Project Euler #123: Prime square remainders

This problem is a programming version of Problem 123 from projecteuler.net

Let p_n be the nth prime: 2, 3, 5, 7, 11, \ldots\$, and let r be the remainder when $(p_n-1)^n + (p_n+1)^n$ is divided by p_n^2 .

For example, when n = 3, $p_3 = 5$ and $4^3 + 6^3 = 280 \neq 5 \pmod{25}$.

The least value of \$n\$ for which the remainder first exceeds \$100\$ is \$5\$.

Find the least value of \$n\$ for which the remainder first exceeds \$B\$.

Input Format

The first line of input contains \$T\$, the number of test cases.

Each test case consists of a single line containing a single integer, \$B\$.

Constraints

\$1 \le T \le 10^5\$ \$1 \le B \le 10^{12}\$

Output Format

For each test case, output a single line containing a single integer, the requested answer.

Sample Input

Sample Output

5

100

Explanation

As noted above, the first $n\$ for which the remainder exceeds $100\$ is $5\$. The remainder when $n = 5\$ is $(p_5-1)^5+(p_5+1)^5=10^5+12^5=348832 \neq 110 \pmod{11^2}\$, which definitely exceeds $100\$. You may easily check that the remainder doesn't exceed $100\$ when $n < 5\$.