Lösen eines Sudoku mit diversen Quantum Computing Ansätzen

Quantum Computing Hackathon

11.10. - 15.10.

Team Grover:

Jingcheng Wu Viktoria Patapovich

Sudoku Problemstellung – Übersicht

1	
	0

Was ist ein Sudoku?

Sudoku ist ein Logikrätsel

Die Grundfläche besteht aus IxJ Feldern bzw. Zellen. Mehr oder weniger gleichmäßig verteilt befinden sich im Rätsel bereits ein paar Ziffern.

n fällt die

n Ziffern 1 palte einem

5	3			7				
6			1	9	5			
L	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5

	7		3	1			5	
	1	5		8				
9	- 11		5				8	1
5		3	6			2		
2			1		9			4
		7			8	9		6
9	6				5			7
				6				
	2			9				

Quantum Computing Ansätze

Quantum Gate Model	Quantum Annealing D:WOVC
QAOA	Simulated Annealing (D-Wave Neal)
Grover`s Algorithmus	QPU (D-Wave Advantage)

QA und QAOA: Vorgehen

Komplexität und Tupel-Darstellung

Binäre Kodierung

$$x_{i,j,k} = \begin{cases} 1 : im \ Kastchen \ (i,j) \ steht \ k \\ 0 : sonst \end{cases}$$

 $x_{i,j,k}$

Zeile	Spalte	Zahl
1	1	1
2	2	2
I	J	K

Komplexität:

 $I \cdot J \cdot K$

Komplexität und Tupel-Darstellung

Binäre Kodierung

$$x_{i,j,k} = \begin{cases} 1 : im \ Kastchen \ (i,j) \ steht \ k \\ 0 : otherwise \end{cases}$$

Komplexität:

 $I \cdot J \cdot K$

	3	2	
1			
			2
	1	3	

 $x_{i,j,k}$

Zeile	Spalte	Zahl
1	1	1
2	2	2
•••	•••	
•••	•••	
•••	•••	
Ι	J	K

Problem:

Sogar für kleine Sudokus braucht man mehr als 30 Qubits ->

Pruning vonnöten

	3	2	
1			?
			2
	1	3	

Noch bei der Erstellung der Variablenliste, entfernen wir alle *offensichtlich unmöglichen* Variablen. z.B.:

- Wenn in der Spalte (bzw. Zeile) schon eine Zahl vorgegeben ist, können die unbekannten Variablen in diese Spalte (bzw. Zeile) nicht dieselbe Zahl sein.
- Wenn in einem Unterblock schon eine Zahl vorgegeben ist, können die unbekannten Variablen in diesem Unterbock nicht dieselbe Zahl sein.

Die Variable ist nicht 1 und nicht 2

Noch bei der Erstellung der Variablenliste, entfernen wir alle *offensichtlich unmöglichen* Variablen. z.B.:

- Wenn in der Spalte (bzw. Zeile) schon eine Zahl vorgegeben ist, können die unbekannten Variablen in diese Spalte (bzw. Zeile) nicht dieselbe Zahl sein.
- Wenn in einem Unterblock schon eine Zahl vorgegeben ist, können die unbekannten Variablen in diesem Unterbock nicht dieselbe Zahl sein.

Die Variable ist nicht 1, 2 und nicht 3

?_	3	2	
1			3v4
			2
	1	3	

Noch bei der Erstellung der Variablenliste, entfernen wir alle *offensichtlich unmöglichen* Variablen. z.B.:

- Wenn in der Spalte (bzw. Zeile) schon eine Zahl vorgegeben ist, können die unbekannten Variablen in diese Spalte (bzw. Zeile) nicht dieselbe Zahl sein.
- Wenn in einem Unterblock schon eine Zahl vorgegeben ist, können die unbekannten Variablen in diesem Unterbock nicht dieselbe Zahl sein.

