Universidad Industrial de Santander - Escuela de Física

Introducción a la Física (Nuñez-Asorey)

Guía 02:Energía 2013

5. Cuentas

Repase, rehaga y verifique todas las cuentas y cálculos parciales realizados en clase.

6. Energía potencial gravitatoria

a) La energía potencial gravitatoria entre dos cuerpos de masas m_1 y m_2 separados por una distancia r está dada por:

$$E_g = -\frac{Gm_1m_2}{r}.$$

De esta forma, la energía potencial gravitatoria de un cuerpo de masa m sobre la superficie de un planeta de masa M y radio R es:

$$E_g = -\frac{GMm}{R}.$$

Verifique que al elevar ese cuerpo a una altura h sobre la superficie del planeta, la variación de la energía potencial gravitatoria es:

$$\Delta E_g = GMm \left(\frac{1}{R} - \frac{1}{R+h} \right).$$

b) Calcule la energía potencial para un astronauta ($m=70\,\mathrm{kg}$) en órbita a una altura $h=350\,\mathrm{km}$. Luego, compare ese valor con el obtenido de la expresión aproximada $\Delta E_g=m\,g\,h$.

7. Impacto.

La extinción de los dinosaurios al final del período Jurásico es atribuida al impacto de un cometa o meteorito de dimensiones considerables. Imagine entonces que un cometa esférico de radio $r=5\,\mathrm{km}$ y densidad media $d=5\,\mathrm{g}\,\mathrm{cm}^{-3}$ se acerca a la Tierra desde el infinito. Entonces,

- a) Calcule la masa m_c del cometa.
- b) Calcule la energía cinética y la velocidad al momento del impacto.
- c) Exprese la energía liberada en el impacto en megatones, teniendo en cuenta que $1 \text{ Mton} = 4{,}184 \times 10^{15} \text{ J}.$
- d) Si debido a la interacción atmosférica el satélite se divide en dos partes de masas $m_1 = 0.7 m_c$ y $m_2 = 0.3 m_c$. Calcule la energía cinética y la velocidad de cada parte al momento del impacto. ¿Dependerá el resultado de la altura a la cual el cometa se parta? Justifique.

8. Rebotes.

Una pelota de goma de masa $m=2.0\,\mathrm{kg}$ es lanzada hacia arriba en forma vertical. La velocidad inicial es de $v=5\,\mathrm{m\,s^{-1}}$.

a) Calcule la altura máxima que alcanza la pelota en su trayectoria;

- b) suponiendo que no hay pérdidas de energía debidas al rozamiento, calcule la velocidad al momento del impacto y la altura alcanzada luego del rebote.
- c) Suponga que, a diferencia del punto anterior, como consecuencia del rebote un 20% de la energía mecánica se transforma en calor y sonido. Calcule la altura que alcanzará la pelota luego de tres choques contra el piso.

9. Resortes

La energía potencial elástica está dada por:

$$E_e = \frac{1}{2}k(\Delta x)^2$$

donde k es la constante elástica del resorte y Δx representa a la variación de la longitud del resorte en condiciones de compresión o expansión. Imagine entonces que usted debe diseñar el sistema de protección de resortes de un ascensor en un edificio ($h=50,0\,\mathrm{m}$), y que los mismos pueden comprimirse un máximo de 0,5 m. Sabiendo que la masa del ascensor y su carga es de $m=600\,\mathrm{kg}$,

- *a*) calcule la constante *k* del resorte;
- *b*) si el ascensor tiene un freno de seguridad capaz de transformar el 20 % de la energía cinética, calcule el *k* del resorte necesario en este caso;
- c) Rehaga los cálculos anteriores pero suponiendo que en lugar de un único gran resorte se disponen cuatro resortes más pequeños.

10. **Pesos**.

A partir de la definición de g,

$$g = \frac{GM}{R^2},$$

para un cuerpo esférico de masa M y radio R,

- a) calcule el valor de g y determine cuál es el peso de un cuerpo de masa $m=70\,\mathrm{kg}$ en la Tierra, el Sol, Júpiter y la Luna;
- *b*) calcule a que altura *h* sobre la superficie de la Tierra, un cuerpo pesa la mitad respecto a su peso sobre la superficie terrestre.
- c) ¿Qué pasaría si realizamos el mismo cálculo en el planeta Marte?

11. Velocidad de escape

Se define como *velocidad de escape* a aquella velocidad v_c para la cual un cuerpo de masa m (cuerpo A) puede escapar de la atracción gravitatoria de otro cuerpo (cuerpo B).

