武汉大学 2015 — 2016 学年度第 _ __ 学期

《工程随机数学》试卷(A)

电子信息	111 112	_L 11	70 100	W 🖂	1.1	分数
		 \ _/	4414	学号	姓名	
	—— Dπ.	→ \ \ \ \ \ \ \ \ \ \ \ \ \	L/T		4+ 4	7T #V
	J 174	× 11.	-/-	1 1	ZL- U	/J >

1. (本题 10 分)将 a, b, c 三个字母之一输入信道,输出为原字母的概率为 p, 而输出为其他一字母的概率都是(1-p)/2, 今将字母串 aaaa,bbbb,cccc 之一输入信道,三者输入的概率分别为 p1, p2, p3 (p1+p2+p3=1),已知输出为 abcb,问输入的是 aaaa 的概率是多少?(设信道传输各个字母的工作是相互独立的。)解:以A,B,C分别表示事件"输入 aaaa","输入 bbbb","输入 cccc",以D表示事件"输出 abcb"。由全概率公式和贝叶斯公式有

$$P(A \mid D) = \frac{P(AD)}{P(D)} = \frac{P(D \mid A)p_1}{P(D \mid A)p_1 + P(D \mid B)p_2 + P(D \mid C)p_3}$$

这里 $P(D|A) = p(\frac{1-p}{2})^3$, $P(D|B) = p^2(\frac{1-p}{2})^2$, $P(D|C) = p(\frac{1-p}{2})^3$ 带入上式

$$P(A|D) = \frac{p(\frac{1-p}{2})^3 p_1}{p(\frac{1-p}{2})^3 p_1 + p^2 (\frac{1-p}{2})^2 p_2 + p(\frac{1-p}{2})^3 p_3}$$

$$= \frac{p_1}{p_1 + p_3 + p_2 \frac{2p}{1-p}} = \frac{(1-p)p_1}{1-p_2 - p + 3pp_2}$$

- 2. (本题 10 分)设随机变量 $X \sim U(0,1)$ 。
 - (1) 求 $Y = 2X^2 + 1$ 的概率密度。(2) 求 D(x), D(y)

解: (1) 由于 $Y = 2X^2 + 1 \ge 1$, 故当y < 1时, $f_y(y) = 0$. 当 $y \ge 1$ 时,

$$F_Y(y) = P(Y \le y) = P(2X^2 + 1 \le y) = P(X \le \sqrt{\frac{y-1}{2}}) = F_X(\sqrt{\frac{y-1}{2}})$$

两边关于y求导得

$$f_{Y}(y) = f_{X}(\sqrt{\frac{y-1}{2}}) \cdot \frac{1}{4} \sqrt{\frac{2}{y-1}} = \begin{cases} \frac{1}{4} \sqrt{\frac{2}{y-1}}, & y \ge 1\\ 0, & else \end{cases}$$

3. (本题 15 分) 二维随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} cx^2 y, & 0 \le x \le y \le 1 \\ 0, & else. \end{cases}$$

(1) 确定常数 c; (2) 分析并判断 X 和 Y 是否相互独立? (3) 求 Z=X +Y 的 概率密度。

解: (1) 由于区域积分=1 得c=15

$$\int_{\Omega} cx^2 y dx dy = 1, \quad \int_{0}^{1} \int_{0}^{y} cx^2 y dx dy = 1, \quad \int_{0}^{1} \frac{c}{3} y^4 dy = 1, \quad \mathcal{E} = 15$$

(2)
$$f_X(x) = \int_x^1 15x^2 y dy = \frac{15}{2}x^2(1-x^2)$$
, $f_Y(y) = \int_0^y 15x^2 y dx = 5y^4$

显然 $f(x,y) \neq f_v(x) \cdot f_v(y)$

(3)
$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f(x, z - x) dx = \int_{0}^{z} 15x^{2}(z - x) dx = \frac{5}{4}z^{4}$$

4. (本题 15 分) 某复杂系统由 100 个相互独立的部件所组成,在运行期间每个部件损坏的概率为 0.1,为了使整个系统起作用,至少必须有 85 个部件正常工作,求整个系统起作用的概率? (Φ(0.25)=0.5987, Φ(0.5)=0.6915, Φ(1.0)=0.8413
 Φ(1.5)=0.9332, Φ(1.67)=0.9525, Φ(2.0)=0.9772, Φ(2.5)=0.9938, Φ(3)=0.9987)

解: (1) 此为 100 重贝努利事件, $X \sim b(100, 0.9)$,求概率 $P(X \ge 85)$,

由定理知 $\frac{X-100\times0.9}{\sqrt{100\times0.9\times0.1}}$ 近似服从标准正态分布。

$$P(X \ge 85) = P\{\frac{X - 90}{\sqrt{9}} \ge \frac{85 - 90}{\sqrt{9}}\} = P\{\frac{X - 90}{\sqrt{9}} \ge -\frac{5}{3}\} = 1 - \Phi(-\frac{5}{3}) = \Phi(\frac{5}{3}) = 0.9525$$

5. . (本题 10 分) 设是取自正态总体的简单随机样本,且

解:由 $X_1, X_2, ..., X_9$ 是取自正态总体X的简单随机样本,即 $X \sim N(\mu, \sigma^2), X_1, X_2, ..., X_9$ 相互独立, $X_i \sim N(\mu, \sigma^2)$,即 $E(X_i) = \mu, D(X_i) = \sigma^2$

因而

$$E(Y_1) = \frac{1}{6} \sum_{i=1}^{6} E(X_i) = \mu, E(Y_2) = \frac{1}{3} \sum_{i=7}^{9} E(Y_i) = \mu$$

即

$$E(Y_1 - Y_2) = E(Y_1) - E(Y_2) = \mu - \mu = 0,$$

$$D(Y_1) = D(\frac{1}{6} \sum_{i=1}^{6} X_i) = \frac{1}{36} \sum_{i=1}^{6} D(X_i) = \frac{1}{6} \sigma^2,$$

$$D(Y_2) = D(\frac{1}{3} \sum_{i=7}^{9} X_i) = \frac{1}{9} \sum_{i=7}^{9} D(X_i) = \frac{1}{3} \sigma^2,$$

且

$$D(Y_1 - Y_2) = D(Y_1) + D(Y_2) = \frac{1}{6}\sigma^2 + \frac{1}{3}\sigma^2 = \frac{1}{2}\sigma^2,$$

因而

$$Y_1 - Y_2 \sim N(0, \frac{\sigma^2}{2})$$

即

$$\frac{Y_1 - Y_2}{\frac{\sigma}{\sqrt{2}}} \sim N(0,1)$$

$$X_1, X_2, ..., X_9$$

$$S = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})$$
 时, $\frac{(n-1) S^2}{\sigma^2} \sim \chi^2(n-1)$,可知 $S^2 = \frac{1}{2} \sum_{i=7}^{9} (X_i - Y_2)^2$ 时
$$\frac{2S^2}{\sigma^2} \sim \chi^2(2)$$

由 Y_1,Y_2 及 S^2 均是 $X_1,X_2,...,X_9$ 的函数且 $X_1,X_2,...,X_9$ 相互独立,可知 Y_1,Y_1 及 S^2 也相互独立,进而 Y_1-Y_2 与 S^2 也相互独立。又

$$\frac{Y_1 - Y_2}{\frac{\sigma}{\sqrt{2}}} \sim N(0,1), \quad \frac{2S^2}{\sigma^2} \sim \chi^2(2)$$

可知

$$\frac{\frac{Y_1 - Y_2}{\sigma}}{\frac{\sqrt{2}}{\sqrt{\frac{2S^2}{\sigma^2}}}} = \frac{\sqrt{2}(Y_1 - Y_2)}{S} \sim t(2) , \quad \mathbb{Z} \sim t(2)$$

6. (本题 10 分)设 X_1 , X_2 , ..., X_n 为总体的一个样本, X_1 , X_2 , ..., X_n 为一相 应的样本值。求下面总体函数未知参数的矩估计量和最大似然估计值。

$$f(x) = \begin{cases} \theta c^{\theta} x^{-(\theta+1)}, x > c \\ 0, 其他 \end{cases}$$

其中c>0为已知参数, $\theta>1$, θ 为未知参数。

解:

(1) 求一个未知参数的矩估计量首先求总体 X 的数学期望, 然后令总体数学期望等于样本均值, 解方程, 得未知参数的 矩估计量。

$$E(X) = \int_{c}^{+\infty} x \theta c^{\theta} x^{-(\theta+1)} dx$$

$$= \theta c^{\theta} \int_{c}^{+\infty} x^{-\theta} dx$$

$$= \theta c^{\theta} \left(\frac{1}{1 - \theta} x^{-\theta+1} \right) \Big|_{c}^{+\infty}$$

$$= \theta c^{\theta} \left(\frac{-c^{1-\theta}}{1 - \theta} \right) = \frac{\theta c}{\theta - 1}$$

对样本的一组观察值 x_1 , x_2 , ..., x_n , 得样本均值x.

令
$$\frac{\theta c}{\theta - 1} = \bar{x}$$
,解得 $\hat{\theta} = \frac{\bar{x}}{\bar{x} - c}$,即为 θ 的矩估计值

那么 $\hat{\theta} = \frac{\overline{X}}{\overline{X} - c}$ 为 θ 的矩估计量。其中 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 是随机变量,表示对样本的不同观察值,它

的取值不同,所以 $\hat{\theta} = \frac{\overline{X}}{\overline{X} - c}$ 是随机变量。

(2)对样本的一组观察值 x_1 , x_2 , ..., x_n , 似然函数为

$$L(\theta) = \prod_{i=1}^{n} \theta c^{\theta} x_i^{-(\theta+1)} = \theta^n c^{n\theta} (\prod_{i=1}^{n} x_i)^{-(\theta+1)} \qquad (x_i > c)$$

两边去对数 $\ln L(\theta) = n \ln \theta + n \theta \ln c - (\theta + 1) \sum_{i=1}^{n} \ln x_i$

对
$$\theta$$
 求 倒 数
$$\frac{\ln L(\theta)}{d\theta} = \frac{n}{\theta} + n \ln c - \sum_{i=1}^{n} \ln x_i = 0$$

得
$$\theta$$
的最大似然估计值为
$$\hat{\theta} = \frac{n}{\sum_{i=1}^{n} \ln x_i - n \ln c}$$

$$\theta$$
 的最大似然估计量为
$$\hat{\theta} = \frac{n}{\sum_{i=1}^{n} \ln X_i - n \ln c}$$

- 7. (本题 15 分) 已知总体 $X \sim N(\mu, \sigma^2)$, σ^2 未知, $(X_1, X_2, ..., X_n)$ 是总体的一个样本
 - (1) 就 μ 是否大于已知数 μ_0 ,求假设检验的拒绝域,显著性水平为 α ;

(2) 若样本容量为 20, 样本均值等于 3100, 样本标准差等于 170, α 等于 0.01, 判断 μ > μ_0 =3000 是否成立? $t_{0.005}$ (19)=2.861, $t_{0.01}$ (18)=2.552, $t_{0.005}$ (18)=2.878, $t_{0.01}$ (19)=2.54, $\chi^2_{0.025}$ (19)=32.851

解:

(1)
$$H_0: \mu \leq \mu_0(\vec{x}\mu = \mu_0); H_1: \mu > \mu_0$$

总体均值 μ 的无偏估计为样本均值 \bar{X} ,且 $\frac{\bar{X}-\mu_0}{\sigma} \sim N(0,1)$ 。由于 σ^2 未知,以其无偏估计——样本标准差 S 代替,则

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1).$$

设Ho成立,由t分布可构造小概率事件

$$P\left\{\frac{\bar{X}-\mu}{S/\sqrt{n}} > t_{\alpha}(n-1)\right\} \gg P\{T > t_{\alpha}(n-1)\} = \alpha$$

由此可得拒绝域为

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} > t_{\alpha}(n-1)$$

(2) n = 20, $\bar{X} = 3100$, S = 170, $\alpha = 0.01$, M,

$$t_{0.01}(20-1) = t_{0.01}(19) = 2.54,$$

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} = \frac{3100 - 3000}{170/\sqrt{20}} \approx 2.63$$
.

 $T > t_{0.01}(19)$, 落在拒绝域内,即拒绝 H_0 ,接受 H_1 ,即 μ 显著大于 3000

- 8. (本题 15 分)设 $X(t) = \sin(\Theta t)$, Θ 为[0,2 π]上均匀分布的随机变量。
 - (1) 证明 $X(n)(n = 0, \pm 1, \pm 2, ...)$ 为平稳随机序列;

(2) 求该平稳随机序列的功率谱密度。

解: (1)

Θ 的概率密度为

$$f(\theta) = \begin{cases} \frac{1}{2\pi} & 0 \ll \theta \ll 2\pi \\ 0 & \text{其它} \end{cases}$$

随机序列 $X(n) = \sin(n\Theta)(n = 0, \pm 1, \cdots)$ 的均值和相关函数分别为:

$$\mu_X(n) = E[X(n)] = \int_0^{2\pi} \frac{1}{2\pi} \sin(n\theta) d\theta = 0,$$

$$R_X(n.m) = E[X(n)(m)] = \int_0^{2\pi} \frac{1}{2\pi} \sin(n\theta) \sin(m\theta) d\theta$$

$$= \frac{1}{4\pi} \int_{0}^{2\pi} \left[\cos(n-m)\theta - \cos(n+m)\theta \right] d\theta = \begin{cases} 0.5 & n-m=0 \\ 0 & n-m\neq 0 \end{cases},$$

$$R_X(n.m) = R_X(n-m) = 0.5\delta_{mn}.$$

故随机序列 $X(n) = \sin(n\Theta)(n = 0, \pm 1, \cdots)$ 是平稳序列。

(2)

该平稳序列的相关函数可表示为

$$R_X(\tau) = 0.5\delta(\tau) = \begin{cases} 0.5 & \tau = 0 \\ 0 & \tau \neq 0 \end{cases},$$

则由维纳-辛钦定理, 其功率谱密度为

$$S_X(\omega) = \int_{-\infty}^{+\infty} R_X(\tau) e^{-i\omega\tau} d\tau = 0.5 \int_{-\infty}^{+\infty} \delta(\tau) e^{-i\omega\tau} d\tau = 0.5.$$

武汉大学 2014 - 2015 学年度第 _ 学期《工程随机数学》参考答案(A)

- 1. 设电源电压在低于 200V,200~240V 之间和高于 240V 的三种情况下时,某种电子元件损坏的概率分别为 0.1, 0.001 和 0.2。设电源电压服从正态分布 $N(220,25^2)$,试求:
 - (1) 该电子元件损坏的概率:
 - (2) 该电子原件损坏时, 电源电压在 200~240V 的概率。

解 设 A₁={X<200V}, A₂={200V≤X≤240V}, A₃={X>240V}, B={电子元件损坏},则

错误!未找到引用源。; $P(A_2)=P\{200\leq X\leq 240\}=P\left\{\frac{200-220}{25}\leq \frac{X-220}{25}\leq \frac{240-220}{25}\right\}=\phi(0.8)-\phi(-0.8)=2\phi(0.8)-1\approx 0.576$ 错

误! 未找到引用源。;

