



1

## SEQUENCE LISTING

Frank Bennett  
Kenneth Dobie

&lt;120&gt; ANTISENSE MODULATION OF SUPEROXIDE DISMUTASE 1, SOLUBLE EXPRESSION

&lt;130&gt; ISPH-0756

<140> US 10/633,843  
<141> 2003-08-04<150> US 09/888,360  
<151> 2001-06-21

&lt;160&gt; 90

&lt;210&gt; 1

&lt;211&gt; 20

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Antisense Oligonucleotide

&lt;400&gt; 1

tccgtcatcg ctcctcaggg

20

&lt;210&gt; 2

&lt;211&gt; 20

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Antisense Oligonucleotide

&lt;400&gt; 2

atgcattctg cccccaagga

20

&lt;210&gt; 3

&lt;211&gt; 874

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;220&gt;

&lt;221&gt; CDS

&lt;222&gt; (65) . . . (529)

&lt;400&gt; 3

ctgcagcgtc tggggtttcc gttgcagtcc tcggaaccag gacctcggcg tggcctagcg

60

agtt atg gcg acg aag gcc gtg tgc gtg ctg aag ggc gac ggc cca gtg  
Met Ala Thr Lys Ala Val Cys Val Leu Lys Gly Asp Gly Pro Val  
1 5 10 15

109

cag ggc atc atc aat ttc gag cag aag gaa agt aat gga cca gtg aag  
Gln Gly Ile Ile Asn Phe Glu Gln Lys Glu Ser Asn Gly Pro Val Lys  
20 25 30

157

|                                                                    |     |     |    |
|--------------------------------------------------------------------|-----|-----|----|
| gtg tgg gga agc att aaa gga ctg act gaa ggc ctg cat gga ttc cat    |     | 205 |    |
| Val Trp Gly Ser Ile Lys Gly Leu Thr Glu Gly Leu His Gly Phe His    |     |     |    |
| 35                                                                 | 40  | 45  |    |
| gtt cat gag ttt gga gat aat aca gca ggc tgt acc agt gca ggt cct    |     | 253 |    |
| Val His Glu Phe Gly Asp Asn Thr Ala Gly Cys Thr Ser Ala Gly Pro    |     |     |    |
| 50                                                                 | 55  | 60  |    |
| cac ttt aat cct cta tcc aga aaa cac ggt ggg cca aag gat gaa gag    |     | 301 |    |
| His Phe Asn Pro Leu Ser Arg Lys His Gly Gly Pro Lys Asp Glu Glu    |     |     |    |
| 65                                                                 | 70  | 75  |    |
| agg cat gtt gga gac ttg ggc aat gtg act gct gac aaa gat ggt gtg    |     | 349 |    |
| Arg His Val Gly Asp Leu Gly Asn Val Thr Ala Asp Lys Asp Gly Val    |     |     |    |
| 80                                                                 | 85  | 90  | 95 |
| gcc gat gtg tct att gaa gat tct gtg atc tca ctc tca gga gac cat    |     | 397 |    |
| Ala Asp Val Ser Ile Glu Asp Ser Val Ile Ser Leu Ser Gly Asp His    |     |     |    |
| 100                                                                | 105 | 110 |    |
| tgc atc att ggc cgc aca ctg gtg gtc cat gaa aaa gca gat gac ttg    |     | 445 |    |
| Cys Ile Ile Gly Arg Thr Leu Val Val His Glu Lys Ala Asp Asp Leu    |     |     |    |
| 115                                                                | 120 | 125 |    |
| ggc aaa ggt gga aat gaa gaa agt aca aag aca gga aac gct gga agt    |     | 493 |    |
| Gly Lys Gly Gly Asn Glu Glu Ser Thr Lys Thr Gly Asn Ala Gly Ser    |     |     |    |
| 130                                                                | 135 | 140 |    |
| cgt ttg gct tgt ggt gta att ggg atc gcc caa taa acattccctt         |     | 539 |    |
| Arg Leu Ala Cys Gly Val Ile Gly Ile Ala Gln                        |     |     |    |
| 145                                                                | 150 | 155 |    |
| ggatgttagtc tgaggcccct taactcatct gttatcctgc tagctgtaga aatgtatcct |     | 599 |    |
| gataaacatt aaacactgta atctaaaag tgtaattgtg tgacttttc agagttgctt    |     | 659 |    |
| taaagtacct gtagtgagaa actgatttat gatcacttgg aagatttcta tagttttata  |     | 719 |    |
| aaactcagtt aaaatgtctg tttcaatgac ctgtatttt ccagacttaa atcacagatg   |     | 779 |    |
| ggtattaaac ttgtcagaat ttctttgtca ttcaagcctg tgaataaaaaa ccctgtatgg |     | 839 |    |
| cacttattat gaggctatta aaagaatcca aattc                             |     | 874 |    |

