第六章 無窮數列與級數

6.1 無窮數列

定義. 定義域為 N 的函數 f, 給定 $n \in \mathbb{N}$ 之 f(n) 常記作 a_n , 而數列 (sequence) 即為 $\operatorname{ran} f$, 記作 $\{a_1, a_2, a_3, \ldots\}, \{a_n\}$ 或 $\{a_n\}_{n=1}^{\infty}$.

註. 數列範例:

•
$$a_n = \sqrt{n}, \, a_n = \{1, \, \sqrt{2}, \, \sqrt{3}, \, \ldots \}$$

•
$$b_n = \frac{n-1}{n}, b_n = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\}$$

•
$$c_n = (-1)^{n+1}, c_n = \{1, -1, 1, -1, \ldots\}$$

$$\bullet \ d_n = (-1)^{n+1} \frac{1}{n}, \, d_n = \left\{1, \, -\frac{1}{2}, \, \frac{1}{3}, \, -\frac{1}{4}, \, \dots \right\}$$

亦無須從 n=0 開始:

•
$$a_n = \sqrt{n-3}, \{a_n\}_{n=3}^{\infty}$$

•
$$b_n = \cos\frac{n\pi}{6}, \{b_n\}_{n=0}^{\infty}$$

定義 (數列極限). 給定數列 $\{a_n\}$,

- 若 $\forall \, \varepsilon > 0, \, \exists \, N \in \mathbb{N}, \,$ 使若 n > N 則 $|a_n L| < \varepsilon, \,$ 稱 $\{a_n\}$ 之極限為 $L, \,$ 可記作 $\lim_{n \to \infty} a_n = L$ 或「當 $n \to \infty, \, a_n \to L$ 」.
- 若 $\forall\,M,\,\exists\,N\in\mathbb{N},$ 使若 n>N 則 $a_n>M,$ 稱 $\{a_n\}$ 發散至無限大,可記作 $\lim_{n\to\infty}a_n=\infty$ 或「當 $n\to\infty,\,a_n\to\infty$ 」.
- 若 $\forall\,M,\,\exists\,N\in\mathbb{N},$ 使若 n>N 則 $a_n< M,$ 稱 $\{a_n\}$ 發散至負無限大,可記作 $\lim_{n\to\infty}a_n=-\infty$ 或「當 $n\to\infty,\,a_n\to-\infty$ 」.

定理 (收斂數列四則運算). 若 $\{a_n\}$, $\{b_n\}$ 為收斂數列, $c \in \mathbb{R}$, 則

$$1. \ \lim_{n \to \infty} c \, a_n = c \, \lim_{n \to \infty} a_n$$

2.
$$\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$$

3.
$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

4.
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$
, $\rightleftarrows \lim_{n \to \infty} b_n \neq 0$

5.
$$\lim_{n\to\infty}a_n^\alpha=\big(\lim_{n\to\infty}a_n\big)^\alpha,\ \Xi\ \alpha\in\mathbb{R}\ \wedge\ a_n>0$$
 (若 $\alpha<0,$ 則必須
$$\lim_{n\to\infty}a_n\neq0)$$

定理 (夾擠定理). 令實數列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$. 若 $\exists N \in \mathbb{N}$ 使

- 1. $a_n \leqslant b_n, \, \forall \, n > N, \, \text{II} \lim_{n \to \infty} a_n \leqslant \lim_{n \to \infty} b_n.$
- $2. \ c_n \leqslant a_n \leqslant b_n, \, \forall \, n > N, \, \boxminus \, \lim_{n \to \infty} c_n = \lim_{n \to \infty} b_n = L \in \mathbb{R}, \, \oiint \, \lim_{n \to \infty} a_n = L.$

例. 1.
$$\lim_{n\to\infty} |a_n| = 0 \iff \lim_{n\to\infty} a_n = 0.$$

3. 若
$$\lim_{n\to\infty}a_n=0$$
 且 $\{b_n\}$ 有界,則 $\lim_{n\to\infty}a_nb_n=0$.

2. 若 $|b_n| \leqslant c_n$ 且 $\lim_{n \to \infty} c_n = 0$, 則 $\lim_{n \to \infty} b_n = 0$.

解.

- $1. \iff \exists n \in \mathbb{N}, \exists n \in \mathbb{N}, \exists n \in \mathbb{N}, \lim_{n \to \infty} |a_n| = 0 \text{ 與夾擠定理}, \lim_{n \to \infty} a_n = 0. \iff \exists n \in \mathbb{N}, \exists n \in$
- 2. 由 $-c_n \leqslant b_n \leqslant c_n \ \forall \ n \in \mathbb{N}, \ \lim_{n \to \infty} c_n = 0$ 與夾擠定理, $\lim_{n \to \infty} b_n = 0$.
- 3. 由 $\{b_n\}$ 有界, $\exists M>0$ 使 $0\leqslant |b_n|\leqslant M$. 故 $0\leqslant |a_nb_n|\leqslant M|a_n|$; 由 $\lim_{n\to\infty}a_n=0\implies \lim_{n\to\infty}|a_n|=0$ 與夾擠定理, $\lim_{n\to\infty}|a_nb_n|=0 \implies \lim_{n\to\infty}a_nb_n=0$.

定理.若函數 $f:[n_0,\,\infty) \to \mathbb{R},$ 且 $\{a_n\}$ 滿足 $a_n=f(n),\, \forall\, n\geqslant n_0,\, 則 \lim_{x\to\infty}f(x)=L \implies \lim_{n\to\infty}a_n=L.$

註. 此定理逆敘述不成立: $\lim_{n\to\infty}\sin n\pi=0$,但 $\lim_{x\to\infty}\sin x\pi=\mathrm{DNE}$.

例. 求以下數列極限 $\lim_{n\to\infty} a_n$

1.
$$a_n = \frac{\ln n}{n}$$

4. $a_n = a^{\frac{1}{n}}, \ a > 0$

8. $a_n = n \sin \frac{1}{n}$

 $11. \ a_n = \frac{\ln n}{\ln 2n}$

$$2. \ a_n = \left(1 + \frac{a}{n}\right)^n$$

5.
$$a_n = n^{\frac{1}{n}}$$

6. $a_n = n^{\frac{2}{n}}$

$$9. \ a_n = \frac{n!}{n^n}$$

12.
$$a_n = \ln(n+1) - \ln n$$

$$3. \ a_n = \left(\frac{n-1}{n+1}\right)^n$$

$$7. \ a_n = \frac{\tan^{-1} n}{n}$$

$$10. \ a_n = \frac{a^n}{n!}$$

解.

