Teoria Analisi 1

A. Languasco

February 12, 2025

Contents

1	Teorema del differenziale (Lagrange - Rolle generalizzato) 1.1 Enunciato	3
2	! Dimostrazione	3
3	Teorema dell'unicità del limite 3.1 Enunciato	3 3
4	Teorema fondamentale del calcolo integrale (TFCI) 4.1 Enunciato	4 4 4
5	Formula fondamentale del calcolo integrale 5.1 Enunciato	5 E5 E5
6	Teorema del confronto I 6.1 Enunciato	5 5
7	Teorema del confronto II 7.1 Enunciato	6
8	Teorema del confronto III - delle 3 funzioni - Carabinieri 8.1 Enunciato	7 7 7
9	Teorema del valore medio integrale 9.1 Enunciato	8
10	Criterio integrale convergenza delle serie numeriche 10.1 Enunciato	8
11	Teorema delle derivate successive 11.1 Enunciato	8
	Teorema di Rolle 12 1 Enunciato	9

13	Teorema di Lagrange 13.1 Enunciato	
14	Teorema condizione necessaria di convergenza delle serie 14.1 Enunciato	
15	Teorema Disuguaglianza di Bernoulli 15.1 Enunciato	
16	Integrale di Riemann 16.1 Integrali Definiti 16.2 Estensione dell'integrale di Riemann 16.2.1 Definizione 16.3 Teorema Integrazione di Riemann per parti 16.3.1 Dimostrazione	11 11 11
17	Teorema di Bolzano - Weierstrß 17.1 Enunciato 17.2 Esempio 1 17.3 Esempio 2	12
18	Proprietà di Archimede 18.1 Enunciato	
19	Teorema Bernoulli - de l'Hopital $19.1 \ \frac{0}{0}; \ \text{limiti al finito} \qquad \qquad$	13 13 13
20	Teorema Densità di $\mathbb Q$ in $\mathbb R$ 20.1 Enunciato	
21	Definizione di Limite	14
22	Teorema formula di Taylor con resto di Peano 22.1 Enunciato	14
23	Criterio di Von Leibniz (Serie segni alterni) 23.1 Enunciato	15 15
24	Criterio della radice (CAUCHY)	15
25	Criterio del rapporto (D'Alembert)	15
26	Criterio integrale	15
27	Serie a termini di segno qualunque	15

1 Teorema del differenziale (Lagrange - Rolle generalizzato)

Se una funzione è derivabile in un punto, allora il suo comportamento vicino a quel punto può essere descritto da una retta tangente (approssimazione lineare). Il termine $o(x - x_0)$ indica che il resto dell'approssimazione tende a zero più velocemente di $x - x_0$.

1.1 Enunciato

 $f: I \subset \mathbb{R}, I$ intervallo, $x_0 \in I$, x_0 interno ad I, f derivabile in x_0 . Allora: \exists w: $I \to \mathbb{R}$ t.c. w è continua in x_0 , w $(x_0) = 0$ e

$$f(x_0) + f'(x_0)(x - x_0) + w(x)(x - x_0)$$

dove: $f(x_0) + f'(x_0)(x - x_0)$ è la tangente $w(x)(x - x_0)$ è l'errore causato da alcuni fattori, lo possiamo trascurare.

2 ! Dimostrazione

3 Teorema dell'unicità del limite

3.1 Enunciato

 $f:A\subset\mathbb{R}\to\mathbb{R},\,x_0\in\widetilde{\mathbb{R}}$ punto di accumulazione per A Se:

1. $\lim_{x \to x_0} f(x) = l_1 \in \widetilde{\mathbb{R}}$

 $2. \lim_{x \to x_0} f(x) = l_2 \in \widetilde{\mathbb{R}}$

Allora: $\mathbf{l_1} = \mathbf{l_2}$

3.2 Dimostrazione

ip1) $\forall V l_1$ intorno di $l_1 \exists U x_0$ intorno di x_0 t.c. $f(x) \in \forall l_1$ per ogni $x \in (U x_0 \cap A) - \{0\}$

ip2) $\forall V l_2$ intorno di $l_2 \exists U' x_0$ intorno di x_0 t.c. $f(x) \in \forall l_2$ per ogni $x \in (U' x_0 \cap A) - \{0\}$

Per contraddizione: $l_1 \neq l_2$

Allora $\exists V l_1, V l_2$ intorni di l_1 e l_2 (rispettivamente) tali che: $V l_1 \cap V l_2 \neq \emptyset$

