CHAPTER 9 INTEGRATION TECHNIQUES

EXERCISE 9.1

1 (a)
$$u = x^{2} - 1$$

 $du = 2x dx$

$$\int u^{4} du = \frac{1}{5}u^{5} + C$$

$$= \frac{1}{5}(x - 1)^{5} + C$$

(b)
$$u = x^3 + 4$$

 $du = 3x^2 dx$

$$\int u^3 du = \frac{1}{4}u^4 + C$$

$$= \frac{1}{4}(x^3 + 4)^4 + C$$

(c)
$$u = x^{3} + 1$$
$$\frac{1}{3} du = x^{2} dx$$
$$\frac{1}{3} \int u^{\frac{1}{2}} du = \frac{2}{9} u^{\frac{3}{2}} + C$$
$$= \frac{2}{9} (x^{3} + 1)^{\frac{3}{2}} + C$$

3 D is the correct alternative.

$$u = 2x + 3$$

$$du = 2 dx$$

$$\frac{1}{2} \int u^{-\frac{1}{2}} du = -\frac{1}{4} u^{-2} + C$$

$$= \frac{-1}{4(2x+3)^2} + C$$

5 (a)
$$u = x^{3} + 1$$
$$du = 3x^{2} dx$$
$$\int u^{4} du = \frac{1}{5}u^{5} + C$$
$$= \frac{1}{5}(x^{3} + 1)^{5} + C$$

(b)
$$u = 1 - t^{2}$$
$$du = -2t dt$$
$$-\frac{1}{2} \int u^{-\frac{1}{2}} du = -u^{\frac{1}{2}} + C$$
$$= -\sqrt{1 - t^{2}} + C$$

(c)
$$u = 3x - 5$$

 $du = 3 dx$
 $\frac{1}{3} \int u^{\frac{2}{3}} du = \frac{1}{3} \times \frac{3}{5} u^{\frac{5}{3}} + C$
 $= \frac{1}{5} (3x - 5)^{\frac{5}{3}} + C$

7 (a)
$$u = y + 1$$

$$du = dy$$
and:
$$u - 1 = y$$

$$\int (u - 1)u^{\frac{1}{2}} du = \int (u^{-2} + u^{-3}) du$$

$$= \frac{2}{5}u^{\frac{5}{2}} - \frac{2}{3}u^{\frac{3}{2}} + C$$

$$= \frac{2}{5}(y + 1)^{\frac{5}{2}} - \frac{2}{3}(y + 1)^{\frac{3}{2}} + C$$

$$du = dx$$
and: $x = u + 1$

$$\int \frac{u+1}{u^3} du = \int (u^{-2} + u^{-3}) du$$

$$= -u^1 - \frac{1}{2}u^{-2} + C$$

$$= \frac{-1}{(x-1)} - \frac{1}{2(x-1)^2} + C$$
(c) $u = 2x - 1$
 $du = 2 dx$
and: $x = \frac{u+1}{2}$

u = x - 1

(b)

and:

$$\frac{1}{2} \int \frac{u+1}{2u^{\frac{1}{2}}} du = \frac{1}{4} \int u^{\frac{1}{2}} + u^{-\frac{1}{2}} du$$

$$= \frac{1}{4} \left(\frac{2}{3} u^{\frac{3}{2}} + 2u^{\frac{1}{2}} \right) + C$$

$$= \frac{1}{6} (2x-1)^{\frac{3}{2}} + \frac{1}{2} (2x-1)^{\frac{1}{2}} + C$$

9
$$u = x^{2} - 4$$

 $du = 2x dx$
 $y = \frac{1}{2} \int u^{\frac{1}{2}} du$
 $y = \frac{1}{3} u^{\frac{3}{2}} + C$
 $y = \frac{1}{3} (x^{2} - 4)^{\frac{3}{2}} + C$
When $y = 2$: $x = \sqrt{5}$

$$\therefore C = \frac{5}{3}$$

$$y = \frac{1}{3}(x^2 - 4)^{\frac{3}{2}} + \frac{5}{3}$$

11
$$u = t^2 - 2t + 4$$

 $du = (2t - 2) dt$
 $x = \frac{1}{2} \int u^{-\frac{1}{2}} du$
 $= u^{\frac{1}{2}} + C$
 $= \sqrt{t^2 - 2t + 4} + C$
When $x = 10$: $t = 0$
 $\therefore C = 8$
 $x = \sqrt{t^2 - 2t + 4} + 8$

