Distances and Divergences for Probability Distributions

Andrew Nobel

October, 2020

Background

Basic question: How far apart (different) are two distributions P and Q?

- Measured through distances and divergences
- Used to define convergence of distributions
- ▶ Used to assess smoothness of parametrizations $\{P_{\theta}: \theta \in \Theta\}$
- Means of assessing the complexity of a family of distributions
- Key role in understanding the consistency of inference procedures
- Key ingredient in formulating lower and upper bounds on the performance of inference procedures

Kolmogorov-Smirnov Distance

Definition: Let P and Q be probability distributions on $\mathbb R$ with CDFs F and G. The Kolmogorov-Smirnov (KS) distance between P and Q is

$$\mathsf{KS}(P,Q) \ = \ \sup_t |F(t) - G(t)|$$

Properties of Total Variation

- 1. $0 \le KS(P, Q) \le 1$
- **2.** KS(P,Q) = 0 iff P = Q
- 3. KS is a metric
- 4. $\mathsf{KS}(P,Q) = 1$ iff there exists $s \in \mathbb{R}$ with $P((-\infty,s]) = 1$ and $Q((s,\infty)) = 1$

Total Variation Distance

Definition: Let $\mathcal X$ be a set with a sigma-field $\mathcal A$. The total variation distance between two probability measures P and Q on $(\mathcal X,\mathcal A)$ is

$$\mathsf{TV}(P,Q) = \sup_{A \in \mathcal{A}} |P(A) - Q(A)|$$

Properties of Total Variation

- 1. $0 \leq \mathsf{TV}(P, Q) \leq 1$
- **2.** $\mathsf{TV}(P,Q) = 0 \text{ iff } P = Q$
- 3. TV is a metric
- 4. $\mathsf{TV}(P,Q) = 1$ iff there exists $A \in \mathcal{A}$ with P(A) = 1 and Q(A) = 0

KS, TV, and the CLT

Note: KS(P,Q) and TV(P,Q) can both be expressed in the form

$$\sup_{A \in \mathcal{A}_0} |P(A) - Q(A)|$$

For KS family $A_0=$ all intervals $(-\infty,t]$, while for TV family $A_0=$ all (Borel) sets

Example: Let $X_1, X_2, \ldots \in \{-1, 1\}$ iid with $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = 1/2$. By the standard central limit theorem

$$Z_n = \frac{1}{n^{1/2}} \sum_{i=1}^n X_i \Rightarrow \mathcal{N}(0,1)$$

Let $P_n = \text{distribution of } Z_n \text{ and } Q = \mathcal{N}(0,1).$ Can show that

$$\mathsf{KS}(P_n,Q) \leq c n^{-1/2}$$
 while $\mathsf{TV}(P_n,Q) \equiv 1$

Total Variation and Densities

Scheffé's Theorem: Let $P \sim f$ and $Q \sim g$ be distributions on $\mathcal{X} = \mathbb{R}^d$. Then

1.
$$\mathsf{TV}(P,Q) = \frac{1}{2} \int |f(x) - g(x)| \, dx$$

2.
$$\mathsf{TV}(P,Q) = 1 - \int \min\{f(x), g(x)\} dx$$

3.
$$\mathsf{TV}(P,Q) = P(A) - Q(A)$$
 where $A = \{x : f(x) \ge g(x)\}$

Analogous results hold when $P \sim p(x)$ and $Q \sim q(x)$ are described by pmfs

Upshot: Total variation distance between P and Q is half the L_1 -distance between densities or mass functions

Total Variation and Hypothesis Testing

Problem: Observe $X \in \mathcal{X}$ having density f_0 or f_1 . Wish to test

$$\mathsf{H}_0: X \sim f_0 \ \text{vs.} \ \mathsf{H}_1: X \sim f_1$$

Any decision rule $d:\mathcal{X} \to \{0,1\}$ has overall (Type I + Type II) error

$$\mathsf{Err}(d) \ = \ \mathbb{P}_0(d(X) = 1) + \mathbb{P}_1(d(X) = 0)$$

Fact: The optimum overall error among all decision rules is

$$\inf_{d:\mathcal{X}\to \{0,1\}} \mathsf{Err}(d) \ = \ \int \min\{f_0(x),f_1(x)\} \, dx \ = \ 1 - \mathsf{TV}(P_0,P_1)$$

Total Variation and Coupling

Definition: A *coupling* of distributions P and Q on $\mathcal X$ is a jointly distributed pair of random variables (X,Y) such that $X\sim P$ and $Y\sim Q$

Fact: $\mathsf{TV}(P,Q)$ is the minimum of $\mathbb{P}(X \neq Y)$ over all couplings of P and Q

- ▶ If $X \sim P$ and $Y \sim Q$ then $\mathbb{P}(X \neq Y) \geq \mathsf{TV}(P,Q)$
- There is an optimal coupling achieving the lower bound
- Optimal coupling makes X, Y equal as much as possible

Note: If ρ is a metric on $\mathcal X$ the Wasserstein distance between distributions P and Q is defined by $\min \mathbb E[\rho(X,Y)]$ where the minimum is over all couplings (X,Y) of P and Q.

Hellinger Distance

Definition: Let $P\sim f$ and $Q\sim g$ be probability measures on \mathbb{R}^d . The Hellinger distance between P and Q is given by

$$\mathsf{H}(P,Q) = \left[\int \left(\sqrt{f(x)} - \sqrt{g(x)} \right)^2 dx \right]^{1/2}$$

Properties of Total Variation

- 1. $\mathsf{H}(P,Q)$ is just the L_2 distance between \sqrt{f} and \sqrt{g}
- 2. $H^2(P,Q) = 2\left(1 \int \sqrt{f(x)g(x)}\,dx\right)$, therefore $0 \le H^2(P,Q) \le 2$
- 3. H(P,Q) = 0 iff P = Q
- H is a metric
- 5. $H^2(P,Q)=2$ iff there exists $A\in\mathcal{A}$ with P(A)=1 and Q(A)=0

Hellinger Distance vs. Total Variation

Fact: For any pair of densities f, g we have the following inequalities

$$\int \min(f,g) \, dx \ \geq \ \frac{1}{2} \left(\int \sqrt{fg} \, dx \right)^2 \ = \ \frac{1}{2} \left(1 - \frac{1}{2} \mathsf{H}^2(f,g) \right)^2$$

Fact: For any distributions P and Q

$$\frac{1}{2}\mathsf{H}^2(P,Q)\,\leq\,\mathsf{TV}(P,Q)\,\leq\,\mathsf{H}(P,Q)\sqrt{1-\frac{\mathsf{H}^2(P,Q)}{4}}$$

- $ightharpoonup H^2(P,Q)=0$ iff $\mathsf{TV}(P,Q)=0$ and $\mathsf{H}^2(P,Q)=2$ iff $\mathsf{TV}(P,Q)=1$
- $H(P_n,Q_n) \to 0 \text{ iff } \mathsf{TV}(P_n,Q_n) \to 0$

Kullback-Liebler (KL) Divergence

Definition: The *KL-divergence* between distributions $P \sim f$ and $Q \sim g$ is given by

$$\mathsf{KL}(P:Q) = \mathsf{KL}(f:g) = \int f(x) \log \frac{f(x)}{g(x)} dx$$

Analogous definition holds for discrete distributions $P \sim p$ and $Q \sim q$

► The integrand can be positive or negative. By convention

$$f(x)\log\frac{f(x)}{g(x)} \ = \ \begin{cases} +\infty & \text{if } f(x)>0 \text{ and } g(x)=0 \\ 0 & \text{if } f(x)=0 \end{cases}$$

KL divergence is not symmetric, and is not a metric. Note that

$$\mathsf{KL}(P:Q) = \mathbb{E}_f \left[\log \frac{f(X)}{g(X)} \right]$$

First Properties of KL Divergence

Fact: The integral defining KL(P:Q) is well defined. Letting $u_- = \max(-u,0)$,

$$\int \left(f(x) \log \frac{f(x)}{g(x)} \right)_{-} dx \ < \ \infty$$

Key Fact:

- ▶ Divergence $KL(P:Q) \ge 0$ with equality if and only if P = Q
- ightharpoonup KL $(P:Q)=+\infty$ if there is a set A with P(A)>0 and Q(A)=0

Notation: When pmfs or pdfs clear from context, write $\mathsf{KL}(p:q)$ or $\mathsf{KL}(f:g)$

KL Divergence Examples

Example: Let p and q be pmfs on $\{0,1\}$ with

$$p(0) = p(1) = 1/2$$
 and $q(0) = (1 - \epsilon)/2$, $q(1) = (1 + \epsilon)/2$

Then we have the following exact expressions, and bounds

- $\blacktriangleright \ \ \mathrm{KL}(p:q) = -\frac{1}{2}\log(1-\epsilon^2) \leq \epsilon^2 \ \mathrm{when} \ \epsilon \leq \frac{1}{\sqrt{2}}$
- $\blacktriangleright \ \mathsf{KL}(q:p) = \tfrac{1}{2} \log(1-\epsilon^2) + \tfrac{\epsilon}{2} \log(\tfrac{1-\epsilon}{1+\epsilon}) \le 2\epsilon^2$

Example: If $P \sim \mathcal{N}_d(\mu_0, \Sigma_0)$ and $Q \sim \mathcal{N}_d(\mu_1, \Sigma_1)$ with $\Sigma_0, \Sigma_1 > 0$ then

$$2 \operatorname{KL}(P:Q) \ = \ \operatorname{tr}(\Sigma_1^{-1} \Sigma_0) + (\mu_1 - \mu_0)^t \Sigma_1^{-1} (\mu_1 - \mu_0) + \ln(|\Sigma_1|/|\Sigma_0|) - d$$

KL Divergence and Inference

Ex 1. (Testing) Consider testing $H_0: X \sim f_0$ vs. $H_1: X \sim f_1$. The divergence

$$\mathsf{KL}(f_0:f_1) \ = \ \mathbb{E}_0\left(\log\frac{f_0(X)}{f_1(X)}\right) \ \ge \ 0$$

is just the expected log likelihood ratio under H₀

Ex 2. (Estimation) Suppose X_1, X_2, \ldots iid with $X_i \sim f(x|\theta_0)$ in $\mathcal{P} = \{f(x|\theta) : \theta \in \Theta\}$. Under suitable assumptions, when n is large,

$$\hat{\theta}_{\mathrm{MLE}}(x) \; \approx \; \mathop{\mathrm{argmin}}_{\theta \in \Theta} \mathsf{KL}(f(\cdot|\theta_0):f(\cdot|\theta))$$

In other words, MLE is trying to find θ minimizing KL divergence with true distribution.

KL Divergence vs Total Variation and Hellinger

Fact: For any distributions P and Q we have

- (1) $\mathsf{TV}(P,Q)^2 \leq \mathsf{KL}(P:Q)/2$ (Pinsker's Inequality)
- (2) $H(P,Q)^2 \leq KL(P:Q)$

Log Sum Inequality

Log-Sum Inequality: If a_1, \ldots, a_n and b_1, \ldots, b_n are non-negative then

$$\sum_{i=1}^n a_i \log \frac{a_i}{b_i} \, \geq \, \left(\sum_{i=1}^n a_i\right) \log \frac{\sum_{i=1}^n a_i}{\sum_{i=1}^n b_i}$$

with equality iff all the ratios a_i/b_i are equal

Corollary: If $P \sim p$ and $Q \sim q$ are distributions, then for every event B

$$\sum_{x \in B} p(x) \log \frac{p(x)}{q(x)} \ge P(B) \log \frac{P(B)}{Q(B)}$$

with equality iff p(x)/q(x) is constant for $x \in B$

Product Densities (Tensorization)

Recall: Given distributions P_1,\ldots,P_n on $\mathcal X$ with densities f_1,\ldots,f_n the product distribution $P=\otimes_{i=1}^n P_i$ on $\mathcal X^n$ has density $f(x_1,\ldots,x_n)=f_1(x_1)\cdots f_n(x_n)$

Tensorization: Let P_1, \ldots, P_n and Q_1, \ldots, Q_n be distributions on \mathcal{X}

- ightharpoonup $\mathsf{TV}(\otimes_{i=1}^n P_i, \otimes_{i=1}^n Q_i) \le \sum_{i=1}^n \mathsf{TV}(P_i, Q_i)$
- $ightharpoonup H^2(\otimes_{i=1}^n P_i, \otimes_{i=1}^n Q_i) \leq \sum_{i=1}^n \mathsf{H}^2(P_i, Q_i)$
- $\blacktriangleright \mathsf{KL}(\otimes_{i=1}^n P_i, \otimes_{i=1}^n Q_i) = \sum_{i=1}^n \mathsf{KL}(P_i, Q_i)$

Distinguishing Coins

Given: Observations $X=X_1,\ldots,X_n\in\{0,1\}$ iid $\sim \mathsf{Bern}(\theta)$ with $\theta\in\{\theta_0,\theta_1\}$

Goal: Find a decision rule $d: \{0,1\}^n \to \{0,1\}$ such that

- * $\mathbb{P}_0(d(X) = 1) \le \alpha$
- $\star \ \mathbb{P}_1(d(X) = 0) \le \alpha$

Question: How large does the number of observations n need to be?

Fact: Let $\Delta=|\theta_0-\theta_1|$. Then there exists a decision procedure achieving performance (\star) and requiring number of observations

$$n = \frac{2\log(1/\alpha)}{\Delta^2}$$

Identifying Fair and Biased Coins

Suppose now that $\theta_0=1/2$ and $\theta_1=1/2+\epsilon$ for some fixed $\epsilon\in(0,1/4)$

Fact: For every event $A \subseteq \{0,1\}^n$

$$|\mathbb{P}_0(X \in A) - \mathbb{P}_1(X \in A)| = |P_0(A) - P_1(A)| \le \epsilon \sqrt{2n}$$

Fact: If $d: \{0,1\}^n \to \{0,1\}$ is any decision rule achieving (\star) then

$$n \geq \frac{1-2\alpha}{\epsilon^2}$$