Apprentissage et optimisation pour la robotique autonome

L3 IARO

Nicolas Bredeche

Université Pierre et Marie Curie ISIR, UMR 7222 Paris, France nicolas.bredeche@upmc.fr

. . .

mise à jour: 2018-04-04

Etude de cas

3

Objectif: maximiser l'exploration

- Eléments à définir:
 - ▶ la fonction objectif (p.ex. maximiser la distance parcourue)
 - ▶ le formalisme de contrôle (p.ex. combinaison linéaire des entrées sensorielles)
 - l'espace de recherche (p.ex. les paramètres de la combinaison linéaire)
 - ▶ la méthode (p.ex. la recherche au hasard)

nicolas.bredeche@upmc.fr [Nolfi, Floreano, 2000]

Espace de recherche et contrôleur

Réseaux de neurones artificiels perceptron multi-couches

Qu'est ce qu'un neurone?

5

En pratique: un neurone artificiel n'est qu'inspiré du neurone réel.

- La forme la plus simple: le neurone formel [McCulloch, Pitts, 1943]
 - Poids synaptiques
 - excitation, inhibition
 - Fonction d'activation $\phi(\sum_{i=0}^{n} w_i * x_i)$
 - fonction de Heaviside

$$H(x) = \begin{cases} 0 & \text{si} \quad x < 0 \\ 1 & \text{si} \quad x \ge 0 \end{cases}$$

Perceptron

- Perceptron [Rosenblatt, 1957]
 - Neurones formels
 - Ajout d'un neurone de biais
 - Fonction d'activation non-linéaire et dérivable

Calcul de l'activité d'un neurone:

$$a = f_{activation}(\sum_{i=0}^{n} (w_i * x_i))$$

- Notation:
 - x : activité interne du neurone (ie. avant fonction d'activation)
 - a : activité du neurone en sortie (ie. après fonc. d'activation)

- Fonctions d'agrégation / de combinaison
 - Combinaison linéaire des entrées (cf. transp. précédent)
 - Radial Basis Function (RBF)
 - norme euclidienne de la différence entre les vecteurs d'entrées
- Fonctions d'activation
 - Heaviside (ie. non-linéaire, non dérivable)
 - Linéaire (ie. équivalent à une matrice de transformation)
 - Sigmoïde, Tangente hyperbolique (ie. non-linéaire, dérivable)
 - Gaussienne (ie. non-linéaire, dérivable)
 - Rectified Linear Unit (ie. 0 si x<0; x sinon) [fréquent dans les réseaux profonds]

Topologie

Muti-layer perceptron

"Feed-forward" network

Recurrent Network

- Réseaux à propagation directe ["feed-forward NN"]
 - À chaque instant : $F: \mathfrak{R}_n \Longrightarrow \mathfrak{R}_m$
- Réseaux récurrents ["recurrent NN"]
 - À chaque instant : l'activation de chaque neurone à t peut dépendre:
 - des entrées
 - de l'état du réseau à t-l

Espace de recherche

Question: qu'est ce qui peut être modifié dans un réseau?

- Paramètres
 - Poids des arcs
 - Paramètres de la fonction d'activation
- Topologie
 - Ajout/suppression des arcs
 - Ajout/suppression des noeuds

Théorie et pratiques

П

- Résultats théoriques
 - approximateur universel
 - une couches "cachée" suffit, si suffisamment de neurones.
 - régression [Cybenko 1988-89], classification [Hornik 1989]
- Propriétés empiriques
 - Bonne résistance au bruit
 - Bonnes propriétés de généralisation
 - Meilleur si domaine plutôt convexe
 - « Si A et B positifs, tout le segment AB est positif »
 - Sensible lors de dépendances sur les entrées
 - P.ex. le nombre d'entrées à 1 est paire ou impaire ?
 - Un perceptron mono-couche n'y arrive pas; un PMC difficilement

Repères historiques

- Inspiration biologique: « neuro-mimétisme »
 - 1943 : neurone formel de McCulloch&Pitts
 - 1949 : Règle de Hebb
- Première époque (1959-1969) [Rosenblatt 59, Widrow&Hoff 60, Minsky&Papert 69]
 - 1959 : perceptron et règle d'apprentissage
 - 1969 : Limites du perceptron (aux problèmes linéairement séparables)
- Seconde époque (1986-...) [Rumelhart&McClelland 86][LeCun 86][Werbos 74][Parker 82]
 - 1986 : Perceptron Multi-Couches (pour les problèmes linéairement non-séparables)
 - Algorithme de rétro-propagation du gradient pour les PMC
 - Algorithme d'apprentissage des poids et de la structure
- Aujourd'hui (~2000-...)
 - Dynamique interne et prédiction de séries temporelles (ESN, LSM)
 - Optimisation paramétrique et non-paramétrique des réseaux de neurones
 - Réseaux de neurones profonds (Deep NN) et/ou convolutionnel

