

Parsing

Left Recursion and Left Factoring

Why use Context Free Grammars

Every construct that can be described by a regular expression can be described by a grammar, but not vice-versa. Alternatively, every regular language is a context-free language, but not vice-versa.

- L={ aⁿbⁿ | n≥1}
- Show that L can be described by a grammar not by a regular expression
- Construct a DFA D with k states to accept L
- For aⁿbⁿ (n>k) some state (s_i) of D must be entered twice

Figure 4.6: DFA D accepting both a^ib^i and a^jb^i .

Left Recursion – Why is it bad

 A grammar is left recursive if it can be represented in the form:

$$A \Rightarrow^+ A\alpha$$

Why is this a problem for top down parsing?

Left Recursion – Why is it bad

Example:

S -> Sa | b

To derive baa:

Equivalent Right Recursive grammar

S -> bR R -> aR |€

Left and Right Recursive Grammar

Figure 2.20: Left- and right-recursive ways of generating a string

Left Recursion Removal

Whenever

$$A \Rightarrow^+ A\alpha$$

Simplest Case: Immediate Left Recursion

Given:

$$A \rightarrow A\alpha \mid \beta$$

Transform into:

$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A' \mid \epsilon$$

where A' is a new nonterminal

More General (but still immediate):

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid A\alpha_3 \mid \dots \mid \beta_1 \mid \beta_2 \mid \beta_3 \mid \dots$$

Transform into:

$$A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \beta_3 A' \mid \dots$$

$$A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \alpha_3 A' \mid \dots \mid \epsilon$$

Immediate Left Recursion Elimination: example

Grammar

$$E \rightarrow E + T | T$$

 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$

Given:

$$A \rightarrow A\alpha \mid \beta$$
Transform into:
$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A' \mid \epsilon$$

Left recursion Eliminated (step 1)

$$E \rightarrow T E'$$

 $E' \rightarrow + T E' \mid \varepsilon$

Immediate Left Recursion Elimination: example

Grammar

$$E \rightarrow E + T | T$$

 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$

Given:

$$A \rightarrow A\alpha \mid \beta$$
Transform into:
$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A' \mid \epsilon$$

Left recursion Eliminated (step 2)

$$E \rightarrow T E'$$
 $E' \rightarrow + T E' \mid \epsilon$
 $T \rightarrow F T'$
 $T' \rightarrow * F T' \mid \epsilon$

Immediate Left Recursion Elimination: example

Grammar

$$E \rightarrow E + T | T$$

 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$

Given:

$$A \rightarrow A\alpha \mid \beta$$
Transform into:
$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A' \mid \epsilon$$

Left recursion Eliminated (step 3)

$$E \rightarrow T E'$$
 $E' \rightarrow + T E' \mid \epsilon$
 $T \rightarrow F T'$
 $T' \rightarrow * F T' \mid \epsilon$
 $F \rightarrow (E) \mid id$

Example:

$$S \to A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}$$

$$A \to A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid \underline{\mathbf{e}}$$

Is A left recursive? Yes.

Is S left recursive? Yes, but not immediate left recursion. S \Rightarrow Af \Rightarrow Sdf

Approach:

Look at the rules for S only (ignoring other rules)... No left recursion.

Look at the rules for A...

Do any of A's rules start with S? Yes.

$$A \rightarrow S\underline{d}$$

Get rid of the S. Substitute in the righthand sides of S.

$$A \rightarrow Afd \mid bd$$

The modified grammar:

$$S \to A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}$$

$$A \to A\underline{\mathbf{c}} \mid A\underline{\mathbf{fd}} \mid \underline{\mathbf{bd}} \mid \underline{\mathbf{e}}$$

Now eliminate immediate left recursion involving A.

$$S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}$$

 $A \rightarrow \underline{\mathbf{bd}}A' \mid \underline{\mathbf{e}}A'$
 $A' \rightarrow \underline{\mathbf{c}}A' \mid \underline{\mathbf{fd}}A' \mid \underline{\mathbf{\epsilon}}$

The Original Grammar:

$$S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}$$

 $A \rightarrow A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid B\underline{\mathbf{e}}$
 $B \rightarrow A\underline{\mathbf{g}} \mid S\underline{\mathbf{h}} \mid \underline{\mathbf{k}}$

