

الفصل الثاني: النموذج العلائقي

العنوان	الصفحة
[. مقدمة	3
 بنى المعطيات في النموذج العلائقي 	3
3. خصائص الجداول	5
 العلاقات والمفاتيح 	5
£. قواعد التكامل	7
). معالجة البيانات	7
1.6 الاجتماع (Union)	7
(Intersection) التقاطع (2.6	8
(Difference) الفرق (3.6	8
4.6 الجداء (Product)	9
(Selection) الاختيار (5.6	9
(Projection) الإسقاط (6.6	10
7.6 الضم (Join)	10
(Division) التقسيم (8.6	10
آ. المراجع	11

الكلمات المفتاحية

علاقة، جدول، تسجيلة، عمود، حقل، نمط بيانات، مفتاح أساسي، مفتاح مستورد، تكامل المعطيات، التنظيم، المنظور المنظور الفيزيائي.

ملخص

يركز هذا الفصل على التعريف بنموذج البيانات العلائقي، والمفاهيم الخاصة به.

الأهداف التعليمية

يهدف هذا الفصل إلى:

- تعريف المفاهيم الخاصة بالنموذج العلائقي للبيانات
 - خصائص الجداول في النموذج العلائقي
- دراسة العلاقات وطرق تنفيذها في النموذج العلائقي
 - تعريف تكامل المعطيات ومعالجتها
 - مقدمة عن التنظيم

1. مقدمة

تم التقديم للنموذج العلائقي في تصميم قواعد البيانات عام 1970 من قبل Dr.E.F.Codd، وقد تطور منذ ذلك الحين من خلال سلسلة من المقالات والكتابات، إلى أن أخذ شكلاً مستقراً حالياً.

تتألف قاعدة البيانات المبنية على النموذج العلائقي، من مجموعة جداول ثنائية البعد، يمثل كل جدول منها كياناً (شخص، مكان، شيئ، حدث ...) له مجموعة من الموصّفات، أو يمثل علاقة بين أكثر من كيان.

ويعني المنظور المنطقي لقاعدة البيانات Logical view النظر للقاعدة كمجموعة من الجداول والعلاقات بينها. بينما يعني المنظور الداخلي Internal view النظر لقاعدة البيانات كمجموعة من الملفات الفيزيائية وطريقة تخزين على الأقراص الصلبة.

فيما يلي سنعرض أهم المفاهيم الخاصة بالنموذج العلائقي لتصميم قواعد المعطيات، مع شرح مفصل عنها، من خلال الفقرات التالية:

- بنى المعطيات في النموذج العلائقي
 - خصائص الجداول
 - العلاقات والمفاتيح
 - قواعد التكامل
 - معالجة البيانات

2. بنى المعطيات في النموذج العلائقي

قاعدة المعطيات العلائقية هي مجموعة من الجداول.

الجدول هو بنية ثنائية البعد تتألف من أعمدة وأسطر. لكل عمود اسم وحيد ونمط معطيات ويمثل العمود موصِّفة للكيان الذي يعبر عنه الجدول أو للعلاقة التي نتج عنها الجدول.

السطر في الجدول يمثل ورود لأحد عناصر الكيان، فمثلاً إذا كان الجدول يحمل بيانات موظفي شركة، فكل عمود يمثل موصِّفة للموظف (اسمه، تاريخ توظيفه، منصبه،...) وكل سطر يمثل بيانات موظف محدد.

نقاطع السطر والعمود يمثل قيمة موصنفة لأحد عناصر الكيان (نقاطع عمود تاريخ التوظيف مع السطر الخاص بالموظف Scott يمثل تاريخ توظيف Scott في الشركة).

الشكل التالي يظهر التصميم العلائقي لقاعدة بيانات تخص مجموعة من الكتب وعلاقتها بالمؤلفين ودور النشر:

A Relational Data Base

AUTHOR

au_id	au_lname	au_fname	address	city	state
172-32-1176	White	Johnson	10932 Bigge Rd.	Menlo Park	CA
213-46-8915	Green	Marjorie	309 63rd St. #411	Oakland	CA
238-95-7766	Carson	Chery1	589 Darwin Ln.	Berkeley	CA
267-41-2394	O'Leary	Michael	22 Cleveland Av. #14	San Jose	CA
274-80-9391	Straight	Dean	5420 College Av.	Oakland	CA
341-22-1782	Smith	Meander	10 Mississippi Dr.	Lawrence	KS
409-56-7008	Bennet	Abraham	6223 Bateman St.	Berkeley	CA
427-17-2319	Dull Dull	Ann	3410 Blonde St.	Palo Alto	CA
472-27-2349	Gringlesby	Burt	P0 Box 792	Covelo	CA
486-29-1786	Locksley	Charlene	18 Broadway Av.	San Francisco	CA

