The Marco Polo Problem: A Combinatorial Approach to Geometric Localization

Ofek Gila¹, Michael T. Goodrich¹, Zahra Hadizadeh², Daniel S. Hirschberg¹, and Shayan Taherijam¹

¹University of California, Irvine

²University of Rochester

CCCG, 2025

- Point of Interest (POI) X
- X within distance n from origin

Figure 1: A search area.

2/20

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)

Figure 1: A search area.

2/20

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' X

Figure 1: A search area.

2/20

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' X.

Figure 1: A search area.

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' X..

Figure 1: A search area.

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... ✓
- 'finding': distance $\Delta \leftrightarrow X \leq 1$

Figure 1: A search area.

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... √
- $\bullet \ \ \text{`finding': distance } \Delta \leftrightarrow \textit{\textbf{X}} \leq 1$
- Δ must know this!

Figure 1: A search area.

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... ✓
- ullet 'finding': distance $\Delta \leftrightarrow {\it X} \le 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)

Figure 1: A search area.

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... ✓
- 'finding': distance $\Delta \leftrightarrow \emph{X} \leq 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)
 - find all POIs

Figure 1: A search area.

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... ✓
- ullet 'finding': distance $\Delta \leftrightarrow {\it X} \le 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})

Figure 1: A search area.

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... ✓
- ullet 'finding': distance $\Delta \leftrightarrow {\it X} \le 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)

Figure 1: A search area.

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... ✓
- ullet 'finding': distance $\Delta \leftrightarrow {\it X} \le 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)
 - Probe response (T/F, d, i)

Figure 1: A search area.

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... ✓
- ullet 'finding': distance $\Delta \leftrightarrow {\it X} \le 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)
 - Probe response (T/F, d, i)
 - ullet Δ 's memory if any

Figure 1: A search area.

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... ✓
- ullet 'finding': distance $\Delta \leftrightarrow {\it X} \le 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)
 - Probe response (T/F, d, i)
 - Δ's memory if any
 - multiple ∆, etc...

Figure 1: A search area.

- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)
 - Probe response (T/F, d, i)
 - Δ's memory if any
 - multiple Δ , etc...
- Effectiveness metrics:

Figure 2: A search area.

- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)
 - Probe response (T/F, d, i)
 - Δ's memory if any
 - multiple Δ , etc...
- Effectiveness metrics:
 - # of probes, P(n)

Figure 2: A search area.

- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)
 - Probe response (T/F, d, i)
 - Δ's memory if any
 - multiple ∆, etc...
- Effectiveness metrics:
 - # of probes, P(n)
 - Distance traveled by Δ , D(n)

Figure 2: A search area.

- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)
 - Probe response (T/F, d, i)
 - Δ's memory if any
 - multiple ∆, etc...
- Effectiveness metrics:
 - # of probes, P(n)
 - Distance traveled by Δ , D(n)
 - # of POI responses, R(n)

Figure 2: A search area.

- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)
 - Probe response (T/F, d, i)
 - Δ's memory if any
 - multiple ∆, etc...
- Effectiveness metrics:
 - # of probes, P(n)
 - Distance traveled by Δ , D(n)
 - # of POI responses, R(n)
 - Input sensitivity?

Figure 2: A search area.

- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)
 - Probe response (T/F, d, i)
 - Δ's memory if any
 - multiple Δ, etc...
- Effectiveness metrics:
 - # of probes, P(n)
 - Distance traveled by Δ , D(n)
 - # of POI responses, R(n)
 - Input sensitivity?
 - TSP tour length, OPT

Figure 2: A search area.

- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)
 - Probe response (T/F, d, i)
 - Δ's memory if any
 - multiple ∆, etc...
- Effectiveness metrics:
 - # of probes, P(n)
 - Distance traveled by Δ , D(n)
 - # of POI responses, R(n)
 - Input sensitivity?
 - TSP tour length, OPT
 - Simplicity / practicality

Figure 2: A search area.

• Motivation?

Figure 3: A search area.

- Motivation?
- Finding gold?

Figure 3: A search area.

- Motivation?
- Finding gold?
- Detecting uranium?

Figure 3: A search area.

- Motivation?
- Finding gold?
- Detecting uranium? **
- Finding lost hiker / kidnap victim?

Figure 3: A search area.

- Motivation?
- Finding gold?
- Detecting uranium? *
- Finding lost hiker / kidnap victim?
- Game of Marco Polo?

Figure 3: A search area.

- Motivation?
- Finding gold?
- Detecting uranium? **
- Finding lost hiker / kidnap victim?
- Game of Marco Polo?
- Whatever floats your \(\mathbb{L} \)

Figure 3: A search area.

• What if just one **X**?

Figure 4: Trivial example w/ one X.

- What if just one **X**?
- Probe radius

Figure 4: Trivial example w/ one X.

- What if just one **X**?
- Probe radius.

Figure 4: Trivial example w/ one X.

- What if just one **X**?
- Probe radius..

Figure 4: Trivial example w/ one X.

- What if just one **X**?
- Probe radius...

Figure 4: Trivial example w/ one X.

- What if just one **X**?
- Probe radius....

