Unit 9: Externalities

Prof. Antonio Rangel January 2, 2016

1 Public bads

1.1 What is an externality?

• An externality arises when the actions of one economic actor affect DIRECTLY the utility function or production function of another economic actor (i.e. not through a market transaction)

• Examples:

	Effect on others?	Direct/Market?
Roommate plays loud rock music	✓	Direct
Consumption of pharmaceuticals con-	✓	Direct
taminates fish stocks		
Microsoft hires 10,000 new software	√	Market
engineers		
Company invents drug that makes	✓	Market
people 10x smarter		

- First two examples are externalities since they directly affect others.
- Last two examples are not externalities since they impact others take place through the market

1.2 Public bads

• Public bads are externalities that are:

- Negative
- Non-targeted (i.e. affect either all consumers, or all firms, or both)

• Examples:

- CO₂ emmissions and global warming
- Noise pollution
- Poverty, when people care about others' well-being

• Simple model:

- -3 goods: q, m, e, where e denotes the level of the externality (e.g. pollution)
- Each unit of q consumed generates 1 unit of e
- -N identical consumers, with utility

$$U(q, m, e) = B(q) + m - \gamma D(e),$$

with
$$D' > 0, D'' \ge 0$$
, and $\gamma \ge 0$

- F identical firms, with CRS production function, so that $c(q) = \mu q$
- Market is competitive

• Market equilibrium:

- Consumers maximize utility and firms maximize profit, taking as given the level of externality
- Prices adjust so that q-market clears
- Consumer's problem:

$$\max_{q \ge 0} B(q) - pq - \gamma D(e)$$

- Since e is taken as a constant by the consumer, the demand function for good q is as it was without externalities
- Firm's problem:

$$\max_{q \ge 0} pq - \mu q$$

• As before:

$$q^{S}(p) = \begin{cases} 0 & \text{if } p < \mu \\ \text{anything} & \text{if } p = \mu \\ \infty & \text{if } p > \mu \end{cases}$$

- Optimal allocations:
 - Optimal allocation given by solution to:

$$\max_{q_1...q_N \ge 0} \sum_{i} \left[B(q_i) - \gamma D\left(\sum_{i} q_i\right) \right] - \sum_{i} \mu q_i$$

- FOCs:

$$\underbrace{B'\left(\frac{q^{opt}}{N}\right) - \gamma N D'(q^{opt})}_{\text{Marginal social benefit}} = \underbrace{\mu}_{\text{Marginal social cost}}$$

(note that, given symmetry, everyone consumes the same amount of q)

- RESULT:
 - $-\ q^* > q^{opt}$
 - -DWL > 0
- Accounting recipe/convention for where to place the externalities:
 - Externalities that affect utility go into MSB
 - Externalities that affect production costs go into MSC

1.3 A more complex example

- Model:
 - All externalities are firm-to-firm
 - Each unit of q produced generates one unit of pollution e
 - Aggregate demand function: $q_{mkt}^D(p) = 1000 p$

- 10 identical firms with cost function $c(q_j) = 5q_j^2 + eq_j$, so that $MC(q_j|e) = 10q_j + e$
- Firm's problem:
 - $-\max_{q>0} pq (5q^2 + eq)$, with e taken as given

$$-MR = p, MC = 10q + e$$

$$\implies q_j^S(p) = \frac{p-e}{10}$$

$$\implies q_{mkt}^S(p) = p - e$$

- Market equilibrium:
 - Equilibrium conditions:
 - 1. Prices adjust so that $q_{mkt}^D(p^*) = q_{mkt}^S(p^*)$

