

Carbon Monoxide Oxidation with Nitric Oxide Resistance on Pd/Cu Catalyst Part 3

Gary Gildert

UNIVERSITY of HOUSTON

THE WILLIAM A. BROOKSHIRE DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING

Outline

1. Motivation

2. Chemistry and Kinetics

3. DFT and microkinetics background

4. Characterization

5. Testing

6. Modeling

Motivation

- Diesel engines are becoming more efficient → lower exhaust temperature
- Still require CO oxidation target 90% conversion at 150°
- NO inhibits CO oxidation on Pt/Pd catalyst
- Identified Pd/Cu as low inhibition catalyst via simulation
 - Test of powder looked promising
 - Test on monoliths had challenges
- Have new source of consistent catalysts

Compound (vol%)	Typical
Nitrogen	76%
Oxygen	10%
Water	7%
Carbon monoxide	500 - 5000
Carbon dioxide	6%
Nitric oxide	100 – 500 ppm
Nitrogen oxide	Not reported
Diesel	Not in scope

Chemistry and Kinetics

Carbon Monoxide Oxidation

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

Nitric Oxide Oxidation

$$NO + \frac{1}{2}O_2 \rightarrow NO_2$$

 Carbon Monoxide / Nitrogen Dioxide Redox

$$CO + NO_2 \rightarrow CO_2 + NO$$

Water Gas Shift

$$CO + H_2O \rightleftharpoons CO_2 + H_2$$

Water Formation

$$H_2 + \frac{1}{2}O_2 \to H_2O$$

Energy Levels for CO and NO Oxidation

DFT / Microkinetics Results

Figure 3. CO_2 and NO_2 production rate contour plots as a function of E_0 and E_{CO} . The feed composition is 5000 ppm of E_0 , 100 ppm of E_0 , and 10% E_0 . The feed composition is 5000 ppm of E_0 , 100 ppm of E_0 , and 10% E_0 . The feed composition is 5000 ppm of E_0 , and 10% E_0 . The feed composition is 5000 ppm of E_0 , and 10% E_0 . The feed composition is 5000 ppm of E_0 , and 10% E_0 . The feed composition is 5000 ppm of E_0 , and 10% E_0 . The feed composition is 5000 ppm of E_0 , and 10% E_0 is 10% E_0 . The feed composition is 5000 ppm of E_0 , and 10% E_0 is 10% E_0 . The feed composition is 5000 ppm of E_0 , and 10% E_0 is 10% E_0 . The feed composition is 5000 ppm of E_0 , and 10% E_0 is 10% E_0 . The feed composition is 5000 ppm of E_0 , and 10% E_0 is 10% E_0 . The feed composition is 5000 ppm of E_0 , and 10% E_0 is 10% E_0 . The feed composition is 5000 ppm of E_0 , and 10% E_0 is 10% E_0 . The feed composition is 5000 ppm of E_0 , and 10% E_0 is 10% E_0 . The feed composition is 5000 ppm of E_0 is 10% E_0 , and 10% E_0 is 10% E_0 . The feed composition is 5000 ppm of E_0 . The feed composition is 5000 ppm of E_0 is 10% E_0 . The feed composition is 5000 ppm of E_0 is 10% E_0 . The feed composition is 5000 ppm of E_0 is 10% E_0 and 10% E_0 is 10% E_0 is 10% E_0 in the feed composition is 5000 ppm of E_0 is 10% E_0 in the feed composition is 5000 ppm of E_0 is 10% E_0 in the feed composition is 5000 ppm of E_0 in the feed composition is 5000 ppm of E_0 in the feed composition is 5000 ppm of E_0 in the feed composition is 5000 ppm of E_0 in the feed composition is 5000 ppm of E_0 in the feed composition is 5000 ppm of E_0 in the feed composition is 5000 ppm of E_0 in the feed composition is 5000 ppm of E_0 in the feed composition is 5000 ppm of E_0 in the feed composition is 5000 ppm of E_0 in the feed composition is 5000 ppm of E_0 in the feed composition is 5000 ppm of E_0 in the f

Figure 4. Steady-state coverage plots as a function of EO and ECO. The feed composition is 5000 ppm of CO, 100 ppm of NO, and 10% O2. The O* coverage is shown in red; NO* coverage is shown in blue, and CO* coverage is shown in green. The gray area represents the low coverage region

1 LTC engine exhaust temperature (T = 425 K, P = 1 atm).

Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions Yuying Song and Lars C. Grabow Industrial & Engineering Chemistry Research 2018 57 (38), 12715-12725

- Three reactant system (O₂, CO, NO)
- For CO₂ production
 Cu₃Pt > Cu₃Pd > PtPd >> Cu
- For NO₂ production
 Cu₃Pt > Cu₃Pd >> PtPd > Cu
- Dominant coverage
 - O* for Cu
 - NO* for PtPd
 - O* and NO* for Cu₃Pt & Cu₃Pd

Testing – Fixed Bed Powder

wt%	Blank	PdPt	PdCu	PtCu	Cu only
Cu	0.00%	0.00%	0.49%	0.49%	0.98%
Pd	0.00%	0.27%	0.27%	0.00%	0.00%
Pt	0.00%	0.50%	0.00%	0.50%	0.00%
Al ₂ O ₃	balance	balance	balance	balance	balance

- Commercial Manufacturer
 - 35 years of environmental catalysts
 - γ-Al₂O₃ carrier
- Five samples of powder
 - Enough to run nearly any test

Characterization

- Physisorption
 - N₂ based BET
- Chemisorption
 - H₂ conventional but may not translate to oxidation
 - CO more applicable to CO oxidation?
 - O₂ unconventional and needs method
 - CO₂ available for physisorption?
 - NO, NO₂ needs complete method development

		Blank	Pt/Pd	Pd/Cu	Pt/Cu	Cu only
BETSA	m²/g powder	153	131	128	127	125
H2 SA	m²/g metal	-	227	106	45	51
COSA	m²/g metal	-	203	-	-	-
CO2		-	-	-	-	-
NO		-	-	-	-	-
NO2		-	-	-	-	-

Dynamic Oxygen Storage Capacity rig in S347

DOSC Results – 02

Bypass

	He (µL)	O2(µL)
	93.2	50.3
	92.4	50.1
	91.6	49.9
Average	92.4	50.1

0.90 g powder loaded 46.1 μmol PGM

Pt/Pd Powder

He (μL)	O2(μL)	He% pickup	O2 % pickup
87.9	-7.7	5%	115%
88.5	-0.7	4%	101%
89.8	8.8	3%	83%
89.2	18.3	3%	63%
90.0	28.2	3%	44%
89.4	35.4	3%	29%
90.3	42.2	2%	16%
91.1	48.9	1%	2%
90.5	50.3	2%	0%
91.1	51.8	1%	-3%
91.2	52.4	1%	-5%

	He (μL)	O2(μL)
Output	625.1	124.4
Input	646.8	350.8
Pickup	21.7	226.4
	3%	65%

0.219 O2:PGM (mol)

DOSC rig Results

- Chemisorption
 - $H_2 35$ °C, $\rightarrow 0$ Pa
- Dosing on the DOSC
 - 150°C, → 101 kPa
 - O₂ includes H₂ adsorbed
 - H₂ includes O₂ adsorbed
 - CO lost to reaction with water

Testing will be restarted after:

- The O2 leak is found and fixed.
- Add drying step after O2 and H2 probes.
- Switch to mass spec only for analysis.
 - Change the balance gas to Argon because N2 has the same mass as CO.
 - Obtain new probe gas (CO, NO, CO2, NO2) in argon (all currently in N2)

