Silicon N-Channel Junction FET

Description

The 2SK152 is the first device to reach such a high "Figure of merit" level. Because it uses the latest Epitaxy and Pattern technology.

Head amplifiers Video Cameras VTRs etc. perform very efficiently.

Features

High figure of merit

VDS = 5V | Yfs | /Ciss 3.5 (Typ.) ID = 10mA

• High | Yfs |

VDS = 5V | Yfs | 30mS (Typ.) VGS = 0V

· Low input capacitance

Ciss 8pF (Typ.)

Structure

Silicon N-Channel junction FET.

Absolute Maximum Ratings (Ta = 25°C)

Junction temperatureStorage temperature	Tj Tstg	100 -50 to +120	°C
Gate current	IG	5	mA
 Drain current 	ID	50	mA
 Source to gate voltage 	Vsgo	15	V
 Drain to gate voltage 	V DGO	15	V

Electrical Characteristics

Ta = 25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Drain to gate voltage	VDGO	IG = 10μA	15			V
Source to gate voltage	Vsgo	IG = 10μA	15			٧.
Gate cutoff current	IGSS	VGS = -7V, $VDS = 0V$			- 2	nA
Drain current	IDSS	VDS = 5V, VGS = 0V	9.5		42	mA*
Gate to source cutoff voltage	VGS(OFF)	VDS = 5V, ID = 100μA	-0.55		- 2.0	V
Forward transfer admittance	Yfs	VDS = 5V, VGS = 0V, f = 1kHz	21	30		mS
Input capacitance	Ciss	VDS = 5V, $VGS = 0V$, $f = 1MHz$		8	9	pF

^{*}Note) Drain current detail specification as follows.

Classification

Rank	IDSS(mA)	VDS = 5V VGS = 0V	
1	9.5 to	14.8	
2	13.4 to	21.0	
3	19.0 to 30.2		
4	27.4 to 42.0		

Mark

Standard Circuit Design Data

Ta = 25°C

Item	Symbol	Condition	Typ.	Unit
Forward transfer admittance	Yfs	VDS = 5V, ID = 10mA, f = 1kHz	25	mS
Input capacitance	Ciss	VDS = 5V, ID = 10mA, f = 1MHz	7.2	pF
Gate cutoff current	IG	Vpg = 5V, Ip = 10mA	40	pA
Input resistance	ris	VDS = 5V, ID = 10mA, f = 100MHz	3.5	kΩ
Input capacitance	Cis		7.2	pF
Output resistance	ros		3	kΩ
Output capacitance	Cos		2.5	pF
Power gain	PG		15	dB
Noise figure	NF	VDS = 5V, ID = 10mA, f = 100MHz	1.8	dB
Equivalent input noise voltage	Ēn	$\begin{aligned} V_{DS} = 5V, & \text{ID} = 10\text{mA} \\ f = 1\text{kHz}, & \text{Rg} = 0\Omega \end{aligned}$	1.2	nV/√Hz
Reverse transfer capacitance	Crss	VDS = 5V, VGS = 0V, f = 1MHz	2.0	pF

100 MHz PG, NF Test Circuit

- L1 ϕ 0.45mm Polyurethane Wire ϕ 3mm 10.5t L2 $_{L3}$ $_{1}$ ϕ 0.45mm Polyurethane Wire ϕ 3mm 5.5t

Drain current vs. Drain to source voltage

Vps - Drain to source voltage (V)

Drain current vs. Ambient temperature

Ta - Ambient temperature (°C)

Drain current temperature coefficient vs. Drain current

Drain current vs.

VGS - Gate to source voltage (V)

Transfer characteristics vs. Ambient temperature

VGS - Gate to source voltage (V)

Drain current temperature coefficient vs. Gate cutoff voltage

lo - Drain current (mA)

Gate cutoff current vs. Bias voltage

Gate to source cutoff voltage vs. Zerogate voltage drain current

f - Frequency (Hz)

ID - Drain current (mA)

