Cuarta Lista de Problemas **Primera Parte**

Matemáticas para las Ciencias Aplicadas I Facultad de Ciencias, UNAM

> Flores Morán Julieta Melina Zarco Romero José Antonio

7 de diciembre de 2023

1. Sección 5.3 Integración Por Sustitución

1.1. Ejercicio 44

Flores Morán Julieta Melina

Evaluar las integrales utilizando sustituciones apropiadas.

$$\int \tan^3 5x \sec^2 5x dx$$

Tomemos $u=\tan 5x \to du=5\sec^2 5x dx \to \frac{du}{5}=\sec^2 5x dx$. Sustituimos en la integral:

$$\int u^3 \frac{du}{5}$$

Y resolvemos normalmente:

$$\int u^3 \frac{du}{5} = \int u^3 du \frac{1}{5}$$
$$= \frac{1}{5} \int u^3 du$$
$$= \frac{1}{5} \frac{u^4}{4} + C$$
$$= \frac{u^4}{20} + C$$

y regresamos a u a su valor original.

$$\frac{u^4}{20} + C = \frac{\tan^4 5x}{20} + C$$

1.2. Ejercicio 73

name

- (a) Evalúe $\int \left[\frac{x}{\sqrt{x^2+1}}\right] dx$
- (b) Utilice una herramienta gráfica para generar algunas curvas integrales típicas de $f(x) = x/\sqrt{x^2 + 1}|1$ en el intervalo (-5, 5).

2. Sección 5.5 La Integral Definida

2.1. Ejercicio 28

Flores Morán Julieta Melina

Utilice el Teorema 5.5.4 y fórmulas apropiadas de geometría para evaluar las integrales.

$$\int_{-3}^{0} \left(2 + \sqrt{9 - x^2} \right) dx$$

Siguiendo el teorema 5.5.4, esta integral equivale a :

$$\int_{3}^{0} 2dx + \int_{3}^{0} \sqrt{9 - x^2} dx$$

Procedamos a evaluar la primera integral $\int_{-3}^{0} 2dx$ donde podemos ver la función y=2 que es una línea recta horizontal, por lo que el área formada con el eje x en el intervalo de 0 a -3 es un rectángulo de altura 2 y de base |-3|=3, así que el área es $3\cdot 2$ y entonces

$$\int_{-3}^{0} 2dx = 6$$

Para la segunda integral $\int_{-3}^{0} \sqrt{9-x^2} dx$. Tenemos que $y=\sqrt{9-x^2}$ delimita la región de un cuarto de un circulo donde $r^2=9$ y por lo tanto su radio es de 3.

Considerando la formular del área de un circulo tenemos que el área de la cuarta parte es $\frac{1}{4}\pi(3)^2$, por lo tanto.

$$\int_{-3}^{0} \sqrt{9 - x^2} dx = \frac{9\pi}{4}$$

Por lo tanto el resultado de la suma de ambas sería:

$$\int_{-3}^{0} 2dx + \int_{-3}^{0} \sqrt{9 - x^2} dx = 6 + \frac{9\pi}{4}$$

Lo que resuelve la integral dada.

$$\int_{-3}^{0} \left(2 + \sqrt{9 - x^2}\right) dx = 6 + \frac{9\pi}{4}$$

2.2. Ejercicio 37

name

Evaluar las integrales completando el cuadrado y aplicando fórmulas apropiadas de geometría.

$$\int_{0}^{10} \sqrt{10x - x^2} dx$$

3. Sección 5.6 El Teorema Fundamental Del Cálculo

3.1. Ejercicio 58

Flores Morán Julieta Melina

Defina F(x) por

$$F(x) = \int_{\pi/4}^{x} \cos 2t dt$$

(a) Utilice la parte 2 del teorema fundamental del cálculo para encontrar F'(x).

La parte 2 del teorema fundamental del cálculo nos dice que $\frac{d}{dx} \left[\int_a^x f(t) dt \right] = f(x)$. En este caso el integrando es una función continua, entonces $f(x) = \cos 2x$. Por lo tanto $F'(x) = \cos 2x$

(b) Verifique el resultado del inciso (a) integrando primero y luego diferenciando.

Podemos resolver la integral mediante un cambio de variable. $u=2t\to du=2dt\to dt=\frac{du}{2}$

$$F(x) = \int_{\pi/4}^{x} \cos 2t dt$$

$$= \int_{u(\pi/4)}^{u(x)} \cos u \frac{du}{2}$$

$$= \frac{1}{2} \int_{\pi/2}^{2x} \cos u du$$

$$= \frac{1}{2} \operatorname{sen} u \Big|_{\pi/2}^{2x}$$

$$= \frac{1}{2} \left[\operatorname{sen} 2x - \operatorname{sen} \frac{\pi}{2} \right]$$

$$= \frac{1}{2} \left[\operatorname{sen} 2x - 1 \right]$$

$$= \frac{1}{2} \operatorname{sen} 2x - \frac{1}{2}$$

Y ahora podemos derivar F(x).

$$F'(x) = \frac{d}{dx} \left[\frac{1}{2} \operatorname{sen} 2x - \frac{1}{2} \right]$$
$$= \frac{1}{2} \cos 2x \cdot 2$$
$$= \cos 2x$$

3.2. Ejercicio 63

name

Sea $F(x) = \int_4^x \sqrt{t^2 + 9} dt$. Encuentre

- (a) F(4).
- (b) F'(4).
- (c) F''(4).

