

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму «Стохастический анализ»

Студент 415 группы В. С. Терёшин

Содержание

1	Зад	ание 1	4
	1.1	Постановка задачи	4
	1.2	Теоретические выкладки	4
	1.3	Примеры работы программы	5
2	Зад	ание 2	8
	2.1	Постановка задачи	8
	2.2	Теоретические выкладки	8
		2.2.1 Свойства симметричности и самоподобия	8
	2.3	Примеры работы программы	9
3	Зал	ание 3	10
•	3.1	1	10
	3.2		$\frac{10}{10}$
	J	± ''	$\frac{1}{12}$
	3.3		$\frac{12}{12}$
4	20.11	а ние 4	16
4	За д	1	16
	4.1		16
	4.3	± ''	18
	4.0	примеры рассты программы	10
5	Зад	ание 5	19
	5.1	Постановка задачи	19
	5.2	Теоретические выкладки	19
	5.3	Примеры работы программы	20
6	Зад	ание 6	22
	6.1		22
	6.2		22
		6.2.1 Вычисление интеграла методом Монте-Карло	22
		6.2.2 Вычисление интеграла методом квадратур	23
7	Зал	ание 7	24
•	7.1	1	$\frac{1}{24}$
	7.2		$\frac{-}{24}$
	7.3	± ''	$\frac{-}{25}$
8		·	26
	8.1		26
	8.2	±	26
		1 1	$\frac{26}{26}$
	0.0	±	26
	8.3	Примеры работы программы	27

9	Зад	ание 9	28
	9.1	Постановка задачи	28
		Теоретические выкладки	
	9.3	Примеры работы программы	28
10	Зад	ание 10	29
	10.1	Постановка задачи	29
		Теоретические выкладки	
	10.3	Примеры работы программы	30
11			33
	11.1	Постановка задачи	33
12	Мод	цель СМО	33
	12.1	Модель страховой компании	34
Сп	исон	к литературы	36

1.1 Постановка задачи

- 1. Реализовать генератор схемы Бернулли с заданной вероятностью успеха р. На основе генератора схемы Бернулли построить датчик для биномиального распределения и геометричекого распределения.
- 2. Для геометрического распределения проверить свойство отсутствия памяти.
- 3. Рассмотрим игру в орлянку бесконечную последовательность независимых испытаний с бросанием правильной монеты. Обозначим через X_1, X_2, \ldots последовательность независимых одинаково распределенных случайных величин, каждая из которых принимает значения 1, если в соответствующем испытании выпал герб, и —1 в противном случае (с вероятностью $\frac{1}{2}$). Обозначим суммарный выигрыш через $S_n = X_1 + \ldots + X_n$. Необходимо произвести N = 1000 испытаний Бернулли и построить траекторию процесса $Y(t), t \in [0,1]$, которая в точках $t_n = \frac{n}{N}$, где $n = 0, 1, \ldots, N$, равна $Y(t_n) = \frac{S_n}{\sqrt{N}}$, а в остальных случаях определяется с помощью кусочно-линейной интерполяции (т. е. в виде ломаной).

1.2 Теоретические выкладки

Определение 1 (Схема Бернулли). Схемой Бернулли с заданной вероятностью успеха р называется эксперимент, состоящий из серии испытаний, удовлетворяющих следующим свойствам:

- 1. Отсутствие взаимного влияния;
- 2. Воспроизводимость испытаний (испытания производятся в сходных условиях);
- 3. В каждом испытании наблюдается признак, причем вероятность его проявления (ycnexa) равна p.

Определение 2 (Бернуллиевская случайная величина). Случайная величина Y, принимающая значение 1 с вероятностью p и значение 0 с вероятностью 1-p, называется случайной величиной с распределением Бернулли (или Бернуллиевской случайной величиной). Обозначение: $Y \sim Ber(p)$.

Пусть мы априори имеем случайную величину X, равномерно распределённую на [0,1]. Тогда мы можем построить $Y \sim Ber(p)$ следующим образом:

$$Y = \begin{cases} 1 & X \in [0, p), \\ 0 & X \in [p, 1]. \end{cases}$$

Несложно видеть, что построенная случайная величина является бернуллиевской.

Определение 3 (Биномиальное распределение). Пусть X_1, \ldots, X_n — набор независимых случайных величин с распределением Бернулли. Тогда, случайная величина

$$Y = \sum_{i=1}^{n} X_i$$

называется случайной величиной, имеющей биномиальное распределение с параметрами n и p. Обозначение: $Y \sim B(n,p)$.

Смоделировать случайную величину, имеющую биномиальное распределение можно следующим образом: n генерируем бернуллиевскую случайную величину и суммируем. Легко заметить, что $\mathbb{P}(Y=k)=C_n^k p^k (1-p)^{n-k}$.

Определение 4 (Геометрическое распределение). Случайная величина Y, равная количеству неудач до появления первого успеха в схеме Бернулли с параметром p, называется случайной величиной, имеющей геометрическое распределение с параметром p. Обозначение: $Y \sim Geom(p)$.

Очевидно, что $\mathbb{P}(Y=k)=p(1-p)^k$. Построить такую случайную величину можно, проводя испытания бернуллиевской случайной величины и считая количество проведённых испытаний до первого успеха.

Теорема 1 (Отсутствие памяти у геометрического распределения). *Если* $Y \sim Geom(p)$, $mo \mathbb{P}(Y > m + n \mid Y \geqslant m) = \mathbb{P}(Y > n)$ для любых целых неотрицательных n u m. Это свойство называется свойством «Отсутствия памяти».

Доказательство.

$$\mathbb{P}(Y > m+n \mid Y \geqslant m) = \frac{\mathbb{P}(Y > n+m \cap Y \geqslant m)}{\mathbb{P}(Y \geqslant m)} = \frac{\mathbb{P}(Y > n+m)}{\mathbb{P}(Y \geqslant m)} = \frac{(1-p)^{m+n+1}}{(1-p)^m} = (1-p)^{n+1} = \mathbb{P}(Y > n).$$

Рис. 1: Гистограмма и точная вероятность биномиального распределения при n=1000, p=0.5.

Рис. 2: Гистограмма и геометрического распределения при n=10000, p=0.5.

Рис. 3: Гистограммы для $\mathbb{P}(Y>m+n\mid Y\geqslant m)$ и $\mathbb{P}(Y>n),\, m=5,\, n=3.$

Рис. 4: Траектория процесса игры в орлянку, n=1000.