13
$$u = 2x - 1$$

 $du = 2 dx$

$$y = \frac{1}{2} \int u^{\frac{1}{2}} du$$

$$y = \frac{1}{3} u^{\frac{3}{2}} + C$$

$$y = \frac{1}{3} (2x - 1)^{\frac{3}{2}} + C$$
When $x = \frac{5}{2}$: $y = 9$

$$\therefore C = \frac{19}{3}$$

$$y = \frac{1}{3} (2x - 1)^{\frac{3}{2}} + \frac{19}{3}$$

EXERCISE 9.2

(b)

1 (a)
$$u = 1 - x^2$$

 $du = -2x dx$
For $x = 1$, $u = 0$; for $x = 0$, $u = 1$.

$$-\frac{1}{2} \int_{1}^{0} \sqrt{u} du = -\frac{1}{2} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_{1}^{0}$$

$$= -\frac{1}{2} (0 - \frac{2}{3})$$

$$= \frac{1}{3}$$

(b)
$$u = 2 - x$$

 $du = -dx$
and: $x = 2 - u$
For $x = 2$, $u = 0$; for $x = -1$, $u = 3$.
 $-\int_{3}^{0} (2 - u)\sqrt{u} \, du = -\int_{3}^{0} (2u^{\frac{1}{2}} - u^{\frac{3}{2}}) \, du$
 $= -\left[\frac{4}{3}u^{\frac{3}{2}} - \frac{2}{5}u^{\frac{5}{2}}\right]_{3}^{0}$
 $= \frac{2\sqrt{3}}{5}$

(c)
$$u = x^2 + 1$$

 $du = 2x dx$
For $x = 2$, $u = 5$; for $x = 0$, $u = 1$.

$$\int_{1}^{5} u^{-\frac{1}{2}} du = \left[2u^{\frac{1}{2}} \right]_{1}^{5}$$

$$= 2(\sqrt{5} - 1)$$

3 **B** is the correct alternative.

$$u = 1 + x^2$$

 $du = 2x dx$
For $x = \sqrt{3}$, $u = 4$; for $x = 0$, $u = 1$.
 $\frac{1}{2} \int_{1}^{4} u^{-\frac{1}{2}} du = \frac{1}{2} \left[2u^{\frac{1}{2}} \right]_{1}^{4}$
 $= 1$

5 (a)
$$u = 1 + t$$

 $du = dt$
and: $t = u - 1$
For $t = 1$, $u = 2$; for $t = 0$, $u = 1$.

$$\int_{1}^{2} \frac{u - 1}{\sqrt{u}} du = \int_{1}^{2} (u^{\frac{1}{2}} - u^{-\frac{1}{2}}) du$$

$$= \left[\frac{2}{3}u^{\frac{3}{2}} - 2u^{\frac{1}{2}}\right]_{1}^{2}$$

$$= \frac{4 - 2\sqrt{2}}{3}$$

(b)
$$u = x^3 - 1$$

 $du = 3x^2 dx$
For $x = 1$, $u = 0$; for $x = 0$, $u = -1$.

$$\int_{-1}^{0} u^4 du = \left[\frac{1}{5}u^5\right]_{-1}^{0}$$

$$= \frac{1}{5}$$

(c)
$$u = a^2 - x^2$$

 $du = -2x dx$
For $x = a$, $u = 0$; for $x = -a$, $u = 0$.

