A.5.3 Savoir-faire 3 : nombre dérivé et équations de tangentes

La tangente à la courbe \mathscr{C}_f : y = f(x) au point d'abscisse a est d'équation

$$T_a$$
: $y = f'(a)(x - a) + f(a)$

■ Exemple A.23 — déterminer l'équation d'une tangente.

Soit f définie sur \mathbb{R} par $f(x) = x^2 + 1$, et sa représentation graphique \mathscr{C}_f . Déterminer (algébriquement) l'équation de la tangente à \mathscr{C}_f au point d'abscisse 1.

solution.

$$f(1) = (1)^2 + 1 = 2$$
. $A(1; 2) \in \mathscr{C}_f$

f est dérivable sur \mathbb{R} et f'(x) = 2x

$$f'(1) = 2(1) = 2$$

$$T: y = f'(1)(x-1) + f(1).$$

$$T: y = 2x$$
.

Exercice 1

On donne l'expression de la fonction f de représentation graphique \mathscr{C}_f . Déterminer pour chaque cas l'équation réduite de la tangente à \mathscr{C}_f au point d'abscisse x_0 .

- 1. pour tout x, $f(x) = x^2$ et $x_0 = 4$.
- 2. pour tout $x \in \mathbb{R}^*$, $f(x) = \frac{3}{x}$ et $x_0 = -1$.
- 3. pour tout $x \in \mathbb{R}$, $f(x) = 2x^2 + 5x + 3$ et $x_0 = -2$.
- **4.** pour tout $x \in \mathbb{R}$, $f(x) = x^3 + 3x$ et $x_0 = 0$.
- 5. pour tout $x \in \mathbb{R}^*$, $f(x) = x^2 + \frac{1}{x}$ et $x_0 = -1$.

Exercice 2 — utiliser l'équation de la tangente.

Déterminer l'équation de la tangente puis déduire les coordonnées du point demandé.

- 1. T est la tangente à \mathscr{C} : $y=2x^3+3x^2-x+4$ au point d'abscisse -1. Déterminer l'intersection de T avec l'axe des abscisses.
- 2. T est la tangente à \mathscr{C} : $y=3x^3-2x+1$ au point d'abscisse 1. Déterminer le point d'intersection de T avec l'axe des ordonnées.
- 3. T est la tangente à \mathscr{C} : $y=x^3+5$ au point $A(-2\ ;\ -3)$. Déterminer l'abscisse du point de T d'ordonnée y=2.
- 4. T est la tangente à \mathscr{C} : $y = \frac{2}{x} + 1$ au point A(-2; 0). Déterminer les coordonnées du point d'intersection de T avec D: y = 2x 3.

26

■ Exemple A.24 — trouver un autre point de rencontre avec la tangente.

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 4x^2 - 6x + 8$ et sa représentation graphique \mathscr{C}_f . Soit T la tangente à \mathscr{C}_f au point d'abscisse 0. Déterminer les coordonnées du point ou T coupe \mathscr{C}_f à nouveau.

solution.

f est dérivable sur \mathbb{R} , et $f'(x) = 3x^2 - 8x - 6$

$$f(0) = (0)^3 - 4(0)^2 - 6(0) + 8 = 8, A(0; 8) \in \mathscr{C}_f.$$

$$f'(0) = 3(0)^2 - 8(0) - 6 = -6$$
.

La tangente T à \mathscr{C}_f au point A est $T \colon y =$

$$-6(x-0) + 8 = -6x + 8.$$

Un point $P(x \; ; \; y)$ est sur \mathscr{C}_f et sur T si ses

coordonnées vérifient :

$$\begin{cases} y = x^3 - 4x^2 - 6x + 8 \\ y = -6x + 8 \end{cases}$$

Donc x est solution de

$$x^3 - 4x^2 - 6x + 8 = -6x + 8.$$

$$x^3 - 4x^2 = 0$$
$$x^2(x - 4) = 0$$

On sait que x = 0 est solution, on factorise par (x - 0)

-10

-15

-20

 $\therefore x = 0 \text{ ou } x = 4.$

Si x = 1 alors A(0; 8) que l'on connait déjà.

Si x = 4, y = -6(4) + 8 = -16. Donc la tangente T rencontre à nouveau \mathcal{C}_f au point B(4; -16).

Exercice 3

Pour chaque fonction f donnée, déterminer :

- l'équation de la tangente à \mathscr{C}_f au point x_0
- le point ou la tangente rencontre la courbe \mathscr{C}_f à nouveau.
- 1. f définie sur \mathbb{R} par $f(x) = 2x^3 5x + 1$ et $x_0 = -1$
- 2. f définie sur \mathbb{R}^* par $f(x) = x^2 + \frac{3}{x} + 2$ et $x_0 = 3$
- 3. f définie sur \mathbb{R} par $f(x) = x^3 + 5$ et $x_0 = 1.5$
- 4. f définie sur \mathbb{R}^* par $f(x) = x^3 + \frac{1}{x}$ et $x_0 = -1$

■ Exemple A.25 — trouver une tangente.

Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = x^2$. Déterminer l'équation de la tangente à \mathscr{C}_f passant par le point B(2; 3) (extérieur à \mathscr{C}_f).

Démonstration. Soit $a \in \mathbb{R}$, le point $A(a; a^2) \in \mathscr{C}_f$.

$$f'(x) = 2x$$
, donc $f'(a) = 2a$.

La tangente à \mathscr{C}_f au point A a pour équation T_a : $y = 2a(x-a) + a^2$.

On cherche $a \in \mathbb{R}$ tel que $B(2; 3) \in T_a$. Donc a vérifie :

$$2a(2-a) + a^2 = 3$$

$$0 = a^2 - 4a + 3$$

$$a = 1$$
 ou $a = 3$

Pour a = 1, alors T_1 : y = 2x - 1 au point $A_1(1; 1)$.

Pour a = 3, alors T_3 : y = 6x - 9 au point $A_3(3; 9)$.

Exercice 4

Soit f définie sur \mathbb{R} par $f(x) = x^2 - 3x$. On cherche à trouver les tangentes à \mathscr{C}_f qui passent par le point B(3; -4).

Soit $a \in \mathbb{R}$. On pose A le point de \mathscr{C}_f d'abscisse a, et T la tangente en A.

- 1. Préciser les coordonnées de A en fonction a.
- **2.** Montrer que $T: y = (2a 3)x a^2$.
- 3. Sachant que T passe par B, donner l'équation l'équation vérifiée par a et la résoudre en a.
- 4. Déterminer les points A et les équations réduites des tangentes à \mathscr{C}_f passant par B.

Exercice 5

Soit la \mathscr{C}_f la représentation graahique de f définie sur \mathbb{R} par $f(x) = x^3$. Déterminer les équations réduites de(s) tangente(s) à \mathscr{C}_f passant par le point B(-2; 0) (extérieur à \mathscr{C}_f).

Exercice 6

Soit la courbe \mathscr{C} : $y = \sqrt{x}$.

- 1. Quelle fonction est repréntée par la courbe \mathscr{C} . Préciser domaine et domaine de dérivabilité.
- 2. Déterminer les équations réduites de(s) tangente(s) à \mathscr{C} passant par B(5;3) (extérieur à \mathscr{C}_f).