Theoretische Informatik

Florin Manea (basierend auf den Folien von Carsten Damm)

Stand: 22. April 2025

Jetzt:

- 🚺 Einführung
 - Bücher
 - Motivation
 - Symbole, Wörter und Sprachen
 - Operationen auf Sprachen
 - Sprachklassen
 - Reguläre Ausdrücke

Symbol und Alphabet

Symbole (Zeichen)

= kleinste bedeutungstragende Einheiten der Kommunikation.

Bedingung: Unterscheidbarkeit von anderen Zeichen.

Beispiele: 0, 1, a, ...

Sogar Grafiken oder Wörter/Wortgruppen können Zeichen sein, wenn sie

stellvertretend für irgendeinen "Sinn" stehen.

Beispiele: ₹, ∰, STOP, Straßenbahn kreuzt, ...

Symbol und Alphabet

Symbole (Zeichen)

= kleinste bedeutungstragende Einheiten der Kommunikation.

Bedingung: Unterscheidbarkeit von anderen Zeichen.

Beispiele: 0, 1, a, ...

Sogar Grafiken oder Wörter/Wortgruppen können Zeichen sein, wenn sie

stellvertretend für irgendeinen "Sinn" stehen.

Beispiele: ∜, ∰, STOP, Straßenbahn kreuzt, ...

Alphabet

Ein Alphabet ist eine nichtleere, endliche Menge von Symbolen.

Wir benutzen Σ als Bezeichnung(!) für ein vereinbartes Alphabet. Kommen weitere ins Spiel, so können wir sie mit $\Sigma_1, \Sigma_2, \Sigma', \dots$ unterscheiden.

Wörter

Ein Wort (String) über Σ ist eine endliche Folge w von Zeichen aus Σ . Die Länge von w wird mit |w| bezeichnet. Beispiel: 101001 hat Länge 6.

Wörter

Ein Wort (String) über Σ ist eine endliche Folge w von Zeichen aus Σ . Die Länge von w wird mit |w| bezeichnet. Beispiel: 101001 hat Länge 6. Das leere Wort ε ist die Zeichenfolge der Länge 0.

Wörter

Ein Wort (String) über Σ ist eine endliche Folge w von Zeichen aus Σ . Die Länge von w wird mit |w| bezeichnet. Beispiel: 101001 hat Länge 6. Das leere Wort ε ist die Zeichenfolge der Länge 0.

Konkatenation von Wörtern

Die Konkatenation (Verkettung) von Wörtern $u, v \in \Sigma$ ist die Operation $(u, v) \mapsto uv$, wobei $uv = u \cdot v$ die Hintereinanderschreibung angibt.

Wörter

Ein Wort (String) über Σ ist eine endliche Folge w von Zeichen aus Σ . Die Länge von w wird mit |w| bezeichnet. Beispiel: 101001 hat Länge 6. Das leere Wort ε ist die Zeichenfolge der Länge 0.

Konkatenation von Wörtern

Die Konkatenation (Verkettung) von Wörtern $u, v \in \Sigma$ ist die Operation $(u, v) \mapsto uv$, wobei $uv = u \cdot v$ die Hintereinanderschreibung angibt. Offenbar gilt |uv| = |u| + |v| und $u\varepsilon = \varepsilon u = u$ für alle Wörter u, v.

Wörter

Ein Wort (String) über Σ ist eine endliche Folge w von Zeichen aus Σ . Die Länge von w wird mit |w| bezeichnet. Beispiel: 101001 hat Länge 6. Das leere Wort ε ist die Zeichenfolge der Länge 0.

Konkatenation von Wörtern

Die Konkatenation (Verkettung) von Wörtern $u, v \in \Sigma$ ist die Operation $(u, v) \mapsto uv$, wobei $uv = u \cdot v$ die Hintereinanderschreibung angibt. Offenbar gilt |uv| = |u| + |v| und $u\varepsilon = \varepsilon u = u$ für alle Wörter u, v.

Potenzierung

Die *n*-te Potenz u^n eines Strings u ist die Konkatenation von n Exemplaren von u. Potenzen beziehen sich nur auf den unmittelbar davor stehenden Bestandteil. Beispiel: $0001^3 = 0001111, (0001)^3 = 0001000100001$

4□ > 4回 > 4 = > 4 = > = 900

Wörter

Ein Wort (String) über Σ ist eine endliche Folge w von Zeichen aus Σ . Die Länge von w wird mit |w| bezeichnet. Beispiel: 101001 hat Länge 6. Das leere Wort ε ist die Zeichenfolge der Länge 0.

