IBM Cúram Social Program Management Version 7.0.10

Cúram Case Audits Developers Guide

Note

Before using this information and the product it supports, read the information in <u>"Notices" on page</u> 16

Edition

This edition applies to IBM® Cúram Social Program Management v7.0.10 and to all subsequent releases unless otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright International Business Machines Corporation 2012, 2020.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Figures	iv
Chapter 1. Developing with Case Audits	
Overview	
Prerequisites	
Sections in this Guide	
Registering a New Algorithm	
Overview	
Creating a New Algorithm	
Utilizing Dynamic Selection Queries	
What is a Dynamic Selection Query?	4
Why use a Dynamic Selection Query?	4
Implementing a Dynamic Selection Query	
The Case Audit Query Management API	5
Example: Implementing a Dynamic Selection Query	6
Using Dynamic Selection Queries for Manual Case Selection	14
Configuring Selection Queries	14
Dynamic Selection Queries	14
Fixed Selection Queries	14
Creating a Selection Query	14
Validating a Selection Query	15
Publishing a Selection Query	
Case Audits Web Service	15
Notices	16
Privacy Policy considerations	
Trademarks	17

Figures

1. Defining the Algorithm	.2
2. Algorithm Implementation	.3
3. Binding the Algorithm	.4
4. The Case Audit Query Management API	.5
5. UIM to allow the audit coordinator to enter selection criteria	. 7
6. UIM to allow the audit coordinator choose how much of the generated case sample to audit	9
7. UIM to allow the audit coordinator to specify configurable parameters for the algorithm 1	L1
8. Generating the list of cases for audit	13

Chapter 1. Developing with Case Audits

Learn how to record new algorithms for producing random samples of cases for audit. Dynamic selection queries can be used to generate a list of cases for audit. There are a number of options available for selection queries. Case data from external sources can be used to generate a list of cases for audit.

Overview

The purpose of this guide is to outline the available customization options for the Case Audits component and to provide instructions on how to implement these customizations.

This guide is intended for developers and architects that intend to implement an auditing solution by customizing Cúram Case Audits.

Prerequisites

Before reading this guide the reader should be familiar with the Cúram Case Audits Guide.

The reader should also be familiar with Google Guice.

Sections in this Guide

The following list describes the sections within the guide:

Registering a New Algorithm

The section describes how to add a new algorithm, which provides a new method of producing a random sample of cases for audit.

Utilizing Dynamic Selection Queries

The section describes how to use Dynamic Selection Queries to generate a list of cases for audit.

Configuring Selection Queries

The section describes the configuration options available for Selection Queries.

Case Audits Web Service

The section provides a brief overview on how case data from external sources can be used to generate a list of cases for audit.

Registering a New Algorithm

You must provide an implementation, which implements the SamplingStrategy interface to register a new algorithm. Use Guice bindings to map the algorithm to the correct algorithm implementation.

Overview

The sample algorithm that is provided with Cúram uses a starting point and an interval to determine the list of cases to be included in the case audit.

Creating a New Algorithm

An organization can add a new algorithm if the sample algorithm is not suitable, ensuring that a different method is used when a random sample of cases for audit is produced.

The following example outlines how to add an algorithm 'Every Nth Case', which adds every nth case to the list of cases to be included in the audit. N is a parameter that is specified by the audit coordinator. "Utilizing Dynamic Selection Queries" on page 4 describes how to include algorithm parameters in case audit generation. The following sections describe in detail the steps required to create a new algorithm and add it to the application. The steps that are required:

- · Administratively Define the New Algorithm
- Provide an Implementation for the Algorithm
- Add a Binding to the New Algorithm Implementation

Administratively Define the New Algorithm

Add a custom entry to CT_SamplingStrategy.ctx called Every Nth Case.

Figure 1. Defining the Algorithm

Provide an Implementation for the Algorithm

The next step that is required to register a new algorithm is to provide the implementation for the algorithm.

This implementation must implement the SamplingStrategy Interface. The SamplingStrategy Interface has one method getRandomSample. This method takes a list of case identifiers and applies a sampling strategy to the list to generate a random case sample for audit. It accepts three parameters:

- masterList the main list of cases that the sample is to be created from
- sampleSize the number of cases that are to be included in the sample
- properties a map of algorithm or configuration parameters that can be used in the filtering process.

