SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

1.	A white crystalline solid A on boiling with caustic soda solution gave a gas B which when passed through an alkaline solution of potassium mercuric iodide gave a brown ppt. The substance A on heating gave a gas C which rekindled a glowing splinter but did not give brown fumes with nitric oxide. The gas B is ?									
	(A) H ₂ S	(B) NH ₃	(C) HCl	(D) CO ₂						
2.	The gas C (in the ab	ove question) is -								
	(A) N ₂ O	(B) O ₂	(C) NO	(D) O ₃						
3.	A metal oxide is yell	ow when hot and white v	when cold. The metal oxide	is -						
	(A) ZnO	(B) CuO	(C) PbO	(D) All						
4.	When a salt is heater		$\mathrm{MnO_4}$ solution, the pink colo	our of KMnO ₄ is discharged, the						
	(A) Sulphite	(B) Carbonate	(C) Nitrate	(D) Bicarbonate						
5.	Sulphur dioxide may be recognised by its ?									
	(A) Characteristic pungent smell of burning sulphur									
	(B) Ability to turn dichromate paper green									
	(C) Ability to decolor	(C) Ability to decolourize acidified KMnO ₄ solution								
	(D) All									
6.	Chromyl chloride vapours are dissolved in water and solution is treated with acetic acid and lead acetate solution is added, then-									
	(A) The solution will	remain colourless	(B) The solution will bec	ome dark green						
	(C) A yellow solution	will be obtained	(D) A yellow precipitate	will be obtained						
7.	In a combination of NO_3^- , Br^- and I^- present in a mixture, Br^- and I^- interfere in the ring test for NO_3^- .									
	These are removed by adding a solution of -									
	(A) AgNO ₃	(B) Ag ₂ SO ₄	(C) Ag ₂ CO ₃	(D) None of these						
8.	ű	n borax bead test indicat	2 0	· ,						
	(A) Cr ³⁺	(B) Mn ²⁺	(C) Co ²⁺	(D) Ni ²⁺						
9.		ed in group 1st and 2nd	because -	. ,						
	(A) It shows the vale		(B) It forms insoluble Pb0	Cl_2						
	(C) It forms lead sulp		(D) Its chloride is partly soluble in water							
10.		or third group is NH ₄ OH								
	(A) $(NH_4)_2CO_3$	(B) NaCl	(C) $(NH_4)_2SO_4$	(D) NH ₄ Cl						
11.				olution to an aqueous solution of						
	(A) A permanent wh	ite ppt. is formed								
	(B) No change at firs	st, but a white ppt. is for	med on standing							
	(C) A white ppt. is fo	ormed which later dissolv	es							
	(D) A green ppt. whi	ich turns red on standing	in air							
12.		white ppt. with a solution gent smelling gas. The ac		olves in dil. HCl with the evolution						
	(A) SO ₄ ²⁻	(B) S ²⁻	(C) SO ₃ ²⁻	(D) CO ₃ ²⁻						

13.	$K_3Co(NO_2)_6$ is know	n as -		
	(A) Fischer's salt	(B) Thenard's blue	(C) Rinman's green	(D) Blue vitriol
14.	In the precipitation ammonium hydroxic		tative analysis, ammonium	chloride is added before adding
	(A) Decrease concer	ntration of OH^- ions	(B) Prevent interference	by phosphate ions
	(C) Increase concent	ration of Cl ions	(D) Increase concentration	on of NH_4^+ ions
15.	Potassium ferrocyan	ide is used in the detection	n of -	
	(A) Cu^{2+} ion	(B) Fe^{3+} ions	(C) Both	(D) None
16.	The acidic solution	of a salt produced a deep	blue colour with starch iod	lide solution. The salt may be-
	(A) Chloride	(B) Nitrite	(C) Acetate	(D) Bromide
17.	Which of the following	ng pairs of ions would be e	expected to form precipitate	when dilute solutions are mixed?
	(A) Na $^+$, SO $^{2-}_4$	(B) NH $_4^+$, CO $_3^{2-}$	(C) Na $^+$, S $_2^{2-}$	(D) Fe^{3+} , PO_4^{3-}
18.	Nessler's reagent is	?		
	(A) K ₂ HgI ₄	(B) K ₂ HgI ₄ + KOH	(C) $K_2HgI_2 + KOH$	(D) $K_2HgI_4 + KI$
19.	When bismuth chlor	ide is poured into a large	volume of water the white	precipitate produced is ?
	(A) $Bi(OH)_3$	(B) Bi ₂ O ₃	(C) BiOCl	(D) Bi ₂ OCl ₃
20.	Fe(OH) ₃ can be sep	arated from Al(OH) ₃ by ac	ddition of ?	
	(A) Dil. HCl		(B) NaCl solution	
	(C) NaOH solution		(D) NH ₄ Cl and NH ₄ OH	
21.	Mark the compound	which turns black with N	H ₄ OH?	
	(A) Lead chloride	(B) Mercurous chloride	(C) Mercuric chloride	(D) Silver chloride
22.	If NaOH is added to the precipitate?	an aqueous solution of zinc	ions a white precipitate app	ears and on adding excess NaOH,
	(A) Cationic part		(B) Anionic part	
	(C) Both in catonic	and anionic parts	(D) There is no zinc ion	in the solution.
23.		-		produces (i) turbidity with baryta
	water and (ii) turns	acidified dichromate solution	on green. The reaction ind	icates the presence of ?
	(A) CO ₃ ²⁻	(B) S ²⁻	(C) SO 3 ²⁻	(D) NO ₂
24.				with $\mathrm{NH_4OH}$. This was soluble in formed. The metal M in the salt
	(A) Ca	(B) Ba	(C) Al	(D) Zn
25.	The salt used for pe	erforming 'bead' test in qu	alitative inorganic analysis	is ?
	(A) K ₂ SO ₄ . Al ₂ (SC	₄) ₃ . 24 H ₂ O	(B) FeSO ₄ . (NH ₄) ₂ SO ₄	.6H ₂ O
	(C) Na (NH ₄) HPO ₄	. 4H ₂ O	(D) CaSO ₄ . 2H ₂ O	
26.		appreciably in cold water. Vid., the cation would be ?	When placed on a platinum	wire in Bunsen flame no distinc-
	(A) Mg ²⁺	(B) Ba ²⁺	(C) Pb ²⁺	(D) Ca ²⁺
27.	Which is not dissolve		. ,	. ,
	(A) ZnS	(B) MnS	(C) BaSO ₃	(D) BaSO ₄

28. The brown ring test for NO_2^- and NO_3^- is due to the formation of complex ion with formula -(A) $[Fe (H_2O)_6]^{2+}$ (B) [Fe (NO) (CN)₅]²⁻ (C) [Fe (H₂O)₅NO]²⁺ (D) [Fe (H_2O) (NO)₅]²⁺ 29. Which of the following metal sulphides has maximum solubility in water -(A) HgS $K_{sp} = 10^{-54}$ (B) CdS $K_{sp} = 10^{-30}$ (D) ZnS $K_{sp} = 10^{-22}$ (C) FeS $K_{sp} = 10^{-20}$ 30. Which one of the following statement is correct -(A) From a mixed precipitate of AgCl and AgI, ammonia solution dissolves only AgCl (B) Ferric ions give a deep green precipitate on adding potassium ferrocyanide solution (C) On boiling a solution having K^+ , Ca^{2+} and HCO_3^- ions we get a precipitate of $K_2Ca(CO_3)_2$ (D) Manganese salts give a violet borax bead test in the reducing flame 31. When H_2S is passed through Hg_2^{2+} , we get -(B) $HgS + Hg_2S$ (C) HgS + Hg (D) Hg₂S (A) HgS 32. Potassium chromate solution is added to an aqueous solution of a metal chloride. The precipitate thus obtained are insoluble in acetic acid. These are subjected to flame test, the colour of the flame is -(A) Lilac (B) Apple green (C) Crinison red (D) Golden yellow 33. Sometimes yellow turbidity appears while passing $H_{\rho}S$ gas even in the absence of II group radicals. This is because of -(A) Sulphur is present in the mixture as impurity (B) IV group radicals are precipitated as sulphides (C) The oxidation of H_2S gas by some acid radicals (D) III group radicals are precipitated as hydroxides 34. A metal salt solution gives a yellow ppt with silver nitrate. The ppt dissolves in dil. nitric acid as well as in ammonium hydroxide. The solution contains -(A) Bromide (B) Iodide (C) Phosphate (D) Chromate 35. A blue colouration is not obtained when -(A) Ammonium hydroxide dissolves in copper sulphate (B) Copper sulphate solution reacts with $K_4[Fe(CN)_6]$ (C) Ferric chloride reacts with sodium ferrocyanide (D) Anhydrous white CuSO₄ is dissolved in water 36. A pale green crystalline metal salt of M dissolves freely in water. On standing it gives a brown ppt on addition of aqueous NaOH. The metal salt solution also gives a black ppt on bubbling H₂S in basic medium. An aqueous solution of the metal salt decolourizes the pink colour of the permanganate solution. The metal in the metal salt solution is -(A) Copper (B) Aluminium (C) Lead (D) Iron

CHEC	к үо	UR G	RASP					Α	NSV	VER	KE	Y						EXE	RCISE	-1
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	В	Α	Α	Α	D	D	В	Α	D	D	С	С	Α	Α	С	В	D	В	С	С
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36				
Ans.	В	В	С	D	С	Α	D	С	C	Α	С	В	С	С	В	D				

