

MIP280A4 FINAL PROJECT

Tyler Sherman Fall 2022

phylogenic & variant analysis

GLOBAL MAP OF THE PREDICTED DISTRIBUTION OF AEDES AEGYPTI IN 2015

Moritz UG Kraemer, Marianne E Sinka, Kirsten A Duda, Adrian QN Mylne, Freya M Shearer, Christopher M Barker, Chester G Moore, Roberta G Carvalho, Giovanini E Coelho, Wim Van Bortel, Guy Hendrickx, Francis Schaffner, Iqbal RF Elyazar, Hwa-Jen Teng, Oliver J Brady, Jane P Messina, David M Pigott, Thomas W Scott, David L Smith, GR William Wint, Nick Golding, Simon I Hay - elifesciences.org/content/4/e08347, File:Global Aedes aegypti distribution.gif

BIOINFORMATICS WORKFLOW

Quality Assessment	Quality Trimming	Host Filter Index	Mapping	Assembly
• Fastqc v0.11	 Cutadapt v3.5 AGATCGGAAGAG Trim w/ Q scores <30 from both ends 80 base minimum 	 Create index of Aedes aegypti complete genome 	 Bowtie2 v2.4 in local mode 0.74% aligned 0 times to A. aegypti 	 Spades v3.15 Unmapped reads assembled into 135 contigs

=== Summary ===				
Total reads processed:	4,095,494			
Reads with adapters:	241,540 (5.9%)			
== Read fate breakdown ==				
Reads that were too short:	521,187 (12.7%)			
Reads written (passing filters):	3,574,307 (87.3%)			
Total base pairs processed:	618,419,594 bp			
Quality-trimmed:	87,124,033 bp (14.1%)			
Total written (filtered):	505,947,706 bp (81.8%)			

Variant Analysis

- SAM file generated by mapping data against closest reference index
- Lofreq v2.1

Coverage Assessment

- Index built from assembled contigs
- Reads mapped against contig index

BLAST

 Blastn of 12 contigs with highest coverage depth

Post-trim

Pre-trim

BLAST RESULTS

reads mapped against contigs

NCBI blastn of contigs

^a contig	# reads mapped	sequence length	mean coverage	top BLAST hit	query cover	percent identity	accession	pathogen family
2	3451	4695	103	Yeltsovka tombus-like_virus putative capsid	90%	80%	MW251332.1	Tombusviridae
3	3367	3837	127	PCLV isolate Rio segment M	99%	100%	NC_038261.1	Bunyavirales
1	2613	6781	55	PCLV isolate Rio segment L	99%	100%	NC_038262.1	Bunyavirales
4	2503	3089	115	Guadeloupe mosquito virus segment RNA1	100%	100%	MW434816.1	unclassified
11	1877	1341	202	PCLV isolate Rio segment S	100%	100%	NC_038263.1	Bunyavirales
5	1037	1632	85	Guadeloupe mosquito virus segment RNA2	100%	99%	MW434807.1	unclassified
13	779	1278	88	n.d.	-	-	-	-
9	344	1423	35	Chap-like virus isolate CLv.PozaRica20 ORF gene	99%	100%	MT742176.1	Partitiviridae
10	311	1348	33	Aedes aegypti leucine-rich repeat transmembrane neuronal protein 3	4%	95%	XM_001659114.2	-
6	251	1585	22	Elizabethkingia anophelis strain 2-8 chromosome	99%	100%	CP071530.1	Weeksellaceae
8	197	1454	19	Verdadero virus isolate Vv.PozaRica20 putative capsid	99%	100%	MT742175.1	Partitiviridae
7	144	1455	13	Elizabethkingia anophelis JUNP 353 DNA	100%	100%	AP022313.1	Weeksellaceae

 $^{\circ}$ contigs derived from Spades assembly of remaining reads when filtered against Aedes aegypti genome (GCA_002204515.1)

PCLV = Phasi Charoen-like virus

n.d. = no hits returned for BLAST of contig

Yeltsovka tombus-like_virus isolate Koltsovo/YTLV/2019 putative polyprotein and putative capsid protein genes, complete cds

GenBank: MW251332.1

FASTA Graphics

Go to: ♥

LOCUS MW251332 4317 bp RNA linear VRL 05-APR-2022

DEFINITION Yeltsovka tombus-like_virus isolate Koltsovo/YTLV/2019 putative polyprotein and putative capsid protein genes, complete cds.

