## Федеральное государственное автономное образовательное учреждение высшего образования Национальный Исследовательский Университет ИТМО Факультет Программной Инженерии и Компьютерной Техники

идз №3

Вариант: №17

Выполнил: Назин Артем Аркадьевич

Группа: Р3107 Поток: 11.3

Преподаватель: Ершов Александр Романович

# Содержание

| 1 | Задание 1 | 2  |
|---|-----------|----|
| 2 | Задание 2 | 7  |
| 3 | Задание 3 | 8  |
| 4 | Задание 4 | 9  |
| 5 | Задание 5 | 14 |
| 6 | Задание 6 | 23 |
| 7 | Задание 7 | 25 |

**P.S.** Данное ИДЗ выполнено в Т<sub>Е</sub>Х и является моим вторым опытом работы в нём после Лабы №6 по информатике, так что прошу прощения за тонну орфографических ошибок и очень кривое оформление местами

#### Условие

Построить эскиз графика данной функции, используя преобразования графика соответствующей элементарной функции. Указать область определения и область значений данной функции:

1. 
$$y = 3\sin\left(2 + \frac{x}{2\pi}\right) - 5$$

2. 
$$y = \sqrt{\left(\frac{|6-2x|+x}{10-|5x-15|}\right)^2}$$

3. 
$$y = \log_4\left(2 + \sqrt{\frac{1}{x}}\right)$$

## Ход решения

1. 
$$y = 3\sin\left(2 + \frac{x}{2\pi}\right) - 5 = 3\sin\left(\frac{(x+4\pi)}{2\pi}\right) - 5$$

Построим базовую функцию:  $y = \sin x$ :



Изменим циклическую частоту:  $y = \sin\left(\frac{x}{2\pi}\right)$ :



Растянем график в 3 раза по ОҮ:  $y = 3 \sin(\frac{x}{2\pi})$ :



Построим график относительно новых осей: y' = y - 5 и  $x' = x - 4\pi$ :



В итоге, посредством элементарных преобразований мы получили график функции  $y=3\sin\left(2+\frac{x}{2\pi}\right)-5$ :



2. 
$$y = \sqrt{\left(\frac{|6 - 2x| + x}{10 - |5x - 15|}\right)^2} = \left|\left(\frac{|6 - 2x| + x}{10 - |5x - 15|}\right)\right|$$

Раскроем внутренние модули:

$$\begin{cases} \left| \frac{-x+6}{5x-5} \right|, x < 3 & (1) \\ \left| \frac{3x-6}{-5x+25} \right|, x \ge 3 & (2) \end{cases}$$

Теперь построим (1) и (2) без модулей:

(1): 
$$^{3}_{r-6}$$

$$\frac{3x-6}{5x+25} = -\frac{1}{5} + \frac{1}{x+1}$$

(1):  $\frac{3x-6}{-5x+25} = -\frac{1}{5} + \frac{1}{x-1}$  Для этого сначала построим базовый график  $\frac{1}{x}$ :



После сместим на +1 по x и  $-\frac{1}{5}$  по y:



## Уберем лишнее:



Аналогично для (2): 
$$\frac{3x-6}{-5x+25} = -\frac{3}{5} + \frac{9}{-5(x-5)}$$



Совместим и отразим отрицательную часть относительно оси ОХ, то есть получим итоговый график:



$$3. \quad y = \log_4\left(2 + \sqrt{\frac{1}{x}}\right)$$

График этой функции построим, изучив предварительно ее свойства. Функция определена для x>0 и монотонно убывает от  $+\infty$  до 0.5

Построим поочередно графики. Сначала  $\frac{1}{x}$  (красная линия), потом  $2+\sqrt{\frac{1}{x}}$  (синия линия), следом  $\log_4\left(2+\sqrt{\frac{1}{x}}\right)$  (черная линия):



#### Условие

Доказать по определению предела функции в точке (по Коши):

$$\lim_{x \to 11} \frac{2x^2 - 21x - 11}{x - 11} = 23$$

**Ход решения** Преобразуем выражение  $\left| \frac{2x^2-21x-11}{x-11} - 23 \right|$ :

$$\left| \frac{2x^2 - 21x - 11}{x - 11} - 23 \right| = \left| \frac{2x^2 - 21x - 11 - 23x + 253}{x - 11} \right| = \left| \frac{2x^2 - 44x + 242}{x - 11} \right| = \left| \frac{2(x - 11)^2}{x - 11} \right|$$

Так как при стремлении к 11, x в саму точку 11 не попадает, то:

$$\left| \frac{2(x-11)^2}{x-11} \right| = 2|x-11|$$

Возьмем  $\varepsilon > 0$  и найдем решения неравенства:

$$\left| \frac{2x^2 - 21x - 11}{x - 11} - 23 \right| = 2|x - 11| < \varepsilon$$

$$|x-11| < \frac{\varepsilon}{2}$$

Получается, что из неравенства  $|x-11|<\frac{\varepsilon}{2}$  следует  $\left|\frac{2x^2-21x-11}{x-11}-23\right|<\varepsilon$ , то есть выполнено определение предела по Коши для  $\delta=\frac{\varepsilon}{2}$ . ч.т.д.