2.1 Постановка задачи

- 1. Построить датчик для сингулярного распределения, отвечающий канторовой функции распределения.
- 2. Для канторовых случайных величин проверить свойство симметричности относительно $\frac{1}{2}$ (X и 1-X распределены одинаково) и самоподобия (условное распределение Y при условии $Y \in [0, \frac{1}{3}]$ совпадает с распределением $\frac{Y}{3}$).

2.2 Теоретические выкладки

Определение 5 (Сингулярная функция распределения). Функция распределения называется сингулярной, если она непрерывна и множество точек её роста имеет нулевую меру Лебега.

Определение 6 (Канторово множество). Канторовым множеством называется совершенное нигде не плотное множество.

Рассмотрим множество A чисел из отрезка [0,1], в троичной записи которых отсутствует цифра 1:

$$A = \{\delta_1, \delta_2, \dots, \delta_n, \dots, \delta_i = 0, 2\}.$$

Очевидно, что данное множество является канторовым.

С помощью бернуллиевской случайной величины ξ получим случайную величину Y, с вероятностью 1 принимающей значения из A:

$$\xi_k \sim Ber(0.5)$$
,

$$Y = \sum_{k=1}^{\infty} \frac{2\xi_k}{3^k}.$$

Для достижения достаточной точности ($\varepsilon=10^{-9}$) будем использовать первые 20 членов ряда, т.к.:

$$\sum_{k=20}^{\infty} \frac{2\xi_k}{3^k} \leqslant \sum_{k=20}^{\infty} \frac{2}{3^k} \approx 2.8 \cdot 10^{-10}.$$

2.2.1 Свойства симметричности и самоподобия

Рассмотрим случайную величину 1 - Y:

$$1 - Y = 1 - \sum_{k=1}^{\infty} \frac{2\xi_k}{3^k} = \sum_{k=1}^{\infty} \frac{2}{3^k} - \sum_{k=1}^{\infty} \frac{2\xi_k}{3^k} = \sum_{k=1}^{\infty} \frac{2(1 - \xi_k)}{3^k} = \sum_{k=1}^{\infty} \frac{2\eta_k}{3^k}.$$

 η_k — бернуллиевские случайные величины с параметром 0.5, из чего следует, что 1-Y имеет то же распределение, что и Y.

Рассмотрим условное распределение Y при условии $Y \in [0, \frac{1}{3}]$. Для данного построения это условие эквивалентно тому, что $\xi_1 = 0$:

$$Y = \sum_{k=2}^{\infty} \frac{2\xi_k}{3^k} = \sum_{k=1}^{\infty} \frac{2\xi_{k+1}}{3^{k+1}} = \frac{1}{3} \sum_{k=1}^{\infty} \frac{2\xi_k}{3^k} = \frac{1}{3} Y.$$

Таким образом, У обладает свойством самоподобия.

Рис. 5: График канторового распределения

Рис. 6: Функция распределения Y при условии $Y\in [0,\frac{1}{3}]$ (синяя линия) и функция распределения $\frac{Y}{3}$ (красная линия).

Рис. 7: Функция распределения Y (синяя линия) и функция распределения 1-Y (красная линия).

3.1 Постановка задачи

- 1. Построить датчик экспоненциального распределения. Проверить свойство отсутствия памяти.
- 2. На основе датчика экспоненциального распределения построить датчик пуассоновского распределения.
- 3. Построить датчик пуассоновского распределения как предел биномиального распределения. С помощью критерия хи-квадрат Пирсона убедиться, что получен датчик распределения Пуассона.
- 4. Построить датчик стандартного нормального распределения методом моделирования случайных величин парами с переходом в полярные координаты (вывод обосновать).

3.2 Теоретические выкладки

Определение 7 (Экспоненциальное распределение). Случайная величина ξ имеет экспоненциальное распределение с параметром λ , если её функция распределения имеет вид:

$$F_{\xi}(x) = \begin{cases} 1 - e^{-\lambda x}, & x \geqslant 0, \\ 0, & x < 0. \end{cases}$$

Теорема 2. Пусть функция F(x) непрерывна и монотонно возрастает на \mathbb{R} , $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to+\infty} F(x) = 1$. Тогда случайная величина $X = F^{-1}(Y)$, где Y имеет равномерное распределение на [0,1], имеет функцию распределения $F_X(x) = F(x)$.

Применяя данное утверждение, получим:

$$F_X(x) = 1 - e^{-\lambda x},$$

 $F_X^{-1}(x) = -\frac{1}{\lambda} \ln(1 - x).$

Если Y имеет равномерное распределение на [0,1], то $X=-\frac{1}{\lambda}\ln{(1-Y)}$ имеет экспоненциальное распределение с параметром λ .

Определение 8 (Распределение Пуассона). Случайная величина ξ имеет распределение Пуассона с параметром $\lambda > 0$, если

$$\mathbb{P}(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \ k = 0, 1, 2, \dots$$

Теорема 3. Пусть $\eta_1, \eta_2, \dots, \eta_n, \dots$ — независимые случайные величины, имеющие экспоненциальное распределение с параметром λ , и пусть

$$\xi = \max\{n : \eta_1 + \eta_2 + \ldots + \eta_n < 1\}$$

(полагаем, что $\xi=0$ в том случае, когда $\eta_1>1$). Тогда случайная величина ξ имеет распределение Пуассона с параметром λ .

С помощью этой теоремы можно смоделировать пуассоновскую случайную величину. Действительно, будем получать значения случайных величин η_k , имеющих экспоненциальное распределение с параметром λ , до тех пор, пока их сумма S_k не превысит 1. Тогда случайная величина Y=1-k будет иметь пуассоновское распределение с параметром λ .

Пуассоновскую случайную величину можно смоделировать ещё одним способом. Известно, что если n достаточно велико, а λ — фиксированное число, то

$$Bin\left(n, \frac{\lambda}{n}\right) \approx P(\lambda).$$

С помощью критерия Пирсона убедимся, что построенная случайная величина имеет распределение Пуассона. Для этого будем использовать выборку из n испытаний. Т.к. исследуемое распределение принимает только целые неотрицательные значения, то мы можем обозначить за n_i количество элементов выборки, имеющие значения i. Через p_i обозначим теоретическую вероятность выпадения значения i пуассоновской случайной величины:

$$p_i = \frac{\lambda^i}{i!} e^{-i}.$$

Пусть k — максимальное значение в выборке. Построим статистику критерия χ^2 Пирсона:

$$X_n^2 = n \sum_{i=1}^k \frac{\left(\frac{n_i}{n} - p_i\right)^2}{p_i}.$$

Гипотеза о пуассоновском распределении построенной случайной величины будет отброшена, если значение статистики X_n^2 превысит критическую величину для пуассоновского распределения.

