Лекция 1. Двоичный куб. Функции алгебры логики. Таблицы истинности. Существенность переменных. Формулы. Тождества.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Декартова (прямая) степень множества

Если A — множество и $n \geqslant 1$, то множество A^n состоит из всех упорядоченных n-ок элементов из A.

Любой элемент из A^n будем называть **набором** (**длины** n). При этом составляющие набор элементы множества A будем называть его **разрядами**, или **компонентами**.

Если a — обозначение некоторого набора из A^n (возможно, с индексами), то i-й разряд набора a будем обозначать a_i , $1\leqslant i\leqslant n$, т. е. $a=(a_1,\ldots,a_n)$.

В частности, если $a_j \in A^n$, то $a_j = (a_{j,1}, \dots, a_{j,n})$.

Множество E_2^n

Введем обозначение: $E_2 = \{0, 1\}$.

В дальнейшем будем рассматривать множество E_2^n , $n\geqslant 1$. Множество E_2^n будем также называть n-мерным (двоичным) кубом.

Любой элемент из E_2^n будем называть (**двоичным**) набором.

Наборы из множества E_2^n , как правило, будем обозначать греческими буквами начала алфавита: α , β и т. д., возможно, с индексами.

При этом если $\alpha \in E_2^n$, то $\alpha = (\alpha_1, \dots, \alpha_n)$; если $\alpha_j \in E_2^n$, то $\alpha_j = (\alpha_{j,1}, \dots, \alpha_{j,n})$.

Множество E_2^n

Пример.

1. Пусть n=2. Перечислим все наборы из множества E_2^2 :

Всего найдется 4 набора в множестве E_2^2 .

2. Пусть n = 3. Перечислим все наборы из множества E_2^3 :

$$(0,0,0), (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1).$$

Всего найдется 8 наборов в множестве E_2^3 .

Мощность множества E_2^n

Предложение 1.1. Если $n \geqslant 1$, то $|E_2^n| = 2^n$.

Доказательство.

Рассмотрим произвольный набор $\alpha=(\alpha_1,\dots,\alpha_n)\in E_2^n$. Подсчитаем, сколькими способами можно построить такой набор α .

Каждый его разряд α_i , где $i=1,\ldots,n$, равен одному из двух значений (0 или 1), причем вне зависимости от значений других разрядов.

Поэтому число способов построить набор из E_2^n (а значит, и число наборов в E_2^n) равно 2^n .

Следовательно, $|E_2^n| = 2^n$.

Лексико-графический порядок на E_2^n

Номером $(\alpha_1, \dots, \alpha_n)_2$ набора $\alpha \in E_2^n$ назовем целое неотрицательное число, для которого запись в двоичной системе счисления имеет вид $\alpha_1 \dots \alpha_n$.

Другими словами,

$$(\alpha_1,\ldots,\alpha_n)_2=\sum_{i=1}^n\alpha_i\cdot 2^{n-i}.$$

Отметим, что $0\leqslant (\alpha_1,\ldots,\alpha_n)_2\leqslant 2^n-1$.

(Линейное) упорядочивание наборов из E_2^n в порядке возрастания их номеров назовем лексико-графическим (или алфавитным) порядком на E_2^n .

Лексико-графический порядок на E_2^n

Пример. Перечислим все наборы из E_2^3 в лексико-графическом порядке. В следующей таблице в левом столбце указаны числа от 0 до $7=2^3-1$, а в правом столбце — соответствующие наборы из E_2^3 :

$(\alpha_1, \alpha_2, \alpha_3)_2$	$\alpha \in E_2^3$
0	(0,0,0)
1	(0, 0, 1)
2	(0, 1, 0)
3	(0, 1, 1)
4	(1,0,0)
5	(1, 0, 1)
6	(1, 1, 0)
7	(1, 1, 1)

Пусть $E_2=\{0,1\}$. Функцией алгебры логики называем произвольное отображение из E_2^n в E_2 , $n\geqslant 1$.

Т. е. если $f: E_2^n \to E_2$, то f-n-местная функция алгебры логики.

При этом если $f = f(x_1, ..., x_n)$, то говорим, что f — функция n переменных $x_1, ..., x_n$.

Иногда константы 0,1 будем считать 0-местными функциями алгебры логики (т. е. функциями без переменных).

Множество всех функций алгебры логики, зависящих от n переменных, обозначим $P_2^{(n)}$.

Множество всех функций алгебры логики обозначаем P_2 , т. е. $P_2 = \bigcup P_2^{(n)}$.