μmol/g cat	Blank	Pt/Pd	Pd/Cu	Pt/Cu	Cu only
H2 from Chemisorption	-1.8	18.3	9.5	5.2	6.7
Metal loading	0	52	103	103	154
O2 dose	0	11.2			
H2 dose	0	15.8			
CO dose					
CO + NO dose					

New Catalyst Samples

wt%	PdPt	PdCu	PtCu	Cu only	Blank
Cu		0.49%	0.49%	0.98%	0.00%
Pd	0.27%	0.27%			0.00%
Pt	0.50%		0.50%		0.00%
total	0.77%	0.76%	0.99%	0.98%	0.00%

- Commercial Manufacturer
 - 35 years of environmental catalysts
 - γ-Al₂O₃ on FeCrAl alloy
- 4 samples of monolith + blank
 - 2.35 g powder/ci (0.14 g/mL)
 - Same powder as samples
 - Fits 1" quartz reactor
 - 22 mL (1.35 ci)

Monolith Reactor in S347

Results - Conversion vs Temperature

Summary of Results

wt%	Blank	PdPt	PdCu	PtCu	Cu only
Cu	0.00%	0.00%	0.49%	0.49%	0.98%
Pd	0.00%	0.27%	0.27%	0.00%	0.00%
Pt	0.00%	0.50%	0.00%	0.50%	0.00%
Al ₂ O ₃	balance	balance	balance	balance	balance
	Co	nversion	at standar	d conditio	ns
СО	0%	82%	86%	95%	<5%
50% conv. Temp (°C)	NA	131°	126°	122°	NA
NO	0%	2%	1%	9%	<5%
SS points	-	66	64	68	-

Parameter	Parametric Study			
GHSV	30,000/hr ±5%			
Temperature	100 – 150 - 200°C			
Nitrogen	Balance			
Oxygen	0% or 10%			
Water	0% or 3%			
Carbon monoxide	0 , 500 or 1000 ppm			
Nitric oxide	0, 100 or 200 ppm			
Carbon dioxide	0%			
Nitrogen dioxide	0%			

Modeling

- Redo contour plots with revised composition
 - CO 5000 → 500 ppm
 - NO 100 → 200 ppm
 - H2O $0 \rightarrow 3\%$ (?)
- Elementary Reactions
 - Assume RCS
 - Psudo-equilibrium
 - Overall reaction rate
 - Conventional model fitting from differential equations (Euler)
- Microkinetic modelling
 - Adsorption from DFT
 - Activity from 2-reactant test
 - Compare results!

Component (vol%)	Original	Base	MBal
Nitrogen	Balance	Balance	Balance
Oxygen	10%	10%	10%
Water	0%	3%	7%
Carbon monoxide	5 000 ppm	500 ppm	? ppm
Nitric oxide	100 ppm	200 ppm	? ppm
Carbon dioxide	0%	0%	6%

Elementary Reactions

Carbon Monoxide Oxidation $CO + \frac{1}{2}O_2 \rightarrow CO_2$ (Rx1)

$$CO(g) + * \longrightarrow CO*$$

$$r_1 = k_1^+ \cdot P_{CO} \cdot \theta_* - k_1^- \cdot \theta_{CO}$$

$$O_2(g) + * \longrightarrow O_2 *$$

$$r_2 = k_2^+ \cdot P_{O2} \cdot \theta_* - k_2^- \cdot \theta_{O2}$$

$$O_2*+* \rightleftharpoons 2O*$$

$$r_3 = k_3^+ \cdot \theta_{O2} \cdot \theta_* - k_3^- \cdot \theta_O^2$$

$$CO*+O* \longrightarrow CO_2*+*$$

$$r_4 = k_4^+ \cdot \theta_{CO} \cdot \theta_O - k_4^- \cdot \theta_{CO2} \cdot \theta_*$$

$$CO*+O_2* \longleftrightarrow CO_2*+ \int_{\bullet} \circ r_5 = k_5^+ \cdot \theta_{CO} \cdot \theta_{O2} - k_5^- \cdot \theta_{CO2} \cdot \theta_{O2}$$

$$r_5 = k_5^+ \cdot \theta_{CO} \cdot \theta_{O2} - k_5^- \cdot \theta_{CO2} \cdot \theta_O$$

$$CO_2 * \longrightarrow CO_2(g) + *$$

$$r_6 = k_6^+ \cdot \theta_{CO2} - k_6^- \cdot P_{CO2} \cdot \theta_*$$

Nitric Oxide Oxidation NO + $\frac{1}{2}$ O2 \rightarrow NO2 (Rx2)

$$NO(g) + * \longrightarrow NO*$$

$$r_7 = k_7^+ \cdot P_{NO} \cdot \theta_* - k_7^- \cdot \theta_{NO}$$

$$O_2(g) + * \longleftrightarrow O_2 *$$

$$r_2 = k_2^+ \cdot P_{O2} \cdot \theta_* \cdot k_2^- \cdot \theta_{O2}$$

$$O_2 *+ * \longleftrightarrow 2O *$$

$$r_3 = k_3^+ \cdot \theta_{02} \cdot \theta_* - k_3^- \cdot \theta_0^2$$

$$NO*+O* \longrightarrow NO_2*+*$$

$$r_8 = k_8^+ \cdot \theta_{NO} \cdot \theta_O - k_8^- \cdot \theta_{NO2} \cdot \theta_*$$

$$NO*+O_2* \longrightarrow NO_2*+O_*$$

$$r_9 = k_9^+ \cdot \theta_{NO} \cdot \theta_{O2} - k_9^- \cdot \theta_{NO2} \cdot \theta_O$$

$$NO_2 * \longrightarrow NO_2(g) + *$$

$$r_{10} = k_{10}^+ \cdot \theta_{NO2} - k_{10}^- \cdot P_{NO2} \cdot \theta_*$$

Reduction / Oxidation $CO + NO2 \rightarrow CO2 + NO (Rx3)$

$$CO(g) + * \longrightarrow CO *$$

$$r_1 = k_1^+ \cdot P_{CO} \cdot \theta_* - k_1^- \cdot \theta_{CO}$$

$$NO_2(g) + * \longleftrightarrow NO_2 *$$

$$r_{10r} = -k_{10}^+ \cdot \theta_{NO2} + k_{10}^- \cdot P_{NO2} \cdot \theta_*$$

$$NO_2*+* \longrightarrow NO*+O*$$

$$r_{8r} = -k_8^+ \cdot \theta_{NO} \cdot \theta_O + k_8^- \cdot \theta_{NO2} \cdot \theta_*$$

$$CO*+O* \longleftrightarrow CO_2*+*$$

$$r_4 = k_4^+ \cdot \theta_{CO} \cdot \theta_O \quad k_4^- \cdot \theta_{CO2} \cdot \theta_*$$

$$NO* \longleftrightarrow NO(g) + *$$

$$r_{7r} = -k_7^+ \cdot P_{NO} \cdot \theta_* + k_7^- \cdot \theta_{NO}$$

$$CO_2 * \longrightarrow CO_2(g) + *$$

$$r_6 = k_6^+ \cdot \theta_{CO2} \quad k_6^- \cdot P_{CO2} \cdot \theta_*$$

Water Gas Shift $CO + H_2O \rightarrow CO_2 + H_2$ (Rx4)

$$CO(g) + * \longrightarrow CO *$$

$$r_1 = k_1^+ \cdot P_{CO} \cdot \theta_* - k_1^- \cdot \theta_{CO}$$

$$H_2O(g) + * \rightleftharpoons H_2O*$$

$$r_{11} = k_{11}^+ \cdot P_{H2O} \cdot \theta_* - k_{11}^- \cdot \theta_{H2O}$$

$$H_2O*+* \longleftrightarrow H*+OH*$$

$$r_{12} = k_{12}^+ \cdot \theta_{H2O} \cdot \theta_* - k_{12}^- \cdot \theta_H \cdot \theta_{OH}$$