The SamplingStrategy Interface can be found in the package curam.samplingstrategy.impl

```
/*
 * Copyright 2011 Curam Software Ltd.
 * All rights reserved.
* This software is the confidential and
 * proprietary information of Curam Software, Ltd.
   ("Confidential Information"). You shall not
 * disclose such Confidential Information and shall
 \star use it only in accordance with the terms of the
 * license agreement you entered into with Curam Software.
 */
package curam.samplingstrategy.impl;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;
public class EveryNthCase implements SamplingStrategy {
  public List<Long> getRandomSample(List<Long> masterList,
  int sampleSize, Map<String, Object> properties)
    throws AppException, InformationalException {
    List<Long> randomSampleList = new ArrayList<Long>();
    Integer n = (Integer) properties.get("n");
    int index = 0;
    if (n <= masterList.size()) {</pre>
      while (randomSampleList.size() < sampleSize) {</pre>
        if (index + n < masterList.size()) {</pre>
           index = index + n;
           // If the element has been returned already,
           // try the next element until one that hasn't
// been returned is found
           while (randomSampleList.contains(
             masterList.get(index))) {
             if (index < masterList.size() - 1) {</pre>
               index++;
             } else {
                 index = 0;
             3
           3
           randomSampleList.add(masterList.get(index));
        } else {
           // Run out of elements, loop back to the
           // start of the list
           int elementsToStartOfList = masterList.size() - index;
           index = n - elementsToStartOfList;
           // If the element has been returned already,
           // try the next element until one that hasn't
           // been returned is found
           while (randomSampleList.contains(
             masterList.get(index))) {
             if (index < masterList.size() - 1) {</pre>
               index++;
             } else {
                 index = 0;
             3
           3
          randomSampleList.add(masterList.get(index));
    return randomSampleList;
?
```

Figure 2. Algorithm Implementation

Add a Binding to the New Algorithm Implementation

Guice bindings are used to map the algorithm to the correct algorithm implementation.

```
* Copyright 2011 Curam Software Ltd.
 * All rights reserved.
 * This software is the confidential and proprietary
 * information of Curam Software, Ltd.
   ("Confidential Information"). You shall not
 * disclose such Confidential Information and shall
 * use it only in accordance with the terms of the
 * license agreement you entered into with Curam Software.
package curam.samplingstrategy.impl;
import com.google.inject.AbstractModule;
import com.google.inject.multibindings.MapBinder;
import curam.codetable.impl.SAMPLINGSTRATEGYEntry;
 * Guice module for binding Sampling Strategies.
public class Module extends AbstractModule {
  @Override
  public void configure() {
    // register sampling strategies
    final MapBinder<SAMPLINGSTRATEGYEntry, SamplingStrategy>
   samplingStrategies = MapBinder.newMapBinder(binder(),
        SAMPLINGSTRATEGYEntry.class, SamplingStrategy.class);
    samplingStrategies.addBinding(
      SAMPLINGSTRATEGYEntry.EVERYNTHCASE).to(EveryNthCase.class);
```

Figure 3. Binding the Algorithm

The new algorithm is now ready to be associated with a Case Audit Configuration in the Administration Application. For more information on Case Audit Configuration, see the Cúram Case Audits Business Guide.

Utilizing Dynamic Selection Queries

You can generate a random sample of cases with dynamic selection queries. Dynamic selection queries require a UIM page that allows an audit coordinator to enter selection criteria values. The case audit query management API is a public API used to run selection queries.

What is a Dynamic Selection Query?

Dynamic Selection Queries are used to generate a random sample of cases and contain the selection criteria that are used to search for and produce the list of cases. They allow the audit coordinator to enter any combination of selection criteria to be used when a list of cases is produced.

Why use a Dynamic Selection Query?

Four sample queries are provided for each of the standard case types: Integrated Case, Benefit Product Delivery, Liability Product Delivery, and Investigation Case. If these queries do not contain sufficient criteria, custom selection queries can be created.

Important: Complex queries are not suited to Dynamic Selection Queries as they do not perform. If a complex query needs to be created consider by using standard practices that are followed in the application instead of using a Dynamic Selection Query. The sample queries are implemented in this way as they are complex.

Implementing a Dynamic Selection Query

For new dynamic selection queries a UIM page must be created so that an audit coordinator can enter values for the new selection criteria. Similarly, if a new algorithm that requires parameters is to be used, then this input screen must be developed.

See <u>"Example: Implementing a Dynamic Selection Query" on page 6</u> for an example by using the 'Every Nth Case' algorithm. The following outlines the steps that are required to use a custom Dynamic Selection Query.

