example TSP

December 10, 2021

1 Traveling Salesman Problem With Genetic Algorithms

```
[]: from GeneticTravelModel import *
#Import Data
data15=importCoordinates("15Cities.txt")
data48=importCoordinates("48Cities.txt")
```

The next matrix is the Distance Matrix. Each column j and row i represents a city while the intersaction [i,j] represents a distance. [i,i] and [j,j] are white because of this.

```
[]: DM=coordinateMatrix(*data15)
plt.matshow(DM, cmap=plt.cm.Blues)
plt.show()
```


1.1 Genetic Algorithms Application

1.1.1 Model 1

1.1.2 15 Cities

Execution time: 1.2s

```
[]: popSize=30; iters=5*10**3
  histPOP, histDist, pop=GeneticModel01(*data15, popSize, iters, 1, True)
  print("Model 1 Done")
```

Model 1 Done

```
[]: print("Distance", histDist[-1])
plotDistance(histDist)
plotTrayectory(*data15, histPOP[-1])
```

Distance 284.38086286247795

1.1.3 48 Cities

```
[]: popSize=50; iters=5*10**4
  histPOP2, histDist2, pop2=GeneticModel01(*data48, popSize, iters, 1, True)
  print("Model 1 Done")
```

Model 1 Done

```
[]: print("Distance", histDist2[-1])
  plotDistance(histDist2)
  plotTrayectory(*data48, histPOP2[-1])
```

Distance 46421.06074219379

1.2 Model 2

1.2.1 15 Ciudades

```
[]: popSize=50; iters=10**3
histPOP21, histDist21, pop21=GeneticModel02(*data15, popSize, iters, 10, 2)
print("Model 2 Done")
```

Model 2 Done

```
[]: print("Distance", histDist21[-1])
plotDistance(histDist21)
plotTrayectory(*data15, histPOP21[-1])
```

Distance 284.38086286247795

1.2.2 48 Ciudades

```
[]: popSize=100; iters=10**4
histPOP22, histDist22, pop22=GeneticModel02(*data48, popSize, iters, 50, 2)
print("Model 2 Done")
```

Model 2 Done

```
[]: print("Distance", histDist22[-1])
  plotDistance(histDist22)
  plotTrayectory(*data48, histPOP22[-1])
```

Distance 39971.3835921356

1.3 Model 3

1.3.1 For 15 cities.

Registered time: 1.3s

```
[]: popSize=50; iters=2*10**3
histPOP3_15_1, histDist3_15_1, pop3_15_1=GeneticModel03(*data15, popSize,

→iters, 2, True, 2, 5)
print("Model 3 Done")
```

Model 3 Done

```
[]: print("Distance", histDist3_15_1[-1])
  plotDistance(histDist3_15_1)
  plotTrayectory(*data15, histPOP3_15_1[-1])
```

Distance 284.38086286247807

1.3.2 For 48 cities

```
[]: popSize=50; iters=5*10**4
histPOP3_15_2, histDist3_15_2, pop3_15_2=GeneticModel03(*data48, popSize,

→iters, 2, True, 2, 5)
print("Model 3 Done")
```

Model 3 Done

```
[]: print("Distance", histDist3_15_2[-1])
  plotDistance(histDist3_15_2)
  plotTrayectory(*data48, histPOP3_15_2[-1])
```

Distance 38725.18365968017


```
[]: popSize=100; iters=10**4
histPOP3_15_2, histDist3_15_2, pop3_15_2=GeneticModel03(*data48, popSize,

→iters, 2, True, 7, 50)
print("Model 3 Done")
```

Model 3 Done

```
[]: print("Distance", histDist3_15_2[-1])
  plotDistance(histDist3_15_2)
  plotTrayectory(*data48, histPOP3_15_2[-1])
```

Distance 37615.24027529461