3.2.1 Стандартное нормальное распредедение

Построим случайную величину, имеющую стандартное нормальное распределение. Рассмотрим случайные величины $\xi \sim \mathcal{N}(0,1), \, \eta \sim \mathcal{N}(0,1)$. Совместная функция распределения имеет вид:

$$\mathbb{P}(\xi < x, \eta < y) = \int_{-\infty}^{x} \int_{-\infty}^{y} \frac{1}{2\pi} e^{\frac{-\left(x_{1}^{2} + x_{2}^{2}\right)}{2}} dx_{1} dx_{2} = \int_{\substack{r \cos(\varphi) < x \\ r \sin(\varphi) < y}} \frac{r}{2\pi} e^{\frac{-r^{2}}{2}} dr d\varphi =$$

$$= \int_{\sqrt{\omega} \cos(\varphi) < x} \frac{1}{2} e^{\frac{\omega}{2}} \frac{1}{2\pi} d\omega d\varphi.$$

$$\sqrt{\omega} \frac{\cos(\varphi) < x}{\sin(\varphi) < y}$$

Подынтегральное выражение является произведением плотностей случайных величин $\omega \sim Exp(0.5)$ и $\varphi \sim U[0,2\pi]$. Таким образом, совместное распределение случайных величин ξ и η совпадает с совместным распределением $\{\sqrt{\omega}\cos(\varphi), \sqrt{\omega}\sin(\varphi)\}$. Следовательно, мы можем построить стандартные нормальные случайные величины в виде:

$$\xi = \sqrt{\omega}\cos(\varphi), \ \eta = \sqrt{\omega}\cos(\varphi).$$

Случайные величины ξ и η являются независимыми, т.к. их совместное распределение равно произведению их распределений:

$$\mathbb{P}(\xi < x, \eta < y) = \int_{-\infty}^{x} \int_{-\infty}^{y} \frac{1}{2\pi} e^{\frac{-(x_1^2 + x_2^2)}{2}} dx_1 dx_2 = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{\frac{-x_1^2}{2}} dx_1 \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{\frac{-x_2^2}{2}} dx_2.$$

Рис. 8: График экспоненциального распределения, $n=10000,\,\lambda=1.$

Рис. 9: Гистограмма распределения Пуассона, построенного на основе датчик экспоненциального распределения, $n=10000,\,\lambda=5.$

Рис. 10: Гистограмма распределения Пуассона, построенного как предел биномиального распределения, $n=5000, \lambda=5$.

Рис. 11: Усредненные значения статистики критерия Пирсона. $n=50, \lambda=1$. Критическое значение $\chi^2_{r,\alpha}$ для уровня значимости $\alpha=0.95$ и n=50 примерно равно 34.76425. Было проведено 100 экспериментов. Из графика видно, что усредненное значение статистики меньше, чем критическое значение, а значит мы действительно получили распределение Пуассона.

Рис. 12: Гистограмма стандартного нормального распределения, n=100000.

4.1 Постановка задачи

- 1. Построить датчик распределения Коши.
- 2. Мажорируя плотность стандартного нормального распределения плотностью распределения Коши с параметрами сдвига а и масштаба b, обеспечить максимальную эффективность метода фон Неймана моделирования нормального распределения.
- 3. Сравнить скорость моделирования в задании 3 и задании 4.

4.2 Теоретические выкладки

Определение 9. Случайная величина ξ имеет распределение Коши с параметрами а и b, если её функция распределение имеет вид:

$$F_{\xi}(x) = \frac{1}{\pi} \arctan\left(\frac{x-a}{b}\right) + \frac{1}{2}.$$

Плотность распределения Коши:

$$q(x) = \frac{1}{\pi} \frac{b}{(x-a)^2 + b^2}.$$

Для моделирования распределения Коши воспользуемся теоремой 2. $F_{\xi}(x)$ строго возрастает и имеет обратную функцию:

$$F_{\xi}^{-1}(x) = a + b \operatorname{tg}\left[\pi\left(x - \frac{1}{2}\right)\right].$$

По теореме 2 случайная величина $X = F_{\xi}^{-1}(Y)$, где Y имеет равномерное распределение на [0,1], имеет распределение Коши.

Смоделируем стандартное нормальное распределение с помощью метода Фон Неймана. Для этого воспользуемся следующим алгоритмом:

- 1. Пусть $q(x) = \frac{1}{\pi} \frac{b}{(x-a)^2 + b^2}$ плотность распределения Коши, а $p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ плотность стандартного нормального распределения. Найдем число k такое, что для любого $x \in \mathbb{R}$ выполнено $p(x) \leq kq(x)$.
- 2. Получим реализацию случайной величины x, имеющей распределение Коши с параметрами a и b.
- 3. Построим случайную величину $V(x) \sim Ber\left(\frac{p(x)}{kq(x)}\right)$ и получим реализацию этой случайной величины y.
- 4. Если y=1, то x реализация случайной величины, имеющей стандартное нормальное распределение, если же y=0, то возвращаемся к пункту 2.

Заинтересуемся значениями параметров k, a и b, при которых достигается наибольшая скорость работы алгоритма Фон Неймана. Очевидно, что метод работает быстрее всего при значении $\frac{p(x)}{kq(x)}$, близком к 1. Таким образом,

$$k^* = \min_{a,b} \max_{x} \frac{p(x)}{q(x)},$$
$$\frac{p(x)}{q(x)} = \frac{\sqrt{\pi}}{b\sqrt{2}} e^{-\frac{x^2}{2}} \left[(x-a)^2 + b^2 \right].$$

Рассмотрим случай a=0

$$k_0^* = \min_b \max_x \frac{\sqrt{\pi}}{b\sqrt{2}} e^{-\frac{x^2}{2}} \left[x^2 + b^2 \right].$$

Найдём максимум функции $g(x)=e^{-\frac{x^2}{2}}\left[x^2+b^2\right]$. Для этого вычислим производную g'(x):

$$g'(x) = -xe^{\frac{x^2}{2}} \left[x^2 + b^2 \right] + 2xe^{-\frac{x^2}{2}} = -x \left[x^2 + b^2 - 2 \right] e^{-\frac{x^2}{2}}$$

