Nombre: \_\_

# Taller de Nivelación 2015 Matemáticas $11^{\circ}$



Germán Avendaño Ramírez, Lic. U.D., M.Sc. U.N.

\_\_\_\_\_Curso: \_\_\_\_\_ Fecha: \_\_\_\_\_

| Números reales                                                                                                                      |                                                                  |                                                                    |                        |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|--|--|
| <ol> <li>a) Grafique el intervalo (-5, 3)</li> <li>b) Exprese las desigualdades</li> <li>c) Encuentre la distancia entre</li> </ol> | $x \leq 3$ y $-1 \leq x < 4$ en notación de i                    | ntervalos                                                          |                        |  |  |
| 2. Evalúe cada expresión                                                                                                            |                                                                  |                                                                    |                        |  |  |
| a) $(-3)^4$ b) $-3^4$                                                                                                               | $c) \frac{5^{23}}{5^{24}}$                                       | $d) \left(\frac{3}{3}\right)^{-2}$                                 | $e) 16^{-3/4}$         |  |  |
| 3. Escriba cada número en notació                                                                                                   | ón científica                                                    |                                                                    |                        |  |  |
| a) 186 000'000 000                                                                                                                  | b) 0.000                                                         | $b) \ \ 0.0000003965$                                              |                        |  |  |
| 4. Simplifique cada expresión. Esc                                                                                                  | riba su respuesta final sin exponente                            | s negativos                                                        |                        |  |  |
| a) $\sqrt{200} - \sqrt{32}$                                                                                                         | c) $\left(\frac{3x^{3/2}y^3}{x^2y^{-1/2}}\right)^{-2}$           | e) $\frac{x^2}{x^2 - 4}$                                           | $-\frac{x+1}{x+2}$     |  |  |
| b) $(3a^3b^3)(4ab^2)^2$                                                                                                             | $d) \ \frac{x^2 + 3x + 2}{x^2 - x - 2}$                          | $f) \ \frac{\frac{y}{x} - \frac{x}{y}}{\frac{1}{y} - \frac{1}{x}}$ |                        |  |  |
| 5. Racionalice el denominador y si                                                                                                  | implifique: $\frac{\sqrt{10}}{\sqrt{5}-2}$                       |                                                                    |                        |  |  |
| 6. Realice las operaciones indicada                                                                                                 | as y simplifique:                                                |                                                                    |                        |  |  |
| a) $3(x+6) + 4(2x-5)$<br>b) $(x+3)(4x-5)$                                                                                           | c) $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})$<br>d) $(2x+3)^2$ | e) $(x+2)^3$                                                       |                        |  |  |
| 7. Factorice completamente cada e                                                                                                   | expresión                                                        |                                                                    |                        |  |  |
| a) $4x^2 - 25$                                                                                                                      | c) $x^3 - 3x^2 - 4x + 12$                                        | - /                                                                | $9x^{1/2} + 6x^{-1/2}$ |  |  |
| b) $2x^2 + 5x - 12$                                                                                                                 | $d) x^4 + 27x$                                                   | $f) x^3y - 4x$                                                     | xy                     |  |  |
| 8. Encuentre las soluciones reales:                                                                                                 |                                                                  |                                                                    |                        |  |  |
| a) $x + 5 = 14 - \frac{1}{2}x$                                                                                                      | c) $x^2 - x - 12 = 0$                                            | $f) x^4 - 3x^2$                                                    | $^2 + 2 = 0$           |  |  |
| $b) \ \frac{2x}{x+1} = \frac{2x-1}{x}$                                                                                              | d) $2x^2 + 4x + 1 = 0$<br>e) $\sqrt{3 - \sqrt{x+5}} = 2$         | $g) \ 3 x-4 $                                                      | = 10                   |  |  |

