SUCCESS OF BANK TELEMARKETING A DATA DRIVEN APPROACH

Prepared by: Wone Eui Jung

Yiting Li

Yuchen Bi

Tianging Huang

Sebastian Marx

Sohrab Gill

TABLE OF CONTENTS

- Introduction (Dataset)
- Data Preprocessing
 - Data Exploration
 - Data Cleaning
 - Data Partition
- Data Classification
 - Logistic Regression
 - kNN
 - Classification Tree
 - Random Forest & XGBoost
- Results
- References

INTRODUCTION

- Our data contains several variables with descriptions, have understandable context about useful real-life marketing
- Portuguese retail bank aims to sell bank deposits to acquire capital post 2008 financial crisis
- Bank products, client profile and social economic important attributes
- > We use various models to shortlist important variables

Executive Summary

- Analyzed Portuguese Bank marketing dataset from UCI machine learning
- > Data cleaning, data exploration, and data manipulation
- Under sampling imbalanced training data set to detect fewer y=1 samples.
- Classification using KNN, decision trees, logistic regression to analyze the impact of variables for the marketing results.
- Random forest and XGBoost to predict whether the client will subscribe to a term deposit (variable y) for telephone marketing.
- The results showed the call duration, and the Euribor3m are the most important factor.

50% of the data is concentrated between age 32 to 47

The top four jobs (admin, blue-collar, technician, management) takes part 80% of data.

Single and unknown group tends to have higher rate for subscribing the term deposit than other groups. For the marketing, bank can put more effort for those groups

Duration of phone calls chart shows shorter duration calls have maximum counts but most of them resulting in no sale.

Bank Loan Interest Rate

DATA PREPROCESSING Data Cleaning

- Our dataset did not have any missing values
- > Unbalanced dataset no outliers deleted
- Numerical variables Euribor3m, employment variation rate and nr.employed rate (number of employees)

DATA PREPROCESSING Data Partition

- > Original Dataset 41,188 records, 21 variables
- Sample had 11.3% Yes; We used 50% for model building in training dataset
- Remaining 4.66% Yes and 95.34% No for Validation Data

Target(y)	raw data	Training data	Validation data
yes	4640	3000	1640
no	36548	3000	33548
total	41180	6000	35188