$$-\frac{1}{2} \int_0^0 u^{\frac{1}{2}} du = -\frac{1}{2} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_0^0$$

$$= 0$$

7 (a)
$$u = y + 1$$

 $du = dy$
and: $y = u - 1$
For $y = 3$, $u = 4$; for $y = 0$, $u = 1$.

$$\int_{1}^{4} (u - 1)\sqrt{u} \, du = \int_{1}^{4} (u^{\frac{3}{2}} - u^{\frac{1}{2}}) \, du$$

$$= \left[\frac{2}{5}u^{\frac{5}{2}} - \frac{2}{3}u^{\frac{3}{2}} \right]_{1}^{4}$$

$$= 7\frac{11}{15}$$

(b)
$$u = 16 - x^2$$

 $du = -2x dx$
For $x = 4$, $u = 0$; for $x = 0$, $u = 16$.

$$-\frac{1}{2} \int_{16}^{0} u^{\frac{1}{2}} du = -\frac{1}{2} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_{16}^{0}$$

(c)
$$u = 3x - 1$$

 $du = 3 dx$
and: $x = \frac{u+1}{3}$
For $x = 1$, $u = 2$; for $x = -1$, $u = -4$.

$$\frac{1}{3} \int_{-4}^{2} \left[\left(\frac{u+1}{3} \right) u^{4} \right] du = \frac{1}{9} \int_{-4}^{2} (u^{5} + u^{4}) du$$

$$= \frac{1}{9} \left[\frac{1}{6} u^{6} + \frac{1}{5} u^{5} \right]_{-4}^{2}$$

$$= -51\frac{1}{5}$$

9
$$u = 1 - x^{2}$$

 $du = -2x dx$
For $x = 1$, $u = 0$; for $x = 0$, $u = 1$.

$$A = -\frac{1}{2} \int_{1}^{0} u^{\frac{1}{2}} du$$

$$= -\frac{1}{2} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_{1}^{0}$$

$$= \frac{1}{3} \text{units}^{2}$$

$$y = \pm \sqrt{x^2 (1 - x)}$$

$$u = 1 - x$$

$$du = -dx$$

and: x = 1 - uFor x = 1, u = 0; for x = 0, u = 1. $A = 2 \int_0^1 (x \sqrt{1 - x}) dx$ $= 2 \int_1^0 (u^{\frac{3}{2}} - u^{\frac{1}{2}}) du$ $= 2 \left[\frac{2}{5} u^{\frac{5}{2}} - \frac{2}{3} u^{\frac{3}{2}} \right]_1^0$ $= \frac{8}{15} \text{ units}^2$

13
$$u = x^2 + 4$$

 $du = 2x dx$
For $x = 2\sqrt{3}$, $u = 16$; for $x = 0$, $u = 4$.

