Отчёт по проекту Решеточные модели макромолекул

Москаленко Р. Б.

24.05.2021

Аннотация

Модель Изинга — относительно новая модель, используемая для определения магнитных свойств материалов и объектов. В данной работе мы изучаем свойства модели Изинга на ансамблях конформаций. Конформация — это случайное блуждание по регулярной сетке, которая может представлять молекулу. Структура конформации зависит от температуры. И другие исследования показали, что конформации имеют геометрический фазовый переход. Два состояния конформации при низких и высоких температурах называются глобулой и клубком соответственно. Геометрически конформации глобулы и клубка подобны одномерным и двумерным сеткам. Так как большинство вершин в глобулах имеют 4 соседей, а в клубках — 2. Доказано, что на одномерной сетке модель Изинга не имеет магнитного фазового перехода. Наша гипотеза состоит в том, что глобулярные конформации имеют магнитный фазовый переход. Но на двумерной сетке фазовый переход существует. Целью данного исследования является определение точки магнитного фазового перехода в глобулярных конформациях и сравнение ее с точкой геометрического фазового перехода в конформациях.

Abstract

Ising model is a relatively new model used to determine magnetic properties of materials and objects. In this work we study properties of Ising model on ensembles of conformations. Conformation is a random walk on a regular grid which can represent a molecule. Structure of the conformation depends on the temperature. And other studies have shown that conformations have a geometric phase transition. Two states of conformation at low and high temperatures are called globule and coil respectively. Geometrically globule and coil conformations are similar to one and two dimensional grids. As most vertices in globules have 4 neighbors and in coils they mostly have 2. It was proven that on a one-dimensional grid Ising model has no magnetic phase transition. But on a two-dimensional grid phase transition exists. Our hypothesis is that globular conformations have magnetic phase transition. The goal of this research is to determine the magnetic phase transition point in globular conformations and compare it to the point of geometric phase transition in conformations.

Содержание

1	Вве	дение	4
2	Модель		5
	2.1	Метод Монте-Карло	6
3	Алгоритмы		6
	3.1	Проверка алгоритмов	7
4	Глобулярные конформации		
	4.1	Разделение конформаций	9
	4.2	Статистика по кластерам и мостам	14
	4.3	Результаты разбиения на кластеры	16
	4.4	Кумулянт и точка перехода	17
5	Магнитная восприимчивость		20
	5.1	Результаты замеров	21
	5.2	Магнитная восприимчивость при разделениие конформаций	22
6	Конформации вида клубок		25
	6.1	Магнитная восприимчивость	27
7	Изм	енение температуры конформаций	28

1 Введение

Магнитные свойства важны в различных областях, включая материаловедение и химию. Понимание поведения магнитных моделей на ансамблях конформаций молекул имеет решающее значение как для фундаментальных исследований, так и для практических приложений. В этом исследовании мы стремимся исследовать свойства магнитных моделей ансамблей конформаций молекул.

Чтобы сгенерировать ансамбли конформаций, мы будем использовать широко используемый метод, называемый самоизбегающим случайным блужданием (SAW). Этот метод генерирует конформации, которые точно отражают поведение молекул в растворе. Для изучения магнитных свойств молекул воспользуемся моделью Изинга [1]. Модель Изинга — это математическая модель, описывающая поведение магнитных систем, включая взаимодействия между магнитными моментами и внешним магнитным полем.

Рис. 1. Примеры конформаций

Нас особенно интересуют эти модели из-за их уже известных свойств. Точное решение для модели Изинга [2] показывает, что на одномерной сетке модель Изинга не имеет магнитного фазового перехода, одномерная модель не становится магнитной ни при каких температурах, кроме абсолютного нуля. Но в модели есть фазовый переход на двумерной сетке. Двумерная сетка становится магнитной при низких температурах. И конформации тоже имеют фазовый переход. Два состояния называются глобулой и клубком и соответствуют низким и высоким температурам, пример конформаций представлен на Рис. 1. Структурно состояния конформации, которые в основном проявляются в глобулах и клубках, подобны одномерным и двумерным сеткам соответственно. Учитывая эти факты,

можно предположить, что глобулярные конформации имеют магнитный фазовый переход, а клубки— нет.

