

Inference

Sampling Methods

Markov Chain Monte Carlo

Markov Chain

- A Markov chain defines a probabilistic transition model $T(x \rightarrow x')$ over states x:
 - for all x: $\sum_{x'} T(x \to x') = 1$

Daphne Koller

Temporal Dynamics
$$P^{(t+1)}(X^{(t+1)} = x') = \sum_{x} P^{(t)}(X^{(t)} = x)T(x \to x')$$

	-2	-1	0	+1	+2
P (0)	0	0	1	0	0
P (1)	0	25	.5	.25	0
P (2)	25 ² = .0625	2×(.5×.25) = .25	$.5^2 + 2 \times .25^2$ = .375	2×(.5×.25) = .25	.25 ² = .0625

Stationary Distribution

$$P^{(t)}(x') \approx P^{(t+1)}(x') = \sum_{x} P^{(t)}(x)T(x \to x')$$

$$\pi(x') = \sum_{x} \pi(x)T(x \to x')$$

0.25
$$\pi(x^{1}) = 0.25\pi(x^{1}) + 0.5\pi(x^{3}) \qquad \pi(x^{1}) = 0.2$$
0.75
$$\pi(x^{2}) = 0.7\pi(x^{2}) + 0.5\pi(x^{3}) \qquad \pi(x^{2}) = 0.5$$

$$\pi(x^{3}) = 0.75\pi(x^{1}) + 0.3\pi(x^{2}) \qquad \pi(x^{3}) = 0.3$$

$$\pi(x^{1}) + \pi(x^{2}) + \pi(x^{3}) = 1$$

Daphne Koller

Regular Markov Chains

• A Markov chain is regular if there exists k such that, for every x, x', the probability of getting from x to x' in exactly k steps is > 0

 Theorem: A regular Markov chain converges to a unique stationary distribution regardless of start state

Regular Markov Chains

• A Markov chain is regular if there exists k such that, for every x, x', the probability of getting from x to x' in exactly k steps is > 0

K. distance between further xx

- Sufficient conditions for regularity:
 - Every two states are connected with of post to
 - For every state, there is a self-transition