

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	SPS III
Popis sady vzdělávacích materiálů:	Stavba a provoz strojů II, 3. ročník
Sada číslo:	C-08
Pořadové číslo vzdělávacího materiálu:	08
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_C-08-08
Název vzdělávacího materiálu:	Čelní soukolí se šikmým ozubením
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Hynek Palát

Čelní soukolí se šikmými zuby

přímé ozubení šikmé ozubení

Opatříme-li ozubený hřeben šikmými zuby, budou mít hrany jeho zubů stále ještě přímý tvar. Opatříme-li šikmými zuby čelní ozubené kolo, budou hrany jeho zubů mít tvar šroubovice.

Úhel sklonu zubů značíme **6** a musí být na obou spoluzabírajících kolech **stejný!** Pouze orientace sklonu je rozdílná. Jedno kolo má sklon pravý, druhé levý.

S výrobou kol s šikmým ozubením nejsou žádné obzvláštní problémy. Nepotřebujeme proto žádné speciální nástroje, nástroj pro přímé ozubení (odvalovou frézu) pouze stačí sklonit o výše uvedený úhel **6**.

Hlavní výhodou šikmého ozubení je fakt, že v záběru bývá najednou více zubů a únosnost ozubení je tedy větší. Kola mohou být menší, lehčí a levnější, než kdyby měla přímé zuby.

U šikmého ozubení ani nedochází tak často k podřezání zubů.

Zásadní nevýhodou kol se šikmými zuby je vznik axiálních sil, která namáhají ložiska hřídelů v převodovce.

Rozměry ozubených kol se šikmými zuby

Teorie k rozměrům šikmých zubů a jejich kol zavádí dvě geometrické roviny – **čelní (T)** a **normálnou** (N). Více napoví obrázek:

Nejprve důležitá připomínka: Obě roviny mají svůj vlastní modul!

Vzájemný vztah mezi moduly je:

$$m_t = \frac{m_n}{\cos \beta}$$

Kde m_t je modul ozubení v tečné rovině (proto index "t");

 m_n je modul ozubení v normálné rovině (proto "n");

6 je úhel sklonu zubů.

Obdobně i mezi roztečemi zubů v obou rovinách platí:

$$t_t = \frac{t_n}{\cos \beta}$$

V normálné rovině má ozubení svůj základní tvar. Odvozujeme v ní rozměry zubů:

$$m_n = m$$

$$h_a = m_n$$

$$h_f = 1,25 \cdot m_n$$

$$t_n = \pi \cdot m_n$$

$$s_n = \frac{t_n}{2}$$

V tečné rovině odvozujeme rozměry celého kola:

$$D = z \cdot m_t = \frac{z \cdot m_n}{\cos \beta}$$

$$D_a = D + 2 \cdot h_a = \frac{z \cdot m_n}{\cos \beta} + 2 \cdot m_n$$

$$D_f = D - 2 \cdot h_f = \frac{z \cdot m_n}{\cos \beta} - 2.5 \cdot m_n$$

$$D_b = D \cdot \cos \alpha$$

Pro vzdálenost os v soukolí se šikmým ozubením pak platí:

$$A = \frac{D_1 + D_2}{2} = \frac{z_1 + z_2}{2} \cdot \frac{m_n}{\cos \beta}$$

Z uvedeného vztahu vyplývá, že osová vzdálenost soukolí závisí na úhlu sklonu β.

Poznámka: Je-li třeba šikmé ozubení korigovat, provádí se korekce v normálné rovině:

$$h_a = m_n + x \cdot m_n$$

$$h_f = 1,25 \cdot m_n - x \cdot m_n$$

Čelní ozubená kola s dvojnásobně šikmým ozubením

Kola mají dvě ozubené části oddělené drážkou. Obě ozubení jsou stejně velká ale opačně orientovaná (pravé a levé). Drážka mezi nimi má pouze technologický význam – usnadňuje výrobu kola. Hlavní motivací techniků pro použití takovýchto kol je snaha odstranit axiální síly v ozubení. Díky opačné orientaci obou ozubení vzniknou dvě vzájemně opačné axiální síly, které se vyruší. Podmínkou je, že obě ozubení musejí být stejně velká.

Čelní ozubená kola se šípovitými zuby

Je to obdoba kol z přechozího odstavce. Účel jejich použití je stejný. Kola ale nemají střední drážku, čímž je jejich výroba složitější. Dají se vyrobit pouze čepovou frézou. Používají se pouze pro velké výkony a malé otáčky, tedy poměrně málo. Do převodů se nasazují tak, aby špička "šípu" směřovala do smyslu otáčení kol.

Čelní ozubená kola s dvojnásobně šípovitými zuby

Kola mají na svém ozubení dva "šípy" s opačnou orientací. Umožňují provoz v obou smyslech otáčení. Pro náročnou výrobu se používají velmi zřídka.

Závěrem

Kdybychom měli shrnout použití převodů s ozubenými koly, mohli bychom je také rozdělit na:

- kola přenášející pouze pohyb (otáčky) přenášejí jen malý kroutící moment používají se u nich nekorigovaná kola s přímými zuby;
- kola přenášející výkon přenášejí větší kroutící moment používají se kola s + V korekcí a šikmým ozubením.

Opakovací otázky a úkoly

- Jaké výhody a nevýhody má použití čelního kola s šikmým ozubením oproti kolům s přímým ozubením?
- V jakých rovinách určujeme rozměry šikmého ozubení, ve které rovině je základní profil tohoto ozubení?
- Uveď vzorce pro výpočet rozměrů čelního kola se šikmým ozubením.

Seznam použité literatury

- KŘÍŽ, R. a kol.: Stavba a provoz strojů II, Převody. Praha: SNTL, 1978.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 3. doplněné vydání. Praha: Albra, 2006. ISBN 80-7361-033-7.