions of photography, and when the Request to Send from the outside comes when omitting photography processing When having received the code of the process which transmits outside the transmitting packet created from the digital image data held at said memory or said record means, directions of the photography preparation from a user, or directions of photography, Or while performing photography processing, when the Request to Send from the outside comes, it is characterized by providing the code of the process which transmits transmitting preparation a non-completed signal. [0023]

[Embodiment of the Invention] Hereafter, 1 suitable operation gestalt of this invention is explained to a detail with reference to an accompanying drawing. Drawing 1 is the block diagram showing the configuration of the image pick-up equipment 100 concerning 1 operation gestalt of this invention. [0024] 116 and 117 express with drawing 1 the switches SW1 and SW2 interlocked with the shutter release, respectively. If a user changes a shutter release into a half-push condition, SW1 will be turned on and image pick-up equipment will go into photography housekeeping operation. In photography housekeeping operation, AE actuation and AF actuation are performed and it prepares for photography. If a user pushes in a shutter release, SW2 will be turned on and actual photography actuation will be performed. In photography actuation, photo electric conversion of the photographic subject image incorporated by passing a lens 101, diaphragm 103, and a shutter 102 first is carried out by CCD104, and it is changed into a digital image signal by A/D converter 105 and the digital disposal circuit 106. A digital image signal is once incorporated by main memory 107 through the memory controller 110. The digital image signal incorporated by main memory 107 is incorporated by the compression unit 111 as a file in response to compression processing of JPEG etc. at a memory card 109. Memory cards 109 are the body 100 of image pick-up equipment, and a removable record medium.

[0025] It is photography actuation of a single string [incorporate / an image file / from the condition from which SW2 was turned on / by the memory card 109].

[0026] In addition, a flash memory 108 is the memory for being built in the body 100 of image pick-up equipment, and memorizing an image file like a memory card 109. Moreover, the system controller with which 115 controls the whole image pick-up equipment, and 114 are CPUs.

[0027] On the other hand, a computer is connected to the communication link interface circuitries 112, such as RS232C and USB, through a data communication cable. The same communication link I/F circuit also as a computer side is built in. By connecting a computer and image pick-up equipment, the

image file incorporated by the memory card of image pick-up-equipment-can-be-transmitted to-a-computer.

[0028] Image pick-up equipment and a computer communicate by exchanging Message. <u>Drawing 5</u> expresses the configuration of Message exchanged by the communication link between image pick-up equipment and a computer. One Message consists of Message Size showing the size of the whole Message including Message ID which consists of 4Byte(s), and Message ID which consists of 4Byte, and a parameter of Message. There are some which do not have a parameter depending on the class of Message.

[0029] <u>Drawing 6</u> expresses the class of Message. REQ_EVENT is Message transmitted to image pick-up equipment from a computer, and requires acquisition of the contents of the event produced with image pick-up equipment. REQ_DATA is Message transmitted to image pick-up equipment from a computer, and requires transmission of the packet created from the image file currently recorded on the memory card of image pick-up equipment. WAIT_DATA is Message transmitted to a computer from image pick-up equipment, and it tells that preparation of transmission of the packet created from an image file to REQ_DATA Message is not completed yet.

[0030] REPLY_DATA is Message transmitted to a computer from image pick-up equipment, to REQ_DATA Message, divides image data in the magnitude of a maximum of 64 Byte(s) from an image file, and transmits it as a parameter. NO_EVENT is Message transmitted to a computer from image pick-up equipment, and it tells that the event has not occurred with image pick-up equipment to REQ_EVENT Message.

[0031] SW1_ON_EVENT is Message transmitted to a computer from image pick-up equipment, and it tells that SW1 was pushed with image pick-up equipment to REQ_EVENTMessage. SW2_ON_EVENT is Message transmitted to a computer from image pick-up equipment, and it tells that SW2 was pushed with image pick-up equipment to REQ_EVENT Message. NEW_FILE_EVENT is Message transmitted to a computer from image pick-up equipment, and it tells that a new image file was created by having taken a photograph with image pick-up equipment to REQ_EVENT Message. This Message is made into a trigger and processing of incorporating the image file by which the computer was created newly from image pick-up equipment is attained.

[0032] In order to transmit an image file to a computer, it is repeated to REQ_DATA Message transmitted from a computer until the actuation whose image pick-up equipment transmits REPLY_DATA Message to a computer is sent in the one whole image file. Therefore, with image pick-up equipment, if REQ_DATA Message is received from a computer, the image file which secured the buffer area which develops an image file for transmission into main memory 107, and read it from the memory card 109 to the secured field will be developed. The image file furthermore read is divided into the packet of the magnitude of 64Byte(s). When the Byte number of the whole image files cannot divide among 64Byte(s), the last packet serves as too much Byte number which broke the Byte number of image files by 64Byte(s).