$$CO*+OH* \longleftrightarrow COOH*+*$$

$$CO*+OH* \longrightarrow COOH*+* \quad r_{13} = k_{13}^+ \cdot \theta_{CO} \cdot \theta_{OH} - k_{13}^- \cdot \theta_{COOH} \cdot \theta_*$$

$$COOH*+* \longleftrightarrow CO_2*+H* \qquad r_{14} = k_{14}^+ \cdot \theta_{COOH} \cdot \theta_* - k_{14}^- \cdot \theta_{CO2} \cdot \theta_H$$

$$r_{14} = \kappa_{14} \cdot \theta_{COOH} \cdot \theta_* - \kappa_{14} \cdot \theta_{CO2} \cdot \theta_*$$

$$CO_2 * \longleftarrow CO_2(g) + *$$

$$r_6 = k_6^+ \cdot \theta_{CO2} \quad k_6^- \cdot P_{CO2} \cdot \theta_*$$

$$2H* \longrightarrow H_2* + *$$

$$r_{15} = k_{15}^+ \cdot \theta_H^2 - k_{15}^- \cdot \theta_{H2} \cdot \theta_*$$

$$H_2 * \longrightarrow H_2(g) + *$$

$$r_{16} = k_{16}^+ \cdot \theta_{H2} - k_{16}^- \cdot P_{H2} \cdot \theta_*$$

Hydrogen Oxidation $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ (Rx5)

$$H_2(g) + * \longleftrightarrow H_2 *$$

$$r_{16r} = k_{16}^- \cdot P_{H2} \cdot \theta_* - k_{16}^+ \cdot \theta_{H2}$$

$$H_2*+*\longrightarrow 2H*$$

$$r_{15r} = k_{15}^{-} \cdot \theta_{H2} \cdot \theta_{*} - k_{15}^{+} \cdot \theta_{H}^{2}$$

$$O_2(g) + * \longleftrightarrow O_2 *$$

$$r_2 - k_2^+ \cdot P_{O2} \cdot \theta_* - k_2^- \cdot \theta_{O2}$$

$$O_2*+* \longrightarrow 2O*$$

$$r_3 = k_3^+ \cdot \theta_{O2} \cdot \theta_* - k_3^- \cdot \theta_O^2$$

$$O*+H* \longrightarrow OH*+*$$

$$r_{17} = k_{17}^+ \cdot \theta_O \cdot \theta_H - k_{17}^- \cdot \theta_{OH} \cdot \theta_*$$

$$r_{18} = k_{18}^+ \cdot \theta_{OH}^2 - k_{18}^- \cdot \theta_{H2O} \cdot \theta_O$$

$$H_2O * \longleftrightarrow H_2O(g) + *$$

$$r_{11r} = k_{11}^{-} \cdot \theta_{H2O} - k_{11}^{+} \cdot P_{H2O} \cdot \theta_{s}$$

Microkinetic Modeling Summary and Plan

- Five (5) overall reactions
 - 2 primary
 - 1 is combination of others
- Eighteen (18) elementary reactions
 - Up to thirty-six (36) reaction rates
 - Up to thirty-six (36) activation energies
 - Many reactions are irreversible
 - Some reactions are orders of magnitude slower
 - Which are rate controlling steps?
- Twelve (11) adsorbed species
 - 4 reactants (O₂, CO, NO, H₂O)
 - 3 products (CO₂, NO₂, H₂)
 - 4 intermediates (O*, H*, OH*, COOH*)
- 6 Material Balances:
 - 3 reactants
 - 3 products
- 1 surface balance

- →29 (+36) additional equations
- Phase 1 Pseudo-equilibrium + RCS
 - Assume rate controlling step is 2 adsorbed species
 - 18 5 additional equations via equilibrium
 - Calculate equilibrium from surface energy change:

$$K = \frac{k_f}{k_r} = \frac{C^c D^d}{A^a B^b} = \frac{[C]^c [D]^d}{[A]^a [B]^b} = e^{-\Delta G/RT}$$

- Need 16+ cases for parameter fitting
- Alternately more data at 150C.
- Phase 2 steady state on surface
 - 12 additional equations from surface balance
 - May relax some psudo-equilibrium constraints
 - Need 17+ cases for parameter fitting

CO Oxidation Elementary Reactions

Carbon Monoxide Oxidation $CO + \frac{1}{2}O_2 \rightarrow CO_2$ (Rx1)

1
$$CO(g) + * \longrightarrow CO*$$

$$r_1 = k_1^+ \cdot P_{CO} \cdot \theta_* - k_1^- \cdot \theta_{CO}$$

2
$$O_2(g) + * \longleftrightarrow O_2 *$$

$$r_2 = k_2^+ \cdot P_{O2} \cdot \theta_* - k_2^- \cdot \theta_{O2}$$

$$O_2*+* \longleftrightarrow 2O*$$

$$r_3 = k_3^+ \cdot \theta_{O2} \cdot \theta_* - k_3^- \cdot \theta_O^2$$

4
$$CO*+O* \longrightarrow CO_2*+*$$

$$r_4 = k_4^+ \cdot \theta_{CO} \cdot \theta_O - k_4^- \cdot \theta_{CO2} \cdot \theta_*$$

5
$$CO*+O_2* \longrightarrow CO_2*+CO_2$$

$$CO*+O_2* \longrightarrow CO_2*+\theta_*$$
 $r_5 = k_5^+ \cdot \theta_{CO} \cdot \theta_{O2} - k_5^- \cdot \theta_{CO2} \cdot \theta_O$

6
$$CO_2 * \longrightarrow CO_2(g) + *$$

$$CO_2 * \longrightarrow CO_2(g) + *$$
 $r_6 = k_6^+ \cdot \theta_{CO2} - k_6^- \cdot P_{CO2} \cdot \theta_*$

$$K_1 = \frac{k_1^+}{k_1^-} = \frac{\theta_{CO}}{P_{CO} \cdot \theta_*}$$

$$\theta_{CO} = K_1 \cdot P_{CO} \cdot \theta_*$$

$$K_2 = \frac{k_2^+}{k_2^-} = \frac{\theta_{O2}}{P_{O2} \cdot \theta_*}$$

$$\theta_{O2} = K_2 \cdot P_{O2} \cdot \theta_*$$

$$K_3 = \frac{k_3^+}{k_3^-} = \frac{\theta_O^2}{\theta_{O2} \cdot \theta_*}$$

$$\theta_O = \sqrt{K_2 \cdot K_3 \cdot P_{O2}} \cdot \theta_*$$

Rate Controlling Step for CO oxidation

Rate Controlling Step for CO oxidation

$$K_6 = \frac{k_6^+}{k_6^-} = \frac{P_{CO2} \cdot \theta_*}{\theta_{CO2}}$$
 $\theta_{CO2} = \frac{1}{K_6} \cdot P_{CO2} \cdot \theta_*$

$$\theta_{CO2} = \frac{1}{K_6} \cdot P_{CO2} \cdot \theta_{SO2}$$

CO Oxidation Parallel Rate Controlling Steps

Assume the rate determining (limiting) step is the combining reaction on the surface = r4 & r5. In the absence of other reactants:

$$Rx1 = r_4 + r_5 = k_4^+ \cdot \theta_{CO} \cdot \theta_O - k_4^- \cdot \theta_{CO2} \cdot \theta_* + k_5^+ \cdot \theta_{CO} \cdot \theta_{O2} - k_5^- \cdot \theta_{CO2} \cdot \theta_O$$