$$A = \frac{1}{2} \int_{4}^{16} u^{-\frac{1}{2}} du$$

$$= \frac{1}{2} \left[2u^{\frac{1}{2}} \right]_{4}^{16}$$

$$= 2 \text{ units}^{2}$$

EXERCISE 9.3

1 (a)
$$2 \int \cos^2 x \, dx = 2 \times \frac{1}{2} \int (1 + \cos 2x) \, dx$$

= $x + \frac{1}{2} \sin 2x + C$

(b)
$$2 \int \sin^2 x \, dx = 2 \times \frac{1}{2} \int (1 - \cos 2x) \, dx$$

= $x - \frac{1}{2} \sin 2x + C$

(c)
$$\int \sin^2 \frac{x}{2} dx = \frac{1}{2} \int (1 - \cos x) dx$$

= $\frac{x}{2} - \frac{1}{2} \sin x + C$

(d)
$$2 \int \cos^2 \frac{x}{2} dx = 2 \times \frac{1}{2} \int (1 + \cos x) dx$$

= $x + \sin x + C$

(e)
$$\int \sin^2 3x \, dx = \frac{1}{2} \int (1 - \cos 6x) \, dx$$

= $\frac{x}{2} - \frac{1}{12} \sin 6x + C$

(f)
$$\int \cos^2 4x \, dx = 2 \times \frac{1}{2} \int (1 + \cos 8x) \, dx$$

= $\frac{x}{2} + \frac{1}{16} \sin 8x + C$

$$V = \pi \int_0^{\pi} y^2 dx$$
$$= \pi \int_0^{\pi} \sin^2 x dx$$

$$5 \quad V = \pi \int_0^{\pi} y^2 dx$$
$$= \pi \int_0^{\pi} \sin^2 x dx$$
$$= \pi \times \frac{1}{2} \int_0^{\pi} (1 - \cos 2x) dx$$
$$= \frac{\pi}{2} \left[x - \frac{1}{2} \sin 2x \right]_0^{\pi}$$
$$= \frac{\pi^2}{2} \text{ units}^3$$

$$7 \frac{dy}{dx} = 2 \int \cos^2 x \, dx$$

$$= 2 \times \frac{1}{2} \int (1 + \cos 2x) \, dx$$

$$= x + \frac{1}{2} \sin 2x + C$$
When $x = \frac{\pi}{2}$: $\frac{dy}{dx} = 0$

$$\therefore C = -\frac{\pi}{2}$$

$$\frac{dy}{dx} = x + \frac{1}{2} \sin 2x - \frac{\pi}{2}$$

$$y = \int \left(x + \frac{1}{2} \sin 2x - \frac{\pi}{2}\right) dx$$

$$= \frac{1}{2}x^2 - \frac{1}{4} \cos 2x - \frac{\pi}{2}x + C$$
When $x = \frac{\pi}{2}$: $y = 0$

$$\therefore C = \frac{\pi^2}{8} - 4$$

$$y = \frac{x^2}{2} - \frac{\pi x}{2} - \frac{\cos 2x}{4} + \frac{\pi^2 - 2}{8}$$

9
$$V = \pi \int_0^{\frac{\pi}{12}} y^2 dx$$

 $= \pi \int_0^{\frac{\pi}{12}} \sin^2 3x dx$
 $= \pi \times \frac{1}{2} \int_0^{\frac{\pi}{12}} (1 - \cos 6x) dx$
 $= \frac{\pi}{2} \left[x - \frac{1}{6} \sin 6x \right]_0^{\frac{\pi}{12}}$
 $= \frac{\pi}{2} \left(\frac{\pi}{12} - \frac{1}{6} \sin \frac{1}{2} - 0 + \frac{1}{6} \sin 0 \right)$
 $= \frac{\pi}{24} (\pi - 2) \text{ units}^3$
11 $V = \pi \int_0^{\frac{\pi}{4}} y^2 dx$

11
$$V = \pi \int_0^{\frac{\pi}{4}} y^2 dx$$

$$= \pi \int_0^{\frac{\pi}{4}} (\cos^2 x - \sin^2 x) dx$$

$$= \pi \int_0^{\frac{\pi}{4}} \cos(2x) dx$$

$$= \frac{\pi}{2} [\sin(2x)]_0^{\frac{\pi}{4}}$$

$$= \frac{\pi}{2} (\sin \frac{\pi}{2} - \sin(0))$$

$$= \frac{\pi}{2} \text{ units}^3$$

EXERCISE 9.4

1 (a) Let
$$u = \cos x$$
, so $\frac{du}{dx} = -\sin x$.

$$\int \sin x \cos^2 x \, dx = -\int u^2 \, du$$

$$= -\frac{1}{3}u^3 + C$$

$$= -\frac{1}{3}\cos^3 x + C$$

(b) Let
$$u = \tan x$$
, so $\frac{du}{dx} = \sec^2 x$.