4	3	2	1v4
1	2v4	4	3v4
3v4	4	1v4	2
2v4	1	3	4

Noch bei der Erstellung der Variablenliste, entfernen wir alle *offensichtlich unmöglichen* Variablen. z.B.:

- Wenn in der Spalte (bzw. Zeile) schon eine Zahl vorgegeben ist, können die unbekannten Variablen in diese Spalte (bzw. Zeile) nicht dieselbe Zahl sein.
- Wenn in einem Unterblock schon eine Zahl vorgegeben ist, können die unbekannten Variablen in diesem Unterbock nicht dieselbe Zahl sein.

Fazit: weniger Variablen -> **weniger** Qubits und Kosten -> **besseres** Performance

Aufgaben und Komplexität

Α	В	C	D	E	F	
0 1		3 2 1	3 2 1 4 4 1 2 1 4 2 3 2 3 4	3 2 1 2 2 3	4 3	
4 Variablen	8 Variablen	20 Variablen	8 Variablen	40 Variablen	48 Variablen	
-	-	8* Variablen (mit Pruning)	-	12* Variablen (mit Pruning)	22* Variablen (mit Pruning)	

Constraint 1: In jedem Kastchen darf *nur eine* Zahl stehen

$$\sum_{k \in K} x_{i,j,k} = 1, \qquad \forall \ i, j \in cell$$

$$H_1 = \sum_{i,j \in cell} \sum_{k \in K} (x_{i,j,k} - 1)^2$$

Constraint 1: In jedem Kastchen darf nur eine Zahl stehen

Constraint 2: In jeder Spalte steht jede Zahl nur ein mal

$$\sum_{i \in I} x_{i,j,k} = 1, \qquad \forall j \in J, \forall k \in K$$

$$H_2 = \sum_{j \in I} \sum_{k \in K} \left(\sum_{i \in I} x_{i,j,k} - 1 \right)^2$$

Constraint 1: In jedem Kastchen darf nur eine Zahl stehen

Constraint 2: In jeder Spalte steht jede Zahl nur ein mal

Constraint 3: In jeder Zeile steht jede Zahl nur ein mal

$$\sum_{j \in I} x_{i,j,k} = 1, \qquad \forall \ i \in I, \forall \ k \in K$$

$$H_3 = \sum_{i \in I} \sum_{k \in K} \left(\sum_{j \in J} x_{i,j,k} - 1 \right)^2$$

Constraint 1: In jedem Kastchen darf nur eine Zahl stehen

Constraint 2: In jeder Spalte *j* steht jede Zahl *nur ein mal*

Constraint 3: In jeder Zeile i steht jede Zahl nur ein mal

Constraint 4: In jedem Unterblock steht jede Zahl nur ein mal

$$\sum_{i,j \in Unterblock} x_{i,j,k} = 1, \quad \forall k \in K$$

$$H_4 = \sum_{k \in K} \left(\sum_{i,j \in Unterblock} x_{i,j,k} - 1 \right)^2$$

Parameter und finale QUBO

Finale QUBO:

$$H := \alpha H_1 + \beta H_2 + \gamma H_3 + \delta H_4$$

α	β	γ	δ
2	1.5	1.5	1

 α - harter Constraint β , γ , δ - weiche Constraints

 $e^{-i\alpha_2 H_M}$

 $e^{-i\gamma_n H_C}$

 $e^{-i\alpha_n H_M}$

 $e^{-i\alpha_1 H_M}$

 $e^{-i\gamma_2 H_C}$

QAOA Quantum Schaltkreis

QAOA Quantum Schaltkreis

QAOA mit Qiskit: Quadratic Programm

Similated Annealing und DWave

Similated Annealing und DWave

Similated Annealing und DWave

QAOA

Grover Algorithmus

 ${f \cdot}$ Der Algorithmus von Grover nutzt die Interferenz aus, um Informationen über ein Orakel U_f zu erhalten.

• Was ist Orakel U_f ?

