Deep Learning

Representative Power of Multilayer Networks

 A multilayer network of perceptrons with a single hidden layer can be used to approximate any Boolean function precisely

 A multilayer network of sigmoid neurons with a single hidden layer can be used to approximate any continuous function to any desired precision

- For any function f(x): $\mathbb{R}^n \to \mathbb{R}^m$, we can find a network with enough neurons, whose output g(x) satisfies $|g(x) f(x)| < \epsilon$
- Such an arbitrary function can be represented by several tower functions

- All tower functions are similar and only differ in height and position on x-axis
- A black box takes some input and constructs a tower function
 - A network can add them up to approximate the function
- If we take the logistic function and set w to a very high value, we can recover step function
 - w controls the slope of the logistic function
- Can also adjust value of b to control position on xaxis at which function transitions from 0 to 1

Take two such sigmoid functions, with different b's, and subtract them – will get a tower function

- More input parameters??
- Ex. 2 parameters

Single Hidden Layer Neural Network

Feedforward Neural Network

- Input is an n-dimensional vector (0th layer) ∈ Rⁿ
- Network has L-1 hidden layers
- 1 output layer containing k neurons (ex. for k classes)
- Each neuron aggregation and activation

Feedforward Neural Network

Assuming n^i neurons in hidden layer h^i , $W^i \in \mathbb{R}^{n(i-1)*ni}$ and $b^i \in \mathbb{R}^{ni}$ between layers i -1 and i for 0 < i < L

 $W^L \in \mathbb{R}^{ni^*k}$ and $b^L \in \mathbb{R}^k$ between last hidden layer and output layer

Aggregation at layer $i : \mathbf{z}^i = \mathbf{W}^i \mathbf{a}^{i-1} + \mathbf{b}^i$

For first hidden layer: $\mathbf{z}^1 = \mathbf{W}^1 \mathbf{a}^0 + \mathbf{b}^1$

$$\begin{bmatrix} z_1^1 \\ z_2^1 \\ z_3^1 \end{bmatrix} = \begin{bmatrix} W_{11} & W_{12} & W_{13} \\ W_{21} & W_{22} & W_{23} \\ W_{31} & W_{32} & W_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} \sum W_{1i} x_i + b_1 \\ \sum W_{2i} x_i + b_2 \\ \sum W_{3i} x_i + b_3 \end{bmatrix}$$

Activation at layer $i = g(\mathbf{z}^i) = g(\mathbf{b}^i + \mathbf{W}^i \mathbf{a}^{i-1})$ For first hidden layer: $g(\mathbf{z}^1) = g(\mathbf{b}^1 + \mathbf{W}^1 \mathbf{a}^0)$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} g(z_1) \\ g(z_2) \\ g(z_3) \end{pmatrix}$$

Eg. $g(z_1) = \sigma(z_1) = 1 / (1 + e^{-z_1})$ g: activation function (logistic, tanh, linear etc.)

Aggregation at output layer $L = z^{L} = \mathbf{W}^{L} \mathbf{a}^{L-1} + \mathbf{b}^{L}$

$$z_1 = w_{11}x_1 + w_{12}x_2 + w_{13}x_3 + b$$

$$z_2 = w_{21}x_1 + w_{22}x_2 + w_{23}x_3 + b$$

Activation at output layer $L = \hat{\mathbf{y}} = g(z^L) = g(\mathbf{W}^L \mathbf{a}^{L-1} + \mathbf{b}^L)$

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} g(z_1) \\ g(z_2) \end{pmatrix}$$

Learning parameters

In given example, dimensions of parameters:

- $W^1: n^{1*}n$ $b^1:n^1$
- W^2 : n^2*n^1 $b^2:n^2$
- W^{L} : $n^{2}*k$ **b**^L:k
- Assuming L layers and nⁱ neurons in hidden layer hⁱ
 and k neurons in output layer, no. of parameters to
 be learned:
 - Weights: $(L-1)*(n^{i-1}*n^i) + (n*k)$ for 0 < i < L
 - Bias: $(L-1)*n^i + k$

Learning parameters

- Data: $\{x_i, y_i\}$ i = 1..m
- Model:

$$\hat{\mathbf{y}} = f(\mathbf{x}) = g(\mathbf{W}^3 g(\mathbf{W}^2 g(\mathbf{W}^1 \mathbf{x} + \mathbf{b}^1) + \mathbf{b}^2) + \mathbf{b}^3)$$

 $\hat{\mathbf{y}} = [\hat{y}^1 \quad \hat{y}^2 \dots \hat{y}^k]$

- Algorithm: Gradient Descent with back Propagation
- Loss/Error function: Sum of squared error loss

$$min \frac{1}{N} \sum_{i=1}^{m} \sum_{j=1}^{k} (\hat{y}_j^i - y_j^i)$$
 for i^{th} sample for all classes j

