STAT5010 Advanced Statistical Inference

Fall 2023

Lecture 8: Uniformly Most Powerful Tests

Lecturer: Tony Sit Scribe: Yiling Kuang, Ziyao Su

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

8.1 Stating The Problem

Setup: Let $\{P_{\theta}: \theta \in \Omega\}$ be a collection of probability measure on X, dominated by a o-finite measure μ . Let $P_{\theta}(\cdot) = \frac{dP_{\theta}}{d\mu}$. Let Ω_0 and Ω_1 be two disjoint subsets of Ω (i.e., $\Omega_1 = \Omega_0 \cup \Omega_1, \Omega_0 \cap \Omega_1 = \{\phi\}$). Given $X \sim P_{\theta}$ for some $\theta \in \Omega$. We have to decide whether $\theta \in \Omega_0$ or $\theta \in \Omega_1$.

Example: $X \in \mathbb{R}^n, X = (X_1 \cdots X_n)$ are i.i.d from normal distribution $N(\theta, 1), \Omega = \mathbb{R}, \Omega_0 = \{0\}$ and $\Omega_1 = \{1\}$.

A function $\phi: x \to \{0,1\}$ is called a **non-randomized test function**, if

$$\phi = 1 \Leftrightarrow \text{Reject } H_0$$

 $\phi = 0 \Leftrightarrow \text{Do not Reject } H_0$

Probability of type I error: $P_{\theta}(\phi = 1), \theta \in \Omega_0$. Probability of type II error: $P_{\theta}(\phi = 0), \theta \in \Omega_1$. Power function of ϕ : 1 – probability of type II error = $P_{\theta}(\phi = 1), \theta \in \Omega_1$. Size of a test $\phi = \sup_{\theta \in \Omega_0} P_{\theta}(\phi = 1)$.

Let $\alpha \in (0,1)$, a test ϕ is called **level** α if $\sup_{\theta \in \Omega_0} P_{\theta}(\phi = 1) \leq \alpha$

Def: A test ϕ is called uniformly most powerful level α test, if given any other level α test ψ , we have $P_{\theta}(\phi = 1) \geq P_{\theta}(\psi = 1), \forall \theta \in \Omega_1$.

Def: A function $\phi: x \to \{0,1\}$ is called a randomized test function, or just a test function if $\phi(x) = p \in (0,1)$.

Toss a coin with prob of heads p. If heads choose Ω_1 , or otherwise choose Ω_0 .

- Replace $P_{\theta}(\phi = 1)$ by $E_{\theta}(\phi)$. Consider the case where $\Omega_0 = \{\theta_0\}$ and $\Omega_1 = \{\theta_1\}$.

8.2 The Neyman–Pearson Fundamental Lemma

Theorem 3.2.1 (TSH): Let P_0 and P_1 be probability distributions possessing densities p_0 and p_1 respectively with respect to a measure μ .

(i) Existence. For testing $H:p_0$ against the alternative $K:p_1$ there exists a test ϕ and a constant k such that

$$E_0\phi(X) = \alpha \tag{3.7}$$

and

$$\phi(x) = \begin{cases} 1 & \text{when} & p_1(x) > kp_0(x), \\ 0 & \text{when} & p_1(x) < kp_0(x). \end{cases}$$
 (3.8)

(ii) Sufficient condition for a most powerful test. If a test satisfies (3.7) and (3.8) for some k, then it is most powerful for testing p_0 against p_1 at level α .

(iii) Necessary condition for a most powerful test. If ϕ is most powerful at level α for testing p_0 against p_1 , then for some k it satisfies (3.8) a.e. μ . It also satisfies (3.7) unless there exists a test of size $< \alpha$ and with power 1.

Proof: For $\alpha = 0$ and $\alpha = 1$ the theorem is easily seen to be true provided the value $k = +\infty$ is admitted in (3.8) and $0 \cdot \infty$ is interpreted as 0. Throughout the proof we shall therefore assume $0 < \alpha < 1$.