- 9. Mary condujo de Bogotá a Melgar a una rapidez promedio de 80 km/h. De regreso, ella condujo en promedio a 70 km/h. El tiempo total de viaje fue de  $4\frac{2}{3}$  de hora. Encuentre la distancia entre las dos ciudades.
- 10. Una lote rectangular tiene 70 m más de largo que de ancho y su diagonal mide 130 m. Encuentre las dimensiones del lote.
- 11. Solucione cada inecuación. Escriba la respuesta usando la notación de intervalos y dibuje la solución en la recta real.
  - a)  $-4 < 5 3x \le 17$

c) |x-4| < 3

b) x(x-1)(x+2) > 0

- $d) \ \frac{2x-3}{x+1} \le 1$
- 12. Una botella de medicina debe ser guardada a una temperatura entre 5°C y 10°C. Qué rango correspondería si se toma la escala Fahrenheit? (Recuerde que la temperatura en Fahrenheit (F) y Celsius (C) satisface la relación  $C = \frac{5}{9}(F 32)$

#### **Funciones**

- 13. Sea  $f(x) = x^2 4x$  y  $g(x) = \sqrt{x+4}$ , encuentre:
  - a) El dominio de f y el dominio de g
  - b) f(-2), f(0), f(4), g(0), g(8), g(-6)
  - c) f(x+2), g(x+2), f(2+h)
  - d) La razón de cambio de g entre x=5 y x=21. (Recuerde que la razón de cambio entre los extremos  $x_1$  y  $x_2$  se define como  $\frac{f(x_2)-f(x_1}{x_2-x_1}$
  - e) f(g), g(f), f(g(12)), g(f(12))
- 14. Sea  $f(x) = \begin{cases} 4 & \text{si} \quad x \le 2\\ x 1 & \text{si} \quad x > 0 \end{cases}$ 
  - a) Evalúe  $f(0),\,f(1),\,f(2),\,f(3)$ y f(4)
  - b) Haga la gráfica de f
- 15. Sea f la función cuadrática  $f(x) = -2x^2 + 8x + 5$ .
  - a) Exprese f en la forma estandar (La forma estandard de la función  $f(x) = ax^2 + bx + c$ , es f(x) = a(x h) + k, que se obtiene completando el cuadrado donde el vértice está dado por el punto (h, k))
  - b) Encuentre los valores máximo y mínimo de la función f
  - c) Haga la gráfica de f
  - d) Encuentre el intervalo en el cual f es creciente y el intervalo en el cual f es decreciente
  - e) ¿Cómo es la gráfica de la función  $g(x) = -2x^2 + 8x + 10$  respecto de la función f?
  - f) ¿Cómo es la gráfica de la función  $h(x) = -2(x+3)^2 + 8(x+3) + 5$  con respecto a la función f?
- 16. Sin usar dispositivos electrónicos, encuentre la correspondencia entre las ecuaciones siguientes y las gráficas que se dan. Explique las razones de su elección.
  - $f(x) = x^3 8x$

 $k(x) = 2^{-x} + 3$ 

 $s(x) = \frac{2x - 3}{x^2 + 9}$ 

- $g(x) = -x^4 + 8x^2$ •  $h(x) = x^2 - 5$
- $r(x) = \frac{2x+3}{x^2-9}$













- 17. Una suma de  $$25\,000$  es depositada en una cuenta que paga  $5.4\,\%$  de interés compuesto por año.
  - a) ¿Cuánto será el monto en la cuenta después de 3 años?
  - b) ¿Cuándo la cuenta tendrá un saldo que ascienda a \$35 000?
  - c) ¿En cuánto tiempo el depósito inicial se duplicará?

## Sucesiones y progresiones

Para las secuencias dadas en 18-21

- a) Encuentre los cinco primeros términos para la sucesión dada.
- b) ¿Cuál es la diferencia común d?
- c) Grafique los términos que encuentre en a)

18. 
$$a_n = 5 + 2(n-1)$$

20. 
$$a_n = \frac{5}{2} - (n-1)$$

19. 
$$a_n = 3 - 4(n-1)$$

21. 
$$a_n = \frac{1}{2}(n-1)$$

22–25 Encuentre el n – ésimo término de la progresión aritmética dado el primer término  $a_1$  y la diferencia común d. ¿Cuál es el décimo término?

