1 RelativitÃďt

1.1 Relativbewegung

Beobachter, die sich relativ zueinander bewegen, messen verschiedene Geschwindigkeiten und Beschleunigungen:

$$\underbrace{v(t)}_{\text{relativ zu O}} = \frac{dR(t)}{dt} + \underbrace{v'(t)}_{\text{relativ zu O'}}$$

$$\underbrace{a(t)}_{\text{relativ zu O}} = \frac{d^2R(t)}{dt^2} + \underbrace{a'(t)}_{\text{relativ zu O'}}$$
relativ zu O'
relativ zu O'

1.2 ScheinkrÄd'fte

Ein **Inertialsystem** ist ein Bezugssystem, in dem die Newtonschen Gesetze gelten. Es ist *nicht beschleunigt*.

Die **Zentrifugalkraft** ist eine fiktive, nach aussen gerichtete Kraft:

$$F_{ZF} = m(r'\omega^2)e_r$$

Die Corioliskraft wirkt senkrecht zur radialen Geschwindigkeit:

$$F_C = m(2v'\omega)e_{\varphi}$$

Hinweis: Ein Bezugssystem, das feste Koordinaten relativ zur ErdoberflÄd'che hat ist kein Inertialsystem, da die Erde sich dreht/beschleunigt ist.

1.3 Transformationen

1.3.1 Ereignis

$$x^{\mu} \equiv (ct, x, y, z)$$

wobei das Produkt ct die Lichtgeschwindigkeit $[\frac{m}{s}]$ mal die Zeit [s] ist.

1.3.2 Galileitransformation

Wir betrachten zwei Beobachter O und O', die sich relativ zueinander mit konstanter Geschwindigkeit bewegen.

Bewegt sich der Beobachter O' in positive Richtung der x-Achse des Bezugssystems O, so ist die Transformation gleich

$$\begin{cases} x' = x - \beta ct \\ y' = y \\ z' = z \\ ct' = ct \end{cases}$$
 von O nach C

$$\begin{cases} x = x' + \beta ct \\ y = y' \\ z = z' \end{cases} \text{ von O' nach O}$$

$$ct = ct'$$

wobei der **Geschwindigkeitsparameter** $\beta = \frac{V}{c}$ ist.

1.3.3 Lorentz-Transformation

Der Lorentz-Faktor ist gleich

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Dann ist die Transformation gleich

$$\begin{cases} x' = \gamma(x - \beta ct) \\ y' = y \\ z' = z \\ ct' = \gamma(ct - \beta x) \end{cases} \text{ von O nach O'}$$

$$\begin{cases} x = \gamma(x' + \beta ct') \\ y = y' \\ z = z' \\ ct = \gamma(ct' + \beta x') \end{cases}$$
 von O' nach O

1.3.4 Geschwindigkeitstransformation

Der **Geschwindigkeitsvektor** u bez \tilde{A} ijglich O kann wie folgt berechnet werden

$$u_x = \frac{u_x' + V}{1 + \frac{\beta}{c} u_x'}$$
$$u_y = \frac{u_y' + \frac{\beta}{c} u_y'}{\gamma (1 + \frac{\beta}{c} u_x')}$$

1.4 RelativitÃd'tstheorie

1.4.1 Raumzeit-Intervall

RÃd'umliche und zeitliche Entfernungen sin in verschiedenen Bezugssystemen unterschiedlich. Nur das **Raumzeit-Intervall** Δs ist gleich fÃijr alle Beobachter.

$$\Delta s^2 = \underbrace{(c\Delta t)^2}_{\text{zeitliche}} - \underbrace{\Delta r^2}_{\text{Entfernung}}$$
Entfernung

1.4.2 Zeitdilatation

Das in einem bewegten Bezugssystem gemessene Zeitintervall ist immer um den Faktor γ gr \tilde{A} űsser als das Eigenzeitintervall:

$$\underbrace{\Delta t'}_{\text{bez}\tilde{\text{A}}\text{ijglich }O'} = \underbrace{\gamma \cdot \Delta \tau}_{\text{bez}\tilde{\text{A}}\text{ijglich }O}$$

$$\underbrace{\text{bez}\tilde{\text{A}}\text{ijglich }O'}_{\text{gemessene Zeit}}$$

wobei $\Delta \tau$ das Eigenzeitintervall ist (Zeit im Ruhesystem gemessen).

Daraus folgt, dass VorgÃd'nge lÃd'nger zu dauern scheinen, wenn sie in einem System ablaufen, das sich relativ zum Beobachter bewegt.

1.4.3 LÃd'ngenkontraktion

Die rÄdumliche Entfernung zwischen zwei Punkten erscheint geringer, wenn sich der Beobachter relativ zu diesen Punkten be-

wegt, als wenn er relativ zu ihnen ruht:

$$\underbrace{\Delta x'}_{\text{bezÃijglich }O'} = \underbrace{\frac{\Delta \lambda}{\gamma}}_{\text{gemessene LÃd'nge}}$$

$$\underbrace{\text{bezÃijglich }O'}_{\text{gemessene LÃd'nge}}$$

wobei $\Delta\Lambda$ die Eigenl \tilde{A} d'nge ist (L \tilde{A} d'nge im Ruhesystem gemessen).