WRF urban module: Specific module for output of urban variables

Contribution from the CORDEX FPS URB RCC

L. Fita¹

¹ 'Centro de Investigaciones del Mar y la Atmósfera' (CIMA), UBA-CONICET IRL IFAECI/CNRS-IRD-UBA-CONICET

Intendente Güiraldes 2160 - Ciudad Universitaria - Pabellón II - 2do. piso (C1428EGA) C. A. Buenos Aires ARGENTINA

FPS URB RCC WRF-coordination meeting, 2023 October 25th

- There are 2 different considerations on WRF urban:
 - Classification of building categories at the grid point
 - URB_PARAM: Characteristics of buildings

- There are 2 different considerations on WRF urban:
 - Classification of building categories at the grid point
 - URB_PARAM: Characteristics of buildings
- Classification of buildings: WUDAPT, [Ching et al., 2018, BAMS, doi: 10.1175/BAMS-D-16-0236.1]

- There are 2 different considerations on WRF urban:
 - Classification of building categories at the grid point
 - URB_PARAM: Characteristics of buildings
- Classification of buildings: WUDAPT, [Ching et al., 2018, BAMS, doi: 10.1175/BAMS-D-16-0236.1]
 - 11 different building categories LCZ (Local Climate Zones)
 - 2 Since WRF v4.5 direct use of data provided at the geogrid.exe
 - 3 Previously use w2w tro interpolate .tiff maps

- There are 2 different considerations on WRF urban:
 - Classification of building categories at the grid point
 - URB_PARAM: Characteristics of buildings
- Classification of buildings: WUDAPT, [Ching et al., 2018, BAMS, doi: 10.1175/BAMS-D-16-0236.1]
- Characteristics of buildings: height, street direction, albdedo, heat capacity, heat transfer, ...

- There are 2 different considerations on WRF urban:
 - 1 Classification of building categories at the grid point
 - URB_PARAM: Characteristics of buildings
- Classification of buildings: WUDAPT, [Ching et al., 2018, BAMS, doi: 10.1175/BAMS-D-16-0236.1]
- Characteristics of buildings: height, street direction, albdedo, heat capacity, heat transfer, ...
 - 132 values at each grid cell
 - Incorporated at geogrid.exe via variable URB_PARAM, data from NUDAPT (only USA)
 - When wrf.exe simulates, zero grid-values of URB_PARAM are replaced by URBPARM_LCZ.TBL values for each LCZ

- There are 2 different considerations on WRF urban:
 - Classification of building categories at the grid point
 - URB_PARAM: Characteristics of buildings
- Classification of buildings: WUDAPT, [Ching et al., 2018, BAMS, doi: 10.1175/BAMS-D-16-0236.1]
- Characteristics of buildings: height, street direction, albdedo, heat capacity, heat transfer, ...
- URB_PARAM (shared drive document), dimensions (nxm,132,nym), however only a few of them are used:
 - URB_PARAM(i,91,j)=TOWN*BUILDING (grid point average)
 - URB_PARAM(i,94,j)=BUILDING_HEIGHT (averaged BUILDING > 0 & > 5 m)
 - URB_PARAM(i,95,j)=(WALL_O_HOR+BUILDING)*TOWN (grid point averagee)
 - URB_PARAM(i,117:132,j) building height distributions, example:
 - URB_PARAM(i,117,j) fraction of buildings 5m height
 - URB_PARAM(i,118,j) fraction of buildings 10m height

• base dimensions

base dimensions

dim name	dim name wrf.exe	description	default value
udr		urban wind directions	4
urb		urban parameters	132
nurbmax		Maximum number of urban classes	11
ndm	num urban ndm	Maximum number of street directions	2
nz_um	num_urban_nz	Maximum number of vertical levels in the urban grid	18
ng u	num urban ng	Number of grid levels in the ground	10
ngr u	num urban ngr	Number of grid levels in green roof	10
nwr u	num urban nwr	Number of grid levels in the walls or roofs	10
nf u	num urban nf	Number of grid levels in the floors (BEM)	10
ngb_u	num_urban_ngb	Number of grid levels in the ground below building (BEM)	10
nbui_max	num_urban_nbui	maximum number of types of buildings in an urban class	15