<210> 4  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR Primer

<400> 4  
cgtggcctag cgagttatgg

20

<210> 5  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR Primer  
  
<400> 5  
gaaattgatg atgcctgca

20

<210> 6  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR Probe  
  
<400> 6  
acgaaggccg tgtgcgtgct g

21

<210> 7  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR Primer  
  
<400> 7  
gaaggtgaag gtcggagtc

19

<210> 8  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR Primer  
  
<400> 8  
gaagatggtg atgggatttc

20

<210> 9  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR Probe  
  
<400> 9  
caagttccc gttctcagcc

20

<210> 10  
<211> 11000  
<212> DNA  
<213> Homo sapiens

<400> 10  
 aaaaacgcag gtgatgccta gaagccaaact agttgccgtt tggtatctg tagggttgtg 60  
 gccttgccaa acaggaaaaa tataaaaaga ataccgaatt ctgccaacca aataagaaac 120  
 tctataactaa ggactaagaa aattgcaggg gaagaaaagg taagtcccgg gattgaggtg 180  
 tagcgacttt ctataccctc agaaaactaa aaaacaagac aaaaaaatga aaactacaaa 240  
 agcatccatc ttggggcgtc ccaattgctg agtaacaaat gagacgctgt gcccaaactc 300  
 agtcataact aatgacatTTT ctagacaaag tgacttcaga ttttcaaagc gtaccctgtt 360  
 tacatcattt tgccaaatttc gcgtactgca accggcgggc cacgcccccg tgaaaagaag 420  
 gttgtttctt ccacatttcg gggttctgga cgtttcccg ctgcggggcg gggggagtct 480  
 cggcgccacg cggcccttg gcccccccc cagtcatcc cggccactcg cgaccggagg 540  
 ctgcccgcagg gggcgggctg agcgcgtgcg aggcgattgg tttggggcca gagtgggcga 600  
 ggccgcggagg tctggctat aaagtagtcg cggagacggg gtgctggtt gcgtcgtagt 660  
 ctccctgcagc gtctgggtt tccgttgcag tcctcggAAC caggacctcg gcgtggccta 720  
 gcgagttatg gcgacgaagg cctgtgcgt gctgaaggGC gacggcccAG tgcagggcat 780  
 catcaatttc gagcagaagg caagggtcg gacggaggct tgtttgcag gccgctccca 840  
 cccgctcgTC ccccccgcGA cctttgtAG gagcgggtcg cccgcccAGC ctggggccG 900  
 ccctggtcca gcccggcgtc ccggcccggtg ccggccggcgtc ggtgccttcg ccccaAGcGG 960  
 tgcgggtcccc aagtgtcgAG tcaccggggcgg gggccggggcgg cggggcgtgg gaccgaggcc 1020  
 gccgcggggc tgggcctgcg cgtggcgggA ggcgcggggag ggattgcccgc gggccggggA 1080  
 ggggcgggggg cgggcgtgct gcccctgtg gtccttggcgc cggccgcgcg ggtctgtcg 1140  
 ggtgcctggA gcccgtgtgc tcgtcccttg cttggccgtg ttctcggttcc tgagggtccc 1200  
 gcccggacaccg agtggcgcaG tgccaggccc agcccgggGA tggcgactgc gcctggggcc 1260  
 gcctgggtgtc ttccgcattcc tcctcgctt ccggcttcAG cgctctaggt cagggagtct 1320  
 tcgcTTTGT acagctctAA ggcttaggaAT ggTTTTATA ttTTAAAAG gctttggAAA 1380  
 acaaaaatac gcaacagaga ccgtttgtgt gacacttgc agggaaGttt gctggcctct 1440  
 gttctaggtc atgattgggc tgcaaggGC gagaaggtag ccttgaacAG aggtccTTT 1500  
 cctcctccTA agctccggGA gccagaggTT taactgacCC ttttggggat ttTTgaggGG 1560  
 agtgcattTA actttgggtG cacagttAGC ttatttgaAG atcttactAA aaatacacCA 1620  
 gagcccaacc tccgaccaat tacatcaAA cctgtccTAG tgcaaggGTGA gtattgtGT 1680  
 ttTTgaaAG ttccAAAAG tgattttGAT gtgcacCTAC gattgagaAC tgTCgttGA 1740  
 ggacagtggg tggagttcg tatttgAAA ttGAAGACC tggagttcc attacaccGA 1800