3.3. Ejercicio 70

Flores Morán Julieta Melina

Un ingeniero de tránsito monitorea la velocidad a la que los automóviles ingresan a la carretera principal durante la hora pico de la tarde. De sus datos estima que entre las 16:30 horas. y 17:30 p.m. la tasa R(t) a la que los automóviles ingresan a la carretera está dada por la fórmula $R(t) = 100(1 - 0.0001t^2)$ automóviles por minuto, donde t es el tiempo (en minutos) desde las 4:30 p.m.

- (a) ¿Cuándo ocurre el flujo máximo de tráfico hacia la carretera? El flujo máximo de autos ocurre cuando R(t) alcanza su valor máximo. Esto es cuando t=0 ya que el factor $(1-0.0001t^2)$ sería 1 y el flujo de autos es 100, esto ocurre a las 16:30.
- (b) Estime el número de automóviles que entran a la carretera durante la hora pico.

Para avaluar el número de autos que entran, debemos evaluar la suma de las tasas de entrada en cada momento de esa hora transcurrida entre 16:30 y 17:30, es decir, en un periodo de 0 a 60 minutos ya que t=0 equivale a 16:30 y t=60 a 17:30.Entonces evaluemos:

$$\int_{0}^{60} [100(1 - 0.0001t^{2})dt] = 100[\int_{0}^{60} (1 - 0.0001t^{2})dt]$$

$$= 100[\int_{0}^{60} dt - 0.0001 \int_{0}^{60} t^{2}dt]$$

$$= 100[\int_{0}^{60} dt - 0.0001 \int_{0}^{60} t^{2}dt]$$

$$= 100[t \Big|_{0}^{60} - 0.0001 \frac{t^{3}}{3} \Big|_{0}^{60}]$$

$$= 100[(60 - 0) - 0.0001 (\frac{60^{3}}{3} - \frac{0^{3}}{3})]$$

$$= 100[60 - 0.0001(72000)]$$

$$= 100 \cdot 52.8$$

$$= 5280$$

Así que el número de coches entrados a la carretera en la hora pico fue de 5280.

4. Sección 5.8 Valor Promedio De Una Función Y Sus Aplicaciones

4.1. Ejercicio 27

name

Un ingeniero de tránsito monitorea la velocidad a la que los automóviles ingresan a la carretera principal durante la hora pico de la tarde. De sus datos estima que entre las 16.30 horas. y 5:30 p.m. la velocidad R(t) a la que los automóviles ingresan a la carretera está dada por la fórmula R(t) =

 $100(10.0001t^2)$ automóviles por minuto, donde t es el tiempo (en minutos) desde las 4:30 p.m. Encuentre la velocidad promedio, en automóviles por minuto, a la que los automóviles ingresan a la carretera durante la primera media hora de la hora pico.

5. Sección 5.9 Evaluación De Integrales Definidas Por Sustitución

5.1. Ejercicio 52

Flores Morán Julieta Melina

(a) Utilice un CAS para encontrar el valor exacto de la integral

$$\int_{-\pi/4}^{\pi/4} \tan^4 x dx$$

(b) Confirme el valor exacto mediante cálculo manual. [Sugerencia: Utilice la identidad $1 + \tan^2 x = \sec^2 x$.]

Utilizando la identidad reescrita como $\tan^2 x = \sec^2 x - 1$ podemos reescribir la integral de la siguiente forma:

$$\int_{-\pi/4}^{\pi/4} \tan^4 x dx = \int_{-\pi/4}^{\pi/4} [\tan^2 x \cdot (\sec^2 x - 1)] dx$$

$$= \int_{-\pi/4}^{\pi/4} [\tan^2 x \cdot \sec^2 x - \tan^2 x] dx$$

$$= \int_{-\pi/4}^{\pi/4} [\tan^2 x \cdot \sec^2 x - \tan^2 x] dx$$

$$= \int_{-\pi/4}^{\pi/4} \tan^2 x \cdot \sec^2 x dx - \int_{-\pi/4}^{\pi/4} \tan^2 x dx$$

Podemos usar sustitución para la primera integral, donde $u = tanx \rightarrow du = sec^2xdx$.

$$\int_{-\pi/4}^{\pi/4} \tan^2 x \cdot \sec^2 x dx = \int_{u(-\pi/4)}^{u(\pi/4)} u^2 \cdot du$$

$$= \frac{u^3}{3} \Big|_{-1}^{1}$$

$$= \frac{1^3}{3} - \frac{-1^3}{3}$$

$$= \frac{1}{3} + \frac{1}{3}$$

$$= \frac{2}{3}$$

Y la fórmula dada en el formulario para la segunda.