Максимум g(x) достигается при x=0, если $|b|>\sqrt{2}$, и при $x=\pm\sqrt{2-b^2}$, если $|b|\leqslant\sqrt{2}$. Таким образом, можно представить k_0 в виде:

$$k_0 = \min \left\{ \min_{|b| > \sqrt{2}} \left(\frac{b\sqrt{\pi}}{\sqrt{2}} \right), \min_{|b| \leqslant \sqrt{2}} \left(\frac{\sqrt{2\pi}}{b} e^{\frac{b^2 - 2}{2}} \right) \right\}.$$

Теперь рассмотрим случай $a \neq 0$:

$$k^* = \min_{a,b} \max_{x} \frac{\sqrt{\pi}}{b\sqrt{2}} \left[(x-a)^2 + b^2 \right] e^{-\frac{x^2}{2}} =$$

$$= \min_{a} \left\{ \min_{|b| > \sqrt{2}} \max_{x} \left(\frac{\sqrt{\pi}}{b\sqrt{2}} \left[e^{-\frac{x^2}{2}} [(x-a)^2 + b^2] \right] \right), \min_{|b| \leqslant \sqrt{2}} \max_{x} \left(\frac{\sqrt{\pi}}{b\sqrt{2}} \left[e^{-\frac{x^2}{2}} [(x-a)^2 + b^2] \right] \right) \right\} \geqslant$$

$$\geqslant \min_{a} \left\{ \min_{|b| > 2} \left(\frac{\sqrt{\pi}}{b\sqrt{2}} \left[a^2 + b^2 \right] \right), \min_{|b| \leqslant \sqrt{2}} \left(\frac{\sqrt{\pi}}{b\sqrt{2}} \left[e^{\frac{b^2 - 2}{2}} [(|a| + \sqrt{2 - b^2})^2 + b^2] \right] \right) \right\} >$$

$$> \min_{a} \left\{ \min_{|b| > \sqrt{2}} \left(\frac{\sqrt{\pi}}{\sqrt{2}} b \right), \min_{|b| \leqslant \sqrt{2}} \left(\frac{\sqrt{\pi}}{b\sqrt{2}} \left[e^{\frac{b^2 - 2}{2}} \left[\left(\sqrt{2 - b^2} \right)^2 + b^2 \right] \right] \right) \right\} = k_0^*.$$

Таким образом, $k^* > k_0^*$ для любого $a \neq 0$. Поэтому наибольшая скорость сходимости работы алгоритма Фон Неймана будет достигаться при a=0.

$$k^* = k_0^* = \min \left\{ \min_{|b| > \sqrt{2}} \left(\frac{b\sqrt{\pi}}{\sqrt{2}} \right), \min_{|b| \le \sqrt{2}} \left(\frac{\sqrt{2\pi}}{b} e^{\frac{b^2 - 2}{2}} \right) \right\} = \min \left\{ \sqrt{\pi}, \min_{|b| \le \sqrt{2}} \left(\frac{\sqrt{2\pi}}{b} e^{\frac{b^2 - 2}{2}} \right) \right\}.$$

Вычислим производную $f(x) = \frac{\sqrt{2\pi}}{b} e^{\frac{b^2-2}{2}}$:

$$f'(x) = \sqrt{2\pi}e^{\frac{b^2-2}{2}} \left(1 - \frac{1}{b^2}\right),$$

откуда получаем, что минимум достигается при b=1, а $k^*=\sqrt{\frac{2\pi}{e}}$. Таким образом, мы получаем, что максимальная скорость работы метода Фон Неймана для моделирования стандартных нормальных величин будет достигаться при использовании параметров a=0 и b=1.

Рис. 13: Гистограмма стандартного нормального распределения, n=100000.

Рис. 14: Сравнение времени работы алгоритмов с ростом количества сгенерированных случайных величин. Красная линия — время работы метода генерирования случайных величин парами с переходом в полярные координаты. Синяя линия — время работы метода Фон Неймана.

5.1 Постановка задачи

1. Пусть $X_i \sim \mathcal{N}(\mu, \sigma^2)$. Убедиться эмпирически в справедливости ЗБЧ и ЦПТ, т.е. исследовать поведение суммы $\frac{S_n}{n}$ и эмпирического распределения величины

$$\sqrt{n}\left(\frac{S_n}{n}-a\right).$$

- 2. Считая μ и σ^2 неизвестными, для п. 1 построить доверительные интервалы для среднего и дисперсии.
- 3. Пусть $X_i \sim a + b \xi$, ξ имеет стандартное распределение Коши. Проверить эмпирически, как ведет себя $\frac{S_n}{n}$. Результат объяснить.

5.2 Теоретические выкладки

Теорема 4 (Закон больших чисел). Пусть $\xi_1, \xi_2, \ldots -$ последовательность независимых одинаково распределенных случайных величин с $\mathbb{E} |\xi_i| < \infty$, $S_n = \xi_1 + \ldots + \xi_n$ и $\mathbb{E} \xi_1 = \mu$. Тогда $\frac{S_n}{n} \to \mu$ по вероятности, т.е. для любого $\varepsilon > 0$:

$$\mathbb{P}\left\{ \left| \frac{S_n}{n} - \mu \right| \geqslant \varepsilon \right\} \to 0, \ n \to \infty.$$

Теорема 5 (Центральная пределеная теорема). Пусть $\xi_1, \xi_2, \ldots - n$ оследовательность независимых одинаково распределенных (невырожденных) случайных величин с $\mathbb{E}\xi_1^2 < \infty$ и $S_n = \xi_1 + \ldots + \xi_n$. Тогда при $n \to \infty$

$$\mathbb{P}\left\{\frac{S_n - \mathbb{E}S_n}{\sqrt{\mathbb{V}\mathrm{ar}\left(S_n\right)}} \leqslant x\right\} \to \Phi(x), \ x \in \mathbb{R},$$

 $r\partial e$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} xe^{-\frac{u^2}{2}} du.$$

Рис. 15: Закон больших чисел для нормального распределения. $\mu=10, \sigma^2=1.$

Рис. 16: Центральная предельная теорема для случайных величин, равномерно распределённых на [0,1].

Рис. 17: Невыполнение закона больших чисел для распределения Коши. a=5, b=1. ЗБЧ не выполняется, т.к. математическое ожидание не существует.

