

UNIVERSIDADE FEDERAL DO MATO GROSSO ENGENHARIA FLORESTAL

DENDROMETRIA (40219916)

Médias dendrométricas

Prof. Gabriel Agostini Orso

gabrielorso16@gmail.com

• Padronização de símbolos florestais

- Padronização de símbolos florestais
- Acuracidade e precisão

- Padronização de símbolos florestais
- Acuracidade e precisão
- Arredondamento

- Padronização de símbolos florestais
- Acuracidade e precisão
- Arredondamento
- Medidas do diâmetro das árvores DAP

- Padronização de símbolos florestais
- Acuracidade e precisão
- Arredondamento
- Medidas do diâmetro das árvores DAP
- Área transversal e área basal

- Padronização de símbolos florestais
- Acuracidade e precisão
- Arredondamento
- Medidas do diâmetro das árvores DAP
- Área transversal e área basal
- Alturas

- Padronização de símbolos florestais
- Acuracidade e precisão
- Arredondamento
- Medidas do diâmetro das árvores DAP
- Área transversal e área basal
- Alturas
- Princípio geométrico e trigonométrico da estimativa de altura

Médias dendrométricas

Mensuramos os diâmetros e estimamos as alturas... E agora?

Médias dendrométricas

Mensuramos os diâmetros e estimamos as alturas... E agora?

Calcular quantidades consideradas úteis para o engenheiro florestal, que resumem a informação dispersa em um ou poucos números.

Médias dendrométricas

Mensuramos os diâmetros e estimamos as alturas... E agora?

Calcular quantidades consideradas úteis para o engenheiro florestal, que resumem a informação dispersa em um ou poucos números.

Medidas de resumo das variáveis dendrométricas.

Discretização ou contagem o número de árvores que recaem dentro de uma determinada classe de diâmetro

Discretização ou contagem o número de árvores que recaem dentro de uma determinada classe de diâmetro

Árvore	d (cm)	Árvore	d (cm)
1	13,4	11	20
2	16,5	12	17
3	17,6	13	14,2
4	14,5	14	11,1
5	14	15	10,2
6	15,6	16	18,3
7	15,8	17	12,7
8	19	18	12,3
9	16,7	19	15,6
10	13,6	20	16,5

As classes podem ser referidas pelos seus limites "[10;12)" ou pelo seu centro de classe

Classe (i)	Limite Inferior (LI)	Centro de Classe (Ci)	Limite Superior (LS)	Representação	frequência (fi)
1	10	11	11,99	[10; 12)	2
2	12	13	13,99	[12; 14)	4
3	14	15	15,99	[14; 16)	6
4	16	17	17,99	[16; 18)	5
5	18	19	19,99	[18; 20)	2
6	20	21	21,99	[20; 22)	1

Colchete: intervalo fechado

Parêntese: intervalo aberto

Classe (i)	Limite Inferior (LI)	Centro de Classe (Ci)	Limite Superior (LS)	Representação	frequência (fi)
1	10	11	11,99	[10; 12)	2
2	12	13	13,99	[12; 14)	4
3	14	15	15,99	[14; 16)	6
4	16	17	17,99	[16; 18)	5
5	18	19	19,99	[18; 20)	2
6	20	21	21,99	[20; 22)	1

Colchete: intervalo fechado

Parêntese: intervalo aberto

Classe (i)	Limite Inferior (LI)	Centro de Classe (Ci)	Limite Superior (LS)	Representação	frequência (fi)	Frequência Relativa
1	10	11	11,99	[10; 12)	2	0,1
2	12	13	13,99	[12; 14)	4	0,2
3	14	15	15,99	[14; 16)	6	0,3
4	16	17	17,99	[16; 18)	5	0,25
5	18	19	19,99	[18; 20)	2	0,2
6	20	21	21,99	[20; 22)	1	0,05

Colchete: intervalo fechado

Parêntese: intervalo aberto

Classe (i)	Limite Inferior (LI)	Centro de Classe (Ci)	Limite Superior (LS)	Representação	frequência (fi)	Frequência Relativa (%)
1	10	11	11,99	[10; 12)	2	10%
2	12	13	13,99	[12; 14)	4	20%
3	14	15	15,99	[14; 16)	6	30%
4	16	17	17,99	[16; 18)	5	25%
5	18	19	19,99	[18; 20)	2	20%
6	20	21	21,99	[20; 22)	1	5%

O intervalo de cada classe varia de acordo com a variabilidade dos diâmetros.

