IFT 2505 Programmation Linéaire Dualité

Fabian Bastin DIRO Université de Montréal

Dualité

Nous considérons le problème, dit primal :

$$\min_{x} c^{T} x$$
t.q. $Ax \ge b$

$$x \ge 0$$

Le programme suivant est appelé dual :

$$\max_{\lambda} \lambda^{T} b$$
t.q. $A^{T} \lambda \leq c$

$$\lambda \geq 0$$

 $A \in \mathcal{R}^{m \times n}$, $c, x, \in \mathcal{R}^n$, $\lambda, b \in \mathcal{R}^m$.

Note : les contraintes duales peuvent aussi s'écrire $\lambda^T A \leq c^T$ (en appliquant l'opérateur de transposition de part et d'autre de l'inégalité).

Dualité

x : variables du problème primal

 λ : variables du problèmes dual

Dual du dual?

$$\min_{x} c^{T} x$$
t.q. $Ax \ge b$

$$x \ge 0$$

Dualité: forme standard

$$\min_{x} c^{T}x$$
t.q. $Ax = b$

$$x \ge 0$$

revient à

$$\min_{x} c^{T}x$$
t.q. $Ax \ge b$

$$-Ax \ge -b$$

$$x \ge 0$$

Dualité: forme standard

Le dual peut alors s'écrire

$$\max_{u,v} u^{T}b - v^{T}b$$
t.q.
$$u^{T}A - v^{T}A \le c^{T}$$

$$u \ge 0$$

$$v \ge 0$$

ou, avec
$$\lambda = u - v$$
,

$$\max_{\lambda} \lambda^T b$$
 t.q. $\lambda^T A \leq c^T$

Forme asymétrique : $\lambda \in \mathcal{R}$.

Conversion primal-dual

Minimisation	Maximisation	
Contraintes	Variables	
\geq	≥ 0	
<u> </u>	≤ 0	
=	non restreint	
Variables	Contraintes	
≥ 0	<u> </u>	
≤ 0	<u> </u>	
non restreint	=	

Conversion primal-dual: exemples

ப	~	n	าาเ
	11		เลเ

Dual

$$\min_{x} c^{T} x$$

$$t.q Ax = b,$$

$$x \ge 0.$$

$$\min_{x} c^{T} x$$
t.q. $Ax \ge b$,
$$x \ge 0$$
.

$$\max_{\lambda} b^{T} \lambda$$
t.q. $A^{T} \lambda \leq c$.

$$\begin{aligned} \max_{\lambda} \ b^T \lambda \\ \text{t.q.} \ A^T \lambda &\leq c, \\ \lambda &\geq 0. \end{aligned}$$

Conversion primal-dual: exemples

$$\max_{x} c^{T}x$$
t.q. $Ax = b$,
$$x \ge 0.$$

$$\min_{x} c^{T}x$$

$$\text{t.q } Ax \leq b,$$

$$x \geq 0.$$

$$\min_{\lambda} b^{T} \lambda$$
t.q. $A^{T} \lambda \geq c$.

$$\max_{\lambda} b^{T} \lambda$$
$$\text{t.q } A^{T} \lambda \leq c,$$
$$\lambda < 0.$$

Exemple : le problème de regime alimentaire

- x_i : unités de produit alimentaire
- n produits
- b : besoins minimums (b_i : i^e nutriment)
- c : coût
- m nutriments
- a_{ij} : unités de nutriments i dans le produit j.

Primal : on veut minimiser sa consommation tout en satisfaisant les besoins minimums

$$\min_{x} c^{T} x$$
t.q. $Ax \ge b$

$$x > 0$$

Exemple : le problème de regime alimentaire

Dual:

$$\max_{\lambda} \lambda^T b$$
t.q. $\lambda^T A \le c^T$
 $\lambda \ge 0$

 λ pourrait par exemple représenter le prix de compléments alimentaires ; on veut maximiser le revenu de la vente de tels compléments.

La contrainte traduit qu'on doit rester compétitif : le prix des compléments doivent rester inférieurs au coût des aliments originaux.