atggcactt aataactgtt gtcggagcat ttcttaagcc acattttcgtaaaagtggctt 1860  
taaaaattgct ctgccagtag gcaggttgct aagatggtca gagacaaaact tctgaacgac 1920  
tcttgtaaaa tatacagaaa tatttcaga acttttatca gtaaaattac aaaacgtgtt 1980  
gcaaggaagg tgcttgtgat aacactgtcc ccagaacctt agtgaagtta ccaactggtg 2040  
gaaaattttc tcttgcactc ggcttaaaaa tcatgaggga atatttacta tacgaatgag 2100  
attcagtctt taaagggggtt tacagaaacg tgagaggaca ggaacagttt gtctgtgtaa 2160  
atgtctgaaa tatatgtgag ggagataatg agtttagcct ttttctttaa taggtctcca 2220  
gattttctgg aaaaggttct ttggcatttg actccatttt gctgttcat ttgtcagact 2280  
tctttttgtc cctctttact tctcccaca taattcacca gtactagtgt tttgtttttc 2340  
agaccaagtc tcgctctgtc gcccaggctg gagtgcaagtgcgcgatctc agctcaactgc 2400  
aacctccgccc tcccagggttc aagcaattct cctgcctcag cctcccggtt agctgggact 2460  
acaggcgcgc gcccgcacgc ctggctaatt ttttatattt tagtagagac ggcgtttcac 2520  
catgttggcc aggatggtct cgatctgttgc acgtcgatgtt ccacccgcct cggcctccca 2580  
aagtgctggg attacaggcg tgagccaccc cggccggcca ccagtgttat tcttaagacg 2640  
cctctgagga atcccttctc cctggccatt gagaatccat gcatgaaccc aggtttcca 2700  
ccttcctga gcagcttgca tagttccttc tttaagcgc ctgacttcgt tttgtttgg 2760  
ccccgttgta cctgagaatg agccttggat agtggagcat tccagcttca cagatatgca 2820  
gagataatac attggctatc agctacttgg ctggcctat tccgtgttta aaatcttgg 2880  
ctcttgcta gttttacag atcagaattt ttacgttattt aatccagttt tcctagcttc 2940  
tcttgaagaa ttttggaga tctttcata ctgagccttc attagccca gacagtactg 3000  
ctgttagcgt tcatatatattt ttgccttcc caggcctgtt ttattcattt aagttcatag 3060  
cctggccct gcagggttgtt acccgagcac agctacttag atgtcctgaa tgtattaccg 3120  
gttaaatgga ggtttcaaag aacctgctgt tttggccct gtgcttttga taacagagtg 3180  
tttggggac aacttcaca tttgagttt tccaaaatta aaggttgtag aagagtcaca 3240  
gtatctatttgc taaaaagaa aagaattaa aaaggcagca attgccagga tacttcattt 3300  
gagcaatgtat tttccagt ggaaagtgcac atcttaaggg ttaatgcccc ttaactgttg 3360  
gccgtatttgc aaaacaaacc aagctaaaaa caagagacac tgacatgttgc tatgacgggt 3420  
tgggtggat gttgtgttta ttttagtcct gagatctgtt tgtaacttcc ttgatttctg 3480  
tatgttagcca cggagcacca ttacctgtca ccattacctg aatggctata ctgcttgctt 3540  
tcattttggat agagtggaaa ggttaccttag gttcagtgc ttgaaaagat ttcaaaaaac 3600  
agtagtacgt ctggtagac tagaatcagt cctctcctgg gggcagtggaa atataatatt 3660

