Matemáticas Discretas I

Lógica proposicional - Sintaxis y Semántica

Juan Francisco Díaz Frias

Profesor Titular (1993-hoy) juanfco.diaz@correounivalle.edu.co Fdif 331 - 2111

Universidad del Valle

Septiembre 2018

- Motivación
- 2 Sintaxis
 - Gramática
 - Simplificación de expresiones
 - Árbol de sintaxis
- Semántica
 - ... de los operadores
 - Interpretación
 - Validez, satisfactibilidad y tablas de verdad
 - Aplicación: Corrección de la argumentación en LN

- Motivación
- 2 Sintaxis
 - Gramática
 - Simplificación de expresiones
 - Árbol de sintaxis
- Semántica
 - . . . de los operadores
 - Interpretación
 - Validez, satisfactibilidad y tablas de verdad
 - Aplicación: Corrección de la argumentación en LN

- Motivación
- 2 Sintaxis
 - Gramática
 - Simplificación de expresiones
 - Árbol de sintaxis
- Semántica
 - ... de los operadores
 - Interpretación
 - Validez, satisfactibilidad y tablas de verdad
 - Aplicación: Corrección de la argumentación en LN

Argumentación en lenguaje natural

Considere las siguientes frases en lenguaje natural:

- Si al final de la clase no hay preguntas, entonces el profesor hace un quiz.
- Hoy no hubo preguntas al final de la clase

¿Qué se puede concluir?

Cómo podríamos formalizarlo?

- Si al final de la clase no hay preguntas, entonces el profesor hace un quiz
- Hoy no hubo preguntas al final de la clase

Argumentación en lenguaje natural

Considere las siguientes frases en lenguaje natural:

- Si al final de la clase no hay preguntas, entonces el profesor hace un quiz.
- Hoy no hubo preguntas al final de la clase

¿Qué se puede concluir?

¿Cómo podríamos formalizarlo?

• Si al final de la clase no hay preguntas, entonces el profesor hace un quiz

Hoy no hubo preguntas al final de la clase

$$\frac{(p \implies q) \land p}{a}$$

- Clave: identificación de proposiciones, es decir, frases que se pueden valorar como ciertas o falsas.
- La lógica proposicional es el sistema formal que usaremos para ello

Argumentación en lenguaje natural

Considere las siguientes frases en lenguaje natural:

- Si al final de la clase no hay preguntas, entonces el profesor hace un quiz.
- Hoy no hubo preguntas al final de la clase

¿Qué se puede concluir?

¿Cómo podríamos formalizarlo?

• Si al final de la clase no hay preguntas, entonces el profesor hace un quiz

Hoy no hubo preguntas al final de la clase

•

$$\frac{(p \implies q) \land p}{a}$$

- Clave: identificación de proposiciones, es decir, frases que se pueden valorar como ciertas o falsas.
- La lógica proposicional es el sistema formal que usaremos para ello.

Argumentación en lenguaje natural

Considere las siguientes frases en lenguaje natural:

- Si al final de la clase no hay preguntas, entonces el profesor hace un quiz.
- Hoy no hubo preguntas al final de la clase

¿ Qué se puede concluir?

¿Cómo podríamos formalizarlo?

• Si <u>al final de la clase no hay preguntas</u>, entonces <u>el profesor hace un quiz</u>

Hoy no hubo preguntas al final de la clase

•

$$\frac{(p \implies q) \wedge p}{a}$$

- Clave: identificación de proposiciones, es decir, frases que se pueden valorar como ciertas o falsas.
- La lógica proposicional es el sistema formal que usaremos para ello.

Argumentación en lenguaje natural

Considere las siguientes frases en lenguaje natural:

- Si al final de la clase no hay preguntas, entonces el profesor hace un quiz.
- Hoy no hubo preguntas al final de la clase

¿Qué se puede concluir?

¿Cómo podríamos formalizarlo?

• Si al final de la clase no hay preguntas, entonces el profesor hace un quiz

Hoy no hubo preguntas al final de la clase

•

$$\frac{(p \implies q) \land p}{a}$$

- Clave: identificación de proposiciones, es decir, frases que se pueden valorar como ciertas o falsas.
- La lógica proposicional es el sistema formal que usaremos para ello.

 Una proposición es una frase declarativa y, como tal, es una afirmación sobre algo que puede o no ser verdad.

Son proposiciones

- Lima es la capital de Perú
- 2+2=5
- El carro de Juan es verde
- El carro de Juan es verde y el carro de Juan es viejo

- No son proposiciones:
- ¿Qué hora es?
- x + 1 = 3
- Tráeme las llaves
- Tráeme las llaves y prende el carro verde
- Hay proposiciones simples (atómicas, que no se pueden dividir). Se denotan con letras como $p, q, r \dots$ llamadas variables proposicionales
- Y hay proposiciones complejas compuestas por otras proposiciones unidas gramaticalmente de alguna manera

 Una proposición es una frase declarativa y, como tal, es una afirmación sobre algo que puede o no ser verdad.

Son proposiciones:

- Lima es la capital de Perú
- 2+2=5
- El carro de Juan es verde
- El carro de Juan es verde y el carro de Juan es viejo

- ¿Qué hora es?
- x + 1 = 3
- Tráeme las llaves
- Tráeme las llaves y prende el carro verde
- Hay proposiciones simples (atómicas, que no se pueden dividir). Se denotan con letras como p, q, r... llamadas variables proposicionales
- Y hay proposiciones complejas compuestas por otras proposiciones unidas gramaticalmente de alguna manera

 Una proposición es una frase declarativa y, como tal, es una afirmación sobre algo que puede o no ser verdad.

Son proposiciones:

- Lima es la capital de Perú
- 2+2=5
- El carro de Juan es verde
- El carro de Juan es verde y el carro de Juan es viejo

- ¿Qué hora es?
- x + 1 = 3
- Tráeme las llaves
- Tráeme las llaves y prende el carro verde
- Hay proposiciones simples (atómicas, que no se pueden dividir). Se denotan con letras como p, q, r... llamadas variables proposicionales
- Y hay proposiciones complejas compuestas por otras proposiciones unidas gramaticalmente de alguna manera

 Una proposición es una frase declarativa y, como tal, es una afirmación sobre algo que puede o no ser verdad.

Son proposiciones:

- Lima es la capital de Perú
- 2+2=5
- El carro de Juan es verde
- El carro de Juan es verde y el carro de Juan es viejo

- ¿Qué hora es?
- x + 1 = 3
- Tráeme las llaves
- Tráeme las llaves y prende el carro verde
- Hay proposiciones simples (atómicas, que no se pueden dividir). Se denotan con letras como $p, q, r \dots$ llamadas variables proposicionales
- Y hay proposiciones complejas compuestas por otras proposiciones unidas gramaticalmente de alguna manera

 Una proposición es una frase declarativa y, como tal, es una afirmación sobre algo que puede o no ser verdad.