Основная цель этой работы - определить существование магнитного фазового перехода модели Изинга на конформациях замороженной глобулы и клубка. Если фазовый переход существует, найдите точную температуру перехода и сравните ее с температурой геометрического перехода для конформаций. В целом, этот проект направлен на углубление нашего понимания свойств магнитных моделей ансамблей конформаций молекул. Знания, полученные в ходе этого проекта, могут найти применение в различных областях, например, при разработке новых материалов с желаемыми магнитными свойствами.

2 Модель

В данной модели мы рассматриваем ансамбли конформаций: множества конформаций одинаковой длинны L, полученные при одинаковых температурах. Мы получаем конформации используя алгоритм SAW. На каждой из конформаций строится модель Изинга [1]. В каждой вершине размещается спин, который может принимать одно из двух значений: +1,-1. Гамильтониан данной системы имеет вид

$$H = -J\sum_{\langle i,j
angle} \sigma_i \sigma_j - h\sum_i \sigma_i$$

где i,j индексы соседних узлов у, J- коэффициент взаимодействия h - воздействие внешнего поля.

Статистическая сумма

$$Z = \sum_{\{\sigma\}} e^{-H(\sigma)\beta}, \beta = \frac{1}{kT}$$

где $\{\sigma\}$ — множество всех возможных наборов значений спинов. β — обратная температура, данное обозначение будет использоваться далее в тексте.

Намагниченность и энергия каждого состояния считаются по следующим формулам

$$E = -J\sum_{i,j}\sigma_i\sigma_j, M = \sum_i\sigma_i$$

Средняя намагниченность системы

$$\langle M \rangle = \frac{1}{Z} \sum_{\{\sigma\}} M e^{-H(\sigma)\beta}$$

2.1 Метод Монте-Карло

Для расчёта модели Изинга используется метод Монте-Карло. Были реализованы версии с односпиновым и кластернным апдейтом [3]. Код представлен в репозитории github [4].

Алгоритм с кластерным апдейтом работает следующим образом. На каждой итерации мы выбираем случайный спин и начиная с него начинаем строить кластер из одинаково направленных спинов, добавляя новые спины в кластер с определённой вероятностью. затем мы меняем значения спинов в кластере на противоположные. В отличие от односпинового апдейта, где есть вероятность, что изменение значения спина не будет принято, в кластерном апдейте новые значения спинов принимаются всегда. В итоге для измерений используется кластерная версия. Благодаря отказоустойчивости и изменению значения сразу нескольких спинов, она работает значительно быстрее, и быстрее сходится, особенно при низких температурах.

Чтобы вычислить намагниченность, мы сначала случайным образом инициализируем спины, затем делаем некоторое число шагов для отжига модели. Далее на каждом шаге мы замеряем намагниченность, и после выполнения определённого числа шагов, усредняем полученные значения. Так как средняя намагниченность равна 0, имеет смысл рассматривать модуль, квадрат намагниченности.

$$\langle M^2 \rangle = rac{1}{n} \sum_{\{\sigma\}} \left(\sum_i \sigma_i
ight)^2$$

$$\langle |M|
angle = rac{1}{n} \sum_{\{\sigma\}} \left| \sum_i \sigma_i \right|$$

3 Алгоритмы

Реализованы два алгоритма обновления спинов. Односпиновый и кластерный апдейт. Оба алгоритма работают на произвольном графе, используя таблицу соседей. Алгоритмы реализованы как отдельные библиотеки для Python, и написаны с использованием технологии Cython для ускорения работы. Кластерный апдейт является более эффективным по времени работы и количеству шагов, которые необходимо выполнить для хорошей сходимости модели.

3.1 Проверка алгоритмов

Чтобы убедиться что алгоритмы работают правильно мы проверили, что оба алгоритма дают одинаковые результаты на одних и тех же конформациях, так же сравнил их с точными решениями для одномерной модели Изинга.

Результаты замеров кластерным и односпиновым апдейтом совпадают в пределах погрешности.

Рис. 2. кластерный и односпиновый апдейт

Для сравнения с точными значениями для одномерной модели Изинга, мы используем замкнутый квадратный контур. Данная конформация по свойствам полностью совпадает с одномерной моделью Изинга с открытыми граничными условиями.

Рис. 3. Сравнение с точным решением одномерной модели

Так же был написан код, точно вычисляющий энергию системы путём полного перебора всех её состояний. Сравнение на маленьких конформациях (длина 10) даёт одинаковые результаты.

Примеры с использованием кластерного апдейта добавлены в библиотеку mc_lib.

