Lab-5

Correlation Analysis

- Name: Devi Sri Swetha Tanuku
- Student ID: N01623362

Import Libraries

```
In [5]: import numpy as np
import pandas as pd

In [7]: import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Import Titanic dataset

```
In [10]: titanic = pd.read_csv("Titanic.csv")
```

Read head of the dataset

In [13]:	<pre>titanic.head()</pre>											
Out[13]:	13]: Passengerld Pclass		Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

Exercise 1

```
In [20]: # CODE HERE
sns.histplot(titanic["Fare"], color = "lightcoral", alpha = 0.7, edgecolor = None)
```

Out[20]: <Axes: xlabel='Fare', ylabel='Count'>

Exercise 2

```
In [73]: # CODE HERE
titanic_new = titanic.drop(columns = ["Name","Sex", "Ticket", "Cabin", "Embarked"])
titanic_new
```

Out[73]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare
0	892	3	34.5	0	0	7.8292
1	893	3	47.0	1	0	7.0000
2	894	2	62.0	0	0	9.6875
3	895	3	27.0	0	0	8.6625
4	896	3	22.0	1	1	12.2875
413	1305	3	NaN	0	0	8.0500
414	1306	1	39.0	0	0	108.9000
415	1307	3	38.5	0	0	7.2500
416	1308	3	NaN	0	0	8.0500
417	1309	3	NaN	1	1	22.3583

418 rows × 6 columns

```
In [75]: titanic_new.corr()
```

Out[75]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare
PassengerId	1.000000	-0.026751	-0.034102	0.003818	0.043080	0.008211
Pclass	-0.026751	1.000000	-0.492143	0.001087	0.018721	-0.577147
Age	-0.034102	-0.492143	1.000000	-0.091587	-0.061249	0.337932
SibSp	0.003818	0.001087	-0.091587	1.000000	0.306895	0.171539
Parch	0.043080	0.018721	-0.061249	0.306895	1.000000	0.230046
Fare	0.008211	-0.577147	0.337932	0.171539	0.230046	1.000000

```
In [77]: levels = np.arange(-0.4, 1.0, 0.2)
sns.heatmap(titanic_new.corr(), cmap = "coolwarm", cbar_kws = {"ticks": levels})
plt.xticks(rotation = 90)
plt.title("df.corr()")
plt.show()
```


Exercise 3

Find "Pearson correlation" and "Spearman correlation" between "Age" and "Parch" column?

```
In [81]: # CODE HERE
T = titanic[['Age', 'Parch']]
sns.pairplot(T)
```

Out[81]: <seaborn.axisgrid.PairGrid at 0x200fff34a70>

age_new = age_parch_cleaned['Age']
parch_new = age_parch_cleaned['Parch']


```
In [82]: import scipy
from scipy.stats import pearsonr, spearmanr

In [85]: age = titanic['Age']
   parch = titanic['Parch']
   age_parch_cleaned = pd.concat([age, parch], axis=1).dropna()
```

```
pearsonr_coefficient, p_value = pearsonr(age_new, parch_new)
print('PeasonR Correlation Coefficient %0.3f'% (pearsonr_coefficient))
```

PeasonR Correlation Coefficient -0.061

```
In [87]: spearmanr_coefficient, p_value = spearmanr(age_new, parch_new)
         print('PeasonR Correlation Coefficient %0.3f'% (spearmanr_coefficient))
```

PeasonR Correlation Coefficient -0.130

Exercise 4

Calculate the standard deviation, variance and mean of column "Fare" and "Age"

Age - Mean: 30.27, Variance: 201.11, Standard Deviation: 14.18

```
In [91]: # CODE HERE
In [93]: fare_mean = titanic['Fare'].mean()
          fare_variance = titanic['Fare'].var()
          fare_std_dev = titanic['Fare'].std()
         age_mean = titanic['Age'].mean()
         age_variance = titanic['Age'].var()
         age_std_dev = titanic['Age'].std()
         print(f"Fare - Mean: \{fare\_mean:.2f\}, \ Variance: \{fare\_variance:.2f\}, \ Standard \ Deviation: \{fare\_std\_dev:.2f\}")
         print(f"Age - Mean: {age_mean:.2f}, Variance: {age_variance:.2f}, Standard Deviation: {age_std_dev:.2f}")
        Fare - Mean: 35.63, Variance: 3125.66, Standard Deviation: 55.91
```