 $Wx_0 = Ux_0 \cap U'x_0$ è un intorno di x_0

Sia $x \in (Wx_0 \cap A) - \{x_0\} \neq \emptyset$ (perché x_0 è di accumulazione)

$$\Rightarrow \begin{cases} f(x) \in Vl_1 \text{ (Per definizione di limite 1)} \\ f(x) \in Vl_2 \text{ (Per definizione di limite 2)} \end{cases}$$

$$\Rightarrow f(x) \in Vl_1 \cap Vl_2 \neq \emptyset \Rightarrow \mathbf{l_1} = \mathbf{l_2}.$$
 Contraddizione

Teorema fondamentale del calcolo integrale (TFCI) 4

4.1 **Enunciato**

 $[a,b] \subset \mathbb{R}, a < b.$ f R-integrale su [a,b]. $\exists x_1 \in [a, b]$ t.c. f sia continua in x_1 . Fissato $x_0 \in [a, b]$ e presa $F(x) = \int_{x_0}^x f(t)dt$, si ha che F è derivabile in x_1 e $F'(x_1) = f(x_1)$

4.2Dimostrazione

$$0 \le \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right|, \quad x \ne x_1$$

$$= \left| \frac{\int_{x_0}^x f(t)dt - \int_{x_0}^{x_1} f(t)dt}{x - x_1} - f(x_1) \right|$$

$$= \left| \frac{\int_{x_0}^x f(t)dt + \int_{x_1}^x f(t)dt - \int_{x_0}^{x_1} f(t)dt}{x - x_1} - f(x_1) \right|$$

$$= \left| \frac{\int_{x_1}^x f(t)dt - f(x_1)(x - x_1)}{x - x_1} \right|$$

$$= \left| \frac{\int_{x_1}^x (f(t) - f(x_1))dt}{x - x_1} \right|$$

$$\le \frac{1}{x - x_1} \int_{x_1}^x |f(t) - f(x_1)|dt$$

Ma f è continua in $x_1 \iff \forall \epsilon > 0 \ \exists \delta_{\epsilon} > 0 \ \text{t.c.} \ |f(t) - f(x_1)| < \epsilon \ \forall t/0 < |t - x_1| < \delta_{\epsilon} \ t \in [a, b]$

Osservo che $t \in [x_1, x]$ (oppure $t \in [x, x_1]$, dipende come abbiamo disposto $x \in x_1$)

Implica che $|t - x_1| \le |x - x_1|$

Sia allora $x \in [a, b]/|x - x_1| < \delta_{\varepsilon}$. Con questo forziamo le due varibli a stare vicine fra loro

Quindi
$$|t - x_1| \le |x - x_1| < \delta_{\varepsilon}$$
 e $|f(t) - f(x_1)| < \epsilon$
Allora $0 \le \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right| < \frac{1}{|x - x_1|} \left| \int_{x_1}^x \epsilon dt \right| = \epsilon \frac{|x - x_1|}{|x - x_1|} = \epsilon$

Ossia: $\forall \epsilon > 0 \ \exists \delta_{\varepsilon} > 0 \ \text{t.c.} \ \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right| < \epsilon \ \forall x \ \text{t.c.} \ 0 < |x - x_1| < \delta_{\varepsilon}, \ x \in [a, b]$

Cioè: $\lim_{x_1} \frac{F(x) - F(x_1)}{x - x_1}$ esiste e vale $f(x_1)$

Quindi: $\mathbf{F}'(\mathbf{x}_1) = \mathbf{f}(\mathbf{x}_1)$

5 Formula fondamentale del calcolo integrale

5.1 Enunciato

 $f \in C^0[a,b]$ e sia $G:[a,b] \to \mathbb{R}$ una primitiva di f in [a,b]

$$\Rightarrow \int_a^b f(t)dt = G(b) - G(a)$$

5.2 Dimostrazione

Sia $x \in [a,b]$ e $F(x) = \int_{x_0}^x f(t)dt$. Per il TFCI* è derivabile in [a,b] e $F'(x) = f(x) \forall x \in [a,b]$. F, G sono primitive di f in un intervallo $[a,b] \Rightarrow \exists c \in \mathbb{R}/G(x) = F(x) + c \ \forall x \in [a,b]$

Osservo adesso che:
$$G(b) - G(a) = F(b) + c - F(a) - c = F(b) - F(a)$$

 $= \int_{x_0}^b f(t)dt - \int_{x_0}^a f(t)dt$
 $= \int_{x_0}^a f(t)dt + \int_{x_0}^b f(t)dt - \int_{x_0}^a f(t)dt = \int_{x_0}^b f(t)dt.$

*TFCI: Teorema Fondamentale Calcolo Integrale

Osservazione: $f \in C^0([a,b])$ e sia

 $H(x) = \int_{\alpha(x)}^{\beta(x)} f(t)dt$ dove $\alpha, \beta : [a, b] \to \mathbb{R}$ derivabili in [a, b].