#### **Условие**

Доказать, что данный предел не существует:

$$\lim_{x \to \infty} \operatorname{ctg} \left( 1 + x^2 \right)$$

#### Ход решения

Рассмотрим некоторые последвательности  $x_n$  удовлетворяющие первой части определения по Гейне, то есть такие что:

$$\begin{cases} x_n \in D(f) \text{ (Область определения)} \\ x_n \to +\infty \end{cases}$$

Например: 
$$y_n = \sqrt{\frac{\pi}{4} + \pi n - 1}$$
 и  $a_n = \sqrt{\frac{3\pi}{4} + \pi n - 1}$ . К тому же  $n \ge 1 \Rightarrow y_n, a_n \ge 0$ . Получается  $\operatorname{ctg}(1 + y_n^2) = \operatorname{ctg}\left(1 + \left(\sqrt{\frac{\pi}{4} + \pi n - 1}\right)^2\right) = \operatorname{ctg}\left(1 + \frac{\pi}{4} + \pi n - 1\right) = \operatorname{ctg}\left(\frac{\pi}{4} + \pi n\right) = \operatorname{ctg}\frac{\pi}{4} = \operatorname{const} = 1$  A  $\operatorname{ctg}(1 + a_n^2) = \operatorname{ctg}\left(1 + \left(\sqrt{\frac{3\pi}{4} + \pi n - 1}\right)^2\right) = \operatorname{ctg}\left(1 + \frac{3\pi}{4} + \pi n - 1\right) = \operatorname{ctg}\left(\frac{3\pi}{4} + \pi n\right) = \operatorname{ctg}\frac{3\pi}{4} = \operatorname{const} = -1$ 

То есть мы взяли две последовательности из определения по Гейне и получили, что они стремятся к разным числам, что напрямую этому определению противоречит, следовательно предела - нет. ч.т.д. Аналогично для  $x \to -\infty$ .

### Условие

Вычислить пределы:

1.

$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{(x^2 - x - 2)^2}$$

2.

$$\lim_{x \to 3} \frac{\sqrt[3]{9x} - 3}{\sqrt{3 + x} - \sqrt{2x}}$$

3.

$$\lim_{x \to 1} \frac{1 + \cos \pi x}{\mathsf{t} g^2 \pi x}$$

4.

$$\lim_{x \to a} \frac{\ln(\cos \frac{\pi x}{a} + 2)}{a^{\frac{a^2}{x^2} - \frac{a}{x}} - a^{\frac{a}{x} - 1}}$$

5.

$$\lim_{x\to 0} (2-5^{\arcsin x^3})^{\frac{(\csc^2 x)}{x}}$$

6.

$$\lim_{x \to \frac{\pi}{2} \pm 0} \left( 0.5 + \cos 3x \right)^{\sec x}$$

7.

$$\lim_{x \to \frac{\pi}{2}} \frac{2 + \cos x \sin \frac{2}{2x - \pi}}{3 + 2x \sin x}$$

8.

$$\lim_{x \to 2} \frac{\arctan(x^2 - 3) + \arctan(x^2 - 5)}{\ln(x - 1)}$$

## Ход решения

1.

$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{(x^2 - x - 2)^2}$$

Вид неопределенности:  $\begin{bmatrix} 0\\0 \end{bmatrix}$ 

$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{(x^2 - x - 2)^2} = \lim_{x \to -1} \frac{(x^2 - x - 2)(x + 1)}{(x^2 - x - 2)^2} = \lim_{x \to -1} \frac{x + 1}{x^2 - x - 2} = \lim_{t \to 0} \frac{t - 1 + 1}{(t - 1)^2 - (t - 1) - 2} = \lim_{t \to 0} \frac{t}{t^2 - 2t + 1 - t + 1 - 2} = \lim_{t \to 0} \frac{t}{t^2 - 3t} = \lim_{t \to 0} \frac{\frac{t}{t}}{\frac{t^2}{t} - \frac{3t}{t}} = \lim_{t \to 0} \frac{1}{t - 3} = -\frac{1}{3}$$

**Ответ:**  $-\frac{1}{3}$ 

2.

