Вариант 1

1. В одном графическом окне создать 4 подобласти, в первой из них построить график функции y = f(x) на промежутке [-6;6], где $f(x) = (x-1)^4$, в остальных областях построить графики функций:

$$y_1 = f(x-3), y_2 = f(|x|-3), y_3 = f(|x|-3)-2.$$

В отчёт: вставить рисунок, описать последовательность преобразований графиков $y \to y_1 \to y_2 \to y_3$.

- **2.** Найти приближённые и точные значения в алгебраической форме корней $\sqrt[5]{-10i}$. Используя операции отношения для приближённых значений корней выяснить:
 - 1) какие из найденных корней изображаются на комплексной плоскости точками, лежащими на мнимой оси;
 - 2) какие из найденных корней имеют главный аргумент, меньший $3\pi/10$.

В отчёт: вставить обе серии, результаты сравнений, сделать вывод о полученных результатах.

3. Построить графики функций y = f(x). Решить неравенства f(x) > 0 , получить точные и приближённые ответы: a) $f(x) = 2x^3 + 6x - 1$, б) $f(x) = 2x^3 - 6x - 1$.

В отчёт: вставить графики, точный и приближённый ответы в виде промежутков, объяснить результаты.

- **4.** Для последовательности $x_n = \frac{3n^4 + 2n + 1}{n^4 2n}$:
 - **1)** Найти $a = \lim_{n \to \infty} x_n$.
 - **2)** Вычислить $n_0(0.01)$, $n_0(0.001)$.
 - 3) Построить в одном графических окне на двух подобластях иллюстрации.

В отчёт: вставить значение a, $n_0(0.01)$, $n_0(0.001)$, рисунок.

Вариант 2

1. В одном графическом окне создать 4 подобласти, в первой из них построить график функции y = f(x) на промежутке [-10;10], где $f(x) = 2^x - 4$, в остальных областях на том же промежутке построить графики функций:

$$y_1 = f(x+1), y_2 = f(|x|+1), y_3 = |f(|x|+1)|.$$

В отчёт: вставить рисунок, уравнение, задающее функцию y_3 , описать последовательность преобразований графиков $y \to y_1 \to y_2 \to y_3$.

- **2.** Найти приближённые и точные значения в алгебраической форме корней $\sqrt[3]{27i}$. Используя операции отношения для приближённых значений корней выяснить:
 - 1) какие из найденных корней изображаются на комплексной плоскости точками, лежащими на мнимой оси;
 - 2) какой из найденных корней имеет главный аргумент, равный $5\pi/6$.

В отчёт: вставить обе серии, результаты сравнений, сделать вывод о полученных результатах.

3. Построить графики функций y = f(x). Решить неравенства f(x) < 0 , получить точные и приближённые ответы: a) $f(x) = x^3 + 7x - 2$, б) $f(x) = x^3 - 7x - 2$.

В отчёт: вставить графики, точный и приближённый ответы в виде промежутков, объяснить результаты.

- **4.** Для последовательности $x_n = \frac{\sqrt{2n^3 + 2n + 1}}{\sqrt{n^3 2n}}$:
 - **1)** Найти $a = \lim_{n \to \infty} x_n$.
 - **2)** Вычислить $n_0(0.01)$, $n_0(0.001)$.
 - 3) Построить в одном графических окне на двух подобластях иллюстрации.

В отчёт: вставить значение a, $n_0(0.01)$, $n_0(0.001)$, рисунок.