1- Generate an array of size 2x3 from normal distribution with mean 0 and standard deviation of 2.

2- Generate an array of size 2x3 from standard normal distribution.

3- Create [1, 2, 3, 4, 5, 6, 7] as a numpy array and do the following:

- Slice elements from index 1 to index 5
- · Slice elements from index 4 to the end of the array
- Slice elements from the beginning to index 4 (not included)
- Slice from the index 3 from the end to index 1 from the end
- Return every other element from index 1 to index 5
- Return every other element from the entire array.

4- Create the following Pandas Series.

```
Programming 10

for 20

DS 30

import pandas as pd

X = pd.Series({'Programming': 10, 'for': 20, 'DS': 30})

X

Programming 10
    for 20
    DS 30
    dtype: int64
```

5- Write a Pandas program to display a summary of the basic information about a specified DataFrame and its data.

Sample DataFrame:

```
exam_data = {'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew',
'Laura', 'Kevin', 'Jonas'], 'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19], 'attempts':
[1, 3, 2, 3, 2, 3, 1, 1, 2, 1], 'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no',
'yes']} labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

exam_data = {
        'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'J
        'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],
        'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
        'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']
} labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
df = pd.DataFrame(exam_data, index=labels)
df
```

		name	score	attempts	qualify	III
	а	Anastasia	12.5	1	yes	ıl.
	b	Dima	9.0	3	no	+//
	С	Katherine	16.5	2	yes	
	d	James	NaN	3	no	
	е	Emily	9.0	2	no	
	f	Michael	20.0	3	yes	
	g	Matthew	14.5	1	yes	
	h	Laura	NaN	1	no	
	i	Kevin	8.0	2	no	
	j	Jonas	19.0	1	yes	
df.i	nfo()				
	Ind	ex: 10 ent	ries, a (total	frame.Data to j 4 columns Null Count):	

```
--- -----
            -----
0 name
            10 non-null
                          object
1 score
             8 non-null
                           float64
    attempts 10 non-null
                          int64
2
    qualify
             10 non-null
                           object
dtypes: float64(1), int64(1), object(2)
memory usage: 400.0+ bytes
```

6- Write a Pandas program to join the two given dataframes along rows and assign all data.

```
student_data1: {'student_id': ['S1', 'S2', 'S3', 'S4', 'S5'], 'name': ['Danniella Fenton', 'Ryder
Storey', 'Bryce Jensen', 'Ed Bernal', 'Kwame Morin'], 'marks': [200, 210, 190, 222, 199]}
student_data2: { 'student_id': ['S4', 'S5', 'S6', 'S7', 'S8'], 'name': ['Scarlette Fisher', 'Carla
Williamson', 'Dante Morse', 'Kaiser William', 'Madeeha Preston'], 'marks': [201, 200, 198, 219, 201]}
student_data1 = {
    'student_id': ['S1', 'S2', 'S3', 'S4', 'S5'],
    'name': ['Danniella Fenton', 'Ryder Storey', 'Bryce Jensen', 'Ed Bernal', 'Kwame Morin'],
    'marks': [200, 210, 190, 222, 199]}
student data2 = {
    'student_id': ['S4', 'S5', 'S6', 'S7', 'S8'],
    'name': ['Scarlette Fisher', 'Carla Williamson', 'Dante Morse', 'Kaiser William', 'Madeeha Preston'],
    'marks': [201, 200, 198, 219, 201]}
df1 = pd.DataFrame(student_data1)
df2 = pd.DataFrame(student data2)
df= pd.concat([df1, df2], ignore_index=True)
df
```

	student_id	name	marks	
0	S1	Danniella Fenton	200	ıl.
1	S2	Ryder Storey	210	+//
2	S3	Bryce Jensen	190	
3	S4	Ed Bernal	222	
4	S5	Kwame Morin	199	
5	S4	Scarlette Fisher	201	
6	S5	Carla Williamson	200	
7	S6	Dante Morse	198	
8	S7	Kaiser William	219	
9	S8	Madeeha Preston	201	

