CSCI/MATH 2113 Discrete Structures

5.4 Special Functions

Alyssa Motas

February 23, 2021

Contents

1		Binary operations					
		Definition					
	1.2	Examples of Binary Operations					
	1.3	Commutativity and Associativity					
	1.4	Examples of Commutativity and Associativity					
	1.5	Symmetry					
2	Ide	ntity Element					
	2.1	Definition					
	2.2	Examples					
	2.3	Theorem					

1 Binary operations

1.1 Definition

For any nonempty sets A, B, any function $f: A \times A \to B$ is called binary operation on A. If $B \subseteq A$, then the binary operation is said to be closed (on A). (When $B \subseteq A$ we may also say that A is closed under f.)

Remark. Similarly, $f: A^n \to B$ is an n-ary operation on A. When n = 1, the operation is unary or monary.

1.2 Examples of Binary Operations

- For $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by f(a,b) = a b, it is a closed binary operation on \mathbb{Z} .
- For $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ defined by $g(a,b) = a^b$, it is a non-closed binary operation.
- For $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ defined by h(a,b) = a+b, it is a binary operation.
- For $j: \mathcal{P}(A) \times \mathcal{P}(A) \to \mathcal{P}(A)$ defined by $j(S,T) = S \cup T$, it is a closed binary operation.
- For $k: \mathcal{P}(A) \to \mathcal{P}(A)$ defined by $k(S) = S^c$, it is a closed unary operation.

1.3 Commutativity and Associativity

Let $f: A \times A \to B$; that is, f is a binary operation on A.

- (a) f is said to be *commutative* if f(a,b) = f(b,a) for all $(a,b) \in A \times A$.
- (b) When $B \subseteq A$ (that is, when f is closed), f is said tot be associative if for all $a, b, c \in A$, f(f(a, b), c) = f(a, f(b, c)).

1.4 Examples of Commutativity and Associativity

Binary operations that are both commutative and associative:

- + on \mathbb{Z} : n+m=m+n and n+(m+r)=(n+m)+r
- \bullet × on \mathbb{Z}
- \cup on $\mathcal{P}(A)$

Binary operations that are associative but not commutative:

• \times on $Mat_{n\times n}(\mathbb{R})$ which is the multiplication of $n\times n$ real matrices.

Binary operations that are both not commutative and associative:

• - on \mathbb{Z} :

$$2-3 = -1 \neq 1 = 3-2$$
$$((3-3)-2) = -2 \neq 2 = 3 - (3-2)$$

1.5 Symmetry

Suppose that $f: A \times A \to A$ is a binary operation where $A = \{a_1, \dots, a_n\}$. We can represent f using a table.

f	a_1	a_2	 a_n
a_1	$f(a_1,a_1)$	$f(a_1, a_2)$	
a_2	$f(a_2,a_1)$		
:			
a_n		$f(a_n, a_2)$	$f(a_n, a_n)$

If the operation is commutative, then the table is *symmetric*. Now let $f: \{a, b, c\} \times \{a, b, c\} \rightarrow \{a, b, c\}$ be defined by the table:

f	a	b	c
a	b	a	a
b	a	c	a
c	a	a	c

Here we have

$$f(a, f(b, c)) = f(a, a) = b \neq a = f(a, c) = f(f(a, b), c)$$

so the operation is *not associative* but it is commutative since the table is symmetric.

2 Identity Element

2.1 Definition

Let $f: A \times A \to B$ be a binary operation on A. An element $x \in A$ is called an *identity* (or *identity element*) for f if f(a,x) = f(x,a) = a, for all $a \in A$.

2.2 Examples

• 0 for + on \mathbb{Z} since

$$a + 0 = 0 + a = a$$

for all $a \in \mathbb{Z}$.

- I_n (identity matrix) of x on $Mat_{n\times n}(\mathbb{R})$.
- \varnothing for \cup on $\mathcal{P}(A)$.
- A for \cap on $\mathcal{P}(A)$.

2.3 Theorem

Let $f: A \times A \to B$ be a binary operation. If f has an identity, then that identity is unique.

Proof. If f has more than one identity, let $x_1, x_2 \in A$ with

$$f(a, x_1) = a = f(x_1, a),$$
 for all $a \in A$,
 $f(a, x_2) = a = f(x_2, a),$ for all $a \in A$.

Consider x_1 as an element of A and x_2 as an identity. Then $f(x_1, x_2) = x_1$. Now reverse the roles of x_1 and x_2 , that is, consider x_2 as an element of A and x_1 as an identity. We find that $f(x_1, x_2) = x_2$. Consequently, $x_1 = x_2$, and f has at most one identity. \Box