Figure 4: Trivial example w/ one X.

- What if just one **X**?
- Probe radius.....

Figure 4: Trivial example w/ one X.

- What if just one **X**?
- Probe radius.....

Figure 4: Trivial example w/ one X.

- What if just one **X**?
- Probe radius......

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing.

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing..

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing...

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing....

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing....
- Until 'found'! (reduced to radius 1)

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing....
- Until 'found'! (reduced to radius 1)
- Time?

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing....
- Until 'found'! (reduced to radius 1)
- Time?
- Initial diameter? 2n

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing....
- Until 'found'! (reduced to radius 1)
- Time?
- Initial diameter? 2n
- x halved $\log 2n = \lceil \log n \rceil + 1$

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing....
- Until 'found'! (reduced to radius 1)
- Time? $2\lceil \log n \rceil + 2$
- Initial diameter? 2n
- x halved $\log 2n = \lceil \log n \rceil + 1$

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing....
- Until 'found'! (reduced to radius 1)
- Time? $2\lceil \log n \rceil + 2$
- Initial diameter? 2n
- x halved $\log 2n = \lceil \log n \rceil + 1$
- Optimal?

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing....
- Until 'found'! (reduced to radius 1)
- Time? $2\lceil \log n \rceil + 2$
- Initial diameter? 2n
- x halved $\log 2n = \lceil \log n \rceil + 1$
- Optimal?
- Initial area: πn^2

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing....
- Until 'found'! (reduced to radius 1)
- Time? $2\lceil \log n \rceil + 2$
- Initial diameter? 2n
- x halved $\log 2n = \lceil \log n \rceil + 1$
- Optimal?
- Initial area: πn^2
- Final area: π

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing....
- Until 'found'! (reduced to radius 1)
- Time? $2\lceil \log n \rceil + 2$
- Initial diameter? 2n
- x halved $\log 2n = \lceil \log n \rceil + 1$
- Optimal?
- Initial area: πn^2
- Final area: π
- ullet Optimal probe o half remaining

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing....
- Until 'found'! (reduced to radius 1)
- Time? $2\lceil \log n \rceil + 2$
- Initial diameter? 2n
- x halved $\log 2n = \lceil \log n \rceil + 1$
- Optimal?
- Initial area: πn^2
- Final area: π
- ullet Optimal probe o half remaining

Figure 4: Trivial example w/ one X.

- What if just one X?
- Probe radius...... $\rightarrow \infty$
- Keep dividing....
- Until 'found'! (reduced to radius 1)
- Time? $2\lceil \log n \rceil + 2$
- Initial diameter? 2n
- x halved $\log 2n = \lceil \log n \rceil + 1$
- Optimal? pretty much!
- Initial area: πn^2
- Final area: π
- ullet Optimal probe o half remaining

Figure 4: Trivial example w/ one X.

- What if just one X? too easy!
- Probe radius...... $\rightarrow \infty$
- Keep dividing....
- Until 'found'! (reduced to radius 1)
- Time? $2\lceil \log n \rceil + 2$
- Initial diameter? 2n
- x halved $\log 2n = \lceil \log n \rceil + 1$
- Optimal? pretty much!
- Initial area: πn^2
- Final area: π
- ullet Optimal probe o half remaining

Figure 4: Trivial example w/ one X.

• Limit radius to *n*?

Figure 5: One X, probe $d \leq n$.

- Limit radius to *n*?
- Restrict x to 1-wide

Figure 5: One X, probe $d \leq n$.

- Limit radius to *n*?
- Restrict x to 1-wide

Figure 5: One X, probe $d \leq n$.

- Limit radius to *n*?
- Restrict x to 1-wide $\lceil \log 2n \rceil$

Figure 5: One X, probe $d \leq n$.

- Limit radius to *n*?
- Restrict x to 1-wide $\lceil \log 2n \rceil$
- Restrict y to 1-wide

Figure 5: One X, probe $d \leq n$.

- Limit radius to *n*?
- Restrict x to 1-wide $\lceil \log 2n \rceil$
- Restrict y to 1-wide

Figure 5: One X, probe $d \le n$.

- Limit radius to *n*?
- Restrict x to 1-wide $\lceil \log 2n \rceil$
- Restrict y to 1-wide

Figure 5: One X, probe $d \le n$.

- Limit radius to *n*?
- Restrict x to 1-wide $\lceil \log 2n \rceil$
- Restrict y to 1-wide $\lceil \log \pi n \rceil$

Figure 5: One X, probe $d \le n$.

- Limit radius to *n*?
- Restrict x to 1-wide $\lceil \log 2n \rceil$
- Restrict y to 1-wide $\lceil \log \pi n \rceil$
- Overall: $\leq 2\lceil \log n \rceil + 3$

Figure 5: One X, probe $d \leq n$.

- Limit radius to *n*?
- Restrict x to 1-wide $\lceil \log 2n \rceil$
- Restrict y to 1-wide $\lceil \log \pi n \rceil$
- Overall: $\leq 2\lceil \log n \rceil + 3$
- Also close enough!

Figure 5: One X, probe $d \leq n$.