|                                                                      |      |
|----------------------------------------------------------------------|------|
| ttctgactgc taattaaaaa tacctgtat agccggcgt ggtggctac gcctgtatc        | 3720 |
| ccagcactt gggaggccga gacgggtgga tcacgaggta agcagatgga gaccatcctg     | 3780 |
| gctaacacgg tgaaaccccg tctctactaa aaatgcaaaa aaattagccg ggtgtggtgg    | 3840 |
| tggcgccctg tagtcccagc tactcaggag gctgaggcag gagaatggca tgaacctggg    | 3900 |
| aggcggagct tgcagtgagc cgagatcatg tcactgcact ccagcctggg cgacagagcg    | 3960 |
| agactcgtct caaaaaaaaaa aagaaaaaaaaa cttatgatgg acacttaaaa acactcactg | 4020 |
| agtggggagt ggagagcagg ggtcccagg tagcctgtt gacatttcca gggcgactt       | 4080 |
| ttctttttt ttttttaaag tcaagtgagt atgccatatg gaaaagggtg tgcgtggaga     | 4140 |
| aaaagcaagg ggctccagag tgttaggatga gacatacacc ttttgggta aaaaggctga    | 4200 |
| ggcaggagaa tggcgtgaac ccgggaggcg gagcttgcag tgagctgaga tcatgccact    | 4260 |
| gcactccagc ctgggcgaca gagcgagact cttgtctcaa aataaaaaac gtttacatgt    | 4320 |
| acatgtatat tcaacatgta caaatataac ctattcaaaa gtatttacta cataaatagg    | 4380 |
| tacttacatt acctatttac tgtaatagtc aaagcctatg aagtatctaa cactgatgt     | 4440 |
| taggtactca ctttgcttgc cactctatta ggtgctttt atgttattta atcatgaagc     | 4500 |
| ctggccacag ggtgcttgc cattgagtgt gggacaaga ttaccatctc cttttgagg       | 4560 |
| acacaggcct agagcagtta agcagctgc tggaggtca ctggctagaa agtggtcagc      | 4620 |
| ctgggatttg gacacagatt ttccactcc caagtctggc tgcttttac ttcaactgtga     | 4680 |
| ggggtaaagg taaatcagct gtttcttg ttcagaaact ctctccaact ttgcacttt       | 4740 |
| cttaaaggaa agtaatggac cagtgaaggt gtggggaaagc attaaaggac tgactgaagg   | 4800 |
| cctgcatttga ttccatgttc atgagttgg agataataca gcaggtgggt gttgtgtgt     | 4860 |
| gctggtgacc catacttgtt cacccatgtt agataaacag tagagtagcc cctaaacgtt    | 4920 |
| aaaacccctc aacttgttt tgttttgag aaagggtctt gctctgtcgc tcaggctgga      | 4980 |
| gtgcagtggc gctgtgcgat catggctgac cttggcttg acctcccagg ctccattgat     | 5040 |
| cctcatgcct tggcccttag ctgggactac aggtacacac caccacgcct ggctaatttt    | 5100 |
| tgtattttt tctagaggtg gggtttcatc atgttgccca ggctggcttt gaactgctgg     | 5160 |
| gctcaagtgg tctatccctcc tcgacccccc aaagtgcgtt gattacatgt gtgagccact   | 5220 |
| gtgcctggaa aaaccctcaa cttttttttt aaaaaagagg tcaactttat tgtatataag    | 5280 |
| cactgtgcta aaattgcagg aactgggacc atatcctgat ttttgcata atgccagcag     | 5340 |
| agtacacaca agaaaagtaa ctgcactaga ttgtgaagac tgggggtggac ctgcttctga   | 5400 |
| aggccatgtc ccctttgtct taagatttgg tgcgtgtgt cttagaaac caaaaaaaga      | 5460 |

gaagaagatc aacctaaga ttagccacaa aactgggctt tgatacctag gtgtggaaaa 5520  
 gaaaggaaa gagttgatgt tttgtcttac agcatcattg tagaagaggg tgtttttg 5580  
 tttgtttgtt tttttagacg gagttttact ctgtggccca ggctggagtg cagtggcg 5640  
 atctcggttc actgcaagct ccgcctcccg ggttcatgcc atttcctgc ctcagcccc 5700  
 tgtagtagctg ggactacagg tgcccggcac cccgcctggc taatttttg tatttttagt 5760  
 agagacgggg ttctactgtg ttagccaaga tggctctct cctgacctcg tgatccgc 5820  
 gtctcagcct cccaaagtgc tgggattaca ggcatgagcc accgcaccca gccagaagag 5880  
 ggtttttttt aaagaaggca aataggaaat aaaaacttgg gctttaact tttgtaatga 5940  
 tcccagggtgt ttgagctggg ggttgagggt gggtgctcg agcaaagggg ctgcatttat 6000  
 ttgcataatg ccatgtaaga gtagctctac accccaaaca caggcttctt agtgggacca 6060  
 aagtatgata caaactgaag atggaatgca gaggattatt ggtactttgg aatatgctta 6120  
 aaaaaaattt ttttaaagta ttttaaaaaa atcaggcaac ccctgaacca gagtaggttc 6180  
 agagaaactg ccaaattttt ttttcttaat ttgggattgg aagcaagtta acagaagttt 6240  
 atgagttaaatg ttgcatttag tgatttttg ccatatttga gtaataatct gatTTTTG 6300  
 tttatagatt tcttcttaaa ttaactttat tcattctgct aatttagttt caaatagtga 6360  
 tttgtaatga tcagatttga tccatttctg taattgctga aattcccccg agttgc 6420  
 tggcttacc gcctctggc tgggaggtga ttgctctgct gcttcctgta acttgctgc 6480  
 ctttccct gtgtggact cctgcgggtg agagcgtggc tgaagacagc cgtgttatga 6540  
 aaggccctcc tggctgtcg aggttgtgct ctgtaatgt catccctgg tgcacagcag 6600  
 caccttctac acaggataca gttggaatgc cgccccctcg agttgtgtaa ggcagcagcc 6660  
 ttggcccttg cacataagat gctgttgaat attctgcctg caccaagtaa agggcacaga 6720  
 tagaactgct tggcatatgt tgctggggag atgagtttt tgtaaagtat actacgttct 6780  
 taagaatttg gatcataacc atgggatttt aataatagaa aaactgttga agatcagtct 6840  
 ggtcccttat ttttacagtg aagaagccaa agcccagaga agggtgttaa ctttacaagt 6900  
 gtcagacagt agttagaact tgggggggtt tttttttttt ttttttttagt atggagtctt 6960  
 gctctgtgc ccaggctgga gtgcagtggt gcgtatctcag ctcactgcaa cctctgc 7020  
 ccaggttcaa gcgattctcc tgccctcagcc tactaagtag ctgggactat aggtgcgcac 7080  
 caccacgcct agctaatttt tggatTTTTT cagtagagac agggTTTGC tatgtggcc 7140  
 aggctggtct caaactcctg acctcagatg atccagccac ctcagctcc caaagtgtcg 7200  
 gggttccagg tggtagccac catgcctggc catagacttg tttctgtcc cttctcactg 7260  
 tggctgtacc aaggtgttgc ttatcccaga agtcgtgtatc caggtcagca ctttctccat 7320

