In [11]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
df = pd.read_csv("C:/Users/ABHISHEK/Desktop/titanic_train.csv")
df.head()
```

Out[11]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
4											>

In [12]:

df.isnull().sum()

Out[12]:

PassengerI	d 0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int6	4

In [13]:

```
sns.heatmap(df.isnull(), yticklabels = \textbf{False}, cbar = \textbf{False}, cmap = \text{'viridis'})
```

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f6797bb5f8>

In [14]:

```
sns.heatmap(df.isnull(), yticklabels=False, cbar=False, cmap='viridis')
```

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f6798103c8>

In [15]:

```
# mean age
print('The mean of "Age" is %.2f' %(df["Age"].mean(skipna=True)))
# median age
print('The median of "Age" is %.2f' %(df["Age"].median(skipna=True)))
```

The mean of "Age" is 29.70 The median of "Age" is 28.00

In [16]:

```
# percent of missing "Cabin" print('Percent of missing "Cabin" records is %.2f%%' %((df['Cabin'].isnull().sum()/df.shape[0])*100))
```

Percent of missing "Cabin" records is 77.10%

In [17]:

```
print('Percent of missing "Embarked" records is %.2f%%' %((df['Embarked'].isnull().sum()/df.shape[0])*10
```

Percent of missing "Embarked" records is 0.22%

In [18]:

```
print('Boarded passengers grouped by port of embarkation (C = Cherbourg, Q = Queenstown, S = Southamp print(df['Embarked'].value_counts()) sns.countplot(x='Embarked', data=df, palette='Set2') plt.show()
```

Boarded passengers grouped by port of embarkation (C = Cherbourg, Q = Queenstown, S = Southampton):

5 644

C 168

Q 77

Name: Embarked, dtype: int64

In [25]:

```
df["Age"].fillna(df["Age"].median(skipna=True), inplace=True)
df["Embarked"].fillna(df['Embarked'].value_counts().idxmax(), inplace=True)
df.head()
```

Out[25]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	I
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	_
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
4)	•

In [26]:

df.isnull().sum()

Out[26]:

PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 Age 0 SibSp 0 Parch 0 **Ticket** 0 Fare Embarked 0 dtype: int64

In [27]:

```
sex = pd.get_dummies(df['Sex'],drop_first=True)
embark = pd.get_dummies(df['Embarked'],drop_first=True)
pclass = pd.get_dummies(df['Pclass'],drop_first=True)

df.drop(['PassengerId','Pclass','Sex','Embarked','Name','Ticket'], axis=1, inplace=True)

df.head()
```

Out[27]:

	Survived	Age	SibSp	Parch	Fare
0	0	22.0	1	0	7.2500
1	1	38.0	1	0	71.2833
2	1	26.0	0	0	7.9250
3	1	35.0	1	0	53.1000
4	0	35.0	0	0	8.0500

In [28]:

```
df = pd.concat([df, pclass, sex, embark],axis=1)
df.head()
```

Out[28]:

	Survived	Age	SibSp	Parch	Fare	2	3	male	Q	S
0	0	22.0	1	0	7.2500	0	1	1	0	1
1	1	38.0	1	0	71.2833	0	0	0	0	0
2	1	26.0	0	0	7.9250	0	1	0	0	1
3	1	35.0	1	0	53.1000	0	0	0	0	1
4	0	35.0	0	0	8.0500	0	1	1	0	1

In [39]:

```
x = df.drop("Survived",axis=1)
y = df["Survived"]
print(x)
```

```
Age SibSp Parch
                       Fare 2 3 male Q 5
0
   22.0
               0
                  7.2500 0 1
                                1 0 1
          1
                 71.2833 0 0
1
   38.0
          1
              0
                                0 0 0
2
   26.0
          0
               0
                  7.9250 0 1
                                0 0 1
3
   35.0
          1
               0
                 53.1000 0 0
                                0 0 1
4
   35.0
                  8.0500 0 1
          0
               0
                                1 0 1
5
   28.0
          0
               0
                  8.4583 0 1
                                1 1 0
6
   54.0
          0
               0
                  51.8625 0 0
                                1 0 1
7
    2.0
          3
               1 21.0750 0 1
                               101
8
   27.0
          0
               2 11.1333 0 1
                                0 0 1
9
   14.0
          1
              0 30.0708 1 0
                                0 0 0
10
   4.0
              1 16.7000 0 1
                               0 0 1
          1
11
   58.0
          0
               0
                  26.5500 0 0
                                 0 0 1
   20.0
           0
               0
                  8.0500 0 1
12
                                1 0 1
13
   39.0
           1
               5
                  31.2750 0 1
                                1 0 1
14
   14.0
               0
                  7.8542 0 1
          0
                                0 0 1
15 55.0
           0
               0
                 16.0000 1 0
                                 0 0 1
16
    2.0
          4
               1 29.1250 0 1
                                1 1 0
17
   28.0
                 13.0000 1 0
           0
               0
                                1 0 1
18
   31.0
          1
               0 18.0000 0 1
                                0 0 1
19
   28.0
           0
               0
                   7.2250 0 1
                                0 0 0
20 35.0
           0
                  26.0000 1 0
                0
                                 1 0 1
21 34.0
           0
               0
                  13.0000 1 0
                                 1 0 1
22 15.0
                   8.0292 0 1
           0
               0
                                0 1 0
23
   28.0
           0
                0
                  35.5000 0 0
                                 1 0 1
24
    8.0
               1 21.0750 0 1
           3
                                0 0 1
25 38.0
                  31.3875 0 1
           1
                                 0 0 1
26
   28.0
           0
                0
                   7.2250 0 1
                                 100
27 19.0
           3
               2 263.0000 0 0
                                  1 0 1
28 28.0
           0
                0
                   7.8792 0 1
                                 0 1 0
29 28.0
           0
                0
                   7.8958 0 1
                                 101
861 21.0
               0 11.5000 1 0
           1
                                1 0 1
862 48.0
                  25,9292 0 0
                                  0 0 1
            0
                0
863 28.0
            8
                2
                  69.5500 0 1
                                  0 0 1
864 24.0
            0
                0
                  13.0000 1 0
                                 1 0 1
865 42.0
            0
                0
                  13.0000 1 0
                                 0.01
866 27.0
            1
                0
                   13.8583 1 0
                                 0 0 0
867 31.0
                   50.4958 0 0
           0
                0
                                  1 0 1
868 28.0
            0
                0
                    9.5000 0 1
                                 1 0 1
869 4.0
               1 11.1333 0 1
                                101
           1
870 26.0
            0
                    7.8958 0 1
                0
                                 1 0 1
871 47.0
                1 52.5542 0 0
                                 0 0 1
           1
872 33.0
                    5.0000 0 0
            0
                0
                                 1 0 1
873 47.0
            0
                0
                    9.0000 0 1
                                 101
874 28.0
                   24,0000 1 0
            1
                0
                                 0 0 0
875 15.0
                   7.2250 0 1
           0
                0
                                 0 0 0
876 20.0
            0
                0
                    9.8458 0 1
                                 1 0 1
                   7.8958 0 1
877 19.0
           0
                0
                                 1 0 1
878 28.0
            0
                0
                   7.8958 0 1
                                 1 0 1
879 56.0
            0
                1
                  83.1583 0 0
                                 0 0 0
880 25.0
                   26.0000 1 0
                                 0 0 1
            0
                1
881 33.0
           0
                0
                   7.8958 0 1
                                 1 0 1
882 22.0
            0
                0
                  10.5167 0 1
                                 0 0 1
```

883 28.0	0	0	10.5000 1 0	1 0 1
884 25.0	0	0	7.0500 0 1	1 0 1
885 39.0	0	5	29.1250 0 1	0 1 0
886 27.0	0	0	13.0000 1 0	1 0 1
887 19.0	0	0	30.0000 0 0	0 0 1
888 28.0	1	2	23.4500 0 1	0 0 1
889 26.0	0	0	30.0000 0 0	100
890 32.0	0	0	7.7500 0 1	1 1 0

[891 rows x 9 columns]

In [40]:

TH [10].			
print(y)			
0 0 1 1 2 1 3 1 4 0 5 0 6 0 7 0 8 1 9 1 10 1 11 1 12 0 13 0 14 0 15 1 16 0 17 1 18 0 19 1 20 0 21 1 22 1 23 1 24 0 25 1 26 0 27 0 28 1 29 0			
29			

885 0

```
886 0
887 1
888 0
889 1
890 0
Name: Survived, Length: 891, dtype: int64
```

In [32]:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 40)

from sklearn.linear_model import LogisticRegression
logmodel = LogisticRegression()
logmodel.fit(x_train, y_train)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:433: Futu reWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.

FutureWarning)

Out[32]:

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='warn', n_jobs=None, penalty='12', random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False)
```

In [42]:

```
predictions = logmodel.predict(x_test)
```

In [44]:

```
from sklearn.metrics import confusion_matrix
accuracy=confusion_matrix(y_test, predictions)
accuracy
```

Out[44]:

```
array([[134, 22], [27, 85]], dtype=int64)
```

In [45]:

```
from sklearn.metrics import accuracy_score
accuracy=accuracy_score(y_test, predictions)
accuracy
```

Out[45]:

0.8171641791044776

In [46]:

from sklearn.metrics import classification_report
print(classification_report(y_test, predictions))

pre	precision		f1-sco	re su	pport
0	0.83 0.79	0.86 0.76	0.85 0.78		
1	0.79	0.76	0.76	11	۷
micro avg	0.82	2 0.8	32 C	.82	268
macro avg	0.8	1 0.8	31 0	.81	268
weighted av	g 0.8	82 ().82	0.82	268

In[]: