

● 教学内容

- 第1节 定时器和计数器的概念
- 第2节 8253A的结构和工作原理
- 第3节 8253A的初始化和基本操作
- 第4节 8253A的工作方式和应用
- 第5节 8253A在IBM PC/XT中的应用

- 定时(计时)
 - ■为CPU和外设提供时间标记或一段时间。
 - ■时序,各种周期,时间片、系统时间、时间间隔、运行时间

定时的方法

- 软件方法
 - ■运用循环执行一段指令产生的延时。
 - ■缺点:增加CPU开销;延时依赖CPU频率;
 - ■优点:不需增加硬件设备。
 - 适用:用于短时且精度要求不高的延时
- 硬件方法
 - ■采用专用电路(例如:定时/计数器)产生定时。
 - ■优点:不占用CPU时间;定时准确不受主机频率影响
 - 适用: 定时时间长,精度要求较高
 - ■典型的定时专用电路/芯片: INTEL 8253/8254系列芯片

- 定时(计时)
 - ■为CPU和外设提供时间标记或一段时间。
 - ■时序,各种周期,时间片、系统时间、时间间隔、运行时间
- 计数
 - 统计某对象的数量(典型的对象是脉冲)∭∭∭
- 定时的本质是计数
 - 当数与数之间的"时间间隔"固定且已知,则 定时时间 = 计数数量 × 时间间隔

- 典型的定时/计数器芯片
 - 8253A (2MHz)
 - 8254A (8MHz)
 - 8254A-2 (10MHz)
 - 8254A-5 (5MHz)
 - ■特点: 相互兼容,工作频率有差异

8253A在IBM PC/XT中的应用和连接 DACK₀ IOR RD IOW WR $\rightarrow DRQ_0$ 去DMA8237 T/C CS CS OUT₁ 8253 IRQ_0 $\overline{OUT_0}$ 去8259A CLK_0 PCLK CP Q $\overline{\text{CLK}}_1$ U_1 $\overline{\text{OUT}_2}$ 去扬声器 $\overline{\text{CLK}}_2$ $D_7 \sim D_0$ GATE₀ 74LS175 +5V GATE₁ PB_0 $\overline{\text{GATE}}_2$

- 8253A的结构和基本特点
 - 有3个16位相互独立的计数器: T0, T1, T2
 - 每个计数器都可以按照二进制或二—十进制计数
 - 每个计数器可设置6种不同的工作方式
 - ■每个计数器可以预置计数初值(时间常数)
 - 计数器的当前计数值可被CPU读出

● 8253A的外部引脚【24脚, +5V】 CLK0 GATE0 8253 PIT GATE1 控制线

- 功能引脚(面向CPU的信号线)
 - ① 数据总线D0~D7
 - ◆ 三态输出/输入线: 数据、命令和状态。
 - ■②片选线(**CS**)
 - ◆低电平有效。由地址译码的结果控制。
 - ■③ 读信号(RD)
 - ◆低电平有效。对8253A寄存器进行读操作
 - ④写信号(WR)
 - ◆低电平有效。对8253A寄存器进行写操作
 - ⑤地址线A1A0
 - ◆接到系统地址总线的A1A0
 - ◆A1A0用于选择8253A内部寄存器。

- 功能引脚【面向I/O的信号线】
 - ■⑥时钟信号CLK
 - ◆计数的对象:每输入1个时钟脉冲便计数1次。
 - ◆CLK 0、CLK 1、CLK 2
 - ■⑦门控信号GATE
 - ◆控制计数的启动、暂停、禁止【和工作方式有关】
 - **♦**GATE0、GATE1、GATE2
 - ⑧计数器输出OUT
 - ◆标识定时或计数完毕
 - ♦OUT0、OUT1、OUT2