$$Rx1 = k_{4}^{+} \cdot K_{1} \cdot P_{CO} \cdot \theta_{*} \cdot \sqrt{K_{2} \cdot K_{3} \cdot P_{O2}} \cdot \theta_{*} + k_{5}^{+} \cdot K_{1} \cdot P_{CO} \cdot \theta_{*} \cdot K_{2} \cdot P_{O2} \cdot \theta_{*} - k_{4}^{-} \cdot \frac{1}{K_{6}} \cdot P_{CO2} \cdot \theta_{*} \cdot \theta_{*} - k_{5}^{-} \cdot \frac{1}{K_{6}} \cdot P_{CO2} \cdot \theta_{*} \cdot \sqrt{K_{2} \cdot K_{3} \cdot P_{O2}} \cdot \theta_{*} + k_{5}^{-} \cdot \frac{1}{K_{6}} \cdot P_{CO2} \cdot \theta_{*} \cdot \frac{1}{K_{6}} \cdot \frac{1}{K_{6}} \cdot P_{CO2} \cdot \frac{1}{K_{6}} \cdot \frac{1}{K_{6}}$$

$$Rx1 = \theta_*^2 \left(k_4^+ \cdot K_1 \cdot \sqrt{K_2 \cdot K_3} \cdot P_{CO} \cdot \sqrt{P_{O2}} + k_5^+ \cdot K_1 \cdot K_2 \cdot P_{CO} \cdot P_{O2} - k_4^- \cdot \frac{1}{K_6} \cdot P_{CO2} - k_5^- \cdot \frac{1}{K_6} \cdot \sqrt{K_2 \cdot K_3} \cdot \sqrt{P_{O2}} \cdot P_{CO2} \right)$$

$$1 = \theta_* + \theta_{CO} + \theta_{O2} + \theta_O + \theta_{CO2}$$

$$1 = \theta_* \left(1 + K_1 \cdot P_{CO} + K_2 \cdot P_{O2} + \sqrt{K_2 \cdot K_3 \cdot P_{O2}} + \frac{1}{K_6} \cdot P_{CO2} \right)$$

$$\theta_*^2 = \frac{1}{\left(1 + K_1 \cdot P_{CO} + K_2 \cdot P_{O2} + \sqrt{K_2 \cdot K_3 \cdot P_{O2}} + \frac{1}{K_6} \cdot P_{CO2}\right)^2}$$

$$Rx1 = \frac{\left(k_{4}^{+} \cdot K_{1} \cdot \sqrt{K_{2} \cdot K_{3}} \cdot P_{CO} \cdot \sqrt{P_{O2}} + k_{5}^{+} \cdot K_{1} \cdot K_{2} \cdot P_{CO} \cdot P_{O2} - k_{4}^{-} \cdot \frac{1}{K_{6}} \cdot P_{CO2} - k_{5}^{-} \cdot \frac{1}{K_{6}} \cdot \sqrt{K_{2} \cdot K_{3}} \cdot \sqrt{P_{O2}} \cdot P_{CO2}\right)}{\left(1 + K_{1} \cdot P_{CO} + K_{2} \cdot P_{O2} + \sqrt{K_{2} \cdot K_{3} \cdot P_{O2}} + \frac{1}{K_{6}} \cdot P_{CO2}\right)^{2}}$$

Parameters: $k_4^+, k_5^-, k_5^-, K_1, K_2, K_3, K_6$

Variables: P_{CO} , P_{O2} , P_{CO2}

- Need 16 cases at single temperature
- Need 32 cases at range of temperatures
- Have parametric study of 2 of C_{CO} and 5 of T_{cat}.
- may not resolve k4 vs k5
- Key test: Feed CO2
 - Does X_{CO} change with C_{CO2}?
 - Is any CO or O2 formed if CO2 feed only?

NO Oxidation Elementary Reactions

Nitric Oxide Oxidation NO + $\frac{1}{2}$ O₂ \rightarrow NO₂ (Rx2)

7
$$NO(g) + * \longrightarrow NO*$$

$$r_7 = k_7^+ \cdot P_{NO} \cdot \theta_* - k_7^- \cdot \theta_{NO}$$

2
$$O_2(g) + * \rightleftharpoons O_2 *$$

$$r_2 = k_2^+ \cdot P_{O2} \cdot \theta_* - k_2^- \cdot \theta_{O2}$$

$$O_2*+* \rightleftharpoons 2O*$$

$$r_3 = k_3^+ \cdot \theta_{O2} \cdot \theta_* - k_3^- \cdot \theta_O^2$$

8
$$NO*+O* \longrightarrow NO_2*+*$$

$$NO*+O* \longrightarrow NO_2*+* \qquad r_8 = k_8^+ \cdot \theta_{NO} \cdot \theta_O - k_8^- \cdot \theta_{NO2} \cdot \theta_*$$

9
$$NO*+O_2* \longrightarrow NO_2*+C$$

$$NO*+O_2* \longrightarrow NO_2*+O_*$$
 $r_9 = k_9^+ \cdot \theta_{NO} \cdot \theta_{O2} - k_9^- \cdot \theta_{NO2} \cdot \theta_{O2}$

10
$$NO_2 * \longrightarrow NO_2(g) + *$$

$$r_{10} = k_{10}^+ \cdot \theta_{NO2} - k_{10}^- \cdot P_{NO2} \cdot \theta_*$$

$$K_7 = \frac{k_7^+}{k_7^-} = \frac{\theta_{NO}}{P_{NO} \cdot \theta_*}$$

$$K_2 = \frac{k_2^+}{k_2^-} = \frac{\theta_{O2}}{P_{O2} \cdot \theta_*}$$

$$K_3 = \frac{k_3^+}{k_2^-} = \frac{\theta_0^2}{\theta_{02} \cdot \theta_{03}}$$

$$\theta_{NO} = K_7 \cdot P_{NO} \cdot \theta_*$$

$$\theta_{O2} = K_2 \cdot P_{O2} \cdot \theta_*$$

$$\theta_O = \sqrt{K_2 \cdot K_3 \cdot P_{O2}} \cdot \theta_*$$

Rate Controlling Step for NO oxidation

Rate Controlling Step for NO oxidation

$$K_{10} = \frac{k_{10}^{+}}{k_{10}^{-}} = \frac{P_{NO2} \cdot \theta_{*}}{\theta_{NO2}} \qquad \theta_{NO2} = \frac{1}{K_{10}} \cdot P_{NO2} \cdot \theta_{*}$$

$$\theta_{NO2} = \frac{1}{K_{10}} \cdot P_{NO2} \cdot \theta_{*}$$

NO Oxidation Parallel Rate Controlling Steps

Assume the rate controlling step is the combining reaction on the surface = r8 & r9. In the absence of other reactants:

$$Rx2 = r_{8} + r_{9} = k_{8}^{+} \cdot \theta_{NO} \cdot \theta_{O} - k_{8}^{-} \cdot \theta_{NO2} \cdot \theta_{*} + k_{9}^{+} \cdot \theta_{NO} \cdot \theta_{O2} - k_{9}^{-} \cdot \theta_{NO2} \cdot \theta_{O}$$

$$Rx2 = k_{8}^{+} \cdot K_{1} \cdot P_{CO} \cdot \theta_{*} \cdot \sqrt{K_{2} \cdot K_{3} \cdot P_{O2}} \cdot \theta_{*} + k_{9}^{+} \cdot K_{1} \cdot P_{NO} \cdot \theta_{*} \cdot K_{2} \cdot P_{O2} \cdot \theta_{*} - k_{8}^{-} \cdot \frac{1}{K_{10}} \cdot P_{NO2} \cdot \theta_{*} \cdot \theta_{*} - k_{9}^{-} \cdot \frac{1}{K_{10}} \cdot P_{NO2} \cdot \theta_{*} \cdot \sqrt{K_{2} \cdot K_{3} \cdot P_{O2}} \cdot \theta_{*}$$