4 Глобулярные конформации

Как уже говорилось, Конформации при низких температурах переходит в глобулярную фазу. Данные конформации отличаются более плотно расположенными вершинами, большинство из которых имеет 4 или 3 соседа. Конформации данного вида, предположительно имеют магнитные свойства схожие с двумерной квадратной решёткой.

Для вычислений были сгенерированы по 1000 конформаций длины 250, 500, 1000, 2000. При моделировании методом Монте-Карло делалось 10000–30000 шагов на отжиг, и 50000–100000 шагов для замеров. Оказалось что достаточно боль-

шая часть этих конформаций неплотные, то есть их свойства ближе к свойствам одномерной решётки, чем двумерной. При попытке посчитать среднее значения кумулянта Биндера неплотные конформации Сильно влияли на значение кумулянта, увеличивая погрешность от реплики к реплике.

Рис. 4. Пример кумулянта и намагниченности плотной и неплотной конформаций

4.1 Разделение конформаций

Для отделения плотных конформаций от остальных было предложено вычислять их радиус инерции. $R=\sqrt{\frac{1}{n}\sum_{i=1}^{n}r_{i}^{2}}$, где r_{i} это расстояние от узла конформации до её центра масс. Однако при рассмотрении большого количества конформаций оказалось, что маленький радиус инерции не гарантирует хорошую намагниченность конформации. Это хорошо видно при рассмотрении намагниченности конформаций при низких температурах $\beta=1$

На рис.5, при $R \approx 0.6 \ m^2$ принимают любые значения от 0.2 до 1.0. Значит, при

Рис. 5. Квадрат намагниченности и радиус инерции конформаций длины L=250 при $\beta=1$

разделении конформации только по радиусу инерции, мы либо будем отбрасывать намагничивающиеся конформации, либо оставлять не намагничивающиеся

Рис. 6. Пример плотных немагнитных конформаций с двумя и тремя кластерами

Кластеризованные конформации. На искусственном примере рис.6 показана одна из причин, по которой плотная конформация может плохо намагничиваться. Тут имеется несколько крупных двумерных кластеров, соединённых одномерной цепочкой. И не смотря на то, что сами по себе эти кластеры намагничиваются, направление спинов в них слабо связано, из-за чего спины в разных кластерах с большой вероятностью будут направлены в противоположные стороны. Далее соединяющие цепочки будут называться мостами, длина моста - количество вершин, входящих в него.

На рис.6 приведён пример с очень длинным мостом, чтобы показать, что конформации могут одновременно иметь малый радиус инерции и большую длину

моста. Однако даже в большинстве сгенерированных конформаций длины мостов оказываются значительно меньше.

Для лучшего понимания влияния размеров мостов и кластеров, и количества кластеров на магнитные свойства модели, мы рассмотрели искусственные модели конформаций с кластерами размером: 250, 500, 1000, 2000, Количеством кластеров: 2, 3, 4, и длинами мостов между ними от 1 до 10. Кластеры в конформациях имеют прямоугольную форму, и последовательно соединены мостами снизу. Пример конформаций представлен на рис. 7.

Рис. 7. Пример модели кластеризованной конформации с тремя кластерами и мостами длины 6.

Абсолютные размеры кластеров не показали значительного влияния на магнитные свойства. Поэтому далее будут рассматриваться конформации с кластерами размера 2000.

На рис. 8 видно, что увеличение количества кластеров, и длины мостов ведёт к уменьшению магнитной восприимчивости. Так же можно сказать, что количество кластеров имеет большее влияние на намагниченность, чем длина мостов. А так как в данном случае количесво кластеров напрямую связано с относительным размером кластера, то и относительный размер кластеров, оказывает большее влияние на магнитные свойства модели, чем длина мостов. Данное замечание будет вано далее, при разделении сгенерированных конформаций.

Было сделано предположение, что можно определять намагничивающиеся конформации используя кластеры и мосты. Следующей задачей стало проанализировать конформации на количество и размеры кластеров, а так же мостов. Однако пока мы не дали чёткого определения моста и кластера. Поэтому были рассмотрены несколько вариантов.