Learning parameters

Gradient Descent:

```
t:=0;  \begin{aligned} & max\_iterations \text{:=} 1000; \\ & \text{Initialize } \boldsymbol{\theta_0} \text{:=} [\mathbf{W^1}_0, ... \mathbf{W^L}_0, \, \mathbf{b^1}_0 \, ... \, \mathbf{b^L}_0]; \\ & \text{while } t\text{++} < & max\_iterations \text{ do} \\ & \boldsymbol{\theta_{t+1}} \text{:=} \boldsymbol{\theta_t} - \eta \nabla \boldsymbol{\theta_t}; \\ & \text{end} \end{aligned}
```

where,
$$\nabla \theta_t = \left[\frac{\partial L(\theta)}{\partial W_t}, \frac{\partial L(\theta)}{\partial b_t} \right]^T$$

$\nabla\theta$ composed of:

- $-\nabla W^{1}$, ∇W^{2} ,... $\nabla W^{L-1} \in R^{n(i-1)xni}$, $\nabla W^{L} \in R^{nxk}$
- $-\nabla b^1$, ∇b^2 ,... $\nabla b^{L-1} \in \mathbb{R}^{ni}$, $\nabla b^L \in \mathbb{R}^k$

- Loss function should capture how much \hat{y}_i deviates from y_i
- $y_i \in \mathbb{R}^n$ then squared error loss can be used:

$$L(\theta) = (1/N)^* \sum (y_i - \hat{y}_i)^2$$

Problems with squared error loss:

$$\frac{\partial L(w,b)}{\partial w} = (\hat{y} - y) * \hat{y}*(1-\hat{y})*x$$

Undesirable

- If
$$y_i = 1$$
 and $\hat{y}_i \sim 0$, $\frac{\partial L(w,b)}{\partial w} \sim 0$

- If
$$y_i = 0$$
 and $\hat{y}_i \sim 1$, $\frac{\partial L(w,b)}{\partial w} \sim 0$ Undesirable

Weight updation becomes very slow

- Information content (IC):
 - Events with high probability have low information content
 - "The sun will rise tomorrow"
 - Events with low probability have high information content
 - "There will be a cyclone tomorrow"
- $IC(A) = -\log_2(p(A))$
- Entropy: Expected information content = $\sum p_i * IC(i)$

$$= -\sum p_i \log_2(p_i)$$

```
Entropy: y_i = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} //Team B wins game \hat{y}_i = \begin{bmatrix} 0.2 & 0.1 & 0.4 & 0.3 \end{bmatrix} //Our prediction 10K 5K 8K 1K //Profit for each team win Expected profit??
```

• Entropy: Expected information content = $\sum p_i IC(i)$ = $-\sum p_i \log_2(p_i)$

- Cross-entropy: gives a measure on how close a predicted distribution is to a true distribution
 - True distribution p_i , Estimated distribution q_i
 - Estimated information content = $-\sum p_i \log_2(q_i)$
 - Capture difference between two probability distributions
 - If prediction is close to actual, cross entropy will be low

$$L(\theta) = -\sum y_c \log_2(\hat{y}_c)$$
 for all k classes
 $y_c = 1$ if $c = t$ (true class)
 $= 0$ otherwise
 $L(\theta) = -\log_2(\hat{y}_t)$

- Objective function for classification:
 - Cross-entropy Loss

```
minimize: L(\theta) = -\log_2(\hat{y}_t)
```

 \hat{y}_t : predicted probability of correct event

 $\log_2(\hat{y}_t)$: probability that x belongs to t^{th} class, log-likelihood of data

Output and Loss function

- Output activation function:
 - Sum of outputs should be 1
 - $-\hat{y}$ should be a probability distribution
 - Sigmoid probabilities will be 0<p<1 but sum not equal to 1

Output Activation Function

Softmax function

$$z^{L} = b^{L} + W^{L} a^{L-1}$$

$$\hat{y} = g(z^{L}_{j}) = e^{z}_{j} / \sum e^{z}_{j} \qquad \text{for } j = 1..k$$

$$z^{L}_{j} \text{ is } j^{\text{th}} \text{ element of } z^{L}$$

• Example: $z^L = \begin{bmatrix} 10 & 20 & -30 \end{bmatrix}$ $\hat{y} = \begin{bmatrix} e^{10}/(e^{10} + e^{20} + e^{-30}) & e^{20}/(e^{10} + e^{20} + e^{-30}) & e^{-30}/(e^{10} + e^{20} + e^{-30}) \end{bmatrix}$

NOTE: Exponent converts –ve values to +ve values

	Outputs	
	Real values	Probabilities
Output activation	Linear	Softmax
Loss function	Squared error	Cross-entropy

Backpropagation

How to compute $\nabla\theta$ composed of:

 ∇W^1 , ∇W^2 ,... $\nabla W^{L-1} \in R^{nxn}$, $\nabla W^L \in R^{nxk}$ ∇b^1 , ∇b^2 ,... $\nabla b^{L-1} \in R^n$, $\nabla b^L \in R^k$

Backpropagation

Assuming classification problem, $L(\theta) = -\log_2(\hat{y}_t)$

• To learn weight w_{12}^{-1} use SGD and compute $\frac{\partial L(w,b)}{\partial W_{12}}$

Backpropagation

Assume a deep thin network, who is responsible for the loss??