- Create a UIM that contains the required selection criteria. The name of this UIM must match the name
 that the systems administrator enters for the Random Generation page name when selection queries
 are configured.
- Any other required input screens must also be developed, such as screens for entering algorithm parameters, entering the number of cases to be returned and so on. If multiple screens are used they should be developed as a wizard. For more information on wizards, consult the Cúram Web Client Reference Manual.
- Create the necessary struct to cater for the selection criteria.
- Create and implement a new facade method that is responsible for generating the list of cases for audit. Note that a Case Audit Query Management API is available to help generate this list of cases.
- The systems administrator must create, validate, and publish a new Selection Query with the SQL required to retrieve the data and the selection criteria that are associated with it. The selection query must then be associated with the relevant case audit configuration.

An example of these steps is provided in <u>"Example: Implementing a Dynamic Selection Query" on page</u> 6

The Case Audit Query Management API

The Case Audit Query Management API is a public API used to run selection queries. To use this API, a new Dynamic Selection Query must be created in the systems administration application.

The Selection Query contains the SQL that is required to perform the search. For example, if a new search that contains a status is required, a dynamic selection query must be entered that contains the selection criteria page name, along with the following SQL -

SELECT caseID INTO :caseID FROM CaseHeader WHERE statusCode = :statusCode

The Case Audit Query Management API contains one main method of interest runDynamicQueryCaseSearch. This method takes two arguments a selection query identifier and a map of selection criteria (as entered by the audit coordinator). The selection query is retrieved and the selection criteria that are entered by the audit coordinator are substituted into the SQL. The query is then run against the database and a list of CaseHeader records is returned.

Figure 4. The Case Audit Query Management API

Example: Implementing a Dynamic Selection Query

Step 1: Create a UIM that contains the required selection criteria.

This screen allows the audit coordinator to enter selection criteria that relate to the dynamic query.

```
<PAGE
  PAGE_ID="exampleSelectionCriteria"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:noNamespaceSchemaLocation="file://Curam/UIMSchema.xsd"
  <PAGE_TITLE>
    <CONNECT
      <SOURCE
        NAME="TEXT"
        PROPERTY="PageTitle.Title"
    </CONNECT>
  </PAGE_TITLE>
  <SERVER_INTERFACE</pre>
    CLASS="ExampleFacade"
    NAME="ACTION"
    OPERATION="validateCustomCriteria"
    PHASE="ACTION"
  <PAGE_PARAMETER NAME="auditPlanID"/>
<PAGE_PARAMETER NAME="queryID"/>
  <ACTION_SET
    ALIGNMENT="CENTER"
    TOP="false"
    <ACTION_CONTROL
      LABEL="ActionControl.Label.Cancel"
ALIGNMENT="LEFT"/>
    <ACTION_CONTROL
      DEFAULT="true"
      IMAGE="NextButton"
      LABEL="ActionControl.Label.Next"
      TYPE="SUBMIT"
      <LINK
         SAVE LINK="false"
        DISMISS MODAL="false"
        PAGE_ID="exampleSelectAmount"
         <CONNECT>
           <SOURCE
             NAME="PAGE"
             PROPERTY="auditPlanID"
           <TARGET
             NAME="PAGE"
             PROPERTY="auditPlanID"
         </CONNECT>
         <CONNECT>
           <SOURCE
             NAME="ACTION"
             PROPERTY="result$status"
           <TARGET
             NAME="PAGE"
             PROPERTY="status"
         </CONNECT>
         <CONNECT>
           <SOURCE
             NAME="PAGE"
             PROPERTY="queryID"
           <TARGET
             NAME="PAGE"
             PROPERTY="queryID"
         </CONNECT>
      </LINK>
    </ACTION_CONTROL>
  </ACTION_SET>
  <CLUSTER LABEL_WIDTH="30">
    <FIELD
      LABEL="Field.Label.Status"
      USE_BLANK="true"
USE_DEFAULT="false">
      <CONNECT>
         <TARGET
```

NAME="ACTION"

PROPERTY="key\$status"