Son proposiciones:

- Lima es la capital de Perú
- 2+2=5
- El carro de Juan es verde
- El carro de Juan es verde y el carro de Juan es viejo

- ¿Qué hora es?
- x + 1 = 3
- Tráeme las llaves
- Tráeme las llaves y prende el carro verde
- Hay proposiciones simples (atómicas, que no se pueden dividir). Se denotan con letras como $p, q, r \dots$ llamadas variables proposicionales
- Y hay proposiciones complejas compuestas por otras proposiciones unidas gramaticalmente de alguna manera.

- Motivación
- 2 Sintaxis
 - Gramática
 - Simplificación de expresiones
 - Árbol de sintaxis
- Semántica
 - ... de los operadores
 - Interpretación
 - Validez, satisfactibilidad y tablas de verdad
 - Aplicación: Corrección de la argumentación en LN

• Alfabeto: $\{true, false, (,), \equiv, \implies, \lor, \land, \neg, \langle variable \rangle\}$

```
• Alfabeto: \{true, false, (, ), \equiv, \implies, \vee, \wedge, \neg, \langle variable \rangle\}

    Gramática:

      (exprBooleana)
                                         true
                                         false
                                         (variable)
                                         \neg(\langle exprBooleana \rangle)|
                                         (\langle exprBooleana \rangle \langle opBinBooleano \rangle \langle exprBooleana \rangle )
      ⟨opBinBooleano⟩
                                 \rightarrow \equiv | \implies | \lor | \land
                                 → ⟨identificador⟩
      (variable)

    Ejemplos de expresiones:
```

- false
- q
- r

```
• Alfabeto: \{true, false, (,), \equiv, \implies, \lor, \land, \neg, \langle variable \rangle\}
```

Ejemplos de expresiones:

```
• true • \neg(p)

• false • (p \land q)

• p

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q

• q
```

```
• Alfabeto: \{true, false, (,), \equiv, \implies, \lor, \land, \neg, \langle variable \rangle\}
```

Ejemplos de expresiones:

• true •
$$\neg(p)$$

• false • $(p \land q)$
• p • $(\neg(q) \lor r)$
• q • $(r \Longrightarrow p)$
• $((p \land q) \Longrightarrow q)$
• $((\neg(q) \lor r) \equiv (r \Longrightarrow p))$

- Alfabeto: $\{true, false, (,), \equiv, \implies, \lor, \land, \neg, \langle variable \rangle\}$
- Gramática:

```
\begin{array}{ccc} \langle exprBooleana \rangle & \rightarrow & true | \\ & false | \\ & \langle variable \rangle \mid \\ & \neg (\langle exprBooleana \rangle) | \\ & (\langle exprBooleana \rangle \langle opBinBooleano \rangle \langle exprBooleana \rangle) \\ & \langle opBinBooleano \rangle & \rightarrow & \equiv | \Rightarrow | \lor | \land \\ & \langle variable \rangle & \rightarrow & \langle identificador \rangle \end{array}
```

Ejemplos de expresiones:

true

¬(p)

false

• $(p \wedge q)$

p

• $(\neg(q) \lor r)$

q

• $(r \implies p)$

r

• $\neg((q \equiv p))$

- $((p \land q) \implies q)$ • $((\neg(q) \lor r) \equiv (r \implies p))$
- $((p \land (q \lor r)) \equiv ((p \land q) \lor (p \land r)))$
 - 《四》《圖》《意》《意》 [基]

- Motivación
- 2 Sintaxis
 - Gramática
 - Simplificación de expresiones
 - Árbol de sintaxis
- Semántica
 - ... de los operadores
 - Interpretación
 - Validez, satisfactibilidad y tablas de verdad
 - Aplicación: Corrección de la argumentación en LN

- Eliminar paréntesis redundantes: $(\neg((r \lor \neg(q))) \implies p)$
 - Los más externos: $\neg((r \lor \neg(q))) \implies p$
 - los que rodean variables o constantes: $\neg((r \lor \neg q)) \implies p$
 - los duplicados por una misma expresión: $\neg(r \lor \neg q) \implies p$
- Precedencia de operadores $(\neg, (\land, \lor), \implies, \equiv)$: $((p \land q) \implies r)$ en $p \land q \implies r$
- Usando símbolos adicionales (símbolos tachados): ≠, /⇒
- Por asociatividad
 - Si el operador es asociativo: $((p \land q) \land r)$ en $p \land q \land r$
 - Si no lo es, se asocia a izquierda: $((p \implies q) \implies r)$ en

- Eliminar paréntesis redundantes: $(\neg((r \lor \neg(q))) \implies p)$
 - Los más externos: $\neg((r \lor \neg(q))) \implies p$
 - los que rodean variables o constantes: $\neg((r \lor \neg q)) \implies p$
 - los duplicados por una misma expresión: $\neg(r \lor \neg q) \implies p$
- Precedencia de operadores $(\neg, (\land, \lor), \implies, \equiv)$: $((p \land q) \implies r)$ en $p \land q \implies r$
- Usando símbolos adicionales (símbolos tachados): ≠, /⇒
- Por asociatividad:
 - Si el operador es asociativo: $((p \land q) \land r)$ en $p \land q \land r$
 - Si no lo es, se asocia a izquierda: $((p \implies q) \implies r)$ en

- Eliminar paréntesis redundantes: $(\neg((r \lor \neg(q))) \implies p)$
 - Los más externos: $\neg((r \lor \neg(q))) \implies p$
 - los que rodean variables o constantes: $\neg((r \lor \neg q)) \implies p$
 - los duplicados por una misma expresión: $\neg(r \lor \neg q) \implies p$
- Precedencia de operadores $(\neg, (\land, \lor), \implies, \equiv)$: $((p \land q) \implies r)$ en $p \land q \implies r$
- Usando símbolos adicionales (símbolos tachados): ≠, /⇒
- Por asociatividad
 - Si el operador es asociativo: $((p \land q) \land r)$ en $p \land q \land r$
 - Si no lo es, se asocia a izquierda: $((p \implies q) \implies r)$ en $p \implies q \implies r$

- Eliminar paréntesis redundantes: $(\neg((r \lor \neg(q))) \implies p)$
 - Los más externos: $\neg((r \lor \neg(q))) \implies p$
 - los que rodean variables o constantes: $\neg((r \lor \neg q)) \implies p$
 - los duplicados por una misma expresión: $\neg(r \lor \neg q) \implies p$
- Precedencia de operadores $(\neg, (\land, \lor), \implies, \equiv)$: $((p \land q) \implies r)$ en $p \land q \implies r$
- Usando símbolos adicionales (símbolos tachados): ≠, /⇒
- Por asociatividad:
 - Si el operador es asociativo: $((p \land q) \land r)$ en $p \land q \land r$
 - Si no lo es, se asocia a izquierda: $((p \implies q) \implies r)$ en $p \implies q \implies r$

- Motivación
- 2 Sintaxis
 - Gramática
 - Simplificación de expresiones
 - Árbol de sintaxis
- Semántica
 - ... de los operadores
 - Interpretación
 - Validez, satisfactibilidad y tablas de verdad
 - Aplicación: Corrección de la argumentación en LN

Árbol de sintaxis

Cada expresión tiene un árbol de sintaxis asociado:

- El árbol tiene como raíz el símbolo del último operador que se debe evaluar.
- El árbol tiene como hijos, los árboles sintácticos de los operandos
- Si la expresión es una variable o un valor de verdad (no hay operadores), el árbol es, simplemente, un nodo raíz etiquetado con la variable o el valor en cuestión.

- La semántica de una fórmula de la lógica proposicional tiene que ver con valorar la verdad o falsedad de la proposición.
- Las proposiciones simples son:
 - true: esta proposición siempre significará verdadero(V)
 - false: esta proposición siempre significará falso(F)
 - p: Es una variable proposicional. Su valor de verdad puede ser verdadero(V) o falso(F)
- Las proposiciones complejas son:
 - ¬E: Su valor de verdad depende del valor de verdad de E.
 - operador binario. Su valor de verdad depende del valor de verdad de E₁ y y del operador e
- Para poder pronunciarse sobre la verdad o falsedad de una proposición, es necesario entonces:
 - Dar un valor de verdad a cada variable proposicional: interpretación

- La semántica de una fórmula de la lógica proposicional tiene que ver con valorar la verdad o falsedad de la proposición.
- Las proposiciones simples son:
 - true: esta proposición siempre significará verdadero(V)
 - false: esta proposición siempre significará falso(F)
 - p: Es una variable proposicional. Su valor de verdad puede ser verdadero(V) o falso(F)
- Las proposiciones complejas son:
 - ¬E: Su valor de verdad depende del valor de verdad de E.
 - E₁ E₂: donde E₁, E₂ son expresiones boolenas, y representa un
 operador binario. Su valor de verdad depende del valor de verdad de E₁ y
 E> y del operador •.
- Para poder pronunciarse sobre la verdad o falsedad de una proposición, es necesario entonces:
 - Dar un valor de verdad a cada variable proposicional: interpretación

- La semántica de una fórmula de la lógica proposicional tiene que ver con valorar la verdad o falsedad de la proposición.
- Las proposiciones simples son:
 - true: esta proposición siempre significará verdadero(V)
 - false: esta proposición siempre significará falso(F)
 - p: Es una variable proposicional. Su valor de verdad puede ser verdadero(V) o falso(F)
- Las proposiciones complejas son:
 - $\neg E$: Su valor de verdad depende del valor de verdad de E.
 - E₁ E₂: donde E₁, E₂ son expresiones boolenas, y representa un operador binario. Su valor de verdad depende del valor de verdad de E₁ y E₂ y del operador •.
- Para poder pronunciarse sobre la verdad o falsedad de una proposición, es necesario entonces:
 - Dar un valor de verdad a cada variable proposicional: interpretación

- La semántica de una fórmula de la lógica proposicional tiene que ver con valorar la verdad o falsedad de la proposición.
- Las proposiciones simples son:
 - true: esta proposición siempre significará verdadero(V)
 - false: esta proposición siempre significará falso(F)
 - p: Es una variable proposicional. Su valor de verdad puede ser verdadero(V) o falso(F)
- Las proposiciones complejas son:
 - ¬E: Su valor de verdad depende del valor de verdad de E.
 - E₁ E₂: donde E₁, E₂ son expresiones boolenas, y representa un operador binario. Su valor de verdad depende del valor de verdad de E₁ y E₂ y del operador •.
- Para poder pronunciarse sobre la verdad o falsedad de una proposición, es necesario entonces:
 - Dar un valor de verdad a cada variable proposicional: interpretación

- La semántica de una fórmula de la lógica proposicional tiene que ver con valorar la verdad o falsedad de la proposición.
- Las proposiciones simples son:
 - true: esta proposición siempre significará verdadero(V)
 - false: esta proposición siempre significará falso(F)
 - p: Es una variable proposicional. Su valor de verdad puede ser verdadero(V) o falso(F)
- Las proposiciones complejas son:
 - ¬E: Su valor de verdad depende del valor de verdad de E.
 - E₁ E₂: donde E₁, E₂ son expresiones boolenas, y representa un operador binario. Su valor de verdad depende del valor de verdad de E₁ y E₂ y del operador •.
- Para poder pronunciarse sobre la verdad o falsedad de una proposición, es necesario entonces:
 - Dar un valor de verdad a cada variable proposicional: interpretación
 - A partir de allí calcular la verdad o falsedad de la proposición con respecto
 A partir de allí calcular la verdad o falsedad de la proposición con respecto

- La semántica de una fórmula de la lógica proposicional tiene que ver con valorar la verdad o falsedad de la proposición.
- Las proposiciones simples son:
 - true: esta proposición siempre significará verdadero(V)
 - false: esta proposición siempre significará falso(F)
 - p: Es una variable proposicional. Su valor de verdad puede ser verdadero(V) o falso(F)
- Las proposiciones complejas son:
 - ¬E: Su valor de verdad depende del valor de verdad de E.
 - E₁ E₂: donde E₁, E₂ son expresiones boolenas, y representa un operador binario. Su valor de verdad depende del valor de verdad de E₁ y E₂ y del operador •.
- Para poder pronunciarse sobre la verdad o falsedad de una proposición, es necesario entonces:
 - Dar un valor de verdad a cada variable proposicional: interpretación
 - A partir de allí calcular la verdad o falsedad de la proposición con respecto
 - a esa interpretación.

- Motivación
- 2 Sintaxis
 - Gramática
 - Simplificación de expresiones
 - Árbol de sintaxis
- Semántica
 - ...de los operadores
 - Interpretación
 - Validez, satisfactibilidad y tablas de verdad
 - Aplicación: Corrección de la argumentación en LN

Semántica de los operadores (1)

 El operador de negación (¬E): Es verdadero cuando E es falso; y falso cuando E es verdadero.

• El operador de conjunción $(E_1 \wedge E_2)$: Es verdadero cuando E_1 y E_2 son verdaderos. En cualquier otro caso es falso.

E_1	E_2	$E_1 \wedge E_2$
F	F	F
F	\vee	F
\vee	F	F
\vee	\vee	\vee

Semántica de los operadores (1)

 El operador de negación (¬E): Es verdadero cuando E es falso; y falso cuando E es verdadero.