Таблица истинности

Как можно задавать функции алгебры логики?

1. Таблицы истинности (таблицы значений). Упорядочим все наборы из множества E_2^n в **лексико-графическом** порядке и сопоставим каждому набору значение функции $f \in P_2^{(n)}$ на нем:

<i>x</i> ₁	 x_{n-1}	Xn	$f(x_1,\ldots,x_{n-1},x_n)$
0	 0	0	$f(0,\ldots,0,0)$
0	 0	1	$f(0,\ldots,0,1)$
1	 1	0	$f(1,\ldots,1,0)$
1	 1	1	$f(1,\ldots,1,1)$

Вектор значений

2. Если считать, что все наборы из E_2^n упорядочены лексико-графически, то функция $f \in P_2^{(n)}$ однозначно задается правым столбцом ее таблицы истинности. Назовем его вектором значений функции f и обозначим α_f . Другими словами,

$$\alpha_f = (f(\alpha_0), f(\alpha_1), \dots, f(\alpha_{2^n-1})) \in E_2^{2^n},$$

где наборы $\alpha_0, \alpha_1, \dots, \alpha_{2^n-1}$ из E_2^n перечислены в лексико-графическом порядке.

Некоторые важные функции алгебры логики имеют собственные названия.

n = 0: константы 0, 1.

n = 1:

X	X	x
0	0	1
1	1	0

x — тождественно равная x;

 \bar{x} — отрицание x.

$$n = 2$$
:

x_1	<i>x</i> ₂	$x_1 \& x_2$	$x_1 \vee x_2$	$x_1 \oplus x_2$	$x_1 \rightarrow x_2$	$x_1 \sim x_2$	x_1/x_2	$x_1 \downarrow x_2$
0	0	0	0	0	1	1	1	1
0	1	0	1	1	1	0	1	0
1	0	0	1	1	0	0	1	0
1	1	1	1	0	1	1	0	0

Слева направо по порядку: конъюнкция, дизъюнкция, сложение по модулю 2, импликация, эквивалентность, штрих Шеффера, стрелка Пирса.

Конъюнкцию & будем также обозначать точкой \cdot или знак операции пропускать.

Знаки $\bar{\ }$, &, \cdot , \vee , \oplus , \to , \sim , /, \downarrow будем называть **связками**.

n = 3:

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	$m(x_1, x_2, x_3)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Функция $m(x_1, x_2, x_3)$ называется функцией голосования, или медианой.

Отметим, что функция $m(x_1, x_2, x_3)$ на наборе $\alpha \in E_2^3$ равна 0, если в наборе α больше нулей, чем единиц, и равна 1, если в наборе α больше единиц, чем нулей.

Существенная переменная

Введем понятие существенной переменной функции.

Переменная x_i называется **существенной** для функции $f(x_1,\ldots,x_n)\in P_2$, если найдутся такие элементы $a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n\in E_2$, что

$$f(a_1,\ldots,a_{i-1},0,a_{i+1},\ldots,a_n)\neq f(a_1,\ldots,a_{i-1},1,a_{i+1},\ldots,a_n).$$

Другими словами, переменная x_i — существенна для функции $f \in P_2$, если найдутся два соседних по i-му разряду набора, на которых функция f принимает различные значения.

Т. е. переменная x_i — существенна для функции $f \in P_2$, если все другие переменные можно так определить, что полученная функция одной переменной x_i принимает два значения: и 0, и 1 (т. е. не является константой).

Несущественная переменная

Переменная, не являющаяся существенной, называется несущественной, или фиктивной.

Как правило, мы будем рассматривать функции с точностью до несущественных переменных.

Т. е. будем считать, что несущественные переменные можно добавлять и убирать.

Существенные переменные

Пример. Добавим к функции f(x) несущественную переменную y:

			X	у	g(x,y)
X	f(x)		0	0	0
0	0	,	0	1	0
1	1		1	0	1
		,	1	1	1

Получаем функцию g(x, y).

Существенные переменные

Пример (продолжение). Проверим, что для функции g(x,y) переменная y является несущественной:

X	У	g(x,y)
0	0	0
0	1	0
1	0	1
1	1	1

Действительно,

1) если
$$x = 0$$
, то $g(0,0) = g(0,1) = 0$;

2) если
$$x = 1$$
, то $g(1,0) = g(1,1) = 1$.

Переменная y — несущественна для функции g, а значит, ее можно убрать.