$$\int_{-\pi/4}^{\pi/4} \tan^2 x dx = \tan x - x \Big|_{-\pi/4}^{\pi/4}$$

$$= \tan \left(\frac{\pi}{4}\right) - \frac{\pi}{4} - \left[\tan \left(\frac{-\pi}{4}\right) - \frac{-\pi}{4}\right]$$

$$= 1 - \frac{\pi}{4} - \left[-1 + \frac{\pi}{4}\right]$$

$$= 1 - \frac{\pi}{4} + 1 - \frac{\pi}{4}$$

$$= 2 - \frac{\pi}{2}$$

Así podemos reescribir:

$$\int_{-\pi/4}^{\pi/4} \tan^2 x \cdot \sec^2 x dx - \int_{-\pi/4}^{\pi/4} \tan^2 x dx = \frac{2}{3} - \left[2 - \frac{\pi}{2}\right]$$
$$= \frac{2}{3} - \left[2 - \frac{\pi}{2}\right]$$
$$= \frac{2}{3} - 2 + \frac{\pi}{2}$$
$$= -\frac{4}{3} + \frac{\pi}{2}$$

Por lo tanto el valor exacto es $-\frac{4}{3} + \frac{\pi}{2} \approx 0.2374629935$.

5.2. Ejercicio 64

name

La electricidad se suministra a los hogares en forma de corriente alterna, lo que significa que el voltaje tiene una forma de onda sinusoidal descrita por una ecuación de la forma

$$V = V_p \sin\left(2\pi f t\right)$$

(ver la figura adjunta). En esta ecuación, V_p se llama voltaje máximo o amplitud de la corriente, f se llama y 1/f se llama período. Los voltajes

V y V_p se miden en voltios (V), el tiempo t se mide en segundos (s) y la frecuencia se mide en hercios (Hz). $(1Hz=1 \text{ ciclo por segundo}; \text{ un } \boldsymbol{ciclo}$ es el término eléctrico para un período de la forma de onda). La mayoría de los voltímetros de corriente alterna leen lo que se llama \boldsymbol{rms} o \boldsymbol{valor} $\boldsymbol{cuadrático medio}$ de V. Por definición, ésta es la raíz cuadrada del valor promedio de V^2 durante un período.

(a) Demuestre que

$$V_{rms} = \frac{V_p}{\sqrt{2}}$$

[Sugerencia: Calcule el promedio durante el ciclo de t=0 a t=1/f y use la identidad $\sin^2\theta = \frac{1}{2}(1-\cos 2\theta)$ para ayudar a evaluar la integral.]

(b) En Estados Unidos, los enchufes eléctricos suministran corriente alterna con un voltaje rms de 120V a una frecuencia de 60Hz. ¿Cuál es el voltaje máximo en tal toma corriente?

Segunda Parte

6. Sección 5.10

Logaritmos y otras funciones definidas por integrales

6.1. Ejercicio 25

Flores Morán Julieta Melina

Usa los resultados del ejercicio 24 para encontrar la derivada:

Cabe poner a consideración que el ejercicio 24 pide demostrar las siguiente propiedades:

$$\frac{d}{dx} \left[\int_{x}^{a} f(t)dt \right] = -f(x)$$

$$\frac{d}{dx} \left[\int_{g(x)}^{a} f(t)dt \right] = -f(g(x))g'(x)$$

$$(a)$$

$$\frac{d}{dx} \int_{x}^{\pi} cos(t^{3}) dt$$

Usaremos la primera propiedad, donde $f(t) = cos(t^3) \rightarrow f(x) = cos(x^3)$. De aquí que:

$$\frac{d}{dx} \int_{x}^{\pi} \cos(t^{3}) dt = -\cos(x^{3})$$

$$\frac{d}{dx} \int_{tanx}^{3} \frac{t^2}{1+t^2} dt$$

Usaremos la segunda propiedad, donde $f(t) = \frac{t^2}{1+t^2} \to f(x) = \frac{x^2}{1+x^2}$ y $g(x) = \tan x$. De aquí que:

$$\frac{d}{dx} \int_{tanx}^{3} \frac{t^2}{1+t^2} dt = -f(tanx) \frac{d}{dx} tanx$$

$$= -\frac{tan^2 x}{1+tan^2 x} sec^2 x$$

$$= -\frac{tan^2 x \cdot sec^2 x}{1+tan^2 x}$$

$$= -\frac{tan^2 x \cdot sec^2 x}{sec^2 x}$$

$$= -tan^2 x$$

6.2. Ejercicio 27

Flores Morán Julieta Melina Encuentra

$$\frac{d}{dx} \left[\int_{3x}^{x^2} \frac{t-1}{t^2+1} dt \right]$$

escribiendo

$$\int_{3x}^{x^2} \frac{t-1}{t^2+1} dt = \int_{3x}^{0} \frac{t-1}{t^2+1} + \int_{0}^{x^2} \frac{t-1}{t^2+1} dt$$

Entonces, podemos reescribir el problema de la siguiente manera:

$$\frac{d}{dx} \left[\int_{3x}^{x^2} \frac{t-1}{t^2+1} dt \right] = \frac{d}{dx} \left[\int_{3x}^{0} \frac{t-1}{t^2+1} dt \right] + \frac{d}{dx} \left[\int_{0}^{x^2} \frac{t-1}{t^2+1} dt \right]$$

