

RISORSE MULTIMEDIALI - PARTE 1

Daniele Salvati

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Università degli Studi di Udine

Informazioni slide

• Il materiale contenuto in queste slide <u>è riservato</u> esclusivamente agli studenti del corso di Tecnologie Web e Laboratorio del Corso di Studio in Internet of Things, Big Data, Machine Learning dell'Università degli Studi di Udine.

• <u>Non è consentita la diffusione</u> del materiale contenuto in queste slide, ma solo l'utilizzo inerente la preparazione dell'esame del suddetto corso.

Digitalizzazione

- Il processo di conversione dall'analogico al digitale si chiama digitalizzazione dell'informazione.
- Digitalizzazione: passaggio dal campo dei valori continui a quello dei valori discreti di testi, immagini, audio, video, ecc.
- Convergenza al digitale: attraverso il processo di digitalizzazione, i media analogici tradizionali (testi scritti, immagini, suoni, musiche, video, ecc.) possono essere descritti in maniera formale e uniforme attraverso una successione di numeri e, di conseguenza, possono essere elaborati mediante programmi.

Digitalizzazione (2)

 L'operazione di trasformazione delle risorse multimediali in valori discreti (codice binario) comporta in generale una perdita di informazioni.

- Tali trasformazioni, con opportune regole, sono però:
 - accettabili (semplicità di rappresentazione)
 - non sono percepite

Testi alfanumerici

Struttura di un testo alfanumerico

- I testi alfanumerici sono costituiti da elementi atomici discreti i caratteri astratti che sono combinati tra di loro per formare parole, frasi, paragrafi, capitoli, ecc.
- I caratteri astratti appartengono ad un insieme finito di simboli detto Alfabeto= {Si}.
- <u>Nota</u>: l'alfabeto include, oltre alle lettere dell'alfabeto maiuscole e minuscole, anche le cifre, i simboli di interpunzione, lo spazio bianco, caratteri di controllo, ecc.

Struttura di un testo alfanumerico (2)

ASCII Code Chart

						P	12CT1	L CO	ie Ci	iai L						
	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2			=	#	\$	%)	&	-	()	*	+	,	1	•	/
3	0	1	2	3	4	5	6	7	8	9		;	٧	=	^	?
4	0	A	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	0
5	Р	Q	R	S	T	U	V	W	Х	Υ	Z	[\]	^	_
6	`	а	b	С	d	е	f	g	h	i	j	k	l	m	n	0

Alfabeto= {Si}

X

DEL

q

Rappresentazione digitale di un testo

• Per rappresentare un testo in forma digitale è necessario definire una legge di corrispondenza (codice) tra i caratteri astratti dell'alfabeto e un insieme di configurazioni di bit interpretabili come numeri interi (codici binari).

"T" \Longrightarrow 01010100 (84)

Carattere astratto

Parola di codice (8 bit)

Rappresentazione digitale di un testo (2)

• La legge di corrispondenza tra caratteri astratti dell'alfabeto e codici binari (parola di codice) è realizzata dall'insieme di caratteri (character set) utilizzato.

Rappresentazione digitale di un testo (3)

- Da quanti bit è formata ogni parola di codice?
- Nel caso di codici con parole a lunghezza costante, il numero di bit è dato dal più piccolo intero ${\bf L}$ tale che ${\bf 2}^{\bf L}$ è maggiore o uguale al numero totale di simboli da codificare.
- <u>Esempio</u>: si desidera codificare un alfabeto composto da 200 simboli diversi. Sono necessari **8 bit** (L) in quanto 2^8 = 256 valori diversi che è maggiore di 200 (7 bit non sarebbero sufficienti perché 2^7 = 128 è minore di 200).
- Come realizzare la corrispondenza tra simboli e parole di codice?
- La corrispondenza è puramente convenzionale (basta che sia biunivoca!)

