			·			
١	X .	ł				(HS)
11	179 1	1 4 N	green.	1	\cap	2 - 10
		-tholichic	Swee	london	July	2019:
		Towarie	2	entropy to the second s	7.1	-
		Market Control of the	2007			
Sec. 1	STREET, STREET	Λ				

- o) Terminology
- 1) Necessary/sufficient for ticlet disjenser
- 2) Necessary/sufficient for Confused Deputy
- Space and time
 a) << will A > in S > vs < will < A in S >> and < will A using 5 >
 - b) "robust assorbor"
 - c) equivalence « will A > in 1 s and (will A way S) when A is
 - 4) Lauguage lemmes

 - a) cause of change b) what can cause a sor in the visible date c) Only connection begets connections

- 5) Proof outlines for some of the properties in 1)
- INV-1, INV-2, INV-3 from our 6) Past outlies to ncissim due prasquo
- 7) Hoare losse rule usin (Will A) in S and its use to the DOM accounts

add · différence (0 acc o')

vs how it books in sen. bs.

If. of Hoo V thuson Jx. x=o

us how in act.

ACL talks about principal mot the objects

HSO-1 (informal) TOUNINO DE SONO is an "interval step! it 14H, 5~5' of MgH, oF <intend this> is an 'external step" of MXM, S ~ O Mg H, 5 F Kexlend Wils > is a "full step", as in Fig. 6, ie Mend a external step. MxM, 500 5' is a "visible step", a in Molli, 8 A 6 Det 24.

To do define * between strates,

Menagerie of Dispensers

One button operation

A press operation returns a new ticket number:

```
type Dispenser = interface {
  press -> Number
}

class dispenser -> Dispenser {
  var count : Number := 0
  method press -> Number {
    count := count + 2
    count
  }
}
```

Result must be even

Hoare logic style:

```
d : Dispenser { r = d.press } even(r)
```

Chainmail style:

say that this spec is not cocommended, and HL is nicer

```
forall d : Dispenser. forall o : Object
  [ o.calls {r = d.press} --> Next(even(r)) ]
```

Result must be monotonically in this is not supported in Chainmail yet

Chainmail v1:

```
forall d : Dispenser [ even(d.count) && [ Next(d.count == c') --> (c' >= d.count)
] 
// requires d.count as ghost field

forall c : Number d : Dispenser d.count == c { r = d.press } r == c + 2 & d.count == r ]

// Hoare tripple in the middle?
```

Chainmail v2:

```
forall n, n': Number, forall d: Dispencer [ n==(d.press) --- && [Next(n '==d.press) ---> n' >= n])]

In current Chainmail we expect d.press to be a ghostfield.
```

Revocable

```
AND THE PARTY OF T
  type RevocableDispenser = interface {
            press -> Number
      revoke
           }
            class revocableDispenser {
                        var count : Number := 0 is qhost //hmm
                        var state : Boolean := true is ghost //hmm
                       method press {
                                    if (state) then {
                                           count := count + 2
                                           count else {
                                           error "revoked"
                        method revoke {state := false}
                        method switch {state := !state}
}
```

Hoare logic version:

```
(d.state = true) && (d.counter = c) {d.press} (d.state = true) && (d.counter = c + 2)

Also need another triple for when d.state=false
```

Or, stealing syntax from somewhere I've forgotten: Let us stick with one version for Hoare Logics

```
pre (d.state = true) && (d.counter = c)
prog {d.press}
post (d.state = true) && (d.counter = c + 2)
```

Chainmail version:

```
forall d : Dispenser, o : Object (d.state == true) ! Past(o calls d.revoke)
```

(either way, need to adapt spec of next to deal with errors one way or another)

switchable

```
forall d : Dispenser, s : Boolean. d.state = s && Next(d.state == ! s) --> exists
  o : Object. [o.calls d.switch]
forall d : Dispenser, s : Boolean. d.state = s && Will(d.state == ! s) --> Will(e xists o : Object. [o.calls d.switch] )
```

Say that "extra bits" means "not in Chainmail yet"

The version below uses two extra random bits of notation: * e @ t - expression at time t * Tony(t) - assuming t is a call, the matching return is just done.

```
(d.state == s) @ t && (d.state ==_t !s) @ Tony(t) --> exists t'' . t < t'' < Tony(t). exists o [o.calls d.switch] @ t''
```