Perceptron Multi-Couches (MLP)

13

[LeCun, 1984] [Rumelhart et McLelland, 1984] [Werbos, 1974] [Parker, 1982]

Propriété requise : fonction d'activation non-linéaire et dérivable

Perceptron Multi-Couches (MLP)

[LeCun, 1984] [Rumelhart et McLelland, 1984] [Werbos, 1974] [Parker, 1982]

- Propriétés requises :
 - couche cachée: fonction d'activation non-linéaire et dérivable
- En pratique:
 - couche cachée:
 - ullet fonction sigmoide $f(x)=1/(1+e^{-kx})$ equiv. à : f(x)=(1+tanh(x))/2 dérivé: f'(x)=f(x)(1-f(x))
 - ▶ tangente hyperbolique
 - couche de sortie : fonction linéaire
- Remarques
 - paramètre clé: le nombre de neurones cachés
 - ▶ Remarque: évidemment, la topologie, le nombre de couche, ont aussi une influence, mais sont aussi plus difficile à régler.

Propagation du signal dans un MLP

$$a_i = \sum_{j=0}^n w_{ji} a_j$$
 On utilise une fonction d'activation linéaire

$$a_j = f_{activation}(\sum_{k=0}^{n} w_{kj} x_k)$$

$$a_k = (inputs)$$

activation: sigmoide $f(x) = 1/(1 + e^{-kx})$ pour la couche cachée, et linéaire pour les sorties

Méthodes d'apprentissage

Apprentissage par renforcement par évolution artificielle Apprentissage supervisé et algorithme de rétro-propagation

poids du réseaux de neurones

nicolas.bredeche@upmc.fr

22

Comment apprendre?

- Apprentissage par renforcement
 - Lors de l'apprentissage, on doit effectuer une séquence d'actions avant d'obtenir une estimation de la qualité de notre stratégie
 - Méthode: model-based RL, recherche de politique
- Apprentissage supervisé
 - Lors de l'apprentissage, on connait la réponse attendue pour chaque pas de temps (i.e. on dispose d'un "oracle").
 - Méthode: algorithme de rétro-propagation du gradient, ...

Apprentissage par renforcement

Objectif:

- trouver la politique optimale qui maximise la récompense globale
- ullet on veut $orall s_t$, $\pi^*(s_t) o a_t^*$ avec un espérance de gain max.
- Notations:
 - $ullet a_t^*$ action optimale à t ; ($a_t^* \in A$)
 - $ullet S_t$ état courant à t ; ($s_t \in S$)

Optimisation pour la navigation

$$fitness = \sum_{t=0}^{evalTime} (v_t * (1 - v_r) * (minSensorValue))$$

Vt: vitesse de translation Vr: vitesse de rotation

MinSensorValue: valeur du senseur le plus "stimulé"

si aucun obstacle: renvoi I

sinon: renvoi une valeur dans [0,1]

Remarques:

chaque terme est normalisé entre 0 et 1 la vitesse de rotation est donnée en valeur absolue

nicolas.bredeche@upmc.fr

cf. [Nolfi, Floreano, 2000][Doncieux et al. 2015] pour une introduction complète

génotype et phénotype

80 Population size Generation number 100 Crossover probability 0.1Mutation probability 0.2 ± 0.5 Mutation range Initial weight range ± 0.5 Final weight range Not bounded Life length 80 actions Action duration 300 ms

conditions expérimentales

- Réseau de neurones fct sigmoïde, génome: poids et seuil d'activ., cnx récurrentes
- Algorithme génétique sélection par roulette, mutation, cross-over
- Robot réel 40 min par génération; 100 générations; durée totale: 66 heures!

nicolas.bredeche@upmc.fr

[Floreano, Mondada 1994][Nolfi, Floreano, 2000]

Performance

28

Average and best individual fitnesses over generations (3 trials/dot)

- Premières générations:
 - ▶ tournent sur place; foncent dans les murs
- après 20 générations:
 - évite les obstacles; tournent sur place
- après 50 générations:
 - rapide; évitent les obstacles; indépendant du point de départ

- Premières générations:
 - ▶ tournent sur place; foncent dans les murs
- après 20 générations:
 - évite les obstacles; tournent sur place
- après 50 générations:
 - rapide; évitent les obstacles; indépendant du point de départ

nicolas.bredeche@upmc.fr

[Floreano, Mondada 1994][Nolfi, Floreano, 2000]

Evaluation p/r à un véhicule de Braitenberg

Trajectoire d'un robot dans l'espace de la fitness

changement au cours du temps de la valeur de fitness instantanée à partir d'un point de départ défavorable (coincé dans un coin)

nicolas.bredeche@upmc.fr

[Floreano, Mondada 1994][Nolfi, Floreano, 2000]

32

Comment apprendre?

