Assignment 1

Given Date: 06-02-2022 Due Date: 06-09-2022 11:59 pm EDT

Question 1 (Logic)

- 1. For each of the following **implications**, write the negation and contraposition. If the statement is in English, write your response in English as well.
 - (a) If it is raining then I will bring my umbrella. (5 points)

<u>Answer</u>: Lets consider, p and q are propositions where p = "it is raining" and q = "I will my umbrella"

 $p \to q$ also implies $(\neg p \lor q)$. Thus, Negation of $p \to q$ or $\neg (\neg p \to q)$ also implies $p \land \neg q$

Negation: "It is not the case that if it is raining then I will bring my umbrella." Alternatively negation also be "it is raining and I will not bring umbrella".

Contrapositive: If I will not bring my umbrella, then it is not raining.

(b) If I water my plants then they will grow. (5 points)

<u>Answer</u>: Lets consider, p and q are propositions where p = "I water my plants" and q = "they will grow"

Negation: "It is not the case that if I water my plants then they will grow." Alternatively negation also be "I water my plants and they will not grow".

 $\begin{tabular}{ll} \textbf{Contrapositive:} If my plants will not grow, then I don't water them. \\ \end{tabular}$

(c) $(\neg p \lor q) \to r$ (5 points)

Answer: Negation of $(\neg p \lor q) \to r$

$$= \neg((\neg p \lor q) \to r)$$

$$= \neg(\neg(\neg p \lor q) \lor r)$$

$$= \neg \neg (\neg p \lor q) \land \neg r$$
, using de-morgan's law

$$= (\neg p \lor q) \land \neg r$$

Contrapositive: $\neg r \rightarrow \neg (\neg p \lor q)$ After simplification, $\neg r \rightarrow (p \land \neg q)$

2. Using a truth table, show that the following statements are equivalent. $(p \land \neg q) == \neg (p \to q)$ (5 points)

р	q	¬ q	$p \land \neg q$
T	Т	F	F
Т	F	Т	Т
F	Т	F	F
F	F	Τ	F

Table 1: Truth table for $p \wedge \neg q$

р	q	$p \rightarrow q$	$\neg(p \to q)$
$\parallel T$	Т	Т	F
Т	F	F	Т
F	Т	Т	F
F	F	Т	F

Table 2: Truth table for $\neg(p \to q)$

Two propositions are equivalent if they have same truth values. Thus, Table 1 and 2 show that propositions $p \land \neg q$ and $\neg (p \to q)$ are equivalent.

3. Show using equivalences that the following statements are equivalent.

(a)
$$(p \to q) \land (p \to r) == p \to (q \land r)$$
 (5 points)
Answer: $(p \to q) \equiv \neg p \lor q$ (from definition)

$$\begin{split} LHS &\equiv (p \to q) \land (p \to r) \\ &\equiv (\neg p \lor q) \land (\neg p \lor r) \\ &\equiv (\neg p \lor (q \land r)), using \ Distributive \ Law \\ &\equiv p \to (q \land r), by \ definition \\ &\equiv RHS \end{split}$$

(b)
$$(p \land q) \rightarrow (p \lor q) == T(true)$$
 (5 points)
Answer: $(p \rightarrow q) \equiv \neg p \lor q$ (from definition)

$$\begin{split} LHS &\equiv (p \wedge q) \rightarrow (p \vee q) \\ &\equiv (\neg (p \wedge q)) \vee (p \wedge q) \\ &\equiv \neg r \vee r, where \ r = (p \wedge q) \\ &\equiv T(true), using \ Negation \ Law \\ &\equiv RHS \end{split}$$

Question 2 (Quantifiers and Predicate Logic)

- 1. Translate the following from English to predicate logic
 - (a) For every positive real number x, there is some real number y that is the square root of x (optional: extend this statement to show that there are two distinct square roots of x) (5 points)

<u>Answer</u>: A(x) = "x > 0 (x is a positive real number)" For the second part, we have to define 2-place predicate, B(x,y): " $y^2 = x$ (x has y as a square root)"

The predicate logic will be $\forall x (A(x) \rightarrow \exists y B(x,y))$

optional part
$$\forall x [A(x) \rightarrow [(\exists y)(\exists z) \rightarrow (x \neq y) \land B(x,y) \land B(x,z)]]$$

(b) There is a real number that is its own square root (5 points)

<u>Answer</u>: C(x) = "x is a real number" For the second part, we use the same 2-place predicate, B(x,y): " $y^2 = x$ (x has y as a square root)"

The predicate logic will be $\exists x \ (C(x) \to B(x,x))$

(c) For any two distinct real numbers there is a third real number with a value between the first two. (5 points)

Answer: using the same predicate, C(x) = ``x is a real number''The predicate logic will be $\forall x,y \ [(x < y) \land C(x) \land C(y) \rightarrow \exists z \ (x < z < y) \land C(z)]$

Question 3 (Proofs)

1. Use a direct proof to show that the sum of two even integers is even. (5 points)

<u>Answer</u>: Assume that x & y are two even integers. This means x = 2k for some integer k and y = 2n for some integer.

Adding those two equations, x+y = 2k + 2n = 2(k+n), where k+n is an integer (because sum of integers is an integer).

This means (x+y) is even.

2. Prove the following by contradiction:

If x is an irrational number, then -x is an irrational number

(Recall that a rational number is any number that can be written as a fraction with integers in the numerator and denominator. If this cannot be done, it is irrational.) (5 points)

<u>Answer</u>: To start a proof by contradiction, we assume that this proposition is false; which means $\exists x$ is an irrational number for which -x is an rational number.

Since, 0 is a rational number and rational numbers are closed under subtraction thus 0 - (-x) is also a rational number, i.e., x is a rational number which contradicts our assumption. Therefore the proposition is not false.

Alternative Proof To start a proof by contradiction, we assume that this proposition is false; which means $\exists x$ is an irrational number for which -x is an rational number.

Since, -x is a rational number, it can be written as $\frac{p}{q}$ where, p and q are integers and $q \neq 0$. Thus, x can be written as $\frac{-p}{q}$, where -p and q both are integers (since p and q are integers). This implies x is a rational number which contradicts our assumption. Therefor, if x is an irrational number, then -x is an irrational number.

3. Use an existence proof to show that the cubed root of x is can be equal to the square root of x. (5 points)

<u>Answer</u>: Here we have to find an explicit value c for which cubed root of c is can be equal to the square root of c.

1 is such a number since, cubed root and square root of 1 are both 1.

Question 4 (Sets)

1. For the following problems, use these sets:

$$A = \{ n \mid n \in \mathbb{Z} \text{ and } n \le 14 \}$$

$$B = \{2, 3, 5, 7, 11, 13\}$$

(a) $A \wedge B$ (5 points)

Answer:
$$A \wedge B = x \mid x \in A \text{ and } x \in B$$

Here,
$$A \wedge B = A = \{2, 3, 5, 7, 11, 13\}$$
, since A is a proper subset of B.

(b) A - B (5 points)

Answer: A - B = x | x \in A and x \notin B Here, A - B = \emptyset , since A is a proper subset of B.

- (c) $(A \wedge B) \vee B$ (5 points)
 - $= (A \wedge B) \vee B$
 - $= (A \vee B) \wedge (B \vee B)$, using Distributive law
 - $= (A \vee B) \wedge B$, using Idempotent law
 - = B \wedge B, since A is a proper subset of B
 - $=B=\{\ n\mid n\in\mathbb{Z}\ and\ n\leq 14\}$

- 2. Let $f(x) = x^2$ and g(x) = x + 2. Domain of f(x) is all real numbers. Domain of g(x) is also all real numbers.
 - (a) What is $f \circ g$? Simplify the function as much as possible. (5 points) Answer: fog(x) = f(g(x)) = f(x+2) = (x+2)^2 = $x^2 + 4x + 4$
 - (b) What are the inverses of these two functions. If the inverse does not exist, explain why. (5 points)

<u>Answer</u>: The function f can't be invertible because it is not one to one. We can understand this with a simple example, a value y = 4 from the domain of f^{-1} (if it exists) can possibly be mapped to two different values -2 and +2 which violates the function definition.

While, The function g is invertible because it is a one-to-one correspondence. The inverse function g^{-1} reverses the correspondence so $g^{-1}(y) = y - 2$.

Question 5 (Matrices)

1. What is the cardinality of the set of all prime factors of 120? (5 points)

<u>Answer</u>: $120 = 2^3 \times 3 \times 5$ and Hence the prime factors are the set $S=\{2,3,5\}$ Thus the cardinality of the set of all prime factors of 120 = 3.

2. Let
$$M = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$$
 and $N = \begin{bmatrix} 0 & 1 & 2 \\ 4 & 8 & 6 \end{bmatrix}$. What is MN^TN ? (10 points)

$$\underline{\textbf{\textit{Answer}}} \colon N^T = \begin{bmatrix} 0 & 4 \\ 1 & 8 \\ 2 & 6 \end{bmatrix}$$

$$MN^T = \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix}$$

$$MN^TN = \begin{bmatrix} 8 & 17 & 14 \\ -8 & -17 & -14 \end{bmatrix}$$