(i): Let $\alpha(c) = P_0 \{p_1(X) > cp_0(X)\}$. Since the probability is computed under P_0 , the inequality need be considered only for the set where $p_0(x) > 0$, so that $\alpha(c)$ is the probability that the random variable $p_1(X)/p_0(X)$ exceeds c. Thus $1 - \alpha(c)$ is a cumulative distribution function, and $\alpha(c)$ is nonincreasing and continuous on the right, $\alpha(c-0) - \alpha(c) = P_0 \{p_1(X)/p_0(X) = c\}$, $\alpha(-\infty) = 1$, and $\alpha(\infty) = 0$. Given any $0 < \alpha < 1$, let c_0 be such that $\alpha(c_0) \le \alpha \le \alpha(c_0 - 0)$, and consider the test ϕ defined by

$$\phi(x) = \begin{cases} 1 & \text{when} & p_1(x) > c_0 p_0(x) \\ \frac{\alpha - \alpha(c_0)}{\alpha(c_0 - 0) - \alpha(c_0)} & \text{when} & p_1(x) = c_0 p_0(x) \\ 0 & \text{when} & p_1(x) < c_0 p_0(x) \end{cases}$$

Here the middle expression is meaningful unless $\alpha(c_0) = \alpha(c_0 - 0)$; since then $P_0\{p_1(X) = c_0p_0(X)\} = 0$, ϕ is defined a.e. The size of ϕ is

$$E_{0}\phi(X)=P_{0}\left\{\frac{p_{1}(X)}{p_{0}(X)}>c_{0}\right\}+\frac{\alpha-\alpha\left(c_{0}\right)}{\alpha\left(c_{0}-0\right)-\alpha\left(c_{0}\right)}P_{0}\left\{\frac{p_{1}(X)}{p_{0}(X)}=c_{0}\right\}=\alpha,$$

so that c_0 can be taken as the k of the theorem.

(ii): Suppose that ϕ is a test satisfying (3.7) and (3.8) and that ϕ^* is any other test with $E_0\phi^*(X) \leq \alpha$. Denote by S^+ and S^- the sets in the sample space where $\phi(x) - \phi^*(x) > 0$ and < 0 respectively. If x is in S^+ , $\phi(x)$ must be > 0 and $p_1(x) \geq kp_0(x)$. In the same way $p_1(x) \leq kp_0(x)$ for all x in S^- , and hence

$$\int (\phi - \phi^*) (p_1 - kp_0) d\mu = \int_{S^+ \cup S^-} (\phi - \phi^*) (p_1 - kp_0) d\mu \ge 0.$$

The difference in power between ϕ and ϕ * therefore satisfies

$$\int (\phi - \phi^*) p_1 d\mu \ge k \int (\phi - \phi^*) p_0 d\mu \ge 0$$

as was to be proved.

(iii): Let ϕ^* be most powerful at level α for testing p_0 against p_1 , and let ϕ satisfy (3.7) and (3.8). Let S be the intersection of the set $S^+ \cup S^-$, on which ϕ and ϕ^* differ, with the set $\{x : p_1(x) \neq kp_0(x)\}$, and suppose that $\mu(S) > 0$. Since $(\phi - \phi^*)(p_1 - kp_0)$ is positive on S, it follows from Problem 2.4 that

$$\int_{S^{+} \cup S^{-}} (\phi - \phi^{*}) (p_{1} - kp_{0}) d\mu = \int_{S} (\phi - \phi^{*}) (p_{1} - kp_{0}) d\mu > 0$$

and hence that ϕ is more powerful against p_1 than ϕ^* . This is a contradiction, and therefore $\mu(S) = 0$, as was to be proved.

If ϕ^* were of size $< \alpha$ and power < 1, it would be possible to include in the rejection region additional points or portions of points and thereby to increase the power until either the power is 1 or the size is α . Thus either $E_0\phi^*(X) = \alpha$ or $E_1\phi^*(X) = 1$.