So Far:

$$S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}$$

 $A \rightarrow \underline{\mathbf{bd}}A' \mid \underline{\mathbf{Be}}A'$
 $A' \rightarrow \mathbf{c}A' \mid \mathbf{fd}A' \mid \boldsymbol{\epsilon}$

The Original Grammar:

$$S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}$$

 $A \rightarrow A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid B\underline{\mathbf{e}}$
 $B \rightarrow A\underline{\mathbf{g}} \mid S\underline{\mathbf{h}} \mid \underline{\mathbf{k}}$

So Far:

```
S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}
A \rightarrow \underline{\mathbf{bd}}A' \mid B\underline{\mathbf{e}}A'
A' \rightarrow \underline{\mathbf{c}}A' \mid \underline{\mathbf{fd}}A' \mid \varepsilon
B \rightarrow A\underline{\mathbf{g}} \mid \underline{\mathbf{Sh}} \mid \underline{\mathbf{k}}
```

Look at the B rules next; Does any righthand side start with "S"?

The Original Grammar:

$$S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}$$

$$A \rightarrow A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid B\underline{\mathbf{e}}$$

$$B \rightarrow A\underline{\mathbf{g}} \mid S\underline{\mathbf{h}} \mid \underline{\mathbf{k}}$$

So Far:

The Original Grammar:

$$S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}$$

 $A \rightarrow A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid B\underline{\mathbf{e}}$
 $B \rightarrow A\mathbf{g} \mid S\mathbf{h} \mid \mathbf{k}$

So Far:

```
S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}
A \rightarrow \underline{\mathbf{bd}}A' \mid B\underline{\mathbf{e}}A'
A' \rightarrow \underline{\mathbf{c}}A' \mid \underline{\mathbf{fd}}A' \mid \varepsilon
B \rightarrow A\underline{\mathbf{g}} \mid A\underline{\mathbf{fh}} \mid \underline{\mathbf{bh}} \mid \underline{\mathbf{k}}
```

Does any righthand side start with "A"?

The Original Grammar:

$$S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}$$

 $A \rightarrow A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid B\underline{\mathbf{e}}$
 $B \rightarrow A\underline{\mathbf{g}} \mid S\underline{\mathbf{h}} \mid \underline{\mathbf{k}}$

So Far:

Substitute, using the rules for "A" bdA'... | BeA'...

The Original Grammar:

$$S \rightarrow A\underline{f} \mid \underline{b}$$

 $A \rightarrow A\underline{c} \mid S\underline{d} \mid B\underline{e}$
 $B \rightarrow A\underline{g} \mid S\underline{h} \mid \underline{k}$

So Far:

```
S → Af | b

A → bdA' | BeA'

A' → cA' | fdA' | ε

B → bdA'g | BeA'g | bdA'fh | BeA'fh | bh | k

Substitute, using the rules for "A"
```

bdA'... | B**e**A'...

The Original Grammar:

$$S \rightarrow A\underline{f} \mid \underline{b}$$

 $A \rightarrow A\underline{c} \mid S\underline{d} \mid B\underline{e}$
 $B \rightarrow A\underline{g} \mid S\underline{h} \mid \underline{k}$

So Far:

```
S \rightarrow A\underline{f} \mid \underline{b}

A \rightarrow \underline{bd}A' \mid B\underline{e}A'

A' \rightarrow \underline{c}A' \mid \underline{fd}A' \mid \epsilon

B \rightarrow \underline{bd}A'\underline{g} \mid B\underline{e}A'\underline{g} \mid \underline{bd}A'\underline{fh} \mid B\underline{e}A'\underline{fh} \mid \underline{bh} \mid \underline{k}
```

Finally, eliminate any immediate Left recursion involving "B"

Next Form

```
S \rightarrow A\underline{f} \mid \underline{b}
A \rightarrow \underline{bd}A' \mid B\underline{e}A'
A' \rightarrow \underline{c}A' \mid \underline{fd}A' \mid \epsilon
B \rightarrow \underline{bd}A'\underline{g}B' \mid \underline{bd}A'\underline{fh}B' \mid \underline{bh}B' \mid \underline{k}B'
B' \rightarrow \underline{e}A'\underline{g}B' \mid \underline{e}A'\underline{fh}B' \mid \epsilon
```


The Original Grammar:

```
S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}
A \rightarrow A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid B\underline{\mathbf{e}} \mid C
B \rightarrow A\underline{\mathbf{g}} \mid S\underline{\mathbf{h}} \mid \underline{\mathbf{k}}
C \rightarrow B\underline{\mathbf{km}}A \mid AS \mid \underline{\mathbf{j}} -
```

If there is another nonterminal, then do it next.

