Constrained Problems

Christos Dimitrakakis

March 14, 2024

Outline

Introduction

General optimisation problems Example problems

Constraint optimisation

Constraint Satisfaction
Constrained Optimisation Problems

Logical constraints

Logic Deterministic planning

Optimisation on graphs

Discrete optimisation

- ► Shortest path.
- Meeting scheduling.
- ► Travelling salesman.
- Graph colouring.
- ▶ Bipartite matching.
- Spanning trees.

Continuous optimisation

- ► Maximum flow: inequality constraints
- Minimum-cost flow: equality constraints.

Complexity

- ► Currently $\tilde{O}(N^{2/3})$.
- ightharpoonup Ax = b can be solved in approximately linear time. (Spielman-Teng)

Network Flow

- ▶ Graph G = (N, E), $s, t \in N$ being the source and sink.
- ▶ Edge capacity $c: E \to \mathbb{R}_+$

Flow $f: E \to \mathbb{R}$

The total flow from source to sink is

$$|f| = \sum_{(s,i)\in E} f_{si} = \sum_{(j,t)\in E} f_{jt}$$

Flow constraints

The flow satisfies the following constraints:

- ▶ Capacity constraint: $f_{ij} \leq c_{ij}$
- Conservation of flows:

$$\forall n \in N \setminus \{s,t\} \sum_{i:(i,j) \in E, f_{ij} > 0} f_i j = \sum_{j:(i,j) \in E, f_{ji} > 0} f_j i.$$

The maximum network flow problem

Maximise |f| while satisfying the capacity and conservation constraints.

Meeting Scheduling

- ▶ Graph G = (N, E), $s, t \in N$ being the source and sink.
- ▶ Edge capacity $c: E \to \mathbb{R}_+$

Flow $f: E \to \mathbb{R}$

The total flow from source to sink is

$$|f| = \sum_{(s,i)\in E} f_{si} = \sum_{(j,t)\in E} f_{jt}$$

Flow constraints

The flow satisfies the following constraints:

- ▶ Capacity constraint: $f_{ij} \leq c_{ij}$
- Conservation of flows:

$$\forall n \in N \setminus \{s,t\} \sum_{i:(i,j) \in E, f_{ij} > 0} f_i j = \sum_{j:(i,j) \in E, f_{ji} > 0} f_j i.$$

The maximum network flow problem

Maximise |f| while satisfying the capacity and conservation constraints.

Constrained Satisfaction Problems

Variables

- ightharpoonup A set of variables $\{x_1,\ldots,x_n\}$
- ▶ Each variable can take values in $x \in X_i$.

Binary constraints

 $ightharpoonup c_{i,j}: X_i \times X_j \rightarrow \{0,1\}.$

Graph representation

▶ Goal: Find $x \in \prod_i X_i$ so that c = 1.

Constrained optimisation

Variables

- ightharpoonup A set of variables $\{x_1,\ldots,x_n\}$
- **Each** variable can take values in $x \in X_i$, with $X \in \prod_i X_i$.

Pairwise constraints

 $c_{i,j}: X_i \times X_j \to \{0,1\}.$

Objective function

▶ Maximise $u: X \to \mathbb{R}$.

Special cases:

- $\triangleright u(X) = \sum_i u_i(x_i)$
- $\blacktriangleright u(X) = \sum_{ij} u_{ij}(x_i, x_j)$

Logic

Statements

A statement A may be true or false

Unary operators

▶ negation: $\neg A$ is true if A is false (and vice-versa).

Binary operators

- ightharpoonup or: $A \lor B$ (A or B) is true if either A or B are true.
- ▶ and: $A \land B$ is true if both A and B are true.
- ▶ implies: $A \Rightarrow B$: is false if A is true and B is false.
- ▶ iff: $A \Leftrightarrow B$: is true if A, B have equal truth values.

Operator precedence

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

Set theory

- ightharpoonup First, consider some universal set Ω .
- ightharpoonup A set A is a collection of points x in Ω .
- ▶ $\{x \in \Omega : f(x)\}$: the set of points in Ω with the property that f(x) is true.

Unary operators

Binary operators

- ► $A \cup B$ if $\{x \in \Omega : x \in A \lor x \in B\}$ (c.f. $A \lor B$)
- ► $A \cap B$ if $\{x \in \Omega : x \in A \land x \in B\}$ (c.f. $A \land B$)

Binary relations

- $ightharpoonup A \subset B \text{ if } x \in A \Rightarrow x \in B \text{ (c.f. } A \Longrightarrow B)$
- $ightharpoonup A = B \text{ if } x \in A \Leftrightarrow x \in B \text{ (c.f. } A \Leftrightarrow B)$

Knowledge base

Syntax and Semtantics

- Syntax: How to construct sentences
- ► Semantix: What sentences mean

Truth

A statement A is either true or false in any model m.

Model

ightharpoonup M(A) the set of all models where A is true.

Entailment

- $ightharpoonup A \models B$ means that B is true whenever A is true.
- ▶ $A \models B$ if and only if $M(A) \subseteq M(B)$.

Knowledge-Base

► A set of sentences that are true.

Inference

► KR ⊢. A. Algorithm i can derive A from KR (□) (□) (□) (□) (□) (□)

Propositional logic syntax

- -Sentence \rightarrow Atomic | Complex -Atomic \rightarrow True | False | A | B | C | ...-Complex \rightarrow (Sentence) | [Sentence]
 - ► | ¬ Sentence (not)
 - ► | Sentence ∧ Sentence (and)
 - ► | Sentence ∨ Sentence (or)
 - ► | Sentence ⇒ Sentence (implies)
 - ▶ | Sentence ⇔ Sentence (if and only if)

Precedence: $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$

Set theory semantics of propositional logic

Atoms as sets

- \blacktriangleright Let Ω be the universal set.
- ightharpoonup Any atom A is a subset of Ω .
- ightharpoonup Any model ω is an element of Ω .

Definitions

- $ightharpoonup A \Rightarrow B$ is equivalent to $A \supset B$.
- $\neg (\neg A) \equiv A$
- $(A \Rightarrow B) \equiv (\neg B \Rightarrow \neg A)$
- $(A \Rightarrow B) \equiv (\neg A \lor B)$

For any model m:

- $ightharpoonup \neg P$ is true iff P is false in m.
- $ightharpoonup P \wedge Q$ is true iff P, Q are true in m.
- \triangleright $P \lor Q$ is true iff either P or Q is true in m.
- $ightharpoonup P \Rightarrow Q$ is true unless P is true and Q is false in m.
- ▶ $P \Leftrightarrow Q$ if P, Q are both true or both false in m,

States, actions and goals

- ▶ States $s \in S$
- ightharpoonup Actions $a \in A$
- ▶ Transition function $\tau: S \times A \rightarrow S$

State representation