Fundamentos del Deep Learning y desarrollo de un modelo de análisis de posiciones de ajedrez

Adrián Rodríguez Montero

Tutores:

Francisco Herrera Triguero Francisco Javier Melero Rus

Universidad de Granada

2 de Diciembre de 2022

Adrián Rodríguez Montero

- Motivación
- 2 Descripción del Problema
- 3 Problema del Aprendizaje
- A Redes Neuronales
- 6 Desarrollo del Problema
- 6 Conclusiones

1 Motivación

Motivación

- 2 Descripción del Problem
- 3 Problema del Aprendizaje
- 4 Redes Neuronales
- 5 Desarrollo del Problema
- 6 Conclusiones

Motivación 00000

Chaturanga

Ajedrez

Motivación

Motivación 00000

Ajedrez Computacional

Adrián Rodríguez Montero

Motivación Motor de Ajedrez

Motivación

El motor es la parte pensante de un programa de ajedrez y está compuesto fundamentalmente por 3 partes:

- Generador de Movimientos
 - Representación del Tablero
- Módulo de Búsqueda
- Módulo de Evaluación

Adrián Rodríguez Montero Universidad de Granada

Motivación Función de Evaluación

Motivación 0000€

¿Y la semántica?

Evaluación: -2.9 Evaluación: +1.7

Adrián Rodríguez Montero

- 2 Descripción del Problema
- 3 Problema del Aprendizaje

Descripción del Problema

Desc. Problema

- Problema de clasificación de posiciones de ajedrez.
- Principal objetivo: identificar patrones que se repiten antes de que se produzca una mala jugada.

Adrián Rodríguez Montero

- 1 Motivación
- 2 Descripción del Problem
- 3 Problema del Aprendizaje
- 4 Redes Neuronales
- 5 Desarrollo del Problema
- **6** Conclusiones

Problema General del Aprendizaje (Supervisado)

Adrián Rodríguez Montero

Teorema (No Free Lunch)

Sea A cualquier algoritmo de aprendizaje para la tarea de clasificación binaria con respecto a la función de pérdida 0-1 sobre un dominio \mathcal{X} . Sea m un número menor que $|\mathcal{X}|/2$, que representa el tamaño del conjunto de entrenamiento. Entonces, existe una distribución \mathcal{D} sobre $\mathcal{X} \times \{0,1\}$ tal que:

- **1** Existe una función objetivo $f: \mathcal{X} \to \{0,1\}$ con $L_{\mathcal{D}}(f) = 0$.
- **2** $\mathbb{P}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(A(S)) \ge 1/8] \ge 1/7.$

Adrián Rodríguez Montero

- Motivación
- 3 Problema del Aprendizaje
- A Redes Neuronales

Redes Neuronales

Redes Neuronales Prealimentadas

Entrenamiento:

- Optimización: Método del Gradiente Descendente.
- Cálculo del gradiente: Algoritmo de BackPropagation.

Adrián Rodríguez Montero

Teorema de Aproximación Universal

Teorema

Las redes neuronales con funciones de activación ReLU o funciones de activación sigmoides son aproximadores universales.

Adrián Rodríguez Montero Universidad de Granada

Redes Neuronales

Teorema de Aproximación Universal

Teorema

Las redes neuronales con funciones de activación Rel U o funciones de activación sigmoides son aproximadores universales.

Otros resultados:

- Se puede extender a redes neuronales con más capas.
- Versiones para otras funciones de activación.
- Versión para problemas de clasificación.

Adrián Rodríguez Montero

Redes Neuronales

Redes Neuronales Convolucionales

Capas de una CNN:

- Capas de convolución.
- Capas de agrupación (pooling).
- Capas totalmente conectadas.

Adrián Rodríguez Montero Universidad de Granada

- Motivación
- 3 Problema del Aprendizaje
- 4 Redes Neuronales
- 6 Desarrollo del Problema

Base de Datos

- Base de partidas de Lichess.
- Se le aplican una serie de filtros.
- 50.000 posiciones previas a una mala jugada.

Fila 1

Notación FEN:

Fila 7

3b1r1k/RQng4/2p1n3/NpPp1p2/1P1PpPp1/2B1P1Pp/4B2P/7K b - - 4 43;f8f7

Posición de piezas

Fila 8

Etiquetas

Motivos posicionales

- Etiquetas comunes:
 - Ventaja de espacio.
 - Columnas abiertas.
 - Alfiles del mismo color.
 - Alfiles de distinto color.

- Etiquetas por jugador:
 - Columnas semiabiertas.
 - Peones.
 - Caballos.
 - Alfiles.
 - Torres.
 - Damas.
 - Estructuras de peones.

