15–40 Determine as derivadas parciais de primeira ordem da função.

15.
$$f(x, y) = y^5 - 3xy$$

16.
$$f(x, y) = x^4 y^3 + 8x^2 y$$

17.
$$f(x,t) = e^{-t} \cos \pi x$$

18.
$$f(x, t) = \sqrt{x} \ln t$$

19.
$$z = (2x + 3y)^{10}$$

20.
$$z = tg xy$$

21.
$$f(x, y) = \frac{x}{y}$$

22.
$$f(x, y) = \frac{x}{(x + y)^2}$$

$$23. \quad f(x,y) = \frac{ax + by}{cx + dy}$$

24.
$$w = \frac{e^v}{u + v^2}$$

25.
$$g(u, v) = (u^2v - v^3)^5$$

26.
$$f(x, t) = arctg(x\sqrt{t})$$

27.
$$w = \operatorname{sen} \alpha \cos \beta$$

28.
$$f(x, y) = x^y$$

29.
$$F(x, y) = \int_{y}^{x} \cos(e^{t}) dt$$

29.
$$F(x, y) = \int_{y}^{x} \cos(e^{t}) dt$$
 30. $F(\alpha, \beta) = \int_{\alpha}^{\beta} \sqrt{t^{3} + 1} dt$

31.
$$f(x, y, z) = xz - 5x^2y^3z^4$$
 32. $f(x, y, z) = x \operatorname{sen}(y - z)$

32.
$$f(x, y, z) = x \operatorname{sen}(y - z)$$

$$33. \quad w = \ln(x + 2y + 3z)$$

34.
$$w = ze^{xyz}$$

35.
$$u = xy \, \text{sen}^{-1}(yz)$$

36.
$$u = x^{y/z}$$

47–50 Use a derivação implícita para encontrar $\partial z/\partial x$ e $\partial z/\partial y$.

47.
$$x^2 + 2y^2 + 3z^2 = 1$$

47.
$$x^2 + 2y^2 + 3z^2 = 1$$
 48. $x^2 - y^2 + z^2 - 2z = 4$

49.
$$e^z = xyz$$

50.
$$yz + x \ln y = z^2$$

59–62 Verifique se a conclusão do Teorema de Clairaut é válida, isto \acute{e} , $u_{xy} = u_{yx}$.

59.
$$u = x^4y^3 - y^4$$

60.
$$u = e^{xy} \text{ sen } y$$

61.
$$u = \cos(x^2y)$$

62.
$$u = \ln(x + 2y)$$

Determine se cada uma das seguintes funções é solução da equação de Laplace $u_{xx} + u_{yy} = 0$.

(a)
$$u = x^2 + y^2$$

(b)
$$u = x^2 - y^2$$

(c)
$$u = x^3 + 3xy^2$$

$$(d) u = \ln \sqrt{x^2 + y^2}$$

(e)
$$u = \operatorname{sen} x \cosh y + \cos x \operatorname{senh} y$$

$$(f) u = e^{-x} \cos y - e^{-y} \cos x$$