ENGG104 Tutorial 4 Class Questions

Team Name:	

Question 1

Which resistors are in series and which are in parallel?

- 1. a. R_1 , R_2 , and E are in series; R_3 , R_4 and R_5 are in parallel
 - b. E and R_1 are in series; R_2 , R_3 and R_4 are in parallel.
 - c. E and R_1 are in series; R_2 , R_3 and R_4 are in parallel.
 - d. E_1 and R_1 are in series; E_2 and R_4 in parallel.
 - e. E and R_1 are in series, R_2 and R_3 are in parallel.
 - f. E, R_1 , R_4 and R_6 are in parallel; R_2 and R_5 are in parallel.

For the network in Fig. 7.71:

- **a.** Find currents I_s , I_2 , and I_6 .
- **b.** Find voltages V_1 and V_5 .
- c. Find the power delivered to the 3 $k\Omega$ resistor.

Is= 16mA

2

a.
$$R_T = (\overline{R_1 \parallel R_2 \parallel R_3}) \parallel (R_6 + R_4 \parallel R_5)$$

 $= (12 \text{ k}\Omega \parallel 12 \text{ k}\Omega \parallel 3 \text{ k}\Omega) \parallel (10.4 \text{ k}\Omega + 9 \text{ k}\Omega \parallel 6 \text{ k}\Omega)$
 $= (6 \text{ k}\Omega \parallel 3 \text{ k}\Omega) \parallel (10.4 \text{ k}\Omega + 3.6 \text{ k}\Omega)$
 $= 2 \text{ k}\Omega \parallel 14 \text{ k}\Omega = 1.75 \text{ k}\Omega$
 $I_s = \frac{E}{R_T} = \frac{28 \text{ V}}{1.75 \text{ k}\Omega} = \mathbf{16 \text{ mA}}, \quad I_2 = \frac{E}{R_2} = \frac{28 \text{ V}}{12 \text{ k}\Omega} = \mathbf{2.33 \text{ mA}}$
 $R' = R_1 \parallel R_2 \parallel R_3 = 2 \text{ k}\Omega$
 $R'' = R_6 + R_4 \parallel R_5 = 14 \text{ k}\Omega$

$$I_6 = \frac{R'(I_s)}{R' + R''} = \frac{2 \text{ k}\Omega(16 \text{ mA})}{2 \text{ k}\Omega + 14 \text{ k}\Omega} = 2 \text{ mA}$$

- b. $V_1 = E = 28 \text{ V}$ $R' = (R_4 \parallel R_5) + (6 \text{ k}\Omega \parallel 9 \text{ k}\Omega) = 3.6 \text{ k}\Omega$ $V_5 = I_6 R' = (2 \text{ mA})(3.6 \text{ k}\Omega) = 7.2 \text{ V}$
- c. $P = \frac{V_{R_3}^2}{R_3} = \frac{(28 \text{ V})^2}{3 \text{ k}\Omega} = 261.33 \text{ mW}$

Question 3

8. Convert the current sources in Fig. 8.104 to voltage sources.

- a. $E = IR_s = (6 \text{ A})(12 \Omega) = 72 \text{ V}, R_s = 12 \Omega$
- b. $E = IR_s = (18 \text{ mA})(5.6 \text{ k}\Omega) = 100.8 \text{ V}, R_s = 5.6 \text{ k}\Omega$

Question 4 [typical exam question]

- **6.** For the network in Fig. 8.102:
- **a.** Find the currents I_1 and I_s .

a.
$$I_1 = \frac{E}{R_1} = \frac{24 \text{ V}}{2 \Omega} = 12 \text{ A}, \ I_{R_2} = \frac{E}{R_2 + R_3} = \frac{24 \text{ V}}{6 \Omega + 2 \Omega} = \frac{24 \Omega}{8 \Omega} = 3 \text{ A}$$

KCL: $I + I_s - I_1 - I_{R_2} = 0$
 $I_s = I_1 + I_{R_2} - I = 12 \text{ A} + 3 \text{ A} - 4 \text{ A} = 11 \text{ A}$

b.
$$V_s = E = 24 \text{ V}$$

VDR: $V_3 = \frac{R_3 E}{R_2 + R_3} = \frac{2 \Omega (24 \text{ V})}{6 \Omega + 2 \Omega} = \frac{48 \text{ V}}{8 \Omega} = 6 \text{ V}$

Question 5 [Typical exam question]

- **42. a.** Write the nodal equations using the general approach for the network of Fig. 8.126.
 - **b.** Find the nodal voltages using determinants.
 - c. What is the total power supplied by the current sources?

FIG. 8.126

a.
$$V_1 V_2$$
At V_1 : $\sum I_i = \sum I_o$

$$4 A = \frac{V_1}{2 \Omega} + \frac{V_1 - V_2}{4 \Omega} + 2 \Delta$$
Ar V_2 : $\sum I_i = \sum I_o$

$$\begin{cases} 2 A + \frac{V_1 - V_2}{4 \Omega} + \frac{V_2}{20 \Omega} + 2 \Delta \end{cases}$$
or $V_1 \left[\frac{1}{2} + \frac{1}{4} \right] - V_2 \left[\frac{1}{4} \right] = 2$

$$-V_1 \left[\frac{1}{4} \right] + V_2 \left[\frac{1}{4} + \frac{1}{20} + \frac{1}{5} \right] = 2$$
b. $V_1 = 4.8 \text{ V}, V_2 = 6.4 \text{ V}$
c. I_1 : $P = V_1 I_1 = (4.8 \text{ V})(4 \text{ A}) = 19.2 \text{ W}$
 I_2 : $P = |(V_1 - V_2)I_2| = |(4.8 \text{ V} - 6.4 \text{ V})(2 \text{ A})| = 3.2 \text{ W}$