

Objective rating method: Entropy

Speech intelligibility estimation

Jose Rivera

April 18, 2022

What are we going to talk about?

- 1 Preliminars
 - Research question
 - Research hypothesis production
- 2 Research hypothesis procedure
 - Estimand and process model
 - Synthetic data generation
 - Statistical model design and testing
 - Apply statistical model to data
- 3 References

1. Preliminars

Research question

Research question

On two fronts:

1. Can comparative judgement (CJ) methods be used to assess speech intelligibility (SI)?,

To investigate this wee need:

- an objective measure of SI
- 2. where CJ stands versus absolute holistic judgement (HJ) methods?, In terms of:
 - validity
 - \blacksquare reliability
 - statistical efficiency
 - time efficiency

Objective measure of SI

the most objective (we know of) measure of SI comes from a transcription task:

- 1. transcribing children's utterances (made by multiple judges),
- 2. align transcriptions at the utterance level,
- 3. calculate an entropy measure (H), defined as

$$H = H(\mathbf{p}) = \frac{-\sum_{i=1}^{n} p_i \cdot \log_2(p_i)}{\log_2(N)}$$

- 4. characteristics of H [1, 3]
 - \blacksquare bounded in [0,1] space,
 - \blacksquare utterances with more agreement are more intelligible, and therefore H \rightarrow 0,
 - \blacksquare utterances with low agreement are less intelligible, and therefore H \rightarrow 1.

1. Preliminars

A typical scientific lab¹

What is needed?

- 1. Quality of theory
- 2. Quality of data
- 3. Reliable procedures and code
- 4. Quality of data analysis
- 5. Documentation
- 6. Reporting

What we will deal with:

- 1. Quality of theory
- 2. Quality of data
- 3. Reliable procedures and code
- 4. Quality of data analysis
- 5. Documentation
- 6. Reporting

¹McElreath [7], lecture 20 and McElreath [8], chapter 17

Research hypothesis production²

Well known challenges

- Insufficient data
- Wrong population
- Measurement error
- Selection bias
- Confounding

Known challenges in our research;

- Insufficient data (possibly)
- Wrong population
- Measurement error
- Selection bias
- Confounding

²Hernán [5], lesson 4

Research hypothesis schematics³

- a. Estimand and process model
- b. Synthetic data generation
- c. Statistical model design and testing
- d. Apply statistical model to data

³McElreath [8], lecture 20, Pearl [9]. Follow Fogarty et al. [4] on item (c).

Why do we need to follow this?

Because the improvement of:

- A clear definition of the estimand and process model (assumptions).
- An improved the reliability of your procedures.
- As a documentation procedure.

leads to:

- A sound analysis, and sound results (even when we cannot answer our question).
- An improved planning to get data.

2. Research hypothesis procedure

Estimand and process mode

The theory behind our research

- \blacksquare H_{ik} = (observed) entropy replicates
- \blacksquare H_i = (latent) child's entropy
- $SI_i = (latent)$ child's SI score (inversely related to H_i^T)
- \blacksquare A_i = child's "hearing" age
- \blacksquare $E_i = child's etiology of disease$
- \blacksquare HS_i = child's hearing status
- ightharpoonup PTA_i = child's pure tone average
- variables assumed independent, beyond the described relationships,

$$\begin{split} P(\mathbf{U}) &= P(U_{ik}, U_i, U_A, U_E, U_{HS}, U_P) \\ &= P(U_{ik})P(U_i)P(U_A)P(U_E)P(U_{HS})P(U_P) \end{split}$$

General causal diagram

Interested in two effects

- 1. total effects model inherits:
 - children's characteristics that lead to the fitting of specific apparatus,
 - the (convenience of) sample selection (fixed with post-stratification)
- 2. to do the last, we stratify for all variables that explain variability, ergo, use a direct effects model
- 3. two levels: replicates (k), children (i), denoted by discontinuous squares
- 4. U_{ik} = replicates measurement error U_i = between child SI variability