- Limit radius to *n*?
- Restrict x to 1-wide $\lceil \log 2n \rceil$
- Restrict y to 1-wide $\lceil \log \pi n \rceil$
- Overall: $\leq 2\lceil \log n \rceil + 3$
- Also close enough!
- Δ might leave initial area...

Figure 5: One X, probe $d \leq n$.

- Limit radius to *n*?
- Restrict x to 1-wide $\lceil \log 2n \rceil$
- Restrict y to 1-wide $\lceil \log \pi n \rceil$
- Overall: $\leq 2\lceil \log n \rceil + 3$
- Also close enough!
- Δ might leave initial area...
- Can also solve in $2\lceil \log n \rceil + \mathcal{O}(1)$

Figure 5: One X, probe $d \leq n$.

- Limit radius to *n*?
- Restrict x to 1-wide $\lceil \log 2n \rceil$
- Restrict y to 1-wide $\lceil \log \pi n \rceil$
- Overall: $\leq 2\lceil \log n \rceil + 3$
- Also close enough!
- Δ might leave initial area...
- Can also solve in $2\lceil \log n \rceil + \mathcal{O}(1)$
- From now on...
 - **1** probe radius $\leq n$
 - may be multiple X!

Figure 5: One X, probe $d \leq n$.

Consider hexagonal lattice

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2
- Probe!

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2
- Probe!

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2
- Probe!

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2
- Probe!

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2
- Probe!

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2
- Probe!
- After (at most) 6 probes...

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2
- Probe!
- After (at most) 6 probes...
- Search area radius is halved!

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2
- Probe!
- After (at most) 6 probes...
- Search area radius is halved!
- Recurse!
- $P(n) \leq 6 \lceil \log n \rceil$

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2
- Probe!
- After (at most) 6 probes...
- Search area radius is halved!
- Recurse!
- $P(n) \leq 6\lceil \log n \rceil$
- Total responses?

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2
- Probe!
- After (at most) 6 probes...
- Search area radius is halved!
- Recurse!
- $P(n) \leq 6\lceil \log n \rceil$
- Total responses?
- At most one per layer...

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2
- Probe!
- After (at most) 6 probes...
- Search area radius is halved!
- Recurse!
- $P(n) \leq 6 \lceil \log n \rceil$
- Total responses?
- At most one per layer...
- $R(n) \leq \lceil \log n \rceil$

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2
- Probe!
- After (at most) 6 probes...
- Search area radius is halved!
- Recurse!
- $P(n) \leq 6 \lceil \log n \rceil$
- Total responses?
- At most one per layer...
- $R(n) \leq \lceil \log n \rceil$
- Distance traveled?

Figure 6: Algorithm 1

- Consider hexagonal lattice
- Hexagon side length: n/2
- Probe!
- After (at most) 6 probes...
- Search area radius is halved!
- Recurse!
- $P(n) \leq 6\lceil \log n \rceil$
- Total responses?
- At most one per layer...
- $R(n) \leq \lceil \log n \rceil$
- Distance traveled?
- $D(n) \leq 10.39n$

Figure 6: Algorithm 1

Consider hexagonal lattice

Figure 7: Algorithm 2

- Consider hexagonal lattice
- First probe 2 quadrants...

Figure 7: Algorithm 2

- Consider hexagonal lattice
- First probe 2 quadrants...

Figure 7: Algorithm 2

- Consider hexagonal lattice
- First probe 2 quadrants...

Figure 7: Algorithm 2

- Consider hexagonal lattice
- First probe 2 quadrants...

Figure 7: Algorithm 2

- Consider hexagonal lattice
- First probe 2 quadrants...

Figure 7: Algorithm 2

- Consider hexagonal lattice
- First probe 2 quadrants...
- After (at most) 5 probes...
- Search area radius is halved!

Figure 7: Algorithm 2

- Consider hexagonal lattice
- First probe 2 quadrants...
- After (at most) 5 probes...
- Search area radius is halved!
- $P(n) \leq 5\lceil \log n \rceil$

Figure 7: Algorithm 2

- Consider hexagonal lattice
- First probe 2 quadrants...
- After (at most) 5 probes...
- Search area radius is halved!
- $P(n) \leq 5\lceil \log n \rceil$
- Total responses?

Figure 7: Algorithm 2

- Consider hexagonal lattice
- First probe 2 quadrants...
- After (at most) 5 probes...
- Search area radius is halved!
- $P(n) \leq 5\lceil \log n \rceil$
- Total responses?
- If 3rd probe succeeds, only $1/\sqrt{2}$ reduction...

Figure 7: Algorithm 2

- Consider hexagonal lattice
- First probe 2 quadrants...
- After (at most) 5 probes...
- Search area radius is halved!
- $P(n) \leq 5\lceil \log n \rceil$
- Total responses?
- If 3rd probe succeeds, only $1/\sqrt{2}$ reduction...
- $R(n) \leq 2\lceil \log n \rceil$

Figure 7: Algorithm 2

- Consider hexagonal lattice
- First probe 2 quadrants...
- After (at most) 5 probes...
- Search area radius is halved!
- $P(n) \leq 5\lceil \log n \rceil$
- Total responses?
- If 3rd probe succeeds, only $1/\sqrt{2}$ reduction...
- $R(n) \leq 2\lceil \log n \rceil$
- Distance traveled?

Figure 7: Algorithm 2

- Consider hexagonal lattice
- First probe 2 quadrants...
- After (at most) 5 probes...
- Search area radius is halved!
- $P(n) \leq 5\lceil \log n \rceil$
- Total responses?
- If 3rd probe succeeds, only $1/\sqrt{2}$ reduction...
- $R(n) \leq 2\lceil \log n \rceil$
- Distance traveled?
- $D(n) \leq 8.81n$

Figure 7: Algorithm 2

• Larger probes are better?

• Larger probes are better?

✓ Reduce more when fail

- Larger probes are better?
 - ✓ Reduce more when fail
 - Reduce less when succeed

- Larger probes are better?
 - ✓ Reduce more when fail
 - Reduce less when succeed
- Best size?

- Larger probes are better?
 - ✓ Reduce more when fail
 - Reduce less when succeed
- Best size? depends when probed

CCCG, 2025

- Larger probes are better?
 - ✓ Reduce more when fail
 - X Reduce less when succeed
- Best size? depends when probed
- Intuition: If spent more probes, should expect better reduction

- Larger probes are better?
 - ✓ Reduce more when fail
 - X Reduce less when succeed
- Best size? depends when probed
- Intuition: If spent more probes, should expect better reduction
- Probes progressively shrink!

- Larger probes are better?
 - ✓ Reduce more when fail
 - Reduce less when succeed
- Best size? depends when probed
- Intuition: If spent more probes, should expect better reduction
- Probes progressively shrink!
- How much?

- Larger probes are better?
 - ✓ Reduce more when fail
 - X Reduce less when succeed
- Best size? depends when probed
- Intuition: If spent more probes, should expect better reduction
- Probes progressively shrink!
- How much?
- Let k-th probe have $r_k = \rho_k n$

- Larger probes are better?
 - ✓ Reduce more when fail
 - Reduce less when succeed
- Best size? depends when probed
- Intuition: If spent more probes, should expect better reduction
- Probes progressively shrink!
- How much?
- Let k-th probe have $r_k = \rho_k n$
- Solve recurrence:

$$P(n) = k + P(\rho_k n)$$

- Larger probes are better?
 - ✓ Reduce more when fail
 - X Reduce less when succeed
- Best size? depends when probed
- Intuition: If spent more probes, should expect better reduction
- Probes progressively shrink!
- How much?
- Let k-th probe have $r_k = \rho_k n$
- Solve recurrence:

$$P(n) = k + P(\rho_k n)$$

• Minimum when $\rho_k = \rho_1^k$

- Larger probes are better?
 - ✓ Reduce more when fail
 - X Reduce less when succeed
- Best size? depends when probed
- Intuition: If spent more probes, should expect better reduction
- Probes progressively shrink!
- How much?
- Let k-th probe have $r_k = \rho_k n$
- Solve recurrence:

$$P(n) = k + P(\rho_k n)$$

- Minimum when $\rho_k = \rho_1^k$
- Geometrically decreasing!

L₂: Progressively Shrinking Probes

- Larger probes are better?
 - ▼ Reduce more when fail
 - X Reduce less when succeed
- Best size? depends when probed
- Intuition: If spent more probes, should expect better reduction
- Probes progressively shrink!
- How much?
- Let k-th probe have $r_k = \rho_k n$
- Solve recurrence: $P(n) = k + P(\rho_k n)$
- Minimum when $\rho_k = \rho_1^k$
- Geometrically decreasing!

Figure 8: Must be able to cover perimeter... $\rho_1 \ge 0.74915...$

L₂: Progressively Shrinking Probes

- Larger probes are better?
 - ✓ Reduce more when fail✓ Reduce less when succeed
 - .
- Best size? depends when probed
- Intuition: If spent more probes, should expect better reduction
- Probes progressively shrink!
- How much?
- Let k-th probe have $r_k = \rho_k n$
- Solve recurrence: $P(n) = k + P(\rho_k n)$
- Minimum when $\rho_k = \rho_1^k$
- Geometrically decreasing!

Figure 8: Must be able to cover perimeter... $\rho_1 \ge 0.74915...$

Lower bound: $P(n) \ge 2.40001 \lceil \log n \rceil$

• $\rho_1 = 0.74915...$ too small

Figure 9: Algorithm 3

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?

Figure 9: Algorithm 3

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?

Figure 9: Algorithm 3

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?

Figure 9: Algorithm 3

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?

Figure 9: Algorithm 3

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?

Figure 9: Algorithm 3

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?
- $\rho_1 = 0.844...$

Figure 9: Algorithm 3

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?
- $\rho_1 = 0.844...$
- $P(n) = R(n) \le -\frac{1}{\log \rho_1} \lceil \log n \rceil = \frac{4.08}{\log n}$

Figure 9: Algorithm 3

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?
- $\rho_1 = 0.844...$
- $P(n) = R(n) \le -\frac{1}{\log \rho_1} \lceil \log n \rceil = \frac{4.08}{\log n}$
- $D(n) \leq 6.95n$

Figure 9: Algorithm 3

L_2 : Chord-Based Shrinking Algorithms

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?
- $\rho_1 = 0.844...$
- $P(n) = R(n) \le -\frac{1}{\log \rho_1} \lceil \log n \rceil = \frac{4.08}{\log n}$
- $D(n) \leq 6.95n$
- What if we rearrange?

