1. (2 punts) Sigui $\{a_n\}$ una successió tal que:

$$a_1 = \frac{1}{2}$$
 i $a_{n+1} = \frac{1}{2} + \frac{(a_n)^2}{2}$ per a tot $n > 1$.

- a) Proveu que $0 \le a_n \le 1$, per a tot $n \ge 1$.
- b) Proveu que $\{a_n\}$ és creixent.
- c) Proveu que $\{a_n\}$ és convergent i calculeu el seu límit.

SOLUCIÓ:

- a) Demostració per inducció sobre n:
 - (i) És cert per a n = 1: $0 \le a_1 \le 1$, ja que $a_1 = \frac{1}{2}$.
 - (ii) Suposem que per a cert $n \ge 1$ se satisfà: $0 \le a_n \le 1$ (Hipòtesi d'inducció), i demostrarem que aleshores se satisfà $0 \le a_{n+1} \le 1$:

A partir de la hipòtesi d'inducció, $0 \le a_n \le 1$, elevant al quadrat, dividint per 2, i sumant $\frac{1}{2}$, s'obté: $\frac{1}{2} \le \frac{1}{2} + \frac{(a_n)^2}{2} \le 1$. Aleshores: $\frac{1}{2} \le a_{n+1} \le 1$, i per tant

 $0 \le a_{n+1} \le 1$, com volíem demostrar.

- b) Demostrem per inducció sobre n que $a_n \leq a_{n+1} \ \forall n \geq 1$:
 - (i) Per a n=1 es satisfà: $a_1 \le a_2$, ja que $a_1 = \frac{1}{2}$ i $a_2 = \frac{5}{8}$.

(ii) Suposem que per a cert $n \ge 1$ se satisfà $a_n \le a_{n+1}$ (Hipòtesi d'inducció) i demostrarem que aleshores se satisfà: $a_{n+1} \le a_{n+2}$:

A partir de la hipòtesi d'inducció, $a_n \leq a_{n+1}$, elevant al quadrat, dividint per

2, i sumant $\frac{1}{2}$, s'obté: $\frac{1}{2} + \frac{(a_n)^2}{2} \le \frac{1}{2} + \frac{(a_{n+1})^2}{2}$, és a dir $a_{n+1} \le a_{n+2}$, com volíem demostrar.

c) La successió $\{a_n\}$ és fitada per l'apartat a) i monòtona per l'apartat b), llavors verifica les hipòtesis de teorema de la convergència monòtona. Per tant la successió $\{a_n\}$ és convergent.

Sigui $l = \lim_{n \to \infty} a_n$; aleshores $l = \lim_{n \to \infty} a_{n+1}$. A partir de la fórmula de re-

currència $a_{n+1} = \frac{1}{2} + \frac{(a_n)^2}{2}$, s'obté:

$$l = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1 + (a_n)^2}{2} = \frac{1 + l^2}{2} \implies l^2 - 2l + 1 = 0 \implies l = 1.$$

Per tant $l = \lim_{n \to \infty} a_n = 1$.

2. (2 punts) Sigui $f: \mathbb{R} \to \mathbb{R}$ una funció que pren els valors:

$$f(0) = 5, f(0.5) = 4.625, f(1) = 4, f(1.5) = 3.375.$$

- a) Calculeu una aproximació del valor de la integral $\int_0^{1.5} f(x) dx$ utilitzant la regla dels trapezis amb 3 trapezis.
- b) Sabent que $|f''(x)| \le 2$ per a tot $x \in [0, 1.5]$, doneu una cota de l'error de l'aproximació de l'apartat anterior.

