## ETSI TS 138 212 V15.3.0 (2018-10)



5G; NR;

Multiplexing and channel coding (3GPP TS 38.212 version 15.3.0 Release 15)



# Reference RTS/TSGR-0138212vf30 Keywords 5G

#### **ETSI**

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

#### Important notice

The present document can be downloaded from: <u>http://www.etsi.org/standards-search</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at <a href="https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx">https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx</a>

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommitteeSupportStaff.aspx

#### **Copyright Notification**

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2018. All rights reserved.

DECT<sup>™</sup>, PLUGTESTS<sup>™</sup>, UMTS<sup>™</sup> and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.

3GPP<sup>™</sup> and LTE<sup>™</sup> are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

oneM2M logo is protected for the benefit of its Members.

**GSM**® and the GSM logo are trademarks registered and owned by the GSM Association.

## Intellectual Property Rights

#### Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

#### **Trademarks**

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

#### **Foreword**

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under <a href="http://webapp.etsi.org/key/queryform.asp">http://webapp.etsi.org/key/queryform.asp</a>.

## Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

## Contents

| Intelle            | ectual Property Rights                                  | 2  |
|--------------------|---------------------------------------------------------|----|
| Forew              | vord                                                    | 2  |
| Modal              | ıl verbs terminology                                    | 2  |
| Forew              | vord                                                    | 6  |
| 1                  | Scope                                                   | 7  |
|                    | References                                              |    |
|                    | Definitions, symbols and abbreviations                  |    |
| 3.1                | Definitions                                             |    |
| 3.2                | Symbols                                                 |    |
| 3.3                | Abbreviations                                           |    |
| 4                  | Mapping to physical channels                            | 8  |
| 4.1                | Uplink                                                  |    |
| 4.2                | Downlink                                                |    |
| 5                  | General procedures                                      | 9  |
| 5.1                | CRC calculation                                         |    |
| 5.2                | Code block segmentation and code block CRC attachment   |    |
| 5.2.1              | Polar coding                                            |    |
| 5.2.2              | Low density parity check coding                         |    |
| 5.3                | Channel coding                                          |    |
| 5.3.1              | Polar coding                                            |    |
| 5.3.1.1            | E                                                       |    |
| 5.3.1.2            | e                                                       |    |
| 5.3.2              | Low density parity check coding                         |    |
| 5.3.3              | Channel coding of small block lengths                   |    |
| 5.3.3.1            | 8                                                       |    |
| 5.3.3.2            | 6 · · · · · · · · · · · · · · · · · · ·                 |    |
| 5.3.3.3            | e                                                       |    |
| 5.4                | Rate matching                                           |    |
| 5.4.1              | Rate matching for Polar code                            |    |
| 5.4.1.1<br>5.4.1.2 |                                                         |    |
| 5.4.1.2<br>5.4.1.3 |                                                         |    |
| 5.4.1.5<br>5.4.2   | Rate matching for LDPC code                             |    |
| 5.4.2.1            | Ç                                                       |    |
| 5.4.2.1<br>5.4.2.2 |                                                         |    |
| 5.4.2.2<br>5.4.3   | Rate matching for channel coding of small block lengths |    |
| 5.5                | Code block concatenation                                |    |
| 6                  | Uplink transport channels and control information       | 32 |
| 6.1                | Random access channel                                   |    |
| 6.2                | Uplink shared channel                                   |    |
| 6.2.1              | Transport block CRC attachment                          |    |
| 6.2.2              | LDPC base graph selection                               |    |
| 6.2.3              | Code block segmentation and code block CRC attachment   |    |
| 6.2.4              | Channel coding of UL-SCH                                |    |
| 6.2.5              | Rate matching                                           |    |
| 6.2.6              | Code block concatenation                                |    |
| 6.2.7              | Data and control multiplexing                           |    |
| 6.3                | Uplink control information                              |    |
| 6.3.1              | Uplink control information on PUCCH                     | 43 |
| 6.3.1.1            | UCI bit sequence generation                             | 44 |
| 6.3.1.1            |                                                         | 44 |
| 6.3.1.1            | · · · · · · · · · · · · · · · · · · ·                   |    |
| 6311               | 1.3 HARO-ACK/SR and CSI                                 | 51 |

| 6.3.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Code block segmentation and CRC attachment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 6.3.1.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCI encoded by Polar code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 6.3.1.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCI encoded by channel coding of small block lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 6.3.1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Channel coding of UCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 6.3.1.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCI encoded by Polar code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 6.3.1.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCI encoded by channel coding of small block lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 6.3.1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rate matching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 6.3.1.4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCI encoded by Polar code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 6.3.1.4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCI encoded by channel coding of small block lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 6.3.1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Code block concatenation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 6.3.1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Multiplexing of coded UCI bits to PUCCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| 6.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Uplink control information on PUSCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 6.3.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UCI bit sequence generation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| 6.3.2.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HARQ-ACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 6.3.2.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 6.3.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Code block segmentation and CRC attachment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 6.3.2.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCI encoded by Polar code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 6.3.2.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCI encoded by channel coding of small block lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 6.3.2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Channel coding of UCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 6.3.2.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCI encoded by Polar code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 6.3.2.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCI encoded by channel coding of small block lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 6.3.2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rate matching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 6.3.2.4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCI encoded by Polar code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 6.3.2.4.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 6.3.2.4.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| 6.3.2.4.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 6.3.2.4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCI encoded by channel coding of small block lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 6.3.2.4.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 6.3.2.4.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 6.3.2.4.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 6.3.2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Code block concatenation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 6.3.2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Multiplexing of coded UCI bits to PUSCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6'       |
| 0.3.2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | waterpoints of coded out one to I oboti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ownlink transport channels and control information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67       |
| 7 De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67       |
| 7 Do<br>7.1<br>7.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ownlink transport channels and control information  Broadcast channel  PBCH payload generation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67<br>68 |
| 7 Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ownlink transport channels and control information  Broadcast channel  PBCH payload generation  Scrambling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ownlink transport channels and control information  Broadcast channel.  PBCH payload generation  Scrambling  Transport block CRC attachment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 7 Do<br>7.1<br>7.1.1<br>7.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3 7.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3 7.3.1.1 7.3.1.1.1 7.3.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3 7.3.1.1 7.3.1.1.1 7.3.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ownlink transport channels and control information  Broadcast channel  PBCH payload generation  Scrambling  Transport block CRC attachment  Channel coding  Rate matching  Downlink shared channel and paging channel  Transport block CRC attachment  LDPC base graph selection  Code block segmentation and code block CRC attachment  Channel coding  Rate matching  Code block concatenation  Downlink control information  DCI formats  DCI formats for scheduling of PUSCH  Format 0_0                                                                                                                                                                |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3 7.3.1.1 7.3.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3 1.1.1 7.3.1.1.1 7.3.1.1.2 7.3.1.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3 1.1.1 7.3.1.1.1 7.3.1.1.2 7.3.1.2.1 7.3.1.2.2 7.3.1.2.1 7.3.1.2.2 7.3.1.2.1 7.3.1.2.2 7.3.1.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3 1.1.1 7.3.1.1.1 7.3.1.1.2 7.3.1.2.1 7.3.1.2.1 7.3.1.2.1 7.3.1.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3 1.1.1 7.3.1.1.1 7.3.1.1.2 7.3.1.2.1 7.3.1.2.2 7.3.1.2.1 7.3.1.2.2 7.3.1.2.1 7.3.1.2.2 7.3.1.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ownlink transport channels and control information  Broadcast channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3 1.1.1 7.3.1.1.1 7.3.1.1.2 7.3.1.2.1 7.3.1.2.1 7.3.1.2.1 7.3.1.2.1 7.3.1.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ownlink transport channels and control information  Broadcast channel.  PBCH payload generation  Scrambling.  Transport block CRC attachment.  Channel coding  Rate matching.  Downlink shared channel and paging channel  Transport block CRC attachment.  LDPC base graph selection.  Code block segmentation and code block CRC attachment  Channel coding  Rate matching  Code block concatenation.  Downlink control information.  DCI formats  DCI formats for scheduling of PUSCH.  Format 0_0.  Format 0_1.  DCI formats for scheduling of PDSCH.  Format 1_0.  Format 1_0.  Format 1_0.  Format 1_1.  DCI formats for other purposes.  Format 2_0. |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3 1.1.1 7.3.1.1.1 7.3.1.1.2 7.3.1.2.1 7.3.1.2.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ownlink transport channels and control information  Broadcast channel  PBCH payload generation  Scrambling  Transport block CRC attachment  Channel coding  Rate matching  Downlink shared channel and paging channel  Transport block CRC attachment  LDPC base graph selection  Code block segmentation and code block CRC attachment  Channel coding  Rate matching  Code block concatenation  Downlink control information  DCI formats  DCI formats for scheduling of PUSCH  Format 0_0  Format 0_1  DCI formats for scheduling of PDSCH  Format 1_0  Format 1_0  Format 1_1  DCI formats for other purposes  Format 2_0  Format 2_0  Format 2_1       |          |
| 7 Do 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3 1.1.1 7.3.1.1.1 7.3.1.1.2 7.3.1.2.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3.1 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | ownlink transport channels and control information  Broadcast channel  PBCH payload generation  Scrambling  Transport block CRC attachment  Channel coding  Rate matching  Downlink shared channel and paging channel  Transport block CRC attachment  LDPC base graph selection  Code block segmentation and code block CRC attachment  Channel coding  Rate matching  Code block concatenation  Downlink control information  DCI formats  DCI formats for scheduling of PUSCH  Format 0_0  Format 0_1  DCI formats for scheduling of PDSCH  Format 1_0  Format 1_0  Format 1_0  Format 2_0  Format 2_1  Format 2_1  Format 2_1  Format 2_1  Format 2_2   |          |

| 7.3.4         | Rate matching  |                  | 99 |
|---------------|----------------|------------------|----|
| Annex <a></a> | (informative): | Change history10 | 00 |
| History       |                | 10               | 01 |

## **Foreword**

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

#### where:

- x the first digit:
  - 1 presented to TSG for information;
  - 2 presented to TSG for approval;
  - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

## 1 Scope

The present document specifies the coding, multiplexing and mapping to physical channels for 5G NR.

## 2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.

| [1] | 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".                     |
|-----|---------------------------------------------------------------------------|
| [2] | 3GPP TS 38.201: "NR; Physical Layer – General Description"                |
| [3] | 3GPP TS 38.202: "NR; Services provided by the physical layer"             |
| [4] | 3GPP TS 38.211: "NR; Physical channels and modulation"                    |
| [5] | 3GPP TS 38.213: "NR; Physical layer procedures for control"               |
| [6] | 3GPP TS 38.214: "NR; Physical layer procedures for data"                  |
| [7] | 3GPP TS 38.215: "NR; Physical layer measurements"                         |
| [8] | 3GPP TS 38.321: "NR; Medium Access Control (MAC) protocol specification"  |
| [9] | 3GPP TS 38.331: "NR; Radio Resource Control (RRC) protocol specification" |

## 3 Definitions, symbols and abbreviations

#### 3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

## 3.2 Symbols

For the purposes of the present document, the following symbols apply:

## 3.3 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

BCH Broadcast channel CBG Code block group

CBGTI Code block group transmission information

CORESET Control resource set CQI Channel quality indicator **CRC** Cyclic redundancy check CRI CSI-RS resource indicator **CSI** Channel state information CSI-RS CSI reference signal

DAI Downlink assignment index DCI Downlink control information

DL Downlink

DL-SCH Downlink shared channel

**DMRS** Dedicated demodulation reference signal

**HARQ** Hybrid automatic repeat request

HARQ-ACK Hybrid automatic repeat request acknowledgement

**LDPC** Low density parity check

Layer indicator LI

MCS Modulation and coding scheme

**OFDM** Orthogonal frequency division multiplex

**PBCH** Physical broadcast channel

**PCH** Paging channel

**PDCCH** Physical downlink control channel **PDSCH** Physical downlink shared channel Precoding matrix indicator **PMI** PRB Physical resource block Physical random access channel

**PRACH PTRS** Phase-tracking reference signal Physical uplink control channel **PUCCH PUSCH** Physical uplink shared channel Random access channel RACH

RI Rank indicator

**RSRP** Reference signal received power

SFN System frame number Scheduling request SR Sounding reference signal **SRS** SS Synchronisation signal Supplementary uplink **SUL** Transmit power control TPC TrCH Transport channel

Uplink control information UCI

UE User equipment

UL Uplink

**UL-SCH** Uplink shared channel Virtual resource block **VRB ZP CSI-RS** Zero power CSI-RS

#### Mapping to physical channels 4

#### **Uplink** 4.1

Table 4.1-1 specifies the mapping of the uplink transport channels to their corresponding physical channels. Table 4.1-2 specifies the mapping of the uplink control channel information to its corresponding physical channel.

**Table 4.1-1** 

| TrCH   | Physical Channel |
|--------|------------------|
| UL-SCH | PUSCH            |
| RACH   | PRACH            |

**Table 4.1-2** 

| Control information | Physical Channel |
|---------------------|------------------|
| UCI                 | PUCCH, PUSCH     |

#### 4.2 Downlink

Table 4.2-1 specifies the mapping of the downlink transport channels to their corresponding physical channels. Table 4.2-2 specifies the mapping of the downlink control channel information to its corresponding physical channel.

**Table 4.2-1** 

| TrCH   | Physical Channel |
|--------|------------------|
| DL-SCH | PDSCH            |
| BCH    | PBCH             |
| PCH    | PDSCH            |

**Table 4.2-2** 

| Control information | Physical Channel |
|---------------------|------------------|
| DCI                 | PDCCH            |

## 5 General procedures

Data and control streams from/to MAC layer are encoded /decoded to offer transport and control services over the radio transmission link. Channel coding scheme is a combination of error detection, error correcting, rate matching, interleaving and transport channel or control information mapping onto/splitting from physical channels.

#### 5.1 CRC calculation

Denote the input bits to the CRC computation by  $a_0, a_1, a_2, a_3, ..., a_{A-1}$ , and the parity bits by  $p_0, p_1, p_2, p_3, ..., p_{L-1}$ , where A is the size of the input sequence and L is the number of parity bits. The parity bits are generated by one of the following cyclic generator polynomials:

- $g_{\text{CRC24A}}(D) = [D^{24} + D^{23} + D^{18} + D^{17} + D^{14} + D^{11} + D^{10} + D^7 + D^6 + D^5 + D^4 + D^3 + D + 1]$  for a CRC length L = 24:
- $g_{CRC24B}(D) = [D^{24} + D^{23} + D^6 + D^5 + D + 1]$  for a CRC length L = 24;
- $g_{CRC24C}(D) = [D^{24} + D^{23} + D^{21} + D^{20} + D^{17} + D^{15} + D^{13} + D^{12} + D^{8} + D^{4} + D^{2} + D + 1] \text{ for a CRC length } L = 24;$
- $g_{CRC16}(D) = [D^{16} + D^{12} + D^5 + 1]$  for a CRC length L = 16;
- $g_{CRCII}(D) = [D^{11} + D^{10} + D^9 + D^5 + 1]$  for a CRC length L=11;
- $g_{CRC6}(D) = [D^6 + D^5 + 1]$  for a CRC length L = 6.

The encoding is performed in a systematic form, which means that in GF(2), the polynomial:

$$a_0 D^{A+L-1} + a_1 D^{A+L-2} + ... + a_{A-1} D^L + p_0 D^{L-1} + p_1 D^{L-2} + ... + p_{L-2} D^1 + p_{L-1}$$

yields a remainder equal to 0 when divided by the corresponding CRC generator polynomial.

The bits after CRC attachment are denoted by  $b_0, b_1, b_2, b_3, ..., b_{B-1}$ , where B = A + L. The relation between  $a_k$  and  $b_k$  is:

$$b_k = a_k$$
 for  $k = 0,1,2,...,A-1$ 

$$b_k = p_{k-A}$$
 for  $k = A, A+1, A+2,..., A+L-1$ .

## 5.2 Code block segmentation and code block CRC attachment

#### 5.2.1 Polar coding

The input bit sequence to the code block segmentation is denoted by  $a_0, a_1, a_2, a_3, ..., a_{A-1}$ , where A > 0.

if 
$$I_{seg} = 1$$

Number of code blocks: C = 2;

else

Number of code blocks: C = 1

end if

$$A' = \left[ A/C \right] \cdot C;$$

for i = 0 to A'-A-1

$$a'_{i} = 0$$
;

end for

for i = A' - A to A' - 1

$$a'_{i} = a_{i-(A'-A)};$$

end for

s = 0;

for r = 0 to C - 1

for k = 0 to A'/C-1

$$c_{rk} = a'_s$$
;

$$s = s + 1;$$

end for

The sequence  $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(A'/C-1)}$  is used to calculate the CRC parity bits  $p_{r0}, p_{r1}, p_{r2}, ..., p_{r(L-1)}$  according to Subclause 5.1 with a generator polynomial of length L.

for k = A'/C to A'/C + L - 1

$$c_{rk} = p_{r(k-A'/C)};$$

end for

end for

The value of A is no larger than 1706.

## 5.2.2 Low density parity check coding

The input bit sequence to the code block segmentation is denoted by  $b_0, b_1, b_2, b_3, ..., b_{B-1}$ , where B > 0. If B is larger than the maximum code block size  $K_{cb}$ , segmentation of the input bit sequence is performed and an additional CRC sequence of L = 24 bits is attached to each code block.

For LDPC base graph 1, the maximum code block size is:

- 
$$K_{\rm cb} = 8448$$
.

For LDPC base graph 2, the maximum code block size is:

- 
$$K_{\rm cb} = 3840$$
.

Total number of code blocks *C* is determined by:

if  $B \leq K_{cb}$ 

L = 0

Number of code blocks: C = 1

B' = B

else

L = 24

Number of code blocks:  $C = \lceil B/(K_{ch} - L) \rceil$ .

$$B' = B + C \cdot L$$

end if

The bits output from code block segmentation are denoted by  $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K_r-1)}$ , where  $0 \le r < C$  is the code block number, and  $K_r = K$  is the number of bits for the code block number r.

The number of bits K in each code block is calculated as:

K'=B'/C;

For LDPC base graph 1,

$$K_b = 22$$
.

For LDPC base graph 2,

if B > 640

 $K_b = 10$ ;

elseif B > 560

 $K_b = 9$ ;

elseif B > 192

 $K_b = 8$ ;

else

 $K_b = 6$ ;

end if

find the minimum value of Z in all sets of lifting sizes in Table 5.3.2-1, denoted as  $Z_c$ , such that  $K_b \cdot Z_c \ge K'$ , and set  $K = 22Z_c$  for LDPC base graph 1 and  $K = 10Z_c$  for LDPC base graph 2;

The bit sequence  $c_{rk}$  is calculated as:

```
s=0:
for r = 0 to C - 1
    for k = 0 to K'-L-1
        c_{rk} = b_s.
        s = s + 1:
    end for
    if C > 1
        The sequence c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K'-L-1)} is used to calculate the CRC parity bits p_{r0}, p_{r1}, p_{r2}, ..., p_{r(L-1)}
        according to Subclause 5.1 with the generator polynomial g_{\text{CRC24B}}(D).
        for k = K'-L to K'-1
            c_{rk} = p_{r(k+L-K')}.
        end for
    end if
    for k = K' to K - 1 -- Insertion of filler bits
        c_{rk} = < NULL >.
    end for
end for
```

## 5.3 Channel coding

Usage of coding scheme for the different types of TrCH is shown in table 5.3-1. Usage of coding scheme for the different control information types is shown in table 5.3-2.

Table 5.3-1: Usage of channel coding scheme for TrCHs

| TrCH   | Coding scheme |
|--------|---------------|
| UL-SCH |               |
| DL-SCH | LDPC          |
| PCH    |               |
| BCH    | Polar code    |

Table 5.3-2: Usage of channel coding scheme for control information

| Control Information | Coding scheme |
|---------------------|---------------|
| DCI                 | Polar code    |
| UCI                 | Block code    |
| UCI                 | Polar code    |

#### 5.3.1 Polar coding

The bit sequence input for a given code block to channel coding is denoted by  $c_0, c_1, c_2, c_3, ..., c_{K-1}$ , where K is the number of bits to encode. After encoding the bits are denoted by  $d_0, d_1, d_2, ..., d_{N-1}$ , where  $N = 2^n$  and the value of n is determined by the following:

Denote by E the rate matching output sequence length as given in Subclause 5.4.1;

If 
$$E \leq (9/8) \cdot 2^{(\lceil \log_2 E \rceil - 1)}$$
 and  $K/E < 9/16$  
$$n_1 = \lceil \log_2 E \rceil - 1;$$
 else 
$$n_1 = \lceil \log_2 E \rceil;$$
 end if 
$$R_{\min} = 1/8;$$
 
$$n_2 = \lceil \log_2 (K/R_{\min}) \rceil;$$
 
$$n = \max\{\min\{n_1, n_2, n_{\max}\}, n_{\min}\}$$
 where  $n_{\min} = 5$ .

UE is not expected to be configured with  $K + n_{PC} > E$ , where  $n_{PC}$  is the number of parity check bits defined in Subclause 5.3.1.2.

#### 5.3.1.1 Interleaving

The bit sequence  $c_0, c_1, c_2, c_3, ..., c_{K-1}$  is interleaved into bit sequence  $c'_0, c'_1, c'_2, c'_3, ..., c'_{K-1}$  as follows:

$$c'_{k} = c_{\Pi(k)}, k = 0,1,...,K-1$$

where the interleaving pattern  $\Pi(k)$  is given by the following:

```
if I_{IL} = 0
\Pi(k) = k , k = 0,1,...,K-1
else
k = 0 ;
for m = 0 to K_{IL}^{\max} - 1
\text{if } \Pi_{IL}^{\max}(m) \ge K_{IL}^{\max} - K
\Pi(k) = \Pi_{IL}^{\max}(m) - \left(K_{IL}^{\max} - K\right);
k = k+1 ;
end if
end for
```

where  $\Pi_{IL}^{\text{max}}(m)$  is given by Table 5.3.1.1-1 and  $K_{IL}^{\text{max}} = 164$ .

| m  | $\Pi_{IL}^{\max}(m)$ | m  | $\Pi_{IL}^{\max}(m)$ | m  | $\Pi_{IL}^{\max}(m)$ | m   | $\Pi_{IL}^{\max}(m)$ | m   | $\Pi_{IL}^{\max}(m)$ | m   | $\Pi_{IL}^{\max}(m)$ |
|----|----------------------|----|----------------------|----|----------------------|-----|----------------------|-----|----------------------|-----|----------------------|
| 0  | 0                    | 28 | 67                   | 56 | 122                  | 84  | 68                   | 112 | 33                   | 140 | 38                   |
| 1  | 2                    | 29 | 69                   | 57 | 123                  | 85  | 73                   | 113 | 36                   | 141 | 144                  |
| 2  | 4                    | 30 | 70                   | 58 | 126                  | 86  | 78                   | 114 | 44                   | 142 | 39                   |
| 3  | 7                    | 31 | 71                   | 59 | 127                  | 87  | 84                   | 115 | 47                   | 143 | 145                  |
| 4  | 9                    | 32 | 72                   | 60 | 129                  | 88  | 90                   | 116 | 64                   | 144 | 40                   |
| 5  | 14                   | 33 | 76                   | 61 | 132                  | 89  | 92                   | 117 | 74                   | 145 | 146                  |
| 6  | 19                   | 34 | 77                   | 62 | 134                  | 90  | 94                   | 118 | 79                   | 146 | 41                   |
| 7  | 20                   | 35 | 81                   | 63 | 138                  | 91  | 96                   | 119 | 85                   | 147 | 147                  |
| 8  | 24                   | 36 | 82                   | 64 | 139                  | 92  | 99                   | 120 | 97                   | 148 | 148                  |
| 9  | 25                   | 37 | 83                   | 65 | 140                  | 93  | 102                  | 121 | 100                  | 149 | 149                  |
| 10 | 26                   | 38 | 87                   | 66 | 1                    | 94  | 105                  | 122 | 103                  | 150 | 150                  |
| 11 | 28                   | 39 | 88                   | 67 | 3                    | 95  | 107                  | 123 | 117                  | 151 | 151                  |
| 12 | 31                   | 40 | 89                   | 68 | 5                    | 96  | 109                  | 124 | 125                  | 152 | 152                  |
| 13 | 34                   | 41 | 91                   | 69 | 8                    | 97  | 112                  | 125 | 131                  | 153 | 153                  |
| 14 | 42                   | 42 | 93                   | 70 | 10                   | 98  | 114                  | 126 | 136                  | 154 | 154                  |
| 15 | 45                   | 43 | 95                   | 71 | 15                   | 99  | 116                  | 127 | 142                  | 155 | 155                  |
| 16 | 49                   | 44 | 98                   | 72 | 21                   | 100 | 121                  | 128 | 12                   | 156 | 156                  |
| 17 | 50                   | 45 | 101                  | 73 | 27                   | 101 | 124                  | 129 | 17                   | 157 | 157                  |
| 18 | 51                   | 46 | 104                  | 74 | 29                   | 102 | 128                  | 130 | 23                   | 158 | 158                  |
| 19 | 53                   | 47 | 106                  | 75 | 32                   | 103 | 130                  | 131 | 37                   | 159 | 159                  |
| 20 | 54                   | 48 | 108                  | 76 | 35                   | 104 | 133                  | 132 | 48                   | 160 | 160                  |
| 21 | 56                   | 49 | 110                  | 77 | 43                   | 105 | 135                  | 133 | 75                   | 161 | 161                  |
| 22 | 58                   | 50 | 111                  | 78 | 46                   | 106 | 141                  | 134 | 80                   | 162 | 162                  |
| 23 | 59                   | 51 | 113                  | 79 | 52                   | 107 | 6                    | 135 | 86                   | 163 | 163                  |
| 24 | 61                   | 52 | 115                  | 80 | 55                   | 108 | 11                   | 136 | 137                  |     |                      |
| 25 | 62                   | 53 | 118                  | 81 | 57                   | 109 | 16                   | 137 | 143                  |     |                      |
| 26 | 65                   | 54 | 119                  | 82 | 60                   | 110 | 22                   | 138 | 13                   |     |                      |
| 27 | 66                   | 55 | 120                  | 83 | 63                   | 111 | 30                   | 139 | 18                   |     |                      |

Table 5.3.1.1-1: Interleaving pattern  $\Pi_{IL}^{\max}(m)$ 

#### 5.3.1.2 Polar encoding

The Polar sequence  $\mathbf{Q}_0^{N_{\max}-1} = \{Q_0^{N_{\max}}, Q_1^{N_{\max}}, ..., Q_{N_{\max}-1}^{N_{\max}}\}$  is given by Table 5.3.1.2-1, where  $0 \le Q_i^{N_{\max}} \le N_{\max} - 1$  denotes a bit index before Polar encoding for  $i = 0,1,...,N_{\max} - 1$  and  $N_{\max} = 1024$ . The Polar sequence  $\mathbf{Q}_0^{N_{\max}-1}$  is in ascending order of reliability  $W(Q_0^{N_{\max}}) < W(Q_1^{N_{\max}}) < ... < W(Q_N^{N_{\max}})$ , where  $W(Q_i^{N_{\max}})$  denotes the reliability of bit index  $Q_i^{N_{\max}}$ .

For any code block encoded to N bits, a same Polar sequence  $\mathbf{Q}_0^{N-1} = \left\{ Q_0^N, Q_1^N, Q_2^N, ..., Q_{N-1}^N \right\}$  is used. The Polar sequence  $\mathbf{Q}_0^{N-1}$  is a subset of Polar sequence  $\mathbf{Q}_0^{N_{\max}-1}$  with all elements  $Q_i^{N_{\max}}$  of values less than N, ordered in ascending order of reliability  $W(Q_0^N) < W(Q_1^N) < W(Q_2^N) < ... < W(Q_{N-1}^N)$ .

Denote  $\overline{\mathbf{Q}}_{I}^{N}$  as a set of bit indices in Polar sequence  $\mathbf{Q}_{0}^{N-1}$ , and  $\overline{\mathbf{Q}}_{F}^{N}$  as the set of other bit indices in Polar sequence  $\mathbf{Q}_{0}^{N-1}$ , where  $\overline{\mathbf{Q}}_{I}^{N}$  and  $\overline{\mathbf{Q}}_{F}^{N}$  are given in Subclause 5.4.1.1,  $\left|\overline{\mathbf{Q}}_{I}^{N}\right| = K + n_{PC}$ ,  $\left|\overline{\mathbf{Q}}_{F}^{N}\right| = N - \left|\overline{\mathbf{Q}}_{I}^{N}\right|$ , and  $n_{PC}$  is the number of parity check bits.

Denote 
$$\mathbf{G}_N = (\mathbf{G}_2)^{\otimes n}$$
 as the *n*-th Kronecker power of matrix  $\mathbf{G}_2$ , where  $\mathbf{G}_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ .

For a bit index j with j=0,1,...,N-1, denote  $\mathbf{g}_j$  as the j-th row of  $\mathbf{G}_N$  and  $w(\mathbf{g}_j)$  as the row weight of  $\mathbf{g}_j$ , where  $w(\mathbf{g}_j)$  is the number of ones in  $\mathbf{g}_j$ . Denote the set of bit indices for parity check bits as  $\mathbf{Q}_{PC}^N$ , where  $|\mathbf{Q}_{PC}^N| = n_{PC}$ . A number of  $(n_{PC} - n_{PC}^{wm})$  parity check bits are placed in the  $(n_{PC} - n_{PC}^{wm})$  least reliable bit indices in  $\overline{\mathbf{Q}}_I^N$ . A number of  $m_{PC}^{wm}$  other parity check bits are placed in the bit indices of minimum row weight in  $\widetilde{\mathbf{Q}}_I^N$ , where  $\widetilde{\mathbf{Q}}_I^N$  denotes the  $|\overline{\mathbf{Q}}_I^N| - n_{PC}$  most reliable bit indices in  $\overline{\mathbf{Q}}_I^N$ ; if there are more than  $m_{PC}^{wm}$  bit indices of the same minimum row weight in  $\widetilde{\mathbf{Q}}_I^N$ , the  $m_{PC}^{wm}$  other parity check bits are placed in the  $m_{PC}^{wm}$  bit indices of the highest reliability and the minimum row weight in  $\widetilde{\mathbf{Q}}_I^N$ .

Generate  $\mathbf{u} = \begin{bmatrix} u_0 & u_1 & u_2 & \dots & u_{N-1} \end{bmatrix}$  according to the following:

$$k = 0$$
;

if 
$$n_{PC} > 0$$

```
y_0 = 0; y_1 = 0; y_2 = 0; y_3 = 0; y_4 = 0;
    for n = 0 to N - 1
         y_t = y_0; y_0 = y_1; y_1 = y_2; y_2 = y_3; y_3 = y_4; y_4 = y_t;
        if n \in \overline{\mathbf{Q}}_{I}^{N}
            if n \in \mathbf{Q}_{PC}^N
               u_n = y_0;
            else
                u_n = c_k;
                 k = k + 1;
                 y_0 = y_0 \oplus u_n;
             end if
        else
             u_n = 0;
        end if
    end for
else
    for n = 0 to N - 1
        if n \in \overline{\mathbf{Q}}_{I}^{N}
            u_n = c_k;
             k = k + 1;
        else
            u_n = 0;
        end if
    end for
end if
```

The output after encoding  $\mathbf{d} = [d_0 \ d_1 \ d_2 \dots d_{N-1}]$  is obtained by  $\mathbf{d} = \mathbf{u}\mathbf{G}_N$ . The encoding is performed in GF(2).

Table 5.3.1.2-1: Polar sequence  $\mathbf{Q}_0^{N_{\max}-1}$  and its corresponding reliability  $W(Q_i^{N_{\max}})$ 

| $W(Q_i^{N_{\max}})$ | $Q_i^{N_{ m max}}$ | $W(Q_i^{N_{ m max}})$ | $Q_i^{N_{ m max}}$ | $W(Q_i^{N_{\max}})$ | $Q_i^{N_{ m max}}$ | $W(Q_i^{N_{\max}})$ | $Q_i^{N_{ m max}}$ | $W(Q_i^{N_{\max}})$ | $Q_i^{N_{ m max}}$ |
|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|-----------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|
| 0                   | 0                  | 128                 | 518                | 256                 | 94                 | 384                 | 214                | 512                   | 364                | 640                 | 414                | 768                 | 819                | 896                 | 966                |
| 1                   | 1                  | 129                 | 54                 | 257                 | 204                | 385                 | 309                | 513                   | 654                | 641                 | 223                | 769                 | 814                | 897                 | 755                |
| 2                   | 2                  | 130                 | 83                 | 258                 | 298                | 386                 | 188                | 514                   | 659                | 642                 | 663                | 770                 | 439                | 898                 | 859                |
| <u>3</u>            | 8                  | 131<br>132          | 57<br>521          | 259<br>260          | 400<br>608         | 387<br>388          | 449<br>217         | 515<br>516            | 335<br>480         | 643<br>644          | 692<br>835         | 771<br>772          | 929<br>490         | 899<br>900          | 940<br>830         |
| 5                   | 16                 | 133                 | 112                | 261                 | 352                | 389                 | 408                | 517                   | 315                | 645                 | 619                | 773                 | 623                | 901                 | 911                |
| 6                   | 32                 | 134                 | 135                | 262                 | 325                | 390                 | 609                | 518                   | 221                | 646                 | 472                | 774                 | 671                | 902                 | 871                |
| 7                   | 3                  | 135                 | 78                 | 263                 | 533                | 391                 | 596                | 519                   | 370                | 647                 | 455                | 775                 | 739                | 903                 | 639                |
| 8                   | 5                  | 136                 | 289                | 264                 | 155                | 392                 | 551                | 520                   | 613                | 648                 | 796                | 776                 | 916                | 904                 | 888                |
| 9                   | 64                 | 137                 | 194                | 265                 | 210                | 393                 | 650                | 521                   | 422                | 649                 | 809                | 777                 | 463                | 905                 | 479                |
| 10<br>11            | 9                  | 138                 | 85<br>276          | 266                 | 305<br>547         | 394                 | 229<br>159         | 522                   | 425<br>451         | 650<br>651          | 714<br>721         | 778<br>779          | 843<br>381         | 906<br>907          | 946<br>750         |
| 12                  | 17                 | 139<br>140          | 522                | 267<br>268          | 300                | 395<br>396          | 420                | 523<br>524            | 614                | 652                 | 837                | 780                 | 497                | 907                 | 969                |
| 13                  | 10                 | 141                 | 58                 | 269                 | 109                | 397                 | 310                | 525                   | 543                | 653                 | 716                | 781                 | 930                | 909                 | 508                |
| 14                  | 18                 | 142                 | 168                | 270                 | 184                | 398                 | 541                | 526                   | 235                | 654                 | 864                | 782                 | 821                | 910                 | 861                |
| 15                  | 128                | 143                 | 139                | 271                 | 534                | 399                 | 773                | 527                   | 412                | 655                 | 810                | 783                 | 726                | 911                 | 757                |
| 16                  | 12                 | 144                 | 99                 | 272                 | 537                | 400                 | 610                | 528                   | 343                | 656                 | 606                | 784                 | 961                | 912                 | 970                |
| 17                  | 33                 | 145                 | 86                 | 273                 | 115                | 401                 | 657                | 529                   | 372                | 657                 | 912                | 785                 | 872                | 913                 | 919                |
| 18                  | 65                 | 146                 | 60                 | 274                 | 167                | 402                 | 333                | 530                   | 775                | 658                 | 722                | 786                 | 492                | 914                 | 875                |
| 19<br>20            | 20<br>256          | 147<br>148          | 280<br>89          | 275<br>276          | 225<br>326         | 403<br>404          | 119<br>600         | 531<br>532            | 317<br>222         | 659<br>660          | 696<br>377         | 787<br>788          | 631<br>729         | 915<br>916          | 862<br>758         |
| 21                  | 34                 | 149                 | 290                | 277                 | 306                | 404                 | 339                | 533                   | 426                | 661                 | 435                | 789                 | 700                | 917                 | 948                |
| 22                  | 24                 | 150                 | 529                | 278                 | 772                | 406                 | 218                | 534                   | 453                | 662                 | 817                | 790                 | 443                | 918                 | 977                |
| 23                  | 36                 | 151                 | 524                | 279                 | 157                | 407                 | 368                | 535                   | 237                | 663                 | 319                | 791                 | 741                | 919                 | 923                |
| 24                  | 7                  | 152                 | 196                | 280                 | 656                | 408                 | 652                | 536                   | 559                | 664                 | 621                | 792                 | 845                | 920                 | 972                |
| 25                  | 129                | 153                 | 141                | 281                 | 329                | 409                 | 230                | 537                   | 833                | 665                 | 812                | 793                 | 920                | 921                 | 761                |
| 26                  | 66                 | 154                 | 101                | 282                 | 110                | 410                 | 391                | 538                   | 804                | 666                 | 484                | 794                 | 382                | 922                 | 877                |
| 27                  | 512                | 155                 | 147                | 283                 | 117                | 411                 | 313                | 539                   | 712                | 667                 | 430                | 795                 | 822                | 923                 | 952                |
| 28<br>29            | 11<br>40           | 156<br>157          | 176<br>142         | 284<br>285          | 212<br>171         | 412<br>413          | 450<br>542         | 540<br>541            | 834<br>661         | 668<br>669          | 838<br>667         | 796<br>797          | 851<br>730         | 924<br>925          | 495<br>703         |
| 30                  | 68                 | 157                 | 530                | 285                 | 776                | 414                 | 334                | 541                   | 808                | 670                 | 488                | 797                 | 498                | 925                 | 935                |
| 31                  | 130                | 159                 | 321                | 287                 | 330                | 415                 | 233                | 543                   | 779                | 671                 | 239                | 799                 | 880                | 927                 | 978                |
| 32                  | 19                 | 160                 | 31                 | 288                 | 226                | 416                 | 555                | 544                   | 617                | 672                 | 378                | 800                 | 742                | 928                 | 883                |
| 33                  | 13                 | 161                 | 200                | 289                 | 549                | 417                 | 774                | 545                   | 604                | 673                 | 459                | 801                 | 445                | 929                 | 762                |
| 34                  | 48                 | 162                 | 90                 | 290                 | 538                | 418                 | 175                | 546                   | 433                | 674                 | 622                | 802                 | 471                | 930                 | 503                |
| 35                  | 14                 | 163                 | 545                | 291                 | 387                | 419                 | 123                | 547                   | 720                | 675                 | 627                | 803                 | 635                | 931                 | 925                |
| 36<br>37            | 72<br>257          | 164<br>165          | 292<br>322         | 292<br>293          | 308<br>216         | 420<br>421          | 658<br>612         | 548<br>549            | 816<br>836         | 676<br>677          | 437<br>380         | 804<br>805          | 932<br>687         | 932<br>933          | 878<br>735         |
| 38                  | 21                 | 166                 | 532                | 293                 | 416                | 421                 | 341                | 550                   | 347                | 678                 | 818                | 806                 | 903                | 934                 | 993                |
| 39                  | 132                | 167                 | 263                | 295                 | 271                | 423                 | 777                | 551                   | 897                | 679                 | 461                | 807                 | 825                | 935                 | 885                |
| 40                  | 35                 | 168                 | 149                | 296                 | 279                | 424                 | 220                | 552                   | 243                | 680                 | 496                | 808                 | 500                | 936                 | 939                |
| 41                  | 258                | 169                 | 102                | 297                 | 158                | 425                 | 314                | 553                   | 662                | 681                 | 669                | 809                 | 846                | 937                 | 994                |
| 42                  | 26                 | 170                 | 105                | 298                 | 337                | 426                 | 424                | 554                   | 454                | 682                 | 679                | 810                 | 745                | 938                 | 980                |
| 43                  | 513                | 171                 | 304                | 299                 | 550                | 427                 | 395                | 555                   | 318                | 683                 | 724                | 811                 | 826                | 939                 | 926                |
| 44                  | 80                 | 172                 | 296                | 300                 | 672                | 428                 | 673                | 556                   | 675                | 684                 | 841                | 812                 | 732                | 940                 | 764                |
| 45<br>46            | 37<br>25           | 173<br>174          | 163<br>92          | 301<br>302          | 118<br>332         | 429<br>430          | 583<br>355         | 557<br>558            | 618<br>898         | 685<br>686          | 629<br>351         | 813<br>814          | 446<br>962         | 941<br>942          | 941<br>967         |
| 47                  | 22                 | 175                 | 47                 | 303                 | 579                | 431                 | 287                | 559                   | 781                | 687                 | 467                | 815                 | 936                | 943                 | 886                |
| 48                  | 136                | 176                 | 267                | 304                 | 540                | 432                 | 183                | 560                   | 376                | 688                 | 438                | 816                 | 475                | 944                 | 831                |
| 49                  | 260                | 177                 | 385                | 305                 | 389                | 433                 | 234                | 561                   | 428                | 689                 | 737                | 817                 | 853                | 945                 | 947                |
| 50                  | 264                | 178                 | 546                | 306                 | 173                | 434                 | 125                | 562                   | 665                | 690                 | 251                | 818                 | 867                | 946                 | 507                |
| 51                  | 38                 | 179                 | 324                | 307                 | 121                | 435                 | 557                | 563                   | 736                | 691                 | 462                | 819                 | 637                | 947                 | 889                |
| 52<br>53            | 514<br>96          | 180<br>181          | 208<br>386         | 308<br>309          | 553<br>199         | 436<br>437          | 660<br>616         | 564<br>565            | 567<br>840         | 692<br>693          | 442<br>441         | 820<br>821          | 907<br>487         | 948<br>949          | 984<br>751         |
| 54                  | 67                 | 182                 | 150                | 310                 | 784                | 438                 | 342                | 566                   | 625                | 694                 | 469                | 822                 | 695                | 950                 | 942                |
| 55                  | 41                 | 183                 | 153                | 311                 | 179                | 439                 | 316                | 567                   | 238                | 695                 | 247                | 823                 | 746                | 951                 | 996                |
| 56                  | 144                | 184                 | 165                | 312                 | 228                | 440                 | 241                | 568                   | 359                | 696                 | 683                | 824                 | 828                | 952                 | 971                |
| 57                  | 28                 | 185                 | 106                | 313                 | 338                | 441                 | 778                | 569                   | 457                | 697                 | 842                | 825                 | 753                | 953                 | 890                |
| 58                  | 69                 | 186                 | 55                 | 314                 | 312                | 442                 | 563                | 570                   | 399                | 698                 | 738                | 826                 | 854                | 954                 | 509                |
| 59                  | 42                 | 187                 | 328                | 315                 | 704                | 443                 | 345                | 571                   | 787                | 699                 | 899                | 827                 | 857                | 955                 | 949                |
| 60<br>61            | 516<br>49          | 188<br>189          | 536<br>577         | 316<br>317          | 390<br>174         | 444<br>445          | 452<br>397         | 572<br>573            | 591<br>678         | 700<br>701          | 670<br>783         | 828<br>829          | 504<br>799         | 956<br>957          | 973<br>1000        |
| 62                  | 74                 | 190                 | 548                | 318                 | 554                | 446                 | 403                | 574                   | 434                | 701                 | 849                | 830                 | 255                | 958                 | 892                |
| 63                  | 272                | 191                 | 113                | 319                 | 581                | 447                 | 207                | 575                   | 677                | 703                 | 820                | 831                 | 964                | 959                 | 950                |
| 64                  | 160                | 192                 | 154                | 320                 | 393                | 448                 | 674                | 576                   | 349                | 704                 | 728                | 832                 | 909                | 960                 | 863                |
| 65                  | 520                | 193                 | 79                 | 321                 | 283                | 449                 | 558                | 577                   | 245                | 705                 | 928                | 833                 | 719                | 961                 | 759                |
| 66                  | 288                | 194                 | 269                | 322                 | 122                | 450                 | 785                | 578                   | 458                | 706                 | 791                | 834                 | 477                | 962                 | 1008               |
| 67<br>68            | 528                | 195                 | 108                | 323                 | 448                | 451                 | 432                | 579                   | 666                | 707                 | 367<br>901         | 835                 | 915                | 963<br>964          | 510                |
| 69                  | 192<br>544         | 196<br>197          | 578<br>224         | 324<br>325          | 353<br>561         | 452<br>453          | 357<br>187         | 580<br>581            | 620<br>363         | 708<br>709          | 630                | 836<br>837          | 638<br>748         | 964                 | 979<br>953         |
| 70                  | 70                 | 197                 | 166                | 326                 | 203                | 453                 | 236                | 582                   | 127                | 710                 | 685                | 838                 | 944                | 966                 | 763                |
| 71                  | 44                 | 199                 | 519                | 327                 | 63                 | 455                 | 664                | 583                   | 191                | 711                 | 844                | 839                 | 869                | 967                 | 974                |
| 72                  | 131                | 200                 | 552                | 328                 | 340                | 456                 | 624                | 584                   | 782                | 712                 | 633                | 840                 | 491                | 968                 | 954                |
| 73                  | 81                 | 201                 | 195                | 329                 | 394                | 457                 | 587                | 585                   | 407                | 713                 | 711                | 841                 | 699                | 969                 | 879                |
| 74                  | 50                 | 202                 | 270                | 330                 | 527                | 458                 | 780                | 586                   | 436                | 714                 | 253                | 842                 | 754                | 970                 | 981                |
| 75<br>76            | 73<br>15           | 203<br>204          | 641<br>523         | 331<br>332          | 582<br>556         | 459<br>460          | 705<br>126         | 587<br>588            | 626<br>571         | 715<br>716          | 691<br>824         | 843<br>844          | 858<br>478         | 971<br>972          | 982<br>927         |
| 76                  | 320                | 204                 | 275                | 332                 | 181                | 460                 | 242                | 589                   | 571<br>465         | 716                 | 902                | 845                 | 968                | 972                 | 927                |
| 78                  | 133                | 205                 | 580                | 334                 | 295                | 462                 | 565                | 590                   | 681                | 717                 | 686                | 846                 | 383                | 973                 | 765                |
| 79                  | 52                 | 207                 | 291                | 335                 | 285                | 463                 | 398                | 591                   | 246                | 719                 | 740                | 847                 | 910                | 975                 | 956                |
| 80                  | 23                 | 208                 | 59                 | 336                 | 232                | 464                 | 346                | 592                   | 707                | 720                 | 850                | 848                 | 815                | 976                 | 887                |
| 81                  | 134                | 209                 | 169                | 337                 | 124                | 465                 | 456                | 593                   | 350                | 721                 | 375                | 849                 | 976                | 977                 | 985                |
| 82                  | 384                | 210                 | 560                | 338                 | 205                | 466                 | 358                | 594                   | 599                | 722                 | 444                | 850                 | 870                | 978                 | 997                |
| 83                  | 76                 | 211                 | 114                | 339                 | 182                | 467                 | 405                | 595                   | 668                | 723                 | 470                | 851                 | 917                | 979                 | 986                |
| 84<br>85            | 137<br>82          | 212<br>213          | 277<br>156         | 340<br>341          | 643<br>562         | 468<br>469          | 303<br>569         | 596<br>597            | 790<br>460         | 724<br>725          | 483<br>415         | 852<br>853          | 727<br>493         | 980<br>981          | 943<br>891         |
| 86                  | 56                 | 214                 | 87                 | 342                 | 286                | 470                 | 244                | 598                   | 249                | 726                 | 485                | 854                 | 873                | 982                 | 998                |
| 87                  | 27                 | 215                 | 197                | 343                 | 585                | 471                 | 595                | 599                   | 682                | 727                 | 905                | 855                 | 701                | 983                 | 766                |

| 88  | 97  | 216 | 116 | 344 | 299 | 472 | 189 | 600 | 573 | 728 | 795 | 856 | 931 | 984  | 511  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|
| 89  | 39  | 217 | 170 | 345 | 354 | 473 | 566 | 601 | 411 | 729 | 473 | 857 | 756 | 985  | 988  |
| 90  | 259 | 218 | 61  | 346 | 211 | 474 | 676 | 602 | 803 | 730 | 634 | 858 | 860 | 986  | 1001 |
| 91  | 84  | 219 | 531 | 347 | 401 | 475 | 361 | 603 | 789 | 731 | 744 | 859 | 499 | 987  | 951  |
| 92  | 138 | 220 | 525 | 348 | 185 | 476 | 706 | 604 | 709 | 732 | 852 | 860 | 731 | 988  | 1002 |
| 93  | 145 | 221 | 642 | 349 | 396 | 477 | 589 | 605 | 365 | 733 | 960 | 861 | 823 | 989  | 893  |
| 94  | 261 | 222 | 281 | 350 | 344 | 478 | 215 | 606 | 440 | 734 | 865 | 862 | 922 | 990  | 975  |
| 95  | 29  | 223 | 278 | 351 | 586 | 479 | 786 | 607 | 628 | 735 | 693 | 863 | 874 | 991  | 894  |
| 96  | 43  | 224 | 526 | 352 | 645 | 480 | 647 | 608 | 689 | 736 | 797 | 864 | 918 | 992  | 1009 |
| 97  | 98  | 225 | 177 | 353 | 593 | 481 | 348 | 609 | 374 | 737 | 906 | 865 | 502 | 993  | 955  |
| 98  | 515 | 226 | 293 | 354 | 535 | 482 | 419 | 610 | 423 | 738 | 715 | 866 | 933 | 994  | 1004 |
| 99  | 88  | 227 | 388 | 355 | 240 | 483 | 406 | 611 | 466 | 739 | 807 | 867 | 743 | 995  | 1010 |
| 100 | 140 | 228 | 91  | 356 | 206 | 484 | 464 | 612 | 793 | 740 | 474 | 868 | 760 | 996  | 957  |
| 101 | 30  | 229 | 584 | 357 | 95  | 485 | 680 | 613 | 250 | 741 | 636 | 869 | 881 | 997  | 983  |
| 102 | 146 | 230 | 769 | 358 | 327 | 486 | 801 | 614 | 371 | 742 | 694 | 870 | 494 | 998  | 958  |
| 103 | 71  | 231 | 198 | 359 | 564 | 487 | 362 | 615 | 481 | 743 | 254 | 871 | 702 | 999  | 987  |
| 104 | 262 | 232 | 172 | 360 | 800 | 488 | 590 | 616 | 574 | 744 | 717 | 872 | 921 | 1000 | 1012 |
| 105 | 265 | 233 | 120 | 361 | 402 | 489 | 409 | 617 | 413 | 745 | 575 | 873 | 501 | 1001 | 999  |
| 106 | 161 | 234 | 201 | 362 | 356 | 490 | 570 | 618 | 603 | 746 | 913 | 874 | 876 | 1002 | 1016 |
| 107 | 576 | 235 | 336 | 363 | 307 | 491 | 788 | 619 | 366 | 747 | 798 | 875 | 847 | 1003 | 767  |
| 108 | 45  | 236 | 62  | 364 | 301 | 492 | 597 | 620 | 468 | 748 | 811 | 876 | 992 | 1004 | 989  |
| 109 | 100 | 237 | 282 | 365 | 417 | 493 | 572 | 621 | 655 | 749 | 379 | 877 | 447 | 1005 | 1003 |
| 110 | 640 | 238 | 143 | 366 | 213 | 494 | 219 | 622 | 900 | 750 | 697 | 878 | 733 | 1006 | 990  |
| 111 | 51  | 239 | 103 | 367 | 568 | 495 | 311 | 623 | 805 | 751 | 431 | 879 | 827 | 1007 | 1005 |
| 112 | 148 | 240 | 178 | 368 | 832 | 496 | 708 | 624 | 615 | 752 | 607 | 880 | 934 | 1008 | 959  |
| 113 | 46  | 241 | 294 | 369 | 588 | 497 | 598 | 625 | 684 | 753 | 489 | 881 | 882 | 1009 | 1011 |
| 114 | 75  | 242 | 93  | 370 | 186 | 498 | 601 | 626 | 710 | 754 | 866 | 882 | 937 | 1010 | 1013 |
| 115 | 266 | 243 | 644 | 371 | 646 | 499 | 651 | 627 | 429 | 755 | 723 | 883 | 963 | 1011 | 895  |
| 116 | 273 | 244 | 202 | 372 | 404 | 500 | 421 | 628 | 794 | 756 | 486 | 884 | 747 | 1012 | 1006 |
| 117 | 517 | 245 | 592 | 373 | 227 | 501 | 792 | 629 | 252 | 757 | 908 | 885 | 505 | 1013 | 1014 |
| 118 | 104 | 246 | 323 | 374 | 896 | 502 | 802 | 630 | 373 | 758 | 718 | 886 | 855 | 1014 | 1017 |
| 119 | 162 | 247 | 392 | 375 | 594 | 503 | 611 | 631 | 605 | 759 | 813 | 887 | 924 | 1015 | 1018 |
| 120 | 53  | 248 | 297 | 376 | 418 | 504 | 602 | 632 | 848 | 760 | 476 | 888 | 734 | 1016 | 991  |
| 121 | 193 | 249 | 770 | 377 | 302 | 505 | 410 | 633 | 690 | 761 | 856 | 889 | 829 | 1017 | 1020 |
| 122 | 152 | 250 | 107 | 378 | 649 | 506 | 231 | 634 | 713 | 762 | 839 | 890 | 965 | 1018 | 1007 |
| 123 | 77  | 251 | 180 | 379 | 771 | 507 | 688 | 635 | 632 | 763 | 725 | 891 | 938 | 1019 | 1015 |
| 124 | 164 | 252 | 151 | 380 | 360 | 508 | 653 | 636 | 482 | 764 | 698 | 892 | 884 | 1020 | 1019 |
| 125 | 768 | 253 | 209 | 381 | 539 | 509 | 248 | 637 | 806 | 765 | 914 | 893 | 506 | 1021 | 1021 |
| 126 | 268 | 254 | 284 | 382 | 111 | 510 | 369 | 638 | 427 | 766 | 752 | 894 | 749 | 1022 | 1022 |
| 127 | 274 | 255 | 648 | 383 | 331 | 511 | 190 | 639 | 904 | 767 | 868 | 895 | 945 | 1023 | 1023 |

#### 5.3.2 Low density parity check coding

The bit sequence input for a given code block to channel coding is denoted by  $c_0, c_1, c_2, c_3, ..., c_{K-1}$ , where K is the number of bits to encode as defined in Subclause 5.2.2. After encoding the bits are denoted by  $d_0, d_1, d_2, ..., d_{N-1}$ , where  $N = 66Z_c$  for LDPC base graph 1 and  $N = 50Z_c$  for LDPC base graph 2, and the value of  $Z_c$  is given in Subclause 5.2.2.

For a code block encoded by LDPC, the following encoding procedure applies:

1) Find the set with index  $i_{LS}$  in Table 5.3.2-1 which contains  $Z_c$ .

2) for 
$$k = 2Z_c$$
 to  $K - 1$   
if  $c_k \neq < NULL >$   
 $d_{k-2Z_c} = c_k$ ;  
else  
 $c_k = 0$ ;  
 $d_{k-2Z_c} = < NULL >$ ;  
end if

end for

3) Generate  $N + 2Z_c - K$  parity bits  $\mathbf{w} = \begin{bmatrix} w_0, w_1, w_2, ..., w_{N+2Z_c-K-1} \end{bmatrix}^T$  such that  $\mathbf{H} \times \begin{bmatrix} \mathbf{c} \\ \mathbf{w} \end{bmatrix} = \mathbf{0}$ , where  $\mathbf{c} = \begin{bmatrix} c_0, c_1, c_2, ..., c_{K-1} \end{bmatrix}^T$ ;  $\mathbf{0}$  is a column vector of all elements equal to 0. The encoding is performed in GF(2).

For LDPC base graph 1, a matrix of  $\mathbf{H}_{\mathrm{BG}}$  has 46 rows with row indices i=0,1,2,...,45 and 68 columns with column indices j=0,1,2,...,67. For LDPC base graph 2, a matrix of  $\mathbf{H}_{\mathrm{BG}}$  has 42 rows with row indices i=0,1,2,...,41 and 52 columns with column indices j=0,1,2,...,51. The elements in  $\mathbf{H}_{\mathrm{BG}}$  with row and column indices given in Table 5.3.2-2 (for LDPC base graph 1) and Table 5.3.2-3 (for LDPC base graph 2) are of value 1, and all other elements in  $\mathbf{H}_{\mathrm{BG}}$  are of value 0.

The matrix **H** is obtained by replacing each element of  $\mathbf{H}_{BG}$  with a  $Z_c \times Z_c$  matrix, according to the following:

- Each element of value 0 in  $\mathbf{H}_{BG}$  is replaced by an all zero matrix  $\mathbf{0}$  of size  $Z_c \times Z_c$ ;
- Each element of value 1 in  $\mathbf{H}_{\mathrm{BG}}$  is replaced by a circular permutation matrix  $\mathbf{I}(P_{i,j})$  of size  $Z_c \times Z_c$ , where i and j are the row and column indices of the element, and  $\mathbf{I}(P_{i,j})$  is obtained by circularly shifting the identity matrix  $\mathbf{I}$  of size  $Z_c \times Z_c$  to the right  $P_{i,j}$  times. The value of  $P_{i,j}$  is given by  $P_{i,j} = \operatorname{mod}(V_{i,j}, Z_c)$ . The value of  $V_{i,j}$  is given by Tables 5.3.2-2 and 5.3.2-3 according to the set index  $i_{IS}$  and LDPC base graph.

4) for 
$$k = K$$
 to  $N + 2Z_c - 1$  
$$d_{k-2Z_c} = w_{k-K};$$

end for

Table 5.3.2-1: Sets of LDPC lifting size Z

| Set index ( $i_{LS}$ ) | Set of lifting sizes ( $Z$ )     |
|------------------------|----------------------------------|
| 0                      | {2, 4, 8, 16, 32, 64, 128, 256}  |
| 1                      | {3, 6, 12, 24, 48, 96, 192, 384} |
| 2                      | {5, 10, 20, 40, 80, 160, 320}    |
| 3                      | {7, 14, 28, 56, 112, 224}        |
| 4                      | {9, 18, 36, 72, 144, 288}        |
| 5                      | {11, 22, 44, 88, 176, 352}       |
| 6                      | {13, 26, 52, 104, 208}           |
| 7                      | {15, 30, 60, 120, 240}           |

Table 5.3.2-2: LDPC base graph 1 (  $\mathbf{H}_{\mathrm{BG}}$  ) and its parity check matrices (  $V_{i,j}$  )

| H   | $\mathbf{I}_{\mathrm{BG}}$ |            |            |            | $V_{i}$    | , j         |            |            |            | H            | $\mathbf{I}_{\mathrm{BG}}$ |            |            |            | $V_{i}$    | , j        |            |            |            |
|-----|----------------------------|------------|------------|------------|------------|-------------|------------|------------|------------|--------------|----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Row | Column                     |            |            |            | Set ind    | $ex i_{LS}$ |            |            |            | Row<br>index | Column                     |            |            |            | Set inde   |            |            |            |            |
| i   | j                          | 0          | 1          | 2          | 3          | 4           | 5          | 6          | 7          | i            | j                          | 0          | 1          | 2          | 3          | 4          | 5          | 6          | 7          |
|     | 0                          | 250<br>69  | 307<br>19  | 73<br>15   | 223<br>16  | 211<br>198  | 294<br>118 | 0          | 135<br>227 |              | 1<br>10                    | 96<br>65   | 210        | 290<br>60  | 120<br>131 | 0<br>183   | 348<br>15  | 6<br>81    | 138<br>220 |
|     | 2                          | 226        | 50         | 103        | 94         | 188         | 167        | 0          | 126        | 15           | 13                         | 63         | 318        | 130        | 209        | 108        | 81         | 182        | 173        |
|     | 3<br>5                     | 159<br>100 | 369<br>181 | 49<br>240  | 91<br>74   | 186<br>219  | 330<br>207 | 0          | 134<br>84  |              | 18<br>25                   | 75<br>179  | 55<br>269  | 184<br>51  | 209<br>81  | 68<br>64   | 176<br>113 | 53<br>46   | 142<br>49  |
| :   | 6<br>9                     | 10<br>59   | 216<br>317 | 39<br>15   | 10<br>0    | 4<br>29     | 165<br>243 | 0          | 83<br>53   |              | 37<br>1                    | 0<br>64    | 0<br>13    | 0<br>69    | 0<br>154   | 0<br>270   | 0<br>190   | 0<br>88    | 0<br>78    |
|     | 10                         | 229        | 288        | 162        | 205        | 144         | 250        | 0          | 225        |              | 3                          | 49         | 338        | 140        | 164        | 13         | 293        | 198        | 152        |
| 0   | 11<br>12                   | 110<br>191 | 109<br>17  | 215<br>164 | 216<br>21  | 116<br>216  | 339        | 0          | 205<br>128 | 16           | 11<br>20                   | 49<br>51   | 57<br>289  | 45<br>115  | 43<br>189  | 99<br>54   | 332<br>331 | 160<br>122 | 84<br>5    |
|     | 13<br>15                   | 9<br>195   | 357<br>215 | 133<br>298 | 215<br>14  | 115<br>233  | 201<br>53  | 0          | 75<br>135  |              | 22<br>38                   | 154<br>0   | 57<br>0    | 300        | 101<br>0   | 0          | 114<br>0   | 182<br>0   | 205<br>0   |
|     | 16                         | 23         | 106        | 110        | 70         | 144         | 347        | 0          | 217        |              | 0                          | 7          | 260        | 257        | 56         | 153        | 110        | 91         | 183        |
|     | 18<br>19                   | 190<br>35  | 242<br>180 | 113<br>16  | 141<br>198 | 95<br>216   | 304<br>167 | 0          | 220<br>90  |              | 14<br>16                   | 164<br>59  | 303<br>81  | 147<br>128 | 110<br>200 | 137<br>0   | 228<br>247 | 184<br>30  | 112<br>106 |
|     | 20<br>21                   | 239        | 330        | 189        | 104        | 73          | 47         | 0          | 105        | 17           | 17                         | 1          | 358        | 51         | 63         | 0          | 116        | 3          | 219        |
|     | 22                         | 31<br>1    | 346<br>1   | 32<br>1    | 81<br>1    | 261<br>1    | 188<br>1   | 0          | 137        |              | 21<br>39                   | 0          | 375<br>0   | 228<br>0   | 4<br>0     | 162<br>0   | 190<br>0   | 155<br>0   | 129<br>0   |
|     | 23<br>0                    | 2          | 0<br>76    | 0<br>303   | 0<br>141   | 0<br>179    | 0<br>77    | 0<br>22    | 0<br>96    |              | 1<br>12                    | 42<br>233  | 130<br>163 | 260<br>294 | 199<br>110 | 161<br>151 | 47<br>286  | 1<br>41    | 183<br>215 |
|     | 2                          | 239        | 76         | 294        | 45         | 162         | 225        | 11         | 236        | 18           | 13                         | 8          | 280        | 291        | 200        | 0          | 246        | 167        | 180        |
|     | 3<br>4                     | 117<br>124 | 73<br>288  | 27<br>261  | 151<br>46  | 223<br>256  | 96<br>338  | 124<br>0   | 136<br>221 |              | 18<br>19                   | 155<br>147 | 132<br>4   | 141<br>295 | 143<br>186 | 241<br>144 | 181<br>73  | 68<br>148  | 143<br>14  |
|     | 5<br>7                     | 71<br>222  | 144<br>331 | 161<br>133 | 119<br>157 | 160<br>76   | 268<br>112 | 10<br>0    | 128<br>92  |              | 40<br>0                    | 0<br>60    | 0<br>145   | 0<br>64    | 0          | 0          | 0<br>87    | 0<br>12    | 0<br>179   |
|     | 8                          | 104        | 331        | 4          | 133        | 202         | 302        | 0          | 172        |              | 1                          | 73         | 213        | 181        | 6          | 0          | 110        | 6          | 108        |
|     | 9                          | 173<br>220 | 178<br>295 | 80<br>129  | 87<br>206  | 117<br>109  | 50<br>167  | 2<br>16    | 56<br>11   | 19           | 7<br>8                     | 72<br>127  | 344<br>242 | 101<br>270 | 103<br>198 | 118<br>144 | 147<br>258 | 166<br>184 | 159<br>138 |
| 1   | 12<br>14                   | 102<br>109 | 342<br>217 | 300<br>76  | 93<br>79   | 15<br>72    | 253<br>334 | 60<br>0    | 189<br>95  |              | 10<br>41                   | 224<br>0   | 197<br>0   | 41<br>0    | 8          | 0          | 204<br>0   | 191<br>0   | 196<br>0   |
|     | 15                         | 132        | 99         | 266        | 9          | 152         | 242        | 6          | 85         |              | 0                          | 151        | 187        | 301        | 105        | 265        | 89         | 6          | 77         |
|     | 16<br>17                   | 142<br>155 | 354<br>114 | 72<br>83   | 118<br>194 | 158<br>147  | 257<br>133 | 30<br>0    | 153<br>87  |              | 3<br>9                     | 186<br>217 | 206<br>264 | 162<br>40  | 210<br>121 | 81<br>90   | 65<br>155  | 12<br>15   | 187<br>203 |
|     | 19                         | 255        | 331        | 260        | 31         | 156         | 9          | 168        | 163        | 20           | 11                         | 47         | 341        | 130        | 214        | 144        | 244        | 5          | 167        |
|     | 21<br>22                   | 28<br>0    | 112<br>0   | 301<br>0   | 187<br>0   | 119<br>0    | 302<br>0   | 31<br>105  | 216<br>0   |              | 22<br>42                   | 160<br>0   | 59<br>0    | 10<br>0    | 183<br>0   | 228<br>0   | 30<br>0    | 30<br>0    | 130<br>0   |
|     | 23<br>24                   | 0          | 0          | 0          | 0          | 0           | 0          | 0          | 0          |              | 1<br>5                     | 249<br>121 | 205<br>102 | 79<br>175  | 192<br>131 | 64<br>46   | 162<br>264 | 6<br>86    | 197<br>122 |
|     | 0                          | 106        | 205        | 68         | 207        | 258         | 226        | 132        | 189        | 21           | 16                         | 109        | 328        | 132        | 220        | 266        | 346        | 96         | 215        |
|     | 1 2                        | 111<br>185 | 250<br>328 | 7<br>80    | 203<br>31  | 167<br>220  | 35<br>213  | 37<br>21   | 4<br>225   |              | 20<br>21                   | 131<br>171 | 213<br>97  | 283<br>103 | 50<br>106  | 9<br>18    | 143<br>109 | 42<br>199  | 65<br>216  |
|     | <u>4</u><br>5              | 63<br>117  | 332<br>256 | 280<br>38  | 176<br>180 | 133<br>243  | 302<br>111 | 180        | 151<br>236 |              | 43<br>0                    | 0<br>64    | 30         | 0<br>177   | 0<br>53    | 0<br>72    | 0<br>280   | 0<br>44    | 0<br>25    |
|     | 6                          | 93         | 161        | 227        | 186        | 202         | 265        | 149        | 117        |              | 12                         | 142        | 11         | 20         | 0          | 189        | 157        | 58         | 47         |
|     | 7<br>8                     | 229<br>177 | 267<br>160 | 202        | 95<br>153  | 218<br>63   | 128<br>237 | 48<br>38   | 179<br>92  | 22           | 13<br>17                   | 188<br>158 | 233        | 55<br>316  | 3<br>148   | 72<br>257  | 236<br>113 | 130<br>131 | 126<br>178 |
| 2   | 9                          | 95<br>39   | 63<br>129  | 71<br>106  | 177<br>70  | 3           | 294<br>127 | 122<br>195 | 24<br>68   |              | 44<br>1                    | 0<br>156   | 0<br>24    | 0<br>249   | 0<br>88    | 0<br>180   | 0<br>18    | 0<br>45    | 0<br>185   |
| _   | 13                         | 142        | 200        | 295        | 77         | 74          | 110        | 155        | 6          |              | 2                          | 147        | 89         | 50         | 203        | 0          | 6          | 18         | 127        |
|     | 14<br>15                   | 225<br>225 | 88<br>53   | 283<br>301 | 214<br>77  | 229<br>0    | 286<br>125 | 28<br>85   | 101<br>33  | 23           | 10<br>18                   | 170<br>152 | 61<br>27   | 133<br>105 | 168<br>122 | 0<br>165   | 181<br>304 | 132<br>100 | 117<br>199 |
|     | 17<br>18                   | 245<br>205 | 131<br>240 | 184<br>246 | 198<br>117 | 216<br>269  | 131<br>163 | 47<br>179  | 96<br>125  |              | 45<br>0                    | 0<br>112   | 0<br>298   | 0<br>289   | 0<br>49    | 0<br>236   | 0<br>38    | 9          | 0<br>32    |
|     | 19                         | 251        | 205        | 230        | 223        | 200         | 210        | 42         | 67         |              | 3                          | 86         | 158        | 280        | 157        | 199        | 170        | 125        | 178        |
|     | 20<br>24                   | 117<br>0   | 13<br>0    | 276<br>0   | 90         | 234<br>0    | 7          | 66<br>0    | 230        | 24           | 4<br>11                    | 236<br>116 | 235<br>339 | 110<br>187 | 64<br>193  | 0<br>266   | 249<br>288 | 191<br>28  | 2<br>156   |
|     | 25<br>0                    | 0<br>121   | 0<br>276   | 0<br>220   | 0<br>201   | 0<br>187    | 0<br>97    | 0 4        | 0<br>128   |              | 22<br>46                   | 222        | 234        | 281<br>0   | 124<br>0   | 0          | 194<br>0   | 6<br>0     | 58<br>0    |
|     | 1                          | 89         | 87         | 208        | 18         | 145         | 94         | 6          | 23         |              | 1                          | 23         | 72         | 172        | 1          | 205        | 279        | 4          | 27         |
|     | 3 4                        | 84<br>20   | 0<br>275   | 30<br>197  | 165<br>5   | 166<br>108  | 49<br>279  | 33<br>113  | 162<br>220 | 25           | 6<br>7                     | 136<br>116 | 17<br>383  | 295<br>96  | 166<br>65  | 0          | 255<br>111 | 74<br>16   | 141<br>11  |
|     | 6<br>7                     | 150<br>131 | 199<br>153 | 61<br>175  | 45<br>142  | 82<br>132   | 139<br>166 | 49<br>21   | 43<br>186  |              | 14<br>47                   | 182<br>0   | 312<br>0   | 46<br>0    | 81<br>0    | 183<br>0   | 54<br>0    | 28<br>0    | 181<br>0   |
|     | 8                          | 243        | 56         | 79         | 16         | 197         | 91         | 6          | 96         |              | 0                          | 195        | 71         | 270        | 107        | 0          | 325        | 21         | 163        |
|     | 10<br>11                   | 136<br>86  | 132<br>305 | 281<br>303 | 34<br>155  | 41<br>162   | 106<br>246 | 151<br>83  | 216        | 26           | 2<br>4                     | 243<br>215 | 81<br>76   | 110<br>318 | 176<br>212 | 0          | 326<br>226 | 142<br>192 | 131<br>169 |
| 3   | 12<br>13                   | 246<br>219 | 231<br>341 | 253<br>164 | 213<br>147 | 57<br>36    | 345<br>269 | 154<br>87  | 22<br>24   |              | 15<br>48                   | 61<br>0    | 136<br>0   | 67<br>0    | 127<br>0   | 277        | 99         | 197<br>0   | 98<br>0    |
|     | 14                         | 211        | 212        | 53         | 69         | 115         | 185        | 5          | 167        |              | 1                          | 25         | 194        | 210        | 208        | 45         | 91         | 98         | 165        |
|     | 16<br>17                   | 240<br>76  | 304<br>300 | 44<br>28   | 96<br>74   | 242<br>165  | 249<br>215 | 92<br>173  | 200<br>32  | 27           | 6<br>8                     | 104<br>194 | 194<br>101 | 29<br>304  | 141<br>174 | 36<br>72   | 326<br>268 | 140<br>22  | 232<br>9   |
|     | 18<br>20                   | 244<br>144 | 271<br>39  | 77<br>319  | 99<br>30   | 0           | 143<br>121 | 120        | 235<br>172 |              | 49                         | 0          | 0 222      | 0          | 0<br>146   | 0<br>275   | 0          | 0          | 0 32       |
|     | 21                         | 12         | 357        | 68         | 158        | 108         | 121        | 142        | 219        |              | 4                          | 165        | 19         | 293        | 153        | 0          | 1          | 1          | 43         |
|     | 22<br>25                   | 0          | 1<br>0     | 0          | 1<br>0     | 0           | 0          | 0          | 0          | 28           | 19<br>21                   | 181<br>63  | 244<br>274 | 50<br>234  | 217<br>114 | 155<br>62  | 40<br>167  | 40<br>93   | 200<br>205 |
| 4   | 0                          | 157        | 332        | 233        | 170        | 246         | 42         | 24         | 64         |              | 50                         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| 4   | 1<br>26                    | 102<br>0   | 181<br>0   | 205<br>0   | 10<br>0    | 235<br>0    | 256<br>0   | 204<br>0   | 211<br>0   |              | 14                         | 86<br>236  | 252<br>5   | 27<br>308  | 150<br>11  | 0<br>180   | 273<br>104 | 92<br>136  | 232<br>32  |
|     | 0                          | 205<br>236 | 195<br>14  | 83<br>292  | 164<br>59  | 261<br>181  | 219<br>130 | 185<br>100 | 2<br>171   | 29           | 18<br>25                   | 84<br>6    | 147<br>78  | 117<br>29  | 53<br>68   | 0<br>42    | 243<br>107 | 106<br>6   | 118<br>103 |
| 5   | 3                          | 194        | 115        | 50         | 86         | 72          | 251        | 24         | 47         |              | 51                         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
|     | 12<br>16                   | 231<br>28  | 166<br>241 | 318<br>201 | 80<br>182  | 283<br>254  | 322<br>295 | 65<br>207  | 143<br>210 | 30           | 0<br>10                    | 216<br>73  | 159<br>229 | 91<br>23   | 34<br>130  | 90         | 171<br>16  | 2<br>88    | 170<br>199 |