(b) total effects

(a) direct effects

Probabilistic (causal) model

First form

$$\begin{split} H_{ik}^{O} &\sim \ \mathrm{BetapProp}(H_i^T, M_{ik}) &\qquad H_{ik}^O \leftarrow f(H_i^T, U_{ik}) \\ H_i^T &= \ \mathrm{inv_logit}(-\mathrm{SI}_i) &\qquad H_i^T \leftarrow f(\mathrm{SI}_i) \\ \mathrm{SI}_i &\sim \ \mathrm{Normal}(\mu_{\mathrm{SI}}, \sigma_{\mathrm{Ui}}) &\qquad \mathrm{SI}_i \leftarrow f(\mathrm{HS}_i, A_i, E_i, \mathrm{PTA}_i, U_i) \\ \mu_{\mathrm{SI}} &= \alpha + \alpha_{\mathrm{HS}[i]} + \alpha_{\mathrm{E}[i]} \\ &\qquad + \beta_{\mathrm{A},\mathrm{HS}[i]}(A_i - \bar{A}) + \beta_{\mathrm{P}}\mathrm{PTA}_i \\ HS_i &\sim \ \mathrm{data} &\qquad HS_i \leftarrow f(U_{\mathrm{HS}}) \\ A_i &\sim \ \mathrm{data} &\qquad A_i \leftarrow f(U_{\mathrm{A}}) \\ E_i &\sim \ \mathrm{data} &\qquad E_i \leftarrow f(U_{\mathrm{E}}) \\ \mathrm{PTA}_i &\sim \ \mathrm{data} &\qquad \mathrm{PTA}_i \leftarrow f(U_{\mathrm{P}}) \\ U &\sim \ \mathrm{unobservable} &\qquad U \sim \mathrm{P}(\mathbf{U}) \end{split}$$

Probabilistic (causal) model

First form

$$\begin{split} & H_{ik}^{O} \sim \ \textbf{BetapProp}(\textbf{H}_{i}^{T}, \textbf{M}_{ik}) \\ & H_{i}^{T} = \ \text{inv_logit}(-SI_{i}) \\ & SI_{i} \sim \ \text{Normal}(\mu_{SI}, \sigma_{Ui}) \\ & \mu_{SI} = \alpha + \alpha_{HS[i]} + \alpha_{E[i]} \\ & + \beta_{A,HS[i]}(A_{i} - \bar{A}) + \beta_{P}PTA_{i} \\ & HS_{i} \sim \ \text{data} \\ & A_{i} \sim \ \text{data} \\ & E_{i} \sim \ \text{data} \\ & PTA_{i} \sim \ \text{data} \\ & U \sim \ \text{unobservable} \end{split}$$

Probabilistic (causal) model

Second form

$$\begin{split} H_{ik}^{O} &\sim \ \mathrm{BetapProp}(H_{i}^{T}, M_{ik}) & H_{ik}^{O} \leftarrow f(H_{i}^{T}, U_{ik}) \\ H_{i}^{T} &= \ \mathrm{inv_logit}(-\mathrm{SI}_{i}) & H_{i}^{T} \leftarrow f(\mathrm{SI}_{i}) \\ \mathrm{SI}_{i} &= \ \mathrm{a}_{i} + \alpha + \alpha_{\mathrm{HS}[i]} + \alpha_{\mathrm{E}[i]} & \mathrm{SI}_{i} \leftarrow f(\mathrm{HS}_{i}, A_{i}, E_{i}, \mathrm{PTA}_{i}, U_{i}) \\ &+ \beta_{\mathrm{A}, \mathrm{HS}[i]}(A_{i} - \bar{A}) + \beta_{\mathrm{P}}\mathrm{PTA}_{i} & \\ \mathrm{a}_{i} &\sim \ \mathrm{Normal}(0, \sigma_{\mathrm{U}i}) & \\ HS_{i} &\sim \ \mathrm{data} & HS_{i} \leftarrow f(U_{\mathrm{HS}}) \\ A_{i} &\sim \ \mathrm{data} & A_{i} \leftarrow f(U_{\mathrm{A}}) \\ E_{i} &\sim \ \mathrm{data} & E_{i} \leftarrow f(U_{\mathrm{E}}) \\ \mathrm{PTA}_{i} &\sim \ \mathrm{data} & \mathrm{PTA}_{i} \leftarrow f(U_{\mathrm{P}}) \\ U &\sim \ \mathrm{unobservable} & U \sim \mathrm{P}(\mathbf{U}) \end{split}$$