ACCESSION MW251332 VERSION MW251332.1

KEYWORDS

SOURCE Yeltsovka tombus-like_virus
ORGANISM Yeltsovka tombus-like virus

Viruses; Riboviria; Orthornavirae; Kitrinoviricota;

Tolucaviricetes; Tolivirales; Tombusviridae.

REFERENCE 1 (bases 1 to 4317)

AUTHORS Ternovoi, V.A., Shvalov, A.N., Kartashev, M.Y., Ponomareva, E.P.,

Tupota, N.L., Horoshavin, Y.Y.A., Bayandin, R.B., Gladysheva, A.V.,

Mikryukova, T.P., Tregubchak, T.V., Ilyinykh, A.V. and Loktev, V.B.

TITLE Coquillettidia richardii viruses

JOURNAL Unpublished

REFERENCE 2 (bases 1 to 4317)

Tolivirales; Tombusviridae

Tomato bushy stunt virus

Monopartite, linear, ssRNA(+) genome of 4-5.4 kb, which lacks a cap structure and a poly(A)tail.

Diverse RNA viruses of arthropod origin in the blood of fruit bats suggest a link between bat and arthropod viromes

Andrew J. Bennett, ¹ Trenton Bushmaker, ² Kenneth Cameron, ³ Alain Ondzie, ³ Fabien R. Niama, ⁴ Henri-Joseph Parra, ⁴ Jean-Vivien Mombouli, ⁴ Sarah H. Olson, ³ Vincent J Munster, ² and Tony L. Goldberg^{1,*}

▶ Author information ▶ Copyright and License information Disclaimer

Published online 2018 Dec 18. doi: 10.1016/j.virol.2018.12.009

TOMBUS-LIKE VIRUS COVERAGE & ANNOTATION

TOMBUS-LIKE VIRUS VARIANT ANALYSIS

PCLV SEGM COVERAGE & ANNOTATION

PHASIVIRUS

Journal of Parasitology and Vector Biology Vol. 3(1), pp. 19-21, January 2011 Available online at http://www.academicjournals.org/JPVB ISSN 2141-2510 ©2011 Academic Journals

Short Communication

Prevalence of Phasi Charoen virus in female mosquitoes

Yusuke Sayama^{1,2}, Yuki Eshita³, Takuya Yamao⁴, Miho Nishimura⁴, Tomomitsu Satho⁴, Raweewan Srisawat⁵, Narumon Komalamisra⁵, Yupha Rongsriyam⁵, Kouji Sakai¹, Shuetsu Fukushi¹, Masayuki Saijo¹, Hitoshi Oshitani², Ichiro Kurane¹, Shigeru Morikawa¹ and Tetsuya Mizutani¹*

- Phasi Charoen virus initially isolated in Thailand from mosquito larvae
- ~20% of adult female mosquitos infected by PhaV

https://viralzone.expasy.org/8476

Contents lists available at ScienceDirect

Virology

journal homepage: www.elsevier.com/locate/yviro

Metagenomic shotgun sequencing of a Bunyavirus in wild-caught *Aedes aegypti* from Thailand informs the evolutionary and genomic history of the Phleboviruses

James Angus Chandler ^{a,*}, Panpim Thongsripong ^{a,b,1}, Amy Green ^c, Pattamaporn Kittayapong ^d, Bruce A. Wilcox ^{d,e}, Gary P. Schroth ^f, Durrell D. Kapan ^{g,h}, Shannon N. Bennett ^{a,*}

- Phasi Chareon-like virus is basal to RVFV
- PCLV lacks a key virulence gene that is present in all other Phleboviruses

Transmission dynamics of an insect-specific flavivirus in a naturally infected *Culex pipiens* laboratory colony and effects of co-infection on vector competence for West Nile virus

Bethany G. Bolling a,*, Francisco J. Olea-Popelka b, Lars Eisen a, Chester G. Moore a, Carol D. Blair a

- ^a Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
 ^b Veterinary Preventive Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
 - ISVs may modulate arboviruses

Viruses; Riboviria; Orthornavirae; Negarnaviricota; Polyploviricotina; Ellioviricetes; Bunyavirales; Phenuiviridae

VARIANT ANALYSIS

Consensus

Contig 3 (PCLV isolate Rio segM)

