

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

LIFE SCIENCES P2

FEBRUARY/MARCH 2015

MEMORANDUM

MARKS: 150

This memorandum consists of 12 pages.

PRINCIPLES RELATED TO MARKING LIFE SCIENCES

1. If more information than marks allocated is given

Stop marking when maximum marks is reached and put a wavy line and 'max' in the right hand margin.

2. If, for example, three reasons are required and five are given

Mark the first three irrespective of whether all or some are correct/incorrect.

3. If whole process is given when only a part of it is required

Read all and credit the relevant part.

4. If comparisons are asked for but descriptions are given

Accept if the differences / similarities are clear.

5. If tabulation is required but paragraphs are given

Candidates will lose marks for not tabulating.

6. If diagrams are given with annotations when descriptions are required

Candidates will lose marks.

7. If flow charts are given instead of descriptions

Candidates will lose marks.

8. If sequence is muddled and links do not make sense

Where sequence and links are correct, credit. Where sequence and links is incorrect, do not credit. If sequence and links becomes correct again, resume credit.

9. Non-recognized abbreviations

Accept if first defined in the answer. If not defined, do not credit the unrecognised abbreviation but credit the rest of the answer if correct.

10. Wrong numbering

If answer fits into the correct sequence of questions but the wrong number is given, it is acceptable.

11. If language used changes the intended meaning

Do not accept.

12. **Spelling errors**

If recognizable accept the answer provided it does not mean something else in Life Sciences or if it is out of context.

13. If common names are given in terminology

Accept, provided it was accepted at the national memo discussion meeting.

Life Sciences/P2 DBE/Feb.-Mar. 2015

NSC - Memorandum

14. If only the letter is asked for but only the name is given (and vice versa) Do not credit.

15. If units are not given in measurements

Candidates will lose marks. Memorandum will allocate marks for units separately.

16. Be sensitive to the sense of an answer, which may be stated in a different way.

17. Caption

All illustrations (diagrams, graphs, tables, etc.) must have a caption.

18. Code-switching of official languages (terms and concepts)

A single word or two that appears in any official language other than the learners' assessment language used to the greatest extent in his/her answers should be credited if it is correct. A marker that is proficient in the relevant official language should be consulted. This is applicable to all official languages.

19. Changes to the marking memorandum

No changes must be made to the marking memoranda without consulting the Provincial Internal Moderator who in turn will consult with the National Internal Moderator (and the Umalusi moderators where necessary).

20. Official memoranda

Only memoranda bearing the signatures of the National Internal Moderator and the Umalusi moderators and distributed by the National Department of Basic Education via the provinces must be used.

SECTION A

Life Sciences/P2

QUESTION 1

1.1	1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.1.9 1.1.10	$\begin{array}{c} D\checkmark\checkmark\\ B\checkmark\checkmark\\ B\checkmark\checkmark\\ D\checkmark\checkmark\\ A\checkmark\checkmark\\ C\checkmark\checkmark\\ B\checkmark\checkmark\\ A\checkmark\checkmark\\ D\checkmark\checkmark\\ D\checkmark\checkmark \end{array} 10 x 2)$	(20)
1.2	1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10	Homologous Genome DNA profile /fingerprint Albinism Peptide bonds Karyotype /Karyogram Nuclear pores Clone Hypothesis Biogeography (10 x 1)	(10)
1.3	1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6	Both A and B ✓√/Both/A and B Both A and B ✓√/Both/A and B A only✓✓ B only✓✓ Both A and B ✓√/Both/A and B None✓✓ (6 x 2)	(12)
1.4	1.4.1	(a) W – Nucleotide ✓ U – DNA ✓	(2)
		(b) X – Phosphate √/phosphate ionY – Deoxyribose √ sugar	(2)
		(c) Z – Hydrogen√ bond	(1)
		(d) V – Adenine√	(1)
	1.4.2	Nucleus ✓	(1)
	1.4.3	Interphase ✓	(1) (8)

Copyright reserved Please turn over

TOTAL SECTION A:

50

SECTION B

QUESTION 2

2.1 2.1.1 2√ (1)

(a) $X^DX^d\checkmark\checkmark$ (b) $X^dX^d\checkmark\checkmark$ 2.1.2 (2)

(2)

2.1.3 Since the allele is found only on the X-chromosome√ A male only has one allele that is either dominant√ (normal) or recessive√ (colour-blind)

and therefore will always be colour blind√ (if recessive allele inherited) (Any 4)

100%√√ 2.1.4 (2) (11)

2.2 2.2.1 Andrew has short fingers while Susan has normal fingers√ Andrew has straight hair while Susan has curly hair√ (2)

2.2.2 Bh√, bh√ (2)(4)

(a) $I^BI^B \checkmark$ of $I^Bi \checkmark$ 2.3 2.3.1 (2)(b) ji√ (1)

2.3.2 The baby inherited one allele for type O blood/i from each parent√ since

her genotype is ii√

Mr Phonela does not have an allele for O blood/i√ (3)

2.3.3 Blood type can be used to exclude a particular man√ as the parent but it cannot confirm that a particular man is the father√ Since a large portion of the population have the same blood type

(Any 2) (2)

(4)

2.3.4 Normal females have two X√ chromosomes

- Normal males have one X and one Y√
- The female always provides X in the egg√
- If an egg cell is fertilized by an X bearing sperm√ a female/girl√is formed
- If an egg is fertilized by a Y bearing sperm√
- a male/boy√ is formed (Any 5)

OR

Gametes	male gamete√		
		Х	Υ
female gamete√	Х	XX√	XY√

2 XX: 2 XY

Female ✓ Male ✓ (Any 5) (5)

(13)

2.4 2.4.1 To prevent the flowers in Population 1√ from self-pollination√ OR To ensure cross-pollination√ between the flowers of Population 1 and Population 2√ (2) 2.4.2 The seeds produced did not germinate√ (1) 2.4.3 Type of soil√ Amount of water√ Temperature √ pH√ Exposure to sunlight√ Depth of sowing in soil√ (Mark first TWO only) (Any 2) (2)2.4.4 Repeat the investigation√ Increase the sample size √/number of seeds/number of plots/ number of plants (Mark first ONE only) (Any 1) (1) (6) 2.5 A population of a particular species may split into two populations√ because of a geographic barrier√ There will be no gene flow between the two separated populations√ Due to the difference in environmental conditions√ Natural selection√ will occur independently Making them genotypically ✓ and Phenotypically different over a period of time. Even if the two populations mixed at a later stage, they will

not be able to interbreed again√ resulting in a new species

(Any 6)

(6) [40]

QUESTION 3

3.1 3.1.1

Criterion	Elaboration	Mark
Type of graph	Type of graph Histogram is drawn of Meiosis II	
Caption	Caption Including both variables: 'Incidence of Down	
	syndrome and Maternal age'	1
X-axis	X-axis Correct label and units for X-axis: Maternal Age	
	(years); Equal width of bars	
Y-axis	Y-axis Correct label, unit and scale for Y-axis:	
	Incidence of Down syndrome (per 1 000 births)	
Plotting of the 1 – 4 bars plotted correctly – 1 mark		2
bars	5 bars correctly plotted – 2 marks	

(6)

NOTE:

If axes are transposed:

Marks will be lost for labelling of 'X-axis' and 'Y-axis'.