Considérons le problème

min
$$z = -4x_1 - 3x_2 - x_3 - 2x_4$$

t.q. $4x_1 + 2x_2 + x_3 + x_4 \le 5$
 $3x_1 + x_2 + 2x_3 + x_4 \le 4$
 $x_j \ge 0, \ j = 1, \dots 6.$

Pour obtenir la forme standard, nous devons ajouter 2 variables d'écart, disons x_5 et x_6 . Ceci donne le problème

min
$$z = -4x_1 - 3x_2 - x_3 - 2x_4$$

t.q. $4x_1 + 2x_2 + x_3 + x_4 + x_5 = 5$
 $3x_1 + x_2 + 2x_3 + x_4 + x_6 = 4$
 $x_j \ge 0, \ j = 1, \dots 6.$

Sous forme tableau, ceci se traduit par

Le système est déjà sous forme canonique, et nous pouvons identifier les variables de base x_5 et x_6 . A ce système correspondent

$$A = \begin{pmatrix} 4 & 2 & 1 & 1 & 1 & 0 \\ 3 & 1 & 2 & 1 & 0 & 1 \end{pmatrix}, \qquad b = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

Plutôt que de devoir travailler sur toutes les colonnes de A en permanence, nous allons utiliser la version révisée du simplexe.

Nous cherchons d'abord à calculer les coûts réduits, en notant que

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad B^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Nous avons

$$\lambda^T = c_B^T B^{-1} = \begin{pmatrix} 0 & 0 \end{pmatrix} B^{-1} = \begin{pmatrix} 0 & 0 \end{pmatrix}$$

Dès lors,

$$r_D^T = c_D^T - \lambda^T D = c_D^T = \begin{pmatrix} -4 & -3 & -1 & -2 \end{pmatrix}$$

Il existe des coûts réduits négatifs, aussi nous n'avons pas terminé.

Une possibilité est de faire entrer x_1 .

Dans la base courante,

$$y_1 = B^{-1}a_1 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

Le pivotage peut se résumer à

Le mininum des rapports composante par composante entre b et y_1 , pour les éléments strictement positifs de y_1 , est 5/4. Autrement dit, x_1 entre dans la base et x_5 sort. La réduction du tableau donne

Du tableau précédent, nous tirons

$$B^{-1} = \begin{pmatrix} 1/4 & 0 \\ -3/4 & 1 \end{pmatrix}$$

et en conséquence

$$\lambda^{T} = \begin{pmatrix} -4 & 0 \end{pmatrix} \begin{pmatrix} 1/4 & 0 \\ -3/4 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \end{pmatrix}$$

Les coûts réduits deviennent

$$r_D^T = \begin{pmatrix} -3 & -1 & -2 & 0 \end{pmatrix} - \begin{pmatrix} -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 0 \end{pmatrix}$$

= $\begin{pmatrix} -3 & -1 & -2 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 1 & 1 & 1 \end{pmatrix}$
= $\begin{pmatrix} -1 & 0 & -1 & 1 \end{pmatrix}$

Il a des coûts réduits strictement négatifs, aussi on doit continuer. On choisit ici le premier coût, autrement dit on fait entrée x_2 , lequel est associé à

$$y_2 = B^{-1}a_2 = \begin{pmatrix} 1/4 & 0 \\ -3/4 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}$$

Procédons au pivotage :

Nous obtenons

$$B^{-1} = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix}$$

et donc

$$\lambda^{T} = \begin{pmatrix} -3 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} = \begin{pmatrix} -3/2 & 0 \end{pmatrix}$$

Les coûts réduits valent

$$r_D^T = \begin{pmatrix} -4 & -1 & -2 & 0 \end{pmatrix} - \begin{pmatrix} -3/2 & 0 \end{pmatrix} \begin{pmatrix} 4 & 1 & 1 & 1 \\ 3 & 2 & 1 & 0 \end{pmatrix}$$

= $\begin{pmatrix} -4 & -1 & -2 & 0 \end{pmatrix} + \begin{pmatrix} 6 & 3/2 & 3/2 & 3/2 \end{pmatrix}$
= $\begin{pmatrix} 2 & 1/2 & -1/2 & 3/2 \end{pmatrix}$

La variable d'entrée doit être x_4 .

Nous avons

$$y_4 = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$$

Cela conduit au tableau

et x_6 doit sortir de la base. Le pivotage conduit à

Dès lors

$$B^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix},$$
$$\lambda^{T} = \begin{pmatrix} -3 & -2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & -1 \end{pmatrix}$$

Les coûts réduits sont

$$r_D^T = \begin{pmatrix} -4 & -1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} -1 & -1 \end{pmatrix} \begin{pmatrix} 4 & 1 & 1 & 0 \\ 3 & 2 & 0 & 1 \end{pmatrix}$$

= $\begin{pmatrix} -4 & -1 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 3 & 1 & 1 \end{pmatrix}$
= $\begin{pmatrix} 3 & 2 & 1 & 1 \end{pmatrix}$

Tous les coûts réduits sont positifs. La base B_3 est donc optimale. La solution associée à B_3 est

$$(0 \ 1 \ 0 \ 3 \ 0 \ 0)$$

pour une valeur optimale de -9.

