Rockchip Developement Guide ISP32 Lite

文件标识: RK-KF-GX-612

发布版本: V1.0.0

日期: 2023-3-2

文件密级:□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2020 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

本文旨在描述RkAiq (Rk Auto Image Quality) 模块的作用,整体工作流程,及相关的API接口。主要给使用RkAiq模块进行ISP功能开发的工程师提供帮助。

产品版本``

芯片名称	内核版本
------	------

芯片名称	内核版本
RK3562	Linux 5.10

读者对象

本文档(本指南)主要适用于以下工程师:

ISP模块软件开发工程师

系统集成软件开发工程师

各芯片系统支持状态

芯片名称	BuildRoot	Debian	Yocto	Android
RK3562	Υ	N	N	N

修订记录

版本号	作者	修改日期	修改说明
v1.0.0	All	2023-3-2	ISP3.2-lite 初版

目录

Rockchip Developement Guide ISP32 Lite

```
总体概要
  结构图
  工作模式
  性能及约束概述
概述
  功能描述
  RkAiq架构
  软件架构
  软件流程
  API说明
     rk_aiq_uapi_sync_t
```

系统控制

功能概述

API参考

rk_aiq_uapi2_sysctl_preInit rk_aiq_uapi2_sysctl_preInit_scene rk_aiq_uapi2_sysctl_switch_scene rk_aiq_uapi2_sysctl_init

rk_aiq_uapi2_sysctl_deinit rk_aiq_uapi2_sysctl_prepare rk_aiq_uapi2_sysctl_start rk_aiq_uapi2_sysctl_stop

rk_aiq_uapi2_sysctl_getStaticMetas rk_aiq_uapi2_sysctl_enumStaticMetas rk_aiq_uapi2_sysctl_enableAxlib rk_aiq_uapi2_sysctl_getAxlibStatus

rk_aiq_uapi2_sysctl_getEnabledAxlibCtx

```
rk_aiq_uapi2_sysctl_setCpsLtCfg
       rk aig uapi2 sysctl getCpsLtInfo
       rk_aiq_uapi2_sysctl_queryCpsLtCap
       rk_aiq_uapi2_sysctl_getBindedSnsEntNmByVd
       rk_aiq_uapi2_sysctl_updatelq
       rk_aiq_uapi2_sysctl_getCrop
    数据类型
       rk_aiq_working_mode_t
       rk aig static info t
       rk aig sensor info t
       rk_aiq_module_id_t
       rk_aiq_cpsl_cfg_t
       rk_aiq_cpsl_info_t
       rk_aiq_cpsl_cap_t
       rk_aiq_rect_t
离线帧处理
   概i术
   功能框图
   功能描述
    RK-RAW格式说明
   支持的RAW格式
   API参考
   数据结构
   注意事项
    参考示例
ΑE
    概述
    重要概念
   功能描述
    功能级API参考
       rk aig uapi2 setAeLock
       rk_aiq_uapi2_setExpMode
       rk_aiq_uapi2_getExpMode
       rk aig uapi2 setManualExp
       rk_aiq_uapi2_setExpGainRange
       rk_aiq_uapi2_getExpGainRange
       rk_aiq_uapi2_setExpTimeRange
       rk_aiq_uapi2_getExpTimeRange
       rk_aiq_uapi2_setBLCMode
       rk_aiq_uapi2_setBLCStrength
       rk aig uapi2 setHLCMode
       rk_aiq_uapi2_setHLCStrength
       rk_aiq_uapi2_setAntiFlickerEn
       rk_aiq_uapi2_getAntiFlickerEn
       rk_aiq_uapi2_setAntiFlickerMode
       rk_aiq_uapi2_getAntiFlickerMode
       rk_aiq_uapi2_setExpPwrLineFreqMode
       rk_aiq_uapi2_getExpPwrLineFreqMode
    功能级API数据类型
       opMode_t
       paRange_t
       aeMeasAreaType_t
       expPwrLineFreq_t
       antiFlickerMode_t
    模块级API参考
```

```
rk_aiq_user_api2_ae_setExpSwAttr
       rk aig user api2 ae getExpSwAttr
       rk_aiq_user_api2_ae_setLinAeRouteAttr
       rk_aiq_user_api2_ae_getLinAeRouteAttr
       rk_aiq_user_api2_ae_setHdrAeRouteAttr
       rk aig user api2 ae getHdrAeRouteAttr
       rk_aiq_user_api2_ae_setLinExpAttr
       rk_aiq_user_api2_ae_getLinExpAttr
       rk aig user api2 ae setHdrExpAttr
       rk_aiq_user_api2_ae_getHdrExpAttr
       rk_aiq_user_api2_ae_setIrisAttr
       rk_aiq_user_api2_ae_getlrisAttr
       rk_aiq_user_api2_ae_setExpWinAttr
       rk_aiq_user_api2_ae_getExpWinAttr
       rk_aiq_user_api2_ae_queryExpResInfo
   模块级API数据类型
       Uapi ExpSwAttr t
           Uapi_ExpSwAttr_AdvancedV2_t
               Aec_AeRange_t
               Aec LinAeRange t
               Aec HdrAeRange t
           Uapi_AeAttrV2_t
               Uapi_AeSpeedV2_t
               Uapi AeFpsAttrV2 t
               Uapi AntiFlickerV2 t
           Uapi_MeAttrV2_t
               Uapi LinMeAttrV2 t
               Uapi HdrMeAttrV2 t
       Uapi_LinAeRouteAttr_t
       Uapi_HdrAeRouteAttr_t
       Uapi LinExpAttrV2 t
           CalibDb_AecDynamicSetpointV2_t
       Uapi_HdrExpAttrV2_t
       Uapi IrisAttrV2 t
           CalibDb_MIris_AttrV2_t
           CalibDb_PIris_AttrV2_t
           CalibDb_DClris_AttrV2_t
       Uapi_ExpWin_t
       Uapi_ExpQueryInfo_t
   常见问题定位及debug方法
       曝光统计同步测试功能
       曝光变化时出现闪烁
AWB
   概述
   重要概念
   功能描述
   功能级API参考
       rk_aiq_uapi2_setWBMode
       rk_aiq_uapi2_getWBMode
       rk_aiq_uapi2_lockAWB
       rk_aiq_uapi2_unlockAWB
       rk_aiq_uapi2_setMWBScene
       rk_aiq_uapi2_getMWBScene
       rk_aiq_uapi2_setMWBGain
       rk_aiq_uapi2_getWBGain
```

```
rk_aiq_uapi2_setMWBCT
       rk aig uapi2 getWBCT
       rk_aiq_uapi2_setAwbGainOffsetAttrib
       rk_aiq_uapi2_getAwbGainOffsetAttrib
       rk_aiq_uapi2_setAwbGainAdjustAttrib
       rk aig uapi2 getAwbGainAdjustAttrib
    功能级API数据类型
       rk_aiq_wb_op_mode_t
       rk aig wb mwb mode t
       rk aig wb gain t
       rk_aiq_wb_scene_t
       rk aig wb cct t
       rk aig wb mwb attrib t
       rk aig uapiV2 wb awb wbGainOffset t
       CalibDbV2 Awb gain offset cfg t
       rk_aiq_uapiV2_wb_awb_wbGainAdjust_t
       rk aig uapiV2 wbV32 awb mulWindow t
       rk aig uapiV2 wbV32 awb attrib t
       rk_aiq_uapiV2_wbV32_attrib_t
    模块级API参考
       rk aig user api2 awbV32 SetAllAttrib
       rk_aiq_user_api2_awbV32_GetAllAttrib
       rk_aiq_user_api2_awb_GetCCT
       rk aig user api2 awb QueryWBInfo
       rk aig user api2 awb Lock
       rk_aiq_user_api2_awb_Unlock
       rk aig user api2 awb SetWpModeAttrib
       rk aig user api2 awb GetWpModeAttrib
       rk_aiq_user_api2_awb_SetMwbAttrib
       rk_aiq_user_api2_awb_GetMwbAttrib
       rk aig user api2 awb SetWbGainAdjustAttrib
       rk_aiq_user_api2_awb_GetWbGainAdjustAttrib
       rk_aiq_user_api2_awb_SetWbGainOffsetAttrib
       rk aig user api2 awb GetWbGainOffsetAttrib
    模块级API数据类型
       rk_aiq_wb_querry_info_t
       rk_aiq_wb_op_mode_t
       rk_aiq_wb_mwb_attrib_t
AF
    概述
    功能描述
    开发用户AF算法
    功能级API参考
       rk_aiq_uapi2_setFocusMode
       rk_aiq_uapi2_getFocusMode
       rk_aiq_uapi2_setFocusWin
       rk_aiq_uapi2_getFocusWin
       rk_aiq_uapi2_lockFocus
       rk_aiq_uapi2_unlockFocus
       rk_aiq_uapi2_oneshotFocus
       rk_aiq_uapi2_manualTrigerFocus
       rk_aiq_uapi2_trackingFocus
       rk_aiq_uapi2_getSearchResult
       rk_aiq_uapi2_getZoomRange
       rk_aiq_uapi2_setOpZoomPosition
```

```
rk_aiq_uapi2_getOpZoomPosition
      rk aig uapi2 endOpZoomChange
      rk_aiq_uapi2_getFocusRange
      rk_aiq_uapi2_setFocusPosition
      rk_aiq_uapi2_getFocusPosition
      rk aig uapi2 startZoomCalib
      rk_aiq_uapi2_resetZoom
   功能级API数据类型
      opMode t
      rk_aiq_af_zoomrange
      rk_aiq_af_focusrange
      rk_aiq_af_result_t
   模块级API参考
      rk_aiq_user_api2_af_SetAttrib
      rk_aiq_user_api2_af_GetAttrib
   模块级API数据类型
      RKAIQ AF MODE
       RKAIQ AF HWVER
      rk_aiq_af_algo_meas_v32_t
      rk aig af attrib t
   其它说明
      VCM马达模组驱动验证
      电动马达模组驱动验证
IMGPROC
   概述
   Merge
      功能描述
       重要概念
      功能级API参考
       模块级API参考
          rk aig user api2 amerge v12 SetAttrib
          rk_aiq_user_api2_amerge_v12_GetAttrib
       模块级API数据类型
          merge OpMode t
          MergeBaseFrame_t
          mMergeOECurveV10_t
          mMergeMDCurveV10_t
          mMergeEachChnCurveV12_t
          mLongFrameModeDataV12_t
          mMergeMDCurveV11Short_t
          mShortFrameModeData t
          mMergeAttrV12_t
          MergeOECurveV10_t
          MergeMDCurveV10_t
          MergeEachChnCurveV12_t
          LongFrameModeDataV12_t
          MergeMDCurveV11Short_t
          ShortFrameModeData_t
          CalibDbV2_merge_V12_t
          MergeCurrCtlData_t
          mergeAttrV12_t
   DRC
      功能描述
       重要概念
      功能级API参考
```

```
rk_aiq_uapi2_setDrcGain
       rk aig uapi2 getDrcGain
       rk_aiq_uapi2_setDrcHiLit
       rk_aiq_uapi2_getDrcHiLit
       rk aig uapi2 setDrcLocalData
       rk aig uapi2 getDrcLocalData
   模块级API参考
       rk_aiq_user_api2_adrc_v12_lite_SetAttrib
       rk aig user api2 adrc v12 lite GetAttrib
    模块级API数据类型
       drc OpMode t
       mDrcGain t
       mHighLightDataV12 t
       mHighLightV12 t
       mLocalDataV11 t
       mMotionData_t
       mDrcLocalV12Lite t
       CompressMode t
       mDrcCompress_t
       mdrcAttr v12 lite t
       AdrcGain t
       HighLightDataV12_t
       HighLightV12_t
       LocalDataV2 t
       MotionData t
       localV12Lite_t
       Compress t
       CalibDbV2 Adrc v12 lite t
       CalibDbV2_drc_v12_lite_t
       DrcInfo t
       DrcInfoV12Lite t
       drcAttr t
Noise Removal
   功能描述
   功能级API参考
       rk_aiq_uapi2_setNRMode
       rk_aiq_uapi2_getNRMode
       rk_aiq_uapi2_setANRStrth
       rk_aiq_uapi2_getANRStrth
       rk_aiq_uapi2_setMSpaNRStrth
       rk aig uapi2 getMSpaNRStrth
       rk_aiq_uapi2_setMTNRStrth
       rk_aiq_uapi2_getMTNRStrth
   模块级API参考
       rk_aiq_user_api2_abayertnrV23Lite_SetAttrib
       rk_aiq_user_api2_abayertnrV23_GetAttrib
       rk_aiq_user_api2_abayertnrV23_SetStrength
       rk_aiq_user_api2_abayertnrV23_GetStrength
       rk_aiq_user_api2_aynrV22_SetAttrib
       rk_aiq_user_api2_aynrV22_GetAttrib
       rk_aiq_user_api2_aynrV22_SetStrength
       rk_aiq_user_api2_aynrV22_GetStrength
       rk_aiq_user_api2_acnrV30_SetAttrib
       rk_aiq_user_api2_acnrV30_GetAttrib
       rk_aiq_user_api2_acnrV30_SetStrength
```

```
rk_aiq_user_api2_acnrV30_GetStrength
   模块级API数据类型
       rk_aiq_bayertnr_attrib_v23L_t
       Abayertnr_OPMode_V23_t
       Abayertnr Auto Attr V23 t
       Abayertnr Manual Attr V23L t
       RK Bayertnr Params V23 t
       RK_Bayertnr_Param_V23L_Select_t
       RK Bayertnr Fix V23 t
       rk aig bayertnr strength v23 t
       rk_aiq_ynr_attrib_v22_t
       Aynr OPMode V22 t
       Aynr Auto Attr V22 t
       Aynr Manual Attr V22 t
       RK YNR Params V22 t
       RK_YNR_Params_V22_Select_t
       RK YNR Fix V22 t
       rk_aiq_ynr_strength_v22_t
       rk_aiq_cnr_attrib_v30_t
       AcnrV30 OPMode t
       Acnr Auto Attr V30 t
       Acnr_Manual_Attr_V30_t
       RK_CNR_Params_V30_t
       RK CNR Params V30 Select t
       RK CNR Fix V30 t
       rk_aiq_cnr_strength_v30_t
BLC
   功能描述
   功能级API参考
       rk_aiq_user_api2_ablcV32_SetAttrib
       rk aig user api2 ablcV32 GetAttrib
       rk_aiq_user_api2_ablcV32_GetInfo
   模块级API数据类型
       rk aig blc attrib V32 t
       AblcOPMode V32 t
       AblcParams_V32_t
       AblcManualAttr_V32_t
       AblcOBParams_V32_t
       AblcManualOBAttr_V32_t
       rk_aiq_blc_info_v32_t
       AblcExpInfo V32 t
Dehaze&Enhance
   功能描述
   功能级API参考
       rk_aiq_uapi2_setMDehazeStrth
       rk_aiq_uapi2_getMDehazeStrth
       rk_aiq_uapi2_setMEnhanceStrth
       rk_aiq_uapi2_getMEnhanceStrth
       rk_aiq_uapi2_setMEnhanceChromeStrth
       rk_aiq_uapi2_setMEnhanceChromeStrth
   模块级API参考
       rk_aiq_user_api2_adehaze_v12_setSwAttrib
       rk_aiq_user_api2_adehaze_v12_getSwAttrib
   模块级API数据类型
       dehaze_api_mode_t
```

```
CtrlDataType_t
       DehazeDataV11 t
       Dehaze_Setting_V11_t
       EnhanceDataV11_t
       Enhance_Setting_V12_t
       HistDataV11 t
       Hist setting V11 t
       CalibDbDehazeV12 t
       CalibDbV2 dehaze v12 t
       mDehazeDataV11 t
       mDehaze setting v11 t
       mEnhanceDataV11 t
       mEnhance setting v12 t
       mHistDataV11 t
       mHist setting v11 t
       mDehazeAttrV12_t
       mDehazeAttrInfoV11 t
       adehaze sw v12 t
CPROC
   功能描述
   功能级API参考
    模块级API参考
       rk_aiq_user_api2_acp_SetAttrib
       rk aig user api2 acp GetAttrib
    模块级API数据类型
       acp_attrib_t
ΙE
   功能描述
   功能级API参考
    模块级API参考
       rk aig user api2 aie SetAttrib
       rk_aiq_user_api2_aie_GetAttrib
    模块级API数据类型
       aie attrib t
       rk_aiq_ie_effect_t
CSM
   功能描述
   功能级API参考
    模块级API参考
       rk_aiq_user_api2_acsm_SetAttrib
       rk_aiq_user_api2_acsm_GetAttrib
    模块级API数据类型
       rk_aiq_uapi_acsm_attrib_t
       rk_aiq_acsm_params_t
Sharpen
   功能描述
   功能级API参考
       rk_aiq_uapi2_setSharpness
       rk_aiq_uapi2_getSharpness
    模块级API参考
       rk_aiq_user_api2_asharpV33LT_SetAttrib
       rk_aiq_user_api2_asharpV33LT_GetAttrib
       rk_aiq_user_api2_asharpV33_SetStrength
       rk_aiq_user_api2_asharpV33_GetStrength
       rk_aiq_user_api_asharpV33_GetInfo
```

```
模块级API数据类型
       rk aig sharp attrib v33LT t
       Asharp_OPMode_V33_t
       Asharp_Auto_Attr_V33LT_t
       Asharp Manual Attr V33LT t
       RK SHARP Params V33LT t
       RK SHARP Params V33LT Select t
       RK SHARP Fix V33 t
       rk aig sharp strength v33 t
       rk_aiq_sharp_info_v33_t
       Asharp_ExpInfo_V33_t
Gamma
   功能描述
   功能级API参考
       rk_aiq_uapi2_setGammaCoef
   功能级API数据类型
   模块级API参考
       rk_aiq_user_api2_agamma_v11_SetAttrib
       rk_aiq_user_api2_agamma_v11_GetAttrib
   模块级API数据类型
       rk aig gamma op mode t
       AgammaApiManualV11_t
       CalibDbGammaV11_t
       CalibDbV2 gamma V11 t
       rk_aiq_gamma_v11_attr_t
CCM
   功能描述
   功能级API参考
       rk_aiq_uapi2_setCCMMode
       rk_aiq_uapi2_getCCMMode
       rk aig uapi2 setMCcCoef
       rk_aiq_uapi2_getMCcCoef
       rk_aiq_uapi2_getACcmSat
       rk aig uapi2 getACcmMatrixName
   功能级API数据类型
       opMode_t
       rk_aiq_ccm_matrix_t
   模块级API参考
       rk_aiq_user_api2_accm_v2_SetAttrib
       rk_aiq_user_api2_accm_v2_GetAttrib
       rk_aiq_user_api2_accm_QueryCcmInfo
   模块级API数据类型
       rk_aiq_ccm_op_mode_t
       rk_aiq_ccm_mccm_attrib_v2_t
       rk_aiq_ccm_color_inhibition_t
       rk_aiq_ccm_color_saturation_t
       rk_aiq_ccm_accm_attrib_t
       rk_aiq_ccm_v2_attrib_t
       rk_aiq_ccm_querry_info_t
3DLUT
   功能描述
   功能级API参考
       rk_aiq_uapi2_setLut3dMode
       rk_aiq_uapi2_getLut3dMode
       rk_aiq_uapi2_setM3dLut
```

```
rk_aiq_uapi2_getM3dLut
       rk aig uapi2 getA3dLutStrth
       rk_aiq_uapi2_getA3dLutName
   功能级API数据类型
       opMode t
       rk aig lut3d table t
   模块级API参考
       rk_aiq_user_api2_a3dlut_SetAttrib
       rk aig user api2 a3dlut GetAttrib
       rk aig user api2 a3dlut Query3dlutInfo
   模块级API数据类型
       rk_aiq_lut3d_op_mode_t
       rk aig lut3d mlut3d attrib t
       rk aig lut3d attrib t
       rk_aiq_lut3d_querry_info_t
LDCH
   功能描述
   功能级API参考
       rk_aiq_uapi_setLdchEn
       rk aig uapi2 setLdchCorrectLevel
   模块级API参考
       rk_aiq_user_api2_aldch_SetAttrib
       rk_aiq_user_api2_aldch_GetAttrib
   模块级API数据类型
       rk aig ldch attrib t
DeBayer
   功能描述
   模块级API参考
       rk_aiq_user_api_adebayer_SetAttrib
       rk_aiq_user_api2_adebayer_v2_GetAttrib
   数据类型
       adebayer_v2_attrib_t
       rk_aiq_debayer_op_mode_t
       adebayer attrib v2 manual t
       adebayer_attrib_v2_auto_t
DPCC
   功能描述
   模块级API参考
       rk_aiq_user_api2_adpcc_SetAttrib
       rk_aiq_user_api2_adpcc_GetAttrib
   数据类型
       rk_aiq_dpcc_attrib_V20_t
       AdpccOPMode_t
       Adpcc_basic_params_select_t
       Adpcc_basic_params_t
       Adpcc_bpt_params_t
       dpcc_pdaf_point_t
       Adpcc_pdaf_params_t
       CalibDb_Dpcc_Fast_Mode_t
       CalibDb_Dpcc_Sensor_t
       Adpcc_bpt_params_select_t
       Adpcc_pdaf_params_select_t
       Adpcc_Auto_Attr_t
       Adpcc_fast_mode_attr_t
       Adpcc_sensor_dpcc_attr_t
```

```
Adpcc_Manual_Attr_t
           Adpcc onfly cfg t
           Adpcc_onfly_mode_t
           CalibDb_Dpcc_Pdaf_t
           CalibDb Dpcc set RK t
           CalibDb Dpcc set LC t
           CalibDb_Dpcc_set_PG_t
           CalibDb_Dpcc_set_RND_t
           CalibDb Dpcc set RG t
           CalibDb_Dpcc_set_RO_t
           CalibDb_Dpcc_set_t
           CalibDb_Dpcc_Expert_Mode_t
           CalibDb Dpcc t
           rk_aiq_dpcc_attrib_t
   LSC
       功能描述
       模块级API参考
           rk_aiq_user_api2_alsc_SetAttrib
           rk_aiq_user_api2_alsc_GetAttrib
       数据类型
           rk aig lsc attrib t
           rk_aiq_lsc_op_mode_t
           rk_aiq_lsc_table_t
   GIC
       功能描述
       模块级API参考
           rk aig user api2 agic v2 SetAttrib
           rk_aiq_user_api2_agic_v2_GetAttrib
       模块级API数据类型
           rkaiq_gic_api_op_mode_t
           rkaig gic v2 param selected t
           rkaiq_gic_v2_api_attr_t
   CGC
       功能描述
       功能级API参考
       模块级API参考
           rk_aiq_user_api2_acgc_SetAttrib
           rk_aiq_user_api2_acgc_GetAttrib
       模块级API数据类型
           rk_aiq_uapi_acgc_attrib_t
           rk_aiq_acgc_params_t
统计信息
   概述
   功能描述
       AE统计信息
           基于raw图的AE统计
       AWB统计信息
       AF统计信息
   API参考
       rk_aiq_uapi_sysctl_get3AStatsBlk
       rk_aiq_uapi_sysctl_release3AStatsRef
   数据类型
       rk_aiq_isp_stats_t
       RKAiqAecStats_t
           RKAiqAecExpInfo_t
```

```
RkAiqExpParamComb_t
             RKAiqExpl2cParam_t
             RkAiqIrisParamComb_t
          RkAiqAecHwStatsRes_t
             Aec_Stat_Res_t
             rawaebig_stat
             rawaelite_stat
             rawhist stat
      rk_aiq_awb_stat_res_v32_t
      rk_aiq_awb_stat_wp_res_light_v201_t
      rk_aiq_awb_stat_wp_res_v201_t
      rk_aiq_awb_stat_blk_res_v201_t
      rk_aiq_isp_af_stats_v3x_t
AIQ效果参数多场景支持
   JSON-IQ与场景切换
   IQ文件格式说明
      模块说明:
      子场景差异参数示例:
      编程接口:
         接口描述:
   JSON-IQ转BINARY-IQ
   概述
   转换工具使用说明
      编译:
      转换说明:
          参数说明
Smartlr
   概述
   功能描述
   API
          rk smart ir init
          rk_smart_ir_delnit
          rk_smart_ir_config
         rk smart ir runOnce
   数据类型
      RK_SMART_IR_STATUS_t
      rk_smart_ir_params_t
   功能集成
   参数调试
Debug & FAQ
   如何获取版本号
          获取简略版本信息
         获取完整版本信息
      版本号匹配规则说明
   AIQ Log
      概述
      ΑE
          配置指南
         log解读
      AWB
          配置指南
          log解读
      AF
          配置指南
         log解读
```

MERGE 配置指南 log解读 **DRC** 配置指南 log解读 **NR**&Sharp 配置指南 log解读 Dhz&Ehz 配置指南 Log解读 **CamHW** 配置指南 log解读 如何采集Raw/YUV图像 Raw数据存储格式 非紧凑型存储格式 紧凑型存储格式 RK-RAW V1.0 RK-RAW V2.0 Raw/YUV数据采集方式 错误码 缩略语

总体概要

结构图

蓝色与橙色数据流通路互斥,2选1 : 绿色数据流代表用户获取的最终数据

RK3562 VI作为视频输入模块总称,其中包含:

• 接口以及数据采集部分: DPHY、DVP、CSI、VICAP

• 图像处理部分: ISP

工作模式

单ISP单CIS(cmos image sensor):

Raw直通/在线模式:结构图中蓝色箭头指示数据流1.0通路Raw回读/离线模式:结构图中橙色箭头指示数据流1.1,1.2通路

多CIS:

• 单ISP采用Raw回读/离线模式下,可以采用时分复用的方式支持多CIS的输入。

性能及约束概述

• 支持分辨率及吞吐率:

工作模式	吞吐率	支持最大分辨率	支持最小分 辨率
单ISP单 CIS	13Mega@30fps	4224x3136	256x256
多CIS时分 复用	最多支持4 CIS时分复用 总吞吐率为 13Mega@30fps	双摄模式: 1. 3840×2160 ×2 2. 4224×3136 + 1920×1080 三摄模式: 1. 3840×2160 + 2688×1520 + 2688+1520 四摄模式: 1. 2688×1536 ×4	256x256

• 支持Raw12数据输入。

ISP32-lite支持处理Raw12数据。Raw14数据输入将低位丢弃成Raw12处理。位宽不足12bit图像数据输入将低位补0成Raw12处理。

- 支持Bayer color CIS、Mono CIS。
- 支持2合1 多帧HDR。支持HDR CIS 类型如下:

Multi exposure HDR	RK Platform support	CIS	应用
Sequential / Framebase HDR	ISP20: RV1109/RV1126 etc ISP21: RK356X etc ISP30: RK3588 ISP32: RV1106 ISP32-lite: RK3562	OV4689	IPC/CVR

Multi exposure HDR	RK Platform support	CIS	应用
Staggered / DOL HDR	ISP20: RV1109/RV1126 etc ISP21: RK356X etc ISP30: RK3588 ISP32: RV1106 ISP32-lite: RK3562	OS04A10 IMX464 AR0239	IPC/CVR
DCG HDR	ISP20: RV1109/RV1126 etc ISP21: RK356X etc ISP30: RK3588 ISP32: RV1106 ISP32-lite: RK3562	OS04A10 IMX585	IPC/CVR
12bit(PWL) compressed combined raw	ISP32: RV1106	OS04A10	IPC/CVR
SME HDR	N	IMX378	消费类
BME HDR	N	IMX258	消费类
QBC HDR	N	OV50C40 IMX586	消费类
Lateral overflow HDR	N	AR0821	IPC
Splite-diode pixel HDR	N	OV10640	CVR

- Raw直通/在线模式下,ISP32数据输出至DDR通知后级的最小时延:约图像帧传输时间/15。
- ISP时分复用方式下,单ISP最多支持2路数据源输入。
- Raw直通/在线模式下,最小图像帧消隐136行,最小图像行消隐 16 像素

概述

ISP32-lite 包含了一系列的图像处理算法模块,主要包括:暗电流矫正、坏点矫正、3A、HDR、镜头阴影矫正、镜头畸变矫正、3DLUT、去噪(包括RAW域去噪,多帧降噪,颜色去噪等)、锐化等。

ISP32-lite包括硬件算法实现及软件逻辑控制部分,RkAiq即为软件逻辑控制部分的实现。

RkAiq软件模块主要实现的功能为:从ISP驱动获取图像统计,结合IQ Tuning参数,使用一系列算法计算出新的ISP、Sensor等硬件参数,不断迭代该过程,最终达到最优的图像效果。

功能描述

图1-1 ISP21 系统框图

ISP32-lite总体软硬件框图如图1-1所示。Sensor输出数据流给ISP HW,ISP HW再输出经过一系列图像处理算法后的图像。RkAiq不断从ISP HW获取统计数据,并经过3A等算法生成新的参数反馈给各硬件模块。Tuning tool可在线实时调试参数,调试好后可保存生成新的iq参数文件。

RkAig架构

图1-2 RkAiq总体架构图

ISP32-lite RkAiq软件设计思路如图1-2所示。主要分成以下四个部分:

- 1. RkAiq lib 动态库。该库包含了主要的逻辑部分,负责从驱动获取统计,并传送给各个算法库。
- 2. Integrated algo libs。Rk提供的静态算法库,已默认注册到RkAiq lib动态库。
- 3. customer 3A libs。客户可根据算法库接口定义实现自己的3A算法库,或者其他算法库。将自定义算法库注册给RkAiq lib动态库后,可根据提供的接口选择跑自定义库还是跑Rk库。
- 4. IQ file。iq tuning结果文件,保存的是算法相关参数以及CIS等一些系统静态参数。

软件架构

图1-3 软件架构框图

ISP32-lite 软件框图如图1-3所示。主要分成以下三层:

- 1. kernel layer。该层包含所有Camera系统的硬件驱动,主要有ISP驱动、sensor驱动、vcm驱动、flashlight驱动、IrCutter驱动等等。驱动都基于V4L2及Media框架实现。
- 2. framework layer。该层为RkAiq lib的集成层,Rkaiq lib有两种集成方式:
- IspServer 方式 该方式Rkaiq lib跑在 IspServer独立进程,客户端通过dbus与之通信。此外,该方式可为v4l-ctl等 现有第三方应用,在不修改源码的情况下,提供具有ISP调试效果的图像。
- 直接集成方式 RkAiq lib可直接集成进应用。
- 3. user layer。用户应用层。

软件流程

RkAiq接口调用流程如图1-4所示。图中虚线框部分为可选部分,蓝色字体部分为应用需要配合RkAiq流程所作的配置。

- configure media pipeline。可选项,配置ISP30 pipeline,如sensor输出分辨率等等,驱动已有默认配置。
- rk_aiq_uapi2_sysctl_init。初始化RkAiq,包括IQ tuning参数及各算法库初始化。
- other Aiq or algo params uapis。可选项,可通过各算法提供的API接口配置需要的参数,以及注册第三方算法库等等。
- rk_aiq_uapi2_sysctl_prepare。准备各算法库及各硬件模块的初始化参数,并设置到驱动。
- video capture start。该流程为应用端ISP数据流的开启,该流程需要在rk_aiq_uapi2_sysctl_prepare后调用。
- rk_aiq_uapi2_sysctl_start。启动RkAiq内部流程,该接口调用成功后,sensor开始输出数据,ISP 开始处理数据,并输出处理后的图像。
- Rkaiq running。RkAiq不断从ISP驱动获取统计数据,调用3A等算法计算新参数,并应用新参数到驱动。
- PC Online Tuning Tool。PC端可通过Tuning Tool在线调整参数。
- video capture stop。停止RkAiq流程前需要先停止数据流部分。
- rk_aiq_uapi2_sysctl_stop。停止 RkAiq running 流程。可调整参数后再启动或者直接再启动。
- rk_aiq_uapi2_sysctl_deinit。反初始化RkAiq。

API说明

- RKAiq提供的API分为两个级别:功能级别API与 模块级别API。
 - **功能级别API**:基于模块级别API封装而成,主要是面对产品应用基于该模块的一些简单功能设计。
 - 模块级别API: 该模块的详细参数设置以及查询,未对功能进行API区分。
- RKAiq提供的模块级API支持同步以及异步模式,功能级API默认采用模块级API的同步模式进行封装。
 - **同步模式(Sync)**: 该模式为阻塞式API,AIQ基本以视频帧为颗粒度来进行参数的更新,同步模式下,调用API的线程有可能被阻塞的时间 <= 视频帧周期时间。
 - **异步模式(ASync)**: 该模式为非阻塞式API,AIQ框架会将API设置参数存储在内部参数缓冲中,待最近一个ISP参数设置时刻在设置给硬件。
- 模块级API同步异步方式使用说明

模块级API的第2个形参结构体一般为设置参数集合,称为属性结构体。该结构体内部 rk_aiq_uapi_sync_t 成员可以配置当前API的调用模式,详细参考以下数据类型定义:

rk_aiq_uapi_sync_t

【说明】

模块sync模式

【定义】

【成员】

成员名称	描述
sync_mode	@setAttrib:参数更新模式的标志; RK_AIQ_UAPI_MODE_DEFAULT: 默认是同步模式. RK_AIQ_UAPI_MODE_SYNC: 同步模式. RK_AIQ_UAPI_MODE_ASYNC: 异步模式. @getAttrib: RK_AIQ_UAPI_MODE_DEFAULT: 默认获取上次设置的属性(sync_mode == RK_AIQ_UAPI_MODE_ASYNC),可能还没有生效. RK_AIQ_UAPI_MODE_SYNC: 获取当前使用的属性. RK_AIQ_UAPI_MODE_ASYNC: 与 RK_AIQ_UAPI_MODE_DEFAULT 相同.
done	@done (parsm out): 参数更新状态的标志, true 表示参数已更新,false 表示参数尚未更新。

• AIQ API参考代码按照模块进行划分,单独提供API示例,建议客户使用时可以直接参考 rkisp_demo/demo/sample

文件名	模块
sample_3dlut_module.cpp	3DLUT
sample_ccm_module.cpp	ССМ
sample_csm_module.cpp	CSM
sample_ablc_module.cpp	BLC
sample_abayer2dnr_module.cpp	BayerNR 2D
sample_abayertnr_module.cpp	BayerNR 3D
sample_aynr_module.cpp	YNR
sample_acnr_module.cpp	CNR
sample_asharp_module.cpp	Sharp
sample_amerge_module.cpp	Merge(HDR)
sample_adrc_module.cpp	DRC
sample_adehaze_module.cpp	Dehaze & Enhance
sample_agamma_module.cpp	Gamma
sample_awb_module.cpp	AWB
sample_ae_module.cpp	AE
sample_af_module.cpp	AF
sample_cac_module.cpp	CAC
sample_gic_module.cpp	GIC

系统控制

功能概述

系统控制部分包含了AIQ 公共属性配置,初始化 AIQ、运行 AIQ、退出AIQ,设置 AIQ各模块等功能。

API参考

rk_aiq_uapi2_sysctl_preInit

【描述】

初始化AIQ前,预设值一些参数,如使用的IQ文件等。

【语法】

【参数】

参数名称	描述	输入/输出
sns_ent_name	sensor entity name	输入
mode	ISP工作模式	输入
force_iq_file	强制使用的 iq 文件	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

【注意】

- 应先于rk_aiq_uapi2_sysctl_init 调用
- 参数 mode 仅用来选择 IQ 文件,并不配置ISP工作模式,工作模式需要在rk_aiq_uapi2_sysctl_prepare 中配置。如果参数 force_iq_file 非空,那么mode参数无效
- 参数 force_iq_file 为全路径
- 该函数不是必须,仅用于 rk_aiq_uapi2_sysctl_init 前更改一些默认的设置

rk_aiq_uapi2_sysctl_preInit_scene

【描述】

初始化AIQ前,选择IQ场景参数。

【语法】

【参数】

参数名称	描述	输入/输出
sns_ent_name	sensor entity name	输入
main_scene	主场景,值在IQ文件中定义	输入
sub_scene	子场景,值在IQ文件中定义	输入

【返回值】

返回值	描述
0	成功
1章0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

【注意】

- 应先于rk_aiq_uapi2_sysctl_init 调用
- main_scene 需要根据 IQ 文件中主场景数组来选择,默认一般是 "normal"
- sub_scene 需要根据 IQ 文件中主场景里的子场景数组来选择,默认一般是 "day"
- 由于目前默认选择的场景是 normal-day,如果要跑 hdr-day,或者其他自定义模式,则需要调用该函数进行指定,否则IQ参数可能不正确

rk_aiq_uapi2_sysctl_switch_scene

【描述】

初始化AIQ后,切换IQ场景参数。关于IQ文件中场景的支持,详见"AIQ效果参数多场景支持"章节

【语法】

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ 上下文指针	输入
main_scene	主场景,值在IQ文件中定义	输入
sub_scene	子场景,值在IQ文件中定义	输入

【返回值】

返回值	描述
0	成功
∃ €0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

【注意】

• 在 rk_aiq_uapi2_sysctl_init 后调用

• main_scene 需要根据 IQ 文件中主场景数组来选择

• sub_scene 需要根据 IQ 文件中主场景里的子场景数组来选择

• 该接口涉及IQ动态切换,目前测试不充分,可能出现非预期结果,谨慎使用

rk_aiq_uapi2_sysctl_init

【描述】

初始化AIQ上下文。

【语法】

【参数】

参数名称	描述	输入/输出
sns_ent_name	sensor entity name	输入
iq_file_dir	标定参数文件路径	输入
err_cb	出错回调函数,可为NULL	输入
metas_cb	meta数据回调函数,可为NULL	输入

【返回值】

返回值	描述
rk_aiq_sys_ctx_t*	AIQ上下文指针

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

【注意】

• 应先于其他函数调用。

rk_aiq_uapi2_sysctl_deinit

【描述】

反初始化AIQ上下文环境。

【语法】

```
void
rk_aiq_uapi2_sysctl_deinit( rk_aiq_sys_ctx_t* ctx);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
无	无

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

【注意】

• 不应在AIQ处于start状态调用。

rk_aiq_uapi2_sysctl_prepare

【描述】

准备AIQ运行环境。

【语法】

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
width	sensor输出的分辨率宽度,仅用于校验	输入
height	sensor输出的分辨率高度,仅用于校验	输入
mode	ISP Pipeline工作模式(NORMAL/HDR)	输入

【返回值】

返回值	描述
0	成功
丰0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

【注意】

- 应在rk_aiq_uapi2_sysctl_start函数之前调用。
- 如果需要在rk_aiq_uapi2_sysctl_start之后调用本函数,那么先调用rk_aiq_uapi2_sysctl_stop函数,再调用rk_aiq_uapi2_sysctl_prepare重新准备运行环境。

rk_aiq_uapi2_sysctl_start

【描述】

启动AIQ控制系统。AIQ启动后,会不断的从ISP驱动获取3A统计信息,运行3A算法,并应用计算出的新参数。

【语法】

```
XCamReturn
rk_aiq_uapi2_sysctl_start(const rk_aiq_sys_ctx_t* ctx);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
∃E 0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

【注意】

• 应在rk_aiq_uapi2_sysctl_prepare函数之后调用。

rk_aiq_uapi2_sysctl_stop

【描述】

停止AIQ控制系统。

【语法】

XCamReturn

rk_aiq_uapi2_sysctl_stop(const rk_aiq_sys_ctx_t* ctx, bool keep_ext_hw_st);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
keep_ext_hw_st	stop之后,外部设备设如(ircut/cpsl)的状态是否保持不变	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_sysctl_getStaticMetas$

【描述】

查询sensor对应静态信息,如分辨率,数据格式等。

【语法】

```
XCamReturn
rk_aiq_uapi2_sysctl_getStaticMetas(const char* sns_ent_name,
rk_aiq_static_info_t* static_info);
```

【参数】

参数名称	描述	输入/输出
sns_ent_name	sensor entity name	输入
static_info	静态信息结构体指针	输出

【返回值】

返回值	描述
0	成功
∃ €0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

rk_aiq_uapi2_sysctl_enumStaticMetas

【描述】

枚举AIQ获取到的静态信息。

【语法】

```
XCamReturn
rk_aiq_uapi2_sysctl_enumStaticMetas(int index, rk_aiq_static_info_t*
static_info);
```

【参数】

参数名称	描述	输入/输出
index	索引号,从0开始	输入
static_info	静态信息结构体指针	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

rk_aiq_uapi2_sysctl_enableAxlib

【描述】

设置自定义算法库运行状态。

【语法】

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
algo_type	要操作的算法模块类型	输入
lib_id	算法库标识ID	输入
enable	状态设置	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

【注意】

• 如果lib_id等同于当前运行的算法库,本函数可以在除未初始化外的任何状态下调用。

• 其他情况,仅在prepared状态下调用,并且algo_type所标识的算法库将被lib_id标识的新算法库替代

rk_aiq_uapi2_sysctl_getAxlibStatus

【描述】

获取算法库状态。

【语法】

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
algo_type	要操作的算法模块类型	输入
lib_id	算法库标识ID	输入

【返回值】

返回值	描述
false	关闭状态
true	使能状态

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_sysctl_getEnabledAxlibCtx$

【描述】

获取使能算法库的上下文结构体。

【语法】

```
const RkAiqAlgoContext*
rk_aiq_uapi2_sysctl_getEnabledAxlibCtx(const rk_aiq_sys_ctx_t* ctx, const int
algo_type);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
algo_type	要操作的算法模块类型	输入

【返回值】

返回值	描述
NULL	获取失败
其FNULL	获取成功

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

【注意】

• 返回的算法上下文结构体将被内部私有函数使用。对于用户自定义的算法库,该函数应在rk_aiq_uapi2_sysctl_enableAxlib之后调用,否则将返回NULL。

rk_aiq_uapi2_sysctl_setCpsLtCfg

【描述】

设置补光灯控制信息。

【语法】

XCamReturn

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
cfg	补光灯配置结构体指针	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

rk_aiq_uapi2_sysctl_getCpsLtInfo

【描述】

获取补光灯控制信息。

【语法】

XCamReturn

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
info	补光灯配置结构体指针	输出

【返回值】

返回值	描述
0	成功
∃E 0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_sysctl_queryCpsLtCap$

【描述】

查询补光灯的支持能力。

【语法】

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
сар	补光灯支持能力查询结构体指针	输出

【返回值】

返回值	描述
0	成功
∃ €0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

rk_aiq_uapi2_sysctl_getBindedSnsEntNmByVd

【描述】

查询video结点所对应的sensor entity name。

【语法】

 $const\ char^*\ rk_aiq_uapi2_sysctl_getBindedSnsEntNmByVd(const\ char^*\ vd);$

【参数】

参数名称	描述	输入/输出
vd	video路径,如/dev/video20	输入

【返回值】

返回值	描述
sensor entity name	字符串指针

【注意】

• 参数必须为ISPP scale结点路径。

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

rk_aiq_uapi2_sysctl_updateIq

【描述】

动态更新当前所使用的iq参数文件,不需要停止数据流。

【语法】

XCamReturn rk_aiq_uapi2_sysctl_updateIq(const rk_aiq_sys_ctx_t* sys_ctx, char*
iqfile);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
iqfile	新的iq文件	输入

【返回值】

返回值	描述
0	成功

返回值	描述
∃E 0	失败, 详见错误码表

【注意】

- iqfile 需要为全路径。
- 更新iq参数,并不意味着能切换运行模式,如需要切换hdr与normal,并不能通过更新iq文件实现;但某些功能的切换却可以通过iq参数的不同配置来实现,如日、夜切换可完全通过iq配置来实现切换。
- 切换iq时,iq中的配置参数将会覆盖掉用户API的设置。如AWB模块,在iq中可配置手动、自动模式,那么执行该函数后,不管当前AWB处于何种模式,最终都会被新iq中的默认配置覆盖掉。

【需求】

• 头文件: rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

rk_aiq_uapi2_sysctl_getCrop

【描述】

获取crop参数。

【语法】

XCamReturn

rk_aiq_uapi2_sysctl_getCrop(const rk_aiq_sys_ctx_t* sys_ctx, rk_aiq_rect_t
*rect);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
rect	crop参数结构体指针	输出

【返回值】

返回值	描述
0	成功
∃E 0	失败, 详见错误码表

数据类型

rk_aiq_working_mode_t

【说明】

AIQ pipeline工作模式

【定义】

```
typedef enum {
    RK_AIQ_WORKING_MODE_NORMAL,
    RK_AIQ_WORKING_MODE_ISP_HDR2 = 0x10,
    RK_AIQ_WORKING_MODE_ISP_HDR3 = 0x20,
} rk_aiq_working_mode_t;
```

【成员】

成员名称	描述
RK_AIQ_WORKING_MODE_NORMAL	普通模式
RK_AIQ_WORKING_MODE_ISP_HDR2	两帧HDR模式
RK_AIQ_WORKING_MODE_ISP_HDR3	三帧HDR模式

【注意事项】

• 需要先查询sensor及AIQ所支持的模式,若设置的模式不支持则设置无效。

rk_aiq_static_info_t

【说明】

AIQ 静态信息

【定义】

```
typedef struct {
    rk_aiq_sensor_info_t sensor_info;
    rk_aiq_lens_info_t lens_info;
    bool has_lens_vcm;
    bool has_fl;
    bool fl_strth_adj_sup;
    bool has_irc;
    bool fl_ir_strth_adj_sup;
} rk_aiq_static_info_t;
```

【成员】

成员名称	描述
sensor_info	sensor的名称、支持的分辨率等描述
lens_info	镜头信息
has_lens_vcm	是否带vcm
has_fl	是否带闪光灯
fl_strth_adj_sup	带闪光灯是否可调
bool has_irc	是否带IR-CUT
bool fl_ir_strth_adj_sup	

rk_aiq_sensor_info_t

【说明】

sensor信息

【定义】

```
typedef struct {
   char sensor_name[32];
   rk_frame_fmt_t support_fmt[SUPPORT_FMT_MAX];
   int32_t num;
   /* binded pp stream media index */
   int8_t binded_strm_media_idx;
} rk_aiq_sensor_info_t;
```

【成员】

成员名称	描述
sensor_name	sensor的名称
support_fmt	支持的格式
num	支持的格式个数
has_fl	是否带闪光灯
binded_strm_media_idx	该sensor挂载的media节点号

rk_aiq_module_id_t

【说明】

AIQ 模块ID

【定义】

```
typedef enum {
    RK\_MODULE\_INVAL = 0,
    RK_MODULE_DPCC,
    RK_MODULE_BLS,
    RK_MODULE_LSC,
    RK_MODULE_AWB_GAIN,
    RK_MODULE_CTK,
    RK_MODULE_GOC,
    RK_MODULE_SHARP,
    RK_MODULE_AE,
    RK_MODULE_AWB,
    RK_MODULE_NR,
    RK_MODULE_GIC,
    RK_MODULE_3DLUT,
    RK_MODULE_LDCH,
    RK_MODULE_TNR,
    RK_MODULE_FEC,
    RK\_MODULE\_MAX
}rk_aiq_module_id_t;
```

【成员】

成员名称	描述
RK_MODULE_DPCC	坏点检测与纠正
RK_MODULE_BLS	黑电平
RK_MODULE_LSC	镜头阴影校正
RK_MODULE_AWB_GAIN	白平衡增益
RK_MODULE_CTK	颜色校正
RK_MODULE_GOC	伽玛
RK_MODULE_SHARP	锐化
RK_MODULE_AE	曝光
RK_MODULE_AWB	白平衡
RK_MODULE_NR	去噪
RK_MODULE_GIC	绿平衡
RK_MODULE_3DLUT	3DLUT
RK_MODULE_LDCH	LDCH
RK_MODULE_TNR	3D去噪
RK_MODULE_FEC	鱼眼校正

rk_aiq_cpsl_cfg_t

【说明】

补光灯设置信息结构体

【定义】

```
typedef struct rk_aiq_cpsl_cfg_s {
    RKAiqOPMode_t mode;
    rk_aiq_cpsls_t lght_src;
    bool gray_on; /*!< force to gray if light on */</pre>
    union {
        struct {
             float sensitivity; /*!< Range [0-100] */</pre>
             uint32_t sw_interval; /*!< switch interval time, unit seconds */</pre>
        } a; /*< auto mode */
        struct {
             uint8_t on; /*!< disable 0, enable 1 */</pre>
             float strength_led; /*!< Range [0-100] */</pre>
            float strength_ir; /*!< Range [0-100] */</pre>
        } m; /*!< manual mode */</pre>
    } u;
} rk_aiq_cpsl_cfg_t;
```

【成员】

成员名称	描述
mode	工作模式
lght_src	光源类型
gray_on	切换为夜晚模式后是否将画面切为黑白
sensitivity	自动模式下的切换灵敏度,范围[0,100]
sw_interval	自动模式下的切换间隔,单位秒
on	手动模式下是否切换为夜晚模式
strength_led	手动模式下的LED灯强度,范围[0,100]
strength_ir	手动模式下的红外灯强度,范围[0,100]

rk_aiq_cpsl_info_t

【说明】

补光灯查询信息结构体

【定义】

```
typedef struct rk_aiq_cpsl_info_s {
   int32_t mode;
   uint8_t on;
   bool gray;
   float strength_led;
   float strength_ir;
   float sensitivity;
   uint32_t sw_interval;
   int32_t lght_src;
} rk_aiq_cpsl_info_t;
```

【成员】

成员名称	描述
mode	工作模式
lght_src	光源类型
gray	切换为夜晚模式后是否将画面切为黑白
sensitivity	自动模式下的切换灵敏度,范围[0,100]
sw_interval	自动模式下的切换间隔,单位秒
on	手动模式下是否切换为夜晚模式
strength_led	手动模式下的LED灯强度,范围[0,100]
strength_ir	手动模式下的红外灯强度,范围[0,100]

rk_aiq_cpsl_cap_t

【说明】

补光灯支持能力结构体

【定义】

```
typedef struct rk_aiq_cpsl_cap_s {
   int32_t supported_modes[RK_AIQ_OP_MODE_MAX];
   uint8_t modes_num;
   int32_t supported_lght_src[RK_AIQ_CPSLS_MAX];
   uint8_t lght_src_num;
   rk_aiq_range_t strength_led;
   rk_aiq_range_t sensitivity;
   rk_aiq_range_t strength_ir;
} rk_aiq_cpsl_cap_t;
```

【成员】

成员名称	描述
supported_modes	支持的工作模式
modes_num	支持的模式个数
gray	切换为夜晚模式后是否将画面切为黑白
supported_lght_src	支持的光源
lght_src_num	支持的光源个数
strength_led	LED的强度范围
sensitivity	灵敏度范围
strength_ir	红外灯的强度范围

rk_aiq_rect_t

【说明】

定义crop参数结构体

【定义】

```
typedef struct rk_aiq_rect_s {
   int left;
   int top;
   int width;
   int height;
} rk_aiq_rect_t;
```

【成员】

成员名称 描述

成员名称	描述
left	horizontal output offset
top	vertical output offset
width	horizontal output size
height	vertical output size

离线帧处理

概述

RKAIQ提供离线RAW帧处理功能,即RK自定义的RAW格式文件经RKAIQ解析后送ISP处理,输出为可显示正常效果的图像的功能。

注意: 离线帧处理功能还未测试通过。

功能框图

离线帧处理框图

功能描述

- 支持RK-RAW文件输入。使用文件输入接口,调用进程将被阻塞,直到文件处理完成并成功输出。
- 支持RK-RAW buffer输入,异步处理模式。
 使用buffer输入接口,调用进程不会阻塞,buffer处理完成后将调用回调函数(如有注册回调函数)。
- 支持RK-RAW buffer输入,同步处理模式。
 使用buffer输入接口,调用进程将被阻塞,直到buffer处理完成并成功输出。

RK-RAW格式说明

参见《RK RAW文件格式》说明文档

支持的RAW格式

支持raw8/raw10/raw12, 支持BGGR/GBRG/GRBG/RGGB四种bayer格式。

API参考

数据结构

注意事项

- 使用RK Raw数据处理功能,在创建AIQ Context时,rk_aiq_uapi2_sysctl_init接口的参数 sns_ent_name须为"FakeCamera"。
- Raw数据的处理依赖IQ XML效果文件, XML文件生成时的分辨率应与传入的RK Raw帧数据的分辨率一致。效果文件须命名为FakeCamera.xml, 放置于XML文件的加载路径下。

参考示例

离线帧处理API的使用方法请参考rkisp_demo, 路径为YOUR_SDK_DIR/external/camera_engine_rkaiq/rkisp_demo。

AE

概述

AE 模块实现的功能是:根据自动测光系统获得当前图像的曝光量,再自动配置镜头光圈、 sensor 快门及增益来获得最佳的图像质量。

重要概念

- 曝光时间: sensor 积累电荷的时间,是 sensor pixel 从开始曝光到电量被读出的这段时间。
- 曝光增益:对 sensor的输出电荷的总的放大系数,一般有数字增益和模拟增益,模拟增益引入的噪声会稍小,所以一般优先用模拟增益。
- 光圈: 光圈是镜头中可以改变通光孔径大小的机械装置。
- 抗闪烁:由于电灯的电源工频与 sensor 的帧率不匹配而导致的画面闪烁,一般通过限定曝光时间和修改 sensor 的帧率来达到抗闪烁的效果。

功能描述

AE 模块由AE 统计信息及 AE 控制策略的算法两部分组成。

功能级API参考

rk_aiq_uapi2_setAeLock

【描述】

设置ae曝光锁定功能。

【语法】

```
XCamReturn rk_aiq_uapi2_setAeLock (const rk_aiq_sys_ctx_t* ctx, bool on);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
on	锁定使能	输入

【返回值】

返回值	描述
0	成功
≢ 0	

$rk_aiq_uapi2_setExpMode$

【描述】

设置曝光模式,支持设置自动曝光和手动曝光。

【语法】

```
XCamReturn rk_aiq_uapi2_setExpMode(const rk_aiq_sys_ctx_t* ctx, opMode_t mode);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
mode	曝光模式	输入

【返回值】

返回值	描述
0	成功

返回值	描述
∃E 0	失败, 详见错误码表

【注意】

• 曝光模式切为手动模式时的增益和曝光时间采用图像效果文件中定义的初始值。如果切换手动模式同时需要设置曝光值,可以使用rk_aiq_uapi2_setManualExp接口。

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getExpMode

【描述】

获取曝光模式。

【语法】

XCamReturn rk_aiq_uapi2_getExpMode(const rk_aiq_sys_ctx_t* ctx, opMode_t *mode);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
mode	曝光模式	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_setManualExp$

【描述】

使用手动曝光模式,并且设置增益和曝光时间。

【语法】

XCamReturn rk_aiq_uapi2_setManualExp(const rk_aiq_sys_ctx_t* ctx, float gain, float time);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
gain	曝光增益	输入
time	曝光时间	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_setExpGainRange

【描述】

设置增益范围。

【语法】

XCamReturn rk_aiq_uapi2_setExpGainRange(const rk_aiq_sys_ctx_t* ctx, paRange_t
*gain);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
gain	曝光增益范围	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getExpGainRange

【描述】

获取增益范围。

【语法】

XCamReturn rk_aiq_uapi2_getExpGainRange(const rk_aiq_sys_ctx_t* ctx, paRange_t
*gain);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
gain	曝光增益范围	输出

【返回值】

返回值	描述
0	成功
∃E 0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_setExpTimeRange

【描述】

设置曝光时间范围。

【语法】

XCamReturn rk_aiq_uapi2_setExpTimeRange(const rk_aiq_sys_ctx_t* ctx, paRange_t
*time);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
time	曝光时间范围	输入

【返回值】

返回值	描述
0	成功

返回值	描述
∃	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getExpTimeRange

【描述】

获取曝光时间范围。

【语法】

XCamReturn rk_aiq_uapi2_getExpTimeRange(const rk_aiq_sys_ctx_t* ctx, paRange_t
*time);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
time	曝光时间范围	输出

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_setBLCMode

【描述】

背光补偿开关、区域设置。

【语法】

XCamReturn rk_aiq_uapi2_setBLCMode(const rk_aiq_sys_ctx_t* ctx, bool on,
aeMeasAreaType_t areaType);

【参数】

参数名称	描述	输入/输出
------	----	-------

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
on	开关	输入
areaType	补偿区域选择	输入

【返回值】

返回值	描述
0	成功
∃E 0	失败,详见错误码表

【注意】

• 该接口仅在线性模式下可用。

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_setBLCStrength

【描述】

设置暗区提升强度。

【语法】

XCamReturn rk_aiq_uapi2_setBLCStrength(const rk_aiq_sys_ctx_t* ctx, int
strength);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
strength	提升强度,范围[1,100]	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【注意】

• 该接口仅在线性模式下可用。

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_setHLCMode

【描述】

强光抑制开关。

【语法】

XCamReturn rk_aiq_uapi2_setHLCMode(const rk_aiq_sys_ctx_t* ctx, bool on);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
on	开关	输入

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【注意】

• 该接口仅在线性模式下可用。

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_setHLCStrength

【描述】

设置强光抑制强度。

【语法】

XCamReturn rk_aiq_uapi2_setHLCStrength(const rk_aiq_sys_ctx_t* ctx, int
strength);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
strength	抑制强度, 范围[1,100]	输入

【返回值】

返回值	描述
0	成功
∃E 0	失败,详见错误码表

【注意】

• 该接口仅在线性模式下可用。

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_setAntiFlickerEn

【描述】

设置抗工频闪烁开关。

【语法】

XCamReturn rk_aiq_uapi2_setAntiFlickerEn(const rk_aiq_sys_ctx_t* ctx, bool on);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
on	功能开关参数	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getAntiFlickerEn

【描述】

设置抗工频闪烁开关。

【语法】

XCamReturn rk_aiq_uapi2_getAntiFlickerEn(const rk_aiq_sys_ctx_t* ctx, bool* on);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
on	功能开关参数	输入

【返回值】

返回值	描述
0	成功
∃	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_setAntiFlickerMode$

【描述】

设置抗闪模式。

【语法】

XCamReturn rk_aiq_uapi2_setAntiFlickerMode(const rk_aiq_sys_ctx_t* ctx,
antiFlickerMode_t mode);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
mode	抗闪模式	输入

【返回值】

返回值	描述
0	成功
≒ E0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getAntiFlickerMode

【描述】

获取抗闪模式。

【语法】

```
XCamReturn rk_aiq_uapi2_getAntiFlickerMode(const rk_aiq_sys_ctx_t* ctx,
antiFlickerMode_t *mode);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
mode	抗闪模式	输出

【返回值】

返回值	描述
0	成功
∃E 0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_setExpPwrLineFreqMode$

【描述】

设置抗闪频率。

【语法】

```
XCamReturn rk_aiq_uapi2_setExpPwrLineFreqMode(const rk_aiq_sys_ctx_t* ctx,
expPwrLineFreq_t freq);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
freq	抗闪频率	输入

【返回值】

返回值	描述
0	成功

返回值	描述
∃E 0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_getExpPwrLineFreqMode$

【描述】

获取抗闪频率。

【语法】

```
XCamReturn rk_aiq_uapi2_getExpPwrLineFreqMode(const rk_aiq_sys_ctx_t* ctx,
expPwrLineFreq_t *freq);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
freq	抗闪频率	输出

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

功能级API数据类型

opMode_t

【说明】

定义自动手动模式。

【定义】

```
typedef enum opMode_e {
    OP_AUTO = 0,
    OP_MANUAL1 = 1,
    OP_INVAL
} opMode_t;
```

【成员】

成员名称	描述
OP_AUTO	自动模式
OP_MANUALI	手动模式
OP_INVAL	无效值

paRange_t

【说明】

定义参数范围。

【定义】

```
typedef struct paRange_s {
    float max;
    float min;
} paRange_t;
```

【成员】

成员名称	描述
max	上限值
min	下限值

aeMeasAreaType_t

【说明】

定义AE测量区域类型。

【定义】

```
typedef enum aeMeasAreaType_e {
    AE_MEAS_AREA_AUTO = 0,
    AE_MEAS_AREA_UP,
    AE_MEAS_AREA_BOTTOM,
    AE_MEAS_AREA_LEFT,
    AE_MEAS_AREA_LEFT,
    AE_MEAS_AREA_CENTER,
} aeMeasAreaType_t;
```