Первым вариантом было искать классические мосты – спины, при удалении

Рис. 8. Квадрат намагниченность конформаций с кластерами размера 2000, цветами отмечена длина мостов между кластерами

увеличивается число компонент связанности графа. Однако такой способ не дал желаемого эффекта, так как кластеры могут быть соединены более чем одним мостом. И например на конформации из рис. 9 данный способ не выделяет ни одного моста, хотя там очевидно есть структуры, отделённые друг от друга одномерными цепочками.

Следующий алгоритм выделял как мосты все цепочки спинов у которых 1 или 2 соседа, однако при таком подходе мы получаем мосты, которые соединяют один и тот же кластер. Такие мосты не разделяют кластеры и не оказывают на конформацию эффект описанный выше. Так же этим способом мы выделяем множество вершин на краях конформации как мосты, например вершины в углах прямоугольника будут считаться мостами, что очевидно неправильно.

Итоговая версия алгоритма выделяет как мосты все спины, которые имеют 1 или 2 соседа, и затем добавляет мосты, которые соединяют один и тот же кластер, к этому же кластеру. Таким образом мы оставляем только мосты, которые разделяют конформацию на отдельные плотные части, которые мы и называем кластерами. Данный алгоритм описан ниже.

Алгоритм разбиения на мосты и кластеры

- 1. Отметить все спины с 1 или 2 соседями как мосты.
- 2. Создаём массив, где отмечаем посещённые спины. Создаём массив где для каждого спина будем писать номер его кластера. И переменную отвечающую за текущую длину моста l. Изначально все спины не посещены, l=0.
- 3. Начинаем идти по конформации от первой вершины.
 - (a) Если спин отмечен как мост, то увеличиваем l на 1
 - (b) Если спин не отмечен как мост, и не посещён. Увеличиваем счётчик кластеров на 1 и запускаем DFS(Алгоритм DFS описан ниже). Если l > 0 увеличиваем счётчик мостов на 1, длина нового моста = l. Обнуляем l
 - (c) Если спин не мост, уже посещён, последний встреченный спин, не являющийся мостом, принадлежит тому же кластеру и текущая длина моста l>0. Значит этот мост соединяет один и тот же кластер. Поэтому добавляем предыдущие l спинов к этому кластеру, обнуляем l.
 - (d) Если спин не мост, посещён, но номер кластера отличается от последнего встреченного кластера. Если l>0 увеличиваем счётчик мостов на 1, длина нового моста =l. Обнуляем l
- 4. Проверяем первый и последний мост, если они соединяют один и тот же кластер, или один из их концов не соединён ни с каким кластером, добавляем их в кластер, с которым они соединены.

Алгоритм DFS

- 1. Заходим в вершину.
- 2. Отмечаем вершину как посещённую.
- 3. Отмечаем номер её кластера.
- 4. Увеличиваем счётчик размера текущего кластера на 1.
- 5. Заходим во все соседние не посещённые вершины не мосты.

В данном алгоритме мы пользуемся тем, что мосты обязательно образуются из подряд идущих вершин конформации. Поэтому чтобы определить соединяет ли мост один и тот же кластер, нам достаточно, идя по конформации, запоминать последний встреченный кластер и сравнивать его с новым. Результатом работы алгоритма является размеры кластеров и мостов в конформации, а так же для каждой вершины однозначно определяется кластер или мост, которому она принадлежит. Пример работы алгоритма представлен на рис. 9, данная конформация так же является примером, ого, как глобулярная конформация с малым радиусом инерции может оказаться разбитой на кластеры, и из-за этого слабо намагничиваться.

Рис. 9. Пример реальных конформаций с маленьким радиусом инерции и маленькой намагниченностью. Фиолетовым отмечены кластеры, жёлтым – мосты

4.2 Статистика по кластерам и мостам

Ниже представлены гистограммы с размерами и числом кластеров и мостов в конформациях. Посчитано на 10000 конформациях с длинами 250, 500, 10000, конформации получены при $\frac{U}{T}=1$. Размеры кластеров и длины мостов нормированы на длины конформаций.

Рис. 10. Распределение длин мостов.

Рис. 11. Распределение числа мостов в конформации.

Рис. 12. Распределение числа кластеров в конформации.

Рис. 13. Распределение размера кластеров.

Рис. 14. Распределение размера наибольшего кластера в конформации.

4.3 Результаты разбиения на кластеры

Результаты анализа связи между намагниченностью и количеством и размерами кластеров и мостов подтверждают сказанное выше. У конформаций с большим числом кластеров обычно намагниченность ниже чем у конформаций с одним большим кластером.

