Object Detection Cheat Sheet

Created by Angel Candelas Aaron David Monica Joya Varit Kobutra Saif UR Rehman Advisor Prof. Patricia McManus ITAI 1378 Computer Vision: 12461 Summer 2024

Key Concepts

Bounding Boxes

Rectangular boxes used to define the location of the object in the image.

Confidence Scores

A measure of how confident the model is that the bounding box contains an object

Annotations

Labels or metadata associated with the bounding boxes, indicating the class of the object.

Intersection over Union (IoU)

A metric used to evaluate the accuracy of an object detector by comparing the overlap betwee the predicted bounding box and the ground truth

Common Object Detection Algorithms

R-CNN (Regions with CNN)

Uses a selective search algorithm to generate region proposals and then classifies each region.

SSD (Single Shot MultiBox Detector)

the network, using multiple feature

maps for detection.

Detects objects in a single pass through

Fast R-CNN Improves R-CNN by sharing convolutional computations and using a Region of Interest (Rol) pooling layer.

Treats object detection as a single regression problem, predicting bounding boxes and class probabilities directly from full images in one evaluation.

YOLO (You Only Look Once)

Tools and Libraries

TensorFlow

tutorials and guides on their official

Keras offers high-level APIs for building and training models.

OpenCV

OpenCV provides a wide range of computer vision tools and is well-

Steps in a Typical Object Detection Task

1. Data Collection

2. Preprocessing

Normalize images, resize them to a fixed size, and augment the

3. Model Selection

Choose an appropriate object detection algorithm (e.g., YOLO, SSD).

4. Training

Train the model on the annotated

5. Evaluation

Evaluate the model using metrics like IoU, precision, and recall.

6. Inference

Use the trained model to detect objects in new images.

Common Challenges and Troubleshooting Tips

Class Imbalance

Use techniques like data augmentation or class weighting to handle imbalanced datasets.

Overfitting

Apply regularization techniques such as dropout or use more data.

Low IoU Scores

models or fine-tuning

Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville

Additional Resources

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron

Online Tutorials

TensorFlow Object Detection API Tutorial tutorial.readthedocs.jo/en/latest/

KerasCV Documentation and Guides

Towards Data Science

https://towardsdatascience.com/

PylmageSearch https://pyimagesearch.com/category/tutorials/

Did You Know?

Real-Time Object Detection in Autonomous Vehicles

Real-time object detection is a critical component in autonomous vehicles. These systems rely on advanced algorithms like YOLO (You Only Look Once) and Faster R-CNN to detect and classify objects such as pedestrians, other vehicles, and traffic signs in real-time. This capability is essential for making split-second decisions to ensure safe navigation and avoid collisions.

Small Object Detection Challenges

Detecting small objects in images, such as tiny parts in industrial inspections or small animals in wildlife monitoring, is particularly challenging. This is because small objects occupy fewer pixels, making it harder for models to extract meaningful features. Advanced techniques like multi-scale object detection and feature pyramid networks have been developed to address these been developed to address these challenges, improving the accuracy of detecting small objects in various

Citations

- Towards Data Science. (n.d.). A comprehensive guide to object detection using YOLO framework Part I. Towards Data Science.
 Towards Data Science. (n.d.). R-CNN, Fast R-CNN, Faster R-CNN, YOLO Object detection algorithms. Towards Data Science.
 TensorFlow. (n.d.). Computer vision with TensorFlow. TensorFlow.

 Label Your Data. (n.d.). Object detection evaluation metric explained. Label Your Data.
 GeeksforGeeks. (n.d.). R-CNN vs Fast R-CNN vs Faster R-CNN | ML. GeeksforGeeks.
- Rosebrock, A. (2020, October 5). Object detection: Bounding box regression with Keras, TensorFlow, and deep learning. PylmageSearch.
 V7 Labs. (n.d.). YOLO algorithm for object detection explained [+Examples]. V7 Labs.
 Keras. (n.d.). Object detection with KerasCV. Keras.