Figure 9: Algorithm 4

L_2 : Chord-Based Shrinking Algorithms

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?
- $\rho_1 = 0.844...$
- $P(n) = R(n) \le -\frac{1}{\log \rho_1} \lceil \log n \rceil = \frac{4.08}{\log n}$
- $D(n) \leq 6.95n$
- What if we rearrange?

Figure 9: Algorithm 4

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?
- $\rho_1 = 0.844...$
- $P(n) = R(n) \le -\frac{1}{\log \rho_1} \lceil \log n \rceil = \frac{4.08}{\log n}$
- $D(n) \leq 6.95n$
- What if we rearrange?

Figure 9: Algorithm 4

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?
- $\rho_1 = 0.844...$
- $P(n) = R(n) \le -\frac{1}{\log \rho_1} \lceil \log n \rceil = \frac{4.08}{\log n}$
- $D(n) \leq 6.95n$
- What if we rearrange?

Figure 9: Algorithm 4

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?
- $\rho_1 = 0.844...$
- $P(n) = R(n) \le -\frac{1}{\log \rho_1} \lceil \log n \rceil = \frac{4.08}{\log n}$
- $D(n) \leq 6.95n$
- What if we rearrange?
- Can get $\rho_1 = 0.822...$

Figure 9: Algorithm 4

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?
- $\rho_1 = 0.844...$
- $P(n) = R(n) \le -\frac{1}{\log \rho_1} \lceil \log n \rceil = \frac{4.08}{\log n}$
- $D(n) \leq 6.95n$
- What if we rearrange?
- Can get $\rho_1 = 0.822...$
- $P(n) = R(n) \le 3.54 \lceil \log n \rceil$

Figure 9: Algorithm 4

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?
- $\rho_1 = 0.844...$
- $P(n) = R(n) \le -\frac{1}{\log \rho_1} \lceil \log n \rceil = \frac{4.08}{\log n}$
- $D(n) \leq 6.95n$
- What if we rearrange?
- Can get $\rho_1 = 0.822...$
- $P(n) = R(n) \le 3.54 \lceil \log n \rceil$
- $D(n) \leq 9.31n$

Figure 9: Algorithm 4

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?
- $\rho_1 = 0.844...$
- $P(n) = R(n) \le -\frac{1}{\log \rho_1} \lceil \log n \rceil = \frac{4.08}{\log n}$
- $D(n) \leq 6.95n$
- What if we rearrange?
- Can get $\rho_1 = 0.822...$
- $P(n) = R(n) \le 3.54 \lceil \log n \rceil$
- $D(n) \leq 9.31n$
- Why only 5 probes?

Figure 9: Algorithm 4

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?
- $\rho_1 = 0.844...$
- $P(n) = R(n) \le -\frac{1}{\log \rho_1} \lceil \log n \rceil = \frac{4.08}{\log n}$
- $D(n) \leq 6.95n$
- What if we rearrange?
- Can get $\rho_1 = 0.822...$
- $P(n) = R(n) \le 3.54 \lceil \log n \rceil$
- $D(n) \leq 9.31n$
- Why only 5 probes? Smaller probes → uncovered center

- $\rho_1 = 0.74915...$ too small
- How large must ρ_1 be?
- $\rho_1 = 0.844...$
- $P(n) = R(n) \le -\frac{1}{\log \rho_1} \lceil \log n \rceil = \frac{4.08}{\log n}$
- $D(n) \leq 6.95n$
- What if we rearrange?
- Can get $\rho_1 = 0.822...$
- $P(n) = R(n) \le 3.54 \lceil \log n \rceil$
- $D(n) \leq 9.31n$
- Why only 5 probes? Smaller probes → uncovered center

Avoid uncovered center...

Figure 9: Algorithm 5

- Avoid uncovered center...
- Let's start in center...

Figure 9: Algorithm 5

- Avoid uncovered center...
- Let's start in center...
- Then perimeter.

Figure 9: Algorithm 5

- Avoid uncovered center...
- Let's start in center...
- Then perimeter..

Figure 9: Algorithm 5

- Avoid uncovered center...
- Let's start in center...
- Then perimeter...

Figure 9: Algorithm 5

- Avoid uncovered center...
- Let's start in center...
- Then perimeter....

Figure 9: Algorithm 5

- Avoid uncovered center...
- Let's start in center...
- Then perimeter.....

Figure 9: Algorithm 5

- Avoid uncovered center...
- Let's start in center...
- Then perimeter.....

Figure 9: Algorithm 5

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes!