Variable Selection

- Forward/Stepwise
- Backward

Forward/Stepwise – Coefficients

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
                          -2.044e+01 7.911e+00 -2.584 0.00978 **
duration
                           6.692e-03 1.990e-04 33.633 < 2e-16 ***
                          -7.778e-01 3.613e-02 -21.528 < 2e-16 ***
euribor3m
                          -1.274e+00 1.089e-01 -11.705 < 2e-16 ***
month_may
poutcome_success
                           1.209e+00 4.646e-01 2.603 0.00924 **
age_E
                           1.006e+00 2.072e-01 4.856 1.20e-06 ***
education_university.degree 3.830e-01 8.615e-02
                                                 4.445 8.78e-06 ***
poutcome_nonexistent
                           4.986e-01 1.227e-01
                                                 4.065 4.81e-05 ***
cons.conf.idx
                           3.368e-02 7.777e-03
                                                 4.330 1.49e-05 ***
cons.price.idx
                           2.317e-01 8.534e-02
                                                 2.715 0.00663 **
default no
                           3.334e-01 1.229e-01
                                                 2.712 0.00670 **
age_A
                           1.363e+00 5.332e-01 2.555 0.01061 *
                           2.724e-01 9.692e-02 2.811 0.00494 **
age_B
marital unknown
                          -1.765e+00 7.816e-01 -2.258 0.02393 *
campaign
                          -4.580e-02 2.151e-02 -2.129 0.03325 *
month_nov
                          -2.464e-01 1.460e-01 -1.688 0.09138 .
day_of_week_wed
                           1.929e-01 9.955e-02
                                                 1.938 0.05265 .
pdays
                          -7.321e-04 4.495e-04 -1.629 0.10337
job_technician
                           1.791e-01 1.083e-01
                                                 1.654
                                                        0.09813 .
month_Other_Month
                           1.917e-01 1.203e-01
                                                 1.594
                                                        0.11095
```

Forward / Stepwise – OR, SE, p-value

	OR	SE	95% CI, lower	95% CI, upper	p value
duration	1.0067145	0.0002003089	0.0070820213	0.0070820213	5.539511e-248
euribor3m	0.4594111	0.0165983896	-0.7069969025	-0.7069969025	8.465018e-103
month_may	0.2796825	0.0304442648	-1.0607522645	-1.0607522645	1.204651e-31
poutcome_success	3.3513169	1.5570767318	2.1199847476	2.1199847476	9.243694e-03
age_E	2.7355804	0.5668702835	1.4124897436	1.4124897436	1.195549e-06
education_university.degree	1.4666238	0.1263508627	0.5518155345	0.5518155345	8.778499e-06
poutcome_nonexistent	1.6464654	0.2019875163	0.7390781821	0.7390781821	4.813537e-05
cons.conf.idx	1.0342510	0.0080437749	0.0489209267	0.0489209267	1.489861e-05
cons.price.idx	1.2606951	0.1075820178	0.3989177031	0.3989177031	6.632873e-03
default_no	1.3956774	0.1715922960	0.5743486962	0.5743486962	6.695804e-03
age_A	3.9062533	2.0829074339	2.4076782265	2.4076782265	1.060782e-02
age_B	1.3131235	0.1272679603	0.4623684156	0.4623684156	4.944090e-03
marital_unknown	0.1711651	0.1337843058	-0.2331998261	-0.2331998261	2.392557e-02
campaign	0.9552307	0.0205497999	-0.0036378846	-0.0036378846	3.324877e-02
month_nov	0.7815818	0.1140946160	0.0396783733	0.0396783733	9.138140e-02
day_of_week_wed	1.2127588	0.1207244048	0.3880029414	0.3880029414	5.264888e-02
pdays	0.9992681	0.0004491921	0.0001489019	0.0001489019	1.033726e-01
job_technician	1.1961029	0.1294955492	0.3912633083	0.3912633083	9.812921e-02
month_Other_Month	1.2113268	0.1456976607	0.4274595901	0.4274595901	1.109529e-01

Forward / Stepwise – Confusion Matrix

	Actual Class			
ъ		0	1	
edicted Class	0	28723	203	
Pre	1	4825	1437	

Cutoff = 0.5

- Sensitivity = 0.8762
- Specificity = 0.8561

	Actual Class			
eq		0	1	
redicted Class	0	25912	71	
P	1	7636	1569	

Cutoff = 0.3

- Sensitivity = 0.9567
- Specificity = 0.7723

Backward – Coefficients

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
                             -2.108e+01 7.766e+00 -2.714 0.006654 **
duration
                              6.692e-03 1.990e-04 33.629 < 2e-16
campaign
                             -4.493e-02 2.149e-02 -2.091 0.036535 *
pdays
                             -1.336e-03 1.799e-04 -7.427 1.11e-13
cons.price.idx
                              2.459e-01 8.373e-02 2.937 0.003312
cons.conf.idx
                              3.329e-02 7.762e-03 4.289 1.80e-05
                             -7.768e-01 3.599e-02 -21.583 < 2e-16
euribor3m
age_B
                             -7.636e-01 2.146e-01 -3.558 0.000373
age_C
                             -1.023e+00 2.002e-01 -5.109 3.24e-07
                             -9.498e-01 2.054e-01 -4.625 3.75e-06 ***
age_D
marital married
                              1.712e+00 7.642e-01 2.240 0.025070 *
marital_single
                              1.790e+00 7.648e-01 2.341 0.019252 *
marital_divorced
                              1.678e+00 7.721e-01 2.173 0.029797 *
education_Basic_education
                             -4.176e-01 1.062e-01 -3.931 8.47e-05 ***
education_high.school
                             -4.036e-01 1.041e-01 -3.876 0.000106 ***
education_professional.course -2.193e-01 1.263e-01 -1.737 0.082392 .
default no
                              3.420e-01 1.242e-01
                                                    2.754 0.005890 **
                             -1.210e+00 1.045e-01 -11.587 < 2e-16 ***
month_may
month_Other_Month
                              2.492e-01 1.158e-01
                                                    2.152 0.031415 *
day_of_week_wed
                              1.940e-01 9.952e-02
                                                    1.949 0.051299 .
poutcome_failure
                             -5.634e-01 1.191e-01 -4.730 2.24e-06 ***
```

