2. Neural Classifiers

• Gradient descent

- The word vectors in Word2vec are optimized via gradient descent
- The general idea is walk a little bit downwards (where "downwards" refers to an area of lower error)
 - The distance walked each iteration is referred to as the learning rate
- But gradient descent is VERY inefficient
 - Very computationally expensive because the number of words is huge
- Stochastic gradient descent
 - Rather than considering all words each iteration, look at a subset of words
 - This window of words is sampled from the entire corpus
 - Not typically uniformly, higher weight is given to words that occur more frequently in language
 - Repeatedly sample these
 - This process ends up being more performant and more accurate
- Skip-gram negative sampling (SGNS)
 - Working out all the dot products in a softmax function is still expensive
 - SGNS appeared as an alternative
 - Instead of a softmax, fit a logistic regression model
 - If dot product is large, make probability essentially 1
 - If dot product is small, make probability essentially 0
- Co-occurrence matrices:
 - Put the entire list of distinct words in a symmetric matrix (as the corpus comprising both the rows and columns)
 - Algorithm:
 - Select a word
 - Count the frequency of a specific word occurring within X words of this selected word
 - X is typically considered to be the window
 - Represent these counts as a vector (a row / column of the matrix)
 - But co-occurrence matrices require a lot of storage
- GloVe:
 - Goal: unify linear-algebra based algorithms with iterative NN algorithms to mitigate the cons of both
 - Worked well, but this may be due in part to better data