$$\lim_{x \to 3} \frac{\sqrt[3]{9x} - 3}{\sqrt{3 + x} - \sqrt{2x}}$$

Вид неопределенности:  $\begin{bmatrix} 0\\0 \end{bmatrix}$ 

$$\lim_{x \to 3} \frac{\sqrt[3]{9x} - 3}{\sqrt{3 + x} - \sqrt{2x}} = \lim_{t \to 0} \frac{\sqrt[3]{9t + 27} - 3}{\sqrt{t + 6} - \sqrt{2t + 6}} = \lim_{t \to 0} \frac{3\sqrt[3]{\frac{t}{3} + 1} - 3}{\sqrt{6}\sqrt{\frac{t}{6} + 1} - \sqrt{6}\sqrt{\frac{t}{3} + 1}} =$$

$$= \lim_{t \to 0} \frac{3(1 + \frac{t}{9} + o(t)) - 3}{\sqrt{6}(1 + \frac{t}{12} + o(t)) - \sqrt{6}(1 + \frac{t}{6} + o(t))} = \lim_{t \to 0} \frac{\frac{t}{3} + o(t)}{\frac{\sqrt{6t}}{12} - \frac{\sqrt{6t}}{6} + o(t)} = \lim_{t \to 0} \frac{\frac{t}{3} + o(t)}{-\frac{\sqrt{6t}}{12} + o(t)} =$$

$$= \lim_{t \to 0} \frac{\frac{1}{3} + o(1)}{-\frac{\sqrt{6}}{12} + o(1)} = \frac{\frac{1}{3}}{-\frac{\sqrt{6}}{12}} = -\frac{2\sqrt{6}}{3}$$

**Otbet:**  $-\frac{2\sqrt{6}}{3}$ 

3.

$$\lim_{x \to 1} \frac{1 + \cos \pi x}{\operatorname{tg}^2 \pi x}$$

Вид неопределенности:  $\begin{bmatrix} 0 \\ \overline{0} \end{bmatrix}$ 

$$\lim_{x \to 1} \frac{1 + \cos \pi x}{\operatorname{tg}^2 \pi x} = \lim_{t \to 0} \frac{1 + \cos \pi t + \pi}{\operatorname{tg}^2 \pi t + \pi} = \lim_{t \to 0} \frac{1 - \cos \pi t}{\operatorname{tg}^2 \pi t} = \lim_{t \to 0} \frac{1 - (1 - \frac{\pi^2 t^2}{2} + o(t^2))}{(\pi t + o(t))^2} = \lim_{t \to 0} \frac{\frac{\pi^2 t^2}{2} + o(t^2)}{\pi^2 t^2 + o(t)\pi t + o(t^2)} = \lim_{t \to 0} \frac{\frac{\pi^2 t^2}{2} + o(t^2)}{\pi^2 t^2 + o(t^2)} = \lim_{t \to 0} \frac{\frac{\pi^2}{2} + o(1)}{\pi^2 t^2 + o(1)} = \frac{1}{2}$$

**Ответ:**  $\frac{1}{2}$ 

$$\lim_{x \to a} \frac{\ln(\cos \frac{\pi x}{a} + 2)}{a^{\frac{a^2}{x^2} - \frac{a}{x}} - a^{\frac{a}{x} - 1}}$$

Вид неопределенности:  $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 

$$\lim_{x \to a} \frac{\ln\left(\cos\frac{\pi x}{a} + 2\right)}{a^{\frac{a^2}{x^2} - \frac{a}{x}} - a^{\frac{a}{x} - 1}} = \lim_{x \to a} \frac{\ln\left(\cos\frac{\pi x}{a} + 2\right)}{a^{\frac{a}{x} - 1}\left(a^{\frac{a^2}{x^2} - \frac{2a}{x} + 1} - 1\right)} = \lim_{t \to 0} \frac{\ln\left(\cos\frac{\pi(t + a)}{a} + 2\right)}{a^{\frac{a}{t + a}} - 1\left(a^{\frac{a^2}{t + a} - \frac{2a}{t + a} + 1} - 1\right)} =$$

$$= \lim_{t \to 0} \frac{\ln\left(\cos\left(\frac{\pi t}{a} + \pi\right) + 2\right)}{a^{\frac{a - t - a}{t + a}}\left(a^{\frac{a^2}{(t + a)^2} - \frac{2at + 2a^2}{(t + a)^2} + \frac{(t + a)^2}{(t + a)^2} - 1\right)} = \lim_{t \to 0} \frac{\ln\left(-\cos\frac{\pi t}{a} + 2\right)}{a^{\frac{-t}{t + a}}\left(a^{\frac{a^2 - 2at - 2a^2 + t^2 + 2at + a^2}{(t + a)^2}} - 1\right)} =$$

$$= \lim_{t \to 0} \frac{\ln\left(-\cos\frac{\pi t}{a} + 2\right)}{a^{\frac{-t}{t + a}}\left(a^{\frac{t^2}{(t + a)^2}} - 1\right)} = \lim_{t \to 0} \frac{\ln\left(-\left(1 - \frac{\pi^2 t^2}{2a^2} + o(t^2)\right) + 2\right)}{\left(1 - \frac{t}{t + a}\ln(a) + o(t)\right)\left(\left(1 + \frac{t^2}{(t + a)^2}\ln(a) + o(t^2)\right) - 1\right)} =$$

$$= \lim_{t \to 0} \frac{\ln\left(1 + \frac{\pi^2 t^2}{2a^2} + o(t^2)\right)}{\left(1 - \frac{t}{t + a}\ln(a) + o(t)\right)\left(\frac{t^2}{(t + a)^2}\ln(a) + o(t^2)\right)} =$$

$$= \lim_{t \to 0} \frac{\frac{\pi^2 t^2}{2a^2} + o(t^2) + o(\frac{\pi^2 t^2}{2a^2} + o(t^2)}{\frac{2a^2}{(t + a)^2}\ln(a) + o(t) + o(t)o(t^2)}$$