Существенные переменные

Пример (продолжение). Уберем из функции g(x, y) несущественную переменную y:

X	у	g(x,y)			
0	0	0		X	f(x)
0	1	0	,	0	0
1	0	1		1	1
1	1	1		1	

Получаем функцию f(x).

Равенство функций алгебры логики

Равенство функций рассматриваем с точностью до несущественных переменных.

Функции $f \in P_2$ и $g \in P_2$ назовем **равными**, если добавляя или убирая несущественные переменные из них можно получить совпадающие функции, т. е. функции, зависящие от одних и тех же переменных и при любом наборе значений этих переменных принимающие одно и то же значение.

Пример. Функции f(x) = x и g(x,y) = x равны.

Переименование переменных

Пример. Рассмотрим функции f(x,y) = x и g(x,y) = y.

Функции f и g не равны:

X	У	f(x,y)	g(x,y)
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1

Например, $f(0,1) \neq g(0,1)$.

Но можно заметить, что функция g получается из функции f переименованием переменных.

Конгруэнтность функций алгебры логики

Функции $f \in P_2$ и $g \in P_2$ называются **конгруэнтными**, если переменные одной из них можно так переобозначить (при этом разные переменные переобозначаются по-разному), что получится функция, равная другой.

Пример. Функции f(x, y) = x и g(x, y) = y конгруэнтны.

Число функций алгебры логики n переменных

Предложение 1.2. При $n \geqslant 1$ верно равенство: $|P_2^{(n)}| = 2^{2^n}$.

Доказательство.

Любую функцию $f \in P_2^{(n)}$ можно представить таблицей истинности, в которой 2^n строк.

В каждой строке (вне зависимости от других строк) находится 0 или 1 (значение f на соответствующем наборе).

Функций в $P_2^{(n)}$ столько же, сколько таких таблиц истинности.

Следовательно, $|P_2^{(n)}| = 2^{2^n}$.

Формула

3. Функции алгебры логики можно задавать формулами.

Считаем, что задано некоторое счетно бесконечное множество переменных $X = \{x_1, x_2, \ldots\}$.

Пусть $A \subseteq P_2$, причем каждая функция из A имеет свое, отличное от других функций, обозначение.

Определим формулы над множеством А.

Формула

Формула над множеством A определяется по индукции.

Базис индукции. Если f — обозначение m-местной функции из A и x_1, \ldots, x_m — переменные (из X), причем не обязательно различные, то выражение $f(x_1, \ldots, x_m)$ — формула.

Индуктивный переход. Если f — обозначение m-местной функции из A и F_1, \ldots, F_m — уже построенные формулы или переменные (не обязательно различные), то выражение $f(F_1, \ldots, F_m)$ — формула.

Формула

Отметим, что если множество A содержит тождественную функцию, то базис индукции можно записать проще.

Базис индукции. Если x_i — переменная (из X), то выражение x_i — формула.

Формулы со связками

Укажем особенности при построении формул, если A содержит функции со связками.

При построении формулы над A в таком случае записываем выражения следующим образом:

- 1) если $f = \bar{x}$, то $F = \overline{F_1}$;
- 2) если $f=x\circ y$, где $\circ\in\{\&,\cdot,\lor,\oplus,\rightarrow,\sim,/,\downarrow\}$, то

$$F=(F_1)\circ (F_2),$$

причем если F_i — переменная, то ее в скобки не заключаем, i=1,2.

Кроме того, в построенной формуле убираем некоторые скобки, считая, что конъюнкция имеет самый высокий приоритет среди двуместных связок.

Формулы

Двоичный куб

Пример. Пусть

$$A = \{0, 1, x, \bar{x}, x \cdot y, x \vee y, x \oplus y, x \rightarrow y, x \sim y, x/y, x \downarrow y\} \subseteq P_2.$$

Тогда

$$F_1 = x$$
 и $F_2 = y$

$$F_3 = x \oplus y$$

$$F_4 = (x \oplus y) \cdot x$$

$$F_5 = \overline{(x \oplus y) \cdot x}$$

формулы, построенные по базису индукции из переменных x и y;

формула, построенная по индуктивному переходу из функции $x \oplus y \in A$ и формул F_1 и F_2 ;

формула, построенная по индуктивному переходу из функции $x \cdot y \in A$ и формул F₃ и F₁:

формула, построенная по индуктивному переходу из функции $\bar{x} \in A$ и формулы F_4 ;

И Т. Д.