Figure 9: Algorithm 5

- Avoid uncovered center...
- Let's start in center. . .
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$

Figure 9: Algorithm 5

CCCG, 2025

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner

Figure 9: Algorithm 5

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate

Figure 9: Some geometry

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result:

Figure 9: Algorithm 6

- Avoid uncovered center...
- Let's start in center. . .
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result:

Figure 9: Algorithm 6

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result:

Figure 9: Algorithm 6

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result:

Figure 9: Algorithm 6

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result:

Figure 9: Algorithm 6

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result:

Figure 9: Algorithm 6

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result:

Figure 9: Algorithm 6

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result:

Figure 9: Algorithm 6

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result:

Figure 9: Algorithm 6

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result:

Figure 9: Algorithm 6

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result:

Figure 9: Algorithm 6

- Avoid uncovered center...
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result:

Figure 9: Algorithm 6

- Avoid uncovered center. . .
- Let's start in center...
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result: turned up to 11!

Figure 9: Algorithm 6

- Avoid uncovered center...
- Let's start in center. . .
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result: turned up to 11!
- $P(n) \leq 3.34 \lceil \log n \rceil$
- $D(n) \leq 6.02n$

Figure 9: Algorithm 6

- Avoid uncovered center...
- Let's start in center. . .
- Then perimeter......
- 7 probes! but inefficient...
- $P(n) \leq 3.83 \lceil \log n \rceil$
- $D(n) \leq 6.72n$
- Problem: Outer circumference covered faster than inner
- Solution: Cover at same rate
- Result: turned up to 11!
- $P(n) \leq 3.34 \lceil \log n \rceil$
- $D(n) \leq 6.02n$ our best result!

Figure 9: Algorithm 6

• Algorithm 4 w/ ρ_1 too small...

12 / 20

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X

12 / 20

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...

12 / 20

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage.

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage..

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 . . .

Figure 10: Algorithm 7

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 ...
- Finish programmatically.

Figure 10: Algorithm 7

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 ...
- Finish programmatically...

Figure 10: Algorithm 7

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes. . .
- How?
 - Identify corners...
 - 2 Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 ...
- Finish programmatically...

Figure 10: Algorithm 7

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 ...
- Finish programmatically....

Figure 10: Algorithm 7

L_2 : Darting Non-Monotonic Algorithms

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes. . .
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 ...
- Finish programmatically.....

Figure 10: Algorithm 7

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 ...
- Finish programmatically.....

Figure 10: Algorithm 7

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes. . .
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 ...
- Finish programmatically......

Figure 10: Algorithm 7

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 ...
- Finish programmatically......

Figure 10: Algorithm 7

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 ...
- Finish programmatically......

Figure 10: Algorithm 7

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 ...
- Finish programmatically......

Figure 10: Algorithm 7

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 ...
- Finish programmatically.....

Figure 10: Algorithm 7

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 ...
- Finish programmatically.....
- 25 probes!

Figure 10: Algorithm 7

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 . . .
- Finish programmatically.....
- 25 probes!
- $P(n) \leq 2.93 \lceil \log n \rceil$

Figure 10: Algorithm 7

L_2 : Darting Non-Monotonic Algorithms

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 . . .
- Finish programmatically.....
- 25 probes!
- $P(n) \leq 2.93 \lceil \log n \rceil$
- $D(n) \leq 25.8n$

Figure 10: Algorithm 7

- Algorithm 4 w/ ρ_1 too small...
- Uncovered internal area X
- Can add more probes...
- How?
 - Identify corners...
 - Maximize coverage...
- Fill in holes programmatically!
- Start w/ Algorithm 4 . . .
- Finish programmatically.....
- 25 probes!
- $P(n) \leq 2.93 \lceil \log n \rceil$
- $D(n) \leq 25.8n$ terrible!

Figure 10: Algorithm 7

• How far can we push this?

- How far can we push this?
- Take human out of the loop

- How far can we push this?
- Take human out of the loop
- Differential evolution.

- How far can we push this?
- Take human out of the loop
- Differential evolution...

- How far can we push this?
- Take human out of the loop
- Differential evolution...

- How far can we push this?
- Take human out of the loop
- Differential evolution....

- How far can we push this?
- Take human out of the loop
- Differential evolution.....

- How far can we push this?
- Take human out of the loop
- Differential evolution......

- How far can we push this?
- Take human out of the loop
- Differential evolution......
- Then programmatic.

- How far can we push this?
- Take human out of the loop
- Differential evolution.....
- Then programmatic..

- How far can we push this?
- Take human out of the loop
- Differential evolution......
- Then programmatic...

- How far can we push this?
- Take human out of the loop
- Differential evolution......
- Then programmatic.....
- 32 probes!!!

- How far can we push this?
- Take human out of the loop
- Differential evolution......
- Then programmatic.....
- 32 probes!!!
- How good is it?

- How far can we push this?
- Take human out of the loop
- Differential evolution.....
- Then programmatic.....
- 32 probes!!!
- How good is it?
- $P(n) \leq 2.53 \lceil \log n \rceil$

- How far can we push this?
- Take human out of the loop
- Differential evolution......
- Then programmatic.....
- 32 probes!!!
- How good is it?
- $P(n) \leq 2.53 \lceil \log n \rceil$
- Recall: $2.4\lceil \log n \rceil$ lower bound

- How far can we push this?
- Take human out of the loop
- Differential evolution.....
- Then programmatic.....
- 32 probes!!!
- How good is it?
- $P(n) \leq 2.53 \lceil \log n \rceil$
- Recall: $2.4\lceil \log n \rceil$ lower bound
- Distance?