2.
$$e^* = q_{mkt}^S(p^*)$$

- Supply function plus (2) imply that in equilibrium $q_{mkt}^S(p) = \frac{p}{2}$
- Then the market clearing condition is given by $1000 p = \frac{p}{2}$
- It follows that

$$p^* = \frac{2000}{3}, q^* = \frac{1000}{3}$$

- Optimality:
 - q^{opt} given by MSB = MSC
 - MSB = MPB = $p_{mkt}^D = 1000 q$ (where MPB = marginal private benefit)
 - MSC:
 - \ast cost function convex, so optimal to split production equally across firms
 - * Total social cost: $TSC(q) = 10c\left(\frac{q}{10}\right) = 10\left(5\frac{q^2}{100} + q\frac{q}{10}\right) = \frac{3}{2}q^2$
 - $* \implies MSC = 3q$
 - FOCs:

$$MSB = MSC \implies 1000 - q = 3q \implies q^{opt} = 250$$

• Marginal social cost vs. marginal private cost

- MSC =
$$3q$$

- MPC = $p_{mkt}^{S}(q) = q + e = q + \frac{1000}{3}$

• See equilibrium and DWL diagram in the video lectures

1.4 Why does the FWT fail?

- Market forces lead to an allocation at which MPB = p = MPC
- At optimal allocation we have that MSB = MSC
- Without externalities we have that MSB = MPB and MSC = MPC.
- Thus, the invisible hand of the market leads to an allocation at which MSB = MPB = p = MPC = MSC, which is optimal
- With externalities, MPB > MSB and/or MPC < MSC
- Given this, market induces an equilibrium allocation at which MSB < MSC, which implies that $q^* > q^{opt}$

2 Corrective policies for public bads

2.1 Pigouvian taxation

- Policy:
 - Tax per unit imposed on every consumer or firm generating an externality
 - Tax equal to total marginal externality at optimum
 - Tax revenue returned to consumers in lump-sum transfer
- RESULT: Pigouvian tax system leads to an optimal equilibrium allocation
- Why?

- Look at basic model of public bads
 - * Externality from consumers to consumers
 - * N consumers with $U(q, m, e) = B(q) + m \gamma D(e)$
 - * F firms with $MC = \mu$
 - *N consumers
- Pigouvian tax: $\tau^* = \gamma ND'(q^{opt})$ imposed on consumers (per unit of good q)
- Consumer's problem:

$$\max_{q>0} B(q) - pq - \tau^*q - \gamma D(e)$$

with D(e) taken as given.

- FOC: $B' = p + \tau^*$
- In equilibrium, $p^* = \mu$

$$\implies B'\left(\frac{q^{tot}}{N}\right) = \mu + \gamma N D'(q^{opt})$$

– This is the same as optimality condition, so $\frac{q^{tot}}{N} = \frac{q^{opt}}{N}$

• Intuition:

- Optimality requires an allocation at which:

$$\begin{array}{ccc} MSB & = & MSC \\ & & & & \\ MPB - \gamma ND' & & MPC = \mu \end{array}$$

- Utility maximization leads consumers to set $B' \tau^* = p$
- Profit maximization leads firms to set $p = \mu$
- -B' = MPB and τ^* chosen to be $\gamma ND'(q^{opt})$, which implies that the invisbile hand of the market with the tax induces an equilibrium allocation at which the optimality condition is satisfied

• Remarks:

1. Optimal Pigouvian tax restores efficiency BUT feasible only if the government has all of the information needed to calculate $\gamma ND'(q^{opt})$

- 2. Model assumes everyone produces the same marginal damage, otherwise more complicated tax system is required.
- 3. Policy works if tax τ^* is imposed either on firms or consumers
- 4. Policy doesn't work if τ^* imposed on both consumers and firms

2.2 Permit markets

- Policy:
 - Government creates $\Pi^* = q^{opt}$ units of permits
 - Each permit allows owner to produce/consume 1 unit of q (which is the good generating the externality)
 - Individuals/firms who exceed allocated permits pay ∞ fine (so no cheating in equilibrium)
 - Consumers/firms allowed to trade permits freely
- Two versions of the policy:
 - 1. Permits sold by government
 - 2. Permits are freely allocated
- RESULT: If $\Pi^* = q^{opt}$, then the permit policy leads to an efficient allocation. Furthermore, in equilibrium permits trade at a price equal to the optimal Pigouvian tax (i.e., $p_{\Pi}^* = \tau^*$)
- Why?
 - Again, consider simple model of public bads
 - Look at case in which permits freely allocated
 - Consumer's problem:

$$\max_{q>0,r} B(q) - pq - p_{\Pi}(r - \Pi_i^{endowed})$$

where r is the number of permits bought, sold

- This is equivalent

$$\max_{q>0} B(q) - (p+p_{\Pi})q,$$

where p_{Π} is price of permits.