$$Rx2 = \theta_*^2 \left(k_8^+ \cdot K_7 \cdot \sqrt{K_2 \cdot K_3} \cdot P_{NO} \cdot \sqrt{P_{O2}} + k_9^+ \cdot K_7 \cdot K_2 \cdot P_{NO} \cdot P_{O2} - k_8^- \cdot \frac{1}{K_{10}} \cdot P_{NO2} - k_9^- \cdot \frac{1}{K_{10}} \cdot \sqrt{K_2 \cdot K_3} \cdot \sqrt{P_{O2}} \cdot P_{NO2} \right)$$

$$1 = \theta_* + \theta_{NO} + \theta_{O2} + \theta_O + \theta_{NO2}$$

$$1 = \theta_* \left(1 + K_7 \cdot P_{NO} + K_2 \cdot P_{O2} + \sqrt{K_2 \cdot K_3 \cdot P_{O2}} + \frac{1}{K_{10}} \cdot P_{CO2} \right)$$

$$\theta_*^2 = \frac{1}{\left(1 + K_7 \cdot P_{NO} + K_2 \cdot P_{O2} + \sqrt{K_2 \cdot K_3 \cdot P_{O2}} + \frac{1}{K_{10}} \cdot P_{NO2}\right)^2}$$

$$Rx2 = \frac{\left(k_{8}^{+} \cdot K_{7} \cdot \sqrt{K_{2} \cdot K_{3}} \cdot P_{NO} \cdot \sqrt{P_{O2}} + k_{9}^{+} \cdot K_{7} \cdot K_{2} \cdot P_{NO} \cdot P_{O2} - k_{8}^{-} \cdot \frac{1}{K_{10}} \cdot P_{NO2} - k_{9}^{-} \cdot \frac{1}{K_{10}} \cdot \sqrt{K_{2} \cdot K_{3}} \cdot \sqrt{P_{O2}} \cdot P_{NO2}\right)}{\left(1 + K_{7} \cdot P_{NO} + K_{2} \cdot P_{O2} + \sqrt{K_{2} \cdot K_{3} \cdot P_{O2}} + \frac{1}{K_{10}} \cdot P_{NO2}\right)^{2}}$$

Parameters: $k_8^+, k_8^-, k_9^+, k_9^-, K_2, K_3, K_7, K_{10}$

 $Variables: P_{NO}, P_{O2}, P_{NO2}$

- Need 16 cases at single temperature
- Need 32 cases at range of temperatures
- Have parametric study of 2 of C_{CO} and 5 of T_{cat}.
- K2 and K3 should be the same as CO oxidation test
- may not resolve k8 vs k9
- Key test: Feed NO2
 - Does X_{NO} change with C_{NO2} ?
 - Is any NO or O2 formed if NO2 feed only?

Adding terms from both CO and NO to surface coverage:

$$\theta_*^2 = \frac{1}{\left(1 + K_1 \cdot P_{CO} + K_2 \cdot P_{O2} + \sqrt{K_2 \cdot K_3 \cdot P_{O2}} + \frac{1}{K_6} \cdot P_{CO2} + K_7 \cdot P_{NO} + \frac{1}{K_{10}} \cdot P_{NO2}\right)^2}$$

Parameter fit with combined CO, NO, and O2?

RedOx Elementary Reactions

Carbon Monoxide / Nitrogen Dioxide RedOx $CO + NO_2 \rightarrow CO_2 + NO$ (Rx3)

1
$$CO(g) + * \longrightarrow CO*$$

$$r_1 = k_1^+ \cdot P_{CO} \cdot \theta_* - k_1^- \cdot \theta_{CO}$$

$$K_1 = \frac{k_1^+}{k_1^-} = \frac{\theta_{CO}}{P_{CO} \cdot \theta_*}$$

$$\theta_{CO} = K_1 \cdot P_{CO} \cdot \theta_*$$

10r
$$NO_2(g) + * \rightleftharpoons NO_2$$

$$NO_2(g) + * \longrightarrow NO_2 *$$
 $r_{10r} = -k_{10}^+ \cdot \theta_{NO2} + k_{10}^- \cdot P_{NO2} \cdot \theta_*$

$$K_{10} = \frac{k_{10}^{+}}{k_{10}^{-}} = \frac{P_{NO2} \cdot \theta_{*}}{\theta_{NO2}}$$

$$K_{10} = \frac{k_{10}^{+}}{k_{10}^{-}} = \frac{P_{NO2} \cdot \theta_{*}}{\theta_{NO2}} \qquad \theta_{NO2} = \frac{1}{K_{10}} \cdot P_{NO2} \cdot \theta_{*}$$

8r
$$NO_2 *+* \longrightarrow NO *+ O$$

$$NO_2 * + * \rightleftharpoons NO * + O *$$
 $r_{8r} = -k_8^+ \cdot \theta_{NO} \cdot \theta_O + k_8^- \cdot \theta_{NO2} \cdot \theta_*$

$$K_8 = \frac{k_8^+}{k_9^-} = \frac{\theta_{NO2} \cdot \theta_8}{\theta_{NO} \cdot \theta_O}$$

$$K_8 = \frac{k_8^+}{k_8^-} = \frac{\theta_{NO2} \cdot \theta_*}{\theta_{NO} \cdot \theta_O}$$
 $\theta_O = \frac{P_{NO2}}{K_7 \cdot K_8 \cdot K_{10} \cdot P_{NO}} \cdot \theta_*$

$$4 \quad CO*+O* \longrightarrow CO_2*+*$$

$$r_4 = k_4^+ \cdot \theta_{CO} \cdot \theta_O - k_4^- \cdot \theta_{CO2} \cdot \theta_*$$

Rate determining (limiting) step for CO oxidation

$$NO* \longrightarrow NO(g) + *$$

$$r_{7r} = -k_7^+ \cdot P_{NO} \cdot \theta_* + k_7^- \cdot \theta_{NO}$$

$$K_7 = \frac{k_7^+}{k_7^-} = \frac{\theta_{NO}}{P_{NO} \cdot \theta_*}$$

$$\theta_{NO} = K_7 \cdot P_{NO} \cdot \theta_*$$

6
$$CO_2 * \longrightarrow CO_2(g) + *$$

$$r_6 = k_6^+ \cdot \theta_{CO2} - k_6^- \cdot P_{CO2} \cdot \theta_*$$

$$K_6 = \frac{k_6^+}{k_6^-} = \frac{P_{CO2} \cdot \theta_*}{\theta_{CO2}}$$

$$\theta_{CO2} = \frac{1}{K_6} \cdot P_{CO2} \cdot \theta_*$$

RedOx Parallel Rate Controlling Step(s)

Assume the rate controlling step is the combining reaction on the surface = 17. In the absence of other reactants:

$$Rx3 = r_4 = k_4^+ \cdot \theta_{CO} \cdot \theta_O - k_4^- \cdot \theta_{CO2} \cdot \theta_*$$

$$Rx3 = k_{4}^{+} \cdot K_{1} \cdot P_{CO} \cdot \theta_{*} \cdot \frac{1}{K_{7} \cdot K_{8} \cdot K_{10}} \cdot \frac{P_{NO2}}{P_{NO}} \cdot \theta_{*} - k_{4}^{-} \cdot \frac{1}{K_{6}} \cdot P_{CO2} \cdot \theta_{*} \cdot \theta_{*}$$

$$Rx3 = \theta_*^2 \left(k_4^+ \cdot \frac{K_1}{K_7 \cdot K_8 \cdot K_{10}} \cdot \frac{P_{NO2} \cdot P_{CO}}{P_{NO}} - k_4^- \cdot \frac{1}{K_6} \cdot P_{CO2} \right)$$

$$1 = \theta_* + \theta_{CO} + \theta_{NO2} + \theta_O + \theta_{NO} + \theta_{CO2}$$

$$1 = \theta_* + K_1 \cdot P_{CO} \cdot \theta_* + \frac{1}{K_{10}} \cdot P_{NO2} \cdot \theta_* + \frac{1}{K_7 \cdot K_8 \cdot K_{10}} \cdot \frac{P_{NO2}}{P_{NO}} \cdot \theta_* + K_7 \cdot P_{NO} \cdot \theta_* + \frac{1}{K_6} \cdot P_{CO2} \cdot \theta_*$$

$$1 = \theta_* \left(1 + K_1 \cdot P_{CO} + \frac{1}{K_{10}} \cdot P_{NO2} + \frac{1}{K_7 \cdot K_8 \cdot K_{10}} \cdot \frac{P_{NO2}}{P_{NO}} + K_7 \cdot P_{NO} + \frac{1}{K_6} \cdot P_{CO2} \right)$$

$$Rx3 = \frac{k_4^+ \cdot \frac{K_1}{K_7 \cdot K_8 \cdot K_{10}} \cdot \frac{P_{NO2} \cdot P_{CO}}{P_{NO}} - k_4^- \cdot \frac{1}{K_6} \cdot P_{CO2}}{\left(1 + K_1 \cdot P_{CO} + \frac{1}{K_{10}} \cdot P_{NO2} + \frac{1}{K_7 \cdot K_8 \cdot K_{10}} \cdot \frac{P_{NO2}}{P_{NO}} + K_7 \cdot P_{NO} + \frac{1}{K_6} \cdot P_{CO2}\right)^2}$$

Parameters: $k_4^+, k_4^-, K_1, K_6, K_7, K_8, K_{10}$

Variables: P_{CO} , P_{NO2} , P_{CO2} , P_{NO}

- No new tests (previous -100% NO2 conversion)
- K's should be the same as CO and NO oxidation tests
- Key test: co-feed CO2
 - Does X_{CO} change with C_{CO2}?

WGS Elementary Reactions

Water Gas Shift $CO + H_2O \rightarrow CO_2 + H_2$ (Rx4)

1
$$CO(g) + * \longrightarrow CO*$$

$$r_1 = k_1^+ \cdot P_{CO} \cdot \theta_* - k_1^- \cdot \theta_{CO}$$

$$K_1 = \frac{k_1^+}{k_1^-} = \frac{\theta_{CO}}{P_{CO} \cdot \theta_*}$$

$$\theta_{CO} = K_1 \cdot P_{CO} \cdot \theta_*$$

11
$$H_2O(g) + * \rightleftharpoons H_2O*$$

$$r_{11} = k_{11}^+ \cdot P_{H2O} \cdot \theta_* - k_{11}^- \cdot \theta_{H2O}$$

$$K_{11} = \frac{k_{11}^+}{k_{11}^-} = \frac{\theta_{H2O}}{P_{H2O} \cdot \theta_*}$$

$$\theta_{H2O} = K_{11} \cdot P_{H2O} \cdot \theta_*$$

12
$$H_2O*+* \longrightarrow H*+OH*$$

$$r_{12} = k_{12}^+ \cdot \theta_{H\,2O} \cdot \theta_* - k_{12}^- \cdot \theta_H \cdot \theta_{OH}$$

$$K_{12} = \frac{k_{12}^+}{k_{12}^-} = \frac{\theta_H \cdot \theta_{OH}}{\theta_{H2O} \cdot \theta_*}$$

13
$$CO*+OH* \longleftarrow COOH*+* r_{13} = k_{13}^+ \cdot \theta_{CO} \cdot \theta_{OH} - k_{13}^- \cdot \theta_{COOH} \cdot \theta_*$$

$$r_{13} = k_{13}^+ \cdot \theta_{CO} \cdot \theta_{OH} - k_{13}^- \cdot \theta_{COOH} \cdot \theta_{OOH}$$

Rate controlling step for WGS

$$14 \quad COOH*+* \longleftrightarrow CO_2*+H* \quad r_{14} = k_{14}^+ \cdot \theta_{COOH} \cdot \theta_* - k_{14}^- \cdot \theta_{CO2} \cdot \theta_H$$

$$r_{14} = k_{14}^+ \cdot \theta_{COOH} \cdot \theta_* - k_{14}^- \cdot \theta_{CO2} \cdot \theta_H$$

$$K_{14} = \frac{k_{14}^{+}}{k_{14}^{-}} = \frac{\theta_{CO2} \cdot \theta_{H}}{\theta_{COOH} \cdot \theta_{*}}$$

6
$$CO_2 * \longrightarrow CO_2(g) + *$$

$$r_6 = k_6^+ \cdot \theta_{CO2} - k_6^- \cdot P_{CO2} \cdot \theta_*$$

$$K_6 = \frac{k_6^+}{k_6^-} = \frac{P_{CO2} \cdot \theta_*}{\theta_{CO2}}$$

$$\theta_{CO2} = \frac{1}{K_6} \cdot P_{CO2} \cdot \theta_*$$

$$2H * \rightleftharpoons H_2 * + *$$

$$r_{15} = k_{15}^+ \cdot \theta_H^2 - k_{15}^- \cdot \theta_{H2} \cdot \theta_*$$

$$K_{15} = \frac{k_{15}^+}{k_{15}^-} = \frac{\theta_{H2} \cdot \theta_*}{\theta_H^2}$$

16
$$H_2 * \longrightarrow H_2(g) + *$$

$$r_{16} = k_{16}^+ \cdot \theta_{H2} - k_{16}^- \cdot P_{H2} \cdot \theta_*$$

$$K_{16} = \frac{k_{16}^+}{k_{16}^-} = \frac{P_{H2} \cdot \theta_*}{\theta_{H2}}$$
 $\theta_{H2} = \frac{1}{K_{16}} \cdot P_{H2} \cdot \theta_*$

$$\theta_{H2} = \frac{1}{K_{16}} \cdot P_{H2} \cdot \theta_{H2}$$

WGS Rate Controlling Step

Assume the rate controlling step is the combining reaction on the surface = r13. In the absence of other reactants:

$$Rx4 = r_{13} = k_{13}^+ \cdot \theta_{CO} \cdot \theta_{OH} - k_{13}^- \cdot \theta_{COOH} \cdot \theta_{s}$$

$$Rx4 = k_{13}^{+} \cdot K_{1} \cdot P_{CO} \cdot \theta_{*} \cdot K_{11} \cdot K_{12} \cdot \sqrt{K_{15} \cdot K_{16}} \cdot \frac{P_{H2O}}{\sqrt{P_{H2}}} \cdot \theta_{*} - k_{13}^{-} \cdot \frac{1}{K_{6} \cdot K_{14} \cdot \sqrt{K_{15} \cdot K_{16}}} \cdot P_{CO2} \cdot \sqrt{P_{H2}} \cdot \theta_{*} \cdot \theta_{*}$$

$$1 = \theta_* + \theta_{CO} + \theta_{H2O} + \theta_{OH} + \theta_{COOH} + \theta_{CO2} + \theta_H + \theta_{H2}$$