[0033] WAIT_DATA Message can be automatically transmitted to a computer by hardware by setting to the case in the condition that REPLY_DATA Message which image pick-up equipment creates from an image file cannot be prepared to REQ_DATA Message from a computer, beforehand to a communication link interface. Even when REPLY_DATA Message is not sent by this, a computer continues without judging it as a communication link error, and continues taking out REQ_DATA Message to image pick-up equipment by it. Moreover, image pick-up equipment can concentrate on processings other than transmission of image data.

[0034] When it is in the condition which is ready for REPLY_DATA Message with image pick-up equipment, REPLY_DATA Message created from the image file is sent to REQ_DATA Message sent from a computer. In a computer side, an image file can be again created by connecting the parameter part of REPLY_DATA Message sent one by one.

[0035] <u>Drawing 2</u> is the flow chart which showed the relation of communication link actuation of image pick-up equipment, and photography actuation in this operation gestalt.

[0036] With the image pick-up equipment of this operation gestalt, even if it is among transfer operation

about image data at a computer, when a user pushes a shutter, it is characterized by the ability to photo an image quickly. Therefore, the event of whether SW1 and SW2 were pushed is detected every 100ms also by the longest.

[0037] Therefore, in case an image file is transmitted to a computer from image pick-up equipment, an image file is divided and magnitude of REPLY_DATA Message is made sufficiently small. For example, although the shortest will also require the time amount for 21.3s if it is going to transmit 100 K bytes of image file continuously by the means of communications of RS232C of transmission-speed 38.4kbps If this is divided into the packet of 1 64Byte(s), since the number of packets will become 1600 pieces and the magnitude of each REPLY_DATA Message will be set to 72Byte(s), Time amount required for a transfer of one REPLY_DATA Message is set to 18.75ms, and becomes short to extent permissible compared with spacing of event detection of SW1 and SW2.

[0038] Moreover, the condition of calling it Mode inside is managed with this image pick-up equipment image pick-up equipment is a photography preparatory state, or is a photography processing state -- etc. -- it becomes Mode=M1 in the condition that REPLY_DATA Message cannot be transmitted to REQ_DATAMessage from a computer. On the other hand, image pick-up equipment secured the memory area for transmission in main memory, has read image data transmission to the memory area, and it becomes Mode=M2 in the condition that REPLY_DATA Message can be transmitted to REO_DATA Message from a computer.

[0039] Even if it sets it as Mode=M1 at step S202 first and REQ_DATA Message from a computer comes by <u>drawing 2</u>, since it is not ready, with image pick-up equipment, WAIT_DATA Message is set up to a communication link interface so that it may answer automatically by hardware.

[0040] Next, when SW1 is seen whether pushed at step S203 and SW1 is pushed, it sees whether it is current Mode=M2 at step S204. In an initial state, since it is Mode=M1, it progresses to step S207, and is set as Mode=M1, and photography preparations of AF (automatic focus), AE (automatic exposure), etc. are made.

[0041] Next, SW2 is seen whether pushed at step S208. If SW2 is pushed, a photograph will be taken at step S209. On the other hand, when SW2 is not pushed at step S208, SW1 is seen whether still again pushed at step S203. After performing photography of step S209 when SW1 is not pushed or, REQ_DATA Message from a computer is seen whether coming by step S210.

[0042] When REQ_DATA Message is coming by step S210 from the computer, it sees whether it is current Mode=M2 at step S211. When not set as present Mode=M2, REPLY_DATA Message cannot be transmitted to REQ_DATA Message from a computer, but WAIT_DATA Message is automatically transmitted by hardware. Then, in order to prepare transmission, it is first set as Mode=M2 at step S212, and the memory area for transmission is secured. Furthermore, at step S213, the transmitting packet for un-transmitting is read to the secured memory area, and transmitting preparations are made. And a WAIT_DATA setup previously set up at step S214 is canceled.

[0043] Transmission of REPLY_DATA Message is performed by this at step S215 to REQ_DATA Message from the following computer.

[0044] It is step S211, and when already set as Mode=M2, REPLY_DATA Message is similarly transmitted to a computer at step S215.

[0045] Transmitting REPLY_DATA Message, when there is no SW1 input from a user is continued to REQ_DATA Message from a computer by repeating steps S203, S210, S211, and S215.

[0046] When omitting photography processing and REQ_DATA Message from a computer comes by this image pick-up equipment at the same time it uses it as a field for incorporating the image data which photoed main memory 107, it is used also as a buffer for developing an image file for transmission. For this reason, the excessive memory which develops an image file for transmission is not needed.

[0047] On the other hand, drawing 3 is the flow chart which showed the communication link actuation

[0047] On the other hand, <u>drawing 3</u> is the flow chart which showed the communication link actuation by the side of the computer at the time of a computer gaining one image file from image pick-up equipment in this operation gestalt.

