AC 215

Data Pets: A closer nand Me

An End-to-End Approach leveraging Computer Vision, NLP to enable better Pet Adoption Matching

Part I

Context and Project Scope

I: Context and Project Scope

We focus on data science enablement for solution on matching dog lovers to dogs available for adoption

Market Status Quo

- According to The List, 60% of American households are dog lovers, accounting for >60M household as potential market
- Adoption on average takes 1-2 weeks, with majority of time spent on matching dogs

Our Business

 We aim to leverage big data and deep learning to create a user-friendly tool to match potential dog loving adopters/owners

Industry Challenge

- > Not enough propagandization and information
- Not transparent communication and impersonal adoption experience
- > Poor User Browsing/Searching Experience
- Time Consuming Process in Double Matching (dog-adopter) Process

Technical Approach

- > Data Handling: Big Data Stored on GCP
- > Computer Vision for enhancing picture quality
- NLP for dog persona creation and Chatbot for Question-Answering Task
- > Docker/Kubernetes for App Depolyment

Part II

Data Science Technicalities

II: Data Science Technicalities

Proposed Solution: Computer Vision

> Fig 1: Remove old and add new backgrounds with different effects

> Fig 2: Example Matched Images by using EfficientNet and FAISS embedding search

> Fig 3: Example Input Images that contains Dog-Irrelevant Features

Computer Vision serves for following purposes:

- Remove Noisy Background from uploaded dog pictures using DeepLabv3+
- Allow users to choose and add new background/effects
- EfficientNet B0 model to create embeddings for new images
- Embedding search for similar dog images using Facebook AI Similarity Search (FAISS).

II: Data Science Technicalities

Proposed Solution: Natural Language Processing

> Fig 1: GPT2 Double Heads Q&A example

NLP serves for following purposes:

- Enhancing the Creation of the Persona of the dog for better User Adoption Experience
- Enabling Chatbot Functionality for User to direct communicate
- Fulfilling Question-Answering Functionality

Part III

Product Demo

Link to GCP Cluster, Link of App

Part IV

Future Work

IV: Future Work

3 Potential Improvements

Additional Features

Allow users to upload images in Rehome, and to change background of uploaded images

User Interface & Experience
Improve the product aesthetics, including color and app structure. Speed up loading of filtered photos

Action Feedback
Add loading animation, error messages, etc.

Thank you for listening!

Benjamin Liu, Ivan Shu, Shang Gao, Xiang Bai, Yuxin Xu

Reference

Project Timeline, Appendix, Contact List

Complete Project Timeline Project Checklist

Appendix:

- 1. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, Mingxing Tan et al.
- 2. FAISS, Facebook AI Similarity Search.
- 3. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, Liang-Chieh Chen et al.
- 4. SQuAD, Stanford Question Answering Dataset.
- 5. 2021 Harvard IACS ComputeFest Computer Vision Task Notebook.
- 6. Question Answering with a Fine-Tuned BERT, Chris McCormick.
- 7. 2021 Harvard IACS ComputeFest GitHub Repository.
- 8. Personalizing Dialogue Agents: I have a dog, do you have pets too?, Saizheng Zhang et al.

Reference: Contact Page

Biographies and Contacts

Ivan Shu
guanhuashu@hsph.
harvard.edu

Yuxin Xu yuxinxu@hsph.har vard.edu

Sean Bai xiangbai@hsph.harva rd.edu

Sean Gao shanggao@hsph.harv ard.edu

Tianen Liu tliu@g.harvard.edu