NYC Human Mobility Adequacy

Emma Corbett

TABLE OF CONTENTS

02 Objective

03 Data

01 Situation Analysis

My research has focused on studying multi-modal transportation in NYC. A multimodal trip is one where you used 2 or more different modes of transportation. This is more complicated than looking at one mode at a time, but yields more realistic results.

Machine Learning Inspiration

Quantifying the uncertainty of mobility flow predictions using Gaussian processes

Aike Steentoft, Bu-Sung Lee, Markus Schläpfer

Fig. 4 Spatial mapping of the number of low income jobs of people living in each census tract (left), the number of high income jobs (middle), and the number of amenities (right). The dots represent census tracts and brighter colors correspond to higher numbers

Taxi Flows

Objective

Desired Insights

Effect of income on mobility patterns

Explore pre- and postcovid trends Effect of new points of interest (parks)

03 Data

Data

Multiscale Dynamic Human Mobility Flow Dataset in the U.S. during the COVID-19 Epidemic

GeoDS Lab, Department of Geography, University of Wisconsin-Madison.

Models & Results

Neural Network To Predict Mobility Flows Using Mobile Phone, POI, and Census Data

 Table 3
 Location attributes (urban features) related to attraction of trips, production of trips, and interaction between origin and destination

Trip relation	Attribute (urban feature)
Destination (attraction)	No. of low-income residents
	No. of medium-income residents
	No. of high-income residents
	No. of low-income workers
	No. of medium-income workers
	No. of high-income workers
	No. of amenities
Origin (production)	No. of low-income residents
	No. of medium-income residents
	No. of high-income residents
	No. of low-income workers
	No. of medium-income workers
	No. of high-income workers
	No. of amenities
Intervening attributes	Distance between origin and destination
	No. of low-income residents closer to origin
	No. of medium-income residents closer to origin
	No. of high-income residents closer to origin
	No. of low-income workers closer to origin
	No. of medium-income workers closer to origin
	No. of high-income workers closer to origin
	No. of amenities closer to origin

Predicted change in mobility from 10% increase in number of high income residents & workers in 20 random Bronx Census Tracts

Here I am exploring income related changes to mobility predictions. Downside to NN models is lack of explainability.

Hudson Yards Case Study

Percent Change in Flow Rate to Hudson Yards Two Months before vs after Hudson Yards Opening

Model Trained on Pre-Hudson Yards Data Prediction Accuracy on Post-Hudson Yards Data

Conclusion

How does this make cities more sustainable?

Education level as a predictor

Economic, job market, RTO implications

Infrastructure planning

Future Work

- Incorporate other types of mobility data (taxi, bike, etc) to strengthen results
- Seeing how new congestion pricing affects mobility
- More parks and other POIs (libraries, schools, etc...)

Resources

Alessandretti, L. (n.d.). Multimodal Urban Mobility and Multilayer Transport Networks. https://journals.sagepub.com/doi/10.1177/23998083221108190

Bolozna. (n.d.). *Bolozna/Multilayer-networks-library: The original library for analysing multilayer networks. http://www.mkivela.com/pymnet/*. GitHub. https://github.com/bolozna/Multilayer-networks-library

Department of Transportation, D. (2022, December 15). *Pedestrian mobility plan pedestrian demand: NYC open data*. Pedestrian Mobility Plan Pedestrian Demand | NYC Open Data.

https://data.cityofnewyork.us/Transportation/Pedestrian-Mobility-Plan-Pedestrian-Demand/fwpa-qxaf/about_data

GeoDS. (n.d.). *GeoDS/covid19usflows: Multiscale dynamic human mobility flow data in the U.S. during the covid-19 epidemic*. GitHub. https://github.com/GeoDS/COVID19USFlows?tab=readme-ov-file#code-usage

NetworkX documentation. NetworkX. (n.d.). https://networkx.org/

NYC GIS zoning features. (n.d.). https://www.nyc.gov/site/planning/data-maps/open-data/dwn-gis-zoning.page

Schläpfer, M., Dong, L., O'Keeffe, K., Santi, P., Szell, M., Salat, H., Anklesaria, S., Vazifeh, M., Ratti, C., & West, G. B. (2021, May 26). *The Universal Visitation Law of Human mobility*. Nature News. https://www.nature.com/articles/s41586-021-03480-9

Stone, M. (2018, May 18). *New York City Bus Data*. Kaggle. https://www.kaggle.com/datasets/stoney71/new-york-city-transport-statistics