|                                                                     |      |
|---------------------------------------------------------------------|------|
| gggaagttt agcagtgtt ctttttagaa tgtatttggg aacttaatt cataatttag      | 7380 |
| ctttttttc ttcttcttat aaataggctg taccagtgc ggtcctcaact ttaatccct     | 7440 |
| atccagaaaa cacggtgggc caaaggatga agagaggtaa caagatgctt aactcttgta   | 7500 |
| ataatggcga tagcttctg gagttcatat ggtatactac ttgtaaatat gtgctaagat    | 7560 |
| aattccgtgt ttccccacc tttgctttg aacttgctga ctcatctaaa cccctgctcc     | 7620 |
| caaatgctgg aatgcttttta ctccctggc ttAAAGGAAT tgacAAATGG ggacacttaa   | 7680 |
| aacgatttgg tttttagca tttattgaat atagaactaa tacaagtgc aaAGGGGAAC     | 7740 |
| taatacagga aatgtcatga acagtactgt caaccactag cAAAATCAAT catcatttg    | 7800 |
| aaacatagga agcttctgta gataAAAAAA AAAATTGATA ctgAAAACTA gtcgagactc   | 7860 |
| catttatatg tgtatgtttt ctgaaagcct ttcagaaaaA tattaaattt aaggacaaga   | 7920 |
| tttttatatc agaggccttg ggacatagct ttgttagcta tgccagtaat taacaggcat   | 7980 |
| aactcagtaa ctgagagttt acccttttgtt acttctgaaa tcaggtgcag ccccacattt  | 8040 |
| cttcccagag cattagtgtg tagacgtgaa gccttggg aagagctgta tttAGAATGC     | 8100 |
| ctagctactt gtttgcaaat ttgtgtctac tcagtcaagt tttaatttag ctcatgaact   | 8160 |
| accttgcgtt ttagtggcat cagccctaat ccatctgatg ctttttcatt attaggcatg   | 8220 |
| ttggagactt gggcaatgtg actgctgaca aagatggtgtt ggccgatgtg tctattgaag  | 8280 |
| attctgtgat ctcactctca ggagaccatt gcatcattgg ccgcacactg gtggtaagtt   | 8340 |
| ttcataaaag gatatgcata aaacttcttc taacatacag tcatgtatct tttcactttg   | 8400 |
| attgttagtc gcggtttcta aagatccaga taaaactgtac ttgcagttca aattaggaaa  | 8460 |
| agcaatttta ttggacaatt acggtaaaaa tgaatttattt tatcttaggtc agttaagaac | 8520 |
| actgttctgc taagatgcag taaaaagcag gttacatttg accatattag atctgagttt   | 8580 |
| ggAAAACAGA agtagtcttt agttttaaaa tggccagatt ttcttgcag gattgggttt    | 8640 |
| ctcaattgtt aaacagaaca ttttgttaag ttAAACACCT gggatggact taagtattca   | 8700 |
| tgttcattca tgttcattca ggactgcagg ttatcatgac ttgtttact tggggaaagc    | 8760 |
| tgtgtccca agttatccctg gggAACTGCA tctggttctt gcaAAACACC aagtagacag   | 8820 |
| gctctctttt acctccccctt gagggcatta acattcagta gtcacttcca ttcaGTTAAC  | 8880 |
| cctttatTTT tatggTTTTT cttgagccat agttgtaaag cagaaaaATC atttataaAG   | 8940 |
| gtttgttGAA caaaattCAA aatactgttg cttAAAGTAT taagatTTT taggattata    | 9000 |
| ccttacttat aggcccgtca ttcatTTGGC atgaaatttt gagttttattt cactttcaCT  | 9060 |
| ttcctttttt tccaaAGCAA ttAAAAAAAC tgccAAAGTA agagtgcactg cggaactaAG  | 9120 |