 $P(A_3)=P(A_1)\approx 0.212$ 错误!未找到引用源。;由题设: $A_1\cup A_2\cup A_3=S$, A_1 , A_2 , $A_3=$ 两两不相容,且错误!未找到引用源。。

(1) 由全概率公式 P(B)=P(A₁)P(B|A₁)+P(A₂)P(B|A₂)+P(A₃)P(B|A₃)

=0.212×0.1+0.576×0.001+0.212×0.2=0.0642

$$P(A_2|B) = \frac{P(A_2)P(B|A_2)}{P(B)} = \frac{0.576 \times 0.001}{0.0642} \approx 0.009$$

(2) 由贝叶斯公式

2. 设随机变量 X 在[0,1]上取值,若对[0,1]上的任意 x 和 y(y≥x), $P\{x<X≤y\}$ 仅与 y-x 的数值有关,试证 X 服从[0,1]上的均匀分布。

证明 设 $x \in [0,1]$, $x+t \in [0,1]$, $t \ge 0$, 则由题意知

错误! 未找到引用源。, 故错误! 未找到引用源。, 也即错误! 未找到引用源。。

$$f(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & x$$
取其它值。

由错误! 未找到引用源。, 可知

3. 二维随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} Ay(1-x), & 0 \ll x \ll 1, 0 \ll y \ll x, \\ 0, & \exists \dot{\Xi}. \end{cases}$$

- (1) 确定常数 A; (2) 求关于 X 和关于 Y 的边缘密度函数; (3) 求 f(x|y)和 f(y|x)。
- 解 (1) 由错误! 未找到引用源。

错误! 未找到引用源。, 故 A=24。

(2) 错误! 未找到引用源。;

错误! 未找到引用源。。

(3) 当错误! 未找到引用源。

$$f(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{24y(1-x)}{12x^2(1-x)} = \frac{2y}{x^2}, & 0 \ll y \ll x \\ 0, & \text{#$\dot{\Sigma}$} \end{cases}$$

当错误! 未找到引用源。

$$f(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{24y(1-x)}{12y(1-y)^2} = \frac{2y}{x^2}, & 0 < x < 1, y \ll x \\ 0, & \text{#}\dot{\mathbf{E}} \end{cases}$$

4. 设随机变量 X 的密度函数为

错误! 未找到引用源。。

- (1) 求 X 的数学期望和方差; (2) 求 X 与错误!未找到引用源。的协方差,二者是否相关? (3) X 与错误!未找到引用源。是否相互独立,为什么?
- 解 (1) 错误! 未找到引用源。; 错误! 未找到引用源。。

- (2) 错误!未找到引用源。, X与错误!未找到引用源。不相关。
- (3) 错误! 未找到引用源。有确定的函数关系 $|x| = \begin{cases} x, & x \gg 0, \\ -x, & x < 0. \end{cases}$ 所以 x 与错误! 未找到引用源。不相互独立。
- 或:设 x>0,则错误!未找到引用源。⊂错误!未找到引用源。,错误!未找到引用源。 故 P(错误!未找到引用源。>错误!未找到引用源。
- 5. 某保险公司的统计数据表明:在盗抢险范围内,索赔户中被盗索赔户占 20%,以 X 表示 100 个索赔户中的被盗索赔户。
 - (1) 写出 X 的概率分布; (2) 近似计算被盗索赔户在 14~30 户之间的概率。
- 解 (1) X~b(100,0.2), 错误! 未找到引用源。
 - (2) $E(X)=100\times0.2=20$, $D(X)=100\times0.2\times0.8=16$,根据棣莫佛-拉普拉斯中心极限定理,X 近似服从 N(20,16),故有

$$P\{14 \ll X \ll 30\} = P\left\{\frac{14 - 20}{4} \ll \frac{X - 20}{4} \ll \frac{30 - 20}{4}\right\} = \Phi(2.5) - \Phi(-1.5)$$

错误! 未找到引用源。1=0.994+0.933-1=0.927.

6. 简单随机样本 (X_1, X_2, \ldots, X_n) 是来自总体 X 。假设总体 X 的概率密度为:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

其中, σ^2 , μ 未知,试求二者的极大似然估计,并讨论二者估计值的无偏性。

解: 似然函数为
$$L(\mu, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{\sum (X_i - \mu)^2}{2\sigma^2}\right]$$

取自然对数后为
$$Ln[L(\mu, \sigma^2)] = -\frac{n}{2} \ln 2\pi\sigma^2 - \frac{\sum (X_i - \mu)^2}{2\sigma^2}$$

分别对 μ , σ^2 求偏导,并令其为零,得方程组

$$\begin{cases} \frac{1}{\sigma^2} \sum (X_i - \mu)^2 = 0 \\ -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum (X_i - \mu)^2 = 0 \end{cases}$$

解方程组得
$$\hat{\mu} = \overline{X},$$
 由于 $E(\hat{\mu}) = E(\overline{X}) = \mu$,是无偏估计
$$\hat{\sigma}^2 = \frac{1}{n} \sum (X_i - \overline{X})^2$$

$$E(\hat{\sigma}^2) = E(\frac{1}{n}\sum_{i}(X_i - \bar{X})^2) = \frac{n}{n-1}\sigma^2$$
, 不是无偏估计

7. 利用激光雷达对中高层大气温度进行测量(单位: K),由以往经验知道测量值服从 $\sigma=3.58$ 的正态分布。雷达每 1 秒完成一次测量,为了降低雷达测量结果的误差,需要在一段时间内对测量结果进行平均。问,至少需要多长时间的观测平均,才能以 90%的可靠性保证平均测量值的误差

在 ± 1 K之间? (假定每次测量都是相互独立的,且在观测期间,大气温度保持不变。)

解:设雷达观测值为 X_i (i=1, 2, 3,), $X_i \sim N(\mu, 3.58^2)$ 。在 n 秒内雷达观测的均值为:

$$\overline{X} = \frac{1}{n} \sum X_i \sim N(\mu, \frac{3.58^2}{n})$$

$$P\{|\overline{X} - \mu| \le 1\} \ge 0.9$$

以题意,
$$P\{\frac{\bar{X} - \mu}{3.58/\sqrt{n}} \le \sqrt[5]{3.58} \ge 0.9$$

$$\alpha = 0.1$$
, 查表得: $Z_{\frac{\alpha}{2}} = 1.65$

因此,
$$\sqrt{n}/3$$
, $58 \ge Z_{\frac{\alpha}{2}} = 1.65$,得 $n \ge 34.89$

考虑到次数 n 必须为整数, n=35.

因此,至少需要在 35 秒的时间段内进行平均,才能保证雷达测量值均值的误差小于 1K 的概率大于 90%。

8. 两部测风雷达 A、B 进行对比验证试验,在同一段时间内,分别独立地对同一区域的大气水平风 进行观测,得到如下结果 (m/s):

A 雷达: 22.5, 26.2, 21.7, 24.0, 23.0, 22.9, 23.5, 21.7

B雷达: 20.9,20.5,19.6,21.0,20.2,20.7,22.4,22.3,22.0,20.1

假设对比验证试验期间大气水平风的变化可以忽略,两部雷达测量误差服从正态分布,且方差相同, 问:根据此次对比试验结果,两部雷达的观测结果是否有显著的差异($\alpha = 0.05$)?

解: AB 两部雷达的观测值分别记为 X, Y, 均值分别为 μ_1, μ_2 。依据题意,做假设检验如下:

$$H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_1$$

选取检验统计量
$$T = \frac{\bar{X} - \bar{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

$$\pm \alpha = 0.05, t_{\frac{\alpha}{2}}(16) = 2.1$$

$$\overline{X}=23.\,2,\,{S_{1}}^{2}=2.\,1,\,n_{1}=8$$
 得拒绝域为
$$T>2.\,1或 T<-2.\,1$$

$$\overline{Y}=21.\,0,\,{S_{21}}^{2}=0.\,9,\,n_{2}=10$$

$$S_{w}=1.\,2$$

得观察值
$$T = \frac{\overline{X} - \overline{Y}}{S_{W}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} = \frac{23.2 - 21.0}{1.2\sqrt{\frac{1}{8} + \frac{1}{10}}} = 3.9 > t_{\alpha}$$
(16)

因此,观察值落入拒绝域,因而拒绝原假设 H₀,认为两部雷达观测到的结果存在显著差异。

9. 设随机过程 $x(t) = \eta c$ ot * ξ s it , 其中 η 和 ξ 是相互独立的随机变量,且 $E(\eta) = E(\xi) = 0$, $D(\eta) = d(\xi) = \sigma^2$,试讨论该随机过程的平稳性;

解:
$$E(X(t)) = \cos tE(\eta) + \sin tE(\xi) = 0$$

$$\begin{split} &E(X(t_1)X(t_2)) = E[(\eta\cos t_1 + \xi\sin t_1)E(\eta\cos t_2 + \xi\sin t_2)] \\ &= E[\eta^2\cos t_1\cos t_2 + \xi^2\sin t_1\sin t_2 + \eta\xi(\sin t_1\cos t_2 + \cos t_1\sin t_2)] \\ &= \sigma^2(\cos t_1\cos t_2 + \sin t_1\sin t_2) \\ &= \sigma^2\cos(t_2 - t_1) \end{split}$$

故,此过程为宽平稳随机过程

武汉大学 2004-2005 学年度第一学期期末考试

工程随机数学 试卷

	工作地心以	7 (2	
	电子信息学院 2003 级 学号	益名	分类
	(注意: 所有答案均注名题号、写在答卷纸上	,连同试卷一起交上!)
	一、 是非判斷題 (打√或×)		
	1. 由于统计量是不含任何未知参数的样本的函数	,因此与样本同分布。	()
	2. 总体方差的最大似然估计为 $G^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - X_i)^2$	$-\overline{X})^2$	()
	3. 统计量、估计量、检验统计量都是样本的函数,	因此都是随机变量。	()
	4. 一个估计量若是无偏估计量,则仅说明此估计是		()
	5. 在假设检验中,原假设 H_0 与备择假设 H_1 是对立	的	(\(\)
	6. 双边假设检验的的接受域就是置信水平为1-0	•	(✓)
	7. 在给定置信度情况下,未知参数的置信区间不唯		()
	8. 若 $X(t)$ 是严平稳的,则 $X(t_1)$ 与 $X(t_1+c)$ 具有机	相同的统计特性	(,)
	9. 宽平稳随机过程的自相关函数和功率谱密度均为		()
	10. 正态过程的全部统计特性完全由其一、二阶统		()
	二. 单项选择题		
	1. 设 (X ₁ , X ₂ ,X ₆) 为来自总体 X~ N (μ, σ	·- ²)的一个样本,则 D(S	²)= ()
	a. $\frac{1}{5}\sigma^2$ b. $\frac{1}{5}\sigma^4$ c. $\frac{2}{5}\sigma^4$	d. $\frac{2}{5}\sigma^2$	
,	2. 设 X ~ N (μ, σ²), μ 未知, 从 X 中抽	取容量为 10 的样本,	对于假设检验,
X= (N-1) >60'	2. 设 X ~ N (μ , σ^2), μ 未知, 从 X 中抽 $\chi_0^2(n-1)$ 以, $\chi_0^2(n-1)$ 从, χ_0	则检验的拒绝域为	(A)
	a. $450S^2 > \chi^2_{0.05}(9)$ b. $450S^2 < \chi^2_{0.05}(9)$ c. 5		
	3. 在正态总体 N (μ, 100)中取一容量为 n 的样	本,若	
	$P\left\{\mu-5 < \overline{X} < \mu+5\right\} = 0.954, \ \ M = 1$		()
	a. 20 b. 18 c. 16	d 14	

$(\Phi (2) = 0.977, \Phi (1.69) = 0.954)$		
4. 若 $E[X(t_1)Y(t_2)] = \mu_X(t_1)\mu_Y(t_2)$,则随机过程 $X(t)$ 与 $Y(t)$. (
a. 不相关 b . 正交 c . 独立 d . 独立且不相关		•
5. 一个不含任何周期分量的平稳随机过程的自相关函数	(
a . 必定随 $ \tau $ 的增大而增大 b . 必定随 $ \tau $ 的增大而下降		
c		
6. 设随机变量 X~ N (μ, 1) , Y ~ χ² (n), X, Y 相互独立 , 令		
$T = \frac{X - \mu}{\sqrt{Y}} \sqrt{n}$		
则下列结论中 <u>正确的是</u>	()
a. $T \sim t(n-1)$ b. $T \sim t(n)$ c. $T \sim N(0, 1)$ d. $T \sim F(1, n)$		
7. 平稳随机过程的功率谱密度 $S_{X}(\omega)$ 为	()
a. 非负、实的偶函数 b. 仅为负的偶函数		
c 仅为正的偶函数 d 可正负的偶函数		
8. 设总体 X~ N (μ, σ²),则下列结论中不正确的有:	(-)
a. $\sqrt{nX}/s \square t(n-1)$ b. $\sum_{i=1}^{n} (X_i - \overline{X})^2/\sigma^2 \sim \chi^2(n-1)$		
c. $\sum_{i=1}^{n} (X_i - \mu)^2 / \sigma^2 \sim \chi^2(n)$ d. $\sum_{i=1}^{n} (X_i - \mu)^2 / \sigma^2 \sim \chi^2(n-1)$	I	
9. 在假设检验中,显著性水平 $lpha$ 是	()
a. H ₀ 为假,接受 H ₀ 的概率 b. H ₀ 为假,拒绝 H ₀ 的概率		
c. Ho为真,接受 Ho的概率 d. Ho为真,拒绝 Ho的概率		
10. 随机过程的样本函数是	()

b. 随机函数

d. 分布函数

确定的时间函数

随机变量的函数

三. 填空题

- 1. 若 X, Y 均服从 N (0, 1), 且 X, Y 相互独立,则 Z=X+Y ~ ______。
- 2. 参数 θ 的置信度为 $1-\alpha$ 的置信区间(θ_1 , θ_2)的统计意义是(用数学式表达)
- 4. 设正态总体 σ^2 已知,欲使总体均值 μ 的置信度为($1-\alpha$)的置信区间的长度不大于 L,则样本容量样本应为 $n\geq$ ______。
- 5. 设(X_1 , X_2 , ... X_n)为来自总体 X 的一个样本,令 $Y_i = (X_i a)/C$, i = 1, 2, , n 则 $\overline{X} = _______$ 。(a, c 为常数)

四. 计算题

- 1. 设从总体 X~ N (μ , σ^2)中分别抽取容量为 n_1 , n_2 的两个独立样本, \overline{X}_1 和 \overline{X}_2 分别是两个样本的样本均值。另设 $Y=a\overline{X}_1+b\overline{X}_2$ 是 μ 的无偏估计,则使 D(Y) 达到最小值的 a,b 分别为多少?
- 2. 已知平稳随机过程 X(t)的自相关函数为

$$R_X(\tau) = \begin{cases} 20 + 30 \left[1 - \frac{|\tau|}{10}\right] & |\tau| \le 10 \\ 20 & |\tau| > 10 \end{cases},$$

求 X (t) 均值、方差和标准自协方差函数分别等于多少?