【成员】

成员名称	描述
AE_MEAS_AREA_AUTO	自动
AE_MEAS_AREA_UP	上方区域

成员名称	描述
AE_MEAS_AREA_BOTTOM	下方区域
AE_MEAS_AREA_LEFT	左边区域
AE_MEAS_AREA_RIGHT	右边区域
AE_MEAS_AREA_CENTER	中心区域

$expPwrLineFreq_t$

【说明】

定义抗闪频率。

【定义】

```
typedef enum expPwrLineFreq_e {
    EXP_PWR_LINE_FREQ_DIS = 0,
    EXP_PWR_LINE_FREQ_50HZ = 1,
    EXP_PWR_LINE_FREQ_60HZ = 2,
} expPwrLineFreq_t;
```

【成员】

成员名称	描述
EXP_PWR_LINE_FREQ_DIS	
EXP_PWR_LINE_FREQ_50HZ	50赫兹
EXP_PWR_LINE_FREQ_60HZ	60赫兹

antiFlickerMode_t

【说明】

定义抗闪模式。

【定义】

```
typedef enum antiflickerMode_e {
   ANTIFLICKER_NORMAL_MODE = 0,
   ANTIFLICKER_AUTO_MODE = 1,
} antiflickerMode_t;
```

【成员】

成员名称	描述
ANTIFLICKER_NORMAL_MODE	普通模式
ANTIFLICKER_AUTO_MODE	自动选择模式

模块级API参考

rk_aiq_user_api2_ae_setExpSwAttr

【描述】

设定 AE曝光软件属性。

【语法】

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
expSwAttr	AE公共功能控制参数结构体	输入

【返回值】

返回值	描述
0	成功
∃ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

【举例】

• 设置手动曝光属性

曝光分量包括sensor曝光时间、sensor曝光增益、isp数字增益。设置手动曝光模式之后,还需要分别设置各曝光分量的手动状态(ManualGainEn、ManualTimeEn、ManualIspDgainEn)及其对应手动值。手动曝光模式下,要求所有曝光分量为手动状态,设置的各曝光分量的值,会受到sensor及镜头的限制。如设置的曝光分量值超过sensor的限制,算法内部会自动进行校正。

```
Uapi_ExpSwAttrV2_t expSwAttr;
ret = rk_aiq_user_api2_ae_getExpSwAttr(ctx, &expSwAttr);
expSwAttr.AecOpType = RK_AIQ_OP_MODE_MANUAL;
//LinearAE
expSwAttr.stManual.LinearAE.ManualGainEn = true;
expSwAttr.stManual.LinearAE.ManualTimeEn = true;
expSwAttr.stManual.LinearAE.GainValue = 1.0f; /*gain = 1x*/
expSwAttr.stManual.LinearAE.TimeValue = 0.02f; /*time = 1/50s*/
//HdrAE (should set all frames)
expSwAttr.stManual.HdrAE.ManualGainEn = true;
expSwAttr.stManual.HdrAE.ManualTimeEn = true;
```

```
expSwAttr.stManual.HdrAE.GainValue[0] = 1.0f; /*sframe gain = 1x*/
expSwAttr.stManual.HdrAE.TimeValue[0] = 0.002f; /*sframe time = 1/500s*/
expSwAttr.stManual.HdrAE.GainValue[1] = 2.0f; /*mframe gain = 2x*/
expSwAttr.stManual.HdrAE.TimeValue[1] = 0.01f; /*mframe time = 1/100s*/
expSwAttr.stManual.HdrAE.GainValue[2] = 4.0f; /*lframe gain = 4x*/
expSwAttr.stManual.HdrAE.TimeValue[2] = 0.02f; /*lframe time = 1/50s*/
ret = rk_aiq_user_api2_ae_setExpSwAttr(ctx, expSwAttr);
```

• 设置自动曝光属性

自动曝光可以设置曝光分量的作用范围,若设置的曝光分量范围超过sensor的限制,算法内部会自动进行校正。

【注】设置曝光分量range的参数与获取曝光分量range的参数不同。

```
Uapi_ExpSwAttrV2_t expSwAttr;
ret = rk_aiq_user_api2_ae_getExpSwAttr(ctx, &expSwAttr);
expSwAttr.AecOpType = RK_AIQ_OP_MODE_AUTO;
//set time range in struct "stAdvanced"
expSwAttr.stAdvanced.SetAeRangeEn = true;/*must enable*/
//LinAE
expSwAttr.stAdvanced.SetLinAeRange.stExpTimeRange.Max = 0.04f; /*time_max =
0.04*/
expSwAttr.stAdvanced.SetLinAeRange.stExpTimeRange.Min = 0.001f; /*time_min =
0.001*/
//HdrAE
expSwAttr.stAdvanced.SetHdrAeRange.stExpTimeRange[0].Max = 0.002f; /*sframe
time_max = 0.02*/
expSwAttr.stAdvanced.SetHdrAeRange.stExpTimeRange[0].Min = 0.001f; /*sframe
time_min = 0.01*/
expSwAttr.stAdvanced.SetHdrAeRange.stExpTimeRange[1].Max = 0.003f; /*mframe
time_max = 0.03*/
expSwAttr.stAdvanced.SetHdrAeRange.stExpTimeRange[1].Min = 0.002f; /*mframe
time_min = 0.02*/
expSwAttr.stAdvanced.SetHdrAeRange.stExpTimeRange[2].Max = 0.04f; /*1frame
time_max = 0.03*/
expSwAttr.stAdvanced.SetHdrAeRange.stExpTimeRange[2].Min = 0.03f; /*lframe
time_min = 0.02*/
//get time range in struct "stAuto"
printf("linear time range=[%f,%f]\n",
    expSwAttr.stAuto.LinAeRange.stExpTimeRange.Min,
expSwAttr.stAuto.LinAeRange.stExpTimeRange.Max);
printf("hdr stime range=[%f,%f], mtime range=[%f,%f], ltime range=[%f,%f]\n",
    expSwAttr.stAuto.HdrAeRange.stExpTimeRange[0].Min,
expSwAttr.stAuto.HdrAeRange.stExpTimeRange[0].Max,
    expSwAttr.stAuto.HdrAeRange.stExpTimeRange[1].Min,
expSwAttr.stAuto.HdrAeRange.stExpTimeRange[1].Max,
    expSwAttr.stAuto.HdrAeRange.stExpTimeRange[2].Min,
expSwAttr.stAuto.HdrAeRange.stExpTimeRange[2].Max);
//set gain range in struct "stAdvanced"
expSwAttr.stAdvanced.SetAeRangeEn = true;/*must enable*/
```

```
//LinAE
expSwAttr.stAdvanced.SetLinAeRange.stGainRange.Max = 32.0f; /*gain_max = 32x*/
expSwAttr.stAdvanced.SetLinAeRange.stGainRange.Min = 1.0f; /*gain_min = 1x*/
//HdrAE
expSwAttr.stAdvanced.SetHdrAeRange.stGainRange[0].Max = 32.0f; /*sframe gain_max
= 2x*/
expSwAttr.stAdvanced.SetHdrAeRange.stGainRange[0].Min = 1.0f; /*sframe gain_min
expSwAttr.stAdvanced.SetHdrAeRange.stGainRange[1].Max = 64.0f; /*mframe gain_max
= 64x*/
expSwAttr.stAdvanced.SetHdrAeRange.stGainRange[1].Min = 1.0f; /*mframe gian_min
expSwAttr.stAdvanced.SetHdrAeRange.stGainRange[2].Max = 64.0f; /*lframe gain_max
expSwAttr.stAdvanced.SetHdrAeRange.stGainRange[2].Min = 1.0f; /*lframe gain_min
= 1x*/
//get gain range in struct "stAuto"
printf("linear gain range=[%f,%f]\n",
   expSwAttr.stAuto.LinAeRange.stGainRange.Min,
expSwAttr.stAuto.LinAeRange.stGainRange.Max);
expSwAttr.stAuto.HdrAeRange.stGainRange[0].Min,
expSwAttr.stAuto.HdrAeRange.stGainRange[0].Max,
   expSwAttr.stAuto.HdrAeRange.stGainRange[1].Min,
expSwAttr.stAuto.HdrAeRange.stGainRange[1].Max,
   expSwAttr.stAuto.HdrAeRange.stGainRange[2].Min,
expSwAttr.stAuto.HdrAeRange.stGainRange[2].Max);
ret = rk_aiq_user_api2_ae_setExpSwAttr(ctx, expSwAttr);
```

• 设置半手动曝光属性

半手动曝光是曝光分量(sensor曝光时间、sensor曝光增益、isp数字增益)中至少有一个曝光分量为手动状态,其他曝光分量为自动状态,否则将报错退出。例如,为了实现曝光增益手动,曝光时间、isp数字增益自动的半自动曝光功能,有以下两种实现方式:方式一,在手动曝光模式中,将曝光时间、isp数字增益的手动使能设为false,设置曝光增益的手动使能为true,并设置对应手动值;方式二,在自动曝光模式下,将曝光增益的最大最小值均设为需要固定的值。

【注】方式一: HDR曝光模式下,所有帧的手动行为是同步的(即各帧的对应曝光分量手动行为一致),同时需保证长帧最大曝光大于短帧最大曝光,长帧最小曝光大于短帧最小曝光;方式二: HDR曝光模式下,各帧的手动行为允许不一致(如短帧增益手动,长帧增益可为自动),同时需保证长帧最大曝光大于短帧最大曝光,长帧最小曝光大于短帧最小曝光。

```
//Method One
Uapi_ExpSwAttrV2_t expSwAttr;
ret = rk_aiq_user_api2_ae_getExpSwAttr(ctx, &expSwAttr);
expSwAttr.AecOpType = RK_AIQ_OP_MODE_MANUAL;
//LinearAE
expSwAttr.stManual.LinearAE.ManualGainEn = true;
expSwAttr.stManual.LinearAE.ManualTimeEn = false;
expSwAttr.stManual.LinearAE.ManualIspDgainEn = false;
expSwAttr.stManual.LinearAE.GainValue = 2.0f; /*gain = 2x*/
//HdrAE (need to set all frames)
expSwAttr.stManual.HdrAE.ManualGainEn = true;
```

```
expSwAttr.stManual.HdrAE.ManualTimeEn = false;
expSwAttr.stManual.HdrAE.ManualIspDgainEn = false;
expSwAttr.stManual.HdrAE.GainValue[0] = 1.0f; /*sframe gain = 1x*/
expSwAttr.stManual.HdrAE.GainValue[1] = 2.0f; /*mframe gain = 2x*/
expSwAttr.stManual.HdrAE.GainValue[2] = 4.0f; /*lframe gain = 4x*/
ret = rk_aiq_user_api2_ae_setExpSwAttr(ctx, expSwAttr);
//Method Two
Uapi_ExpSwAttrV2_t expSwAttr;
ret = rk_aiq_user_api2_ae_getExpSwAttr(ctx, &expSwAttr);
expSwAttr.AecOpType = RK_AIQ_OP_MODE_AUTO;
//set gain range
expSwAttr.stAdvanced.SetAeRangeEn = true;/*必须使能*/
//LinAE
expSwAttr.stAdvanced.SetLinAeRange.stGainRange.Max = 2.0f; /*gain_max = 2x*/
expSwAttr.stAdvanced.SetLinAeRange.stGainRange.Min = 2.0f; /*gain_min = 2x*/
//HdrAE (allow to set only one frame)
expSwAttr.stAdvanced.SetHdrAeRange.stGainRange[0].Max = 2.0f; /*sframe gain_max
expSwAttr.stAdvanced.SetHdrAeRange.stGainRange[0].Min = 2.0f; /*sframe gain_min
= 2x*/
ret = rk_aiq_user_api2_ae_setExpSwAttr(ctx, expSwAttr);
```

• 设置固定帧率或自动降帧

固定帧率模式下,允许设置的帧率不得超过驱动定义的最大帧率,如超过会有log提醒,且帧率设置失效。

```
//set fixed framemode

Uapi_ExpSwAttrV2_t expSwAttr;
ret = rk_aiq_user_api2_ae_getExpSwAttr(ctx, &expSwAttr);
expSwAttr.stAuto.stFrmRate.isFpsFix = true;
expSwAttr.stAuto.stFrmRate.FpsValue = 25; /*fps = 25*/
ret = rk_aiq_user_api2_ae_setExpSwAttr(ctx, expSwAttr);

//set auto framemode
Uapi_ExpSwAttrV2_t expSwAttr;
ret = rk_aiq_user_api2_ae_getExpSwAttr(ctx, &expSwAttr);
expSwAttr.stAuto.stFrmRate.isFpsFix = false;
expSwAttr.stAuto.stFrmRate.FpsValue = 25; /*fps max = 25*/
/*一般自动降帧模式由tuning人员事先配置好最低帧率和切换帧率对应的gain值*/
ret = rk_aiq_user_api2_ae_setExpSwAttr(ctx, expSwAttr);
```

设置曝光调节速度及延迟帧数

```
Uapi_ExpSwAttrV2_t expSwAttr;
ret = rk_aiq_user_api2_ae_getExpSwAttr(ctx, &expSwAttr);
//set ae speed
expSwAttr.stAuto.stAeSpeed.DampOver = 0.8f;
expSwAttr.stAuto.stAeSpeed.DampDark2Bright = 0.8f;
expSwAttr.stAuto.stAeSpeed.DampUnder = 0.8f;
expSwAttr.stAuto.stAeSpeed.DampBright2Dark = 0.8f;
//set ae delay
expSwAttr.stAuto.BlackDelayFrame = 2;
expSwAttr.stAuto.WhiteDelayFrame = 4;
ret = rk_aiq_user_api2_ae_setExpSwAttr(ctx, expSwAttr);
```

• 设置抗闪功能

```
Uapi_ExpSwAttr_t expSwAttr;
ret = rk_aiq_user_api2_ae_getExpSwAttr(ctx, &expSwAttr);
//set antifilicker mode
expSwAttr.stAuto.stAntiFlicker.enable = true;
expSwAttr.stAuto.stAntiFlicker.Frequency = AECV2_FLICKER_FREQUENCY_50HZ;
expSwAttr.stAuto.stAntiFlicker.Mode = AECV2_ANTIFLICKER_AUTO_MODE;
ret = rk_aiq_user_api2_ae_setExpSwAttr(ctx, expSwAttr);
```

• 设置AE权重

设置15X15权重,算法内部根据硬件实际分块规格,进行权重的压缩。目前有两种设置权重的方式:方式一直接修改json中的权重;方式二:通过stadvanced修改权重,若消除使能,即可还原回json中的权重(推荐使用这种方式)。

针对人脸应用建议使用方式二,出现人脸时expSwAttr.stAdvanced.enable = true,使用 expSwAttr.stAdvanced结构体中的权重,人脸消失时expSwAttr.stAdvanced.enable = false,使用原权 重。

```
Uapi_ExpSwAttr_t expSwAttr;
ret = rk_aiq_user_api2_ae_getExpSwAttr(ctx, &expSwAttr);
uint8_t GridWeights[225]={
0, 0, 1, 2, 2, 3, 4, 5, 4, 3, 2, 2, 1, 0, 0,
0, 1, 2, 3, 3, 4, 5, 6, 5, 4, 3, 3, 2, 1, 0,
1, 2, 3, 5, 5, 6, 7, 8, 7, 6, 5, 5, 3, 2,
2, 3, 5, 7, 7, 8, 9, 10, 9, 8, 7, 7, 5, 3, 2,
2, 3, 5, 7, 8, 9, 10, 11, 10, 9, 8, 7, 5, 3, 2,
2, 4, 6, 8, 9, 10, 11, 12, 11, 10, 9, 8, 6, 4, 2,
2, 4, 6, 9, 10, 11, 12, 13, 12, 11, 10, 9, 6, 4, 2,
3, 5,7, 10, 11, 12, 13, 14, 13,12, 11, 10, 7, 5, 3,
2, 4, 6, 9, 10, 11, 12, 13, 12, 11, 10, 9, 6, 4, 2,
2,
  4, 6, 8, 9, 10, 11, 12, 11, 10, 9, 8, 6, 4, 2,
2, 3, 5, 7, 8, 9, 10, 11, 10, 9, 8, 7, 5, 3, 2,
2, 3, 5, 7, 7, 8, 9, 10, 9, 8, 7, 7, 5, 3, 2,
1, 2, 4, 6, 6, 7, 8, 9, 8, 7, 6, 6, 4, 2, 1,
0, 1, 3, 5, 5, 6, 7, 8, 7, 6, 5, 5, 3, 1, 0,
0, 1, 3, 5, 5, 6, 7, 8, 7, 6, 5, 5, 3, 1, 0
};
//method one:
```

```
memcpy(expSwAttr.GridWeights.uCoeff, GridWeights,
sizeof(expSwAttr.GridWeights.uCoeff));

//method two:
expSwAttr.stAdvanced.enable = true; //important! true means preferring to use
these parameters
memcpy(expSwAttr.stAdvanced.GridWeights, GridWeights,
sizeof(expSwAttr.stAdvanced.GridWeights));

ret = rk_aiq_user_api2_ae_setExpSwAttr(ctx, expSwAttr);
```

rk_aiq_user_api2_ae_getExpSwAttr

【描述】

获取 AE 曝光软件属性。

【语法】

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
pExpSwAttr	AE曝光软件属性结构体指针	输出

【返回值】

返回值	描述
0	成功
∃ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

rk_aiq_user_api2_ae_setLinAeRouteAttr

【描述】

设置线性模式下AE的场景曝光分配策略。

【语法】

```
XCamReturn
rk_aiq_user_api2_ae_setLinAeRouteAttr(const rk_aiq_sys_ctx_t* ctx, const
Uapi_LinAeRouteAttr_t linAeRouteAttr);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
linAeRouteAttr	AE曝光分配策略结构体	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

【举例】

```
Uapi_LinAeRouteAttr_t LinAeRouteAttr;
memset(&LinAeRouteAttr,0x00,sizeof(Uapi_LinAeRouteAttr_t));
rk_aiq_user_api2_ae_getLinAeRouteAttr(sys_ctx,&LinAeRouteAttr);
int len = 8;
float TimeDot[8]=\{0,0.01,0.01,0.02,0.02,0.03,0.03,0.04\};
float GainDot[8] = \{1, 1, 4, 4, 8, 8, 16, 32\};
float IspGainDot[8]={1,1,1,1,1,1,1,1};
int PirisDot[8]={512,512,512,512,512,512,512};
LinAeRouteAttr.TimeDot_len = len;
LinAeRouteAttr.GainDot_len = len;
LinAeRouteAttr.IspDGainDot_len = len;
LinAeRouteAttr.PIrisDot_len = len;
LinAeRouteAttr.GainDot = GainDot;
LinAeRouteAttr.IspDGainDot = IspGainDot;
LinAeRouteAttr.TimeDot = TimeDot;
LinAeRouteAttr.PIrisDot = PirisDot;
rk_aiq_user_api2_ae_setLinAeRouteAttr(sys_ctx,LinAeRouteAttr);
```

rk_aiq_user_api2_ae_getLinAeRouteAttr

【描述】

获取线性模式下AE的场景曝光分配策略。

【语法】

XCamReturn

rk_aiq_user_api2_ae_getLinAeRouteAttr(const rk_aiq_sys_ctx_t* ctx,
Uapi_LinAeRouteAttr_t* pLinAeRouteAttr);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
pLinAeRouteAttr	AE曝光分配策略结构体指针	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

rk_aiq_user_api2_ae_setHdrAeRouteAttr

【描述】

设置HDR模式下AE的场景曝光分配策略。

【语法】

XCamReturn

rk_aiq_user_api2_ae_setHdrAeRouteAttr(const rk_aiq_sys_ctx_t* ctx, const
Uapi_HdrAeRouteAttr_t hdrAeRouteAttr);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
hdrAeRouteAttr	AE曝光分配策略结构体	输入

【返回值】

返回值	描述
0	成功
丰60	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

【举例】

```
Uapi_HdrAeRouteAttr_t stHdrRoute;
memset(&stHdrRoute,0x00,sizeof(Uapi_HdrAeRouteAttr_t));
ret = rk_aiq_user_api2_ae_getHdrAeRouteAttr(ctx,&stHdrRoute);
int len = 6;
float HdrTimeDot[3][6] = \{0.0, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.0
                                                                0.0, 0.02, 0.02, 0.02, 0.02, 0.02,
                                                                0.0, 0.03, 0.03, 0.03, 0.03, 0.03;
float HdrGainDot[3][6] = \{1, 1, 4, 6, 8, 12,
                                                                1, 1, 4, 6, 8, 12,
                                                                1, 1, 4, 6, 8, 12};
1, 1, 1, 1, 1, 1,
                                                                         1, 1, 1, 1, 1, 1};
int
               HdrPIrisGainDot[6] = \{1, 1, 1, 1, 1, 1\};
stHdrRoute.FrmOTimeDot_len = len;
stHdrRoute.FrmOGainDot_len = len;
stHdrRoute.FrmOIspDGainDot_len = len;
stHdrRoute.Frm1TimeDot_len = len;
stHdrRoute.Frm1GainDot_len = len;
stHdrRoute.Frm1IspDGainDot_len = len;
stHdrRoute.Frm2TimeDot_len = len;
stHdrRoute.Frm2GainDot_len = len;
stHdrRoute.Frm2IspDGainDot_len = len;
stHdrRoute.PIrisDot_len = len;
stHdrRoute.FrmOTimeDot = HdrTimeDot[0];
stHdrRoute.FrmOGainDot = HdrGainDot[0];
stHdrRoute.FrmOIspDGainDot = HdrIspDGainDot[0];
stHdrRoute.Frm1TimeDot = HdrTimeDot[1];
stHdrRoute.Frm1GainDot = HdrGainDot[1];
stHdrRoute.Frm1IspDGainDot = HdrIspDGainDot[1];
stHdrRoute.Frm2TimeDot = HdrTimeDot[2];
stHdrRoute.Frm2GainDot = HdrGainDot[2];
stHdrRoute.Frm2IspDGainDot = HdrIspDGainDot[2];
stHdrRoute.PIrisDot = HdrPIrisGainDot;
ret = rk_aiq_user_api2_ae_setHdrAeRouteAttr(ctx,stHdrRoute);
```

rk_aiq_user_api2_ae_getHdrAeRouteAttr

【描述】

获取HDR模式下AE的场景曝光分配策略。

【语法】

```
XCamReturn
rk_aiq_user_api2_ae_getHdrAeRouteAttr(const rk_aiq_sys_ctx_t* ctx,
Uapi_HdrAeRouteAttr_t* pHdrAeRouteAttr);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
pHdrAeRouteAttr	AE曝光分配策略结构体指针	输出

【返回值】

返回值	描述
0	成功
≢ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

rk_aiq_user_api2_ae_setLinExpAttr

【描述】

设置AE线性模式曝光参数。

【语法】

XCamReturn

rk_aiq_user_api2_ae_setLinExpAttr(const rk_aiq_sys_ctx_t* ctx, const
Uapi_LinExpAttrV2_t linExpAttr);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
linExpAttr	AE曝光参数结构体	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

【举例】

设置AE线性模式曝光参数,包括但不局限于:设置调整亮度力度Evbias,设置背光补偿功能 BackLightCtrl,设置强光抑制功能OverExpCtrl等。值得注意的是,背光补偿和强光抑制不能同时使能。

```
Uapi_LinExpAttrV2_t linExpAttr;
memset(&linExpAttr,0,sizeof(Uapi_LinExpAttrV2_t));
ret = rk_aiq_user_api2_ae_getLinExpAttr(ctx, &linExpAttr);
//set Evbias
printf("Evbias=%f\n", linExpAttr.Evbias);
linExpAttr.Evbias = 100.0f;

//set BackLightCtrl
linExpAttr.BackLightCtrl.Enable = true;
linExpAttr.BackLightCtrl.StrBias = 200.0f;

//set OverExpCtrl
linExpAttr.OverExpCtrl.Enable = true;
linExpAttr.OverExpCtrl.StrBias = 100.0f;

ret = rk_aiq_user_api2_ae_setLinExpAttr(ctx, linExpAttr);
```

rk_aiq_user_api2_ae_getLinExpAttr

【描述】

获取AE线性模式曝光参数。

【语法】

```
XCamReturn
rk_aiq_user_api2_ae_getLinExpAttr(const rk_aiq_sys_ctx_t* ctx,
Uapi_LinExpAttrV2_t* pLinExpAttr);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
pLinExpAttr	AE曝光参数结构体指针	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

rk_aiq_user_api2_ae_setHdrExpAttr

【描述】

设置AE HDR模式曝光参数。

【语法】

```
XCamReturn
rk_aiq_user_api2_ae_setHdrExpAttr(const rk_aiq_sys_ctx_t* ctx, const
Uapi_HdrExpAttrV2_t hdrExpAttr);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
hdrExpAttr	AE曝光参数结构体	输入

【返回值】

返回值	描述
0	成功
1=0	失败,详见错误码表

【需求】

- 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h
- 库文件: librkaiq.so

【举例】

设置AE HDR模式曝光参数,包括但不局限于:设置曝光比为手动或自动,调整亮度力度Evbias。

```
Uapi_HdrExpAttrV2_t HdrExpAttr;
memset(&HdrExpAttr,0,sizeof(Uapi_HdrExpAttrV2_t));
ret = rk_aiq_user_api2_ae_getHdrExpAttr(ctx, &HdrExpAttr);
//set hdr mframe params
int len = 8;
float explevel[8] = \{0, 0.096, 0.192, 0.384, 0.96, 1.344, 1.92, 3\};
float setpoint[8] = {50, 45, 40, 35, 30, 25, 20, 15};
HdrExpAttr.HdrAEAttr.MframeCtrl.MExpLevel_len = len;
HdrExpAttr.HdrAEAttr.MframeCtrl.MSetPoint_len = len;
HdrExpAttr.HdrAEAttr.MframeCtrl.MExpLevel = explevel;
HdrExpAttr.HdrAEAttr.MframeCtrl.MSetPoint = setpoint;
//set ExpRatioType (AUTO/FIX)
HdrExpAttr.ExpRatioCtrl.ExpRatioType = AECV2_HDR_RATIOTYPE_MODE_AUTO;
//set Evbias
HdrExpAttr.Evbias = -100.0f;
ret = rk_aiq_user_api2_ae_setHdrExpAttr(ctx, HdrExpAttr);
```

rk_aiq_user_api2_ae_getHdrExpAttr

【描述】

获取AE HDR模式曝光参数。

【语法】

```
XCamReturn
rk_aiq_user_api2_ae_getHdrExpAttr(const rk_aiq_sys_ctx_t* ctx,
Uapi_HdrExpAttrV2_t* pHdrExpAttr);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
pHdrExpAttr	AE曝光参数结构体指针	输出

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

rk_aiq_user_api2_ae_setIrisAttr

【描述】

设置AE光圈控制参数。

【语法】

```
XCamReturn
```

```
rk_aiq_user_api2_ae_setIrisAttr(const rk_aiq_sys_ctx_t * sys_ctx, const
Uapi_IrisAttrV2_t irisAttr);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
irisAttr	光圈控制参数结构体	输入

【返回值】

返回值	描述
-----	----

返回值	描述
0	成功
∃ E0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

【举例】

```
Uapi_IrisAttrV2_t irisAttr;
ret = rk_aiq_user_api2_ae_getIrisAttr(ctx, &irisAttr);
irisAttr.enable = true; /*run AIris*/
//set P-iris attributes
irisAttr.IrisType = IRIS_P_TYPE;
irisAttr.PIrisAttr.TotalStep = 81;
irisAttr.PIrisAttr.EffcStep = 44;
irisAttr.PIrisAttr.ZeroIsMax = true;
uint16_t StepTable[1024] = {512, 511, 506, 499, 491, 483, 474, 465, 456,
                            446, 437, 427, 417, 408, 398, 388, 378, 368,
                            359, 349, 339, 329, 319, 309, 300, 290, 280,
                            271, 261, 252, 242, 233, 224, 214, 205, 196,
                            187, 178, 170, 161, 153, 144, 136, 128, 120,
                            112, 105, 98, 90, 83, 77, 70, 64, 58,
                            52, 46, 41, 36, 31, 27, 23, 19, 16,
                            13, 10, 8, 6, 4, 3, 1, 1, 0,
                            0, 0, 0, 0, 0, 0, 0, 0, 0};
memcpy(irisAttr.PIrisAttr.StepTable,StepTable,sizeof(irisAttr.PIrisAttr.StepTable)
e));
ret = rk_aiq_user_api2_ae_setIrisAttr(ctx, irisAttr);
//set DC-iris attributes
irisAttr.IrisType = IRIS_DC_TYPE;
irisAttr.DCIrisAttr.Kp= 0.5f;
irisAttr.DCIrisAttr.Ki= 0.2f;
irisAttr.DCIrisAttr.Kd = 0.3f;
irisAttr.DCIrisAttr.OpenPwmDuty = 40;
irisAttr.DCIrisAttr.ClosePwmDuty = 22;
irisAttr.DCIrisAttr.MinPwmDuty = 0;
irisAttr.DCIrisAttr.MaxPwmDuty = 100;
ret = rk_aiq_user_api2_ae_setIrisAttr(ctx, irisAttr);
//set manual iris with auto ae
irisAttr.IrisOpType = RK_AIQ_OP_MODE_MANUAL;
if(irisAttr.IrisType == IRIS_P_TYPE);
    irisAttr.ManualAttr.PIrisGainValue = 512; /*p-iris F#=1.4*/
if(irisAttr.IrisType == IRIS_DC_TYPE);
    irisAttr.ManualAttr.DCIrisHoldValue = 20; /*dc-iris PwmDuty=20*/
ret = rk_aiq_user_api2_ae_setIrisAttr(ctx, irisAttr);
```

rk_aiq_user_api2_ae_getIrisAttr

【描述】

获取AE 光圈控制参数。

【语法】

```
XCamReturn
```

rk_aiq_user_api2_ae_getIrisAttr(const rk_aiq_sys_ctx_t * sys_ctx, const
Uapi_IrisAttrV2_t* irisAttr);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
irisAttr	光圈控制参数结构体	输出

【返回值】

返回值	描述
0	成功
1=0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

rk_aiq_user_api2_ae_setExpWinAttr

【描述】

设置AE统计窗口属性。

【语法】

XCamReturn

rk_aiq_user_api2_ae_setExpWinAttr(const rk_aiq_sys_ctx_t* sys_ctx, const
Uapi_ExpWin_t ExpWin);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
ExpWin	窗口属性参数	输入

【返回值】

返回值	描述
-----	----

返回值	描述
0	成功
∃ E0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

【举例】

根据人脸位置修改AE统计坐标,实现针对人脸区域进行亮度统计。

【注】设置统计坐标时,需保证ExpWin.h_offs+ExpWin.h_size<=pic_width,ExpWin.v_offs+ExpWin.v_size<=pic_height。

```
Uapi_ExpWin_t ExpWin;
//假设sensor分辨率为2688x1520 人脸相对于画面左上角的横向偏移为100个pixel,纵向偏移为100个pixel,人脸尺寸为边长100个pixel的正方形
ExpWin.h_offs=100;
ExpWin.v_offs=100;
ExpWin.h_size=100;
ExpWin.v_size=100;
rk_aiq_user_api2_ae_setExpWinAttr(ctx, ExpWin);
```

rk_aiq_user_api2_ae_getExpWinAttr

【描述】

获取AE统计窗口属性。

【语法】

```
XCamReturn
rk_aiq_user_api2_ae_getExpWinAttr(const rk_aiq_sys_ctx_t* sys_ctx,const
Uapi_ExpWin_t* ExpWin);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
ExpWin	窗口属性参数	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

rk_aiq_user_api2_ae_queryExpResInfo

【描述】

获取AE内部状态信息。

【语法】

XCamReturn

rk_aiq_user_api2_ae_queryExpResInfo(const rk_aiq_sys_ctx_t* ctx,
Uapi_ExpQueryInfo_t* pExpResInfo);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
pExpResInfo	AE内部状态信息结构体指针	输出

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ae.h、rk_aiq_uapi2_ae_int.h

• 库文件: librkaiq.so

模块级API数据类型

Uapi_ExpSwAttr_t

【说明】

AE公共功能控制参数结构体。

【定义】

```
typedef struct Uapi_ExpSwAttrV2_s {
    rk_aiq_uapi_sync_t
                                       sync;
   uint8_t
                                       Enable;
   CalibDb_CamRawStatsModeV2_t
                                       RawStatsMode;
   CalibDb_CamHistStatsModeV2_t
                                       HistStatsMode;
   CalibDb_CamYRangeModeV2_t
                                       YRangeMode;
   uint8_t
                                       AecRunInterval;
   RKAiqOPMode_t
                                       AecOpType;
   Cam15x15UCharMatrix_t
                                       GridWeights;
   Uapi_AeAttrV2_t
                                       stAuto;
   Uapi_MeAttrV2_t
                                       stManual;
                                       stAdvanced;
   Uapi_ExpSwAttr_AdvancedV2_t
} Uapi_ExpSwAttrV2_t;
```

【成员】

成员名称	描述
sync	参考rk_aiq_uapi_sync_t定义,参见 "概述/API说明" 章节
Enable	Aec使能开关。1,开启Aec算法;0,关闭Aec算法,曝光保持在关闭前的值。
RawStatsMode	Aec模块亮度统计模式。共四种模式分别为: CAM_RAWSTATSV2_MODE_Y/R/G/B,默认为Y模式。
HistStatsMode	Aec模块直方图统计模式。共五种模式分别为: CAM_HISTV2_MODE_Y/R/G/B,默认为Y模式。
YRangeMode	Aec模块Y通道Range模式。共两种模式分别为 CAM_YRANGEV2_MODE_FULL/LIMITED,默认为FULL模式。
AecRunInterval	Ae算法运行间隔,取值范围[0,255],默认值为0。取值为0时,每帧运行AE; 取值为1时,每隔1帧运行AE;以此类推。
AecOpType	曝光模式,分为自动曝光(RK_AIQ_OP_MODE_AUTO)模式/手动 (RK_AIQ_OP_MODE_MANUAL)曝光模式。默认为AUTO模式。手动曝光模式 需要与stManual一起配合,进行手动曝光值的设置。
GridWeights	窗口(直方图)权重,包含15*15个数组元素,取值范围[0,32]
stAuto	自动曝光参数结构体
stManual	手动曝光参数结构体
stAdvanced	优先使用参数结构体

【相关数据类型】

- rk_aiq_uapi_sync_t
- Uapi_ExpSwAttr_AdvancedV2_t
- Uapi_AeAttrV2_t
- Uapi_MeAttrV2_t

Uapi_ExpSwAttr_AdvancedV2_t

【说明】

优先使用参数结构体。

【定义】

【成员】

成员名称	描述
enable	置1,优先使用该结构体中的权重参数;置0,使用结构体上一级中的权重参数
GridWeights	AE权重,大小为15X15,取值范围[0,32]。
SetAeRangeEn	置1,设置自动曝光分量range;置0,不设置自动曝光分量range,以调试文件为准
SetLinAeRange	线性曝光的自动曝光分量range参数值(并非最终生效range)
SetHdrAeRange	HDR曝光的自动曝光分量range参数值(并非最终生效range)

【注意事项】

- Uapi_ExpSwAttrV2_t 结构体中定义了一组AE权重,权重个数为15X15,取值范围[0,32]。Uapi_ExpSwAttr_AdvancedV2_t中也定义的一组AE权重,权重个数为15X15,取值范围[0,32]。需要打开使能enable,将其置1。如有人脸应用,需要分别设置有人脸的权重和无人脸的权重时,可以使用Uapi_ExpSwAttr_AdvancedV2_t中的权重作为人脸权重,Uapi_ExpSwAttrV2_t中的权重作为无人脸是的权重,通过Uapi_ExpSwAttr_AdvancedV2_t中的enable实现两个权重的切换,enable=1时使用Uapi_ExpSwAttr_AdvancedV2_t中的权重,enable=0时使用Uapi_ExpSwAttrV2_t中的权重。
- 通过api设置AE参数范围时,需要将SetAeRangeEn置1,否则默认使用调试文件中的自动曝光参数范围。曝光参数范围的设置,按照曝光模式的不同,分为SetLinAeRange和SetHdrAeRange两套。其中SetHdrAeRange内支持各帧自动曝光参数范围的设置。另,最终生效的曝光时间及增益range需要在stAuto结构体中查询,此处仅为设置的range,而非最终生效range。

Aec_AeRange_t

【说明】

定义AE参数范围。

成员名称	描述
Min	下限值
Max	上限值

Aec_LinAeRange_t

【说明】

定义AE线性模式的参数范围。

【定义】

【成员】

成员名称	描述
stExpTimeRange	曝光时间范围,设置最大值和最小值,以毫秒为单位
stGainRange	Sensor 模拟增益范围,设置最大值和最小值,以倍数为单位
stlspDGainRange	ISP数字增益范围,设置最大值和最小值,以倍数为单位
stPIrisRange	光圈等效增益范围,仅支持P-Iris光圈大小控制,以倍数为单位

【注意事项】

- 各曝光分量最大值/最小值为默认值0时,设置的曝光分量范围不生效,各曝光分量实际最大值/最小值以AecRoute曝光分解路线节点最小值和最大值决定。
- 各曝光分量最大值/最小值不为0时,设置的曝光分量范围生效,当设置的曝光分量范围不超过 sensor或ISP的限制,则各曝光分量实际最大值/最小值以设置的曝光分量范围为准,并对 AecRoute曝光分解路线做校正,节点最大值/最小值改为设置的曝光分量最大值/最小值;若超过 sensor或ISP的限制,则各曝光分量实际最大值/最小值以AecRoute曝光分解路线节点最大值和最小值为准。
- 1106平台暂时不支持isp dgain功能,故stlspDGainRange暂无效

【说明】

定义AE HDR模式的参数范围。

【定义】

【成员】

成员名称	描述
stExpTimeRange	曝光时间范围,设置最大值和最小值,以秒为单位,数组0/1/2分别为短帧、中帧、长帧。
stGainRange	Sensor 模拟增益范围,设置最大值和最小值,以倍数为单位,数组0/1/2分别为短帧、中帧、长帧。
stlspDGainRange	ISP数字增益范围,设置最大值和最小值,以倍数为单位,数组0/1/2分别为短帧、中帧、长帧。
stPlrisRange	光圈等效增益值值范围,设置最大值和最小值,以倍数为单位

【注意事项】

- stExpTimeRange、stGainRange、stIspDGainRange预定义为包含3个成员的数组。2帧HDR模式下,仅成员0、1有效、分别表示短帧和长帧对应的曝光分量范围;3帧HDR模式下,0-2皆有效,分别表示短、中、长帧对应的曝光分量范围。
- 各曝光分量最大值/最小值为默认值0时,设置的曝光分量范围不生效,此时各曝光分量实际最大值/ 最小值以算法校正过的曝光分解路线节点最小值和最大值决定。
- 各曝光分量最大值/最小值不为0时,设置的曝光分量范围生效,当设置的曝光分量范围不超过 sensor或ISP的限制,则各曝光分量实际最大值/最小值以设置的曝光分量范围为准,并对曝光分解 路线做校正,节点最大值/最小值改为设置的曝光分量最大值/最小值;若超过sensor或ISP的限制,则各曝光分量实际最大值/最小值以曝光分解路线节点最大值和最小值为准。
- 1106平台暂时不支持isp dgain功能,故stlspDGainRange暂无效

Uapi_AeAttrV2_t

【说明】

定义AE自动曝光属性。

```
typedef struct Uapi_AeAttrV2_s {
   Uapi_AeSpeedV2_t
                              stAeSpeed;
   //DelayFrmNum
                              BlackDelayFrame;
   uint8_t
   uint8_t
                              WhiteDelayFrame;
   //Auto/Fixed fps
   Uapi_AeFpsAttrV2_t
                             stFrmRate;
   Uapi_AntiFlickerV2_t
                              stAntiFlicker;
   //auto range
   Aec_LinAeRange_t
                              LinAeRange;//result LinAerange
   Aec_HdrAeRange_t
                              HdrAeRange;//result HdrAerange
} Uapi_AeAttrV2_t;
```

成员名称	描述
stAeSpeed	自动曝光调节速度
BlackDelayFrame	自动曝光延时属性,图像亮度低于目标值超过BlackDelayFrame帧时,Ae 开始调节
WhiteDelayFrame	自动曝光延时属性,图像亮度高于目标值超过WhiteDelayFrame帧时,Ae 开始调节
stFrmRate	自动曝光帧率模式结构体,固定帧率模式或自动降帧模式
stAntiFlicker	抗工频闪烁参数
LinAeRange	线性模式自动曝光量范围结构体(最终生效的线性曝光range)
HdrAeRange	Hdr模式自动曝光量范围结构体(最终生效的hdr曝光range)

【注意事项】

- LinAeRange/HdrAeRange为算法内部经过校验校正后**实际使用的参数范围**。当api设置的AE参数范围超过sensor限制的参数范围时,会使用sensor限制的参数范围。sensor限制的参数范围,详见Rockchip_Tuning_Guide_ISP30_CN.pdf 文档中的AE模块sensorinfo参数。
- 设置自动曝光分量range需api调用上文Uapi_ExpSwAttr_AdvancedV2_t中的参数,将 SetAeRangeEn置1,否则默认使用调试文件中的自动曝光参数范围。

Uapi_AeSpeedV2_t

【说明】

定义AE条件速度属性。

成员名称	描述
DampOver	环境亮度稳定,图像亮度高于目标值时对应的曝光调节速度,取值范围 [0,1]。值越小,曝光调节速度越快。
DampUnder	环境亮度稳定,图像亮度低于目标值时对应的曝光调节速度,取值范围 [0,1]。值越小,曝光调节速度越快。
DampDark2Bright	环境亮度突变,从暗到亮时对应的曝光调节速度,取值范围[0,1]。值越小,曝光调节速度越快。
DampBright2Dark	环境亮度突变,从亮到暗时对应的曝光调节速度,取值范围[0,1]。值越小,曝光调节速度越快。

Uapi_AeFpsAttrV2_t

【说明】

定义AE 帧率属性。

【定义】

```
typedef struct CalibDb_AeFrmRateAttrV2_s {
   bool     isFpsFix;
   uint8_t     FpsValue;
} CalibDb_AeFrmRateAttrV2_t;
typedef CalibDb_AeFrmRateAttrV2_t Uapi_AeFpsAttrV2_t;
```

【成员】

成员名称	描述
isFpsFix	自动曝光固定帧率模式的使能,默认值为FALSE,即采用自动降帧模式;值为TRUE时,表示固定帧率模式。
FpsValue	仅在固定帧率时有效,默认值为0时,固定使用驱动默认的帧率;值不会0时,使用设定的帧率值。

Uapi_AntiFlickerV2_t

【说明】

定义抗闪属性。

成员名称	描述
enable	工频抗闪功能使能状态,0:关闭抗闪功能;1:开启抗闪功能
Frequency	抗闪频率属性,共包含3种帧率,分别为: AECV2_FLICKER_FREQUENCY_OFF (抗闪使能位enable置0时有效)、AECV2_FLICKER_FREQUENCY_50HZ、AECV2_FLICKER_FREQUENCY_60HZ,默认为AECV2_FLICKER_FREQUENCY_50HZ(工频50赫兹)。
Mode	抗闪模式,共包含两种抗闪模式:AECV2_ANTIFLICKER_NORMAL_MODE(普通抗闪模式)、AECV2_ANTIFLICKER_AUTO_MODE(自动抗闪模式)

【注意事项】

- 关闭抗闪功能,需将抗闪使能位enable置0,算法内部自动配置
 Frequency=AECV2_FLICKER_FREQUENCY_OFF;如抗闪使能位enable置1时,抗闪频率配置为AECV2_FLICKER_FREQUENCY_OFF,该频率值将配置无效,使用默认值AECV2_FLICKER_FREQUENCY_50HZ。
- AECV2_ANTIFLICKER_NORMAL_MODE为普通抗闪模式,曝光时间可以根据亮度进行调节,最小曝光时间固定为 1/120 sec(60Hz)或 1/100 sec(50Hz),不受曝光时间最小值的限制。

有灯光的环境: 曝光时间可与光源频率相匹配, 能够防止图像闪烁。

高亮度的环境: 亮度越高,要求曝光时间就最短。而普通抗闪模式的最小曝光时间不能匹配光源频率,产生过曝。

AECV2_ANTIFLICKER_AUTO_MODE为自动抗闪模式,曝光时间可以根据亮度进行调节,最小曝光时间可达到 sensor 的最小曝光时间。与普通抗闪模式的差别主要在高亮度的环境体现。高亮度的环境:最小曝光时间可以达到 sensor 的最小曝光时间,能够有效抑制过曝,但此时抗闪失效。

Uapi_MeAttrV2_t

【说明】

手动曝光参数设置,根据曝光模式分为LinearAE和HdrAE两套参数。

【定义】

【相关数据类型】

- Uapi_LinMeAttrV2_t
- Uapi_HdrMeAttrV2_t

Uapi_LinMeAttrV2_t

【说明】

LinearAE的手动曝光控制参数。

成员名称	描述
ManualTimeEn	手动曝光时间使能,默认值为1
ManualGainEn	手动sensor增益使能,默认值为1
ManuallspDgainEn	手动ISP数字增益使能,默认值为1
TimeValue	手动曝光时间值,以s为单位,参数值受sensor限制
GainValue	手动sensor增益值,以倍数为单位,参数值受sensor限制
IspDGainValue	手动ISP数字增益值,以倍数为单位,参数值受ISP限制

【注意事项】

- 该模块参数仅在AeOptype = MANUAL时有效。ManualTimeEn,ManualGainEn, ManualIspDgainEn皆为1时,为手动模式;以上三者中只要任意一项不使能,则为半自动模式;以 上三者皆为0,则等同自动模式,系统会报错提醒。
- 手动/半手动模式下,手动曝光时间和增益会受自动模式下的最大/最小曝光时间和增益限制。超出自动曝光限制的范围之后,将使用自动模式下最大/最小值替代。
- 目前暂不支持ISP数字增益,故ManuallspDgainEn、IspDGainValue皆无效。

Uapi_HdrMeAttrV2_t

【说明】

HdrAE的手动曝光控制参数。

【定义】

【成员】

变量含义与Uapi_LinMeAttrV2_t相同。

【注意事项】

- TimeValue/GainValue/IspDGainValue皆为成员个数为3的数组。Hdr 2帧模式下,数组[0-1]成员有效,分别表示短、长帧;Hdr 3帧模式下,数组[0-2]成员皆有效,分别对应短、中、长帧。
- 手动/半手动模式下,手动曝光时间和增益会受自动模式下的最大/最小曝光时间和增益限制。超出自动曝光限制的范围之后,将使用自动模式下最大/最小值替代。
- 目前不支持ISP数字增益,故ManualIspDgainEn、IspDGainValue皆无效。

Uapi_LinAeRouteAttr_t

【说明】

定义AE线性曝光分解路径属性。

【定义】

【成员】

成员名称	描述
TimeDot	sensor曝光时间节点,单位为s
GainDot	sensor曝光增益节点,以倍数为单位
IspgainDot	lsp数字增益节点,以倍数为单位
PIrisGainDot	光圈等效增益节点,以倍数为单位

【注意事项】

- 曝光分解曲线节点个数没有限制,但建议不要少于6个。
- 节点的曝光量是曝光时间、sensor增益、ISP数字增益、光圈等效增益等各分量的乘积。节点曝光量必须单调递增,即后一个节点的曝光量必须大于前一个节点的曝光量。第一个节点的曝光量最小,第二个节点的曝光量最大。
- 节点中曝光时间分量的单位为秒,最小值允许为0,实际最小曝光时间代码内部会根据sensor限制进行校正。
- 光圈分量仅支持P-Iris,不支持DC-Iris。P-iris等效增益分量仅在Airis自动光圈功能使能时有效,否则 默认光圈固定为初始值大小。P-iris等效增益的计算详见AecIrisCtrl模块。
- 设置的曝光分解路线节点不是最终生效的曝光分解路线。系统最终各曝光分量的实际最大/小值由 曝光分解节点和手动配置的曝光分量最大/小值共同决定。先对曝光分解路线节点最大/小值做第一次校正,当节点最大/小值不超过sensor或isp的限制时,节点最大/小值不变;当节点最大/小值超

过sensor或isp的限制时,节点最大/小值以sensor或isp的限制为准。当手动配置的曝光分量最大/小值为0时,最终生效的曝光分解路线以第一次校正的分解路线为准;当手动配置的曝光分量最大/小值不为0时,且设置的最大/小值不超过sensor或isp的限制时,对曝光分解路线做第二次校正,节点最大/小值以手动设置的范围为准;若设置曝光分量的最大/小值超过sensor或isp的限制时,曝光分解路线曝光分量的节点最大/小值以第一次校正结果为准。

- 如果相邻节点的曝光量增加,则应该只有一个曝光分量增加,其他曝光分量固定。增加的分量决定该段路线的分配策略。例如增益分量增加,其他分量固定,那么该段路线的分配策略是增益优先。
- 目前暂不支持ISP数字增益,故IspgainDot无效。

Uapi_HdrAeRouteAttr_t

【说明】

定义AE HDR曝光分解路径属性。

【定义】

```
typedef struct CalibDb_HdrAeRoute_AttrV2_s {
   float* FrmOTimeDot;
   int FrmOTimeDot_len;
   float* FrmOGainDot;
   int FrmOGainDot_len;
   float* FrmOIspDGainDot;
   int FrmOIspDGainDot_len;
   float* Frm1TimeDot;
   int Frm1TimeDot_len;
   float* Frm1GainDot;
    int Frm1GainDot_len;
   float* Frm1IspDGainDot;
   int Frm1IspDGainDot_len;
   float* Frm2TimeDot;
   int Frm2TimeDot_len;
   float* Frm2GainDot;
   int Frm2GainDot_len;
   float* Frm2IspDGainDot;
   int Frm2IspDGainDot_len;
    int* PIrisDot;
    int PIrisDot_len;
} CalibDb_HdrAeRoute_AttV2r_t;
typedef struct Uapi_HdrAeRouteAttr_s {
  rk_aiq_uapi_sync_t
                                sync;
  CalibDb_HdrAeRoute_AttrV2_t Params;
} Uapi_HdrAeRouteAttr_t;
```

成员名称	描述
Frm0/1/2TimeDot	曝光时间节点,单位为秒。Hdr 2帧模式时,仅Frm0/1TimeDot有效; Hdr 3帧模式时,Frm0/1/2TimeDot皆有效。Frm0~3依次为曝光量从 短至长的帧序号。

成员名称	描述
Frm0/1/2GainDot	sensor增益节点。Hdr 2帧模式时,仅Frm0/1GainDot有效;Hdr 3帧模式时,Frm0/1/2GainDot皆有效。此处增益值为实际值,单位为1x。Frm0~3依次为曝光量从短至长的帧序号。
Frm0/1/2lspDGainDot	Isp数字增益节点。Hdr 2帧模式时,仅Frm0/1IspDGainDot有效;Hdr 3帧模式时,Frm0/1/2IspDGainDot皆有效。此处增益值为实际值,单 位为1x。Frm0~3依次为曝光量从短至长的帧序号。
PIrisDot	光圈等效增益节点,此处增益值为实际值,单位为1x。

【注意事项】

- 曝光分解曲线节点个数不限,**建议至少设置6个节点**,才可实现曝光分解的平滑。
- 需要注意的是: HDR 2帧模式下,仅需设置Frm0/1TimeDot、Frm0/1GainDot、Frm0/1IspDGainDot,分别对应实际的短、长帧; HDR 3帧模式下,需设置Frm0/1/2TimeDot、Frm0/1/2GainDot、Frm0/1/2IspDGainDot,分别对应短、中、长帧。设置HDR模式下各帧的sensor曝光时间时,需要合理分配曝光时间,各帧曝光时间的总和不能超过帧率所允许的最大曝光时间!
- 节点的曝光量是曝光时间、sensor增益、ISP数字增益、光圈等效增益等各分量的乘积。节点曝光量必须单调递增,即后一个节点的曝光量必须大于前一个节点的曝光量。第一个节点的曝光量最小,第二个节点的曝光量最大。
- 节点中曝光时间分量的单位为秒,最小值允许为0,实际最小曝光时间代码内部会根据sensor限制进行校正。
- 光圈分量仅支持P-Iris,不支持DC-Iris。P-iris等效增益分量仅在Airis自动光圈功能使能时有效,否则 默认光圈固定为初始值大小。P-iris等效增益的计算详见AecIrisCtrl模块。
- 设置的曝光分解路线节点不是最终生效的曝光分解路线。系统最终各曝光分量的实际最大/小值由曝光分解节点和手动配置的曝光分量最大/小值共同决定。先对曝光分解路线节点最大/小值做第一次校正,当节点最大/小值不超过sensor或isp的限制时,节点最大/小值不变;当节点最大/小值超过sensor或isp的限制时,节点最大/小值超过sensor或isp的限制为准。当手动配置的曝光分量最大/小值为0时,最终生效的曝光分解路线以第一次校正的分解路线为准;当手动配置的曝光分量最大/小值不为0时,且设置的最大/小值不超过sensor或isp的限制时,对曝光分解路线做第二次校正,节点最大/小值以手动设置的范围为准;若设置曝光分量的最大/小值超过sensor或isp的限制时,曝光分解路线曝光分量的节点最大/小值以第一次校正结果为准。
- 如果相邻节点的曝光量增加,则应该只有一个曝光分量增加,其他曝光分量固定。增加的分量决定 该段路线的分配策略。例如增益分量增加,其他分量固定,那么该段路线的分配策略是增益优先。
- 目前暂不支持ISP数字增益,故Frm0/1/2ispDGainDot皆无效。

Uapi LinExpAttrV2 t

【说明】

定义AE线性曝光调试参数。

```
typedef struct CalibDb_LinearAE_AttrV2_s {
   uint8_t RawStatsEn;
   float ToleranceIn;
   float ToleranceOut;
   float Evbias;
   CalibDb_AeStrategyModeV2_t StrategyMode;
```

```
CalibDb_LinExpInitExpV2_t InitExp;
CalibDb_LinAeRoute_AttrV2_t Route;
CalibDb_AecDynamicSetpointV2_t DySetpoint;
CalibDb_AecBacklightV2_t BackLightCtrl;
CalibDb_AecOverExpCtrlV2_t OverExpCtrl;
} CalibDb_LinearAE_AttrV2_t;

typedef struct Uapi_LinExpAttrV2_s {
   rk_aiq_uapi_sync_t sync;
   CalibDb_LinearAE_AttrV2_t Params;
} Uapi_LinExpAttrV2_t;
```

成员名称	描述					
RawStatsEn	线性曝光使用Raw域统计亮度功能使能					
EvBias	自动曝光调节时,曝光量的偏差百分比,单位为%,参考取值范围为 [-200,+200]					
ToleranceIn/Out	自动曝光调节时,画面亮度的容忍度。单位为%,取值范围为[0,100]					
StrategyMode	自动曝光策略模式,高光优先或低光优先【暂时无效】					
DySetpoint	自动曝光调节的动态目标亮度值属性,随曝光量动态变化,取值范围为 [0,255]					
BackLightCtrl	背光补偿功能参数					
OverExpCtrl	强光抑制功能参数					

【注意事项】

- 曝光量偏差EvBias,用于特殊场景下对(固定/动态)目标亮度值(SetPoint/IRSetPoint)进行微调。真实生效目标亮度为(SetPoint)*[1+abs(EvBias)/100]^[EvBias/abs(EvBias)]。如设置EvBias=100时,目标亮度为默认参数的2倍;EvBias=-100时,目标亮度为默认参数的1/2。
- 自动曝光画面亮度的容忍度为Tolerance,当自动曝光收敛时画面亮度值B应在 [真实生效目标亮度 X (1-Tolerance/100),真实生效目标亮度 X (1+Tolerance/100)]范围内。ToleranceIn/Out设置较大,一方面会影响AE的响应速度,一方面会影响EvBias值。当EvBias调整的间隔值低于ToleranceIn/Out,有可能导致亮度调整不生效。
- StrategyMode暂无效。

【相关数据类型】

- CalibDb_AecDynamicSetpointV2_t
- CalibDb_AecBacklightV2_t
- CalibDb_AecOverExpCtrlV2_t

CalibDb_AecDynamicSetpointV2_t

【说明】

定义AE动态目标值。

```
typedef struct CalibDb_AecDynamicSetpointV2_s {
    float* ExpLevel;
    int ExpLevel_len;
    float* DySetpoint;
    int DySetpoint_len;
} CalibDb_AecDynamicSetpointV2_t;
```

成员名称	描述
ExpLevel	动态曝光量节点属性,节点值为当前曝光量值,节点个数不限,建议至少设置6个节点,以防曝光过渡不平滑。
DySetpoint	动态目标亮度值节点属性,节点值随曝光量动态变化,曝光量节点值越大,目标亮度节点值越小,并与曝光量节点——对应。节点个数不限,需要与ExpLevel节点个数一致,建议至少设置6个节点,以防曝光过渡不平滑。

Uapi_HdrExpAttrV2_t

【说明】

定义AE HDR曝光调试参数。

【定义】

```
typedef struct CalibDb_HdrAE_AttrV2_s {
    float ToleranceIn;
    float ToleranceOut;
   float Evbias:
    CalibDb_AeStrategyModeV2_t StrategyMode;
    float LumaDistTh; //used for area-growing
    CalibDb_HdrExpInitExpV2_t InitExp;
    CalibDb_HdrAeRoute_AttrV2_t Route;
    CalibDb_ExpRatioCtrlv2_t ExpRatioCtrl;
    CalibDb_LongFrmCtrlv2_t LongFrmMode;
    CalibDb_LfrmCtrlv2_t LframeCtrl;
    CalibDb_MfrmCtrlv2_t MframeCtrl;
    CalibDb_SfrmCtrlv2_t SframeCtrl;
} CalibDb_HdrAE_AttrV2_t;
typedef struct Uapi_HdrExpAttrV2_s {
  rk_aiq_uapi_sync_t
                                sync;
  CalibDb_HdrAE_AttrV2_t
                                Params;
} Uapi_HdrExpAttrV2_t;
```

成员名称	描述				
ToleranceIn/Out	自动曝光调节时,画面亮度的容忍度。单位为%,取值范围为[0,100]				
LongfrmMode	长帧模式参数				
StrategyMode	自动曝光策略模式,高光优先或低光优先 (AECV2_STRATEGY_MODE_LOWLIGHT/AECV2_STRATEGY_MODE_HIGHLIGHT)				

成员名称	描述			
Evbias	自动曝光调节时,曝光量的偏差百分比,单位为%,参考取值范围为[-200,+200]			
ExpRatioCtrl	HdrAE曝光比控制模块,仅在Hdr模式多帧合成下有效			
LframeCtrl	长帧控制参数			
MframeCtrl	中帧控制参数,仅在HDR 3帧模式下有效			
SframeCtrl	短帧控制参数			

【相关数据类型】

- CalibDb_LFrameCtrlV2_t
- CalibDb_MFrameCtrlV2_t
- CalibDb_SFrameCtrlV2_t

Uapi_IrisAttrV2_t

【说明】

光圈控制参数。

【定义】

成员名称	描述			
Enable	自动光圈控制功能的使能			
IrisType	光圈类型,P(即P-iris光圈)或DC(即DC-iris光圈)			
IrisOpType	光圈控制模式:分为自动(RK_AIQ_OP_MODE_AUTO)模式/手动 (RK_AIQ_OP_MODE_MANUAL)模式			
ManualAttr	手动光圈参数			
PlrisAttr	P光圈属性参数			
DCIrisAttr	DC光圈属性参数			

CalibDb_MIris_AttrV2_t

【说明】

手动光圈参数。

【定义】