$$1. \lim_{x \to \infty} \frac{\ln x}{x} = 0$$

$$2. \lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = \lim_{x \to \infty} \exp\left\{ x \ln\left(1 + \frac{a}{x}\right) \right\} = \exp\left\{ \lim_{x \to \infty} x \ln\left(1 + \frac{a}{x}\right) \right\} = \exp\left\{ \lim_{x \to \infty} \frac{\ln(1 + \frac{a}{x})}{\frac{1}{x}} \right\} = \exp\left\{ \lim_{x \to \infty} \frac{-\frac{a}{x^2}}{\frac{1 + \frac{a}{x}}{x}} \right\} = e^a$$

$$3. \lim_{\substack{x \to \infty \\ e^{-2} \cdot 1 = e^{-2}}} \left(\frac{x-1}{x+1}\right)^x = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \left(1 - \frac{2}{x+1}\right)^{-1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{-1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{-1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} \cdot \lim_{x \to \infty} \left(1 - \frac{2}{x+1}\right)^{x+1} = \lim_{x \to \infty} \left(1 - \frac{2$$

$$4. \lim_{x \to \infty} a^{\frac{1}{x}} = \lim_{x \to \infty} \exp\left\{\frac{1}{x} \ln a\right\} = e^0 = 1$$

5.
$$\lim_{x \to \infty} x^{\frac{1}{x}} = \lim_{x \to \infty} \exp\left\{\frac{1}{x} \ln x\right\} = \exp\left\{\lim_{x \to \infty} \frac{\ln x}{x}\right\} = e^0 = 1$$

6.
$$\lim_{x \to \infty} x^{\frac{2}{x}} = \lim_{x \to \infty} \exp\left\{\frac{2}{x} \ln x\right\} = \exp\left\{2 \lim_{x \to \infty} \frac{\ln x}{x}\right\} = e^0 = 1$$

$$7. \lim_{x \to \infty} \frac{\tan^{-1} x}{x} = 0$$

8.
$$\lim_{x \to \infty} x \sin \frac{1}{x} = \lim_{x \to \infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = 1$$

9.
$$0 < \frac{n!}{n^n} = \frac{1 \cdot 2 \cdot \cdots n}{n \cdot n \cdot \cdots n} < \frac{1}{n}$$

10. 取
$$N = \lfloor |a| \rfloor + 1$$
,則 $\forall n > N$, $0 < \frac{|a|^n}{n!} = \frac{|a|^N}{N!} \frac{|a|^{n-N}}{(N+1)(N+2)\cdots n} < \frac{|a|^N}{N!} \cdot \left(\frac{|a|}{N}\right)^{n-N}$;由夾擠定理 與 $\lim_{n \to \infty} \left(\frac{|a|}{N}\right)^{n-N} = 0 \implies \lim_{n \to \infty} \frac{|a|^n}{n!} = 0 \implies \lim_{n \to \infty} \frac{a^n}{n!} = 0$

11.
$$\lim_{x \to \infty} \frac{\ln x}{\ln x + \ln 2} = 0$$

12.
$$\lim_{x \to \infty} (\ln(x+1) - \ln x) = \lim_{x \to \infty} \ln \frac{x+1}{x} = 0$$

定義 (升降性). 給定數列 $\{a_n\}$, 若

•
$$a_n < a_{n+1} \, \forall \, n, \, \{a_n\}$$
 為嚴格上升 (strictly increasing)

•
$$a_n \leqslant a_{n+1} \; \forall \, n, \, \{a_n\}$$
 為上升 (increasing) \nearrow

•
$$a_n > a_{n+1} \,\, \forall \, n, \, \{a_n\}$$
 為嚴格下降 (strictly decreasing)

•
$$a_n \geqslant a_{n+1} \; \forall \; n, \; \{a_n\}$$
 為下降 (decreasing) \

上升與下降數列通稱為單調 (monotone) 數列.

定義 (有界性). 給定數列 $\{a_n\}$, 若

- $\exists M, a_n \leqslant M \ \forall n, \{a_n\}$ 有上界 (bounded above), M 為上界 (upper bound)
- $\exists M, \ a_n \geqslant M \ \forall \ n, \ \{a_n\}$ 有下界 (bounded below), M 為下界 (lower bound)
- 若 M 為上界,且沒有其他比 M 小之數為 $\{a_n\}$ 之上界,則 M 為最小上界 (least upper bound)
- 若 M 為下界, 且沒有其他比 M 大之數為 $\{a_n\}$ 之下界, 則 M 為最大下界 (greatest lower bound)

有上界且有下界之數列通稱為有界 (bounded) 數列.

性質 (實數完備性公理 (Completeness Axiom)). 若 $\emptyset \neq S \subseteq \mathbb{R}$ 有上界, 則 S 有最小上界.

定理. 給定單調數列 $\{a_n\}$; $\{a_n\}$ 收斂 \iff $\{a_n\}$ 有界.

證. 若 $\{a_n\}$ \nearrow , $\lim_{n\to\infty}a_n=\sup\{a_n\,|\,n=1,\,2,\,\dots\};$ 若 $\{a_n\}$ \searrow , $\lim_{n\to\infty}a_n=\inf\{a_n\,|\,n=1,\,2,\,\dots\}.$

例. 若 $a_1=1,\,a_{n+1}=3-\frac{1}{a_n}\;\forall\,n,$ 證明 $\{a_n\}$ 收斂並求 $\lim_{n\to\infty}a_n.$

解.

- 由歸納法證明 $\frac{1}{2} < a_n < 3$: $\frac{1}{2} < 1 = a_1 < 3$; 假設 $\frac{1}{2} < a_n < 3$, 則 $\frac{1}{3} < \frac{1}{a_n} < 2$; 由 $a_{n+1} = 3 \frac{1}{a_n}$, $3 2 < a_{n+1} < 3 \frac{1}{3} \implies \frac{1}{2} < a_{n+1} < 3$.
- 由歸納法證明 $a_{n+1}>a_n$: $a_2=2>1=a_1$; 假設 $a_{n+1}>a_n$, 且由上 $a_n>0$, 則 $a_{n+2}=3-\frac{1}{a_{n+1}}>3-\frac{1}{a_n}=a_{n+1}$.

則 $\{a_n\}$ / 且有上界,故 $\{a_n\}$ 收斂.令 $\lim_{n \to \infty} a_n = L$,則 $\lim_{n \to \infty} a_{n+1} = 3 - \frac{1}{\lim_{n \to \infty} a_n} \implies L = 3 - \frac{1}{L} \implies L = \frac{3 + \sqrt{5}}{2}$ (負不合).

例. 若 $a_1=2,\,a_{n+1}=rac{1}{2}\,(a_n+6),$ 證明 $\{a_n\}$ 收斂並求 $\lim_{n o\infty}a_n.$

解.