Заметим, что:  $o\left(\frac{t^k}{(a+t)^n}\right) = o(t^k)$ , где k,n  $\in \mathbb{N}$  (ограниченная умножить на  $t^k$  )

Откуда: 
$$\lim_{t\to 0} \frac{\frac{\pi^2 t^2}{2a^2} + o(t^2) + o(\frac{\pi^2 t^2}{2a^2} + o(t^2))}{\frac{t^2}{(t+a)^2} \ln(a) + o(t^2) - \frac{t^3}{(t+a)^3} \ln^2(a) - o(t^3) + o(t^3)} = \lim_{t\to 0} \frac{\frac{\pi^2 t^2}{2a^2} + o(t^2)}{\frac{t^2}{(t+a)^2} \ln(a) + o(t^2) - \frac{t^3}{(t+a)^3} \ln^2(a)} = \lim_{t\to 0} \frac{\frac{\pi^2 t^2}{2a^2} + o(1)}{\frac{1}{(t+a)^2} \ln(a) + o(1) - \frac{t}{(t+a)^3} \ln^2(a)} = \frac{\frac{\pi^2}{2a^2}}{\frac{1}{a^2} \ln(a) - 0} = \frac{\pi^2}{2 \ln(a)}$$

**Otbet:**  $\frac{\pi^2}{2 \ln(a)}$ 

5.

$$\lim_{x\to 0} (2-5^{\arcsin x^3})^{\frac{(\csc^2 x)}{x}}$$

Вид неопределенности:  $[1^{\infty}]$ 

$$\lim_{x \to 0} (2 - 5^{(x^3 + o(x^3))})^{\frac{1}{x \sin^2 x}} = \lim_{x \to 0} (2 - 5^{(x^3 + o(x^3))})^{\frac{1}{x(x + o(x))^2}} = \lim_{x \to 0} (2 - (1 + (x^3 + o(x^3)) \ln 5 + o(x^3 + o(x^3))))^{\frac{1}{x^3 + o(x^3)}} = \lim_{x \to 0} (1 - x^3 \ln 5 + o(x^3))^{\left(\frac{1}{-x^3 \ln 5 + o(x^3)} - \frac{x^3 \ln 5 + o(x^3)}{x^3 + o(x^3)}\right)} = \lim_{x \to 0} e^{\left(\frac{-x^3 \ln 5 + o(x^3)}{1 + o(1)}\right)} = \lim_{x \to 0} e^{\left(\frac{-\ln 5 + o(1)}{1 + o(1)}\right)} = e^{-\ln 5} = \frac{1}{5}$$

**Ответ:**  $\frac{1}{5}$ 

$$\lim_{x \to \frac{\pi}{2} \pm 0} (0.5 + \cos 3x)^{\sec x}$$

$$\lim_{x \to \frac{\pi}{2} \pm 0} (0.5 + \cos 3x)^{\sec x} = \lim_{t \to 0 \pm} \left( 0.5 + \cos \left( 3t + \frac{3\pi}{2} \right) \right)^{\frac{1}{\cos \left( \frac{\pi}{2} + t \right)}} = \lim_{t \to 0 \pm} (0.5 + \sin 3t)^{\frac{1}{-\sin t}}$$

Рассмотрим отдельно при  $t \to 0+$  и  $t \to 0-$ 

$$\lim_{t \to 0^{-}} (0.5 + \sin 3t)^{\frac{1}{-\sin t}} = \lim_{t \to 0^{-}} (0.5 + 3t + o(t))^{\frac{1}{-(t + o(t))}} = \lim_{t \to 0^{-}} (0.5 + 3t + o(t))^{\infty} = \lim_{t \to 0^{-}} (0.5)^{\infty} = 0$$

$$\lim_{t \to 0^{+}} (0.5 + \sin 3t)^{\frac{1}{-\sin t}} = \lim_{t \to 0^{+}} (0.5 + 3t + o(t))^{\frac{1}{-(t + o(t))}} = \lim_{t \to 0^{+}} (0.5 + 3t + o(t))^{-\infty} = \lim_{t \to 0^{+}} (0.5)^{-\infty} = +\infty$$

Ответ для  $x \to \frac{\pi}{2} - 0$ : 0, для  $x \to \frac{\pi}{2} + 0$ :  $+\infty$ 