$$\int \tan x \sec^2 x \, dx = \int u \, du$$

$$= \frac{1}{2}u^2 + C$$

$$= \frac{1}{2}\tan^2 x + C$$

(c) Let
$$u = \cos x$$
, so $\frac{du}{dx} = -\sin x$.

$$\int \sin x \cos^3 x \, dx = -\int u^3 \, du$$

$$= -\frac{1}{4}u^4 + C$$

$$= -\frac{1}{4}\cos^4 x + C$$

(d) Let
$$u = \sin x$$
, so $\frac{du}{dx} = \cos x$.

$$\int \cos x \sin^4 x \, dx = \int u^4 \, du$$

$$= \frac{1}{5} u^5 + C$$

$$= \frac{1}{5} \sin^5 x + C$$

(e)
$$\int (1 + \cos 2x) \sin x \, dx = \int 2 \cos^2 x \sin x \, dx$$
Let $u = \cos x$, so $\frac{du}{dx} = -\sin x$.
$$\int 2 \cos^2 x \sin x \, dx = -2 \int u^2 \, du$$

$$= -\frac{2}{3} u^3 + C$$

$$= -\frac{2}{3} \cos^3 x + C$$

(f) Let
$$u = \sin x$$
, so $\frac{du}{dx} = \cos x$.

$$\int (\sin x \cos x) dx = \int u du$$

$$= -\frac{1}{2}u^2 + C$$

$$= \frac{1}{2}\sin^2 x + C$$

EXERCISE 9.5

1
$$x = 4 \sin \theta, dx = 4 \cos \theta d\theta$$

 $\sqrt{16 - x^2} = \sqrt{16 - 16 \sin^2 x} = 4 \cos \theta$
For $x = 4$, $\theta = \frac{\pi}{2}$; for $x = -4$, $\theta = -\frac{\pi}{2}$.

$$\int_{-4}^{4} \sqrt{16 - x^2} dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 4 \cos \theta \times 4 \cos \theta d\theta$$

$$= 16 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \theta d\theta$$

$$= 16 \times \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + \cos 2\theta) d\theta$$

$$= 8 \left[\theta + \frac{1}{2} \sin 2\theta \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= 8 \left[\frac{\pi}{2} + \frac{1}{2} \sin \pi - \left(-\frac{\pi}{2} + \frac{1}{2} \sin \pi \right) \right]$$

$$= 8\pi$$

Semicircle with radius 4. 3 $x = 2 \tan \theta$, $dx = 2 \sec^2 \theta d\theta$

$$4 + x^{2} = 4 + 4 \tan^{2} \theta = 4 \sec^{2} \theta$$
For $x = 2$, $\theta = \frac{\pi}{4}$; for $x = 0$, $\theta = 0$.
$$\int_{0}^{2} \frac{dx}{4 + x^{2}} = \int_{0}^{\frac{\pi}{4}} \frac{1}{4 \sec^{2} \theta} 2 \sec^{2} \theta \, d\theta$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{4}} 1 \, d\theta$$

$$= \frac{1}{2} [\theta]_{0}^{\frac{\pi}{4}}$$

$$= \frac{\pi}{2}$$

$$5 \int_{\frac{\pi}{8}}^{\frac{\pi}{4}} (\sin x \cos x)^2 dx = \int_{\frac{\pi}{8}}^{\frac{\pi}{4}} \left(\frac{1}{2}\sin 2x\right)^2 dx$$

$$= \frac{1}{4} \times \frac{1}{2} \int_{\frac{\pi}{8}}^{\frac{\pi}{4}} (1 - \cos 4x) dx$$

$$= \frac{1}{8} \left[x - \frac{1}{4} \sin 4x \right]_{\frac{\pi}{8}}^{\frac{\pi}{4}}$$

$$= \frac{1}{8} \left[\frac{\pi}{4} - \frac{1}{4} \sin \pi - \left(\frac{\pi}{8} - \frac{1}{4} \sin \frac{\pi}{2}\right) \right]$$

$$= \frac{\pi + 2}{64}$$

7
$$x = \cos \theta, dx = -\sin \theta d\theta$$

$$\sqrt{1 - x^2} = \sqrt{1 - \cos^2 x} = \sin \theta$$
For $x = 1$, $\theta = 0$; for $x = \frac{1}{2}$, $\theta = \frac{\pi}{3}$.

