## 1. Statoréacteur

Statarentem: 52, ruel Staterencteur:  $\frac{1}{2}$ , rivel  $\frac{1}{2$ de prend des valeur les mains contrargants, par pairen généraliser (Uminimale, L'minimale, e minimale) U~500-1000 km/h (val Enbrarique)

L~ 1 m-10 m

e~ 0,1 kg/m³-1 kg/m³

2. (Carection dans 3.)

2. (Carection dans 3.)

Proude: Elle wet de la différence de quantité de maneral sur la maneral sur entrait va au Sostant: On realise un blan de quantité de maneral sur le valure de Cantrâle V. Pan l'ain dans le valume de contrôle: dp = d95-dpe

= -N2. PN2 dt 52 + V1 (P m, dt 51)

Conservation de la masse est respectée: on neglige mile devat les debts massiques d'an: mk = 0,8 kg/s, am = N1 es1 = 150.0,1.0,3 = 7 kg/s. On peut rais annablement considérer mix « am con perment quand mêne faire le culcul sons l'hypothèse, => N1 851= N2 852 = Qm Done dp = (~1-~2) Qm dt = (+0,0005~12-0,8~1 +100) am dt → Fransie = - dr = (-0,000 50/4+0,8 NJ - 100) Rm (action - reaction - signe (0) A.N.:  $N_1 = 400 \text{ m/s}$ ,  $Q_m = N_1 e^{S_1}$   $e^{(10 \text{ km})} = ?$ .  $GP: e^{=\frac{PM}{RT}}$ ,  $e^{(10 \text{ km})} = e^{OE} = 23,2$  10  $e^{OE}$   $e^{(10 \text{ km})} \approx 0,4 \text{ kg/m}^3$   $e^{(10 \text{ km})} \approx 0,4 \text{ kg/m}^3$   $e^{(10 \text{ km})} \approx 0,4 \text{ kg/m}^3$   $e^{OE}$  Francis  $e^{OE}$   $e^{OE}$ 



Vortex

## Solution

- 1. La tornade possède l'invariance par rotation autour de l'axe Oz donc v ne dépend pas de  $\theta$ . La trajectoire d'une particule fluide est située dans un plan horizontal (z = cte) donc v ne dépend pas de z. Finalement  $|\vec{v} = v(r)\vec{u_{\theta}}|$ .
- 2. Le vecteur tourbillon et le champ des vitesses sont liés via  $\left| \overrightarrow{\Omega} = \frac{1}{2} \overrightarrow{\text{rot} v} \right|$ .

La circulation du champ des vitesses sur une trajectoire de particule fluide s'écrit, d'après le théorème de Stokes :  $\iint_{\Gamma} \vec{v} \cdot d\vec{\ell} = \iint_{\Gamma} \vec{\text{rot}} \vec{v} d\vec{S}$ , donc  $\iint_{\Gamma} \vec{v} \cdot d\vec{\ell} = 2 \iint_{\Gamma} \vec{\Omega} d\vec{S}$ .

On choisit pour  $\Gamma$  un cercle de centre O et de rayon r, on a alors  $\iint_{\Gamma} \vec{v} \cdot \vec{d\ell} = 2\pi r v(r)$ .

On choisit pour  $\Sigma$  un disque de centre O et de rayon r et deux cas se présentent :

- $r < a : \iint_{\Gamma} \overrightarrow{\Omega} d\overrightarrow{S} = \Omega \cdot \pi r^2$ , d'où  $2\pi r v(r) = 2\Omega \cdot \pi r^2$ , soit  $v(r) = \Omega \cdot r$ ;
- r > a:  $\iint_{\Sigma} \overrightarrow{\Omega} d\overrightarrow{S} = \Omega \cdot \pi a^2$ , d'où  $2\pi r v(r) = 2\Omega \cdot \pi a^2$ , soit  $v(r) = \frac{\Omega \cdot a^2}{2\pi r^2}$ .
- 3. L'allure de la courbe v(r) est la suivante :



- 4. Commentaires de quelques valeurs particulières :
  - au centre de la tornade : v(0) = 0, c'est une zone de calme (l'œil) ;
  - en r = a la vitesse est maximum, c'est une zone de grand vent (le mur) ;
  - $v \xrightarrow[r \to \infty]{} 0$ : pas d'effet loin de la tornade.