| Working Rule to finding P.I.                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gse(TT) (When f(x,y) = o(ax+by), F(a,b) = D  i.e. F(D,D') Z= p(ax+by), F(a,b) = D  @ Working Rule to finding p. I -                                                                                               |
| Working Rule to finding p. I                                                                                                                                                                                      |
| * Step () Replace D by a, D' by b in F(D, N)  -to jet F(9,b)                                                                                                                                                      |
| Then  Then                                                                                                                                                                                                        |
| Then (CC (b(u) dududu du                                                                                                                                                                                          |
| P.I. = 1 ff fu) dududu du restimes)  F(a,b) ff fu) dududu du (n-times)                                                                                                                                            |
| Step 3) Roplace u by ax + by atlast.                                                                                                                                                                              |
| Note: If F(a,b)=0, then method fails.                                                                                                                                                                             |
| Note: If $F(a,b)=0$ , then method fails.  Then differentiate $F(0,b')$ partially $w$ . $r+D$ and multiply with $x$ in numerator and again  Check $F'(a,b)\neq 0$ I'le $x$ $y$ |
| check $F'(a_jb)\neq 0$<br>i.e. $\chi$ · $\phi(a\chi+by)$   $\phi(a_jb)\neq 0$<br>$\varphi(a_jb)\neq 0$                                                                                                            |
| $\frac{\partial \left[F(D,D')\right]}{\partial D} \frac{F'(a_1b)}{\partial D} \neq 0$                                                                                                                             |







Solve 3020'-400'2+12013)2=Sin(4+2x  $(m^2-4)(m-3)=0$ M = 2, -2, 3\_Sin(y+2x) D3 3 12 1- 40 1/4 12 0/3  $(2)^{\frac{3}{3}}(2)^{\frac{1}{2}}(1) - 4(2)(1) + 17($ Sin ydydudu 8-12-8+12 Not possible (since denominator Can't be zero 80 Sinududu -6DD-4D12 -Sinu



$$\frac{1}{D^{2}} \left(1 + \frac{D'^{2}}{D^{2}}\right)^{-1} (x^{2}y^{2})$$

$$\frac{1}{D^{2}} \left[1 + \frac{D'^{2}}{D^{2}}\right]^{-1} (x^{2}y^{2})$$

$$\frac{1}{D^{2}} \left[1 + \frac{D'^{2}}{D^{2}}\right]^$$

