CS 061 – Computer Organization

Quiz 4 – Thursday 10/24

solution

1. Given the instruction (located at address xA400)

and given: pointer is a label for address xA460; memory location xA460 contains the value xB000; memory location xB000 contains the value xC000; and memory location xC000 contains the value x00FF

What value will R1 contain after the instruction executes?

a. xA400

C. xB000

e. x00FF

b. xA460

- **d.** xC000
- 2. Register R3 contains the number xAC4F. Following execution of the instruction NOT R3, R3

what does R3 contain?

a. x43A0

C. x53B1

e. x4DBE

b. x53B0

d. x5DA1

- **f.** x53AC
- **3.** The LC-3 does not have the operation "OR". Which of the following combinations of LC-3 instructions would be the equivalent of

(i.e. bitwise OR the contents of R1 and R2 and store the result into R3)?

- **a.** AND R3, R1, R2 NOT R3, R3
- b. NOT R1, R1
 - NOT R2, R2 AND R3, R1, R2

NOT R3, R3

- C. NOT R1, R1 ADD R1, R1, #1 ADD R3, R1, R2
- NOT R3, R3 **d.** AND R1, R1, #1
 - AND R3, R1, R2 NOT R3, R3
- e. AND R3, R1, R2
 NOT R1, R1
 AND R3, R3, R1
- f. NOT R1, R1 NOT R2, R2 AND R3, R1, R2
- **4.** Given that the ASCII codes for 'A' through 'Z' are x41 through x5A; and the codes for 'a' through 'z' are x61 through x7A: which of the following operations would force the character stored in R0 to *lower* case i.e. convert a character stored in R0 from *upper* case into *lower* case, or *preserve* the case if it was lower case already.(so 'A' would become 'a', and 'a' would remain unchanged).

Note: the LC-3 stores ASCII characters in the lower ("right-hand") byte of a 16-bit word, with the upper byte set to zero.

- **a.** and R0 with x0020
- **c.** xor R0 with x0020
- e. or R0 with x005F

- b. or R0 with x0020
- **d.** and R0 with x005F
- f. and R0 with x004F

5.	What is the logic expression corresponding to the	e follow	ing tru	th table	e, in the	form
	Out = f(A, B, C)					1

- **a.** Out = A.B + A.C
- **b.** Out = A.B' + A.C
- C. Out = A.B' + B.C
- **d.** Out = A.B.C + A'.C
- **e.** Out = A.B.C + A'.B'.C'
- f. Out = A.B + A.C + B.C

Α	В	C	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

6. Simplify the Boolean expression:

- **a.** a.b.c + a.b.d + b.c.d
- b. a.d + a.b.c
- **C.** a.c + a.b.d
- \mathbf{d} . a.c + b.d + b.c
- e. can't be simplified

7. How many select lines does an 8 data input multiplexer have?

a. 1

b. 3

c. 8

- **d.** 64
- **e.** 256

- 8. How many output lines does an 8 data input multiplexer have?
 - a. 1

- **b.** 3
- **c.** 8
- **d.** 6
- **e.** 256

- 9. How many inputs does a full adder have?
 - a. 1

b. 2

c. 3

d. 4

- e. It depends on the number of bits in the numbers being added
- 10. What logic circuit would you use for addressing memory?
 - a. Full adder
 - **b.** Multiplexer
 - c. Decoder

- d. Multi-input and gate
- e. Direct Memory Access circuit