Si ha che H(x) è derivabile perché $H(x) = F(\beta(x)) - F(\alpha(x))$ dove $F(u) = \int_{x_0}^{u} f(t)dt$ (Composizione di f derivabili)

Inoltre $H'(x) = F'(\beta(x))\beta'(x) - F'(\alpha(x))\alpha'(x) = f(\beta(x))\beta'(x) - f(\alpha(x))\alpha'(x) \ \forall x \in [a, b]$

6 Teorema del confronto I

6.1 Enunciato

 $f,g:A\subset\mathbb{R}\to\mathbb{R}, x_0\in\widetilde{\mathbb{R}}$ punto di accumulazione per A Allora:

a) Se $\lim_{x \to x_0} f(x) = \ell_1 \in \mathbb{R}$ Se $\lim_{x \to x_0} g(x) = \ell_2 \in \mathbb{R}$ con $\ell_1 < \ell_2$, allora:

$$\exists U_{x_0}$$
, intervallo di x_0 , tale che $f(x) < g(x) \quad \forall x \in (U_{x_0} \cap A) \setminus \{x_0\}$

b) Se $\lim_{x\to x_0} f(x) = -\infty$ Se $\lim_{x\to x_0} g(x) = \ell \in \mathbb{R} \cup \{+\infty\}$, allora:

$$\exists U_{x_0}$$
, intervallo di x_0 , tale che $f(x) < g(x) \quad \forall x \in (U_{x_0} \cap A) \setminus \{x_0\}$

c) Se $\lim_{x \to x_0} f(x) = \ell \in \mathbb{R}$ Se $\lim_{x \to x_0} g(x) = +\infty$, allora:

$$\exists U_{x_0}$$
, intervallo di x_0 , tale che $f(x) < g(x) \quad \forall x \in (U_{x_0} \cap A) \setminus \{x_0\}$

6.2 Dimostrazione

a) $l_1 < l_2(l_1, l_2 \in \mathbb{R})$. Fisso $\epsilon > 0$ $\lim_{x \to x_0} f(x) = l_1 \Rightarrow \exists U'x_0 \text{ intervallo di } x_0 \text{ tale che } \forall x \in (U'x_0 \cap A) \setminus \{x_0\}$ $\lim_{x \to x_0} g(x) = l_2 \Rightarrow \exists U''x_0 \text{ intorno di } x_0/l_2 - \epsilon < g(x) < l_2 + \epsilon \ \forall x \in (U''x_0 \cap A) \setminus \{x_0\}$

Se $x \in (U'x_0 \cap U''x_0 \cap A) \setminus \{x_0\}$ idea: scelgo $\epsilon > 0/l_1 + \epsilon \le l_2 - \epsilon$ Scelgo in quanto sopra $\epsilon = \frac{l_2 - l_1}{2}$ Per $x \in (U'x_0 \cap U''x_0 \ cap A) \setminus \{x_0\}$ si ha allora

$$f(x) < l_1 + \epsilon = l_1 + \frac{l_2 - l_1}{2} = \frac{l_1 + l_2}{2}$$

7 Teorema del confronto II

7.1 Enunciato

 $f,g:A\subset\mathbb{R}\to\mathbb{R}$ $A\neq\emptyset$ $x\in\widetilde{\mathbb{R}}$ punto di accumulazione per A Allora:

a) Se $\lim_{x \to x_0} f(x) = l_1 \in \mathbb{R}$

Se $\lim_{x \to x_0} g(x) = l_2 \in \mathbb{R}$

Se $\exists Ux_0$ intorno di $x_0/f(x) \leq g(x) \ \forall x \in (Ux_0 \cap A) \setminus \{x_0\}$

$$\Rightarrow l_1 \leq l_2$$

b) Se $\lim_{x\to x_0}g(x)=-\infty$ e $\exists Ux_0$ intorno di $x_0/f(x)\leq g(x)$ $\forall x\in (Ux_0\cap A)\setminus \{x_0\}$

$$\Rightarrow \exists \lim_{x \to x_0} g(x) = +\infty$$

c) Se $\lim_{x\to x_0} f(x) = +\infty$ e $\exists Ux_0$ intorno di $x_0/f(x) \leq g(x) \ \forall x \in (Ux_0 \cap A) \setminus \{x_0\}$

$$\Rightarrow \exists \lim_{x \to x_0} g(x) = +\infty$$

7.2 Osservazione

Cosa accade se si suppone $f(x) < g(x) \stackrel{?}{\Rightarrow} l_1 < l_2$

NO:
$$f(x) = 0 \ \forall x \mathbb{R} \ g(x) = \begin{cases} \frac{1}{x} \ x > 0 \\ 0 \ x = 0 \\ -\frac{1}{x} \ x < 0 \end{cases}$$

8 Teorema del confronto III - delle 3 funzioni - Carabinieri

8.1 Enunciato

 $f,g,h:A\subset\mathbb{R}\to\mathbb{R},\,A\neq\emptyset,\,x_0\in\widetilde{\mathbb{R}}$ punto di accumulazione per A. Inoltre

$$\exists \lim_{x \to x_0} f(x) = l \in \mathbb{R}$$

$$\exists \lim_{x \to x_0} g(x) = l \in \mathbb{R}$$

 $\exists Ux_0 \text{ intorno di } x_0/f(x) \leq h(x) \leq g(x) \ \forall x \in (Ux_0 \cap A) \setminus \{x_0\}$

$$\Rightarrow \exists \lim_{x \to x_0} h(x) = l$$

8.2 Dimostrazione

Sia
$$\epsilon > 0$$
: $\exists U'x_0, U''x_0$ intorni di $x_0/|f(x) - l| < \epsilon \ \forall x \in (U'x_0 \cap A) \setminus \{x_0\}$
 $|g(x) - l| < \epsilon \ \forall x \in (U''x_0 \cap A) \setminus \{x_0\}$

Sia $Wx_0 = U'x_0 \cap U''x_0$ è un intorno di x_0 . Se $x \in Wx_0 \cap A \setminus \{x_0\}$

$$l - \epsilon < f(x) \text{ definizione } \lim f \text{ (per ipotesi)}$$

$$f(x) \leq h(x) \leq g(x)$$

$$g(x) < l + \epsilon$$

Quindi $l - \epsilon < h(x) < l + \epsilon$ cioè $|h(x) - l| < \epsilon$ Ho fatto vedere che:

$$\forall \epsilon > 0 \; \exists W x_0 \; \text{intorno di} \; x_0 / |h(x) - l| < \epsilon \; \text{per} \; x \in W x_0 \cap A \setminus \{x_0\}$$

Che è esattamente la definizione di: $\lim_{x \to x_0} h(x) = l$

9 Teorema del valore medio integrale

9.1 Enunciato

 $f: [a,b] \to \mathbb{R}, f, gR - integralein[a,b].$

Sia $m = \inf f(x)/x \in [a, b], (\in \mathbb{R})$ $M = \sup f(x)/x \in [a, b], (\in \mathbb{R})$ $\Rightarrow \begin{cases} 1) \ m(b-a) \le \int_a^b f(x)dx \le M(b-a) \\ 2) \ \exists \mu \in [m, M]/\int_a^b f(x)dx = \mu(b-a) \\ 3) \ \text{Se } f \text{ continua in } [a, b], \text{ allora } \exists x_0 \in [a, b]/\int_a^b f(x)dx = f(x_0)(b-a). \end{cases}$

9.2 Dimostrazione

- $\begin{array}{l} 1) \ m \leq f(x) \leq M \ x \in [a,b] \\ P = a,b \Rightarrow D(P,f) = m(b-a) \in G \\ S'(P,f) = M(b-a) \in H. \\ \text{Allora:} \ m(b-a) \leq \sup(G) = \int_a^b f(x) dx = \inf(H) \leq M(b-a) \end{array}$
- 2) Dal punto 1): $m \leq \frac{\int_a^b f(x)dx}{b-a} \leq M$. Sia $\mu = \frac{\int_a^b f(x)dx}{b-a}$, allora $\mu \in [m,M]$ e ovviamenete, $\int_a^b f(x)dx = \mu(b-a)$
- 3) $f \in C^0[a, b]$: per il teorema dei valori intermedi f([a, b]) è intervallo; per il teorema di Weistrass f ha max e min **GLOBALE**