SOLUCIÓ:

a) La fórmula dels trapezis amb 3 trapezis és:

$$T(3) = \frac{b-a}{3} \left(\frac{f(x_0)}{2} + f(x_1) + f(x_2) + \frac{f(x_3)}{2} \right)$$

amb
$$x_k = a + k \cdot \frac{b-a}{3}, i \in \{0, 1, 2, 3\}.$$

En aquest exercici a = 0 i b = 1.5. Aleshores $\frac{b-a}{3} = 0.5$. Per tant $x_0 = 0$, $x_1 = 0.5$, $x_2 = 1$, $x_3 = 1.5$ i:

$$\int_0^{1.5} f(x) \, dx \simeq T(3) = 0.5 \left(\frac{f(0)}{2} + f(0.5) + f(1) + \frac{f(1.5)}{2} \right) = 6.40625.$$

b) La fórmula de la cota de l'error de l'aproximació de l'apartat anterior és:

$$\left| \int_0^{1.5} f(x) \, dx - T(3) \right| \le \frac{(b-a)^3}{12n^2} \cdot M_2,$$

on M_2 és una cota superior de |f''(x)| en l'interval [a,b].

Per tant:

$$\left| \int_0^{1.5} f(x) \, dx - T(3) \right| \le \frac{(1.5)^3}{12 \cdot 9} \cdot 2 = 0.0625.$$

3. (2 punts) Considereu la funció $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^1 en tot \mathbb{R}^2 tal que l'equació del pla tangent a la superfície z = f(x, y) en el punt (1, 2, f(1, 2)) és:

$$2x + 3y + 4z - 1 = 0.$$

- a) Calculeu els valors de la funció f i de les seves derivades parcials de primer ordre al punt (1,2). Quina és la direcció en la que la derivada direccional de f en el punt (1,2) és màxima? Calculeu el valor de la derivada direccional màxima de f en el punt (1,2).
- b) Calculeu la derivada direccional de f en el punt (1,2) en la direcció del vector \overrightarrow{PQ} , per a P=(1,2) i Q=(3,4).

SOLUCIÓ:

a) Donat que f és de classe C^1 , l'equació del pla tangent a la superficie z=f(x,y) en el punt (1,2,f(1,2)) és:

$$z = f(1,2) + \frac{\partial f}{\partial x}(1,2) \cdot (x-1) + \frac{\partial f}{\partial y}(1,2) \cdot (y-2).$$

L'equació 2x + 3y + 4z - 1 = 0 equival a $z = -\frac{1}{2}x - \frac{3}{4}y + \frac{1}{4}$. S'ha de complir:

$$f(1,2) + \frac{\partial f}{\partial x}(1,2) \cdot (x-1) + \frac{\partial f}{\partial y}(1,2) \cdot (y-2) = -\frac{1}{2}x - \frac{3}{4}y + \frac{1}{4}.$$

Per tant:

$$\frac{\partial f}{\partial x}(1,2) = -\frac{1}{2}, \ \frac{\partial f}{\partial y}(1,2) = -\frac{3}{4}, \ f(1,2) = -\frac{7}{4}.$$

Donat que f és de classe C^1 , la direcció en la que la derivada direccional de f en el punt (1,2) és màxima és la del vector gradient de f en el punt (1,2), que és $\vec{\nabla} f(1,2) = \left(-\frac{1}{2}, -\frac{3}{4}\right)$.

El valor de la derivada direccional màxima de f en el punt (1,2) és el mòdul del vector gradient de f en el punt (1,2), que és $||\vec{\nabla}f(1,2)|| = \frac{\sqrt{13}}{4}$.

b) El mòdul del vector \overrightarrow{PQ} és $||\overrightarrow{PQ}|| = ||(2,2)|| = 2\sqrt{2}$. Per tant el vector unitari en la direcció i sentit del vector \overrightarrow{PQ} és $\overrightarrow{v} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Donat que f és de classe C^1 , la devivada direccional demanada és:

$$D_{\vec{v}}f(1,2) = \vec{\nabla}f(1,2) \cdot \vec{v} = \left(-\frac{1}{2}, -\frac{3}{4}\right) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = -\frac{5\sqrt{2}}{8}.$$

- 4. (4 punts) Considerem el paraboloide el. líptic $z=1+x^2+5y^2$
 - a) Per a quins valors de z no hi ha punts a les corbes de nivell? Demostreu que la corba de nivell z=11 és l'el.lipse $\frac{x^2}{5}+y^2=2$.
 - b) Trobeu el pla tangent i la recta normal al paraboloide en el punt (2, 1, 10).
 - c) Calculeu la distància mínima entre els punts del paraboloide i els punts del pla z=4x+10y.