3. 已知白噪声遍历过程 Y(t) 是由一个相似过程 X(t) 延迟时间 T 后产生,并设 X(t) 与 Y(t) 的功率谱密度都等于 S_0 (常数),

求 $R_{XY}(\tau)$ 和 $S_{XY}(\omega)$ 。

4. 设总体 $X \sim N(\mu, \sigma^2)$, 其中 μ , σ^2 未知, $\vartheta = P\{X \ge 2\}$ 的极大似然估计。

武汉大学 2005-2006 学年度第一学期期末考试 工程随机教学 试卷

包子信息学院 2004 虹 号号	分臺
一次等 医有效免疫外及原虫 尼克索米斯卡 法国达米 共殖的	+7 1 1
(注意: 所有答案均注名题号、写在答卷纸上, 连同试卷、草稿纸一	起交上!)
三 是非判断题 (打√或×)	20分
1. 设 (X ₁ , X ₂ ,X _n) 为来自总体 X~ N (μ, σ²)的样本,则	
$(\overline{X} - \mu)/\sigma - N(0,1)$. $\overline{X} - M(0,1)$. (<u>.</u> x)
2. 统计量、估计量、检验统计量都是样本的函数,因此都是随机变量	É,且与赟
本同分布。	(X)
3. 一个估计量若是无偏估计量,则仅说明此估计是无能知误差。	(X)
4. 设 $X \sim N$ (μ , σ^2), 其中 σ^2 已知,则总体均值 μ 的置信区间长/	度/与置信
度1-α的关系是当1-α缩小时,1缩短。	(· 🗸 >
5. 在假设检验中, 原假设H, 与各择假设H, 是对立的。	· · · · · · · · · · · · · · · · · · ·
6. 双边假设检验的的接受域就是置信水平为 1- α的置信区间。	(\(\)
7. 单个正态总体均值 μ 的检验和两个正态总体均值差的检验都可以用	t 检验法。
	(√ <u>·</u> ·)
3. 由于平稳随机过程 $X(t)$ 的统计特性不随时间的推移而变化,因此在	满足一定
条件下可以用一个样本函数在整个时间轴上的平均来代替。	(-/)
9. 宽平稳随机过程的自相关函数和功率谱密度量为实的、非负偶函数。	(X)
0. 正态过程的全部统计特性完全由其一、二阶矩函数所确定。	()
	•

1. 设总体 X~ N (μ , σ^2), σ^3 已知,若样本容量 n 和置信度 $1-\alpha$ 均保持不变,则对于不同的样本观察值,总体均值 μ 的量信区间的长度 2 Λ Z_2 (c.)
元以 b 变铜 c. 保持不变/ d. 不能确定 ·
2. 设总体 X ~ N(μ, σ²), σ² 已知, 在显著性水平 α = 0.1下检验假设 H ₀ :/μ - 5, 则使受用。等价于:
a. $\overline{X} = 5$ b. $ u-5 < 0.1$ c. $\overline{X} - U_{0.05} \frac{\sigma}{\sqrt{n}} < 5 < \overline{X} + U_{0.05} \frac{\sigma}{\sqrt{n}}$ d. $\overline{X} = 5$
3. 若 $T - t(n)$,且 α 的分位点 $t_a(n)$ 满足关系。 $P\{T > t_a(n)\} - \alpha$,则下列结果中(d)
不正确的有 $a. t_{i-a}(n) = -t_a(n) , \qquad b. P[T] > t_a(n) = \alpha ,$
c. $P\{ T < t_{\frac{\alpha}{2}}(n)\} = 1 - \alpha$, d. $P\{ T > t_{\frac{\alpha}{2}}(n)\} = \frac{\alpha}{2}$
 4. 若E[X(t₁)Y(t₂)] - μ_x(t₁)μ_y(t₂),则随机过程X(t)与Y(t) α. 不相关 b. 正交 c. 独立 d. 独立且不相关
5. 一个不合任何周期分量的平稳随机过程的自相关函数 (c), (c), (c), (c), (c), (c), (c), (c),
c. 口增加时必定趋于常数 d. 必须总是非负的
6. 在区间估计中, $P(\overline{\theta}, < \theta < \overline{\theta}_2) = 1-\alpha$ 的正确含义是 (d)) a. θ 以 $1-\alpha$ 的概率落在区间 $(\overline{\theta}_1, \overline{\theta}_2)$ 内
δ . θ 落在区间 $(\overline{\theta}_1$, $\overline{\theta}_2$) 以外的概率为 α
α 不落在区间 $(\overline{\theta}_1, \overline{\theta}_2)$ 以外的概率为 α
d . 随机区间($\overline{\theta}_1$, $\overline{\theta}_1$)包含 的概率为 $1-\alpha$
b. Q为负的問題数 。

[8] 设总体 X~ N(µ, σ²), 样本容量为 n, 记:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \frac{X_{i}}{X})^{2},$$

$$S_3^2 = \frac{1}{(n-1)} \sum_{i=1}^{n} (X_i, \overline{\mu})^2$$

 $S_{2}^{2} = \frac{1}{\sqrt{n}} (X_{1} - \overline{X})$

$$c_{s} t = \frac{\overline{X} - \mu}{S_{1}/\sqrt{n-1}}, \quad b. \ t = \frac{\overline{X} - \mu}{S_{2}/\sqrt{n}}, \quad b. \ t = \frac{\overline{X} - \mu}{S_{3}/\sqrt{n}}, \quad b. \ t = \frac{\overline{X} - \mu}{S_{4}/\sqrt{n}}.$$

- 9. 在假设检验中,显著性水平α是
 - Ho为假,接受Ho的概率
 - c. Ho为真, 接受 Ho的概率
- 10. 随机过程的样本函数是
- b. 确定的时间函数
- 随机变量的函数

- b. H₀为假, 拒绝 H₀的概率
 - d. H₀为真, 拒绝 H₀的概率

三: 填空題

- 11. 设 (X_1, X_2, X_{16}) 为来自总体 $X \sim N(\mu, \sigma^2)$ 的一个样本, \overline{X}, S^2 分别为样本均值与方差,若 $P(X>\mu+aS)=0.05$,则 $a=_0.4375_$ 。 (注: 要求计算到小数点后面 4 位, 且 $t_{0.05}(15) = 1.75 / 0.05$ (10) = 1.74)
- 12. 设 $X \sim N(\mu, \sigma^2)$,样本容量为 n,则 $\sum_{i=1}^{n} (X_i \mu)^2 / \sigma^2 \sum_{i=1}^{n} \chi^2(\pi)$ _ . 分布。
- 设 (X_1, X_2,X_n) 为来自总体 $X \sim N(\mu, \sigma^2)$ 的样本, S^2 为样本 方差:

 $\mathbb{P}[E(S^2) = \sigma^2, D(S^2) = 2\sigma^2/(n-1)]$

已知了服从自由度位 n 的 l 分布,则 T² 服从自由度为__F(1, n) _ で (大西)

5. 设平稳随机过程 $\chi(1)$ 的包担关函数为 $R_{\chi}(\tau)$ 。 $\frac{a^{+}}{2}\cos\omega_{0}\tau$,其中, a,ω_{0} 均为常

数,则该过程的协率谱密度为
$$S_x(\omega) = \frac{m^2}{2} [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]$$
 四.计算是(任选其中三量)

1. 设从总体 X~ N(μ, σ²)中分别抽取容量为人, ng的两个独立样本, 对, 和 X1分 别是两个样本的样本均值。另设 $Y = aX_1 + bX_2$ 是 μ 的无偏估计,则使D(Y)达 到最小值的a,b分别为多少?

答:
$$(a - \frac{n_1}{n_1 + n_2}, b - \frac{n_2}{n_1 + n_2})$$

2. 已知平稳随机过程文(1)的自相关函数为

$$R_{X}(\tau) = \begin{cases} 20 + 30 \left[1 - \frac{|\tau|}{10}\right] & |\tau| \le 10 \\ 20 & |\tau| > 10 \end{cases}$$

求义(1)均值、方差和标准自协方差函数分别等于多

答 (
$$\mu_x^2 = 20, R_x(0) = 50, \sigma_x^2 = C_x(0) = 30, r_x(\tau) = \frac{C_x(\tau)}{C_x(0)} = 1 - \frac{|\tau|}{10}, |\tau| \le 10$$
)

3. 已知白噪声遍历过程 Y(1) 是由一个相似过程 X(1) 延迟时间 T后产生,并 设义(t)与Y(t)的功率谱密度都等于So(常数),

求 $R_{rr}(\tau)$ 和 $S_{xr}(\omega)$.

答:
$$R_{xx'}(\tau) = S_0 \delta(\tau + T)$$
 $S_{xx}(\omega) = S_0 e^{\int \omega \tau}$

4. 设 (X_1, X_2,X_5) 为来自总体 $X \sim N(0, 1)$ 的一个样本,求常数 C,使统计量 (X_1, X_2,X_5) 为来自总体 (X_1, X_2,X_5) 为来自总体 (X_1, X_2,X_5) 次 (X_1, X_2,X_5) 次

$$T = \frac{C(X_1 + X_2)}{\sqrt{X_3^2 + X_4^2 + X_5^2}}$$

邮务3

武汉大学 2006-2007 学年度第一学期期末考试

工程随机数学 试卷(A)

包子信息学院 2005 级 学号

(注意: 所有答案均注名题号、写在答卷纸上,连同试卷一起交上!)

- 一. 单向选择题(每题2分,共10题)
- 1. 设 A、B是任意二事件,且 $B \subset A$ 则
 - a. $P(\overline{A}B)=I-P(A)$ b. $P(\overline{B}-\overline{A})=P(\overline{B})-P(\overline{A})$ c. P(B)=P(B|A) d. $P(A|\overline{B})=P(A)$
- 2. 设随机变量 X 的概率密度为 $f(x) = Ce^{-x^2}$, $-\infty < x < +\infty$,则常数 C =
 - a. $\frac{1}{\sqrt{2\pi}}$; b. $\frac{1}{\sqrt{\pi}}$; c. $\frac{1}{\pi}$; d. $\frac{1}{\pi^2}$
- 3. 设二维随机变量 X,Y 的联合分布函数为 F(x,y) ,则 X,Y 关于 Y 的边缘分布函数 $F_{Y}(y)$ =
 - a. $F(x,+\infty)$; b. $F(-\infty,y)$; c. $F(+\infty,y)$; d. $F(x,-\infty)$
- 4. 设随机变量 $X \sim N(2,9)$, 且Y = -4X + 3, 则 $Y \sim$
 - a. N(-5,144); b. N(-5,-10); c. N(-4,-10); d. N(-4,-144).
- 5. 设随机变量 $X \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$ X,Y 相互独立, 则下列结果中,成立的有
 - a. $X^2 + Y^2 \sim \chi^2(n_1 + n_2)$ b. $X^2 + Y^2 \sim \chi^2(n_1 \cdot n_2)$
 - c. $X + Y \sim \chi^2(n_1 + n_2)$ d. $X + Y \sim \chi^2(n_1 \circ n_2)$
 - 6. 设 X_1, X_2, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$,则 \bar{x} 服从_____分布。

 - a. $N(\mu, \sigma^2)$; b. $N(\mu/n, \sigma^2)$; c. $N(\mu, \sigma^2/n)$;
- d. $N(\mu/n, \sigma^2/n)$.
- 7. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,则 $\frac{x-\mu}{\sqrt{\sigma^2/2n}}$ 服从_____分布。
 - a. N(0,1)
- b. $N(u, \frac{\sigma^2}{r})$ c. t(n) d. t(n-1)
- 18. 某类钢板的制造规格规定,钢板的重量的方差不得超过 0.016kg2, 由 25 块钢板组成的样 本给出的样本方差为 0.025kg2,则在显著性水平 a 下,为检验钢板是否合格,用 χ2 检验 法,则拒绝域为

$= \sum_{i=1}^n \frac{\chi^2 > \chi_a^2(24)}{2} \text{ b. } \chi^2 < \chi_a^2(24) \text{ c. } \chi^2 > \chi_a^2(25) \text{ f. } \chi^2 < \chi_a^2(25)$
9. 设正态总体 $X\sim N(u,\sigma^2)$, σ^2 未知, $X_1X_2\cdots_sX_s$ 是来自正态总体 $N(\mu,\sigma^2)$ 的样本, $^{f X}$ 为样本
均值, $_{ m S}$ 为样本标准差。假设检验问题为 $_{ m H_{ m o}}$: $_{ m \mu}$ = $_{ m \mu_{ m o}}$,那么统计量为
a. $\frac{\overline{x} - \mu_0}{\sigma} \sqrt{n} \sim N(0,1)$; b. $\frac{\overline{x} - \mu_0}{\sigma} \sqrt{n} \sim t(n-1)$ c. $\frac{\overline{x} - \mu_0}{s} \sqrt{n} \sim t(n-1)$; d. $\frac{\overline{x} - \mu_0}{s} \sqrt{n} \sim t(n)$.
10. 随机过程的样本函数是 a.确定的时间函数 b. 随机函数 c.随机变量的函数 d. 统计量 二. 填空题 (每题 2 分, 共 10 题)
1. 已知 $p(A) = 0.4$, $p(B) = 0.3$
(1)当 A 、 B 相互独立时, $p(A \cup B) =$
(2) 当 $B \subset A$ 时, $p(A \cup B) =$: $p(AB) =$
2. 设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} Ax^2, 0 < x < 2 \\ 0, 其他 \end{cases}$
则 A=。 P(1 <x<2)=。< td=""></x<2)=。<>
则 A=。 $ P(1\langle x \langle 2) =。 $ 3. 设随机变量 X 与 Y 为两个随机变量,且 $P\{X \geq 0, Y \geq 0\} = \frac{3}{7}$, $P\{X \geq 0\} = P\{Y \geq 0\} = \frac{4}{7}$
$\mathbb{P}\left\{\max(X,Y)\geq 0\right\} = \underline{\hspace{1cm}} \circ$
4. 设随机变量 $X \sim N\left(2,\sigma^2\right)$,且 $P\left\{0 < X < 4\right\} = 0.3 则 P\left\{X < 0\right\} =。$
5. 若 Θ 服从[-π, π]上的均匀分布,而 X=sin Θ, Y=cos Θ, 则 P x=。
6. 设总体 X 在 (a, b)内均匀分布,则 a, b 的矩估计量为 a= b=。
7. 设正态总体 $X\sim N(u,\sigma^2),\sigma^2$ 未知,关于正态总体均值的假设检验问题为 $H_0:u\geq u_0$ 在显著
水平 $lpha$ 下, $H_{ t o}$ 的拒绝域为。
8. 设正态总体 $X \sim N\left(0,1\right)$, 从该总体中取一样本容量为 6 的样本 X_1, X_2, \cdots, X_6 , 则常数 $C =$
时, $Y = C(X_1 + X_2 + X_3)^2 + C(X_4 + X_5 + X_6)^2$ 服从 χ^2 分布。
9. 若均值为零的平稳过程 $\{X(t), t \in R\}$ 具有各态历经性,则 $E[\langle X(t) \rangle] =,$
10. 设正态总体 $X \sim N(\mu, \sigma^2)$ 分布, μ , σ^2 未知, X_1X_2,X_n 为来自总体的样本则 μ 的
矩估计量为,极大似然估计量为,σ²的矩估计量为,极
大似然估计量为。

三. 是非判断题(每题 2 分, 共 10 分)
1. 一个估计量若是无偏估计量,则仅说明此估计是无随机误差。 ()
2. 设 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知,则总体均值 μ 的置信区间长度 I 与置信度 $I-\alpha$ 的关系
是当 $1-\alpha$ 缩小时, 1 缩短。 ()
3. 由于平稳随机过程 $X(t)$ 的统计特性不随时间的推移而变化,因此在满足一定条件下可以
用一个样本函数在整个时间轴上的平均来代替。 ()
4. 宽平稳随机过程的自相关函数和功率谱密度均为实的、非负偶函数。 () 5. 正态过程的全部统计特性完全由其一、二阶矩函数所确定。 () 四. 计算题(每题 10 分, 共 50 分)
1、 设瞄准射击某目标的纵向偏差 $X \sim N(0, 20^2)$ (米), $\phi(1) = 0.8413$ $\phi(0.5) = 0.6915$ 试
求(1)射击一弹的纵向偏差绝对值超过 20 米的概率; (2)射击 3 弹至少有 1 弹的 纵向偏差绝对值不超过 10 米的概率
2、 设随机变量 X 和 Y 相互独立且都服从正态分布 $N(0,3^2)$ 。 X_1,X_2,\cdots,X_9 和 Y_1,Y_2,\cdots,Y_9 分
别是来自总体 X 和 Y 的随机样本,求统计量 $U = \frac{X_1 + X_2 + \dots + X_9}{\sqrt{Y_1^2 + Y_2^2 + \dots + Y_g^2}}$ 的分布。
3、 设随机过程 $x(t) = \eta \cos t + \xi \sin t$, 其中 η 和 ξ 是相互独立的随机变量, η 、 ξ 均可取
-1 和 $+2$ 两个值,取 -1 的概率为 $\frac{2}{3}$,取 $+2$ 的概率为 $\frac{1}{3}$,
(1) 试计算 $E(x(t))$, $R_x(t_1,t_2)$, (2) 求 $S_X(\omega)$
4、 设 (X,Y) 的概率密度函数为 $f(x,y) = \begin{cases} 12y^2, & 0 \le y \le x \le 1, \\ 0, & x \le 1. \end{cases}$
求: (1) 边缘密度 $f_X(x)$, $f_Y(y)$; (2) $E(x)$, $E(y)$; (3) $E(xy)$; (4) $E(x^2 + y^2)$
 对两批同类电子元件进行阻抗值测量,分别从中抽取 6 个样品。测得值为: A 组(单位 欧姆): 0.14,0.138,0.143,0.141,0.144,0.137 B 组(单位 欧姆): 0.135,0.14,0.142,0.136,0.138,0.141 已知其服从正态分布,试问在α=0.05下, (1) 两批元件的平均阻抗是否有显著差异;(2)两批元件的阻抗方差是否有相等;
已知: $t_{0.05}(12) = 1.7823$ $t_{0.05}(10) = 1.8125$ $t_{0.025}(10) = 2.2281$ $t_{0.025}(12) = 2.1788$
$F_{0.025}(5,5) = 7.15$ $F_{0.05}(5,5) = 5.05$ $F_{0.05}(6,6) = 4.28$ $F_{0.025}(6,6) = 5.82$
$\chi^{2}_{0.05}(12) = 21.026 - \chi^{2}_{0.025}(12) = 23.337 - \chi^{2}_{0.025}(10) = 20.483 - \chi^{2}_{0.05}(10) = 18.307 $

武汉大学 2009—2010 学年度第 ___ 学期 《工程随机数学》 试卷(A)

学院专业_班 学号姓名	分数	
一、是非判断题(共 10 题,每题 1 分,共 10 分) 1. 在其他条件不变的情况下,未知参数 $1-\alpha$ 置信区间,一般随 α 增加而长度	越大。 ()	
3 若 X 服从指数分布,则对于任意的 s,t ,有 $P(X>t)=P(X>s+t)$ A $P(X>t)$. ()
4. 由概率分布函数的定义和非负性有,对于任意的 $(x_1,y_1),(x_2,y_2),x_1 < x_2,y_1$ $F(x_2,y_2)-F(x_2,y_1)+F(x_1,y_2)-F(x_1,y_1) \geq 0$	()	
5. 有限个正态随机变量的线性组合仍然服从正态分布 6. 若两个随机变量 A 和 B 不相关,则 A , B 相互独立	(() 则样本标) .
 7. 设σ是总体 X 的标准差, X₁, X₂,, X_n是来自总体 X 的简单随机样本, 差 S 是总体标准差 σ 的相合估计 8. 样本平均值和样本 1 阶原点矩相等, 样本方差和样本 2 阶中心矩相等 	()
9. 设 $X_1,X_2,,X_n$ 是来自总体 $N(\mu,\sigma^2)$ 的样本, \overline{X},S^2 分别是样本均值和特色的相互独立	f本方差, ((则)))
10. 一个宽平稳的正态过程一定也是严平稳的。		

1. 电炉有 4 个温控器, 其显示温度的误差是随机的, 使用时, 只要有两个温控器显示的

二、单项选择题(共10题,每题2分,共20分)

	温度不低于临界温度 t_0 ,电炉就断电。而 $T_1 \geq T_2 \geq T_3 \geq T_4$ 为 4 个温控器显示的按递减
	顺序排列的温度值,则事件"电炉断电"等于 ()
	(A) $T_1 \ge t_0$ (B) $T_2 \ge t_0$ (C) $T_3 \ge t_0$ (D) $T_4 \ge t_0$
2.	. 以 A 表示事件"产品甲畅销,产品乙滞销",则其对立事件 A为 ()
	(A) "产品甲滞销,或产品乙畅销" (B) "产品甲滞销,且产品乙畅销"
	(C) "产品甲、产品乙均畅销" (D) "产品甲滞销"
3.	已知 A, B 为两事件,且 $B \supset A, P(A) = 0.3, P(\overline{B}) = 0.4, \text{则 } P(\overline{B-A})$ 为 ()
	(A) 0.45 (B) 0.5 (C) 0.6 (D) 0.7
4.	设 X 为一随机变量, $E(X)=\mu$, $D(X)=\sigma^2(\mu,\sigma>0)$,则对任意常数 C, 必有 ()
	(A) $E[(X-C)^2] = E(X^2) - C^2$ (B) $E[(X-C)^2] = E[(X-\mu)^2]$
	(C) $E[(X-C)^2] < E[(X-\mu)^2]$ (D) $E[(X-C)^2] \ge E[(X-\mu)^2]$
5.	设 F(x),G(x)分别是随机变量 X 与 Y 的分布函数,为使 H(x)=aF(x)-bG(x)是某一随机
	变量的分布函数,那么 a,b 取值可为 ()
	(A) $a = \frac{3}{5}, b = -\frac{2}{5}$ (B) $a = \frac{2}{3}, b = \frac{2}{3}$
	(C) $a = -\frac{1}{2}, b = \frac{3}{2}$ (D) $a = \frac{1}{2}, b = -\frac{3}{2}$
6.	设随机变量 (X,Y) 服从二维正态分布,且 X 与 Y 不相关, $f_X(x)$, $f_Y(y)$ 分别表示 X,Y 的
	概率密度,则在 $Y=y$ 的条件下的 X 条件密度 $f_{x y}(x y)$ 为 ()
	(A) $f_X(x)f_Y(y)$ (B) $f_X(x)/f_Y(y)$ (C) $f_X(x)$ (D) $f_Y(y)$
7.	已知随机变量 X 的分布函数 $F(x)$ 在 $x=1$ 处连续,且 $F(1)=1$,记
	$\left\{a, X > 1,\right.$
	$Y = \begin{cases} a, & X > 1, \\ b, & X = 1, $
	(A) $a+b+c$ (B) a (C) b
8.	设随机变量 X,Y 独立同分布,记 $U=X-Y,V=X+Y$ 则随机变量 U 和 Y 必然()
	(A) 不独立 (B) 独立
	(C)相关系数为 0 (D)相关系数不为 0

第2页(共4页)

	·
], 点服从参数为 n 的指数分布 (n = 1,2,)下 ()
9. 设 (ξ,)(n≥1) 是相互独立的随机变量厅外	() 结的是
列随机变量序列不满足切比雪夫大数定?	B) $\xi_1, 2^2 \xi_2,, n^2 \xi_n,$
() E E E	(D) $\xi_1, 2\xi_2,, n\xi_n,$
(C) $\xi_1, \xi_2/2,, \xi_n/n,$	()
10. 设随机变量 X 和 Y 都服从标准正态分	布,则 _(B) X ² + Y ² 服从 χ ² 分布
(A) X+Y 服从正态分布	(B)
(C) X ² 和Y ² 都服从χ ² 分布	(D) X ² /Y ² 服从F 分布
(C) A 1H2 B12	
三、填空题 (共 10 个空, 每空 2 分, 共 1. 设 $P(A) = P(B) = P(C) = 1/4$, $P(AB)$	=1(DO)
至少出现一个的概率为	p,为了使事件_A 在独立试验序列中至少发生一次
2. 设每次试验中事件 A 发生的概率为	P. 入 1 (文字)
2. 设母仪成型 7 · · · · · · · · · · · · · · · · · ·	——· 最从区间[0,3]上的均匀分布,则 P(max(X,Y)≤1) =
	X在 $[0,6]$ 上服从均匀分布, Y 服从正态分布 $N(0,4)$,
	and $D(V-2Y+34)^{-1}$
2. 反配机文章 1,50 Z服从参数为 2 = 3 的泊松分布,	$_{0}$ $_{0}$
5. 设一次试验成功的概率为 p, 进行	行 100 久在立三人。
数标准差的值最大,其最大值为]] 则为-2,2,方差分别为 1,4,而相关系数为-0.5,则根据切
t. 🔨	<i>,</i>
比雪夫不等式, $P(X+Y \ge 6)$:	s。 s 数, $X_1, X_2,, X_n$ 为来自总体 X 的一个样本,则参数
7. 设总体 $X \sim B(n,p)$, p 为未知参	>数, X ₁ , A ₂ ,, A _n /*/
7. 设总体 <i>X</i> ~ <i>B</i> (<i>R</i> , <i>p</i>), <i>p</i> > 7. 设总体 <i>X</i> ~ <i>B</i> (<i>R</i> , <i>p</i>), <i>p</i> > 7. 设总体 <i>X</i> ~ <i>B</i> (<i>R</i> , <i>p</i>), <i>p</i> > 7. 设总体 <i>X</i> ~ <i>B</i> (<i>R</i> , <i>p</i>), <i>p</i> > 7.	大似然估计享定————— m 的二阶钜 $E[X^2(t)]$ 都存在,则称它为
8. 如果对于每一个1∈T, 随机	大似然伯可量是 过程 $\{X(t), t \in T\}$ 的二阶矩 $E[X^2(t)]$ 都存在,则称它为
过程。	•

四、计算题(共5题,每题10分,共50分)

- 1. 设随机变量 X,Y,Z相互独立,且服从区间[0,2]上的均匀分布,计算
- (1) 这三个随机变量的值都在区间[0,1/2]上的概率;
- (2) 这三个随机变量中至少有一个值在区间[1/2,3/4]上的概率。
- 2. 设随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1 \\ 0, & 其他 \end{cases}$,试求
- (1) 条件概率密度f_{nx}(y|x);
- (2) 概率 P(Y>1/2|X>1/2).
- 3. 已知平稳过程 $\{X(t), -\infty < t < +\infty\}$ 的自相关函数为 $R_X(\tau) = \frac{3}{16}e^{-|t|} + \frac{5}{48}e^{-3|t|}$,求 (1) X(t) 的均方值;
- (2) X(t)的谱密度。
- 4. 设随机变量 X 的分布函数为 $F(x;\alpha) = \begin{cases} 1-x^{-\alpha}, x > 1 \\ 0, x \leq 1 \end{cases}$,其中参数 $\alpha > 1$,设 $X_1, X_2, ..., X_n$ 为来自总体的简单随机样本。
- (1)求未知参数 α 的矩估计量;
- (2)求未知参数 α 的极大似然矩估计量。
- 5. 测定某种液体中的成分,它的10个测定值给出 s=0.037%,设测定值总体为正态分布, 总体方差 σ^2 未知,试在显著性水平 $\alpha = 0.05$ 下检验假设

$$H_0: \sigma \ge 0.04\%, \quad H_1: \sigma < 0.04\%.$$

$$(\chi_{0.05}^{2}(10) = 18.307, \chi_{0.05}^{2}(9) = 16.919, \chi_{0.05}^{2}(8) = 15.507, \chi_{0.95}^{2}(10) = 3.940, \chi_{0.95}^{2}(9) = 3.325, \chi_{0.95}^{2}(8) = 2.733)$$

武汉大学 <u>2002—2012</u> 学年度第<u></u>—学期 <u>《工程随机数学》</u>试卷(A)答案

· · · · · · · · · · · · · · · · · · ·	_专业_班 学	:号	姓名	分数
	_			
一、是非判断题(共10 题	页, 每题1分, 共	10分)		
1 (F) 2. (T)	3. (T)	4. (F)	5. (F)	
6. (F) 7. (T)	8. (F)	9. (T)	10. (T)	
二、单项选择题(共10 是	题,每题2分,共	20分)		
1. (B) 2. (A)	3. (D)			
4. (D) 理由 E[(X-C	$C)^2] - E[(X - \mu)^2]$	$=C^2-2C\mu+\mu^2$	≥0 .	
5. (A) 利用 F(∞)=1	1排除 6. (C)		· · · · · · · · · · · · · · · · · · ·
7. (D) P(X=1)=0,P(X>	>1)=0=>P(X<1)=1	, $E(Y)=aP(X>1)+$	-bP(X=1)+cP(.	X<1)=cP(X<1)=c
8 (C) 理由 cov(U,\	√)=cov(X-Y,X+Y)=	D(X)-D(Y)=0	>	•
9. (B) 理由 E(ξ _n) =	$= 1/n, D(\xi_n) = 1/n^2$	$\Longrightarrow \dots D(n^2 \xi_n)$	= n ² 不能小于	常数
10. (C) 理由 X, Y				
三、填空题(共10个名	空,每空2分,共	20分)		
$1. \frac{5/8}{1}$ 2. $n \ge \frac{\ln n}{\ln n}$	$\frac{\ln(1-a)}{\ln(1-p)}$ 3. $\frac{1/9}{\ln(1-p)}$	4. <u>46</u>		
5.1/2. 5 6.1/12	$7.\overline{X}/n$,		<u> </u>	

四、计算题(共5题,每题10分,共50分)

- 1. 设随机变量 X,Y,Z 相互独立,且服从区间[0,2]上的均匀分布,计算
 - (1) 这三个随机变量的值都在区间[0,1/2]上的概率;
 - (2) 这三个随机变量中至少有一个值在区间[1/2,3/4]上的概率。

解: (1)
$$P(A_i) = P(0 \le X_i \le 1/2) = 1/4$$
, $P(A_1 A_2 A_3) = 1/64$

(2)
$$B_i = \{1/2 \le X_i \le 3/4\}, P(B_i) = P(1/2 \le X_i \le 3/4) = 1/8$$

$$P(B_1 + B_2 + B_3) = 1 - P(\overline{B_1 + B_2 + B_3}) = 1 - P(\overline{B_1})P(\overline{B_2})P(\overline{B_3}) = 169/512$$

2. 设随机变量(X, Y)的概率密度为
$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1 \\ 0, & 其他 \end{cases}$$
, 试求

- (1) 条件概率密度 $f_{r|x}(y|x)$;
- (2) 概率 P(Y>1/2|X>1/2).