- 8253A内部有6个模块
 - ■①数据总线缓冲器。
 - ◆三态双向8位寄存器,与CPU数据总线D0~D7相连
 - □写入命令字;
 - □写入计数初值;
 - □读出计数初值或当前值
 - ②读/写逻辑。
 - ◆根据CPU的读/写信号和地址信号选择数据传输的方向
 - ③控制命令寄存器。
 - ◆接收控制命令,选择计数器及工作方式
 - ④ 3个独立的计数器
 - ◆结构完全相同

8253A的端口选择和操作

● 端口选择: A1A0

● 端口操作: RD,WR

\overline{CS}	RD	WR	A1	A0	选中的对象和操作
0	1	0	0	0	T0, 写入"计数初值"
0	1	0	0	1	T1, 写入"计数初值"
0	1	0	1	0	T2, 写入"计数初值"
0	1	0	1	1	控制寄存器, 写"工作方式控制字"
0	0	1	0	0	T0, 读"当前计数值"
0	0	1	0	1	T1, 读"当前计数值"
0	0	1	1	0	T2, 读"当前计数值"
0	0	1	1	1	三态
1	×	X	×	X	三态
0	1	1	X	X	三态

计数初值C的确定

- 计数初值C决定了计数的次数或定时的长度或输出波形的频率
 - ■1.单纯的计数:直接设定
 - ■2.作为定时使用,定时长度L(把时间转化成计数)
 - ◆与CLK的周期T_{CLK}(或频率f_{CLK})有关:

■3.输出指定频率f_{OUT}的波形【循环计数时OUT输出周期波】

$$lacktriangle$$
 C = f_{CLK} / f_{OUT}

例: 已知
$$f_{OUT}$$
 = 800HZ, f_{CLK} = 1.19318MHz, 则 $C = f_{CLK} / f_{OUT}$ = 1.19318 * 106 / 800= 1491

● **8253A**的初始化

■ (1) 向选定计数器写入计数初值

● 端口选择: A1A0

● 端口操作: RD,WR

\overline{CS}	\overline{RD}	WR	A1	A0	选中的对象和操作
0	1	0	0	0	T0, 写入"计数初值"
0	1	0	0	1	T1, 写入"计数初值"
0	1	0	1	0	T2, 写入"计数初值"

- 8253A的初始化
 - (1) 向选定计数器写入计数初值
 - (2) 选择计数器: T0, T1或 T2
 - (3) 确定读写数据的方式 (8位或16位,字节位置和顺序)
 - (4) 确定计数器的工作方式 (方式0~方式5)
 - (5) 确定计数的数制 (二进制码或BCD码)

● 端口选择: A1A0

● 端口操作: RD,WR

\overline{CS}	\overline{RD}	WR	A1	A0	选中的对象和操作
0	1	0	1	1	控制寄存器,写"工作方式控制字"

- 工作方式控制字(CW: Control Word, 写入控制寄存器)
 - (1) 选择计数器 (0~2) (T0, T1, T2)
 - (2) 确定读写数据的方式(8位或16位,字节位置和顺序)
 - (3) 确定计数器的工作方式(方式0~方式5)
 - (4) 确定计数的数制 (二进制码或BCD码)
- CW的定义

	1							1
D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	
SC1	SC0	RW1	RW0	M2	M1	MO	BCD	
/ 计数器	器选择	读写数捷	居方式 ↑	† -	工作方式		码制↑	
00: T0 01: T1 01: 低8位 10: T2				0 0 1 X 1 0	: 方式0 : 方式1 : 方式2 : 方式3		0 : 二过 1 : BCI	
	5_				方式4方式5	X		

● 工作方式控制字(CW)	8253A地址304(意即304~307且CW端口307)
---------------	-------------------------------

■例:选择T2,工作于方式3,二进制计数计,数初值533H。

MOV DX, ()
MOV AL, ()

OUT DX, AL

MOV DX, ()

MOV AX, ()

OUT DX, AL

MOV AL, AH

OUT DX, AL

;命令口的地址

; 工作方式控制字

; 写入命令口

; T2数据口

; 计数初值

; 先送低字节到T2

; 取高字节送AL

;后送高字节到T2

D ₇	D ₆	D_5	D_4	D_3	D_2	D ₁	D ₀
SC1	SC0	RW1	RW0	M2	M1	Mo	BCD
计数器选择		读写数排	居方式	-	工作方式		码制