Step 2: If required, create a screen to allow the audit coordinator enter the number of cases to audit.	

```
<PAGE
  PAGE_ID="exampleSelectAmount"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:noNamespaceSchemaLocation="file://Curam/UIMSchema.xsd"
  <PAGE_TITLE>
    <CONNECT>
      <SOURCE
        NAME="TEXT"
        PROPERTY="PageTitle.Title"
    </CONNECT>
  </PAGE_TITLE>
  <SERVER_INTERFACE</pre>
    CLASS="ExampleFacade"
    NAME="ACTION"
    OPERATION="validateNumberOfCases"
    PHASE="ACTION"
  <PAGE_PARAMETER NAME="auditPlanID"/>
<PAGE_PARAMETER NAME="status"/>
  <PAGE_PARAMETER NAME="queryID"/>
    DESCRIPTION="Cluster.Description.Text"
LABEL_WIDTH="30">
    <FIELD LABEL="Field.Label.Number">
      <CONNECT>
         <TARGET
           NAME="ACTION"
           PROPERTY="key$numberOfCases"
      </CONNECT>
    </FIELD>
  </CLUSTER>
  <ACTION SET
    TOP="false"
    <ACTION_CONTROL
    LABEL="ActionControl.Label.Cancel"
ALIGNMENT="LEFT"/>
    <ACTION_CONTROL
      DEFAULT="true"
      IMAGE="NextButton"
      LABEL="ActionControl.Label.Next"
      TYPE="SUBMIT"
    >
        SAVE LINK="false"
        DISMISS_MODAL="false"
PAGE_ID="exampleConfigureAlgorithm"
         <CONNECT>
           <SOURCE
             NAME="PAGE"
             PROPERTY="auditPlanID"
           <TARGET
             NAME="PAGE"
             PROPERTY="auditPlanID"
         </CONNECT>
         <CONNECT>
           <SOURCE
             NAME="PAGE"
             PROPERTY="status"
           <TARGET
             NAME="PAGE"
             PROPERTY="status"
         </CONNECT>
         <CONNECT>
           <SOURCE
             NAME="ACTION"
             PROPERTY="result$numberOfCases"
           <TARGET
             NAME="PAGE"
             PROPERTY="numberOfCases"
```

</CONNECT>

If required, create a screen to allow the audit coordinator enter algorithm parameters.

```
<PAGE
  PAGE_ID="exampleConfigureAlgorithm"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file://Curam/UIMSchema.xsd"
  <PAGE_TITLE>
    <CONNECT>
       <SOURCE
         NAME="TEXT"
         PROPERTY="PageTitle.Title"
    </CONNECT>
  </PAGE_TITLE>
  <SERVER_INTERFACE</pre>
    CLASS="ExampleFacade"
    NAME="ACTION"
    OPERATION="generateExampleCaseList"
    PHASE="ACTION"
  <PAGE_PARAMETER NAME="auditPlanID"/>
<PAGE_PARAMETER NAME="status"/>
  <PAGE_PARAMETER NAME="numberOfCases"/>
  <PAGE_PARAMETER NAME="queryID"/>
  <CONNECT>
    <SOURCE
       NAME="PAGE"
       PROPERTY="auditPlanID"
    <TARGET
       NAME="ACTION"
       PROPERTY="key$auditPlanID"
  </CONNECT>
  <CONNECT>
    <SOURCE
       NAME="PAGE"
       PROPERTY="status"
    <TARGET
NAME="ACTION"
       PROPERTY="key$status"
  </CONNECT>
  <CONNECT>
    <SOURCE
       NAME="PAGE"
       PROPERTY="numberOfCases"
    <TARGET
       NAME="ACTION"
       PROPERTY="key$numberOfCases"
  </CONNECT>
  <CONNECT>
    <SOURCE
       NAME="PAGE"
       PROPERTY="queryID"
    <TARGET
       NAME="ACTION"
       PROPERTY="key$selectionQueryID"
  </CONNECT>
  <CLUSTER LABEL_WIDTH="30">
  <FIELD LABEL="Field.Label.Interval">
       <CONNECT>
         <TARGET
           NAME="ACTION"
           PROPERTY="key$interval"
       </CONNECT>
    </FIELD>
  </CLUSTER>
  <ACTION_SET
    TOP="false"
    <ACTION CONTROL
    LABEL="ActionControl.Label.Cancel"
ALIGNMENT="LEFT"/>
```

<ACTION_CONTROL

TMAGE="FinishButton"

Step 3: Create the necessary struct to cater for the selection criteria.

This struct contains all selection criteria available for the selection query along with any other required parameters.

ExampleSelectionCriteria

- long auditPlanID
- long selectionQueryID
- int numberOfCases
- int interval
- · String status

Step 4: Create and implement a new façade method that is responsible for generating the list of cases for audit.

