

Looking at math memes

Actually doing math

Today's Agenda

Last time:

- Continuous random variables:
 - definition
 - cdf and pdf
 - expected value and variance of continuous random variables

Today (Lec 23, 06/24):

- More practice
- Distribution of functions of random variables.
- Uniform distribution.

Definition (CDF of continuous random variable)

The cumulative distribution function of a continuous random variable X, $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$, is a function such that

- 1. F(x) is defined for all $x \in \mathbb{R}$,
- 2. F(x) is a non-decreasing function of x for all $x \in \mathbb{R}$,
- 3. $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$,
- 4. $P(a < X \le b) = F(b) F(a)$,

Note: P(X = x) = 0 for all $x \in \mathbb{R}$!

Strict inequalities don't matter...

If X is a continuous random variable, then

$$P(a < X \le b) = F(b) - F(a)$$

$$P(a \le X \le b) = P(a < X \le b) + P(X = a) = F(b) - F(a) + 0$$

$$P(a < X < b) = P(a < X \le b) - P(X = b) = F(b) - F(a) - 0$$

$$P(a \le X < b) = P(a < X \le b) + P(X = a) - P(X = b) = F(b) - F(a)$$
 so if X is continuous, all these probabilities coincide!

If X was discrete, these 4 probabilities could all be different.

Definition (Probability density function)

The probability density function (pdf) of a continuous random variable X is the derivative of the cdf

$$f(x) = \frac{d}{dx}F(x),$$

where f(x) is continuous.

Definition (Support of pdf)

The support of a pdf f(x) is defined as

$$supp(f) = \{x \in \mathbb{R} : f(x) \neq 0\}.$$

Integrals of a pdf f over a domain D may be computed on $D \cap supp(f)$.

Properties of the pdf

a)
$$f(x) \geq 0 \quad \forall x \in \mathbb{R}$$
 b)
$$\int_{-\infty}^{\infty} f(x) dx = 1$$
 c)
$$P(a \leq X \leq b) = \int_{a}^{b} f(x) dx \quad \text{for } a < b \in \mathbb{R}$$

Definition (Expectation of continuous RV)

If X is a continuous random variable with pdf f(x), and $g: \mathbb{R} \to \mathbb{R}$, then

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx.$$

It follows that

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx.$$

$$Var(X) = E[(X - E[X])^{2}] = \int_{-\infty}^{\infty} (x - E[X])^{2} f(x) dx$$
$$= E[X^{2}] - E[X]^{2}.$$

Discrete versus continuous random variables

- If *X* is **discrete**, then
 - f(x) = P(X = x) is the probability mass function
 - $P(X \in A) = \sum_{x \in X(S) \cap A} f(x)$
 - \blacktriangleright $E(X) = \sum_{x \in X(S)} x f(x)$
- If *X* is **continuous**, then
 - ▶ P(X = x) = 0 for all $x \in \mathbb{R}$.
 - f(x) = F'(x) is the probability density function
 - $P(X \in A) = \int_A f(x) dx$
 - \blacktriangleright $E(X) = \int_{\mathbb{R}} xf(x) dx$
 - ▶ The pdf f(x) is not P(X = x), but for $\delta > 0$ small,

$$P(X \in (x - \delta/2, x + \delta/2)) = P(x - \delta/2 \le X \le x + \delta/2)$$
$$= F(x + \delta/2) - F(x - \delta/2)$$
$$\approx f(x)\delta.$$

Suppose X has pdf

$$f(x) = \begin{cases} 6x(1-x) & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise} \end{cases}$$

Compute E[X] and Var(X)

Question

Suppose X has pdf f(x), and f is an even function about the origin on \mathbb{R} (i.e. f(x) = f(-x)). If E[X] is well defined, which of the following is true:

A
$$E[X] < 0$$

B
$$E[X] = 0$$

Suppose X has cdf

$$F(x) = \begin{cases} 0 & x < 0, \\ \frac{x^2}{2} & 0 \le x < 1/2 \\ \frac{7}{4}x - \frac{3}{4} & 1/2 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

Compute E(X) and Var(X).

Distribution of g(X)

So far, we have a way of dealing with the expectation of a function of random variable g(X) (Law of Unconscious Statistician).

However, we may be interested in the distribution of g(X) itself.

Example: X = time until a light bulb breaks, g(X) = the amount of work done before the light bulb breaks

Distribution of g(X)

If the function g has an inverse over the range of X, then we have a fairly easy way of obtaining the distribution of Y = g(X).

In short, the method is as follows.

- a) Write the cdf of Y as a function of X, i.e., start by $P(Y \le y)$ and try to express it using X.
- b) Use the cdf of X to find the cdf of Y.
- c) If you want the PDF of Y, then you can take the derivative of the cdf.
- d) Find the range of Y.

Let X be a continuous random variable with the following pdf and cdf:

$$f(x) = \begin{cases} \frac{1}{4} & 0 < x \le 4, \\ 0 & \text{otherwise} \end{cases}$$

$$F(x) = \begin{cases} 0 & x \le 0 \\ \frac{x}{4} & 0 < x < 4, \\ 1 & x > 4. \end{cases}$$

Find the pdf of $Y = X^{-1}$.

Continuous uniform distribution

We now introduce the first continuous distribution.

Definition

We say that X has a continuous uniform distribution on (a, b) if X has pdf

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in (a, b), \\ 0 & \text{otherwise} \end{cases}$$

This is abbreviated $X \sim U(a, b)$.

- Cutting a stick of length 2 at a random position (motivating example!)
- Spinning a wheel in a game show
- **.** . . .

Let $X \sim U(a, b)$. Show the following.

a)
$$E(X) = \frac{a+b}{2}$$

b)
$$Var(X) = \frac{(b-a)^2}{12}$$

Question

Suppose $X \sim U(0,1)$, and that $Y = \frac{2}{X} - 1$. What is the range of Y?

A
$$Y(S) = [0, \infty)$$

B
$$Y(S) = [1, 3]$$

$$C Y(S) = [0, \infty)$$

D
$$Y(S) = [0, 2]$$

$$\mathsf{E}\ Y(S) = [1, \infty)$$

Let X be a continuous random variable with pdf

$$f(x) = ce^{-\lambda x}, \quad x > 0,$$

and 0 otherwise, where $\lambda>0$ is a parameter and c>0 is a constant to be determined.

- a) Determine c so that f is a valid pdf.
- b) Determine the cdf of X.
- c) What distribution does the random variable $Y = e^{-\lambda X}$ have?