StatsI — Exercise 5

- 1. Let X_1, \dots, X_n be a sample from Bernoulli(p), and Y_1, \dots, Y_m be a sample from Bernoulli(q), and the two samples are independent with each other.
 - (a) Find a reasonable estimator for p-q and its standard error.
 - (b) Find an approximate 95% confidence interval for p-q when both n and m are large.
- 2. 100 people are given a standard antibiotic to treat an infection and another 100 are given a new antibiotic. In the first group, 90 people recover; in the second group, 85 people recover. Let p₁ be the probability of recovery with the standard antibiotic and p₂ be the probability of recovery with the new antibiotic. We are interested in estimating θ = p₁-p₂. Provide an estimate, standard error, an 80% confidence interval, and a 95% confidence interval for θ.
- 3. Let X_1, \dots, X_n be a sample from a distribution F and let \widehat{F}_n be the empirical distribution. Let x and y be two distinct points, and x < y.
 - (a) Compute $E\{\widehat{F}(x)\}\$ and $Var\{\widehat{F}(x)\}.$
 - (b) Compute $Cov\{\widehat{F}(x), \widehat{F}(y)\}.$
 - (c) Based on the CLT, find the limiting distribution of $\widehat{F}(x)$. Furthermore, find an approximate 1α confidence interval for F(x).
 - (d) Suppose we are interested in estimating $\theta \equiv F(y) F(x)$, and we use $\hat{\theta} \equiv \hat{F}(y) \hat{F}(x)$ as our estimate. Find the standard deviation and the standard error of $\hat{\theta}$.