STAT 88: Lecture 35

Contents

Section 11.2: The German Tank Problem, Revisited

Section 11.3: Least Squares Linear Regression

Warm up:

German tanks were numbered 1, 2, 3, ..., N, with N unknown, during World War 2 and the Allies needed to estimate N. They captured 5 tanks numbered 20, 31, 43, 78 and 92. Can you find an unbiased estimate of N?

Last time

Bias and Variance

We score how good an estimator T of a parameter θ is by

$$MSE_{\theta}(T) = E_{\theta}((T - \theta)^2).$$

And we showed

$$MSE_{\theta}(T) = B_{\theta}^{2}(T) + Var_{\theta}(T),$$

where

$$B_{\theta}(T) = E_{\theta}(T) - \theta$$
 and $\operatorname{Var}_{\theta}(T) = E_{\theta}((T - E_{\theta}(T))^2)$.

The best estimator is *not* always unbiased.

To find an unbiased estimator, start with a statistic whose expectation is a linear function of the parameter.

11.2. The German Tank Problem

Practice for finding an unbiased estimator

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Unif}(0, 2\theta)$. Let

$$M = \max\{X_1, \dots, X_n\}$$

Is M a biased estimator?

Find E(M).

Find an unbiased estimator for 2θ .

11.3. Least Squares Linear Regression

Let (X,Y) be a random pair of father and son heights from the population:

X: father height, and Y: son height.

We want to estimate Y, call this \widehat{Y} , by the function

$$\widehat{Y} = aX + b,$$

for some slope a and intercept b.

You plug in X into $\widehat{Y} = aX + b$ to predict Y. To find a and b, in Data 8, you collected n pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$ and made a scatter plot. The regression line is the "best" fitting line $\widehat{Y} = aX + b$ through your scatter plot. The formulas are:

slope of the regression line =
$$r \frac{\text{SD of } Y}{\text{SD of } X}$$
,

and

intercept of the regression line = (average of Y) – slope × (average of X).

We will now derive the formulas mathematically using calculus and properties of expectation and variance.

Mean Squared Error For the random point (X, Y), the mean squared error of a linear predictor of Y based on X depends on the slope a and intercept b of the line used. So let us define MSE(a, b) to be the mean squared error when we use the line aX + b to predict Y. That is,

$$MSE(a,b) = E((Y - (aX + b))^2).$$

Note that we average over all random (X,Y) pairs in the population. We have to find the values of a and b that minimize this function.

Notation

- $E(X) = \mu_X$, $SD(X) = \sigma_X$.
- $E(Y) = \mu_Y$, $SD(Y) = \sigma_Y$.

Best Intercept for a Fixed Slope Fix slope a, and solve $\frac{\partial MSE(a,b)}{\partial b} = 0$. Since

$$\begin{aligned} \text{MSE}(a, b) &= E((Y - (aX + b))^2) \\ &= E(((Y - aX) - b)^2) \\ &= E((Y - aX)^2 - 2b(Y - aX) + b^2) \\ &= E((Y - aX)^2) - 2b \cdot E(Y - aX) + b^2. \end{aligned}$$

Solve $\frac{\partial \text{MSE}(a,b)}{\partial b} = 0$ for b:

Best Slope For each fixed slope a, we first plug in the best intercept we just found. The the error becomes

$$Y - (aX + \hat{b}_a) = Y - (aX + \mu_Y - a\mu_X)$$

= $Y - aX - \mu_Y + a\mu_X$
= $Y - \mu_Y - a(X - \mu_X)$
= $D_Y - aD_X$.

Then

$$MSE(a, \hat{b}_a) = E((D_Y - aD_X)^2)$$

= $E(D_Y^2) - 2aE(D_XD_Y) + a^2E(D_X^2)$
= $\sigma_Y^2 - 2aE(D_XD_Y) + a^2\sigma_X^2$.

Solve $\frac{d\text{MSE}(a,\hat{b}_a)}{da} = 0$ for a:

So the regression line is

$$\widehat{Y} = \widehat{a}X + \widehat{b},$$

where

$$\widehat{a} = \frac{E(D_X D_Y)}{\sigma_X^2}$$
 and $\widehat{b} = \mu_Y - \widehat{a} \cdot \mu_X$.

Correlation $E(D_X D_Y)$ is called the covariance of X and Y. If X is father's height (ft) and Y is son's height (ft), then $E(D_X D_Y)$ has unit ft².

If we divide it by $\sigma_X \sigma_Y$,

$$r = \frac{E(D_X D_Y)}{\sigma_X \sigma_Y}$$

is unitless and called the correlation coefficient of X and Y. This tells you

Covariance
$$E(D_X D_Y) = r \sigma_X \sigma_Y$$
,

SO

$$\widehat{a} = \frac{E(D_X D_Y)}{\sigma_X^2} = \frac{r\sigma_X \sigma_Y}{\sigma_X^2} = \frac{r\sigma_Y}{\sigma_X}.$$

Appendix

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Unif}(0, 2\theta)$. Let $M = \max\{X_1, \ldots, X_n\}$. Calculate the density of M by first calculating the CDF of M.

$$F(m) = P(M \le m)$$

$$= P(X_1 \le m, \dots, X_n \le m)$$

$$= P(X_1 \le m) \cdots P(X_n \le m)$$

$$= P(X_1 \le m)^n = \left(\frac{m}{2\theta}\right)^n.$$

So,

$$f(m) = \frac{dF(m)}{dm} = nm^{n-1} \cdot \frac{1}{(2\theta)^n}.$$

Now we calculate

$$E(M) = \int_0^{2\theta} mf(m)dm$$

$$= \frac{n}{(2\theta)^n} \int_0^{2\theta} m^n dm$$

$$= \frac{n}{(2\theta)^n} \frac{m^{n+1}}{n+1} \Big|_0^{2\theta}$$

$$= (2\theta) \frac{n}{n+1}.$$