[0048] Counter n is first set as 0 by S302. If Counter n has counted the number with which WAIT_DATA Message has been sent continuously from image pick-up equipment and this number

becomes a specific value, it will stop judging it as communication link failure and a computer taking out REQ_DATA Message to image pick-up equipment.

[0049] Next, REQ_DATA Message is transmitted to image pick-up equipment from a computer at step S303.

[0050] When REPLY_DATA Message has been sent from image pick-up equipment to REQ_DATA Message, it judges whether REPLY_DATA Message for one image file has been sent at step S308. When not fulfilling one image file, REQ_DATA Message is again transmitted at step S303. Processing is ended when REPLY DATA Message has been sent by one image file.

[0051] On the other hand, when REPLY_DATA Message is not sent from image pick-up equipment at step S304, WAIT_DATA Message is seen whether sent from image pick-up equipment at step S305. [0052] When WAIT_DATA Message has been sent, one counter n is incremented (step S306), and REQ_DATA Message is again transmitted at step S303.

[0053] When Counter n reaches the value N defined beforehand when WAIT_DATA Message is not sent from image pick-up equipment at step S305 and (step S307 Yes), it judges that gaining one image file from image pick-up equipment went wrong at step S310, and ends at step S311.

[0054] In this case, it processes notifying a user of file acquisition having gone wrong on the screen of a computer etc.

[0055] <u>Drawing 4</u> is drawing which wrote together the relation of communication link actuation of image pick-up equipment, image pick-up actuation, and communication link actuation of a computer on the time-axis. It has become in the direction in which time amount passes, so that it goes by <u>drawing 4</u> downward.

[0056] While image pick-up equipment is performing photography preparation and photography processing by drawing 4, image pick-up equipment transmits WAIT_DATA Message to REQ_DATA Message from a computer. On the other hand, when image pick-up equipment omits photography preparation and photography processing, image pick-up equipment transmits REPLY_DATA Message made from image data to REQ_DATA Message from a computer.

[0057] Moreover, with this image pick-up equipment, the condition of image pick-up equipment can be returned to a computer from a computer to REQ_EVENT Message sent periodically. By drawing 4, when SW2 is pushed with image pick-up equipment, image pick-up equipment has transmitted SW2_ON_EVENT Message to REQ_EVENT Message. Moreover, if photography processing is completed, NEW_FILE_EVENT Message will be transmitted to REQ_EVENT Message. [0058] Even when WAIT_DATA Message is transmitted for a long time by resetting the counter n of drawing 3 to 0 when SW1_ON_EVENT Message and SW2_ON_EVENT Message have been transmitted to REQ_EVENT Message, it stops judging that acquisition of an image file went wrong by computer.

[0059]

[Other operation gestalten] Moreover, it cannot be overemphasized by the purpose of this invention supplying the storage which recorded the program code of the software which realizes the function of the operation gestalt mentioned above to a system or equipment, and carrying out read-out activation of the program code with which the computer (or CPU and MPU) of the system or equipment was stored in the storage that it is attained.

[0060] In this case, the function of the operation gestalt which the program code itself read from the storage mentioned above will be realized, and the storage which memorized that program code will constitute this invention.

[0061] As a storage for supplying a program code, a floppy disk, a hard disk, an optical disk, a magneto-optic disk, CD-ROM, CD-R, a magnetic tape, the memory card of a non-volatile, ROM, etc. can be used, for example.

[0062] Moreover, it cannot be overemphasized that it is contained also when the function of the operation gestalt which performed a part or all of processing that OS (operating system) which is working on a computer is actual, based on directions of the program code, and the function of the operation gestalt mentioned above by performing the program code which the computer read is not only

realized, but was mentioned above by the processing is realized.

[0063] Furthermore, after the program code read from a storage is written in the memory with which the functional expansion unit connected to the functional add-in board inserted in the computer or a computer is equipped, it cannot be overemphasized that it is contained also when the function of the operation gestalt which performed a part or all of processing that CPU with which the functional add-in board and functional expansion unit are equipped based on directions of the program code is actual, and mentioned above by the processing is realized.

[0064]

[Effect of the Invention] As explained above, also while having transmitted image data to the computer from image pick-up equipment according to this invention, a new image can be immediately photoed with the photography directions from a user.

[0065] Moreover, even if it interrupts transmission of image data for photography of image pick-up equipment by transmitting transmitting preparation a non-completed signal to the Request to Send from a computer, a computer can be prevented from judging that transmitting processing went wrong. [0066] Moreover, a new image can be immediately photoed with photography directions without needing excessive memory for image pick-up equipment.

[0067] Moreover, transmission can be resumed from the interrupted data, without retransmitting from the beginning of image data.

[0068] Moreover, even if it interrupts transmission of image data for photography of image pick-up equipment, a computer can be prevented from judging that transmitting processing went wrong. [0069]

[Translation done.]