Τεχνητή Νοημοσύνη 3¹¹ Σειρά Ασκήσεων

Άσκηση 1:

α.) Εξίσωση ενημέρωσης:
$$w(k+1) = w(k) + \beta \cdot \left(y(k) - f(x(k))\right) \cdot x(k)$$

Αρχικά, $(w_0, w_1, w_2, w_3) = (1, 1, -1, -1)$. Εφαρμόζουμε διαδοχικά τα διανύσματα εισόδου:

$$(0, -1, 4) \in B$$
 άρα $y_k = 1$

$$(1,0,-1,4)\cdot(1,1,-1,-1)=1+0+1-4=-2,$$
 $\alpha\rho\alpha f(x(k))=f(-2)=0$

Άρα
$$w(k + 1) = w(k) + 0.2 \cdot (1 - 0) \cdot x(k) = w(k) + 0.2x(k)$$

Δηλαδή το διάνυσμα ενημέρωσης είναι (0.2, 0, -0.2, 0.8), και το νέο διάνυσμα βαρών είναι (1.2, 1, -1.2, -0.2). Ακολουθώντας την διαδικασία αυτήν για όλα τα διανύσματα προκύπτει:

Г 1				C/ \	C()	,	
Epoch	Xk	Уk	$X_k \cdot W_k$	$f(x_k)$	y_k - $f(x_k)$	ενημέρωση	\mathbf{W}_{k+1}
1	(1, 0, -1, 4)	1	-2	0	1-0	(0.2, 0, -0.2, 0.8)	(1.2, 1, -1.2, -0.2)
	(1, 4, 0, -1)	0	5.4	1	0-1	(-0.2, -0.8, 0, 0.2)	(1, 0.2, -1.2, 0)
	(1, 2, 2, -1)	1	-1	0	1-0	(0.2, 0.4, 0.4, -0.2)	(1.2, 0.6, -0.8, -0.2)
	(1, 3, -1, 0)	0	3.8	1	0-1	(-0.2, -0.6, 0.2, 0)	(1, 0, -0.6, -0.2)
	(1, -2, 1, -3)	1	1	1	1-1	Δεν επιφέρεται αλλαγή	στο διάνυσμα βαρών
	(1, 0, -2, -1)	0	2.4	1	0-1	(-0.2, 0, 0.4, 0.2)	(0.8, 0, -0.2, 0)
2	(1, 0, -1, 4)	1	1	1	1-1		•••
	(1, 4, 0, -1)	0	0.8	1	0-1	(-0.2, -0.8, 0, 0.2)	(0.6, -0.8, -0.2, 0.2)
	(1, 2, 2, -1)	1	-1.6	0	1-0	(0.2, 0.4, 0.4, -0.2)	(0.8, -0.4, 0.2, 0)
	(1, 3, -1, 0)	0	-0.6	0	0-0		•••
	(1, -2, 1, -3)	1	1.8	1	1-1	•••	•••
	(1, 0, -2, -1)	0	0.4	1	0-1	(-0.2, 0, 0.4, 0.2)	(0.6, -0.4, 0.6, 0.2)
3	(1, 0, -1, 4)	1	0.8	1	1-1		•••
	(1, 4, 0, -1)	0	-1.2	0	0-0		•••
	(1, 2, 2, -1)	1	1.2	1	1-1		•••
	(1, 3, -1, 0)	0	-1.2	0	0-0		•••
	(1, -2, 1, -3)	1	1.4	1	1-1	•••	•••
	(1, 0, -2, -1)	0	-0.8	0	0-0	•••	

Και τα έξι διανύσματα έχουν ταξινομηθεί σωστά με το ίδιο διάνυσμα βαρών (0.6, -0.4, 0.6, 0.2).

$$\beta$$
.) $x \cdot w = (1, -1, 2, 2) \cdot (0.6, -0.4, 0.6, 0.2) = 0.6 + 0.4 + 1.2 + 0.4 = 2.6$

f(2.6) = 1, άρα το διάνυσμα αυτό θα ταξινομηθεί στην κλάση B.

Άσκηση 2:

Υπολογίζουμε τις ευκλείδειες αποστάσεις μεταξύ του δοθέντος y και των x₁, ..., x₆:

$$||y - x_1||_2 = \sqrt{(-1 - 0)^2 + (2 + 1)^2 + (2 - 4)^2} = \sqrt{14}$$

 $||y - x_2||_2 = \sqrt{(-1 - 4)^2 + (2 - 0)^2 + (2 + 1)^2} = \sqrt{38}$

$$\|y - x_3\|_2 = \sqrt{(-1-2)^2 + (2-2)^2 + (2+1)^2} = \sqrt{18}$$

$$||y - x_4||_2 = \sqrt{(-1-3)^2 + (2+1)^2 + (2-0)^2} = \sqrt{29}$$

$$||y - x_5||_2 = \sqrt{(-1+2)^2 + (2-1)^2 + (2+3)^2} = \sqrt{27}$$

$$||y - x_6||_2 = \sqrt{(-1 - 0)^2 + (2 + 2)^2 + (2 + 1)^2} = \sqrt{26}$$

Τα τρία πλησιέστερα διανύσματα είναι σε σειρά τα x_1 , x_3 , x_6 , με αποστάσεις $\sqrt{14}$, $\sqrt{18}$, $\sqrt{26}$, και κλάσεις B, B, και A αντιστοίχως. Συνεπώς, και οι δύο ταξινομητές kNN, με k=1 και k=3, θα αποφανθούν κλάση B.

Άσκηση 3:

α.) Θεωρούμε τα ενδεχόμενα A (άνδρας), Γ (γυναίκα), K (καπνιστής).

Εφ' όσον το άτομο επιλέγεται τυχαίως από το σύνολο του ενήλικου πληθυσμού, $\mathbb{P}(A) = \frac{51}{100}$

β.) Σύμφωνα με την εκφώνηση, $\mathbb{P}(K|A)=0.095$ και $\mathbb{P}(K|\Gamma)=0.017$.

Άρα, αφού
$$\mathbb{P}(A) + \mathbb{P}(\Gamma) = 1$$
, ισχύει $\mathbb{P}(K) = \mathbb{P}(K|\Gamma) \cdot \mathbb{P}(\Gamma) + \mathbb{P}(K|A) \cdot \mathbb{P}(A) = \frac{95 \cdot 51 + 17 \cdot 49}{10^5} = \frac{5678}{10^5}$

Χρησιμοποιώντας τον κανόνα Bayes λαμβάνουμε την ζητούμενη πιθανότητα:

$$\mathbb{P}(A|K) = \frac{\mathbb{P}(K|A)\mathbb{P}(A)}{\mathbb{P}(K)} = \frac{95 \cdot 51 \cdot 10^{-5}}{5678 \cdot 10^{-5}} \simeq 0.853$$

Άσκηση 4:

«Αν η $\mathcal X$ είναι A_1 και η $\mathcal Y$ είναι σχετικά A_2 , τότε η $\mathcal Z$ είναι B»

Ο λεκτικός τροποποιητής «σχετικά» ερμηνεύεται ως $h(\alpha) = \sqrt{\alpha}$

Άρα, χρησιμοποιώντας συνεπαγωγή Mamdani, προκύπτει:

$$R(x, y, z) = \mathcal{J}_{min}(A_1(x), \sqrt{A_2(y)}, B(z)) = 0.2/x_1, y_1, z_1 + 0.2/x_1, y_1, z_2 + 0.2/x_1, y_2, z_1 + 0.2/x_1, y_2, z_2 + 0.7/x_2, y_1, z_1 + 1/x_2, y_1, z_2 + 0.3/x_2, y_2, z_1 + 0.3/x_2, y_2, z_2 + 0.7/x_3, y_1, z_1 + 0.8/x_3, y_1, z_2 + 0.3/x_3, y_2, z_1 + 0.3/x_3, y_2, z_2$$

Οπότε αν
$$\mathcal{X}=x_2$$
 και $\mathcal{Y}=y_1$, τότε $T(p)=0.7/z_1+1/z_2$