6.1 Постановка задачи

Посчитать интеграл

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \frac{e^{-\left(x_1^2 + \dots + x_{10}^2 + \frac{1}{2^7 \cdot x_1^2 \cdot \dots \cdot x_{10}^2}\right)}}{x_1^2 \cdot \dots \cdot x_{10}^2} dx_1 \dots dx_{10}$$

- Методом Монте-Карло.
- Методом квадратур, сводя задачу к вычислению собственного интеграла Римана.
- Для каждого метода оценить точность вычислений.

6.2 Теоретические выкладки

6.2.1 Вычисление интеграла методом Монте-Карло

Перепишем интеграл

$$I = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \frac{e^{-\left(x_1^2 + \dots + x_{10}^2 + \frac{1}{2^7 \cdot x_1^2 \cdot \dots \cdot x_{10}^2}\right)}}{x_1^2 \cdot \dots \cdot x_{10}^2} dx_1 \dots dx_{10}$$

в виде

$$I = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} f(x_1, \dots, x_{10}) g(x_1, \dots, x_{10}) dx_1 \dots dx_{10},$$

где

$$f(x) = \pi^5 \frac{e^{-\left(x_1^2 + \dots + x_{10}^2 + \frac{1}{2^7 \cdot x_1^2 \cdot \dots \cdot x_{10}^2}\right)}}{x_1^2 \cdot \dots \cdot x_{10}^2}, \ g(x) = \frac{1}{\pi^5} e^{-\left(x_1^2 + \dots + x_{10}^2\right)}.$$

Легко видеть, что функция g(x) является совместной плотностью набора независимых случайных величин, имеющих нормальное распределение с параметрами 0 и $\frac{1}{2}$. Таким образом, можно переписать интеграл I в виде:

$$I = \mathbb{E}f(x_1, \dots, x_{10}), \ x_i \sim \mathcal{N}\left(0, \frac{1}{2}\right).$$

В силу закона больших чисел выборочное среднее будет стремиться к математическому ожиданию, т.е.

$$\frac{S_n}{n} = \frac{1}{n} \sum_{k=1} n f(x_k) \to I, \ x_k \sim \mathcal{N}\left(0, \frac{1}{2}\right), \ n \to +\infty.$$

Для оценки погрешностей воспользуемся неравенством Чебышёва: с вероятностью $1-\gamma$ выполняется:

$$|I_n - I| \leqslant \sqrt{\frac{\mathbb{V}\mathrm{ar}(f(x))}{\gamma n}}.$$

Задавая вероятность ошибки γ , можно получить размер ошибки ε . Дисперсию f(x) будем считать как выборочную дисперсию:

$$Var(f(x)) = \frac{1}{n} \sum_{k=1}^{n} (f(x_k) - I_n)^2 = \frac{1}{n} \sum_{k=1}^{n} f^2(x_k) - \frac{2}{n} I_n \sum_{k=1}^{n} f(x_k) + I_n^2.$$

Результаты вычислений:

N	Значение интеграла	Время работы (сек.)	Погрешность ($\gamma = 0.01$)
10^{4}	116.1245	14.884070	109.7859
10^{5}	119.8156	151.226067	35.0222
10^{6}	124.1312	1486.088206	11.3612

6.2.2 Вычисление интеграла методом квадратур

Заметим, что значение подынтегрального выражения симметрично относительно $x_i = 0$. Значит, можно интегрировать только по положительному полупространству, после этого умножив на 2^{10} .

Для подсчёта интеграла сделаем замену

$$x_i = \operatorname{tg}\left(\frac{\pi}{2}t\right).$$

Тогда интеграл примет вид:

$$I = 2^{10} \int_{0}^{1} \int_{0}^{1} \dots \int_{0}^{1} \frac{\exp\left\{-\left(tg^{2}\left(\frac{\pi}{2}t_{1}\right) + \dots + tg^{2}\left(\frac{\pi}{2}t_{1}0\right) + \frac{1}{2^{7}\cdot tg^{2}\left(\frac{\pi}{2}t_{1}\right)\cdot\dots\cdot tg^{2}\left(\frac{\pi}{2}t_{10}\right)}\right)\right\}}{tg^{2}\left(\frac{\pi}{2}t_{1}\right)\cdot\dots\cdot tg^{2}\left(\frac{\pi}{2}t_{10}\right)\cdot\cos^{2}\left(\frac{\pi}{2}t_{1}\right)\cdot\dots\cdot\cos^{2}\left(\frac{\pi}{2}t_{10}\right)}dt_{1}\dots dt_{10}.$$

Воспользуемся методом прямоугольников. Для этого разобьём отрезки [0,1] на N частей и будем считать величину

$$I_n = 2^{10} \frac{1}{N^{10}} \sum_{i_1=1}^{N} \dots \sum_{i_{10}=1}^{N} f\left(\frac{i_1}{N}, \dots, \frac{i_{10}}{N}\right).$$

Как известно, погрешность метода прямоугольников на равномерной сетке составляет

$$\varepsilon = \frac{\max\{f''(\xi)\}}{24}(b-a)h^2.$$

В нашем случае погрешность можно считать как

$$\varepsilon = \frac{h^2}{24} \sum_{i,j=1}^{10} \max \left| f_{x_i,x_j}'' \right|, \ h = \frac{1}{N}.$$

Результаты вычислений:

N	Значение интеграла	Время работы (сек.)
3	55.2323	0.030433
4	88.5577	1.632201
5	133.9999	28.861510
6	128.3524	265.153991

7.1 Постановка задачи

Методом случайного поиска найти минимальное значение функции f на множестве, т.е. значение $y = \min f(x)$, где

$$f(x) = x_1^3 \sin\left(\frac{1}{x_1}\right) + 10x_1x_2^4 \cos\left(\frac{1}{x_2}\right)$$

при $x_1 \neq 0$ и $x_2 \neq 0$, при $x_1 = 0$ или $x_2 = 0$ функция доопределяется по непрерывности, а множество — круг $A = (x_1, x_2) : x_1^2 + x_2^2 \leqslant 1$. Оценить точность.