This method uses the Case Audit Query Management API to run the dynamic query, by using the supplied selection criteria. This dynamic query returns the list of cases that match the selection criteria. The relevant algorithm is then started to filter the case list. Finally, case audit records are created for each case in the remaining list.

```
// Inject the map
  @Inject
  private Map<SAMPLINGSTRATEGYEntry, SamplingStrategy>
    samplingStrategies;
  /**
   * Generates the sample list of cases for audit based on the
   * supplied selection criteria. This method filters the list
   \star using the algorithm associated with the case type for this
   * audit plan. The number of cases returned in the list is also
   * restricted by the number of cases specified by the user.
   \star @param key The selection criteria, selection query \star identifier, the audit plan identifier,
                  the number of cases to generate and any
                  algorithm parameters.
   * @throws AppException
* @throws InformationalException
  public void generateExampleCaseList(
    ExampleSelectionCriteria key)
    throws AppException, InformationalException {
    AuditPlan auditPlan = auditPlanDAO.get(key.auditPlanID);
    CaseAuditQueryManagement caseAuditQueryManagement =
      new CaseAuditQueryManagement();
     // Add all selection criteria to the map
    HashMap<String, String> parameterMap =
  new HashMap<String, String>();
parameterMap.put(":statusCode", key.status);
    // Call the Case Audit Query Management API
     // to run the selection query
    List<curam.piwrapper.caseheader.impl.CaseHeader> caseList =
      caseAuditQueryManagement.runDynamicQueryCaseSearch(
         key.selectionQueryID, parameterMap);
    // Get the algorithm/sampling strategy configured
// for this case type
    final SamplingStrategy samplingStrategy =
       samplingStrategies.get(
         auditPlan.getAuditCaseConfig().getAuditAlgorithm());
    List<Long> caseIDList = new ArrayList<Long>();
    for (CaseHeader caseHeader : caseList) {
      caseIDList.add(caseHeader.getID());
    7
     // Set up the algorithm parameters
    Map<String, Object> params = new TreeMap<String, Object>();
params.put("n", new Integer(key.interval));
     // Invoke algorithm to generate case sample,
    // passing in the list of cases,
    // the number of cases to return and the algorithm parameters
List<Long> caseIDs = samplingStrategy.getRandomSample(
      caseIDList, key.numberOfCases, params);
    curam.core.facade.intf.CaseAudit caseAudit0bj =
      curam.core.facade.fact.CaseAuditFactory.newInstance();
     // for each case, create a case audit
    for (int i = 0; i < caseIDs.size(); i++) {
       CaseAuditDetails caseAuditDetails = new CaseAuditDetails();
      caseAuditDetails.dtls.auditPlanID = key.auditPlanID;
      caseAuditDetails.dtls.caseID = caseIDs.get(i)
      caseAuditObj.createCaseAudit(caseAuditDetails);
  7
```

Figure 8. Generating the list of cases for audit

Step 5: The systems administrator must create, validate, and publish a new Selection Query with the SQL required to retrieve the relevant data and the selection criteria that are associated with it.

Important: Appropriate database indexing is provided for any custom dynamic selection queries. Also, if a significant case load is expected to be returned from the selection query, it would be advisable to consider by using Deferred Processing to generate the random sample of cases. For more information on Deferred Processing, see the Cúram Server Developer Guide.

Using Dynamic Selection Queries for Manual Case Selection

Dynamic selection queries can also be used for manual case selection. A similar process to the one described above can be used. A new UIM must be created that contains the required selection criteria.

Note, this new UIM must be created because the resulting case list must be included in the page. The UIM allows the audit coordinator to manually select from the list of cases. The name of this UIM must match the name that the systems administrator who is entered for the Manual Search page name in the Selection Query configuration. The Case Audit Query Management API can again be used to run the query.

Configuring Selection Queries

You can configure selection queries. Two types of selection query exist: dynamic queries and fixed queries. Selection queries must be published in order to be associated with a case audit configuration.

Selection Queries are used to generate a sample of cases and contain the selection criteria that are used to search for and produce the list of cases.

Dynamic Selection Queries

A dynamic selection query, when configured for audit, presents a page that contains selection criteria. An audit coordinator must enter values for the criteria which returns a case sample. The audit coordinator can enter the parameters for one criterion, or has the flexibility to enter parameters for any logical combination of parameters.

