- 1. Multiple choice. Clearly mark your answer.
 - (a) [2 pts] If $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{w}$, then $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{w}) = 0$.
- Geometrically, Ux = Vx w means that V is contained in the plane spanned by wand w, i.e. that V. (uxc) =0. (ii) False.

(0,0,-4) a point on Phy Not a point on Q!!

- (b) [2 pts] The two planes 2x + 2y z = 4 and -4x 4y + 2z = 3 intersect in a line.
 - (i) True.
 - (ii) False.

$$\overrightarrow{N}_{Q} = \begin{bmatrix} -4 \\ -4 \\ 2 \end{bmatrix} = -\lambda \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$

These planes don't intersect at all! Totally parallel.

- (c) [2 pts] The line $\mathbf{r}(t) = \langle t+1, 2t-1, -3t+16 \rangle$ is perpendicular to which of the following planes?
 - 1. 3z = x + 2(y 1)
 - 2. -x 2y + 3z = 11
 - $3. \ 2x + 4y 6z = 31$
 - 4. All of them.
 - 5. None of them.

- (d) [2 pts] If $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ and \mathbf{u} is not the zero vector, then which of the following is necessarily true?
 - 1. $\mathbf{u} \cdot \mathbf{v} = 0$
 - 2. Either $proj_{\mathbf{u}}\mathbf{v} = \mathbf{v}$ or $proj_{\mathbf{u}}\mathbf{v} = -\mathbf{v}$
 - 3. $|\mathbf{u}| = |\mathbf{v}|$
 - 4. All of the above.
 - 5. None of the above.

$$= \sqrt[7]{2} \quad \text{or} \quad -\sqrt[7]{2} \sqrt[7]{2}$$

2. [4 pts] Find an equation of the plane which passes through the point (1,0,0) and which is orthogonal to both planes given below:

Find to both planes given below.

$$\begin{cases}
x + y + z = 1 \\
x - y - z = 2
\end{cases}$$

$$\vec{N}_{p} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \vec{N}_{p} \times \vec{N}_{Q} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \vec{N}_{q} \times \vec{N}_{Q} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \vec{N}_{q} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad \vec{N}_{q}$$

3. [4 pts] The intersection of a plane with the cone $S = \{(x, y, z) : x^2 + y^2 - z^2 = 0\}$ is called a **conic section**. What curve do we get? In each row check only one box.

	Intersect S with	hyperbola(s)	parabola(s)	circle(s)	line(s)	
	z = 1 gives				/	
	z = x gives					
	z = x + 1 gives					,
	x = 1 gives					Parabola