```
typedef struct CalibDb_MIris_AttrV2_s {
   int PIrisGainValue;
   int DCIrisHoldValue;
} CalibDb_MIris_AttrV2_t;
```

【成员】

成员名称	描述
PIrisGainValue	手动P光圈等效增益值,参数值受P光圈设备限制,取值范围为[1, 1024]
DCIrisHoldValue	DC光圈HoldValue值,参数值与DC光圈设备有关,取值范围为[0,100]

【注意事项】

- IrisOpType = RK_AIQ_OP_MODE_MANUAL, 手动光圈使能。当光圈类型为P光圈时,仅
 PirisGainValue有效;当光圈类型为DC光圈时,仅DCIrisHoldValue有效。
- DCIrisHoldValue, 手动模式下直接设置电机的PWM占空比值,取值范围[0,100]。手动模式下若设置为HoldValue值(即AecIrisCtrl中ClosePwmDuty到OpenPwmDuty区间内的值),则DC光圈孔径维持在当前大小;若设置的值大于OpenPwmDuty,则光圈处于打开状态,该值越大打开的速度越大;若设置的值小于ClosePwmDuty,则光圈处于关闭状态,该值越小关闭的速度越大。

CalibDb PIris AttrV2 t

【说明】

P光圈属性参数。

【定义】

成员名称	描述
TotalStep	P-iris步进电机总步数,具体大小与P-iris镜头有关。
EffcStep	P-iris步进电机的可用步数,具体大小与P-iris镜头有关。

成员名称	描述
ZerolsMax	P-iris步进电机step0是否对应最大光圈位置,具体取值与P-iris镜头有关。该值为0,代表步进电机位置为step0时,光圈开到最小;该值为1,代表步进电机位置为step0时,光圈开到最大。
StepTable	P-iris步进电机位置与光圈等效增益的映射表,具体数值与P-iris镜头有关。

CalibDb_DCIris_AttrV2_t

【说明】

DC光圈属性。

【定义】

```
typedef struct CalibDb_DCIris_AttrV2_s {
    float    Kp;
    float    Ki;
    float    Kd;
    int    MinPwmDuty;
    int     MaxPwmDuty;
    int     OpenPwmDuty;
    int     ClosePwmDuty;
} CalibDb_DCIris_AttrV2_t;
```

成员名称	描述
Кр	比例系数,用于限制光圈剧烈变化时光圈的开关速度,该值越大,光线剧烈变化时光圈打开和关闭的速度越慢。该值过大,调节过程制动就会超前,致使调节时间过长;该值过小,调节过程制动就会落后,从而导致超调增加。该值的合理设置与DC-iris镜头及电路特性有关。建议值为0.5。取值范围[0,1]。
Ki	积分系数,用于调节光圈的开关速度,该值越大光圈打开和关闭的速度越大。 该值过大,容易出现超调导致振荡;该值过小,光圈调节速度较慢、环境亮度 变化较剧烈时容易发生振荡。建议值为0.2。 取值范围[0,1]。
Kd	微分系数,用于调节光圈的开关速度,该值越大光圈打开和关闭的速度越大。 建议值为0.3。 取值范围[0,1]。
MinPwmDuty	最小PWM占空比,具体大小与DC-iris镜头、电路特性有关,单位为%。该值越小,所支持的光圈关闭速度越快,但容易导致光圈振荡。取值范围[0,100],默认值为0。
MaxPwmDuty	最大PWM占空比,具体大小与DC-iris镜头、电路特性有关,单位为%。该值越大,所支持的光圈打开速度越快,该值过小,可能导致光圈尚未达到最大时就退出光圈控制。取值范围[0,100],默认值为100。
OpenPwmDuty	光圈打开时的PWM占空比阈值,当光圈PWM占空比高于(不含) OpenPwmDuty时,光圈处于打开状态。具体大小与DC-iris镜头有关,单位 为%。

成员名称	描述
ClosePwmDuty	光圈关闭时的PWM占空比阈值,当光圈PWM占空比小于(不含) ClosePwmDuty时,光圈处于关闭状态。具体大小与DC-iris镜头有关,单位 为%。

【注意事项】

- 自动光圈功能关闭时,对于DC-iris光圈,默认会打开到最大;对于P-iris光圈,默认会打开到最大 光圈所对应的步进电机位置。如想改变上述光圈位置,可至AecInitValue模块中修改 InitPIrisGainValue、InitDCIrisDutyValue。
- 自动光圈Airis算法的基本控制流程如下:

针对DC-iris镜头, Airis根据当前亮度与目标亮度的偏差值, 控制DC-iris镜头的光圈大小。当曝光达到最小值时, 且当前亮度超出目标亮度容忍度范围, 将退出AE控制, 曝光时间及曝光增益固定不变, 进入Alris控制范围。若当前画面亮度稳定且DC-iris的PWM占空值大于OpenPwmDuty时, 认为当前光圈达到最大, 退出Alris光圈控制, 控制权交由AE。

针对P-iris镜头,光圈控制通过AecRoute模块进行。P-iris镜头的光圈大小换算为等效增益,参与曝光分解计算。

- P-iris的步进电机位置与光圈等效增益映射表StepTable一般根据镜头厂家提供的步进电机位置与光圈孔径对应关系制作。P-iris的控制是通过AE的AecRoute模块来控制的,该模块将光圈孔径大小换算成等效增益,因此要求P-iris的光圈控制需要具有较好的线性度。等效增益的取值范围为[1,1024],用等效增益1024表示F1.0,等效增益512表示F1.4,以此类推,等效增益1表示F32.0。制作表时,需要将步进电机位置对应的光圈孔径换算为等效增益,填入StepTable中,并固定按照步进电机位置递增(即step0、step1......stepN)的顺序填入。
- TotalStep表示P-iris步进电机总步数,具体大小与P-iris镜头有关。EffcStep表示 P-iris步进电机的可用步数,一般要求小于TotalStep。因为为靠近光圈关闭端的位置,其对应等效增益的值误差较大,光圈调节过程中容易出现振荡,所以通常不会使用光圈关闭端附近的步进位置。
- 表4-1为P-iris步进电机位置与光圈孔径和等效增益的对应表,以此表为例来说明StepTable该如何设置。表4-1中第1-2、4-5列的步进电机位置step和光圈孔径面积的对应关系为某镜头原厂提供。该款P-iris镜头的步进电机调节总步数为81,step0时对应的光圈孔径最大,标称最大光圈数为1.4。光圈数为1.4时对应的等效增益为512,故step0处对应的等效增益为512。其他孔径面积对应的等效增益,此处以step3为例,计算方式如下:step3的孔径面积为195.869,对应等效增益=512*(195.869/201.062)=499(四舍五入)。以此类推,其他步进电机位置对应的等效增益值也可据此算出。从表1-1中可知,步进电机位置靠近关闭端时,对应的孔径面积很小,与最大的孔径面积相差可达几千倍,对应的等效增益值误差较大,因此建议靠近光圈关闭端的步进电机位置不要使用,以免因为误差导致曝光振荡。将表中各步进电机位置对应的等效增益按照步进电机位置递增(即step0、step1......stepN)的顺序填入StepTable。
- DC-iris的OpenPwmDuty与ClosePwmDuty取值需要进行实测,其具体值与DC-iris镜头相关。对于部分镜头,存在当PWM占空比大于OpenPwmDuty时,光圈执行打开操作;当PWM占空比小于OpenPwmDuty时,光圈执行关闭操作;当PWM占空比大于等于ClosePwmDuty且小于等于OpenPwmDuty时,光圈稳定在当前位置,该区间内的值皆为HoldValue。另存在某些镜头,只存在一个光圈开关的阈值,即当PWM占空比大于该阈值时,光圈执行打开操作;当PWM占空比小于该阈值时,光圈执行关闭操作;当PWM占空比等于该阈值时,光圈稳定在当前位置,该阈值即为HoldValue。此时可令ClosePwmDuty = OpenPwmDuty = HoldValue。
- 光圈的手动模式参数设置与曝光的手动模式一致。需要使用手动光圈功能时,需将AecOpType设置为手动模式,并使能AecManualCtrl模块中的ManualIrisEn参数。当IrisType为P-iris时,仅PirisGainValue有效;当IrisType为P-iris时时,仅DCIrisValue有效。

Step	孔径面积(mm2)	等效增益	Step	孔径面积(mm2)	等效增益
0	201.062	512	41	56.653	144
1	200.759	511	42	53.438	136
2	198.583	506	43	50.282	128
3	195.869	499	44	47.188	120
4	192.879	491	45	44.159	112
5	189.677	483	46	41.197	105
6	186.293	474	47	38.307	98
7	182.744	465	48	35.49	90
8	179.035	456	49	32.751	83
9	175.271	446	50	30.093	77
10	171.484	437	51	27.519	70
11	167.681	427	52	25.034	64
12	163.865	417	53	22.642	58
13	160.036	408	54	20.347	52
14	156.198	398	55	18.154	46
15	152.351	388	56	16.068	41
16	148.499	378	57	14.096	36
17	144.642	368	58	12.245	31
18	140.783	359	59	10.522	27
19	136.925	349	60	8.935	23
20	133.069	339	61	7.484	19
21	129.217	329	62	6.169	16
22	125.371	319	63	4.987	13
23	121.535	309	64	3.936	10
24	117.709	300	65	3.014	8
25	113.897	290	66	2.22	6
26	110.1	280	67	1.55	4
27	106.321	271	68	1.003	3

Step	孔径面积(mm2)	等效增益	Step	孔径面积(mm2)	等效增益
28	102.562	261	69	0.577	1
29	98.826	252	70	0.268	1
30	95.115	242	71	0.075	0
31	91.431	233	72	close	0
32	87.777	224	73	close	0
33	84.156	214	74	close	0
34	80.569	205	75	close	0
35	77.02	196	76	close	0
36	73.51	187	77	close	0
37	70.043	178	78	close	0
38	66.621	170	79	close	0
39	63.247	161	80	close	0
40	59.923	153			

Uapi_ExpWin_t

【说明】

定义AE统计窗口属性参数。

【定义】

成员名称	描述
h_offs	窗口左上角相对坐标原点的水平偏移值,这里的坐标原点指sensor感光区域左上角
v_offs	窗口左上角相对坐标原点的垂直偏移值,这里的坐标原点指sensor感光区域左上角
h_size	窗口水平方向尺寸

成员名称	描述
v_size	窗口竖直方向尺寸

Uapi_ExpQueryInfo_t

【说明】

定义AE曝光参数查询。

【定义】

```
typedef struct Uapi_ExpQueryInfo_s {
   lood
                   IsConverged;
   bool
                   IsExpMax;
   Uapi_LinAeInfo_t LinAeInfo;
   Uapi_HdrAeInfo_t HdrAeInfo;
   float
                   LinePeriodsPerField;
   float
                  PixelPeriodsPerLine;
   float
                   PixelClockFreqMHZ;
   float
                   Fps;
} Uapi_ExpQueryInfo_t;
```

成员名称	描述
IsConverged	自动曝光是否收敛
IsExpMax	ISP曝光是否达到最大值
LinAeInfo	线性曝光信息
HdrAeInfo	Hdr曝光信息
LinePeriodsPerField	sensor的VTS
PixelPeriodsPerLine	sensor的HTS

成员名称	描述
PixelClockFreqMHZ	sensor的像素时钟频率(单位: 兆赫兹)
Fps	sensor的帧率

成员名称	描述	
LumaDeviation	当前均值亮度与目标亮度的亮度差值比,LumaDeviation = (MeanLuma - SetPoint)/SetPoint。	
MeanLuma	当前均值亮度,取值范围[0,255].	
LinAeRange	当前线性曝光分量的range,包含增益range与曝光时间range	
LinearExp	当前线性曝光分量值,包含sensor的total gain与曝光时间	

成员名称	描述
HdrLumaDeviation	HDR模式下,当前各帧均值亮度与各帧目标亮度的亮度差值比。2帧模式下,元素0与元素1,分别代表短帧与长帧的亮度差值比;3帧模式下,元素0、元素1、元素2,分别代表短帧、中帧、长帧的亮度差值比。
Frm0Luma	HDR曝光2帧模式下,代表短帧均值亮度,取值范围[0,255]。
Frm1Luma	HDR曝光2帧模式下,代表长帧帧均值亮度;HDR曝光3帧模式下,代表中帧均值亮度。取值范围[0,255]。
Frm2Luma	仅在HDR曝光3帧模式下有效,代表长帧帧均值亮度,取值范围[0,255]。
HdrAeRange	HDR曝光模式下的曝光分量range, 2帧模式下, 元素0与元素1, 分别代表短帧与长帧的曝光分量range; 3帧模式下, 元素0、元素1、元素2, 分别代表短帧、中帧、长帧的曝光分量range。
HdrExp	HDR曝光模式下的当前曝光分量值,包含sensor的total gain与曝光时间。2帧模式下,元素0与元素1,分别代表短帧与长帧的曝光分量值;3帧模式下,元素0、元素1、元素2,分别代表短帧、中帧、长帧的曝光分量值。

常见问题定位及debug方法

若出现画面亮度闪烁、过冲、亮度不符合预期等问题时,建议通过抓取有问题场景的AE LOG进行分析,有助于快速定位问题、提高工作效率。

曝光统计同步测试功能

标定ISP模块前,需要驱动人员或tuning人员填写调试IQ XML中的SensorInfo参数。这个模块的涉及到曝光参数的设置,如设置错误可能发生曝光出错、闪烁等现象。建议配置完sensorinfo参数之后,开启SyncTest功能进行自测。sensorinfo参数含义说明参考《Rockchip_Tuning_Guide_ISP30》。

SyncTest功能通过循环设置N组不同曝光值,可测试sensor的曝光时间和曝光增益、及DCG切换生效帧数是否正确,还可用于测试曝光的线性度,从而确认曝光时间和曝光增益的寄存器值转换公式及相关参数是否正确。

SyncTest功能参数介绍如下:

【描述】

曝光与统计的同步测试功能,支持按照给定间隔帧数,循环设置N组不同的曝光值,用于debug及验证曝光分量(曝光时间、曝光增益)的生效帧数及sensor曝光参数设置是否正确。

【成员】

成员名称	描述
Enable	曝光与统计同步测试功能的使能
IntervalFrm	曝光切换间隔帧数
AlterExp	曝光切换参数

AlterExp

根据模式的不同,分为LinearAE和HdrAE两套参数。

成员名称	描述
TimeValue	曝光时间值
GainValue	曝光增益值
IspDgainValue	lsp数字增益值
DcgMode	Dcg模式值
PIrisGainValue	P-iris等效增益值

如参数设置正确,LOG示例如下(仅截取LOG中的关键信息)。红框所示为曝光切换位置,可见亮度并无发生突变且与曝光值相匹配,无延迟或提前线性,此时可基本判断sensorinfo参数设置正确。

```
>>> rramenum=116 cur gain=5.988304,time=0.019991,mean1uma=44./51110,pir1s=0
>>> Framenum=117 Cur gain=5.988304,time=0.019991,Meanluma=44.755554,piris=0
>>> Framenum=118 Cur gain=5.988304,time=0.019991,Meanluma=44.755554,piris=0
>>> Framenum=119 Cur gain=5.988304,time=0.019991,Meanluma=44.764446,piris=0
>>> Framenum=120 Cur gain=5.988304,time=0.019991,Meanluma=44.755554,piris=0
>>> Framenum=121 Cur gain=5.988304,time=0.019991,Meanluma=44.755554,piris=0
>>> Framenum=122 Cur gain=5.988304,time=0.019991,Meanluma=44.768890,piris=0
>>> Framenum=123 Cur gain=5.988304,time=0.019991,Meanluma=44.782223,piris=0
>>> Framenum=124 Cur gain=1.000000, time=0.019991, Meanluma=24.568890, piris=0
>>> Framenum=125 Cur gain=1.000000, time=0.019991, Meanluma=24.484444, piris=0
>>> Framenum=126 Cur gain=1.000000,time=0.019991,Meanluma=24.484444,piris=0
>>> Framenum=127 Cur gain=1.000000, time=0.019991, Meanluma=24.484444, piris=0
>>> Framenum=128 Cur gain=1.000000,time=0.019991,Meanluma=24.480000,piris=0
>>> Framenum=129 Cur gain=1.000000, time=0.019991, Meanluma=24.480000, piris=0
>>> Framenum=130 Cur gain=1.000000, time=0.019991, Meanluma=24.471111, piris=0
>>> Framenum=131 Cur gain=1.000000,time=0.019991,Meanluma=24.475555,piris=0
```

曝光变化时出现闪烁

可能导致曝光变化时出现闪烁的几种原因:

(1) CISExpUpdate模块中的gain、time生效时刻帧数错误。常见LOG示例如下(仅截取每帧关键LOG行):

```
Cur gain=1.937500, time=0.010015, RawMeanluma=24.622223, YuvMeanluma=34.124443, IsConverged=0
Cur gain=1.937500, time=0.010015, RawMeanluma=37.795555, YuvMeanluma=54.217777, IsConverged=0
Cur gain=1.937500, time=0.010015, RawMeanluma=37.257778, YuvMeanluma=52.435555, IsConverged=0
Cur gain=1.328125, time=0.020000, RawMeanluma=37.288887, YuvMeanluma=52.480000, IsConverged=0
Cur gain=1.390625, time=0.020000, RawMeanluma=60.342224, YuvMeanluma=82.528893, IsConverged=0
Cur gain=1.453125, time=0.020000, RawMeanluma=46.471111, YuvMeanluma=63.831112, IsConverged=0
Cur gain=1.000000, time=0.030015, RawMeanluma=48.048889, YuvMeanluma=66.195557, IsConverged=0
Cur gain=1.187500, time=0.0200000, RawMeanluma=65.511108, YuvMeanluma=87.622223, IsConverged=0
Cur gain=1.062500, time=0.0200000, RawMeanluma=38.071110, YuvMeanluma=53.022221, IsConverged=0
Cur gain=1.640625, time=0.020000, RawMeanluma=42.928890, YuvMeanluma=57.666668, IsConverged=0
Cur gain=1.593750, time=0.010015, RawMeanluma=42.928888, YuvMeanluma=35.293335, IsConverged=0
Cur gain=1.593750, time=0.010015, RawMeanluma=33.360001, YuvMeanluma=34.897778, IsConverged=0
Cur gain=1.5531250, time=0.010015, RawMeanluma=33.360001, YuvMeanluma=47.897778, IsConverged=0
Cur gain=1.562500, time=0.010015, RawMeanluma=33.350001, YuvMeanluma=46.084446, IsConverged=0
Cur gain=1.531250, time=0.010015, RawMeanluma=33.3505554, YuvMeanluma=46.084446, IsConverged=0
```

红框所标为亮度出错位置,可见随着曝光增长或降低,对应亮度与曝光变化趋势相反。通过观察,可发现亮度突变都发生在曝光时间和曝光增益同时变化后的第二帧。亮度的变化趋势与曝光时间变化趋势一致,因此可以判断gain、time的生效帧数出错,曝光时间和曝光增益的变化并未同时生效,导致亮度和曝光不匹配。可以通过修改gain、time生效帧数解决此问题。上述问题可以使用AE的syncTest功能进行复现,设置两组曝光(曝光增益和曝光时间不同),令其来回切换,查看LOG可知是否复现。

(2) 驱动错误导致的亮度来回震荡无法收敛,常发生在高亮场景,常见LOG示例如下(仅截取每帧关键LOG行)

```
Framenum=3378 Cur Piris=128, Sgain=1.188502, Stime=0.000044, m
Framenum=3379 Cur Piris=128, Sgain=1.148154, Stime=0.000044, m
Framenum=3380 Cur Piris=128, Sgain=1.148154,Stime=0.000044,m
Framenum=3381 Cur Piris=128, Sgain=1.230269, Stime=0.000044, m
 Framenum=3382 Cur Piris=128, Sgain=1.000000,Stime=0.000059,:
Framenum=3383 Cur Piris=128, Sgain=1.035142,Stime=0.000059,:
Framenum=3384 Cur Piris=128, Sgain=1.035142, Stime=0.000059,:
Framenum=3385 Cur Piris=128, Sgain=1.071519,Stime=0.000059,:
Framenum=3386 Cur Piris=128, Sgain=1.273503, Stime=0.000044,:

    Framenum=3387 Cur Piris=128, Sgain=1.188502, Stime=0.000044,:

 Framenum=3388 Cur Piris=128, Sgain=1.148154, Stime=0.000044,:
 Framenum=3389 Cur Piris=128, Sgain=1.148154, Stime=0.000044,:
Framenum=3390 Cur Piris=128, Sgain=1.230269, Stime=0.000044;
Framenum=3391 Cur Piris=128, Sgain=1.000000, Stime=0.000059,:
Framenum=3392 Cur Piris=128, Sgain=1.000000, Stime=0.000059, m
Framenum=3393 Cur Piris=128, Sgain=1.000000, Stime=0.000059, m
Framenum=3394 Cur Piris=128, Sgain=1.035142, Stime=0.000059,:
 Framenum=3395 Cur Piris=128, Sgain=1.273503, Stime=0.000044,:
 Framenum=3396 Cur Piris=128, Sgain=1.188502, Stime=0.000044,:
 Framenum=3397 Cur Piris=128, Sgain=1.148154, Stime=0.000044,:
Framenum=3398 Cur Piris=128, Sgain=1.148154, Stime=0.000044,:
 Framenum=3399 Cur Piris=128, Sgain=1.230269, Stime=0.000044,:
```

如图,可观察到曝光在59ms和44ms之间来回震荡,具体查看59ms和44ms对应的亮度均值会发现,二者的亮度之比与曝光之比差距较大,线性度有问题。第一步需要进行sensor的驱动检测,在驱动打印曝光寄存器值,查看寄存器值是否与log中的曝光一致。上述问题可以使用AE的syncTest功能进行复现,设置多组曝光(包含出现问题的曝光),令其来回切换,查看LOG中每帧曝光对应的亮度变化是否满足线性。

(3) AE后续模块导致的闪烁,常见LOG示例如下(仅截取每帧关键LOG行):

```
AecRun: SMeanLuma=12.698849, MMeanLuma=240.257675, LMeanLuma=0.000000, TmoMeanluma=104.390663, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=12.948373, MMeanLuma=244.828003, LMeanLuma=0.0000000, TmoMeanluma=104.161766, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=10.402813, MMeanLuma=245.728897, LMeanLuma=0.000000, TmoMeanluma=19.687981, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=8.134911, MMeanLuma=159.046036, LMeanLuma=0.000000, TmoMeanluma=79.667981, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=6.37852, MMeanLuma=127.505112, LMeanLuma=0.000000, TmoMeanluma=54.738249, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=6.527493, MMeanLuma=123.283249, LMeanLuma=0.000000, TmoMeanluma=54.739769, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=6.310742, MMeanLuma=119.683502, LMeanLuma=0.000000, TmoMeanluma=54.739769, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=5.20998, MMeanLuma=95.413681, LMeanLuma=0.000000, TmoMeanluma=53.315216, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=5.067775, MMeanLuma=95.413681, LMeanLuma=0.000000, TmoMeanluma=49.849743, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=4.64620, MMeanLuma=76.865089, LMeanLuma=0.000000, TmoMeanluma=45.372761, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=4.205883, MMeanLuma=76.865089, LMeanLuma=0.000000, TmoMeanluma=43.842072, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=4.205883, MMeanLuma=74.497444, LMeanLuma=0.000000, TmoMeanluma=43.842072, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=4.205883, MMeanLuma=74.497444, LMeanLuma=0.000000, TmoMeanluma=43.842072, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=4.205883, MMeanLuma=74.497444, LMeanLuma=0.000000, TmoMeanluma=43.842072, Isconverged=0, Longfrm=0 AecRun: SMeanLuma=3.946291, MMeanLuma=74.497444
```

从LOG中可知左侧SMeanLuma和MMeanLuma递减的过程中,TmoMeanluma模块输出的亮度发生了突变,发生这种情况时需至TMO模块进行debug。

AWB

概述

AWB模块的功能是通过改变拍摄设备的色彩通道的增益,对色温环境所造成的颜色偏差和拍摄设备本身所固有的色彩通道增益的偏差进行统一补偿,从而让获得的图像能正确反映物体的真实色彩。

重要概念

- 色温:色温是按绝对黑体来定义的,光源的辐射在可见区和绝对黑体的辐射完全相同时,此时黑体的温度就称此光源的色温。
- 白平衡:在不同色温的光源下,白色在传感器中的响应会偏蓝或偏红。白平衡算法通过调整 R, G, B 三个颜色通道的强度,使白色真实呈现。

功能描述

AWB 模块有WB 信息统计及 AWB 策略控制算法两部分组成。

功能级API参考

rk aiq uapi2 setWBMode

【描述】

设置白平衡工作模式。

【语法】

```
XCamReturn rk_aiq_uapi2_setWBMode(const rk_aiq_sys_ctx_t* ctx, opMode_t mode);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
mode	白平衡工作模式	输入

【返回值】

返回值	描述
0	成功
∃E 0	失败,详见错误码表

【注意】

• 若设置为手动模式,白平衡增益值为当前手动白平衡参数控制。若需要切换手动模式的同时设置特定增益值,可以使用rk_aiq_uapi2_setMWBGain接口。

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_uapi2_getWBMode

【描述】

获取白平衡工作模式。

【语法】

```
XCamReturn rk_aiq_uapi2_getwBMode(const rk_aiq_sys_ctx_t* ctx, opMode_t *mode);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
mode	白平衡工作模式	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_uapi2_lockAWB

【描述】

锁定当前白平衡参数。

【语法】

XCamReturn rk_aiq_uapi2_lockAWB(const rk_aiq_sys_ctx_t* ctx);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
≢€0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_uapi2_unlockAWB

【描述】

解锁已被锁定的白平衡参数。

【语法】

XCamReturn rk_aiq_uapi2_unlockAWB(const rk_aiq_sys_ctx_t* ctx);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_uapi2_setMWBScene

【描述】

设置白平衡场景。

【语法】

```
XCamReturn rk_aiq_uapi2_setMwBScene(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_wb_scene_t scene);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
scene	白平衡场景	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_uapi2_getMWBScene

【描述】

获取白平衡场景。

【语法】

```
XCamReturn rk_aiq_uapi2_getMwBScene(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_wb_scene_t *scene);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
scene	白平衡场景	输出

【返回值】

返回值	描述
0	成功
丰60	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_uapi2_setMWBGain

【描述】

设置手动白平衡增益系数。

【语法】

XCamReturn rk_aiq_uapi2_setMwBGain(const rk_aiq_sys_ctx_t* ctx, rk_aiq_wb_gain_t
*gain);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
gain	白平衡增益系数	输入

【返回值】

返回值	描述
0	成功
≢ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_uapi2_getWBGain

【描述】

获取白平衡增益系数。手动白平衡和自动白平衡均用该函数

【语法】

 $\label{lem:const_rk_aiq_uapi2_getWBGain} $$ (const_rk_aiq_sys_ctx_t^* ctx, rk_aiq_wb_gain_t *gain);$

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
gain	白平衡增益系数	输出

【返回值】

返回值	描述
0	成功
丰0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_uapi2_setMWBCT

【描述】

设置手动白平衡色温参数。

【语法】

XCamReturn rk_aiq_uapi2_setMwBCT(const rk_aiq_sys_ctx_t* ctx, unsigned int ct);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
ct	白平衡色温参数	输入

【返回值】

返回值	描述
0	成功
∃ €0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_uapi2_getWBCT

【描述】

获取白平衡色温。自动和手动均用该函数

【语法】

```
XCamReturn rk_aiq_uapi2_getWBCT(const rk_aiq_sys_ctx_t* ctx, unsigned int *ct);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
ct	白平衡色温	输出

【返回值】

返回值	描述
0	成功
丰60	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

$rk_aiq_uapi2_setAwbGainOffsetAttrib$

【描述】

设置自动白平衡gain的偏移。

【语法】

XCamReturn rk_aiq_uapi2_setAwbGainOffsetAttrib(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_uapiv2_wb_awb_wbGainOffset_t attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	wbgain偏移参数	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_uapi2_getAwbGainOffsetAttrib

【描述】

获取自动白平衡gain的偏移

【语法】

XCamReturn rk_aiq_uapi2_getAwbGainOffsetAttrib(const rk_aiq_sys_ctx_t* ctx,
CalibDbv2_Awb_gain_offset_cfg_t *attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	wbgain偏移参数	输出

【返回值】

返回值	描述
0	成功
⊒⊨0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_uapi2_setAwbGainAdjustAttrib

【描述】

设置自动白平衡模式下的色调调整参数。

【语法】

```
XCamReturn rk_aiq_uapi2_setAwbGainAdjustAttrib(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_uapiV2_wb_awb_wbGainAdjust_t attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	白平衡色调调整参数	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_uapi2_getAwbGainAdjustAttrib

【描述】

获取自动白平衡模式下的色调调整参数。

【语法】

```
XCamReturn rk_aiq_uapi2_getAwbGainAdjustAttrib(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_uapiv2_wb_awb_wbGainAdjust_t *attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	白平衡色调调整参数	输出

【返回值】

返回值	描述
0	成功
∃E 0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

功能级API数据类型

rk_aiq_wb_op_mode_t

【说明】

定义白平衡工作模式

【定义】

【成员】

成员名称	描述
RK_AIQ_WB_MODE_MANUAL	白平衡手动模式
RK_AIQ_WB_MODE_AUTO	白平衡自动模式

rk_aiq_wb_mwb_mode_t

【说明】

定义手动白平衡模式类型

成员名称	描述
RK_AIQ_MWB_MODE_CCT	色温
RK_AIQ_MWB_MODE_WBGAIN	增益系数
RK_AIQ_MWB_MODE_SCENE	场景

rk_aiq_wb_gain_t

【说明】

定义白平衡增益参数

【定义】

```
typedef struct rk_aiq_wb_gain_s {
    float rgain;
    float grgain;
    float gbgain;
    float bgain;
} rk_aiq_wb_gain_t;
```

【成员】

成员名称	描述
rgain	R通道增益
grgain	G通道增益
gbgain	GB通道增益
bgain	B通道增益

rk_aiq_wb_scene_t

【说明】

定义白平衡增益参数

```
typedef enum rk_aiq_wb_scene_e {
    RK_AIQ_WBCT_INCANDESCENT = 0,
    RK_AIQ_WBCT_FLUORESCENT,
    RK_AIQ_WBCT_WARM_FLUORESCENT,
    RK_AIQ_WBCT_DAYLIGHT,
    RK_AIQ_WBCT_CLOUDY_DAYLIGHT,
    RK_AIQ_WBCT_TWILIGHT,
    RK_AIQ_WBCT_TSHADE
} rk_aiq_wb_scene_t;
```

成员名称	描述
RK_AIQ_WBCT_INCANDESCENT	白炽灯
RK_AIQ_WBCT_FLUORESCENT	荧光灯
RK_AIQ_WBCT_WARM_FLUORESCENT	暖荧光灯
RK_AIQ_WBCT_DAYLIGHT	日光
RK_AIQ_WBCT_CLOUDY_DAYLIGHT	阴天
RK_AIQ_WBCT_TWILIGHT	暮光
RK_AIQ_WBCT_SHADE	阴影

rk_aiq_wb_cct_t

【说明】

定义白平衡增益参数

【定义】

```
typedef struct rk_aiq_wb_cct_s {
   float CCT;
   float CCRI;
} rk_aiq_wb_cct_t;
```

【成员】

成员名称	描述
ССТ	相关色温
CCRI	相关显色指数

rk_aiq_wb_mwb_attrib_t

【说明】

定义手动白平衡属性

```
typedef struct rk_aiq_wb_mwb_attrib_s {
    rk_aiq_wb_mwb_mode_t mode;
    union MwBPara_u {
        rk_aiq_wb_gain_t gain;
        rk_aiq_wb_scene_t scene;
        rk_aiq_wb_cct_t cct;
    } para;
} rk_aiq_wb_mwb_attrib_t;
```

成员名称	描述
mode	模式选择
para	模式对应的参数配置

rk_aiq_uapiV2_wb_awb_wbGainOffset_t

【说明】

定义自动白平衡gain偏移

【定义】

```
typedef struct rk_aiq_uapiv2_wb_awb_wbGainOffset_s{
   rk_aiq_uapi_sync_t sync;
   CalibDbv2_Awb_gain_offset_cfg_t gainOffset;
}rk_aiq_uapiv2_wb_awb_wbGainOffset_t;
```

【成员】

成员名称	描述
sync	参考rk_aiq_uapi_sync_t定义说明,参见 "概述/API说明" 章节
gainOffset	参靠后面CalibDbV2_Awb_gain_offset_cfg_t描述

CalibDbV2_Awb_gain_offset_cfg_t

【说明】

定义自动白平衡gain偏移

【定义】

```
typedef struct CalibDbV2_Awb_gain_offset_cfg_s{
  bool enable;
  float offset[4];
}CalibDbV2_Awb_gain_offset_cfg_t;
```

成员名 称	描述			
----------	----	--	--	--

成员名 称	描述
enable	使能开关 取值0或1,分别代表不使能、使能
offset	wbgain与offset相加,对应R GR GB B通道的偏移 取值范围由wbgain与offset相加值确定,wbgain与offset相加后范围在[0,8] (ISP21)

rk_aiq_uapiV2_wb_awb_wbGainAdjust_t

【说明】

定义自动白平衡色调调整参数

【定义】

```
typedef struct rk_aiq_uapiv2_wb_awb_wbGainAdjustLut_s {
   float lumavalue;
   int ct_grid_num;
   int cri_grid_num;
   float ct_in_range[2];//min,max, equal distance sapmle
   float cri_in_range[2];//min,max
   float *ct_lut_out;//size is ct_grid_num*cri_grid_num
   float *cri_lut_out;
} rk_aiq_uapiv2_wb_awb_wbGainAdjustLut_t;

typedef struct rk_aiq_uapiv2_wb_awb_wbGainAdjust_s {
   rk_aiq_uapi_sync_t sync;
   bool enable;
   rk_aiq_uapiv2_wb_awb_wbGainAdjustLut_t *lutAll;
   int lutAll_len;
} rk_aiq_uapiv2_wb_awb_wbGainAdjust_t;
```

成员名称	描述
sync	参考rk_aiq_uapi_sync_t定义说明,参见 "概述/API说明" 章节
enable	色调调整使能 取值0或1,分别代表不使能、使能
lutAll	不同的环境亮度可以配置不同的输出色温表
lutAll_len	指定色温表的个数
lutAll.lumaValue	环境亮度 取值范围0-255000
lutAll.ct_grid_num	输入色温表之色温的采样点数 取值不限

成员名称	描述
lutAll.ct_in_range	输入色温表之色温的范围 取值不限
lutAll.cri_grid_num	输入色温表之显色指数的采样点数 取值不限
lutAll.cri_in_range	输入色温表之显色指数的范围 取值不限
lutAll.ct_out	如工具界面图所示每个圆点的ct值,从左到右(色调从冷到暖),即 CT从小到大 取值范围0-255000
lutAll.cri_out	如工具界面图所示每个圆点的cri,从下到上(色调从紫到绿),即 CRI从 负数到正数 取值范围不限

更多说明参考《Rockchip_Color_Optimization_Guide》文档里面的WBGain色调调整章节

rk_aiq_uapiV2_wbV32_awb_mulWindow_t

【说明】

定义子窗口参数,落入子窗口内的点将不进行白点检测,通常将该子窗口配置为人脸的位置。

【定义】

```
typedef struct rk_aiq_uapiv2_wbv32_awb_mulwindow_s {
  rk_aiq_uapi_sync_t sync;
  bool enable;
  float window[4][4];
} rk_aiq_uapiv2_wbv32_awb_mulwindow_t;
```

【成员】

成员名 称	描述
sync	参考rk_aiq_uapi_sync_t说明,参见 "概述/API说明" 章节
enable	多窗口使能 取值0或1,分别代表不使能、使能
window	第一个维度4表示,最多可以配置4个子窗口 第二维度4对应于窗口的[hoffset,voffset,hsize,vsize],即窗口的水平方向偏移 =width* hoffset,垂直方向偏移= height* voffset,宽=width * hsize,高= height * vsize 取值范围[0-1]

rk_aiq_uapiV2_wbV32_awb_attrib_t

【说明】

定义自动白平衡api参数

【定义】

```
typedef struct rk_aiq_uapiv2_wbv32_awb_attrib_s {
    rk_aiq_uapiv2_wb_awb_wbGainAdjust_t wbGainAdjust;
    CalibDbv2_Awb_gain_offset_cfg_t wbGainOffset;
    rk_aiq_uapiv2_wbv32_awb_mulWindow_t multiWindow;
} rk_aiq_uapiv2_wbv32_awb_attrib_t;
```

【成员】

成员名称	描述
wbGainAdjust	参考前述CalibDbV2_Awb_gain_offset_cfg_t
wbGainOffset	参考前述rk_aiq_uapiV2_wb_awb_wbGainAdjust_t
multiWindow	参考前述rk_aiq_uapiV2_wbV32_awb_mulWindow_t

rk_aiq_uapiV2_wbV32_attrib_t

【说明】

定义白平衡API支持的全部参数。

【定义】

```
typedef struct rk_aiq_uapiv2_wbv32_attrib_s {
    rk_aiq_uapi_sync_t sync;
    bool byPass;
    rk_aiq_wb_op_mode_t mode;
    rk_aiq_wb_mwb_attrib_t stManual;
    rk_aiq_uapiv2_wbv32_awb_attrib_t stAuto;
} rk_aiq_uapiv2_wbv32_attrib_t;
```

【成员】

成员名称	描述
sync	参考rk_aiq_uapi_sync_t说明,参见 "概述/API说明" 章节
bypass	取值0或1 0表示做白平衡校正,使用的白平衡增益由表格后面的参数控制控制 1表示不执行白平衡校正
mode	自动或手动白平衡模式控制参数,参考前述rk_aiq_wb_op_mode_t
stManual	手动白平衡参数,参考前述rk_aiq_wb_mwb_attrib_t
stAuto	自动白平衡参数,参考前述rk_aiq_uapiV2_wbV21_awb_attrib_t

模块级API参考

rk_aiq_user_api2_awbV32_SetAllAttrib

【描述】

设置白平衡API支持的全部参数。

【语法】

XCamReturn

rk_aiq_user_api2_awbV32_SetAllAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_uapiV2_wbV32_attrib_t attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	白平衡API支持的全部参数	输出

【返回值】

返回值	描述
0	成功
∃ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_user_api2_awbV32_GetAllAttrib

【描述】

获取白平衡API支持的全部参数。

【语法】

XCamReturn

rk_aiq_user_api2_awbv32_GetAllAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_uapiv2_wbv32_attrib_t *attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

参数名称	描述	输入/输出
attr	白平衡API支持的全部参数	输出

【返回值】

返回值	描述
0	成功
≢ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_user_api2_awb_GetCCT

【描述】

获取白平衡色温。自动和手动均用该函数

【语法】

XCamReturn

rk_aiq_user_api2_awb_GetCCT(const rk_aiq_sys_ctx_t* sys_ctx, rk_aiq_wb_cct_t
*cct);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
cct	白平衡的色温参数	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_user_api2_awb_QueryWBInfo

【描述】

获取白平衡增益系数, 色温。

【语法】

XCamReturn

rk_aiq_user_api2_awb_QueryWBInfo(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_wb_querry_info_t *wb_querry_info);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
wb_querry_info	颜色相关状态参数	输出

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_user_api2_awb_Lock

【描述】

锁定当前白平衡参数。

【语法】

XCamReturn

rk_aiq_user_api2_awb_Lock(const rk_aiq_sys_ctx_t* sys_ctx);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
∃ E0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_user_api2_awb_Unlock

【描述】

解锁已被锁定的白平衡参数。

【语法】

XCamReturn

rk_aiq_user_api2_awb_Lock(const rk_aiq_sys_ctx_t* sys_ctx);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_user_api2_awb_SetWpModeAttrib

【描述】

设置白平衡工作模式。

【语法】

XCamReturn

rk_aiq_user_api2_awb_SetWpModeAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_uapiv2_wb_opMode_t attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	白平衡工作模式	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_user_api2_awb_GetWpModeAttrib

【描述】

获取白平衡工作模式。

【语法】

XCamReturn

rk_aiq_user_api2_awb_GetWpModeAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_uapiv2_wb_opMode_t *attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	白平衡工作模式	输出

【返回值】

返回值	描述
0	成功

返回值	描述
∃ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_user_api2_awb_SetMwbAttrib

【描述】

设置手动白平衡参数。

【语法】

XCamReturn

```
rk_aiq_user_api2_awb_SetMwbAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_wb_mwb_attrib_t attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	手动白平衡参数	输入

【返回值】

返回值	描述
0	成功
≢€0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_user_api2_awb_GetMwbAttrib

【描述】

获取手动白平衡参数。

【语法】

XCamReturn rk_aiq_user_api2_awb_GetMwbAttrib(const rk_aiq_sys_ctx_t* sys_ctx, rk_aiq_wb_mwb_attrib_t *attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	手动白平衡参数	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_user_api2_awb_SetWbGainAdjustAttrib

【描述】

设置自动白平衡模式下的色调调整参数。

【语法】

XCamReturn

rk_aiq_user_api2_awb_SetWbGainAdjustAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_uapiV2_wb_awb_wbGainAdjust_t attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	色调调整参数	输入

【返回值】

返回值	描述
0	成功

返回值	描述
∃	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_user_api2_awb_GetWbGainAdjustAttrib

【描述】

获取自动白平衡模式下的色调调整参数。

【语法】

XCamReturn

rk_aiq_user_api2_awb_GetWbGainAdjustAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_uapiV2_wb_awb_wbGainAdjust_t *attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	色调调整参数	输入

【返回值】

返回值	描述
0	成功
1章0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_user_api2_awb_SetWbGainOffsetAttrib

【描述】

设置自动白平衡gain的偏移

【语法】

XCamReturn

rk_aiq_user_api2_awb_SetWbGainOffsetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_uapiv2_wb_awb_wbGainOffset_t attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	色调调整参数	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

rk_aiq_user_api2_awb_GetWbGainOffsetAttrib

【描述】

获取自动白平衡gain的偏移

【语法】

XCamReturn

rk_aiq_user_api2_awb_GetWbGainOffsetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_uapiv2_wb_awb_wbGainOffset_t *attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	色调调整参数	输入

【返回值】

返回值	描述
0	成功

返回值	描述
∃E 0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_awb.h、rk_aiq_uapi2_awb_int.h

• 库文件: librkaiq.so

【示例】

• 参考sample_awb_module.cpp

模块级API数据类型

rk_aiq_wb_querry_info_t

【说明】

定义白平衡查询信息

【定义】

```
typedef struct rk_aiq_wb_querry_info_s {
    rk_aiq_wb_gain_t gain;
    rk_aiq_wb_cct_t cctGloabl;
    bool awbConverged;
    uint32_t LVValue;
} rk_aiq_wb_querry_info_t;
```

【成员】

成员名称	描述
gain	增益
cctGloabl	全局色温参数
awbConverged	白平衡是否收敛
LVValue	相关环境亮度

rk_aiq_wb_op_mode_t

【说明】

定义白平衡工作模式

【定义】

```
typedef struct rk_aiq_uapiv2_wb_opMode_s {
  rk_aiq_uapi_sync_t sync;
  rk_aiq_wb_op_mode_t mode;
} rk_aiq_uapiv2_wb_opMode_t;
```

【成员】

成员名称	描述
sync	参考rk_aiq_uapi_sync_t说明,参见 "概述/API说明" 章节
mode	参考rk_aiq_wb_op_mode_t说明

rk_aiq_wb_mwb_attrib_t

【说明】

定义手动白平衡属性

【定义】

```
typedef struct rk_aiq_wb_mwb_attrib_s {
    rk_aiq_uapi_sync_t sync;
    rk_aiq_wb_mwb_mode_t mode;
    union MwBPara_u {
        rk_aiq_wb_gain_t gain;
        rk_aiq_wb_scene_t scene;
        rk_aiq_wb_cct_t cct;
    } para;
} rk_aiq_wb_mwb_attrib_t;
```

【成员】

成员名称	描述
sync	参考rk_aiq_uapi_sync_t定义,参见 "概述/API说明" 章节
mode	模式选择
para	模式对应的参数配置

AF

概述

AF模块的功能是指调整相机镜头,使被拍物成像清晰的过程。

功能描述

AF 模块由AF 信息统计及AF控制算法两部分组成。 下图为AF信息统计模块框图

其中, ch0/ch1对应hdr模式下S/L帧, debayer为hdr模式下的合成帧。

Lite版本下,windowA的输出主要包含5*5的V1/H1 FV信息、亮度信息和高亮计数,V2/H2 FV已被删除。

windowB在AF3.2中处于废弃状态,建议不要使用。

开发用户AF算法

参考代码位置: sdk: external/camera_engine_rkaiq/rkisp_demo/demo/af_algo_demo

功能级API参考

rk_aiq_uapi2_setFocusMode

【描述】配置对焦模式。

【语法】

XCamReturn rk_aiq_uapi2_setFocusMode(const rk_aiq_sys_ctx_t* ctx, opMode_t
mode);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

参数名称	描述	输入/输出
mode	对焦模式	输入

【返回值】

返回值	描述
0	成功
1 1 0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_getFocusMode$

【描述】 获取当前对焦模式。

【语法】

XCamReturn rk_aiq_uapi2_getFocusMode(const rk_aiq_sys_ctx_t* ctx, opMode_t
*mode);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
mode	对焦模式	输出

【返回值】

返回值	描述
0	成功
丰60	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_setFocusWin

【描述】设置自动对焦窗口。

【语法】

XCamReturn rk_aiq_uapi2_setFocusWin(const rk_aiq_sys_ctx_t* ctx, paRect_t
*rect);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
rect	对焦窗口,取值范围由sensor输入大小确定	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getFocusWin

【描述】设置自动对焦窗口。

【语法】

XCamReturn rk_aiq_uapi2_getFocusWin(const rk_aiq_sys_ctx_t* ctx, paRect_t
*rect);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
rect	对焦窗口	输出

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

rk_aiq_uapi2_lockFocus

【描述】 锁定自动对焦,对焦暂停动作。

【语法】

XCamReturn rk_aiq_uapi2_lockFocus(const rk_aiq_sys_ctx_t* ctx);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
丰60	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_unlockFocus

【描述】 解锁自动对焦,对焦继续动作。

【语法】

XCamReturn rk_aiq_uapi2_unlockFocus(const rk_aiq_sys_ctx_t* ctx);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
≢ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

rk_aiq_uapi2_oneshotFocus

【描述】 触发单次对焦,对焦完成后,不会继续对焦。

【语法】

XCamReturn rk_aiq_uapi2_oneshotFocus(const rk_aiq_sys_ctx_t* ctx);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
≢€0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_manualTrigerFocus

【描述】手动触发对焦,对焦完成后,继续监视画面是否模糊,如果画面模糊,再次执行对焦。

【语法】

XCamReturn rk_aiq_uapi2_manualTrigerFocus(const rk_aiq_sys_ctx_t* ctx);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
≒ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

rk_aiq_uapi2_trackingFocus

【描述】 继续监视画面是否模糊,如果画面模糊,再次执行对焦,一般执行 rk_aiq_uapi2_oneshotFocus后使用。

【语法】

XCamReturn rk_aiq_uapi2_trackingFocus(const rk_aiq_sys_ctx_t* ctx);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
∃E0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getSearchResult

【描述】 获取对焦结果。

【语法】

XCamReturn rk_aiq_uapi2_getSearchResult(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_af_result_t* result);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
result	对焦结果,具体参考结构体rk_aiq_af_result_t的说明	输出

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getZoomRange

【描述】 获取变焦范围值,用于限制rk_aiq_uapi_setOpZoomPosition输入的zoom code参数。

【语法】

XCamReturn rk_aiq_uapi2_getZoomRange(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_af_zoomrange* range);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
range	zoom可移动范围,具体参考结构体rk_aiq_af_zoomrange	输出

【返回值】

返回值	描述
0	成功
丰0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_setOpZoomPosition

【描述】 设置zoom位置,修改变焦位置。

【语法】

XCamReturn rk_aiq_uapi2_setOpZoomPosition(const rk_aiq_sys_ctx_t* ctx, int pos);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
pos	zoom position,取值范围由rk_aiq_uapi2_getZoomRange确定	输入

【返回值】

返回值	描述
0	成功

返回值	描述
]‡0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getOpZoomPosition

【描述】 获取zoom位置。

【语法】

XCamReturn rk_aiq_uapi2_getOpZoomPosition(const rk_aiq_sys_ctx_t* ctx, int
*pos);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
pos	zoom position	输出

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_endOpZoomChange$

【描述】 结束zoom设备位置的设置,在rk_aiq_uapi_setOpZoomPosition之后调用,被调用后执行聚焦动作。

【语法】

XCamReturn rk_aiq_uapi2_endOpZoomChange(const rk_aiq_sys_ctx_t* ctx);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
∃E 0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getFocusRange

【描述】 获取聚焦范围值,用于限制rk_aiq_uapi_setFocusPosition输入的focus code参数。

【语法】

XCamReturn rk_aiq_uapi2_getFocusRange(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_af_focusrange* range);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
range	focus可移动范围,具体参考结构体rk_aiq_af_focusrange	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_setFocusPosition$

【描述】设置手动对焦模式下的对焦位置。

【语法】

XCamReturn rk_aiq_uapi2_setFocusPosition(const rk_aiq_sys_ctx_t* ctx, unsigned short code);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
code	对焦code值,取值范围由rk_aiq_uapi2_getFocusRange确定	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_getFocusPosition$

【描述】 获取当前对焦位置。

【语法】

XCamReturn rk_aiq_uapi2_getFocusPosition(const rk_aiq_sys_ctx_t* ctx, unsigned short *code);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
code	对焦code值	输出

【返回值】

返回值	描述
0	成功
∃E0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

rk_aiq_uapi2_startZoomCalib

【描述】执行电动马达模组校正。

【语法】

XCamReturn rk_aiq_uapi2_startZoomCalib(const rk_aiq_sys_ctx_t* ctx);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
≢€0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_resetZoom

【描述】执行电动马达模组复位。

【语法】

XCamReturn rk_aiq_uapi2_resetZoom(const rk_aiq_sys_ctx_t* ctx);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
≢ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

功能级API数据类型

$opMode_t$

【说明】

定义AF信息统计工作模式

【定义】

```
typedef enum opMode_e {
    OP_AUTO = 0,
    OP_MANUAL = 1,
    OP_SEMI_AUTO = 2,
    OP_INVAL
} opMode_t;
```

【成员】

成员名称	描述
OP_AUTO	自动对焦模式,运行内置AF算法
OP_MANUAL	手动对焦模式,停止内置AF算法
OP_SEMI_AUTO	半自动对焦模式,set zoom position api调用后执行一次自动对焦

rk_aiq_af_zoomrange

【说明】定义zoom取值范围

【定义】

```
typedef struct {
   int min_pos;
   int max_pos;
   float min_fl;
   float max_fl;
} rk_aiq_af_zoomrange;
```

【成员】

成员名称	描述
min_pos	zoom最小值
max_pos	zoom最大值
min_fl	最小焦距
max_fl	最大焦距

rk_aiq_af_focusrange

【说明】定义focus取值范围

【定义】

```
typedef struct {
   int min_pos;
   int max_pos;
} rk_aiq_af_focusrange;
```

【成员】

成员名称	描述
min_pos	focus最小值
max_pos	focus最大值

rk_aiq_af_result_t

【说明】定义af搜索结果

【定义】

```
typedef enum rk_aiq_af_sec_stat_e
{
    RK_AIQ_AF_SEARCH_INVAL = 0,
    RK_AIQ_AF_SEARCH_RUNNING = 1,
    RK_AIQ_AF_SEARCH_END = 2
} rk_aiq_af_sec_stat_t;

typedef struct {
    rk_aiq_af_sec_stat_t stat;
    int32_t final_pos;
} rk_aiq_af_result_t;
```

【成员】

成员名称	描述
stat	对焦状态
final_pos	最终focus位置

模块级API参考

rk_aiq_user_api2_af_SetAttrib

【描述】

设置对焦属性。

【语法】

```
XCamReturn
rk_aiq_user_api2_af_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_af_attrib_t attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	对焦的参数属性	输入

【返回值】

返回值	描述
0	成功
≒ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_af.h

• 库文件: librkaiq.so

rk_aiq_user_api2_af_GetAttrib

【描述】

获取对焦属性。

【语法】

```
XCamReturn
rk_aiq_user_api2_af_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_af_attrib_t *attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	对焦的参数属性	输出

【返回值】

返回值	描述
0	成功
1=0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_af.h

• 库文件: librkaiq.so

模块级API数据类型

RKAIQ_AF_MODE

【说明】

定义对焦工作模式

【定义】

```
typedef enum _RKAIQ_AF_MODE
{
    RKAIQ_AF_MODE_NOT_SET = -1,
    RKAIQ_AF_MODE_AUTO,
    RKAIQ_AF_MODE_MACRO,
    RKAIQ_AF_MODE_INFINITY,
    RKAIQ_AF_MODE_FIXED,
    RKAIQ_AF_MODE_EDOF,
    RKAIQ_AF_MODE_CONTINUOUS_VIDEO,
    RKAIQ_AF_MODE_CONTINUOUS_PICTURE,
    RKAIQ_AF_MODE_ONESHOT_AFTER_ZOOM,
} RKAIQ_AF_MODE;
```

【成员】

成员名称	描述
RKAIQ_AF_MODE_NOT_SET	对焦模式未设置
RKAIQ_AF_MODE_AUTO	自动对焦模式
RKAIQ_AF_MODE_MACRO	微距对焦模式
RKAIQ_AF_MODE_INFINITY	远距对焦模式
RKAIQ_AF_MODE_FIXED	固定对焦模式
RKAIQ_AF_MODE_EDOF	景深对焦模式
RKAIQ_AF_MODE_CONTINUOUS_VIDEO	平滑持续对焦模式
RKAIQ_AF_MODE_CONTINUOUS_PICTURE	快速持续对焦模式
RKAIQ_AF_MODE_ONESHOT_AFTER_ZOOM	半自动对焦模式,set zoom position调用后,自 动触发一次对焦

RKAIQ_AF_HWVER

【说明】

定义对焦工作模式

【定义】

```
typedef enum _RKAIQ_AF_HWVER
{
    RKAIQ_AF_HW_V20 = 0,
    RKAIQ_AF_HW_V30,
    RKAIQ_AF_HW_V31,
    RKAIQ_AF_HW_V32_LITE,
    RKAIQ_AF_HW_VMAX
} RKAIQ_AF_HWVER;
```

【成员】

成员名称	描述
RKAIQ_AF_HW_V20	AF硬件版本 2.0
RKAIQ_AF_HW_V30	AF硬件版本 3.0
RKAIQ_AF_HW_V31	AF硬件版本 3.1
RKAIQ_AF_HW_V32_LITE	AF硬件版本 3.2 Lite

rk_aiq_af_algo_meas_v32_t

【说明】

定义AF信息统计工作模式

【定义】

```
typedef struct {
   unsigned char af_en;
   unsigned char rawaf_sel;
   unsigned char gamma_en;
   unsigned char gaus_en;
   unsigned char v1_fir_sel;
   unsigned char hiir_en;
   unsigned char viir_en;
   unsigned char v1_fv_outmode; // 0 square, 1 absolute
   unsigned char v2_fv_outmode; // 0 square, 1 absolute
   unsigned char h1_fv_outmode; // 0 square, 1 absolute
   unsigned char h2_fv_outmode; // 0 square, 1 absolute
   unsigned char ldg_en;
   unsigned char accu_8bit_mode;
   unsigned char ae_mode;
   unsigned char y_mode;
   unsigned char vldg_sel;
   unsigned char sobel_sel;
   unsigned char v_dnscl_mode;
   unsigned char from_awb;
   unsigned char from_ynr;
   unsigned char ae_config_use;
   unsigned char ae_sel;
   unsigned char from_bnr;
   unsigned char bnrin_shift;
   unsigned char hiir_left_border_mode;
   unsigned char avg_ds_en;
```

```
unsigned char avg_ds_mode;
unsigned char line_en[RKAIQ_RAWAF_LINE_NUM];
unsigned char line_num[RKAIQ_RAWAF_LINE_NUM];
unsigned char window_num;
unsigned short wina_h_offs;
unsigned short wina_v_offs;
unsigned short wina_h_size;
unsigned short wina_v_size;
unsigned short winb_h_offs;
unsigned short winb_v_offs;
unsigned short winb_h_size;
unsigned short winb_v_size;
unsigned short gamma_y[RKAIQ_RAWAF_GAMMA_NUM];
// [old version param]
unsigned short thres;
unsigned char shift_sum_a;
unsigned char shift_sum_b;
unsigned char shift_y_a;
unsigned char shift_y_b;
char gaus_coe[9];
/*******[Vertical IIR (v1 & v2)]*********/
short v1_iir_coe[3];
short v1_fir_coe[3];
short v2_iir_coe[3];
short v2_fir_coe[3];
/*******[Horizontal IIR (h1 & h2)]*******/
short h1_iir1_coe[6];
short h2_iir1_coe[6];
short h1_iir2_coe[6];
short h2_iir2_coe[6];
/*******[Focus value statistic param]*******/
// level depended gain
// input8 lumi, output8bit gain
unsigned char h_ldg_lumth[2]; //luminance thresh
unsigned char h_ldg_gain[2];
                               //gain for [minLum,maxLum]
unsigned short h_ldg_gslp[2];
                               //[slope_low,-slope_high]
unsigned char v_ldg_lumth[2];
unsigned char v_ldg_gain[2];
unsigned short v_ldg_gslp[2];
unsigned char hldg_dilate_num;
// coring
unsigned short v_fv_thresh;
unsigned short h_fv_thresh;
unsigned short v_fv_limit;
unsigned short v_fv_slope;
unsigned short h_fv_limit;
```

```
unsigned short h_fv_slope;
   // left shift, more needed if outmode=square
   unsigned char v1_fv_shift; //only for sel1
   unsigned char v2_fv_shift;
   unsigned char h1_fv_shift;
   unsigned char h2_fv_shift;
   // acc mode
   unsigned char v1_acc_mode;
   unsigned char v2_acc_mode;
   unsigned char h1_acc_mode;
   unsigned char h2_acc_mode;
   /***********[High light]********/
   unsigned short highlit_thresh;
   // bls for af
   unsigned char bls_en;
   short bls_offset;
} rk_aiq_af_algo_meas_v32_t;
```

【成员】

成员名称	描述
af_en	是否使能AF 信息统计,0为关闭,1为打开
rawaf_sel	选择AF信息统计的通道,取值范围0-3,对应hdr模式的长/中/短/合成帧通道选择,一般AF选择中帧通道,非hdr模式设置为0,hdr模式设置为1
gamma_en	gamma模块使能开关,0为关闭,1为打开
gaus_en	需固定设置为1
v1_fir_sel	需固定设置为1
hiir_en	H1通道使能开关,0为关闭,1为打开
viir_en	V1通道使能开关,0为关闭,1为打开。需要注意gamma_en打开时, viir_en必须设置为1
v1_fv_outmode	V1通道FV输出模式选择,0为平方模式,1为绝对值模式
v2_fv_outmode	Lite版本下无用
h1_fv_outmode	H1通道FV输出模式选择,0为平方模式,1为绝对值模式
h2_fv_outmode	Lite版本下无用
ldg_en	LDG功能使能开关,0为关闭,1为打开
accu_8bit_mode	需固定设置为1
ae_mode	当ae_mode设置为1,RAWAF使能5x5亮度均值统计,复用了RAWAE_LITE模块的逻辑

成员名称	描述
y_mode	需固定设置为0
vldg_sel	需固定设置为0
sobel_sel	需固定设置为0
v_dnscl_mode	宽窄带模式选择,按照AF滤波器系数生成工具的输出进行设置
from_awb	AF统计输入从AWB获取
from_ynr	AF统计输入从YNR获取
ae_config_use	固定配置为0
ae_sel	固定配置为1
from_bnr	AF统计输入从Bayer3DNR获取
bnrin_shift	和from_bnr配合使用,hdr模式下输入af的数据需要右移的位数
hiir_left_border_mode	固定配置为0
avg_ds_en	固定配置为0
avg_ds_mode	固定配置为0
line_en	目前暂未生效
line_num	目前暂未生效
window_num	生效的窗口数,window_num为1时,wina(主窗口)生效; window_num为2时,wina(主窗口)和winb(独立窗口)生效
wina_h_offs	wina(主窗口)左上角第一个像素的水平坐标,该值必须大于等于2
wina_v_offs	wina(主窗口)左上角第一个像素的垂直坐标,该值必须大于等于1
wina_h_size	wina(主窗口)的窗口宽度,该值必须小于图像宽度-2-wina_h_offs;同时该值必须为15的倍数;
wina_v_size	wina(主窗口)的窗口高度,该值必须小于图像高度-2-wina_v_offs;同时该值必须为15的倍数;
winb_h_offs	winb(独立窗口)左上角第一个像素的水平坐标,该值必须大于等于2, 为克服滤波器的边界效应,推荐尽量配置对焦算法允许的较大坐标值
winb_v_offs	winb(独立窗口)左上角第一个像素的垂直坐标,该值必须大于等于1, 为克服滤波器的边界效应,推荐尽量配置对焦算法允许的较大坐标值
winb_h_size	winb(独立窗口)的窗口宽度,该值必须小于图像宽度-2-wina_h_offs
winb_v_size	winb(独立窗口)的窗口高度,该值必须小于图像高度-2-wina_v_offs
gamma_y	gamma table的y值,取值范围0-1023;x坐标分段为0 to 1023: 16 16 16 16 32 32 32 32 64 64 64 128 128 128 128

成员名称	描述
thres	win b(独立窗口)的AF统计阈值,计算出的fv值小于该值时,fv值改为 0,可减少噪声的影响,取值范围为0-0xFFFF
shift_sum_a	目前无法使用,固定设置为0即可
shift_sum_b	win b(独立窗口)的fv值的shit bit值,会按照该值将fv值向右移位,避免得到的fv值溢出,取值范围为0-7
shift_y_a	目前无法使用,固定设置为0即可
shift_y_b	win b(独立窗口)的luma值的shit bit值,会按照该值将luma值向右移位,避免得到的luma值溢出,取值范围为0-7
gaus_coe	3*3的预滤波
v1_iir_coe[3]	用于V1通道的1X3 IIR系数,按照AF滤波器系数生成工具的输出进行设置
v1_fir_coe[3]	用于V1通道的1x3 FIR系数,按照AF滤波器系数生成工具的输出进行设置
v2_iir_coe[3]	Lite版本下V2通道已被删除
v2_fir_coe[3]	Lite版本下V2通道已被删除
h1_iir1_coe[6]	用于H1通道的1X6 IIR1系数,按照AF滤波器系数生成工具的输出进行设置
h2_iir1_coe[6]	Lite版本下H2通道已被删除
h1_iir2_coe[6]	用于H1通道的1X6 IIR2系数,按照AF滤波器系数生成工具的输出进行设置
h2_iir2_coe[6]	Lite版本下H2通道已被删除
h_ldg_lumth[2]	用于H1/H2通道的ldg模块的亮度阈值系数,0为左边暗区设置,1为右 边高亮区设置,取值范围为0~255
h_ldg_gain[2]	用于H1/H2通道的ldg模块的最小gain值,0为左边暗区设置,1为右边 高亮区设置,取值范围为0~255
h_ldg_gslp[2]	用于H1/H2通道的ldg模块的斜率系数,0为左边暗区设置,1为右边高 亮区设置,取值范围为0~65535
v_ldg_lumth[2]	用于V1/V2通道的ldg模块的亮度阈值系数,0为左边暗区设置,1为右边高亮区设置,取值范围为0~255
v_ldg_gain[2]	用于V1/V2通道的ldg模块的最小gain值,0为左边暗区设置,1为右边 高亮区设置,取值范围为0~255
v_ldg_gslp[2]	用于V1/V2通道的ldg模块的最小gain值,0为左边暗区设置,1为右边 高亮区设置,取值范围为0~255
hldg_dilate_num	用于Ldg功能,表示参考亮度为包含当前像素的前多少个像素数

成员名称	描述
v_fv_thresh	用于V1通道的Coring功能,当Fv值小于Fv thresh阈值信息时,输出Fv clip为0,不计入最后的输出。,取值范围为0-0x0FFF
v_fv_slope	用于V1通道的Coring功能,当Fv值大于Fv thresh阈值信息时,输出Fv 会乘上fv slope进行输出,取值范围为0-511
v_fv_limit	用于V1通道的Coring功能,当Fv值大于Fv thresh阈值信息时,且输出Fv乘上fv slope之后大于fv limit时,会将输出fv限制为fv limit,取值范围为0-1023
h_fv_thresh	用于H1通道的Coring功能,当Fv值小于Fv thresh阈值信息时,输出Fv clip为0,不计入最后的输出。,取值范围为0-0x0FFF
h_fv_slope	用于H1通道的Coring功能,当Fv值大于Fv thresh阈值信息时,输出Fv 会乘上fv slope进行输出,取值范围为0-511
h_fv_limit	用于H1通道的Coring功能,当Fv值大于Fv thresh阈值信息时,且输出Fv乘上fv slope之后大于fv limit时,会将输出fv限制为fv limit,取值范围为0-1023
v1_fv_shift	用于V1通道的fv值的shit bit值,会按照该值将fv值向右移位,避免得到的fv值溢出,取值范围为0-7
v2_fv_shift	Lite版本下V2通道已被删除
h1_fv_shift	用于H1通道的fv值的shit bit值,会按照该值将fv值向右移位,避免得到的fv值溢出,取值范围为0-7
h2_fv_shift	Lite版本下H2通道已被删除
v1_acc_mode	用于选择统计块内每行Fv的最大值模式和每行Fv的累加模式
v2_acc_mode	Lite版本下V2通道已被删除
h1_acc_mode	用于选择统计块内每行Fv的最大值模式和每行Fv的累加模式
h2_acc_mode	Lite版本下H2通道已被删除
highlit_thresh	表示高亮统计的阈值,当高于该值则认为是高亮点,纳入统计,只累加每个区域的高亮点的个数,取值范围为0-0x0FFF
bls_en	用于使能BLS功能
bls_offset	表示使能BLS功能时,在AF输入图像数据上增减的BLS值

rk_aiq_af_attrib_t

【说明】

对焦配置信息

【定义】

```
typedef struct rk_aiq_af_attrib_s {
    rk_aiq_uapi_sync_t sync;
```

```
RKAIQ_AF_MODE AfMode;
    RKAIQ_AF_HWVER AfHwVer;
   bool contrast_af;
   bool laser_af;
   bool pdaf;
   int h_offs;
   int v_offs;
   unsigned int h_size;
    unsigned int v_size;
   short fixedModeDefCode;
    short macroModeDefCode;
   short infinityModeDefCode;
   union {
        rk_aiq_af_algo_meas_v20_t manual_meascfg;
        rk_aiq_af_algo_meas_v30_t manual_meascfg_v30;
        rk_aiq_af_algo_meas_v31_t manual_meascfg_v31;
        rk_aiq_af_algo_meas_v32_t manual_meascfg_v32;
   };
} rk_aiq_af_attrib_t;
```

【成员】

成员名称	描述
sync	同步异步API相关信息,参考rk_aiq_uapi_sync_t定义,参见 "概述/API 说明" 章节
AfMode	对焦模式
contrast_af	使能反差对焦
laser_af	使能激光对焦
pdaf	使能相位对焦
h_offs	对焦窗口起始水平坐标
v_offs	对焦窗口起始垂直坐标
h_size	对焦窗口宽度
v_size	对焦窗口高度
fixedModeDefCode	固定对焦模式下对焦code值
macroModeDefCode	微距对焦模式下终止code值,对焦范围为0-该值
infinityModeDefCode	远距距对焦模式下起始code值,对焦范围为该值-64
manual_meascfg	AF2.0 自定义对焦统计信息配置
manual_meascfg_v30	AF3.0 自定义对焦统计信息配置

成员名称	描述
manual_meascfg_v31	AF3.1 自定义对焦统计信息配置
manual_meascfg_v32	AF3.2 自定义对焦统计信息配置

其它说明

VCM马达模组驱动验证

1. vcm驱动的起动电流、终止电流是否设置正确,

首先要从模组厂获取起动电流、终止电流的相关信息。

其次选取几个模组,确认这些信息是否正确,方法如下:

dts中将起始电流,终止电流设置为VCM可支持的最大范围。

对焦模式切换为手动模式,从64开始逐步调整vcm position,当lens开始移动,远焦物体(10米以上)清晰时,记录当前的position值,

起始电流为(vcm max mA - vcm min mA) * (64 - curPos) / 64。

继续调整vcm位置, 当近焦物体(10cm或20cm)清晰时, 记录当前的position值,

终止电流为(vcm_max_mA - vcm_min_mA) * (64 - curPos) / 64。

2. 不同方向移动vcm,最终停留位置是否稳定。

对焦模式切换为手动模式,选取一个position,从0移动到该位置和从64移动到该位置,比较两次的图像清晰程度是否一致,AF统计值。是否接近。

3. 移动镜头所需要的时间是否正确。

电动马达模组驱动验证

- 1. 多次单步移动和一次多步移动最终停留位置是否相同
 - 1) 首先选定一个zoom/focus马达位置,使图像达到最清晰的状态,记录当前马达位置,并抓取一张图像A:
 - 2) 让zoom或focus马达后退一定的步数,然后单步移动zoom或focus马达,直到到达记录的zoom/focus马达位置,抓取一张图像B;
 - 3) 让zoom或focus马达再次后退一定的步数,一次移动zoom或focus马达,到达记录的zoom/focus马达位置,抓取一张图像C;
 - 4) 比较图像A、图像B和图像C的清晰程度是否一致,视野范围是否一致;
- 2. 马达随机移动最终停留位置是否相同
 - 1) 首先选定一个zoom/focus马达位置,使图像达到最清晰的状态,记录当前马达位置,并抓取一张图像A;
 - 2) 其次通过脚本让zoom或focus马达随机移动,移动400到500次后,回到最初的zoom/focus马达位置,抓取一张图像B;
 - 3) 比较图像A与图像B, 判断清晰程度是否一致, 视野范围是否一致;
- 3. 马达同时移动最终停留位置是否相同
 - 1) 首先选定一个zoom/focus马达位置,使图像达到最清晰的状态,记录当前马达位置,并抓取一张图像A;
 - 2) 其次通过脚本让zoom和focus马达同时进行随机移动,移动400到500次后,回到最初的zoom/focus马达位置,抓取一张图像B;
 - 3) 比较图像A与图像B, 判断清晰程度是否一致, 视野范围是否一致;

IMGPROC

概述

imgproc 是指影响图像效果的模块。

Merge

功能描述

Merge是将多帧图像合成为一帧的模块。

重要概念

• 在且仅在HDR模式下生效。

功能级API参考

模块级API参考

rk_aiq_user_api2_amerge_v12_SetAttrib

【描述】

设置merge属性。

【语法】

```
XCamReturn
```

 $\label{lem:const_rk_aiq_user_api2_amerge_v12_SetAttrib} (const \ rk_aiq_sys_ctx_t* \ sys_ctx, \ const \ mergeAttrV12_t* \ attr);$

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	merge的参数属性	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_amerge.h

• 库文件: librkaiq.so

rk_aiq_user_api2_amerge_v12_GetAttrib

【描述】

获取merge属性。

【语法】

```
XCamReturn
rk_aiq_user_api2_amerge_v12_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
mergeAttrV12_t* attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	merge的参数属性	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_amerge.h

• 库文件: librkaiq.so

模块级API数据类型

merge_OpMode_t

【说明】

定义merge工作模式

【定义】

```
typedef enum merge_OpModeV21_e {
    MERGE_OPMODE_AUTO = 0,
    MERGE_OPMODE_MANUAL = 1,
} merge_OpModeV21_t;
```

成员名称	描述
MERGE_OPMODE_AUTO	自动模式
MERGE_OPMODE_MANUAL	手动模式

MergeBaseFrame_t

【说明】

定义融合时基准帧属性

【定义】

```
typedef enum MergeBaseFrame_e {
    BASEFRAME_LONG = 0,
    BASEFRAME_SHORT = 1,
} MergeBaseFrame_t;
```

【成员】

成员名称	描述
BASEFRAME_LONG	融合时,以长帧为基准
BASEFRAME_SHORT	融合时,以短帧为基准

mMergeOECurveV10_t

【说明】

定义手动Merge过曝曲线属性

【定义】

```
typedef struct mMergeOECurveV10_s {
   float Smooth;
   float Offset;
} mMergeOECurveV10_t;
```

【成员】

成员名称	描述
Smooth	过曝曲线的斜率,取值范围[0,1],默认值为0.4,精度0.01。
Offset	过曝曲线的偏移值,取值范围[108,280],默认值为210,精度0.1。

mMergeMDCurveV10_t

【说明】

定义长帧模式下运动曲线属性

【定义】

```
typedef struct mMergeMDCurveV10_s {
    float LM_smooth;
    float LM_offset;
    float MS_smooth;
    float MS_offset;
} mMergeMDCurveV10_t;
```

成员名称	描述
LM_smooth	长帧和中帧之间运动曲线斜率,取值范围为[0,1],默认值为0.4,精度0.01。在 HDR x2模式下,该值无效。
LM_offset	长帧和中帧之间运动曲线偏移值,取值范围为[0.26,1],默认值为0.38,精度 0.01。在HDR x2模式下,该值无效。
MS_smooth	中帧和短帧之间运动曲线斜率,取值范围为[0,1],默认值为0.4,精度0.01。
MS_offset	中帧和短帧之间运动曲线偏移值,取值范围为[0.26,1],默认值为0.38,精度0.01。

mMergeEachChnCurveV12_t

【说明】

定义长帧模式下分通道检测曲线属性

【定义】

```
typedef struct mMergeEachChnCurveV12_s {
    float Smooth;
    float Offset;
} mMergeEachChnCurveV12_t;
```

【成员】

成员名称	描述
Smooth	分通道过曝曲线的斜率,取值范围[0,1],默认值为0.4,精度0.01。
Offset	分通道过曝曲线的偏移值,取值范围[0, 1],默认值为0.38,精度0.01。

$mLongFrameModeDataV12_t$

【说明】

定义长帧模式下,控制参数属性

【定义】

成员名称	描述
EnableEachChn	分通道检测开关
OECurve	过曝曲线参数

成员名称	描述
MDCurve	运动曲线参数
EachChnCurve	分通道检测曲线参数

mMergeMDCurveV11Short_t

【说明】

定义短帧模式下, 运动曲线属性

【定义】

```
typedef struct mMergeMDCurveV11Short_s{
    float Coef;
    float ms_thd0;
    float lm_thd0;
} mMergeMDCurveV11Short_t;
```

【成员】

成员名称	描述
Coef	控制系数,取值范围[0,1],默认值为0.05,精度0.0001。
ms_thd0	中短帧控制系数,取值范围[0,1],默认值为0.0,精度0.1。
lm_thd0	长中帧控制系数,取值范围[0,1],默认值为0.0,精度0.1。

$mShortFrameModeData_t$

【说明】

定义短帧模式下,控制参数属性

【定义】

成员名称	描述
OECurve	过曝曲线参数
MDCurve	运动曲线参数

mMergeAttrV12_t

【说明】

定义手动merge属性

【定义】

【成员】

成员名称	描述	
BaseFrm	融合基准帧	
LongFrmModeData	基准值为长帧时,控制数据数据	
ShortFrmModeData	基准值为短帧时,控制数据数据	

MergeOECurveV10_t

【说明】

定义自动Merge过曝曲线属性

【定义】

```
typedef struct MergeOECurveV10_s {
    float EnvLv[MERGE_ENVLV_STEP_MAX];
    float Smooth[MERGE_ENVLV_STEP_MAX];
    float Offset[MERGE_ENVLV_STEP_MAX];
} MergeOECurveV10_t;
```

【成员】

成员名称	描述
EnvLv	环境亮度, 取值范围[0,1], 0: 全黑, 1: 最亮。
Smooth	过曝曲线的斜率,取值范围[0,1],默认值为0.4,精度0.01。
Offset	过曝曲线的偏移值,取值范围[108,280],默认值为210,精度0.1。

MergeMDCurveV10_t

【说明】

定义长帧模式下运动曲线属性

【定义】

```
typedef struct MergeMDCurveV10_s {
    float MoveCoef[MERGE_ENVLV_STEP_MAX];
    float LM_smooth[MERGE_ENVLV_STEP_MAX];
    float LM_offset[MERGE_ENVLV_STEP_MAX];
    float MS_smooth[MERGE_ENVLV_STEP_MAX];
    float MS_offset[MERGE_ENVLV_STEP_MAX];
} MergeMDCurveV10_t;
```

【成员】

成员名称	描述
MoveCoef	画面运动程度,取值范围[0,1],其中0代表完全静止,1代表完全运动
LM_smooth	长帧和中帧之间运动曲线斜率,取值范围为[0,1],默认值为0.4。在HDR x2模式下,不生效。
LM_offset	长帧和中帧之间运动曲线偏移值,取值范围为[0.26,1],默认值为0.38。在HDRx2模式下,不生效。
MS_smooth	中帧和短帧之间运动曲线斜率,取值范围为[0,1],默认值为0.4。
MS_offset	中帧和短帧之间运动曲线偏移值,取值范围为[0.26,1],默认值为0.38。

MergeEachChnCurveV12_t

【说明】

定义长帧模式下分通道检测曲线属性

【定义】

```
typedef struct MergeEachChnCurveV12_s {
    float EnvLv[MERGE_ENVLV_STEP_MAX];
    float Smooth[MERGE_ENVLV_STEP_MAX];
    float Offset[MERGE_ENVLV_STEP_MAX];
} MergeEachChnCurveV12_t;
```

【成员】

成员名称	描述
EnvLv	环境亮度, 取值范围[0,1], 0: 全黑, 1: 最亮。
Smooth	分通道过曝曲线的斜率,取值范围[0,1],默认值为0.4,精度0.01。
Offset	分通道过曝曲线的偏移值,取值范围[0, 1],默认值为0.38,精度0.01。

LongFrameModeDataV12_t

【说明】

定义长帧模式下,控制参数属性

【定义】

【成员】

成员名称	描述	
EnableEachChn	分通道检测开关	
OECurve	过曝曲线参数	
MDCurve	运动曲线参数	
EachChnCurve	分通道检测曲线参数	
OECurve_damp	过曝曲线变化的平滑系数,为当前帧参数的占比,取值范围为[0,1],默认值为0.9。	
MDCurveLM_damp	长帧与中帧间运动曲线变化的平滑系数,为当前帧参数的占比,取值范围为[0,1],默认值为0.9。在HDR x2模式下,不生效。	
MDCurveMS_damp	中帧与短帧间运动曲线变化的平滑系数,为当前帧参数的占比,取值范围为[0,1],默认值为0.9。	

MergeMDCurveV11Short_t

【说明】

定义短帧模式下,运动曲线属性

【定义】

```
typedef struct MergeMDCurveV11Short_s{
    float Coef;
    float ms_thd0;
    float lm_thd0;
} MergeMDCurveV11Short_t;
```

成员名称	描述
Coef	控制系数,取值范围[0,1],默认值为0.05,精度0.0001。
ms_thd0	中短帧控制系数,取值范围[0,1],默认值为0.0,精度0.1。
lm_thd0	长中帧控制系数,取值范围[0,1],默认值为0.0,精度0.1。

$ShortFrameModeData_t$

【说明】

定义短帧模式下,控制参数属性

【定义】

【成员】

成员名称	描述
OECurve	过曝曲线参数
MDCurve	运动曲线参数
OECurve_damp	过曝曲线变化的平滑系数,为当前帧参数的占比,取值范围为[0,1],默认值为0.9。
MDCurve_damp	运动曲线变化的平滑系数,为当前帧参数的占比,取值范围为[0,1],默认值为0.9。

CalibDbV2_merge_V12_t

【说明】

定义自动merge属性

【定义】

成员名称	描述	
BaseFrm	融合基准帧	
ByPassThr	bypass当前模块阈值,取值范围[0,1]。当前环境亮度与前一帧环境亮度 差异的百分比小于ByPassThr时,本模块参数不做更新处理。	
LongFrmModeData	基准值为长帧时,控制数据数据	
ShortFrmModeData	基准值为短帧时,控制数据数据	

$Merge Curr Ctl Data_t$

【说明】

RK3588芯片下merge属性配置

【定义】

```
typedef struct MergeCurrCtlData_s {
   float Envlv;
   float MoveCoef;
} MergeCurrCtlData_t;
```

【成员】

成员名称	描述
Envlv	当前环境亮度,取值范围: [0,1],精度0.000001
MoveCoef	当前运动系数,取值范围: [0,1],精度0.000001,本值暂时为定值。

mergeAttrV12_t

【说明】

merge属性配置

【定义】

```
typedef struct mergeAttrV12_s {
    rk_aiq_uapi_sync_t sync;
    merge_OpMode_t opMode;
    mMergeAttrV12_t stManual;
    CalibDbV2_merge_V12_t stAuto;
    MergeCurrCtlData_t CtlInfo;
} mergeAttrV12_t;
```

【成员】

成员名称	描述
sync	参考rk_aiq_uapi_sync_t定义,参见 "概述/API说明" 章节
opMode	api模式
stManual	手动merge参数
stAuto	自动merge参数
CtlInfo	控制参数

DRC

功能描述

DRC(动态范围压缩, High Dynamic Range Compression),其作用是将高比特位的图像压缩到低比特位图像。

重要概念

• 在线性或者HDR模式下均可使用DRC。

功能级API参考

rk_aiq_uapi2_setDrcGain

【描述】

设置DrcGain相关参数。

【语法】

 $\label{lem:constrain} $$ XCamReturn rk_aiq_uapi2_setDrcGain(const rk_aiq_sys_ctx_t* ctx, float Gain, float Alpha, float Clip);$

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
Gain	Gain值 取值范围: [1,8]	输入
Alpha	Alpha值 取值范围: [0,1]	输入
Clip	Clip值 取值范围: [0,64]	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getDrcGain

【描述】

获取DrcGain相关参数。

【语法】

XCamReturn rk_aiq_uapi2_getDrcGain(const rk_aiq_sys_ctx_t* ctx, float Gain, float
Alpha, float Clip);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
Gain	Gain值 取值范围: [1,8]	输出
Alpha	Alpha值 取值范围: [0,1]	输出
Clip	Clip值 取值范围: [0,64]	输出

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_setDrcHiLit$

【描述】

设置DrcHiLit参数。

【语法】

XCamReturn rk_aiq_uapi2_setDrcHiLit(const rk_aiq_sys_ctx_t* ctx, float Strength);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
Strength	强度 取值范围: [0,1]	输入

【返回值】

返回值	描述
-----	----

返回值	描述
0	成功
∃ €0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getDrcHiLit

【描述】

获取DrcHiLit参数。

【语法】

XCamReturn rk_aiq_uapi2_getDrcHiLit(const rk_aiq_sys_ctx_t* ctx, float Strength);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
Strength	强度 取值范围: [0,1]	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_setDrcLocalData

【描述】

设置DrcLocalData相关参数。

在调用本api时不需要调用rk_aiq_uapi2_enableDrc。同时,本api不能与DRC其他功能级设置api同时调用。

【语法】

XCamReturn rk_aiq_uapi2_setDrcLocalData(const rk_aiq_sys_ctx_t* ctx, float LocalWeit, float GlobalContrast, float LoLitContrast, int LocalAutoEnable, float LocalAutoWeit);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
LocalWeit	LocalWeit值 取值范围:[0,1]	输入
GlobalContrast	GlobalContrast值 取值范围:[0,1]	输入
LoLitContrast	LoLitContrast值 取值范围: [0,1]	输入
LocalAutoEnable	自动Local开关 取值范围: [0,1]	输入
LocalAutoWeit	自动LocalWeit值 取值范围:[0,1]	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_getDrcLocalData$

【描述】

获取DrcLocalData相关参数。

【语法】

XCamReturn rk_aiq_uapi2_getDrcLocalData(const rk_aiq_sys_ctx_t* ctx, float*
LocalWeit, float* GlobalContrast, float* LoLitContrast, int* LocalAutoEnable,
float* LocalAutoWeit);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入

参数名称	描述	输入/输出
LocalWeit	LocalWeit值 取值范围: [0,1]	输出
GlobalContrast	GlobalContrast值 取值范围: [0,1]	输出
LoLitContrast	LoLitContrast值 取值范围: [0,1]	输出
ocalAutoEnable	自动Local开关 取值范围: [0,1]	输出
LocalAutoWeit	自动LocalWeit值 取值范围:[0,1]	输出

【返回值】

返回值	描述
0	成功
≢€0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

模块级API参考

rk_aiq_user_api2_adrc_v12_lite_SetAttrib

【描述】

设置DRC软件属性。

【语法】

XCamReturn

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
attr	DRC软件属性结构体	输入

【返回值】

返回值描述	
-------	--

返回值	描述
0	成功
∃ €0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_adrc.h

• 库文件: librkaiq.so

【说明】

rk_aiq_user_api2_adrc_v12_lite_GetAttrib

【描述】

获取DRC软件属性。

【语法】

XCamReturn

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
attr	DRC软件属性结构体	输出

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_adrc.h

• 库文件: librkaiq.so

【说明】

模块级API数据类型

 drc_OpMode_t

【说明】

定义DRC工作模式

【定义】

```
typedef enum drc_OpMode_e {
   DRC_OPMODE_AUTO = 0,
   DRC_OPMODE_MANUAL = 1,
} drc_OpMode_t;
```

【成员】

成员名称	描述
DRC_OPMODE_AUTO	自动模式
DRC_OPMODE_MANUAL	手动模式

mDrcGain_t

【说明】

定义手动DrcGain参数属性

【定义】

```
typedef struct mDrcGain_s {
    float DrcGain;
    float Alpha;
    float Clip;
} mDrcGain_t;
```

【成员】

成员名称	描述
DrcGain	手动DrcGain值,取值范围[1,8],默认值为1,精度0.01
Alpha	手动Alpha值,取值范围[0,1],默认值为0.2,精度0.01
Clip	手动Clip值,取值范围[0,64],默认值为16,精度0.01

$mHighLightDataV12_t$

【说明】

定义手动Drc HiLightData参数属性

【定义】

```
typedef struct mHighLightDatav12_s {
   float Strength;
   float gas_t;
} mHighLightDatav12_t;
```

成员名称	描述
Strength	手动Strength值,取值范围[0,1],默认值为0,精度0.01

成员名称	描述
gas_t	手动gas_t值,取值范围[0,4],默认值为1,精度0.001

mHighLightV12_t

【说明】

定义手动Drc HighLight参数属性

【定义】

【成员】

成员名称	描述
HiLightData	手动HiLightData参数
gas_l0	手动gas_l0值,取值范围[0,64],默认值为24,精度1
gas_l1	手动gas_l1值,取值范围[0,64],默认值为10,精度1
gas_l2	手动gas_l2值,取值范围[0,64],默认值为10,精度1
gas_l3	手动gas_l3值,取值范围[0,64],默认值为5,精度1

mLocalDataV11_t

【说明】

定义手动Drc Local参数属性

【定义】

```
typedef struct mLocalDataV11_s {
    float LocalWeit;
    int LocalAutoEnable;
    float LocalAutoWeit;
    float GlobalContrast;
    float LoLitContrast;
} mLocalDataV11_t;
```

成员名称	描述
LocalWeit	手动LocalWeit值,取值范围[0,1],默认值为1,精度0.01。
LocalAutoEnable	自动LocalWeit开关,取值范围[0,1],默认值为1,精度1。

成员名称	描述
LocalAutoWeit	自动LocalWeit值,取值范围[0,1],默认值为0.4,精度0.01。
GlobalContrast	手动GlobalContrast值,取值范围[0,1],默认值为0,精度0.01。
LoLitContrast	手动LoLitContrast值,取值范围[0,1],默认值为0,精度0.01。

mMotionData_t

【说明】

定义手动Drc MotionData参数属性

【定义】

```
typedef struct mMotionData_s {
    float MotionStr;
} mMotionData_t;
```

【成员】

成员名称	描述
MotionStr	手动MotionStr值,取值范围[0,1],默认值为1,精度0.01。

mDrcLocalV12Lite_t

【说明】

定义手动Drc Local参数属性

【定义】

```
typedef struct mDrcLocalV12Lite_t {
    mLocalDatav11_t LocalData;
    mMotionData_t MotionData;
    float curPixWeit;
    float Range_force_sgm;
    float Range_sgm_cur;
    int Space_sgm_cur;
} mDrcLocalV12Lite_t;
```

成员名称	描述
LocalData	手动LocalData设置
MotionData	手动MotionData设置
curPixWeit	当前点的双边权重,取值范围[0,1],默认值为0.37,精度0.001
Range_force_sgm	双边值域 sigma 的倒数,取值范围[0,1],默认值为0,精度0.0001
Range_sgm_cur	前帧双边空域sigma的倒数,取值范围[0,1],默认值为0.2,精度0.0001

成员名称	描述
Space_sgm_cur	当前帧双边值域sigma的倒数,取值范围[0,4095],默认值为4068,精度1

CompressMode_t

【说明】

定义手动模式下, DrcCompress曲线工作模式

【定义】

```
typedef enum CompressMode_s {
   COMPRESS_AUTO = 0,
   COMPRESS_MANUAL = 1,
} CompressMode_t;
```

【成员】

成员名称	描述
COMPRESS_AUTO	手动模式下,Compress曲线自动模式
COMPRESS_MANUAL	手动模式下,Compress曲线手动模式

mDrcCompress_t

【说明】

定义手动DrcCompress参数属性

【定义】

【成员】

成员名称	描述
Mode	开关功能
Manual_curve	手动模式下,手动Compress曲线

mdrcAttr_v12_lite_t

【说明】

定义手动Drc属性

【定义】

```
typedef struct mdrcAttr_V12_lite_s {
   bool
                       Enable;
                Enable,
DrcGain;
   mDrcGain_t
   mHighLightV12_t HiLight;
   mDrcLocalV12Lite_t LocalSetting;
   mDrcCompress_t CompressSetting;
   int
                       Scale_y[ADRC_Y_NUM];
   float
                       Edge_Weit;
   bool
                       OutPutLongFrame;
   int
                       IIR_frame;
} mdrcAttr_V12_lite_t;
```

【成员】

成员名称	描述
Enable	手动Drc开关
DrcGain	手动DrcGain设置
HiLight	手动HiLit设置
LocalSetting	手动Local设置
CompressSetting	压缩曲线设置
Scale_y	增益修正scale表,取值范围[0,2048],精度1.
Edge_Weit	边缘响应scale值,取值范围[0,1],默认值0.02,精度0.01。用于降低高对比度边缘Artifact。
OutPutLongFrame	只输出长帧开关,0: 关闭,1: 开启。
IIR_frame	IIR滤波器帧数,取值范围[1,1000],默认值为2。

AdrcGain_t

【说明】

定义自动Drc Gain参数属性

【定义】

```
typedef struct AdrcGain_s {
    float EnvLv[ADRC_ENVLV_STEP_MAX];
    float DrcGain[ADRC_ENVLV_STEP_MAX];
    float Alpha[ADRC_ENVLV_STEP_MAX];
    float Clip[ADRC_ENVLV_STEP_MAX];
} AdrcGain_t;
```

成员名称	描述
EnvLv	环境亮度, 取值范围[0,1], 0: 全黑, 1: 最亮。

成员名称	描述
DrcGain	DRC模块增益,取值范围[1,8]
Alpha	取值范围[0,1]
Clip	取值范围[0,64]

HighLightDataV12_t

【说明】

定义自动Drc HiLightData参数属性

【定义】

```
typedef struct HighLightDataV12_s {
    float EnvLv[ADRC_ENVLV_STEP_MAX];
    float Strength[ADRC_ENVLV_STEP_MAX];
    float gas_t[ADRC_ENVLV_STEP_MAX];
} HighLightDataV12_t;
```

【成员】

成员名称	描述
EnvLv	环境亮度, 取值范围[0,1], 0: 全黑, 1: 最亮。
Strength	高光区域细节,取值范围[0,1]
gas_t	gas_t,取值范围[0,4],默认值1

HighLightV12_t

【说明】

定义自动Drc HighLight参数属性

【定义】

成员名称	描述
HiLightData	手动HiLightData参数
gas_l0	手动gas_l0值,取值范围[0,64],默认值为24,精度1
gas_l1	手动gas_l1值,取值范围[0,64],默认值为10,精度1

成员名称	描述
gas_l2	手动gas_l2值,取值范围[0,64],默认值为10,精度1
gas_l3	手动gas_l3值,取值范围[0,64],默认值为5,精度1

LocalDataV2_t

【说明】

定义自动Drc Local参数属性

【定义】

```
typedef struct LocalDatav2_s {
    float EnvLv[ADRC_ENVLV_STEP_MAX];
    float LocalWeit[ADRC_ENVLV_STEP_MAX];
    int LocalAutoEnable[ADRC_ENVLV_STEP_MAX];
    float LocalAutoWeit[ADRC_ENVLV_STEP_MAX];
    float GlobalContrast[ADRC_ENVLV_STEP_MAX];
    float LoLitContrast[ADRC_ENVLV_STEP_MAX];
} LocalDatav2_t;
```

【成员】

成员名称	描述	
EnvLv	环境亮度, 取值范围[0,1], 0: 全黑, 1: 最亮。	
LocalWeit	Local权重,取值范围[0,1],0:Global,1:全Local,默认值0。	
LocalAutoEnable	自动LocalWeit开关,取值范围[0,1],默认值为1,精度1。	
LocalAutoWeit	自动LocalWeit值,取值范围[0,1],默认值为0.4,精度0.01。	
GlobalContrast	全局对比度,取值范围[0,1],默认值为0,精度0.01。	
LoLitContrast	低亮区对比度,取值范围[0,1],默认值为0,精度0.01。	

MotionData_t

【说明】

定义手动Drc MotionData参数属性

【定义】

```
typedef struct MotionData_s {
    float MotionCoef[ADRC_ENVLV_STEP_MAX];
    float MotionStr[ADRC_ENVLV_STEP_MAX];
} MotionData_t;
```

成员名称	描述
MotionCoef	运动系数,取值范围[0,1],0:代表完全静止,1:代表运动最大系数。

成员名称	描述	
MotionStr	自动MotionStr值,取值范围[0,1],默认值为1,精度0.01。	

localV12Lite_t

【说明】

定义手动Drc Local参数属性

【定义】

```
typedef struct LocalV12Lite_t {
   LocalDatav2_t LocalData;
   MotionData_t MotionData;
   float curPixWeit;
   float Range_force_sgm;
   float Range_sgm_cur;
   int Space_sgm_cur;
} LocalV12Lite_t;
```

【成员】

成员名称	描述
LocalData	手动LocalData设置
MotionData	手动MotionData设置
curPixWeit	当前点的双边权重,取值范围[0,1],默认值为0.37,精度0.001
Range_force_sgm	双边值域 sigma 的倒数,取值范围[0,1],默认值为0,精度0.0001
Range_sgm_cur	前帧双边空域sigma的倒数,取值范围[0,1],默认值为0.2,精度0.0001
Space_sgm_cur	当前帧双边值域sigma的倒数,取值范围[0,4095],默认值为4068,精度1

Compress_t

【说明】

定义自动DrcCompress参数属性

【定义】

```
typedef struct Compress_s {
    CompressMode_t Mode;
    uint16_t Manual_curve[17];
} Compress_t;
```

成员名称	描述	
Mode	开关功能	
Manual_curve	手动模式下,手动Compress曲线	

CalibDbV2_Adrc_v12_lite_t

【说明】

定义自动Drc属性

【定义】

```
typedef struct CalibDbV2_Adrc_v12_lite_s {
   lood
                Enable;
   DrcGain_t
                DrcGain;
   HighLightV12_t HiLight;
   localV12Lite_t LocalSetting;
   Compress_t CompressSetting;
   int
               Scale_y[ADRC_Y_NUM];
   float
                Edge_Weit;
   lood
                OutPutLongFrame;
   int
                 IIR_frame;
   float
                 Tolerance;
   float
                 damp;
} CalibDbV2_Adrc_v12_lite_t;
```

成员名称	描述	
Enable	手动Drc开关	
DrcGain	手动DrcGain设置	
HiLight	手动HiLit设置	
LocalSetting	手动Local设置	
CompressSetting	压缩曲线设置	
Scale_y	增益修正scale表,取值范围[0,2048],精度1.	
Edge_Weit	边缘响应scale值,取值范围[0,1],默认值0.02,精度0.01。用于降低高对比度边缘Artifact。	
OutPutLongFrame	只输出长帧开关,0: 关闭,1: 开启。	
IIR_frame	IIR滤波器帧数,取值范围[1,1000],默认值为2。	
Tolerance	表示随着EnvLv变化的参数(DrcGain、Alpha、Clip、Strength、 LocalWeit、GlobalContrast、LoLitContrast等)的容忍值。取值范围 [0,1]。	
damp	表示随着EnvLv变化的参数(DrcGain、Alpha、Clip、Strength、 LocalWeit、GlobalContrast、LoLitContrast等)平滑系数,为当前帧参数 的占比,取值范围为[0,1],默认值为0.9。	

CalibDbV2_drc_v12_lite_t

【说明】

定义DRC控制参数属性

【定义】

```
typedef struct CalibDbV2_drc_v12_lite_ {
    CalibDbV2_Adrc_v12_lite_t DrcTuningPara;
} CalibDbV2_drc_v12_lite_t;
```

【成员】

成员名称	描述
DrcTuningPara	DRC调试参数

DrcInfo_t

【说明】

定义DRC控制参数属性

【定义】

```
typedef struct DrcInfo_s {
    float EnvLv;
    float ISO;
} DrcInfo_t;
```

【成员】

成员名称	描述
EnvLv	当前环境亮度
ISO	当前ISO

DrcInfoV12Lite_t

【说明】

定义DRC控制参数属性

【定义】

成员名称	描述
CtrlInfo	当前帧自动模式控制参数

成员名称	描述	
ValidParams	当前帧生效参数,自动模式、手动模式复用	

drcAttr_t

【说明】

定义DRC属性

【定义】

```
typedef struct drcAttrV12_s {
    rk_aiq_uapi_sync_t sync;
    drc_OpMode_t opMode;
    CalibDbV2_drc_V12_t stAuto;
    mdrcAttr_V12_t stManual;
    DrcInfoV12_t Info;
} drcAttrV12_t;
```

【成员】

成员名称	描述	
sync	参考rk_aiq_uapi_sync_t定义,参见 "概述/API说明" 章节	
opMode	api模式	
stAuto	自动Drc参数	
stManual	手动Drc参数	
Info	控制参数信息	

Noise Removal

功能描述

图像噪声是指存在于图像数据中的不必要的或多余的干扰信息。图像去噪是减少数字图像中噪声的过程。

功能级API参考

rk_aiq_uapi2_setNRMode

【描述】 设置去噪模式。

【语法】

```
XCamReturn rk_aiq_uapi2_setNRMode(const rk_aiq_sys_ctx_t* ctx, opMode_t mode);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
mode	工作模式	输入

【返回值】

返回值	描述
0	成功
≢€0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_getNRMode$

【描述】 获取当前去噪模式。

【语法】

XCamReturn rk_aiq_uapi2_getNRMode(const rk_aiq_sys_ctx_t* ctx, opMode_t* mode);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
mode	工作模式	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_setANRStrth$

【描述】 设置普通去噪强度。

【语法】

XCamReturn rk_aiq_uapi2_setANRStrth(const rk_aiq_sys_ctx_t* ctx, unsigned int level);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
level	去噪强度,取值范围0.0-100.0, 默认值50。	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getANRStrth

【描述】 获取普通去噪强度。

【语法】

XCamReturn rk_aiq_uapi2_getANRStrth(const rk_aiq_sys_ctx_t* ctx, unsigned int*
level);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
level	去噪强度,取值范围0.0-100.0, 默认值50。	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_setMSpaNRStrth$

【描述】 设置空域去噪强度。

【语法】

XCamReturn rk_aiq_uapi2_setMSpaNRStrth(const rk_aiq_sys_ctx_t* ctx, bool on,
unsigned int level);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
on	开关	输入
level	去噪强度,取值范围0.0-100.0, 默认值50。	输入

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_getMSpaNRStrth$

【描述】 获取空域去噪强度。

【语法】

XCamReturn rk_aiq_uapi2_getMSpaNRStrth(const rk_aiq_sys_ctx_t* ctx, bool *on,
unsigned int *level);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
on	开关	输出
level	去噪强度,取值范围0.0-100.0, 默认值50。	输出

【返回值】

返回值	描述

返回值	描述
0	成功
≒ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_setMTNRStrth

【描述】 设置时域去噪强度。

【语法】

XCamReturn rk_aiq_uapi2_setMTNRStrth(const rk_aiq_sys_ctx_t* ctx, bool on, unsigned int level);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
on	开关	输入
level	去噪强度,取值范围0.0-100.0, 默认值50。	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_getMTNRStrth$

【描述】 获取时域去噪强度。

【语法】

XCamReturn rk_aiq_uapi2_getMTNRStrth(const rk_aiq_sys_ctx_t* ctx, bool *on,
unsigned int *level);

【参数】

参数名称	描述	输入/输出
------	----	-------

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
on	开关	输出
level	去噪强度,取值范围0.0-100.0, 默认值50。	输出

【返回值】

返回值	描述
0	成功
1 1 0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

模块级API参考

 $rk_aiq_user_api2_abayertnrV23Lite_SetAttrib$

【描述】

设置去噪算法属性。

【语法】

XCamReturn

rk_aiq_user_api2_abayertnrV23Lite_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_bayertnr_attrib_v23L_t* attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	去噪的参数属性	输入

【返回值】

返回值	描述
0	成功
∃ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_abayertnr_v23.h、RkAiqHandleIntV32.h

• 库文件: librkaiq.so

rk_aiq_user_api2_abayertnrV23_GetAttrib

【描述】

获取去噪算法属性。

【语法】

XCamReturn

rk_aiq_user_api2_abayertnrv23Lite_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_bayertnr_attrib_v23L_t* attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	去噪的参数属性	输入

【返回值】

返回值	描述
0	成功
∃ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_abayertnr_v23.h、RkAiqHandleIntV32.h

• 库文件: librkaiq.so

rk_aiq_user_api2_abayertnrV23_SetStrength

【描述】

设置去噪力度。

【语法】

XCamReturn

rk_aiq_user_api2_abayertnrv23_SetStrength(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_bayertnr_strength_v23_t *pStrength);

【参数】

参数名称	描述	输入/输出

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
pStrength	去噪强度结构体指针,结构体中percent取值范围0.0-1.0	输入

【返回值】

返回值	描述
0	成功
1章0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_abayertnr_v2.h、RkAiqHandleIntV3x.h

• 库文件: librkaiq.so

rk_aiq_user_api2_abayertnrV23_GetStrength

【描述】

获取去噪力度。

【语法】

XCamReturn

rk_aiq_user_api2_abayertnrv23_GetStrength(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_bayertnr_strength_v23_t *pStrength);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
pStrength	去噪强度结构体指针,结构体中percent取值范围0.0-1.0	输入

【返回值】

返回值	描述
0	成功
≢ E0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_abayertnr_v23.h、RkAiqHandleIntV32.h

• 库文件: librkaiq.so

rk_aiq_user_api2_aynrV22_SetAttrib

【描述】

设置去噪算法属性。

【语法】

XCamReturn

rk_aiq_user_api2_aynrV22_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_ynr_attrib_v22_t* attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	去噪的参数属性	输入

【返回值】

返回值	描述
0	成功
1=0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_aynr_v22.h、RkAiqHandleIntV32.h

• 库文件: librkaiq.so

$rk_aiq_user_api2_aynrV22_GetAttrib$

【描述】

获取去噪算法属性。

【语法】

XCamReturn

```
rk_aiq_user_api2_aynrV22_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_ynr_attrib_v22_t* attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	去噪的参数属性	输入

【返回值】

返回值	描述
0	成功
∃ €0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_aynr_v22.h、RkAiqHandleIntV32.h

• 库文件: librkaiq.so

rk_aiq_user_api2_aynrV22_SetStrength

【描述】

设置去噪力度。

【语法】

XCamReturn

rk_aiq_user_api2_aynrv22_SetStrength(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_ynr_strength_v22_t* pStrength);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
pStrength	去噪强度结构体指针,结构体中percent取值范围0.0-1.0	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_aynr_v22.h、RkAiqHandleIntV32.h

• 库文件: librkaiq.so

rk_aiq_user_api2_aynrV22_GetStrength

【描述】

获取去噪力度。

【语法】

XCamReturn

rk_aiq_user_api2_aynrV22_GetStrength(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_ynr_strength_v22_t* pStrength);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
pStrength	去噪强度结构体指针,结构体中percent取值范围0.0-1.0	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_aynr_v22.h、RkAiqHandleIntV32.h

• 库文件: librkaiq.so

rk_aiq_user_api2_acnrV30_SetAttrib

【描述】

设置去噪算法属性。

【语法】

XCamReturn

rk_aiq_user_api2_acnrv30_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_cnr_attrib_v30_t* attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	去噪的参数属性	输入

【返回值】

返回值	描述
0	成功
≢0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_acnr_v30.h、RkAiqHandleIntV32.h

• 库文件: librkaiq.so

rk_aiq_user_api2_acnrV30_GetAttrib

【描述】

获取去噪算法属性。

【语法】

XCamReturn

```
rk_aiq_user_api2_acnrV30_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_cnr_attrib_v30_t* attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	去噪的参数属性	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_acnr_v30.h、RkAiqHandleIntV32.h

• 库文件: librkaiq.so

rk_aiq_user_api2_acnrV30_SetStrength

【描述】

设置去噪力度。

【语法】

XCamReturn

```
rk_aiq_user_api2_acnrv30_SetStrength(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_cnr_strength_v30_t *pStrength);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
pStrength	去噪强度结构体指针,结构体中percent取值范围0.0-1.0	输入

【返回值】

返回值	描述
0	成功
∃ €0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_acnr_v30.h、RkAiqHandleIntV32.h

• 库文件: librkaiq.so

rk_aiq_user_api2_acnrV30_GetStrength

【描述】

获取去噪力度。

【语法】

XCamReturn

rk_aiq_user_api2_acnrV30_GetStrength(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_cnr_strength_v30_t *pStrength);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
pStrength	去噪强度结构体指针,结构体中percent取值范围0.0-1.0	输入

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_acnr_v30.h、RkAiqHandleIntV32.h

• 库文件: librkaiq.so

模块级API数据类型

rk_aiq_bayertnr_attrib_v23L_t

【说明】

定义去噪模块参数

【定义】

```
typedef struct rk_aiq_bayertnr_attrib_v23L_s {
    rk_aiq_uapi_sync_t sync;
    Abayertnr_OPMode_v23_t eMode;
    Abayertnr_Auto_Attr_v23L_t stAuto;
    Abayertnr_Manual_Attr_v23L_t stManual;
} rk_aiq_bayertnr_attrib_v23L_t;
```

【成员】

成员名称	描述
sync	同步异步模式选择,参见 "概述/API说明 " 章节
eMode	bayertnr去噪模块模式
stAuto	bayertnr去噪模块自动模式参数
stManual	bayertnr去噪模块手动模式参数

Abayertnr_OPMode_V23_t

【说明】

定义去噪模块的模式

【定义】

成员名称	描述
ABAYERTNRV23_OP_MODE_INVALID	bayer域 tnr去噪模块无效模式
ABAYERTNRV23_OP_MODE_AUTO	bayer域 tnr去噪模块自动模式
ABAYERTNRV23_OP_MODE_MANUAL	bayer域 tnr去噪模块手动模式的算法设置
ABAYERTNRV23_OP_MODE_REG_MANUAL	bayer域 tnr去噪模块手动模式的寄存器设置

成员名称	描述
ABAYERTNRV23_OP_MODE_MAX	bayer域 tnr去噪模块模式最大值,是一个无效模 式

Abayertnr_Auto_Attr_V23_t

【说明】

定义去噪模块的自动属性

【定义】

```
typedef struct Abayertnr_Auto_Attr_V23L_s
{
    RK_Bayertnr_Params_V23L_t st3DParams;
    RK_Bayertnr_Param_V23L_Select_t st3DSelect;
} Abayertnr_Auto_Attr_V23L_t;
```

【成员】

成员名称	描述
st3DParams	bayer3dnr模块自动模式各个iso对应算法属性参数
st3DSelect	bayer3dnr模块根据当前iso计算出来属性参数

Abayertnr_Manual_Attr_V23L_t

【说明】

定义去噪模块的手动属性

【定义】

```
typedef struct Abayertnr_Manual_Attr_V23L_s {
    RK_Bayertnr_Param_V23L_Select_t st3DSelect;

RK_Bayertnr_Fix_V23_t st3DFix;
} Abayertnr_Manual_Attr_V23L_t;
```

成员名称	描述
st3DSelect	bayer3dnr手动模式下算法参数值
st3Dfix	bayer3dnr手动模式下寄存器值

RK_Bayertnr_Params_V23_t

【说明】

定义去噪模块的自动模式各个iso对应算法属性参数

【定义】

```
typedef struct RK_Bayertnr_Params_v23L_s {
   bool enable;
   float iso[RK_BAYERNR_v23_MAX_ISO_NUM];
   RK_Bayertnr_Param_v23L_Select_t
   bayertnrParamISO[RK_BAYERNR_v23_MAX_ISO_NUM];
} RK_Bayertnr_Params_v23L_t;
```

【成员】

成员名称	参数类型	描述
Enable	调试参数	模块使能开关
iso	调试参数	不同iso档位,对应不同调试参数。目前仅支持13档
bayertnrParamISO	标定参数	不同iso档位,对应不同调试参数。目前仅支持13档

RK_Bayertnr_Param_V23L_Select_t

【说明】

定义去噪模块的手动模式下算法属性结构体

```
typedef struct RK_Bayertnr_Param_v23L_Select_s
   int enable;
   //calib
   int lumapoint[16];
   int sigma[16];
   int lumapoint2[16];
   int lo_sigma[16];
   int hi_sigma[16];
   //tuning
   int thumbds_w;
   int thumbds_h;
   int lo_enable;
   int hi_enable;
   int lo_gsbay_en;
   int lo_gslum_en;
   int hi_gslum_en;
    int trans_en;
```

```
int wgt_use_mode;
   int wgt_mge_mode;
   bool wgtmm_opt_en;
   bool wgtmm_sel_en;
   float wgtmin;
   bool global_pk_en;
   int global_pksq;
   float lo_filter_strength;
   float hi_filter_strength;
   float soft_threshold_ratio;
   float lo_clipwgt;
   float hi_wgt_comp;
   int hidif_th;
   float lo_filter_rat0;
   int lo_filter_thed0;
   int hi_filter_abs_ctrl;
   float hi_filter_rat0;
   int hi_filter_thed0;
   float hi_filter_rat1;
   int hi_filter_thed1;
   int guass_guide_coeff0;
   int guass_guide_coeff1;
   int guass_guide_coeff2;
} RK_Bayertnr_Param_V23L_Select_t;
```

成员名称	参数类型	描述
Enable	调试参 数	模块使能开关
lumapoint / sigma	标定参 数	不同亮度对应的噪声曲线值。共16个点。 lumapoint对应pixel亮度,sigma对应噪声曲线值
lumapoint2 / lo_sigma	标定参 数	不同亮度对应的噪声曲线值。共16个点。 lumapoint2对应像素亮度,lo_sigma对应噪声曲线值
lumapoint2 / hi_sigma	标定参 数	不同亮度对应的噪声曲线值。共16个点。 lumapoint2对应像素亮度,hi_sigma对应噪声曲线值
thumbds_w thumbds_h	调试参 数	下采样比例,目前仅支持4x4,8x4,8x8三种模式。默认8x4模式。

成员名称	参数类型	描述
lo_enable	调试参 数	低频运动判断是否打开, 1打开, 0关闭。默认打开。
hi_enable	调试参 数	高频运动判断是否打开, 1打开, 0关闭。默认打开。
lo_gsbay_en	调试参 数	内部低频子模块开关, 1打开, 0关闭。默认打开。
lo_gslum_en	调试参 数	内部低频子模块开关, 1打开, 0关闭。默认打开。
hi_gslum_en	调试参 数	内部高频子模块开关, 1打开, 0关闭。默认打开。
global_pk_en	调试参 数	时域降噪是否使用全局 pk, 1使用,0不使用。 目前暂只能用0.
global_pksq	调试参 数	全局 pk 的平方值,当global_pk_en为 1 的时候才用它. 默认值1024,取值范围[0, 268435455]
lo_filter_strength	调试参数	高频运动判断力度。最终影响hi sigma进而影响时域去噪力度。 默认值1,取值范围[0.0, 16.0]
hi_filter_strength	调试参数	高频运动判断力度。最终影响hi sigma进而影响时域去噪力度。 默认值1,取值范围[0.0, 16.0]
soft_threshold_ratio	调试参 数	软阈值权重。值越大,保留噪声越多 取值范围[0.0 1.0],默认值0。
hi_wgt_comp	调试参 数	叠加权重回补的比例系数值,只在高频打开的时候才有用; 默认值0.16,取值范围[0.0,1.0]。
lo_clipwgt	调试参 数	图像叠加的权重限制值。 默认值0.03215,取值范围[0.0, 1.0]。
hidif_th	调试参 数	高频差异阈值。 默认值32767,取值范围[0, 65535]。
trans_en	调试参 数	省带宽是否使能。0:不使能,1:使能。 线性模式可设置。hdr模式建议配置0。
wgt_use_mode	调试参 数	权重融合时是否打开优化功能。0:不使能,1:使能。
wgt_mge_mode	调试参 数	高频权重计算是否打开优化功能。0:不使能,1:使 能。
wgtmm_opt_en	调试参 数	isp32lite新增叠帧力度控制开关位。 0:不是能,1:使能。默认值0。

成员名称	参数类 型	描述
wgtmm_sel_en	调试参数	isp32lite新增叠帧力度功能选择位。 0:最大叠帧力度控制。1:最小叠帧力度控制。默认值 0。
wgtmin	调试参 数	isp32lite新增叠帧力度配置位。 取值范围[0, 1]。默认值0。
lo_filter_rat0	调试参数	低频运动判断权重计算时,差异值要减掉的数据比例参数。 数。 取值范围[0.0, 16.0], 默认值1。
lo_filter_thed0	调试参 数	低频运动判断权重计算时,差异值要减掉的数据偏移参数. 取值范围[0, 4095], 默认值0。
hi_filter_rat0	调试参数	高频运动判断第一个权重计算时差异值要减掉的数据比例值. 取值范围[0.0, 16.0], 默认值1。
hi_filter_thed0	调试参数	高频运动判断第一个权重计算时,差异值要减掉的数据偏移值. 取值范围[0,4095],默认值256。
hi_filter_rat1	调试参数	高频运动判断第二个权重计算时,差异值要减掉的数据比例值. 取值范围[0.0, 16.0], 默认值1。
hi_filter_thed1	调试参数	高频运动判断第二个权重计算时,差异值要减掉的数据偏移值. 取值范围[0,4095],默认值1024。
hi_filter_abs_ctrl	调试参数	高频权重计算时绝对值位置选择. 0: Difference->median->Gaussian->abs 1: Difference->median->abs->Gaussian 默认0.
guass_guide_coeff0/1/2	调试参 数	高斯滤波算子。 取值范围[0,64]。默认值为16,8,4。

RK_Bayertnr_Fix_V23_t

【说明】

定义去噪模块的手动模式下寄存器配置

```
typedef struct RK_Bayertnr_Fix_V23_s {
    /* BAY3D_CTRL */
    uint8_t soft_st;
    uint8_t soft_mode;
    uint8_t bay3d_en;
```

```
uint8_t bypass_en;
uint8_t hibypass_en;
uint8_t lobypass_en;
uint8_t himed_bypass_en;
uint8_t higaus_bypass_en;
uint8_t hiabs_possel;
uint8_t hichnsplit_en;
uint8_t lomed_bypass_en;
uint8_t logaus5_bypass_en;
uint8_t logaus3_bypass_en;
uint8_t glbpk_en;
uint8_t loswitch_protect;
uint8_t bwsaving_en;
/* BAY3D_KALRATIO */
uint16_t softwgt;
uint16_t hidif_th;
/* BAY3D_GLBPK2 */
uint32_t glbpk2;
/* BAY3D_CTRL1 */
uint8_t hiwgt_opt_en;
uint8_t hichncor_en;
uint8_t bwopt_gain_dis;
uint8_t lo4x8_en;
uint8_t lo4x4_en;
uint8_t hisig_ind_sel;
uint8_t pksig_ind_sel;
uint8_t iirwr_rnd_en;
uint8_t curds_high_en;
uint8_t higaus3_mode;
uint8_t higaus5x5_en;
uint8_t wgtmix_opt_en;
/*isp32 lite*/
uint8_t wgtmm_opt_en;
uint8_t wgtmm_sel_en;
/* BAY3D_WGTLMT */
uint16_t wgtlmt;
uint16_t wgtratio;
/* BAY3D_SIG */
uint16_t sig0_x[16];
uint16_t sig0_y[16];
uint16_t sig1_x[16];
uint16_t sig1_y[16];
uint16_t sig2_y[16];
/*isp32 lite*/
uint16_t wgtmin;
/* BAY3D_HISIGRAT */
uint16_t hisigrat0;
```

```
uint16_t hisigrat1;
   /* BAY3D_HISIGOFF */
   uint16_t hisigoff0;
   uint16_t hisigoff1;
   /* BAY3D_LOSIG */
   uint16_t losigoff;
   uint16_t losigrat;
   /* BAY3D_SIGPK */
   uint16_t rgain_off;
   uint16_t bgain_off;
   /* BAY3D_SIGGAUS */
   uint8_t siggaus0;
   uint8_t siggaus1;
   uint8_t siggaus2;
   uint8_t siggaus3;
} RK_Bayertnr_Fix_V23_t;
```

参数	位宽	参数说明
soft_st	1	软件模式的启动脉冲位,开启的时候写 1.
soft_mode	1	暂不支持
bwsaving_en	1	带宽优化使能位,非 hdr 才有效. 1: 打开优化; 0: 关闭优化; 默认配置值 0×0;
loswitch_protect	1	暂不支持。
glbpk_en	1	Bayer 时域降噪是否使用全局 pk; 1: 使用全局的 pk 值; 0: 使用局部的 pk 值; 默认配置值为 1;
logaus3_bypass_en	1	低频在后级亮度域上是否做高斯滤波; 1: 不做; 0: 做; 默认配置值 0×0;
logaus5_bypass_en	1	低频在前级 bayer 域上是否做高斯滤波; 1: 不做; 0: 做; 默认配置值 0x0;
lomed_bypass_en	1	低频是否做中值滤波; 1: 不做; 0: 做; 默认配置值 0×0;

参数	位宽	参数说明
hichnsplit_en	1	高频判断时选择它的高斯滤波是在 bayer 域或亮度域上做,只开高频的运动判断时,打开这个使能位; 1:在 bayer 域高斯滤波; 0:在亮度域做高斯滤波; 默认配置值 0x0;
hiabs_pssel	1	高频判断时在高斯滤波前是否做绝对值,只开高频的运动判断时, 打开这个使能位; 1: 做; 0: 不做; 默认配置值 0x0;
higaus_bypass_en	1	高频是否做高斯滤波; 1: 不做; 0: 做; 默认配置值 0x0;
himed_bypass_en	1	高频是否做中值滤波; 1: 不做; 0: 做; 默认配置值 0×0;
lobypass_en	1	高频运动判断是否打开; 1: 关闭; 0: 打开; 默认配置值 0x0;目前此bit目前不支持动态变化,默认一直为0.
hibypass_en	1	高频运动判断是否打开; 1: 关闭; 0: 打开; 默认配置值 0x0;
bypass_en	1	Bayer 时域降噪的 bypass 使能位; 1: 打开 bypass,相当于 bayer3d 不做. 0: 关闭 bypass; 默认配置值为 0;
bay3d_en	1	Bayer 时域降噪的开关使能位; 1: 打开时域降噪; 0: 关闭时域降噪; 默认配置值为 0;
softwgt	10	软阈值的权重值,值越大阈值越大,保留的噪声越多. 小数位 10bit,默认配置值 0x100;
hidif_th	16	统计高频差异值个数的阈值.默认配置值 0xffff
glbpk2	28	全局 pk 的平方值,当 pk_en 为 0 的时候才用它.默认配置值 0x800;
hiwgt_opt_en	1	高频权重计算优化功能是否打开。0:不使能,1:使能。