|          | 21                                                                                                                                                                                                                                                                   | 123                                                                                                                                                                                                         | 51                                                                                                                                                                                                                     | 267                                                                                                                                                                                                                                           | 130                                                                                                                                                                                                                                                                 | 79                                                                                                                                                                                                                                                                 | 258                                                                                                                                                                                                                                                                                                   | 161                                                                                                                                                                                                                                                            | 180                                                                                                                                                                                                                                                                                             |                            | 13                                                                                                                                                                                                                                               | 120                                                                                                                                                                                                                                                                                                                                        | 260                                                                                                                                                                                                                                                                                         | 105                                                                                                                                                                                                                                                                    | 210                                                                                                                                                                                                                                                                                           | 252                                                                                                                                                                                                                                                                                                                                                                     | 95                                                                                                                                                                                                                                | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26                                                                                                                                                                                                                                                                            |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 22                                                                                                                                                                                                                                                                   | 115                                                                                                                                                                                                         | 157                                                                                                                                                                                                                    | 279                                                                                                                                                                                                                                           | 153                                                                                                                                                                                                                                                                 | 144                                                                                                                                                                                                                                                                | 283                                                                                                                                                                                                                                                                                                   | 72                                                                                                                                                                                                                                                             | 180                                                                                                                                                                                                                                                                                             |                            | 24                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                                                                                                                                          | 90                                                                                                                                                                                                                                                                                          | 135                                                                                                                                                                                                                                                                    | 123                                                                                                                                                                                                                                                                                           | 173                                                                                                                                                                                                                                                                                                                                                                     | 212                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 105                                                                                                                                                                                                                                                                           |
|          | 27                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                           | 0                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                               |                            | 52                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                             |
|          | 0                                                                                                                                                                                                                                                                    | 183                                                                                                                                                                                                         | 278                                                                                                                                                                                                                    | 289                                                                                                                                                                                                                                           | 158                                                                                                                                                                                                                                                                 | 80                                                                                                                                                                                                                                                                 | 294                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                              | 199                                                                                                                                                                                                                                                                                             |                            | 1                                                                                                                                                                                                                                                | 95                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                         | 222                                                                                                                                                                                                                                                                    | 175                                                                                                                                                                                                                                                                                           | 144                                                                                                                                                                                                                                                                                                                                                                     | 101                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73                                                                                                                                                                                                                                                                            |
|          | 6                                                                                                                                                                                                                                                                    | 22                                                                                                                                                                                                          | 257                                                                                                                                                                                                                    | 21                                                                                                                                                                                                                                            | 119                                                                                                                                                                                                                                                                 | 144                                                                                                                                                                                                                                                                | 73                                                                                                                                                                                                                                                                                                    | 27                                                                                                                                                                                                                                                             | 22                                                                                                                                                                                                                                                                                              |                            | 7                                                                                                                                                                                                                                                | 177                                                                                                                                                                                                                                                                                                                                        | 215                                                                                                                                                                                                                                                                                         | 308                                                                                                                                                                                                                                                                    | 49                                                                                                                                                                                                                                                                                            | 144                                                                                                                                                                                                                                                                                                                                                                     | 297                                                                                                                                                                                                                               | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 149                                                                                                                                                                                                                                                                           |
|          | 10                                                                                                                                                                                                                                                                   | 28                                                                                                                                                                                                          | 1                                                                                                                                                                                                                      | 293                                                                                                                                                                                                                                           | 113                                                                                                                                                                                                                                                                 | 169                                                                                                                                                                                                                                                                | 330                                                                                                                                                                                                                                                                                                   | 163                                                                                                                                                                                                                                                            | 23                                                                                                                                                                                                                                                                                              | 31                         | 22                                                                                                                                                                                                                                               | 172                                                                                                                                                                                                                                                                                                                                        | 258                                                                                                                                                                                                                                                                                         | 66                                                                                                                                                                                                                                                                     | 177                                                                                                                                                                                                                                                                                           | 166                                                                                                                                                                                                                                                                                                                                                                     | 279                                                                                                                                                                                                                               | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 175                                                                                                                                                                                                                                                                           |
|          | 11                                                                                                                                                                                                                                                                   | 67                                                                                                                                                                                                          | 351                                                                                                                                                                                                                    | 13                                                                                                                                                                                                                                            | 21                                                                                                                                                                                                                                                                  | 90                                                                                                                                                                                                                                                                 | 99                                                                                                                                                                                                                                                                                                    | 50                                                                                                                                                                                                                                                             | 100                                                                                                                                                                                                                                                                                             |                            | 25                                                                                                                                                                                                                                               | 61                                                                                                                                                                                                                                                                                                                                         | 256                                                                                                                                                                                                                                                                                         | 162                                                                                                                                                                                                                                                                    | 128                                                                                                                                                                                                                                                                                           | 19                                                                                                                                                                                                                                                                                                                                                                      | 222                                                                                                                                                                                                                               | 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108                                                                                                                                                                                                                                                                           |
| 6        | 13                                                                                                                                                                                                                                                                   | 244                                                                                                                                                                                                         | 92                                                                                                                                                                                                                     | 232                                                                                                                                                                                                                                           | 63                                                                                                                                                                                                                                                                  | 59                                                                                                                                                                                                                                                                 | 172                                                                                                                                                                                                                                                                                                   | 48                                                                                                                                                                                                                                                             | 92                                                                                                                                                                                                                                                                                              |                            | 53                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                             |
|          | 17                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                          | 253                                                                                                                                                                                                                    | 302                                                                                                                                                                                                                                           | 51                                                                                                                                                                                                                                                                  | 177                                                                                                                                                                                                                                                                | 150                                                                                                                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                             | 207                                                                                                                                                                                                                                                                                             |                            | 0                                                                                                                                                                                                                                                | 221                                                                                                                                                                                                                                                                                                                                        | 102                                                                                                                                                                                                                                                                                         | 210                                                                                                                                                                                                                                                                    | 192                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                       | 351                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103                                                                                                                                                                                                                                                                           |
|          | 18                                                                                                                                                                                                                                                                   | 157                                                                                                                                                                                                         | 18                                                                                                                                                                                                                     | 138                                                                                                                                                                                                                                           | 136                                                                                                                                                                                                                                                                 | 151                                                                                                                                                                                                                                                                | 284                                                                                                                                                                                                                                                                                                   | 38                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                                                                                              |                            | 12                                                                                                                                                                                                                                               | 112                                                                                                                                                                                                                                                                                                                                        | 201                                                                                                                                                                                                                                                                                         | 22                                                                                                                                                                                                                                                                     | 209                                                                                                                                                                                                                                                                                           | 211                                                                                                                                                                                                                                                                                                                                                                     | 265                                                                                                                                                                                                                               | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110                                                                                                                                                                                                                                                                           |
|          | 20                                                                                                                                                                                                                                                                   | 211                                                                                                                                                                                                         | 225                                                                                                                                                                                                                    | 235                                                                                                                                                                                                                                           | 116                                                                                                                                                                                                                                                                 | 108                                                                                                                                                                                                                                                                | 305                                                                                                                                                                                                                                                                                                   | 91                                                                                                                                                                                                                                                             | 13                                                                                                                                                                                                                                                                                              | 32                         | 14                                                                                                                                                                                                                                               | 199                                                                                                                                                                                                                                                                                                                                        | 175                                                                                                                                                                                                                                                                                         | 271                                                                                                                                                                                                                                                                    | 58                                                                                                                                                                                                                                                                                            | 36                                                                                                                                                                                                                                                                                                                                                                      | 338                                                                                                                                                                                                                               | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 151                                                                                                                                                                                                                                                                           |
|          | 28                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                           | 0                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                               |                            | 24                                                                                                                                                                                                                                               | 121                                                                                                                                                                                                                                                                                                                                        | 287                                                                                                                                                                                                                                                                                         | 217                                                                                                                                                                                                                                                                    | 30                                                                                                                                                                                                                                                                                            | 162                                                                                                                                                                                                                                                                                                                                                                     | 83                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 211                                                                                                                                                                                                                                                                           |
|          | 0                                                                                                                                                                                                                                                                    | 220                                                                                                                                                                                                         | 9                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                            | 17                                                                                                                                                                                                                                                                  | 169                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                     | 145                                                                                                                                                                                                                                                            | 77                                                                                                                                                                                                                                                                                              |                            | 54                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                             |
|          | 1                                                                                                                                                                                                                                                                    | 44                                                                                                                                                                                                          | 62                                                                                                                                                                                                                     | 88                                                                                                                                                                                                                                            | 76                                                                                                                                                                                                                                                                  | 189                                                                                                                                                                                                                                                                | 103                                                                                                                                                                                                                                                                                                   | 88                                                                                                                                                                                                                                                             | 146                                                                                                                                                                                                                                                                                             |                            | 1                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                          | 323                                                                                                                                                                                                                                                                                         | 170                                                                                                                                                                                                                                                                    | 114                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                       | 56                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 199                                                                                                                                                                                                                                                                           |
|          | 4                                                                                                                                                                                                                                                                    | 159                                                                                                                                                                                                         | 316                                                                                                                                                                                                                    | 207                                                                                                                                                                                                                                           | 104                                                                                                                                                                                                                                                                 | 154                                                                                                                                                                                                                                                                | 224                                                                                                                                                                                                                                                                                                   | 112                                                                                                                                                                                                                                                            | 209                                                                                                                                                                                                                                                                                             |                            | 2                                                                                                                                                                                                                                                | 187                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                     | 49                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                       | 304                                                                                                                                                                                                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 132                                                                                                                                                                                                                                                                           |
| 7        | 7                                                                                                                                                                                                                                                                    | 31                                                                                                                                                                                                          | 333                                                                                                                                                                                                                    | 50                                                                                                                                                                                                                                            | 100                                                                                                                                                                                                                                                                 | 184                                                                                                                                                                                                                                                                | 297                                                                                                                                                                                                                                                                                                   | 153                                                                                                                                                                                                                                                            | 32                                                                                                                                                                                                                                                                                              | 33                         | 11                                                                                                                                                                                                                                               | 41                                                                                                                                                                                                                                                                                                                                         | 361                                                                                                                                                                                                                                                                                         | 140                                                                                                                                                                                                                                                                    | 161                                                                                                                                                                                                                                                                                           | 76                                                                                                                                                                                                                                                                                                                                                                      | 141                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 172                                                                                                                                                                                                                                                                           |
|          | 8                                                                                                                                                                                                                                                                    | 167                                                                                                                                                                                                         | 290                                                                                                                                                                                                                    | 25                                                                                                                                                                                                                                            | 150                                                                                                                                                                                                                                                                 | 104                                                                                                                                                                                                                                                                | 215                                                                                                                                                                                                                                                                                                   | 159                                                                                                                                                                                                                                                            | 166                                                                                                                                                                                                                                                                                             |                            | 21                                                                                                                                                                                                                                               | 211                                                                                                                                                                                                                                                                                                                                        | 105                                                                                                                                                                                                                                                                                         | 33                                                                                                                                                                                                                                                                     | 137                                                                                                                                                                                                                                                                                           | 18                                                                                                                                                                                                                                                                                                                                                                      | 101                                                                                                                                                                                                                               | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 65                                                                                                                                                                                                                                                                            |
|          | 14                                                                                                                                                                                                                                                                   | 104                                                                                                                                                                                                         | 114                                                                                                                                                                                                                    | 76                                                                                                                                                                                                                                            | 158                                                                                                                                                                                                                                                                 | 164                                                                                                                                                                                                                                                                | 39                                                                                                                                                                                                                                                                                                    | 76                                                                                                                                                                                                                                                             | 18                                                                                                                                                                                                                                                                                              |                            | 55                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                             |
|          | 29                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                           | 0                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                               |                            | 0                                                                                                                                                                                                                                                | 127                                                                                                                                                                                                                                                                                                                                        | 230                                                                                                                                                                                                                                                                                         | 187                                                                                                                                                                                                                                                                    | 82                                                                                                                                                                                                                                                                                            | 197                                                                                                                                                                                                                                                                                                                                                                     | 60                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 161                                                                                                                                                                                                                                                                           |
|          | 0                                                                                                                                                                                                                                                                    | 112                                                                                                                                                                                                         | 307                                                                                                                                                                                                                    | 295                                                                                                                                                                                                                                           | 33                                                                                                                                                                                                                                                                  | 54                                                                                                                                                                                                                                                                 | 348                                                                                                                                                                                                                                                                                                   | 172                                                                                                                                                                                                                                                            | 181                                                                                                                                                                                                                                                                                             | 24                         | 7                                                                                                                                                                                                                                                | 167                                                                                                                                                                                                                                                                                                                                        | 148                                                                                                                                                                                                                                                                                         | 296                                                                                                                                                                                                                                                                    | 186                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                       | 320                                                                                                                                                                                                                               | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 237                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                           | 179                                                                                                                                                                                                                    | 133                                                                                                                                                                                                                                           | 95                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                  | 75                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                              | 105                                                                                                                                                                                                                                                                                             | 34                         | 15                                                                                                                                                                                                                                               | 164                                                                                                                                                                                                                                                                                                                                        | 202                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                      | 68                                                                                                                                                                                                                                                                                            | 108                                                                                                                                                                                                                                                                                                                                                                     | 112                                                                                                                                                                                                                               | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 142                                                                                                                                                                                                                                                                           |
|          | 3<br>12                                                                                                                                                                                                                                                              | 211                                                                                                                                                                                                         | 165<br>18                                                                                                                                                                                                              | 130<br>231                                                                                                                                                                                                                                    | 4<br>217                                                                                                                                                                                                                                                            | 252<br>41                                                                                                                                                                                                                                                          | 22<br>312                                                                                                                                                                                                                                                                                             | 131<br>141                                                                                                                                                                                                                                                     | 141<br>223                                                                                                                                                                                                                                                                                      |                            | 17<br>56                                                                                                                                                                                                                                         | 159                                                                                                                                                                                                                                                                                                                                        | 312<br>0                                                                                                                                                                                                                                                                                    | 44<br>0                                                                                                                                                                                                                                                                | 150<br>0                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                       | 54<br>0                                                                                                                                                                                                                           | 155<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180<br>0                                                                                                                                                                                                                                                                      |
|          | 16                                                                                                                                                                                                                                                                   | 102                                                                                                                                                                                                         | 39                                                                                                                                                                                                                     | 296                                                                                                                                                                                                                                           | 204                                                                                                                                                                                                                                                                 | 98                                                                                                                                                                                                                                                                 | 224                                                                                                                                                                                                                                                                                                   | 96                                                                                                                                                                                                                                                             | 177                                                                                                                                                                                                                                                                                             |                            | 1                                                                                                                                                                                                                                                | 161                                                                                                                                                                                                                                                                                                                                        | 320                                                                                                                                                                                                                                                                                         | 207                                                                                                                                                                                                                                                                    | 192                                                                                                                                                                                                                                                                                           | 199                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 231                                                                                                                                                                                                                                                                           |
| 8        | 19                                                                                                                                                                                                                                                                   | 164                                                                                                                                                                                                         | 224                                                                                                                                                                                                                    | 110                                                                                                                                                                                                                                           | 39                                                                                                                                                                                                                                                                  | 46                                                                                                                                                                                                                                                                 | 17                                                                                                                                                                                                                                                                                                    | 99                                                                                                                                                                                                                                                             | 145                                                                                                                                                                                                                                                                                             |                            | 6                                                                                                                                                                                                                                                | 197                                                                                                                                                                                                                                                                                                                                        | 335                                                                                                                                                                                                                                                                                         | 158                                                                                                                                                                                                                                                                    | 173                                                                                                                                                                                                                                                                                           | 278                                                                                                                                                                                                                                                                                                                                                                     | 210                                                                                                                                                                                                                               | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 174                                                                                                                                                                                                                                                                           |
|          | 21                                                                                                                                                                                                                                                                   | 109                                                                                                                                                                                                         | 368                                                                                                                                                                                                                    | 269                                                                                                                                                                                                                                           | 58                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                 | 59                                                                                                                                                                                                                                                                                                    | 101                                                                                                                                                                                                                                                            | 199                                                                                                                                                                                                                                                                                             | 35                         | 12                                                                                                                                                                                                                                               | 207                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                           | 55                                                                                                                                                                                                                                                                     | 26                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                       | 195                                                                                                                                                                                                                               | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 145                                                                                                                                                                                                                                                                           |
|          | 22                                                                                                                                                                                                                                                                   | 241                                                                                                                                                                                                         | 67                                                                                                                                                                                                                     | 245                                                                                                                                                                                                                                           | 44                                                                                                                                                                                                                                                                  | 230                                                                                                                                                                                                                                                                | 314                                                                                                                                                                                                                                                                                                   | 35                                                                                                                                                                                                                                                             | 153                                                                                                                                                                                                                                                                                             | 0.0                        | 22                                                                                                                                                                                                                                               | 103                                                                                                                                                                                                                                                                                                                                        | 266                                                                                                                                                                                                                                                                                         | 285                                                                                                                                                                                                                                                                    | 187                                                                                                                                                                                                                                                                                           | 205                                                                                                                                                                                                                                                                                                                                                                     | 268                                                                                                                                                                                                                               | 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                           |
|          | 24                                                                                                                                                                                                                                                                   | 90                                                                                                                                                                                                          | 170                                                                                                                                                                                                                    | 154                                                                                                                                                                                                                                           | 201                                                                                                                                                                                                                                                                 | 54                                                                                                                                                                                                                                                                 | 244                                                                                                                                                                                                                                                                                                   | 116                                                                                                                                                                                                                                                            | 38                                                                                                                                                                                                                                                                                              |                            | 57                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                             |
|          | 30                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                           | 0                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                               |                            | 0                                                                                                                                                                                                                                                | 37                                                                                                                                                                                                                                                                                                                                         | 210                                                                                                                                                                                                                                                                                         | 259                                                                                                                                                                                                                                                                    | 222                                                                                                                                                                                                                                                                                           | 216                                                                                                                                                                                                                                                                                                                                                                     | 135                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                            |
|          | 0                                                                                                                                                                                                                                                                    | 103                                                                                                                                                                                                         | 366                                                                                                                                                                                                                    | 189                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                   | 162                                                                                                                                                                                                                                                                | 156                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                              | 169                                                                                                                                                                                                                                                                                             |                            | 14                                                                                                                                                                                                                                               | 105                                                                                                                                                                                                                                                                                                                                        | 313                                                                                                                                                                                                                                                                                         | 179                                                                                                                                                                                                                                                                    | 157                                                                                                                                                                                                                                                                                           | 16                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 207                                                                                                                                                                                                                                                                           |
|          | 1                                                                                                                                                                                                                                                                    | 182                                                                                                                                                                                                         | 232                                                                                                                                                                                                                    | 244                                                                                                                                                                                                                                           | 37                                                                                                                                                                                                                                                                  | 159                                                                                                                                                                                                                                                                | 88                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                              | 36                         | 15                                                                                                                                                                                                                                               | 51                                                                                                                                                                                                                                                                                                                                         | 297                                                                                                                                                                                                                                                                                         | 178                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                       | 35                                                                                                                                                                                                                                | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42                                                                                                                                                                                                                                                                            |
|          | 10                                                                                                                                                                                                                                                                   | 109                                                                                                                                                                                                         | 321                                                                                                                                                                                                                    | 36                                                                                                                                                                                                                                            | 213                                                                                                                                                                                                                                                                 | 93                                                                                                                                                                                                                                                                 | 293                                                                                                                                                                                                                                                                                                   | 145                                                                                                                                                                                                                                                            | 206                                                                                                                                                                                                                                                                                             |                            | 18                                                                                                                                                                                                                                               | 120                                                                                                                                                                                                                                                                                                                                        | 21                                                                                                                                                                                                                                                                                          | 160                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                       | 188                                                                                                                                                                                                                               | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                           |
|          | 11                                                                                                                                                                                                                                                                   | 21                                                                                                                                                                                                          | 133                                                                                                                                                                                                                    | 286                                                                                                                                                                                                                                           | 105                                                                                                                                                                                                                                                                 | 134                                                                                                                                                                                                                                                                | 111                                                                                                                                                                                                                                                                                                   | 53                                                                                                                                                                                                                                                             | 221                                                                                                                                                                                                                                                                                             |                            | 58                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                             |
| 9        | 13                                                                                                                                                                                                                                                                   | 142                                                                                                                                                                                                         | 57                                                                                                                                                                                                                     | 151                                                                                                                                                                                                                                           | 89                                                                                                                                                                                                                                                                  | 45                                                                                                                                                                                                                                                                 | 92                                                                                                                                                                                                                                                                                                    | 201                                                                                                                                                                                                                                                            | 17                                                                                                                                                                                                                                                                                              |                            | 1                                                                                                                                                                                                                                                | 198                                                                                                                                                                                                                                                                                                                                        | 269                                                                                                                                                                                                                                                                                         | 298                                                                                                                                                                                                                                                                    | 81                                                                                                                                                                                                                                                                                            | 72                                                                                                                                                                                                                                                                                                                                                                      | 319                                                                                                                                                                                                                               | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59                                                                                                                                                                                                                                                                            |
|          | 17                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                          | 303                                                                                                                                                                                                                    | 267                                                                                                                                                                                                                                           | 185                                                                                                                                                                                                                                                                 | 132                                                                                                                                                                                                                                                                | 152                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                              | 212                                                                                                                                                                                                                                                                                             | 37                         | 13                                                                                                                                                                                                                                               | 220                                                                                                                                                                                                                                                                                                                                        | 82                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                     | 195                                                                                                                                                                                                                                                                                           | 144                                                                                                                                                                                                                                                                                                                                                                     | 236                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 204                                                                                                                                                                                                                                                                           |
|          | 18                                                                                                                                                                                                                                                                   | 61                                                                                                                                                                                                          | 63                                                                                                                                                                                                                     | 135                                                                                                                                                                                                                                           | 109                                                                                                                                                                                                                                                                 | 76                                                                                                                                                                                                                                                                 | 23                                                                                                                                                                                                                                                                                                    | 164                                                                                                                                                                                                                                                            | 92                                                                                                                                                                                                                                                                                              | 31                         | 23                                                                                                                                                                                                                                               | 122                                                                                                                                                                                                                                                                                                                                        | 115                                                                                                                                                                                                                                                                                         | 115                                                                                                                                                                                                                                                                    | 138                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                       | 85                                                                                                                                                                                                                                | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 161                                                                                                                                                                                                                                                                           |
|          | 20                                                                                                                                                                                                                                                                   | 216                                                                                                                                                                                                         | 82                                                                                                                                                                                                                     | 209                                                                                                                                                                                                                                           | 218                                                                                                                                                                                                                                                                 | 209                                                                                                                                                                                                                                                                | 337                                                                                                                                                                                                                                                                                                   | 173                                                                                                                                                                                                                                                            | 205                                                                                                                                                                                                                                                                                             |                            | 59                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                             |
|          | 31                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                           | 0                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                               |                            | 0                                                                                                                                                                                                                                                | 167                                                                                                                                                                                                                                                                                                                                        | 185                                                                                                                                                                                                                                                                                         | 151                                                                                                                                                                                                                                                                    | 123                                                                                                                                                                                                                                                                                           | 190                                                                                                                                                                                                                                                                                                                                                                     | 164                                                                                                                                                                                                                               | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121                                                                                                                                                                                                                                                                           |
|          | 1                                                                                                                                                                                                                                                                    | 98                                                                                                                                                                                                          | 101                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                            | 82                                                                                                                                                                                                                                                                  | 178                                                                                                                                                                                                                                                                | 175                                                                                                                                                                                                                                                                                                   | 126                                                                                                                                                                                                                                                            | 116                                                                                                                                                                                                                                                                                             |                            | 9                                                                                                                                                                                                                                                | 151                                                                                                                                                                                                                                                                                                                                        | 177                                                                                                                                                                                                                                                                                         | 179                                                                                                                                                                                                                                                                    | 90                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                       | 196                                                                                                                                                                                                                               | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90                                                                                                                                                                                                                                                                            |
|          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    | 252                                                                                                                                                                                                                                                                                                   | 77                                                                                                                                                                                                                                                             | 151                                                                                                                                                                                                                                                                                             | 38                         |                                                                                                                                                                                                                                                  | 157                                                                                                                                                                                                                                                                                                                                        | 289                                                                                                                                                                                                                                                                                         | 64                                                                                                                                                                                                                                                                     | 73                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                               | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26                                                                                                                                                                                                                                                                            |
|          | 2                                                                                                                                                                                                                                                                    | 149                                                                                                                                                                                                         | 339                                                                                                                                                                                                                    | 80                                                                                                                                                                                                                                            | 165                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                  | 253                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                | 151                                                                                                                                                                                                                                                                                             | 30                         | 10                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                       | 209                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                               |
|          | 4                                                                                                                                                                                                                                                                    | 167                                                                                                                                                                                                         | 274                                                                                                                                                                                                                    | 211                                                                                                                                                                                                                                           | 174                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                 | 27                                                                                                                                                                                                                                                                                                    | 156                                                                                                                                                                                                                                                            | 70                                                                                                                                                                                                                                                                                              | 30                         | 12                                                                                                                                                                                                                                               | 163                                                                                                                                                                                                                                                                                                                                        | 214                                                                                                                                                                                                                                                                                         | 181                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                       | 246                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 140                                                                                                                                                                                                                                                                           |
| 10       | 4<br>7                                                                                                                                                                                                                                                               | 167<br>160                                                                                                                                                                                                  | 274<br>111                                                                                                                                                                                                             | 211<br>75                                                                                                                                                                                                                                     | 174<br>19                                                                                                                                                                                                                                                           | 28<br>267                                                                                                                                                                                                                                                          | 27<br>231                                                                                                                                                                                                                                                                                             | 156<br>16                                                                                                                                                                                                                                                      | 70<br>230                                                                                                                                                                                                                                                                                       | 30                         | 12<br>60                                                                                                                                                                                                                                         | 163<br>0                                                                                                                                                                                                                                                                                                                                   | 214<br>0                                                                                                                                                                                                                                                                                    | 181                                                                                                                                                                                                                                                                    | 10<br>0                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                       | 246<br>0                                                                                                                                                                                                                          | 100<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140<br>0                                                                                                                                                                                                                                                                      |
| 10       | 7<br>8                                                                                                                                                                                                                                                               | 167<br>160<br>49                                                                                                                                                                                            | 274<br>111<br>383                                                                                                                                                                                                      | 211<br>75<br>161                                                                                                                                                                                                                              | 174<br>19<br>194                                                                                                                                                                                                                                                    | 28<br>267<br>234                                                                                                                                                                                                                                                   | 27<br>231<br>49                                                                                                                                                                                                                                                                                       | 156<br>16<br>12                                                                                                                                                                                                                                                | 70<br>230<br>115                                                                                                                                                                                                                                                                                | 30                         | 12<br>60<br>1                                                                                                                                                                                                                                    | 163<br>0<br>173                                                                                                                                                                                                                                                                                                                            | 214<br>0<br>258                                                                                                                                                                                                                                                                             | 181<br>0<br>102                                                                                                                                                                                                                                                        | 10<br>0<br>12                                                                                                                                                                                                                                                                                 | 0<br>0<br>153                                                                                                                                                                                                                                                                                                                                                           | 246<br>0<br>236                                                                                                                                                                                                                   | 100<br>0<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 140<br>0<br>115                                                                                                                                                                                                                                                               |
| 10       | 4<br>7<br>8<br>14                                                                                                                                                                                                                                                    | 167<br>160<br>49<br>58                                                                                                                                                                                      | 274<br>111<br>383<br>354                                                                                                                                                                                               | 211<br>75<br>161<br>311                                                                                                                                                                                                                       | 174<br>19<br>194<br>103                                                                                                                                                                                                                                             | 28<br>267<br>234<br>201                                                                                                                                                                                                                                            | 27<br>231<br>49<br>267                                                                                                                                                                                                                                                                                | 156<br>16<br>12<br>70                                                                                                                                                                                                                                          | 70<br>230<br>115<br>84                                                                                                                                                                                                                                                                          |                            | 12<br>60<br>1<br>3                                                                                                                                                                                                                               | 163<br>0<br>173<br>139                                                                                                                                                                                                                                                                                                                     | 214<br>0<br>258<br>93                                                                                                                                                                                                                                                                       | 181<br>0<br>102<br>77                                                                                                                                                                                                                                                  | 10<br>0<br>12<br>77                                                                                                                                                                                                                                                                           | 0<br>0<br>153<br>0                                                                                                                                                                                                                                                                                                                                                      | 246<br>0<br>236<br>264                                                                                                                                                                                                            | 100<br>0<br>4<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 140<br>0<br>115<br>188                                                                                                                                                                                                                                                        |
| 10       | 4<br>7<br>8<br>14<br>32                                                                                                                                                                                                                                              | 167<br>160<br>49<br>58<br>0                                                                                                                                                                                 | 274<br>111<br>383<br>354<br>0                                                                                                                                                                                          | 211<br>75<br>161<br>311<br>0                                                                                                                                                                                                                  | 174<br>19<br>194<br>103<br>0                                                                                                                                                                                                                                        | 28<br>267<br>234<br>201<br>0                                                                                                                                                                                                                                       | 27<br>231<br>49<br>267<br>0                                                                                                                                                                                                                                                                           | 156<br>16<br>12<br>70<br>0                                                                                                                                                                                                                                     | 70<br>230<br>115<br>84<br>0                                                                                                                                                                                                                                                                     | 39                         | 12<br>60<br>1<br>3<br>7                                                                                                                                                                                                                          | 163<br>0<br>173<br>139<br>149                                                                                                                                                                                                                                                                                                              | 214<br>0<br>258<br>93<br>346                                                                                                                                                                                                                                                                | 181<br>0<br>102<br>77<br>192                                                                                                                                                                                                                                           | 10<br>0<br>12<br>77<br>49                                                                                                                                                                                                                                                                     | 0<br>0<br>153<br>0<br>165                                                                                                                                                                                                                                                                                                                                               | 246<br>0<br>236<br>264<br>37                                                                                                                                                                                                      | 100<br>0<br>4<br>28<br>109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140<br>0<br>115<br>188<br>168                                                                                                                                                                                                                                                 |
| 10       | 4<br>7<br>8<br>14<br>32<br>0                                                                                                                                                                                                                                         | 167<br>160<br>49<br>58<br>0<br>77                                                                                                                                                                           | 274<br>111<br>383<br>354<br>0<br>48                                                                                                                                                                                    | 211<br>75<br>161<br>311<br>0<br>16                                                                                                                                                                                                            | 174<br>19<br>194<br>103<br>0<br>52                                                                                                                                                                                                                                  | 28<br>267<br>234<br>201<br>0<br>55                                                                                                                                                                                                                                 | 27<br>231<br>49<br>267<br>0<br>25                                                                                                                                                                                                                                                                     | 156<br>16<br>12<br>70<br>0<br>184                                                                                                                                                                                                                              | 70<br>230<br>115<br>84<br>0<br>45                                                                                                                                                                                                                                                               |                            | 12<br>60<br>1<br>3<br>7<br>19                                                                                                                                                                                                                    | 163<br>0<br>173<br>139<br>149<br>0                                                                                                                                                                                                                                                                                                         | 214<br>0<br>258<br>93<br>346<br>297                                                                                                                                                                                                                                                         | 181<br>0<br>102<br>77<br>192<br>208                                                                                                                                                                                                                                    | 10<br>0<br>12<br>77<br>49<br>114                                                                                                                                                                                                                                                              | 0<br>0<br>153<br>0<br>165<br>117                                                                                                                                                                                                                                                                                                                                        | 246<br>0<br>236<br>264<br>37<br>272                                                                                                                                                                                               | 100<br>0<br>4<br>28<br>109<br>188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140<br>0<br>115<br>188<br>168<br>52                                                                                                                                                                                                                                           |
| 10       | 4<br>7<br>8<br>14<br>32<br>0                                                                                                                                                                                                                                         | 167<br>160<br>49<br>58<br>0<br>77<br>41                                                                                                                                                                     | 274<br>111<br>383<br>354<br>0<br>48<br>102                                                                                                                                                                             | 211<br>75<br>161<br>311<br>0<br>16<br>147                                                                                                                                                                                                     | 174<br>19<br>194<br>103<br>0<br>52<br>11                                                                                                                                                                                                                            | 28<br>267<br>234<br>201<br>0<br>55<br>23                                                                                                                                                                                                                           | 27<br>231<br>49<br>267<br>0<br>25<br>322                                                                                                                                                                                                                                                              | 156<br>16<br>12<br>70<br>0<br>184<br>194                                                                                                                                                                                                                       | 70<br>230<br>115<br>84<br>0<br>45<br>115                                                                                                                                                                                                                                                        |                            | 12<br>60<br>1<br>3<br>7<br>19<br>61                                                                                                                                                                                                              | 163<br>0<br>173<br>139<br>149<br>0                                                                                                                                                                                                                                                                                                         | 214<br>0<br>258<br>93<br>346<br>297<br>0                                                                                                                                                                                                                                                    | 181<br>0<br>102<br>77<br>192<br>208<br>0                                                                                                                                                                                                                               | 10<br>0<br>12<br>77<br>49<br>114<br>0                                                                                                                                                                                                                                                         | 0<br>0<br>153<br>0<br>165<br>117                                                                                                                                                                                                                                                                                                                                        | 246<br>0<br>236<br>264<br>37<br>272<br>0                                                                                                                                                                                          | 100<br>0<br>4<br>28<br>109<br>188<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140<br>0<br>115<br>188<br>168<br>52<br>0                                                                                                                                                                                                                                      |
|          | 4<br>7<br>8<br>14<br>32<br>0<br>1                                                                                                                                                                                                                                    | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83                                                                                                                                                               | 274<br>111<br>383<br>354<br>0<br>48<br>102<br>8                                                                                                                                                                        | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290                                                                                                                                                                                              | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2                                                                                                                                                                                                                       | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274                                                                                                                                                                                                                    | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200                                                                                                                                                                                                                                                       | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123                                                                                                                                                                                                                | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134                                                                                                                                                                                                                                                 | 39                         | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0                                                                                                                                                                                                         | 163<br>0<br>173<br>139<br>149<br>0<br>0                                                                                                                                                                                                                                                                                                    | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175                                                                                                                                                                                                                                             | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32                                                                                                                                                                                                                         | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67                                                                                                                                                                                                                                                   | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216                                                                                                                                                                                                                                                                                                                            | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304                                                                                                                                                                                   | 100<br>0<br>4<br>28<br>109<br>188<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4                                                                                                                                                                                                                                 |
| 10       | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16                                                                                                                                                                                                                        | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182                                                                                                                                                        | 274<br>111<br>383<br>354<br>0<br>48<br>102<br>8<br>47                                                                                                                                                                  | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289                                                                                                                                                                                       | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35                                                                                                                                                                                                                 | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181                                                                                                                                                                                                             | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351                                                                                                                                                                                                                                                | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16                                                                                                                                                                                                          | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134                                                                                                                                                                                                                                                 |                            | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8                                                                                                                                                                                                    | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137                                                                                                                                                                                                                                                                                      | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37                                                                                                                                                                                                                                       | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80                                                                                                                                                                                                                   | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45                                                                                                                                                                                                                                             | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144                                                                                                                                                                                                                                                                                                                     | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237                                                                                                                                                                            | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103                                                                                                                                                                                                                          |
|          | 4<br>7<br>8<br>14<br>32<br>0<br>1                                                                                                                                                                                                                                    | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83                                                                                                                                                               | 274<br>111<br>383<br>354<br>0<br>48<br>102<br>8                                                                                                                                                                        | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290                                                                                                                                                                                              | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2                                                                                                                                                                                                                       | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274                                                                                                                                                                                                                    | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200                                                                                                                                                                                                                                                       | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123                                                                                                                                                                                                                | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1                                                                                                                                                                                                                                            | 39                         | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0                                                                                                                                                                                                         | 163<br>0<br>173<br>139<br>149<br>0<br>0                                                                                                                                                                                                                                                                                                    | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175                                                                                                                                                                                                                                             | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32                                                                                                                                                                                                                         | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67                                                                                                                                                                                                                                                   | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216                                                                                                                                                                                                                                                                                                                            | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304                                                                                                                                                                                   | 100<br>0<br>4<br>28<br>109<br>188<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4                                                                                                                                                                                                                                 |
|          | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21                                                                                                                                                                                                                  | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78                                                                                                                                                  | 274<br>111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188                                                                                                                                                           | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177                                                                                                                                                                                | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32                                                                                                                                                                                                           | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273                                                                                                                                                                                                      | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166                                                                                                                                                                                                                                         | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16                                                                                                                                                                                                          | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134                                                                                                                                                                                                                                                 | 39                         | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8                                                                                                                                                                                                    | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137                                                                                                                                                                                                                                                                                      | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37                                                                                                                                                                                                                                       | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80                                                                                                                                                                                                                   | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45                                                                                                                                                                                                                                             | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2                                                                                                                                                                                                                                                                                                                | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135                                                                                                                                                                     | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30                                                                                                                                                                                                                    |
|          | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>1<br>12<br>16<br>21<br>22                                                                                                                                                                                                       | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252                                                                                                                                           | 274<br>111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334                                                                                                                                                    | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43                                                                                                                                                                          | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84                                                                                                                                                                                                     | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273                                                                                                                                                                                                      | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338                                                                                                                                                                                                                                  | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109                                                                                                                                                                                            | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165                                                                                                                                                                                                                              | 39                         | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17                                                                                                                                                                                              | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0                                                                                                                                                                                                                                                                          | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312                                                                                                                                                                                                                                | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197                                                                                                                                                                                                            | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96                                                                                                                                                                                                                                       | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2                                                                                                                                                                                                                                                                                                                | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135                                                                                                                                                                     | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30                                                                                                                                                                                                                    |
|          | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>1<br>12<br>16<br>21<br>22<br>23                                                                                                                                                                                                 | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>22                                                                                                                                     | 274<br>111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115                                                                                                                                             | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280                                                                                                                                                                   | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201                                                                                                                                                                                              | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26                                                                                                                                                                                          | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192                                                                                                                                                                                                                           | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109                                                                                                                                                                                            | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165                                                                                                                                                                                                                              | 39                         | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1                                                                                                                                                                                   | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0                                                                                                                                                                                                                                                                          | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0                                                                                                                                                                                                                           | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0                                                                                                                                                                                                       | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0                                                                                                                                                                                                                                  | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0                                                                                                                                                                                                                                                                                                           | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>77<br>25                                                                                                                                             | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53                                                                                                                                                                                                         |
|          | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>1<br>12<br>16<br>21<br>22<br>23<br>33                                                                                                                                                                                           | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>22<br>0                                                                                                                                | 274<br>111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115                                                                                                                                             | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0                                                                                                                                                              | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0                                                                                                                                                                                         | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26                                                                                                                                                                                          | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0                                                                                                                                                                                                                      | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6                                                                                                                                                                           | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0                                                                                                                                                                                                                  | 39                         | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>3<br>9                                                                                                                                                                         | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173                                                                                                                                                                                                                                                            | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314                                                                                                                                                                                                              | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47                                                                                                                                                                                          | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>23<br>215                                                                                                                                                                                                                     | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0                                                                                                                                                                                                                                                                                                      | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123                                                                                                                                                         | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189                                                                                                                                                                                                  |
|          | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>1<br>12<br>16<br>21<br>22<br>23<br>33                                                                                                                                                                                           | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>22<br>0                                                                                                                                | 274<br>111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0                                                                                                                                        | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>229                                                                                                                                                       | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0                                                                                                                                                                                         | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0                                                                                                                                                                                     | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0                                                                                                                                                                                                                      | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6                                                                                                                                                                           | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0                                                                                                                                                                                                                  | 39                         | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>3<br>9                                                                                                                                                                         | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139                                                                                                                                                                                                                                                     | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139                                                                                                                                                                                                       | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124                                                                                                                                                                                   | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>23<br>215                                                                                                                                                                                                                     | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0                                                                                                                                                                                                                                                                                                      | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>77<br>25                                                                                                                                             | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215                                                                                                                                                                                           |
|          | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10                                                                                                                                                                                | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>22<br>0<br>160<br>42                                                                                                                   | 274<br>111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77                                                                                                                                  | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>229<br>235                                                                                                                                                | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175                                                                                                                                                                           | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162                                                                                                                                                                       | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217                                                                                                                                                                                                        | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6                                                                                                                                                                           | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215                                                                                                                                                                                                    | 39                         | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>3<br>9                                                                                                                                                                         | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151                                                                                                                                                                                                                                              | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288                                                                                                                                                                                                | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207                                                                                                                                                                            | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>23<br>215<br>60<br>167<br>0<br>114                                                                                                                                                                                            | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                 | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>77<br>25<br>272                                                                                                                                      | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24                                                                                                                                                                                     |
| 11       | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>11                                                                                                                                                                    | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>22<br>0<br>160<br>42<br>21<br>32                                                                                                       | 274<br>1111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>232                                                                                                            | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>105                                                                                                                            | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175<br>136<br>3<br>28                                                                                                                                                         | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238                                                                                                                                                  | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>142<br>110                                                                                                                                                                                          | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104                                                                                                                                                | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>98                                                                                                                                                                                | 39<br>40<br>41             | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>1<br>3<br>9<br>18<br>63<br>0<br>4                                                                                                                                              | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151<br>0                                                                                                                                                                                                                                         | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14                                                                                                                                                                              | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>226<br>65                                                                                                                                                          | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>23<br>215<br>60<br>167<br>0<br>114                                                                                                                                                                                            | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>0<br>183<br>0                                                                                                                                                                                                                                                                                | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>77<br>25<br>272<br>0<br>288<br>83                                                                                                                    | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24<br>0<br>222<br>170                                                                                                                                                                  |
| 11       | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>3<br>0<br>1<br>10<br>11<br>11<br>13<br>18                                                                                                                                                         | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>22<br>0<br>160<br>42<br>21<br>234<br>7                                                                                                 | 274<br>1111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>232<br>50<br>74                                                                                                | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>105<br>52                                                                                                                      | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175<br>136<br>3<br>28<br>182                                                                                                                                                  | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>243                                                                                                                                           | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>142<br>110<br>176                                                                                                                                                                                   | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>0<br>6<br>20<br>203<br>153<br>104<br>207                                                                                                                                                       | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>98                                                                                                                                                                                | 39                         | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>1<br>3<br>9<br>18<br>63<br>0<br>4                                                                                                                                              | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>157                                                                                                                                                                                                                           | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14<br>218                                                                                                                                                                       | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>226<br>65<br>126                                                                                                                                                   | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>23<br>215<br>60<br>167<br>0<br>114<br>91<br>78                                                                                                                                                                                | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>0<br>183<br>0<br>27<br>0                                                                                                                                                                                                                                                                     | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>77<br>25<br>272<br>0<br>288<br>83                                                                                                                    | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24<br>0<br>222<br>170<br>71                                                                                                                                                            |
| 11       | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>13<br>18                                                                                                                                                              | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>2<br>0<br>160<br>42<br>21<br>32<br>234<br>7                                                                                            | 274<br>1111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>232<br>50<br>74                                                                                                | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>105<br>52<br>0                                                                                                                 | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175<br>136<br>3<br>28<br>182                                                                                                                                                  | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>243<br>0                                                                                                                                      | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>142<br>110<br>76                                                                                                                                                                                    | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0                                                                                                                                    | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>98<br>80                                                                                                                                                                          | 39<br>40<br>41             | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>3<br>9<br>18<br>63<br>0<br>4<br>24                                                                                                                                             | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>151<br>0                                                                                                                                                                                                                             | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14<br>218                                                                                                                                                                       | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>226<br>65<br>126<br>0                                                                                                                                              | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>23<br>215<br>60<br>167<br>0<br>114<br>0<br>7<br>8                                                                                                                                                                             | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>0<br>183<br>0<br>27<br>0<br>35                                                                                                                                                                                                                                                               | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>77<br>25<br>272<br>0<br>8<br>83<br>17                                                                                                                | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>162<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24<br>0<br>222<br>170<br>71                                                                                                                                                            |
| 11       | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>13<br>18<br>34                                                                                                                                                        | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>252<br>2<br>0<br>160<br>42<br>21<br>32<br>234<br>7<br>0                                                                                             | 274<br>1111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>232<br>50<br>74<br>0<br>313                                                                                    | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>280<br>0<br>0<br>280<br>0<br>280<br>0<br>295<br>169<br>48<br>105<br>52<br>0<br>39                                                                                                         | 174<br>19<br>194<br>103<br>0<br>52<br>111<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175<br>136<br>3<br>28<br>182<br>0<br>81                                                                                                                                      | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>243<br>0<br>231                                                                                                                               | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>142<br>110<br>176<br>76<br>0                                                                                                                                                                        | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0<br>52                                                                                                                              | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>98<br>80<br>0                                                                                                                                                                     | 39<br>40<br>41             | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>8<br>17<br>62<br>1<br>3<br>9<br>18<br>63<br>0<br>4<br>24<br>64<br>1                                                                                                                             | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>157<br>173<br>173<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                                                                                                                                                     | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14<br>218<br>0<br>113                                                                                                                                                           | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>226<br>65<br>126<br>0<br>228                                                                                                                                       | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>23<br>215<br>60<br>167<br>0<br>114<br>91<br>78<br>8                                                                                                                                                                           | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>183<br>0<br>27<br>0<br>52                                                                                                                                                                                                                                                                    | 246<br>0<br>236<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>77<br>25<br>272<br>0<br>288<br>83<br>17<br>0<br>210                                                                                                         | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>162<br>0<br>1 10<br>1 10 | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24<br>0<br>222<br>170<br>71<br>0<br>22                                                                                                                                                 |
| 11       | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>13<br>18<br>34<br>0                                                                                                                                                   | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>2<br>2<br>0<br>160<br>42<br>234<br>7<br>0<br>177<br>248                                                                                | 274<br>111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>47<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>232<br>50<br>74<br>0<br>313                                                                         | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>105<br>52<br>0<br>39<br>302                                                                                                    | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>20<br>142<br>175<br>136<br>3<br>28<br>182<br>0<br>81                                                                                                                                             | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>243<br>0<br>0                                                                                                                                 | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>140<br>176<br>76<br>0<br>311<br>251                                                                                                                                                                 | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0<br>52                                                                                                                              | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>98<br>80<br>0<br>220<br>185                                                                                                                                                       | 39<br>40<br>41<br>42       | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>1<br>3<br>9<br>18<br>63<br>0<br>4<br>24<br>64<br>1                                                                                                                             | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>157<br>137<br>149                                                                                                                                                                                                             | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14<br>218<br>0<br>113<br>132                                                                                                                                                    | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>226<br>65<br>126<br>0<br>228<br>69                                                                                                                                 | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>23<br>215<br>60<br>1167<br>0<br>1114<br>91<br>78<br>0<br>206<br>22                                                                                                                                                            | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>0<br>183<br>0<br>27<br>0<br>35<br>0<br>0                                                                                                                                                                                                                                                     | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>77<br>25<br>272<br>0<br>288<br>83<br>17<br>0<br>210<br>3                                                                                             | 100<br>0<br>4<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>5<br>3189<br>215<br>24<br>0<br>222<br>170<br>71<br>0<br>22<br>127                                                                                                                                          |
| 11       | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>13<br>18<br>34<br>0<br>3<br>7                                                                                                                                         | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>22<br>0<br>160<br>42<br>21<br>32<br>234<br>7<br>0                                                                                      | 274<br>111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>232<br>50<br>74<br>0                                                                                            | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>405<br>52<br>0<br>302<br>303                                                                                                   | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175<br>136<br>3<br>28<br>182<br>0                                                                                                                                             | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>243<br>0<br>231<br>0                                                                                                                          | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>142<br>110<br>176<br>76<br>0                                                                                                                                                                        | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0<br>5<br>5<br>2<br>147                                                                                                              | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>98<br>80<br>0<br>220<br>185<br>154                                                                                                                                                | 39<br>40<br>41             | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>1<br>3<br>9<br>18<br>63<br>0<br>4<br>24<br>64<br>1<br>16<br>16                                                                                                                 | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>157<br>173<br>151<br>0<br>149<br>157<br>173<br>173<br>173<br>174<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                                                                                                      | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>111<br>113<br>0<br>114<br>218<br>0<br>113<br>114                                                                                                                                       | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>226<br>65<br>126<br>0<br>228<br>69<br>176                                                                                                                          | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>6<br>45<br>96<br>0<br>23<br>215<br>60<br>167<br>0<br>149<br>178<br>0<br>215<br>215<br>215<br>215<br>215<br>215<br>215<br>215<br>215<br>215                                                                                                           | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>0<br>183<br>0<br>2<br>7<br>7<br>0<br>0<br>35<br>0<br>0                                                                                                                                                                                                                                       | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>77<br>25<br>272<br>0<br>88<br>83<br>17<br>0<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                                              | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>162<br>0<br>163<br>99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24<br>0<br>222<br>170<br>71<br>0<br>222<br>127<br>49                                                                                                                                   |
| 11       | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>13<br>18<br>34<br>0<br>3<br>7                                                                                                                                         | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>22<br>0<br>160<br>42<br>21<br>32<br>234<br>7<br>0<br>177<br>278<br>189<br>189<br>189<br>189<br>189<br>189<br>189<br>189<br>189<br>18   | 274<br>1111<br>383<br>50<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>232<br>0<br>313<br>317<br>72<br>66<br>115                                                                            | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>299<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>105<br>52<br>0<br>39<br>303<br>160                                                                                                    | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175<br>136<br>3<br>28<br>182<br>0<br>81<br>52<br>175                                                                                                                          | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>243<br>0<br>231<br>0<br>216<br>47                                                                                                             | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>142<br>110<br>76<br>0<br>311<br>25<br>94                                                                                                                                                            | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0<br>52<br>147<br>1                                                                                                                  | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>0<br>220<br>185<br>5<br>154<br>178                                                                                                                                                | 39<br>40<br>41<br>42       | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>1<br>3<br>3<br>9<br>18<br>63<br>0<br>4<br>24<br>64<br>1<br>16<br>18<br>25                                                                                                      | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>151<br>0<br>149<br>151<br>137<br>139<br>151<br>137<br>139<br>151<br>139<br>139<br>149<br>157<br>167<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>17                                                                    | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14<br>218<br>0<br>113<br>132<br>144<br>168                                                                                                                                      | 181<br>0<br>102<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>226<br>65<br>126<br>0<br>228<br>69<br>176                                                                                                                                       | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>23<br>23<br>25<br>60<br>167<br>0<br>114<br>9<br>67<br>0<br>23<br>167<br>0<br>23<br>167<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                                                    | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>0<br>183<br>0<br>27<br>0<br>35<br>0<br>0<br>270                                                                                                                                                                                                                                              | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>77<br>25<br>272<br>0<br>288<br>83<br>17<br>0<br>210<br>30<br>40<br>50<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6                     | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>163<br>99<br>98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24<br>0<br>222<br>170<br>71<br>0<br>22<br>127<br>49<br>125                                                                                                                             |
| 11       | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>13<br>18<br>34<br>0<br>3<br>7<br>20<br>23                                                                                                                             | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>252<br>22<br>0<br>160<br>42<br>21<br>32<br>234<br>7<br>0<br>177<br>248<br>151<br>185<br>62                                                          | 274<br>1111<br>383<br>354<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>232<br>50<br>0<br>313<br>177<br>4<br>0<br>0<br>115<br>5<br>0<br>0<br>115<br>5<br>0<br>0<br>115<br>115<br>115<br>115 | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>29<br>235<br>169<br>48<br>105<br>52<br>0<br>39<br>302<br>303<br>303<br>303<br>304<br>307                                                                  | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175<br>136<br>3<br>2<br>88<br>182<br>0<br>81<br>56<br>72<br>217                                                                                                               | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>0<br>231<br>0<br>231<br>0<br>47                                                                                                               | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>142<br>110<br>176<br>0<br>311<br>255<br>94                                                                                                                                                          | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0<br>52<br>147<br>1<br>16<br>46                                                                                                      | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>98<br>80<br>0<br>220<br>185<br>154<br>178                                                                                                                                         | 39<br>40<br>41<br>42       | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>1<br>3<br>9<br>18<br>63<br>0<br>4<br>4<br>24<br>64<br>1<br>1<br>18<br>25<br>65                                                                                                 | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>151<br>0<br>149<br>151<br>163<br>173<br>173<br>0<br>151<br>163<br>173<br>173<br>174<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                                                                                          | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14<br>0<br>113<br>14<br>168<br>0                                                                                                                                                | 181<br>0<br>102<br>77<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>226<br>65<br>126<br>0<br>228<br>69<br>176<br>102<br>0                                                                                                        | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>23<br>215<br>60<br>167<br>0<br>114<br>91<br>78<br>0<br>206<br>22<br>134<br>0                                                                                                                                                  | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>0<br>183<br>0<br>27<br>0<br>35<br>0<br>0<br>27<br>0<br>0<br>27<br>0<br>0<br>0                                                                                                                                                                                                                | 246<br>0<br>236<br>237<br>272<br>0<br>304<br>135<br>0<br>123<br>77<br>25<br>272<br>0<br>288<br>83<br>17<br>0<br>210<br>3<br>5<br>6<br>6<br>7<br>7<br>7<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>162<br>0<br>1 163<br>9<br>9<br>9<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24<br>0<br>222<br>170<br>0<br>22<br>127<br>49<br>125<br>0                                                                                                                              |
| 11       | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>13<br>18<br>34<br>0<br>3<br>7<br>20<br>23<br>33<br>34<br>35<br>36<br>37<br>37<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38                             | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>22<br>0<br>160<br>42<br>234<br>7<br>0<br>177<br>248<br>151<br>185<br>0                                                                 | 274<br>1111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>313<br>177<br>266<br>115<br>370<br>0                                                                                  | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>105<br>52<br>0<br>39<br>303<br>160<br>37<br>0                                                                                  | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>20<br>142<br>175<br>136<br>3<br>28<br>182<br>0<br>81<br>56<br>72<br>217<br>78                                                                                                                    | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>243<br>0<br>216<br>47<br>36<br>0                                                                                                              | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>142<br>176<br>76<br>0<br>311<br>251<br>265<br>94<br>81                                                                                                                                              | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0<br>52<br>147<br>1<br>1<br>6                                                                                                        | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>98<br>80<br>0<br>220<br>185<br>154<br>178                                                                                                                                         | 39<br>40<br>41<br>42       | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>1<br>3<br>9<br>18<br>63<br>0<br>4<br>24<br>64<br>1<br>16<br>18<br>25<br>5<br>5<br>6<br>5<br>6<br>5<br>6<br>7                                                                   | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>157<br>137<br>139<br>151<br>0<br>149<br>0<br>149<br>0<br>157<br>173<br>139<br>151<br>0<br>149<br>157<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>17                                                                   | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14<br>218<br>0<br>113<br>114<br>113<br>114<br>116<br>117<br>117<br>118<br>119<br>119<br>119<br>119<br>119<br>119<br>119                                                         | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>0<br>226<br>65<br>126<br>0<br>0<br>228<br>69<br>176                                                                                                                | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>2<br>3<br>215<br>60<br>167<br>0<br>114<br>91<br>78<br>0<br>206<br>22<br>134<br>161<br>0                                                                                                                                       | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>0<br>183<br>0<br>27<br>0<br>0<br>52<br>27<br>0<br>0<br>52<br>27<br>0<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                                                                                                                            | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>2123<br>27<br>25<br>272<br>0<br>288<br>83<br>17<br>0<br>210<br>3<br>53<br>167<br>0<br>79                                                                    | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>162<br>0<br>1 163<br>99<br>98<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24<br>0<br>222<br>170<br>71<br>0<br>22<br>127<br>49<br>125<br>0<br>191                                                                                                                 |
| 11       | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>13<br>18<br>34<br>0<br>3<br>7<br>20<br>23<br>33<br>0                                                                                                                  | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>22<br>0<br>160<br>42<br>21<br>32<br>234<br>7<br>0<br>177<br>248<br>151<br>185<br>62<br>0                                               | 274<br>1111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>0<br>313<br>313<br>317<br>266<br>115<br>370<br>0                                                               | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>105<br>52<br>0<br>302<br>303<br>160<br>37<br>0                                                                                 | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175<br>136<br>3<br>28<br>182<br>0<br>0<br>142<br>175<br>136<br>3<br>28<br>182<br>0<br>182<br>183<br>184<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185 | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>243<br>0<br>216<br>47<br>36<br>0                                                                                                              | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>142<br>110<br>176<br>76<br>0<br>311<br>251<br>265<br>94<br>81<br>0<br>22                                                                                                                            | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0<br>5<br>5<br>147<br>1<br>16<br>4<br>6<br>104<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105                               | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>98<br>80<br>0<br>220<br>185<br>154<br>178<br>159<br>0                                                                                                                             | 39<br>40<br>41<br>42<br>43 | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>1<br>3<br>9<br>18<br>63<br>0<br>4<br>24<br>64<br>1<br>16<br>18<br>25<br>65<br>65<br>7                                                                                          | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>157<br>173<br>139<br>151<br>0<br>157<br>137<br>0<br>157<br>137<br>0<br>149<br>157<br>139<br>151<br>0<br>157<br>139<br>157<br>139<br>151<br>157<br>139<br>157<br>139<br>157<br>139<br>157<br>139<br>157<br>139<br>157<br>157<br>157<br>157<br>157<br>157<br>157<br>157 | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14<br>218<br>0<br>113<br>132<br>114<br>168<br>0<br>80<br>78                                                                                                                     | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>0<br>65<br>126<br>0<br>0<br>176<br>102<br>0<br>0<br>0<br>0<br>197<br>0<br>0<br>197<br>198<br>197<br>198<br>199<br>199<br>199<br>199<br>199<br>199<br>199           | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>6<br>6<br>45<br>96<br>0<br>2<br>215<br>60<br>167<br>0<br>114<br>91<br>78<br>0<br>2<br>2<br>2<br>15<br>6<br>0<br>167<br>0<br>167<br>0<br>17<br>0<br>18<br>0<br>18<br>0<br>18<br>0<br>18<br>0<br>18<br>0<br>18<br>0<br>1                               | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>0<br>183<br>0<br>27<br>0<br>35<br>0<br>270<br>0                                                                                                                                                                                                                                              | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>77<br>25<br>272<br>0<br>288<br>83<br>17<br>0<br>13<br>13<br>17<br>0<br>17<br>17<br>25<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27    | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>162<br>0<br>1 163<br>99<br>98<br>0<br>4<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>5<br>189<br>215<br>24<br>0<br>222<br>170<br>71<br>0<br>22<br>127<br>49<br>125<br>0<br>191<br>211                                                                                                           |
| 11       | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>3<br>0<br>1<br>10<br>11<br>13<br>18<br>34<br>0<br>3<br>7<br>20<br>23<br>33<br>0<br>1                                                                                                              | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>82<br>252<br>22<br>0<br>160<br>42<br>21<br>32<br>234<br>7<br>0<br>177<br>41<br>82<br>62<br>0<br>0<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180 | 274<br>1111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>0<br>313<br>317<br>77<br>266<br>115<br>370<br>0<br>142<br>248                                                  | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>289<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>405<br>52<br>0<br>39<br>302<br>303<br>160<br>37<br>0<br>78<br>299                                                                     | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>142<br>175<br>136<br>3<br>28<br>182<br>0<br>0<br>81<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>17                                                                  | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>243<br>0<br>216<br>47<br>36<br>0<br>0                                                                                                         | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>142<br>110<br>76<br>0<br>311<br>251<br>265<br>94<br>81<br>0<br>22                                                                                                                                   | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0<br>52<br>147<br>1<br>16<br>46<br>0<br>1<br>16                                                                                      | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>0<br>0<br>220<br>185<br>154<br>178<br>150<br>0                                                                                                                                    | 39<br>40<br>41<br>42       | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>1<br>3<br>9<br>18<br>63<br>0<br>4<br>24<br>64<br>1<br>1<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                        | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>157<br>137<br>139<br>151<br>0<br>157<br>157<br>137<br>139<br>151<br>157<br>157<br>157<br>157<br>157<br>157<br>157                                                           | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14<br>218<br>0<br>113<br>132<br>114<br>168<br>0<br>80<br>78                                                                                                                     | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>226<br>65<br>126<br>0<br>0<br>227<br>176<br>102<br>0<br>234<br>227<br>259                                                                                          | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>6<br>6<br>7<br>96<br>0<br>23<br>215<br>60<br>167<br>0<br>215<br>60<br>167<br>0<br>215<br>60<br>167<br>0<br>215<br>60<br>167<br>0<br>216<br>167<br>0<br>217<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>0<br>183<br>0<br>27<br>0<br>0<br>25<br>0<br>0<br>0<br>165<br>117<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                   | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>77<br>25<br>272<br>0<br>88<br>17<br>0<br>210<br>3<br>53<br>167<br>0<br>9<br>244<br>293                                                               | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>162<br>0<br>1 163<br>99<br>98<br>0<br>4<br>6<br>142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24<br>0<br>222<br>170<br>71<br>0<br>22<br>127<br>49<br>125<br>0<br>121<br>125<br>121<br>125<br>126<br>127<br>127<br>127<br>128<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129 |
| 11 12 13 | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>13<br>18<br>34<br>0<br>3<br>7<br>20<br>23<br>35<br>0<br>1                                                                                                             | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>252<br>22<br>0<br>160<br>42<br>21<br>32<br>24<br>7<br>0<br>177<br>248<br>151<br>185<br>62<br>0<br>206<br>55<br>206                                  | 274<br>1111<br>383<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>232<br>0<br>313<br>177<br>0<br>0<br>142<br>248<br>137                                                                 | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>40<br>52<br>0<br>39<br>303<br>303<br>160<br>37<br>0<br>78<br>299<br>54                                                         | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175<br>136<br>3<br>8<br>182<br>0<br>8<br>1<br>175<br>175<br>178<br>0<br>177<br>178<br>0<br>179<br>179<br>179<br>179<br>179<br>179<br>179<br>179<br>179<br>179                 | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>243<br>0<br>231<br>0<br>216<br>47<br>36<br>0<br>186<br>25<br>26<br>27<br>28<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>142<br>110<br>176<br>0<br>311<br>255<br>94<br>81<br>0                                                                                                                                               | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0<br>52<br>147<br>1<br>16<br>46<br>0<br>1<br>16<br>16<br>16<br>16<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18  | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>98<br>80<br>0<br>220<br>185<br>154<br>178<br>150<br>0<br>124<br>178                                                                                                               | 39<br>40<br>41<br>42<br>43 | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>3<br>9<br>18<br>63<br>0<br>4<br>24<br>64<br>1<br>1<br>16<br>18<br>25<br>65<br>0<br>7<br>9<br>9                                                                                 | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>151<br>163<br>173                                                                                                                                                                                                                    | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14<br>218<br>0<br>113<br>143<br>168<br>0<br>80<br>80<br>78<br>163<br>274                                                                                                        | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>228<br>69<br>102<br>0<br>228<br>102<br>228<br>234<br>227<br>259<br>260                                                                                             | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>23<br>23<br>167<br>0<br>114<br>9<br>178<br>0<br>206<br>22<br>134<br>161<br>0<br>84<br>4<br>9                                                                                                                                  | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>0<br>183<br>0<br>27<br>0<br>35<br>0<br>270<br>0<br>18<br>18<br>0                                                                                                                                                                                                                             | 246<br>0<br>236<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>725<br>272<br>0<br>288<br>83<br>17<br>0<br>210<br>3<br>53<br>167<br>0<br>79<br>244<br>293<br>272                                                            | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>162<br>0<br>1 162<br>0<br>1 4<br>6 6<br>1 42<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24<br>0<br>222<br>170<br>71<br>0<br>22<br>127<br>49<br>125<br>0<br>191<br>187<br>148                                                                                                   |
| 11       | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>13<br>18<br>34<br>0<br>3<br>7<br>20<br>23<br>35<br>0<br>1<br>10<br>11<br>11<br>11<br>12<br>16<br>16<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>252<br>22<br>0<br>160<br>42<br>21<br>32<br>234<br>7<br>0<br>177<br>248<br>155<br>62<br>0<br>206<br>55<br>52<br>206<br>127                           | 274<br>1111<br>383<br>50<br>48<br>102<br>8<br>47<br>118<br>334<br>115<br>0<br>77<br>186<br>174<br>232<br>50<br>0<br>313<br>177<br>266<br>115<br>370<br>0<br>142<br>248                                                 | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>105<br>52<br>0<br>39<br>302<br>303<br>160<br>78<br>290<br>490<br>490<br>490<br>490<br>490<br>490<br>490<br>4                   | 174<br>19<br>194<br>103<br>0<br>52<br>111<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175<br>136<br>3<br>28<br>81<br>56<br>72<br>217<br>78<br>0<br>144<br>175<br>175                                                                                               | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>0<br>231<br>0<br>216<br>47<br>36<br>0<br>0<br>186<br>253<br>166                                                                               | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>140<br>176<br>76<br>0<br>311<br>251<br>265<br>94<br>81<br>0<br>22<br>322<br>200<br>351<br>176<br>176<br>176<br>176<br>176<br>176<br>176<br>176<br>176<br>17                                         | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0<br>52<br>147<br>1<br>16<br>46<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                             | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>98<br>80<br>0<br>220<br>185<br>154<br>178<br>150<br>0<br>0<br>124<br>144<br>142<br>162<br>163<br>163<br>164<br>178<br>178<br>178<br>178<br>178<br>178<br>178<br>178<br>178<br>178 | 39<br>40<br>41<br>42<br>43 | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>3<br>9<br>18<br>63<br>0<br>4<br>24<br>64<br>64<br>1<br>16<br>18<br>25<br>65<br>0<br>7<br>7                                                                                     | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>157<br>137<br>0<br>149<br>157<br>139<br>157<br>139<br>157<br>139<br>157<br>139<br>157<br>139<br>157<br>139<br>157<br>139<br>157<br>139<br>157<br>139<br>157<br>139<br>157<br>157<br>157<br>157<br>157<br>157<br>157<br>157    | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>143<br>0<br>113<br>148<br>0<br>113<br>148<br>0<br>168<br>0<br>80<br>78<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>16                                                   | 181<br>0<br>102<br>77<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>226<br>65<br>176<br>102<br>0<br>234<br>227<br>0<br>0<br>228<br>69<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                           | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>23<br>215<br>60<br>167<br>0<br>114<br>91<br>78<br>0<br>206<br>22<br>134<br>161<br>0<br>84<br>4<br>9                                                                                                                           | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>183<br>0<br>27<br>0<br>35<br>0<br>27<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>0<br>183<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                | 246<br>0<br>236<br>237<br>272<br>0<br>304<br>135<br>0<br>123<br>77<br>25<br>272<br>0<br>288<br>83<br>17<br>0<br>210<br>3<br>53<br>167<br>0<br>79<br>244<br>293<br>272<br>0                                                        | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>163<br>10<br>163<br>10<br>4<br>6<br>142<br>3<br>9<br>9<br>8<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24<br>0<br>222<br>170<br>71<br>0<br>22<br>127<br>49<br>121<br>121<br>181<br>191<br>191<br>191<br>191<br>191<br>191<br>19                                                               |
| 11 12 13 | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>13<br>18<br>34<br>0<br>3<br>7<br>20<br>23<br>33<br>0<br>1<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                             | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>22<br>0<br>160<br>42<br>21<br>32<br>234<br>7<br>0<br>177<br>248<br>151<br>185<br>62<br>0<br>206<br>55<br>206                           | 274<br>1111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>0<br>313<br>177<br>266<br>115<br>370<br>0<br>142<br>248<br>39<br>347                                           | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>105<br>52<br>0<br>39<br>302<br>303<br>160<br>37<br>78<br>299<br>54<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61 | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175<br>136<br>3<br>28<br>182<br>0<br>81<br>182<br>0<br>72<br>217<br>78<br>0<br>144<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                      | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>243<br>0<br>216<br>47<br>36<br>0<br>0<br>186<br>0<br>187<br>187<br>188<br>188<br>188<br>188<br>188<br>188                                     | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>140<br>176<br>76<br>0<br>311<br>251<br>265<br>94<br>81<br>0<br>22<br>322<br>27<br>156<br>66                                                                                                         | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0<br>52<br>147<br>1<br>16<br>46<br>0<br>1<br>109<br>121<br>109<br>121<br>109<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>98<br>80<br>0<br>220<br>185<br>154<br>178<br>150<br>0<br>124<br>144<br>182<br>195<br>195<br>196<br>196<br>196<br>196<br>196<br>196<br>196<br>196<br>196<br>196                    | 39<br>40<br>41<br>42<br>43 | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>1<br>3<br>9<br>18<br>63<br>0<br>4<br>24<br>64<br>1<br>16<br>18<br>25<br>65<br>0<br>7<br>9<br>9                                                                                 | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>157<br>137<br>0<br>149<br>157<br>137<br>0<br>149<br>157<br>137<br>0<br>149<br>157<br>173<br>173<br>173<br>173<br>173<br>174<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                                           | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>105<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14<br>218<br>0<br>113<br>114<br>168<br>0<br>80<br>78<br>163<br>274<br>163<br>163<br>163<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                                 | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>0<br>65<br>126<br>0<br>0<br>127<br>128<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129                                                                                 | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>2<br>3<br>215<br>60<br>167<br>0<br>114<br>91<br>78<br>0<br>22<br>134<br>161<br>0<br>84<br>4<br>9<br>9                                                                                                                         | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>183<br>0<br>27<br>0<br>35<br>0<br>270<br>0<br>18<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>0<br>183<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>3237<br>135<br>0<br>127<br>25<br>272<br>0<br>288<br>83<br>17<br>0<br>13<br>53<br>167<br>0<br>79<br>244<br>293<br>272<br>0<br>82                                                | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>162<br>0<br>1 163<br>99<br>98<br>0<br>4<br>6<br>142<br>3<br>0<br>142<br>153<br>163<br>163<br>163<br>163<br>163<br>163<br>163<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>5<br>3189<br>215<br>24<br>0<br>222<br>170<br>71<br>0<br>22<br>127<br>49<br>125<br>0<br>191<br>211<br>187<br>148<br>0                                                                                       |
| 11 12 13 | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>13<br>18<br>34<br>0<br>3<br>7<br>20<br>23<br>33<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                 | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>22<br>0<br>160<br>42<br>21<br>32<br>234<br>7<br>0<br>151<br>185<br>62<br>0<br>206<br>55<br>206<br>162                                  | 274<br>1111<br>383<br>354<br>102<br>8 47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>0<br>313<br>37<br>250<br>74<br>0<br>115<br>370<br>0<br>142<br>248<br>137<br>88<br>9347<br>12                                 | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>289<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>405<br>52<br>0<br>302<br>303<br>160<br>37<br>0<br>78<br>299<br>54<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61         | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175<br>136<br>3<br>28<br>182<br>0<br>0<br>142<br>175<br>136<br>72<br>217<br>78<br>0<br>147<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>17               | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>0<br>238<br>243<br>0<br>216<br>47<br>36<br>0<br>0<br>186<br>253<br>166<br>187<br>187<br>187<br>187<br>187<br>187<br>187<br>187                       | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>142<br>110<br>176<br>76<br>0<br>0<br>351<br>123<br>217<br>142<br>110<br>251<br>265<br>94<br>81<br>0<br>22<br>322<br>200<br>351<br>321<br>321<br>321<br>321<br>321<br>321<br>321<br>321<br>321<br>32 | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0<br>52<br>147<br>1<br>16<br>46<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>0<br>0<br>220<br>185<br>154<br>178<br>150<br>0<br>0<br>124<br>144<br>182<br>95<br>72                                                                                              | 39<br>40<br>41<br>42<br>43 | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>1<br>3<br>9<br>18<br>63<br>0<br>4<br>24<br>64<br>1<br>16<br>18<br>25<br>65<br>0<br>7<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>157<br>137<br>0<br>149<br>157<br>137<br>0<br>149<br>157<br>137<br>0<br>149<br>157<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>17                                                                                      | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>175<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14<br>218<br>0<br>113<br>132<br>114<br>168<br>0<br>80<br>78<br>163<br>274<br>0<br>135<br>149<br>149<br>159<br>169<br>169<br>179<br>179<br>179<br>179<br>179<br>179<br>179<br>17 | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>32<br>80<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>226<br>65<br>126<br>0<br>0<br>228<br>69<br>176<br>102<br>0<br>0<br>0<br>102<br>0<br>0<br>102<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103 | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>6<br>67<br>96<br>0<br>23<br>215<br>60<br>167<br>0<br>215<br>60<br>167<br>0<br>20<br>215<br>78<br>0<br>215<br>78<br>0<br>167<br>0<br>167<br>0<br>167<br>0<br>178<br>178<br>178<br>178<br>178<br>178<br>178<br>178<br>178<br>178                       | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>0<br>183<br>0<br>27<br>0<br>0<br>35<br>0<br>270<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>0<br>183<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                     | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>237<br>135<br>0<br>123<br>77<br>25<br>272<br>0<br>883<br>17<br>0<br>210<br>3<br>167<br>0<br>7<br>9<br>244<br>293<br>272<br>0<br>82<br>67                                       | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>162<br>0<br>1 163<br>99<br>98<br>0<br>4<br>6<br>142<br>3<br>0<br>142<br>142<br>143<br>144<br>154<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24<br>0<br>222<br>170<br>71<br>0<br>222<br>127<br>49<br>125<br>0<br>191<br>187<br>148<br>0<br>177<br>114                                                                               |
| 11 12 13 | 4<br>7<br>8<br>14<br>32<br>0<br>1<br>12<br>16<br>21<br>22<br>23<br>33<br>0<br>1<br>10<br>11<br>13<br>18<br>34<br>0<br>3<br>7<br>20<br>23<br>33<br>0<br>1<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                             | 167<br>160<br>49<br>58<br>0<br>77<br>41<br>83<br>182<br>78<br>252<br>22<br>0<br>160<br>42<br>21<br>32<br>234<br>7<br>0<br>177<br>248<br>151<br>185<br>62<br>0<br>206<br>55<br>206                           | 274<br>1111<br>383<br>354<br>0<br>48<br>102<br>8<br>47<br>188<br>334<br>115<br>0<br>77<br>186<br>174<br>0<br>313<br>177<br>266<br>115<br>370<br>0<br>142<br>248<br>39<br>347                                           | 211<br>75<br>161<br>311<br>0<br>16<br>147<br>290<br>289<br>177<br>43<br>280<br>0<br>229<br>235<br>169<br>48<br>105<br>52<br>0<br>39<br>302<br>303<br>160<br>37<br>78<br>299<br>54<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61 | 174<br>19<br>194<br>103<br>0<br>52<br>11<br>2<br>35<br>32<br>84<br>201<br>0<br>142<br>175<br>136<br>3<br>28<br>182<br>0<br>81<br>182<br>0<br>72<br>217<br>78<br>0<br>144<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                      | 28<br>267<br>234<br>201<br>0<br>55<br>23<br>274<br>181<br>273<br>39<br>26<br>0<br>225<br>162<br>244<br>151<br>238<br>243<br>0<br>216<br>47<br>36<br>0<br>0<br>186<br>0<br>187<br>187<br>188<br>188<br>188<br>188<br>188<br>188                                     | 27<br>231<br>49<br>267<br>0<br>25<br>322<br>200<br>351<br>166<br>338<br>192<br>0<br>123<br>217<br>140<br>176<br>76<br>0<br>311<br>251<br>265<br>94<br>81<br>0<br>22<br>322<br>27<br>156<br>66                                                                                                         | 156<br>16<br>12<br>70<br>0<br>184<br>194<br>123<br>16<br>104<br>109<br>124<br>0<br>6<br>20<br>203<br>153<br>104<br>207<br>0<br>52<br>147<br>1<br>16<br>46<br>0<br>1<br>109<br>121<br>109<br>121<br>109<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 70<br>230<br>115<br>84<br>0<br>45<br>115<br>134<br>1<br>152<br>165<br>107<br>0<br>186<br>215<br>124<br>180<br>98<br>80<br>0<br>220<br>185<br>154<br>178<br>150<br>0<br>124<br>144<br>182<br>195<br>195<br>196<br>196<br>196<br>196<br>196<br>196<br>196<br>196<br>196<br>196                    | 39<br>40<br>41<br>42<br>43 | 12<br>60<br>1<br>3<br>7<br>19<br>61<br>0<br>8<br>17<br>62<br>1<br>1<br>3<br>9<br>18<br>63<br>0<br>4<br>24<br>64<br>1<br>16<br>18<br>25<br>65<br>0<br>7<br>9<br>9                                                                                 | 163<br>0<br>173<br>139<br>149<br>0<br>0<br>157<br>137<br>149<br>0<br>167<br>173<br>139<br>151<br>0<br>149<br>157<br>137<br>0<br>149<br>157<br>137<br>0<br>149<br>157<br>137<br>0<br>149<br>157<br>173<br>173<br>173<br>173<br>173<br>174<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                                           | 214<br>0<br>258<br>93<br>346<br>297<br>0<br>105<br>37<br>312<br>0<br>52<br>314<br>139<br>288<br>0<br>113<br>14<br>218<br>0<br>113<br>114<br>168<br>0<br>80<br>78<br>163<br>274<br>163<br>163<br>163<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                                 | 181<br>0<br>102<br>77<br>192<br>208<br>0<br>197<br>0<br>154<br>47<br>124<br>207<br>0<br>0<br>65<br>126<br>0<br>0<br>127<br>128<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129                                                                                 | 10<br>0<br>12<br>77<br>49<br>114<br>0<br>67<br>45<br>96<br>0<br>2<br>3<br>215<br>60<br>167<br>0<br>114<br>91<br>78<br>0<br>22<br>134<br>161<br>0<br>84<br>4<br>9<br>9                                                                                                                         | 0<br>0<br>153<br>0<br>165<br>117<br>0<br>216<br>144<br>2<br>0<br>0<br>0<br>183<br>0<br>27<br>0<br>35<br>0<br>270<br>0<br>18<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>183<br>0<br>0<br>0<br>183<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 246<br>0<br>236<br>264<br>37<br>272<br>0<br>304<br>3237<br>135<br>0<br>127<br>25<br>272<br>0<br>288<br>83<br>17<br>0<br>13<br>53<br>167<br>0<br>79<br>244<br>293<br>272<br>0<br>82                                                | 100<br>0<br>4<br>28<br>109<br>188<br>0<br>10<br>84<br>12<br>0<br>2<br>75<br>142<br>128<br>0<br>163<br>10<br>162<br>0<br>1 163<br>99<br>98<br>0<br>4<br>6<br>142<br>3<br>0<br>142<br>153<br>163<br>163<br>163<br>163<br>163<br>163<br>163<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 140<br>0<br>115<br>188<br>168<br>52<br>0<br>4<br>103<br>30<br>0<br>53<br>189<br>215<br>24<br>0<br>222<br>170<br>71<br>0<br>127<br>49<br>125<br>0<br>191<br>211<br>187<br>148<br>0<br>177                                                                                      |