$$\int_{\frac{\pi}{3}}^{0} \frac{\sin \theta}{\cos^2 \theta} - \sin \theta d\theta = -\int_{\frac{\pi}{3}}^{0} \tan^2 \theta d\theta$$

$$= -\int_{\frac{\pi}{3}}^{0} (\sec^2 \theta - 1) d\theta$$

$$= -\left[\tan \theta - \theta \right]_{\frac{\pi}{3}}^{0}$$

$$= -\left[\tan \theta - 0 - \left(\tan \frac{\pi}{3} - \frac{\pi}{3} \right) \right]$$

$$= \sqrt{3} - \frac{\pi}{3}$$

- 9 $x = 4 \sin \theta$, $dx = 4 \cos \theta d\theta$ $\sqrt{16 - x^2} = \sqrt{16 - 16 \sin^2 x} = 4 \cos \theta$ For x = 4, $\theta = \frac{\pi}{2}$; for x = 0, $\theta = 0$. $\int_0^4 x \sqrt{16 - x^2} dx = \int_0^{\frac{\pi}{2}} 4 \sin \theta 4 \cos \theta 4 \cos \theta d\theta$ $= 64 \int_0^{\frac{\pi}{2}} \sin \theta \cos^2 \theta d\theta$ $u = \cos \theta, du = -\sin \theta d\theta$ For $\theta = \frac{\pi}{2}$, u = 0; for $\theta = 0$, u = 1. $= -64 \int_1^0 u^2 d\theta$ $= -64 \left[\frac{1}{3} u^3 \right]_1^0$ $= \frac{64}{2}$
- 11 $u = \tan x + 3$, $du = \sec^2 x \, dx$ For $x = \frac{\pi}{4}$, u = 4; for x = 0, u = 3. $\int_{3}^{4} \frac{1}{u^4} \, du = \int_{3}^{4} u^{-4} \, du$ $= \left[-\frac{1}{3} u^{-3} \right]_{3}^{4}$ $= -\frac{1}{3} \left(\frac{1}{64} - \frac{1}{27} \right)$ $= \frac{37}{5184}$
- 13 $u = \cos x + \sin x$, $du = (-\sin x + \cos x) dx$ $\int \frac{\sin x - \cos x}{\sin x + \cos x} dx = -\int \frac{1}{u} du$ $= -\ln|u| + C$ $= -\ln|(\cos x + \sin x)| + C$

CHAPTER REVIEW 9

1
$$u = \sqrt{x}$$
, $du = \frac{1}{2\sqrt{x}} dx$

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = 2 \int e^{u} du$$

$$= 2e^{u} + C$$

$$= 2e^{\sqrt{x}} + C$$

3
$$u = x^3 + 1$$
, $du = 3x^2 dx$
For $x = 1$, $u = 2$; for $x = 0$, $u = 1$,

$$\int_0^1 x^2 e^{x^3 + 1} dx = \frac{1}{3} \int_1^2 e^u du$$

$$= \frac{1}{3} \left[e^u \right]_1^2$$

$$= \frac{1}{3} (e^2 - e^1)$$

$$= \frac{e^2 - e}{3}$$

5
$$u = \log_e x$$
, $du = \frac{1}{x} dx$
For $x = e^3$, $u = 3$; for $x = e$, $u = 1$.