Two button operation

- A press opration presses the button
- A take operation retrieves the ticket

push button, non accumulating

```
d.pressed {r = take} r : Ticket && d.pressed = false
!d.pressed { r = take} r = error
d.pressed && Next(~d.pressed) --> exists o. <o calls d.take>
```

push button, non accumulating

assume additional var presses := 0 is ghost

HSL-4

I propose that we use n or n' for numbers, and d or d' for Pispensers

```
forall d' : Number; d' == d.presses && d' > 0 {r = take} r : Ticket && d.presses
== d' - 1
forall d' : Number; d' == d.presses && {press} d.presses == d' + 1
d.presses <= 0 { r = take} r = error
forall d' : Number; d.presses && Next(d.presses != d) --> exists o. (<o calls d.ta
ke> || <o calls d.press>)
```

small matters of specifying

- · coloured tickets
- price
- delay / timeout
- pin number

DOM Membrane

the trick here is the example from the paper is (almnost) all that's needed:

```
forall S : Set, nd : Node
  [ <will<changes< nd.property>> in S >> -->
  exists o : Object[
  o ∈ S && !(o : Node) && !(o: Wrapper) &&
      [ exists nd' : Node < o access nd' > ||
      exists w:Wrapper. exists k:Number.
      ((o access w) ∧ nd.parent(k)=w.node.parent(w.height)) ]]
```

that's fine for a one-way wrapper; turns out it would requires a two-way membrane if e.g. the DOM got a notify messaage.

Here's a DOM with membrane

```
type Node = interface {
   property -> String
   property:=(_ : String)
   parent -> Node
   click
   callback( l : Listener )
type Listener = interface {
   clicked(n : Node)
}
def root = object {
 method property { "Root" }
  method property:=(_) { }
  method parent {self}
  method callback( _ ) { }
class node(parent' : Node, property' : String) {
  method parent { parent' }
 var property is public := property'
 method callback( 1 : Listener ) {
    l.clicked( self )
  }
}
```

```
method usingWrappers(unknwn){
  def n1 = node(root, "fixed")
  def n2 = node(n1, "robust")
  def n3 = node(n2, "const")
  def n4 = node(n3, "fluid")
  def n5 ≤ node(n4,"variable")
  def n6 = node(n5, "ethereal")
  def w = n5 //BUG
  def w = wrapper(n5,1)
  //w.parent.parent.property:= "hacked"
  w.callback( object {
      method clicked(w) { w.parent.parent.parent.property:= "hacked" }
  } )
  assert {n2.property == "robust"}
}
usingWrappers( object { method untrusted( w ) { } } )
class wrapper(node, depth) -> Node {
  //method parent { node.parent } //BUG
  method parent {
     if (depth > 0) then {wrapper(node.parent, depth - 1)}
        else { error "Hack attempt detected" } }
  method property { node.property }
  method property:=(p) { node.property:= p }
  //method callback( l : Listener ) { node.callback( l ) } // BUG
  //method callback( l : Listener ) { 1.clicked( self ) } //SEMI-CHEATING
  method callback( 1 : Listener ) { node.callback( repparw(1, depth) ) }
 }
 class repparw( listener, depth ) -> Listener {
    method clicked (node) { listener.clicked( wrapper(node, depth) ) }
 }
 method assert(block) {
   if (!block.apply) then {Exception.raise "Assertion Failed!"}
 }
```

Honest Deputy

James thinks the answer to the compiler as confused deputy problem is relatively straightforward. Given a spec for the compiler, something like:

```
forall s : Object, calls compiler.compile(inName,outName) ->
   Next[ FileContents( outName ) == Compile( FileContents( intName )) ]
```

and for a billable service

```
forall s : Object, s calls billable(_) ->
   Next( FileContents ( BILLING ) == Prev(FileContents(BILLING)) ++ ThisBill )
```

or the Hoare logic verions, being a bit more picky:

```
ExistingFile(inName) && ValidFileName(outName)
{ compiler.compile(inName,outName) }
   FileContents( outName ) == Compile( FileContents( intName ))

forall c = FileContents(BILLING)
{ compiler.compile(inName,outName) }
   FileContents (BILLING) == c ++ ThisBill
```

the point is that composing those specs together must lead to an unstatisfiable specification, because if you call the compiler with outName=BILLING, then the spec requires both billing data and compiled file contents to be in the BILLING file. To make it satisfiable, you need to add in a precondition e.g. that inFile != Billing...

We could also bound the authority of the deputy - this will manage the risk, but doesn't stop the classical confusion.

```
forall d : Deputy; forall f : File;

d accesses f ->

(f = BILLING) ||

(Was( exists o : Object. o calls d(_) && o accesses f))
```

HS= 3.1

Space	and	AW.C
-------	-----	------

a) Difference ((will A>MS> and (will <Ains>)

let us take

and also (will A in 5> / we do not

> 3 5,52. 5=8/5×52. ^ 5/52 + A

US << will A> is > with means.

