Language Models are Unsupervised Multitask Learners

Alec Radford, et al

OpenAI

2019

Abstract

- NLP Tasks were approached with supervised learning
 - Labeling and fine-tuning for a specific task
 - Not enough generalization
- We suggest unsupervised multitask, achieved by
 - Large model GPT-2 (1.5B Parameters)
 - Huge dataset of millions of webpages called WebText

Introduction

- Problem of "Narrow expert"
 - Single task training on single domain dataset
 - Sensitive to slight changes in the data distribution
 - Poor performance on GLUE, decaNLP
- We try to make "Competent generalists"
 - Unsupervised pre-training
 - Zero-shot setting (No fine-tuning)

Approach

- Traditional Language models
 - Estimate conditional distribution p(output|input)
- · Multitask and meta-learning settings
 - Estimate conditional distribution p(output|input, task)
 - Find triplet (*input*, *output*, *task*) in natural language sentence
 - It is achieved by MQAN [1]
 - We expect sufficient data and model size can perform it
- [1] Bryan McCann et al. *The Natural Language Decathlon: Multitask Learning as Question Answering*. 2018. arXiv: 1806.08730 [cs.CL].

Training dataset

- Prior works used single domain dataset
 - News articles, Wikipedia, Fiction books
- We used WebText, containing 45 million links
 - We scraped links from Reddit, which received at least 3 karma
 - De-duplication and some heuristic based cleaning
 - 8 million documents for a total of 40 GB of text

Input Representation

- · Word-level Models
 - Preprocessing is needed
 - Lowercasing, Tokenization, Out-of-vocabulary tokens
- Byte-level Models
 - Treating text as UTF-8 bytes without preprocessing
 - Low performance on large scale datasets
 - 8 million documents for a total of 40 GB of text

Input Representation

- Byte Pair Encoding (BPE) [1]
 - Treating frequent pairs as a token
 - ex) preprocess → 'pre', 'process'
 - If character categories are different, they are divided
 - Categories include letters, numbers, punctuation
 - ex) fair-play \rightarrow 'fair', 'play'
- Byte-level BPE (BBPE)
 - Despite its name, BPE operates on Unicode code points
 - We changed it to byte-level instead of Unicode symbols

^[1] Rico Sennrich. "Neural machine translation of rare words with subword units". In: *arXiv* preprint arXiv:1508.07909 (2015).

Model

Parameters	Layers	d_{model}
117M	12	768
345M	24	1024
762M	36	1280
1542M	48	1600

- The 4 models largely follow the details of the OpenAI GPT
- Few modifications of layer normalizations
 - It moved to the input of each sub-block
 - Additional normalization after the final self attention
- · A modified initialization
 - Scaled weights of residual layers by $\frac{1}{\sqrt{N}}$
 - N is the number of residual layers

Experiment

	LAMBADA	LAMBADA	CBT-CN	CBT-NE	WikiText2	PTB	enwik8	text8	WikiText103	1BW
	(PPL)	(ACC)	(ACC)	(ACC)	(PPL)	(PPL)	(BPB)	(BPC)	(PPL)	(PPL)
SOTA	99.8	59.23	85.7	82.3	39.14	46.54	0.99	1.08	18.3	21.8
117M	35.13	45.99	87.65	83.4	29.41	65.85	1.16	1.17	37.50	75.20
345M	15.60	55.48	92.35	87.1	22.76	47.33	1.01	1.06	26.37	55.72
762M	10.87	60.12	93.45	88.0	19.93	40.31	0.97	1.02	22.05	44.575
1542M	8.63	63.24	93.30	89.05	18.34	35.76	0.93	0.98	17.48	42.16

- Accuracy (ACC)
 - Correctness of word prediction
- Perplexity (PPL)
 - How "surprised" the model is by the data
- Bits per Byte (BPB)
 - It measures the compression efficiency of a model
- Bits per Character (BPC)
 - It measures the compression efficiency of a model

Experiment

	LAMBADA	LAMBADA	CBT-CN	CBT-NE	WikiText2	PTB	enwik8	text8	WikiText103	1BW
	(PPL)	(ACC)	(ACC)	(ACC)	(PPL)	(PPL)	(BPB)	(BPC)	(PPL)	(PPL)
SOTA	99.8	59.23	85.7	82.3	39.14	46.54	0.99	1.08	18.3	21.8
117M	35.13	45.99	87.65	83.4	29.41	65.85	1.16	1.17	37.50	75.20
345M	15.60	55.48	92.35	87.1	22.76	47.33	1.01	1.06	26.37	55.72
762M	10.87	60.12	93.45	88.0	19.93	40.31	0.97	1.02	22.05	44.575
1542M	8.63	63.24	93.30	89.05	18.34	35.76	0.93	0.98	17.48	42.16