参数	位宽	参数说明
hichncor_en	1	高频权重计算时是否使能5x5滤波功能。 0:不开启,1:开启。默认值为0。
bwopt_gain_dis	1	局部gain数据优化是否使能。0:不使能,1:使能。
lo4x8_en	1	4x8下采样是否使能。0:不使能,1:使能。
lo4x4_en	1	4x4下采样是否使能。0:不使能,1:使能。
hisig_ind_sel	1	高频sigma查找是否使用滤波数据。 0:不使用滤波数据。1:使用滤波后数据。
pksig_ind_sel	1	高频pk sigma是否使用滤波数据。 0:不使用滤波数据。1:使用滤波后数据。
iirwr_rnd_en	1	IIR帧是否使用向上取整。0:不使用,1:使用。
curds_high_en	1	当前帧下采样是否使用高精度下采样。0:不使用,1:使用。
higaus3_mode	2	高频权重计算时是否使用3x3高斯滤波。 0:不使能,1:使用算子1,2:使用算子2,3:使用算子2。
higaus5x5_en	1	高频权重计算时是否使用5x5高斯滤波。 0:不使用,1:使用。
wgtmix_opt_en	1	权重融合时是否开启优化功能。0:不开启,1:开启。
wgtlmt	10	图像叠加的权重限制值. 小数位为 10 位, 默认配置值 0x380;
wgtratio	10	叠加权重回补的比例系数值,只在高频打开的时候才有用; 小数位为 10 位, 默认配置值 0x0;
bay3d_sig0_x0-15	16	噪声曲线的 16 个亮度水平等级,配置时要保证两个值的差值为 2 的幂次方;
bay3d_sig0_y0-15	14	噪声曲线的 16 个噪声 sigma 等级;配置参数由标定得到.
bay3d_sig1_x0-15	16	高低频的噪声曲线的 16 个亮度水平等级,配置时要保证两个值的 差值为 2 的幂次方;
bay3d_sig1_y0-15	14	高频的噪声曲线的 16 个噪声 sigma 等级;配置参数由标定得到.
bay3d_sig2_y0-15	10	低频的噪声曲线的 16 个噪声 sigma 等级;配置参数由标定得到.
hisigrat0	12	高频运动判断第一个权重计算时,差异值要减掉的数据比例值。
hisigrat1	12	高频运动判断第二个权重计算时,差异值要减掉的数据比例值。
hisigoff0	12	高频运动判断第一个权重计算时,差异值要减掉的数据偏移值。
hisigoff1	12	高频运动判断第二个权重计算时,差异值要减掉的数据偏移值。
losigoff	12	低频运动判断权重计算时,差异值要减掉的数据偏移参数。

参数	位宽	参数说明
losigrat	12	低频运动判断权重计算时,差异值要减掉的数据比例参数。
rgain_off	14	r通道sigma偏移值。
bgain_off	14	b通道sigma偏移值。
siggaus0-3	6	高斯滤波算子。
wgtmm_opt_en	0	叠帧力度控制使能为。
wgtmm_sel_en	0	叠帧力度功能选择位。
wgtmin	0	叠帧力度配置位。

rk_aiq_bayertnr_strength_v23_t

【说明】

定义去噪模块的去噪强度配置结构体

【定义】

```
typedef struct rk_aiq_bayertnr_strength_v23_s {
    rk_aiq_uapi_sync_t sync;
    float percent;
    bool strength_enable;
} rk_aiq_bayertnr_strength_v23_t;
```

【成员】

成员名称	描述
sync	同步异步模式选择,参见 "概述/API说明" 章节
percent	去噪强度,取值范围0.0-1.0。
strength_enable	是否使能强度设置。0:不使能,1:使能。

rk_aiq_ynr_attrib_v22_t

【说明】

定义去噪模块的参数

```
typedef struct rk_aiq_ynr_attrib_v22_s {
    rk_aiq_uapi_sync_t sync;
    Aynr_OPMode_v22_t eMode;
    Aynr_Auto_Attr_v22_t stAuto;
    Aynr_Manual_Attr_v22_t stManual;
} rk_aiq_ynr_attrib_v22_t;
```

成员名称	描述
sync	同步异步模式选择,参见"概述/API说明"章节
eMode	ynr去噪模块模式
stAuto	ynr去噪模块自动模式参数
stManual	ynr去噪模块手动模式参数

Aynr_OPMode_V22_t

【说明】

定义去噪模块的模式

【定义】

成员名称	描述
AYNRV22_OP_MODE_INVALID	y域 ynr去噪模块无效模式
AYNRV22_OP_MODE_AUTO	y域 ynr去噪模块自动模式
AYNRV22_OP_MODE_MANUAL	y域 ynr去噪模块手动模式的算法设置
AYNRV22_OP_MODE_REG_MANUAL	y域 ynr去噪模块手动模式的寄存器设置
AYNRV22_OP_MODE_MAX	y域 ynr去噪模块模式最大值,是一个无效模式

Aynr_Auto_Attr_V22_t

【说明】

定义去噪模块的自动属性

【定义】

```
typedef struct Aynr_Auto_Attr_v22_s
{
    RK_YNR_Params_v22_t stParams;
    RK_YNR_Params_v22_select_t stSelect;
} Aynr_Auto_Attr_v22_t;
```

【成员】

成员名称	描述			
stParams	ynr模块各个iso对应算法属性参数			
stSelect	ynr模块根据当前iso计算出来属性参数			

Aynr_Manual_Attr_V22_t

【说明】

定义去噪模块的手动属性

【定义】

```
typedef struct Aynr_Manual_Attr_v22_s
{
    RK_YNR_Params_v22_Select_t stSelect;
    RK_YNR_Fix_v22_t stFix;
} Aynr_Manual_Attr_v22_t;
```

【成员】

成员名称	描述		
stSelect	ynr手动模式下算法参数值		
stFix	ynr手动模式下寄存器值		

RK_YNR_Params_V22_t

【说明】

定义YNR去噪模块自动模式各个iso对应算法属性参数

```
typedef struct RK_YNR_Params_v22_s
{
   int enable;
   char version[64];
   float iso[RK_YNR_v22_MAX_ISO_NUM];
   RK_YNR_Params_v22_select_t arYnrParamsISO[RK_YNR_v22_MAX_ISO_NUM];
} RK_YNR_Params_v22_t;
```

成员名称	描述
enable	ynr模块使能开关
version	ynr模块版本号
iso	不同iso档位,对应不同调试参数。目前仅支持13档
arYnrParamsISO	不同iso档位,对应不同调试参数。目前仅支持13档

RK_YNR_Params_V22_Select_t

【说明】

定义去噪模块的手动模式下算法属性

```
typedef struct RK_YNR_Params_V22_Select_s
{
   int enable;
   float lci;
   float hci;
    float sigma[YNR_V22_ISO_CURVE_POINT_NUM];
    short lumaPoint[YNR_V22_ISO_CURVE_POINT_NUM];
   float lo_lumaPoint[6];
   float lo_ratio[6];
   float hi_lumaPoint[6];
   float hi_ratio[6];
   //local gain control
   float ynr_global_gain_alpha;
   float ynr_global_gain;
    float ynr_adjust_thresh;
   float ynr_adjust_scale;
   // low frequency
   float rnr_strength[17];
   int ynr_bft3x3_bypass;
    int ynr_1bft5x5_bypass;
```

```
int ynr_lgft3x3_bypass;
    int ynr_flt1x1_bypass;
   int ynr_nlm11x11_bypass;
   float low_bf1;
   float low_bf2;
   float low_thred_adj;
   float low_peak_supress;
   float low_edge_adj_thresh;
   float low_lbf_weight_thresh;
   float low_center_weight;
   float low_dist_adj;
   float low_weight;
   float low_filt1_strength;
   float low_filt2_strength;
   float low_bi_weight;
   // high frequency
   float hi_weight_offset;
   float hi_center_weight;
   float hi_bf_scale;
   float hi_min_sigma;
   float hi_nr_weight;
   float hi_gain_alpha;
   int hi_filter_coeff1_1;
   int hi_filter_coeff1_2;
   int hi_filter_coeff1_3;
   int hi_filter_coeff2_1;
   int hi_filter_coeff2_2;
   int hi_filter_coeff2_3;
} RK_YNR_Params_V22_Select_t;
```

成员名称	参数类型	描述
enable	调试参 数	ynr模块使能开关,1:模块打开,0:模块关闭。
lci	标定数 据	影响低频噪声sigma影响因子。 值越大,噪声sigma越大,去噪力度越强。
hci	标定数 据	影响高频噪声sigma影响因子。 值越大,噪声sigma越大,去噪力度越强。
sigma	标定数 据	噪声sigma曲线。
lumaPoint	标定数 据	不同pixel亮度,对应不同噪声sigma曲线点。共16个点。

成员名称	参数类 型	描述
rnr_strength	调试参数	图像中心,按照圆的半径r方向,设置不同去噪力度。 主要是为lsc这种噪声进行配置的。 取值范围[0, 16.0],默认值1。
ynr_bft3x3_bypass	调试参数	模块内部子模块bypass功能 0:功能使能 1:功能bypass 一般情况,全部子模块都打开使能,这几个值设置为0。
ynr_lbft5x5_bypass	调试参数	模块内部子模块bypass功能 0:功能使能 1:功能bypass 一般情况,全部子模块都打开使能,这几个值设置为0。
ynr_lgft3x3_bypass	调试参数	模块内部子模块bypass功能 0:功能使能 1:功能bypass 一般情况,全部子模块都打开使能,这几个值设置为0。
ynr_flt1x1_bypass	调试参数	模块内部子模块bypass功能 0:功能使能 1:功能bypass 一般情况,全部子模块都打开使能,这几个值设置为0。
ynr_nlm11x11_bypass	调试参数	模块内部子模块bypass功能 0:功能使能 1:功能bypass 一般情况,全部子模块都打开使能,这几个值设置为0。
low_bf1	调试参 数	原图3×3双边滤波力度,值越大,去噪越强。 取值范围[0.01, 32],默认值1。
low_bf2	调试参 数	上一帧小图5×5双边滤波力度,值越大,去噪越强。 取值范围[0.01, 32],默认值1。
low_thred_adj	调试参 数	低频软阈值的调整力度,值越大,低频降噪力度越大。 取值范围[0,31],默认值0.5。
low_peak_supress	调试参 数	控制去除孤立噪声的力度,值越小,去噪力度越大。 取值范围[0, 1],默认值0.5。
low_edge_adj_thresh	调试参数	小图边缘检测的调整系数的门限, 用于限制调整系数所能取到的最大值。 值越小,去噪力度越大,图像越模糊。 取值范围[0,1023]整数,默认值7。
low_lbf_weight_thresh	调试参数	用于对 5x5 的双边滤波的权重进行限制。 该值越大,则低频降噪力度越弱。 取值范围[0.0,1.0]。默认值0.25。

成员名称	参数类 型	描述
low_center_weight	调试参数	5x5 双边滤波时中心点的权重,该值越小,则降噪力度越强。 取值范围[0,1],默认值0.5。
low_dist_adj	调试参 数	双边滤波距离权重调整因子。值越小,去噪越强。 取值范围[0, 127.0],默认值8.0。
low_weight	调试参 数	低频去噪结果的权重,值越大,低频降噪力度越大。 取值范围[0, 1],默认值0.5。
low_filt1_strength	调试参 数	对原图进行高斯滤波的滤波核权重。 取值范围[0,1.0],默认值0.7。
low_filt2_strength	调试参 数	对双边滤波的结果进行高斯滤波的滤波核权重。 取值范围[0,1.0],默认值0.85。
low_bi_weight	调试参数	软阈值处理中使用的第一步双边滤波权重。 该值越大,则降噪力度也越大。 取值范围[0, 1],默认值0.3。
ynr_global_gain_alpha	调试参数	ynr去噪local模式和global模式插值力度配置。 一般使用默认值,不用配置,全部使用local gain的方式。 取值范围[0.0 1.0],默认值0
ynr_global_gain	调试参数	ynr去噪local模式和global模式插值力度配置。 一般使用默认值,不用配置,全部使用local gain的方式。 gain取值范围[0.0 64.0]。默认值1。
ynr_adjust_thresh	调试参数	对大于阈值ynr_adjust_thresh的噪声进行去噪力度控制。 运动区域噪声较大, 设定合适阈值使运动区域ynr去噪力度加大。 取值范围[0.0, 1.0], 默认值1。
ynr_adjust_scale	调试参数	对大于阈值ynr_adjust_thresh的噪声进行去噪力度控制。 运动区域噪声较大, 设定合适阈值使运动区域ynr去噪力度加大。 取值范围[0, 16.0], 默认值1
lo_lumaPoint / lo_ratio	调试参 数	不同pixel亮度,对低频sigma进行微调。
hi_lumaPoint / hi_ratio	调试参 数	不同pixel亮度,对高频sigma进行微调。
hi_weight_offset	调试参数	算出来的加权权重减去该值,用于额外调整权重。 值越大则降噪力度越弱。 取值范围[0, 1.0],默认值0.05。

成员名称	参数类 型	描述
hi_center_weight	调试参 数	高频中心点的权重,越大则降噪力度越弱。 取值范围[0, 1],默认值0.8。
hi_bf_scale	调试参 数	高频降噪的力度控制,越大则力度越强。 取值范围[0.0, 16.0],默认值1.0。
hi_min_sigma	调试参数	最小噪声门限值,实际上是平坦区域使用的噪声估计值。 值越大,则平坦区域的降噪力度越强。 取值范围[0.0, 1.0],默认值0.0068。
hi_nr_weight	调试参数	高频降噪结果和原图的叠加权重,值越大则降噪力度越强。 取值范围[0, 1.0],默认值0.8。
hi_gain_alpha	调试参数	高频降噪的local gain权重,值越大,local gain的权重越高。 取值范围[0, 1.0],默认值1。
hi_filter_coeff1_1-3	调试参 数	高斯滤波算子1。 取值范围[0, 15]. 默认值为: 7,6,3。
hi_filter_coeff2_1-3	调试参 数	高斯滤波算子2。 取值范围[0, 15].默认值为: 6,5,3。

RK_YNR_Fix_V22_t

【说明】

定义去噪模块的手动模式下寄存器配置

```
typedef struct RK_YNR_Fix_V22_s {
   /* YNR_GLOBAL_CTRL */
   uint8_t rnr_en;
   uint8_t gate_dis;
   uint8_t thumb_mix_cur_en;
   uint8_t global_gain_alpha;
   uint16_t global_gain;
   uint8_t flt1x1_bypass_sel;
   uint8_t nlm11x11_bypass;
   uint8_t flt1x1_bypass;
   uint8_t lgft3x3_bypass;
   uint8_t 1bft5x5_bypass;
   uint8_t bft3x3_bypass;
   uint8_t ynr_en;
   /* YNR_RNR_MAX_R */
   uint16_t rnr_max_r;
   uint16_t local_gainscale;
   /* YNR_RNR_CENTER_COOR */
```

```
uint16_t rnr_center_coorh;
uint16_t rnr_center_coorv;
/* YNR_LOCAL_GAIN_CTRL */
uint16_t localgain_adj_thresh;
uint16_t localgain_adj;
/* YNR_LOWNR_CTRLO */
uint16_t low_bf_inv1;
uint16_t low_bf_inv0;
/* YNR_LOWNR_CTRL1 */
uint16_t low_peak_supress;
uint16_t low_thred_adj;
/* YNR_LOWNR_CTRL2 */
uint16_t low_dist_adj;
uint16_t low_edge_adj_thresh;
/* YNR_LOWNR_CTRL3 */
uint16_t low_bi_weight;
uint16_t low_weight;
uint16_t low_center_weight;
/* YNR_LOWNR_CTRL4 */
uint16_t frame_full_size;
uint16_t lbf_weight_thres;
/* YNR_GAUSS1_COEFF */
uint16_t low_gauss1_coeff2;
uint16_t low_gauss1_coeff1;
uint16_t low_gauss1_coeff0;
/* YNR_GAUSS2_COEFF */
uint16_t low_gauss2_coeff2;
uint16_t low_gauss2_coeff1;
uint16_t low_gauss2_coeff0;
/* YNR_SGM_DX */
uint16_t luma_points_x[17];
/* YNR_LSGM_Y */
uint16_t lsgm_y[17];
/* YNR_RNR_STRENGTH */
uint8_t rnr_strength[17];
/* YNR_NLM_SIGMA_GAIN */
uint16_t nlm_min_sigma;
uint8_t nlm_hi_gain_alpha;
uint16_t nlm_hi_bf_scale;
/* YNR_NLM_COE */
uint8_t nlm_coe_0;
uint8_t nlm_coe_1;
uint8_t nlm_coe_2;
```

```
uint8_t nlm_coe_3;
uint8_t nlm_coe_4;
uint8_t nlm_coe_5;

/* YNR_NLM_WEIGHT */
uint32_t nlm_center_weight;
uint16_t nlm_weight_offset;

/* YNR_NLM_NR_WEIGHT */
uint16_t nlm_nr_weight;

    RK_YNR_Fix_V22_t;
```

成员名称	位宽 (整数. 小数)	描述
low_bf_inv[0]	5.9	用于控制去噪力度,注意这个寄存器配置的值力度的倒数,所以该值越小,去噪的力度越大。该值为512表示1倍的去噪力度,256表示2倍的去噪力度。 取值范围[1,16383]
low_bf[1]	5.9	用于控制去噪力度,注意这个寄存器配置的值力度的倒数, 所以该值越小,去噪的力度越大。 该值为 512 表示 1 倍的去噪力度, 256 表示 2 倍的去噪力 度
low_thred_adj	5.6	低频软阈值的调整力度,越大则低频降噪力度越强 取值范围[0, 2047]
low_peak_supress	1.7	控制去除较大的孤立噪声的力度,该值越 大则力度越强。 取值范围[0, 128]
low_edge_adj_thresh	11.0	小图边缘检测的调整系数的门限,用于限制调整系数所能取到的最大值。 取值范围[1, 1024]
low_center_weight	1.10	5x5 双边滤波时中心点的权重,该值越小,则降噪力度越强。 取值范围[1, 1024]
lbf_weight_thres	10.0	用于对 5×5 的双边滤波的权重进行限制,该值越大,则低频降噪力度越弱。 取值范围[0, 1023]
low_dist_adj	7.2	双边滤波距离权重调整因子 取值范围[1,511]
low_weight	1.7	低频去噪结果的权重,该值越大则低频降噪力度越大。 取值范围[0, 128]

成员名称	位宽 (整数. 小数)	描述
low_gauss1_coeff[3]	1.8	对原图进行高斯滤波的滤波核权重 取值范围[0, 256]
low_gauss2_coeff[3]	1.8	对双边滤波的结果进行高斯滤波的高斯滤 波核权重 取值范围[0, 256]
low_bi_weight	1.7	软阈值处理中使用的第一步双边滤波权重,该值越大,则降噪力度也越大。 取值范围[0,128]
rnr_max_r	14.0	用于径向降噪力度调整,用于存放 1/((rows/2)^2+ (cols/2)^2)的值,其中前面 9 bit 是尾数 M,后面 5 bit 是指数 E 取值范围 [1, 16383]
rnr_strength[17]	4.4	用于控制径向的降噪力度,一共有 17个数据点,分为 16段,表示从图像中心点到图像的四个角的去噪力度。 取值范围 [0, 15]
global_gain	6.4	外部配置的全局 gain,用于控制 YNR整体的降噪力度,值越大则降噪力度越强。 取值范围 [0, 1023]
global_gain_alpha	1.3	用于控制 gain 模块传递的 gain 值和外部配置的 gain 值的使用比例,该值越大则使用外部全局 gain 的比例越大。 取值范围 [0,8]
bft3x3_bypass	1	为 1 时关掉 3x3 双边滤波 取值范围 0或1
lbft5x5_bypass	1	为 1 时关掉 5x5 双边滤波 取值范围 0或1
lgft3x3_bypass	1	为 1 时关掉针对 5x5 双边滤波结果再做的 3x3 高斯滤波
flt1x1_bypass	1	为 1 时关掉低频软阈值处理 取值范围 0或1
nlm11x11_bypass	1	为 1 时关掉 5x5 的高频降噪 取值范围 0或1
ynr_en	1	ynr模块使能位,0,: 不使能,1: 使能。
thumb_mix_cur_en	1	上一帧和当前帧下采样图像是否融合。0:不融合,1:融合。
rnr_en	1	是否使能半径上不同位置设置不同去噪力度。0:不使能, 1:使能。
gate_dis	1	暂不支持。

成员名称	位宽 (整数. 小数)	描述
nlm_min_sigma	11	最小噪声门限值,实际上是平坦区域使用的噪声估计值。
nlm_hi_gain_alpha	5	高频降噪的local gain使用比例,值越大使用local gain的比例越高。
nlm_hi_bf_scale	10	高频降噪的力度控制值。越大则去噪力度越强
nlm_coe_0	4	高斯滤波算子。
nlm_center_weight	10	高频中心点的权重,越大则降噪力度越弱。
nlm_weight_offset	18	算出来的加权权重减去该值,用于额外调整权重。 值越大则降噪力度越弱。
nlm_nr_weight	11	高频降噪结果和原图的叠加权重,该值越大则降噪力度越强。

rk_aiq_ynr_strength_v22_t

【说明】

定义去噪模块的去噪强度配置结构体

【定义】

```
typedef struct rk_aiq_ynr_strength_v22_s {
    rk_aiq_uapi_sync_t sync;
    float percent;
    bool strength_enable;
} rk_aiq_ynr_strength_v22_t;
```

成员名称	描述			
sync	同步异步模式选择,参见 "概述/API说明" 章节			
percent	去噪强度,取值范围0.0-1.0。			
strength_enable	是否使能强度设置。0:不使能,1:使能。			

rk_aiq_cnr_attrib_v30_t

【说明】

定义去噪模块参数

【定义】

```
typedef struct rk_aiq_cnr_attrib_v30_s {
    rk_aiq_uapi_sync_t sync;
    Acnrv30_OPMode_t eMode;
    Acnr_Auto_Attr_v30_t stAuto;
    Acnr_Manual_Attr_v30_t stManual;
} rk_aiq_cnr_attrib_v30_t;
```

【成员】

成员名称	描述
sync	同步异步模式选择,参见 "概述/API说明" 章节
eMode	cnr 去噪模块模式
stAuto	cnr 去噪模块自动模式参数
stManual	cnr 去噪模块手动模式参数

AcnrV30_OPMode_t

【说明】

定义去噪模块的模式属性

【定义】

成员名称	描述
ACNRV30_OP_MODE_INVALID	uv域 cnr去噪模块无效模式
ACNRV30_OP_MODE_AUTO	uv域 cnr去噪模块自动模式
ACNRV30_OP_MODE_MANUAL	uv域 cnr去噪模块手动模式的算法设置
ACNRV30_OP_MODE_REG_MANUAL	uv域 cnr去噪模块手动模式的寄存器设置
ACNRV30_OP_MODE_MAX	uv域 cnr去噪模块模式最大值,是一个无效模式

Acnr_Auto_Attr_V30_t

【说明】

定义去噪模块的自动属性

【定义】

```
typedef struct Acnr_Auto_Attr_v30_s
{
    //all ISO params and select param

    RK_CNR_Params_v30_t stParams;
    RK_CNR_Params_v30_Select_t stSelect;
} Acnr_Auto_Attr_v30_t;
```

【成员】

成员名称	描述			
stParams	cnr模块各个iso对应算法属性参数			
stSelect	cnr模块根据当前iso计算出来属性参数			

Acnr_Manual_Attr_V30_t

【说明】

定义去噪模块的手动属性

【定义】

```
typedef struct Acnr_Manual_Attr_v30_s
{
    RK_CNR_Params_v30_Select_t stSelect;
    RK_CNR_Fix_v30_t stFix;
} Acnr_Manual_Attr_v30_t;
```

成员名称	描述			
stSelect	cnr手动模式下算法参数值			
stSelect	cnr手动模式下寄存器值			

RK_CNR_Params_V30_t

【说明】

定义去噪模块的自动模式各个iso对应算法属性参数

【定义】

```
typedef struct RK_CNR_Params_V30_s
{
  int enable;
  float iso[RK_CNR_V30_MAX_ISO_NUM];

  RK_CNR_Params_V30_Select_t CnrParamsISO[RK_CNR_V30_MAX_ISO_NUM];
} RK_CNR_Params_V30_t;
```

【成员】

成员名称	描述
enable	cnr模块使能开关
iso	不同iso档位,对应不同调试参数。目前仅支持13档
CnrParamsISO	不同iso档位,对应不同调试参数。目前仅支持13档

RK_CNR_Params_V30_Select_t

【说明】

定义去噪模块的手动模式下算法属性

```
typedef struct RK_CNR_Params_v30_select_s
{
   bool enable;

   uint8_t down_scale_x;
   uint8_t down_scale_y;

   float thumb_sigma;
   float thumb_bf_ratio;

   float chroma_filter_strength;
   float chroma_filter_wgt_clip;

   float anti_chroma_ghost;
   float chroma_filter_uv_gain;
   float wgt_slope;

float gaus_ratio;
   float bf_sigmaR;
   float bf_uvgain;
```

```
float bf_ratio;
float hbf_wgt_clip;
bool bf_wgt0_sel;
float global_alpha;

float saturation_adj_offset;
float saturation_adj_ratio;

float global_gain;
float global_gain_alpha;
float local_gain_scale;
float global_gain_thumb;
float global_gain_thumb;
float global_gain_alpha_thumb;
float gain_adj_strength_ratio[13];
float thumb_filter_wgt_coeff[4];
float gaus_coeff[6];

} RK_CNR_Params_V30_Select_t;
```

参数名称	参数类型	参数说明
Enable	调试参数	模块开关使能。1:模块打开,0:模块关闭。
down_scale_x,down_scale_y	调试参数	缩略图下采样比例,支持4x4和8x4.
thumb_sigma	调试参数	缩略图保边滤波Y通道sigma。值越大,滤波力度越大。 取值范围[0.0, 1.0]。默认值0.01。
thumb_bf_ratio	调试参数	缩略图保边滤波全局融合权重。值越大,滤波力度越大。 取值范围[0.0, 1.0]。默认值1。
chroma_filter_strength	调试参数	缩略图IIR滤波力度,值越大,滤波力度越大。取值范围 [0, 1.0]。默认值0.01。

参数名称	参数类型	参数说明
chroma_filter_wgt_clip	调试参数	缩略图IIR滤波IIR权重clip值,值越大,最大滤波力度越大。取值范围[0, 16.0]。默认值0.9。
anti_chroma_ghost	调试参数	缩略图IIR滤波抑制拖影阈值,值越小,色度拖影越严重。 取值范围[0.0, 1.0]。默认值0.0313。
chroma_filter_uv_gain	调试参数	缩略图IIR滤波中计UV分量差值占比,值越大,UV分量占比越大。取值范围[0.0, 1.0]。默认值0.333。
wgt_slope	调试参数	指数权重曲线斜率。取值范围[0.0, 8.0]。默认值0.7。
gaus_ratio	调试参数	输入图像高斯滤波全局融合权重,值越大,高斯滤波结果 占比越大。取值范围[0.0, 1.0]。默认值0。
bf_sigmaR	调试参数	保边滤波力度,值越大,滤波力度越大。取值范围[0.0, 1.0]。默认值0.03。
bf_uvgain	调试参数	保边滤波UV分量差值占比,值越小,滤波力度越大。取值范围[0.0, 8.0]。默认值3。
bf_ratio	调试参数	保边滤波当前点权重,值越大,滤波力度越小。取值范围 [0.0, 1.0]。默认值0.0625。
hbf_wgt_clip	调试参数	保边滤波权重clip值,取值范围[0.0, 1.0]。默认值 0.0078。

参数名称	参数类型	参数说明
bf_wgt0_sel	调试参数	双边权重和为0的时候,就是在小图上没有找到相似点的情况下,是选择输出原图还是选择输出高斯滤波的图像。 0:输出原图。1:输出高斯滤波图像。
global_alpha	调试参数	保边滤波全局融合权重,值越大,滤波力度越大。取值范 围[0.0, 1.0]。默认值1。
saturation_adj_offset	调试参数	饱和度调整的offet,值越小,饱和度低的区域回填越多。 取值范围[0.0, 511.0]。默认值0。
saturation_adj_ratio	调试参数	饱和度调整的力度,值越大,饱和度回填越多。取值范围[0.0, 32.0]。默认值0。
global_gain	调试参数	全局gain,值越大,滤波力度越大。取值范围[0.0 64.0], 默认值1。
global_gain_alpha	调试参数	全局gain和局部gain融合的权重,值越大,全局gain占比越大。取值范围[0.0 1.0],默认值0。
local_gain_scale	调试参数	局部gain缩放的比例,值越大,局部gain越大。取值范围 [0.0, 1.0],默认值0.5。
global_gain_thumb	调试参数	缩略图IIR滤波中,全局滤波力度调整大小,值越大,滤波力度越小。取值范围[0.0 64.0],默认值1。
global_gain_alpha_thumb	调试参数	缩略图IIR滤波中,全局滤波力度调整的比例。目前芯片无此功能,此值须固定为1.0.

参数名称	参数类型	参数说明
gain_adj_strength_ratio	调试参数	根据gain调整去噪力度的表格,值越大,滤波力度越小。 取值范围[0.0, 4.0],默认值1.0.
thumb_filter_wgt_coeff	调试参数	缩略图保边滤波空域权重,值越大,滤波力度越大。取值 范围[0.0, 10],默认值1.0.
gaus_coeff	调试参数	输入图像高斯滤波系数。取值范围[0,127]。默认系数配置为: 48,28,6,28,17,4.

RK_CNR_Fix_V30_t

【说明】

定义去噪模块的手动模式下寄存器配置

```
typedef struct RK_CNR_Fix_V30_s {
   /* CNR_CTRL */
   uint8_t cnr_en;
   uint8_t exgain_bypass;
   uint8_t yuv422_mode;
   uint8_t thumb_mode;
   uint8_t bf3x3_wgt0_sel;
   /* CNR_EXGAIN */
   uint8_t gain_iso;
   uint8_t global_gain_alpha;
   uint16_t global_gain;
   /* CNR_THUMB1 */
   uint16_t thumb_sigma_c;
   uint16_t thumb_sigma_y;
   /* CNR_THUMB_BF_RATIO */
   uint16_t thumb_bf_ratio;
   /* CNR_LBF_WEITD */
   uint8_t lbf1x7_weit_d[4];
   /* CNR_IIR_PARA1 */
   uint8_t iir_uvgain;
```

```
uint8_t iir_strength;
   uint8_t exp_shift;
   uint16_t wgt_slope;
   /* CNR_IIR_PARA2 */
   uint8_t chroma_ghost;
   uint8_t iir_uv_clip;
   /* CNR_GAUS_COE */
   uint8_t gaus_coe[6];
   /* CNR_GAUS_RATIO */
   uint16_t gaus_ratio;
   uint8_t bf_wgt_clip;
   uint16_t global_alpha;
   /* CNR_BF_PARA1 */
   uint8_t uv_gain;
   uint16_t sigma_r;
   uint8_t bf_ratio;
   /* CNR_BF_PARA2 */
   uint16_t adj_offset;
   uint16_t adj_ratio;
   /* CNR_SIGMA */
   uint8_t sigma_y[13];
   /* CNR_IIR_GLOBAL_GAIN */
   uint8_t iir_gain_alpha;
   uint8_t iir_global_gain;
} RK_CNR_Fix_V30_t;
```

参数名称	位宽 (整 数.小 数)	参数说明
cnr_en	1	cnr模块功能开关位: 1'b1:使能 1'b0:关闭
exgain_bypass	1	外部的局部local gain bypass位。 1'b1:bypass使能。 1'b0:bypass 被禁用。
yuv422_mode	1	yuv422模式选择 目前暂不支持
thumb_mode	1	缩略图下采样比例 2'b01:4x4 2'b11:8x4

参数名称	位宽 (整数.小数)	参数说明
bf3x3_wgt0_sel	1	小图上没有找到相似点的情况下,是选择输出原图还是选择输出高斯滤波的图像。 1'b0:原图输出 1'b1:高斯滤波输出
gain_iso	3	外部gain放大倍数 取值范围[8 128],默认值128。
global_gain_alpha	4	cnr去噪local模式和global模式插值力度配置。一般使用默认值,不用配置,全部使用local gain的方式。 取值范围[0,8],默认值0。
global_gain	10	内部gain放大增益,范围[0, 0x3ff]。
thumb_sigma_c	14	缩略图参考uv通道去彩噪力度。范围[0, 0x3fff]。
thumb_sigma_y	14	缩略图参考y通道去彩噪力度。范围[0, 0x3fff]。
thumb_bf_ratio	10	缩略图滤波和原图加权权重。范围[0, 1024]。
lbf1x7_weit_d[4]	8	缩略图保边滤波空域权重。
iir_uvgain	4	缩略图iir滤波UV分量差值占比。
iir_strength;	8	缩略图iir滤波力度
exp_shift;	6	缩略图iir滤波位移位数。
wgt_slope	10	缩略图iir滤波指数权重曲线斜率。
chroma_ghost	6	缩略图IIR滤波抑制拖影阈值。
iir_uv_clip	7	缩略图IIR滤波IIR权重clip值
gaus_coe[6]	7	输入图像高斯滤波系数。
gaus_ratio	11	输入图像高斯滤波全局融合权重
bf_wgt_clip	8	保边滤波权重clip值
global_alpha	11	保边滤波全局融合权重
uv_gain	7	保边滤波UV分量差值占比
sigma_r	14	保边滤波力度
bf_ratio	8	保边滤波当前点权重
adj_offset	9	饱和度调整的偏移力度
adj_ratio	15	饱和度调整的力度
sigma_y[13]	8	根据gain调整去噪力度的表格

参数名称	位宽 (整 数.小 数)	参数说明
iir_gain_alpha	4	缩略图IIR滤波中,全局滤波力度调整的比例
iir_global_gain	8	缩略图IIR滤波中,全局滤波力度调整大小.

rk_aiq_cnr_strength_v30_t

【说明】

定义去噪模块的去噪强度配置结构体

【定义】

```
typedef struct rk_aiq_cnr_strength_v30_s {
    rk_aiq_uapi_sync_t sync;
    float percent;
    bool strength_enable;
} rk_aiq_cnr_strength_v30_t;
```

【成员】

成员名称	描述
sync	同步异步模式选择,参见 "概述/API说明" 章节
percent	去噪强度,取值范围0.0-1.0。
strength_enable	是否使能强度设置。0:不使能,1:使能。

BLC

功能描述

功能级API参考

rk_aiq_user_api2_ablcV32_SetAttrib

【描述】

设置blc参数属性

【语法】

```
XCamReturn
rk_aiq_user_api2_ablcv32_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx, const
rk_aiq_blc_attrib_v32_t *attr)
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	blc参数属性	输入

【返回值】

返回值	描述
0	成功
1章0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ablc_v32.h、RkAiqHandleInt.h、rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

rk_aiq_user_api2_ablcV32_GetAttrib

【描述】

获取BLC参数属性

【语法】

XCamReturn

rk_aiq_user_api2_ablcV32_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_blc_attrib_V32_t *attr)

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	blc参数属性	输入

【返回值】

返回值	描述
0	成功
丰0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ablc_v32.h、RkAiqHandleInt.h、rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

rk_aiq_user_api2_ablcV32_GetInfo

【描述】

获取BLC参数属性

【语法】

```
XCamReturn
rk_aiq_user_api2_ab1cv32_GetInfo(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_b1c_info_v32_t* pInfo)
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	blc模块信息	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_ablc_v32.h、RkAiqHandleInt.h、rk_aiq_user_api2_sysctl.h

• 库文件: librkaiq.so

模块级API数据类型

rk_aiq_blc_attrib_V32_t

【说明】

blc模块参数

【定义】

```
typedef struct rk_aiq_blc_attrib_v32_s {
    rk_aiq_uapi_sync_t sync;
    AblcOPMode_v32_t eMode;
    AblcParams_v32_t stBlcOAuto;
    AblcParams_v32_t stBlc1Auto;
    AblcOBParams_v32_t stBlcOBAuto;
    AblcManualAttr_v32_t stBlcOManual;
    AblcManualAttr_v32_t stBlc1Manual;
    AblcManualOBAttr_v32_t stBlcOBManual;
} rk_aiq_blc_attrib_v32_t;
```

成员名称	描述
sync	同步异步模式选择,参见"概述/API说明"章节
eMode	blc模块模式
stBlc0Auto	blc0 自动模式参数
stBlc0Manual	blc0 手动模式参数
stBlc1Auto	blc1 自动模式参数
stBlc1Manual	blc1 手动模式参数
stBlcOBAuto	blc_ob 自动模式参数
stBlcOBManual	blc_ob 手动模式参数

AblcOPMode_V32_t

【说明】

定义去噪模块的模式属性

【定义】

【成员】

成员名称	描述
ABLC_V32_OP_MODE_OFF	BLC 模块无效模式
ABLC_V32_OP_MODE_AUTO	BLC 模块自动模式
ABLC_V32_OP_MODE_MANUAL	BLC 模块手动模式的算法设置
ABLC_V32_OP_MODE_MAX	BLC 模块模式最大值,是一个无效模式

AblcParams_V32_t

【说明】

blc模块自动模式参数

```
typedef struct AblcParams_v32_s {
   bool enable;
   int len;
   float* iso;
   float* blc_r;
   float* blc_gr;
   float* blc_gb;
   float* blc_b;
} AblcParams_v32_t;
```

成员名称	描述
enable	模块使能开关 1: 使能; 0: 失能;
len	iso对应数组长度
iso	iso等级
blc_r	不同iso对应,blc值。blc的数组指针
blc_gr	不同iso对应,blc值。blc的数组指针
blc_gb	不同iso对应,blc值。blc的数组指针
blc_b	不同iso对应,blc值。blc的数组指针

AblcManualAttr_V32_t

【说明】

blc模块手动模式参数

【定义】

```
typedef struct AblcSelect_v32_s {
   bool enable;
   float blc_r;
   float blc_gr;
   float blc_gb;
   float blc_b;
} AblcSelect_v32_t;

typedef AblcSelect_v32_t AblcManualAttr_v32_t;
```

成员名称	描述
enable	模块使能开关 1: 使能; 0: 失能;
blc_r	blc模块r通道属性

成员名称	描述
blc_gr	blc模块gr通道属性
blc_gb	blc模块gb通道属性
blc_b	blc模块b通道属性

AblcOBParams_V32_t

【说明】

blc模块手动模式参数

【定义】

```
typedef struct AblcOBParams_v32_s {
   bool enable;
   int len;
   float* iso;
   float* ob_offset;
   float* ob_predgain;
} AblcOBParams_v32_t;
```

【成员】

成员名称	描述
enable	模块使能开关 1: 使能; 0: 失能;
len	blc_ob模块指针长度
iso	blc_ob当前使用的iso
ob_offset	blc_ob_offset 值
ob_predgain	blc_ob_predgain 值

$Ablc Manual OB Attr_V32_t$

【说明】

blc模块手动模式参数

```
typedef struct AblcoBselect_V32_s {
   bool enable;
   float ob_offset;
   float ob_predgain;
} AblcoBselect_V32_t;

typedef AblcoBselect_V32_t AblcManualOBAttr_V32_t;
```

成员名称	描述
enable	模块使能开关 1: 使能; 0: 失能;
ob_offset	blc_ob_offset 值
ob_predgain	blc_ob_predgain 值

rk_aiq_blc_info_v32_t

【说明】

blc模块手动模式参数

【定义】

```
typedef struct rk_aiq_blc_info_v32_s {
    rk_aiq_uapi_sync_t sync;
    int iso;
    AblcExpInfo_V32_t expo_info;
} rk_aiq_blc_info_v32_t;
```

【成员】

成员名称	描述
sync	同步异步模式选择,参见 "概述/API说明" 章节
iso	模块当前使用的iso。
expo_info	模块当前使用的曝光信息

AblcExpInfo_V32_t

【说明】

blc模块手动模式参数

```
typedef struct AblcExpInfo_V32_s {
    int hdr_mode;
    int snr_mode;
    int bayertnr_en;
    float arTime[3];
    float arAGain[3];
    float arbGain[3];
    float isp_dgain[3];
    int arIso[3];
    int isoLevelLow;
    int isoLevelHig;
} AblcExpInfo_V32_t;
```

成员名称	描述
hdr_mode	模块当前使用的hdr模式。 0:线性模式; 1:两帧hdr模式; 2:3帧hdr模式
snr_mode	模块当前使用的dcg模式。 0: lcg模式; 1: hcg模式
bayertnr_en	模块当前使用的predgain
arTime	模块当前使用的sensor曝光时间
arAGain	模块当前使用的sensor增益
isp_dgain	模块当前使用的isp dgain增益
arlso	模块当前使用的iso值
isoLevelLow	模块根据iso插值的前一档iso
isoLevelHig	模块根据iso插值的后一档iso

Dehaze&Enhance

功能描述

Dehaze&Enhance包含2种模式:

- Dehaze 是通过动态的改变图象的对比度和亮度来实现的去雾增强。
- Enhance提升图像局部区域的对比度。其中 Dehaze 与 Enhance功能互斥

功能级API参考

$rk_aiq_uapi2_setMDehazeStrth$

【描述】

设置手动去雾力度。

【语法】

XCamReturn rk_aiq_uapi2_setMDehazeStrth(const rk_aiq_sys_ctx_t* ctx, unsigned int level);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
level	等级,,取值范围[1,100],默认值为50,精度1。	输入

【返回值】

返回值	描述
0	成功
事60	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getMDehazeStrth

【描述】

获取手动去雾力度。

【语法】

XCamReturn rk_aiq_uapi2_getMDehazeStrth(const rk_aiq_sys_ctx_t* ctx, unsigned int* level);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
level	等级,,取值范围[1,100],默认值为50,精度1。	输出

【返回值】

返回值	描述
-----	----

返回值	描述
0	成功
∃E 0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_setMEnhanceStrth

【描述】

设置手动Enhance Value等级。

【语法】

XCamReturn rk_aiq_uapi2_setMEnhanceStrth(const rk_aiq_sys_ctx_t* ctx, unsigned
int level);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
level	等级, , 取值范围[1,100], 默认值为50, 精度1。	输入

【返回值】

返回值	描述
0	成功
∃ E0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getMEnhanceStrth

【描述】

获取手动Enhance Value等级。

【语法】

 $\label{lem:constriction} $$ XCamReturn rk_aiq_uapi2_getMEnhanceStrth(const rk_aiq_sys_ctx_t^* ctx, unsigned int *level);$

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
level	等级, , 取值范围[1,100], 默认值为50, 精度1。	输出

【返回值】

返回值	描述
0	成功
≢ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_setMEnhanceChromeStrth$

【描述】

设置手动Enhance Chrome等级。

【语法】

XCamReturn rk_aiq_uapi2_setMEnhanceChromeStrth(const rk_aiq_sys_ctx_t* ctx,
unsigned int level);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
level	等级, , 取值范围[1,100], 默认值为50, 精度1。	输入

【返回值】

返回值	描述
0	成功
≒ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_setMEnhanceChromeStrth$

【描述】

获取手动Enhance Chrome等级。

【语法】

XCamReturn rk_aiq_uapi2_setMEnhanceChromeStrth(const rk_aiq_sys_ctx_t* ctx,
unsigned int *level);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
level	等级,,取值范围[1,100],默认值为50,精度1。	输出

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

模块级API参考

rk_aiq_user_api2_adehaze_v12_setSwAttrib

【描述】

设置去雾参数。

【语法】

XCamReturn rk_aiq_user_api2_adehaze_v12_setSwAttrib(const rk_aiq_sys_ctx_t*
sys_ctx, const adehaze_sw_v12_t* attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	去雾参数	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

rk_aiq_user_api2_adehaze_v12_getSwAttrib

【描述】

获取当前去雾参数。

【语法】

```
XCamReturn rk_aiq_user_api2_adehaze_v12_getSwAttrib(const rk_aiq_sys_ctx_t*
sys_ctx,adehaze_sw_v12_t* attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	去雾参数	输出

【返回值】

返回值	描述
0	成功
≢ E0	失败,详见错误码表

模块级API数据类型

dehaze_api_mode_t

【说明】

定义dehaze模块工作模式

【定义】

```
typedef enum dehaze_api_mode_e {
   DEHAZE_API_AUTO = 0,
   DEHAZE_API_MANUAL = 1,
} dehaze_api_mode_t;
```

成员名称	描述
DEHAZE_API_AUTO	自动dehaze模式
DEHAZE_API_MANUAL	手动dehaze模式

CtrlDataType_t

【说明】

定义dehaze模块工作模式

【定义】

```
typedef enum CtrlDataType_e {
   CTRLDATATYPE_ENVLV = 0,
   CTRLDATATYPE_ISO = 1,
} CtrlDataType_t;
```

【成员】

成员名称	描述
CTRLDATATYPE_ENVLV	自动模块下EnvLv为控制参数
CTRLDATATYPE_ISO	手动模式下ISO为控制参数

DehazeDataV11_t

【说明】

定义自动dehaze模块DehazeData调试属性

【定义】

```
typedef struct DehazeDataV11_s {
    float CtrlData[DHAZ_CTRL_DATA_STEP_MAX];
    float dc_min_th[DHAZ_CTRL_DATA_STEP_MAX];
    float dc_max_th[DHAZ_CTRL_DATA_STEP_MAX];
    float yhist_th[DHAZ_CTRL_DATA_STEP_MAX];
    float yblk_th[DHAZ_CTRL_DATA_STEP_MAX];
    float dark_th[DHAZ_CTRL_DATA_STEP_MAX];
    float bright_min[DHAZ_CTRL_DATA_STEP_MAX];
    float bright_max[DHAZ_CTRL_DATA_STEP_MAX];
    float wt_max[DHAZ_CTRL_DATA_STEP_MAX];
    float air_min[DHAZ_CTRL_DATA_STEP_MAX];
    float air_max[DHAZ_CTRL_DATA_STEP_MAX];
    float tmax_base[DHAZ_CTRL_DATA_STEP_MAX];
    float tmax_off[DHAZ_CTRL_DATA_STEP_MAX];
    float tmax_max[DHAZ_CTRL_DATA_STEP_MAX];
    float cfg_wt[DHAZ_CTRL_DATA_STEP_MAX];
    float cfg_air[DHAZ_CTRL_DATA_STEP_MAX];
    float cfg_tmax[DHAZ_CTRL_DATA_STEP_MAX];
    float dc_weitcur[DHAZ_CTRL_DATA_STEP_MAX];
    float bf_weight[DHAZ_CTRL_DATA_STEP_MAX];
    float range_sigma[DHAZ_CTRL_DATA_STEP_MAX];
    float space_sigma_pre[DHAZ_CTRL_DATA_STEP_MAX];
    float space_sigma_cur[DHAZ_CTRL_DATA_STEP_MAX];
} DehazeDataV11_t;
```

成员名称	描述
CtrlData	控制参数
dc_min_th	wt自适应的统计范围,取值范围[16, 120],默认值64。
dc_max_th	wt自适应高曝区统计范围,取值范围[170, 255],默认值192。
yhist_th	y分量高曝区统计范围,取值范围[170, 255],默认值249。
yblk_th	y分量块数目比例阈值,取值范围[0.002, 0.01],默认值0.002。
dark_th	wt自适应y分量块最小值阈值,取值范围[230, 250],默认值250。
bright_min	air自适应阈值的最小值,取值范围[160, 200],默认值180。
bright_max	air自适应阈值的最大值,取值范围[210, 250],默认值240。
wt_max	wt自适应的最大值限制,取值范围[0.75, 0.9],默认值0.9。
air_min	air自适应的最小值限制,取值范围[200, 220],默认值200。
air_max	air自适应的最大值限制,取值范围[230, 250],默认值250。
tmax_base	tmax自适应基础值,默认125,对应配置如下,200(131),210(125), 220(119),230(114),240(109),250(105),推荐131-105
tmax_off	tmax自适应的固定值,取值范围[0.1, 0.5],默认值0.1。
tmax_max	tmax自适应的最大值,取值范围[0.1, 0.5],默认值0.5。
cfg_wt	软件配置wt,图像去雾力度,取值范围[0,1],默认值0.8。
cfg_air	软件配置air,大气光系数,取值范围[0, 255],默认值210。
cfg_tmax	软件配置tmax,去雾的最大值,取值范围[0,1],默认值0.2。
bf_weight	两个双边滤波的合成权重,取值范围[0, 1],默认值0.5。
dc_weitcur	dark channel部分的双边权重,取值范围[0, 1],默认值。
range_sigma	双边滤波值域 sigma 值,取值范围[0, 1],默认值0.4。
space_sigma_pre	以 IIR 数据为参考时,双边滤波空域 sigma 值,取值范围[0, 1],默认值 0.4。
space_sigma_cur	以当前数据为参考时,双边滤波空域 sigma 值,取值范围[0, 1],默认值 0.8。

Dehaze_Setting_V11_t

【说明】

定义自动dehaze模块dehaze调试属性

```
typedef struct Dehaze_Setting_V11_s {
   bool
   bool
                 air_lc_en;
   float
                stab_fnum;
   float
                sigma;
   float
                wt_sigma;
   float
                 air_sigma;
   float
                tmax_sigma;
   float
                pre_wet;
   DehazeDataV11_t DehazeData;
} Dehaze_Setting_V11_t;
```

成员名称	描述
en	开关功能。0: 关闭, 1: 开启。
air_lc_en	是否使用 airlight base 对 airlight 进行最小值截止开关
stab_fnum	帧稳定的最大值,取值范围[0,31],默认值8,精度0.01。
sigma	iir控制的sigma,取值范围[0,255],默认值6,精度1。
wt_sigma	帧间wt滤波系数,取值范围[0,255],默认值8,精度1。
air_sigma	帧间air滤波系数,取值范围[0,255],默认值12,精度1。
tmax_sigma	帧间tmax滤波系数,取值范围[0,1],默认值0.01,精度0.0001。
pre_wet	参考数据 IIR 滤波系数,取值范围[0,1],默认值0.01,精度0.0001。
DehazeData	dehaze调试参数。

EnhanceDataV11_t

【说明】

定义自动dehaze模块EnhanceData调试属性

【定义】

```
typedef struct EnhanceDataV11_s {
    float CtrlData[DHAZ_CTRL_DATA_STEP_MAX];
    float enhance_value[DHAZ_CTRL_DATA_STEP_MAX];
    float enhance_chroma[DHAZ_CTRL_DATA_STEP_MAX];
} EnhanceDataV11_t;
```

成员名称	描述
CtrlData	控制参数
enhance_value	通用对比度力度,取值范围[0, 16],推荐范围[1, 2]
enhance_chroma	色度的增强调节参数,取值范围[0, 16],推荐范围[1, 2]

Enhance_Setting_V12_t

【说明】

定义自动dehaze模块enhance调试属性

【定义】

【成员】

成员名称	描述
en	enhance功能开关。0:关闭,1:开启。
color_deviate_en	色差矫正开关。0: 关闭, 1: 开启。
enh_luma_en	enh_luma曲线开关。0:关闭,1:开启 。
enhance_curve	低频曲线。
enh_luma	enh_luma曲线。取值范围[0,16],推荐范围[1, 2]。
EnhanceData	enhance调试参数。

HistDataV11_t

【说明】

定义自动dehaze模块HistData调试属性

【定义】

```
typedef struct HistDataV11_s {
    float CtrlData[DHAZ_CTRL_DATA_STEP_MAX];
    float hist_gratio[DHAZ_CTRL_DATA_STEP_MAX];
    float hist_th_off[DHAZ_CTRL_DATA_STEP_MAX];
    float hist_k[DHAZ_CTRL_DATA_STEP_MAX];
    float hist_min[DHAZ_CTRL_DATA_STEP_MAX];
    float hist_scale[DHAZ_CTRL_DATA_STEP_MAX];
    float cfg_gratio[DHAZ_CTRL_DATA_STEP_MAX];
} HistDataV11_t;
```

成员名称	描述
CtrlData	控制参数

成员名称	描述
hist_gratio	直方图拉伸倍数,直方图均衡控制系数,取值范围[0,32]
hist_th_off	直方图统计阈值,取值范围[0, 255],默认值64
hist_k	直方图自适应阈值放大倍数,取值范围[0,7),默认值2
hist_min	直方图统计阈值的最小值,取值范围[0,2),默认值0.016
hist_scale	直方图均衡控制系数,取值范围[0, 32]
cfg_gratio	软件配置直方图拉伸倍数,直方图均衡控制系数,取值范围[0,32)

Hist_setting_V11_t

【说明】

定义自动dehaze模块hist调试属性

【定义】

```
typedef struct Hist_setting_v11_s {
  bool en;
  bool hist_para_en;
  HistDatav11_t HistData;
} Hist_setting_v11_t;
```

【成员】

成员名称	描述
en	开关功能。0: 关闭, 1: 开启。
hist_para_en	直方图拉伸控制开关。0:关闭,1:开启。
HistData	hist调试参数。

CalibDbDehazeV12_t

【说明】

定义自动dehaze模块调试属性

【定义】

成员名称	描述
Enable	开关功能。0: 关闭,1: 开启。
CtrlDataType	控制参数选择
cfg_alpha	手动软件配置占比,取值范围[0,1],默认值1,精度0.01。
ByPassThr	bypass当前模块阈值,取值范围[0,1]。当前环境亮度与前一帧环境亮度差异的百分比小于ByPassThr时,本模块参数不做更新处理。
dehaze_setting	手动dehaze功能参数
enhance_setting	手动enhance功能参数
hist_setting	手动hist功能参数

CalibDbV2_dehaze_v12_t

【说明】

定义自动dehaze模块属性

【定义】

```
typedef struct CalibDbV2_dehaze_v12_s {
    CalibDbDehazeV12_t DehazeTuningPara;
} CalibDbV2_dehaze_v12_t;
```

【成员】

成员名称	描述
DehazeTuningPara	dehaze自动模式下,调试参数

mDehazeDataV11_t

【说明】

定义手动DehazeData属性

```
typedef struct mDehazeDataV11_s {
    float dc_min_th;
    float dc_max_th;
    float yhist_th;
    float yblk_th;
    float dark_th;
    float bright_min;
    float bright_max;
    float air_min;
    float air_max;
    float tmax_base;
    float tmax_off;
    float cfg_wt;
```

```
float cfg_air;
float cfg_tmax;
float dc_weitcur;
float bf_weight;
float range_sigma;
float space_sigma_pre;
float space_sigma_cur;
} mDehazeDataV11_t;
```

成员名称	描述
dc_min_th	wt自适应的统计范围,取值范围[16, 120],默认值64,精度0.1。
dc_max_th	wt自适应高曝区统计范围,取值范围[170, 255],默认值192,精度0.1。
yhist_th	y分量高曝区统计范围,取值范围[170, 255],默认值249,精度0.1。
yblk_th	y分量块数目比例阈值,取值范围[0.002, 0.01],默认值0.002,精度0.1。
dark_th	wt自适应y分量块最小值阈值,取值范围[230, 250],默认值250,精度0.1。
bright_min	air自适应阈值的最小值,取值范围[160, 200],默认值180,精度0.1。
bright_max	air自适应阈值的最大值,取值范围[210, 250],默认值240,精度0.1。
wt_max	wt自适应的最大值限制,取值范围[0.75, 0.9],默认值0.9,精度0.001。
air_min	air自适应的最小值限制,取值范围[200, 220],默认值200,精度0.001。
air_max	air自适应的最大值限制,取值范围[230, 250],默认值250,精度0.001。
tmax_base	tmax自适应基础值,默认125,对应配置如下,200(131),210(125), 220(119),230(114),240(109),250(105),推荐131-105
tmax_off	tmax自适应的固定值,取值范围[0.1, 0.5],默认值0.1,精度0.1。
tmax_max	tmax自适应的最大值,取值范围[0.1, 0.5],默认值0.5,精度0.1。
cfg_wt	软件配置wt,图像去雾力度,取值范围[0,1],默认值0.8,精度0.001。
cfg_air	软件配置air, 大气光系数, 取值范围[0, 255], 默认值210, 精度0.001。
cfg_tmax	软件配置tmax,去雾的最大值,取值范围[0,1],默认值0.2,精度0.001。
bf_weight	两个双边滤波的合成权重,取值范围[0,1],默认值0.5,精度0.1。
dc_weitcur	dark channel部分的双边权重,取值范围[0, 1],默认值1,精度0.1。
range_sigma	双边滤波值域 sigma 值,取值范围[0, 1],默认值0.4,精度0.1。
space_sigma_pre	以 IIR 数据为参考时,双边滤波空域 sigma 值,取值范围[0, 1],默认值 0.4,精度0.1。
space_sigma_cur	以当前数据为参考时,双边滤波空域 sigma 值,取值范围[0, 1],默认值 0.8,精度0.1。

mDehaze_setting_v11_t

【说明】

定义手动dehaze功能属性

【定义】

```
typedef struct mDehaze_setting_v11_s {
   lood
   bool
                   air_lc_en;
   float
                  stab_fnum;
   float
                  sigma;
   float
                   wt_sigma;
   float
                   air_sigma;
   float
                   tmax_sigma;
   float
                   pre_wet;
   mDehazeDataV11_t DehazeData;
} mDehaze_setting_V11_t;
```

【成员】

成员名称	描述
en	开关功能。0: 关闭, 1: 开启。
air_lc_en	是否使用 airlight base 对 airlight 进行最小值截止开关
stab_fnum	帧稳定的最大值,取值范围[0,31],默认值8,精度0.01。
sigma	iir控制的sigma, 取值范围[0,255], 默认值6, 精度1。
wt_sigma	帧间wt滤波系数,取值范围[0,255],默认值8,精度1。
air_sigma	帧间air滤波系数,取值范围[0,255],默认值12,精度1。
tmax_sigma	帧间tmax滤波系数,取值范围[0,1],默认值0.01,精度0.0001。
pre_wet	参考数据 IIR 滤波系数,取值范围[0,1],默认值0.01,精度0.0001。
DehazeData	dehaze调试参数。

mEnhanceDataV11_t

【说明】

定义手动EnhanceData属性

【定义】

```
typedef struct mEnhanceDataV11_s {
   float enhance_value;
   float enhance_chroma;
} mEnhanceDataV11_t;
```

成员名称	描述
成员名称	描述

成员名称	描述	
enhance_value	通用对比度力度,取值范围[0,16],默认值1.0,精度0.001。	
enhance_chroma	色度的增强调节参数,取值范围[0,16],默认值1.0,精度0.001。	

mEnhance_setting_v12_t

【说明】

定义手动enhance功能属性

【定义】

【成员】

成员名称	描述
en	enhance功能开关。0:关闭,1:开启。
color_deviate_en	色差矫正开关。0: 关闭, 1: 开启。
enh_luma_en	enh_luma曲线开关。0:关闭,1:开启。
enhance_curve	低频曲线。
enh_luma	enh_luma曲线。取值范围[0,16],推荐范围[1, 2]。
EnhanceData	enhance调试参数。

mHistDataV11_t

【说明】

定义手动HistData属性

【定义】

```
typedef struct mHistDataV11_s {
    float hist_gratio;
    float hist_th_off;
    float hist_k;
    float hist_min;
    float hist_scale;
    float cfg_gratio;
} mHistDataV11_t;
```

成员名称	描述
hist_gratio	直方图拉伸倍数,直方图均衡控制系数,取值范围[0,32],默认值,精度0.01。
hist_th_off	直方图统计阈值,取值范围[0, 255],默认值64,精度0.01。
hist_k	直方图自适应阈值放大倍数,取值范围[0,7),默认值2,精度0.01。
hist_min	直方图统计阈值的最小值,取值范围[0,2),默认值0.016,精度0.01。
hist_scale	直方图均衡控制系数,取值范围[0,32],默认值0.9,精度0.01。
cfg_gratio	软件配置直方图拉伸倍数,直方图均衡控制系数,取值范围[0,32),默认值1,精度0.01。

mHist_setting_v11_t

【说明】

定义手动hist功能属性

【定义】