- 由歸納法證明 $0 < a_n < 6$: $0 < 2 = a_1 < 6$; 假設 $0 < a_n < 6$, 則 $0 < \frac{1}{2}(a_n + 6) < 6$, 亦即 $0 < a_{n+1} < 6$.
- 由歸納法證明 $a_{n+1}>a_n$: $a_2=\frac{1}{2}\left(2+6\right)=4>2=a_1$; 假設 $a_{n+1}>a_n$, 則 $a_{n+2}=\frac{1}{2}\left(a_{n+1}+6\right)>\frac{1}{2}\left(a_n+6\right)=a_{n+1}.$

則 $\{a_n\}$ / 且有上界,故 $\{a_n\}$ 收斂.令 $\lim_{n \to \infty} a_n = L$,則 $\lim_{n \to \infty} a_{n+1} = \frac{1}{2} (\lim_{n \to \infty} a_n + 6) \implies L = \frac{1}{2} (L+6) \implies L = 6$.

6.2 無窮級數

定義.

- 給定 $\{a_n\}$, 則 $a_1+a_2+\cdots+a_n+\cdots$ 稱為 (無窮) 級數 (infinite series), a_n 為此級數之第 n 項.
- $s_n = \sum_{k=1}^n a_k$, $\{s_n\}$ 為部份和數列 (sequence of partial sums), s_n 為此級數之第 n 部份和.

• 若 $\{s_n\}$ 收斂至 s, 則稱此級數收斂至 s, 記為 $\sum_{k=1}^{\infty}a_k=s$. 若 $\{s_n\}$ 發散, 此級數發散.

註.

- 將一級數加入或除去有限項,可能改變其收斂值,但不影響其斂散性.
- 保持級數項順序下, 級數項足標改變不影響其歛散性.

例 (幾何級數 (geometric series)). $\sum_{n=1}^{\infty} a \, r^{n-1}$ 中, 若 |r| < 1, 則此級數收斂至 $\frac{a}{1-r}$; 若 $|r| \ge 1$, 則此級數發散.

例.解
$$\sum_{n=2}^{\infty} (1+x)^{-n} = 2.$$

M.
$$\frac{\frac{1}{(1+x)^2}}{1-\frac{1}{1+x}}=2 \implies x=\frac{-1\pm\sqrt{3}}{2}.$$

性質 (瞭望法 (telescoping)). 若 $\{a_n\}$, $\{b_n\}$ 滿足 $a_n=b_{n+1}-b_n$ $\forall\,n,$ 則 $\sum a_n$ 收斂 \iff $\{b_n\}$ 收斂, 且 $\sum_{n=1}^\infty a_n=\lim_{n\to\infty}b_n-b_1.$

例. 求下列各級數之和.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

2.
$$\sum_{n=1}^{\infty} \frac{3n^2 + 3n + 1}{(n^2 + n)^3}$$

3.
$$\sum_{n=3}^{\infty} \frac{1}{n^5 - 5n^3 + 4n}$$

解

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n} = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1$$

2.
$$\sum_{n=1}^{\infty} \frac{3n^2 + 3n + 1}{(n^2 + n)^3} = \sum_{n=1}^{\infty} \left(\left(\frac{1}{n} \right)^3 - \left(\frac{1}{n+1} \right)^3 \right) = 1$$

$$3. \sum_{n=3}^{\infty} \frac{1}{n^5 - 5n^3 + 4n} = \sum_{n=3}^{\infty} \frac{1}{n(n^2 - 1)(n^2 - 4)} = \sum_{n=3}^{\infty} \frac{1}{n(n-1)(n+1)(n-2)(n+2)} = \frac{1}{4} \sum_{n=3}^{\infty} \left(\frac{1}{(n-2)(n-1)n(n+1)} - \frac{1}{(n-1)n(n+1)(n+2)} \right) = \frac{1}{4} \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} = \frac{1}{96}$$

例. 給定 a_1, a_2 之値且 $a_n = \frac{1}{2} (a_{n-1} + a_{n-2}), 求 \lim_{n \to \infty} a_n$.

解.
$$a_n = \frac{1}{2}(a_{n-1} + a_{n-2})$$
 \implies $(a_n - a_{n-1}) = -\frac{1}{2}(a_{n-1} - a_{n-2})$, 故 $a_n - a_{n-1} = \left(\frac{-1}{2}\right)^{n-2}(a_2 - a_1)$, $a_{n-1} - a_{n-2} = \left(\frac{-1}{2}\right)^{n-3}(a_2 - a_1)$, ..., $a_2 - a_1 = \left(\frac{-1}{2}\right)^0(a_2 - a_1)$; 前述等式相加得 $a_n - a_1 = \sum_{k=0}^{n-2} \left(\frac{-1}{2}\right)^k(a_2 - a_1)$ $a_1 = \frac{1 \cdot \left(1 - \left(\frac{-1}{2}\right)^{n-1}\right)}{1 - \left(\frac{-1}{2}\right)}(a_2 - a_1)$, 故 $\lim_{n \to \infty} a_n - a_1 = \frac{2}{3}(a_2 - a_1)$ $\implies \lim_{n \to \infty} a_n = a_1 + \frac{2}{3}(a_2 - a_1) = \frac{a_1 + 2a_2}{3}$.

例. 求
$$\sum_{n=1}^{\infty} \frac{1}{2^n} \tan \frac{x}{2^n}$$
.

例. 求 $\sum_{n=0}^{\infty} \cot^{-1}(n^2+n+1)$.

解. 首先證明 $\cot^{-1}x - \cot^{-1}y = \cot^{-1}\frac{1+xy}{y-x}$: 令 $\alpha = \cot^{-1}x$, $\beta = \cot^{-1}y \implies x = \cot\alpha$, $y = \cot\beta$, $\cot(\alpha-\beta) = \frac{1}{\tan(\alpha-\beta)} = \frac{1+\tan\alpha\tan\beta}{\tan\alpha-\tan\beta} = \frac{1+\cot\alpha\cot\beta}{\cot\beta-\cot\alpha} = \frac{1+xy}{y-x}$, 等式兩邊同取 \cot^{-1} 得 $\alpha-\beta = \cot^{-1}x - \cot^{-1}y = \cot^{-1}\frac{1+xy}{y-x}$; $\sum_{n=0}^{\infty}\cot^{-1}(n^2+n+1) = \sum_{n=0}^{\infty}\cot^{-1}(1+n(n+1)) = \sum_{n=0}^{\infty}\cot^{-1}\frac{1+n(n+1)}{(n+1)-n} = \sum_{n=0}^{\infty}(\cot^{-1}n-\cot^{-1}(n+1)) = \cot^{-1}0 - \lim_{n\to\infty}\cot^{-1}(n+1) = \frac{\pi}{2} - 0 = \frac{\pi}{2}$.

例. 證明調和數列 (harmonic series) $\sum_{n=1}^{\infty} \frac{1}{n}$ 發散.

解. 由

$$1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \left(\frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16}\right) + \cdots$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \left(\frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16}\right) + \cdots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$$

可得 $\sum_{n=1}^{2^k} \frac{1}{n} > 1 + \frac{k}{2}, \, \forall \, k \in \mathbb{N}, \,$ 故 $\sum_{n=1}^{\infty} \frac{1}{n}$ 發散.

例. $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 收斂 $\iff p > 1$.