- How far can we push this?
- Take human out of the loop
- Differential evolution.....
- Then programmatic.....
- 32 probes!!!
- How good is it?
- $P(n) \leq 2.53 \lceil \log n \rceil$
- Recall: $2.4\lceil \log n \rceil$ lower bound
- Distance? abysmal
- D(n) < 45.4n

L_2 : Comparing # Probes

		Probes $(P/\lceil \log n \rceil)$			
Category	Alg. #	Min	Avg	Max	Bound
Hexagonal	Alg. 1	1.00	3.24	5.70	6.00
	Alg. 2	1.00	2.93	4.80	5.00
Chord-Based	Alg. 3	3.85	4.13	4.25	4.08
	Alg. 4	3.10	3.52	3.70	3.54
Monotonic	Alg. 5	3.55	3.87	4.15	3.83
	Alg. 6	3.25	3.41	3.85	3.34
Darting	Alg. 7	2.90	2.99	3.65	2.93
	Alg. 8	2.55	2.59	3.20	2.53

Table 1: A numerical comparison of simulation results for our 8 algorithms on the number of probes made (P). The best values are highlighted in bold.

L₂: Comparing Distance Traveled

		Total Distance (D/n)			
Category	Alg. #	Min	Avg	Max	Bound
Hexagonal	Alg. 1	0.00	3.35	10.39	10.39
	Alg. 2	0.00	2.65	8.81	8.81
Chord-Based	Alg. 3	4.69	5.46	6.56	6.95
	Alg. 4	4.30	5.38	9.00	9.31
Monotonic	Alg. 5	0.00	1.92	6.72	6.72
	Alg. 6	0.00	1.96	6.01	6.02
Darting	Alg. 7	3.86	5.97	25.74	25.80
	Alg. 8	2.44	4.05	42.58	45.40

Table 2: A numerical comparison of simulation results for our 8 algorithms on the total distance traveled by Δ (D). The best values are highlighted in bold.

L_2 : Comparing # Responses

		Responses $(R/\lceil \log n \rceil)$			
Category	Alg. #	Min	Avg	Max	Bound
Hexagonal	Alg. 1	0.20	0.89	1.00	1.00
	Alg. 2	0.35	1.11	1.45	2.00
Chord-Based	Alg. 3	1.40	1.99	2.40	4.08
	Alg. 4	0.80	1.94	2.50	3.54
Monotonic	Alg. 5	0.80	2.49	3.85	3.83
	Alg. 6	0.60	1.96	3.35	3.34
Darting	Alg. 7	0.30	1.39	2.15	2.93
	Alg. 8	0.45	1.31	1.85	2.53

Table 3: A numerical comparison of simulation results for our 8 algorithms on the number of POI responses made (R). The best values are highlighted in bold.

• If POI only allowed 1 response?

- If POI only allowed 1 response?
- Large hexagonal lattice!

- If POI only allowed 1 response?
- Large hexagonal lattice!
- If POI allowed 2 responses?

- If POI only allowed 1 response?
- Large hexagonal lattice!
- If POI allowed 2 responses?
- Medium hexagonal lattice...

- If POI only allowed 1 response?
- Large hexagonal lattice!
- If POI allowed 2 responses?
- Medium hexagonal lattice...
- After one response...

- If POI only allowed 1 response?
- Large hexagonal lattice!
- If POI allowed 2 responses?
- Medium hexagonal lattice...
- After one response... recurse!

- If POI only allowed 1 response?
- Large hexagonal lattice!
- If POI allowed 2 responses?
- Medium hexagonal lattice...
- After one response... recurse!
- If POI allowed R_{max} responses?

- If POI only allowed 1 response?
- Large hexagonal lattice!
- If POI allowed 2 responses?
- Medium hexagonal lattice...
- After one response. . . recurse!
- If POI allowed R_{max} responses?
- R_{max} recursions!

Theorem

If a POI is allowed R_{max} responses,

$$P(n) \le 6R_{max} \binom{\lceil \frac{2n^{\frac{1}{R_{max}}} + 2}{3} \rceil}{2}$$
 (1)

$$L = \lceil \frac{2n^{\frac{1}{R_{max}}} + 2}{3} \rceil \text{ rings.}$$
 (2)

- If POI only allowed 1 response?
- Large hexagonal lattice!
- If POI allowed 2 responses?
- Medium hexagonal lattice...
- After one response. . . recurse!
- If POI allowed R_{max} responses?
- R_{max} recursions!

Theorem

If a POI is allowed R_{max} responses,

$$P(n) \leq 6R_{max} \binom{\lceil \frac{2n^{\frac{n}{m_{max}}} + 2}{3} \rceil}{2} \qquad (1)$$

$$L = \lceil \frac{2n^{\frac{1}{R_{max}}} + 2}{3} \rceil \text{ rings.}$$
 (2)

Corollary

- **1** If $R_{max} = 1$, $P(n) \leq \mathcal{O}(n^2)$.
- ② If $R_{max} = 2$, $P(n) \leq O(n)$.
- If $R_{max} = \lceil \log n \rceil$, then $P(n) \le 6 \lceil \log n \rceil$.