Формулы

Пусть F — формула над множеством A, $A \subseteq P_2$.

Если в формуле F встречаются только переменные x_1, \ldots, x_n (но не обязательно все), то будем записывать $F(x_1, \ldots, x_n)$.

Если при построении формулы F применялись только функции $g_1,\dots,g_t\in A$ (но не обязательно все), то будем записывать $F[g_1,\dots,g_t].$

Функция, определяемая формулой

Пусть $F(x_1, \ldots, x_n)$ — формула над множеством $A, A \subseteq P_2$.

Тогда формула F задает некоторую функцию $f_F \in P_2$ переменных x_1, \ldots, x_n (возможно, зависящую не от всех переменных существенно).

Функция, определяемая формулой

Значение функции $f_F(x_1,\ldots,x_n)$ на наборе $\alpha\in E_2^n$ определяется по индукции.

Базис индукции. Если $F=x_i$, где x_i — переменная, то

$$f_F(\alpha) = \alpha_i$$
.

Индуктивный переход. Если $F=f(F_1,\ldots,F_m)$, где f — обозначение m-местной функции из A и F_1,\ldots,F_m — формулы или переменные, то

$$f_{\mathsf{F}}(\alpha) = f(f_{\mathsf{F}_1}(\alpha), \ldots, f_{\mathsf{F}_m}(\alpha)).$$

При этом пользуемся тем, что f обозначает какую-то функцию из A.

Функция, определяемая формулой

Другими словами:

- 1) если $F=x_i$, где x_i переменная, то $f_F(x_i)=x_i$, т. е. f_F функция, тождественно равная переменной x_i ;
- 2) если $F=f(F_1,\dots,F_m)$, где f обозначение m-местной функции из A и F_1,\dots,F_m формулы или переменные, то

$$f_F(x_1,...,x_n) = f(f_{F_1}(x_1,...,x_n),...,f_{F_m}(x_1,...,x_n)),$$

т. е. f_F является соответствующей композицией функций $f\in A$ и $f_{F_1},\dots,f_{F_m}.$

Функции, определяемые формулами

Пример. Рассмотрим формулу $F_5 = \overline{(x \oplus y) \cdot x}$ из предыдущего примера. Тогда:

X	у	$f_{F_3} = x \oplus y$	$f_{F_4} = (x \oplus y) \cdot x$	$f_{F_5} = \overline{(x \oplus y) \cdot x}$
0	0	0	0	1
0	1	1	0	1
1	0	1	1	0
1	1	0	0	1

Функция f_{F_5} , определяемая формулой F_5 , записана в самом правом столбце.

Эквивалентные формулы

Формулы F_1 и F_2 называются **эквивалентными**, если они определяют равные функции, т. е. функции f_{F_1} и f_{F_2} равны.

Т. е. формулы F_1 и F_2 — эквивалентны, если на любом наборе значений переменных, входящих в формулы F_1 и F_2 , функции f_{F_1} и f_{F_2} принимают одинаковые значения.

Обозначение эквивалентных формул: $F_1 = F_2$; при этом равенство $F_1 = F_2$ называется **тождеством**.

Тождества алгебры логики

Верны следующие тождества:

- 1) коммутативность связок $\cdot, \vee, \oplus, \sim, /, \downarrow$;
- 2) ассоциативность связок \cdot, \vee, \oplus ;
- 3) дистрибутивность видов

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z;$$

$$(x \cdot y) \lor z = (x \lor z) \cdot (y \lor z);$$

$$(x \oplus y) \cdot z = x \cdot z \oplus y \cdot z.$$

Тождества алгебры логики

Тождества с одной переменной и с константами:

$$\begin{array}{llll} x\cdot x=x, & x\vee x=x, & x\oplus x=0, & x\to x=1;\\ x\cdot \bar{x}=0, & x\vee \bar{x}=1, & x\oplus \bar{x}=1, & \bar{x}\to x=x;\\ x\cdot 0=0, & x\vee 0=x, & x\oplus 0=x, & 0\to x=1, & x\to 0=\bar{x};\\ x\cdot 1=x, & x\vee 1=1, & x\oplus 1=\bar{x}, & x\to 1=1, & 1\to x=x. \end{array}$$