2. Research hypothesis procedure

Synthetic data generation

Idealized data⁴

Simulation data can serve as [6, 7],

- 1. A place where to test your model, on multiple purposes,
 - parameter recovery
 - power
- 2. A (possible) reflection of a population,
 - children's group proportion [2]
- 3. A (possible) reflection of a hypothesis,
 - size of effects (no previous information)

⁴more details in file: 1 2 E sim fun.R

⁽sim_name=NULL, # file_name need to include sim_save=NULL, # file_save need to include seed=NULL, # seed I=350, # experimental units (children) K=10, # replicates (utterances) p=c(0.50, 0.175, 0.325), # children prop. or par=list(m_i=0, s_i=0.5, # hyperprior chil m_M=10, s_M=NULL, # generation of a=0, aE=-0.1, aHS=-0.4, bP=-0.1, bA=0.15, bAHS=0)){

About the size of the effects (in logits, no previous info),

- 1. aE = -0.1, assumes E ordered by severity (it might not be possible),
- 2. aHS = -0.4, assumes 0.4 difference between NH children and HI/CI,
- 3. bP = -0.1, assumes decrease of SI per PTA unit (+10 PTA units $\Rightarrow -1$ logit),
- bA = -0.15, assumes decrease of SI per A unit, beyond the minimum (+10 A units ⇒ +1.5 logits),

```
(sim_name=NULL, # file_name need to include
  sim_save=NULL, # file_save need to include
  seed=NULL, # seed
  I=350, # experimental units (children)
  K=10, # replicates (utterances)
  p=c(0.50, 0.175, 0.325), # children prop. or
  par=list( m_i=0, s_i=0.5, # hyperprior child
        m_M=10, s_M=NULL, # generation of
        a=0, aE=-0.1, aHS=-0.4,
        bP=-0.1, bA=0.15, bAHS=0 ) ){
```

- 1. variables are generated in a random fashion
- 2. random effects define the between SI variability

```
# 1. true data ####
dT = data.frame(matrix(NA. nrow=I. ncol=1))
names(dT) = c('child_id')
dTschild id = 1:I
n = round(p*I)
if( sum(n) != I ){
   n[3] = I - sum(n[c(1,3)]) # to sum the right amount
if(!is.null(seed)){
 set.seed(seed+1)
dT$HS = c(rep(1, n[1]), rep(2, n[2]), rep(3, n[3]))
dT$A = round(rnorm(sum(n), 5, 1))
dTSA = with(dT. ifelse(A>7. 7. A))
dTSE = c(rep(1, n[1]), # no way to know true effects
         sample(2:3, size=n[2], replace=T),
         sample(3:4, size=n[3], replace=T))
dTPTA = c(round(rnorm(n[1], 60, 15)), # first 12 NH
           round(rnorm(n[2], 90, 15)), # next 10
            round(rnorm(n[3], 110, 15))) # last 10
if(!is.null(seed)){
 set.seed(seed-1)
par$re_i = rnorm(I, par$m_i, par$s_i)
dT$re i = par$re i # children's random effects (between SI
```

- 1. we use second form of the probabilistic model
- 2. "true' entropy (Ht) is inversely related to SI
- 3. we simulate measurement error through M from BetaProp() distribution (as previously shown).

```
dT$SI = with(dT, re_i + par$a + par$aE*E + par$aHS*HS +
               par$bA*(A - min(A)) +
               par$bAHS*(A - min(A))*HS +
               par$bP * c( standardize(PTA) ) )
# true entropy
dT$Ht = inv logit(-dT$SI) # true entropy (SI -> Ht: negative)
if(!is.null(seed)){
  set.seed(seed+2)
if( is.numeric(par$m M) & !is.numeric(par$s M) ){
  par$M = rep(par$m_M, I)
  par$M = round( rlnorm(I, meanlog=par$m M, sdlog= par$s M) )
dT$M = par$M # same df for all children (not same shape!!)
dT[,6:ncol(dT)] = round(dT[,6:ncol(dT)], 5)
d0 = data.frame(matrix(NA, nrow=N, ncol=3))
names(d0) = c('child_id', 'utt_id', 'H')
d0$child_id = rep(1:I, each=K)
d0$utt_id = rep(1:K, I)
# generating observed H
if(!is.null(seed)){
  set.seed(seed-2)
```