- If POI only allowed 1 response?
- Large hexagonal lattice!
- If POI allowed 2 responses?
- Medium hexagonal lattice...
- After one response. . . recurse!
- If POI allowed R_{max} responses?
- R_{max} recursions!
- Corollary 3 is Algorithm 1!

Theorem

If a POI is allowed R_{max} responses,

$$P(n) \le 6R_{\max} \left(\frac{2n^{\frac{1}{R_{\max}}} + 2}{3} \right) \quad (1)$$

$$L = \lceil \frac{2n^{\frac{1}{R_{max}}} + 2}{3} \rceil \text{ rings.}$$
 (2)

Corollary

- **1** If $R_{max} = 1$, $P(n) \leq \mathcal{O}(n^2)$.
- ② If $R_{max} = 2$, $P(n) \le O(n)$.
- If $R_{max} = \lceil \log n \rceil$, then $P(n) \le 6 \lceil \log n \rceil$.

• Finding all k POIs?

- Finding all k POIs?
- Using algorithm $\mathcal{A}(n)$

- Finding all k POIs?
- Using algorithm A(n)
- One POI: $P(n) \leq c \lceil \log n \rceil$

- Finding all k POIs?
- Using algorithm $\mathcal{A}(n)$
- One POI: $P(n) \leq c \lceil \log n \rceil$
- Traveling $D(n) \leq dn$

- Finding all k POIs?
- Using algorithm A(n)
- One POI: $P(n) \leq c \lceil \log n \rceil$
- Traveling $D(n) \leq dn$
- Trivial: Call $\mathcal{A}(n)$ k times

- Finding all k POIs?
- Using algorithm $\mathcal{A}(n)$
- One POI: $P(n) \leq c \lceil \log n \rceil$
- Traveling $D(n) \leq dn$
- Trivial: Call $\mathcal{A}(n)$ k times
- $P_{\text{tot}} \leq ck \lceil \log n \rceil$
- $D_{\text{tot}} \leq dkn$

- Finding all k POIs?
- Using algorithm $\mathcal{A}(n)$
- One POI: $P(n) \leq c \lceil \log n \rceil$
- Traveling $D(n) \leq dn$
- Trivial: Call $\mathcal{A}(n)$ k times
- $P_{\text{tot}} \leq ck \lceil \log n \rceil$
- $D_{\text{tot}} \leq dkn$
- Can we do better?

- Finding all k POIs?
- Using algorithm $\mathcal{A}(n)$
- One POI: $P(n) \leq c \lceil \log n \rceil$
- Traveling $D(n) \leq dn$
- Trivial: Call $\mathcal{A}(n)$ k times
- $P_{\text{tot}} \leq ck \lceil \log n \rceil$
- $D_{\text{tot}} \leq dkn$
- Can we do better?
- Recall: Probes return boolean

- Finding all k POIs?
- Using algorithm $\mathcal{A}(n)$
- One POI: $P(n) \leq c \lceil \log n \rceil$
- Traveling $D(n) \leq dn$
- Trivial: Call $\mathcal{A}(n)$ k times
- $P_{\text{tot}} \leq ck \lceil \log n \rceil$
- $D_{\text{tot}} \leq dkn$
- Can we do better?
- Recall: Probes return boolean
- Even returning quantity...?

- Trivial: Call $\mathcal{A}(n)$ k times
- $P_{\text{tot}} \leq ck \lceil \log n \rceil$
- $D_{\text{tot}} \leq dkn$

- Trivial: Call $\mathcal{A}(n)$ k times
- $P_{\text{tot}} \leq \frac{ck}{\log n}$
- $D_{\text{tot}} \leq dkn$
- Simple idea once one found,

- Trivial: Call $\mathcal{A}(n)$ k times
- $P_{\text{tot}} \leq ck \lceil \log n \rceil$
- $D_{\text{tot}} \leq dkn$
- Simple idea once one found,
- exponential search

- Trivial: Call $\mathcal{A}(n)$ k times
- $P_{\text{tot}} \leq \frac{ck}{\log n}$
- $D_{\text{tot}} \leq dkn$
- Simple idea once one found,
- exponential search

19 / 20

Theorem

We can perform a memoryless search for all k POIs in

$$P_{tot} \le c \lceil \log n \rceil + (c+1)(k-1) \lceil \log \overline{e} \rceil,$$

 $D_{tot} \le dn + 2dE,$

where $E < OPT(\lceil \log k \rceil + 1)$, $\overline{e} = \frac{E}{k-1}$, and OPT is the optimal tour length for the traveling salesperson problem (TSP) on the k POIs.

Open Problems

- P(n): Progressive probe LB: 2.40001, Alg. 6 achieves 2.53 Can we tighten?
- Take advantage of known empty regions?
- Alg. 6 $D(n) \le 6.02n$ can we improve?
- Higher dimensions?
- Better find-all strategy?
- Other distance metrics (L_1, L_{∞}) ?
- Instance optimal w.r.t. δ_{\min} ?