Find derivative by chain rule:

$$\frac{\partial L(\theta)}{\partial W_{11}^{1}} = \frac{\partial L(\theta)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_{1}^{L}} * \frac{\partial z_{1}^{L}}{\partial a_{1}^{2}} * \frac{\partial a_{1}^{2}}{\partial z_{1}^{2}} * \frac{\partial z_{1}^{2}}{\partial a_{1}^{1}} * \frac{\partial a_{1}^{1}}{\partial z_{1}^{1}} * \frac{\partial z_{1}^{1}}{\partial W_{11}^{1}}$$
Output layer
$$\frac{\partial L(\theta)}{\partial z_{1}^{L}} * \frac{\partial z_{1}^{L}}{\partial z_{1}^{2}} * \frac{\partial z_{1}^{2}}{\partial z_{1}^{2}} * \frac{\partial z_{1}^{2}}{\partial z_{1}^{1}} * \frac{\partial z_{1}^{1}}{\partial z_{1}^{1}} * \frac{\partial z_{1}^{1}}{\partial W_{11}^{1}}$$
Output layer
$$\frac{\partial L(\theta)}{\partial z_{1}^{L}} * \frac{\partial z_{1}^{L}}{\partial z_{1}^{2}} * \frac{\partial z_{1}^{2}}{\partial z_{1}^{2}} * \frac{\partial z_{1}^{2}}{\partial z_{1}^{1}} * \frac{\partial z_{1}^{1}}{\partial z_{1}^{1}} * \frac{\partial z_{1}^{1}}{\partial W_{11}^{1}}$$
Output layer
$$\frac{\partial L(\theta)}{\partial z_{1}^{L}} * \frac{\partial z_{1}^{L}}{\partial z_{1}^{2}} * \frac{\partial z_{1}^{2}}{\partial z_{1}^{2}} * \frac{\partial z_{1}^{2}}{\partial z_{1}^{1}} * \frac{\partial z_{1}^{1}}{\partial z_{1}^{1}} * \frac{\partial z_{1}^{1}}{\partial W_{11}^{1}}$$
Output layer

If we change W₁₁, how much does the loss change

$$L = -y \log \hat{g} - (1-y) \log (1-\hat{g})$$

$$\frac{\partial L}{\partial \hat{g}} = -\frac{y}{\hat{g}} + \frac{1-y}{1-\hat{g}}$$

$$\frac{\partial \hat{g}}{\partial \hat{g}} = \mathcal{J}(1-\mathcal{G}(2))$$

$$\frac{\partial L}{\partial z} = \hat{g}(1-\hat{g})$$

$$\frac{\partial L}{\partial z} = \hat{g}(1-\hat{g})$$

$$\frac{\partial L}{\partial z} = \hat{g}(1-\hat{g}) + \hat{g}(1-y)$$

$$= -y(1-\hat{g}) + \hat{g}(1-y)$$

$$= -y$$

$$= \hat{g}-y$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial y} \times \frac{\partial y}{\partial z} \times \frac{\partial z}{\partial w}$$
$$= (\ddot{y} - y) x.$$

$$\frac{\partial L}{\partial \alpha'} = \frac{\partial L}{\partial \dot{y}} \times \frac{\partial \dot{y}}{\partial \dot{\alpha'}} \times \frac{\partial z^2}{\partial \alpha'}$$

$$\Rightarrow 2^2 = (\hat{y} - y) \times \omega^2$$

$$= (\hat{y} - y) \times \omega^2$$

$$\frac{\partial L}{\partial z'} = \frac{\partial L}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial z^2} \times \frac{\partial z^2}{\partial a_f} \times \frac{\partial a'}{\partial z'}$$

$$\frac{\partial L}{\partial w_{1}^{2}} = \frac{\partial L}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial z} \times \frac{\partial z}{\partial w}$$

$$\frac{\partial L}{\partial \hat{y}} = \frac{-y}{y} + \frac{1-y}{1-\hat{y}} = -4$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial \hat{z}} = \hat{y} - y = -0.75$$

$$\frac{\partial L}{\partial w} = (-0.75)(0.37) = -0.2775$$

$$w_{11}^{2} = w_{11}^{2} - y \times \frac{\partial L}{\partial w_{11}^{2}} = 12 - 0.00(-0.2775)$$

$$\frac{\partial L}{\partial w_{ii}^{2}} = \frac{\partial L}{\partial y^{2}} \times \frac{\partial \hat{y}}{\partial z_{i}^{2}} \times \frac{\partial z_{i}^{2}}{\partial a_{i}^{2}} \times \frac{\partial a_{i}^{2}}{\partial w_{ii}^{2}}$$

$$= -0.75 \times 12 \times 0.5 (1-0.5) \times 6$$

$$= -135$$

Homowork

DL =