Reprenons le problème primal.

min
$$z = -4x_1 - 3x_2 - x_3 - 2x_4$$

t.q. $4x_1 + 2x_2 + x_3 + x_4 \le 5$
 $3x_1 + x_2 + 2x_3 + x_4 \le 4$
 $x_j \ge 0, \ j = 1, \dots 4.$

Formons le dual

$$\max 5\lambda_1 + 4\lambda_2$$
 t.q. $4\lambda_1 + 3\lambda_2 \le -4$ $2\lambda_1 + \lambda_2 \le -3$ $\lambda_1 + 2\lambda_2 \le -1$ $\lambda_1 + \lambda_2 \le -2$ $\lambda_1 < 0, \lambda_2 < 0.$

Essayons de nous rapprocher de la forme standard :

$$\begin{aligned} &-\min &-5\lambda_1-4\lambda_2\\ &\text{t.q.} &-4\lambda_1-3\lambda_2 \geq 4\\ &-2\lambda_1-\lambda_2 \geq 3\\ &-\lambda_1-2\lambda_2 \geq 1\\ &-\lambda_1-\lambda_2 \geq 2\\ &-\lambda_1 > 0, -\lambda_2 > 0. \end{aligned}$$

En posant $y_i = -\lambda_i$, en ajoutant des variables de surplus, et en oubliant temporairement le signe négatif devant l'opérateur de minimisation, nous avons

min
$$5y_1 + 4y_2$$

t.q. $4y_1 + 3y_2 - y_3 = 4$
 $2y_1 + y_2 - y_4 = 3$
 $y_1 + 2y_2 - y_5 = 1$
 $y_1 + y_2 - y_6 = 2$
 $y_1 \ge 0, y_2 \ge 0$.
 $y_3 \ge 0, y_4 \ge 0, y_5 \ge 0, y_6 \ge 0$.

En résolvant ce problème (avec par exemple une méthode à deux phases), nous obtenons la solution optimale

$$y^* = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

pour la valeur optimale 9.

En repassant au dual original, cela donne une valeur optimale de -9 et

$$\lambda^* = \begin{pmatrix} -1 & -1 \end{pmatrix}$$

comme lors du dernier calcul dans le simplexe révisé pour le primal.

Est-ce un hasard? Pas vraiment...

Dualité faible

(Forme symétrique ou forme asymétrique – forme standard)

Si x and λ sont réalisables pour le primal et le dual, respectivement, alors

$$c^T x \ge \lambda^T b$$

Démonstration.

$$\lambda^T b \leq \lambda^T A x \leq c^T x$$
,

pour $x \ge 0$, vu que x est supposé realisable, et que du dual, $\lambda^T A \le c^T$.

Dès lors, l'objectif primal est une borne supérieure pour le dual, et vice-versa.

Corollaire

Si x_0 et λ_0 sont réalisables pour le primal et le dual, respectivement, et si

$$c^T x_0 = \lambda_0^T b,$$

alors x_0 et λ_0 sont optimaux pour leur problème respectif.

Mais on n'a encore dit sur la réalisabilité d'un problème par rapport à l'autre!

Si un des problèmes, primal ou dual, a une solution optimale finie, l'autre problème a aussi une solution optimale finie, et les valeurs correspondantes des fonctions objectifs sont égales. Si l'un des problèmes a un objectif non borné, l'autre problème n'a pas de solution réalisable.

Démonstration.

La deuxième affirmation est une conséquence directe du lemme.

Ainsi si le primal est non borné et λ est réalisable pour le dual, nous devons avoir

$$\lambda^T b \leq -M$$

pour M arbitrairement grand, ce qui est impossible.

Démonstration.

Si le primal a une solution optimale finie, nous voulons montrer que le dual a une solution optimale finie.

Soit z^* la valeur optimale du primal. Définissons

$$C = \{(r, w) : r = tz^* - c^T x, w = tb - Ax, \text{ avec } x \ge 0, \ t \ge 0\}$$

C est un cône convexe fermé :

- cône : pour $\alpha > 0$ et $(r, w) \in C$, alors $\alpha(r, w) \in C$;
- convexe : soient (r_1, w_1) et $(r_2, w_2) \in C$, alors $\forall \lambda \in (0, 1)$, $\lambda(r_1, w_1) + (1 \lambda)(r_2, w_2) \in C$.
- fermé : $(0,0) \in C$.