Я рассмотрел несколько параметров: количество мостов, количество кластеров, суммарная длина мостов, размер наибольшего кластера. Наилучшим способом разделения конформаций на магнитные и немагнитные сейчас выглядит именно разделение по размеру наибольшего кластера. Как видно на рис.15 при разбиении по данному параметру разброс намагниченности значительно ниже, чем при разбиении по радиусу инерции. Данный параметр можно легко масштабировать для разных длин конформаций.

Сравнение разделения по кластерам и по радиусу Чтобы оценить и сравнить эффективность разбиения конформаций при помощи размера наибольшего кластера и радиуса инерции воспользуемся следующим способом.

- 1. Зададим значение намагниченности μ , начиная с которого будем считать конформации намагниченными.
- 2. Из всех сгенерированных конформаций возьмём n конформаций с наименьшими радисоми инерции, и n конформаций с наибольшими размерами кластеров.
- 3. Среди выбранных конформаций посчитаем $k_{\mu,n}$ количество конформаций, намагниченность которых $<\mu$. Чем ниже это значение, тем лучше соответствующий способ разделения.

Рис. 15. График размера наибольшего кластера и квадрата намагниченности для 10000 конформаций длины 1000

4. Повторяем предыдущие пункты для разных значений μ и n.

Сравнивая полученные значения $k_{\mu,n}$ можем определить, какой из способов эффективнее. На рис.16 видно как примерно ведут себя данные значения: до определённого п они равны 0, затем, дойдя до границы между магнитными и немагнитными конформациями, оно начинает расти, после чего рост становится линейным, так как все оставшиеся конформации не являются магнитными. Лучше разницу между двумя способами видно на рис.17, где, при всех значениях μ и n, разница $k_{\mu,n}$ остаётся отрицательной. То есть разделения по радиусу инерции всегда оставляет больше немагнитных конформаций, чем разделение по размеру кластеров.

4.4 Кумулянт и точка перехода

Кумулянт Биндера для одной реплики при заданной температуре вычисляется по формуле $U=1-\frac{\langle m^4\rangle}{3\langle m^2\rangle^2}$. Дальше Значения усредняются между репликами при каждой температуре $\langle U\rangle=\frac{1}{n}\sum_{i=1}^n U_i$ Погрешность кумулянта от реплики к реплике вычисляется как среднеквадратичное отклонение по формуле $\sqrt{\frac{1}{n}\sum_{i=1}^n (\langle U\rangle-U_i)^2}$

Рис. 16. График $k_{\mu,n}$ для разделения по кластерам и по радиусу, при $\mu=0.8$.

Как видно на рис.18 вычисление кумулянта на всех сгенерированных конформациях даёт слишком больше погрешности от конформации к конформации, из-за этого становится невозможно определить точку перехода.

Описанный выше способ разделения конформаций на магнитные и немагнитные должен позволить уменьшить погрешность при вычислении кумулянта. Чтобы подобрать значение параметра(размер наибольшего кластера), при котором будет происходить разделение, мы стали перебирать значения, и следить за поведением точки пересечения. Предположительно при увеличении параметра точка пересечения должна двигаться в сторону нуля, и начиная с определённого значения она должна остановиться.

Так как погрешность при вычислении кумулянта всё равно остаётся достаточно большой, мы используем следующий подход для вычисления точки пересечения. Рядом с предполагаемой точкой пересечения берём несколько соседних значений β в которых мы делали замеры. Используя среднее значение и среднеквадратичное отклонение кумулянта для конформаций в этих точках как параметры для нормального распределения генерируем новые значения кумулянта. Далее используя метод наименьших квадратов проводим отрезок наиболее близкий к сгенерированным точкам. Таким образом генерируем пары отрезков для конформаций разных длин, определяем точки пересечения каждой пары отрезков (если отрезки не пересекаются, генерируем заново), и затем усредняем координаты пересечений.

Мы рассмотрели различные значения минимального размера кластера, начи-

Рис. 17. График разности: $k_{\mu,n}$ при кластерном разделении и $k_{\mu,n}$ при разделении по радиусам. На 10000 конформаций длины 1000. Каждая линия соответствует одному значению μ .

Рис. 18. кумулянты построенные на всех полученных конформациях

ная с которого мы будем использовать конформации для вычисления кумулянта. Как и ожидалось, при увеличении размера кластера, ожидаемая точка пересечения сдвигается в сторону нуля, и в какой-то момент останавливается.