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

- 1. Identify the incorrect reaction (s) -
 - (A) $K_2Cr_2O_7 + 4NaCl + 3H_2SO_4$ (conc.) $\longrightarrow 2CrO_2Cl_2 + 2Na_2SO_4 + K_2SO_4 + 3H_2O_4$
 - (B) $K_2Cr_2O_7 + 6KI + 7H_2SO_4$ (conc.) $\longrightarrow 3I_2 + Cr_2(SO_4) + 4K_2SO_4 + 7H_2O_4$
 - (C) $K_2Cr_2O_7 + 4AgCl + 3H_2SO_4$ (conc.) $\longrightarrow 2CrO_2Cl_2 + 2Ag_2SO_4 + K_2SO_4 + + 3H_2O_4$
 - (D) $MnO_2 + NaCl + 2H_2SO_4$ (conc.) $\longrightarrow NaHSO_4 + MnSO_4 + HCl + H_2O + 1/2O_2$
- 2. Which of the following statment (s) is (are) ture -
 - (A) Cu²⁺ salts form soluble complex with excess KCN
 - (B) Cu²⁺ salts form soluble complex with aqueous ammonia
 - (C) Cu^{2+} salts form soluble complex with KI
 - (D) A piece of iron or zinc when place in Cu²⁺ salt solution, Precipitates copper
- A mixture of two white substances was dissolved in water. On passing Cl_2 gas through the solution a deep brown colour is developed. Addition of BaCl_2 solution to the original solution gives a white ppt. Addition of a large amount of NaOH solution to the original solution gives a white ppt, whose suspension in water is used as an ant-acid, the mixture gives golden yellow colour flame. What is the chemical composition of the mixture -
 - (A) NaBr & MgSO₄
- (B) NaBr & CaSO₄
- (C) NaBr & $Al_2(SO_4)_3$
- (D) NaBr & ZnSO₄
- 4. KBr + MnO₂ + H_2SO_4 (conc.) \longrightarrow KHSO₄ + MnSO₄ + H_2O + [X] (unbalanced equation) -
 - (A) X turns starch paper orange red
 - (B) X with AgNO3 solution gives a pale yellow ppt which is completely soluble in excess ammonium hydroxide
 - (C) X produces violet colour in organic layer in Kl solution
 - (D) X is liberated when a mixture of KBr, $K_2Cr_2O_7$ and conc. H_2SO_4 is heated
- 5. An inorganic lewis acid [X] gives gelatinous white ppt. With NH_4OH in presence of NH_4Cl . [X] will respond to which of the following characteristics -
 - (A) X fumes in moist air
 - (B) X on heating with solid $K_2Cr_2O_7$ and conc. H_2SO_4 gives deep red or orange red fumes
 - (C) X on addition of excess NaOH gives white ppt
 - (D) X on heating with Na_2CO_3 and cobalt nitrate gives a blue bead in oxidising flame
- 6. SO_2 and CO_2 both turn lime water (A) milky, SO_2 also turns $K_2Cr_2O_7/H^+$ (B) green while O_2 is soluble in pyrogallol (C) turning it black. These gases are to detected in order by using these reagents. The order is -
 - (A) (A), (B), (C)
- (B) (B), (C), (A)
- (C) (B), (A), (C)
- (D) (A), (C), (B)
- 7. Three test tubes A, B, C contain Pb^{2+} , Hg_2^{2+} and Ag^+ (but unknown). To each aqueous solution NaOH is added in excess. Following changes occur -
 - A : Black ppt
- B : Brown ppt
- C: White ppt but dissolves in excess of NaOH
- A, B and C contain respectively:
- (A) Pb^{2+} , Hg_2^{2+} and Ag^+

(B) Hg_2^{2+} , Ag^+ , Pb^{2+}

(C) Ag^+ , Pb^{2+} , Hg_2^{2+}

(D) Ag^+ , Hg_2^{2+} and Pb^{2+}

8. Of the following oxides, all are soluble in NaOH(aq) except -(B) Al_2O_3 (C) Fe₂O₃ (A) ZnO (D) SnO_{2} 9. The solvay process can be represented by the following scheme NaCl In the above process, the correct options are: $(A) A = Ca(OH)_2$ (B) $B = NH_4HCO_3$ (C) $E = CaCl_2$ (D) $C = NaHCO_3$ 10. Reddish brown gas is obtained when the following are treated with conc. H_2SO_4 : (B) NO 3 (C) NO_2^- (A) Br-11. KI solution identifies -(B) Pb²⁺ (D) Cu²⁺ (A) Hg 2+ (C) Ag^+ The only cations present in a slightly acidic solution are Fe^{3+} , Zn^{2+} and Cu^{2+} . The reagent that when added 12. in excess to this solution would identify and separate Fe^{3+} in one step is -(A) 2 M HCl (B) 6 M NH₃ (C) 6 M NaOH (D) H₂S gas 13. A test-tube containing a nitrate and another containing a bromide and MnO_2 are treated with conc. H_2SO_4 . The brown fumes evolved are passed in water. The water will be coloured by -(A) The nitrate (B) The bromide (C) Both (D) None of the two 14. Production of a green edged flame on igniting the vapours evolved by heating a given inorganic salt with a few ml of ethanol and conc. H_2SO_4 indicates the presence of -(A) Tartrate (B) Oxalate (C) Acetate (D) Borate 15. When CS_2 layer containing both Br_2 and I_2 is shaken with excess of Cl_2 water, the violet colour due to ${
m I_2}$ disappears and orange colour due to ${
m Br_2}$ appears. The disappearance of violet colour is due to the formation of -(D) I-(B) HIO₃ (C) ICI₂ (A) I₋ Which one among the following pairs of ions cannot be separated by H2S in dilute hydrochloric acid-16. (C) Zn²⁺, Cu²⁺ (B) AI^{3+} , Hg^{2+} (A) Bi³⁺, Sn⁴⁺ (D) Ni²⁺, Cu²⁺ 17. Yellow ammonium sulphide solution is a suitable reagent for the separation of -(A) HgS and PbS (B) PbS and Bi_2S_3 (C) Bi_2S_3 and CuS (D) CdS and As₂S₃ 18. What product is formed by mixing the solution of $K_4[Fe(CN)_6]$ with the solution of $FeCl_3$ -(A) Ferro-ferricyanide (B) Ferric-ferrocyanide (C) Ferri-ferricyanide (D) None

19.	Which of the following will not give positive chromyl chloride test-						
	(A) Copper chloride, Cu(C) Mercurous chloride,	2	(B) Mercuric chloride, H(D) Zinc chloride, ZnCl₂	2			
20.	violet colour is obtained.	On adding more of chlori		n presence of chloroform, a disappears, and a colourless ueous soultion -			
	(A) Iodide	(B) Bromide	(C) Chloride	(D) Iodide and bromide			
21.	Which compound does r	not dissolve in hot dilute l	HNO ₃ -				
	(A) HgS	(B) PbS	(C) CuS	(D) CdS			
22.	An aqueous solution of l		ome alum is heated with e	xcess of Na_2O_2 and filtered.			
	(A) A colourless filterate	and a green residue	(B) A yellow filtrate and	l a green residue			
	(C) A yellow filtrate and	a brown residue	(D) A green filtrate and	a brown residue			
23.	with excess ammonia so		te precipitate with dil. Na	e formed a white precipitate Cl solution and one formed			
	(A) AgNO ₃	(B) Pb(NO ₃) ₂	(C) Hg(NO ₃) ₂	(D) MnSO ₄			
24.				eutral to litmus. When silver $\frac{1}{2}$ oes not dissolve in dil. $\frac{1}{2}$ HNO $_3$.			
	(A) CO ²⁻ ₃	(B) Cl ⁻	(C) SO 4 ²⁻	(D) S ²⁻			
25.	sulphate and tetrammine	cadmium (II) sulphate react	with KCN to form the cor	responding cyano complexes. ty enalbles the separation of			
	(A) K ₃ [Cu (CN) ₄] more s	table and K_2 [Cd (CN) ₄] le	ess stable				
	(C) $K_2[Cu\ (CN)_4]$ more st	ble and ${ m K_2}$ [Cd (CN) ₄] more able and ${ m K_2}$ [Cd (CN) ₄] leduced ble and ${ m K_2}$ [Cd (CN) ₄] more	ess stable				
26.	When K ₂ Cr ₂ O ₇ crystals	are heated with conc. HC					
	(A) O ₂	(B) Cl ₂	(C) CrO ₂ Cl ₂	(D) HCl			
27.	On the addition of a solu	ution containing CrO_4^{2-} ion	as to the solution of Ba^{2+} ,	Sr^{2+} and Ca^{2+} ions, the ppt			
	obtained first will be of						
28.	with HCl and hydrogen s of nitric acid were added	ulphide gas was passed fo	r sufficient time. It was filt lution ammonium chloride				
	(S) Thamman and HOII		(D) Couldin, Hon, Caulin	am and adminimum			