So Far:

```
S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}
A \rightarrow \underline{\mathbf{bd}}A' \mid B\underline{\mathbf{e}}A' \mid CA'
A' \rightarrow \underline{\mathbf{c}}A' \mid \underline{\mathbf{fd}}A' \mid \epsilon
B \rightarrow \underline{\mathbf{bd}}A'\underline{\mathbf{g}}B' \mid \underline{\mathbf{bd}}A'\underline{\mathbf{fh}}B' \mid \underline{\mathbf{bh}}B' \mid \underline{\mathbf{k}}B' \mid CA'\underline{\mathbf{g}}B' \mid CA'\underline{\mathbf{fh}}B'
B' \rightarrow \underline{\mathbf{e}}A'\underline{\mathbf{g}}B' \mid \underline{\mathbf{e}}A'\underline{\mathbf{fh}}B' \mid \epsilon
```

Algorithm for Eliminating Left Recursion

Cuter Loop

```
Assume the nonterminals are ordered A_1, A_2, A_3,...
          (In the example: S, A, B)
<u>for each</u> nonterminal A_i (for i = 1 to N) <u>do</u>
   <u>for</u> <u>each</u> nonterminal A_i (for j = 1 to i-1) <u>do</u>
     Let A_i \rightarrow \beta_1 \mid \beta_2 \mid \beta_3 \mid ... \mid \beta_N be all the rules for A_j
      if there is a rule of the form
         A_i \rightarrow A_i \alpha
      then replace it by
         A_i \rightarrow \beta_1 \alpha + \beta_2 \alpha + \beta_3 \alpha + \dots + \beta_N \alpha
      endIf
   endFor
   Eliminate immediate left recursion
            among the A_i rules
endFor
```


Consider the following grammar:

$$S \rightarrow i E t S \mid i E t S e S \mid a$$

 $E \rightarrow b$

Suppose a top down parser is trying to generate the string: *ibtaea*

How will a top down parser work?

Remember that a parser has limited look ahead symbols (1 look ahead usually)

S

$$S \rightarrow i E t S \mid i E t S e S \mid a$$

$$E \rightarrow b$$

$$S \rightarrow i E t S \mid i E t S e S \mid a$$

$$E \rightarrow b$$

$$S \rightarrow i E t S \mid i E t S e S \mid a$$

$$E \rightarrow b$$

$$S \rightarrow i E t S \mid i E t S e S \mid a$$

$$E \rightarrow b$$

$$S \rightarrow i E t S \mid i E t S e S \mid a$$

$$E \rightarrow b$$

$$S \rightarrow i E t S \mid i E t S e S \mid a$$

$$E \rightarrow b$$

$$S \rightarrow i E t S \mid i E t S e S \mid a$$

$$E \rightarrow b$$

$$S \rightarrow i E t S \mid i E t S e S \mid a$$

$$E \rightarrow b$$

$$S \rightarrow i E t S \mid i E t S e S \mid a$$

$$E \rightarrow b$$

$$S \rightarrow i E t S \mid i E t S e S \mid a$$

$$E \rightarrow b$$

 So to eliminate the problem of generating the same grammar string multiple times, take a common grammar string and factor it out:

Given Grammar:

$$S \rightarrow i E t S \mid i E t S e S \mid a$$

 $E \rightarrow b$

Left Factored Equivalent of the grammar:

$$S \rightarrow i \ E \ t \ S \ S' \mid a$$

 $S' \rightarrow e \ S \mid \epsilon$
 $E \rightarrow b$

In general, if $A \to \alpha \beta_1 \mid \alpha \beta_2$ are two A-productions, and the input begins with a nonempty string derived from α , we do not know whether to expand A to $\alpha \beta_1$ or $\alpha \beta_2$. However, we may defer the decision by expanding A to $\alpha A'$. Then, after seeing the input derived from α , we expand A' to β_1 or to β_2 . That is, left-factored, the original productions become

$$A \to \alpha A'$$

$$A' \to \beta_1 \mid \beta_2$$