Experiment No.-1

TITLE: Implementing SISO, SIPO, PIPO Shift registers

OBJECTIVE: The objective of the experiment is to design and implement STSO, SIPO, PISO

APPARATUS REQUIRED: TC 4013, connecting wines, logic trainer kit.

THEORY:

Register A register is a collection of f-flip-flop. A flip-flop is used to store single bit digital data. For storing a large number of bits, the storage capacity is increased by grooping more than one flip-flop. If, we want to store an n-bit word, we have to use an n-bit register containing a number of flip-flops.

Types of Register>

SISO) Serial in Serial out (SISO) shift register are kind of a shift register where both data loading as well as data retrieval to/from the shift register occurs in serial-mode.

SIPO) A serial in parallel out shift register is similar to the serial in , serial out shift register is that it shifts data into internal storage element and shifts data out at the serial out, data out, pin. It is different in that if makes all the internal stages available as output.

PIN DIAGRAM:

CIRCUIT DIAGRAM: -

SISO:

Serial D

CLK

CLK

CLK

CLK

4 bit SISO Shift negister using Delip-flop

CLOCK	Serial Data Input	D) Serial Data Output(8)
		0
2	0	0
3	0	0
4	0	1
	10 1 1	

S	100>									
	CLOCK	Se	nial C	ata I	Parallel Data			Other		
							QA	0	B Q	A
	0		(5			0	0	0	O
			1				1	0	0	
	2		0				0	1	0	0
	3		0				0	0	1	0
	4		0				0	0	0	
PIPO	>									1
	Clock	Pa	malle	l Date	e Input	D	ata	Out	put Pa	vallelo
		B A	DB	D_{C}	DD	g	A Q	BB	Q _C	80
	0	0	0	0	6	C)	0	0
		J	0	0	0	1	(3	0	0
	2	1	1	0	٥	1	1		0	
	3	1	1	1	0	1	'	1		0
	9	1	1	1	T	1			1	0

Conclusion: - SISO, SIPO, PIPO registers have been implemented and designed and the touth table is verified.

EXPERIMENT No. - 2

TITLE: - Design of an adder-subtractor composite circuit-

OBJECTIVE: To design of an adder-subtractor composite circuit:

THEORY: The 4-bit adder subtractor composite circuit performs the operations of both two 4-bit inputs $A_4A_3A_2A_1$ and $B_4B_3B_2B_1$. The Mode Select line (M) is connected with Cin of the least significant bit of the full-adder, is used to perform the operation of addition of subtraction. The XOR gates are used as controlled inverter.

Adders are part of the arithmetic and logic unit (ALU).

PIN DIAGRAM OF 4-BIT BINARY FULL ADDER IC-40

INSTRUMENT & COMPONENT REQUIRED:-

SI No.	ITEM	Specification	QTY.
1	IC 4008	It is the IC of 4-bit binary full adden IC-4008.	1
2	IC 4070	It is the IC of XOR gate.	1
, 3	Bread board	It is to make quick electrical connections between components.	1
4	Flectrical wires	Used to do a electrical experiment and connects the components	10

VERIFICATION TABLE:

14.05	т		- (A)	1-1-1-1-1	1	NIDU	T (B)		OUTPUT (S)				
MODE SELECT	•	NPUT		Λ.			Bi	Bi	COUT	S4	S_3	Se	S,
2EFECT	A ₄	Az	A ₂	Aı	B ₄	Вз		1	0	0	1	1	0
0	0	0	0	1	0		0		0	O	-		
\wedge	1	1		1	1	1	1	1	1	١	1		0
					1	1	\wedge	0	0	1	1	1	1
0	0	0				1		^	n	•	1	0	1
1	1	1	1	1	1	0		0	D	0	4		1
1	1	1	1	1	1	1		0	0	0	0	0	1
1	-		_		1	0	\cap	0	0	0	1	0	0
1				0			O			and the state of t			-

CONCLUSION:-

We have implemented design and experiment of an addersubtractor composite circuit using IC 4008 & IC 4070 with the help of circuit diagram successfully.

EXPERIMENT No. -3

TITLE: Design of an BCD(Binary Coded Decimal) adder circuit.