29.				w precipitate. The salt gives ssium chromate. The salt is-
	(A) NiSO ₄	(B) BaS_2O_3	(C) PbS_2O_3	(D) CuSO ₄
30.	CrO ₃ dissolves in aqueo	ous NaOH to give -		
	(A) Cr ₂ O ²⁻ ₇	(B) CrO ²⁻ ₄	(C) Cr(OH) ₃	(D) Cr(OH) ₂
31.	A mixture of two salts is The mixture could be -		olves completely in dil HCl	to form a colourless solution.
	(A) $AgNO_3$ and KBr		(B) $BaCO_3$ and ZnS	
	(C) FeCl_3 and CaCO_3		(D) $Mn(NO_3)_2$ and $MgSO_3$	O_4
32.	Which of the following	combinations in an aqueo	ous medium will give a re	d colour or precipitate -
	(A) $Fe^{3+} + SCN^{-}$		(B) $Fe^{2+} + [Fe(CN)_6]^{3-}$	
	(C) Ni ²⁺ + dimethylglyo	xime + NH ₃ solution	(D) Cu ²⁺ + [Fe (CN) ₆] ⁻⁴	
33.	Acidic K ₂ Cr ₂ O ₇ reacts v		Ü	
	(A) Cr^{6+} ions	(B) Cr ³⁺ ions	(C) SO ₂	(D) S
34.	A yellow precipitate is	obtained when -	2	
		on is treated with K ₂ CrO ₄		
	(B) $Pb(NO_3)_2$ solution is			
	(C) $AgNO_3$ solution trea			
	g .	igh a solution of $CdSO_4$		
35.	=		using NH ₄ Cl and NH ₄ OH	1 -
			(C) Cr^{3+} and Al^{3+}	
36.	$Al_2(SO_4)_3 + NH_4OH$	\longrightarrow X		
	Select the correct state	ment (s) about compound	X :	
	(A) X is a white colour		(B) X is insoluble in exc	7
37.	(C) X is soluble in NaO		(D) X can be used as a	an antacid ₄ 0H and (NH ₄) ₂ CO ₃ to their
07.	solution ?	cations cannot be separat	red by adding 1411401, 1411	4011 and (1411 ₄) ₂ 00 ₃ to then
	(A) Ca^{2+} and Sr^{2+}	(B) Ba^{2+} and Sr^{2+}	(C) Ba^{2+} and Mg^{2+}	(D) Ca^{2+} and Ba^{2+}
38.	On being heated, which	n of the following substan	ces will give a gas that tu	ırns limewater milky ?
	(A) Na ₂ CO ₃	(B) ZnCO ₃	(C) ZnSO ₃	(D) MgCO ₃
39.			ces will give a white subli	
40.	(A) NH ₄ Cl	(B) HgCl ₂	(C) AgCl s substances will leave a b	(D) Hg_2Cl_2
40.	(A) $CuSO_4.5H_9O$	(B) $ZnCO_3$	(C) PbCO ₃	(D) MnSO ₄
41.	• -		bead green in an oxidisin	•
	(A) Fe ²⁺	(B) Mn ²⁺	(C) Cr ³⁺	(D) Cu ²⁺
42.	Which of the following	cations will turn a borax	bead blue in an oxidising	flame ?
	(A) Fe ³⁺	(B) Fe ²⁺	(C) Co ²⁺	(D) Cu ²⁺
43.	Which of the following		(0) 0 (70)	(D) N 0 D0
	(A) $Fe(BO_2)_2$	(B) $CoAl_2O_4$	(C) $Co(BO_2)_2$	(D) NaCoPO ₄

- On reaction with dilute H_2SO_4 , which of the following salts will give out a gas that turns an acidified dichromate paper green ?

 (A) Na_2CO_3 (B) Na_2S (C) $ZnSO_3$ (D) FeS
- (A) Ag⁺ and Cu²⁺ (B) Ag⁺ and Hg₂²⁺ (C) Hg₂²⁺ and Cd²⁺ (D) Ag⁺ and Al³⁺

 46. Which of the following ions can be separated by using H₂S in the presence of dilute HCl?

 (A) Cu²⁺ and Co²⁺ (B) Pb²⁺ and Ni²⁺ (C) Hg²⁺ and Cu²⁺ (D) Cu²⁺ and Bi³⁺

Which of the following ions can be separated by using NH_4Cl and NH_4OH ?

Which of the following ions can be separated by using dilute HCl?

45.

47.

- (A) Fe^{3+} and Cr^{3+} (B) Cr^{3+} and Co^{2+} (C) Cr^{3+} and Al^{3+} (D) Al^{3+} and Ba^{2+} 48. Which of the following mixtures of ions in solution can be separated by using an NH_3 solution?

 (A) Hg_2^{2+} and Ag^+ (B) Bi^{3+} and Cu^{2+} (C) Ag^+ and Pb^{2+} (D) Cu^{2+} and Cd^{2+}
- Which of the following mixtures of ions in solution can be separated by using an NaOH solution? (A) Fe^{3+} and Pb^{2+} (B) Pb^{2+} and Sn^{2+} (C) Zn^{2+} and Sn^{2+} (D) Al^{3+} and Cu^{2+}
- (A) Fe and Pb (B) Pb and Sn (C) 2n and Sn (D) Al and 2n (D) Al and 2n (D) Al and 2n (D) Al and 2n (E) Pb and Sn (C) 2n and Sn (D) Al and 2n (D) Sn and 2n (E) 2n (E) 2n and 2n (D) 2n and 2n (E) 2n and 2n (D) 2n and 2n (E) 2n and 2n (E) 2n and 2n (D) 2n and 2n (E) 2n and 2n (D) 2n and 2n (E) 2n and 2n and 2n (E) 2n and 2n and

BRAIN TEASERS					ANS'	WER	KE'	Y				EΣ	KERCIS	E -2	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	C.D	A.B,D	Α	A,C,D	A,B,D,	С	В	С	A,B,C,	A,B,C	В,С	В	В	D	В
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	Α	D	В	В	Α	Α	В	В	В	Α	В	С	В	В	В
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	В	A,C	B,D	A,B,C,D	B,D	A,B,C,D	A,B,D	B,C,D	A,B,D	A,D	A,C	C,D	B,C,D	B,C,D	A,C,D
Que.	46	47	48	49	50										
Ans.	A,B	B,D	A,B,C	A,D	A,C	1									

TRUE / FALSE

- 1. In the ring test for NO_3^- , removal of Br^- and I^- is done by adding $AgNO_3$ solution.
- 2. CO_3^{-2} & HCO_3^- of sodium both produce precipitate with $MgCl_2$ aq.
- 3. NO_3^- solution produce brown ring with $FeSO_4$ & dil. H_2SO_4 .
- 4. HgCl₂ gives not chromyl chloride test.
- 5. Mn^{+2} when boiled with $Na_2S_2O_8/H^+$ it produce purple coloration.
- **6.** Alkaline Solution of sodium nitro pruside produce voilate coloration with H_2S_{in} .

FILL IN THE BLANKS

- 1. A solution of salt in HCl when diluted with water turns milky. It indicates the presence of
- 2. In group III, the basic radicals are precipitated as their
- 3. The solubility product of hydroxide of Fe^{2+} is than that of Fe^{3+} .
- 4. Group IV basic radicals are precipitated as from medium.
- 5. NaNO₃ when treated with Zn dust & NaOH solution it produce gas.
- **6.** NH_4NO_3 on heating gives Solid substance.
- 7. Mix of NaI (s) + $K_2Cr_2O_7$ (s) + conc. H_2SO_4 . When heated in a test tube dark vapours evolve is
- 8. $Cr_2(SO_4)_3$ solution produce colour with Na_2O (excess) and colour with Na_2O_2 (excess.)

MATCH THE COLUMN

1. Match the following

Column-I			Column-II			
(A)	CrCl ₃ (aq)	(p)	Produce ppt with excess of NaOH			
(B)	CuSO ₄ (aq)	(q)	Produce coloured Solution with excess of amonia			
(C)	$(NH_4)_2 CO_3$ (aq)	(r)	Produce gases product when heated with KOH (aq)			
(D)	AgNO ₃ (aq)	(s)	Produce gas with dil. H ₂ SO ₄			

2. Match the following

Column-I			Column-II		
(A)	Fe(SCN) ₃ + KF (aq) excess	(p)	Produce coloured product (s)		
(B)	CrO ₂ Cl ₂ + NaOH (aq)	(q)	diamegnatic product		
(C)	$Ni^{+2} + dmg \xrightarrow{CH_3COOH \atop CH_3^*COONa}$	(r)	Hydrogen bonded product		
(D)	$Na_2SO_3 + Cr_2O_7^{-2} \xrightarrow{H^+}$	(s)	Tetrahedral geometry around metal		

Note :- dmg = dimethyl glyoxime

3. Match the following

	Column-I	Column-II				
(A)	$H_3P_3O_9$	(p)	S-O-S bond is present			
(B)	$H_2S_2O_7$	(q)	Di-basic acid			
(C)	$H_2S_4O_6$	(r)	P-O-P bond is present			
(D)	$H_4P_2O_5$	(s)	Central atom (S or P) in maximum oxidation state			

4. Match the following

	Column-I		Column-II
(A)	Soluble in a concentrated	(p)	Ag_2S
	$\mathrm{NH}_{_3}$ solution		
(B)	Soluble in excess KCN solution	(q)	Cu(OH) ₂
(C)	Soluble in excess hypo solution	(r)	AgBr
(D)	Soluble in conc. HCl	(s)	AgCl

5. Match the following

	Column-I		Column-II
(A)	Colourless gas evolved on addition	(p)	S ₂ O ²⁻
	of dil. H ₂ SO ₄		
(B)	White ppt. on addition of $\mathrm{AgNO}_{\scriptscriptstyle 3}$	(q)	S ²⁻
(C)	Black ppt. obtained when HgCl_2	(r)	NO_2^-
	is added in little amount		
(D)	The ppt. obtained on addition of	(s)	CH ₃ CO ₂ -
	$AgNO_3$ followed by NH_3 solution		

ASSERTION & REASON

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- 1. Statement -I : Borax bead test is applicable only to coloured salts.

Because

Statement -II : In borax bead test, coloured salts are decomposed to give colorued metal metaborates.