Plantios homogêneos normalmente exigem intervalos menores.

Eucalyptus spp.: 2 cm

Pinus spp.: 2,5 cm

T. grandis: 2 cm

Florestas nativas: 5 a 10 cm

Pode ser calculada como

$$Int = \frac{Amplitude}{n_c}$$

O intervalo de cada classe varia de acordo com a variabilidade dos diâmetros.

Plantios homogêneos normalmente exigem intervalos menores.

Eucalyptus spp.: 2 cm

Pinus spp.: 2,5 cm

T. grandis: 2 cm

Florestas nativas: 5 a 10 cm

Onde n_c é o número de classes

É conveniente agrupar diâmetros em classes por diversas razões, pois toda e qualquer ação silvicultural e de manejo estará em função das classes diamétricas, podendo-se citar algumas como as que se seguem:

- ✓ Determinação do grau de desbaste;
- ✓ Determinação do número de árvores porta-sementes;
- ✓ Definição de intervenções econômicas na floresta;
- ✓ Seleção de matéria prima;
- ✓ Definição do sistema de manejo etc.

Plantios florestais

Plantios florestais

Distribuição simétrica Indício de homogeneidade do povoamento

Florestas naturais

Distribuição assimétrica Formato de J-invertido

Como determinar o intervalo e número de classes

Método Estatístico

 \overline{d} é o diâmetro médio; s é o desvio-padrão dos diâmetros

Classes	Limites de Classe			
	Limite Inferior	Centro de Classe	Limite Superior	
1	$ar{d}$ -3,5s	$ar{d}$ -3s	$ar{d}$ -2,5s	
2	$ar{d}$ -2,5s	$ar{d}$ -2s	$ar{d}$ -1,5s	
3	$ar{d}$ -1,5s	$ar{d}$ -1s	$ar{d}$ -0,5s	
4	$ar{d}$ -0,5s	$ar{d}$	$ar{d}$ +0,5s	
5	$ar{d}$ +0,5s	$ar{d}$ +1s	$ar{d}$ +1,5s	
6	$ar{d}$ +1,5s	$ar{d}$ +2s	$ar{d}$ +2,5s	
7	$ar{d}$ +2,5s	$ar{d}$ +3s	$ar{d}$ +3,5s	

Distribuição diamétrica das árvores conforme Hosokawa e Souza (1987)

Código	Denominação	Critério
D	Dominante	$d_i \geq \overline{d} + 2 s$
CD	Co-dominante	$\overline{d} + s \le d < \overline{d} + 2 * s$
I	Intermediária	\bar{d} - $s < d < \bar{d} + s$
S	Suprimida	\overline{d} - 2*s < $d \le \overline{d}$ -s
0	Oprimidas	$d_i \leq \overline{d} - 2^*s$

Métodos alternativos para determinar o número de classes

• Fórmula de Sturges:

$$n_c = 1 + 3.3 \cdot Log_{10}(N)$$

• Fórmula de Dixon & Kronmal:

$$n_c = 10.Log_{10}(N)$$

• Fórmula de Velleman:

$$n_C = 2.\sqrt{N}$$

em que: n_c = número de classes; N = Número de dados observados.