TITLE

title_id	title	type	price	pub_id
BU1032	The Busy Executive's Database Guide	business	19.99	1389
BU1111	Cooking with Computers	business	11.95	1389
BU2075	You Can Combat Computer Stress!	business	2.99	736
BU7832	Straight Talk About Computers	business	19.99	1389
MC2222	Silicon Valley Gastronomic Treats	mod_cook	19.99	877
MC3021	The Gourmet Microwave	mod_cook	2.99	877
MC3026	The Psychology of Computer Cooking	UNDECIDED		877
PC1035	But Is It User Friendly?	popular_comp	22.95	1389
PC8888	Secrets of Silicon Valley	popular_comp	20	1389
PC9999	Net Etiquette	popular_comp		1389
PS2091	Is Anger the Enemy?	psychology	10.95	736

PUBLISHER

pub_id	pub_name	city		
736	New Moon Books	Boston		
877	Binnet & Hardley	Washington		
1389	Algodata Infosystems	Berkeley		
1622	Five Lakes Publishing	Chicago		
1756	Ramona Publishers	Dallas		
9901	GGG&G	München		
9952	Scootney Books	New York		
9999	Lucerne Publishing	Paris		

AVIHUR_IIILE				
au_id	title_id			
172-32-1176	PS3333			
213-46-8915	BU1032			
213-46-8915	BU2075			
238-95-7766	PC1035			
267-41-2394	BU1111			
267-41-2394	TC7777			
274-80-9391	BU7832			
409-56-7008	BU1032			
427-17-2319	PC8888			
472-27-2349	TC7777			

الجدول التالي يظهر مجموعة من المصطلحات المتداولة في النموذج العلائقي، مع المرادفات المستخدمة لكل منها:

In This Document	Formal Terms	Many Database Manuals
Relational Table	Relation	Table
Column	Attribute	Field
Row	Tuple	Record

يمكن عرض تصميم قاعدة البيانات السابقة من خلال العبارات التالية (بدون المعطيات المتضمنة في الجداول وبدون تحديد أنماط الحقول):

AUTHOR	(au_id, au_Iname, au_fname, address, city, state, zip)		
TITLE	(title_id, title, type, price, pub_id)		
PUBLISHER	(pub_id, pub_name, city)		
AUTHOR_TITLE	(au_id, title_id)		

الجدول AUTHOR_TITLE يعبر عن العلاقة بين المؤلفين والكتب، بينما تعبر الجداول الأخرى عن الكيانات: مؤلف، كتاب، دار نشر.

3. خصائص الجداول

- بنية ثائية مؤلفة من أعمدة وأسطر
- يمثل كل سطر (تسجيلة) كياناً واحداً من مجموعة الكيانات
 - يمثل كل حقل في الجدول واصفة، وله اسم مميز
 - تمثل تقاطعات الأسطر والأعمدة قيمة معطيات واحدة
- ينبغي أن تطابق جميع القيم في حقل صيغة معطيات واحدة، كأن تكون كلها أعداد صحيحة أو أن تكون كلها من نمط تاريخ
 - لكل عمود مجال محدد من القيم يعرف باسم مجال الواصفات
- ترتيب الأسطر والأعمدة غير مهم بالنسبة لنظام إدارة قواعد البيانات، ويمكن استرجاعها بالترتيب المطلوب
 - يجب أن يحوي كل جدول على واصفة أو مجموعة واصفات تميز كل سطر عن غيره (مفتاح أساسي)

4. العلاقات والمفاتيح

العلاقة Relationship هي الرابط بين جدولين أو أكثر، يعبر عنها في قاعدة المعطيات من خلال المفتاح الأساسي Primary key والمفتاح المستورد Foreign key.

المفتاح الأساسي Primary key هو حقل أو مجموعة حقول تميز بمجموعها كل تسجيلة في الجدول.

المفتاح المستورد Foreign Key هو حقل قيمته تطابق حتماً قيمة مفتاح أساسي في جدول آخر (ان لم تكن NULL)، ويمكن النظر للمفتاح المستورد على أنه نسخة من قيمة مفتاح أساسي في جدول آخر، تحدد التسجيلة المرتبطة من الجدول الآخر بالتسجيلة الحاوية على المفتاح المستورد من هذا الجدول.

Au_ld في الجدول Au_thor هي مفتاح مستورد من المفتاح الأساسي Au_id في الجدول Author.

5. قواعد التكامل

يضمن التكامل للمستخدم التجوال والمعالجة الصحيحة للبيانات في جداول قاعدة المعطيات، ويقصد به نوعين من التكامل:

- تكامل المعطيات: وهو يعني أن تكون قيم المفتاح الأساسي فريدة، وألا يكون أي جزء من المفتاح الأساسي Null، وذلك لضمان أن يكون لكل كيان هوية مميزة، ولضمان أن تكون قيم المفاتيح المستوردة تشير بشكل صحيح إلى تسجيلات محتواة في الجدول الأساسي.
- التكامل المرجعي: يقصد به أن تكون قيمة المفتاح المستورد إما Null أو قيمة موجودة في حقل المفتاح الأساسي للجدول الذي تم الاستيراد منه.