gttactgtaa cttaccatgg aggattaagg gtagcgtgtg gtggctaca acatagttat 9180  
 ttgggttta gtatccatt tagacagcaa cacttaccta atgtttaaag gtaatgtctt 9240  
 tgcaacacca agaaaaagct ttgagtagta gtttctactt ttaaactact aaatattagt 9300  
 atatctctct actaggatta atgttatttt tctaataat ttaggatctt aaacatctt 9360  
 tgggtattgt tgggaggagg tagtgattac ttgacagccc aaagttatct tcttaaaatt 9420  
 ttttacaggt ccatgaaaaa gcagatgact tgggcaaagg tggaaatgaa gaaagtacaa 9480  
 agacaggaaa cgctggaagt cgtttggctt gtgggtaat tggatcgcc caataaacat 9540  
 tcccttggat gtagtctgag gccccttaac tcatactgtt tcctgctagc ttagaaatg 9600  
 tatacctgata aacattaaac actgtatct taaaagtgtt attgtgtgac ttttcagag 9660  
 ttgccttaaa gtacctgttag tgagaaaactg atttatgatc acttggaaaga tttgtatagt 9720  
 tttataaaac tcagttaaaaa tgtctgttcc aatgacctgt attttgccag acttaaatca 9780  
 cagatgggta taaaacttgt cagaatttct ttgtcattca agcctgtgaa taaaaaccct 9840  
 gtatggcact tattatgagg ctattaaag aatccaaatt caaactaaat tagctctgat 9900  
 acttatttat ataaacagct tcagtgaaac agattnatctt atactaacag tgatagcatt 9960  
 ttatTTGAA agtgtttga gaccatcaaa atgcataactt taaaacagca ggtcttttag 10020  
 ctaaaactaa cacaactctg cttagacaaa taggctgtcc tttgaaagct ttagggaaat 10080  
 gttcctgctt agtcatttta gcattttgat tcataaagta cctcctcatt taaaaagac 10140  
 attatgatgt aagagagcca ttgataact ttttagtgag cttgaaagg caagttacag 10200  
 cctcagctag ctagtaagat tatctacctg ccagaatggc acaaattcta cattcaaggg 10260  
 tagacgctgg cacaacccat ttacagatta gcccattaaa gcaatctgtt gcattagaag 10320  
 atggaaccaa ggaaatgtt gactgtgggt tctggctgtt gagaataat ttacacaccg 10380  
 aattatgtt atgagtcact ttctcttaat gtatTTATGT acctgagaga atgctttca 10440  
 atgttaacct aactcagggt tgactaaattt attcaattgg aaattgtaga atattatTC 10500  
 tgataaaacca gaaataagtg aaatgctgtt tggtcataaa tatgtacttt atcaaatgtt 10560  
 ggagagatca tttaggagag gaaaagctaa atggaaagac aaatctgttag tgTTTCCAAA 10620  
 gttttaaaat tatggtaaac aacagtatgt tcacagtaag tggttaaaac aaccattctt 10680  
 taaatctcag tagagaattt taaaaagca gtatttaaca catttcctt atgttagttg 10740  
 ttgcctatgt ggaataactc aatttagagac tcacttatgc ctttggaaac ttcaaataat 10800  
 attacactac cagttttac atgtgcataat aggtatggcc caatacttta aattggaaat 10860  
 acaggctgtt agtccttcaa gtctggatgt tgggtatca cgtttcttcc cagaagccat 10920  
 ttgttaggac tttaaaactt ctcagtgggc cagtgtaaaa ttaaggacaa gttttataat 10980