(Fórmula de la distància d'un punt (x, y, z) al pla d'equació ax+by+cz+d=0: $\frac{|ax+by+cz+d|}{\sqrt{a^2+b^2+c^2}}$)

SOLUCIÓ:

- a) Donat $k \in \mathbb{R}$, la corba de nivell z=k té equació $x^2+5y^2+1=k$, que és $x^2+5y^2=k-1$. Per tant, no hi ha punts a les corbes de nivell per a z=k<1. Per a z=11 tindrem $x^2+5y^2=10$, que és $\frac{x^2}{5}+y^2=2$.
- b) L'equació del pla tangent a la superfície $z=\varphi(x,y)$ en el punt $(a,b,\varphi(a,b))$ és:

$$z = \varphi(a, b) + \frac{\partial \varphi}{\partial x}(a, b) \cdot (x - a) + \frac{\partial \varphi}{\partial y}(a, b) \cdot (y - b).$$

L'equació contínua de la recta normal a la superfície $z=\varphi(x,y)$ en el punt $(a,b,\varphi(a,b))$ és:

$$\frac{x-a}{\frac{\partial \varphi}{\partial x}(a,b)} = \frac{y-b}{\frac{\partial \varphi}{\partial y}(a,b)} = \frac{z-\varphi(a,b)}{-1}$$

Calculant les derivades parcials de $\varphi(x,y)=1+x^2+5y^2$ en el punt $(2,1,\varphi(2,1))=(2,1,10)$, tenim que:

L'equació del pla tangent demanat és: z = 10 + 4(x - 2) + 10(y - 1), que és z = 4x + 10y - 8.

L'equació contínua de la recta normal demanada és:

$$\frac{x-2}{4} = \frac{y-1}{10} = \frac{z-10}{-1}$$

c) És un problema d'extrems condicionats. La condició és $z=1+x^2+5y^2$. La funció a optimitzar és la distància d'un punt (x,y,z) al pla z=4x+10y, que és $d(x,y,z)=\left|\frac{4x+10y-z}{\sqrt{117}}\right|$ o, equivalentment, el quadrat d'aquesta distància $d^2(x,y,z)=\frac{(4x+10y-z)^2}{117}$, o, més senzill, la funció $f(x,y,z)=(4x+10y-z)^2$. Substituint $z=1+x^2+5y^2$, s'obté la funció de 2 variables:

$$q(x,y) = f(x,y,1+x^2+5y^2) = (4x+10y-1-x^2-5y^2)^2$$

que és una funció polinòmica i per tant de classe C^{∞} en tot \mathbb{R}^2 . Igualant les seves derivades parcials a zero s'obté el sistema d'equacions:

$$\begin{cases} \frac{\partial g}{\partial x} = 0 \\ \frac{\partial g}{\partial y} = 0 \end{cases} \Leftrightarrow \begin{cases} 2(4x + 10y - 1 - x^2 - 5y^2)(4 - 2x) = 0 \\ 2(4x + 10y - 1 - x^2 - 5y^2)(10 - 10y) = 0 \end{cases}$$

Les solucions d'aquest sistema són els punts $\{(x,y)|4x+10y-1-x^2-5y^2=0\}=\{(x,y)|(x-2)^2+5(y-1)^2=8\}$ i el punt (2,1).

Per a tot (x, y) tal que $4x + 10y - 1 - x^2 - 5y^2 = 0$, es té g(x, y) = 0, que és el valor mínim que pot prendre g(x, y).

Per tant la distància mínima entre els punts del paraboloide $z=1+x^2+5y^2$ i els punts del pla z=4x+10y és 0.

(La distància mínima és 0, donat que el pla i el paraboloide es tallen; el conjunt d'intersecció és l'el·lipse $\{(x, y, z)|z = 4x + 10y, (x - 2)^2 + 5(y - 1)^2 = 8\}$.)