Démonstration.

Mais $(1,0) \notin C$. Par l'absurde, supposons $(1,0) \in C$. Nous avons donc w=0, et de là, il existe un certain couple (t_0,x_0) tel que $t_0b-Ax_0=0$. Deux cas sont envisageables :

- Si $t_0 > 0$, alors $x = x_0/t_0$ est réalisable pour le primal comme Ax = b et $x \ge 0$, étant donné que $x_0 \ge 0$. Ainsi $r/t_0 = z^* c^T x_0/t_0 \le 0$, comme $z^* \le c^T x$. Autrement dit, $r \le 0$, alors qu'on supposait r = 1.
- Si $t_0 = 0$, alors $w = Ax_0 = 0$, avec $x_0 \ge 0$. D'autre part, $1 = r = t_0 z^* c^T x_0 = -c^T x_0$, et donc $c^T x_0 = -1$. Si x est réalisable pour le primal, alors $x + \alpha x_0$ est realisable pour tout $\alpha \ge 0$, comme $A(x + \alpha x_0) = Ax + \alpha Ax_0 = Ax = b$, et $x + \alpha x_0 \ge 0$.

De plus, $c^T(x + \alpha x_0) = c^T x - \alpha$ peut être diminué à l'infini, en augmentant α . Ceci contredit l'existence d'un minimum fini.

Démonstration.

Donc, $(1,0) \notin C$.

Comme C est un ensemble convexe fermé, cela implique qu'il existe un hyperplan séparant (1,0) et C. Autrement dit, $\exists [s,\lambda] \in \mathbb{R}^{m+1}, [s,\lambda] \neq 0$, et une constante k t.g.

$$s = (s, \lambda)^T (1, 0) < \inf\{(s, \lambda)^T (r, w) \text{ t.q. } (r, w) \in C\}$$

= $\inf\{sr + \lambda^T w \text{ t.q. } (r, w) \in C\} = k$

Comme C est un cône, $k \ge 0$. En effet, si k < 0, $\exists (r, w) \in C$ t.q. $sr + \lambda^T w = \kappa < 0$. De plus, pour tout $\alpha \ge 0$, $\alpha(r, w) \in C$. Comme $s\alpha r + \lambda^T \alpha w = \alpha \kappa$, pour α assez grand, $\alpha(r, w)$ violerait l'inégalité de l'hyperplan.

Mais $(0,0) \in C$, donc $k \le 0$, et de là, k = 0, et $s \le 0$.

Démonstration.

Prenons $\beta = -s$. Comme C est un cône, nous avons

$$-1 = \frac{1}{\beta} s = \frac{1}{\beta} (s, \lambda)^T (1, 0)$$

$$< \frac{1}{\beta} \inf \{ sr + \lambda^T w \text{ t.q. } (r, w) \in C \}$$

$$= \frac{1}{\beta} \inf \{ s\beta r + \lambda^T \beta w \text{ t.q. } (r, w) \in C \}$$

$$= \inf \{ sr + \lambda^T w \text{ t.q. } (r, w) \in C \}.$$

Aussi, sans perte de généralités, s = -1

Démonstration.

Comme $\inf\{sr + \lambda^T w \text{ t.q. } (r, w) \in C\} = 0$, si s = -1, nous avons $\exists \lambda \in \mathcal{R}^m \text{ t.q.}$

$$-r + \lambda^T w \geq 0, \ \forall (r, w) \in C.$$

De manière équivalente, par définition de C,

$$(c^T - \lambda^T A)x - tz^* + t\lambda^T b \ge 0, \ \forall x, t \ge 0.$$

t=0 donne $\lambda^T A \leq c^T$, i.e. λ est réalisable pour le dual. x=0 et t=1 donne $\lambda^T b \geq z^*$. Par le lemme 1 et son corollaire, λ est optimal pour le dual.

Comme le dual du dual est le primal, la preuve est complète.

Dualité : compatibilité

Si un programme est non réalisable, cela n'implique cependant pas que son dual soit non borné. Celui-ci peut être non réalisable.

Le tableau ci-dessous synthétise les différents cas de figure possibles.

Primal / Dual	Borné	Non borné	Non réalisable
Borné	possible	impossible	impossible
Non borné	impossible	impossible	possible
Non réalisable	impossible	possible	possible