35,52 5 = 15 x 52 x

015 ~ 5' ^

02 = A

I think that the two recoions are equivalent of A is "orbust" and Is is accorded to new old. he need the version above (parhape) for somewhat the need the version above (parhape) for somewhere of the topic to some mee [HS6-5]

Original Det (q,h) 1s = (q,h1s)

(q;h) |s = (q, h) sudul Many of Kinken (x)

Û

HS- 45%

Lauguage lemma,

My 5 20 0 / that is in the "full-sleps" ang 2(0, f) \$ 2, (0, f) Clasi(0) = Clas (4hi) 0

oper semantics That direct from

lemma Lo o Elexteral 0> M,0 ~00 o' = (external o>

/not doep

1 > MXH, 5 36' , M&H, 5 NS 5

lemma L2

If a. MgM, 5 ~> 5

l'ie in Mible trates

and

5(0, f) + 5'(0, f)

and

MgM', of = internal (0)

and

).

All calls from internal functions in M coular to interalification only, ie wo external call bades.

the transition on of is due to a call of some internal function.

Th) they do we fensure d? iBy one semantics or by invariant. How do we formalise it?

To formalise e-

73 How do we generalize/weaken d?

Only Convedicity begets Convochity [45-4.3] HEO' [5 35 \ \ 5 + <0 acc o'> \ 0 + o' 30". [0 = (0" acc 0")] Lemma L4' // Left more lands 30", 0/5 = (60" acc 0'> 10"=0)] Knot & Comments The Note that these Rommas should hold and // visible steps both for MgMy 5 350 11 full steps and M,500 (advanced:) Can we find a lemma that transle projection of it

Lemma LX

for all state, δ,δ' all sets S, T

Hen Alexe exist a 5"

· 0/7 ~ 5×5"

Note: Me Must defie 5*5'

	H	5	6	-1	-
_	***********	- Andrews	- Carriedor	THE REAL PROPERTY.	ورما

Proof outlines for INV-1, INV-2, INV-3 -from

Lemma LG

for all M, H', o, o', a, o

a) M=MBAI OI M=MBAZ

b) M*M, 5 ~> 5' 1 5(Ris) = M.
Vie an interval step

c) of = a : Account 15 = (extend o) = 0 = (o acc a)

of coace as

This, MBAI and MBAZ do not leak access.

W

1/ generalis so that NEA: Account V 5 = a: Bounk.

	The second secon
Lemma L6'	LHS6-2
for all M, M', 5, 5', 0, 0, 5.	
a) M=MBA, or M=MBAZ	
b) Mg H', 5 5 5 5	
c) of a: Account 1 0/s = (ext	6 >
a) o'= <0 acc a>	
30. 5/s = (6° acc a) x 5 =	· (ent o'>
Proff using 6 and 15 or 19	
Lemma L6"	
For all M, M, 5,5', Q, 0': a) M=MBA1 O1 M=MBA2 b) $\sigma \in Arising(MgH')$ c) MgH; $\sigma \models (extend o> \land \land$	(0 acc o(>)
MgH, 0 = 0: Account v o': Bank	

TODO: Write the lemma as a policy

change S

lemma 17 adherence to INV-1 To all M, M, a, 0, 0, 01, 61, K a) M=MBA, ON M=MBA2 b) Mg M1,5 ~ 5' a) MgH, o H (a: Account a a, balance = 6) d) HgH, o = a. balance + k Then 3xid Fr. cont = a. deposit (x) 5. cnt = x. depoir(a,j)

By L2, the step in b) was an internal function. By looking at internal functions in HBAI, we see that the only one that is externally callable (using L6"), we deduce that the only externally callable deduce that the only externally callable function will modifie the balance is harrife function will modifie the balance is harrife to hote assure we had a chasical spec of transfer. THINK what about deposit(-,-,-) in 2

Lemma L8 advance to 1NV-2 for any $\sigma_1, \sigma_1', \sigma_1'', \sigma_2', \sigma_2, \alpha, M, M', E$ a) M=MBAI ON N=MBAZ b) $\sigma_1 \times \sigma_2 \models \left[\alpha : Acc \land \alpha : bal = k\right]$ d) of = a.bal=k on = k a.bal + k Then d) do', on = (exto) 1 (oace a) Proof: From c) and by ... we obtain, that ex. o' 1) 0,001/ <ext d'> x <0' calls a.der(-)> V (of call - .dep(a.)> From 1) and language lamme? Mrc obtain
2) $5_1' = \langle 0' | acc | a \rangle$ from 2) and lemn L6' (or a variable.) 3) 30'. 51 = (ext 0> 1 <0 acc a) which is exactly of.

?? There was no need to use what space the New near of 15 mor the lemmas?

Proving preservation of DOM-proposis

+5. [Kwill A> in s> -> A, KBin s>]

A'-> <-18 in 22 | x ace 2 y y ace 23>

TA A A' { x.m(y) 3 -7A

Now, we can onou in DOM.

math (unkat, unk2) {

Nd1 = --

Nd2 =

unkaz. tako (w, wha)

ux me her.