MD 2021/2022: TESTEZ QUESTADI (EXAME FINAL Q4) (a) Conjunto das earragens do comboio X, [X]=14=11 canvagans de primera classe (indistinguésais) n Segunda classe (M2 = 7 restaurante ($m_3 = 1$ de bagagem/ $n_4 = 2$ $[X] = m_1 + m_2 + m_3 + m_4$ Para formar seguéncias diferents com os 4 tipos de carragens começamos, por exemplo, por esa ha os lngares para as carrinagas m_1 , $\binom{n}{n_1} = \binom{14}{4}$, entre os restants n-m=10 hygnes escolhernos 7 para as Carriagens m_2 , $\binom{m-m_1}{m_2} = \binom{10}{7}$, dos restantes $m-m_1-m_2=3$ lugares escolhermos 1 para a carriagen m_3 , $\binom{m-m_1-m_2}{1}$ $\binom{m-m_1-m_2}{m_3} = \binom{3}{1}$, sobrands $m-m_2-m_3 = 2$ lugares $-\frac{m_2-m_3-m_3}{2}$ onde devem estar as carrangens m_4 , $\binom{n-m_1-m_2-m_3}{m_4}\binom{z}{z}$, pelo que, o número de pronérios sequências, sem restricos, é $\binom{14}{4}\binom{10}{7}\binom{3}{1}\binom{2}{2} = \frac{14!}{1!} \frac{10!}{2!} \frac{3!}{2!} \frac{3!}{2!} \frac{3!}{2!} = \frac{14!}{4! + 1!} \frac{14!}{2!}$ = (n n₁ m₂ m₃ m₄), n'i mero de permitaçõe em repetições de elementos m₁, m₂, m₃, m₄. Coincide com o número de seguencias (A1, A2, A3, A4) de 4 Subscrifentes de X dois a dois disjuntos com $|A_i| = M_i, i = 1, 2, 3, 4.$ (b) Com as carragens de primeira classe pavitas tem-se um sóblow com mi=1 podendo prouder-se de modo análogo, em em (a), vindo Mitmatmatmy = 11, donde, onémero de seguérias diferentes de carruagens é $\binom{11}{1}\binom{10}{7}\binom{3}{1}\binom{2}{2} = \frac{11!}{1!4!1!2!} = \binom{11}{1712}.$