Однако несмотря на уменьшение погрешности, она всё ещё слишком большая для точного определения точки перехода. На рис. 19 примеры полученных точек пересечения. Из-за больших погрешностей у кумулянта, сгенерированный точки пересечения очень сильно зависят от того, какие точки мы возьмём для генерации. При изменении минимального требуемого размера кластера результат почти не меняется.

Пока что мы не нашли способа точно определить точку перехода используя

Рис. 19. Точки пересечения, полученные после разделения конформация по размеру кластерав, полученные генерацией отрезков с использованием разных точек замеров.

кумулянт Биндера, из-за того что даже среди глобулярных конформаций значения намагниченности имеют слишком большой разброс, что приводит к большим погрешностям кумулянта. Дальнейшие попытки определить точку перехода буду опираться на другие методы.

5 Магнитная восприимчивость

Один из способов определить точку перехода это определить пик магнитной восприимчивости конформаций. Как описано в [5] точка магнитного перехода и пик магнитной восприимчивости должны совпадать. Если пик отсутствует, значит отсутствует точка магнитного перехода.

Магнитная восприимчивость это отношение намагниченности конформации к напряжённость внешнего поля. Ожидается, что в намагничивающихся конформациях в точке перехода должен наблюдаться пик магнитной восприимчивости, в то время как в не намагничивающихся магнитная восприимчивость не будет иметь пиков.

Получим формулу для магнитной восприимчивости конформации.

По определению

$$\chi = \frac{\partial \langle |M| \rangle}{\partial h}$$

Подставим формулу намагниченности и продифференцируем.

$$\frac{\sum_{\sigma} |M| e^{-\beta H} \left(-\beta \frac{\partial H}{\partial h}\right) \cdot Z - \sum_{\sigma} |M| e^{-\beta H} \cdot \sum_{\sigma} e^{-\beta H} \left(-\beta \frac{\partial H}{\partial h}\right)}{Z^2}$$

Заметим, что

$$\frac{\partial H}{\partial h} = -\sum_{i} \sigma_{i} = -|M|$$

Тогда

$$\chi = \frac{\partial \langle |M| \rangle}{\partial h} = \frac{\sum_{\sigma} Z \beta M^{2} e^{-\beta H} - \sum_{\sigma} |M| e^{-\beta H} \cdot \sum_{\sigma} \beta |M| e^{-\beta H}}{Z^{2}} = \beta \left(\langle M^{2} \rangle - \langle |M| \rangle^{2} \right)$$

По данной формуле мы можем вычислить магнитную восприимчивость конформаций, используя значения абсолютной намагниченности и квадрата намагниченности, полученные при при расчёте модели Изинга.

5.1 Результаты замеров

Для рассмотрения были взяты 10000 конформаций с длинами 250, 500 и 1000. Замеры были сделаны при 10 значениях $\boldsymbol{\beta}$, линейно распределённых от 0.1 до 1.0.

Все конформации либо имеют единственный пик магнитной восприимчивости, либо магнитная восприимчивость непрерывно возрастает с увеличением $\pmb{\beta}$.

Рис. 20. Распределение пиков магнитной восприимчивости по конформациям. Цветами отмечены разные длины конформаций. Число конформаций каждый длины 10000.

Как видно на Рис.20 при увеличении длины конформаций пики магнитной восприимчивости начинают встречаться либо около $\beta=0.5$ либо $\beta=1.0$. Конформации с пиком в $\beta=1.0$, то есть конформаций, у которых магнитная вос-

Рис. 21. Средняя намагниченность конформаций с пиками магнитной восприимчивости в $\beta=1$. Цветами отмечены разные длины конформаций.

приимчивость непрерывно возрастает, являются не намагничивающимися (Рис. 21). Тогда точка перехода должна находиться в окрестности $\beta = 0.5$, что совпадает с предположительным положением точки перехода, полученным при помощи Кумулянта Биндера [6] ранее.

Для уточнения точки перехода были сделаны замеры в десяти точках на отрезке [0.4,0.6]. Так же рассматривались только конформации, у которых ранее был найден пик при $\beta=0.5$ или $\beta=0.6$. Число рассматриваемых конформаций 6873, 7037, 6739 для длин 250, 500 и 1000 соответственно. Результаты представлены на Рис.22. При увеличении длины конформаций значительно увеличивается количество конформаций с пиками в $\beta=0.50, \beta=0.52$, однако так же появляются пики в $\beta=0.48$ и $\beta=0.6$ хотя и сравнительно меньше. Текущих данных ещё недостаточно для точного определения точки перехода.

