Normalizing Flows

Volodymyr Kuleshov

Cornell Tech

Lecture 7

Announcements

- Assignment 1 is due on Wednesday.
- Project proposals are due in one and a half week.
- Assignment 2 will be released on Wednesday and will be due in two weeks.
- Please think about your preferred presentation topics.

Lecture Outline

- Recap and Motivation for Normalizing Flows
- Volume-Preserving Transformations
 - The Determinant
 - Change of Variables Formula
- Normalizing Flows
 - Representation and Learning
 - Composing Simple Transformations
 - Triangular Jacobians

Recap: Autoregressive Models

Model family

- **1** Autoregressive models: $p_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} p_{\theta}(x_i | \mathbf{x}_{< i})$
 - Probability distributions factorize into a product of factors
 - We can efficiently represent p via conditional independence and/or neural parameterizations
- ② Autoregressive models Pros:
 - It is computationally tractable to evaluate likelihoods
 - ullet It is tractable to train $p(\mathbf{x})$ via maximum likelihood & gradient descent
- Autoregressive models Cons:
 - They require choosing an ordering over variables
 - Generation is sequential (hence usually slow)
 - Cannot learn features in an unsupervised way

Recap: Latent Variable Models

Variational Autoencoders: $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

- Infinite mixture of Gaussians. Means are parametrized by deep net.
- Objective has a natural auto-encoder interpretation.

Recap: Latent Variable Models

- Latent Variable Models Pros:
 - Naturally combine simple models into more flexible ones: $p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$ and $p(\mathbf{x}|\mathbf{z}), p(\mathbf{z})$ can be "simple".
 - Directed model permits efficient generation: $\mathbf{z} \sim p(\mathbf{z})$, $\mathbf{x} \sim p(\mathbf{x}|\mathbf{z};\theta)$
- 2 Latent Variable Models Cons:
 - Evaluating the log-likelihood is generally intractable
 - Hence, training via maximum-likelihood is intractable
 - Fundamentally, the challenge is that posterior inference $p(\mathbf{z} \mid \mathbf{x})$ is hard. Typically requires variational approximations

Can We Get Best of Both Worlds?

 $O \subset M$

Model family

- Model families:
 - Autoregressive Models: $p_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} p_{\theta}(x_i | \mathbf{x}_{< i})$
 - Variational Autoencoders: $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$
- Autoregressive models provide tractable likelihoods but no direct mechanism for learning features
- Variational autoencoders can learn feature representations (via latent variables z) but have intractable marginal likelihoods
- **Key question**: Can we design a latent variable model with tractable likelihoods? Yes! Use normalizing flows.

Simple Prior to Complex Data Distributions

- Desirable properties of any model distribution:
 - Analytic density
 - Easy-to-sample
- Many simple distributions satisfy the above properties e.g., Gaussian, uniform distributions
- Unfortunately, data distributions could be much more complex (multi-modal)
- Key idea: Map simple distributions (easy to sample and evaluate densities) to complex distributions (learned via data) using invertible change of variables transformations.

Lecture Outline

- Recap and Motivation for Normalizing Flows
- Volume-Preserving Transformations
 - The Determinant
 - Change of Variables Formula
- Normalizing Flows
 - Representation and Learning
 - Composing Simple Transformations
 - Triangular Jacobians

Example: Change of Variables

- Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density p_Z . What is $p_Z(1)$? $\frac{1}{2}$
- Let X = 4Z, and let p_X be its density. What is $p_X(4)$?
- $p_X(4) = p(X = 4) = p(4Z = 4) = p(Z = 1) = p_Z(1) = 1/2$
- This is incorrect. Clearly, X is uniform in [0,8], so $p_X(4) = 1/8$
- Probability densities are not probability distributions (measures).
- Transformations expand the support of the distribution; we need to scale densities to preserve the *volume* of probability mass.

Change of Variables Formula in One Dimension

Change of variables (1D case): If X = f(Z) and $f(\cdot)$ is monotone with inverse $Z = f^{-1}(X) = h(X)$, then:

$$p_X(x) = p_Z(h(x))|h'(x)|$$

- Previous example: If X = 4Z and $Z \sim \mathcal{U}[0,2]$, what is $p_X(4)$?
- Note that h(X) = X/4
- $p_X(4) = p_Z(1)h'(4) = 1/2 \times 1/4 = 1/8$
- We have expanded the support of the distribution by 4. Hence, we need to decrease the mass at each point by 4 to preserve the volume.
- Generalizes to higher dimensions via determinants of transformations

Change of Variables Formula: Intuition

Change of variables (1D case): If X = f(Z) and $f(\cdot)$ is monotone with inverse $Z = f^{-1}(X) = h(X)$, then:

$$p_X(x) = p_Z(h(x))|h'(x)|$$

• We can understand this as follows:

$$\int p_{Z}(z)dz = \int p_{Z}(z)\frac{dx}{dx}dz$$

$$= \int p_{Z}(h(x)) \left| \frac{dz}{dx} \right| dx$$

$$= \int p_{Z}(h(x)) \left| h'(x) \right| dx$$

An integral is a sum of "infenitesimal rectangles" dz and dx. We adjust the "volume" of each dx around x because h changes it.