7.

$$\lim_{x \to \frac{\pi}{2}} \frac{2 + \cos x \sin \frac{2}{2x - \pi}}{3 + 2x \sin x}$$

$$\lim_{x \to \frac{\pi}{2}} \frac{2 + \cos x \sin \frac{2}{2x - \pi}}{3 + 2x \sin x} = \lim_{t \to 0} \frac{2 + \cos (t + \frac{\pi}{2}) \sin \frac{2}{2t + \pi - \pi}}{3 + 2(t + \frac{\pi}{2}) \sin (t + \frac{\pi}{2})} = \frac{2 - \sin t \sin \frac{2}{2t}}{3 + 2(t + \frac{\pi}{2}) \cos t}$$

Функция:  $\sin \frac{1}{t}$  - ограниченная, а  $\sin t$  - бесконечно малая

Следовательно их произведение - бесконечно малая

Откуда. подставив t = 0, получим:

$$\frac{2-0}{3+2(0+\frac{\pi}{2})\cos{(0)}} = \frac{2}{3+\pi}$$

**Otbet:**  $\frac{2}{3+\pi}$ 

$$\lim_{x \to 2} \frac{\arctan(x^2 - 3) + \arctan(x^2 - 5)}{\ln(x - 1)}$$

$$\lim_{x \to 2} \frac{\arctan(x^2 - 3) + \arctan(x^2 - 5)}{\ln(x - 1)} = \lim_{t \to 0} \frac{\arctan(t^2 + 4t + 4 - 3) + \arctan(t^2 + 4t + 4 - 5)}{\ln(t + 1)} = \lim_{t \to 0} \frac{\arctan(t^2 + 4t + 1) + \arctan(t^2 + 4t - 1)}{\ln(t + 1)} = \lim_{t \to 0} \frac{f_1(t) + f_2(t)}{h(t)}$$

Раскроем arctg и ln до первого порядка по формуле Тейлора, для этого посчитаем производные:

$$f_1'(t) = \left(\arctan\left(t^2 + 4t + 1\right)\right)' = \frac{2t + 4}{1 + (t^2 + 4t + 1)^2}$$

$$f_2'(t) = \left(\arctan\left(t^2 + 4t - 1\right)\right)' = \frac{2t + 4}{1 + (t^2 + 4t - 1)^2}$$

$$h'(t) = \left(\ln\left(t + 1\right)\right)' = \frac{1}{t + 1}$$

Подставим  $t_0$ :

$$f_1(0) = \arctan(0^2 + 4 * 0 + 1) = \arctan(1) = \frac{\pi}{4}$$

$$f_2(0) = \arctan(0^2 + 4 * 0 - 1) = \arctan(-1) = -\frac{\pi}{4}$$

$$h(0) = \ln(0 + 1) = \ln(1) = 0$$

$$f'_1(0) = \frac{2 * 0 + 4}{1 + (0^2 + 0 * t + 1)^2} = \frac{4}{1 + 1^2} = 2$$

$$f'_2(0) = \frac{2 * 0 + 4}{1 + (0^2 + 0 * t - 1)^2} = \frac{4}{1 + (-1)^2} = 2$$

$$h'(0) = \frac{1}{0 + 1} = 1$$

Откуда:

$$\lim_{t \to 0} \frac{f_1(t) + f_2(t)}{h(t)} = \lim_{t \to 0} \frac{\left(\frac{\pi}{4} + 2t + o(t)\right) + \left(-\frac{\pi}{4} + 2t + o(t)\right)}{0 + t + o(t)} = \lim_{t \to 0} \frac{4t + o(t)}{t + o(t)} = \lim_{t \to 0} \frac{4 + o(1)}{1 + o(1)} = 4$$

**Ответ:** 4

#### **Условие**

Провести полное исследование функций и построить их графики.

1.

$$\begin{cases} x = \frac{3t^2 + 1}{3t} \\ y = t + \frac{t^2}{3} \end{cases}$$

2.

$$y = \arccos \frac{2x}{1+x^2} - \frac{2x}{5}$$

3.

$$y = (1 - x)e^{3x+1}$$

## Ход решения

1.

$$\begin{cases} x = \frac{3t^2 + 1}{3t} \\ y = t + \frac{t^2}{3} \end{cases}$$

Найдем область определения функции D(f):

y(t) - существует всегда, рассмотрим чему не может равняться x(t):  $x(t) = \frac{3t^2+1}{3t} = t + \frac{1}{3t}$  - не достигает каких-то значений около нуля, найдем их через локальный ми-

 $x'(t) = 1 - \frac{1}{3t^2}$  - не существует в нуле как и сама функция x(t),  $x'(t) = 0 \Rightarrow 1 - \frac{1}{3t^2} = 0 \Rightarrow t = \pm \sqrt{\frac{1}{3}}$ 