- Apprentissage par renforcement
 - Lors de l'apprentissage, on doit effectuer une séquence d'actions avant d'obtenir une estimation de la qualité de notre stratégie
 - Méthode: model-based RL, recherche de politique
- Apprentissage supervisé
 - Lors de l'apprentissage, on connait la réponse attendue pour chaque pas de temps (i.e. on dispose d'un "oracle").
 - Méthode: algorithme de rétro-propagation du gradient, ...

Remarque: cette partie n'est pas pertinente pour le projet

Apprentissage supervisé

ullet Le problème: $\{(x_i,y_i),x_i\in\mathcal{X},y_i\in\mathcal{Y}\},\,\mathcal{Y}=\{-1,1\}$ or \mathbf{R}

Une fonction de perte (l'oracle):

$$\ell:\mathcal{Y}\times\mathcal{Y}\to R^+$$

- Objectif:
 - Trouver l'hypothèse qui minimise l'erreur de prédiction

$$h^*: \mathcal{X} \mapsto \mathcal{Y}$$
 tel que: $L(h^*) = argmin\{L(h), \ h \in H\}$

Hypothèse cherchée

$$\{(x_i, y_i), x_i \in \mathcal{X}, y_i \in \mathcal{Y}\}, \mathcal{Y} = \{-1, 1\} \text{ or } \mathbb{R}$$

h* peut être représenté par de multiples formalismes... un réseau de neurones, des règles, un arbre de décision, SVM, etc.

"Dave", autonomous off-road vehicle

<u>entrée</u>: image stéréoscopique acquise par les caméras <u>sortie</u>: contrôle des moteurs gauche et droite

Problème d'apprentissage supervisé

minimiser l'erreur entre la sortie prédite et la sortie donnée par l'oracle (ici: le pilote)

nicolas.bredeche@upmc.fr

[LeCun et al., 2003-2004]

Apprentissage supervisé pour la robotique

36

"Dave", autonomous off-road vehicle

<u>entrée</u>: image stéréoscopique acquise par les caméras <u>sortie</u>: contrôle des moteurs gauche et droite

Problème d'apprentissage supervisé

minimiser l'erreur entre la sortie prédite et la sortie donnée par l'oracle (ici: le pilote)

9760 poids (au lieu de 200000 poids si on connecte tout)

7300 exemples d'apprentissage, 2000 exemples de tests, 99% de précision.

nicolas.bredeche@upmc.fr

Propagation du signal dans un MLP

rappel des slides précédents

Rétro-propagation de l'erreur

$$\delta_i = f'_{activation}(x_i) * (a_i^* - a_i)$$

$$w_{ji}^{t+1} = w_{ji}^t + \mu * \delta_i * a_j$$

$$\delta_j = f'_{activation}(x_j) * (\sum_{i=0}^{nb_{sorties}} (w_{ji} * \delta_i))$$

$$w_{kj}^{t+1} = w_{kj}^t + \mu * \delta_j * a_k$$

 $a_i^*: i^{eme} sortie_desiree$

 $\mu: pas_d'apprentissage$

 δ : "sensibilite"

«back-propagation algorithm»

Mise en pratique : propagation et rétro-propagation ⁴

Imaginons:

- sortie attendue: "I"

Objectif:

Régler les poids du réseau.

Etude pratique:

- I. propagation du signal
- 2. rétro-propagation de l'erreur

Remarque: en pratique, il faudrait faire cela un grand nombre de fois pour chaque exemple de la base d'apprentissage.

Etape I: propagation du signal

activation: sigmoide $f(x) = 1/(1 + e^{-kx})$ pour la couche cachée, et linéaire pour les sorties

Etape 2 : rétro-propagation de l'erreur et correction f

sigmoide: f'(x) = f(x)(1 - f(x)) -- rappel: a = f(x) -- f'(x) = 1 -- f'(x

Critères de succès

- Compromis mémorisation vs. généralisation
 - mémorisation: approximation +/- bonne des exemples
 - généralisation: risque de sur-apprentissage (= apprendre par coeur)
- Méthodologie:
 - Base d'apprentissage : exemples utilisés pour l'apprentissage (répétitions)
 - Base de test : exemples utilisés pour la validation (ex: 10-fold cross-validation)

Crédit image: A. Cornuejols

Conclusions

- Ce qu'il faut retenir
 - Architecture de contrôle: réseaux de neurones artificiels
 - ▶ Espace de recherche: les poids du réseaux
 - ▶ Type de problèmes: appr. supervisé, appr. par renforcement
 - ▶ Méthodes: retro-propagation, évolution artificielle, etc.
 - différentes méthodes pour différents problèmes!
- Application dans le cadre du projet
 - Un nouveau formalisme pour la prise de décision d'un agent
 - ▶ Exemple d'évolution de comportements

Fin du cours