Quindi f([a,b]) = [m,M]Per il punto 2), $\exists \mu \in [m,M]/\mu(b-a) = \int_a^b f(x)dx$; ma $[m,M] = Im(f) \Rightarrow \exists x_0 \in [a,b]/f(x_0) = \mu$

10 Criterio integrale convergenza delle serie numeriche

10.1 Enunciato

 $\begin{array}{l} f: [1,+\infty) \to \mathbb{R}, \ f(x) \geq 0 \ \forall x \in [1,+\infty). \\ \text{Sia } f. \ \text{debolmente crescente in } [+\infty). \\ \text{Allora } (\sum\limits_{k=1}^{\infty} f(k) \ \text{converge} \iff \int_{1}^{+\infty} f(x) dx \ \text{converge.}) \end{array}$

11 Teorema delle derivate successive

11.1 Enunciato

Sia $n \in \mathbb{N}$, $n \ge 1$, $f \in C^{n-1}(I)$, I intervallo, $x_0 \in I$, x_0 interno ad I. Suppongo che $\exists f^n(x_0)$ e che $f^{(k)}(x_0) = 0$ per k = 1, 2, 3, ..., n - 1. $f^{(n)} > 0 \ (< 0)$.

 $\Rightarrow \begin{cases} \text{se } n \text{ è } \mathbf{PARI}, \text{ si ha che } x_0 \text{ è punto di minimo (massmimo) locale forte.} \\ \text{se } n \text{ è } \mathbf{DISPARI}, \text{ allora } x_0 \text{nè pto di massimo nè pto di minimo locale.} \end{cases}$

12 Teorema di Rolle

12.1 Enunciato

 $f:[a,b] \to \mathbb{R}, f$ continua in [a,b] f derivabile in (a,b) e f(a)=f(b)Allora $\exists \overline{x} \in [a,b]$ $x_1=a$ e $x_2=b$ (o viceversa): allora, dato che

$$f(a) = f(b) \Rightarrow f(x) = f(a) \ \forall x \in [a, b]$$
$$\Rightarrow f'(x) = 0 \ \forall x \in (a, b)$$

Se almeno uno tra x_1 e x_2 non è in un estremo di [a, b] esempio sia $x_1 \in (a, b)$. Allora x_1 è interno ad [a, b]. Per le condizioni necessarie di estremalità si ha $f'(x_1) = 0$ Nel caso di $x_2 \in (a, b)$: si replichi lo stesso ragionamento.

13 Teorema di Lagrange

13.1 Enunciato

 $f:[a,b]\to\mathbb{R}$, f continua in [a,b], f derivabile in (a,b).

$$\Rightarrow \exists \overline{x} \in (a,b)/f(b) - f(a) = f'(\overline{x})(b-a)$$

13.2 Dimostrazione

Sia $\varphi(x) = (f(x) - f(a))(b - a) - (f(b) - f(a))(x - a)$, f è continua in [a, b]; φ è derivabile in (a, b), $\varphi(a) = 0 - 0 = 0$; $\varphi(b) = 0 - 0 = 0$. Per il teorema di Rolle: $\exists \overline{x} \in (a, b) \qquad \varphi(\overline{x}) \to \text{punto che azzera la derivata prima.}$ Ma $\varphi'(x) = (f'(x)(b - a)) - (f(b) - f(a)) \ \forall x \in (a, b)$

$$\Rightarrow 0 = \varphi'(\overline{x}) = f'(\overline{x})(b-a) - f(b) - f(a)$$
e quindi $0 = \varphi'(\overline{x})$ dato che il resto è nullo da cui segue la tesi.

14 Teorema condizione necessaria di convergenza delle serie

14.1 Enunciato

Se
$$\sum a_k$$
 converge, allora $\lim_{x \to +\infty} a_k = 0$

14.2 Dimostrazione

Sia
$$A_n = \sum_{k=0}^n a_n, \ n \in \mathbb{N}$$
.
Per ipotesi $\exists A \in \mathbb{R} \lim_{n \to +\infty} An = A$.
Inoltre si ha che $A_n - A_{n-1} = \sum_{k=0}^n a_n - \sum_{h=0}^{n-1} a_n = a_n$
Ma $\lim_{n \to +\infty} (A_n - A_{n-1}) = (\lim_{n \to +\infty} A_n) - (\lim_{n \to +\infty} A_{n-1}) = A - A = 0$
 $\Rightarrow \lim_{n \to +\infty} a_n = 0$.