Árvore	d (cm)	Árvore	d (cm)
1	13,4	11	20
2	16,5	12	17
3	17,6	13	14,2
4	14,5	14	11,1
5	14	15	10,2
6	15,6	16	18,3
7	15,8	17	12,7
8	19	18	12,3
9	16,7	19	15,6
10	13,6	20	16,5

Diâmetro médio

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{d_1 + d_2 + d_3 + \dots + d_n}{n}$$

É a média aritmética dos diâmetros

Árvore	d (cm)	Árvore	d (cm)
1	13,4	11	20
2	16,5	12	17
3	17,6	13	14,2
4	14,5	14	11,1
5	14	15	10,2
6	15,6	16	18,3
7	15,8	17	12,7
8	19	18	12,3
9	16,7	19	15,6
10	13,6	20	16,5

Diâmetro médio

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{d_1 + d_2 + d_3 + \dots + d_n}{n}$$

$$\bar{d} = \frac{13,4 + 16,5 + 17,6 + \dots + 15,6 + 16,5}{20} =$$

Árvore	d (cm)	Árvore	d (cm)
1	13,4	11	20
2	16,5	12	17
3	17,6	13	14,2
4	14,5	14	11,1
5	14	15	10,2
6	15,6	16	18,3
7	15,8	17	12,7
8	19	18	12,3
9	16,7	19	15,6
10	13,6	20	16,5

Diâmetro médio

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{d_1 + d_2 + d_3 + \dots + d_n}{n}$$

$$\bar{d} = \frac{13,4 + 16,5 + 17,6 + \dots + 15,6 + 16,5}{20} = 15,2$$

Árvore	d (cm)	Árvore	d (cm)
1	13,4	11	20
2	16,5	12	17
3	17,6	13	14,2
4	14,5	14	11,1
5	14	15	10,2
6	15,6	16	18,3
7	15,8	17	12,7
8	19	18	12,3
9	16,7	19	15,6
10	13,6	20	16,5

Diâmetro quadrático médio

$$\bar{g} = \frac{1}{n} \sum_{i=1}^{n} g_i = \frac{g_1 + g_2 + g_3 + \dots + g_n}{n}$$

$$d_g = \sqrt{\frac{40000 \cdot \bar{g}}{\pi}}$$

É o diâmetro equivalente da área transversal média

Árvore	d (cm)	Árvore	d (cm)
1	13,4	11	20
2	16,5	12	17
3	17,6	13	14,2
4	14,5	14	11,1
5	14	15	10,2
6	15,6	16	18,3
7	15,8	17	12,7
8	19	18	12,3
9	16,7	19	15,6
10	13,6	20	16,5

Diâmetro quadrático médio

$$d_g = \sqrt{\frac{1}{n} \sum_{i=1}^n d_i^2} = \sqrt{\frac{d_1^2 + d_2^2 + d_3^2 + \dots + d_n^2}{n}}$$

Também pode ser pensado como a média aritmética dos quadrados dos diâmetros

Árvore	d (cm)	Árvore	d (cm)
1	10,2	11	15,6
2	11,1	<mark>12</mark>	<mark>15,8</mark>
3	12,3	13	16,5
4	12,7	14	16,5
5	13,4	15	16,7
6	13,6	16	17
7	14	17	17,6
8	14,2	18	18,3
9	14,5	19	19
10	15,6	20	20,0

Diâmetro de Weise

$$d_{w} = d_{60\%} = d_{P60\%} = 15.8$$

$$P60\% = N.0,6 = 20.0,6 = 12$$

É o diâmetro situado na posição 60% da amplitude dos diâmetros

N é o número de árvores.

Árvore	d (cm)	Árvore	d (cm)
1	10,2	11	15,6
2	11,1	<mark>12</mark>	<mark>15,8</mark>
3	12,3	13	16,5
4	12,7	14	16,5
5	13,4	15	16,7
6	13,6	16	17
7	14	17	17,6
8	14,2	18	18,3
9	14,5	19	19
10	15,6	20	20,0

Diâmetro de Weise

$$d_{w} = d_{60\%} = d_{P60\%} = 15.8$$

$$P60\% = N.0,6 = 20.0,6 = 12$$

É o diâmetro situado na posição 60% da amplitude dos diâmetros

N é o número de árvores.

Se P60% não for inteiro, precisa interpolar

Árvore	d (cm)	Árvore	d (cm)
1	10,2	11	15,6
2	11,1	12	15,8
3	12,3	13	16,5
4	12,7	14	16,5
5	13,4	15	16,7
6	13,6	16	17
7	14	17	17,6
8	14,2	18	18,3
9	14,5	19	19
10	15,6	20	20,0

Diâmetro de Weise

$$d_W = d_{60\%} = d_{P60\%} = ?$$

$$P60\% = N.0,6 = 19.0,6 = 11,4$$

$$x = 15.6 + \frac{(11.4 - 11).(15.8 - 15.6)}{(12 - 11)} = 15.7 cm$$

2. Diâmetros Médios

Árvore	g (m²)	Árvore	g (m²)
1	0,0082	11	0,0191
2	0,0097	12	0,0196
3	0,0119	13	0,0214
4	0,0127	14	0,0214
5	0,0141	15	0,0219
6	0,0145	16	0,0227
7	0,0154	17	0,0243
8	0,0158	18	0,0263
9	0,0165	19	0,0284
<mark>10</mark>	<mark>0,0191</mark>	20	0,0314

Diâmetro de área basal mediana

$$d_z = d_{gm} = d_{50\%gi} = \sqrt{\frac{40000.0,0191}{\pi}} = 15,6$$

$$50\% gi = N.0,5 = 20.0,5 = 10$$

É o diâmetro cuja área transversal ocupa a posição 50% da amplitude das áreas transversais

Se a posição não for um inteiro, precisa interpolar.

2. Diâmetros Médios

Árvore	d (cm)	Árvore	d (cm)
1	10,2	11	15,6
2	11,1	12	15,8
3	12,3	13	16,5
4	12,7	14	16,5
5	13,4	15	16,7
6	13,6	16	17
7	14	17	17,6
8	14,2	18	18,3
9	14,5	19	19
10	15,6	20	20,0

Diâmetros de Hohenadl

$$d_{+} = \bar{d} + S$$
$$d_{-} = \bar{d} - S$$

$$d_{-} = \bar{d} - S$$

Assume que os diâmetros possuem distribuição normal

$$S = 6,7148 \text{ cm}$$

Limite Inferior	Centro	Limite	f _i
	ı	Superior	
8	-	10	15
10	-	12	22
12	-	14	53
14	-	16	59
16	-	18	50
18	-	20	36
20	-	22	16
22	-	24	2
24	-	26	1

Diâmetro médio

f _i
15
22
53
59
50
36
16
2
1

$$\bar{d} = \frac{\sum_{i=1}^{n} f_i c l_i}{\sum_{i=1}^{n} f_i} \longrightarrow \bar{d} = \frac{f_1 c l_1 + f_2 c l_2 + \dots + f_n c l_n}{f_1 + f_2 + \dots + f_n}$$

$$\bar{d} = \frac{((15 \times 9) + (22 \times 11) + \dots + (1 \times 25))}{254} = 15,3 \text{cm}$$

d _{1,3} (cm)	n (fi)	n*g _k
9	15	0,0954
11	22	0,2091
13	53	0,7035
15	59	1,0426
17	50	1,1349
19	36	1,0207
21	16	0,5542
23	2	0,0831
25	1	0,0491
		4,8926

Diâmetro quadrático médio

$$d_g = \sqrt{\frac{4 \cdot \overline{g}}{\pi}} * 100$$

$$d_g = \sqrt{(4,8926/254 \times 4/\pi)} = 15,66 \approx 15,7 \text{ cm}$$

Diâmetro de Weise

d _{1,3} (cm)	n (fi)	fa
9	15	15
11	22	37
13	53	90
15	59	149
17	50	199
19	36	235
21	16	251
23	2	253
25	1	254

$$254 \times 0,60 = 152,40$$
 $15,9 - 149 \text{ árvores}$
 $x - 152,4$
 $17,9 - 199$
 $d_W = 15,9 + ((2 × 3,4)/50) = 16,036 \approx 16,0 \text{ cm}$

