

CSCI 4360/6360: Data Science II

Machine Learning Interpretation – Preliminaries

Ninghao Liu

Assistant Professor School of Computing University of Georgia

Features

 x_1 : the number of apples

 x_2 : the number of strawberries

Rule

 $x_1 + x_2$

Output

y: the total number of fruits

How many fruits?

5

What is the contribution of each feature?

Features

 x_1 : the number of apples

 x_2 : the number of strawberries

Rule

 $x_1 + x_2$

Output

y: the total number of fruits

How many fruits?

5

The contributions of apple and strawberry are 3 and 2 respectively

Features

 x_1 : the number of apples

 x_2 : the number of strawberries

Rule

 $x_1 + x_2$

Output

y: the total number of fruits

Features	Rule	Output
x_1 : house size	$0.6x_1 + 0.3x_2 + 0.1x_3$	y: house value
location	house size, location, and	y. House value
x_2 : location	floor type account for 60%,	
x_3 : floor type	30%, 10% respectively	

Features	Rule	Output
x_1 : house size x_2 : location x_3 : floor type	house size, location, and floor type account for 60%, 30%, 10% respectively	y: house value
$x_1 = 100,$ $x_2 = 300,$ $x_3 = 200$		<i>y</i> = 170

Features	Rule	Output	
x_1 : house size	$0.6x_1 + 0.3x_2 + 0.1x_3$	y: house valu	I A
x_2 : location x_3 : floor type	house size, location, and floor type account for 60%, 30%, 10% respectively	y. House value	
$x_1 = 100,$ $x_2 = 300,$ $x_3 = 200$		<i>y</i> = 170	Contributions: $x_1: 100 \times 0.6 = 60$ $x_2: 300 \times 0.3 = 90$ $x_3: 200 \times 0.1 = 20$

Machine learning is a set of methods that computers use to make and improve predictions or behaviors based on data

1 Collecting data $\{(x, y)\}$

- Training a machine learning model $f_{\mathbf{w}}(\cdot)$
- Testing the model

$$\mathbf{y}' = f_{\mathbf{w}}(\mathbf{x})$$

Learn a rule from past house sales

Features

Machine Learning

Output

$$\{x = (x_1, x_2, x_3)\}\$$

$$f_{\mathbf{w}}(\cdot)$$

Learn a rule from past house sales

Learn a rule from past house sales

Predict the house value via the learned machine learning model

Machine Learning model

Predict the house value via the learned machine learning model

Machine Learning model x_1 x_1 x_2 x_3 Machine Learning model Interpretable Contributions: $x_1: w_1x_1$ $x_2: w_2x_2$ $x_3: w_3x_3$

Machine Learning - Issue

In reality, features and relationships can be more complex

Machine Learning - Issue

When data and tasks are complex, machine learning models are becoming bigger and sophisticated

Machine Learning model

- What is interpretability?
- Why is interpretability important?

- What is interpretability?
- Why is interpretability important?

There is no standard or mathematical definition of interpretability

- Interpretability is the degree to which a human can understand the cause of a decision
 [Miller, 2019]
- Interpretability is the degree to which a human can consistently predict the model's result
 [Kim et al., 2016]

At this time, it is good for us to define interpretation as estimating the contribution of each feature to the final prediction.

- Trust
- Informativeness
- Causality

Trust

- What is trust?
- Is it simply confidence that a model will perform well?

Trust

- What is trust?
- Is it simply confidence that a model will perform well?
- Trust can be defined subjectively

For example:

☐ People may trust an ML model if they are comfortable with relinquishing control to it

Trust

- What is trust?
- Is it simply confidence that a model will perform well?
- Trust can be defined subjectively

For example:

- ☐ People may trust an ML model if they are comfortable with relinquishing control to it
- ☐ People may not only care about *how often* a model is right, but also *for which examples* it is right
 - If the model tends to make mistakes on only those kinds of inputs where humans also make mistakes
 - If a model tends to make mistakes for inputs that humans classify accurately

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Learning data mining involves understanding the concepts, techniques, and tools used to extract valuable insights and patterns from large datasets. Here's a step-by-step guide to help you get started:

1. Understand the Basics:

Begin by grasping the fundamental concepts of data mining, such as data preprocessing, data transformation, pattern recognition, and statistical analysis. A solid foundation will make advanced topics easier to comprehend.

2. Learn about Data and Databases:

Understand the different types of data (structured, unstructured, semi-structured) and various database systems (relational, NoSQL) where data is stored. This knowledge is crucial for data extraction and manipulation.

3. Master Programming Languages:

Learn programming languages commonly used in data mining, such as Python or R. These languages offer libraries and tools for data manipulation, analysis, and visualization.

4. Study Statistics and Probability:

Data mining heavily relies on statistical techniques to identify patterns. Familiarize yourself with concepts like probability distributions, regression, clustering, and hypothesis testing.

5. Explore Machine Learning:

Different users expect different explanation.

Informativeness

Informativeness

- A model conveys information via its outputs
- Interpretability can provide additional information to human users

For example:

■ A diagnosis model might provide intuition to a human decision maker by pointing to similar cases in support of a diagnostic decision

(skin cancer)

Causality

Causality

- Machine learning models are optimized to make associations
- They are expected to infer properties of the natural world (e.g., smoking and lung cancer)
- The associations learned by models may not reflect causal relationships
- Interpreting ML models can help provide clues about the causal relationships between associated variables

Causality

Professor Judea Pearl

UNIVERSITY OF SOUTH CAROLINA

March 15, 2012.

ACM today named Judea
Pearl the winner of the
2011 ACM A.M. Turing
Award for pioneering
developments in
probabilistic and causal
reasoning and their
application to a broad
range of problems and
challenges.

Department of Computer Science and Engineering

- What is interpretability?
- Why is interpretability important?

The more a machine's decision affects a person's life, the more important it is for the machine to explain its behavior

You have the flu because you are coughing and have some fever...

The more a machine's decision affects a person's life, the more important it is for the machine to explain its behavior

You have the flu because you are coughing and have some fever...

Interpretability reveals the knowledge captured by the model

A recommendation system trained on a large dataset

- It is impossible for human to understand the data
- It is hard to decide whether the model prediction is trustworthy

Interpretability reveals the knowledge captured by the model

You bought some paint

Recommendation: brush and ladder

Interpretation: paint, brush and ladder are frequently bought together

Interpretability for trustworthy Al

Increasing the trustworthiness of model predictions

Object recognition

Interpretation: highlighted pixels

Interpretations tell people whether the model makes correct predictions based on right reasons

[Kim et al., 2017]

Interpretability for trustworthy AI

Increasing the trustworthiness of model predictions

Diagnose pneumonia

Interpretation: highlighted pixels

Interpretability for trustworthy AI

Increasing the reliability of model predictions

Neural network models are vulnerable to adversarial attacks

Interpretability - Summary

- ➤ To solve complex problems, machine learning models are becoming bigger and sophisticated (uninterpretable)
- ➤ Model interpretability is an important criterion beyond performance
- Improving model interpretability
 - Increasing social acceptance
 - Building trustworthy AI (trustworthiness, reliability, fairness)
 - Debugging and developing