|                                                                        |       |
|------------------------------------------------------------------------|-------|
| ttaaatttac agataaaat                                                   | 11000 |
| <br>                                                                   |       |
| <210> 11                                                               |       |
| <211> 438                                                              |       |
| <212> DNA                                                              |       |
| <213> Homo sapiens                                                     |       |
| <br>                                                                   |       |
| <400> 11                                                               |       |
| cgacggccca gtgcaggcgt tcataattt cgagcagaag gctgtaccag tgcaggcct        | 60    |
| cactttaatc ctctatccag aaaaacacggt gggccaaagg atgaagagag gcatgttgaa     | 120   |
| gacttggcgt atgtgactgc tgacaaagat ggtgtggccg atgtgtctat tgaagattct      | 180   |
| gtgatctcac tctcaggaga ccattgcac attggccgca cactgggtgt ccatgaaaaaa      | 240   |
| gcagatgact tgggcaaagg tggaaatgaa gaaagtacaa agacaggaaa cgctgaaagt      | 300   |
| cgtttggctt gtgggttaat tgggatcgcc caataaacat tcccttggat gtagtctgag      | 360   |
| gccccccttaac tcatactgtta tcctgcttagc tgttagaaatg tatcctgata aacattaaac | 420   |
| actgtaatct taaaaaaaaa                                                  | 438   |
| <br>                                                                   |       |
| <210> 12                                                               |       |
| <211> 499                                                              |       |
| <212> DNA                                                              |       |
| <213> Homo sapiens                                                     |       |
| <br>                                                                   |       |
| <220>                                                                  |       |
| <221> unsure                                                           |       |
| <222> 462                                                              |       |
| <223> unknown                                                          |       |
| <br>                                                                   |       |
| <400> 12                                                               |       |
| tttggggcca gagtgggcga ggccgcggagg tctggctat aaagttagtcg cggagacggg     | 60    |
| gtgctggttt gcgtcgtagt ctccctgcagc gtctgggtt tccgttgcag tcctcgaaac      | 120   |
| caggacctcg gcgtggccta gcgagttatg gcgacgaagg ccgtgtgcgt gctgaaggc       | 180   |
| gacggccagt tgcagggcat catcaatttc gagcagaagg aaagtaatgg accagtgaag      | 240   |
| gtgtgggaa gcattaaagg actgactgaa ggccctgcattt gattccatgt tcatgagttt     | 300   |
| ggagataata cagcaggctg taccagtgcg ggtcctcact ttaatcctct atccagaaaa      | 360   |
| cacgggtggc caaaggatga agagaggcat gttggagact tgggcaatgt gactgctgac      | 420   |
| aaagatggtg tggccgatgt gtctattgaa gattctgtga tnctccactc tccaggagac      | 480   |
| cattgcattca ttggccgtn                                                  | 499   |
| <br>                                                                   |       |
| <210> 13                                                               |       |
| <211> 20                                                               |       |
| <212> DNA                                                              |       |
| <213> Artificial Sequence                                              |       |

<220>  
<223> Antisense Oligonucleotide  
  
<400> 13  
tcagcacgca cacggccttc

20

<210> 14  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 14  
gcccttcagc acgcacacgg

20

<210> 15  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 15  
gtcgcccttc agcacgcaca

20

<210> 16  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 16  
cgaggactgc aacggaaacc

20

<210> 17  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 17  
ggttccgagg actgcaacgg

20

<210> 18  
<211> 20  
<212> DNA  
<213> Artificial Sequence

```

<220>
<223> Antisense Oligonucleotide

<400> 18
tcctggttcc gaggactgca                                20

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 19
gaggtcctgg ttccgaggac                                20

<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 20
taggccacgc cgaggtcctg                                20

<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 21
gtcgccataa ctcgctaggc                                20

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 22
gccctgcact gggccgtcgc                                20

<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

```

<223> Antisense Oligonucleotide

<400> 23

aattgatgat gccctgcact

20

<210> 24

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 24

cactggtcca ttactttcct

20

<210> 25

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 25

acaccttcac tggtccatta

20

<210> 26

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 26

ccacacccatc actggtccat

20

<210> 27

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 27

agtcccttaa tgcttccccca

20

<210> 28

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 28  
aggccttcag tcagtccttt 20

<210> 29  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 29  
caggccttca gtcagtcctt 20

<210> 30  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 30  
tatctccaaa ctcatgaaca 20

<210> 31  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 31  
gctgtattat ctccaaactc 20

<210> 32  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 32  
gtacagcctg ctgtattatc 20

<210> 33  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 33  
tgcccaagtc tccaacatgc 20

<210> 34  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 34  
cacattgccc aagtctccaa 20

<210> 35  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 35  
tcggccacac catctttgtc 20

<210> 36  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 36  
catcgccac accatcttgc 20

<210> 37  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 37  
acacatcgac cacaccatct 20

<210> 38  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 38

tagacacatc ggccacacca

20

<210> 39  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 39  
accaccagtg tgcgccaaat

20

<210> 40  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 40  
catggaccac cagtgtgcgg