$$1 = \theta_* \left(1 + K_1 \cdot P_{CO} + K_{11} \cdot P_{H2O} + K_{11} \cdot K_{12} \cdot \sqrt{K_{15} \cdot K_{16}} \cdot \frac{P_{H2O}}{\sqrt{P_{H2}}} + \frac{1}{K_6 \cdot K_{14} \cdot \sqrt{K_{15} \cdot K_{16}}} \cdot P_{CO2} \cdot \sqrt{P_{H2}} + \frac{1}{K_6} \cdot P_{CO2} + \sqrt{\frac{P_{H2}}{K_{15} \cdot K_{16}}} + \frac{1}{K_{16}} \cdot P_{H2O} \right)$$

$$Rx4 = \frac{k_{13}^{+} \cdot K_{1} \cdot K_{12} \cdot \sqrt{K_{15} \cdot K_{16}} \cdot \frac{P_{CO} \cdot P_{H2O}}{\sqrt{P_{H2}}} - k_{13}^{-} \cdot \frac{1}{K_{6} \cdot K_{14} \cdot \sqrt{K_{15} \cdot K_{16}}} \cdot P_{CO2} \cdot \sqrt{P_{H2}}}{\left(1 + K_{1} \cdot P_{CO} + K_{11} \cdot P_{H2O} + K_{11} \cdot K_{12} \cdot \sqrt{K_{15} \cdot K_{16}} \cdot \frac{P_{H2O}}{\sqrt{P_{H2}}} + \frac{1}{K_{6} \cdot K_{14} \cdot \sqrt{K_{15} \cdot K_{16}}} \cdot P_{CO2} \cdot \sqrt{P_{H2}} + \frac{1}{K_{6}} \cdot P_{CO2} + \sqrt{\frac{P_{H2}}{K_{15} \cdot K_{16}}} + \frac{1}{K_{16}} \cdot P_{H2}\right)^{2}}$$

Parameters: $k_{13}^+, k_{13}^-, K_1, K_6, K_{11}, K_{12}, K_{14}, K_{15}, K_{16}$

 $Variables: P_{CO}, P_{H2O}, P_{H2}, P_{CO2}$

- Rate too low at 150°C to resolve parameters?
- Key test: Feed H2
 - Does X_{CO} change with C_{H2}?

H2 Oxidation Elementary Reactions

Hydrogen Oxidation $H_2 + \frac{1}{2}O_2 \rightarrow + H_2O(Rx5)$

16r
$$H_2(g) + * \longrightarrow H_2 *$$

$$r_{16r} = k_{16}^{-} \cdot P_{H2} \cdot \theta_* - k_{16}^{+} \cdot \theta_{H2}$$

$$K_{16} = \frac{k_{16}^+}{k_{16}^-} = \frac{P_{H2} \cdot \theta_*}{\theta_{H2}}$$

$$\theta_{H2} = \frac{1}{K_{16}} \cdot P_{H2} \cdot \theta_*$$

15r
$$H_2 *+ * \rightleftharpoons 2H *$$

$$r_{15r} = k_{15}^{-} \cdot \theta_{H2} \cdot \theta_{*} - k_{15}^{+} \cdot \theta_{H}^{2}$$

$$K_{15} = rac{k_{15}^+}{k_{15}^-} = rac{ heta_{H2} \cdot heta_*}{ heta_H^2}$$

$$\theta_H = \sqrt{\frac{P_{H2}}{K_{15} \cdot K_{16}}} \cdot \sqrt{\theta_*}$$

2
$$O_2(g) + * \longrightarrow O_2 *$$

$$r_2 = k_2^+ \cdot P_{O2} \cdot \theta_* - k_2^- \cdot \theta_{O2}$$

$$O_2(g) + * \longleftrightarrow O_2 *$$
 $r_2 = k_2^+ \cdot P_{O2} \cdot \theta_* - k_2^- \cdot \theta_{O2}$ $K_2 = \frac{k_2^+}{k_2^-} = \frac{\theta_{O2}}{P_{O2} \cdot \theta_*}$

$$\theta_{O2} = K_2 \cdot P_{O2} \cdot \theta_*$$

$$O_2*+* \rightleftharpoons 2O^2$$

$$r_3 = k_3^+ \cdot \theta_{O2} \cdot \theta_* - k_3^- \cdot \theta_O^2$$

$$O_2 * + * \rightleftharpoons 2O *$$
 $r_3 = k_3^+ \cdot \theta_{O2} \cdot \theta_* - k_3^- \cdot \theta_O^2$ $K_3 = \frac{k_3^+}{k_3^-} = \frac{\theta_O^2}{\theta_{O2} \cdot \theta_*}$

$$\theta_O = \sqrt{K_2 \cdot K_3 \cdot P_{O2}} \cdot \theta_*$$

$$17 \qquad O*+H* \longrightarrow OH*+*$$

$$r_{17} = k_{17}^+ \cdot \theta_O \cdot \theta_H - k_{17}^- \cdot \theta_{OH} \cdot \theta_*$$

$$K_{17} = \frac{k_{17}^+}{k_{17}^-} = \frac{\theta_* \cdot \theta_{OH}}{\theta_O \cdot \theta_H}$$

18
$$2OH * \longrightarrow HOH * + O *$$

$$r_{18} = k_{18}^+ \cdot \theta_{OH}^2 - k_{18}^- \cdot \theta_{H2O} \cdot \theta_{OD}$$

$$K_{18} = \frac{k_{18}^+}{k_{18}^-} = \frac{\theta_O \cdot \theta_{H2O}}{\theta_{OH}^2}$$

$$r_{18} = k_{18}^{+} \cdot \theta_{OH}^{2} - k_{18}^{-} \cdot \theta_{H2O} \cdot \theta_{O} \qquad K_{18} = \frac{k_{18}^{+}}{k_{18}^{-}} = \frac{\theta_{O} \cdot \theta_{H2O}}{\theta_{OH}^{2}} \qquad \theta_{OH} = \sqrt{\frac{K_{11} \cdot P_{H2O}}{K_{18}}} \cdot \sqrt[4]{K_{2} \cdot K_{3} \cdot P_{O2}} \cdot \theta_{*}$$

11r
$$H_2O* \longrightarrow H_2O(g) + *$$

$$r_{11r} = k_{11}^{-} \cdot \theta_{H2O} - k_{11}^{+} \cdot P_{H2O} \cdot \theta_{*}$$
 $K_{11} = \frac{k_{11}^{+}}{k_{11}^{-}} = \frac{\theta_{H2O}}{P_{H2O} \cdot \theta_{*}}$

$$K_{11} = \frac{k_{11}^+}{k_{11}^-} = \frac{\theta_{H2O}}{P_{H2O} \cdot \theta_*}$$

$$\theta_{H2O} = K_{11} \cdot P_{H2O} \cdot \theta_*$$

H2 Oxidation Rate Controlling Step

Assume the rate controlling step is the combining reaction on the surface = 17. In the absence of other reactants:

$$Rx5 = r_{17} = k_{17}^+ \cdot \theta_O \cdot \theta_H - k_{17}^- \cdot \theta_{OH} \cdot \theta_*$$

$$Rx5 = k_{17}^{+} \cdot \sqrt{K_{2} \cdot K_{3} \cdot P_{O2}} \cdot \theta_{*} \cdot \sqrt{\frac{P_{H2}}{K_{15} \cdot K_{16}}} \cdot \theta_{*} - k_{17}^{-} \cdot \sqrt{\frac{K_{11} \cdot P_{H2O}}{K_{18}}} \cdot \sqrt[4]{K_{2} \cdot K_{3} \cdot P_{O2}} \cdot \theta_{*} \cdot \theta_{*}$$

$$Rx5 = \theta_*^2 \left(k_{17}^+ \cdot \sqrt{\frac{K_2 \cdot K_3}{K_{15} \cdot K_{16}}} \cdot \sqrt{P_{02} \cdot P_{H2}} - k_{17}^- \cdot \sqrt{\frac{K_{11} \cdot \sqrt{K_2 \cdot K_3}}{K_{18}}} \cdot \sqrt{P_{H20} \sqrt{P_{02}}} \right)$$

