Homework 1	
Not all stored patterns are local minima of the energy function	Т
All stored patterns are local minima of the energy function	F
One feeds a distorted pattern into the network by applying Hebbs rule	F
One feeds a distorted pattern into he network by setting the neuron states equal to the bits in the pattern	Т
Not all local minima of the energy function of the Hopfield network correspond to stored patterns	Т
All local minima of the energy function of the Hopfield network correspond to stored patterns	F
In the limit of alpha->0 the one-step error probability for mixed states in the deterministic Hopfield network vanishes	Т
In the limit of alpha->0 the one-step error probability for mixed states in the deterministic Hopfield network does not vanishes	F
The stochastic update rule for the Hopfield network is different from the Metropolis algorithm	Т
The stochastic update rule for the Hopfield network is identical to from the Metropolis algorithm	F
That the energy cannot increase under the deterministic Hopfield dynamics is a consequence of the fact that the diagonal weights	F
That the energy cannot increase under the deterministic Hopfield dynamics holds also when the thresholds are not zero	Т
That the energy function cannot increase under the deterministic Hopfield dynamics is valid only if the thresholds are put to zero	F
The detailed balance condition is a necessary condition for the Markov-Chain Monte-Carlo algorithm to converge	F
The detailed balance condition is a sufficient condition for the Markov-Chain Monte-Carlo algorithm to converge	Т
The mean-field theory for the Hopfield network does not yield the exact value for the critical storage capacity	Т
The mean-field theory of the Hopfield network yields the exact value for the critical storage capacity	F
In the limit of N->inf the order parameter m_mu can have at most one component of order unity, the other components are small	F
In the limit of N->inf the order parameter m_mu can have more than one component of order unity, the other components are sma	Т
For a given alpha, the one-step error probability for the deterministic Hopfield network is higher when the diagonal weights are set	Т

For a given alpha, the one-step error probability for the deterministic Hopfield network is lower when the diagonal weights are set to F