Assignment 6: Komal Wavhal

Student Id -20034443

Summarize your understanding of VC-dimension, Natarajan dimension, and DS-dimension. Give examples to show that in binary classification, both N-dim and DS-dim reduces to the VC-dim.

Solution:

Dimension Type	Binary Classification Equivalent	Generalization Type
VC-Dimension	VC-dim	Binary classification
Natarajan Dimension	Reduces to VC-dim	Multiclass classification
Graph (DS) Dimension	Reduces to VC-dim	Multiclass (stronger)

VC-Dimension

Definition: The **VC-dimension** of a hypothesis class \mathcal{H} is the largest number of points that can be **shattered** by \mathcal{H} , where *shattering* means that for **every** possible binary labeling of those points, there exists a hypothesis $h \in \mathcal{H}$ that realizes that labeling.

• Formally: A set $S\subseteq X$ is shattered by $\mathcal H$ if $\{(h(x_1),\dots,h(x_n)):h\in\mathcal H\}=\{0,1\}^n$, where $S=\{x_1,\dots,x_n\}.$

Example: In \mathbb{R}^2 , the class of linear separators (halfspaces) has VC-dimension 3. That means we can find 3 points in the plane that can be shattered, but no 4 points can be shattered by linear separators.

VC-Dimension (Vapnik-Chervonenkis Dimension)

The **VC-dimension** is a measure of the capacity of a hypothesis class \mathcal{H} in the context of **binary** classification, where the label space is $\mathcal{Y} = \{0, 1\}$ (or $\{-1, +1\}$).

- A set of instances $\{x_1, x_2, \dots, x_d\}$ is **shattered** by $\mathcal H$ if, for every possible labeling of the set (i.e., all 2^d binary labelings), there exists a hypothesis $h \in \mathcal H$ that realizes that labeling.
- The **VC-dimension** of \mathcal{H} , denoted $VCdim(\mathcal{H})$, is the size of the largest set that can be shattered by \mathcal{H} .
 - The VC-dimension measures the largest number of points that can be shattered by a hypothesis class.
 - A set of points is **shattered** by a hypothesis class if, for every possible labeling of the points (using 0/1 labels), there exists a hypothesis in the class that correctly classifies those labels.

Let $\mathcal{H}\subseteq\{0,1\}^X$. The VC-dimension of \mathcal{H} is the size of the largest set $C\subseteq X$ such that $\mathcal{H}|_C=\{0,1\}^C$, i.e., every labeling of C can be realized.

Let \mathcal{H} be the class of all thresholds on the real line:

$$\mathcal{H} = \{h_t(x) = \mathbb{I}[x \geq t] \mid t \in \mathbb{R}\}$$

- We can shatter 1 point (label it as 0 or 1 with appropriate threshold).

Theory:

- Applies to binary classification.
- Measures the **capacity** of a hypothesis class $\mathcal{H} \subseteq \mathcal{X} o \{0,1\}.$
- A set $C = \{x_1, ..., x_n\}$ is **shattered** by \mathcal{H} if for **every possible labeling** of the points (i.e., 2^n combinations), there exists a function in \mathcal{H} realizing it.

Example 1: Threshold functions on the real line

- Let $\mathcal{H}=\{h_c(x)=1[x\geq c]\}$
- Can shatter 1 point: For x = 0, choose c > 0 for label 0, c < 0 for label 1.
- Cannot shatter 2 points → VC-dim = 1

Example 2: Linear classifiers in 2D

- H: all linear decision boundaries in \mathbb{R}^2
- Can shatter 3 non-collinear points, not 4 in general
- So, VC-dim = 3

VC-Dimension – Examples

Example 1: Threshold Functions on the Real Line

Let
$$\mathcal{H}=\{h_a(x)=\mathbf{1}[x\leq a]:a\in\mathbb{R}\}$$

Claim: VC-dim = 1

- For one point x_1 , we can realize both labels (0 and 1) by choosing appropriate thresholds.
- But for two points $x_1 < x_2$, we **cannot** realize all four labelings. For example, the labeling (1, 0) is not possible (if the first is 1, then the second must be too).

Example 2: Linear Classifiers in \mathbb{R}^2

Let \mathcal{H} be all linear separators (half-planes) in \mathbb{R}^2 .

Claim: VC-dim = 3

- Any set of 3 non-collinear points in general position can be shattered (e.g., a triangle).
- But no 4 points can be shattered.

Natarajan Dimension

Definition: Let $\mathcal{H}\subseteq Y^X$ be a hypothesis class where Y is a finite set of labels (not just binary). A set $S=\{x_1,\ldots,x_n\}\subseteq X$ is **Natarajan-shattered** by \mathcal{H} if there exist two functions $f,g:S\to Y$ such that:

- **1.** For all i, $f(x_i)
 eq g(x_i)$,
- **2.** For **every** subset $T\subseteq S$, there exists $h_T\in \mathcal{H}$ such that:

$$h_T(x_i) = egin{cases} f(x_i), & ext{if } x_i \in T \ g(x_i), & ext{otherwise} \end{cases}$$

Natarajan dimension is the size of the largest set that can be Natarajan-shattered.

Natarajan Dimension

The **Natarajan dimension** generalizes VC-dimension to **multi-class classification**, where the label space $\mathcal Y$ has more than two classes.

- A set $\{x_1,\ldots,x_d\}$ is **Natarajan-shattered** by $\mathcal{H}\subseteq\mathcal{X}\to\mathcal{Y}$ if there exist two functions $f_1,f_2:\{x_1,\ldots,x_d\}\to\mathcal{Y}$, such that:
 - $f_1(x_i)
 eq f_2(x_i)$ for all i,
 - ullet For every subset $S\subseteq\{x_1,\ldots,x_d\}$, there exists $h\in\mathcal{H}$ such that:

$$h(x_i) = egin{cases} f_1(x_i) & ext{if } x_i \in S \ f_2(x_i) & ext{if } x_i
otin S \end{cases}$$

- The Natarajan dimension is the size of the largest set that can be Natarajan-shattered by ${\cal H}.$
 - Generalizes VC-dimension to multiclass classification.
 - Measures how many points can be labeled in **two distinct ways** such that **each labeling can be realized by a different function** in the class.

Let $\mathcal{H}\subseteq Y^X$, where $|Y|\geq 2.$ A set $C\subseteq X$ is N-shattered by \mathcal{H} if:

- There exist **two functions** $f_1, f_2: C o Y$ such that $f_1(x)
 eq f_2(x)$ for all $x \in C$, and
- For **every subset** $S \subseteq C$, there is an $h \in \mathcal{H}$ such that:

$$h(x) = egin{cases} f_1(x) & ext{if } x \in S \ f_2(x) & ext{if } x
otin S \end{cases}$$

Let $Y = \{0, 1\}$, then $f_2(x) = 1 - f_1(x)$. This reduces exactly to the VC-dimension condition: for every subset S, we can match labels (either 1 or 0), i.e., all 2ⁿ labelings possible.

Theory:

- Generalizes VC-dimension to multi-class classification (labels in {1,...,k}).
- A set C is Natarajan-shattered by $\mathcal{H} \subseteq \mathcal{X} o \{1,...,k\}$ if:
 - \exists two functions $f,g\in\mathcal{H}$, with f(x)
 eq g(x) for all $x\in C$

\blacksquare Example 1: 3-label intervals on $\mathbb R$

- H: assign label 1 to (-∞, a), label 2 to (a, b), label 3 to (b, ∞)
- Choose 2 points and vary the interval cutoffs → Natarajan-dim = 2

Natarajan Dimension – Examples

Example 1: All Labelings Over 2 Points in 3-Class Setting

Let
$$X = \{x_1, x_2\}$$
, $Y = \{0, 1, 2\}$, and:

$$\mathcal{H} = \{h: X o Y\}$$

That is, the full hypothesis space. Total functions: $\mathbf{3}^2=9$.

