Algèbre 2

Calculs de groupes de

Galois

Question 1/3

 $\operatorname{Gal}(\operatorname{D}_{\mathbb{Q}}(f)/\mathbb{Q})$ pour f irréductible de degré p ayant exactement deux racines non réelles

Réponse 1/3

 \mathfrak{S}_p

La conjugaison complexe induit une transposition et par le théorème de Cauchy, on a un p-cycle

Question 2/3

Méthode de la réduction modulo p

Réponse 2/3

Si $f \in \mathbb{Z}[X]$ est unitaire, \overline{f} la réduction de fdans $\mathbb{F}_p[X]$, si \overline{f} n'a que des racines simples

dans $\mathbb{F}_n^{\text{alg}}$ alors il existe une application de « réduction modulo p » qui identifie les zéros de f et de \overline{f} et il existe un morphisme de

groupes injectif $\widetilde{\cdot}: \operatorname{Gal}(D_{\mathbb{Q}}(f)/\mathbb{Q}) \hookrightarrow \operatorname{Gal}(D_{\mathbb{F}_p}(\overline{f})/\mathbb{F}_p)$ compatible avec les actions sur les racines et tel que $\sigma(\overline{\alpha}) = \widetilde{\sigma}(\alpha)$

Question 3/3

Propriétés de
$$\operatorname{Gal}(D_{\mathbb{F}_q}(\overline{f})/\mathbb{F}_q)$$
 pour $q=p^s$ et f irréductible de degré d

Réponse 3/3

Si
$$k = \left[D_{\mathbb{F}_q}(\overline{f}) : \mathbb{F}_q \right]$$
 alors $\operatorname{Gal}\left(D_{\mathbb{F}_q}(\overline{f})/\mathbb{F}_q\right) \cong \langle \operatorname{frob}_p \rangle \cong \mathbb{Z}/p\mathbb{Z}$ et l'inclusion $\operatorname{Gal}\left(D_{\mathbb{F}_q}(\overline{f})/\mathbb{F}_q\right) \hookrightarrow \mathfrak{S}_d$ identifie frob_p à un cycle de longueur d