Table 5.3.2-3: LDPC base graph 2 (  $\mathbf{H}_{\mathrm{BG}}$  ) and its parity check matrices (  $V_{i,j}$  )

| H                | $\mathbf{I}_{\mathrm{BG}}$ |            |            |            | $V_{i}$    | i, j       |            |            |            | H   | $I_{\mathrm{BG}}$ |            |            |            | $V_{i}$    | i, j      |            |            |            |
|------------------|----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|-------------------|------------|------------|------------|------------|-----------|------------|------------|------------|
| Row              | Column                     |            |            |            | Set ind    |            |            |            |            | Row | Column            |            |            |            | Set ind    | -         |            |            |            |
| i                | j                          | 0          | 1          | 2          | 3          | 4          | 5          | 6          | 7          | i   | j                 | 0          | 1          | 2          | 3          | 4         | 5          | 6          | 7          |
|                  | 0                          | 9<br>117   | 174<br>97  | 0          | 72<br>110  | 3<br>26    | 156<br>143 | 143<br>19  | 145<br>131 | 16  | 26<br>1           | 0<br>254   | 0<br>158   | 0          | 0<br>48    | 0<br>120  | 0<br>134   | 0<br>57    | 0<br>196   |
|                  | 2                          | 204        | 166        | 0          | 23         | 53         | 143        | 176        | 71         |     | 5                 | 124        | 23         | 24         | 132        | 43        | 23         | 201        | 173        |
| 0                | 3                          | 26         | 66         | 0          | 181        | 35         | 3          | 165        | 21         | 17  | 11                | 114        | 9          | 109        | 206        | 65        | 62         | 142        | 195        |
| , and the second | <u>6</u><br>9              | 189<br>205 | 71<br>172  | 0          | 95<br>8    | 115<br>127 | 40<br>123  | 196<br>13  | 23<br>112  |     | 12<br>27          | 64         | 6          | 18<br>0    | 0          | 42<br>0   | 163<br>0   | 35<br>0    | 218<br>0   |
|                  | 10                         | 0          | 0          | 0          | 1          | 0          | 0          | 0          | 1          |     | 0                 | 220        | 186        | 0          | 68         | 17        | 173        | 129        | 128        |
|                  | 11                         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 18  | 6                 | 194        | 6          | 18         | 16         | 106       | 31         | 203        | 211        |
|                  | 3                          | 167<br>166 | 27<br>36   | 137<br>124 | 53<br>156  | 19<br>94   | 17<br>65   | 18<br>27   | 142<br>174 |     | 7<br>28           | 50<br>0    | 46<br>0    | 86<br>0    | 156<br>0   | 142<br>0  | 22<br>0    | 140        | 210        |
|                  | 4                          | 253        | 48         | 0          | 115        | 104        | 63         | 3          | 183        |     | 0                 | 87         | 58         | 0          | 35         | 79        | 13         | 110        | 39         |
|                  | <u>5</u>                   | 125<br>226 | 92         | 0<br>88    | 156<br>115 | 66         | 1<br>55    | 102<br>185 | 27<br>96   | 19  | 1<br>10           | 20<br>185  | 42<br>156  | 158<br>154 | 138        | 28<br>41  | 135<br>145 | 124        | 84<br>88   |
| 1                | 7                          | 156        | 31<br>187  | 0          | 200        | 84<br>98   | 37         | 17         | 23         |     | 29                | 0          | 0          | 0          | 86<br>0    | 0         | 0          | 52<br>0    | 0          |
|                  | 8                          | 224        | 185        | 0          | 29         | 69         | 171        | 14         | 9          |     | 1                 | 26         | 76         | 0          | 6          | 2         | 128        | 196        | 117        |
|                  | 9                          | 252<br>0   | 3<br>0     | 55<br>0    | 31<br>0    | 50<br>0    | 133        | 180<br>0   | 167<br>0   | 20  | <u>4</u><br>11    | 105<br>29  | 61<br>153  | 148<br>104 | 20<br>141  | 103<br>78 | 52<br>173  | 35<br>114  | 227<br>6   |
|                  | 12                         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |     | 30                | 0          | 0          | 0          | 0          | 0         | 0          | 0          | 0          |
|                  | 0                          | 81         | 25         | 20         | 152        | 95         | 98         | 126        | 74         |     | 0                 | 76         | 157        | 0          | 80         | 91        | 156        | 10         | 238        |
|                  | 3                          | 114<br>44  | 114<br>117 | 94<br>99   | 131<br>46  | 106<br>92  | 168<br>107 | 163<br>47  | 31         | 21  | 8<br>13           | 42<br>210  | 175<br>67  | 17<br>33   | 43<br>81   | 75<br>81  | 166<br>40  | 122<br>23  | 13<br>11   |
| 2                | 4                          | 52         | 110        | 9          | 191        | 110        | 82         | 183        | 53         |     | 31                | 0          | 0          | 0          | 0          | 0         | 0          | 0          | 0          |
| _                | 8<br>10                    | 240        | 114        | 108        | 91<br>0    | 111        | 142        | 132<br>1   | 155<br>0   | 22  | 2                 | 222<br>63  | 20<br>52   | 0          | 49<br>1    | 54<br>132 | 18<br>163  | 202<br>126 | 195<br>44  |
|                  | 12                         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |     | 32                | 0          | 0          | 0          | 0          | 0         | 0          | 0          | 0          |
|                  | 13                         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |     | 0                 | 23         | 106        | 0          | 156        | 68        | 110        | 52         | 5          |
|                  | 2                          | 8<br>58    | 136<br>175 | 38<br>15   | 185<br>6   | 120<br>121 | 53<br>174  | 36<br>48   | 239<br>171 | 23  | <u>3</u><br>5     | 235<br>238 | 86<br>95   | 75<br>158  | 54<br>134  | 115<br>56 | 132<br>150 | 170<br>13  | 94<br>111  |
|                  | 4                          | 158        | 113        | 102        | 36         | 22         | 174        | 18         | 95         |     | 33                | 0          | 0          | 0          | 0          | 0         | 0          | 0          | 0          |
|                  | 5<br>6                     | 104<br>209 | 72<br>123  | 146<br>12  | 124<br>124 | 4          | 127<br>17  | 111<br>203 | 110        |     | 2                 | 46<br>139  | 182<br>153 | 0          | 153<br>88  | 30<br>42  | 113<br>108 | 113<br>161 | 81<br>19   |
| 3                | 7                          | 54         | 118        | 57         | 110        | 73<br>49   | 89         | 3          | 159<br>199 | 24  | 9                 | 8          | 64         | 69<br>87   | 63         | 101       | 61         | 88         | 130        |
|                  | 8                          | 18         | 28         | 53         | 156        | 128        | 17         | 191        | 43         |     | 34                | 0          | 0          | 0          | 0          | 0         | 0          | 0          | 0          |
|                  | 9                          | 128<br>0   | 186<br>0   | 46<br>0    | 133<br>1   | 79<br>0    | 105<br>0   | 160<br>0   | 75<br>1    | 25  | 5                 | 228<br>156 | 45<br>21   | 0<br>65    | 211<br>94  | 128<br>63 | 72<br>136  | 197<br>194 | 66<br>95   |
|                  | 13                         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 25  | 35                | 0          | 0          | 0          | 0          | 03        | 0          | 0          | 0          |
|                  | 0                          | 179        | 72         | 0          | 200        | 42         | 86         | 43         | 29         |     | 2                 | 29         | 67         | 0          | 90         | 142       | 36         | 164        | 146        |
| 4                | 1 11                       | 214<br>71  | 74<br>29   | 136<br>157 | 16<br>101  | 24<br>51   | 67<br>83   | 27<br>117  | 140<br>180 | 26  | 7<br>12           | 143<br>160 | 137<br>55  | 100<br>13  | 6<br>221   | 28<br>100 | 38<br>53   | 172<br>49  | 66<br>190  |
|                  | 14                         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |     | 13                | 122        | 85         | 7          | 6          | 133       | 145        | 161        | 86         |
|                  | 1                          | 231<br>41  | 10<br>44   | 0<br>131   | 185<br>138 | 40<br>140  | 79<br>84   | 136<br>49  | 121<br>41  |     | 36<br>0           | 8          | 0<br>103   | 0          | 0<br>27    | 0<br>13   | 0<br>42    | 0<br>168   | 0<br>64    |
| -                | 5                          | 194        | 121        | 142        | 170        | 84         | 35         | 36         | 169        | 27  | 6                 | 151        | 50         | 32         | 118        | 10        | 104        | 193        | 181        |
| 5                | 7                          | 159        | 80         | 141        | 219        | 137        | 103        | 132        | 88         |     | 37                | 0          | 0          | 0          | 0          | 0         | 0          | 0          | 0          |
|                  | 11<br>15                   | 103        | 48<br>0    | 64<br>0    | 193<br>0   | 71<br>0    | 60         | 62<br>0    | 207<br>0   |     | 2                 | 98<br>101  | 70<br>111  | 0<br>126   | 216<br>212 | 106<br>77 | 64<br>24   | 14<br>186  | 7<br>144   |
|                  | 0                          | 155        | 129        | 0          | 123        | 109        | 47         | 7          | 137        | 28  | 5                 | 135        | 168        | 110        | 193        | 43        | 149        | 46         | 16         |
|                  | 5                          | 228        | 92         | 124        | 55         | 87         | 154        | 34         | 72         |     | 38                | 0          | 0          | 0          | 0          | 0         | 0          | 0          | 0          |
| 6                | 7 9                        | 45<br>28   | 100<br>49  | 99<br>45   | 31<br>222  | 107<br>133 | 10<br>155  | 198<br>168 | 172<br>124 | 29  | <u>0</u><br>4     | 18<br>28   | 110<br>17  | 0<br>154   | 108<br>61  | 133<br>25 | 139<br>161 | 50<br>27   | 25<br>57   |
|                  | 11                         | 158        | 184        | 148        | 209        | 139        | 29         | 12         | 56         |     | 39                | 0          | 0          | 0          | 0          | 0         | 0          | 0          | 0          |
|                  | 16<br>1                    | 0<br>129   | 0<br>80    | 0          | 0<br>103   | 0<br>97    | 0<br>48    | 0<br>163   | 0<br>86    |     | <u>2</u><br>5     | 71<br>240  | 120<br>154 | 0<br>35    | 106<br>44  | 87<br>56  | 84<br>173  | 70<br>17   | 37<br>139  |
|                  | 5                          | 147        | 186        | 45         | 13         | 135        | 125        | 78         | 186        | 30  | 7                 | 9          | 52         | 51         | 185        | 104       | 93         | 50         | 221        |
| 7                | 7                          | 140        | 16         | 148        | 105        | 35         | 24         | 143        | 87         |     | 9                 | 84         | 56         | 134        | 176        | 70        | 29         | 6          | 17         |
|                  | 11<br>13                   | 3<br>116   | 102<br>143 | 96<br>78   | 150<br>181 | 108<br>65  | 47<br>55   | 107<br>58  | 172<br>154 |     | 40<br>1           | 0<br>106   | 3          | 0          | 0<br>147   | 0<br>80   | 0<br>117   | 0<br>115   | 0<br>201   |
|                  | 17                         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 31  | 13                | 1          | 170        | 20         | 182        | 139       | 148        | 189        | 46         |
|                  | 0                          | 142<br>94  | 118<br>70  | 0<br>65    | 147<br>43  | 70<br>69   | 53<br>31   | 101<br>177 | 176<br>169 |     | 41<br>0           | 0<br>242   | 0<br>84    | 0          | 0<br>108   | 0<br>32   | 0<br>116   | 110        | 0<br>179   |
| 8                | 12                         | 230        | 152        | 87         | 152        | 88         | 161        | 22         | 225        | 22  | 5                 | 44         | 8          | 20         | 21         | 89        | 73         | 0          | 14         |
|                  | 18                         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 32  | 12                | 166        | 17         | 122        | 110        | 71        | 142        | 163        | 116        |
|                  | 8                          | 203        | 28<br>132  | 0<br>97    | 30         | 97<br>40   | 104<br>142 | 186<br>27  | 167<br>238 |     | 42<br>2           | 132        | 0<br>165   | 0          | 71         | 0<br>135  | 0<br>105   | 163        | 0<br>46    |
| 9                | 10                         | 61         | 185        | 51         | 184        | 24         | 99         | 205        | 48         | 33  | 7                 | 164        | 179        | 88         | 12         | 6         | 137        | 173        | 2          |
|                  | 11<br>19                   | 247<br>0   | 178<br>0   | 85<br>0    | 83         | 49<br>0    | 64<br>0    | 81<br>0    | 68<br>0    | 55  | 10<br>43          | 235        | 124<br>0   | 13<br>0    | 109        | 2         | 29<br>0    | 179<br>0   | 106<br>0   |
|                  | 0                          | 11         | 59         | 0          | 174        | 46         | 111        | 125        | 38         |     | 0                 | 147        | 173        | 0          | 29         | 37        | 11         | 197        | 184        |
|                  | 1                          | 185        | 104        | 17         | 150        | 41         | 25         | 60         | 217        | 34  | 12                | 85         | 177        | 19         | 201        | 25        | 41         | 191        | 135        |
| 10               | 6<br>7                     | 0<br>117   | 22<br>52   | 156<br>20  | 8<br>56    | 101<br>96  | 174<br>23  | 177<br>51  | 208        |     | 13<br>44          | 36<br>0    | 12<br>0    | 78<br>0    | 69<br>0    | 114<br>0  | 162<br>0   | 193        | 141<br>0   |
|                  | 20                         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |     | 1                 | 57         | 77         | 0          | 91         | 60        | 126        | 157        | 85         |
|                  | 0                          | 11         | 32         | 0          | 99         | 28         | 91         | 39         | 178        | 35  | 5                 | 40         | 184        | 157        | 165        | 137       | 152        | 167        | 225        |
| 11               | 9                          | 236<br>210 | 92<br>174  | 7          | 138<br>110 | 30<br>116  | 175<br>24  | 29<br>35   | 214<br>168 |     | 11<br>45          | 63         | 18<br>0    | 6<br>0     | 55<br>0    | 93        | 172<br>0   | 181        | 175<br>0   |
|                  | 13                         | 56         | 154        | 2          | 99         | 64         | 141        | 8          | 51         |     | 0                 | 140        | 25         | 0          | 1          | 121       | 73         | 197        | 178        |
|                  | 21                         | 0<br>63    | 0<br>39    | 0          | 0<br>46    | 0<br>33    | 0<br>122   | 0<br>18    | 0<br>124   | 36  | 7                 | 38<br>154  | 151<br>170 | 63<br>82   | 175<br>83  | 129<br>26 | 154<br>129 | 167<br>179 | 112<br>106 |
| 10               | 3                          | 111        | 93         | 113        | 217        | 122        | 11         | 155        | 122        |     | 46                | 0          | 0          | 0          | 0          | 0         | 0          | 0          | 0          |
| 12               | 11                         | 14         | 11         | 48         | 109        | 131        | 4          | 49         | 72         |     | 10                | 219        | 37         | 0          | 40         | 97        | 167        | 181        | 154        |
|                  | 22<br>0                    | 0<br>83    | 0<br>49    | 0          | 0<br>37    | 76         | 0<br>29    | 0<br>32    | 0<br>48    | 37  | 13<br>47          | 151<br>0   | 31<br>0    | 144<br>0   | 12<br>0    | 56<br>0   | 38<br>0    | 193        | 114<br>0   |
| 13               | 1                          | 2          | 125        | 112        | 113        | 37         | 91         | 53         | 57         | 38  | 1                 | 31         | 84         | 0          | 37         | 1         | 112        | 157        | 42         |
| 13               | 8                          | 38         | 35         | 102        | 143        | 62         | 27         | 95         | 167        |     | 5                 | 66         | 151        | 93         | 97         | 70        | 7          | 173        | 41         |

|    | 13 | 222 | 166 | 26  | 140 | 47  | 127 | 186 | 219 |    | 11 | 38  | 190 | 19  | 46  | 1   | 19  | 191 | 105 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | 23 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    | 48 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|    | 1  | 115 | 19  | 0   | 36  | 143 | 11  | 91  | 82  |    | 0  | 239 | 93  | 0   | 106 | 119 | 109 | 181 | 167 |
|    | 6  | 145 | 118 | 138 | 95  | 51  | 145 | 20  | 232 | 39 | 7  | 172 | 132 | 24  | 181 | 32  | 6   | 157 | 45  |
| 14 | 11 | 3   | 21  | 57  | 40  | 130 | 8   | 52  | 204 | 39 | 12 | 34  | 57  | 138 | 154 | 142 | 105 | 173 | 189 |
|    | 13 | 232 | 163 | 27  | 116 | 97  | 166 | 109 | 162 |    | 49 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|    | 24 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    | 2  | 0   | 103 | 0   | 98  | 6   | 160 | 193 | 78  |
|    | 0  | 51  | 68  | 0   | 116 | 139 | 137 | 174 | 38  | 40 | 10 | 75  | 107 | 36  | 35  | 73  | 156 | 163 | 67  |
| 15 | 10 | 175 | 63  | 73  | 200 | 96  | 103 | 108 | 217 | 40 | 13 | 120 | 163 | 143 | 36  | 102 | 82  | 179 | 180 |
| 13 | 11 | 213 | 81  | 99  | 110 | 128 | 40  | 102 | 157 |    | 50 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|    | 25 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    | 1  | 129 | 147 | 0   | 120 | 48  | 132 | 191 | 53  |
|    | 1  | 203 | 87  | 0   | 75  | 48  | 78  | 125 | 170 | 41 | 5  | 229 | 7   | 2   | 101 | 47  | 6   | 197 | 215 |
| 16 | 9  | 142 | 177 | 79  | 158 | 9   | 158 | 31  | 23  | 41 | 11 | 118 | 60  | 55  | 81  | 19  | 8   | 167 | 230 |
| 10 | 11 | 8   | 135 | 111 | 134 | 28  | 17  | 54  | 175 |    | 51 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|    | 12 | 242 | 64  | 143 | 97  | 8   | 165 | 176 | 202 |    |    |     |     |     |     |     |     |     |     |

#### 5.3.3 Channel coding of small block lengths

The bit sequence input for a given code block to channel coding is denoted by  $c_0, c_1, c_2, c_3, ..., c_{K-1}$ , where K is the number of bits to encode. After encoding the bits are denoted by  $d_0, d_1, d_2, ..., d_{N-1}$ .

#### 5.3.3.1 Encoding of 1-bit information

For K = 1, the code block is encoded according to Table 5.3.3.1-1, where  $N = Q_m$  and  $Q_m$  is the modulation order for the code block.

 $\begin{array}{c|c} Q_m & \textbf{Encoded bits } d_0, d_1, d_2, ..., d_{N-1} \\ \hline \textbf{1} & [c_0] \\ 2 & [c_0 \ y] \\ 4 & [c_0 \ y \ x \ x] \\ 6 & [c_0 \ y \ x \ x \ x \ x \ x] \\ \hline 8 & [c_0 \ y \ x \ x \ x \ x \ x \ x] \end{array}$ 

Table 5.3.3.1-1: Encoding of 1-bit information

The "x" and "y" in Table 5.3.3.1-1 are placeholders for Subclause 6.3.1.1 of [4, TS 38.211] to scramble the information bits in a way that maximizes the Euclidean distance of the modulation symbols carrying the information bits.

#### 5.3.3.2 Encoding of 2-bit information

For K = 2, the code block is encoded according to Table 5.3.3-2, where  $c_2 = (c_0 + c_1) \mod 2$ ,  $N = 3Q_m$ , and  $Q_m$  is the modulation order for the code block.

Table 5.3.3.2-1: Encoding of 2-bit information

| $Q_m$ | Encoded bits $d_0, d_1, d_2,, d_{N-1}$                                                                                                                                           |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | $[c_0c_1c_2]$                                                                                                                                                                    |
| 2     | $[c_0 c_1 c_2 c_0 c_1 c_2]$                                                                                                                                                      |
| 4     | $[c_0 c_1 \times \times c_2 c_0 \times \times c_1 c_2 \times X]$                                                                                                                 |
| 6     | $[c_0\ c_1\ \mathbf{x}\ \mathbf{x}\ \mathbf{x}\ \mathbf{x}\ c_2\ c_0\ \mathbf{x}\ \mathbf{x}\ \mathbf{x}\ \mathbf{x}\ c_1\ c_2\ \mathbf{x}\ \mathbf{x}\ \mathbf{x}\ \mathbf{x}]$ |
| 8     | $[c_0 c_1 \times \times \times \times \times \times c_2 c_0 \times \times \times \times \times c_1 c_2 \times \times \times \times \times]$                                      |

The "x" in Table 5.3.3.2-1 are placeholders for Subclause 6.3.1.1 of [4, TS 38.211] to scramble the information bits in a way that maximizes the Euclidean distance of the modulation symbols carrying the information bits.

#### 5.3.3.3 Encoding of other small block lengths

For  $3 \le K \le 11$ , the code block is encoded by  $d_i = \left(\sum_{k=0}^{K-1} c_k \cdot M_{i,k}\right) \mod 2$ , where  $i = 0, 1, \dots, N-1$ , N = 32, and  $M_{i,k}$  represents the basis sequences as defined in Table 5.3.3.3-1.

| i  | M <sub>i,0</sub> | M <sub>i,1</sub> | M <sub>i,2</sub> | M <sub>i,3</sub> | M <sub>i,4</sub> | $M_{i,5}$ | M <sub>i,6</sub> | M <sub>i,7</sub> | M <sub>i,8</sub> | <b>M</b> i,9 | M <sub>i,10</sub> |
|----|------------------|------------------|------------------|------------------|------------------|-----------|------------------|------------------|------------------|--------------|-------------------|
| 0  | 1                | 1                | 0                | 0                | 0                | 0         | 0                | 0                | 0                | 0            | 1                 |
| 1  | 1                | 1                | 1                | 0                | 0                | 0         | 0                | 0                | 0                | 1            | 1                 |
| 2  | 1                | 0                | 0                | 1                | 0                | 0         | 1                | 0                | 1                | 1            | 1                 |
| 3  | 1                | 0                | 1                | 1                | 0                | 0         | 0                | 0                | 1                | 0            | 1                 |
| 4  | 1                | 1                | 1                | 1                | 0                | 0         | 0                | 1                | 0                | 0            | 1                 |
| 5  | 1                | 1                | 0                | 0                | 1                | 0         | 1                | 1                | 1                | 0            | 1                 |
| 6  | 1                | 0                | 1                | 0                | 1                | 0         | 1                | 0                | 1                | 1            | 1                 |
| 7  | 1                | 0                | 0                | 1                | 1                | 0         | 0                | 1                | 1                | 0            | 1                 |
| 8  | 1                | 1                | 0                | 1                | 1                | 0         | 0                | 1                | 0                | 1            | 1                 |
| 9  | 1                | 0                | 1                | 1                | 1                | 0         | 1                | 0                | 0                | 1            | 1                 |
| 10 | 1                | 0                | 1                | 0                | 0                | 1         | 1                | 1                | 0                | 1            | 1                 |
| 11 | 1                | 1                | 1                | 0                | 0                | 1         | 1                | 0                | 1                | 0            | 1                 |
| 12 | 1                | 0                | 0                | 1                | 0                | 1         | 0                | 1                | 1                | 1            | 1                 |
| 13 | 1                | 1                | 0                | 1                | 0                | 1         | 0                | 1                | 0                | 1            | 1                 |
| 14 | 1                | 0                | 0                | 0                | 1                | 1         | 0                | 1                | 0                | 0            | 1                 |
| 15 | 1                | 1                | 0                | 0                | 1                | 1         | 1                | 1                | 0                | 1            | 1                 |
| 16 | 1                | 1                | 1                | 0                | 1                | 1         | 1                | 0                | 0                | 1            | 0                 |
| 17 | 1                | 0                | 0                | 1                | 1                | 1         | 0                | 0                | 1                | 0            | 0                 |
| 18 | 1                | 1                | 0                | 1                | 1                | 1         | 1                | 1                | 0                | 0            | 0                 |
| 19 | 1                | 0                | 0                | 0                | 0                | 1         | 1                | 0                | 0                | 0            | 0                 |
| 20 | 1                | 0                | 1                | 0                | 0                | 0         | 1                | 0                | 0                | 0            | 1                 |
| 21 | 1                | 1                | 0                | 1                | 0                | 0         | 0                | 0                | 0                | 1            | 1                 |
| 22 | 1                | 0                | 0                | 0                | 1                | 0         | 0                | 1                | 1                | 0            | 1                 |
| 23 | 1                | 1                | 1                | 0                | 1                | 0         | 0                | 0                | 1                | 1            | 1                 |
| 24 | 1                | 1                | 1                | 1                | 1                | 0         | 1                | 1                | 1                | 1            | 0                 |
| 25 | 1                | 1                | 0                | 0                | 0                | 1         | 1                | 1                | 0                | 0            | 1                 |
| 26 | 1                | 0                | 1                | 1                | 0                | 1         | 0                | 0                | 1                | 1            | 0                 |
| 27 | 1                | 1                | 1                | 1                | 0                | 1         | 0                | 1                | 1                | 1            | 0                 |
| 28 | 1                | 0                | 1                | 0                | 1                | 1         | 1                | 0                | 1                | 0            | 0                 |
| 29 | 1                | 0                | 1                | 1                | 1                | 1         | 1                | 1                | 1                | 0            | 0                 |
| 30 | 1                | 1                | 1                | 1                | 1                | 1         | 1                | 1                | 1                | 1            | 1                 |
| 31 | 1                | 0                | 0                | 0                | 0                | 0         | 0                | 0                | 0                | 0            | 0                 |

Table 5.3.3.3-1: Basis sequences for (32, K) code

## 5.4 Rate matching

## 5.4.1 Rate matching for Polar code

The rate matching for Polar code is defined per coded block and consists of sub-block interleaving, bit collection, and bit interleaving. The input bit sequence to rate matching is  $d_0, d_1, d_2, ..., d_{N-1}$ . The output bit sequence after rate matching is denoted as  $f_0, f_1, f_2, ..., f_{E-1}$ .

#### 5.4.1.1 Sub-block interleaving

The bits input to the sub-block interleaver are the coded bits  $d_0, d_1, d_2, ..., d_{N-1}$ . The coded bits  $d_0, d_1, d_2, ..., d_{N-1}$  are divided into 32 sub-blocks. The bits output from the sub-block interleaver are denoted as  $y_0, y_1, y_2, ..., y_{N-1}$ , generated as follows:

```
for n = 0 to N - 1

i = \lfloor 32n/N \rfloor;
J(n) = P(i) \times (N/32) + \operatorname{mod}(n, N/32);
y_n = d_{J(n)};
```

end for

where the sub-block interleaver pattern P(i) is given by Table 5.4.1.1-1.

Table 5.4.1.1-1: Sub-block interleaver pattern P(i)

| i | P(i) | i | P(i) | i  | P(i) | i  | P(i) | i  | P(i) | i  | P(i) | i  | P(i) | i  | P(i) |
|---|------|---|------|----|------|----|------|----|------|----|------|----|------|----|------|
| 0 | 0    | 4 | 3    | 8  | 8    | 12 | 10   | 16 | 12   | 20 | 14   | 24 | 24   | 28 | 27   |
| 1 | 1    | 5 | 5    | 9  | 16   | 13 | 18   | 17 | 20   | 21 | 22   | 25 | 25   | 29 | 29   |
| 2 | 2    | 6 | 6    | 10 | 9    | 14 | 11   | 18 | 13   | 22 | 15   | 26 | 26   | 30 | 30   |
| 3 | 4    | 7 | 7    | 11 | 17   | 15 | 19   | 19 | 21   | 23 | 23   | 27 | 28   | 31 | 31   |

The sets of bit indices  $\overline{\mathbf{Q}}_I^N$  and  $\overline{\mathbf{Q}}_F^N$  are determined as follows, where K,  $n_{PC}$ , and  $\mathbf{Q}_0^{N-1}$  are defined in Subclause 5.3.1

$$\begin{split} \overline{\mathbf{Q}}_{F,mp}^{N} &= \varnothing \\ \text{if } E < N \\ \text{if } K/E \leq 7/16 \quad \text{-- puncturing} \\ \text{for } n = 0 \text{ to } N - E - 1 \\ \overline{\mathbf{Q}}_{F,mp}^{N} &= \overline{\mathbf{Q}}_{F,mp}^{N} \cup \{J(n)\}; \\ \text{end for} \\ \text{if } E \geq 3N/4 \\ \overline{\mathbf{Q}}_{F,mp}^{N} &= \overline{\mathbf{Q}}_{F,mp}^{N} \cup \{0,1,\dots,\lceil 3N/4 - E/2\rceil - 1\}; \\ \text{else} \\ \overline{\mathbf{Q}}_{F,mp}^{N} &= \overline{\mathbf{Q}}_{F,mp}^{N} \cup \{0,1,\dots,\lceil 9N/16 - E/4\rceil - 1\}; \\ \text{end if} \\ \text{else} \quad \text{-- shortening} \\ \text{for } n = E \text{ to } N - 1 \\ \overline{\mathbf{Q}}_{F,mp}^{N} &= \overline{\mathbf{Q}}_{F,mp}^{N} \cup \{J(n)\}; \\ \text{end for} \\ \text{end if} \\ \text{end if} \\ \text{end if} \\ \overline{\mathbf{Q}}_{I,mp}^{N} &= \overline{\mathbf{Q}}_{0}^{N-1} \setminus \overline{\mathbf{Q}}_{F,mp}^{N}; \\ \overline{\mathbf{Q}}_{I}^{N} \text{ comprises } \left(K + n_{PC}\right) \text{ most reliable bit indices in } \overline{\mathbf{Q}}_{I,mp}^{N}; \\ \overline{\mathbf{Q}}_{I}^{N} &= \mathbf{Q}_{0}^{N-1} \setminus \overline{\mathbf{Q}}_{I}^{N}; \\ \end{array}$$

#### 5.4.1.2 Bit selection

The bit sequence after the sub-block interleaver  $y_0, y_1, y_2, ..., y_{N-1}$  from Subclause 5.4.1.1 is written into a circular buffer of length N.

Denoting by E the rate matching output sequence length, the bit selection output bit sequence  $e_k$ , k = 0,1,2,...,E-1, is generated as follows:

```
if E \ge N -- repetition for k = 0 to E - 1 e_k = y_{\text{mod}(k,N)}; end for else if K/E \le 7/16 -- puncturing for k = 0 to E - 1 e_k = y_{k+N-E}; end for else -- shortening for k = 0 to E - 1 e_k = y_k; end for end if end if
```

#### 5.4.1.3 Interleaving of coded bits

The bit sequence  $e_0, e_1, e_2, ..., e_{E-1}$  is interleaved into bit sequence  $f_0, f_1, f_2, ..., f_{E-1}$ , as follows:

```
If I_{BIL} = 1
```

```
Denote T as the smallest integer such that T(T+1)/2 \ge E;
```

```
k=0; for i=0 to T-1 for j=0 to T-1-i if k < E v_{i,j} = e_k; else v_{i,j} = < NULL >; end if k = k+1; end for end for k=0;
```

for j = 0 to T - 1

```
for i=0 to T-1-j

if v_{i,j} \neq < NULL > 

f_k = v_{i,j};

k = k+1

end if

end for

else

for i=0 to E-1

f_i = e_i;

end for

end if
```

The value of E is no larger than 8192.

#### 5.4.2 Rate matching for LDPC code

The rate matching for LDPC code is defined per coded block and consists of bit selection and bit interleaving. The input bit sequence to rate matching is  $d_0, d_1, d_2, ..., d_{N-1}$ . The output bit sequence after rate matching is denoted as

$$f_0, f_1, f_2, ..., f_{E-1}$$
.

#### 5.4.2.1 Bit selection

The bit sequence after encoding  $d_0, d_1, d_2, ..., d_{N-1}$  from Subclause 5.3.2 is written into a circular buffer of length  $N_{cb}$  for the r-th coded block, where N is defined in Subclause 5.3.2.

For the 
$$r$$
 -th code block, let  $N_{cb} = N$  if  $I_{LBRM} = 0$  and  $N_{cb} = \min(N, N_{ref})$  otherwise, where  $N_{ref} = \left\lfloor \frac{TBS_{LBRM}}{C \cdot R_{LBRM}} \right\rfloor$ ,

 $R_{\rm LBRM} = 2/3$ ,  $TBS_{\rm LBRM}$  is determined according to Subclause 6.1.4.2 in [6, TS 38.214] for UL-SCH and Subclause 5.1.3.2 in [6, TS 38.214] for DL-SCH/PCH, assuming the following:

- maximum number of layers for one TB supported by the UE for the serving cell, which for UL-SCH is according to higher layer parameter *ULmaxRank* if the parameter is configured;
- maximum modulation order configured for the serving cell, if configured by higher layers; otherwise a maximum modulation order  $Q_m = 6$  is assumed for DL-SCH;
- maximum coding rate of 948/1024;
- $n_{PRB} = n_{PRB,LBRM}$  is given by Table 5.4.2.1-1, where the value of  $n_{PRB,LBRM}$  for DL-SCH is determined according to the initial bandwidth part if there is no other bandwidth part configured to the UE;
- $N_{RE} = 156 \cdot n_{PRB}$ ;
- C is the number of code blocks of the transport block determined according to Subclause 5.2.2.

| Maximum number of PRBs across all configured BWPs of a carrier | $n_{PRB,LBRM}$ |
|----------------------------------------------------------------|----------------|
| Less than 33                                                   | 32             |
| 33 to 66                                                       | 66             |
| 67 to 107                                                      | 107            |
| 108 to 135                                                     | 135            |
| 136 to 162                                                     | 162            |
| 163 to 217                                                     | 217            |
| Larger than 217                                                | 273            |

Table 5.4.2.1-1: Value of  $n_{PRB,LBRM}$ 

Denoting by  $E_r$  the rate matching output sequence length for the r-th coded block, where the value of  $E_r$  is determined as follows:

Set j = 0

for r = 0 to C - 1

if the r-th coded block is not scheduled for transmission as indicated by CBGTI according to Subclause 5.1.7.2 for DL-SCH and 6.1.5.2 for UL-SCH in [6, TS 38.214]

 $E_r = 0$ ;

else

if 
$$j \leq C' - \operatorname{mod}(G/(N_L \cdot Q_m), C') - 1$$

$$E_r = N_L \cdot Q_m \cdot \left| \frac{G}{N_L \cdot Q_m \cdot C'} \right|;$$

else

$$E_r = N_L \cdot Q_m \cdot \left[ \frac{G}{N_L \cdot Q_m \cdot C'} \right];$$

end if

$$j = j + 1;$$

end if

end for

where

- $N_L$  is the number of transmission layers that the transport block is mapped onto;
- $Q_m$  is the modulation order;
- G is the total number of coded bits available for transmission of the transport block;
- C'=C if CBGTI is not present in the DCI scheduling the transport block and C' is the number of scheduled code blocks of the transport block if CBGTI is present in the DCI scheduling the transport block.

Denote by  $rv_{id}$  the redundancy version number for this transmission ( $rv_{id} = 0, 1, 2 \text{ or } 3$ ), the rate matching output bit sequence  $e_k$ , k = 0,1,2,...,E-1, is generated as follows, where  $k_0$  is given by Table 5.4.2.1-2 according to the value of  $rv_{id}$  and LDPC base graph:

k = 0;

```
j=0;

while k < E

if d_{(k_0+j) \mod N_{cb}} \neq < NULL >

e_k = d_{(k_0+j) \mod N_{cb}};

k = k+1;

end if

j = j+1;

end while
```

Table 5.4.2.1-2: Starting position of different redundancy versions,  $k_0$ 

| rv <sub>id</sub> | k                                                         | 20                                                         |
|------------------|-----------------------------------------------------------|------------------------------------------------------------|
| r id             | LDPC base graph 1                                         | LDPC base graph 2                                          |
| 0                | 0                                                         | 0                                                          |
| 1                | $\left\lfloor \frac{17N_{cb}}{66Z_c} \right\rfloor\! Z_c$ | $\left\lfloor \frac{13N_{cb}}{50Z_c} \right\rfloor Z_c$    |
| 2                | $\left[\frac{33N_{cb}}{66Z_c}\right]Z_c$                  | $\left\lfloor \frac{25N_{cb}}{50Z_c} \right\rfloor \! Z_c$ |
| 3                | $\left\lfloor \frac{56N_{cb}}{66Z_c} \right\rfloor Z_c$   | $\left\lfloor \frac{43N_{cb}}{50Z_c} \right\rfloor Z_c$    |

#### 5.4.2.2 Bit interleaving

The bit sequence  $e_0, e_1, e_2, ..., e_{E-1}$  is interleaved to bit sequence  $f_0, f_1, f_2, ..., f_{E-1}$ , according to the following, where the value of  $Q_m$  is the modulation order.

```
for j=0 to E/Q_m-1 for i=0 to Q_m-1 f_{i+j\cdot Q_m}=e_{i\cdot E/Q_m+j}\,; end for
```

## 5.4.3 Rate matching for channel coding of small block lengths

The input bit sequence to rate matching is  $d_0, d_1, d_2, ..., d_{N-1}$ . The output bit sequence after rate matching is denoted as  $f_0, f_1, f_2, ..., f_{E-1}$ , where E is the rate matching output sequence length. The bit sequence  $f_0, f_1, f_2, ..., f_{E-1}$  is obtained by the following:

for 
$$k = 0$$
 to  $E - 1$  
$$f_k = d_{k \bmod N};$$

end for

#### 5.5 Code block concatenation

The input bit sequence for the code block concatenation block are the sequences  $f_{rk}$ , for r = 0,..., C-1 and  $k = 0,..., E_r - 1$ , where  $E_r$  is the number of rate matched bits for the r-th code block. The output bit sequence from the code block concatenation block is the sequence  $g_k$  for k = 0,...,G-1.

The code block concatenation consists of sequentially concatenating the rate matching outputs for the different code blocks. Therefore,

```
Set k = 0 and r = 0

while r < C

Set j = 0

while j < E_r

g_k = f_{rj}

k = k + 1

j = j + 1

end while

r = r + 1
```

## 6 Uplink transport channels and control information

#### 6.1 Random access channel

The sequence index for the random access channel is received from higher layers and is processed according to [4, TS 38.211].

## 6.2 Uplink shared channel

## 6.2.1 Transport block CRC attachment

Error detection is provided on each UL-SCH transport block through a Cyclic Redundancy Check (CRC).

The entire transport block is used to calculate the CRC parity bits. Denote the bits in a transport block delivered to layer 1 by  $a_0, a_1, a_2, a_3, ..., a_{A-1}$ , and the parity bits by  $p_0, p_1, p_2, p_3, ..., p_{L-1}$ , where A is the payload size and L is the number of parity bits. The lowest order information bit  $a_0$  is mapped to the most significant bit of the transport block as defined in Subclause 6.1.1 of [TS38.321].

The parity bits are computed and attached to the UL-SCH transport block according to Subclause 5.1, by setting L to 24 bits and using the generator polynomial  $g_{\text{CRC24A}}(D)$  if A > 3824; and by setting L to 16 bits and using the generator polynomial  $g_{\text{CRC16}}(D)$  otherwise.

The bits after CRC attachment are denoted by  $b_0, b_1, b_2, b_3, ..., b_{B-1}$ , where B = A + L.

#### 6.2.2 LDPC base graph selection

For initial transmission of a transport block with coding rate R indicated by the MCS index according to Subclause 6.1.4.1 in [6, TS 38.214] and subsequent re-transmission of the same transport block, each code block of the transport block is encoded with either LDPC base graph 1 or 2 according to the following:

- if  $A \le 292$ , or if  $A \le 3824$  and  $R \le 0.67$ , or if  $R \le 0.25$ , LDPC base graph 2 is used;
- otherwise, LDPC base graph 1 is used,

where A is the payload size as described in Subclause 6.2.1.

#### 6.2.3 Code block segmentation and code block CRC attachment

The bits input to the code block segmentation are denoted by  $b_0, b_1, b_2, b_3, ..., b_{B-1}$  where B is the number of bits in the transport block (including CRC).

Code block segmentation and code block CRC attachment are performed according to Subclause 5.2.2.

The bits after code block segmentation are denoted by  $c_{r0}$ ,  $c_{r1}$ ,  $c_{r2}$ ,  $c_{r3}$ ,...,  $c_{r(K_r-1)}$ , where r is the code block number and  $K_r$  is the number of bits for code block number r according to Subclause 5.2.2.

#### 6.2.4 Channel coding of UL-SCH

Code blocks are delivered to the channel coding block. The bits in a code block are denoted by  $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K_r-1)}$ , where r is the code block number, and  $K_r$  is the number of bits in code block number r. The total number of code blocks is denoted by C and each code block is individually LDPC encoded according to Subclause 5.3.2.

After encoding the bits are denoted by  $d_{r_0}, d_{r_1}, d_{r_2}, d_{r_3}, ..., d_{r(N_r-1)}$ , where the values of  $N_r$  is given in Subclause 5.3.2.

### 6.2.5 Rate matching

Coded bits for each code block, denoted as  $d_{r0}, d_{r1}, d_{r2}, d_{r3}, ..., d_{r(N_r-1)}$ , are delivered to the rate match block, where r is the code block number, and  $N_r$  is the number of encoded bits in code block number r. The total number of code blocks is denoted by C and each code block is individually rate matched according to Subclause 5.4.2 by setting  $I_{LBRM} = 1$  if higher layer parameter rateMatching is set to limitedBufferRM and by setting  $I_{LBRM} = 0$  otherwise.

After rate matching, the bits are denoted by  $f_{r0}$ ,  $f_{r1}$ ,  $f_{r2}$ ,  $f_{r3}$ ,...,  $f_{r(E_r-1)}$ , where  $E_r$  is the number of rate matched bits for code block number r.

#### 6.2.6 Code block concatenation

The input bit sequence for the code block concatenation block are the sequences  $f_{r0}$ ,  $f_{r1}$ ,  $f_{r2}$ ,  $f_{r3}$ ,...,  $f_{r(E_r-1)}$ , for r = 0,..., C-1 and where  $E_r$  is the number of rate matched bits for the r-th code block.

Code block concatenation is performed according to Subclause 5.5.

The bits after code block concatenation are denoted by  $g_0, g_1, g_2, g_3, ..., g_{G-1}$ , where G is the total number of coded bits for transmission.

## 6.2.7 Data and control multiplexing

Denote the coded bits for UL-SCH as  $g_0^{\text{UL-SCH}}, g_1^{\text{UL-SCH}}, g_2^{\text{UL-SCH}}, g_3^{\text{UL-SCH}}, \dots, g_{G^{\text{UL-SCH}}-1}^{\text{UL-SCH}}$ 

Denote the coded bits for HARQ-ACK, if any, as  $g_0^{ACK}, g_1^{ACK}, g_2^{ACK}, g_3^{ACK}, ..., g_{G^{ACK}-1}^{ACK}$ 

Denote the coded bits for CSI part 1, if any, as  $g_0^{\text{CSI-part1}}, g_1^{\text{CSI-part1}}, g_2^{\text{CSI-part1}}, g_3^{\text{CSI-part1}}, \dots, g_{c^{\text{CSI-part1}}-1}^{\text{CSI-part1}}$ 

Denote the coded bits for CSI part 2, if any, as  $g_0^{\text{CSI-part2}}, g_1^{\text{CSI-part2}}, g_2^{\text{CSI-part2}}, g_3^{\text{CSI-part2}}, \dots, g_{G^{\text{CSI-part2}}-1}^{\text{CSI-part2}}$ 

Denote the multiplexed data and control coded bit sequence as  $g_0, g_1, g_2, g_3, ..., g_{G-1}$ .

Denote l as the OFDM symbol index of the scheduled PUSCH, starting from 0 to  $N_{\text{symb,all}}^{\text{PUSCH}} - 1$ , where  $N_{\text{symb,all}}^{\text{PUSCH}}$  is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS.

Denote k as the subcarrier index of the scheduled PUSCH, starting from 0 to  $M_{\rm sc}^{\rm PUSCH} = 1$ , where  $M_{\rm sc}^{\rm PUSCH}$  is expressed as a number of subcarriers.

Denote  $\Phi_l^{\text{UL-SCH}}$  as the set of resource elements, in ascending order of indices k, available for transmission of data in OFDM symbol l, for  $l=0,1,2,...,N_{\text{symb,all}}^{\text{PUSCH}}-1$ .

Denote  $M_{\text{sc}}^{\text{UL-SCH}}(l) = \left| \Phi_l^{\text{UL-SCH}} \right|$  as the number of elements in set  $\Phi_l^{\text{UL-SCH}}$ . Denote  $\Phi_l^{\text{UL-SCH}}(j)$  as the j-th element in  $\Phi_l^{\text{UL-SCH}}$ .

Denote  $\Phi_l^{\text{UCI}}$  as the set of resource elements, in ascending order of indices k, available for transmission of UCI in OFDM symbol l, for  $l=0,1,2,...,N_{\text{symb,all}}^{\text{PUSCH}}-1$ . Denote  $M_{\text{sc}}^{\text{UCI}}(l) = \left|\Phi_l^{\text{UCI}}\right|$  as the number of elements in set  $\Phi_l^{\text{UCI}}$ . Denote  $\Phi_l^{\text{UCI}}(j)$  as the j-th element in  $\Phi_l^{\text{UCI}}$ . For any OFDM symbol that carriers DMRS of the PUSCH,  $\Phi_l^{\text{UCI}}=\emptyset$ . For any OFDM symbol that does not carry DMRS of the PUSCH,  $\Phi_l^{\text{UCI}}=\Phi_l^{\text{UL-SCH}}$ .

If frequency hopping is configured for the PUSCH,

- denote  $l^{(1)}$  as the OFDM symbol index of the first OFDM symbol after the first set of consecutive OFDM symbol(s) carrying DMRS in the first hop;
- denote  $l^{(2)}$  as the OFDM symbol index of the first OFDM symbol after the first set of consecutive OFDM symbol(s) carrying DMRS in the second hop.
- denote  $I_{\text{CSI}}^{(1)}$  as the OFDM symbol index of the first OFDM symbol that does not carry DMRS in the first hop;
- denote  $l_{\text{CSI}}^{(2)}$  as the OFDM symbol index of the first OFDM symbol that does not carry DMRS in the second hop;
- if HARQ-ACK is present for transmission on the PUSCH with UL-SCH, let

- 
$$G^{\text{ACK}}(1) = N_L \cdot Q_m \cdot \left[ G^{\text{ACK}} / (2 \cdot N_L \cdot Q_m) \right]$$
 and  $G^{\text{ACK}}(2) = N_L \cdot Q_m \cdot \left[ G^{\text{ACK}} / (2 \cdot N_L \cdot Q_m) \right]$ ;

- if CSI is present for transmission on the PUSCH with UL-SCH, let
  - $G^{\text{CSI-part1}}(1) = N_L \cdot Q_m \cdot \left[ G^{\text{CSI-part1}} / (2 \cdot N_L \cdot Q_m) \right];$
  - $G^{\text{CSI-partl}}(2) = N_L \cdot Q_m \cdot \left[ G^{\text{CSI-partl}} / (2 \cdot N_L \cdot Q_m) \right];$
  - $G^{\text{CSI-part2}}(1) = N_L \cdot Q_m \cdot \lfloor G^{\text{CSI-part2}} / (2 \cdot N_L \cdot Q_m) \rfloor$ ; and
  - $G^{\text{CSI-part2}}(2) = N_L \cdot Q_m \cdot \left[ G^{\text{CSI-part2}} / (2 \cdot N_L \cdot Q_m) \right]$ ;
- if only HARQ-ACK and CSI part 1 are present for transmission on the PUSCH without UL-SCH, let

- 
$$G^{\text{ACK}}(1) = \min \left( N_L \cdot Q_m \cdot \middle| G^{\text{ACK}} / \left( 2 \cdot N_L \cdot Q_m \right) \middle| , M_3 \cdot N_L \cdot Q_m \right);$$

- 
$$G^{ACK}(2) = G^{ACK} - G^{ACK}(1)$$
;

- 
$$G^{\text{CSI-part1}}(1) = M_1 \cdot N_L \cdot Q_m - G^{\text{ACK}}(1)$$
; and

- 
$$G^{\text{CSI-part1}}(2) = G^{\text{CSI-part1}} - G^{\text{CSI-part1}}(1)$$
;

- if HARQ-ACK, CSI part 1 and CSI part 2 are present for transmission on the PUSCH without UL-SCH, let
  - $G^{\text{ACK}}(1) = \min \left( N_L \cdot Q_m \cdot \middle| G^{\text{ACK}} / \left( 2 \cdot N_L \cdot Q_m \right) \middle| , M_3 \cdot N_L \cdot Q_m \right);$
  - $G^{\text{ACK}}(2) = G^{\text{ACK}} G^{\text{ACK}}(1)$ ;
- if the number of HARQ-ACK information bits is more than 2,  $G^{\text{CSI-part1}}(1) = \min \left( N_L \cdot Q_m \cdot \left\lfloor G^{\text{CSI-part1}} / (2 \cdot N_L \cdot Q_m) \right\rfloor, M_1 \cdot N_L \cdot Q_m G^{\text{ACK}}(1) \right); \text{ otherwise,}$   $G^{\text{CSI-part1}}(1) = \min \left( N_L \cdot Q_m \cdot \left\lfloor G^{\text{CSI-part1}} / (2 \cdot N_L \cdot Q_m) \right\rfloor, M_1 \cdot N_L \cdot Q_m G^{\text{ACK}}_{rvd}(1) \right)$ 
  - $G^{\text{CSI-part1}}(2) = G^{\text{CSI-part1}} G^{\text{CSI-part1}}(1)$ ;
  - $G^{\text{CSI-part2}}(1) = M_1 \cdot N_L \cdot Q_m G^{\text{CSI-part1}}(1)$  if the number of HARQ-ACK information bits is no more than 2, and  $G^{\text{CSI-part2}}(1) = M_1 \cdot N_L \cdot Q_m G^{\text{ACK}}(1) G^{\text{CSI-part1}}(1)$  otherwise; and
  - $G^{\text{CSI-part2}}(2) = M_2 \cdot N_L \cdot Q_m G^{\text{CSI-part1}}(2)$  if the number of HARQ-ACK information bits is no more than 2, and  $G^{\text{CSI-part2}}(2) = M_2 \cdot N_L \cdot Q_m G^{\text{ACK}}(2) G^{\text{CSI-part1}}(2)$  otherwise;
- if CSI part 1 and CSI part 2 are present for transmission on the PUSCH without UL-SCH, let

$$G^{\text{CSI-part1}}(1) = \min \left( N_L \cdot Q_m \cdot \left\lfloor G^{\text{CSI-part1}} / \left( 2 \cdot N_L \cdot Q_m \right) \right\rfloor, \ M_1 \cdot N_L \cdot Q_m - G_{rvd}^{\text{ACK}}(1) \right):$$

- $G^{\text{CSI-part1}}(2) = G^{\text{CSI-part1}} G^{\text{CSI-part1}}(1)$  ;
- $G^{\text{CSI-part2}}(1) = M_1 \cdot N_L \cdot Q_m G^{\text{CSI-part1}}(1)$ ; and
- $G^{\text{CSI-part2}}(2) = M_2 \cdot N_L \cdot Q_m G^{\text{CSI-part1}}(2)$ ;
- let  $N_{\text{hop}}^{\text{PUSCH}} = 2$ , and denote  $N_{\text{symb,hop}}^{\text{PUSCH}}(1)$ ,  $N_{\text{symb,hop}}^{\text{PUSCH}}(2)$  as the number of OFDM symbols of the PUSCH in the first and second hop, respectively;
- $N_L$  is the number of transmission layers of the PUSCH;
- $Q_m$  is the modulation order of the PUSCH;

$$M_{1} = \sum_{l=0}^{N_{\text{symb,hop}}^{\text{PUSCH}}(1)-1} M_{\text{SC}}^{\text{UCI}}(l),$$

$$\boldsymbol{M}_{2} = \sum_{l=N_{\text{symb,hop}}(1)}^{N_{\text{Symb,hop}}(1)+N_{\text{symb,hop}}^{\text{PUSCH}}(2)-1} \boldsymbol{M}_{\text{SC}}^{\text{UCI}}(l)$$

$$M_3 = \sum_{l=l^{(1)}}^{N_{\text{symbhop}}^{\text{PUSCH}}(1)-1} M_{\text{SC}}^{\text{UCI}}(l)$$

If frequency hopping is not configured for the PUSCH,

- denote  $l^{(1)}$  as the OFDM symbol index of the first OFDM symbol after the first set of consecutive OFDM symbol(s) carrying DMRS;

- denote  $l_{\text{CSI}}^{(1)}$  as the OFDM symbol index of the first OFDM symbol that does not carry DMRS;
- if HARQ-ACK is present for transmission on the PUSCH, let  $G^{ACK}(1) = G^{ACK}$ ;
- if CSI is present for transmission on the PUSCH, let  $G^{\text{CSI-part1}}(1) = G^{\text{CSI-part2}}$  and  $G^{\text{CSI-part2}}(1) = G^{\text{CSI-part2}}$ ;
- let  $N_{\text{hop}}^{\text{PUSCH}} = 1$  and  $N_{\text{symb,hop}}^{\text{PUSCH}}(1) = N_{\text{symb,all}}^{\text{PUSCH}}$

The multiplexed data and control coded bit sequence  $g_0, g_1, g_2, g_3, ..., g_{G-1}$  is obtained according to the following:

#### **Step 1:**

Set 
$$\overline{\Phi}_{l}^{\text{UL-SCH}} = \Phi_{l}^{\text{UL-SCH}}$$
 for  $l = 0, 1, 2, ..., N_{\text{symb, all}}^{\text{PUSCH}} - 1$ ;

Set 
$$\overline{M}_{sc}^{\text{UL-SCH}}(l) = |\overline{\Phi}_{l}^{\text{UL-SCH}}|$$
 for  $l = 0, 1, 2, ..., N_{\text{symb, all}}^{\text{PUSCH}} - 1$ ;

Set 
$$\overline{\Phi}_{l}^{\text{UCI}} = \Phi_{l}^{\text{UCI}}$$
 for  $l = 0, 1, 2, ..., N_{\text{symb, all}}^{\text{PUSCH}} - 1$ ;

Set 
$$\overline{M}_{sc}^{\text{UCI}}(l) = |\overline{\Phi}_{l}^{\text{UCI}}|$$
 for  $l = 0, 1, 2, ..., N_{\text{symb, all}}^{\text{PUSCH}} - 1$ ;

if the number of HARQ-ACK information bits to be transmitted on PUSCH is 0, 1 or 2 bits

the number of reserved resource elements for potential HARQ-ACK transmission is calculated according to Subclause 6.3.2.4.1.1, by setting  $O_{\rm ACK}=2$ ;

denote  $G_{\text{rvd}}^{\text{ACK}}$  as the number of coded bits for potential HARQ-ACK transmission using the reserved resource elements;

if frequency hopping is configured for the PUSCH, let  $G_{\text{rvd}}^{\text{ACK}}(1) = N_L \cdot Q_m \cdot \left[ G_{\text{rvd}}^{\text{ACK}} / \left( 2 \cdot N_L \cdot Q_m \right) \right]$  and

$$G_{\text{rvd}}^{\text{ACK}}(2) = N_L \cdot Q_m \cdot \left[ G_{\text{rvd}}^{\text{ACK}} / \left( 2 \cdot N_L \cdot Q_m \right) \right] ;$$

if frequency hopping is not configured for the PUSCH, let  $G_{\text{rvd}}^{\text{ACK}}(1) = G_{\text{rvd}}^{\text{ACK}}$ ;

denote  $\overline{\Phi}_l^{\text{rvd}}$  as the set of reserved resource elements for potential HARQ-ACK transmission, in OFDM symbol l, for  $l = 0, 1, 2, ..., N_{\text{symb, all}}^{\text{PUSCH}} - 1$ ;

Set 
$$m_{\text{count}}^{\text{ACK}}(1) = 0$$
;

Set 
$$m_{\text{count}}^{\text{ACK}}(2) = 0$$
;

$$\overline{\Phi}_{l}^{\text{rvd}} = \emptyset \text{ for } l = 0, 1, 2, ..., N_{\text{symb, all}}^{\text{PUSCH}} - 1;$$

for 
$$i = 1$$
 to  $N_{\text{hop}}^{\text{PUSCH}}$ 

$$l = l^{(i)}$$
:

while 
$$m_{\text{count}}^{\text{ACK}}(i) < G_{\text{rvd}}^{\text{ACK}}(i)$$

if 
$$\overline{M}_{sc}^{UCI}(l) > 0$$

if 
$$G_{\text{rvd}}^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i) \ge \overline{M}_{\text{sc}}^{\text{UCI}}(l) \cdot N_L \cdot Q_m$$

$$d=1$$
;

$$\begin{split} m_{\text{count}}^{\text{RE}} &= \overline{M}_{\text{sc}}^{\text{UL-SCH}}\left(l\right); \\ &\text{end if} \\ &\text{if } G_{\text{rvd}}^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i) < \overline{M}_{\text{sc}}^{\text{UCI}}\left(l\right) \cdot N_L \cdot Q_m \\ &d = \left\lfloor \overline{M}_{\text{sc}}^{\text{UCI}}\left(l\right) \cdot N_L \cdot Q_m \middle/ \left(G_{\text{rvd}}^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i)\right) \middle\rfloor; \\ &m_{\text{count}}^{\text{RE}} &= \left\lceil \left(G_{\text{rvd}}^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i)\right) \middle/ \left(N_L \cdot Q_m\right) \right\rceil; \\ &\text{end if} \\ &\text{for } j = 0 \text{ to } m_{\text{count}}^{\text{RE}} - 1 \\ &\overline{\Phi}_l^{\text{rvd}} &= \overline{\Phi}_l^{\text{rvd}} \cup \left\{ \overline{\Phi}_l^{\text{UL-SCH}}\left(j \cdot d\right) \right\} \\ &m_{\text{count}}^{\text{ACK}}(i) = m_{\text{count}}^{\text{ACK}}(i) + N_L \cdot Q_m; \\ &\text{end for} \\ &\text{end if} \\ &l = l + 1; \\ &\text{end while} \\ &\text{end for} \\ &\text{else} \\ &\overline{\Phi}_l^{\text{rvd}} = \varnothing \text{ for } l = 0, 1, 2, ..., N_{\text{symb, all}}^{\text{PUSCH}} - 1; \\ &\text{end if} \end{split}$$

Denote  $\overline{M}_{\mathrm{sc,rvd}}^{\,\overline{\Phi}}(l) = \left| \overline{\Phi}_l^{\,\mathrm{rvd}} \right|$  as the number of elements in  $\overline{\Phi}_l^{\,\mathrm{rvd}}$ .

