Devoir à la maison nº 9

Problème 1 —

Partie I – Etude de suites

On note S l'ensemble des suites $\alpha=(\alpha_n)_{n\in\mathbb{N}}$ vérifiant : $\alpha_0\in\mathbb{Z}$ et pour tout $n\geqslant 1,$ $\alpha_n\in\mathbb{N}^*.$ Etant donné une suite $\alpha=(\alpha_n)_{n\in\mathbb{N}}$ de S, on définit les suites $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$ par :

$$p_0 = a_0$$
, $p_1 = a_0a_1 + 1$, $q_0 = 1$, $q_1 = a_1$

puis, pour $n \ge 2$, par :

$$p_n = a_n p_{n-1} + p_{n-2}$$
 et $q_n = a_n q_{n-1} + q_{n-2}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$ on a $q_n \ge n$.
- 2. Relations entre les p_n et les q_n .
 - **a.** Pour $n \ge 1$, calculer $p_n q_{n-1} q_n p_{n-1}$.
 - **b.** Pour $n \ge 2$, calculer $p_n q_{n-2} q_n p_{n-2}$.
- **3.** Pour $n \in \mathbb{N}$, on définit $x_n = \frac{p_n}{q_n}$.
 - **a.** Pour $n \ge 1$, calculer $x_n x_{n-1}$ et pour $n \ge 2$, calculer $x_n x_{n-2}$ en fonction des a_k et des a_k .
 - b. Quel est le sens de variation des suites $(x_{2n})_{n\in\mathbb{N}}$ et $(x_{2n+1})_{n\in\mathbb{N}}$. En déduire que la suite $(x_n)_{n\in\mathbb{N}}$ converge vers un réel α . Préciser la position relative de α , x_n et x_{n+1} suivant la parité de n.
 - **c.** Montrer que pour tout $n \in \mathbb{N}$, $|x_n \alpha| < \frac{1}{q_n^2}$.
 - d. Démontrer par l'absurde que α est un nombre irrationnel.
- **4.** Soient $n \in \mathbb{N}$ et $(p,q) \in \mathbb{N} \times \mathbb{N}^*$ tels que $q < q_{n+1}$. On souhaite l'inégalité suivante

$$|q\alpha - p| \geqslant |q_n\alpha - p_n|$$
 (MA)

a. Montrer qu'il existe deux entiers u et v vérifiant

$$\begin{cases} p = up_n + vp_{n+1} \\ q = uq_n + vq_{n+1} \end{cases}$$

- **b.** Montrer que $u \neq 0$.
- c. Etablir l'inégalité (MA) dans le cas v = 0.
- d. On suppose maintenant ν non nul. Montrer que $\mathfrak u$ et ν sont de signes contraires puis établir l'inégalité MA.
- 5. Soit $(p,q) \in \mathbb{N} \times \mathbb{N}^*$ tel que $\left|\alpha \frac{p}{q}\right| < \frac{1}{2q^2}$.
 - a. Justifier qu'il existe $N \in \mathbb{N}$ tel que $q_N \leqslant q < q_{N+1}$.
 - **b.** Montrer que $\frac{p}{q} = \frac{p_N}{q_N}$.
- **6.** Soit $\lambda \in \mathbb{N}^*$ un entier naturel non nul fixé; on considère la fonction f définie pour tout t réel par $f(t) = t^2 \lambda t 1$.
 - **a.** Tracer le graphe de la fonction f sur l'intervalle $[-1, \lambda + 1]$.

- **b.** On note r_1 et r_2 , avec $r_1 < r_2$, les deux racines de f. Déterminer le signe et la partie entière de chacune des racines.
- 7. Pour tout $n \in \mathbb{N}$, on prend $a_n = \lambda$ et on considère la suite $a = (a_n)_{n \in \mathbb{N}}$.
 - a. Pour $i \in [0,3]$, calculer p_i et q_i .
 - **b.** Pour $n \ge 1$, exprimer q_n en fonction des p_k pour $k \in \mathbb{N}$. En déduire une expression de x_n en fonction des q_k pour $k \in \mathbb{N}$.
 - c. Exprimer q_n en fonction de r_1 , r_2 et n.
 - d. Déduire des questions précédentes une expression de x_n en fonction de r_1 , r_2 et n.
 - e. En déduire la valeur de la limite α de la suite $(x_n)_{n\in\mathbb{N}}$ en fonction de r_1 et r_2 .
 - **f.** On prend $\lambda=3$. Calculer q_n pour $n\in[0,6]$. En déduire deux nombres rationnels qui encadrent α à 10^{-4} près.

Partie II – Algorithme des fractions continues

Etant donné une suite de nombres réels $(b_n)_{n\in\mathbb{N}}$, telle que pour tout $n\geqslant 1$ on ait $b_n>0$, on définit la suite dont le terme général d'indice n est noté $[b_0,b_1,\ldots,b_n]$ par :

$$[b_0] = b_0 \;,\; [b_0,b_1] = b_0 + \frac{1}{b_1} \;,\; \mathrm{puis\;pour}\; n \geqslant 1,\; [b_0,\ldots,b_n,b_{n+1}] = \left[b_0,\ldots,b_{n-1},b_n + \frac{1}{b_{n+1}}\right].$$

 $\mathrm{En\ particulier}\ [b_0,b_1,b_2] = \Big[b_0,b_1 + \frac{1}{b_2}\Big].$

1. Soient $n \in \mathbb{N}^*$ et $r \in \mathbb{N}$. Montrer par récurrence sur r que

$$[b_0, \ldots, b_{n-1}, [b_n, \ldots, b_{n+r}]] = [b_0, \ldots, b_{n+r}]$$

- $\textbf{2. Soit } \mathfrak{a} = \left(\mathfrak{a}_{\mathfrak{n}}\right)_{\mathfrak{n} \in \mathbb{N}} \text{ un élément de } S. \text{ On lui associe les suites } \left(\mathfrak{p}_{\mathfrak{n}}\right)_{\mathfrak{n} \in \mathbb{N}}, \\ \left(\mathfrak{q}_{\mathfrak{n}}\right)_{\mathfrak{n} \in \mathbb{N}} \text{ et } \left(\mathfrak{x}_{\mathfrak{n}}\right)_{\mathfrak{n} \in \mathbb{N}} \text{ définies dans } I.$
 - a. Ecrire $[a_0, a_1]$ et $[a_0, a_1, a_2]$ sous forme de fractions en fonction des a_i .
 - **b.** Montrer que pour tout entier $n \ge 1$ et pour tout réel x strictement positif :

$$[a_0, \dots, a_n, x] = \frac{p_n x + p_{n-1}}{q_n x + q_{n-1}}$$

- **c.** Montrer que pour tout $n \in \mathbb{N}$, on a $[a_0, \ldots, a_n] = x_n$.
- 3. Dans I.3, on a montré que la suite $(x_n)_{n\in\mathbb{N}}$ converge vers un nombre irrationnel α . On note F l'application de S dans l'ensemble des nombres irrationnels définie par $F(\alpha) = \alpha$. On admet pour l'instant que F est surjective.

Soient donc α un nombre irrationnel et $\alpha \in S$ une suite telle que $\alpha = F(\alpha)$.

- a. Comparer x_0 , x_1 et α . En déduire que α_0 est la partie entière de α .
- $\mathbf{b.} \ \mathrm{Pour} \ n \in \mathbb{N}^*, \ \mathrm{montrer} \ [a_0, \ldots, a_n] = a_0 + \frac{1}{[a_1, \ldots, a_n]}.$
- **c.** Pour $k \in \mathbb{N}$, justifier l'existence de la limite $\lim_{n \to +\infty} [a_k, \dots, a_n]$. On notera α_k cette limite.
- d. Montrer l'égalité $\alpha = \alpha_0 = \alpha_0 + \frac{1}{\alpha_1}$. Donner une relation entre α_k , α_{k+1} et α_k .
- e. Décrire un algorithme qui donne la suite $(a_n)_{n\in\mathbb{N}}$. En déduire que F est bijective. On justifiera en particulier la surjectivité de F.
- **f.** On prend $\alpha = \sqrt{3}$ et on note $\alpha = (\alpha_n)_{n \in \mathbb{N}} \in S$ la suite vérifiant $F(\alpha) = \sqrt{3}$. Calculer $\alpha_0, \alpha_1, \alpha_2, \alpha_3$ et exprimer α_1, α_2 et α_3 en fonction de $\sqrt{3}$. Déterminer la suite $\alpha = (\alpha_n)_{n \in \mathbb{N}}$.

Partie III – Nombres algébriques quadratiques

On dira qu'un réel α est quadratique s'il est solution d'une équation polynomiale de degré 2 à coefficients entiers, autrement dit, s'il existe A, B, C $\in \mathbb{Z}$ avec $A \neq 0$ tels que $A\alpha^2 + B\alpha + C = 0$.

On se donne dans cette partie α un nombre irrationnel et $\alpha = F^{-1}(\alpha)$ la suite de S qui lui est associée.