Podemos usar la propiedad

$$\frac{d}{dx} \left[\int_{g(x)}^{a} f(t)dt \right] = -f(g(x))g'(x)$$

Y para $\frac{d}{dx} \left[\int_{3x}^{0} \frac{t-1}{t^2+1} dt \right]$ podemos considerar g(x) = 3x, $f(t) = \frac{t-1}{t^2+1}$.

$$\frac{d}{dx} \left[\int_{3x}^{0} \frac{t-1}{t^2+1} dt \right] = -f(g(x))g'(x)$$

$$= -f(3x)\frac{d}{dx}3x$$

$$= -\frac{3x-1}{(3x)^2+1} \cdot 3$$

$$= -3 \cdot \frac{3x-1}{9x^2+1}$$

Para $\frac{d}{dx}\left[\int_0^{x^2}\frac{t-1}{t^2+1}dt\right]$, necesitamos que cumpla con las características para aplicar la propiedad de arriba. Esto lo logramos intercambiando los límites y cambiando el signo, así.

$$\int_0^{x^2} \frac{t-1}{t^2+1} dt = -\int_{x^2}^0 \frac{t-1}{t^2+1} dt$$

Υ

$$\frac{d}{dx} \left[\int_0^{x^2} \frac{t-1}{t^2+1} dt \right] = -\frac{d}{dx} \left[\int_{x^2}^0 \frac{t-1}{t^2+1} dt \right]$$

podemos considerar $g(x) = x^2$, $f(t) = \frac{t-1}{t^2+1}$.

$$-\frac{d}{dx} \left[\int_{x^2}^0 \frac{t-1}{t^2+1} dt \right] = -(-f(g(x))g'(x))$$

$$= f(x^2) \frac{d}{dx} x^2$$

$$= \frac{x^2 - 1}{(x^2)^2 + 1} \cdot 2x$$

$$= 2x \cdot \frac{x^2 - 1}{x^4 + 1}$$

Así con estos resultados obtenemos que:

$$\frac{d}{dx} \left[\int_{3x}^{x^2} \frac{t-1}{t^2+1} dt \right] = \frac{d}{dx} \left[\int_{3x}^{0} \frac{t-1}{t^2+1} dt \right] + \frac{d}{dx} \left[\int_{0}^{x^2} \frac{t-1}{t^2+1} dt \right]$$
$$= -3 \cdot \frac{3x-1}{9x^2+1} + 2x \cdot \frac{x^2-1}{x^4+1}$$

7. Sección 7.2 Integración por partes

7.1. Ejercicio 54

Flores Morán Julieta Melina Evaluá por partes la integral

$$\int_0^1 \frac{x^3}{\sqrt{x^2 + 1}} dx$$

Usando:

 a) Integración por partes
 Para usar la fórmula de integración por partes para esta integral definida

$$\int_{a}^{b} u dv = uv \bigg|_{a}^{b} - \int_{a}^{b} v du$$

Hay que elegir una u y una v. En este caso si $v=\sqrt{x^2+1}\to dv=\frac{x}{\sqrt{x^2+1}}dx$ y $u=x^2\to du=2xdx$ completa la integral que buscábamos. Usando la fórmula.

$$\int_0^1 x^2 \frac{x}{\sqrt{x^2 + 1}} dx = x^2 \cdot \sqrt{x^2 + 1} \bigg|_0^1 - \int_0^1 \sqrt{x^2 + 1} \cdot 2x dx$$

La integral $\int_0^1 \sqrt{x^2+1} 2x dx$ es fácil obtener
la por sustitución. Si $u=x^2+1 \to du=2x dx.$ Así

$$\int_{0}^{1} 2x\sqrt{x^{2} + 1} dx = \int_{u(0)}^{u(1)} \sqrt{u} du$$

$$= \int_{1}^{2} u^{1/2} du$$

$$= \frac{2u^{3/2}}{3} \Big|_{1}^{2}$$

$$= \frac{2 \cdot 2^{3/2}}{3} - \frac{2 \cdot 1^{3/2}}{3}$$

$$= \frac{4 \cdot \sqrt{2}}{3} - \frac{2}{3}$$

$$= \frac{4}{3}\sqrt{2} - \frac{2}{3}$$

Entonces tenemos

$$x^{2} \cdot \sqrt{x^{2} + 1} \Big|_{0}^{1} - \int_{0}^{1} \sqrt{x^{2} + 1} \cdot 2x dx = 1^{2} \cdot \sqrt{1^{2} + 1} - [0^{2} \cdot \sqrt{0^{2} + 1}] - [\frac{4}{3}\sqrt{2} - \frac{2}{3}]$$

$$= 1 \cdot \sqrt{2} - \frac{4}{3}\sqrt{2} + \frac{2}{3}$$

$$= -\frac{1}{3}\sqrt{2} + \frac{2}{3}$$

b) Sustitución de $u = \sqrt{x^2 + 1}$

En este caso cabe tener en cuenta que $du = \frac{x}{\sqrt{x^2+1}} dx$

$$\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{2}+1}} dx = \int_{u(0)}^{u(1)} (u^{2}-1) du$$