## **Step 2:**

if HARQ-ACK is present for transmission on the PUSCH and the number of HARQ-ACK information bits is more than 2.

```
Set m_{\text{count}}^{\text{ACK}}(1) = 0;

Set m_{\text{count}}^{\text{ACK}}(2) = 0;

Set m_{\text{countall}}^{\text{ACK}} = 0;

for i = 1 to N_{\text{hop}}^{\text{PUSCH}}

l = l^{(i)};

while m_{\text{count}}^{\text{ACK}}(i) < G^{\text{ACK}}(i)

if \overline{M}_{\text{sc}}^{\text{UCI}}(l) > 0
```

38

if 
$$G^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i) \ge \overline{M}_{\text{sc}}^{\text{UCI}}(l) \cdot N_L \cdot Q_m$$

d = 1;

$$m_{\text{count}}^{\text{RE}} = \overline{M}_{\text{sc}}^{\text{UCI}}(l);$$

end if

if 
$$G^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i) < \overline{M}_{\text{sc}}^{\text{UCI}}(l) \cdot N_L \cdot Q_m$$

$$d = \left| \ \overline{M}_{\text{sc}}^{\text{UCI}} \left( l \right) \cdot N_L \cdot Q_m \middle/ \left( G^{\text{ACK}} \left( i \right) - m_{\text{count}}^{\text{ACK}} \left( i \right) \right) \right|;$$

$$m_{\mathrm{count}}^{\mathrm{RE}} = \left\lceil \left( G^{\mathrm{ACK}}\left(i\right) - m_{\mathrm{count}}^{\mathrm{ACK}}\left(i\right) \right) / \left( N_L \cdot Q_m \right) \right\rceil \; ;$$

end if

for 
$$j = 0$$
 to  $m_{\text{count}}^{\text{RE}} - 1$ 

$$k = \overline{\Phi}_{l}^{\text{UCI}}(j \cdot d);$$

for 
$$v = 0$$
 to  $N_L \cdot Q_m - 1$ 

$$\overline{g}_{l,k,v} = g_{m_{\text{countabl}}}^{\text{ACK}};$$

$$m_{\text{count,all}}^{\text{ACK}} = m_{\text{count,all}}^{\text{ACK}} + 1;$$

$$m_{\text{count}}^{\text{ACK}}(i) = m_{\text{count}}^{\text{ACK}}(i) + 1;$$

end for

end for

$$\boldsymbol{\bar{\Phi}}_{l,tmp}^{\text{UCI}} = \boldsymbol{\varnothing};$$

for 
$$j = 0$$
 to  $m_{\text{count}}^{\text{RE}} - 1$ 

$$\overline{\Phi}_{l,tmp}^{\text{UCI}} = \overline{\Phi}_{l,tmp}^{\text{UCI}} \cup \overline{\Phi}_{l}^{\text{UCI}}(j \cdot d);$$

end for

$$ar{m{\Phi}}_{l}^{ ext{UCI}} = ar{m{\Phi}}_{l}^{ ext{UCI}} \setminus ar{m{\Phi}}_{l,tmp}^{ ext{UCI}}$$
 :

$$\overline{\Phi}_l^{ ext{UL-SCH}} = \overline{\Phi}_l^{ ext{UL-SCH}} \setminus \overline{\Phi}_{l,mp}^{ ext{UCI}}$$
 :

$$\overline{M}_{\mathrm{sc}}^{\mathrm{UCI}}\left(l\right) = \left|\overline{\Phi}_{l}^{\mathrm{UCI}}\right|;$$

$$ar{M}_{ ext{sc}}^{ ext{UL-SCH}}\left(l\right)\!=\!\left|ar{\Phi}_{l}^{ ext{UL-SCH}}\right|;$$

end if

$$l = l + 1;$$

end while

end for

end if

#### **Step 3:**

if CSI is present for transmission on the PUSCH,

Set 
$$m_{\text{count}}^{\text{CSI-part1}}(1) = 0$$
;

Set 
$$m_{\text{count}}^{\text{CSI-part1}}(2) = 0$$
;

Set 
$$m_{\text{count,all}}^{\text{CSI-part1}} = 0$$
;

for 
$$i = 1$$
 to  $N_{\text{hop}}^{\text{PUSCH}}$ 

$$l = l_{\text{CSI}}^{(i)}$$
;

while 
$$\overline{M}_{\rm sc}^{\rm UCI}(l) - \overline{M}_{\rm sc, rvd}^{\bar{\Phi}}(l) \le 0$$

$$l = l + 1;$$

end while

while 
$$m_{\text{count}}^{\text{CSI-part1}}(i) < G^{\text{CSI-part1}}(i)$$

if 
$$\bar{M}_{\rm sc}^{\rm UCI}(l) - \bar{M}_{\rm sc, rvd}^{\bar{\Phi}}(l) > 0$$

if 
$$G^{\text{CSI-part1}}(i) - m_{\text{count}}^{\text{CSI-part1}}(i) \ge \left(\overline{M}_{\text{sc}}^{\text{UCI}}(l) - \overline{M}_{\text{sc, rvd}}^{\bar{\Phi}}(l)\right) \cdot N_L \cdot Q_m$$

$$d = 1;$$

$$m_{\text{count}}^{\text{RE}} = \overline{M}_{\text{sc}}^{\text{UCI}}(l) - \overline{M}_{\text{sc, rvd}}^{\overline{\Phi}}(l);$$

end if

$$\text{if } G^{\text{CSI-part1}}(i) - m_{\text{count}}^{\text{CSI-part1}}(i) < \left( \overline{M}_{\text{sc}}^{\text{UCI}}\left(l\right) - \overline{M}_{\text{sc, rvd}}^{\bar{\Phi}}\left(l\right) \right) \cdot N_L \cdot Q_m$$

$$d = \left| \left( \bar{M}_{\text{sc}}^{\text{UCI}}\left(l\right) - M_{\text{sc, rvd}}^{\bar{\Phi}}\left(l\right) \right) \cdot N_L \cdot Q_m \middle/ \left( G^{\text{CSI-part1}}(i) - m_{\text{count}}^{\text{CSI-part1}}(i) \right) \right|;$$

$$m_{\text{count}}^{\text{RE}} = \left[ \left( G^{\text{CSI-part1}}(i) - m_{\text{count}}^{\text{CSI-part1}}(i) \right) / \left( N_L \cdot Q_m \right) \right];$$

end if

$$\overline{\Phi}_{I}^{\text{temp}} = \overline{\Phi}_{I}^{\text{UCI}} \setminus \overline{\Phi}_{I}^{\text{rvd}};$$

for 
$$j = 0$$
 to  $m_{\text{count}}^{\text{RE}} - 1$ 

$$k = \overline{\Phi}_{l}^{\text{temp}}(j \cdot d);$$

for 
$$v = 0$$
 to  $N_L \cdot Q_m - 1$ 

$$\overline{g}_{l,k,v} = g_{m_{\text{countall}}^{\text{CSI-part1}}}^{\text{CSI-part1}};$$

$$m_{\text{countall}}^{\text{CSI-part1}} = m_{\text{countall}}^{\text{CSI-part1}} + 1;$$

$$m_{\text{count}}^{\text{CSI-part1}}(i) = m_{\text{count}}^{\text{CSI-part1}}(i) + 1;$$

end for

end for

$$\mathbf{ar{\Phi}}_{l,tmp}^{ ext{UCI}}=arnothing;$$

for 
$$j = 0$$
 to  $m_{\text{count}}^{\text{RE}} - 1$ 

$$\bar{\Phi}_{l,tmp}^{\text{UCI}} = \bar{\Phi}_{l,tmp}^{\text{UCI}} \cup \bar{\Phi}_{l}^{\text{temp}} (j \cdot d);$$

end for

$$\overline{\Phi}_l^{ ext{UCI}} = \overline{\Phi}_l^{ ext{UCI}} \setminus \overline{\Phi}_{l,\textit{tmp}}^{ ext{UCI}}$$
 .

$$\overline{\Phi}_l^{ ext{UL-SCH}} = \overline{\Phi}_l^{ ext{UL-SCH}} \setminus \overline{\Phi}_{l,tmp}^{ ext{UCI}}$$
 ;

$$ar{M}_{ ext{sc}}^{ ext{UCI}}\left(l
ight) = \left|ar{\Phi}_{l}^{ ext{UCI}}
ight|;$$

$$\overline{M}_{\mathrm{sc}}^{\,\mathrm{UL} ext{-SCH}}\left(l\right)\!=\!\left|\overline{\Phi}_{l}^{\,\mathrm{UL} ext{-SCH}}\right|;$$

end if

$$l = l + 1;$$

end while

end for

Set 
$$m_{\text{count}}^{\text{CSI-part2}}(1) = 0$$
;

Set 
$$m_{\text{count}}^{\text{CSI-part2}}(2) = 0$$
;

Set 
$$m_{\text{count,all}}^{\text{CSI-part2}} = 0$$
;

for 
$$i = 1$$
 to  $N_{\text{hop}}^{\text{PUSCH}}$ 

$$l = l_{\text{CSI}}^{(i)}$$
;

while 
$$ar{M}_{ ext{sc}}^{ ext{UCI}}\!\left(l
ight)\!\leq\!0$$

$$l = l + 1;$$

end while

while 
$$m_{\text{count}}^{\text{CSI-part2}}(i) < G^{\text{CSI-part2}}(i)$$

if 
$$\bar{M}_{\rm sc}^{\rm UCI}(l) > 0$$

$$\text{if } G^{\text{CSI-part2}}(i) - m_{\text{count}}^{\text{CSI-part2}}(i) \geq \overline{M}_{\text{sc}}^{\text{UCI}}\left(l\right) \cdot N_L \cdot Q_m$$

$$d = 1;$$

$$\begin{split} m_{\text{count}}^{\text{RE}} &= \overline{M}_{\text{sc}}^{\text{UCI}}(l); \\ \text{end if} \\ \text{if } G^{\text{CSI-part2}}(i) - m_{\text{count}}^{\text{CSI-part2}}(i) < \overline{M}_{\text{sc}}^{\text{UCI}}(l) \cdot N_L \cdot Q_m \\ d &= \left\lfloor \overline{M}_{\text{sc}}^{\text{UCI}}(l) \cdot N_L \cdot Q_m \middle/ \left( G^{\text{CSI-part2}}(i) - m_{\text{count}}^{\text{CSI-part2}}(i) \right) \right\rfloor; \\ m_{\text{count}}^{\text{RE}} &= \left\lceil \left( G^{\text{CSI-part2}}(i) - m_{\text{count}}^{\text{CSI-part2}}(i) \right) \middle/ \left( N_L \cdot Q_m \right) \right\rceil; \\ \text{end if} \\ \text{for } j = 0 \text{ to } m_{\text{count}}^{\text{RE}} - 1 \\ k &= \overline{\Phi}_l^{\text{UCI}}(j \cdot d); \\ \text{for } v = 0 \text{ to } N_L \cdot Q_m - 1 \\ \overline{g}_{l,k,v} &= g_{\text{cSI-part2}}^{\text{CSI-part2}}; \\ m_{\text{countall}}^{\text{CSI-part2}} &= m_{\text{countall}}^{\text{CSI-part2}} + 1; \\ m_{\text{count}}^{\text{CSI-part2}}(i) &= m_{\text{count}}^{\text{CSI-part2}}(i) + 1; \\ \text{end for} \\ \text{end for} \\ \overline{\Phi}_{l,mp}^{\text{UCI}} &= \overline{\Phi}_{l,mp}^{\text{UCI}} \cup \overline{\Phi}_{l}^{\text{UCI}}(j \cdot d); \\ \text{end for} \\ \overline{\Phi}_l^{\text{UCI}} &= \overline{\Phi}_l^{\text{UCI}} \setminus \overline{\Phi}_{l,mp}^{\text{UCI}}; \\ \overline{\Phi}_l^{\text{UCI}} &= \overline{\Phi}_l^{\text{UCI}} \setminus \overline{\Phi}_{l,mp}^{\text{UCI}}; \\ \overline{\Phi}_l^{\text{ULSCH}} &= \overline{\Phi}_l^{\text{ULSCH}} \setminus \overline{\Phi}_{l,mp}^{\text{UCI}}; \\ \overline{M}_{\text{sc}}^{\text{ULSCH}}(l) &= \left| \overline{\Phi}_l^{\text{ULSCH}} \right|; \\ \text{end if} \\ l &= l + 1. \\ \end{split}$$

l = l + 1;

end while

end for

end if

#### **Step 4:**

if UL-SCH is present for transmission on the PUSCH,

```
Set m_{\mathrm{count}}^{\mathrm{UL-SCH}} = 0;

for l = 0 to N_{\mathrm{symb,all}}^{\mathrm{PUSCH}} - 1

if \overline{M}_{\mathrm{sc}}^{\mathrm{UL-SCH}}(l) > 0

for j = 0 to \overline{M}_{\mathrm{sc}}^{\mathrm{UL-SCH}}(l) - 1

k = \overline{\Phi}_{l}^{\mathrm{UL-SCH}}(j);

for v = 0 to N_{L} \cdot Q_{m} - 1

\overline{g}_{l,k,v} = g_{m_{\mathrm{count}}^{\mathrm{UL-SCH}}}^{\mathrm{UL-SCH}};

m_{\mathrm{count}}^{\mathrm{UL-SCH}} = m_{\mathrm{count}}^{\mathrm{UL-SCH}} + 1;

end for
end if
end for
```

### **Step 5:**

if HARQ-ACK is present for transmission on the PUSCH and the number of HARQ-ACK information bits is no more than 2,

```
\begin{split} & \text{Set } m_{\text{count}}^{\text{ACK}}(1) = 0 \,; \\ & \text{Set } m_{\text{count all}}^{\text{ACK}}(2) = 0 \,; \\ & \text{Set } m_{\text{count all}}^{\text{ACK}} = 0 \,; \\ & \text{for } i = 1 \text{ to } N_{\text{hop}}^{\text{PUSCH}} \\ & l = l^{(i)} \,; \\ & \text{while } m_{\text{count}}^{\text{ACK}}(i) < G^{\text{ACK}}(i) \\ & \text{ if } \overline{M}_{\text{sc, rvd}}^{\overline{\Phi}}\left(l\right) > 0 \\ & \text{ if } G^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i) \ge \overline{M}_{\text{sc, rvd}}^{\overline{\Phi}}\left(l\right) \cdot N_L \cdot Q_m \\ & d = 1 \,; \\ & m_{\text{count}}^{\text{RE}} = \overline{M}_{\text{sc, rvd}}^{\overline{\Phi}}\left(l\right) \,; \\ & \text{ end if } \\ & \text{ if } G^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i) < \overline{M}_{\text{sc, rvd}}^{\overline{\Phi}}\left(l\right) \cdot N_L \cdot Q_m \end{split}
```

$$d = \left\lfloor \overline{M}_{\text{sc, rvd}}^{\overline{\Phi}}(l) \cdot N_L \cdot Q_m / \left( G^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i) \right) \right\rfloor;$$

$$m_{\text{count}}^{\text{RE}} = \left\lceil \left( G^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i) \right) / \left( N_L \cdot Q_m \right) \right\rceil;$$
end if
$$\text{for } j = 0 \text{ to } m_{\text{count}}^{\text{RE}} - 1$$

$$k = \overline{\Phi}_l^{\text{red}}(j \cdot d);$$

$$\text{for } v = 0 \text{ to } N_L \cdot Q_m - 1$$

$$\overline{g}_{l,k,v} = g_{m_{\text{count,all}}}^{\text{ACK}};$$

$$m_{\text{count,all}}^{\text{ACK}} = m_{\text{count,all}}^{\text{ACK}} + 1;$$

$$m_{\text{count}}^{\text{ACK}}(i) = m_{\text{count}}^{\text{ACK}}(i) + 1;$$
end for
end if
$$l = l + 1;$$
end while
end for
d if
$$m_{\text{count}}^{\text{ACK}}(i) = m_{\text{count}}^{\text{ACK}}(i) + 1;$$

## **Step 6:**

end for

end if

```
Set t = 0;
for l = 0 to N_{\text{symb,all}}^{\text{PUSCH}} - 1
     for j = 0 to M_{sc}^{UL-SCH}(l) - 1
          k = \Phi_l^{\text{UL-SCH}}(j);
          for v = 0 to N_L \cdot Q_m - 1
                g_t = \overline{g}_{l,k,v};
                t = t + 1;
          end for
     end for
```

# 6.3 Uplink control information

# 6.3.1 Uplink control information on PUCCH

The procedure in this subclause applies to PUCCH formats 2/3/4.

## 6.3.1.1 UCI bit sequence generation

## 6.3.1.1.1 HARQ-ACK/SR only

If only HARQ-ACK bits are transmitted on a PUCCH, the UCI bit sequence  $a_0, a_1, a_2, a_3, ..., a_{A-1}$  is determined by setting  $a_i = \tilde{o}_i^{ACK}$  for  $i = 0, 1, ..., O^{ACK} - 1$  and  $A = O^{ACK}$ , where the HARQ-ACK bit sequence  $\tilde{o}_0^{ACK}, \tilde{o}_1^{ACK}, ..., \tilde{o}_{O^{ACK}-1}^{ACK}$  is given by Subclause 9.1 of [5, TS38.213].

If only HARQ-ACK and SR bits are transmitted on a PUCCH, the UCI bit sequence  $a_0, a_1, a_2, a_3, ..., a_{A-1}$  is determined by setting  $a_i = \widetilde{o}_i^{ACK}$  for  $i = 0, 1, ..., O^{ACK} - 1$ ,  $a_i = \widetilde{o}_i^{SR}$  for  $i = O^{ACK}, O^{ACK} + 1, ..., O^{ACK} + O^{SR} - 1$ , and  $A = O^{ACK} + O^{SR}$ , where the HARQ-ACK bit sequence  $\widetilde{o}_0^{ACK}, \widetilde{o}_1^{ACK}, ..., \widetilde{o}_{O^{ACK}-1}^{ACK}$  is given by Subclause 9.1 of [5, TS 38.213], and the SR bit sequence  $\widetilde{o}_0^{SR}, \widetilde{o}_1^{SR}, ..., \widetilde{o}_{O^{SR}-1}^{SR}$  is given by Subclause 9.2.5.1 of [5, TS 38.213].

## 6.3.1.1.2 CSI only

The bitwidth for PMI of *codebookType=typeI-SinglePanel* with 2 CSI-RS ports is 2 for Rank=1 and 1 for Rank=2, according to Subclause 5.2.2.2.1 in [6, TS 38.214].

The bitwidth for PMI of codebookType=typeI-SinglePanel with more than 2 CSI-RS ports is provided in Tables 6.3.1.1.2-1, where the values of  $(N_1, N_2)$  and  $(O_1, O_2)$  are given by Subclause 5.2.2.2.1 in [6, TS 38.214].

Table 6.3.1.1.2-1: PMI of codebookType=typel-SinglePanel

|                                                | Information fie                                        | ld $X_1^{}$ for wideband PMI                                                               | P.               | $X_2$ for wideband MI oband PMI |                |  |
|------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------|---------------------------------|----------------|--|
|                                                | (i <sub>1,1</sub>                                      | $,i_{1,2}$ )                                                                               | i <sub>1,3</sub> | $i_2$                           |                |  |
|                                                | codebookMode=1                                         | codebookMode=2                                                                             |                  | codebookMode=1                  | codebookMode=2 |  |
| Rank = 1 with >2<br>CSI-RS ports,<br>$N_2 > 1$ | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$            | $\left\lceil \log_2 \left( \frac{N_1 O_1}{2} \cdot \frac{N_2 O_2}{2} \right) \right\rceil$ | N/A              | 2                               | 4              |  |
| Rank = 1 with >2<br>CSI-RS ports,<br>$N_2 = 1$ | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$            | $\left\lceil \log_2 \left( \frac{N_1 O_1}{2} \right) \right\rceil$                         | N/A              | 2                               | 4              |  |
| Rank=2 with 4<br>CSI-RS ports,<br>$N_2 = 1$    | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$            | $\left\lceil \log_2 \left( \frac{N_1 O_1}{2} \right) \right\rceil$                         | 1                | 1                               | 3              |  |
| Rank=2 with >4<br>CSI-RS ports,<br>$N_2 > 1$   | $\left\lceil \log_2(N_1O_1 \cdot N_2O_2) \right\rceil$ | $\left\lceil \log_2 \left( \frac{N_1 O_1}{2} \cdot \frac{N_2 O_2}{2} \right) \right\rceil$ | 2                | 1                               | 3              |  |
| Rank=2 with >4<br>CSI-RS ports,<br>$N_2 = 1$   | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$            | $\left\lceil \log_2 \left( \frac{N_1 O_1}{2} \right) \right\rceil$                         | 2                | 1                               | 3              |  |

| Rank=3 or 4,<br>with 4 CSI-RS<br>ports                                                             | $\left\lceil \log_2 (N_1 O_1 \cdot N_2 O_2) \right\rceil$                        | 0   | 1 |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----|---|
| Rank=3 or 4,<br>with 8 or 12 CSI-<br>RS ports                                                      | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$                                      | 2   | 1 |
| Rank=3 or 4,<br>with >=16 CSI-<br>RS ports                                                         | $\left\lceil \log_2 \left( \frac{N_1 O_1}{2} \cdot N_2 O_2 \right) \right\rceil$ | 2   | 1 |
| Rank=5 or 6                                                                                        | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$                                      | N/A | 1 |
| Rank=7 or 8,<br>$N_1 = 4, N_2 = 1$                                                                 | $\left\lceil \log_2\!\!\left(\frac{N_1O_1}{2}\cdot N_2O_2\right)\right\rceil$    | N/A | 1 |
| Rank=7 or 8,<br>$N_1 > 2, N_2 = 2$                                                                 | $\left\lceil \log_2 \left( N_1 O_1 \cdot \frac{N_2 O_2}{2} \right) \right\rceil$ | N/A | 1 |
| Rank=7 or 8,<br>with<br>$N_1 > 4, N_2 = 1$<br>or<br>$N_1 = 2, N_2 = 2$<br>or<br>$N_1 > 2, N_2 > 2$ | $\left\lceil \log_2(N_1O_1\cdot N_2O_2)\right\rceil$                             | N/A | 1 |

The bitwidth for PMI of codebookType = typeI-MultiPanel is provided in Tables 6.3.1.1.2-2, where the values of  $(N_g, N_1, N_2)$  and  $(O_1, O_2)$  are given by Subclause 5.2.2.2.2 in [6, TS 38.214].

Table 6.3.1.1.2-2: PMI of codebookType= typel-MultiPanel

|                                                             | Information fi                              | Information fields $X_1$ for wideband |             |             | Information fields $X_2$ for wideband or per subband |       |           |           |           |
|-------------------------------------------------------------|---------------------------------------------|---------------------------------------|-------------|-------------|------------------------------------------------------|-------|-----------|-----------|-----------|
|                                                             | $(i_{1,1},i_{1,2})$                         | $i_{1,3}$                             | $i_{1,4,1}$ | $i_{1,4,2}$ | $i_{1,4,3}$                                          | $i_2$ | $i_{2,0}$ | $i_{2,1}$ | $i_{2,2}$ |
| Rank=1 with $N_g = 2$ $codebookMode=1$                      | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$ | N/A                                   | 2           | N/A         | N/A                                                  | 2     | N/A       | N/A       | N/A       |
| Rank=1 with $N_g = 4$ $codebookMode=1$                      | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$ | N/A                                   | 2           | 2           | 2                                                    | 2     | N/A       | N/A       | N/A       |
| Rank=2 with $N_g = 2$ , $N_1 N_2 = 2$ $codebookMode=1$      | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$ | 1                                     | 2           | N/A         | N/A                                                  | 1     | N/A       | N/A       | N/A       |
| Rank=3 or 4 with $N_g = 2$ , $N_1 N_2 = 2$ $codebookMode=1$ | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$ | 0                                     | 2           | N/A         | N/A                                                  | 1     | N/A       | N/A       | N/A       |

| Rank=2 or 3 or 4 with $N_g = 2$ , $N_1 N_2 > 2$ $codebookMode=1$              | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$ | 2   | 2 | N/A | N/A | 1   | N/A | N/A | N/A |
|-------------------------------------------------------------------------------|---------------------------------------------|-----|---|-----|-----|-----|-----|-----|-----|
| Rank=2 with $N_g = 4$ , $N_1 N_2 = 2$ $codebookMode=1$                        | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$ | 1   | 2 | 2   | 2   | 1   | N/A | N/A | N/A |
| Rank=3 or 4 with $N_g = 4$ , $N_1 N_2 = 2$ $codebookMode=1$                   | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$ | 0   | 2 | 2   | 2   | 1   | N/A | N/A | N/A |
| Rank=2 or 3 or 4 with $N_{\rm g}=4$ , $N_{\rm l}N_{\rm 2}>2$ $codebookMode=1$ | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$ | 2   | 2 | 2   | 2   | 1   | N/A | N/A | N/A |
| Rank=1 with $N_g = 2$ $codebookMode=2$                                        | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$ | N/A | 2 | 2   | N/A | N/A | 2   | 1   | 1   |
| Rank=2 with $N_g = 2$ , $N_1 N_2 = 2$ $codebookMode=2$                        | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$ | 1   | 2 | 2   | N/A | N/A | 1   | 1   | 1   |
| Rank=3 or 4 with $N_g = 2$ , $N_1 N_2 = 2$ $codebookMode=2$                   | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$ | 0   | 2 | 2   | N/A | N/A | 1   | 1   | 1   |
| Rank=2 or 3 or 4 with $N_{\rm g}=2$ , $N_{\rm 1}N_{\rm 2}>2$ $codebookMode=2$ | $\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$ | 2   | 2 | 2   | N/A | N/A | 1   | 1   | 1   |

The bitwidth for PMI with 1 CSI-RS port is 0.

The bitwidth for RI/LI/CQI/CRI of *codebookType=typeI-SinglePanel* is provided in Tables 6.3.1.1.2-3.

Table 6.3.1.1.2-3: RI, LI, CQI, and CRI of codebookType=typel-SinglePanel

|                          |                                                                      |                                             | Bitwidth                                     |                                             |                                             |  |
|--------------------------|----------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------------------|--|
| Field                    | 1 antenna port                                                       | 2 antenna                                   | 4 antenna                                    | >4 antenna ports                            |                                             |  |
|                          | i antenna port                                                       | ports                                       | ports                                        | Rank1~4                                     | Rank5~8                                     |  |
| Rank Indicator           | 0                                                                    | $\min(1, \lceil \log_2 n_{RI} \rceil)$      | $\min(2,\lceil \log_2 n_{\text{RI}} \rceil)$ | $\log_2 n_{\mathrm{RI}}$                    | $\lceil \log_2 n_{\mathrm{RI}} \rceil$      |  |
| Layer Indicator          | 0                                                                    | $\lceil \log_2 v \rceil$                    | $\min(2,\lceil \log_2 v \rceil)$             | $\min(2,\lceil \log_2 v \rceil)$            | $\min(2,\lceil \log_2 v \rceil)$            |  |
| Wide-band CQI            | 4                                                                    | 4                                           | 4                                            | 4                                           | 8                                           |  |
| Subband differential CQI | 2                                                                    | 2                                           | 2                                            | 2                                           | 4                                           |  |
| CRI                      | $\left\lceil \log_2 \left( K_s^{\text{CSI-RS}} \right) \right\rceil$ | $\lceil \log_2(K_s^{\text{CSI-RS}}) \rceil$ | $\lceil \log_2(K_s^{\text{CSI-RS}}) \rceil$  | $\lceil \log_2(K_s^{\text{CSI-RS}}) \rceil$ | $\lceil \log_2(K_s^{\text{CSI-RS}}) \rceil$ |  |

 $n_{\rm RI}$  in Table 6.3.1.1.2-3 is the number of allowed rank indicator values according to Subclause 5.2.2.2.1 [6, TS 38.214]. v is the value of the rank. The value of  $K_s^{\rm CSI-RS}$  is the number of CSI-RS resources in the corresponding resource set.

The bitwidth for RI/LI/CQI/CRI of codebookType= typeI-MultiPanel is provided in Table 6.3.1.1.2-4.

Table 6.3.1.1.2-4: RI, LI, CQI, and CRI of codebookType=typel-MultiPanel

| Field                    | Bitwidth                                    |
|--------------------------|---------------------------------------------|
| Rank Indicator           | $\min(2,\lceil \log_2 n_{RI} \rceil)$       |
| Layer Indicator          | $\min(2,\lceil \log_2 v \rceil)$            |
| Wide-band CQI            | 4                                           |
| Subband differential CQI | 2                                           |
| CRI                      | $\lceil \log_2(K_s^{\text{CSI-RS}}) \rceil$ |

where  $n_{RI}$  is the number of allowed rank indicator values according to Subclause 5.2.2.2.2 [6, TS 38.214], v is the value of the rank, and  $K_s^{CSI-RS}$  is the number of CSI-RS resources in the corresponding resource set.

The bitwidth for RI/LI/CQI of *codebookType=typeII* or *codebookType=typeII-PortSelection* is provided in Table 6.3.1.1.2-5.

Table 6.3.1.1.2-5: RI, LI, and CQI of codebookType=typell or typell-PortSelection

| Field                                                                                   | Bitwidth                                     |
|-----------------------------------------------------------------------------------------|----------------------------------------------|
| Rank Indicator                                                                          | $\min(1,\lceil \log_2 n_{\text{RI}} \rceil)$ |
| Layer Indicator                                                                         | $\min(2,\lceil \log_2 v \rceil)$             |
| Wide-band CQI                                                                           | 4                                            |
| Subband differential CQI                                                                | 2                                            |
| Indicator of the number of non-zero wideband amplitude coefficients $M_l$ for layer $l$ | $\lceil \log_2(2L-1) \rceil$                 |

where  $n_{RI}$  is the number of allowed rank indicator values according to Subclauses 5.2.2.2.3 and 5.2.2.2.4 [6, TS 38.214] and  $\mathcal{D}$  is the value of the rank.

The bitwidth for CRI, SSBRI, RSRP, and differential RSRP are provided in Table 6.3.1.1.2-6.

Table 6.3.1.1.2-6: CRI, SSBRI, and RSRP

| Field             | Bitwidth                                               |
|-------------------|--------------------------------------------------------|
| CRI               | $\left\lceil \log_2(K_s^{\text{CSI-RS}}) \right\rceil$ |
| SSBRI             | $\lceil \log_2(K_s^{	ext{SSB}}) \rceil$                |
| RSRP              | 7                                                      |
| Differential RSRP | 4                                                      |

where  $K_s^{\text{CSI-RS}}$  is the number of CSI-RS resources in the corresponding resource set, and  $K_s^{\text{SSB}}$  is the configured number of SS/PBCH blocks in the corresponding resource set for reporting 'ssb-Index-RSRP'.

Table 6.3.1.1.2-7: Mapping order of CSI fields of one CSI report, pmi-FormatIndicator=widebandPMI and cqi-FormatIndicator=widebandCQI

| CSI report number | CSI fields                                                                                           |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------|--|--|--|
|                   | CRI as in Tables 6.3.1.1.2-3/4, if reported                                                          |  |  |  |
|                   | Rank Indicator as in Tables 6.3.1.1.2-3/4, if reported                                               |  |  |  |
|                   | Layer Indicator as in Tables 6.3.1.1.2-3/4, if reported                                              |  |  |  |
|                   | Zero padding bits $\mathit{O}_{\scriptscriptstyle{P}}$ , if needed                                   |  |  |  |
| CSI report #n     | PMI wideband information fields $X_{1}$ , from left to right as in Tables 6.3.1.1.2-1/2, if reported |  |  |  |
|                   | PMI wideband information fields $X_{2}$ , from left to right as in Tables 6.3.1.1.2-1/2, or codebook |  |  |  |
|                   | index for 2 antenna ports according to Subclause 5.2.2.2.1 in [6, TS38.214], if reported             |  |  |  |
|                   | Wideband CQI as in Tables 6.3.1.1.2-3/4, if reported                                                 |  |  |  |

The number of zero padding bits  $O_p$  in Table 6.3.1.1.2-7 is 0 for 1 CSI-RS port and  $O_P = N_{\text{max}} - N_{\text{reported}}$  for more than 1 CSI-RS port, where

- $-N_{\max} = \max_{r \in S_{\text{Rank}}} B(r) \text{ and } S_{\text{Rank}} \text{ is the set of rank values } r \text{ that are allowed to be reported;}$
- $N_{\text{reported}} = B(R)$ , where R is the reported rank;
- For 2 CSI-RS ports,  $B(r) = N_{PMI}(r) + N_{CQI}(r) + N_{LI}(r)$ ;
- For more than 2 CSI-RS ports,  $B(r) = N_{\text{PMI,i1}}(r) + N_{\text{PMI,i2}}(r) + N_{\text{CQI}}(r) + N_{\text{LI}}(r)$ ;
- if PMI is reported,  $N_{\text{PMI}}(1) = 2$  and  $N_{\text{PMI}}(2) = 1$ ; otherwise,  $N_{\text{PMI}}(r) = 0$ ;
- if PMI  $_{i1}$  is reported,  $N_{\text{PMLiI}}(r)$  is obtained according to Tables 6.3.1.1.2-1/2; otherwise,  $N_{\text{PMLII}}(r) = 0$ ;
- if PMI i2 is reported,  $N_{\text{PMLi2}}(r)$  is obtained according to Tables 6.3.1.1.2-1/2; otherwise,  $N_{\text{PMLi2}}(r) = 0$ ;
- if CQI is reported,  $N_{\text{COI}}(r)$  is obtained according to Tables 6.3.1.1.2-3/4; otherwise,  $N_{\text{COI}}(r) = 0$ ;
- if LI is reported,  $N_{LI}(r)$  is obtained according to Tables 6.3.1.1.2-3/4; otherwise,  $N_{LI}(r) = 0$ .

Table 6.3.1.1.2-8: Mapping order of CSI fields of one report for CRI/RSRP or SSBRI/RSRP reporting

| CSI report<br>number | CSI fields                                                |
|----------------------|-----------------------------------------------------------|
|                      | CRI or SSBRI #1 as in Table 6.3.1.1.2-6, if reported      |
|                      | CRI or SSBRI #2 as in Table 6.3.1.1.2-6, if reported      |
|                      | CRI or SSBRI #3 as in Table 6.3.1.1.2-6, if reported      |
|                      | CRI or SSBRI #4 as in Table 6.3.1.1.2-6, if reported      |
| CSI report #n        | RSRP #1 as in Table 6.3.1.1.2-6, if reported              |
| CSI Tepoit #II       | Differential RSRP #2 as in Table 6.3.1.1.2-6, if reported |
|                      | Differential RSRP #3 as in Table 6.3.1.1.2-6, if reported |
|                      | Differential RSRP #4 as in Table 6.3.1.1.2-6, if reported |

Table 6.3.1.1.2-9: Mapping order of CSI fields of one CSI report, CSI part 1, pmi-FormatIndicator= subbandPMI or cqi-FormatIndicator=subbandCQI

| CSI report number | CSI fields                                                                                    |
|-------------------|-----------------------------------------------------------------------------------------------|
|                   | CRI as in Tables 6.3.1.1.2-3/4, if reported                                                   |
|                   | Rank Indicator as in Tables 6.3.1.1.2-3/4/5, if reported                                      |
| CSI report #n     | Wideband CQI for the first TB as in Tables 6.3.1.1.2-3/4/5, if reported                       |
| CSI part 1        | Subband differential CQI for the first TB as in Tables 6.3.1.1.2-3/4/5, if reported           |
| •                 | Indicator of the number of non-zero wideband amplitude coefficients $M_i$ for layer $l$ as in |
|                   | Table 6.3.1.1.2-5, if reported                                                                |

Table 6.3.1.1.2-10: Mapping order of CSI fields of one CSI report, CSI part 2 wideband, pmi-FormatIndicator= subbandPMI or cqi-FormatIndicator=subbandCQI

| CSI report number           | CSI fields                                                                                                                                                                                                                           |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Wideband CQI for the second TB as in Tables 6.3.1.1.2-3/4/5, if present and reported  Layer Indicator as in Tables 6.3.1.1.2-3/4/5, if reported                                                                                      |
| CSI report #n<br>CSI part 2 | PMI wideband information fields $X_1$ , from left to right as in Tables 6.3.1.1.2-1/2, if reported                                                                                                                                   |
| wideband                    | PMI wideband information fields $X_2$ , from left to right as in Tables 6.3.1.1.2-1/2, or codebook index for 2 antenna ports according to Subclause 5.2.2.2.1 in [6, TS38.214], if $pmi-FormatIndicator=widebandPMI$ and if reported |

Table 6.3.1.1.2-11: Mapping order of CSI fields of one CSI report, CSI part 2 subband, pmi-FormatIndicator= subbandPMI or cqi-FormatIndicator=subbandCQI

|                                 | Subband differential CQI for the second TB of all even subbands with increasing order of subband number, as in Tables 6.3.1.1.2-3/4/5, if cqi-FormatIndicator=subbandCQI and if reported                                                                                                                                                                                                                                                                       |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CSI report #n<br>Part 2 subband | PMI subband information fields $X_2$ of all even subbands with increasing order of subband number, from left to right as in Tables 6.3.1.1.2-1/2, or codebook index for 2 antenna ports according to Subclause 5.2.2.2.1 in [6, TS38.214] of all even subbands with increasing order of subband number, if $pmi$ -FormatIndicator= subbandPMI and if reported  Subband differential CQI for the second TB of all odd subbands with increasing order of subband |
| T art 2 sabbarra                | number, as in Tables 6.3.1.1.2-3/4/5, if <i>cqi-FormatIndicator=subbandCQI</i> and if reported                                                                                                                                                                                                                                                                                                                                                                 |
|                                 | PMI subband information fields $X_{2}$ of all odd subbands with increasing order of subband                                                                                                                                                                                                                                                                                                                                                                    |
|                                 | number, from left to right as in Tables 6.3.1.1.2-1/2, or codebook index for 2 antenna ports according to Subclause 5.2.2.2.1 in [6, TS38.214] of all odd subbands with increasing order of subband number, if <i>pmi-FormatIndicator= subbandPMI</i> and if reported                                                                                                                                                                                          |

If none of the CSI reports for transmission on a PUCCH is of two parts, the CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.1.1.2-12, are mapped to the UCI bit sequence  $a_0, a_1, a_2, a_3, ..., a_{A-1}$  starting with  $a_0$ .

Table 6.3.1.1.2-12: Mapping order of CSI reports to UCI bit sequence  $a_0, a_1, a_2, a_3, ..., a_{A-1}$ , without two-part CSI report(s)

| UCI bit sequence | CSI report number                       |
|------------------|-----------------------------------------|
| $a_0$            | CSI report #1 as in Table 6.3.1.1.2-7/8 |
| $a_1$ $a_2$      | CSI report #2 as in Table 6.3.1.1.2-7/8 |
| $a_3$ :          |                                         |
| $a_{A-1}$        | CSI report #n as in Table 6.3.1.1.2-7/8 |

If at least one of the CSI reports for transmission on a PUCCH is of two parts, two UCI bit sequences are generated,  $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, \dots, a_{A^{(1)-1}}^{(1)}$  and  $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, \dots, a_{A^{(2)-1}}^{(2)}$ . The CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.1.1.2-13, are mapped to the UCI bit sequence  $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, \dots, a_{A^{(1)-1}}^{(1)}$  starting with  $a_0^{(1)}$ . The CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.1.1.2-14, are mapped to the UCI bit sequence  $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, \dots, a_{A^{(2)-1}}^{(2)}$  starting with  $a_0^{(2)}$ . If the length of UCI bit sequence  $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, \dots, a_{A^{(2)-1}}^{(2)}$  is less than 3 bits, zeros shall be appended to the UCI bit sequence until its length equals 3.

Table 6.3.1.1.2-13: Mapping order of CSI reports to UCI bit sequence  $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, ..., a_{A^{(1)}-1}^{(1)}$ , with two-part CSI report(s)

| UCI bit sequence      | CSI report number                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------|
| (1)                   | CSI report #1 if CSI report #1 is not of two parts, or CSI report #1, CSI part 1, if CSI report #1 is of two parts, |
| $a_0^{(1)}$           | as in Table 6.3.1.1.2-7/8/9                                                                                         |
| $a_1^{(1)}$           | CSI report #2 if CSI report #2 is not of two parts, or                                                              |
| $a_2^{(1)}$           | CSI report #2, CSI part 1, if CSI report #2 is of two parts,                                                        |
|                       | as in Table 6.3.1.1.2-7/8/9                                                                                         |
| $a_3^{(1)}$           |                                                                                                                     |
| :                     |                                                                                                                     |
| a(1)                  | CSI report #n if CSI report #n is not of two parts, or                                                              |
| $a_{A^{(1)}-1}^{(1)}$ | CSI report #n, CSI part 1, if CSI report #n is of two parts,                                                        |
|                       | as in Table 6.3.1.1.2-7/8/9                                                                                         |

where CSI report #1, CSI report #2, ..., CSI report #n in Table 6.3.1.1.2-13 correspond to the CSI reports in increasing order of CSI report priority values according to Subclause 5.2.5 of [6, TS38.214].

Table 6.3.1.1.2-14: Mapping order of CSI reports to UCI bit sequence  $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, ..., a_{A^{(2)}-1}^{(2)}$ , with two-part CSI report(s)

| UCI bit sequence            | CSI report number                                                                                   |
|-----------------------------|-----------------------------------------------------------------------------------------------------|
|                             | CSI report #1, CSI part 2 wideband, as in Table 6.3.1.1.2-10 if CSI part 2 exists for CSI report #1 |
|                             | CSI report #2, CSI part 2 wideband, as in Table 6.3.1.1.2-10 if CSI part 2 exists for CSI report #2 |
| $a_0^{(2)}$                 |                                                                                                     |
| $a_{1}^{(2)} \ a_{2}^{(2)}$ | CSI report #n, CSI part 2 wideband, as in Table 6.3.1.1.2-10 if CSI part 2 exists for CSI report #n |
| $a_3^{(2)} \ dots$          | CSI report #1, CSI part 2 subband, as in Table 6.3.1.1.2-11 if CSI part 2 exists for CSI report #1  |
| $a_{{}_{A^{(2)}-1}}^{(2)}$  | CSI report #2, CSI part 2 subband, as in Table 6.3.1.1.2-11 if CSI part 2 exists for CSI report #2  |
|                             |                                                                                                     |
|                             | CSI report #n, CSI part 2 subband, as in Table 6.3.1.1.2-11 if CSI part 2 exists for CSI report #n  |

where CSI report #1, CSI report #2, ..., CSI report #n in Table 6.3.1.1.2-14 correspond to the CSI reports in increasing order of CSI report priority values according to Subclause 5.2.5 of [6, TS38.214].

#### 6.3.1.1.3 HARQ-ACK/SR and CSI

If none of the CSI reports for transmission on a PUCCH is of two parts, the UCI bit sequence  $a_0, a_1, a_2, a_3, ..., a_{A-1}$  is generated according to the following, where  $A = O^{ACK} + O^{SR} + O^{CSI}$ :

- if there is HARQ-ACK for transmission on the PUCCH, the HARQ-ACK bits are mapped to the UCI bit sequence  $a_0, a_1, a_2, a_3, ..., a_{O^{ACK}-1}$ , where  $a_i = \widetilde{o}_i^{ACK}$  for  $i = 0, 1, ..., O^{ACK} 1$ , the HARQ-ACK bit sequence  $\widetilde{o}_0^{ACK}, \widetilde{o}_1^{ACK}, ..., \widetilde{o}_{O^{ACK}-1}^{ACK}$  is given by Subclause 9.1 of [5, TS38.213], and  $O^{ACK}$  is number of HARQ-ACK bits; if there is no HARQ-ACK for transmission on the PUCCH, set  $O^{ACK} = 0$ ;
- if there is SR for transmission on the PUCCH, set  $a_i = \tilde{o}_i^{SR}$  for  $i = O^{ACK}$ ,  $O^{ACK} + 1,...,O^{ACK} + O^{SR} 1$ , where the SR bit sequence  $\tilde{o}_0^{SR}$ ,  $\tilde{o}_1^{SR}$ ,..., $\tilde{o}_{O^{SR}-1}^{SR}$  is given by Subclause 9.2.5.1 of [5, TS 38.213]; if there is no SR for transmission on the PUCCH, set  $O^{SR} = 0$ ;
- the CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.1.1.2-12, are mapped to the UCI bit sequence  $a_{O^{\text{ACK}}+O^{\text{SR}}}, a_{O^{\text{ACK}}+O^{\text{SR}}+1}, ..., a_{O^{\text{ACK}}+O^{\text{SR}}+O^{\text{CSI}}-1}$  starting with  $a_{O^{\text{ACK}}+O^{\text{SR}}}$ , where  $O^{\text{CSI}}$  is the number of CSI bits.

If at least one of the CSI reports for transmission on a PUCCH is of two parts, two UCI bit sequences are generated,  $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, ..., a_{A^{(1)}-1}^{(1)}$  and  $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, ..., a_{A^{(2)}-1}^{(2)}$ , according to the following, where  $A^{(1)} = O^{\text{ACK}} + O^{\text{SR}} + O^{\text{CSI-part1}}$  and  $A^{(2)} = O^{\text{CSI-part2}}$ :

- if there is HARQ-ACK for transmission on the PUCCH, the HARQ-ACK bits are mapped to the UCI bit sequence  $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, ..., a_{O^{ACK}-1}^{(1)}$ , where  $a_i^{(1)} = \tilde{o}_i^{ACK}$  for  $i = 0, 1, ..., O^{ACK} - 1$ , the HARQ-ACK bit sequence  $\tilde{o}_0^{ACK}, \tilde{o}_1^{ACK}, ..., \tilde{o}_{O^{ACK}-1}^{ACK}$  is given by Subclause 9.1 of [5, TS38.213], and  $O^{ACK}$  is number of HARQ-ACK bits; if there is no HARQ-ACK for transmission on the PUCCH, set  $O^{ACK} = 0$ ;

- if there is SR for transmission on the PUCCH, set  $a_i = \tilde{o}_i^{SR}$  for  $i = O^{ACK}$ ,  $O^{ACK} + 1,...,O^{ACK} + O^{SR} 1$ , where the SR bit sequence  $\tilde{o}_0^{SR}$ ,  $\tilde{o}_1^{SR}$ ,..., $\tilde{o}_{O^{SR}-1}^{SR}$  is given by Subclause 9.2.5.1 of [5, TS 38.213]; if there is no SR for transmission on the PUCCH, set  $O^{SR} = 0$ ;
- the CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.1.1.2-13, are mapped to the UCI bit sequence  $a_{O^{\text{ACK}}+O^{\text{SR}}}^{(1)}, a_{O^{\text{ACK}}+O^{\text{SR}}+1}^{(1)}, ..., a_{O^{\text{ACK}}+O^{\text{SR}}+O^{\text{CSI-partI}}-1}^{(1)}$  starting with  $a_{O^{\text{ACK}}+O^{\text{SR}}}^{(1)}$ , where  $O^{\text{CSI-partI}}$  is the number of CSI bits in CSI part 1 of all CSI reports;
- the CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.1.1.2-14, are mapped to the UCI bit sequence  $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, ..., a_{A^{(2)}-1}^{(2)}$  starting with  $a_0^{(2)}$ , where  $O^{\text{CSI-part2}}$  is the number of CSI bits in CSI part 2 of all CSI reports. If the length of UCI bit sequence  $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, ..., a_{A^{(2)}-1}^{(2)}$  is less than 3 bits, zeros shall be appended to the UCI bit sequence until its length equals 3.

### 6.3.1.2 Code block segmentation and CRC attachment

The UCI bit sequence from subclause 6.3.1.1 is denoted by  $a_0, a_1, a_2, a_3, ..., a_{A-1}$ , where A is the payload size. The procedure in 6.3.1.2.1 applies for  $A \ge 12$  and the procedure in Subclause 6.3.1.2.2 applies for  $A \le 11$ .

## 6.3.1.2.1 UCI encoded by Polar code

If the payload size  $A \ge 12$ , code block segmentation and CRC attachment is performed according to Subclause 5.2.1. If  $(A \ge 360 \text{ and } E \ge 1088)$  or if  $A \ge 1013$ ,  $I_{seg} = 1$ ; otherwise  $I_{seg} = 0$ , where E is the rate matching output sequence length as given in Subclause 6.3.1.4.1.

If  $12 \le A \le 19$ , the parity bits  $p_{r0}, p_{r1}, p_{r2}, ..., p_{r(L-1)}$  in Subclause 5.2.1 are computed by setting L to 6 bits and using the generator polynomial  $g_{\text{CRC6}}(D)$  in Subclause 5.1, resulting in the sequence  $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K_r-1)}$  where r is the code block number and  $K_r$  is the number of bits for code block number r.

If  $A \ge 20$ , the parity bits  $p_{r0}, p_{r1}, p_{r2}, ..., p_{r(L-1)}$  in Subclause 5.2.1 are computed by setting L to 11 bits and using the generator polynomial  $g_{\text{CRCII}}(D)$  in Subclause 5.1, resulting in the sequence  $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K_r-1)}$  where r is the code block number and  $K_r$  is the number of bits for code block number r.

#### 6.3.1.2.2 UCI encoded by channel coding of small block lengths

If the payload size  $A \le 11$ , CRC bits are not attached.

The output bit sequence is denoted by  $c_0, c_1, c_2, c_3, ..., c_{K-1}$ , where  $c_i = a_i$  for i = 0, 1, ..., A-1 and K = A.

## 6.3.1.3 Channel coding of UCI

### 6.3.1.3.1 UCI encoded by Polar code

Information bits are delivered to the channel coding block. They are denoted by  $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K_r-1)}$ , where r is the code block number, and  $K_r$  is the number of bits in code block number r. The total number of code blocks is denoted by C and each code block is individually encoded by the following:

If  $18 \le K_r \le 25$ , the information bits are encoded via Polar coding according to Subclause 5.3.1, by setting  $n_{\max} = 10$ ,  $I_{IL} = 0$ ,  $n_{PC} = 3$ ,  $n_{PC}^{wm} = 1$  if  $E_r - K_r + 3 > 192$  and  $n_{PC}^{wm} = 0$  if  $E_r - K_r + 3 \le 192$ , where  $E_r$  is the rate matching output sequence length as given in Subclause 6.3.1.4.1.

If  $K_r > 30$ , the information bits are encoded via Polar coding according to Subclause 5.3.1, by setting  $n_{\max} = 10$ ,  $I_{IL} = 0$ ,  $n_{PC} = 0$ , and  $n_{PC}^{\min} = 0$ .

After encoding the bits are denoted by  $d_{r0}, d_{r1}, d_{r2}, d_{r3}, ..., d_{r(N_r-1)}$ , where  $N_r$  is the number of coded bits in code block number r.

### 6.3.1.3.2 UCI encoded by channel coding of small block lengths

Information bits are delivered to the channel coding block. They are denoted by  $c_0, c_1, c_2, c_3, ..., c_{K-1}$ , where K is the number of bits.

The information bits are encoded according to Subclause 5.3.3.

After encoding the bits are denoted by  $d_0, d_1, d_2, d_3, \dots, d_{N-1}$ , where N is the number of coded bits.

## 6.3.1.4 Rate matching

For PUCCH formats 2/3/4, the total rate matching output sequence length  $E_{\rm tot}$  is given by Table 6.3.1.4-1, where  $N_{\rm symb,UCI}^{\rm PUCCH2}$ ,  $N_{\rm symb,UCI}^{\rm PUCCH3}$ , and  $N_{\rm symb,UCI}^{\rm PUCCH4}$  are the number of symbols carrying UCI for PUCCH formats 2/3/4 respectively;  $N_{\rm PRB}^{\rm PUCCH,2}$  and  $N_{\rm PRB}^{\rm PUCCH,3}$  are the number of PRBs that are determined by the UE for PUCCH formats 2/3 transmission respectively according to Subclause 9.2 of [5, TS38.213]; and  $N_{\rm SF}^{\rm PUCCH,4}$  is the spreading factor for PUCCH format 4.

Table 6.3.1.4-1: Total rate matching output sequence length  $E_{tot}$ 

## 6.3.1.4.1 UCI encoded by Polar code

The input bit sequence to rate matching is  $d_{r_0}, d_{r_1}, d_{r_2}, d_{r_3}, ..., d_{r(N_r-1)}$  where r is the code block number, and  $N_r$  is the number of coded bits in code block number r.