5.2 Магнитная восприимчивость при разделениие конформаций

Ранее при исследовании кумулянта Биндера для определения точки перехода, мы отбирали намагничивающиеся конформации от ненамагничивающихся по их радиусу инерции и размерам кластеров. И это позволило нам значительно уменьшить значения погрешности при вычислении кумулянта. Мы решили попробовать применить такой же метод отбора конформаций, при вычислении магнитной восприимчивости.

Для всех сгенерированных конформаций мы вычислили долю вершин, занимаемых наибольшим кластером (ранее именно эта метрика показывала лучшие

Рис. 22. Распределение пиков магнитной восприимчивости для конформаций с пиком около $\beta = 0.5$. Цветом отмечены длины конформаций.

результаты при выборе конформаций). Далее мы отбросили все конформации,у которых относительны размер кластера меньше заданного параметра μ , и построили распределение пиков магнитной восприимчивости для оставшихся конформаций. На рис. 23 представлен пример получившихся распределений для разных значений μ . На данном графике к конформациям с пиком в 0.6 так же относятся конформации, у которых отсутствует пик. Аналогичные результаты получаются и для конформаций другой длины. Как видно на графике, отбор конформаций по размеру кластера влияет только на количество конформаций без пиков намагниченности.

Чтобы объяснить, почему разделение конформаций по размеру кластеров, только убирает конформации без пиков намагниченности снова рассмотрим искусственные кластеризованных конформаций описанных в параграфе 4.1. Как видно на рис. 24, у всех конформаций, независимо от количества кластеров и длины мостов, магнитная восприимчивость не имеет пиков. Можно предположить что сгенерированные конформации, разделённые на кластеры, так же не имеют пиков магнитной восприимчивости. Что хорошо сходится с результатами полученными на рис. 23. Так же на рис. 4.1 можно заметить отличия между конформациями с двумя кластерами и конформациями с 3 и 4 кластерами. Главное из которых заключатся в увеличении магнитной восприимчивости при удлинении мостов между кластерами. Что особенно интересно, учитывая схожесть поведения магнитной восприимчивости в конформациях с 3 и 4 кластерами. Пока что мы не можем

Рис. 23. Распределение пиков магнитной восприимчивости после выбора конформаций по размеру наибольшего кластера. Цветами отмечены минимальные значения относительных размеров кластера. Для конформаций длины 2000, исходное число конформаций 10000

объяснить, почему это происходит, требуются дополнительные исследования.

Рис. 24. Магнитная восприимчивость конформаций с кластерами размера 2000, цветами отмечена длина мостов между кластерами

6 Конформации вида клубок

До этого мы рассматривали только конформации полученные при низких температурах, где мы хотим определить точку перехода. Другая часть этого исследования заключается в проверке того, что у конформаций, полученных при низкой температуре, магнитный фазовый переход не отсутствует.

Для этого были сгенерированы 4 набора конформаций с длинами 250, 500, 1000, 2000 по 1000 конформаций в каждом наборе. Как и ожидалось средняя намагниченность по конформациям значительно меньше, чем у конформаций при U=1 (сравнение на Puc. 25).

Среди полученных конформаций так же встречаются намагничивающиеся. Однако если мы посмотрим на намагниченность конформаций при $\beta=1$ то среди конформаций длины 250 будет только 4 конформации с намагниченностью больше 0.9, среди конформаций длиной 500 их 2, и в наборах с длинами 1000 и 2000 таких конформаций нет. На рис.26 видно, что не намагничивающиеся конформации составляют большую часть всех конформаций, и что при увеличении длины конформаций, доля намагничивающихся конформаций уменьшается. Максимальная намагниченность, достигаемая конформациями: 0.950, 0.947, 0.799, 0.788 - для

Рис. 25. Средняя намагниченность конформаций при U=0.1. Цветами отмечены конформации разной длины, число конформаций каждой длины - 1000. Красный график намагниченности конформаций при U=1, длины 1000.

длин 250, 500, 1000, 2000 соответственно.

Рис. 26. Доля конформаций, намагниченность которых в точке $\beta=1$ больше чем заданное значение. Цветами отмечены конформации разной длины, число конформаций каждой длины - 1000.