Konkatenation von Wörtern

Die Konkatenation (Verkettung) von Wörtern $u, v \in \Sigma$ ist die Operation $(u, v) \mapsto uv$, wobei $uv = u \cdot v$ die Hintereinanderschreibung angibt. Offenbar gilt |uv| = |u| + |v| und $u\varepsilon = \varepsilon u = u$ für alle Wörter u, v.

Potenzierung

Die n-te Potenz u^n eines Strings u ist die Konkatenation von n Exemplaren von u. Potenzen beziehen sich nur auf den unmittelbar davor stehenden Bestandteil.

Beispiel: $0001^3 = 000111, (0001)^3 = 000100010001$

Spezialfall: $u^0 = \varepsilon$ für alle Wörter u.

Python-Notation

Begriff	formelhaft	Python
String	u = 010010001, v = 00	u =' 010010001', v =' 00'
		oder $u = "010010001"$, $v = "00"$
Länge	<i>u</i>	len(u)
Zeichen	0, 1, <i>a</i> ,	′0′,′ 1′,′ a′, (Strings der Länge 1)
leeres Wort	arepsilon	"
Alphabet	{0,1}	$set(\{'0','1'\})$
Konkatenation	$uv = u \cdot v = 01001000100$	u + v ==' 01001000100'
Potenzierung	μ^3	u * 3

Teilwörter

Sei w ein Wort über Σ .

Ein Wort y heißt Teilwort (Teilstring, Faktor oder Infix) von w, falls es Wörter x, z gibt mit w = xyz.

Teilwörter

Sei w ein Wort über Σ .

Ein Wort y heißt Teilwort (Teilstring, Faktor oder Infix) von w, falls es Wörter x, z gibt mit w = xyz.

Präfix und Suffix

y heißt dann Präfix (bzw. Suffix) von w, falls darüberhinaus $x = \varepsilon$ (bzw. $z = \varepsilon$).

Teilwörter

Sei w ein Wort über Σ .

Ein Wort y heißt Teilwort (Teilstring, Faktor oder Infix) von w, falls es Wörter x, z gibt mit w = xyz.

Präfix und Suffix

y heißt dann Präfix (bzw. Suffix) von w, falls darüberhinaus $x = \varepsilon$ (bzw. $z = \varepsilon$).

SoSe2020 hat z.B. So als ein Präfix, e2020 als ein Suffix und oSe als Infix.

Kleenesche Hülle

Die Menge aller Wörter über Σ (inklusive ε) wird mit Σ^* bezeichnet (Kleenesche Hülle von Σ).

Kleenesche Hülle

Die Menge aller Wörter über Σ (inklusive ε) wird mit Σ^* bezeichnet (Kleenesche Hülle von Σ). Die Menge der *nichtleeren Wörter* über Σ wird mit Σ^+ bezeichnet (positive Hülle).

Es gilt: $\Sigma^* = \Sigma^+ \cup \{\varepsilon\}$

Kleenesche Hülle

Die Menge aller Wörter über Σ (inklusive ε) wird mit Σ^* bezeichnet (Kleenesche Hülle von Σ). Die Menge der *nichtleeren Wörter* über Σ wird mit Σ^+ bezeichnet (positive Hülle).

Es gilt: $\Sigma^* = \Sigma^+ \cup \{\varepsilon\}$

Formale Sprache

Jede Teilmenge $L \subseteq \Sigma^*$ wird formale Sprache über Σ genannt. Die Menge kann leer, endlich oder unendlich sein.

Kleenesche Hülle

Die Menge aller Wörter über Σ (inklusive ε) wird mit Σ^* bezeichnet (Kleenesche Hülle von Σ). Die Menge der *nichtleeren Wörter* über Σ wird mit Σ^+ bezeichnet (positive Hülle).

Es gilt: $\Sigma^* = \dot{\Sigma}^+ \cup \{\varepsilon\}$

Formale Sprache

Jede Teilmenge $L\subseteq \Sigma^*$ wird formale Sprache über Σ genannt. Die Menge kann leer, endlich oder unendlich sein.