解. 定義
$$s_k = \sum_{n=1}^k \frac{1}{n^p}$$
,則 $s_{2k+1} = \sum_{n=1}^{2k+1} \frac{1}{n^p} = 1 + \sum_{j=1}^k \left(\frac{1}{(2j)^p} + \frac{1}{(2j+1)^p} \right) < 1 + \sum_{j=1}^k \frac{2}{(2j)^p} = 1 + 2^{1-p} s_k < 1 + 2^{1-p} s_{2k+1} \implies s_{2k+1} < \frac{1}{1-2^{1-p}};$ 當 $p > 1$ 時 $\{s_n\}$ 净 且有上界,故收斂.若 $p \leqslant 1$,則 $s_n < 1$,不合。

6.3 審斂法

定義. 若 $a_n \ge 0$, $n \in \mathbb{N}$, $\sum_{n=1}^{\infty} a_n$ 稱為正項級數 (positive series).

定理.

1. 若
$$\sum_{n=1}^{\infty} a_n$$
 收斂, 則 $\lim_{n\to\infty} a_n = 0$.

- 2. 若 $\lim_{n\to\infty} a_n \neq 0$ 或 $\lim_{n\to\infty} a_n = \text{DNE}$, 則 $\sum_{n=1}^{\infty} a_n$ 發散.
- 3. 給定正項級數 $\sum_{n=1}^{\infty} a_n$; $\sum_{n=1}^{\infty} a_n$ 收斂 \iff 部份和數列 $\{s_n\}$ 有上界.

定理 (積分法 (integral test)). 給定正項級數 $\sum_{n=1}^{\infty} a_n$,令 $f:[N,\infty)\to\mathbb{R}$ 為正値,連續,遞減函數, $a_n=f(n),\ \forall\,n\geqslant N,$ 則 $\sum_{n=1}^{\infty} a_n$ 與 $\int_N^\infty f(x)\,\mathrm{d}x$ 同斂散.

例. 判斷以下級數之斂散.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

$$2. \sum_{n=1}^{\infty} \frac{\ln n}{n}$$

解. 由積分法,

- 1. 定義 $f(x) = \frac{1}{x^2+1}$, $f:[1,\infty) \to \mathbb{R}^+$ 為正値,連續,遞減函數, $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ 與 $\int_{1}^{\infty} \frac{1}{x^2+1} \, \mathrm{d}x = \tan^{-1}x \, \Big|_{1}^{\infty} = \frac{\pi}{4}$ 同斂散,故為收斂.
- 2. 定義 $f(x) = \frac{\ln x}{x}$, $f:[3,\infty) \to \mathbb{R}^+$ 為正値,連續,遞減函數 $\left(f'(x) = \frac{1 \ln x}{x^2} < 0, \ \forall x \geqslant 3\right)$, $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ 與 $\int_3^\infty \frac{\ln x}{x} \, \mathrm{d}x = \frac{(\ln x)^2}{2} \bigg|_3^\infty = \infty$ 同斂散,故為發散.
- 例. $\sum_{1}^{\infty} \frac{1}{n^p}$ 收斂 $\iff p > 1$.

例. 求令以下各級數收斂之 p 值.

$$1. \sum_{n=3}^{\infty} \frac{1}{n \ln n (\ln \ln n)^p}$$

$$2. \sum_{1}^{\infty} p^{\ln n}$$

$$3. \sum_{n=1}^{\infty} \left(\frac{p}{n} - \frac{1}{n+1} \right)$$

解

- 1. $\sum_{n=3}^{\infty} \frac{1}{n \ln n (\ln \ln n)^p}$ 與 $\int_{3}^{\infty} \frac{1}{x \ln x (\ln \ln x)^p} dx = \int_{\ln \ln 3}^{\infty} \frac{1}{w^p} dw$ 同斂散,若收斂則 p > 1.
- $2. \ \sum_{n=1}^{\infty} p^{\ln n} = \sum_{n=1}^{\infty} (e^{\ln p})^{\ln n} = \sum_{n=1}^{\infty} (e^{\ln n})^{\ln p} = \sum_{n=1}^{\infty} n^{\ln p},$ 若收斂則 $\ln p < -1 \implies 0 < p < e^{-1}.$
- 3. $\sum_{n=1}^{\infty} \left(\frac{p}{n} \frac{1}{n+1} \right) = \sum_{n=1}^{\infty} \frac{(p-1)n+p}{n(n+1)}$, 若收斂則 p=1.
- **例.** 證明 $a_n = \sum_{k=1}^n \frac{1}{k} \ln n$ 收斂.

解. 由 $\ln(n+1) = \int_{1}^{n+1} \frac{1}{x} dx < 1 + \frac{1}{2} + \dots + \frac{1}{n}, \ a_n = \sum_{n=1}^{n} \frac{1}{k} - \ln n > \sum_{n=1}^{n} \frac{1}{k} - \ln(n+1) > 0, \ \{a_n\}$ 有下界 $0; \; \boxplus \; \ln(n+1) - \ln n = \int_{n}^{n+1} \frac{1}{x} \, \mathrm{d}x > \frac{1}{n+1}, \; a_n - a_{n+1} = \ln(n+1) - \ln n - \frac{1}{n+1} > 0 \implies \{a_n\} \; 遞減, \; 故$

定理 (比較法 (comparison test)). 給定正項級數 $\sum_{n=0}^{\infty} a_n$.

1. 若存在收斂
$$\sum_{n=1}^{\infty}b_n$$
 與 $N\in\mathbb{N}$ 使 $a_n\leqslant b_n,\ \forall\, n\geqslant N,$ $\sum_{n=1}^{\infty}a_n$ 收斂.

2. 若存在發散
$$\sum_{n=1}^{\infty}c_n$$
 與 $N\in\mathbb{N}$ 使 $a_n\geqslant c_n,\ \forall\, n\geqslant N,$ $\sum_{n=1}^{\infty}a_n$ 發散.

例. 判斷以下級數之斂散.

1.
$$\sum_{n=1}^{\infty} \frac{5}{5n-1}$$
 2. $\sum_{n=1}^{\infty} \frac{\ln n}{n}$

$$2. \sum_{n=1}^{\infty} \frac{\ln n}{n}$$

3.
$$\sum_{n=1}^{\infty} \frac{1}{2n^2 + 4n + 3}$$
 4. $\sum_{n=1}^{\infty} \frac{1}{n!}$

4.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

解.

1. 發散:
$$a_n = \frac{5}{5n-1} > \frac{1}{n} = c_n$$

2. 發散:
$$a_n = \frac{\ln n}{n} > \frac{1}{n} = c_n$$

3. 收斂:
$$a_n = \frac{1}{2n^2 + 4n + 3} < \frac{1}{2n^2} = b_n$$

4. 收斂:
$$a_n = \frac{1}{n!} < \frac{1}{n^2} = b_n, \ n \geqslant N = 4$$

定理 (極限比較法 (limit comparison test)). 給定正項級數 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 且 $a_n > 0$, $b_n > 0$.