- SOTA on many datasets (Not most of datasets)
 - Large improvements on small datasets (PTB, WikiText2)
 - Large improvements on long-term dependency (LAMBADA, CBT)
- Worse performance on 1BW [1]
 - It is the biggest dataset
 - Sentence level shuffling to remove long-range structure

^[1] Ciprian Chelba et al. "One billion word benchmark for measuring progress in statistical language modeling". In: *arXiv preprint arXiv:1312.3005* (2013).

Children's Book Test

- Predicting missing words in the sentence
- Common Nouns (CN)
 - Dog, Cat, Window, ...
- Name Entities (NE)
 - Alice, Bob, Jack, ...

LAMBADA

- Test ability to handle long-range dependencies
 - Prediction of the final word in a sentence
- · Stop-Word filtering
 - The predicted word must logically end the sentence
 - GPT-2 was not leveraging the constraint
 - By excluding words like 'and', 'the', GPT-2 achieved SOTA

Winograd Schema Challenge

- Commonsense reasoning by resolving textual ambiguities.
 - "The trophy doesn't fit in the suitcase because it is too small."
 - What does 'it' refer to? (Answer: "the suitcase.")

Reading Comprehension

- Conversation Question Answering dataset (CoQA) [1]
 - Dialogues between a question asker and a question answerer
 - Answer questions that depend on conversation history
- Achieved 55 F1 Score
 - Supervised SOTA is nearing the 89 F1
 - GPT-2 used simple retrieval based heuristics
- [1] Siva Reddy, Danqi Chen, and Christopher D Manning. "Coqa: A conversational question answering challenge". In: *Transactions of the Association for Computational Linguistics* 7 (2019), pp. 249–266.

Summarization

	R-1	R-2	R-L	R-AVG
Bottom-Up Sum	41.22	18.68	38.34	32.75
Lede-3	40.38	17.66	36.62	31.55
Seq2Seq + Attn	31.33	11.81	28.83	23.99
GPT-2 TL; DR:	29.34	8.27	26.58	21.40
Random-3	28.78	8.63	25.52	20.98
GPT-2 no hint	21.58	4.03	19.47	15.03

- CNN and Daily Mail dataset summarization
 - The text "TL;DR:" is appended as a hint for the task
 - ROUGE 1,2,L metrics (overlap with reference summary)
- Poor performance
 - TL;DR: played important role for task recognition

Translation

- BLEU (Bilingual Evaluation Understudy)
 - Precision about matching n-grams
 - Brevity penalty for overly short translations
- WMT-14 Dataset (English-French)
 - English to French: BLEU score 5
 - French to English: BLEU score 11.5
- Poor performance
 - French data was not enough in WebText

Question Answering

- Natural Questions dataset [1]
 - "Who is the president of the U.S.?"
- GPT-2 Performance
 - 4.1% accuracy when evaluated by exact match metric
 - Five times better than the smallest model
 - Still much worse than supervised systems
- [1] Tom Kwiatkowski et al. "Natural questions: a benchmark for question answering research". In: *Transactions of the Association for Computational Linguistics* 7 (2019), pp. 453–466.

Generalization vs Memorization

	PTB	WikiText-2	enwik8	text8	Wikitext-103	1BW
Dataset train	2.67%	0.66%	7.50%	2.34%	9.09%	13.19%
WebText train	0.88%	1.63%	6.31%	3.94%	2.42%	3.75%

- There may be overlap between train-test set
 - Bloom filters containing 8-grams
- Overall Overlap Analysis
 - Overlap provides a small but consistent performance benefit
 - Overlap is not significantly larger than the train-test overlap
- Testing for Memorization
 - Performance improves as model size increases
 - It indicates underfitting rather than over-memorization

Conclusion

- Unsupervised Task Learning
 - Performs well with sufficiently large and diverse dataset
 - Possibility of learning without fine-tuning
- Limitation
 - Far from practically usable for most tasks
 - GPT-2 still struggles with structured reasoning