Reminders to self:

- ☐ Turn on lecture recording to Cloud
- ☐ Turn on Zoom microphone
- Last Lecture
 - Registers
 - Basic register, data transfer, accumulator register w/adder

Lecture Outline

- Started shift registers
- Today's Lecture
 - Finish Shift Registers
 - Start Counters
 - Three-bit synchronous binary counter
 - Brief look at binary ripple counter (not synchronous)
 - Formal design procedures

ECE2060 Handouts and Announcements

Announcements

- Homework Problem 12-1
 - Posted on Carmen this morning
 - Due: 11:25am Wednesday 3/8
 - Data Sheet for CD40194B in Data Sheet Module on Carmen
- Homework Reminder
 - HW 11-3 posted on Carmen 2/25
 - Due: 11:59pm Thursday 3/2
- Read for Friday: pages 395-402
- Mini-Exam 3 regrade in progress
 - Problem 2 & 3 rubric interpretation by GTA
 - Inconsistencies and errors I observed during requested regrades

Handouts and Announcements

Announcements

ECE2060

- Mini-Exam 4 Reminder
 - Available 5pm Monday 3/6 through 5:00pm Tuesday 3/7
 - Due in Carmen PROMPTLY at 5:00pm on 3/7
 - Designed to be completed in ~36 min, but you may use more
 - When planning your schedule:
 - I recommend building in 10-15 min extra
 - To allow for downloading exam, signing and dating honor pledge, saving solution as pdf, and uploading to Carmen
 - I also recommend not procrastinating
- Exam review topics available on Carmen
- Sample Mini-Exams 5 and 6 from Au20 also available

COLLEGE OF ENGINEERING

ECE2060

Shift Registers

Shift Registers

- Serial out means data
 - Can only be read out of the last flip flop, and
 - Outputs from other flip-flops not connected outside register

Shift Registers

ECE2060

Shift Registers with Parallel In / Parallel Out exist

• All four bits available Parallel Output Block diagram for parallel output Used for serial input • For serial output, on $CLK \downarrow$ when simply use Q_0 Sh = 1 (L = 1 or 0)➤ SO (Serial Out) • All bits shifted right SI(Serial In) 4-bit Parallel-In, Sh (Shift Enable) HOLD for Sh=0 and L=0 Parallel-Out L(Load Enable) Shift Register Control inputs

Parallel Input

- All four bits can be loaded at one time
- On $CLK \downarrow$ when Sh = 0, L = 1

Shift Registers

Implementation with D Flip-Flops and MUXs

- HOLD for Sh = 0, L = 0
- All four Q_i fed back to D_i inputs through MUX

- All four bits available for parallel output
- For serial output, simply use Q_0

- Used for serial input on $CLK \downarrow$ when Sh = 1 (L = 1 or 0)
- All bits shifted right

- All four bits can be loaded at one time
- On $CLK \downarrow$ when Sh = 0, L = 1

Shift Registers

Shift Registers ⇒ Counters

- 3-bit shift register with inverted output fed back to input
- Starting "cleared" 000
 - 1 fed back from Q'_1 to D_3
 - Progress around "transition graph" with each *CLK* ↑

- Note that only six of the eight 3-bit combinations appear on this transition graph
- · DiO and 101 are missing
- If register were loaded with old to start
 - Next state would be
 - And then back to OlO
- This is a "secondary loop" transition graph for this counter
- <u>Counter</u>. A circuit that cycles through a fixed sequence of states

Shift Registers ⇒ Counters

- When asked for a "state graph", do NOT draw a "transition graph"
- When asked for the "transition graph" of a counter, do not draw a "state graph"

- The combination of values of $Q_3Q_2Q_1$ in each of the circles represent a "state" of the counter
- Later this semester you will learn about "state machines"
 - At that time we will introduce two types of "state graphs"
 - State graphs contain more information

Shift Registers ⇒ Counters

- A shift register with inverted feedback is called a "Johnson counter" or "twisted ray counter"
- If feedback is not inverted it is simply a "ring counter"

ECE2060 Counters

3-Bit Binary Counter:

Transition table

Counting 0_{10} though 7_{10} in binary

Pres	ent :	state	Ne	xt St	ate F	Il in Next State from transition graph
C	В	Α	C+	B^+	A^+	To implement as a
0	0	0	0	0	1	- Synchronous counter, look for
0	0	1	0	1	0	patterns of toggles
0	1	0	0	1	1	by bit:A always toggles on
0	1	1	1	0	0	Clk \uparrow (or Clk \downarrow if
1	0	0	1	0	1	low-true clock) • B toggles on $Clk \uparrow$
1	0	1	1	1	0	when A=1
1	1	0	1	1	1	• C toggles when both
1	1	1	0	0	0	B=1 and $A=1$