```
typedef struct mHist_setting_v11_s {
  bool      en;
  bool      hist_para_en;
  mHistDataV11_t HistData;
} mHist_setting_v11_t;
```

【成员】

成员名称	描述
en	hist功能开关。0: 关闭,1: 开启。
hist_para_en	直方图拉伸控制开关。0:关闭,1:开启。
HistData	hist调试参数。

mDehazeAttrV12_t

【说明】

定义手动dehaze模块属性

【定义】

成员名称	描述
Enable	开关功能。0: 关闭,1: 开启。
cfg_alpha	手动软件配置占比,取值范围[0,1],默认值1,精度0.01。
dehaze_setting	手动dehaze功能参数
enhance_setting	手动enhance功能参数
hist_setting	手动hist功能参数

$mDehaze AttrInfo V11_t$

【说明】

定义手动dehaze模块属性

【定义】

【成员】

成员名称	描述
ISO	当前帧ISO值
EnvLv	当前帧EnvLv值
MDehazeStrth	当前帧使用dehaze功能级api rk_aiq_uapi2_setMDehazeStrth后,将 level存在参数中
MEnhanceStrth	当前帧使用dehaze功能级api rk_aiq_uapi2_setMEnhanceStrth后, 将level存在参数中
MEnhanceChromeStrth	当前帧使用dehaze功能级api rk_aiq_uapi2_setMEnhanceChromeStrth后,将level存在参数中

adehaze_sw_v12_t

【说明】

定义dehaze属性

成员名称	描述
sync	参考rk_aiq_uapi_sync_t定义,参见 "概述/API说明" 章节
mode	API模式
stAuto	自动dehaze模块参数
stManual	手动dehaze模块参数
Info	当前信息

CPROC

功能描述

CPROC(Color Processing) 提供基本的喜好色调节功能,通过对一定区间内的亮度、对比度、饱和度、色度的调节,达到对喜好色的调节,该模块作用于YUV域图像。

功能级API参考

模块级API参考

rk_aiq_user_api2_acp_SetAttrib

【描述】

设置cproc模块属性

【语法】

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	cproc模块属性	输入

【返回值】

返回值	描述
-----	----

返回值	描述
0	成功
∃E 0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_acp.h

• 库文件: librkaiq.so

rk_aiq_user_api2_acp_GetAttrib

【描述】

获取cproc模块当前属性

【语法】

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	cproc模块属性	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_acp.h

• 库文件: librkaiq.so

模块级API数据类型

acp_attrib_t

【说明】

定义cproc模块的参数

```
typedef struct acp_attrib_s {
    uint8_t brightness;
    uint8_t contrast;
    uint8_t saturation;
    uint8_t hue;
} acp_attrib_t;
```

成员名称	描述
brightness	亮度,范围: [0,255],对应范围: [-128,127],默认值 128
contrast	对比度,范围: [0,255], 对应倍数: [0,1.992], 默认值为 128
saturation	饱和度,范围: [0,255], 对应倍数: [0, 1.992], 默认值为 128
hue	色度,范围: [0,255], 对应度数[-90,87.188], 默认值 128

ΙE

功能描述

IE(Image Effect) 提供图像的特殊效果设置,如黑白效果等。该模块作用于YUV域图像。

功能级API参考

模块级API参考

rk_aiq_user_api2_aie_SetAttrib

【描述】

设置IE模块属性

【语法】

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	IE模块属性	输入

【返回值】

返回值	描述
0	成功

返回值	描述
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_aie.h

• 库文件: librkaiq.so

rk_aiq_user_api2_aie_GetAttrib

【描述】

获取IE模块当前属性

【语法】

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	IE模块属性	输出

【返回值】

返回值	描述
0	成功
≢ E0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_aie.h

• 库文件: librkaiq.so

模块级API数据类型

aie_attrib_t

【说明】

定义IE模块的参数

【定义】

```
typedef struct aie_attrib_s {
    rk_aiq_ie_effect_t mode;
} aie_attrib_t;
```

成员名称	描述
mode	效果类型

rk_aiq_ie_effect_t

【说明】

定义IE效果类型

【定义】

```
typedef enum rk_aiq_ie_effect_e {
    RK_AIQ_IE_EFFECT_NONE,
    RK_AIQ_IE_EFFECT_BW,
    RK_AIQ_IE_EFFECT_NEGATIVE,
    RK_AIQ_IE_EFFECT_SEPIA,
    RK_AIQ_IE_EFFECT_SEPIA,
    RK_AIQ_IE_EFFECT_EMBOSS,
    RK_AIQ_IE_EFFECT_SKETCH,
    RK_AIQ_IE_EFFECT_SHARPEN, /*!
deprecated */
} rk_aiq_ie_effect_t;
```

【成员】

成员名称	描述
RK_AIQ_IE_EFFECT_NONE	无特殊效果
RK_AIQ_IE_EFFECT_BW	黑白效果
RK_AIQ_IE_EFFECT_NEGATIVE	负片效果,不支持
RK_AIQ_IE_EFFECT_SEPIA	深褐色效果,不支持
RK_AIQ_IE_EFFECT_EMBOSS	浮雕效果,不支持
RK_AIQ_IE_EFFECT_SKETCH	素描效果,不支持
RK_AIQ_IE_EFFECT_SHARPEN	不支持

CSM

功能描述

CSM(Color Space Matrix)可设置RGB到YUV转换时的参数。

功能级API参考

模块级API参考

rk_aiq_user_api2_acsm_SetAttrib

【描述】

设置CSM模块属性

【语法】

XCamReturn rk_aiq_user_api2_acsm_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx, const rk_aiq_uapi_acsm_attrib_t* attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	CSM模块属性指针	输入

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_acsm.h

• 库文件: librkaiq.so

rk_aiq_user_api2_acsm_GetAttrib

【描述】

获取CSM模块当前属性

【语法】

XCamReturn rk_aiq_user_api2_acsm_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_uapi_acsm_attrib_t* attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	CSM模块属性指针	输出

【返回值】

返回值	描述
-----	----

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_acsm.h

• 库文件: librkaiq.so

模块级API数据类型

rk_aiq_uapi_acsm_attrib_t

【说明】

定义CSM模块的参数

【定义】

```
typedef struct rk_aiq_uapi_acsm_attrib_s {
    rk_aiq_uapi_sync_t sync;
    rk_aiq_acsm_params_t param;
} rk_aiq_uapi_acsm_attrib_t;
```

【成员】

成员名称	描述
sync	参考rk_aiq_uapi_sync_t定义,参见 "概述/API说明" 章节
rk_aiq_acsm_params_t	csm参数

rk_aiq_acsm_params_t

【说明】

定义CSM模块参数

【定义】

```
typedef struct __csm_param {
    RKAiqOPMode_t op_mode;
    bool full_range;
    uint8_t y_offset;
    uint8_t c_offset;
    float coeff[RK_AIQ_CSM_COEFF_NUM];
} Csm_Param_t;
```

成员名称	描述
op_mode	模式,RK_AIQ_OP_MODE_AUTO 或者 RK_AIQ_OP_MODE_MANUAL

成员名称	描述
full_range	是否输出 full range,默认值:TRUE
y_offset	亮度偏移值,范围: [0,63], 默认值: 0
c_offset	色度偏移值, 范围: [0,255], 默认值: 0
coeff	RGB到YUV的3x3转换矩阵,范围: [-2, 1.992],默认值: [0.299, 0.587, 0.114, -0.169, -0.331, 0.5, 0.5, -0.419, -0.081]

Sharpen

功能描述

Sharpen 模块用于增强图像的清晰度,包括调节图像边缘的锐化属性和增强图像的细节和纹理。

功能级API参考

rk_aiq_uapi2_setSharpness

【描述】

设置锐化等级。

【语法】

XCamReturn rk_aiq_uapi2_setSharpness(const rk_aiq_sys_ctx_t* ctx, unsigned int level);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
level	锐化等级取值范围: [0,100]默认值为50	输入

【返回值】

返回值	描述
0	成功
≢ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

rk_aiq_uapi2_getSharpness

【描述】

获取锐化等级。

【语法】

XCamReturn rk_aiq_uapi2_getSharpness(const rk_aiq_sys_ctx_t* ctx, unsigned int*
level);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
level	锐化等级	输出

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

模块级API参考

rk_aiq_user_api2_asharpV33LT_SetAttrib

【描述】

设置锐化算法属性。

【语法】

XCamReturn

rk_aiq_user_api2_asharpv33LT_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_sharp_attrib_v33LT_t* attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	去噪的参数属性	输入

【返回值】

返回值	描述
0	成功
≢ E0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_asharp_v33.h、RkAiqHandleInt.h

• 库文件: librkaiq.so

rk_aiq_user_api2_asharpV33LT_GetAttrib

【描述】

获取锐化算法属性。

【语法】

XCamReturn

rk_aiq_user_api2_asharpv33LT_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_sharp_attrib_v33LT_t* attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	去噪的参数属性	输入

【返回值】

返回值	描述
0	成功
∃ E0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_asharp_v33.h、RkAiqHandleInt.h

• 库文件: librkaiq.so

$rk_aiq_user_api2_asharpV33_SetStrength$

【描述】

设置锐化力度。

【语法】

XCamReturn

rk_aiq_user_api2_asharpv33_SetStrength(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_sharp_strength_v33_t *pStrength);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
pStrength	锐化强度结构体指针,结构体中percent取值范围0.0-1.0	输入

【返回值】

返回值	描述
0	成功
≒ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_asharp_v33.h、RkAiqHandleInt.h

• 库文件: librkaiq.so

rk_aiq_user_api2_asharpV33_GetStrength

【描述】

获取锐化力度。

【语法】

XCamReturn

rk_aiq_user_api2_asharpv33_GetStrength(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_sharp_strength_v33_t *pStrength);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
pStrength	锐化强度结构体指针,结构体中percent取值范围0.0-1.0	输入

【返回值】

返回值	描述
0	成功
1=0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_asharp_v33.h、RkAiqHandleInt.h

• 库文件: librkaiq.so

rk_aiq_user_api_asharpV33_GetInfo

【描述】

获取模块信息

【语法】

```
XCamReturn
rk_aiq_user_api_asharpV33_GetInfo(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_sharp_info_v33_t* pInfo)
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
plnfo	锐化强度结构体指针,结构体中percent取值范围0.0-1.0	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_asharp_v33.h、RkAiqHandleInt.h

• 库文件: librkaiq.so

模块级API数据类型

rk_aiq_sharp_attrib_v33LT_t

【说明】

定义锐化模块的参数

```
typedef struct rk_aiq_sharp_attrib_v33LT_s {
    rk_aiq_uapi_sync_t sync;
    Asharp_OPMode_v33_t eMode;
    Asharp_Auto_Attr_v33LT_t stAuto;
    Asharp_Manual_Attr_v33LT_t stManual;
} rk_aiq_sharp_attrib_v33LT_t;
```

成员名称	描述
sync	同步异步模式选择,参见"概述/API说明"章节
eMode	锐化模块模式
stAuto	锐化模块自动模式参数
stManual	锐化模块手动模式参数

Asharp_OPMode_V33_t

【说明】

【定义】

【成员】

成员名称	描述
ASHARP_V33_OP_MODE_INVALID	锐化模块无效模式
ASHARP_V33_OP_MODE_AUTO	锐化模块自动模式
ASHARP_V33_OP_MODE_MANUAL	锐化模块手动模式的算法设置
ASHARP_V33_OP_MODE_REG_MANUAL	锐化模块手动模式的寄存器设置
ASHARP_V33_OP_MODE_MAX	锐化模块模式最大值,是一个无效模式

Asharp_Auto_Attr_V33LT_t

【说明】

定义锐化模块的自动模式各个iso对应算法属性参数

```
typedef struct Asharp_Auto_Attr_V33LT_s {
    RK_SHARP_Params_V33LT_t stParams;
    RK_SHARP_Params_V33LT_Select_t stSelect;
} Asharp_Auto_Attr_V33LT_t;
```

成员名称	描述
stParams	sharp模块各个iso对应算法属性参数
stSelect	sharp模块根据当前iso计算出来属性参数

Asharp_Manual_Attr_V33LT_t

【说明】

定义锐化模块的手动属性

【定义】

```
typedef struct Asharp_Manual_Attr_V33LT_s {
    RK_SHARP_Params_V33LT_Select_t stSelect;
    RK_SHARP_Fix_V33_t stFix;
} Asharp_Manual_Attr_V33LT_t;
```

【成员】

成员名称	描述
stSelect	sharp手动设置算法参数
stFix	sharp手动模式下寄存器值

RK_SHARP_Params_V33LT_t

【说明】

定义锐化模块的手动属性

【定义】

```
typedef struct RK_SHARP_Params_V33LT_S {
   int enable;
   int kernel_sigma_enable;
   char version[64];

int Center_Mode;
   int center_x;
   int center_y;

int iso[RK_SHARP_V33_MAX_ISO_NUM];
   RK_SHARP_Params_V33LT_Select_t sharpParamsISO[RK_SHARP_V33_MAX_ISO_NUM];
} RK_SHARP_Params_V33LT_t;
```

参数名称	参数类型	简要说明
Enable	调试参数	Sharp模块使能开关。 1:模块打开,0:模块关闭。
iso	调试参数	不同iso档位,对应不同调试参数。目前仅支持13档。
kernel_sigma_enable	调试参数	sharp滤波核配置方式 1:使用配置kernel_sigma值自动生成滤波核 0:使用kernel_para手动配置滤波核各个参数值。
Center_Mode	调试参数	锐化模块中心模式 默认值0 ,使用双isp的时候设置1
center_x	调试参数	Center_Mode为1时,图像中心点x的值
center_y	调试参数	Center_Mode为1时,图像中心点y的值

RK_SHARP_Params_V33LT_Select_t

【说明】

定义锐化模块的手动模式下算法属性

【定义】

```
typedef struct RK_SHARP_Params_v33LT_Select_s {
   bool enable;
   bool kernel_sigma_enable;
   bool Center_Mode;
   bool exgain_bypass;
   bool clip_hf_mode;
   bool add_mode;
   uint16_t luma_point[8];
   uint16_t luma_sigma[8];
   uint16_t hf_clip[8];
   uint16_t hf_clip_neg[8];
    float local_sharp_strength[8];
    float pbf_gain;
   float pbf_ratio;
    float pbf_add;
    float gaus_ratio;
    float sharp_ratio;
    float bf_gain;
    float bf_ratio;
    float bf_add;
    float global_gain;
    float global_gain_alpha;
    float local_gainscale;
   uint8_t global_hf_clip_pos;
    float gain_adj_sharp_strength[14];
    float dis_adj_sharp_strength[22];
    float prefilter_sigma;
    float hfBilateralFilter_sigma;
    float GaussianFilter_sigma;
```

```
uint8_t GaussianFilter_radius;
float prefilter_coeff[3];
float GaussianFilter_coeff[6];
float hfBilateralFilter_coeff[3];

RK_SHARP_Params_V33LT_Select_t;
```

参数名称	参数	简要说明
Enable	调试 参数	Sharp模块使能开关。 1:模块打开,0:模块关闭。
iso	调试 参数	不同iso档位,对应不同调试参数。目前仅支持13档。
kernel_sigma_enable	调试 参数	sharp滤波核配置方式 1:使用配置kernel_sigma值自动生成滤波核 0:使用kernel_para手动配置滤波核各个参数值。
Center_Mode	调试 参数	锐化模块中心模式 默认值0 ,使用双isp的时候设置1
exgain_bypass	调试 参数	使用外部gain的bypass开关,默认为0
clip_hf_mode	调试参数	根据图像亮度数据查找高频clip值的上限。 1:使用高斯滤波后的图像数据,0:使用模块原始输入数据。
add_mode	调试 参数	锐化最终效果叠加模式 1:在原始输入数据上叠加锐化效果,0:在双边滤波后的 数据上叠加最终锐化效果。
luma_point / luma_sigma	调试 参数	不同pixel亮度,对应不同噪声sigma曲线。 luma_point为曲线亮度值,取值范围[0, 1023] 。 luma_sigma为噪声强度值,取值范围[0, 1023] 。
luma_point / hf_clip	调试 参数	不同pixel亮度高频值 白色边缘clip 的范围。 值越大,允许的最大锐化强度越强。 取值范围[0, 1023]。默认值256。
luma_point / hf_clip_neg	调试 参数	不同pixel亮度高频值 黑色色边缘clip 的范围。 值越大,允许的最大锐化强度越强。 取值范围[0, 1023]。默认值256。
luma_point / local_sharp_strength	调试 参数	计算不同pixel亮度,局部高频叠加权重的比例。 值越大,允许叠加的高频越大,图像越锐化。 取值范围[0, 1023]。默认值512。
pbf_gain	调试 参数	预滤波 sigma 乘以的比例,值越大,滤波越强,噪声越小,细节更少。 取值范围[0.0, 2.0], 默认值1.0。

参数名称	参数 类型	简要说明
pbf_add	调试参数	预滤波 sigma 叠加的偏移,值越大,滤波越强,噪声越小,细节更少。 取值范围[0, 1023], 默认值0。
pbf_ratio	调试 参数	预滤波融合权重,值越大,滤波越强,噪声越小,细节更少。 取值范围[0.0, 1.0], 默认值0.5。
gaus_ratio	调试 参数	高频双边滤波的导向图像为高斯滤波与原图融合的结果。 值越大,高斯双边滤波的导向权重更大。 取值范围[0.0, 1.0], 默认值0。
sharp_ratio	调试 参数	锐化强度,值越大,锐化越强。 取值范围[0.0, 16], 默认值6。
bf_gain	调试参数	高频双边滤波 sigma 乘以的比例,值越大,滤波越强,噪声越小,细节更少。 取值范围[0.0, 2.0], 默认值1.0。
bf_add	调试 参数	高频双边滤波 sigma 叠加的偏移。值越大,滤波越强,噪声越小,细节更少。 取值范围[0, 1023], 默认值0。
global_gain	调试 参数	锐化的全局增益值越大,局部锐化权重越小。 取值范围[0.0, 63.0],默认值1。
global_gain_alpha	调试 参数	全局gain和局部gain融合的权重,值越大,全局gain占比越大。 越大。 取值范围[0.0, 1.0], 默认值0。
local_gainscale	调试 参数	局部gain缩放的比例,值越大,局部gain越大。 取值范围[0.0, 1.0], 默认值0。
global_hf_clip_pos	调试参数	取值范围0,1,2。默认值为0。 0: dis_adj_sharp_strength[21]为0, lum_clip_h最大值不受限制。 1: dis_adj_sharp_strength[21]为64, lum_clip_h最大值为256。 2: dis_adj_sharp_strength[21]为128, lum_clip_h最大值为512。
gain_adj_sharp_strength	调试 参数	根据gain值调整锐化权重的表格,值越大,局部锐化权重越大。 越大。 取值范围[0.0, 31.0],默认值1
dis_adj_sharp_strength	调试 参数	径向锐化力度调整表格,值越大,局部锐化权重越大。 取值范围[0.0, 1.0],默认值1。
prefilter_sigma	调试 参数	kernel_sigma_enable为1时,预滤波算子使用的滤波核 sigma值

参数名称	参数	简要说明
hfBilateralFilter_sigma	调试 参数	kernel_sigma_enable为1时,高斯滤波算子使用的滤波核 sigma值
GaussianFilter_sigma	调试 参数	kernel_sigma_enable为1时,高频双边滤波算子使用的滤 波核sigma值
GaussianFilter_radius	调试 参数	kernel_sigma_enable为1时,高斯滤波核半径。 1: 生成3x3大小的滤波; 2: 生成5x5大小的滤波核
prefilter_coeff	调试 参数	kernel_sigma_enable为0时,预滤波算子。
GaussianFilter_coeff	调试 参数	kernel_sigma_enable为0时,高斯滤波算子。
hfBilateralFilter_coeff	调试 参数	kernel_sigma_enable为0时,高频双边滤波算子。

RK_SHARP_Fix_V33_t

【说明】

定义锐化模块的手动模式下寄存器配置

【定义】

```
typedef struct RK_SHARP_Fix_V33_s {
   uint8_t sharp_radius_ds_mode;
   uint8_t sharp_exgain_bypass;
   uint8_t sharp_center_mode;
   uint8_t sharp_bypass;
   uint8_t sharp_en;
   uint8_t sharp_clip_hf_mode;
   uint8_t sharp_add_mode;
   uint8_t sharp_pbf_ratio;
   uint8_t sharp_gaus_ratio;
   uint8_t sharp_bf_ratio;
   uint8_t sharp_sharp_ratio;
   uint8_t sharp_luma_dx[7];
   uint16_t sharp_pbf_sigma_inv[8];
   uint16_t sharp_bf_sigma_inv[8];
   uint8_t sharp_pbf_sigma_shift;
   uint8_t sharp_bf_sigma_shift;
   uint16_t sharp_clip_hf[8];
   uint16_t sharp_clip_neg[8];
   uint8_t sharp_pbf_coef[3];
   uint8_t sharp_bf_coef[3];
   uint8_t sharp_gaus_coef[6];
   uint16_t sharp_global_gain;
   uint8_t sharp_global_gain_alpha;
   uint8_t sharp_local_gainscale;
```

```
uint16_t sharp_gain_adj[14];
uint16_t sharp_center_wid;
uint16_t sharp_center_het;
uint8_t sharp_strength[22];
uint16_t sharp_ehf_th[8];
} RK_SHARP_Fix_V33_t;
```

参数名称	参数说明
sharp_radius_ds_mode	锐化半径的下采样模式。1: 下采样256,0: 下采样128
sharp_exgain_bypass	外部local gain模块是否bypass,暂不支持此设置,默认为0.
sharp_center_mode	是否以图像中心点为坐标进行锐化。默认是为0.
sharp_bypass	锐化模块bypass 1 :bypass ; 0 :not bypass
sharp_en	锐化模块使能 1:enable ; 0 :disable
sharp_clip_hf_mode	根据图像亮度数据查找高频clip值的上限。 1:使用高斯滤波后的图像数据,0:使用模块原始输入数据。
sharp_add_mode	锐化最终效果叠加模式 1:在原始输入数据上叠加锐化效果,0:在双边滤波后的数据上叠加最终锐化效果。
sharp_sharp_ratio	sharp_ratio: 锐化强度,0~15.9
sharp_bf_ratio	双边滤波融合权重, 0~1.0
sharp_gaus_ratio	gaus_ratio: 高斯滤波融合权重,取值范围[0.0, 1.0]
sharp_pbf_ratio	双边预滤波融合权重 取值范围[0.0, 1.0], 默认值0.5
sharp_luma_dx7	点6和点7之间的距离。实际距离等于2^sw_sharp_luma_dx7。
sharp_luma_dx6	点5和点6之间的距离。实际距离等于2^sw_sharp_luma_dx6。
sharp_luma_dx5	点4和点5之间的距离。实际距离等于2^sw_sharp_luma_dx5。
sharp_luma_dx4	点3和点4之间的距离。实际距离等于2^sw_sharp_luma_dx4。
sharp_luma_dx3	点2和点3之间的距离。实际距离等于2^sw_sharp_luma_dx3。
sharp_luma_dx2	点1和点2之间的距离。实际距离等于2^sw_sharp_luma_dx2。
sharp_luma_dx1	0点和1点之间的距离。实际距离等于2^sw_sharp_luma_dx1。 注意:总距离必须等于 1024。
sharp_pbf_sigma_inv	pbf sigma 的倒数
sharp_bf_sigma_inv	bf sigma 的倒数
sharp_pbf_sigma_shift	pbf sigma 的移位
sharp_bf_sigma_shift	bf sigma 的移位

参数名称	参数说明
sharp_clip_hf	不同pixel亮度高频值 白色边缘clip 的范围。 值越大,允许的最大锐化强度越强。 取值范围[0, 1023]。默认值256。
sharp_clip_neg	不同pixel亮度高频值 黑色色边缘clip 的范围。 值越大,允许的最大锐化强度越强。 取值范围[0, 1023]。默认值256。
sharp_pbf_coef	锐化模块双边与滤波滤波核
sharp_bf_coef	双边滤波核
sharp_gaus_coef	高斯滤波核
sharp_global_gain	锐化的全局增益 值越大,局部锐化权重越小。 取值范围[0.0, 63.0],默认值1。
sharp_global_gain_alpha	全局gain和局部gain融合的权重,值越大,全局gain占比越大。 取值范围[0.0, 1.0], 默认值0。
sharp_local_gainscale	局部gain缩放的比例,值越大,局部gain越大。 取值范围[0.0, 1.0], 默认值0。
sharp_center_wid	图像中心点 x坐标进行锐化。
sharp_center_het	图像中心点 y坐标进行锐化。
sharp_gain_adj	根据gain值调整锐化权重的表格,值越大,局部锐化权重越大。
sharp_strength	径向锐化力度调整表格,值越大,局部锐化权重越大。
sharp_ehf_th	计算不同pixel亮度,局部高频叠加权重的比例。

$rk_aiq_sharp_strength_v33_t$

【说明】

定义锐化模块的去噪强度配置结构体

【定义】

```
typedef struct rk_aiq_sharp_strength_v33_s {
    rk_aiq_uapi_sync_t sync;
    float percent;
    bool strength_enable;
} rk_aiq_sharp_strength_v33_t;
```

成员名称	描述
sync	同步异步模式选择,参见 "概述/API说明" 章节

成员名称	描述
percent	锐化强度,取值范围0.0-1.0。
strength_enable	锐化强度使能开关,取值范围0.0-1.0。关闭时候,锐化强度默认为1,不可调 节

rk_aiq_sharp_info_v33_t

【说明】

定义锐化模块当前曝光信息的结构体

【定义】

```
typedef struct rk_aiq_sharp_info_v33_s {
    rk_aiq_uapi_sync_t sync;
    int iso;
    Asharp_ExpInfo_v33_t expo_info;
} rk_aiq_sharp_info_v33_t;
```

【成员】

成员名称	描述
sync	同步异步模式选择,参见 "概述/API说明" 章节
iso	模块当前使用的iso。
expo_info	模块当前使用的曝光信息

Asharp_ExpInfo_V33_t

【说明】

定义锐化模块当前曝光信息的结构体

【定义】

```
typedef struct Asharp_ExpInfo_V33_s {
   int hdr_mode;
   int snr_mode;
   float arTime[3];
   float arAGain[3];
   float arDGain[3];
   float isp_dgain[3];
   float blc_ob_predgain;
   int arIso[3];
   int isoLevelLow;
   int isoLevelHig;
   int rawWidth;
   int rawHeight;
} Asharp_ExpInfo_V33_t;
```

【成员】

成员名称	描述
hdr_mode	模块当前使用的hdr模式。 0:线性模式; 1:两帧hdr模式; 2:3帧hdr模式
snr_mode	模块当前使用的dcg模式。 0: lcg模式; 1: hcg模式
arTime	模块当前使用的sensor曝光时间
arAGain	模块当前使用的sensor增益
isp_dgain	模块当前使用的isp dgain增益
blc_ob_predgain	模块当前使用的predgain
arlso	模块当前使用的iso值
isoLevelLow	模块根据iso插值的前一档iso
isoLevelHig	模块根据iso插值的后一档iso
rawWidth	图像宽度
rawHeight	图像高度

Gamma

功能描述

Gamma 模块对图像进行亮度空间非线性转换以适配输出设备。RK3588支持49点log域gamma曲线,其横坐标为:

```
int gamma_x_v11[49] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28,
32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512,
640, 768, 896, 1024, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584,
3840, 4095};
```

功能级API参考

 $rk_aiq_uapi2_setGammaCoef$

【描述】

通过GammaCoef和SlopeAtZero快速设置gamma曲线。其gamma曲线生成方式如下:

```
for(int i = 0; i < 49; i++) {
    gamma_Y_v11[i] = 4095 * pow(gamma_Y_v11[i] / 4095, 1 / GammaCoef +
    SlopeAtZero);
    gamma_Y_v11[i] = LIMIT_VALUE(gamma_Y_v11[i], 4095, 0);
}</pre>
```

【语法】

XCamReturn rk_aiq_uapi2_setGammaCoef(const rk_aiq_sys_ctx_t* ctx, float GammaCoef, float SlopeAtZero);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
GammaCoef	gamma系数,取值范围[0,100],默认值2.2,精度0.01	输入
SlopeAtZero	暗区斜率,取值范围[-0.05,0.05],默认值0,精度0.001	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【说明】

Api中Gamma曲线未按照场景进行切换,若场景变化,请重新通过api设置gamma曲线。

功能级API数据类型

模块级API参考

rk_aiq_user_api2_agamma_v11_SetAttrib

【描述】

设定 Gamma软件属性。

【语法】

XCamReturn

rk_aiq_user_api2_agamma_v11_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx, const rk_aiq_gamma_v11_attr_t* attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	Gamma软件属性结构体	输入

【返回值】

返回值	描述
0	成功
∃E 0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_agamma.h

• 库文件: librkaiq.so

【说明】

Api中Gamma曲线未按照场景进行切换,若场景变化,请重新通过api设置gamma曲线。

rk_aiq_user_api2_agamma_v11_GetAttrib

【描述】

获取 Gamma软件属性。

【语法】

XCamReturn

rk_aiq_user_api2_agamma_v11_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_gamma_v11_attr_t* attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	Gamma软件属性结构体	输出

【返回值】

返回值	描述
0	成功
丰60	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_agamma.h

• 库文件: librkaiq.so

【说明】

模块级API数据类型

rk_aiq_gamma_op_mode_t

【说明】

定义Gamma工作模式

【定义】

```
typedef enum rk_aiq_gamma_op_mode_s {
    RK_AIQ_GAMMA_MODE_AUTO = 0,
    RK_AIQ_GAMMA_MODE_MANUAL = 1,
} rk_aiq_gamma_op_mode_t;
```

【成员】

成员名称	描述
RK_AIQ_GAMMA_MODE_AUTO	Api自动模式
RK_AIQ_GAMMA_MODE_MANUAL	Api手动模式

AgammaApiManualV11_t

【说明】

定义手动模式下Gamma属性

【定义】

```
typedef struct AgammaApiManualv11_s {
  bool    Gamma_en;
  uint16_t Gamma_out_offset;
  uint16_t Gamma_curve[CALIBDB_AGAMMA_KNOTS_NUM_V11];
} AgammaApiManualv11_t;
```

【成员】

成员名称	描述
Gamma_en	开关功能
Gamma_out_offset	手动Gamma曲线修正系数,取值范围[-2048,2048],默认值0,精度1。
Gamma_curve	手动Gamma曲线,取值范围[0,4095],精度1。

CalibDbGammaV11_t

【说明】

定义自动模式下Gamma调试参数属性

【定义】

```
typedef struct CalibDbGammaV11_s {
   bool     Gamma_en;
   uint16_t Gamma_out_offset;
   uint16_t Gamma_curve[CALIBDB_AGAMMA_KNOTS_NUM_V11];
} CalibDbGammaV11_t;
```

【成员】

成员名称	描述
Gamma_en	开关功能
Gamma_out_offset	手动Gamma曲线修正系数,取值范围[-2048,2048],默认值0,精度1。
Gamma_curve	手动Gamma曲线,取值范围[0,4095],精度1。

CalibDbV2_gamma_V11_t

【说明】

定义自动模式下Gamma属性

【定义】

```
typedef struct CalibDbV2_gamma_V11_s {
   CalibDbGammaV11_t GammaTuningPara;
} CalibDbV2_gamma_V11_t;
```

【成员】

成员名称	描述
GammaTuningPara	Gamma调试参数

rk_aiq_gamma_v11_attr_t

【说明】

定义Gamma属性

【定义】

成员名称	描述
sync	参考rk_aiq_uapi_sync_t定义,参见 "概述/API说明" 章节
mode	api模式

成员名称	描述
stManual	手动Gamma参数
stAuto	自动Gamma参数

CCM

功能描述

CCM (Color Correction Matrix) 模块对图像进行颜色校正处理。

功能级API参考

rk_aiq_uapi2_setCCMMode

【描述】

设置CCM工作模式。

【语法】

 $\label{lem:constraint} \textbf{XCamReturn} \ \ rk_aiq_uapi2_setCCMMode(const\ rk_aiq_sys_ctx_t*\ ctx,\ opMode_t\ mode);$

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
mode	工作模式; 取值范围: {OP_AUTO, OP_MANUAL}	输入

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_accm_module.cpp 中 "sample_set_ccm_manual" / "sample_set_ccm_auto" 设置手动/自动模式。

rk_aiq_uapi2_getCCMMode

【描述】

获取CCM工作模式。

【语法】

```
XCamReturn rk_aiq_uapi2_getCCMMode(const rk_aiq_sys_ctx_t* ctx, opMode_t *mode);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
mode	工作模式; 取值范围: {OP_AUTO, OP_MANUAL}	输出

【返回值】

返回值	描述
0	成功
∃ €0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_accm_module.cpp 中 "sample_get_ccm_mode" 获取工作模式。

rk_aiq_uapi2_setMCcCoef

【描述】

设置RV1109/RK356X/RK3588 Manual模式下的CCM矩阵,包括色彩校正矩阵和R/G/B通道偏移。

【语法】

```
XCamReturn rk_aiq_uapi2_setMCcCoef(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_ccm_matrix_t *mccm);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
mccm	Manual模式下的CCM矩阵,包括色彩校正矩阵和R/G/B通道偏移	输入

【返回值】

返回值	描述
0	成功
∃E 0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_accm_module.cpp 中 "sample_set_ccm_manual_matrix" 设置手动CCM矩阵。

rk_aiq_uapi2_getMCcCoef

【描述】

获取CCM矩阵,包括色彩校正矩阵和R/G/B通道偏移。

【语法】

```
XCamReturn rk_aiq_uapi2_getMCcCoef(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_ccm_matrix_t *mccm);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
mccm	CCM矩阵,包括色彩校正矩阵和R/G/B通道偏移	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_accm_module.cpp 中 "sample_get_ccm_manual_matrix" 获取CCM矩阵。

$rk_aiq_uapi2_getACcmSat$

【描述】

获取自动模式下的CCM饱和度。

【语法】

XCamReturn rk_aiq_uapi2_getACcmSat(const rk_aiq_sys_ctx_t* ctx, float
*finalsat);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
finalsat	饱和度,手动模式为0	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_accm_module.cpp 中 "sample_get_accm_sat" 获取自动模式下CCM饱和度。

rk_aiq_uapi2_getACcmMatrixName

【描述】

获取自动模式下CCM矩阵名。

【语法】

XCamReturn rk_aiq_uapi2_getACcmMatrixName(const rk_aiq_sys_ctx_t* ctx, char
**ccm_name);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
ccm_name	CCM矩阵名	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

参考 sample_accm_module.cpp 中 "sample_get_accm_matrix_name" 获取自动模式下CCM饱和度。

功能级API数据类型

opMode_t

【说明】

定义CCM工作模式。

【定义】

```
typedef enum opMode_e {
    OP_AUTO = 0,
    OP_MANUAL = 1,
    OP_INVAL
} opMode_t;
```

【成员】

成员名称	描述
OP_AUTO	自动模式
OP_MANUAL	手动模式
OP_INVAL	无效值

$rk_aiq_ccm_matrix_t$

【说明】

定义CCM矩阵。

【定义】

```
typedef struct rk_aiq_ccm_matrix_s {
    float ccMatrix[9];
    float ccOffsets[3];
} rk_aiq_ccm_matrix_t;
```

成员名称	描述
ccMatrix	手动模式下色彩校正矩阵; 取值范围: [-8, 7.992]
ccOffsets	手动模式下R\G\B分量偏移; 取值范围: [-4096, 4095]

模块级API参考

rk_aiq_user_api2_accm_v2_SetAttrib

【描述】

设置CCM属性。

【语法】

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	CCM的属性参数	输入

【返回值】

返回值	描述
0	成功
∃E 0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_accm.h、rk_aiq_uapi_accm_int.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_accm_module.cpp 中 "sample_ccm_setCcmAttr_V2" 等设置CCM属性。

rk_aiq_user_api2_accm_v2_GetAttrib

【描述】

获取CCM属性。

【语法】

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	CCM的参数属性	输出

【返回值】

返回值	描述
0	成功
∃ €0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_accm.h、rk_aiq_uapi_accm_int.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_accm_module.cpp 中 "sample_ccm_getCcmAttr_V2" 等获取CCM属性。

rk_aiq_user_api2_accm_QueryCcmInfo

【描述】

查询CCM信息。

【语法】

XCamReturn

rk_aiq_user_api2_accm_QueryCcmInfo(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_ccm_querry_info_t *ccm_querry_info);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
ccm_querry_info	CCM的查询内容	输出

【返回值】

返回值	描述
0	成功
∃ E0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_accm.h、rk_aiq_uapi_accm_int.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_accm_module.cpp 中 "sample_query_ccm_info_V2" 查询CCM信息。

模块级API数据类型

rk_aiq_ccm_op_mode_t

【说明】

定义CCM工作模式。

【定义】

【成员】

成员名称	描述
RK_AIQ_CCM_MODE_INVALID	CCM无效模式
RK_AIQ_CCM_MODE_MANUAL	CCM手动模式
RK_AIQ_CCM_MODE_AUTO	CCM自动模式

rk_aiq_ccm_mccm_attrib_v2_t

【说明】

定义手动CCM属性。

【定义】

```
typedef struct rk_aiq_ccm_mccm_attrib_v2_s {
    float ccMatrix[9];
    float ccOffsets[3];
    bool highy_adj_en;
    bool asym_enable;
    float bound_pos_bit;
    float right_pos_bit;
    float y_alpha_curve[CCM_CURVE_DOT_NUM_v2];
    unsigned short enh_adj_en;
    unsigned char enh_rgb2y_para[3];
    float enh_rat_max;
} rk_aiq_ccm_mccm_attrib_v2_t;
```

成员名称	描述
ccMatrix	色彩校正矩阵; 取值范围: [-8, 7.992]
ccOffsets	R\G\B分量偏移; 取值范围: [-4096, 4095]

成员名称	描述
highy_adj_en	是否开启高Y区像素点亮度(12bit)相关颜色校正强度调节; 取值范围:TRUE或FALSE
asym_enable	是否开启低Y、高Y区 像素点亮度(12bit)相关颜色校正强度非对称调节; 取值范围:TRUE或FALSE;
bound_pos_bit	asym_enable = FALSE时,像素点亮度(12bit)相关颜色校正强度调节曲线 拐点亮度值,即可调节亮度区间为:[0, 2^low_bound_pos_bit] 和 [4095- 2^low_bound_pos_bit, 4095],取值范围: [4,10] asym_enable = TRUE时,像素点亮度(12bit)相关颜色校正强度调节曲线 左拐点亮度值,即低Y区可调节亮度区间为:[0, 2^low_bound_pos_bit],取 值范围: [3,11]
right_pos_bit	asym_enable = TRUE时有效,表示像素点亮度(12bit)相关颜色校正强度 调节曲线右拐点亮度值,即高Y区可调节亮度区间为: [4095- 2^low_bound_pos_bit, 4095] ,取值范围:[3,11]
y_alpha_curve	像素点亮度(12bit)相关颜色校正强度调节曲线的强度配置; 当asym_enable=TRUE时,y_alpha_curve[0]~y_alpha_curve[8]配置低Y区颜 色校正强度曲线,递增,y_alpha_curve[9]~y_alpha_curve[17]配置高Y区颜 色校正强度曲线,递减; 当asym_enable=FALSE时,y_alpha_curve[0]~y_alpha_curve[17]配置低/高 Y区共用的颜色校正强度曲线; 取值范围: [0x0, 0x400]; 0x400表示1倍强度,0x0表示不校正
enh_adj_en	是否启用颜色增强功能,取值范围: TRUE或FALSE
enh_rgb2y_para	颜色增强功能涉及的RGB到Y的转换系数,取值范围: [0, 128]
enh_rat_max	动态范围的最大压缩比限制,大于1,增强饱和度,小于1,降低饱和度; 取值范围: [0,8]

$rk_aiq_ccm_color_inhibition_t$

【说明】

定义CCM色彩抑制水平。

【定义】

```
typedef struct rk_aiq_ccm_color_inhibition_s {
   float sensorGain[RK_AIQ_ACCM_COLOR_GAIN_NUM];
   float level[RK_AIQ_ACCM_COLOR_GAIN_NUM];
} rk_aiq_ccm_color_inhibition_t;
```

成员名称	描述
sensorGain	曝光增益分量

成员名称	描述
level	色彩抑制水平; 取值范围: [0,100]; 默认值为0

rk_aiq_ccm_color_saturation_t

【说明】

定义自动CCM色彩饱和度水平。

【定义】

```
typedef struct rk_aiq_ccm_color_saturation_s {
   float sensorGain[RK_AIQ_ACCM_COLOR_GAIN_NUM];
   float level[RK_AIQ_ACCM_COLOR_GAIN_NUM];
} rk_aiq_ccm_color_saturation_t;
```

【成员】

成员名称	描述
sensorGain	曝光增益分量
level	色彩饱和度水平; 取值范围: [0,100]; 默认值为100

rk_aiq_ccm_accm_attrib_t

【说明】

定义自动CCM属性。

【定义】

```
typedef struct rk_aiq_ccm_accm_attrib_s {
    rk_aiq_ccm_color_inhibition_t color_inhibition;
    rk_aiq_ccm_color_saturation_t color_saturation;
} rk_aiq_ccm_accm_attrib_t;
```

【成员】

成员名称	描述
color_inhibition	CCM色彩抑制水平
color_saturation	CCM色彩饱和度水平

rk_aiq_ccm_v2_attrib_t

【说明】

定义CCM属性。

【定义】

```
typedef struct rk_aiq_ccm_v2_attrib_s {
    rk_aiq_uapi_sync_t sync;
    bool byPass;
    rk_aiq_ccm_op_mode_t mode;
    rk_aiq_ccm_mccm_attrib_v2_t stManual;
    rk_aiq_ccm_accm_attrib_t stAuto;
} rk_aiq_ccm_v2_attrib_t;
```

【成员】

成员名称	描述
sync	同步/异步信号,参考rk_aiq_uapi_sync_t定义说明,参见 "概述/API说明" 章节
byPass	跳过模块处理; true 跳过CCM,false CCM使能
mode	工作模式选择; 取值范围: {RK_AIQ_CCM_MODE_MANUAL, RK_AIQ_CCM_MODE_AUTO}, 分别 表示手动和自动模式
stManual	手动模式下属性参数配置
stAuto	自动模式下属性参数配置

rk_aiq_ccm_querry_info_t

【说明】

定义CCM查询信息

【定义】

```
typedef struct rk_aiq_ccm_querry_info_s {
   bool ccm_en;
   float ccMatrix[9];
   float ccOffsets[3];
   bool highy_adj_en;
   bool asym_enable;
   float y_alpha_curve[18];
   float low_bound_pos_bit;
   float right_pos_bit;
   float color_inhibition_level;
   float color_saturation_level;
   float finalSat;
   char ccmname1[25];
   char ccmname2[25];
} rk_aiq_ccm_querry_info_t;
```

成员名称	描述
ccm_en	CCM使能 true 使能,false 不使能

成员名称	描述	
ccMatrix	CCM生效校正矩阵; 取值范围: [-8,7.992]	
ccOffsets	生效R\G\B分量偏移; 取值范围: [-4096,4095]	
highy_adj_en	是否开启高Y区像素点亮度(12bit)相关颜色校正强度调节; 取值范围:TRUE或FALSE	
asym_enable	是否开启低Y、高Y区 像素点亮度(12bit)相关颜色校正强度非对称调节; 取值范围:TRUE或FALSE;	
bound_pos_bit	asym_enable = FALSE时,像素点亮度(12bit)相关颜色校正强度调节曲线拐点亮度值,即可调节亮度区间为:[0, 2^low_bound_pos_bit]和 [4095-2^low_bound_pos_bit, 4095],取值范围:[4,10] asym_enable = TRUE时,像素点亮度(12bit)相关颜色校正强度调节曲线左拐点亮度值,即低Y区可调节亮度区间为:[0, 2^low_bound_pos_bit],取值范围:[3,11]	
right_pos_bit	asym_enable = TRUE时有效,表示像素点亮度(12bit)相关颜色校正 强度调节曲线右拐点亮度值,即高Y区可调节亮度区间为: [4095- 2^low_bound_pos_bit, 4095] ,取值范围:[3,11]	
y_alpha_curve	像素点亮度(12bit)相关颜色校正强度调节曲线的强度配置; 当asym_enable=TRUE时,y_alpha_curve[0]~y_alpha_curve[8]配置 低Y区颜色校正强度曲线,递增, y_alpha_curve[9]~y_alpha_curve[17]配置高Y区颜色校正强度曲线, 递减; 当asym_enable=FALSE时,y_alpha_curve[0]~y_alpha_curve[17]配置 低/高Y区共用的颜色校正强度曲线; 取值范围: [0x0, 0x400]; 0x400表示1倍强度,0x0表示不校正	
color_inhibition_level	CCM色彩抑制水平(仅支持自动模式)	
color_saturation_level	CCM色彩饱和度水平(仅支持自动模式)	
finalSat	当前矩阵对应的饱和度值(仅支持自动模式)	
ccmname1	用于插值计算当前矩阵的标定矩阵名(仅支持自动模式)	
ccmname2	用于插值计算当前矩阵的标定矩阵名(仅支持自动模式)	

3DLUT

功能描述

3DLUT (3D look up table) 模块对图像进行RGB空间的颜色映射处理。

功能级API参考

rk_aiq_uapi2_setLut3dMode

【描述】

设置3DLUT工作模式。

【语法】

XCamReturn rk_aiq_uapi2_setLut3dMode(const rk_aiq_sys_ctx_t* ctx, opMode_t
mode);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
mode	工作模式; 取值范围: {OP_AUTO, OP_MANUAL}	输入

【返回值】

返回值	描述
0	成功
≢ E0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_a3dlut_module.cpp 中 "sample_set_a3dlut_manual" / "sample_set_a3dlut_auto" 设置手动/自动模式。

rk_aiq_uapi2_getLut3dMode

【描述】

获取3DLUT工作模式。

【语法】

XCamReturn rk_aiq_uapi2_getLut3dMode(const rk_aiq_sys_ctx_t* ctx, opMode_t
*mode);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入

参数名称	描述	输入/输出
mode	工作模式	输出

【返回值】

返回值	描述
0	成功
≢ E0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_a3dlut_module.cpp 中 "sample_get_a3dlut_mode" 设置手动/自动模式。

rk_aiq_uapi2_setM3dLut

【描述】

设置3DLUT手动3D查找表。

【语法】

```
XCamReturn rk_aiq_uapi2_setM3dLut(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_lut3d_table_t *mlut);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
mlut	3D查找表	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_a3dlut_module.cpp 中 "sample_set_a3dlut_manual_lut" 设置3DLUT手动3D查找表。

rk_aiq_uapi2_getM3dLut

【描述】

获取3DLUT 3D查找表。

【语法】

```
XCamReturn rk_aiq_uapi2_getM3dLut(const rk_aiq_sys_ctx_t* ctx,
    rk_aiq_lut3d_table_t *mlut);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
mlut	3D查找表	输出

【返回值】

返回值	描述
0	成功
丰60	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_a3dlut_module.cpp 中 "sample_get_a3dlut_lut" 获取3DLUT 3D查找表。

rk_aiq_uapi2_getA3dLutStrth

【描述】

获取3DLUT调节强度。

【语法】

```
XCamReturn rk_aiq_uapi2_getA3dLutStrth(const rk_aiq_sys_ctx_t* ctx, float
alpha);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
alpha	3DLUT调节强度	输出

【返回值】

返回值	描述
0	成功
≢€0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_a3dlut_module.cpp 中 "sample_get_a3dlut_strength" 获取3DLUT调节强度。

rk_aiq_uapi2_getA3dLutName

【描述】

获取自动模式下3DLUT表名。

【语法】

XCamReturn rk_aiq_uapi2_getA3dLutName(const rk_aiq_sys_ctx_t* ctx, char *name);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
name	3DLUT表名	输出

【返回值】

返回值	描述
0	成功
≢€0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

【示例】

参考 sample_a3dlut_module.cpp 中 "sample_get_a3dlut_lutname" 获取自动模式下3DLUT表名。

功能级API数据类型

$opMode_t$

【说明】

定义3DLUT工作模式。

【定义】

```
typedef enum opMode_e {
    OP_AUTO = 0,
    OP_MANUAL1 = 1,
    OP_INVAL
} opMode_t;
```

【成员】

成员名称	描述
OP_AUTO	自动模式
OP_MANUALI	手动模式
OP_INVAL	无效值

rk_aiq_lut3d_table_t

【说明】

定义3DLUT 3D查找表。

【定义】

```
typedef struct rk_aiq_lut3d_table_s{
   unsigned short look_up_table_r[729];
   unsigned short look_up_table_g[729];
   unsigned short look_up_table_b[729];
} rk_aiq_lut3d_table_t;
```

成员名称	描述
look_up_table_r	手动模式下R通道查找表; 取值范围: [0x0, 0x3ff]
look_up_table_g	手动模式下G通道查找表; 取值范围: [0x0, 0xfff]
look_up_table_b	手动模式下B通道查找表; 取值范围: [0x0, 0x3ff]

模块级API参考

rk_aiq_user_api2_a3dlut_SetAttrib

【描述】

设置3DLUT属性。

【语法】

XCamReturn rk_aiq_user_api2_a3dlut_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_lut3d_attrib_t attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	3DLUT的参数属性	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_a3dlut.h、rk_aiq_uapi_a3dlut_int.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_a3dlut_module.cpp 中 "sample_3dlut_set3dlutAttr" 等设置3DLUT属性。

rk_aiq_user_api2_a3dlut_GetAttrib

【描述】

获取3DLUT属性。

【语法】

XCamReturn

rk_aiq_user_api2_a3dlut_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_lut3d_attrib_t *attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	3DLUT的参数属性	输出

【返回值】

返回值	描述
0	成功
∃E 0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_a3dlut.h、rk_aiq_uapi_a3dlut_int.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_a3dlut_module.cpp 中 "sample_3dlut_get3dlutAttr" 等获取3DLUT属性。

rk_aiq_user_api2_a3dlut_Query3dlutInfo

【描述】

查询3DLUT信息。

【语法】

XCamReturn

```
rk_aiq_user_api2_a3dlut_Query3dlutInfo(const RkAiqAlgoContext *ctx,
rk_aiq_lut3d_querry_info_t *lut3d_querry_info );
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
lut3d_querry_info	3DLUT的查询内容	输出

【返回值】

返回值	描述
0	成功
丰60	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_a3dlut.h、rk_aiq_uapi_a3dlut_int.h

• 库文件: librkaiq.so

【示例】

• 参考 sample_a3dlut_module.cpp 中 "sample_query_a3dlut_info" 查询3DLUT信息。

模块级API数据类型

rk_aiq_lut3d_op_mode_t

【说明】

定义3DLUT工作模式

【定义】

【成员】

成员名称	描述
RK_AIQ_LUT3D_MODE_INVALID	3DLUT无效模式
RK_AIQ_LUT3D_MODE_MANUAL	3DLUT手动模式
RK_AIQ_LUT3D_MODE_AUTO	3DLUT自动模式

rk_aiq_lut3d_mlut3d_attrib_t

【说明】

定义手动3DLUT属性

【定义】

```
typedef struct rk_aiq_lut3d_mlut3d_attrib_s {
   unsigned short look_up_table_r[729];
   unsigned short look_up_table_g[729];
   unsigned short look_up_table_b[729];
} rk_aiq_lut3d_mlut3d_attrib_t;
```

成员名称	描述
look_up_table_r	手动模式下R通道查找表; 取值范围: [0x0, 0x3ff]
look_up_table_g	手动模式下G通道查找表; 取值范围: [0x0, 0xfff]
look_up_table_b	手动模式下B通道查找表; 取值范围: [0x0, 0x3ff]

$rk_aiq_lut3d_attrib_t$

【说明】

定义3DLUT属性

【定义】

```
typedef struct rk_aiq_lut3d_attrib_s {
    rk_aiq_uapi_sync_t sync;
    bool byPass;
    rk_aiq_lut3d_op_mode_t mode;
    rk_aiq_lut3d_mlut3d_attrib_t stManual;
} rk_aiq_lut3d_attrib_t;
```

【成员】

成员名称	描述
sync	同步/异步信号,参考rk_aiq_uapi_sync_t定义说明,参见 "概述/API说明" 章节
byPass	跳过模块处理; true 跳过3DLUT,false 3DLUT使能
mode	工作模式选择; 取值范围: {RK_AIQ_LUT3D_MODE_MANUAL, RK_AIQ_LUT3D_MODE_AUTO}, 分别表示手动和自动模式
stManual	手动模式下属性参数配置

rk_aiq_lut3d_querry_info_t

【说明】

定义3DLUT查询信息

【定义】

```
typedef struct rk_aiq_lut3d_querry_info_s {
   bool lut3d_en;
   float alpha;
   char name[25];
   unsigned short look_up_table_r[729];
   unsigned short look_up_table_g[729];
   unsigned short look_up_table_b[729];
   vnsigned short look_up_table_b[729];
} rk_aiq_lut3d_querry_info_t;
```

成员名称	描述
lut3d_en	3DLUT使能; true 使能,false 不使能

成员名称	描述
alpha	3DLUT调节强度; 取值范围: [0, 1.0],值越大强度越大; 手动模式下为1.0
name	3DLUT表名,仅支持自动模式
look_up_table_r	R通道查找表; 取值范围: [0x0, 0x3ff]
look_up_table_g	G通道查找表; 取值范围: [0x0, 0xfff]
look_up_table_b	B通道查找表; 取值范围: [0x0, 0x3ff]

LDCH

功能描述

LDCH对存在失真的图像进行复原性处理,该模块只对水平方向的图像畸变进行校正。

功能级API参考

rk_aiq_uapi_setLdchEn

【描述】水平畸变校正功能开关。

【语法】

XCamReturn rk_aiq_uapi2_setLdchEn(const rk_aiq_sys_ctx_t* ctx, bool en);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
en	校正开关	输入

【返回值】

返回值	描述
0	成功
丰60	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

$rk_aiq_uapi2_setLdchCorrectLevel$

【描述】设置水平畸变校正等级。

【语法】

XCamReturn rk_aiq_uapi2_setLdchCorrectLevel(const rk_aiq_sys_ctx_t* ctx, int
correctLevel);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
correctLevel	校正等级,取值范围: [0~255]	输入

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_imgproc.h

• 库文件: librkaiq.so

模块级API参考

rk_aiq_user_api2_aldch_SetAttrib

【描述】

设置fec属性。

【语法】

XCamReturn

```
rk_aiq_user_api2_aldch_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_ldch_attrib_t attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	ldch的参数属性	输入

【返回值】

返回值描述

返回值	描述
0	成功
∃ €0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_aldch.h

• 库文件: librkaiq.so

$rk_aiq_user_api2_aldch_GetAttrib$

【描述】

获取fec属性。

【语法】

XCamReturn

rk_aiq_user_api2_aldch_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_ldch_attrib_t attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	ldch的参数属性	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_aldch.h

• 库文件: librkaiq.so

模块级API数据类型

rk_aiq_ldch_attrib_t

【说明】

ldch属性配置

【定义】

```
typedef struct rk_aiq_ldch_cfg_s {
    rk_aiq_uapi_sync_t sync;

unsigned int en;
    int correct_level;
} rk_aiq_ldch_cfg_t;
```

成员名称	描述
sync	接口同步/异步功能,参考rk_aiq_uapi_sync_t定义说明,参见 "概述/API说明" 章 节
en	使能/关闭ldch
correct_level	设置ldch校正级别:[0~255]

DeBayer

功能描述

DeBayer完成将由 sensor 采集到的,带有 CFA 属性的图像通过插值算法还原成为具有完整像素信息的RGB图像。

该模块支持Bayer raw数据,包含 RGGB、BGGR、GRBG、GBRG 四种 pattern 模式。暂不支持 其他CFA数据,例如:RCCB, RGB-IR等CFA。

模块级API参考

rk_aiq_user_api_adebayer_SetAttrib

【描述】

设置去马赛克属性。

【语法】

```
XCamReturn
rk_aiq_user_api2_adebayer_v2_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
adebayer_attrib_t attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	去马赛克属性	输入

【返回值】

返回值	描述
0	成功

返回值	描述
]‡0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_adebayer.h

• 库文件: librkaiq.so

rk_aiq_user_api2_adebayer_v2_GetAttrib

【描述】

获取去马赛克属性。

【语法】

XCamReturn

rk_aiq_user_api2_adebayer_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
adebayer_attrib_t *attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	去马赛克属性	输出

【返回值】

返回值	描述
0	成功
≢0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_uapi2_adebayer_int.h

• 库文件: librkaiq.so

数据类型

adebayer_v2_attrib_t

【说明】

定义debayer可配置属性。

成员名称	描述
sync	同步/异步接口模式,参考rk_aiq_uapi_sync_t定义说明,参见 "概述/API说明" 章节
mode	debayer工作模式,包括手动模式(RK_AIQ_DEBAYER_MODE_MANUAL)及自动模式(RK_AIQ_DEBAYER_MODE_AUTO)
stManual	debaye手动控制模式下的配置属性
stAuto	debayer自动控制模式下的配置属性

$rk_aiq_debayer_op_mode_t$

【说明】

定义debayer工作模式。

【定义】

成员名称	描述
RK_AIQ_DEBAYER_MODE_INVALID	Debayer无效模式
RK_AIQ_DEBAYER_MODE_MANUAL	Debayer手动模式
RK_AIQ_DEBAYER_MODE_AUTO	Debayer自动模式

【说明】

定义debayer手动模式下的可配置属性。

成员具体含义可参考《Rockchip_Tuning_Guide_ISP32》文档中4.8.2的内容,此处仅做简要说明

```
typedef AdebayerSeletedParamV2_t adebayer_attrib_v2_manual_t;
typedef struct AdebayerSeletedParamV2_s {
   bool debayer_en;
   //filter coef
   int lowfreq_filter1[4];
   int highfreq_filter2[4];
   int c_alpha_gaus_coe[3];
   int c_guid_gaus_coe[3];
   int c_ce_gaus_coe[3];
   //g_interp
   unsigned char debayer_clip_en;
   unsigned short debayer_gain_offset;
   unsigned char debayer_max_ratio;
   //g_drctwgt
   unsigned short debayer_hf_offset;
   unsigned char debayer_thed0;
   unsigned char debayer_thed1;
   unsigned char debayer_dist_scale;
   unsigned char debayer_select_thed;
   //q_filter
   unsigned char debayer_gfilter_en;
   unsigned short debayer_gfilter_offset;
   //c_filter
   unsigned char debayer_cfilter_en;
   unsigned short debayer_loggd_offset;
   float debayer_cfilter_str;
   float debayer_wet_clip;
   float debayer_wet_ghost;
   float debayer_wgtslope;
   float debayer_bf_sgm;
   unsigned char debayer_bf_clip;
   unsigned char debayer_bf_curwgt;
   unsigned short debayer_loghf_offset;
   unsigned short debayer_alpha_offset;
   float debayer_alpha_scale;
   unsigned short debayer_edge_offset;
    float debayer_edge_scale;
} AdebayerSeletedParamV2_t;
```

成员名称	描述
lowfreq_filter1	低频梯度滤波器系数; 取值范围: [-16,15]
highfreq_filter2	高频梯度滤波器系数; 取值范围: [-16,15]
c_alpha_gaus_coe	alpha edge 滤波系数; 取值范围: [0,255]
c_guid_gaus_coe	导向图滤波系数 取值范围: [0,255]
c_ce_gaus_coe	色差滤波系数 取值范围: [0,255]
debayer_clip_en	G通道插值 clip 开关,0:关闭,1:打开。
debayer_gain_offset	计算 G 通道插值锐化系数的梯度偏移值 取值范围为[0,4095]
debayer_max_ratio	G 通道插值锐化系数的最大值; 取值范围: [0, 63]
debayer_hf_offset	梯度 offset; 取值范围[0, 65535]
debayer_thed0/thed1	控制高/低频权重选取取值范围[0, 15]。
debayer_dist_scale	高频细节判断阈值 取值范围[0, 15]
debayer_select_thed	高低频梯度选取方式的阈值 取值范围[0, 255]
debayer_gfilter_en	G 通道插值结果滤波开关,0:关闭,1:打开;
debayer_gfilter_offset	G 通道 clip offset 取值范围是[0,2047]
debayer_cfilter_en	色差图滤波开关,0:关闭,1:打开。
debayer_loggd_offset	导向图 log 变换 offset 取值范围[0,4095]
debayer_cfilter_str	色差图IIR 滤波力度 取值范围[0,1]
debayer_wet_clip	IIR 滤波权重 clip 值 取值范围[0,15.875]

成员名称	描述
debayer_wet_ghost	IIR 滤波抑制拖影阈值 取值范围[0,0.98]
debayer_wgtslope	IIR滤波指数权重曲线斜率 取值范围[0,31.992]
debayer_bf_sgm	保边滤波力度 取值范围[0,1]
debayer_bf_clip	色差双边滤波权重 clip值 取值范围[0,127]
debayer_bf_curwgt	色差双边滤波当前点权重 取值范围[0,127]
debayer_loghf_offset	计算融合权重时高频offset 取值范围是[0,8191]
debayer_alpha_offset	自适应计算的摩尔纹区域融合权重alpha的偏移值 取值范围是[0,4095]
debayer_alpha_scale	自适应计算的摩尔纹区域融合权重alpha的缩放比例 取值范围是[0,1023.999]
debayer_edge_offset	高频区域融合权重edge的偏移值 取值范围是[0,4095]
debayer_edge_scale	高频区域融合权重edge的缩放比例 取值范围是[0,1023.999]

adebayer_attrib_v2_auto_t

【说明】

定义debayer自动模式下的可配置属性。