Diâmetro de área transversal mediana

d _{1,3} (cm)	n (fi) n*g _k	fa (g _k)	$4,8926 \times 0,5 = 2,4463 m^2$
9	15 0,0954	0,0954	
11	22 0,2091	0,3045	150 2050c 2
13	53 0,7035	5 1,0080	$15,9 \ cm - 2,0506 \ m^2$
15	59 1,0426	2,0506	$x - 2,4463 m^2$
17	50 1,1349	3,1855	$17,9 cm - 3,1855 m^2$
19	36 1,0207	4,2062	
21	16 0,5542	2 4,7604	
23	2 0,0831	4,8435	$d_Z = 15,9 + ((2 \times 0.3957)/1.1349) = 16.6 \text{ cm}$
25	1 0,0491	4,8926	
	4,8926)	

n
15
22
53
59
50
36
16
2
1
254

Diâmetros de Hohenadl

$$d_{+} = d + S \qquad \qquad d_{-} = d - S$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} f_i d_i^2 - \frac{(\sum_{i=1}^{n} f_i d_i)^2}{\sum_{i=1}^{n} f_i}}{\sum_{i=1}^{n} f_i - 1}}$$

Diâmetros de Hohenadl

	$f_i d_i$	${ m f_i}d_{ m i}^2$	n	d _{1,3}
a —	135	1215	15	9
S =	242	2662	22	11
	689	8957	53	13
	885	13275	59	15
s =	850	14450	50	17
	684	12996	36	19
d -	336	7056	16	21
a_+ =	46	1058	2	23
	25	625	1	25
d_{-}	3892	62294	254	

$$s = \sqrt{\frac{62294 - \left(\frac{3892^2}{254}\right)}{(254 - 1)}}$$

$$s = 3,2409969914=3,2 \text{ cm}$$

$$d_{+} = 15,3 + 3,2 = 18,5 \ cm$$

$$d_{-} = 15,3 - 3,2 = 12,1 \ cm$$

3. Diâmetros Médios

A altura média aritmética pode ser calculada pela seguinte expressão:

$$\overline{h} = \frac{h_1 + h_2 + \dots + h_n}{n} \qquad \Rightarrow \qquad \overline{h} = \frac{\sum_{i=1}^{n} h_i}{n}$$

Para dados agrupados em classes de diâmetro, tem-se:

$$\overline{h} = \frac{f_1 h_1 + f_2 h_2 + \dots + f_n h_n}{f_1 + f_2 + \dots + f_n} \implies \overline{h} = \frac{\sum_{i=1}^n f_i h_i}{\sum_{i=1}^n f_i}$$

As demais alturas podem ser calculadas com base em relação hipsométrica ajustada aos dados.

$$h = 1.3 + \left(\frac{1}{\beta_0 + \frac{\beta_1}{d_{1,3}}}\right)^2 + ei$$

$$h = 1.3 + \left(\frac{1}{\beta_0 + \frac{\beta_1}{d_{1,3}}}\right)^2 + ei$$

$$h = 1.3 + \left(\frac{1}{0.13271 + \frac{1.67671}{d_{1,3}}}\right)^2$$

$$d_g = 15,7 \ cm$$

$$h_g = 1.3 + \left(\frac{1}{0.13271 + \frac{1.67671}{15.7}}\right)^2 = 18.7 m$$

$$d_w = 16.0 \ cm$$

$$h_w = 1.3 + \left(\frac{1}{0.13271 + \frac{1.67671}{16.0}}\right)^2 = 19.0 m$$

$$d_{z ou gm} = 16.6 cm$$

$$h_{z \ ou \ gm} = 1.3 + \left(\frac{1}{0.13271 + \frac{1.67671}{16.6}}\right)^2 = 19.6 \ m$$

