חלוקה הוגנת ויעילה Efficient Fair Division

אראל סגל-הלוי

"יעילות - "חתוך ובחר"

משפט: אלגוריתם "חתוך ובחר" מחזיר תוצאה יעילה פארטו אם מתקיימים התנאים הבאים:
1)שני השחקנים רוצים רק חתיכות קשירות.
2)לכל נקודה בעוגה יש ערך חיובי ממש.
3)החותך אמיתי, או מתחכם "חכם".

הוכחה:

לפי תנאי 1, יש רק שתי אפשרויות: או שהחותך משמאל והבוחר מימין, או הפוך.

לפי תנאי 2, בסדר שנבחר, אין שיפור פארטו. לפי תנאי 3, גם בסדר ההפוך אין שיפור פארטו.

יעילות – המקרה הכללי

.... אבל מה קורה אם:

1) השחקנים רוצים חתיכות לא דווקא קשירות?

2)יש הרבה שחקנים – יותר משניים?

אנחנו רוצים שהחלוקה תהיה גם ללא קנאה?)

הנחות:

- •ה"עוגה" מחולקת לאיזורים. הערך של כל שחקן אחיד בכל איזור *(אבל שונה לכל שחקן).*
 - אין כסף השחקנים רוצים רק עוגה.

יעילות – מיקסום סכום הערכים

ניסיון ראשון: נמצא חלוקה הממקסמת את סכום הערכים. *הרעיון: כל חלוקה כזאת יעילה פארטו.*

$$\max \sum_{j=1}^{n} V_j(X_j)$$

אלגוריתם: תן כל אזור לשחקן עם הערך הכי גבוה:

81	19	0	:א
80	0	20	ב:

יעיל פארטו אבל לא הוגן.

יעילות – מיקסום סכום אחר

ניסיון שני: נמצא חלוקה הממקסמת את הסכום של פונקציה עולה של הערכים. היא עדיין יעילה פארטו.

$$\max \sum_{j=1}^{n} f(V_j(X_j))$$

דוגמה: שחקן א מקבל x אחוזים מהאזור השמאלי:

81	19	0	:א
80	0	20	ב:

איזו פונקציה

$$f(81x + 19) + f(80(1 - x) + 20)$$

$$0 \le x \le 1$$

יעילות – מיקסום סכום קעור

דוגמה: שחקן א מקבל x אחוזים מהאזור השמאלי:

1.8 a = 0.5	81	19	0	:א
1.6 Max 1.4 0,2 0,4 0,6 0,8	80	0	20	:2

$$x \sim 0.5$$
: $\max_{\text{max}} \sqrt{81x + 19} + \sqrt{80(1 - x) + 20}$! $- \text{s.t.}$ $0 \le x \le 1$

יעילות – מיקסום סכום קעור

משפט (חשבון אינפי 6): לכל פונקציה קעורה יש נקודת מקסימום אחת ויחידה בכל תחום קמור.

מסקנה: מקסימום **מקומי** של הפונקציה הוא גם מקסימום **גלובלי**.

מסקנה מעשית: קיימים אלגוריתמים מהירים למציאת נקודת מקסימום (דוגמה: טיפוס על גבעה). ראו בקורס חקר ביצועים או בתוכנות מתימטיות, למשל Mathematica:

```
In[9]:= FindMaximum[{
  (81 x + 19)^0.5 + (80 (1 - x) + 20)^0.5,
  0 <= x <= 1}, {x}]
Out[9]= {15.4601, {x -> 0.512327}}
```

יעילות – מיקסום סכום קעור

עכשיו כשאנחנו יודעים שקיימים אלגוריתמים מהירים לחישוב מקסימום של סכום קעור של הערכים, השאלה הנשארת היא – איזו פונקציה f לבחור?

מתברר שאם הפונקציה f היא לוגריתמית: $f(V) = \log(V)$ אז החלוקה לא רק יעילה אלא גם ללא קנאה!

יעילות – מיקסום סכום לוגים

משפט: כל חלוקה הממקסמת את סכום לוגי הערכים היא חלוקה ללא קנאה.

Z הוכחה: נסתכל בפרוסת עוגה אינפיניטיסימלית, ווגר הוכחה: נסתכל בפרוסת עוגה אינפיניטיסימלית, j התרומה שלה לשחקן j היא: $f'(V_i(X_i)) * V_i(Z)$

Zלכן, אלגוריתם האופטימיזציה ייתן כל פרוסה לכן, אלגוריתם האופטימיזציה ייתן לjשהמכפלה הזאת עבורו גדולה ביותר:

$$f'(V_i(X_i)) * V_i(Z) >= f'(V_i(X_i)) * V_i(Z)$$

j-נסכם את המשוואה על כל הפרוסות שניתנו ל- $f'(V(V)) * V(V) \sim - f'(V(V)) * V(V)$

$$f'(V_j(X_j)) * V_j(X_j) >= f'(V_i(X_j)) * V_i(X_j)$$

יעילות – מיקסום סכום לוגים

משפט: כל חלוקה הממקסמת את סכום לוגי הערכים היא חלוקה ללא קנאה.

הוכחה [המשך]:

f(V) לכל חלוקה הממקסמת את הסכום של $f'(V_j(X_j)) * V_j(X_j) >= f'(V_i(X_i)) * V_i(X_j)$

:כאשר f היא פונקציה לוגריתמית, מקבלים

$$(1/V_{j}(X_{j})) * V_{j}(X_{j}) > = (1/V_{i}(X_{i})) * V_{i}(X_{j})$$

j,i מעבירים אגף ומקבלים, לכל שני שחקנים $T_{i}(X_{i})$

$$V_i(X_i) >= V_i(X_i)$$

וזו בדיוק ההגדרה של חלוקה ללא קנאה!

חלוקה ללא קנאה - סיכום

	· · · · · · · · · · · · · · · · · · ·	,	·
עוגה כללית, חתיכות קשירות	עוגה כללית, חתיכות כלליות	עוגה עם אזורים, חתיכות כלליות, יעילו פארטו	שחקנים
ילתות	2 שא	בעיית	2
	5	אופטימיזציה קמורה – פתרון	3
!אינסוף	200	פולינומיאלי במספר השחקנים	4
	$\Omega(n^2)$	והאיזורים.	n