OBJECTIVE: To design an BCD (Binary Coded Decimal)

adder circuit.

THEORY: A BCD adder is a circuit that adds two BCD digits in parallel and makes a sum digit also in BCD. BCD's full form is Binary Coded Decimal.

The 4-bit adder circuit performs the operations of both two 4-bit inputs A4A3A2A1 and B4B3B2B1. Here, with the BCD adder IC, we will use AND gate and OR gate.

PIN DIAGRAM OF 4-BIT BCD ADDER CIRCUIT :-

CIRCUIT DIAGRAM:

INSTRUMENT & COMPONENT REQUIRED :-

	SI No.	ITEM	SPECIFICATION	QTy.
	1	IC 4008	It is the IC of BCD adder circuit.	2
	2	TC 4081	It is the IC of AND gate.	1
-	3	IC 4071	It is the IC of OR	1
	4	Bread	It is to make electrical connections	1
	5	Electrical wines	Used to do electrical experiment	10

BSERVATION TABLE :-

DECIMAL		BINA	ARY S	SUM	evelentia i se populari in sepud	BCD SUM				
	C	S ₄	53	S2	Si	c	S4	S3	S2	Si
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	1
2	0	0	0	1	0	0	0	0	1	0
_ 3	0	0	0	1	1	0	0	0	1	1
4	0	0	1	0	0	0	0	1	0	0
5	0	0	1	0	1	0	0	1	0	1
6	0	0	1	1	0	0	0	1	1	0
7	0	0	1	1	1	0	0	1	1	1
8	0	1	0	0	0	0	1	0	0	0
9	0	1	0	0	1	0	1	0	0	1
10	0	1	0	1	\bigcirc	1	0	0	0	0
11	0	1	0	1	1	1	0	0	0	1
12	0	1	1	0	0	1	0	0	1	0
13	0	1	1	0	1	1	0	O	1	1
14	0	1	1	1	0	1	0	1	0	0
15	0	1	1	1	1	1	0	1	0	1

CONCLUSION :-

we have implemented design and experiment of a BCD (Binary Coded Decimal) adder circuit using IC4008, IC 4081, IC 4071 with the help of circuit diagram successfully.

EXPERIMENT No.: - CO-05 (A)

TITLE: Design a composite Logic Unit using Multiplexen.

OBJECTIVE: - To design a composite Logic Unit using Muttiplexor.

THEORY: Logic microoperations are very useful for manipulating individual bits or a portion of a word stored in a register. They can be used to change bit values, delete group of bits, or insert new bit values into a register. These microoperations require different logic gates to be inserted for each bit or pair of bits in the register to perform the required operation. Although there are several logic microoperations, most computers use only -four AND, OR, XOR and NOT -from which all

-WNCTION TABLE:-

others can be derived.

Selection Si	Lines So	OUTPUT (F)	OPERATION
0	0	A	NOT
0	l	AB	AND
	0	A+B	OR
		F=A®B	XOR

PIN DIAGRAM :-

Fig: Pin diagram of Dual 4-input multiplexer

CIRCUIT DIAGRAM: -

FIG: CIRCUIT DIAGRAM OF COMPOSITE LOGIC UNIT USING MULTIPLEXER

INSTRUMENT & COMPONENT REQUIRED:

SI NO.	ITEM	Specification	gTy.
1	TC 4539	It is the IC of 4-bit composite withmetic unit on ALU	2
2	TC 4081	It is the IC of AND gate	1
3	IC 4071	It is the IC of OR gate	1
4	IC 4069	It is the IC of NOT gate	1
5	IC 4070	It is the IC of XOR gate	1
6	Bread board	It is the equipment to make electrical connections	1
7	Electrical wines	Used to do electrical connect ions by making connection in bread board	15

VERIFICATION TABLE &-

Select	Select Lines		put	Output	Operations
Sı	So	Ai	Bi	(Fi)	·
0	0	0	\circ	Do	TOM
0		0	1	Di	AND
	0	1	0	D ₂	OR
		1	1	D3	XOR
100 02					

CONCLUSION:

we have implemented design and experimentation of a composite logic unit using multiplexer with the help of various components like NOT, AND, OR & XOR gate. We observed the experiment is successful and with the help of circuits and observation table.

