Théorème 10.11 - dérivée d'une composée par une application linéaire

Soit E, F deux \mathbb{R} -espaces vectoriels normés de dimension finie, u une application linéaire de E dans F, et f une fonction de classe C^1 définie sur un intervalle I de \mathbb{R} à valeurs dans E. Alors $u \circ f$ est une fonction de classe $C^1(I,F)$ et :

$$(u \circ f)' = u \circ f'$$

Théorème 10.12 - dérivée d'une composée par une application bilinéaire

Soit E, F et G trois espaces vectoriels normés de dimension finie, B une application bilinéaire de $E \times F$ vers G, et f et g deux fonctions de classe C^1 sur un intervalle I de \mathbb{R} à valeurs respectives dans E et F. Alors B(f,g) est une fonction de classe $C^1(I,G)$, et :

$$\left(B(f,g)\right)' = B(f',g) + B(f,g')$$

Théorème 10.29 - construction de l'intégrale d'une fonction continue par morceaux

Soit E un espace vectoriel normé de dimension finie, $f \in \mathcal{CM}([a\,;\,b],E)$. Si $(\varphi_n)_{n\in\mathbb{N}}$ est une suite de fonctions en escalier convergeant uniformément vers f, alors la suite $\left(\int_{[a\,;\,b]}\varphi_n\right)_{n\in\mathbb{N}}$ est convergente.

Définition 10.30 - intégrale d'une fonction continue par morceaux

Soit E un espace vectoriel normé de dimension finie, $f \in \mathcal{CM}([a;b],E)$. Il existe par densité de $\mathcal{E}([a;b],E)$ dans $\mathcal{CM}([a;b],E)$ une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions de $\mathcal{E}([a;b])$ convergeant uniformément vers f. On appelle intégrale de f sur [a;b] le vecteur :

$$\int_{[a\,;\,b]} f = \lim_{n \to +\infty} \int_{[a\,;\,b]} \varphi_n$$

Cette intégrale ne dépend pas de la suite de $\mathcal{E}([a;b])^{\mathbb{N}}$ choisie.

Théorème 10.35 - fondamental du calcul intégral

Soit f une fonction continue sur un intervalle I, à valeurs dans un espace vectoriel E de dimension finie. Pour tout $a \in I$, l'application :

$$F: I \longrightarrow \mathbb{R}$$
$$x \longmapsto \int_a^x f(t) \, \mathrm{d}t$$

est l'unique primitive de f (sa dérivée est f) s'annulant en a. F est donc de classe C^1 .

Théorème 10.39 - changement de variable

Soit $f:[a\,;\,b]\to E$ continue et φ un \mathcal{C}^1 -difféomorphisme de $[a\,;\,b]$ sur $[\varphi(a)\,;\,\varphi(b)].$

$$\int_{\varphi(a)}^{\varphi(b)} f(x) \, \mathrm{d}x = \int_a^b f(\varphi(t)) \varphi'(t) \, \mathrm{d}t$$

Théorème 10.42 - intégration d'un o

Soit I un intervalle et E de dimension finie. Soit $f:I\to E$ de classe \mathcal{C}^1 et $g:I\to\mathbb{R}_+$ de classe \mathcal{C}^1 . Supposons pour $a\in I$ que f'=a(g'). Alors :

$$||f(x) - f(a)||_E \underset{x \to a}{=} o(|g(x) - g(a)|)$$