1001100

课	堂作	1/2	(不	交)
11	土厂		(- `	

- 工作方式控制字(CW) 8253A地址304(意即304~307且CW端口307)
 - ■例: T1 ,方式0,二进制,计数初值BYTEH: BYTEL。

MOV AL,

OUT DX, AL

MOV

MOV AL, BYTEL

OUT DX, AL

MOV ____

OUT

;命令口

;工作方式控制字

; 写入命令寄存器

; T1数据口

; 计数初值低字节

; 计数初值高字节

D ₇	D ₆	D ₅	D ₄	D_3	D_2	D ₁	D ₀
SC1	SC0	RW1	RW0	M2	M1	МО	BCD
计数器选择		读写数抗	居方式	-	工作方式		码制

0 1 1 1 0 0 0 0

- **8253A**的基本操作
 - 获取当前计数值: 锁存命令
 - 获得工作状态: 获得状态字
 - ■通过向控制端口写特定的字完成。

获取当前计数值

- 方法一
 - ■使用IN指令读取(两次)

● 端口选择: A1A0

● 端口操作: RD,WR

	CS	\overline{RD}	WR	A1	A0	选中的对象和操作
3	0	0	1	0	0	TO, 读"当前计数值"
	0	0	1	0	1	T1, 读"当前计数值"
	0	0	1	1	0	T2, 读"当前计数值"

在读之前用GATE信号,控制计数器暂停计数,或由外部逻辑禁止所要读的计数通道的CLK脉冲输入。

原因: 计数值16位, CPU要执行两次读入指令, 还要把读入的数存入寄存器或存储单元中。两次读入有时间间隔。

例:读计数器0。这种读入要求软件和硬件配合,即先使 GATE为低电平,禁止计数器计数,再执行如下读入程序段 (端口地址40H~43H):

IN AL, 40H ; 读入计数器0的低8位

MOV BL, AL

IN AL, 40H ; 读入计数器0的高8位

MOV BH, AL

● 锁存命令

■将减1计数器的内容锁存到当前计数值锁存器,供CPU读取

D ₇	D_6	D_5	D_4	D_3	D ₂	D ₁	D_0
SC1	SC0	0	0	x	X	X	X
,计数器选择		锁存特	往位↑		不	「用	

00: TO

01: T1

10: T2

11: 不用

00: 锁存

01: 不用

),不用 【用于CW的读

11: 不用 与 写数据方式。

● 锁存命令

8253A地址304(意即304~307且CW端口307)

■例:读出并检查T1的当前计数值是否全"1"(假定计数值只有低8位)。

MOV DX, 307H ;命令口

MOV AL, 01000000B ; T1的锁存命令

OUT DX, AL ;写入命令寄存器

MOV DX, 305H ; T1数据口

IN AL, DX ; 读T1的当前计数值

CMP AL, 0FFH ; 比较

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
SC1	SC0	0	0	x	X	X	X
计数器选择		锁存特	征位		不	用	

0 1 0 0 0 0 0 0

课	堂作	乍、	此 (不	交))
1	工!	-				1

●锁存命令

8253A地址304(意即304~307且CW端口307)

■ 例:读出T2的当前计数值(16位),并装入AX寄存器。

MOV

;命令口

MOV AL,

; T2的锁存命令

OUT DX, \overline{AL}

;写入命令寄存器

MOV

; T2数据口

IN AL, DX

;读T2的当前计数值的低8位

MOV BL, AL

IN

;读T2的当前计数值的高8位

MOV

MOV AL, BL

D ₇	D ₆	D_5	D ₄	D_3	D ₂	D ₁	D ₀
SC1	SC0	0	0	х	Х	Х	х
1	0	0	0	0	0	0	0

- 基本特点
 - ■典型的事件计数用法

方式0的计数过程和特点

- 1、写入工作方式控制字(CW, Control Word)
 - OUT开始变成高电平
- 2、写计数初值C到初值寄存器 wr

 - ■GATE高电平时立即开始计数。
- 3、计数期间OUT维持低电平。
- 4、当减1计数器减到0时OUT变为高电平。
- 5、当重新写入C后,立即开始新一轮计数
 - OUT再次变成低电平
 - 计数期间,如果重写计数值,立即重新开始计数。
- 6、GATE: 高电平: 允许/继续计数; 低电平: 禁止计数
- 7、 OUT可作中断请求信号【特点:被响应后才变低】