 $\underline{source} : Registry/registry.dimspec, \ Registry/Registry.EM_COMMON, phys/module_sf_bep_bem.F$

- base dimensions
- Combination of dimensions

- base dimensions
- Combination of dimensions

var. dim.	dimension	combination value	value
uamp0	num_urban_ndm	num_urban_ndm	2
umap1	urban_map_zrd	num_urban_ndm*num_urban_nwr*num_urban_nz	360
umap2	urban_map_zwd	num_urban_ndm*num_urban_nwr*num_urban_nz* num_urban_nbui	5400
umap3	urban_map_gd	num_urban_ndm*num_urban_ng	20
umap4	urban_map_zd	num_urban_ndm*num_urban_nz*num_urban_nbui	540
umap5	urban_map_zdf	num_urban_ndm*num_urban_nz	36
umap6	urban_map_bd	num_urban_nz*num_urban_nbui	270
umap7	urban_map_wd	num_urban_ndm*num_urban_nz*num_urban_nbui	540
umap8	urban_map_gbd	num_urban_ndm*num_urban_ngb*num_urban_nbui	300
umap9	urban_map_fbd	num_urban_ndm*(num_urban_nz - 1)*num_urban_nf* num_urban_nbui	5100
umap10	urban_map_zgrd	num_urban_ndm*num_urban_ngr*num_urban_nz	360

- base dimensions
- Combination of dimensions
- umap0 = 2 (street direction)

name	dims	description	nuits
SFG URB3D	i{umap0}j	SENSIBLE HEAT FLUX FROM URBAN SFC	W m-2
DG URB3D	i{umap0}j	ROOF LAYER DEPTH WATER RETENTION	mm
LFG URB3D	i{umap0}j	LATENT HEAT FLUX FROM URBAN SFC	W m-2

- base dimensions
- Combination of dimensions
- umap1 = 360 (street direction, levels in the walls/roofs, max lev urban)

name	dims	description	nuits
TRB_URB4D	i{umap1}j	ROOF LAYER TEMPERATURE	K

- base dimensions
- Combination of dimensions
- umap2 = 5400 (street direction, levels in the walls/roofs, max lev urban, max type bldgs urban class)

name	dims	description	nuits
TW1 URB4D	i{umap2}j	WALL LAYER TEMPERATURE	K
TW2_URB4D	i{umap2}j	WALL LAYER TEMPERATURE	K

- base dimensions
- Combination of dimensions

- base dimensions
- Combination of dimensions
- umap4 = 540 (street direction, max lev urban, max type bldgs urban class)

name	dims	description	nuits
SFW1 URB3D	i{umap4}j	SENSIBLE HEAT FLUX FROM URBAN SFC	W m-2
SFW2_URB3D	i{umap4}j	SENSIBLE HEAT FLUX FROM URBAN SFC	W m-2

- base dimensions
- Combination of dimensions
- umap5 = 36 (street direction, max lev urban)

name	dims	description	nuits
SFR URB3D	i{umap5}j	SENSIBLE HEAT FLUX FROM URBAN SFC	W m-2
T PV URB3D	i{umap5}j	PHOTOVOLTAIC PANELS TEMPERATURE	K
DRAIN URB4D	i{umap5}j	GREEN ROOF DRAINAGE	mm
SFRV URB3D	i{umap5}j	SENSIBLE HEAT FLUX FROM GREEN ROOF	W m-2
LFRV URB3D	i{umap5}j	LATENT HEAT FLUX FROM GREEN ROOF	W m-2
DGR URB3D	i{umap5}j	ROOF LAYER DEPTH WATER RETENTION	mm
LFR URB3D	i{umap5}j	LATENT HEAT FLUX FROM URBAN SFC	W m-2

- base dimensions
- Combination of dimensions

 umap6 = 270 (street direction, max type bldgs urban class) 				
name	dims	description	nuits	
TLEV URB3D	i{umap6}j	INDOOR TEMPERATURE	K	
QLEV_URB3D	i{umap6}j	SPECIFIC HUMIDITY	dimensionless	

- base dimensions
- Combination of dimensions
- umap7 = 540 (street direction, max lev urban, max type bldgs urban class)