Review: Determinants and Volumes (in 2D)

Next, we would like to develop a notion of volume in higher dimensions.

• Matrix $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ maps a unit square to a parallelogram, e.g.:

$$\left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{cc} a & c \\ b & d \end{array}\right) \cdot \left(\begin{array}{c} 1 \\ 0 \end{array}\right)$$

• The volume of the parallelotope is equal to the determinant of A

$$\det(A) = \det\begin{pmatrix} a & c \\ b & d \end{pmatrix} = ad - bc$$

Review: Determinants and Volumes (in 3D)

- The volume formula still holds in 3D.
- Note that if two vectors are colinear, we get a plane, which has volume zero in 3D. The determinant is zero and the matrix is singular.

Review: Determinants and Volumes (in n-D)

- In general, the matrix A maps the unit hypercube $[0,1]^n$ to a parallelotope
- Hypercube and parallelotope are generalizations of square/cube and parallelogram/parallelopiped to higher dimensions

• Determinant det(A) still gives volume of the n-D shape.

Determinants and Volumes for Changing Variables

- Let Z be a uniform random vector in $[0,1]^n$
- Let X = AZ for a square invertible matrix A, with inverse $W = A^{-1}$. How is X distributed?
- The volume of the parallelotope is equal to the determinant of the transformation A

$$\det(A) = \det\begin{pmatrix} a & c \\ b & d \end{pmatrix} = ad - bc$$

ullet X is uniformly distributed over the parallelotope. Hence, we have

$$p_X(\mathbf{x}) = p_Z(W\mathbf{x}) |\det(W)|$$
$$= p_Z(W\mathbf{x}) / |\det(A)|$$

Change of Variables Formula (General Case)

- For linear transformations specified via A, change in volume is given by the determinant of A
- For non-linear transformations $f(\cdot)$, the *linearized* change in volume is given by the determinant of the Jacobian of $f(\cdot)$.

The Jacobian

Consider a vector valued function $f: \mathbb{R}^n \to \mathbb{R}^m$, with:

•
$$\mathbf{x} = (x_1, \cdots, x_n)$$

•
$$\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \cdots, f_m(\mathbf{x}))$$

The Jacobian is defined as:

$$J = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

This generalizes the gradient to multi-variate functions.

Change of Variables Formula (General Case): Intuition

- We are interested in mapping a small volume between (v, u) and (v + dv, u + du).
- For sufficiently small du, dv, the function can be linearized, and becomes the linear mapping specified by the Jacobian.

Change of Variables Formula (General Case)

Change of variables (General case): The mapping between Z and X, given by $\mathbf{f}: \mathbb{R}^n \mapsto \mathbb{R}^n$, is invertible such that $X = \mathbf{f}(Z)$ and $Z = \mathbf{f}^{-1}(X)$.

$$p_X(\mathbf{x}) = p_Z\left(\mathbf{f}^{-1}(\mathbf{x})\right) \left| \det\left(\frac{\partial \mathbf{f}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right) \right|$$

- Note 1: \mathbf{x}, \mathbf{z} need to be continuous and have the same dimension. For example, if $\mathbf{x} \in \mathbb{R}^n$ then $\mathbf{z} \in \mathbb{R}^n$
- Note 2: For any invertible matrix A, $det(A^{-1}) = det(A)^{-1}$

$$p_X(\mathbf{x}) = p_Z(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{f}(\mathbf{z})}{\partial \mathbf{z}} \right) \right|^{-1}$$

