Übungen zur Linearen Algebra I 12. Übungsblatt

Abgabe bis zum 30.01.20, 9:15 Uhr

Aufgabe 1 (4+2) Punkte. Wir betrachten die Matrix

$$A = \begin{pmatrix} 4 & -5 & -4 \\ 6 & -7 & -4 \\ -3 & 4 & 3 \end{pmatrix} \in M_{3,3}(\mathbb{Q})$$

Zeigen Sie, dass A nicht diagonalisierbar ist. Zeigen Sie ferner, dass A über \mathbb{Q} trigonalisierbar ist und bestimmen Sie S, $S^{-1} \in GL_3(\mathbb{Q})$ derart, dass $S^{-1}AS$ eine obere Dreiecksmatrix ist.

Aufgabe 2 (1+2+1+2 Punkte). In Abb (\mathbb{N}, \mathbb{R}) betrachten wir den Untervektorraum $U = \{f \in \text{Abb}(\mathbb{N}, \mathbb{R}) \mid f(n+2) = 2f(n+1) + 3f(n) \text{ für alle } n \in \mathbb{N}\}.$

(a) Zeigen Sie, dass es eine eindeutige Matrix $A \in M_{2,2}(\mathbb{R})$ gibt, sodass für alle $n \in \mathbb{N}$ und $f \in U$ gilt:

$$\begin{pmatrix} f(n+2) \\ f(n+1) \end{pmatrix} = A \cdot \begin{pmatrix} f(n+1) \\ f(n) \end{pmatrix}.$$

- (b) Bestimmen Sie die Eigenräume von A.
- (c) Konstruieren Sie $S \in GL_2(\mathbb{R})$, sodass $S^{-1}AS$ Diagonalgestalt hat.
- (d) Leiten Sie aus (c) eine für alle $f \in U$ gültige Formel ab, welche f(n) aus f(1), f(2) und n berechnet.

Aufgabe 3 (3 · 2 Punkte). Sei K ein Körper der Charakteristik 0 und $K[x]_{\leq n}$ der Vektorraum der Polynome vom Grad $\leq n$ über K. Wir definieren den Operator $\int - dx \colon K[x]_{\leq n} \to K[x]_{\leq n+1}$ durch

$$\int \left(\sum_{i=0}^{n} a_i x^i \right) dx = \sum_{i=0}^{n} \frac{a_i}{(i+1)_K} x^{i+1}$$

und die Abbildung $\gamma \colon K[x]_{\leq n} \times K[x]_{\leq n} \to K$ durch

$$\gamma(f,g) = \left(\int (f \cdot g) \, \mathrm{d}x\right) (1_K),$$

wobei wir mit $(\int (f \cdot g) dx) (1_K)$ die Auswertung des Polynoms $\int (f \cdot g) dx$ an 1_K bezeichnen.

- (a) Zeigen Sie, dass γ eine symmetrische nicht-ausgeartete Bilinearform ist.
- (b) Bestimmen Sie für $K = \mathbb{Q}$ und n = 3 die Fundamentalmatrix von γ zur Basis $(1, x, x^2, x^3)$.
- (c) Bestimmen Sie für $K = \mathbb{Q}$ und n = 3 eine Orthogonalbasis von γ .

Aufgabe 4 (6 Punkte). Sei K ein Körper, V ein endlich-dimensionaler K-Vektorraum und f ein Endomorphismus von V. Zeigen Sie für $\lambda \in K$: λ ist genau dann ein Eigenwert von f, wenn λ Eigenwert des dualen Endomorphismus $f^*: V^* \to V^*$ ist; und wenn das der Fall ist, haben die Eigenräume dieselbe Dimension.