EXPERIMENT No.3-CO-05(B)

TITLE 6- Design a 4-bit composite Anichmetic Unit using Multiplexer.

OBJECTIVE: To design a 4-bit composite Arithmetic Unit using Multiplexon.

THEORY: The Arithmetic Unit (AU) also called the
Arithmetic Logic Unit (ALU), is a part of the
Central Processing Unit (CPU). It is often referred to as
the Engine of the CPU because it allows the Computer to
perform mathematical calculation such as addition, subtra
ction etc. The Arithmetic Unit comprised of many interconnected elements that are designed to perform specific task.
The basic component of an ALU is the parallel adder. By
controlling the data inputs to the adder, it is possible to
Obtain different types of arithmetic operations.

FUNCTION TABLE :-

Function Selection			Output of the	OUTPUT (F)	Function Name
Si	So	Cin	Mux(y)		
0	0	\circ	В	F=AtB	Add B to A
0	0	1	В	F=AtB+1	Add B to A plus 1
0		0	B'	F=A+B'	Add 1's complement
0		1	В'	F=AtB'+1	Add 1's complement of B to A Add 2's complement of B to A
1	0	0	O	F=A	Triansfer A
1	0		0	F=AH1	Increment A

CONID

INSTRUMENT & COMPONENT REQUIRED: -

Function Sclo	ction	Output of the	Output (F)	Function Name
S ₁ S ₀	Cin	MUX(Y)		
1 1	0	AB	F=A.1	Decrement A
1	1	AB	F=A	Transfer A

PIN DIAGRAM:-

FIG. Pin diagram of 4-bit binary Full adder

VDD EB So I3B I2B I1B I0B	05
TC 4539	pandapan alimbanananini dise
1 2 3 4 5 6 7 FA SI ISA IZA I,A IOA OA Fig IC 9639 (Dual 4-input	Vss Multi

INSTRUMENT & COMPONENTS REQUIRED :-

SI NO-	ITEM	Specification	QTY.
1	TC 4539	It is the IC of 4-bit composite with medic unit on ALU	2
2	TC4008	It is the IC of BCD adder corcuit	1
3	TC 4069	It is the IC of NOT gate	1
4	Bread board	It is the equipment to make electrical connections	1
5	Logic trainor	The main component to do the experiments	1
6	Electrical wires	Used to do electrical connection with bread board, ICs, trainer kit	25

'	CIRCUIT	DIHUKAM				
	CIN -					
Bo-	S ₀ —	S14:1 Y				
	1	1 MUX		D		
A _o	1	3		Bo Ao	CIN	
B ₁ -	400	50 4:1 Y		В,	TC Co	S4 — F3
A_1		13 100	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE		4m0	$ \begin{array}{cccc} S_4 & & & F_3 \\ S_3 & & & F_2 \\ S_2 & & & & F_3 \end{array} $
B2-	L ₀ -	\$ 4:1 7	The second secon	B ₂		$S_1 - F_0$
A ₂ -		1 MU ¹		A_2		
B3 -	L/0-	8 4:1 X		A ₃		
		1 NUK				
A_3						

Fig. Circuit diagnom of Composite Arithmetic Unit using Mux

VERIFICATION TABLE:

Function	Select Inputs			Input (A)			Input (B)			Cour Fg F2 F4						
	S	S_{0}	Cin	Ag	Ap	Az	A	Ba	Ba	B1	Bo	Cour	Fg	F2	FA	Fo
	0	0	0			1.						•				
	0	0	1													
	0	1	0								-					
	0	1	1									and the same of				
	1	0	0			Mad row i comp	100 JBb 7 www.			1						
	1	0	1	Maria Caranga (na Anar		PO POLICE STREET				-						7
	1	1	0						-	1	1	-			+	-
	1	1	1					-	-	1						-

CONCLUSION:-

We have implemented design and experimentation of a composite withmetic using multiplexer with the help of various components like NOT, BCD adder gate and we also observed the experiment is successful with the help of circuits and observation table.