Contrôle optimal de l'état quantique d'un condensat de Bose-Einstein dans un réseau optique

L. Gabardos ^{1*}, N. Dupont ¹, G. Chatelain ¹, M. Arnal ¹, J. Billy ¹, B. Peaudecerf ¹, D. Sugny ², D. Guéry-Odelin ¹

¹ LCAR (UMR 5589), Université Toulouse III - CNRS, Toulouse, France ² ICB (UMR 6303), Université de Bourgogne - CNRS, Dijon, France

Application de protocoles de contrôle optimal pour la manipulation de l'état externe de condensats de Bose-Einstein en réseau optique uni-dimensionnel. Par optimisation de l'évolution temporelle d'un unique paramètre, la position du réseau, nos protocoles nous permettent d'atteindre avec une bonne fidélité une variété d'états quantiques cibles.

Système expérimental

Condensats de $5 \cdot 10^5$ atomes de ^{87}Rb chargés dans un réseau optique 1D Potentiel du réseau :

$$V(x,t) = -\frac{s}{2}E_L\cos(k_L x + \phi(t))$$
 avec $k_L = \frac{2\pi}{d}$ et $E_L = \frac{\hbar^2 k_L^2}{2m}$

Contrôle de la phase relative $\phi(t)$ entre les deux faisceaux lasers via deux AOMs verrouillés en phase

Évolution et mesure dans l'espace impulsion

Périodicité spatiale → distribution discrète dans l'espace réciproque

$$|\psi
angle = \sum_{\ell} c_\ell |\chi_\ell
angle$$
 $|\chi_\ell
angle = 1$

 $|\chi_{\ell}\rangle$ états propres de l'opérateur impulsion (ondes planes)

<u>Évolution</u>: État du système représenté par le vecteur $C = (\cdots, c_{-1}, c_0, c_{+1}, \cdots)^T$ Équation de Schrödinger :

$$i\dot{c}_{\ell} = \ell^2 c_{\ell} - \frac{s}{4} \left(e^{i\phi} c_{\ell-1} + e^{-i\phi} c_{\ell+1} \right) \Longleftrightarrow i\dot{C} = M(\phi)C$$

Mesure : Imagerie par absorption après temps de vol :

Contrôle optimal quantique – algorithme de remontée du gradient [1,2]

Facteur de mérite : $F = |C_N^{\dagger} C_T|^2$

fidélité quantique de l'état final C_N à l'état cible C_T

On veut modifier les valeurs ϕ_i du champ de contrôle pour maximiser F:

$$\delta F = \sum_{j} \frac{\partial F}{\partial \phi_{j}} \delta \phi_{j} > 0$$

On choisit $\delta \phi_j = \epsilon \frac{\partial F}{\partial \phi_i} \approx 2 \epsilon \Delta t \Im \left[D_{j+1}^{\dagger} \frac{\partial M(\phi_j)}{\partial \phi_i} C_j \right]$ avec $\epsilon > 0$ et D défini par $i\dot{D} = M(\phi)D$ et $D_N = \frac{\partial F}{\partial c_N^{\dagger}}$

Algorithme:

- Choisir un champ de contrôle $\{\phi_i\}$
- Propager l'état du système C
- Propager l'état adjoint D en temps inverse
- Calculer les $\delta \phi_i$
- Modifier le champ de contrôle $\phi_i \rightarrow \phi_i + \delta \phi_i$

Itérer jusqu'à obtenir la valeur souhaitée de la fidélité

Protocole expérimental

- Calibration précise de la profondeur [3]
- Calcul du champ de contrôle optimal

Permet [1]: ✓ contrôle des populations dans les ordres d'impulsion

> ✓ contrôle des phases relatives entre les ordres

Reconstruction d'état

Nous utilisons un Maintien dans le réseau statique après algorithme itératif [4] de maximisation de la vraisemblance: $\mathcal{L}(\hat{\rho}) = \prod_i \pi_i^{f_i}$ qui est maximale lorsque les probabilités de mesure π_i obtenues à ipartir de la matrice densité $\hat{\rho}$ correspondent aux fréquences

équivalentes f_i

mesurées

expérimentalement.

Etats gaussiens ronds [5]

Nous définissons un état gaussien $|\alpha_s = u + iv\rangle$ « rond » comme un état cohérent [6] d'écart-type en impulsion $\sigma_p = s^{1/4}/2$ proche de celui de l'état fondamental du réseau à la profondeur s :

$$c_{\ell}(\alpha_s) = \frac{1}{N} e^{-i\ell u} e^{-\frac{(\ell-v)^2}{(2\sigma_p)^2}}$$

où u et v sont des variables d'espace et d'impulsion adimensionnées et N est un facteur de normalisation

Nous représentons nos états à l'aide de la quasi-distribution de Husimi donnée pour une matrice densité $\hat{
ho}$ par :

$$H_S(x,p) = \frac{1}{2\pi} \langle \alpha_S = x + ip | \hat{\rho} | \alpha_S = x + ip \rangle$$

	a	b	c	d	e
\overline{u}	$\pi/2$	0	$\pi/2$	$\pm \pi/2$	$\pm \pi/2$
v	0	\sqrt{S}	$\sqrt{s}/2$	$\pm \sqrt{s}$	$\pm \sqrt{s}$
F	0.95	0.85	0.95	0.98	0.95
γ (pureté)	0.95	0.96	0.96	1.00	1.00
S	$5.50{\scriptstyle \pm 0.25}$	$5.49{\scriptstyle\pm0.20}$	$5.57 \scriptstyle{\pm 0.20}$	5.5 ± 0.5	$5.30{\scriptstyle \pm 0.25}$
t_f (µs)			- ~104 -		

symétrique anti-symétrique $\Delta \varphi = 0$ $\Delta \varphi = \pi$

États gaussiens comprimés [5]

Pour obtenir un état comprimé, on modifie l'écart-type en impulsion :

$$\sigma_p^{\text{comp}} = \frac{1}{\xi} \sigma_p^{\text{fonda}}$$

Facteur de compression : $\xi > 1 \rightarrow \text{compression en } p$ $\xi < 1 \rightarrow \text{compression en } x$

Profondeur $S_{\acute{ ext{e}}q}$

		λ (γ ο.		
		a	b	c
r équivalente :	$\frac{1/\xi}{}$	0.44	0.62	1.65
S	F	0.99	0.96	0.97
$q = \frac{1}{\xi 4}$	γ (pureté)	1.00	1.00	0.99
5 1	${\mathcal S}$	$5.49{\scriptstyle\pm0.20}$	$5.49{\scriptstyle\pm0.20}$	5.45 ± 0
	$t_{\mathcal{L}}$ (118)			04 —

4.34 2.750.810.920.91 0.83 ± 0.40 5.57 ± 0.20 5.62 ± 0.25

Références

- [1] N. Dupont et al. *PRX Quantum* 2 040303 (2021)
- [2] U. Boscain et al. *PRX Quantum* 2 030203 (2021)
- [3] C. Cabrera-Gutiérrez et al. *Phys. Rev. A* 97, 043617 (2018)
- [4] A. I. Lvovsky *J. Opt. B: Quantum Semiclass. Opt.* **6** S556 (2004)
- [5] N. Dupont et al. En préparation
- [6] B. Bahr and H. J. Korsch *J. Phys. A: Math. Theor.* **40** 3959 (2007)