方式1的计数过程和特点

同方式0很类似

- 1、写入控制字CW后,OUT变高电平。
- 2、写入计数初值C
- 3、GATE上跳时,C装入减1计数器,开始计数,OUT变低。
- 4、整个计数过程中OUT维持低电平,直到计数结束才变高。
 - OUT负脉冲宽度 = 计数初值 * CLK周期。
- 5、如果计数过程中GATE出现上跳,则重新计数。
- 6、计数过程中如果重写初值,则要等当前计数结束且GATE再次出现上升沿后,才能开始新的计数。

方式1的应用场合

● 改变计数初值C可以产生不同宽度的8253A获取可变宽脉冲信号

- 实现脉宽调制 (PWM , Pulse Width Modulate)
 - ◆用数字信号去控制/产生模拟信号的方法。
 - □利用微机的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
 - ◆对模拟信号电平进行数字编码的方法
 - □对占空比的编码

方式2: 周期性负脉冲输出,分频器

- 若计数初值为N,则OUT频率为CLK的1/N。又称N分频器。
- 例子: C=4

方式2的计数过程和特点

- 1、写入控制字CW,OUT变成高电平。
- 2、写入计数初值C。
- 3、若GATE为高电平时,下一个CLK周期把C写入减1计数器, 并开始计数。
- 4、计数过程中OUT保持高电平,直到倒数第2个CLK。
- 5、减一计数到1时,OUT输出1个负脉冲(宽度为1个CLK周期),
- 6、自动装入C, OUT再次变成高电平,开始新一轮计数。
- 注意:
 - ■方式2中启动计数器的方法有两种
 - ◆软件启动过程: 装入计数初值 ATE
 - ◆硬件启动过程: GATE上升沿

方式2的应用场合

- OUT正脉冲宽度 = (计数初值 1) x CLK周期
- OUT负脉冲宽度 = 1个CLK周期。
- 典型应用: N分频器(即速率发生器):
 - ■对已知频率的信号(CLK),通过改变计数初值C,即可获 得不同频率的信号(OUT)

$$f_{OUT} = f_{CLK} / N$$

方式3: 周期性方波输出

- 与方式2基本相同:自动装入计数初值C,循环计数
- 不同之处: OUT输出占空比为1:1或近似1:1的方波
 - C为偶数时,OUT的高、低电平前后各一半。
 - C为奇数时:
 - ◆前(N+1) / 2个CLK: OUT高电平
 - ◆后(N-1)/2个CLK: OUT低电平。

方式3的特点和应用场合

- 方式3的特点
 - ■1、减1计数器每次计数减2。
 - ■2、OUT输出方波信号
 - ■3、计数器有软件启动和有硬件启动两种方式。
- 方式3的应用场合
 - ■波特率发生器(或速率发生器)

方式4: 单次负脉冲输出

- 方式4: 单次负脉冲输出, 软件触发
 - ■例子: C=4(后面改为3),注意观察:
 - ◆负脉冲位置;
 - ◆重写新的C时, 计数过程的变化;
 - ◆GATE变低然后恢复高时,计数过程的变化

方式4的计数过程和特点

- 由软件启动计数:写入计数初值C触发计数器开始工作:
- 1、设定方式后,OUT为高电平;
- 2、写入C后,在下一个CLK开始计数
- 3、计数期间OUT保持高电平
- 4、计数结束输出1个CLK的负脉冲,然后OUT恢复高电平。