22. 
$$a_1 = 3, d = 5$$

24. 
$$a_1 = \frac{5}{2}, d = -\frac{1}{2}$$

23. 
$$a_1 = -6, d = 3$$

25. 
$$a_1 = \sqrt{3}, d = \sqrt{3}$$

26. Determine la diferencia común, el quinto término, el n-ésimo término y el centésimo término de las progresiones aritméticas

c) 
$$\frac{7}{6}$$
,  $\frac{5}{3}$ ,  $\frac{13}{6}$ ,  $\frac{8}{3}$ , ...

$$b)$$
 11, 8, 5, 2, ...

- 27. El décimo término de una progresión aritmética es  $\frac{55}{2}$ , y, el segundo término es  $\frac{7}{2}$ . Encuentre el primer término.
- 28. El duodécimo término de una progresión aritmética es 32, y el quinto término es 18. Encuentre el vigésimo término.
- 29. Los postes de teléfono son puestos en pila, con 25 postes en el primer nivel, 24 en el segundo y así sucesivamente. Si hay 12 niveles, ¿cuántos postes de teléfono contiene la pila de postes?



30–33 Dado el n-ésimo término de la progresión.

- a) Encuentre los cinco primeros términos
- b) ¿Cuál es la razón común r?
- c) Grafique los términos que encuentre en a)

30. 
$$a_n = 5(2)^{n-1}$$

32. 
$$a_n = \frac{5}{2} \left( -\frac{1}{2} \right)^{n-1}$$

31. 
$$a_n = 3(-4)^{n-1}$$

33. 
$$a_n = 3^{n-1}$$

34–37 Determine si la sucesión es progresión geométrica. Si es, encuentre la razón común r

36. 
$$e^2$$
,  $e^4$ ,  $e^6$ ,  $e^8$ , ...

$$37. \ \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \dots$$

- 38. Las frecuencias de las notas musicales (medidas en ciclos por segundo) forman una progresión geométrica. El DO central tiene una frecuencia de 256, y el DO una octava arriba tiene una frecuencia de 512. Encuentre la frecuencia del DO dos octavas abajo del DO central.
- 39. Un cultivo de bacterias tiene inicialmente 5000 bacterias y su número aumenta 8% cada hora. ¿Cuántas bacterias hay al cabo de 5 horas? Encuentre una expresión que indique el número de bacterias que hay al cabo de n horas.

#### Límites

40. Sea la función 
$$f(x) = \left\{ \begin{array}{lll} 3 & \text{si} & x < 0 \\ 2 & \text{si} & x = 0 \\ 3 - x & \text{si} & 0 < x < 2 \\ x & \text{si} & x \geq 2 \end{array} \right.$$

- a) Grafique la función f
- b) Evalúe

1) 
$$f(0)$$

2) 
$$\lim_{x \to 0} f(x)$$

3) 
$$\lim_{x \to 1} f(x)$$

2) 
$$\lim_{x \to 0} f(x)$$
 3)  $\lim_{x \to 1} f(x)$  4)  $\lim_{x \to 2^{-}} f(x)$  5)  $\lim_{x \to 2^{+}} f(x)$ 

$$5) \lim_{x \to 2^+} f(x)$$

41. Evalúe los límites, si existen.

a) 
$$\lim_{x \to 3} \frac{x^2 + 4x - 21}{x - 3}$$

b) 
$$\lim_{x \to -3} \frac{x^2 + 4x - 21}{x - 3}$$

c) 
$$\lim_{x \to 2} \frac{x^2 + 4}{x - 2}$$

## Probabilidad

42. La administración Federal de Ferrocarriles proporcionó las cinco categorías principales de violaciones para el ferrocarril CSX para los años 1999-2003 en la tabla siguiente. Hubo un total de 1897 violaciones. La información estuvo contenida en el artículo Democrat and Chronicle, 29 de diciembre, 2004, titulado "Rail cop lacks a big stick". (El uniformado no lleva "garrote").