1. 若
$$\lim_{n\to\infty}\frac{a_n}{b_n}=c>0,$$
 $\sum_{n=1}^\infty a_n$ 與 $\sum_{n=1}^\infty b_n$ 同斂散.

2. 若
$$\lim_{n\to\infty} \frac{a_n}{b_n} = 0$$
 且 $\sum_{n=1}^{\infty} b_n$ 收斂, $\sum_{n=1}^{\infty} a_n$ 收斂.

3. 若
$$\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$$
 且 $\sum_{n=1}^{\infty}b_n$ 發散, $\sum_{n=1}^{\infty}a_n$ 發散.

例. 判斷以下級數之斂散.

1.
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2+2n+1}$$
 2.
$$\sum_{n=1}^{\infty} \frac{2n^2+3n}{\sqrt{5+n^5}}$$

$$2. \sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$$

3.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^{\frac{3}{2}}}$$

4.
$$\sum_{n=1}^{\infty} \frac{1 + n \ln n}{n^2 + 5}$$

解. 由極限比較法,

1. 發散: 取
$$b_n = \frac{1}{n}, \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^2 + n}{n^2 + 2n + 1} = \lim_{n \to \infty} \frac{2 + \frac{1}{n}}{1 + \frac{2}{n} + \frac{1}{n^2}} = 2$$

2. 發散: 取
$$b_n=\frac{1}{\sqrt{n}}, \ \lim_{n \to \infty} \frac{a_n}{b_n}=\lim_{n \to \infty} \frac{(2n^2+3n)\sqrt{n}}{\sqrt{5+n^5}}=\lim_{n \to \infty} \frac{2+\frac{3}{n}}{\sqrt{\frac{5}{n^5}+1}}=2$$

3. 收斂: 取
$$b_n = \frac{1}{n^{\frac{5}{4}}}$$
, $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\ln n}{n^{\frac{1}{4}}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{4}n^{-\frac{3}{4}}} = \lim_{n \to \infty} \frac{4}{n^{\frac{1}{4}}} = 0$

4. 發散: 取
$$b_n = \frac{1}{n}$$
, $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n + n^2 \ln n}{n^2 + 5} = \lim_{n \to \infty} \frac{\frac{1}{n} + \ln n}{1 + \frac{5}{n^2}} = \infty$

例. 若正項級數 $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ 收斂, 證明以下級數均收斂.

1.
$$\sum_{n=1}^{\infty} \ln(1+a_n)$$

$$2. \sum_{n=1}^{\infty} \sin a_n$$

$$3. \sum_{n=1}^{\infty} a_n b_n$$

解. 由極限比較法,

2. 與
$$\sum_{n=1}^{\infty} a_n$$
 做比較: $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{\sin a_n}{a_n} = \lim_{x\to 0} \frac{\sin x}{x} = 1$, 故收斂.

3.
$$\sum_{n=1}^{\infty} b_n$$
 收斂, 則 $\exists N \in \mathbb{N}, \ b_n \leqslant 1 \ \forall \ n \geqslant N \implies 0 < a_n b_n < a_n \ \forall \ n \geqslant N, \sum_{n=1}^{\infty} a_n b_n$ 收斂.

定理 (比值法 (ratio test)). 給定 $\sum_{n \to \infty}^{\infty} a_n$, 令 $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.

1. 若
$$\rho < 1$$
, $\sum_{n=1}^{\infty} a_n$ 收斂.

3. 若
$$\rho = 1$$
, $\sum_{n=1}^{\infty} a_n$ 斂散性未定.

2. 若
$$\rho > 1$$
 或 ρ 為無限大, $\sum_{n=1}^{\infty} a_n$ 發散.

例. 判斷以下級數之斂散.

1.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^3 + 3n - 1}}{n^2 + 5}$$
 3.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

3.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

5.
$$\sum_{n=1}^{\infty} \frac{n^4 + 3n^3 + 2n^2 + 4n + 5}{3^n}$$

$$2. \sum_{n=1}^{\infty} \frac{\pi^n + 5}{e^n}$$

$$4. \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

6.
$$\sum_{n=1}^{\infty} \frac{\ln n \left(n^{52} - 2024n^{24} + 100n - 90\right)}{n^{\frac{3}{2}}}$$

$$1. \ \rho = \lim_{n \to \infty} \frac{\frac{\sqrt{(n+1)^3 + 3(n+1) - 1}}{\frac{(n+1)^2 + 5}{n^2 + 5}}}{\frac{\sqrt{n^3 + 3n - 1}}{n^2 + 5}} = \lim_{n \to \infty} \frac{n^2 + 5}{(n+1)^2 + 5} \sqrt{\frac{(n+1)^3 + 3(n+1) - 1}{n^3 + 3n - 1}}$$

$$= \lim_{n \to \infty} \frac{1 + \frac{5}{n^2}}{\left(1 + \frac{1}{n}\right)^2 + \frac{5}{n^2}} \sqrt{\frac{\left(1 + \frac{1}{n}\right)^3 + 3\left(\frac{1}{n^2} + \frac{1}{n^3}\right) - \frac{1}{n^3}}{1 + 3\frac{1}{n^2} - \frac{1}{n^3}}}} = 1, \ \text{但曲極限比較法與} \ \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \ \text{比較}, \ \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sqrt{n\sqrt{n^3 + 3n - 1}}}{n^2 + 5} = \lim_{n \to \infty} \frac{\sqrt{n^4 + 3n^2 - n}}{n^2 + 5} = \lim_{n \to \infty} \frac{\sqrt{1 + \frac{3}{n^2} - \frac{1}{n^3}}}}{1 + \frac{5}{n^2}} = 1, \ \text{故發散}.$$

$$2. \ \ \rho = \lim_{n \to \infty} \frac{\frac{\pi^{n+1} + 5}{e^{n+1}}}{\frac{\pi^n + 5}{e^n}} = \lim_{n \to \infty} \frac{e^n}{e^{n+1}} \cdot \frac{\pi^{n+1} + 5}{\pi^n + 5} = \lim_{n \to \infty} \frac{1}{e} \cdot \frac{\pi + \frac{5}{\pi^n}}{1 + \frac{5}{\pi^n}} = \frac{\pi}{e} > 1, \ \mbox{3.5 hz}.$$

3.
$$\rho = \lim_{n \to \infty} \frac{\frac{((n+1)!)^2}{(2(n+1))!}}{\frac{(n!)^2}{(2n)!}} = \lim_{n \to \infty} \frac{(n+1)(n+1)}{(2n+2)(2n+1)} = \frac{1}{4},$$
收斂.

