Inferenza Statistica

Lorenzo Camponovo SUPSI DTI

Contenuti

- 1. Teorema del Limite Centrale.
- 2. Introduzione.
- 3. Test per la media.
- 4. Test per differenza di medie.

- Consideriamo una successione di variabili aleatorie X_n , $n \in \mathbb{N}$, con funzione di distribuzione F_n .
- Si dice che X_n converge in distribuzione verso la variabile aleatoria Z, cioè,

$$X_n \rightarrow_d Z$$
,

se il seguente limite esiste,

$$\lim_{n\to\infty}F_n(x)=F(x),$$

per ogni $x \in \mathbb{R}$, dove F è la funzione di distribuzione di Z.

- Valgono i seguenti teoremi.
- $X_n \rightarrow_d Z$ se e solo se per ogni funzione continua e limitata g(x) vale,

$$\lim_{n\to\infty} E[g(X_n)] = E[g(Z)].$$

• Se $X_n \to_d Z$ e h(x) è una funzione continua, allora,

$$h(X_n) \rightarrow_d h(Z)$$
.

• Siano X_1, \ldots, X_n delle variabili aleatorie i.i.d, con,

$$E[X_i] = \mu, \quad Var(X_i) = \sigma^2.$$

• Sia $S_n = \sum_{i=1}^n X_i$ e $\bar{X}_n = \frac{1}{n} S_n$. Allora la distribuzione F_n della variabile aleatoria,

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}},$$

converge per $n \to \infty$ verso la distribuzione normale standard,

$$F_n(Z_n) \rightarrow_d F_Z(Z)$$
.

• Siano X_1, \ldots, X_n distribuite secondo la distribuzione Uniforme [0, 1],

- Teorema di De Moivre e Laplace: Sia S_n una variabile aleatoria con distribuzione binomiale di parametri n e p.
- Allora la sua distribuzione converge per $n \to \infty$ verso la distribuzione normale con i seguenti momenti,

$$F_B(S_n; n, p) \rightarrow^d F_N(S_n; np, np(1-p)).$$

Analogamente la distribuzione di,

$$Z_n = \frac{S_n - np}{\sqrt{np(1-p)}} = \frac{\bar{X}_n - p}{\sqrt{\frac{p(1-p)}{n}}},$$

converge per $n \to \infty$ verso la distribuzione normale standard,

$$F_n(Z_n) \rightarrow_d F_Z(Z)$$
.

- Esempio: siano X_1, \ldots, X_{12} delle variabili aleatorie i.i.d. con distribuzione uniforme nell'intervallo [-0.5, 0.5].
- Sia $S_{12} = \sum_{i=1}^{12} X_i$.
- Utilizzando il teorema del limite centrale approssimare la seguente propabilità,

$$P(S_{12} > 1)$$
.

- Esempio: lanciamo una moneta 100 volte, ottenendo testa esattamente 60 volte.
- Utilizzando il teorema del limite centrale approssimare la probabilità di ottenere almeno 60 volte testa.
- Pensate che la moneta sia truccata?

2. Introduzione: Esempio

- Sia $\mu = E[X]$ lo stipendio medio annuale (in migliaia di franchi) di una persona in CH.
- Dato un campione casuale (X_1,\ldots,X_n) di dimensione n, possiamo utilizzare lo stimatore

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i,$$

per stimare il parametro sconosciuto μ .

- Supponiamo che basandoci su dati passati crediamo che $\mu=50$.
- Tuttavia, supponiamo di aver osservato nel nostro campione aleatorio $\hat{\mu}_n = 55$. Allora dovremmo rifiutare l'ipotesi $\mu = 50$? E se avessimo osservato $\hat{\mu}_n = 60$?
- Per rispondere a queste domande dobbiamo effettuare un test statistico.

2. Introduzione: Ipotesi

• Ipotesi nulla (l'ipotesi che vogliamo testare, denotata con H₀),

$$H_0: \mu = 50.$$

• Ipotesi alternativa (l'ipotesi che contrasta quella nulla, denotata con H_1),

$$H_1: \mu \neq 50.$$

2. Introduzione: Scenari

4 scenari possibili,

	H_0 is true	H_1 is true
decision: H_0	$1-\alpha$	eta
decision: H_1	α	$1-\beta$

2. Introduzione: Errori del I e II tipo

- α è la significatività del test. È anche l'errore di primo tipo.
- β è l'errore di secondo tipo.
- 1β è la potenza del test.

2. Introduzione: Test Statistico

- Determinare il parametro di interesse θ e un suo stimatore $\hat{\theta}_n$.
- Determinare H_0 , H_1 e la significatività α .
- Determinare p-values / valori critici.
- Decidere se rifiutare o meno H_0 .

3. Test per la media

- Supponiamo che il parametro di interesse (e sconosciuto) sia il valore atteso di una data popolazione $\mu = E[X]$.
- Supponiamo invece che la varianza della popolazione sia conosciuta $\sigma^2 = Var(X) = 9$.
- Sulla base di dati precedenti, pensiamo che $\mu=30$. Tuttavia, stimando il parametro μ attraverso un campione di 25 elementi otteniamo $\hat{\mu}_n=29$.
- I dati ottenuti ci possono far pensare che $\mu <$ 30. Un test della media ci permette di sciogliere questo dubbio.

3. Test per la media: p-value

- Ipotesi nulla: H_0 : $\mu = 30$.
- Ipotesi alternative: $H_1: \mu < 30$.
- Livello di significatività: $\alpha = 0.05$.
- Test Statistica:

$$T=\frac{\hat{\mu}_n-\mu}{\sigma/\sqrt{n}}=\frac{\hat{\mu}_n-30}{3/5},$$

Sotto l'ipotesi nulla, grazie al TLC, sappiamo che $T \sim \textit{N}(0,1)$.

Calcoliamo il p-value:

$$p - value = P\left(T < \frac{29 - 30}{3/5}\right) = 0.0475.$$

• Il p-value è inferiore al livello di significatività $\alpha=0.05$, dunque rifiutiamo H_0 .

3. Test per la media: valore critico

- Ipotesi nulla: H_0 : $\mu = 30$.
- Ipotesi alternative: $H_1: \mu < 30$.
- Livello di significatività: $\alpha = 0.05$.
- Test Statistica:

$$T=\frac{\hat{\mu}_n-\mu}{\sigma/\sqrt{n}}=\frac{\hat{\mu}_n-30}{3/5},$$

Sotto l'ipotesi nulla, grazie al TLC, sappiamo che $T \sim N(0,1)$.

• Dalla tabella N(0,1) sappiamo che,

$$P(T < -1.64) = 0.05.$$

Otteniamo il valore critico k risolvendo $\frac{k-30}{3/5}=-1.64$, da cui otteniamo: k=29.016.

Il valore osservato è minore al valore critico dunque rifiutiamo H₀.

3. Test per la media

- In questo esempio abbiamo osservato $\hat{\mu}_n = 29$.
- Chiaramente se avessimo osservato $\hat{\mu}_n = 30.5$ l'ipotesi alternativa sarebbe cambiata.
- Più precisamente avremmo ottenuto i seguenti test statistici.

3. Test per la media: p-value

- Ipotesi nulla: H_0 : $\mu = 30$.
- Ipotesi alternative: $H_1: \mu > 30$.
- Livello di significatività: $\alpha = 0.05$.
- Test Statistica:

$$T=\frac{\hat{\mu}_n-\mu}{\sigma/\sqrt{n}}=\frac{\hat{\mu}_n-30}{3/5},$$

Sotto l'ipotesi nulla, grazie al TLC, sappiamo che $T \sim \textit{N}(0,1)$.

Calcoliamo il p-value:

$$p - value = P\left(T > \frac{30.5 - 30}{3/5}\right) = 0.2033.$$

• Il p-value è superiore al livello di significatività $\alpha=0.05$, dunque non rifiutiamo H_0 .

3. Test per la media: valore critico

- Ipotesi nulla: H₀: μ = 30.
- Ipotesi alternative: $H_1: \mu > 30$.
- Livello di significatività: $\alpha = 0.05$.
- Test Statistica:

$$T=\frac{\hat{\mu}_n-\mu}{\sigma/\sqrt{n}}=\frac{\hat{\mu}_n-30}{3/5},$$

Sotto l'ipotesi nulla, grazie al TLC, sappiamo che $T \sim N(0,1)$.

Dalla tabella N(0,1) sappiamo che,

$$P(T > 1.64) = 0.05.$$

Otteniamo il valore critico k risolvendo $\frac{k-30}{3/5}=1.64$, da cui otteniamo: k=30.984.

Il valore critico è maggiore a quanto osservato dunque non rifiutiamo H₀.

3. Test per la media

In questi esempi abbiamo considerato ipotesi alternative della forma,

$$H_1: \mu < \mu_0$$
, oppure $H_1: \mu > \mu_0$.

- Test di questa forma si dicono unilaterali.
- Tuttavia, avremmo potuto anche considerare come ipotesi alternativa,

$$H_1: \mu \neq \mu_0.$$

- Test di questa forma si dicono bilaterali.
- Supponiamo di aver osservato $\hat{\mu}_n=31$. Il test bilaterale si esegue nel seguente modo.

3. Test per la media: p-value

- Ipotesi nulla: H_0 : $\mu = 30$.
- Ipotesi alternative: $H_1: \mu \neq 30$.
- Livello di significatività: $\alpha = 0.05$.
- Test Statistica:

$$T=\frac{\hat{\mu}_n-\mu}{\sigma/\sqrt{n}}=\frac{\hat{\mu}_n-30}{3/5},$$

Sotto l'ipotesi nulla, grazie al TLC, sappiamo che $T \sim \textit{N}(0,1)$.

Calcoliamo il p-value:

$$p - value = P\left(|T| > \left|\frac{31 - 30}{3/5}\right|\right) = 0.095.$$

• Il p-value è superiore al livello di significatività $\alpha=0.05$, dunque non rifiutiamo H_0 .

3. Test per la media: valore critico

- Ipotesi nulla: H_0 : $\mu = 30$.
- Ipotesi alternative: $H_1: \mu \neq 30$.
- Livello di significatività: $\alpha = 0.05$.
- Test Statistica:

$$T=\frac{\hat{\mu}_n-\mu}{\sigma/\sqrt{n}}=\frac{\hat{\mu}_n-30}{3/5},$$

Sotto l'ipotesi nulla, grazie al TLC, sappiamo che $T \sim \textit{N}(0,1)$.

• Dalla tabella N(0,1) sappiamo che,

$$P(|T| > 1.96) = 0.05.$$

Otteniamo i valori critici k_1 e k_2 risolvendo $\frac{k_1-30}{3/5}=-1.96$ e $\frac{k_2-30}{3/5}=1.96$ da cui otteniamo: $k_1=28.824$ e $k_2=31.176$.

Il valore osservato è all'interno dei valori critici dunque non rifiutiamo H₀.

4. Test per differenza di medie

- Supponiamo ora di avere due popolazioni e due parametri sconosciuti $\mu_X = E[X]$ e $\mu_Y = E[Y]$.
- Supponiamo invece che le varianze delle due popolazioni siano conosciute $\sigma_X^2 = Var(X) = 9$ e $\sigma_Y^2 = Var(Y) = 25$.
- Sulla base di dati precedenti, pensiamo che $\mu_X = \mu_Y$. Tuttavia, stimando la differenza dei parametri sconosciuti su un campione di n=36 elementi per la popolazione X e m=49 per la popolazione Y otteniamo $\hat{\mu}_{X,n} \hat{\mu}_{Y,m} = 1.5$.
- I dati ottenuti ci possono far pensare che $\mu_X > \mu_Y$. Un test per differenza di medie ci permette di sciogliere questo dubbio.

4. Test per differenza di medie: p-value

- Ipotesi nulla: $H_0: \mu_X \mu_Y = 0$.
- Ipotesi alternative: $H_1: \mu_X \mu_Y > 0$.
- Livello di significatività: $\alpha = 0.05$.
- Test Statistica:

$$T = \frac{\hat{\mu}_{X,n} - \hat{\mu}_{Y,m}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} = \frac{1.5}{\sqrt{\frac{9}{36} + \frac{25}{49}}},$$

Sotto l'ipotesi nulla, grazie al TLC, sappiamo che $T \sim N(0,1)$.

Calcoliamo il p-value:

$$p - value = P\left(T > \frac{1.5}{\sqrt{\frac{9}{36} + \frac{25}{49}}}\right) = 0.0427.$$

• Il p-value è inferiore al livello di significatività $\alpha = 0.05$, dunque rifiutiamo H_0 .

4. Test per differenza di medie: valore critico

- Ipotesi nulla: $H_0: \mu_X \mu_Y = 0$.
- Ipotesi alternative: $H_1: \mu_X \mu_Y > 0$.
- Livello di significatività: $\alpha = 0.05$.
- Test Statistica:

$$T = \frac{\hat{\mu}_{X,n} - \hat{\mu}_{Y,m}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}.$$

Sotto l'ipotesi nulla, grazie al TLC, sappiamo che $T \sim N(0,1)$.

Calcoliamo il valore critico k definito come.

$$P(T > k) = 0.05.$$

Usando le tabelle otteniamo: k = 1.4299

Il valore critico è minore a quanto osservato dunque rifiutiamo H₀.

4. Test per differenza di medie

- In questo esempio abbiamo osservato $\hat{\mu}_{X,n} \hat{\mu}_{Y,m} = 1.5$.
- Chiaramente se avessimo osservato $\hat{\mu}_{X,n} \hat{\mu}_{Y,m} = -0.5$, l'ipotesi alternativa sarebbe cambiata.
- Più precisamente avremmo ottenuto i seguenti test statistici.

4. Test per differenza di medie: p-value

- Ipotesi nulla: $H_0: \mu_X \mu_Y = 0$.
- Ipotesi alternative: $H_1: \mu_X \mu_Y < 0$.
- Livello di significatività: $\alpha = 0.05$.
- Test Statistica:

$$T = \frac{\hat{\mu}_{X,n} - \hat{\mu}_{Y,m}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} = \frac{-0.5}{\sqrt{\frac{9}{36} + \frac{25}{49}}},$$

Sotto l'ipotesi nulla, grazie al TLC, sappiamo che $T \sim N(0,1)$.

Calcoliamo il p-value:

$$p - value = P\left(T < \frac{-0.5}{\sqrt{\frac{9}{36} + \frac{25}{49}}}\right) = 0.2843.$$

• Il p-value è superiore al livello di significatività $\alpha=0.05$, dunque non rifiutiamo H_0 .

2020

4. Test per differenza di medie: valore critico

- Ipotesi nulla: $H_0: \mu_X \mu_Y = 0$.
- Ipotesi alternative: $H_1: \mu_X \mu_Y < 0$.
- Livello di significatività: $\alpha = 0.05$.
- Test Statistica:

$$T = \frac{\hat{\mu}_{X,n} - \hat{\mu}_{Y,m}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}.$$

Sotto l'ipotesi nulla, grazie al TLC, sappiamo che $T \sim N(0,1)$.

Calcoliamo il valore critico k definito come.

$$P(T < k) = 0.05.$$

Usando le tabelle otteniamo: k = -1.4299.

Il valore critico è minore a quanto osservato dunque non rifiutiamo H₀.

29 / 32

4. Test per differenza di medie

In questi esempi abbiamo considerato ipotesi alternative della forma,

$$H_1: \mu_X - \mu_Y < 0$$
, oppure $H_1: \mu_X - \mu_Y > 0$.

- Test di questa forma si dicono unilaterali.
- Tuttavia, avremmo potuto anche considerare come ipotesi alternativa,

$$H_1: |\mu_X - \mu_Y| \neq 0.$$

- Test di questa forma si dicono bilaterali.
- Supponiamo di aver osservato $\hat{\mu}_{X,n} \hat{\mu}_{Y,m} = 1$. Il test bilaterale si esegue nel seguente modo.

4. Test per differenza di medie: p-value

- Ipotesi nulla: $H_0: \mu_X \mu_Y = 0$.
- Ipotesi alternative: $H_1: |\mu_X \mu_Y| \neq 0$.
- Livello di significatività: $\alpha = 0.05$.
- Test Statistica:

$$T = \frac{|\hat{\mu}\chi_{,n} - \hat{\mu}\gamma_{,m}|}{\sqrt{\frac{\sigma_{\chi}^2}{n} + \frac{\sigma_{\chi}^2}{m}}} = \frac{|1|}{\sqrt{\frac{9}{36} + \frac{25}{49}}},$$

Sotto l'ipotesi nulla, grazie al TLC, sappiamo che $T \sim N(0,1)$.

Calcoliamo il p-value:

$$p - value = P\left(|T| > \frac{|1|}{\sqrt{\frac{9}{36} + \frac{25}{49}}}\right) = 0.2542.$$

Il p-value è superiore al livello di significatività $\alpha = 0.05$, dunque non rifiutiamo H_0 .

4. Test per differenza di medie: valore critico

- Ipotesi nulla: $H_0: \mu_X \mu_Y = 0$.
- Ipotesi alternative: $H_1: |\mu_X \mu_Y| < 0$.
- Livello di significatività: $\alpha = 0.05$.
- Test Statistica:

$$T = \frac{|\hat{\mu}_{X,n} - \hat{\mu}_{Y,m}|}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}.$$

Sotto l'ipotesi nulla, grazie al TLC, sappiamo che $T \sim N(0,1)$.

• Calcoliamo i valori critici k definito come,

$$P(|T| < k) = 0.05.$$

Usando le tabelle otteniamo: k = -1.7089 e k = 1.7089.

Il valore osservato è all'interno dei valori critici dunque non rifiutiamo H₀.