При увеличении длины конформаций средняя намагниченность, и максимальная достигаемая намагниченность уменьшаются. Что подтверждает предположение о том, что при $L \to \infty$ конформации не будут намагничиваться.

6.1 Магнитная восприимчивость

Выше мы использовали магнитную восприимчивость для определения точки магнитного перехода, в глобулярных конформациях. В конформациях типа клубок, магнитная восприимчивость не должна иметь пиков, так как в них отсутствует магнитный переход, и в целом магнитная восприимчивость, как и другие свойства этих конформаций, должна быть схожа с одномерной моделью Изинга.

Действительно,у большинства конформаций полученных при U=0.1 отсутствуют пики, и график магнитной восприимчивости имеет такой же вид как и у одномерной модели изинига. Пример графиков представлен на рис. 27. На этом же графике представлен пример масштабирования магнитной восприимчивости конформации, для сравнения с одномерной цепочкой.

Рис. 27. сравнение магнитной восприимчивости типичной конформации при U=0.1 и магнитной восприимчивости одномерной моделии изинга, с открытыми граничными условиями. На втором графике магнитная восприимчивость конформации домножена на коэффициент, подобранный методом наименьших квадратов.

Чтобы убедиться что большинство конформаций имеют магнитную восприимчивость схожую с одномерной цепочкой мы вычислили среднеквадратичное отклонение магнитной восприимчивости конформаций от одномерной цепочки. Распределение полученных значений представлено на рис. 28. На нём мы можем видеть пик в 0, означающий что большинство конформаций имеют магнитную восприимчивость близкую к одномерной модели. Так же интересным наблюдением является форма распределения, которая схожа с распределениями полученными при исследования кластеров и мостов в конформациях пи U=1.

При рассмотрении пиков магнитной восприимчивости, распределение которых представлено на рис. 29, видно что у большинства конформаций (больше 90%) пик отсутствует и магнитная восприимчивость достигает максимума при $\beta=1$. По данному графику можно предположить, что при увеличении длины конформаций

Рис. 28. Распределение значений среднеквадратичного отклонения магнитной восприимчивости конформаций от одномерной цепочки длины 1000.

так же увеличивается доля конформаций с пиком в $\beta=1$, но особенность при L=500 не позволяет утверждать что-то однозначно. Для подтверждения требуется повторить замеры с большим количеством конформаций

Рис. 29. Распределение пиков магнитной восприимчивости

7 Изменение температуры конформаций

До этого мы рассматривали только конформации, строго находящиеся в одной из фаз, клубки либо глобулы, U=0.1 и U=1.0. Данный раздел будет посвящён конформациям близким к геометрической точке перехода. Мы рассмотрим, как магнитные свойства конформаций меняются при изменении температуры конформаций при их генерации.

Для рассмотрения мы взяли по 1000 конформаций с длинами 250, 500, 1000,

2000. Полученных при $U \in \{0.1, 0.2 \dots 0.9, 1.0\}$.

Намагниченность и магнитная восприимчивость, представленные на рис. 30 и рис. 31 соответственно, почти не меняются на $U \in [0.1, 0.5]$

Рис. 30. Намагниченность конформаций полученных при разных температурах, цветом обозначено значение U при генерации.

Рис. 31. Пики магнитной восприимчивости конформаций полученных при разных температурах, цветом обозначено значение U при генерации. Ширина прямоугольников уменьшается при увеличении U, чтобы лучше различать значения

Список литературы

- [1] E. Ising, "Contribution to the theory of ferromagnetism," 1925.
- [2] R. J. Baxter, Exactly Solved Models in Statistical Mechanics. Elsevier, 2016.
- [3] U. Wolff, "Collective monte carlo updating for spin systems," Physical Review Letters, vol. 62, no. 4, p. 361, 1989.
- [4] "Рабочий репозиторий," https://github.com/MoskalenkoRomanBorisovich/Ising-on-random-conformation.
- [5] R. H. Swendsen, "An introduction to statistical mechanics and thermodynamics (2nd edn)," An Introduction to Statistical Mechanics and Thermodynamics (2nd edn), 2020.
- [6] K. Binder, "Finite size scaling analysis of ising model block distribution functions," Zeitschrift für Physik B Condensed Matter, vol. 43, pp. 119–140, 1981.