man.

Physics based piano simulation

ICCP 2015

Delft University of Technology

Selwyn, Kenneth, Daniël May 15, 2015

Simplified piano string interaction

The wave equation

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} - \kappa^2 \frac{\partial^4 y}{\partial x^4} - 2b_1 \frac{\partial y}{\partial t} + 2b_2 \frac{\partial^3 y}{\partial x^2 \partial t}$$

Finite difference wave equation

$$\frac{\partial^{2} y}{\partial t^{2}} = c^{2} \frac{\partial^{2} y}{\partial x^{2}} - \kappa^{2} \frac{\partial^{4} y}{\partial x^{4}} - 2b_{1} \frac{\partial y}{\partial t} + 2b_{2} \frac{\partial^{3} y}{\partial x^{2} \partial t}$$

$$y_{n}^{t+1} = a_{1} \left(y_{n+2}^{t} + y_{n-2}^{t} \right) + a_{2} \left(y_{n+1}^{t} + y_{n-1}^{t} \right) + a_{3} y_{n}^{t}$$

$$+ a_{4} y_{n}^{t-1} + a_{5} \left(y_{n+1}^{t-1} + y_{n-1}^{t-1} \right)$$

a_i depends on string stiffness, Young's modulus, tension, length, cross-section...

Hammer strike

Hammer-string interaction:

$$L = T - V = \sum_{i} \frac{1}{2} M_{H} \dot{x}_{i}^{2} + \sum_{i} \frac{1}{2} \rho \Delta x \dot{\eta}^{2} - (\eta_{n} - x_{n})^{b+1} \frac{K}{b-1}$$

$$+ V_{string} (\eta_{1}, \eta_{2}, \cdots, \eta_{n})$$

$$\frac{\partial}{\partial t} \frac{\partial L}{\partial \dot{x}_{n}} = M_{H} \ddot{x} = \frac{\partial L}{\partial x} = \sum_{n} -(\eta_{n} - x_{n})^{b} K$$

$$\frac{\partial}{\partial t} \frac{\partial L}{\partial \dot{\eta}_{n}} = \rho \delta x \ddot{\eta}_{n} = \frac{\partial L}{\partial \dot{\eta}_{n}} = k(\eta_{n} - x_{n})^{b} - \frac{\partial V_{string} (\eta_{1}, \eta_{2}, \cdots, \eta_{n})}{\partial \eta_{n}}$$

Hammer strike

$$\ddot{x}_n = -\frac{k}{M_H} \sum_n (\eta_n - x_m)^b H(\eta_n - x_m) \ddot{\eta}_n = \frac{k}{\rho \Delta x} (\eta_n - x_n)^b + \frac{1}{\rho \Delta x} F_n$$

$$x_n(t + \Delta t) = x_n(t) + v_n(t) \Delta t + \frac{k}{2M_H} (\eta_n(t) - x_n(t))^b H(\eta_n, x_n)$$

$$\dot{x}_n(t + \delta t) = \dot{x}_n(t) + \delta t \frac{(\eta_n - x_n)^b + (\eta_n - x_n(t))^b}{2}$$

$$\eta_n(t + \Delta t) = \eta_n(t) + v_n(t) \Delta t + \frac{k (\eta_n - x_n(t))^b}{2\rho \Delta x} (\Delta t)^2$$

Hammer strike

Hammer release from the string, important for 'plucking' or 'striking' the string.

Frequency spectrum

Cutoff sounds unnatural

Cutoff sounds unnatural \rightarrow add damper suppression

Cutoff sounds unnatural \rightarrow add damper suppression Suddenly increase stiffness

Examples

Time for some 'music'!

Considerations

Add more notes

Considerations

- Add more notes
- Real-time playback

Considerations

- Add more notes
- Real-time playback
- Simulate three strings of same pitch with slightly different parameters

Last Page

Thank you!