Подставив различные значения, получим, что:  $\frac{1}{\sqrt{3}}$  - лок. минимум,  $-\frac{1}{\sqrt{3}}$  - лок. максимум

$$x(\frac{1}{\sqrt{3}}) = \frac{2}{\sqrt{3}}, x(-\frac{1}{\sqrt{3}}) = -\frac{2}{\sqrt{3}}$$
  
То есть  $D(f) = (-\infty, -\frac{2}{\sqrt{(3)}}] \cup [\frac{2}{\sqrt{(3)}}, +\infty)$ 

Найдем сначала асимптоты кривой. Будем искать наклонные асимптоты в виде y = kx + b. Переменная x стремится к бесконечности, когда  $t \to 0$  или  $t \to \pm \infty$ . При  $t \to \pm \infty$  переменная y тоже будет стремится к бесконечности, при этом:

$$\lim_{t \to \infty} \frac{y(t)}{x(t)} = \lim_{t \to \infty} \frac{3t(3t + t^2)}{3(3t^2 + 1)} = \lim_{t \to \infty} \frac{3t^2 + t^3}{3t^2 + 1} = \infty$$

И к тому же  $x \to \infty$ , значит, при стремленни  $t \to \infty$  нет ни наклонной, не вертикальной асимпто-

Расмотим случай  $t \to \pm 0$ :

$$\lim_{t \to 0+} \frac{y(t)}{x(t)} = \lim_{t \to 0+} \frac{3t^2 + t^3}{3t^2 + 1} = \frac{0+0}{0+1} = 0$$

$$\lim_{t \to 0-} \frac{y(t)}{x(t)} = \lim_{t \to 0-} \frac{3t^2 + t^3}{3t^2 + 1} = 0$$

При этом:

$$\lim_{t \to 0} y(t) = \lim_{t \to 0} t + \frac{t^2}{3} = 0$$

То есть при  $t\to 0$  есть горизонтальная асимптота y=0 Исследуем производные функций y(t) и x(t), для того, чтобы понять, как ведет себя функция:







После проведенных вычислений становится понятно, что функция не является четной/нечетной или периодической. Построим её график:



$$y = \arccos \frac{2x}{1+x^2} - \frac{2x}{5}$$

Найдем область определения функции D(f):

$$\left|\frac{2x}{1+x^2}\right| \le 1 \Rightarrow |2x| \le 1+x^2 \Rightarrow \begin{cases} 2x \le 1+x^2 \\ 2x \ge -1-x^2 \end{cases} \Rightarrow \begin{cases} 0 \le (1-x)^2 \\ 0 \ge -(1+x)^2 \end{cases}$$

Что выполняется всега,  $D(f) = \mathbb{R}$ 

Функция не является ни четной, ни нечетной, а также не является периодичной.

Исследуем ее на монотонность и экстремумы. Для этого найдем производную: 
$$y' = -\frac{1}{\sqrt{1-\left(\frac{2x}{1+x^2}\right)^2}} \cdot \frac{2(1+x^2)-2x(2x)}{(1+x^2)^2} - \frac{2}{5} = \frac{1}{\sqrt{1-\left(\frac{2x}{1+x^2}\right)^2}} \cdot \frac{2x^2-2}{(1+x^2)^2} - \frac{2}{5} = \frac{(1+x^2)}{\sqrt{(1+x^2)^2-4x^2}} \cdot \frac{2x^2-2}{(1+x^2)^2} - \frac{2}{5} = \frac{1}{|x-1||x+1|} \cdot \frac{2x^2-2}{1+x^2} - \frac{2}{5}$$

Найдем точки "подозреваемые"на экстремум:

Случай 1 (у' - не существует): |x - 1||x + 1| = 0

Откуда x = 1 или x = -1

Случай 2 (y' = 0):

$$\frac{1}{|x-1||x+1|} \cdot \frac{2x^2 - 2}{1+x^2} - \frac{2}{5} = 0$$

$$\frac{x^2 - 1}{1+x^2} = \frac{|x-1||x+1|}{5}$$

$$5x^2 - 5 = |x^4 - 1|$$

$$\begin{cases} |x| \ge 1 \\ 5x^2 - 5 = -x^4 + 1 \end{cases}$$

$$\begin{cases} |x| \ge 1 \\ x^2 = 1 \\ x^2 = 4 \end{cases}$$

$$\begin{cases} |x| \ge 1 \\ x^2 = 1 \\ x^2 = -6 \end{cases}$$

Итого  $x = \pm 1, \pm 2$ 

По  $\frac{\text{desmos}}{\text{me}}$  методу интерваллов отпределим, что -1 и 2 - точки лок. максимума, 1 и -2 - точки лок. минимума

Найдем асимптоты функции:

При  $x \to \infty$ , y тоже  $\to \infty$ , других асимптот нет, так как  $\arccos \frac{2x}{1+x^2}$  - что-то ограниченное, а  $-\frac{2x}{5} \to \infty$  только при  $x \to \infty$ 