Table 6.3.1.4.1-1: Rate matching output sequence length  $E_{\text{IICL}}$ 

| UCI(s) for<br>transmission on a<br>PUCCH | UCI for encoding            | Value of $E_{ m UCI}$                                                                                                                                                                                         |
|------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HARQ-ACK                                 | HARQ-ACK                    | $E_{ m UCI} = E_{ m tot}$                                                                                                                                                                                     |
| HARQ-ACK, SR                             | HARQ-ACK, SR                | $E_{ m UCI} = E_{ m tot}$                                                                                                                                                                                     |
| CSI (CSI not of two parts)               | CSI                         | $E_{\text{UCI}} = E_{\text{tot}}$                                                                                                                                                                             |
| HARQ-ACK, CSI<br>(CSI not of two parts)  | HARQ-ACK, CSI               | $E_{\mathrm{UCI}} = E_{\mathrm{tot}}$                                                                                                                                                                         |
| HARQ-ACK, SR, CSI (CSI not of two parts) | HARQ-ACK, SR,<br>CSI        | $E_{	ext{UCI}} = E_{	ext{tot}}$                                                                                                                                                                               |
| CSI                                      | CSI part 1                  | $E_{\text{UCI}} = \min \left( E_{\text{tot}}, \left\lceil \left( O^{\text{CSI-part1}} + L \right) / R_{\text{UCI}}^{\text{max}} / Q_m \right\rceil \cdot Q_m \right)$                                         |
| (CSI of two parts)                       | CSI part 2                  | $E_{\text{UCI}} = E_{\text{tot}} - \min(E_{\text{tot}}, \left  \left( O^{\text{CSI-part1}} + L \right) / R_{\text{UCI}}^{\text{max}} / Q_m \right  \cdot Q_m)$                                                |
| HARQ-ACK, CSI                            | HARQ-ACK, CSI part 1        | $E_{\text{UCI}} = \min \left( E_{\text{tot}}, \left\lceil \left( O^{\text{ACK}} + O^{\text{CSI-part1}} + L \right) / R_{\text{UCI}}^{\text{max}} / Q_m \right\rceil \cdot Q_m \right)$                        |
| (CSI of two parts)                       | CSI part 2                  | $E_{\text{UCI}} = E_{\text{tot}} - \min \left( E_{\text{tot}}, \left\lceil \left( O^{\text{ACK}} + O^{\text{CSI-part1}} + L \right) / R_{\text{UCI}}^{\text{max}} / Q_m \right\rceil \cdot Q_m \right)$       |
| HARQ-ACK, SR, CSI                        | HARQ-ACK, SR,<br>CSI part 1 | $E_{\text{UCI}} = \min \left( E_{\text{tot}}, \left\lceil \left( O^{\text{ACK}} + O^{\text{SR}} + O^{\text{CSI-part1}} + L \right) / R_{\text{UCI}}^{\text{max}} / Q_m \right\rceil \cdot Q_m \right)$        |
| (CSI of two parts)                       | CSI part 2                  | $E_{\text{UCI}} = E_{\text{tot}} - \min \left( E_{\text{tot}}, \left[ \left( O^{\text{ACK}} + O^{\text{SR}} + O^{\text{CSI-part1}} + L \right) / R_{\text{UCI}}^{\text{max}} / Q_m \right] \cdot Q_m \right)$ |

Rate matching is performed according to Subclause 5.4.1 by setting  $I_{BIL} = 1$  and the rate matching output sequence length to  $E_r = \lfloor E_{\text{UCI}} / C_{\text{UCI}} \rfloor$ , where  $C_{\text{UCI}}$  is the number of code blocks for UCI determined according to Subclause 6.3.1.2.1 and the value of  $E_{\text{UCI}}$  is given by Table 6.3.1.4.1-1:

- O<sup>ACK</sup> is the number of bits for HARQ-ACK for transmission on the current PUCCH;
- $O^{SR}$  is the number of bits for SR for transmission on the current PUCCH;
- O<sup>CSI-part1</sup> is the number of bits for CSI part 1 for transmission on the current PUCCH;
- O<sup>CSI-part2</sup> is the number of bits for CSI part 2 for transmission on the current PUCCH;
- if A≥360, L=11; otherwise, L is the number of CRC bits determined according to subclause 6.3.1.2.1, where A equals O<sup>CSI-part1</sup> for "CSI (CSI of two parts)", equals O<sup>ACK</sup> + O<sup>CSI-part1</sup> for "HARQ-ACK, CSI (CSI of two parts)", and equals O<sup>ACK</sup> + O<sup>SR</sup> + O<sup>CSI-part1</sup> for "HARQ-ACK, SR, CSI (CSI of two parts)" respectively in Table 6.3.1.4.1-1;;
- $R_{\text{UCI}}^{\text{max}}$  is the configured maximum PUCCH coding rate;
- $E_{\text{tot}}$  is given by Table 6.3.1.4-1.

The output bit sequence after rate matching is denoted as  $f_{r0}, f_{r1}, f_{r2}, ..., f_{r(E_r-1)}$  where  $E_r$  is the length of rate matching output sequence in code block number r.

#### 6.3.1.4.2 UCI encoded by channel coding of small block lengths

The input bit sequence to rate matching is  $d_0, d_1, d_2, ..., d_{N-1}$ .

The value of  $E_{\text{LICT}}$  is determined according to Table 6.3.1.4.1-1 by setting L=0.

Rate matching is performed according to Subclause 5.4.3 by setting the rate matching output sequence length  $E = E_{UCI}$ .

The output bit sequence after rate matching is denoted as  $f_0, f_1, f_2, ..., f_{E-1}$ .

### 6.3.1.5 Code block concatenation

The input bit sequence for the code block concatenation block are the sequences  $f_{r0}$ ,  $f_{r1}$ ,  $f_{r2}$ ,...,  $f_{r(E_r-1)}$ , for r = 0,..., C-1 and where  $E_r$  is the number of rate matched bits for the r-th code block.

Code block concatenation is performed according to Subclause 5.5.

The bits after code block concatenation are denoted by  $g_0, g_1, g_2, g_3, ..., g_{G'-1}$ , where  $G' = \lfloor E_{\text{UCI}} / C_{\text{UCI}} \rfloor \cdot C_{\text{UCI}}$  with the values of  $E_{\text{UCI}}$  and  $C_{\text{UCI}}$  given in Subclause 6.3.1.4.1. Let G be the total number of coded bits for transmission and  $G = G' + \text{mod}(E_{\text{UCI}}, C_{\text{UCI}})$ . Set  $g_i = 0$  for i = G', G' + 1, ..., G - 1.

#### 6.3.1.6 Multiplexing of coded UCI bits to PUCCH

If CSI of two parts are transmitted on a PUCCH, the coded bits corresponding to UCI bit sequence  $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, ..., a_{A^{(1)}-1}^{(1)}$  is denoted by  $g_0^{(1)}, g_1^{(1)}, g_2^{(1)}, g_3^{(1)}, ..., g_{G^{(1)}-1}^{(1)}$  and the coded bits corresponding to UCI bit sequence  $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, ..., a_{A^{(2)}-1}^{(2)}$  is denoted by  $g_0^{(2)}, g_1^{(2)}, g_2^{(2)}, g_3^{(2)}, ..., g_{G^{(2)}-1}^{(2)}$ . The coded bit sequence  $g_0, g_1, g_2, g_3, ..., g_{G-1}$ , where  $G = G^{(1)} + G^{(2)}$ , is generated according to the following.

| PUCCH<br>duration<br>(symbols) | PUCCH DMRS symbol indices | Number of UCI symbol indices sets $N_{ m UCI}^{ m set}$ | 1st UCI symbol indices set $S_{ m UCI}^{(1)}$ | $2^{\rm nd}$ UCI symbol indices set $S_{ m UCI}^{(2)}$ | $3^{\rm rd}$ UCI symbol indices set $S_{ m UCI}^{(3)}$ |
|--------------------------------|---------------------------|---------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 4                              | {1}                       | 2                                                       | {0,2}                                         | {3}                                                    | -                                                      |
| 4                              | {0,2}                     | 1                                                       | {1,3}                                         | •                                                      | -                                                      |
| 5                              | {0, 3}                    | 1                                                       | {1, 2, 4}                                     | •                                                      | -                                                      |
| 6                              | {1, 4}                    | 1                                                       | {0, 2, 3, 5}                                  | •                                                      | -                                                      |
| 7                              | {1, 4}                    | 2                                                       | {0, 2, 3, 5}                                  | {6}                                                    | -                                                      |
| 8                              | {1, 5}                    | 2                                                       | {0, 2, 4, 6}                                  | {3, 7}                                                 | -                                                      |
| 9                              | {1, 6}                    | 2                                                       | {0, 2, 5, 7}                                  | {3, 4, 8}                                              | =                                                      |
| 10                             | {2, 7}                    | 2                                                       | {1, 3, 6, 8}                                  | {0, 4, 5, 9}                                           | -                                                      |
| 10                             | {1, 3, 6, 8}              | 1                                                       | {0,2,4,5,7,9}                                 | •                                                      | -                                                      |
| 11                             | {2, 7}                    | 3                                                       | {1,3,6,8}                                     | {0,4,5,9}                                              | {10}                                                   |
| 11                             | {1,3,6,9}                 | 1                                                       | {0,2,4,5,7,8,10}                              | •                                                      | -                                                      |
| 12                             | {2, 8}                    | 3                                                       | {1,3,7,9}                                     | {0,4,6,10}                                             | {5, 11}                                                |
| 12                             | {1,4,7,10}                | 1                                                       | {0,2,3,5,6,8,9,11}                            | -                                                      | -                                                      |
| 13                             | {2, 9}                    | 3                                                       | {1,3,8,10}                                    | {0,4,7,11}                                             | {5,6,12}                                               |
| 13                             | {1,4,7,11}                | 2                                                       | {0,2,3,5,6,8,10,12}                           | {9}                                                    | -                                                      |
| 14                             | {3, 10}                   | 3                                                       | {2,4,9,11}                                    | {1,5,8,12}                                             | {0,6,7,13}                                             |
| 14                             | {1,5,8,12}                | 2                                                       | {0,2,4,6,7,9,11,13}                           | {3, 10}                                                | -                                                      |

Table 6.3.1.6-1: PUCCH DMRS and UCI symbols

Denote  $s_l$  as UCI OFDM symbol index. Denote  $N_{\text{UCI}}^{(i)}$  as the number of elements in UCI symbol indices set  $S_{\text{UCI}}^{(i)}$  for  $i=1,...,N_{\text{UCI}}^{\text{set}}$ , where  $S_{\text{UCI}}^{(i)}$  and  $N_{\text{UCI}}^{\text{set}}$  are given by Table 6.3.1.6-1 according to the PUCCH duration and the PUCCH

DMRS configuration. Denote  $N_{\text{symb,UCI}}^{\text{PUCCH,}} = \sum_{i=1}^{N_{\text{UCI}}} N_{\text{UCI}}^{(i)}$  as the number of OFDM symbols carrying UCI in the PUCCH.

Denote  $Q_m$  as the modulation order of the PUCCH.

For PUCCH format 3, set  $N_{\rm UCI}^{\rm symbol} = 12 \cdot N_{\rm PRB}^{\rm PUCCH,3}$ , where  $N_{\rm PRB}^{\rm PUCCH,3}$  is the number of PRBs that is determined by the UE for PUCCH format 3 transmission according to Subclause 9.2 of [5, TS 38.213].

For PUCCH format 4, set  $N_{\rm UCI}^{\rm symbol} = 12/N_{\rm SF}^{\rm PUCCH,4}$ , where  $N_{\rm SF}^{\rm PUCCH,4}$  is the spreading factor for PUCCH format 4.

Find the smallest 
$$j > 0$$
 such that  $\left(\sum_{i=1}^{j} N_{\text{UCI}}^{(i)}\right) \cdot N_{\text{UCI}}^{\text{symbol}} \cdot Q_m \ge G^{(1)}$ .

Set  $n_1 = 0$ ;

Set  $n_2 = 0$ ;

Set 
$$\overline{N}_{\text{UCI}}^{\text{symbol}} = \left| \left( G^{(1)} - \left( \sum_{i=1}^{j-1} N_{\text{UCI}}^{(i)} \right) \cdot N_{\text{UCI}}^{\text{symbol}} \cdot Q_m \right) \middle| \left( N_{\text{UCI}}^{(j)} \cdot Q_m \right) \right|;$$

Set 
$$M = \text{mod}\left(\left(G^{(1)} - \left(\sum_{i=1}^{j-1} N_{\text{UCI}}^{(i)}\right) \cdot N_{\text{UCI}}^{\text{symbol}} \cdot Q_m\right) \middle/ Q_m, N_{\text{UCI}}^{(j)}\right);$$

for 
$$l = 0$$
 to  $N_{\text{symb,UCI}}^{\text{PUCCH,}} - 1$ 

if 
$$s_l \in \bigcup_{i=1}^{j-1} S_{\text{UCI}}^{(i)}$$

for 
$$k = 0$$
 to  $N_{\text{UCI}}^{\text{symbol}} - 1$ 

for 
$$v = 0$$
 to  $Q_m - 1$ 

$$\overline{g}_{l,k,\nu}=g_{n_{l}}^{(1)};$$

$$n_1 = n_1 + 1;$$

end for

end for

elseif  $s_l \in S_{\text{UCI}}^{(j)}$ 

if M > 0

$$\gamma = 1$$
;

else

$$\gamma = 0$$
;

end if

$$M = M - 1$$
;

for 
$$k = 0$$
 to  $\overline{N}_{\text{UCI}}^{\text{symbol}} + \gamma - 1$ 

for 
$$v = 0$$
 to  $Q_m - 1$ 

$$\overline{g}_{l,k,\nu}=g_{n_{l}}^{(1)};$$

$$n_1 = n_1 + 1;$$

end for

end for

for 
$$k = \overline{N}_{\text{UCI}}^{\text{symbol}} + \gamma$$
 to  $N_{\text{UCI}}^{\text{symbol}} - 1$ 

for 
$$v = 0$$
 to  $Q_m - 1$ 

$$\overline{g}_{l,k,v} = g_{n_2}^{(2)};$$

$$n_2 = n_2 + 1;$$

end for

end for

else

for 
$$k = 0$$
 to  $N_{\text{UCI}}^{\text{symbol}} - 1$ 

for 
$$v = 0$$
 to  $Q_m - 1$ 

$$\overline{g}_{l,k,v}=g_{n_2}^{(2)};$$

$$n_2 = n_2 + 1;$$

end for

end for

end if

end for

Set 
$$n=0$$
  
for  $l=0$  to  $N_{\text{symb,UCI}}^{\text{PUCCH,}}-1$   
for  $k=0$  to  $N_{\text{UCI}}^{\text{symbol}}-1$   
for  $v=0$  to  $Q_m-1$   
 $g_n=\overline{g}_{l,k,v};$   
 $n=n+1;$   
end for

end for

end for

## 6.3.2 Uplink control information on PUSCH

## 6.3.2.1 UCI bit sequence generation

#### 6.3.2.1.1 HARQ-ACK

If HARQ-ACK bits are transmitted on a PUSCH, the UCI bit sequence  $a_0, a_1, a_2, a_3, ..., a_{A-1}$  is determined as follows:

- If UCI is transmitted on PUSCH without UL-SCH and the UCI includes CSI part 1 without CSI part 2,
  - if there is no HARQ-ACK bit given by Subclause 9.1 of [5, TS 38.213], set  $a_0 = 0$ ,  $a_1 = 0$ , and A = 2;
  - if there is only one HARQ-ACK bit  $\widetilde{o}_0^{ACK}$  given by Subclause 9.1 of [5, TS 38.213], set  $a_0 = \widetilde{o}_0^{ACK}$ ,  $a_1 = 0$ , and A = 2;
- otherwise, ser  $a_i = \widetilde{o}_i^{ACK}$  for  $i = 0, 1, ..., O^{ACK} 1$  and  $A = O^{ACK}$ , where the HARQ-ACK bit sequence  $\widetilde{o}_0^{ACK}, \widetilde{o}_1^{ACK}, ..., \widetilde{o}_{O^{ACK}-1}^{ACK}$  is given by Subclause 9.1 of [5, TS 38.213].

#### 6.3.2.1.2 CSI

The bitwidth for PMI of *codebookType=typeI-SinglePanel* and *codebookType=typeI-MultiPanel* is specified in Subclause 6.3.2.1.1.

The bitwidth for RI/LI/CQI/CRI of *codebookType=typeI-SinglePanel* and *codebookType=typeI-MultiPanel* is specified in Subclause 6.3.2.1.1.

The bitwidth for PMI of codebookType=typeII is provided in Tables 6.3.2.1.2-1, where the values of  $(N_1, N_2)$ ,  $(O_1, O_2)$ , L,  $N_{PSK}$ ,  $M_1$ ,  $M_2$ , and  $K^{(2)}$  are given by Subclause 5.2.2.2.3 in [6, TS 38.214].

Table 6.3.2.1.2-1: PMI of codebookType= typell

|        | Infor                          | rmation fie                                            | elds $X_1$ f               | or widel    | band PMI    |             | Informa                       | tion fields $X_2$ pe | er subband Pl | MI          |
|--------|--------------------------------|--------------------------------------------------------|----------------------------|-------------|-------------|-------------|-------------------------------|----------------------|---------------|-------------|
|        | $i_{1,1}$                      | i <sub>1,2</sub>                                       | <i>i</i> <sub>1,3,1</sub>  | $i_{1,4,1}$ | $i_{1,3,2}$ | $i_{1,4,2}$ | $i_{2,1,1}$                   | $i_{2,1,2}$          | $i_{2,2,1}$   | $i_{2,2,2}$ |
| Rank=1 | $\lceil \log_2(O_1O_2) \rceil$ | $ \left\lceil \log_2 \binom{N_1 N_2}{L} \right\rceil $ | $\lceil \log_2(2L) \rceil$ | 3(2L-1)     | N/A         | N/A         | $(M_1-1)\cdot \log_2 N_{PSK}$ | N/A                  | N/A           | N/A         |

| SBAmp<br>off           |                                |                                                      |                            |         |                            |         |                                                                                                                                                                                                                                                                         |                                                                                                                                                                    |                          |                       |
|------------------------|--------------------------------|------------------------------------------------------|----------------------------|---------|----------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|
| Rank=2<br>SBAmp<br>off | $\lceil \log_2(O_1O_2) \rceil$ | $\left\lceil \log_2 \binom{N_1 N_2}{L} \right\rceil$ | $\lceil \log_2(2L) \rceil$ | 3(2L-1) | $\lceil \log_2(2L) \rceil$ | 3(2L-1) | $(M_1-1)\cdot \log_2 N_{\text{PSK}}$                                                                                                                                                                                                                                    | $(M_2 - 1) \cdot \log_2 N_{\text{PSK}}$                                                                                                                            | N/A                      | N/A                   |
| Rank=1<br>SBAmp<br>on  | $\lceil \log_2(O_1O_2) \rceil$ | $\left\lceil \log_2 \binom{N_1 N_2}{L} \right\rceil$ | $\lceil \log_2(2L) \rceil$ | 3(2L-1) | N/A                        | N/A     | $\begin{split} & \min \left( \boldsymbol{M}_{1}, \boldsymbol{K}^{(2)} \right) \cdot \log_{2} N_{\text{PSK}} \\ & - \log_{2} N_{\text{PSK}} \\ & + 2 \cdot \left( \boldsymbol{M}_{1} - \min \left( \boldsymbol{M}_{1}, \boldsymbol{K}^{(2)} \right) \right) \end{split}$ | N/A                                                                                                                                                                | $\min(M_1, K^{(2)}) - 1$ | N/A                   |
| Rank=2<br>SBAmp<br>on  | $\lceil \log_2(O_1O_2) \rceil$ | $\left\lceil \log_2 \binom{N_1 N_2}{L} \right\rceil$ | $\lceil \log_2(2L) \rceil$ | 3(2L-1) | $\lceil \log_2(2L) \rceil$ | 3(2L-1) | $\begin{split} & \min \left( \boldsymbol{M}_{1}, \boldsymbol{K}^{(2)} \right) \cdot \log_{2} N_{\text{PSK}} \\ & - \log_{2} N_{\text{PSK}} \\ & + 2 \cdot \left( \boldsymbol{M}_{1} - \min \left( \boldsymbol{M}_{1}, \boldsymbol{K}^{(2)} \right) \right) \end{split}$ | $\begin{aligned} & \min(M_2, K^{(2)}) \cdot \log_2 N_{\text{PSK}} \\ & - \log_2 N_{\text{PSK}} \\ & + 2 \cdot \left(M_2 - \min(M_2, K^{(2)})\right) \end{aligned}$ | $\min(M_1, K^{(2)}) - 1$ | $\min(M_2,K^{(2)})-1$ |

The bitwidth for PMI of codebookType = typeII-PortSelection is provided in Tables 6.3.2.1.2-2, where the values of  $P_{CSI-RS}$ , d, L,  $N_{PSK}$ ,  $M_1$ ,  $M_2$ , and  $K^{(2)}$  are given by Subclause 5.2.2.2.4 in [6, TS 38.214].

Table 6.3.2.1.2-2: PMI of codebookType= typeII-PortSelection

|                        | Informa                                                                          | tion fields                | $X_1$ for wi | deband PN                  | ΛI          | Informa                                                                                                                                                                      | tion fields $X_2$ pe                                                                                            | er subband P                                                 | MI                    |
|------------------------|----------------------------------------------------------------------------------|----------------------------|--------------|----------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------|
|                        | $i_{1,1}$                                                                        | $i_{1,3,1}$                | $i_{1,4,1}$  | $i_{1,3,2}$                | $i_{1,4,2}$ | $i_{2,1,1}$                                                                                                                                                                  | $i_{2,1,2}$                                                                                                     | $i_{2,2,1}$                                                  | $i_{2,2,2}$           |
| Rank=1<br>SBAmp<br>off | $\left\lceil \log_2 \left\lceil \frac{P_{CSI-RS}}{2d} \right\rceil \right\rceil$ | $\lceil \log_2(2L) \rceil$ | 3(2L-1)      | N/A                        | N/A         | $(M_1 - 1) \cdot \log_2 N_{\text{PSK}}$                                                                                                                                      | N/A                                                                                                             | N/A                                                          | N/A                   |
| Rank=2<br>SBAmp<br>off | $\left\lceil \log_2 \left\lceil \frac{P_{CSI-RS}}{2d} \right\rceil \right\rceil$ | $\lceil \log_2(2L) \rceil$ | 3(2L-1)      | $\lceil \log_2(2L) \rceil$ | 3(2L-1)     | $(M_1 - 1) \cdot \log_2 N_{\text{PSK}}$                                                                                                                                      | $(M_2 - 1) \cdot \log_2 N_{\text{PSK}}$                                                                         | N/A                                                          | N/A                   |
| Rank=1<br>SBAmp<br>on  | $\left\lceil \log_2 \left\lceil \frac{P_{CSI-RS}}{2d} \right\rceil \right\rceil$ | $\lceil \log_2(2L) \rceil$ | 3(2L-1)      | N/A                        | N/A         | $\begin{aligned} & \min(M_{1}, K^{(2)}) \cdot \log_{2} N_{\text{PSK}} \\ & - \log_{2} N_{\text{PSK}} \\ & + 2 \cdot \left(M_{1} - \min(M_{1}, K^{(2)})\right) \end{aligned}$ | N/A                                                                                                             | $\min\left(\boldsymbol{M}_{1},\boldsymbol{K}^{(2)}\right)-1$ | N/A                   |
| Rank=2<br>SBAmp<br>on  | $\left\lceil \log_2 \left\lceil \frac{P_{CSI-RS}}{2d} \right\rceil \right\rceil$ | $\lceil \log_2(2L) \rceil$ | 3(2L-1)      | $\lceil \log_2(2L) \rceil$ | 3(2L-1)     | $\begin{aligned} & \min(M_{1}, K^{(2)}) \cdot \log_{2} N_{\text{PSK}} \\ & - \log_{2} N_{\text{PSK}} \\ & + 2 \cdot \left(M_{1} - \min(M_{1}, K^{(2)})\right) \end{aligned}$ | $\min(M_{2}, K^{(2)}) \cdot \log_{2} N_{PSK} \\ - \log_{2} N_{PSK} \\ + 2 \cdot (M_{2} - \min(M_{2}, K^{(2)}))$ | $\min\left(M_{1},K^{(2)}\right)-1$                           | $\min(M_2,K^{(2)})-1$ |

For CSI on PUSCH, two UCI bit sequences are generated,  $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, ..., a_{A^{(1)}-1}^{(1)}$  and  $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, ..., a_{A^{(2)}-1}^{(2)}$ . The CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.2.1.2-6, are mapped to the UCI bit sequence  $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, ..., a_{A^{(1)}-1}^{(1)}$  starting with  $a_0^{(1)}$ . The CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.2.1.2-7, are mapped to the UCI bit sequence  $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, ..., a_{A^{(2)}-1}^{(2)}$  starting with  $a_0^{(2)}$ .

Table 6.3.2.1.2-3: Mapping order of CSI fields of one CSI report, CSI part 1

| CSI report number | CSI fields                                                                                    |
|-------------------|-----------------------------------------------------------------------------------------------|
|                   | CRI or SSBRI as in Tables 6.3.1.1.2-3/4/6, if reported                                        |
|                   | Rank Indicator as in Tables 6.3.1.1.2-3/4/5, if reported                                      |
|                   | Wideband CQI for the first TB as in Tables 6.3.1.1.2-3/4/5, if reported                       |
| CSI report #n     | Subband differential CQI for the first TB as in Tables 6.3.1.1.2-3/4/5, if reported           |
| CSI part 1        | Indicator of the number of non-zero wideband amplitude coefficients $M_l$ for layer $l$ as in |
|                   | Table 6.3.1.1.2-5, if reported                                                                |
|                   | RSRP as in Table 6.3.1.1.2-6, if reported                                                     |
|                   | Differential RSRP as in Table 6.3.1.1.2-6, if reported                                        |

Table 6.3.2.1.2-4: Mapping order of CSI fields of one CSI report, CSI part 2 wideband

| CSI report number           | CSI fields                                                                                                                                        |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Wideband CQI for the second TB as in Tables 6.3.1.1.2-3/4/5, if present and reported  Layer Indicator as in Tables 6.3.1.1.2-3/4/5, if reported   |
| CSI report #n<br>CSI part 2 | PMI wideband information fields $X_1$ , from left to right as in Tables 6.3.1.1.2-1/2 or 6.3.2.1.2-1/2, if reported                               |
| wideband                    | PMI wideband information fields $X_{2}$ , from left to right as in Tables 6.3.1.1.2-1/2 or 6.3.2.1.2-                                             |
|                             | 1/2, or codebook index for 2 antenna ports according to Subclause 5.2.2.2.1 in [6, TS38.214], if pmi-FormatIndicator= widebandPMI and if reported |

Table 6.3.2.1.2-5: Mapping order of CSI fields of one CSI report, CSI part 2 subband

|                | Subband differential CQI for the second TB of all even subbands with increasing order of subband number, as in Tables 6.3.1.1.2-3/4/5, if cqi-FormatIndicator=subbandCQI and if reported                                                                                                                                                                                       |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CSI report #n  | PMI subband information fields $X_2$ of all even subbands with increasing order of subband number, from left to right as in Tables 6.3.1.1.2-1/2 or 6.3.2.1.2-1/2, or codebook index for 2 antenna ports according to Subclause 5.2.2.2.1 in [6, TS38.214] of all even subbands with increasing order of subband number, if $pmi$ -FormatIndicator= subbandPMI and if reported |
| Part 2 subband | Subband differential CQI for the second TB of all odd subbands with increasing order of subband number, as in Tables 6.3.1.1.2-3/4/5, if cqi-FormatIndicator=subbandCQI and if reported                                                                                                                                                                                        |
|                | PMI subband information fields $X_{2}$ of all odd subbands with increasing order of subband                                                                                                                                                                                                                                                                                    |
|                | number, from left to right as in Tables 6.3.1.1.2-1/2 or 6.3.2.1.2-1/2, or codebook index for 2 antenna ports according to Subclause 5.2.2.2.1 in [6, TS38.214] of all odd subbands with increasing order of subband number, if <i>pmi-FormatIndicator=</i> subbandPMI and if reported                                                                                         |

Table 6.3.2.1.2-6: Mapping order of CSI reports to UCI bit sequence  $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, ..., a_{A^{(1)}-1}^{(1)}$ , with two-part CSI report(s)

| UCI bit sequence                             | CSI report number                                   |
|----------------------------------------------|-----------------------------------------------------|
| $a_0^{(1)}$                                  | CSI part 1 of CSI report #1 as in Table 6.3.2.1.2-3 |
| $a_1^{(1)} \ a_2^{(1)}$                      | CSI part 1 of CSI report #2 as in Table 6.3.2.1.2-3 |
| $a_{3}^{(1)} \ \vdots \ a_{A^{(1)}-1}^{(1)}$ |                                                     |
|                                              | CSI part 1 of CSI report #n as in Table 6.3.2.1.2-3 |

where CSI report #1, CSI report #2, ..., CSI report #n in Table 6.3.2.1.2-6 correspond to the CSI reports in increasing order of CSI report priority values according to Subclause 5.2.5 of [6, TS38.214].

Table 6.3.2.1.2-7: Mapping order of CSI reports to UCI bit sequence  $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, ..., a_{A^{(2)}-1}^{(2)}$ , with two-part CSI report(s)

| UCI bit sequence           | CSI report number                                                                                  |  |  |  |  |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                            | CSI report #1, CSI part 2 wideband, as in Table 6.3.2.1.2-4 if CSI part 2 exists for CSI report #1 |  |  |  |  |  |  |  |
|                            | CSI report #2, CSI part 2 wideband, as in Table 6.3.2.1.2-4 if CSI part 2 exists for CSI report #2 |  |  |  |  |  |  |  |
| $a_0^{(2)}$                | :                                                                                                  |  |  |  |  |  |  |  |
| $a_1^{(2)} \ a_2^{(2)}$    | CSI report #n, CSI part 2 wideband, as in Table 6.3.2.1.2-4 if CSI part 2 exists for CSI report #n |  |  |  |  |  |  |  |
| $a_3^{(2)}$ :              | CSI report #1, CSI part 2 subband, as in Table 6.3.2.1.2-5 if CSI part 2 exists for CSI report #1  |  |  |  |  |  |  |  |
| $a_{{}_{A^{(2)}-1}}^{(2)}$ | CSI report #2, CSI part 2 subband, as in Table 6.3.2.1.2-5 if CSI part 2 exists for CSI report #2  |  |  |  |  |  |  |  |
|                            |                                                                                                    |  |  |  |  |  |  |  |
|                            | CSI report #n, CSI part 2 subband, as in Table 6.3.2.1.2-5 if CSI part 2 exists for CSI report #n  |  |  |  |  |  |  |  |

where CSI report #1, CSI report #2, ..., CSI report #n in Table 6.3.2.1.2-7 correspond to the CSI reports in increasing order of CSI report priority values according to Subclause 5.2.5 of [6, TS38.214].

## 6.3.2.2 Code block segmentation and CRC attachment

Denote the bits of the payload by  $a_0, a_1, a_2, a_3, ..., a_{A-1}$ , where A is the payload size. The procedure in 6.3.2.2.1 applies for  $A \ge 12$  and the procedure in Subclause 6.3.2.2.2 applies for  $A \le 11$ .

### 6.3.2.2.1 UCI encoded by Polar code

Code block segmentation and CRC attachment is performed according to Subclause 6.3.1.2.1.

### 6.3.2.2.2 UCI encoded by channel coding of small block lengths

The procedure in Subclause 6.3.1.2.2 applies.

## 6.3.2.3 Channel coding of UCI

## 6.3.2.3.1 UCI encoded by Polar code

Channel coding is performed according to Subclause 6.3.1.3.1, except that the rate matching output sequence length  $E_{\rm r}$  is given in Subclause 6.3.2.4.1.

#### 6.3.2.3.2 UCI encoded by channel coding of small block lengths

Information bits are delivered to the channel coding block. They are denoted by  $c_0, c_1, c_2, c_3, ..., c_{K-1}$ , where K is the number of bits.

The information bits are encoded according to Subclause 5.3.3.

After encoding the bits are denoted by  $d_0, d_1, d_2, d_3, \dots, d_{N-1}$ , where N is the number of coded bits.

## 6.3.2.4 Rate matching

### 6.3.2.4.1 UCI encoded by Polar code

#### 6.3.2.4.1.1 HARQ-ACK

For HARQ-ACK transmission on PUSCH with UL-SCH, the number of coded modulation symbols per layer for HARQ-ACK transmission, denoted as  $Q'_{ACK}$ , is determined as follows:

$$Q_{\text{ACK}}' = \min \left\{ \begin{bmatrix} (O_{\text{ACK}} + L_{\text{ACK}}) \cdot \beta_{\text{offset}}^{\text{PUSCH}} \cdot \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - 1} M_{\text{sc}}^{\text{UCI}}(l) \\ \vdots \\ \sum_{r=0}^{C_{\text{UL,-SCH}} - 1} K_r \end{bmatrix}, \begin{bmatrix} \alpha \cdot \sum_{l=l_0}^{N_{\text{symb,all}}^{\text{PUSCH}} - 1} M_{\text{sc}}^{\text{UCI}}(l) \end{bmatrix} \right\}$$

where

- $O_{ACK}$  is the number of HARQ-ACK bits;
- if  $O_{\text{ACK}} \ge 360$ ,  $L_{\text{ACK}} = 11$ ; otherwise  $L_{\text{ACK}}$  is the number of CRC bits for HARQ-ACK determined according to Subclause 6.3.1.2.1;
- $\beta_{\text{offset}}^{\text{PUSCH}} = \beta_{\text{offset}}^{\text{HARQ-ACK}};$
- $C_{\text{UL-SCH}}$  is the number of code blocks for UL-SCH of the PUSCH transmission;
- if the DCI format scheduling the PUSCH transmission includes a CBGTI field indicating that the UE shall not transmit the r-th code block,  $K_r$ =0; otherwise,  $K_r$  is the r-th code block size for UL-SCH of the PUSCH transmission;
- $M_{\rm sc}^{\rm PUSCH}$  is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $M_{\rm sc}^{\rm PT-RS}(l)$  is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission;
- $M_{\rm sc}^{\rm UCI}(l)$  is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for  $l = 0, 1, 2, ..., N_{\rm symb, all}^{\rm PUSCH} 1$ , in the PUSCH transmission and  $N_{\rm symb, all}^{\rm PUSCH}$  is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
  - for any OFDM symbol that carries DMRS of the PUSCH,  $M_{sc}^{UCI}(l) = 0$ ;
  - for any OFDM symbol that does not carry DMRS of the PUSCH,  $M_{sc}^{UCI}(l) = M_{sc}^{PUSCH} M_{sc}^{PT-RS}(l)$ ;
- $\alpha$  is configured by higher layer parameter *scaling*;
- $l_0$  is the symbol index of the first OFDM symbol that does not carry DMRS of the PUSCH, after the first DMRS symbol(s), in the PUSCH transmission.

For HARQ-ACK transmission on PUSCH without UL-SCH, the number of coded modulation symbols per layer for HARQ-ACK transmission, denoted as  $Q'_{ACK}$ , is determined as follows:

$$Q_{\text{ACK}}' = \min \left\{ \left\lceil \frac{\left(O_{\text{ACK}} + L_{\text{ACK}}\right) \cdot \beta_{\text{offset}}^{\text{PUSCH}}}{R \cdot Q_{m}} \right\rceil, \left\lceil \alpha \cdot \sum_{l=l_{0}}^{N_{\text{symball}}^{\text{PUSCH}} - 1} M_{\text{sc}}^{\text{UCI}}\left(l\right) \right\rceil \right\}$$

where

- $O_{
  m ACK}$  is the number of HARQ-ACK bits;
- if  $O_{\text{ACK}} \ge 360$ ,  $L_{\text{ACK}} = 11$ ; otherwise  $L_{\text{ACK}}$  is the number of CRC bits for HARQ-ACK defined according to Subclause 6.3.1.2.1;;
- $\beta_{\text{offset}}^{\text{PUSCH}} = \beta_{\text{offset}}^{\text{HARQ-ACK}}$
- $M_{\rm sc}^{\rm PUSCH}$  is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $M_{\rm sc}^{\rm PT-RS}(l)$  is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission;
- $M_{\rm sc}^{\rm UCI}(l)$  is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for  $l = 0, 1, 2, ..., N_{\rm symb, all}^{\rm PUSCH} 1$ , in the PUSCH transmission and  $N_{\rm symb, all}^{\rm PUSCH}$  is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
  - for any OFDM symbol that carries DMRS of the PUSCH,  $M_{sc}^{UCI}(l) = 0$ ;
  - for any OFDM symbol that does not carry DMRS of the PUSCH,  $M_{sc}^{UCI}(l) = M_{sc}^{PUSCH} M_{sc}^{PT-RS}(l)$ ;
- $l_0$  is the symbol index of the first OFDM symbol that does not carry DMRS of the PUSCH, after the first DMRS symbol(s), in the PUSCH transmission;
- R is the code rate of the PUSCH, determined according to Subclause 6.1.4.1 of [6, TS38.214];
- $Q_m$  is the modulation order of the PUSCH;
- $\alpha$  is configured by higher layer parameter scaling.

The input bit sequence to rate matching is  $d_{r_0}, d_{r_1}, d_{r_2}, d_{r_3}, ..., d_{r(N_r-1)}$  where r is the code block number, and  $N_r$  is the number of coded bits in code block number r.

Rate matching is performed according to Subclause 5.4.1 by setting  $I_{BIL} = 1$  and the rate matching output sequence length to  $E_r = |E_{UCI}/C_{UCI}|$ , where

- $C_{\text{LICI}}$  is the number of code blocks for UCI determined according to Subclause 5.2.1;
- $N_L$  is the number of transmission layers of the PUSCH;
- $Q_m$  is the modulation order of the PUSCH;
- $E_{\text{UCL}} = N_L \cdot Q'_{\text{ACK}} \cdot Q_m$ .

The output bit sequence after rate matching is denoted as  $f_{r0}, f_{r1}, f_{r2}, ..., f_{r(E_r-1)}$  where  $E_r$  is the length of rate matching output sequence in code block number r.

#### 6.3.2.4.1.2 CSI part 1

For CSI part 1 transmission on PUSCH with UL-SCH, the number of coded modulation symbols per layer for CSI part 1 transmission, denoted as  $Q'_{\text{CSI-part1}}$ , is determined as follows:

$$Q_{\text{CSI-1}}' = \min \left\{ \begin{bmatrix} (O_{\text{CSI-1}} + L_{\text{CSI-1}}) \cdot \boldsymbol{\beta}_{\text{offset}}^{\text{PUSCH}} \cdot \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - 1} M_{\text{sc}}^{\text{UCI}}(l) \\ \vdots \\ \sum_{r=0}^{C_{\text{UL-SCH}} - 1} K_r \end{bmatrix}, \begin{bmatrix} \boldsymbol{\alpha} \cdot \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - 1} M_{\text{sc}}^{\text{UCI}}(l) \end{bmatrix} - Q_{\text{ACK}}' \right\}$$

where

- $O_{\text{CSI-1}}$  is the number of bits for CSI part 1;
- if  $O_{\text{CSI-1}} \ge 360$ ,  $L_{\text{CSI-1}} = 11$ ; otherwise  $L_{\text{CSI-1}}$  is the number of CRC bits for CSI part 1 determined according to Subclause 6.3.1.2.1;
- $\beta_{\text{offset}}^{\text{PUSCH}} = \beta_{\text{offset}}^{\text{CSI-part1}}$ ;
- $C_{\rm III-SCH}$  is the number of code blocks for UL-SCH of the PUSCH transmission;
- if the DCI format scheduling the PUSCH transmission includes a CBGTI field indicating that the UE shall not transmit the r-th code block,  $K_r$ =0; otherwise,  $K_r$  is the r-th code block size for UL-SCH of the PUSCH transmission;
- $M_{\rm sc}^{\rm PUSCH}$  is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $M_{\rm sc}^{\rm PT-RS}(l)$  is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission;
- $Q'_{\text{ACK}}$  is the number of coded modulation symbols per layer for HARQ-ACK transmitted on the PUSCH if number of HARQ-ACK information bits is more than 2, and  $Q'_{\text{ACK}} = \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}}-1} \overline{M}_{\text{sc, rvd}}^{\text{ACK}}(l)$  if the number of HARQ-ACK information bits is no more than 2 bits, where  $\overline{M}_{\text{sc, rvd}}^{\text{ACK}}(l)$  is the number of reserved resource elements for potential HARQ-ACK transmission in OFDM symbol l, for  $l=0,1,2,...,N_{\text{symb,all}}^{\text{PUSCH}}-1$ , in the PUSCH transmission, defined in Subclause 6.2.7;
- $M_{\rm sc}^{\rm UCI}(l)$  is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for  $l=0,1,2,...,N_{\rm symb,all}^{\rm PUSCH}-1$ , in the PUSCH transmission and  $N_{\rm symb,all}^{\rm PUSCH}$  is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
  - for any OFDM symbol that carries DMRS of the PUSCH,  $M_{sc}^{UCI}(l) = 0$ ;
  - for any OFDM symbol that does not carry DMRS of the PUSCH,  $M_{\rm sc}^{\rm UCI}(l) = M_{\rm sc}^{\rm PUSCH} M_{\rm sc}^{\rm PT-RS}(l)$ ;
- $\alpha$  is configured by higher layer parameter *scaling*.

For CSI part 1 transmission on PUSCH without UL-SCH, the number of coded modulation symbols per layer for CSI part 1 transmission, denoted as  $Q'_{\text{CSI-part1}}$ , is determined as follows:

if there is CSI part 2 to be transmitted on the PUSCH,

$$Q'_{\text{CSI-1}} = \min \left\{ \left[ \frac{\left( O_{\text{CSI-1}} + L_{\text{CSI-1}} \right) \cdot \beta_{\text{offset}}^{\text{PUSCH}}}{R \cdot Q_m} \right], \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - l} M_{\text{sc}}^{\text{UCI}}(l) - Q'_{\text{ACK}} \right\}$$

else

$$Q'_{\text{CSI-1}} = \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}}-1} M_{\text{sc}}^{\text{UCI}}(l) - Q'_{\text{ACK}}$$

end if

where

- $O_{\mathrm{CSI-1}}$  is the number of bits for CSI part 1;
- if  $O_{\text{CSI-1}} \ge 360$ ,  $L_{\text{CSI-1}} = 11$ ; otherwise  $L_{\text{CSI-1}}$  is the number of CRC bits for CSI part 1 determined according to Subclause 6.3.1.2.1;
- $\beta_{\text{offset}}^{\text{PUSCH}} = \beta_{\text{offset}}^{\text{CSI-part1}}$ ;
- $M_{\rm sc}^{\rm PUSCH}$  is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $M_{\rm sc}^{\rm PT-RS}(l)$  is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission;
- $Q'_{ACK}$  is the number of coded modulation symbols per layer for HARQ-ACK transmitted on the PUSCH if number of HARQ-ACK information bits is more than 2, and  $Q'_{ACK} = \sum_{l=0}^{N_{symb,all}^{PUSCH}-1} \overline{M}_{sc, \, rvd}^{ACK}(l)$  if the number of HARQ-ACK information bits is no more than 2 bits, where  $\overline{M}_{sc, \, rvd}^{ACK}(l)$  is the number of reserved resource elements for potential HARQ-ACK transmission in OFDM symbol l, for  $l=0,1,2,...,N_{symb,all}^{PUSCH}-1$ , in the PUSCH transmission, defined in Subclause 6.2.7;
- $M_{\rm sc}^{\rm UCI}(l)$  is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for  $l = 0, 1, 2, ..., N_{\rm symb, all}^{\rm PUSCH} 1$ , in the PUSCH transmission and  $N_{\rm symb, all}^{\rm PUSCH}$  is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
  - for any OFDM symbol that carries DMRS of the PUSCH,  $M_{ext}^{UCI}(l) = 0$ ;
  - for any OFDM symbol that does not carry DMRS of the PUSCH,  $M_{sc}^{UCI}(l) = M_{sc}^{PUSCH} M_{sc}^{PT-RS}(l)$ ;
- R is the code rate of the PUSCH, determined according to Subclause 6.1.4.1 of [6, TS38.214];
- $Q_m$  is the modulation order of the PUSCH.

The input bit sequence to rate matching is  $d_{r0}$ ,  $d_{r1}$ ,  $d_{r2}$ ,  $d_{r3}$ ,...,  $d_{r(N_r-1)}$  where r is the code block number, and  $N_r$  is the number of coded bits in code block number r.

Rate matching is performed according to Subclause 5.4.1 by setting  $I_{BIL} = 1$  and the rate matching output sequence length to  $E_r = \lfloor E_{\text{UCI}} / C_{\text{UCI}} \rfloor$ , where

- $C_{\text{UCI}}$  is the number of code blocks for UCI determined according to Subclause 5.2.1;
- $N_L$  is the number of transmission layers of the PUSCH;
- $Q_m$  is the modulation order of the PUSCH;
- $E_{\text{UCI}} = N_L \cdot Q'_{\text{CSLI}} \cdot Q_m.$

The output bit sequence after rate matching is denoted as  $f_{r_0}, f_{r_1}, f_{r_2}, ..., f_{r(E_r-1)}$  where  $E_r$  is the length of rate matching output sequence in code block number r.

#### 6.3.2.4.1.3 CSI part 2

For CSI part 2 transmission on PUSCH with UL-SCH, the number of coded modulation symbols per layer for CSI part 2 transmission, denoted as  $Q'_{CSI-part^2}$ , is determined as follows:

$$Q_{\text{CSI-2}}' = \min \left\{ \begin{bmatrix} (O_{\text{CSI-2}} + L_{\text{CSI-2}}) \cdot \beta_{\text{offset}}^{\text{PUSCH}} \cdot \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - l} M_{\text{sc}}^{\text{UCI}}(l) \\ \vdots \\ C_{\text{UL-SCH}} - l \\ K_r \end{bmatrix}, \begin{bmatrix} \alpha \cdot \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - l} M_{\text{sc}}^{\text{UCI}}(l) \end{bmatrix} - Q_{\text{ACK}}' - Q_{\text{CSI-1}}' \end{bmatrix} \right\}$$

where

- $O_{\text{CSI-2}}$  is the number of bits for CSI part 2;
- if  $O_{\text{CSI-2}} \ge 360$ ,  $L_{\text{CSI-2}} = 11$ ; otherwise  $L_{\text{CSI-2}}$  is the number of CRC bits for CSI part 2 determined according to Subclause 6.3.1.2.1:
- $-\beta_{\text{offset}}^{\text{PUSCH}} = \beta_{\text{offset}}^{\text{CSI-part2}};$
- $C_{\text{UL-SCH}}$  is the number of code blocks for UL-SCH of the PUSCH transmission;
- if the DCI format scheduling the PUSCH transmission includes a CBGTI field indicating that the UE shall not transmit the r-th code block,  $K_r$ =0; otherwise,  $K_r$  is the r-th code block size for UL-SCH of the PUSCH transmission;
- $M_{\rm sc}^{
  m PUSCH}$  is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $M_{\rm sc}^{
  m PT-RS}(l)$  is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission;
- $Q'_{ACK}$  is the number of coded modulation symbols per layer for HARQ-ACK transmitted on the PUSCH if number of HARQ-ACK information bits is more than 2, and  $Q'_{ACK} = 0$  if the number of HARQ-ACK information bits is 1 or 2 bits;
- $Q'_{\mathrm{CSI-1}}$  is the number of coded modulation symbols per layer for CSI part 1 transmitted on the PUSCH;
- $M_{\rm sc}^{\rm UCI}(l)$  is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for  $l=0,1,2,...,N_{\rm symb,all}^{\rm PUSCH}-1$ , in the PUSCH transmission and  $N_{\rm symb,all}^{\rm PUSCH}$  is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
  - for any OFDM symbol that carries DMRS of the PUSCH,  $M_{sc}^{UCI}(l) = 0$ ;
  - for any OFDM symbol that does not carry DMRS of the PUSCH,  $M_{sc}^{UCI}(l) = M_{sc}^{PUSCH} M_{sc}^{PT-RS}(l)$ .
- $\alpha$  is configured by higher layer parameter *scaling*.

For CSI part 2 transmission on PUSCH without UL-SCH, the number of coded modulation symbols per layer for CSI part 2 transmission, denoted as  $Q'_{\text{CSI-part2}}$ , is determined as follows:

$$Q'_{\text{CSI-2}} = \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - 1} M_{\text{sc}}^{\text{UCI}}(l) - Q'_{\text{ACK}} - Q'_{\text{CSI-1}}$$

where

- $M_{\rm sc}^{\rm PUSCH}$  is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $M_{\rm sc}^{\rm PT-RS}(l)$  is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission;
- $Q'_{ACK}$  is the number of coded modulation symbols per layer for HARQ-ACK transmitted on the PUSCH if number of HARQ-ACK information bits is more than 2, and  $Q'_{ACK} = 0$  if the number of HARQ-ACK information bits is 1 or 2 bits;
- $Q'_{\text{CSI-1}}$  is the number of coded modulation symbols per layer for CSI part 1 transmitted on the PUSCH;
- $M_{sc}^{UCI}(l)$  is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for  $l = 0, 1, 2, ..., N_{symb,all}^{PUSCH} 1$ , in the PUSCH transmission and  $N_{symb,all}^{PUSCH}$  is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
  - for any OFDM symbol that carries DMRS of the PUSCH,  $M_{sc}^{UCI}(l) = 0$ ;
  - for any OFDM symbol that does not carry DMRS of the PUSCH,  $M_{sc}^{UCI}(l) = M_{sc}^{PUSCH} M_{sc}^{PT-RS}(l)$ .

The input bit sequence to rate matching is  $d_{r_0}, d_{r_1}, d_{r_2}, d_{r_3}, ..., d_{r(N_r-1)}$  where r is the code block number, and  $N_r$  is the number of coded bits in code block number r.

Rate matching is performed according to Subclause 5.4.1 by setting  $I_{BIL} = 1$  and the rate matching output sequence length to  $E_r = \lfloor E_{\text{UCI}} / C_{\text{UCI}} \rfloor$ , where

- $C_{\text{LICI}}$  is the number of code blocks for UCI determined according to Subclause 5.2.1;
- $N_L$  is the number of transmission layers of the PUSCH;
- $Q_m$  is the modulation order of the PUSCH;
- $E_{\text{UCI}} = N_L \cdot Q'_{\text{CSI,2}} \cdot Q_m$ .

The output bit sequence after rate matching is denoted as  $f_{r_0}, f_{r_1}, f_{r_2}, ..., f_{r(E_r-1)}$  where  $E_r$  is the length of rate matching output sequence in code block number r.

#### 6.3.2.4.2 UCI encoded by channel coding of small block lengths

#### 6.3.2.4.2.1 HARQ-ACK

For HARQ-ACK transmission on PUSCH with UL-SCH, the number of coded modulation symbols per layer for HARQ-ACK transmission, denoted as  $Q'_{\rm ACK}$ , is determined according to Subclause 6.3.2.4.1.1, by setting the number of CRC bits L=0.

The input bit sequence to rate matching is  $d_0, d_1, d_2, ..., d_{N-1}$ .

Rate matching is performed according to Subclause 5.4.3, by setting the rate matching output sequence length  $E = N_L \cdot Q'_{ACK} \cdot Q_m$ , where

- $N_L$  is the number of transmission layers of the PUSCH;
- $Q_m$  is the modulation order of the PUSCH.

The output bit sequence after rate matching is denoted as  $f_0, f_1, f_2, ..., f_{E-1}$ .

### 6.3.2.4.2.2 CSI part 1

For CSI part 1 transmission on PUSCH with UL-SCH, the number of coded modulation symbols per layer for CSI part 1 transmission, denoted as  $Q'_{\text{CSI},1}$ , is determined according to Subclause 6.3.2.4.1.2, by setting the number of CRC bits L=0.

Rate matching is performed according to Subclause 5.4.3, by setting the rate matching output sequence length  $E = N_L \cdot Q'_{CSLI} \cdot Q_m$ , where

- $N_{I}$  is the number of transmission layers of the PUSCH;
- $Q_m$  is the modulation order of the PUSCH.

The output bit sequence after rate matching is denoted as  $f_0, f_1, f_2, ..., f_{E-1}$ .

### 6.3.2.4.2.3 CSI part 2

For CSI part 2 transmission on PUSCH with UL-SCH, the number of coded modulation symbols per layer for CSI part 2 transmission, denoted as  $Q'_{\text{CSI},2}$ , is determined according to Subclause 6.3.2.4.1.3, by setting the number of CRC bits L=0.

Rate matching is performed according to Subclause 5.4.3, by setting the rate matching output sequence length  $E = N_L \cdot Q'_{\text{CSI,2}} \cdot Q_m$ , where

- $N_L$  is the number of transmission layers of the PUSCH;
- $Q_m$  is the modulation order of the PUSCH.

The output bit sequence after rate matching is denoted as  $f_0, f_1, f_2, ..., f_{E-1}$ .

## 6.3.2.5 Code block concatenation

Code block concatenation is performed according to Subclause 6.3.1.5, except that the values of  $E_{\rm UCI}$  and  $C_{\rm UCI}$  given in Subclause 6.3.2.4.1.

## 6.3.2.6 Multiplexing of coded UCI bits to PUSCH

The coded UCI bits are multiplexed onto PUSCH according to the procedures in Subclause 6.2.7.

# 7 Downlink transport channels and control information

# 7.1 Broadcast channel

Data arrives to the coding unit in the form of a maximum of one transport block every 80ms. The following coding steps can be identified:

- Payload generation
- Scrambling
- Transport block CRC attachment
- Channel coding
- Rate matching

## 7.1.1 PBCH payload generation

Denote the bits in a transport block delivered to layer 1 by  $\overline{a}_0$ ,  $\overline{a}_1$ ,  $\overline{a}_2$ ,  $\overline{a}_3$ ,...,  $\overline{a}_{\overline{A}-1}$ , where  $\overline{A}$  is the payload size generated by higher layers. The lowest order information bit  $\overline{a}_0$  is mapped to the most significant bit of the transport block as defined in Subclause [6.1.4] of [8, TS 38.321].

