Kernelizing Probabilistic Matrix Factorization to Enhance Music Recommendation

Albert Jan

STCS 6701 Final Project, Columbia University

Introduction

User i rates artist j a value $r_{ij} \in \mathbb{R}$. Can we model unseen r_{ij} ?

Probabilistic Matrix factorization (PMF):

- Learns a latent vector for each user i and artist j: $u_i, v_j \in \mathbb{R}^k$
- Models the distribution of r_{ij} with the inner product of $u_i, v_j, f(x; u_i^\top v_i)$
- Gaussian PMF assumes independence of all u_i, v_j, r_{ij} , assigns them gaussian priors, and learns them by optimizing the posterior.
- Limitation: Simplicity. By assuming independence of all u_i and v_j , PMF cannot incorporate believed relationships between users' preferences or artists' traits into the generative process.
- With more complex models e.g. kernelized PMF we can capture covariances between any two latent user variables u_i, u_j or artist variables v_i, v_j in our prior.

Dataset & Preprocessing

The hetrec2011-lastfm-2k dataset contains social networking, tagging, and music artist listening data for a set of 2,000 users and 1,000 artists on Last.fm.

Listening count: # of times user i listened to artist j. There is no explicit rating data, so we take log(listening count) as the "rating" to model.

Figure 1. Listening count is roughly log-normally distributed and highly imbalanced, so we model its logarithm and only consider the top 500 artists.

User social network data: 25,424 friendships between the users, which we represent as an undirected graph G.

Artist tag data: Users labelled artists with 87,366 tags, of which 9,800 are unique. For experiments, we only keep the top n tags.

Figure 2. A tag matrix for a small subset of the dataset.

Purpose

I introduce complexity to the Gaussian PMF model for predicting ratings by using side information (social network data, artist tag data) to propose covariances between latent user vector pairs u_i , u_j and artist vector pairs v_i , v_j a priori. I incorporate them into my priors for the generative model that forms r_{ij} .

Future research

- Sparsity: Compare how KPMF performs vs. standard PMF for users and artists with little to no ratings.
- Experiment with other graph kernel methods (e.g. diffusion kernels).

Notation & Generative Model

Hyperparameters and notation:

K: number of components

 $U \in \mathbb{R}^{n \times k}$: User latent matrix

 $V \in \mathbb{R}^{m \times k}$: Item latent matrix

 $R \in \mathbb{R}^{n \times m}$: Ratings matrix

 σ_r^2 : variance of ratings r_{ij}

 $K_u \in \mathbb{R}^{n \times n}$: Covariance matrix for the rows of U

 $K_v \in \mathbb{R}^{m \times m}$: Covariance matrix for the rows of V

Generative process:

For each column k = 1, ..., K, draw $U_{:,k} \sim N(\mathbf{0}, K_u)$ For each column k = 1, ..., K, draw $V_{:,k} \sim N(\mathbf{0}, K_v)$ For each data point r_{ij} , draw $r_{ij} \sim N(U_{i,:}V_{i::}^{\top}, \sigma_r^2)$

Figure 3. PMF generates U and V row-wise; KPMF does column-wise.

Forming covariance matrices K_u, K_v a priori:

- **Kernel**: A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ that captures the similarity of $x_i, x_j \in \mathcal{X}$. We form symmetric PSD kernel matrices $\mathbf{K}_u, \mathbf{K}_v$ of pairwise similarities between users and artists respectively to incorporate in the generative model.
- Forming $\mathbf{K_u}$ via Commute Time (CT) graph kernel: Let G be the social network graph. Take K_u to be $L^{\dagger} \in \mathbb{R}^{n \times n}$, where L is the Laplacian matrix for G.
- Forming $\mathbf{K}_{\mathbf{v}}$ via Radial Basis Function (RBF) kernel: Let row i of tags matrix T, T_i^{\top} , embed artist i. Take $K_{v_{i,j}} = \exp{(\frac{||T_i^{\top} T_j^{\top}||^2}{2})}$.

Learning latent variables: We split the ratings into a 80-20 train-test split, and implement gradient-descent to minimize the negative log-posterior $L = -\log p(U, V \mid \mathbf{r})$:

$$L = -\frac{1}{2} \sum_{i,j \in \mathbf{r}} (r_{ij} - U_{i,:} V_{j,:}^{\top})^2 - \frac{1}{2} \sum_{k=1}^K U_{:,k}^{\top} K_u^{-1} U_{:,k} - \frac{1}{2} \sum_{k=1}^K V_{:,k}^{\top} K_u^{-1} V_{:,k}$$

Results (in progress)

Tuned hyperparameters K, σ_r via grid search $\to K = 20$, $\sigma_r = 1$ gives the lowest test RMSE for both standard PMF / KPMF methods.

Applying the CT graph kernels (user side information) and the RBF kernels on tag data (artist side information) individually results in a lower RMSE, but combining them is minimally helpful.

