Mapping XID types to loaded principals

Presenter: Qiaobin Fu

Progress

- Implemented & ported Hopscotch hashing algorithm
 - □ Bugs in the <u>open source code</u>, contacted the author
- ☐ Implemented & ported Linear probing
- Implemented the Cuckoo hashing algorithm
- Implemented the Chained hash table
- Implemented the Double hashing
- Implemented the Quadratic probing
- Implemented the Dynamic perfect hashing (Yijun)
- Implementing the d-left hashing (ongoing Rishi)

Progress

- Adapt the interface
 - Did not change the interface at all
 - ☐ Insertion: vxt_register_xidty(): called by principals' init function
 - □ **Deletion**: vxt_unregister_xidty(): called by principals exit function
 - □ Lookup: xt_to_vxt() and xt_to_vxt_rcu()
 - □ Several functions in source files: flow.c, route.c, and socket.c

Performance comparison

Experiment on Linux XIA - Hopscotch

```
developer@developer-VirtualBox: ~/hash/hopscotch
      developer@... × developer@... × developer@... × developer@... × developer@... × developer@... ×
        5981.5204481 Hop Info : 1
        5981.520452] The hash_index is 23
        5981.520455] XID Type : 0x17
        5981.520459] Index: 0
        5981.520463] Hop Info : 1
        5981.533096] The hash index is 23
        5981.533100] XID Type : 0x17
        5981.533102] Index: 0
        5981.533104] Hop Info : 1
        5981.533201] XIA Principal XDP loaded
        5985.097410] Find the location free distance = 0, hop info = 0!
        5985.097413] The new hop info = 1
        5985.097415] Add XID_TYPE 0x16, assigned virtual XIDTYPE 1
        5985.097417] Find the location free_distance = 0, hop_info = 1!
        5985.097419] The new hop info = 1
        5985.112195]
        5985.112202] Bucket 22: key = 22, index = 1, hop_info = 1
        5985.112204] Bucket 23: key = 23, index = 0, hop_info = 1
        5985.112206
        5985.1122171 The hash index is 22
        5985.112219] XID Type : 0x16
        5985.1122211 Index: 1
        5985.1122231 Hop Info : 1
        5985.112227] The hash index is 22
        5985.112229] XID Type : 0x16
        5985.112231] Index: 1
        5985.112233] Hop Info : 1
        5985.112236] The hash index is 22
        5985.112238] XID Type : 0x16
        5985.112240] Index: 1
        5985.112242] Hop Info : 1
        5985.112245] The hash index is 22
        5985.112247] XID Type : 0x16
        5985.112249] Index: 1
        5985.1122511 Hop Info : 1
        5985.124875] XIA Principal U4ID loaded
        6000.4417611 The hash index is 23
```

```
developer@... × developer@... × developer@... × developer@... × developer@... × developer@... ×
root@xia1:~# lsmod | grep xia
xia ppal u4id
                      13065 0
xia ppal xdp
xia
                      76423 2 xia ppal u4id, xia ppal xdp
udo tunnel
                      13187 1 xia ppal u4id
root@xia1:~# ifconfig
eth0
         Link encap:Ethernet HWaddr aa:a9:50:90:0d:f6
          inet addr:10.0.4.2 Bcast:10.0.4.255 Mask:255.255.255.0
          inet6 addr: fe80::a8a9:50ff:fe90:df6/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:1223 errors:0 dropped:0 overruns:0 frame:0
         TX packets:50 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
         RX bytes:239308 (239.3 KB) TX bytes:5614 (5.6 KB)
         Link encap:Local Loopback
          inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING MTU:65536 Metric:1
         RX packets:8 errors:0 dropped:0 overruns:0 frame:0
         TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:1016 (1.0 KB) TX bytes:1016 (1.0 KB)
root@xia1:~# xip u4id add 10.0.4.2 0x35d5 -tunnel
root@xia1:~# ecli datagram xip client address.txt server address.txt
hello
hello
```

Experiment - Hopscotch

Work to be done

- ☐ Conduct more experiments to test
 - Lookup speed
 - Load factor
 - **u** etc.

Principals in Linux XIA

ID	Principal	Name
0x10	ad	Autonomous Domain
0x11	hid	Host
0x16	u4id	XIP over UDP
0x17	xdp	eXpressive Datagram Protocol
0x18	srvcid	Serval's serviceID
0x19	flowid	Serval's flowID
0x20	zf	zFilter (multicast)

Hopscotch hashing

- → A single hash function h
- □ The item hashed to an entry will always be found either in that entry, or in one of the next H − 1 entries, where H is a constant
- Each entry includes a hop-information word, an H-bit bitmap that indicates which of the next H-1 entries contain items that hashed to the current entry's virtual bucket

Cuckoo hashing

(a) before inserting item x

(b) after item x inserted

- ☐ An array of buckets
- Each item has two candidate buckets

Linear probing

In linear probing, all entry records are stored in the bucket array itself. When a new entry has to be inserted, the buckets are examined, starting with the hashed-to slot and proceeding in some probe sequence, until an unoccupied slot is found

- "Ted Baker" has a unique hash,
- But collided with "Sandra Dee", that had previously collided with "John Smith"
- Variants:
 - Quadratic probing
 - Double hashing

Chained hash table

An example of a Chained Hash Table with 14 entries

Reference

- http://opendatastructures.org/versions/edition-0.1e/odsjava/5_1_ChainedHashTable_Hashin.html
- 2. https://en.wikipedia.org/wiki/Hash_table#Collision_resolution
- 3. Herlihy, Maurice, Nir Shavit, and Moran Tzafrir. "Hopscotch hashing." *Distributed Computing*. Springer Berlin Heidelberg, 2008. 350-364.