Outage Prediction modelling in Cloud environment

22-Jul-2021

Agenda

- Cloud System overview
- Additional Notes
- Internal Monitoring system
- Problem Statement
- Symptom & incident relationship
- Relationship between counters
- Expected results
- Methodology Initial thoughts
- Next Steps

Cloud System Overview

- 1 SaaS application runs in the cloud and accessible through a web interface.
- 2 In SaaS model servers, databases and code that makes up an application are hosted in cloud environment.
- Monitoring data is collected from a variety of sources viz., Application, Virtual Machines, Database, etc., and stored in a database.
- User role permission changes are also monitored.
- 5 Critical conditions are identified in the monitoring data collected and notified through alerts for further investigation.

Additional Notes

- Cloud system is a system of systems.
- Failures can happen due to frequent updates of components, changes in environments, malware, etc.,
- Failures can degrade system availability and lead to bad user experience.
- Each component has continuously monitoring system.
- Monitoring data across the whole cloud system is collected and should be utilized to diagnose and predict outages.
- To diagnose where outages come from and investigate dependency relationships between signals and outages.
- Find the relationship between signals and outages for outage prediction.

Internal Monitoring system

An internal monitoring dashboard is used for application, infra and alerts monitoring.

- Application metrics such as
 Availability, Server requests, Server responses, failed requests, exceptions are monitored.
- Infra metrics such as cluster details, node/pod status, cpu utilization, memory utilization, etc., are monitored.
- Alerts fired and its details such as severity, state, etc., are monitored.

Problem Statement

- Outages in cloud environment are very critical and could dramatically degrade system availability and impact user experience.
- Outages can happen due to one or combination of below components:
 - Infra
 - Application
 - Network
 - Security
 - Service
- Appropriate Alert mechanism in place to monitor the state and health of above components.
- Repeated occurrence of such alerts may lead to eventual outages at service/component level.
- Alerts are correlated and there exists a relationship.

Symptom & Incident relationship

Time	СРИ	Memory	Free Disk space	Missing Security & OS Updates	Restart Pending	Pods State	App Health	Type of Outage
D1	> 90%	< 90%	< 10%	Yes	No	Healthy	Good	APP NOT RESPONDING
D2	< 90%	> 90%	> 10%	No	No	UnHealthy	Bad	ENDPOINT NOT AVAILABLE
D3	< 90%	> 90%	> 10%	No	No	UnHealthy	Bad	EVENTS CREATED NOT SAVING TO DATABASE
D4	> 90%	> 90%	> 10%	Yes	No	Healthy	Good	USER NOT ABLE TO LOGIN
D5	> 90%	< 90%	> 10%	No	No	UnHealthy	Good	SLOWNESS
D6	< 90%	> 90%	> 10%	Yes	No	UnHealthy	Good	WAIT CURSOR
D7	> 90%	< 90%	> 10%	Yes	Yes	UnHealthy	Bad	SECURITY COMPROMISED

^{*} Approx. ~20 parameters

Relationship between counters

Expected Results

- An AI/ML model for anomaly detection and outage prediction.
- Predict whether a component or service will have an outage in near future.

Methodology – Initial thoughts

- Multi-variate Time series problem
- Essentially a classification problem
- Build multiple models using classical ML and DL techniques and compare them

Next Steps

- Conduct a session to students on use cases Hexagon
- Literature survey Hexagon/Students
- Provide test data Hexagon
- Students to perform data exploration Students
- Start positioning the viable approaches Hexagon/Students

Thank You

