Amendments to the claims:

This listing of claims will replace all prior versions and listings of Claims in the Application:

(Currently Amended) A micro-stencil comprising:

Listing of Claims:

İ

1.

Ż		a membrane with a receptor surface and a print surface, the print surface b	eing	
3		patterned with stencil features;		
4		a flow region through the membrane to allow a print fluid to flow from the	9	
5		receptor surface to the print surface for printing the stencil feature on a me	edium;	
6		and		
7		means to align for aligning the membrane with the medium between multi-	ple	
8		prints; and		
9		d. means for creating a pressure differential across the membrane.		
1	2.	(Original) The micro-stencil of claim 1, wherein the flow region comprises passa	ges from	
2		the receptor surface to the print surface.		
1	3.	(Previously Presented) The micro-stencil of claim 1, further comprising a reservo	ir for	
2		holding and supplying a print fluid.		
1	4.	(Original) The micro-stencil of claim 3, wherein the reservoir comprises a porous	3	
2		material.		
1	5.	(Previously Presented) The micro-stencil of claim 4, wherein the porous materia	1	
2		comprises a material selected from the group consisting of metal, glass, quartz, p	olymer,	
3		cellulose, polycarbonate, polytetrafluoroethylene, nylon, polyether sulfone,		
4		polypropylene, mixed cellulose and polyvinylidene fluoride.		

1 2	6.	(Original) The micro-stencil of claim 4, wherein the porous material is coupled to the receptor surface of the membrane.		
1	7.	(Original) The micro-stencil of claim 4, wherein a portion of the porous material is		
2		positioned within the flow region.		
1 2	8.	(Original) The micro-stencil of claim 1, wherein the stencil features comprise lateral feature dimensions of less than 5.0 microns.		
i 2 3	9.	(Original) The micro-stencil of claim 1, wherein the membrane is formed from a resilient material selected from the group consisting of rubber, silicone, urethane, vinyl, acrylic and nylon.		
1 2	10.	(Original) The micro-stencil of claim 1, wherein the membrane is formed from polydimethylsiloxane (PDMS).		
1 2	11.	(Previously Presented) The micro-stencil of claim 1, wherein the stencil features of the membrane has a thickness have thicknesses of less than 1.0 micron.		
1 2	12.	(Original) The micro-stencil of claim 1, wherein the stencil features comprise an array of stencil features.		
1	Clair	ns 13-88 (Canceled).		
1	89.	(Currently Amended) A micro-stencil comprising:		
2		a. a membrane formed from polydimethylsiloxane (PDMS) with a receptor surface		
3		and a print surface, the print surface being patterned with stencil features		
4		comprising lateral feature dimensions of less than 5.0 microns;		
5		b. a flow region through the membrane to allow a print fluid to flow from the		
6		receptor surface to the print surface for printing the stencil features on a medium;		
7		and		

Attorney Docket No: NANO-00201

8	c.	means to align for aligning the membrane with the medium between multiple
9		prints; and
10	<u>d.</u>	means for creating a pressure differential across the membrane.