PCA

Goal - Max Variance of new components

V21

comp 1

Exp. Var

y

y

Z = Xu

600l: max Van(2)

s.t.: || u || = 1

PCA Algorithms

I Sequential

1 x, ... x m y - centered deta

Compute 1St component:

 $W_1 = argmax \frac{1}{h} \sum_{i=1}^{h} (\omega^{\dagger} x_i)^2$

Compute kth component: Wr = angmax 1 \(\frac{1}{2} \left(U^T \left[x - \frac{1}{2} U_j U_j^T x i] \right)^2 1111 11=1 - PCA reconstruction $\frac{X'}{W_2} = W_1(\omega_1^T X) + W_2(\omega_2^T X)$ Sample covaniance matrix

=> more important eigenvector

max ut X XTu s.t. u u · 1 $\frac{\partial L}{\partial u} = X X^{\dagger} u - \lambda u = (X X^{\dagger} - \lambda 1) u = 0$ $u \neq 0 => (XX^{T} - \lambda 1) u = 0$ => u - eigenvector of xxt 7 - eigen values

	PCA:
9 M 6	x Variance Xi a
	$\frac{1}{h} \sum_{i} (V^{\dagger} x_{i})^{2} = V^{\dagger} x + V$
2) M;	n Reconstruction Groon
	1 2 11 xi - (VTx;) V 112
TT)	SVD
	X = [X,, Xm] & 2 Nxm
	Centered data
	X = USVT
	Sig noise sig noise noise
\$ <i>o</i> .^	principal shows coefficients vectors importance for reconstructing

importance of comp.

1)
$$\chi_j | \chi_{-j} = P_j^2$$

2) VIF(
$$\hat{\beta}$$
:) = $\frac{1}{1-R^2}$