

Árbol

Considera un **árbol** con N **nodos**, numerados de 0 a N-1. El nodo 0 se denomina la raíz. Cada nodo, excepto por la raíz, tiene un **padre**. Para cada i, tal que $1 \le i < N$, el padre del nodo i es P[i], donde P[i] < i. Además, asumimos que P[0] = -1.

Para cualquier nodo i ($0 \le i < N$), el **subárbol** de i es el conjunto de los siguientes nodos:

- i, y
- cualquier nodo cuyo padre es i, y
- ullet cualquier nodo cuyo padre tiene por padre i, y
- ullet cualquier nodo cuyo padre tiene por padre un nodo cuyo padre es i
- etc...

La siguiente imagen muestra un ejemplo de un árbol con N=6 nodos. Cada flecha conecta un nodo con su padre, excepto por la raíz, que no tiene padre. El subárbol del nodo 2 contiene los nodos 2,3,4 y 5. El subárbol del nodo 0 contiene los 6 nodos del árbol y el subárbol del nodo 4 solo contiene el nodo 4.

A cada nodo se le asigna un **peso** entero no negativo. Denotamos el peso del nodo i ($0 \le i < N$) con W[i].

Tu tarea es escribir un programa que responda Q preguntas, cada una, contiene una pareja de enteros positivos (L,R). La respuesta a la pregunta se calcula de la siguiente manera:

Considera asignar un entero llamado **coeficiente**, a cada nodo del árbol. Describamos dicha asignación con la secuencia $C[0],\ldots,C[N-1]$, Donde C[i] ($0\leq i < N$) es el coeficiente asignado al nodo i. Llamemos esta secuencia, una **secuencia de coeficientes**. Observa que los elementos de una secuencia de coeficientes pueden ser negativos, 0, o positivos.

Para cada pregunta (L,R), una secuencia de coeficientes se considera **válida** sí, para cada nodo i ($0 \le i < N$), la siguiente condición se cumple: la suma de los coeficientes de los nodos en el subárbol del nodo i no es menor que L ni mayor que R.

Para una secuencia de coeficientes $C[0],\ldots,C[N-1]$, el **costo** de la secuencia para el nodo i es $|C[i]|\cdot W[i]$, donde |C[i]| denota el valor absoluto de C[i]. Finalmente, el **costo total** es la suma de los costos de todos los nodos. Tu tarea es calcular, para cada pregunta, el **mínimo costo total** que se puede alcanzar con una secuencia de coeficientes válida.

Se puede demostrar que para cada pregunta existe al menos una configuración de coeficientes válida.

Detalles de implementación

Debes implementar dos funciones:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: son arreglos de tamaño N que describen los padres del árbol y los pesos.
- Esta función será llamada exactamente una vez al inicio de la interacción entre el evaluador y tu programa en cada caso.

```
long long query(int L, int R)
```

- *L*, *R*: Los enteros describiendo la pregunta.
- ullet Esta función es llamada Q veces después de la llamada a la función init en cada caso.
- Esta función deberá responder un entero, la respuesta para la pregunta dada.

Límites

- $1 \le N \le 200\,000$
- $1 \le Q \le 100\,000$
- P[0] = -1
- $0 \le P[i] < i$ para cada i tal que $1 \le i < N$
- $0 \leq W[i] \leq 1\,000\,000$ para cada i tal que $0 \leq i < N$
- $1 \le L \le R \le 1000000$ en cada pregunta.

Subtareas

Subtarea	Puntos	Restricciones adicionales	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ para cada i tal que $1 \leq i < N$	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ para cada i tal que $0 \leq i < N$	
5	11	$W[i] \leq 1$ para cada i tal que $0 \leq i < N$	
6	22	L=1	
7	19	Sin consideraciones adicionales.	

Ejemplos

Considera las siguientes llamadas:

El árbol consiste de 3 nodos, la raíz y sus 2 hijos. Todos los nodos tienen peso 1.

En esta pregunta, L=R=1, lo que significa que la suma de los coeficientes en cada subárbol debe ser igual a 1. Considera la secuencia de coeficientes [-1,1,1]. El árbol y sus coeficientes correspondientes (en rectángulos sombreados) están ilustrados en la imagen siguiente:

Para cada nodo i ($0 \le i < 3$), la suma de los coeficientes de todos los nodos en el subárbol de i es igual a 1. Por lo tanto, esta secuencia de coeficientes es válida. El costo total se calcula de la siguiente manera:

Nodo	Peso	Coeficiente	Costo
0	1	-1	$ -1 \cdot 1=1$
1	1	1	$ 1 \cdot 1 = 1$
2	1	1	$ 1 \cdot 1 = 1$

Por lo tanto, el costo total es 3. Esta es la única secuencia de coeficientes válida, entonces, la función deberá regresar 3.

```
query(1, 2)
```

El mínimo costo total para esta pregunta es 2, y la secuencia de coeficientes que lo alcanza es [0,1,1].

Evaluador de Ejemplo

Formato de entrada:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

Donde L[j] y R[j] (para $0 \le j < Q$) son los argumentos de entrada de la j-ésima llamada a la función query. Nota que la segunda línea de la entrada consiste de **solo** N-1 **enteros**, pues el evaluador de ejemplo no lee el valor de P[0].

Formato de salida:

```
A[0]
A[1]
...
A[Q-1]
```

Donde A[j] (para $0 \leq j < Q$) es el valor que regresa la j-ésima llamada a la función query.