Beispiele

Alphabet Σ	Sprache	Beispielwörter	Größe
beliebig	$Zero = \emptyset$	_	0
beliebig	$Unit = \{arepsilon\}$	arepsilon	1
$\{a,b,c\}$	$MyLang = \{\varepsilon, aa, aba\}$	arepsilon, aa	3
$\{a,, z\}$	Σ^*	Ь	∞
$\{a,b,c\}$	$Pref(abc) = \{w : w Präfix von abc\}$	arepsilon, a, ab, abc	4
$\{0,1\}$	$L_{U} = \{0^{i}1 : i \geq 0\}$	$1,0001,\underbrace{000}_{1}1$	∞
$\{a,b\}$	$L_{\#\mathbf{a} < \#\mathbf{b}} = \{ a^i b^j : i, j \ge 0 \land i < j \}$	b, abb, aabbb,, a ⁵ b ⁵⁵	∞

Sprachen mit Python definieren

• endliche Sprachen können wir durch Auflisten aller Wörter angeben:

```
MyLang = {'', 'aa', 'aba'}
Zero = set()  # leere Menge = leere Sprache
Unit = set({''})  # Sprache, die nur das leere Wort enth lt
```

Sprachen mit Python definieren

• endliche Sprachen können wir durch Auflisten aller Wörter angeben:

```
MyLang = {'', 'aa', 'aba'}
Zero = set()  # leere Menge = leere Sprache
Unit = set({''})  # Sprache, die nur das leere Wort enth lt
```

• unendliche Sprachen können wir auf diese Weise höchstens teilweise angeben, z.B. bis zu einer bestimmten Länge

```
L01Rep9 = {'01'*i for i in range(10)} # range(10) = {0,1,2,3,4,5,6,7,8,9}
La_lt_b_9 = {'a'*i + 'b'*j for i in range(10) for j in range(i)}
```

Lexikographische Ordnung auf Σ^*

Sei $\Sigma = \{\sigma_1, \sigma_2, ..., \sigma_\ell\}$ mit einer Ordnung auf den Zeichen: $\sigma_1 < \sigma_2 < ... < \sigma_\ell$.

Lexikographische Ordnung auf Σ^*

Sei $\Sigma = \{\sigma_1, \sigma_2, ..., \sigma_\ell\}$ mit einer Ordnung auf den Zeichen: $\sigma_1 < \sigma_2 < ... < \sigma_\ell$. Nun definieren wir "Wort u ist lexikographisch kleiner als Wort v ($u \prec v$)":

• $u = u_1 u_2 \cdots u_m \prec v = v_1 v_2 \cdots v_n$, falls u Präfix von v ist oder aber $\exists i : u_i < v_i \land \forall j < i : u_j = v_j$ (d.h. die Zeichen an der ersten Unterscheidungsstelle stehen in Alphabetordnung)

Python

```
def lexlt(s, t):
    if t == '':
        return False
    if s == '' or s[0] < t[0]:
        return True
    return (s[0] == t[0]) & lexlt(s[1:],t[1:])</pre>
```

Lexikographische Ordnung auf Σ^*

Sei $\Sigma = \{\sigma_1, \sigma_2, ..., \sigma_\ell\}$ mit einer Ordnung auf den Zeichen: $\sigma_1 < \sigma_2 < ... < \sigma_\ell$. Nun definieren wir "Wort u ist lexikographisch kleiner als Wort v ($u \prec v$)":

• $u = u_1 u_2 \cdots u_m \prec v = v_1 v_2 \cdots v_n$, falls u Präfix von v ist oder aber $\exists i : u_i < v_i \land \forall j < i : u_j = v_j$ (d.h. die Zeichen an der ersten Unterscheidungsstelle stehen in Alphabetordnung)

Python

```
def lexlt(s, t):
    if t == '':
        return False
    if s == '' or s[0] < t[0]:
        return True
    return (s[0] == t[0]) & lexlt(s[1:],t[1:])</pre>
```

Problem

Lexikographische Anordnung ist ungeeignet für systematische Auflistungen:

$$\{0,1\}^* = \{\varepsilon,0,00,000,0000,00000,...\}$$
???