$$1 = \theta_* + \theta_{H2} + \theta_H + \theta_{O2} + \theta_O + \theta_{OH} + \theta_{H2O}$$

$$1 = \theta_* + \frac{1}{K_{16}} \cdot P_{H2} \cdot \theta_* + \sqrt{\frac{P_{H2}}{K_{15} \cdot K_{16}}} \cdot \theta_* + K_2 \cdot P_{O2} \cdot \theta_* + \sqrt{K_2 \cdot K_3 \cdot P_{O2}} \cdot \theta_* + \sqrt{\frac{K_{11} \cdot P_{H2O}}{K_{18}}} \cdot \sqrt[4]{K_2 \cdot K_3 \cdot P_{O2}} \cdot \theta_* + K_{11} \cdot P_{H2O} \cdot \theta_*$$

$$1 = \theta_* \left(1 + \frac{1}{K_{16}} \cdot P_{H2} + \sqrt{\frac{1}{K_{15} \cdot K_{16}}} \cdot \sqrt{P_{H2}} + K_2 \cdot P_{O2} + \sqrt{K_2 \cdot K_3} \cdot \sqrt{P_{O2}} + \sqrt{\frac{K_{11} \sqrt{K_2 \cdot K_3}}{K_{18}}} \cdot \sqrt{P_{H2O} \cdot \sqrt{P_{O2}}} + K_{11} \cdot P_{H2O} \right)$$

$$\theta_* = \frac{1}{1 + \frac{1}{K_{16}} \cdot P_{H2} + \sqrt{\frac{1}{K_{15}} \cdot K_{16}} \cdot \sqrt{P_{H2}} + K_2 \cdot P_{O2} + \sqrt{K_2 \cdot K_3} \cdot \sqrt{P_{O2}} + \sqrt{\frac{K_{11} \sqrt{K_2 \cdot K_3}}{K_{18}}} \cdot \sqrt{P_{H2O} \cdot \sqrt{P_{O2}}} + K_{11} \cdot P_{H2O}}$$

$$Rx5 = \frac{k_{17}^{+} \cdot \sqrt{\frac{K_{2} \cdot K_{3}}{K_{15} \cdot K_{16}}} \cdot \sqrt{P_{o2} \cdot P_{H2}} - k_{17}^{-} \cdot \sqrt{\frac{K_{11} \cdot \sqrt{K_{2} \cdot K_{3}}}{K_{18}}} \cdot \sqrt{P_{H2O} \sqrt{P_{o2}}}}{\left(1 + \frac{1}{K_{16}} \cdot P_{H2} + \sqrt{\frac{1}{K_{15} \cdot K_{16}}} \cdot \sqrt{P_{H2}} + K_{2} \cdot P_{o2} + \sqrt{K_{2} \cdot K_{3}} \cdot \sqrt{P_{o2}} + \sqrt{\frac{K_{11} \sqrt{K_{2} \cdot K_{3}}}{K_{18}}} \cdot \sqrt{P_{H2O} \cdot \sqrt{P_{o2}}} + K_{11} \cdot P_{H2O}\right)^{2}}$$

- X_{H2} may be too high @150° C to resolve parameters
- Key test: Feed H2O
 - Does X_{H2} change with C_{H2O}?

Parameters: $k_{17}^+, k_{17}^-, K_2, K_3, K_{11}, K_{15}, K_{16}, K_{18}$

 $Variables: P_{H2}, P_{O2}, P_{H2O}$

DFT / MKM compared to experimental parameters

	CO + 1/ O > CO	NO 11/O NO	CO - NO A CO - NO	CO + II O > CO + II	II - 1/ O
	$CO + \frac{1}{2}O_2 \rightarrow CO_2$	$NO + \frac{1}{2}O_2 \rightarrow NO_2$	$CO + NO_2 \rightarrow CO_2 + NO$	$CO + H_2O \rightarrow CO_2 + H_2$	$H_2 + \frac{1}{2} O_2 \rightarrow + H_2O$
$ heta_{\scriptscriptstyle CO}$	$K_{1}\cdot P_{CO}\cdot heta_{st}$		$K_{_{1}}\cdot P_{_{CO}}\cdot heta_{_{st}}$	$K_{_{1}}\cdot P_{_{CO}}\cdot heta_{_{st}}$	
$ heta_{\scriptscriptstyle NO}$		$K_7 \cdot P_{NO} \cdot \theta_*$	$K_{7} \cdot P_{NO} \cdot heta_{*}$		
$ heta_{\scriptscriptstyle O2}$	$K_2 \cdot P_{O2} \cdot \theta_*$	$K_2 \cdot P_{O2} \cdot \theta_*$			$K_2 \cdot P_{O2} \cdot \theta_*$
$ heta_{CO2}$	$rac{1}{K_6} \cdot P_{CO2} \cdot heta_*$		$\frac{1}{K_{_{6}}}\!\cdot\!P_{_{CO2}}\!\cdot\!\theta_{_{*}}$	$rac{1}{K_6} \cdot P_{CO2} \cdot heta_*$	
$ heta_{\scriptscriptstyle NO2}$		$\frac{1}{K_{_{10}}}\!\cdot\!P_{_{NO2}}\cdot\!\theta_{_{*}}$	$\frac{1}{K_{_{10}}} \! \cdot \! P_{_{NO2}} \cdot \! \theta_{_{*}}$		
$ heta_{\!\scriptscriptstyle H2O}$				$K_{11} \cdot P_{H2O} \cdot \theta_*$	$K_{11} \cdot P_{H2O} \cdot \theta_*$
$ heta_{{\scriptscriptstyle H}{\scriptscriptstyle 2}}$				$\frac{1}{K_{16}} \cdot P_{H2} \cdot \theta_*$	$\frac{1}{K_{_{16}}} \cdot P_{_{H2}} \cdot \theta_{_{*}}$
θ_{o}	$\sqrt{K_2 \cdot K_3 \cdot P_{O2}} \cdot \theta_*$	$\sqrt{K_2 \cdot K_3 \cdot P_{O2}} \cdot \theta_*$	$\frac{1}{K_7 \cdot K_8 \cdot K_{10}} \cdot \frac{P_{NO2}}{P_{NO}} \cdot \theta_*$		$\sqrt{K_2 \cdot K_3 \cdot P_{O2}} \cdot \theta_*$
$ heta_{\!\scriptscriptstyle H}$				$\sqrt{\frac{P_{H2}}{K_{15} \cdot K_{16}}} \cdot \theta_*$	$\sqrt{\frac{P_{\!_{H2}}}{K_{\!_{15}}\cdot K_{\!_{16}}}}\cdot \theta_*$
$ heta_{\scriptscriptstyle OH}$				$K_{11} \cdot K_{12} \cdot \sqrt{K_{15} \cdot K_{16}} \cdot \frac{I_{H20}}{\sqrt{P_{H2}}} \cdot \theta_*$	$\frac{\overline{K_{11} \cdot P_{H2O}}}{K_{18}} \cdot \sqrt[4]{K_2 \cdot K_3 \cdot P_{O2}} \cdot \theta_*$
$ heta_{\scriptscriptstyle COOH}$				$\frac{1}{K_6 \cdot K_{14} \cdot \sqrt{K_{15} \cdot K_{16}}} \cdot P_{CO2} \cdot \sqrt{P_{H2}} \cdot \theta_*$	

Thank You - Questions?

Gary Gildert 281-435-9162 grgildert@uh.edu

UNIVERSITY of HOUSTON

THE WILLIAM A. BROOKSHIRE DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING