Introduction to Computer Architecture - Answers 2013

All questions are compulsory, questions are weighted equally.

Answer to Question 1

Qa,b,d are easy questions testing basic knowledge & understanding.C tests ability to optimise code (i) is bookwork.

1.							
	a)						
		(i)	$13631489 (2^{23})$	*0b1.101 000 000 000 0001)	2		
		(ii)	$13631490 (2^{23})$	*0b1.101 000 000 000 0010)	2		
		(iii)	As (i) but exp is	one larger \Rightarrow X2.			
				p=24, so difference between successive IEEE-754 range is 2. Half of this (1) is the max deviation from the			
			27262977 – 2726	62979 (13631489*2 ±1)	2		
	Common mistakes were to get exponent wrong, or to give an approximate answer (calculator will not have enough precision unless used carefully)						
					[6]		
	b)						
		(i)	0x 34D25		1		
		(ii)	0x03		1		
		(iii)	invalid, will caus	se memory abort exception	1		
		Many did not identify that (iii) was invalid, and that it would result in an exception.					
			скесрион.		[3]		
	,						
	c)	(i)	ADD R1, R2, R2,	IsI #6	3		
		(ii)		sl #1; works because C=0	3		
		ivially	OOK 2 OF IIIOF IIISt	ructions to implement (ii)	[6]		
	d)						
	,		T = 100MHz/(1+3*0.3*0.25) = 81.6MHz (or 0.816 instructions/cycle)				
			code will contain to decreasing thro	n many LDR/STR instructions which also cause pipeline bughput.	2		
		222.10)	- 3.00. 0.00mg time	O-	[5]		

Answer to Question 2

This question tests ability to understand and analyse operation of ARM assembly code in detail. It requires accuracy and comprehensive understanding of the instructions, but is straightforward.

- (a) tests understanding of two's complement arithmetic.
- (b) test understanding of shift and rotate instructions.
- (c) tests understanding of LDR/LDRB instructions.

Marks are awarded 1 per answer not flagged n/a. Note that condition codes CV and NZ are counted as separate answers.

Mistakes here were too varied to categorise. Worth noting that many lost marks with incorrect condition codes.

Location (word)	Value
0x100	0x04030201
0x104	0x08070605
0x108	0x0F0C0D0A
>0x108	0

Figure 2.1. Memory locations

MOV R1, #10 MOV R2, #3 MOV R3, #0 MOV R4, #1 MOVS R2, R2, ror #1 MOV R5, #-2 ADDMI R3, R3, R1 MOV R4, #0x104 ADDS RO, R4, R5 SBCS R1, R5, R4 MOVS R2, R2, ror #1 ANDS R3, R4, #7 ADDMI R3, R3, R1, Isl #1 LDRB RO, [R4, #3] RSB R2, R4, #80000000 MOVS R2, R2, ror #1 LDRB R1, [R4, #-1] MVNS R3, #0 ADDMI, R3, R3, R1, Isl #2 LDR R2, [R4, R3, Isl #1] (b) (c) (a)

Figure 2.2. Code fragments

	R0	R1	R2	R3	R4	NZ CV	Time	Marks
(a)	-1	-4	0x4C4B3FF	0xFFFFFFF	1	10 10	n/a	7
			79999999	-1				
(b)	n/a	10	0x60000000	30	n/a	00 00	9	6
			1610612736					
(c)	8	4	0	4	0x104	00 n/a	14	7
					260			

Figure 2.3. Template for answers

ANSWERS: Introduction to Computer Architecture

ANSWERS page 3 of 5

Answer to Question 3

This question tests understanding of subroutines, and operation of LDM/STM instructions, as well as how to optimise sequential access to memory.

a) This qu	mem32[a+8] :: execution time 40 [allow 1/2 for correct] uestion was well	= mem32[b+4] $= mem32[b+8]$ $e = 4 (STM) + 6*$ time if working s	shows STM, LDI	4(LDM) + 4 (MOV) + 4 (BL) = R/STR, and LDM time is all out what the memory transfer was. ters.	2 1 1	
b)	1: mem32[c] := F R13 := R13+4 8/9: R2 := mem32[(push R2)			[6]	
	R13 := R13 - 4 (pop R2) PC := R14 R2 is pushed onto an empty ascending stack with SP R13, and then popped back off it at end. Finally a branch is made to the address stored in R14 (which will be the return address written by a BL instruction). R2 must be saved on stack because it is used as working register by subroutine. Many missed the reasons for the operations					
c)						
	LDMIA R1,	{R2,R3,R4}			2	
	STMIA RO,	{R2,R3, R4}			2	
	24 -12 = 12 6	cycles			1	
Some g	got the directio	n of mem transf	ers wrong here.			
	on mistake wa	s to increment t	he base register	s R1,R0, that must not happen	[5]	
d)	1 2 3 4 5	MOVE	STMEA LDMIA STMIA LDMEA MOV	R13!, {R2,R3,R4} R1, {R2,R3,R4} R0, {R2,R3,R4} R13!, {R2,R3,R4} PC, R14		

ANSWERS page 4 of 5

Total time saved = 12 – 4 (longer STMED/LDMED) = 8 cycles

1

Most found this question quite easy.

[5]

ANSWERS page 5 of 5