	3.1.2	Non-disjunction√	(1)
	3.1.3	Meiosis I√	(1)
	3.1.4	Number of Down syndrome babies = $\frac{1.9}{7.8}$ × 44 × = 10,71 × /11 babies	(3) (11)
3.2	3.2.1	 DNA carries hereditary information√ DNA contains coded information for protein synthesis√ (Mark first ONE only) (Any 1) (1)
	3.2.2	ACA ✓	(1)
	3.2.3	Threonine√; Cysteine√ (must be in correct order)	(2)
	3.2.4	Both ATG and ATA√Code for the same amino acid/tyrosine√	(2)
	3.2.5	 The anticodon on the tRNA matches the codon on the mRNA√ tRNA brings the required amino acid√ to the ribosome√ amino-acids are joined by peptide bonds√ to form the required protein√ (Any 5)) (5) (11)

DBE/Feb.-Mar. 2015

Life Sciences/P2

Life Sciences/P2 DBE/Feb.-Mar. 2015

NSC - Memorandum

3.3 3.3.1 P_1 phenotype red-yellow X red-yellow√ Χ RY✓ genotype RY

Meiosis **G**/gametes

Fertilisation

F₁ genotype

phenotype red-yellow yellow√ red apples apples apples

 P_1 and $F_1 \checkmark$ Meiosis and fertilisation√ (Any 6)

OR

 P_1 red-yellow red-yellow√ phenotype Χ RY Χ RY√ genotype

Meiosis

Fertilisation

Gametes	R	Υ
R	RR	RY
Υ	RY	YY

1 mark for correct gametes 1 mark for correct genotypes

 F_1 RR, genotype RY, red-yellow yellow√ phenotype red apples apples apples

 P_1 and $F_1 \checkmark$ Meiosis and fertilisation√ (Any 6) (6)

3.3.2 50%√/half (1)

3.3.3 A tree with red apples√ should be crossed with a tree that produces yellow apples√ (2)(9)

TOTAL SECTION B:

80

SECTION C

QUESTION 4

4.1 <u>Evolution according to Lamarck</u>

Lamarck explained evolution using the following two 'laws':

The law of use and disuse: ✓

- As an organism uses a structure or organ more regularly ✓, it becomes better developed or enlarged in that organism ✓.
- If an organism does not use a structure or organ frequently ✓, it becomes less developed or reduced in size and may disappear altogether in that organism ✓

The inheritance of acquired characteristics: ✓

- Characteristics developed during the life of an individual√
- (Acquired characteristics) can be passed on to their offspring. ✓ (Max 5) (5)

Evolution according to Darwin

- Organisms produce a large number of offspring√
- There is a great deal of variation√ amongst the offspring
- Some have favourable characteristics√
- and some do not√
- When there is a change in the environmental conditions √/or
- there is competition
- Then organisms with characteristics which are more favourable survive√
- Whilst organisms with less favourable characteristics die√
- This is called natural selection√
- The organisms that survive reproduce√
- And thus pass on the favourable characteristics to their offspring√
- The next generation will therefore have a higher proportion of individuals with the favourable characteristics ✓ (Max 8) (8)

Darwin's ideas about gradualism compared to Punctuated Equilibrium

- Darwin believed that evolution takes place through an
- accumulation of small√
- gradual changes that occur over a long period of time√
- supported by transitional forms in fossil record√
- Punctuated equilibrium suggested that evolution sometimes involves long periods of time where species do not change \(\sqrt{very little change occurs} \)
- This alternates with short periods of time where rapid changes occur√
- New species are formed in a short period of time //relative to the long period of no/little change
- supported by the absence of transitional forms√ (Max 4) (4)

Content: (17) Synthesis: (3)

ASSESSING THE PRESENTATION OF THE ESSAY

Criterion	Relevance (R)	Logical sequence (L)	Comprehensive (C)
Generally	All information provided	Ideas are arranged in	All aspects required by
	is relevant to the topic	a logical/cause-effect	the essay have been
		sequence	sufficiently addressed
In this	There is no irrelevant	The information	At least three points
essay	information. Only	provided for each of	included on each of the
	information relating to	the theories of	3 theories:
	the theories of Lamarck	Lamarck and/or	Lamarck,
	and/or Darwin and/or	Darwin and/or	Darwin and
	Punctuated Equilibrium	Punctuated Equilibrium	Punctuated Equilibrium
	is/are given.	is/are arranged	
		logically.	
Mark	1	1	1
	R	L	C

TOTAL SECTION C: 20 GRAND TOTAL: 150