WR 方式4 4 3 3 「

- 5、GATE作用
 - ◆高电平:允许计数;
 - ◆低电平:停止(不是暂停)计数 our——
 - ◆恢复高电平: 重新开始新一轮的计数。
- 6、重写新的计数初值
 - 不影响当前计数过程,直到下一轮计数时才生效。

- 方式5: 同方式4类似,单次负脉冲输出,但是硬件触发
 - ■例子: C=4,注意观察
 - ◆负脉冲位置;
 - ◆重写新的C时, 计数过程的变化;
 - ◆GATE变低然后恢复高时,计数过程的变化

方式5的计数过程和特点

- 同方式4类似,单次负脉冲输出,硬件触发
 - GATE上升沿触发计数开始
- 1、写入C后,并不立即开始计数,而要由GATE上升沿启动计数。
- 2、计数过程中OUT维持高电平
- 3、计数到0后,OUT输出1个CLK的负脉冲后恢复高电平。
- 4、在计数过程中,如果GATE再次出现上升沿,立即开始新一轮的计数。

6种工作方式的总结

- 差异
 - 计数过程和计数结束时OUT电平的高低和持续时间(波形)
 - ■单次计数或自动循环计数
 - 计数的启动方式:软件(写计数初值)或硬件(GATE)

- 方式0和方式 1
 - 输出波形类似;
 - ■无自动重装C的能力;
 - 启动计数的触发信号不一样:
 - ◆方式0: 软件(写初值)
 - ◆方式1:硬件(GATE上沿)
- 方式2 (N分频器) 和方式3 (方波发生器)
 - 计数初值自动重装,循环计数;
 - OUT频率:CLK的N分之一;
 - ■方式2: 计数时高电平,结束时1个CLK负脉冲;
 - ■方式3:前一半为高,后一半为低

6种工作方式的比较——

- 方式4 (单次负脉冲)和5方式(单次负脉冲)
 - ■输出波形相同:单次负脉冲;
 - ■无自动重装能力;
 - 启动计数方式不同:方式4:软件,方式5:硬件
- 方式2 (N分频) 和方式4与5
 - ■方式2: 周期性负脉冲
 - ■方式4与5:单次负脉冲

8253A的应用举例:篮球赛24秒违例计时

24秒违例规则: 持球进攻方24 秒内未投篮或投篮但未触及篮 筐,则判违例,应把发球权让 给对方。

24秒

8253A的应用举例:24秒计时

- 已知计算机系统的计时单位(时钟脉冲)
 - CLK = 1.1931816MHz
 - T_{CLK}=0.84微秒
 - ◆若使用最大的计数初值C1 = 65535 则T_{OUT} = 0.84 * 65535 = 54.918 ms
- 新的计时单位
 - ■新建一个周期性的波形(方式3)
 - ◆计数初值C1 = 65535
 - ◆T_{OUT} = 0.84微秒 * 65535 = 54.918ms
 - 新的时钟信号T_{CLK-new} = 54.918毫秒
- 在新的时钟下,计时24秒
 - ■方式0, 计数结束输出高电平。
 - 计数初值C2 = 24秒 / 54.918毫秒 = 437
- 定时器选用
 - CLK: T0, 方式3, C1 = 65535
 - OUT0: T1, 方式0, C2 = 437

课堂作业4: (流水线产品计数控制)

● 请设定8253A工作方式并初始化它。假定8253A地址是30H.

● 工件自动计**8253A**8253A, 01110001B ; 8253A, 方式0, 写两字节, BCD计数

OUT8253AH, AL

MOV AL, 8253A

OUT 031H, AL ; 写低8位

MOV AL, 04H

OUT 031H, AL ; 写高8位

课堂作业5:控制LED的点亮或熄灭

- 用8253A控制一个LED的点亮和熄灭。
 - ■要求点亮10秒钟后再让它熄灭10秒钟,并重复上述过程。
 - ■假设8088系统,端口地址为81H、83H、85H和87H。