7- Write a Pandas program to join the two previously given dataframes along columns.

```
student_data1 = {
    'student_id': ['S1', 'S2', 'S3', 'S4', 'S5'],
    'name': ['Danniella Fenton', 'Ryder Storey', 'Bryce Jensen', 'Ed Bernal', 'Kwame Morin'],
    'marks': [200, 210, 190, 222, 199]}

student_data2 = {
    'student_id': ['S4', 'S5', 'S6', 'S7', 'S8'],
    'name': ['Scarlette Fisher', 'Carla Williamson', 'Dante Morse', 'Kaiser William', 'Madeeha Preston'],
    'marks': [201, 200, 198, 219, 201]}

df1 = pd.DataFrame(student_data1)
df2 = pd.DataFrame(student_data2)

df= pd.concat([df1, df2], axis=1)
df
```

\blacksquare	marks	name	student_id	marks	name	student_id	
ılı	201	Scarlette Fisher	S4	200	Danniella Fenton	S1	0
+//	200	Carla Williamson	S5	210	Ryder Storey	S2	1
	198	Dante Morse	S6	190	Bryce Jensen	S3	2
	219	Kaiser William	S7	222	Ed Bernal	S4	3
	201	Madeeha Preston	S8	199	Kwame Morin	S5	4

8- Create a dataframe using the following dictionary and answer the questions:

```
data: {'Brand' : ['Maruti', 'Hyundai', 'Tata', 'Mahindra', 'Maruti', 'Hyundai', 'Renault', 'Tata', 'Maruti'], 'Year' : [2012, 2014, 2011, 2015, 2012, 2016, 2014, 2018, 2019], 'Kms Driven' : [50000, 30000, 60000, 25000, 10000, 46000, 31000, 15000, 12000], 'City' : ['Gurgaon', 'Delhi', 'Mumbai',
```

'Delhi', 'Mumbai', 'Delhi', 'Mumbai', 'Chennai', 'Ghaziabad'], 'Mileage' : [28, 27, 25, 26, 28, 29, 24, 21, 24]}

- Select cars with brand 'Maruti' and Mileage > 25
- Select a range of rows from 2 to 5
- Update values of 'Mileage' if Year < 2015
- · Select 0th, 2th, 4th, and 7th index rows
- Select rows from 1 to 4 and columns from 2 to 4

	Brand	Year	Kms Driven	City	Mileage	\blacksquare
0	Maruti	2012	50000	Gurgaon	28	ılı
1	Hyundai	2014	30000	Delhi	27	+/
2	Tata	2011	60000	Mumbai	25	
3	Mahindra	2015	25000	Delhi	26	
4	Maruti	2012	10000	Mumbai	28	
5	Hyundai	2016	46000	Delhi	29	
6	Renault	2014	31000	Mumbai	24	
7	Tata	2018	15000	Chennai	21	
8	Maruti	2019	12000	Ghaziabad	24	

```
# Select cars with brand 'Maruti' and Mileage > 25
selection = df[(df['Brand'] == 'Maruti') & (df['Mileage'] > 25)]
selection
```

	Brand	Year	Kms Driven	City	Mileage	
0	Maruti	2012	50000	Gurgaon	28	ılı
4	Maruti	2012	10000	Mumbai	28	+/

```
# Select a range of rows from 2 to 5
selection1 = df.iloc[2:6]
selection1
```

	Brand	Year	Kms Driven	City	Mileage	
2	Tata	2011	60000	Mumbai	25	ıl.
3	Mahindra	2015	25000	Delhi	26	+/
4	Maruti	2012	10000	Mumbai	28	_
5	Hyundai	2016	46000	Delhi	29	

Update values of 'Mileage' if Year < 2015
df.loc[df['Year'] < 2015, 'Mileage'] ==30</pre>

- 0 True
- 1 True
- 2 True
- 4 True
- 6 True

Name: Mileage, dtype: bool

Select 0th, 2th, 4th, and 7th index rows
selection2 = df.iloc[[0, 2, 4, 7]]
selection2

	Brand	Year	Kms Driven	City	Mileage	
0	Maruti	2012	50000	Gurgaon	30	ıl.
2	Tata	2011	60000	Mumbai	30	+/
4	Maruti	2012	10000	Mumbai	30	-
7	Tata	2018	15000	Chennai	21	

Select rows from 1 to 4 and columns from 2 to 4
selection3 = df.iloc[1:5, 2:5]
selection3

	Kms Driven	City	Mileage	
1	30000	Delhi	30	ıl.
2	60000	Mumbai	30	+/
3	25000	Delhi	26	
4	10000	Mumbai	30	

9- Create a dataframe using the following dictionary and labels and answer the questions:

'{school_code': ['s001','s002','s003','s001','s002','s004'], 'class': ['V', 'V', 'VI', 'VI', 'VI', 'VI'], 'name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Gino Mcneill', 'David Parkes'], 'date_Of_Birth ': ['15-05-2002','17-05-2002','16-02-1999','25-09-1998','11-05-2002','15-09-1997', 'age': [12, 12, 13, 13, 14, 12], 'height': [173, 192, 186, 167, 151, 159], 'weight': [35, 32, 33, 30, 31, 32], 'address': ['street1', 'street2', 'street1', 'street2', 'street4']}`

labels: ['S1', 'S2', 'S3', 'S4', 'S5', 'S6']

• Write a Pandas program to split the dataframe into groups based on school code.

S5

S3

S6

Group: s003

Group: s004

s002

school_code class

s003

school code class

s004

V Gino Mcneill

VI Ryan Parkes

VI David Parkes

· Write a Pandas program to split the dataframe into groups based on school code and class.

```
# Create the DataFrame
data = {
    'school_code': ['s001','s002','s003','s001','s002','s004'],
    'class': ['V', 'V', 'VI', 'VI', 'V', 'VI'],
    'name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Gino Mcneill', 'David Parkes']
    'date Of Birth': ['15-05-2002','17-05-2002','16-02-1999','25-09-1998','11-05-2002','15-09-1997'],
    'age': [12, 12, 13, 13, 14, 12],
    'height': [173, 192, 186, 167, 151, 159],
    'weight': [35, 32, 33, 30, 31, 32],
    'address': ['street1', 'street2', 'street3', 'street1', 'street2', 'street4']}
labels = ['S1', 'S2', 'S3', 'S4', 'S5', 'S6']
df = pd.DataFrame(data, index=labels)
df
                                           date_Of_Birth age height weight address
                                                                                           Ħ
          school_code class
                                      name
                                    Alberto
                                                                                            th.
      S1
                 s001
                           ٧
                                                15-05-2002
                                                            12
                                                                    173
                                                                             35
                                                                                  street1
                                    Franco
      S2
                 s002
                           V
                                Gino Mcneill
                                                            12
                                                                   192
                                                                             32
                                                                                  street2
                                                17-05-2002
      S3
                 s003
                          VΙ
                               Ryan Parkes
                                                16-02-1999
                                                            13
                                                                   186
                                                                             33
                                                                                  street3
      S4
                 s001
                               Eesha Hinton
                                                25-09-1998
                                                            13
                                                                   167
                                                                             30
                                                                                  street1
      S5
                 s002
                           V
                                Gino Mcneill
                                                11-05-2002
                                                            14
                                                                    151
                                                                             31
                                                                                  street2
      S6
                 s004
                          VΙ
                               David Parkes
                                                15-09-1997
                                                            12
                                                                   159
                                                                             32
                                                                                  street4
# Split the DataFrame into groups based on school code
groups by school code = df.groupby('school code')
for name, group in groups_by_school_code:
    print("\nGroup:", name)
    print(group)
     Group: s001
        school code class
                                      name date Of Birth age height weight \
     ۲1
               5001
                       V Alberto Franco
                                              15-05-2002
                                                           12
                                                                   173
                                                                            35
     S4
               s001
                       VI
                             Eesha Hinton
                                              25-09-1998
                                                           13
                                                                   167
                                                                            30
         address
     S1 street1
     S4 street1
     Group: s002
                                    name date_Of_Birth age height weight address
        school_code class
                        V Gino Mcneill
     S2
               s002
                                            17-05-2002
                                                         12
                                                                 192
                                                                          32
                                                                              street2
```

11-05-2002

16-02-1999

15-09-1997

name date_Of_Birth

name date Of Birth

14

13

age

12

151

186

159

age height weight address

31

33

height weight address

street2

street3

32 street4

```
# Split the DataFrame into groups based on school code and class
groups by school and class = df.groupby(['school code', 'class'])
for name, group in groups_by_school_and_class:
    print("\nGroup:", name)
    print(group)
    Group: ('s001', 'V')
        school code class
                                    name date Of Birth age height weight \
    S1
                    V Alberto Franco
                                           15-05-2002
                                                        12
                                                               173
        address
     S1 street1
     Group: ('s001', 'VI')
                                  name date_Of_Birth age height weight address
        school_code class
     54
              s001
                      VI Eesha Hinton
                                          25-09-1998
                                                       13
                                                              167
                                                                      30
                                                                          street1
     Group: ('s002', 'V')
        school_code class
                                  name date_Of_Birth
                                                          height weight
                                                                          address
                                                      age
              s002
                    V Gino Mcneill
                                          17-05-2002
                                                      12
                                                              192
                                                                      32
                                                                          street2
    S5
              s002
                       V Gino Mcneill
                                          11-05-2002
                                                       14
                                                              151
                                                                      31
                                                                          street2
     Group: ('s003', 'VI')
                                 name date_Of_Birth
                                                    age height weight address
       school_code class
    S3
              s003
                      VI Ryan Parkes
                                         16-02-1999
                                                      13
                                                             186
                                                                      33 street3
     Group: ('s004', 'VI')
                                  name date_Of_Birth age height weight address
        school_code class
     S6
              s004
                      VI David Parkes
                                          15-09-1997
                                                       12
                                                              159
                                                                      32 street4
```

10- First, create a dictionary for the following data, then create a dataframe based on that. Finally save the data frame as a csv file.

```
nme = ["aparna", "pankaj", "sudhir", "Geeku"]
deg = ["MBA", "BCA", "M.Tech", "MBA"]
scr = [90, 40, 80, 98]
data = {
    'name': ["aparna", "pankaj", "sudhir", "Geeku"],
    'degree': ["MBA", "BCA", "M.Tech", "MBA"],
    'score': [90, 40, 80, 98]}
# Create DataFrame
df = pd.DataFrame(data)
df
                                 Ħ
          name degree score
      0 aparna
                  MBA
                           90
                                 ılı.
```

```
# Save the DataFrame as a CSV file
```

sudhir M.Tech

BCA

MBA

40

80

98

pankaj

3 Geeku

2

```
df.to_csv('data.csv', index=False)
print("DataFrame saved as data.csv")
```

DataFrame saved as data.csv

11- Convert the previously created csv file to a dataframe.

12- Consider the dataset of flights departing from NYC in 2013 and answer the following questions:

- · Display the first five rows of the dataframe
- · Extract the main information of the dataframe
- Display the basic statistical information of the dataframe
- · Select flights with with origin from JFK airport
- Select flights with 2 letters carrier code B6 with origin from JFK airport

df = pd.read_csv("https://raw.githubusercontent.com/JackyP/testing/master/datasets/nycflights.csv", index_c
df