15 Teorema Disuguaglianza di Bernoulli

15.1 Enunciato

$$x \in \mathbb{R}, x > -1$$
. Allora $(1+x)^m \ge 1 + nx \ \forall n \in \mathbb{N}$

15.2 Dimostrazione

Passo base:

È vero che: $(1+x)^0 \le 1+0*x$?, si \Rightarrow passo base <u>verificato!</u>

Passo induttivo:

Ipotesi induttiva: $(1+x)^m \ge 1+mx$ con $m \in \mathbb{N}$ Tesi induttiva: $(1+x)^{m+1} \ge 1+(m+1)x$

 $(1+x)^{m+1} = (1+x)(1+x)^m \ge (1+mx)(1+x)$ $1+x+mx+mx^2 = x(1+m)+1+mx^2 = (m+1)x+1+mx^2 \ge (m+1)x+1$ Posso anche ingnorare mx^2 perche è sempre positivo

Quindi il passo induttivo è verificato per il principio di induzione $\forall x > -1$

16 Integrale di Riemann

16.1 Integrali Definiti

Vogliamo dare un significato al concetto (per $f(x) \ge 0$) di "area sottesa al grafico di f".

16.2 Estensione dell'integrale di Riemann

A casi cui $a \ge b$.

16.2.1 Definizione

f Riemann-integrale in $[a, b], a < b, a, b \in \mathbb{R}$.

Definiamo
$$\int_a^b f(x)dx = 0$$
 e $\int_b^a f(x)dx = -\int_a^b \mathbf{f}(\mathbf{x})d\mathbf{x}$

16.3 Teorema Integrazione di Riemann per parti

$$f,g:[a,b]\to\mathbb{R},\,f,g\in C^1([a,b])$$

Allora:
$$\int_a^b f(x)g'(x)dx = f(b)g(b) - f(a)g(a) - \int_a^b f'(x)g(x)dx$$

$$f(b)g(b) - f(a)g(a) = f(x)g(x)|_a^b$$

16.3.1 Dimostrazione

f'ge fg'sono continue in [a,b]e quindi sono R-int^{le} in [a,b]. Inoltre $\int_a^b (fg)'(x)dx=\int_a^b f'(x)g(x)dx+\int_a^b f(x)g'(x)dx$ Ma f*g è primitiva di (fg)'e quindi

$$\int_{a}^{b} (fg)'(x)dx = f(b)g(b) - f(a)g(a)$$
la tesi segue

17 Teorema di Bolzano - Weierstrß

17.1 Enunciato

Sia a_n una successione LIMITATA (Quindi superiormente e inferiormente limitata). Allora $\exists \{a_{n_k}\}$ successione di a_n t.c.

$$\lim_{k \to +\infty} a_{n_k} = l \in \mathbb{R}$$

17.2 Esempio 1

$$a_n = \begin{cases} 0 \text{ se } n \text{ pari} \\ n \text{ se } n \text{ dispari} \end{cases}$$

 $Sup\{a_n\} = +\infty \Rightarrow$ non posso applicare il teorema di Bolzano-Weistraß.

17.3 Esempio 2

$$a_n = (-1)^n \Rightarrow |a_n| \le \forall n \in \mathbb{N}$$

Per il teorema di Bolzano-Weistraß $\exists a_{n_k}$ sottosuccessione di a_n t.c. $\exists \lim_{k \to +\infty} a_{n_k} \in \mathbb{R}$

18 Proprietà di Archimede

18.1 Enunciato

$$\forall x \in \mathbb{R} \ \exists n \in \mathbb{N}/n < x$$

"Esiste sempre un numero intero più grande di qualsiasi numero reale".