解: (1)
$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy = \begin{cases} \int_{-x}^{x} dy, 0 < x < 1 \\ 0, &$$
其他 $\end{cases} = \begin{cases} 2x, & 0 < x < 1, \\ 0, &$ 其他 \end{cases} 当 $0 < x < 1$ 时, 有 $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{2x}, & |y| < x, \\ 0, &$ 其他

(2)
$$P(Y > 1/2 \mid X > 1/2) = \frac{P(Y > \frac{1}{2}, X > \frac{1}{2})}{P(X > \frac{1}{2})} = \frac{1/8}{3/8} = \frac{1}{3}$$

- 3. 已知平稳过程 $\{X(t), -\infty < t < +\infty\}$ 的自相关函数为 τ $R_X(\tau) = \frac{3}{16}e^{-|\tau|} + \frac{5}{48}e^{-3|\tau|}$,求
 - (1) X(t) 的均方值; (2) X(t) 的功率谱密度。

解:
$$\psi_X^2 = R_X(0) = \frac{3}{16} + \frac{5}{48} = \frac{7}{24}$$

由于 X(t)是平稳过程,由维纳-辛钦公式,功率谱密度是自相关函数的 Fourier 变换

$$S_X(w) = \int_{-\infty}^{\infty} R_X(\tau) e^{-iw\tau} d\tau = > S_X(w) = \int_{-\infty}^{\infty} \left[\frac{3}{16} e^{-|\tau|} + \frac{5}{48} e^{-3|\tau|} \right] d\tau$$

$$\pm \left[\frac{2\alpha}{\alpha^2 + \omega^2} \Leftrightarrow e^{-\alpha|\tau|} \right] \notin S_X(w) = \frac{3 \times 2}{16(w^2 + 1)} + \frac{5 \times 6}{48(w^2 + 9)} = \frac{w^2 + 4}{w^4 + 10w^2 + 9} \right]$$

4. 设随机变量 X 的分布函数为 $F(x;\alpha) = \begin{cases} 1-x^{-\alpha}, x > 1 \\ 0, x \le 1 \end{cases}$, 其中参数 $\alpha > 1$, 设 $X_1, X_2, ..., X_n$

为来自总体的简单随机样本。___

(1) 求未知参数 α 的矩估计量; (2) 求未知参数 α 的极大似然矩估计量。

解: (1) X 的概率密度
$$f(x,\alpha) = F'(x,\alpha) = \begin{cases} \alpha x^{-\alpha-1}, & x > 1, \\ 0, & x \le 1. \end{cases}$$

$$E(X) = \int_{-\infty}^{\infty} x f(x; \alpha) dx = \int_{-\infty}^{\infty} \alpha x^{-\alpha} dx = \frac{\alpha}{\alpha - 1} = 0 \Rightarrow \alpha = \frac{\overline{X}}{\overline{X} - 1}$$

(2)对于总体 X 的样本值 $x_1,x_2,...,x_n$,似然函数为

$$L(\alpha) = \prod_{i=1}^{n} f(x_i; \alpha) = \alpha^{n} (x_1 x_2 ... x_n)^{-\alpha-1}, x_i > 1 (i = 1, 2, ..., n)$$

取对数得 $\ln L(\alpha) = n \ln \alpha - (\alpha + 1) \sum_{i=1}^{n} \ln x_i$

求导数得
$$\frac{d \ln L(\alpha)}{d \alpha} = \frac{n}{\alpha} - \sum_{i=1}^{n} \ln x_i == 0$$
 得 $\alpha = \frac{n}{\sum_{i=1}^{n} \ln x_i}$

5. 测定某种液体中的成分,它的 10 个测定值给出 s=0.037%,设测定值总体为正态分布,总体方差 σ^2 未知,试在显著性水平 $\alpha=0.05$ 下检验假设

$$H_0: \sigma \ge 0.04\%, \quad H_1: \sigma < 0.04\%.$$

 $\chi^2_{0.05}(10) = 18.307$, $\chi^2_{0.05}(9) = 16.919$, $\chi^2_{0.05}(8) = 15.507$, $\chi^2_{0.95}(10) = 3.940$, $\chi^2_{0.95}(9) = 3.325$, $\chi^2_{0.95}(8) = 2.733$) 解: 本题要求在水平 $\alpha = 0.05$ 下检验假设 $H_0: \sigma \geq 0.04\%$, $H_1: \sigma < 0.04\%$.

采用 χ^2 检验,取检验统计量为 $\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$, 今 n=10 , s=0.00037 , $\alpha=0.05$,

 $\chi^2_{1-\alpha}(n-1) = \chi^2_{0.95}(9) = 3.325$ 拒绝域为

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \le \chi_{1-\alpha}^2 (n-1) = 3.325$$

因 χ^2 的观察值 $\chi^2 = \frac{9 \times (0.00037)^2}{(0.0004)^2} = 7.701 > 3.325$,没有落在拒绝域内,故接受 H_0 。

武汉大学 <u>2010—2011</u> 学年度第<u>一</u>学期 <u>《工程随机数学》</u>试卷(A)

学院	专业	班	学号		分	〉数
一、是非判断题(共 10	斯与斯	1 ()	共10分)			
1. 若事件 A 与 B 是 互 为 对				活 的等概事件组。	()
2. 分布函数 <i>F(x)</i> 是右连续	_类 的,即 <i>F</i> ((x + 0) = 0	=F(x).	•	()
3. 若 $X \sim U(a,b)$,则 X 落	在区间(a, l	າ) 中任意	意等长度的子	区间的可能性是相同]的。()
4. 由概率分布函数的定义	和非负性有	,对于(壬意的(x ₁ , y	$(x_1), (x_2, y_2), x_1 < x_2,$	<i>y</i> ₁ < <i>y</i> ₂ ,有	
· • • • • • • • • • • • • • • • • • • •	$F(x_1, y_1) - F$	$F(x_1, y_2)$	$+F(x_2,y_1)$	$-F(x_2, y_2) \ge 0$	()
5. 由于随机变量 X 与它的	函数 Y = f(X) 之间]有明确的联	系,它们一定应当是	相关的。()
6. 若两个随机变量 A, B 相	互独立,则	J A 和 B	不相关		()
7. 若随机变量 <i>X</i> ₁ , <i>X</i> ₂ ,,	$X_n,$ 相互	独立,上	且具有相同的	的数学期望 $E(X_k)$ =	$\mu, k = 1, 2,$,则序列
$\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$ 依概率收敛于	-μ.				()
8. 宽平稳随机过程的自相非		室谱密 度	度均为实的、	非负偶函数。	()
9. 一个估计量若是无偏估	计量,则仅	说明此何	古计是无系统	充误差。	()
10. 在给定置信度情况下,未知参数的置信区间不唯一,但置信区间长度相等。					. ()
二、单项选择题(共10	题, 每题	2分,	共 20 分)			
1 . 若 <i>X</i> 的概率分布是:						
	x	0	1	2		
	P	1/3	1/6	1/2		
则下列结果中成立的是:	l	/ 3	, 0	, 2	()

(b) $P\{1 < X \le 3/2\} = 0$

第1页(共4页)

(a) $P\{X \le 0\} = 0$

(c) $P\{1 \le X \le 3/2\} = 0$ (d) $P\{X < 0\} = 1/3$		
2. 对任意两个随机变量 $X,Y,D(3X-2Y)$ 满足	()
(a) $D(3X-2Y) = 3D(X) - 2D(Y)$ (b) $D(3X-2Y) = 9D(X) + 4D(X)$	$\mathcal{O}(Y)$	
(c) $D(3X-2Y) = 9D(X) - 4D(Y)$ (d) $D(3X-2Y) = 9D(X) + 4D(Y)$	O(Y) - 12Cov((X,Y)
3. 若 X 与 Y 的相关系数 $\rho_{XY}=0$,则下列各式中不正确的是	()
(a) $Cov(X,Y) = 0$ (b) $X 与 Y 不相关$		
(c) $E(XY) = E(X)E(Y)$ (d) $D(XY) = D(X)D(Y)$		
4. 已知 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, X 与 Y 独立。设 $Z = \frac{X+Y}{2}$, 则 Z	服从分布()
(a) $N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ (b) $N(\mu_1 + \mu_2, \frac{\sigma_1^2 + \sigma_2^2}{2})$	٠	
(c) $N(\frac{\mu_1 + \mu_2}{2}, \frac{{\sigma_1}^2 + {\sigma_2}^2}{2})$ (d) $N(\frac{\mu_1 + \mu_2}{2}, \frac{{\sigma_1}^2 + {\sigma_2}^2}{4})$		
5. 设 $X \sim N(\mu, \sigma^2)$,则随着 σ 的增大,概率 $P\{ X - \mu < \sigma\}$ 满足	()
(a) 单调增大 (b) 单调减少		
(c) 保持不变 (d) 增减不定		
6. 设 $X_1, X_2, \dots X_n$ 是来自 $X \sim N(\mu, \sigma^2)$ 的样本,令 $S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$	$S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i)^n$	$(X_i - \overline{X})^2$
$S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2$, $S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$, 则服从自由度为 n -1 的 t 分布的限	恒机变量是()
(a) $t = \frac{\bar{X} - \mu}{S_1 / \sqrt{n-1}}$ (b) $t = \frac{\bar{X} - \mu}{S_2 / \sqrt{n-1}}$		
(c) $t = \frac{\overline{X} - \mu}{S_3 / \sqrt{n}}$ (d) $t = \frac{\overline{X} - \mu}{S_4 / \sqrt{n}}$		
7. 假设检验中,显著性水平α 表示	()
(a) H_0 为假,但接受 H_0 的概率 (b) H_0 为真,但拒绝 H_0 的概率		
(c) H_0 为假, 拒绝 H_0 的概率 (d) H_0 为真, 接受 H_0 的概率		
8. 若 $E[X(t_1)Y(t_2)] = \mu_X(t_1)\mu_Y(t_2)$,则随机过程 $X(t)$ 与 $Y(t)$	()
(a) 不相关 (b) 正交 (c) 独立 (d) 独立且不相关		
9. 下列回答中不正确的有:	()
(a) 大数定律和中心极限定理是使用极限方法研究大量随机现象的统计规律	ō	

第2页(共4页)

- (b) 大数定律是一种依概率收敛的极限定理,中心极限定理是一种依分布收敛的极限定理。
- (c) 大数定律是一种依分布收敛的极限定理,中心极限定理是一种依概率收敛的极限定理。
- (d) 大数定律阐明大量随机现象统计稳定的规律;中心极限定理阐明在什么样的条件下,当 $n \to \infty$ 时,独立随机变量之和的极限分布即为正态分布。
- 10. 在区间估计中, $P(\overline{\theta}_1 < \theta < \overline{\theta}_2) = 1 \alpha$ 的正确含义是
 - (a) θ 以 $1-\alpha$ 的概率落在区间 $(\overline{\theta_1}, \overline{\theta_2})$ 内 (b) θ 落在区间 $(\overline{\theta_1}, \overline{\theta_2})$ 以外的概率为 α

 - (c) θ 不落在区间 $(\overline{\theta}_1, \overline{\theta}_2)$ 以外的概率为 α (d) 随机区间 $(\overline{\theta}_1, \overline{\theta}_2)$ 包含 θ 的概率为 $1-\alpha$

三、填空题(共10个空,每空2分,共20分)

- 1. 某电路是由元件 A 与两个并联元件 B, C 串联而成,若 A, B, C 接通与否相互独立,且他们接通的 概率分别为 p, q 和 r, 则此电路接通的概率是
- 2. 若随机变量 X 服从均值为 2, 方差为 σ^2 的正态分布, 且 P(2 $\langle X \langle 4 \rangle = 0.3$, 则 P($X \langle 0 \rangle =$.
- 3. 设随机变量 X 服从正态分布 $N(\mu,\sigma^2)(\sigma>0)$, 且二次方程 $\nu^2+4\nu+X=0$ 无实根的概率为 1/2, 则 $\mu =$.
- 4. 设随机变量 X, Y 的相关系数为 0.9, 若 Z=X-0.4, 则 Y 和 Z 的相关系数为
- 5. 连续型随机变量 X 的服从均匀分布 $X \sim U(a,2a)$,则 X 的数学期望为_____,方差为_____.
- 6. 设 μ_n 是 n 次独立重复试验中事件 A 出现的次数,P 为 A 在每次试验中出现的概率,则对任意给

定
$$\varepsilon > 0$$
,有 $\lim_{n \to \infty} P(\left| \frac{\mu_n}{n} - p \right| < \varepsilon) =$ _____.

- 7. 设总体 $X\sim N(\mu,\sigma^2)$,一组样本 μ 未知, σ^2 已知。对假设 $H_0:\mu=\mu_0,H_1:\mu\neq\mu_0$,进行检 验时,通常采用的统计量是_____,它服从_____分布.
- 8. 一个严平稳过程只要______存在,则它必定也是宽平稳的。

四、计算题(共5题,每题10分,共50分)

1、设随机变量(X, Y) 的概率密度为 $f(x,y) = \begin{cases} \frac{1}{2}(x+y)e^{-(x+y)}, & x>0, y>0 \\ 0. &$ 其他

互独立?

2、如果随机变量 X 的概率密度为 $f(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$ 则 $Y = e^{-2X}$ 的数学期望是多少? 如果随机

变量 X 的分布律为

则 $E(3X^2+5)$ 是多少?

- 3. 有 10000 人参加一家公司的人寿保险,每人每年付 100 元保险费,而在人一年内死亡的概率是 0.006,死亡时,其家属可获赔 10000 元。求:
- (1) 保险公司亏本的概率是多少?
- (2) 保险公司一年的利润不少于 300000 元的概率是多少?

(可取:
$$\Phi(1.1) = 0.864, \Phi(1.2) = 0.885, \Phi(1.3) = 0.903, \Phi(1.4) = 0.919,$$

$$\Phi(3.5) = 0.9999, \sqrt{59} = 7.68, \sqrt{60} = 7.75, \sqrt{61} = 7.81$$

4、电子实验中测得两批电子器件的样品电阻(Ω)值为:

A批 (x)	0.140	0.138	0.143	0.142	0.144	0.137
B 批(y)	0.135	0.140	0.142	0.136	0.138	0.140

设两批器材电阻值总体分别服从分布 $N(\mu_1, \sigma_1^2)$, $N(\mu_2, \sigma_2^2)$, $\mu_1, \sigma_1^2, \mu_2, \sigma_2^2$ 均未知,且两批样本相互独立。

- (1) 判断两批电子元件电阻方差在水平 α=0.05 下是否相等。
- (2) 在(1) 基础上判断两批电子元件电阻均值在水平 α=0.05 下是否相等?

$$(t_{0.05}(12) = 1.7823, t_{0.05}(10) = 1.8125, t_{0.025}(10) = 2.2281, t_{0.025}(12) = 2.1788,$$

$$F_{0.025}(5,5) = 7.15$$
, $F_{0.05}(5,5) = 5.05$, $F_{0.05}(6,6) = 4.28$, $F_{0.025}(6,6) = 5.82$

$$\chi^{2}_{0.05}(12) = 21.026$$
, $\chi^{2}_{0.025}(12) = 23.337$, $\chi^{2}_{0.025}(10) = 20.483$, $\chi^{2}_{0.05}(10) = 18.307$)

5、已知某一平稳随机过程 X(t)的谐密度为: $S_X(\omega) = \frac{\omega^2}{\omega^4 + 3\omega^2 + 2}$, 求随机过程 X(t)的均方值。

武汉大学 <u>2010—2011</u> 学年度第<u></u>__学期 《工程随机数学》试卷(A)答案

学院	_专业_班 =	学号	姓名	_分数
一、是非判断题(共 10 题	,每题1分,共	:10分)		
1. (F) 2. (T)			5. (F)	
6. (T) *** 7. (F)				
二、单项选择题(共10题	[, 每题2分, 共	(20分)		
1. (B) 2. (D)	3. (D)	4. (D)	5. (C)	Ġ ·
6. (B) 7. (B)	8. (A)	9. (C)	10. (D)	
				•
三、填空题(共10个题,				
1. p(q+r-qr) 2. 0.	2 3. <u>4</u>	40.9_	5. $\frac{3a}{2}$, $\frac{a^2}{12}$	
6. $\underline{1}$ 7. $U = \frac{\overline{x}}{\sigma}$	- μ ₀ , 标准正	<u>态分布</u> 8	二阶矩	
四、计算题(共5题,每	题 10 分, 共 50	分)		
1、设随机变量 (X, Y) 的概	率密度为 $f(x,y)$	$= \begin{cases} \frac{1}{2}(x+y)e^{-(x+y)} \\ 0, \end{cases}$), x>0,y>0, 其他	判断 X 和 Y 是
否相互独立?				

解 错误! 未找到引用源。
$$= \int_0^\infty \frac{1}{2} (x + y) e^{-(x+y)} dy$$

$$- \int_0^\infty \frac{1}{2} (x + y) de^{-(x+y)} dy$$

$$= \frac{1}{2} (x + y) \left(-e^{-(x+y)} \right) \Big|_{y=0}^{y=\infty} + \frac{1}{2} \int_0^\infty e^{-(x+y)} dy$$

$$- \frac{1}{2} \int_0^\infty de^{-(x+y)} dy$$

$$= \frac{1}{2} x e^{-x} - \frac{1}{2} e^{-(x+y)} \Big|_{y=0}^{y=\infty} = \frac{x+1}{2} e^{-x}, \quad x > 0, -\frac{1}{2} (0 - e^{-x})$$

故 X 的概率密度为

$$f_{x}(x) = \begin{cases} \frac{x+1}{2} e^{-x}, & x > 0, \\ 0, & \text{其他,} \end{cases}$$

同理, Y的概率密度为

$$f_{Y}(y) = \begin{cases} \frac{y+1}{2} e^{-y}, & y > 0, \\ 0, & 其他. \end{cases}$$

显然错误!未找到引用源。 , 所以 X, Y 不相互独立.

2、如果随机变量 X 的概率密度为 $f(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$ 则 $Y = e^{-2x}$ 的数学期望是多少? 如果随

机变量 X 的分布律为

则 $E(3X^2 + 5)$ 是多少?

解: 中关于随机变量函数的数学期望的定理知

(1) 错误!未找到引用源。

=错误! 未找到引用源。
$$\frac{-1}{3}e^{-3x}|_0^\infty = \frac{1}{3}$$
.

$$E(3X^2+5)=[3(-2)^2+5]\times 0.4+[3(0)^2+5]\times 0.3+[3(2^2)+5]\times 0.3$$

=13.4,

如利用数学期望的性质,则有

 $E(3X^2+5)=3E(X^2)+5=3\times 2.8+5=13.4$.

- 有 10000 人参加一家公司的人寿保险,每人每年付 100 元保险费,而在人一年内死亡的概率是 0.006, 死亡时, 其家属可获赔 10000 元。求:
 - (1)保险公司亏本的概率是多少?

武汉大学 <u>2010 — 2011</u> 学年度第<u>一</u>学期 <u>《工程随机数学》</u>试卷(B)

	学院专业班 学号		分数	
	、是非判断题(共10题,每题1分,共10分)			
1.	在其他条件不变的情况下,未知参数1-α置信区	间,一般随α增加而长)
2.	若 $X \sim U(a,b)$,则 X 落在区间 (a,b) 中任意等长度的]子区间的可能性是相同		,)
3.	若 X 服从指数分布,则对于任意的 s,t ,有 $P(X>t)$	$= P(X > s + t \mid X > s) \circ$	()
4.	由概率分布函数的定义和非负性有,对于任意的	$(x_1, y_1), (x_2, y_2), x_1 < x_2,$, y ₁ < y ₂ ,有	
	$F(x_2, y_2) - F(x_2, y_1) + F(x_1, y_2)$	$(y_2) - F(x_1, y_1) \ge 0$	()	
5.	有限个正态随机变量的线性组合仍然服从正态分	布	())
6.	若两个随机变量 A 和 B 不相关,则 A , B 相互独立		())
7.	设 σ 是总体 X 的标准差, $X_1, X_2,, X_n$ 是来自总	体 <i>X</i> 的简单随机样本,	则样本标准	住
	差 S 是总体标准差 σ 的相合估计		())
8.	样本平均值和样本1阶原点矩相等,样本方差和	羊本2阶中心矩相等	())
9.	设 $X_1, X_2,, X_n$ 是来自总体 $N(\mu, \sigma^2)$ 的样本, $\overline{X}, \overline{X}$	S ² 分别是样本均值和构	作本方差, 贝	IJ
	他们相互独立		())
10.	. 一个宽平稳的正态过程一定也是严平稳的。		())

二、单项选择题(共10题,每题2分,共20分)

1. 电炉有 4 个温控器,其显示温度的误差是随机的,使用时,只要有两个温控器显示的温度不低于临界温度 t_0 ,电炉就断电。而 $T_1 \ge T_2 \ge T_3 \ge T_4$ 为 4 个温控器显示的按递减

	顺序排列的温度值,则事	件"电炉断电"	等于				()
	$(A) \dot{T}_1 \ge t_0 \qquad (B$	$) T_2 \ge t_0$	(C) T_3	$\geq t_0$	(D) T	$t_4 \ge t_0$		
2.	以 A 表示事件"产品甲畅铃	肖,产品乙滞销	",则其对	立事件 A 为			()
	(A) "产品甲滞销, 具	这产品乙畅销"	(B)	"产品甲清	持销,且产	产品乙	」畅销	当"
	(C) "产品甲、产品Z	上均畅销"	(D)	"产品甲清	持销"			
3.	已知 A, B 为两事件,且 B	$\supset A, P(A) = 0.3$	$P(\overline{B}) = 0.4$	$+$,则 $P(\overline{B-A})$) 为		()
	(A) 0.45	B) 0.5	(C)	0.6	(D)	0.7		
4.	设 X 为一随机变量, $E(X)$	$= \mu, D(X) = \sigma^2$	$(\mu, \sigma > 0)$,则对任意常	常数 C, 必	必有	()
	(A) $E[(X-C)^2] = E(X$	$^{2})-C^{2}$.	(B) E	$[(X-C)^2] =$	$E[(X-\mu$	$(\iota)^2$		
	(C) $E[(X-C)^2] < E[(X-C)^2]$	$[-\mu)^2$	(D) E	$[(X-C)^2] \ge$	$E[(X-\mu$	$(u)^2$		
5.	设 F(x),G(x)分别是随机变量	量 X 与 Y 的分	布函数,为	为使 H(x)=al	F(x)-bG(x	:)是某	三一随	刨机
	变量的分布函数,那么 a,b	取值可为					()
	(A) $a = \frac{3}{5}, b = -\frac{2}{5}$		(B) a	$y = \frac{2}{3}, b = \frac{2}{3}$				
	(C) $a = -\frac{1}{2}, b = \frac{3}{2}$		(D) a	$a = \frac{1}{2}, b = -\frac{3}{2}$	3			
6.	设随机变量(X,Y)服从二维	正态分布,且之	Y与 Y 不相	l 关, $f_X(x)$, f	(_y (y)分别	表示	X, Y	'的
	概率密度,则在 $Y = y$ 的象	.件下的 X 条件	密度 $f_{\scriptscriptstyle X\mid \! Y}$ (.	x y) 为			()
	(A) $f_X(x)f_Y(y)$	(B) $f_X(x)/f$	$\hat{y}(y)$	(C) $f_X(x)$) ((D) .	$f_{Y}(y)$)
7.	己知随机变量X的	分布函数	F(x) 在 x	=1 处连约	卖, 且	F(1)	=1,	记
	$Y = \begin{cases} a, & X > 1, \\ b, & X = 1, (abc \neq 0), \\ c, & X < 1 \end{cases}$	则 Y 的期望 E	(Y) 是				()
	(A) $a+b+c$	(B) <i>a</i>		(C) b		(D)	С	
8.	设随机变量 X,Y 独立同分布	节,记 $U=X-1$	Y, V = X +	Y则随机变	量 U 和 V	必然	()
	(A) 不独立		(B) 独立					
	(C) 相关系数为 0		(D) 相关	系数不为0				
9.	设 $\{\xi_n\}$ ($n \ge 1$)是相互独立的	随机变量序列	, ξ, 服从	参数为 n 的 ł	旨数分布	(n=1)	,2,))下

第2页(共4页)

	列随机变量序列不满足切比雪夫大数	定律	的是	()
	(A) $\xi_1, \xi_2,, \xi_n,$	(B)	$\xi_1, 2^2 \xi_2,, n^2 \xi_n,$		
	(C) $\xi_1, \xi_2/2,, \xi_n/n,$	(D)	$\xi_1, 2\xi_2,, n\xi_n,$		
10	. 设随机变量 X 和 Y 都服从标准正态分	}布,	则	()
	(A) X+Y服从正态分布		(B) $X^2 + Y^2$ 服从 χ^2 分布		
	(C) X^2 和 Y^2 都服从 χ^2 分布		(D) X ² /Y ² 服从F分布		
三	、填空题(共 10 个空,每空 2 分,共	፡ 20 ታ	(
1.	设 $P(A) = P(B) = P(C) = 1/4$, $P(AB) = 1/4$	= P(B	P(C) = 0, $P(AC) = 1/8$, $M = A, B, C$	C三事	件中
	至少出现一个的概率为				
2.	设每次试验中事件 A 发生的概率为 p	,为了	使事件 A 在独立试验序列中至少	少发生	一次
	的概率不小于 a,需要进行试验次数为		<u>_</u> ·		
3.	设随机变量 X,Y 相互独立,且均服 M	人区间	[0,3]上的均匀分布,则 P(max(.	$(X,Y) \leq$	1) =
	·				
4.	设随机变量 X,Y,Z 相互独立,其中 X	在[0,6]上服从均匀分布, Y 服从正态分	↑布 N(0,4),
	Z 服从参数为 $\lambda=3$ 的泊松分布,则 I	D(X -	$(2Y+3Z) = \underline{\hspace{1cm}}.$		
5.	设一次试验成功的概率为 p , 进行 10	00 次》	独立重复试验,当 <i>p</i> =时,	成功	的次
	数标准差的值最大,其最大值为	•			
6.	设随机变量 X,Y 的数学期望分别为-2,	,2,方		则根	据切
	比雪夫不等式, <i>P</i> (<i>X</i> + <i>Y</i> ≥ 6) ≤	·			
7.	设总体 $X \sim B(n,p)$, p 为未知参数, Z	X_1, X_2	,,X,为来自总体 X 的一个样	本,则	参数
	p 的矩估计量是, 最大似然	估计量	是是		
8.	如果对于每一个 $t \in T$,随机过程 $\{X\}$	$(t), t \in$	$\equiv T$ }的二阶矩 $E[X^2(t)]$ 都存在,	则称	它为
	过程。				

四、计算题(共5题,每题10分,共50分)

1、已知某种元件的寿命·X(以小时计)服从参数为 μ =160, σ (σ >0)的正态分布,即 X~N(160, σ ²)。如果希望产品的寿命满足 P{120<X≤200}≥0.80,允许 σ 最大为多少?

$$(\Phi(0.453) = 0.5, \Phi(0.5163) = 0.7, \Phi(1.0) = 0.8413, \Phi(1.282) = 0.9, \Phi(2.0) = 0.9772,$$

 $\Phi(2.5) = 0.9938, \Phi(3) = 0.9987$

2、设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} \frac{1}{8}(x+y), & 0 \le x \le 2, \ 0 \le y \le 2, \\ 0, & \text{其他.} \end{cases}$$

试求: (1)E(X), D(Y), cov(X, Y).

- 3、设 X_1, X_2, \dots, X_n 是来自总体 X 的一个样本,设 $E(X) = \mu$, $D(X) = \sigma^2$ 。试确定常数 c,使 $c\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2 \, \text{为} \, \sigma^2$ 的无偏估计。
- 4、某种导线,要求其电阻的标准差不得超过 0.005(欧姆)。今在生产的一批导线中取样 品 9 根,测得 s=0.007(欧姆),设总体为正态分布,参数均未知。问在水平 α =0.05 下能否认为这批导线的标准差显著地偏大。($\chi^2_{0.05}(10)$ = 18.307, $\chi^2_{0.05}(9)$ = 16.919, $\chi^2_{0.05}(8)$ = 15.507, $\chi^2_{0.05}(10)$ = 3.940, $\chi^2_{0.95}(9)$ = 3.325, $\chi^2_{0.95}(8)$ = 2.733)
- 5、设随机过程 $x(t)=\eta\cos t+\xi\sin t$,其中 η 和 ξ 是相互独立的随机变量, η 、 ξ 均可取 -1和 +2 两个值,取 -1的概率为 $\frac{2}{3}$,取 +2的概率为 $\frac{1}{3}$,
 - (1) 试计算E(x(t)), $R_x(t_1,t_2)$,
 - (2) 求 $S_{x}(\omega)$

武大 2010-2011 工程随机数学试卷 B_ckda

武汉大学学期

《工程随机数学》试卷(B)答案

学号分数

- 一、是非判断题(共10题,每题1分,共10分)
- 1. (F) 2. (T) 3. (T) 4. (T) 5. (F)
- 6. (F) 7. (T) 8. (F) 9. (T) 10. (T)
- 二、单项选择题(共10题,每题2分,共20分)
- 1. (B) 2. (A) 3. (D)
- 4. (D) 理由 E[(X C)2] E[(X)2] C2 2C 2 0
- 5. (A) 利用 F() 1 排除 6. (C)
- 7. (D) P(X=1)=0,P(X>1)=0==>P(X<1)=1, E(Y)=aP(X>1)+bP(X=1)+cP(X<1)=cP(X<1)=c
 - 8. (C) 理由 cov(U,V)=cov(X-Y,X+Y)=D(X)-D(Y)=0==>...
 - 9. (B) 理由 E(n) 1/n,D(n) 1/n2 ==>...D(n2 n) n2 不能小于常数
 - 10. (C) 理由 X, Y 之间没有独立性。
 - 三、填空题(共10个空,每空2分,共20分)
 - 2. n ln(1 a)ln(1 a)n ln(1 p)ln(1 p)

7.X/n,X/n 8.

- 四、计算题(共5题,每题10分,共50分)
- 1、已知某种元件的寿命 X(以小时计)服从参数为 μ=160,σ(σ>0)的正态分布,即 X~N(160,σ2)。如果希望产品的寿命满足 P{120<X≤200}≥0.80,允许 σ 最大为多少? ((0.453) 0.5, (0.5163) 0.7,
 - (1.0) 0.8413, (1.282) 0.9,
 - (2.0) 0.9772, (2.5) 0.9938, (3) 0.9987)
 - 解 X~N(160,σ2), 今要求
 - P{120<X≤200} =

≥0.9=, ,

应有

≥1.282, σ≤,

即允许 σ 最大为 31.20

2、设二维随机变量(X,Y)的概率密度为

1 (x y),0 x 2,0 y 2, f(x,y) 8 0,其他.

试求: (1)E(X),D(Y),cov(X,Y).

3、设 X1,X2,...,Xn 是来自总体 X 的一个样本,设 $E(X)=\mu$, $D(X)=\sigma 2$ 。试确定常数 c

,使

为 σ2 的无偏估计。

4、某种导线,要求其电阻的标准差不得超过 0.005(欧姆)。今在生产的一批导线中取样

品 9 根,测得 s=0.007(欧姆),设总体为正态分布,参数均未知。问在水平 α=0.05 22 下能否认为这批导线的标准差显著地偏大。(0,0,.05(10) 18.307.05(9) 16.919 2222 0,0,0,0.05(8) 15.507.95(10) 3.940.95(9) 3.325.95(8) 2.733)

5、设随机过程 x t cost sint, 其中 和 是相互独立的随机变量, 、 均可取 1 和 2 两个值,取 1 的概率为,取 2 的概率为, (1)试计算 E x t,Rx t1,t2, (2) 求 SX

武汉大学<u>2011—2012</u>学年度第<u></u>学期 <u>《工程随机数学》</u>试卷(A)

电信 学院 沙杉专业 1班 学号 2010和1430006 姓名罗庆林分数...

		、单项选择题(共15题,每题2分,共20分)		
Ö.	1.	已知 $P(A) = p$, $P(B) = q$, $P(A \cup B) = r$, 则下列事件中计算结果不正确的是 $= P(A) + P(B) - P(AB)$ (a) $P(A - B) = p - q$; (b) $P(AB) = r - q$; (c) $P(BA) = r - p$; (d) $P(AB) = 1 - r$.	()
d	2.	若 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, 则下列结果中成立的是	(.)
		(a) $X + Y - N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ (b) $X - Y - N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2)$ (c) $aX + b - N(a\mu_1 + b, a^2\sigma_1^2)$ 其中,a、b为常数 (d) $aX + bY - N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$		
Ь	3.	设随机变量X在区间[2,4]上服从均匀分布,则P{3 <x<4}=< td=""><td>Ċ</td><td>)</td></x<4}=<>	Ċ)
		(a) $P\{1.5 \le X \le 2.5\}$; (b) $P\{2.5 \le X \le 3.5\}$; (c) $P\{3.5 \le X \le 4.5\}$; (d) $P\{1.5 \le X \le 2.5\}$		
d	4.	二维随机向量(X, Y) 关于Y的边缘分布函数F _Y (y) =	()
		(a) $F(x, +\infty)$; (b) $F(x, -\infty)$; (c) $F(-\infty, y)$; (d) $F(+\infty, y)$		
Q	5.	设 σ_{x} , σ_{y} 分别为 X 、 Y 的标准差, σ_{xy} 为 X 、 Y 的协方差,则 X 、 Y 的相关系数为	()
		(a) $\frac{\sigma_{xy}}{\sigma_x \sigma_y}$; (b) $\frac{\sigma^2_{zy}}{\sigma_x \sigma_y}$; (c) $\frac{\sigma_{zy}}{\sqrt{\sigma_x} \sqrt{\sigma_y}}$; (d) $\frac{\sigma^2_{xy}}{\sqrt{\sigma_x} \sqrt{\sigma_y}}$		
d	6.	设X、Y相互独立,则D(aX-bY) =	().
		(a) $E[(aX-bY) - E(aX-bY)];$ (b) $aD(X) + bD(Y);$ (c) $a^2D(X) - b^2D(Y);$ (d) $a^2D(X) + b^2D(Y)$		

第1页(共4页)。

→「Z) · 设X、Y的联合概率密度为	$f(x, y) = \begin{cases} \frac{1}{2} \sin(x+y) & 0 \le x \le \frac{\pi}{2}, \ 0 \le y \le \frac{\pi}{2} \\ 0 & \text{If } \Xi \end{cases}$
则,下列式中不成立的是	. ()
(a) $E(X) = \frac{\pi}{4}$;	(b) $E(y) = E(X)$;
(c) $E(\frac{2}{\chi}) = \frac{\pi^2}{8} - \frac{\pi}{2} - 2;$	(d) D (X) = $\frac{3\pi^2}{8} - 2$
8. 若X ₁ , X2,X _n 为总体N (μ, σ²) 的样	本,下列结果中正确的是 ()
(a) X 与 S ² 不相互独立; × (c) (n-1) S ² / σ ² ~ χ ² (n);	(b) $(\overline{X} - \mu) / \sigma / \overline{\eta} N (0,1)$; (d) $\overline{X} - N (\mu, \sigma^2 / n)$
ς 9. 假设检验中,显著性水平α是	()
(a) 拒绝原假设Ho的概率;	(b) 检验统计量落入拒绝域的概率;
(c) 当原假设 HO 为真时, 拒绝 HO 的概率;	(d) 当原假设 HO 为真时,接受 HO 的概率
C 10. 设随机变量 $X \sim N(\mu, \sigma^2)$,则 σ 增大时	, 概率 P{ X-μ < σ} 是 ()
(a) 单调增大; (c) 保持不变;	(b) 单掉减少; (d) 增减不定
\bigcirc 11 . 设总体 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知,	则总体均值μ 的置信区间长度L与置信度1-α的
关系是	
(a) 当 1-α缩小时, L缩短; (c) 当 1-α缩小时, L不变;	(d)以上说法均错
A 12. 对于一个不含任何周期分量的平稳随机过程的	J自相关函数,下列中哪一个是正确的()
(a) 只为正的偶函数;	(b) 只为负的奇函数;
(c) 可正负的实的偶函数;	(d) 必须总是非负的
13. 判断下列说法中哪一个是错误的	()
(a) 零均值正态随机过程 X (t) 在两个不同时刻	J的不相关、独立是相互等价的。
(b) 平稳随机过程的自相关函数具有任意形状	
(c) 者 X (t) 是严平稳过程,则 X (t _i) 与 X ((t,+C)具有相同的统计特性。(C为常数) 🗸
(d) 若 R_X (t_1 , t_2) = R_X (t_1 — t_2), 则 X (t) 可能	宽平稳。 🗸
14. 设总体服从正态分布,其参数 <u>μ</u> ,σ²均未知,ξ	求总体方差的置信度为1 - α 的置信区间时,使
	4页)

		· ·		
	用的估计量是			()
		(a) $\chi^2(n)$;	(b) $\chi^2(n-1)$:	
		(c) t (n);	(d) t $(n-1)$	
a	15. 下列说法中原	斯 个是不正确的		()
- 1	(a) 大数定律是	一种依概率收敛的极限定理		
	•	种依分布收敛的极限定理		
	(c) 中心极限定	理表明独立随机变量个数不断	听增加时,其和趋于正态分布。	
	(d) 大数定律關	明明的是大量随机现象统计稳定	巨性的规律	
	二、填空题(共 10 空,每空 2 分,共 2	0分)	
	1、设 <i>A,B;</i> P(AUB)=	为随机事件,已知P(A)=0.5	, P(B)=0.6 条件概率P	(<i>B/A)</i> =0.6,则做学
		月 <u>江</u> 独立, 且都服从N(0,	1) 分 布 , 则 随 机 变 量 Z=2X	-Y+1 的概率密度函数
	3、设X和Y村	日互独立, 都服从U.(0,2)分	分布,即(0,2)上的均匀分	
	P(0 <z<1)< td=""><td></td><td></td><td></td></z<1)<>			
		量X~B(3,0.3), 且Y=X², 则P{Y=4		tata
	5、设随机改	Σ量 X 服 从 参数 为 4 的 泊 松 分	布,则应用切比雪夫不等式	、估计 P{ X - 4 ≥ 2} ≤ ·
	6、设总体X的	的分布列为 · X 0 1 P 1-p p		
	,其中p	为未知参数,且X ₁ ,X ₂ ,…,X _n 为其	「 「 「 「 「 「 「 「 「 「	•
		\mathbb{Z} 量X, Y相互独立, 且 $X\sim\chi^2$ ($\frac{X/n_1}{Y/n_2}$ ~ 若
	$X \sim N(1)$	$(0,1),\overset{.}{Y}\sim\chi^{2}(n_{2})$,则随机变量	$\pm \frac{X}{\sqrt{Y/n_2}} \sim \underline{\hspace{1cm}}$	
		$X \sim N(\mu, \sigma^2), \underline{\sigma^2 \exists \exists \exists \exists \exists X_1}, X_1,$	•	·个样本, x 为样本均值,
	则参数』	的置信度为1-n的置信区间为	文土	
	9、若均值为	y 零的平稳过程 $\{X(t), t \in R\}$ 具	有各态历经性,则 <i>E</i> [< <i>X(t)</i> >]=	

三、计算题(共5题,每题10分,共50分)

1 设随机变量
$$(X, Y)$$
 概率密度为 $f(x,y) = \begin{cases} k(6-x-y), 0 < x < 2, 2 < y < 4 \\ 0, 其它 \end{cases}$

- (I) 确定常数 k。
- (2) 求 P (X<1, Y<3)
- (3) 求 P(X<1.5}
- (4) 求 P(X+Y≤4}
- 2 设随机变量 (X_1, X_2) 具有概率密度。

$$f(x_1, x_2) = \frac{1}{8}(x_1 + x_2), \quad 0 \le x_1 \le 2,$$
 $0 \le x_2 \le 2$

 $E(X_1)$, $E(X_2)$, $COV(X_1, X_2)$, $\rho_{X_1X_2}$, $D(X_1 + X_2)$

D(X)+D(Y)+200V(X,Y) = D(X+Y)

- 行加法时,对每个加数取整(取为最接近它的整数),设所有的取整误差是相互 独立的,且它们都在(一0.5,0.5)上服从均匀分布,
- (1) 岩将 1500 个数相加,问误差总和的绝对值超过 15 的概率是多少? $-\phi(l)$ 34) + $\psi(r)$ 34) $-2-\phi(r)$ 34)
 - (2) 几个数相加孔—起使得误差总和的绝对值小于 10 的概率不小于 0.90 大权这级 $\phi(0.9) \phi(0.9) = 2\phi(0.9) 1$

- 4. 电子实验中测得一批电子器件的样品电阻(Ω)值如下:
- 0.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628
- 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933.

E(x) = 0.661 $5^2 = 8.13 \times 10^{-3}$ 设这批电阻的阻值总体服从正态分布,其均值为 μ ,标准差为 σ

- (2) 在 (1) 的基础上, 试检验该批电阻的均值是否明显大于 0.618 ($\mathbf{Q} \alpha = 0.05$)。

$$(t_{0.05}(19) = 1.7291, t_{0.05}(20) = 1.7247; t_{0.025}(19) = 2.093, t_{0.025}(20) = 2.086;$$

$$F_{0.05}(10,10) = 2.98$$
, $F_{0.05}(9,9) = 3.18$, $F_{0.025}(10,10) = 3.72$, $F_{0.025}(9,9) = 4.03$;

$$\chi^{2}_{0.05}(19) = 30.143$$
 , $\chi^{2}_{0.05}(20) = 31.410$, $\chi^{2}_{0.025}(19) = 32.851$, $\chi^{2}_{0.025}(20) = 34.170$;

$$z_{0.05} = 1.65, z_{0.025} = 1.96$$
) $\chi_{0.975} = 1.96$) $\chi_{0.95} = 1.96$)

- . 5. 平稳过程 $\{X(t), -\infty < t < +\infty\}$ 的自相关函数为 $R_X(\tau) = 4e^{-|\tau|} + \cos(3\pi\tau)$
- 求: (1) X(t) 的均方值。(2) X(t) 的谱密度。

武汉大学 2013 — 2014 学年度第 _ _ 学期

《工程随机数学》试卷(A)

学院	专业 班	学号_	姓名	分数

- 1. (本题 12 分)某多径信道,有 4 种传播模式 A、B、C、D,信号由这四种传播模式进行传播的概率分别是 0.2, 0.1, 0.3, 0.4。现有一信号通过该信道进行传播,如果该信号通过 A、B、C 传播而失真的概率分别是 1/3, 1/12, 1/4,通过 D 信道传播不会失真。但是该信号失真了,求该信号通过 C 信道传播的概率是多少?
- 2. (**本题 12 分**)设随机变量 X 服从参数 (1,5)的均匀分布,
- (1) 求 $Y = 2X^2 + 1$ 的概率密度函数。
- (2) 求 Y 的数学期望和方差。
- 3. (本题 12 分)设二维随机变量(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} (1+xy)/4, & |x| < 1, |y| < 1 \\ 0, & 其他 \end{cases}$$

证明 X 与 Y 不相互独立, $X^2 与 Y^2$ 相互独立

- 4. (本题 12 分)设总体 $X \sim N(3.4, 36)$, X_1, X_2, \dots, X_n 为 X 的一个简单随机样本,
 - (1) 要使 $P\{1.4 < \bar{X} < 5.4\} \ge 0.95$,样本容量 n 应取多大?