$$= \int_{1}^{\sqrt{2}} (u^{2}-1) du$$

$$= \int_{1}^{\sqrt{2}} u^{2} du - \int_{1}^{\sqrt{2}} du$$

$$= \left(\frac{u^{3}}{3} - u\right) \Big|_{1}^{\sqrt{2}}$$

$$= \frac{\sqrt{2}^{3}}{3} - \sqrt{2} - \left[\frac{1^{3}}{3} - 1\right]$$

$$= \frac{2}{3}\sqrt{2} - \sqrt{2} - \frac{1}{3} + 1$$

$$= -\frac{1}{3}\sqrt{2} + \frac{2}{3}$$

7.2. Ejercicio 62

Flores Morán Julieta Melina Usa la formula (9)

$$\int \cos^n dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x dx$$

de reducción para evaluar

$$\int cos^5 x dx$$

Para esto necesitamos el valor de $\int \cos^3 x dx$.

$$\int \cos^3 x dx = \frac{1}{3} \cos^2 x \sin x + \frac{2}{3} \int \cos^1 x dx$$
$$= \frac{1}{3} \cos^2 x \sin x + \frac{2}{3} \operatorname{sen} x + C$$

Así que volviendo al problema original

$$\int \cos^5 x dx = \frac{1}{5} \cos^4 x \sin x + \frac{4}{5} \int \cos^3 x dx$$

$$= \frac{1}{5} \cos^4 x \sin x + \frac{4}{5} \left[\frac{1}{3} \cos^2 x \sin x + \frac{2}{3} \sin x \right]$$

$$= \frac{1}{5} \cos^4 x \sin x + \frac{4}{15} \cos^2 x \sin x + \frac{8}{15} \sin x + C$$

 $\int_0^{\frac{\pi}{2}} \cos^6 x dx$

Evaluaremos primero $\int cos^6x dx$, para lo cual necesitamos conocer

$$\int \cos^2 x dx = \frac{1}{2} \cos^1 x \sin x + \frac{1}{2} \int \cos^0 x dx$$
$$= \frac{1}{2} \cos^1 x \sin x + \frac{1}{2} \int dx$$
$$= \frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$$

$$\int \cos^4 x dx = \frac{1}{4} \cos^3 x \sin x + \frac{3}{4} \int \cos^2 x dx$$
$$= \frac{1}{4} \cos^3 x \sin x + \frac{3}{4} \left[\frac{1}{2} \cos x \sin x + \frac{1}{2} x \right]$$
$$= \frac{1}{4} \cos^3 x \sin x + \frac{3}{8} \cos x \sin x + \frac{3}{8} x + C$$

Y ya podemos resolver fácilmente para n=6.

$$\int \cos^6 x dx = \frac{1}{6} \cos^5 x \sin x + \frac{5}{6} \int \cos^4 x dx$$

$$= \frac{1}{6} \cos^5 x \sin x + \frac{5}{6} \left[\frac{1}{4} \cos^3 x \sin x + \frac{3}{8} \cos x \sin x + \frac{3}{8} x \right]$$

$$= \frac{1}{6} \cos^5 x \sin x + \frac{5}{24} \cos^3 x \sin x + \frac{15}{48} \cos x \sin x + \frac{15}{48} x$$

$$= \frac{1}{6} \cos^5 x \sin x + \frac{5}{24} \cos^3 x \sin x + \frac{5}{16} \cos x \sin x + \frac{5}{16} x + C$$

Ahora hay que evaluarlo en los límites dados

$$\int_{0}^{\frac{\pi}{2}} \cos^{6}x dx = \left[\frac{1}{6} \cos^{5}x \sin x + \frac{5}{24} \cos^{3}x \sin x + \frac{5}{16} \cos x \sin x + \frac{5}{16}x \right] \Big|_{0}^{\frac{\pi}{2}}$$

$$= \frac{1}{6} \cos^{5}\left(\frac{\pi}{2}\right) \sin\left(\frac{\pi}{2}\right) + \frac{5}{24} \cos^{3}\left(\frac{\pi}{2}\right) \sin\left(\frac{\pi}{2}\right)$$

$$+ \frac{5}{16} \cos\left(\frac{\pi}{2}\right) \sin\left(\frac{\pi}{2}\right) + \frac{5}{16}\left(\frac{\pi}{2}\right)$$

$$- \left[\frac{1}{6} \cos^{5}0 \sin 0 + \frac{5}{24} \cos^{3}0 \sin 0 + \frac{5}{16} \cos 0 \sin 0 + \frac{5}{16}0 \right]$$

$$= \frac{5}{16} \left(\frac{\pi}{2}\right)$$

$$= \frac{5\pi}{32}$$

8. Sección 7.7

Integración numérica: Regla de Simpson

8.1. Ejercicio 32

Flores Morán Julieta Melina

El valor exacto de la integral dada es π (verificar). Aproximar la integral usando (a) la aproximación del punto medio M_{10} , (b) la aproximación trapezoidal T_{10} , y (c) Aproximación de la regla de Simpson S_{20} usando

la Fórmula (7). Aproximar el error absoluto y expresa tus respuestas con al menos cuatro decimales.

$$\int_0^3 \frac{4}{9} \sqrt{9 - x^2} dx$$

a) Verificar el valor de la integral dada, esta es una integral del formulario, entonces usamos la formula.