Numerische Ordnung auf Σ^*

längen-lexikographisch kleiner als (<)

```
• falls |u| < |v|, so u < v
```

• falls
$$|u| = |v|$$
, so $u < v$ gdw. $u \prec v$

Beispiel:
$$\{0,1\}^* = \{\varepsilon,0,1,00,01,10,11,000,001,...\}$$

Numerische Ordnung auf Σ^*

längen-lexikographisch kleiner als (<)

```
• falls |u| < |v|, so u < v
```

• falls |u| = |v|, so u < v gdw. $u \prec v$

Beispiel: $\{0,1\}^* = \{\varepsilon,0,1,00,01,10,11,000,001,...\}$

Längen-lexikographisch = numerisch

Eine Abbildung $f: \mathbb{N}_+ \to M$ mit $M = \{f(1), f(2), ...\}$ heißt Aufzählung von M. Beispiel: $\{0, 1\}^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, ...\}$ entspricht der Aufzählung

 $n \mapsto \text{Binärdarstellung von } n \text{ ohne führende } 1.$

Anders ausgedrückt: für das n-te Wort w gilt 1w = bin(n).

Numerische Ordnung auf Σ^*

längen-lexikographisch kleiner als (<)

```
• falls |u| < |v|, so u < v
```

• falls |u| = |v|, so u < v gdw. $u \prec v$

Beispiel: $\{0,1\}^* = \{\varepsilon,0,1,00,01,10,11,000,001,...\}$

Längen-lexikographisch = numerisch

```
Eine Abbildung f: \mathbb{N}_+ \to M mit M = \{f(1), f(2), ...\} heißt Aufzählung von M. Beispiel: \{0, 1\}^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, ...\} entspricht der Aufzählung
```

 $n \mapsto \text{Binärdarstellung von } n \text{ ohne führende } 1.$

Anders ausgedrückt: für das n-te Wort w gilt 1w = bin(n).

Python

```
# Python-Funktion bin, Bsp.: bin(5) == '0b101'
def nthbitstring(n):
    return bin(n)[3:] # Praefix '0b1' weglassen
```

Jetzt:

- 🚺 Einführung
 - Bücher
 - Motivation
 - Symbole, Wörter und Sprachen
 - Operationen auf Sprachen
 - Sprachklassen
 - Reguläre Ausdrücke

Produkt zweier Sprachen

= Konkatenationen der Wörter der ersten mit denen der zweiten Sprache:

$$L_1\circ L_2=L_1L_2:=\{xy:x\in L_1\wedge y\in L_2\}$$

Produkt zweier Sprachen

= Konkatenationen der Wörter der ersten mit denen der zweiten Sprache:

$$L_1 \circ L_2 = L_1 L_2 := \{ xy : x \in L_1 \land y \in L_2 \}$$

Python-Funktion

```
def cat(L1, L2):
    return set({x+y for x in L1 for y in L2})
```

Potenzierung von Sprachen

Die leere Sprache Ø

Für alle Sprachen L gilt: $L \circ \emptyset = \emptyset \circ L = \emptyset$.

Vergleich: $\forall x \in \mathbb{N} : 0 \cdot x = x \cdot 0 = 0$

Die Einheitssprache $\{\varepsilon\}$

Für alle Sprachen L gilt: $L \circ \{\varepsilon\} = \{\varepsilon\} \circ L = L$.

Vergleich: $\forall x \in \mathbb{N} : 1 \cdot x = x \cdot 1 = x$

Potenzierung von Sprachen

Die leere Sprache Ø

Für alle Sprachen L gilt: $L \circ \emptyset = \emptyset \circ L = \emptyset$.

Vergleich: $\forall x \in \mathbb{N} : 0 \cdot x = x \cdot 0 = 0$

Die Einheitssprache $\{\varepsilon\}$

Für alle Sprachen L gilt: $L \circ \{\varepsilon\} = \{\varepsilon\} \circ L = L$.

Vergleich: $\forall x \in \mathbb{N} : 1 \cdot x = x \cdot 1 = x$

Das motiviert diese Festlegungen

- $L^0 := \{ \varepsilon \}$
- $L^n := LL^{n-1}$ für n > 0

Insbesondere

$$\emptyset^i = \begin{cases} \{\varepsilon\} & i = 0\\ \emptyset & \text{sonst.} \end{cases}$$

Potenzierung von Sprachen

Die leere Sprache ∅

Für alle Sprachen L gilt: $L \circ \emptyset = \emptyset \circ L = \emptyset$.

Vergleich: $\forall x \in \mathbb{N} : 0 \cdot x = x \cdot 0 = 0$

Die Einheitssprache $\{\varepsilon\}$

Für alle Sprachen L gilt: $L \circ \{\varepsilon\} = \{\varepsilon\} \circ L = L$.