18.2 Dimostrazione

Sia
$$x > 0 \to A := \{n \in \mathbb{N}/n \le x\} \subseteq \mathbb{N}$$

Tesi: $\iff A \ne \mathbb{N}$

Suppongo che $A = \mathbb{N} \neq \emptyset$

Sia $B := \{ y \in \mathbb{R}/y \ge n \ \forall n \in \mathbb{N} \}$

dal fatto che $A=\mathbb{N}$ segue che $x\in B\Rightarrow B\neq\emptyset$

Notiamo che $\forall y \in B$ si ha che $y \ge n \ \forall n \in A (= \mathbb{N})$. Quindi A e B sono separati per l'assioma di separazione $\exists \alpha \in \mathbb{R}/n \le \alpha \le y \ \forall n \in A \ \forall y \in B \ (A = \mathbb{N})$

Quindi è anche vero che $\mathbb{N}\ni n+1\leq \alpha\leq y\Rightarrow n\leq \alpha-1\ \forall n\in A\Rightarrow \alpha-1\in B$ Ma α è elemento separatore di A e $B\colon (n\leq)\alpha\leq y\ \forall y\in B\ \forall n\in A$

Quindi
$$\alpha \le \alpha - 1 \Rightarrow 1 \le 0 \rightarrow \textbf{Contraddizione}$$

Abbiamo provato l'applicazione contronominale; quindi il teorema è dimostrato. $A=\mathbb{N}$ FALSO $\Rightarrow a\subseteq \mathbb{N}$

Teorema Bernoulli - de l'Hopital 19

$\frac{0}{0}$; limiti al finito 19.1

 $a, b \in \mathbb{R}, f, g: (a, b) \to \mathbb{R}, f, g$ derivabili in (a, b) $\underline{g'(x) \neq 0} \ \forall x \in (a,b)$. Siano $\lim_{x \to a^+} g(x)$ e sia $\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = l \in \widetilde{\mathbb{R}}$.

$$\Rightarrow \lim_{x \to a^+} \frac{f(x)}{g(x)} = l$$

Nota vale anche per: $x \to b^-$, $Df = Dg = (a, b) \setminus \{x_0\}$

19.1.1 Errori comuni

- 1) **Errore:** uguagliare $\frac{f(x)}{g(x)}$ con $\frac{f'(x)}{g'(x)}$ senza aver verificato che l'ultimo limte esiste.
- 2) Non si può usare il teorema di Bernoulli de l'Hopital per studiare lim
 $\frac{\sin x}{x}$

$\frac{0}{0}$; limiti all'infinito 19.2

Sia $a \in \mathbb{R}$, $f, g: (a, +\infty)^* \to \mathbb{R}$, f, g derivabili in $(a, +\infty)^*$ e $g'(x) \neq 0 \ \forall x \in (a, +\infty)^*$ * $(a, +\infty)$ al contrario vale anche: $(-\infty, a)$.

Inoltre $\lim_{x \to +\infty} f(x) = 0 = \lim_{x \to +\infty} g(x)$ e $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = l \in \widetilde{\mathbb{R}}$.

$$\Rightarrow \lim_{x \to +\infty} \frac{f(x)}{g(x)} = l$$

19.3 $\frac{\infty}{\infty}$; limiti al finito

 $a, b \in \mathbb{R}, f, g: (a, b) \to \mathbb{R}, f, g$ derivabili in (a, b) $g'(x) \neq 0 \ \forall x \in (a,b)$. Inoltre

 $\lim_{\substack{x\to a^+\\ *+\infty}}g(x)=+\infty^*; \lim_{\substack{x\to a^+\\ y'(x)}}\frac{f'(x)}{g'(x)}=l\in\widetilde{\mathbb{R}}.$

$$\Rightarrow \lim_{x \to a^+} \frac{f(x)}{g(x)} = l$$

$\frac{\infty}{\infty}$; limiti al'infinito

Sia $a \in \mathbb{R}$, $f, g: (a, +\infty) \to \mathbb{R}$, f, g derivabili in $(a, +\infty)$ e $g'(x) \neq 0 \ \forall x \in (a, +\infty)$.

Inoltre $\lim_{x \to +\infty} g(x) = +\infty^*$; $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = l \in \mathbb{R}$. *+\infty al contrario vale anche: $-\infty$

$$\Rightarrow \lim_{x \to +\infty} \frac{f(x)}{g(x)} = l$$

20 Teorema Densità di \mathbb{Q} in \mathbb{R}

20.1 **Enunciato**

Per ogni $x \in \mathbb{R}$ e $\forall \epsilon > 0$, $\exists z \in \mathbb{Q}/z < x < z + \epsilon$

20.2 Dimostrazione

 $x\in\mathbb{R},\,\epsilon>0\Rightarrow\frac{1}{\epsilon}>0$ Uso la Proprietà di Archimede: $\exists q\in\mathbb{N}/q>\frac{1}{\epsilon}>0$