$$\begin{split} \int_0^3 \frac{4}{9} \sqrt{9 - x^2} dx &= \frac{4}{9} \int_0^3 \sqrt{9 - x^2} dx \\ &= \frac{4}{9} \left[\frac{x}{2} \sqrt{9 - x^2} + \frac{9}{2} \sin^{-1} \frac{x}{3} \right] \Big|_0^3 \\ &= \left[\frac{4x}{18} \sqrt{9 - x^2} + \frac{36}{18} \sin^{-1} \frac{x}{3} \right] \Big|_0^3 \\ &= \left[\frac{2x}{9} \sqrt{9 - x^2} + 2 \sin^{-1} \frac{x}{3} \right] \Big|_0^3 \\ &= \left[\frac{2 \cdot 3}{9} \sqrt{9 - 3^2} + 2 \sin^{-1} \frac{3}{3} \right] - \left[\frac{2 \cdot 0}{9} \sqrt{9 - 0^2} + 2 \sin^{-1} \frac{0}{3} \right] \\ &= \left[\frac{2}{3} \sqrt{9 - 9} + 2 \sin^{-1} 1 \right] - \left[2 \sin^{-1} 0 \right] \\ &= \left[2 \cdot \frac{\pi}{2} \right] - \left[2 \cdot 0 \right] \\ &= \pi \end{split}$$

- b) Aproximar la integral
 - 1) M_{10} Este método se describe de la siguiente forma:

$$M_n = \left(\frac{b-a}{n}\right) \sum_{k=1}^n f(x_k^*)$$
$$x_k^* = \frac{1}{2}(x_{k-1} + x_k)$$

Aproximación de Punto Medio						
n	Punto me m_n	edio	y_{mn}= f(x_n) = 4/9 (√9-x^2)			
	1	0.15	1.331665624			
	2	0.45	1.318247996			
	3	0.75	1.290994449			
	4	1.05	1.2489996			
	5	1.35	1.19070474			
	6	1.65	1.113552873			
	7	1.95	1.01324561			
	8	2.25	0.8819171037			
	9	2.55	0.7023769169			
1	LO	2.85	0.4163331999			
			10.50803811			
			10.50803811			

$$M_{10} = (0.30)(10.0803811) = 3.152411433$$

2) T_{10} Usaremos la definición que dice que

$$T_n = \left(\frac{b-a}{2n}\right) [y_0 + 2y_1 + \ldots + 2y_{n-1} + y_n]$$

Aproximación trapezoidal						
n	Punto final x_n	1 T	Multiplicador w_n	w_iny_n		
0	0	1.333333333	1	1.333333333		
1	0.3	1.326649916	2	2.653299832		
2	0.6	1.306394529	2	2.612789059		
3	0.9	1.271918935	2	2.54383787		
4	1.2	1.222020185	2	2.444040371		
5	1.5	1.154700538	2	2.309401077		
6	1.8	1.066666667	2	2.133333333		
7	2.1	0.9521904571	2	1.904380914		
8	2.4	0.8	2	1.6		
9	2.7	0.5811865258	2	1.162373052		
10	3	0	1	0		
				20.69678884		

$$T_{10} = (0.15)(20.69678884) = 3.104518326$$

3) S_{20}

Este método se basa en los anteriores y se describe como sigue

$$S_n = S_{2k} = \frac{1}{3}(2M_k + T_k)$$

En este caso tenemos que con lo ya calculado:

$$S_{20} = S_{2\ 10} = \frac{1}{3}(2M_{10} + T_{10})$$

$$S_{20} = 3.136447064$$

- c) Error absoluto
 - 1) $|M_{10}| = |\pi M_{10}| \approx |-0.010807| = 0.010807$
 - 2) $|T_{10}| = |\pi T_{10}| \approx |0.0370926| = 0.0370926$
 - 3) $|S_{20}| = |\pi S_{20}| \approx |0.0051455| = 0.0051455$

Tercera Parte

9. Sección 6.1 Área entre dos curvas

9.1. Ejercicio 17

Flores Morán Julieta Melina Dibuja la región entre las curvas y encuentra su área.

$$y = 2 + |x - 1|, y = -\frac{1}{5}x + 7$$

y = 2 + |x - 1|: Esta es la función del valor absoluto desplazada dos unidades hacia arriba y una a la derecha.

 $y = -\frac{1}{5}x + 7$: Esta es una línea recta que intersecta al eje y en 7 y al eje x en 35.

Para conocer el intervalo de integración debemos encontrar los puntos de intersección. Por $y=-\frac{1}{5}x+7,\ x=35-5y$

Etonces sustituimos en y = 2 + -x-1

$$y = 2 + |x - 1|$$

= 2 + |35 - 5y - 1|
= 2 + |34 - 5y|

Como nos encontramos con el valor absoluto hay dos puntos de intersección donde se satisface la ecuación.

$$y_1 = 2 + 34 - 5y_1$$
$$= 36 - 5y_1$$

$$6y_1 = 36$$

$$y_1 = 6$$

Para este valor, remplazamos en x = 35 - 5y

$$x = 35 - 5(6)$$

$$= 35 - 30$$

$$= 5$$

Así que hay un punto de intersección en (5,6)Ahora usamos el otro valor que puede tomar y.

$$y_2 = 2 - 34 + 5y_2$$
$$= -32 + 5y_2$$

$$4y_2 = 32$$

$$y_2 = 8$$

Para este valor, remplazamos en x = 35 - 5y

$$x = 35 - 5(8)$$

$$= 35 - 40$$

$$= -5$$

Así que hay un punto de intersección en (-5,8)Con esta información podemos dibujar estas gráficas.