Adrián Rodríguez Montero Universidad de Granada

Aplicación Web

Adrián Rodríguez Montero

Aplicación Web

Aplicación Web

Adrián Rodríguez Montero

Algoritmos

- Alternativa a la aplicación web.
- Etiqueta las posiciones.
- Codifica las posiciones.

Adrián Rodríguez Montero

Modelo Primera Representación (3D)

Primera Representación

22 / 33

Modelo Primera Representación (3D)

Arquitectura

Modelo Segunda Representación (1D)

Segunda Representación

Adrián Rodríguez Montero

Modelos

Modelo Segunda Representación (1D)

Arquitectura

Adrián Rodríguez Montero

Modelo Tercera Representación (2D)

Tercera Representación

Adrián Rodríguez Montero Universidad de Granada

Modelos

Modelo Tercera Representación (2D)

Arquitectura

Resultados

Etiquetas Comunes

Métrica F1-score Macro Average			
Etiquetas	Primera Repr. (3D)	Segunda Repr. (1D)	Tercera Repr. (2D)
Ventaja Espacio	0.8171	0.5577	0.5836
Columnas Abiertas	0.9872	0.9807	0.9603
Alfiles Mismo Color	0.9998	0.9895	0.4496
Alfiles Distinto Color	0.9996	1.0	0.4912

Adrián Rodríguez Montero

Resultados

Etiquetas Piezas Blancas

Métrica F1-score Macro Average			
Etiquetas	Primera Repr. (3D)	Segunda Repr. (1D)	Tercera Repr. (2D)
Columnas Semiabiertas B	0.9918	0.9737	0.9954
Peones B	1.0	0.8309	0.9988
Caballos B	0.9996	0.9837	0.5399
Alfiles B	0.9999	0.9853	0.5263
Torres B	1.0	0.9888	0.5969
Damas B	0.8889	0.8327	0.4992
Torre en Séptima B	1.0	0.9944	0.9865
Torres Dobladas B	0.9785	0.8644	0.5276
Torres Ligadas B	0.9963	0.9723	0.9605
Pistola de Alekhine B	0.4999	0.4999	0.4999
Peones Doblados B	0.6762	0.5853	0.7194
Peones Aislados B	0.9522	0.7835	0.8938
Peones Retrasados B	0.9951	0.7918	0.9957
Peones Pasados B	0.7956	0.4737	0.5978
Islas de Peones B	1.0	0.9894	1.0
Falanges de Peones B	0.9953	0.9402	0.9995
Peones Conectados B	0.9995	0.9257	0.9906

Etiqueta: Peones Pasados (Blancas)

	Métrica		
Modelos	Accuracy	F1-score Macro	F1-score Weighted
Primera Representación (3D)	0.9966	0.7956	0.9966
Segunda Representación (1D)	0.883	0.4737	0.8807
Tercera Representación (2D)	0.9077	0.5978	0.9079

Caso Práctico

Analizamos un caso práctico:

- 3000 posiciones.
- Mismo Jugador.
- Piezas Blancas.

Adrián Rodríguez Montero

Col	Columnas Abiertas		
Ninguna	15% de las posiciones		
Una	32% de las posiciones		
Dos	27% de las posiciones		
Tres	17% de las posiciones		
Cuatro	6.5% de las posiciones		
Cinco	2% de las posiciones		
Seis	0.5% de las posiciones		
Siete	0% de las posiciones		
Ocho	0% de las posiciones		

Número de Caballos		
	Blancas/Prop	Negras/Riv
Ninguno	47.5% de las posiciones	45.2% de las posiciones
Uno	42% de las posiciones	43.5% de las posiciones
Pareja de Caballos	10.5% de las posiciones	11.3% de las posiciones

Número de Alfiles		
	Blancas/Prop	Negras/Riv
Ninguno	38% de las posiciones	37% de las posiciones
Uno	45.8% de las posiciones	46.3% de las posiciones
Pareja de Alfiles	16.2% de las posiciones	16.7% de las posiciones

Adrián Rodríguez Montero

- 1 Motivación
- 2 Descripción del Problem
- 3 Problema del Aprendizaje
- 4 Redes Neuronales
- 5 Desarrollo del Problema
- **6** Conclusiones

Conclusiones

- No existe un algoritmo de aprendizaje universal.
- Potencial del aprendizaje profundo.
- Mejores Resultados: Primer Modelo.
- Resultados mejorables.

Trabajo Futuro

- Mejorar la calidad de la base de datos.
- Mejorar los modelos.
- Aumentar el número de etiquetas (motivos tácticos).
- Agrupar clases
- Distinguir las fases del juego.

¡Gracias por su atención!

Adrián Rodríguez Montero