	Name: Raghan Malashwasi
	ROUND: 53
	Panel: A
	Lale Assignment - 4 (PP)
×	woulte a parallel code jou calculation of pi (Acrea under cioure wing mot-
-	
*	Aim?
	To weite chargeroun to calculate value of Pi up to 20
	To weite of program to calculate value of Pi up to 20 decimal digit and find every po yo in autual value of Pi
*	Theoly:
1.	Explain MP1 Scatter and Crather operations.
	MPI Scatter and Crathery.
	Crown functions that can manage date distails which
	Scitton: divider big array into a number of smaller points equal to moral personnes & sends each persons a piece of array in Irank order.
	Crather: OPP. surriver date
	hank reader.

	Syntax =
	int mfl. scattoer (void * soudby, int soudent, mfl. doutatype sendtype upid * seconday, int sound, mfl. doutatype succertype, int sevent, mfl. doutatype succertype, int sevent.
	the above syntax applied you met scatter, and met gather.
2.	How value of pi can be calculated using a color unoker the everye?
two	whe will estimate value of to using a sea of formula for a circle to see a single to sea of a with circle, i.e. a circle with starting on see
	formula jog unit circle is nity2=1 So Wing jory we got $y = \pm J_1 - n^2$, NOTE: that each value of x be tracen and $x = -1$ and $x = 1$ yields two values of y according to this johnmula, conversebuding to upper and lower per \pm circle in jigure.
	that sum to get approximation of it
	now reitangle we us, greater accurring use expert a over reitangle approximation to exact area under demi-circle where y=f(n)

(TEST)	FAQ
	What are the different ways to calculate the value of si?
Anso	Calculating li using measurements of circle.
t)	Calculating Riusing and infinite social.
	Calculating & using Buyon's needle possiblem.
->	Calculating is using a limit.
->	Calculating li using a limit. Using Asicsine junction/Impose sine junction,
2	What does ssh-copy-id command do?
Aws	Sch-copy-id command is a simple tool that allows you to
	install an csy bey on a semate source 's authorized
	keys. This command facilitates ssy key login, which
	removes need Jose a pasinora Jose each look thur
	elicione passibolid les outometre Dain perpose sen-
	copy—id command is past of open ssy, tool for parposing remote system administrations using encrypted ssy connections.
3	What does Ssh-keygen command do?
AW	Ssh-kougen is able to generate akey using one of
	those different digital signature algorithms.
	With the hein of sch - keygen tool, a usey can create
	passpherase beye job any of there key types. To provide
	por unattended operation, passphoruse, can be left empty
	albert at invaeased viek.

Since ordine cioche area is a , whe uses appendimite area of shaded semi-cioche i-c- area undor the curue 1-n² then multiply by 1. to approximer that area under the curue, use will add up orders of secitangle that approximately correspond of that semi-cioche:

Cluster Formation steps:

- 1. Server Installation
- \$ sudo apt-get install openssh-server
- 2. Find hostname.
- \$ hostname
- 3. Find IP Address
- \$ ifconfig
- 4. make one file of the host name and ip
- \$ sudo gedit /etc/hosts
- 5. Make the required changes by adding IP and host name and save the file
- 6. Generate Key
- \$ ssh-keygen
- 7. copy id from each node to cluster.
- \$ ssh-copy-id
- 8. Test the connection.

Pi Calculation program:

On a single machine:

Code:

This Program for Pi calculation depicts the usage of

MPI_Wtime, MPI_Bcast and MPI_Reduce

This exercise presents a simple program to determine the value of pi. The algorithm suggested here is chosen for its simplicity. The method evaluates the integral of 4/(1+x*x) between 0 and 1. The method is simple: the integral is approximated by a sum of n intervals; the approximation to the integral in each interval is (1/n)*4/(1+x*x). The master process (rank 0) asks the user for the number of intervals; the master should then broadcast this number to all of the other processes. Each process then adds up every n'th interval (x = rank/n, rank/n+size/n,...). Finally, the sums computed by each process are added together using a reduction.

```
#include "mpi.h"
#include <math.h>
#include <stdio.h>
#define MAX_NAME 80 /* length of characters for naming a process */
                     /* rank of the master */
#define MASTER 0
int main(int argc, char *argv[])
                                     /* rank variable to identify the process */
  int rank,
                                     /* number of processes */
    nprocs,
                                   /* variable for storing name of processes */
    len;
                                      /* the number of bins */
  int n = 1000;
                                                         /* 25-digit-PI*/
  double PI25DT = 3.141592653589793238462643;
                                       /* value from each process */
  double mypi,
                                   /* value of PI in total*/
      pi,
                                   /* the step */
      step,
                                    /* sum of area under the curve */
      sum,
      х;
                                 /* char array for storing the name of each process */
  char name[MAX_NAME];
                          /* starting time */
  double start_time,
```



```
/* ending time */
    end time,
    computation_time; /* time for computing value of PI */
/*Initialize MPI execution environment */
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Get_processor_name(name, &len);
start_time = MPI_Wtime();
/* Broadcast the number of bins to all processes */
/* This broadcasts an integer which is n, from the master to all processes
* and
*/
MPI Bcast(&n, 1, MPI INT, MASTER, MPI COMM WORLD);
/* Calculating for each process */
step = 1.0 / (double) n;
sum = 0.0;
for (i = rank + 1; i \le n; i += nprocs)
  x = step * ((double)i-.5);
  sum += (4.0/(1.0 + x*x));
mypi = step * sum;
printf("This is my sum: %.16f from rank: %d name: %s\n", mypi, rank, name);
/* Now we can reduce all those sums to one value which is Pi */
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if (rank == 0)
  printf("Pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT));
  end time = MPI Wtime();
  computation_time = end_time - start_time;
  printf("Time of calculating PI is: %f\n", computation_time);
/* Terminate MPI execution environment */
MPI_Finalize();
```


OUTPUT ON A SINGLE MACHINE:

```
ibm@node7: ~

☐ ☐ ○

File Edit View Search Terminal Help

4 total processes failed to start
ibm@node7:-$ mpirun -np 4 ./a.out

[[60776,1],0]: A high-performance Open MPI point-to-point messaging module
was unable to find any relevant network interfaces:

Module: OpenFabrics (openib)
Host: node7

Another transport will be used instead, although this may result in
lower performance.

NOTE: You can disable this warning by setting the MCA parameter
btl_base_warn_component_unused to 0.

This is my sum: 0.7861479353245360 from rank: 0 name: node7
This is my sum: 0.7851484336120356 from rank: 1 name: node7
This is my sum: 0.7851484334495280 from rank: 2 name: node7
This is my sum: 0.7886479331370270 from rank: 3 name: node7
This is my sum: 0.7846479331370270 from rank: 3 name: node7
This is approximately 3.1415927369231262, Error is 0.000000008333333331
Time of calculating PI is: 0.000221
[node7:05252] 3 more processes have sent help message help-mpi-btl-base.txt / bt
```

Text Format

[[60776,1],0]: A high-performance Open MPI point-to-point messaging module was unable to find any relevant network interfaces:

Module: OpenFabrics (openib)

Host: node7

Another transport will be used instead, although this may result in lower performance.

NOTE: You can disable this warning by setting the MCA parameter btl_base_warn_component_unused to 0.

This is my sum: 0.7861479353245360 from rank: 0 name: node7 This is my sum: 0.7856484350120356 from rank: 1 name: node7 This is my sum: 0.7851484334495280 from rank: 2 name: node7 This is my sum: 0.7846479331370270 from rank: 3 name: node7

Pi is approximately 3.1415927369231262, Error is 0.0000000833333331

Time of calculating PI is: 0.000221

[node7:05252] 3 more processes have sent help message help-mpi-btl-base.txt / btl:no-nics [node7:05252] Set MCA parameter "orte_base_help_aggregate" to 0 to see all help / error messages

Output Image on a Cluster of nodes:

```
computer@node28: ~
computer@node28:~$ mpicc piCal.c
computer@node28:~$ gedit hostlist
computer@node28:~$ cat hostlist
node28
node29
computer@node28:~$ mpirun -np 8 -machinefile hostlist ./a.out
Calculations of myp = 0.3933239721936012 by rank = 1 of node28
Calculations of myp = 0.3935732198498028 by rank = 0 of node28
Calculations of myp = 0.3928247187560486 by rank = 3 of node28
Calculations of myp = 0.3930744714123472 by rank = 2 of node28
calculation of myp = 0.3918232143809787 by rank = 7 of node29
calculation of myp = 0.3920739620371805 by rank = 6 of node29
calculation of myp = 0.3925747154747329 by rank = 4 of node29
calculation of myp = 0.3923244628184344 by rank = 5 of node29
pi is approximately 3.1415927369231262, Error is 0.0000000833333331computer@node
28:~$
```