Generate the following additional timing related PBCH payload bits  $\overline{a}_{\overline{A}}$ ,  $\overline{a}_{\overline{A}+1}$ ,  $\overline{a}_{\overline{A}+2}$ ,  $\overline{a}_{\overline{A}+3}$ ,...,  $\overline{a}_{\overline{A}+7}$ , where:

- $\overline{a}_{\overline{A}}$ ,  $\overline{a}_{\overline{A}+1}$ ,  $\overline{a}_{\overline{A}+2}$ ,  $\overline{a}_{\overline{A}+3}$  are the 4<sup>th</sup>, 3<sup>rd</sup>, 2<sup>nd</sup>, and 1<sup>st</sup> LSB of SFN, respectively;
- $\overline{a}_{\overline{A}+4}$  is the half frame bit  $\overline{a}_{HRF}$ ;
- $if L_{SSR} = 64$

 $\overline{a}_{\overline{A}+5}, \overline{a}_{\overline{A}+6}, \overline{a}_{\overline{A}+7}$  are the 6th, 5th, and 4th bits of SS/PBCH block index, respectively.

else

 $\overline{a}_{\overline{A}+5}$  is the MSB of  $k_{\rm SSB}$  as defined in Subclause 7.4.3.1 of [4, TS 38.211].

 $\overline{a}_{\overline{A}+6}, \overline{a}_{\overline{A}+7}$  are reserved.

end if

Let 
$$A = \overline{A} + 8$$
;  $j_{SFN} = 0$ ;  $j_{HRF} = 10$ ;  $j_{SSB} = 11$ ;  $j_{other} = 14$ ;

for i = 0 to A - 1

if  $\overline{a}_i$  is an SFN bit

$$a_{G(j_{SFN})} = \overline{a}_i$$
;

$$j_{\text{SFN}} = j_{\text{SFN}} + 1$$
;

elseif  $\overline{a}_i$  is the half radio frame bit

$$a_{G(i_{\text{HPE}})} = \overline{a}_i$$

elseif 
$$\overline{A} + 5 \le i \le \overline{A} + 7$$

$$a_{G(j_{SSR})} = \overline{a}_i;$$

$$j_{\rm SSB} = j_{\rm SSB} + 1;$$

else

$$a_{G(j_{\text{Other}})} = \overline{a}_i$$
;  $j_{\text{Other}} = j_{\text{Other}} + 1$ ;

end if

end for

where  $L_{SSB}$  is the number of candidate SS/PBCH blocks in a half frame according to Subclause 4.1 of [5, TS38.213], and the value of G(j) is given by Table 7.1.1-1.

Table 7.1.1-1: Value of PBCH payload interleaver pattern G(j)

| j | G(j) | j | G(j) | j  | G(j) | j  | G(j) | j  | G(j) | j  | G(j) | j  | G(j) | j  | G(j) |
|---|------|---|------|----|------|----|------|----|------|----|------|----|------|----|------|
| 0 | 16   | 4 | 8    | 8  | 24   | 12 | 3    | 16 | 9    | 20 | 14   | 24 | 21   | 28 | 27   |
| 1 | 23   | 5 | 30   | 9  | 7    | 13 | 2    | 17 | 11   | 21 | 15   | 25 | 22   | 29 | 28   |
| 2 | 18   | 6 | 10   | 10 | 0    | 14 | 1    | 18 | 12   | 22 | 19   | 26 | 25   | 30 | 29   |
| 3 | 17   | 7 | 6    | 11 | 5    | 15 | 4    | 19 | 13   | 23 | 20   | 27 | 26   | 31 | 31   |

# 7.1.2 Scrambling

For PBCH transmission in a frame, the bit sequence  $a_0, a_1, a_2, a_3, ..., a_{A-1}$  is scrambled into a bit sequence  $a'_0, a'_1, a'_2, a'_3, ..., a'_{A-1}$ , where  $a'_i = (a_i + s_i) \mod 2$  for i = 0,1,...,A-1 and  $s_0, s_1, s_2, s_3, ..., s_{A-1}$  is generated according to the following:

i = 0;

j = 0;

while i < A

if  $a_i$  corresponds to any one of the bits belonging to the SS/PBCH block index, the half frame index, and  $2^{nd}$  and  $3^{rd}$  least significant bits of the system frame number

$$s_i = 0 ;$$
 else 
$$s_i = c(j + vM) ;$$
 
$$j = j + 1 ;$$

end if

i = i + 1;

end while

The scrambling sequence c(i) is given by Subclause 5.2.1of [4, TS38.211] and initialized with  $c_{\rm init} = N_{ID}^{cell}$  at the start of each SFN satisfying  ${\rm mod}(SFN,8)=0$ ; M=A-3 for L=4 or L=8, and M=A-6 for L=64, where L is the number of candidate SS/PBCH blocks in a half frame according to Subclause 4.1 of [5, TS38.213]; and v is determined according to Table 7.1.2-1 using the  $3^{\rm rd}$  and  $2^{\rm nd}$  LSB of the SFN in which the PBCH is transmitted.

Table 7.1.2-1: Value of  $\nu$  for PBCH scrambling

| (3 <sup>rd</sup> LSB of SFN, 2 <sup>nd</sup> LSB of SFN) | Value of V |
|----------------------------------------------------------|------------|
| (0, 0)                                                   | 0          |
| (0, 1)                                                   | 1          |
| (1, 0)                                                   | 2          |
| (1, 1)                                                   | 3          |

# 7.1.3 Transport block CRC attachment

Error detection is provided on BCH transport blocks through a Cyclic Redundancy Check (CRC).

The entire transport block is used to calculate the CRC parity bits. The input bit sequence is denoted by  $a'_0, a'_1, a'_2, a'_3, ..., a'_{A-1}$ , and the parity bits by  $p_0, p_1, p_2, p_3, ..., p_{L-1}$ , where A is the payload size and L is the number of parity bits.

The parity bits are computed and attached to the BCH transport block according to Subclause 5.1 by setting L to 24 bits and using the generator polynomial  $g_{CRC24C}(D)$ , resulting in the sequence  $b_0, b_1, b_2, b_3, ..., b_{B-1}$ , where B = A + L.

The bit sequence  $b_0, b_1, b_2, b_3, ..., b_{B-1}$  is the input bit sequence  $c_0, c_1, c_2, c_3, ..., c_{K-1}$  to the channel encoder, where  $c_i = b_i$  for i = 0, 1, ..., B-1 and K = B.

## 7.1.4 Channel coding

Information bits are delivered to the channel coding block. They are denoted by  $c_0, c_1, c_2, c_3, ..., c_{K-1}$ , where K is the number of bits, and they are encoded via Polar coding according to Subclause 5.3.1, by setting  $n_{\max} = 9$ ,  $I_{IL} = 1$ ,  $n_{PC} = 0$ , and  $n_{PC}^{wm} = 0$ .

After encoding the bits are denoted by  $d_0, d_1, d_2, d_3, \dots, d_{N-1}$ , where N is the number of coded bits.

# 7.1.5 Rate matching

The input bit sequence to rate matching is  $d_0, d_1, d_2, ..., d_{N-1}$ .

The rate matching output sequence length E = 864.

Rate matching is performed according to Subclause 5.4.1 by setting  $I_{RII} = 0$ .

The output bit sequence after rate matching is denoted as  $f_0, f_1, f_2, ..., f_{E-1}$ .

# 7.2 Downlink shared channel and paging channel

# 7.2.1 Transport block CRC attachment

Error detection is provided on each transport block through a Cyclic Redundancy Check (CRC).

The entire transport block is used to calculate the CRC parity bits. Denote the bits in a transport block delivered to layer 1 by  $a_0, a_1, a_2, a_3, ..., a_{A-1}$ , and the parity bits by  $p_0, p_1, p_2, p_3, ..., p_{L-1}$ , where A is the payload size and L is the number of parity bits. The lowest order information bit  $a_0$  is mapped to the most significant bit of the transport block as defined in Subclause 6.1.1 of [TS38.321].

The parity bits are computed and attached to the DL-SCH transport block according to Subclause 5.1, by setting L to 24 bits and using the generator polynomial  $g_{\text{CRC24A}}(D)$  if A > 3824; and by setting L to 16 bits and using the generator polynomial  $g_{\text{CRC16}}(D)$  otherwise.

The bits after CRC attachment are denoted by  $b_0, b_1, b_2, b_3, ..., b_{B-1}$ , where B = A + L.

## 7.2.2 LDPC base graph selection

For initial transmission of a transport block with coding rate R indicated by the MCS index according to Subclause 5.1.3.1 in [6, TS 38.214] and subsequent re-transmission of the same transport block, each code block of the transport block is encoded with either LDPC base graph 1 or 2 according to the following:

- if  $A \le 292$ , or if  $A \le 3824$  and  $R \le 0.67$ , or if  $R \le 0.25$ , LDPC base graph 2 is used;
- otherwise, LDPC base graph 1 is used,

where A is the payload size in Subclause 7.2.1.

## 7.2.3 Code block segmentation and code block CRC attachment

The bits input to the code block segmentation are denoted by  $b_0, b_1, b_2, b_3, ..., b_{B-1}$  where B is the number of bits in the transport block (including CRC).

Code block segmentation and code block CRC attachment are performed according to Subclause 5.2.2.

The bits after code block segmentation are denoted by  $c_{r0}$ ,  $c_{r1}$ ,  $c_{r2}$ ,  $c_{r3}$ ,...,  $c_{r(K_r-1)}$ , where r is the code block number and  $K_r$  is the number of bits for code block number r according to Subclause 5.2.2.

## 7.2.4 Channel coding

Code blocks are delivered to the channel coding block. The bits in a code block are denoted by  $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K_r-1)}$ , where r is the code block number, and  $K_r$  is the number of bits in code block number r. The total number of code blocks is denoted by C and each code block is individually LDPC encoded according to Subclause 5.3.2.

After encoding the bits are denoted by  $d_{r_0}, d_{r_1}, d_{r_2}, d_{r_3}, ..., d_{r(N_r-1)}$ , where the values of  $N_r$  is given in Subclause 5.3.2.

# 7.2.5 Rate matching

Coded bits for each code block, denoted as  $d_{r_0}, d_{r_1}, d_{r_2}, d_{r_3}, ..., d_{r(N_r-1)}$ , are delivered to the rate match block, where r is the code block number, and  $N_r$  is the number of encoded bits in code block number r. The total number of code blocks is denoted by C and each code block is individually rate matched according to Subclause 5.4.2 by setting  $I_{LBRM} = 1$ .

After rate matching, the bits are denoted by  $f_{r_0}, f_{r_1}, f_{r_2}, f_{r_3}, ..., f_{r(E_r-1)}$ , where  $E_r$  is the number of rate matched bits for code block number r.

## 7.2.6 Code block concatenation

The input bit sequence for the code block concatenation block are the sequences  $f_{r0}, f_{r1}, f_{r2}, f_{r3}, ..., f_{r(E_r-1)}$ , for r = 0, ..., C-1 and where  $E_r$  is the number of rate matched bits for the r-th code block.

Code block concatenation is performed according to Subclause 5.5.

The bits after code block concatenation are denoted by  $g_0, g_1, g_2, g_3, ..., g_{G-1}$ , where G is the total number of coded bits for transmission.

## 7.3 Downlink control information

A DCI transports downlink control information for one or more cells with one RNTI.

The following coding steps can be identified:

- Information element multiplexing

- CRC attachment
- Channel coding
- Rate matching

#### 7.3.1 DCI formats

The DCI formats defined in table 7.3.1-1 are supported.

Table 7.3.1-1: DCI formats

| DCI format | Usage                                                                                                                |
|------------|----------------------------------------------------------------------------------------------------------------------|
| 0_0        | Scheduling of PUSCH in one cell                                                                                      |
| 0_1        | Scheduling of PUSCH in one cell                                                                                      |
| 1_0        | Scheduling of PDSCH in one cell                                                                                      |
| 1_1        | Scheduling of PDSCH in one cell                                                                                      |
| 2_0        | Notifying a group of UEs of the slot format                                                                          |
| 2_1        | Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE |
| 2_2        | Transmission of TPC commands for PUCCH and PUSCH                                                                     |
| 2_3        | Transmission of a group of TPC commands for SRS transmissions by one or more UEs                                     |

The fields defined in the DCI formats below are mapped to the information bits  $a_0$  to  $a_{A-1}$  as follows.

Each field is mapped in the order in which it appears in the description, including the zero-padding bit(s), if any, with the first field mapped to the lowest order information bit  $a_0$  and each successive field mapped to higher order information bits. The most significant bit of each field is mapped to the lowest order information bit for that field, e.g. the most significant bit of the first field is mapped to  $a_0$ .

If the number of information bits in a DCI format is less than 12 bits, zeros shall be appended to the DCI format until the payload size equals 12.

#### 7.3.1.1 DCI formats for scheduling of PUSCH

#### 7.3.1.1.1 Format 0\_0

DCI format 0\_0 is used for the scheduling of PUSCH in one cell.

The following information is transmitted by means of the DCI format 0\_0 with CRC scrambled by C-RNTI or CS-RNTI or MCS-C-RNTI:

- Identifier for DCI formats 1 bit
  - The value of this bit field is always set to 0, indicating an UL DCI format
- Frequency domain resource assignment  $\left\lceil \log_2(N_{\mathrm{RB}}^{\mathrm{UL,BWP}}(N_{\mathrm{RB}}^{\mathrm{UL,BWP}}+1)/2) \right\rceil$  bits where
  - $N_{RB}^{UL,BWP}$  is the size of the active UL bandwidth part in case DCI format 0\_0 is monitored in the UE specific search space and satisfying
    - the total number of different DCI sizes configured to monitor is no more than 4 for the cell, and
    - the total number of different DCI sizes with C-RNTI configured to monitor is no more than 3 for the cell
  - otherwise,  $N_{RB}^{UL,BWP}$  is the size of the initial UL bandwidth part.
  - For PUSCH hopping with resource allocation type 1:

- $N_{\text{UL\_hop}}$  MSB bits are used to indicate the frequency offset according to Subclause 6.3 of [6, TS 38.214], where  $N_{\text{UL\_hop}} = 1$  if the higher layer parameter *frequencyHoppingOffsetLists* contains two offset values and  $N_{\text{UL\_hop}} = 2$  if the higher layer parameter *frequencyHoppingOffsetLists* contains four offset values
- $\left[\log_2(N_{\text{RB}}^{\text{UL,BWP}}(N_{\text{RB}}^{\text{UL,BWP}}+1)/2)\right] N_{\text{UL\_hop}}$  bits provides the frequency domain resource allocation according to Subclause 6.1.2.2.2 of [6, TS 38.214]
- For non-PUSCH hopping with resource allocation type 1:
  - $\left[\log_2(N_{\text{RB}}^{\text{UL,BWP}}(N_{\text{RB}}^{\text{UL,BWP}}+1)/2)\right]$  bits provides the frequency domain resource allocation according to Subclause 6.1.2.2.2 of [6, TS 38.214]
- Time domain resource assignment 4 bits as defined in Subclause 6.1.2.1 of [6, TS 38.214]
- Frequency hopping flag 1 bit according to Table 7.3.1.1.1-3, as defined in Subclause 6.3 of [6, TS 38.214]
- Modulation and coding scheme 5 bits as defined in Subclause 6.1.4.1 of [6, TS 38.214]
- New data indicator 1 bit
- Redundancy version 2 bits as defined in Table 7.3.1.1.1-2
- HARQ process number 4 bits
- TPC command for scheduled PUSCH 2 bits as defined in Subclause 7.1.1 of [5, TS 38.213]
- Padding bits, if required.
- UL/SUL indicator 1 bit for UEs configured with SUL in the cell as defined in Table 7.3.1.1.1-1 and the number of bits for DCI format 1\_0 before padding is larger than the number of bits for DCI format 0\_0 before padding; 0 bit otherwise. The UL/SUL indicator, if present, locates in the last bit position of DCI format 0\_0, after the padding bit(s).
  - If the UL/SUL indicator is present in DCI format 0\_0 and the higher layer parameter *pusch-Config* is not configured on both UL and SUL the UE ignores the UL/SUL indicator field in DCI format 0\_0, and the corresponding PUSCH scheduled by the DCI format 0\_0 is for the UL or SUL for which high layer parameter *pucch-Config* is configured;
  - If the UL/SUL indicator is not present in DCI format 0\_0, the corresponding PUSCH scheduled by the DCI format 0\_0 is for the UL or SUL for which high layer parameter *pucch-Config* is configured.

The following information is transmitted by means of the DCI format 0\_0 with CRC scrambled by TC-RNTI:

- Identifier for DCI formats 1 bit
  - The value of this bit field is always set to 0, indicating an UL DCI format
- Frequency domain resource assignment  $-\lceil \log_2(N_{RB}^{UL,BWP}(N_{RB}^{UL,BWP}+1)/2) \rceil$  bits where
  - $N_{RR}^{UL,BWP}$  is the size of the initial UL bandwidth part.
  - For PUSCH hopping with resource allocation type 1:
    - $N_{\rm UL\_hop}$  MSB bits are used to indicate the frequency offset according to Subclause 6.3 of [6, TS 38.214], where  $N_{\rm UL\_hop} = 1$  if  $N_{\rm RB}^{\rm UL,BWP} < 50$  and  $N_{\rm UL\_hop} = 2$  otherwise
    - $\left[\log_2(N_{\text{RB}}^{\text{UL,BWP}}(N_{\text{RB}}^{\text{UL,BWP}}+1)/2)\right] N_{\text{UL\_hop}}$  bits provides the frequency domain resource allocation according to Subclause 6.1.2.2.2 of [6, TS 38.214]
  - For non-PUSCH hopping with resource allocation type 1:

- $\left[\log_2(N_{\text{RB}}^{\text{UL,BWP}}(N_{\text{RB}}^{\text{UL,BWP}}+1)/2)\right]$  bits provides the frequency domain resource allocation according to Subclause 6.1.2.2.2 of [6, TS 38.214]
- Time domain resource assignment 4 bits as defined in Subclause 6.1.2.1 of [6, TS 38.214]
- Frequency hopping flag 1 bit according to Table 7.3.1.1.1-3, as defined in Subclause 6.3 of [6, TS 38.214]
- Modulation and coding scheme 5 bits as defined in Subclause 6.1.4.1 of [6, TS 38.214]
- New data indicator 1 bit, reserved
- Redundancy version 2 bits as defined in Table 7.3.1.1.1-2
- HARQ process number 4 bits, reserved
- TPC command for scheduled PUSCH 2 bits as defined in Subclause 7.1.1 of [5, TS 38.213]
- Padding bits, if required.
- UL/SUL indicator 1 bit if the cell has two ULs and the number of bits for DCI format 1\_0 before padding is larger than the number of bits for DCI format 0\_0 before padding; 0 bit otherwise. The UL/SUL indicator, if present, locates in the last bit position of DCI format 0\_0, after the padding bit(s).
  - If 1 bit, reserved, and the corresponding PUSCH is always on the same UL carrier as the previous transmission of the same TB

If DCI format 0\_0 is monitored in common search space and if the number of information bits in the DCI format 0\_0 prior to padding is less than the payload size of the DCI format 1\_0 monitored in common search space for scheduling the same serving cell, zeros shall be appended to the DCI format 0\_0 until the payload size equals that of the DCI format 1\_0.

If DCI format 0\_0 is monitored in common search space and if the number of information bits in the DCI format 0\_0 prior to padding is larger than the payload size of the DCI format 1\_0 monitored in common search space for scheduling the same serving cell, the bitwidth of the frequency domain resource allocation field in the DCI format 0\_0 is reduced by truncating the first few most significant bits such that the size of DCI format 0\_0 equals to the size of the DCI format 1\_0.

If DCI format 0\_0 is monitored in UE specific search space but does not satisfy at least one of the following

- the total number of different DCI sizes configured to monitor is no more than 4 for the cell, and
- the total number of different DCI sizes with C-RNTI configured to monitor is no more than 3 for the cell

and if the number of information bits in the DCI format 0\_0 prior to padding is less than the payload size of the DCI format 1\_0 monitored in common search space for scheduling the same serving cell, zeros shall be appended to the DCI format 0\_0 until the payload size equals that of the DCI format 1\_0.

If DCI format 0\_0 is monitored in UE specific search space but does not satisfy at least one of the following

- the total number of different DCI sizes configured to monitor is no more than 4 for the cell, and
- the total number of different DCI sizes with C-RNTI configured to monitor is no more than 3 for the cell

and if the number of information bits in the DCI format 0\_0 prior to padding is larger than the payload size of the DCI format 1\_0 monitored in common search space for scheduling the same serving cell, the bitwidth of the frequency domain resource allocation field in the DCI format 0\_0 is reduced by truncating the first few most significant bits such that the size of DCI format 0\_0 equals to the size of the DCI format 1\_0.

If DCI format 0\_0 is monitored in UE specific search space and satisfies both of the following

- the total number of different DCI sizes configured to monitor is no more than 4 for the cell, and
- the total number of different DCI sizes with C-RNTI configured to monitor is no more than 3 for the cell

and if the number of information bits in the DCI format 0\_0 prior to padding is less than the payload size of the DCI format 1\_0 monitored in UE specific search space for scheduling the same serving cell, zeros shall be appended to the DCI format 0\_0 until the payload size equals that of the DCI format 1\_0.

Table 7.3.1.1.1-1: UL/SUL indicator

| Value of UL/SUL indicator | Uplink                       |
|---------------------------|------------------------------|
| 0                         | The non-supplementary uplink |
| 1                         | The supplementary uplink     |

Table 7.3.1.1.1-2: Redundancy version

| Value of the Redundancy version field | Value of $\mathit{rv}_{\mathit{id}}$ to be applied |
|---------------------------------------|----------------------------------------------------|
| 00                                    | 0                                                  |
| 01                                    | 1                                                  |
| 10                                    | 2                                                  |
| 11                                    | 3                                                  |

Table 7.3.1.1.1-3: Frequency hopping indication

| Bit field mapped to index | PUSCH frequency hopping |
|---------------------------|-------------------------|
| 0                         | Disabled                |
| 1                         | Enabled                 |

#### 7.3.1.1.2 Format 0 1

DCI format 0\_1 is used for the scheduling of PUSCH in one cell.

The following information is transmitted by means of the DCI format 0\_1 with CRC scrambled by C-RNTI or CS-RNTI or SP-CSI-RNTI or MCS-C-RNTI:

- Identifier for DCI formats 1 bit
  - The value of this bit field is always set to 0, indicating an UL DCI format
- Carrier indicator 0 or 3 bits, as defined in Subclause 10.1 of [5, TS38.213].
- UL/SUL indicator 0 bit for UEs not configured with SUL in the cell or UEs configured with SUL in the cell but only PUCCH carrier in the cell is configured for PUSCH transmission; 1 bit for UEs configured with SUL in the cell as defined in Table 7.3.1.1.1-1.
- Bandwidth part indicator 0, 1 or 2 bits as determined by the number of UL BWPs  $n_{\text{BWP,RRC}}$  configured by higher layers, excluding the initial UL bandwidth part. The bitwidth for this field is determined as  $\lceil \log_2(n_{\text{BWP}}) \rceil$  bits, where
  - $n_{\text{BWP}} = n_{\text{BWP,RRC}} + 1$  if  $n_{\text{BWP,RRC}} \le 3$ , in which case the bandwidth part indicator is equivalent to the higher layer parameter BWP-Id;
  - otherwise  $n_{\text{BWP}} = n_{\text{BWP,RRC}}$ , in which case the bandwidth part indicator is defined in Table 7.3.1.1.2-1;

If a UE does not support active BWP change via DCI, the UE ignores this bit field.

- Frequency domain resource assignment – number of bits determined by the following, where  $N_{RB}^{UL,BWP}$  is the size of the active UL bandwidth part:

- $N_{\text{RBG}}$  bits if only resource allocation type 0 is configured, where  $N_{\text{RBG}}$  is defined in Subclause 6.1.2.2.1 of [6, TS 38.214],
- $\left[\log_2(N_{\text{RB}}^{\text{UL,BWP}}(N_{\text{RB}}^{\text{UL,BWP}}+1)/2)\right]$  bits if only resource allocation type 1 is configured, or  $\max\left(\left[\log_2(N_{\text{RB}}^{\text{UL,BWP}}(N_{\text{RB}}^{\text{UL,BWP}}+1)/2)\right], N_{\text{RBG}}\right)+1$  bits if both resource allocation type 0 and 1 are configured.
- If both resource allocation type 0 and 1 are configured, the MSB bit is used to indicate resource allocation type 0 or resource allocation type 1, where the bit value of 0 indicates resource allocation type 0 and the bit value of 1 indicates resource allocation type 1.
- For resource allocation type 0, the N<sub>RBG</sub> LSBs provide the resource allocation as defined in Subclause 6.1.2.2.1 of [6, TS 38.214].
- For resource allocation type 1, the  $\left\lceil \log_2(N_{\text{RB}}^{\text{UL,BWP}}(N_{\text{RB}}^{\text{UL,BWP}}+1)/2) \right\rceil$  LSBs provide the resource allocation as follows:
  - For PUSCH hopping with resource allocation type 1:
    - $N_{\rm UL\_hop}$  MSB bits are used to indicate the frequency offset according to Subclause 6.3 of [6, TS 38.214], where  $N_{\rm UL\_hop} = 1$  if the higher layer parameter frequencyHoppingOffsetLists contains two offset values and  $N_{\rm UL\_hop} = 2$  if the higher layer parameter frequencyHoppingOffsetLists contains four offset values
    - $\left[ \log_2(N_{\text{RB}}^{\text{UL,BWP}}(N_{\text{RB}}^{\text{UL,BWP}} + 1)/2) \right] N_{\text{UL\_hop}} \text{ bits provides the frequency domain resource allocation according to Subclause } 6.1.2.2.2 \text{ of } [6, \text{TS } 38.214]$
  - For non-PUSCH hopping with resource allocation type 1:
    - $\left[\log_2(N_{\text{RB}}^{\text{UL,BWP}}(N_{\text{RB}}^{\text{UL,BWP}}+1)/2)\right]$  bits provides the frequency domain resource allocation according to Subclause 6.1.2.2.2 of [6, TS 38.214]

If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part and if both resource allocation type 0 and 1 are configured for the indicated bandwidth part, the UE assumes resource allocation type 0 for the indicated bandwidth part if the bitwidth of the "Frequency domain resource assignment" field of the active bandwidth part is smaller than the bitwidth of the "Frequency domain resource assignment" field of the indicated bandwidth part.

- Time domain resource assignment 0, 1, 2, 3, or 4 bits as defined in Subclause 6.1.2.1 of [6, TS38.214]. The bitwidth for this field is determined as  $\lceil \log_2(I) \rceil$  bits, where I is the number of entries in the higher layer parameter *pusch-TimeDomainAllocationList*.
- Frequency hopping flag 0 or 1 bit:
  - 0 bit if only resource allocation type 0 is configured or if the higher layer parameter *frequencyHopping* is not configured;
  - 1 bit according to Table 7.3.1.1.1-3 otherwise, only applicable to resource allocation type 1, as defined in Subclause 6.3 of [6, TS 38.214].
- Modulation and coding scheme 5 bits as defined in Subclause 6.1.4.1 of [6, TS 38.214]
- New data indicator 1 bit
- Redundancy version 2 bits as defined in Table 7.3.1.1.1-2
- HARQ process number 4 bits
- $1^{st}$  downlink assignment index 1 or 2 bits:
  - 1 bit for semi-static HARQ-ACK codebook;

- 2 bits for dynamic HARQ-ACK codebook.
- $2^{nd}$  downlink assignment index 0 or 2 bits:
  - 2 bits for dynamic HARQ-ACK codebook with two HARQ-ACK sub-codebooks;
  - 0 bit otherwise.
- TPC command for scheduled PUSCH 2 bits as defined in Subclause 7.1.1 of [5, TS38.213]
- SRS resource indicator  $-\left[\log_2\left(\sum_{k=1}^{\min\{L_{\max},N_{\text{SRS}}\}}\binom{N_{\text{SRS}}}{k}\right)\right]$  or  $\left[\log_2(N_{\text{SRS}})\right]$  bits, where  $N_{\text{SRS}}$  is the number of

configured SRS resources in the SRS resource set associated with the higher layer parameter usage of value 'codeBook' or 'nonCodeBook', and  $L^{PUSCH}_{max}$  is the maximum number of supported layers for the PUSCH.

$$- \left[ \log_2 \left( \sum_{k=1}^{\min \left\{ I_{\max}^{\text{PUSCH}}, N_{\text{SRS}} \right\}} \binom{N_{\text{SRS}}}{k} \right) \right] \text{ bits according to Tables 7.3.1.1.2-28/29/30/31 if the higher layer parameter}$$

txConfig = nonCodebook, where  $N_{SRS}$  is the number of configured SRS resources in the SRS resource set associated with the higher layer parameter usage of value 'nonCodeBook';

- $\lceil \log_2(N_{SRS}) \rceil$  bits according to Tables 7.3.1.1.2-32 if the higher layer parameter txConfig = codebook, where  $N_{SRS}$  is the number of configured SRS resources in the SRS resource set associated with the higher layer parameter usage of value 'codeBook'.
- Precoding information and number of layers number of bits determined by the following:
  - 0 bits if the higher layer parameter *txConfig* = *nonCodeBook*;
  - 0 bits for 1 antenna port and if the higher layer parameter txConfig = codebook;
  - 4, 5, or 6 bits according to Table 7.3.1.1.2-2 for 4 antenna ports, if *txConfig = codebook*, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameters *maxRank*, and *codebookSubset*;
  - 2, 4, or 5 bits according to Table 7.3.1.1.2-3 for 4 antenna ports, if *txConfig = codebook*, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameters *maxRank*, and *codebookSubset*;
  - 2 or 4 bits according to Table 7.3.1.1.2-4 for 2 antenna ports, if *txConfig* = *codebook*, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameters *maxRank* and *codebookSubset*;
  - 1 or 3 bits according to Table 7.3.1.1.2-5 for 2 antenna ports, if *txConfig* = *codebook*, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameters *maxRank* and *codebookSubset*.
- Antenna ports number of bits determined by the following
  - 2 bits as defined by Tables 7.3.1.1.2-6, if transform precoder is enabled, dmrs-Type=1, and maxLength=1;
  - 4 bits as defined by Tables 7.3.1.1.2-7, if transform precoder is enabled, dmrs-Type=1, and maxLength=2;
  - 3 bits as defined by Tables 7.3.1.1.2-8/9/10/11, if transform precoder is disabled, *dmrs-Type*=1, and *maxLength*=1, and the value of rank is determined according to the SRS resource indicator field if the higher layer parameter *txConfig* = *nonCodebook* and according to the Precoding information and number of layers field if the higher layer parameter *txConfig* = *codebook*;
  - 4 bits as defined by Tables 7.3.1.1.2-12/13/14/15, if transform precoder is disabled, *dmrs-Type*=1, and *maxLength*=2, and the value of rank is determined according to the SRS resource indicator field if the higher layer parameter *txConfig* = *nonCodebook* and according to the Precoding information and number of layers field if the higher layer parameter *txConfig* = *codebook*;

- 4 bits as defined by Tables 7.3.1.1.2-16/17/18/19, if transform precoder is disabled, *dmrs-Type*=2, and *maxLength*=1, and the value of rank is determined according to the SRS resource indicator field if the higher layer parameter *txConfig* = *nonCodebook* and according to the Precoding information and number of layers field if the higher layer parameter *txConfig* = *codebook*;
- 5 bits as defined by Tables 7.3.1.1.2-20/21/22/23, if transform precoder is disabled, *dmrs-Type*=2, and *maxLength*=2, and the value of rank is determined according to the SRS resource indicator field if the higher layer parameter *txConfig* = *nonCodebook* and according to the Precoding information and number of layers field if the higher layer parameter *txConfig* = *codebook*.

where the number of CDM groups without data of values 1, 2, and 3 in Tables 7.3.1.1.2-6 to 7.3.1.1.2-23 refers to CDM groups  $\{0\}$ ,  $\{0,1\}$ , and  $\{0,1,2\}$  respectively.

If a UE is configured with both dmrs-UplinkForPUSCH-MappingTypeA and dmrs-UplinkForPUSCH-MappingTypeB, the bitwidth of this field equals  $\max \left\{ x_A, x_B \right\}$ , where  $x_A$  is the "Antenna ports" bitwidth derived according to dmrs-UplinkForPUSCH-MappingTypeA and  $x_B$  is the "Antenna ports" bitwidth derived according to dmrs-UplinkForPUSCH-MappingTypeB. A number of  $\left| x_A - x_B \right|$  zeros are padded in the MSB of this field, if the mapping type of the PUSCH corresponds to the smaller value of  $x_A$  and  $x_B$ .

- SRS request 2 bits as defined by Table 7.3.1.1.2-24 for UEs not configured with SUL in the cell; 3 bits for UEs configured SUL in the cell where the first bit is the non-SUL/SUL indicator as defined in Table 7.3.1.1.1-1 and the second and third bits are defined by Table 7.3.1.1.2-24. This bit field may also indicate the associated CSI-RS according to Subclause 6.1.1.2 of [6, TS 38.214].
- CSI request 0, 1, 2, 3, 4, 5, or 6 bits determined by higher layer parameter reportTriggerSize.
- CBG transmission information (CBGTI) 0, 2, 4, 6, or 8 bits determined by higher layer parameter *maxCodeBlockGroupsPerTransportBlock* for PUSCH.
- PTRS-DMRS association number of bits determined as follows
  - 0 bit if *PTRS-UplinkConfig* is not configured and transform precoder is disabled, or if transform precoder is enabled, or if *maxRank=1*;
  - 2 bits otherwise, where Table 7.3.1.1.2-25 and 7.3.1.1.2-26 are used to indicate the association between PTRS port(s) and DMRS port(s) for transmission of one PT-RS port and two PT-RS ports respectively, and the DMRS ports are indicated by the Antenna ports field.

If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part and the "PTRS-DMRS association" field is present for the indicated bandwidth part but not present for the active bandwidth part, the UE assumes the "PTRS-DMRS association" field is not present for the indicated bandwidth part.

- beta\_offset indicator 0 if the higher layer parameter *betaOffsets = semiStatic*; otherwise 2 bits as defined by Table 9.3-3 in [5, TS 38.213].
- DMRS sequence initialization 0 bit if the higher layer parameter transform precoder is enabled; 1 bit if the higher layer parameter transform precoder is disabled.
- UL-SCH indicator 1 bit. A value of "1" indicates UL-SCH shall be transmitted on the PUSCH and a value of "0" indicates UL-SCH shall not be transmitted on the PUSCH. A UE is not expected to received a DCI format 0\_1 with UL-SCH indicator of "0" and CSI request of all zero(s).

For a UE configured with SUL in a cell, if PUSCH is configured to be transmitted on both the SUL and the non-SUL of the cell and if the number of information bits in format  $0_1$  for the SUL is not equal to the number of information bits in format  $0_1$  for the non-SUL, zeros shall be appended to smaller format  $0_1$  until the payload size equals that of the larger format  $0_1$ .

Table 7.3.1.1.2-1: Bandwidth part indicator

| Value of BWP indicator field | Dandwidth nort                                    |  |
|------------------------------|---------------------------------------------------|--|
| 2 bits                       | Bandwidth part                                    |  |
| 00                           | First bandwidth part configured by higher layers  |  |
| 01                           | Second bandwidth part configured by higher layers |  |
| 10                           | Third bandwidth part configured by higher layers  |  |
| 11                           | Fourth bandwidth part configured by higher layers |  |

Table 7.3.1.1.2-2: Precoding information and number of layers, for 4 antenna ports, if transform precoder is disabled and *maxRank* = 2 or 3 or 4

| Bit field<br>mapped<br>to index | codebookSubset = fullyAndPartialAndNonCoherent | Bit field<br>mapped<br>to index | codebookSubset = partialAndNonCoherent | Bit field<br>mapped<br>to index | codebookSubset=<br>nonCoherent |
|---------------------------------|------------------------------------------------|---------------------------------|----------------------------------------|---------------------------------|--------------------------------|
| 0                               | 1 layer: TPMI=0                                | 0                               | 1 layer: TPMI=0                        | 0                               | 1 layer: TPMI=0                |
| 1                               | 1 layer: TPMI=1                                | 1                               | 1 layer: TPMI=1                        | 1                               | 1 layer: TPMI=1                |
|                                 |                                                |                                 |                                        |                                 |                                |
| 3                               | 1 layer: TPMI=3                                | 3                               | 1 layer: TPMI=3                        | 3                               | 1 layer: TPMI=3                |
| 4                               | 2 layers: TPMI=0                               | 4                               | 2 layers: TPMI=0                       | 4                               | 2 layers: TPMI=0               |
|                                 |                                                |                                 |                                        |                                 |                                |
| 9                               | 2 layers: TPMI=5                               | 9                               | 2 layers: TPMI=5                       | 9                               | 2 layers: TPMI=5               |
| 10                              | 3 layers: TPMI=0                               | 10                              | 3 layers: TPMI=0                       | 10                              | 3 layers: TPMI=0               |
| 11                              | 4 layers: TPMI=0                               | 11                              | 4 layers: TPMI=0                       | 11                              | 4 layers: TPMI=0               |
| 12                              | 1 layer: TPMI=4                                | 12                              | 1 layer: TPMI=4                        | 12-15                           | reserved                       |
|                                 |                                                |                                 | •••                                    |                                 |                                |
| 19                              | 1 layer: TPMI=11                               | 19                              | 1 layer: TPMI=11                       |                                 |                                |
| 20                              | 2 layers: TPMI=6                               | 20                              | 2 layers: TPMI=6                       |                                 |                                |
|                                 |                                                |                                 |                                        |                                 |                                |
| 27                              | 2 layers: TPMI=13                              | 27                              | 2 layers: TPMI=13                      |                                 |                                |
| 28                              | 3 layers: TPMI=1                               | 28                              | 3 layers: TPMI=1                       |                                 |                                |
| 29                              | 3 layers: TPMI=2                               | 29                              | 3 layers: TPMI=2                       |                                 |                                |
| 30                              | 4 layers: TPMI=1                               | 30                              | 4 layers: TPMI=1                       |                                 |                                |
| 31                              | 4 layers: TPMI=2                               | 31                              | 4 layers: TPMI=2                       |                                 |                                |
| 32                              | 1 layers: TPMI=12                              |                                 |                                        |                                 |                                |
|                                 |                                                |                                 |                                        |                                 |                                |
| 47                              | 1 layers: TPMI=27                              |                                 |                                        |                                 |                                |
| 48                              | 2 layers: TPMI=14                              |                                 |                                        |                                 |                                |
|                                 |                                                |                                 |                                        |                                 |                                |
| 55                              | 2 layers: TPMI=21                              |                                 |                                        |                                 |                                |
| 56                              | 3 layers: TPMI=3                               |                                 |                                        |                                 |                                |
|                                 |                                                |                                 |                                        |                                 |                                |
| 59                              | 3 layers: TPMI=6                               |                                 |                                        |                                 |                                |
| 60                              | 4 layers: TPMI=3                               |                                 |                                        |                                 |                                |
| 61                              | 4 layers: TPMI=4                               |                                 |                                        |                                 |                                |
| 62-63                           | reserved                                       |                                 |                                        |                                 |                                |

Table 7.3.1.1.2-3: Precoding information and number of layers for 4 antenna ports, if transform precoder is enabled, or if transform precoder is disabled and *maxRank* = 1

| Bit field<br>mapped<br>to index | codebookSubset =<br>fullyAndPartialAndNonCoherent | Bit field<br>mapped<br>to index | codebookSubset=<br>partialAndNonCoherent | Bit field<br>mapped<br>to index | codebookSubset=<br>nonCoherent |
|---------------------------------|---------------------------------------------------|---------------------------------|------------------------------------------|---------------------------------|--------------------------------|
| 0                               | 1 layer: TPMI=0                                   | 0                               | 1 layer: TPMI=0                          | 0                               | 1 layer: TPMI=0                |
| 1                               | 1 layer: TPMI=1                                   | 1                               | 1 layer: TPMI=1                          | 1                               | 1 layer: TPMI=1                |
|                                 |                                                   |                                 | •••                                      |                                 |                                |
| 3                               | 1 layer: TPMI=3                                   | 3                               | 1 layer: TPMI=3                          | 3                               | 1 layer: TPMI=3                |
| 4                               | 1 layer: TPMI=4                                   | 4                               | 1 layer: TPMI=4                          |                                 |                                |
|                                 |                                                   |                                 | •••                                      |                                 |                                |
| 11                              | 1 layer: TPMI=11                                  | 11                              | 1 layer: TPMI=11                         |                                 |                                |
| 12                              | 1 layers: TPMI=12                                 | 12-15                           | reserved                                 |                                 |                                |
|                                 |                                                   |                                 |                                          |                                 |                                |
| 27                              | 1 layers: TPMI=27                                 |                                 |                                          |                                 |                                |
| 28-31                           | reserved                                          |                                 |                                          |                                 |                                |

Table 7.3.1.1.2-4: Precoding information and number of layers, for 2 antenna ports, if transform precoder is disabled and *maxRank* = 2

| Bit field<br>mapped<br>to index | codebookSubset =<br>fullyAndPartialAndNonCoherent | Bit field<br>mapped<br>to index | codebookSubset = nonCoherent |
|---------------------------------|---------------------------------------------------|---------------------------------|------------------------------|
| 0                               | 1 layer: TPMI=0                                   | 0                               | 1 layer: TPMI=0              |
| 1                               | 1 layer: TPMI=1                                   | 1                               | 1 layer: TPMI=1              |
| 2                               | 2 layers: TPMI=0                                  | 2                               | 2 layers: TPMI=0             |
| 3                               | 1 layer: TPMI=2                                   | 3                               | reserved                     |
| 4                               | 1 layer: TPMI=3                                   |                                 |                              |
| 5                               | 1 layer: TPMI=4                                   |                                 |                              |
| 6                               | 1 layer: TPMI=5                                   |                                 |                              |
| 7                               | 2 layers: TPMI=1                                  |                                 |                              |
| 8                               | 2 layers: TPMI=2                                  |                                 |                              |
| 9-15                            | reserved                                          |                                 |                              |

Table 7.3.1.1.2-5: Precoding information and number of layers, for 2 antenna ports, if transform precoder is enabled, or if transform precoder is disabled and *maxRank* = 1

| Bit field<br>mapped<br>to index | codebookSubset =<br>fullyAndPartialAndNonCoherent | Bit field<br>mapped<br>to index | codebookSubset =<br>nonCoherent |
|---------------------------------|---------------------------------------------------|---------------------------------|---------------------------------|
| 0                               | 1 layer: TPMI=0                                   | 0                               | 1 layer: TPMI=0                 |
| 1                               | 1 layer: TPMI=1                                   | 1                               | 1 layer: TPMI=1                 |
| 2                               | 1 layer: TPMI=2                                   |                                 |                                 |
| 3                               | 1 layer: TPMI=3                                   |                                 |                                 |
| 4                               | 1 layer: TPMI=4                                   |                                 |                                 |
| 5                               | 1 layer: TPMI=5                                   |                                 |                                 |
| 6-7                             | reserved                                          |                                 |                                 |

Table 7.3.1.1.2-6: Antenna port(s), transform precoder is enabled, dmrs-Type=1, maxLength=1

| Value | Number of DMRS<br>CDM group(s)<br>without data | DMRS<br>port(s) |
|-------|------------------------------------------------|-----------------|
| 0     | 2                                              | 0               |
| 1     | 2                                              | 1               |
| 2     | 2                                              | 2               |
| 3     | 2                                              | 3               |

Table 7.3.1.1.2-7: Antenna port(s), transform precoder is enabled, dmrs-Type=1, maxLength=2

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) | Number of front-load symbols |
|-------|------------------------------------------|--------------|------------------------------|
| 0     | 2                                        | 0            | 1                            |
| 1     | 2                                        | 1            | 1                            |
| 2     | 2                                        | 2            | 1                            |
| 3     | 2                                        | 3            | 1                            |
| 4     | 2                                        | 0            | 2                            |
| 5     | 2                                        | 1            | 2                            |
| 6     | 2                                        | 2            | 2                            |
| 7     | 2                                        | 3            | 2                            |
| 8     | 2                                        | 4            | 2                            |
| 9     | 2                                        | 5            | 2                            |
| 10    | 2                                        | 6            | 2                            |
| 11    | 2                                        | 7            | 2                            |
| 12-15 | Reserved                                 | Reserved     | Reserved                     |

Table 7.3.1.1.2-8: Antenna port(s), transform precoder is disabled, dmrs-Type=1, maxLength=1, rank = 1

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) |
|-------|------------------------------------------|--------------|
| 0     | 1                                        | 0            |
| 1     | 1                                        | 1            |
| 2     | 2                                        | 0            |
| 3     | 2                                        | 1            |
| 4     | 2                                        | 2            |
| 5     | 2                                        | 3            |
| 6-7   | Reserved                                 | Reserved     |

Table 7.3.1.1.2-9: Antenna port(s), transform precoder is disabled, *dmrs-Type*=1, *maxLength*=1, rank = 2

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) |
|-------|------------------------------------------|--------------|
| 0     | 1                                        | 0,1          |
| 1     | 2                                        | 0,1          |
| 2     | 2                                        | 2,3          |
| 3     | 2                                        | 0,2          |
| 4-7   | Reserved                                 | Reserved     |

Table 7.3.1.1.2-10: Antenna port(s), transform precoder is disabled, *dmrs-Type*=1, *maxLength*=1, rank

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) |
|-------|------------------------------------------|--------------|
| 0     | 2                                        | 0-2          |
| 2-7   | Reserved                                 | Reserved     |

Table 7.3.1.1.2-11: Antenna port(s), transform precoder is disabled, dmrs-Type=1, maxLength=1, rank

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) |
|-------|------------------------------------------|--------------|
| 0     | 2                                        | 0-3          |
| 2-7   | Reserved                                 | Reserved     |

Table 7.3.1.1.2-12: Antenna port(s), transform precoder is disabled, *dmrs-Type*=1, *maxLength*=2, rank = 1

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) | Number of front-load symbols |
|-------|------------------------------------------|--------------|------------------------------|
| 0     | 1                                        | 0            | 1                            |
| 1     | 1                                        | 1            | 1                            |
| 2     | 2                                        | 0            | 1                            |
| 3     | 2                                        | 1            | 1                            |
| 4     | 2                                        | 2            | 1                            |
| 5     | 2                                        | 3            | 1                            |
| 6     | 2                                        | 0            | 2                            |
| 7     | 2                                        | 1            | 2                            |
| 8     | 2                                        | 2            | 2                            |
| 9     | 2                                        | 3            | 2                            |
| 10    | 2                                        | 4            | 2                            |
| 11    | 2                                        | 5            | 2                            |
| 12    | 2                                        | 6            | 2                            |
| 13    | 2                                        | 7            | 2                            |
| 14-15 | Reserved                                 | Reserved     | Reserved                     |

Table 7.3.1.1.2-13: Antenna port(s), transform precoder is disabled, *dmrs-Type*=1, *maxLength*=2, rank = 2

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) | Number of front-load symbols |
|-------|------------------------------------------|--------------|------------------------------|
| 0     | 1                                        | 0,1          | 1                            |
| 1     | 2                                        | 0,1          | 1                            |
| 2     | 2                                        | 2,3          | 1                            |
| 3     | 2                                        | 0,2          | 1                            |
| 4     | 2                                        | 0,1          | 2                            |
| 5     | 2                                        | 2,3          | 2                            |
| 6     | 2                                        | 4,5          | 2                            |
| 7     | 2                                        | 6,7          | 2                            |
| 8     | 2                                        | 0,4          | 2                            |
| 9     | 2                                        | 2,6          | 2                            |
| 10-15 | Reserved                                 | Reserved     | Reserved                     |

Table 7.3.1.1.2-14: Antenna port(s), transform precoder is disabled, *dmrs-Type*=1, *maxLength*=2, rank = 3

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) | Number of front-load symbols |
|-------|------------------------------------------|--------------|------------------------------|
| 0     | 2                                        | 0-2          | 1                            |
| 1     | 2                                        | 0,1,4        | 2                            |
| 2     | 2                                        | 2,3,6        | 2                            |
| 3-15  | Reserved                                 | Reserved     | Reserved                     |

Table 7.3.1.1.2-15: Antenna port(s), transform precoder is disabled, *dmrs-Type*=1, *maxLength*=2, rank = 4

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) | Number of front-load symbols |
|-------|------------------------------------------|--------------|------------------------------|
| 0     | 2                                        | 0-3          | 1                            |
| 1     | 2                                        | 0,1,4,5      | 2                            |
| 2     | 2                                        | 2,3,6,7      | 2                            |
| 3     | 2                                        | 0,2,4,6      | 2                            |
| 4-15  | Reserved                                 | Reserved     | Reserved                     |

Table 7.3.1.1.2-16: Antenna port(s), transform precoder is disabled, *dmrs-Type*=2, *maxLength*=1, rank=1

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) |
|-------|------------------------------------------|--------------|
| 0     | 1                                        | 0            |
| 1     | 1                                        | 1            |
| 2     | 2                                        | 0            |
| 3     | 2                                        | 1            |
| 4     | 2                                        | 2            |
| 5     | 2                                        | 3            |
| 6     | 3                                        | 0            |
| 7     | 3                                        | 1            |
| 8     | 3                                        | 2            |
| 9     | 3                                        | 3            |
| 10    | 3                                        | 4            |
| 11    | 3                                        | 5            |
| 12-15 | Reserved                                 | Reserved     |

Table 7.3.1.1.2-17: Antenna port(s), transform precoder is disabled, dmrs-Type=2, maxLength=1, rank=2

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) |
|-------|------------------------------------------|--------------|
| 0     | 1                                        | 0,1          |
| 1     | 2                                        | 0,1          |
| 2     | 2                                        | 2,3          |
| 3     | 3                                        | 0,1          |
| 4     | 3                                        | 2,3          |
| 5     | 3                                        | 4,5          |
| 6     | 2                                        | 0,2          |
| 7-15  | Reserved                                 | Reserved     |

Table 7.3.1.1.2-18: Antenna port(s), transform precoder is disabled, *dmrs-Type*=2, *maxLength*=1, rank =3

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) |
|-------|------------------------------------------|--------------|
| 0     | 2                                        | 0-2          |
| 1     | 3                                        | 0-2          |
| 2     | 3                                        | 3-5          |
| 3-15  | Reserved                                 | Reserved     |

Table 7.3.1.1.2-19: Antenna port(s), transform precoder is disabled, *dmrs-Type*=2, *maxLength*=1, rank =4

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) |
|-------|------------------------------------------|--------------|
| 0     | 2                                        | 0-3          |
| 1     | 3                                        | 0-3          |
| 2-15  | Reserved                                 | Reserved     |

Table 7.3.1.1.2-20: Antenna port(s), transform precoder is disabled, *dmrs-Type*=2, *maxLength*=2, rank=1

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) | Number of front-load symbols |
|-------|------------------------------------------|--------------|------------------------------|
| 0     | 1                                        | 0            | 1                            |
| 1     | 1                                        | 1            | 1                            |
| 2     | 2                                        | 0            | 1                            |
| 3     | 2                                        | 1            | 1                            |
| 4     | 2                                        | 2            | 1                            |
| 5     | 2                                        | 3            | 1                            |
| 6     | 3                                        | 0            | 1                            |
| 7     | 3                                        | 1            | 1                            |
| 8     | 3                                        | 2            | 1                            |
| 9     | 3                                        | 3            | 1                            |
| 10    | 3                                        | 4            | 1                            |
| 11    | 3                                        | 5            | 1                            |
| 12    | 3                                        | 0            | 2                            |
| 13    | 3                                        | 1            | 2                            |
| 14    | 3                                        | 2            | 2                            |
| 15    | 3                                        | 3            | 2                            |
| 16    | 3                                        | 4            | 2                            |
| 17    | 3                                        | 5            | 2                            |
| 18    | 3                                        | 6            | 2                            |
| 19    | 3                                        | 7            | 2                            |
| 20    | 3                                        | 8            | 2                            |
| 21    | 3                                        | 9            | 2                            |
| 22    | 3                                        | 10           | 2                            |
| 23    | 3                                        | 11           | 2                            |
| 24    | 1                                        | 0            | 2                            |
| 25    | 1                                        | 1            | 2                            |
| 26    | 1                                        | 6            | 2                            |
| 27    | 1                                        | 7            | 2                            |
| 28-31 | Reserved                                 | Reserved     | Reserved                     |

Table 7.3.1.1.2-21: Antenna port(s), transform precoder is disabled, *dmrs-Type*=2, *maxLength*=2, rank=2

