A clustered of SOTA Paper

John Doe

CONTENTS

Chapter: 1		Template	2
I	Introdu I-A	uction Definitions	. 2
II	Motiva	tion	2
Ш	Backgr III-A III-B	Types of visual grasping	. 2
IV	Our M IV-A	Conceptual Architecture	
V	Implen	nentation	2
Cha	pter: 2	Template	2
VI	Introdu VI-A	uction Definitions	
VII	Motiva	tion	2
VIII	Backgr VIII-A VIII-B		. 2
IX	Our M IX-A	Conceptual Architecture	
X	Implen	nentation	2
D 0	ences		3

[Last edit: Sept, 2022]

Abstract—This document describes the most common article elements and how to use the IEEEtran class with LATEX to produce files that are suitable for submission to the Institute of Electrical and Electronics Engineers (IEEE). IEEEtran can produce conference, journal and technical note (correspondence) papers with a suitable choice of class options.

Index Terms—Class, IEEEtran, \LaTeX , paper, style, template, typesetting.

I. INTRODUCTION

TNTRODUDUCTION starts here

A. Definitions

Here, we will define [1] as in Figure 2.

Fig. 1. A Caption

1) Levels:

Level.1 ABC

Level.2 Something

Level.3 Repeat Level.2

II. MOTIVATION

III. BACKGROUND

Here we will write about backgrounds

A. Types of visual grasping

surveys on different types of grasping approaches

- 1) 6-D pose grasping:
- B. SLAM
 - 1) Kimera:

IV. OUR METHODS

- A. Conceptual Architecture
 - 1) Problem Definition and Input Space:

$$\hat{\xi} = \begin{bmatrix} \hat{\omega} & v \\ 0 & 0 \end{bmatrix}, \quad \hat{\omega} = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix}^{\hat{}} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$
(1)

V. IMPLEMENTATION

2

Chapter 2: Template

[Last edit: Sept, 2022]

Abstract—This document describes the most common article elements and how to use the IEEEtran class with LaTeX to produce files that are suitable for submission to the Institute of Electrical and Electronics Engineers (IEEE). IEEEtran can produce conference, journal and technical note (correspondence) papers with a suitable choice of class options.

Index Terms—Class, IEEEtran, LaTeX, paper, style, template, typesetting.

VI. INTRODUCTION

NTRODUDUCTION starts here

A. Definitions

Here, we will define [1] as in Figure 2.

Fig. 2. A Caption

1) Levels:

Level.1 ABC

Level.2 Something

Level.3 Repeat Level.2

VII. MOTIVATION

VIII. BACKGROUND

Here we will write about backgrounds

A. Types of visual grasping

surveys on different types of grasping approacches

1) 6-D pose grasping:

B. SLAM

1) Kimera:

IX. OUR METHODS

- A. Conceptual Architecture
 - 1) Problem Definition and Input Space:

$$\hat{\xi} = \begin{bmatrix} \hat{\omega} & v \\ 0 & 0 \end{bmatrix}, \quad \hat{\omega} = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix}^{\wedge} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \quad (2)$$

X. IMPLEMENTATION

GLOSSARY

SLAM Simultaneous Localization and Mapping. 1, 2 **SOTA** State-Of-The-Art. 1

REFERENCES

[1] "Friction is preferred over grasp configuration in precision grip grasping," https://journals.physiology.org/doi/epdf/10.1152/jn.00021.2021.