- 1. we simulate replicate measures of entropy (H)
- 2. we storage all relevant parameters and data

```
idx = d0$child_id == i
 dO$H[idx] = rbeta2(n=K, prob=dT$Ht[i], theta=dT$M[i])
dO$H = round(dO$H, 5)
 N = nrow(dO), # observations
 I = max(d0$child_id), # children
 K = max(dO$utt_id), # utterances
 cHS = max(dT$HS),
 cE = max(dTSE).
 sPTA = c( standardize( dT$PTA ) ),
 H = with(d0, ifelse(H==0, 0.0001, ifelse(H==1, 0.9999, H))),
 cid = d0$child_id,
 uid = dO$utt_id
nom = list(dS=list( dT=dT, dO=dO, par=par), dL=dL)
```

Example

notice we can simulate any desired relationship, or lack of thereof.

2. Research hypothesis procedure

Statistical model design and testing

Model design⁵

Purpose:

- to have reliable procedures,
- to maintain a clear documentation,
- to have a sound analysis

```
transformed parameters{
                          // SI index (per child)
    vector[I] SI:
    vector[I] Ht;
                          // true entropy (per chi
                        // linear predictor
   SI = a + re_i;
   Ht = inv_logit(-SI); // average entropy (SI
model{
    // hyperpriors
   m_i \sim normal(0, 0.2);
    // priors
    re_i \sim normal( m_i , s_i );
    // likelihood
    for(n in 1:N){
     H[n] ~ beta_proportion( Ht[cid[n]] , 10 );
```

⁵Following Fogarty et al. [4]

Model design

Procedure:

- step by step, instantiating one difficulty at the time
- Try the centered and non-centered versions

```
transformed parameters{
                        // random intercepts (per
   vector[I] re_i;
   vector[I] SI;
                       // SI index
   vector[I] Ht:
                        // true entropy (per child
   re_i = m_i + s_i*z_re;// non-centered RE
   SI = a + re_i; // linear predictor
   Ht = inv_logit(-SI): // average entropy (SI ->
model{
   // hyperpriors
   m_i \sim normal(0, 0.2);
   s_i \sim exponential(1):
   // priors
   z_re ~ std_normal();
   // likelihood
   for(n in 1:N){
     H[n] ~ beta_proportion( Ht[cid[n]] , 10 );
```

Model design

In total 5 random effects models (from 5 synthetic data types) were tested:

- only intercept, M = 10 (centered, non-centered),
- multivariate regression, M = 10 (centered, non-centered),
- multivariate regression, M per individual (centered, non-centered),
- no known process (centered, non-centered),
- multivariate regression with interaction, M per individual (centered, non-centered),

```
ransformed parameters{
    vector[I] SI:
                          // SI index (per child)
                          // true entropy (per chi
    vector[I] Ht;
    // linear predictor
    for(i in 1:I){
      SI[i] = re_i[i] + a + aHS[HS[i]] +
        bA*Am[i] + bP*sPTA[i]:
      // no multicollinearity between E and HS
    // average entropy (SI -> Ht: negative)
   Ht = inv logit(-SI): // average entropy (SI -
model{
    // hyperpriors
    m_i \sim normal(0, 0.2);
    s_i \sim exponential(1):
    // priors
    a \sim normal(0, 0.2);
    re_i \sim normal(m_i, s_i);
    bP \sim normal(0, 0.3);
   bA \sim normal(0, 0.3);
    m_M \sim lognormal(1.5, 0.5);
    // likelihood
    for(n in 1:N){
      H[n] ~ beta_proportion( Ht[cid[n]] , m_M );
```

Model design

Procedure:

- notice we used the hypothesis and (some) probabilistic assumptions defined in section Estimand and process model
- is like running section Synthetic data generation backwards

```
transformed parameters{
    vector[I] SI;
                          // SI index (per child)
    vector[I] Ht;
                          // true entropy (per child)
    // linear predictor
    for(i in 1:I){
        bA*Am[i] + bP*sPTA[i];
      // no multicollinearity between E and HS
    // average entropy (SI -> Ht: negative)
    Ht = inv_logit(-SI); // average entropy (SI ->
model{
    // hyperpriors
    m_i \sim normal(0.0.2):
    m_M \sim normal(0, 0.5);
    s M \sim exponential(1):
    // priors
    a \sim normal(0, 0.2);
    re_i \sim normal(m_i, s_i);
    M \sim lognormal(m_M, s_M);
    //aE \sim normal(0, 0.5);
    aHS \sim normal( 0 . 0.5 ):
    bP \sim normal(0, 0.3);
    bA \sim normal(0, 0.3);
    // likelihood
    for(n in 1:N){
      H[n] ~ beta_proportion( Ht[cid[n]] , M[cid[n]]
```

Prior predictive simulation

Priors and hyper-priors

- In the probabilistic (causal) model there were no priors for our parameters,
- To decide our priors we follow McElreath [7]: "priors are part of the assumptions, and should be inspected as such",
- We will evaluate the implications of our priors on the outcome scale.
 We have three outcomes scales: SI_i, H_i^T, and H_{ik}^O

Priors $a_i \sim \text{Normal}(\mu_a, \sigma_a)$ $M_i \sim LogNormal(\mu_M, \sigma_M)$ $\alpha \sim \text{Normal}(0.0.2)$ $\alpha_{\rm HS[i]} \sim {\rm Normal}(0, 0.5)$ $\alpha_{\rm E[i]} \sim {\rm Normal}(0, 0.5)$ $\beta_{\text{A.HS[i]}} \sim \text{Normal}(0, 0.3)$ $\beta_{\rm P} \sim \text{Normal}(0, 0.3)$ Hyper-priors $\mu_a \sim \text{Normal}(0, 0.2)$ $\sigma_a \sim \text{Exp}(1)$ $\mu_{\rm M} \sim {\rm Normal}(0, 0.5)$ $\sigma_{\rm M} \sim {\rm Exp}(1)$

Prior predictive simulation

What our priors imply?

NO undesired assumption has crept in:

- the SI_i scale,
- \blacksquare the H_i^T scale,
- \blacksquare the H_{ik}^{O} scale

i.e. the full space of the scales can be reached by the parameters

Parameter recovery

Posterior predictive

Power

2. Research hypothesis procedure

Apply statistical model to data

What is going on?

3. References

3. References

- [1] Boonen, N., Kloots, H., Nurzia, P. and Gillis, S. [2021]. Spontaneous speech intelligibility: early cochlear implanted children versus their normally hearing peers at seven years of age, Journal of Child Language pp. 1–26. doi: https://doi.org/10.1017/S0305000921000714.
- [2] De Raeve, L. [2016]. Cochlear implants in belgium: Prevalence in paediatric and adult cochlear implantation, European Annals of Otorhinolaryngology, Head and Neck Diseases 133: S57–S60. doi: https://doi.org/10.1016/j.anorl.2016.04.018. url: https://www.sciencedirect.com/science/article/pii/S1879729616300813.
- [3] Faes, J., De Maeyer, S. and Gillis, S. [2021]. Speech intelligibility of children with an auditory brainstem implant: a triple-case study, pp. 1–50. (submitted).
- [4] Fogarty, L., Madeleine, A., Holding, T., Powell, A. and Kandler, A. [2022]. Ten simple rules for principled simulation modelling, PLOS Computational Biology 18(3): 1–8. doi: https://doi.org/10.1371/journal.pcbi.1009917.
- [5] Hernán, M. [2020]. Causal diagrams: Draw your assumptions before your conclusions.
 url: https://www.edx.org/course/causal-diagrams-draw-your-assumptions-before-your.

- [6] Kruschke, J. [2014]. Doing Bayesian Data Analysis, A Tutorial with R, JAGS, and Stan, Elsevier.
- [7] McElreath, R. [2020]. Statistical Rethinking: A Bayesian Course with Examples in R and STAN, Chapman and Hall/CRC.
- [8] McElreath, R. [2022]. Statistical rethinking, 2022 course. url: https://github.com/rmcelreath/stat_rethinking_2022.
- [9] Pearl, J. [2019]. The seven tools of causal inference, with reflections on machine learning, Communications of the ACM 62(3): 54–60. doi: https://doi.org/10.1177/0962280215586010.