Considero $qx \in \mathbb{R}$

Per le prorietà delle parti intrere $\exists p \in \mathbb{Z}/p \leq qz < p+1$ Divido per $q>0 \Rightarrow \frac{p}{q} \leq x < \frac{p+1}{q}$ con $\frac{p+1}{q} = \frac{p}{q} + \frac{1}{p}$

Ma $q > \frac{1}{\epsilon} = \epsilon q > 1 \Rightarrow \epsilon < \frac{1}{q}$

Segue che
$$\frac{p}{q} \le x < \frac{p}{q} + \epsilon$$

21 Definizione di Limite

 $f: A \subset \mathbb{R} \to \mathbb{R}, A \neq \emptyset$. Sia $x_0 \in \mathbb{R}$ un punto di accumulazione per A.

Diremo che f ammette limite $l \in \mathbb{R}$ per x che tende a x_0 [scriviamo $\lim_{n \to \infty} f(x) = l$] se e solo se per ogni intorno Vldi l esiste un intorno Ux_0 , intorno di x_0 , tale che $f(x) \in Vl$ per ogni $x \in (Ux_0 \cap A) \setminus \{x_0\}$.

N.B. Se $x_0 \in \{-\infty, +\infty\}$, l'ultima parte sopra è da leggere come: $(Ux_0 \cap A)$, senza togliere x_0 .

$$\forall \epsilon > 0 \quad \exists \delta_{\epsilon} / |f(x) - l| < \epsilon \ \forall x \in A, \ f(x) \in Vl$$

 $0 < |x - x_o| < \delta_{\varepsilon}$: Vuol dire prendere i valori del disco di raggio δ_{ε} e togliere il punto centrale in x_0 (quindi togliere x_0), si dice in questo caso: "disco bucato".

22 Teorema formula di Taylor con resto di Peano

22.1 Enunciato

Sia $n \in \mathbb{N}$, $n \ge 1$, $f: I \subset \mathbb{R} \to \mathbb{R}$, I intervallo, sia derivabile n-1 volte in I e tali funzioni derivate siano continue

Sia inoltre $x_0 \in I$, x_0 interno ed $\exists f^{(n)}(x_0)$

Allora $\exists w : I \subset \mathbb{R} \to \mathbb{R}$ t.c. w continua in $x_0, w(x_0) = 0$ ed inoltre

$$f(x) = \sum_{k=0}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k + w(x)(x - x_0)^n \quad \forall x \in I$$

Dove: $\sum_{k=0}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k \to \text{è la formula di Taylor.}$ $w(x)(x - x_0)^n \to \text{è il resto di Peano.}$

23 Criterio di Von Leibniz (Serie segni alterni)

23.1 Enunciato

Sia $a_k \neq 0, a_{k+1} \neq a_k$ e $\lim_{x \to +\infty} a_k = 0$.

$$\Rightarrow \sum_{k=1}^{\infty} (-1)^{k-1} a_k$$
 converge

24 Criterio della radice (CAUCHY)

 $a_k \in \mathbb{R} \ \forall k \in \mathbb{N}$. Se $\lim_{k \to +\infty} \sqrt[k]{|a_k|} = l < 1$

$$\Rightarrow \sum a_k$$
è ASSOLUTAMENTE CONVERGENTE

N.B. se l = 1 non si può concludere.

25 Criterio del rapporto (D'Alembert)

 $a_k \in \mathbb{R} \setminus \{0\}, \, \forall k \in \mathbb{N}. \text{ Se } \lim_{k \to +\infty} \left| \frac{a_k + 1}{a_k} \right| = l < 1$

$$\Rightarrow \sum a_k$$
è ASSOLUTAMENTE CONVERGENTE

N.B. se l=1 non si può concludere.

26 Criterio integrale

 $f: [1, +\infty) \to \mathbb{R}, f(x) \ge 0, \forall x \in [1, +\infty).$ Sia f. debolmente crescente in $[1, +\infty)$.

$$\Rightarrow (\sum_{k=1}^{+\infty} f(k) \text{ converge} \iff \int_{1}^{+\infty} f(x) dx \text{ converge})$$

27 Serie a termini di segno qualunque

Sia $a_n \in \mathbb{R}$, $\forall k \in \mathbb{N}$ una successione.

Diremo che $\sum \frac{(-1)^k}{k}$ è ASSOLUTAMENTE CONVERGENTE $\iff \sum |a_k|$ converge.