1. Test of Austin's Custom LaTeX Style

This document tests various custom commands and environments from austin.sty.

1.1. Custom Math Commands. Here are some custom math symbols:

ullet Complex numbers: $\mathbb C$

• Natural numbers: N

• Rational numbers: Q

ullet Real numbers: $\mathbb R$

 \bullet Integers: \mathbb{Z}

Some custom operators: $cis(\theta) = cos(\theta) + i sin(\theta)$

The least common multiple: lcm(12, 18) = 36

Automorphism group: Aut(G)

1.2. Custom Math Shortcuts. Cube root: $\sqrt[3]{27} = 3$

Floor and ceiling: $\lfloor 3.7 \rfloor = 3$ and $\lceil 3.2 \rceil = 4$

Boxed result: $E = mc^2$

Fraction shortcut: $\frac{a}{b} = \frac{a}{b}$ Vector notation: $\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

1.3. Theorem-Like Environments.

Theorem 1.1 (Fundamental Theorem of Calculus):

If f is continuous on [a, b] and F is an antiderivative of f, then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Lemma 1.2 (Zorn's Lemma):

Every partially ordered set in which every chain has an upper bound contains at least one maximal element.

Corollary 1.3:

Every vector space has a basis.

Proposition 1.4 (Cauchy-Schwarz Inequality):

For any vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$:

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|$$

Definition 1.5 (Group):

A group is a set G together with a binary operation $\cdot:G\times G\to G$ satisfying:

- (1) Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- (2) Identity: $\exists e \in G \text{ s.t. } a \cdot e = e \cdot a = a \text{ for all } a \in G$
- (3) Inverses: For each $a \in G$, $\exists a^{-1} \in G$ s.t. $a \cdot a^{-1} = a^{-1} \cdot a = e$

Example 1.6 (Symmetric Group):

The symmetric group S_n consists of all permutations of n elements. It has order n!.

Remark 1.7:

The notation Hom(G, H) denotes the set of all homomorphisms from G to H.

1.4. Probability and Statistics. Expected value: $\mathbb{E}[X] = \sum_{x} x \cdot P(X = x)$

Variance: $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Covariance: $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

Bernoulli distribution: $X \sim \text{Bern}(p)$ Binomial distribution: $Y \sim \text{Binom}(n, p)$

Austin Wu (amw423)

```
1 def fibonacci(n):
2    if n <= 1:
3       return n
4    return fibonacci(n-1) + fibonacci(n-2)</pre>
```

1.6. Problem Environment.

Problem 1:

Prove that $\sqrt{2}$ is irrational.

a:

Assume $\sqrt{2} = \frac{p}{q}$ where $p, q \in \mathbb{Z}$ and $\gcd(p, q) = 1$.

b:

Derive a contradiction.