Counters

ECE2060

3-Bit Binary Counter: Transition Table

- A always toggles on $Clk \uparrow$
- B toggles on $Clk \uparrow when A = 1$

C toggles when both B = 1 and A = 1Present State Next State C^+ B^+ A^+

3-Bit Binary Counter: Circuit

- A always toggles on $Clk \uparrow$
- B toggles on $Clk \uparrow when <math>A = 1$
- C toggles when both B = 1 and A = 1

Counters

Synchronous and Ripple Counters:

- For **Synchronous** counters, operation of flip-flops synchronized by common clock pulse: when several flip-flops must change state, state changes occur simultaneously
- Ripple counters are those in which the state change of one flip-flop triggers another flip-flop
- Reviewing table two slides ago:
 - A always toggles
 - B toggles when $A \ 1 \to 0$ or $Q'_A \ 0 \to 1$. Use later for \uparrow clock of B
 - C toggles when $B \ 1 \to 0$ or $Q'_B \ 0 \to 1$. Use later for \uparrow clock of C

Counters

10

 $\mathbf{0}$

0

• Patterns in state table for T-implementation of the 3-bit binary counter were simple enough to recognize that we did not need K-maps

• For completeness, here are the K-maps

Present State Next State Flip-Flop Inputs C B A C+ B+ A+ T _C T _B T _A 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1								
Pres	ent S	State	Ne	xt St	ate	Flip-l	lop	Inputs
C	В	A	C+	B^+	A+	_		-
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Counters

- Implementation of the 3-bit binary counter using D flip-flops: $Q^+ = D$
- $D_A = A^+; D_B = B^+; D_C = C^+$
- Inspecting the transition table to fill the K-maps

BA	0	1
00	1	1
01	0	0
11	0	0
10	1	1
•		

mb-r	Tops.	ν -	- <i>D</i>
BA	0	1	•
00	0	0	
01	1	1	
11	0	0	$D_B = AB' + A'B$ $= A \oplus B$
10	1	1	$-A \oplus b$
,			, C 0 1

Pres	ent S	State	Next State			
C	В	Α	C+	B^+	A^+	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	0	

$$D_C = A'C + B'C + ABC'$$

$$= C(A' + B') + ABC'$$

$$= C(AB)' + C'(AB)$$

$$= C \oplus AB$$

00	0	1
01	0	1
11	1	0
10	0	1

Counters

• Implementation of the 3-bit binary counter using D flip-flops

 $D_C = C \oplus AB$;

$$D_B = A \oplus B;$$
 $D_A = A' =$

$$D_A = A' =$$

• This figure from textbook uses same XOR input structure to D_A as for D_B and D_C to invert A

• See last paragraph of Section 11.7 for conversion of D flip-flop to T flipflop using XOR

Counters

4-bit BCD counter using T flip-flops

D	С	B	A	D^+	C +	B^+	A^+	T_D	$T_{\mathcal{C}}$	T_B	T_A
0	0	0	0	0	0	0	1	0	0	0	- A
0	0	0	1	0	0	1	0	0	0		
0	0	1	0	0	0	1	1		0	0	
0	0	1	1	0	1	0	0	0	U	U	
0	1	0	0		1	0	1		0	0	
0	1	0	1	0	1	1	0	0	0	U	
0	1	1	0	0	1	1	1		0	0	
0	1	1	1	1	0	0	0	U	U	U	
1	0	0	0	1	0	0	1		0	0	
			1					0	0	0	
1	0	0		0	0	0	0	V	0	0	V
1	0	1	0	-	-	-	-	X	X	X	X
1	0	1	1	-	-	-	-	X	X	X	X
1	1	0	0	-	-	-	-	X	X	X	X
1	1	0	1	-	-	-	-	X	X	X	X
1	1	1	0	-	-	-	-	X	X	X	X
1	1	1	1	-	-	-	-	X	X	X	X

Remember the requirement for counters with T flip-flops from last lecture:

$$T_A(D,C,B,A) =$$

$$T_B(D,C,B,A) =$$

$$T_C(D,C,B,A) =$$

$$T_D(D,C,B,A) =$$

THE OHIO STATE UNIVERSITY

COLLEGE OF ENGINEERING

ECE2060

Counters

4-bit BCD counter using T flip-flops

$$T_A(D, C, B, A) = 1$$

$$T_B(D, C, B, A) = \sum m(1,3,5,7) + \sum d(10,11,12,13,14,15)$$

$$T_C(D, C, B, A) = \sum m(3,7) + \sum d(10,11,12,13,14,15)$$

$$T_D(D, C, B, A) = \sum m(7,9) + \sum d(10,11,12,13,14,15)$$

Counters

4-bit BCD counter using T flip-flops

$$T_A(D,C,B,A)=1$$

$$T_B(D, C, B, A) = \sum m(1,3,5,7) + \sum d(10,11,12,13,14,15)$$

$$T_C(D, C, B, A) = \sum m(3,7) + \sum d(10,11,12,13,14,15)$$

$$T_D(D, C, B, A) = \sum m(7,9) + \sum d(10,11,12,13,14,15) = AD + ABC$$

The design of the rest of this BCD counter is left as homework