4.
$$\lim_{n\to\infty}\frac{\frac{(n+1)!}{(n+1)^{(n+1)}}}{\frac{n!}{n^n}}=\lim_{n\to\infty}\left(1-\frac{1}{n}\right)^n=e^{-1}<1,$$
 收斂.

$$5. \ \rho = \lim_{n \to \infty} \frac{\frac{(n+1)^4 + 3(n+1)^3 + 2(n+1)^2 + 4(n+1) + 5}{3^{n+1}}}{\frac{n^4 + 3n^3 + 2n^2 + 4n + 5}{3^n}} = \lim_{n \to \infty} \frac{(n+1)^4}{n^4} \cdot \frac{1 + \frac{3}{n+1} + \frac{2}{(n+1)^2} + \frac{4}{(n+1)^3} + \frac{5}{(n+1)^4}}{1 + \frac{3}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \frac{5}{n^4}} \cdot \frac{1}{3} = \frac{1}{3},$$

定理 (根式法 (root test)). 給定 $\sum_{n=1}^{\infty} a_n$, 令 $\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|}$.

1. 若
$$\rho < 1, \sum_{n=1}^{\infty} a_n$$
 收斂.

3. 若
$$\rho = 1$$
, $\sum_{n=1}^{\infty} a_n$ 斂散性未定.

2. 若
$$\rho > 1$$
 或 ρ 為無限大, $\sum_{n=1}^{\infty} a_n$ 發散.

例. 判斷以下級數之斂散.

$$1. \sum_{n=1}^{\infty} \left(\frac{1}{n+1} \right)^n$$

$$2. \sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$$

$$3. \sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

解.

1.
$$\rho = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{1}{n} = 0$$
, 收斂.

2.
$$\rho = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{2n+3}{3n+2} = \frac{2}{3}$$
, 收斂.

3.
$$\rho = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{n^{\frac{2}{n}}}{2} = \frac{1}{2}$$
,收斂.

6.4 條件與絕對收斂

定義. 給定 $\sum_{n=1}^{\infty} a_n$.

1. 若
$$\sum_{n=1}^{\infty} |a_n|$$
 收斂, $\sum_{n=1}^{\infty} a_n$ 為絕對收斂 (absolutely convergent).

2. 若
$$\sum_{n=1}^{\infty} |a_n|$$
 發散但 $\sum_{n=1}^{\infty} a_n$ 收斂, $\sum_{n=1}^{\infty} a_n$ 為條件收斂 (conditionally convergent).

定理. 若 $\sum_{n=1}^{\infty} |a_n|$ 收斂, $\sum_{n=1}^{\infty} a_n$ 收斂.

證. 由 $|s_n-s_m|=|a_n+a_{n-1}+\cdots+a_{m+1}|\leqslant |a_n|+|a_{n-1}|+\cdots+|a_{m+1}|,\ \forall\, n>m$ 與 Cauchy 準則, $\sum_{n=1}^\infty a_n$ 收斂.

性質 (Abel 公式). 給定
$$\{a_n\}$$
, $\{b_n\}$, 令 $A_n = \sum_{k=1}^n a_k$ 且 $A_0 = 0$, 則 $\sum_{k=1}^n a_k b_k = A_n b_{n+1} - \sum_{k=1}^n A_k (b_{k+1} - b_k)$.

證.
$$\sum_{k=1}^n a_k b_k = \sum_{k=1}^n (A_k - A_{k-1}) b_k = \sum_{k=1}^n A_k b_k - \sum_{k=1}^n A_{k-1} b_k = \sum_{k=1}^n A_k b_k - \sum_{k=1}^n A_k b_{k+1} + A_n b_{n+1} = A_n b_{n+1} - \sum_{k=1}^n A_k (b_{k+1} - b_k).$$

定理 (Dirichlet 判定法). 若 $\sum_{n=1}^{\infty} a_n$ 部份和數列有界, $b_n \searrow \coprod \lim_{n \to \infty} b_n = 0$, 則 $\sum_{n=1}^{\infty} a_n b_n$ 收斂.

證. 由 Abel 公式 $\sum_{k=1}^n a_k b_k = A_n b_{n+1} - \sum_{k=1}^n A_k (b_{k+1} - b_k)$. 因 $\sum_{n=1}^\infty a_n$ 之部份和數列有界, $\exists M \; |A_n| \leqslant M$,

$$\sum_{k=1}^n A_k(b_{k+1}-b_k) \ \text{絕對收斂} \implies \sum_{k=1}^n A_k(b_{k+1}-b_k) \ \text{收斂}; \ \text{故} \ \sum_{n=1}^\infty a_n b_n \ \text{收斂}.$$

例. 證明 $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ 收斂, $\forall x \in \mathbb{R}$.

解. 由於 $\sin nx$ 為週期 2π 之函數,且 x=0 時 $\sin nx=0$,只需考慮 $x\in(0,2\pi)$.令 $A_n(x)=\sum_{k=1}^n\sin kx$,

$$2\sin\frac{x}{2}\cdot A_n(x) = \sum_{k=1}^n 2\sin\frac{x}{2}\cdot\sin kx = \sum_{k=1}^n \left(\cos\left(k-\frac{1}{2}\right)x - \cos\left(k+\frac{1}{2}\right)x\right) = \cos\frac{x}{2} - \cos\left(n+\frac{1}{2}\right)x \implies 0$$

$$|A_n(x)| = \left|\frac{\cos\frac{x}{2} - \cos\left(n + \frac{1}{2}\right)x}{2\sin\frac{x}{2}}\right| \leqslant \frac{1}{\sin\frac{x}{2}}, \\ \lim_{n \to \infty} \frac{1}{n} \searrow 0, \\ \text{ the Dirichlet } \text{ } \text{\mathbb{Z}} \text{ } \sum_{n=1}^{\infty} \frac{\sin nx}{n} \text{ } \text{\mathbb{Q}} \text{\mathbb{Q}}, \\ \forall \, x \in (0, \, 2\pi).$$

定義 (交錯級數). 給定正項級數 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} (-1)^n a_n$ 稱為交錯級數 (alternating series).

定理. 若正項級數 $\sum_{n=1}^{\infty}a_n$ 中 a_n 〉 且 $\lim_{n\to\infty}a_n=0$,交錯級數 $\sum_{n=1}^{\infty}(-1)^na_n$ 收斂.

證. $\{(-1)^n\}$ 部份和數列有界, $a_n \searrow \coprod \lim_{n \to \infty} a_n = 0$; 由 Dirichlet 判定法 $\sum_{n=1}^{\infty} (-1)^n a_n$ 收斂.

例. 若 $\sum_{n=1}^{\infty} a_n$ 條件收斂,

1.
$$\sum_{n=1}^{\infty} n^2 a_n$$
 發散.

2.
$$\sum_{n=1}^{\infty} na_n$$
 不為絕對收斂.

- 1. 若 $\sum_{n=1}^{\infty} n^2 a_n$ 收斂,則 $\lim_{n \to \infty} n^2 a_n = 0 \implies \exists N \in \mathbb{N}, \ n^2 |a_n| < 1 \ \forall \, n \geqslant N \implies |a_n| < \frac{1}{n^2} \ \forall \, n \geqslant N \implies \sum_{n=1}^{\infty} |a_n|$ 收斂,矛盾.

