2023 Digital IC Design Homework 4

2023 Digital IC Design Homework 4						
NAME	林宜謙					
Student ID	lent ID N16100250					
Simulation Result						
Functional		100		Gate-level simulation	100	
simulation				 		
START!!! Simulation Start				# START!!! Simulation Start		
Layer 0 output is correct ! Layer 1 output is correct!				# Layer 0 output is correct ! # Layer 1 output is correct!		
#				# SUMMARY		
Congratulations! Layer 0 data have been generated successfully! The results Congratulations! Layer 1 data have been generated successfully! The results Congratulations!				<pre># Congratulations! Layer 0 data have been gener # Congratulations! Layer 1 data have been gener</pre>		
terminate at 46087 cycle				# terminate at 46087 cycle		
# ** Note: @finish : C:/Users/lin/Documents/modelsim/verilog_practice/HW			estfixtu	* ** Note: ¢finish : C:/Users/lin/Documents/	modelsim/verilog_practice/HW4/testfixtu:	
Synthesis Result						
Total logic elements			232			
Total memory bits			0			
Embedded multiplier 9-bit			0			
elements Total evale used			46087			
Total cycle used				767		
Flow Summary						
< <filter>></filter>						
Flow Status			Successful - Thu May 18 17:27:41 2023			
Quartus Prime Version			2	20.1.1 Build 720 11/11/2020 SJ Lite Edition		
Revision Name			ATCONV			
Top-level Entity Name			Α	ATCONV		
Family			C	Cyclone IV E		
Device			Е	EP4CE55F23A7		
Timing Models			F	Final		
Total logic elements			2	232 / 55,856 (< 1 %)		
Total registers			9	99		
Total pins	Total pins			82 / 325 (25 %)		
Total virtual pins			0	0		
Total memory bits			0	0 / 2,396,160 (0 %)		
Embedded Multiplier 9-bit elements			0	0/308(0%)		
Total PLLs				0/4(0%)		

Description of your design

程式流程說明:

設計的思路主要是將每一個畫素(pixel)對應 9 次的 kernel filter 的計算,而每 讀取一次畫素值就更新一次圖片的位址,而為減少 cycle 數給入新的位址並同 時計算由舊的位址得出的值進行卷積計算,每 9 次計算後就寫回到 Layer0 的 記憶體中,並比較計算的值取較大的值,在每做完 4 次的 layer0 寫回後,將 陣列中最大值取整數並寫回 layer1 的記憶體中,每 4 個原圖的畫素做一次這 樣的流程直到所有畫素完成計算,而根據設計的流程可總共分成 6 個狀態, 分別為:

CHECK_IMG_RD:確認圖片是否完成載入到 tb 圖片的記憶體中,有的話將 busy 訊號線拉高,開始之後的運算。

GET DATA FROM MEM: 將中間的的畫素值位址傳送給 tb。

CONVOLUTION:每一個畫素值由上一個狀態輸入欲讀取的位址後在這一個 狀態可以得到中間的畫素值,根據 filter 的編號進行 shift 計算,並將每一次 的計算值加總,並且更新 filter 的編號更新下一個要讀取的畫素值。

WRITE_RELU_LAYER0:在前一狀態後會得到當前畫素值的卷積值,並加上bias,將寫回的訊號拉高並寫回 layer0中,而 Relu 的判斷方式則是判斷 sign bit 將正數保留,反之為 0,並且將值暫存與卷積總和歸回 bias。

WRITE_LAYER1: 當寫入 layer04 次後,將最大值取整寫回 layer1 的記憶體中,而若完成兩列的畫素值計算,更新中間的畫素值完成一次 4 個原圖片畫素值的計算。

RESULT: 若做完所有的計算將 busy 訊號拉低,使 tb 確認。

變數說明:

sum conv: 卷積計算的總和值

image_mem_idx:輸入至 iaddr 每一次需要讀位址的變數,透過組合電路更新值

layerl_mem_idx: 寫回 layerl 位址的變數,每做完一次 maxpooling 就更新+1 一次

current_pixel: 儲存在 layer0 做卷積計算中間的位址, kernel filter 的 padding 位址方式會以此變數進行計算

counter for 9: 作為 kernel filter 計算的順序的計數值

counter for 4: 作為 4 次寫入 layer0 計數值

filter shift: 對應 kernel filter 需要做 shift 的次數

next mem offset: 做完 maxpooling 後的下一個位址的移動值

bias: 卷積計算的 bias 值

max data: 卷積值最大值變數

padding 處理:

非最外兩圈的不會有 padding 的問題,在最外兩圈會有對應的計算方式,以 獲取需要 padding 的記憶體位址, kernel filter padding 問題的組合電路計算方式:

首先, kernel filter 計算順序由中間的值 0 索引開始至到 8, 示意順序為:

[1] [7] [2]

[6] [0] [5] 雖然比較不直觀的順序,但合成的時候將4個角落與4個邊計算

[3][8][4] 方式排在一起的時候會減少成本

在處理位址計算時牽涉到"行"(column)的計算的時候,考慮位址的後 6-bit,反之,牽涉到"列"(row)的計算的時候,考慮位址的前 6-bit。再來組合電路以 kernel filter 的索引值分成不同的 case 計算,先看到 5678 的索引,代表的是 4 個邊,分別探討:

索引 5 代表右邊那排,以中間的值的位址要+2,但是最右邊那排的數字+0,而倒數右邊一排的數字+1,為"行"的運算,所以在後 6-bit 要創造出分別三種加法的情況,用 2 個 bit 代表,第一個 bit 的條件為小於 62,第二個 bit 的條件為等於 62,所以最右邊那排的數字根據後 6-bit 會得到 2'b00,倒數右邊一排會得到 2'b01,非這兩排,也就是不用 padding 的"行"會得到 2'b10

索引 6 代表左邊那排,以中間的位址要-2,所以同理索引 5 的思路,也是數字的後 6-bit 去判斷出 2,1,0 的數字,同樣的第一個 bit 條件變為大於 1,第二個 bit 條件變為等於 1,就可以得到欲求出數字

索引 7 代表上排那排,以中間的值的位址要+128,但第一列的數字+0,而第二列的數字+64,而 0/64/128 的數字分別代表前 6 個 bit 0/1/2,所以邏輯上與索引 6 的方式一樣,只是計算於前 6-bit,後 6-bit 不變,因此索引 8 也就是最下面兩排的數字也是一樣類似索引 5 的處理方式,以此類推。

至於索引 1234,也就是代表著 4 個角落的 4 個數字的處理方式,索引 1 的數字則為索引 7 與索引 6 的交集,分別處理前 6-bit 與後 6-bit,同樣的以此類推,索引 2 的數字則為索引 7 與索引 5 的交集、索引 3 的數字則為索引 6 與索引 8 的交集、索引 4 的數字則為索引 5 與索引 8 的交集

各狀態(state)說明:

CHECK IMG RD: 將 busy 訊號拉高與 ready 訊號一樣

GET_DATA_FROM_MEM:此狀態要輸入中間的畫素值位址,作為第一次的 卷積資料位址輸入,在下一個狀態才會得到資料,將計數器設為1為了觸發 上述的組合電路更新第二個要讀取的位址

CONVOLUTION:在進入這個狀態的時候,在前一個狀態可以得到前一個位址的 idata 值,而同時重新輸入至 iaddr 的時候已經是被更新過的"新的"位址了,將得到的 idata 資料進行 shift,也就是乘法的計算,而觀察欲相乘的數字就會發現,利用右 shift 就可以得到計算的結果,但因為是負數(正數*負數),所以在計算的時候可以轉換成 shift 後再做二補數的計算,中間的值則為原值不需要變動,做完一次的計算後再透過更新計數的變數從而更新下一個位址WRITE_RELU_LAYERO:在上一個狀態做完 9 次的計算後,將結果寫回layerO 與並判斷大小確認是否要更新最大值,而在這之前要先對計算好的結果做 relu 的計算,也就是取正數,所以只要判斷第一個 signed bit 就可以分辨出來,再來是下一個中心畫素位址的更新,以第一組為例,分別要計算0/1/64/65 的卷積值,所以移動值就會是+1/+63/+1,而要移到下一組的第一個值時,再移動-63

WRITE_RELU_LAYER0: 當做完 4 次卷積計算後就會進行一組的 maxpooling 與取整,並將最大值取整並寫回 layer1,取整的計算方式就是先把後 4-bit 右移 4 位直接捨去,若後 4-bit 不為 0,也就是有任何值的話就會+1,最後再左移 4 位完成計算,而中心值(current_pixel)再做完 32 次後($0\sim31$)就要加一次 128,為下兩列的計算移位

RESULT: 當圖片都完成卷積後,將 busy 訊號拉低,使 tb 確認

Scoring = (Total logic elements + Total memory bits + 9*Embedded multipliers 9-bit elements) X Total cycle used

* Total logic elements must not exceed 1000.

Scoring = 10692184 = (232 + 0 + 9 * 0) * 46087