Vergleich: $\forall x \in \mathbb{N} : 1 \cdot x = x \cdot 1 = x$

Das motiviert diese Festlegungen

- $L^0 := \{\varepsilon\}$
- $L^n := LL^{n-1}$ für n > 0

Insbesondere

$$\emptyset^i = \begin{cases} \{\varepsilon\} & i = 0\\ \emptyset & \text{sonst.} \end{cases}$$

def power(L,n):
 return Unit if n==0 else cat(L,power(L,n-1))

Hülle einer formalen Sprache

Ist $L \subseteq \Sigma^*$, so ist die Kleenesche Hülle von L definiert durch

$$L^* = \bigcup_{i \geq 0} L^i.$$

Die positive Hülle von L ist die Menge

$$L^+ = \bigcup_{i>0} L^i.$$

Hülle einer formalen Sprache

Ist $L \subseteq \Sigma^*$, so ist die Kleenesche Hülle von L definiert durch

$$L^* = \bigcup_{i \ge 0} L^i.$$

Die positive Hülle von *L* ist die Menge

$$L^+ = \bigcup_{i>0} L^i.$$

Beispiel

Sei $L = \{0, 11\}$. Dann enthält L^* diese Wörter

$$\varepsilon, 0, 00, 11, 000, 011, 110, 0000, 0011, 0110, 1100, 1111, \dots$$

und
$$L^+ = L^* \setminus \{\varepsilon\}$$
.

Einfache Mengenoperationen

Seien L, L_1, L_2 formale Sprachen über Σ .

Vereinigung und Schnitt

$$L_1 \cup L_2 = \{ w : w \in L_1 \lor w \in L_2 \}$$

$$L_1 \cap L_2 = \{ w : w \in L_1 \land w \in L_2 \}$$

Einfache Mengenoperationen

Seien L, L_1, L_2 formale Sprachen über Σ .

Vereinigung und Schnitt

$$L_1 \cup L_2 = \{ w : w \in L_1 \lor w \in L_2 \}$$

$$L_1 \cap L_2 = \{ w : w \in L_1 \land w \in L_2 \}$$

Differenz, symmetrische Differenz und Komplement

$$L_1 \setminus L_2 = \{ w : w \in L_1 \land w \notin L_2 \}$$

$$L_1 \Delta L_2 = (L_1 \setminus L_2) \cup (L_2 \setminus L_1)$$

$$\overline{L} = \Sigma^* \setminus L$$

Felder des Schachbretts

$$\{A, B, C, D, E, F, G, H\} \circ \{1, 2, 3, 4, 5, 6, 7, 8\}$$

• Felder des Schachbretts

$${A, B, C, D, E, F, G, H} \circ {1, 2, 3, 4, 5, 6, 7, 8}$$

Uhrzeiten

$$\big(\{2\} \circ \{0,1,2,3\} \cup \{\varepsilon,1\} \circ \Sigma\big) \circ \{:\} \circ \{0,1,...,5\} \circ \Sigma, \text{ mit } \Sigma = \{0,1,...,9\}$$

Felder des Schachbretts

$$\{A, B, C, D, E, F, G, H\} \circ \{1, 2, 3, 4, 5, 6, 7, 8\}$$

Uhrzeiten

$$(\{2\} \circ \{0,1,2,3\} \cup \{\varepsilon,1\} \circ \Sigma) \circ \{:\} \circ \{0,1,...,5\} \circ \Sigma, \text{ mit } \Sigma = \{0,1,...,9\}$$

Schaltjahre¹ (Jahr durch 400 teilbar oder durch 4 aber nicht durch 100)

$$S = VH \cup (V \cap \overline{\Sigma^* \circ \{00\}}),$$

wobei
$$V = G_1 \cup \Sigma^2 \circ (G \circ G_1 \cup U \circ G_2), VH = V \circ \{00\}, \text{ mit } G_1 = \{0,4,8\}, G_2 = \{2,6\}, G = G_1 \cup G_2, U = \overline{G}$$

Σ* als Monoid

Ein Monoid (M, \circ, e) besteht aus einer Menge M mit assoziativer Verknüpfungsoperation $\circ: M \times M \to M$ und neutralem Element $e \in M$, d.h.

- $\forall a, b, c \in M : a \circ (b \circ c) = (a \circ b) \circ c =: a \circ b \circ c$
- $\forall a \in M : a \circ e = e \circ a = a$.