Si una violación (infracción) se selecciona al azar para repaso, ¿cuál es la probabilidad de que la violación para el CSX se deba a lo siguiente?

| a) Equipo de seguridad en trene |
|---------------------------------|
|---------------------------------|

- b) Horas de trabajo de empleados
- c) Seguridad en furgones o seguridad en vía. ¿Qué pasa si se seleccionan dos violaciones?
- d) ¿Sería esto un ejemplo de muestreo con o sin restitución? Explique por qué.

| Categoría                     | Número |
|-------------------------------|--------|
| Seguridad en vías             | 485    |
| Equipo de seguridad en trenes | 324    |
| Horas de trabajo de empleados | 323    |
| Seguridad en furgones         | 289    |
| Locomotoras                   | 248    |
| Todos los otros               | 228    |
| Total                         | 1897   |

43. Mil personas seleccionadas de cierta enfermedad reciben un examen clínico. Como consecuencia del examen, la muestra de 1000 personas se clasifica de acuerdo con su estatura y situación de su enfermedad.

Situación de enfermedad

| Estatura | Ninguno | Benigno | Moderado | Grave | Total |
|----------|---------|---------|----------|-------|-------|
| Alta     | 122     | 78      | 139      | 61    | 400   |
| Media    | 74      | 51      | 90       | 35    | 250   |
| Corta    | 104     | 71      | 121      | 54    | 350   |
| Total    | 300     | 200     | 350      | 150   | 1000  |

Use la información de la tabla para estimar la probabilidad de ser de estatura media o corta y tener situación de enfermedad moderada o grave.

- 44. Determinar o estimar la probabilidad p de cada uno de los eventos siguientes:
  - a) Al lanzar una vez un dado obtener un número non.
  - b) Al lanzar dos veces una moneda obtener por lo menos una cara.
  - c) Al sacar una carta de una baraja, bien barajada, con 52 cartas obtener un as, un 10 de diamantes o un 2 de espadas.
  - d) Al lanzar una vez un par de dados su suma sea siete.
  - e) Si en 100 lanzamientos de una moneda se obtuvieron 56 caras, en el siguiente lanzamiento obtener una cruz.
- 45. Un experimento consiste en lanzar una moneda y un dado. Si  $E_1$  es el evento en que se obtenga "cara" al lanzar la moneda y  $E_2$  es el evento en que se obtenga "3 o 6" al lanzar el dado, expresar en palabras cada uno de los eventos siguientes:
  - a)  $E_1$  b)  $E_2$  c)  $E_1E_2$  e)  $P_1|E_2$  b)  $P_2$  f)  $P(E_1+E_2)$
- 46. De una caja que contiene 6 pelotas rojas, 4 pelotas blancas y 5 pelotas azules se extrae, de manera aleatoria, una pelota. Determinar la probabilidad de que la pelota extraída sea: a) roja, b) blanca, c) azul, d) no sea roja y e) sea roja o blanca.
- 47. Un dado se lanza dos veces. Encontrar la probabilidad de obtener un 4, un 5 o un 6 en el primer lanzamiento y un 1, 2, 3 ó 4 en el segundo lanzamiento.
- 48. De una baraja, bien barajada, con 52 cartas se extraen dos cartas. Encuentre la probabilidad de que las dos sean ases si la primera carta: a) se devuelve a la baraja y b) no se devuelve a la baraja.
- 49. De la caja del problema 46 se extraen, sucesivamente, tres pelotas. Encuéntrese la probabilidad de que se extraigan en el orden roja, blanca y azul: a) si cada pelota se devuelve a la caja y b) si no se devuelve.