(2) 统计量
$$Y = \sum_{i=1}^{n} a(X_i - b)^2 \square \chi^2(n)$$
, 求 a, b

5. (本题 12分)设总体 X 的概率分布为

其中 β 是未知参数(0< β <1/2),从总体X中取样得到如下9个样本值:3,1,3,2,3,2,1,

- 0, 2; 求 β 的矩估计和最大似然估计值。
- 6. (本题 12分)随机地从 A 批导线中抽取 8根,又从 B 批导线中抽取 10根,测得电阻数据

(单位: Ω) 为: A批: 0.148, 0.142, 0.143, 0.137, 0.146, 0.138, 0.140, 0.141 B批: 0.140, 0.142, 0.136, 0.138, 0.140, 0.142, 0.141, 0.137, 0.141, 0.139 设A批电阻 $X \square N(\mu_1, \sigma^2)$,B批电阻 $Y \square N(\mu_2, \sigma^2)$,两批导线取样相互独立,求 $\mu_1 - \mu_2$ 的 置信度为 0.95 的置信区间。

- 7. **(本题卓越班 10 分,其它班 14 分)** 一般在建设雷达站之前均会对雷达站拟建设位置的电磁环境进行测量,现有两块雷达站地址进行选择,分别测得两块地址的样本数为 9 和 10 的电磁背景噪声(dB)样本,其背景噪声长期观察服从正态分布。经计算后得到均值和方差分别为: 地址 A: $\bar{x}_1 = 61.22, S_1^2 = 12.55, n_1 = 9$, 地址 B: $\bar{x}_1 = 63.44, S_1^2 = 13.57, n_1 = 10$ 试问在显著性水平 0.05 的条件下,两个地址的电磁环境是否可以认为一致?
- 8. (本题卓越班 10 分,其它班 14 分)设随机过程 $X(t) = \cos(\omega t + \theta)$,式中 $\omega > 0$ 为常数, θ 是在 $(0,2\pi)$ 上均匀分布的随机变量,证明X(t)是平稳随机过程,并求其自相关函数和谱密度。
- 9. (本题卓越班 8 分,其它班不做)对一未知电压信号量作 15 次等精度采样测量,测量值如下(单位: mV),设此测量列已消除了系统误差,试判断测量列中是否有过失误差。测量结果: 20.42; 20.43; 20.40; 20.43; 20.42; 20.43; 20.39; 20.30; 20.40; 20.43; 20.42; 20.41; 20.39; 20.39; 20.39; 20.40

可能要用到的参数: $(t_{0.05}(16)=1.746, t_{0.05}(17)=1.740; t_{0.025}(16)=2.120, t_{0.025}(17)=2.110;$ $F_{0.05}(8,9)=3.23, F_{0.05}(9,9)=3.39, F_{0.025}(8,9)=4.10, F_{0.025}(9,8)=4.3572;$ $\chi^2_{0.05}(19)=30.143, \chi^2_{0.05}(20)=31.410, \chi^2_{0.025}(19)=32.851, \chi^2_{0.025}(20)=34.170;$ $\chi^2_{0.95}(19)=10.117, \chi^2_{0.95}(20)=10.851, \chi^2_{0.975}(19)=8.906, \chi^2_{0.975}(20)=9.591;$ $z_{0.05}=1.65, z_{0.025}=1.96$

武汉大学 2013 — 2014 学年度第 _ 一 学期

《工程随机数学》试卷(A)参考答案

1. **(本题 12 分)** 某多径信道,有 4 种传播模式 A、B、C、D,信号由这四种传播模式进行传播的概率分别是 0.2, 0.1, 0.3, 0.4。现有一信号通过该信道进行传播,如果该信号通过 A、B、C 传播而失真的概率分别是 1/3, 1/12, 1/4,通过 D 信道传播不会失真。目前该信号失真了,求该信号通过 C 信道传播的概率是多少?

解:以 S 记为失真事件,以 A、B、C、D 分别记为信号的传播模式,则 A、B、C、D 构成完备事件组。由全概率公式:

$$P(S) = P(A)P(S|A) + P(B)P(S|B) + P(C)P(S|C) + P(D)P(S|D)$$

= 0.2×1/3+0.1×1/12+0.3×1/4+0.4×0=0.15

又由贝叶斯公式,该信号通过 C 信道传播的概率是: $P(C|S) = (0.3 \times 1/4)/0.15 = 0.5$

- 2. **(本题 12 分)** 设随机变量 $X \sim U(1,5)$,
- (1) 求 $Y = 2X^2 + 1$ 的概率密度函数。(2) 求Y的数学期望和方差。

解: (1)

$$f(x) = \begin{cases} \frac{1}{4}, 1 \le x \le 5 \\ 0, 其他 \end{cases} \qquad f_{Y}(y) = \begin{cases} \frac{1}{4} \frac{1}{2} \cdot \frac{1}{\sqrt{2(y-1)}}, 3 \le y \le 51 \\ 0, 其他 \end{cases}$$

(2)
$$E(Y) = \int_{1}^{5} (2X^{2} + 1) f(x) dx = \int_{1}^{5} (2X^{2} + 1) \frac{1}{4} dx = \frac{65}{3}$$

$$D(Y) = E(Y^2) - [E(Y)]^2$$
 $E(Y^2) = \int_1^5 (2X^2 + 1)^2 f(x) dx$

$$D(Y) = \frac{9004}{45}$$

3. **(本题 12 分)** 设二维随机变量(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} (1+xy)/4, & |x| < 1, |y| < 1 \\ 0, & 其他 \end{cases}$$

证明 X 与 Y 不相互独立, X^2 与 Y^2 相互独立

证:

根据联合概率密度函数可以得到:
$$f_X(x) = \begin{cases} 1/2, |x| < 1 \\ 0, else \end{cases}$$
 $f_Y(y) = \begin{cases} 1/2, |y| < 1 \\ 0, else \end{cases}$

因此, $f(x,y) \neq f_X(x) f_Y(y)$, 所以 X和 Y不相互独立。

又因为
$$X^2$$
 的分布函数 $F_1(x) = \begin{cases} 0, x < 0 \\ \sqrt{x}, 0 \le x < 1 \\ 1, x \ge 1 \end{cases}$

$$Y^2$$
的分布函数
$$F_2(y) = \begin{cases} 0, y < 0 \\ \sqrt{y}, 0 \le y < 1 \\ 1, y \ge 1 \end{cases}$$

 (X^2,Y^2) 的分布函数 $F_3(x,y)$

$$F_3(x,y) = \begin{cases} 0, x < 0 & \text{if } y < 0 \\ \sqrt{x}, 0 \le x < 1, y \ge 1 \\ \sqrt{y}, 0 \le y < 1, x \ge 1 \\ \sqrt{xy}, 0 \le x < 1, 0 \le y < 1 \\ 1, x \ge 1, y \ge 1 \end{cases}$$

因此 $F_3(x,y) = F_1(x)F_2(y)$ 成立,因此 X^2 和 Y^2 相互独立。

- 4. **(本题 12 分)**设总体 $X\sim N(3.4,36)$, X_1,X_2,\cdots,X_n 为 X 的一个简单随机样本,
 - (1) 要使 $P\{1.4 < \overline{X} < 5.4\} \ge 0.95$,样本容量 n 至少应取多大?

(2) 统计量
$$Y = \sum_{i=1}^{n} a(X_i - b)^2 \sim \chi^2(n)$$
, 求 a, b

解: (1) 由题设知,
$$(\overline{X}-3.4)/(6/\sqrt{n}) \sim N(0,1)$$
,故

$$P\{1.4 < \overline{X} < 5.4\} = P\{|\overline{X} - 3.4| < 2\}$$

$$= P\{\left|\frac{\overline{X} - 3.4}{6}\right| \sqrt{n} < \frac{\sqrt{n}}{3}\}$$

$$= 2\Phi\left(\frac{\sqrt{n}}{3}\right) - 1 \ge 0.95$$

$$\Rightarrow \Phi\left(\frac{\sqrt{n}}{3}\right) \ge 0.975$$

查正态分布表知 $\sqrt{n}/3 \ge 1.96$, 所以n = 35

(2) 由 χ^2 分布的性质可知

$$b = 3.4$$
, $a = \frac{1}{6}$

5. **(本题 12 分)** 设总体 X 的概率分布为

β

 $\bar{x}\beta$ 的矩估计和最大似然估计值。

 $4\beta(1-\beta)$

 $1-2\beta$

 β^2

其中 β 是未知参数(0 < β < 1/2),从总体 X 中取样得到如下 9 个样本值: 3, 1, 3, 2, 3, 2, 1, 0, 2;

解: (1) 矩估计

$$E(X) = 0 \times \beta + 1 \times (4\beta(1-\beta)) + 2 \times (1-2\beta) + 3 \times \beta^2 = 2 - \beta^2$$

$$\bar{X} = \frac{17}{9}$$

$$2-\beta^2=\frac{17}{9}$$

$$\beta = \pm \frac{1}{3}$$

由于 $0 < \beta < 1/2$,矩估计 $\beta = \frac{1}{3}$

(2) 极大似然估计

由样本构造的似然函数为:

$$L(\beta) = (\beta)^{1} (4\beta (1-\beta))^{2} (1-2\beta)^{3} (\beta^{2})^{3}$$

$$\frac{d}{d\beta}\ln L(\beta) = \frac{9}{\beta} + \frac{2}{1-\beta} + \frac{3}{1-2\beta} = 0$$

$$\beta = \frac{22 \pm \sqrt{88}}{2 \times 22}$$

由于 $0 < \beta < 1/2$

所以极大似然估计 $\beta = \frac{22 - \sqrt{88}}{2 \times 22}$

6. **(本题 12 分)** 随机地从 A 批导线中抽取 8 根,又从 B 批导线中抽取 10 根,测得电阻数据(单位:Ω)为: A 批: 0.148, 0.142, 0.143, 0.137, 0.146, 0.138, 0.140, 0.141 B 批: 0.140, 0.142, 0.136, 0.138, 0.140, 0.141, 0.137, 0.141, 0.139

设 A 批电阻 $X \sim N(\mu_1, \sigma^2)$,B 批电阻 $Y \sim N(\mu_2, \sigma^2)$,两批导线取样相互独立,求 $\mu_1 - \mu_2$ 的置信度为 0.95 的置信区间。

解: $\sigma_1^2 = \sigma_2^2 = \sigma^2$,但 σ^2 未知,选用估计量 T。经计算, $\overline{x} = 0.1419$, $\overline{y} = 0.1396$, $S_1^2 = 1.4125 \times 10^{-5}$,

 $S_2^2 = 4.2667 \times 10^{-6}$, $S_W = 0.0029$, $t_{0.025} (8+10-2) = 2.120$,所以, μ 的置信度为 0.95 的置信区间为

$$\left(\overline{X} - \overline{Y} \mp t_{\alpha/2} \left(n_1 + n_2 - 2\right) S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right) = \left(0.0023 \mp 0.0029\right) = \left(-0.0006, 0.0052\right)$$
由于 $\mu_1 - \mu_2$ 的置信区间包含 0,

可以认为两个总体的均值无明显差异

7. (本题卓越班 10 分, 其它班 14 分) 一般在建设雷达站之前均会对雷达站拟建设位置的电磁环境进行测量,现有两块雷达站地址进行选择,分别测得两块地址的样本数为 9 和 10 的电磁背景噪声(dB)样本,其背景噪声长期观察服从正态分布。经计算后得到样本均值和样本方差分别为:地

址 A:
$$\overline{x}_1 = 61.22, S_1^2 = 12.55, n_1 = 9$$
; 地址 B: $\overline{x}_1 = 63.44, S_1^2 = 13.57, n_1 = 10$

试问在显著性水平 0.05 的条件下,两个地址的电磁环境是否可以认为一致?

解:(1)两总体方差是否相等的检验

$$H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$$

统计量
$$F = \frac{S_1^2}{S_2^2} = \frac{12.55}{13.57} = 0.9248$$

$$F_{0.975}(9.8) < F < F_{0.025}(9.8)$$

0.2439 < 0.913 < 4.3572

接受原假设,认为两总体方差相等。

(2) 两总体均值是否相等的检验

$$H_0: \mu_1 = \mu_2 \leftrightarrow H_1: \mu_1 \neq \mu_2$$

$$|t| = \frac{|\overline{x}_1 - \overline{x}_2|}{\sqrt{n_1 S_1^2 + n_2 S_2^2}} \sqrt{\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2}} = 0.5786$$

$$t_{0.025}(17) = 2.110$$

故接收,认为两块场地的电磁环境是一致的。

8. **(本题卓越班 10 分,其它班 14 分)**设随机过程 $X(t) = \cos(\omega t + \theta)$,式中 $\omega > 0$ 为常数,随机变量 $\theta \sim U(0,2\pi)$,证明 X(t) 是平稳随机过程,并求其自相关函数和谱密度。

(一) 证明: (1)
$$E(X(t)) = \int_0^{2\pi} \cos(\omega t + \theta) \cdot \frac{1}{2\pi} d\theta = 0$$

(2)
$$R_X(t+\tau,t) = E(X(t+\tau)\overline{X(t)})$$

$$= \int_0^{2\pi} \cos(\omega t + \omega \tau + \theta) \cos(\omega t + \theta) \cdot \frac{1}{2\pi} d\theta$$

$$= \frac{1}{4\pi} \int_0^{2\pi} [\cos(\omega \tau) + \cos(2\omega t + \omega \tau + 2\theta)] d\theta$$

$$= \frac{1}{2} \cos(\omega \tau)$$

与t无关。

(3)
$$E|X(t)|^2 = R_X(0) = 1/2 < \infty.$$

由 (1), (2), (3) 知 $\{X(t)\}$ 是平稳过程。

(二)解:

$$\begin{split} R_X(\tau) &= E[X(t+\tau)\overline{X(t)}] \\ &= \int_0^{2\pi} \cos(\omega_0 t + \omega_0 \tau + \theta) \cos(\omega_0 t + \theta) \frac{1}{2\pi} d\theta \\ &= \frac{1}{2} \cos(\omega_0 \tau), \\ s_X(\omega) &= \int_{-\infty}^{+\infty} R_X(\tau) e^{-i\omega \tau} d\tau \\ &= \int_{-\infty}^{+\infty} \frac{1}{2} \cos(\omega_0 \tau) e^{-i\omega \tau} d\tau \\ &= \frac{1}{2} \pi [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)] \end{split}$$

9. **(本题卓越班 8 分, 其它班不做)** 对一未知电压信号量作 15 次等精度采样测量,测量值如下(单位: mV),设此测量列已消除了系统误差,试判断测量列中是否有过失误差。测量结果: 20.42; 20.43; 20.40; 20.43; 20.42; 20.43; 20.39; 20.30; 20.40; 20.43; 20.42; 20.41; 20.39; 20.40

解:由所列的测量数据求算术平均值:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum_{i=1}^{15} x_i}{15} = 20.404 (m \, \text{V})$$

计算残余误差 $v_i = x_i - x$ 分别为: 0.016; 0.026; -0.004; 0.026; 0.016; 0.026; -0.014; -0.104; -0.004; 0.026; 0.016; 0.006; -0.014; -0.014; -0.004;

测量列的标准误差为
$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} v_i^2}{n-1}} = \sqrt{\frac{0.01496}{14}} = 0.033(mV)$$
 则 $3\sigma = 0.099$

根据 3σ 准则,发现第 8 次测定值的残余误差 $\left|v_{8}\right|=0.104>3\sigma=0.099(mV)$

所以第8次测定值中含有过失误差,应将它舍去。然后再根据剩下的14个测定值重新计算,得算术

平均值为:
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum_{i=1}^{14} x_i}{14} = 20.411(mV)$$

计算残余误差 $v_i = x_i - \overline{x}$ 分别为: 0.009; 0.019; -0.011; 0.019; 0.009; 0.019; -0.021; -0.011; 0.019; 0.009; -0.001; -0.021; -0.021; -0.011

再求新的测量列标准误差: $\sigma' = \sqrt{\frac{\sum_{i=1}^{n} v_i^2}{n-1}} = \sqrt{\frac{0.00337496}{13}} = 0.016 (mV)$

则
$$3\sigma' = 0.048(mm)$$

所以余下的 14 个测量值均满足 $|v_i|$ $< 3\sigma$ 的要求,故认为这些测量值不再含有过失误差。