Change of Variables Formula (General Case): 2D Example

- Let Z_1 and Z_2 be continuous random variables with joint density p_{Z_1,Z_2} .
- Let $u: \mathbb{R}^2 \to \mathbb{R}^2$ be a transformation with inverse $v: \mathbb{R}^2 \to \mathbb{R}^2$.
- Let $X_1 = u_1(Z_1, Z_2)$ and $X_2 = u_2(Z_1, Z_2)$ Then, $Z_1 = v_1(X_1, X_2)$ and $Z_2 = v_2(X_1, X_2)$

$$\begin{aligned} & p_{X_1,X_2}(x_1,x_2) \\ &= p_{Z_1,Z_2}(v_1(x_1,x_2),v_2(x_1,x_2)) \left| \det \left(\begin{array}{c} \frac{\partial v_1(x_1,x_2)}{\partial x_1} & \frac{\partial v_1(x_1,x_2)}{\partial x_2} \\ \frac{\partial v_2(x_1,x_2)}{\partial x_1} & \frac{\partial v_2(x_1,x_2)}{\partial x_2} \end{array} \right) \right| \text{ (inverse)} \end{aligned}$$

$$= p_{Z_1,Z_2}(z_1,z_2) \left| \det \left(\begin{array}{c} \frac{\partial u_1(z_1,z_2)}{\partial z_1} & \frac{\partial u_1(z_1,z_2)}{\partial z_2} \\ \frac{\partial u_2(z_1,z_2)}{\partial z_1} & \frac{\partial u_2(z_1,z_2)}{\partial z_2} \end{array} \right) \right|^{-1} \text{ (forward)}$$

Lecture Outline

- Recap and Motivation for Normalizing Flows
- Volume-Preserving Transformations
 - The Determinant
 - Change of Variables Formula
- Normalizing Flows
 - Representation and Learning
 - Composing Simple Transformations
 - Triangular Jacobians

Normalizing Flow Models: Representation

Consider a directed, latent-variable model over observed variables X and latent variables Z

In a **normalizing flow model**, the mapping between Z and X, given by $\mathbf{f}_{\theta}: \mathbb{R}^n \mapsto \mathbb{R}^n$, is deterministic and invertible such that $X = \mathbf{f}_{\theta}(Z)$ and $Z = \mathbf{f}_{\theta}^{-1}(X)$

Normalizing Flow Models: Learning

• In a **normalizing flow model**, the mapping between Z and X, given by $\mathbf{f}_{\theta}: \mathbb{R}^n \mapsto \mathbb{R}^n$, is deterministic and invertible such that $X = \mathbf{f}_{\theta}(Z)$ and $Z = \mathbf{f}_{\theta}^{-1}(X)$

- We want to learn $p_X(\mathbf{x}; \theta)$ using the principle of maximum likelihood.
- Using change of variables, the marginal likelihood p(x) is given by

$$p_X(\mathbf{x}; \theta) = p_Z\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right) \left| \det\left(\frac{\partial \mathbf{f}_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right) \right|$$

- Note 1: Unlike in VAEs, we compute the marginal likelihood exactly!
- Note 2: x, z need to be continuous and have the same dimension.

Normalizing Flow Models: Constructing f.

We need to construct a density transformation that is:

- Invertible, so that we can apply the change of variables formula.
- Expressive, so that we can learn complex distributions.
- Computationally tractable, so that we can optimize and evaluate it.

One strategy:

- ullet Start with a simple distribution for z_0 (e.g., Gaussian)
- ullet Apply sequence of M simple invertible transformations with ${f x} \stackrel{\triangle}{=} {f z}_M$

$$\mathbf{z}_m := \mathbf{f}_{\theta}^m \circ \cdots \circ \mathbf{f}_{\theta}^1(\mathbf{z}_0) = \mathbf{f}_{\theta}^m(\mathbf{f}_{\theta}^{m-1}(\cdots(\mathbf{f}_{\theta}^1(\mathbf{z}_0)))) \triangleq \mathbf{f}_{\theta}(\mathbf{z}_0)$$

• By change of variables

$$p_X(\mathbf{x};\theta) = p_Z\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right) \prod_{m=1}^{M} \left| \det \left(\frac{\partial (\mathbf{f}_{\theta}^m)^{-1}(\mathbf{z}_m)}{\partial \mathbf{z}_m} \right) \right|$$

(Note: determininant of composition equals product of determinants)

Example: Planar Flows

Planar flow (Rezende and Mohamed, 2015). Invertible transformation

$$\mathbf{x} = \mathbf{f}_{\theta}(\mathbf{z}) = \mathbf{z} + \mathbf{u}h(\mathbf{w}^T\mathbf{z} + b)$$

parameterized by $\theta = (\mathbf{w}, \mathbf{u}, b)$ where $h(\cdot)$ is a non-linearity

Above, we visualize the transformation after 0, 1, 2, 10 recursive applications.

