Algoritmi in podatkovne strukture 1

Visokošolski strokovni študij Računalništvo in informatika

Jurij Mihelič, UniLj, FRI

Poti v grafih

- Sprehod (walk)
 - zaporedje povezav oz. zaporedje vozlišč

$$(v_1,v_2), (v_2,v_3), (v_3,v_4), ..., (v_{l-1},v_l)$$
 OZ. $v_1, v_2, v_3, v_4, ..., v_l$

- začetek naslednje povezave je enak koncu prejšnje
- odprt in zaprt sprehod
- Steza (trail)
 - vsaka povezava nastopa le enkrat
- Pot (path)
 - vsako vozlišče nastopa le enkrat
- Cikel
 - zaprta pot

Število sprehodov

- Množenje matrike sosednosti
 - $-A, A^2, A^3, \dots$
 - A^I ... št. sprehodov
 dolžine natanko I
- Časovna zahtevnost
 - *l*·O(MM)
 - MM ... matrično množenje

	0	1	2	3	4	5
0	-	1	-	1	-	-
1	1	-	1	1	1	-
2	_	1	-	-	1	1
3	1	1	-	-	1	-
4	-	1	1	1	-	1
5	-	-	1	-	1	-

Dosegljivost

- Dosegljivost vozlišč
 - Ali obstaja pot iz u v v?
 - Kako dolga je lahko najdaljša pot?
 - Pregledamo matrike $A, A^2, A^3, ..., A^{n-1}$
 - $-O(n\cdot MM)$

Število trikotnikov

- Kaj je trikotnik (v grafu)?
- Kje v A³ najdemo št. trikotnikov?

- Št. trikotnikov
 - $tr(A^3) / 6$

A ³	0	1	2	3	4	5
0	2	6	3	5	3	3
1	6	6	8	7	9	3
2	3	8	4	4	7	5
3	5	7	4	4	8	3
4	3	9	7	8	6	6
5	3	3	5	3	6	2

Obhodi grafov

- Iskanje v globino (depth-first search)
 - načelo poguma
 - gremo naprej, če le lahko
 - lahko pridemo zelo daleč od začetka

- Iskanje v širino (breadth-first search)
 - načelo previdnosti
 - najprej raziščemo vso svojo okolico

Iskanje v globino

- Ideja algoritma
 - začnemo v
 poljubnem ne-obiskanem vozlišču
 - izpišemo vozlišče
 - rekurzivno obiščemo
 poljubnega ne-obiskanega soseda
 - če ni nobenega ne-obiskanega soseda, se vrnemo en korak nazaj
 - kdaj se rekurzija ustavi?
 - na kateri podatkovni strukturi temelji algoritem?

Iskanje v globino

- Gozd iskanja v globino
 - sestoji iz dreves iskanja v globino
 - kdaj je rezultat drevo in kdaj gozd?
- Izrek
 - dfs(v) obišče vsa iz v dosegljiva vozlišča
- Vrstni red obiskovanja
 - vstop ko vozlišče prvič obiščemo
 - izstop ko vozlišče zadnjič obiščemo

Iskanje v širino

- Ideja algoritma
 - začnemo v
 poljubnem ne-obiskanem vozlišču
 - izpišemo vozlišče
 - vse sosede dodamo v vrsto za obiskovanje
 - naslednjega obiščemo prvega iz vrste

Iskanje v širino

- Gozd iskanja v širino
 - sestoji iz dreves iskanja v širino
 - kdaj je rezultat drevo in kdaj gozd?
- Izrek
 - bfs(v) obišče vsa iz v dosegljiva vozlišča
- Vrstni red obiskovanja
 - ob dodajanju v vrsto

DFS vs BFS

- pogum
- globina
- sklad (implicitno)
- gozd iskanja v globino
- dva vrstna reda
 - vstopni in izstopni

- previdnost
- širina
- vrsta
- gozd iskanja v širino
 - en vrstni red

- obišče vsa dosegljiva vozlišča
- O(n+m) seznam sosedov
- O(n²) matrika sosednosti

Psevdokoda DFS in BFS

DFS

```
fun dfs(v) is
    // oznamičmo vozlišče v
    time += 1; mark[v] = time
    forall u in N(v) do
        if mark[u] == 0 then dfs(u)
```

Skupno

```
fun dfs/bfs_init() is
    forall v in V do mark[v] = 0
    time = 0

fun dfs/bfs_full() is
    dfs/bfs_init()
    forall v in V do
    if mark[v] == 0 then dfs/bfs(v)
```

BFS

Uporaba DFS / BFS

- Dosegljivost vozlišč
 - neusmerjeni ali usmerjeni graf
 - je iz vozlišča u vozlišče v dosegljivo?
- Cikličnost grafa
 - neusmerjeni ali usmerjeni graf
 - ali je graf cikličen / acikličen?

Uporaba DFS / BFS

- Najkrajša pot
 - dolžina poti je enaka številu povezav na poti
 - ali DFS najde najkrajšo pot?
 - ali BFS najde najkrajšo pot?

Topološko urejanje

- Problem
 - topološko razvrsti vozlišča usmerjenega grafa
- Topološko
 - če $uv \in E$, potem je u pred v
- Primer
 - kje je težava?

Topološko urejanje

- Ideja algoritma (preko DFS)
 - izvedemo DFS na celotnem grafu
 - povezava do že obiskanega vozlišča ⇒ cikel
 - izstopni vrstni red obiskovanja
 - v obratnem vrstnem redu

- Pravilnost
- Detekcija ciklov

Topološko urejanje

- Ideja algoritma (odstranjevanje vozlišč)
 - odstranimo vsa vozlišča z vhodno stopnjo 0
 - jih dodamo v seznam
 - ponavljamo postopek

Izrek

 vsak DAG ima vsaj eno vozlišče z vhodno stopnjo 0

Povezanost neusmerjenega grafa

- Neusmerjeni graf
 - je povezan, če med vsakim parom vozlišč obstaja pot

Povezanost neusmerjenega grafa

- Preverjanje povezanosti
 - uporabimo dfs(v)
 - če so vsa vozlišča označena, je graf povezan

- Povezane komponente
 - razdelitev grafa na največje povezane podgrafe
 - vozlišča v isti komponenti enako označimo
 - vsaka uporaba dfs(v)
 drugače označuje
 vozlišča

Povezanost usmerjenega grafa

- Usmerjeni graf
 - je šibko povezan, če je ustrezen neusmerjeni graf povezan
 - vse usmerjene povezave spremenimo v neusmerjene
 - je povezan, če za vsak par vozlišč u in v obstaja pot iz u v v ali v v u
 - je krepko povezan, če za vsak par vozlišč u in v obstaja pot iz u v v in v v u

Krepko povezane komponente

- Definicija
 - SCC strongly connected components
 - razdelitev grafa na največje krepko povezane podgrafe
- Primer

Krepko povezane komponente

- Kosaraju-ov algoritem
 - izračunaj **izstopni vrstni red** obiskovanja
 - transponiraj graf (obrni povezave)
 - v obrnjenem izstopnem vrstnem redu zaporedoma izvajaj dfs(v)
 - vsaka uporaba dfs(v) označi eno komponento

Krepko povezane komponente

- Tarjan-ov algoritem
 - predelava dfs(v)
 - mark ... čas prvega obiska (vstopni vrstni red)
 - low ... najmanjši čas obiska v naknadno obiskanih vozliščih
 - morebitni popravki vrednost low
 - po obisku neoznačenega sosednjega vozlišča
 - po detekciji povratne povezave na vozlišče na skladu