Bayesian Learning Lecture 10 - Bayesian Model Comparison

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Overview

- Bayesian model comparison
- Marginal likelihood
- Log Predictive Score

Using likelihood for model comparison

- Consider two models for the data $\mathbf{y} = (y_1, ..., y_n)$: M_1 and M_2 .
- Let $p_i(\mathbf{y}|\theta_i)$ denote the data density under model M_i .
- If we know θ_1 and θ_2 , the likelihood ratio is useful

$$\frac{p_1(\mathbf{y}|\theta_1)}{p_2(\mathbf{y}|\theta_2)}.$$

The likelihood ratio with ML estimates plugged in:

$$\frac{p_1(\mathbf{y}|\hat{\theta}_1)}{p_2(\mathbf{y}|\hat{\theta}_2)}.$$

- Bigger models always win in estimated likelihood ratio.
- Hypothesis tests are problematic for non-nested models. End results are not very useful for analysis.

Bayesian model comparison

- Just use your priors $p_1(\theta_1)$ och $p_2(\theta_2)$.
- The marginal likelihood for model M_k with parameters θ_k

$$p_k(y) = \int p_k(y|\theta_k)p_k(\theta_k)d\theta_k.$$

- \blacksquare θ_k is 'removed' by the averaging wrt prior. Priors matter!
- The Bayes factor

$$B_{12}(y) = \frac{p_1(y)}{p_2(y)}.$$

Posterior model probabilities

$$\underbrace{\Pr(M_k|\mathbf{y})}_{\text{posterior model prob.}} \propto \underbrace{p(\mathbf{y}|M_k)}_{\text{marginal likelihood prior model prob.}} \cdot \underbrace{\Pr(M_k)}_{\text{prior model prob.}}$$

Bayesian hypothesis testing - Bernoulli

Hypothesis testing is just a special case of model selection:

$$\begin{aligned} M_0:&x_1,...,x_n \overset{iid}{\sim} Bernoulli(\theta_0) \\ M_1:&x_1,...,x_n \overset{iid}{\sim} Bernoulli(\theta), \theta \sim Beta(\alpha,\beta) \\ &p(x_1,...,x_n|M_0) = \theta_0^s(1-\theta_0)^f, \\ &p(x_1,...,x_n|M_1) &= \int_0^1 \theta^s(1-\theta)^f B(\alpha,\beta)^{-1} \theta^{\alpha-1}(1-\theta)^{\beta-1} d\theta \\ &= B(\alpha+s,\beta+f)/B(\alpha,\beta), \end{aligned}$$

where $B(\cdot, \cdot)$ is the Beta function.

Posterior model probabilities

$$Pr(M_k|x_1,...,x_n) \propto p(x_1,...,x_n|M_k)Pr(M_k)$$
, for $k = 0, 1$.

The Bayes factor

$$BF(M_0; M_1) = \frac{p(x_1, ..., x_n | H_0)}{p(x_1, ..., x_n | H_1)} = \frac{\theta_0^s (1 - \theta_0)^f B(\alpha, \beta)}{B(\alpha + s, \beta + f)}.$$

Priors matter

Example: Geometric vs Poisson

- Model 1 Geometric with Beta prior:
 - $ightharpoonup y_1, ..., y_n | \theta_1 \sim Geo(\theta_1)$
 - $ightharpoonup heta_1 \sim Beta(\alpha_1, \beta_1)$
- Model 2 Poisson with Gamma prior:
 - \rightarrow $y_1, ..., y_n | \theta_2 \sim Poisson(\theta_2)$
 - \triangleright $\theta_2 \sim Gamma(\alpha_2, \beta_2)$
- Marginal likelihood for M₁

$$p_1(y_1, ..., y_n) = \int p_1(y_1, ..., y_n | \theta_1) p(\theta_1) d\theta_1$$

$$= \frac{\Gamma(\alpha_1 + \beta_1)}{\Gamma(\alpha_1) \Gamma(\beta_1)} \frac{\Gamma(n + \alpha_1) \Gamma(n\bar{y} + \beta_1)}{\Gamma(n + n\bar{y} + \alpha_1 + \beta_1)}$$

 \blacksquare Marginal likelihood for M_2

$$p_2(y_1, ..., y_n) = \frac{\Gamma(n\bar{y} + \alpha_2)\beta_2^{\alpha_2}}{\Gamma(\alpha_2)(n + \beta_2)^{n\bar{y} + \alpha_2}} \frac{1}{\prod_{i=1}^n y_i!}$$

Geometric and Poisson

Geometric vs Poisson

Priors match prior predictive means:

$$E(y_i|M_1) = E(y_i|M_2) \iff \alpha_1\alpha_2 = \beta_1\beta_2$$

Data: $y_1 = 0$, $y_2 = 0$.

Data: $y_1 = 3$, $y_2 = 3$

Data. $y_1 =$	$3, y_2 = 3.$		
	$\alpha_1 = 1, \beta_1 = 2$	$\alpha_1=10$, $\beta_1=20$	$lpha_1=$ 100, $eta_1=$ 200
	$\alpha_2 = 2$, $\beta_2 = 1$	$\alpha_2=$ 20, $\beta_2=$ 10	$lpha_2=$ 200, $eta_2=$ 100
BF_{12}	0.26	0.29	0.30
$\Pr(M_1 \mathbf{y})$	0.21	0.22	0.23
$\Pr(M_2 \mathbf{y})$	0.79	0.78	0.77

Geometric vs Poisson for Pois(1) data

Geometric vs Poisson for Pois(1) data

Model choice in multivariate time series¹

Multivariate time series

$$\mathbf{x}_t = \alpha \beta' \mathbf{z}_t + \Phi_1 \mathbf{x}_{t-1} + \dots \Phi_k \mathbf{x}_{t-k} + \Psi_1 + \Psi_2 t + \Psi_3 t^2 + \varepsilon_t$$

- Need to choose:
 - **Lag length**, (k = 1, 2..., 4)
 - ► Trend model (s = 1, 2, ..., 5)
 - **Long-run (cointegration) relations** (r = 0, 1, 2, 3, 4).

The most prob	SABLE	(k, r, s)) сом	BINATI	ONS IN	THE	Danisi	H MON	ETARY	DATA.
k	1	1	1	1	1	1	1	1	0	1
r	3	3	2	4	2	1	2	3	4	3
s	3	2	2	2	3	3	4	4	4	5
p(k, r, s y, x, z)	.106	.093	.091	.060	.059	.055	.054	.049	.040	.038

Bayesian Learning Bayesian Model Comparison

¹Corander and Villani (2004). Statistica Neerlandica.

Graphical models for multivariate time series²

- Graphical models for multivariate time series.
- Zero-restrictions on the effect from time series i on time series j, for all lags. (Granger Causality).
- Zero-restrictions on inverse covariance matrix of the errors. Contemporaneous conditional independence.

²Corander and Villani (2004). Journal of Time Series Analysis.

Properties of Bayesian model comparison

Coherence of pair-wise comparisons

$$B_{12} = B_{13} \cdot B_{32}$$

Consistency when true model is in $\mathcal{M} = \{M_1, ..., M_K\}$

$$\Pr\left(M = M_{TRUE}|\mathbf{y}\right) \to 1 \quad \text{as} \quad n \to \infty$$

■ "KL-consistency" when $M_{TRUE} \notin \mathcal{M}$

$$\Pr\left(M = M^* | \mathbf{y}\right) \to 1 \quad \text{as} \quad n \to \infty,$$

 M^* minimizes KL divergence between $p_M(y)$ and $p_{TRUE}(y)$.

- Smaller models always win when priors are very vague.
- Improper priors cannot be used for model comparison.

$Pr(M_k|y)$ can be overfident - macroeconomics³

Table: Posterior model probabilities - Smets-Wouters DSGE model

Base	M1	M2	М3	M4	M5	M6	M7	M8
0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00

Bayesian Learning Bayesi

³Oelrich et al (2020). When are Bayesian model probabilities overconfident?

$Pr(M_k|y)$ can be overfident - neuroscience⁴

Table: Posterior model probabilities - Dynamic Causal Models

Α	F	Р	AF	PA	PF	PAF
0.00	0.00	1.00	0.00	0.00	0.00	0.00

⁴Oelrich et al (2020). When are Bayesian model probabilities overconfident?

Bayesian Learning

Marginal likelihood measures out-of-sample predictive performance

The marginal likelihood can be decomposed as

$$p(y_1,...,y_n) = p(y_1)p(y_2|y_1)\cdots p(y_n|y_1,y_2,...,y_{n-1})$$

Assume that y_i is independent of $y_1, ..., y_{i-1}$ conditional on θ :

$$p(y_i|y_1,...,y_{i-1}) = \int p(y_i|\theta)p(\theta|y_1,...,y_{i-1})d\theta$$

- **Prediction** of y_1 is based on the prior of θ . Sensitive to prior.
- Prediction of y_n uses almost all the data to infer θ . Not sensitive to prior when n is not small.

Normal example

- Model: $y_1, ..., y_n | \theta \sim N(\theta, \sigma^2)$ with σ^2 known.
- Prior: $\theta \sim N(0, \kappa^2 \sigma^2)$.
- Intermediate posterior at time i-1

$$\theta | y_1, ..., y_{i-1} \sim N \left[w_i(\kappa) \cdot \bar{y}_{i-1}, \frac{\sigma^2}{i - 1 + \kappa^{-2}} \right]$$

where $w_i(\kappa) = \frac{i-1}{i-1+\kappa^{-2}}$.

Intermediate predictive density at time i-1

$$y_i|y_1,...,y_{i-1} \sim N\left[w_i(\kappa) \cdot \bar{y}_{i-1}, \sigma^2\left(1 + \frac{1}{i-1+\kappa^{-2}}\right)\right]$$

- For i=1, $y_1 \sim N\left[0, \sigma^2\left(1+\frac{1}{\kappa^{-2}}\right)\right]$ can be very sensitive to κ .
- For large $i: y_i|y_1,...,y_{i-1} \stackrel{approx}{\sim} N(\bar{y}_{i-1},\sigma^2)$, not sensitive to κ .

First observation is sensitive to κ

First observation is sensitive to κ - zoomed

Log Predictive Score - LPS

- Reduce sensitivity to the prior: sacrifice n^* observations to train the prior into a posterior.
- Predictive (Density) Score (PS). Decompose $p(y_1, ..., y_n)$ as $\underbrace{p(y_1)p(y_2|y_1)\cdots p(y_{n^*}|y_{1:(n^*-1)})}_{training}\underbrace{p(y_{n^*+1}|y_{1:n^*})\cdots p(y_n|y_{1:(n-1)})}_{test}$
- Usually report on log scale: Log Predictive Score (LPS).
- Time-series: obvious which data are used for training.
- Cross-sectional data: training-test split by cross-validation:

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5

And hey! ... let's be careful out there

- Be especially careful with Bayesian model comparison when
 - ▶ The compared models are
 - very different in structure
 - severly misspecified
 - very complicated (black boxes).
 - ► The **priors** for the parameters in the models are
 - not carefully elicited
 - only weakly informative
 - not matched across models.
 - ► The data
 - has outliers (in all models)
 - has a multivariate response.