Выражение одних связок через другие:

$$\begin{array}{ll} x/y = \overline{x \cdot y}, & x \downarrow y = \overline{x \vee y}; \\ x \sim y = \overline{x \oplus y}, & x \sim y = (x \to y)(y \to x); \\ x \sim y = \overline{x}\overline{y} \vee xy, & x \sim y = (\overline{x} \vee y)(x \vee \overline{y}); \\ x \oplus y = \overline{x}y \vee x\overline{y}, & x \oplus y = (\overline{x} \vee \overline{y})(x \vee y); \\ x \to y = \overline{x} \vee y, & x \to y = \overline{x}\overline{y}. \end{array}$$

Тождества алгебры логики

Логические правила:

 $x \cdot \bar{x} = 0$

$$\begin{split} x \vee \bar{x} &= 1 \\ \bar{\bar{x}} &= x \\ \overline{x \cdot y} &= \bar{x} \vee \bar{y} \text{ и } \overline{x \vee y} = \bar{x} \cdot \bar{y} \end{split}$$

правило противоречия; правило исключенного третьего; правило снятия двойного отрицания; правила де Моргана.

Доказываются эти тождества построением функций, определяемых формулами в левой и правой частях равенства.

Правила тождественной замены

Пусть F и G — формулы, причем

$$F = f(F_1, ..., F_m), G = f(G_1, ..., G_m),$$

где f — обозначение m-местной функции, а F_1, \ldots, F_m и G_1, \ldots, G_m — формулы.

Тогда если
$$F_1 = G_1, \dots, F_m = G_m$$
, то $F = G$.

Правила тождественной замены

Пусть F формула, причем

$$F=f(F_1,\ldots,F_m),$$

где f — обозначение m-местной функции, а F_1, \ldots, F_m — формулы.

Пусть $H(y_1,\ldots,y_m)$ — формула, определяющая функцию f, и

$$G = H(F_1, \ldots, F_m),$$

т. е. в формулу H вместо переменной y_i подставляем формулу F_i для всех $i=1,\ldots,m$.

Тогда F = G.

Эквивалентные преобразования формул

Пользуясь правилами тождественной замены, можно от одних представлений функций алгебры логики переходить к другим их представлениям.

При этом говорят, что выполняют эквивалентные преобразования формул.

Пример. Рассмотрим формулу $F_1 = (\bar{x}_1 \vee \bar{x}_2) \cdot (x_1 \vee x_2)$.

Применим тождество $\bar{x} \lor \bar{y} = \overline{x \cdot y}$:

Двоичный куб

$$F_1 = (\overline{x_1} \vee \overline{x_2}) \cdot (x_1 \vee x_2) = (\overline{x_1 \cdot x_2}) \cdot (x_1 \vee x_2) = F_2.$$

Далее применим тождество $x \cdot y = \overline{\overline{x} \vee \overline{y}}$:

$$F_2 = \overline{(x_1 \cdot x_2)} \cdot (x_1 \vee x_2) = \overline{(\overline{x_1 \cdot x_2})} \vee \overline{(x_1 \vee x_2)} = F_3.$$

Затем применим тождество $\bar{\bar{x}}=x$:

$$F_3 = \overline{(x_1 \cdot x_2)} \vee \overline{(x_1 \vee x_2)} = \overline{(x_1 \cdot x_2) \vee \overline{(x_1 \vee x_2)}} = F_4.$$

Теперь применим тождество $\overline{x \lor y} = \bar{x} \cdot \bar{y}$:

$$F_4 = \overline{(x_1 \cdot x_2) \vee \overline{(x_1 \vee x_2)}} = \overline{(x_1 \cdot x_2) \vee (\overline{x}_1 \cdot \overline{x}_2)} = F_5.$$

При этом $F_1=F_2$, $F_2=F_3$, $F_3=F_4$, $F_4=F_5$, т. е. все эти формулы задают одну и ту же функцию $f(x_1,x_2) \in P_2$.

Задачи для самостоятельного решения

1. Покажите, что таблицу всех наборов из E_2^n , $n\geqslant 1$, в лексикографическом порядке можно построить следующим способом: для каждого $i=1,\ldots,n$, начиная с первой строки таблицы, повторить 2^{i-1} раз: в i-м разряде в 2^{n-i} строках написать 0, затем в следующих 2^{n-i} строках написать 1.

Литература к лекции

- 1. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012. С. 4–8.
- 2. Марченков С. С. Основы теории булевых функций. М.: Физматлит, 2014. С. 11–20.
- 3. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001. С. 9–23.
- 4. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. С. 9–10. Гл. I 1.1–1.5, 1.17, 1.19, 1.20, 1.28, 1.30, 1.31, 1.33, 1.34, 1.35.