Σ* als Monoid

Ein Monoid (M, \circ, e) besteht aus einer Menge M mit assoziativer Verknüpfungsoperation $\circ: M \times M \to M$ und neutralem Element $e \in M$, d.h.

- $\forall a, b, c \in M : a \circ (b \circ c) = (a \circ b) \circ c =: a \circ b \circ c$
- $\forall a \in M : a \circ e = e \circ a = a$.

Beispiele

- $(\Sigma^*, \cdot, \varepsilon)$
- \bullet (N, +, 0) natürliche Zahlen mit Addition
- ullet ($\mathbb{N}_+,\cdot,1$) positive natürliche Zahlen mit Multiplikation

Σ* als Monoid

Ein Monoid (M, \circ, e) besteht aus einer Menge M mit assoziativer Verknüpfungsoperation $\circ: M \times M \to M$ und neutralem Element $e \in M$, d.h.

- $\forall a, b, c \in M : a \circ (b \circ c) = (a \circ b) \circ c =: a \circ b \circ c$
- $\forall a \in M : a \circ e = e \circ a = a$.

Beispiele

- $(\Sigma^*, \cdot, \varepsilon)$
- $(\mathbb{N}, +, 0)$ natürliche Zahlen mit Addition
- \bullet ($\mathbb{N}_+,\cdot,1$) positive natürliche Zahlen mit Multiplikation

Freies Monoid

Ein Monoid heißt frei erzeugt von $A \subseteq M$, wenn jedes Element eindeutig darstellbar ist als Verknüpfung $a_1 \circ a_2 \circ \cdots \circ a_n$ endlich vieler Elemente aus A.

- $(\Sigma^*, \cdot, \varepsilon)$ ist frei erzeugt von Σ
- $(\mathbb{N}, +, 0)$ ist frei erzeugt von $\{1\}$
- $(\mathbb{N}_+, \cdot, 1)$ ist *nicht* frei erzeugt, z.B. $2 \cdot 3 = 3 \cdot 2$

Eine Abbildung $h: \Sigma^* \to \Gamma^*$ heißt Homomorphismus, falls

$$\forall u,v \in \Sigma^* : h(uv) = h(u)h(v).$$

Eine Abbildung $h: \Sigma^* \to \Gamma^*$ heißt Homomorphismus, falls

$$\forall u, v \in \Sigma^* : h(uv) = h(u)h(v).$$

Willkürlich gewählte Abbildungen haben diese Eigenschaft nicht.

Beispiel: $\Sigma = \Gamma = \{0, 1\}, h(0) := 0, h(w) = 1 \text{ falls } w \neq 0.$

Eine Abbildung $h: \Sigma^* \to \Gamma^*$ heißt Homomorphismus, falls

$$\forall u, v \in \Sigma^* : h(uv) = h(u)h(v).$$

Willkürlich gewählte Abbildungen haben diese Eigenschaft nicht.

Beispiel:
$$\Sigma = \Gamma = \{0, 1\}, h(0) := 0, h(w) = 1 \text{ falls } w \neq 0.$$

Universalität

Sei $h: \Sigma \to \Gamma^*$ beliebig. Da Σ^* frei ist, gibt es genau eine Fortsetzung von h zu einem Homomorphismus $\hat{h}: \Sigma^* \to \Gamma^*$:

$$\hat{h}(w) = \begin{cases} \varepsilon & \text{falls } w = \varepsilon \\ h(w_1)h(w_2)\cdots h(w_n) & \text{falls } w = w_1w_2\cdots w_n \land \forall i \ w_i \in \Sigma. \end{cases}$$

Eine Abbildung $h: \Sigma^* \to \Gamma^*$ heißt Homomorphismus, falls

$$\forall u, v \in \Sigma^* : h(uv) = h(u)h(v).$$

Willkürlich gewählte Abbildungen haben diese Eigenschaft nicht.

Beispiel:
$$\Sigma = \Gamma = \{0, 1\}, h(0) := 0, h(w) = 1 \text{ falls } w \neq 0.$$

Universalität

Sei $h: \Sigma \to \Gamma^*$ beliebig. Da Σ^* frei ist, gibt es genau eine Fortsetzung von h zu einem Homomorphismus $\hat{h}: \Sigma^* \to \Gamma^*$:

$$\hat{h}(w) = \begin{cases} \varepsilon & \text{falls } w = \varepsilon \\ h(w_1)h(w_2)\cdots h(w_n) & \text{falls } w = w_1w_2\cdots w_n \land \forall i \ w_i \in \Sigma. \end{cases}$$

Konvention

Die Fortsetzung \hat{h} wird meist ebenfalls mit h bezeichnet.