Найдем наклонную асимптоту y = kx + b для  $\pm \infty$ :

$$\lim_{x \to +\infty} \frac{\arccos \frac{2x}{1+x^2} - \frac{2x}{5}}{x} = 0 + \left(-\frac{2}{5}\right) = -\frac{2}{5}$$

$$\lim_{x \to -\infty} \frac{\arccos \frac{2x}{1+x^2} - \frac{2x}{5}}{x} = 0 + \left(-\frac{2}{5}\right) = -\frac{2}{5}$$

При этом найдем b:

$$\lim_{x \to +\infty} \left( \arccos \frac{2x}{1+x^2} - \frac{2x}{5} - \left( -\frac{2x}{5} \right) \right) = \lim_{x \to +\infty} \arccos \frac{2x}{1+x^2} = \arccos 0 = \frac{\pi}{2}$$

$$\lim_{x \to -\infty} \left( \arccos \frac{2x}{1+x^2} - \frac{2x}{5} - \left( -\frac{2x}{5} \right) \right) = \lim_{x \to -\infty} \arccos \frac{2x}{1+x^2} = \arccos 0 = \frac{\pi}{2}$$

То есть полученная асимптота:  $y = -\frac{2}{5}x + \frac{\pi}{2}$  Исследуем функцию на выпуклость/вогнутость:



Построим график:



$$y = (1 - x)e^{3x+1}$$

Область определения функции:  $\mathbb R$ 

Функция не является ни четной, ни нечетной, а также не является периодичной. Исследуем ее на монотонность и экстремумы. Для этого найдем производную:



После, найдем асимптоты к графику:



А следом, исследуем на выпуклость/вогнутость:



Построим график:



#### **Условие**

Из полосы жести шириной а требуется сделать открытый сверху желоб, поперечное сечение которого должно иметь форму равнобочной трапеции. Дно желоба имеет ширину b. Какова должна быть ширина желоба наверху, чтобы он вмещал наибольшее количество воды?

#### Ход решения



Где 
$$c = \frac{a-b}{2}$$
.

По теореме Пифагора: 
$$c^2 = h^2 + \left(\frac{d-b}{2}\right)^2 \Rightarrow \left(\frac{a-b}{2}\right)^2 = h^2 + \left(\frac{d-b}{2}\right)^2 \Rightarrow h = \sqrt{\frac{(a-b)^2 - (d-b)^2}{4}} = \sqrt{\frac{a^2 - 2ab - d^2 + 2db}{4}}$$
 Площадь трапеции:  $S = \frac{b+d}{2} \cdot h = \frac{b+d}{2} \cdot \sqrt{\frac{a^2 - 2ab - d^2 + 2db}{4}}$ 

Желоб будет вмещать наибольший объем воды при фиксированной длине, если площадь сечения (трапеции) будет максимальной, найдем это максимальное значение с помощью производной:

$$S' = \frac{1}{2} \sqrt{\frac{a^2 - 2ab - d^2 + 2db}{4}} + \frac{b + d}{2} \cdot \frac{-2d + 2b}{4} \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{\frac{a^2 - 2ab - d^2 + 2db}{4}}}$$

Из построения видно, что если  $d \to a$  – то объем воды = 0. К тому же, если  $d \to 0$  + то трапеция будет стремится к треугольнику, у которого площадь явно меньше. Значит, максимальное значение S(d) будет в какой-нибудь точке локального максимума, найдем их:

Случай 1 (
$$S'(d)$$
 - не существует):   
 То есть  $\frac{a^2-2ab-d^2+2db}{4} \leq 0 \Rightarrow -d^2+2db+a^2-2ab \leq 0 \Rightarrow -(d-a)(d+a-2b) \leq 0 \Rightarrow (d-a)(d+a-2b) \geq 0$  Откуда, по методу интерваллов получим, что либо  $d \geq a$ , либо  $d \leq 2b-a$ .

Первое невозможно так как если  $d \ge a$ , то трапецию не построишь (даже если боковые стороны "выпрямим" к основанию, то их все равно не хватит, чтобы достать до концов отрезка длиной d).

$$A d \le 2b - a \Leftrightarrow b + 2c \le 2b - d \Leftrightarrow c \le \frac{b-d}{2} \Rightarrow c^2 \le \left(\frac{b-d}{2}\right)^2 \Leftrightarrow \left(\frac{d-b}{2}\right)^2 + h^2 \le \left(\frac{b-d}{2}\right)^2 \Leftrightarrow h^2 \le 0$$
 - чего не может быть.