• El operador de conjunción $(E_1 \wedge E_2)$: Es verdadero cuando E_1 y E_2 son verdaderos. En cualquier otro caso es falso.

E_1	E_2	$E_1 \wedge E_2$
F	F	F
F	V	F
V	F	F
V	V	V

Semántica de los operadores (2)

 El operador de disyunción inclusiva (E₁ ∨ E₂): Es verdadero cuando E₁ o E₂ son verdaderos. En cualquier otro caso es falso.

E_1	E_2	$E_1 \vee E_2$	
F	F	F	
F	V	V	
V	F	V	
V	٧	V	

• El operador de implicación $(E_1 \implies E_2)$: Es verdadero en cualquier caso, excepto cuando E_1 es verdadera y E_2 es falsa.

E_1	E_2	$E_1 \implies E_2$
F	F	\vee
F	\vee	\vee
\vee	F	F
\vee	\vee	\vee

Semántica de los operadores (2)

 El operador de disyunción inclusiva (E₁ ∨ E₂): Es verdadero cuando E₁ o E₂ son verdaderos. En cualquier otro caso es falso.

E_1	E_2	$E_1 \vee E_2$	
F	F	F	
F	V	V	
V	F	V	
V	V	V	

• El operador de implicación ($E_1 \implies E_2$): Es verdadero en cualquier caso, excepto cuando E_1 es verdadera y E_2 es falsa.

E_1	E_2	$E_1 \implies E_2$
F	F	V
F	V	V
V	F	F
V	V	V

Semántica de los operadores (3)

• El operador de equivalencia $(E_1 \equiv E_2)$: Es verdadero cuando E_1 y E_2 tienen el mismo valor de verdad; falso cuando no.

E_1	E ₂	$E_1 \equiv E_2$
F	F V	
F	V	F
V	F	F
V	V	V

- Hay otros operadores en la literatura, pero todos se pueden escribir en función de estos.
 - El operador de consecuencia ($E_1 \longleftarrow E_2$): Corresponde a $E_2 \implies E_1$
 - El operador de disyunción exclusiva ($E_1 \oplus E_2$): Es una disyunción en la que los argumentos no son ambos verdaderos. Corresponde a $E_1 \not\equiv E_2$

Semántica de los operadores (3)

• El operador de equivalencia $(E_1 \equiv E_2)$: Es verdadero cuando E_1 y E_2 tienen el mismo valor de verdad; falso cuando no.

E_1	E ₂	$E_1 \equiv E_2$	
F	F	V	
F	V	F	
V	F	F	
V	V	V	

- Hay otros operadores en la literatura, pero todos se pueden escribir en función de estos.
 - El operador de consecuencia ($E_1 \longleftarrow E_2$): Corresponde a $E_2 \implies E_1$
 - El operador de disyunción exclusiva $(E_1 \oplus E_2)$: Es una disyunción en la que los argumentos no son ambos verdaderos. Corresponde a $E_1 \neq E_2$

Plan

- Motivación
- 2 Sintaxis
 - Gramática
 - Simplificación de expresiones
 - Árbol de sintaxis
- Semántica
 - ... de los operadores
 - Interpretación
 - Validez, satisfactibilidad y tablas de verdad
 - Aplicación: Corrección de la argumentación en LN

- Una interpretación I para E es una asignación de valores de verdad para cada variable proposicional en E.
- Para E : (r ⇒ p), habría cuatro interpretaciones posibles:

/	р	r
	V	V
12	\vee	F
13	F	\vee
14	F	F

- Dada una interpretación / para E se define I(E), el valor de verdad de E segúr I así:
 - Si E = true, I(E) = V
 - Si E = false. I(E) = F
 - Si $E = \neg E_1$, $I(E) = \neg I(E_1)$
 - Si $E = E_1 \bullet E_2$, $I(E) = I(E_1) \bullet I(E_2)$
- ullet Cuántas interpretaciones posibles tiene una expresión booleana E cualquiera \widehat{E}

- Una interpretación I para E es una asignación de valores de verdad para cada variable proposicional en E.
- Para $E: (r \implies p)$, habría cuatro interpretaciones posibles:

- 1	р	r
I_1	V	V
<i>I</i> ₂	V	F
13	F	V
<i>I</i> ₄	F	F

- Dada una interpretación I para E se define I(E), el valor de verdad de E según
 I así:
 - Si E = true. I(E) = V
 - Si E = false, I(E) = F
 - Si $E = \neg E_1$, $I(E) = \neg I(E_1)$
 - Si $E = E_1 \bullet E_2$, $I(E) = I(E_1) \bullet I(E_2)$
- ¿Cuántas interpretaciones posibles tiene una expresión booleana E cualquiera?

- Una interpretación I para E es una asignación de valores de verdad para cada variable proposicional en E.
- Para $E:(r \implies p)$, habría cuatro interpretaciones posibles:

- 1	р	r
I_1	V	V
I_2	V	F
13	F	V
<i>I</i> ₄	F	F

- Dada una interpretación I para E se define I(E), el valor de verdad de E según I así:
 - Si E = true, I(E) = V
 - Si E = false, I(E) = F
 - Si $E = \neg E_1$, $I(E) = \neg I(E_1)$
 - Si $E = E_1 \bullet E_2$, $I(E) = I(E_1) \bullet I(E_2)$
- ¿Cuántas interpretaciones posibles tiene una expresión booleana E cualquiera?

- Una interpretación I para E es una asignación de valores de verdad para cada variable proposicional en E.
- Para $E:(r \implies p)$, habría cuatro interpretaciones posibles:

- 1	р	r
I_1	V	V
<i>I</i> ₂	V	F
13	F	V
<i>I</i> ₄	F	F

- Dada una interpretación I para E se define I(E), el valor de verdad de E según I así:
 - Si E = true, I(E) = V
 - Si E = false, I(E) = F
 - Si $E = \neg E_1$, $I(E) = \neg I(E_1)$
 - Si $E = E_1 \bullet E_2$, $I(E) = I(E_1) \bullet I(E_2)$
- ¿Cuántas interpretaciones posibles tiene una expresión booleana E cualquiera?

Plan

- Motivación
- 2 Sintaxis
 - Gramática
 - Simplificación de expresiones
 - Árbol de sintaxis
- Semántica
 - ... de los operadores
 - Interpretación
 - Validez, satisfactibilidad y tablas de verdad
 - Aplicación: Corrección de la argumentación en LN

- Una expresión booleana E es satisfactible, si existe una interpretación I para E tal que I(E) = V
- Una expresión booleana E es válida, si para toda interpretación I para E se tiene que I(E) = V. También se dice que E es una tautología.
- Una expresión booleana E es insatisfactible o una contradicción, si para toda interpretación I para E se tiene que I(E) = F.
- Miremos la validez, satisfactibilidad o insatisfactibilidad de: $\neg q \lor r \equiv (r \implies q)$

$$\begin{array}{ccc}
 & & & \\
 & p \land (p \Longrightarrow q) \land \neg q \\
 & p \land (q \lor r) \equiv (p \land q) \lor (p \land r)
\end{array}$$

- Una expresión booleana E es satisfactible, si existe una interpretación I para E tal que I(E) = V
- Una expresión booleana E es válida, si para toda interpretación I para E se tiene que I(E) = V. También se dice que E es una tautología.
- Una expresión booleana E es insatisfactible o una contradicción, si para toda interpretación I para E se tiene que I(E) = F.
- Miremos la validez, satisfactibilidad o insatisfactibilidad de:

$$\neg q \lor r \equiv (r \implies q)
p \land (p \implies q) \land \neg q
p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

- Una expresión booleana E es satisfactible, si existe una interpretación I para E tal que I(E) = V
- Una expresión booleana E es válida, si para toda interpretación I para E se tiene que I(E) = V. También se dice que E es una tautología.
- Una expresión booleana E es insatisfactible o una contradicción, si para toda interpretación I para E se tiene que I(E) = F.
- Miremos la validez, satisfactibilidad o insatisfactibilidad de:

$$\neg q \lor r \equiv (r \implies q)
p \land (p \implies q) \land \neg q
p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

- Una expresión booleana E es satisfactible, si existe una interpretación I para E tal que I(E) = V
- Una expresión booleana E es válida, si para toda interpretación I para E se tiene que I(E) = V. También se dice que E es una tautología.
- Una expresión booleana E es insatisfactible o una contradicción, si para toda interpretación I para E se tiene que I(E) = F.
- Miremos la validez, satisfactibilidad o insatisfactibilidad de:

$$\neg q \lor r \equiv (r \implies q)
p \land (p \implies q) \land \neg q
p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

Semántica: Tablas de verdad (1)

$$G_1: \neg q \lor r \equiv (r \implies q)$$

q	r	$\neg q$	$\neg q \lor r$	$r \implies q$	$\neg q \lor r \equiv (r \implies q)$
V	V	F	V	V	V
V	F	F	F	V	F
F	V	V	V	F	F
F	F	V	V	V	V

- ¿Qué se puede decir de G_1 ?
- G₁ es satisfactible

Semántica: Tablas de verdad (1)

$$G_1: \neg q \lor r \equiv (r \implies q)$$

q	r	$\neg q$	$\neg q \lor r$	$r \Longrightarrow q$	$\neg q \lor r \equiv (r \implies q)$
V	V	F	V	V	V
V	F	F	F	V	F
F	V	V	V	F	F
F	F	V	V	V	V

- ¿Qué se puede decir de G_1 ?
- G₁ es satisfactible

Semántica: Tablas de verdad (1)

$$G_1: \neg q \lor r \equiv (r \implies q)$$

q	r	$\neg q$	$\neg q \lor r$	$r \implies q$	$\neg q \lor r \equiv (r \implies q)$
V	V	F	V	V	V
V	F	F	F	V	F
F	V	V	V	F	F
F	F	V	V	V	V

- ¿Qué se puede decir de G_1 ?
- G₁ es satisfactible

Semántica: Tablas de verdad (2)

$$G_2: p \wedge (p \implies q) \wedge \neg q$$

р	q	$(p \implies q)$	$p \wedge (p \implies q)$	$\neg q$	$p \wedge (p \implies q) \wedge \neg q$
V	V	V	V	F	F
V	F	F	F	V	F
F	V	V	F	F	F
F	F	V	F	V	F

- ¿Qué se puede decir de G_2 ?
- G₂ es insatisfactible

Semántica: Tablas de verdad (2)

$$G_2: p \wedge (p \implies q) \wedge \neg q$$

р	q	$(p \implies q)$	$p \wedge (p \implies q)$	$\neg q$	$p \wedge (p \implies q) \wedge \neg q$
V	V	V	V	F	F
V	F	F	F	V	F
F	V	V	F	F	F
F	F	V	F	V	F

- ¿Qué se puede decir de G_2 ?
- G_2 es insatisfactible

Semántica: Tablas de verdad (2)

$$G_2: p \wedge (p \implies q) \wedge \neg q$$

р	q	$(p \implies q)$	$p \wedge (p \implies q)$	$\neg q$	$p \wedge (p \implies q) \wedge \neg q$
V	V	V	V	F	F
V	F	F	F	V	F
F	V	V	F	F	F
F	F	V	F	V	F

- ¿Qué se puede decir de G_2 ?
- G_2 es insatisfactible

Semántica: Tablas de verdad (3)

$$G_3: p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

р	q	r	$(q \lor r)$	$(p \land q)$	$(p \wedge r)$	$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$	F
V	V	V	V	V	V	V	V	V
V	V	F	V	V	F	V	V	V
V	F	V	V	F	V	V	V	V
V	F	F	F	F	F	F	F	V
F	V	V	V	F	F	F	F	V
F	V	F	V	F	F	F	F	V
F	F	V	V	F	F	F	F	V
F	F	F	F	F	F	F	F	V

- ¿Qué se puede decir de G_3 ?
- G₃ es válida o sea es una tautología

Semántica: Tablas de verdad (3)

$$G_3: p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

р	q	r	$(q \lor r)$	$(p \land q)$	$(p \wedge r)$	$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$	F
V	V	V	V	V	V	V	V	V
V	V	F	V	V	F	V	V	V
V	F	V	V	F	V	V	V	V
V	F	F	F	F	F	F	F	V
F	V	V	V	F	F	F	F	V
F	V	F	V	F	F	F	F	V
F	F	V	V	F	F	F	F	V
F	F	F	F	F	F	F	F	V

- ¿Qué se puede decir de G_3 ?
- G₃ es válida o sea es una tautología

Semántica: Tablas de verdad (3)

$$G_3: p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

р	q	r	$(q \lor r)$	$(p \land q)$	$(p \wedge r)$	$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$	F
V	V	V	V	V	V	V	V	V
V	V	F	V	V	F	V	V	V
V	F	V	V	F	V	V	V	V
V	F	F	F	F	F	F	F	V
F	V	V	V	F	F	F	F	V
F	V	F	V	F	F	F	F	V
F	F	V	V	F	F	F	F	V
F	F	F	F	F	F	F	F	V

- ¿Qué se puede decir de G_3 ?
- G₃ es válida o sea es una tautología

Plan

- Motivación
- 2 Sintaxis
 - Gramática
 - Simplificación de expresiones
 - Árbol de sintaxis
- Semántica
 - ... de los operadores
 - Interpretación
 - Validez, satisfactibilidad y tablas de verdad
 - Aplicación: Corrección de la argumentación en LN

Argumentación en LN

Considere el siguiente razonamiento en LN:

Para la próxima fecha de la eliminatoria suramericana, si Colombia no le gana a Venezuela, Brasil la puede pasar. Además, si Brasil le gana a Ecuador, Brasil puede pasar a Colombia. Por lo tanto Colombia le gana a Venezuela o Brasil la puede pasar.

¿Es correcta la conclusión?

Miremos cómo la lógica proposicional nos ayuda a resolver esta pregunta.

LN y operadores (1)

LN	Ejemplos	Op.	Traducción
У	Juan tiene 21 años y es-	^	$j21 \wedge m$ donde
	tudia medicina.		j21: Juan tiene 21 años
			m: Juan estudia medicina
pero	Está lloviendo, pero ha-	^	$v \wedge s$ donde
	ce sol.		v : Está Iloviendo
			m: Hace sol
o (in-	Juan estudia medicina o	V	$m \lor b$ donde
clusivo)	biología.		m : Juan estudia medicina
			<i>b</i> : Juan estudia biología
o (ex-	Este anillo es de oro o es	≢	au ≢ ag donde
clusivo)	de plata.		au : El anillo es de oro
			ag: El anillo es de plata
no	Este anillo no es de oro.	_	<i>¬au</i> donde
			au : El anillo es de oro
no es el	No es el caso que Juan	_	$\neg b$ donde
caso	estudie biología.		b: Juan estudia biología

LN y operadores (2)

LN	Ejemplos	Op.	Traducción
sientonces	Si Colombia gana, sali-	\Rightarrow	$c \implies f$ donde
	mos a festejar.		c: Colombia gana
			m: salimos a celebrar
es suficien-	Que Colombia gane es	\Rightarrow	$c \implies f$ donde
te para	suficiente para que sal-		c: Colombia gana
	gamos a festejar.		m: salimos a celebrar
es necesa-	Que se usen frijoles es	←	$f \longleftarrow p$ donde
rio para	necesario para hacer una		f: Usar frijoles
	bandeja paisa.		p: hacer una bandeja paisa
si y solo si	Colombia clasifica al	=	$cm \equiv c4$ donde
	mundial si y solo si		cm: Colombia clasifica al mun-
	Colombia queda en		dial
	uno de los primeros 4		c4: Colombia queda en uno de
	puestos		los primeros 4 puestos
es necesa-	Para que el sistema ten-	=	$ss \equiv minv \text{ donde}$
rio y suficiente	ga solución es necesario		ss: El sistema tiene solución
	y suficiente que la ma-		minv: La matriz es invertible
	triz sea invertible		

... de los operadores Interpretación Validez, satisfactibilidad y tablas de verdad Aplicación: Corrección de la argumentación en LN

¿Cómo decidir si un argumento es correcto/incorrecto?

Video1.1

Traducido un argumento a lógica proposicional, tiene la forma:

$$A: p_1 \wedge p_2 \wedge \ldots \wedge p_k \implies c$$

- Definición de variables proposicionales:
 - Representar proposiciones atómicas
 - Sin tener en cuenta tiempos gramaticales
 - Que representen frases positivas en lo posible
- I raducción a la lógica proposicional
 - Cada oración en LN corresponde a una expresión booleana
 - Las premisas se unen por conjunciones
 - La conclusión está conectada por un luego, por tanto o similar
 - Definir el argumento a analizar: $A: p_1 \wedge p_2 \wedge \ldots \wedge p_k \implies c$
 - I lablas de verdad: Si A es tautología, es correcto. Sino, es incorrecto y cada interpretación donde sea falsa es un contraejemplo

¿Cómo decidir si un argumento es correcto/incorrecto?

Video1.1

Traducido un argumento a lógica proposicional, tiene la forma:

$$A: p_1 \wedge p_2 \wedge \ldots \wedge p_k \implies c$$

- Definición de variables proposicionales:
 - Representar proposiciones atómicas
 - Sin tener en cuenta tiempos gramaticales
 - Que representen frases positivas en lo posible
- Traducción a la lógica proposicional:
 - Cada oración en LN corresponde a una expresión booleana
 - Las premisas se unen por conjunciones
 - La conclusión está conectada por un luego, por tanto o similar
 - Definir el argumento a analizar: $A: p_1 \wedge p_2 \wedge \ldots \wedge p_k \implies c$
 - Tablas de verdad: Si A es tautología, es correcto. Sino, es incorrecto y cada interpretación donde sea falsa es un contraejemplo

¿Cómo decidir si un argumento es correcto/incorrecto?

Video1.1

Traducido un argumento a lógica proposicional, tiene la forma:

$$A: p_1 \wedge p_2 \wedge \ldots \wedge p_k \implies c$$

- Definición de variables proposicionales:
 - Representar proposiciones atómicas
 - Sin tener en cuenta tiempos gramaticales
 - Que representen frases positivas en lo posible
- Traducción a la lógica proposicional:
 - Cada oración en LN corresponde a una expresión booleana
 - Las premisas se unen por conjunciones
 - La conclusión está conectada por un luego, por tanto o similar
 - Definir el argumento a analizar: $A: p_1 \land p_2 \land \ldots \land p_k \implies c$
- Tablas de verdad: Si A es tautología, es correcto. Sino, es incorrecto y cada interpretación donde sea falsa es un contraejemplo

¿Cómo decidir si un argumento es correcto/incorrecto?

Video1.1

Traducido un argumento a lógica proposicional, tiene la forma:

$$A: p_1 \wedge p_2 \wedge \ldots \wedge p_k \implies c$$

- Definición de variables proposicionales:
 - Representar proposiciones atómicas
 - Sin tener en cuenta tiempos gramaticales
 - Que representen frases positivas en lo posible
- Traducción a la lógica proposicional:
 - Cada oración en LN corresponde a una expresión booleana
 - Las premisas se unen por conjunciones
 - La conclusión está conectada por un luego, por tanto o similar
 - Definir el argumento a analizar: $A: p_1 \wedge p_2 \wedge \ldots \wedge p_k \implies c$
- Tablas de verdad: Si A es tautología, es correcto. Sino, es incorrecto y cada interpretación donde sea falsa es un contraejemplo

Video1.2

Para la próxima fecha de la eliminatoria suramericana, si Colombia no le gana a Venezuela, Brasil la puede pasar. Además, si Brasil le gana a Ecuador, Brasil puede pasar a Colombia. Por lo tanto Colombia le gana a Venezuela o Brasil la puede pasar.

- Variables proposicionales
 - p: Colombia le gana a Venezuela q:Brasil puede pasar a Colombia
- Traducción

 $p_1: \neg p \implies q$

labla de verdad:

Video1.2

Para la próxima fecha de la eliminatoria suramericana, si Colombia no le gana a Venezuela, Brasil la puede pasar. Además, si Brasil le gana a Ecuador, Brasil puede pasar a Colombia. Por lo tanto Colombia le gana a Venezuela o Brasil la puede pasar.

- Variables proposicionales:
 - p: Colombia le gana a Venezuela q:Brasil puede pasar a Colombia
 - r: Brasil le gana a Ecuador
- Traducción

Video1.2

Para la próxima fecha de la eliminatoria suramericana, si Colombia no le gana a Venezuela, Brasil la puede pasar. Además, si Brasil le gana a Ecuador, Brasil puede pasar a Colombia. Por lo tanto Colombia le gana a Venezuela o Brasil la puede pasar.

- Variables proposicionales:
 - p: Colombia le gana a Venezuela q:Brasil puede pasar a Colombia
 - r: Brasil le gana a Ecuador
- Traducción:

Video 12

Para la próxima fecha de la eliminatoria suramericana, si Colombia no le gana a Venezuela, Brasil la puede pasar. Además, si Brasil le gana a Ecuador, Brasil puede pasar a Colombia. Por lo tanto Colombia le gana a Venezuela o Brasil la puede pasar.

- Variables proposicionales:
 - p: Colombia le gana a Venezuela q:Brasil puede pasar a Colombia
 - r: Brasil le gana a Ecuador
- Traducción:

 $p_1: \neg p \implies q \qquad p_2: r \implies q \qquad c: p \lor q(i, p \not\equiv q?) \qquad A: p_1 \land p_2 \implies c$

Tabla de verdad:

	V	V	V	F	V	V	V	V	V
ĺ	V	V	F	F	V	V	V	V	V
ĺ	V	F	V	F	V	F	F	V	V
1	V	F	F	F	V	V	V	V	V
ĺ	F	V	V	V	V	V	V	V	V
ĺ	F	V	F	V	V	V	V	V	V
	F	F	V	V	F	F	F	F	V
ĺ	F	F	F	V	F	V	F	F	V
							4 🗇 🕨	4 (1)	4 3

Otro ejemplo: ¿Superman existe?

Video1.3

Considere el siguiente razonamiento:

Si Supermán fuera capaz y quisiera prevenir el mal, él lo prevendría. Si Supermán fuera incapaz de prevenir el mal, sería impotente; si él no quisiera prevenir el mal, sería malévolo. Supermán no previene el mal. Si Supermán existe, no es impotente ni malévolo. Entonces, Supermán no existe.

- Variables proposicionales
 - a: Supermán es capaz de prevenir el mal w: Supermán quiere prevenir el mal p: Supermán previene el mal
 - i: Supermán es impotente m: Supermán es malévolo
 - Tuaduaniáni

$$p_0: a \wedge w \implies p$$
 $p_1: (\neg a \implies i) \wedge (\neg w \implies m)$
 $p_2: \neg p$ $p_3: e \implies \neg i \wedge \neg m$

 $A: p_0 \wedge p_1 \wedge p_2 \wedge p_3 \implies p_4$

• Tabla de verdad: sería de $2^{\circ} * 17 = 1088$ casillas!!!

Otro ejemplo: ¿Superman existe?

Video1.3

Considere el siguiente razonamiento:

Si Supermán fuera capaz y quisiera prevenir el mal, él lo prevendría. Si Supermán fuera incapaz de prevenir el mal, sería impotente; si él no quisiera prevenir el mal, sería malévolo. Supermán no previene el mal. Si Supermán existe, no es impotente ni malévolo. Entonces, Supermán no existe.

Variables proposicionales:

- a: Supermán es capaz de prevenir el mal w: Supermán quiere prevenir el mal p: Supermán previene el mal
- i: Supermán es impotente m: Supermán es malévolo
- e: Supermán existe
- Traducción:

```
p_0: a \land w \implies p p_1: (\neg a \implies i) \land (\neg w \implies m)

p_2: \neg p p_3: e \implies \neg i \land \neg m
```

 $A: p_0 \wedge p_1 \wedge p_2 \wedge p_3 \implies p_4$

• Tabla de verdad: sería de $2^6*17=1088$ casillas!!!

Otro ejemplo: ¿Superman existe?

Video1.3

Considere el siguiente razonamiento:

Si Supermán fuera capaz y quisiera prevenir el mal, él lo prevendría. Si Supermán fuera incapaz de prevenir el mal, sería impotente; si él no quisiera prevenir el mal, sería malévolo. Supermán no previene el mal. Si Supermán existe, no es impotente ni malévolo. Entonces, Supermán no existe.

Variables proposicionales:

a: Supermán es capaz de prevenir el mal w: Supermán quiere prevenir el mal p: Supermán previene el mal

i: Supermán es impotente m: Supermán es malévolo

e: Supermán existe

Traducción:

$$p_0: a \land w \implies p \qquad p_1: (\neg a \implies i) \land (\neg w \implies m)$$

 $p_2: \neg p \qquad p_3: e \implies \neg i \land \neg m$
 $p_4: \neg e$

$$A: p_0 \wedge p_1 \wedge p_2 \wedge p_3 \implies p_4$$

• Tabla de verdad: sería de $2^6*17 = 1088$ casillas!!!

Otro ejemplo: ¿Superman existe?

Video1.3

Considere el siguiente razonamiento:

Si Supermán fuera capaz y quisiera prevenir el mal, él lo prevendría. Si Supermán fuera incapaz de prevenir el mal, sería impotente; si él no quisiera prevenir el mal, sería malévolo. Supermán no previene el mal. Si Supermán existe, no es impotente ni malévolo. Entonces, Supermán no existe.

Variables proposicionales:

- a: Supermán es capaz de prevenir el mal w: Supermán quiere prevenir el mal p: Supermán previene el mal
- i: Supermán es impotente m: Supermán es malévolo
- e: Supermán existe
- Traducción:

$$p_0: a \land w \implies p \qquad p_1: (\neg a \implies i) \land (\neg w \implies m)$$
 $p_2: \neg p \qquad p_3: e \implies \neg i \land \neg m$
 $p_4: \neg e$

 $A: p_0 \wedge p_1 \wedge p_2 \wedge p_3 \implies p_4$

• Tabla de verdad: sería de $2^6 * 17 = 1088$ casillas!!!

Ejercicio: ¿Cuál es la edad de Juan?

Considere el siguiente razonamiento: Juan tiene 20 ó 22 años. Si Juan tiene 22 años, entonces nació antes que pedro. Juan no nació antes que Pedro. Por lo tanto, Juan tiene 20 años.

- Defina las variables proposicionales para modelar el problema.
- Traduzca a la lógica proposicional el razonamiento.
- ¿Es correcto el argumento? Use logictools.org si le es útil.
- [Socrative]

Ejercicio: ¿Cuál es la edad de Juan?

Considere el siguiente razonamiento: Juan tiene 20 ó 22 años. Si Juan tiene 22 años, entonces nació antes que pedro. Juan no nació antes que Pedro. Por lo tanto, Juan tiene 20 años.

- Defina las variables proposicionales para modelar el problema.
- Traduzca a la lógica proposicional el razonamiento.
- ¿Es correcto el argumento? Use logictools.org si le es útil.
- [Socrative]

Ejercicio: ¿Quién tiene la razón?

Considere el siguiente razonamiento:

La policía le está siguiendo el rastro a un posible delincuente que usó el transmilenio para escaparse. De acuerdo a sus investigaciones la policía ha podido establecer que el delincuente tomó rutas que pasaron por la estaciones Aguas, Cll26, Prado y Virrey, donde el delincuente pudo bajarse o no. Y se sabe lo siguiente:

- El delincuente se bajó en al menos una de esas estaciones.
- El delincuente no se bajó en Virrey si se bajó antes en Aguas o Cll26.
- Si el delincuente se bajó en Prado entonces también se bajó en Aguas
- Si el delincuente no se bajó en Prado entonces tampoco se bajó en CII26
 - 5 El delincuente se bajó Prado y Virrey o no se bajó en ninguna de ellas.

Un policía de inteligencia concluyó que el delincuente sólo se bajó en Aguas. Pero un testigo dijo que se había bajado en Aguas y en Cll26. ¿Quién tiene la razón?

- Defina las variables proposicionales para modelar el problema.
- Traduzca a la lógica proposicional el razonamiento.
- ¿Es correcto el argumento? Use logictools.org si le es útil.
- [Socrative]

Ejercicio: ¿Quién tiene la razón?

Considere el siguiente razonamiento:

La policía le está siguiendo el rastro a un posible delincuente que usó el transmilenio para escaparse. De acuerdo a sus investigaciones la policía ha podido establecer que el delincuente tomó rutas que pasaron por la estaciones Aguas, Cl/26, Prado y Virrey, donde el delincuente pudo bajarse o no. Y se sabe lo siguiente:

- El delincuente se bajó en al menos una de esas estaciones.
- El delincuente no se bajó en Virrey si se bajó antes en Aguas o Cll26.
- Si el delincuente se bajó en Prado entonces también se bajó en Aguas
- Si el delincuente no se bajó en Prado entonces tampoco se bajó en CII26
 - 5 El delincuente se bajó Prado y Virrey o no se bajó en ninguna de ellas.

Un policía de inteligencia concluyó que el delincuente sólo se bajó en Aguas. Pero un testigo dijo que se había bajado en Aguas y en Cl/26. ¿Quién tiene la razón?

- Defina las variables proposicionales para modelar el problema.
- Traduzca a la lógica proposicional el razonamiento.
- ¿Es correcto el argumento? Use logictools.org si le es útil.
- [Socrative]

Considere el siguiente acertijo:

En una mesa hay tres cajas etiquetadas A, B, y C. Dentro de cada caja, pero no visibles desde afuera, hay una ficha de plástico. Una ficha es roja, otra es blanca y la otra es azul. No se sabe qué ficha está en cada caja. Lo que si se sabe es que exáctamente una de las siguientes tres afirmaciones es cierta:

1 La caja A contiene la ficha roja. 2 La caja B no contiene la ficha roja. 3 La caja C no contiene la ficha azul.

A partir de la anterior información, determine cuál es el color de la ficha de cada una de las cajas.

[Socrative]

- Defina las variables proposicionales para modelar el problema
- Traduzca a la lógica proposicional los hechos conocidos
- Construya la tabla de verdad del modelo (Use logictools.org o excel), analícela y solucione el acertijo.
- [Socrative]

Considere el siguiente acertijo:

En una mesa hay tres cajas etiquetadas A, B, y C. Dentro de cada caja, pero no visibles desde afuera, hay una ficha de plástico. Una ficha es roja, otra es blanca y la otra es azul. No se sabe qué ficha está en cada caja. Lo que si se sabe es que exáctamente una de las siguientes tres afirmaciones es cierta:

1 La caja A contiene la ficha roja. 2 La caja B no contiene la ficha roja. 3 La caja C no contiene la ficha azul.

- [Socrative]
- Defina las variables proposicionales para modelar el problema.
- Traduzca a la lógica proposicional los hechos conocidos
- Construya la tabla de verdad del modelo (Use logictools.org o excel), analícela y solucione el acertijo
- Socrative

Considere el siguiente acertijo:

En una mesa hay tres cajas etiquetadas A, B, y C. Dentro de cada caja, pero no visibles desde afuera, hay una ficha de plástico. Una ficha es roja, otra es blanca y la otra es azul. No se sabe qué ficha está en cada caja. Lo que si se sabe es que exáctamente una de las siguientes tres afirmaciones es cierta:

La caja A contiene la ficha roja.
 La caja B no contiene la ficha roja.
 La caja C no contiene la ficha azul.

- [Socrative]
- Defina las variables proposicionales para modelar el problema.
- Traduzca a la lógica proposicional los hechos conocidos.
- 🎱 Construya la tabla de verdad del modelo (Use logictools.org o excel), analícela y solucione el acertijo
- [Socrative]

Considere el siguiente acertijo:

En una mesa hay tres cajas etiquetadas A, B, y C. Dentro de cada caja, pero no visibles desde afuera, hay una ficha de plástico. Una ficha es roja, otra es blanca y la otra es azul. No se sabe qué ficha está en cada caja. Lo que si se sabe es que exáctamente una de las siguientes tres afirmaciones es cierta:

La caja A contiene la ficha roja.
 La caja B no contiene la ficha roja.
 La caja C no contiene la ficha azul.

- [Socrative]
- Defina las variables proposicionales para modelar el problema.
- Traduzca a la lógica proposicional los hechos conocidos.
- Construya la tabla de verdad del modelo (Use logictools.org o excel), analícela y solucione el acertijo.
- [Socrative]

Considere el siguiente acertijo:

En una mesa hay tres cajas etiquetadas A, B, y C. Dentro de cada caja, pero no visibles desde afuera, hay una ficha de plástico. Una ficha es roja, otra es blanca y la otra es azul. No se sabe qué ficha está en cada caja. Lo que si se sabe es que exáctamente una de las siguientes tres afirmaciones es cierta:

La caja A contiene la ficha roja.
 La caja B no contiene la ficha roja.
 La caja C no contiene la ficha azul.

- [Socrative]
- Defina las variables proposicionales para modelar el problema.
- Traduzca a la lógica proposicional los hechos conocidos.
- Construya la tabla de verdad del modelo (Use logictools.org o excel), analícela y solucione el acertijo.
- [Socrative]