,			
name	dims	description	nuits
TW1LEV URB3D	i{umap7}j	WINDOW TEMPERATURE	K
TW2LEV URB3D	i{umap7}j	WINDOW TEMPERATURE	K
SFWIN1_URB3D	i{umap7}j	SENSIBLE HEAT FLUX FROM URBAN SFC WINDOW	W m-2
SFWIN2_URB3D	i{umap7}j	SENSIBLE HEAT FLUX FROM URBAN SFC WINDOW	W m-2

- base dimensions
- Combination of dimensions
- umap8 = 300 (street direction, ground levels below building, max type bldgs urban class)

name	dims	description	nuits
TGLEV_URB3D	i{umap8}j	GROUND TEMPERATURE BELOW A BUIL- DING	K

- base dimensions
- Combination of dimensions
- umap9 = 5100 (street direction, max lev urban-1, floors levels, max type bldgs urban class)

name	dims	description	nuits
TFLEV_URB3D	i{umap9}j	FLOOR TEMPERATURE	K

- base dimensions
- Combination of dimensions

umap10 = 360 (street direction, green roof levels, max lev urban)
 name dims description nuits
 TRV_URB4D i{umap10}; GREEN ROOF LAYER TEMPERATURE KQR_URB4D i{umap10}; GREEN ROOF LAYER MOISTURE dimensionless

Requested variables

name	units	description
taspav	K	Near-surface temperature pavements
tasroof	K	Near-surface temperature roof
tasgree	K	Near-surface temperature green spaces
tasblue	K	Near-surface temperature blue spaces
anthroheat	W/m2 (?)	Anthropogenic heat flux
tsskin	K	Skin temperature
tspav	K	Surface temperature pavements
tsroof	K	Surface temperature roof
tsgree	K	Surface temperature green spaces
tsblue	K	Surface temperature blue spaces
ta50m	K	air-temperature at 50 m
ua50m	ms-1	air eastward wind speed at 50 m
va50m	ms-1	air northward wind speed at 50 m
qv50m	kgkg-1	air water vapour mixing ratio at 50 m

• Generic procedure, for a variable $\chi(i,j)$ as function \mathcal{F} of $v_{urb}(i,j,dim_{urb})$, $atmos_1(i,j)$, ..., $atmos_m(i,j)$

$$\chi(i,j) = \left\{ egin{array}{ll} \displaystyle \sum_{\ell=1}^{\dim_{urb}} \mathcal{F} \left(v_{urb}(i,j,\ell), \operatorname{atmos}_k(i,j)
ight) & ext{average value each urb} \\ \mathcal{F} \left(\displaystyle \sum_{\ell=1}^{\dim_{urb}} v_{urb}(i,j,\ell), \operatorname{atmos}_k(i,j)
ight) & ext{value from urb average} \end{array}
ight.$$

- Near surface temperatures (2-m ?)
 - can be used different standard extrapolation Monin-Obukov, TKE, ... methodologies (already implemented in WRF from each PBL)
 - or generic ones like from CORDEX-WRF , [Fita et al., 2019, GMD, doi: 10.5194/gmd-12-1029-2019]

- Example tasroof: Near-surface temperature roof
 - WRF variable: TRB URB4D
 - dimensions: i{umap1}j
 - umap1 = 360 (street direction, levels in the walls/roofs, max lev urban)
 - Averaging individual tasroof:

$$tasroof(i,j) = \sum_{\ell=1}^{360} \mathcal{F}(TRB_URB4D(i,j,\ell), atmos_k(i,j))$$

tasroof from urban average

$$angle tasroof(i,j) = \mathcal{F}\left(\sum_{\ell=1}^{360} \textit{TRB_URB4D}(i,j,\ell), \textit{atmos}_k(i,j)
ight)$$

- Reduction of urban morphological data: (suggestion by A. Martilli)
 - reduce the value of nbui_max in module_sf_bep_bem.F to 2
 (default 15)
 - 2 estimate the maximum building height over all the grid points
 - then put nz_um=(max_build_height)/5+4, where max_build_height is the numerical value of the maximum building height estimated (smaller than default value, 18)
 - in dyn_em/module_initialize_real.F limit the loop to the numerical value of nz_um, instead of 15 (this is hardcoded):

```
DO k = 1, 15
grid%HI_URB2D(i,k,j) = grid%URB_PARAM(i,k+117,j)
END DO
```

