

Homework 4: Adjustment Calculation — part II - Linear and non-linear functional models -					
Surname, Given Name:		Matriculation num	nber: Deadline:		
			20.02.2017		
Test Certificate					
1. Received on:					
_	Date	Signature			
Approved					
Resubmission n	ot later than:				
		Date	Signature, Date		
2. Received on:					
-	Date	Signature			
Approved					
Finally unackno	wledged				
,	Ü		Signature, Date		

Objective

This exercise deals with the least-squares adjustment of a levelling and a direction network.

Figure 1: Levelling network

Table 2: Measured height differences and their standard deviations

From	То	Δh_i [m]	$\sigma_{\Delta m h_i}$ [mm]
Α	В	10.509	6
В	С	5.360	4
С	D	-8.523	5
D	Α	-7.348	3
В	D	-3.167	4
Α	С	15.881	12

Table 1: Points which are used as benchmarks

Point	Is Benchmark?	
Α	0	
В	\bigcirc	
С	0	
D	\circ	

Task 1:

A levelling network is depicted in Figure 1 and the related measurements as well as their standard deviations are listed in Table 2. The measurements are uncorrelated.

- Perform two different adjustments for the given levelling network
 - 1. Adjustment: Use the first marked point in Table 1 as a benchmark and all others as new points
 - 2. Adjustment: Use the second marked point in Table 1 as a benchmark and all others as new points
- The error free height for each benchmark is derived from your matriculation number
 - o e.g. Matr.-No.: 123456
 - 1. Adjustment (number forward): $H_1 = 123.456 m$
 - 2. Adjustment (number backward): $H_2 = 654.321 m$
- Set up an appropriate functional model as well as the observation equations
- Set up the stochastic model
- For the final check choose an appropriate value δ and justify your decision
- Solve the normal equation system and determine the heights for the remaining points as well as their standard deviations
- Calculate the residuals and the adjusted observations as well as their standard deviations
- Compare the adjusted unknowns, adjusted observations and residuals as well as their standard deviations of both adjustments. Present all results in one table and comment them.

Task 2:

The observed directions of the triangulation network depicted in Figure 2 are listed in Table 4. The points 1, 2, 4, 5 and 6 are control points (error free) and their 2D coordinates are given in Table 3. Calculate the adjusted coordinates of point 3 while this time using angles as observations (derived from the observed directions).

- Set up the stochastic model for the derived angles
 - Hint: VCM from VC propagation!
- Set up an appropriate functional model as well as the observation equations
- Choose appropriate values for the break-off conditions ϵ and δ and justify your decision
- ullet Solve the normal equation system and determine the 2D coordinates of point ${\it 3}$ as well as their standard deviations
- Calculate the residuals and the adjusted observations as well as their standard deviations
- Compare and comment the results from task 2 with those from exercise 12.

Figure 2: Triangulation network

Table 3: 2D coordinates of control stations

Point	Y [m]	X [m]
1	682.415	321.052
2	203.526	310.527
4	251.992	506.222
5	420.028	522.646
6	594.553	501.494

Table 4: Observed directions

Instrument station	Foresight station	Direction [gon]
3	1	206.9094
	2	46.5027
	4	84.6449
	5	115.5251
	6	155.5891