Задача 1.11.1. Переправа (12 баллов). Лодка переплывает реку по прямой, перпендикулярной берегам. Её скорость относительно воды равна  $\upsilon_0$ . До середины реки скорость течения изменяется по закону  $u=\alpha x$  от нуля до  $\upsilon_0/2$  — скорости воды на середине реки, где  $\alpha$  — известный коэффициент, x — расстояние от берега. После середины реки скорость уменьшается до нуля у другого берега по тому же закону.

Определите зависимость от времени угла между вектором скорости лодки относительно воды и направлением движения относительно берега. Через какое время лодка окажется на другом берегу?

Задача 1.11.2. Доставка воды пневмопочтой (12 баллов). Где-то в Космосе, вдали от звезд, движется по инерции фабрика-звездолет. В технологических процессах используется вода, которая доставляется к нужному месту порциями с массой  $m=288\,\mathrm{r}$  по гладким трубам, площадь поперечного сечения которых постоянна и равна  $S=50\,\mathrm{cm}^2$ . Каждая порция содержится между двумя одинаковыми поршнями, масса каждого из которых тоже равна m. Температура порции T при движении в установившемся режиме (колебания поршней относительно друг друга отсутствуют) остается неизменной. Движение поршней

и порции воды по трубе обеспечивается давлением сжатого газа: «позади» них давление газа  $p_1$  всегда в 1,5 раза больше, а «перед» ними ( $p_2$ ) — в два раза меньше, чем давление насыщенного водяного пара при температуре T .

 $p_1$   $p_2$ 

Какая часть массы воды в порции при движении в установившемся режиме находится в жидком состоянии? Каково в этом режиме расстояние между поршнями?

Плотность насыщенного водяного пара при температуре T составляет  $\varepsilon = 6\%$  от плотности жидкой воды, которая при этой температуре равна  $\rho \approx 0.72 \, \text{г/cm}^3$ .

В вычислениях для простоты можно считать воду совершенно несжимаемой, а водяной пар — почти идеальным газом. Ответ для расстояния между поршнями выразите в см с точностью до целого значения.

Задача 1.11.3. Полетели (12 баллов). В вакууме в невесомости между круглыми полюсами электромагнита на расстоянии x от оси магнита покоится частица массы m и заряда q. Сначала магнитное поле равно нулю. Затем, за малый промежуток времени, индукция магнитного поля увеличивается до значения  $B_0$  и поддерживается постоянной в течение времени  $\tau < \pi m/(qB_0)$ , после чего очень быстро уменьшается до нуля.



- 1) Почему частица приходит в движение? Опишите качественно траекторию частицы.
- 2) С какой скоростью движется частица после включения магнитного поля?

**24 января** на портале <a href="http://abitu.net/vseros">http://abitu.net/vseros</a> будет проведён онлайн-разбор решений задач первого тура. Начало разбора (по московскому времени):

7 класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

**26 января состоится онлайн-разбор решений заданий второго тура**. Начало разбора:

7 класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

- 3) С какой скоростью движется частица после выключения магнитного поля?
- 4) На каком минимальном расстоянии от оси магнита проходит траектория частицы?
- 5) Через какое время от момента включения поля частица окажется на минимальном расстоянии от оси магнита?

Магнитное поле в пределах полюсов можно считать однородным. Перемещением частицы за время включения и выключения поля можно пренебречь.

Задача 1.11.4. Эффект Холла (14 баллов). Электроны являются носителями тока в

металлах и полупроводниках n-типа. Если образец с током (в данном случае прямоугольный кусочек плёнки полупроводника n-типа) помещён в магнитное поле и через него протекает электрический ток, то на движущиеся электроны действует сила Лоренца F = evB, перпендикулярная скорости  $\vec{v}$  электрона и вектору  $\vec{B}$  магнитной индукции (рис. 1).



Рис. 1

Здесь  $\upsilon$  — средняя скорость дрейфа электронов, связанная с проходящим током I и прямо пропорциональная напряженности электрического поля  $\vec{E}$  в направлении этого тока:  $\upsilon = \mu E$ , где коэффициент пропорциональности  $\mu$  называется подвижностью электронов.

Из-за действия на электроны силы Лоренца (на рисунке она направлена в сторону левой грани), происходит разделение зарядов и появляется поперечное электрическое поле с напряженностью  $E_x$ . Возникновении этого поля при протекании тока в образце, помещенном в магнитное поле, называют эффектом Холла. Перемещение электронов в направлении левой грани прекращается, когда силу Лоренца уравновешивает электрическая сила  $eE_x$ :  $evB = eE_x$ .

В установившемся режиме напряжённость поперечного электрического поля  $E_x = vB$ .

Ниже описан эксперимент, в котором эффект Холла используется для исследования свойств полупроводника.

Ток создаёт источник с ЭДС  $\mathcal{E}=10~\mathrm{B}$  и малым внутренним сопротивлением. Величина магнитной индукции  $B=1,0~\mathrm{Tл}$ . Для изменения тока применяют переменный резистор, а вольтметром измеряют напряжение  $U_{\rm x}$  между боковыми гранями в направлении, перпендикулярном магнитному полю и направлению протекающего тока.



Рис. 2

Размеры полупроводникового образца: толщина d=1,0 мкм, ширина b=5,0 мм, длина L=1,0 см. Заряд электрона  $e=1,6\cdot 10^{-19}$  Кл.

В таблице представлена зависимость  $U_{\rm x}$  от сопротивления r переменного резистора.

| <i>r</i> , кОм  | 2,5 | 2,0 | 1,5 | 1,0 | 0,5 | 0,0 |
|-----------------|-----|-----|-----|-----|-----|-----|
| $U_{\rm x}$ , B | 1,2 | 1,4 | 1,6 | 1,8 | 2,1 | 2,5 |

**24 января** на портале <a href="http://abitu.net/vseros">http://abitu.net/vseros</a> будет проведён онлайн-разбор решений задач первого тура. Начало разбора (по московскому времени):

7 класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

26 января состоится онлайн-разбор решений заданий второго тура. Начало разбора:

7 класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

## Задание

- **1.** Выразите  $U_x$  через силу тока I в образце, концентрацию n электронов проводимости и физические величины, приведенные в описании эксперимента ( $\mathcal{E}$ ,  $\mathcal{B}$ ,  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $\mathcal{L}$ ,  $\mathcal{E}$ ).
- **2.** Выразите сопротивление R и удельное сопротивление  $\rho$  образца через его размеры, подвижность  $\mu$  и концентрацию n электронов проводимости.
- **3.** Используя уравнения, полученные в п.п. 1, 2, выразите  $U_x$  через концентрацию n и подвижность  $\mu$  электронов проводимости, сопротивление r и физические величины, приведенные в описании эксперимента.
- **4.** Используя выражение, полученное в п. 3, при помощи графического анализа экспериментальных данных определите для исследуемого полупроводника:
  - а) концентрацию n электронов проводимости;
  - б) их подвижность  $\mu$ ;
  - в) удельное сопротивление  $\rho$ .

Опишите выбранный для этого способ обработки данных.

**Внимание!** Из-за ограниченного времени выполнения задания погрешность определения n,  $\mu$  и  $\rho$  оценивать не требуется, однако точность полученных вами промежуточных и конечных результатов будет учитываться при выставлении баллов.