Backward – OR, SE, p-value

	OR	SE	95% CI, lower	95% CI, upper	p value
duration	1.0067140	0.0002003190	0.0070815749	0.0070815749	6.350292e-248
campaign	0.9560630	0.0205447067	-0.0028141135	-0.0028141135	3.653516e-02
pdays	0.9986649	0.0001796377	-0.0009834193	-0.0009834193	1.109931e-13
cons.price.idx	1.2787948	0.1070690362	0.4100190225	0.4100190225	3.312347e-03
cons.conf.idx	1.0338475	0.0080242220	0.0484995683	0.0484995683	1.796725e-05
euribor3m	0.4598690	0.0165516920	-0.7062701807	-0.7062701807	2.603822e-103
age_B	0.4659822	0.0999999270	-0.3429988919	-0.3429988919	3.732925e-04
age_C	0.3595987	0.0719874275	-0.6304049353	-0.6304049353	3.238262e-07
age_D	0.3868327	0.0794405606	-0.5472617965	-0.5472617965	3.748991e-06
marital_married	5.5402672	4.2338473421	3.2098384177	3.2098384177	2.507014e-02
marital_single	5.9900128	4.5811575948	3.2890726350	3.2890726350	1.925249e-02
marital_divorced	5.3528284	4.1329750850	3.1909338973	3.1909338973	2.979700e-02
education_Basic_education	0.6586551	0.0699682836	-0.2093501706	-0.2093501706	8.469615e-05
education_high.school	0.6679135	0.0695482921	-0.1995100696	-0.1995100696	1.061975e-04
education_professional.course	0.8030458	0.1014079553	0.0281590452	0.0281590452	8.239184e-02
default_no	1.4077866	0.1748436669	0.5854414220	0.5854414220	5.890282e-03
month_may	0.2980666	0.0311373663	-1.0056916778	-1.0056916778	4.791755e-31
month_Other_Month	1.2829725	0.1485706467	0.4761471728	0.4761471728	3.141508e-02
day_of_week_wed	1.2140540	0.1208247727	0.3890242417	0.3890242417	5.129862e-02
poutcome_failure	0.5692807	0.0678019995	-0.3299476898	-0.3299476898	2.242124e-06

Backward – Confusion Matrix

	Actual Class			
ъ		0	1	
edicted Class	0	28741	203	
Pre	1	4807	1437	

Cutoff = 0.5

Sensitivity = 0.8762

Specificity = 0.8567

	Actual Class			
Ъ		0	1	
edicte Class	0	25950	72	
Pre	1	7598	1568	

- Sensitivity = 0.9560
- Specificity = 0.7735

Error Rate, Sensitivity, Specificity at Cutoff 0.5/0.3

Models		Logistic regression			
Methods		Forward	Backward	Stepwise	
	Valid ER	0.1428896	0.1423781	0.1428896	
cutoff=.5	Sensitivity	0.8762195	0.8762195	0.8762195	
	Specificity	0.8561762	0.8567128	0.8561762	
	Valid ER	0.2190235	0.217972	0.2190235	
cutoff=.3	Sensitivity	0.9567073	0.9560976	0.9567073	
	Specificity	0.7723858	0.7735185	0.7723858	

- Best K with all variables: K=1
- Prob>o.5

- Best K with all variables: K=1
- Prob>o.5
- Sensitivity=0.62

	Y Test		
Y Predict	0	1	
0	22738	626	
1	10810	1014	

- Best K with all variables: K=3
- Prob>o.3

- Best K with all variables: K=3
- Prob>o.3
- Sensitivity=0.87

	Y Test		
Y Predict	0	1	
0	12129	207	
1	21419	1433	

- Best K with age, campaign, cons.conf.idx removed: K=1
- Prob>o.5

- Best K with age, campaign, cons.conf.idx removed: K=1
- Prob>o.5
- Sensitivity=0.70

	Y test		
Y Predict	0	1	
О	25291	496	
1	8257	1144	

- Best K with age, campaign, cons.conf.idx removed: K=3
- Prob>o.3

- Best K with age, campaign, cons.conf.idx removed: K=3
- Prob>o.3
- Sensitivity=0.70

	Y test		
Y Predict	0	1	
0	25286	495	
1	8262	1145	

Models		W/ all	Removed 3 var	
cutoff=.5	Valid ER	0.3249972	0.2487496	
	Sensitivity	0.6182927	0.697561	
	Specificity	0.6777751	0.753875	
cutoff=.3	Valid ER	0.6145845	0.2488632	
	Sensitivity	0.8737805	0.6981707	
	Specificity	0.3615417	0.753726	

