Llama 2

Ву Roshan Prasad Regd No 23364

Natural Language Processing

RNN

Challenges

- Vanishing and Exploding Gradients
- Capturing Long-Term Dependencies or the Context of input
- Sequential Nature and Lack of Parallelism

Transformer

- Encoder-Decoder Structure
- Self-Attention
- Parallel Processing

Benefits

- Captures long-range dependencies
- Avoid Sequential Computation
- Context is preserved

Llama 2

- Llama 2 is a family of Large Language Model(LLMs)
- Llama 2 is an auto-regressive language model
- First Release , July 18, 2023, in partnership with Microsoft, Meta and Open-source
 Large Language Models
- Llama 2 pretrained models are trained on 2 trillion tokens and have the double the context length than Llama 1
- Three models sizes were trained : 7, 13, 70 billion parameters

Llama 2 -can do

- Generate creative text
- Translate languages
- Answer your questions in an informative way
- Help with coding tasks.
- Generate dialogue for chatbots

Llama 2 -Improvements over Llama 1

- Increased Training or Tokens: trained on 40% more tokens
- Longer context length: 4k tokens from 2k tokens
- Fine-Tuning for Dialogues: The versions of Llama 2 that are fine-tuned (Labeled Llama 2-Chat) are aimed at being optimized for dialogue

Llama 2 - Architecture

Input: [SOS]your cat is a good

Inference T=1

Output:your

Input: [SOS]

Inference T=2

Output:your cat

Input: [SOS] your

Inference T=3

Output:your cat is

Input: [SOS] your cat

Inference T=4

Output:your cat is a

Input: [SOS] your cat is

Inference T=5

Output:your cat is a good

Input: [SOS]your cat is a

Inference T=6 Output:your cat is a good cat

Input: [SOS]your cat is a good

Inference T=7 Output:your cat is a good cat [EOS]

Input: [SOS]your cat is a good cat

Llama 2 - Architecture

Embedding

RMS Norm

In the batch normalization where we need to calculate the mean and variance of each Batch Normalization but in case of RMS Normalization we does not require to calculate the variance reducing the number of computation

$$\bar{a}_i = \frac{a_i}{\text{RMS}(\mathbf{a})} g_i, \text{ where } \text{RMS}(\mathbf{a}) = \sqrt{\frac{1}{n} \sum_{i=1}^n a_i^2}.$$

RMS Norm

Let us take a matrix of size (5,5)

 $\bar{a}_i = \frac{a_i}{\mathrm{RMS}(\mathbf{a})} g_i, \quad \text{where } \mathrm{RMS}(\mathbf{a}) = \sqrt{\frac{1}{n} \sum_{i=1}^n a_i^2}.$

Each gi are learnable parameters

Rotary Positional Encoding

Rotary Positional Encoding

If we have the vector of size 2 then we multiply the given matrix to rotate it by angle.

$$\begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \qquad \begin{array}{c} X'_{2} \\ X_{2} \\ \end{array} \qquad \begin{array}{c} X'_{1} \\ X'_{1} \end{array} \qquad \begin{bmatrix} X' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} X \\ y \end{bmatrix}_{2}$$

Self Attention using KV cache

Self-Attention using KV Cache

What is the Self Attention?

Qk/sqtr(4096)

	your	Cat	Is	А	Good	cat
you	0.23	0.13 43	0.23 4	0.12 3	0.23 4	0.45 2
cat	0.53	0.54	0.56	0.63	0.23	0.24
	22	43	23	42	21	34
is	0.34	0.45	0.63	0.12	0.63	0.23
	32	32	24	42	21	43
а	0.23	0.62	0.44	0.34	0.23	0.23
	23	23	31	50	41	40
good	0.12	0.45	0.63	0.45	0.63	0.54
	1	32	24	32	24	43
cat	0.23	0.23	0.23	0.23	0.23	0.23

Self Attention using KV cache

Next Token Prediction task

Let's take the example

Target: your cat is a good cat[EOS]

Input: [SOS] your cat is a good

(1, 1)

(1, 4096)

Inference T =1

(4096, 1)

27

Inference T = 2

(3, 3)

Inference T =3

(4096, 3)

(3, 4096)

(3, 4096) (3, 4096)

Inference T =3

30

Self- Attention with KV - Cache

Inference T =1

Self- Attention with KV - Cache

Inference T = 2

(4096, 2)

Self- Attention with KV - Cache

(1, 3)

Inference T =3

(1, 4096)

(4096, 3)

33

(1, 4096)

(3, 4096)

Feed Forward Using SwiGLU

Logits and Softmax

- The output of the last linear layer in the Transformer model is called the **Logits**. The logits represent the unscaled "probabilities", but they are not probabilities as they do not sum up to 1.
- THE **Softmax** scales the logits in such a way that they sum up to 1
- The output of the softmax is thus a probability distribution over all the words in the vocabulary, that is, each words in the vocabulary will have probability associated to it.

Llama 2 - Pretraining Functionality

- Trained using AdamW Optimizer (β 1=0.1, β 2=0.95, eps=10⁻⁵)
- Supervised Fine Tuning :pretrained model is adapted to a specific task using labeled dataset

Related Work

Rapid LLM Advancement : July 23, 2024 Llama 3.1 405B

Thank You