Claim: Natarajan dim = 2

Take any two different labelings f and g such that $f(x_1) \neq g(x_1)$, $f(x_2) \neq g(x_2)$. Since all possible functions exist, for any subset $T \subseteq \{x_1, x_2\}$, we can construct a function choosing labels from f on T, and from g on the rest.

Example 2: 1-vs-Rest Classifiers for 3 Classes

Suppose $X=\mathbb{R}$, $Y=\{1,2,3\}$, and define:

$$\mathcal{H} = \left\{h_a(x) = \operatorname{argmax}_i\left(w_i x + b_i
ight)
ight\}$$

Where each class is assigned a linear score. This gives a standard multiclass classifier.

For specific parameters, you can Natarajan-shatter 2 points but not 3. So:

Claim: Natarajan dim = 2

DS-Dimension (Graph Dimension)

Definition: Given $\mathcal{H}\subseteq Y^X$, a set $S=\{x_1,\ldots,x_n\}\subseteq X$ is **G-shattered** (Graph-shattered) if there exists a function $f:S\to Y$ such that for every subset $T\subseteq S$, there exists $h_T\in\mathcal{H}$ such that:

- $ullet h_T(x)=f(x)$ for $x\in T$
- $ullet h_T(x)
 eq f(x) ext{ for } x \in S \setminus T$

DS-dimension (a.k.a. Graph-dimension) is the size of the largest G-shattered set.

DS-Dimension (Daniely-Shalev-Shwartz Dimension / Graph Dimension)

The **DS-dimension** is another generalization of VC-dimension to multi-class classification and is **stronger** than the Natarajan dimension.

- A set $\{x_1,\ldots,x_d\}$ is **DS-shattered** by $\mathcal H$ if there exists a function $f:\{x_1,\ldots,x_d\} o\mathcal Y$ such that:
 - For every subset $S \subseteq \{x_1, \dots, x_d\}$, there exists $h \in \mathcal{H}$ such that:

$$h(x_i) = egin{cases} f(x_i) & ext{if } x_i \in S \
eq f(x_i) & ext{if } x_i
otin S \end{cases}$$

• The **DS-dimension** is the size of the largest set that can be DS-shattered by \mathcal{H} .

Also a generalization of VC-dimension to multiclass settings.

Measures how many points can be labeled in one way such that **every subset** of the points can be altered (swapped to some other label) and still be realized by the hypothesis class.

The **Graph dimension (DS-dimension)** measures the richness of a hypothesis class H⊆YX in terms of how many points can be labeled such that **for every subset of those points**, the labels can be **flipped (changed)** and still be realized by some hypothesis.

Unlike the **Natarajan dimension**, which works with **two distinct labelings**, the Graph dimension fixes **one labeling** and allows label flips on subsets.

The **Graph dimension** (also called **Dudley-Sudakov dimension**) of a hypothesis class $H\subseteq\mathcal{X}\to\mathcal{Y}$ is the size of the largest set $C=\{x_1,...,x_n\}\subseteq\mathcal{X}$ for which:

- There exists a base function $f \in H$ such that:
 - For every subset $S \subseteq C$, there exists a hypothesis $h \in H$ satisfying:
 - $ullet \ h(x)=f(x) ext{ for all } x\in S$
 - h(x)
 eq f(x) for all $x \in C \setminus S$
- You fix a labeling fff.
- For each possible **subset of inputs**, you must find an h∈Hh that:
 - o **Agrees** with fff on that subset.
 - o **Disagrees** with fff on the remaining points.

So, you're effectively able to "flip" the label at any subset of the points, starting from the fixed base labeling fff.

Let's consider:

$$\bullet \quad \mathcal{X} = \{x_1, x_2\}$$

•
$$\mathcal{Y} = \{1, 2, 3\}$$

• Let
$$f(x_1)=1, f(x_2)=2$$

We check if for all subsets $S \subseteq \{x_1, x_2\}$, we can construct hypotheses h that agree with f on S and disagree elsewhere (using a different label from $\{1,2,3\}$).

For example:

•
$$S=\emptyset$$
: $h(x_1)
eq 1$, $h(x_2)
eq 2$

•
$$S = \{x_1\}: h(x_1) = 1, h(x_2) \neq 2$$

•
$$S = \{x_2\} {:} \ h(x_1)
eq 1$$
 , $h(x_2) = 2$

•
$$S = \{x_1, x_2\}$$
: $h = f$

If all 4 such functions exist in H, then DS-dim ≥ 2 .

Theory:

- · Also for multiclass classification.
- A set $C \subseteq \mathcal{X}$ is **DS-shattered** by H if:
 - \exists function $f \in H$, such that for **every subset** $S \subseteq C$, there exists $h \in H$ where:
 - h(x)=f(x) for all $x\in S$
 - h(x)
 eq f(x) for all $x \in C \setminus S$

This means: from a base labeling f, you can "flip" labels on any subset using some hypothesis in H.

DS-Dimension (Graph Dimension) - Examples

Example 1: Same Setup as Natarajan Example 1

Let $X = \{x_1, x_2\}$, $Y = \{0, 1, 2\}$, and:

$$\mathcal{H} = \{h: X o Y\}$$

This is the full function class. Choose any function f, and we can construct h_T such that it matches f on any subset T, and differs elsewhere.

Claim: DS-dim = 2

Example 2: Simple Multiclass Majority Vote

Let $X=\mathbb{R}$, $Y=\{1,2,3\}$, and define $\mathcal H$ to contain classifiers that output:

- 1 if x < 0
- 2 if $0 \le x < 1$
- 3 if $x \geq 1$

You can G-shatter (graph-shatter) 2 points (e.g., -1, 0.5) using function f(x)=2, and changing labels on subsets.

Claim: DS-dim = 2

Reduction to VC-Dimension (Binary Case)

- In binary case, label flips from base $f(x) \in \{0,1\}$ can only result in $0 \rightarrow 1$ or $1 \rightarrow 0$.
- So, flipping labels on subsets of points corresponds exactly to realizing all possible 2ⁿ labelings, which is the definition of VC-dimension.

Let $X=\{x_1,x_2\}$, and H contains **all** binary functions from X to $\{0,1\}$:

$f(x_1), f(x_2)$	Can flip on subset S	Resulting function in H?
(0,0)	$S = \{x_1\} \to (0,0) \to (1,0)? \checkmark$	
	$S = \{x_2\} \to (0,0) \to (0,1)? \checkmark$	
	S = Ø → (1,1)? ✓	
	$S = \{x_1, x_2\} \rightarrow (0, 0)? \checkmark$	

So all subset flips are possible \rightarrow DS-dim = 2

But this is also the condition for **VC-dim = 2** (set $\{x_1, x_2\}$ is shattered).

Therefore, in binary classification:

VC-dim = Natarajan dim = DS-dim

Reduction to VC-dimension in Binary Classification

Let's consider the case when $\mathcal{Y}=\{0,1\}$, i.e., binary classification.

◆ Natarajan Dimension reduces to VC-dimension

In the binary case, for each point x_i , the only two possible distinct labels are 0 and 1. So for any set $\{x_1,\ldots,x_d\}$, Natarajan-shattering requires that for every labeling of the points with 0 and 1, a hypothesis exists in $\mathcal H$ to realize it. This is exactly the definition of **shattering** in the VC-dimension sense.

Therefore:

Natarajan dimension = VC-dimension for binary classification

DS-Dimension reduces to VC-dimension

Again, take $\mathcal{Y}=\{0,1\}$. Let f be any fixed function (e.g., $f(x_i)=1$ for all i). Then, DS-shattering requires that for any subset S, there exists a hypothesis that agrees with f on S and disagrees on its complement — i.e., it outputs 1 on S and 0 on the rest.

This again corresponds to realizing all possible binary labelings of the set (i.e., all subsets of the set labeled 1).

Therefore:

DS-dimension = VC-dimension for binary classification

Example to Illustrate the Reduction

Let's take a simple hypothesis class \mathcal{H} over \mathbb{R} :

Let $\mathcal{H}=\{h_t(x)=\mathbf{1}\{x\leq t\}:t\in\mathbb{R}\}$ — the class of threshold functions.

- This class can **shatter one point**: given any single point x_1 , we can assign it 0 or 1 by choosing the threshold appropriately.
- But it **cannot** shatter two points $x_1 < x_2$, because not all four binary labelings are realizable.
- So: $VCdim(\mathcal{H}) = 1$
- Since this is a binary classification setting:
 - Natarajan $\dim = 1$
 - DS-dimension = 1

Relationship in Binary Classification (Y={0,1}

Let
$$\mathcal{H}\subseteq\{0,1\}^X$$
 .

For VC-dimension:

We look for the largest set that can realize **all** 2^n binary labelings \rightarrow i.e., every subset of the set can be represented by \mathcal{H} .

For Natarajan dimension:

Let f(x) = 0, g(x) = 1. Since binary labels only have 2 options, these are the only possible differing label pairs. Then the condition of Natarajan-shattering becomes:

- For every subset $T\subseteq S$, there exists $h_T\in \mathcal{H}$ such that:
 - $h_T(x)=0$ if $x\in T$
 - $ullet h_T(x)=1$ if x
 otin T

This is **equivalent** to requiring that every labeling (every subset of S) be realizable \rightarrow same as VC-dim.

For DS-dimension:

Similar. The function $f:S \to \{0,1\}$, and for every subset T, we require:

- $ullet h_T(x)=f(x)$ for $x\in T$,
- $h_T(x)
 eq f(x)$ for x
 otin T

This is equivalent to being able to flip values of f on any subset — again, all possible binary labelings \rightarrow VC-dim.

In binary classification:

$$VC\text{-}dim(\mathcal{H}) = Natarajan\text{-}dim(\mathcal{H}) = DS\text{-}dim(\mathcal{H})$$

Showing That Natarajan & DS-Dimension Reduce to VC-Dim in Binary Case

Binary Example - Full Class on 2 Points

Let $X=\{x_1,x_2\}, Y=\{0,1\}$, and $\mathcal{H}=\{h:X o\{0,1\}\}$, i.e., all 4 functions.

Then:

- VC-dim = 2 (since every subset of $\{x_1, x_2\}$ can be labeled in all 4 ways)
- Natarajan-dim: Use f(x)=0, g(x)=1. Then for every subset T, we can form a function matching f on T and g on $S\setminus T$ o exactly VC-style shattering.
- DS-dim: Fix any f (say, all 0s), and flip labels on arbitrary subsets → all labelings possible → again
 VC-style shattering.
- So, all three dimensions are 2.

Dimension	General Use Case	Reduces to VC-dim in Binary Case?
VC-Dimension	Binary classification	Yes
Natarajan Dim	Multi-class classification	Yes (equivalent in binary case)
DS-Dimension	Stronger multi-class analysis	Yes (equivalent in binary case)

Binary Example - Thresholds

$$\mathcal{H} = \{h_a(x) = \mathbf{1}[x \leq a]\}$$

- VC-dim = 1
- Natarajan-dim: Only two labels; pick f=0, g=1. You can shatter 1 point (not 2) ightarrow same as VC-dim.
- DS-dim: Same logic, fix any label, flip on 1 point → can't do 2.
- Again, all dimensions = 1.

Setting	VC-dim	Natarajan-dim	DS-dim
Full binary class on 2 points	2	2	2
Thresholds in $\mathbb R$	1	1	1

✓ In binary classification,