Example: Let $X_1 ext{...} X_n \overset{\text{ind}}{\sim} N(\theta, 1)$. Test $H_0: \theta = 0$ us $H_1: \theta = 1$ at level α .

$$\frac{P_{\theta=1}(X)}{P_{\theta=0}(X)} = \frac{\left(\frac{1}{\sqrt{2\pi}}\right)^n exp\left\{-\frac{1}{2}\sum_{i=1}^n (x_i - 1)^2\right\}}{\left(\frac{1}{\sqrt{2\pi}}\right)^n exp\left\{-\frac{1}{2}\sum_{i=1}^n x_i^2\right\}} = e^{\sum_{i=1}^n x_i - \frac{n}{2}}$$

$$\Rightarrow \phi = 1$$
 if $\frac{P_{\theta_1}(X)}{P_{\theta_0}(X)} > K \Leftrightarrow \sum_{i=1}^n x_i - \frac{n}{2} > \log K \Leftrightarrow \sum_{i=1}^n x_i > \log K + \frac{n}{2}$

$$\Rightarrow \phi(X) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} x_i > k' \\ 0 & \text{if } \sum_{i=1}^{n} x_i < k' \end{cases}$$

where $\alpha = E_{\theta=0}\phi(x) = P_{\theta=0}\left(\sum_{i=1}^{n} X_i > k'\right)$

Example: Suppose X has a binomial distribution with success probability θ and n=2 trials. If we are interested in testing $H_0: \theta = 1/2$ versus $H_1: \theta = 2/3$, then

$$L(X) = \frac{p_1(X)}{p_0(X)} = \frac{\binom{2}{X}(2/3)^X(1/3)^{2-X}}{\binom{2}{X}(1/2)^X(1/2)^{2-X}} = \frac{2^X \times 4}{9}.$$

Suppose the desired significance level is $\alpha = 50\%$. Let $\phi(x_1, x_2) = \begin{cases} 1 & \text{if } (x_1, x_2) = (1, 1) \\ 0 & \text{if } (x_1, x_2) = (0, 0) \end{cases}$, randomised when we observe (0, 1) and (1, 0), such that $E_{\theta_0}(\phi(X_1, X_2)) = \frac{1}{2}$.

Corrollary 3.2.1 (TSH): Let $\beta = \beta(\theta_1)$ denote the power of the Most Powerful Test for testing $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$ at level $\alpha \in (0,1)$. Then $\beta \geq \alpha$. Furthermore, $\beta > \alpha$ unless $P_{\theta_1} = P_{\theta_0}$

Proof: Let ϕ be the Most Powerful Test from (i) of Neyman-Pearson lemma

Let
$$\psi(x) \equiv \alpha \Rightarrow \beta = E_{\theta_1}(\phi(x)) \geq E_{\theta_1}(\psi(x)) = \alpha$$

suppose $\alpha = \beta$, then $\psi(x)$ is a Most Powerful test

$$\Rightarrow P_{\theta_1}(x) = kP_{\theta_0}(x) \text{ as } \mu_1 \Rightarrow k = 1$$

$$\Leftrightarrow P_{\theta_0} = P_{\theta_1}$$

8.2.1 Floyd-Warshall Algorithm: Dynamic Programming

Label the vertices 1, 2, ..., n. Define $d^{(k)}(i, j)$ to be the length of a shortest path from i to j, using intermediate vertices from $\{1, 2, ..., k\}$ only. Obviously, $d^{(n)}(i, j)$ is the full problem.

. . .

Theorem 8.1 (Weak Law of Large Numbers) Let $X = (X_1, ..., X_n)^{\top}$ be a sequence of mutually independent and identically distributed random variables, each of which has a finite mean $E(X_i) = \mu \leq \infty, i = 1, ..., n$. Let S_n be the linear sumer of the n random variables; that is

$$S_n = X_1 + \ldots + X_n$$
.

Then for any $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr\left(\left| \frac{S_n}{n} - \mu \right| \ge \epsilon \right) \to 0, \tag{8.1}$$

as $n \to \infty$.

8.3 Transitive Closure

Our goal is to achieve running time $O(M(n) \log n)$ for APSP where M(n) is the time for $n \times n$ matrix multiplication. Let's see if we can achieve this for a simpler but related problem, namely $Transitive\ Closure$:

. . .

References

- [AGM97] N. Alon, Z. Galil and O. Margalit, On the Exponent of the All Pairs Shortest Path Problem, *Journal of Computer and System Sciences* **54** (1997), pp. 255–262.
 - [F76] M. L. FREDMAN, New Bounds on the Complexity of the Shortest Path Problem, SIAM Journal on Computing 5 (1976), pp. 83-89.