```
typedef CalibDbv2_Debayer_Tuning_t adebayer_attrib_v2_auto_t;
typedef struct CalibDbv2_Debayer_Tuning_s {

   bool debayer_en;
   int lowfreq_filter1[4];
   int highfreq_filter2[4];
   int c_alpha_gaus_coe[3];
   int c_guid_gaus_coe[3];
   int c_ce_gaus_coe[3];
   int c_ce_gaus_coe[3];

   CalibDbv2_Debayer_GInterp_t g_interp;
   CalibDbv2_Debayer_GDirectwgt_t g_drctwgt;
   CalibDbv2_Debayer_GFilter_t g_filter;
   CalibDbv2_Debayer_CFilter_t c_filter;
} CalibDbv2_Debayer_Tuning_t;
```

该结构体内的成员说明可参考《Rockchip_Tuning_Guide_ISP32》文档中4.8.2的内容,此处不再另行说明

DPCC

功能描述

检测并消除图像中的坏点。建议详见《Rockchip_Tuning_Guide_ISP30》文档中4.6章节"DPCC"中"功能描述"。

模块级API参考

rk_aiq_user_api2_adpcc_SetAttrib

【描述】

设定 DPCC软件属性。

【语法】

XCamReturn

```
rk_aiq_user_api2_adpcc_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_dpcc_attrib_V20_t *attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	DPCC软件属性结构体	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_adpcc.h

• 库文件: librkaiq.so

【说明】

rk_aiq_user_api2_adpcc_GetAttrib

【描述】

获取 DPCC软件属性。

【语法】

```
XCamReturn
rk_aiq_user_api2_adpcc_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_dpcc_attrib_v20_t *attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	DPCC软件属性结构体	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_adpcc.h

• 库文件: librkaiq.so

【说明】

数据类型

rk_aiq_dpcc_attrib_V20_t

【说明】

定义坏点消除属性。

【定义】

```
typedef struct rk_aiq_dpcc_attrib_v20_s {
   AdpccOPMode_t eMode;
   Adpcc_Auto_Attr_t stAuto;
   Adpcc_Manual_Attr_t stManual;
   rk_aiq_uapi_sync_t sync;
} rk_aiq_dpcc_attrib_v20_t;
```

成员名称	描述
eMode	定义DPCC工作模式,详见 AdpccOPMode_t 说明
stAuto	自动模式的参数设定
stManual	手动模式的参数设定
sync	接口同步/异步功能,参考rk_aiq_uapi_sync_t定义说明,参见 "概述/API说明 " 章节

AdpccOPMode_t

【说明】

定义DPCC工作模式

【定义】

【成员】

成员名称	描述
ADPCC_OP_MODE_INVALID	Api无效模式
ADPCC_OP_MODE_AUTO	Api自动模式
ADPCC_OP_MODE_MANUAL	Api手动模式
ADPCC_OP_MODE_TOOL	Api工具模式
ADPCC_OP_MODE_MAX	

Adpcc_basic_params_select_t

【说明】

定义DPCC基本参数属性

```
typedef struct Adpcc_basic_params_select_s
{
   int
                 iso;
   unsigned char stage1_enable;
   unsigned char grayscale_mode;
   unsigned char enable;
    unsigned char sw_rk_out_sel;
   unsigned char sw_dpcc_output_sel;
   unsigned char stage1_rb_3x3;
   unsigned char stage1_g_3x3;
   unsigned char stage1_incl_rb_center;
   unsigned char stage1_incl_green_center;
   unsigned char stage1_use_fix_set;
   unsigned char stage1_use_set_3;
   unsigned char stage1_use_set_2;
   unsigned char stage1_use_set_1;
   unsigned char sw_rk_red_blue1_en;
   unsigned char rg_red_blue1_enable;
    unsigned char rnd_red_blue1_enable;
```

```
unsigned char ro_red_blue1_enable;
unsigned char lc_red_blue1_enable;
unsigned char pg_red_blue1_enable;
unsigned char sw_rk_green1_en;
unsigned char rg_green1_enable;
unsigned char rnd_green1_enable;
unsigned char ro_green1_enable;
unsigned char lc_green1_enable;
unsigned char pg_green1_enable;
unsigned char sw_rk_red_blue2_en;
unsigned char rg_red_blue2_enable;
unsigned char rnd_red_blue2_enable;
unsigned char ro_red_blue2_enable;
unsigned char lc_red_blue2_enable;
unsigned char pg_red_blue2_enable;
unsigned char sw_rk_green2_en;
unsigned char rg_green2_enable;
unsigned char rnd_green2_enable;
unsigned char ro_green2_enable;
unsigned char lc_green2_enable;
unsigned char pg_green2_enable;
unsigned char sw_rk_red_blue3_en;
unsigned char rg_red_blue3_enable;
unsigned char rnd_red_blue3_enable;
unsigned char ro_red_blue3_enable;
unsigned char lc_red_blue3_enable;
unsigned char pg_red_blue3_enable;
unsigned char sw_rk_green3_en;
unsigned char rg_green3_enable;
unsigned char rnd_green3_enable;
unsigned char ro_green3_enable;
unsigned char lc_green3_enable;
unsigned char pg_green3_enable;
unsigned char sw_mindis1_rb;
unsigned char sw_mindis1_g;
unsigned char line_thr_1_rb;
unsigned char line_thr_1_g;
unsigned char sw_dis_scale_min1;
unsigned char sw_dis_scale_max1;
unsigned char line_mad_fac_1_rb;
unsigned char line_mad_fac_1_g;
unsigned char pg_fac_1_rb;
unsigned char pg_fac_1_g;
unsigned char rnd_thr_1_rb;
unsigned char rnd_thr_1_g;
unsigned char rg_fac_1_rb;
unsigned char rg_fac_1_g;
unsigned char sw_mindis2_rb;
unsigned char sw_mindis2_g;
unsigned char line_thr_2_rb;
unsigned char line_thr_2_g;
unsigned char sw_dis_scale_min2;
unsigned char sw_dis_scale_max2;
unsigned char line_mad_fac_2_rb;
unsigned char line_mad_fac_2_g;
```

```
unsigned char pg_fac_2_rb;
    unsigned char pg_fac_2_g;
    unsigned char rnd_thr_2_rb;
    unsigned char rnd_thr_2_g;
    unsigned char rg_fac_2_rb;
    unsigned char rg_fac_2_g;
   unsigned char sw_mindis3_rb;
    unsigned char sw_mindis3_g;
    unsigned char line_thr_3_rb;
    unsigned char line_thr_3_g;
   unsigned char sw_dis_scale_min3;
    unsigned char sw_dis_scale_max3;
    unsigned char line_mad_fac_3_rb;
    unsigned char line_mad_fac_3_g;
   unsigned char pg_fac_3_rb;
   unsigned char pg_fac_3_g;
   unsigned char rnd_thr_3_rb;
    unsigned char rnd_thr_3_g;
   unsigned char rg_fac_3_rb;
   unsigned char rg_fac_3_g;
   unsigned char ro_lim_3_rb;
    unsigned char ro_lim_3_g;
   unsigned char ro_lim_2_rb;
   unsigned char ro_lim_2_g;
   unsigned char ro_lim_1_rb;
   unsigned char ro_lim_1_g;
   unsigned char rnd_offs_3_rb;
    unsigned char rnd_offs_3_g;
    unsigned char rnd_offs_2_rb;
    unsigned char rnd_offs_2_g;
    unsigned char rnd_offs_1_rb;
    unsigned char rnd_offs_1_g;
} Adpcc_basic_params_select_t;
```

Adpcc_basic_params_t

【说明】

定义DPCC基本参数属性

【定义】

```
typedef struct Adpcc_basic_params_s
{
    Adpcc_basic_params_select_t arBasic[DPCC_MAX_ISO_LEVEL];
} Adpcc_basic_params_t;
```

成员名称	描述
arBasic	DPCC基本参数属

Adpcc_bpt_params_t

【说明】

定义自动DPCC属性

【定义】

```
typedef struct Adpcc_bpt_params_s
   unsigned char
                      bpt_rb_3x3;
   unsigned char
                      bpt_g_3x3;
   unsigned char
                      bpt_incl_rb_center;
   unsigned char
                      bpt_incl_green_center;
   unsigned char
                      bpt_use_fix_set;
   unsigned char
                      bpt_use_set_3;
   unsigned char
                      bpt_use_set_2;
   unsigned char
                      bpt_use_set_1;
   unsigned char
                      bpt_cor_en;
   unsigned char
                      bpt_det_en;
   unsigned short int bp_number;
   unsigned short int bp_table_addr;
   unsigned short int bpt_v_addr;
   unsigned short int bpt_h_addr;
   unsigned int
                      bp_cnt;
} Adpcc_bpt_params_t;
```

dpcc_pdaf_point_t

【说明】

【定义】

```
typedef struct dpcc_pdaf_point_s
{
   unsigned char y;
   unsigned char x;
} dpcc_pdaf_point_t;
```

该模块还未实现

Adpcc_pdaf_params_t

【说明】

定义自动模式下PDAF模式属性

```
typedef struct Adpcc_pdaf_params_s
{
   unsigned char
                      sw_pdaf_en;
   unsigned char
                      pdaf_point_en[DPCC_PDAF_POINT_NUM];
   unsigned short int pdaf_offsety;
   unsigned short int pdaf_offsetx;
   unsigned char
                    pdaf_wrapy;
   unsigned char pdaf_wrapx;
   unsigned short int pdaf_wrapy_num;
   unsigned short int pdaf_wrapx_num;
   dpcc_pdaf_point_t point[DPCC_PDAF_POINT_NUM];
                    pdaf_forward_med;
   unsigned char
} Adpcc_pdaf_params_t;
```

该模块还未实现

CalibDb_Dpcc_Fast_Mode_t

【说明】

定义自动模式下Fast mode属性

【定义】

```
typedef struct CalibDb_Dpcc_Fast_Mode_s
{
   int fast_mode_en;
   int ISO[CALIBDB_DPCC_MAX_ISO_LEVEL];
   int fast_mode_single_en;
   int fast_mode_single_level[CALIBDB_DPCC_MAX_ISO_LEVEL];
   int fast_mode_double_en;
   int fast_mode_double_level[CALIBDB_DPCC_MAX_ISO_LEVEL];
   int fast_mode_triple_en;
   int fast_mode_triple_level[CALIBDB_DPCC_MAX_ISO_LEVEL];
} CalibDb_Dpcc_Fast_Mode_t;
```

成员名称	描述
Fast_mode_enable	Fast_mode开关功能,0:关闭,1:打开
ISO	环境ISO
fast_mode_single_en	单坏点去除开关,0:关闭,1:打开
fast_mode_single_level	单坏点去除力度,取值范围[0, 10]
fast_mode_double_en	双坏点去除开关,0:关闭,1:打开
fast_mode_double_level	双坏点去除力度,取值范围[0, 10]
fast_mode_triple_en	多坏点去除开关,0:关闭,1:打开
fast_mode_triple_level	多坏点去除力度,取值范围[0, 10]

CalibDb_Dpcc_Sensor_t

【说明】

定义自动模式下Fast mode属性

【定义】

```
typedef struct CalibDb_Dpcc_Sensor_s
{
    float en;
    float max_level;
    float iso[CALIBDB_DPCC_MAX_ISO_LEVEL];
    float level_single[CALIBDB_DPCC_MAX_ISO_LEVEL];
    float level_multiple[CALIBDB_DPCC_MAX_ISO_LEVEL];
} CalibDb_Dpcc_Sensor_t;
```

【成员】

成员名称	描述
en	sensor dpcc开关功能,0:关闭,1:打开
max_level	去除坏点最大力度
iso	环境ISO
level_single	去除单个坏点力度
level_multiple	去除多个坏点力度

Adpcc_bpt_params_select_t

【说明】

定义自动模式下选择的Fast mode属性

【定义】

```
typedef Adpcc_bpt_params_t Adpcc_bpt_params_select_t;
```

Adpcc_pdaf_params_select_t

【说明】

定义自动模式下选择的PDAF模式属性

【定义】

```
typedef Adpcc_pdaf_params_t Adpcc_pdaf_params_select_t
```

Adpcc_Auto_Attr_t

【说明】

定义自动DPCC属性

```
typedef struct Adpcc_Auto_Attr_s
{
    Adpcc_basic_params_t stBasicParams;
    Adpcc_bpt_params_t stBptParams;
    Adpcc_pdaf_params_t stPdafParams;
    CalibDb_Dpcc_Fast_Mode_t stFastMode;
    CalibDb_Dpcc_Sensor_t stSensorDpcc;
    Adpcc_basic_params_select_t stBasicSelect;
    Adpcc_bpt_params_select_t stBptSelect;
    Adpcc_pdaf_params_select_t stPdafSelect;
}
Adpcc_Auto_Attr_t;
```

成员名称	描述
stBasicParams	自动模式下基本参数
stBptParams	自动模式下坏点参数
stPdafParams	自动模式下PDAF模式参数
stFastMode	自动模式下快速模式参数
stSensorDpcc	自动模式下Sensor坏点功能参数
stBasicSelect	自动模式下选择的基本参数
stBptSelect	自动模式下选择的坏点参数
stPdafSelect	自动模式下选择的PDAF模式参数

Adpcc_fast_mode_attr_t

【说明】

定义手动模式下快速模式属性

【定义】

```
typedef struct Adpcc_fast_mode_attr_s
{
    bool fast_mode_en;
    bool fast_mode_single_en;
    int fast_mode_single_level;
    bool fast_mode_double_en;
    int fast_mode_double_level;
    bool fast_mode_triple_en;
    int fast_mode_triple_level;
}
```

成员名称	描述
------	----

成员名称	描述
Fast_mode_en	Fast_mode开关功能
fast_mode_single_en	单坏点去除开关
fast_mode_single_level	单坏点去除力度,取值范围[0, 10]
fast_mode_double_en	双坏点去除开关
fast_mode_double_level	双坏点去除力度,取值范围[0, 10]
fast_mode_triple_en	多坏点去除开关
fast_mode_triple_level	多坏点去除力度,取值范围[0, 10]

Adpcc_sensor_dpcc_attr_t

【说明】

定义手动模式下Sensor坏点功能属性

【定义】

```
typedef struct Adpcc_sensor_dpcc_attr_s
{
   bool en;
   int max_level;
   int single_level;
   int double_level;
} Adpcc_sensor_dpcc_attr_t;
```

【成员】

成员名称	描述
en	sensor dpcc开关功能
max_level	去除坏点最大力度
single_level	去除单个坏点力度
double_level	去除多个坏点力度

Adpcc_Manual_Attr_t

【说明】

定义手动DPCC属性

```
typedef struct Adpcc_Manual_Attr_s
{
    unsigned char enable;
    Adpcc_onfly_cfg_t stOnfly;
    Adpcc_bpt_params_select_t stBpt;
    Adpcc_pdaf_params_select_t stPdaf;
    Adpcc_sensor_dpcc_attr_t stSensorDpcc;
} Adpcc_Manual_Attr_t;
```

成员名称	描述
enable	手动模式DPCC开关
stOnfly	手动模式下ISP DPCC模块动态坏点检测以及校正功能参数
stBptParams	手动模式下ISP DPCC模块静态坏点校正功能参数
stPdafParams	手动模式下ISP DPCC模块PDAF SPC功能参数
stSensorDpcc	手动模式下Sensor端DPCC 模块坏点校正功能参数

Adpcc_onfly_cfg_t

【说明】

定义手动DPCC基本参数

【定义】

```
typedef struct Adpcc_onfly_cfg_s {
   Adpcc_onfly_mode_t mode;
   Adpcc_fast_mode_attr_t fast_mode;
   Adpcc_basic_cfg_params_t expert_mode;
} Adpcc_onfly_cfg_t;
```

【成员】

成员名称	描述
mode	快速模式或者专家模式
fastmode	手动模式下快速模式参数设置
expert_mode	手动模式下专家模式参数设置

Adpcc_onfly_mode_t

【说明】

定义手动DPCC基本参数

成员名称	描述
ADPCC_ONFLY_MODE_FAST	快速模式
ADPCC_ONFLY_MODE_EXPERT	专家模式
ADPCC_ONFLY_MODE_MAX	无效参数设置

CalibDb_Dpcc_Pdaf_t

【说明】

定义工具PDAF SPC功能属性参数

【定义】

```
typedef struct CalibDb_Dpcc_Pdaf_s
   unsigned char
                   en;
   unsigned char
                    point_en[16];
   unsigned short int offsetx;
   unsigned short int offsety;
   unsigned char wrapx;
   unsigned char
                    wrapy;
   unsigned short int wrapx_num;
   unsigned short int wrapy_num;
   unsigned char
                     point_x[16];
   unsigned char
                     point_y[16];
   unsigned char
                    forward_med;
} CalibDb_Dpcc_Pdaf_t;
```

CalibDb_Dpcc_set_RK_t

【说明】

定义RK算法属性

```
typedef struct CalibDb_Dpcc_set_RK_s
{
   unsigned char rb_enable[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char g_enable[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char rb_sw_mindis[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char g_sw_mindis[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char sw_dis_scale_min[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char sw_dis_scale_max[CALIBDB_DPCC_MAX_ISO_LEVEL];
} CalibDb_Dpcc_set_RK_t;
```

成员名称	描述
rb_enable	红、蓝通道坏点检测开关
g_enable	绿通道坏点检测开关
rb_sw_mindis	红、蓝通道坏点阈值1
g_sw_mindis	绿通道坏点阈值1
sw_dis_scale_min	坏点阈值2
sw_dis_scale_max	坏点阈值3

CalibDb_Dpcc_set_LC_t

【说明】

定义LC算法属性

【定义】

```
typedef struct CalibDb_Dpcc_set_LC_s
{
   unsigned char rb_enable[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char g_enable[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char rb_line_thr[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char g_line_thr[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char rb_line_mad_fac[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char g_line_mad_fac[CALIBDB_DPCC_MAX_ISO_LEVEL];
} CalibDb_Dpcc_set_LC_t;
```

成员名称	描述
rb_enable	红、蓝通道坏点检测开关
g_enable	绿通道坏点检测开关
rb_line_thr	红、蓝通道坏点阈值1
g_line_thr	绿通道坏点阈值1

成员名称	描述
rb_line_mad_fac	红、蓝通道坏点阈值2
g_line_mad_fac	绿通道坏点阈值2

$Calib Db_Dpcc_set_PG_t$

【说明】

定义PG算法属性

【定义】

```
typedef struct CalibDb_Dpcc_set_PG_s
{
    unsigned char rb_enable[CALIBDB_DPCC_MAX_ISO_LEVEL];
    unsigned char g_enable[CALIBDB_DPCC_MAX_ISO_LEVEL];
    unsigned char rb_pg_fac[CALIBDB_DPCC_MAX_ISO_LEVEL];
    unsigned char g_pg_fac[CALIBDB_DPCC_MAX_ISO_LEVEL];
} CalibDb_Dpcc_set_PG_t;
```

【成员】

成员名称	描述
rb_enable	红、蓝通道坏点检测开关
g_enable	绿通道坏点检测开关
rb_pg_fac	红、蓝通道坏点阈值
g_pg_fac	绿通道坏点阈值

CalibDb_Dpcc_set_RND_t

【说明】

定义RND算法属性

【定义】

```
typedef struct CalibDb_Dpcc_set_RND_s
{
   unsigned char rb_enable[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char g_enable[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char rb_rnd_thr[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char g_rnd_thr[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char rb_rnd_offs[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char g_rnd_offs[CALIBDB_DPCC_MAX_ISO_LEVEL];
} CalibDb_Dpcc_set_RND_t;
```

成员名称	描述
rb_enable	红、蓝通道坏点检测开关

成员名称	描述
g_enable	绿通道坏点检测开关
rb_rnd_thr	红、蓝通道坏点阈值1
g_rnd_thr	绿通道坏点阈值1
rb_rnd_offs	红、蓝通道坏点阈值2
g_rnd_offs	绿通道坏点阈值2

CalibDb_Dpcc_set_RG_t

【说明】

定义RK算法属性

【定义】

```
typedef struct CalibDb_Dpcc_set_RG_s
{
   unsigned char rb_enable[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char g_enable[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char rb_rg_fac[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char g_rg_fac[CALIBDB_DPCC_MAX_ISO_LEVEL];
} CalibDb_Dpcc_set_RG_t;
```

【成员】

成员名称	描述
rb_enable	红、蓝通道坏点检测开关
g_enable	绿通道坏点检测开关
rb_rg_fac	红、蓝通道坏点阈值
g_rg_fac	绿通道坏点阈值

CalibDb_Dpcc_set_RO_t

【说明】

定义RO算法属性

【定义】

```
typedef struct CalibDb_Dpcc_set_RO_s
{
   unsigned char rb_enable[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char g_enable[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char rb_ro_lim[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char g_ro_lim[CALIBDB_DPCC_MAX_ISO_LEVEL];
} CalibDb_Dpcc_set_RO_t;
```

成员名称	描述
rb_enable	红、蓝通道坏点检测开关
g_enable	绿通道坏点检测开关
rb_ro_lim	红、蓝通道坏点阈值
g_ro_lim	绿通道坏点阈值

CalibDb_Dpcc_set_t

【说明】

定义坏点判断条件属性

【定义】

```
typedef struct CalibDb_Dpcc_set_s
{
    CalibDb_Dpcc_set_RK_t rk;
    CalibDb_Dpcc_set_LC_t lc;
    CalibDb_Dpcc_set_PG_t pg;
    CalibDb_Dpcc_set_RND_t rnd;
    CalibDb_Dpcc_set_RG_t rg;
    CalibDb_Dpcc_set_RO_t ro;
} CalibDb_Dpcc_set_RO_t ro;
```

【成员】

成员名称	描述
rk	RK算法
lc	LC算法
pg	PG算法
rnd	RND算法
rg	RG算法
ro	RO算法

CalibDb_Dpcc_Expert_Mode_t

【说明】

定义工具专家模式属性

```
unsigned char
                      dpcc_out_sel[CALIBDB_DPCC_MAX_ISO_LEVEL];
    unsigned char
                       stage1_rb_3x3[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char
                       stage1_g_3x3[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char
                      stage1_inc_rb_center[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char
                       stage1_inc_g_center[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char
                      stage1_use_fix_set[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char
                      stage1_use_set3[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char
                      stage1_use_set2[CALIBDB_DPCC_MAX_ISO_LEVEL];
   unsigned char
                      stage1_use_set1[CALIBDB_DPCC_MAX_ISO_LEVEL];
   CalibDb_Dpcc_set_t set[3];
} CalibDb_Dpcc_Expert_Mode_t;
```

成员名称	描述
iso	环境ISO
stage1_Enable	默认值1
grayscale_mode	黑白模式开关,0: 关闭,1: 打开
rk_out_sel	RK坏点判断模式, 0: 模式1, 1: 模式2, 2: 模式3
dpcc_out_sel	坏点矫正模式, 0: 中值, 1: RK模式
stage1_rb_3x3	默认值0
stage1_g_3x3	默认值0
stage1_inc_rb_center	默认值1
stage1_inc_g_center	默认值1
stage1_use_fix_set	内置坏点判定条件开关,0:关闭,1:打开
stage1_use_set3	set_cell中第三种坏点判断条件开关,0:关闭,1:打开
stage1_use_set2	set_cell中第二种坏点判断条件开关,0:关闭,1:打开
stage1_use_set1	set_cell中第一种坏点判断条件开关,0:关闭,1:打开
set	坏点判断条件

CalibDb_Dpcc_t

【说明】

定义工具DPCC属性

成员名称	描述
enable	开关功能
version	版本
fast	快速模式
expert	专家模式
pdaf	PADF SPC功能模式下坏点条件
sensor_dpcc	Sensor端DPCC模块坏点校正参数

rk_aiq_dpcc_attrib_t

【说明】

定义DPCC属性

【定义】

成员名称	描述
eMode	api模式
stAuto	自动DPCC模式
stManual	手动DPCC模式
stTool	工具DPCC模式

LSC

功能描述

镜头阴影校正(Lens Shading Correction)是为了解决由于lens的光学特性,由于镜头对于光学折射不均匀导致的镜头周围出现阴影的情况。

模块级API参考

rk_aiq_user_api2_alsc_SetAttrib

【描述】

设置镜头阴影校正属性。

【语法】

```
XCamReturn
rk_aiq_user_api2_alsc_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_lsc_attrib_t attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	镜头阴影校正属性	输入

【返回值】

返回值	描述
0	成功
1年0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_alsc.h

• 库文件: librkaiq.so

rk_aiq_user_api2_alsc_GetAttrib

【描述】

获取镜头阴影校正属性。

【语法】

```
XCamReturn
rk_aiq_user_api2_adebayer_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_lsc_attrib_t *attr);
```

【参数】

参数名称	参数名称	描述	输入/输出
------	------	----	-------

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	镜头阴影校正属性	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_alsc.h

• 库文件: librkaiq.so

数据类型

 $rk_aiq_lsc_attrib_t$

【说明】

定义ISP镜头阴影校正属性。

【定义】

```
typedef struct rk_aiq_lsc_attrib_s {
  bool byPass;
  rk_aiq_lsc_op_mode_t mode;
  rk_aiq_lsc_mlsc_attrib_t stManual;
  rk_aiq_uapi_sync_t sync;
} rk_aiq_lsc_attrib_t;
```

【成员】

成员名称	描述
sync	接口同步/异步功能,参考rk_aiq_uapi_sync_t定义说明,参见 "概述/API说明" 章节
bypass	LSC模块使能 1: 关闭 0: 使能
mode	模式设置
stManual	手动模式下的参数设置

rk_aiq_lsc_op_mode_t

【说明】

定义ISP镜头阴影校正工作模式。

成员名称	描述
RK_AIQ_LSC_MODE_INVALID	无效模式
RK_AIQ_LSC_MODE_MANUAL	手动模式
RK_AIQ_LSC_MODE_AUTO	自动模式

rk_aiq_lsc_table_t

【说明】

定义ISP镜头阴影校正表。

【定义】

```
typedef struct rk_aiq_lsc_table_s {
   unsigned short r_data_tbl[LSC_DATA_TBL_SIZE];
   unsigned short gr_data_tbl[LSC_DATA_TBL_SIZE];
   unsigned short gb_data_tbl[LSC_DATA_TBL_SIZE];
   unsigned short b_data_tbl[LSC_DATA_TBL_SIZE];
} rk_aiq_lsc_table_t;
```

成员名称	描述
r_data_tbl	R分量校正表 元素个数为[17x17] 取值范围[1~7.99] 高3bit整数位低8bit小数位
gr_data_tbl	GR分量校正表 元素个数为[17x17] 取值范围[1~7.99] 高3bit整数位低8bit小数位
gb_data_tbl	GB分量校正表 元素个数为[17x17] 取值范围[1~7.99] 高3bit整数位低8bit小数位

成员名称	描述
b_data_tbl	B分量校正表 元素个数为[17x17] 取值范围[1~7.99] 高3bit整数位低8bit小数位

GIC

功能描述

GIC 模块用于矫正Gr与Gb两个通道的失衡,提高部分场景的图像质量。

模块级API参考

rk_aiq_user_api2_agic_v2_SetAttrib

【描述】

设定GIC软件属性。

【语法】

XCamReturn rk_aiq_user_api2_agic_v2_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
const rkaiq_gic_v2_api_attr_t* attr);

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	GIC软件属性结构体	输入

【返回值】

返回值	描述
0	成功
1=0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_agic.h

• 库文件: librkaiq.so

【说明】

rk_aiq_user_api2_agic_v2_GetAttrib

【描述】

获取 Gamma软件属性。

【语法】

```
XCamReturn rk_aiq_user_api2_agic_v2_GetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rkaiq_gic_v2_api_attr_t* attr);
```

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ 上下文指针	输入
attr	GIC 软件属性结构体	输出

【返回值】

返回值	描述
0	成功
丰60	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_agic.h

• 库文件: librkaiq.so

【说明】

模块级API数据类型

rkaiq_gic_api_op_mode_t

【说明】

定义GIC工作模式

【定义】

```
typedef enum rkaiq_gic_api_op_mode_e {
    RKAIQ_GIC_API_OPMODE_OFF = 0,
    RKAIQ_GIC_API_OPMODE_AUTO = 1,
    RKAIQ_GIC_API_OPMODE_MANUAL = 2,
} rkaiq_gic_api_op_mode_t;
```

成员名称	描述
RKAIQ_GIC_API_OPMODE_OFF	GIC 关闭模式
RKAIQ_GIC_API_OPMODE_AUTO	Api手动模式

成员名称	描述
RKAIQ_GIC_API_OPMODE_MANUAL	手动模式

rkaiq_gic_v2_param_selected_t

【说明】

定义RK3588下自动/手动的属性

【定义】

```
typedef struct rkaiq_gic_v2_param_selected_s {
    uint32_t iso;
    uint8_t bypass;
    uint8_t gr_ratio;
    uint16_t min_busy_thre;
    uint16_t min_grad_thr1;
    uint16_t min_grad_thr2;
    uint16_t k_grad1;
    uint16_t k_grad2;
    uint16_t gb_thre;
    uint16_t maxCorV;
    uint16_t maxCorVboth;
    uint16_t dark_thre;
    uint16_t dark_threHi;
    uint16_t k_grad1_dark;
    uint16_t k_grad2_dark;
    uint16_t min_grad_thr_dark1;
    uint16_t min_grad_thr_dark2;
    float NoiseScale;
    float NoiseBase;
    float noiseCurve_0;
    float noiseCurve_1;
    float globalStrength;
    uint16_t diff_clip;
} rkaiq_gic_v2_param_selected_t;
```

成员名称	描述
iso	环境iso
bypass	预留, 暂不使用
gr_ratio	预留, 暂不使用
min_busy_thre	busy区域检测能力,取值范围[0, 1023],默认值160
min_grad_thr1	非边缘区域的数量阈值1,GIC强度控制值,取值范围[0, 1023],默认值 32
min_grad_thr2	非边缘区域的数量阈值2,GIC强度控制值,取值范围[0, 1023],默认值 32

成员名称	描述	
k_grad1	边缘 (水平、垂直梯度) 的响应程度阈值1, 取值范围[0,15], 默认值5	
k_grad2	边缘 (水平、垂直梯度) 的响应程度阈值2, 取值范围[0,15], 默认值1	
gb_thre	缩放的比例系数,取值范围[0, 15],默认值7	
maxCorV	限制边缘区域gb的最大补偿值,取值范围[0, 1023],默认值40	
maxCorVboth	限制平坦(非边缘) 区域gb最大补偿值,取值范围[0, 1023],默认值8	
dark_thre	定义暗部区域的阈值1,取值范围[0,2047],默认值120	
dark_threHi	定义暗部区域的阈值2,取值范围[0,2047],默认值240	
k_grad1_dark	图像暗部的边缘(水平、垂直梯度)响应程度阈值1,取值范围[0, 15], 默认值6	
k_grad2_dark	图像暗部的边缘(水平、垂直梯度)响应程度阈值2,取值范围[0, 15], 默认值1	
min_grad_thr_dark1	图像暗部的非边缘区域的数量阈值1,取值范围[0,1023],默认值64	
min_grad_thr_dark2	图像暗部的非边缘区域的数量阈值2,取值范围[0,1023],默认值32	
noiseCurve_0	噪声曲线参数1	
noiseCurve_1	噪声曲线参数2	
globalStrength	全局控制调整gb补偿值的强度,取值范围[0, 2],默认值1	
NoiseScale	根据噪声曲线获取当前点噪 声标准差, 利用 noise_std *noise_scale来确定最大gb补偿值	
NoiseBase	惩罚图像边缘调整阈值,根据第一梯度和第二梯度计算结果 加上noise_offset,然后进行比较只要一个方向gradx>2*grady 就认为是边缘,不做调整	
diff_clip	限制最大gb的最大补偿值	

rkaiq_gic_v2_api_attr_t

【说明】

定义GIC属性

```
typedef struct rkaiq_gic_v2_api_attr_s {
    rk_aiq_uapi_sync_t sync;
    uint8_t gic_en;
    rkaiq_gic_api_op_mode_t op_mode;
    uint32_t iso_cnt;
    rkaiq_gic_v2_param_selected_t auto_params[RKAIQ_GIC_MAX_ISO_CNT];
    rkaiq_gic_v2_param_selected_t manual_param;
} rkaiq_gic_v2_api_attr_t;
```

成员名称	描述
sync	参考rk_aiq_uapi_sync_t定义,参见 "概述/API说明" 章节
gic_en	开关
op_mode	工作模式
iso_cnt	自动参数中的ISO个数
auto_params	自动参数,每个iso一组,软件自动根据iso插值计算
manual_param	手动参数,固定使用改组参数

CGC

功能描述

CGC(Color Gamut Compression)可设置色域压缩相关参数。

功能级API参考

模块级API参考

rk_aiq_user_api2_acgc_SetAttrib

【描述】

设置CGC模块属性

【语法】

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	CGC模块属性指针	输入

【返回值】

返回值	描述
0	成功
丰60	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_acgc.h

• 库文件: librkaiq.so

rk_aiq_user_api2_acgc_GetAttrib

【描述】

获取CGC模块当前属性

【语法】

【参数】

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	CGC模块属性指针	输出

【返回值】

返回值	描述
0	成功
≢€0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api2_acgc.h

• 库文件: librkaiq.so

模块级API数据类型

rk_aiq_uapi_acgc_attrib_t

【说明】

定义CGC模块API参数

【定义】

```
typedef struct rk_aiq_uapi_acgc_attrib_s {
    rk_aiq_uapi_sync_t sync;
    rk_aiq_acgc_params_t param;
} rk_aiq_uapi_acgc_attrib_t;
```

成员名称	描述
sync	参考rk_aiq_uapi_sync_t定义,参见 "概述/API说明" 章节

成员名称	描述
rk_aiq_acgc_params_t	cgc参数

rk_aiq_acgc_params_t

【说明】

定义CGC模块参数

【定义】

```
typedef struct __cgc_param {
    RKAiqOPMode_t op_mode;
    bool cgc_ratio_en;
    bool cgc_yuv_limit;
} Cgc_Param_t;

typedef Cgc_Param_t rk_aiq_acgc_params_t;
```

【成员】

成员名称	描述
op_mode	模式,RK_AIQ_OP_MODE_AUTO 或者 RK_AIQ_OP_MODE_MANUAL
cgc_ratio_en	是否开启色域压缩模式,默认值: FALSE
cgc_yuv_limit	是否输出 limit range,如果cgc_yuv_limit = FALSE,则bypass CGC,默认值: FALSE

统计信息

概述

概述

ISP32支持对图像数据处理获取到AWB / AE / AF 3A控制算法需要的相关的统计信息,大致框图如下:

ISP32-lite 3A统计框图

功能描述

AE统计信息

AE硬件统计信息主要包含以下几个部分:

基于raw域的加权直方图统计信息、分块R/G/B/Y均值统计信息;

基于raw图的AE统计

- 该模块统计分为分块亮度统计和直方图统计。根据支持的分块大小和是否含有独立子窗口统计,统计模式又可分为big模式、lite模式。
- big模式:最大支持15X15非独立子窗口分块,最小支持1X1非独立子窗口分块,每个分块均可输出10bit R/B通道亮度均值和12bit G通道均值,默认采用15X15分块;同时支持设置4个独立子窗口,每个独立子窗口均可输出29bit R/B通道亮度总和和32bit G通道总和,亮度均值需要在软件中除以每个独立子窗口的像素数求得。该模式下的加权直方图统计,根据分块数和对应分配的权重,进行256段8bit亮度统计,每个亮度分段内像素数的有效bit数为28bit。
- lite模式:最大支持5X5非独立子窗口分块,最小支持1X1非独立子窗口分块,每个分块均可输出 10bit R/B通道亮度均值和12bit G通道均值,默认采用5X5分块;不支持设置独立子窗口。该模式 下的加权直方图统计,根据分块数和对应分配的权重,进行64段8bit亮度统计,每个亮度分段内像 素数的有效bit数为28bit。
- 3562平台,默认非HDR曝光模式,配置BIG模式(15X15非独立子窗口);HDR 2帧模式,长帧为BIG模式(15X15非独立子窗口),短帧为LITE模式(5X5非独立子窗口,AF开启时无法获取短帧统计,需使用固定曝光比模式);不支持HDR 3帧模式。

AWB统计信息

AWB硬件统计数据源:

- hdr模式下用于选择进入rawawb统计的数据来源,共有以下几种:
 - 1. raw_in_short--->blc--->offset--->lsc--->rawawb_statistics 即ISP32-lite 3A统计框图中 Raw S
 - 2. raw_in_long--->blc--->offset--->lsc--->rawawb_statistics 即ISP32-lite 3A统计框图中 Raw L
 - 3. bay2dnr_output--->lsc--->rawawb_statistics 即ISP32-lite 3A统计框图中 awbIn-0
 - 4. hdr_drc_output--->rawawb_statistics 即ISP32-lite 3A统计框图中 awbIn-1
- linenar 模式下用于选择进入rawawb统计的数据来源,共有以下几种:
 - 1. raw_in--->blc--->offset--->lsc--->rawawb_statistics
 - 2. bay2dnr_output--->blc1-->offset--->lsc--->rawawb_statistics
 - 3. hdr_drc_output--->rawawb_statistics

其中:

由json中wb模块的rawSelectPara结构体参数指定

blc指的是主通路的blc(包括blc0和blc1)

blc1指的是主通路的blc1

offset为相对于主通路的blc差异值,由json中wb模块的blc2ForAwb结构体参数指定;

lsc值rawawb通路上的lsc, 该参数同主通路lsc, 只可以通过lscBypassEnable去控制是否执行lsc;

raw_in_xxx指的是sensor输出的raw;

bay2dnr_output指是bayer2dnr模块的输出;

hdr_drc_output指的是drc模块的输出;

AWB硬件统计信息包含白点统计信息和分块统计信息

• 白点统计信息

记录主窗口内4个光源2种大小的白区里的RGin,BGain累加值及个数;

4个UV或XY域附加框里的RGin,BGain累加值及个数;

白点亮度直方图

• 分块统计信息 图像5x5分块,每个块所有点或白点的R,G,B均值

AF统计信息

AFHW Stats硬件统计:

- ISP32-lite 3A统计框图中,AFHW Stats在ISP HDR模式下可以有4个统计数据源,线性模式下可以有3个统计数据源
- 支持水平方向1个可配置频段的FV输出,垂直方向上1个可配置频段的FV输出

ISP32-lite AF硬件统计模块框图

API参考

rk_aiq_uapi_sysctl_get3AStatsBlk

【描述】

同步获取3A统计信息。

【语法】

XCamReturn

rk_aiq_uapi_sysctl_get3AStatsBlk(const rk_aiq_sys_ctx_t* ctx, rk_aiq_isp_stats_t
**stats, int timeout_ms);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
stats	统计信息结构体指针	输出
timeout_ms	超时时间,-1意思是无限等待,直到有统计数据	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【需求】

• 头文件: rk_aiq_user_api_sysctl.h

• 库文件: librkaiq.so

rk_aiq_uapi_sysctl_release3AStatsRef

【描述】

释放获取的3A统计信息,与rk_aiq_uapi_sysctl_get3AStatsBlk配套使用。

【语法】

void
rk_aiq_uapi_sysctl_release3AStatsRef(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_isp_stats_t *stats);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
stats	统计信息结构体指针	输入

【返回值】

返回值	描述
0	成功
1=0	失败,详见错误码表

【需求】

• 头文件: rk_aiq_user_api_sysctl.h

• 库文件: librkaiq.so

参考代码

sdk: external/camera_engine_rkaiq/rkisp_demo/demo/af_algo_demo

数据类型

rk_aiq_isp_stats_t

【说明】

AIQ 3A统计信息

【定义】

```
typedef struct {
    rk_aiq_isp_aec_stats_t aec_stats;
    rk_aiq_isp_awb_stats2_v3x_t awb_stats_v3x;
    rk_aiq_isp_af_stats_t af_stats;
} rk_aiq_isp_stats_t;
```

【成员】

成员名称	描述
aec_stats	ae统计信息
rk_aiq_isp_awb_stats2_v3x_t	awb统计信息
af_stats	af统计信息

RKAiqAecStats_t

【说明】

定义AE数据信息,详细内容参见AE章节的功能描述。

【定义】

```
typedef struct RKAiqAecStats_s {
    RkAiqAecHwStatsRes_t ae_data;
    RKAiqAecExpInfo_t ae_exp;
} RKAiqAecStats_t;
```

成员名称	描述
ae_data	AE模块硬件统计信息
ae_exp	AE模块sensor曝光信息

RKAiqAecExpInfo_t

【说明】

AE模块曝光参数信息

【定义】

```
typedef struct RKAiqAecExpInfo_s {
    RkAiqExpParamComb_t LinearExp;
    RkAiqIrisParamComb_t HdrExp[3];
    RkAiqIrisParamComb_t Iris;
    uint16_t line_length_pixels;
    uint32_t frame_length_lines;
    float pixel_clock_freq_mhz;
    CISFeature_t CISFeature;
    RKAiqExpI2cParam_t exp_i2c_params;
} RKAiqAecExpInfo_t;
```

【成员】

成员名称	描述
LinearExp	非HDR模式的曝光参数信息,包含曝光实际值和RK格式的寄存器值
HdrExp	HDR模式的曝光参数信息,包含曝光实际值和RK格式的寄存器值,至多支持3帧曝光
exp_i2c_params	曝光参数的sensor寄存器值,第三方AE方案使用的曝光寄存器值参数
line_length_pixels	hts,其值由sensor的配置序列决定
frame_length_lines	vts,其值由sensor的配置序列决定
pixel_clock_freq_mhz	pclk,单位MHz,其值由sensor的配置序列决定

【注意事项】

HdrExp表示HDR模式下的曝光参数信息,至多支持3TO1。HDR 2TO1:下标0表示短帧曝光参数,下标1表示长帧曝光参数,下标2无效; HDR 3TO1:下标0表示短帧曝光参数,下标1表示中帧曝光参数,下标2表示长帧曝光参数。

RkAiqExpParamComb_t

【说明】

AE模块曝光参数信息详细内容

```
typedef struct {
    RkAiqExpRealParam_t exp_real_params; //real value
    RkAiqExpSensorParam_t exp_sensor_params;//RK reg value
} RkAiqExpParamComb_t;
```

成员名称	描述
------	----

成员名称	描述
exp_real_params	曝光分量的实际物理值
exp_sensor_params	曝光分量的sensor寄存器值,遵循RK曝光设置方式

```
typedef struct RkAiqExpRealParam_s {
    float integration_time;
    float analog_gain;
    float digital_gain;
    float isp_dgain;
    int iso;
    int dcg_mode;
} RkAiqExpRealParam_t;
```

成员名称	描述
integration_time	曝光积分时间,单位为秒(s)
analog_gain	sensor的模拟增益/Total增益,单位为倍数
digital_gain	sensor的数字增益,单位为倍数,当sensor的数字增益起弥补模拟增益精度作用时,配置为1x,整体增益值写入analog_gain中
isp_dgain	isp数字增益,单位为倍数,目前暂无效,默认值为1x
iso	总增益值,iso表示系统增益,以常数50乘以倍数为单位,iso = total增益 *50
dcg_mode	dual conversion gain模式

```
typedef struct RkAiqExpSensorParam_s {
   unsigned short fine_integration_time;
   unsigned short coarse_integration_time;
   unsigned short analog_gain_code_global;
   unsigned short digital_gain_global;
   unsigned short isp_digital_gain;
} RkAiqExpSensorParam_t;
```

成员名称	描述
fine_integration_time	sensor曝光积分时间的小数行寄存器值,仅当sensor支持小数行时,需要填写
coarse_integration_time	sensor曝光积分时间对应的寄存器值,单位为行数
analog_gain_code_global	sensor模拟增益对应的寄存器值
digital_gain_global	sensor数字增益对应的寄存器值
isp_digital_gain	isp数字增益寄存器值,暂时无效

【注意事项】

- 不同sensor的数字增益作用不同,有的是用于增大感光度范围,有的是用于补足模拟增益的精度。
 因此目前先不将数字增益单独列出,其大小和对应寄存器值全部并入模拟增益中。
- dual conversion gain模式共有三种状态,值为-1代表sensor不支持dcg,值为0代表LCG,值为1代表HCG

RKAiqExpl2cParam_t

【说明】

AE模块I2c曝光参数(一般为第三方AE使用)

【定义】

【成员】

成员名称	描述
bValid	l2c参数生效使能位 true:使用RKAiqExpl2cParam_t设置寄存器值(一般为第三方AE使用); false:使用RK格式的寄存器参数进行寄存器值设置
nNumRegs	设置的寄存器值数量
RegAddr	寄存器地址数组,元素最大个数为64
AddrByteNum	寄存器地址的比特长度,元素最大个数为64
RegValue	寄存器值数组,元素最大个数为64
ValueByteNum	寄存器值的比特长度,元素最大个数为64
DelayFrames	寄存器值延迟生效帧数数组,元素最大个数为64

【注意事项】

- 该寄存器参数仅在第三方AE应用,且bValid为true时才有效,否则默认使用 RkAiqExpParamComb_t中的RK格式寄存器参数
- 可支持设置的寄存器值最大个数为64

RkAiqIrisParamComb_t

【说明】

AE模块光圈参数

【定义】

```
typedef struct {
    RkAiqPIrisParam_t PIris;
   RkAiqDCIrisParam_t DCIris;
} RkAiqIrisParamComb_t;
typedef struct {
   int
                 step;
   int
                gain;
   bool
                 update;
} RkAiqPIrisParam_t;
typedef struct {
   int
            pwmDuty; //percent value,range = 0-100
   bool
              update;
} RkAiqDCIrisParam_t;
```

【成员】

成员名称	子成员	描述
Plris	step gain update	P光圈参数: P光圈步进寄存器值 P光圈步进等效增益值 P光圈步进更新标志
DCIris	pwmDuty update	DC光圈参数: PWM占空比值,取值范围: 1~100 DC光圈参数更新标志

RkAiqAecHwStatsRes_t

【说明】

AE模块硬件统计信息

【定义】

```
typedef struct RkAiqAecHwStatsRes_s {
   Aec_Stat_Res_t chn[3];
   Aec_Stat_Res_t extra;
   struct yuvae_stat yuvae;
   struct sihist_stat sihist;
} RkAiqAecHwStatsRes_t;
```

成员名称	描述
chn[3]	AE模块基于raw图(BLC和AWB之后)的统计信息,兼容HDR与非HDR模式,至多支持HDR 3TO1 S/M/L的统计信息。
extra	AE模块基于raw图(Debayer之前)的统计信息,HDR模式下,其表示合成帧的统计信息
yuvae	AE模块基于gamma前RGB图的分块信息【3588平台不支持】

成员名 称	描述
sihist	AE模块基于gamma前RGB图的直方图信息【3588平台不支持】

【注意事项】

- Aec_Stat_Res_t chn[3]: 代表HDR Merge模块前3个Raw数据通路的统计信息。非HDR模式,对应下标为0,其他下标均无效; HDR 2TO1模式,对应下标为0时表示短帧数据通路统计信息、下标1表示长帧数据通路统计信息,下标2无效; HDR 3TO1模式,对应下标为0时表示短帧数据通路统计信息、下标1表示中帧数据通路统计信息、下标2表示长帧数据通路统计信息。基于raw图的统计模块之前有BLC AWB模块,因此基于raw图的统计信息受BLC、AWB的增益值影响。
- Aec_Stat_Res_t extra: HDR模式下, extra表示HDR合成后的raw图统计信息。该统计模块之前有BLC、AWB、HDRMERGE、TMO等模块, 因此该模块的统计信息受BLC、AWB、HDRMERGE、TMO等模块的增益影响。此外AF模块开启时, 该部分统计信息无效。
- 针对3588平台不支持基于gamma前RGB图的分块信息和直方图信息

Aec_Stat_Res_t

【说明】

AE模块基于raw图的统计信息

【定义】

```
typedef struct Aec_Stat_Res_s {
    //rawae
    struct rawaebig_stat rawae_big;
    struct rawaelite_stat rawae_lite;
    //rawhist
    struct rawhist_stat rawhist_big;
    struct rawhist_stat rawhist_lite;
} Aec_Stat_Res_t;
```

【成员】

成员名称	描述
rawae_big	基于raw图的big模式分块统计信息
rawae_lite	基于raw图的lite模式分块统计信息
rawhist_big	基于raw图的big模式直方图统计信息
rawhist_lite	基于raw图的lite模式直方图统计信息

【注意事项】

- 有关基于raw图统计的big、lite模式区别详见功能描述模块。需注意: big与lite模式的主要区别在于分块统计均值亮度的块数及是否支持独立子窗口均值亮度统计。基于raw图的big、lite模式直方图统计具有相同的数据结构。
- 3588平台,默认非HDR曝光模式,配置BIG模式(15X15非独立子窗口);HDR 2帧模式,各帧皆为BIG模式(15X15非独立子窗口);HDR 3帧模式,短帧和长帧为BIG模式(15X15非独立子窗口),中帧为LITE模式(5X5非独立子窗口)

【说明】

基于raw图的big模式统计信息,包含15X15个非独立子窗口的R/G/B均值亮度、4个独立子窗口的R/G/B 亮度总和

【定义】

```
struct rawaebig_stat {
   unsigned short channelr_xy[RAWAEBIG_WIN_NUM];
   unsigned short channelg_xy[RAWAEBIG_WIN_NUM];
   unsigned short channelb_xy[RAWAEBIG_WIN_NUM];
   unsigned int
                  channely_xy[RAWAEBIG_WIN_NUM]; //not HW!
   unsigned long int wndx_sumr[RAWAEBIG_SUBWIN_NUM];
   unsigned long int wndx_sumg[RAWAEBIG_SUBWIN_NUM];
   unsigned long int wndx_sumb[RAWAEBIG_SUBWIN_NUM];
   unsigned short wndx_channelr[RAWAEBIG_SUBWIN_NUM]; //not HW!
   unsigned short wndx_channelg[RAWAEBIG_SUBWIN_NUM]; //not HW!
   unsigned short wndx_channelb[RAWAEBIG_SUBWIN_NUM]; //not HW!
   unsigned char wndx_channely[RAWAEBIG_SUBWIN_NUM]; //not HW!
};
#define RAWAEBIG_WIN_NUM
                          225
#define RAWAEBIG_SUBWIN_NUM 4
```

【成员】

成员名称	描述
channelr_xy	big模式非独立子窗口分块的r通道均值亮度信息。有效比特数: 10bit。
channelg_xy	big模式非独立子窗口分块的g通道均值亮度信息。有效比特数: 12bit。
channelb_xy	big模式非独立子窗口分块的b通道均值亮度信息。有效比特数: 10bit。
wndx_sumr	big模式独立子窗口的r通道亮度和信息。有效比特数:29bit。
wndx_sumg	big模式独立子窗口的g通道亮度和信息。有效比特数:32bit。
wndx_sumb	big模式独立子窗口的b通道亮度和信息。有效比特数:29bit。

【注意事项】

- 基于raw图的big模式统计信息,仅包含R/G/B 3通道的统计信息,如需Y通道统计信息,可在软件中添加代码根据R/G/B统计值计算。
- 基于raw图的big模式统计信息,包含15X15个非独立子窗口,非独立子窗口有最小尺寸限制,要求最小尺寸为16X4。
- 基于raw图的big模式统计信息,包含4个独立子窗口,其位置可重叠也可不重叠,有最大尺寸要求,不得超过2k x 1k。
- 结构体中的channely_xy、wndx_channelr、wndx_channelg、wndx_channelb、wndx_channely参数皆为软件计算参数,需要软件添加代码,根据硬件统计值计算求得。

【说明】

基于raw图的lite模式统计信息,包含5X5个非独立子窗口分块R/G/B均值亮度

【定义】

```
struct rawaelite_stat {
   unsigned short channelr_xy[RAWAELITE_WIN_NUM];
   unsigned short channelg_xy[RAWAELITE_WIN_NUM];
   unsigned short channelb_xy[RAWAELITE_WIN_NUM];
   unsigned int channely_xy[RAWAELITE_WIN_NUM]; //not HW!
};
#define RAWAELITE_WIN_NUM 25
```

【成员】

成员名称	描述
channelr_xy	lite模式非独立子窗口分块的r通道均值亮度信息。有效比特数: 10bit。
channelg_xy	lite模式非独立子窗口分块的g通道均值亮度信息。有效比特数: 12bit。
channelb_xy	lite模式非独立子窗口分块的b通道均值亮度信息。有效比特数:10bit。

【注意事项】

- 基于raw图的lite模式统计信息,仅包含5X5的非独立子窗口R/G/B 3通道的统计信息,如需Y通道统计信息,可在软件中添加代码根据R/G/B统计值计算。非独立子窗口有最小尺寸限制,要求最小尺寸为16X4。
- 结构体中的channely_xy为软件计算参数,需要添加代码,根据硬件统计值计算求得。

rawhist_stat

【说明】

基于raw图的直方图统计信息

【定义】

```
struct rawhist_stat {
    unsigned int bins[RAWHIST_BIN_N_MAX];
};
#define RAWHIST_BIN_N_MAX 256
```

成员名称	描述
bins	直方图的分段,共256段,每个分段内有效bit数:28bit

rk_aiq_awb_stat_res_v32_t

【说明】

定义白平衡硬件统计信息,主要包含白点统计信息和分块统计信息

• 白点统计信息

记录主窗口内4个光源2种大小的白区里的RGin,BGain累加值及个数;

4个UV或XY域附加框里的RGin,BGain累加值及个数;

白点亮度直方图;

• 分块统计信息

图像5x5分块(如AWB分块示意图所示),每个块所有点或白点的R,G,B均值

Image

图 AWB分块示意图

【定义】

成员名称	描述
light	主窗口下不同光源下的白点统计结果,最多 RK_AIQ_AWB_MAX_WHITEREGIONS_NUM_V32个光源;

成员名称	描述
WpNo2	主窗口下不同光源下的xy域和uv域交集的白点个数,没有小数位。
blockResult	每个块的RGB累加 图像采用均匀分块方式,如AWB分块示意图所示。虽然该数组共 RK_AIQ_AWB_GRID_NUM_TOTAL(15x15) 个元素,但仅前5x5块内容 有效;
excWpRangeResult	落在excludeWpRange区域里的点的统计结果(只会记录excludeWpRange前四个区域),最多4个区域
WpNoHist	白点直方图每个bin的白点个数,没有小数位。 统计的是XY大框还是XY中框的白点由寄存器xyRangeTypeForWpHist确 定。

【注意事项】

如果用户希望获取主窗口全局的白点统计结果,根据所有光源下的白点统计结果可以简单换算得到。

rk_aiq_awb_stat_wp_res_light_v201_t

【说明】

定义某个光源下的白点统计结果

【定义】

```
typedef struct rk_aiq_awb_stat_wp_res_light_v201_s {
    rk_aiq_awb_stat_wp_res_v201_t xyType[RK_AIQ_AWB_XY_TYPE_MAX_v201];
} rk_aiq_awb_stat_wp_res_light_v201_t;
```

【成员】

成员名称	描述
xYType	某个光源下不同大小的XY框的白点统计结果,最多RK_AIQ_AWB_XY_TYPE_MAX_V201 个框,即2个框

rk_aiq_awb_stat_wp_res_v201_t

【说明】

定义某个光源某个大小的XY框下的白点统计结果,后非白点区域里的非白点统计结果

【定义】

```
typedef struct rk_aiq_awb_stat_wp_res_v201_s {
   long long WpNo;
   long long RgainValue;
   long long BgainValue;
} rk_aiq_awb_stat_wp_res_v201_t;
```

成员名称	描述
WpNo	白点数量,22bit整数位,10ibit小数位。其中 WpNo = ISP硬件统计白点数 / 2^10.
RgainValue	白点R通道的累加和,22bit整数位,10ibit小数位
BgainValue	白点G通道的累加和,22bit整数位,10ibit小数位

rk_aiq_awb_stat_blk_res_v201_t

【说明】

定义每个块的统计结果。

若blkMeasureMode = =RK_AIQ_AWB_BLK_STAT_MODE_ALL_V201, 记录的结果为块内所有点的累加和;

若blkMeasureMode = =RK_AIQ_AWB_BLK_STAT_MODE_REALWP_V201, 记录的结果为块内所有白点的累加和;

其中blkMeasureMode 为控制块统计内容的寄存器。

【定义】

```
typedef struct rk_aiq_awb_stat_blk_res_v201_s {
   long long WpNo;
   long long Rvalue;
   long long Gvalue;
   long long Bvalue;
} rk_aiq_awb_stat_blk_res_v201_t;
```

【成员】

成员名称	描述
WpNo	块内点的个数
Rvalue	块内所有点R通道的累加和
Gvalue	块内所有点RG通道的累加和
Bvalue	块内所有点RB通道的累加和

rk_aiq_isp_af_stats_v3x_t

【说明】

定义AF统计信息

【定义】

```
typedef struct {
   unsigned int wndb_luma;
   unsigned int wndb_sharpness;
   unsigned int winb_highlit_cnt;
   unsigned int wnda_luma[RKAIQ_RAWAF_SUMDATA_NUM];
   unsigned int wnda_fv_v1[RKAIQ_RAWAF_SUMDATA_NUM];
   unsigned int wnda_fv_v2[RKAIQ_RAWAF_SUMDATA_NUM];
```

```
unsigned int wnda_fv_h1[RKAIQ_RAWAF_SUMDATA_NUM];
unsigned int wnda_fv_h2[RKAIQ_RAWAF_SUMDATA_NUM];
unsigned int wina_highlit_cnt[RKAIQ_RAWAF_SUMDATA_NUM];
int comp_bls;

struct timeval focus_starttim;
struct timeval focus_endtim;
struct timeval zoom_starttim;
struct timeval zoom_endtim;
int64_t sof_tim;
int focusCode;
int zoomCode;
bool focusCorrection;
bool zoomCorrection;
float anglez;
} rk_aiq_af_algo_stat_v3x_t;
```

成员名称	描述
wndb_luma	独立窗口的亮度值,处于废弃状态,建议不要使用
wndb_sharpness	独立窗口的清晰度值,处于废弃状态,建议不要使用
winb_highlit_cnt	独立窗口的高亮计数值,处于废弃状态,建议不要使用
wnda_luma	主窗口下5*5子窗口的亮度值,前25个值有效
wnda_fv_v1	主窗口下5*5子窗口的V1清晰度值,前25个值有效
wnda_fv_v2	lite版本下V2通道已被删除
wnda_fv_h1	主窗口下5*5子窗口的H1清晰度值,前25个值有效
wnda_fv_h2	lite版本下H2通道已被删除
wina_highlit_cnt	主窗口下5*5子窗口的高亮计数值,前25个值有效
comp_bls	RK AF算法使用,可以忽略
focus_starttim	RK AF算法使用,可以忽略
focus_endtim	RK AF算法使用,可以忽略
zoom_starttim	RK AF算法使用,可以忽略
zoom_endtim	RK AF算法使用,可以忽略
sof_tim	本次数据帧的帧开始时间,单位ns
focusCode	RK AF算法使用,可以忽略
zoomCode	RK AF算法使用,可以忽略
focusCorrection	RK AF算法使用,可以忽略
zoomCorrection	RK AF算法使用,可以忽略