Confusion Matrix

	Actual Class				
Predicted Class		0	1		
	0	26889	180		
	1	6659	1460		

- Validation ER = 0.194
- Accuracy = 0.8056
- Specificity = 0.8015
- Sensitivity = 0.8902

Cutoff = 0.5 & Cutoff = 0.3

- Specificity = 0.8015
- Sensitivity = 0.8902

	Actual Class				
		0	1		
Predicted Class	0	26889	180		
Class	1	6659	1460		

Cutoff	Y=1
10.38%	20669
14.91%	6400
71.86%	1664
79.98%	2312
84.42%	4143

CLASSIFICATION Random Forest

Cutoff = 0.5

- Sensitivity = 0.912
- Specificity =0.841

	Actual Class				
Predicted Class		0	1		
	0	28201	144		
	1	5347	1496		

Cutoff = 0.3

- Sensitivity =0.977
- Specificity =0.756

	Actual Class				
Predicted Class		0	1		
	0	25379	37		
	1	8169	1603		

CLASSIFICATION Random Forest

CLASSIFICATION XGBoost

Cutoff = 0.5

- Sensitivity = 0.938
- Specificity=0.838

	Actual Class				
		0	1		
Predicted Class	0	28100	101		
Cluss	1	5448	1539		

Cutoff = 0.3

- Sensitivity= 0.975
- Specificity = 0.786

	Actual Class				
Predicted Class		0	1		
	0	26359	41		
	1	7189	1599		

CLASSIFICATION XGBoost

CONCLUSION

Five Data Mining models

- Logistic Regression
- KNN
- Decision trees
- XGBoost
- Random Forest

Three Metrics

- Error Rate
- Sensitivity
- Specificity

RESULTS

Models		Logistic regression		kNN		Classification tree		Random Forest	VCPoort	
Met	thods	Forward	Backward	Stepwise	w/ all	Removed 3	Best pruned	Min Error	handom rolest	VODOOSE
	Valid ER	0.143	0.142	0.143	0.325	0.249	0.194	0.194	0.156	0.158
cutoff=.5	Sensitivity	0.876	0.876	0.876	0.618	0.698	0.890	0.890	0.912	0.938
	Specificity	0.856	0.857	0.856	0.678	0.754	0.802	0.802	0.841	0.838
	Valid ER	0.219	0.218	0.219	0.615	0.249	0.194	0.194	0.233	0.206
cutoff=.3	Sensitivity	0.957	0.956	0.957	0.874	0.698	0.890	0.890	0.977	0.975
	Specificity	0.772	0.774	0.772	0.362	0.754	0.802	0.802	0.756	0.786

A data-driven approach to predict the success of bank telemarketing

This article is analyzing the same dataset than we did in our project

- Four DM models were compared:
 - logistic regression (LR)
 - decision trees (DTs)
 - neural networks (NNs)
 - support vector machines (SVMs)
- These models were compared using two metrics,
 - The best results were obtained by the NN, which resulted in an AUC of o.8o and ALIFT of o.67 during the rolling window evaluation.

REFERENCES

- Moro, S., Cortez, P., & Rita, P. (2014). A data-driven approach to predict the success of bank telemarketing. *Decision Support Systems*, 62, 22–31. https://doi.org/10.1016/j.dss.2014.03.001.
- Wang, Z., Lai, C., Chen, X., Yang, B., Zhao, S., & Bai, X. (2015).
 Flood hazard risk assessment model based on random forest. *Journal of Hydrology*, 527(C), 1130-1141.
- Hearty, J; Sjardin, B; Prateek. Python: Real World Machine Learning by Luca Massaron; Alberto Boschetti; Joshi Published by Packt Publishing, 2016.
- Shmueli.G, Peter C. Bruce, Yahav. I, Nitin R. Patel, and Kenneth, Data mining for business analytics concepts techniques and applications in ranswers, page 229-232.

SUCCESS OF BANK TELEMARKETING A DATA DRIVEN APPROACH

Prepared by: Wone Eui Jung

Yiting Li

Yuchen Bi

Tianqing Huang

Sebastian Marx

Sohrab Gill