Estamos buscando el área en morado. Para facilitar esto, podemos en-

tender
$$y = 2 + |x - 1|$$
 como $g(x) = \begin{cases} 1 + x & \text{si } x > 1 \\ 3 - x & \text{si } x < 1 \end{cases}$.

El área entre estas rectas, donde $f(x) \ge g(x)$ en [-5,5] esta dada por la fórmula:

$$A = \int_{-5}^{5} [f(x) - g(x)] dx$$

Si separamos el área en dos partes desde -5 a 1 y de 1 a 5 podremos calcularlas con las rectas que le corresponden según la definición anterior de g(x) Así que tenemos que:

$$A = \int_{-5}^{1} [f(x) - g(x)]dx + \int_{1}^{5} [f(x) - g(x)]$$

$$A = \int_{-5}^{1} \left[\left(\frac{-x}{5} + 7 \right) - (3 - x) \right] dx + \int_{1}^{5} \left[\left(\frac{-x}{5} + 7 \right) - (x + 1) \right] dx$$

$$= \int_{-5}^{1} \left[\frac{-x}{5} + 7 - 3 + x \right] dx + \int_{1}^{5} \left[\frac{-x}{5} + 7 - x - 1 \right] dx$$

$$= \int_{-5}^{1} \left[\frac{-4x}{5} + 4 \right] dx + \int_{1}^{5} \left[\frac{-6x}{5} + 6 \right] dx$$

$$= \frac{4}{5} \int_{-5}^{1} x dx + \int_{-5}^{1} 4 dx - \frac{6}{5} \int_{1}^{5} x dx + \int_{1}^{5} 6 dx$$

$$= \frac{4}{5} \left[\frac{x^{2}}{2} \Big|_{-5}^{1} \right] + 4x \Big|_{-5}^{1} - \frac{6}{5} \left[\frac{x^{2}}{2} \Big|_{1}^{5} \right] + 6x \Big|_{1}^{5}$$

$$= \frac{4}{5} \left[\frac{1}{2} - \frac{25}{2} \right] + 4(1 + 5) - \frac{6}{5} \left[\frac{25}{2} - \frac{1}{2} \right] + 6(5 - 1)$$

$$= \frac{4}{5} \left[-\frac{24}{2} \right] + 4(6) - \frac{6}{5} \left[\frac{24}{2} \right] + 6(4)$$

$$= -\frac{96}{10} + 24 - \frac{144}{10} + 24$$

$$= -\frac{240}{10} + 48 = 24$$

9.2. Ejercicio 38

Flores Morán Julieta Melina

Encuentra el área entre las curvas y = sen x y el segmento de línea uniendo los puntos (0,0) y $(5\pi/6, 1/2)$ de la curva.

Para encontrar la fórmula de la recta que une a los puntos dados, podemos usar la escuación de la recta $y-y_1=m(x-x_1)$, donde $m=\frac{\frac{1}{2}-0}{\frac{5\pi}{6}-0}$.

Así que tenemos que y - 0 = m(x - 0) resulta en la formula deseada.

$$y = \frac{6}{10\pi}x = \frac{3}{5\pi}x$$

Ahora, ya que la función $y = sen x \ge y = \frac{3}{5\pi}x$, usamos la fórmula para el área de la siguiente manera:

$$A = \int_{0}^{\frac{5\pi}{6}} \left[senx - \frac{3}{5\pi} x \right] dx$$

$$= \int_{0}^{\frac{5\pi}{6}} senx dx - \int_{0}^{\frac{5\pi}{6}} \frac{3}{5\pi} x dx$$

$$= -cosx \Big|_{0}^{\frac{5\pi}{6}} - \frac{3}{5\pi} \int_{0}^{\frac{5\pi}{6}} x dx$$

$$= -(cos \frac{5\pi}{6} - cos 0) - \frac{3}{5\pi} (\frac{x^{2}}{2} \Big|_{0}^{\frac{5\pi}{6}})$$

$$= -(cos \frac{5\pi}{6} - cos 0) - \frac{3}{5\pi} (\frac{x^{2}}{2} \Big|_{0}^{\frac{5\pi}{6}})$$

$$= -(-\frac{\sqrt{3}}{2} - 1) - \frac{3}{5\pi} (\frac{(\frac{5\pi}{6})^{2}}{2})$$

$$= \frac{2 + \sqrt{3}}{2} - \frac{\frac{75\pi^{2}}{36}}{10\pi}$$

$$= \frac{2 + \sqrt{3}}{2} - \frac{5\pi}{24}$$

10. Sección 6.6 Trabajo

10.1. Ejercicio 8

Flores Morán Julieta Melina

Un resorte cuya longitud natural es de 15 cm ejerce una fuerza de 45 N cuando se estira hasta una longitud de 20 cm.

