# **Neural Network**

- ❖ It is inspired by the brain's processing, mimicking its information handling.
- ❖ It comprises interconnected nodes with associated weights in the links.
- During the learning process, weights undergo iterative updates based on input data.
- The final weights and the network's architecture form the trained neural network.
- The process of iteratively adjusting weights based on input data is known as the training process.
- Trained neural networks are adept at solving specific problems defined in the given task.
- ❖ They can be applied to various tasks, including classification, pattern matching, and data clustering.
- Neural networks demonstrate efficient and adaptive learning from the provided data.
- Once trained, they can provide fast and accurate solutions to specific problems.
- ❖ Their overall importance lies in their adaptive learning and efficient problem-solving capabilities.

### **Neural Networks Used For**

- Vision & Speech: Identifying objects, faces, understanding spoken language (self-driving cars, voice assistants)
- ❖ Language Understanding: Sentiment analysis, chatbots, translation, text generation
- ❖ Healthcare: Diagnosing diseases, predicting patient outcomes, drug discovery
- Finance: Predicting stock prices, credit risk assessment, fraud detection, algorithmic trading
- Personalization: Content & recommendations (e-commerce, streaming, social media)
- \* Robotics & Vehicles: Processing sensor data, real-time decisions (robots, autonomous cars)
- ❖ Gaming & Entertainment: Game AI, realistic graphics, virtual environments
- ❖ Manufacturing: Monitoring processes, predictive maintenance, quality control
- \* Research & Science: Analyzing complex data, simulating phenomena, aiding research
- Creativity: Generating music, art, and other creative content



## **Types of Neural Network**

## (i) ANN

- ANN is also known as an artificial neural network.
- > It is a feed-forward neural network because the inputs are sent in the forward direction.
- It can also contain hidden layers which can make the model even denser.
- They have a fixed length as specified by the programmer.
- ➤ It is used for Textual Data or Tabular Data. A widely used real-life application is Facial Recognition.
- ➤ It is comparatively less powerful than CNN and RNN.

### (ii) CNN

- > Convolutional Neural Networks is mainly used for Image Data.
- ➤ It is used for Computer Vision. Some of the real-life applications are object detection in autonomous vehicles.
- > It contains a combination of convolutional layers and neurons.
- ➤ It is more powerful than both ANN and RNN.

#### (iii) RNN

- ➤ It is also known as Recurrent Neural Networks.
- ➤ It is used to process and interpret time series data.
- > In this type of model, the output from a processing node is fed back into nodes in the same or previous layers.
- ➤ The most known types of RNN are **LSTM** (Long Short Term Memory) Networks

## What is Artificial Neural Network?

- It is inspired by brain's neurons.
- ❖ It has interconnected nodes/neurons, just like the brain.
- Neurons are organized in layers for information processing, similar to the brain.
- Nodes pass information through connections, echoing the communication between brain neurons.
- ANN neurons are simpler than brain neurons, lacking the complexity of their biological counterparts.
- ❖ Both can learn and adapt, but the brain is more dynamic due to its ongoing development and flexible synapses.



| Biological Neural Network | Artificial Neural Network |
|---------------------------|---------------------------|
| Dendrites                 | Inputs                    |
| Cell nucleus              | Nodes                     |
| Synapse                   | Weights                   |
| Axon                      | Output                    |

# Architecture of an artificial neural network

Artificial Neural Network primarily consists of three layers:



## **Input Layer:**

As the name suggests, it accepts inputs in several different formats provided by the programmer.

### **Hidden Layer:**

The hidden layer presents in-between input and output layers. It performs all the calculations to find hidden features and patterns.

### **Output Layer:**

The input goes through a series of transformations using the hidden layer, which finally results in output that is conveyed using this layer.

The artificial neural network takes input and computes the weighted sum of the inputs and includes a bias. This computation is represented in the form of a transfer function.

$$\sum_{i=1}^{n} Wi * Xi + b$$

### **5.ADVANTAGES:**

- o Adapt to unknown situation.
- o Autonomous learning & generalization.
- Robustness: fault tolerance due to network redundancy.
- Noise tolerance
- Ease of maintenance

#### **6.DISADVANTAGES:**

- No exact.
- o Large complexity of the network structure.
- o NN needs training to operate.
- o Requires high processing time for large NN.
- o NN sometimes become unstable.

# Deep Learning vs Machine Learning: Neural Networks

| Aspect                    | Machine Learning                                       | Deep Learning                                            |
|---------------------------|--------------------------------------------------------|----------------------------------------------------------|
| Hierarchy of Layers       | Typically shallow architectures                        | Deep architectures with many layers                      |
| Feature Extraction        | Manual feature engineering needed                      | Automatic feature extraction and representation learning |
| Feature Learning          | Limited ability to learn complex features              | Can learn intricate hierarchical features                |
| Performance               | May have limitations on complex tasks                  | Excels in complex tasks, especially with big data        |
| Data Requirements         | Requires carefully curated features                    | Can work with raw, unprocessed data                      |
| Training Complexity       | Relatively simpler to train                            | Requires substantial computation power                   |
| <b>Domain Specificity</b> | May need domain-specific tuning                        | Can generalize across domains                            |
| Applications              | Effective for smaller datasets                         | Particularly effective with large datasets               |
| Representations           | Relies on handcrafted feature representations          | Learns hierarchical representations                      |
| Interpretability          | Offers better interpretability                         | Often seen as a "black box"                              |
| Algorithm Diversity       | Utilizes various algorithms like SVM,<br>Random Forest | Mostly relies on neural networks                         |
| Computational<br>Demand   | Lighter computational requirements                     | Heavy computational demand                               |
| Scalability               | May have limitations in scaling up                     | Scales well with increased data and resources            |