7.2 Теоретические выкладки

Рассмотрим случайные величины x_1 и x_2 , равномерно распределенные на единичном круге:

$$\frac{1}{\pi} \iint_{\substack{x_1^2 + x_2^2 \leqslant 1}} dx_1 dx_2 = \frac{1}{\pi} \int_0^1 r dr \int_0^{2\pi} d\varphi = \int_0^{2\pi} \frac{1}{2\pi} d\varphi \int_0^1 dr^2.$$

Видно, что их совместное распределение совпадает с совместным распределением случайной величины $\varphi \sim U[0,2\pi]$ и случайной величины R, имеющей функцию распределения

$$F_R(t) = \begin{cases} 0, & x < 0, \\ t^2, & x \in [0, 1], \\ 1, & x > 1. \end{cases}$$

Моделировать R будем с помощью метода обратных функций. Таким образом, после перехода к полярным координатам

$$x_1 = R\cos\varphi, \ x_2 = R\sin\varphi.$$

Для поиска минимума функции f будем n раз разыгрывать случайные величины x_1 и x_2 , считать для каждой пары значение функции $f(x_1,x_2)$, и затем из полученных n значений выберем минимальное. Оценим погрешность метода. Пусть точка (x^*,y^*) — точка теоретического минимума, точка (x,y) — полученный результат работы метода случайного поиска.

$$|f(x^*, y^*) - f(x, y)| \le \max_{(x, y) \in A} |\nabla f| \cdot |(x^*, y^*) - (x, y)|.$$

Оценим $\max_{(x,y)\in A} |\nabla f|$:

$$\left| \frac{\partial f}{\partial x_1} \right| = \left| 3x_1^2 \sin\left(\frac{1}{x_1}\right) + x_1^3 \cos\left(\frac{1}{x_1}\right) \cdot \left(-\frac{1}{x_1^2}\right) + 10x_2^4 \cos\left(\frac{1}{x_2}\right) \right| \leqslant$$

$$\leqslant \left| 3x_1^2 - x_1 + 10x_2^4 \right| = \left| 3x_1^2 - x_1 + 10\left(1 - x_1^2\right)^2 \right| = \left| 10x_1^4 - 17x_1^2 - x_1 + 10 \right| \leqslant 11.$$

$$\left| \frac{\partial f}{\partial x_2} \right| = \left| 40x_1x_2^3 \cos\left(\frac{1}{x_2}\right) + 10x_1x_2^4 \left(-\sin\left(\frac{1}{x_2}\right)\right) \cdot \left(\frac{1}{x_2^2}\right) \right| \leqslant$$

$$\leqslant \left| 40x_1x_2^3 + 10x_1x_2^2 \right| = \left| 40x_1 \left(\sqrt{1 - x_1^2}\right)^3 + 10x_1(1 - x_1^2) \right| \leqslant 17.$$

$$\left| \nabla f \right| = \sqrt{\left(\frac{\partial f}{\partial x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2}\right)^2} \leqslant 23.$$

Оценим $|(x^*,y^*)-(x,y)|$. Пусть p — вероятность того, что в ε -окрестность точки минимума попала одна из n случайных точек ($\varepsilon=\varepsilon(n,p)$). Также, заметим, что исходная функция является чётной по переменной x_2 , поэтому точек минимума будет две, и они будут симметричны. Возможны два варианта: точка минимума лежит внутри множества A и на границе множества A. В первом случае вероятность p того, что хотя бы одна из n точек попала в ε -окрестность точки минимума равна $p=1-(1-2\varepsilon^2)^n$. Во втором случае: $p=1-(1-\varepsilon^2)^n$. Таким образом, рассмотрев худший случай, получим, что

$$\varepsilon = \sqrt{1 - (1 - p)^{\frac{1}{n}}} \approx \sqrt{\frac{p}{n}}.$$

В итоге получим, что погрешность метода случайного поиска составляет

$$|f(x^*, y^*) - f(x, y)| \le 23\sqrt{\frac{p}{n}}.$$

7.3 Результаты вычислений

N	Минимальное значение	Время работы (сек.)	Погрешность $(p = 0.99)$
10^{4}	-1.1458	0.004936	0.7237
10^{6}	-1.2878	3.107955	0.0229
10^{8}	-1.2884	294.290776	0.0023

8.1 Постановка задачи

Применить метод Монте-Карло к решению первой краевой задачи для двумерного уравнения Лапласа в единичном круге:

$$\begin{cases} \Delta u = 0 \text{ в области } D, \\ u|_{\delta D} = f(x,y), \\ u \in C^2(D), f \in C(\delta D), \\ D = (x,y) : x^2 + y^2 < 1. \end{cases}$$

Для функции $f(x,y)=x^2$ найти аналитическое решение и сравнить с полученным по методу Монте-Карло.

8.2 Теоретические выкладки

8.2.1 Немного о теоретическом решении

Будем искать теоретическое решение двумерного уравнения Лапласа, перейдя в полярные координаты, в виде:

$$u(r,\varphi) = \frac{a_0}{2} + \sum_{n=1}^{\infty} r^n \left(a_n \cos n\varphi + b_n \sin n\varphi \right).$$

Переведём также в полярные координаты граничное условие:

$$f(x,y) = x^2 = \frac{1}{2} - \frac{1}{2}\cos 2\varphi = f(r,\varphi).$$

По условию задачи $u(1, \varphi) = f(1, \varphi)$:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos n\varphi + b_n \sin n\varphi \right) = \frac{1}{2} - \frac{1}{2} \cos 2\varphi.$$

Получим, что $a_0=1, a_2=-\frac{1}{2}$, остальные a_i и b_i равны 0. Таким образом

$$u(r,\varphi) = \frac{1}{2} - \frac{r^2}{2}\cos 2\varphi.$$

Возвращаясь к декартовым координатам, получим:

$$u(r,\varphi) = \frac{1}{2} - \frac{r^2}{2}\cos 2\varphi = \frac{1}{2}\left(1 + r^2(\sin^2\varphi - \cos^2\varphi)\right) = \frac{1}{2}\left(1 + x^2 - y^2\right).$$

8.2.2 Численное решение

Будем искать численное решение по следующему алгоритму:

1. Построим равномерную сетку. Выделим на ней внутренние и граничные точки множества D. Граничными точками будем считать такие точки, которые имеют менее четырех соседей, принадлежащих D.

- 2. В граничных точках положим u(x, y) = f(x, y).
- 3. Во внутренних точках будем производить следующие действия: с равной вероятностью будем переходить в одну из соседних точек до тех пор, пока не достигнем граничной точки. Повторим эту процедуру n раз и посчитаем среднее значение функции в посещенных нами граничных точкам. Положим в данной внутренней точке $u(x,y)=\frac{1}{n}\sum_{i=1}^n f(x_i,y_i)$.

Рис. 18: Численное и теоретическое решения первой краевой задачи для двумерного уравнения Лапласа в единичном круге для $f(x,y)=x^2$.

9.1 Постановка задачи

Построить траекторию винеровского процесса $W_t, t \in [0, 1]$, добавляя точки разбиения отрезка. Построить график траектории, не соединяя точки ломаной, с целью получения визуально непрерывной линии. Винеровский процесс — это гауссовский процесс на отрезке [0, 1], со средним 0 и ковариационной функцией $k(s, t) = \min(s, t)$.

9.2 Теоретические выкладки

Будем строить винеровский процесс по следующему алгоритму:

- 1. $W_0 = 0$, так как $Var(W_t) = k(t, t) = t$.
- 2. $W_1 \sim \mathcal{N}(0,1)$.
- 3. По значениям W_{t_0} и W_{t_1} найдем значение $W_{\frac{t_1+t_0}{2}}$: Рассмотрим условную плотность

$$P_{W_t}(x \mid W_{t_0} = x_0, W_{t_1} = x_1) = \frac{P_{W_{t_0} \cdot W_t \cdot W_{t_1}}(x_0, x, x_1)}{P_{W_{t_0} \cdot W_{t_1}}(x_0, x_1)}.$$

В силу гауссовости винеровского процесса:

$$\begin{split} P_{W_{t_0} \cdot W_{t_1}} &= \frac{1}{2\pi \sqrt{|R_1|}} e^{-\frac{1}{2}(x_0, x_1) R_1^{-1}(x_0, x_1)^T}, \\ P_{W_{t_0} \cdot W_t \cdot W_{t_1}} &= \frac{1}{(2\pi)^{2/3} \sqrt{|R_2|}} e^{-\frac{1}{2}(x_0, x, x_1) R_2^{-1}(x_0, x, x_1)^T}, \end{split}$$

где R_1 и R_2 — ковариационные матрицы.

$$R_{1} = \begin{bmatrix} t_{0} & t_{0} \\ t_{0} & t_{1} \end{bmatrix}, \ R_{1}^{-1} = \begin{bmatrix} \frac{t_{1}}{t_{0}(t_{1}-t_{0})} & \frac{-1}{t_{1}-t_{0}} \\ \frac{-1}{t_{1}-t_{0}} & \frac{1}{t_{1}-t_{0}} \end{bmatrix},$$

$$R_{2} = \begin{bmatrix} t_{0} & t_{0} & t_{0} \\ t_{0} & t & t \\ t_{0} & t & t_{1} \end{bmatrix}, \ R_{2}^{-1} = \begin{bmatrix} \frac{t}{t_{0}(t-t_{0})} & \frac{-1}{t-t_{0}} & 0 \\ \frac{-1}{t-t_{0}} & \frac{t_{1}-t_{0}}{(t_{1}-t)(t-t_{0})} & \frac{-1}{t_{1}-t} \\ 0 & \frac{-1}{t_{1}-t} & \frac{1}{t_{1}-t} \end{bmatrix}.$$

Таким образом, выражение для условной плотности имеет вид:

$$P_{W_t}(x \mid W_{t_0} = x_0, W_{t_1} = x_1) = \sqrt{\frac{2}{\pi(t_1 - t_0)}} \exp\left\{-\frac{(2x - x_0 x_1)^2}{2(t_1 - t_0)}\right\}.$$

В итоге имеем, что $\{W_t \mid W_{t_0} = x_0, W_{t_1} = x_1\} \sim \mathcal{N}(\frac{x_0 + x_1}{2}, \frac{t_1 - t_0}{4}).$

Рис. 19: Траектория винеровского процесса.

10.1 Постановка задачи

Пусть X — стационарный марковский гауссовский процесс (процесс Орнштейна -Уленбека).

- 1. Найти ковариационную функцию и переходные вероятности.
- 2. Моделировать независимые траектории марковского процесса с данными переходными вероятностями, начинающимися из разных точек методом добавления разбиения отрезка.

10.2 Теоретические выкладки

Так как процесс Орнштейна - Уленбека является стационарным, то $\mathbb{E}X_t=a$, \mathbb{V} аг $(X_t)=$ $=\sigma^2$, $R_x(t,s)=R_x(|t-s|)=\sigma^2\rho(s,t)$, где $\rho(s,t)$ — коэффициент корреляции. В силу того, что процесс Орнштейна - Уленбека — марковский, следует, что $\rho(s,t)=\rho(s,\tau)\rho(\tau,t)$, к тому же $\rho(s,t)=\rho(|s-t|)$, а значит $\rho(x+y)=\rho(x)\rho(y)$. Воспользуемся следующей теоремой:

Теорема 6. Пусть функция u(t) определена при t>0 и ограничена на каждом конечном интервале. Если u(t) удовлетворяет соотношению u(t+s)=u(t)u(s), то или $u(t)\equiv 0$, или $u(t)=e^{-\lambda t}$, где λ — некоторая положительная константа.

Если $\rho(t) \equiv 0$, то $cov(X_t, X_s) = 0$, что с учетом того, что процесс X_t — гауссовский, говорит о том, что величины X_t независимы в совокупности, а значит в этом случае моделирование процесса Орнштейна -Уленбека заключается в моделировании случайных

величин, имеющих распределение $\mathcal{N}(a,\sigma^2)$. Если $\rho(t)=e^{-\lambda t}, \lambda>0$, тогда $R_x(|t-s|)=\sigma^2 e^{-\lambda|t-s|}$. Рассмотрим переходную вероятность

$$P_{X_t}(x \mid X_s = x_1) = \frac{P_{X_t \cdot X_s}(x, x_1)}{P_{X_s}(x_1)}.$$

Так как процесс гауссовский, то

$$P_{x_s}(x_1) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{x_1^2}{2\sigma^2}},$$

$$P_{X_t \cdot X_s}(x, x_1) = \frac{1}{2\pi\sqrt{|R|}} \exp\left\{-\frac{1}{2}(x, x_1)R^{-1}(x, x_1)^T\right\},$$

где R — ковариационная матрица, которая имеет вид

$$R = \begin{bmatrix} \sigma^2 & \sigma^2 e^{-\lambda|t-s|} \\ \sigma^2 e^{-\lambda|t-s|} & \sigma^2 \end{bmatrix}.$$

Откуда, очевидно, следует, что

$$P_{X_t}(x \mid X_s = x_1) = \frac{1}{\sigma \sqrt{2\pi \left(1 - e^{-2\lambda|t - s|}\right)}} \exp\left\{-\frac{(x - x_1 e^{-\lambda|t - s|})^2}{2\sigma^2 \left(1 - e^{-2\lambda|t - s|}\right)}\right\}.$$

Опишем теперь алгоритм моделирования процесса Орнштейна-Уленбека на временном отрезке [0,T]:

- 1. $X_0 \sim \mathcal{N}(a, \sigma^2)$.
- 2. $X_T \sim \mathcal{N}\left(x_0 e^{-\lambda T}, \sigma^2 \left(1 e^{-2\lambda T}\right)\right)$.
- 3. По значениям x_0 и x_1 найдём значение

$$X_t = X_{\frac{t_0 + t_1}{2}} \sim \mathcal{N}\left((x_0 + x_1) \frac{\exp\left\{-\frac{-\lambda(t_1 - t_0)}{2}\right\}}{1 + e^{-\lambda(t_1 - t_0)}}, \sigma^2 \frac{1 - e^{-\lambda(t_1 - t_0)}}{1 + e^{-\lambda(t_1 - t_0)}} \right).$$

Рис. 20: Траектория процесса Орнштейна-Уленбека, $\lambda=25, \sigma=1, a=1.$

Рис. 21: Траектория процесса Орнштейна-Уленбека, $\lambda=1, \sigma=15, a=1.$

Рис. 22: Траектория процесса Орнштейна-Уленбека, $\lambda=1, \sigma=1, a=1.$

Рис. 23: Траектория процесса Орнштейна-Уленбека, $\lambda=5, \sigma=5, a=5.$

11.1 Постановка задачи

Построить двумерное пуассоновское поле, отвечающее сложному пуассоновскому процессу:

- 1. Первая интерпретация: система массового обслуживания. При этом, первая координата поля время поступления заявки в СМО (равномерное распределение), вторая время её обслуживания (распределение χ^2 с 10 степенями свободы).
- 2. Вторая интерпретация: работа страховой компании. Первая координата момент наступления страхового случая (равномерное распределение), вторая координата величина ущерба (распределение Парето). Поступление капитала по времени линейно со скорость c>0, начальный капитал W>0. Посчитать распределение времени разорения для разных значений параметров.

12 Модель СМО

Смоделируем систему массового обслуживания по следующему алгоритму:

- 1. Сгенерируем времена поступления заявок в систему массового обслуживания на временном интервале [0,T]: $0\leqslant t_1\leqslant t_2\leqslant\ldots\leqslant t_n\leqslant T$, причем $t_i-t_{i-1}\sim Exp(\lambda)$, $\lambda>0$ интенсивность потока заявок. Время обработки s_i каждой заявки смоделируем с помощью распределения χ^2 с 10 степенями свободы.
- 2. Для каждой заявки будем считать время время её исполнения Q_i . Здесь возможны 2 варианта: если $Q_{i-1} < t_i$ (т.е. к моменту поступления i-й заявки очереди нет), то $Q_i = t_i + s_i$. Если же $Q_{i-1} \geqslant t_i$ (т.е. очередь есть), то $Q_i = Q_{i-1} + s_i$.
- 3. Также для каждой заявки будем считать количество людей в очереди. Если во время поступления i-й заявки очереди не было, то положим $n_i = 0$, если же очередь была, то посчитаем количество Q_k таких, что k < i и $Q_k > t_i$ (т.е. количество ещё не выполненных к моменту времени t_i заявок).

Заметим, что среднее время поступления новой заявки равно $\mathbb{E}(t_i-t_{i-1})=\frac{1}{\lambda}$, а среднее время обслуживания заявки равно $\mathbb{E}s_i=10$. Значит, при значениях $\lambda>0.1$ среднее время обработки заявки будет больше, чем среднее время поступления новой заявки, и очередь будет бесконечно расти; при значениях $\lambda<0.1$ система будет справлять с потоком заявок; значению $\lambda=0.1$ будет соответствовать некоторое промежуточное значение.

Рис. 24: График количества заявок в очереди, $T=1000,\,\lambda=0.08.$

Рис. 25: График количества заявок в очереди, $T=1000,\,\lambda=0.1.$

12.1 Модель страховой компании

Сгенерируем времена поступления наступления страховых случаев на временном интервале [0,T]: $0\leqslant t_1\leqslant t_2\leqslant\ldots\leqslant t_n\leqslant T$, причем $t_i-t_{i-1}\sim Exp(\lambda),\ \lambda>0$ — интенсивность

Рис. 26: График количества заявок в очереди, $T=10000,\,\lambda=0.1.$

Рис. 27: График количества заявок в очереди, $T=1000,\,\lambda=1.$

потока страховых случаев. Величину ущерба s_i страхового случая в момент времени t_i будем генерировать с помощью распределения Парето с параметрами x_m и k.

Определение 10. Случайная величина ξ называется случайной величиной, имеющей

распределение Парето с параметрами x_m и k, если её функция распределения имеет вид

$$F_{\xi}(x) = 1 - \left(\frac{x_m}{x}\right)^k.$$

Величина капитала компании в момент времени t выражается как $W(t) = W_0 + ct - s(t)$, где s(t) — сумма величин ущерба страховых случаев, произошедших в моменты времени t_i такие, что $t_i \leqslant t$.

Рис. 28: График изменения величины капитала компании при $\lambda=20,\,W_0=1000,\,c=1,\,x_m=15,\,k=10.$

Рис. 29: Гистограмма времени разорения компании при $\lambda=20, W_0=1000, c=1, x_m=15, k=10.$

Рис. 30: График изменения величины капитала компании при $\lambda=0.1,\,W_0=1000,\,c=2,\,x_m=10,\,k=2.$

Рис. 31: Гистограмма времени разорения компании при $\lambda=0.1,\,W_0=1000,\,c=2,\,x_m=10,\,k=2.$ Значение при t=10000 означает, что компания не разорилась за наблюдаемое время.

Список литературы

- [1] Ширяев А. Н. Вероятность: В 2-кн. 4 изд., переработанное и дополненное М.: МЦНМО, 2007.
- [2] Кропачёва Н. Ю., Тихомиров А. С. Моделирование случайных величин: метод. указания. Нов Γ У им. Ярослава Мудрого Великий Новгород, 2004.
- [3] Феллер В. Введение в теорию вероятности и её приложения. В 2-х томах. Т.1. М.: Мир, 1984.