Sei $\Sigma = \{0, 1, 2\}$ und $\Gamma = \{a, b\}$. Wir definieren Homomorphismen h, g durch Fortsetzung:

Sei $\Sigma = \{0, 1, 2\}$ und $\Gamma = \{a, b\}$. Wir definieren Homomorphismen h, g durch Fortsetzung:

• Sei $h: \Sigma^* \to \Gamma^*$ festgelegt durch

$$0\mapsto \textit{a}, 1\mapsto \textit{b}, 2\mapsto \textit{b}.$$

Dann ist z.B. h(0012) = aabb und das Bild von $L_1 = \{0^n 12^{n-1} : n > 1\}$ unter h ist

$$h(L_1) = \{a^n b^n : n \ge 1\}.$$

Sei $\Sigma = \{0, 1, 2\}$ und $\Gamma = \{a, b\}$. Wir definieren Homomorphismen h, g durch Fortsetzung:

• Sei $h: \Sigma^* \to \Gamma^*$ festgelegt durch

$$0\mapsto \textit{a}, 1\mapsto \textit{b}, 2\mapsto \textit{b}.$$

Dann ist z.B. h(0012) = aabb und das Bild von $L_1 = \{0^n 12^{n-1} : n \ge 1\}$ unter h ist

$$h(L_1) = \{a^n b^n : n \ge 1\}.$$

• Sei $g: \Sigma^* \to \Sigma^*$ festgelegt durch

$$0\mapsto 0, 1\mapsto 10, 2\mapsto 0.$$

Dann ist g(021) = 0010 und $g^{-1}(0010) = \{021, 001, 221, 201\} = \{0, 2\}^2\{1\}$ und $g^{-1}(0^n10^n) = \{0, 2\}^n\{1\}\{0, 2\}^{n-1}$.

◆ロト ◆団ト ◆豆ト ◆豆 ・ り へ ○

Sei $\Sigma = \{0, 1, 2\}$ und $\Gamma = \{a, b\}$. Wir definieren Homomorphismen h, g durch Fortsetzung:

• Sei $h: \Sigma^* \to \Gamma^*$ festgelegt durch

$$0\mapsto \textit{a}, 1\mapsto \textit{b}, 2\mapsto \textit{b}.$$

Dann ist z.B. h(0012) = aabb und das Bild von $L_1 = \{0^n 12^{n-1} : n \ge 1\}$ unter h ist

$$h(L_1) = \{a^n b^n : n \ge 1\}.$$

• Sei $g: \Sigma^* \to \Sigma^*$ festgelegt durch

$$0 \mapsto 0, 1 \mapsto 10, 2 \mapsto 0.$$

Dann ist g(021) = 0010 und $g^{-1}(0010) = \{021, 001, 221, 201\} = \{0, 2\}^2\{1\}$ und $g^{-1}(0^n10^n) = \{0, 2\}^n\{1\}\{0, 2\}^{n-1}$.

Für das Urbild $g^{-1}(L_2)$ von $L_2 = \{0^n 10^n : n \ge 1\}$ unter g gilt

$$g^{-1}(L_2) \cap \{0\}^*\{1\}\{2\}^* = \{0^n 1 2^{n-1} : n \ge 1\}.$$

Reflexion

Reflexion eines Worts

Für $w \in \Sigma^*$ ist w^R rekursiv definiert durch

$$w^{R} = \begin{cases} \varepsilon & \text{für } w = \varepsilon \\ v^{R} a & \text{falls } w = av \text{ für } a \in \Sigma, v \in \Sigma^{*} \end{cases}$$

Reflexion

Reflexion eines Worts

Für $w \in \Sigma^*$ ist w^R rekursiv definiert durch

$$w^{R} = \begin{cases} \varepsilon & \text{für } w = \varepsilon \\ v^{R} a & \text{falls } w = av \text{ für } a \in \Sigma, v \in \Sigma^{*} \end{cases}$$

Die Reflexion einer Sprache

```
L^R:=\{w^R:w\in L\}
```

```
def revs(s):  # String s umkehren
    return s[::-1]
def revl(L):  # jeden String aus L umkehren
    return set({revs(x) for x in L})
```

Frage

Ist Reflexion $w \mapsto w^R$ ein Homomorphismus?