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) | Number of front-load symbols |
|-------|------------------------------------------|--------------|------------------------------|
| 0     | 1                                        | 0,1          | 1                            |
| 1     | 2                                        | 0,1          | 1                            |
| 2     | 2                                        | 2,3          | 1                            |
| 3     | 3                                        | 0,1          | 1                            |
| 4     | 3                                        | 2,3          | 1                            |
| 5     | 3                                        | 4,5          | 1                            |
| 6     | 2                                        | 0,2          | 1                            |
| 7     | 3                                        | 0,1          | 2                            |
| 8     | 3                                        | 2,3          | 2                            |
| 9     | 3                                        | 4,5          | 2                            |
| 10    | 3                                        | 6,7          | 2                            |
| 11    | 3                                        | 8,9          | 2                            |
| 12    | 3                                        | 10,11        | 2                            |
| 13    | 1                                        | 0,1          | 2                            |
| 14    | 1                                        | 6,7          | 2                            |
| 15    | 2                                        | 0,1          | 2                            |
| 16    | 2                                        | 2,3          | 2                            |
| 17    | 2                                        | 6,7          | 2                            |
| 18    | 2                                        | 8,9          | 2                            |
| 19-31 | Reserved                                 | Reserved     | Reserved                     |

Table 7.3.1.1.2-22: Antenna port(s), transform precoder is disabled, *dmrs-Type*=2, *maxLength*=2, rank=3

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) | Number of front-load symbols |
|-------|------------------------------------------|--------------|------------------------------|
| 0     | 2                                        | 0-2          | 1                            |
| 1     | 3                                        | 0-2          | 1                            |
| 2     | 3                                        | 3-5          | 1                            |
| 3     | 3                                        | 0,1,6        | 2                            |
| 4     | 3                                        | 2,3,8        | 2                            |
| 5     | 3                                        | 4,5,10       | 2                            |
| 6-31  | Reserved                                 | Reserved     | Reserved                     |

Table 7.3.1.1.2-23: Antenna port(s), transform precoder is disabled, *dmrs-Type*=2, *maxLength*=2, rank=4

| Value | Number of DMRS CDM group(s) without data | DMRS port(s) | Number of front-load symbols |
|-------|------------------------------------------|--------------|------------------------------|
| 0     | 2                                        | 0-3          | 1                            |
| 1     | 3                                        | 0-3          | 1                            |
| 2     | 3                                        | 0,1,6,7      | 2                            |
| 3     | 3                                        | 2,3,8,9      | 2                            |
| 4     | 3                                        | 4,5,10,11    | 2                            |
| 5-31  | Reserved                                 | Reserved     | Reserved                     |

Table 7.3.1.1.2-24: SRS request

| Value of SRS request field | Triggered aperiodic SRS resource set(s)                                                             |
|----------------------------|-----------------------------------------------------------------------------------------------------|
| 00                         | No aperiodic SRS resource set triggered                                                             |
| 01                         | SRS resource set(s) configured with higher layer parameter<br>aperiodicSRS-ResourceTrigger set to 1 |
| 10                         | SRS resource set(s) configured with higher layer parameter<br>aperiodicSRS-ResourceTrigger set to 2 |
| 11                         | SRS resource set(s) configured with higher layer parameter<br>aperiodicSRS-ResourceTrigger set to 3 |

Table 7.3.1.1.2-25: PTRS-DMRS association for UL PTRS port 0

| Value | DMRS port                           |
|-------|-------------------------------------|
| 0     | 1st scheduled DMRS port             |
| 1     | 2 <sup>nd</sup> scheduled DMRS port |
| 2     | 3 <sup>rd</sup> scheduled DMRS port |
| 3     | 4 <sup>th</sup> scheduled DMRS port |

Table 7.3.1.1.2-26: PTRS-DMRS association for UL PTRS ports 0 and 1

| Value of M | SB DMRS port                                          | Value of LSB | DMRS port                                             |
|------------|-------------------------------------------------------|--------------|-------------------------------------------------------|
| 0          | 1 <sup>st</sup> DMRS port which shares<br>PTRS port 0 | 0            | 1 <sup>st</sup> DMRS port which shares<br>PRTS port 1 |
| 1          | 2 <sup>nd</sup> DMRS port which shares<br>PTRS port 0 | 1            | 2 <sup>nd</sup> DMRS port which shares<br>PTRS port 1 |

Table 7.3.1.1.2-27: void

Table 7.3.1.1.2-28: SRI indication for non-codebook based PUSCH transmission,  $L_{\mathrm{max}} = 1$ 

| Bit field<br>mapped to<br>index | SRI(s), $N_{\rm SRS} = 2$ | Bit field<br>mapped to<br>index | SRI(s), $N_{\rm SRS} = 3$ | Bit field<br>mapped to<br>index | SRI(s), $N_{\rm SRS} = 4$ |
|---------------------------------|---------------------------|---------------------------------|---------------------------|---------------------------------|---------------------------|
| 0                               | 0                         | 0                               | 0                         | 0                               | 0                         |
| 1                               | 1                         | 1                               | 1                         | 1                               | 1                         |
|                                 |                           | 2                               | 2                         | 2                               | 2                         |
|                                 |                           | 3                               | reserved                  | 3                               | 3                         |

Table 7.3.1.1.2-29: SRI indication for non-codebook based PUSCH transmission,  $L_{\rm max}$  = 2

| Bit field<br>mapped to<br>index | SRI(s), $N_{\rm SRS} = 2$ | Bit field<br>mapped to<br>index | SRI(s), $N_{\rm SRS} = 3$ | Bit field<br>mapped to<br>index | SRI(s), $N_{SRS} = 4$ |
|---------------------------------|---------------------------|---------------------------------|---------------------------|---------------------------------|-----------------------|
| 0                               | 0                         | 0                               | 0                         | 0                               | 0                     |
| 1                               | 1                         | 1                               | 1                         | 1                               | 1                     |
| 2                               | 0,1                       | 2                               | 2                         | 2                               | 2                     |
| 3                               | reserved                  | 3                               | 0,1                       | 3                               | 3                     |
|                                 |                           | 4                               | 0,2                       | 4                               | 0,1                   |
|                                 |                           | 5                               | 1,2                       | 5                               | 0,2                   |
|                                 |                           | 6-7                             | reserved                  | 6                               | 0,3                   |
|                                 |                           |                                 |                           | 7                               | 1,2                   |
|                                 |                           |                                 |                           | 8                               | 1,3                   |
|                                 |                           |                                 |                           | 9                               | 2,3                   |
|                                 |                           |                                 |                           | 10-15                           | reserved              |

Table 7.3.1.1.2-30: SRI indication for non-codebook based PUSCH transmission,  $L_{\rm max}=3$ 

| Bit field       | SRI(s), $N_{\rm SRS} = 2$ | Bit field       | SRI(s), $N_{\text{SRS}} = 3$ | Bit field       | SRI(s), $N_{\rm SRS} = 4$     |
|-----------------|---------------------------|-----------------|------------------------------|-----------------|-------------------------------|
| mapped to index | $SKI(S)$ , $IV_{SRS} - 2$ | mapped to index | $SKI(S)$ , $IV_{SRS} = S$    | mapped to index | 3KI(5), IV <sub>SRS</sub> - 4 |
|                 |                           |                 | _                            |                 | _                             |
| 0               | 0                         | 0               | 0                            | 0               | 0                             |
| 1               | 1                         | 1               | 1                            | 1               | 1                             |
| 2               | 0,1                       | 2               | 2                            | 2               | 2                             |
| 3               | reserved                  | 3               | 0,1                          | 3               | 3                             |
|                 |                           | 4               | 0,2                          | 4               | 0,1                           |
|                 |                           | 5               | 1,2                          | 5               | 0,2                           |
|                 |                           | 6               | 0,1,2                        | 6               | 0,3                           |
|                 |                           | 7               | reserved                     | 7               | 1,2                           |
|                 |                           |                 |                              | 8               | 1,3                           |
|                 |                           |                 |                              | 9               | 2,3                           |
|                 |                           |                 |                              | 10              | 0,1,2                         |
|                 |                           |                 |                              | 11              | 0,1,3                         |
|                 |                           |                 |                              | 12              | 0,2,3                         |
|                 |                           |                 |                              | 13              | 1,2,3                         |
|                 |                           |                 |                              | 14-15           | reserved                      |

Table 7.3.1.1.2-31: SRI indication for non-codebook based PUSCH transmission,  $L_{\rm max} = 4$ 

| Bit field<br>mapped to<br>index | SRI(s), $N_{\rm SRS} = 2$ | Bit field<br>mapped to<br>index | SRI(s), $N_{\rm SRS} = 3$ | Bit field<br>mapped to<br>index | SRI(s), $N_{\rm SRS} = 4$ |
|---------------------------------|---------------------------|---------------------------------|---------------------------|---------------------------------|---------------------------|
| 0                               | 0                         | 0                               | 0                         | 0                               | 0                         |
| 1                               | 1                         | 1                               | 1                         | 1                               | 1                         |
| 2                               | 0,1                       | 2                               | 2                         | 2                               | 2                         |
| 3                               | reserved                  | 3                               | 0,1                       | 3                               | 3                         |
|                                 |                           | 4                               | 0,2                       | 4                               | 0,1                       |
|                                 |                           | 5                               | 1,2                       | 5                               | 0,2                       |
|                                 |                           | 6                               | 0,1,2                     | 6                               | 0,3                       |
|                                 |                           | 7                               | reserved                  | 7                               | 1,2                       |
|                                 |                           |                                 |                           | 8                               | 1,3                       |
|                                 |                           |                                 |                           | 9                               | 2,3                       |
|                                 |                           |                                 |                           | 10                              | 0,1,2                     |
|                                 |                           |                                 |                           | 11                              | 0,1,3                     |
|                                 |                           |                                 |                           | 12                              | 0,2,3                     |
|                                 |                           |                                 |                           | 13                              | 1,2,3                     |
|                                 |                           |                                 |                           | 14                              | 0,1,2,3                   |
|                                 |                           |                                 |                           | 15                              | reserved                  |

Table 7.3.1.1.2-32: SRI indication for codebook based PUSCH transmission

| Bit field mapped to index | SRI(s), $N_{SRS} = 2$ |
|---------------------------|-----------------------|
| 0                         | 0                     |
| 1                         | 1                     |

Table 7.3.1.1.2-33: VRB-to-PRB mapping

| Bit field mapped to index | VRB-to-PRB mapping |
|---------------------------|--------------------|
| 0                         | Non-interleaved    |
| 1                         | Interleaved        |

### 7.3.1.2 DCI formats for scheduling of PDSCH

#### 7.3.1.2.1 Format 1\_0

DCI format 1\_0 is used for the scheduling of PDSCH in one DL cell.

The following information is transmitted by means of the DCI format 1\_0 with CRC scrambled by C-RNTI or CS-RNTI or MCS-C-RNTI:

- Identifier for DCI formats 1 bits
  - The value of this bit field is always set to 1, indicating a DL DCI format
- Frequency domain resource assignment  $\left\lceil \log_2(N_{\rm RB}^{\rm DL,BWP}(N_{\rm RB}^{\rm DL,BWP}+1)/2) \right\rceil$  bits
  - $N_{RB}^{DL,BWP}$  is the size of the active DL bandwidth part in case DCI format 1\_0 is monitored in the UE specific search space and satisfying
    - the total number of different DCI sizes configured to monitor is no more than 4 for the cell, and
    - the total number of different DCI sizes with C-RNTI configured to monitor is no more than 3 for the cell otherwise,  $N_{RB}^{DL,BWP}$  is the size of CORESET 0.

If the CRC of the DCI format 1\_0 is scrambled by C-RNTI and the "Frequency domain resource assignment" field are of all ones, the DCI format 1\_0 is for random access procedure initiated by a PDCCH order, with all remaining fields set as follows:

- Random Access Preamble index 6 bits according to ra-PreambleIndex in Subclause 5.1.2 of [8, TS38.321]
- UL/SUL indicator 1 bit. If the value of the "Random Access Preamble index" is not all zeros and if the UE is configured with SUL in the cell, this field indicates which UL carrier in the cell to transmit the PRACH according to Table 7.3.1.1.1-1; otherwise, this field is reserved
- SS/PBCH index 6 bits. If the value of the "Random Access Preamble index" is not all zeros, this field indicates the SS/PBCH that shall be used to determine the RACH occasion for the PRACH transmission; otherwise, this field is reserved.
- PRACH Mask index 4 bits. If the value of the "Random Access Preamble index" is not all zeros, this field indicates the RACH occasion associated with the SS/PBCH indicated by "SS/PBCH index" for the PRACH transmission, according to Subclause 5.1.1 of [8, TS38.321]; otherwise, this field is reserved
- Reserved bits 10 bits

Otherwise, all remaining fields are set as follows:

- Time domain resource assignment 4 bits as defined in Subclause 5.1.2.1 of [6, TS 38.214]
- VRB-to-PRB mapping 1 bit according to Table 7.3.1.1.2-33
- Modulation and coding scheme 5 bits as defined in Subclause 5.1.3 of [6, TS 38.214]
- New data indicator 1 bit
- Redundancy version 2 bits as defined in Table 7.3.1.1.1-2
- HARQ process number 4 bits
- Downlink assignment index 2 bits as defined in Subclause 9.1.3 of [5, TS 38.213], as counter DAI
- TPC command for scheduled PUCCH 2 bits as defined in Subclause 7.2.1 of [5, TS 38.213]
- PUCCH resource indicator 3 bits as defined in Subclause 9.2.3 of [5, TS 38.213]
- PDSCH-to-HARQ\_feedback timing indicator 3 bits as defined in Subclause 9.2.3 of [5, TS38.213]

The following information is transmitted by means of the DCI format 1\_0 with CRC scrambled by P-RNTI:

- Short Messages Indicator 2 bits according to Table 7.3.1.2.1-1.
- Short Messages 8 bits, according to Subclause x.x of [9, TS38.331]. If only the scheduling information for Paging is carried, this bit field is reserved.
- Frequency domain resource assignment  $-\lceil \log_2(N_{\rm RB}^{\rm DL,BWP}(N_{\rm RB}^{\rm DL,BWP}+1)/2) \rceil$  bits. If only the short message is carried, this bit field is reserved.
  - $N_{RB}^{DL,BWP}$  is the size of CORESET 0
- Time domain resource assignment 4 bits as defined in Subclause 5.1.2.1 of [6, TS38.214]. If only the short message is carried, this bit field is reserved.
- VRB-to-PRB mapping 1 bit according to Table 7.3.1.1.2-33. If only the short message is carried, this bit field is reserved.
- Modulation and coding scheme 5 bits as defined in Subclause 5.1.3 of [6, TS38.214], using Table 5.1.3.1-1. If only the short message is carried, this bit field is reserved.

- TB scaling 2 bits as defined in Subclause 5.1.3.2 of [6, TS38.214]. If only the short message is carried, this bit field is reserved.
- Reserved bits 6 bits

The following information is transmitted by means of the DCI format 1\_0 with CRC scrambled by SI-RNTI:

- Frequency domain resource assignment  $-\left[\log_2(N_{\rm RB}^{\rm DL,BWP}(N_{\rm RB}^{\rm DL,BWP}+1)/2)\right]$  bits
  - $N_{RR}^{DL,BWP}$  is the size of CORESET 0
- Time domain resource assignment 4 bits as defined in Subclause 5.1.2.1 of [6, TS38.214]
- VRB-to-PRB mapping 1 bit according to Table 7.3.1.1.2-33
- Modulation and coding scheme 5 bits as defined in Subclause 5.1.3 of [6, TS38.214], using Table 5.1.3.1-1
- Redundancy version 2 bits as defined in Table 7.3.1.1.1-2
- System information indicator 1 bit as defined in Table 7.3.1.2.1-2
- Reserved bits [15] bits

The following information is transmitted by means of the DCI format 1\_0 with CRC scrambled by RA-RNTI:

- Frequency domain resource assignment  $-\left[\log_2(N_{RB}^{DL,BWP}(N_{RB}^{DL,BWP}+1)/2)\right]$  bits
  - $N_{RB}^{DL,BWP}$  is the size of CORESET 0
- Time domain resource assignment 4 bits as defined in Subclause 5.1.2.1 of [6, TS38.214]
- VRB-to-PRB mapping 1 bit according to Table 7.3.1.1.2-33
- Modulation and coding scheme 5 bits as defined in Subclause 5.1.3 of [6, TS38.214], using Table 5.1.3.1-1
- TB scaling 2 bits as defined in Subclause 5.1.3.2 of [6, TS38.214]
- Reserved bits 16 bits

The following information is transmitted by means of the DCI format 1\_0 with CRC scrambled by TC-RNTI:

- Identifier for DCI formats 1 bit
  - The value of this bit field is always set to 1, indicating a DL DCI format
- Frequency domain resource assignment  $-\left[\log_2(N_{RB}^{DL,BWP}(N_{RB}^{DL,BWP}+1)/2)\right]$  bits
  - $N_{\text{pr}}^{\text{DL,BWP}}$  is the size of CORESET 0
- Time domain resource assignment 4 bits as defined in Subclause 5.1.2.1 of [6, TS38.214]
- VRB-to-PRB mapping 1 bit according to Table 7.3.1.1.2-33
- Modulation and coding scheme 5 bits as defined in Subclause 5.1.3 of [6, TS38.214], using Table 5.1.3.1-1
- New data indicator 1 bit
- Redundancy version 2 bits as defined in Table 7.3.1.1.1-2
- HARQ process number 4 bits

- Downlink assignment index 2 bits, reserved
- TPC command for scheduled PUCCH 2 bits as defined in Subclause 7.2.1 of [5, TS38.213]
- PUCCH resource indicator 3 bits as defined in Subclause 9.2.3 of [5, TS38.213]
- PDSCH-to-HARQ\_feedback timing indicator 3 bits as defined in Subclause 9.2.3 of [5, TS38.213]

If DCI format 1\_0 is monitored in UE specific search space and satisfies both of the following

- the total number of different DCI sizes configured to monitor is no more than 4 for the cell, and
- the total number of different DCI sizes with C-RNTI configured to monitor is no more than 3 for the cell

and if the number of information bits in the DCI format 1\_0 prior to padding is less than the payload size of the DCI format 0\_0 monitored in UE specific search space for scheduling the same serving cell, zeros shall be appended to the DCI format 1\_0 until the payload size equals that of the DCI format 0\_0.

Table 7.3.1.2.1-1: Short Message indicator

| Bit field | Short Message indicator                                                         |
|-----------|---------------------------------------------------------------------------------|
| 00        | Reserved                                                                        |
| 01        | Only scheduling information for Paging is present in the DCI                    |
| 10        | Only short message is present in the DCI                                        |
| 11        | Both scheduling information for Paging and short message are present in the DCI |

Table 7.3.1.2.1-2: System information indicator

| Bit field | System information indicator              |
|-----------|-------------------------------------------|
| 0         | SIB1 [9, TS38.331, Subclause 5.2.1]       |
| 1         | SI message [9, TS38.331, Subclause 5.2.1] |

#### 7.3.1.2.2 Format 1 1

DCI format 1\_1 is used for the scheduling of PDSCH in one cell.

The following information is transmitted by means of the DCI format 1\_1 with CRC scrambled by C-RNTI or CS-RNTI or MCS-C-RNTI:

- Identifier for DCI formats 1 bits
  - The value of this bit field is always set to 1, indicating a DL DCI format
- Carrier indicator 0 or 3 bits as defined in Subclause 10.1 of [5, TS 38.213].
- Bandwidth part indicator 0, 1 or 2 bits as determined by the number of DL BWPs  $n_{\text{BWP,RRC}}$  configured by higher layers, excluding the initial DL bandwidth part. The bitwidth for this field is determined as  $\lceil \log_2(n_{\text{BWP}}) \rceil$  bits, where
  - $n_{\text{BWP}} = n_{\text{BWP,RRC}} + 1$  if  $n_{\text{BWP,RRC}} \le 3$ , in which case the bandwidth part indicator is equivalent to the higher layer parameter BWP-Id;
  - otherwise  $n_{\text{BWP}} = n_{\text{BWP,RRC}}$ , in which case the bandwidth part indicator is defined in Table 7.3.1.1.2-1;

If a UE does not support active BWP change via DCI, the UE ignores this bit field.

- Frequency domain resource assignment number of bits determined by the following, where  $N_{RB}^{DL,BWP}$  is the size of the active DL bandwidth part:
  - $N_{\text{RBG}}$  bits if only resource allocation type 0 is configured, where  $N_{\text{RBG}}$  is defined in Subclause 5.1.2.2.1 of [6, TS38.214],

- $\left[\log_2(N_{RB}^{DL,BWP}(N_{RB}^{DL,BWP}+1)/2)\right]$  bits if only resource allocation type 1 is configured, or
- $\max \left( \left\lceil \log_2(N_{RB}^{DL,BWP}(N_{RB}^{DL,BWP} + 1)/2) \right\rceil, N_{RBG} \right) + 1$  bits if both resource allocation type 0 and 1 are configured.
- If both resource allocation type 0 and 1 are configured, the MSB bit is used to indicate resource allocation type 0 or resource allocation type 1, where the bit value of 0 indicates resource allocation type 0 and the bit value of 1 indicates resource allocation type 1.
- For resource allocation type 0, the  $N_{\text{RBG}}$  LSBs provide the resource allocation as defined in Subclause 5.1.2.2.1 of [6, TS 38.214].
- For resource allocation type 1, the  $\left[\log_2(N_{RB}^{DL,BWP}(N_{RB}^{DL,BWP}+1)/2)\right]$  LSBs provide the resource allocation as defined in Subclause 5.1.2.2.2 of [6, TS 38.214]

If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part and if both resource allocation type 0 and 1 are configured for the indicated bandwidth part, the UE assumes resource allocation type 0 for the indicated bandwidth part if the bitwidth of the "Frequency domain resource assignment" field of the active bandwidth part is smaller than the bitwidth of the "Frequency domain resource assignment" field of the indicated bandwidth part.

- Time domain resource assignment 0, 1, 2, 3, or 4 bits as defined in Subclause 5.1.2.1 of [6, TS 38.214]. The bitwidth for this field is determined as  $\lceil \log_2(I) \rceil$  bits, where *I* is the number of entries in the higher layer parameter *pdsch-TimeDomainAllocationList*.
- VRB-to-PRB mapping 0 or 1 bit:
  - 0 bit if only resource allocation type 0 is configured or if interleaved VRB-to-PRB mapping is not configured by high layers;
  - 1 bit according to Table 7.3.1.1.2-33 otherwise, only applicable to resource allocation type 1, as defined in Subclause 7.3.1.6 of [4, TS 38.211].
- PRB bundling size indicator 0 bit if the higher layer parameter *prb-BundlingType* is not configured or is set to 'static', or 1 bit if the higher layer parameter *prb-BundlingType* is set to 'dynamic' according to Subclause 5.1.2.3 of [6, TS 38.214].
- Rate matching indicator 0, 1, or 2 bits according to higher layer parameters *rateMatchPatternGroup1* and *rateMatchPatternGroup2*.
- ZP CSI-RS trigger 0, 1, or 2 bits as defined in Subclause 5.1.4.2 of [6, TS 38.214]. The bitwidth for this field is determined as  $\lceil \log_2(n_{ZP} + 1) \rceil$  bits, where  $n_{ZP}$  is the number of ZP CSI-RS resource sets in the higher layer parameter *zp-CSI-RS-Resource*.

#### For transport block 1:

- Modulation and coding scheme 5 bits as defined in Subclause 5.1.3.1 of [6, TS 38.214]
- New data indicator 1 bit
- Redundancy version 2 bits as defined in Table 7.3.1.1.1-2

For transport block 2 (only present if maxNrofCodeWordsScheduledByDCI equals 2):

- Modulation and coding scheme 5 bits as defined in Subclause 5.1.3.1 of [6, TS 38.214]
- New data indicator 1 bit
- Redundancy version 2 bits as defined in Table 7.3.1.1.1-2

If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part and the value of *maxNrofCodeWordsScheduledByDCI* for the indicated bandwidth part equals 2 and the value of *maxNrofCodeWordsScheduledByDCI* for the active bandwidth part equals 1, the UE assumes zeros are padded

when interpreting the "Modulation and coding scheme", "New data indicator", and "Redundancy version" fields of transport block 2 according to Subclause 12 of [5, TS38.213], and the UE ignores the "Modulation and coding scheme", "New data indicator", and "Redundancy version" fields of transport block 2 for the indicated bandwidth part.

- HARQ process number 4 bits
- Downlink assignment index number of bits as defined in the following
  - 4 bits if more than one serving cell are configured in the DL and the higher layer parameter *pdsch-HARQ-ACK-Codebook=dynamic*, where the 2 MSB bits are the counter DAI and the 2 LSB bits are the total DAI;
  - 2 bits if only one serving cell is configured in the DL and the higher layer parameter *pdsch-HARQ-ACK-Codebook=dynamic*, where the 2 bits are the counter DAI;
  - 0 bits otherwise.
- TPC command for scheduled PUCCH 2 bits as defined in Subclause 7.2.1 of [5, TS 38.213]
- PUCCH resource indicator 3 bits as defined in Subclause 9.2.3 of [5, TS 38.213]
- PDSCH-to-HARQ\_feedback timing indicator -0, 1, 2, or 3 bits as defined in Subclause 9.2.3 of [5, TS 38.213]. The bitwidth for this field is determined as  $\lceil \log_2(I) \rceil$  bits, where I is the number of entries in the higher layer parameter dl-DataToUL-ACK.
- Antenna port(s) 4, 5, or 6 bits as defined by Tables 7.3.1.2.2-1/2/3/4, where the number of CDM groups without data of values 1, 2, and 3 refers to CDM groups  $\{0\}$ ,  $\{0,1\}$ , and  $\{0,1,2\}$  respectively. The antenna ports  $\{p_{0,\dots}p_{\nu-1}\}$  shall be determined according to the ordering of DMRS port(s) given by Tables 7.3.1.2.2-1/2/3/4.

If a UE is configured with both dmrs-DownlinkForPDSCH-MappingTypeA and dmrs-DownlinkForPDSCH-MappingTypeB, the bitwidth of this field equals  $\max\left\{x_A, x_B\right\}$ , where  $x_A$  is the "Antenna ports" bitwidth derived according to dmrs-DownlinkForPDSCH-MappingTypeA and  $x_B$  is the "Antenna ports" bitwidth derived according to dmrs-DownlinkForPDSCH-MappingTypeB. A number of  $\left|x_A - x_B\right|$  zeros are padded in the MSB of this field, if the mapping type of the PDSCH corresponds to the smaller value of  $x_A$  and  $x_B$ .

- Transmission configuration indication 0 bit if higher layer parameter *tci-PresentInDCI* is not enabled; otherwise 3 bits as defined in Subclause 5.1.5 of [6, TS38.214].
  - If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part and the "Transmission configuration indication" field is not present in the DCI format 1\_1, the UE assumes *tci-PresentInDCI* is not enabled for the indicated bandwidth part.
- SRS request 2 bits as defined by Table 7.3.1.1.2-24 for UEs not configured with SUL in the cell; 3 bits for UEs configured SUL in the cell where the first bit is the non-SUL/SUL indicator as defined in Table 7.3.1.1.1-1 and the second and third bits are defined by Table 7.3.1.1.2-24. This bit field may also indicate the associated CSI-RS according to Subclause 6.1.1.2 of [6, TS 38.214].
- CBG transmission information (CBGTI) 0, 2, 4, 6, or 8 bits as defined in Subclause 5.1.7 of [6, TS38.214], determined by the higher layer parameters *maxCodeBlockGroupsPerTransportBlock* and *Number-MCS-HARQ-DL-DCI* for the PDSCH.
- CBG flushing out information (CBGFI) 0 or 1 bit as defined in Subclause 5.1.7 of [6, TS38.214], determined by higher layer parameter *codeBlockGroupFlushIndicator*.
- DMRS sequence initialization 1 bit.

If DCI formats 1\_1 are monitored in multiple search spaces associated with multiple CORESETs in a BWP, zeros shall be appended until the payload size of the DCI formats 1\_1 monitored in the multiple search spaces equal to the maximum payload size of the DCI format 1\_1 monitored in the multiple search spaces.

Table 7.3.1.2.2-1: Antenna port(s) (1000 + DMRS port), dmrs-Type=1, maxLength=1

| One Codeword:<br>Codeword 0 enabled,<br>Codeword 1 disabled |                                                |                 |  |  |  |  |
|-------------------------------------------------------------|------------------------------------------------|-----------------|--|--|--|--|
| Value                                                       | Number of DMRS<br>CDM group(s)<br>without data | DMRS<br>port(s) |  |  |  |  |
| 0                                                           | 1                                              | 0               |  |  |  |  |
| 1                                                           | 1                                              | 1               |  |  |  |  |
| 2                                                           | 1                                              | 0,1             |  |  |  |  |
| 3                                                           | 2                                              | 0               |  |  |  |  |
| 4                                                           | 2                                              | 1               |  |  |  |  |
| 5                                                           | 2                                              | 2               |  |  |  |  |
| 6                                                           | 2                                              | 3               |  |  |  |  |
| 7                                                           | 2                                              | 0,1             |  |  |  |  |
| 8                                                           | 2                                              | 2,3             |  |  |  |  |
| 9                                                           | 2                                              | 0-2             |  |  |  |  |
| 10                                                          | 2                                              | 0-3             |  |  |  |  |
| 11                                                          | 2                                              | 0,2             |  |  |  |  |
| 12-15                                                       | Reserved                                       | Reserved        |  |  |  |  |

Table 7.3.1.2.2-2: Antenna port(s) (1000 + DMRS port), dmrs-Type=1, maxLength=2

|       | Codeword<br>Codeword                              | odeword:<br>d 0 enabled,<br>d 1 disabled |                                    |       | Code<br>Code                                      | o Codewords:<br>eword 0 enabled,<br>eword 1 enabled |                              |
|-------|---------------------------------------------------|------------------------------------------|------------------------------------|-------|---------------------------------------------------|-----------------------------------------------------|------------------------------|
| Value | Number of<br>DMRS CDM<br>group(s)<br>without data | DMRS<br>port(s)                          | Number of<br>front-load<br>symbols | Value | Number of<br>DMRS CDM<br>group(s)<br>without data | DMRS port(s)                                        | Number of front-load symbols |
| 0     | 1                                                 | 0                                        | 1                                  | 0     | 2                                                 | 0-4                                                 | 2                            |
| 1     | 1                                                 | 1                                        | 1                                  | 1     | 2                                                 | 0,1,2,3,4,6                                         | 2                            |
| 2     | 1                                                 | 0,1                                      | 1                                  | 2     | 2                                                 | 0,1,2,3,4,5,6                                       | 2                            |
| 3     | 2                                                 | 0                                        | 1                                  | 3     | 2                                                 | 0,1,2,3,4,5,6,7                                     | 2                            |
| 4     | 2                                                 | 1                                        | 1                                  | 4-31  | reserved                                          | reserved                                            | reserved                     |
| 5     | 2                                                 | 2                                        | 1                                  |       |                                                   |                                                     |                              |
| 6     | 2                                                 | 3                                        | 1                                  |       |                                                   |                                                     |                              |
| 7     | 2                                                 | 0,1                                      | 1                                  |       |                                                   |                                                     |                              |
| 8     | 2                                                 | 2,3                                      | 1                                  |       |                                                   |                                                     |                              |
| 9     | 2                                                 | 0-2                                      | 1                                  |       |                                                   |                                                     |                              |
| 10    | 2                                                 | 0-3                                      | 1                                  |       |                                                   |                                                     |                              |
| 11    | 2                                                 | 0,2                                      | 1                                  |       |                                                   |                                                     |                              |
| 12    | 2                                                 | 0                                        | 2                                  |       |                                                   |                                                     |                              |
| 13    | 2                                                 | 1                                        | 2                                  |       |                                                   |                                                     |                              |
| 14    | 2                                                 | 2                                        | 2                                  |       |                                                   |                                                     |                              |
| 15    | 2                                                 | 3                                        | 2                                  |       |                                                   |                                                     |                              |
| 16    | 2                                                 | 4                                        | 2                                  |       |                                                   |                                                     |                              |
| 17    | 2                                                 | 5                                        | 2                                  |       |                                                   |                                                     |                              |
| 18    | 2                                                 | 6                                        | 2                                  |       |                                                   |                                                     |                              |
| 19    | 2                                                 | 7                                        | 2                                  |       |                                                   |                                                     |                              |
| 20    | 2                                                 | 0,1                                      | 2                                  |       |                                                   |                                                     |                              |
| 21    | 2                                                 | 2,3                                      | 2                                  |       |                                                   |                                                     |                              |
| 22    | 2                                                 | 4,5                                      | 2                                  |       |                                                   |                                                     |                              |
| 23    | 2                                                 | 6,7                                      | 2                                  |       |                                                   |                                                     |                              |
| 24    | 2                                                 | 0,4                                      | 2                                  |       |                                                   |                                                     |                              |
| 25    | 2                                                 | 2,6                                      | 2                                  |       |                                                   |                                                     |                              |
| 26    | 2                                                 | 0,1,4                                    | 2                                  |       |                                                   |                                                     |                              |
| 27    | 2                                                 | 2,3,6                                    | 2                                  |       |                                                   |                                                     |                              |
| 28    | 2                                                 | 0,1,4,5                                  | 2                                  |       |                                                   |                                                     |                              |
| 29    | 2                                                 | 2,3,6,7                                  | 2                                  |       |                                                   |                                                     |                              |
| 30    | 2                                                 | 0,2,4,6                                  | 2                                  |       |                                                   |                                                     |                              |
| 31    | Reserved                                          | Reserved                                 | Reserved                           |       |                                                   |                                                     |                              |

Table 7.3.1.2.2-3: Antenna port(s) (1000 + DMRS port), dmrs-Type=2, maxLength=1

|       | One codeword:<br>odeword 0 enable<br>odeword 1 disabl |                 | Co    | Two codewords<br>odeword 0 enablo<br>odeword 1 enabl | ed,          |
|-------|-------------------------------------------------------|-----------------|-------|------------------------------------------------------|--------------|
| Value | Number of<br>DMRS CDM<br>group(s)<br>without data     | DMRS<br>port(s) | Value | Number of<br>DMRS CDM<br>group(s)<br>without data    | DMRS port(s) |
| 0     | 1                                                     | 0               | 0     | 3                                                    | 0-4          |
| 1     | 1                                                     | 1               | 1     | 3                                                    | 0-5          |
| 2     | 1                                                     | 0,1             | 2-31  | reserved                                             | reserved     |
| 3     | 2                                                     | 0               |       |                                                      |              |
| 4     | 2                                                     | 1               |       |                                                      |              |
| 5     | 2                                                     | 2               |       |                                                      |              |
| 6     | 2                                                     | 3               |       |                                                      |              |
| 7     | 2                                                     | 0,1             |       |                                                      |              |
| 8     | 2                                                     | 2,3             |       |                                                      |              |
| 9     | 2                                                     | 0-2             |       |                                                      |              |
| 10    | 2                                                     | 0-3             |       |                                                      |              |
| 11    | 3                                                     | 0               |       |                                                      |              |
| 12    | 3                                                     | 1               |       |                                                      |              |
| 13    | 3                                                     | 2               |       |                                                      |              |
| 14    | 3                                                     | 3               |       |                                                      |              |
| 15    | 3                                                     | 4               |       |                                                      |              |
| 16    | 3                                                     | 5               |       |                                                      |              |
| 17    | 3                                                     | 0,1             |       |                                                      |              |
| 18    | 3                                                     | 2,3             |       |                                                      |              |
| 19    | 3                                                     | 4,5             |       |                                                      |              |
| 20    | 3                                                     | 0-2             |       |                                                      |              |
| 21    | 3                                                     | 3-5             |       |                                                      |              |
| 22    | 3                                                     | 0-3             |       |                                                      |              |
| 23    | 2                                                     | 0,2             |       |                                                      |              |
| 24-31 | Reserved                                              | Reserved        |       |                                                      |              |

Table 7.3.1.2.2-4: Antenna port(s) (1000 + DMRS port), dmrs-Type=2, maxLength=2

|       | Codewoi                                           | odeword:<br>rd 0 enabled,<br>rd 1 disabled |                              |       | Code                                              | vo Codewords:<br>eword 0 enabled,<br>eword 1 enabled |                              |
|-------|---------------------------------------------------|--------------------------------------------|------------------------------|-------|---------------------------------------------------|------------------------------------------------------|------------------------------|
| Value | Number of<br>DMRS CDM<br>group(s)<br>without data | DMRS<br>port(s)                            | Number of front-load symbols | Value | Number of<br>DMRS CDM<br>group(s)<br>without data | DMRS port(s)                                         | Number of front-load symbols |
| 0     | 1                                                 | 0                                          | 1                            | 0     | 3                                                 | 0-4                                                  | 1                            |
| 1     | 1                                                 | 1                                          | 1                            | 1     | 3                                                 | 0-5                                                  | 1                            |
| 2     | 1                                                 | 0,1                                        | 1                            | 2     | 2                                                 | 0,1,2,3,6                                            | 2                            |
| 3     | 2                                                 | 0                                          | 1                            | 3     | 2                                                 | 0,1,2,3,6,8                                          | 2                            |
| 4     | 2                                                 | 1                                          | 1                            | 4     | 2                                                 | 0,1,2,3,6,7,8                                        | 2                            |
| 5     | 2                                                 | 2                                          | 1                            | 5     | 2                                                 | 0,1,2,3,6,7,8,9                                      | 2                            |
| 6     | 2                                                 | 3                                          | 1                            | 6-63  | Reserved                                          | Reserved                                             | Reserved                     |
| 7     | 2                                                 | 0,1                                        | 1                            |       |                                                   |                                                      |                              |
| 8     | 2                                                 | 2,3                                        | 1                            |       |                                                   |                                                      |                              |
| 9     | 2                                                 | 0-2                                        | 1                            |       |                                                   |                                                      |                              |
| 10    | 2                                                 | 0-3                                        | 1                            |       |                                                   |                                                      |                              |
| 11    | 3                                                 | 0                                          | 1                            |       |                                                   |                                                      |                              |
| 12    | 3                                                 | 1                                          | 1                            |       |                                                   |                                                      |                              |
| 13    | 3                                                 | 2                                          | 1                            |       |                                                   |                                                      |                              |
| 14    | 3                                                 | 3                                          | 1                            |       |                                                   |                                                      |                              |
| 15    | 3                                                 | 4                                          | 1                            |       |                                                   |                                                      |                              |
| 16    | 3                                                 | 5                                          | 1                            |       |                                                   |                                                      |                              |
| 17    | 3                                                 | 0,1                                        | 1                            |       |                                                   |                                                      |                              |
| 18    | 3                                                 | 2,3                                        | 1                            |       |                                                   |                                                      |                              |
| 19    | 3                                                 | 4,5                                        | 1                            |       |                                                   |                                                      |                              |
| 20    | 3                                                 | 0-2                                        | 1                            |       |                                                   |                                                      |                              |
| 21    | 3                                                 | 3-5                                        | 1                            |       |                                                   |                                                      |                              |
| 22    | 3                                                 | 0-3                                        | 1                            |       |                                                   |                                                      |                              |
| 23    | 2                                                 | 0,2                                        | 1                            |       |                                                   |                                                      |                              |
| 24    | 3                                                 | 0                                          | 2                            |       |                                                   |                                                      |                              |
| 25    | 3                                                 | 1                                          | 2                            |       |                                                   |                                                      |                              |
| 26    | 3                                                 | 2                                          | 2                            |       |                                                   |                                                      |                              |
| 27    | 3                                                 | 3                                          | 2                            |       |                                                   |                                                      |                              |
| 28    | 3                                                 | 4                                          | 2                            |       |                                                   |                                                      |                              |
| 29    | 3                                                 | 5                                          | 2                            |       |                                                   |                                                      |                              |
| 30    | 3                                                 | 6                                          | 2                            |       |                                                   |                                                      |                              |
| 31    | 3                                                 | 7                                          | 2                            |       |                                                   |                                                      |                              |
| 32    | 3                                                 | 8                                          | 2                            |       |                                                   |                                                      |                              |
| 33    | 3                                                 | 9                                          | 2                            |       |                                                   |                                                      |                              |
| 34    | 3                                                 | 10                                         | 2                            |       |                                                   |                                                      |                              |
| 35    | 3                                                 | 11                                         | 2                            |       |                                                   |                                                      |                              |
| 36    | 3                                                 | 0,1                                        | 2                            |       |                                                   |                                                      |                              |
| 37    | 3                                                 | 2,3                                        | 2                            |       |                                                   |                                                      |                              |
| 38    | 3                                                 | 4,5                                        | 2                            |       |                                                   |                                                      |                              |
| 39    | 3                                                 | 6,7                                        | 2                            |       |                                                   |                                                      |                              |
| 40    | 3                                                 | 8,9                                        | 2                            |       |                                                   |                                                      |                              |
| 41    | 3                                                 | 10,11                                      | 2                            |       |                                                   |                                                      |                              |
| 42    | 3                                                 | 0,1,6                                      | 2                            |       |                                                   |                                                      |                              |
| 43    | 3                                                 | 2,3,8                                      | 2                            |       |                                                   |                                                      |                              |
| 44    | 3                                                 | 4,5,10                                     | 2                            |       |                                                   |                                                      |                              |
| 45    | 3                                                 | 0,1,6,7                                    | 2                            |       |                                                   |                                                      |                              |
| 46    | 3                                                 | 2,3,8,9                                    | 2                            |       |                                                   |                                                      |                              |
| 47    | 3                                                 | 4,5,10,11                                  | 2                            |       |                                                   |                                                      |                              |
| 48    | 1                                                 | 0                                          | 2                            |       |                                                   |                                                      |                              |
| 49    | 1                                                 | 1                                          | 2                            |       |                                                   |                                                      |                              |
| 50    | 1                                                 | 6                                          | 2                            | İ     |                                                   |                                                      |                              |
| 51    | 1                                                 | 7                                          | 2                            | 1     |                                                   |                                                      |                              |
| 52    | 1                                                 | 0,1                                        | 2                            |       |                                                   |                                                      |                              |
| 53    | 1                                                 | 6,7                                        | 2                            | 1     |                                                   |                                                      |                              |
| 54    | 2                                                 | 0,1                                        | 2                            | 1     |                                                   |                                                      |                              |
| 55    | 2                                                 | 2,3                                        | 2                            | İ     |                                                   |                                                      |                              |
| 56    | 2                                                 | 6,7                                        | 2                            | 1     |                                                   |                                                      |                              |
|       | 1                                                 | . <u> </u>                                 |                              |       | 1                                                 | 1                                                    | i .                          |

| 57    | 2        | 8,9      | 2        |  |  |
|-------|----------|----------|----------|--|--|
| 58-63 | Reserved | Reserved | Reserved |  |  |

#### 7.3.1.3 DCI formats for other purposes

#### 7.3.1.3.1 Format 2 0

DCI format 2\_0 is used for notifying the slot format.

The following information is transmitted by means of the DCI format 2\_0 with CRC scrambled by SFI-RNTI:

- Slot format indicator 1, Slot format indicator 2, ..., Slot format indicator N.

The size of DCI format 2\_0 is configurable by higher layers up to 128 bits, according to Subclause 11.1.1 of [5, TS 38.213].

#### 7.3.1.3.2 Format 2 1

DCI format 2\_1 is used for notifying the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE.

The following information is transmitted by means of the DCI format 2\_1 with CRC scrambled by INT-RNTI:

- Pre-emption indication 1, Pre-emption indication 2, ..., Pre-emption indication *N*.

The size of DCI format 2\_1 is configurable by higher layers up to 126 bits, according to Subclause 11.2 of [5, TS 38.213]. Each pre-emption indication is 14 bits.

#### 7.3.1.3.3 Format 2 2

DCI format 2\_2 is used for the transmission of TPC commands for PUCCH and PUSCH.

The following information is transmitted by means of the DCI format 2\_2 with CRC scrambled by TPC-PUSCH-RNTI or TPC-PUCCH-RNTI:

block number 1, block number 2,..., block number N

The parameter *tpc-PUSCH* or *tpc-PUCCH* provided by higher layers determines the index to the block number for an UL of a cell, with the following fields defined for each block:

- Closed loop indicator 0 or 1 bit.
  - For DCI format 2\_2 with TPC-PUSCH-RNTI, 0 bit if the UE is not configured with high layer parameter *twoPUSCH-PC-AdjustmentStates*, in which case UE assumes each block in the DCI format 2\_2 is of 2 bits; 1 bit otherwise, in which case UE assumes each block in the DCI format 2\_2 is of 3 bits;
  - For DCI format 2\_2 with TPC-PUCCH-RNTI, 0 bit if the UE is not configured with high layer parameter *twoPUCCH-PC-AdjustmentStates*, in which case UE assumes each block in the DCI format 2\_2 is of 2 bits; 1 bit otherwise, in which case UE assumes each block in the DCI format 2\_2 is of 3 bits;
- TPC command –2 bits

If the number of information bits in format 2\_2 is less than the payload size of format 1\_0 monitored in common search space in the same serving cell, zeros shall be appended to format 2\_2 until the payload size equals that of format 1\_0 monitored in common search space in the same serving cell.

#### 7.3.1.3.4 Format 2\_3

DCI format 2\_3 is used for the transmission of a group of TPC commands for SRS transmissions by one or more UEs. Along with a TPC command, a SRS request may also be transmitted.

The following information is transmitted by means of the DCI format 2\_3 with CRC scrambled by TPC-SRS-RNTI:

- block number 1, block number 2, ..., block number B

where the starting position of a block is determined by the parameter *startingBitOfFormat2-3* provided by higher layers for the UE configured with the block.

If the UE is configured with higher layer parameter *srs-TPC-PDCCH-Group* = *typeA* for an UL without PUCCH and PUSCH or an UL on which the SRS power control is not tied with PUSCH power control, one block is configured for the UE by higher layers, with the following fields defined for the block:

- SRS request 0 or 2 bits. The presence of this field is according to the definition in Subclause 11.4 of [5, TS38.213]. If present, this field is interpreted as defined by Table 7.3.1.1.2-24.
- TPC command number 1, TPC command number 2, ..., TPC command number *N*, where each TPC command applies to a respective UL carrier provided by higher layer parameter *cc-IndexInOneCC-Set*

If the UE is configured with higher layer parameter *srs-TPC-PDCCH-Group* = *typeB* for an UL without PUCCH and PUSCH or an UL on which the SRS power control is not tied with PUSCH power control, one block or more blocks is configured for the UE by higher layers where each block applies to an UL carrier, with the following fields defined for each block:

- SRS request 0 or 2 bits. The presence of this field is according to the definition in Subclause 11.4 of [5, TS38.213]. If present, this field is interpreted as defined by Table 7.3.1.1.2-24.
- TPC command -2 bits

If the number of information bits in format 2\_3 is less than the payload size of format 1\_0 monitored in common search space in the same serving cell, zeros shall be appended to format 2\_3 until the payload size equals that of format 1\_0 monitored in common search space in the same serving cell.

#### 7.3.2 CRC attachment

Error detection is provided on DCI transmissions through a Cyclic Redundancy Check (CRC).

The entire payload is used to calculate the CRC parity bits. Denote the bits of the payload by  $a_0, a_1, a_2, a_3, ..., a_{A-1}$ , and the parity bits by  $p_0, p_1, p_2, p_3, ..., p_{L-1}$ , where A is the payload size and L is the number of parity bits. Let  $a'_0, a'_1, a'_2, a'_3, ..., a'_{A+L-1}$  be a bit sequence such that  $a'_i = 1$  for i = 0,1,...,L-1 and  $a'_i = a_{i-L}$  for i = L, L+1,...,A+L-1. The parity bits are computed with input bit sequence  $a'_0, a'_1, a'_2, a'_3, ..., a'_{A+L-1}$  and attached according to Subclause 5.1 by setting L to 24 bits and using the generator polynomial  $g_{CRC24C}(D)$ . The output bit  $b_0, b_1, b_2, b_3, ..., b_{K-1}$  is

$$b_k = a_k$$
 for  $k = 0,1,2,...,A-1$  
$$b_k = p_{k-A}$$
 for  $k = A, A+1, A+2,...,A+L-1$ ,

where K = A + L.

After attachment, the CRC parity bits are scrambled with the corresponding RNTI  $x_{rnti,0}, x_{rnti,1}, ..., x_{rnti,15}$ , where  $x_{rnti,0}$  corresponds to the MSB of the RNTI, to form the sequence of bits  $C_0, C_1, C_2, C_3, ..., C_{K-1}$ . The relation between  $c_k$  and  $b_k$  is:

$$c_k = b_k$$
 for  $k = 0, 1, 2, ..., A + 7$   
 $c_k = (b_k + x_{mti,k-A-8}) \mod 2$  for  $k = A + 8, A + 9, A + 10, ..., A + 23$ .

# 7.3.3 Channel coding

Information bits are delivered to the channel coding block. They are denoted by  $c_0, c_1, c_2, c_3, ..., c_{K-1}$ , where K is the number of bits, and they are encoded via Polar coding according to Subclause 5.3.1, by setting  $n_{\max} = 9$ ,  $I_{IL} = 1$ ,  $n_{PC} = 0$ , and  $n_{PC}^{\text{wm}} = 0$ .

After encoding the bits are denoted by  $d_0, d_1, d_2, d_3, ..., d_{N-1}$ , where N is the number of coded bits.

## 7.3.4 Rate matching

The input bit sequence to rate matching is  $d_0, d_1, d_2, ..., d_{N-1}$ .

Rate matching is performed according to Subclause 5.4.1 by setting  $I_{BIL} = 0$ .

The output bit sequence after rate matching is denoted as  $f_0, f_1, f_2, ..., f_{E-1}$ .

# Annex <A> (informative): Change history

|         | Change history |            |      |     |     |                                                                                                                                            |             |  |  |
|---------|----------------|------------|------|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| Date    | Meeting        | TDoc       | CR   | Rev | Cat | Subject/Comment                                                                                                                            | New version |  |  |
| 2017-05 | RAN1#89        | R1-1707082 |      |     |     | Draft skeleton                                                                                                                             | 0.0.0       |  |  |
| 2017-07 | AH_NR2         | R1-1712014 |      |     |     | Inclusion of LDPC related agreements                                                                                                       | 0.0.1       |  |  |
| 2017-08 | RAN1#90        | R1-1714564 |      |     |     | Inclusion of Polar coding related agreements                                                                                               | 0.0.2       |  |  |
| 2017-08 | RAN1#90        | R1-1714659 |      |     |     | Endorsed version by RAN1#90 as basis for further updates                                                                                   | 0.1.0       |  |  |
| 2017-09 | RAN1#90        | R1-1715322 |      |     |     | Capturing additional agreements on LDPC and Polar code from RAN1 #90                                                                       | 0.1.1       |  |  |
| 2017-09 | RAN#77         | RP-171991  |      |     |     | For information to plenary                                                                                                                 | 1.0.0       |  |  |
| 2017-09 | RAN1#90b       | R1-1716928 |      |     |     | Capturing additional agreements on LDPC and Polar code from RAN1 NR AH#3                                                                   | 1.0.1       |  |  |
| 2017-10 | RAN1#90b       | R1-1719106 |      |     |     | Endorsed as v1.1.0                                                                                                                         | 1.1.0       |  |  |
| 2017-11 | RAN1#91        | R1-1719225 |      |     |     | Capturing additional agreements on channel coding, etc.                                                                                    | 1.1.1       |  |  |
| 2017-11 | RAN1#91        | R1-1719245 |      |     |     | Capturing additional agreements on DCI format, channel coding, etc.                                                                        | 1.1.2       |  |  |
| 2017-11 | RAN1#91        | R1-1721049 |      |     |     | Endorsed as v1.2.0                                                                                                                         | 1.2.0       |  |  |
| 2017-12 | RAN1#91        | R1-1721342 |      |     |     | Capturing additional agreements on UCI, DCI, channel coding, etc.                                                                          | 1.2.1       |  |  |
| 2017-12 | RAN#78         | RP-172668  |      |     |     | Endorsed version for approval by plenary.                                                                                                  | 2.0.0       |  |  |
| 2017-12 | RAN#78         |            |      |     |     | Approved by plenary – Rel-15 spec under change control                                                                                     | 15.0.0      |  |  |
| 2018-03 | RAN#79         | RP-180200  | 0001 | -   | F   | CR capturing the Jan18 ad-hoc and RAN1#92 meeting agreements                                                                               | 15.1.0      |  |  |
| 2018-04 | RAN#79         |            |      |     |     | MCC: correction of typo in DCI format 0_1 (time domain resource assignment) – higher layer parameter should be <i>pusch-AllocationList</i> | 15.1.1      |  |  |
| 2018-06 | RAN#80         | RP-181172  | 0002 | 1   | F   | CR to 38.212 capturing the RAN1#92bis and RAN1#93 meeting agreements                                                                       | 15.2.0      |  |  |
| 2018-06 | RAN#80         | RP-181257  | 0003 | -   | В   | CR to 38.212 capturing the RAN1#92bis and RAN1#93 meeting agreements related to URLLC                                                      | 15.2.0      |  |  |
| 2018-09 | RAN#81         | RP-181789  | 0004 | -   | F   | CR to 38.212 capturing the RAN1#94 meeting agreements                                                                                      | 15.3.0      |  |  |

# History

|         | Document history |             |  |  |  |  |  |
|---------|------------------|-------------|--|--|--|--|--|
| V15.2.0 | July 2018        | Publication |  |  |  |  |  |
| V15.3.0 | October 2018     | Publication |  |  |  |  |  |
|         |                  |             |  |  |  |  |  |
|         |                  |             |  |  |  |  |  |
|         |                  |             |  |  |  |  |  |