Случай 2 (S'(d) = 0):

$$\frac{1}{2}\sqrt{\frac{a^2 - 2ab - d^2 + 2db}{4}} + \frac{b + d}{2} \cdot \frac{-2d + 2b}{4} \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{\frac{a^2 - 2ab - d^2 + 2db}{4}}} = 0$$

$$\sqrt{\frac{a^2 - 2ab - d^2 + 2db}{4}} = \frac{b + d}{2} \cdot \frac{d - b}{2} \cdot \frac{1}{\sqrt{\frac{a^2 - 2ab - d^2 + 2db}{4}}}$$

$$\left(\sqrt{\frac{a^2 - 2ab - d^2 + 2db}{4}}\right)^2 = \frac{(d^2 - b^2)}{4}$$

$$a^2 - 2ab - d^2 + 2db = (d^2 - b^2)$$

$$2d^2 - 2bd - (a - b)^2 = 0$$

Решим квадратное уравнение относительно d:

 $D = 4b^2 + 8(a - b)^2$  - сумма квадратов всегда неотрицательна

$$d_1 = \frac{2b + \sqrt{4b^2 + 8(a - b)^2}}{4}$$

$$d_2 = rac{2b - \sqrt{4b^2 + 8(a-b)^2}}{4}$$
 - явно меньше нуля, чего не может быть

Итого  $d = \frac{2b + \sqrt{4b^2 + 8(a - b)^2}}{4}$ , докажем, что это максимум взяв, например  $S'\left(\frac{b}{2}\right)$  и  $S'\left(\frac{a - b}{\sqrt{2}} + b\right)$ 

**Ответ:** 
$$d = \frac{2b + \sqrt{4b^2 + 8(a-b)^2}}{4}$$

#### Условие

Вычислить пределы с помощью формулы Тейлора:

1.

$$\lim_{x \to 0} \frac{e^{\cos x} - e\sqrt[3]{1 - 4x^2}}{(1/x)\arcsin 2x - 2\operatorname{ch} x^2}$$

2.

$$\lim_{x \to 0} \left( 1 + \arcsin x^3 \right)^{e^x/(x\sqrt[3]{\cos x} - \sin x + tg^3 x)}$$

#### Ход решения

1.

$$\lim_{x \to 0} \frac{e^{\cos x} - e^{\sqrt[3]{1 - 4x^2}}}{(1/x)\arcsin 2x - 2\operatorname{ch} x^2}$$

Разложим по формуле Тейлора до второго (местами третьего) порядка:

$$\lim_{x \to 0} \frac{e^{\left(1 - \frac{x^2}{2} + o(x^2)\right)} - e\left(1 - \frac{4x^2}{3} + o(x^2)\right)}{(1/x)\left(2x + \frac{8x^3}{6} + o(x^3)\right) - 2(1 + o(x^2))} = \lim_{x \to 0} \frac{e \cdot e^{\left(-\frac{x^2}{2} + o(x^2)\right)} - e + \frac{4ex^2}{3} + o(x^2)}{2 + \frac{8x^2}{6} + o(x^2) - 2 + o(x^2)} = \lim_{x \to 0} \frac{e \cdot \left(1 - \frac{x^2}{2} + o(x^2)\right) - e + \frac{4ex^2}{3} + o(x^2)}{\frac{8x^2}{6} + o(x^2)} = \lim_{x \to 0} \frac{-\frac{ex^2}{2} + \frac{4ex^2}{3} + o(x^2)}{\frac{4x^2}{3} + o(x^2)} = \lim_{x \to 0} \frac{\frac{5ex^2}{6} + o(x^2)}{\frac{4x^2}{3} + o(x^2)} = \frac{5e}{8}$$

**Otbet:**  $\frac{5e}{8}$ 

2.

$$\lim_{x \to 0} \left( 1 + \arcsin x^3 \right)^{e^x/(x\sqrt[3]{\cos x} - \sin x + \lg^3 x)} \\ \lim_{x \to 0} \left( 1 + \arcsin x^3 \right)^{e^x/(x\sqrt[3]{\cos x} - \sin x + \lg^3 x)} \\ = \lim_{x \to 0} \left( 1 + \arcsin x^3 \right)^{\frac{1}{\arcsin x^3} \cdot \frac{e^x \arcsin x^3}{\sqrt[3]{\cos x} - \sin x + \lg^3 x}} \\ = \lim_{x \to 0} e^{\frac{e^x \arcsin x^3}{\sqrt[3]{\cos x} - \sin x + \lg^3 x}}$$

Разложим по формуле Тейлора до таких порядков, чтобы получилось  $o(x^3)$ :

$$\lim_{x \to 0} e^{\frac{(1+o(1))(x^3+o(x^3))}{\sqrt[3]{1-\frac{x^2}{2}+o(x^2)}-x+\frac{x^3}{6}+o(x^3)+(x+o(x))^3}} = \lim_{x \to 0} e^{\frac{x^3+o(x^3)}{x\left(1-\frac{x^2}{6}+o(x^2)\right)-x+\frac{x^3}{6}+x^3+o(x^3)}} = \lim_{x \to 0} e^{\frac{x^3+o(x^3)}{x^3+o(x^3)}} = e^1 = e^1$$

Ответ: e