on four unseen datasets. Additionally, we provide the number of neural architectures (Trained Archs) that are actually trained to achieve accuracy. The accuracies are reported with 95% confidence intervals over 3 runs. CIFAR-10 CIFAR-100 Oxford-IIIT Pets Aircraft Method Trained Trained Type Accuracy Accuracy Trained Accuracy Accuracy Trained

Table 2: Comparison with Transferable NAS on NB201 Serach Space. We present the accuracy achieved

		(%)	Archs	(%)	Archs	(%)	Archs	(%)	Archs
-	ResNet (He et al., 2016)	93.97±0.00	N/A	70.86±0.00	N/A	47.01±1.16	N/A	25.58±3.43	N/A
	RS (Bergstra & Bengio, 2012)	93.70 ± 0.36	> 500	71.04 ± 1.07	> 500	-	-	-	-
	REA (Real et al., 2019)	93.92 ± 0.30	> 500	71.84 ± 0.99	> 500	-	-	-	-
	REINFORCE (Williams, 1992)	93.85 ± 0.37	> 500	71.71 ± 1.09	> 500	-	-	-	-
	RSPS (Li & Talwalkar, 2019)	84.07±3.61	N/A	52.31±5.77	N/A	42.19 ± 3.88	N/A	22.91±1.65	N/A
	SETN (Dong & Yang, 2019a)	87.64 ± 0.00	N/A	59.09 ± 0.24	N/A	44.84 ± 3.96	N/A	25.17 ± 1.68	N/A
One-shot NAS*	GDAS (Dong & Yang, 2019b)	93.61 ± 0.09	N/A	70.70 ± 0.30	N/A	53.52 ± 0.48	N/A	24.02 ± 2.75	N/A

	REINFORCE (Williams, 1992)	93.85±0.37	> 500	71.71±1.09	> 500	-	-	-	-
	RSPS (Li & Talwalkar, 2019)	84.07±3.61	N/A	52.31±5.77	N/A	42.19±3.88	N/A	22.91±1.65	N/A
	SETN (Dong & Yang, 2019a)	87.64 ± 0.00	N/A	59.09 ± 0.24	N/A	44.84 ± 3.96	N/A	25.17 ± 1.68	N/A
One-shot NAS*	GDAS (Dong & Yang, 2019b)	93.61 ± 0.09	N/A	70.70 ± 0.30	N/A	53.52 ± 0.48	N/A	24.02 ± 2.75	N/A
	PC-DARTS (Xu et al., 2020)	93.66 ± 0.17	N/A	66.64 ± 2.34	N/A	26.33 ± 3.40	N/A	25.31 ± 1.38	N/A
	DrNAS (Chen et al., 2021)	94.36 ± 0.00	N/A	73.51 ± 0.00	N/A	46.08 ± 7.00	N/A	26.73 ± 2.61	N/A

> 500

58

46

100

100

29

100

 70.85 ± 1.28

 73.14 ± 0.00

 73.51 ± 0.00

73.51±0.00

 72.62 ± 0.20

 73.51 ± 0.00

 73.34 ± 0.04

 $73.51{\scriptstyle\pm0.00}$

> 500

100

88

100

59

100

 41.72 ± 0.00

 41.72 ± 0.00

 53.73 ± 0.83

 49.32 ± 6.10

59.15+0.58

 57.71 ± 0.20

59.63+0.92

40

40

40

40

26

40

 40.60 ± 1.10

 40.15 ± 1.59

41.29 + 1.10

 40.55 ± 1.15

40.00+0.00

39.04+0.20

 41.32 ± 0.84

11

17

17

18

6

40

 93.61 ± 0.52

 94.37 ± 0.00

 94.37 ± 0.00

 94.34 ± 0.00

 94.34 ± 0.00

 94.37 ± 0.00

94.37+0.00

 94.37 ± 0.00

BOHB (Falkner et al., 2018)

NASBOWL (Ru et al., 2021)

TNAS (Shala et al., 2023)

DiffusionNAG (Ours)

MetaD2A (Lee et al., 2021a)

BANANAS (White et al., 2021a)

HEBO (Cowen-Rivers et al., 2022)

GP-UCB

BO-based NAS

Transferable NAS