成员名称	描述	
angleZ	RK AF算法使用,可以忽略	

##

AIQ效果参数多场景支持

JSON-IQ与场景切换

RKAIQ中引入了多场景IQ文件支持,使得用户可以在一份IQ文件中实现多组图像效果参数,配合 RKAIQ提供的UAPI接口做到无缝切换。

IQ文件格式说明

下面是一个标准的IQ文件JSON层级视图,其中main_scene为顶级数组(即主场景定义),sub_scene为main_scene的子级(即子场景定义),核心的IQ参数保存在每一个scene_isp32结构中。

- 1. 主场景下,必须包含1个具备ISP所有模块参数的子场景,固定为子场景1.
- 1. 主场景下,可以包含多个子场景,每个子场景可以包含isp所有模块的参数,也可以是仅包含与子场景1 差异的模块参数。

当需要切换参数的时候,我们只需要调用rk_aiq_uapi2_sysctl_switch_scene 指定参数所在的 main_scene的名称和sub_scene的名称,程序即可找到对应的参数并完成切换。

```
▼ object {7}
   ▶ sensor_calib {10}
   ▶ module_calib {1}
   ▼ main_scene [2]
      ▼ 0 {3}
           name : normal
         ▼ sub_scene [2]
            ▼ 0 {2}
                 name : day
               ▶ scene_isp32 {29}
            ▼ 1 {2}
                 name : night
               ▼ scene_isp32 {4}
                  ▶ colorAsGrey {1}
                  ▶ sharp_v33 {2}
                  ▼ csm {1}
                     ▶ TuningPara {5}
                  ▶ cgc {1}
           sub_scene_len: 2
      ▼ 1 {3}
           name : hdr
         ▶ sub_scene [2]
           sub_scene_len : 2
     main_scene_len: 2
   ▶ uapi [0]
     uapi_len:0
   ▶ sys_static_cfg {1}
```

模块说明:

OBJECT名称	说明	备注
sensor_calib	与SENSOR型号相关的参数	多个场景共用
module_calib	与模组型号相关的参数	多个场景共用
uapi	调试相关结构	用户无需关心
sys_static_cfg	调试相关结构	用户无需关心
main_scene	主场景集合,该结构体对应的数 据类型为数组	如上图,包含两个主场景normal和 HDR
main_scene_len	主场景个数, main_scene 数组 中的成员个数	
sub_scene	子场景集合, main_scene 的成 员	如上图,normal主场景下包含day和 night两个子场景

OBJECT名称	说明	备注
sub_scene_len	主场景个数, sub_scene 数组中 的成员个数	
scene_isp32	场景的最小单元,包含 AE 等ISP 模块参数	

子场景差异参数示例:

例如我们有以下A、B两个场景,其中A定义为子场景1,即具备完整参数的子场景

场景A

```
"name": "day",
   "ae_calib": {
       "enable": true,
       "value": 1.4
   },
    "af_calib": {
       "enable": true,
       "value": 1.4
   },
    "awb_calib": {
       "enable": true,
       "value": 1.4
   },
    "colorAsGrey": {
       "enable": false,
       "value": 1.4
   }
}
```

场景B

```
"name": "night",
"ae_calib": {
   "enable": true,
    "value": 1.2
},
"af_calib": {
    "enable": true,
    "value": 1.4
},
"awb_calib": {
    "enable": false,
    "value": 1.4
},
"colorAsGrey": {
    "enable": true,
    "value": 1.4
```

}

以day为基础场景,经过分析场景B与场景A的差异,仅在场景B中保留差异部分,则场景B可以改写为:

场景B

```
{
    "name": "night",
    "ae_calib": {
        "value": 1.2
    },
    "awb_calib": {
            "enable": false
    },
    "colorAsGrey": {
            "enable": true
    }
}
```

以此类推,多场景IQ文件在既保证JSON格式完整性的情况下减少了体积占用。

需要注意的是: 当我们的差异部分为数组元素的时候,需要保证同级的元素都被保留,且顺序保持一致,否则可能出现错误。

编程接口:

在RKAIQ初始化完成后,我们可以通过调用以下接口来完成场景切换:

接口描述:

参数名称	说明	类型
sys_ctx	RKAIQ实例指针	指针
main_scene	主场景名称	字符串
sub_scene	子场景名称	字符串

JSON-IQ转BINARY-IQ

概述

- JSON转BIN方案旨在为用户提供一个体积小且快速加载IQ的方案,推荐使用在小存储单元和时间敏感类应用场景中;
- JSON与BIN同时存在的情况下, JSON的优先级高于BIN;
- JSON转BIN工具需要和AIQ版本——对应,版本不同将导致无法预估的错误;
- IQ调试和Calib释放相关逻辑依赖|2S框架,当选择仅支持BIN模式,某些特殊功能不支持;

J2S Parser	BIN Parser	在线调试	场景切换	在线更新IQ
ENABLE	ENABLE	Υ	Υ	Υ
ENABLE	DISABLE	Υ	Υ	Υ
DISABLE	ENABLE	N	Υ	N
DISABLE	DISABLE	N	Υ	N

转换工具使用说明

转换工具源码路径: camera_engine_rkaiq/tool/j2s4b

编译:

进入转换工具源码路径

cd too1/j2s4b/

执行转换工具编译脚本

./build.sh

编译完成将在output/j2s4b路径生成转换工具

转换说明:

output/j2s4b <input.json> <output.bin>

参数说明

参数名称	说明	备注
input.json	输入的 JSON-IQ 文件	必须是完整参数的 IQ 文件,不能含有差分参数,否则运行时会导致严重错误
output.bin	输出的BINARY- IQ文件	需要和RKAIQ版本——对应,否则运行时会导致严重错误

转换完成工后工具会自行将转换输出与原输入JSON进行校验,校验一致的话,会输出**YES**标识将转换完成的bin文件重命名,文件名除后缀为.bin以外其它与原输入JSON一致将输出的BIN文件放到设备IQ目录中,并将同目录下同名的JSON文件删除/备份

如果输入的IQ文件中包含多个完整的场景参数,则转换完后依然可以调用UAPI来实现场景切换。

SmartIr

概述

提供软光敏功能,为应用提供日夜判断结果。

功能描述

原理是通过 AE 的亮度统计来判断环境亮度,以及通过 AWB 统计来判断红外光是否为主要光源,通过这些信息综合判断是否进行日夜切换。

SmartIr 基于 AIQ 统计 API 实现,编译后生成独立的 SamrtIr 库,独立于AIQ库。

API

rk_smart_ir_init

【描述】

初始化 SmartIr 运行环境。

【语法】

```
rk_smart_ir_ctx_t* rk_smart_ir_init(const rk_aiq_sys_ctx_t* ctx)
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
非NULL	成功,返回对应于 AIQ ctx 的 SmartIr ctx
NULL	失败

【需求】

• 头文件: rk_smart_ir_api.h

• 库文件: libsmartIr.so librkaiq.so

$rk_smart_ir_deInit$

【描述】

反初始化 SmartIr。

【语法】

XCamReturn rk_smart_ir_deInit(const rk_smart_ir_ctx_t* ir_ctx)

【参数】

参数名称	描述	输入/输出
ir_ctx	Smartlr 上下文指针	输入

【返回值】

返回值	描述
0	成功
∃E 0	失败 ,详见错误码说明

【需求】

• 头文件: rk_smart_ir_api.h

• 库文件: libsmartIr.so librkaiq.so

rk_smart_ir_config

【描述】

配置参数

【语法】

XCamReturn rk_smart_ir_config(rk_smart_ir_ctx_t* ctx, rk_smart_ir_params_t*
config)

【参数】

参数名称	描述	输入/输出
ctx	Smartlr 上下文指针	输入
config	配置日夜判断参数	输入

【返回值】

返回值	描述
0	成功
1=0	失败 ,详见错误码说明

【需求】

• 头文件: rk_smart_ir_api.h

• 库文件: libsmartIr.so librkaiq.so

rk_smart_ir_runOnce

【描述】

执行日夜判断流程

【语法】

XCamReturn

rk_smart_ir_runOnce(rk_smart_ir_ctx_t* ctx, rk_aiq_isp_stats_t* stats_ref,
rk_smart_ir_result_t* result)

【参数】

参数名称	描述	输入/输出
ctx	Smartlr 上下文指针	输入
stats_ref	3A 统计信息	输入
result	日夜判断结果	输出

【返回值】

返回值	描述
0	成功
≢ E0	失败 , 详见错误码说明

【需求】

• 头文件: rk_smart_ir_api.h

• 库文件: libsmartIr.so librkaiq.so

数据类型

RK_SMART_IR_STATUS_t

【说明】

日夜状态类型

【定义】

```
typedef enum RK_SMART_IR_STATUS_E {
    RK_SMART_IR_STATUS_DAY,
    RK_SMART_IR_STATUS_NIGHT,
} RK_SMART_IR_STATUS_t;
```

【成员】

成员名称	描述
RK_SMART_IR_STATUS_DAY	状态为白天
RK_SMART_IR_STATUS_NIGHT	状态为黑夜

rk_smart_ir_params_t

【说明】

算法参数配置

【定义】

```
typedef struct rk_smart_ir_params_s {
    float d2n_envL_th;
    float n2d_envL_th;
    float RG_gain_max;
    float RG_gain_min;
    float BG_gain_min;
    uint16_t switch_cnts_th;
} rk_smart_ir_params_t;
```

【成员】

成员名称	描述
d2n_envL_th	日转夜亮度阈值,计算公式为: envL = AE 亮度统计值 / (曝光时间 × 增益),曝光时间单位为毫秒,增益为倍数
n2d_envL_th	夜转日亮度阈值,计算公式为: envL = AE 亮度统计值 / (曝光时间 × 增益),曝光时间单位为毫秒,增益为倍数
RG_gain_max	红外为主光源时的 Rgain/Ggain 最大阈值
RG_gain_min	红外为主光源时的 Rgain/Ggain 最小阈值
BG_gain_max	红外为主光源时的 Bgain/Ggain 最大阈值
BG_gain_min	红外为主光源时的 Bgain/Ggain 最小阈值
switch_cnts_th	切换阈值,保持相同状态次数大于该阈值时才允许状态切换

功能集成

参考 rkisp_demo/demo/sample/sample_smartlr.cpp

参数调试

由于各设备使用的红外灯及Sensor差异,需要对 rk_smart_ir_params_t 中的配置参数做调试才能达到比较理想的效果。调试步骤如下:

- 1) 红外光白平衡响应参数范围标定
 - 启动预览,将红外灯打开,ircutter关闭,并将设备置于无可见光环境
 - 按照 sample_smartlr 中的 calibration 模式,获得sensor在无可见光时的 RGgain 及 BGgain
 - 根据获得的 RGgain 及 BGgain 确定 RG_gain_max、RG_gain_min、BG_gain_max、BG_gain_min 范围,一般可设置在 0.85 ~ 1.2 范围内,可根据实际情况调整。范围越宽,误判为红外主光源几率越大,黑夜转白天就越不容易。

2) 亮度切换阈值设置

假设 sensor 限定的最大曝光为 30 毫秒,增益为 32 倍,预设的目标亮度为 160 (基于 10 bit,相当于8 bit 的 45) ,那么:

• d2n_envL_th = 10 / (30 * 32) 约为 0.01 , 此时,假定等同于目标亮度为 10 (基于 10bit) , 曝光 量为最大时,白天切成黑夜

- n2d_envL_th = 60 / (15 * 4) 约为 1.0, 此时,假定等同于目标亮度为60 (基于10bit),曝光量为 15毫秒 x 4 倍,黑夜切白天
- 可通过 API rk_aiq_user_api2_ae_queryExpResInfo 查询当前环境亮度,注意该 API 返回的环境亮度基于 8bit 亮度统计计算得来
- 3) 灵敏度控制

switch_cnts_th 可用于控制切换灵敏度,可根据帧率将该值换算成时间。公式为:

状态保持时长 (ms) = 1 / fps x 1000 x switch_cnts_th

假设帧率为30fps,探测到日夜切换时需要保持100次以上时才允许切换,那切换延时大概在 3.3 秒。

Debug & FAQ

如何获取版本号

aiq提供了版本发布日期、aiq版本、iq解析器版本及isp各个算法模块的版本信息;

获取简略版本信息

```
strings librkaiq.so | grep -w AIQ
AIQ: v0.1.6
```

获取完整版本信息

1. SDK中aiq库默认编译为Release版本,需要改成Debug版本,重新编译aiq库后更新到设备。

SDK/external/camera_engine_rkaiq/CMakeLists.txt:

```
8
9 if(NOT CMAKE_BUILD_TYPE STREQUAL "Release")
10 add_definitions(-DBUILD_TYPE_DEBUG)
11 endif()
```

改成:

```
8
9 #if(NOT CMAKE_BUILD_TYPE STREQUAL "Release")
10 add_definitions(-DBUILD_TYPE_DEBUG)
11 #endif()
```

2. 默认打印级别下,加载运行的aiq库不会打印,可以设置xcore模块的log级别,以打印aiq版本信息:

```
export persist_camera_engine_log=0x1000000ff2
```

3. aig启动时打印版本信息如下所示:

```
************************

version release date: 2020-06-05

AIQ: v0.1.6

IQ PARSER: v1.0.0

RK INTEGRATED ALGO MODULES:
```

```
AWB: v0.0.9
              AEC: v0.1.1
              AF: v0.0.9
             AHDR: v0.0.9
              ANR: v0.0.9
           ASHARP: v0.0.9
          ADEHAZE: v0.0.9
           AGAMMA: v0.0.9
           A3DLUT: v0.0.9
             ABLC: v0.0.9
             ACCM: v0.0.9
             ACGC: v0.0.9
             ACP: v0.0.9
          ADEBAYER: v0.0.1
            ADPCC: v0.0.9
            AGIC: v0.0.9
             AIE: v0.0.1
            ALDCH: v0.0.9
             ALSC: v0.0.9
             AORB: v0.0.9
             AR2Y: v0.0.9
             ASD: v0.0.9
             AWDR: v0.0.9
```

版本号匹配规则说明

AIQ与IQ Tool、ISP Driver的版本匹配规则如下:

v A . B. C

其中B为16进制表示,bit[0:3] 标识 AIQ与IQ Tool的匹配版本,bit[4:7]标识AIQ与ISP driver的匹配版本,例如:

ISP driver: v 1. 0x3.0 与 AIQ: v1.0x30.0匹配,与AIQ: v1.0x40.0不匹配。

IQ tool: v 1. 0x3.0 与 AIQ: v1.0x33.0匹配,与AIQ: v1.0x30.0不匹配,其中AIQ 版本号C不为0,有可能出现版本不匹配的情况,针对IQ Tool匹配建议优先采用C版本号为0的AIQ版本。

AIQ Log

概述

aiq采用64bits表示所有模块的log级别,表示各个模块的位图及说明如下:

```
bit: [63-39]
                        37
                                 36
                                            34
                                       35
                                                    33
mean: [U] [CAMHW] [ANALYZER] [XCORE] [ASD] [ACGC] [AFEC] [AORB] [ASHARP]
bit: 30 29 28
                        27
                               26
                                        25
                                                 24
                                                    23
                                                               22
mean: [AIE] [ACP] [ACSM] [ALDCH] [A3DLUT] [ADEHAZE] [AWDR] [AGAMMA] [ACCM]
bit:
          21
                 20
                        19
                           18
                                   17
                                                    14 13
                                         16
mean: [ADEBAYER] [AGIC] [ALSC] [ANR] [AHDR] [ADPCC] [ABLC] [AF] [AWB] [AEC]
bit:
        11-4
                    3-0
```

```
mean:[sub modules][level]
    [U] means unused now.
    [level] : use 4 bits to define log levels.
   each module log has following ascending levels:
   0: error
   1: warning
   2: info
   3: debug
   4: verbose
   5: low1
   6-7: unused, now the same as debug
    [sub modules] : use bits 4-11 to define the sub modules of each module,
thespecific meaning of each bit is decided by the module itself. These bitsis
designed to implement the sub module's log switch.
    [modules] : AEC, AWB, AF ...
   set debug level example:
   eg. set module af log level to debug, and enable all sub modules of af:
   Android:
   setprop persist.vendor.rkisp.log 0x4ff4
   Linux:
   export persist_camera_engine_log=0x4ff4
   And if only want enable the sub module 1 log of af:
   Android:
   setprop persist.vendor.rkisp.log 0x4014
   Linux:
    export persist_camera_engine_log=0x4014
```

如上说明, linux环境下通过设置环境变量persist_camera_engine_log来控制各个模块的开关级别。

模块	Debug log	Verbose log
AE	export persist_camera_engine_log=0x1ff3	export persist_camera_engine_log=0x1ff4
AWB	export persist_camera_engine_log=0x2ff3	export persist_camera_engine_log=0x2ff4
AF	export persist_camera_engine_log=0x4ff3	export persist_camera_engine_log=0x4ff4
HDR	export persist_camera_engine_log=0x20ff3	export persist_camera_engine_log=0x20ff3
NR	export persist_camera_engine_log=0x40ff3	export persist_camera_engine_log=0x40ff4
Dehaze	export persist_camera_engine_log=0x2000ff3	export persist_camera_engine_log=0x2000ff3
Sharp	export persist_camera_engine_log=0x80000ff3	export persist_camera_engine_log=0x80000ff4
CAMHW	export persist_camera_engine_log=0x4000000ff3	export persist_camera_engine_log=0x4000000ff4

ΑE

Log level	描述以及使能建议
Error	默认使能 严重错误
Warning	默认未使能 警告错误,算法内部可能针对该错误进行了异常处理,算法仍可继续运行
Info	默认未使能 基本调试信息: 逐帧输出信息:无 事件信息:算法中运行状态信息及帧率相关信息,一般仅在初始化、切换分辨率、修 改配置参数时打印 建议: 用于获知算法运行状态及帧率值
Debug	默认未使能 基本调试信息(相对Info等级增加): 逐帧输出信息:帧号、帧匹配曝光量、帧匹配AE统计信息(图像亮度)及曝光结果值 事件信息: 建议: 通过连续的图像亮度、曝光量等信息来调试图像亮度闪烁等问题
Verbose	默认未使能 基本调试信息(相对Debug等级增加): 逐帧输出信息: 算法相关运算结果信息 事件信息: 建议: 一般不开启,当debug等级无法判断问题时再开启

Sub modules bit	描述以及使能建议
bit[4]	与AE参数配置相关的log等级 建议: 读取IQ或API设置参数时,可根据该等级log查看配置参数是否正确。
bit[5]	AE信息处理模块日志开关,该模块根据AE统计计算环境以及图像相关指标。 建议: 读取和统计值相关的亮度信息
bit[6]	AE曝光量计算模块日志开关。 建议: 读取和曝光结果相关的信息

Sub modules bit	描述以及使能建议
bit[7]	与Airis光圈算法相关的log等级, 建议: 可变光圈相关问题。
bit[8:11]	无效

由于篇幅限制,此处仅对debug等级(0x1ff3,对应AE所有子模块的debug级信息)的log进行内容解读。

• 线性模式AE LOG

图3-1 线性模式AE LOG

如图3-1所示为线性模式的AE LOG示例。

Line1:

Cur-Exp: FrmId=270,gain=0x36a,time=0x576,envChange=0,dcg=-1,pirs=0

当前帧的曝光参数信息。

成员名称	描述
FrmId	当前帧的帧号
gain	当前帧对应的sensor曝光增益寄存器值
time	当前帧对应的sensor曝光时间寄存器值
envChange	当前帧是否发生环境亮度突变。0:环境亮度无突变;1:环境亮度突变
dcg	当前帧对应的dcg模式。-1:sensor不支持dcg模式 或 sensor内部进行dcg模式的切换; 0:LCG模式; 1:HCG模式
pirs	当前帧对应的p-iris光圈步进电机位置。若Airis功能关闭,该参数无效,无意义。

Line2:

Last-Res:FrmId=269,gain=0x356,time=0x576,pirs=0

上次运行AE设置的新曝光参数,部分参数与(1)中含义一致,此处不再赘述。通过比较Line1与Line2的曝光参数LOG信息,可知当前曝光是否与新曝光一致,即新曝光是否已经生效。

Line3:

=======================================	===== Linear-AE
(enter)========	===========

进入AE控制算法模块, Linear-AE表示当前为线性曝光模式。

Line4:

Framenum=270

Cur

gain=6.826667,time=0.029987,pirisGain=0,RawMeanluma=29.564444,YuvMeanluma=3 4.875557,IsConverged=0

成员名称	描述
Framenum	当前帧的帧号
gain	当前帧对应的sensor曝光增益值
time	当前帧对应的sensor曝光时间值
pirisGain	当前帧对应的p-iris光圈等效增益值。若Airis功能关闭,该参数无效,无意义。
RawMeanluma	当前帧对应的debayer前raw图亮度,已扣除黑电平,并乘上awb gain。
YuvMeanluma	当前帧对应的gamma前RGB图亮度,用于判断debayer后的模块对亮度的影响。
IsConverged	当前帧曝光是否已经收敛。0:曝光未收敛;1:曝光已收敛

Line 5:

AecClmExecute: NewExposure(0.180993) SplitGain(6.033096) SplitIntegrationTime(0.030000) SplitPirisGain(0)

成员名称	描述
NewExposure	AE控制算法得出的新曝光量值
SplitGain	新sensor曝光增益
SplitIntegrationTime	新sensor曝光时间
SplitPirisGain	新p-iris光圈等效增益值。若Airis功能关闭,该参数无效,无意义。

Line6:

calc

result:SetPoint=22.000000,gain=6.023529,time=0.029987,piris=0,reggain=854,regtime=1398

最终设置的新曝光

成员名称	描述
SetPoint	目标亮度值
gain	最终的新曝光增益值

成员名称	描述
time	最终的新曝光时间值
piris	最终的新p-iris光圈等效增益值。若Airis功能关闭,该参数无效,无意义。
reggain	最终的新曝光增益值对应的寄存器值
regtime	最终的新曝光时间值对应的寄存器值

综上,可得知当前帧的画面亮度RawMeanLuma,以及对应的目标亮度setpoint。通过比较画面亮度和目标亮度,计算新曝光。

• Hdr模式AE LOG:

```
rk_in_algo_ae_itf.cpp:246: Cur-Exp: FrmId=22,S-gain=0x0,S-time=0x2b6,M-gain=0xb,M-time=0x1a5e,L-gain=0x0,L-time=0x0,envChange=1,dcg=-1--1-1,Piris=0 rk_aiq_algo_ae_itf.cpp:254: Last-Res:FrmId=20,S-gain=0x5,S-time=0x8ca,M-gain=0x11,M-time=0x1a5e,L-gain=0x0,L-time=0x0
```

图3-2 Hdr模式AE LOG

Line1:

Cur-Exp: FrmId=22,S-gain=0x0,S-time=0x2b6,M-gain=0xb,M-time=0x1a5e,L-gain=0x0,L-time=0x0,envChange=1,dcg=-1--1--1,Piris=0

当前帧的曝光参数信息。

成员名称	描述
FrmId	当前帧的帧号
S/M/L-gain	当前Hdr各帧对应的sensor曝光增益寄存器值。HDR 2帧模式时,S/M有效; HDR 3帧模式时,S/M/L皆有效。
S/M/L-time	当前Hdr各帧对应的sensor曝光时间寄存器值。HDR 2帧模式时,S/M有效; HDR 3帧模式时,S/M/L皆有效。
envChange	当前帧是否发生环境亮度突变。0:环境亮度无突变;1:环境亮度突变
dcg	当前帧对应的dcg模式,分别对应短中长3帧。Hdr 2帧模式时,前两个数值有效,分别代表短长帧的dcg模式;Hdr 3帧模式时,三个数值分别代表短中长的dcg模式。-1:sensor不支持dcg模式 或 sensor内部进行dcg模式的切换;0:LCG模式;1:HCG模式
pirs	当前帧对应的p-iris光圈步进电机位置。若Airis功能关闭,该参数无效,无意义。

Line2:

Last-Res:FrmId=20,S-gain=0x5,S-time=0x8ca,M-gain=0x11,M-time=0x1a5e,L-gain=0x0,L-time=0x0

上次运行AE设置的新曝光参数,部分参数与(1)中含义一致,此处不再赘述。通过比较Line1与Line2的曝光参数LOG信息,可知当前曝光是否与新曝光一致,即新曝光是否已经生效。

Line3:

进入AE控制算法模块, HDR-AE表示当前为HDR曝光模式。

Line4:

AecRun: SMeanLuma=9.342692,

MMean Luma = 37.698597, LMean Luma = 0.000000, Tmo Mean luma = 37.571430, Is converge

d=0,Longfrm=0

成员名称	描述
S/M/LMeanLuma	当前Hdr各帧的亮度均值。HDR 2帧模式时,S/M有效;HDR 3帧模式时,S/M/L皆有效。
TmoMeanluma	当前帧TMO模块输出的亮度均值。
Isconverged	当前Hdr各帧曝光量是否收敛。0:曝光未收敛;1:曝光已收敛。
Longfrm	当前帧的长帧模式状态。0:长帧模式关闭;1:长帧模式开启。

Line5:

Framenum=22 Cur Piris=0,

Sgain=1.000000, Stime=0.002570, mgain=1.462177, mtime=0.025000, lgain=1.000000, ltime=0.000000

成员名称	描述
Framenum	当前帧的帧号
s/m/lgain	当前帧对应的sensor曝光增益值。HDR 2帧模式时,s/m有效;HDR 3帧模式时,s/m/l皆有效。
s/m/ltime	当前帧对应的sensor曝光时间值。HDR 2帧模式时,s/m有效;HDR 3帧模式时,s/m/l皆有效。
piris	当前帧对应的p-iris光圈等效增益值。若Airis功能关闭,该参数无效,无意义。

Line6:

S-HighLightLuma=197.250000,S-Target=100.000000,S-GlobalLuma=9.342692,S-Target=19.959433

短帧控制算法LOG

成员名称	描述
S-HighLightLuma	当前短帧高亮区域亮度。
S-Target	当前短帧高亮区域目标亮度。

成员名称	描述
S-GlobalLuma	当前短帧全局区域平均亮度。
S-Target	当前短帧全局区域目标亮度。

Line7:

L-LowLightLuma=29.626642,L-Target=48.572094,L-GlobalLuma=37.698597,L-Target=77.620155

长帧控制算法LOG

成员名称	描述
L-LowLightLuma	当前长帧暗区亮度
L-Target	当前长帧暗区目标亮度。
L-GlobalLuma	当前长帧全局区域平均亮度。
L-Target	当前长帧全局区域目标亮度。

Line8:

calc

result:piris=0,sgain=1.000000,stime=0.005081,mgain=1.862087,mtime=0.025000,lgain=0.000000,ltime=0.000000

AE控制算法输出的曝光结果

成员名称	描述
s/m/lgain	最终新sensor曝光增益值。HDR 2帧模式时,s/m有效;HDR 3帧模式时,s/m/l皆有效。
s/m/ltime	最终新sensor曝光时间值。HDR 2帧模式时,s/m有效;HDR 3帧模式时,s/m/l皆有效。
piris	最终新p-iris光圈等效增益值。若Airis功能关闭,该参数无效,无意义。

AWB

Log level	描述以及使能建议
Error	默认使能 严重错误
Warning	默认使能 警告错误,算法内部可能针对该错误进行了异常处理.

Log level	描述以及使能建议
Info	默认未使能 基本调试信息: 逐帧输出信息: wbgain结果 事件信息: 建议 :
debug	默认未使能 基本调试信息(相对Info等级增加): 逐帧输出信息: 白平衡收敛状态,环境亮度,白点数量,总的色温信息,概率大的前四个光源的概率等等事件信息:awb的api调用后的相关属性信息打印建议: 当对输出log大小有限制时,可以采用该等级获取关键log信息用于debug
Verbose	默认未使能 基本调试信息(相对Debug等级增加): 逐帧输出信息:各个光源白点统计信息(白平衡增益,白点数量),及策略相关的中间量结果等等事件信息: 建议: 推荐使用该等级抓完整的log用于debug

Sub modules bit	描述以及使能建议
bit[4:11]	无效

参考《Rockchip_Color_Optimization_Guide_ISP2x_CN》

AF

Log level	描述以及使能建议
Error	默认使能 严重错误
Warning	默认未使能 警告错误,算法内部可能针对该错误进行了异常处理.
Info	默认未使能 基本调试信息: 逐帧输出信息:对焦搜索算法最终结果 事件信息: 建议:

Log level	描述以及使能建议
debug	默认未使能 基本调试信息(相对Info等级增加): 逐帧输出信息: FV统计值, 马达移动位置信息 事件信息: 对焦触发、清晰位置搜索、变焦、跟焦、对焦 建议: 推荐使用该等级抓完整的log用于debug
Verbose	默认未使能 基本调试信息(相对Debug等级增加): 无 逐帧输出信息: 事件信息: 建议: 无

Sub modules bit	描述以及使能建议
bit[4:11]	无效

MERGE

Log level	描述以及使能建议
Info	默认未使能 基本调试信息: 逐帧输出信息: 暂未使用 事件信息: 暂未使用 建议: 关闭
debug	默认未使能 基本调试信息: 逐帧输出信息: Merge调试信息 事件信息: 暂未使用 建议: 当画面亮度不符合预期,或者TMO之后对比度不够时候开启
Verbose	默认未使能 基本调试信息(相对Verbose等级增加): 逐帧输出信息: Mrerge曝光相关信息 事件信息: 暂未使用 建议: 当画面出现闪烁,且从AE log中确认是TMO在闪烁时开启,供RK人员debug 使用

Sub modules bit	描述以及使能建议
bit[4:11]	无效

当模式为线性时, merge日志等级如下:

```
[AMERGE]:XCAM DEBUG rk_aiq_algo_amerge_itf.cpp:256: AmergeProcess FrameID:0, It's in Linear Mode, Merge function bypass [AMERGE]:XCAM DEBUG rk_aiq_algo_amerge_itf.cpp:256: AmergeProcess FrameID:1, It's in Linear Mode, Merge function bypass [AMERGE]:XCAM DEBUG rk_aiq_algo_amerge_itf.cpp:256: AmergeProcess FrameID:2, It's in Linear Mode, Merge function bypass [AMERGE]:XCAM DEBUG rk_aiq_algo_amerge_itf.cpp:256: AmergeProcess FrameID:3, It's in Linear Mode, Merge function bypass [AMERGE]:XCAM DEBUG rk_aiq_algo_amerge_itf.cpp:256: AmergeProcess FrameID:4, It's in Linear Mode, Merge function bypass [AMERGE]:XCAM DEBUG rk_aiq_algo_amerge_itf.cpp:256: AmergeProcess FrameID:5, It's in Linear Mode, Merge function bypass [AMERGE]:XCAM DEBUG rk_aiq_algo_amerge_itf.cpp:256: AmergeProcess FrameID:6, It's in Linear Mode, Merge function bypass
```

当模式为HDR且基准帧为长帧时,merge日志等级为10000000ff3时

名称	描述
FrameID	帧号
HDRFrameNum	HDR帧数
LongFrmMode	长帧模式开关,0:关闭,1:开启
MergeApiMode	API模式
EnvLv	环境亮度
MoveCoef	运动变量
bypass	当前帧bypass开关,0:关闭,1:开启
BaseFrm	基准帧模式, 0: 长帧模式, 1: 短帧模式
OECurve_smooth	当前帧过曝曲线的斜率,取值范围[0,200],由json中参数逆归一化得到,系数200。
OECurve_offset	当前帧过曝曲线的偏移值,取值范围[108,280]。
MDCurveMS_smooth	当前帧中帧和短帧之间运动曲线斜率,取值范围为[0,200],由json中参数逆归一化得到,系数200。
MDCurveMS_offset	当前帧中帧和短帧之间运动曲线偏移值,取值范围为[0.26,100],由 json中参数逆归一化得到,系数100。
MDCurveLM_smooth	当前帧长帧和中帧之间运动曲线斜率,取值范围为[0,200],由json中参数逆归一化得到,系数200。
MDCurveLM_offset	当前帧长帧和中帧之间运动曲线偏移值,取值范围为[0.26,100],由 json中参数逆归一化得到,系数100。

当模式为HDR且基准帧为短帧时,merge日志等级为10000000ff3时

AmergeByFassProcessing: FrameID:1 HDRFrameNum:2 LongFrmMode:0 MergeApiMode:0 EnvLv:0.000000 MoveCoef:0.000000 bypass:0

MergeDampingV12: Current BaseFrm:1 OECurve_smooth:0.400000 OECurve_offset:210.000000

MergeDampingV12: Current MDCurve_Coef:0.050000 MDCurve_ms_thd0:0.000000 MDCurve_lm_thd0:0.000000

名称	描述
FrameID	帧号
HDRFrameNum	HDR帧数
LongFrmMode	长帧模式开关,0:关闭,1:开启
MergeApiMode	API模式
EnvLv	环境亮度
MoveCoef	运动变量
bypass	当前帧bypass开关,0:关闭,1:开启
BaseFrm	基准帧模式, 0: 长帧模式, 1: 短帧模式
OECurve_smooth	当前帧过曝曲线的斜率,取值范围[0,200],由json中参数逆归一化得到, 系数200。
OECurve_offset	当前帧过曝曲线的偏移值,取值范围[108,280]。
MDCurve_Coef	当前帧控制系数,取值范围[0,1],默认值为0.05,精度0.0001。
MDCurve_ms_thd0	当前帧中短帧控制系数,取值范围[0,1],默认值为0.0,精度0.1。
MDCurve_lm_thd0	当前帧长中帧控制系数,取值范围[0,1],默认值为0.0,精度0.1

DRC

Log level	描述以及使能建议
Info	默认未使能 基本调试信息: 逐帧输出信息: 暂未使用 事件信息: 暂未使用 建议 : 关闭
debug	默认未使能 基本调试信息: 逐帧输出信息: DRC调试信息 事件信息: 暂未使用 建议 : 当画面亮度不符合预期,或者TMO之后对比度不够时候开启

Log level	描述以及使能建议
Verbose	默认未使能 基本调试信息(相对Verbose等级增加): 逐帧输出信息: DRC曝光相关信息 事件信息: 暂未使用 建议: 当画面出现闪烁,且从AE log中确认是TMO在闪烁时开启,供RK人员debug 使用

Sub modules bit	描述以及使能建议
bit[4:11]	无效

DRC日志等级为20ff3时

AdrcByPassProcessing: FrameID:1 HDRFrameNum:2 LongFrmMode:0 DRCApiMode:0 EnvLv:0.000000 ISO:0.000000 bypass:0

AdrcTuningParaProcessing: Current DrcGain:1.000000 Alpha:0.200000 Clip:16.000000 CompressMode:0

AdrcTuningParaProcessing: Current HiLight Strength:0.000000 gas_t:0.000000

AdrcTuningParaProcessing: Current Localweit:1.000000 LocalAutoEnable:1 LocalAutoweit:0.000000 GlobalContrast:0.000000 LoLitContrast:0.000000 MotionStr:0.000000 AdrcDampingv12: Current damp DrcGain:1.000000 Alpha:0.200000 Clip:16.000000 CompressMode:0

AdrcDampingv12: Current damp HiLight Strength:0.000000 gas_t:0.000000

名称	描述
FrameID	帧号
HDRFrameNum	HDR帧数
LongFrmMode	长帧模式开关, 0: 关闭, 1: 开启
DRCApiMode	API模式
EnvLv	环境亮度
bypass	当前帧bypass开关,0:关闭,1:开启
Enable	DRC开关
DrcGain	当前帧DRC模块增益,取值范围[1,8]。
Alpha	当前帧DrcGain Alpha值,取值范围[0,1]。
Clip	当前帧DrcGain Clip值,取值范围[0,64]。
Strength	当前帧HiLight高光区域细节,取值范围[0,1]。
CompressMode	当前帧CompressSetting模式。
LocalWeit	当前帧Local权重,取值范围[0,1],0:Global,1:全Local,默认值0。
LocalAutoEnable	当前帧自动LocalWeit开关,取值范围[0,1],默认值为1,精度1。
LocalAutoWeit	当前帧自动LocalWeit值,取值范围[0,1],默认值为0.4,精度0.01。

名称	描述
GlobalContrast	当前帧全局对比度,取值范围[0,1],默认值为0,精度0.01。
LoLitContrast	当前帧低量区对比度,取值范围[0,1],默认值为0,精度0.01。

NR&Sharp

配置指南

Log level	描述以及使能建议
error	默认使能 基本调试信息: 逐帧输出信息: 严重错误地方,可能会导致软件崩溃的打印事件信息: 暂未使用 建议: 开启
Info	默认未使能 基本调试信息: 逐帧输出信息: 所有函数调用信息,没有寄存器值打印。整体信息较多。 事件信息: 暂未使用 建议: 效果没有异常出错时候,不建议打开此项。一般建议使用io命令打印寄存器 值。
debug	默认未使能 基本调试信息(相对Info等级增加): 逐帧输出信息: 所有函数调用信息,包括寄存器值打印,寄存器值打印信息较多。 事件信息:暂未使用 建议: 当效果出现严重错误时候,建议打开此项,提供给rk debug使用。

Sub modules bit	描述以及使能建议
bit[4:11]	无效

log解读

Dhz&Ehz

配置指南

Log level	描述以及使能建议
Info	默认未使能 基本调试信息: 逐帧输出信息: 暂未使用 事件信息: 暂未使用 建议:

Log level	描述以及使能建议
debug	默认未使能 基本调试信息(相对Info等级增加): 逐帧输出信息: Dhz&Ehz调试信息 事件信息: 建议: **
Verbose	默认未使能 基本调试信息(相对Verbose等级增加): 逐帧输出信息:暂未使用 事件信息:暂未使用 建议:

Sub modules bit	描述以及使能建议
bit[4:11]	无效

Log解读

当Enhance功能开启时, Dehaze日志等级为2000ff3时

名称	描述
FrameID	帧号
byPassProc	当前帧bypass开关,0:关闭,1:开启
ISO	ISO
Dehaze module en	Dehaze模块开关
Dehaze en	Dehaze功能开关
Enhance en	Enhance功能开关
Hist en	Hist功能开关
EnvLv	当前帧环境亮度
enhance_value	当前帧通用对比度力度,取值范围[0, 16],推荐范围[1, 2]。
enhance_chroma	当前帧色度的增强调节参数,取值范围[0, 16],推荐范围[1, 2]。
enhance_value_reg	当前帧通用对比度力度reg值。
enhance_chroma_reg	当前帧色度的增强调节参数reg值。

名称	描述
FrameID	帧号
byPassProc	当前帧bypass开关,0:关闭,1:开启
ISO	ISO
Dehaze module en	Dehaze模块开关
Dehaze en	Dehaze功能开关
Enhance en	Enhance功能开关
Hist en	Hist功能开关
cfg_alpha	软件配置占比,取值范围[0,1],默认值1,精度0.01。
EnvLv	当前帧环境亮度
air_max	当前帧air自适应的最大值限制,取值范围[230, 250],默认值250。
air_min	当前帧air自适应的最小值限制,取值范围[230, 250],默认值200。
tmax_base	当前帧tmax自适应基础值,默认125,对应配置如下,200(131),210(125), 220(119),230(114),240(109),250(105),推荐131-105
wt_max	当前帧wt自适应的最大值限制,取值范围[0.75, 0.9],默认值0.9。

当Dehaze功能开启且cfg_alpha=1时,Dehaze日志等级为2000ff3时

```
[ADEHAZE]:XCAM DEBUG rk_aiq_adehaze_algo.cpp:145: /****************Adehaze Start********/
[ADEHAZE]:XCAM DEBUG rk_aiq_adehaze_algo.cpp:2402: AdehazeByPassProcessing:FrameID:4 byPassProc:0 ISO:50.000000

[ADEHAZE]:XCAM DEBUG rk_aiq_adehaze_algo.cpp:1423: AdehazeEnhanceApiBypassV30Process: Adehaze Api off!!!

[ADEHAZE]:XCAM DEBUG rk_aiq_adehaze_algo.cpp:223: EnableSettingV30: Dehaze module en:1 Dehaze en:1, Enhance en:0, Hist en:0

[ADEHAZE]:XCAM DEBUG rk_aiq_adehaze_algo.cpp:954: GetDehazeParamsV30 cfg_alpha:1 EnvLv:0.467077 cfg_air:210.000000 cfg_tmax:0.200000 cfg_wt:0.800000

[ADEHAZE]:XCAM DEBUG rk_aiq_adehaze_algo.cpp:955: GetDehazeParamsV30 cfg_alpha_reg:0x255 cfg_air:0xd2 cfg_tmax:0xcc cfg_wt:0xcc

[ADEHAZE]:XCAM DEBUG rk_aiq_adehaze_algo.cpp:955: GetDehazeParamsV30 cfg_alpha_reg:0x255 cfg_air:0xd2 cfg_tmax:0xcc cfg_wt:0xcc
```

名称	描述
FrameID	帧号
byPassProc	当前帧bypass开关,0:关闭,1:开启
ISO	ISO
Dehaze module en	Dehaze模块开关
Dehaze en	Dehaze功能开关

名称	描述
Enhance en	Enhance功能开关
Hist en	Hist功能开关
cfg_alpha	软件配置占比,取值范围[0,1],默认值1,精度0.01。
EnvLv	当前帧环境亮度
cfg_air	当前帧软件配置air,大气光系数,取值范围[0, 255],默认值210。
cfg_tmax	当前帧软件配置tmax,去雾的最大值,取值范围[0, 1],默认值0.2。
cfg_wt	当前帧软件配置wt,图像去雾力度,取值范围[0, 1],默认值0.8。

当Hist功能开启时,Dehaze日志等级为2000ff3时

[ADEBALE]:XCAN DEBUG rk_aiq_algo_adhar_iff.cpp:ids: // AdehareAbyBaseFrocessingiFrameID:3 byBaseFrocio ISO:50.000000
[ADEBIAIZ]:XCAN DEBUG rk_aiq_adehare_algo.cpp::431: AdehareAbyBaseFrocessingiFrameID:3 byBaseFrocio ISO:50.000000
[ADEBIAIZ]:XCAN DEBUG rk_aiq_adehare_algo.cpp:i231: EnableSettingV30: Dehare module en:1 Dehare en:0, Enhance en:0, Hist en:1
[ADEBIAIZ]:XCAN DEBUG rk_aiq_adehare_algo.cpp:i231: EnableSettingV30: Dehare module en:1 Dehare en:0, Hist en:1
[ADEBIAIZ]:XCAN DEBUG rk_aiq_adehare_algo.cpp:i331: GetListFarameV30 cfg_alphari.000000 Envivoi.452188 hist_para_en:1 hist_gratici2.00000 hist_th_off:4.00000 hist_k:2.000000 hist_min:0.15000 hist_module:0.050000 cfg_gratici2.0000
[ADEBIAIZ]:XCAN DEBUG rk_aiq_adehare_algo.cpp:i139: GetListFarameV30 cfg_alphari.00000 hist_th_off:4.00000 hist_min_regions) hist_min_regions) hist_min_regions)

名称	描述
FrameID	帧号
byPassProc	当前帧bypass开关,0:关闭,1:开启
ISO	ISO
Dehaze module en	Dehaze模块开关
Dehaze en	Dehaze功能开关
Enhance en	Enhance功能开关
Hist en	Hist功能开关
cfg_alpha	软件配置占比,取值范围[0,1],默认值1,精度0.01。
EnvLv	当前帧环境亮度
hist_para_en	当前帧直方图拉伸控制开关。
hist_gratio	当前帧直方图拉伸倍数,直方图均衡控制系数,取值范围[0,32]。
hist_th_off	当前帧直方图统计阈值,取值范围[0, 255],默认值64。
hist_k	当前帧直方图自适应阈值放大倍数,取值范围[0,7),默认值2。
hist_min	当前帧直方图统计阈值的最小值,取值范围[0,2),默认值0.016。
hist_scale	当前帧直方图均衡控制系数,取值范围[0,32]。
cfg_gratio	当前帧软件配置直方图拉伸倍数,直方图均衡控制系数,取值范围[0,32)。

CamHW

配置指南

Log level	描述以及使能建议
Error	默认使能 严重错误
Warning	默认未使能 警告错误,算法内部可能针对该错误进行了异常处理.
Info	默认未使能 基本调试信息: 逐帧输出信息: 事件信息: 建议:
Debug	默认未使能 基本调试信息(相对Info等级增加): 逐帧输出信息: 事件信息: 建议:
Verbose	默认未使能 基本调试信息(相对Debug等级增加): 逐帧输出信息: 事件信息: 建议:存在单次大量信息输出,谨慎使用
Low1	默认未使能 基本调试信息(相对Debug等级增加): 逐帧输出信息: 事件信息: 函数调用路径信息 建议:

Sub modules bit	描述以及使能建议
bit[4]	30 子模块log开关。 负责 HWI 流程控制部分。 建议: 有以下各子模块问题时建议一起使能。
bit[5]	Isp30Params 及 Isp30PollThread 子模块log开关。 负责 isp 参数、数据流、事件等处理部分。 建议: 疑似参数与视频帧未匹配、时序设置异常等问题 回读离线模式下,数据流断流等问题
bit[6]	SensorHw 子模块log开关。 负责 camera sensor 相关部分。 建议 : 疑似CIS曝光设置等问题

Sub modules bit	描述以及使能建议							
bit[7]	FlashLight 子模块log开关。 负责补光灯控制部分。 建议: 补光灯控制问题。							
bit[8]	LensHw 子模块log开关。 负责镜头马达控制部分。 建议: 马达控制等问题							
bit[9]	30SpThread 子模块开关。 内部模块保留使用。							
bit[10:11]	无效							

log解读

• CamHwlsp20 子模块

```
[CAMHW]:XCAM INFO CamHwIsp20.cpp:519: model(rkisp0): isp_info(0): ispp-subdev entity name: /dev/v4l-subdev5
[CAMHW]:XCAM INFO CamHwIsp20.cpp:343: model(rkispp0): ispp_info(0): ispp-subdev entity name: /dev/v4l-subdev0
[CAMHW]:XCAM INFO CamHwIsp20.cpp:932: match the sensor_name(m01_f_imx415 1-001a) media link
[CAMHW]:XCAM INFO CamHwIsp20.cpp:967: vicap rkcif_mipi_lvds, linked_vicap rkcif_mipi_lvds
[CAMHW]:XCAM INFO CamHwIsp20.cpp:973: vicap link to isp(0) to ispp(0)
[CAMHW]:XCAM INFO CamHwIsp20.cpp:979: sensor m01_f_imx415 1-001a adapted to pp media 2:/dev/media2
```

上图log 仅在 AIQ 库加载时的打印一次,从中能得到camera sensor、isp 及 ispp 之间的链接关系,该信息从解析media节点拓扑结构得到,从该信息可知道camera sensor是否正常探测到。

```
CamHwIsp20.cpp:3427: ispparam ens 0xcfffe473b, en_up 0xdfffee73f, cfg_up 0xdfffe473b
CamHwIsp20.cpp:3431: device(/dev/video15) queue buffer index 0, queue cnt 1, check exit status again[exit:
```

上图log表示的是hwi层往isp驱动配置新参数,目前基本每一帧都会配置,具体含义如下表所示:

成员名称	描述							
ispparam ens	模块使能位,模块bit位定义具体参考 hwi/isp20/rk_isp20_hw.h							
en_up	模块使能更新位,对应位为1表示该模块使能位需要更新							
cfg_up	模块参数更新位,对应位为1表示该模块参数需要更新							
device	ISP参数模块对应的video节点							

```
[CAMHW]:XCAM DEBUG CamHwIsp20.cpp:3737: ispp full en update 0x7, ens 0x7, cfg update 0x7
[CAMHW]:XCAM DEBUG CamHwIsp20.cpp:3758: ispp new en update 0x0, ens 0x7, cfg update 0x7
[CAMHW]:XCAM DEBUG CamHwIsp20.cpp:3761: module_init_ens frome drv 0x7
[CAMHW]:XCAM DEBUG CamHwIsp20.cpp:3789: device(/dev/video23) queue buffer index 0, queue cnt 1, check exit status again[exit:
```

上图log表示的是hwi层往ispp驱动配置新参数,目前基本每一帧也都会配置,具体说明前述isp模块。

• Isp20PollThread 子模块**

[CAMHW]:XCAM DEBUG Isp20PollThread.cpp:976: frame[48]: sof_ts 2800346ms, frame_ts 2800379ms, globalTmo(0), readback(1)

上图log为回读模式时启动一帧回读,只要工作在回读模式,正常运行时每一帧都会打印,具体含义如下表:

成员	描述					
frame	帧ID,表示第几帧RAW,从0开始。					
sof_ts	该帧 SOF的时间戳					
frame_ts	采集到ddr的完成时刻时间戳					
readback	isp回读次数					

[CAMHW]:XCAM DEBUG Isp20PollThread.cpp:679: handle_rx_buf dev_index:0 index:0 fd:30 [CAMHW]:XCAM DEBUG Isp20PollThread.cpp:769: handle_tx_buf dev_index:0 sequence:49

上图log为回读模式时RAW buf的轮转过程,只要工作在回读模式时,每一帧都会打印该log,具体含义如下表:

成员	描述
handle_rx_buf	isp处理完一帧,还给vicap/isp_tx
dev_index	长、中及短帧设备索引号,handle_tx_buf 及 handle_rx_buf 的log中 dev_index相同时,表示同一路数据
sequence	帧号,从0开始

• SensorHw 子模块

```
[CAMHW]:XCAM DEBUG SensorHw.cpp:685: handle_sof: frameid=13, exp_list size=1, gain_list size=0
[CAMHW]:XCAM DEBUG SensorHw.cpp:726: handle_sof: working_mode=0,frameid=13, status: set_time=1,set_gain=0
[CAMHW]:XCAM DEBUG SensorHw.cpp:180: setLinearSensorExposure: frameid: 13, a-gain: 17, time: 2024, dcg: -1, snr: 0
```

上图log为线性模式时设置新曝光到sensor驱动流程,有新曝光时才会调用,具体含义如下表:

成员	描述						
frameid	sof 事件帧号						
handle_sof	sof 事件回调函数,每一帧回调一次,曝光设置在该回调中处理						
exp_list size	曝光列表中还有多少个新曝光时间未设置到驱动						
gain_list size	曝光列表中有多少个新曝光增益未设置到驱动						
working_mode	当前工作模式, 0 为 normal						
set_time	该sof消息中是否有新曝光时间需要设置到驱动						
set_gain	该sof消息中是否有新曝光增益需要设置到驱动						

成员	描述
a-gain, time	新的曝光时间、增益寄存器值

如何采集Raw/YUV图像

Raw数据特指CIS原始输出的数据,未经过任何图像处理。针对Bayer raw sensor, Raw数据即 8/12/14 bit bayer rgb 数据。一般情况下,以下几种情况需要获取CIS Raw数据:

- 1. ISP处理后的YUV数据输出异常的情况下,希望动态截存此时ISP输入的Raw数据分析问题是否是CIS问题
 - 2. 图像质量效果调试前,需要采集CIS Raw数据进行模组参数的标定

Raw数据存储格式

非紧凑型存储格式

对于raw12数据在内存中的存储排列方式,以4字节的内存片段为例,数据的存储方式如下所示:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	memory word
11 10 9 8 7 6 5 4 3 2 1 0	11 10 9 8 7 6 5 4 3 2 1 0	Bits of pixel
Pixel 0	Pixel 1	Pixel

紧凑型存储格式

对于raw12数据在内存中的存储排列方式,以4字节的内存片段为例,数据的存储方式如下所示:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Bits of memory
7	6	5	4	3	2	1	0	11	10	9	8	7	6	5	4	3	2	1	0	11	10	9	8	7	6	5	4	3	2	1	0	Bits of pixel
	Pixel3 Pixel2							Pixel3 Pixel2 Pixel1											Pixel													

RK-RAW V1.0

项目	参数名称	数据类型定义	长度	描述
	Identifier	unsigned short	2	固定 0x8080
	Header length	unsigned short	2	固定 128
	Frame index	unsigned int	4	帧索引号
	Width	unsigned short	2	图像宽度
	Height	unsigned short	2	图像高度
-2- 76- 31	Bit depth	unsigned char	1	图像位宽
文件头				0: BGGR;
	Bayer format	unsigned char	1	1: GBRG;
				2: GRBG;
				3: RGGB;
				帧类型:
				1:表示线性模式,短帧
	Number of HDR Frame	unsigned char	1	2: 表示 2 帧 HDR,长帧+短帧
				3:表示3帧HDR,长帧+中帧+短帧
				当前帧类型:
	Current Frame type	unsigned char	1	1: 短帧
				2: 中帧
				3: 长帧
	Storage type	unsigned char	1	0: 紧凑型
				1: 非紧凑型
	Line stride	unsigned short	2	单位为字节
	Effective line stride	unsigned short	2	单位为字节
	Reserved	unsigned char	107	保留段
RAW DATA	RAW DATA	RAW	W * H *BPP	RAW DATA

RK-RAW V2.0

RK-RAW V2.0 格式由起始标识符、数据块以及结束标识符构成。

格式数据块定义

数据块有三部分组成:标识符ID,块长度,块数据。每个标识符ID都有唯一的固定值。

			数据块定义	
项目	数据类型	长度(Byte)	默认值	说明
起始标识符	u16	2	0xFF00	固定值: 文件起始
块标识符	u16	2	0xFF01	标识符: Raw信息
块长度	u32	4	-	
块数据				
块标识符	u16	2	0xFF02	标识符: Normal模式 Raw数据
块长度	u32	4	-	
块数据				
块标识符	u16	2	0xFF03	标识符:HDR2/HDR3短帧 Raw数据
块长度	u32	4	-	
块数据				
块标识符	u16	2	0xFF04	标识符: HDR2长帧/HDR3中帧 Raw数据
块长度	u32	4	-	
块数据				
块标识符	u16	2	0xFF05	标识符: HDR3长帧 Raw数据
块长度	u32	4	-	
块数据				
块标识符	u16	2	0xFF06	标识符: 帧统计信息
块长度	u32	4	-	
块数据				
块标识符	u16	2	0xFF07	标识符: ISP寄存器格式
块长度	u32	4	-	
块数据				
块标识符	u16	2	0xFF08	标识符: ISP寄存器
块长度	u32	4	-	
块数据				
块标识符	u16	2	0xFF09	标识符: ISPP寄存器格式
块长度	u32	4	-	
块数据				
块标识符	u16	2	0xFF0a	标识符: ISPP寄存器
块长度	u32	4	-	
块数据				
块标识符	u16	2	0xFF0b	标识符: 平台信息
块长度	u32	4	-	
块数据				
结束标识符	u16	2	0x00FF	固定值: 文件结尾

图表中的数据块并不都是必需的,可以选择其中的几个数据块组合使用。例如,一个RKRawV2文件可能只包含'Raw信息块'、'Raw数据块'和'帧统计信息块',我们建议至少包含这三个数据块,因为这样的文件

才有意义。

Raw信息块定义

	数据块定义:Raw信息 0xFF01											
项目	数据类型	长度(Byte)	默认值	说明								
版本号	u16	2	0x0200	版本号: 0x0200=v2.0								
Sensor名	string	32	-	Sensor型号								
场景/光源	string	32	-	采集场景/光源								
帧号	u32	4	-	帧号								
宽度	u16	2	-	图像宽度,单位为像素								
高度	u16	2	-	图像高度,单位为像素								
位宽	u8	1	-	图像位宽								
Bayer格式	u8	1	-	0 (BGGR);1 (GBRG); 2 (GRBG);3 (RGGB);								
HDR合成帧数	u8	1	-	1(线性模式);2(长+短帧);3(长+中+短帧);								
存储格式	u8	1	-	0(紧凑);1(非紧凑);								
行长	u16	2	-	单位为字节								
有效行长	u16	2	-	单位为字节								
大小端	u8	1	-	0(大端);1(小端);								

Raw数据块定义

该数据段中可以存放Raw图像数据,也可以存放指向Raw图像数据的buffer fd或虚拟地址。在使用相关API的时候需要传参指明该数据块中存储的类型,具体请参见<u>rk aig rawbuf type t</u>。

数据块定义: Raw数据 0xFF02 - 0xFF05			
项目	数据类型	长度(Byte)	说明
Raw数据	-	长*宽*N 非紧凑: N=2 紧凑: N=bpp/8	Raw数据

帧统计信息块定义

数据块: 帧统计信息 0xFF06				
项目	数据类型	长度(Byte)	默认值	说明
版本号	u16	2	0x0200	Raw格式版本号: 0x0200=v2.0
帧号	u32	4	-	帧号
Normal_Exp	float	4	-	线性模式: 快门时间
Normal_Gain	float	4	-	线性模式: 曝光增益
Normal_Exp_REG	u32	4	-	线性模式:快门时间的SENSOR寄存器值
Normal_Gain_REG	u32	4	-	线性模式: 曝光增益的SENSOR寄存器值
HDR_Exp_L	float	4	-	HDR3: 长帧快门时间
HDR_Gain_L	float	4	-	HDR3: 长帧曝光增益
HDR_Exp_L_REG	u32	4	-	HDR3: 长帧快门时间的SENSOR寄存器值
HDR_Gain_L_REG	u32	4	-	HDR3: 长帧曝光增益的SENSOR寄存器值
HDR_Exp_M	float	4	-	HDR3:中帧快门时间 HDR2:长帧快门时间
HDR_Gain_M	float	4	-	HDR3:中帧曝光增益 HDR2:长帧曝光增益
HDR_Exp_M_REG	u32	4	-	HDR3:中帧快门时间的SENSOR寄存器值 HDR2:长帧快门时间的SENSOR寄存器值
HDR_Gain_M_REG	u32	4	-	HDR3:中帧曝光增益的SENSOR寄存器值 HDR2:长帧曝光增益的SENSOR寄存器值
HDR_Exp_S	float	4	-	HDR3: 短帧快门时间 HDR2: 短帧快门时间
HDR_Gain_S	float	4	-	HDR3: 短帧曝光增益 HDR2: 短帧曝光增益
HDR_Exp_S_REG	u32	4	-	HDR3: 短帧快门时间的SENSOR寄存器值 HDR2: 短帧快门时间的SENSOR寄存器值
HDR_Gain_S_REG	u32	4	-	HDR3: 短帧曝光增益的SENSOR寄存器值 HDR2: 短帧曝光增益的SENSOR寄存器值
AWB_Rgain	float	4	-	,
AWB_Bgain	float	4	-	白平衡増益

寄存器格式块定义

数据块定义: 寄存器格式 0xFF07/0xFF09				
项目	数据类型	长度(Byte)	默认值	说明
版本号	u16	2	0x0200	版本号: 0x0200=v2.0
帧号	u32	4	-	寄存器基地址
基地址	u32	4	-	寄存器基地址
偏移地址	u32	4	-	起始偏移地址
数目	u32	4	_	寄存器数目

寄存器块定义

数据块定义:寄存器 0xFF08/0xFF0a			
项目	数据类型	长度(Byte)	说明
寄存器数据	-	-	寄存器数据

平台信息块定义

数据块定义:平台信息 0xFF0b				
项目	数据类型	长度(Byte)	说明	
芯片型号	string	32		
ISP版本	string	32		
AIQ版本	string	32		

Raw/YUV数据采集方式

错误码

错误代码	描述
0	成功
-1	失败
-2	参数无效
-3	内存不足
-4	文件操作失败
-5	ANALYZER模块出错
-6	ISP模块出错
-7	sensor驱动出错
-8	线程操作出错
-9	IOCTL操作出错
-10	时序出错
-20	超时
-21	超出范围
-255	未知错误

缩略语

缩写	全称
CIS	Camera Image Sensor

缩写	全称
RkAiq	Rockchip Automatical Image Quality
ISP	Image Signal Process
IQ Tuning	Image Quality Tuning