2. Statement -I: First group basic radicals are precipitated as thier chlorides.

Because

Statement -II: The solubility product of these chlorides are more than the solubility product of other basic radical chlorides.

3. Statement -I : Cu^{2+} and Cd^{2+} are separated from each other by first adding. KCN solution and then passing H_9S gas.

Because

Statement -II: KCN reduces Cu²⁺ to Cu⁺ and forms a complex with it.

4. Statement -I : $CaSO_4$ dissolves in $(NH_4)_2SO_4$ solution.

Because

Statement -II : CaSO₄ forms a soluble complex of $(NH_4)_2$ [Ca(SO₄)₂]

5. Statement -I: Nessler's reagent gives a brown precipitate with NH₂.

Because

Statement -II: NH₄OH gives a brown precipitate with Fe³⁺.

6. Statement -I : NH_4Cl is added in III group basic radicals to suppress the ionisation of NH_4OH .

Because

Statement -II: In the presence of high concentration of OH ions, basic radicals of other groups will also get precipitated in III group.

COMPREHENSION BASED QUESTIONS

Comprehension # 1

A chemist opened a cupboard to find four bottles containing water solutions, each of which has lost its label. Bottles 1, 2, 3 contained colourless solutions, whilst Bottle 4 contained a blue solution. The labels from the bottles were lying scattered on the floor of the cupboard. They were

Copper (II) sulphate

Sodium carbonate

Lead nitrate

hydrochloric acid

By mixing samples of the contents of the bottles, in pairs, the chemist made the following observations :

(i)	Bottle 1 + Bottle 2	white precipitate
(ii)	Bottle 1 + Bottle 3	white precipitate
(iii)	Bottle 1 + Bottle 4	white precipitate
(iv)	Bottle 2 + Bottle 3	colourless gas evolved
(v)	Bottle 2 + Bottle 4	no visible reaction
(vi)	Bottle 3 + Bottle 4	blue precipitate

1. Chemical formula of white precipitate in observation (i) is :

(A) CuCl₂

(B) PbCl₂

(C) PbCO₃

(D) CuSO₃

2. Colourless solution present in Bottle-1 is -

(A) CuSO₄

(B) HCl

(C) Pb(NO₃)₂

(D) Na₂CO₃

3. Nature of gas evolved in observation (iv) is -

(A) Acidic

(B) Neutral

(C) Basic

(D) Amphoteric

4. Chemical formula of white ppt. formed in observation (iii) is :

(A) PbCl₂

(B) PbCO₃

(C) CuCO₃

(D) PbSO₄

Comprehension # 2

Read the following comprehension carefully and answer the following questions.

- 1. The colour of the ppt (D) & (E) are:
 - (A) white & yellow

(B) yellow

(C) brick red & yellow

- (D) yellow and brick red
- 2. Yellow solution (C) is an important laboratory reagent and is used in the estimation of :
 - (A) Pb²⁺
- (B) Fe³⁺
- (C) Cd²⁺
- (D) None of these

- **3.** The compound (A) is:
 - (A) CrCl₃
- (B) CrBr₃
- (C) $Cr(CH_3COO)_3$
- (D) $Cr(NO_3)_3$
- 4. [A] (s) + MnO_2 + H_2SO_4 (conc.) $\longrightarrow X$ Greenish yellow gas.

Select the correct choice for [X]:

- (A) It gives yellow ppt. with AgNO₃
- (B) It liberates I_2 from KI solution
- (C) It turns starch paper orange red
- (D) It turns titan yellow solution red

Comprehension # 3

Three metal ions x^{+2} , y^{+2} , z^{+2} are identify in qualitative analysis. Nitrates of x^{+2} , y^{+2} , z^{+2} dissolve in three seprate test tubes and gives following observation.

- (i) All solution produce carbonate precipitate with $(NH_4)_2CO_3$
- (ii) Only one produce white ppt on addition of NaCl.
- (iii) Out of 3 cations two produce sulphide ppt.
- (iv) Sulphide of y^{+2} is not produce by H_2S/H^+ but produce when H_2S is passed in basic medium.
- (v) Only y^{+2} produce soluble sulphate
- (vi) x^{+2} gives no ppt with dil NH_4OH .
- 1. Select in correct statment :
 - (A) y^{+2} not produce precipitate with I^{st} group reagent in salt analysis
 - (B) y^{+2} not produce ppt with 2^{nd} group reagent in salt analysis
 - (C) z^{+2} produce ppt with II^{nd} group reagent in salt analysis
 - (D) z^{+2} is not produce ppt with I^{st} group reagent in salt analysis

- 2. Select order of K_{sp} of sulphide of x^{+2} , y^{+2} , z^{+2} -
 - (A) xs > ys > zs

(B) xs > zs > ys

(C) ys > zs > xs

- (D) zs > ys > xs
- 3. Select correct about xCO_3 , yCO_3 , zCO_3 -
 - (A) All are soluble in dil. H_2SO_4
- (B) All are soluble in dil HCl
- (C) None is soluble in dil. H_2SO_4
- (D) Except ZCO_3 all are soluble in dil. HCl

4. (i) $x^{+2} + H_2S \xrightarrow{NH_4OH}$

(ii) x^{+2} + NaOH (dil) \longrightarrow

(iii) $x^{+2} + Na_2CO_3 \longrightarrow$

Precipitate is obtain in

(A) Reaction (i), (ii), (iii)

(B) Only in reaction (iii)

(C) Only in reaction (i) and (ii)

(D) Only in reaction (ii)

Comprehension # 4

Read the following short write up and answer subsequent questions based on observations (A) to (J).

- 1. Compound A and B are respectively:
 - (A) FeCl₂; FeCl₃

(B) $CuCl_2$; $2H_2O$; $[CuCl_4]^{-2}$

(C) CrCl₃; K₂CrO₄

(D) NiCl₂; NiCl₃

- 2. Gas (J) is also produced by:
 - (i) heating NH_4NO_3
 - (iii) heating NH₄Cl
 - (A) (i) and (iii)
- (B) (i) and (ii)
- (ii) heating NH₄NO₂
- (iv) Reaction of NH₄Cl and Ca(OH)₂
- (C) (i) and (iv)
- (D) (iii) and (iv)

- 3. Select the incorrect reaction:
 - (A) (C) in solid state + KBr + conc. H_2SO_4
 - (B) (C) in solid state + KCl + conc. H_2SO_4
 - (C) (C) in solid state + $FeCl_3$ + conc. H_2SO_4
 - (D) (C) in solid state + $HgCl_2$ + conc. H_2SO_4 \longrightarrow
- Red gas
- Red gas Red gas
 - Red gas

MISCELLANEOUS TYPE QUESTION

ANSWER

EXERCISE -3

- True / False
 - **1**. F
- **2**. F
- **3**. F
- **4**. T
- **5**. T
- **6**. T

- Fill in the Blanks
 - **1**. Bi³⁺
- 2. Hydroxides
- 3. Higher
- 4. Sulphides, Ammoniacal

- **5**. NH₂
- 6. None
- **7**. I₂

8. Green, Yellow

- Match the Column
 - **1.** (A) q (B) p, q (C) r, s (D) p
- **2.** (A) q (B) p, q, s (C) p, q, r (d) p, q, s
- **3.** (A) p, r (B) p,q (C) p, r (D) p, q, s
- **4.** (A) q, r, s (B) p, q, r, s (C) q, r, s (d) q, s
- **5.** (A) p, q, s (B) p, r, s (C) q, (d) q
- Assertion Reason Questions
 - **1**. A
- **2**. C
- **3**. B
- **4**. A
- **5**. C
- **6**. A

- Comprehension Based Questions
 - Comprehension #1: 1. B
- 2. C
- 3. A
- 4. D

- Comprehension #2: 1. C
- 2. A
- 3. A
- 4. B

- Comprehension #3: 1. D
- 2. A
- 3. D
- 4. B

- Comprehension #4: 1. C
- 2. D
- 3. D

- 1. Colourless salt (A) + NaOH (excess) $\xrightarrow{\Delta}$ gas (B) giving white fumes with HCl + alkaline solution (C)
 - (C) + $Zn \longrightarrow gas$ (B)
 - (A) $\xrightarrow{\Delta}$ gas (D) + liquid (E)
 - D, E both triatomic

identify (A, B, C, D) and (E).

- 2. Complete and balance the following reactions :
 - (A) Cu + HNO₃ (dil) \longrightarrow NO+..... +
 - (B) Pb $(NO_3)_2 \xrightarrow{heat} PbO + \dots + \dots$
 - (C) $CuSO_4 + NH_4OH$ (excess) \longrightarrow
 - (D) AgCl + NH₄ OH \longrightarrow
- 3. Aqua-regia dissolves gold. Write reaction.
- 4. What happens when -
 - (i) Hydorgen sulphide is bubbled through an aqueous solution of sulphur dioxide
 - (ii) Hydrogen sulphide is passed through acidified ferric chloride solution.
 - (iii) Sulphur is boiled with caustic soda solution.
- 5. Sodium salt (A) of a dibasic acid $\xrightarrow{\text{HCl}}$ gas (B) and clear solution of gas (B) turns $K_2Cr_2O_7$ to green and also lime water milky. identify (A) and (B).
- 6. To a solution containing Ca^{2+} , Ag^+ , Cu^{2+} and K^+ , 2M HCl is added when a white precipitate (A) is obtained. After filtration H_2S is passed through the filtrate, a black ppt. (B) is formed. On removing (B) by filtration, it gave a white ppt. (C) with Na_2CO_3 solution. Identify (A), (B) and (C).
- 7. An aqueous solution of a gas (X) gives the following reactions :
 - (i) It decolourises an acidified $K_2Cr_2O_7$ solution.
 - (ii) On boiling with H_2O_2 and cooling it and then adding an aqueous solution of $BaCl_2$, a ppt. insoluble in dil. HCl, is produced.
 - (iii) On passing H_2S in the solution, white turbidity is formed.

Identify (X) and give chemical reactions of sets (i) to (iii).

- 8. A solution containing several unknown cations is treated with dil. HCl and a ppt. forms. The ppt. is filtered and the filterate at pH 1.0 is treated with H_2S , no ppt. forms. At pH 8.0 H_2S causes the formation of a ppt., the filterate form which gives no ppt. on treatment with Na_2CO_3 . Which group of cations are present in the original solution?
- 9. The aqueous solution of a inorganic compound (X) yielded a white precipitate when treated with dil HNO_3 and $AgNO_3$. Another sample of the solution of (X) when treated with NaOH gave a white precipitate first which dissolved in excess of NaOH yielding a colorless solution. When H_2S gas was passed through that solution a white precipitate was obtained. Identify the compound (X) and give the reactions.

- 10. An orange coloured solid (A) is soluble in water and gives a gas (B) and green coloured solid (C) on heating. The compound (A) gives a gas (D) when reacts with NaOH and solution turns yellow. The gas (D) turns red litmus blue. Identify the compounds (A) to (D) and explain the reaction.
- 11. A compound (X) on heating with an excess of NaOH solution gives a gas (Y) which gives white fumes on exposure to HCl. Heating is continued to expel the gas completely. The resultant alkaline solution again liberates the same gas Y when heated with Zn powder. However, the compound (X) when heated alone does not give nitrogen. Identify the compounds X and Y.
- 12. A salt reacts with NaOH to form a green coloured ppt. (X) which is soluble in excess of NaOH. (X) on heating gives a green powder (Y). (Y) on fusion with NaOH in air gives a yellow coloured solution (Z). Identify the compound X, Y & Z.
- 13. Identify the inorganic salt A whose aqueous solution gives following reactions.
 - (i) Pale yellow precipitate with AgNO_3 solution, insoluble in dil HNO_3
 - (ii) White precipitate with NH_4OH and also with NaOH solution. However the precipitate does not dissolve in excess of NH_4OH but soluble in excess of NAOH.
- Two species (A) and (B) exists in equilibrium at pH of about 4 and can be interconverted by changing the pH. Acidified solution of (B) is orange, and on adding H_2O_2 it forms deep blue colour due to the formation of compound (C), this blue colour fades away gradually. Further acidified solution of (B) on reaction with NaCl gives orange red fumes due to the formation of (D). Identify (A), (B), (C) & (D).
- A compound X does not give N_2 on heating. Its aqueous solution when heated with caustic soda liberate a gas Y which turns red litmus blue. Heating of alkaline solution of X is continued to expell the gas Y completely. However residual solution again liberates the gas Y when heated with Zinc powder. Identify Y and Y.
- **16.** An aqueous solution of a gas (X) shows the following reactions.
 - (i) It turns red litmus blue
 - (ii) When added in excess to a ${\rm CuSO}_4$ solution, a deep blue colour is obtained
 - (iii) On addition of FeCl_3 solution a brown precipitate soluble in dilute HNO_3 is obtained.

Identify (X) and give equations for the reactions at step (ii) and (iii)

17. Complete the following by identifying (A) to (F).

(i)
$$\text{CuSO}_4 \text{ 5H}_2\text{O} \xrightarrow{100^{\circ}\text{C}} \text{(A)} \xrightarrow{230^{\circ}\text{C}} \text{(B)} \xrightarrow{800^{\circ}\text{C}} \text{(C)} + \text{(D)}$$

(ii)
$$AgNO_3 \xrightarrow{Red hot}$$
 (E) + (F) + O_2

18. Identify (A), (B), (C) & (D) and give their chemical formulae :

(i) (A) + NaOH
$$\xrightarrow{\text{Heat}}$$
 NaCl + NH₃ + H₂O

(ii)
$$NH_3 + CO_2 + H_2O \longrightarrow (B)$$

(iii) (B) + NaCl
$$\longrightarrow$$
 (C) + NH₄Cl

(iv) (C)
$$\xrightarrow{\text{Heat}}$$
 Na₂CO₃ + H₂O + (D)

A certain metal (A) is boiled in dilute HNO_3 to give a slat (B) and an oxide of nitrogen (C). An aqueous solution of (B) with brine gives a precipitate (D) which is soluble in NH_4OH . On adding aqueous solution of (B) to hypo solution, a white precipitate (E) is obtained. (E) turns black on standing. Identify (A) to (E).

- 20. Calcium burns in nitrogen to produce a white powder which dissolves in sufficient water to produce a gas (A) and an alkaline solution. The solution on exposure to air produces a thin solid layer of (B) on the surface. Identify the compounds (A) and (B).
- **21.** Gradual addition of KI solution to $Bi(NO_3)_3$ solution initially produces a dark brown precipitate which dissolves in excess of KI to give a clear yellow solution. Write equations for the above reactions.

ONCEPTUAL SUBJECTI	VE EXERCISE	ANSWER KE	Y	E	XERCISE	-4(A)
(A) – NH ₄ NO ₃	(B) - NH ₃	(C) $- (NaNO_3 + Na)$	aOH) (D) -	- N ₂ O (E) - H ₂ O	
(A) – $Cu(NO_3)_2$, H_2O	(B) - NO ₂ , O ₂	(C) - [Cu(NH ₃) ₄]SO	₄ + H ₂ O (D)	- Ag(NH ₃) ₂ Cl +	H ₂ O	
Au + 3[Cl] → Au	${\rm aCl}_3 \xrightarrow{\rm HCl} {\rm H[Au}$	ıCl ₄]				
(i) - S, H ₂ O	(ii) - FeCl ₂ , HCl, H	I ₂ O (iii) – N	$Ia_2^{}S_5^{}$			
(A) – Na ₂ SO ₃	(B) - SO ₂					
(A) – AgCl,	(B) - CuS (Black p	opt.) (C) – C	aCO ₃			
$X \rightarrow SO_2$	8. Ions of group I	and III are present.				
$X \rightarrow {\rm ZnCl}_2$	10. (A) $- (NH_4)_2 Cr_2$	O_7 , (B) – N_2 ,	(C) - Cr ₂ O ₃ ,	(D) - 2NH ₃		
$X \rightarrow NH_4NO_3, Y -$	NH ₃	12. X -	\rightarrow Cr(OH) ₃ , Y -	\rightarrow Cr ₂ O ₃ , Z \rightarrow	Na ₂ CrO ₄	
. A – AlBr ₃	14. (A) - CrO ₄ ⁻² , (E	B) - $Cr_2O_7^{-2}$, (C) - $Cr_2O_7^{-2}$	O ₅ , (D) - CrO ₂ C			
$X - NH_4NO_3, Y - N$	H_3	16. X	\rightarrow NH $_3$			
. (A) - CuSO ₄ .H ₂ O,	(B) – CuSO ₄ ,	(C) - CuO,	(D) - SO ₃ ,	(E) – Ag,	(F) - N	O_2
. (A) – NH ₄ Cl,	(B) - NH ₄ HCO ₃	, (C) – NaHCO ₃ ,	(D) - CO ₂			
. (A) – Ag,	(B) – AgNO ₃ ,	(C) - NO,	(D) – AgCl	(E) – Ag_2S_2	D_3	
. (A) $- NH_3$,	(B) - CaCO ₃					
	$ (A) - NH_4NO_3 $ $ (A) - Cu(NO_3)_2 , H_2O $ $ Au + 3[Cl] \longrightarrow Au $ $ (i) - S, H_2O $ $ (A) - Na_2SO_3 $ $ (A) - AgCl, $ $ X \rightarrow SO_2 $ $ X \rightarrow ZnCl_2 $ $. X \rightarrow NH_4NO_3, Y - NU $ $. A - AlBr_3 $ $. X - NH_4NO_3, Y - NU $ $. (A) - CuSO_4.H_2O, $ $. (A) - NH_4Cl, $ $. (A) - Ag, $	$(A) - Cu(NO_3)_2 , H_2O \qquad (B) - NO_2, O_2$ $Au + 3[CI] \longrightarrow AuCl_3 \xrightarrow{HCI} H[Au]$ $(i) - S, H_2O \qquad (ii) - FeCl_2, HCl, HCl, HCl)$ $(A) - Na_2SO_3 \qquad (B) - SO_2$ $(A) - AgCl, \qquad (B) - CuS (Black production of group I)$ $X \rightarrow SO_2 \qquad 8. \text{ Ions of group I}$ $X \rightarrow ZnCl_2 \qquad 10. (A) - (NH_4)_2Cr_2$ $X \rightarrow NH_4NO_3, \qquad Y - NH_3$ $A - AlBr_3 \qquad 14. (A) - CrO_4^{-2}, (B)$ $X \rightarrow NH_4NO_3, \qquad Y - NH_3$ $A - AlBr_3 \qquad 14. (A) - CrO_4^{-2}, (B)$ $A - NH_4NO_3, \qquad Y - NH_3$ $A - AlBr_3 \qquad (B) - CuSO_4, (B)$ $A - NH_4CI, \qquad (B) - NH_4HCO_3$ $A - NH_4CI, \qquad (B) - NH_4HCO_3$ $A - Ag, \qquad (B) - AgNO_3, (B)$	$ (A) - NH_4NO_3 \qquad (B) - NH_3 \qquad (C) - (NaNO_3 + Na_3)(A) - Cu(NO_3)_2 , H_2O \qquad (B) - NO_2, O_2 \qquad (C) - [Cu(NH_3)_4]SO_3(A) + 3[CI] \longrightarrow AuCl_3 \xrightarrow{HCI} H[AuCl_4] $ $ (i) - S, H_2O \qquad (ii) - FeCl_2, HCl, H_2O \qquad (iii) - Na_2SO_3 \qquad (B) - SO_2 \qquad (A) - AgCl, \qquad (B) - CuS (Black ppt.) \qquad (C) - Coulon $ $ X \to SO_2 \qquad 8. \text{ Ions of group I and III are present.} \qquad (C) - Coulon $ $ X \to ZnCl_2 \qquad 10. (A) - (NH_4)_2Cr_2O_7, \qquad (B) - N_2, \qquad (C) - Cuolon $ $ X \to NH_4NO_3, Y - NH_3 \qquad 12. X \to NH_4NO_3, Y - NH_3 \qquad 16. X \to NH_4NO_3, (C) - Cuolon $ $ (A) - CuSO_4.H_2O, \qquad (B) - CuSO_4, \qquad (C) - CuO_3, \qquad (C) - NaHCO_3, \qquad (C) - NaHCO_3, \qquad (C) - NO_5, \qquad (C) -$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ (A) - NH_4NO_3 \qquad (B) - NH_3 \qquad (C) - (NaNO_3 + NaOH) \qquad (D) - N_2O \qquad (E) \\ (A) - Cu(NO_3)_2 \ , H_2O \qquad (B) - NO_2, \ O_2 \qquad (C) - [Cu(NH_3)_4]SO_4 \ + H_2O \qquad (D) - Ag(NH_3)_2CI \ + Au \ + 3[CI] \longrightarrow AuCl_3 \qquad \frac{HCl}{} \rightarrow H[AuCl_4] $ $ (i) - S, \ H_2O \qquad (ii) - FeCl_2, \ HCl, \ H_2O \qquad (iii) - Na_2S_5 \qquad (A) - Na_2SO_3 \qquad (B) - SO_2 \qquad (C) - CaCO_3 \qquad (D) - 2NH_3 \qquad (C) - CaCO_3 \qquad (D) - 2NH_3 \qquad (C) - CaCO_3 \qquad (D) - 2NH_3 \qquad (C) - CaCO_3 \qquad (D) - CaCO_3$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

 $BiI_3 + KI \longrightarrow K[BiI_4]$

21. $Bi(NO_3)_3 + 3KI \longrightarrow BiI_3 \downarrow + 3KNO_3$,

- A mixture of two white substances is soluble in water. This solution gives brown colour gas on passing chlorine gas. Another sample of solution gives white precipitate with BaCl₂ which is insoluble in concentrated HCl. The original solution of the mixture gives white precipitate with large excess of NaOH solution whose suspension is used as an antacid. After filtering off this precipitate, the filtrate was boiled with excess NaOH. solution gave a yellowish precipitate on adding NaClO₄. One of the compound of the mixture forms alum. Identify the mixture.
- An inorganic compound (A), transparent like glass is a strong reducing agent. Its hydrolysis in water gives a white turbidity (B). Aqueous solution of (A) gives white precipitate (C) with NaOH (aq) which is soluble in excess NaOH. (A) reduces auric chloride to produce purple of cassius. (A) also reduces I_2 and gives chromyl chloride test. Identify A, B, C & write balance reaction.
- 3. A unknown inorganic compound (X) gave the following reaction :
 - (i) on heating 'X' gave a residue, oxygen and oxide of nitrogen.
 - (ii) Addition of acetic acid and $K_2Cr_2O_7$ to its aqueous solution give a yellow precipitate.
 - (iii) Addition of NaOH to its aqueous solution first forms a white precipitate, Dissolve in the excess of the reagent. Identify the compound (X) and write balanced equation for step (i), (ii) & (iii).
- A solution of white solid (A) gave white precipitate (B) with water. On treatment with HCl, the ppt. B produced A. The solution of A gives black precipitate (C) on reacting with sodium stanite and NaOH. The compound A gives a colourless gas (D) with concentrated H_2SO_4 . The gas is soluble in water and its aqueous solution produce with it precipitate with $Hg_2(NO_3)_2$ but no precipitate with $Hg(NO_3)_2$. Identify (A) to (D) and write the chemical reactions involved.
- 5. A mixture of three gases A, B and C is passed first into acidified $K_2Cr_2O_7$ solution when A is absorbed turnign the solution green. The remainder of the gas is passed through excess of lime water which turns milky resulting in the absorption of B. The residual gas C is absorbed by alkaline pyrogallol solution. However the original mixture does not turn lead acetate paper black. Identify A, B & C (Give necessary equations).
- 6. An unknown inorganic compound (X) gave the following reactions.
 - (i) The compound (X) on heating gave a residue, Oxygen and oxide of nitrogen.
 - (ii) An aqueos solution of compound (X) on addition to tap water gave a turbidity which did not dissolved in \mbox{HNO}_3
 - (iii) The turbidity dissolved in NH_4OH .
 - Identify the compound (X) and give equations for the reactions (i), (ii) and (iii)
- 7. An unknown inorganic compound (X) loses its water of crystallisation. On heating its aqueous solution gives the following reaction :
 - (i) It gives a white turbidity with dilute HCl solution.
 - (ii) It decolourises a solution of iodine in KI.
 - (iii) It gives a white precipitate with AgNO3 solution which turns black on standing.
 - Identify compound (X) and give chemical equations for the reactions at step (i), (ii) & (iii).

- 8. A certain inorganic compound (A) on heating loses water of crystallisation. On further heating a blackish brown powder (B) and two oxides of sulphr (C & D) are obtained. The powder (B) on boiling with HCl gives a yellow solution (E). When H₂S is passed in (E) a white turbidity (F) and an apple green solution (G) is obtained. The solution (E) on treatment with thiocyanate ion gives blood red compound (H). Identify (A) to (H).
- 9. A black coloured compound (A) on reaction with dilute H_2SO_4 gives a gas (B) which on passing in a solution of an acid (C) gives a white turbidity (D). Gas (B) when passed in an acidified solution of a compound (E) gives a precipitate (F) soluble in dil HNO $_3$. After boiling this solution when an excess of NH_4OH is added, a blue coloured compound (G) is formed. To this solution on addition of acetic acid and aqueous $K_4[Fe(CN)_6]$ a chocolate precipitate (H) is obtained. On addition of an aqueous solution of $BaCl_2$ to an aqueous solution of (E), a white precipitate insoluble in HNO_3 is obtained. Identify (A) to (H).
- 10. On the basis of following reaction, Identify (A), (B), (C) & (D) and write down their chemical formulae?
 - (i) (A) aqueous + $Zn \xrightarrow{heat}$ (B) gas
 - (ii) (A) aqueous + (C) $\xrightarrow{\text{heat}} PH_3$ gas
 - (iii) (A) aqueous + $NH_4Cl \xrightarrow{heat}$ (D) gas
- 11. An aqueous solution of an unknown compound (X) gives the following reactions.
 - (i) It gives brown precipitate with alkaline $\ensuremath{\mathsf{KMnO_4}}$ solution
 - (ii) It forms HCl & evolved \boldsymbol{O}_2 when reacts with \boldsymbol{Cl}_2 gas.
 - (iii) It liberates I_2 from an acidified KI solution.
 - (iv) It gives orange yellow colour with acidified titanic sulphate solution.

Identify (X) and give the chemical equations for the reactions (i), (ii) & (iii).

- 12. An aqueous solution of inorganic compound (X) gives following reactions.
 - (i) With an aqueous solution of BaCl2 a precipitate insoluble in dilute HCl is obtained.
 - (ii) Addition of excess of KI gives a brown apperance which turns white on addition of excess of hypo.
 - (iii) With an aqueous solution of K_4 Fe(CN) $_6$ a chocolate coloured precipitate is obtained.

Identify (X) and give equations for the reactions for (i), (ii) & (iii) observations.

- 13. An inorganic compound (X) gives brick red flame on performing the flame test. This also give the following tests:
 - (i) Smell of chlorine when placed in moist air.
 - (ii) If KI & CH₃COOH are added to its suspension in water, a brown colour is obtained. Identify (X) and write down equations for reactions at step (i) and (ii).
- 14. Two solid laboratory reagents (A) and (B) give following reactions :

Compound: (A)

- (i) On strongly heating it gives two oxides of sulphur.
- (ii) On adding aqueous NaOH solution to its aqueous solution, a dirty green precipitate is obtained which starts turning brown on exposure to air.

Compound: (B)

- (i) It imparts green colour to flame.
- (ii) Its solution doesn't give precipitate on passing H_2S
- (iii) When it is heated with $K_2Cr_2O_7$ & conc. H_2SO_4 , a red gas is evolved. The gas when passed in aqueous NaOH solution turns it yellow.

Identify (A) to (B) and give chemical ractions.

- 15. The gas liberated on heating a mixture of two salts with NaOH, give a reddish brown precipitate with an alkaline solution of K_2HgI_4 . The aqueous solution of the mixture on treatment with $BaCl_2$ gives a white precipitate which is sparingly soluble in concentrated HCl. On heating the mixture with $K_2Cr_2O_7$ and concentrated H_2SO_4 , red vapour (A) are produced. The aqueous solution of the mixture gives a deep blue ppt (B) with potassium ferricyanide solution. Identify the radicals.
- When 16.8 g of white solid X was heated 4.4 g of acid gas: (A) that turned lime water milky was driven of together with 1.8 g of a gas (B) which condensed to a colourless liquid the solid that remained (Y) dissolved in water to give an alkaline solution, which with excess of BaCl₂ solution gave a white precipitate (Z). The precipitate effervescence with acid giving of CO₂ gas. Identify the compound A, B & Y and write the chemical equations for the thermal decomposition of X.
- 17. A metal chloride (X) shows the following reactions :
 - (i) When H_2S is passed in an acidified aqueous solution of (X) a black ppt is obtained.
 - (ii) The precipitate obtained in step (i) is not soluble in yellow ammonium sulphide.
 - (iii) When a solution of stannous chloride is added to an aqueous solution of (X), a white precipitate is obtained which turns grey on addition of more of stannous chloride.
 - (iv) When an aqueous solution of KI is added to an aqueous solution of (X), a red precipitate is obtained which dissolves on addition of excess of KI.

Identify (X) and write down the equations for the reaction at steps (i), (iii) & (iv)

- On mixing the aqueous solutions of compounds (A) and (B), an insoluble compound (C) is produced along with another water soluble compound (D). Compound (A) on heating gives brown NO_2 gas with a cracking noise. An aqueous solution of compound (A) gives black ppt. With H_2S gas. Compound (A) also gives white ppt. with dil.HCl which is soluble in hot water and reappears on cooling. The hot water extract of compound (A) gives yellow ppt. with K_2CrO_4 solution.
- 19. A Colourless crystalline compound (A) is warmed with Al and NaOH solution gives a gas which produces fumes with HCl, brown ppt. when passed through Nessler's reagent and is oxidised to a colourless gas when passed over heated CuO. The latter does not support to combustion, however, Mg continues burning in it producing white solid. The compound (A) when heated alone gives a brown coloured gas and an another gas (B) which is essential for living beings, leaving behind a yellow solid (C). The solid (C) gives the following reactions.
 - (i) It dissolves in dil. HNO₃ giving a colourless solution which gives white ppt. on addition of dilute HCl which is soluble in hot and reappears on cooling.
 - (ii) When heated in presence of air, the yellow solid (C) changes to red powder. Identify (A), (B) and (C), giving the equations involved.

- 20. An inorganic halide (A) gives the following reactions :
 - (i) The cation of (A) on reaction with H_2S in HCl medium, gives a black ppt. of (B). (A) neither gives ppt. with HCl nor blue colour with $K_4Fe(CN)_6$.
 - (ii) (B) on heating with dil. HCl gives back compound (A) and a gas (C) which gives a black ppt. With lead acetate solution.
 - (iii) The anion of (A) gives chromyl chloride test.
 - (iv) (B) dissolves in hot dil. \mbox{HNO}_3 to give a solution, (D). (D) gives ring test.
 - (v) When NH_4OH solution is added to (D), a white precipitate (E) is formed. (E) dissolves in minimum amount of dil. HCl to give a solution of (A). Aqueous solution of (A) on addition of water gives a whitish turbidity (F).
 - (vi) Aqueos solution of (A) on warming with alkaline sodium stannite gives a black precipitate of a metal(G) and sodium stannate. The metal (G) dissolves in hydrochloride acid to give solution of A.Identify (A) to (G) and give balanced chemical equations of reactions

CONCEPTUAL SUBJECTIVE	EXERCISE	ANSWER KEY	EXERCISE -4(B)
1. Mixture consists – K_2SC	$\mathrm{D_4}$ and $\mathrm{MgBr_2}$		
2 . (A) – SnCl ₂	(B) - Sn(OH)Cl	$(C) - Sn(OH)_2$	3. $X \rightarrow Pb(NO_3)_2$
4 . (A) – BiCl ₃	(B) – BiOCl	(C) – Bi	(D) $- H_2SO_4$
5 . (A) – SO ₂	(B) – CO	(C) - O ₂	
6. $X \rightarrow AgNO_3$			
7. $X \rightarrow Na_2S_2O_3.5H_2O$			
8. (A) - FeSO ₄ .7H ₂ O	(B) – Fe_2O_3	(C) - SO ₂	(D) - SO ₃
(E) – FeCl ₃	(F) - S	(G) - FeCl ₂	(H) - Fe(CNS) ₃
9 . (A) – FeS	(B) – H_2S	(C) - HNO ₃	(D) - S
(E) – CuSO ₄	(F) - CuS	(G) - $[Cu(NH_3)_4(NO_3)_2$	$(H) - Cu_2[Fe(CN)_6]$
10. (A) – NaOH	(B) $-H_2$	(C) – Phosphorous (P ₄)	(D) – NH ₄ Cl
11. $X \rightarrow H_2O_2$	12. $X \rightarrow CuSO$	4	13. $X \rightarrow CaOCl_2$
14 . (A) - FeSO ₄	(B) - BaCl ₂		
15. (A) – CrO ₂ Cl ₂	(B) - Fe ₃ [Fe(CN)) ₆] ₂	
16. (A) – CO ₂	(B) - H ₂ O	$X \rightarrow Na_2CO_3$	
17. $X \rightarrow HgCl_2$			
18. (A) – Pb(NO ₃) ₂	(B) - FeSO ₄	(C) – PbSO ₄	(D) - Fe(NO ₃) ₂
19. (A) – $Pb(NO_3)_2$	(B) - O ₂	(C) - Pb ₃ O ₄	
20. (A) – BiCl ₃	(B) $- Bi_2S_3$	(C) - H ₂ S	(D) – Bi(NO ₃) ₃
(E) – Bi(OH) ₃	(F) - BiOCl	(G) – Bi	

SUBJECTIVE QUESTIONS

- An aqueous blue coloured solution of a transition metal sulphate reacts with H_2S in acidic medium to give a black precipitate (A) which is insoluble in warm aqueous solution of KOH. The blue solution on treatment with KI in weakly acidic medium turns yellow and produces a white precipitate (B). Identify the transition metal ion. Write the chemical reaction involved in the formation of (A) and (B). [JEE 2000]
- 2. (i) A powdered substance (A) on treatment with fusion mixture gives a green coloured compound (B).
 - (ii) The solution of (B) in boiling water on acidification with dilute H_2SO_4 gives a pink coloured compound (C)
 - (iii) The aqueous solution of (A) on treatment with NaOH and Br₂ water gives a compound (D).
 - (iv) A solution of (D) in conc. HNO₃ on treatment with lead peroxide at boiling temperature produced a compound (E) which was of the same colour as that of (C).
 - (v) A solution of (A) in dilute HCl on treatment with a solution of barium chloride gave a white precipitate of compound (F) which was insoluble in conc. HNO₃ and conc. HCl.

Identify (A) to (F) and give balanced chemical equations for the reactions at steps (i) to (v). [JEE -2001]

3. Identify the following:

$$\text{Na}_2\text{CO}_3 \xrightarrow{\quad \text{SO}_2 \quad} \text{A} \xrightarrow{\quad \text{Na}_2\text{CO}_3 \quad} \text{B} \xrightarrow{\quad \text{Elemental S} \quad} \text{C} \xrightarrow{\quad \text{I}_2 \quad} \text{D}$$

Also mention the oxidation state of S in all the compounds.

[JEE -2002]

- A mixture consists A (yellow solid) and B (colourless solid) which gives Lilac colour in flame.
 - (a) Mixture gives black precipitate C on passing H_oS (g).
 - (b) C is soluble in aqua-regia and on evaporation of aqua-regia and adding $SnCl_2$ gives greyish black precipitate D. The salt solution with NH_4OH gives a brown precipitate.
 - (i) The sodium extract of the salt with CCl₄/FeCl₃ gives a violet layer.
 - (ii) The sodium extract gives yellow precipitate with $AgNO_3$ solution which is insoluble in NH_3 .

Identify A and B, and the precipitates C and D.

[JEE -2003]

- 5. Dimethyl glyoxime is added to alcoholic solution of NiCl₂. When ammonium hydroxide is slowly added to it a rosy red precipitate of a complex appears.
 - (i) Give the structure of complex showing hydrogen bonds
 - (ii) Give oxidation state and hybridization of central metal ion.
 - (iii) Identify whether it is paramagnetic or diamagnetic.

[JEE -2004]

- There are two ores (A_1) and (A_2) of metal (M). When ore (A_1) is calcinated a black solid (S) is obtained along with the liberation of CO_2 and water. The ore (A_1) on treatment with HCl and KI gives a precipitate (P) and iodine is liberated. Another ore (A_2) on roasting gives a gas (G) and metal (M) is set free. When gas (G) is passed through $K_2Cr_2O_7$ it turns green. Identify (M), (A_1) , (A_2) , (S), (P) and (G). [JEE -2004]
- 7. $Fe^{3+} \xrightarrow{SCN^{-}(excess)} blood red (A) \xrightarrow{F^{-}(excess)} colourless (B)$

Identify (A) and (B)

- (a) Write IUPAC name of A and B.
- (b) Find out spin only magnetic moment of B

[JEE -2005]

8.
$$\begin{pmatrix} Brown fumes and \\ pungent smell \end{pmatrix} B \stackrel{NaBr+MnO_2}{\longleftarrow} A \stackrel{conc.HNO_3}{\longrightarrow} C$$
 (intermediate) D (Explosive product)

Find A, B, C and D. Also write equations A to B and A to C.

[JEE -2001]

Identify the metal M and hence MCl_{a} . Explain the difference in colours of MCl_{a} and A. [JEE -2005]

- During the qualitative analysis of a mixture containing Cu2+ and Zn2+ ions, H2S gas is passed through an 10. acidified solution containing these ions in order to test Cu²⁺ alone. Explain. [IIT -98, 2M]
- 11. Write the chemical reactions associated with the 'brown ring test'. [JEE -2000]
- 12. Write the chemical reaction associated with the 'borax bead test' of cobalt (II) oxide. [JEE -2000, 3M]
- 13. A white substance A reacts with dilute H_2SO_4 to produce a colourless gas B and a colourless solution C. The reaction between B and acidified $K_2Cr_2O_7$ solution produces a green solution and a slightly coloured precipitate D. The substance D burns in air to produce a gas E which reacts with B to yield D and a colourless liquid. Anhydrous copper sulphate is turned blue on addition of this colourless liquid. Addition of aqueous NH, or NaOH to C produces first a precipitate, which dissolves in the excess of the respective reagent to produce a clear solution in each case. Identify A, B, C, D and E. Write the equations of the reactions involved. [JEE-2001 10M]
- 14. When a white crystalline compound X is heated with K2Cr2O2 and concentrated H2SO4, a reddish brown gas A is evolved. On passing A into caustic soda solution, a yellow coloured solution B is obtained. Neutralizing the solution of B with acetic acid and on subsequent addition of lead acetate a yellow precipitate C is obtained. When X is heated with NaOH solution, colourless gas is evolved and on passing this gas into K, Hgl, solution, a reddish brown precipitate D is formed Identify A, B, C, D and X. Write the equations of reactions involved. [JEE -2002 5M]

MCQ's WITH ONE CORRECT ANSWER

- 15. A gas 'X' is passed through water to form a saturated solution. The aqueous solution on treatment with silver nitrate gives a white precipitate. The saturated aqueous solution also dissolves magnesium ribbon with evolution of a colourless gas 'Y'. Identify 'X' and 'Y': [JEE -2002]
 - (A) $X = CO_2$, $Y = Cl_2$

(B)
$$X = Cl_2, Y = CO_2$$

(C)
$$X = Cl_2, Y = H_2$$

(D)
$$X = H_2, Y = Cl_2$$

- 16. An aqueous solution of a substance gives a white precipitate on treatment with dilute hydrochloric acid, which dissolves on heating. When hydrogen sulphide is passed through the hot acidic solution, a black precipitate is obtained. The substance is a -[JEE -2000]
 - (A) Hg_{2}^{+} salt
- (B) Cr^{2+} salt
- (C) Aσ⁺salt
- (D) Pb^{2+} salt

[X] + H_2SO_4 \longrightarrow [Y] a colourless gas with irritating smell 17.

$$[Y] + K_2Cr_2O_7 + H_2SO_4 \longrightarrow green solution$$

[X] and [Y] are -[JEE -2003]

(A) SO_3^{2-} , SO_2 (B) Cl^- , HCl

- (C)S²⁻, H₂S
- (D) CO₂²⁻, CO₂

18.	A sodium salt of an unknanion is -	nown anion when treated v	with MgCl ₂ gives white pre	ecipitate only on boiling. The [IIT -2004]
	(A) SO ₄ ²⁻	(B) HCO - 3	(C) CO ²⁻ ₃	(D) NO 3
19.		ith KI to give a black pred The cation of metal nitrat (B) Bi ³⁺		of excess of KI convert into $\label{eq:convert} \mbox{[IIT -2005]} \mbox{(D) } \mbox{Cu}^+$
20.	$\mathrm{NH_4Cl/NH_4OH}$, the voluthe precipitate which dis	me of precipitate decrease ssolves in $\mathrm{NH_4OH/NH_4Cl}$	es leaving behind a white g :	ate, On addition of excess gelatinous precipitate. Identify [IIT -2006]
21.	(A) Zn(OH) ₂ CuSO ₄ decolourises on a (A) [Cu(CN) ₄] ²⁻	(B) Al(OH) ₃ addition of KCN, the prod	(C) Mg(OH) ₂ duct is -	(D) Ca(OH) ₂ [IIT -2006]
	 (B) Cu²⁺ get reduced to (C) Cu (CN)₂ (D) CuCN 	form $[Cu(CN)_4]^{3-}$		
22.	Aqueous solution of Na	$_2$ S $_2$ O $_3$ on reaction with Cl	l ₂ gives :-	[IIT -2008]
	(A) $Na_2S_4O_6$	(B) NaHSO ₄	(C) NaCl	(D) NaOH
	MCQ's WITH ONE O	R MORE THAN ONE C	CORRECT ANSWER	
23.	The reagents, NH ₄ Cl an	d aqueous NH_3 will preci-	pitate :-	[1991, 1M]
	(A) Ca ²⁺	(B) Al ³⁺	(C) Bi ³⁺	(D) Mg ²⁺
	(E) Zn ²⁺			
24.				s and ferric ions :- [1998, 2M]
		lour with potassium ferric ipitate with potassium fer		
		r with potassium thiocyan		
		lour with ammonium thio		
25.		solution when CO_2 is dis		[JEE-2006]
	(A) CO_2 , H_2CO_3 , HCO_3			
	(B) H_2CO_3 , CO_3^{2-}	, 3 , , , , , , , , , , , , , , , , , ,		
	(C) HCO ₃ , CO ₃ ²⁻			
	(D) CO ₂ , H ₂ CO ₃			
26.	A solution of a metal ion a colourless solution. More gives rise to a deep blu		ion on treatment with a solution Γ	dissolves in excess KI to give lution of cobalt (II) thiocyanate [JEE -2007]
	(A) Pb ²⁺		(B) Hg ²⁺	
0.7	(C) Cu ²⁺	16 I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(D) Co ⁺²	11 71 14
27.		Upon addition of Zn dust		nmable gas. The gas evolution gas evolution restarts. The [IIT -2008]
	(A) NH ₄ NO ₃	(B) NH ₄ NO ₂	(C) NH ₄ Cl	(D) (NH ₄) ₂ SO ₄

MATCH THE COLUMN

28. Match the complexes in Column I with their properties listed in Column II. Indicate your answer by darkening the appropriate bubbles of the 4 4 matrix given in the ORS. [JEE-2007]

Column-I		Column-II	
(A)	$O_2^- \to O_2^- \to O_2^{2^-}$	(p)	redox reaction
(B)	$\operatorname{CrO}_{4}^{2-} + \operatorname{H}^{+} \rightarrow$	(q)	One of the products has trigonal planar structure
(C)	$MnO_4^- + NO_2^- + H^+ \rightarrow$	(r)	Dimeric bridged tetrahedral metal ion
(D)	$NO_3^- + H_2SO_4^- + Fe^{2+} \rightarrow$	(s)	disproportionation

 $\textbf{29.} \hspace{15mm} \textbf{Statement-I} \, : \, [\text{Fe}(\text{H}_2\text{O})_5\text{NO}] \text{SO}_4 \, \, \text{is paramagnetic}.$

[IIT -2008]

Because

 $\textbf{Statement-II}: \ \, \text{The Fe in [Fe(H_2O_5)NO]SO}_4 \ \, \text{has three unpaired electrons}.$

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-II is True, Statement-II is True; Statement-II is **NOT** a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

- **1**. (A) CuS
- $(B) Cu_2I_2$

- **4**. (A) HgI₂
- (B) KI (C) HgS (D) Hg

- $\textbf{6.} \quad \textbf{A}_{1} \, \, \textbf{CuCO}_{3}.\textbf{Cu(OH)}_{2} \, \, (\textbf{Malachite}) \qquad \qquad \textbf{A}_{2} \, \, \textbf{Cu}_{2}\textbf{S} \, \, (\textbf{Copper glance})$

- S CuO
- $P Cu_2I_2$ $G SO_2$
- 7. A $[Fe(SCN)(H_2O)_5]^{2+}$ (Pentaaquathiocyanato-S-iron (III) ion), Magnetic moment = $\sqrt{35}$
 - B $[FeF_6]^{3-}$ (hexaflouroferrate (III) ion), Magnetic moment = $\sqrt{35}$
- **8.** (A) conc. H_2SO_4 (B) Br_2 (C) NO_2^+

- $\textbf{9.} \quad \text{(A)} [\text{Ti}(\text{H}_2\text{O})_6]^{3^+} \qquad \qquad \text{(B)} \text{HCl}, \ \text{MCl}_4 \text{TiCl}_4 \ \text{(Purple colour of } [\text{Ti}(\text{H}_2\text{O})_6]^{3^+} \text{ is due to d-d transition)}$
- 10. Hint :- K_{sp} (solubility product) of CuS is less than K_{sp} of ZnS.
- **11**. **Hint** :- [Fe(NO)SO₄]

(Brown ring) (Ferrous nitroso sulphate)

- **12.** Hint :- $CO(BO_2)_2$ [Cobalt metaborate (Blue colour)]
- **13**. (A) ZnS
- $(B) H₂S \qquad (C) ZnSO₄$
- (D) S (E) SO_2

- $\textbf{14.} \ \ \text{X} \rightarrow \text{NH}_{4}\text{Cl}, \qquad \qquad \text{(A)} \text{CrO}_{2}\text{Cl}_{2} \qquad \text{(B)} \text{Na}_{2}\text{CrO}_{4} \qquad \qquad \text{(C)} \text{PbCrO}_{4} \qquad \qquad \text{(D)} \text{NH}_{4}\text{(HgO)HgI}$
- **15**. (C)
- **16**. (D)
- **17**. (A)
- **18**. (B)
- **19**. (B)

20. (A)

- **21**. (D)
- **22**. (B)
- **23.** (B), (C)
- 24. (B), (C)

25. (A)

- **26**. (B)
- **27**. (A,B)
- **28.** (A) p, s (B) r, (C) p, q, (D) p, s **29.** (A)