STAT 2011 Tutorial 11

Qian(Jessie) Jin May, 2023

Maximum Likelihood Estimation

Likelihood Function:

Definition 4.2.1 (Likelihood function). Let X_1, X_2, \ldots, X_n be a random (i.i.d.) sample of size n from the discrete $pmf \, p_X(x;\theta)$, where θ is an unknown parameter. The likelihood function $L(\theta)$ is proportional to the joint pmf evaluated at k_1, k_2, \ldots, k_n

$$L(\theta) \propto \prod_{i=1}^n p_X(k_i; \theta).$$

Let Y_1, Y_2, \ldots, Y_n be a random (i.i.d.) sample of size n from a continuous pdf $f_Y(y; \theta)$ where θ is an unknown parameter. The likelihood function $L(\theta)$ is proportional to the joint pdf evaluated at y_1, y_2, \ldots, y_n

$$L(\theta) \propto \prod_{i=1}^{n} f_Y(y_i; \theta).$$

Definition 4.2.2. Let $L(\theta)$ be the likelihood function of a random sample X_1, X_2, \ldots, X_n drawn from either a discrete pmf or a continuous pdf. Let $\theta *$ be a value of the parameter such that

$$L(\theta^*) \ge L(\theta)$$

for all possible values of θ . Then θ^* is called the **maximum likelihood estimator** of θ and it is usually indicated as $\widehat{\theta}_{ML}$.

Method of moments

• Definition:

Definition 4.2.3 (Method of Moments). Let X_1, X_2, \ldots, X_n be a random (i.i.d.) sample from a discrete pmf $p_X(x; \theta_1, \theta_2, \ldots, \theta_s)$.

The method of moments estimates, $\widehat{\theta}_{1,MM}$, $\widehat{\theta}_{2,MM}$, ..., $\widehat{\theta}_{s,MM}$ for the model unknown parameters are the solutions of the s equations

$$\sum_{all\ k} k \cdot p_X(x; \theta_1, \theta_2, \dots, \theta_s) = \mathcal{E}(X) = \frac{1}{n} \sum_{all\ k} k$$
$$\sum_{all\ k} k^2 \cdot p_X(x; \theta_1, \theta_2, \dots, \theta_s) = \mathcal{E}(X^2) = \frac{1}{n} \sum_{all\ k} k^2$$

:

$$\sum_{all\ k} k^s \cdot p_X(x; \theta_1, \theta_2, \dots, \theta_s) = E(X^s) = \frac{1}{n} \sum_{all\ k} k^s$$

Method of moments

Continuous:

Let Y_1, Y_2, \ldots, Y_n be a random (i.i.d.) sample from a continuous pdf $f_Y(y; \theta_1, \theta_2, \ldots, \theta_s)$. The method of moments estimates, $\widehat{\theta}_{1,MM}, \widehat{\theta}_{2,MM}, \ldots, \widehat{\theta}_{s,MM}$ for the model unknown parameters are the solutions of the s equations

$$\int_{-\infty}^{\infty} y \cdot f_Y(y; \theta_1, \theta_2, \dots, \theta_s) dy = E(Y) = \frac{1}{n} \sum_{i=1}^n y_i$$

$$\int_{-\infty}^{\infty} y^2 \cdot f_Y(y; \theta_1, \theta_2, \dots, \theta_s) dy = E(Y^2) = \frac{1}{n} \sum_{i=1}^n y_i^2$$

$$\vdots$$

$$\int_{-\infty}^{\infty} y^s \cdot f_Y(y; \theta_1, \theta_2, \dots, \theta_s) dy = E(Y^s) = \frac{1}{n} \sum_{i=1}^n y_i^s$$