Example: Planar Flows

Planar flow (Rezende and Mohamed, 2015). Invertible transformation

$$\mathbf{x} = \mathbf{f}_{\theta}(\mathbf{z}) = \mathbf{z} + \mathbf{u}h(\mathbf{w}^T\mathbf{z} + b)$$

parameterized by $\theta = (\mathbf{w}, \mathbf{u}, b)$ where $h(\cdot)$ is a non-linearity

Absolute value of the determinant of the Jacobian is given by

$$\left| \det \frac{\partial \mathbf{f}_{\theta}(\mathbf{z})}{\partial \mathbf{z}} \right| = \left| \det (I + h'(\mathbf{w}^{T}\mathbf{z} + b)\mathbf{u}\mathbf{w}^{T}) \right|$$
$$= \left| 1 + h'(\mathbf{w}^{T}\mathbf{z} + b)\mathbf{u}^{T}\mathbf{w} \right|$$
(matrix determinant lemma)

• Need to restrict parameters and non-linearity for the mapping to be invertible. For example, h = tanh() and $h'(\mathbf{w}^T\mathbf{z} + b)\mathbf{u}^T\mathbf{w} \ge -1$

Example: Planar Flows

Base distribution: Gaussian

Base distribution: Uniform

10 planar transformations can transform simple distributions into a more complex one

Normalizing Flows: Recap

Normalizing: Change of variables gives a normalized density after applying an invertible transformation.

Flow: The function f makes the probability mass smoothly flow from a simple distribution over the space to one that is complex.

- Transformations need to be invertible, hence dim(X) = dim(Z).
- Complex transformations can be composed from simple ones:

$$\mathbf{z}_m := \mathbf{f}_{\theta}^m \circ \cdots \circ \mathbf{f}_{\theta}^1(\mathbf{z}_0) = \mathbf{f}_{\theta}^m(\mathbf{f}_{\theta}^{m-1}(\cdots(\mathbf{f}_{\theta}^1(\mathbf{z}_0)))) \triangleq \mathbf{f}_{\theta}(\mathbf{z}_0)$$

ullet Learning via **maximum likelihood** over the dataset ${\mathcal D}$

$$\max_{\boldsymbol{\theta}} \log p_{\boldsymbol{X}}(\mathcal{D};\boldsymbol{\theta}) = \sum_{\mathbf{x} \in \mathcal{D}} \log p_{\boldsymbol{Z}}\left(\mathbf{f}_{\boldsymbol{\theta}}^{-1}(\mathbf{x})\right) + \log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right) \right|$$

Normalizing Flows: Learning and Inference Recap

- Exact likelihood evaluation via inverse tranformation $\mathbf{x} \mapsto \mathbf{z}$ and change of variables formula
- Sampling via forward transformation $z \mapsto x$

$$\mathbf{z} \sim p_{\mathcal{Z}}(\mathbf{z}) \ \mathbf{x} = \mathbf{f}_{\theta}(\mathbf{z})$$

• Latent representations inferred via inverse transformation (no inference network required!)

$$\mathbf{z} = \mathbf{f}_{ heta}^{-1}(\mathbf{x})$$

Challenges in Building Flow Models

To understand next steps, let's review the challenges posed by flow models.

- Complex, invertible transformations with tractable evaluation:
 - ullet Likelihood evaluation requires efficient evaluation of ${f x}\mapsto {f z}$ mapping
 - Sampling requires efficient evaluation of $z \mapsto x$ mapping
- Computing likelihoods also requires the evaluation of determinants of $n \times n$ Jacobian matrices, where n is the data dimensionality
 - Computing the determinant for an $n \times n$ matrix is $O(n^3)$: prohibitively expensive within a learning loop!

Key idea: Choose tranformations so that the resulting Jacobian matrix has special structure. For example, the determinant of a triangular matrix is the product of the diagonal entries, i.e., an O(n) operation

Triangular Jacobian

$$\mathbf{x}=(x_1,\cdots,x_n)=\mathbf{f}(\mathbf{z})=(f_1(\mathbf{z}),\cdots,f_n(\mathbf{z}))$$

$$J = \frac{\partial \mathbf{f}}{\partial \mathbf{z}} = \begin{pmatrix} \frac{\partial f_1}{\partial z_1} & \cdots & \frac{\partial f_1}{\partial z_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial f_n}{\partial z_1} & \cdots & \frac{\partial f_n}{\partial z_n} \end{pmatrix}$$

Suppose $x_i = f_i(\mathbf{z})$ only depends on $\mathbf{z}_{\leq i}$. Then

$$J = \frac{\partial \mathbf{f}}{\partial \mathbf{z}} = \begin{pmatrix} \frac{\partial f_1}{\partial z_1} & \cdots & 0 \\ \cdots & \cdots & \cdots \\ \frac{\partial f_n}{\partial z_1} & \cdots & \frac{\partial f_n}{\partial z_n} \end{pmatrix}$$

has lower triangular structure. Determinant can be computed in **linear time**. Similarly, the Jacobian is upper triangular if x_i only depends on $\mathbf{z}_{\geq i}$ **Next lecture:** Designing invertible transformations!