- a) Encuentre la constante del resorte (en newtons/metro). Sabemos que F(x) = k * x y por el enunciado inicial deducimos que la fuerza utilizada para estirar el resorte 5 cm es de 45 N. F(0.05) = 45N = k(0.05). Por esto $k = \frac{45N}{0.05m} = 900N/m$
- b) Encuentre el trabajo que se realiza al estirar el resorte 3 cm. más allá de su longitud natural. Considerando que $W=\int_a^b F(x)dx$. Basta con especificar que los limites de integración será de 0 m de estiramiento a 0.03 m de estiramiento.

$$W = \int_0^{0.03} 900x dx$$

$$= 900 \int_0^{0.03} x dx$$

$$= 900 \left[\frac{x^2}{2} \Big|_0^{0.03} \right]$$

$$= 900 \left[\frac{(0.03)^2}{2} - 0 \right]$$

$$= 900 \left[0.00045 \right]$$

$$= 0.405 J$$

c) Encuentre el trabajo realizado al estirar el resorte desde una longitu de 20 cm hasta una longitud de 25 cm.

Aplicaremos la misma lógica del inciso b), excepto que esta vez

nuestros límtes de integración van desde 0.05 m de estirameniento hasta 0.1 m de estirameinto.

$$W = \int_{0.05}^{0.1} 900x dx$$

$$= 900 \int_{0.05}^{0.1} x dx$$

$$= 900 \left[\frac{x^2}{2} \Big|_{0.05}^{0.1} \right]$$

$$= 900 \left[\frac{(0.1)^2}{2} - \frac{(0.05)^2}{2} \right]$$

$$= 900 \left[0.005 - 0.00125 \right]$$

$$= 900 \left[0.00375 \right]$$

$$= 3.37 J$$

11. Sección 7.8 Integrales impropias

11.1. Ejercicio 7

Flores Morán Julieta Melina Evalua las integrales que convergen:

$$\int_{e}^{+\infty} \frac{1}{x \ln^3 x} dx$$

Usando la fórmula general para una integral impropia en el intervalo $[a, +\infty]$.

$$\int_{e}^{+\infty} \frac{1}{x \ln^3 x} dx = \lim_{b \to \infty} \int_{e}^{b} \frac{1}{x \ln^3 x} dx$$

Primero encontramos la intregal mediante sustitución donde $u=lnx \rightarrow du=\frac{1}{x}dx$

$$\int_{e}^{b} \frac{1}{x \ln^{3} x} dx = \int_{u(e)}^{u(b)} \frac{1}{u^{3}} du$$

$$= \int_{1}^{\ln b} u^{-3} du$$

$$= \frac{u^{-2}}{-2} \Big|_{1}^{\ln b}$$

$$= -\frac{1}{2u^{2}} \Big|_{1}^{\ln b}$$

$$= \left[-\frac{1}{2(\ln b)^{2}} \right] - \left[-\frac{1}{2 \cdot 1^{2}} \right]$$

$$= \left[\frac{1}{2} - \frac{1}{2(\ln b)^{2}} \right]$$

Ahora evaluemos:

$$\begin{split} \lim_{b\to\infty} \int_e^b \frac{1}{xln^3x} dx &= \lim_{b\to\infty} \left[\frac{1}{2} - \frac{1}{2(lnb)^2}\right] \\ &= \frac{1}{2} - 0 = \frac{1}{2} \end{split}$$

11.2. Ejercicio 39

Flores Morán Julieta Melina Usa sustitución y evalua la integral resultante indefinida

$$\int_0^{+\infty} \frac{e^{-x}}{\sqrt{1 - e^{-x}}} dx$$
$$u = 1 - e^{-x}$$

Nota: $u \to 1$ mientras que $x \to +\infty$

Evaluemos primero la integral con límite superior b
 donde $du=e^{-x}dx$

$$\begin{split} \int_{0}^{+\infty} \frac{e^{-x}}{\sqrt{1 - e^{-x}}} dx &= \lim_{b \to +\infty} \int_{0}^{b} \frac{e^{-x}}{\sqrt{1 - e^{-x}}} dx \\ &= \lim_{b \to +\infty} \int_{u(0)}^{u(b)} \frac{du}{\sqrt{u}} \\ &= \lim_{b \to +\infty} \int_{0}^{1 - e^{-b}} u^{\frac{-1}{2}} du \\ &= \lim_{b \to +\infty} \left[\frac{u^{\frac{1}{2}}}{\frac{1}{2}} \Big|_{0}^{1 - e^{-b}} \right] \\ &= \lim_{b \to +\infty} \left[2u^{\frac{1}{2}} \Big|_{0}^{1 - e^{-b}} \right] \\ &= 2 \lim_{b \to +\infty} \left[\sqrt{1 - e^{-b}} - \sqrt{0} \right] \\ &= 2 \lim_{b \to +\infty} \left[\sqrt{1 - e^{-b}} \right] \\ &= 2 \left[\sqrt{1 - 0} \right] \\ &= 2 \end{split}$$