Universidad Nacional de Río Negro Física III B - 2018

Unidad 02

Clase U02 C06 - 11

Cont Máquinas térmicas

Cátedra Asorey

Web github.com/asoreyh/unrn-f3b

YouTube https://goo.gl/nNhGCZ

Contenidos: Termodinámica, alias F3B, alias F4A

Macquinas térmicas

- Máquina térmica: dispositivo cíclico que absorbe calor de una fuente caliente, realiza un trabajo mecánico y entrega la energía remanente en forma de calor a una fuente fría
 - Este calor no es aprovechable por la misma máquina térmica

La bomba por dentro

H. Asorey - F3B+F4A 2018

Misma bomba

H. Asorey - F3B+F4A 2018

Otra: máquina de Newcomen

H. Asorey - F3B+F4A 2018

Regulador de Watt

El pistón de doble acción

Indicador de evolución de Richard ¡diagrama PV real!

Un ciclo que funciona

EL inicio de la revolución industrial

Admisión:

el vapor de alta presión ingresa (ingreso de energía desde la fuente caliente)

Expansión:

comienza la expansión del vapor desplazando al pistón y produciendo trabajo mecánico

Escape:

Rápida salida de vapor de baja presión hacia la fuente fría

Compresión:

La admisión de vapor del otro lado del cilindro comprime el remanente y ecualiza las presiones para la nueva admisión

12/30

Un ciclo que funciona El inicio de la revolución industrial

Admisión:

el vapor de alta presión ingresa (ingreso de energía desde la fuente caliente)

• Expansión:

comienza la expansión del vapor desplazando al pistón y produciendo trabajo mecánico

• Escape:

Rápida salida de vapor de baja presión hacia la fuente fría

Compresión:

La admisión de vapor del otro lado del cilindro comprime el remanente y ecualiza las presiones para la nueva admisión

Ciclo Otto

H. Asorey - F3B+F4A 2018

FASES DE UN MOTOR DE 4 TIEMPOS

ADMISIÓN

Pistón baja y entra combustible por la válvula de admisión

El cigueñal da 1/2 revolución

COMPRESIÓN

Pistón sube y el combustible y el aire se comprimen. Las válvulas están cerradas El cigueñal da ½ revolución

EXPLOSIÓN

La mezcla del combustibley de aire explota. Como las válvulas están cerradas el pistón baja. Potencia El cigueñal da ½ revolución

ESCAPE

Pistón sube y expulsa los gases quemados por la válvula de escape El cigueñal da ½ revolución

EN UN MOTOR DE 4 T SE PRODUCE UNA EXPLOSIÓN (FASE POTENTE) CADA 2 REVOLUCIONES

Ciclo Otto, combustión isócora

May 03, 2018

H. Asorey - F3B+F4A 2018

16/30

El ciclo Otto - realista

May 03, 2018

H. Asorey - F3B+F4A 2018

Ciclo Otto, el motor

Ciclo Diesel

Ciclo Diésel

© 2007 Encyclopædia Britannica, Inc.

Ciclo Diésel o ciclo de combustión isóbara

Ciclo Diésel o ciclo de combustión isóbara

May 03, 2018

H. Asorey - F3B+F4A 2018

Ciclo Diesel

Ciclo diesel, más realista

Motor transparente

Máquinas térmicas

 Máquina térmica: obtengo trabajo mecánico a partir de la transferencia de calor de la fuente caliente a la fuente fría...

Muerte térmica

- Fuente caliente: cede calor, se enfría
- Fuente fría: absorbe calor, se caliente
- La máquina térmica "aprovecha" ese flujo para liberar energía en forma de trabajo mecánico "útil"
- Cuando T_c = T_f → no hay flujo de calor → muerte térmica

Ciclo inverso → Máquina frigorifica

- Si entrego trabajo, es posible transferir calor de la fuente fría a la caliente
- Heladera

Máquina reversible e irreversible

Si la máquina térmica no es reversible, Q_c < Q

Ciclo combinado

Mejora de la eficiencia global

