Abschluss Bericht für das Praktikum Mobile Roboter im WS 17/18

Florian Dreschner, Yassine El Himer, Daniel Klitzke, Robin Weitemeyer

3. Februar 2018

Inhaltsverzeichnis

1	Einl	eitung 3		
	1.1	Aufgabenstellung		
	1.2	Ausgangssituation		
	1.3	Systemarchitektur		
		1.3.1 Hardware		
		1.3.2 Software		
	1.4	Arbeitspakete		
2	State of the Art 4			
	2.1	Bilderkennung		
	2.2	Bahnplanung & Greifen		
3	Arbeitsbericht 4			
	3.1	Bilderkennung		
		3.1.1 Tassenerkennung		
		3.1.2 Turtleboterkennung		
		3.1.3 Automatische Kamerakalibrierung 6		
	3.2	Bahnplanung & Greifen		
		3.2.1 Bahnplanung		
		3.2.2 Greifen		
	3.3	High-level Steuerung & Kommunikation		
4	Beschreibung des Gesamtsystems 6			
	4.1	Bilderkennung		
		4.1.1 Tassenerkennung		
		4.1.2 Automatische Kamerakalibrierung 6		
	4.2	Bahnplanung & Greifen		
		4.2.1 Bahnplanung		
		4.2.2 Greifen		
	4.3	High-level Steuerung & Kommunikation 6		
5	Eval	luation & Ausblick 6		
	5.1	Bilderkennung		
		5.1.1 Tassenerkennung		
		5.1.2 Turtleboterkennung		
		5.1.3 Automatische Kamerakalibrierung 6		
	5.2	Bahnplanung & Greifen		
		5.2.1 Bahnplanung		
		5.2.2 Greifen		
	5.3	High-level Steuerung & Kommunikation 6		
	5.4	Gesamtsystem		

1 Einleitung

1.1 Aufgabenstellung

Ziel des diesjährigen Praktikum Mobile Roboter mit dem Thema "Coffee to go"war es, eine Tasse Kaffee, welche auf einem Tisch platziert wurde mittels eines Roboterarms zu greifen, auf einem mobilen Roboter zu platzieren und diese, nach Transport durch selbigen, dann mittels eines zweiten Roboterarms wieder auf einen zweiten Tisch zu stellen. Die Aufgabe unserer Gruppe war hierbei, die Tasse auf dem ersten Tisch zu lokalisieren, sie zu greifen und auf dem mobilen Roboter zu platzieren.

1.2 Ausgangssituation

Als Ausgangspunkt für die Realisierung der Aufgabe wurde uns sowohl diverse Hardware als auch Software zu Verfügung gestellt. So stand uns für das Greifen der Tasse ein UR5 Roboter von Universal Robots, welcher bereits auf einem Tisch befestigt wurde. Zur Lokalisierung der Tasse waren eine Kinect bzw. alternativ eine Intel Realsense Kamera verfügbar. Außerdem standen uns für die Entwicklung der Software sowohl vorkonfigurierte Rechner in Poolräumen, als auch ein an den UR5 Roboter angeschlossener Shuttle PC zur Verfügung. Als Grundlage für die zu entwickelnde Software dienten ROS Indigo bzw. Kinetic.

1.3 Systemarchitektur

- 1.3.1 Hardware
- 1.3.2 Software

1.4 Arbeitspakete

Die Lösung der gestellten Aufgabe haben wir in folgende Arbeitspakete unterteilt:

Hauptaufgabe	Arbeitspaket	Zuständigkeit
Bilderkennung		
	Tassendetektion mit FCN	Daniel Klitzke, Yassine El
		Himer
	Tassendetektion Segmentie-	Daniel Klitzke
	rung + Neuronale Netze	
	Tassendetektion SVM +	Daniel Klitzke
	HOG Features	
	Segmentierung der Tasse in	Daniel Klitzke
	Punktwolke	
	Erkennung der Tassenorien-	Daniel Klitzke
	tierung	
	Turtlebotdetektion SVM +	Yassine El Himer
	HOG Features	
	Automatische Kamerakali-	Daniel Klitzke
	brierung	
Bahnplanung & Greifen		
	Aufsetzen der Simulation	Robin Weitemeyer
	Modellierung der Roboter-	Robin Weitemeyer
	umgebung	
	Bahnplanung mit MoveIt	Robin Weitemeyer
	Modellierung eines Greifers	Florian Dreschner
High-level Steuerung &		Yassine el Himer, Florian
Kommunikationsschnitt-		Dreschner
stellen		

2 State of the Art

2.1 Bilderkennung

2.2 Bahnplanung & Greifen

3 Arbeitsbericht

3.1 Bilderkennung

3.1.1 Tassenerkennung

Allgemein Für die Tassenerkennung wurden keinerlei ROS Pakete verwendet. Stattdessen wurden die einzelnen Komponenten in Python selbst implementiert. Die am häufigsten zur Hilfe genommenen Bibliotheken sind unter anderem:

• NumPy (Effizienter Umgang mit Matrizen und Vektoren)

- scikit-image (Bildverarbeitung)
- scikit-learn (Algorithmen für Maschinelles Lernen)
- Keras (High-level API für die Erstellung von Neuronalen Netzen)
- Matplotlib (Visualisierung)

Detektion der Tasse in den Bilddaten

- 3.1.2 Turtleboterkennung
- 3.1.3 Automatische Kamerakalibrierung
- 3.2 Bahnplanung & Greifen
- 3.2.1 Bahnplanung
- 3.2.2 Greifen
- 3.3 High-level Steuerung & Kommunikation

4 Beschreibung des Gesamtsystems

- 4.1 Bilderkennung
- 4.1.1 Tassenerkennung
- 4.1.2 Automatische Kamerakalibrierung
- 4.2 Bahnplanung & Greifen
- 4.2.1 Bahnplanung
- 4.2.2 Greifen
- 4.3 High-level Steuerung & Kommunikation

5 Evaluation & Ausblick

- 5.1 Bilderkennung
- 5.1.1 Tassenerkennung
- 5.1.2 Turtleboterkennung
- 5.1.3 Automatische Kamerakalibrierung
- 5.2 Bahnplanung & Greifen
- 5.2.1 Bahnplanung
- 5.2.2 Greifen
- 5.3 High-level Steuerung & Kommunikation
- 5.4 Gesamtsystem