For example, to return all open cases for males that start 1-6 January, the audit coordinator would enter values as follows: case status of open; case start date range of 1-6 January; and gender of male.

Fixed Selection Queries

A fixed selection query provides a predefined set of selection criteria that is defined through the entry of an SQL statement. The fixed selection query when created by a systems administrator contains the values for the selection criteria such as case status of open and so forth.

However, an audit coordinator has the option to select this fixed query when creating a case sample, no audit coordinator entry of selection criteria is required as they are already input as part of the query.

CAUTION: There is no OOTB front-end for the fixed selection query functionality. While fixed selection queries might be valuable to some customers, any customer that utilizes the functionality would need to consider the security trade-off that it brings. Responsibility falls to the customer to:

- construct the front-end page
- ensure that no malicious content can be passed in and executed
- ensure that the SQL stored in the database is correct

Creating a Selection Query

Creating a selection query is a two step process; the first step allows the addition of the basic selection query details, such as name and the query type, along with the SQL. The second step allows the entry of the selection criteria that are associated with the selection query.

The 'Name' of the selection query is what is displayed to the administrator when configuring a case audit and to the audit coordinator when generating a random case sample, so it has a meaningful and descriptive name.

'Query' represents the type of objects that the selection query impacts. In this initial release, there is one type of object, Case. More functionality is envisaged in this area so that selection queries can be captured for any object. An example usage of this might be participants, where an agency might want to poll all employers to determine information on employee working patterns.

The 'Query Type' should be chosen depending on the type of selection query that is required, Dynamic or Fixed. If the selection query is 'Dynamic', the 'Random Generation' and 'Manual Search' page names must be entered. The page names that are entered must match the name of the custom UIM that is used to enter the selection criteria.

The SQL text is the SQL statement that is used to run the selection query. Every field on the custom selection criteria selection screen is part of the WHERE clause. Take the example that is outlined in "Utilizing Dynamic Selection Queries" on page 4. A UIM is created to allow the audit coordinator to select a status, the SQL necessary for this query would be -

SELECT caseID INTO :caseID FROM CaseHeader WHERE statusCode = :statusCode

Adding Selection Criteria

The next step is to enter the attribute names and values to be used in the SQL query. These can be added by using the 'Add Criteria' link on the second page of the wizard.

For dynamic selection queries the values is used only for validation purposes. Validation of a selection query will be discussed in the next section. For fixed selection queries the values entered is the actual values used when running the query as the audit coordinator does not have the option to enter their own values. 'Name' contains the attribute as it appears in the WHERE clause of the SQL statement. The 'Display Name' and 'Display Value' is acceptable representations of 'Name' and 'Value' that can be displayed to an audit coordinator.

Validating a Selection Query

Once a selection query is created it can then be validated. The validation performed checks that the SQL query is valid and that the statement is attempting only to read data.

Note, database integrity must be maintained so the SQL statement does not modify or remove data. To minimize this risk, the SELECT and INTO clauses are defaulted. As validation errors can be quite complex, ensure that the SQL query that is provided adheres to these guidelines.

Publishing a Selection Query

A selection query must be published to make it available to administrators to associate with a case audit configuration. This ensures that a query is validated before being made available for use to an administrator.

Finally, before the selection query can be used by an audit coordinator as part of an audit plan, it needs to be associated to a case audit configuration by the administrator.

Case Audits Web Service

A Case Audits Web Service is provided to allow case data from external sources to be audited. The Web Service can be invoked on by any capable Web Service client, including tools such as the Business Intelligence and Reporting Tools (BIRT) reporting tool.

The Web Service receives a list of case identifiers to be used in an audit along with an associated name to identify the data set, from an external source. This data is stored in the ExternalCaseAuditData and ExternalCaseAuditDataItem tables, ready to be included in an audit plan. The audit coordinator can select case data from this source. If any of the cases do not exist on the system, no data is saved and a response indicating an error has occurred is returned. The Case Audit Web Service can be found at curam.core.ws.convert.bs.impl.ExternalCaseAuditData

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering's use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other similar technologies that collect each user's name, user name, password, and/or other personally identifiable information for purposes of session management, authentication, enhanced user usability, single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to such data collection, including any requirements for notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at http://www.ibm.com/privacy/details the section entitled "Cookies, Web Beacons and Other Technologies" and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/software/info/product-privacy.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Java[™] and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names may be trademarks or service marks of others.

IBW.

Part Number: