Attention

Shusen Wang

The figure is from blog lilianweng.github.io

Shortcoming: The final state is incapable of remembering a **long** sequence.

The figure is from blog lilianweng.github.io

Seq2Seq Model with Attention

Original paper:

• Bahdanau, Cho, & Bengio. Neural machine translation by jointly learning to align and translate. In ICLR, 2015.

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

One option (used in the original paper):

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

One option (used in the original paper):

$$\alpha_i = \mathbf{tanh}$$
 \mathbf{s}_0

Then **normalize** $\alpha_1, \dots, \alpha_m$ (so that they sum to 1):

$$[\alpha_1, \cdots, \alpha_m] = \text{Softmax}([\alpha_1, \cdots, \alpha_m])$$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

Another option (more popular; the same to Transformer):

- 1. Linear maps:
 - $\tilde{\mathbf{h}}_i = \mathbf{W}_h \cdot \mathbf{h}_i$.
 - $\tilde{\mathbf{s}}_0 = \mathbf{W}_S \cdot \mathbf{s}_0$.
- 2. Inner produce:
 - $\alpha_i = \tilde{\mathbf{h}}_i^T \cdot \tilde{\mathbf{s}}_0$.
- 3. Normalization:
 - $[\alpha_1, \dots, \alpha_m] = \text{Softmax}([\alpha_1, \dots, \alpha_m])$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

Context vector: $\mathbf{c}_0 = \alpha_1 \mathbf{h}_1 + \cdots + \alpha_m \mathbf{h}_m$.

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

Context vector: $\mathbf{c}_0 = \alpha_1 \mathbf{h}_1 + \cdots + \alpha_m \mathbf{h}_m$.

SimpleRNN:

$$\mathbf{s}_1 = \tanh\left(\mathbf{A}' \cdot \begin{bmatrix} \mathbf{X}_1' \\ \mathbf{s}_0 \end{bmatrix} + \mathbf{b}\right)$$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_1)$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_1)$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_1)$

Context vector: $\mathbf{c}_1 = \alpha_1 \mathbf{h}_1 + \cdots + \alpha_m \mathbf{h}_m$.

$$\mathbf{s}_2 = \tanh\left(\mathbf{A}' \cdot \begin{bmatrix} \mathbf{x}_2' \\ \mathbf{s}_1 \\ \mathbf{c}_1 \end{bmatrix} + \mathbf{b}\right)$$

Attention: Weights Visualization

Decoder RNN

Encoder RNN

Figure is from https://distill.pub/2016/augmented-rnns/

Attention: Weights Visualization

Decoder RNN

Encoder RNN

Figure is from https://distill.pub/2016/augmented-rnns/

Standard Seq2Seq model: the decoder looks at only its current state.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.

- Downside: higher time complexity.
 - l_1 : source sequence length
 - l_2 : target sequence length
 - Standard Seq2Seq: $O(l_1 + l_2)$ time complexity
 - Seq2Seq + attention: $O(l_1 l_2)$ time complexity

Self-Attention: Attention beyond Seq2Seq Models

Original paper:

• Cheng, Dong, & Lapata. Long Short-Term Memory-Networks for Machine Reading. In EMNLP, 2016.

SimpleRNN:

$$\mathbf{h}_1 = \tanh\left(\mathbf{A} \cdot \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{h}_0 \end{bmatrix} + \mathbf{b}\right)$$

 \mathbf{c}_0

SimpleRNN:

$$\mathbf{h}_1 = \tanh\left(\mathbf{A} \cdot \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{h}_0 \end{bmatrix} + \mathbf{b}\right)$$

$$\mathbf{h_1} = \tanh\left(\mathbf{A} \cdot \begin{bmatrix} \mathbf{X_1} \\ \mathbf{c_0} \end{bmatrix} + \mathbf{b}\right)$$

First context vector: $\mathbf{c}_1 = \mathbf{h}_1$.

$$\mathbf{c}_0$$
 $\mathbf{c}_1 = \mathbf{h}_1$

 \mathbf{c}_1

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{c}_1)$

 \mathbf{h}_2

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{c}_1)$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{c}_1)$

Context vector: $\mathbf{c}_2 = \alpha_1 \mathbf{h}_1 + \alpha_2 \mathbf{h}_2$.

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{c}_1)$

Context vector: $\mathbf{c}_2 = \alpha_1 \mathbf{h}_1 + \alpha_2 \mathbf{h}_2$.

 \mathbf{c}_1 \mathbf{c}_2

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{c}_2)$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{c}_2)$

Context vector: $\mathbf{c}_3 = \alpha_1 \mathbf{h}_1 + \alpha_2 \mathbf{h}_2 + \alpha_3 \mathbf{h}_3$.

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{c}_2)$

Context vector: $\mathbf{c}_3 = \alpha_1 \mathbf{h}_1 + \alpha_2 \mathbf{h}_2 + \alpha_3 \mathbf{h}_3$.