- 1. On suppose a périodique de période m.
 - a. On suppose m = 1. Montrer que α est quadratique.
 - **b.** On suppose maintenant $m \ge 2$. Montrer que $\alpha = [a_0, \ldots, a_{m-1}, \alpha]$ et en déduire que α est quadratique.
- 2. a. Soient θ un réel quadratique et $\kappa, \lambda, \mu, \nu$ des entiers tels que $\kappa \nu \lambda \mu \neq 0$ et μ, ν non simultanément nuls. Montrer que $\phi = \frac{\kappa \theta + \lambda}{\mu \theta + \nu}$ est également quadratique.
 - b. On suppose maintenant α périodique de période m à partir du rang r. Montrer que α est quadratique.
- 3. On suppose α quadratique. Soient donc $A,B,C\in\mathbb{Z}$ avec $A\neq 0$ tels que $A\alpha^2+B\alpha+C=0$.
 - **a.** Pour $n \ge 2$, on pose

$$\begin{split} A_n &= A p_{n-1}^2 + B p_{n-1} q_{n-1} + C q_{n-1}^2 \\ B_n &= 2 A p_{n-1} p_{n-2} + B \left(p_{n-1} q_{n-2} + p_{n-2} q_{n-1} \right) + 2 C q_{n-1} q_{n-2} \\ C_n &= A p_{n-2}^2 + B p_{n-2} q_{n-2} + C q_{n-2}^2 \end{split}$$

Vérifier que $A_n \alpha_n^2 + B_n \alpha_n + C_n = 0$.

- b. Calculer $A_n q_{n-1}^2(A\alpha^2 + B\alpha + C)$. En déduire que la suite $(A_n)_{n\geqslant 2}$ est bornée puis que la suite $(C_n)_{n\geqslant 2}$ est également bornée.
- c. On pose $\Delta=B^2-4AC$ et $\Delta_n=B_n^2-4A_nC_n$ pour $n\geqslant 2$. Vérifier que $\Delta_n=\Delta$. En déduire que $(B_n)_{n\geqslant 2}$ est également bornée.
- d. Montrer que l'ensemble des racines des trinômes $A_nX^2 + B_nX + C_n$ pour $n \geqslant 2$ est fini.
- e. Montrer qu'il existe $r \in \mathbb{N}$ et $m \in \mathbb{N}^*$ tel que $\alpha_r = \alpha_{r+m}$.
- f. En déduire que a est périodique à partir d'un certain rang.
- 4. On suppose à nouveau α quadratique. Il existe donc un polynôme P à cofficients entiers de degré 2 annulant α . On note α' la seconde racine de P.
 - a. Montrer que α' ne dépend pas du choix du polynôme P. On appellera α' le conjugué de α .
 - **b.** Montrer que pour tout $n \in \mathbb{N}$, α_n est quadratique. Pour $n \in \mathbb{N}$, on notera α'_n le conjugué de α_n .
 - c. Montrer que pour tout $n \in \mathbb{N}$, $\alpha'_{n+1} = \frac{1}{\alpha'_n \alpha_n}$.
 - $\text{d. On suppose } \alpha > 1 \text{ et } -1 < \alpha' < 0. \text{ Montrer que pour tout } n \in \mathbb{N}, \, -1 < \alpha'_n < 0. \text{ En déduire que } \alpha_n \\ \text{est la partie entière de } -\frac{1}{\alpha'_{n+1}}.$
 - e. En déduire que a est périodique (à partir du rang 0).

Partie IV – Equation de Pell-Fermat

Soit d'un entier naturel qui ne soit pas un carré d'entier. On se propose de résoudre l'équation de Pell-Fermat

$$x^2 - dy^2 = 1 \tag{PF}$$

d'inconnues $x, y \in \mathbb{N}$.

1. Montrer que \sqrt{d} est irrationnel.

- 2. On pose $\alpha = \sqrt{d}$ et $\alpha = F^{-1}(\alpha)$. Montrer que α est périodique à partir du rang 1 en utilisant la question III.4. On notera m la plus petite période de $(\alpha_n)_{n\geqslant 1}$.
- 3. On reprend les notations de la partie I. Soit (x, y) un couple de solutions de (PF) avec $y \neq 0$.
 - **a.** A l'aide de la question **I.5**, montrer qu'il existe $N \in \mathbb{N}$ tel que $x = p_N$ et $y = p_N$.
 - **b.** Montrer que $\frac{p_N}{q_N} > \sqrt{d}$ et en déduire que N est impair. On pourra utiliser la question **I.3.b**.
 - $\mathbf{c.} \ \ \mathrm{Justifier} \ \mathrm{que} \ \sqrt{d} = \frac{p_N \alpha_{N+1} + p_{N-1}}{q_N \alpha_{N+1} q_{N-1}}.$
 - d. En déduire qu'il existe un entier b tel que $\alpha_{N+1} = \sqrt{d} + b$.
 - e. Montrer que $N \equiv -1[m]$.
- 4. Réciproquement, soit $N \in \mathbb{N}$ impair tel que $N \equiv -1[m]$. Montrer que $(\mathfrak{p}_N,\mathfrak{q}_N)$ est un couple de solutions de (PF).