Insiemi standard di caratteri

- **ASCII** (American Standard Code for Information Interchange) è un codice per la codifica dei caratteri (sostanzialmente quelli della lingua inglese americano).
- La prima edizione dello standard ASCII è stata pubblicata dall'American National Standards Institute (ANSI) nel 1963.
- Si usano 7 bit (0-127) per codificare ogni carattere.
- I primi 32 codici numerici sono per i caratteri di controllo.
- Extended ASCII: si usano 8 bit (estende l'ASCII e include i caratteri usati in molte lingue dell'Europa Occidentale).

Insiemi standard di caratteri (2)

• Lo standard successore di ASCII è l'**UTF-8** (*Unicode Transformation Format*) che è diventato la codifica principale di **Unicode** per Internet secondo il W3C.

 Unicode è un sistema di codifica che assegna un numero univoco ad ogni carattere usato per la scrittura di testi in maniera indipendente dalla lingua, dalla piattaforma informatica e dal programma utilizzato. Prevede anche codici UTF-16 e UTF-32.

https://home.unicode.org/

UTF-8

- UTF-8 usa da 1 a 4 byte per rappresentare un carattere.
- I primi 128 caratteri codificati sono equivalenti allo standard ASCII (1 byte).
- Negli altri casi (2, 3, 4 byte) il bit più significativo è impostato a 1.

Comprendono gli alfabeti Latino con diacritici, Greco, Cirillico, Copto, Armeno, Ebraico e Arabo (1920 caratteri)

Dimensione del testo

 Nel caso si usi un codice a lunghezza costante (parole di L bit), si calcola nel seguente modo:

Dimensione (bit) = Numero dei caratteri di cui è composto il testo * L (bit/carattere)

Microtipografia

- La microtipografia riguarda le famiglie di caratteri (tipo di stile grafico).
- Per visualizzare un testo, ogni **carattere astratto** deve essere associato ad una specifica rappresentazione grafica visiva detta **glifo** (*glyph*).
- I glifi sono memorizzati o come **mappe di bit** (*raster*) o in forma **vettoriale** (si usa una serie di punti che definiscono le linee e le curve che costituiscono la sua forma).
- La corrispondenza tra caratteri astratti dell'alfabeto e glifi è specificata dal **font** usato.

Font

Carattere astratto

Codice Numerico 84 (ASCII) Rappresentazione grafica (glifo: Arial)

T

Famiglie di caratteri

- La forma/motivo base del glifo definisce le famiglie generali di caratteri uniformi dette **famiglie di typeface** (es. Helvetica, Time New Roman, Calibri, ecc.).
- Queste famiglie sono raggruppate in categorie.
- Esempio di classificazione in categorie:
 - Roman: comprende tutti i caratteri che hanno nel motivo base del glifo, dei trattini di completamento dette grazie (serif). Usati preferibilmente per stampa su carta.
 - **Gothic**: comprende i caratteri senza grazie (o **sans serif**). Questi caratteri sono detti bastoni e vengono usati preferibilmente per la visualizzazione su schermo.
 - Script: comprende caratteri che imitano la scrittura a mano libera.
 - **Blackletter**: comprende i caratteri ispirati ai manoscritti germanici antichi o alla grafia prevalentemente in uso nel Medioevo.

Famiglie di caratteri (2)

• Serif:

Times New Roman

presenza di allungamenti alle estremità delle lettere (dette *grazie*)

• Sans Serif:

Arial

Attributi grafici del glifo

• La forma base di una **famiglia di typeface** può essere alterata e trasformata.

- Queste deviazioni possono riguardare diversi attributi grafici del glifo:
 - dimensione del carattere
 - larghezza del carattere
 - spessore del tratto
 - inclinazione o postura del tratto

Attributi grafici del glifo (2)

- Le dimensioni dei caratteri si misurano in punti.
- Un punto corrisponde a 1/72 di pollice (1 pollice è 2,54 cm).

