UNIK 4490 - Obligatorisk oppgave 1

David Kolden, davidko

2. oktober 2017

1 Øvelse 1

1.a

Finner poler ved å løse $s(1+T_Ms)=0$ som gir polene s=0 og $s=-\frac{1}{T_M}$. Systemet er stabilt for alle positive verdier av T_M .

1.b

Figur 1 viser blokkskjema for $\frac{X(s)}{U(s)} = H(s) = \frac{1}{s(1+T_Ms)}$

Figur 1: Blokkskjema for H(s)

1.c

H(s) har to poler og er derfor et andreordens system.

Setter
$$U(s) = K(1+T_Ds)E(s)$$
, $E(s) = R(s)-X(s)$, $U(s) = K(1+T_Ds)(R(s)-X(s))$ sammen med $H(s)$:

$$X(s) = H(s)U(s) = H(s)K(1 + T_D s)(R(s) - X(s))$$

$$X(s) = H(s)K(1 + T_D s)R(s) - H(s)K(1 + T_D s)X(s)$$

$$X(s)(1 + H(s)K(1 + T_D s)) = H(s)K(1 + T_D s)R(s)$$

$$\frac{X(s)}{R(s)} = H_C(s) = \frac{H(s)K(1 + T_D s)}{1 + H(s)K(1 + T_D s)}$$

$$H_C(s) = \frac{K(1 + T_D s)}{\frac{1}{H(s)} + K(1 + T_D s)}$$

Setter inn for H(s):

$$H_C(s) = \frac{K(1 + T_D s)}{s(1 + T_M s) + K(1 + T_D s)}$$

$$H_C(s) = \frac{K(1 + T_D s)}{s^2 T_M + s + K T_D s + K}$$

$$H_C(s) = \frac{(1 + T_D s)}{s^2 \frac{T_M}{K} + s(\frac{1}{K} + T_D) + 1}$$

Ser at systemet med kontroller fortsatt er et andreordens system.

1.d

Figur to viser blokkskjema for systemet med kontroller $(H_C(s))$

Figur 2: Blokkskjema for $H_C(s)$

1.e

 $H_C(s)$ har ett nullpunkt og to poler. Nullpunktet finnes ved å sette telleren i $H_C(s)$ til null, mens man finner polene ved å sette nevneren til null. Polene kan dermed finnes med uttrykket

$$s = \frac{-(\frac{1}{K} + T_D) \pm \sqrt{(\frac{1}{K} + T_D)^2 - 4\frac{T_M}{K}}}{2\frac{T_M}{K}}$$

mens nullpunktene finnes med uttrykket

$$s = -\frac{1}{T_D}$$

Ved å sette inn for $T_M=2$ og $T_D=1$ får vi til slutt et nullpunkt i s=-1 og to poler i

$$s = \frac{-(\frac{1}{K} + 1) \pm \sqrt{(\frac{1}{K} + 1)^2 - 4\frac{2}{K}}}{2\frac{2}{K}}$$

Figur 3: Locusplot av H_C

Med $K \approx 0.17$, så er systemet

2 Øvelse 2

Et system kan verifiseres som stabilt for en kandidatfunksjon V(x,y) hvis

•
$$V(x,y) > 0$$
 $\forall x \neq 0, y \neq 0$

$$\bullet \ V(x,y) = 0 \qquad x = y = 0$$

•
$$V(x,y) \to \infty$$
 $x \to \infty, y \to \infty$

•
$$\dot{V}(x,y) < 0$$

Med en kandidatfunksjon

$$V(x,y) = x^2 + y^2$$

ser vi at kravene fra første, andre og tredje punkt er godkjente ettersom begge uttrykkene er kvadratiske.

Med systemet

$$\dot{x} = -y - x^3$$

$$\dot{y} = x - y^3$$

kan systemet verifiseres ved å finne $\dot{V}(x,y)$.

$$\dot{V}(x,y) = 2x\dot{x} + 2y\dot{y}$$

$$\dot{V}(x,y) = 2x(-y - x^3) + 2y(x - y^3)$$

$$\dot{V}(x,y) = -2xy - 2x^4 + 2xy - 2y^4$$

$$\dot{V}(x,y) = -x^4 - y^4$$

Vi ser at $\dot{V}(x,y)$ er godkjent i forhold til det siste kravet ettersom x^4 og y^4 ikke kan bli negative.

3 Øvelse 3

- 3.a
- 3.b
- **3.c**
- 3.d
- **3.e**
- 3.f
- 3.g
- 3.h