Verification: Homework 3

Marius

October 2021

1.)

If $s \in \llbracket EGr \rrbracket$, then in particular $r \in \updownarrow(s)$. Thus $\llbracket EGr \rrbracket \subseteq \{6,8\}$ As $M,6^{\omega} \models Gr$ and $M,8^{\omega} \models Gr$, $\llbracket EGr \rrbracket = \{6,8\}$

2.)

 $s \in \llbracket AXq \rrbracket$ if and only if $\forall s'$ successors of $s, q \in \updownarrow(s')$. Thus $\llbracket AXq \rrbracket = \{2,4,8\}$

3.)

 $s\in [\![\phi]\!],$ iff $s\in [\![EGr]\!]$ or $(q\notin \updownarrow(s))$ and s has a successor s' such that $q\in l(s'))$ Thus, $[\![\phi]\!]=[\![EGr]\!]\cup\{2\}=\{2,6,8\}$

4.)

Let us notice that a path satisfies $GF(q \wedge \neg r)$ if and only if it intersects infinitely many times with $[\![q \wedge \neg r]\!] = \{3,4\}.$

Such a path always exists only from states 1,2,3,4,5 and 8.

In the same fashion, a path satisfies $GF\phi$ if and only if it intersects infinitely many times with $[\![\phi]\!] = \{2,6,8\}.$

This is always the case for a path starting from 6 or 7.

Thus $[E\psi] = \{1, 2, 3, 4, 5, 8\}$