20

<210> 41  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 41  
tcatggacca ccagtgtgcg

20

<210> 42  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 42  
ggcgatccca attacaccac

20

<210> 43  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 43  
ggaatgttta ttggggcgatc

20

<210> 44  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 44  
cctcagacta catccaaggg 20

<210> 45  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 45  
gataacagat gagttaaggg 20

<210> 46  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 46  
cacaattaca cttttaagat 20

<210> 47  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 47  
agtcacaccaa ttacactttt 20

<210> 48  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 48  
ctcaactacag gtactttaaa 20

<210> 49  
<211> 20  
<212> DNA  
<213> Artificial Sequence .  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 49  
aatcagtttc tcactacagg 20  
  
<210> 50  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 50  
ataaaatcagt ttctcaactac 20  
  
<210> 51  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 51  
cataaaatcag tttctcacta 20  
  
<210> 52  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 52  
aatcttccaa gtgatcataa 20  
  
<210> 53  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 53  
atacaaatct tccaaggatgat 20

<210> 54  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 54  
tgagtttat aaaactatac

20

<210> 55  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 55  
aactgagttt tataaaaacta

20

<210> 56  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 56  
acagacattt taactgagtt

20

<210> 57  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 57  
attgaaacag acattttaac

20

<210> 58  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 58  
tcattgaaac agacattta

20

&lt;210&gt; 59

<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 59  
atacagggtca ttgaaaacaga

20

<210> 60  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 60  
ccatctgtga tttaagtctg

20

<210> 61  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 61  
tttaataaccc atctgtgatt

20

<210> 62  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 62  
agtttaatac ccatctgtga

20

<210> 63  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 63  
caaagaaaatt ctgacaaggtt

20

<210> 64  
<211> 20

<212> DNA  
 <213> Artificial Sequence  
  
 <220>  
 <223> Antisense Oligonucleotide  
  
 <400> 64  
 ttgaatgaca aagaaaattct

20

<210> 65  
 <211> 20  
 <212> DNA  
 <213> Artificial Sequence  
  
 <220>  
 <223> Antisense Oligonucleotide  
  
 <400> 65  
 acaggcgttga atgacaaaaga

20

<210> 66  
 <211> 20  
 <212> DNA  
 <213> Artificial Sequence  
  
 <220>  
 <223> Antisense Oligonucleotide  
  
 <400> 66  
 attcacaggc ttgaatgaca

20

<210> 67  
 <211> 20  
 <212> DNA  
 <213> Artificial Sequence  
  
 <220>  
 <223> Antisense Oligonucleotide  
  
 <400> 67  
 ggtttttatt cacaggcgttgc

20

<210> 68  
 <211> 20  
 <212> DNA  
 <213> Artificial Sequence  
  
 <220>  
 <223> Antisense Oligonucleotide  
  
 <400> 68  
 agggtttta ttcacaggct

20

<210> 69  
 <211> 20  
 <212> DNA

<213> Artificial Sequence  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 69  
atacagggtt tttattcaca

20

<210> 70  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 70  
ccatacaggg ttttattca

20

<210> 71  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 71  
aagtgccata cagggtttt

20

<210> 72  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 72  
taataagtgc catacagggt

20

<210> 73  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 73  
tcataataag tgccatacag

20

<210> 74  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide  
  
<400> 74  
ctcataataa gtgccataca 20

<210> 75  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 75  
gcctcataat aagtgcata 20

<210> 76  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 76  
ttttaatagc ctcataataa 20

<210> 77  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 77  
ggattctttt aatagccta 20

<210> 78  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 78  
cagcccttgc cttctgctcg 20

<210> 79  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide  
  
<400> 79  
atgttagctggg actacaggcg 20  
  
<210> 80  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 80  
cattactttc ctttaagaaa 20  
  
<210> 81  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 81  
aagatcacta aatgcaactt 20  
  
<210> 82  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 82  
caggagaatc gcttgaacct 20  
  
<210> 83  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Antisense Oligonucleotide  
  
<400> 83  
ctggtagacgc ctatTTataa 20  
  
<210> 84  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>

<223> Antisense Oligonucleotide

<400> 84

gcttcacgtc tacacactaa

20

<210> 85

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 85

tccaaacatgc ctaataatga

20

<210> 86

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 86

tggtagcc ttctgctcga

20

<210> 87

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 87

taggccagac ctccgcgcct

20

<210> 88

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 88

actttatagg ccagacctcc

20

<210> 89

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 89  
gacgcaaacc agcaccccgta 20

<210> 90  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Antisense Oligonucleotide

<400> 90  
acgctgcagg agactacgac 20