层次分析法

Analytic Hierarchy Process

成都信息工程大学学生数学建模协会

https://zhuanlan.zhihu.com/p/266405027 gran zhihu.com/p/452361480

https://blog.csdn.net/u013007900/article/d

etails/45932851

清风数学建模课程

主讲人: 李振东

目录

CONTENTS

01/ 适用情况

02/数学模型介绍

03 层次分析法的局限

01/ 适用情况

Applicable Situation

什么是层次分析法

层次分析法(Analytic Hierarchy Process, AHP)是一种定性和定量相结合的、系统的、层次化的分析方法。

这种方法的特点就是在对复杂决策问题的本质、影响因素及其内在关系等进行深入研究的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。是对难以完全定量的复杂系统做出决策的模型和方法。

什么是层次分析法

我们在生活中总是会面对一些复杂且影响因素较多的决策,我们在做 出决策的时候往往个人主观因素对结果有一定的影响

汽车的选购 旅游目的地的选择 常见案例: 高考志愿的选择

02/数学模型介绍

Mathematical model

适用情况

层次分析法的步骤

- 1, 建立层次结构模型
- 2、构造判断矩阵
- 3, 对判断矩阵进行一致性检验
- 4,通过构造的判断矩阵用三大方法得出准则层和方案层对应的<mark>权重</mark>
- 5, 根据得分选择分数最高的方案

建立层次结构模型

层次结构模型分为三部分:目标层,决策层,方案层

适用情况

建立层次结构模型

层次结构模型分为三部分:目标层,决策层,方案层

建立层次结构模型

层次结构模型分为三部分:目标层,决策层,方案层

适用情况

构造判断矩阵

同色单元格和为1

	指标权重	B1	B2	B3
A1				
A2				
A3				
A4				

数学模型介绍

构造判断矩阵

数学建模协会

Р	A1	A2	А3	A4
A1				
A2				
А3				
A4				

A	B1	B2	В3
B1			
B2			
В3			

构造判断矩阵

数学建模协会

A	B1	B2	В3
B1	1		
B2		1	
В3			1

$B_{ij} = i$ 与 j相比i的重要程度 (满意度)

构造判断矩阵的标准

标度	含义
1	同样重要性
3	稍微重要
5	明显重要
7	强烈重要
9	极端重要
2, 4, 6, 8	上述两相邻判断的中值
倒数	A和B相比如果标度为3, 那么B和A相比就是1/3

数学模型介绍

一致性检验

判断矩阵特点:

数学建模协会

- 1,是正互反矩阵 $(B_{ij}=1/B_{ji})$
- 2,对角线上标度为1

Α	B1	B2	В3
B1	1	2	5
B2	1/2	1	2
В3	1/5	1/2	1

一致性检验

第一步: 计算一致性指标CI

数学建模协会

$$CI = \frac{\lambda_{\max} - n}{n - 1}$$

数学模型介绍

第二步: 查找对应的平均随机数指标RI

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
RI	0	0	0.52	0.89	1.12	1.26	1.36	1.41	1.46	1.49	1.52	1.54	1.56	1.58	1.59

第三步: 计算一致性比例CR

$$CR = \frac{CI}{RI}$$

如果CR<0.1则判断矩阵的一致性可以接受,否则需要进行修改

数学模型介绍

一致性检验

修改判断矩阵:

一致矩阵

Α	B1	B2	В3
B1	1	2	4
B2	1/2	1	2
В3	1/4	1/2	1

Α	B1	B2	В3
B1	1	2	9
B2	1/2	1	2
В3	1/9	1/2	1

算术平均法求权重

数学建模协会

第一步:将判断矩阵归一化

第二步: 将归一化后的矩阵按行求和

第三步:将第二步得到的一个列向量除以n

假设判断矩阵A:
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

用数学语言表达:
$$\omega_i = \frac{1}{n} \sum_{j=1}^n \frac{a_{ij}}{\sum_{k=1}^n a_{kj}} (i = 1,2,3...n)$$

数学模型介绍

几何平均法求权重

数学建模协会

第一步: 将A的元素按行相乘得到一个新的列向量

第二步:将新的列向量的每个元素开n次方

第三步: 进行归一化得到权重

假设判断矩阵A:
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
用数学语言表达: $\omega_i = \frac{\left(\prod_{j=1}^n a_{ij}\right)^{\frac{1}{n}}}{\sum_{l=1}^n \left(\prod_{j=1}^n a_{kj}\right)^{\frac{1}{n}}} \quad (i = 1,2,3 \dots n)$

数学模型介绍

特征值法求权重

第一步: 求出矩阵A的最大特征值及其所对应的特征向量

第二步:对特征值进行归一化得到权重

	指标权重	B1	B2	В3
A1				
A2				
А3				
A4				

03/层次分析法的局限

Limitations of AHP

层次分析法的局限

- 1,平均随机数指标CI的最高只到15,当指标数量大于15就不可用层次分析法
- 2,不能为决策提供新的方案
- 3,定性成分为主,定量成分较少,结果难以让人信服
- 4,不能处理已有详细数据的的方案(可以使用 topsis法)

数学建模协会

假如说我们现在要买电脑,要求即实惠又性能强大

	指标权重	联想	戴尔	苹果
价格				
GPU性能				
CPU性能				

买电脑	价格	GPU性 能	CPU性 能
价格	1	3	4
GPU性 能	1/3	1	2
CPU性 能	1/4	1/2	1

	指标权重	联想	戴尔	苹果
价格	0.6250			
GPU性能	0.2385			
CPU性能	0.1365			

算术平均法求权重的结果为:

- 0.6232
- 0.2395
- 0.1373

几何平均法求权重的结果为:

- 0.6250
- 0.2385
- 0.1365

特征值法求权重的结果为:

- 0.6250
- 0.2385
- 0.1365
- 一致性指标CI=
 - 0.0091
- 一致性比例CR=
 - 0.0176

因为CR<0.10, 所以该判断矩阵A的一致性可以接受!

数学建模协会

价格	联想	戴尔	苹果
联想	1	1/4	5
戴尔	4	1	8
苹果	1/5	1/8	1

	指标权重	联想	戴尔	苹果
价格	0.6250	0.2438	0.6893	0.0669
GPU性能	0.2385			
CPU性能	0.1365			

A=[1 1/4 5;4 1 8;1/5 1/8 1] 算术平均法求权重的结果为:

- 0.2438
- 0.6893
- 0.0669

几何平均法求权重的结果为:

- 0.2370
- 0.6986
- 0.0643

特征值法求权重的结果为:

- 0.2370
- 0.6986
- 0.0643
- 一致性指标CI=
 - 0.0470
- 一致性比例CR=
 - 0.0904

因为CR<0.10,所以该判断矩阵A的一致性可以接受!

当A23为7的时候:

一致性比例CR=

注意: CR >= 0.10,因此该判断矩阵A需要进行修改!

GPU性能	联想	戴尔	苹果
联想	1	2	4
戴尔	1/2	1	3
苹果	1/4	1/3	1

	指标权重	联想	戴尔	苹果
价格	0.6250	0.2438	0.6893	0.0669
GPU性能	0.2385	0.5884	0.3196	0.1220
CPU性能	0.1365			

A=[1 2 4;1/2 1 3;1/4 1/3 1] 算术平均法求权重的结果为:

0.5571

0.3202

0.1226

几何平均法求权重的结果为:

0.5584

0.3196

0.1220

特征值法求权重的结果为:

0.5584

0.3196

0.1220

一致性指标CI=

0.0091

一致性比例CR=

0.0176

因为CR<0.10, 所以该判断矩阵A的一致性可以接受!

CPU性能	联想	戴尔	苹果
联想	1	2	1/5
戴尔	1/2	1	1/6
苹果	5	6	1

	指标权重	联想	戴尔	苹果
价格	0.6250	0.2438	0.6893	0.0669
GPU性能	0.2385	0.5884	0.3196	0.1220
CPU性能	0.1365	0.1721	0.1020	0.7258
		0.31620005	0.5209601	0.1699812

A=[1 2 1/5;1/2 1 1/6; 5 6 1] 算术平均法求权重的结果为:

- 0.1741
- 0.1033
- 0.7225

几何平均法求权重的结果为:

- 0.1721
- 0.1020
- 0.7258

特征值法求权重的结果为:

- 0.1721
- 0.1020
- 0.7258
- 一致性指标CI=
 - 0.0145
- 一致性比例CR=
 - 0.0279

因为CR<0.10, 所以该判断矩阵A的一致性可以接受!

感谢\$

现实世界的奥秘等你探索和发现,

体验数学魅力, 让你收益终身!