Orakel U_f

$$U_{f_{\hat{x}}}: |x,y\rangle \mapsto |x,y \oplus f_{\hat{x}}(x)\rangle$$

$$U_{f_{\hat{x}}}\left(|x\rangle\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\right) = |x\rangle\frac{1}{\sqrt{2}}(|f_{\hat{x}}(x)\rangle - |1\oplus f_{\hat{x}}(x)\rangle)$$
$$= (-1)^{f_{\hat{x}}(x)}|x\rangle\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

Sudoku als Graph Coloring

a) 2x2-Sudoku mit binären Einträgen, davon 2 vorausgefüllt

0	X
1	X

0: Yellow

1: Red

Grovers Algotirithm : Schaltkreis von Problem a

Spiegelung am Mittelwert

Ergebinise mit Grover's Algorithmus

Weitere Sudokus mit Grover's Algorithmus

b) leeres 2x2-Sudoku mit binären Einträgen

Weitere Sudokus mit Grover's Algorithmus

c) 4x2-Sudoku mit 8 Einträgen, davon 3 vorausgefüllt:

X	3	2	X	
1	X	X	X	

1:Red 2: Blue

3:Green 4: Yellow

Zu viel Qubits und Costen!!!

Prunning

$x_1 \in \{4\}$	3	2	$x_2 \in \{1,4\}$	
1	$x_3 \in \{2,4\}$	$x_4 \in \{3,4\}$	$x_5 \in \{3,4\}$	

$$|\psi_0\rangle: |0\rangle: x_1=2, x_3=4; |1\rangle: x_1=4, x_3=2$$

$$|\psi_1\rangle: |0\rangle: x_2=1; |1\rangle: x_2=4$$

$$|\psi_2\rangle: |0\rangle: x_4 = 3; |1\rangle: x_4 = 4$$

$$|\psi_3
angle:\;|0
angle:\;x_5=3;\;|1
angle:x_5=4$$

Der Schaltkreis und das Ergebnis nach Pruning

Analyse von Ergebnissen

• "1001":

4	3	2	1
1	2	3	4

• "1010":

4	3	2	1
1	2	4	3

Problem_e

e) 4x4-Sudoku mit 16 Einträgen, davon 6 vorausgefüllt:

X	3	2	X
1	X	X	X
X	X	X	2
X	1	3	X

Der Schaltkreis von Problem_e

Das Ergebnis von Problem_e

4	3	2	1
1	2	4	3
3	4	1	2
2	1	3	4

Grover und QAOA Kosten Vergleich

	Α	В	С	D	E	F
	0 1		3 2	3 2 1 4 4 1 2 1 4 2 3 2 3 4	3 2 1 2 1 3	1 4 3
QAOA	4 qubits, 95	8 qubits, 268	8* qubits, 231	8 qubits, 274	12* qubits, 240	22* qubits, 986
Grover	9 qubits, 579	9 qubits, 725	9* qubits, 1022	5* qubits, 95	17* qubits, 13011	X

Kosten von einem Schlatkreis wurden folgendes berechnet:
 K(qc) = Num_of('u3') + 10* Num_of('cx')

QA, QAOA und Grover Vergleich

	Α	В	С	D	E	F
	0 1		3 2	3 2 1 4 4 1 2 1 4 2 3 2 3 4	3 2 1 2 1 3	1 4 3
	4 Variablen	8 Variablen	8* Variablen (mit Pruning)	8 Variablen	16* Variablen (mit Pruning)	22* Variablen (mit Pruning)
QA	✓	✓	\checkmark	✓	✓	√
QAOA	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Grover	√	✓	✓	✓	✓	X

QA, QAOA und Grover Vergleich

	Α	В	С	D	E	F	Extra
	0 1		3 2	3 2 1 4 4 1 2 1 4 2 3 2 3 4	3 2 1	1 4 3 3	5 3 7 0 6 1 9 5 9 8 6 3 4 8 3 1 7 2 6 6 2 8 4 1 9 5 8 7 9
	4 Variablen	8 Variablen	8* Variablen (mit Pruning)	8 Variablen	12* Variablen (mit Pruning)	22* Variablen (mit Pruning)	149* Variablen (mit Pruning)
QA	✓	✓	√	✓	✓	✓	→ √
QAOA	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	X
Grover	√	√	√	√	√	X	X

Auf DWave Leap

