Cheat Sheet: Conic Sections - Exercise 6.1 (Chapter 6, Mathematics Part-II, Class 12)

This cheat sheet summarizes key concepts and techniques from Exercise 6.1, Chapter 6: Conic Sections, focusing on circles. It includes definitions, equations, and step-by-step methods for solving problems related to finding circle equations, centers, radii, tangents, and circle relationships (external/internal touching). Examples are drawn from the exercise to clarify high-difficulty applications.

1. Key Definitions

- Conic Section: Curves obtained by intersecting a plane with a right circular cone.
- Circle: Set of all points in a plane equidistant from a fixed point (center). Distance from center to any point is the radius.
- Point Circle: A circle with radius r = 0, reducing to a single point.

2. Equations of a Circle

• Standard Form: For center (h, k) and radius r:

$$(x-h)^2 + (y-k)^2 = r^2$$

If center is at origin (0,0):

$$x^2 + y^2 = r^2$$

• General Form:

$$x^2 + y^2 + 2gx + 2fy + c = 0$$

Center: (-g, -f), Radius: $\sqrt{g^2 + f^2 - c}$ Note: If $g^2 + f^2 - c < 0$, no real circle exists; if $g^2 + f^2 - c < 0$, no real circle exists; if $g^2 + f^2 - c < 0$, no real circle exists; if $g^2 + f^2 - c < 0$, no real circle exists; if

• Parametric Form: For radius r:

$$x = r\cos\theta, \quad y = r\sin\theta$$

3. Key Problem Types and Techniques

- 1. Finding Equation of a Circle
 - Given Center and Radius (Q.1a):
 - Example: Center (5, -2), radius 4.
 - Use standard form: $(x-5)^2 + (y+2)^2 = 16$.

- Expand to general form: $x^2 + y^2 10x + 4y + 13 = 0$.
- Given Diameter Endpoints (Q.1c):
 - Example: Diameter endpoints (-3, 2), (5, -6).
 - Center = Midpoint: $\left(\frac{-3+5}{2}, \frac{2-6}{2}\right) = (1, -2)$.
 - Radius = Distance from center to endpoint: $\sqrt{(1+3)^2+(-2-2)^2}=\sqrt{32}$
 - Equation: $(x-1)^2 + (y+2)^2 = 32$, or $x^2 + y^2 2x + 4y 27 = 0$.
- Given Three Points (Q.3a):
 - Example: Points A(4,5), B(-4,-3), C(8,-3).
 - Use general form: $x^{2} + y^{2} + 2gx + 2fy + c = 0$.
 - Substitute points to get equations:

$$41 + 8g + 10f + c = 0$$
, $25 - 8g - 6f + c = 0$, $73 + 16g - 6f + c = 0$

- Solve system: g = -2, f = 1, c = -25.
- Equation: $x^2 + y^2 4x + 2y 25 = 0$.

2. Finding Center and Radius (Q.2a):

- Example: $x^2 + y^2 + 12x 10y = 0$.
- Compare with general form: 2g = 12, 2f = -10, c = 0.
- Center: (-g, -f) = (-6, 5).
- Radius: $\sqrt{g^2 + f^2 c} = \sqrt{36 + 25} = \sqrt{61}$.

3. Circle with Center on a Line and Passing Through Points (Q.4a):

- Example: Passes through A(3,-1), B(0,1), center on 4x-3y-3=0.
- General form: $x^2 + y^2 + 2gx + 2fy + c = 0$.
- Substitute points: 10 + 6g 2f + c = 0, 1 + 2f + c = 0.
- Center condition: $4(-g) 3(-f) 3 = 0 \Rightarrow -4g + 3f 3 = 0$.
- Solve: $g = -\frac{15}{2}$, f = -9, c = 17.
- Equation: $x^2 + y^2 15x 18y + 17 = 0$.

4. Circle Tangent to Axes (Q.5):

- Example: Radius a, tangent to both axes in 2nd quadrant.
- Center: (-a, a), radius a.
- Equation: $(x+a)^2 + (y-a)^2 = a^2 \Rightarrow x^2 + y^2 + 2ax 2ay + a^2 = 0$.

5. Proving Tangency (Q.6):

- Example: Lines 3x 2y = 0, 2x + 3y 13 = 0 tangent to $x^2 + y^2 + 6x 4y = 0$.
- Circle center: (-3, 2), radius: $\sqrt{9+4} = \sqrt{13}$.
- Distance from center to line: $\frac{|3(-3)-2(2)|}{\sqrt{9+4}} = \sqrt{13}$, equals radius.

- Repeat for second line: $\frac{|2(-3)+3(2)-13|}{\sqrt{4+9}} = \sqrt{13}$. Both are tangents.
- 6. Circles Touching Externally/Internally (Q.7, Q.8):
 - External Touching (Q.7): Circles $x^2 + y^2 + 2x 2y 7 = 0$, $x^2 + y^2 6x + 4y + 9 = 0$.
 - Centers: (-1,1), (3,-2); Radii: 3, 2.
 - Distance between centers: $\sqrt{(3+1)^2 + (-2-1)^2} = 5$.
 - Check: $r_1 + r_2 = 3 + 2 = 5$. Touches externally.
 - Internal Touching (Q.8): Circles $x^2 + y^2 + 2x 8 = 0$, $x^2 + y^2 6x + 6y 46 = 0$.
 - Centers: (-1,0), (3,-3); Radii: 3, 8.
 - Distance: $\sqrt{(3+1)^2 + (-3-0)^2} = 5$.
 - Check: $r_2 r_1 = 8 3 = 5$. Touches internally.
- 7. Circle Tangent to a Line at a Point (Q.9):
 - Example: Radius 2, tangent to x y 4 = 0 at (1, -3).
 - Standard form: $(x h)^2 + (y k)^2 = 4$.
 - Point condition: $(1-h)^2 + (-3-k)^2 = 4$.
 - Tangent condition: Slope of line x y 4 = 0 is 1. Slope of radius to (1, -3): $\frac{k+3}{h-1}$. Perpendicular: $\frac{k+3}{h-1} = -1 \Rightarrow k = -h-2$.
 - Solve: $h = 1 \pm \sqrt{2}, k = -3 \mp \sqrt{2}.$
 - Equations: $(x-(1+\sqrt{2}))^2+(y-(-3+\sqrt{2}))^2=4$, $(x-(1-\sqrt{2}))^2+(y-(-3+\sqrt{2}))^2=4$.

4. Common Pitfalls

- General Form Conversion: Ensure correct expansion from standard to general form (e.g., Q.1a: $(x-5)^2 + (y+2)^2 = 16 \Rightarrow x^2 + y^2 10x + 4y + 13 = 0$).
- Radius Check: If $g^2 + f^2 c < 0$, no real circle (e.g., Q.2c: radius = 0, point circle).
- System of Equations: When solving for g, f, c in Q.3, ensure consistent elimination (e.g., Q.3a: subtract equations correctly).
- **Tangency**: Verify distance from center to line equals radius (Q.6). Use absolute value in distance formula.
- Two Circles: Tangent conditions may yield two solutions (Q.9, Q.4b). Check both for validity.