 \mathbf{c}_1 \mathbf{c}_2 \mathbf{c}_3

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{c}_3)$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{c}_3)$

Context vector: $\mathbf{c}_4 = \alpha_1 \mathbf{h}_1 + \alpha_2 \mathbf{h}_2 + \alpha_3 \mathbf{h}_3 + \alpha_4 \mathbf{h}_4$.

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{c}_3)$

Context vector: $\mathbf{c_4} = \alpha_1 \mathbf{h}_1 + \alpha_2 \mathbf{h}_2 + \alpha_3 \mathbf{h}_3 + \alpha_4 \mathbf{h}_4$.

 \mathbf{c}_1 \mathbf{c}_2 \mathbf{c}_3 \mathbf{c}_4

Summary

• With self-attention, RNN is less likely to forget.

Summary

- With self-attention, RNN is less likely to forget.
- Pay attention to the context relevant to the new input.

```
The
The FBI
    FBI is
The
    FBI is chasing
The
The
    FBI is
            chasing a
    FBI is
The
            chasing a criminal
    FBI is
The
            chasing a
                       criminal on
             chasing a
    FBI is
                       criminal on the
The
                       criminal on
    FBI is
             chasing a
                                   the run
The
The
    FBI
             chasing a
                       criminal
                                on
                                   the run .
```

Figure is from the paper "Long Short-Term Memory-Networks for Machine Reading."

- $\mathbf{c}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_t , \mathbf{c}_{t-1} , and \mathbf{h}_i as inputs.

- $\mathbf{c}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_t , \mathbf{c}_{t-1} , and \mathbf{h}_i as inputs.

Trainable parameters

The update of LSTM with self-attention is analogous.

The update of LSTM with self-attention is analogous.

•
$$\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \ \mathbf{h}_i$$
. Exactly the same as SimpleRNN

The update of LSTM with self-attention is analogous.

•
$$\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \ \mathbf{h}_i.$$
• $\mathbf{c}_t' = \sum_{i=1}^{t-1} \alpha_i \ \mathbf{c}_i.$

Exactly the same as SimpleRNN

Conveyor belt

The update of LSTM with self-attention is analogous.

•
$$\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$$
.

•
$$\mathbf{c}'_t = \sum_{i=1}^{t-1} \alpha_i \mathbf{c}_i$$
.

•
$$\mathbf{c}_t = \mathbf{f}_t \circ \mathbf{c}_t' + \mathbf{i}_t \circ \tilde{\mathbf{c}}_t.$$

Forget gate, computed using \mathbf{x}_t and \mathbf{s}_t .

New value, computed using \mathbf{x}_t and \mathbf{s}_t .

Input gate, computed using \mathbf{x}_t and \mathbf{s}_t .

The update of LSTM with self-attention is analogous.

•
$$\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$$
.

•
$$\mathbf{c}'_t = \sum_{i=1}^{t-1} \alpha_i \mathbf{c}_i$$
.

•
$$\mathbf{c}_t = \mathbf{f}_t \circ \mathbf{c}_t' + \mathbf{i}_t \circ \tilde{\mathbf{c}}_t$$
.

$$\mathbf{h}_t = \mathbf{o}_t \circ \mathbf{c}_t.$$

Output gate, computed using \mathbf{x}_t and \mathbf{s}_t .

The update of LSTM with self-attention is analogous.

•
$$\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$$
.

•
$$\mathbf{c}'_t = \sum_{i=1}^{t-1} \alpha_i \ \mathbf{c}_i$$
.

•
$$\mathbf{c}_t = \mathbf{f}_t \circ \mathbf{c}_t' + \mathbf{i}_t \circ \mathbf{\tilde{c}}_t.$$

• $\mathbf{h}_t = \mathbf{o}_t \circ \mathbf{c}_t.$

•
$$\mathbf{h}_t = \mathbf{o}_t \circ \mathbf{c}_t$$
.

Difference 1:

- In standard LSTM, the gates and new value are computed using \mathbf{x}_t and \mathbf{h}_{t-1} .
- With self-attention, the gates and new value are computed using \mathbf{X}_t and \mathbf{S}_t .

- The update of LSTM with self-attention is analogous.
- $\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \; \mathbf{h}_i$.
- $\mathbf{c}'_t = \sum_{i=1}^{t-1} \alpha_i \mathbf{c}_i$.
- $\mathbf{c}_t = \mathbf{f}_t \circ \mathbf{c}_t' + \mathbf{i}_t \circ \tilde{\mathbf{c}}_t.$
- $\mathbf{h}_t = \mathbf{o}_t \circ \mathbf{c}_t$.

Difference 2:

- In standard LSTM, apply forget gate to \mathbf{c}_{t-1} .
- With self-attention, apply forget gate to $\mathbf{c}_t' = \sum_{i=1}^{t-1} \alpha_i \ \mathbf{c}_i$.