Mesotipografia

- Mesotipografia tratta configurazioni di glifi in linee e blocchi di testo.
- La **spaziatura** tra le lettere del testo (*spacing*) indica la quantità di spazio esistente fra le lettere e può essere regolata per mantenere i caratteri distinguibili.
- La **crenatura** (*kerning*) consente di correggere lo spazio tra coppie di lettere specifiche. La crenatura è usata per conferire un aspetto equilibrato e armonico ai caratteri. La coppia AV nell'esempio seguente (Times New Roman) è una coppia di crenatura.

IE AV

Linee di testo

• Lo spazio tra le parole è tipicamente rappresentato dalla larghezza della lettera "i" minuscola. Lo spazio tra le parole dipende dalle scelte di impaginazione (es. allineamenti a sinistra o a destra, centrature, giustificazioni):

Theilowericase

The lower case

• La lunghezza delle righe di testo, detta **giustezza**, dipende dalle dimensioni dei caratteri usati, dalla spaziatura e dallo spazio tra le parole.

Interlinea

• In ogni riga di caratteri si viene a creare una certa quantità di spazio vuoto al di sopra e al di sotto del testo (spalla). Ciò avviene perché parte di questo spazio serve a facilitare l'inserimento delle ascendenti e delle discendenti e ad evitare che le righe si confondano l'una con l'altra risultando troppo vicine tra di loro.

• L'interlinea è usata per aggiungere altro spazio tra le righe di caratteri e facilitarne la lettura. I suoi valori sono espressi in punti.

Allineamento e giustificazione

• Allineamento del testo: se all'interno di una colonna, il testo è allineato a destra o a sinistra, lo spazio tra le parole sarà lo stesso e uno dei lati della colonna apparirà irregolare.

• Giustificazione del testo: entrambi i lati saranno allineati però lo spazio tra le parole varierà a seconda delle necessità creando configurazioni di spazi bianchi dette "canaletti" (rivers) che sembrano scorrere dall'alto al basso della pagina.

Immagini

Immagine analogica

• Un'immagine analogica rappresenta l'oggetto riprodotto mantenendo una analogia formale con l'immagine originale per tutto il percorso realizzativo.

 Una immagine analogica è rappresentata da una funzione a valori in un intervallo reale di due variabili reali:

$$I = f(x,y)$$

con I: l'intensità luminosa del punto P di coordinate (x,y).

Immagine analogica (2)

Digitalizzazione dell'immagine

- L'immagine analogica I=f(x,y) è digitalizzata attraverso due processi principali: il campionamento e la quantizzazione.
- Grafica raster (bitmap o immagine pittorica): l' immagine è rappresentata con un array (griglia, raster) di valori di pixel (picture element) disposti su una griglia quadrata regolare (il pixel è generalmente quadrato ma può assumere anche diverse forme).

Campionamento

• Campionamento: l'immagine è suddivisa in una griglia di celle quadrate, i pixel logici (discretizzazione del dominio). Tanto più fitta è la griglia (più numerose sono i pixel), tanto migliore è la risoluzione spaziale dell'immagine.

Quantizzazione

- Quantizzazione: ogni pixel assume un valore discreto di tono di grigio (o di colore), facendo una media all'interno della cella che rappresenta.
- La gamma tonale della immagine viene quindi discretizzata (discretizzazione del codominio).

La quantizzazione è compiuta definendo il numero di bit n per rappresentare i valori discreti 2^n .

Rappresentazione del colore

• Nelle **immagini monocromatiche** in scala di grigio (dette impropriamente bianco e nero) il valore indica l'intensità del grigio, che varia dal nero al bianco.

Rappresentazione del colore (2)

• La rappresentazione del colore è fatta attraverso la definizione di uno spazio geometrico astratto e tridimensionale all'interno del quale, al variare delle tre coordinate di base, varia il colore indicato.

Rappresentazione del colore (3)

• **RGB**: un colore è ottenuto per sintesi additiva di tre colori primari: rosso (**Red**), verde (**Green**) e blu (**Blu**). Ogni colore primario è codificato con parole di codice di 8 bit (*True Color*, 256 x 256 x 256 = 16.777.216 colori diversi). Usato per monitor e scanner.