6.5 冪級數

定義. $\sum_{n=0}^{\infty}a_n(x-x_0)^n$ 之無窮級數稱為 $x-x_0$ 的冪級數 (power series), $\{a_n\}$ 為其係數 (coefficient).

定理. 令
$$\alpha = \lim_{n \to \infty} \sqrt[n]{|a_n|}, \ R = \begin{cases} \frac{1}{\alpha} & 0 < \alpha < \infty \\ \infty & \alpha = 0 \\ 0 & \alpha = \infty \end{cases}, \ \mathbb{H} \sum_{n=0}^{\infty} a_n (x - x_0)^n \ \mathbb{A} \begin{cases} \text{絕對收斂} & \forall \, |x - x_0| < R \\ \mathbb{G} & \forall \, |x - x_0| > R \end{cases}.$$

證. 由根式法,令 $\rho = \lim_{n \to \infty} \sqrt[n]{|a_n(x-x_0)^n|} = \lim_{n \to \infty} \sqrt[n]{|a_n|} \cdot |x-x_0| = \frac{|x-x_0|}{R};$ 若 $\rho < 1 \implies \frac{|x-x_0|}{R} < 1 \implies |x-x_0| < R$ 冪級數絕對收斂, $\rho > 1 \implies \frac{|x-x_0|}{R} > 1 \implies |x-x_0| > R$ 冪級數發散.

註.

- 1. R 稱為 $x-x_0$ 的冪級數 $\sum_{n=0}^{\infty}a_n(x-x_0)^n$ 之收斂半徑 (radius of convergence). 若 $0 < R < \infty$, 稱 $|x-x_0|=R$ 為其收斂圓 (circle of convergence). 若 $\forall\,x\in I$ 使 $\sum_{n=0}^{\infty}a_n(x-x_0)^n$ 收斂, 則 I 稱為其收斂 區間 (interval of convergence).
- 2. R 之計算可不依根式法 使用比值法於冪級數 $\sum_{n=0}^{\infty} \frac{n^n}{n!} z^n$, $\lim_{n \to \infty} \frac{\frac{(n+1)^{n+1}}{(n+1)!}|z|^{n+1}}{\frac{n^n}{n!}|z|^n} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n |z| = e\,|z| < 1$ 為絕對收斂, $e\,|z| > 1$ 發散 $\implies R = \frac{1}{e}$.
- 3. 不同冪級數 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ 在其收斂圓上有不同收斂特性: $\sum_{n=0}^{\infty} x^n$ 於 |x|=1 發散, $\sum_{n=0}^{\infty} \frac{x^n}{n(n+1)}$ 於 |x|=1 絕對收斂, $\sum_{n=0}^{\infty} \frac{x^n}{n}$ 於 x=1 發散, x=1 條件收斂.
- $4. \sum_{n=0}^{\infty} a_n (x-x_0)^n ~ 在 ~ x \in (c-R,c+R) ~ (亦即 ~ |x-x_0| < R) ~ 定義函數 ~ f, 寫作 ~ f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n, ~ |x-x_0| < R; \sum_{n=0}^{\infty} a_n (x-x_0)^n, ~ |x-x_0| < R ~ 為 ~ f(x) ~ 在 ~ x = x_0 ~ 之冪級數表示式.$

例. 求以下 x 的冪級數之收斂區間.

$$1. \sum_{n=1}^{\infty} \frac{x^n}{n}$$

$$3. \sum_{n=1}^{\infty} \frac{x^n}{n!}$$

$$5. \sum_{n=1}^{\infty} nx^n$$

$$2. \sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

$$4. \sum_{n=1}^{\infty} n! x^n$$

$$6. \sum_{n=1}^{\infty} \frac{x^n}{\ln(n+1)}$$

- 1. $\lim_{n \to \infty} \frac{n}{n+1} = 1; x = 1$ 時發散, x = -1 時條件收斂, 故收斂區間為 $-1 \leqslant x < 1$.
- 2. $\lim_{n\to\infty} \frac{n^2}{(n+1)^2} = 1; x = \pm 1$ 時均收斂, 故收斂區間為 $-1 \leqslant x \leqslant 1$.
- 3. $\lim_{n\to\infty} \frac{n!}{(n+1)!} = 0$; 故收斂區間為 $x \in \mathbb{R}$.

4.
$$\lim_{n\to\infty} \frac{(n+1)!}{n!} = \infty$$
, 故只在 $x=0$ 收斂.

5.
$$\lim_{n \to \infty} \frac{n+1}{n} = 1; x = \pm 1$$
 時均發散, 故收斂區間為 $-1 < x < 1$.

6.
$$\lim_{n \to \infty} \frac{\ln(n+2)}{\ln(n+1)} = \lim_{n \to \infty} \frac{\ln(n+2) - \ln(n+1) + \ln(n+1)}{\ln(n+1)} = \lim_{n \to \infty} \frac{\ln \frac{n+2}{n+1}}{\ln(n+1)} + 1 = 1; \ x = 1$$
 時發散, $x = -1$ 時條件收斂, 故收斂區間為 $-1 \leqslant x < 1$.

定理 (冪級數運算).

• 兩冪級數
$$\sum_{n=0}^{\infty}a_n(x-x_0)^n, \ |x-x_0|< R, \sum_{n=0}^{\infty}\widetilde{a}_n(x-\widetilde{c})^n, \ |x-\widetilde{c}|<\widetilde{R}$$
 之線性組合仍為函數,其定義域為 $(c-R,c+R)\cap (\widetilde{c}-\widetilde{R},\widetilde{c}+\widetilde{R}).$

例. 求 $\frac{1}{(1-x)^2}$ 在 x=0 之冪級數表示式.

解. 逐項微分
$$\frac{1}{1-x} = 1+x+x^2+x^3+x^4+\cdots, |x|<1 \implies \frac{1}{(1-x)^2} = 1+2x+3x^2+4x^3+\cdots = \sum_{n=0}^{\infty} (n+1)x^n, |x|<1.$$

例. 求 $\ln(1+x)$ 在 x=0 之冪級數表示式.

解. 逐項積分
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 + \cdots, \ |x| < 1 \implies \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}, \ |x| < 1.$$

例. 證明
$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}, |x| < 1.$$

解. 逐項積分
$$\frac{1}{1+x^2} = 1-x^2+x^4-x^6+-\cdots, |x|<1, 又 $\tan^{-1}0=0,$ 故 $\tan^{-1}x=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+-\cdots=\sum_{n=0}^{\infty}\frac{(-1)^n\,x^{2n+1}}{2n+1},\,|x|<1.$$$

例. 若
$$k > 1$$
, 求 $\sum_{n=1}^{\infty} \frac{n}{k^n} = \frac{1}{k} + \frac{2}{k^2} + \frac{3}{k^3} + \frac{4}{k^4} + \cdots$

解. 由
$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \dots = \sum_{n=0}^{\infty} (n+1)x^n, \ |x| < 1, \ \frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \dots = \sum_{n=0}^{\infty} (n+1)x^{n+1} = \sum_{n=1}^{\infty} nx^n, \ |x| < 1; 代入 \ x = \frac{1}{k}, \sum_{n=1}^{\infty} \frac{n}{k^n} = \frac{1}{k} + \frac{2}{k^2} + \frac{3}{k^3} + \frac{4}{k^4} + \dots = \frac{\frac{1}{k}}{(1-\frac{1}{k})^2} = \frac{k}{(k-1)^2}.$$

6.6 Taylor 級數

定義.

