

區塊圖形編輯設計

Outline

- 基本概念複習
- 區塊圖形編輯設計
- Quartus Prime補充
- 課堂練習

基本概念複習

Logic Gate Symbols and Behavior

Logic gates symbols:

Timing diagram(waveform)
$$X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ Y & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$(AND) \quad X \cdot Y = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$(OR) \quad X \cdot Y = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$(NOT) \quad \overline{X} = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$$

Logic Gates

Name	Graphic symbol	Algebraic function	Truth table
			x y 1
AND	<i>x</i>	$F = x \cdot y$	0 0 0
AND			0 1 (
			1 0 (
			1 1 1
o.p.	$x \longrightarrow F$	F = x + y	x y 1
			0 0 0
OR			$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$
			1 0 1
			1 1 1
Inverter	x	F = x'	$x \mid F$
			0 1
			1 0
Buffer	<i>x</i> —— <i>F</i>	F = x	x F
			0 0
			1 1

			х	y	F
	<i>x</i>	F=(xy)'	0	0	1
NAND			0	1	1
	•		1	0	1
			1	1	0
			х	y	F
NOR	x y F	F = (x + y)'	0	0	1
			0	1	0
			1	0	0
			1	1	0
Exclusive-OR (XOR)	x y F	$F = xy' + x'y$ $= x \oplus y$	х	у	F
			0	0	0
			0	1	1
		200 TO 40	1	0	1
			1	1	0
			х	у	F
Exclusive-NOR	$y \longrightarrow F$	F = xy + x'y'	0	0	1
or		$= (x \oplus y)'$	0	1	0
equivalence		10 (\$15)	1	0	0
			1	1	1

Expressions of Logic Function

Truth Table

Truth fable				
$ \mathbf{F} = \mathbf{X} + \overline{\mathbf{Y}} \times \mathbf{Z} $				
0				
1				
0				
0				
1				
1				
1				
1				

Equation

$$F = X + \overline{Y} Z$$

Logic Diagram

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not.

Boolean Algebra

• An algebraic structure defined on a set of at least two elements, B, together with three binary operators (denoted +, · and) that satisfies the following basic identities:

$$1. X + 0 = X$$

3.
$$X + 1 = 1$$

5.
$$X + X = X$$

$$7. X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

$$2. X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

10.
$$X + Y = Y + X$$

12.
$$(X + Y) + Z = X + (Y + Z)$$

14.
$$X(Y+Z) = XY+XZ$$

16.
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

11.
$$XY = YX$$

13.
$$(XY)Z = X(YZ)$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Boolean Operator Precedence

- The order of evaluation in a Boolean expression is:
 - 1. Parentheses
 - 2. NOT
 - 3. AND
 - 4. OR
- Consequence: Parentheses appear around OR expressions
- Example: F = A(B + C)(C + D)

$$\bullet F = A(B + C)(C + D)$$

$$\bullet F = (AB + AC)(AC + A\overline{D})$$

$$\bullet$$
 F = ABC + ABD + AC + ACD

•
$$F = ABC + AB\overline{D} + AC \rightarrow AC + ABC + AB\overline{D}$$

•
$$F = AC(1 + B) + ABD$$

•
$$F = AC + ABD$$

•
$$F = ABC + ABD + AC + ACD$$

CD AB	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

K-Map

A	В	C	D	X
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

CD AB	00	01	11	10
00	To the second se	1	3	1
01	4	1	7	6
11	12	13 1	15	14
10	8	9	11	10

$$F(w, x, y, z) = C' + A'D' + BD'$$

 $F(A, B, C, D) = \sum (0,1,2,4,5,6,8,9,12,13,14)$

F(A, B, C, D) = A'B'C'D'+A'B'C'D+A'B'CD'+A'BC'D'+A'BC'D+A'BCD'+AB'C'D'+AB'C'D+ABC'D'+ABC'D'+ABCD'

區塊圖形編輯設計

• 開啟專案(1/3)

New...

Open...

Close

New Project Wizard...

Ctrl+N

Ctrl+O

Ctrl+F4

• 開啟專案(2/3)

• 開啟專案(3/3)

Quartus Prime 電路功能模擬

New New

Quartus Prime

Insert Node or Bus

Name:

Use Node Finder to insert

X

OK

• Insert Node(2/2)

Name Graphic symbol Algebraic Truth table

AND $x - F = x \cdot y$ $F = x \cdot y$ F

×

Clock

• 設定所有 Input 訊號 (1/3)

Name Graphic symbol Algebraic Truth table

AND $x = F = x \cdot y$ F F = x · y

AND $x = F = x \cdot y$ Truth table x = y = F0 0 0
1 1 0
1 0 0
1 1 1 1

X

Clock

• 設定所有 Input 訊號 (1/3)

• 設定所有 Input 訊號 (3/3)

• 開始模擬

• 模擬結果

Quartus Prime 補充

Quartus Prime 補充(一)

• 建立電路符號檔和轉檔(1/2)

Quartus Prime 補充(一)

• 建立電路符號檔和轉檔(2/2)

Quartus Prime 補充(二)

Quartus Prime 補充(二)

• 轉檔(HDL)(2/2)

課堂練習

實驗一:Quartus操作練習

- 請完成下列邏輯表示式之:
 - a) 真值表
 - b) 最簡SOP
 - c) 電路設計並下載至DE10-Lite
 - d) 模擬波形圖

 $Y(A, B, C, D) = \sum (0, 1, 4, 5, 6, 8, 9, 10, 12, 13, 14)$

- Pin Definition : A(C12) B(D12) C(C11) D(C10) Y(A8) •
- 本次實驗需助教確認正確,並將專案跟文件資料(真值表、最簡SOP ···)壓縮上傳EE-Class。
- 作業X_第X組 例如:作業3_第一組