• CMYK: un colore è ottenuto per sintesi sottrattiva di quattro colori primari: ciano (Cyan), magenta (Magenta), giallo (Yellow) e nero (BlacK).

Rappresentazione del colore (4)

• **HSL** (Hue Saturation Lightness): spazio colore basato su **tonalità saturazione,** e **luminosità**. Si usano 8 bit per canale. Usato in campo artistico.

• YUV: spazio colore basati sulla separazione della luminanza (Y) dalla crominanza (UV). Si usano in alcuni formati video e in alcune tecniche di compressione (es. JPEG).

Sintesi additiva e sottrattiva

Luce bianca
$$\rightarrow$$
 W = **R** + **G** + **B**

$$C = W - R = G + B$$

 $M = W - G = R + B$
 $Y = W - B = R + G$

HSL

- Il modello **HSL** è particolarmente orientato alla prospettiva umana, essendo basato sulla percezione che si ha di un colore in termini di tinta, sfumatura e luminosità.
- La tonalità (hue) varia partendo convenzionalmente dal rosso primario a 0°, passando per il verde primario a 120° e il blu primario a 240°, e quindi tornando al rosso a 360°.
- La saturazione esprime l'intensità e la purezza della singola tonalità.
- La luminosità è un'indicazione della sua brillantezza.
- Saturazione e la luminosità sono espresse in percentuali.

HSL Color Wheel

Comparazione Modelli

• Esempio: colore giallo

- **RGB** (255, 255, 0)
- CMYK (0, 0, 100, 0)
- HSL (60, 100, 100)

L'immagine a colori viene convertita dallo spazio **RGB** a quello **YUV**:

$$Y = 0.3 \times R + 0.59 \times G + 0.11 \times B$$

 $U = 0.493 \times (B-Y)$
 $V = 0.877 \times (R-Y)$

Indexed color

• L'indexed color è una tecnica per gestire i colori delle immagini digitali al fine di risparmiare memoria del computer e archiviazione dei file, accelerando al contempo l'aggiornamento della visualizzazione e il trasferimento dei file. È una forma di compressione di quantizzazione vettoriale.

• Il valore di quantizzazione del colore non è trasportato direttamente nel dato del pixel ma fa riferimento ad una Color Lookup Table (CLUT) o Palette.

Uso della tavolozza (palette)

- Color Lookup Table: il valore associato a ciascun pixel è un indice che permette di accedere alla posizione in una tabella dove è memorizzato il colore (True Color) del pixel stesso. Si usano 8 bit per specificare gli indici.
- La tabella va associata all'immagine per poter ricostruire i colori; in caso contrario si usa la palette di default associata al sistema di calcolo usato.
- La palette di colori può essere:
 - Predefinita (Mac Os, Windows, Web Safe Color).
 - Personalizzata (creata o modificata da utente, la tavolozza deve essere memorizzata insieme all'immagine).
 - Dinamica, basata sui colori della immagine.

Dimensione e Risoluzione

- **Dimensione** (logica) di una immagine **bitmap**: indica il numero di pixel logici (orizzontali e verticali) che compongono l'immagine (Aspect Ratio è il rapporto tra il numero di righe e colonne, es. 4:3 o 16:9).
 - Esempio: un'immagine di 918 x 1028 pixels.
- **Risoluzione** di una immagine: corrisponde alla risoluzione del dispositivo di acquisizione (o di visualizzazione).
 - È una densità: numero di pixel per unità di lunghezza. Si misura in **PPI** (pixel per inch, 1 inch (pollice) = 2,54 cm).

Profondità del colore

• **Profondità del colore**: numero di bit usati per la quantizzazione (es. 2, 8, 16, 24 bit).

• Scala tonale o dinamica di una immagine: gamma di colori o grigi visualizzabili. Dipende dalla profondità del colore.

• Esempio: se la profondità è 8 bit, la scala tonale è l'intervallo di valori [0 – 255].