- 給定 $f \in C^{\infty}(a,b), x_0 \in (a,b), \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ 稱為 f(x) 在 $x=x_0$ 之 Tayler 級數 / 展開式; 若 $x_0=0$ 稱為 f(x) 之 MacLaurin 級數 / 展開式.
- 給定 $f \in C^N(a,b), x_0 \in (a,b), 0 \leqslant n \leqslant N, \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^n$ 稱為 f(x) 在 $x=x_0$ 之 n 階 Tayler 多項式; 若 $x_0=0$ 稱為 f(x) 之 n 階 MacLaurin 多項式.

定理. 若 f(x) 在 $x=x_0$ 有冪級數表示式 $f(x)=\sum_{n=0}^{\infty}a_n(x-x_0)^n,\;|x-x_0|< R,\; 則 \; a_n=\frac{f^{(n)}(x_0)}{n!}.$

證. 在
$$|x-x_0| < R$$
 可逐項微分得 $f'(x) = \sum_{n=1}^\infty n \, a_n (x-x_0)^{n-1}, \ f''(x) = \sum_{n=2}^\infty n (n-1) \, a_n (x-x_0)^{n-2}, \dots,$ $f^{(k)}(x) = \sum_{n=k}^\infty n (n-1) \cdots (n-(k-1)) \cdot a_n (x-x_0)^{n-k};$ 代入 $x = x_0 \implies f^{(k)}(x_0) = k(k-1) \cdots 1 \cdot a_k = k! \, a_k \implies a_k = \frac{f^{(k)}(x_0)}{1!}.$

例. 常用 Maclaurin 級數.

1.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

2.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

3.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

4.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}$$

定理 (Taylor). 若 $f(x) \in C^k(a,b), f^{(k-1)}(x)$ 在 [a,b] 連續, $1 \leqslant k \leqslant N, x_0 \in (a,b)$. 則 $\exists x_1$ 介於 x 與 x_0 間使 $f(x) = f(x_0) + \sum_{k=1}^{N-1} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + \frac{f^{(N)}(x_1)}{N!} (x-x_0)^N$.

例. 估計以 3 階 MacLaurin 多項式作為 $e^{\frac{1}{2}}$ 近似之誤差.

解. 由 $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$, $e^{\frac{1}{2}} = 1 + \frac{1}{2} + \frac{1}{2!} \left(\frac{1}{2}\right)^2 + \frac{1}{3!} \left(\frac{1}{2}\right)^3 \approx 1.64583$. 代入 Taylor 定理: $x = \frac{1}{2}$, $x_0 = 0$, $f(x) = e^x$, $f^{(k)}(x) = e^x$, $\forall k \in \mathbb{N}$, 故 $\exists x_1 \in \left(0, \frac{1}{2}\right)$ 使 $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} e^{x_1}$, 則誤差為 $\frac{1}{4!} \left(\frac{1}{2}\right)^4 e^{x_1} \leqslant \frac{1}{4!} \left(\frac{1}{2}\right)^4 2 = \frac{1}{192} \approx 0.0052$.

例. 應使用幾階 MacLaurin 多項式作為 e^1 之近似使誤差 < 0.005?

解. 由 $f(x) = e^x$, $f^{(k)}(x) = e^x \ \forall \ k \in \mathbb{N}$ 與 Taylor 定理, $\exists \ x_1 \in (0,1)$ 使 $e = 1 + \sum_{k=1}^{N-1} \frac{1}{k!} + \frac{e^{x_1}}{N!}$. 又 $e^{x_1} < 3$, 誤 差項 $\frac{e^{x_1}}{N!} < \frac{3}{N!} < 0.005 \implies N! > \frac{3}{0.005} = 600 \implies N = 6$, 故使用 N-1=5 階 MacLaurin 多項式作為 e^1 之近似: $e^1 \approx 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} = \frac{326}{120} \approx 2.72$.

例. $f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$,求 f(x) 的 MacLaurin 級數.

解. 由數學歸納法可得 $f^{(n)}(x)=e^{-\frac{1}{x^2}}\frac{P_{2n-2}(x)}{x^{3n}},\ n\in\mathbb{N},$ 其中 $P_{2n-2}(x)$ 為 x 的 2n-2 次多項式. 令 $g\Big(\frac{1}{x}\Big)=\frac{P_{2n-2}(x)}{x^{3n}},$ 則 g(y) 為 y 的多項式 (變數變換 $y=\frac{1}{x}),$ $f^{(n)}(0)=\lim_{x\to 0}e^{-\frac{1}{x^2}}\frac{P_{2n-2}(x)}{x^{3n}}=\lim_{y\to\pm\infty}e^{-y^2}g(y)=0.$ 故 f(x) 的 MacLaurin 級數為 0.

定理 (Abel). 若
$$f(x) = \sum_{n=0}^{\infty} a_n x^n, \ |x| < R,$$
 且 $\sum_{n=0}^{\infty} a_n R^n$ 收斂, 則 $\lim_{x \to R-} f(x) = \sum_{n=0}^{\infty} a_n R^n.$

例.

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}, \ |x| < 1.$$
 因 $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$ 收斂, $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \lim_{x \to 1-} \ln(1+x) = \ln 2.$

•
$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \frac{x^{11}}{11} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}, |x| < 1.$$
 $\boxtimes \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \, \text{ with } x = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{x^9}{9} - \frac{x^{11}}{11} + \dots = \lim_{x \to 1^-} \tan^{-1} x = \tan^{-1} 1 = \frac{\pi}{4}.$

例. 1. 若 $f(x) = \tan^{-1} x$, 求 $f^{(99)}(0)$.

2. 若 $f(x) = e^{-x^2}$, 求 $f^{(100)}(0)$.

1.
$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0) x^n}{n!}, |x| < 1.$$
 $\text{ ix } \frac{f^{(99)}(0)}{99!} = \frac{(-1)^{49}}{2 \cdot 49 + 1} \implies f^{(99)}(0) = -(98!).$

$$2. \ e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n \, x^{2n}}{n!} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0) \, x^n}{n!}, \ \forall \, x \in \mathbb{R}. \ \ \text{th} \ \frac{f^{(100)}(0)}{100!} = \frac{(-1)^{50}}{50!} \implies f^{(100)}(0) = \frac{100!}{50!}.$$