6. معالجة البيانات

الجداول هي مجموعات عناصرها التسجيلات، والعمليات الممكن إجراؤها على المجموعات يمكن إجراؤها أيضاً على الجداول، هذه العمليات هي:

الاجتماع (Union)، التقاطع (Intersection)، الفرق (Difference)، الجداء (Product)، الاختيار (Division)، الإسقاط (Projection)، الإسقاط (Projection)، التقسيم (Division)

الاجتماع (Union)

تجمع هذه العملية كافة الأسطر من الجدولين، دون تكرار الأسطر الموجودة في الجدولين. لتطبيق هذه العملية يجب أن يتطابق الجدولين في ترتيب وأنماط الأعمدة.

	ĸ		
L	١	ı	
,		۱	

K	Х	Υ
1	Α	2
2	В	4
3	С	6

В

K	Х	Υ
1	Α	2
4	D	8
5	Е	10

A UNION B

K	X	Υ
1	Α	2
2	В	4
3	С	6
4	D	8
5	Е	10

(Intersection) التقاطع

ينتج عن هذه العملية جدول يضم الأسطر المشتركة بين الجدولين الأساسيين، يجب أن يكون الجدولان المطبق عليهما هذه العملية منسجمان من حيث عدد الأعمدة وترتيبها وأنماطها.

Α

K	X	Y
1	Α	2
2	В	4
3	O	6

A INTERSECT B

K	Х	Υ
1	Α	2
2	В	4
3	С	6
4	D	8
5	Е	10

В

K	X	Υ
1	Α	2
4	D	8
5	Е	10

الفرق(Difference)

ينتج عن هذه العملية جدول يتضمن الأسطر التي تظهر في الجدول الأول ولا تظهر في الجدول الثاني.

Α

K	X	Υ		
1	Α	2		
2	В	4		
3	С	6		

K	X	Υ
2	В	4
3	С	6

В

K	X	Υ
1	Α	2
4	D	8
5	Е	10

K	Х	Υ
4	D	8
5	Е	10

الجداء (Product):

ينتج عن هذه العملية كافة أزواج التسجيلات الممكنة من كلا الجدولين.

- 1	Δ
- 4	_

K	X	Υ
1	Α	2
2	В	4
3	С	6

В

K	X	Υ
1	Α	2
4	D	8
5	Е	10

A TIMES B

AK	AX	AY	вк	вх	BY
1	Α	2	1	Α	2
1	Α	2	4	D	8
1	Α	2	5	Е	10
2	В	4	1	Α	2
2	В	4	4	D	8
2	В	4	5	Е	10
3	С	6	1	Α	2
3	С	6	4	D	8
3	С	6	5	Е	10

(Selection) الاختيار

ترجع هذه العملية مجموعة جزئية من أسطر الجدول، المجموعة الجزئية تحقق شرط معين.

K	Х	Υ
1	Α	2
2	В	4
3	С	6

SELECT BASED ON A CONDITION

K	X	Υ
2	В	4
3	С	6

(Projection) الإسقاط

يرجع مجموعة جزئية من أعمدة الجدول.

الضم (Join)

تسمح هذه العملية بجمع الواصفات من جدولين أو أكثر، هذه العملية هي من أهم ميزات نظم قواعد المعطيات العلائقية، إذ أنها تسمح بربط جداول مستقلة عن بعضها من خلال واصفات مشتركة.

	D		k	E	Equ	×	u	k	z
k_	×	y	K	Z	-		-	-	-
1	A	2	31	20	1	A	2	1	20
2	В	4	4	24	4	D	8	4	24
3	С	6	5	28	5	E	10	5	28
4	D	8	7	32					
5	E	10	9	36	Natural Join				
		35	Riv	41	k	×	y	z	Ē
					800	Α	2	20	
					4	D	8	24	
					5	E	10	28	

(Division) التقسيم

ينتج عن هذه العملية جدول بقيم أعمدة متممها من أعمدة الجدول الأول موجود كأسطر في الجدول الثاني.

A			В	Result	
k	×	g	×	y	k
10	1101	A	1101	A	10
10	1201	В	1201	В	30
10	1301	С	1301	С	10. 0000
20	1201	В	A: 5/	- 58	
30	1101	A			
30	1201	В			
30	1301	C			

7. المراجع:

- http://database.ittoolbox.com
- http://www.utexas.edu/its/windows/database/datamodeling/Rm/