Spazio occupato da una grafica raster

• Si calcola nel seguente modo:

Spazio (bit) = dimensione (pixel) x profondità (bit/pixel)

Esempio:

• Immagine monocromatica (8 bit) di 800 x 600 pixel

```
Spazio = 800 \times 600 \times 8 = 3.840.000 bit
```

• Immagine RGB (24 bit, 8 bit per canale) di 1920 × 1080 pixel

```
Spazio = 1920 \times 1080 \times 24 = 49.766.400 bit
```

Spazio occupato da una grafica raster (2)

- Lo spazio logico occupato da una grafica raster è relativo allo quantità di bit usati nella memoria volatile durante la gestione dell'immagine.
- Lo spazio effettivamente occupato su memoria persistente dipende dal formato.
- Esempi di formati di immagini per il web sono:
 - **JPEG** (*Joint Photographic Experts Group*): standard internazionale di compressione a perdita di informazioni (colori 24 bit). È usato per le fotografie, le illustrazioni, i banner, ecc.
 - **PNG** (*Portable Network Graphics*): è un formato di tipo lossless, ossia senza perdere alcuna informazioni (colori 32 bit). È tipicamente usato per loghi o icone, non adatto per immagini realistiche.
 - **GIF** (*Graphics Interchange Format*): utilizza un algoritmo di compressione di tipo LZW (Lempel-Ziv-Welch) lossless. Usato nel web per creare immagini animate (colori 8 bit).

Immagini per il web

- Gli schermi visualizzano i contenuti a risoluzione bassa (un monitor ha una risoluzione di 72-96 PPI).
- È sufficiente quindi avere un'immagine per il web con PPI compresi fra 72 e 96.
- Esempio: un monitor 27 pollici con risoluzione 1920 x 1080 pixels ha un PPI di 81,59.
- Si noti invece che per una stampa di qualità bisogna avere 300 PPI.

Grafica vettoriale

• L'immagine è memorizzata come descrizione matematica di una collezione di oggetti (es. punti, linee, curve, poligoni, forme) che costituiscono l'immagine stessa.

linea: 1,xa,ya,xb,yb>
<cerchio: 2, c1,c2,r>

...

Grafica vettoriale (2)

SVG (*Scalable Vector Graphic*): formato che è in grado di visualizzare oggetti di grafica vettoriale, raccomandazione del W3C, SVG è una estensione di XML per la grafica vettoriale.

Grafica vettoriale (3)

- La grafica vettoriale è in genere utilizzata per immagini sintetiche.
- Le immagini vettoriali hanno il vantaggio di essere compatte e facilmente manipolabili (es. scalatura, rotazione, ecc.).

• Problemi:

- Complessità per la progettazione di immagini articolate.
- Quando sono visualizzate devono subire un processo di rasterizzazione.

Grafica vettoriale (4)

- La matematica alla base della grafica vettoriale sono le **curve di Bézier**, introdotte nel 1962 dall'ingegnere francese Pierre Bézier.
- Una curva di Bézier è una curva parametrica che permette di definire disegni estremamente precisi tramite un poligono di controllo nell'intervallo I = [0, 1], definendo il grado della curva da un valore K = n − 1, con n uguale al numero di vertici del poligono di controllo.

Uso delle immagini nel Web

• L'uso delle immagini nel Web varia in base alla loro tipologia:

Uso delle immagini nel Web (2)

- Immagini non figurative (plastiche, astratte): sono composizioni spaziali di linee, forme, colori, testure, ecc., che non rappresentano entità del mondo.
- Immagini figurative: rappresentano entità riconoscibili del mondo (figure del mondo): persone, oggetti, azioni, scene, ambienti, ecc.
 - Immagini concettuali: rappresentano concetti astratti (es. una classe di persone o di oggetti), stati d'animo (es. felicità, tristezza) oppure mostrano come è fatto un oggetto o un processo o comunicano significati simbolici (es. valori).
 - Immagini narrative: rappresentano scene del mondo, momenti di una storia (es. eventi, persone mentre eseguono delle azioni in determinati ambienti).