$$\int_3^1 \frac{1}{u^2} du = \int_3^1 u^{-2} du$$

$$= \left[-\frac{1}{u} \right]_1^3$$

$$= -\frac{1}{3} + 1$$
2

7 (a)
$$\int_0^{\frac{\pi}{6}} \sin^2 x \, dx = \frac{1}{2} \int_0^{\frac{\pi}{6}} (1 - \cos 2x) \, dx$$
$$= \frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]_0^{\frac{\pi}{6}}$$
$$= \frac{1}{2} \left[\frac{\pi}{6} - \frac{1}{2} \sin \frac{\pi}{3} - \left(0 - \frac{1}{2} \sin 0 \right) \right]$$
$$= \frac{2\pi - 3\sqrt{3}}{24}$$

(b)
$$\int_0^{\frac{\pi}{6}} \cos^2 2x \, dx = \frac{1}{2} \int_0^{\frac{\pi}{6}} (1 + \cos 4x) \, dx$$
$$= \frac{1}{2} \left[x + \frac{1}{4} \sin 4x \right]_0^{\frac{\pi}{6}}$$
$$= \frac{1}{2} \left[\frac{\pi}{6} + \frac{1}{4} \sin \frac{2\pi}{3} - \left(0 - \frac{1}{4} \sin 0 \right) \right]$$
$$= \frac{4\pi + 3\sqrt{3}}{48}$$

9 (a)
$$\frac{d}{dx} [e^{2x} (2\sin x - \cos x)]$$

= $e^{2x} (2\cos x + \sin x) + 2e^{2x} (2\sin x - \cos x)$
= $5e^{2x} \sin x$

(b) Hence:
$$\int 5e^{2x} \sin x \, dx = e^{2x} (2 \sin x - \cos x) + C$$

$$\therefore \int e^{2x} \sin x \, dx = \frac{1}{5} e^{2x} (2 \sin x - \cos x) + C$$

11
$$u = 25 - x^2$$
, $du = -2x dx$
For $x = 3$, $u = 16$; for $x = 2$, $u = 21$.

$$\int_{2}^{3} \frac{2x}{\sqrt{25 - x^2}} dx = -\int_{21}^{16} u^{-\frac{1}{2}} du$$

$$= -\left[2u^{\frac{1}{2}}\right]_{21}^{16}$$

$$= -(2 \times \sqrt{16} - 2 \times \sqrt{21})$$

$$= 2\sqrt{21} - 8$$

13
$$V = \pi \int_0^{\frac{\pi}{6}} y^2 dx$$

$$= \pi \int_0^{\frac{\pi}{6}} \sin^2 2x dx$$

$$= \pi \times \frac{1}{2} \int_0^{\frac{\pi}{6}} (1 - \cos 4x) dx$$

$$= \frac{\pi}{2} \left[x - \frac{1}{4} \sin 4x \right]_0^{\frac{\pi}{6}}$$

$$= \frac{\pi}{2} \left[\frac{\pi}{6} - \frac{1}{4} \sin \frac{2\pi}{3} - \left(0 - \frac{1}{4} \sin 0 \right) \right]$$

$$= \frac{4\pi^2 - 3\sqrt{3}\pi}{48} \text{ units}^3$$

15 (a)
$$\sin \theta \cos 2\theta + \cos \theta \sin 2\theta$$

$$= \sin \theta (1 - 2\sin^2 \theta) + \cos \theta (2\cos \theta \sin \theta)$$

$$= \sin \theta - 2\sin^3 \theta + 2\cos^2 \theta \sin \theta$$

$$= \sin \theta - 2\sin^3 \theta + 2\sin \theta (1 - \sin^2 \theta)$$

$$= \sin \theta - 2\sin^3 \theta + 2\sin \theta - 2\sin^3 \theta$$

$$= 3\sin \theta - 4\sin^3 \theta \quad \text{(as required)}$$

(b)
$$\int (3\sin\theta - 4\sin^3\theta) \, d\theta = \int \sin 3\theta \, d\theta$$
$$= -\frac{1}{3}\cos 3\theta + C$$