A altura de Lorey pode ser calculada pela seguinte expressão:

$$h_{L} = \frac{(g_{1}h_{1}) + (g_{2}h_{2}) + \dots + (g_{n}h_{n})}{g_{1} + g_{2} + \dots + g_{n}} = \frac{\sum_{i=1}^{n} g_{i}h_{i}}{\sum_{i=1}^{n} g_{i}}$$

Para dados agrupados em classes de diâmetro, tem-se:

$$h_{L} = \frac{(f_{1}g_{1}\overline{h_{1}}) + (f_{2}g_{2}\overline{h_{2}}) + \dots + (f_{n}g_{n}\overline{h_{n}})}{f_{1}g_{1} + f_{2}g_{2} + \dots + f_{n}g_{n}} = \frac{\sum_{i=1}^{n} f_{i}g_{i}\overline{h_{i}}}{\sum_{i=1}^{n} f_{i}g_{i}}$$

	f_ig_i	f_a	f_{i}	h	$d_{1,3}$
(61 h) + (62 h) + + (6)	0,0954	15	15	11,5	9
$\bar{h} = \frac{(f1 \cdot h_1) + (f2 \cdot h_2) + \dots + (fn \cdot n)}{\sum f_i} = 17,93 = 17,9 m$	0,2091	37	22	13	11
	0,7035	90	53	16,5	13
$h_L = \frac{(f_1 \cdot g_1 \cdot h_1) + (f_2 \cdot g_2 \cdot h_2) + \dots + (f_{in} \cdot g_n \cdot n)}{\sum g_i}$	1,0426	149	59	17	15
	1,1349	199	50	20	17
$h_L = \frac{\left((11.5 \times 0.0954) + (13 \times 0.2091) + \dots + (28 \times 0.048) + (0.0954 + 0.2091) + \dots + (0.0491)\right)}{(0.0954 + 0.2091 + \dots + 0.0491)}$	1,0207	235	36	21,5	19
$=\frac{93,9439}{4,8926}=19,2 m$	0,5542	251	16	22,8	21
4,8926	0,0831	253	2	25,5	23
	0,0491	254	1	28	25

Altura Dominante de Assmann

- A altura dominante (h₁₀₀), é usada principalmente como meio para identificar a capacidade produtiva, índice de local ou índice de sítio.
- Existe boa correlação entre altura dominante e a produção total em volume.
- A altura dominante é definida como a altura média das 100 árvores de maiores diâmetros por hectare, denominada de altura dominante de ASSMANN (1970).
- Como se trabalha com parcelas de áreas conhecidas, o número de árvores medidas para se calcular a altura dominante é proporcional a área das unidades amostrais.

árv.	d	h	g
1	11,8	8,3	0,0109
2	13,3	9,3	0,0139
3	11,5	9,9	0,0104
4	12,7	9,7	0,0127
5	16,1	9,0	0,0204
6	17,6	12,0	0,0243
7	14,3	9,7	0,0161
8	11,7	10,0	0,0108
9	15,7	9,5	0,0194
10	14,0	9,4	0,0154
11	17,6	11,4	0,0243
12	17,0	11,0	0,0227
13	19,0	9,5	0,0284
14	14,3	10,0	0,0161
15	13,7	8,5	0,0147
16	18,4	10,0	0,0266
17	15,3	10,1	0,0184

$$\bar{h} = \frac{8,3 + 9,3 + 9,9 \dots + 10,1}{17} = 9,93 \cong 9,9 m$$

$$h_{L} = \frac{(0,0109.8,3) + (0,0139.9,3) + \dots + (0,0184.10,1)}{0,0109 + 0,0139 + \dots + 0,0184} = 9,98 \approx 10,1 \text{ m}$$

$$h_{100} = \frac{9,5 + 10 + 12 + 11,4 + 11 + 9}{6} = 10,48 \approx 10,5 \, m$$