Optimization and Data Science Lecture 19: Evolution Strategies for Optimization

Prof. Dr. Thomas Slawig

Kiel University - CAU Kiel Dep. of Computer Science

Summer 2020

Contents

- Evolution Strategies for Optimization
 - Global vs. local and deterministic vs. stochastic optimization methods
 - Rechenberg's classical $(\mu + \lambda)$ and (μ, λ) -Strategies
 - Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - Application of Evolution Strategy to the Design of ANNs

Evolution Strategies for Optimization

• What is it?

Evolutionary strategies (or evolutionary algorithms, also genetic algorithms) Mimic the biological evolution for optimization Iterative algorithms including stochastic parts

Sometimes termed "global" methods, but this is debatable

- Why are we studying this?
 Main class of optimization algorithms
 Need only function evaluations, no gradients, easily parallelizable
- How does it work?
 Evaluate function at a number of points ("population"), changing them randomly
 "Survival of the fittest"
- What if we can use it?
 Have an alternative to gradient-based method
 Combination (hybrid methods) possible

Contents

- Evolution Strategies for Optimization
 - Global vs. local and deterministic vs. stochastic optimization methods
 - Rechenberg's classical $(\mu + \lambda)$ and (μ, λ) -Strategies
 - Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - Application of Evolution Strategy to the Design of ANNs

Global deterministic search

• Search for minimizer \star checking all points on a grid row by row (or column by column) in the feasible set.

Global stochastic search

• Search for minimizer \star checking randomly points in the feasible set.

Local deterministic search

• Searching for the minimizer \star following a given rule (e.g., negative gradient direction).

etc.

Local stochastic search

• Search at a number of randomly chosen points in the vicinity of the last point.

randomly chosen initial point

Comparison the effort: Global deterministic search

• Assumption: desired accuracy in parameter $x_i \in [a_i, b_i]$:

$$rac{b_i-a_i}{10^k}$$
 mit $k\in\mathbb{N}$ arbitrary.

- Example: $k = 2 \rightsquigarrow \text{Accuracy } 1 \% \text{ of interval size } b_i a_i$.
- \rightsquigarrow we need 10^k points in every dimension.
- For *n* parameters:

$$10^{k \cdot n}$$
 points = function evaluations

- Example: $k = 2, n = 7 \rightsquigarrow 10^{14}$ points/evaluations.
- Example: $k = 2, n = 40 \Rightarrow 10^{80} \approx \#$ atoms in the universe.
- → Not feasible.

Comparison effort: Global stochastic search (1)

• With accuracy as above:

 $10^{k \cdot n}$ grid points in total

• Now: random choice. Probability to find minimizer in 1st guess:

$$P = \frac{1}{10^{k \cdot n}}$$

• Probability to **not find** minimizer in 1st guess:

$$P = 1 - \frac{1}{10^{k \cdot n}}$$

• Probability to **not find** minimizer after *m* guesses:

$$P = \left(1 - \frac{1}{10^{k \cdot n}}\right)^m$$

Comparison effort: Global stochastic search (2)

• Probability to **find** minimizer after *m* guesses

$$P = 1 - \left(1 - \frac{1}{10^{k \cdot n}}\right)^m \Leftrightarrow 1 - P = \left(1 - \frac{1}{10^{k \cdot n}}\right)^m \Leftrightarrow \log(1 - P) = m\log\left(1 - \frac{1}{10^{k \cdot n}}\right)$$

• Number m of steps to find minimizer with P = 0.95:

$$m = \frac{\log(1-P)}{\log\left(1 - \frac{1}{10^{k \cdot n}}\right)} \approx \frac{\log(1-P)}{-\frac{1}{10^{k \cdot n}}} = -10^{k \cdot n} \log(1-P)$$

- Example: $P = 0.95 \Rightarrow \log(1 P) \approx -3 \Rightarrow m \approx 3 \times 10^{k \cdot n}$.
- → 3 times the number for the deterministic search.
- → Also unfeasible.
- → Need local methods.

Contents

- Evolution Strategies for Optimization
 - Global vs. local and deterministic vs. stochastic optimization methods
 - Rechenberg's classical $(\mu + \lambda)$ and (μ, λ) -Strategies
 - Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - Application of Evolution Strategy to the Design of ANNs

Basics

- Evolutionary Strategies (ES)
- ... or Evolutionary Algorithms
- ... or Genetic Algorithms (GA).
- Pioneer: Ingo Rechenberg (*1934, Prof. at TU Berlin)
- Emulation of Darwin's theory of evolution:
 - Inheritance
 - Mutations
 - Recombination of genes
 - Survival of the fittest.
- No derivatives needed.
- Parallelizable.
- Still a local method.

$(\mu + \lambda)$ -Evolution Strategy

- **①** Define $\mu \in \mathbb{N}_{>0}$: # parents, $\lambda \in \mathbb{N}_{>0}$: # offspring.
- **②** Choose initial population $P = \{x_1, \dots, x_{\mu}\}$ and mutability $\delta > 0$.
- **3** For every generation k = 0, 1, ...:
 - Variation/Mutation: For $i = 1, ..., \lambda$:
 - ullet choose parent randomly, i.e., choose $j\in\{1,\ldots,\mu\},$
 - generate offspring: $\hat{x}_i := x_i + \delta z$,
 - using a random vector $z \in \mathcal{N}(0, \frac{1}{n})^n$.
 - **2** Selection: Choose $P \subset \hat{P} := \{x_1, \dots, x_{\mu}, \hat{x}_1, \dots, \hat{x}_{\lambda}\}, |P| = \mu$, such that

$$\max\{f(x):x\in P\}\leq \min\big\{f(x):x\in \hat{P}\setminus P\big\}.$$

3 If a stopping criterion is satisfied: stop.

$(\mu + \lambda)$ -ES with different mutabilities

- **①** Define $\mu \in \mathbb{N}_{>0}$: # parents, $\lambda \in \mathbb{N}_{>0}$: # offspring.
- ② Choose initial population $P = \{x_1, \dots, x_{\mu}\}$ and mutabilities $\delta_j > 0, j = 1, \dots, \mu$.
- **3** For every generation k = 0, 1, ...:
 - Variation/Mutation: For $i = 1, ..., \lambda$:
 - ullet choose parent randomly, i.e., choose $j\in\{1,\ldots,\mu\},$
 - generate offspring: $\hat{x}_i := x_j + \delta_j z$,
 - using a random vector $z \in \mathcal{N}(0, \frac{1}{n})^n$.
 - **2** Selection: Choose $P \subset \hat{P} := \{x_1, \dots, x_{\mu}, \hat{x}_1, \dots, \hat{x}_{\lambda}\}, |P| = \mu$, such that

$$\max\{f(x):x\in P\}\leq \min\big\{f(x):x\in \hat{P}\setminus P\big\}.$$

3 If a stopping criterion is satisfied: stop.

$(\mu + \lambda)$ -ES with mutated mutabilities

- **①** Define $\mu \in \mathbb{N}_{>0}$: # parents, $\lambda \in \mathbb{N}_{>0}$: # offspring, parameter $\alpha > 0$.
- **②** Choose initial population $P = \{x_1, \dots, x_{\mu}\}$ and mutabilities $\delta_j > 0, j = 1, \dots, \mu$.
- **3** For every generation $k = 0, 1, \ldots$:
 - Variation/Mutation: For $i = 1, ..., \lambda$:
 - choose parent randomly, i.e., choose $j \in \{1, \dots, \mu\}$,
 - generate offspring: $\hat{x}_i := x_i + \hat{\delta}_i z$,
 - using a random vector $z \in \mathcal{N}(0, \frac{1}{n})^n$
 - and a mutated mutability: $\hat{\delta}_i := \xi \delta_i$
 - where $\xi \in \{\alpha, \frac{1}{\alpha}\}$ is chosen randomly. (Rechenberg: $\alpha = 1.3$)
 - **②** Selection: Choose $P \subset \hat{P} := \{x_1, \dots, x_{\mu}, \hat{x}_1, \dots, \hat{x}_{\lambda}\}, |P| = \mu$, such that

$$\max\{f(x):x\in P\}\leq \min\{f(x):x\in \hat{P}\setminus P\}.$$

If a stopping criterion is satisfied: stop.

$(\mu + \lambda)$ -ES with Mutation Strategy Parameter Control (MSC): Inheritance of mutabilities of best individuals

- **①** Define $\mu \in \mathbb{N}_{>0}$: # parents, $\lambda \in \mathbb{N}_{>0}$: # offspring, parameter $\alpha > 0$.
- **②** Choose initial population $P = \{x_1, \dots, x_{\mu}\}$ and mutabilities $\delta_j > 0, j = 1, \dots, \mu$.
- **3** For every generation k = 0, 1, ...:
 - Variation/Mutation: For $i = 1, ..., \lambda$:
 - choose parent randomly, i.e., choose $j \in \{1, \dots, \mu\}$,
 - generate offspring: $\hat{x}_i := x_i + \hat{\delta}_i z$,
 - using a random vector $z \in \mathcal{N}(0, \frac{1}{n})^n$
 - and a mutated mutability: $\hat{\delta}_i := \xi \delta_j$
 - where $\xi \in \{\alpha, \frac{1}{\alpha}\}$ is chosen randomly.
 - **②** Selection: Choose $P \subset \hat{P} := \{x_1, \dots, x_\mu, \hat{x}_1, \dots, \hat{x}_\lambda\}, |P| = \mu$, such that

$$\max\{f(x):x\in P\}\leq \min\{f(x):x\in \hat{P}\setminus P\}.$$

- **3** Save corresponding mutabilities: $\delta_i := \hat{\delta}(x_i)$ für $x_i \in P, i = 1, \dots, \mu$.
- If a stopping criterion is satisfied: stop.

Variant: (μ, λ) -ES with MSC

- Parents are not included in new generation.
- Changes in the algorithm:
- \bullet ... $\mu < \lambda$.
- **2** ...
- **3** For every generation $k = 0, 1, \dots$:
 - Variation/Mutation: ...
 - Selection: Choose $P \subset \hat{P} := \{\hat{x}_1, \dots, \hat{x}_{\lambda}\}, |P| = \mu$, such that

$$\max\{f(x): x \in P\} \le \min\{f(x): x \in \hat{P} \setminus P\}.$$

- 3 Save corresponding mutabilities: ...
- If a stopping criterion is satisfied: stop.

Random numbers in the ES

- **①**
- Choose initial population ...
- **3** For every generation k = 0, 1, ...:
 - Variation/Mutation: For $i = 1, ..., \lambda$:
 - choose parent ... $j \in \{1, ..., \mu\}$, \leftarrow uniform distribution, same probability for every j
 - generate offspring: $\hat{x}_i := x_j + \delta_i z$,
 - using a random vector $z \in \mathcal{N}(0, \frac{1}{n})^n \leftarrow \text{normal distribution with variance } \frac{1}{n}$

- and a mutated mutability: $\delta_i := \xi \delta_i$
- where $\xi \in \{\alpha, \frac{1}{\alpha}\}$ is chosen randomly. \leftarrow uniform distribution, same probability for both values
- Selection: ...

Example: Optimization of Rosenbrock function

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x_1, x_2) = 100 (x_2 - x_1^2)^2 + (1 - x_1)^2$$

Example: Optimization of Griewank function

$$f: \mathbb{R}^n \to \mathbb{R}, \quad f(x) = \sum_{i=1}^n \frac{x_i^2}{4000} - \prod_{i=1}^n \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$$

Contents

- Evolution Strategies for Optimization
 - Global vs. local and deterministic vs. stochastic optimization methods
 - Rechenberg's classical $(\mu + \lambda)$ and (μ, λ) -Strategies
 - Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - Application of Evolution Strategy to the Design of ANNs

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

- Extension of the original idea, also inspired by Rechenberg.
- Elaborated by two of his students: see Hansen/Ostermeier: Completely Derandomized Self-Adaptation in Evolution Strategies, in Evolutionary Computation 9(2), 2001.
- Main differences:
 - (1) Offspring not generated by mutation of single individual:

choose
$$j$$
 randomly, ... $\hat{x}_i := x_j + \delta_i z$,

but from weighted mean of the current population:

$$\hat{x}_i := ar{x} + \delta_i z, \quad ext{where } ar{x} := rac{1}{\sum_{j=1}^{\mu} w_j} \sum_{i=1}^{\mu} w_j x_j, \quad w_j > 0.$$

- This can be seen as recombination of the best individuals.
- Best individuals may get highest weights w_i .

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

(2) Random perturbations z are not chosen to be independent for each i,

$$\hat{x}_i := \bar{x} + \delta_i z$$
,

but chosen such that

$$z \sim \mathcal{N}(0, C)$$
,

where C is a given covariance matrix.

- This can be realized by
 - generating a random vector $\bar{z} \sim \mathcal{N}(0, I) = \mathcal{N}(0, 1)^n$,
 - computing the singular value decomposition (svd) of

$$C = U\Sigma U^{\top}$$
, (note: C is symmetric)

and setting

$$\hat{x}_i := \bar{x} + \delta_i U \Sigma^{\frac{1}{2}} \bar{z}, \quad \Sigma^{\frac{1}{2}} = \mathsf{diag}\left(\left(\sigma_i^{\frac{1}{2}}\right)_{i=1}^n\right).$$

Covariance adaptation in CMA-ES

(3) The covariance matrix C is updated in every iteration using a rank-1-update:

$$\hat{C} := (1 - \alpha)C + \alpha \hat{p} \hat{p}^{\top}, \quad \alpha \in (0, 1].$$

using

$$\hat{p} := (1 - \beta)p + \gamma U \Sigma^{\frac{1}{2}} \left(\overline{\hat{x}} - \overline{x} \right).$$

The parameters α, β, γ are chosen appropriately.

(4) Also the step-size δ is chosen differently.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

• Offspring generated by mutation of weighted mean of the current population:

$$\hat{x}_i := \bar{x} + \delta_i U \Sigma^{\frac{1}{2}} \bar{z}, \quad \bar{z} \sim \mathcal{N}(0, I).$$

• With $Cov(AX) = A Cov(X)A^{\top}$ we get:

$$Cov(U\Sigma^{\frac{1}{2}}\bar{z}) = U\Sigma^{\frac{1}{2}} Cov(\bar{z})(U\Sigma^{\frac{1}{2}})^{\top} = U\Sigma^{\frac{1}{2}} (U\Sigma^{\frac{1}{2}})^{\top} = U\Sigma^{\frac{1}{2}} \Sigma^{\frac{1}{2}} U^{\top} = U\Sigma U^{\top} = C.$$

We thus get

$$z := U \Sigma^{\frac{1}{2}} \bar{z} \sim \mathcal{N}(0, C),$$

if (U, Σ) is computed as the singular value decomposition (svd) of C.

Contents

- Evolution Strategies for Optimization
 - Global vs. local and deterministic vs. stochastic optimization methods
 - Rechenberg's classical $(\mu + \lambda)$ and (μ, λ) -Strategies
 - Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - Application of Evolution Strategy to the Design of ANNs

Sparse Evolutionary Training (SET) Algorithm

Mocanu, Mocanu, Stone, Nguyen, Gibescu, Liotta: Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science, in Nature Communications 9, 2018.

- Initialize fully connected ANN, i.e., define # layers, # nodes per layer.
- **2** Set parameters $\varepsilon \in \mathbb{R}_{>0}, \zeta \in (0,1)$.
- **3** Replace every layer ℓ by sparse connected layer:
 - ullet Define a uniformly distributed random matrix $W^\ell := (w_{\ell ij})_{ii} \in [0,1]^{N_\ell imes N_{\ell-1}}$
 - If $w_{\ell ij} > P_{\ell} := \frac{\varepsilon (N_{\ell} + N_{\ell-1})}{N_{\ell} N_{\ell-1}}$: remove edge (i,j).
- Initialize training parameters.
- **5** For each training epoch ($\hat{=}$ iteration k in the optimization algorithm):
 - Perform iteration and update parameters.
 - For each layer:
 - **1** Remove a fraction ζ of weights with smallest absolute values (and corresponding edges).
 - 2 Add the same number of new weights (and edges) randomly (except in the last epoche).

What is important

- Evolutionary Strategies are optimization methods that mimic the natural biological evolution.
- They build a population of parameter vectors (=individuals), change them randomly in a given mutation radius and chose the best individuals to survive in the next iteration.
- They are still local methods.
- There are different options for the choice of population size, number of surviving individuals and mutation radius.
- The methods need an adaptive setting of the mutation radius to become efficient.
- A sophisticated version is the covariance-adapted method (CMAES) that can be found as library.
- The methods are easily parallelizable and especially good for cost functions that show a non-smooth behavior, maybe due to data uncertainties.