Imaginemos que el cuerpo B es un planeta de radio R y masa M, y colocamos al cuerpo A sobre su superficie. Entonces,

- *a*) Obtenga una expresión para el cálculo de la velocidad de escape, y muestre que la misma es una propiedad inherente del planeta.
- b) Grafique la dependencia de la velocidad de escape como función:
 - del radio *R* del planeta.
 - de la masa *M* del planeta.
- c) Calcule el valor de la velocidad de escape sobre la superficie de
 - 1) la Tierra

- 2) la Luna
- 3) el Sol

12. El Principito

El Principito ($m = 40 \,\mathrm{kg}$) vive en un planeta pequeño, el asteroide B612. Supongamos que posee un radio $R = 1 \,\mathrm{km}$ con una densidad igual a la de la Tierra ($d = 5,5 \,\mathrm{g}\,\mathrm{cm}^{-3}$). Calcule

- *a*) el valor de g y el peso del Principito en B612;
- b) si en la Tierra el Principito logra subir a una silla de $h=0.5\,\mathrm{m}$ de un salto, a que altura llegará con el mismo salto sobre la superficie de B612.
- c) la velocidad máxima a la cual el Principito puede caminar sin riesgo de abandonar el planeta para siempre

потісо							
km VA Km					•		
km UA	٠	Ф	ъ	ਰ	ş	•⊙	₽
k	9.175 108.208.930 39893 0,72333199	30 149.597.870 99 1	227.936.640 1,52366231	778.412.010 5,20336301	1.426.725.400	2.870.972.200	4.498.252.900 30,06896348
Kadio medio :T ² 0,3825	9,64 6.051,59 325 0,9488	6.378,15	3.397,00 0,53226	71.492,68	60.267,14	25.557,25	24.766,36
Superficie/Årea (T ² 0,1471	0.000 460.000.000 171 0,9010	510.000.000	140.000.000	64.000.000.000	43.800.000.000	8.130.000.000	7.700.000.000
Volumen Km ³ 6,083×10 ¹⁰ :T ² 0,056	×10 ¹⁰ 9,28×10 ¹¹ 56 0,87	1,083×10 ¹²	1,6318×10 ¹¹ 0,151	1,431×10 ¹⁵ 1,321,3	8,27×10 ¹⁴ 763,59	6,834×10 ¹³ 63,086	6,254×10 ¹³ 57,74
Masa kg 3,302×10 ²³ :T ² 0,055	2×10 ²³ 4,8690×10 ²⁴ ,055 0,815	3 ²⁴ 5,9742×10 ²⁴	6,4191×10 ²³ 0,107	1,8987×10 ²⁷ 318	5,6851×10 ²⁶ 95	8,6849×10 ²⁵	1,0244×10 ²⁶
Densidad g/cm ³ 5,43	13 5,24	5,515	3,940	1,33	269'0	1,29	1,76
Gravedad Ecuatorial m/s ² 3,70	78,87	9,81	3,71	23,12	8,96	8,69	11,00
Velocidad de escape km/s 4,25	10,36	11,18	5,02	59,54	35,49	21,29	23,71
Periodo de rotación dias ³ 58,646225	6225 -243,01874	74 0,99726968	1,02595675	0,41354	0,44401	-0,718334	0,67125
Velocidad de rotación ecuatorial km/s 0,0030	00018	0,4651	0,2408	12,5720	10,0179	2,5875	2,6869
Periodo orbital años ³ 0,2408467	8467 0,61519726	1,0000174	1,8808476	11,862615	29,447498	84,016846	164,79132
Velocidad orbital media km/s 47,8725	725 35,0214	29,7859	24,1309	13,0697	9,6724	6,8352	5,4778
Excentricidad ⁵ 0,20563069	33069 0,00677323	23 0,01671022	0,09341233	0,04839266	0,05415060	0,04716771	0,00858587
Inclinación G 7,00487	3,39471	0,00005	1,85061	1,30530	2,48446	0,76986	1,76917
Inclinación axial G 0,0	0, 177,3	23,45	25,19	3,12	26,73	97,86	29,58
Temperatura media en superficie K 440	10 730	288/293	186 / 268	152	134	92	53
Temperatura media en superficie C 166.85	.85 456,85	14,85 / 19,85	-87,15/-5,15	-121,15	-139,15	-197,15	-220,15
Temperatura media del aire ⁶ K		288		165	135	92	73
Temperatura media del aire ⁶ C		14,85		-108,15	-138,15	-197,15	-200,15
Composición de la Atmósfera He Na ⁺ P ⁺		0,1% H ₂ O 78% N ₂ 21% O ₂ 1	% Ar 95% CO ₂ 3% N ₂ 1,6% Ar §	96% CO ₂ 3% N ₂ 0.1% H ₂ O 78% N ₂ 21% O ₂ 1% A1 95% CO ₂ 3% N ₂ 1.6% A1 90% H ₂ 10% He. trazas de CH ₄ 96% H ₂ 3% He 0.5% CH ₄ 84% H ₂ 14% He 2% CH ₄ 75% H ₂ 25% He 1% CH ₄	96% H ₂ 3% He 0.5% CH ₄	84% H ₂ 14% He 2% CH ₄	75% H ₂ 25% He 1% CH ₄
Número de lunas conocidas 0	0 0	1	2	63	61	27	13
Anillos	oN o	oN	No	Si	Si	is	Si
Discriminante planetario ⁷ 9,1×10 ⁴	1,35×10 ⁶	6 1,7×10 ⁶	1,8×10 ⁵	6,25×10 ⁵	1,9×10 ⁵	2,9×10 ⁴	2,4×10 ⁴