- FOCs:

$$B' = p + p_{\Pi}$$

- In equilibrium, $p = \mu$ (by CRS cost function of firms)
- q-market: demand curve with permits is demand curve without permits shifted down by p_{Π} .
- Then, if $p_{\Pi} = \gamma N D'(q^{opt})$, the inverse demand function with permits = MSB, and thus in equilibrium $q^* = q^{opt}$
- r-market: inverse demand curve for permits is equal to demand curve for q without permits, shifted down by $p = \mu$. Supply fixed at $\Pi^* = q^{opt}$.
- From the FOCs of the utility maximization problem we get that $p_{\Pi}^* = \gamma N D'(q^{opt})$.
- Intuition: cost of permits acts as a per-unit tax, but now the size of the tax is determined endogenously in the permit market

• Why?

- Now consider the case in which permits are sold by government
- Government sells Π^* permits in the permit market
- Permit endownment affects the wealth of consumers (since they can sell the permits in the market), but it has no effect on their demand functions
- So equilibrium is same as before: p_Π^*, p^*, q^*
- Only difference is that now policy raises revenue
- EQUIVALENCE RESULT: Optimal Pigouvian tax system (with revenue returned by lump-sum transfers to consumers) is equivalent to the optimal permit market with permits sold (with revenue returned by same lump-sum transfers)

• Why?

- In Pigouvian taxation the government sets the "price" of the externality (i.e., $\tau^* = \gamma N D'(q^{opt})$) and the market finds q^{opt}
- In the permit market the government sets the quantity to $\Pi^* = q^{opt}$, and the market finds price of externality $p_{\Pi} = \gamma N D'(q^{opt})$
- For both, total revenue raised = $q^{opt}\gamma ND'(q^{opt})$, and thus can support identical lump-sum transfers to consumers

• Remarks:

- 1. Permit markets can restore efficiency, but government needs to know q^{opt}
- 2. Permit markets vs. command-and-control/direct regulation: Command-and-control requires knowing what everyone should consume and produce, not just optimal total quantity. Thus, permit markets require less information to be able to design optimal policy.
- 3. System optimal only if $\Pi^* = q^{opt}$

3 Public goods

- Key features:
 - Positive externalities to other consumers/firms
 - Non-rivalry in consumption (everyone can benefit from positive externality)

• Examples:

- Basic research & development
- LoJack anti-theft system
- Network externalities in consumption (HBO, facebook)
- Simple model:

-N consumers, each with utility

$$U(q, m, e) = B(q) + m + \gamma G(e),$$

- $\gamma \geq 0$ measures the strength of externality, $G' > 0, G'' \leq 0$
- good q produced by firms with constant marginal cost of production μ
- RESULT: $q^* < q^{opt}$; i.e., there is underproduction of the public good.
- See video lecture for graphical analysis of equilibrium and DWL
- Corrective policy: Pigouvian subsidies
 - Policy:
 - 1. Subsidize sale/purchase of good q with subsidy $\sigma^* = \gamma NG'(q^{opt})$
 - 2. Subsidy financed with lump-sum taxes
 - RESULT: Optimal Pigouvian subsidy system restores optimality
- Corrective policy: Government provision
 - Consider extreme case in which individuals derive no private benefit from consuming the good generating the externality: $U(q, m, e) = 0 + m + \gamma G(e)$
 - Market equilibrium: $q^* = 0$
 - Policy: Buy q^{opt} and finance w/ lump-sum taxes.
 - This restores optimality
 - Government provision can't restore full optimality if lump-sum taxes are not feasible

4 Summary

- With externalities, first welfare theorem fails:
 - With public bads, overprovision of good generating the externality
 - With public goods, underprovision of the good generating the externality

- Corrective policy for public bads:
 - Pigouvian taxes: $\tau^* =$ marginal damage at q^{opt}
 - Permit market: $\Pi^* = q^{opt}$
- Corrective policy for public goods:
 - Pigouvian subsidies: σ^* = marginal positive externality at q^{opt}
 - Direct government provision (financed with taxes)